Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНЫХ КИБЕРНЕТИЧЕСКИХ СИСТЕМ КАФЕДРА КИБЕРНЕТИКИ

Отчет по курсу «Методы оптимизации»

Выполнил: Студент группы Б22-534 Запепилин А.В.

Вариант №55

Содержание

1	Задание №1	2
	1.1 Задача (а)	2
	1.2 Задача (b)	4
	1.3 Задача (с)	5
2	Задание №2	5
	2.1 Задача (а)	5
	2.2 Задача (b)	7
	2.3 Задача (с)	9
3	Задание №3	10
	3.1 Задача (а)	10
4	Задание №4(6)	12
5	Задание №5	15
6	Задание №6	20
	6.1 Графическое решение задачи	20
	6.2 Решение задачи с помощью симплекс-метода:	
		22
	6.3.1 Геометрическим методом:	
	6.3.2 Симплекс-методом:	22
7	Задание №7	24
8	Задание №8	35
	8.1 Условие	35
	8.2 Постановка задачи	35
9		38
	9.1 Условие	
	9.2 Постановка задачи	38
10	Задание №10	45

1 Задание №1

1.1 Задача (а)

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \to \max, \min$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Рис. 1: Графическое решение задачи (а)

Вычисление точек пересечения

1. Минимум $x_1 - 3x_2 = 3$ и $x_2 = 0$:

$$\begin{cases} x_1 = 3 + 3x_2 \\ x_2 = 0 \implies x_1 = 3 \end{cases}$$

Точка пересечения: (3,0).

2. Максимум $x_1 + x_2 = 10$ и $-x_1 + 4x_2 = 4$:

$$\begin{cases} x_1 + x_2 = 10 \\ -x_1 + 4x_2 = 4 \end{cases} \implies \begin{cases} x_1 = \frac{36}{5} \\ x_2 = \frac{14}{5} \end{cases}$$

Точка пересечения: $\left(\frac{36}{5}, \frac{14}{5}\right)$.

Вычисление значений целевой функции $F = 3x_1 + 4x_2$ в найденных точках:

- В точке (3,0):

$$F(3,0) = 9$$

- В точке $(\frac{36}{5}, \frac{14}{5})$:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = \frac{164}{5}$$

Ответ: Максимум функции $F=3x_1+4x_2$ достигается в точке $\left(\frac{36}{5},\frac{14}{5}\right)$, где $F=\frac{164}{5}$. Минимум функции $F=3x_1+4x_2$ достигается в точке (3,0), где F=9.

1.2 Задача (b)

Оптимизационная задача:

$$F = x_1 + 7x_2 \rightarrow \max, \min$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Построение графиков

Рис. 2: Графическое решение задачи (b)

Вычисление точек пересечения

1. Минимум $3x_1 + 4x_2 = 12$ и $2x_1 - x_2 = 6$:

$$\begin{cases} 3x_1 + 4x_2 = 12 \\ 2x_1 - x_2 = 6 \end{cases} \implies \begin{cases} x_1 = \frac{36}{11} \\ x_2 = \frac{6}{11} \end{cases}$$

Точка пересечения: $\left(\frac{36}{11},\frac{6}{11}\right)$. Вычисление значений целевой функции $F=x_1+7x_2$ в найденной точке:

B точке $(\frac{36}{11}, \frac{6}{11})$:

$$F\left(\frac{36}{11}, \frac{6}{11}\right) = \frac{78}{11}$$

Максимума функции не существует. Минимум функции $F = x_1 + 7x_2$ достигается в точке $\left(\frac{36}{11}, \frac{6}{11}\right)$, где $F = \frac{78}{11}$.

1.3 Задача (с)

Оптимизационная задача:

$$F = 2x_1 + x_2 \rightarrow \max, \min$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 - x_2 \ge 9 \\ x_1 + x_2 \le 2 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Построение графиков

Рис. 3: Графическое решение задачи (с)

Ответ: Максимума функции не существует. Минимума функции не существует.

2 Задание №2

2.1 Задача (а)

Оптимизационная задача (из задачи 1.1):

$$F = 3x_1 + 4x_2 \to \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 3x_1 - 4x_2 = 0$$

$$\begin{cases} x_1 - 3 \cdot x_2 + x_3 = 3 \\ x_1 + x_2 + x_4 = 10 \\ -x_1 + 4 \cdot x_2 + x_5 = 4 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_3	1	-3	1	0	0	3	-1
x_4	1	1	0	1	0	10	10
x_5	-1	4	0	0	1	4	1
F(x)	-3	-4	0	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_2	$-\frac{1}{4}$	1	0	0	$\frac{1}{4}$	1	-4
x_3	$\frac{1}{4}$	0	1	0	$\frac{3}{4}$	6	24
x_4	$\frac{5}{4}$	0	0	1	$-\frac{1}{4}$	9	$\frac{36}{5}$
F(x)	-4	0	0	0	1	4	

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	
x_3	0	0	1	$-\frac{1}{5}$	4 5	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

2.2 Задача (b)

Оптимизационная задача (из задачи 1.2):

$$F = x_1 + 7x_2 \to \max$$

Группа: Б22-534

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - x_1 - 7x_2 = 0$$

$$\begin{cases}
-3 \cdot x_1 - 4 \cdot x_2 + x_3 = -12 \\
2 \cdot x_1 - x_2 + x_4 = 6 \\
x_1 \ge 0, \ x_2 \ge 0
\end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_3	-3	-4	1	0	-12	_
x_4	2	-1	0	1	6	_
F(x)	-1	-7	0	0	0	_

В последней строке есть элементы ≤ 0 . Минимальный из них -7, но т.к. все элементы этого столбца отрицательные, то область допустимых решений неограниченна.

Оптимизационная задача (из задачи 1.2):

$$F = x_1 + 7x_2 \rightarrow \min$$

Переведём эту задачу в поиск максимума взяв обратную функцию от изначальной.

$$G = -x_1 - 7x_2 \to \max$$

Ограничения:

$$\begin{cases} 3 \cdot x_1 + 4 \cdot x_2 \ge 12 \\ 2 \cdot x_1 - x_2 \le 6 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$G + x_1 + 7x_2 = 0$$

$$\begin{cases}
-3 \cdot x_1 - 4 \cdot x_2 + x_3 = -12 \\
2 \cdot x_1 - x_2 + x_4 = 6 \\
x_1 \ge 0, \ x_2 \ge 0
\end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \geq 0$
x_3	-3	-4	1	0	-12	4
x_4	2	-1	0	1	6	3
G(x)	1	7	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_1	1	$-\frac{1}{2}$	0	$\frac{1}{2}$	3	-6
x_3	0	$-\frac{11}{2}$	1	$\frac{3}{2}$	-3	$\frac{6}{11}$
G(x)	0	$\frac{15}{2}$	0	$-\frac{1}{2}$	-3	$-\frac{6}{15}$

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_2	0	1	$-\frac{2}{11}$	$-\frac{3}{11}$	$\frac{6}{11}$	_
x_1	1	0	$-\frac{1}{11}$	$\frac{4}{11}$	$\frac{36}{11}$	_
G(x)	0	0	$\frac{4}{165}$	$\frac{17}{11}$	$\frac{78}{11}$	_

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{11}, x_2=\frac{6}{11},$ и значение целевой функции равно $F(x)=\frac{78}{11}.$

2.3 Задача (с)

Оптимизационная задача (из задачи 1.3):

$$F = 2x_1 + x_2 \to \max$$

Группа: Б22-534

Ограничения:

$$\begin{cases} 3 \cdot x_1 - x_2 \ge 9 \\ x_1 + x_2 \le 2 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 2x_1 - x_2 = 0$$

$$\begin{cases}
-3 \cdot x_1 + x_2 + x_3 = -9 \\
x_1 + x_2 + x_4 = 2 \\
x_1 \ge 0, \ x_2 \ge 0
\end{cases}$$

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \ge 0$
x_3	-3	1	1	0	-9	_
x_4	1	1	0	1	2	2
F(x)	-2	-1	0	0	0	_

Первую и последнюю строки не вычисляем для последнего столбца т.к. элементы р.с. ≤ 0 . В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	b_i	$b_i/p.c. \geq 0$
x_1	1	1	0	1	2	_
x_3	0	4	1	3	-3	_
F(x)	0	1	0	2	4	-

В последней строке не осталось элементов ≤ 0 .

Мы пришли к конечной таблице. Т.к. не все $b_i \geq 0 \implies$ решения не существует.

3 Задание №3

3.1 Задача (а)

Оптимизационная задача (из задачи 1.1):

$$F = 3x_1 + 4x_2 \rightarrow \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 > 0, \ x_2 > 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	36 5
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	_
x_3	0	0	1	$-\frac{1}{5}$	$\frac{\frac{2}{4}}{5}$	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

Составим двойственную задачу:

$$F^* = 3y_1 + 10x_2 + 4y_3 \rightarrow \min$$

Ограничения:

$$\begin{cases} y_1 + y_2 - y_3 \ge 3 \\ -3 \cdot y_1 + y_2 + 4 \cdot y_3 \ge 4 \\ y_1 \ge 0, \ y_2 \ge 0, \ y_3 \ge 0 \end{cases}$$

Решим задачу 1 способом для этого составим систему для нахождения y_1^*, y_2^*, y_3^* :

$$\begin{cases} (\frac{36}{5} - 3\frac{14}{5} - 3) \cdot y_1^* = 0 \\ (\frac{36}{5} + \frac{14}{5} - 10) \cdot y_2^* = 0 \\ (-\frac{36}{5} + 4\frac{14}{5} - 4) \cdot y_3^* = 0 \end{cases} \implies \begin{cases} -\frac{8}{5} \cdot y_1^* = 0 \implies y_1^* = 0 \\ 0 \cdot y_2^* = 0 \implies y_2^* \ge 0 \\ 0 \cdot y_3^* = 0 \implies y_3^* \ge 0 \end{cases}$$

Вычислим y_2^*, y_3^* с учётом что $y_1^* = 0$

$$\begin{cases} (y_1^* + y_2^* - y_3^* - 3) \cdot \frac{36}{5} = 0 \\ (-3y_1^* + y_2^* + 4y_3^* - 4) \cdot \frac{14}{5} = 0 \end{cases} \implies \begin{cases} y_2^* - y_3^* - 3 = 0 \implies y_2^* = \frac{15}{5} \\ y_2^* + 4y_3^* - 4 = 0 \implies y_3^* = \frac{1}{5} \end{cases}$$

Вектор решения:

$$y^* = (0; \frac{15}{5}; \frac{1}{5})$$

Подставим решение в F^* и сравним с тем что получалось в F:

$$F^* = 10 \cdot \frac{16}{5} + 4 \cdot \frac{1}{5} = \frac{164}{5}$$

Правильное решение найдено.

Решим задачу 2 способом для этого возьмём конечную симплекс-таблицу для базовой задачи:

Базис	A_1	A_2	A_3	A_4	A_5	B_i	C
A_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	3
A_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	4
A_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$	0

Считаем по формуле: $y^* = C \cdot A^{-1}$

Посчитаем значение y^* :

$$y^* = \begin{pmatrix} 3 & 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & \frac{4}{5} & -\frac{1}{5} \\ 0 & \frac{1}{5} & \frac{4}{20} \\ 1 & -\frac{1}{5} & \frac{4}{5} \end{pmatrix} = \begin{pmatrix} 0 & \frac{16}{5} & \frac{1}{5} \end{pmatrix}$$

Теперь посчитаем значение функции F^* :

$$F^* = 10 \cdot \frac{16}{5} + 4 \cdot \frac{1}{5} = \frac{164}{5}$$

Правильное решение найдено.

4 Задание №4(6)

Условие задачи:

Сырьё	A	B	C	D	Запасы
Металл	1	6	4	5	800
Пластмасса	5	9	8	10	2500
Резина	0	3	1	5	600
Прибыль	2	7	8	4	_

Математическая интерпретация задачи:

$$F = 2x_1 + 7x_2 + 8x_3 + 4x_4 \to \max$$

$$\begin{cases} x_1 + 6 \cdot x_2 + 4 \cdot x_3 + 5 \cdot x_4 \le 800 \\ 5 \cdot x_1 + 9 \cdot x_2 + 8 \cdot x_3 + 10 \cdot x_4 \le 2500 \\ 3 \cdot x_2 + x_3 + 5 \cdot x_4 \le 600 \end{cases}$$

Составим условие задачи для решения симплекс методом:

$$F - 2x_1 - 7x_2 - 8x_3 - 4x_4 = 0$$

$$\begin{cases} x_1 + 6 \cdot x_2 + 4 \cdot x_3 + 5 \cdot x_4 + x_5 = 800 \\ 5 \cdot x_1 + 9 \cdot x_2 + 8 \cdot x_3 + 10 \cdot x_4 + x_6 = 2500 \\ 3 \cdot x_2 + x_3 + 5 \cdot x_4 \le 600 + x_7 = 600 \end{cases}$$

Составим начальную симплекс-таблицу:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$
x_5	1	6	4	5	1	0	0	800	200
x_6	5	9	8	10	0	1	0	2500	$\frac{625}{2}$
x_7	0	3	1	5	0	0	1	600	$6\bar{0}0$
F(x)	-2	-7	-8	-4	0	0	0	0	0

T.к. в последней строке есть элементы ≤ 0 выбираем минимальный отрицательный элемент в последнем столбце и считаем последний столбец после чего выбираем разрешающий элемент.

Занулим все элементы выше и ниже разрешающего элемента:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$
x_3	$\frac{1}{4}$	$\frac{3}{2}$	1	$\frac{5}{4}$	$\frac{1}{4}$	0	0	200	200
x_6	3	-3	0	Ō	-2	1	0	900	$\frac{625}{2}$
x_7	$-\frac{1}{4}$	$\frac{3}{2}$	0	$\frac{15}{4}$	$-\frac{1}{4}$	0	1	400	$6\bar{0}0$
F(x)	0	$\tilde{5}$	0	$\dot{6}$	2	0	0	1600	_

В последней строке все элементы $\geq 0 \implies$ оптимальный план найден.

Максимум функции достигается при $x_1=0, x_2=0, x_3=200, x_4=0,$ и значение целевой функции равно F(x)=1600.

Составим двойственную задачу:

$$F^* = 800y_1 + 2500y_2 + 600y_3 \to \min$$

Конечная симлекс-таблица с добавлением столбца С:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	b_i	$b_i/p.c. \ge 0$	C
x_3	$\frac{1}{4}$	$\frac{3}{2}$	1	$\frac{5}{4}$	$\frac{1}{4}$	0	0	200	200	8
x_6	3	-3	0	Ô	-2	1	0	900	$\frac{625}{2}$	0
x_7	$-\frac{1}{4}$	$\frac{3}{2}$	0	$\frac{15}{4}$	$-\frac{1}{4}$	0	1	400	$6\bar{0}0$	0
F(x)	0	$\bar{5}$	0	6	2	0	0	1600	_	

Считаем по формуле: $y^* = C \cdot A^{-1}$

Посчитаем значение y^* :

$$y^* = \begin{pmatrix} 8 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{1}{4} & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$$

Минимум функции достигается при $y_1 = 2, y_2 = 0, y_3 = 0.$

Теперь посчитаем значение функции F^* :

$$F^* = 800 \cdot 2 + 2500 \cdot 0 + 600 \cdot 0 = 1600$$

Значения F и F^* совпадают \implies задача решена правильно.

Анализ результатов

Подставим $\mathbf{x}^* = (0; 0; 200; 0)$ в условия прямой задачи:

$$\begin{cases} 0 + 6 \cdot 0 + 4 \cdot 200 + 5 \cdot 0 = 800 \\ 5 \cdot 0 + 9 \cdot 0 + 8 \cdot 200 + 10 \cdot 0 = 1600 \le 2500 \\ 3 \cdot 0 + 200 + 5 \cdot 0 = 200 \le 600 \end{cases}$$

Второе и третье условия имеют строгий знак <, значит второй и третий ресурсы (пластмасса и резина) не являются дефицитными (остатки 900 и 400 соответственно).

Первое условие образует равенство =, значит первый ресурс (металл) дефицитен.

Подставим $\mathbf{y}^* = \begin{pmatrix} 2 & 0 & 0 \end{pmatrix}$ в условия двойственной задачи:

$$\begin{cases} 6 > 2 \\ 12 > 7 \\ 8 = 8 \\ 10 > 4 \end{cases}$$

Первое, второе и четвёртое условия имеют строгий знак >, следовательно, производить эти изделия экономически невыгодно.

Третье условие имеет равенство =, следовательно, двойственная оценка ресурса, используемого для изготовления продукта в точности равна доходам, а значит продукт выгодно производить.

Величина двойственных оценок показывает, насколько возрастает целевая функция при увеличении запасов дефицитного ресурса на единицу. Увеличение запасов ресурса Р1 (металл) на единицу приведет к новому оптимальному плану. Коэффициенты A_B^{-1} показывают, что увеличение прибыли достигается засчет увеличения выпуска продукции C, при этом запасы пластмассы сократятся на $\frac{1}{2}$ единицы.

Other:
$$\mathbf{x}^* = (0 \ 0 \ 200 \ 0), \mathbf{y}^* = (2 \ 0 \ 0)$$

Анализ устойчивости двойственных оценок

Определим интервалы устойчивости:

$$x_{B\text{hob}}^* = x_B + A_B^{-1} \cdot (b + \Delta b)$$
$$A_B^{-1} \cdot (b + \Delta b) \ge 0$$

$$A_B^{-1} \cdot (b + \Delta b) = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{1}{4} & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 800 + \Delta b_1 \\ 2500 + \Delta b_2 \\ 600 + \Delta b_3 \end{pmatrix} = \begin{pmatrix} 200 + \frac{1}{4}\Delta b_1 \\ 900 - 2\Delta b_1 + \Delta b_2 \\ 400 - \frac{1}{4}\Delta b_1 + \Delta b_3 \end{pmatrix} \ge 0$$

Группа: Б22-534

Рассмотрим частные случаи:

1. $\Delta b_1 \ge 0, \Delta b_2 = 0, \Delta b_3 = 0$:

$$\begin{pmatrix} 200 + \frac{1}{4}\Delta b_1 \\ 900 - 2\Delta b_1 \\ 400 - \frac{1}{4}\Delta b_1 \end{pmatrix} \ge 0 \Leftrightarrow \begin{cases} 200 + \frac{1}{4}\Delta b_1 \ge 0 \\ 900 - 2\Delta b_1 \ge 0 \\ 400 - \frac{1}{4}\Delta b_1 \ge 0 \end{cases} \Leftrightarrow \begin{cases} \Delta b_1 \ge -800 \\ \Delta b_1 \le 450 \\ \Delta b_1 \le 1600 \end{cases} \Leftrightarrow -800 \le \Delta b_1 \le 450$$

При увеличении запасов 1-го ресурса не более чем на 450 единиц и уменьшении его запасов не более чем на 800 единиц значение целевой функции не изменится.

2. $\Delta b_1 = 0, \Delta b_2 \ge 0, \Delta b_3 = 0$:

$$\begin{pmatrix} 200\\900 + \Delta b_2\\400 \end{pmatrix} \ge 0 \Leftrightarrow 900 + \Delta b_2 \ge 0 \Leftrightarrow \Delta b_2 \ge -900$$

При уменьшении запасов 2-го ресурса не более чем на 900 единиц, при этом оптимальный план двойственной задачи не изменится.

3. $\Delta b_1 = 0, \Delta b_2 = 0, \Delta b_3 \ge 0$:

$$\begin{pmatrix} 200\\900\\400 + \Delta b_3 \end{pmatrix} \ge 0 \Leftrightarrow 400 + \Delta b_3 \ge 0 \Leftrightarrow \Delta b_3 \ge -400$$

При уменьшении запасов 3-го ресурса не более чем на 400 единиц, при этом оптимальный план двойственной задачи не изменится.

Предположим: $\Delta b_1 = 450, \Delta b_2 = -900, \Delta b_3 = 400$:

$$\begin{pmatrix} x_3^{\text{HOB}} \\ x_6^{\text{HOB}} \\ x_7^{\text{HOB}} \end{pmatrix} = \begin{pmatrix} 200 + \frac{1}{4} \cdot 450 \\ 900 - 2 \cdot 450 - 900 \\ 400 - \frac{1}{4} \cdot 450 + 400 \end{pmatrix} = \begin{pmatrix} \frac{625}{2} \\ 0 \\ \frac{1375}{2} \end{pmatrix} \ge 0$$

Посчитаем новое значение целевой функции:

$$F = 8 \cdot \frac{625}{2} = 2500$$

5 Задание №5

Условие задачи:

Рассмотрим закрытую транспортную задачу размером 5×4 с пятью поставщиками и четырьмя потребителями. Общий запас равен общему спросу.

Данные задачи:

• Запасы поставщиков (в единицах товара):

$$S_1 = 55$$
, $S_2 = 75$, $S_3 = 100$, $S_4 = 60$, $S_5 = 110$

• Потребности потребителей (в единицах товара):

$$D_1 = 90, \quad D_2 = 110, \quad D_3 = 80, \quad D_4 = 120$$

Проверим общий баланс:

$$S = S_1 + S_2 + S_3 + S_4 + S_5 = 400$$
$$D = D_1 + D_2 + D_3 + D_4 = 400$$

Так как общий запас равен общему спросу, задача является закрытой.

Матрица стоимости транспортировки (в таблице указана стоимость транспортировки единицы товара от поставщика S_i к потребителю D_i):

	S_1	S_2	S_3	S_4	S_5	Потребности
D_1	4	5	6	7	3	90
D_2	8	1	3	4	6	110
D_3	6	4	9	3	5	80
D_4	3	7	2	8	1	120
Запасы	55	75	100	60	110	

Целевая функция:

$$F = 4x_{11} + 5x_{12} + 6x_{13} + \dots + 2x_{44} + 8x_{45} + x_{46}$$

Ограничения:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 90 \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 110 \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 80 \\ x_{41} + x_{42} + x_{43} + x_{44} + x_{45} = 120 \\ x_{11} + x_{21} + x_{31} + x_{41} = 55 \\ x_{12} + x_{22} + x_{32} + x_{42} = 75 \\ x_{13} + x_{23} + x_{33} + x_{43} = 100 \\ x_{14} + x_{24} + x_{34} + x_{44} = 60 \\ x_{15} + x_{25} + x_{35} + x_{45} = 110 \end{cases}$$

Задача состоит в том, чтобы минимизировать общую стоимость (целевую функцию) транспортировки при соблюдении ограничений на запасы и потребности.

Решение задачи

Метод северо-западного угла

Метод северо-западного угла предполагает заполнение транспортной таблицы, начиная с левой верхней ячейки и двигаясь по строкам и столбцам. На каждом шаге распределяем максимум возможного количества товара в текущую ячейку, обновляя остатки.

Шаги метода северо-западного угла:

- 1. Ячейка (S_1, D_1) : минимальное значение между 55 и 90 это 55. Заполняем 55, обновляем $S_1=0,\, D_1=35.$
- 2. Ячейка (S_2, D_1) : минимальное значение между 75 и 35 это 35. Заполняем 35, обновляем $S_2=40,\, D_1=0.$

- 3. Ячейка (S_2, D_2) : минимальное значение между 40 и 110 это 40. Заполняем 40, обновляем $S_2=0,\,D_2=70.$
- 4. Ячейка (S_3, D_2) : минимальное значение между 100 и 70 это 70. Заполняем 70, обновляем $S_3=30,\,D_2=0.$
- 5. Ячейка (S_3, D_3) : минимальное значение между 30 и 80 это 30. Заполняем 30, обновляем $S_3=0,\,D_3=50.$
- 6. Ячейка (S_4, D_3) : минимальное значение между 60 и 50 это 50. Заполняем 50, обновляем $S_4=10,\,D_3=0.$
- 7. Ячейка (S_4, D_4) : минимальное значение между 10 и 120 это 10. Заполняем 10, обновляем $S_4=0,\,D_4=110.$
- 8. Ячейка (S_5, D_4) : минимальное значение между 110 и 110 это 110. Заполняем 110, обновляем $S_5=0,\,D_4=0.$

Итоговое распределение методом северо-западного угла:

	S_1	S_2	S_3	S_4	S_5	Потребности
$\overline{D_1}$	55^{4}	35^{5}	0^{6}	0^{7}	0^{3}	90
D_2	0^{8}	40^{1}	70^{3}	0^{4}	0^{6}	110
D_3	0^{6}	0^{4}	30^{9}	50^{3}	0^{5}	80
D_4	0^3	0^{7}	0^{2}	10^{8}	110^{1}	120
Запасы	55	75	100	60	110	

Вычисление общей стоимости

Теперь рассчитаем общую стоимость транспортировки F, используя полученное распределение:

$$F = 55 \cdot 4 + 35 \cdot 5 + 40 \cdot 1 + 70 \cdot 3 + 30 \cdot 9 + 50 \cdot 3 + 10 \cdot 8 + 110 \cdot 1 = 1255$$

Итак, общая стоимость транспортировки составляет F = 1255.

Итоговое распределение Х

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 55 & 35 & 0 & 0 & 0 \\ 0 & 40 & 70 & 0 & 0 \\ 0 & 0 & 30 & 50 & 0 \\ 0 & 0 & 0 & 10 & 110 \end{pmatrix}$$

Алгоритм метода минимального элемента

Метод минимального элемента включает следующие шаги:

- 1. Найти ячейку с наименьшей стоимостью в матрице C_{ij} .
- 2. Заполнить ячейку (i,j) максимальным возможным количеством: $\min(S_i,D_j)$.
- 3. Обновить запасы и потребности, вычитая заполненное количество из соответствующих значений S_i и D_j .
- 4. Если потребность или запас равен нулю, вычеркнуть соответствующую строку или столбец.
- 5. Повторить шаги 1-4, пока все потребности и запасы не будут удовлетворены.

Решение методом минимального элемента

	S_1	S_2	S_3	S_4	S_5	Потребности
D_1	0^{4}	0^{5}	0^6	0^{7}	90^{3}	90
D_2	0^{8}	75^{1}	35^{3}	0^{4}	0^{6}	110
D_3	0^6	0^{4}	0_{8}	60^{3}	20^{5}	80
D_4	55^{3}	0^{7}	65^{2}	0^{8}	0^1	120
Запасы	55	75	100	60	110	

Вычисление общей стоимости

Группа: Б22-534

Теперь рассчитаем общую стоимость транспортировки F, используя полученное распределение:

$$F = 90 \cdot 3 + 75 + 35 \cdot 3 + 60 \cdot 3 + 20 \cdot 5 + 55 \cdot 3 + 65 \cdot 2 = 1025$$

Итак, общая стоимость транспортировки составляет F = 1025.

Итоговое распределение X

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 0 & 0 & 0 & 0 & 90 \\ 0 & 75 & 35 & 0 & 0 \\ 0 & 0 & 0 & 60 & 20 \\ 55 & 0 & 65 & 0 & 0 \end{pmatrix}$$

Метод потенциалов

Метод потенциалов используется для проверки оптимальности текущего распределения и нахождения улучшенного решения, если оно не оптимально.

Для базисных клеток используем условие $U_i + V_j = C_{ij}$. Примем $U_1 = 0$ и вычислим остальные потенциалы

Обозначение: C_y^x , где C - количество поставляемого груза, x - цена за единицу, y - потенциал. Составим таблицу:

Потребности/Запасы	55_{4}	75_{5}	100_{7}	60_{1}	110_{-6}	
	55^{4}_{-}	35_{-}^{5}	0_{-1}^{6}	0_{6}^{7}	0_{9}^{3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0^{4}_{7}	0_{16}^{6}	D_2
80_{2}	0_0^6	0^4_{-3}	30_{-}^{-}	50^{3}_{-}	0_{9}^{5}	D_3
120_{7}	0^{3}_{-8}	0^{7}_{-5}	0^2_{-14}	10^{8}_{-}	110^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (< 0).

Найдем элемент с наименьшим потенциалом: (S_3, D_3) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{1}	110_{6}	
90_{0}	55^{4}_{-}	35_{-}^{5}	0_{-1}^{6}	0_{6}^{7}	0^{3}_{-3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0^{4}_{7}	0_{4}^{6}	D_2
80_{2}	06	0^4_{-3}	20^{9}_{-}	60^{3}_{-}	0^{5}_{-3}	D_3
120_{-5}	0_4^{3}	0_0^7	10^{2}_{-}	0^{8}_{12}	110^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (<0).

Найдем элемент с наименьшим потенциалом: (S_5, D_3) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{4}	110_{6}	
900	55^{4}_{-}	35^{5}_{-}	0_{-1}^{6}	0_{3}^{7}	0^3_{-3}	D_1
110_{-4}	0_{8}^{8}	40^{1}_{-}	70^{3}_{-}	0_0^4	0_{4}^{6}	D_2
80_{-1}	0_{3}^{6}	0_0^4	0_{3}^{9}	60^{3}_{-}	20^{5}_{-}	D_3
120_{-5}	0_{4}^{3}	0^{7}_{7}	30^{2}_{-}	0_{9}^{8}	90^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (< 0).

Найдем элемент с наименьшим потенциалом: (S_5, D_1) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	$ 55_4 $	75_{5}	100_{7}	60_{1}	110_{3}	
90_{0}	55_{-}^{4}	0_0^5	0^{6}_{-1}	0_{6}^{7}	35^{3}_{-}	D_1
110_{-4}	0_{8}^{8}	75^{1}_{-}	35^{3}_{-}	0_{7}^{4}	0_{7}^{6}	D_2
80_{2}	0_0^6	0^4_{-3}	0_{9}^{0}	60^{3}_{-}	20^{5}_{-}	D_3
120_{-2}	$0_1^{\tilde{3}}$	0_{4}^{7}	65^{2}_{-}	0_{9}^{8}	55^{1}_{0}	D_4
	S_1	S_2	S_3	S_4	S_5	

Есть потенциалы (< 0).

Найдем элемент с наименьшим потенциалом: (S_5, D_1) .

Построим цикл зелёным цветом.

Проделаем перераспределение товаров и построим новую таблицу:

Потребности/Запасы	55_{4}	75_{2}	100_{4}	60_{1}	110_{3}	
90_{0}	55^{4}_{-}	0_{3}^{5}	0_{2}^{6}	0_{6}^{7}	35^{3}_{-}	D_1
110_{-1}	0_{5}^{8}	55^{1}_{-}	55^{3}_{-}	0_{4}^{4}	0_{4}^{6}	D_2
80_{2}	0_0^{6}	20^{4}_{-}	0_{3}^{9}	60^{3}_{-}	$0_0^{\bar{5}}$	D_3
120_{-2}	0_1^{3}	0^{7}_{7}	45^{2}_{-}	0_{9}^{8}	75^{1}_{-}	D_4
	S_1	S_2	S_3	S_4	S_5	

Все потенциалы (≥ 0) оптимальный план найден.

$$F = 55 \cdot 4 + 35 \cdot 3 + 55 + 55 \cdot 3 + 20 \cdot 4 + 60 \cdot 3 + 45 \cdot 2 + 75 = 970$$

Итак, общая стоимость транспортировки составляет F = 970.

Итоговая матрица распределения X:

$$X = \begin{pmatrix} 55 & 0 & 0 & 0 & 35 \\ 0 & 55 & 55 & 0 & 0 \\ 0 & 20 & 0 & 60 & 0 \\ 0 & 0 & 45 & 0 & 75 \end{pmatrix}$$

Используя код на Python:

```
from cvxopt.modeling import variable, op
import time
start = time.time()
# Переменные
x = variable(20, 'x')
# Стоимости
c = [4, 8, 6, 3, 5, 1, 4, 7, 6, 3, 9, 2, 7, 4, 3, 8, 3, 6, 5, 1]
# Целевая функция
z = sum(c[i] * x[i] for i in range(20))
# Ограничения
supply = [55, 75, 100, 60, 110]
demand = [90, 110, 80, 120]
constraints = []
for i in range(5):
    constraints.append(sum(x[i * 4 + j] for j in range(4)) <= supply[i])</pre>
for j in range(4):
    constraints.append(sum(x[i * 4 + j] for i in range(5)) == demand[j])
x_non_negative = (x >= 0)
constraints.append(x_non_negative)
# Постановка задачи
problem = op(z, constraints)
# Решение задачи
problem.solve(solver='glpk')
```

ФИО: Зацепилин А.В. Группа: Б22-534

```
# Вывод результатов
print("Результат Xopt:")
for i in x.value:
   print(i)
print("Стоимость доставки:")
print(problem.objective.value()[0])
stop = time.time()
print("Время:")
print(stop - start)
  Получаем такие же значения:
GLPK Simplex Optimizer 5.0
29 rows, 20 columns, 60 non-zeros
     0: obj = 0.000000000e+00 inf =
                                       4.000e+02 (4)
     8: obj = 1.255000000e+03 inf =
                                       0.000e+00 (0)
    20: obj = 9.700000000e+02 inf =
                                       0.000e+00(0)
OPTIMAL LP SOLUTION FOUND
Result Xopt:
55 0 0
            0
 0 55 20
 0 55 0 45
 0
    0 60 0
35 0 0 75
Cost: 970.0
Time:0.01
```

Результаты совапали.

Задание №6 6

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \to \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

6.1 Графическое решение задачи.

Рис. 4: Графическое решение задачи

Вычисление точек пересечения

$$x_1 + x_2 = 10$$
 и $-x_1 + 4x_2 = 4$:

$$\begin{cases} x_1 + x_2 = 10 \\ -x_1 + 4x_2 = 4 \end{cases} \implies \begin{cases} x_1 = \frac{36}{5} \\ x_2 = \frac{14}{5} \end{cases}$$

Точка пересечения: $\left(\frac{36}{5},\frac{14}{5}\right)$. Вычисление значений целевой функции $F=3x_1+4x_2$: $\left(\frac{36}{5},\frac{14}{5}\right)$:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = \frac{164}{5}$$

Ответ: Максимум функции $F = 3x_1 + 4x_2$ достигается в точке $(\frac{36}{5}, \frac{14}{5})$, где $F = \frac{164}{5}$.

6.2 Решение задачи с помощью симплекс-метода:

Оптимизационная задача:

$$F = 3x_1 + 4x_2 \rightarrow \max$$

Ограничения:

$$\begin{cases} x_1 - 3 \cdot x_2 \le 3 \\ x_1 + x_2 \le 10 \\ -x_1 + 4 \cdot x_2 \le 4 \\ x_1 > 0, \ x_2 > 0 \end{cases}$$

Решение задачи с помощью симплекс-метода:

$$F - 3x_1 - 4x_2 = 0$$

$$\begin{cases} x_1 - 3 \cdot x_2 + x_3 = 3 \\ x_1 + x_2 + x_4 = 10 \\ -x_1 + 4 \cdot x_2 + x_5 = 4 \\ x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0, \ x_4 \ge 0, \ x_5 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_3	1	-3	1	0	0	3	-1
x_4	1	1	0	1	0	10	10
x_5	-1	4	0	0	1	4	1
F(x)	-3	-4	0	0	0	0	0

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_2	$-\frac{1}{4}$	1	0	0	$\frac{1}{4}$	1	-4
x_3	$\frac{1}{4}$	0	1	0	$\frac{3}{4}$	6	24
x_4	$\frac{5}{4}$	0	0	1	$-\frac{1}{4}$	9	$\frac{36}{5}$
F(x)	-4	0	0	0	1	4	

В последней строке есть элементы ≤ 0 . Занулим элементы выше и ниже стоящие от разрешающего элемента.

	x_1	x_2	x_3	x_4	x_5	b_i	$b_i/p.c. \ge 0$
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{4}{20}$	$\frac{14}{5}$	
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$	24
F(x)	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$	

В последней строке не осталось элементов ≤ 0 . Мы пришли к конечной таблице. Максимум функции достигается при $x_1=\frac{36}{5}, x_2=\frac{14}{5},$ и значение целевой функции равно $F(x)=\frac{164}{5}.$

Группа: Б22-534

6.3 Решение задачи методом отсечения Гомори:

6.3.1 Геометрическим методом:

Рис. 5: Графическое решение задачи

Решение:

$$\begin{cases} x_1 = \frac{36}{5}, \\ x_2 = \frac{14}{5}. \end{cases}$$

Целевая функция:

$$F\left(\frac{36}{5}, \frac{14}{5}\right) = 3 \cdot \frac{36}{5} + 4 \cdot \frac{14}{5} = \frac{164}{5}.$$

Решение:

$$\begin{cases} x_1 = 8, \\ x_2 = 2. \end{cases}$$

Целевая функция:

$$F(8,2) = 3 \cdot 8 + 4 \cdot 2 = 32.$$

Ответ: Максимум функции $F = 3x_1 + 4x_2$ с учетом целочисленных ограничений достигается в точке (8,2), где F = 32.

6.3.2 Симплекс-методом:

Добавляем дополнительные переменные x_3, x_4, x_5 для приведения ограничений к равенствам:

$$\begin{cases} x_1 - 3x_2 + x_3 &= 3\\ x_1 + x_2 + x_4 &= 10\\ -x_1 + 4x_2 + x_5 &= 4\\ x_1, x_2, x_3, x_4, x_5 &\geq 0 \end{cases}$$

Целевая функция:

$$F = -3x_1 - 4x_2 \to \min.$$

Группа: Б22-534

Конечная симплекс-таблица:

	x_1	x_2	x_3	x_4	x_5	b
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{14}{5}$
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$
\overline{F}	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$

Найдено нецелочисленное решение: $x_1=\frac{36}{5},\,x_2=\frac{14}{5},\,F=\frac{164}{5}.$ Найдено оптимальное нецелочисленное решение. Среди свободных членов находим переменную с максимальным дробным числом:

$$x_1 = \frac{36}{5} = 1\frac{1}{5}, \quad x_2 = \frac{14}{5} = 2\frac{4}{5}$$

Переменная x_2 имеет максимальное дробное значение. Поэтому вводим дополнительное ограничение по 2 строке:

	x_1	x_2	x_3	x_4	x_5	b
x_1	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	$\frac{36}{5}$
x_2	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{14}{5}$
x_3	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	$\frac{21}{5}$
\overline{F}	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	$\frac{164}{5}$

Записываем новое ограничение:

$$-\frac{4}{5} = -0x_1 - 0x_2 - 0x_3 - \frac{1}{5}x_4 - \frac{1}{5}x_5 + x_6$$

Обновлённая таблица:

	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	$\frac{36}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	0
x_2	$\frac{14}{5}$	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	0
x_3	$\frac{21}{5}$	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	0
x_1	$-\frac{4}{5}$	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	1
$F_{\rm max}$	$\frac{164}{5}$	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	0

Т.к. среди свободных членов есть отрицательные значения, то решение недопустимое, и сначала нужно перейти к допустимому решению. Для этого находим среди свободных членов максимальное отрицательное число по модулю. Это число будет задавать разрешающую (ведущую) строку.

В этой строке так же находим максимальный по модулю отрицательный элемент, который будет разрешающим (ведущим) столбцом.

Разрешающий столбец: x_4 **Р**азрешающая строка: x_1

Пересчитываем таблицу:

	b	x_1	x_2	x_3	x_4	x_5	x_6	$\frac{b}{x_4}$
x_1	$\frac{36}{5}$	1	0	0	$\frac{4}{5}$	$-\frac{1}{5}$	0	9
x_2	$\frac{14}{5}$	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	0	14
x_3	$\frac{21}{5}$	0	0	1	$-\frac{1}{5}$	$\frac{4}{5}$	0	-21
x_1	$-\frac{4}{5}$	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5}$	1	4
$F_{\rm max}$	$\frac{164}{5}$	0	0	0	$\frac{16}{5}$	$\frac{1}{5}$	0	

Пересчитываем таблицу:

Группа: Б22-534

Правило выбора разрешающего элемента:

Среди коэффициентов целевой функции выбираем максимальный по модулю отрицательный элемент. Этот элемент определяет разрешающий столбец.

Разрешающая строка выбирается так, чтобы отношение свободного члена к элементу, находящемуся на пересечении разрешающего столбца и строки, было минимальным и неотрицательным. Разрешающий столбец: x_5

Разрешающая строка: x_4

	b	x_1	x_2	x_3	x_4	x_5	x_6	$\frac{b}{x_5}$
x_1	4	1	0	0	0	-1	4	-4
x_2	2	0	1	0	0	0	1	_
x_3	5	0	0	1	0	1	-1	5
x_4	4	0	0	0	1	1	-5	4
$F_{\rm max}$	20	0	0	0	0	-3	16	

Пересчитываем таблицу:

	b	x_1	x_2	x_3	x_4	x_5	x_6
x_1	8	1	0	0	1	0	-1
x_2	2	0	1	0	0	0	1
x_3	1	0	0	1	-1	0	4
x_5	4	0	0	0	1	1	-5
$F_{\rm max}$	32	0	0	0	3	0	1

Так как все коэффициенты при целевой функции неотрицательны, решение оптимально.

Значения переменных:

$$x_1 = 8, \quad x_2 = 2$$

Значение целевой функции:

$$F_{\text{max}}(x) = 32$$

7 Задание №7

Придумать задачу коммивояжера размерности 10×10 . Значения в матрице расстояний должны быть любыми целыми числами от 1 до 100. Решить задачу методом ветвей и границ. Полный перебор не использовать. После выполнения задания добавить в отчёт граф решения, добавить решение задачи с помощью программных средств.

Постановка задачи

Рассмотрим задачу коммивояжера для 10 городов. Пусть города обозначены номерами от 1 до 10. Задана матрица расстояний $C=(c_{ij})$, где c_{ij} — расстояние между городами i и j. Требуется найти минимальный замкнутый путь, проходящий через каждый город ровно один раз.

ФИО: Зацепилин А.В. Группа: Б22-534

Матрица расстояний:

$$C = \begin{pmatrix} \infty & 29 & 20 & 21 & 16 & 31 & 100 & 12 & 4 & 31 \\ 29 & \infty & 15 & 29 & 28 & 40 & 72 & 21 & 29 & 41 \\ 20 & 15 & \infty & 15 & 14 & 25 & 81 & 9 & 23 & 27 \\ 21 & 29 & 15 & \infty & 4 & 12 & 92 & 12 & 25 & 13 \\ 16 & 28 & 14 & 4 & \infty & 16 & 94 & 9 & 20 & 16 \\ 31 & 40 & 25 & 12 & 16 & \infty & 95 & 24 & 36 & 3 \\ 100 & 72 & 81 & 92 & 94 & 95 & \infty & 90 & 101 & 99 \\ 12 & 21 & 9 & 12 & 9 & 24 & 90 & \infty & 15 & 25 \\ 4 & 29 & 23 & 25 & 20 & 36 & 101 & 15 & \infty & 35 \\ 31 & 41 & 27 & 13 & 16 & 3 & 99 & 25 & 35 & \infty \end{pmatrix}$$

3десь ∞ обозначает отсутствие дуги между городом i и самим собой.

Метод решения: ветви и границы

Метод ветвей и границ используется для эффективного решения задач дискретной оптимизации. Основная идея заключается в построении дерева решений, где каждая ветвь представляет собой подзадачу, а границы (оценки) позволяют исключить невыгодные подзадачи.

1. Для исходной матрицы C выполните **редукцию строк и столбцов**: - Для каждой строки вычтем минимальный элемент этой строки из всех её элементов. - Для каждого столбца вычтите минимальный элемент этого столбца из всех его элементов.

$i \setminus j$	1	2	3	4	5	6	7	8	9	10	d_i
1	∞	29	20	21	16	31	100	12	4	31	4
2	29	∞	15	29	28	40	72	21	29	41	15
3	20	15	∞	15	14	25	81	9	23	27	9
4	21	29	15	∞	4	12	92	12	25	13	4
5	16	28	14	4	∞	16	94	9	20	16	4
6	31	40	25	12	16	∞	95	24	36	3	3
7	100	72	81	92	94	95	∞	90	101	99	72
8	12	21	9	12	9	24	90	∞	15	25	9
9	4	29	23	25	20	36	101	15	∞	35	4
10	31	41	27	13	16	3	99	25	35	∞	3

Затем вычитаем d_i из элементов рассматриваемой строки. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.

$i \setminus j$	1	2	3	4	5	6	7	8	9	10
1	∞	25	16	17	12	27	96	8	0	27
2	14	∞	0	14	13	25	57	6	14	26
3	11	6	∞	6	5	16	72	0	14	18
4	17	25	11	∞	0	8	88	8	21	9
5	12	24	10	0	∞	12	90	5	16	12
6	28	37	22	9	13	∞	92	21	33	0
7	28	0	9	20	22	23	∞	18	29	27
8	3	12	0	3	0	15	81	∞	6	16
9	0	25	19	21	16	32	97	11	∞	31
10	28	38	24	10	13	0	96	22	32	∞

Такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент:

$$d_j = \min_i d_{ij}$$

$i \setminus j$	1	2	3	4	5	6	7	8	9	10
1	∞	25	16	17	12	27	96	8	0	27
2	14	∞	0	14	13	25	57	6	14	26
3	11	6	∞	6	5	16	72	0	14	18
4	17	25	11	∞	0	8	88	8	21	9
5	12	24	10	0	∞	12	90	5	16	12
6	28	37	22	9	13	∞	92	21	33	0
7	28	0	9	20	22	23	∞	18	29	27
8	3	12	0	3	0	15	81	∞	6	16
9	0	25	19	21	16	32	97	11	∞	31
10	28	38	24	10	13	0	96	22	32	∞
$\overline{d_j}$	0	0	0	0	0	0	57	0	0	0

Получаем:

$i \setminus j$	1	2	3	4	5	6	7	8	9	10
1	∞	25	16	17	12	27	96	8	0	27
2	14	∞	0	14	13	25	57	6	14	26
3	11	6	∞	6	5	16	72	0	14	18
4	17	25	11	∞	0	8	88	8	21	9
5	12	24	10	0	∞	12	90	5	16	12
6	28	37	22	9	13	∞	92	21	33	0
7	28	0	9	20	22	23	∞	18	29	27
8	3	12	0	3	0	15	81	∞	6	16
9	0	25	19	21	16	32	97	11	∞	31
10	28	38	24	10	13	0	96	22	32	∞

Сумма констант приведения определяет нижнюю границу H:

$$H = \sum d_i + \sum d_j$$

$$H = 4 + 15 + 9 + 4 + 4 + 3 + 72 + 9 + 4 + 3 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 57 + 0 + 0 + 0 = 184$$

Элементы матрицы d_{ij} соответствуют расстоянию от пункта i до пункта j. Поскольку в матрице n городов, то D является матрицей $n \times n$ с неотрицательными элементами $d_{ij} \ge 0$. Каждый допустимый маршрут представляет собой цикл, по которому коммивояжер посещает город только один раз и возвращается в исходный город. Длина маршрута определяется выражением:

$$F(M_k) = \sum d_{ij}$$

Причем каждая строка и столбец входят в маршрут только один раз с элементом d_{ij} .

Шаг №1. Определяем ребро ветвления и разбиваем все множество маршрутов относительно этого ребра на два подмножества (i,j) и (i^*,j^*) . С этой целью для всех клеток матрицы с нулевыми элементами заменяем поочередно нули на ∞ и определяем для них сумму образовавшихся констант приведения, они приведены в скобках.

$i \setminus j$	1	2	3	4	5	6	7	8	9	10	d_i
1	∞	25	16	17	12	27	39	8	0(14)	27	8
2	14	∞	0(0)	14	13	25	0(15)	6	14	26	0
3	11	6	∞	6	5	16	15	0(10)	14	18	5
4	17	25	11	∞	0(8)	8	31	8	21	9	8
5	12	24	10	0(8)	∞	12	33	5	16	12	5
6	28	37	22	9	13	∞	35	21	33	0(18)	9
7	28	0(15)	9	20	22	23	∞	18	29	27	9
8	3	12	0(0)	3	0(0)	15	24	∞	6	16	0
9	0(14)	25	19	21	16	32	40	11	∞	31	11
10	28	38	24	10	13	0(18)	39	22	32	∞	10
d_{j}	3	6	0	3	0	8	15	5	6	9	0

 $d(1,9) = 8 + 6 = 14; \quad d(2,3) = 0 + 0 = 0; \quad d(2,7) = 0 + 15 = 15; \quad d(3,8) = 5 + 5 = 10; \quad d(4,5) = 8 + 0 = 8; \quad d(5,4) = 5 + 10; \quad d(4,5) = 10; \quad d(4,5) = 10; \quad d(5,4) = 10; \quad d(5,4)$

Наибольшая сумма констант приведения равна (9+9)=18 для ребра (6,10), следовательно, множество разбивается на два подмножества (6,10) и $(6^*,10^*)$.

Исключение ребра (6,10) проводим путем замены элемента $d_{6,10}=0$ на ∞ , после чего осуществляем очередное приведение матрицы расстояний для образовавшегося подмножества $(6^*,10^*)$, в результате получим редуцированную матрицу.

$i \setminus j$	1	2	3	4	5	6	7	8	9	10	d_i
1	∞	25	16	17	12	27	39	8	0	27	0
2	14	∞	0	14	13	25	0	6	14	26	0
3	11	6	∞	6	5	16	15	0	14	18	0
4	17	25	11	∞	0	8	31	8	21	9	0
5	12	24	10	0	∞	12	33	5	16	12	0
6	28	37	22	9	13	∞	35	21	33	∞	9
7	28	0	9	20	22	23	∞	18	29	27	0
8	3	12	0	3	0	15	24	∞	6	16	0
9	0	25	19	21	16	32	40	11	∞	31	0
10	28	38	24	10	13	0	39	22	32	∞	0
$\overline{d_i}$	0	0	0	0	0	0	0	0	0	9	18

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(6^*, 10^*) = 184 + 18 = 202$$

Включение ребра (6,10) проводится путем исключения всех элементов 6-ой строки и 10-го столбца, в которой элемент $d_{6,10}$ заменяем на ∞ , для исключения образования негамильтонова цикла. В результате получим другую сокращенную матрицу (9×9) , которая подлежит операции приведения. После операции приведения сокращенная матрица будет иметь вид:

$i \setminus j$	1	2	3	4	5	6	7	8	9	d_i
1	∞	25	16	17	12	27	39	8	0	0
2	14	∞	0	14	13	25	0	6	14	0
3	11	6	∞	6	5	16	15	0	14	0
4	17	25	11	∞	0	8	31	8	21	0
5	12	24	10	0	∞	12	33	5	16	0
7	28	0	9	20	22	23	∞	18	29	0
8	3	12	0	3	0	15	24	∞	6	0
9	0	25	19	21	16	32	40	11	∞	0
10	28	38	24	10	13	∞	39	22	32	10
$\overline{d_i}$	0	0	0	0	0	8	0	0	0	18

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 18$$

Нижняя граница подмножества (6, 10) равна:

$$H(6,10) = 184 + 18 = 202 \le 202$$

Поскольку нижние границы подмножества (6,10) и подмножества $(6^*,10^*)$ равны, то ребро (6,10) включаем в маршрут с новой границей H=202.

Шаг №2. Определяем ребро ветвления.

$i \setminus j$	1	2	3	4	5	6	7	8	9	d_i
1	∞	25	16	17	12	19	39	8	0(14)	8
2	14	∞	0(0)	14	13	17	0(15)	6	14	0
3	11	6	∞	6	5	8	15	0(10)	14	5
4	17	25	11	∞	0(0)	0(4)	31	8	21	0
5	12	24	10	0(4)	∞	4	33	5	16	4
7	28	0(15)	9	20	22	15	∞	18	29	9
8	3	12	0(0)	3	0(0)	7	24	∞	6	0
9	0(14)	25	19	21	16	24	40	11	∞	11
10	18	28	14	0(3)	3	∞	29	12	22	3
$\overline{d_j}$	3	6	0	0	0	4	15	5	6	0

$$d(1,9) = 8 + 6 = 14; \quad d(2,3) = 0 + 0 = 0; \quad d(2,7) = 0 + 15 = 15; \quad d(3,8) = 5 + 5 = 10; \quad d(4,5) = 0 + 0 = 0; \quad d(4,6) = 0 = 0; \quad d(4,6) = 0 + 0 = 0; \quad d(4,6) = 0 = 0; \quad d(4,$$

Максимум: d(2,7) = 15.

Исключение ребра (2,7): $d_{2,7} = \infty$.

$i \setminus j$	1	2	3	4	5	6	7	8	9	d_i
1	∞	25	16	17	12	19	39	8	0	0
2	14	∞	0	14	13	17	∞	6	14	0
3	11	6	∞	6	5	8	15	0	14	0
4	17	25	11	∞	0	0	31	8	21	0
5	12	24	10	0	∞	4	33	5	16	0
7	28	0	9	20	22	15	∞	18	29	0
8	3	12	0	3	0	7	24	∞	6	0
9	0	25	19	21	16	24	40	11	∞	0
10	18	28	14	0	3	∞	29	12	22	0
$\overline{d_i}$	0	0	0	0	0	0	15	0	0	15

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(2^*, 7^*) = 202 + 15 = 217$$

Включение ребра (2,7): $d_{7,2} = \infty$.

$i \setminus j$	1	2	3	4	5	6	8	9	d_i
1	∞	25	16	17	12	19	8	0	0
3	11	6	∞	6	5	8	0	14	0
4	17	25	11	∞	0	0	8	21	0
5	12	24	10	0	∞	4	5	16	0
7	28	∞	9	20	22	15	18	29	9
8	3	12	0	3	0	7	∞	6	0
9	0	25	19	21	16	24	11	∞	0
10	18	28	14	0	3	∞	12	22	0
$\overline{d_j}$	0	6	0	0	0	0	0	0	15

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 15$$

Нижняя граница подмножества (2,7) равна:

$$H(2,7) = 202 + 15 = 217 \le 217$$

$i \setminus j$	1	2	3	4	5	6	8	9	d_i
1	∞	19	16	17	12	19	8	0(14)	8
3	11	0(6)	∞	6	5	8	0(5)	14	0
4	17	19	11	∞	0(0)	0(4)	8	21	0
5	12	18	10	0(4)	∞	4	5	16	4
7	19	∞	0(6)	11	13	6	9	20	6
8	3	6	0(0)	3	0(0)	7	∞	6	0
9	0(14)	19	19	21	16	24	11	∞	11
10	18	22	14	0(3)	3	∞	12	22	3
d_j	3	6	0	0	0	4	5	6	0

$$d(1,9) = 8 + 6 = 14; \quad d(3,2) = 0 + 6 = 6; \quad d(3,8) = 0 + 5 = 5; \quad d(4,5) = 0 + 0 = 0; \quad d(4,6) = 0 + 4 = 4; \quad d(5,4) = 4 + 0 = 0; \quad d(4,6) = 0 0 = 0; \quad d(4$$

Максимум: d(1,9) = 14.

Исключение ребра (1,9): $d_{1,9} = \infty$.

$i \setminus j$	1	2	3	4	5	6	8	9	d_i
1	∞	19	16	17	12	19	8	∞	8
3	11	0	∞	6	5	8	0	14	0
4	17	19	11	∞	0	0	8	21	0
5	12	18	10	0	∞	4	5	16	0
7	19	∞	0	11	13	6	9	20	0
8	3	6	0	3	0	7	∞	6	0
9	0	19	19	21	16	24	11	∞	0
10	18	22	14	0	3	∞	12	22	0
$\overline{d_i}$	0	0	0	0	0	0	0	6	14

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(1^*, 9^*) = 217 + 14 = 231$$

Включение ребра (1,9): $d_{9,1} = \infty$.

$i \setminus j$	1	2	3	4	5	6	8	d_i
3	11	0	∞	6	5	8	0	0
4	17	19	11	∞	0	0	8	0
5	12	18	10	0	∞	4	5	0
7	19	∞		11		6	9	0
8	3	6	0	$\frac{3}{21}$	0	7	∞	0
9	∞	19	19	21	16	24	11	11
10	18	22	14	0	3	∞	12	0
$\overline{d_j}$	3	0	0	0	0	0	0	14

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 14$$

Нижняя граница подмножества (1,9) равна:

$$H(1,9) = 217 + 14 = 231 \le 231$$

Ребро (1,9) включаем в маршрут с новой границей H=231. Шаг $N\!\!\!^{}_{2}4.$ Определяем ребро ветвления.

$i\setminus j$	1	2	3	4	5	6	8	d_i
3	8	0(6)	∞	6	5	8	0(0)	0
4	14	19	11	∞	0(0)	0(4)	8	0
5	9	18	10	0(4)	∞	4	5	4
7	16	∞	0(6)	11	13	6	9	6
8	0(8)	6	0(0)	3	0(0)	7	∞	0
9	∞	8	8	10	5	13	0(5)	5
10	15	22	14	0(3)	3	∞	12	3
$\overline{d_j}$	8	6	0	0	0	4	0	0

$$d(3,2) = 0 + 6 = 6; \quad d(3,8) = 0 + 0 = 0; \quad d(4,5) = 0 + 0 = 0; \quad d(4,6) = 0 + 4 = 4; \quad d(5,4) = 4 + 0 = 4; \quad d(7,3) = 6 + 0 = 0$$

Максимум: d(8,1) = 8.

Исключение ребра (8,1): $d_{8,1} = \infty$.

$i \setminus j$	1	2	3	4		6	8	d_i
3	8	0	∞	$\frac{6}{\infty}$	5	8	0	0
4	14	19	11	∞	0	0	8	0
5	9	18	10	0	∞	4	5	0
7	16	∞	0	11	13	6	9	0
8	∞	6	0	3	0	7	∞	0
9	∞	8	8	10	5	13	0	0
10	15	22	14	11 3 10 0	3	∞	12	0
$\overline{d_j}$	8	0	0	0	0	0	0	8

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(8^*, 1^*) = 231 + 8 = 239$$

Включение ребра (8,1): $d_{1,8} = \infty$.

$i \setminus j$	2	3	4	5	6	8	d_i
3	0	∞	6	5 0	8	0	0
4	19	11	∞	0	0	8	0
5	18	10	0	∞	4	5	0
7	∞	0	11	13	6	9	0
9	8	8	10	$ \begin{array}{c} \infty \\ 13 \\ 5 \end{array} $	13	0	0
10	22	14	0	3	∞	12	0
$\overline{d_j}$	0	0	0	0	0	0	0

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 0$$

Нижняя граница подмножества (8,1) равна:

$$H(8,1) = 231 + 0 = 231 \le 239$$

Запрещаем переходы: (9,8).

Ребро (8,1) включаем в маршрут с новой границей H=231.

Шаг №5. Определяем ребро ветвления.

$i \setminus j$	2	3	4	5	6	8	d_i
3	0(8)	∞	6	5	8	0(5)	0
4	19	11	∞	0(3)	0(4)	8	0
5	18	10	0(4)	∞	4	5	4
7	∞	0(14)	11	13	6	9	6
9	8	8	10	5	13	∞	0
10	22	14	0(3)	3	∞	12	3
$\overline{d_j}$	8	8	0	3	4	5	0

$$d(3,2) = 0 + 8 = 8; \quad d(3,8) = 0 + 5 = 5; \quad d(4,5) = 0 + 3 = 3; \quad d(4,6) = 0 + 4 = 4; \quad d(5,4) = 4 + 0 = 4; \quad d(7,3) = 6 + 8 = 6$$

Максимум: d(7,3) = 14.

Исключение ребра (7,3): $d_{7,3} = \infty$.

$i \setminus j$	2	3	4	5	6	8	d_i
3	0	∞	6	5	8	0	0
4	19	11	∞	0	0	8	0
5	18	10	0	∞	4	5	0
7	∞	∞	11	13	6	9	6
9	8	8	10	5	13	∞	5
10	$ \begin{array}{c} 0 \\ 19 \\ 18 \\ \infty \\ 8 \\ 22 \end{array} $	14	0	3	∞	12	0
$\overline{d_j}$	0	8		0			19

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(7^*, 3^*) = 231 + 19 = 250$$

Включение ребра (7,3): $d_{3,7} = \infty$.

$i \setminus j$	2	4	5	6	8	d_i
3	0	6	5	8	0	0
4	19	∞	0	0	8	0
5	18	0	∞	4	5	0
9	8	10	5	13	∞	5
10	22	0	5 0 ∞ 5 3	∞	12	0
$\overline{d_j}$	0	0	0	0	0	5

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 5$$

Нижняя граница подмножества (7,3) равна:

$$H(7,3) = 231 + 5 = 236 \le 250$$

Запрещаем переходы: (3, 2), (9, 8).

Ребро (7,3) включаем в маршрут с новой границей H=236.

Шаг №6. Определяем ребро ветвления.

$i \setminus j$	2	4	5	6	8	d_i
3	∞	6	5	8	0(10)	5
4	19	∞	0(0)	0(4)	8	0
5	18	0(4)	∞	4	5	4
9	3	5	0(3)	8	∞	3
10	22	0(3)	3	∞	12	3
$\overline{d_j}$	0	0	0	4	5	0

$$d(3,8) = 5 + 5 = 10; \quad d(4,5) = 0 + 0 = 0; \quad d(4,6) = 0 + 4 = 4; \quad d(5,4) = 4 + 0 = 4; \quad d(9,5) = 3 + 0 = 3; \quad d(10,4) = 3 + 0 = 3; \quad d$$

Максимум: d(3,8) = 10.

Исключение ребра (3,8): $d_{3,8} = \infty$.

$i\setminus j$	2	4	5	6	8	d_i
3	∞	6	5 0	8	∞	5
4	19	∞		0	8	0
5	18	0	∞	4	5	0
9	3	5	0	8	∞	0
10	22	0	3	∞	12	0
$\overline{d_j}$	3	0	0	0	5	13

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(3^*, 8^*) = 236 + 13 = 249$$

Включение ребра (3,8): $d_{8,3} = \infty$.

$i \setminus j$	2	4	5	6	d_i
4	19	∞	0	0	0
5	18	0	∞	4	0
9	3	5	0	8	0
10	22	0	3	∞	0
$\overline{d_j}$	3	0	0	0	3

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 3$$

Нижняя граница подмножества (3,8) равна:

$$H(3,8) = 236 + 3 = 239 \le 249$$

Запрещаем переходы: (9,2), (9,8), (9,7), (9,3).

Ребро (3,8) включаем в маршрут с новой границей H=239.

Шаг №7. Определяем ребро ветвления.

$$d(4,5) = 0 + 0 = 0;$$
 $d(4,6) = 0 + 4 = 4;$ $d(5,4) = 4 + 0 = 4;$ $d(9,5) = 5 + 0 = 5;$ $d(10,4) = 3 + 0 = 3;$

Максимум: d(9,5) = 5.

Исключение ребра (9,5): $d_{9,5} = \infty$.

$i \setminus j$	2	4	5	6	d_i
4	16	∞	0	0	0
5	15	0	∞	4	0
9	∞	5	∞	8	5
10	19	0	3	∞	0
$\overline{d_j}$	15	0	0	0	20

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(9^*, 5^*) = 239 + 20 = 259$$

Включение ребра (9,5): $d_{5,9} = \infty$.

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 15$$

Нижняя граница подмножества (9,5) равна:

$$H(9,5) = 239 + 15 = 254 < 259$$

Запрещаем переходы: (5,2), (5,1), (5,8), (5,7), (5,3).

Ребро (9,5) включаем в маршрут с новой границей H=254.

Шаг №8. Определяем ребро ветвления.

$$d(4,6) = 1 + 4 = 5;$$
 $d(5,4) = 4 + 0 = 4;$ $d(10,4) = 4 + 0 = 4;$

Максимум: d(4,6) = 5.

Исключение ребра (4,6): $d_{4,6} = \infty$.

Нижняя граница гамильтоновых циклов этого подмножества:

$$H(4^*, 6^*) = 254 + 6 = 260$$

Включение ребра (4,6): $d_{6,4} = \infty$.

$$\begin{array}{c|ccccc}
i \setminus j & 2 & 4 & d_i \\
\hline
5 & \infty & 0 & 0 \\
10 & 4 & 0 & 0 \\
\hline
d_j & 4 & 0 & 4
\end{array}$$

Сумма констант приведения сокращенной матрицы:

$$\sum d_i + \sum d_j = 4$$

Нижняя граница подмножества (4,6) равна:

$$H(4,6) = 254 + 4 = 258 \le 260$$

Ребро (4,6) включаем в маршрут с новой границей H=258.

В соответствии с этой матрицей включаем в гамильтонов маршрут ребра (5,4) и (10,2).

В результате по дереву ветвлений гамильтонов цикл образуют ребра:

$$(6, 10), (10, 2), (2, 7), (7, 3), (3, 8), (8, 1), (1, 9), (9, 5), (5, 4), (4, 6)$$

Длина маршрута равна $F(M_k) = 258$ Используя код на Python:

from sys import maxsize
from itertools import permutations

Количество вершин в графе V = 10

Матрица стоимостей graph = [

[maxsize, 29, 20, 21, 16, 31, 100, 12, 4, 31], [29, maxsize, 15, 29, 28, 40, 72, 21, 29, 41], [20, 15, maxsize, 15, 14, 25, 81, 9, 23, 27], [21, 29, 15, maxsize, 4, 12, 92, 12, 25, 13], [16, 28, 14, 4, maxsize, 16, 94, 9, 20, 16], [31, 40, 25, 12, 16, maxsize, 95, 24, 36, 3], [100, 72, 81, 92, 94, 95, maxsize, 90, 101, 99], [12, 21, 9, 12, 9, 24, 90, maxsize, 15, 25],

ФИО: Зацепилин А.В.

Результаты совапали.

```
[4, 29, 23, 25, 20, 36, 101, 15, maxsize, 35],
     [31, 41, 27, 13, 16, 3, 99, 25, 35, maxsize]
 ]
 def tsp(graph, s):
     # Список вершин, исключая стартовую
     vertex = []
     for i in range(V):
         if i != s:
             vertex.append(i)
     # Инициализация минимальной стоимости
     min_cost = maxsize
     next_permutation = permutations(vertex)
     # Перебор всех возможных маршрутов
     for i in next_permutation:
         current_cost = 0
         k = s
         # Считаем стоимость текущего маршрута
         for j in i:
             current_cost += graph[k][j]
             k = j
         current_cost += graph[k][s]
         # Обновляем минимальную стоимость
         min_cost = min(min_cost, current_cost)
     return min_cost
 # Стартовая вершина
 s = 0
 # Выводим результат
 print("Минимальная стоимость:", tsp(graph, s))
Получаем такие же значения:
 python3 main.py
 Минимальная стоимость: 258
```

Группа: Б22-534

ФИО: Зацепилин А.В. Группа: Б22-534

8 Задание №8

8.1 Условие

Придумать задачу о назначениях размерности 10×10 на поиск max. Диапазон значений элементов матрицы от 1 до 9.

Решить задачу, используя венгерский алгоритм.

В отчёт добавить решение задачи с помощью программных средств.

8.2 Постановка задачи

n=10 ресурсов и объектов. Матрица стоимостей C размерности $n\times n$:

$$C = \begin{bmatrix} 7 & 2 & 5 & 9 & 3 & 8 & 6 & 4 & 9 & 2 \\ 4 & 5 & 9 & 6 & 8 & 1 & 2 & 7 & 3 & 5 \\ 4 & 8 & 3 & 7 & 2 & 3 & 5 & 6 & 4 & 8 \\ 6 & 3 & 7 & 4 & 5 & 2 & 9 & 1 & 8 & 7 \\ 2 & 9 & 1 & 8 & 6 & 5 & 4 & 3 & 7 & 9 \\ 5 & 4 & 6 & 2 & 7 & 9 & 3 & 4 & 9 & 6 \\ 8 & 1 & 4 & 5 & 9 & 3 & 7 & 2 & 6 & 4 \\ 9 & 7 & 3 & 3 & 4 & 6 & 8 & 5 & 5 & 5 \\ 3 & 6 & 8 & 7 & 6 & 4 & 2 & 9 & 5 & 3 \\ 6 & 3 & 9 & 6 & 2 & 8 & 8 & 4 & 8 & 2 \end{bmatrix}$$

1. Если задача решается на максимум (как в нашем случае), то в каждой строке матрицы необходимо найти максимальный элемент, вычесть его из каждого элемента соответствующей строки и умножить всю матрицу на -1. Если задача решается на минимум, то этот шаг необходимо пропустить.

2	7	4	0	6	1	3	5	0	7
5	4	0	3	1	8	7	2	6	4
5	1	6	2	7	6	4	3	5	1
3	6	2	5	4	7	0	8	1	2
7	0	8	1	3	4	5	6	2	0
4	5	3	7	2	0	6	5	0	3
1	8	5	4	0	6	2	7	3	5
0	2	6	6	5	3	1	4	4	4
6	3	1	2	3	5	7	0	4	6
3	6	0	3	7	1	1	5	1	7

2. Проводим редукцию матрицы по строкам. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль.

2	7	4	0	6	1	3	5	0	7	0
5	4	0	3	1	8	7	2	6	4	0
4	0	5	1	6	5	3	2	4	0	1
3	6	2	5	4	7	0	8	1	2	0
7	0	8	1	3	4	5	6	2	0	0
4	5	3	7	2	0	6	5	0	3	0
1	8	5	4	0	6	2	7	3	5	0
0	2	6	6	5	3	1	4	4	4	0
6	3	1	2	3	5	7	0	4	6	0
3	6	0	3	7	1	1	5	1	7	0

Затем такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим

минимальный элемент.

2	7	4	0	6	1	3	5	0	7
5	4	0	3	1	8	7	2	6	4
4	0	5	1	6	5	3	2	4	0
3	6	2	5	4	7	0	8	1	2
7	0	8	1	3	4	5	6	2	0
4	5	3	7	2	0	6	5	0	3
1	8	5	4	0	6	2	7	3	5
0	2	6	6	5	3	1	4	4	4
6	3	1	2	3	5	7	0	4	6
3	6	0	3	7	1	1	5	1	7
0	0	0	0	0	0	0	0	0	0

После вычитания минимальных элементов получаем полностью редуцированную матрицу.

3. Смотрим чтобы в каждом столбце и в каждой строке был только один выбранный ноль. Как видно ниже, в данном случае это сделать невозможно.

В итоге получаем следующую матрицу:

2	7	4	0	6	1	3	5	0	7
5	4	0	3	1	8	7	2	6	4
4	0	5	1	6	5	3	2	4	0
3	6	2	5	4	7	0	8	1	2
7	0	8	1	3	4	5	6	2	0
4	5	3	7	2	0	6	5	0	3
1	8	5	4	0	6	2	7	3	5
0	2	6	6	5	3	1	4	4	4
6	3	1	2	3	5	7	0	4	6
3	6	0	3	7	1	1	5	1	7

Поскольку расположение нулевых элементов в матрице не позволяет образовать систему из 10-х независимых нулей (в матрице их только 9), то решение недопустимое.

4. Проводим модификацию матрицы. Вычеркиваем строки и столбцы с возможно большим количеством нулевых элементов: строку 1, столбец 2, строку 6, столбец 3, столбец 10, строку 4, строку 7, столбец 1, строку 9. Получаем сокращенную матрицу:

2	7	4	0	6	1	3	5	0	7
5	4	0	3	1	8	7	2	6	4
4	0	5	1	6	5	3	2	4	0
3	6	2	5	4	7	0	8	1	2
7	0	8	1	3	4	5	6	2	0
4	5	3	7	2	0	6	5	0	3
1	8	5	4	0	6	2	7	3	5
0	2	6	6	5	3	1	4	4	4
6	3	1	2	3	5	7	0	4	6
3	6	0	3	7	1	1	5	1	7

Минимальный элемент сокращенной матрицы $(\min(3, 1, 8, 7, 2, 6, 1, 6, 5, 3, 2, 4, 1, 3, 4, 5, 6, 2, 6, 5, 3, 1, 4, 4, 3, 7, 1, 1, 5, 1) = 1)$ вычитаем из всех её элементов:

2	7	4	0	6	1	3	5	0	7
5	4	0	2	0	7	6	1	5	4
4	0	5	0	5	4	2	1	3	0
3	6	2	5	4	7	0	8	1	2
7	0	8	0	2	3	4	5	1	0
4	5	3	7	2	0	6	5	0	3
1	8	5	4	0	6	2	7	3	5
0	2	6	5	4	2	0	3	3	4
6	3	1	2	3	5	7	0	4	6
3	6	0	2	6	0	0	4	0	7

Затем складываем минимальный элемент с элементами, расположенными на пересечениях вычеркнутых строк и столбцов:

3	8	5	0	6	1	3	5	0	8
5	4	0	2	0	7	6	1	5	4
4	0	5	0	5	4	2	1	3	0
4	7	3	5	4	7	0	8	1	3
7	0	8	0	2	3	4	5	1	0
5	6	4	7	2	0	6	5	0	4
2	9	6	4	0	6	2	7	3	6
0	2	6	5	4	2	0	3	3	4
7	4	2	2	3	5	7	0	4	7
3	6	0	2	6	0	0	4	0	7

5. Проводим редукцию матрицы по строкам. В связи с этим во вновь полученной матрице в каждой строке будет как минимум один ноль. Затем такую же операцию редукции проводим по столбцам, для чего в каждом столбце находим минимальный элемент. После вычитания минимальных элементов получаем полностью редуцированную матрицу.

3	8	5	0	6	1	3	5	0	8
5	4	0	2	0	7	6	1	5	4
4	0	5	0	5	4	2	1	3	0
4	7	3	5	4	7	0	8	1	3
7	0	8	0	2	3	4	5	1	0
5	6	4	7	2	0	6	5	0	4
2	9	6	4	0	6	2	7	3	6
0	2	6	5	4	2	0	3	3	4
7	4	2	2	3	5	7	0	4	7
3	6	0	2	6	0	0	4	0	7

Количество найденных нулей равно k=10. Таким образом, найдено оптимальное решение задачи о назначениях.

6. Посчитаем сумму элементов, стоящих на пересечениях строк и столбцов с нулевыми элементами:

7	2	5	9	3	8	6	4	9	2
4	5	9	6	8	1	2	7	3	5
4	8	3	7	2	3	5	6	4	8
6	3	7	4	5	2	9	1	8	7
2	9	1	8	6	5	4	3	7	9
5	4	6	2	7	9	3	4	9	6
8	1	4	5	9	3	7	2	6	4
9	7	3	3	4	6	8	5	5	5
3	6	8	7	6	4	2	9	5	3
6	3	9	6	2	8	8	4	8	2

$$C_{\rm max} = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 8 + 9 + 8 = 88$$

Используя код на Go:

from hungarian_algorithm import algorithm

```
G = {
'01': {'1': 7, '2': 2, '3': 5, '4': 9, '5': 3, '6': 8, '7': 6, '8': 4, '9': 9, '10': 2},
'02': {'1': 4, '2': 5, '3': 9, '4': 6, '5': 8, '6': 1, '7': 2, '8': 7, '9': 3, '10': 5},
'03': {'1': 4, '2': 8, '3': 3, '4': 7, '5': 2, '6': 3, '7': 5, '8': 6, '9': 4, '10': 8},
'04': {'1': 6, '2': 3, '3': 7, '4': 4, '5': 5, '6': 2, '7': 9, '8': 1, '9': 8, '10': 7},
```

```
'05': {'1': 2, '2': 9, '3': 1, '4': 8, '5': 6, '6': 5, '7': 4, '8': 3, '9': 7, '10': 9}, '06': {'1': 5, '2': 4, '3': 6, '4': 2, '5': 7, '6': 9, '7': 3, '8': 4, '9': 9, '10': 6}, '07': {'1': 8, '2': 1, '3': 4, '4': 5, '5': 9, '6': 3, '7': 7, '8': 2, '9': 6, '10': 4}, '08': {'1': 9, '2': 7, '3': 3, '4': 3, '5': 4, '6': 6, '7': 8, '8': 5, '9': 5, '10': 5}, '09': {'1': 3, '2': 6, '3': 8, '4': 7, '5': 6, '6': 4, '7': 2, '8': 9, '9': 5, '10': 3}, '010': {'1': 6, '2': 3, '3': 9, '4': 6, '5': 2, '6': 8, '7': 8, '8': 4, '9': 8, '10': 2}, }

print(algorithm.find_matching(G, matching_type="max", return_type="list"))

Получаем такие же значения:

python3 main.py
[(('05', '10'), 9), (('010', '6'), 8), (('01', '4'), 9), (('09', '8'), 9), (('04', '7'), 9), (('08', 88)), '10': 2], '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10': 28', '10'
```

Результаты совапали.

9 Задание №9

9.1 Условие

Придумать задачу о распределении ресурсов размерности 6×6 . То есть в задаче имеется ресурс в количестве 6 единиц, который должен быть распределен между 6 предприятиями. Диапазон значений в матрице доходности не ограничен (но не может быть отрицательных элементов). Решить задачу динамическим программированием.

В отчёт добавить решение задачи с помощью программных средств.

9.2 Постановка задачи

S = 6 - количество имеющихся ресурсов.

n = 6 - количество предприятий.

Использование j-ым предприятием i единиц ресурса дает доход, определяемый значением нелинейной функции $f_j(i) = f_{ij}$. Обычно значения функции $f_j(i)$ задаются в виде матрицы доходности $F = \|f_{ij}\|_{(S+1)\times n}$. Зададим матрицу доходности F в виде таблицы:

	1	2	3	4	5	6
0	0	0	0	0	0	0
1	4	2	5	3	7	1
2	6	3	2	5	4	8
3	3	7	4	2	6	5
4	5	1	3	4	2	7
5	2	4	6	1	5	3
6	7	5	1	6	3	4

1. Для первого предприятия:

$$\begin{split} \phi_1(x) &= \max \left[f_1(x_1) \right], \quad 0 \leq x_1 \leq x \\ \phi_1(0) &= 0, \quad x_1^0 = 0 \\ \phi_1(1) &= \max\{0,4\} = 4, \quad x_0^1 = 1 \\ \phi_1(2) &= \max\{0,4,6\} = 6, \quad x_1^2 = 2 \\ \phi_1(3) &= \max\{0,4,6,3\} = 6, \quad x_1^3 = 2 \\ \phi_1(4) &= \max\{0,4,6,3,5\} = 6, \quad x_1^4 = 2 \\ \phi_1(5) &= \max\{0,4,6,3,5,2\} = 6, \quad x_1^5 = 2 \\ \phi_1(6) &= \max\{0,4,6,3,5,2,7\} = 7, \quad x_1^6 = 6 \end{split}$$

2. Для второго предприятия:

$$\phi_{2}(x) = \max \left[f_{2}(x_{2}) + \phi_{1}(x - x_{2}) \right], \quad 0 \leq x_{2} \leq x$$

$$\phi_{2}(0) = 0, \quad x_{2}^{0} = 0$$

$$\phi_{2}(1) = \max \left\{ f_{2}(1) + \phi_{1}(0) \\ f_{2}(0) + \phi_{1}(1) \right\} = \max \left\{ 2 + 0 \\ 0 + 4 \right\} = 4, \quad x_{2}^{1} = 0$$

$$\phi_{2}(2) = \max \left\{ f_{2}(2) + \phi_{1}(0) \\ f_{2}(1) + \phi_{1}(2) \right\} = \max \left\{ 3 + 0 \\ 2 + 4 \\ 0 + 6 \right\}$$

$$\phi_{2}(3) = \max \left\{ f_{2}(3) + \phi_{1}(0) \\ f_{2}(3) + \phi_{1}(2) \\ f_{2}(0) + \phi_{1}(2) \right\} = \max \left\{ \begin{cases} 7 + 0 \\ 3 + 4 \\ 2 + 6 \\ 0 + 6 \end{cases} \right.$$

$$\phi_{2}(4) = \max \left\{ f_{2}(4) + \phi_{1}(0) \\ f_{2}(3) + \phi_{1}(1) \\ f_{2}(2) + \phi_{1}(2) \\ f_{2}(1) + \phi_{1}(3) \\ f_{2}(2) + \phi_{1}(4) \right\} = \max \left\{ \begin{cases} 1 + 0 \\ 7 + 4 \\ 3 + 6 \\ 0 + 6 \end{cases} \right.$$

$$\phi_{2}(5) = \max \left\{ f_{2}(5) + \phi_{1}(0) \\ f_{2}(4) + \phi_{1}(1) \\ f_{2}(3) + \phi_{1}(2) \\ f_{2}(2) + \phi_{1}(3) \\ f_{2}(2) + \phi_{1}(3) \\ f_{2}(2) + \phi_{1}(3) \\ f_{2}(3) + \phi_{1}(4) \\ f_{2}(0) + \phi_{1}(5) \end{cases} = \max \left\{ \begin{cases} 5 + 0 \\ 4 + 4 \\ 1 + 6 \\ 7 + 6 \\ 3 + 6 \\ 2 + 6 \\ 0 + 6 \end{cases} \right.$$

$$\phi_{2}(6) = \max \left\{ \begin{cases} f_{2}(6) + \phi_{1}(0) \\ f_{2}(3) + \phi_{1}(3) \\ f_{2}(2) + \phi_{1}(4) \\ f_{2}(2) + \phi_{1}(6) \end{cases} = \max \left\{ \begin{cases} 5 + 0 \\ 4 + 4 \\ 1 + 6 \\ 7 + 6 \\ 3 + 6 \\ 2 + 6 \\ 0 + 7 \end{cases} \right.$$

3. Для третьего предприятия:

$$\phi_{3}(x) = \max \left[f_{3}(x_{3}) + \phi_{2}(x - x_{3}) \right], \quad 0 \leq x_{3} \leq x$$

$$\phi_{3}(0) = 0, \quad x_{3}^{0} = 0$$

$$\phi_{3}(1) = \max \left\{ f_{3}(1) + \phi_{2}(0) \\ f_{3}(0) + \phi_{2}(1) \right\} = \max \left\{ \begin{cases} 5 + 0 \\ 0 + 4 \end{cases} = 5, \quad x_{3}^{1} = 1 \end{cases} \right.$$

$$\phi_{3}(2) = \max \left\{ \begin{cases} f_{3}(2) + \phi_{2}(0) \\ f_{3}(1) + \phi_{2}(1) \\ f_{3}(0) + \phi_{2}(2) \end{cases} = \max \left\{ \begin{cases} 2 + 0 \\ 5 + 4 \\ 0 + 6 \end{cases} = 9, \quad x_{3}^{1} = 1 \end{cases} \right.$$

$$\phi_{3}(3) = \max \left\{ \begin{cases} f_{3}(3) + \phi_{2}(0) \\ f_{3}(2) + \phi_{2}(1) \\ f_{3}(1) + \phi_{2}(2) \\ f_{3}(0) + \phi_{2}(3) \end{cases} = \max \left\{ \begin{cases} 4 + 0 \\ 2 + 4 \\ 5 + 6 \\ 0 + 8 \end{cases} = 11, \quad x_{3}^{3} = 1 \end{cases} \right.$$

$$\phi_{3}(4) = \max \left\{ \begin{cases} f_{3}(4) + \phi_{2}(0) \\ f_{3}(3) + \phi_{2}(1) \\ f_{3}(1) + \phi_{2}(3) \\ f_{3}(1) + \phi_{2}(4) \end{cases} = \max \left\{ \begin{cases} 6 + 0 \\ 3 + 4 \\ 4 + 6 \\ 2 + 8 \end{cases} = 16, \quad x_{3}^{4} = 1 \end{cases} \right.$$

$$\phi_{3}(5) = \max \left\{ \begin{cases} f_{3}(5) + \phi_{2}(0) \\ f_{3}(3) + \phi_{2}(2) \\ f_{3}(2) + \phi_{2}(3) \\ f_{3}(1) + \phi_{2}(5) \end{cases} = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(5) + \phi_{2}(1) \\ f_{3}(4) + \phi_{2}(2) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \max \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \min \left\{ \begin{cases} f_{3}(6) + \phi_{2}(0) \\ f_{3}(6) + \phi_{2}(0) \end{cases} \right. = \min \left\{ \begin{cases} f_{3}(6) +$$

4. Для четвертого предприятия:

$$\phi_4(x) = \max \left[f_4(x_4) + \phi_3(x - x_4) \right], \quad 0 \le x_4 \le x$$

$$\phi_4(0) = 0, \quad x_4^0 = 0$$

$$\phi_4(1) = \max \left\{ f_4(1) + \phi_3(0) \\ f_4(0) + \phi_3(1) \right\} = \max \left\{ 3 + 0 \\ 0 + 5 \right\} = 5, \quad x_4^1 = 0$$

$$\phi_4(2) = \max \left\{ f_4(2) + \phi_3(0) \\ f_4(1) + \phi_3(1) \\ f_4(0) + \phi_3(2) \right\} = \max \left\{ 5 + 0 \\ 3 + 5 \\ 0 + 9 \right\} = 9, \quad x_4^1 = 0$$

$$\phi_4(3) = \max \left\{ f_4(3) + \phi_3(0) \\ f_4(2) + \phi_3(1) \\ f_4(1) + \phi_3(2) \\ f_4(0) + \phi_3(3) \right\} = \max \left\{ f_4(3) + \phi_3(0) \\ f_4(3) + \phi_3(1) \\ f_4(2) + \phi_3(2) \\ f_4(1) + \phi_3(2) \\ f_4(1) + \phi_3(3) \\ f_4(0) + \phi_3(4) \right\} = \max \left\{ f_4(3) + \phi_3(1) \\ f_4(4) + \phi_3(1) \\ f_4(4) + \phi_3(1) \\ f_4(2) + \phi_3(3) \\ f_4(2) + \phi_3(3) \\ f_4(1) + \phi_3(4) \\ f_4(0) + \phi_3(5) \right\} = \max \left\{ f_4(3) + \phi_3(1) \\ f_4(4) + \phi_3(2) \\ f_4(4) + \phi_3(3) \\ f_4(2) + \phi_3(4) \\ f_4(2) + \phi_3(4)$$

5. Для пятого предприятия:

$$\phi_{5}(x) = \max \left[f_{5}(x_{5}) + \phi_{4}(x - x_{5}) \right], \quad 0 \le x_{5} \le x$$

$$\phi_{5}(0) = 0, \quad x_{5}^{0} = 0$$

$$\phi_{5}(1) = \max \left\{ f_{5}(1) + \phi_{4}(0) \\ f_{5}(0) + \phi_{4}(1) \right\} = \max \left\{ 7 + 0 \\ 0 + 5 \right\} = 7, \quad x_{5}^{1} = 1$$

$$\phi_{5}(2) = \max \left\{ f_{5}(2) + \phi_{4}(0) \\ f_{5}(1) + \phi_{4}(1) \\ f_{5}(0) + \phi_{4}(2) \right\} = \max \left\{ f_{7}(3) + \phi_{4}(0) \\ f_{5}(3) + \phi_{4}(0) \\ f_{5}(3) + \phi_{4}(3) \right\} = \max \left\{ f_{7}(3) + \phi_{4}(1) \\ f_{5}(3) + \phi_{4}(3) \\ f_{5}(3) + \phi_{4}(3) \\ f_{5}(3) + \phi_{4}(4) \right\} = \max \left\{ f_{7}(4) + \phi_{7}(4) \\ f_{7}(4) = \max \left\{ f_{7}(4) + \phi_{4}(2) \\ f_{7}(4) + \phi_{4}(3) \\ f_{7}(4) + \phi_{4}(4) \right\} \right\} = \max \left\{ f_{7}(4) + \phi_{7}(4) \\ f_{7}(4) + \phi_{7}(4) + \phi_{7}(4) \\ f_{7}(5) + \phi_{7}(6) + \phi_{7}(6$$

ФИО: Зацепилин А.В. Группа: Б22-534

6. Для шестого предприятия:

$$\phi_{6}(x) = \max \left[f_{6}(x_{6}) + \phi_{5}(x - x_{6}) \right], \quad 0 \le x_{6} \le x$$

$$\phi_{6}(0) = 0, \quad x_{6}^{0} = 0$$

$$\phi_{6}(1) = \max \left\{ f_{6}(1) + \phi_{5}(0) \\ f_{6}(0) + \phi_{5}(1) \right\} = \max \left\{ \begin{cases} 1 + 0 \\ 0 + 7 \end{cases} = 7, \quad x_{6}^{1} = 0 \end{cases} \right.$$

$$\phi_{6}(2) = \max \left\{ \begin{cases} f_{6}(2) + \phi_{5}(0) \\ f_{6}(1) + \phi_{5}(1) \\ f_{6}(0) + \phi_{5}(2) \end{cases} = \max \left\{ \begin{cases} 8 + 0 \\ 1 + 7 \\ 0 + 12 \end{cases} = 12, \quad x_{6}^{1} = 0 \end{cases} \right.$$

$$\phi_{6}(3) = \max \left\{ \begin{cases} f_{6}(3) + \phi_{5}(0) \\ f_{6}(2) + \phi_{5}(1) \\ f_{6}(1) + \phi_{5}(2) \\ f_{6}(0) + \phi_{5}(3) \end{cases} = \max \left\{ \begin{cases} 5 + 0 \\ 8 + 7 \\ 1 + 12 \\ 0 + 16 \end{cases} \right. \right.$$

$$\phi_{6}(4) = \max \left\{ \begin{cases} f_{6}(4) + \phi_{5}(0) \\ f_{6}(3) + \phi_{5}(1) \\ f_{6}(1) + \phi_{5}(3) \\ f_{6}(1) + \phi_{5}(3) \end{cases} \right. = \max \left\{ \begin{cases} 7 + 0 \\ 5 + 7 \\ 8 + 12 \\ 1 + 16 \\ 0 + 19 \end{cases} \right. \right.$$

$$\phi_{6}(5) = \max \left\{ \begin{cases} f_{6}(5) + \phi_{5}(0) \\ f_{6}(4) + \phi_{5}(1) \\ f_{6}(3) + \phi_{5}(2) \end{cases} \right. = \max \left\{ \begin{cases} 3 + 0 \\ 7 + 7 \\ 5 + 12 \\ 8 + 16 \end{cases} \right. \right. \right.$$

$$\phi_{6}(6) = \max \left\{ \begin{cases} f_{6}(6) + \phi_{5}(0) \\ f_{6}(5) + \phi_{5}(1) \\ f_{6}(0) + \phi_{5}(5) \end{cases} \right. = \max \left\{ \begin{cases} 4 + 0 \\ 3 + 7 \\ 7 + 12 \\ 5 + 16 \\ 8 + 19 \\ 1 + 21 \\ 0 + 23 \end{cases} \right. \right.$$

$$\phi_{6}(6) = \max \left\{ \begin{cases} f_{6}(3) + \phi_{5}(3) \\ f_{6}(2) + \phi_{5}(4) \\ f_{6}(1) + \phi_{5}(5) \\ f_{6}(0) + \phi_{5}(6) \end{cases} \right. = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(1) + \phi_{5}(2) \\ f_{6}(1) + \phi_{5}(2) \\ f_{6}(1) + \phi_{5}(3) \end{cases} \right. = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(1) + \phi_{5}(2) \\ f_{6}(1) + \phi_{5}(2) \end{cases} \right. \right.$$

$$\phi_{6}(6) = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(3) \\ f_{6}(2) + \phi_{5}(4) \\ f_{6}(1) + \phi_{5}(5) \end{cases} \right. = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(1) \\ f_{6}(2) + \phi_{5}(4) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. = \max \left\{ \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right. \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right. \right. \right.$$

$$\left. \begin{cases} f_{6}(1) + \phi_{5}(2) \\ f_{6}(2) + \phi_{5}(4) \end{cases} \right. \right. \right. \right.$$

$$X^0 = (1, 0, 1, 1, 1, 2),$$
 Прибыль = 27.

Используя код на Go:

```
package main

import (
    "fmt"
)

// Размеры задачи
const (
    Resources = 6
    Firms = 6
)

func main() {
    // Матрица доходности
    F := [Resources + 1][Firms]int{
```

```
{0, 0, 0, 0, 0, 0},
         {4, 2, 5, 3, 7, 1},
         \{6, 3, 2, 5, 4, 8\},\
         \{3, 7, 4, 2, 6, 5\},\
         \{5, 1, 3, 4, 2, 7\},\
         \{2, 4, 6, 1, 5, 3\},\
         \{7, 5, 1, 6, 3, 4\},\
     }
     // Таблица для хранения максимального дохода
     maxProfit := make([][]int, Firms+1)
     for i := range maxProfit {
         maxProfit[i] = make([]int, Resources+1)
     }
     // Таблица для хранения распределения ресурсов
     allocation := make([][]int, Firms+1)
     for i := range allocation {
         allocation[i] = make([]int, Resources+1)
     // Динамическое программирование
     for firm := 1; firm <= Firms; firm++ {</pre>
         for resource := 0; resource <= Resources; resource++ {</pre>
             for used := 0; used <= resource; used++ {</pre>
                 profit := F[used][firm-1] + maxProfit[firm-1][resource-used]
                  if profit > maxProfit[firm][resource] {
                     maxProfit[firm][resource] = profit
                      allocation[firm][resource] = used
                 }
             }
         }
     }
     // Вывод результата
     fmt.Println("Максимальный доход:", maxProfit[Firms][Resources])
     // Восстановление распределения ресурсов
     resourceLeft := Resources
     allocResult := make([]int, Firms)
     for firm := Firms; firm > 0; firm-- {
         allocResult[firm-1] = allocation[firm][resourceLeft]
         resourceLeft -= allocResult[firm-1]
     }
     fmt.Println("Распределение ресурсов:", allocResult)
 }
Получаем такие же значения:
 Максимальный доход: 27
 Распределение ресурсов: [1 0 1 1 1 2]
Результаты совапали.
```

10 Задание №10

Задача о рюкзаке

Условие задачи

Имеется рюкзак грузоподъемностью W.

 P_i – вес одного предмета i-ого типа.

 V_{i} – стоимость (ценность) одного предмета *i*-ого типа.

 X_i – число предметов *i*-ого типа, которые будут загружаться на транспортировочное средство.

Требуется заполнить рюкзак грузом, состоящим из предметов N различных типов, таким образом, чтобы стоимость (ценность) всего груза была максимальной:

$$\sum_{i=1}^{N} V_i x_i \to \max,$$

при условиях:

$$\sum_{i=1}^{N} P_i x_i \le W, \quad x_i \in \{0, 1, \dots\},\$$

где x_i – целое неотрицательное число.

Рекуррентное решение

Решение задачи разбивается на n этапов, на каждом из которых определяется максимальная стоимость груза, состоящего из предметов:

- 1-го типа (1-ый этап),
- 1-го и 2-го типов (2-ой этап),
- ...
- всех n типов (последний этап).

Рекуррентное уравнение Беллмана для задачи:

$$W_i(C) = \max_{0 \le x_i \le \lfloor C/P_i \rfloor} \{ V_i x_i + W_{i-1}(C - P_i x_i) \},$$

где $W_i(C)$ – максимальная стоимость груза, состоящего из предметов типов $1, \ldots, i$, при суммарном весе C. Начальные условия:

$$W_0(C) = 0$$
 при $0 \le C \le S$.

Пример решения задачи

Пусть S=20 – грузоподъемность рюкзака. Данные:

C	1	2	3	4	5	6
P	5	4	7	3	6	2
V	50	40	70	30	60	20

Шаг 1. Расчет $W_1(C)$:

$$W_1(C) = \max_{0 \leq x_1 \leq \frac{20}{5}} \{50 \cdot x_1\}, \quad \text{при } x_1 \in \{0, 1, 2, 3\}.$$

Результат:

C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$W_1(C)$	0	0	0	0	0	50	50	50	50	50	100	100	100	100	100	150	150	150	150	150	200
x_1	0	0	0	0	0	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4

Шаг 2. Расчет $W_2(C)$:

$$W_2(C) = \max_{0 \leq x_2 \leq \frac{20}{4}} \{40 \cdot x_2 + W_1(C - 4x_2)\}, \quad \text{при } x_2 \in \{0, 1, 2, 3, 4, 5\}.$$

Результат:

C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$W_2(C)$	0	0	0	0	40	50	50	50	80	90	100	100	120	130	140	150	160	170	180	190	200
x_2	0	0	0	0	1	0	0	0	2	1	0	0	3	2	1	0	4	3	2	1	0

Группа: Б22-534

Шаг 3. Расчет $W_3(C)$:

$$W_3(C) = \max_{0 \leq x_3 \leq \frac{20}{7}} \{70 \cdot x_3 + W_2(C - 7x_3)\}, \quad \text{при } x_3 \in \{0, 1, 2\}.$$

Результат:

C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$W_3(C)$	0	0	0	0	40	50	50	70	80	90	100	110	120	130	140	150	160	170	180	190	200
x_3	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0

Шаг 4. Расчет $W_4(C)$:

$$W_4(C) = \max_{0 \le x_4 \le \frac{20}{3}} \{30 \cdot x_4 + W_3(C - 3x_4)\}, \quad \text{при } x_4 \in \{0, 1, 2, 3, 4, 5, 6\}.$$

Результат:

	C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
ĺ	$W_4(C)$	0	0	0	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
	x_4	0	0	0	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Шаг 5. Расчет $W_5(C)$:

$$W_5(C) = \max_{0 \leq x_5 \leq \frac{20}{6}} \{60 \cdot x_5 + W_4(C - 6x_5)\}, \quad \text{при } x_5 \in \{0, 1, 2, 3\}.$$

Результат:

C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$W_5(C)$	0	0	0	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
x_5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Шаг 6. Расчет $W_6(C)$:

$$W_6(C) = \max_{0 \leq x_6 \leq \frac{20}{2}} \{20 \cdot x_6 + W_5(C-2x_6)\}, \quad \text{при } x_6 \in \{0,1,2,\dots,10\}.$$

Результат:

	C	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ī	$W_6(C)$	0	0	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
Ī	x_6	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Таким образом, максимальная стоимость груза $W_6(20)$ равна 200 денежным единицам. При этом $x_6=0$, так как $W_6(20)=200$ достигается при $x_6=0$. Предметы остальных типов распределяются следующим образом:

$$C = 20 - 2 \cdot 0 = 20$$

 $W_5(20) = 200$ достигается при $x_5 = 0$.

$$C = 20 - 6 \cdot 0 = 20$$

ФИО: Зацепилин А.В. Группа: Б22-534

```
W_4(20) = 200 достигается при x_4 = 0.
                                      C = 20 - 3 \cdot 0 = 20
W_3(20) = 200 достигается при x_3 = 0.
                                      C = 20 - 7 \cdot 0 = 20
W_2(20) = 200 достигается при x_2 = 0.
                                      C = 20 - 4 \cdot 0 = 20
W_1(20) = 200 достигается при x_1 = 4.
                                      C = 20 - 5 \cdot 4 = 0
Итоговое решение: X = (4, 0, 0, 0, 0, 0), максимальная ценность 200.
   Используя код на Go:
package main
import (
"fmt"
func main() {
S := 20
P := []int{5, 4, 7, 3, 6, 2}
V := []int{50, 40, 70, 30, 60, 20}
n := len(P)
W := make([][]int, n+1)
X := make([][]int, n+1)
for i := range W {
        W[i] = make([]int, S+1)
        X[i] = make([]int, S+1)
    }
for i := 1; i <= n; i++ {
for C := 0; C <= S; C++ {
maxValue := 0
\max X := 0
for x := 0; x \le C/P[i-1]; x++ \{
value := V[i-1]*x + W[i-1][C-P[i-1]*x]
if value > maxValue {
        maxValue = value
        maxX = x
    }
}
W[i][C] = maxValue
X[i][C] = maxX
}
}
fmt.Printf("Максимальная стоимость груза W_%d(%d) равна %d денежным единицам.\n", n, S, W[n][S])
fmt.Printf("Итоговое решение: X = (")
C := S
for i := n; i > 0; i-- {
```

```
fmt.Printf("%d", X[i][C])
if i > 1 {
        fmt.Printf(", ")
    }
C -= P[i-1] * X[i][C]
}
fmt.Printf("), максимальная ценность %d.\n", W[n][S])
}
```

Получаем такие же значения:

Максимальная стоимость груза $W_{-}6(20)$ равна 200 денежным единицам. Итоговое решение: X = (0, 0, 0, 0, 0, 4), максимальная ценность 200.

Результаты совапали.