العلامة		عناصر الإجابة (الموضوع الأول)
مجموع	مجزأة	عاصر الإجابة (الموصوع الأون)
	3×0.25	u_{C} التمرين الأول: (06 نقاط) u_{R} u_{R} u_{R} التمرين الأول: ($i<0$) لا نقطيطي لدارة التغريغ الكهربائية المنمذجة للظاهرة u_{R} الموصوفة. u_{C} u_{R}
	4×0.25	$i(t)$ التفاضلية لتطور شدة التيار $i(t)$ التيار $u_C(t) + u_R(t) = 0$ التيار $u_C(t) + u_R(t) = 0$ الكهربائية الكهربائية $u_C(t) + u_R(t) = 0$ الكهربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية $u_C(t) = \frac{1}{C} \cdot q(t)$ العربائية المعادلة بالنسبة للزمن $u_C(t) = \frac{1}{C} \cdot q(t)$ باشتقاق طرفي المعادلة بالنسبة للزمن $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية $u_C(t) = 0$ العربائية التربائية التربائية التربائية $u_C(t) = 0$ العربائية التربائية التعربائية التربائية التربائية التربائية التربائية التربائية التعربائية التعربائ
	4×0.25	عدد المعادلة التفاضلية السابقة: $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : it.$ 3.1 لنبيّن أن: $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : it.$ 3.1 نشتق ($i(t)$ بالنسبة للزمن نجد $i(t) = \frac{I_0}{\tau} \cdot e^{-\frac{t}{\tau}} : it.$ 4 نعوض في المعادلة التفاضلية السابقة $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}}$ ومنه $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}}$ ومنه $i(t) = -I_0 \cdot e^{-\frac{t}{\tau}} : e^{-\frac{t}{\tau}} = 0$
5	3×0.25	1.4.1. باستغلال البيان (الشكل 2) لتستنتج قيمة كل من: $I_0 = i_0 = I_0$ الكهربائي العظمى $I_0 = I_0 = -I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = 1$ يكون $I_0 = -2 \cdot 10^4 A$ ومنه $I_0 = 2 \times 10^4 A$ عند الزمن $I_0 = -2 \cdot 10^4 A$ عند اللحظة $I_0 = -2 \cdot 10^4 A$ بإسقاط القيمة على بيان $I_0 = I_0 = I_0 = I_0$ عند اللحظة $I_0 = I_0 = I_0 = I_0 = I_0$ عند المحل على $I_0 = I_0 = I_0 = I_0 = I_0$ الزمن $I_0 = I_0 = I_0 = I_0 = I_0$ ملاحظة: يمكن تحديد قيمة ثابت الزمن $I_0 = I_0 = I_0 = I_0$ بطريقة المماس عند المبدأ.
	4×0.25	$E=R\cdot I_0\Rightarrow R=rac{E}{I_0}=rac{10^8}{2\cdot 10^4}=5000\Omega=rac{0.25}{5k\Omega}:R$ قيمة ج $ au=R\cdot C\Rightarrow C=rac{ au}{R}=rac{5\cdot 10^{-5}}{5\cdot 10^{-5}}=10$ ويمة سعة المكثفة $C=R\cdot C\Rightarrow C=rac{ au}{R}=rac{5\cdot 10^{-5}}{5\cdot 10^{-5}}=10$
	0.5	5.1. بعض قواعد الحماية من البرق: نكر قاعدتين على الاقل التواجد في المرتفعات العالية عند حدوث البرق. التواجد قرب الأبراج المعدنية. التواجد قرب مصادر المياه تجنب التواجد قرب مصادر المياه

العلامة		/ 1 \$11 a . : 11)
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
1	2×0.25	1.2. تحدید نمط الاهتزاز واستنتج قیمة شبه الدور T : - نمط الاهتزاز: اهتزازات کهربائیة حرة متخامدة - استنتاج قیمة شبه الدور T : T : - استنتاج قیمة شبه الدور T :
	2×0.25	$T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0$ قيمة ذاتية الوشيعة L باعتبار أن $T pprox T_0 = 2 \cdot \Pi \sqrt{L \cdot C} \Rightarrow L = \frac{T^2}{4 \cdot \Pi^2 \cdot C} = \frac{4 \cdot 10^{-8}}{40 \cdot 10^{-8}} = 0,1 \mathrm{H}$
	0.25	التمرين الثاني: (07 نقاط) 1.1. الحمض الضعيف: يكون انحلاله في الماء وفق تفاعل غير تام(محدود).
	4×0.25	2.1. انسب لكل محلول قيمة الـ pH الموافق له مع التبرير . كل المحاليل لها نفس التركيز : الحمض الأقوى (الأكثر انحلال) يوافق قيمة pH أقل .0.25 كل المحاليل لها نفس التركيز : الحمض الأقوى (الأكثر انحلال) يوافق قيمة pH_3 أقل .30.25 $pH_3=3,2$ يوافق pH_3 يوافق p
	4×0.25	HA_1 عمض قوي: $ HA_1 = HA_2 $ مض قوي: $ PH = -\log \left[H_3 O^+ \right]_{eq} \Rightarrow \left[H_3 O^+ \right]_{eq} = 10^{-pH} $ 0.25 $ PH = -\log \left[H_3 O^+ \right]_{eq} \Rightarrow \left[H_3 O^+ \right]_{eq} = 10^{-pH} $ 0.25 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_1} = 5 \times 10^{-2} mol \cdot L^{-1} = c : HA_1 $ 0.26 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 1,25 \times 10^{-3} mol \cdot L^{-1} < c : HA_2 $ 0.27 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 6,3 \times 10^{-3} mol \cdot L^{-1} < c : HA_3 $ 0.28 $ \left[H_3 O^+ \right]_{eq} = 10^{-pH_2} = 6,3 \times 10^{-3} mol \cdot L^{-1} < c : HA_3 $ مملاحظة: يمكن حساب النسبة النهائية لتقدم التفاعل $\tau_f = 1$ حيث $\tau_f = 1$ (حمض ضعيف) $\tau_f < 1$ (حمض ضعيف).
5.25	0.25	$Ka = rac{\left[H_3O^+\right]_{eq}\cdot\left[A^-\right]_{eq}}{\left[AH\right]_{eq}} : HA\left(aq\right)/A^-\left(aq\right)$ للثنائية Ka للثنائية .4.1
	4×0.25	: $pH = -\frac{1}{2}\log[HA]_{eq} + \frac{1}{2}pKa$ البات أن عبارة اله pH تعطى بالعلاقة pH عبارة اله pH عبارة اله pH عبارة اله pH عبارة اله عبارة اله عبارة العشري بين طرفي العلاقة pH الموغاريتم العشري بين طرفي العلاقة pH الموغارية
	3×0.25	$1.6.1$. ارفاق كل منحنى بالحمض الموافق له مع التعليل: 0.25 HA_3 وبالتالي: HA_3 مضان ضعيفان و HA_3 أكثر انحلال من HA_3 فإن HA_3 وبالتالي: المنحنى (2) يوافق HA_3 والمنحنى (1) يوافق HA_3 .

0.25 0.25

العلامة		/ t
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
		باستغلال البيان نقوم بتمديد المنحنيين الى غاية التقاطع مع محور التراتيب. PKa المنحنين DKa عاية التقاطع مع محور التراتيب.
	4x0.25	$pH_{1} = \frac{1}{2} pKa_{1} = 2, 4 \Rightarrow pKa_{1} = 2 \times pH_{1} = 4, 8 \textcircled{1}$ $pH_{2} = \frac{1}{2} pKa_{2} = 1, 9 \Rightarrow pKa_{2} = 2 \times pH_{2} = 3, 8 \textcircled{2}$
	2×0.25	1.2. الوظيفة الكيميائية: إسترية. 0.25 اسم المركب العضوي الناتج: إيثانوات الإيثيل. 0.25
1.75	3×0.25	0.25. سرعة اختفاء الحمض عند اللحظة $t=10min$: برسم المماس وحساب الميل 0.25 $v_{acide}=-\frac{dn_{acide}}{dt}=10^{-2}mol\cdot min^{-1}$ استنتاج سرعة التفاعل عند نفس اللحظة: $v=v_{acide}=10^{-2}mol\cdot min^{-1}$
	2×0.25	2.2.2. العوامل التي تؤثر في سرعة التحول الحادث: درجة الحرارة والوسيط.
	0.5	التمرين التجريبي: (07 نقاط) 1. المرحلة الأولى(المسار AB): 1.1. تعريف المرجع الغاليلي: هو كل مرجع يتحقق فيه مبدأ العطالة.
	4×0.25	2.2. حساب قيم السرعة اللحظية: $v_3 = \frac{G_2G_4}{2 \cdot \tau} = \frac{1,8 \times 4}{1,6} = 4,5m \cdot s^{-1} : G_3$ 2.2. عند الموضع $v_5 = \frac{G_4G_6}{2 \cdot \tau} = \frac{3 \times 4}{1,6} = 7,5m \cdot s^{-1} : G_5$ 2.2. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5m \cdot s^{-1} : G_7$ 2.2. عند الموضع $v_7 = \frac{G_6G_8}{2 \cdot \tau} = \frac{4,2 \times 4}{1,6} = 10,5m \cdot s^{-1} : G_7$
	2x0.25	$v = f(t)$ $v(m \cdot s^{-1})$ $t(s)$ $0,8$

العلامة		/ t \$21 ti\ " 1	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	
	3×0.25	0.25 $a = \frac{\Delta v}{\Delta t} = 1,88 m \cdot s^{-2}$ بيانيا: $a = \frac{\Delta v}{\Delta t}$ بيانيا: $a = \frac{\Delta v}{\Delta t}$ بيعة الحركة: حركة مستقيمة متسارعة بانتظام.	
		$:G_{8}$ و $:G_{0}$ بين الموضعين الموضعين الموضعين $:G_{0}$ على المسافة المقطوعة بين الموضعين $:G_{0}$	
	0.5	$t=0.s$ قيمتها تساوي عدديا مساحة المثلث المحصور بين اللحظتين G_0	
		$G_0G_8 = \frac{12 \times 6, 4}{2} = 38, 4m$ و $t = 6, 4s$ و بالتالي $t = 6, 4s$	0.25
		\overrightarrow{R} : a_G عبارة التسارع : a_G	
		الجملة المدروسة: متزحلق	
4.75		المعلم: سطحي أرضي نعتبره عطاليا. \overrightarrow{P}	
		بتطبيق القانون الثاني لنيوتن لمركز عطالة	
	5x0.25	الجملة $\sum \vec{F}_{ext} = m \cdot \vec{a}_G$ الجملة	
		محور الحركة: $a_G' = g \cdot \sin \alpha$ بالإسقاط على محور الحركة: $\overrightarrow{P} + \overrightarrow{R} = m \cdot \overrightarrow{a}_G'$	
		$a'_G = g \cdot \sin \alpha = 9,80 \times \sin \left(41^\circ\right) = 6,4 m \cdot s^{-2}$.25
	0.5	2.6.1. تبرير اختلاف قيمتي التسارع: القيمة النظرية للتسارع أكبر من القيمة التجريبية يعود	
		الى وجود قوى معيقة للحركة 0.25	
		G الحصاء وتمثيل القوى الخارجية المطبقة على مركز عطالة الجملة:	
		$ ightharpoonup \overline{R}$ 0.25 $ec{p}$ قوة الْثقل $ec{p}$	
	3×0.25	- قوة رد فعل السطح الأفقي على المتزحلق \vec{R} 0.25 - قوة رد فعل السطح	
		$ec{P}$ 0.25 $ec{f}$ عوة الاحتكاك $ec{f}$	
2.25		2.2. ايجاد شدة القوة \overrightarrow{f} بتطبيق معادلة انحفاظ الطاقة على الجملة المدروسة:	
	5x0.25	$E_f = E_i + E_{re} - E_{ced} \Rightarrow E_i - E_{ced} = 0$ 2x0.25	
		$\Rightarrow \frac{1}{2}mv_B^2 = f \cdot BC \qquad 2x0.25$	
		$\Rightarrow f = 420N 0.25$	
		ملاحظة: تغيير الجملة المدروسة والنتيجة صحيحة 0.50	

العلامة		/ *1**ti
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (06 نقاط)
		1. أنواع التفككات وتحديد الجسيمات:
0.75	3×0.25	$lpha$ و هو نواة الهليوم 4He و هو نواة الهليوم 2He
		و التفكك eta^- : eta^- جسيم له مواصفات الالكترون e : eta^-
		و هو البوزيتون $e^{0}_{+1}e$ و هو البوزيتون eta^{+}
		1.2. استنتاج العددين A و Z وكتابة رمز النواة الموافقة:
	3×0.25	من المخطط: $N = 16$ ، $Z = 16$
	3×0.23	0.25 $A=32$ ومنه $A=N+Z$ لدينا
		و منه رمز النواة $\frac{^{32}S}{^{16}}$ 0.25
1.5		2.2. معادلة التفكك وتحديد نوع الإشعاع:
	2×0.25	$0.25 {}^{32}_{15}P \rightarrow {}^{32}_{16}S + {}^{A}_{Z}X$
	3×0.25	ومنه المعادلة الانحفاظ : $A=0$ و $Z=-1$ و منه المعادلة $S+\frac{32}{16}P \to \frac{32}{16}S+\frac{0}{16}$ ومنه المعادلة الانحفاظ
		روع الإشعاع هو eta^- 0.25 نوع الإشعاع
		1.3. حساب عدد الأنوية المتواجدة في الجرعة:
	2×0.25	0.25 $N_0 = n_0.N_A$
		$N_0 = 3.12 \times 10^{-10} \times 6.02 \times 10^{23} = 1.88 \times 10^{14} $ noyaux 0.25
		2.3. حساب مدة زوال مفعول الجرعة:
2	6×0.25	$\frac{N}{N_0} = e^{-\lambda t}$ \rightarrow $t = \frac{1}{\lambda} \ln \frac{N_0}{N}$ 0.25 $N = N_0 e^{-\lambda t}$
		$t = \frac{t_{1/2}}{\ln 2} \ln \frac{N_0}{N} \qquad 0.25$
		ميث عدد الأنوية المتبقية $N = (100 - 99)\%$ $N_0 = 1\%.N_0$ عدد الأنوية المتبقية
		$t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ تصبح $t = \frac{14.32}{\ln 2} \ln 100 = 95 jours$ المقلوب 100 وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25
		وعليه فإن بعد 95 يوما يزول مفعول الجرعة 0.25

العلامة		عناصر الإجابة (الموضوع الثاني)
مجموع	مجزأة	عقاصر الإجاب (الموصوع الثاني)
1.75	3×0.25	$^{32}_{15}P$ و $^{30}_{15}P$
	4×0.25	0.25 $\frac{E_{\ell}}{A} {30 \choose 15} P = \frac{242,926}{30} = 8,097 MeV / nuc$: المقارنة: .2.4 $\frac{E_{\ell}}{A} {32 \choose 15} P = \frac{263,158}{32} = 8,224 MeV / nuc$ النواة الأكثر استقرارا هي $\frac{32}{15} P = \frac{32}{4} {32 \choose 15} P = \frac{263,158}{32} = 8,224 MeV / nuc$ النواة الأكثر استقرارا هي $\frac{32}{15} P = \frac{1}{4} {32 \choose 15} P = \frac{1}{4} {30 \choose 15} P = $
0.25	0.25	التمرين الثاني: (07 نقاط) أولا: دراسة الحركة الاهتزازية للنواس البسيط أولا: دراسة الحركة الاهتزازية للنواس البسيط 1. تعريف دور النواس البسيط: زمن اهتزازة كاملة. تقبل صيغ أخرى للتعبير عن الدور
0.25	0.25	0.25 $T_0 = \frac{t}{10} = 1,4s$: قيمة الدور الذاتي: 2.
0.75	3×0.25	$T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ أو إلغاء الخاطئة منها $T_0=2\pi\sqrt{rac{\ell}{g}}$ بما أنّ للدور $T_0=[T_0]=\left[rac{l}{g} ight]^{\frac{1}{2}}=rac{L^{\frac{1}{2}}T}{L^{\frac{1}{2}}}=T$ 0.25
0.5	2×0.25	ل النواس البسيط .4 طول النواس البسيط .9 $\ell = \frac{T_0^2 \cdot g}{4\pi^2} \approx 0.5 m$
1	4×0.25	0.25

العلامة		مناف الأماية الأمونية الثاني
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
2	8×0.25	المعادلتين الزمنيتين للحركة: المعادلتين الزمنيتين للحركة: الجملة المدروسة: الكرية المحملة المدروسة: الكرية المرجع المناسب: السطحي الأرضي المعتبر غاليليا 0.25 0.25 0.25 0.25 0.
1	0.25 3×0.25	$y = \frac{g}{2v_0^2}.x^2$: معادلة المسار: $y = \frac{g}{2v_0^2}.x^2$: معادلة المسار: $y = \frac{g}{2v_0^2}.x^2$: معادلة المسار: $y = h - l = 1m$ $0.25 \qquad y = h - l = 1m$ $0.25 \qquad y = \frac{1}{2}.g \ t^2 \to t = \sqrt{\frac{2.y}{g}} \approx 0,45s$ $0.25 \qquad x = v_0.t \approx 0,14m$ $E(0,14m,1m)$
1.25	5x0.25	E خصائص شعاع السرعة : موضع المبدأ: موضع السقوط E المبدأ: موضع السقوط E المبدأ: موضع المسار في الموضع E الاتجاه: يجب تحديد الزاوية التي يصنعها الشعاع المحصل v_x مع المحور الأفقي v_y و v_x الاتجاه: v_y و v_x السرعتين v_y و v_x و منه v_y و v_x v_y و v_x v_y و v_x v_y و v_x v_y

العلامة		
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.50	2×0.25	التمرين التجريبي: (07 نقاط) أولا: دراسة تفاعل الكحول (B) مع شوارد البرمنغنات 1. المؤكسد: هو كل فرد كيميائي يكتسب الكترون أو أكثر خلال تحول كيميائي. 0.25 المرجع: هو كل فرد كيميائي يفقد الكترون أو أكثر خلال تحول كيميائي. 0.25
1	4×0.25	$Ox/\operatorname{Re} d$ عادلتين النصفيتين والثنائيتين $Ox/\operatorname{Re} d$: $Ox/\operatorname{Re} d$.2 $Ox/\operatorname{Re} d$.2 $Ox/\operatorname{Re} d$.3 $Ox/\operatorname{Re} d$.4 $Ox/\operatorname{Re} d$.4 $Ox/\operatorname{Re} d$.5 $Ox/\operatorname{Re} d$.6 $Ox/\operatorname{Re} d$.7 O
0.25	0.25	دور حمض الكبريت المركز هو توفير شوارد H_3O^+ اللازمة للتفاعل ولا يُعتبر وسيطا لأن H_3O^+ تشارك في التفاعل.
0.75	0.50	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25 0,25 0,25	$n_f(B) = 50 mmol$: ومن المنحنى لدينا $n_f(B) = n_0(B) - 5 x_f$ من جدول التقدم لدينا: $n_f(B) = n_0(B) - 5 x_f$ ومن المنحنى لدينا $x_f = 2,5 mmol$ ومنه نجد $x_f = 2,5 mmol$ بما أن $x_f = x_{max}$ فإن التفاعل تام. $x_f = x_{max}$ نصف $x_f = x_{max}$ التفاعل نصف التفاعل نصف التفاعل $x_f = x_{max}$ المدة الزمنية اللازمة لبلوغ تقدم التفاعل نصف
1,50	0,25	قيمته الأعظمية. 0.25 $t_{1/2}=2,4min$ وبالإسقاط نجد $n_B(t_{1/2})=\frac{n_0(B)+n_f(B)}{2}$ وبالإسقاط نجد $t_{1/2}=1$
	0,50	: $t=0$ size (B) size (B) size (B) in the size $v_{Vol}(B) = -\frac{1}{V_T} \cdot \frac{dn(B)}{dt}$, $v_{Vol(B)}(0) = -\frac{1}{0,06} \cdot \frac{0-62,5}{18-0} = 57,87 \text{mmol} \cdot L^{-1} \text{min}^{-1}$

العلامة		مناهد الأمادة التوميم الثان
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.25	0,25	CH_3COOH ثانيا: دراسة تفاعل الكحول C_3H_8O مع حمض الايثانويك
0,25		1. دور حمض الكبريت المركز: تسريع التفاعل ويُعتبر وسيطا. 0.25
0.25	0,25	0.25 $C_3H_8O(l)+CH_3COOH(l)=CH_3COOC_3H_7(l)+H_2O(l)$: كتابة معادلة التفاعل 2.
		3. جدول تقدم التفاعل:
	0,50	ماء + إستر = حمض + كحول
		كمية المادة (mmol) التقدم
0.75		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0,25	ن ح ن x_f $50-x_f$ $50-x_f$ x_f x_f
		$x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: $x_{max} = 50$ ومنه: 0.25 ومنه: $x_{max} = 50$
		1.4. البروتوكول التجريبي
	0.70	نقسم المزيج الابتدائي بالتساوي على عدة انابيب اختبار، نسدها بإحكام ونضعها في حمام مائي
	0,50	درجة حرارته ثابتة. نأخذ من حين لآخر أحد الأنابيب ونبرده ثم نعاير الحمض المتبقي بواسطة
		0.25 محلول أساسي ذو تركيز مولي معلوم.
		كمية الكحول المتبقية هي نفسها كمية الحمض المتبقية.
1.50	0,25	$n_f(B) = 50 - x_f$: من جدول التقدم لدينا x_f من عدول التقدم لدينا .2.4
		ومن المنحنى لدينا: $n_f(B) = 20$ ومنه نجد $n_f(B) = 20$
	0,25	التحقق أنّ التفاعل غير تام: بما أن $x_f < x_{max}$ فإن التفاعل غير تام.
	0,25	0.25 $r = 60\%$ و منه: $r = \frac{x_f}{x_{max}} \times 100$ دينا: .3.4
	0,25	صنف الكحول (B) المستعمل: ثانوي 0.25
0.25	0,25	5. يمكن تحضير الإستر الناتج بتفاعل تام: استعمال كلور الإيثانويل بدل حمض الإيثانويك.