

Injection, surjection, bijection

Exercice 1

Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ telles que f(x) = 3x + 1 et $g(x) = x^2 - 1$. A-t-on $f \circ g = g \circ f$?

Indication ▼

Correction ▼

Vidéo

[000185]

Exercice 2

Soit $f:[0,1] \rightarrow [0,1]$ telle que

$$f(x) = \begin{cases} x & \text{si } x \in [0,1] \cap \mathbb{Q}, \\ 1 - x & \text{sinon.} \end{cases}$$

Démontrer que $f \circ f = id$.

Indication ▼

Correction ▼

Vidéo

[000199]

Exercice 3

Soit $f: [1, +\infty[\to [0, +\infty[$ telle que $f(x) = x^2 - 1$. f est-elle bijective?

Indication ▼ Correction ▼

Vidéo

[000202]

Exercice 4

Les applications suivantes sont-elles injectives, surjectives, bijectives?

1. $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$

2. $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1$

3. $h: \mathbb{R}^2 \to \mathbb{R}^2, (x,y) \mapsto (x+y, x-y)$

4. $k: \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x+1}{x-1}$

Indication ▼

Correction ▼

Vidéo

[000190]

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{C}$, $t \mapsto e^{it}$. Changer les ensembles de départ et d'arrivée afin que (la restriction de) f devienne bijective.

Indication $lap{}$

Correction ▼

Vidéo

[000200]

Exercice 6 Exponentielle complexe

Si z = x + iy, $(x, y) \in \mathbb{R}^2$, on pose $e^z = e^x \times e^{iy}$.

- 1. Déterminer le module et l'argument de e^z .
- 2. Calculer $e^{z+z'}$, $e^{\overline{z}}$, e^{-z} , $(e^z)^n$ pour $n \in \mathbb{Z}$.
- 3. L'application exp : $\mathbb{C} \to \mathbb{C}, z \mapsto e^z$, est-elle injective?, surjective?

Correction ▼

Vidéo

[000197]

Exercice 7

On considère quatre ensembles A, B, C et D et des applications $f: A \to B, g: B \to C, h: C \to D$. Montrer que :

 $g \circ f$ injective $\Rightarrow f$ injective,

 $g \circ f$ surjective $\Rightarrow g$ surjective.

Montrer que:

 $(g \circ f \text{ et } h \circ g \text{ sont bijectives}) \Leftrightarrow (f, g \text{ et } h \text{ sont bijectives}).$

Indication \blacktriangledown

Correction ▼

Vidéo

[000193]

Exercice 8

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x/(1+x^2)$.

- 1. f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: [-1,1] \rightarrow [-1,1]$ g(x) = f(x) est une bijection.
- 4. Retrouver ce résultat en étudiant les variations de f.

Indication $lap{}$

Correction ▼

Vidéo 🔳

[000191]

Indication pour l'exercice 1 A

Prouver que l'égalité est fausse.

Indication pour l'exercice 2

id est l'application identité définie par id(x) = x pour tout $x \in [0,1]$. Donc $f \circ f = id$ signifie $f \circ f(c) = x$ pour tout $x \in [0,1]$.

Indication pour l'exercice 3 ▲

Montrer que f est injective et surjective.

Indication pour l'exercice 4 ▲

- 1. f est injective mais pas surjective.
- 2. g est bijective.
- 3. *h* aussi.
- 4. *k* est injective mais par surjective.

Indication pour l'exercice 5 ▲

Montrer que la restriction de f définie par : $[0,2\pi[\longrightarrow \mathbb{U},t\mapsto e^{it}]$ est une bijection. Ici \mathbb{U} est le cercle unité de \mathbb{C} , c'est-à-dire l'ensemble des nombres complexes de module égal à 1.

Indication pour l'exercice 7 ▲

Pour la première assertion le début du raisonnement est : "supposons que $g \circ f$ est injective, soient $a, a' \in A$ tels que f(a) = f(a')",... à vous de travailler, cela se termine par "...donc a = a', donc f est injective."

Indication pour l'exercice 8 ▲

- 1. f n'est ni injective, ni surjective.
- 2. Pour $y \in \mathbb{R}$, résoudre l'équation f(x) = y.
- 3. On pourra exhiber l'inverse.

Correction de l'exercice 1

Si $f \circ g = g \circ f$ alors

$$\forall x \in \mathbb{R} \ f \circ g(x) = g \circ f(x).$$

Nous allons montrer que c'est faux, en exhibant un contre-exemple. Prenons x=0. Alors $f \circ g(0) = f(-1) = -2$, et $g \circ f(0) = g(1) = 0$ donc $f \circ g(0) \neq g \circ f(0)$. Ainsi $f \circ g \neq g \circ f$.

Correction de l'exercice 2 A

Soit $x \in [0,1] \cap \mathbb{Q}$ alors f(x) = x donc $f \circ f(x) = f(x) = x$. Soit $x \notin [0,1] \cap \mathbb{Q}$ alors f(x) = 1 - x donc $f \circ f(x) = f(1-x)$, mais $1-x \notin [0,1] \cap \mathbb{Q}$ (vérifiez-le!) donc $f \circ f(x) = f(1-x) = 1 - (1-x) = x$. Donc pour tout $x \in [0,1]$ on a $f \circ f(x) = x$. Et donc $f \circ f = id$.

Correction de l'exercice 3 ▲

• f est injective : soient $x, y \in [1, +\infty[$ tels que f(x) = f(y) :

$$f(x) = f(y) \Rightarrow x^2 - 1 = y^2 - 1$$

 $\Rightarrow x = \pm y \text{ or } x, y \in [1, +\infty[\text{ donc } x, y \text{ sont de même signe}]$
 $\Rightarrow x = y.$

• f est surjective : soit $y \in [0, +\infty[$. Nous cherchons un élément $x \in [1, +\infty[$ tel que $y = f(x) = x^2 - 1$. Le réel $x = \sqrt{y+1}$ convient !

Correction de l'exercice 4 A

- 1. f n'est pas surjective car 0 n'a pas d'antécédent : en effet il n'existe pas de $n \in \mathbb{N}$ tel que f(n) = 0 (si ce n existait ce serait n = -1 qui n'est pas un élément de \mathbb{N}). Par contre f est injective : soient $n, n' \in \mathbb{N}$ tels que f(n) = f(n') alors n + 1 = n' + 1 donc n = n'. Bilan f est injective, non surjective et donc non bijective.
- 2. Pour montrer que g est bijective deux méthodes sont possibles. Première méthode : montrer que g est à la fois injective et surjective. En effet soient $n, n' \in \mathbb{Z}$ tels que g(n) = g(n') alors n + 1 = n' + 1 donc n = n', alors g est injective. Et g est surjective car chaque $m \in \mathbb{Z}$ admet un antécédent par g: en posant $n = m 1 \in \mathbb{Z}$ on trouve bien g(n) = m. Deuxième méthode : expliciter directement la bijection réciproque. Soit la fonction $g' : \mathbb{Z} \to \mathbb{Z}$ définie par g'(m) = m 1 alors $g' \circ g(n) = n$ (pour tout $n \in \mathbb{Z}$) et $g \circ g'(m) = m$ (pour tout $m \in \mathbb{Z}$). Alors g' est la bijection réciproque de g et donc g est bijective.
- 3. Montrons que h est injective. Soient $(x,y), (x',y') \in \mathbb{R}^2$ tels que h(x,y) = h(x',y'). Alors (x+y,x-y) = (x'+y',x'-y') donc

$$\begin{cases} x+y = x'+y' \\ x-y = x'-y' \end{cases}$$

En faisant la somme des lignes de ce système on trouve 2x = 2x' donc x = x' et avec la différence on obtient y = y'. Donc les couples (x, y) et (x', y') sont égaux. Donc h est injective.

Montrons que h est surjective. Soit $(X,Y) \in \mathbb{R}^2$, cherchons lui un antécédent (x,y) par h. Un tel antécédent vérifie h(x,y) = (X,Y), donc (x+y,x-y) = (X,Y) ou encore :

$$\begin{cases} x + y = X \\ x - y = Y \end{cases}$$

Encore une fois on faisant la somme des lignes on obtient $x = \frac{X+Y}{2}$ et avec la différence $y = \frac{X-Y}{2}$, donc $(x,y) = (\frac{X+Y}{2}, \frac{X-Y}{2})$. La partie "analyse" de notre raisonnement en finie passons à la "synthèse": il suffit de juste de vérifier que le couple (x,y) que l'on a obtenu est bien solution (on a tout fait pour!). Bilan pour (X,Y) donné, son antécédent par h existe et est $(\frac{X+Y}{2}, \frac{X-Y}{2})$. Donc h est surjective.

4

En fait on pourrait montrer directement que h est bijective en exhibant sa bijection réciproque $(X,Y) \mapsto (\frac{X+Y}{2}, \frac{X-Y}{2})$. Mais vous devriez vous convaincre qu'il s'agit là d'une différence de rédaction, mais pas vraiment d'un raisonnement différent.

4. Montrons d'abord que k est injective : soient $x, x' \in \mathbb{R} \setminus \{1\}$ tels que k(x) = k(x') alors $\frac{x+1}{x-1} = \frac{x'+1}{x'-1}$ donc (x+1)(x'-1) = (x-1)(x'+1). En développant nous obtenons xx' + x' - x = xx' - x' + x, soit 2x = 2x' donc x = x'.

Au brouillon essayons de montrer que k est surjective : soit $y \in \mathbb{R}$ et cherchons $x \in \mathbb{R} \setminus \{1\}$ tel que f(x) = y. Si un tel x existe alors il vérifie $\frac{x+1}{x-1} = y$ donc x+1 = y(x-1), autrement dit x(y-1) = y+1. Si l'on veut exprimer x en fonction de y cela se fait par la formule $x = \frac{y+1}{y-1}$. Mais attention, il y a un piège! Pour y = 1 on ne peut pas trouver d'antécédent x (cela revient à diviser par 0 dans la fraction précédente). Donc k n'est pas surjective car y = 1 n'a pas d'antécédent.

Par contre on vient de montrer que s'il l'on considérait la restriction $k_{|}: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}$ qui est définie aussi par $k_{|}(x) = \frac{x+1}{x-1}$ (seul l'espace d'arrivée change par rapport à k) alors cette fonction $k_{|}$ est injective et surjective, donc bijective (en fait sa bijection réciproque est elle même).

Correction de l'exercice 5

Considérons la restriction suivante de $f: f_{|}: [0, 2\pi[\longrightarrow \mathbb{U}, t \mapsto e^{it}]$. Montrons que cette nouvelle application $f_{|}$ est bijective. Ici \mathbb{U} est le cercle unité de \mathbb{C} donné par l'équation (|z| = 1).

- f_{\parallel} est surjective car tout nombre complexe de \mathbb{U} s'écrit sous la forme polaire $e^{i\theta}$, et l'on peut choisir $\theta \in [0, 2\pi[$.
- f_{\parallel} est injective :

$$\begin{split} f_{|}(t) &= f_{|}(t') \Leftrightarrow e^{it} = e^{it'} \\ &\Leftrightarrow t = t' + 2k\pi \text{ avec } k \in \mathbb{Z} \\ &\Leftrightarrow t = t' \text{ car } t, t' \in [0, 2\pi[\text{ et donc } k = 0. \end{split}$$

En conclusion f_{\parallel} est injective et surjective donc bijective.

Correction de l'exercice 6 ▲

- 1. Pour z = x + iy, le module de $e^z = e^{x+iy} = e^x e^{iy}$ est e^x et son argument est y.
- 2. Les résultats : $e^{z+z'} = e^z e^{z'}$, $e^{\overline{z}} = \overline{e^z}$, $e^{-z} = (e^z)^{-1}$, $(e^z)^n = e^{nz}$.
- 3. La fonction exp n'est pas surjective car $|e^z| = e^x > 0$ et donc e^z ne vaut jamais 0. La fonction exp n'est pas non plus injective car pour $z \in \mathbb{C}$, $e^z = e^{z+2i\pi}$.

Correction de l'exercice 7

1. Supposons $g \circ f$ injective, et montrons que f est injective : soient $a, a' \in A$ avec f(a) = f(a') donc $g \circ f(a) = g \circ f(a')$ or $g \circ f$ est injective donc a = a'. Conclusion on a montré :

$$\forall a, a' \in A \quad f(a) = f(a') \Rightarrow a = a'$$

c'est la définition de f injective.

- 2. Supposons $g \circ f$ surjective, et montrons que g est surjective : soit $c \in C$ comme $g \circ f$ est surjective il existe $a \in A$ tel que $g \circ f(a) = c$; posons b = f(a), alors g(b) = c, ce raisonnement est valide quelque soit $c \in C$ donc g est surjective.
- 3. Un sens est simple (\Leftarrow) si f et g sont bijectives alors $g \circ f$ l'est également. De même avec $h \circ g$. Pour l'implication directe (\Rightarrow) : si $g \circ f$ est bijective alors en particulier elle est surjective et donc d'après la question 2. g est surjective.

Si $h \circ g$ est bijective, elle est en particulier injective, donc g est injective (c'est le 1.). Par conséquent g est à la fois injective et surjective donc bijective.

Pour finir $f = g^{-1} \circ (g \circ f)$ est bijective comme composée d'applications bijectives, de même pour h.

Correction de l'exercice 8 A

- 1. f n'est pas injective car $f(2)=\frac{4}{5}=f(\frac{1}{2})$. f n'est pas surjective car y=2 n'a pas d'antécédent : en effet l'équation f(x)=2 devient $2x=2(1+x^2)$ soit $x^2-x+1=0$ qui n'a pas de solutions réelles.
- 2. f(x) = y est équivalent à l'équation $yx^2 2x + y = 0$. Cette équation a des solutions x si et seulement si $\Delta = 4 4y^2 \ge 0$ donc il y a des solutions si et seulement si $y \in [-1, 1]$. Nous venons de montrer que $f(\mathbb{R})$ est exactement [-1, 1].
- 3. Soit $y \in [-1,1] \setminus \{0\}$ alors les solutions x possibles de l'équation g(x) = y sont $x = \frac{1-\sqrt{1-y^2}}{y}$ ou $x = \frac{1+\sqrt{1-y^2}}{y}$. La seule solution $x \in [-1,1]$ est $x = \frac{1-\sqrt{1-y^2}}{y}$ en effet $x = \frac{1-\sqrt{1-y^2}}{y} = \frac{y}{1+\sqrt{1-y^2}} \in [-1,1]$. Pour y = 0, la seule solution de l'équation g(x) = 0 est x = 0. Donc pour $g : [-1,1] \longrightarrow [-1,1]$ nous avons trouvé un inverse $h : [-1,1] \longrightarrow [-1,1]$ défini par $h(y) = \frac{1-\sqrt{1-y^2}}{y}$ si $y \ne 0$ et h(0) = 0. Donc g est une bijection.
- 4. $f'(x) = \frac{2-2x^2}{1+x^2}$, donc f' est strictement positive sur]-1,1[donc f est strictement croissante sur [-1,1] avec f(-1) = -1 et f(1) = 1. Donc la restriction de f, appelée $g: [-1,1] \longrightarrow [-1,1]$, est une bijection.