Balancing Problem Set #1

Count the total number of each kind of "reactant atom" and total number of each type of "product atom" to balance the following equations. Record the numbers in the spaces provided.

1. ____H
$$_{2\,(g)}$$
 + ___O $_{2(g)}$ \rightarrow ___H $_2O_{(g)}$ Rocket fuel is burned in a shuttle main engine.

Reactants		Products	
Element	#	Element	#
Н		Н	
0		O	

2.	$CH_{4(g)}$	+ _	$_{}O_{2(g)}$	\rightarrow	$__CO_{2(g)}$	+	$\underline{\hspace{1cm}} H_2O_{(g)}$
	Na	atural ga	s is burned	l in a g	as furnace in ma	nv ho	omes.

Reactants		Products	
Element	#	Element	#
С		С	
Н		Н	
0		0	

3. ____
$$H_2O_{2(l)}$$
 \rightarrow ____ $H_2O_{(l)}$ + ____ $O_{2(g)}$ Hydrogen peroxide decomposes when put on a cut.

Reactants		Products	
Element	#	Element	#
Н		Н	
О		О	

4. ____NH_{3(g)} + ___O_{2(g)}
$$\rightarrow$$
 ___N_{2(g)} + ___H₂O_(g) Ammonia will burn slowly in pure oxygen.

Reactants		Products	
Element	#	Element	#
N		N	
Н		Н	
0		0	

5.	$___CS_{2(l)}$	+	$\underline{\hspace{1cm}}$ Cl _{2(g)}	\rightarrow	$__CCl_{4(l)}$	+	$_{}$ $S_2Cl_{2(g)}$
	How car	rbon to	etrachloride (ba	anned	cleaning fluid)	used	to be made.

Reactants		Products	
Element	#	Element	#
С		С	
S		S	
Cl		Cl	

6. ___N_{2(g)}
$$\rightarrow$$
 ___H_{2(g)} + __NH_{3(g)} How ammonia is made.

Reactants		Products	
Element	#	Element	#
N		N	
Н		Н	

7. ___Al_{(s)} + ___H_2SO_4_{(aq)}
$$\rightarrow$$
 H_{2(g)} + __Al_2(SO_4)_{3(aq)} Aluminum should never be used to hold acid !!!

Reactants		Products	
Element	#	Element	#
Al		Al	
Н		Н	
S		S	
О		0	

8. ___Al_{(s)} + ___ $H_2SO_{4 \, (aq)} \rightarrow H_{2(g)} + __Al_2(SO_4)_{3(aq)}$ Note: If the complex ion does not break up then balance the number of complex ions on each side of the chemical equation.

of the chemical equation.				
Reactants		Products		
Element	#	Element	#	
Al		Al		
Н		Н		
SO_4		SO_4		

Problem Set #2

$$_{---}1.$$
 $_{---}F_2 + _{---}H_2O \rightarrow _{---}HF + _{---}O_2$

$$\underline{\hspace{1cm}}$$
2. $\underline{\hspace{1cm}}$ SO₂ + $\underline{\hspace{1cm}}$ O₂ \rightarrow $\underline{\hspace{1cm}}$ SO₃

$$_$$
4. $$ _C + $_$ _Fe₂O₃ \rightarrow + $_$ _CO + $_$ _Fe

$$__5$$
. $__{CO_2} + __{C} \rightarrow __{CO}$

$$_$$
6. $$ _Fe₂O₃ + $_$ _CO \rightarrow $_$ _CO₂ + $_$ _Fe

$$_{---}$$
7. $_{--}$ FeS + $_{---}$ O₂ \rightarrow $_{---}$ Fe₂O₃ + $_{----}$ SO₂

$$_{---}$$
8. $_{---}$ KClO₃ \rightarrow $_{---}$ KCl + $_{---}$ O₂

____9. ___HCl + ____Fe₂O₃
$$\rightarrow$$
 FeCl₃ + ____H₂O

$$_{10.} 10. _{MnO_2} + _{HCl} \rightarrow _{MnCl_2} + _{H_2O} + _{Cl_2}$$

$$_{11.} C_5H_{10} + _{02} \rightarrow _{02} + _{10}H_{2}O$$

$$_{12}. _{02} + _{02} + _{02} + _{03}$$

____13. ___KOH + ___Cl₂
$$\rightarrow$$
 ___KClO + ___KCl + ___H₂O

$$_{14.}$$
 $_{Al} + _{NaOH} \rightarrow _{Na_3AlO_3} + _{H_2}$

$$_{15.}$$
 $_{AsCl_3}$ + $_{H_2S}$ \rightarrow $_{As_2S_3}$ + $_{HCl}$

$$\underline{\hspace{1cm}}$$
16. $\underline{\hspace{1cm}}$ $Fe_2O_{3(s)}$ + $\underline{\hspace{1cm}}$ $H_{2(g)}$ \rightarrow $\underline{\hspace{1cm}}$ $Fe_{(s)}$ + $\underline{\hspace{1cm}}$ $H_2O_{(l)}$

____17. ____CaCO_{3(s)}
$$\rightarrow$$
 CaO_(s) + ____CO_{2(g)}

$$_{18.}$$
 $_{Fe_{(s)}}$ + $_{S_{8(s)}}$ \rightarrow $FeS_{(s)}$

$$\underline{\hspace{1cm}}$$
19. $\underline{\hspace{1cm}}$ $H_2S_{(aq)}$ + $\underline{\hspace{1cm}}$ $KOH_{(aq)}$ \rightarrow $H_2O_{(l)}$ + $\underline{\hspace{1cm}}$ $K_2S_{(s)}$

$$\underline{\hspace{1cm}}$$
 20. $\underline{\hspace{1cm}}$ NaCl (I) \rightarrow $\underline{\hspace{1cm}}$ Na(I) + $\underline{\hspace{1cm}}$ Cl_{2(g)}

$$\underline{\hspace{0.5cm}} 11. \ \underline{\hspace{0.5cm}} Al_{(s)} \ + \ \underline{\hspace{0.5cm}} H_2SO_{4(aq)} \ \ \boldsymbol{\rightarrow} \ \ \underline{\hspace{0.5cm}} H_{2(g)} \ + \ \underline{\hspace{0.5cm}} Al_2(SO_4)_{3(aq)}$$

____12. ____
$$H_3PO_{4(aq)} + ____NH_4OH_{(aq)} \rightarrow ____H_2O_{(l)} + ____(NH_4)_3PO_{4(aq)}$$

$$_{_{_{_{_{_{_{_{_{1}}}}}}}}}13. \ _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}C_{3}H_{8(l)}} \ + \ _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}C_{2(g)}}} \ \rightarrow \ _{_{_{_{_{_{_{_{_{_{1}}}}}}}}H_{2}O_{(l)}}} + \ _{_{_{_{_{_{_{_{_{1}}}}}}}}CO_{2(g)}}$$

$$_{14.} _{16.} _{16.} + _{16.} _{16.}$$

____1. ____Cu_(s) + ____O_{2(g)}
$$\rightarrow$$
 ____CuO_(s)

$$\underline{\hspace{1cm}}$$
 2. $\underline{\hspace{1cm}}$ $H_2O_{(l)}$ \rightarrow $\underline{\hspace{1cm}}$ $H_{2(g)}$ + $\underline{\hspace{1cm}}$ $O_{2(g)}$

$$_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$$
 3. $_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}}$ Fe_(s) + H₂O_(l) \rightarrow H_{2(g)} + $_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}$ Fe₃O_{4(aq)}

$$\underline{\hspace{0.5cm}} 4. \ \underline{\hspace{0.5cm}} AsCl_{3(s)} \ + \ \underline{\hspace{0.5cm}} H_2S_{(aq)} \ \rightarrow \ + \underline{\hspace{0.5cm}} As_2S_{3(aq)} \ + \ \underline{\hspace{0.5cm}} HCl_{(aq)}$$

$$_{---}5.$$
 $_{---}CH_{3(l)} + O_{2(g)} \rightarrow H_2O_{(l)} + _{---}CO_{2(g)}$