

Physics and Hybrid Model Approaches for Prognostics and Decision Making

Chetan S. Kulkarni, PhD
Diagnostics and Prognostics Group KBR
Inc., NASA Ames Research Center

PHMES, IIT Madras
March 2022

Acknowledgement

Diagnostics and Prognostics Group NASA Ames Research Center

SWS Team
NASA Langley Research Center

Collaborators

Prof. Olga Fink, Manuel Chao – ETH Zurich
Dr. Kai Goebel – PARC
Prof. Felipe Viana, Renato Nascimento University of Central Florida

Credit: www.nasa.gov

Credit: www.nasa.gov

Credit: www.nasa.gov

Agenda

- Introduction to Prognostics
- Introduction to Model-based Prognostics
- Research Approach
- Architecture
- Case Study: Prognostics of Li-Ion Batteries
- Hybrid Modeling for Prognostics
- Closing Remarks

INTRODUCTION TO PROGNOSTICS

Why Diagnostics

- di-ag-nos-tic
 - a distinctive symptom or characteristic.
 - a program or routine that helps a user to identify errors.
 - the practice or techniques of diagnosis.
 - "advanced medical diagnostics"
 - PHM Community "Detect and Isolate"
 - Fault Magnitude
 - System/Component

Why Prognostics

- Safety and Decision Making
- Reliability & Performance
 - product reputation reduced safety factors

- Operational Optimization
 - Prolonging component life by modifying how the component is used (e.g., load shedding/distribution)
 - Optimally plan or replan a mission

Basic Idea

Basic Idea

RUL: Remaining Useful Life

- Model underlying physics of a component/subsystem
- Model physics of damage propagation mechanisms
- Determine criteria for End-of-Life threshold
- Develop algorithms to propagate damage into future
- Deal with uncertainty

$$f_t(t) = f_g(p_t(t), u_t(t))$$

$$f_b(t) = f_g(p_b(t), u_b(t))$$

Algorithm 2 EOL Prediction

$$f_v(t) = \frac{x(t)}{L_s} C_v A_v \sqrt{\frac{2}{\rho} |p_{fl} - p_{fr}|} \operatorname{sign}(p_{fl} - p_{fr})$$

Diagnostics and Prognostics Group - NASA Ames

$EOL(t_P) \triangleq \inf\{t \in \mathbb{R} : t \geq t_P \land T_{EOL}(\mathbf{x}(t), \boldsymbol{\theta}(t)) = 1\}$

State of the Art

- Models can be reused
- If incorporated early enough in the design process, can drive sensor requirements Computationally efficient to implement
- Model development requires a thorough understanding of the system
- High-fidelity models can be
 computationally intensive
 - Paris-Erdogan Crack Growth Model
 - Taylor tool wear model
 - Corrosion model
 - Abrasion model

- Easy and Fast to implement
- May identify relationships that were not previously considered
- Requires lots of data and a "balanced" approach"
- Results may be counter(or even un-)intuitive
- Can be computationally intensive, both for analysis and im
 - Regression analysis
 - Neural Networks (NN)
 - Bayesian updates
 - Relevance vector machines (RVM)

Model-based prognostics

State vector includes dynamics of normal and degradation process

$$x_k = Ax_{k-1} + Bu_{k-1} + w_{k-1}$$
$$y_k = Hx_k + v_k$$

 EOL defined at time in which performance variable cross failure threshold

$$R(t_p) = t_{EOL} - t_p$$

Model and Algorithm Maturation

Algorithm Maturation - Validation

Architecture

Model-Based Architecture

Initial Problem Formulation

- Assume we know
 - Initial state, $x(k_o)$
 - Future input trajectory, $\mathbf{U}_{k_o,k_h} = [\mathbf{u}(k_o),\mathbf{u}(k_o+1),...,\mathbf{u}(k_h)]$
 - Process noise trajectory, $V_{k_o,k_h} = [v(k_o), v(k_o + 1), ..., v(k_h)]$
- Problem definition
 - Given k_o , k_h , $x(k_o)$, U_{k_o,k_h} , V_{k_o,k_h}
 - Compute EOL
 - $EOL(k) = \inf\{k': k' \ge k \text{ and } T_f(\mathbf{x}(k))\}$

Computational Algorithm

```
Compute EOL (k_o, k_h, \mathbf{x}(k_o), \mathbf{U}_{k_o, k_h}, \mathbf{V}_{k_o, k_h})
     1. \mathbf{X}_{k_o,k_h}(k_o) \leftarrow \mathbf{x}(k_o)
                                                                                        // Set initial state
     2. for k = k_0 to k_h - 1 do
     3. if T_f(\mathbf{X}_{k_0,k_h})(k)
                                                                                        // Check if failure state
             return k
                                                                                        // Return current time as EOL
     5.
             end if
            X_{k_0,k_h}(k+1) \leftarrow f(X_{k_0,k_h}(k), U_{k_0,k_h}(k), V_{k_0,k_h}(k))
                                                                                       // Update state
           end for
           if T_f(\mathbf{X}_{k_0,k_h})(k)
                                                                                        // Check if failure state
     9
              return k
                                                                                        // Return current time (k_h) as EOL
     10.
            else
     11.
                                                                                        // Return infinity
              return ∞
     12. end if
```

Integrated Prognostics Architecture

- System (battery) gets inputs (current) and produces outputs (voltage)
- State estimation computes estimate of state given estimates of age parameters
- EOD prediction computes prediction of time of EOD, given state and age parameter estimates
- Age parameter estimation computes estimates of age parameters
- Age rate parameter estimation computes parameters defining aging rate progression
- EOL prediction computes prediction of time of EOL, given age parameter and age rate parameter estimates

State of the Art

- Models can be reused
- If incorporated early enough in the design process, can drive sensor requirements Computationally efficient to implement
- Model development requires a thorough understanding of the system
- High-fidelity models can be
 computationally intensive
 - Paris-Erdogan Crack Growth Model
 - Taylor tool wear model
 - Corrosion model
 - Abrasion model

- Easy and Fast to implement
- May identify relationships that were not previously considered
- Requires lots of data and a "balanced" approach"
- Results may be counter(or even un-)intuitive
- Can be computationally intensive, both for analysis and im
 - Regression analysis
 - Neural Networks (NN)
 - Bayesian updates
 - Relevance vector machines (RVM)

Case Study: Prognostics of Li-Ion Batteries

Battery Modeling

- Equivalent Circuit Empirical Models
 - Most common approach
 - Various model complexities used

Battery Model – Tuned using Lab Data

 An equivalent circuit battery model is used to represent the battery terminal voltage as a function of current and the charge stored in 3 capacitive elements

$$x = [q_b \ q_{cp} \ q_{Cs}]^T$$

$$\dot{x} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{1}{R_{cp}C_{cp}} & 0 \\ 0 & 0 & -\frac{1}{R_sC_s} \end{bmatrix} x + \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} i + \xi$$

$$y = V = \begin{bmatrix} \frac{1}{C_b} - \frac{1}{C_{cp}} - \frac{1}{C_s} \end{bmatrix} \cdot x$$

• Two laboratory loading experiments are used to fit the following parameterization coefficier $SOC = 1 - \frac{q_{max} - q_b}{C_{max}}$

$$\begin{split} C_b &= C_{Cb0} + C_{Cb1} \cdot \text{SOC} + C_{Cb2} \cdot \text{SOC}^2 + C_{Cb3} \cdot \text{SOC}^3 \\ C_{cp} &= C_{cp0} + C_{cp1} \cdot \exp\left(C_{cp2} \left(1 - \text{SOC}\right)\right) \\ R_{cp} &= R_{cp0} + R_{cp1} \cdot \exp\left(R_{cp2} \left(1 - \text{SOC}\right)\right) \end{split}$$

Battery Modeling

- <u>Electrochemical Models vs. Empirical Models</u>
 - Battery physics models enable more direct representation of age-related changes in battery dynamics than empirical models
 - Typically have a higher computational cost and more unknown parameters

Electrochemical Li-ion Model

- Lumped-parameter, ordinary differential equations
- Capture voltage contributions from different sources
 - Equilibrium potential →Nernst equation with Redlich-Kister expansion
 - Concentration overpotential → split electrodes into surface and bulk control volumes

 - Ohmic overpotential →
 Constant lumped resistance accounting for current collector resistances, electrolyte resistance, solid-phase ohmic resistances

Battery Aging

- Contributions from both decrease in mobile Li ions (lost due to side reactions related to aging) and increase in internal resistance
 - Modeled with decrease in "q^{max}" parameter, used to compute mole fraction
 - Modeled with increase in "R_o" parameter capturing lumped resistances

Simulated

Edge 540-T

- Subscale electric aircraft operated at NASA Langley Research Center
- Powered by four sets of Li-polymer batteries
- Estimate SOC online and provide EOD and remaining flight time predictions for groundbased pilots

Edge UAV Use Case

- Piloted and autonomous missions, visiting waypoints
- Require 2-minute warning for EOD so pilot/autopilot has sufficient time to land safely
 - This answer depends on battery age
 - Need to track both current level of charge and current battery age
 - Based on current battery state, current battery age, and expected future usage, can predict EOD and correctly issue 2minute warning

Predication over Flight Plan

- Measured and predicted battery current, voltage and SOC different time steps
- The min, max and median predictions are plotted from each sample time until the predicated SOC reaches 30%

- Predictions for remaining flight time for entire flight plan
- Overestimate till parasitic load is injected
- Once the parasitic load is detected the remaining flying time time prediction shifts down.

Ref: E. Hogge et al, "Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft", PHM 2015

Performance Requirements

- Accuracy requirements for the two minute warning were specified as:
 - The prognostic algorithm shall raise an alarm no later than two minutes before the lowest battery
 SOC estimate falls below 30% for at least 90% of verification trial runs.
 - The prognostic algorithm shall raise an alarm no earlier than three minutes before the lowest battery SOC estimate falls below 30% for at least 90% of verification trial runs.
 - Verification trial statistics must be computed using at least 20 experimental runs

Hybrid Approaches

State of the Art

- Models can be reused
- If incorporated early enough in the design process, can drive sensor requirements Computationally efficient to implement
- Model development requires a thorough understanding of the system
- High-fidelity models can be
 computationally intensive
 - Paris-Erdogan Crack Growth Model
 - Taylor tool wear model
 - Corrosion model
 - Abrasion model

- Easy and Fast to implement
- May identify relationships that were not previously considered
- Requires lots of data and a "balanced" approach"
- Results may be counter(or even un-)intuitive
- Can be computationally intensive, both for analysis and im
 - Regression analysis
 - Neural Networks (NN)
 - Bayesian updates
 - Relevance vector machines (RVM)

Hybrid Approach

Approach 1 : Deep Learning + Physics Model Calibration

Overall architecture of the hybrid prognostics framework fusing physics-based and deep learning models.

Calibration Policy

Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, "Real-Time Model Calibration with Deep Reinforcement Learning", arXiv:2006.04001

Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink, "Fusing Physics-based and Deep Learning Models for Prognostics", arXiv:2003.00732

Approach 2 : Physics + RNN

Overall architecture of the physics-informed recurrent neural network

Physics-informed neural network framework for Li-ion Battery SOC estimation

Nascimento, R.G. & Viana, F. A. & Corbetta, M. & Kulkarni, C. S. (2021). "Usage-based Lifing of Lithium-Ion Battery with Hybrid Physics-Informed Neural Networks," AIAA Aviation 2021.

Renato G. Nascimento; Matteo Corbetta; Chetan S. Kulkarni; Felipe A.C. Viana, "Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis". Journal of Power Sources 2021 (accepted)

Approach 2 : Physics + RNN

(b) Random-loading discharge.

Next Steps: Looking Ahead

Next Steps: Looking Ahead

- Data Spectrum availability
- Offline/Online
- Computational cost

Next Steps: Looking Ahead

Concluding Remarks

- Health Management framework helps enable
 - Systems safe and efficient
 - Decision making
- Research approach challenges
 - How to balance lack of knowledge of the system vs own expertise on particular PHM tools
- Validate models and algorithms with data from lab experiments and fielded systems

Concluding Remarks

- Hybrid Approaches
 - Physics based methods can be combined with machine learning to determine and evaluate models for complex physical systems.
 - High Fidelity simulation
 - Field and Tests
 - These models enable in verification and validation for autonomy in shorter period of time than current state of the art.
 - · Computational tools are two slow.
 - With availability of test and field data, machine learning able to blend the digital data fabric for model update
 - Uncertainty Quantification
- Requirements for autonomous systems

Data Repository – Open Source

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/

Thank You

chetan.s.kulkarni@nasa.gov

https://ti.arc.nasa.gov/tech/dash/groups/pcoe/