Лекція 11. Перевірка правильності непараметричних гіпотез

Існують різні критерії, які не потребують значень параметрів генеральної сукупності. Вони називаються *непараметричними критеріями*.

Критерії узгодження, що найчастіше використовуються при перевірці гіпотез про вигляд розподілу:

- для перевірки гіпотези про нормальний розподіл генеральної сукупності:
 - критерій згоди Романовського;
 - критерій згоди Ястремського;
 - критерій Шапіро-Уілка;
 - критерій Пірсона (χ^2) ;
- для перевірки гіпотези про довільний розподіл генеральної сукупності:
 - критерій серій;
 - критерій Колмогорова;
 - критерій Мізеса (ω^2) ;
- для перевірки гіпотези про однаковий розподіл двох генеральних сукупностей:
 - критерій знаків;
 - критерій Колмагорова-Смирнова;
 - критерій інверсії (Вілкоксона).

11.1. Критерій згоди В. І. Романовського

За критерій (статистику) В. І. Романовський обрав величину:

$$Y_{PoM} = \frac{\chi^2 - k_{ce}}{\sqrt{2k_{ce}}},$$
 (11.1)

де k_{ce} — число ступенів вільності.

Якщо $|Y_{Pom}| \le 3$, то несуттєвою є розбіжність між емпіричним і теоретичним розподілом і емпіричний розподіл можна вважати приблизно нормальним; якщо ж $|Y_{Pom}| > 3$, то нульова гіпотеза про близькість емпіричного і теоретичного розподілів відхиляється.

Приклад 11.1. Маємо згруповані дані про денний виторг у магазині електротоварів (тис. грн).

Сума продажу	Кількість одиниць продажу	
190-200	10	
200-210	26	
210-220	56	
220-230	64	
230-240	30	
240-250	14	

Перевірити нульову гіпотезу H_0 про те, що сума продажу (X) є випадковою величиною, яка розподілена за нормальним законом. Рівень значущості α прийняти за 0.5.

Розв'язання:

$$\overline{x}_B = \frac{1}{n} \sum_{i=1}^{6} x_i^* \cdot n = \frac{1}{200} \cdot 44200 = 221.$$

Тоді
$$a=221$$
, $D_B=\frac{1}{n}\sum_{i=1}^6 \left(x_i^*\right)^2\cdot n - \overline{x_B}^2 = \frac{30400}{200}=152$, $\sigma_B=\sqrt{D_B}=\sqrt{152}\approx 12{,}33$.

Подальші обчислення для зручності занесемо у вигляді таблиці:

x_i^*	n_i	$x_i^* \cdot n_i$	$x_i^* - \overline{x}_B$	$\left(x_i^* - \overline{x}_B\right)^2 \cdot n_i$
195	10	1950	-26	6760
205	26	5330	-16	6656
215	56	12 040	-6	2016
225	64	14 404	16	1024
235	30	7050	14	5880
245	14	3430	24	8064
$\sum_{i=1}^{n}$	200	44 200	-	30 400

Тепер обчислимо теоретичні ймовірності p_i потрапляння випадкової величини $X \to N(221;152)$ у частинні інтервали $(x_i; x_{i+1})$ за формулою $p_i = \Phi(z_{i+1}) - \Phi(z_i)$, де $z_i = \frac{x_i - \overline{x}_B}{\sigma_B}$.

 $\frac{3ayважимо}{\sigma_B}$, що найменше значення $\frac{x_i - \overline{x}_B}{\sigma_B} = \frac{190 - 221}{12,33} = -2,514$ замінено на «-∞», а найбільше значення $\frac{x_i - \overline{x}_B}{\sigma_B} = \frac{250 - 221}{12,33} = -2,352$ замінено на «+∞».

Після цього обчислимо
$$\chi_{cn}^2 = \sum_{i=1}^6 \frac{\left(n_i - n_i'\right)^2}{n_i'}$$

Розрахунки проводимо в таблиці:

Інтервали (S) , $(x_i; x_{i+1})$	Частоти п	Нормовані інтервали $(z_i; z_{i+1}),$ де $z_i = \frac{x_i - \overline{x}_B}{\sigma_B}$	$\Phi(z_i)$	$\Phi(z_{i+1})$	$p_i = \Phi(z_{i+1}) - \Phi(z_i)$
190-200	10	$(-\infty; -1,7)$	-0,500	-0,4554	0,0446
200-210	26	(-1,7; -0,89)	-0,4554	-0,3133	0,1421
210-220	56	(-0,89; -0,08)	-0,3133	-0,0319	0,2814
220-230	64	(-0.08; 0.73)	-0,0319	0,2673	0,2992
230-240	30	(0,73;1,54)	0,2673	0,4382	0,1709
240-250	14	(1,54; ∞)	0,4382	0,5	0,0618
\sum	n = 200	-	-	-	1

$n_i' = n \cdot p_i$	$(n_i - n_i')$	$\frac{\left(n_i - n_i'\right)^2}{n_i'}$
8,92	1,08	0,1308
28,42	-2,42	0,206
56,28	-0,28	0,0014
59,84	4,16	0,2892
34,18	-4,18	0,5112
12,36	1,64	0,2176
$\sum 200$		$\chi_{cn}^2 = 1,3562$

Оскільки, $\chi^2_{cn}=1{,}3562$, а число ступенів вільності $k_{cs}=\nu=S-r-1=6-2-1=3$, то за критерієм Романовського:

$$|Y_{P_{OM}}| = \left| \frac{\chi^2 - k_{CB}}{\sqrt{2k_{CB}}} \right| = \left| \frac{1,3562 - 3}{\sqrt{6}} \right| = \left| \frac{-1,6438}{2,4495} \right| \approx 0,67 < 3,$$

тому немає підстав відхилити нульову гіпотезу. Отже, математичною моделлю заданого вибіркового розподілу можна вважати нормальний закон розподілу.

 $\underline{3ауваження.}$ Відношення Романовського має підгрунтям те, що $M\left(\chi^2\right) = k_{cs}$, а $D\left(\chi^2\right) = \sigma^2 = 2 \cdot k_{cs}$. Тому ймовірність відхилення χ^2 на $\sqrt{2 \cdot k_{cs}}$ близька до 1.

11.2. Критерій згоди Б. С. Ястремського

Як і критерій Романовського, критерій Ястремського:

$$Y_{gcmp} = \frac{\left| C - k \right|}{\sqrt{2k + 4 \cdot \Theta}} \tag{11.2}$$

застосовується без звернення до таблиць розподілу χ^2 . У формулі (7.2) k — кількість груп, Θ — величина, яка залежить від k і C. Якщо k < 20 і $C = \sum_{i=1}^k \frac{(n_i - n_i')}{n_i' \cdot (1 - p_i)}$, тоді $\Theta = 0.6$.

Якщо $\left|Y_{gcmp}\right| > 3$, то гіпотеза H_0 відхиляється; якщо ж $\left|Y_{gcmp}\right| \le 3$, то H_0 приймається.

Приклад 11.2. Маємо згруповані дані про денний виторг у магазині електротоварів (тис. грн).

Сума продажу	Кількість одиниць продажу
190-200	10
200-210	26
210-220	56
220-230	64

230-240	30
240-250	14

Перевірити нульову гіпотезу H_0 про те, що сума продажу (X) є випадковою величиною, яка розподілена за нормальним законом. Рівень значущості α прийняти за 0,5.

Розв'язання: Для цього розрахунки виконуємо в наступній таблиці, де p_i — знайдені під час розв'язання прикладу 7.3.

p_i	$1-p_i$	$n'_i = n \cdot p_i$	$\frac{\left(n_i - n_i'\right)^2}{n_i'}$	$\frac{\left(n_i - n_i'\right)^2}{n_i' \cdot \left(1 - p_i\right)}$
0,0446	0,9554	8,92	0,1308	0,1369
0,1421	0,8579	28,42	0,206	0,2401
0,2814	0,7186	56,28	0,0014	0,0019
0,2992	0,7008	59,84	0,2892	0,4127
0,1709	0,8291	34,18	0,5112	0,6166
0,0618	0,9382	12,36	0,2176	0,2319
\sum		-	-	C = 1,64

Оскільки кількість груп k = 6, та k = 6 < 20, то $\Theta = 0.6$.

Тоді
$$Y_{scmp} = \frac{\left|C - k\right|}{\sqrt{2k + 4\Theta}} \Longrightarrow \left|Y_{scmp}\right| = \left|\frac{1,64 - 6}{\sqrt{12 + 4 \cdot 0,6}}\right| = \left|\frac{-4,36}{3,7947}\right| = 1,143 < 3.$$

Отже, немає підстав відхилити нульову гіпотезу про нормальний закон розподілу.

11.3. Критерій згоди Шапіро-Уілка (статистичний аналіз даних вимірювань)

Критерій узгодження Шапіро-Уілка використовують для перевірки гіпотези про нормальний розподіл генеральної сукупності. Він базується на відношенні оптимальної лінійної незсунутої оцінки дисперсії до її звичайної оцінки методом найбільшої правдоподібності.

Статистика критерію має вигляд

$$W = \frac{1}{S^2} \left(\sum_{i=1}^{n} a_{n-i+1} \cdot (x_{n-i+1} - x_i) \right)^2$$

Коефіцієнти а та критичні значення $W_{\kappa p}$ беруться з таблиць. Критерій надійний при $8 \le n \le 50$ (існує модифікований критерій Шапіро-Франчича, який можна застосовувати при n до 2000). Критерій є найбільш ефективним, оскільки він має найбільшу потужність порівняно з іншими критеріями перевірки на нормальність.