Contents

Introduction	1
Basics of Amenable Groups and Subgroups	1
Understanding Free Groups	3
Groups specified by Generating Sets	3
Free Groups	3
Free Groups, Free Products, and the Ping Pong Lemma	5
States and Means on $\ell_{\infty}(G)$	10
Using Invariant States	16
Følner's Condition and Invariant Approximate Means	19
Equivalence between Means and Approximate Means	23

Introduction

This is going to be a part of my Honors thesis independent study, focused on amenability and C*-algebras. This section of notes will be a deeper dive into group amenability. These notes will be taken from the notes my professor has prepared on group amenability, with supplementation from Volker Runde's *Lectures on Amenability* and Pierre de la Harpe's *Topics in Geometric Group Theory*.

I do not claim any of this work to be original.

Basics of Amenable Groups and Subgroups

Let G be a group, with P(G) denoting the power set.

Definition. An invariant mean on G is a set function $\mathfrak{m} \colon P(G) \to [0,1]$, which satisfies, for all $t \in G$ and $E, F \subseteq G$,

- (1) m(G) = 1;
- (2) $m(E \sqcup F) = M(E) + m(F);$
- (3) m(tE) = m(E).

We say G is amenable if it admits a mean.

We can also say that m is a translation-invariant probability measure on (G, P(G)).

Proposition (Amenability of Subgroups and Quotient Groups): Let G be amenable, with $H \leq G$.

- (1) H is amenable;
- (2) for $H \subseteq G$, G/H is amenable.

Proof.

(1) Let R be a right transversal for H (i.e., selecting one element of each right coset of H to make up R).

If m is a mean for G, we set

$$\lambda \colon \mathcal{P}(\mathsf{H}) \to [0,1]$$

by $\lambda(E) = m(ER)$. We have

$$\lambda(H) = \mathfrak{m}(HR)$$
$$= \mathfrak{m}(G)$$
$$= 1.$$

We claim that if $E \cap F = \emptyset$, then $ER \cap FR = \emptyset$, since if we suppose toward contradiction that $ER \cap FR \neq \emptyset$, then $xr_1 = yr_2$ for some $x \in E$, $y \in F$ and $r_1, r_2 \in R$. Then, we must have $r_2r_1^{-1} = y^{-1}x \in H$, meaning $r_1 = r_2$ and x = y, which means $E \cap F \neq \emptyset$.

Thus, we have

$$\lambda (E \sqcup F) = \mathfrak{m} ((E \sqcup F) R)$$

$$= \mathfrak{m} (ER \sqcup FR)$$

$$= \mathfrak{m} (ER) + \mathfrak{m} (FR)$$

$$= \lambda(E) + \lambda(F),$$

and

$$\lambda (sE) = m(sER)$$
$$= m(ER)$$
$$= \lambda(E).$$

(2) For the canonical projection map $\pi: G \to G/H$ defined by $\pi(t) = tH$, we define

$$\lambda \colon P(G/H) \to [0,1]$$

by $\lambda(E) = m(\pi^{-1}(E))$. We have

$$\lambda(G/H) = m \left(\pi^{-1}(G/H)\right)$$
$$= m(G)$$
$$= 1,$$

and

$$\lambda (E \sqcup F) = m \left(\pi^{-1} (E \sqcup F) \right)$$

$$= m \left(\pi^{-1} (E) \sqcup \pi^{-1} (F) \right)$$

$$= m \left(\pi^{-1} (E) \right) + m \left(\pi^{-1} (F) \right)$$

$$= \lambda (E) + \lambda (F).$$

To show translation-invariance, we let $sH = \pi(s) \in G/H$, and $E \subseteq G/H$. Note that

$$\pi^{-1}(\pi(s) E) = s\pi^{-1}(E)$$
,

since for $r \in s\pi^{-1}(E)$, we have r = st for $\pi(t) \in E$, so $\pi(r) = \pi(st) = \pi(s)\pi(t) \in \pi(s) E$.

Additionally, if $r \in \pi^{-1}(\pi(s) E)$, then $\pi(r) \in \pi(s) E$, so $\pi(s^{-1}r) \in E$, and $s^{-1}r \in \pi^{-1}(E)$. Thus, we have

$$\lambda(\pi(s) E) = m \left(\pi^{-1}(\pi(s) E)\right)$$
$$= m \left(s\pi^{-1}(E)\right)$$
$$= m \left(\pi^{-1}(E)\right)$$
$$= \lambda(E).$$

Understanding Free Groups

In the Tarski's Theorem notes, we discussed a little bit the ramifications of the free group on two generators being paradoxical. In order to better understand free groups, we will draw information from Pierre de la Harpe's *Topics in Geometric Group Theory* and Clara Löh's *Geometric Group Theory: An Introduction*.

Groups specified by Generating Sets

Definition. Let G be a group and $S \subseteq G$ be a subset. The subgroup generated by S is the intersection of all subgroups of G that contain S. We write $\langle S \rangle_G$. We say S generates G if $\langle S \rangle_G = G$.

A group is called finitely generated if it contains a finite subset that contains the group in question.

Definition (Characterization of a Generated Subgroup). We can characterize a generated subgroup by S as follows:

$$\langle S \rangle_G = \left\{ s_1^{\varepsilon_1} s_2^{\varepsilon_2} \cdots s_n^{\varepsilon_n} \mid n \in \mathbb{N}, \ s_1, \dots, s_n \in S, \ \varepsilon_1, \dots, \varepsilon_n \in \{-1, 1\} \right\}.$$

Example (Generating Sets).

- If G is a group, then G is a generating set of G.
- The trivial group is generated by the empty set.
- The set $\{1\}$ generates \mathbb{Z} , as does $\{2,3\}$. However, $\{2\}$ and $\{3\}$ alone do not generate \mathbb{Z} .
- Let X be a set. The symmetric group S_X is finitely generated if and only if X is finite.

Free Groups

Definition. Let S be a set. A group F containing S is said to be freely generated if, for every group G and every map $\phi \colon S \to G$, there is a unique group homomorphism $\overline{\phi} \colon F \to G$ extending ϕ . The following diagram commutes:

A group is free if it contains a free generating set.

Example.

- The additive group \mathbb{Z} is freely generated by $\{1\}$. The additive group \mathbb{Z} is *not* freely generated by $\{2,3\}$, or $\{2\}$, or $\{3\}$. In particular, not every generating set of a group contains a free generating set.
- The trivial group is freely generated by the empty set.
- Not every group is free the additive groups $\mathbb{Z}/2\mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z}$ are not free.

We will use the universal property of free groups to show their uniqueness up to isomorphism.

Proposition: Let *S* be a set. Then, there is at most one group freely generated by *S* up to isomorphism.

Proof. Let F and F' be two groups freely generated by S, with inclusions of φ and φ' respectively. Because F is freely generated by S, there is a group homomorphism $\overline{\varphi}'$: F \to F' that extends φ — i.e., that $\overline{\varphi}' \circ \varphi = \varphi'$.

Similarly, there is a group homomorphism $\overline{\varphi} \colon F' \to F$ with $\overline{\varphi} \circ \varphi' = \varphi$.

We will show that $\overline{\varphi} \circ \overline{\varphi}' = \mathrm{id}_{F}$, and $\overline{\varphi}' \circ \overline{\varphi} = \mathrm{id}_{F'}$. The composition $\overline{\varphi} \circ \overline{\varphi}'$ is a group homomorphism that makes the following diagram commute.

$$\begin{array}{c}
S \xrightarrow{\phi} F \\
\varphi \downarrow \\
F
\end{array}$$

Since id_F is a group homomorphism contained in this diagram, and F is freely generated by S, we must have $\overline{\varphi} \circ \overline{\varphi}' = \mathrm{id}_{F}$. Similarly, we must have $\overline{\varphi}' \circ \overline{\varphi} = \mathrm{id}_{F'}$.

Theorem (Existence of Free Groups): Let S be a set. There exists a group freely generated by S. This group is unique up to isomorphism.

Proof. We want to construct a group consisting of "words" made up of the elements of S and their "inverses," then modding out by the natural cancellation rules.

We consider the alphabet

$$A = S \cup \hat{S}$$
.

Here, $\hat{S} = \{\hat{s} \mid s \in S\}$ is a disjoint copy of S, such that \hat{s} will serve as the inverse of s in the group we will construct.

We define A^* to be the set of all finite sequences over the alphabet A, including the empty word ϵ . We define the operation $A^* \times A^* \to A^*$ by concatenation. This operation is associative with neutral element ϵ .

We define

$$F(S) = A^*/\sim$$

where \sim is the equivalence relation generated by, for all $x, y \in A^*$ and $s \in S$, $xssy \sim xy$ and $xssy \sim xy$.

We denote the equivalence classes with respect to \sim by $[\cdot]$.

Concatenation induces a well-defined operation $F(S) \times F(S) \to F(S)$ by

$$[x][y] = [xy]$$

for $x, y \in A^*$.

We claim that F(S) with the defined concatenation is a group. We can see that $[\epsilon]$ is a neutral element for the operation, and associativity of the operation is inherited from the associativity of the operation on A*.

To find inverses, we define I: $A^* \to A^*$ by $I(\epsilon) = \epsilon$, and

$$I(sx) = I(x)\hat{s}$$

$$I(\hat{s}x) = I(x)s$$

for all $x \in A^*$ and $s \in S$. Induction shows that I(I(x)) = x, and

$$[I(x)][x] = [I(x)x]$$

$$= [\epsilon]$$

for all $x \in A^*$. Thus, we must also have

$$[x][I(x)] = [I(I(x))][I(x)]$$
$$= [\epsilon].$$

Thus, we see that there are inverses in F(S).

To see that F(S) is freely generated by S, we let $\iota: S \to F(S)$ be the map given by sending a letter in $S \subseteq A^*$ to its equivalence class in F(S). By construction, F(S) is generated by the subset $\iota(S) \subseteq F(S)$.

We do not know yet that ι is injective, so we take a bit of a detour. We show that for every group G and every map $\varphi \colon S \to G$, there is a unique group homomorphism $\overline{\varphi} \colon F(S) \to G$ such that $\overline{\varphi} \circ \iota = \varphi$.

We construct a map $\varphi^* \colon A^* \to G$ inductively by

$$\epsilon \mapsto \epsilon$$

 $sx \mapsto \varphi(s)\varphi^*(x)$
 $\hat{s}x \mapsto (\varphi(s))^{-1}\varphi^*(x)$

for all $s \in S$ and $x \in A^*$. We can see that, since the definition of ϕ^* is compatible with the generating set of \sim , it is compatible with the equivalence relation of \sim on A^* . Additionally, we can see that $\phi^*(xy) = \phi^*(x) \phi^*(y)$ for all $x, y \in A^*$. Thus,

$$\overline{\varphi} \colon F(S) \to G$$

$$[x] \mapsto [\varphi^*(x)],$$

is, as constructed, a group homomorphism, with $\overline{\phi} \circ \iota = \phi$. Since $\iota(S)$ generates F(S), this group homomorphism is unique.

We must now show that ι is injective.

Let $s_1, s_2 \in S$. Consider the map $\varphi \colon S \to \mathbb{Z}$ given by $\varphi(s_1) = 1$ and $\varphi(s_2) = -1$. The corresponding homomorphism $\overline{\varphi} \colon F(S) \to G$ satisfies

$$\overline{\varphi}(\iota(s_1)) = \varphi(s_1)$$

$$= 1$$

$$\neq -1$$

$$= \varphi(s_2)$$

$$= \overline{\varphi}(\iota(s_2)),$$

meaning $\iota(s_1) \neq \iota(s_2)$. Thus, ι is injective.

Free Groups, Free Products, and the Ping Pong Lemma

We can now consider free groups in a more categorical context — specifically, as a special type of free object. Whereas the previous section drew information from Clara Löh's *Geometric Group Theory: An Introduction*, this section will draw information from Pierre de la Harpe's *Topics in Geometric Group Theory*. Specifically, we are focused on chapter 2, which discusses free products, free groups, and the ping pong lemma (which will provide a more general proof of the paradoxicality of SO(3)).

Definition (Free Monoid). A monoid is a set with multiplication that is associative and includes a neutral element.

Given a set A, the free monoid on A is the set W(A) of finite sequences of elements of A (also known as words). We write an element of W(A) as $w = a_1 a_2 \cdots a_n$, where each $a_j \in A$. We identify A with the subset of W(A) of words with length 1.

Definition (Free Product). Let $(\Gamma_i)_{i \in I}$ be a family of groups. Set

$$A = \coprod_{i \in I} \Gamma_i$$
$$= \{ (g_i, i) \mid g_i \in \Gamma_i, i \in I \}$$

to be the coproduct of this family.

Let ~ be the equivalence relation generated by

$$we_iw' \sim ww'$$
 where $e_i \in \Gamma_i$ is the neutral element $wabw' \sim wcw'$ where $a, b, c \in \Gamma_i$, $c = ab$ for some $i \in I$

for all $w, w' \in W(A)$. The quotient $W(A)/\sim$ with the operation of concatenation is a group, which is known as the free product of the groups $\{\Gamma_i\}_{i\in I}$. We write it as

$$\bigstar_{i \in I} \Gamma_i$$

The inverse of the equivalence class for $w = a_1 a_2 \dots a_n$ is $w^{-1} = a_n^{-1} a_{n-1}^{-1} \dots a_1^{-1}$. The neutral element is ϵ , which is the empty word.

A word $w = a_1 a_2 \cdots a_n \in W(A)$ with $a_j \in \Gamma_{i_j}$ is said to be reduced if $i_{j+1} \neq i_j$ and a_j is not the neutral element of Γ_{i_j} .

Proposition (Existence of the Free Product): Let $\{\Gamma_i\}_{i\in I}$ be a family of groups, $A = \coprod_{i\in I} \Gamma_i$, and $\bigstar_{i\in I} \Gamma_i = W(A)/\sim$ be as above.

Then, any element in the free product $\bigstar_{i \in I} \Gamma_i$ is represented by a unique reduced word in W(A).

Proof.

EXISTENCE: Consider an integer $n \ge 0$ and a reduced word $w = a_1 a_2 \cdots a_n$ in W(A), an element $a \in A$, and the word $aw \in W(A)$. We set

$$\Re(aw) = \begin{cases}
w & a = e_i \\
aa_1a_2 \cdots a_n & a \in \Gamma_i, a \neq e_i, i \neq k \\
ba_2 \cdots a_n & a \in \Gamma_k, aa_1 = b \neq e_k
\end{cases}$$

$$a_2 \cdots a_n & a \in \Gamma_k, a_1 = a^{-1} \in \Gamma_k$$

where k is the index for which $a_1 \in \Gamma_k$.

Then, $\Re(aw)$ is yet another reduced word, and $\Re(aw) \sim aw$, meaning that any word $w \in W(A)$ is equivalent to some reduced word by inducting on the length of w.

Uniqueness: For each $a \in A$, Let $T(a) = \mathcal{R}(aw)$ be a self-map on the set of reduced words.

For each $w = b_1b_2\cdots b_n$, we set $T(w) = T(b_1)T(b_2)\cdots T(b_n)$. For $a,b,c \in \Gamma_i$ with ab = c, we have T(a)T(b) = T(c), and $T(e_i) = \epsilon$ (the empty word) for all $i \in I$.

For each reduced word, notice that $T(w) \epsilon = w$.

Let w be some word in W(A) with w_1, w_2 reduced words equivalent to w. Since $w_1 \sim w_2$, we have $T(w_1) = T(w_2)$, and

$$w_1 = T(w_1) \epsilon$$

= $T(w_2) \epsilon$
= w_2 .

Corollary: Let $\{\Gamma_i\}_{i\in I}$ and $\Gamma = \bigstar_{i\in I}\Gamma_i$ as above. For each $i_0 \in I$, the canonical inclusion

$$\iota \colon \Gamma_{i_0} \to \Gamma$$

is injective.

Proof. For any $a \in \Gamma_{i_0} \setminus \{e_{i_0}\}$, $\iota(a)$ is represented by a unique one-letter reduced word not equivalent to the empty word.

Now that we have an understanding of free products, we can conceptualize the free group as a particular type of free product.

Definition (Free Groups). Let X be a set. The free group over X is the free product of a family of copies of \mathbb{Z} indexed by X, denoted F(X).

Equivalently, the free group over X is

$$F(X) = \bigstar_{\alpha \in X} \langle \alpha \rangle,$$

where $\langle a \rangle$ denotes the cyclic group generated by the element a.

We can also identify F(X) with the set of reduced words in $X \sqcup X^{-1}$ (as was done in the previous subsection).

The cardinality of X is called the rank of F(X).

If Γ is a group, then a free subset of Γ is a subset $X \subseteq \Gamma$ such that the inclusion $X \hookrightarrow F(X)$ extends to an isomorphism of $\langle X \rangle_{\Gamma}$ onto F(X).

We can now state and prove a universal property for free products (which naturally simplifies in the case of a free group.)

Theorem (Universal Property for Free Products): Let Γ be a group, and $\{\Gamma_i\}_{i\in I}$ be a family of groups. Let $\{h_i\colon \Gamma_i\to \Gamma\}_{i\in I}$ be a family of homomorphisms.

Then, there exists a unique homomorphism $h: \bigstar_{i \in I} \Gamma_i \to \Gamma$ such that the following diagram commutes for each $i_0 \in I$.

In particular, if Γ is a group, X is a set, and $\phi \colon X \to \Gamma$ is a set map, there exists a unique homomorphism $\Phi \colon F(X) \to \Gamma$ such that $\Phi(X) = \Phi(X)$ for each $X \in X$.

Proof. For a reduced word $w = a_1 a_2 \cdots a_n \in \bigstar_{i \in I} \Gamma_i$ with $a_j \in \Gamma_{i_j} \setminus \{e_{i_j}\}$, and $i_{j+1} \neq i_j$ for each $j \in \{1, \ldots, n-1\}$, we set

$$h(w) = h_{i_1}(a_1) h_{i_2}(a_2) \cdots h_{i_n}(a_n)$$

which defines h uniquely in terms of hi.

Note that for any two sets X, Y, the universal property provides that any map $X \to Y$ extends canonically to a group homomorphism, $F(X) \to F(Y)$.

$$\begin{array}{ccc}
X & \longrightarrow Y \\
\downarrow & & \downarrow \\
F(X) & \longrightarrow F(Y)
\end{array}$$

We can now prove an important lemma that will be useful in understanding paradoxical groups.

Theorem (Ping Pong Lemma): Let G be a group acting on a set X, and let Γ_1 , Γ_2 be subgroups of G. Let $\Gamma = \langle \Gamma_1, \Gamma_2 \rangle$. Assume Γ_1 contains at least 3 elements and Γ_2 contains at least two elements.

Suppose there exist nonempty subsets $X_1, X_2 \subseteq X$ with $X_1 \triangle X_2 \neq \emptyset$, such that for all $\gamma_1 \in \Gamma_1$ with $\gamma_1 \neq e_G$, and for all $\gamma_2 \in \Gamma_2$ with $\gamma_2 \neq e_G$,

$$\gamma(X_2) \subseteq X_1$$

 $\gamma(X_1) \subseteq X_2$.

Then, Γ is isomorphic to the free product $\Gamma_1 \star \Gamma_2$.

Proof. Let w be a nonempty reduced word spelled with letters from the disjoint union of $\Gamma_1 \setminus \{e_G\}$ and $\Gamma_2 \setminus \{e_G\}$. We must show that the element of Γ defined by w is not the identity.

If
$$w = a_1b_1a_2b_2\cdots a_k$$
 with $a_1,\ldots,a_k\in \Gamma_1\setminus\{e_G\}$ and $b_1,\ldots,b_{k-1}\in \Gamma_2\setminus\{e_G\}$. Then,
$$w(X_2) = a_1b_1\cdots a_{k-1}b_{k-1}a_k(X_2)$$

$$\subseteq a_1b_1\cdots a_{k-1}b_{k-1}(X_1)$$

$$\subseteq a_1b_1\cdots a_{k-1}(X_2)$$

$$\vdots$$

$$\subseteq a_1(X_2)$$

$$\subseteq X_1.$$

Since $X_2 \nsubseteq X_1$, this implies $w \neq e_G$.

If $w = b_1 a_2 b_2 a_2 \cdots b_k$, we select $a \in \Gamma_1 \setminus \{e_G\}$, and apply the previous argument to awa^{-1} . Since $awa^{-1} \neq e_G$, neither is w.

Similarly, if $w = a_1b_1 \cdots a_kb_k$, we select $a \in \Gamma_1 \setminus \{e_G, a_1^{-1}\}$, and apply the argument to awa^{-1} , and if $w = b_1a_2b_2 \cdots a_k$, we select $a \in \Gamma_1 \setminus \{e_G, a_k\}$, and apply the argument to awa^{-1} .

Example. We can use the Ping Pong Lemma to see that

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
$$B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

generate a subgroup of $SL(2, \mathbb{Z})$ which is free of rank 2.

Corollary: The special orthogonal group SO(3) contains a subgroup isomorphic to the free group on two generators.

To prove this, we state a different version of the Ping Pong Lemma that we will apply to a particular space.

Theorem (Ping Pong Lemma for Cyclic Groups): Let G act on a set X, and suppose there exist disjoint subsets A_+ , A_- , B_+ , $B_- \subseteq X$ whose union is not all of X. If there exist elements a and b in G such that

$$a \cdot (X \setminus A_{-}) \subseteq A_{+}$$

$$a^{-1} \cdot (X \setminus A_{+}) \subseteq A_{-}$$

$$b \cdot (X \setminus B_{-}) \subseteq B_{+}$$

$$b \cdot (X \setminus B_{+}) \subseteq B_{-}$$

then it is the case that the group generated by a and b is free of rank 2.

Proof of Corollary. We let

$$a = \begin{pmatrix} 3/5 & 4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$a^{-1} = \begin{pmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & -4/5 \\ 0 & 4/5 & 3/5 \end{pmatrix}$$

$$b^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \\ 0 & -4/5 & 3/5 \end{pmatrix}.$$

We specify

$$X = A_+ \sqcup A_- \sqcup B_+ \sqcup B_- \sqcup \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

where

$$A_{+} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, x \equiv 3y \text{ modulo } 5, z \equiv 0 \text{ modulo } 5 \right\}$$

$$A_{-} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, x \equiv -3y \text{ modulo } 5, z \equiv 0 \text{ modulo } 5 \right\}$$

$$B_{+} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, z \equiv 3y \text{ modulo } 5, x \equiv 0 \text{ modulo } 5 \right\}$$

$$B_{-} = \left\{ \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| k \in \mathbb{Z}, z \equiv -3y \text{ modulo } 5, x \equiv 0 \text{ modulo } 5 \right\}.$$

To verify that the conditions of the Ping Pong Lemma hold, we calculate

$$\begin{pmatrix} 3/5 & 4/5 & 0 \\ -4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 3x + 4y \\ -4x + 3y \\ 5z \end{pmatrix}$$
 (1)

$$\begin{pmatrix} 3/5 & -4/5 & 0 \\ 4/5 & 3/5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 3x - 4y \\ 4x + 3y \\ 5z \end{pmatrix}$$
 (2)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & -4/5 \\ 0 & 4/5 & 3/5 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 5x \\ 3y - 4z \\ 4y + 3z \end{pmatrix}$$
(3)

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3/5 & 4/5 \\ 0 & -4/5 & 3/5 \end{pmatrix} \begin{pmatrix} \frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \frac{1}{5^{k+1}} \begin{pmatrix} 5x \\ 3y + 4z \\ -4y + 3z \end{pmatrix}. \tag{4}$$

We verify that the conditions for the Ping Pong Lemma hold for each of these four conditions.

(1) For any vector

$$\frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin A_{-},$$

we see that $k + 1 \in \mathbb{Z}$, $x' = 3x + 4y \equiv 3(-4x + 3y)$ modulo 5, and that $z' = 5z \equiv 0$ modulo 5.

(2) For any vector

$$\frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin A_{+},$$

we see that $k + 1 \in \mathbb{Z}$, $x' = 3x - 4y \equiv -3(4x + 3y)$ modulo 5, and $z' = 5z \equiv 0$ modulo 5.

(3) For any vector

$$\frac{1}{5^{k}} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin B_{-},$$

we see that $k + 1 \in \mathbb{Z}$, $z' = 4y + 3z \equiv 3(3y - 4z)$ modulo 5, and $x' = 5x \equiv 0$ modulo 5.

(4) For any vector

$$\frac{1}{5^k} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \notin B_+,$$

we see that $k + 1 \in \mathbb{Z}$, $z' = -4y + 3z \equiv -3(3y + 4z)$ modulo 5, and $x' = 5x \equiv 0$ modulo 5.

Since we have verified that the conditions for the Ping Pong Lemma hold for each of the conditions, we have that $\{a,b\} \subseteq SO(3)$ generate a group isomorphic to the free group on two generators.

States and Means on $\ell_{\infty}(G)$

Definition. Let G be a group.

(1) The space $\mathcal{F}(G, \mathbb{R})$ is defined by

$$\mathcal{F}(G, \mathbb{R}) = \{ f \mid f \colon G \to \mathbb{R} \text{ is a function} \}.$$

(2) A function $f \in \mathcal{F}(G, \mathbb{R})$ is positive if $f(x) \ge 0$ for all $x \in G$.

(3) A function $f \in \mathcal{F}(G, \mathbb{R})$ is simple if Ran(f) is finite. We say

$$\Sigma = \{ f \colon \mathcal{F}(G, \mathbb{R}) \mid f \text{ is simple} \}.$$

Fact. $\Sigma \subseteq \mathcal{F}(G, \mathbb{R})$ is a subspace. To see this, if f, g are such that Ran(f), Ran(g) are finite, and $\alpha \in \mathbb{R}$, then

$$\operatorname{Ran}(f + \alpha g) \leq \operatorname{Ran}(f) + \operatorname{Ran}(g)$$
,

so $f + \alpha g$ has finite range.

Definition. For $E \subseteq G$, set

$$\mathbb{1}_E\colon G\to \mathbb{R}$$

defined by

$$\mathbb{1}_{\mathsf{E}}(x) = \begin{cases} 1 & x \in \mathsf{E} \\ 0 & x \notin \mathsf{E} \end{cases}.$$

This is the characteristic function of E.

Fact.

span
$$\{\mathbb{1}_E \mid E \subseteq G\} = \Sigma$$
.

Proof. We see that $\mathbb{1}_{E} \in \Sigma$ for any $E \subseteq G$, and Σ is a subspace.

If $\phi \in \Sigma$, with Ran $(\phi) = \{t_1, \dots, t_n\}$ with t_i distinct, we set

$$E_i = \Phi^{-1}(\{t_i\}),$$

meaning

$$\phi = \sum_{i=1}^{n} t_i \mathbb{1}_{E_i}.$$

Definition.

- (1) A function $f \in \mathcal{F}(G, \mathbb{R})$ is bounded if there exists M > 0 such that $Ran(f) \subseteq [-M, M]$.
- (2) The space $\ell_{\infty}(G)$ is defined by

$$\ell_{\infty}(G) = \{ f \in \mathcal{F}(G, \mathbb{R}) \mid f \text{ is bounded} \}.$$

(3) The norm on $\ell_{\infty}(G)$ is defined by

$$||f|| = \sup_{x \in G} |f(x)|.$$

Proposition: The space $\ell_{\infty}(G)$ is complete, Additionally, $\overline{\Sigma}=\ell_{\infty}(G)$.

Proof. Let $(f_n)_n$ be Cauchy. For $x \in G$, it is the case that

$$|f_n(x) - f_m(x)| = |(f_n - f_m)(x)|$$

 $\leq ||f_n - f_m||,$

meaning $(f_n(x))_n$ is Cauchy in \mathbb{R} . We define $f(x) = \lim_{n \to \infty} f_n(x)$. We must show that $f \in \ell_{\infty}(G)$ and $||f_n - f|| \to 0$.

$$|f(x)| = \left| \lim_{n \to \infty} f_n(x) \right|$$

$$= \lim_{n \to \infty} |f_n(x)|$$

$$\leq \lim \sup_{n \to \infty} ||f_n||$$

$$\leq C,$$

as Cauchy sequences are always bounded. Thus, $\sup_{x \in G} |f(x)| \le C$.

Given $\varepsilon > 0$, we find N such that for all m, $n \ge N$, $||f_n - f_m|| \le \varepsilon$. Thus, for $x \in G$, we have

$$|f_n(x) - f)m(x)| \le ||f_n - f_m||$$

 $\le \varepsilon.$

Taking $m \to \infty$, we get $|f_n(x) - f(x)| \le \varepsilon$ for all $n \ge N$, meaning $||f_n - f|| \le \varepsilon$ for all $n \ge N$.

Now, for $f \in \ell_{\infty}(G)$, let $Ran(f) \subseteq [-M, M]$ for some M > 0. Let $\epsilon > 0$. Since [-M, M] is compact, it is totally bounded, so we can find intervals I_1, \ldots, I_n with $[-M, M] = \bigsqcup_{k=1}^n I_k$, with the length of each I_k less than ϵ .

Set $E_k = f^{-1}(I_k)$. Pick $t_k \in I_k$. Then, we set

$$\phi = \sum_{i=1}^n t_k \mathbb{1}_{E_k}.$$

We see that $\|\phi - f\| < \varepsilon$.

Corollary: For any $f \in \ell_{\infty}(G)$, there is a sequence $(\phi_n)_n$ in Σ with $\|\phi_n - f\| \to 0$. If $f \ge 0$, then it is possible to select $\phi_n \ge 0$.

Proposition: Let G be a group. There is an action

$$G \xrightarrow{\lambda_s} Isom(\ell_{\infty}(G))$$

defined by

$$\lambda_s(f)(t) = f(s^{-1}t).$$

Proof. We have

$$\begin{split} \lambda_s \left(f + \alpha g \right) \left(t \right) &= \left(f + \alpha g \right) \left(s^{-1} t \right) \\ &= f \left(s^{-1} t \right) + \alpha g \left(s^{-1} t \right) \\ &= \lambda_s \left(f \right) \left(t \right) + \alpha \lambda_s \left(g \right) \left(t \right) \\ &= \left(\lambda_s \left(f \right) + \alpha \lambda_s \left(g \right) \right) \left(t \right). \end{split}$$

Thus, λ_s is a linear operator.

We have

$$\|\lambda_{s}(f)\| = \sup_{t \in G} |\lambda_{s}(f)(t)|$$

$$= \sup_{t \in G} \left| f\left(s^{-1}t\right) \right|$$
$$= \|f\|,$$

hence

$$\|\lambda_{s}(f) - \lambda_{s}(f)\| = \|\lambda_{s}(f - g)\|$$
$$= \|f - g\|.$$

Thus, λ_s is an isometry.

We have

$$\begin{split} \lambda_s \circ \lambda_r \left(f \right) \left(t \right) &= \lambda_r \left(f \right) \left(s^{-1} t \right) \\ &= f \left(r^{-1} s^{-1} t \right) \\ &= f \left((sr)^{-1} t \right) \\ &= \lambda_{sr} \left(f \right) \left(t \right), \end{split}$$

meaning $\lambda_s \circ \lambda_r = \lambda_{sr}$.

Remark: By a similar process, we find that $\lambda_s\left(\mathbb{1}_E\right)=\mathbb{1}_{s\,E}$ for any subset $E\subseteq G$ and $s\in G$.

Definition. A state on $\ell_{\infty}(G)$ is a continuous linear functional $\mu \in (\ell_{\infty}(G))^*$ that satisfies the following.

- (1) μ is positive;
- (2) $\mu(\mathbb{1}_{G}) = 1$.

A state is called left-invariant if

$$\mu(\lambda_s(f)) = \mu(f)$$
.

Example. Let G be a group.

• If $x \in G$, then $\delta_x \colon \ell_\infty(G) \to \mathbb{F}$ defined by

$$\delta_{x}(f) = f(x)$$

is a state. However, note that it is not necessarily invariant.

$$\delta_{x} (\lambda_{s} (f)) = \lambda_{s} (f) (x)$$
$$= f (s^{-1}x)$$
$$\neq f(x).$$

• If G is finite, then

$$\mu = \frac{1}{|G|} \sum_{x \in G} \delta_x$$

is an invariant state.

Lemma (Characterization of States):

(1) If μ is a state on ℓ_{∞} (G), then

$$\|\mu\|_{op} = 1.$$

(2) If $\mu \in (\ell_{\infty}(G))^*$ is such that

$$\|\mu\| = \mu(\mathbb{1}_{\mathsf{G}})$$
$$= 1,$$

then μ is positive and a state.

Proof.

(1) Given $f \in \ell_{\infty}(G)$, we have

$$||f|| \mathbb{1}_{G} - f \ge 0$$

 $||f|| \mathbb{1}_{G} + f \ge 0$,

so

$$0 \le \mu(\|f\| \mathbb{1}_{G} - f)$$

$$= \|f\| \mu(\mathbb{1}_{G}) - \mu(f)$$

$$0 \le \mu(\|f\| \mathbb{1}_{G} + f)$$

$$= \|f\| \mu(\mathbb{1}_{G}) + \mu(f).$$

Thus, we have $\pm \mu(f) \le \|f\| \mu(\mathbb{1}_G) = \|f\|$, so $\|\mu(f)\| \le \|f\|$, so $\|\mu\| \le 1$. Additionally, since $\mu(\mathbb{1}_G) = 1$, we must have $\|\mu\| = 1$.

(2) Suppose $\|\mu\| = \mu(\mathbb{1}_G) = 1$. Let $f \ge 0$. Set $g = \frac{1}{\|f\|_{1}} f$.

Then, $Ran(g) \subseteq [0,1]$, and $Ran(g - 1_G) \subseteq [-1,1]$, so $||g - 1_G||_{\mathfrak{U}} \le 1$.

Since $\|\mu\| = 1$, we must have

$$|\mu(g - \mathbb{1}_G)| \le 1$$
$$|\mu(g) - 1| \le 1,$$

and since $\mu(\mathbb{1}_G) = 1$, we must have $\mu(g) \in [0,2]$, so $\mu(f) = ||f|| \mu(g) \ge 0$.

Corollary: The set of states on $(\ell_{\infty}(G))^*$ forms a w^* -compact subset of $B_{(\ell_{\infty}(G))^*}$.

Proof. It has been proven in functional analysis that a convex subset of $(\ell_{\infty}(G))^*$ is w^* -compact if it is norm bounded and w^* -closed. Since the set of states is convex and norm-bounded, all we need to show is that $S(\ell_{\infty}(G))$ is w^* -closed.

To this end, let $f \in \ell_{\infty}(G)$ be positive and $(\phi_i)_i$ be a net in $S(\ell_{\infty}(G))$ with $(\phi_i)_i \to \phi$. We must show that ϕ is positive and satisfies $\phi(\mathbb{1}_G) = 1$. To this end, we see that

$$\varphi_i(f) \ge 1$$

for all $i \in I$, so we must necessarily have $\varphi(f) \ge 0$, and similarly, since $\varphi_i(\mathbb{1}_G) = 1$ for each $i \in I$, we also have $\varphi(\mathbb{1}_G) = 1$.

Proposition: If $\mu \in (\ell_{\infty}(G))^*$ is a state, then $\mathfrak{m} \colon P(G) \to [0,1]$ defined by $\mathfrak{m}(E) = \mu(\mathbb{1}_E)$ is a finitely additive probability measure on G. Moreover, if μ is invariant, then \mathfrak{m} is a mean.

Proof. We have

$$m(G) = \mu(1_G)$$
= 1
$$m(\emptyset) = \mu(0)$$
= 0
$$m(E \sqcup F) = \mu(1_{E \sqcup F})$$
= $\mu(1_E + 1_F)$
= $\mu(1_E) + \mu(1_F)$
= $m(E) + m(F)$.

Additionally, since $0 \le \mathbb{1}_E \le \mathbb{1}_G$, we have $0 \le \mu(\mathbb{1}_E) \le 1$, so $0 \le m(E) \le m(G) = 1$.

If μ is invariant, then

$$\begin{split} \mathfrak{m}\left(sE\right) &= \mu(\mathbb{1}_{sE}) \\ &= \mu(\lambda_s\left(\mathbb{1}_E\right)) \\ &= \mu(\mathbb{1}_E) \\ &= \mathfrak{m}\left(E\right). \end{split}$$

Proposition: If G admits a mean, then $\left(\ell_{\infty}\left(G\right)\right)^{*}$ admits an invariant state.

Proof. Let m be a finitely-additive probability measure. Define

$$\mu_0 \colon \Sigma \to \mathbb{R}$$

by

$$\mu_0\left(\sum_{k=1}^n t_k \mathbb{1}_{E_k}\right) = \sum_{k=1}^n t_k \mathfrak{m}(E_k).$$

Since m is finitely additive, it is the case that μ_0 is well-defined, linear, and positive.

Note that $\mu_0(\mathbb{1}_G) = \mathfrak{m}(G) = 1$.

If m is a mean, then for $f = \sum_{k=1}^{n} t_k E_k$,

$$\begin{split} \mu_0\left(\lambda_s\left(f\right)\right) &= \mu_0\left(\lambda_s\left(\sum_{k=1}^n t_k\mathbb{1}_{E_k}\right)\right) \\ &= \mu_0\left(\sum_{k=1}^n t_k\mathbb{1}_{sE_k}\right) \\ &= \sum_{k=1}^n t_km\left(sE_k\right) \\ &= \sum_{k=1}^n t_km\left(E_k\right) \\ &= \mu_0\left(f\right). \end{split}$$

Additionally, we see that

$$|\mu_{0}(f)| = \left| \sum_{k=1}^{n} t_{k} m(E_{k}) \right|$$

$$\leq \sum_{k=1}^{n} |t_{k}| m(E_{k})$$

$$\leq \sum_{k=1}^{n} ||f|| m(E_{k})$$

$$= ||f|| \sum_{k=1}^{n} m(E_{k})$$

$$\leq ||f||.$$

Thus, μ_0 is continuous, so μ_0 is uniformly continuous.

Since $\overline{\Sigma} = \ell_{\infty}(G)$, we see that μ_0 extends to a continuous linear functional $\mu: \ell_{\infty}(G) \to \mathbb{R}$, with $\mu(\mathbb{1}_G) = \mu_0(\mathbb{1}_G) = 1$.

If $f\geqslant 0$, we find a sequence $(\varphi_n)_n$ in Σ with $\varphi_n\geqslant 0$, $\|\varphi_n-f\|\xrightarrow{n\to\infty}0$, and we set

$$\mu(f) = \lim_{n \to \infty} \mu(\phi_n)$$
$$= \lim_{n \to \infty} \mu_0(\phi_n)$$
$$\ge 0,$$

meaning μ is a state.

If $f \in \ell_{\infty}(G)$, $s \in G$, and $(\phi_n)_n$ in Σ with $(\phi_n)_n \to f$, then

$$\begin{split} \|\lambda_{s}\left(\varphi_{n}\right) - \lambda_{s}\left(f\right)\| &= \|\lambda_{s}\left(\varphi_{n} - f\right)\| \\ &= \|\varphi_{n} - f\| \\ &\to 0 \end{split}$$

Thus, we have

$$\mu(\lambda_s(\phi_n)) = \mu_0(\lambda_s(\phi_n))$$

$$= \mu_0(\phi_n)$$

$$= \mu(\phi_n)$$

$$\to \mu(f),$$

so $\mu(f) = \mu(\lambda_s(f))$. Thus, $\mu \in (\ell_\infty(G))^*$ is an invariant state.

Using Invariant States

Proposition: \mathbb{Z} is amenable.

Proof. We know that $\lambda_1 : \ell_{\infty}(\mathbb{Z}) \to \ell_{\infty}(\mathbb{Z})$, defined by

$$\lambda_1(f)(k) = f(k-1)$$

is an isometry.

We set $Y = \text{Ran} (id - \lambda_1) \subseteq \ell_{\infty} (\mathbb{Z})$.

We claim that $\operatorname{dist}_{Y}(\mathbb{1}_{\mathbb{Z}}) \geq 1$.

Suppose toward contradiction that there is $y \in Y$ with $\|\mathbb{1}_{\mathbb{Z}} - y\|_{\mathfrak{u}} = \rho < 1$. Then, $y = f - \lambda_1(f)$ for some $f \in \ell_{\infty}(\mathbb{Z})$, meaning

$$\|\mathbb{1} - (f - \lambda_1(f))\| = \rho.$$

Thus, for all $k \in \mathbb{Z}$, we have

$$|1 - (f(k) - f(k-1))| \le \rho$$

meaning $|f(k) - f(k-1)| \ge 1 - \rho > 0$. However, such an f cannot be bounded.

Since $dist_{\overline{Y}}(\mathbb{1}_Z) = dist_{\overline{Y}}(\mathbb{1}_Z) \ge 1$, the Hahn–Banach theorem provides $\mu \in (\ell_\infty(\mathbb{Z}))^*$ with $\|\mu\| = 1$, $\mu|_{\overline{Y}} = 0$, and $\mu(\mathbb{1}) = dist_{\overline{Y}}(\mathbb{1}_Z) \ge 1$.

Since $\|\mu\| = 1$ and $\mu(1) \ge 1$, we must have $\mu(1) = 1$.

Since $\|\mu\| = \mu(\mathbb{1}_{\mathbb{Z}}) = 1$, it is the case that μ is a state on $\ell_{\infty}(\mathbb{Z})$. Since $\mu(y) = 0$ for all $y \in Y$, we have

$$\mu(f - \lambda_1(f)) = 0$$

$$\mu(f) = \mu(\lambda_1(f)),$$

so inductively, we have $\mu(f) = \mu(\lambda_k(f))$ for all $k \in \mathbb{Z}$, meaning μ is an invariant state on $\ell_\infty(\mathbb{Z})$. Thus, \mathbb{Z} is amenable.

Proposition: If $N \subseteq G$ and G/N are amenable, then G is amenable.

Proof. Let $\rho \in (\ell_{\infty}(G/N))^*$ be an invariant state, and $\rho \colon P(N) \to [0,1]$. For $E \subseteq G$, we define

$$f_E \colon G/N \to \mathbb{R}$$

by $f_E(tN) = p(N \cap t^{-1}E)$.

We verify that this is well-defined — for tN = sN, we have $s^{-1}t \in N$, so

$$\begin{split} p\left(N\cap t^{-1}E\right) &= p\left(s^{-1}t\left(N\cap t^{-1}E\right)\right) \\ &= p\left(s^{-1}TN\cap s^{-1}E\right) \\ &= p\left(N\cap s^{-1}E\right). \end{split}$$

We also see that fE is bounded, and

$$\begin{split} f_{E \sqcup F}\left(tN\right) &= p\left(N \cap t^{-1}\left(E \sqcup F\right)\right) \\ &= p\left(N \cap \left(t^{-1}E \sqcup t^{-1}F\right)\right) \\ &= p\left(\left(N \cap t^{-1}E\right) \sqcup \left(N \cap t^{-1}F\right)\right) \\ &= p\left(N \cap t^{1}E\right) + p\left(N \cap t^{-1}F\right) \\ &= f_{E}\left(tN\right) + f_{F}\left(tN\right) \\ &= \left(f_{E} + f_{F}\right)\left(tN\right). \end{split}$$

Thus, $f_{E \sqcup F} = f_E + f_F$.

Additionally,

$$f_{sE}(tN) = p\left(N \cap t^{-1}sE\right)$$
$$= f_E\left(s^{-1}tN\right)$$
$$= \lambda_{sN}(f_E)(tN),$$

so $f_{sE} = \lambda_{sN} (f_E)$.

Finally,

$$f_{G}(tN) = p(N \cap t^{-1}G)$$
$$= p(N)$$
$$= 1,$$

so $f_G = \mathbb{1}_{G/N}$.

We define $m: P(G) \rightarrow [0,1]$ by

$$m(E) = \rho(f_E)$$
.

Then, we have

$$m(E \sqcup F) = m(E) + m(F)$$

$$m(G) = 1$$

$$m(sE) = \rho(f_{sE})$$

$$= \rho(\lambda_{sN}(f_E))$$

$$= \rho(f_E)$$

$$= m(E),$$

meaning m is a mean.

Corollary: The finite direct product of amenable groups is amenable.

Proof. If H and K are amenable, then we know that

$$K \cong \frac{H \times K}{H}$$

is amenable, and H is amenable, so $H \times K$ is amenable.

Corollary: Finitely generated abelian groups are amenable.

Proof. All finitely generated abelian groups are isomorphic to $\mathbb{Z}^d \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ by the Fundamental Theorem of Finitely Generated Abelian Groups. Since \mathbb{Z}^d is a finite direct product of \mathbb{Z} (which is amenable), and the torsion group $\mathbb{Z}/n_1\mathbb{Z} \times \cdots \mathbb{Z}/n_k\mathbb{Z}$ is finite, we have that a finitely generated abelian group is amenable.

Corollary: If $\{G_i\}_{i\in I}$ is a directed family of amenable groups — i.e., that for any two groups G_j and G_k , there is G_ℓ with $G_j \subseteq G_\ell$ and $G_k \subseteq G_\ell$ — then the direct union,

$$G = \bigcup_{i \in I} G_i$$

is also amenable.

Proof. Let $\mu_i \in (\ell_{\infty}(G_i))^*$ be the respective invariant states.

Set

$$M_i = \{ \mu \in S((\ell_\infty(G))^*) \mid \mu(\lambda_s(f)) = \mu(f) \text{ for all } s \in G_i \},$$

and set $\mu(f) = \mu_i(f|_{G_i})$. We see that M_i is w^* -closed in $B_{(\ell_\infty(G))^*}$, as we have established the state space as a w^* -closed subset of $B_{(\ell_\infty(G))^*}$.

For i_1, \ldots, i_n , we find $G_j \supseteq G_{i_1}, \ldots, G_{i_n}$, which necessarily exists as $\{G_i\}_{i \in I}$ is directed. Thus, $M_j \subseteq \bigcap_{k=1}^n M_{i_k}$, meaning $\{M_i\}_{i \in I}$ has the finite intersection property.

By compactness, there is $\mu \in \bigcap_{i \in I} M_i$, meaning μ is an invariant state.

Corollary: All abelian groups are amenable.

Proof. Every abelian group is the direct union of its finitely generated subgroups.

Corollary: All solvable groups are amenable.

Proof. Let $e_G = G_0 \le G_1 \le \cdots \le G_n = G$ be such that $G_{j-1} \le G_j$ for $j = 1, \dots, n$, and G_j / G_{j-1} abelian.

Since G_0 is abelian, it is amenable. Similarly, G_1/G_0 is abelian, so it is amenable, so G_1 is amenable. Continuing in this fashion, we see that G is amenable.

Følner's Condition and Invariant Approximate Means

Definition. A group G is said to satisfy the Følner condition if, for every $\varepsilon > 0$, and for all $E \subseteq G$ finite, there is a nonempty $F \subseteq G$ finite such that for all $t \in E$,

$$\frac{|\mathsf{tF}\triangle\mathsf{F}|}{|\mathsf{F}|} \leqslant \varepsilon.$$

Equivalently, since

$$\frac{|\mathsf{tF}\triangle\mathsf{F}|}{|\mathsf{F}|} = 2\left(1 - \frac{|\mathsf{tF}\cap\mathsf{F}|}{|\mathsf{F}|}\right),$$

we have the equivalent formulation that

$$\frac{|\mathsf{tF}\triangle\mathsf{F}|}{|\mathsf{F}|} \leqslant \varepsilon \text{ if and only if } 1 - \frac{|\mathsf{tF}\cap|}{|\mathsf{f}|} \leqslant \varepsilon/2.$$

Thus, G satisfies the Følner condition if and only if, for all $\varepsilon > 0$ and for all finite $E \subseteq G$, there exists a nonempty $F \subseteq G$ with

$$\frac{|tF\cap F|}{|f|}\geqslant 1-\epsilon.$$

Example. All finite groups satisfy Følner's condition by taking F = G for each subset $E \subseteq G$.

Lemma: A countable group G satisfies the Følner condition if and only if G admits a Følner sequence, $(F_n)_n$ with $F_n \subseteq G$ finite, such that

$$\left(\frac{|\mathsf{tF}_{\mathsf{n}}\triangle\mathsf{F}_{\mathsf{n}}|}{|\mathsf{F}_{\mathsf{n}}|}\right)_{\mathsf{n}}\xrightarrow{\mathsf{n}\to\infty}0,$$

or equivalently,

$$\left(\frac{|\mathsf{tF}_{\mathsf{n}}\cap\mathsf{F}_{\mathsf{n}}|}{|\mathsf{F}_{\mathsf{n}}|}\right)_{\mathsf{n}}\xrightarrow{\mathsf{n}\to\infty} 1,$$

for all t in G.

Proof. Let G admit a Følner sequence, $(F_n)_n$. Given $\varepsilon > 0$, and $E \subseteq G$ finite, find N such that for all $s \in E$ and $n \ge N$,

$$\frac{|sF_n\triangle F_n|}{|F_n|} \leq \varepsilon.$$

We take $F = F_N$.

Let G satisfy the Følner condition. We write $G = \bigcup_{n \ge 1} E_n$, with $E_1 \subseteq E_2 \subseteq E_3 \subseteq \cdots$, and define F_n such that for all $t \in E_n$,

$$\frac{\left|\mathsf{tF}_{\mathsf{n}}\triangle\mathsf{F}_{\mathsf{n}}\right|}{\left|\mathsf{F}_{\mathsf{n}}\right|}\leqslant\frac{1}{\mathsf{n}}.$$

Then, given $t \in G$, it is the case that $t \in E_N$ for some N, so $t \in E_n$ for all $n \ge N$, so

$$\frac{|tF_n\triangle F_n|}{|F_n|}\leqslant \frac{1}{n}$$

for all $n \ge N$, meaning that

$$\frac{|\mathsf{tF}_{\mathsf{n}}\triangle\mathsf{F}_{\mathsf{n}}|}{|\mathsf{F}_{\mathsf{n}}|}\xrightarrow{\mathsf{n}\to\infty}0.$$

Lemma: Let G be a finitely generated group with generating set S (where S may not be symmetric^I). If $(F_n)_n$ is a sequence of finite subsets of G such that

$$\left(\frac{|sF_n\triangle F_n|}{|F_n|}\right)_n \to 0$$

for all $s \in S$, then $(F_n)_n$ is a Følner sequence for G.

Proof. We start by showing that we can assume S to be symmetric. The following are both true:

- $s(A \triangle B) = sA \triangle sB$;
- $A \triangle C \subseteq (A \triangle B) \cup (B \triangle C)$.

Thus, if we have s^{-1} rather than s, our assumption provides, for all $s \in S$,

$$\frac{\left|s^{-1}F_{n}\triangle F_{n}\right|}{\left|F_{n}\right|} = \frac{s^{-1}\left(F_{n}\triangle sF_{n}\right)}{\left|F_{n}\right|}$$
$$= \frac{\left|F_{n}\triangle sF_{n}\right|}{\left|F_{n}\right|}$$
$$\xrightarrow{n\to\infty} 0$$

Thus, we may assume S is symmetric.

^IClosed under inversion.

For $s, t \in F_n$, we have

$$\begin{split} \frac{|stF_n\triangle F_n|}{|F_n|} &\leqslant \frac{|StF_n\triangle sF_n|}{|F_n|} + \frac{|sF_n\triangle F_n|}{|F_n|} \\ &= \frac{|s\left(tF_n\triangle F_n\right)|}{|F_n|} + \frac{|sF_n\triangle F_n|}{|F_n|} \\ &= \frac{|tF_n\triangle F_n|}{|F_n|} + \frac{|sF_n\triangle F_n|}{|F_n|} \\ &= \frac{n\to\infty}{0}. \end{split}$$

We use induction to find the general case.

Example. Considering \mathbb{Z} again, we remember that $\{1\}$ is the generating set for \mathbb{Z} . If we let $F_n = \{-n, -n+1, \ldots, -1, 0, 1, \ldots \}$ we have

$$\frac{|(F_n + 1) \triangle F_n|}{|F_n|} = \frac{2}{2n+1}$$

$$\xrightarrow{n \to \infty} 0.$$

Thus, we have that \mathbb{Z} satisfies the Følner condition.

We now turn our attention to approximate means, from which with Følner's condition, we will be able to construct a different, equivalent condition for group amenability.

Definition. If G is a group, we define

$$\operatorname{Prob}(G) := \left\{ f \colon G \to [0, \infty) \, \middle| \, \left| \sup (f) \middle| < \infty, \, \sum_{t \in G} f(t) = 1 \right\}.$$

Note that $Prob(G) \subseteq B_{\ell_1(G)}$. Given $f \in Prob(G)$, we set

$$\varphi_{f}: \ell_{\infty}(\mathsf{G}) \to \mathbb{C},$$

defined by

$$\varphi_f(g) = \sum_{t \in G} g(t)f(t).$$

We claim that φ_f is a state on ℓ_{∞} (G).

Proof. If $g \ge 0$, then $\varphi_f(g) \ge 0$, and $\varphi_f(\mathbb{1}_G) = 1$. It is also clear that φ_f is linear.

We only need show that $\|\varphi_f\| = 1$. We see

$$\begin{aligned} |\phi_f(g)| &= \left| \sum_{t \in G} g(t) f(t) \right| \\ &\leq \sum_{t \in G} |g(t)| |f(t)| \\ &\leq \|g\|_{\infty} \sum_{t} |f_t| \\ &= \|g\|_{\infty}. \end{aligned}$$

Proposition: There is an action $\lambda \colon G \xrightarrow{\text{Isom}} (\ell_1(G))$ such that Prob(G) is invariant.

Proof. We let $\lambda_s(f)(t) = f(s^{-1}t)$. Then,

$$\begin{split} \left\| \lambda_s \left(f \right) \right\|_1 &= \sum_{t \in G} \left| \lambda_s \left(f \right) \left(t \right) \right| \\ &= \sum_{t \in G} \left| f \left(s^{-1} t \right) \right| \\ &= \sum_{r \in G} \left| f(r) \right| \\ &= \left\| f \right\|. \end{split}$$

We also see that λ_s is linear.

Additionally,

$$\begin{split} \lambda_r \circ \lambda_s \left(f \right) \left(t \right) &= \lambda_s \left(f \right) \left(r^{-1} t \right) \\ &= f \left(s^{-1} r^{-1} t \right) \\ &= f \left((rs)^{-1} t \right) \\ &= \lambda_{rs} \left(f \right) \left(t \right). \end{split}$$

We see that if $f \in Prob(G)$, then for $f \ge 0$, we have $\lambda_s(f) \ge 0$, and

$$supp (\lambda_s (f)) = s (supp (f)),$$

which is also finite.

Thus,

$$\sum_{t \in G} \lambda_s(f)(t) = \sum_{t \in G} f(s^{-1}t)$$
$$= \sum_{r \in G} f(r)$$
$$= 1$$

for $f \in Prob(G)$.

Definition. For a countable group G, a sequence $(f_k)_k$ in Prob(G) is an approximate invariant mean if, for all $s \in G$,

$$\|\mathbf{f}_k - \lambda_s(\mathbf{f}_k)\|_1 \xrightarrow{k \to \infty} 0.$$

Proposition: If G admits a Følner sequence $(F_k)_k$, then it admits an approximate mean.

Proof. Set $f_k = \frac{1}{|F_k|} \mathbb{1}_{F_k} \in \text{Prob}(G)$. Then,

$$\begin{split} \|f_{k} - \lambda_{s} \left(f_{k}\right)\|_{1} &= \frac{1}{|F_{k}|} \left\|\mathbb{1}_{F_{k}} - \lambda_{s} \left(\mathbb{1}_{F_{k}}\right)\right\| \\ &= \frac{1}{|F_{k}|} \left\|\mathbb{1}_{F_{k}} - \mathbb{1}_{sF_{k}}\right\| \\ &= \frac{|F_{k} \triangle sF_{k}|}{|F_{k}|}, \end{split}$$

which thus converges to 0 as $k \to \infty$.

Proposition: If G has an approximate mean, then G is amenable.

Proof. Let $(f_k)_k$ be an approximate mean. We define $\phi_k = (\phi_{f_k})_k$ to be a sequence of states on $\ell_\infty(G)$.

Since the state space on $\ell_{\infty}(G)$ is w^* -compact, there is a state μ and a subnet $(\phi_{k_j})_j$ with $(\phi_{k_j})_j \xrightarrow{w^*} \mu$.

We only need to show that μ is invariant. Note that

$$\left|\mu(g) - \mu(\lambda_{s}(g))\right| \leq \left|\mu_{g} - \varphi_{k_{j}}(g)\right| + \left|\varphi_{k_{j}}(g) - \varphi_{k_{j}}(\lambda_{s}(g))\right| + \left|\varphi_{k_{j}}(\lambda_{s}(g)) - \mu(\lambda_{s}(g))\right|$$

holds for all $g \in \ell_{\infty}(G)$, $s \in G$, and for all j.

Given $\varepsilon > 0$, we find J such that for $j \ge J$, we have

$$\begin{split} \left|\mu(g) - \phi_{k_{j}}(g)\right| < \epsilon/3 \\ \left|\mu(\lambda_{s}(g)) - \phi_{k_{j}}(\lambda_{s}(g))\right| < \epsilon/3. \end{split}$$

We see that

$$\begin{split} \left| \phi_{k_{j}} \left(g \right) - \phi_{k_{j}} \left(\lambda_{s} \left(g \right) \right) \right| &= \left| \sum_{t \in G} g(t) f_{k_{j}} \left(t \right) - \sum_{t \in G} g \left(s^{-1} t \right) f_{k_{j}} \left(t \right) \right| \\ &= \left| \sum_{t \in G} g(t) f_{k_{j}} \left(t \right) - \sum_{r \in G} g(r) f_{k_{j}} \left(sr \right) \right| \\ &= \left| \sum_{t \in G} g(t) \left(f_{k_{j}} \left(t \right) - \lambda_{s^{-1}} \left(f_{k_{j}} \right) \left(t \right) \right) \right| \\ &\leq \left\| g \right\|_{\infty} \sum_{t \in G} \left| f_{k_{j}} \left(t \right) - \lambda_{s^{-1}} \left(f_{k_{j}} \right) \left(t \right) \right| \\ &= \left\| g \right\|_{\infty} \left\| f_{k_{j}} - \lambda_{s^{-1}} \left(f_{k_{j}} \right) \right\| \\ &< \epsilon/3 \end{split}$$

for large j. Thus, we have

$$|\mu(g) - \mu(\lambda_s(g))| < \varepsilon$$
,

for all $\varepsilon > 0$, so $\mu(g) = \mu(\lambda_s(g))$.

Equivalence between Means and Approximate Means

We wish to show that if G is amenable, then G has an approximate mean.

Theorem: Let G be amenable. Then, G has an approximate mean.

Proof. Recall that a net $(f_i)_{i \in I}$ in Prob(G) has its domain as the set

$$I = \{(E, \varepsilon) \mid E \subseteq G \text{ finite}, \varepsilon > 0\},\$$

directed by $(E, \varepsilon) \leq (E', \varepsilon')$ if $E \subseteq E'$ and $\varepsilon \geq \varepsilon'$.

Suppose there is no approximate mean. Then, there exists a finite subset $E_0 \subseteq G$ and $\epsilon_0 > 0$ such that for all $s \in E_0$ and $f \in Prob(G)$, we have

$$\|f - \lambda_s(f)\| \geqslant \epsilon_0.$$

Let $X = \bigoplus_{|E_0|} \ell_1(G)$ be endowed with the 1-norm.

Consider the set

$$C = \left\{ (f - \lambda_s(f))_{s \in E_0} \mid f \in Prob(G) \right\}.$$

Since Prob(G) is convex, C is convex, and since $|E_0|$ is finite, C is necessarily bounded. Additionally, note that it is the case that $0 \notin \overline{C}$.

By the Hahn–Banach separation theorem, there is a real-valued $\varphi \in X^*$ such that $\varphi(C) \ge 1$.

Note also that

$$X^{*} \cong \bigoplus_{\mid E_{0}\mid} \ell_{1}\left(G\right)^{*}$$
$$\cong \bigoplus_{\mid E_{0}\mid} \ell_{\infty}\left(G\right)$$

with the ∞ norm. We let $\varphi = (\varphi_{g_s})_{s \in E_0}$ with $g_s \in \ell_\infty(G)$. From the duality between $\ell_1(G)$ and $\ell_\infty(G)$, for any $f \in \ell_1(G)$ and $g \in E_0$, we have

$$\varphi_{g_s}(f) = \sum_{t \in G} f(t)g(t).$$

Thus, for all $f \in Prob(G)$, we have

$$\begin{split} & 1 \leqslant \phi \left((f - \lambda_{s} (f))_{s \in E_{0}} \right) \\ & = \sum_{s \in E_{0}} \phi_{g_{s}} (f - \lambda_{s} (f)) \\ & = \sum_{s \in E_{0}} \sum_{t \in G} (f - \lambda_{s} (f)) (t) g_{s} (t) \\ & = \sum_{s \in E_{0}} \left(\sum_{t \in G} f(t) g_{s} (t) - \sum_{t \in G} f \left(s^{-1} t \right) g_{s} (t) \right) \\ & = \sum_{s \in E_{0}} \left(\sum_{t \in G} f(t) g_{s} (t) - \sum_{r \in G} f (r) g (sr) \right) \\ & = \sum_{s \in E_{0}} \left(\sum_{r \in T} f (r) g_{s} (r) - \sum_{r \in G} f (r) \lambda_{s^{-1}} (g) (r) \right) \\ & = \sum_{s \in E_{0}} \sum_{r \in G} f (r) (g_{s} - \lambda_{s^{-1}} (g)) (r). \end{split}$$

Note that this holds for any $f \in Prob(G)$. In particular, if $f = \delta_t$ for a given $t \in Prob(G)$, then we must have

$$\begin{split} \sum_{s \in E_0} \sum_{r \in G} f\left(r\right) \left(g_s\left(r\right) - \lambda_{s^{-1}}\left(g_s\right)\left(r\right)\right) &= \sum_{s \in E_0} \sum_{r \in G} \delta_t\left(r\right) \left(g_s\left(r\right) - \lambda_{s^{-1}}\left(g_s\right)\left(r\right)\right) \\ &= \sum_{s \in E_0} \left(g_s - \lambda_{s^{-1}}g_s\right)\left(t\right) \\ &\geq 1 \end{split}$$

Since G is amenable, there is a mean $\mu: \ell_{\infty}(G) \to \mathbb{C}$ with $\mu(g_s) = \mu(\lambda_{s^{-1}}(g_s))$, meaning

$$\mu\left(\sum_{s\in F_{s}}\left(g_{s}-\lambda_{s^{-1}}\left(g_{s}\right)\right)\left(t\right)\right)=0$$

 ≥ 1 ,

which is a contradiction.