Lab 1: First Order Circuits

ECEN 325 - 511

TA: Zhiyong Zhang

Date Performed: September 7, 2021

Due Date: September 16, 2021

Purpose

The objective of this lab was to find the frequency response of first-order circuits and go over the basics of circuit analysis. In order to do this, students analyzed the first order low and high pass filter, consisting of some resistors and capacitors. We derive the transfer function for high and low pass filters and calculate the values for the resistors and capacitors. We were also supposed to calculate the output voltages. Finally, we run the simulations, and collect the measurement, by building the circuit on both Multisim and on a breadboard.

Calculations

part 1 -> derive transfer functions & express WL, WH, KL, KH in terms of resistors and capacitos

Figure 3a:
$$H_{LP}(s) = \frac{V_{LP}}{V_{L}}(s) = k_{L} \frac{1}{1 + \frac{s}{N_{L}}}$$

$$V_{I} \otimes V_{LP} = \frac{R_{I}}{R_{I}} \frac{R_{I}}{R_{I} + \frac{R_{L}}{R_{I}}(s) + 1}}{R_{I} + \frac{R_{L}}{R_{I}}(s) + 1} = \frac{R_{I}}{R_{I} + \frac{R_{L}}{R_{L}}(s) + 1} = \frac{R_{I}}{R_{I} + R_{L}} \left(\frac{1}{1 + \frac{R_{I}}{R_{L}}R_{L}}(s) \right)$$

$$K_{L} = \frac{R_{2}}{R_{1} + R_{2}} \qquad W_{L} = \frac{R_{1} + R_{2}}{R_{1}R_{2}C_{1}}$$

$$V_{HP} = V_{i} \frac{R_{s}}{\frac{1}{1 + R_{s}(s)} s} = \frac{R_{s}}{1 + R_{s}(s)} = V_{HP} = \frac{R_{s}(s)}{1 + R_{s}(s)} = \frac{$$

$$k^{H} = \frac{c^{5} + c^{2}}{c^{5}}$$
 $m^{H} = \frac{k^{2}(c^{5} + c^{2})}{1}$

part 2 - Calculating values for all resistors & capacitos

$$K_{L} = 0.5 = \frac{R_{2}}{R_{1} + R_{2}} = 0 \quad R_{1} = R_{2}$$

$$W_{L} = 2\pi P_{L} = 2\pi L 5000 = \frac{R_{1} + R_{2}}{R_{1}R_{2}L_{1}}$$

$$= \frac{2R_{1}}{R_{1}^{2}c_{1}}$$

$$= \frac{2}{R_{1}C_{1}} = 2\pi L 5000 = \frac{R_{1} + R_{2}}{R_{1}R_{2}L_{1}}$$

$$= \frac{2}{R_{1}C_{1}} = 2\pi L 5000 = \frac{R_{1} + R_{2}}{R_{1}^{2}c_{1}}$$

$$= R_{1}C_{1} = \frac{1}{5000} = \frac{R_{1} + R_{2}}{R_{1}^{2}c_{1}} = \frac{1}{5000} = \frac{1}{8} =$$

$$k_{H} = 0.5 = \frac{c_{z}}{c_{z} + c_{3}} \Rightarrow c_{2} = c_{5}$$
 $w_{H} = 2\pi f_{H} = 2\pi (5000) = \frac{1}{R_{5}(c_{z} + c_{5})}$
 $10000\pi = \frac{1}{2R_{5}c_{2}}$
 $= R_{3}(c_{2} = \frac{1}{20000\pi}) \approx 15.9 \times 10^{-6}$

port 3 > magnitude / phase Bode plots

f. Sa)
$$H_{Lp}(s) = K_L \frac{1}{1+s} = \frac{0.5}{1+\frac{0.5}{2\pi \cdot 5000}} = \frac{5 \cdot 6007}{1 \cdot 600077 + 5}$$

 $P_1 = -1000077$
 $S = 0$, $H_{Lp}(s) = \frac{1}{2}$

1. 3b)
$$H_{HP}(s) = K_{H} \frac{s}{s + \omega_{H}} = \frac{0.51}{s + \omega_{DD}}$$

 $Z_{1} = 0$, $P_{1} = -(-1) = 0$

$$\pi_{COO3} = \frac{\pi_{COO3}}{\pi_{COO3}} = \frac{\pi_{COO3}}{\pi_{COO3}}$$

Schematics / Simulations (on Multisim)

Circuit A Schematic

AC Sweep Circuit A

Transient (4K) Circuit A

Transient(6K) Circuit A

Circuit B Schematic

AC Sweep Circuit B

Transient (4K) Circuit B

Transient(6K) Circuit B

Measured Waveforms

$V_i(t) = 0.4 \sin(2\pi 4000t)$ Circuit A (4K low pass)

 $V_i(t) = 0.4 \sin(2\pi 4000t)$ Bode Plot Circuit A (4K low pass bode)

$V_i(t) = 0.3 \sin(2\pi 6000t)$ Circuit A (6K low pass)

 $V_i(t) = 0.3 \sin(2\pi 6000t)$ Bode Plot Circuit A (6K low pass bode)

$V_i(t) = 0.4 \sin(2\pi 4000t)$ Circuit B (4K high pass)

 $V_i(t) = 0.4 \sin(2\pi 4000t)$ Bode Plot Circuit B (4K high pass bode)

 $V_i(t) = 0.3 \sin(2\pi 6000t)$ Circuit B (6K high pass)

 $V_i(t) = 0.3 \sin(2\pi6000t)$ Bode Plot Circuit B (6K high pass bode)

| File Control View Window | Help | Wavegen 1 | Scope 1 | Network 1 | Plot | Network 1 | Netwo

Data Tables

 $V_i(t) = 0.4 \sin(2\pi 4000t)$

	Frequency	Time Difference	∠H	H
Calculations Circuit A	4k	none	-38.66°	0.194
Calculations Circuit B	4k	none	51.34°	0.125
Simulations Circuit A	4k	-29.4	-42.36°	0.121
Simulations Circuit B	4k	34.2	121.3°	0.132
Measurements Circuit A	4k	-35.71	-51.45°	0.271
Measurements Circuit B	4k	46.89	67.52°	0.141

 $V_i(t) = 0.3 \sin(2\pi 6000t)$

	Frequency	Time Difference	∠H	H
Calculations Circuit A	6k	none	39.8°	0.096
Calculations Circuit B	6k	none	39.8°	0.115
Simulations Circuit A	6k	-23.6	-50.97°	0.112
Simulations Circuit B	6k	19.2	41.472°	0.109
Measurements Circuit A	6k	-27.08	-58.49°	0.158
Measurements Circuit B	6k	27.87	-60.19°	0.159

Discussion

In the calculation, and simulations part of the lab, I used 1Ω resistors for R1, R2, and R3. For the capacitors, I used $63.66\mu F$ for C1 and $15.9\mu F$ for C2 and C3.

For the measurements part, I used $1k\Omega$ resistors for R1, R2, and R3, and 4.7nF capacitors for C1 and 10nF capacitors for C2, and C3, since those were the closest value capacitors provided in the lab kit.