

2022 JC 1 H2 Mathematics (9758) VECTORS

Tutorial 1: Basic Concepts of 3-D Vectors

[Level 0]

Vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{d} are given by $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$, $\mathbf{c} = 3\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}$ and $\mathbf{d} = -\mathbf{j} + \mathbf{k}$. Prove that the vectors $\mathbf{b} - \mathbf{a}$ and $\mathbf{d} - \mathbf{c}$ are parallel and find the ratio of their magnitudes.

[Solution]

$$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}, \quad \mathbf{d} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
$$\mathbf{b} - \mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}; \quad \mathbf{d} - \mathbf{c} = = \begin{pmatrix} -3 \\ -6 \\ 3 \end{pmatrix} = -3 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = -3(\mathbf{b} - \mathbf{a})$$

 \therefore **b-a** and **d-c** are parallel and $|\mathbf{b-a}| : |\mathbf{d-c}| = 1:3$

Remarks:

To find the ratio of magnitudes, division of vectors eg, $\frac{b-a}{d-c}$ is meaningless.

2 Given that $\mathbf{p} = 4\mathbf{i} - 5\mathbf{j} + 8\mathbf{k}$, $\mathbf{q} = -2\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}$, and $\mathbf{r} = \mathbf{i} + \mathbf{j} - \mathbf{k}$. If $\mathbf{s} = \mathbf{p} + a\mathbf{q} + b\mathbf{r}$ and $\mathbf{t} = -2\mathbf{i} - \mathbf{j} - 3\mathbf{k}$, find the values of a and b so that s is in the opposite direction to t.

[Solution]

$$\mathbf{p} = \begin{pmatrix} 4 \\ -4 \\ 8 \end{pmatrix}, \quad \mathbf{q} = \begin{pmatrix} -2 \\ -3 \\ -4 \end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \quad \mathbf{t} = \begin{pmatrix} -2 \\ -1 \\ -3 \end{pmatrix}$$

Since s // t, Let $s = -\lambda t$ for some $\lambda > 0$ [A common mistake is to let s = -t]

Negative sign since s is in the opp direction to t

$$\begin{pmatrix} 4 \\ -5 \\ 8 \end{pmatrix} + a \begin{pmatrix} -2 \\ -3 \\ -4 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = -\lambda \begin{pmatrix} -2 \\ -1 \\ -3 \end{pmatrix}$$

$$\begin{cases} -2a + b - 2\lambda = -4 \\ -3a + b - \lambda = 5 \\ -4a - b - 3\lambda = -8 \end{cases}$$

Using GC, a = -3, b = 2, $\lambda = 6$

- 3 Vector **a** and **b** are given by $\mathbf{a} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ and $\mathbf{b} = \lambda \mathbf{a}$ where $\lambda \in \mathbb{R}$.
 - (i) Find the magnitude of a and the unit vector in the direction of a.
 - (ii) Given that $|\mathbf{a} + 2\mathbf{b}| = 6$, find the possible values of λ .

[Solution]

(i)
$$|a| = \sqrt{2^2 + 1^2 + 2^2} = 3$$

 $\hat{a} = \frac{1}{3} \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

(ii)
$$|\underline{a} + 2\lambda \underline{a}| = 6 \text{ (since } \mathbf{b} = \lambda \mathbf{a} \text{)}$$

$$|1 + 2\lambda||\underline{a}| = 6$$

$$|1 + 2\lambda| = 2$$

$$1 + 2\lambda = \pm 2$$

$$\lambda = \frac{1}{2} \text{ or } -\frac{3}{2}$$

4 Point *P* and *Q* have position vectors $\begin{pmatrix} -1\\4\\3 \end{pmatrix}$ and $\begin{pmatrix} 2\\0\\-5 \end{pmatrix}$ respectively. Using ratio

theorem in each of the following cases, find the position vector of R given that

- (i) R divides PQ in the ratio 2:3.
- (ii) Given that point R lies on QP produced such that PR : RQ = 3 : 4.

[Solution]

(i)
$$PR : RQ = 2 : 3$$

By Ratio Theorem,
 $\overrightarrow{OR} = \frac{1}{5} \left[2\overrightarrow{OQ} + 3\overrightarrow{OP} \right]$

$$= \frac{1}{5} \left[2 \begin{pmatrix} 2 \\ 0 \\ -5 \end{pmatrix} + 3 \begin{pmatrix} -1 \\ 4 \\ 3 \end{pmatrix} \right] = \frac{1}{5} \begin{pmatrix} 1 \\ 12 \\ -1 \end{pmatrix}$$

2 3 P R Q 5 The diagram shows a rectangular cuboid *OABCDEFG*

such that
$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$
, $\overrightarrow{OC} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$ and $\overrightarrow{OD} = \begin{pmatrix} -10 \\ 1 \\ 2 \end{pmatrix}$.

- (i) Find vector \overrightarrow{CG} and the position vector of F.
- (ii) Find the position vector of point M, the midpoint of GF.

[Solution]

(i)
$$\overrightarrow{CG} = \overrightarrow{OD} = \begin{pmatrix} -10 \\ 1 \\ 2 \end{pmatrix}$$

$$\overrightarrow{OF} = \overrightarrow{OC} + \overrightarrow{CG} + \overrightarrow{GF}$$

$$= \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} -10 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} -9 \\ 5 \\ 5 \end{pmatrix}$$

(ii) By ratio theorem,
$$\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OG} + \overrightarrow{OF} \right)$$

$$= \frac{1}{2} \left(\overrightarrow{OC} + \overrightarrow{CG} + \overrightarrow{OF} \right)$$

$$= \frac{1}{2} \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} + \begin{pmatrix} -10 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -9 \\ 5 \\ 5 \end{bmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} -19 \\ 8 \\ 6 \end{pmatrix}$$

6 The diagram shows a rectangular cuboid *OABCDEFG*The point *O* is the origin and unit vectors **i**, **j**, **k** are taken along the direction of *OA*, *OC* and *OD* respectively. It is given that

(ii) Find the position vector of point N which divides BF in the ratio 2:1

[Solution]

(i)
$$\overrightarrow{CG} = \overrightarrow{OD} = \begin{pmatrix} 0 \\ 0 \\ \frac{3}{2} \end{pmatrix}$$

$$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BF}$$

$$= \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{3}{2} \end{pmatrix} + = \begin{pmatrix} 4 \\ 2 \\ \frac{3}{2} \end{pmatrix}$$

(ii)
$$BN : NF = 2 : 1$$

By ratio theorem, $\overrightarrow{ON} = \frac{1}{3} \left(2\overrightarrow{OF} + \overrightarrow{OB} \right)$

$$= \frac{1}{3} \begin{bmatrix} 2 \begin{pmatrix} 4 \\ 2 \\ \frac{3}{2} \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix} \end{bmatrix}$$

$$= \begin{pmatrix} 4 \\ 2 \end{bmatrix}$$