Introducción a la Genómica UNAL nov 2017

Alejandro Cáceres ISGlobal, Barcelona

October 13, 2017

Genética de poblaciones

Los datos genómicos de SNPs nos sirven para ver la variabilidad genética entre poblacines

- Estructura de LD en cada población
- Heterocigosidad por población
- Índice de fijación
- Patrones de recombinación
- Indicadores de selección
- Filogenia

Estructura de LD entre poblaciones

Cómo podemos extraer esa estructura

	Α	Т	Total
С	XCA	XCT	90
A	XAA	X_{AT}	q_A
Total	p_A	рт	1

el LD esta dado por $D = p_A * q_C - x_{CA}$ Recordemos que la fase se pierde por lo que el LD tiene que ser esimado modelando la probabilidad de una fase particular.

Con snpStats se puede calcular el LD entre dos SNPs

```
library(snpStats)
```

```
load("datos/NewsnpsSNPstats.RData")
ls()
## [1] "NewsnpsSNPstats"
```

Con snpStats se puede calcular el LD entre dos SNPs

```
snps <- NewsnpsSNPstats[,c(90,91)]</pre>
ld(snps, stats=c("D.prime", "R.squared"),depth=1)
## $D.prime
## 2 x 2 sparse Matrix of class "dgCMatrix"
             rs561646592 rs34845889
##
## rs561646592 . 0.01220497
## rs34845889
##
## $R.squared
## 2 x 2 sparse Matrix of class "dgCMatrix"
              rs561646592 rs34845889
##
## rs561646592 . 8.640143e-05
## rs34845889
```

Podemos también calcular el LD entre todos los SNPs

```
LD <- ld(NewsnpsSNPstats, stats=c("D.prime", "R.squared"),depth=379) image(LD$R.squared, lwd=0)
```


LD para una población Seleccionemos los individuos de la población GBR

```
ids <- read.table("datos/20130606_g1k.ped", sep="\t", header=TRUE)
rownames(ids) <- ids$Individual.ID</pre>
pops <- ids[rownames(NewsnpsSNPstats),]$Population</pre>
head(pops)
## [1] GBR GBR GBR GBR GBR
## 26 Levels: ACB ASW BEB CDX CEU CHB CHS CLM ESN FIN GBR GIH GWD IBS .
GBR <- pops=="GBR"
head(GBR)
## [1] TRUE TRUE TRUE TRUE TRUE TRUE
```

LD para GRB

```
snpsGBR <- NewsnpsSNPstats[GBR,]
LDGBR <- ld(snpsGBR, stats=c("D.prime", "R.squared"),depth=379)
image(LDGBR$R.squared, lwd=0)</pre>
```


Ejercicio LD para una población YRI

Ejercicio LD para una población YRI

```
YRI <- pops=="YRI"
snpsYRI <- NewsnpsSNPstats[YRI,]
LDYRI <- ld(snpsYRI, stats=c("D.prime", "R.squared"),depth=379)
image(LDYRI$R.squared, lwd=0)</pre>
```

- La heterocigosidad es la proporción de heterocigotos que hay en una población.
- Mayor taza de heterocigosidad mayor es la variabilidad genética

se calcula como

$$2pq = 1 - p^2 - q^2 \tag{1}$$

```
sumSnps <- col.summary(NewsnpsSNPstats)</pre>
head(sumSnps)
##
               Calls Call.rate Certain.calls
                                                                MAF
                                                     RAF.
## rs555347111 2504
                                           1 0.07368211 0.07368211
                                                                    0.85
## rs542617372 2504
                                           1 0.07607827 0.07607827 0.85
## rs17763596 2504
                                            1 0.07767572 0.07767572 0.85
## rs144873025 2504
                                           1 0.08047125 0.08047125 0.84
## rs184461291 2504
                                           1 0.07607827 0.07607827 0.85
## rs566494525 2504
                                           1 0.06709265 0.06709265 0.86
##
                    P.AB
                                P.BB
                                         z.HWE
## rs555347111 0.1417732 0.002795527
                                     1.930779
## rs542617372 0.1313898 0.010383387 -3.271542
## rs17763596
               0.1273962 0.013977636 -5.548735
## rs144873025 0.1417732 0.009584665 -2.102509
## rs184461291 0.1449681 0.003594249 1.561671
## rs566494525 0.1309904 0.001597444 2.321653
```

```
p<-sumSnps$MAF
hist(1-p^2-(1-p)^2)</pre>
```

Histogram of 1 - p^2 - (1 - p)^2

Heterocigosidad por poblaciones

Ejercicio LD para una población YRI

```
YRI <- pops=="YRI"
snpsYRI <- NewsnpsSNPstats[YRI,]
LDYRI <- ld(snpsYRI, stats=c("D.prime", "R.squared"),depth=379)
image(LDYRI$R.squared, lwd=0)</pre>
```

Índice de fijación

El Fst (fixation index) que mide la proporcion de variabilidad genetica debida a diferencias entre poblaciones

$$F_{ST} = \frac{\sigma_S^2}{\sigma_T^2} \tag{2}$$

 $\sigma_{\mathcal{S}}^2$ es la varianza entre poblaciones y $\sigma_{\mathcal{T}}^2$ es la varianza total

Índice de fijación

$$F = \frac{\sigma_{caso-control}^2}{\sigma_{todos}^2} \tag{3}$$

Qué tan differenciables son los groupos?

Distribución de Fst en la región de MAPT para los 1000 genomas

```
FST <- Fst(NewsnpsSNPstats,pops)
hist(FST$Fst)</pre>
```

Histogram of FST\$Fst

Fst promedio estimado para las poblaciones del HapMap

		YRI	
YRI	0.153		
JPT	0.111	0.190	
CHB	0.153 0.111 0.110	0.192	0.007

Ejercicio: calcular Fst entre YRI y CEU en la region de MAPT

[1] 0.003333865

Histogram of FST\$Fst

Ejercicio: calcular Fst entre YRI y CEU en la region de MAPT

```
CEUandYRI <- pops%in%c("CEU","YRI")
snpsCEUandYRI<-NewsnpsSNPstats[CEUandYRI,]
popsCEUandYRI <- pops[CEUandYRI]
FST <- Fst(snpsCEUandYRI,popsCEUandYRI)
hist(FST$Fst)
mean(FST$Fst, na.rm=TRUE)</pre>
```