# HF Sourcing: FFTs on Sourcing Data

Edmund Berry<sup>1</sup>

<sup>1</sup>Brown University

Thursday, June 12, 2014





### Review of continuous Fourier transforms:

- Fourier transform (FT) definition
  - $F(u) = \int_{-\infty}^{+\infty} f(t)e^{-2\pi i u t} dt$
- FTs have real and imaginary components
  - $\blacksquare$  Real:  $\mathcal{R}(F)$
  - Imaginary:  $\mathcal{I}(F)$
- FTs have magnitude and phase in complex space:
  - Magnitude:  $|F| = |\mathcal{R}(F)^2 + \mathcal{I}(F)^2|^{1/2}$
  - Phase:  $\phi(F) = \tan^{-1} \frac{\mathcal{R}(F)}{\mathcal{I}(F)}$



## Review of discrete, fast Fourier transforms:

- ROOT can run fast Fourier transforms (FFTs) with fftw
- Notes from fftw online documentation:
  - We want to do a 1D discrete Fourier transform (DFT)
  - We want a transform from real to complex space (R2C)
  - For a 1D R2C DFT on an input with n bins, fftw calculates the following:

$$Y_k = \sum_{j=0}^{n-1} X_j e^{-2\pi jk\sqrt{-1}/n}$$

#### Where:

- *n* is the number of bins in the input histogram
- $\blacksquare$   $Y_k$  is the FFT output (content of output bin k)
- $\blacksquare$   $X_i$  is the original input (content of input bin j)



Edmund Berry

### Review of discrete, fast Fourier transforms:

- $\blacksquare$  For an input histogram with n bins, fftw outputs a vector of  $\frac{n}{2} + 1$  complex elements ( $\frac{n}{2}$  rounds down):
  - 0th element is the "DC": purely real (omitted from plots)
  - $\frac{n}{2}$ th element is the "Nyquist" frequency: purely real
  - All elements have Hermitian symmetry:  $Y_k = Y_{n-k}^*$
- Performing the transform introduces a factor of  $\sqrt{n}$ , which must be divided out by the user



Brown University

### Review of discrete, fast Fourier transforms:

- Just like continuous FTs, we're interested in the real and imaginary components of fftw output
- $\blacksquare$  Consider real and imaginary output from fftw  $(Y_k)$ 
  - Real:  $\mathcal{R}(Y_k)$
  - Imaginary:  $\mathcal{I}(Y_k)$
- Consider magnitude and phase in complex space:
  - Magnitude:  $|Y_k| = |\mathcal{R}(Y_k)^2 + \mathcal{I}(Y_k)^2|^{1/2}$
  - Phase:  $\phi(Y_k) = \tan^{-1} \frac{\mathcal{R}(Y_k)}{\mathcal{I}(Y_k)}$



### Method

- Two very simple steps
  - Use sine functions to test ROOT FFT software
  - 2 Use ROOT FFT software to analyze sourcing data
- All of this code is on git:
  - 1 Link to code for testing FFTs
  - 2 Link to code for running FFTs on sourcing data



### FFT test on sine functions



- Fill a histogram using linear combo of sine functions:
  - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot f_i \cdot t)$
  - $A_i = \{1.0, 2.0, 0.5\} [A.U.]$
  - $f_i = \{0.5, 1.0, 2.0\}$  [Hz]

4□ > 4□ > 4□ > 4□ > 4□ > 4□

### Look at magnitude of FFT



- Magnitude (even function) returns  $A_i$  and  $f_i$ 
  - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot f_i \cdot t)$
  - $A_i = \{1.0, 2.0, 0.5\} [A.U.]$
  - $f_i = \{0.5, 1.0, 2.0\}$  [Hz]

## Look at phase of FFT



- Phase information not useful for our purposes. . .
  - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot f_i \cdot t)$
  - $A_i = \{1.0, 2.0, 0.5\}$  [A.U.]
  - $f_i = \{0.5, 1.0, 2.0\}$  [Hz]

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めな○

# Look at real and imaginary components of FFT:

### Real component

#### Real component [A.U.] 0.4 0.3 0.2 0.1 0 -10 -5 0 Frequency [Hz]

#### Imaginary component



- Real/imaginary components similar to magnitude:
  - $f(t) = \sum_{i=0}^{3} A_i \cdot \sin(2\pi \cdot f_i \cdot t)$
  - $A_i = \{1.0, 2.0, 0.5\}$  [A.U.]
  - $f_i = \{0.5, 1.0, 2.0\}$  [Hz]

### Conclusion of test:

- Can use ROOT FFT software
- ROOT FFT software can reconstruct parameters of sines
  - FT magnitude contains useful information for analysis
  - FT phase not useful for this analysis (?)
  - Can use FT phase to reconstruct original function (inverse FFT)
- Ready to try sourcing data



FFTs on data

•000000

## Look at sourcing data

histogram name:

```
"HFP13_ETA38_PHI25_T10_SRCTUBE_
Ieta38_Iphi25_Depth2
Run 221509reelPosition"
```

- x-axis: Reel [mm]
- y-axis: Histogram mean [linear ADC]



FFTs on data

000000

## Look at sourcing data: full range of reel vals



Next: focus on reel  $\epsilon$  [5800, 6800] [mm], where amplitude is stable



### Look at sourcing data: zoomed reel vals (TGraph)

FFTs on data

0000000



- This looks stable. We can do our FFT on this data.
- Next: zoom in even further ([6000,6050]) to see what frequency we suspect naively



## Look at sourcing data: zoomed reel vals (TGraph)



- 7 periods in 50mm:
  - T = 50 [mm]/7 = 7.14 [mm]
  - f = 1/T = 0.14 [1/mm]
- Only a naive guess for the frequency!

FFTs on data

### Look at sourcing data: zoomed reel vals (TH1F)



- Now make a histogram from the TGraph (result above)
  - If multiple points in TGraph have the same x-value, use their mean y-value on y-axis for histogram
- Next: do FFT on this histogram



FFTs on data

FFTs on data

0000000

### Look at sourcing data: FFT magnitude



- FFT magnitude peaks between "reel frequency" (in [1/mm]) of |0.10| and |0.20|
- Roughly matches our naive guess (0.14)







Real/imaginary components similar to magnitude



FFTs on data

### Conclusion

- We can use ROOT software to do FFTs.
  - Tests done on sine waves in time / frequency space
  - Prelim. results on data in reel / "reel frequency" space
- Prelim. results show peak in "reel frequency"
  - Around 0.12 0.13 [1/mm]
- Would be nice to repeat the study on sourcing data in time (OrN)
  - Need plots for this

