VHDL Assignment 5 Report

Yutong Wang 260839723

Hongtao Xu 260773785

1. Briefly explain your VHDL code implementation of all circuits.

For the counter

For the clock divider

3) clock divider

Become lottz clock frequency means clock period is oils; So if we want to assert an enable signal every 1 second, we need clock divider of N=10, which include a 4 bits 9 -> 0 down counter.

First define a signal represent the output value of the down counter Then implement the 9 > 0 down counter, which is similar to the up counter above , differences are when resort = 0 , count = 9 and if Current count = 0, then next count = 9

At last, the output of the clock divider is the NOR of the output bits of down counter.

For the 3-bit Up-Counter that Counts in Increments of 1 Second

4 Wrapper As the circuit shown, this Clock Divide wrapper cirmie is the combination of previous circuits. First define the intermediate signals: signal en-out -> output of clock divider

For clock divider down-counter -> output of the down counter

signal count (2 downtoo) - output of the Counter signal four bit - Count (3 down to 0) 7

used to change Count to a 4 bits

- D First implement the clock divider
 - Same steps as above

Implementation of circuit:

- 1) Then take the autput enjoyed of the clock divider as the enable input of the Counter, and implement counter
- 3 Because output of Counter is 3 bits, but imput to .7- Segment decoder is 4 bits, so we all a "o" in front of the output of counter. Then we can implement 7- Seymont decoder.

- 2. Provide waveforms for each of the individual circuits (each section) and for the 3-bit up-counter.
 - For the JKFF

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

In the diagram, the output Q between t=0 and t=100 ns is unknown, this is because at this time J=0 and K=0, so Q(t+1)=Q(t), Q will maintain it's previous value. However in this case, we have no previous value of Q, so Q is unknown between t=0 and t=100 ns.

> For the counter

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

The below EPwave diagram is for testing the enable signal, I added a part with enable=0 during the counting to see if the output stops changing.

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

For the clock divider

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

The above two diagrams show the time interval between two en out=1 signal is 1 second.

For the 3-bit Up-Counter that Counts in Increments of 1 Second

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

The above two EPwaves show that the counter increments every 1 second, and counts from 0 to 7 and wraps around to 0. The diagram below shows that when enable=0, reset=1, the output stops changing and when enable=1, reset=0, the counter reset to 0.

Note: To revert to EPWave opening in a new browser window, set that option on your user page.

- 3. Perform timing analysis of the 3-bit up counter and find the critical path(s) of the circuit. What is the delay of the critical path(s)?
 - > Timing analysis screenshot

```
# Info: -- POST-SYNTHESIS TIMING REPORTS ARE ESTIMATES AND SHOULD NOT BE RELIED ON TO MAKE QOR DECISIONS. For accurate timing information
# Info: -- Device: Xilinx - ARTIX-7 : 7A100TCSG324 : 1
# Info: -- CTE report timing.
                         CTE Path Report
# Info:
# Info: Critical path #1, (path slack = 18.496):, Logic Levels = 1
# Info: SOURCE CLOCK: name: clk period: 20.000000
# Info:
            Times are relative to the 1st rising edge
         DEST CLOCK: name: clk period: 20.000000
# Info:
            Times are relative to the 2nd rising edge
# Info:
# Info: NAME
                                                     GATE
                                                                        ARRIVAL DIR FANOUT LEVEL
                                                               DELAY
# Info: reg_down_counter(0)/C
                                                  FDPE
                                                                        0.000 up
                                                              0.456
# Info: reg_down_counter(0)/Q
                                                  FDPE
                                                                        0.456
# Info: down_counter_value(0)
                                                   (net)
                                                              0.378
# Info: ix31013z1315/I3
                                                  LUT4
                                                                        0.834
                                                                                up
                                                              0.124
# Info: ix31013z1315/0
                                                  LUT4
                                                                        0.958
                                                                                dn
# Info: nx31013z1
                                                   (net)
                                                              0.341
# Info: modgen_counter_four_bits_count_reg_q(0)/CE FDCE
                                                                        1.299
                                                    20.000
# Info:
                       Initial edge separation:
# Info:
                       Source clock delay:
                                                     1.435
# Info:
                       Dest clock delay:
                                                    1.435
# Info:
# Info:
                       Edge separation:
                                                    20.000
# Info:
                       Setup constraint:
                                                    0.205
# Info:
                       Data required time:
                                                  19.795
# Info:
# Info:
                                                             ( 44.65% cell delay, 55.35% net delay )
                       Data arrival time:
                                                    1.299
# Info:
# Info:
                       Slack:
                                                    18.496
# Info: End CTE Analysis ..... CPU Time Used: 0 sec.
```

- The critical path is from reg_down_counter(0)/C to modgen counter four bits count reg_q(0)/CE
- Critical path slack =18.496, so delay = 20 -18.496 = 1.504
- 4. Report the number of pins and logic modules used to fit your 4-bit comparator design on the FPGA board

	3-bit up counter
Logic	Used: 16
Utilization (in	Avail: 63400
LUTs)	
Total pins	Used: 10
	Avail: 210