

云原生安全规划与实践

小佑科技 袁曙光

目录

01

02

03

云原生安全的特点

云原生安全的规划

云原生安全的实践

不可变的基础设施

物理机

- 单个应用
- 物理服务器作为扩展单元
- 以年为单位的生命周期

虚拟主机

- 硬件虚拟化
- 虚拟机作为扩展单元
- 以月为单位的生命周期

容器

- OS 虚拟化
- 应用/服务为控制单位
- 以分钟级别的生命周期

Serverless

- 应用运行时虚拟化
- 资源作为扩展单位
- 以秒级别为生命周期

防护边界变化

- 以物理位置或者设备为边界
- 主要以MAC/IP为标识

VM云计算

- 以虚拟机为边界
- 主要以IP为标识

- 以服务或应用为边界
- 主要以标签为标识

高度自动化的流程

全新的攻击手段

初始访问(3)	执行(4)	持久化(4)	权限提升(4)	防御绕过(6)	凭证访问(2)	发现(2)	影响(3)
攻击对外开放的 服务	容器管理命令	外部远程服务	逃逸到宿主机	在宿主机构建镜像	■ 暴力破解	容器和资源发现	端点拒绝服务
小部远程服务	部署容器	植入内部镜像	滥用提权	部署容器	密码猜测	网络服务发现	网络拒绝服务
可用账户	₩ 预定任务/作	预定任务/作	预定任务/作	□ 损害防御	密码喷洒		资源劫持
缺省账户	容器编排作业	容器编排作业	容器编排作业	禁用或修改 工具	凭证填充		
本地账户	■ 用户执行	□ 可用账户	□ 可用账户	宿主机指示器移除	■ 不安全的凭 证		
	恶意镜像	缺省账户	缺省账户	■ 伪装	文件中的凭 据		
		本地账户	本地账户	匹配合法名 称或位置	容器API		
				□ 可用账户			
				缺省账户			
				本地账户		针对容别	器的ATT&CK

目录

01

02

03

云原生安全的特点

云原生安全的规划

云原生安全的实践

应用生命周期视角下的云原生安全体系

IT架构视角下的云原生安全体系

云原生关键安全的四大支柱

容器安全

编排工具 (集群) 安全

微服务安全

DevSecOps

云原生安全建设的规划

云原生安全建设需要注意的几个关键点

目录

01

02

03

云原生安全的特点

云原生安全的规划

云原生安全的实践

整体解决方案

安全策略调整

运行环境的检测

- 主机安全合规基线扫描
- 容器安全合规基线扫描
- 编排工具合规基线扫描
- 网络安全策略配置

安全扫描

- 镜像模板文件安全扫描
- 镜像软件漏洞扫描
- 镜像恶意文件扫描
- 镜像敏感文件扫描
- 镜像开源许可扫描
- 阻断镜像构建

- 镜像安全验证
- 基础镜像验证
- 镜像签名验证
- 镜像来源验证
- 阻断镜像运行

安全监控

- 容器/主机内进程行为监控
- 容器/主机内文件行为监控
- 容器/主机内网络行为监控
- 容器系统调用监控
- 编排工具日志审计

安全风险处理

- 恶意镜像禁止运行
- 容器内恶意行为阻断
- 安全事件关联分析处理

合规基线的自动检测

技术合规基线

- CentOS、Ubuntu 等OS合规基线
 - Kubernetes、Openshift合规基线
- Docker合规
 - 企业自定义合规

镜像的漏洞管理

- 1 获取黄金镜像
- 2 基于黄金镜像构建业务镜像
- 3 上传测试仓库并扫描漏洞和病毒
- 4 镜像漏洞修复及上线审批
- 5 审批通过后将镜像同步到生产仓库
- 6 节点镜像的扫描及基础镜像的识别
- 7 配置镜像运行策略并进行阻断

容器运行时的动态检测与防护

编排工具的安全检测

Rancher

MESOS

对Kubernetes集群的Api Server 及节点模拟黑客攻击进行安全检 测,发现安全漏洞

对Kubernetes的日志进行安全 分析,以发现不符合安全策略 的POD、服务等创建、删除等

对Kubernetes的Yaml文件 进行审核,发现不符合安 全策略的配置

使用CIS等合规标准对 Kubernetes进行合规审计

微服务安全

云原生网络安全

容器网络可视化

- 感知网络流量
- 识别失陷容器与恶意行为 (规则、机器学习)

容器网络微隔离

- 匹配不同CNI插件
- 支持不同控制粒度 (集群/namespace/service/Pod/IP)

处置措施

- 隔离失陷容器
- 阻断攻击流量

----- 攻击流量

可参考技术-CNCF安全与合规象限

Security & Compliance

THANKS!

