Color

Yu-Shuen Wang, CS, NCTU

Slides refer to https://www.cs.ubc.ca/~tmm/

Idiom design choices: Encode

Encode

Categorical vs ordered color

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Color: Luminance, saturation, hue

- first rule of color: do not talk about color!
 - color is confusing if treated as monolithic

- 3 channels
 - -identity for categorical
 - hue
 - -magnitude for ordered
 - luminance
 - saturation

Color spaces

RGB: poor for encoding

HSL: better, but beware
 lightness ≠ luminance

Color spaces

- CIE L*A*B* color space
 - -Perception uniform color space

Spectral sensitivity

Three-Color Theory

- Human visual system has two types of sensors
 - -Rods:
 - monochromatic, night vision
 - -Cones
 - Color sensitive
 - Three types of cone
 - Only three values (the tristimulusvalues) are sent to the brain

Opponent color and color deficiency

- perceptual processing before optic nerve
 - -one achromatic luminance channel L
 - –edge detection through luminance contrast
 - -two chroma channels, R-G and Y-B axis
- "color blind" if one axis has degraded acuity
 - -8% of men are red/green color deficient
 - -blue/yellow is rare

Lightness information

Color information

[Seriously Colorful: Advanced Color Principles & Practices. Stone.Tableau Customer Conference 2014.]

Designing for color deficiency: Check with simulator

Normal vision

Deuteranope Protanope

Tritanope

tp://rehue.net color blind simulation

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Designing for color deficiency: Avoid encoding by hue alone

\$40,000

\$80,000

South

- redundantly encode
 - vary luminance
 - change shape

Wednesday, July 4

\$120,000

\$160,000

COGS

\$240,000

\$280,000

\$200,000

Color deficiency: Reduces color to 2 dimensions

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Designing for color deficiency: Blue-Orange is safe

Bezold Effect: Outlines matter

• color constancy: simultaneous contrast effect

[Seriously Colorful: Advanced Color Principles & Practices. Stone. Tableau Customer Conference 2014.]

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Color/Lightness constancy: Illumination conditions

Image courtesy of John McCann

Checker shadow Illusion

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

use with care!

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

- color channel interactions
 - -size heavily affects salience
 - small regions need high saturation
 - large need low saturation
 - -saturation & luminance: 3-4 bins max
 - also not separable from transparency

after [Color Use Guidelines for Mapping and Visualization. Brewer, 1994. http://www.personal.psu.edu/faculty/c/a/cab38/ColorSch/Schemes.html]

Categorical color: Discriminability constraints

noncontiguous small regions of color: only 6-12 bins

ColorBrewer

- http://www.colorbrewer2.org
- saturation and area example: size affects salience!

- problems
 - -perceptually unordered
 - -perceptually nonlinear
- benefits
 - -fine-grained structure visible and nameable

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998. http://www.research.ibm.com/people/l/lloydt/color/color.HTM]

24

problems

- -perceptually unordered
- -perceptually nonlinear

benefits

–fine-grained structure visible and nameable

alternatives

–large-scale structure: fewer hues

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998.

http://www.research.ibm.com/people/l/lloydt/color/color.HTM]
[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

problems

- -perceptually unordered
- -perceptually nonlinear

benefits

–fine-grained structure visible and nameable

alternatives

- –large-scale structure: fewer hues
- fine structure: multiple hueswith monotonically increasingluminance [eg viridisR/python]

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998.

http://www.research.ibm.com/people/l/lloydt/color/color.HTM]
[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

problems

- perceptually unordered
- perceptually nonlinear

benefits

fine-grained structure visible and nameable

alternatives

- large-scale structure: fewer hues
- fine structure: multiple hues with monotonically increasing luminance [eg viridis R/python]
- segmented rainbows for binned
 - or categorical

[A Rule-based Tool for Assisting Colormap Selection. Bergman,. Rogowitz, and. Treinish. Proc. IEEE Visualization (Vis), pp. 118–125, 1995.]

[Why Should Engineers Be Worried About Color? Treinish and Rogowitz 1998.

http://www.research.ibm.com/people/l/lloydt/color/color.HTM]
[Transfer Functions in Direct Volume Rendering: Design, Interface, Interaction. Kindlmann. SIGGRAPH 2002 Course Notes]

Viridis

 colorful, perceptually uniform, colorblind-safe, monotonically increasing luminance

https://cran.r-project.org/web/packages/viridis/vignettes/intro-toviridis.html

D3.js scale-chromatic

```
var accent =
d3.scaleOrdinal(d3.schemeAccent);
```

```
var piyg = d3.scaleSequential(d3.interpolatePiYG);
```

```
var yellow = d3.interpolateYIGn(0), // "rgb(255, 255, 229)"
yellowGreen = d3.interpolateYIGn(0.5), // "rgb(120, 197, 120)"
green = d3.interpolateYIGn(1); // "rgb(0, 69, 41)"
```

Color Schemes Including Every ColorBrewer Scale Click any d3-scale-chromatic scheme below to copy it to the clipboard. continuous Sequential (Single-Hue) Blues Greens Greys Oranges Purples Reds Sequential (Multi-Hue) BuGn BuPu GnBu OrRd PuBuGn

Given a number *t* in the range [0,1], returns the corresponding color from the "RdYlGn" diverging color scheme represented as an RGB string.

Map other channels

- size
 - -length accurate, 2D area ok, 3D volume poor
- angle
 - nonlinear accuracy
 - horizontal, vertical, exact diagonal
- shape
 - complex combination of lower-level primitives
 - -many bins
- motion
 - highly separable against static
 - binary: great for highlighting
 - -use with care to avoid irritation

→ Shape

Motion

→ Motion

Direction, Rate,

Frequency, ...

Angle

Sequential ordered line mark or arrow glyph

Diverging ordered arrow glyph

Cyclic ordered arrow glyph

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014
 - -Chap 10: Map Color and Other Channels
- ColorBrewer, Brewer.
 - -http://www.colorbrewer2.org
- Color In Information Display. Stone. IEEE Vis Course Notes, 2006.
 - -http://www.stonesc.com/Vis06
- A Field Guide to Digital Color. Stone. AK Peters, 2003.
- Rainbow Color Map (Still) Considered Harmful. Borland and Taylor. IEEE Computer Graphics and Applications 27:2 (2007), 14–17.
- Visual Thinking for Design. Ware. Morgan Kaufmann, 2008.
- Information Visualization: Perception for Design, 3rd edition. Ware. Morgan Kaufmann /Academic Press, 2004.
- https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html