Chapter I

Capacitors

I1 Charge and Energy stored on a Capacitor

¹⁰/₁₂

Complete the questions in the table:

	Capacitance	Voltage /V	Charge /C	Energy /J
I1.1	100 μF	6.0	(a)	(b)
I1.2	(a)	12.0	(b)	0.0010
I1.3	(a)	240	1.6×10^{-4}	(b)
I1.4	10 nF	(a)	1.6×10^{-4}	(b)

- I1.5 Calculate the capacitance of a capacitor needed in a back up power supply if it needs to store 0.24 J of electrical energy when connected to a 12 V power supply.
- I1.6 When a metal strip is rubbed on a 5000 V terminal, it gains 6.0 nC of charge. Calculate the effective capacitance of the strip.
- II.7 A 2200 μ F capacitor needs to be able to supply an average current of 2.0 mA for five minutes. Calculate the charge needed, and therefore the operating voltage which has to be employed.
- I1.8 A mystery capacitor can store 3.0 J of energy when connected to a 10 V supply. How much energy can it store when connected to a 5.0 V supply?