Задача 2 «Динамик»

1. Сила Ампера.

Для возникновения ненулевой вертикальной составляющей силы Ампера необходимо, чтобы существовала радиальная составляющая магнитного поля — магнитное поле должно быть неоднородным. (1)

магнитное поле должно быть неоднородным. (1) Определим радиальную составляющую магнитного \vec{F}_A \vec{F}_A поля. Выделим в пространстве воображаемый цилиндр, совпадающий с катушкой, высотой Δz и радиусом r. Полный магнитный поток через замкнутую поверхность цилиндра равен нулю

Тогда вертикальная составляющая силы Ампера, действующая на катушку, равна

$$F_A = 2\pi r N I B_r = 2\pi r N I \frac{\alpha B_0 r}{2} = \alpha B_0 \pi r^2 N I$$
(3)

Поскольку магнитное поле симметрично относительно оси Oz, равнодействующая горизонтальных составляющих силы равна нулю.

2. Амплитуда колебаний.

Переменное напряжение, поданное на клеммы катушки, вызовет переменный ток в катушке, на нее начнет действовать сила Ампера, и катушка придет в движение. Рассмотрим силы, действующие на катушку.

1) Если собственная частота колебаний системы равна ω_0 , то при отклонении катушки из положения равновесия на небольшое расстояние z, на нее будет действовать упругая возвращающая сила

$$F_{vnp} = -kz = -m\omega_0^2 z .$$

Собственная частота колебаний для катушки равна $\omega_0 = 2\pi f_0 = 188c^{-1}$.

2) Как было сказано в условии, при движении мембраны вместе с катушкой, создаются звуковые волны, при этом на мембрану действует сила сопротивления

$$F_{conp} = -\beta v.$$

В данном случае коэффициент $\beta = \frac{2\gamma P_0 S}{c} = 26,4 \frac{\kappa z}{c}$.

3) И ещё на катушку будет действовать сила Ампера, направление которой зависит от способа намотки катушки и направления тока в ней. Для определенности будем считать, что при приложении положительного постоянного напряжения ток течет так, что сила Ампера направлена вверх.

$$F_A = \alpha B_0 \pi r^2 NI .$$

Для удобства обозначим постоянный множитель перед силой тока $g=\alpha B_0\pi r^2N$. В данном случае $g=3,14\frac{H}{A}$.

По второму закону Ньютона

$$ma = F_{ynp} + F_{conp} + F_A \tag{4}$$

$$ma = -m\omega_0^2 z - \beta v + gI$$

$$m\ddot{z} + \beta \dot{z} + m\omega_0^2 z = gI \tag{5}$$

(точками сверху обозначены соответствующие производные по времени).

Рассмотрим, как связаны между собой сила тока и прикладываемое к катушке напряжение.

1) Внешняя ЭДС, прикладываемая к катушке равна

$$\varepsilon = \varepsilon_0 \cos \omega t$$
.

2) Переменное напряжение вызывает переменный ток, и в катушке, обладающей индуктивностью L, возникает ЭДС самоиндукции

$$\varepsilon_{cu} = -L \frac{dI}{dt} \, .$$

3) При движении катушки в магнитном поле, магнитный поток через нее изменяется, что приводит к возникновению ЭДС индукции

$$\varepsilon_{_{\!\mathit{U\!H\!O}}} = -\frac{d\Phi_{_{B}}}{dt} = -\frac{d}{dt} \Big(N\pi r^2 B_0 (1-\alpha z) \Big) = \alpha B_0 \pi r^2 N \frac{dz}{dt} = g \dot{z}$$

По закону Ома для полной цепи

$$RI = \varepsilon + \varepsilon_{cu} + \varepsilon_{uno} \tag{6}$$

$$RI = -L\frac{dI}{dt} + g\dot{z} + \varepsilon$$

$$L\frac{dI}{dt} + RI = \varepsilon(t) + g\dot{z} \tag{7}$$

Итого, получилась система из двух связанных дифференциальных уравнений

$$m\ddot{z} + \beta \dot{z} + m\omega_0^2 z = gI$$

$$L\frac{dI}{dt} + RI = \varepsilon(t) + g\dot{z}$$

Нас интересует решение, которое установится, в конце концов, при периодической внешней ЭДС $\varepsilon(t)=\varepsilon_0\cos\omega t$. Ясно, что когда собственные колебания затухнут, сила тока и координата будут изменяться по гармоническому закону с такой же частотой, но другой начальной фазой.

В принципе, можно точно решить это уравнение, подставив в систему дифференциальных уравнений

$$I = I_0 \cos(\omega t + \phi),$$

$$z = A \cos(\omega t + \psi),$$

потом, продифференцировав, разложив тригонометрические функции и приравняв коэффициенты при соответствующих синусах и косинусах, но это даст систему из четырех линейных уравнений с четырьмя неизвестными, решение которой весьма получится достаточно громоздким и отнимет много времени и сил. Но нетрудно заметить, что в если ток изменяется по закону $I = I_0 \cos(\omega t + \phi)$, то амплитуда слагаемого RI будет

равна RI_0 , а амплитуда слагаемого $L\frac{dI}{dt}$ будет равна ωLI_0 . Даже на предельной для человеческого уха частоте $f=20\kappa\Gamma u$ величина $\omega L=0.12O$ м, тогда как

 $R = 4,0 O_{M} \square 0,12 O_{M}$. Поэтому слагаемым $L \frac{dI}{dt}$ можно пренебречь, и система уравнений превращается в

$$m\ddot{z} + \beta \dot{z} + m\omega_0^2 z = gI$$
$$I = \frac{\varepsilon(t) + g\dot{z}}{R}$$

Подставив ток в первое уравнение, получим обыкновенное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами – уравнение вынужденных колебаний с затуханием:

$$m\ddot{z} + \beta \dot{z} + m\omega_0^2 z = g \frac{\varepsilon(t) + g\dot{z}}{R}$$

$$m\ddot{z} + \left(\beta - \frac{g^2}{R}\right) \dot{z} + m\omega_0^2 z = \frac{g}{R} \varepsilon_0 \cos \omega t$$

$$\ddot{z} + \frac{1}{m} \left(\beta - \frac{g^2}{R}\right) \dot{z} + \omega_0^2 z = \frac{g\varepsilon_0}{mR} \cos \omega t$$

Для удобства обозначим $\chi = \frac{1}{m} \left(\beta - \frac{g^2}{R} \right), \ D = \frac{g \mathcal{E}_0}{m R} \,.$

Значение коэффициента $\chi=479c^{-1}$. Значение коэффициента $D=15,7\frac{M}{c^2}$ при амплитуде внешнего напряжения $\varepsilon_0=1B$.

Дифференциальное уравнение принимает вид

$$\ddot{z} + \chi \dot{z} + \omega_0^2 z = D \cos \omega t \tag{8}$$

Нас интересует амплитуда напряжение. Решить это дифференциальное уравнение можно разными способами: подстановкой $z = A\cos(\omega t + \psi)$, методом векторных диаграмм или методом комплексных амплитуд – это дело вкуса. В результате получается

$$A(\omega) = \frac{D}{\sqrt{(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2}}.$$
 (9)

Если подставить выражения для всех коэффициентов, то получится весьма громоздкое выражение

$$A(\omega) = \frac{\frac{\alpha B_0 \pi r^2 N \varepsilon_0}{mR}}{\left[(\omega^2 - (2\pi f_0)^2)^2 + (\frac{1}{m} \left(\frac{2\gamma P_0 S}{c} - \frac{(\alpha B_0 \pi r^2 N)^2}{R} \right) \omega)^2 \right]^{\frac{1}{2}}},$$
(10)

поэтому допустимо оставить выражение для амплитуды в более простом виде (9), предварительно оценив все коэффициенты.

При вынужденных колебаниях с затуханием на некоторой частоте вблизи собственной наблюдается резонанс (максимум амплитуды), который наступает при минимуме знаменателя.

$$(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2 = \min$$

Исследуем выражение на экстремум стандартным способом.

$$\frac{d}{d\omega} [(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2] = 0$$

$$2(\omega^2 - \omega_0^2) 2\omega + 2\chi^2 \omega = 0$$

$$(\omega^2 - (\omega_0^2 - \chi^2/2))\omega = 0$$

Вторая производная исследуемой функции равна

$$\frac{d}{d\omega}[(\omega^2 - (\omega_0^2 - \chi^2/2))\omega] = 3\omega^2 - (\omega_0^2 - \chi^2/2)$$

У этого уравнения 3 корня $\omega_1 = 0$ и $\omega_{2,3} = \pm \sqrt{{\omega_0}^2 - \chi^2}/2$, правда, отрицательный корень физического смысла в себе не несет.

При небольшом затухании ($\omega_0^2 > \chi^2/2$) в точке $\omega_1 = 0$ локальный максимум (соответственно, минимум амплитуды), ведь вторая производная меньше нуля, а в точке $\omega_2 = \sqrt{\omega_0^2 - \chi^2/2}$ - локальный минимум (соответственно максимум амплитуды).

В случае же сильного затухания $(\omega_0^2 < \chi^2/2)$ ситуация коренным образом меняется, поскольку уравнение $(\omega^2 - (\omega_0^2 - \chi^2/2))\omega = 0$ имеет только один действительный корень $\omega_1 = 0$, причем вторая производная в этой точке больше нуля, что означает минимум выражения и максимум амплитуды. Таким образом, при сильном затухании резонанса не наблюдается, и максимальная амплитуда соответствует нулевой частоте.

В нашем случае $\omega_0 = 188c^{-1}$, а $\chi = 479c^{-1}$, соответственно мы имеем дело со

случаем сильного затухания $(\omega_0^2 < \chi^2/2)$, поэтому максимум амплитуды приходится на нулевую частоту и примерный график зависимости должен выглядеть так, как изображено на рисунке.

Ha частоте $f_0=30 arGamma u$ ($\omega_0=188c^{-1}$) амплитуда равна

$$A = D/(\chi \omega_0)$$

$$A = 1.74 \cdot 10^{-4} M = 0.174 MM (12)$$

3. Звуковая мощность.

Характерная зависимость амплитуды колебаний катушки от частоты напряжения (11)

$$P_{36}^{M2HOB} = \beta v^2 = \beta [-\omega A \sin(\omega t + \psi)]^2 = \frac{\beta \omega^2 D^2}{(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2} \sin^2(\omega t + \psi)$$
(13)

Это мгновенная мощность, но с практической точки зрения нас интересует средняя звуковая мощность, поэтому надо усреднить мгновенную мощность по периоду. Как известно, среднее значение $\sin^2(\omega t + \psi)$ по периоду равно $\frac{1}{2}$. Итого,

$$P_{36}(\omega) = \frac{\beta D^2}{2} \frac{\omega^2}{(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2}.$$
 (14)

Исследуем $P_{36}(\omega)$ на максимум.

$$\frac{d}{d\omega} \left[\frac{\omega^2}{(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2} \right] = \frac{2\omega((\omega^2 - \omega_0^2)^2 + (\chi \omega)^2) - \omega^2(2(\omega^2 - \omega_0^2)2\omega + 2\chi^2\omega)}{\left[(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2 \right]^2} = 0$$

$$\omega[\omega^4 + \omega_0^4 - 2\omega^2\omega_0^2 + \chi^2\omega^2 - 2\omega^4 + 2\omega_0^2\omega^2 - \chi^2\omega^2] = 0$$

$$\omega(\omega_0^4 - \omega^4) = 0$$

$$\omega(\omega^2 - \omega_0^2)(\omega_0^2 + \omega^2) = 0$$

Физический смысл имеют решения $\omega_1 = 0$ (соответствует минимуму мощности) и $\omega = \omega_0$ (соответствует максимуму мощности). Итак, звуковая мощность максимальна на частоте

$$\omega = \omega_0 = 188c^{-1}, \tag{15}$$

при этом мощность равна

$$P_{_{^{36}\,\text{max}}} = \frac{\beta D^2}{2\chi^2} = 0.0142Bm \,. \tag{16}$$

Потребляемая электрическая мощность $P_{_{2,1}}=arepsilon(t)I(t)\cos\phi$, где ϕ - сдвиг фаз между током

и напряжением. Сила тока $I = \frac{\varepsilon(t) + g\dot{z}}{R}$.

Оценим величину $g\dot{z} = -gA\omega\sin(\omega t + \psi)$. Пренебречь ей можно, если амплитуда $g\omega A$ будет много меньше ε_0 . Как видно по графику, с ростом частоты ω амплитуда $A(\omega)$ убывает, причем при больших частотах обратно пропорционально квадрату частоты. При малых частотах ωA мало, при больших тоже мало, а в средних частотах имеет максимум. Выражение $g\omega A = \frac{Dg\omega}{[(\omega^2 - \omega_0^2)^2 + (\chi\omega)^2]^{1/2}}$ ведет себя

так, как изображено на рисунке.

Для оценки можно воспользоваться рассчитанным в предыдущем пункте значением A на частоте $\omega_0 = 188c^{-1}$.

$$g\omega_0 A(\omega_0) = 0.103B$$

Поскольку в условии требуется не найти, а оценить величину КПД, можем пренебречь величиной $g\omega_0 A(\omega_0) = 0.103 B$ по сравнению с $\varepsilon_0 = 1 B$, что приведет к тому, что значение КПД получится чуть завышенным.

Тогда потребляемая м
гновенная мощность $P_{\rm SM}^{\rm M2H0B} = \frac{{\varepsilon_0}^2 \cos^2(\omega t)}{R}$, а среднее значение потребляемой мощности

$$P_{3A} = \frac{{\varepsilon_0}^2}{2R}. \tag{17}$$

Потребляемая электрическая мощность равна $P_{yy} = 0.125 Bm$.

Максимальный КПД равен

$$\eta_{\text{max}} = \frac{P_{36 \,\text{max}}}{P_{37}} = 0.113 \tag{18}$$

Для нахождения граничных частот рабочего диапазона надо решить уравнение

$$P_{36}(\omega_{n,6}) = \frac{P_{36 \text{ max}}}{2}$$

$$\frac{\beta D^2}{2} \frac{\omega^2}{(\omega^2 - \omega_0^2)^2 + (\chi \omega)^2} = \frac{1}{2} \frac{\beta D^2}{2\chi^2}$$

$$\omega^4 - (2\omega_0^2 + \chi^2)\omega^2 + \omega_0^4 = 0$$
(19)

$$\omega_{e,u} = \sqrt{(\omega_0^2 + \chi^2/2) \pm \chi \sqrt{\omega_0^2 + \chi^2/4}}$$
 (20)

Верхняя граничная частота равна

$$\omega_{e} = 544c^{-1}$$
 или $f_{e} = 86,6\Gamma u$. (21a)

Нижняя граничная частота равна

$$\omega_{n} = 65,0c^{-1}$$
 или $f_{n} = 10,3\Gamma \mu$. (216)

График зависимости звуковой мощности от частоты переменного напряжения изображен на рисунке.

Как видно, исследованный нами динамик хорошо подходит для воспроизведения низких частот (басов).

Зависимость звуковой мощности от частоты (22)