CS480 Translators

What is Bottom Up Parsing?
Chap. 4

Quiz #6 (Answers)

s=>051=>00511=>00011

- S->0S1 | 01 Indicate the handle for:
 - -000111
 - -00S11
- S->SS+ | SS* | a Indicate the handle for:
 - SSS+a*+
 - SS+a*a+
 - aaa*a++

Give a bottom up parse for 000111 and aaa*a++

LR(0) Conditions

- 1. For any configurating set containing the item
- A \rightarrow $\underline{u} \bullet \underline{x}\underline{v}$ there is no complete item B \rightarrow $\underline{w} \bullet$ in that set. In the tables, this translates to no shift-reduce conflict on any state. This means the successor function from that set either shifts to a new state or reduces, but not both.
- 2. There is at most one complete item $A \rightarrow u^{\bullet}$ in each configurating set. This translates to no reducereduce conflict on any state. The successor function has at most one reduction.

E ナー E ナー Create a LR(0) Parse Table

State on Stack	id	+	()	\$	E	т
0	s 4		s3			1	2
1		s5			accept		
2	r2	r2	r2	r2	r2		
3	s 4		s3			6	2
4	r4	r4	r4	r4	r4		
5	s 4		s3				8
6		s5		s7			
7	r3	r3	r3	r3	r3		
8	r1	r1	r1	r1	r1		

• Let's parse: id + (id)

What if we change the grammar?

Collection of Configurating Sets

Configurating set	Successor	Configurating set	Successor	
I0: E' -> •E	I1	I5: E -> E+•T	18	
() E -> •E+T	I1	T -> •(E)	13	
② E -> •T	12	T -> •id	14	
⊙ -> •(E)	13	T -> •id[E]	14	
⊕ r -> •id	14	I6: T → (E•)	17	
(3 1)-> •id[E]	14	E - > E•+T	15	
I1: E' →> E•	Accept	I7: T → (E)•	Reduce 3	
E - > E•+T	15	I8: E -> E+T•	Reduce 1	
I2: E →> T•	Reduce 2	19: T → id[•E]	I10	
I3: T →> (•E)	16	E -> •E+T	I10	
7 E -> •E+T	16	E -> •T	12	
[E -> •]T	12	T -> •(E)	13	
∠ T -> •(E)	I3 ~ 5	T -> •id	14	
T → •id	14 3	T -> •id[E]	14	
T -> •id[E]	14	I10: T → id[E•]	l11	
I4: T → id•	Reduce 4	E -> E•+T	15	
T -> id • [5]	19	I11: T → id[E]•	Reduce 5	

Construct SLR(1) Table

- 1. Construct $F = \{I_0, I_1, ... I_n\}$, the collection of configurating sets for G'.
- 2. State i is determined from I_i. The parsing actions for the state are determined as follows:
 - a) If A $\rightarrow \underline{u}$ is in I_i then set Action[i,a] to reduce A $\rightarrow \underline{u}$ for all a in Follow(A) (A not equal to S').
 - b) If S' \rightarrow S• is in I_i then set Action[i,\$] to accept.
 - c) If $A \rightarrow \underline{u} \cdot a\underline{v}$ is in I_i and successor(I_i , a) = I_j , then set Action[i,a] to shift j (a is a terminal).
- 3. The goto transitions for state i are constructed for all nonterminals A using the rule: If $successor(I_i, A) = I_i$, then Goto [i, A] = j.
- 4. All entries not defined by rules 2 and 3 are errors.
- 5. The initial state is the one constructed from the configurating set containing S' –>S.

What are the Follows? Tsit SUR(1)"

$$T \rightarrow (E)$$

$$T \rightarrow id$$

$$T \rightarrow id[E]$$

- Follow(T)?

SLR(1) Parse Table

State on Stack	id	+	()]	\$	Е	т
0	s4		s3					1	2
1		s5					accept		
2		r2		r2		r2	r2		
3	s4		s3					6	2
4		r4		r4	$\left(s9 \right)$	r4	r4		
5	s4		s3						8
6		s5		s7					
7		r3		r3		r3	r3		
8		r1		r1		r1	r1		
9	s4		s 3					10	2
10		s5				s11			
11		r5		r5		r5	r5		

Let's consider another example Follow [= 2+,) (5)

id

$$E -> E + T | T | V = E$$

$$E \rightarrow V = E$$

FULL ON (1)=3=3

Oregon State University

SLR(1) Conditions

- 1. For any item $A \rightarrow \underline{u} \bullet \underline{x} \underline{v}$ in the set, with terminal x, there is no complete item $B \rightarrow \underline{w} \bullet$ in that set with x in Follow(B). In the tables, this translates no shift-reduce conflict on any state. This means the successor function for x from that set either shifts to a new state or reduces, but not both.
- 2. For any two complete items $A \rightarrow \underline{u} \bullet$ and $\underline{B} \rightarrow v \bullet$ in the set, the follow sets must be disjoint, e.g. Follow(A) \cap Follow(B) is empty. This translates to no reduce-reduce conflict on any state. If more than one nonterminal could be reduced from this set, it must be possible to uniquely determine which using only one token of lookahead.

Quiz #7

- Determine if the grammar is LR(0) or SLR(1)
- OS->real IDLIST
- IDLIST->IDLIST, ID
- 3IDLIST->ID
- D->A|B|C|D

- T, 5'->·S S->.real ID
- Construct the corresponding parse table for - AIBICIP the grammar.
- Show how you would parse real A, B, C I3 S > real IDUST. RI IDUST-> IDUST., IDI

