Principal Minor Ideals with Matroid Theory

Special Session on Recent Advances in Commutative Algebra AMS Fall Sectional, University of Memphis

Ashley K. Wheeler

University of Arkansas, Fayetteville comp.uark.edu/~ashleykw

17 October, 2015

Table of Contents

Ideals Generated by Principal Minors

Size t = 2 Principal Minors

Size t = n - 1 Principal Minors

Size t=n-2 Principal Minors: Rank r=n-2 Case

Connection to Matroid Theory K-Representable Matroids Matroid Subvarieties of a Grassmannian Positroid Varieties

Ideals Generated by Principal Minors

Thank-you for the invitation to speak!

$$K[X] = \text{polynomial ring over } K \text{ with variables}$$

$$x_{11}, \dots, x_{rs}$$

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1s} \\ \vdots & \ddots & \ddots & \vdots \\ x_{r1} & \cdots & \cdots & x_{rs} \end{pmatrix}$$

The **principal** minors of an $n \times n$ matrix are those whose defining row and column indices are the same.

 $\mathfrak{B}_t\!=\!$ ideal in K[X] generated by the size t principal minors of the generic square matrix X

Size t = 2 Principal Minors

Theorem (–)

For all n, $K[X]/\mathfrak{B}_2$ is a complete intersection, is isomorphic to a K-algebra generated by monomials, and is normal. In particular, it is strongly F-regular (characteristic p>0 case) and Gorenstein.

The proof exploits the fact that \mathfrak{B}_2 is toric. For t>2 it becomes more convenient to study components of $\mathcal{V}(\mathfrak{B}_t)$ by fixing their matrix rank.

$$\mathcal{Y}_{n,r,t} = \mathcal{V}(\mathfrak{B}_t) \bigcap \{n \times n \text{ matrices of rank } r\}$$

Size t = n - 1 Principal Minors

Lemma (-)

In the localized ring $K[X]_{\det X}$, the K-algebra automorphism $X \to X^{-1}$ induces an isomorphism of the schemes defined, respectively, by $\mathfrak{B}_t \cdot K[X]_{\det X}$ and $\mathfrak{B}_{n-t} \cdot K[X]_{\det X}$.

Theorem (-)

For $n \geq 4$, the minimal primes for \mathfrak{B}_{n-1} are the determinantal ideal I_{n-1} and the contraction of $\ker \phi$ to K[X], which we denote by \mathfrak{Q}_{n-1} , where ϕ is the ring homomorphism

$$\phi: K[X]_{\det X} \to \left(\frac{K[X]}{\mathfrak{B}_1}\right)_{\det X}$$
$$X \mapsto (\det X) \cdot X^{-1}$$

A quick corollary:
$$\operatorname{ht}(\mathfrak{B}_t) \leq \binom{n+1}{2} - \binom{t+2}{2} + 4$$
 for $n \neq 3$.

An even more immediate corollary: $\operatorname{ht}(\mathfrak{Q}_{n-1})=n$. Consequently, principal minor ideals are generally not Cohen-Macaulay. By Hochster+Roberts, it follows that, in particular, their quotients cannot be rings of invariants.

Note, the two components of $\mathcal{V}\left(\mathfrak{B}_{n-1}\right)$ are:

(1)
$$V(I_{n-1}) = \bigcup_{r' < n-1} y_{n,r',n-1}$$

(2)
$$\mathcal{V}(\mathfrak{Q}_{n-1}) = \overline{\mathcal{Y}}_{n,n,n-1} \supset \mathcal{Y}_{n,n-1,n-1}$$

Size t = n - 2 Principal Minors: Rank r = n - 2 Case

When $t \neq 1, 2, n-1, n$ identifying the components of $\mathcal{V}(\mathfrak{B}_t)$ becomes harder.

Theorem (-)

$$\dim \, \mathcal{Y}_{n,n-2,n-2} = n^2 - 4 - n$$

Note, a matrix of rank r can be decomposed as a product of two matrices, so we can identify $y_{n,r,r}$ with a product of two Grassmann varieties.

$$A \in \mathcal{Y}_{n,r,r}$$

$$(\operatorname{col} A, \operatorname{row} A) \in \operatorname{Grass}_K(r,n) \times \operatorname{Grass}_K(r,n)$$

Let
$$\mathfrak{G} = \operatorname{Grass}(n-2,n)$$
.


```
Size t=2 Principal Minors
Size t=n-1 Principal Minors
Size t=n-2 Principal Minors; Rank r=n-2 Case
```

Given $\mathbf{g} \in \mathcal{G}$, construct $\operatorname{Graph}(\mathbf{g})$ as follows: a vertex represents an index; an edge joining two vertices indicates the Plücker coordinate with complementary indices vanishes.

Example

$$\mathbf{g}_{U} \left(\begin{array}{ccccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \hline & 0 & 0 & 1 \\ \hline & 0 & 1 & 0 \\ \hline & 0 & 0 & 1 \\ \hline & 0 & 1 & 0 \\ \hline & 0 & 0 & 0 \\ \hline &$$

Proposition

 $Graph(\mathbf{g})$ is well-defined.

Given a graph G, if there exists $\mathbf{g} \in \mathcal{G}$ such that $\operatorname{Graph}(\mathbf{g}) = G$ then G is called permissible. A subvariety $\mathcal{S} \subseteq \mathcal{G}$ that is the set of all points with the same permissible graph is denoted $\operatorname{Graph}(\mathcal{S})$.

Theorem (–)

A product $\mathbb{S} \times \mathbb{T}$ of permissible subvarieties corresponds to a component of $\mathcal{Y}_{n,n-2,n-2}$. Furthermore (modulo transposition of \mathbb{S} and \mathbb{T}),

- (a) Graph (S) is the union of a complete graph of order a>1 and n-a isolated vertices;
- (b) $Graph(\mathfrak{T})$ is the complement of $Graph(\mathfrak{S})$.

Size t=2 Principal Minors Size t=n-1 Principal Minors Size t=n-2 Principal Minors: Rank r=n-2 Case

Theorem (–)

Suppose $S \times T$ is a permissible pair and Graph(S) has a maximal complete subgraph of order a. Then

- (a) $\operatorname{codim} S = a 1$,
- (b) $\operatorname{codim} \mathfrak{T} = 2(n-a)$, and
- (c) (corollary) $2 \le a \le n-1$. It follows that the minimal codimension of such 8×3 is n.

Example (Permissible Pairs for n = 5)

$Graph(S) \quad Graph(T)$

$$codim(S \times T) = 7$$

$$\operatorname{codim}(\mathcal{S} \times \mathcal{T}) = 6$$

 $codim(S \times T) = 5$

Connection to Matroid Theory

Matroids are a type of combinatorial data used to describe many seemingly unrelated objects in mathematics, including graphs, transversals, vector spaces, and networks. *Matroid* has many equivalent definitions.

Definition (Independence Axioms)

Let E denote a finite set and 2^E its power set. Suppose $\mathfrak{I}\subseteq 2^E$. Then the system $\mathcal{M}=(E,\mathfrak{I})$ is a **matroid** if and only if

- (1) $\emptyset \in \mathfrak{I}$,
- (2) if $S \in \mathcal{I}$ and $T \subseteq S$ then $T \in \mathcal{I}$, and
- (3) (Independence Augmentation Axiom) if $S, T \in \mathcal{I}$ and |S| > |T|, then there exists $e \in S \setminus T$ such that $T \cup \{e\} \in \mathcal{I}$.

K-Representable Matroids

A matroid defined by a K-vector space is called K-representable. Let A denote an $r \times n$ matrix and put

$$E = \{ \text{columns of } A \}$$

 $\mathfrak{I} = \{ \text{collections of linearly independent columns} \}$

$$\mathfrak{D} = 2^E \setminus \mathfrak{I}$$

 $\mathcal{B} = \{ \text{sets in } \mathcal{I} \text{ with maximal cardinality} \}$

Question

The Independence Augmentation Axiom implies all maximal sets in \mathfrak{I} have the same cardinality. What is it? To what do $\mathfrak{D}, \mathfrak{B}$ correspond?

Using correspondingly prescribed axioms, the matroid $\mathcal{M}=(E,\mathfrak{I})$ can also be defined using \mathcal{D} and \mathcal{B} . Another equivalent definition:

Definition (Rank Axioms)

A function $r:2^E\to\mathbb{Z}_+$ is the **rank function** of a matroid $\mathcal{M}=(E,r)$ if and only if for all $S,T\subseteq E$

- (a) $0 \le r(S) \le |S|$,
- (b) if $T \subseteq S$ then $r(T) \le r(S)$, and
- (c) (Submodularity) $r(S) + r(T) \ge r(S \cup T) + r(S \cap T)$.

Matroid Subvarieties of a Grassmannian

Fix r < n. We get a matroid structure on the finite set of columns of a generic $r \times n$ matrix when we prescribe a subset of Plücker coordinates to vanish; let $\mathcal D$ denote the set of indices for the vanishing Plücker coordinates.

Given such a matroid \mathcal{M} , the **open matroid variety** is the subset of points in $\mathcal{G} = \operatorname{Grass}(r,n)$ whose matroid is \mathcal{M} . Its Zariski closure is called a **matroid variety**, which we shall denote by $\mathcal{V}(\mathcal{M})$.

Example

Schubert and Richardson varieties are matroid varieties.

The following example shows we cannot, in general, simply use the indices from ${\mathcal D}$ on the Plücker variables to generate the defining ideal for ${\mathcal V}({\mathcal M})$. For any Plücker coordinate with index $\underline{{\bf i}}$, let $x_{\underline{{\bf i}}}$ denote the correspondingly indexed variable in the homogeneous coordinate ring for ${\mathfrak G}$.

Example (Ford)

Put r=3, n=7, and $\mathcal{D}=\{\{1,2,7\},\{3,4,7\},\{5,6,7\}\}$, the set of indices for Plücker coordinates we require to vanish. One hopes the defining ideal for $\mathcal{V}\left(E,\mathfrak{I}\right)$ is

$$I = (x_{\{1,4,7\}}, x_{\{3,4,7\}}, x_{\{5,6,7\}}).$$

However, the defining ideal is actually

$$J = I + (x_{\{1,2,4\}}x_{\{3,5,6\}} - x_{\{1,2,3\}}x_{\{4,5,6\}}).$$

Positroid Varieties

A particular class of matroid varieties exists, however, where the geometry is better behaved. A **positroid** is a matroid determined by a rank condition on cyclic intervals in $E = \{1, \ldots, n\}$, where a cyclic interval is an ordinary interval or its complement.

Positroid varieties are the matroid varieties we get from positroids.

Theorem (Knutson+Lam+Speyer)

Positroid varieties are normal, Cohen-Macaulay, have rational singularities, and their defining ideals are given by Plücker variables.

Theorem (-)

If an irreducible algebraic set is defined by Plücker variables for Grass(n-2,n) then it is a positroid variety.

Question (Current Work)

What about for $\operatorname{Grass}(r,n)$ for general r? If irreducible algebraic subsets defined by Plücker variables are positroidal, it will follow that the components of $\mathfrak{Y}_{n,r,r}\subset\mathcal{V}\left(\mathfrak{B}_{r}\right)$ are normal, Cohen-Macaulay, and have rational singularities.

Proposition

Let $R = K[\wedge^r X] \subset K[X]$ and suppose $P \subset R$ is a prime ideal. Then the $r \times r$ minors in P give a rank r representable matroid.

Question

What are the conditions for two prime ideals in $K[\wedge^r X]$ to minimally cover the homogeneous maximal ideal? When is it possible, if ever, to partition the entries of $\wedge^r X$ so that the respective ideals they generate are prime?

Idea: Use the circuit definition of a matroid.

Definition (Circuit Axioms)

A collection $\mathcal{C} \subset 2^E$ is the set of **circuits** of a matroid if and only if

- (1) $\emptyset \notin \mathcal{C}$,
- (2) if $C_1, C_2 \in \mathcal{C}$ and $C_1 \subseteq C_2$ then $C_1 = C_2$, and
- (3) (Circuit Elimination Axiom) if $C_1, C_2 \in \mathcal{C}$, $C_1 \neq C_2$, and $e \in C_1 \cap C_2$, then there exists $C_3 \in \mathcal{C}$ such that $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.