Desafio: Verificar se vetores formam uma base

Projete um algoritmo Python para determinar se um conjunto de vetores forma uma base para um espaço vetorial.

Declaração

Escreva uma função que aceite uma coleção de vetores, checkifBasis, B= {v1,v2,...,vn}, e retorne se eles formam uma base do espaço vetorial gerado por eles. Para isso, os vetores precisam ser linearmente independentes e gerar o espaço vetorial (ou seja, a dimensão do espaço deve ser igual ao número de vetores).

A função deve retornar True se os vetores formarem uma base, e False caso contrário. Suponha que todos os vetores estejam no mesmo espaço vetorial.

Entradas e saídas de amostra

A tabela a seguir fornece exemplos de entradas (lista de vetores ou linhas de uma matriz) e saídas correspondentes:

Entrada	Saída
B:[[1,0],[0,1]]B: [[1,0],[0,1]]	True
B:[[1,2],[2,4]]B: [[1,2],[2,4]]	False
B:[[1,2,3],[0,1,4],[5,6,0]]B: [[1,2,3],[0,1,4],[5,6,0]]	True
B:[[1,0,0],[0,1,0]]B: [[1,0,0],[0,1,0]]	False

Solução

Para saber se um conjunto de vetores forma uma base, utilizamos a **classificação (rank)** da matriz formada pelos vetores. A classificação (ou posto) nos informa o número de colunas (ou linhas) linearmente independentes da matriz.

Se o **rank da matriz** for igual ao número de vetores **e** à dimensão do espaço vetorial (número de coordenadas por vetor), então os vetores formam uma base. Caso contrário, não formam.

```
import numpy as np
def checklfBasis(B: np.array) → bool:
  .. .. ..
  Verifica se um conjunto de vetores forma uma base do espaço vetorial.
  Parâmetros:
  B (np.array): Uma matriz onde cada linha (ou coluna) representa um vetor.
  Retorna:
  bool: True se os vetores forem linearmente independentes e cobrirem o esr
  # Obtemos o número de vetores (linhas da matriz)
  num_vetores = B.shape[0]
  # Obtemos a dimensão do espaço vetorial (número de componentes em ca
  dimensao = B.shape[1]
  # Calcula o posto (rank) da matriz de vetores
  rank = np.linalg.matrix_rank(B)
  # Para formar uma base:
  # 1. O número de vetores deve ser igual à dimensão do espaço vetorial
  # 2. O rank (posto) deve ser igual à dimensão, indicando independência e g
  if rank == dimensao and num_vetores == dimensao:
    return True
  else:
    return False
```

• np.linalg.matrix_rank(B) calcula quantos vetores são linearmente independentes.

- Uma base precisa de exatamente n vetores independentes em um espaço de dimensão n.
- Portanto, conferimos se o número de vetores e a dimensão são iguais, e se o rank também é igual a isso.