4 SISTEMAS DE NUMERAÇÃO RESIDUAL

Metas:

Estudar uma maneira de codificar grandes números como uma coleção de números menores para simplificar e acelerar algumas operações

Destaques do capítulo:

Conjuntos de módulos, gama, operações aritméticas Muitos conjuntos de módulos possíveis: *tradeoffs* Conversões entre RNS e binário Teorema chinês do resto Por que os aplicações de RNS são limitados?

SI IDF 2

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

- 4.1 Fundamentação RNS.
- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS.
- 4.5 Implementação em hardware.

SI IDE 3

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

4.1 Fundamentação RNS.

- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS.
- 4.5 Implementação em hardware.

4.1. FUNDAMENTAÇÃO - RNS

No Sistema Numérico de Resíduos um número binário é convertido em paralelo para um conjunto de **resíduos** correspondente aos restos da divisão por um conjunto de **módulos**.

$$M = \{m_1, m_2, ..., m_n\}$$

Os módulos devem ser primos entre si para permitir a conversão do valor residual para uma solução binária final.

$$MDC(m_i, m_j) = 1$$
 , onde $i \neq j$

A faixa dinâmica (DR) é dada por:

$$DR = m_1 \times m_2 \times ... \times m_n$$

Assim:

Binaria

Residuos para os modulos m_i

$$X = (R_1, R_2, ..., R_n)$$
 $R_i = X \mod m_i = |X|_{m_i} \quad , \quad 0 \le R_i < m_i$

SI IDE 53

4.1. FUNDAMENTAÇÃO - RNS

EXEMPLO 4.1: Para $M = \{5, 8, 11\}$, as representações de 32_{10} e 48_{10} seriam:

$$|32|_5 = 2,$$
 $|32|_8 = 0,$ $|32|_{11} = 10$
 $|48|_5 = 3,$ $|48|_8 = 0,$ $|48|_{11} = 4.$

A soma de 32_{10} e 48_{10} , utilizando RNS, seria:

$$|2+3|_5 = |0|_5,$$
 $|0+0|_8 = |0|_8,$ $|10+4|_{11} = |3|_{11}$

Fazendo a verificação $(32_{10}+48_{10}=80_{10})$:

$$|80|_5 = 0,$$
 $|80|_8 = 0,$ $|80|_{11} = 3$

O intervalo de representação (DR) é a multiplicação dos módulos 5x8x11=440 ou [0, DR-1] = [0, 439]*

^{*} O DR também pode ser representado pelo número de bits da multiplicação.

SI IDE 6

4.1. FUNDAMENTAÇÃO — RNS

O produto M do módulo k relativamente primo é o intervalo dinâmico

$$M = m_{k-1} \times ... \times m_1 \times m_0$$

Para RNS(8 | 7 | 5 | 3), $M = 8 \times 7 \times 5 \times 3 = 840$

Números negativos: complemento relativo a M

$$\langle -x \rangle_{m_i} = \langle M - x \rangle_{m_i}$$

1 = $(1 | 1 | 1 | 1)_{RNS}$
-1 = $(840 - 1 | 840 - 1 | 840 - 1 | 840 - 1)_{RNS} = (7 | 6 | 4 | 2)_{RNS}$

Here are some example numbers in our default RNS(8 | 7 | 5 | 3):

```
Representa 0 ou 840 ou -840...
(0 | 0 | 0 | 0)_{RNS}
(1 | 1 | 1 | 1)_{RNS}
                              Representa 1 ou 841 ou -839. . .
(2 | 2 | 2 | 2)_{RNS}
                              Representa 2 ou 842 ou -838. . .
                              Representa 8 ou 848 ou -832. . .
(0 | 1 | 3 | 2)_{RNS}
(5 | 0 | 1 | 0)<sub>RNS</sub>
                              Representa 21 ou 861 ou -819. . .
(0 | 1 | 4 | 1)_{RNS}
                              Representa 64 ou 904 ou -776. . .
                              Representa 770 ou 1610 ou -70. . .
(2 | 0 | 0 | 2)_{RNS}
(7 | 6 | 4 | 2)_{RNS}
                              Representa 839 ou 1679 ou -1 . . .
```

Podemos considerar o intervalo de RNS (8 | 7 | 5 | 3) como [-420, 419] ou qualquer outro conjunto de 840 inteiros consecutivos

4.1. FUNDAMENTAÇÃO — RNS

Nos Sistemas de Números de Resíduos, um número binário é convertido em paralelo para um conjunto de palavras residuais correspondentes aos restos de valores de módulos:

4.1. FUNDAMENTAÇÃO — RNS

Para o conjunto de módulos {15,16,17}={2⁴-1, 2⁴, 2⁴+1} e uma entrada G=33, a solução para a operação Q=33*2+33=99.

A solução binária requer grandes multiplicadores e somadores em comparação com a solução RNS.

4.1. FUNDAMENTAÇÃO — RNS

Para o conjunto de módulos {13,16,19}={2⁴-3, 2⁴, 2⁴+3} e uma entrada G=33, a solução para a operação Q=33*2+33=99.

A solução binária requer grandes multiplicadores e somadores em comparação com a solução RNS.

PROBLEMAS

Problema 4.1. Obtenha as faixas dinâmicas para os seguintes conjuntos de módulos: a) $M1=\{3,5,7,17\}$; b) $M2=\{15,16,17\}$; c) $M3=\{7,13,23\}$.

Problema 4.2. Indique os valores de saída para todos os blocos. A saída final está na faixa dinâmica permitida para o modulo?

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

- 4.1 Fundamentação RNS.
- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS.
- 4.5 Implementação em hardware.

לו חחווה

4.2 CODIFICAÇÃO E DECODIFICAÇÃO EM RNS

Quanto mais a quantidade de computação executada entre o conversão inicial e conversão inversa final (reconversão), maiores são os benefícios da representação RNS.

4.2.1 CONVERSÃO BINARIA-RNS

EXEMPLO 4.2: Represente o número $y = (1010\ 0100)_2 = (164)_{10}$ em RNS (8 | 7 | 5 | 3)

Obtemos $y = 2^7 + 2^5 + 2^2$;

$$x_3 = \langle y \rangle_8 = \langle 4 + 0 + 0 \rangle_8 = 4$$

$$x_2 = \langle y \rangle_7 = \langle 2 + 4 + 4 \rangle_7 = 3$$

$$x_1 = \langle y \rangle_5 = \langle 3 + 2 + 4 \rangle_5 = 4$$

$$x_0 = \langle y \rangle_3 = \langle 2 + 2 + 1 \rangle_3 = 2$$

TABELA 4.1 RESIIDUOS DAS 10 PRIMEIRAS POTENCIAS 2

I	21	$\langle 2' \rangle_8$	$\langle 2' \rangle_7$	$\langle 2' \rangle_5$	$\langle 2 \rangle_3$
0	1	1	1	1	1
1	2	2	2	2	2
2	4	4	4	4	1
3	8	0	1	3	2
4	16	0	2	1	1
5	32	0	4	2	2
6	64	Ο	1	4	1
7	128	0	2	3	2
8	256	0	4	1	1
9	512	0	1	2	2

LIDE 14

4.2.1 CONVERSÃO BINARIA-RNS

EXEMPLO 4.3: Represente o número $y = (1010\ 0100)_2 = (164)_{10}$ em RNS(15 | 16 | 17)

Obtemos $y = 2^7 + 2^5 + 2^2$;

$$x_3 = \langle y \rangle_{15} = \langle 8 + 2 + 4 \rangle_{15} = 14$$

 $x_2 = \langle y \rangle_{16} = \langle 0 + 0 + 4 \rangle_{16} = 4$
 $x_1 = \langle y \rangle_{17} = \langle 9 + 15 + 4 \rangle_{17} = 11$

TABELA 4.2 RESIIDUOS DAS 10 PRIMEIRAS POTENCIAS 2

I	2'	⟨2⟩ ₁₅	$\langle 2' \rangle_{16}$	⟨2⟩ ₁₇
0	1	1	1	1
1	2	2	2	2
2	4	4	4	4
3	8	8	8	8
4	16	1	0	16
5	32	2	O	15
6	64	4	0	13
7	128	8	0	9
8	256	1	0	1
9	512	2	Ο	2

4.2.2 CONVERSÃO RNS-BINARIO

Quebra-cabeça, devido ao estudioso chinês Sun Tzu, há mais de 1500 anos

Que número tem os restos de 2, 3 e 2? quando dividido por 7, 5 e 3, respectivamente?

$$X = (2 | 3 | 2)_{RNS(7|5|3)} = (?)_{TEN}$$

4.2.2 CONVERSÃO RNS-BINARIO

A representação RNS pode ser convertida de volta para binário (X) usando:

a) Teorema Chinês do Resto (CRT):

inverse of
$$\hat{m}_i$$
 with respect to modulus m_i
$$X = \left|\sum_{i=1}^n |V_i R_i|_{\hat{m}_1}\right|_{\hat{m}_1} m_1 + R_1 \quad \text{, onde} \quad V_1 = \frac{\left|\hat{m}_1^{-1}\right|_{m_1} \hat{m}_1 - 1}{m_1} \ \, V_i = \left|\hat{m}_i^{-1}\right|_{m_i} \frac{\hat{m}_i}{m_1} \quad \text{ for } \quad 2 \leq i \leq n$$

4.2.2 CONVERSÃO RNS-BINARIO

EXEMPLO 4.4: $\{m_1, m_2, m_3\} = \{16, 15, 17\}$ e $\{R_1, R_2, R_3\} = \{15, 14, 16\}$:

a) Teorema Chinês do Resto (CRT):

$$X = \left|\sum_{i=1}^n \hat{m}_i \left|\hat{m}_i^{-1}
ight|_{m_i} imes R_i
ight|_M$$
 , onde $M = \prod_{i=1}^n m_i$ $\hat{m}_i = M/m_i$ $\left|\left|\hat{m}_i^{-1}
ight|_{m_i} \hat{m}_i
ight|_{m_i} = 1$

b) Novo CRT-I:

$$X = \left|\sum_{i=1}^n |V_i R_i|_{\hat{m}_1}\right|_{\hat{m}_1} m_1 + R_1 \quad \text{, onde} \quad V_1 = \frac{\left|\hat{m}_1^{-1}\right|_{m_1} \hat{m}_1 - 1}{m_1} \cdot V_i = \left|\hat{m}_i^{-1}\right|_{m_i} \frac{\hat{m}_i}{m_1} \quad \text{for} \quad 2 \leq i \leq n$$

PROBLEMAS

Problema 4.3. Represente o número $y = 1010\ 0100_2 = 200_{10}$ para os seguintes conjuntos de módulos: a) M1={3,5,7,17}; b) M2= {16,15,17}; c) M3= {7,13, 23}.

Problema 4.4. Obtenha o valor de saída aplicando a equação CRT para os seguintes conjuntos de módulos:

- a) $\{m_1, m_2, m3, m4\} = \{3,5,7,17\}$ e $\{R1,R2,R3,R4\} = \{2, 0, 4, 13\};$
- b) $\{m_1, m2, m3\} = \{16, 15, 17\} \in \{R1, R2, R3\} = \{8, 5, 13\};$
- c) $\{m_1, m2, m3\} = \{7,13, 23\} \in \{R1, R2, R3\} = \{4, 5, 16\}.$

Problema 4.5. Obtenha o valor de saída aplicando a equação Novo CRT-I para os módulos apresentados no exemplo anterior.

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

- 4.1 Fundamentação RNS.
- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS.
- 4.5 Implementação em hardware.

4.3 ARITMÉTICA EM RNS

Quanto mais a quantidade de computação executada entre o conversão inicial e conversão inversa final (reconversão), maiores são os benefícios da representação RNS.

SI IDF 2

4.3 ARITMÉTICA EM RNS

```
Y = (0100 \ 0101)_2 = (69)_{10} \text{ em RNS}(8 \ | 7 \ | 5 \ | 3) \text{ e}

Z = (0000 \ 1100)_2 = (12)_{10} \text{ em RNS}(8 \ | 7 \ | 5 \ | 3), são

(5 \ | 6 \ | 4 \ | 0)_{RNS(8|7|5|3)} \text{ e} (4 \ | 5 \ | 2 \ | 0)_{RNS(8|7|5|3)}
```

Multiplicação de Y e Z:

$$\langle 5 \times 4 \rangle_{8}$$
=4; $\langle 6 \times 5 \rangle_{7}$ =2; $\langle 4 \times 2 \rangle_{5}$ =3; $\langle 0 \times 0 \rangle_{3}$ =0 (4 | 2 | 3 | 0)_{RNS(8|7|5|3)}

Soma:

$$\langle 5 + 4 \rangle_8 = 1$$
; $\langle 6 + 5 \rangle_7 = 4$; $\langle 4 + 2 \rangle_5 = 1$; $\langle 0 + 0 \rangle_3 = 0$
(1 | 4 | 1 | 0)_{RNS(8|7|5|3)}

PROBLEMAS

Problema 4.6. Para umas entradas $Y=13_{10}$ e $Z=15_{10}$ faça as operações $(YxZ)_{RNS}$ e $(Y+Z)_{RNS}$ para os conjunto de módulos:

- a) $M1={3,5,7,17};$
- b) M2= {16,15,17};
- c) $M3 = \{7,13,23\}.$

Problema 4.7. Para umas entradas $Y=16_{10}$ e $Z=9_{10}$ faça a operação $(YxZ+Y)_{RNS}$ para os conjunto de módulos:

- a) $M1={3,5,7,17};$
- b) M2= {16,15,17};
- c) $M3 = \{7,13,23\}.$

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

- 4.1 Fundamentação RNS.
- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS
- 4.5 Implementação em hardware.

4.4 ESCOLHENDO O CONJUNTO DE MÓDULOS

Faixa Dinámica (DR) para nosso RNS: valores decimais [0, 100 000]

Estratégia 1: Para minimizar a escolha de módulos com valores grandes, e assim garantir aritmética de alta velocidade, escolha os números primos em sequência.

Escolher $m_0 = 2$, $m_1 = 3$, $m_2 = 5$, etc. até $m_5 = 13$:

$$M = 30030$$

Inadequado

$$M = 510510$$

Grande demais

$$M = 102102$$
 Exato!

5 + 4 + 4 + 3 + 2 + 1 = 19 bits

Ajuste fino: combinar pares de módulos 2 & 13 (26) e 3 & 7 (21) RNS(26 | 21 | 17 | 11) M = 102102

4.4 ESCOLHENDO O CONJUNTO DE MÓDULOS

Intervalo de destino para nosso RNS: valores decimais [0, 100 000]

Estratégia 2: Para simplificar as operações modulares (mod m_i), escolher unicamente modulos da forma 2^a or $2^a - 1$, "Modulos de baixo custo"

$$RNS(2^{a_{k-1}} | 2^{a_{k-2}} - 1 | \dots | 2^{a_1} - 1 | 2^{a_0} - 1)$$

Podemos ter unicamente módulos impar 2^{a_i} – 1 e 2^{a_j} – 1 são coprimos se a_i e a_i são primos

RNS(2 ³ 2 ³ -1 2 ² -1)	bases: 3, 2	M = 168
RNS(2 ⁴ 2 ⁴ -1 2 ³ -1)	bases: 4, 3	M = 1680
RNS(2 ⁵ 2 ⁵ -1 2 ³ -1 2 ² -1)	bases: 5, 3, 2	M = 20832
RNS(2 ⁵ 2 ⁵ -1 2 ⁴ -1 2 ³ -1)	bases: 5, 4, 3	M = 104160

Comparação

RNS(15 13 11 2 ³ 7)	18 bits	M = 120120
RNS(2 ⁵ 2 ⁵ -1 2 ⁴ -1 2 ³ -1)	17 bits	M = 104160

SI IDE 26

4.4 ESCOLHENDO O CONJUNTO DE MÓDULOS

Intervalo de destino para nosso RNS: valores decimais [0, 100 000]

Estratégia 3: Para simplificar as operações modulares (mod m_i), escolher módulos das forma 2^a , $2^a - 1$, ou $2^a + 1$

RNS(
$$2^{a_{k-1}} | 2^{a_{k-2}} \pm 1 | \dots | 2^{a_1} \pm 1 | 2^{a_0} \pm 1$$
)

Podemos ter unicamente módulos impar 2^{a_i} – 1 e 2^{a_j} + 1sao primos

RNS(
$$2^5 \mid 2^4 - 1 \mid 2^4 + 1 \mid 2^3 - 1$$
) $M = 57120$
RNS($2^5 \mid 2^4 + 1 \mid 2^3 + 1 \mid 2^3 - 1 \mid 2^2 - 1$) $M = 102816$

O Modulo $2^a + 1$ não é tão conveniente como $2^a - 1$ (precisa de um bit mais de resíduo e as operações modulares não são tão simples)

4.4 ESCOLHENDO O CONJUNTO DE MÓDULOS

Foram mostradas 3 estratégias para seleção de modulo tendo em consideração os módulos mais eficientes.

A solução parece ir no uso de conjunto com muitos módulos para minimizar o número de bits por canal modular. No entanto quanto mais módulos no conjunto a conversão final RNS-bin será mais complexa.

Aqui é mostrado a escolha de conjunto de módulos para conversores RNS-bin eficientes:

Conjunto de módulos	DR	Ano
$\{2^n, 2^n \pm 1\}$	3n	2002
$\{2^{2n}, 2^n \pm 1\}$	4n	2004
$\{2^n \pm 1, 2^n \pm 3\}$	4n	2004
$\left\{2^{n},2^{n}\pm1,2^{n}\pm2^{(n+1)/2}+1\right\}$	5n	2005
$\left\{ 2^{n},2^{n}\pm1,2^{n\pm1}-1 ight\}$	5n	2007
$\left\{2^{2n},2^n\pm 1,2^{2n}+1\right\}$	6n	2010
$\left\{2^{n}, 2^{n} \pm 1, 2^{n} \pm 2^{(n+1)/2} + 1, 2^{n+1} + 1\right\}$	6n + 1	2013
$\left\{2^{2n}, 2^n \pm 1, 2^n \pm 2^{(n+1)/2} + 1, 2^{n+1} + 1\right\}$	7n + 1	2013
$\left\{2^{3n}, 2^n \pm 1, 2^n \pm 2^{(n+1)/2} + 1, 2^{n+1} + 1\right\}$	8n + 1	2013
$\{2^{2n}, 2^n \pm 1, 2^n \pm k_1, 2^n \pm k_2, \dots, 2^n \pm k_f\}$	(2f + 3)n	2014

4.4 ESCOLHENDO O CONJUNTO DE MÓDULOS

Foram mostradas 3 estratégias para seleção de modulo tendo em consideração os módulos mais eficientes.

A solução parece ir no uso de conjunto com muitos módulos para minimizar o número de bits por canal modular. No entanto quanto mais módulos no conjunto a conversão final RNS-bin será mais complexa.

Aqui é mostrado a escolha de conjunto de módulos para conversores RNS-bin eficientes:

Vamos usar os conjuntos como estudos de caso

	Conjunto de módulos	DR	Ano
M1	$\{2^n, 2^n \pm 1\}$	3 <i>n</i>	2002
		4n	2004
110	$\{2^n \pm 1, 2^n \pm 3\}$	4n	2004
VIZ	$\{2^{n} \pm 1, 2^{n} \pm 3\}$ $\{2^{n}, 2^{n} \pm 1, 2^{n} \pm 2^{(n+1)/2} + 1\}$	5n	2005
	$\left\{ 2^{n},2^{n}\pm1,2^{n\pm1}-1 ight\}$	5 <i>n</i>	2007
	$\left\{ 2^{2n}, 2^n \pm 1, 2^{2n} + 1 \right\}$	6 <i>n</i>	2010
$\{2^n$	$2^{n}\pm 1, 2^{n}\pm 2^{(n+1)/2}+1, 2^{n+1}+1$	6n + 1	2013
$\{2^{2n}$	$\{1,2^n\pm 1,2^n\pm 2^{(n+1)/2}+1,2^{n+1}+1\}$	7n + 1	2013
$\{2^{3n}$	$\{1,2^n\pm 1,2^n\pm 2^{(n+1)/2}+1,2^{n+1}+1\}$	8n + 1	2013
$\{2^{2n}$	$\{1,2^n\pm 1,2^n\pm k_1,2^n\pm k_2,,2^n\pm k_f\}$	(2f + 3)n	2014

PROBLEMAS

Problema 4.8. Aplique as três estratégias apresentadas na teoria para obter uma Faixa Dinâmica (DR) com valores de saída [0, 200 000].

4 SISTEMAS DE NUMERAÇÃO RESIDUAL

- 4.1 Fundamentação RNS.
- 4.2 Codificação e Decodificação em RNS.
 - 4.2.1 Conversão Binário para RNS.
 - 4.2.2 Conversão RNS para Binário.
- 4.3 Aritmética em RNS.
- 4.4 Escolhendo o Módulo RNS.
- 4.5 Implementação em hardware.

4.5 IMPLEMENTAÇÃO EM HARDWARE

$$M1=\{2^{2n}, 2^{n}-1, 2^{n}+1\}$$

- Conversor Binário-RNS (Direto) ←
- 2. Unidade aritmética RNS (somadores e multiplicadores) ← A ser visto em outros capítulos
- 3. Conversor RNS-Binário (Reverso) ← —

$$M2=\{2^{2n}, 2^n-3, 2^n+3\}$$

- 1. Conversor Binário-RNS (Direto) ← —
- 2. Unidade aritmética RNS (somadores e multiplicadores) ← A ser visto em outros capítulos
- 3. Conversor RNS-Binário (Reverso) ← —

- Blocos básicos
- Conversor direto
- Unidade aritmética
- 3. Conversor reverso

Um numero inteiro $X = \{x_{(4n-1)}, \dots, x_1, x_0\}$ pode ser expressado em notação binaria como:

$$X = \sum_{i=1}^{4n-1} 2^{i} x_{i} = 2^{3n} N_{3} + 2^{2n} N_{2} + 2^{n} N_{1} + N_{0}, \tag{1}$$

onde os arrays $N_3 = \{x_{(4n-1)}, \dots, x_{(3n+1)}, x_{3n}\}$, $N_2 = \{x_{(3n-1)}, \dots, x_{(2n+1)}, x_{2n}\}$, $N_1 = \{x_{(2n-1)}, \dots, x_{(n+1)}, x_n\}$ e $N_0 = \{x_{(n-1)}, \dots, x_1, x_0\}$. Usando notação binaria e conjunto de módulos $\{m_1, m_2, m_3\} = \{2^{2n}, 2^n - 1, 2^n + 1\}$, a faixa dinâmica do valor $X \in [0, M-1]$, onde $M = m_1 m_2 m_3$. Três conversores são necessários de modo a obter a representação do RNS, um para cada elemento de base.

Canal m₁ = 2²ⁿ: O canal mais simples é o conversor usando o modulo m₁. O valor |X|_{m₁} pode ser obtido pelo resto da divisão do X por 2²ⁿ, o que pode por conseguida por médio de truncar o valor de X, uma vez que:

$$|X|_{m_1} = \overbrace{|2^{3n}|_{m_1}}^{=0} N_3 + \overbrace{|2^{2n}|_{m_1}}^{=0} N_2 + 2^n N_1 + N_0 = \{x_{(2n-1)}, \dots, x_1, x_0\}.$$
 (2)

• Canal $m_2 = 2^n - 1$: Devido a que $|2^n|_{2^n - 1} = 1$, podemos expressar a Eq. 1 como:

$$|X|_{m_2} = |N_3 + N_2 + N_1 + N_0|_{2^{n-1}} = |N_3 + N_2 + N_1 + N_0|_{2^{n-1}}|_{2^{n-1}}.$$
 (3)

• Canal $m_3 = 2^n + 1$: Devido a que $|2^n|_{2^n+1} = -1$, podemos expressar a Eq. 1 como:

$$|X|_{m_3} = |N_3 - N_2 + N_1 - N_0|_{2^n + 1} = |-N_3 + |N_2 - N_1 + N_0|_{2^n + 1}|_{2^n + 1}.$$
 (4)

- Bloco 2²ⁿ: Truncamento a partir do digito 2²ⁿ, pois (2²ⁿ mod 2²ⁿ)= 0
- Bloco 2ⁿ 1 : Soma dos N termos,
 posicionando o carry em 2⁰ (EAC).
 (2ⁿ mod 2ⁿ 1) = 1
- Bloco 2ⁿ + 1: Somatório dos N termos, posicionando o complemento do carry em 2⁰ (IEAC).
 (2ⁿ mod 2ⁿ +1) = -1

Figura 2 - Conversores diretos 2n - 1

Figura 2 - Conversores diretos 2n - 1

Para cada conjunto de módulos implementado, é necessário que seja projetado um conversor reverso.

Aplicando o algoritmo Novo CRT-I:

$$X = \left|\sum_{i=1}^n |V_i R_i|_{\hat{m}_1}
ight|_{\hat{m}_1} m_1 + R_1$$
 , onde $V_1 = rac{\left|\hat{m}_1^{-1}
ight|_{m_1} \hat{m}_1 - 1}{m_1}$ $V_i = \left|\hat{m}_i^{-1}
ight|_{m_i} rac{\hat{m}_i}{m_1}$ for $2 \leq i \leq n$

Solução obtida no Problema 4.5 para n=4

PROBLEMAS

- **Problema 4.10.** Considere o seguinte conjunto de módulos $\{2^{2n}, 2^n-1, 2^n+1\}$, para n=4 e uma entrada-saída de 4n bits:
- a) Obtenha a estrutura para fazer a conversão binário-RNS (use compressores e somadores modulo 15 e 17).
- b) Obtenha a estrutura para fazer a conversão RNS-binário (use o algoritmo novo CRT-I, compressores e somadores módulo 255).
- c) Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com binário.

M2={2^{2N} , 2^N-3, 2^N+3}: *HARDWARE IMPLEMENTATION*

- Blocos básicos
- Conversor direto
- Unidade aritmética
- 3. Conversor reverso

M2: HARDWARE IMPLEMENTATION CONVERSÃO DIRETA

Para conjunto:

- Bloco 2²ⁿ: Truncamento a partir do digito 2²ⁿ, pois (2²ⁿ mod 2²ⁿ)= 0
- Bloco 2ⁿ k : Soma dos N termos, cada
 carry tem um peso k. (2ⁿ mod 2ⁿ 1) = k
- Bloco 2ⁿ + k: Somatório dos N termos, cada
 carry tem um peso -k (2ⁿ mod 2ⁿ +1) = -k

M2: HARDWARE IMPLEMENTATION CONVERSOR RNS-BIN

A representação RNS pode ser convertida de volta para binário (X) usando:

b) Novo CRT-I:

$$X = \left|\sum_{i=1}^n |V_i R_i|_{\hat{m}_1} \right|_{\hat{m}_1} m_1 + R_1$$
 , onde $V_1 = \frac{\left|\hat{m}_1^{-1}\right|_{m_1} \hat{m}_1 - 1}{m_1}$ $V_i = \left|\hat{m}_i^{-1}\right|_{m_i} \frac{\hat{m}_i}{m_1}$ for $2 \leq i \leq n$

PROBLEMAS

- **Problema 4.11.** Considere o seguinte conjunto de módulos $\{2^n, 2^n-3, 2^n+3\}$, para *n*=4 e uma entrada-saída de *3n* bit:
- Obtenha a estrutura para fazer a conversão binário-RNS (use compressores e somadores modulo 13 e 19).
- Obtenha a estrutura para fazer a conversão RNS-binário binário (use b) novo CRT-I, compressores e somadores módulo 247).
- Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com binário.
- **Problema 4.12.** Obtenha um conjunto modular válido com faixa dinâmica DR=[0, 1048576) e n=5 bits por canal (máximo):
- Obtenha a estrutura para fazer a conversão binário-RNS. a)
- b) Obtenha a estrutura para fazer a conversão RNS-binário.
- Indique a faixa dinâmica da estrutura RNS e compare com a eficiência da representação com binário.