

Student number

Semester 2 Assessment, 2020

School of Mathematics and Statistics

MAST10006 Calculus 2

Reading time: 30 minutes — Writing time: 3 hours — Upload time: 30 minutes

This exam consists of 24 pages (including this page)

Permitted Materials

- This exam and/or an offline electronic PDF reader, one or more copies of the masked exam template made available earlier and blank loose-leaf paper.
- One double sided A4 page of notes (handwritten or printed).
- Calculators are not permitted.

Instructions to Students

- There are 12 questions with marks as shown. The total number of marks available is 127.
- During writing time you may only interact with the device running the Zoom session with supervisor permission. The screen of any other device must be visible in Zoom from the start of the session.
- If you have a printer, print the exam one-sided. If you cannot print, download the exam to a second device, which must then be disconnected from the internet.
- Write your answers in the boxes provided on the exam that you have printed or the masked exam template that has been previously made available. If you are unable to answer the whole question in the answer space provided then you can append additional handwritten solutions to the end after the 24 numbered pages. If you do this you MUST make a note in the correct answer space or page for the question, warning the marker that you have appended additional remarks at the end.
- If you have been unable to print the exam and do not have the masked template write your answers on A4 paper. The first page should contain only your student number, the subject code and the subject name. Write on one side of each sheet only. Start each question on a new page and include the question number at the top of each page.
- Assemble all exam pages (or masked template pages) in correct page number order and the correct way up. Add any extra pages with additional working at the end. Use a mobile phone scanning application to scan all pages to a single PDF file. Scan from directly above to reduce keystone effects. Check that all pages are clearly readable and cropped to the A4 borders of the original page. Poorly scanned submissions may be impossible to mark.
- Submit your PDF file to the Canvas Assignment corresponding to this exam using the Gradescope window. Before leaving Zoom supervision, confirm with your Zoom supervisor that you have Gradescope confirmation of submission.

Question 1 (11 marks)

Evaluate the following limits, if they exist.

In this question you must state if you use any standard limits, limit laws, continuity, l'Hôpital's rule or the sandwich theorem

(a)
$$\lim_{x \to \frac{3\pi}{2}} \left(\sin \left(x + \cos(x) \right) \right)$$

(c)	$\lim_{x \to 0}$	$\frac{3\sin(2x)}{6x - 4x^3}$
		04 14

(d) $\lim_{x \to \infty} \frac{e^{\cos(\frac{1}{x})}}{x}$

Question 2 (11 marks)

(a) Compute the first four partial sums of $\sum_{n=1}^{\infty} (n^2 + 1)$.

(b) For the following series, indicate whether they are convergent or divergent. Justify your answer with any relevant tests that you use.

(i) $\sum_{n=1}^{\infty} \frac{5^{2n+1}}{(2n+1)!}$

Question 3 (10 marks)

Let z = a + ib be a complex number, $a, b \in \mathbb{R}$.

(a) For $t \in \mathbb{R}$, express the complex numbers e^{zt} and ze^{zt} in cartesian form.

(b) For differentiable functions $f,g:\mathbb{R}\to\mathbb{R},$ and $t\in\mathbb{R},$ we define

$$\frac{d}{dt}(f(t) + g(t)i) = f'(t) + g'(t)i.$$

Using this definition and the cartesian forms you determined in (a), prove

$$\frac{d}{dt}e^{zt} = ze^{zt}.$$

useful and explain	ŭ	

Question 4 (11 marks)

Evaluate the following integrals:

- (a) $\int \cosh(4x) \exp(2\sinh(4x)) dx$
- (b) $\int e^x \cos(7x) \, \mathrm{d}x$

Question 5 (14 marks)

Consider the curve C in the x-y plane described by the equations $x = 5\cos(\theta), y = 4\sin(\theta),$ where $0 \le \theta \le 2\pi$.

(a) Find a relation relating y and x.

(b) Sketch the graph of the curve C in the x-y plane.

(c) Find functions f and g such that

$$C = \{(x,y) \mid y = f(x)\} \cup \{(x,y) \mid y = g(x)\}.$$

In other words, express C as the union of graphs of functions of x.

Question 6 (6 marks)

Consider the ODE

$$\frac{dy}{dx} = y(y-5)(y-2)^2.$$

(a) Find and classify the equilibrium solutions.

(b) Describe the long term behaviour of the solution to this ODE with the initial condition $y(0) = \pi$.

Question 7 (8 marks)

Consider the Initial Value Problem

$$\frac{dy}{dx} + xy = xy^3, \qquad y(0) = \frac{1}{2}.$$

(a) By making the substitution $z = y^{-2}$, show that the given ODE reduces to

$$\frac{dz}{dx} - 2xz = -2x.$$

(b) Hence solve the original initial value problem.

Question 8 (11 marks)

A tank contains a soluble fertilizer solution consisting initially of 20 kg of fertilizer dissolved in 10 gallons of water. Pure fresh water is being poured into the tank at a rate of 3 gallons/min and the solution (kept uniform by stirring) is flowing out at 2 gallons/min.

(a) Show that the amount of fertilizer in the tank Q(t) is given by

$$\frac{dQ}{dt} = -\frac{2Q}{10+t}.$$

(b) Find the amount of fertilizer in the tank after 5 minutes.

There is more space for part (b) on the next page.

(c)

	; (b)			
How long will it tak	ke to reach 25% of th	e initial amount of fe	ertilizer in the tank?	
iiow iong wiii it toi				
TOW TOING WILL TO VOL				

Question 9 (13 marks)

Consider a series RLC circuit with a resistor, an inductor and a capacitor with a driving electromotive force E. Set L=1, R=4 and C=1/4.

The current equation is

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = E. \tag{*}$$

- (a) Find the general solution to the corresponding homogeneous ODE.
- (b) Suppose you wish to drive the system to produce in the long term an oscillatory current of the form $I_p = \sin t$.
 - (i) Find the electromotive force E that produces the particular solution $I_p = \sin t$.
 - (ii) Write down the steady state term for I(t) in this case.

There is more space for part (b) on the next page.

(c)

More space for part (b).
Write down the solution to the ODE (*) with the electromotive force found in part (b), given the initial conditions $I(0)=2$ and $\frac{dI}{dt}\big _{t=0}=4$.

Question 10 (13 marks)

Let

$$f(x,y) = xy^2 + x^3y.$$

(a) Calculate

$$\lim_{(x,y)\to(1,2)} f(x,y).$$

(b) Find the directional derivative of f at (1,2) in the direction $\frac{\pi}{4}$ anticlockwise from the positive x-axis.

Page 18 of 24 pages

(c) Starting at (1,2), in which direction does f decrease the fastest? Give your answer as a unit vector.

(d) Find $\frac{df}{dt}$ at t = 0 given

$$x(t) = t \cosh(2t)$$
 and $y(t) = t^3 e^t + 2e$.

Question 11 (12 marks)

We wish to design a peg to fit a square or a round hole as shown. The peg has three parts:

- a square end A on the left (side length 2r cm)
- a solid cylinder B in the middle (radius r cm and length h cm)
- a round circular end C on the right (radius 2r cm)

The centres of both ends and the axis of the middle cylinder must lie along the line $\overline{LL'}$.

(a) A, C and the curved side of the cylinder B are to be made from sheet plastic. Suppose that the cost in dollars of sheet plastic is given by

$$c(r,h) = \frac{a(r,h)}{r^2h} + rh, \quad \text{for } r > 0, h > 0$$

where a(r,h) is the area in cm² of sheet plastic used to make the peg. Show that

$$c(r,h) = \frac{4+4\pi}{h} + \frac{2\pi}{r} + rh.$$

(b) Find the critical point (r, h) of the cost function and show that it is a local minimum.

More space for part (b) on the next page

More space for part (b)

(c) For any value of r and h, find the mass M (in grams) of the cylinder B, given

$$M = \int_0^h \int_0^r (1 + x^2 + y^2) \, dx \, dy.$$

Question 12 (7 marks)

Consider the surface z = f(x, y) where $f(x, y) = 1 + x^2 + y^2$.

- (i) Sketch the level curves of f corresponding to z=1,5,10 on the same axes.
- (ii) Sketch the x-z and y-z cross sections.

(iii) Sketch the surface, and describe/name the surface.

End of Exam — Total Available Marks = 127

MAST10006 Calculus 2 Formulae Sheet

$$\int \sin x \, dx = -\cos x + C \qquad \int \cos x \, dx = \sin x + C$$

$$\int \sec x \, dx = \log |\sec x + \tan x| + C \qquad \int \csc^2 x \, dx = \log |\csc x - \cot x| + C$$

$$\int \sec^2 x \, dx = \tan x + C \qquad \int \csc^2 x \, dx = -\cot x + C$$

$$\int \sinh x \, dx = \cosh x + C \qquad \int \cosh x \, dx = \sinh x + C$$

$$\int \operatorname{sech}^2 x \, dx = \tanh x + C \qquad \int \operatorname{cosech}^2 x \, dx = -\coth x + C$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \arcsin\left(\frac{x}{a}\right) + C \qquad \int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \operatorname{arcsinh}\left(\frac{x}{a}\right) + C$$

$$\int \frac{-1}{\sqrt{a^2 - x^2}} \, dx = \arccos\left(\frac{x}{a}\right) + C \qquad \int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \operatorname{arccosh}\left(\frac{x}{a}\right) + C$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C \qquad \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{a} \arctan\left(\frac{x}{a}\right) + C$$

where a > 0 is constant and C is an arbitrary constant of integration.

where
$$a>0$$
 is constant and C is an arbitrary constant of megration.
$$\cos^2 x + \sin^2 x = 1 \\ 1 + \tan^2 x = \sec^2 x \\ \cot^2 x + 1 = \csc^2 x \\ \cos(2x) = \cos^2 x - \sin^2 x \\ \cos(2x) = 2\cos^2 x - 1 \\ \cos(2x) = 1 - 2\sin^2 x \\ \sin(2x) = 2\sin x \cos x \\ \cos(x+y) = \cos x \cos y - \sin x \sin y \\ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \sin(x+y) = \sin x \cos y + \cos x \sin y \\ \cos x = \frac{1}{2} \left(e^x + e^{-x} \right) \\ \cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) \\ e^{ix} = \cos x + i \sin x \\ \arcsin x = \log(x + \sqrt{x^2 + 1}) \\ \lim_{n \to \infty} \frac{1}{n^p} = 0 \quad (p > 0)$$

$$\lim_{n \to \infty} \frac{1}{n^p} = 0 \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{\cos^2 x - \sin^2 x}{(1 + \frac{a}{n})^n} = e^a \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{\cos^2 x - \sin^2 x}{(1 + \frac{a}{n})^n} = e^a \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{\sin^2 x - \sinh^2 x}{(1 + \frac{a}{n})^n} = e^a \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{\cosh^2 x - \sinh^2 x}{x - \sinh^2 x} = 1 \\ 1 - \tanh^2 x = \sec h^2 x \\ \coth^2 x - \sinh^2 x = 1 \\ 1 - \tanh^2 x = \sec h^2 x \\ \coth^2 x - \sinh^2 x = 1 \\ 1 - \tanh^2 x = \sec h^2 x \\ \coth^2 x - \sinh^2 x = 1 \\ 1 - \tanh^2 x = \sec h^2 x \\ \coth^2 x - 1 = \cosh^2 x + \sinh^2 x \\ \cosh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \cosh(2x) = 2\cosh^2 x + \sinh^2 x \\ \cosh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \cosh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\sinh x \cosh x + \sinh x + \sinh^2 x \\ \sinh(2x) = 2\sinh x \cosh x + \sinh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\cosh^2 x + \sinh^2 x \\ \sinh(2x) = 2\sinh^2 x + \sinh^2 x + \sinh^2 x \\ \sinh(2x) = 2\sinh^2 x + \sinh^2 x + \sinh^2 x \\ \sinh(2x) = 2\sinh^2 x + \sinh^2 x + \sinh^2 x + \sinh^2 x + \sinh^2 x \\ \sinh(2x) = 2\sinh^2 x + \sinh^2 x + \sinh^2$$