UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS COLEGIADO DE CIÊNCIA DA COMPUTAÇÃO

2º Relatório Aprendizado de Máquina

Alunos: Gilberto Antunes Monteiro Junior & Henrique Tomé Damasio

Data: 22/04/2019

DESCRIÇÃO DO TRABALHO

O objetivo do trabalho consiste em comparar o comportamento de cinco tipos diferentes de classificadores, em termos de acurácia, perante a mesma base de dados. Para isso, foram comparados os classificadores implementados na biblioteca scikitlearn, estes foram, Árvore de decisão, KNN, Multilayer Perceptron, Naive Bayes e SVM, foi utilizada a entrada de dados com base em arquivo em formato .csv, a base utilizada neste experimento foi a base Adult.

Para que o processo tenha base para a análise, foram executadas 20 repetições. E os valores a serem comparados deverão ser os valores médios destas 20 execuções.

Descrição do Conjunto de Dados

O conjunto de dados utilizado durante os experimentos consiste em uma base composta por 690 instâncias, as quais são divididas em apenas duas classes, 1 e 2. Dentre os 690 exemplares do conjunto, 383 pertencem à classe 1 e 307 à classe 2. Cada instância é composta por 14 atributos, todos do tipo float.

DESCRIÇÃO PASSO-A-PASSO DO EXPERIMENTO

O primeiro passo consiste no carregamento do conjunto de dados. Em seguida foi feita a separação da base original em três subconjuntos mutuamente exclusivos (treino, teste e validação). A escolha das amostras que compõem cada conjunto é aleatória mas garante a proporção das classes. Posteriormente definiu-se os melhores parâmetros para cada um dos classificadores, salvo o Naive-Bayes, que decidiu-se pelo padrão da biblioteca. Para o KNN(K-Nearest Neighbors) foi solicitado para estimar o melhor valor de K e a métrica de distância. Para a árvore de decisão foi necessário decidir se a árvore terá poda ou não, levamos a um nível superior e estimamos a sua profundidade ótima. Para o SVM (Support Vector Machine) definiu-se o valor de erro C e qual kernel utilizar (Polinomial ou Radial). E por fim no MLP (Multi Layer Perceptron) definiu-se o número de épocas de treino, a taxa de aprendizagem e o número de camadas escondidas. Para definição da melhor configuração foi utilizado o conjunto de validação. Após definido os melhores parâmetros para cada classificador sua acurácia é avaliada através do conjunto de teste. Assim ao final uma média

simples das acurácias de cada classificador é feita para medir o seu desempenho.

AVALIAÇÃO DO EXPERIMENTO

Com os algoritmos implementados, foi-se realizado um experimento que consiste na utilização de 20 testes, tendo como objetivo obter a eficiência média da cada um destes classificadores para a base de dados do experimento. Os resultados obtidos seguem:

Decission Tree:

KNN:

KNN - Métrica de Distância

Métrica

Iterações

MLP:

MLP - Camadas Escondidas

Eficiência MLP

NB:

SVM:

Eficiência (%) dos classificadores comparadas:

Repetições	DT	KNN	MLP	NB	SVM
1	83,8150	85,5491	80,9249	79,1908	84,3931
2	89,0173	87,2832	87,8613	83,2370	87,2832
3	84,3931	86,1272	81,5029	82,6590	88,4393
4	86,7052	87,2832	87,2832	83,8150	83,2370
5	82,6590	84,9711	85,5491	83,8150	82,6590
6	83,8150	84,9711	79,1908	78,6127	75,7225
7	82,6590	84,9711	83,2370	85,5491	84,3931
8	83,8150	83,2370	86,1272	84,9711	84,3931
9	84,9711	86,1272	90,1734	84,3931	84,3931

10	83,8150	82,0809	86,1272	84,3931	83,2370
11	87,8613	84,9711	89,5954	81,5029	89,0173
12	82,0809	84,3931	83,8150	82,0809	83,2370
13	86,7052	86,1272	85,5491	84,9711	86,1272
14	86,1272	87,8613	87,8613	82,0809	86,1272
15	82,0809	82,0809	82,0809	81,5029	82,6590
16	86,1272	86,7052	76,8786	86,7052	89,0173
17	84,9711	86,7052	85,5491	82,0809	86,1272
18	86,7052	85,5491	88,4393	83,8150	87,2832
19	84,9711	85,5491	75,1445	83,2370	82,0809
20	86,7052	87,2832	84,9711	82,6590	89,5954
Média	85,00000	85,49130	84,39310	83,06360	84,97110
DP	0,019038	0,015820	0,039754	0,019353	0,031289

Acurácia Durante Iterações

Eficiência Média dos Classificadores

Desvio Padrão dos Classificadores

Conclusão do Experimento

Ao ser realizado o teste de Kruskal-Wallis o resultado indicou que, com 95% de confiança, o resultado não é significativo, ou seja, não existe pelo menos um classificador que é diferente dos demais, para reafirmar realizamos os testes 2 a 2 de Mann-Whitney e novamente nenhum classificador obteve diferença significativa em relação aos demais.

Portanto todos os classificadores são equivalentes, como conclusão podemos afirmar

que, para esta base de dados e com 95% de confiança, não existe um classificador necessariamente melhor do que os outros classificadores, entretanto o classificador K-Nearest Neighbors obteve uma acurácia levemente superior aos demais.