Sniman je rad nekog sustava. Izlaz tog sustava y ovisan je o ulaznim varijablama x1 i x2. Prikupljeni su sljedeći podaci:

x1	x2	У
1.0	-2.4	0
0.0	-3.8	0
0.0	1.79	1
1.0	2.4	1
0.2	-3.2	0
8.0	2.31	1
0.2	1.6	1
0.8	-2.69	0

Može li se ovaj sustav modelirati TLU perceptronom kod kojeg x1 i x2 direktno dovodimo kao ulaze, ako je poznato da je njegov izlaz ograničen na vrijednosti {0,1} (vidi tablicu). Pretpostavite da prikupljeni podaci dobro predstavljaju ponašanje sustava.

- Nema dovoljno informacija
- Može
- Ne može

Prikazan je perceptron:

Izračunati minimalnu vrijednost težine w1 tako da izlaz perceptrona bude 1 ako su ulazi:

$$x1 = 0.5$$

 $x2 = 1.3$

Težine iznose:

$$w0 = 2.7$$

 $w2 = -0.3$

Na ulaz perceptrona sa slike dovode se podaci:

x1	х2	c
-0.5	-4.4	0
3.8	-0.7	1
0.3	0.9	0
1.8	-0.7	1

Početne vrijednosti težinskih faktora su:

$$w2 = 1.1$$

 $w1 = -0.2$

$$w0 = -2.9$$

Stopa učenja iznosi 0.2.

Koristeći postupak učenja pravilom perceptrona izračunajte vrijednost težinskih faktora nakon jednog prolaska kroz skup za učenje.

w0 =	-2.50
w1 =	0.92
w2 =	0.82

Izračunaj izlaz Y neuronske mreže na slici:

Funkcija prijenosa je sigmoida.

- 0.6388
- 0.959
- 0.2493
- 0.5871

Genetskim algoritmom rješava se ne pretraživanje mora obaviti uz rezoluc	eki optinmizacijski problem koji ovisi e iju (preciznost) od 0.05, koliko će bi	o 3 varijable. Svaka varijabla može pop tova sveukupno biti minimalno potrebno	rimiti vrijednost iz intervala [-127, 178]. Ako se o za kromosom?
39			

U nekom koraku odabrana su dva kromosoma:

Kao operator križanja koristi se križanje s jednom točkom prekida, iza 3. bita. Potom se pod utjecajem mutacije mijenjaju 3. i 5. bit. Odredite koja 2 nova rješenja nastaju.

r1 001100 r2 101110

Važno: bitovi se broje slijeva nadesno počevši od 1.

Minimum funkcije

$$f(x, y, z) = (x - 1)^2 + (y - 2)^2 + (z - 2)^2 + 1 \cdot x \cdot y$$

traži se genetskim algoritmom ostvarenim u obliku troturnirske selekcije. Svaka varijabla je pri tome ostvarena s 2 bita, te se pretražuje cjelobrojno područje: x iz intervala [-1, 2], y iz intervala [-2, 1], z iz intervala [-1, 2]. U kromosomu najprije dolaze bitovi od x, pa od y, pa od z. U jednom koraku odabrana su 3 kromosoma:

k1 = 000000

k2 = 000100

k3 = 010000

Kao funkcija dobrote koristi se izravno funkcija -f. Označimo s ff1 dobrotu rješenja k1, s ff2 dobrotu rješenja k2, s ff3 dobrotu rješenja k3, te s N broj kromosoma koji će biti zamijenjen. Kao operator križanja koristi se uniformno križanje pri čemu se slučajno generira uzorak bitova 011000. Označimo s d1 i d2 dva djeteta koja nastanu, te s fd1 i fd2 njihovu dobrotu, uz pretpostavku da mutacija nije djelovala. Konačno, označimo s M broj djeteta koje će ući u populaciju, uz pretpostavku da se uzima bolje dijete.

Odredite sve navedeno:

ff1	-31.0
ff2	-23.0
ff3	-26.0
N	1
d1	010100
d2	000000
fd1	-19.0
fd2	-31.0
M	1