Mathematical Modeling for Cell Biology

CellBio 24 workshop

Sunday, December 15th

In order of appearance: Stefan Hoops, Leslie Loew, Michael Blinov, Ann Cowan

Introduce kinetic simulations, steady state analysis, parameter estimation, spatial modeling, rulebased models, demonstrating them using two modeling and simulation tools:

COPASI (http://copasi.org) and Virtual Cell (http://vcell.org).

This handout is available at: https://compcellbio.org/assets/ASCB2024.pdf

See also: https://compcellbio.org/

Capabilities of our modeling tools:

METHODS	COPASI	VCell
Compartmental deterministic modeling (ODE)	✓	✓
Stochastic compartmental modeling (SSA)	✓	✓
Spatial deterministic modeling (PDE)		✓
Steady-state modeling	✓	
Stochastic differential equations (SDE)	✓	
Parameter fitting	✓	√ (COPASI)
Compartmental rule-based modeling of multi-component molecules		√ (BioNetGen)
Compartmental agent-based modeling of multi-component molecules		√ (NFsim)
Spatial stochastic modeling		√ (SmolDyn)
Spatial stochastic modeling accounting for volumes		√ (SpringSalad)

Example models for today's workshop

- Steady-State, Time Course, and Parameter Fitting with COPASI (Negative feedback and ultrasensitivity
 <u>can bring about oscillations in the mitogen-activated protein kinase cascades</u>) presented by Stefan Hoops
 (Biomodels Database: BIOMD0000000010)
- Using PDEs to simulate FRAP of a biomolecular condensate (Cowan and Loew, Biophys. J. 2023, <u>PUBMED: 37353932</u> - presented by Leslie Loew (http://vcell.org/biomodel-255507058)
- Using ImageJ to define initial concentration distribution in reaction-diffusion simulations (Ding et al., 2020; Current Biology; <u>PUBMED:32155414</u>) - presented by Michael Blinov (<u>https://vcell.org/biomodel-169993006</u>)
- Rule-based modeling defining molecules and multi-molecular species (Nosbisch et al., 2022, JBC; PUBMED:35367415) - presented by Michael Blinov (https://vcell.org/biomodel-232498815)

Learning resources

This presentation: https://compcellbio.org/assets/ASCB2024.pdf

COPASI: http://copasi.org

https://vcell.org/support

Multiple Tutorials(including FRAP and Rule-based)
Links to YouTube channel, CompCellBio lecture videos

Computational Cell Biology Courses

Online Feb 24-28, 2025 https://compcellbio.org/ccbworkshop In person CCB Workshop, Summer 2025.

COPASI Capabilities

- · Time course (deterministic, stochastic, and hybrid algorithm)
- · Steady state
- Stoichiometric analysis of the reaction network, including mass conservation analysis and elementary flux modes.
- Optimization of arbitrary components of the model using a range of diverse algorithms.
- Parameter estimation using a range of diverse optimization algorithms. This can be done
 over several different experiments simultaneously, including mixtures of steady-state and
 time course experiments.
- · Local sensitivity analysis.
- Metabolic control analysis (a special form of sensitivity analysis).
- Time scale separation analysis; this allows definition of fast and slow components of the model, in a time-dependent way.
- Analysis of stochasticity using the linear noise approximation (allows estimating variances and co-variances even in the presence of large numbers of particles).
- Cross sections, which allow to characterize non-linear dynamics properties, such as oscillations and chaos.
- · Lyapunov exponents, which allows to establish if the system dynamics are chaotic.

CompCellBio workshops

https://compcellbio.org/ccbworkshop

