Day 6-1

Assignment:

- Finish up labs 4-7, Due Thur, 1-Oct
- Project Proposal, Due Tuesday
- HW 05, Due Tuesday

Today's Topics:

- Raspberry Pi, IoT
- Project Proposal
- GPIO via mmap()
- Boot up

Raspberry Pi & IoT

• Who's signing up?

IEEE IES IIT MANDI IS ORGANISING WORKSHOP ON

DOMAINS IN RASPBERRY PI & I.O.T.

DATE: 26TH & 27TH

SEPTEMBER

VENUE: AI NKN

OPEN FOR ALL (UG/PG/FACULTY)

EXICITING PRIZES FOR BEST PERFORMING GROUP

ALL THE PARTICIPANTS WILL BE AWARDED CERTIFICATE

₹600/-

LAST DATE OF REGISTRATION 24TH, SEPTEMBER

CONTACT TO: SAKSHAMA GHOSLYA +919805345792

ок мяш то: ieee.iitmandi@gmail.com

Lab Writeup

What to turn in

Make a subdirectory in your github repository called **lab07**. Do this for each lab partner.

Put all your files in the directory, include a **ReadMe.txt** which will serve as your lab report. You may share code with your lab partner, but you must write your own ReadMe.txt. This report should use a memo format (Google "memo format" for examples) that contains:

To, From, Date and Subject fields.

You and your lab partner's names.

A sentence or two giving an introduction to what the lab was about.

A brief section of each part of the lab noting what you did and referring to any code by filename.

A sentence or two in conclusion giving your thoughts on the lab.

Document your code.

Project Topics

- 1. Automated Lock System using
 - 1. Voice Recognition
 - 2. Secret Knock Detection
- 2. Intruder alerting system
- 3. Automated table tennis ball dispenser
- 4. Facebook Like Counter
- 5. Video Capture and Image Processing, Image Recognition
- 6. Remote Desktop Control
- 7. Installing another Linux Distro
- 8. Using Microsoft Xbox Kinect with BeagleBone Black

- 1. Home energy management system using multiple passive IR sensors.
- 2. Some equipment in labs, which usually on high demand can be monitored by bone and can notify people when it is free, also different user's usage can be collected and a log can be maintained.
- 3. Self-balancing skateboard
- 4. Accident detection and messaging system using gps and gsm

Project Topics

- 1. CONTROLLING HOME APPLIANCE
- 2.MOTION OF QUAD COPTER ON ANY TRAJECTORY
- 3.EYE WRTITER
- **4. PLOTTING TIME**

- 1. Weather
 - 1. Calculation of Wind Speed Velocity
 - 2. Temperature Sensor
 - 3. Bone can monitor weather using sensors and *cross* reference it with information from internet. Then it can notify you about it.

Project Proposal

- Write your own proposal
 - Executive Summary: A short paragraph stating what the project is about.
 - Current State: Note if this project is building on a previous project. If so, try running the software on your Bone and note how it works.
 - *Team Structure*: Your project should be small enough to require no more than four team members. Note what roles they will play in the project. Note their names if you know who you want.
 - Equipment Needed: Do you need equipment beyond what you already have? If so, list it with an estimated cost and a link to where it can be ordered.
- Due Tues 29-Sept-2015

07-1 GPIO via mmap()

Memory Maps

• A table/diagram that shows how memory is laid out

8051 MEMORY MAP

http://www.computer-solutions.co.uk/info/micro-search/8051/8051_tutorial.htm

Memory Maps

• A table/diagram that shows how memory is laid out

• MSP430

Address	Type of memory
0xFFFF	interrupt and reset
0xFFC0	vector table
0xFFBF	flash code memory
0xF800	(lower boundary varies)
0xF7FF	
0x1100	
0x10FF	flash
0x1000	information memory
0x0FFF	bootstrap loader
0x0C00	(not in F20xx)
0x0BFF	
0x0280	
0x027F	RAM
0x0200	(upper boundary varies)
0x01FF	peripheral registers
0x0100	with word access
0x00FF	peripheral registers
0x0100	with byte access
0x000F	special function registers
0x0000	(byte access)

https://soumyageorgek.files.wordpress.com/2010/11/screenshot-3.png

GPIO via sysfs

- So far we've been access the GPIO pins via sysfs
- You can turn a USR LED on with

```
bone$ cd /sys/class/leds/beaglebone\:green\:usr3
bone$ echo none > trigger
bone$ echo 1 > brightness
```

- sysf is portable, but can be slow
- What if speed is needed?

GPIO via mmap()

- All the IO on the am335x is memory mapped
- You can look them up on the am335x Technical Reference Manual (TRM)

USR3 LED

```
bone$ cd ~/exercises/gpio
bone$ ./findGPIO.js USR3
{ name: 'USR3', gpio: 56, led: 'usr3',
mux: 'gpmc_a8', key: 'USR3',
                              GPIO port 1
muxRegOffset: '0x060',
options: [ 'gpmc_a8', 'gmii2_rxd3',
'rgmii2_rd3', 'mmc2_dat6', 'gpmc_a24',
USR3 (gpio 56) mode: 7 (gpio1_24) 0x060 pullup
pin 24 (44e10860): (MUX UNCLAIMED) (GPIO
UNCLAIMED
```

From Table 2-3 of TRM

	UATUUT_6000	UATOUT_0111	TIND	LT IIIICIOOIIIICO
DMTIMER7	0x4804_A000	0x4804_AFFF	4KB	DMTimer7 Registers
	0x4804_B000	0x4804_BFFF	4KB	Reserved
GPIO1	0x4804_C000	0x4804_CFFF	4KB	GPIO1 Registers
	0x4804_D000	0x4804_DFFF	4KB	Reserved
Reserved	0x4804_E000	0x4804_FFFF	8KB	Reserved

SPRUH73H—October 2011—Revised April 2013
Submit Documentation Feedback

Memory Map 159

Copyright © 2011-2013, Texas Instruments Incorporated

- Base address is **0x4804_C000**.
- Click on GPIO1

Table 25-5. GPIO REGISTERS

Offset	Acronym	Register Name	Section
0h	GPIO_REVISION		Section 25.4.1.1
10h	GPIO_SYSCONFIG		Section 25.4.1.2
20h	GPIO_EOI		Section 25.4.1.3
24h	GPIO_IRQSTATUS_RAW_0		Section 25.4.1.4
28h	GPIO_IRQSTATUS_RAW_1		Section 25.4.1.5
2Ch	GPIO_IRQSTATUS_0		Section 25.4.1.6
30h	GPIO_IRQSTATUS_1		Section 25.4.1.7
34h	GPIO_IRQSTATUS_SET_0		Section 25.4.1.8
38h	GPIO_IRQSTATUS_SET_1		Section 25.4.1.9
3Ch	GPIO_IRQSTATUS_CLR_0		Section 25.4.1.10
40h	GPIO_IRQSTATUS_CLR_1		Section 25.4.1.11
44h	GPIO_IRQWAKEN_0		Section 25.4.1.12
48h	GPIO_IRQWAKEN_1		Section 25.4.1.13
114h	GPIO_SYSSTATUS		Section 25.4.1.14
130h	GPIO_CTRL		Section 25.4.1.15
1 M	GPIO_UE	0x4804 c000 + 13c =	Section 25.4.1.16
138h	GPIO_DATAIN	0x4804 c13c	Section 25.4.1.17
13Ch	GPIO_DATAOUT	Address for GPIO_DATAOUT	Section 25.4.1.18
Ten	GPIO LI DIELLIETECTO		Section 25.4.1.19
144h	GPIO_LEVELDETECT1		Section 25.4.1.20
148h	GPIO_RISINGDETECT		Section 25.4.1.21
14Ch	GPIO_FALLINGDETECT		Section 25.4.1.22
150h	GPIO_DEBOUNCENABLE		Section 25.4.1.23
154h	GPIO_DEBOUNCINGTIME		Section 25.4.1.24
190h	GPIO_CLEARDATAOUT		Section 25.4.1.25
194h	GPIO_SETDATAOUT		Section 25.4.1.26

devmem2

• A program that reads/writes any memory location

bone\$ devmem2 0x4804c13c

/dev/mem opened.

Memory mapped at address 0xb6f99000.

Read at address 0x4804C13C (0xb6f9913c): 0x01800000

Physical Address

Virtual Address

Contents

gpio1_24

Bit 24 shows that status of the LED

bone\$ wget http://free-electrons.com/pub/mirror/devmem2.c

bone\$ gcc -o devmem2 devmem2.c

Set the LED - microcontroller

- The PIC way
 - Read register
 - OR with (1<<24)
 - Write register
- 3 operations

Toggle the LED

• Use GPIO_SETDATAOUT and GPIO_CLEARDATAOUT

```
        154h
        GPIO_DEBOUNCINGTIME
        Section 25.4.1.24

        190h
        GPIO_CLEARDATAOUT
        Section 25.4.1.25

        194h
        GPIO_SETDATAOUT
        Section 25.4.1.26
```

- Write to **GPIO_SETDATAOUT** a value with 1's for the pins to be set to 1
- Write to **GPIO_CLEARDATAOUT** a value with 1's for the pins to be cleared to 0
- Use 0x190 to Clear

Turn LED off then on

GPIO_DATAOUT

Off

bone\$ devmem2 0x4804c190 w 0x01000000 /dev/mem opened.

Memory mapped at address 0xb6f53000.

Read at address 0x4804C190 (0xb6f53190): 0x01800000 Write at address 0x4804C190 (0xb6f53190): 0x01000000, readback 0x01000000

On

bone\$ devmem2 0x4804c194 w 0x01000000 /dev/mem opened.

Memory mapped at address 0xb6f9f000.

Read at address 0x4804C194 (0xb6f9f194): 0x00800000 Write at address 0x4804C194 (0xb6f9f194): 0x01800000,

readback 0x01800000

mmap()

- The same can be done more quickly from a C program using mmap()
- **mmap()** is a way of mapping a physical address space into a user-space program

Exercise GPIO via mmap

- Homework has you work through some examples
- gpioThru.c copies an input pin to an output

