HW 1 - 115B

Asher Christian 006-150-286

17.01.25

1 Exercise 1

For each of the following vector spaces V and each ordered basis B, find an explicit formula for each vector in the dual basis B^* .

1.
$$V = k^3, B = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Let E be the canonical basis then

$$[I]_E^B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} [I]_B^E = \begin{pmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

The canonical dual basis is the column vectors (1,0,0),(0,1,0),(0,0,1) with f(v) corresponding to matrix multiplication Thus

$$B^* = \{(1, -\frac{1}{2}, 0), (0, \frac{1}{2}, 0), (-1, 0, 1)\}.$$

2. $V=k[x]_{\leq 2}, B=\{1,x,x^2\}$ Let I denote the identity and D denote the derivative operator which was shown previously to be linear. The dual basis can be defined as

$$B^* = \{I, D, \frac{D}{2}\}.$$

with function defined as follows.

For any
$$f^* \in V^*, f \in V$$
 $f^*(f) = (f^* \circ f)(0)$

2 Exercise 2

Define some $f \in (\mathbb{R}^2)^*$ $f \begin{pmatrix} x \\ y \end{pmatrix} = 2x + y$ and a function $T : \mathbb{R}^2 \to \mathbb{R}^2$ via the formula $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3x + 2y \\ x \end{pmatrix}$

1. Compute $T^*(f)$.

$$T^*(f)(v) = f(T(v)) = 2(3x + 2y) + x = 7x + 4y.$$

2. Compute $[T^*]_{\mathcal{E}^*}$, where \mathcal{E} is the standard ordered basis for \mathbb{R}^2 and $\mathcal{E}^* = \{e_1^*, e_2^*\}$ is the dual basis, explicitly by finding scalars a, b, c, d such that $T^*(e_1^*) = ae_1^* + ce_2^*$ etc.

$$T^* = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}.$$

3. Compute $[T]_{\mathcal{E}}$ and $(T_{\mathcal{E}})^t$

$$[T]_{\mathcal{E}} = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} [T]_{\mathcal{E}}^t = \begin{pmatrix} 3 & 1 \\ 2 & 0 \end{pmatrix}.$$

3 Exercise 3

Let V denote a finite dimensional k-vector space. For any subset $S \subset V$ define the annihilator S^0 of S as

$$S^0 := \{ f \in V^* : f(x) = 0 \quad \forall x \in S \}.$$

1. Prove that S^0 is a subspace of V^*

To show taht S^0 first note that $S^0 \subset V^*$ since every element of S^0 is an element of V^* . Then note that S^0 contains the 0 element $f \in V^* \to f(x) = 0 \forall x \in V$ is clearly an element of S^0 . Additionally consider any $f_1, f_2 \in S^0, c \in k$.

$$(f_1 + cf_2)(x) = f_1(x) + cf_2(x) = 0 + c * 0 \ \forall x \in S \to (f_1 + cf_2) \in S^0.$$

2. If W is a subspace of V and $x \notin W$, prove that there exists some $f \in W^0$ such that $f(x) \neq 0$ Since $x \notin W$ $x \neq 0$. Since V is finite dimensional pick a basis with x as an element $B = x, v_1, v_2, ...$ And consider further the linear functional f defined on B s.t.

$$f(v_i) = \begin{cases} 1 & v_i = x \\ 0 & v_i \neq x \end{cases}.$$

Since $x \notin W$ any vector $w \in W$ written in B coordinates has 0 as the x coefficient and so f(w) = 0 satisfying the definition of S^0 and so $f \in S^0$ but $f(x) = 1 \neq 0$.

3. In class, we constructed an isomorphism $\phi: V \to V^{**}$. Prove that $(S^0)^0 = span(\phi(S))$ where $\phi(S) := \{\phi(s) : s \in S\}$ First note that $\phi(v) = \lambda_v$ defined as $\lambda_v(f) = f(v) \ \forall f \in V^*, v \in V$ To show the equality we must show that for each $\lambda \in \phi(S), \lambda \in (S^0)^0$ and vice-versa Recall the definition of $(S^0)^0$

$$(S^0)^0 = \{ \lambda \in V^{**} : \lambda(f) = 0 \quad \forall f \in S^0 \}.$$

Consider any $\lambda_v \in \phi(S)$ and the $v \in V$ corresponding to this function. clearly $v \in S$. Consider additionally any arbitrary $f \in S^0$. $\lambda_v(f) = f(v)$ recalling the definition of S^0 , since $f \in S^0$ f(v) = 0 since $v \in S$ therefore λ_v satisfies the condition of $(S^0)^0$. This proves the first direction.

For the second direction pick a basis $B' = \{s_1, s_2, ..., s_n\}$ for S and since $S \subset V$ pick a basis B for V consisting of all elements of B' and additional elements $B = \{s_1, s_2, ..., s_n, v_1, v_2, ..., v_m\}$. Pick any $\lambda \in (S^0)^0$ and assume for contradiction that $\lambda \notin span(\phi(S))$. Use the isomorphism to get $v = \phi^{-1}(\lambda)$. Using our basis

$$v = \alpha_1 s_1 + \alpha_2 s_2 + \dots + \alpha_n s_n + \beta_1 v_1 + \beta_2 v_2 + \dots + \beta_m v_m.$$

and so

$$\lambda(f) = \alpha_1 f(s_1) + ... + \alpha_n f(s_n) + \beta_1 f(v_1) + ... + \beta_m f(v_m).$$

But since $\lambda(f^0)=0$ whenever $f^0\in S^0$ each $\beta_i=0$ by the previous question Thus:

$$\lambda = \alpha_1 \lambda_{s_1} + \alpha_2 \lambda_{s_2} + \dots + \alpha_n \lambda_{s_n}.$$

Which is a linear combination of elements of $\phi(S)$ and is thus in the span of $\phi(S)$.

- 4. For subspaces W₁ and W₂ of V, prove that W₁ = W₂ iff W₁⁰ = W₂⁰. To prove the first direction assume first that W₁⁰ = W₂⁰ and assume for the sake of contradiction that W₁ ≠ W₂ then WLOG there exists some w ∈ W₁ s.t. w ∉ W₂. But since w ∉ W₂ there exists some f ∈ W₂⁰ = W₁⁰ s.t. f(w) ≠ 0. However this is a contradiction by the definition of W₁⁰ since f(w) = 0 by definition of w ∈ W₁⁰. This proves the first direction. The other direction is trivial since in the definition of the two sets we can interchange W₁ and W₂.
- 5. For subspaces W_1 and W_2 prove that $(W_1 + W_2)^0 = W_1^0 \cap W_2^0$ Consider the definition

$$(W_1 + W_2)^0 := \{ f \in V^* : f(x) = 0 \ \forall x \in (W_1 + W_2) \}.$$

Consider any $f \in (W_1 + W_2)^0$:

 $f \in V^*$, $f(w_1) = 0$, $f(w_2) = 0$ $\forall w_1 \in W_1, w_2 \in W_2$. Therefore $f \in W_1^0$ and $f \in W_2^0$ so $f \in W_1^0 \cap W_2^0$:

Consider any $f \in W_1^0 \cap W_2^0$:

 $f \in V^*$, $f(w_1) = 0 \ \forall w_1 \in W_1 \text{ since } f \in W_1^0 \text{ and } f(w_2) = 0 \ \forall w_2 \in W_2 \text{ since } f \in W_2^0 \text{ therefor for any } w \in (W_1 + W_2), w = \alpha w_1 + \beta w_2 \text{ for some } \alpha, \beta \in k, \ w_1 \in W_1, w_2 \in W_2 \text{ and } f(w) = f(\alpha w_1 + \beta w_2) = \alpha f(w_1) + \beta f(w_2) = \alpha * 0 + \beta * 0 = 0 \text{ so } f \in (W_1 + W_2)^0$

4 Exercise 4

Prove that if W is a subspace of V, then $dim(W) + dim(W^0) = dim(V)$. There are 2 cases either V is finite dimensional or not. In the first case since V is f.d. so is W. let dim(V) = n, dim(W) = k. Consider an ordered basis $B' = \{w_1, ..., w_k\}$ of W and extend it to an ordered basis $B = \{w_1, ..., w_k, ..., w_n\}$ of V. We know that for any $f \in V^*$, $f = \alpha_1 w_1^* + \alpha_2 w_2^* + ... + \alpha_k w_k^* + ... + \alpha_n w_n^*$ Consider any $f \in W^0$, then

$$f(w_i) = \begin{cases} 0 & i \in \{1, ..., k\} \\ c_i & i \in \{k+1, ..., n\} \end{cases}.$$

For this to hold given the representation above each $\alpha_i=0, \ \forall i\in\{1,...,k\}$ Therefore every $f^0\in W^0$ can be represented as

$$f^0 = \alpha_{k+1} w_{k+1}^* + \dots \alpha_n w_n^*.$$

and so $\{w_{k+1}^*,...,w_n^*\}$ form a basis for W^0 and $dim(W^0)=n-k$ so k+n-k=n is true and we have proved the question.

In the case dim(V) is not finite. we must show that at least one of dim(W), $dim(W^0)$ is not finite. There are two cases dim(W) is finite or not. If it is not finite we are done. Assume dim(W) is finite. Since dim(V) is not finite $dim(V^*)$ is not finite. Assume for contradiction that $dim(W^0)$ is finite then pick a basis for W^0

$$B^0 = \{w_1^*, w_2^*, ..., w_l^*\}.$$

Additionally pick l+1 linearly independent vectors in $V \setminus W$ which is possible since W is finite and V infinite.

$$\{v_1, ..., v_{l+1}\}.$$

and the corresponding linear functionals

$$\{v_1^*, ..., v_{l+1}^*\}.$$

defined in the usual way. Clearly each of these linear functionals is in W^0 and each is linearly independent. But this leads to a contradiction because there cannot exist more than l linearly independent linear functionals in W_0 if the basis was defined with l elements. Thus a contradiction showing that indeed W^0 must be infinite.

5 Exercise 5

Suppose that W is a finite dimensional vector space and $T: V \to W$ is a linear transformation. Prove that $ker(T^*) = R(T)^0$ Consider any $f \in ker(T^*)$ Then clearly

$$f(T(v)) = 0.$$

for all $v \in V$ and in particular this implies for any $w \in R(T)$, f(w) = 0 since $w \in R(T)$ is equivalent to w = T(v) for some $v \in V$. f(w) = 0 for all $w \in R(T)$ satisfies the same requirements that put $f \in R(T)^0$ Thus $ker(T^*) \subset R(T)^0$. Consider any $f \in R(T)^0$ then for any $w \in R(T)$, f(w) = 0. In particular for any $v \in V$, $f(v) \in R(T)$ so f(v) = w for some f(v) = 0 by definition so $f(T(v)) = 0 \forall v \in V$ and $f \in ker(T^*)$ thus $f(T)^0 \subset ker(T^*)$

6 Exercise 6

Let R denote the 3×3 real matrix $\begin{pmatrix} -3 & -3 & -4 \\ 2 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$. Find all eigenvalues of

R. For each eigenvalue, compute the corresponding eigenspace. Each eigenvalue is one such that $det(T - \lambda I) = 0$ first

$$det\begin{pmatrix} -3 - \lambda & -3 & -4 \\ 2 & 2 - \lambda & 4 \\ 0 & 0 & -1 - \lambda \end{pmatrix} = -(\lambda + 1)((\lambda - 2)(\lambda + 3) + 6) = -\lambda(\lambda + 1)^{2}.$$

Clearly $\lambda=-1$ and $\lambda=0$ are the only eigenvalues of R First to find all eigenvectors of eigenvalue 1 is to find all solutions to Rv=0 These come in the

form $\begin{pmatrix} a \\ -a \\ 0 \end{pmatrix}$ for any $a \in \mathbb{R}$ which is found by row reducing R thus the eigenspace

of eigenvalue 0 is all vectors of the previous form. To find the eigenspace of eigenvalue -1 solve (R+I)v=0 The solutions to this equation are of the

form
$$\begin{pmatrix} -1.5b-2c\\b\\c \end{pmatrix}$$
 for any $b,c\in\mathbb{R}$ And so the eigenspace of eigenvalue -1 is spanned by

$$\left\{ \begin{pmatrix} -1.5\\1\\0 \end{pmatrix}, \begin{pmatrix} -2\\0\\1 \end{pmatrix} \right\}.$$

7 Exercise 7

For the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined by the formula $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4x - y \\ 2x + y \end{pmatrix}$, find a basis B of \mathbb{R}^2 s.t. $[T]_B$ is diagnoal Consider

$$[T]_{\mathcal{E}} = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}.$$

First find the eigenvalues of $[T]_{\mathcal{E}}$

$$det(T - \lambda I) = det\begin{pmatrix} 4 - \lambda & -1 \\ 2 & 1 - \lambda \end{pmatrix} = (4 - \lambda)(1 - \lambda) + 2 = (\lambda - 2)(\lambda - 3).$$

So 3 and 2 are eigenvalues. with eigenvectors

$$B := \{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \}.$$

respectively picking those two vectors as the basis in order we note that

$$[T]_B = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}.$$

Diagonal.

8 Exercise 8

Given some vector space V and a linear endomorphism $T:V\to V$ we define a T-invariant subspace of V to be a subspace $W\subset V$ s.t. $T(W)\subset W$. For the following determine if W is T-invariant subspace of V

- 1. $V = \mathbb{R}[x], T(f(x)) = f'(x), W = R[x]_{\leq 2}$ Yes since for an arbitrary polynomial $ax^n f'(x) = anx^{n-1}$ so the degree can only decrease and will therefore stay less than or equal to 2.
- 2. $V=R[x], T(f(x))=xf(x), W=R[x]_{\leq 2}$ No consider $x^2\in W.$ $T(x^2)=x^3$ which has degree 3 and is not in W

3.
$$V = k^3, T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 + x_2 + x_3 \end{pmatrix}, W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : x_1 = x_2 = x_3 \right\}$$

Yes since for any $w \in W, w = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix}$ and $T(w) = \begin{pmatrix} 3x_1 \\ 3x_1 \\ 3x_1 \end{pmatrix} \in W$

- 4. V = C([0,1]) $T(f(t)) = (\int_0^1 f(x)dx)t$ and $W = \{f \in V : f(t) = at + b, \ a,b \in \mathbb{R}\}$ for every $f \in W$ since f is continuous the integral exists and is a real number and so T(f) = at with b = 0 in the definition and so is still in W
- 5. $V = k^{2\times 2}, T(A) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A, W$ is the subspace of symmetric matrices. No for consider an arbitrary $A \in W$

$$A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} A = \begin{pmatrix} b & c \\ a & b \end{pmatrix}.$$

which is not symmetric unless a = c