MAT 115B Number Theory Winter 2025 January 22, 2025 Lecture 7 Lecturer: Elena Fuchs Scribe: Avery Li

Fact 7.1. The product of two quadratic residues is a quadratic residue and the product of two quadratic non-residues is a quadratic residue.

Fact 7.2. We have that -1 is a quadratic residue mod p when $p \equiv 1 \mod 4$.

Example 7.3. p=11, quadratic residues are 1, 3, 4, 5, 9. Look at $a, 2a, 3a, \ldots \frac{p-1}{2}a \mod p$

a	1	2	3	4	5	6	7	8	9	10	11
1	*	*	*	*	*						0
2		*		*		*		*		*	3
3	*		*	*		*			*		2
4	*			*	*			*	*		2
5			*	*	*				*	*	2
6	*	*				*	*	*			3
7		*	*			*	*			*	3
8		*			*		*	*		*	3
9	*		*		*		*		*		2
10					*	*	*	*	*	*	5

We'll now count how many how many dots are past the middle line, note that all of the quadratic residues have even counts.

Lemma 7.4. Let p be an odd prime, let p / a. Let $n = |\{\frac{p+1}{2} \le x \le p-1 | k \equiv ka \mod p \text{ for some } 1 \le k \le \frac{p-1}{2}\}|$. Then $\left(\frac{a}{p}\right) = (-1)^n$.

Proof. Let r_1, r_2, \ldots, r_n be the x's that we count above. Let s_1, s_2, \ldots, s_m be the other ka mod p. Compare $\{p-r_1, p-r_2, \ldots, p-r_n, s_1s_2, \ldots, s_m\}$ to $\{1, 2, \ldots, \frac{p-1}{2}\}$, we will show that these are in fact the same sets. If they are the same, then

$$(p-r_1)(p-r_2)\cdots(p-r_n)s_1s_2\cdots s_m \qquad \qquad = \left(\frac{p-1}{2}\right)!$$

$$\equiv (-r_1)(-r_2)\cdots(-r_n)s_1s_2\cdots s_m \mod p$$

$$\equiv (-1)^n r_1\cdot r_2\cdots r_n s_1s_2\cdots s_m \mod p$$

$$\equiv (-1)^n a\cdot 2a\cdot 3a\cdots \frac{p-1}{2}a \qquad \qquad \equiv \left(\frac{p-1}{2}\right)!$$

$$\equiv (-1)^n a^{\frac{p-1}{2}} \qquad \qquad \equiv 1 \mod p$$

$$\equiv (-1)^n \left(\frac{a}{p}\right) \qquad \equiv 1 \mod p$$

$$\equiv \left(\frac{a}{p}\right) \qquad \qquad \equiv (-1)^n \mod p$$

Now we need to show that these sets are in fact the same. Note that each of the differences $p-r_i \leq \frac{p-1}{2}$, then $\{p-r_1, p-r_2, \ldots, p-r_n, s_1, \ldots, s_m\} \subseteq \{1, 2, \ldots, \frac{p-1}{2}\}$. Assume towards a contradiction that $r_i = s_j$ for some i, j. Then

$$p - r + i \equiv s_j \mod p$$

 $\Rightarrow -r_i \equiv s_j \mod p$
 $\Rightarrow r_i + s_j \equiv 0 \mod p$
 $\Rightarrow p|r_i + s_j \equiv ka + la = (k+l)a$

Then, because $k, \ell \leq \frac{p-1}{2}$, we have that $k+l \leq p-1$. so we have $p|(k+\ell)a \Rightarrow p|a$. This is a contradiction because we assumed that $p \not|a$. Therefore, $r_i \neq s_j$. Similarly, $p-r_i \neq p-r_j$ if $i \neq j$ because if this were true, then $p|r_i-r_j \Rightarrow p|sa-ta \Rightarrow p|(s-t)a \Rightarrow p|a$, which is a contradiction.

Theorem 7.5. Let p be an odd prime, then $\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$, 2 is a quadratic residue mod p if and only if $p \equiv 1, 7 \mod 8$.

2