1. Rozhodněte, zda je třída *rekurzivních* jazyků uzavřena vůči inverznímu morfismu. Popište ideu důkazu, podobně jako je tomu u věty 8.4 na přednáškách (můžete použít vícepáskový Turingův stroj).

Ano, třída rekurzivních jazyků je uzavřena vůči inverznímu morfismu.

Idea důkazu:

- Aby byla třída rekurzivních jazyků uzavřená vůči inverznímu morfismu, musí platit, že pro každý rekurzivní jazyk $L_1 \subseteq \Sigma_1^*$ a pro každý morfismus $h: \Sigma_2^* \to \Sigma_1^*$ je $L_2 = h^{-1}(L_1) \subseteq \Sigma_2^*$ také rekurzivní jazyk.
- Jazyk $L \subseteq \Sigma^*$ je rekurzivní, jestliže L = L(M) pro nějaký úplný Turingův stroj M.
- Z předchozích dvou bodů plyne, že třída rekurzivních jazyků je uzavřena vůči inverznímu morfismu, pokud je možné pro každý rekurzivní jazyk $L_1 \subseteq \Sigma_1^*$ a pro každý morfismus $h: \Sigma_2^* \to \Sigma_1^*$ sestavit úplný Turingův stroj M_2 takový, že $L(M_2) = L_2 = h^{-1}(L_1) \subseteq \Sigma_2^*$.
- Z definic morfismu jazyka a inverzního morfismu jazyka ve studijní opoře plyne, že musí také platit:
 w ∈ L₂ ⇔ h(w) ∈ L₁.
- M_2 lze sestrojit takto:
 - Pro morfismus $h: \Sigma_2^* \to \Sigma_1^*$ můžeme definovat funkci $h_0: \Sigma_2 \to \Sigma_1^*$ takovou, že $h_0(a) = h(a)$ a $h(w) = h_0(a_1)h_0(a_2)...h_0(a_n)$.
 - Protože množina Σ_2 je konečná, tak h_0 může být zakódována v řízeni M_2 .
 - Z výše uvedené ekvivalence plyne, že dvoupáskový M_2 může pracovat tak, že pro vstupní řetězec $w \in \Sigma_2^*$ na první pásce uloží na druhou pásku řetězec $h(w) \in \Sigma_1^*$ (postupně prochází vstup na první pásce a pro každý znak a uloží na korespondující pozici na druhé pásce $h_0(a)$). Poté na druhé pásce simuluje běh stroje M_1 . Pokud ten přijme, přijme i M_2 .
- Je zřejmé, že pokud je M_1 úplný, M_2 musí také být úplný. Třída rekurzivních jazyků tudíž je uzavřena vůči inverznímu morfismu.

- 2. Uvažujte jazyk L_{LOA} kódů lineárně omezených Turingových strojů (t.j., jazyk kódů Turingových strojů takových, že v žádném jejich výpočtu neopustí vstupní hlava oblast pásky, na které bylo zapsáno vstupní slovo). Dokažte redukcí, že L_{LOA} není RE. Může vám pomoci následující nápověda.
 - (a) Co víte o problému prázdnosti jazyka Turingova stroje?
 - (b) Pro libovolný TS T můžeme sestrojit TS T', který na vstupu očekává vstupní slovo w stroje T následované vyznačeným úsekem použitelné pásky. Bude simulovat výpočet T na w a vhodně zareaguje, když simulovaný výpočet T skončí a také když simulace T vede k opuštění vyznačeného úseku pásky.

Popis stroje T' je v nápovědě záměrně neformální a nejednoznačný. V důkazu svou verzi stroje T' definujte přesněji, nemusíte detailně popisovat redukci, ale musí být jasné, co T' dělá a že jde opravdu o redukci.

- Použijeme redukci z problému prázdnosti jazyka Turingova stroje, který je charakterizován jazykem $L_{EMP} = \{\langle M \rangle \mid M \text{ je TS takový, že } L(M) = \emptyset\}$. Tento problém není ani částečně rozhodnutelný (viz. kapitola 6.4.2 ve studijní opoře) a tudíž jemu odpovídající jazyk L_{EMP} není ani rekurzivně vyčíslitelný.
- $L_{LOA} = \{ \langle M \rangle \mid M \text{ je lineárně omezený TS} \}.$
- Sestrojíme redukci $\delta:\{0,1\}^* \to \{0,1\}^*$ z jazyka L_{EMP} na jazyk L_{LOA} . Musí platit: $\forall w \in \{0,1\}^*: w \in L_{EMP} \Leftrightarrow \delta(w) \in L_{LOA}$
- Úplný TS M_{δ} implementující redukci δ přiřadí každému řetězci $x \in \{0,1\}^*$ řetězec $\langle M_x \rangle$, kde M_x je TS, který na vstupu $w \in \{0,1\}^*$ pracuje takto:
 - Pokud x není platný kód TS, M_x bude posouvat svojí hlavu směrem doprava až na první výskyt symbolu Δ a poté přijme.
 - Jinak M_x projde svůj vstup w a zkontroluje, zda má strukturu $v\omega^k\#$, kde v je platný kód vstupu TS s kódem x, ω a # jsou speciální zásobníkové symboly nepatřící do zásobníkové abecedy TS s kódem x a $k \geq 0$ je celé číslo. Pokud ne, M_x odmítne. (tento krok by neměl způsobit, aby se čtecí hlava M_x dostala mimo oblast na pásce, kde je zapsaný vstup, jinak důkaz nebude fungovat, ale pokud na vstupu např. je pouze v bez speciálních symbolů, tak M_x při kontrole nutně vyjede ze vstupu, tudíž ani nemůže být lineárně omezený, ale nevím, co s tím)
 - Jinak M_x s využitím univerzálního TS M_u , který je jeho komponentou, simuluje běh TS s kódem x na vstupu w, přičemž k speciálním symbolům ω se chová, jako by to byly symboly Δ , a pokud se jeho hlava dostane nad symbol #, M_u zastaví a odmítne.
 - Pokud M_u odmítne, odmítne i M_x .
 - Pokud M_u přijme, M_x bude posouvat svojí hlavu směrem doprava až na první výskyt symbolu Δ a poté přijme.
- δ lze evidentně implementovat s pomocí úplného TS M_δ . Stačí, aby vypsal kód TS zahrnujícího test členství x v regulárním jazyce dobře zformovaných kódů TS, test členství w v regulárním jazyce platných kódů vstupu TS s kódem x konkatenovaných s $\omega^*\#$, univerzální TS M_u a jeho aplikaci na w.
- Pro TS M_x platí:
 - $-\langle M_x \rangle \in L_{LOA} \Leftrightarrow x$ je platný kód TS a zároveň pro všechna možná w platí, že se hlava TS M_u simulujícího běh TS s kódem x na vstupu w dostane nad symbol # nebo M_u odmítne nebo cyklí, aniž by se jeho hlava dostala nad symbol #. Tato varianta je zřejmě ekvivalentní tomu, že TS s kódem x při jakémkoli vstupu buď odmítne nebo cyklí.

- $-\langle M_x \rangle \notin L_{LOA} \Leftrightarrow x$ není platný kód TS nebo existuje nějaké w takové, že TS M_u simulující běh TS s kódem x na vstupu w přijme. Tato varianta je zřejmě ekvivalentní tomu, že TS s kódem x přijímá alespoň jedno slovo.
- Ukážeme, že δ zachovává členství v jazyce dle definice redukce: $\forall x \in \{0,1\}^*: x \in L_{EMP} \Leftrightarrow \mathsf{TS} \text{ s kódem } x \text{ nepřijímá žádné slovo} \Leftrightarrow \langle M_x \rangle \in L_{LOA}$
- \bullet Tedy L_{LOA} není ani rekurzivně vyčíslitelný.

- 3. Uvažujte následujíci dva důkazy diagonalizací. Oba jsou chybné (ani jedno z dokazovaných tvrzení neplatí). Vysvětlete, který krok je chybný a zdůvodněte proč. Může vám pomoci důkladně si prostudovat kapitolu o diagonalizaci ve studijní opoře. Nehledejte komplikovaná řešení, ke zdůvodnění by vám měla stačit jedna až dvě věty.
 - (a) Důkaz, že množina $A \subseteq 2^{\{0\}^*}$ všech *konečných* jazyků nad abecedou $\{0\}$ má jinou mohutnost než množina $B \subseteq 2^{\{0,1\}^*}$ všech *konečných* jazyků nad abecedou $\{0,1\}$.
 - i. Předpokládejme, že A i B mají stejnou mohutnost. Pak existuje bijekce $f:A\to B$.
 - ii. Prvky množiny A je možné očíslovat přirozenými čísly a seřadit do posloupnosti $L_1, L_2, L_3, ...$
 - iii. Slova z množiny $\{0,1\}^*$ je taktéž možno uspořádat do nějaké posloupnosti w_1, w_2, w_3, \dots (například lexikograficky).
 - iv. f potom můžeme zobrazit nekonečnou maticí m, kde m_{ij} je 1, pokud $w_j \in f(L_i)$, a 0 jinak:

- v. Uvažujme jazyk $L \subseteq \{0,1\}^*$, který vznikne komplementací diagonály, tedy takový, že pro každé $i > 0, w_i \in L$, právě když $w_i \notin f(L_i)$ (tedy právě když $m_{ii} = 0$).
- vi. Jazyk L se zřejmě liší od každého jazyka $f(L_i)$, i > 0 (alespoň slovem w_i).
- vii. Zároveň je jazyk L v B.
- viii. To ale znamená, že f není surjektivní, a tedy nemůže být bijekcí. Spor.

Krok vii. je chybný! Jelikož je matice nekonečná, i L je nekonečný, tudíž nemůže patřit do množiny konečných jazyků B!

(b) Stejné tvrzení a stejný důkaz jako v bodě 3a, pouze s tím rozdílem, že nyní $A=2^{\{0\}^*}$ a $B=2^{\{0,1\}^*}$, t.j., A i B teď obsahují všechny jazyky nad danými abecedami, včetně *nekonečných*.

Krok ii. je chybný! A je nespočetná, viz. Lemma 6.1.1. ve studijní opoře, tudíž její prvky nelze očíslovat přirozenými čísly a seřadit do posloupnosti $L_1, L_2, L_3, ...$

4. Na Obrázku 1 je zobrazen dvoupáskový NTS Happy End, který přijímá jednoduchý regulární jazyk nad abecedou $\Sigma = \{N, T, I, \heartsuit, \mathbf{2}, ?, !\}$. Jaký?

Demonstrujte běh *Happy End* na nějakém slově z *L(Happy End)* (stačí, když uvedete konfigurace druhé pásky na vstupu každého uzlu z obrázku 1, kterým běh stroje prochází).

Obrázek 1: NTS Happy End.

NTS *Happy End* přijímá regulární jazyk ekvivalentní regulárnímu výrazu: $(I(\heartsuit + \textcircled{2})^+TIN?)^*I\heartsuit^+TIN!$

Posloupnost konfigurací druhé pásky NTS Happy End na vstupu každé jeho komponenty, kterou prochází jeho běh, který přijme slovo $I \heartsuit T I N!$:

 $[\Delta NIT \heartsuit I \Delta \ldots]$ $[\Delta\Delta\ldots]$ 29. $[\Delta N \Delta \Delta \Delta \Delta \Delta \ldots]$ 1. 15. 2. $[\Delta\Delta\Delta\Delta\ldots]$ $[\Delta NIT \heartsuit I \Delta \ldots]$ 30. $[\Delta N \Delta \Delta \Delta \Delta \Delta \ldots]$ 16. 3. $[\Delta N \Delta \ldots]$ 17. $[\Delta NIT \heartsuit I \underline{\Delta} \ldots]$ 31. $[\Delta N \Delta \Delta \Delta \Delta \Delta \ldots]$ 4. $[\Delta N \Delta \ldots]$ 18. $[\Delta NIT \heartsuit I \Delta \ldots]$ 32. $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\dots]$ 5. $[\Delta NI\Delta\ldots]$ $[\Delta NIT \heartsuit I \Delta \ldots]$ 33. $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\dots]$ 19. $[\Delta NI\Delta...]$ $[\Delta NIT \heartsuit \Delta \Delta \dots]$ $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta$... 6. 20. 34. 7. $[\Delta NIT\Delta...]$ $[\Delta NIT \heartsuit \Delta \Delta \ldots]$ $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta..]$ 21. 35. $[\Delta NIT \heartsuit \Delta \Delta \dots]$ 8. $[\Delta NIT\Delta\ldots]$ 22. 36. $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta..]$ 9. $[\Delta NIT \heartsuit \Delta \dots]$ $[\Delta NIT\Delta\Delta\Delta\Delta\ldots]$ 37. $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta\dots]$ 23. 10. $[\Delta NIT \overline{\heartsuit} \underline{\Delta} \ldots]$ 24. $[\Delta NIT\Delta\Delta\Delta\Delta\dots]$ 38. $[\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\dots]$ 11. $[\Delta NIT \heartsuit \underline{I} \Delta \ldots]$ 25. $[\Delta NIT\Delta\Delta\Delta\Delta...]$ 39. $[\underline{\Delta}\Delta\Delta\Delta\Delta\Delta\Delta\ldots]$ $[\Delta NIT \heartsuit I \Delta \ldots]$ 12. $[\Delta NI\Delta\Delta\Delta\Delta\Delta\dots]$ 26. 13. $[\Delta NIT \heartsuit I \Delta \ldots]$ 27. $[\Delta NI\Delta\Delta\Delta\Delta\Delta\dots]$ $[\Delta NIT \heartsuit I \Delta \dots]$ $[\Delta NI\Delta\Delta\Delta\Delta\ldots]$ 14. 28.