实验五组合逻辑电路的设计与测试

陈岳阳 21级计算机科学与技术

2022年10月22日

目录

1	实验目的	2
2	实验原理	2
3	设计过程	3
4	实验结果	4
5	实验总结	4

1 实验目的

掌握组合逻辑电路的设计与测试方法

2 实验原理

1. 使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。设计组合电路的一般步骤如图1所示。

图 1: 设计流程图

根据设计任务的要求建立输入、输出变量,并列出真值表。然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。并按实际选用逻辑门的类型修改逻辑表达式。根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。最后,用实验来验证设计的正确性。

2.74L554芯片引脚排列 逻辑图如图2

图 2: 芯片引脚排列逻辑图

3 设计过程

1.逻辑图

本实验中采用的逻辑图如图3

图 3: 逻辑图

2.逻辑表达式及化简

$$\overline{C} = \overline{AB + AC_{i-1} + BC_{i-1}} = \overline{AB} + \overline{AB} + \overline{AC_{i-1}} + \overline{BC_{i-1}}$$

$$\overline{S} = \overline{CC_{i-1} + BC + AC + ABC_{i-1}} = \overline{ABC} + \overline{ABC_{i-1}} + \overline{CC_{i-1}}$$

3.真值表

<u> </u>					
В	C_{i-1}	С	\mathbf{S}		
0	0	0	0		
0	0	0	1		
0	0	0	1		
1	0	1	0		
0	1	0	1		
1	1	1	0		
0	1	1	0		
1	1	1	1		
	0 0 0 1 0 1	0 0 0 0 1 0 0 1 1 1 0 1	0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 1		

4.接线图

图 4: 接线图

4 实验结果

C端输出连接L1,S端输出连L2,改变输入电压,观察得L1和L2的明亮情况如下:

L1亮的情况: A, B, C_{i-1} 中至少有两个为低电压时,L1亮。其余情况,L1略微变暗(有明显变化)。

L2亮的情况: C_{i-1} 为低电压,A、B电压相同; 或 C_{i-1} 为高电压,A、B电压不同,L2亮。其余情况,L2暗。

5 实验总结

这次实验加深了我对全加器和逻辑电路的理解,深刻记忆了全加器求和与进位规则。同时也增强了动手能力和与同学沟通搭建电路的能力。