

High-level Data Link Control (HDLC) is a bit-oriented protocol for communication over point-to-point and multipoint links. It implements the ARQ mechanisms

Topics discussed in this section:

Configurations and Transfer Modes Frames Control Field

Normal response mode

a. Point-to-point

b. Multipoint

Asynchronous balanced mode

HDLC frames

Control field format for the different frame types

U-frame control command and response

Code	Command	Response	Meaning
00 001	SNRM		Set normal response mode
11 011	SNRME		Set normal response mode, extended
11 100	SABM	DM	Set asynchronous balanced mode or disconnect mode
11 110	SABME		Set asynchronous balanced mode, extended
00 000	UI	UI	Unnumbered information
00 110		UA	Unnumbered acknowledgment
00 010	DISC	RD	Disconnect or request disconnect
10 000	SIM	RIM	Set initialization mode or request information mode
00 100	UP		Unnumbered poll
11 001	RSET		Reset
11 101	XID	XID	Exchange ID
10 001	FRMR	FRMR	Frame reject

Figure shows how *U-frames* can be used for connection establishment and connection release. Node A asks for a connection with a set asynchronous balanced mode (SABM) frame; node B gives a positive response with an unnumbered acknowledgment (UA) frame. After these two exchanges, data can be transferred between the two nodes (not shown in the figure). After data transfer, node A sends a DISC (disconnect) frame to release the connection; it is confirmed by node B responding with a UA (unnumbered acknowledgment).

Example of connection and disconnection

Figure shows an exchange using piggybacking. Node A the exchange of information with I-frame numbered 0 followed by another I-frame numbered 1. Node B piggybacks its acknowledgment of both frames onto an I-frame of its own. Node B's first I-frame is also numbered 0 [N(S)] field] and contains a 2 in its N(R) field, acknowledging the receipt of A's frames 1 and 0 and indicating that it expects frame 2 to arrive next. Node B transmits its second and third I-frames (numbered 1 and 2) before accepting further frames from node A.

Example of piggybacking without error

Its N(R) information, therefore, has not changed: B frames 1 and 2 indicate that node B is still expecting A's frame 2 to arrive next. Node A has sent all its data. Therefore, it cannot piggyback an acknowledgment onto an I-frame and sends an S-frame instead. The RR code indicates that A is still ready to receive. The number 3 in the N(R) field tells B that frames 0, 1, and 2 have all been accepted and that A is now expecting frame number 3.

Figure shows an exchange in which a frame is lost. Node B sends three data frames (0, 1, and 2), but frame 1 is lost. When node A receives frame 2, it discards it and sends a REJ frame for frame 1. Note that the protocol being used is Go-Back-N with the special use of an REJ frame as a NAK frame. The NAK frame does two things here: It confirms the receipt of frame 0 and declares that frame 1 and any following frames must be resent. Node B, after receiving the REJ frame, resends frames 1 and 2. Node A acknowledges the receipt by sending an RR frame (ACK) with acknowledgment number 3.

Example of piggybacking with error

THE CHANNEL ALLOCATION

- Static Channel Allocation- Fixed channel allocation uses FDM or TDM
- Dynamic Channel Allocation Channel allocation on dynamic basis
 - Independent Traffic
 - Single Channel
 - Observable collisions
 - Continuous or slotted time
 - Carrier sense or no carrier sense

ALOHA- used short-range radios, with each user terminal sharing the same upstream frequency to send frames to the central computer

• Pure ALOHA- Users transmit whenever they have data to sent (contention System) and there will be collision as well as frame damage

ALOHA

Slotted Aloha- Transmission during slot times (force the station to send only at the beginning of the time slot)

Carrier Sense Multiple Access Protocols

- CSMA is based on the principle "sense before transmit" or "listen before talk."
- Collision will take place based on propagation delay
- Station may sense the medium and find it idle, only because the first bit sent by another station has not yet been received.

Carrier Sense Multiple Access Protocols

The vulnerable time for CSMA is the *propagation time* Tp The leftmost station, A, sends a frame at time t1, which reaches the rightmost station, D, at time t1 + Tp. The gray area shows the vulnerable area in time and space.

Carrier Sense Multiple Access Protocols

The vulnerable time for CSMA is the *propagation time* Tp The leftmost station, A, sends a frame at time t1, which reaches the rightmost station, D, at time t1 + Tp. The gray area shows the vulnerable area in time and space.

Carrier Sense Multiple Access Protocols

- 1-Persistent- When the station finds the line idle, it sends its frame immediately (with probability 1)
- **Nonpersistent method-** a station that has a frame to send senses the line. If the line is idle, it sends immediately. If the line is not idle, it waits a random amount of time and then senses the line again.
- **p-Persistent** used if the channel has time slots with a slot duration equal to or greater than the maximum propagation time.

Carrier Sense Multiple Access Protocols

a. 1-Persistent

b. Nonpersistent

c. p-Persistent

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Algorithm used to manage collisions

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Algorithm used to manage collisions

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Algorithm used to manage collisions

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

BIT MAP PROTOCOL

Also called reservation protocol.

Contention slots are reserved for frame transmission Token based and binary count down are other alternatives

IEEE 802.3(**Ethernet**)

IEEE 802.3(Ethernet)

A source address is always a *unicast address*—the frame comes from only one station. The destination address, however, can be *unicast*, *multicast*, or *broadcast*

To find the type of the address, we need to look at the second hexadecimal digit from the left. If it is even, the address is unicast. If it is odd, the address is multicast. If all digits are Fs, the address is broadcast.

Define the type of the following destination addresses:

- a. 4A:30:10:21:10:1A
- b. 47:20:1B:2E:08:EE
- c. FF:FF:FF:FF:FF

IEEE 802.3(Ethernet)

a. A LAN with a bus topology using a coaxial cable

b. A LAN with a star topology using a hub

IEEE 802.3(Ethernet)

Categories of standard Ethernet

		•	
Implementation	Medium	Medium Length	Encoding
10Base5	Thick coax	500 m	Manchester
10Base2	Thin coax	185 m	Manchester
10Base-T	2 UTP	100 m	Manchester
10Base-F	2 Fiber	2000 m	Manchester

Efficiency of standard Ethernet

Efficiency =
$$1/(1 + 6.4 \times a)$$

a = (propagation delay)/(transmission delay)

In the Standard Ethernet with the transmission rate of 10 Mbps, we assume that the length of the medium is 2500 m and the size of the frame is 512 bits. The propagation speed of a signal in a cable is normally 2×10^8 m/s.

IEEE 802.3(Ethernet)

Efficiency of standard Ethernet

Efficiency =
$$1/(1 + 6.4 \times a)$$

a = (propagation delay)/(transmission delay)

In the Standard Ethernet with the transmission rate of 10 Mbps, we assume that the length of the medium is 2500 m and the size of the frame is 512 bits. The propagation speed of a signal in a cable is normally 2×10^8 m/s.

Propagation delay =
$$2500/(2 \times 10^8) = 12.5 \,\mu s$$
 Transmission delay = $512/(10^7) = 51.2 \,\mu s$
 $a = 12.5/51.2 = 0.24$ Efficiency = 39%

Bridged Ethernet

Bridges raise the bandwidth, and separate collision domains

A bridge divides the network into two or more networks and raising the bandwidth

In fig(a) total capacity is shared by 12 systems where as in fig(b) two network each getting the capacity of the single network

Switched Ethernet

- Instead of having two to four networks, we can have N networks, where N is the number of stations on the LAN
- The bandwidth is shared only between the station and the switch
- The collision domain is divided into N domains.

FAST ETHERNET (100 MBPS)

Main Goals

- Upgrade the data rate to 100 Mbps.
- Make it compatible with Standard Ethernet.
- Keep the same 48-bit address.
- Keep the same frame format

Solutions

- Totally drop the bus topology and use a passive hub and star topology and make the max length of the network 250m (Standard Ethernet -2500 m)
- Use link-layer switch with a buffer to store frames and a full-duplex connection to each host to make the transmission medium private for each host.
- Autonegotiation (incompatible device communication)

	- U	-		
Implementation	Medium	Medium Length	Wires	Encoding
100Base-TX	UTP or STP	100 m	2	4B5B + MLT-3
100Base-FX	Fiber	185 m	2	4B5B + NRZ-I
100Base-T4	UTP	100 m	4	Two 8B/6T

GIGABIT ETHERNET (1000 MBPS)

- In the full-duplex mode of Gigabit Ethernet, there is no collision
- The maximum length of the cable is determined by the signal attenuation in the cable.
- Gigabit Ethernet can also be used in half-duplex mode, with hub uses CSMA/CD
- Uses carrier extension by increasing the minimum frame length
- Uses frame bursting by sending multiple frames at a time

Implementation	Medium	Medium Length	Wires	Encoding
1000Base-SX	Fiber S-W	550 m	2	8B/10B + NRZ
1000Base-LX	Fiber L-W	5000 m	2	8B/10B + NRZ
1000Base-CX	STP	25 m	2	8B/10B + NRZ
1000Base-T4	UTP	100 m	4	4D-PAM5

IEEE 802.4

IEEE 802.4

Frame control indicates the type of frame it holds. Frame can hold various values including:

- •0 claim token; doing at the initialization stage
- •1 solicit successor one; used when you are adding a node to the ring
- •2 solicit successor two; again add node to ring
- •3 who follows; used in case of lost token
- •4 for resolving contention in case of multiple station addition
- •8 used to pass the token
- •12 for setting the successor, mostly used when deletion of node from a ring

IEEE 802. 5

- When a station wishes to transmit, it must wait for the token to pass by and seize the token.
- Each station interrogates passing frame.
- If destined for station, it copies the frame into local buffer.
- As bits have propagated around the ring & they come back, they are removed from the ring by the sender.

IEEE 802. 5 Frame format

SF	AC	FC	SA	DA	DATA	FCS	FS	EF
1B	1B	1B	6B	6B	4500B	4B	1B	1B

- Starting delimiter(SF) and ending delimiter(EF) mark the beginning & ending of the frame.
- Access control(AC) consist of token bit, monitor bit, priority bit.
- Destination address(DA) & source address(SA) fields gives the address.
- Checksum(FCS) field is used to detect transmission errors
- Frame control(FC) has a set of codes which is used to control the frame which is in transmission
- Frame status(FS)

IEEE 802. 11

Two modes- Infrastructure and Adhoc

Figure 4-23. 802.11 architecture. (a) Infrastructure mode. (b) Ad-hoc mode.

DLL-MAC

HIDDEN AND EXPOSED TERMINAL PROBLEM

Figure 4-11. A wireless LAN. (a) A and C are hidden terminals when transmitting to B. (b) B and C are exposed terminals when transmitting to A and D.

Figure 4-26. (a) The hidden terminal problem. (b) The exposed terminal problem.

DLL-MAC

HIDDEN AND EXPOSED TERMINAL PROBLEM

MACA-Multiple Access with Collision Avoidance

RTS-Ready to Send

CTS –Clear to Send

Figure 4-12. The MACA protocol. (a) A sending an RTS to B. (b) B responding with a CTS to A.

IEEE 802. 11-protocol Stack

IEEE 802. 11-Physical Layer

- Rate Adaptation
- 802.11b(Data rate up to 11Mbps 2.4 GHz ISM band)
- 802.11a(Data rate up to 54Mbps uses OFDM resists to multipath 5GHz ISM band)
- 802.11g(same features of 802.11a 2.4 GHz ISM band)
- 802.11n((Data rate up to 100Mbps and 5GHz ISM band)

IEEE	Technique	Band	Modulation	Rate (Mbps)	
802.11	FHSS	2.400-4.835 GHz	FSK	1 and 2	
	DSSS	2.400-4.835 GHz	PSK	1 and 2	
	None	Infrared	PPM	1 and 2	
802.11a	OFDM	5.725-5.850 GHz	PSK or QAM	6 to 54	
802.11b	DSSS	2.400-4.835 GHz	PSK	5.5 and 11	
802.11g	OFDM	2.400-4.835 GHz	Different	22 and 54	
802.11n	OFDM	5.725-5.850 GHz	Different	600	

IEEE 802. 11-MAC -CSMA/CA

IEEE 802. 15 BLUETOOTH

Two piconets form a Scatternet

IEEE 802. 15 BLUETOOTH

Protocol Stack

- The link manager handles the establishment of logical channels between devices, including power management, pairing and encryption, and quality of service
- The protocols below the Host Controller line implemented on a Bluetooth chip and the protocols above the line will be implemented on the Bluetooth device that hosts the chip.
- L2CAP (Logical Link Control Adaptation Protocol) perform message formatting and profile helps in writing applications

IEEE 802. 15 BLUETOOTH

Radio Layer

• 10m range 2.4GHz band with FHSS (adaptive)

Link Layer

- Device pairing (PIN / passkey)
- Link establishment
 - SCO
 - ACL

Frame Format (Flow, Ack, Sequence)

