Track&Roll

Outil pour le suivi d'activité physique de sportifs de haut niveau

Compte-rendu de réunion

09/10/2017

Participants

Sébastien Aubin Guillaume Muret Benoit Ladrange Antoine de Pouilly Marc de Bentzmann Angela Randolph François de Broch d'Hotelans

I. Ordre du Jour

A. Présentation des dernières recherches

Présentation des recherches – membre de l'équipe projet

Mise en communs - débats

- Débats sur les recherches précédemment présentées Tous les participants
- FAQ Tous les participants
- Détermination quasi définitives des technologies développées Tous les participants
- Mise en place de tâches pour les I1 Tous les participants

II. Compte-rendu

Date: 09/10/17 Lieu: ESEO Angers Heure de début : 17h45 Heure de fin: 18h20

Participants

Professeur référent : Mr. Sébastien Aubin

Équipe de projet :

- Étudiants en dernière année de cycle ingénieur François de Broch d'Hotelans (Chef de projet) **Guillaume Muret** Benoit Ladrange Antoine de Pouilly Marc de Bentzmann Angela Randolph
- Étudiants en 1ère année de cycle ingénieur : Camille Csanski (Chef de projet I1)

A. Présentation des dernières recherches

Présentation des recherches — membre de l'équipe projet

Présentation d'une solution à partir de la RFID :

- Système UWB disponible : Open RTLS Kit de dév : 7 ou 8 balises, 4 tags dont deux avec capteurs : accéléromètre, gyroscope...
- Tags déjà configurés
- Pas accès aux positions pour l'instant
- Oublier Rapsberry (pas utilisée/adaptée en dvp industriel) à Beaglebone black/ red (carte à commander, possibilité d'en commander plusieurs)

Présentation d'une solution à partir du Bluetooth :

- Problématique du Bluetooth : temps de latence. Tant que le signal peut être analysé, c'est une solution à envisager.

Privilégié la qualité même si un petit temps de latence, le message peut quand même être décrypté.

Puces BLE et beacon à disposition

Améliorations:

- Identifier en premier le besoin et ce qu'il faut mettre en place (Quel besoin ? Quelles mesures ? Que peut-on mettre en œuvre pour répondre à ce besoin ?) → Cahier des charges vs spécifications fonctionnelles
- Définir les paramètres à mesurer (ordre de grandeur)
- Redéfinir la solution et les besoins pour justifier le choix de la technologie
- Faire une comparaison des différentes technologies, matrice de décision (ratio coût/retour sur investissement ou apports de la technologie...)
- Poursuivre l'étude bibliographique.
- Mettre en perspective le besoin avec les possibilités.
- Améliorer la phase d'études.
- Proposer les solutions au client (Modélisation, tableau de comparaison ...)

Conception Vs Spécification :

- Spécification = cahier des charges détaillé correspondant aux fonctionnalités qu'attends le client
- On décrit ce que doivent faire fonctionnellement les capteurs mais c'est la conception qui détail le processus sinon on parle de contraintes non fonctionnelles.
- Tablette Android à contrainte fonctionnelle que nous nous sommes imposés.

B. Mise en communs – débats

Débats sur les recherches précédemment présentées - Tous les participants FAQ - Tous les participants

1. Rôle des I1

Module Conduite de projet, 2 phases :

Phase 1 (~ de septembre à janvier) Gestion de projet et planification de ce qu'ils devront réaliser : Élaboration des travaux / Conduite du projet / Définition du sujet/ Définition et identification des livrables/ Répartition du travail, planification Première évaluation vers le 20 octobre : soutenance pour les I1.

Phase 2 (~ de janvier à juin) : Mise en œuvre technique de leur travail.

Cette mise en oeuvre peut comprendre :

Bibliographie, mise en place d'indicateurs physiologiques, à mesurer & tester autrement pour vérifier le bon fonctionnement de nos capteurs

Procédure de mise en place des systèmes de tests et réalisation des tests (+ plan de tests)

Mise en place de simulations

Explorer d'autres technologies/techniques (BLE avec Beacon, RFID, triangulation != trilatération...)

Essayer de réduire le coût du système

Faire de la communication sur le projet (réseaux sociaux, vidéo, flyers, posters...)

2. Option valide par rapport aux tâches fait pendant le PFE ?

Il n'est pas nécessaire de travailler selon le cadre de son option.

3. Budget & techno à utiliser (RFID & Raspberry par exemple)

- Présenter l'éventail de solutions
- justifier l'intérêt de l'investissement pour chacune d'entre elle
- Présenter le retour sur investissement.
- Ne pas perdre de vu le besoin du client

Système RFID UWB à disposition dans l'école.

Nécessité pour l'ESEO de rester à la pointe des dernières techno + Étude de Mr Aubin sur la géolocalisation

UWB RTLS: La solution de localisation par OpenRTLS

TOTAL pour le tag development KIT : 9000€

BeagleBone (version Red), développée par Texas Instrument.

Avantage d'être utilisable pour des projets industriels (contrairement à la Raspberry). On peut charger Debian dessus.

Plus limité en USB, mais possibilité de mettre un Hub.

Pas mal d'entrées sorties.

Convertisseur analogique/numérique.

Évaluation du PFE 4

4 champs d'évaluation :

- Champs scientifiques et technique (réalisation)
- Champ organisationnel
- Champ communication orale et écrite, avec le client, interne ...
- Champ économique : mettre en phase les enjeux de l'investissement, le ROI
- + Poster.