

SALESIANOS

INSTITUTO TÉCNICO RICALDONE ASIGNATURA: CIENCIAS NATURALES SEGUNDO PERIODO 2024

TERCER AÑO DE BACHILLERATO

DOCENTES: Tirza Alas - Karla Álvarez – Soley Domínguez – Daniel Elías

Práctica de laboratorio: "Teorema de trabajo y energía"

Fecha: 27 al 31 de mayo 25% de perfil 2 (35%)

GUÍA PARA PRÁCTICA DE LABORATORIO

RESULTADO DE APRENDIZAJE

• Explicar los cambios en la energía cinética que experimenta un cuerpo luego de la aplicación de trabajo.

Competencias:

- Comunicación de la información con lenguaje científico.
- Aplicación de procedimientos científicos.
- Razonamiento e interpretación científica.

Contenido: Teorema de trabajo y energía

Indicador de logro:

3.3 Calcula cambios de energía cinética para evaluar el trabajo realizado por fuerzas conservativas.

Actividad Pre - laboratorio

Indicaciones: En esta actividad se identificarán los saberes previos sobre trabajo y energía cinética. Responde en equipos las siguientes preguntas:

1.	¿De qué magnitudes depende la energía cinética de un cuerpo?, utiliza la ecuación para el cálculo de energía cinética para justificar su respuesta.
2.	¿Cuál es la energía cinética de un cuerpo en reposo?
3.	¿Qué cambios espera observarse en el valor de la energía cinética de un cuerpo cuando éste se acelera debido a la aplicación de una fuerza?
4.	¿De qué magnitudes depende el trabajo realizado sobre un cuerpo?

Juego abiert

Juega con la simulación: ' la simulación:	"Energía en la pista de patinaje	." (Clic <u>∕ ⊋ aquí</u>). Describe	tres acciones que puedas i	realizar en

Recopila e interpreta los datos:

Indicaciones: Realiza las siguientes actividades en equipo.

- 1. Selecciona la pista en forma de parábola \bigvee y registra en la tabla 1 los valores de la energía cinética y potencial en dos puntos de la trayectoria considerando el punto más bajo.
- 2. Calcula el trabajo realizado sobre el cuerpo en movimiento como el cambio en su energía cinética y registra el dato en la tabla 1.

Tabla 1. Movimiento en pista parabólica

	Punto 1	Punto 2 (más bajo en la trayectoria)	$W = \Delta K$ $W = K_{final} - K_{inicial}$
Energía cinética			
Energía potencial			

- 3. Selecciona la pista en forma de función exponencial decreciente y registra en la tabla 2 los valores de la energía cinética y potencial en dos puntos de la trayectoria considerando el punto más bajo.
- 4. Calcula el trabajo realizado sobre el cuerpo en movimiento como el cambio en su energía cinética y registra el dato en la tabla 2.

Tabla 2. Movimiento en pista exponencial decreciente

	Punto 1	Punto 2 (más bajo en la trayectoria)	$W = \Delta K$ $W = K_{final} - K_{inicial}$
Energía cinética			
Energía potencial			

- 5. Selecciona la pista en forma de función polinómica de cuarto grado y registra en la tabla 3 los valores de la energía cinética y potencial en dos puntos de la trayectoria considerando el punto más bajo.
- 6. Calcula el trabajo realizado sobre el cuerpo en movimiento como el cambio en su energía cinética y registra el dato en la tabla 3.

Tabla 3. Movimiento en pista polinómica

	Punto 1	Punto 2 (más bajo en la trayectoria)	$W = \Delta K$ $W = K_{final} - K_{inicial}$
Energía cinética			
Energía potencial			

Actividad post – laboratorio:

Indicaciones: responde en equipo las siguientes preguntas relacionadas al trabajo experimental realizado con el simulador.

1.	¿Cuál sería una forma alternativa de definir al trabajo realizado sobre un cuerpo, según los cálculos realizados en la práctica?

2.	Considerando que el desplazamiento es una magnitud vectorial, explique ¿qué alternativa para el cálculo del trabajo considera más factible para el movimiento en pistas no lineales (desplazamiento no horizontal)?
3.	Observar los valores de energía potencial medidos en cada prueba ¿cómo pueden explicarse los resultados obtenidos considerando la definición matemática de energía potencial?
4.	¿Es posible el movimiento perpetuo?, justifique su respuesta considerando la relación entre todas las magnitudes utilizadas en la práctica y las fuerzas que podrían realizar trabajo, según se explicó en las sesiones de clase.

SALESIANOS INSTITUTO TÉCNICO RICALDONE ASIGNATURA: CIENCIAS NATURALES SEGUNDO PERIODO 2024 TERCER AÑO DE BACHILLERATO

TERCER AÑO DE BACHILLERATO 25% DE PERFIL 2 (35%)
DOCENTES: Tirza Alas /Liliana Álvarez / Soley Domínguez/ Daniel Elías

FECHA: 27 AL 31 DE MAYO

PRÁCTICA DE LABORATORIO:

"TEOREMA DE TRABAJO Y ENERGÍA"

ESCALA ESTIMATIVA

Indicadores de logro:

3.3 Calcula cambios de energía cinética para evaluar el trabajo realizado por fuerzas conservativas.

Estudiantes:	Especialidad:	Sección:	
			_

	ESCALA						
	CRITERIOS		E (EXCELENTE) 10	MB (MUY BUENO) 0.75	B (BUENO) 5	D (DEFICIENTE) 0.25	TOTAL
1	Puntualidad y disciplina asiste puntualmente a las clases para el desarrollo del tema y realización de la práctica. Mantiene un comportamiento adecuado durante la realización de la actividad.	10%	1.0	0.75	0.5	0.25	
2	Orden: Presenta sus resultados de manera clara, limpia y con letra legible.	10%	1.0	0.75	0.5	0.25	
3	Actividad pre laboratorio: aplica sus conocimientos previos sobre los tipos de energía mecánica y el trabajo en física para explicar la relación entre las magnitudes presentes en el movimiento de los cuerpos.	20%	2.0	1.5	1.0	0.5	
4	Juego abierto: explora satisfactoriamente las herramientas disponibles en el simulador para describir tres acciones que es posible realizar a partir de las funciones que tiene disponibles.	10%	1.0	0.75	0.5	0.25	
5	Registro de datos experimentales: realiza mediciones de energía cinética y energía potencial para cada uno de los puntos marcados en la trayectoria de un cuerpo en movimiento registrando los valores en las tablas correspondientes.	10%	2.0	1.5	1.0	0.5	
6	Cálculo del cambio de energía cinética: calcula de forma correcta el valor del cambio de la energía cinética para cada intervalo establecido registrando los resultados en las tablas correspondientes.	20%	2.0	1.5	1.0	0.5	

7	Actividad post – laboratorio: analiza la 20% información obtenida a partir del desarrollo de la práctica para concluir y consolidar los principios del teorema de trabajo y energía respondiendo correctamente a las preguntas planteadas.	2.0	1.5	1.0	0.5	
	TOTAL, DE LOGROS:					