Quiz

Due Dec 6 at 10am	Points 30	Questions 24	Available Dec 6 at 9:30am - Dec 6 at 10am 30 minutes
Time Limit 30 Minutes			

Instructions

This is a short in-class quiz consisting of 24 questions with either 1 or 1.5 point for each question. Time duration to submit the quiz is 30 mins.

This quiz was locked Dec 6 at 10am.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	30 minutes	17.75 out of 30

Score for this quiz: 17.75 out of 30

Submitted Dec 6 at 10am
This attempt took 30 minutes.

All the Nodes

	Question 3 1.5 / 1.5 pts
	We have data of a Pilot Personal Loans Cross-Sell Campaign executed by MyBank. The bank reached out to 20000 customers. 1733 of those customers responded to the campaign. The customers who responded are tagged as Target = 1 (i.e. Responders) and the rest of the customers are marked as Target = 0 (i.e. Non-Responders).
	We are now splitting this data set into Development Sample and Hold-out Sample. The Development Sample has 14000 observations and 1235 responders. The rest of the data is in Hold-Out sample. What is the Response Rate for Hold-out Sample data?
	© 8.66%
	8.82%
Correct!	8.30%
	91.7%

	Question 5 0.75 / 1.5 pts
	In regression problem, the best decision tree has the minimum of a target variable at leaf level (select ALL the applicable options)
Correct!	Standard deviation
Correct!	✓ Variance

You Answered

Standard error

Average

All of the above

	Question 9	1.5 / 1.5 pts
	Following are the two statements given for k-NN algorthm, which of the statement(s) is/are 1. We can choose optimal value of k with the help of cross validation 2. Euclidean distance treats each feature as equally important	true?
	◎ 1	
	□ 2	
Correct!	● 1 and 2	
	None of the above	

	Question 10	1 / 1 pts
	Which of the following will be true about k in k-NN in terms of Bias?	
Correct!	When you increase the k the bias will be increased	
	When you decrease the k the bias will be increased	
	Can't say	
	None of these	

	Question 11	0 / 1 pts
	Which of the following is true about k in k-NN in terms of variance?	
You Answered	Variance increases with increase in k	
Correct Answer	 Variance increases with decrease in k 	
	Can't say	
	None of these	

Unanswered

Question 12

0 / 1.5 pts

- 1. k-NN is a memory-based approach is that the classifier immediately adapts as we collect new training data.
- 2. The computational complexity for classifying new samples grows linearly with the number of samples in the training dataset in the worst-case scenario.

Which of the above statements is/are true?

Correct Answer

Both 1 and 2

None

Question 13

1 / 1 pts

The Naïve Bayes algorithm assumes the independent variable/features are independent of each other.

Correct!

True

False

Question 14

0 / 1.5 pts

You are given a data set of 10,000 students with their sex, height, and hair color. You are trying to build a classifier to predict the sex of a student, so you randomly split the data into a training set and a testing set. Here are the specifications of the data set: (2 pts)

- sex ∈ {male,female}
- height \in [0,300] centimeters
- hair ∈ {brown, black, blond, red, green}
- 3240 men in the data set
- 6760 women in the data set

Under the assumptions necessary for Naive Bayes (not the distributional assumptions you might naturally or intuitively make about the dataset) answer the below question with T or F:

As height is a continuous valued variable, Naive Bayes is not appropriate since it cannot handle continuous valued variables.

You Answered

True

Correct Answer

Correct Answer

You Answered

False

You are given a data set of 10,000 students with their sex, height, and hair color. You are trying to build a classifier to predict the sex of a student, so you randomly split the data into a training set and a testing set. Here are the specifications of the data set: (2 pts) • sex ∈ {male,female} • height ∈ [0,300] centimeters • hair ∈ {brown, black, blond, red, green} • 3240 men in the data set • 6760 women in the data set Under the assumptions necessary for Naive Bayes (not the distributional assumptions you might naturally or intuitively make about the dataset) answer below question with T or F: Is P(height, hair|sex) = P(height|sex)P(hair|sex)

	Question 18	1.5 / 1.5 pts
	Which of the following statement(s) about Naive Bayes is incorrect?	
	Attributes are equally important.	
Correct!	Attributes are statistically dependent of one another given the class value	
	Attributes are statistically independent of one another given the class value	
	Attributes can be nominal or numeric	

Linear regression		
 Logistic Regression 		
None of the above		

	Question 22	1 / 1 pts
	probability is assigned after a query point is passed into decision tree model	
	Conditional Probability	
	Probability of odds	
Correct!	Posterior Probability	
	Prior Probability	

Quiz Score: 17.75 out of 30