Global free tropospheric NO₂ Abundances Derived using a Cloud Slicing Technique from Aura OMI

S. Choi, J. Joiner, Y. Choi, B. N. Duncan,

A. Vasilkov, N. Krotkov and E. J. Bucsela

Aura Science Team Meeting 2014. 9. 16.

Free Tropospheric NO₂

- Atmospheric NO₂
 - Produced by combustion, lightning, and in soil
- Indirect radiative impacts in troposphere
 - Ozone has largest warming effect in upper-troposphere
 - Impacts methane concentrations
- A few types of free-tropospheric NO₂ measurements available
 - Aircraft in situ measurements, MAX-DOAS, NO₂ sondes, etc.

- Utilize above-cloud NO₂ column (where CRF > 0.9)
 - Good quality column measurements as clouds provide bright surface
 - Usually neglected in the view of surface pollution
- Data obtained
 - Free tropospheric NO₂ volume mixing ratio (VMR)
- Independent of prescribed stratospheric column estimate

Measurement at Cloudy Scenes

Top of Atmosphere (TOA)

Observed Column vs Pressure

Measurement at Cloudy Scenes Observed Column vs Pressure Top of Atmosphere (TOA) pressure (hPa) Cloud scene Cloud scene pressure Ground Ground ~1013 NO₂ VCD above the clouds

Measurement at Cloudy Scenes Top of Atmosphere (TOA) Observed Column vs Pressure

Measurement at Cloudy Scenes

Top of Atmosphere (TOA) Cloud scene pressure Ground ~1013

Observed Column vs Pressure

NO₂ VCD above the clouds

Measurement at Cloudy Scenes

Observed Column vs Pressure

The slope between NO₂ VCD and cloud pressure is proportional to NO₂ volume mixing ratio (VMR)

- Using near-Lambertian cloudy AMF instead of geometric AMF
- Assumptions
 - Uniform NO₂ VMR in the sampling pressure ranges
 - No stratospheric variation in the sampling spatial/temporal ranges (6°x 8°, calculated per orbit)
- Limitations
 - Represent cloudy conditions only
 - Magnitudes only as accurate as above-cloud NO₂ VCD
 - Uncertainties in SCD, cloudy AMF

Comparison with INTEX-B Data

- INTEX-B VMR standard error < 5 pptv
- Similar magnitude but very weak correlation
- Reasonable agreement despite the intrinsic limits:
 - Poor collocation, small scale features, clear/cloudy conditions

- Global seasonal free-tropospheric NO₂ climatology
 - Take advantage of high spatial/temporal coverage of satellite measurements
 - Concentrate on spatial and seasonal patterns
- Large volume of data required for reasonable results
 - 3-year OMI data accumulated (2005-2007)
 - Coarse resolution (6° latitude x 8° longitude)
- Distinct patterns in the free tropospheric VMR
 - Independent source of data to study free troposphere

(Dec-Jan-Feb) OMI Tropospheric NO₂ Column

[10¹⁵cm⁻²] 13.00 10.00 7.40 5.60 4.20 3.20 2.40 1.80 1.30 1.00 0.75 0.56 0.42 0.32 0.24 12

(Jun-Jul-Aug) OMI Tropospheric NO₂ Column

[10¹⁵cm⁻²] 13.00 10.00 7.40 5.60 4.20 3.20 2.40 1.80 1.30 1.00 0.75 0.56 0.42 0.32 0.24

- Coarse profile analysis (~100 hPa resolution)
- Requires even more data with significant cloud pressure variability
- Example cases
 - Tropical oceans of NH and SH for lightning NO₂

Conclusions

- Free tropospheric NO₂ VMR derived using cloud slicing
- Comparison with INTEX-B measurements shows reasonable agreement
- Global seasonal climatology shows anthropogenic and natural (lightning) features of free tropospheric NO₂, independent of the tropospheric column
- Profile analysis shows lightning NO₂ in the upper troposphere
- Expect collaborations with various free tropospheric
 NO₂ measurements and models

Thank you!

S. Choi et al.: Global free tropospheric NO₂ Abundances Derived using a Cloud Slicing Technique from Aura OMI, *Atmos. Chem. Phys. Discuss.*, 2014

Backup slides

Detail/Data Screening Criteria

 Use slant column density (OMNO2A) and geometric AMF

- Cloud radiance fraction > 0.9
- Aerosol index < 1.0
- No snow/ice surface
- Solar zenith angle < 80 degree
- Gradient of NO2 VMR < 0.33 pptv / hpa (profiles from GMI model or INTEX-B measurements)

Example of Calculated NO₂ Climatology

Free Trop. NO₂ VMR (OMI vs GMI)

(Jun-Jul-Aug) OMI Cloud Slicing Free Trop NO₂ VMR

(Dec-Jan-Feb) OMI Cloud Slicing Free Trop NO, VMR

(Dec-Jan-Feb) GMI Cloudy (τ>10) Free Trop NO₂ VMR

Tropospheric Column NO₂ (OMI vs GMI)

(Jun-Jul-Aug) GMI Tropospheric NO₂ Column

(Dec-Jan-Feb) OMI Tropospheric NO₂ Column

