Today

Zero-Sum Games

Strategic Games.

N players.

Each player has strategy set. $\{S_1, ..., S_N\}$.

Vector valued payoff function: $u(s_1,...,s_n)$ (e.g., $\in \Re^N$).

Example:

2 players

Player 1: { **D**efect, **C**ooperate }.

Player 2: { **D**efect, **C**ooperate }.

Payoff:

Famous because?

What is the best thing for the players to do?

Both cooperate. Payoff (3,3).

If player 1 wants to do better, what does he do?

Defects! Payoff (5,0)

What does player 2 do now?

Defects! Payoff (.1,.1).

Stable now!

Nash Equilibrium: neither player has incentive to change strategy.

Two Person Zero Sum Games

2 players.

Each player has strategy set:

m strategies for player 1 n strategies for player 2

Payoff function: u(i,j) = (-a,a) (or just a). "Player 1 pays a to player 2."

Zero Sum: Payoff for any pair of strategies sums to 0.

Payoffs by *m* by *n* matrix: *G*.

Row player maximizes, column player minimizes.

Roshambo: rock,paper, scissors.

	R	Р	S
R	0	-1	1
Ρ	1	0	-1
S	-1	1	0

Any Nash Equilibrium?

(R,R)? no. (P,R)? no. (S,R)? no.

Mixed Strategies.

		R	Ρ	S
		.33	.33	.33
R	.33	0	-1	1
Ρ	$.3\overline{3}$	1	0	-1
S	.33	-1	1	0

How do you play?

Player 1: play each strategy with equal probability. Player 2: play each strategy with equal probability.

Definitions.

Mixed strategies: Each players plays distribution over strategies.

Pure strategies: Each player plays single strategy.

Payoffs: Equilibrium.

'			Р	S
		.33	.33	.33
R	.33	0	-1	1
Ρ	.33	1	0	1
S	.33	-1	1	0

Payoffs? Can't just look it up in matrix!.

Average Payoff. Expected Payoff.

Sample space: $\Omega = \{(i,j) : i,j \in [1,..,3]\}$ Random variable X (payoff).

$$E[X] = \sum_{(i,j)} X(i,j) Pr[(i,j)].$$

Each player chooses independently:

$$Pr[(i,j)] = \frac{1}{3} \times \frac{1}{3} = \frac{1}{9}.$$

$$E[X] = 0.1$$

¹Remember zero sum games have one payoff.

Equilibrium

		R	Р	S
		.33	.33	.33
R	.33	0	1	-1
Р	.33	-1	0	1
S	.33	1	-1	0

Will Player 1 change strategy? Mixed strategies uncountable!

Expected payoffs for pure strategies for player 1.

Expected payoff of Rock? $\frac{1}{3} \times 0 + \frac{1}{3} \times 1 + \frac{1}{3} \times -1 = 0$.

Expected payoff of Paper? $\frac{1}{3} \times -1 + \frac{1}{3} \times 0 + \frac{1}{3} \times 1 = 0$.

Expected payoff of Scissors? $\frac{1}{3} \times 1 + \frac{1}{3} \times 0 + \frac{1}{3} \times -1 = 0$.

No better pure strategy. \implies No better mixed strategy!

Mixed strat. payoff is weighted av. of payoffs of pure strats.

$$E[X] = \sum_{(i,j)} (Pr[i] \times Pr[j]) X(i,j) = \sum_{i} Pr[i] (\sum_{j} Pr[j] \times X(i,j))$$

Mixed strategy can't be better than the best pure strategy.

Player 1 has no incentive to change! Same for player 2.

Equilibrium!

Another example plus notation.

Rock, Paper, Scissors, prEempt. PreEmpt ties preEmpt, beats everything else. Payoffs.

	R	Р	S	Е
R	0	-1	1	-1
Ρ	1	0	-1	-1
S	-1	1	0	-1
Ε	1	1	1	0
_		_	/	· - '

Equilibrium? (**E,E**). Pure strategy equilibrium.

Notation: Rock is 1, Paper is 2, Scissors is 3, prEmpt is 4. Payoff Matrix.

$$G = \left[\begin{array}{cccc} 0 & -1 & 1 & -1 \\ 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \end{array} \right]$$

Playing the boss...

Row has extra strategy:Cheat.

Ties with rock and scissors, beats paper. (Scissors, or no rock!) Payoff matrix:

Rock is strategy 1, Paper is 2, Scissors is 3, and Cheat is 4 (for row.)

$$G = \left[\begin{array}{rrr} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Note: column knows row cheats. Why play? Row is column's boss.

Equilibrium: play the boss...

$$G = \left[\begin{array}{rrrr} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Equilibrium:

Row: $(0, \frac{1}{3}, \frac{1}{6}, \frac{1}{2})$. Column: $(\frac{1}{3}, \frac{1}{2}, \frac{1}{6})$.

Payoff? Remember: weighted average of pure strategies.

Row Player.

Strategy 1:
$$\frac{1}{3} \times 0 + \frac{1}{2} \times 1 + \frac{1}{6} \times -1 = \frac{1}{3}$$

Strategy 2: $\frac{1}{3} \times -1 + \frac{1}{2} \times 0 + \frac{1}{6} \times 1 = -\frac{1}{6}$
Strategy 3: $\frac{1}{3} \times 1 + \frac{1}{2} \times -1 + \frac{1}{6} \times 0 = -\frac{1}{6}$
Strategy 4: $\frac{1}{3} \times 0 + \frac{1}{2} \times 0 + \frac{1}{6} \times -1 = -\frac{1}{6}$

Column player: every column payoff is $-\frac{1}{6}$.

Both only play optimal strategies!

Why not play just one? Changes payoff for other guy!

Payoff is $0 \times \frac{1}{2} + \frac{1}{2} \times (-\frac{1}{6}) + \frac{1}{6} \times (-\frac{1}{6}) + \frac{1}{2} \times (-\frac{1}{6}) = -\frac{1}{6}$

Two person zero sum games.

 $m \times n$ payoff matrix G.

Row mixed strategy: $x = (x_1, ..., x_m)$.

Column mixed strategy: $y = (y_1, ..., y_n)$.

Payoff for strategy pair (x, y):

$$p(x,y)=x^tGy$$

That is,

$$\sum_{i} x_{i} \left(\sum_{j} G[i,j] y_{j} \right) = \sum_{i} \left(\sum_{i} x_{i} G[i,j] \right) y_{j}.$$

Recall row maximizes, column minimizes.

Best Response/Defense.

Row goes first:

Find *x*, where best column is not too low..

$$R = \min_{y} \max_{x} (x^{t}Gy).$$

Note: y can be (0,0,...,1,...0).

Example: Roshambo. Value of *R*?

		R	Ρ	S
<i>X</i> ₁	R	0	-1	1
<i>X</i> ₂	Р	1	0	-1
<i>X</i> 3	S	-1	1	0

Pick x_1, x_2, x_3 to maximize

$$\min\{x_2-x_3,-x_1+x_3,x_1-x_2\}$$

Best Defense: row

Pick x_1, x_2, x_3 to maximize

$$\min\{x_2-x_3,-x_1+x_3,x_1-x_2\}$$

Linear program: $z = \min\{x_2 - x_3, -x_1 + x_3, x_1 - x_2\}$ $\max z$

$$z \leq x_2 - x_3$$

$$z \leq -x_1 + x_3$$

$$z \leq x_1 - x_2$$

$$x_1+x_2=1$$

or in standard form...

$$x_2-x_3-z\geq 0$$

$$-x_1+x_3-z\geq 0$$

$$x_1-x_2-z\geq 0$$

$$x_1+x_2=1$$

$$x_1, x_2 \ge 0$$

Computing best defense: column.

Column goes first:

Find *y*, where best row is not high.

$$C = \max_{x} \min_{y} (x^{t}Gy).$$

Again: x of form (0,0,...,1,...0).

Example: Roshambo. Value of *C*? 0.

	<i>y</i> ₁ R	<i>y</i> ₂ P	<i>y</i> ₃ S
R	0	-1	1
Ρ	1	0	-1
S	-1	1	0

Find *y* to minimize $\max\{y_2 - y_3, -y_1 + y_3, y_1 - y_2\}$.

Column Best Defense: LP.

Find y to minimize $\max\{y_2 - y_3, -y_1 + y_3, y_1 - y_2\}$.

$$\min w$$

$$y_2 - y_3 \ge w$$

$$-y_1 + y_3 \ge w$$

$$y_1 - y_2 \ge w$$

$$y_1 + y_2 = 1$$

..in standard form..

min w

$$y_2 - y_3 - w \ge 0$$

 $-y_1 + y_3 - w \ge 0$
 $y_1 - y_2 - w \ge 0$
 $y_1 + y_2 = 1$
 $y_1, y_2, y_3 \ge 0$

Both.

$$\begin{array}{lll} \max z & \min w \\ x_2 - x_3 - z \geq 0 & -y_2 + y_3 - w \geq 0 \\ -x_1 + x_3 - z \geq 0 & y_1 - y_3 - w \geq 0 \\ x_1 - x_2 - z \geq 0 & -y_1 + y_2 - w \geq 0 \\ x_1 + x_2 = 1 & y_1 + y_2 = 1 \\ x_1, x_2 \geq 0 & y_1, y_2, y_3 \geq 0 \end{array}$$

Note: "column" defense lp is upper bound on "row" defense lp. Linear programming dual? ...Yes!!!

$$\implies z = w!$$

 $\max_x \min_y x^t Gy = \min_y \max_x x^t Gy.$

Wow!!!!!!!! (von Neumann's minimax theorem.)

Von Neumann's Minimax theorem.

 $\max_{x} \min_{y} x^{t}Gy = \min_{y} \max_{x} x^{t}Gy.$

Column goes first, row gets to respond.

same as

Row goes first, column gets to respond.

Test!

Play rock first?

Mixed strategy. Play rock, paper, scissors uniformly.

Search Problems

Shortest paths, minimum msts, maximum matchings, maximum increasing subsequences, maximum flows.

Efficient algorithms: polynomial.

Try everything: n! matchings! n^{n-2} spanning trees...

2ⁿ or worse.

Moore: Computers doubling in speed every 18 month!

We have time !?

Sissa. Not so much!

Are there always *efficient* algorithms for optimization problems?

Perhaps not.

Satisfiability or SAT.

An Instance.

$$\phi = (x \vee y \vee z)(x \vee \overline{y})(y \vee \overline{z})(z \vee \overline{x}) \vee (\overline{x} \vee \overline{y} \vee \overline{z})$$

Is there any way to satisfy the formula above?

Search problem: Given instance I find a solution S.

S is short and easy to check.

A search problem has efficient checking algorithm \mathscr{C} :

S is solution for *S* if and only if $\mathscr{C}(I,S) = true$.

For SAT, what is *S*? assignment. What is *C*? Checks if assignment satisfies formula.

Recall: Horn or 2-SAT. Efficient algorithms!

Greedy and strongly connected components.

Efficient algorithm for 3-SAT? Don't think so! More later.