• Définitions :

	Signification	Exemple
Alphabet	Ensemble fini de lettres	$\Sigma = \{a, b\}$
Mot	Suite finie de lettre	m = abaa
ε	Mot vide (sans lettre)	
Langage	Ensemble de mots	$L = \{\varepsilon, a, baa\}$

 ε est un mot, pas une lettre.

• Opérations sur des mots $u = u_1...u_n$ et $v = v_1...v_p$:

	Définition	Exemple avec $u = ab$ et $v = cbc$
Concaténation	$uv = u_1u_n v_1v_p$	uv = abcbc
Puissance	$u^n = uu$	$u^3 = ababab$
Taille	u =n	u =2

Deux mots sont égaux s'ils ont la même taille et les mêmes lettres.

• Opérations sur des langages $L_1 = \{\varepsilon, ab\}$ et $L_2 = \{b, ab\}$:

	Définition	Exemple
Concaténation	$L_1L_2 =$	$L_1L_2 =$
Concatenation	$\{uv u\in L_1, v\in L_2\}$	$\{b,ab,abb,abab\}$
Puissance	$L^n = \{u^n u \in L\}$	$L_1^2 = \{\varepsilon, ab, abab\}$
Etoile	$L^* = \bigcup L^k$	$L_1^* = \{\varepsilon, ab, abab\}$
	$k\in\mathbb{N}$	

Comme L_1 et L_2 sont des ensembles, on peut aussi considérer $L_1 \cup L_2, L_1 \cap L_2...$

- Les langages réguliers sont tous ceux qu'on peut obtenir avec les règles suivantes :
 - Un langage fini est régulier
 - $-L_1$ et L_2 réguliers $\implies L_1 \cup L_2$ régulier
 - $-L_1$ et L_2 réguliers $\implies L_1L_2$ régulier
 - -L régulier $\implies L^*$ régulier

Exemples : Un alphabet Σ est toujours régulier car fini. $\overline{\Sigma}^*$ est régulier car est l'étoile du langage régulier Σ .

• Une expression régulière est une suite de symboles contenant : lettres, \emptyset , ε , | (union, parfois notée +), *. À chaque expression régulière e on associe un langage L(e).

Exemple: Le langage de l'expression régulière $e = \overline{a^*b \mid \varepsilon \text{ est } L(e)} = (\{a\}^*\{b\}) \cup \{\varepsilon\}.$

• L régulier $\iff \exists$ une expression régulière de langage L.

Exemples de langages réguliers sur $\Sigma = \{a, b\}$:

- 1. Mots contenant au plus un $a: b^*(a|\varepsilon)b^*$.
- 2. Mots de taille $n \equiv 1 \mod 3 : ((a|b)^3)^*(a|b)$.
- 3. Mots contenant un nombre pair de $a:(ab^*a|b)^*$.
- 4. Mots contenant un nombre impair de a: $b^*a(ab^*a|b)^*$.
- Définition possible d'expression régulière en OCaml :

Exemple : déterminer si ε appartient au langage de e.

- Quelques techniques de preuve :
 - Sur des mots : récurrence sur la taille du mot.
 - Pour montrer l'égalité de deux langages : double inclusion ou suite d'équivalences.
 - Pour montrer P(L) pour un langage régulier L: par induction (\approx récurrence), en montrant le cas de base (si L est un langage fini) et les cas d'hérédité $(P(L_1) \wedge P(L_2))$ $\implies P(L_1L_2), P(L_1) \wedge P(L_2) \implies P(L_1 \cup L_2), P(L_2)$ $\implies P(L^*)$).
 - Pour montrer P(e) pour une expression régulière e: par induction, en montrant les cas de base $(P(\emptyset), P(\varepsilon), P(a), \forall a \in \Sigma)$ et les cas d'hérédité $(P(e_1) \text{ et } P(e_2) \Longrightarrow P(e_1e_2)$ et $P(e_1|e_2), P(e) \Longrightarrow P(e^*)$.

 $\underline{\text{Exemple}}: \text{ Le miroir d'un mot } u = u_1...u_n \text{ est } \widetilde{u} = u_n...u_1 \text{ et le miroir d'un langage } L \text{ est } \widetilde{L} = \{\widetilde{u}|u \in L\}.$

Montrons : L régulier $\Longrightarrow \widetilde{L}$ régulier.

On pourrait le montrer par récurrence, mais il est peutêtre plus simple de définir une fonction f(e) qui à une expression régulière e associe une expression régulière pour le miroir de L(e):

- $-f(\emptyset) = \emptyset, \ f(\varepsilon) = \varepsilon \text{ et } \forall a \in \Sigma, f(a) = a.$
- $-f(e_1e_2)=f(e_2)f(e_1)$ (le miroir de uv est $\widetilde{v}\widetilde{u}$).
- $-f(e_1|e_2) = f(e_1)|f(e_2).$
- $-f(e_1^*) = f(e_1)^*.$

On a bien défini une fonction f telle que, pour toute expression régulière e, f(e) est une expression régulière de $\widetilde{L(e)}$. Donc le miroir d'un langage régulier est régulier.

- Un automate est un 5-uplet $A = (\Sigma, Q, I, F, E)$ où :
 - $-\Sigma$ est un alphabet.
 - -Q est un ensemble fini d'états.
 - $-I \in Q$ est un ensemble d'états initiaux.
 - $-F \subseteq Q$ est un ensemble d'états acceptants (ou finaux)
 - $-E\subseteq Q\times\Sigma\times Q$ est un ensemble de **transitions**. On peut remplacer l'ensemble E de transitions par une **fonction de transition** $\delta:Q\times\Sigma\longrightarrow\mathcal{P}(Q)$
- – Un chemin dans A est **acceptant** s'il part d'un état initial pour aller dans un état final.
 - Un mot est $\mathbf{accept\acute{e}}$ par A s'il est l'étiquette d'un chemin acceptant.
 - Le langage L(A) accepté (ou reconnu) par A est l'ensemble des mots acceptés par A.

Exemple:

- Soit A l'automate suivant :

Alors $L(A) = \{ \text{ mot avec un nombre impair de } a \}$ = $L(b^*a(b^*ab^*ab^*)^*)$.

– Le langage $a(a+b)^*b$ est reconnaissable, car reconnu par l'automate ci-dessous.

- Pour déterminer algorithmiquement si un automate A accepte un mot $u=u_1...u_n$, on peut calculer de proche en proche $Q_0=I,\ Q_1=$ états accessibles depuis Q_0 avec la lettre $u_1,\ Q_2=$ états accessibles depuis Q_0 avec la lettre $u_2...$ et regarder si Q_n contient un état final.
- Soit $A = (\Sigma, Q, I, F, E)$ un automate.
 - A est **complet** si : $\forall q \in Q, \ \forall a \in \Sigma, \ \exists (q, a, q') \in E$
 - Un automate $(\Sigma, Q, \{q_i\}, F, E)$ est **déterministe** si :
 - 1. Il n'y a qu'un seul état initial q_i .
 - 2. $(q, a, q_1) \in E \land (q, a, q_2) \in E \implies q_1 = q_2$: il y a au plus une transition possible en lisant une lettre depuis un état
 - Un automate déterministe et complet possède une unique transition possible depuis un état en lisant une lettre. On a alors une fonction de transition de la forme δ :

On a alors une fonction de transition de la forme $\delta: Q \times \Sigma \longrightarrow Q$ qu'on peut étendre en $\delta^*: Q \times \Sigma^* \longrightarrow Q$ définie par :

- $* \delta^*(q,\varepsilon) = q$
- * Si u = av, $\delta^*(q, av) = \delta^*(\delta(q, a), v)$

Ainsi, $\delta^*(q, u)$ est l'état atteint en lisant le mot u depuis l'état q.

On a alors $u \in L(A) \iff \delta^*(q_i, u) \in F$.

• Deux automates sont **équivalents** s'ils ont le même langage.

- Soit A un automate. Alors A est équivalent à un automate déterministe complet.

Preuve: Utilise l'automate des parties
$$A' = (\Sigma, \mathcal{P}(Q), \{I\}, F', \delta')$$
 où $F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\}$

Remarque: Si on veut juste un automate complet (pas forcément déterministe), on peut ajouter un état poubelle vers lequel on redirige toutes les transitions manquantes. Dans l'automate des parties, cet état poubelle est \emptyset .

Exemple : Un automate A avec son déterminisé A'.

• Soit L un langage reconnaissable. Alors \overline{L} (= $\Sigma^*\backslash L)$ est reconnaissable.

 $\begin{array}{lll} \underline{\text{Preuve}} & : & \text{Soit} & A = (\Sigma,Q,q_i,F,\delta) \text{ un automate} \\ \text{déterministe complet reconnaissant } L. & \text{Alors } A' = \\ (\Sigma,Q,q_i,Q\backslash F,\delta) \text{ (on inverse états finaux et non-finaux)} \\ \text{reconnaît } \overline{L}. \end{array}$

- Soient L_1 et L_2 des langages reconnaissables. Alors :
 - $-L_1 \cap L_2$ est reconnaissable.
 - $-L_1 \cup L_2$ est reconnaissable.
 - $-L_1 L_2$ est reconnaissable.

<u>Preuve</u>: Soient $A_1 = (Q_1, q_1, F_1, \delta_1)$ et $A_2 = (Q_2, q_2, F_2, \delta_2)$ des automates finis déterministes complets reconnaissants L_1 et L_2 . Soit $A = (Q_1 \times Q_2, (q_1, q_2), F, \delta)$ (automate produit) où :

- $-F = F_1 \times F_2 : A \text{ reconnait } L_1 \cap L_2.$
- $-F = \{(q_1, q_2) \mid q_1 \in F_1 \text{ ou } q_2 \in F_2\} : A \text{ reconnait } L_1 \cup L_2.$
- $F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ et } q_2 \notin F_2\}$: A reconnait $L_1 \setminus L_2$.

Remarque: Comme l'ensemble des langages reconnaissables est égal à l'ensemble des langages rationnels, l'ensemble des langages rationnels est aussi stable par complémentaire, intersection et différence.

Il n'y a pas de stabilité par inclusion (L rationnel et $L' \subseteq L$ n'implique pas forcément L' rationnel).

• (Lemme de l'étoile \heartsuit) Soit L un langage reconnaissable par un automate à n états.

Si $u \in L$ et $|u| \ge n$ alors il existe des mots x, y, z tels que :

- -u = xyz
- $-|xy| \le n$
- $-y \neq \varepsilon$
- $-xy^*z \subseteq L$ (c'est-à-dire : $\forall k \in \mathbb{N}, xy^kz \in L$)

 $\underline{\text{Preuve}}: \text{Soit } A = (\Sigma, Q, I, F, \delta)$ un automate reconnaissant L et n = |Q|.

Soit $u \in L$ tel que $|u| \ge n$.

u est donc l'étiquette d'un chemin acceptant C:

$$q_0 \in I \xrightarrow{u_0} q_1 \xrightarrow{u_1} \dots \xrightarrow{u_{p-1}} q_p \in F$$

C a p+1 > n sommets donc passe deux fois par un même état $q_i = q_j$ avec i < n. La partie de C entre q_i et q_j forme donc un cycle.

Soit $x = u_0u_1...u_{i-1}$, $y = u_i...u_j$ et $z = u_{j+1}...u_{p-1}$. xy^kz est l'étiquette du chemin acceptant obtenu à partir de C en passant k fois dans le cycle.

Application : $L_1 = \{a^n b^n \mid n \in \mathbb{N}\}$ n'est pas reconnaissable.

<u>Preuve</u>: Supposons L_1 reconnaissable par un automate à n états. Soit $u=a^nb^n$. Clairement, $u\in L_1$ et $|u|\geq n$. D'après le lemme de l'étoile : il existe x,y,z tels que $u=xyz, \, |xy|\leq n,\, y\neq \varepsilon$ et $xy^*z\subseteq L$.

Comme $|xy| \le n$, x et y ne contiennent que des a: $x = a^i$ et $y = a^j$. Comme $y \ne \varepsilon$, j > 0.

En prenant k = 0: $xy^0z = xz = a^{n-j}b^n$.

Or j > 0 donc $a^{n-j}b^n \notin L_1$: absurde.

Automate de Glushkov : régulier \implies reconnaissable

- Une expression régulière est **linéaire** si chaque lettre y apparaît au plus une fois : $a(d+c)^*b$ est linéaire mais pas ac(a+b).
- Soit L un langage. On définit :
 - $-\ P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset \}$ (premières lettres des mots de L)
 - $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset \}$ (dernières lettres des mots de L)
 - $-F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)
 - L est local si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Il suffit donc de regarder la première lettre lettre, la dernière lettre et les facteurs de taille 2 pour savoir si un mot appartient à un langage local.

Remarques:

- $* \Longrightarrow \text{est toujours vrai donc il suffit de prouver} \longleftarrow.$
- * Définition équivalente :

$$L \text{ local } \iff L \setminus \{\varepsilon\} = (P(L) \cap S(L)) \setminus N(L)$$

où $N(L) = \Sigma^2 \setminus F(L)$.

Exemples:

- $\overline{-\text{ Si } L_2} = (ab)^* \text{ alors } P(L_2) = \{a\}, \ S(L_2) = \{b\} \text{ et } F(L_2) = \{ab, ba\}. \text{ De plus si } u = u_1u_2...u_n \neq \varepsilon \text{ avec } u_1 \in P(L), u_n \in S(L), \text{ et } \forall k, u_ku_{k+1} \in F(L) \text{ alors } u_1 = a, \ u_n = b \text{ et on montre (par récurrence) que } u = abab...ab \in {}_2. \text{ Donc } L_2 \text{ est local.}$
- Si $L_3 = a^* + (ab)^*$ alors $P(L_3) = \{a\}$, $S(L_3) = \{a, b\}$, $F(L_3) = \{aa, ab, ba\}$. Soit u = aab. La première lettre de u est dans $P(L_3)$, la dernière dans $S(L_3)$ et les facteurs de u sont aa et ba qui appartiennent à $F(L_3)$. Mais $u \notin L_3$, ce qui montre que L_3 n'est pas local.
- Un automate déterministe (Σ, Q, q_0, F, E) est **local** si toutes les transitions étiquetées par une même lettre aboutissent au même état : $(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$
- Un langage local L est reconnu par un automate local.

<u>Preuve</u>: L est reconnu par (Σ, Q, q_0, F, E) où:

- $-\ Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- -F = S(L) si $\varepsilon \notin L$, sinon $F = S(L) \cup \{q_0\}$.
- $E = \{(q_0, a, a) \mid a \in P(L)\} \cup \{(a, b, b) \mid ab \in F(L)\}$
- L'algorithme de Berry-Sethi permet de construire un automate à partir d'une expression régulière e.

Exemple avec $e = a(a+b)^*$:

- 1. On linéarise e en e', en remplaçant chaque occurrence de lettre dans e par une nouvelle lettre : $e' = e_1(e_2 + e_3)^*$
- 2. On peut montrer que L(e') est un langage local.
- 3. Un langage local est reconnu par l'automate local $A = (\Sigma, Q, q_0, F, E)$

4. On fait le remplacement inverse de 1. sur les transitions de A pour obtenir un automate reconnaissant L(e):

Automate de Thompson : régulier \implies reconnaissable

- Une ε -transition est une transition étiquetée par ε .
- Un automate avec ε -transitions est équivalent à un automate sans ε -transitions.

<u>Preuve</u>: Si $A = (\Sigma, Q, I, F, \delta)$ est un automate avec ε -transitions, on définit $A' = (\Sigma, Q, I', F, \delta')$ où :

- I' est l'ensemble des états atteignables depuis un état de I en utilisant uniquement des ε -transitions.
- $-\delta'(q, a)$ est l'ensemble des états q' tel qu'il existe un chemin de q à q' dans A étiqueté par un a et un nombre quelconque de ε (ce qui peut être trouvé par un parcours de graphe).
- L'automate de Thompson est construit récursivement à partir d'une expression régulière e :
 - Cas de base :

 $-T(e_1e_2)$: ajout d'une ε -transition depuis chaque état final de $T(e_1)$ vers chaque état initial de $T(e_2)$.

 $-T(e_1|e_2)$: union des états initiaux et des états finaux.

 $-T(e_1^*)$: ajout d'une ε -transition depuis chaque état final vers chaque état initial.

Élimination des états : reconnaissable \implies régulier

• Tout automate est équivalent à un automate avec un unique état initial sans transition entrante et un unique état final sans transition sortante.

<u>Preuve</u>: On ajoute un état initial q_i et un état final q_f et des transitions ε depuis q_i vers les états initiaux et depuis les états finaux vers q_f .

• Méthode d'élimination des états : On considère un automate A comme dans le point précédent. Tant que A possède au moins 3 états, on choisit un état $q \notin \{q_i, q_f\}$ et on supprime q en modifiant les transitions :

Exemple:

1. On commence par se ramener à un automate avec un état initial sans transition entrante et un état final sans transition sortante :

2. Suppression de l'état 1 :

3. Suppression de l'état 4 :

Avec $u = b^*ba$.

4. Suppression de l'état 3 :

5. Suppression de l'état 2 :

On obtient l'expression régulière $a|a(bu)^*bu(au|au(bu)^*bu)$, où $u=b^*ba$.

régulier \iff reconnaissable

- Théorème de Kleene : un langage est régulier si et seulement si il est reconnaissable par un automate.
- Les théorèmes sur les automates s'appliquent aussi aux langages réguliers, et inversement. Notamment, les langages réguliers sont stables par union, concaténation, étoile, intersection, complémentaire, différence.