Statistical Inference

Lecture 04a

ANU - RSFAS

Last Updated: Mon Mar 12 18:15:14 2018

Definition 2.6: A sufficient statistic T(X) is called a minimal sufficient statistic if, for any other sufficient statistic T'(X), T(X) is a function of T'(X).

• Not easy to use the definition to find a minimal sufficient statistic!

Lemma 2.3: Let $f(x; \theta)$ be the pdf or pmf of a sample X. Suppose there exists a function T(x) such that, for every two sample points x and y the ratio

$$L(\theta; \mathbf{x})/L(\theta; \mathbf{y}) \sim 1$$

is constant as function of θ [note: this can be a vector] if and only if

$$T(x) = T(y).$$

Then T(X) is a minimal sufficient statistic.

Proof: Consider:

$$g(\boldsymbol{x}|\boldsymbol{t}) = \frac{f(x_1, x_2, \dots, x_n)}{h(\boldsymbol{t})} = \frac{L(\boldsymbol{\theta}; \boldsymbol{x})}{\sum_{\boldsymbol{y} \in \tau} L(\boldsymbol{\theta}; \boldsymbol{y})}$$

• Where τ is the set of **y**s such that T = t, that is such that:

$$\frac{L(\theta; \mathbf{y})}{L(\theta; \mathbf{x})} = m(\mathbf{x}, \mathbf{y})$$

$$g(\mathbf{x}|\mathbf{t}) = \frac{L(\theta; \mathbf{x})}{\sum_{\mathbf{y} \in \tau} L(\theta; \mathbf{x}) m(\mathbf{x}, \mathbf{y})} = \frac{L(\theta; \mathbf{x})}{L(\theta; \mathbf{x}) \sum_{\mathbf{y} \in \tau} m(\mathbf{x}, \mathbf{y})}$$

• Therefore **T** is a sufficient statistic.

• Now supose that U(x) is any other sufficient statistic and that U(x) = U(y).

sufficient => factorize
$$\frac{L(\theta; \mathbf{x})}{L(\theta; \mathbf{y})} = \frac{K_1[\mathbf{u}(\mathbf{x}); \theta] K_2[\mathbf{x}]}{K_1[\mathbf{u}(\mathbf{y}); \theta] K_2[\mathbf{y}]} = \frac{K_2[\mathbf{x}]}{K_2[\mathbf{y}]}$$
constant for θ .

Example:

- Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} n(\mu, \sigma^2)$, with both μ, σ^2 unknown.
- Let x and y be two sample points.
- Let (\bar{x}, s_x^2) and (\bar{y}, s_y^2) be the sample means and sample variances for the samples x and y.

$$\frac{f(\mathbf{x}|\mu,\sigma^2)}{f(\mathbf{y}|\mu,\sigma^2)} = \frac{(2\pi\sigma^2)^{-n/2} \exp(-[n(\bar{\mathbf{x}}-\mu)^2 - (n-1)s_{\mathbf{x}}^2]/(2\sigma^2))}{(2\pi\sigma^2)^{-n/2} \exp(-[n(\bar{\mathbf{y}}-\mu)^2 - (n-1)s_{\mathbf{y}}^2]/(2\sigma^2))}
= \exp([-n(\bar{\mathbf{x}}^2 - \bar{\mathbf{y}}^2) + 2n\mu(\bar{\mathbf{x}} - \bar{\mathbf{y}}) - (n-1)(s_{\mathbf{x}}^2 - s_{\mathbf{y}}^2)]/(2\sigma^2))$$

- This ratio will not depend on μ and σ^2 if and only if $\bar{x} = \bar{y}$ and $s_x^2 = s_y^2$.
- (\bar{X}, \bar{S}^2) are minimally sufficient for μ, σ^2 .

- Note: Minimal sufficient statistics are not unique. Any one-to-one function of a minimal sufficient statistic is also minimal sufficient.
- In the previous example $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is also a set of minimal sufficient statistics for (μ, σ^2)

Can Sufficiant Statistics Help Us with MVUEs?

Theorem 2.2 (Rao-Blackwell):

- Let W be any unbiased estimator of $\tau(\theta)$. Let T be a sufficient statistic for θ .
- Define $\phi(T) = E[W|T]$.
- Then

The new estimator is also unbiased a may have emabler $E[\phi(T)] = \tau(\theta)$ variance

$$V[\phi(T)] \leq V[W]$$

 So if we have unbiased estimator and condition it on a sufficient statistic, our new statistic $\phi(T)$ has the same or smaller variance!! **Proof:** Recall, that if X and Y are any two random variables:

$$E[X] = E[E(X|Y)]$$

$$V[X] = V[E(X|Y)] + E[V(X|Y)]$$

• Show that $\phi(T)$ is unbiased for $\tau(\theta)$:

$$E[W] = \tau(\theta)$$

 $E[W] = E[E[W|T]] = E[\phi(T)] = \underline{\tau(\theta)}$
 $\psi \phi cT$

• Show that $V[\phi(T)] \leq V[W]$:

$$V[W] = V[E(W|T)] + E[V(W|T)]$$

$$= V[\phi(T)] + E[V(W|T)]$$

$$\geq V[\phi(T)]$$

• As $V(W|T) \ge 0$

- So the whole idea seems quite cool. We can potentially get better estimators. But the key seems to be that idea of <u>sufficiency</u>.
- What happens if we don't condition on a sufficient statistic?

Example: $X_1, X_2 \stackrel{\text{iid}}{\sim} n(\theta, 1)$. Consider the statistic \bar{X} :

$$E[\bar{X}] = \theta$$
 $V(\bar{X}) = 1/2$

• Now let's condition on X_1 . This is not a sufficient statistic! Recall our new estimator is $\phi(X_1) = E[\bar{X}|X_1]$ (note the expectation):

- estimator (statistic).
- Recall, conditioning on a sufficient statistic removes the parameter!

Complete Statistics

Definition 2.9: Let $f_T(t; \theta)$ be a family of pdfs or pmfs for a statistic T(x). The family of probability distributions is called complete if

$$E[h(T)] = \int h(t)f_T(t)dt = 0$$

for all θ implies that

$$P(g(T)=0)=1$$

for all θ .

Complete Statistic

Example:

- Suppose that T has a binomial (n, p) distribution, 0 .
- Let h be a function such that $E_{\theta}[h(T)] = 0$.

$$0 = E[h(T)] = \sum_{t=0}^{n} h(t) \binom{n}{t} p^{t} (1-p)^{n-t}$$

$$= (1-p)^{n} \sum_{t=0}^{n} h(t) \binom{n}{t} \left(\frac{p}{(1-p)}\right)^{t}$$

$$= \sum_{t=0}^{n} h(t) \binom{n}{t} \left(\frac{p}{(1-p)}\right)^{t}$$

$$\Rightarrow 0 = \sum_{t=0}^{n} h(t) \binom{n}{t} r^{t} \qquad r = \frac{p}{1-p}$$

Complete Statistic

$$0 = \sum_{t=0}^{n} h(t) \binom{n}{t} r^{t} \quad \forall \ r$$

- The only way for this to occur is that $g(t) = 0 \ \forall t$.
- So we have:

$$P_p(h(T)=0)=1$$

T is a complete statistic.

Lehman - Scheffe Theorem

Lemma 2.6: Let X_1, \ldots, X_n be a random sample from a distribution with density function $f(x; \theta)$. If T = T(X) is a <u>complete</u> and <u>sufficient</u> statistic, and $\phi(T)$ is an <u>unbiased estimator</u> of $\tau(\theta)$, then $\phi(T)$ is the <u>unique MVUE</u> of $\tau(\theta)$.

Proof:

- Let U be any other unbiased estimator of $\tau(\theta)$.
- Let $U^* = E[U|T]$.
- Consider $h(T) = U^* \phi(T)$. Recall: $\phi(T) = E[W|T]$. This means:

$$E[h(T)] = E[U^*] - E[\phi(T)] = 0, \quad \forall \quad \theta$$

ullet We know that T is complete. So:

so what's inside is also zero

$$h(T) = U^* - \phi(T) = 0 \Rightarrow U^* = \phi(T)$$

There is only one unbiased estimator of $\tau(\theta)$ that is a function of T! See also Lemma 2.7.

- How to find MVUEs? It seems we have an approach:
 - 1. Find or construct a sufficient and complete statistic T.
 - **2.** Find an unbiased estimator W for $\tau(\theta)$.
 - 3. Compute $\phi(T) = E[W|T]$, then $\phi(T)$ is the $\forall MVUE$.
- Or:
 - 1. Find or construct a sufficient and complete statistic T.
 - **2.** Find a function h(T), where $E[h(T)] = \tau(\theta)$ (i.e. it is unbiased).
 - **3.** Then h(T) is the MVUE.

Method 1

Example: Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$.

- $T = \sum_{i=1}^{n} \chi_{i,j}$ is a sufficient and complete statistic for θ .
- Let's consider $W = X_1$. $E[W] = \theta$. So W is unbiased.)
- Compute $\phi(T) = E[W|T]$ a really book proof really need to Find the expectation of a conditional restinator (not really need to be a good one)

Note: W is 0 or 1. $E[W] = 1P(X_1 = 1) + 0P(X_1 = 0)$.

$$E[W|T] = P(X_1 = 1|T = t)$$

$$= \frac{P(X_1 = 1, T = t)}{P(T = t)}$$

$$= \frac{P(X_1 = 1, \sum_{i=1}^{n} X_i = t)}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P(X_1 = 1, \sum_{i=2}^{n} X_i = (t - 1))}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P(X_1 = 1) \times P(\sum_{i=2}^{n} X_i = (t - 1))}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{P(X_1 = 1) \times P(\sum_{i=2}^{n} X_i = (t - 1))}{P(\sum_{i=1}^{n} X_i = t)}$$

$$= \frac{[\theta] \times [\binom{n-1}{t-1}\theta^{t-1}(1 - \theta)^{(n-1)-(t-1)}]}{\binom{n}{t}\theta^{t}(1 - \theta)^{n-t}}$$

$$= \frac{t}{n} \Rightarrow \frac{T}{n} = \bar{X}$$

 \bar{X} is the MVUE of θ .

Method 2

• It would be great if we could automatically pick out sufficient and complete statistics . . .

Exponential Families