Física Experimental - EaD 38

4.3 - MÉTODO DOS MÍNIMOS QUADRADOS

Ao se realizar um procedimento experimental onde é necessário calcular a velocidade de um objeto que, de antemão, sabemos que está descrevendo um MRU, podemos coletar dados sobre a posição em função do tempo, fazer um gráfico e calcular a velocidade. Já é sabido que o próprio processo de medida da posição e do tempo geram valores que, quando plotados, em geral não se alinham perfeitamente em um reta, tal como ilustrado na Figura 4.3.

Será proposto agora um procedimento matemático para determinar a melhor reta possível que ajusta os pontos experimentais, chamado **método dos mínimos quadrados**. O objetivo é obter a expressão analítica da relação linear entre as variáveis *x* e *y* da forma:

$$y = ax + b$$

A obtenção da melhor reta dependerá do ajuste dos parâmetros a (coeficiente angular) e b (coeficiente linear). Uma forma de se obter este ajuste é escolhendo uma reta de modo que a distância de cada ponto experimental até esta reta média seja a mínima possível.

Figura 4.5: Ilustração das distâncias dos pontos experimentais à reta média. Fonte: http://astro.if.ufrgs.br/ming/

A distância vertical de um determinado ponto experimental *i*, tal como ilustrado no gráfico, até a reta média é dada por:

$$d_i = [y_i - (ax_i + b)]^2$$

Aqui está sendo considerado o quadrado da distância, pois matematicamente estamos interessados no valor absoluto da mesma. Na verdade, precisamos achar valores de *a* e *b* tal que a soma das distâncias de todos os n pontos experimentais até a reta média seja mínima. A soma das distâncias pode ser calculada da seguinte forma:

$$S = \sum_{i=1}^{n} [y_i - (ax_i + b)]^2$$

Matematicamente, para determinar os valores de *a* e *b* que satisfaça a condição imposta, pode-se pensar na soma acima como sendo uma função de duas variáveis, contínua e derivável em todo seu domínio, onde se deseja determinar um ponto de mínimo da mesma. Vamos então derivar S em relação *a* e *b* usando a regra da cadeia e impondo a condição de extremo de uma função:

$$\frac{\partial S}{\partial a} = 0$$
 e $\frac{\partial S}{\partial b} = 0$

Portanto:

Física Experimental - EaD 39

$$\frac{\partial s}{\partial a} = -2\sum_{i=1}^{n} x_i [y_i - (ax_i + b)] = 0$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{n} [y_i - (ax_i + b)] = 0$$

Ou ainda:

$$\sum_{i=1}^{n} x_{i} y_{i} = a \sum_{i=1}^{n} x_{i}^{2} + b \sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{n} y_i = a \sum_{i=1}^{n} x_i + nb$$

Destas duas expressões, podemos escrever:

$$a = \frac{n\sum_{i=1}^{n} x_i y_i - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

$$b = \frac{(\sum_{i=1}^{n} y_i)(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i y_i)(\sum_{i=1}^{n} x_i)}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

Exemplo: Considere os dados abaixo da tabela abaixo:

n	x_i	y_i
1	1,0	1,4
2	1,6	1,6
3	2,0	2,0
4	3,0	2,3
5	3,4	2,6
6	4,0	3,1
7	5,0	3,4
8	5,5	3,8
9	6,0	4,1
10	7,0	4,6

- a) Obtenha a equação da reta média usando o método dos mínimos quadrados.
- b) Use um papel milimetrado, plote os pontos experimentais e determine a reta média da mesma forma que foi feito no final da seção anterior
- c) Compare os valores obtidos e discuta vantagens e desvantagens dos dois métodos.

Resolução: Para calcular os valores de a e b, vamos inicialmente determinar os somatórios que aparem nas expressões:

n	x_i	y_i	$x_i y_i$	x_i^2
1	1,0	1,4	1,40	1,00
2	1,6	1,6	2,56	2,56
3	2,0	2,0	4,00	4,00
4	3,0	2,3	6,90	9,00
5	3,4	2,6	8,84	11,60
6	4,0	3,1	12,40	16,00
7	5,0	3,4	17,00	25,00
8	5,5	3,8	20,90	30,30
9	6,0	4,1	24,60	36,00
10	7,0	4,6	32,20	49,00
$\sum_{i=1}^{n}$	38,50	28,90	130,80	184,50

Física Experimental - EaD 40

Como n=10, temos:

$$a = \frac{10(130,80) - (38,50)(28,90)}{10(184,50) - (18,50)^2} = 0,54$$

$$b = \frac{(28,90)(184,50) - (130,80)(38,50)}{10(184,50) - (38,5)^2} = 0,82$$

Portanto, a relação procurada é y = 0.54x + 0.82. O gráfico abaixo mostra os pontos experimentais e a reta média determinada a partir do método dos mínimos quadrados.

Observe que a reta média não passa necessariamente sobre os pontos no gráfico, nem mesmo sobre os pontos inicial e final. Também observe que as escalas são diferentes em ambos os eixos.

A resolução das letras b) e c) deste exemplo ficam como exercício.

Exercício: Considere os dados do exercício do final as seção anterior e obtenha a equação da reta média usando o método dos mínimos quadrados.