Aufgabe 2

Die Planung eines Softwareprojekts kann z. B. in Form von Gantt-Diagrammen oder CPM-Netzwerken (kritischer Pfad Methode) festgehalten werden.

Folgendes Gantt-Diagramm zeigt einen Teil der Projektplanung in einem klassischen Softwareentwicklungsprozess:

(a) Im Diagramm werden 3 Phasen aus dem klassischen Softwareentwicklungsprozess genannt. Welche Phase sollte dem Design (Entwurf) immer vorangehen?

Die Anforderungsdefinition

(b) Wandeln Sie das Gantt-Diagramm in ein CPM-Netzwerk um. Fügen Sie dazu einen zusätzlichen Start- und Endknoten hinzu. Das Ende des Projekts ist durch das Ende aller Aktivitäten bedingt.

(c) Welche im obigen Gantt-Diagramm nicht enthaltenen Beziehungsarten zwischen Aktivitäten können in einem Gantt-Diagramm noch auftreten? Nennen Sie auch deren Bedeutung.

Diese Beziehungsarten sind im obigen Gantt-Diagramm vorhanden:

Normalfolge EA: *end-to-start relationship* Anordnungsbeziehung vom Ende eines Vorgangs zum Anfang seines Nachfolgers.

Anfangsfolge AA: start-to-start relationship Anordnungsbeziehung vom Anfang eines Vorgangs zum Anfang seines Nachfolgers.

Diese Beziehungsarten sind im obigen Gantt-Diagramm *nicht* vorhanden:

Endefolge EE: *finish-to-finish relationship* Anordnungsbeziehung vom Ende eines Vorgangs zum Ende seines Nachfolgers.

Sprungfolge AE: *start-to-finish relationship* Anordnungsbeziehung vom Anfang eines Vorgangs zum Ende seines Nachfolgers

Gegeben sei nun das folgende CPM-Netzwerk:

(d) Geben Sie für jedes Ereignis die früheste Zeit an.

i	Nebenrechnung	FZ_i
a		0
b		2
c		5
d	$\max(2_b, 6_c)$	6
e	$\max(6_d, 10_e, 7_f)$	10
f	$\max(2_b, 6_c)$ $\max(6_d, 10_e, 7_f)$ $\max(3_f, 2_b)$	3
g		12

 $\left(e\right)\;$ Geben Sie für jedes Ereignis die späteste Zeit an.

i	Nebenrechnung	SZ_i
a		0
b	$\min(2_c, 10_d, 6_f)$	2
С	$\min(2_c, 10_d, 6_f)$ $\min(9_d, 5_e)$	5
d		10
e		10
f		6
g		12

(f) Geben Sie einen kritischen Pfad durch das Netz an! Wie wirkt sich eine Verzögerung von 5 Zeiteinheiten auf dem kritischen Pfad auf das Projektende aus?

i	a	b	С	d	e	f	g
FZ_i	0	2	5	6	10	3	12
SZ_i	0	2	5	10	10	6	12
GP	0	0	0	3	0	3	0

Kritischer Pfad: $a \rightarrow b \rightarrow c \rightarrow e \rightarrow g$

Das Projekt verlängert sich um 5 Zeiteinheiten.