Chapitre I

Organisation générale de la cellule

Année universitaire 2022-2023

<u>Plan</u>

Introduction

- Aperçu général sur l'ultrastructure de la cellule Eucaryote
- 2. Ultrastructure de la cellule procaryote (bactérie).
 - 2 -1 Structures constantes
 - 2 2 Structures facultatives
 - 2-3-Mode de reproduction
- 3. Les virus
 - 3 -1 Ultrastructure et composition chimique
 - 3 2 Classification
 - 3 3 Mode d'infection et mode de reproduction

Comment définir la cellule ?

La cellule (du latin cellula, petite chambre) est l'unité structurale, fonctionnelle et reproductrice constituant l'être vivant.

Introduction

Subdivision du monde du vivant

2 grandes catégories de cellules

Absence de vrai noyau

Présence d' un vrai noyau

Classification des êtres vivants

1 / La cellule eucaryote

Deux organisations générales des êtres vivants <u>eucaryotes</u>

Plancton océanique

Paramécie

Levure de bière

Organismes unicellulaires

Organismes pluricellulaires

les spécificités morphologiques de quelques exemples de cellules eucaryotes (taille, forme, organisation)

✓ Taille:

Variable, entre 10 et 100µm en moyenne

8 - 12 μ m \longrightarrow cellules sanguines

20 -50 μm — cellules intestinales, gastriques, Hépatiques, fibroblastes ...

100 - 200 μ m \longrightarrow cellules musculaires

IFormes:

Arrondies (cellules adipeuses)

Polygonales (cellules nerveuses)

Allongées (Cellules musculaires)

Prismatique / cylindriques (cellules intestinales)

Arrangement:

Cellules libres

Cellules associées en tissus

Aperçu général sur l'ultrastructure de la cellule eucaryote

<u>Définition</u>: une <u>cellule eucaryote</u> possède un <u>vrai noyau</u>; le <u>matériel génétique</u> est entouré <u>d'une enveloppe nucléaire</u>. De plus elle comprend de nombreux <u>organites limités d'une</u> <u>membrane</u> et un <u>cytosquelette</u>

Notions de protoplasme, hyaloplasme et cytoplasme

Cytoplasme = hyaloplasme (liquide) + protoplasme (ensemble des organites)

Caractéristiques ultrastructurales d'une cellule eucaryote

- Limitée extérieurement d'une membrane plasmique.
- Présence de ribosomes libres dans le hyaloplasme et d'autres fixés aux membranes du Réticulum endoplasmique (REG) et de l'enveloppe nucléaire
- Matériel génétique (ADN) délimité d'une double membrane = l'enveloppe nucléaire
- Présence de plusieurs organites délimités d'une membrane = mitochondries, peroxysome, l'appareil de golgi, REG – REL,.....
- Présence des éléments du cytosquelette

Les 2 modalités de reproduction mitotique et méiotique des cellules eucaryotes

Mitose des Cellules somatiques

Méiose des Cellules germinales

2 / La cellule procaryote . EX = la bactérie

<u>Définition</u>: l'organisme procaryote est un être unicellulaire <u>sans vrai noyau</u> = <u>matériel génétique libre</u> dans le <u>cytoplasme</u>(non limité d'une enveloppe)

Taille= 0,3 - 10 μm

Formes et mode d'association des bactéries

Les composants ultrastructuraux essentiels et facultatives

Eléments structuraux observés au MET

Structures constantes/
essentielles ou obligatoires

- Nucléoide(Chromosome)
- Ribosomes
- Cytoplasme
- membrane plasmique
- paroi

Structures inconstantes ou facultatives

Présentes chez certaines bactéries et pas d'autres

- Plasmides
- Pili
- Flagelles
- Capsule
- Spores
- vacuoles à gaz
- granules de réserves

Représentation schématique ultrastructurale de la cellule bactérienne.

Les composants ultrastructuraux <u>essentiels</u> et facultatives

Une seule molécule d'ADN double brin fermé (circulaire), libre

Support de l'information génétique

Ribosomes libres formés dans le hyaloplasme

hyaloplasme

Cytoplasme ou hyaloplasme

Membrane cytoplasmique

La membrane plasmique:

De nature lipoprotéique, dépourvue de cholestérol (donc très fluide) et pauvre en glucides

Rôle = transport de substances nutritives

La paroi

Limite externe rigide

Détermine la forme bactérienne

Une bactérie sans paroi meurt

En bactériologie médicale la Coloration de Gram est une technique appliquée à l'étude de la composition chimique de la paroi bactérienne ce qui permettra une distinction et une classification des bactéries

2 variétés de bactéries seront identifiées après observation en microscopie photonique

Bactéries Gram + (en violet)

Bactéries Gram – (en rose)

Composition chimique de la paroi

Aspect tridimensionnel des 2 types de paroi

Structure chimique du peptidoglycane

(Correspond au composant spécifique des bactéries)

1)(2)(3)(4) Chaîne tétrapeptidique - 1 : L-Ala (ou Gly ou L-Ser), 2 : D-Glu, 3 : X, 4 : D-Ala

Composition chimique des 2 types de parois :

```
Paroi Gram +:
               •Couche <u>épaisse</u> de peptidoglycanes
(20-80 nm)
                     ( Murèine épaisse )

    Acides Teichoique + lipoteichoiques

                (résistance et forme de la paroi )
               •Espace péri plasmique réduit
Paroi Gram -: Plus complexe
                •Membrane externe formée de :
(10 - 20 nm)
                 Bicouche lipidique _____ LPS dans la
                                     monocouche externe
               Protéines transmembranaires : les Porines

    Couche fine de peptidoglycannes (<u>Murèine</u>

             fine et lâche )
```

•Espace péri plasmique large

Les composants ultrastructuraux essentiels et facultatives

Mode de reproduction des bactéries

Par étranglement La scissiparité

Etude comparée eucaryote - procaryote

caractéristiques	Cellule eucaryote animale	cellule procaryote
Taille	10 -100 μm	0,3 - 10 μm
Forme	Cubiques, polygonales prismatiques pavimenteuses	Cocci, bâtonnets spirilles, vibrions
Arrangement	Libres ,amas , épithélium	Diplocoques, amas ,chaines

Caractéristiques	Cellule eucaryote animale	Cellule procaryote
Matériel génétique	Vrai noyau; ADN linéaire bicatenaire chromatine et nucléole isolés par une double membrane	Nucléoide: ADN bicatenaire circulaire libre
Chromosomes	Toujours > 1	Généralement 1
Type de division	mitose ou méiose	Scissiparité /étranglement
Paroi	absente	Nature peptidoglycane

Caractéristique	Cellule eucaryote	Cellule procaryote
Lieu de synthèse des ARNs et des protéines	Synthèse des ARNs dans le noyau . Synthèse des protéines dans le hyaloplasme .	Dans le hyaloplasme
Membrane plasmique	Nature lipoprotéique avec cholestérol	Nature lipoprotéique dépourvue de cholestérol
Structures cellulaires et organites	Organites membranaires cytosquelette +polysomes libres et liés	Absents polysomes à l' état libres

3 / les virus ou Acaryotes

Caractères généraux

☐ Capacité oncogénique (cancer).

☐ Le virus n'est pas une cellule □ Particule inerte sans métabolisme propre . ☐ Afin de se reproduire, un virus nécessite l'infection d'une cellule hôte spécifique parasite obligatoire. □mis en évidence au MET ☐ Taille < bactérie (15 à 300 nm) Les virus ne sont pas toujours des agents pathogènes

Définir un virus et un virion.

Le virus est une particule microscopique infectieuse qui ne peut se répliquer qu'en pénétrant dans une cellule vivante hôte pour utilise sa machinerie cellulaire

En dehors de cette cellule, il est dit virion ou particule virale

Donner les caractères morphologiques : forme, taille

Donner les caractères morphologiques : formes, taille.

Hantavirus

Variabilité morphologique selon les espèces : sphérique, polyédrique, filamentaire, complexe...

V. de la fièvre aphteuse 15-20 nm; V. grippal 80-120 nm; V. de la vaccine 300nm V. Ebola 970 nm.

Les composants moléculaires des virus (une capside , l'acide nucléique , + ou — une enveloppe)

Nucléocapside

□ Classification des virus

Critères de classification

Type d'acide nucléique (génome viral linéaire ou circulaire)

Symétrie de la capside

Présence ou non de l'enveloppe

] Virus à ADN

] Virus à ARN

Organisation moléculaire tridimensionnelle de quelques virus.

hémagglutinines

Virus grippal(V. influenzae)

Le CORONA VIRUS ou COVID 19

Virus à ARN, symétrie hélicoïdale et enveloppé

Virus à symétrie cubique

Virus du SIDA = HIV

Virus de l'hépatite A /HAV

Virus de l'hépatite B / HBV

Virus à symétrie complexe

Au MET

la classification de quelques virus selon leurs critères constitutionnels

Nature de l'acide nucléique	Symétrie de la capside	Présence ou absence de l'enveloppe	Exemples
ARN	Hélicoïdale	Enveloppé	V. Grippal corona virus
		Nu	TMV
	Cubique (Icosaédrique)	Enveloppé	HIV / hépatite C
		Nu	Hépatite A
ADN	Hélicoïdale	Enveloppé	Vaccine
		Nu	Polyome (V.oncogénique)
	Cubique	Enveloppé	Hépatite B V. oncogénique)
		Nu	V. des Papillomes (V.oncogénique)
ADN ou ARN	Complexe	Enveloppé	V .variole

Nu

Bactériophages

☐ Modes d'infection(modes d'entrée) d'une cellule hôte par son virus spécifique

1- Entrée par fusion 2- Entrée selon l'endocytose

1 - Entrée par fusion membranaire (Cas du VIH)

2 – Entrée selon l'endocytose par récepteurs

Endocytose par cavéoline, cas du virus de l'hépatite B

Endocytose par clathrine, cas du virus de l'hépatite C

☐ Modalités de réplication (reproduction) des virus.

Mode de reproduction = cycle de développement d'un virus dans sa cellule hôte

La multiplication virale(ou cycle viral) est un phénomène complexe au cours duquel le virus va détourner la machinerie cellulaire à son profit et production de nouvelles unités dites virions.

Il varie fortement selon le type de virus et la nature de son génome. Donc les virus se multiplient selon un cycle lytique ou un cycle lysogénique

Dans la cellule hôte le virus peut évoluer en cycle lytique ou cycle lysogénique

Fonctions des structures virales :

- Le génome: code une fois dans la cellule hôte pour;
- ✓ Les protéines de structure de la capside dites capsomères .
- ✓ Les protéines antigéniques de la capside ou de l'enveloppe (<u>ex</u>: gp 120,gp 41 cas du VIH).
- Les enzymes nécessaires à la transformation de l'acide nucléique viral dans la cellule hôte.

 ex ; la transcriptase inverse chez les rétrovirus
 - La capside: protection du génome viral Rôle antigénique
- L'enveloppe: protection de la nucléocapside
 Rôle antigénique, reconnaissance de
 récepteurs spécifiques sur la cellule hôte

Définir la notion de virus oncogène.

Les <u>virus oncogènes</u> sont des virus capables de <u>transformer</u> une <u>cellule saine</u> en <u>cellule cancéreuse</u>. Le mot « <u>oncogène</u> » est issu du grec oncos, qui signifie « <u>tumeur</u> ». De façon générale, ils sont responsables de 15 % des cancers .

Quelques exemples de virus oncogènes

Herpèsvirus (ADN), ex. : Epstein- Barr (cancer du pharynx, des voies nasales)

Papillomavirus humain (ADN) ou HPV SV40 (cancer du col de l'utérus...);

Virus de l'hépatite B / HBV Virus de l'hépatite C / HCV Carcinome hépatique