CONTRACTOR OF THE CASE OF

This Page Is Inscited by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- · BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

11 Publication numb r:

0 304 063 B1

(12)

EUROPEAN PATENT SPECIFICATION

(4) Date of publication of patent specification: 30.11.94 (5) Int. Cl.⁵: C07D 215/14, C07D 215/18,

C07D 215/20, C07D 405/06,

A61K 31/47

21 Application number: 88113448.0

2 Date of filing: 18.08.88

The file contains technical information submitted after the application was filed and not included in this specification

- (54) Quinoline type mevalonolactones.
- Priority: 20.08.87 JP 207224/87
 26.01.88 JP 15585/88
 03.08.88 JP 193606/88
- Date of publication of application:22.02.89 Bulletin 89/08
- (45) Publication of the grant of the patent: 30.11.94 Bulletin 94/48
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- (5) References cited: EP-A- 0 114 027 EP-A- 0 179 559 WO-A-86/00307 US-A- 4 761 419

Journal of Medicinal Chemistry Vol.28, 1985 p.401-405 (D3)

 Proprietor: NISSAN CHEMICAL INDUSTRIES LTD.
 7-1, 3-chome Kanda-Nishiki-cho Chlyoda-ku Tokyo (JP) Chuo Kenkyusho, 722-1 Tsubol-cho Funabashl-shl Chiba-ken (JP) Inventor: Suzuki, Mikio Nissan Chemical Industries Ltd. Chuo Kenkyusho, 722-1 Tsubol-cho Funabashl-shl Chiba-ken (JP) Inventor: Iwasaki, Hiroshi Nissan Chemical Industries Ltd. Chuo Kenkyusho, 722-1 Tsuboi-cho Funabashi-shi Chlba-ken (JP) Inventor: Sakashita, Mitsuaki Nissan Chemical Industries Ltd Seibutsukagaku Kenkyusho, 1470 Oaza-shiraoka Shiraoka-machi Minamisaitama-g Saitama-k Inventor: Kitahara, Masaki Nissan Chemical Industries Ltd. Seibutsukagaku Kenkyusho, 1470

Shiraoka-machi Minamisaitama-g Saitama-k

(72) Inventor: Fuilkawa, Yoshihiro Nissan

Chemical Industries Ltd.

Oaza-shiraoka

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Representative: Wächtershäuser, Günter, Prof. Dr.
Patentanwalt
Tal 29
D-80331 München (DE)

Description

10

15

25 |:

30

35

50

55

The present invention relates to novel mevalonolactones having a quinoline ring, process s for their production, pharmaceutical compositions containing them and their pharmac utical uses particularly as anti-hyperlipidemic, hypolipoproteinemic and anti-atherosclerotic agents, and intermediates useful for their production and processes for the production of such intermediates.

Some fermentation metabolic products such as compactine, CS-514, Mevinolin or semi-synthetic derivatives or fully synthetic derivatives thereof are known to be inhibitors against HMG-CoA reductase which is a rate limiting enzyme for cholesterol biosynthesis. (A. Endo J. Med Chem., 28(4) 401 (1985))

CS-514 and Mevinolin have been clinically proved to be potentially useful anti-hyperlipoproteinemic agents, and they are considered to be effective for curing or preventing diseases of coronary artery sclerosis or atherosclerosis. (IXth Int. Symp. Drugs Affect. Lipid Metab., 1986, p30, p31, p66)

However, with respect to fully synthetic derivatives, particularly hetero aromatic derivatives of inhibitors against HMG-CoA reductase, limited information is disclosed in the following literatures:

WPI ACC NO. 84-158675, 86-028274, 86-098816, 86-332070, 87-124519, 87-220987, 88-07781, 88-008460, 88-091798 and 88-112505.

US-A-4,761,419 discloses, that certain trans-6-[[(substituted)quinolinyl]ethyl]-and ethenyl]tetrahydro-4-hydroxypyran-2-ones and the corresponding dihydroxy ring-opened acids derived therefrom are potent inhibitors of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) and are useful as hypocholesterolemic and hypolipidemic agents.

The present inventors have found that mevalonolactone derivatives having a quinoline ring, the corresponding dihydroxy carboxylic acids and salts and esters thereof have high inhibitory activities against cholesterol biosynthesis wherein HMG-CoA reductase acts as a rate limiting enzyme. The present invention has been accomplished on the basis of this discovery.

The novel mevalonolactone derivatives of the present invention are represented by the following formula

$$\begin{array}{c|c}
R^2 & R^4 \\
\hline
R^2 & Y-Z \\
\hline
R^5 & R^5
\end{array}$$

wherein R^1 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, R^7R^8N -(wherein R^7 and R^8 are C_{1-3} alkyl), fluoro, chloro, bromo or benzyloxy;

 R^2 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy; i-butoxy, sec-butoxy, fluoro, chloro or bromo; or when located at the ortho position to each other, R^1 and R^2 together form -CH = CH-CH = CH-;

 R^3 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, fluoro, chloro, bromo, trifluoromethyl, phenoxy, phenyl or benzyloxy;

R4 is hydrogen, C₁₋₄ alkyl, fluoro, chloro or bromo;

R⁵ is C₁₋₆ alkyl, C₃₋₆ cycloalkyl or phenyl;

R6 is hydrogen;

Y is $-CH_2$ -, CH_2CH_2 -, -CH = CH-, $-CH_2$ -CH = CH- or -CH = CH-CH₂; and Z is

or -Q-CH₂-W-CH₂-CO₂R 12

10

35

40

55

(wherein Q is -C(O)- or -CH(OH)-; W is -C(O)- or -CH(OH)-; and R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).

Various substituents in the formula I will be described in detail with r f rence to specific examples. However, it should be understood that the present invention is by no means restricted by such specific examples.

 C_{1-4} alkyl for R^1 , R^2 , R^3 and R^4 includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl and t-butyl. C_{1-3} alkoxy for R^1 , R^2 and R^3 includes, for example, methoxy, ethoxy, n-propoxy and i-propoxy.

 C_{1-6} alkyl for R^5 includes, for example, methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, t-butyl, n-pentyl and n-hexyl.

C₃₋₅ cycloalkyl for R⁵ includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

 C_{1-3} alkyl for R^7 and R^8 includes, for example, methyl, ethyl, n-propyl and i-propyl.

Further, these compounds may have at least one or two asymmetric carbon atoms and may have at least two to four optical isomers. The compounds of the formula I include all of these optical isomers and all of the mixtures thereof.

Among compounds having carboxylic acid moieties falling outside the definition of $-CO_2R^{12}$ of the carboxylic acid moiety of substituent Z of the compounds of the present invention, those which undergo physiological hydrolysis, after intake, to produce the corresponding carboxylic acids (compounds wherein the $-CO_2R^{12}$ moiety is $-CO_2H$) are equivalent to the compounds of the present invention.

Now, preferred substituents of the compounds of the present invention will be described.

In the following preferred, more preferred still further perferred and most preferred examples, the numerals for the positions of the substituents indicate the positions on the quinoline ring. For example, N' shown by e.g. 1' or 2' indicates the position of the substituent on the phenyl substituted at the 4-position of the quinoline ring (the carbon connected to the quinoline ring is designated as 1'). The meanings of the respective substituents are the same as the above-mentioned meanings.

Preferred substituents for R^1 is hydrogen, fluoro, chloro, bromo, C_{1-3} alkyl, C_{1-3} alkoxy, dimethylamino, and benzyloxy, and R^2 is hydrogen, fluoro, chloro, bromo, C_{1-3} alkyl, C_{1-3} alkoxy.

As preferred examples for R³ and R⁴, when R⁴ is hydrogen, R³ is hydrogen, 3'-fluoro, 3'-methyl, 4'-methyl, 4'-chloro and 4'-fluoro.

Other preferred combinations of R³ and R⁴ include 3'-methyl-4'-chloro, 3',5'-dichloro, 3',5'-difluoro, 3',5'-dimethyl and 3'-methyl-4'-fluoro.

Preferred examples for R5 include primary and secondary C1-6 alkyl and C3-6 cycloalkyl.

Preferred examples for Y include -CH2-CH2- and -CH = CH-.

Preferred examples for Z include

-CH(OH)CH₂CH₂(OH)CH₂CO₂R¹² and -CH(OH)CH₂C(O)CH₂CO₂R¹².

Now, more preferred substituents of the compounds of the present invention will be described.

As more preferred examples for R¹ and R², when R² is hydrogen, R¹ is hydrogen, 5-fluoro, 6-fluoro, 7-fluoro, 8-fluoro, 5-chloro, 6-chloro, 7-chloro, 8-chloro, 5-bromo, 6-bromo, 7-bromo, 8-bromo, 5-methyl, 6-methyl, 7-methyl, 8-methyl, 5-methoxy, 6-methoxy, 7-methoxy, 8-methoxy, 6-ethyl, 6-n-butyl and 7-dimethylamino;

or R¹ and R² together represent 6-chloro-8-methyl, 6-bromo-7-methoxy, 6-methyl-7-chloro, 6-methoxy-7-chloro, 6-chloro-7-methoxy, 6-chloro-8-bromo, 6-bromo-8-chloro, 5-methyl-8-chloro, 6-methoxy-7-methyl, 6-chloro-8-bromo, 6-methyl-8-bromo, 6,7-difluoro, 6,8-difluoro, 6,8-dichloro, 5,8-dimethyl, 6,8-dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo or 6,8-dibromo.

As more preferred examples for R³ and R⁴, when R³ is hydrogen, R⁴ is hydrogen, 4'-methyl, 4'-chloro or 4'-fluoro. When both R³ and R⁴ are not hydrogen, they together represent 3',5'-dimethyl or 3'-methyl-4'-fluoro.

As more preferred examples for R5, the above-mentioned preferred examples of R5 may be mentioned.

As pr ferred examples for Y, -CH₂-CH₂- and (E)--CH = CH- may be mentioned. As more preferred examples for Z, the above preferred xamples for Z may be mentioned.

Now, still further preferred substituents of the compounds of the present invention will be described. As xamples for R¹ and R², when R² is hydrogen, R¹ is hydrogen, 6-m thyl, 6- thyl, 6-trifluoromethyl, 6-hydroxy, 6-methoxy, 6-chloro, 6-bromo, 6-n-butyl and 7-dimethylamino; or

R¹ and R² represent 6,8-dichloro, 5,8-dimethyl, 6,8-dimethyl, 6,7-dimethoxy, 6,7-diethoxy, 6,7-dibromo, 6,8-dibromo, 6,7-difluoro and 6,8-difluoro.

As still further preferred examples for R³ and R⁴, when R³ is hydrogen, R⁴ is hydrogen, 4'-chloro or 4'-fluoro, or R³ and R⁴ together represent 3'-methyl-4'-fluoro.

Still further preferred examples for R5 include ethyl, n-propyl, i-propyl and cyclopropyl.

Still further preferred examples for Y include (E)--CH = CH-.

10

15

20

30

35

45

50

As still further preferred examples for Z, the above-mentioned preferred example for Z may be mentioned.

Now, the most preferred substituents for the compounds of the present invention will be described.

As the most preferred examples for R¹ and R², when R² is hydrogen, R¹ is hydrogen, 6-methyl or 6chloro; or

R¹ and R² together represent, for example, 6.7-dimethoxy.

As the most preferred examples for R³ and R⁴, when R³ is hydrogen, R⁴ is hydrogen, 4'-chloro or 4'-

The most preferred examples for R⁵ include i-propyl and cyclopropyl. The most preferred example for Y may be (E)--CH = CH-.

As the most preferred examples for Z, the above-mentioned preferred examples for Z may be mentioned.

Now, particularly preferred specific compounds of the present invention will be presented. The following compounds (a) to (z) are shown in the form of carboxylic acids. However, the present invention include not only the compounds in the form of carboxylic acids but also the corresponding lactones formed by the condensation of the carboxylic acids with hydroxy at the 5-position, and sodium salts and lower alkyl esters (such as methyl, ethyl, i-propyl and n-propyl esters) of the carboxylic acids, which can be physiologically hydrolyzed to the carboxylic acids.

- (a) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid
- (b) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
- (c) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
- (d) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
- (e) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
- (f) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
- (g) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
- (h) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
- (i) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid
- 40 (j) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
 - (k) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
 - (I) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
 - (m) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
 - (n) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
 - (o) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
 - (p) (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
 - (q) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid
 - (r) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
 - (s) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
 - (t) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1''-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
 - (u) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid
 - (v) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid
 - (w) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid
 - (x) (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid
 - $(y) \ (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl-2'-(1''-methylethyl)-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid \\$
 - (z) (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl-2'-cyclopropyl-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid
 The mevalonolactones of the formula I can be prepared by the following reaction scheme. The enal III

can also b prepared by proc ss s K, L and M.

75

$$R^{2}$$
 R^{3}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{4}
 R^{2}
 R^{4}
 R^{4}

35
$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

45
$$\begin{array}{c}
R^{3} \\
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{4}$$

$$\begin{array}{c}
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{4}$$

$$\begin{array}{c}
R^{4}$$

$$\begin{array}{c}
R^{4}
\end{array}$$

$$\begin{array}{c}
R^{4}$$

20
$$R^{2} \longrightarrow R^{4} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R^{4} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R$$

40
$$R^{2}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R$$

35

In the above reaction scheme, R¹, R², R³, R⁴, R⁵, R⁶ and R¹² are as defined above with respect to the formula I, and R²¹ and R²² independently represent C₁₋₄ lower alkyl such as methyl, ethyl, n-propyl, i-propyl or n-butyl.

Step A represents a reduction reaction of the ester to a primary alcohol. Such reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminium hydride, in a solvent such as tetrahydrofuran or toluene at a t mperature of from -20 to 20 °C, preferably from -10 to 10 °C.

Step B represents an oxidation reaction of the primary alcohol to an aldehyde, which can be conducted by using various oxidizing agents. Preferably, the reaction can be conducted by using pyridinium chlorochromate in methylene chloride at a temperature of from 0 to 25 °C, or by using oxalyl chloride, dimethyl sulfoxide and a tertiary amine such as triethylamine (Swern oxidation), or by using a sulfur trioxide

pyridine compl x.

Step C represents a synthesis of a 3-ethoxy-1-hydroxy-2-propene derivative, which can be prepared by reacting a compound V to lithium compound which has been preliminarily formed by treating cis-1-ethoxy-2-(tri-n-butylstannyl)ethylen with butyl lithium in tetrahydrofuran.

As the reaction temperature, it is preferred to employ a low temperature at a level of from -60 to -78 °C. Step D represents a synthesis of an enal by acidic hydrolysis. As the acid catalyst, it is preferred to employ p-toluene sulfonic acid, hydrochloric acid or sulfuric acid, and the reaction may be conducted in a solvent mixture of water and tetrahydrofuran or ethanol at a temperature of from 10 to 25 °C. The 3-ethoxy-1-hydroxy-2-propene derivative obtained in Step C can be used in Step D without purification i.e. by simply removing tetra-n-butyl tin formed simultaneously.

Step E represents a double anion condensation reaction between the enal III and an acetoacetate. Such condensation reaction is preferably conducted by using sodium hydride and n-butyl lithium as the base in tetrahydrofuran at a temperature of from -80 to 0 °C, preferably from -30 to -10 °C.

Step F represents a reduction reaction of the carbonyl group, which can be conudcted by using a metal hydride, preferably sodium borohydride in ethanol at a temperature of from -10 to 25 °C, preferably from -10 to 5 °C.

Further, the reduction reaction may be conducted by using zinc borohydride in dry ethyl ether or dry tetrahydrofuran at a temperature of -100 to 25 °C, preferably from -80 to -50 °C.

Step G is a step for hydrolyzing the ester. The hydrolysis can be conducted by using an equimolar amount of a base, preferably potassium hydroxide or sodium hydroxide, in a solvent mixture of water and methanol or ethanol at a temperature of from 10 to 25 °C. The free acid hereby obtained may be converted to a salt with a suitable base.

Step H is a step for forming a mevalonolactone by the dehydration reaction of the free hydroxy acid I-2. The dehydration reaction can be conducted in benzene or toluene under reflux while removing the resulting water or by adding a suitable dehydrating agent such as molecular sieve.

Further, the dehydration reaction may be conducted in dry methylene chloride by using a lactoneforming agent such as carbodiimide, preferably a water soluble carbodiimide such as N-cyclohexyl-N'-[2'-(methylmorpholinium)ethyl]carbodiimide p-toluene sulfonate at a temperature of from 10 to 35 °C, preferably from 20 to 25 °C.

Step J represents a reaction for hydrogenating the double bond connecting the mevalonolactone moiety and the quinoline ring. This hydrogenation reaction can be conducted by using a catalytic amount of palladium-carbon or rhodium-carbon in a solvent such as methanol, ethanol, tetrahydrofuran or acetonitrile at a temperature of from 0 to 50 °C, preferably from 10 to 25 °C.

Step K represents a reaction for the synthesis of an α,β -unsaturated carboxylic acid ester, whereby a trans-form α,β -unsaturated carboxylic acid ester can be obtained by a so-called Horner-Wittig reaction by using an alkoxycarbonylmethyl phosphonate. The reaction is conducted by using sodium hydride or potassium t-butoxide as the base in dry tetrahydrofuran at a temperature of from -30 to 0 °C, preferably from -20 to -15 °C.

Step L represents a reduction reaction of the α,β -unsaturated carboxylic acid ester to an allyl alcohol. This reduction reaction can be conducted by using various metal hydrides, preferably diisobutylaluminium-hydride, in a solvent such as dry tetrahydrofuran or toluene at a temperature of from -10 to 10 °C, preferably from -10 to 0 °C.

Step M represents an oxidation reaction of the allyl alcohol to an enal. This oxidation reaction can be conducted by using various oxidizing agents, particularly active manganese dioxide, in a solvent such as tetrahydrofuran, acetone, ethyl ether or ethyl acetate at a temperatrue of from 0 to 100 °C, preferably from 15 to 50 °C.

Step N represents a reaction for the synthesis of an α,β -unsaturated ketone by the selective oxidation of the dihydroxy carboxylic acid ester. This reaction can be conducted by using activated manganese dioxide in a solvent such as ethyl ether, tetrahydrofuran, benzene or toluene at a temperature of from 20 to 80 $^{\circ}$ C, preferably from 40 to 80 $^{\circ}$ C.

In addition to the compounds disclosed in Examples given hereinafter, compounds of the formulas I-2 and I-5 given in Table 1 can be prepared by the process of the present invention. In Table 1, i- means iso, sec- means secondary and c- means cyclo. Likewise, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, Pent means pentyl, Hex means hexyl and Ph means phenyl.

Table 1

140.01	OH
	R ³ R ⁴
	CO 2 R 1 2
	R ² OH
	$I - 2 \left(R^{1/2} = II \right)$
	$R^1 \longrightarrow N \longrightarrow R^5 \qquad I - 5 (R^{12} = Na)$

15	R ¹	R ²	R³	R 4	R ^s	R 6
	6 0∦e	H	Н	Н	i — Pr	Н
	6 — 0 M e	H	4 - F	H	i - Pr	H
20	6 — Br	H	4 — F	H	i - Pr	Н
	6 — Же	8 — Me	4 — F	Н	i - Pr	Н
25	7 →0Me	8 - 0 M e	4 — F	Н	i — Pr	Н
	6 — Br	Н	2 — F	Н	i — Pr	H
30	6.7					
30	. ()	,	4 — F	H	i - Pr	Н
	Н	Н	4 — F	H	$\overline{\ }$	Н
35	Н	Н	4 — Ph	Н	i - Pr	Н
	6-C &	Н	4 - F	Ħ	c-Pr	H
40	6-C 2	H	4 - F	Н	sec-Bu	Н
	6 - 0 C II 2 P h	Н	4 - F	Н	i-Pr	Н
4 5	Н	Н	4 - F	Н	i - Bu	Н
45	Н	Н	4 - F	Н	c-Pent	Н
	6-C L	H	4 - F	Н	c-Pent	Н
50	6 - Me z N	Н	4 - F	Н	i-Pr	Н

EP 0 304 063 B1

	R '	R ²	R³	R 4	R s	R •
5	6 - de	Н	4 - F	Н	c – Pr	H
	6-i-P=	H	4 - F	H	i-Pr	H
	7-Me	H	4 - F	H	c — Pr	H
10	6-011e	H	4 - F	H	c-Pr	H
	6 - B T	Ħ	4 - F	Ħ	c-Pr	H
15	6-i-P=	H	4 - F	H	c — Pr	H
	6-C £	8-C &	4 - F	H	c - Pr	H
20	H	H	4 - F	H	c-Bu	H
	H	H	4 - F	Н	c-Hex	H
	6-0%e	7-0Me	H	H	i-Pr	H
25	6-0Me	7-0Me	4 - C £	Н	i-Pr	H
	6-011e	7-0He	Н	H	c-Pr	H
30	6-0Me	7-0Me	4-C £	H	c-Pr	H
	6-0Me	7-0Me	4 - F	H	c-Pr	H

EP 0 304 063 B1

	R ¹	R ²	R³	R 4	R ^s	R٥
5	6-Me	. Н	Н	Н	i-Pr	Н
	6-Me	Н	4-C &	Н	i-Pr	Н
	6-Me	Н	Н	Н	c-Pr	Н
10	6-Me	H	4-C &	H	c-Pr	H
	6-Me	H	4 - F	H	c-Pr	· H
15	6-C L	H	Н	H	i-Pr	H
	6-C L	H	4-C L	H	i-Pr	Н
20	6-C &	H	· H	H	c-Pr	Н
	6-C &	Н	4-C &	Н	c-Pr	Н
	6-C &	H	4 - F	Н	c-Pr	Н
25	H	H	H	H	i-Pr	H
	Н	Н	4-C &	Н	i-Pr	Н
30	Н	Н	Н	Н	c-Pr	H
	Н	Н	4-C &	Н	c-Pr	Н
35	Н	Н	4 - F	Н	c-Pr	Н

Further, pharmaceutically acceptable salts such as potassium salts or esters such as ethyl esters or methyl esters of these compounds can be prepared in the same manner.

40

45

The compounds of the present invention exhibit high inhibitory activities against the cholesterol biosynthesis wherein HMG-CoA reductase acts as a rate limiting enzyme, as shown by the test results given hereinafter, and thus are capable of suppressing or reducing the amount of cholesterol in blood as lipoprotein. Thus, the compounds of the present invention are useful as curing agents against hyperlipidemia, hyperlipoproteinemia and atheroscleosis.

They may be formulated into various suitable formulations depending upon the manner of the administration. The compounds of the present invention may be administered in the form of free acids or in the form of physiologically hydrolyzable and acceptable esters or lactones, or pharmaceutically acceptable salts.

The pharmaceutical composition of the present invention is preferably administered orally in the form of the compound of the present invention per se or in the form of powders, granules, tablets or capsules formulated by mixing the compound of the present invention with a suitable pharmaceutically acceptable carrier including a binder such as hydroxypropyl cellulose, syrup, gum arabic, gelatin, sorbitol, tragacanth gum, polyvinyl pyrrolidone or CMC-Ca, an excipient such as lactose, sugar, corn starch, calcium phosphate, sorbitol, glycine or crystal cellulose powder, a lubricant such as magnesium stearate, talk, polyethylene glycol or silica, and a disintegrator such as potato starch.

However, the pharmaceutical composition of the present invention is not limited to such oral administration and it is applicable for parenteral administration. For example, it may be administered in the form of e.g. a suppository formulated by using oily base material such as cacao butter, polyethylene glycol, lanolin

or fatty acid triglycerid, a transdermal therapeutic base formulated by using liquid paraffin, white vaseline, a higher alcohol, Macrogol ointment, hydrophilic ointment or hydro-gel base material, an injection formulation formulated by using one or more materials selected from the group consisting of polyethylene glycol, hydro-gel base material, distill d wat r, distilled wat r for injection and xcipi nt such as lactos or corn starch, or a formulation for administration through mucous membranes such as an ocular mucous membrane, a nasal mucous membrane and an oral mucous membrane.

Further, the compounds of the present invention may be combined with basic ion-exchange resins which are capable of binding bile acids and yet not being absorbed in gastraintestinal tract.

The daily dose of the compound of the formula I is from 0.05 to 500 mg, preferably from 0.5 to 50 mg for an adult. It is administered from once to three times per day. The dose may of course be varied depending upon the age, the weight or the condition of illness of the patient.

The compounds of the formulas II to VII are novel, and they are important intermediates for the preparation of the compounds of the formula I. Accordingly, the present invention relates also to the compounds of the formulas II to VII and the processes for their production.

Now, the present invention will be described in further detail with reference to Test Examples for the pharmacological activities of the compounds of the present invention, their Preparation Examples and Formulation Examples. However, it should be understood that the present invention is by no means restricted by such specific Examples.

PHARMACOLOGICAL TEST EXAMPLES

Test A: Inhibition of cholesterol biosynthesis from acetate in vitro

Enzyme solution was prepared from liver of male Wistar rat billialy cannulated and discharged bile for over 24 hours. Liver was cut out at mid-dark and microsome and supernatant fraction which was precipitable with 40-80% of saturation of ammonium sulfate (sup fraction) were prepared from liver homogenate according to the modified method of Knauss et. al.; Kuroda, M., et. al., Biochim. Biophys. Acta, 489, 119 (1977). For assay of cholesterol biosynthesis, microsome (0.1 mg protein) and sup fraction (1.0 mg protein) were incubated for 2 hours at 37 °C in 200 μl of the reaction mixture containing ATP; 1 mM, Glutathione; 6 mM, Glucose-1-phosphate; 10 mM, NAD; 0.25 mM, NADP; 0.25 mM, CoA; 0.04 mM and 0.2 mM [2-14 C]sodium acetate (0.2 μCi) with 4 μl of test compound solution dissolved in water or dimethyl sulfoxide. To stop reaction and saponify, 1 ml of 15% EtOH-KOH was added to the reactions and heated at 75 °C for 1 hour. Nonsaponifiable lipids were extracted with petroleum ether and incorporated ¹⁴ C radioactivity was counted. Inhibitory activity of compounds was indicated with IC50.

Test B: Inhibition of cholesterol biosynthesis in culture cells

Hep G2 cells at over 5th passage were seeded to 12 well plates and incubated with Dulbecco's modified Eagle (DME) medium containing 10% of fetal bovine serum (FBS) at 37°C, 5% CO₂ until cells were confluent for about 7 days. Cells were exposed to the DME medium containing 5% of lipoprotein deficient serum (LpDS) prepared by ultracentrifugation method for over 24 hours. Medium was changed to 0.5 ml of fresh 5% LpDS containing DME before assay and 10 μl of test compound solution dissolved in water or DMSO were added. 0.2 μCi of [2-¹⁴C]sodium acetate (20 μl) was added at 0 hr(B-1) or 4 hrs(B-2) after addition of compounds. After 4 hrs further incubation with [2-¹⁴C]sodium acetate, medium was removed and cells were washed with phosphate buffered saline(PBS) chilled at 4°C. Cells were scraped with rubber policeman and collected to tubes with PBS and digested with 0.2 ml of 0.5 N KOH at 37°C. Aliquot of digestion was used for protein analysis and remaining was saponified with 1 ml of 15% EtOH-KOH at 75°C for 1 hour. Nonsaponifiable lipids were extracted with petroleum ether and ¹⁴C radioactivity was counted. Counts were revised by cell protein and indicated with DPM/mg protein. Inhibitory activity of compounds was indicated with IC50.

Test C: Inhibition of cholesterol biosynthesis in vivo

Male Sprague-Dawley rats weighing about 150 g were fed normal Purina chow diet and water ad libitum, and exposed to 12 hours light/12 hours dark lighting pattern (2:00 PM - 2:00 AM dark) prior to use for in vivo inhibition test of cholesterol biosynthesis. Animals were separated groups consisting of five rats as to be average mean body weight in each groups. Test compounds at dosage of 0.02-0.2 mg/kg body weight (0.4 ml/100 g body weight), were dissolved in water or suspended or in 0.5% methyl cellulose and

orally administered at 2-3 hours before mid-dark (8:00 PM), while cholest rol biosynthesis reach s to maximum in rats. As control, rats were orally administer d only water or vehicle. At 90 minutes after sample administration, rats were injected intrap ritoneally with 10 μ Ci of [2-14C]sodium acetate at volume of 0.2 ml per one. 2 Hours lat r, blood sampl s w r obtained and serum were separat d imm diately. Total lipids were extracted according to the method of Folch et al. and saponified with EtOH-KOH. Nonsaponifiable lipids were extracted with petroleum ether and radio activity incorporated into nonsaponifiable lipids was counted.

Inhibitory activity was indicated as percent decrease of counts in testing groups (DPM/2 ml serum/2 hours) from that in control group.

With respect to the compounds of the present invention, the inhibitory activities against the cholesterol biosynthesis in which HMG-CoA reductase serves as a rate limiting enzyme, were measured by the above Test A and B. The results are shown in Tables, 2, 2-2, 3 and 3-2. Further, the results of the measurements by Test C are also presented.

Table 2

Inhibitory activities by Test A Compound IC₅₀ (molar concentration) (Compounds of the present invention) I-13 1.25 x 10⁻⁷ I-51 1.0 x 10⁻⁸ 7.1 x 10⁻⁸ 1-52 1-53 1.9 x 10⁻⁷ (Reference compounds) 1.4×10^{-8} Mevinolin CS-514 9.0 x 10⁻⁹

In Table 2-2, the relative activities are shown based on the activities of CS-514 being evaluated to be 1.

Table 2-2

Relative activities by Te	est A
Compound	Relative activities
(Comounds of the present invention)	
I-16	1.75
I-116	2.25
I-117	0.37
I-120	3.21
I-522	0.76

55

10

15

20

25

30

35

40

45

Structures of reference compounds:

5

10

15

30

45

50

55

(1) Mevinolin

H₃C CH₃ H CH₃

(2) CS-514

25 H₃C CH₃ H CH₃

Table 3

Inhibitory activities by Test B-1

Compound IC₅₀ (molar concentration)

(Compound of the present invention)

I-51 1×10^{-7} (Reference compound)

CS-514

In Table 3-2, the relative activities are shown based on the activities of CS-514 being evaluated to be 1.

3.5 x 10⁻⁷

Table 3-2

Relative acti	vities by Test B-1
Compound	Relative activities
I-116	19.4
I-520	20.0
II-20	20.8

Results of th measurement of th inhibitory activities by T st C

Th percent decr ase of counts after the oral administration of 0.05 mg/kg of compound I-520 was 55% relative to the m asur d value of th control group. Th percent d cr ase of counts after th oral administration of 10 mg/kg of CS-514 was 55% under the same condition. The compounds of the present invention exhibited activities superior to the reference compound such as CS-514 or Mevinolin in Test A, and exhibited activities superior to CS-514 in Tests B and C.

Test D: Acute toxicity

10

15

20

A 0.5% CMC suspension of a test compound was orally administered to ICR male mice (group of three mice). The acute toxicity was determined based on the mortality after seven days. With compound I-57, I-58, I-59, I-511, I-513, I-514, I-515, I-517 and I-523 of the present invention, the mortality was 0% even when they were orally administered in an amount of 1000 mg/kg.

EXAMPLE 1

Ethyl (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoate (compound I-11) (prepared by steps of Example 1-a through Example I-q)

EXAMPLE 1-a: Ethyl 4-(4'-fluorophenyl)-2-(1'-methylethyl)-quinolin-3-yl-carboxylate (compound VII-1)

The synthesis was conducted in accordance with the method disclosed in J. Org. Chem., 2899 (1966). 6.45 g (0.03 mol) of 2-amino-4'-fluorobenzophenone, 5.53 g (0.035 mol) of ethyl isobutyrylacetate and 0.1 ml of conc. sulfuric acid were dissolved in 30 ml of glacial acetic acid, and the mixture was heated at 100 °C for about 10 hours. After confirming the substantial disappearance of 2-amino-4'-fluorobenzophenone by thin layer chromatography, the reaction solution was cooled to room temperature, and a mixture of 45 ml of conc. aqueous ammonia and 120 ml of water cooled with ice, was gradually added thereto. A separated oily substance was solidified when left to stand overnight in a refrigerator. This solid was recrystallized from a small amount of ethanol to obtain 6.47 g (55%) of white powder. Melting point: 68-70.5 °C

EXAMPLE 1-b: 4-(4'-fluorophenyl)-3-hydroxymethyl-2-(1'-methylethyl)-quinoline (compound VI-1)

5.4 g (0.016 mol) of compound VII-1 was dissolved in dry toluene under a nitrogen atmosphere and cooled in ice bath to 0 °C. To this solution, 40 ml of a 16 wt% diisobutylaluminium hydride-toluene solution was dropwise added, and the mixture was stirred at 0 °C for two hours. After confirming the complete disappearance of compound VII-1 by thin layer chromatography, a saturated ammonium chloride solution was added thereto at 0 °C to terminate the reaction. Ethyl ether was added to the reaction mixture, and the organic layer was separated. A gelled product was dissolved by an addition of an aqueous sodium hydroxide solution and extracted anew with ethyl ether. The ethyl ether extracts were put together, dried over anhydrous magnesium sulfate and filtered. The solvent was distilled off. The residual oil underwent crystallization when left to stand. It was recrystallized from ethyl acetate-n-hexane to obtain 3.3 g of white crystals. Yield: 70%. Melting point: 136-137 °C.

EXAMPLE 1-c: 4-(4'-fluorophenyl)-2-(1'-methylethyl)-quinolin-3-yl-carboxyaldehyde (compound V-1)

2.0 g (9.3 mmol) of pyridinium chlorochromate and 0.4 g of anhydrous sodium acetate was suspended in 10 ml of dry dichloromethane. To this suspension, a solution obtained by dissolving 1 g (3.4 mmol) of compound VI-1 in 10 ml of dry dichloromethane, was immediately added at room temerature. The mixture was stirred for one hour. Then, 100 ml of ethyl ether was added thereto, and the mixture was throughly mixed. The reaction mixture was filtered under suction through a silica gel layer. The filtrate was dried under reduced pressure. The residue was dissolved in the isopropyl ether, and insoluble substances were filtered off. The filtrate was again dried under reduced pressure, and the residue was recrystallized from diisopropyl ether to obtain 0.7 g (Yield: 70%) of slightly yellow prism crystals. Melting point: 124-126 °C.

EXAMPLE 1-d: 3-(3'-ethoxy-1'-hydroxy-2'-propenyl)-4-(4'-fluorophenyl)-2-(1'-methylethyl)-quinoline (compound IV-1)

1.13 g (3.13 mmol) of cis-1- thoxy-2-(tri-n-butylstannyl)ethylene was dissolved in 8 ml of dry tetrahydrofuran, and the solution was cooled to -78°C in a nitrogen stream. To this solution, 2 ml (3.2 mmol) of a 15 wt% n-butyllithium-n-hexane solution was dropwise added. The mixture was stirred for 45 minutes. Then, a solution prepared by dissolving 0.76 g (2.6 mmol) of compound V-1 in 10 ml of dry tetrahydrofuran was dropwise added thereto. The reaction mixture was stirred at -78°C for two hours. Then, 2 ml of a saturated ammonium chloride solution was added thereto to terminate the reaction. The organic layer was extracted with diethyl ether, and the diethyl ether extract was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The residue was separated with n-hexane and acetonitrile. The solvent was distilled off under reduced pressure from the acetonitrile layer, and an oily substance thereby obtained was purified by silica gel column chromatography (eluent: 2.5% methanol-chloroform) to obtain 0.91 g of the desired compound in a purified oily form.

H-MNR (CDCl₃) δ ppm:

1.1(t,3H,7Hz) 1.37(d,6H,J=7Hz) 3.7(m,1H) 3.7(q,2H,J=7Hz) 4.75(t,1H,7Hz) 5.7(m,1H) 5.95(m,1H) 7.05-8.2(m,8H)

20 EXAMPLE 1-e: (E)-3-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]propenaldehyde (compound III-1)

0.91 g of compound IV-1 was dissolved in 20 ml of tetrahydrofuran, and 5 ml of water and 100 mg of p-toluenesulfonic acid were added thereto. The mixture was stirred at room temperature for 24 hours. The reaction solution was extracted with diethyl ether a few times. The extracts were washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off. The residue was purified by silica gel column chromatography (eluent: chloroform) to obtain the desired product as white prism crystals. 0.4 g (50%). Melting point: 127-128 °C.

EXAMPLE 1-f: Ethyl (E)-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-5-hydroxy-3-oxohepto-6-en-oate (compound II-1)

50 mg of 60% sodium hydride was washed with dry petroleum ether and dried under a nitrogen stream, and then suspended in 5 ml of dry tetrahydrofuran. The suspension was cooled to -15°C in a nitrogen atmosphere. Then, 120 mg (0.92 mmol) of ethyl acetoacetate was dropwise added thereto, and the mixture was stirred for 15 minutes. Then, 0.6 ml (0.92 mmol) of a 15 wt% n-butyllithium-n-hexane solution was dropwise added thereto, and the mixture was stirred for 30 minutes. Then, a solution prepared by dissolving 160 mg (0.5 mmol) of compound III-1 in dry tetrahydrofuran, was dropwise added thereto, and the mixture was stirred for one hour. To the reaction mixture, 1 ml of a saturated ammonium chloride aqueous solution was added at -15°C. Then, the mixture was extracted three times with diethyl ether. The diethyl ether solution was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. The solution was evaporated to dryness under reduced pressure. The residue was recrystallized from diisopropyl ether to obtain 130 mg (yield: 59%) of white crystals. Melting point: 99-101°C.

EXAMPLE 1-g: Ethyl (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoate (compound I-11)

110 mg (0.245 mmol) of compound II-1 was dissolved in 5 ml of ethanol in a nitrogen atmosphere, and the solution was cooled 0 °C. Then, 10 mg (0.263 mmol) of sodium borohydride was added, and the mixturer was stirred for one hour. Then, 1 ml of a 10% hydrochloric acid aqueous solution was added thereto, and the mixture was extracted three times with ethyl ether. The ethyl ether solution was washed with a saturated sodium chloride aqueous solution and dried over anhydrous magnesium sulfate. Then, the solution was evaporated to dryness under reduced pressure. The residual oil was purified by silica gel column chromatography (eluent: 5% methanol-chloroform) to obtain the desired product as a pure colorless oily substance. 70 mg (Yield: 64%)

H-NMR (CDCl₃) δ ppm:

1.30(t,3H,J=8Hz) 1.39(d,6H,J=8Hz) 1.4-1.8(m,2H) 2.42(d,2H,J=7Hz) 3.0-3.8 (m,2H) 3.50(m,1H) 3.9-4.6(m,2H) 4.20(q,2H,J=8Hz) 5.35(m,1H) 6.59(m,1H)

7.10-8.18(m,8H)

EXAMPLE 2

Sodium salt of (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid (compound I-51)

60 mg (0.133 mmol) of compound I-11 was dissolved in 3 ml of ethanol. Then, 0.26 ml of a 0.5 N sodium hydroxide aqueous solution was dropwise added thereto. The mixture was stirred at room temperature for further one hour, and ethanol was distilled off under reduced pressure. Then, 5 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was freeze-dried to obtain 40 mg (67%) of hygroscopic white powder. Melting point: 207-209 °C (decomposed).

EXAMPLE 3

15

(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid (compound I-21)

110 mg (0.244 mmol) of compound I-11 was dissolved in 10 ml of ethanol. Then, 0.79 ml of a 0.5 N sodium hydroxide aqueous solution was dropwise added thereto. The mixture was stirred at room temperature for further one hour, and ethanol was distilled off under reduced pressure. Then, 10 ml of water was added thereto, and the mixture was extracted with ethyl ether. The aqueous layer was weakly acidified (pH 4) with a dilute hydrochloric aqueous solution and extracted three times with ethyl ether. The ethyl ether layers were put together and dried over anhydrous magnesium sulfate. Then, the solvent was distilled off under reduced pressure to obtain 90 mg of slightly yellow oily substance.

H-NMR (CDCl₃) δ ppm:

1.36(d,6H,J=7Hz) 2.4(m,2H) 3.5(m,1H) 3.45(m,1H) 3.8-4.6(m,2H) 5.40-(dd,1H, J_1 = 19Hz, J_2 = 8Hz) 6.55 (d,1H,J=19Hz) 7.0-8.3(m,8H)

EXAMPLE 4

25

30

40

45

(E)-6-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-ylethenyl]-4-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one (compound I-31)

90 mg of compound I-21 was dissolved in 10 ml of dry toluene, and the solution was refluxed under heating for 3 hours by means of a Dean Stark apparatus.

Toluene was distilled off under reduced pressure, and the residual solid was recrystallized from disopropyl ether to obtain 40 mg of colorless prism crystals. Melting point: 182-184 °C.

By silica gel thin chromatography, the product gave two absorption spots close to each other attributable to the diastereomers. (Developping solvent: 3% methanol-chloroform)

These diasteromers were separated and isolated by silica gel thin layer chromatography. [Developping solvent: t-BuOMe/hexane/acetone = 7/2/1 (v/v), Rf = 0.6 and 0.7 (obtained weight ratio: 1/2)]

Rf = 0.7: trans lactone

H-NMR (CDCl₃) δ ppm:

1.40(d,6H,J=7Hz) 1.6(m,2H) 2.65(m,2H) 3.48(m,1H) 4.20(m,1H) 5.15(m,1H) $5.37(dd,1H,J_1=18Hz,J_2=7Hz)$ 6.68(d,1H,J=19Hz) 7.1-8.2(m,8H)

Rf = 0.6: cis lactone

50

H-NMR (CDCl₃) δ ppm:

1.40(d,6H,J=7Hz) 1.6(m,2H) 2.65(m,2H) 3.48(m,1H) 4.20(m,1H) 4.65(m,1H) 5.40(dd,1H, J_1 = 18Hz, J_2 = 7Hz) 6.66(m,1H) 7.0-8.2(m,8H)

EXAMPLE 5

6-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-ylethynyl]-4-hydroxy-3,4,5,6-tetrahydro-2H-pyran-2-one (compound 1-41)

20 mg of a mixture of diastereomers of compound I-31 was dissolved in 5 ml of ethanol, and 10 mg of 5% palladium-carbon was added thereto. The mixture was stirred under a hydrogen atmosphere. After confirming the disappearance of the starting substance and the appearance of a new spot by thin layer chromatography, the palladium-carbon was filtered off, and ethanol was distilled off to obtain colorless oil.

This oil was purified by preparative thin layer chromatography to obtain 16 mg of the desired product as pure colorless oil.

MS(m/e): $408(M^+ + H)$, $407(M^+)$, 366, 292, 278

In the same manner as in Example 1-a, compounds VII-2 to VII-27 were prepared. The physical properties of these compounds are shown in Table 4. (In the Table, R¹, R², R³, R⁴, R⁵ and R²¹ correspond to the substitients of compound VII.)

Table 4 (Compounds in this Table are compounds of the formula VII wherein ${\bf R}^6$ is hydrogen.)

5	Compound ?	R ²	R 3	R 4	R 5	R 2 1	m. p.
	VII - 2 H	H	4 - F	II	CH ₃	Czils	121-
10	VII - 3 H	H	H	H	CH ₃	C ₂ H ₅	122 102- 102.5
	<u>VII - 4</u> H	H	Ħ	Ħ	i-Pr	C 2 li s	85 - 85 . 5
15	VII - 5 6 - C · L	H	H	H	CH ₃	CzHs	100.5- 101.5
	VII - 6 6 - C &	H	H	H	i-Pr	C ₂ H ₅	105.5- 106.5
	VII - 7 H	H	2 - F	H	i-Pr	C_z H $_5$	101.0- 102.0
20	VII-8 7-Ne	H	H	H	i-Pr	CzHs	oil
	VII - 9 H	Я	4-C &	H	i-Pr	CzHs	134.0- 136.5
ne.	VII - 10 H	H	4-0Me	H	i-Pr	C ₂ H ₅	88.0-
25	VI - 11 H	H	4-Me	H	i-Pr	CzHs	89.0 108.5- 109.5
	VII - 12 6 - C &	H	2-C &	H	i-Pr	CzHs	101.0 -103.0
30	VI - 13 H	H	4-CF ₃	Ħ	i-Pr	CaHs	117.5-
	VII - 14 H	H	3-Me	4 - F	i-Pr	C ₂ H ₅	119.0 oil
35	VII - 15 H	H	3-Me	5-Me	i-Pr	Calls	oil
	VI - 16 6 - 0 M e	7-0M	e 4-F	H	i-Pr	CzHs	96.0-
	VI - 17 H	H	4 - F	H	CaHs	CH 3	98.0 139.0
40	VII - 18 H	H	4 - F	Ħ	n-Pr	CzHs	139.5 oil
	VI -19 6-C L	H	4 - F	H	i-Pr	CzHs	94.5-
45	VII - 20 H	H	4 - F	H	c-Pr	CII 3	95.5 113.5-
	VII - 21 H	H	4-0Ph	H	i-Pr	Calls	116.5 oil
	VI -22 6-C L	8 - C &	! 4-F	H	i-Pr	C ₂ II ₅	96.0-
50	VI -23 6-C 2	R	H	H	Ph	CzHs	98.0 118.8 -119.5

```
VII - 24 6 - C & H
                                    H
                                            H
                                                   c-Pr CH<sub>3</sub>
                                                                  97.0-
                                                                   98.5
             VII - 25 H
                             H
                                    4 - F
                                                sec-Bu CH<sub>3</sub>
                                            H
                                                                   oil
5
             VII - 26 6-Me H
                                    4 - F
                                                   i-Pr CzHs
                                            H
                                                                   109.0
                                                                  -111.0
             VI - 27 6-0Me 7-0Me 4-F
                                                                 153.0
-153.5
                                            H
                                                   c-Pr CH<sub>3</sub>
10
                VII - 8
                  H-NMR (in CDCl<sub>3</sub>)
                                          \delta ppm:
15
                     0.92 (t, 3H, J = 7Hz), 1.41 (d, 6H, J = 6Hz)
                    2.47 (s, 3H), 3.27 (Heptaplet, 1H, J=6Hz)
20
                    3.96 (q, 2H, J = 7Hz), 7.0 - 7.8(m, 8H)
                VII - 14
                  H-NMR (in CDCl<sub>3</sub>)
                                          δ ppm :
25
                     1.01 (t, 3H, J=7Hz), 1.42 (d, 6H, J=6Hz)
                    2.38 (s, 3H, J=3Hz), 3.25(Heptaplet, 1H, J=6Hz)
30
                    4.04 (q, 2H, J=7Hz), 6.9-8.1(m, 7Hz)
                VII - 15
                  H-NMR (in CDCl_3) \delta ppm:
                     0.97 \text{ (t, 3H, } J=7Hz), 1.43 \text{ (d, 6H, } J=6Hz)
                    2.29 (s,6H), 3.25 (Heptaplet,1H.J=6Hz)
40
                     4.00 (q, 2H, J=7Hz), 6.8-8.0 (m, 7H)
45
```

20

```
VII - 18
               H-NMR (in CDCl<sub>3</sub>)
                                      \delta ppm :
                  0.98 (t, 3H, J=7Hz), 1.02 (t, 3H, J=7Hz)
5
                                     2.8-3.1(m,2H)
                  1.6-2.3(m,2H),
                  4.03 (q, 2H, J=7Hz), 6.9-8.1 (m, 8H)
10
             VII - 21
                H-NMR (in CDC \ell_3) \delta ppm:
15
                  1.03 (t, 3H, J=7Hz), 1.41 (d, 6H, J=6Hz)
                  3.25(Heptaplet, 1H, J=6Hz), 4.05(q, 2H, J=7Hz),
                  6.8-8.1(m,13H)
20
              VI - 25
                H-NMR (in CDC<sup>1</sup>3)
                                     δ ppm :
25
                  0.97 (d, 6H, J=6Hz), 2.0 \sim 2.6 (m, 1H)
                  2.85 (d, 2H, J=7Hz), 3.51(s, 3H),
30
                  6.8-8.1(m,8H)
```

In the same manner as in Example 1-b, compounds VI-2 to VI-27 were prepared. (In Table 5, R¹, R², R³, R⁴ and R⁵ correspond to the substituents in compound VI.)

35

40

45

50

Tale 5 (Compounds in this Table are compounds of the formula VI wherein ${\ensuremath{\mathsf{R}}}^6$ is hydrogen.)

•						••	
	Compound	R 1	R ²	R ³	R 4	R s	m. p. m. p.
10	VI - 2	Н	H	p - [II	CH ₃	
	VI - 3	H	H	H	H	CH 3	149-151
	VI - 4	H	H	. Н	H	i-Pr	130-
15	VI - 5	6-C L	Н	H	H	CH3	130.5 139-141
	VI - 6	6-C &	H	H	H	i-Pr	168-169
20	VI - 7	H	H	2 - F	H	i-Pr	140.5-
	VI - 8	7-Me	H	H	H	i-Pr	142.0 155.0-
25	VI - 9	H	H	4-C &	H	i-Pr	157.0 192.0-
	VI - 10	Н	H	4-0Me	H	i≤Pr	195.0 186.0-
	VI - 11	H	H	4-Me	H	i-Pr	188.5 161.0-
30	VI -12	6-C &	Н	2-C &	H	i-Pr	164.0 122.0
	VI -13	Н	H	4-CF ₃	H	i-Pr	124.0 183.0-
35	VI -14	Н	H	3-Me	4 - F	i-Pr	186.0 161.0-
	VI - 15	H	Н .	3-Me	5-Me	i-Pr	162.5 137.0-
40	VI -16	6-Me	7-0Me	4 - F	H	i-Pr	138.0 164.0- 165.0
	VI -17	H	H	4 - F	H	CzHs	141.5-
45	VI - 18	H	H	4 - F	Н	n-Pr	143.5 146.5-
	VI - 19	6 - C	e h	4 - F	H	i-Pr	148.5 171.0- 172.0
				•			112.0

EP 0 304 063 B1

	VI -20	H	H	4 - F	H	c-Pr	120-126
	VI - 21	Н	H	4-0Ph	H	i-Pr	
5	VI - 22	6-C L	8-C &	4 - F	H	i-Pr	154.0 98.5-103
	VI -23	6-C &	H	H	H	Ph	171.5- 172.5
10	VI - 24	6-C L	H	H	H	c-Pr	84.0- 86.0
	VI -25	H	H	4 - F	H	sec-Bu	119.0- 121.0
15	VI - 26	6-Me	H	4 - F	H	i-Pr	160.0- 161.5
	VI - 27	6-0Me	7-0Me	4 - F	H	c-Pr	161.3 162.0- 163.0

Table 6 (Compounds in this Table are compounds of the formula V wherein R^6 is hydrogen.)

30	Compound	R ¹	R ²	. R 3	R 4	R s	m. p.
	V - 2	H	· H	p - F	Н	CII 3	125-128
35	V - 3	H	H	H	H	C II 2	143-146
	V - 4	H	H	H	H	i-Pr	92-93
40	V - 5 6 -	·C L	H	H	II	СЯз	220-222

In the same manner as in Example 1-c, compounds V-2 to V-27 were prepared. (In Table 6, R^1 , R^2 , R^3 , R^4 and R^5 correspond to the substituents of compound of V.)

	V - 6	6-Cl	H	H	Н	i-Pr	140-140.5
5	V - 7	Ħ	H	2 - F	H	i-Pr	121.5-
	V-8	7 - Me	H	H	H	i-Pr	124.0 105.1-
	V-9	H	H	4-C &	H	i-Pr	109.2 147.0-
10	V -10	H	H	4-0Me	H	i-Pr	147.8 135.6-
	V -11	H	H	4-Me	H	i-Pr	136.8 119.4-
15	V - 12	6-C L	H	2-C L	H	i-Pr	120.4 105.8-
	V -13	H	H	4-CF ₃	H	i-Pr	106.9 163.7-
20	V-14	H	H	3-Me	4 - F	i-Pr	164.2 161.1-
	V - 15	H	H.	3-Me	5-Me	i-Pr	108.1 120.8-
	V - 16	6-0Me	7-0Me	4 - F	H	i-Pr	122.3 164.4-
25	V - 17	H	H	4 - F	H	C ₂ H ₅	165.2 143.1-
	V -18	H	II	4 - F	H	n-Pr	144.2 150.2-
30	V - 19	6-C L	H	4 - F	H	i-Pr	155.3 164.5-
	V - 20	H	H	4 - F	H	c-Pr	165.3 150.1-
35	V - 21	H	H 4-	-OPh	H	i-Pr	151.6 106.9-
	V - 22	. 6-C L	8-C L	4 - F	H	i-Pr	107.7 135.0-
	V -23	6-C L	H	H	H	Ph	135.7 174.8-
40	V - 24	6-C L	H	H	H	c-Pr	175.3 157.5-
	V -25	Н	H	4 - F	H s	ec-Bu	158.0 125.0- 126.5
45	V - 26	6-Me	H .	4 - F	H	i-Pr	155.0- 157.0
	V - 27	6-0Me	7-0Me	4 - 3	H	c-Pr	200.0-

In the same manner as in Example 1-d, compounds IV-2 to IV-6 were prepared. (In Table 7, R^1 , R^2 , R^3 , R^4 and R^5 correspond to the substituents of compound of IV.)

55

Table 7

	(Com	(Compounds in this Tabl ar compounds of th formula IV wherein R ⁶ is hydrogen.)										
5	Compound	R¹	R²	R3	R ⁴	R⁵	m. p. (*C)					
	IV - 2	Н	Н	4-F	Н	CH₃	177-179					
	IV - 3	Н	н	н	н	CH₃	-					
	IV - 4	н	н	Н	н	i-Pr	· -					
	IV - 5	6-Ct	н	н	н	CH₃	-					
10	IV - 6	6-Ct	н	н	Н	i-Pr	-					

In the same manner as in Example 1-e, compounds III-2 to III-27 were prepared. (In Table 8, R^1 , R^2 , R^3 , R^4 and R^5 correspond to the substituents of compound III.)

Table 8 (Compounds in this Table are compounds of the formula III wherein ${\ensuremath{\mathsf{R}}}^6$ is hydrogen.)

	Compoun	d R'	R ²	Rз	R 4	R 5	m. p.
25	Ш - 2	H	H	4 - F	H	CH ₂	194-196
	Ⅲ -3	H	H .	H	H	CH ₃	170-
30	Ⅲ -4	H	H	H	H	i-Pr	171.5 107-
	Ⅲ -5	6-C L	H	H	H	CH ₃	108.5 192-194
	Ш -6	6-C L	H	H	H	i-Pr	125.5
35	II - 7	H	Н	2 - F	H	i-Pr	-127 80.1
	II -8	7-Me	H	H	H	i-Pr	-80.2 121.1-
40	Ш -9	H	H	4-C &	H	i-Pr	122.3 148.0-
	Ш -10	H	Н	4-0Me	H	i-Pr	149.1 137.4-
45	Ⅲ -11	H	H	4-Me	H	i-Pr	140.1 111.6-
	Ⅲ -12	6-C l	н	2-C &	H	i-Pr	113.1
	Ⅲ -13	H	Н	4 - CF 3	H	i-Pr	-84.5 126.2- 128.8
50							140.0

55

15

	Ⅲ -14	H	H	3-Me	4 - F	i-Pr	124.8-	
	Ⅲ -15	H	H	3-Me	5-11e	i-Pr	126.4 117.6-	
5	Ⅲ - 16	6-0Me	7-0Me	4 - F	H	i-Pr		
	■ -17	H	Ħ	4 - F	H	C ₂ H ₅	150.9 124.3- 128.5	
10	Ⅲ -18	H	H .	4 - F	H .	n-Pr	117.8-	
	Щ -19	6-C L	H	4 - F	H	i-Pr	121.5 135.2- 135.9	
15	Ⅲ - 20	H	H	4 - F	H .	c-Pr	141.3- 144.1	
	Ⅲ -21	H	H 4	- 0 P h	H	i-Pr	oil	
20	II ~ 22	6-C L	8-C L	4 - F	H	i-Pr	117- 122	
20	Ⅲ -23	6-C L	H	Ħ	H	Ph	142.8-	
	II - 24	6-C &	H	H	H	c-Pr	161.0- 161.5	
25	Ⅲ - 25	H	H	4 - F	H s	ec-Bu	78.0- 81.0	
	Ⅲ -26	6-Me	H .	4 - F	H	i-Pr	137.0- 137.5	
30	Ⅲ -27	6-0Me 7	-OMe	4 - F	H	c-Pr	189.5- 191.0	
	Ⅱ - 2	2						
35	H - N M	R (in CDC	¹ 3)	δ ppm	:			
	1.	40 (d, 6H,	J=7Hz)	, 3.44	(Hepta	aplet,1F	I,J=7Hz)	
40	5.93(dd, 1H, J=8Hz, J=16Hz), 6.8-8.1(m, 14H)							
.•	9.	34(d.1H,	J=811z)					

In the same manner as in Example 1-f, compounds II-2 to II-27 were prepared. (In Table 9, R^1 , R^2 , R^3 , 45 R^4 and R^5 correspond to the substituents of compound II.)

50

Table 9 (Compounds in this Table are compounds of the formula of II wherein ${\bf R}^6$ is hydrogen.)

	Compound R 1	R ²	R³	R 4	R s	R¹²	m. p.
10	П - 2 Н	Н	p - F	Н	CH ₃	C z II s	oil
	П -3 Н	H	H	н .	CH 3	C ₂ H ₅	105 -106
15	п -4 н	H	H	H	i-Pr	CzHs	88.5 -90.5
	II -5 6-C &	H	H	H	CH3	C ₂ H ₅	77-82
20	II -6 6-C &	Ħ	H	H	i-Pr	C_2H_5	96-98
	<u>п</u> −7 н	H	2 - F	H	i-Pr	C ₂ H ₅	oil
	II -8 7-Me	H	H	H	i-Pr	CzHs	68.5- 74.0
25	Т -9 Н	H	4-C L	H	i-Pr	C2Hs	91.0 -94.0
	П -10 Н	H	4-0Me	H	i-Pr	C ₂ H ₅	78.0 -78.5
30	∐ -11 Н	H	4-0Me	H	i-Pr	CzHs	75.0 -78.0
	II -12 6-C &	H	2-C &	H .	i-Pr	C 2 H 5	oil
35	II -13 H	H	4-CF ₃	H	i-Pr	CzHs	78.0 -33.0
••	П -14 Н	H	3-Me	4 - F	i-Pr	CzHs	66.0
	II -15 H	H	3-Me	5-Me	i-Pr	CzHs	oil

```
II -16 6-0Me 7-0Me 4-F
                                             H
                                                   i-Pr CzHs
                                                                  83.0
                                                                  -90.0
              II -17
                      H
                             H
                                     4 - F
                                             H
                                                   CzHs CzHs
                                                                  94.0
                                                                  -97.0
5
              II -13
                      H
                             H
                                     4 - F
                                             H
                                                   n-Pr Calls
                                                                 oil
              II-19 6-C & H
                                     4 - F
                                             H
                                                   i-Pr CzHs
                                                                  111.0-
                                                                   113.5
10
              II - 20
                      H
                             H
                                     4 - F
                                             H
                                                   c-Pr CzHs
                                                                  91.0
                                                                   -93.0
              II -21
                      H
                             H
                                                                  121.0-
                                    4-0Ph
                                             H
                                                   i-Pr C2H5
                                                                   125.0
              II - 22 6 - C & 8 - C & 4 - F
                                               H
                                                   i-Pr C2H5
                                                                  oil 
15
              II -23 6-C & H
                                       H
                                               H
                                                      Ph C<sub>2</sub>H<sub>5</sub> oil
              II - 24 6-C &
                              H
                                      H
                                               H
                                                    c-Pr C2H5
                                                                   69.0
                                                                   -71.0
20
                                                                  oil
              II - 25
                       H
                               H
                                       4 - F
                                               H sec-Bu CzHs
              II - 26 6-Me
                               H
                                       4-F
                                                   i-Pr C2H5 oil
25
              II - 27 6 - 0Me 7 - 0Me
                                       4 - F
                                                   c-Pr
                                                           C<sub>2</sub>H<sub>5</sub> oil
              II - 7
                H-NMR (in CDC<sup>2</sup><sub>3</sub>)
                                        \delta ppm :
30
                  1.21(t,3H,J=7Hz), 1.32(d,6H,J=6Hz)
                  2.2-2.4(m,2H),
                                          2.5 - 2.7 (m, 1H)
35
                                    3.34 (.Heptaplet,1H,J=6Hz)
                  3.28(s,1H),
                  4.08(q, 2H, J=7Hz), 4.3-4.6(m, 1H)
                  5.28(dd, 1H, J=6Hz, J=15Hz),
40
                  6.53(dd, 1H, J=1.5Hz, J=15Hz), 6.9-3.0(m, 8H)
```

55

45

```
II - 1 2
               H-NMR(in CDC l<sub>3</sub>)
                                    δ ppm:
5
                 1.25(t,3H,J=7Hz), 1.33(d,6H,J=6Hz)
                 2.2-2.4(m,2H),
                                     2.5-2.8(m,1H)
10
                                 3.38 (Heptaplet, 1H, J=6Hz)
                 3.32(s,2H),
                 4.13(q, 2H, J=7Hz), 4.2-4.6(m, 1H)
                 5.34(dd,1H,J=6Hz,J=15Hz),
15
                 6.53(dd, 1H, J=1.5Hz, J=15Hz), 7.0-8.0(m, 7H)
             II - 15
20
               H-NMR (in CDCl_3) \delta ppm:
                 1.23(t,3H, J=7Hz), 1.35(d,6H, J=6Hz)
                 2.2-2.4(m,2H), 2.31(s,6H)
25
                 2.6-2.8(m,1H),
                                     3.32(s,2H)
                 3.35(Heptaplet, 1H, J=6Hz), 4.12(q, 2H, J=7Hz)
30
                 4.3-4.7(m,1H), 5.30(dd,1H,J=6Hz,J=16Hz)
                 6.51(dd, 1H, J=1Hz, J=16Hz), 6.7-8.0(m, 7H)
35
             II - 18
               H-NMR (in CDCl<sub>3</sub>) \delta ppm:
                 1.00(t, 3H, J=7Hz), 1.26(t, 3H, J=7Hz)
40
                 1.6-2.3 (m, 2H); 2.42 (d, 2H, J=6Hz)
```

45

50

55

```
2.6-3.2(m,3H),
                                       3.35(s,211)
                  4.11(q,2H,J=7Hz), 4.3-4.7(m,1H)
5
                 5.27(dd, 1H, J=6Hz, J=16Hz)
                 6.46 (dd, 1H, J=1.5Hz, J=16Hz), 6.9-8.0 (m, 8H)
10
             II - 2 2
               H-NMR (in CDC l<sub>2</sub>)
                                    δ ppm :
                 1.26(t, 3H, J=7Hz), 1.33(d, 6H, J=6Hz)
15
                 2.43(d,2H,J=6Hz), 2.6-2.9(m,1H)
                 3.36(s,2H), 3.44 (Heptaplet,1H,J=6Hz)
20
                 4.13(q, 2H, J=7Hz), 4.3-4.7(m, 1H)
                 5.30(dd, 1H, J=6Hz, J=16Hz),
25
                 6.53 (dd, 1H, J=1.5Hz, J=16Hz), 7.0-7.6 (m, 6H)
             II - 2 3
               H-NMR (in CDCl<sub>3</sub>)
                                     \delta ppm:
30
                 1.23(t, 3H, J=7Hz), 2.21(d, 2H, J=6Hz)
                 2.4-2.6(m,1H),
                                       3.25(s.2H)
35
                 4.09(q, 2H, J=7Hz), 4.1-4.4(m, 1H)
                 5.08(dd, 1H, J=6Hz, J=16Hz),
                 6.26(dd,1H,J=1.5Hz,J=16Hz), 7.0 \sim8.0
40
                  (m, 13H)
45
50
```

30

```
II - 25
                 H-NMR (in CDCl_3) \delta ppm:
5
                   0.96(d.6H, J=6Hz), 1.26(t.3H, J=7Hz),
                   1.8-2.4(m,1H), 2.43(d,2H,J=6Hz),
10
                   2.6-2.9(m,1H), 2.88(d,2H,J=7Hz),
                   3.36(s,2H), 4.14(q,2H,J=7Hz),
                   4.3-4.7(m,1H), 5.0-5.5(m,1H),
15
                   6.3-6.7(m,1H), 6.9-8.1(m,8H)
               I - 26
20
                 H-NMR (in CDCL3)
                                    δ ppm :
                   1.25(t,3H,J=7Hz), 1.32(d,6H,J=6Hz),
                   2.32(s,3H), 2.39(d,2H,J=7Hz),
25
                   2.6-3.1(m,1H), 3.36(s,2H),
                   3.41(Heptaplet,1H,J=6Hz),
30
                   4.11(q,2H,J=7Hz), 4.3-4.7(m,1H),
                   5.0-5.5(m,1H), 6.3-6.7(m,1H),
35
                   6.8-7.9(m,7H)
               II - 2 7
                 H-NMR (in CDC l<sub>2</sub>)
                                   δ ppm :
40
                   0.8-1.5(m,4H), 1.26(t,3H,J=7Hz),
45
                2.0-2.9(m,4H), 3.42(s,2H), 3.71(s,3H),
                4.00(s,3H), 4.20(q,2H,J=7Hz),
50
                4.4-4.8(m,1H), 5.3-5.8(m,1H),
                6.4-6.9(m,1H), 6.58(s,1H),
               7.0-7.5(m,5H)
```

In the sam manner as in Example 1-g, compounds I-12 to I-127 were prepared.

Table 10

20	Compound	R ¹	R ²	K 3	R 4	R ^s	R ¹² m.	p. (^O C) uss spectrum
	I -12	H	Ħ	4 - F				oil 423, 292 264, 249
25	I -13	H	H _.		H	CH 3	CzIIs	92-105
	I -14	H	H	H	H	i-Pr	C ₂ H ₅	97-100
30	I -15 6	5-C L	H	H	H	CH 3	CzHs	oil

	I -16 6-C &	H H	H i-Pr	C ₂ H ₅ oil
	I -17 H	H 2-F	H i-Pr	CzHs oil
5	I -18 7-Me	H H	H i-Pr	C ₂ H ₅ oil
	I -19 H	H 4-C2	H i-Pr	C ₂ H ₅ 98-104
10	I -110 H	H 4-0Me	e H i-Pr	C ₂ H ₅ 94-98
	I -111 H	H 4-Me	H i-Pr	C ₂ H ₅ 79-85
. 15	I -112 6-C &	H 2-C &	H i-Pr	C ₂ H ₅ oil
	I -113∵H	H 4-CF	H i-Pr	C ₂ H ₋₅ 117-128
	I -114 H	Н 3-Ме	4-F i-Pr	C ₂ H ₅ 85-92
20	I -115 H	Н 3-Ме	5-Me i-Pr	C ₂ H ₅ oil
	I -116 6-0Me	7-0Me 4-F	H i-Pr	C ₂ H ₅ gum
25	I -117 H	H 4-F	H C _z H ₅	C ₂ H ₅ oil
	I -118 H	H 4-F	H n-Pr	C ₂ H ₅ oil
30	I -119 6-C &	H 4-F	H i-Pr	C ₂ H ₅ 79-82
	I -120 H	H 4-F	H c-Pr	C ₂ H ₅ 100-104
	I -121 H	H 4-0Pt	H i-Pr	CzH5 oil
35	I -122 6-C L	8-C & 4-F	H i-Pr	C ₂ H ₅ 133-143
	I -123 6-C L	H H	H Ph	C:Hs gum
40	I -124 6-C &	II H	H c-Pr	C ₂ H ₃ oil
	I -125 H	H 4-F	H sec-Bu	Czils oil

```
I -126 6-Me H
                               4-F
                                         i-Pr
                                                Czils
                                                        oil
           I -127 6-0Me 7-0Me 4-F
                                         c-Pr
                                                C2H5
                                                        gum
5
             I - 17
               H-NMR (in CDCl<sub>2</sub>)
                                 δ ppm :
10
                 1.29(t, 3H, J=7Hz), 1.40(d, 6H, J=6Hz)
                 1.4-1.7(m,2H), 2.3-2.5(m,2H)
                 2.9-3.2(m,1H), 3.49 (Heptaplet,1H,J=6Hz)
                 3.5-3.8(m,1H), 3.9-4.5(m,2H)
                 4.20(q,2H,J=7Hz), 5.2-5.7(m,1H)
20
                 6.5-6.9(m,1H), 7.0-8.2(m,8H)
             I - 18
25
               H-NMR (in CDC 13)
                                   δ ppm :
                 1.0-1.4 (m, 2H), 1.31 (t, 3H, J=7Hz)
                 1.39(d,6H,J=6Hz), 2.3-2.5(m,2H)
30
                 2.52(s,3H),
                                  3.1-3.4(m,1H)
                 3.48(Heptaplet, 1H, J=6Hz), 3.5-3.8(m, 1H)
                 3.8-4.1 (m, 1H), 4.20 (q, 2H, J=7Hz)
                 4.2-4.5(m,1H), 5.2-5.6(m,1H)
40
                 6.4-6.8(m,1H), 7.0-8.0(m,8H)
```

55

45

```
I - 19
                 H-NMR (in CDCl<sub>3</sub>)
                                       δ ppm:
5
                    1.29(t,3H,J=7Hz), 1.38(d,6H,J=6Hz)
                    1.4-1.8(m,2H), 2.3-2.5(m,2H)
                    3.2-3.4(m,1H), 3.49 (Heptaplet, 1H, J=6Hz)
10
                    3.6-3.8(m,1H), 3.9-4.2(m,1H)
                   4.20(q, 2H, J=7Hz), 4.3-4.5(m, 1H)
15
                    5.2-5.5(m,1H), 6.5-6.8(m,1H)
                    7.0-8.2(m,8H)
20
                I - 1 1 0
                  H-NMR (in CDC<sup>2</sup><sub>3</sub>)
                                       δ ppm:
                    1.29(t, 3H, J=7Hz), 1.40(d, 6H, J=6Hz)
25
                    1.5-1.6(m,2H), 2.3-2.5(m,2H)
                    2.8-3.0(m,1H), 3.4-3.6(m,1H)
30
                    3.52(Heptaplet, 1H, J=6Hz), 3.88(s, 3H)
                    3.9-4.1(m,1H), 4.20(q,2H,J=7Hz)
35
                    4.3-4.5(m,1H), 5.3-5.5(m,1H)
                    6.5-6.7(m,1H), 6.9-8.1(m,8H)
                I - 1 1 1
40
                 H-NMR (in CDC l<sub>3</sub>)
                                       δ ppm:
                    1.30(t,3H,J=7Hz), 1.3-1.5(m,2H)
45
```

35

50

```
1.39(d,6H,J=6Hz), 2.3-2.5(m,2H)
                  2.43(s,3H), 2.8-3.0(m,1H)
5
                  3.50(Heptaplet, 1H, J=6Hz), 3.5-3.7(m, 1H)
                  3.9-4.2(m,1H), 4.19(q,2H,J=7Hz)
                  4.2-4.5(m,1H), 5.2-5.6(m,1H)
10
                  6.4-6.8(m,1H), 6.9-8.2(m,8H)
              I - 1 1 2
15
               H-NMR (in CDCl<sub>2</sub>)
                                     δ ppm :
                   1.30 (t, 3H, J=7Hz), 1.3-1.6 (m, 2H)
20
                   1.37(d.6H, J=6Hz), 2.3-2.5(m, 2H)
                  2.9-3.2(m,1H), 3.47 (Heptaplet,1H,J=6Hz)
                  3.5-3.8(m,1H), 3.9-4.1(m,1H)
25
                   4.19(q,2H,J=7Hz), 4.2-4.5(m,1H)
                   5.3-5.7(m,1H), 6.5-6.8(m,1H)
30
                   7.1-8.1(m,7H)
               I - 1 1 3
35
                H-NMR (in CDC 2)
                                     δ ppm :
                   1.0-1.3(m,2H), 1.30(t,3H,J=7Hz)
                   1.40 (d, 6H, J=6Hz), 2.3-2.4 (m, 2H)
40
                   3.3-3.5(m,1H), 3.49 (Heptaplet,1H,J=6Hz)
45
50
```

	3.6-3.7(m,1H), 3.9-4.1(m,1H)
5	4.18(q,2H,J=7Hz), 4.2-4.5(m,1H)
5	5.1-5.5(m,1H), 6.5-6.8(m,1H)
	7.2-8.2(m,8H)
10	I - 1 1 4
	H-NMR (in CDC ℓ_3) δ ppm:
15	1.2-1.4(m,2H), $1.30(t,3H,J=7Hz)$
	1.39(d,6H, J=6Hz), 2.32(bs,3H)
00	2.3-2.5(m,2H), 3.0-3.3(m,1H)
20	3.50(Heptaplet,1H,J=6Hz),3.6-3.8(m,1H)
	3.8-4.1(m,1H), $4.20(q.2H,J=7Hz)$
25	4.3-4.6(m,1H), 5.2-5.6(m,1H)
	6.5-6.8(m,1H), $7.0-8.2(m,7H)$
30	I - 1 1 5
	H-NMR (in CDC^{ℓ}_{3}) δ ppm:
0.5	1.1-1.4(m,2H), $1.30(t,3H,J=7Hz)$
35	1.40(d,6H,J=6Hz), 2.2-2.5(m,2H)
	2.35(s,6H), 2.7-3.1(m,1H)
40	3.51(Heptaplet, 1H, J=6Hz), $3.6-3.7$ (m, 1H)
	3.8-4.1(m,1H), $4.20(q,2H,J=7Hz)$
45	
50	
50	

```
4.2-4.6 (m, 1H), 5.2-5.6 (m, 1H)
                  6.4-6.8(m,1H),
                                    6.8-8.2(m,7H)
5
              I - 1 1 6
                H-NMR (in CDCl<sub>3</sub>)
                                    δ ppm :
10
                  1.30(t, 3H, J=7Hz), 1.37(d, 6H, J=6Hz)
                  1.5-1.8(m,2H), 2.3-2.5(m,2H)
15
                  2.9-3.2(m,1H), 3.46 (Heptaplet,1H,J=6Hz)
                  3.6-3.8(m,1H), 3.75(s,3H)
                  3.9-4.1(m,1H), 4.07(s,3H)
20
                  4.20(q,2H,J=7Hz), 4.2-4.5(m,1H)
                  5.1-5.5(m,1H), 6.4-6.8(m,2H)
25
                  7.1-7.5(m,5H)
              I - 1 1 7
30
                H-NMR (in CDC l<sub>3</sub>)
                                    \delta ppm :
                  1.30(t,3H,J=7Hz), 1.37(t,3H,J=7Hz)
                  1.4-1.7(m, 2H), 2.2-2.6(m, 2H)
                  2.8-3.2(m,3H), 3.6-3.9(m,1H)
                  3.9-4.7(m,4H), 5.2-5.7(m,1H)
                  6.3-6.7(m,1H) 7.0-8.2(m,8H)
```

45

50

```
I - 118
                 H-NMR (in CDCl<sub>3</sub>)
                                       \delta ppm:
5
                    1.01(t, 3H, J=7Hz), 1.27(t, 3H, J=7Hz)
                   1.4-2.1(m,4H), 2.3-2.6(m,2H)
                   2.8-3.3(m,3H), 3.6-3.8(m,1H)
10
                   3.9-4.1(m,1H), 4.18(q,2H,J=7Hz)
                   4.2-4.5 (m, 1H) 5.2-5.6 (m, 1H)
15
                   6.4-6.7(m,1H), 7.0-8.1(m,8H)
                I - 1 1 9
20
                 H-NMR (in CDCl<sub>3</sub>)
                                       δ ppm:
                    1.2-1.5(m,2H), 1.31(t,3H,J=7Hz)
                    1.37(d, 6H, J=7Hz), 2.3-2.6(m, 2H)
25
                    3.0-3.4(m,1H), 3.49 (Heptaplet, 1H, J=6Hz)
                   3.6-3.8(m,1H), 3.8-4.2(m,1H)
30
                    4.20(q, 2H, J=7Hz), 4.3-4.5(m, 1H)
                   5.2-5.6(m,1H), 6.4-6.8(m,1H)
35
                    7.0-8.1(m,7H)
                I - 1 2 0
                 H-NMR (in CDCl<sub>3</sub>) \delta ppm:
40
                   0.8-1.8(m,6H), 1.30(t,3H,J=7Hz)
                    2.1-2.6 (m, 3H), 2.9-3.3 (m, 1H)
45
```

50

55

```
3.4-3.7(m,1H), 3.8-4.6(m,2H)
                  4.20(q, 2H, J=7Hz), 5.4-5.8(m, 1H)
5
                  6.4-6.3(m,1H), 6.8-8.0(m,3H)
              I - 1 2 1
                H-NMR (in CDC 2)
                                    δ ppm :
                  1.29(t, 3H, J=7Hz), 1.39(d, 6H, J=6Hz)
                                   2.3-2.5 (m, 2H)
                  1.4-1.9(m,2H),
15
                  2.7-3.2(m,1H), 3.51 (Heptaplet,1H,J=6Hz)
                  3.6-3.8(m,1H), 3.9-4.2(m,1H)
20
                  4.19(q, 2H, J=7Hz), 4.3-4.6(m, 1H)
                  5.2-5.6(m,1H), 6.4-6.8(m,1H)
                  6.9-8.2(m,13H)
25
              I - 1 2 2
                H-NMR (in CDC l<sub>3</sub>)
                                   δ ppm :
30
                  1.1-1.8(m,2H), 1.31(t,3H,J=7Hz)
                  1.41 (d, 6H, J = 6Hz), 2.3-2.5 (m, 2H)
35
                  2.9-3.4(m,1H), 3.50 (Heptaplet,1H,J=6Hz)
                  3.6-3.8(m,1H), 3.9-4.5(m,2H)
                  4.20(q,2H,J=7Hz), 5.2-5.6(m,1H)
40
                  6.4-6.8(m,1H), 7.1-7.3(m,5H)
45
```

40

7.72(d, 1H, J=6Hz)I - 1 2 35 H-NMR (in CDC &3) δ ppm : 0.8-1.5(m,2H), 1.29(t,3H,J=7Hz)10 2.2-2.4(m,2H), 2.6-2.9(m,1H)3.2-3.6(m,1H), 3.7-4.3(m,2H)4.17(q,2H,J=7Hz), 5.0-5.4(m,1H)15 6.1-6.5(m,1H), 7.0-8.2(m,13H) I - 1 2 420 H-NMR (in CDC &3) δ ppm : 0.8-1.8(m,6H), 1.29(t,3H,J=7Hz), 2.2-2.6(m,3H), 2.8-3.2(m,1H), 25 3.3-3.7(m,1H), 3.9-4.5(m,2H), 4.19(q, 2H, J=7Hz), 5.4-5.8(m, 1H),30 6.5-6.8(m,1H), 7.1-8.0(m,8H), I - 1 2 535 H-NMR (in CDC 2) δ ppm : 0.94(d,6H,J=6Hz), 1.0-1.7(m,3H),1.27(t, 3H, J=7Hz), 1.9-2.5(m, 3H),40 2.90(d,2H,J=7Hz), 3.3-4.4(m,3H), 45

50

```
4.12(q,2H,J=7Hz), 5.0-5.5(m,1H),
                    6.2-6.7(m,1H), 6.9-8.0(m,8H),
5
                 I - 1 2 6
                  H-NMR (in CDC 13)
                                      \delta ppm :
                    1.0-1.6(m,3H), 1.21(t,3H,J=7Hz),
10
                    1.34(d,6H,J=6Hz), 2.34(s,3H),
                    2.37(d.2H, J=7Hz), 2.9-3.7(m.2H),
                    3.8-4.5(m,2H), 4.15(q,2H,J=7Hz),
                    5.0-5.5(m,1H), 6.3-6.7(m,1H),
20
                    6.9-8.0(m,7H),
                I - 1 2 7
                  H-NMR (in CDC 13)
25
                                   \delta ppm :
                    0.8-1.9(m,8H), 1.29(t,3H,J=7Hz),
                    2.1-2.6(m,3H), 2.8-3.2(m,1H),
30
                    3.72(s,3H), 4.02(s,3H),
                    4.19(q,2H,J=7Hz), 4.3-4.6(m,1H),
35
                   5.4-5.8(m,1H), 6.4-6.8(m,1H),
                   6.56(s,1H), 7.0-7.4(m,5H)
40
```

50

55

In the same manner as in Exmple 2, compounds I-52 to I-527 were prepared.

Table 11

 $\begin{array}{c|c}
R^3 & R^4 & OH \\
\hline
(R^6 = H) & CO_2R^{12} \\
\hline
R^1 & OH \\
\hline
R^2 & I - 5 (R^{12} = Na)
\end{array}$

	Compound	R ¹	R ²	R ³	R 4	R ^s	Riz	m. p.
25	I -52	H	H	4 - F	H	СНз	Na	138-142
	I -53	H	H	H	H	CH 3	Na	(decomposed) 130-132 (decomposed)
30	I -54	H	H	H	H	i-Pr	Na	196-197
	I -55	6-C L	H	H .	H	CH ₃	Na	(decomposed) 211-215 (decomposed)
35	I -56	6-C L	H	H	H	i-Pr	Na	195-198 (decomposed)
	I -57	H	H	2 - F	H	i-Pr	Na	193-201 (decomposed)
	I -58	7-Me	H	H	H	i-Pr	Na	170-175 (decomposed)
40	I -59	Ħ	H	4-C L	H	i-Pr	Νa	193-202 (decomposed)
	I -510	H	Н	4-0Me	H	i-Pr	Na	178-193 (decomposed)
45	I -511	Н	H	4-Me	H	i-Pr	Nа	187-200 (decomposed)

	I -512	6-C L	H	2-C &	H	i-Pr	Na	203-209
	I -513	H	H	4-CF ₃	H	i-Pr	Na	(decomposed) 200-212
5	I -514	H	H	3-Ne	4 - F	i-Pr	Na	(decomposed) 195-200
	I -515	Н	H	3-Me	5-Me	i-Pr	Na	(decomposed) 192-197
10	I -516	6-0Me	7-0Me	4 - F	H	i-Pr	Na	(decomposed) 239-245 (decomposed)
	I -517	H	Н	4-F	H	CzHs	Na	230 - 237
15	I -518	H	H	4 - F	. Н	n-Pr	Na	(decomposed) 193-200
75	I -519	6-C L	H	4 - F	H .	i-Pr	N a · ·	
	I -520	H	H .	4 - F	H	c-Pr	Na	(decomposed) 197-199
20	I -521	H	H	4-0Ph	H	i-Pr	Na	(decomposed)
	I -522	6-C &	8-C &	4 - F	H	i-Pr	Na	(decomposed)
25	I -523	6-C L	Н	H	H	Ph	Na	(decomposed) 190-196
	I -524	6-C L	H	H	Н	c-Pr	Na	(decomposed) 204-210
30	I -525	Н	H	4 - F	H	sec-Bu	Na	(decomposed)
30	I -526	6-Me	H	4 - F	H	i-Pr	Na	204-208
	I -527	6-0Me	7-0Me	4 - F	H	c-Pr	Na	(decomposed) 234-238
35					,			(decomposed)

I - 5 7

H-NMR (in DMSO-d⁶) δ ppm:

0.9-1.2(m,2H), 1.37(d,6H,J=7Hz)

55

45

	1.6-2.1(m,2H),	3.48 (Heptaplet, 1H, J=6Hz)
	3.7-4.3(m,4H),	5.3-5.6(m,1H)
5	6.4-6.7(m,1H),	7.1-8.1(m, 8H)
	I - 5 8	
10	H-NMR (in DMSO-d ⁶)	δ ppm :
	0.9-1.2(m,2H),	1.31(d,6H,J=7Hz)
15	1.7-2.2(m,2H),	2.50(s,3H)
	3.3-4.5(m,5H),	5.2-5.6(m,1H)
	6.3-6.6(m,1H),	7.1-7.9(m,8H)
20	I - 5 9	
	H-NMR (in DMSO-d6)	δ ppm :
25	0.9-1.3(m,2H),	1.33(d,6H,J=7Hz)
	1.6-2.2 (m, 2H),	3.48(Heptaplet, 1H, J=7Hz)
30	3.5-4.6 (m, 4H),	5.2-5.6 (m, 2H)
	6.3-6.6(m,1H),	7.1-8.1(m,8H)
	I - 5 1 0	
35	$H-NMR$ (in DMSO- d^6)	δ ppm :
	1.0-1.3 (m, 2H),	1.32(d,6H,J=7Hz)
40	1.6-2.2 (m, 2H),	3.0-3.8(m, 4H)
	3.86(s,3H),	4.0-4.3 (m, 1H)
45		

```
5.3-5.6(m,1H), 6.3-6.6(m,1H)
                   6.9-8.1(m,8H)
5
               I - 5 1 1
                 H-NMR (in DMSO-d<sup>6</sup>)
                                        \delta ppm:
                   0.9-1.3(m,2H), 1.33(d,6H,J=7Hz)
10
                   1.7-2.1(m, 2H), 2.41(s, 3H)
                   3.2-4.3(m,5H), 5.3-5.6(m,1H)
15
                   6.3-6.6(m,1H), 7.0-8.3(m,8H)
               I - 5 1 2
20
                 H-NMR (in DMSO-d6)
                                         \delta ppm:
                                      1.33(d,6H,J=7Hz)
                   0.9-1.3(m,2H),
                                      3.1-3.8(m,3H)
                   1.6-2.2(m,2H),
25
                   3.48(Heptaplet,1H,J=7Hz),3.9-4.2(m,1H)
                   5.3-5.7(m,1H), 6.3-6.7(m,1H)
30
                   7.0-8.1(m,7H)
                I - 5 1 3
                 H-NMR (in DMSO-d<sup>6</sup>)
                                         δ ppm :
                    0.8-1.3(m,2H),
                                     1.34(d,6H,J=7Hz)
                    1.6-2.2(m, 2H), 2.7-3.9(m, 3H)
40
                    3.49(Heptaplet, 1H, J=7Hz), 3.9-4.3(m, 1H)
45
50
```

```
5.2-5.6(m,1H),
                                    6.3-6.7(m,1H)
                  7.1-8.1(m,8H)
5
               I - 5 1 4
                H-NMR (in DMSO-d<sup>6</sup>)
                                       ô ppm:
               0.9-1.3(m,2H), 1.35(d,6H,J=7Hz)
10
                  1.7-2.1(m,2H),
                                    2.30(d,3H,J=2Hz)
                  3.0-3.8(m,3H),
                                    3.51 (Heptaplet, 1H, J=7Hz)
                   3.9-4.3(m,1H),
                                    5.3-5.6(m,1H)
                   6.3-6.6(m,1H),
                                    6.9-8.1(m,7H)
20
               II - 5 1 5
                H-NMR (in DMSO-d6)
                                       δ ppm :
                   1.0-1.2(m,2H),
                                     1.35(d,6H,J=7Hz)
25
                                     2.35(s,6H)
                   1.6-2.2(m, 2H),
                   3.0-3.8(m,3H),
                                    3.51 (Heptaplet, 1H, J=7Hz)
30
                   4.0-4.3(m,1H),
                                     5.3-5.6(m,1H)
                   6.3-6.6(m,1H),
                                     6.8-8.0(m,7H)
35
               I - 5 1 6
                H-NMR (in DMSO-d<sup>6</sup>)
                                        \delta ppm:
                   0.9-1.3(m,2H),
                                     1.31 (d, 6H, J = 7Hz)
40
                   1.7-2.0(m, 2H),
                                     3.2-3.7(m,4H)
```

45

50

55

	3.62(s,3H),	3.9-4.2(m,1H)
	3.94(s,3H),	5.1-5.5(m,1H)
5	6.2-6.6(m,1H),	7.0-7.5(m,6H)
	I - 5 1 7	
10	H-NMR (in DMSO-d ⁶)	δ ppm :
	0.9-1.5(m,2H),	1.34(t,3H,J=7Hz)
15	1.6-2.2(m,2H),	2.7-3.4(m,4H)
	3.6-4.3(m,2H),	5.2-5.7(m,1H)
	6.1-6.6(m,1H),	6.9-8.1(m,8H)
20	I - 5 1 8	
	H-NMR (in DMSO-d ⁶)	δ ppm :
25	0.8-1.3(m,2H),	1.01(t,3H, $J=7Hz$)
	1.6-2.1(m,4H),	2.7-3.8 (m, 5H)
30	3.9-4.3(m,1H),	5.2-5.7 (m, 1H)
	6.3-6.6(m,1H),	7.1-8.1 (m,8H)
	I — 5 1 9	
35	H-NMR (in DMSO-d6)	δ ppm :
	0.9-1.3(m,2H),	1.33(d,6H,J=7Hz)
40	1.6-2.2(m,2H),	2.9-3.9(m,3H)
	3.49(Heptaplet,1H	J=7Hz),4.0-4.3(m,1H)
45		
50		

```
5.3-5.6(m,1H),
                                         6.3-6.6(m,1H)
                     7.2-8.1(m,7H)
5
                 I - 5 2 0
                   H-NMR (in DMSO-d<sup>6</sup>)
                                            \delta ppm :
                     0.8-1.5(m,6H),
10
                                         1.7 - 2.2 (m, 2H)
                     2.3-2.7(m,1H),
                                         3.0-3.9(m,3H)
                     4.0-4.3(m,1H),
                                         5.5-5.8(m;1H)
15
                     6.4-6.7(m,1H),
                                        7.2-8.0(m,8H)
                 I - 5 2 1
20
                   H-NMR (in DMSO-d<sup>6</sup>)
                                            \delta ppm:
                     0.9-1.5(m,2H),
                                         1.36(d,6H,J=7Hz)
                     1.7-2.3(m,2H),
                                         3.0-3.9(m,3H)
25
                     3.50(Heptaplet, 1H, J=6Hz), 4.0-4.3 (m, 1H)
                     5.2-5.6(m,1H)
                                         6.4-6.7(m,1H)
30
                     7.0-8.1(m, 13H)
                 I - 5 2 2
35
                   H-NMR (in DMSO-d<sup>6</sup>)
                                            \delta ppm :
                     0.8-1.3(m,2H),
                                         1.37(d, 6H, J=7Hz)
                     1.6-2.2(m,2H),
                                         3.1-3.9(m,3H)
40
                     3.51(Heptaplet, 1H, J=7Hz), 4.0-4.3 (m, 1H)
45
50
```

	5.3-5.7 (m, 1H),	6.3-6.7 (m, 1H)
5	7.1-8.0 (m, 6H)	
	I - 5 2 3	
	H-NMR (in DMSO-d ⁶)	δ ppm :
10	0.8-1.4(m,2H),	1.6-2.1 (m, 2H)
	2.9-3.7(m,3H),	3.7-4.1(m,1H)
15	5.1-5.4(m,1H),	6.1-6.4 (m, 1H)
	7.1-8.2(m,13H).	
20	I - 5.24	
	H-NMR (in DMSO-d ⁶)	δ ppm :
	0.8-1.5(m,5H),	1.6-2.2(m,2H)
25	2.3-2.7(m,2H),	3.0-3.8(m,3H)
	3.9-4.3(m,1H),	5.4-5.8 (m, 1H)
30	6.3-6.6(m,1H),	7.0-8.0 (m,8H)
	I - 5 2 5	
35	H-NMR (in DMSO-d ⁶)	δ ppm :
	0.9-1.6(m, 2H),	0.96(d,6H,J=6Hz)
	1.7-2.6(m,3H),	2.89(d,2H,J=7Hz)
40	3.0-3.8(m,3H),	3.9-4.2(m,1H)
	5.2-5.6(m,1H),	6.2-6.6(m,1H)
45		
50		
55		

7.1-8.1(m,8H)I - 5 2 65 H-NMR (in DMSO- d^6) δ ppm : 1.30 (d, 6H, J=7Hz), 1.7-2.0 (m, 2H), 10 2.34(s,3H), 2.4-2.6(m,1H), 3.0-3.3(m,2H), 3.3-3.8(m,3H)3.9-4.2(m,1H), 5.2-5.6(m,1H)15 · 6.3-6.6(m,1H), 7.0-8.0(m,7H)I - 5 2 720 H-NMR (in DMSO-d⁶) δ ppm: 0.7-1.5(m,5H), 1.8-2.2(m,2H). 25 2.2-2.6(m,2H), 3.1-3.3(m,2H), 3.59(s,3H), 3.9-4.2(m,2H), 3.91(s,3H), 5.4-5.7(m,1H)30

7.0-7.4(m,5H)

35

45

50

51

6.3-6.6(m,1H), 6.52(s,1H),

In the same manner as in Example 3, compounds I-22 to I-26 can be prepared.

Table 12

5			R	3	,	. R⁴ _	OH
10		(R ⁶ , R ¹	= H)			R 5	CO2H OH I-2
15	Compound	R 1	R ²	Вз.	R 4	Rs	
20	<u> </u>	H	Н	4 - F	H	СНз	
	I '- 23	H	H	H	Ħ	CH ₃	
	I - 24	H	Ħ	H	H	i-Pr	
25	I -25	6-C &	H	H	H	CH 3	
	<u> </u>	6-C L	H	H	H	i-Pr	

In the same manner as in Example 4, compounds I-32 to I-36 can be prepared.

Table 13

FORMULATION EXAMPLE 1

5

10

15

Tablets Compound I-51 1.0 g Lactose 5.0 g Crystal cellulose powder 8.0 g Corn starch 3.0 g Hydroxypropyl cellulose 1.0 g CMC-Ca 1.5 g 0.5 g Magnesium stearate Total 20.0 g

The above components were mixed by a usual method and then tabletted to produce 100 tablets each containing 10 mg of the active ingredient.

FORMULATION EXAMPLE 2

20

25

30

Capsules

Compound I-51 1.0 g
Lactose 3.5 g
Crystal cellulose powder Magnesium stearate 0.5

Total 15.0 g

The above components were mixed by a usual method and then packed in No. 4 gelatin capsules to obtain 100 capsules each containing 10 mg of the active ingredient.

FORMULATION EXAMPLE 3

35

40

Soft capsules

Compound I-51 1.00 g
PEG (polyethylene glycol) 400 3.89 g
Saturated fatty acid triglyceride 15.00 g
Peppermint oil 0.01 g
Polysorbate 80 0.10 g

Total 20.00 g

The above components were mixed and packed in No. 3 soft gelatin capsules by a usual method to obtain 100 soft capsules each containing 10 mg of the active ingredient.

50

45

FORMULATION EXAMPLE 4

5

10

Ointment	
Compound I-51	1.0 g (10.0 g)
Liquid paraffin	10.0 g (10.0 g)
Cetanol	20.0 g (20.0 g)
White vaseline	68.4 g (59.4 g)
Ethylparaben	0.1 g (0.1 g)
L-menthol	0.5 g (0.5 g)
Total	100.0 g

The above components were mixed by a usual method to obtain a 1% (10%) ointment.

FORMULATION EXAMPLE 5

20

25

Suppository	
Compound I-51	1.0 g
Witepsol H15*	46.9 g
Witepsol W35*	52.0 g
Polysorbate 80	0.1 g
Total	100.0 g

^{*:} Trademark for triglyceride compound

The above components were melt-mixed by a usual method and poured into suppository containers, followed by cooling for solidification to obtain 100 suppositories of 1 g each containing 10 mg of the active component.

FORMULATION EXAMPLE 6

	Injection formulation			
40	Compound I-51 Distilled water for injection formulation	1 mg 5 ml		

The formulation is prepared by dissolving the compound in the distilled water whenever it is required.

5 FORMULATION EXAMPLE 7

50

Granules	
Compound I-51	1.0 g
Lactose	6.0 g
Crystal cellulose powder	6.5 g
Corn starch	5.0 g
Hydroxypropyl cellulose	1.0 g
Magnesium stearate	0.5 g
Total	20.0 g

Th above components wer granulated by a usual method and packaged to obtain 100 packages ach containing 200 mg of the granules so that each packag contains 10 mg of the active ingredient.

Claims

- 5 Claims for the following Contracting States: CH, Li, AT, BE, DE, FR, GB, IT, NL, SE, LU
 - 1. A compound of the formula:

wherein R¹ is hydrogen, C₁₋₄ alkyl, C₁₋₃ alkoxy, n-butoxy, i-butoxy, sec-butoxy, R⁷R⁸N-(wherein R⁷ and R⁸ are C₁₋₃ alkyl), fluoro, chloro, bromo or benzyloxy;

 R^2 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, fluoro, chloro or bromo; or when located at the ortho position to each other, R^1 and R^2 together form -CH = CH-CH = CH-;

 R^3 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, fluoro, chloro, bromo, trifluoromethyl, phenoxy, phenyl or benzyloxy;

R4 is hydrogen, C1-4 alkyl, fluoro, chloro or bromo;

R⁵ is C₁₋₆ alkyl, C₃₋₆ cycloalkyl or phenyl;

R⁶ is hydrogen;

Y is $-CH_2-$, CH_2- , -CH=CH-, $-CH_2-CH=CH-$ or $-CH=CH-CH_2$; and Z is

30

35

25

or -Q-CH₂-W-CH₂-CO₂R¹²

- (wherein Q is -C(O)- or -CH(OH)-; W is -C(O)- or -CH(OH)-; and R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).
 - The compound according to Claim 1, wherein in the formula I, R¹ is hydrogen, fluoro, chloro, bromo, C₁₋₄ alkyl or C₁₋₃ alkoxy;
- 45 R^2 is hydrogen, C_{1-3} alkoxy, fluoro, chloro or bromo;

R3 is hydrogen, C1-4 alkyl, C1-3 alkoxy, fluoro, chloro or bromo;

R4 is hydrogen, fluoro, chloro or bromo;

 R^5 is C_{1-6} alkyl or C_{3-6} cycloalkyl;

Y is $-CH_2-CH_2-$ or -CH=CH-; and

50 Z is

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² or -CH(OH)CH₂C(O)CH₂CO₂R¹² (wherein R¹² is hydrog n, physiologically hydrolyzable alkyl, NH₄, sodium, potassum or 1/2 calcium).

 The compound according to Claim 1, wher in R¹ is hydrogen, methyl, ethyl, n-propyl, i-propyl, methoxy, ethoxy, fluoro, chloro or bromo;

R² is hydrogen, methoxy, ethoxy, fluoro, chloro or bromo;

R3 is hydrogen, methyl, methoxy, ethoxy, fluoro, chloro or bromo;

R4 is hydrogen, fluoro or chloro;

R⁵ is methyl, ethyl, n-propyl, i-propyl or C₃₋₆ cycloalkyl;

Y is $-CH_2CH_2$ - or -CH = CH-; and

Z is

15

5

20

or -CH(OH)CH $_2$ CH(OH)CH $_2$ CO $_2$ R12 (wherein R12 is hydrogen, physiologically hydrolyzable alkyl, NH $_4$, sodium, potassium or 1/2 calcium).

4. The compound according to Claim 1, wherein R¹ is hydrogen, methyl, ethyl, methoxy, ethoxy, fluoro or chloro;

R² is hydrogen, methoxy, ethoxy, fluoro or chloro;

R3 is hydrogen, methoxy, ethoxy, fluoro or chloro;

R4 is hydrogen, fluoro or chloro;

R5 is methyl, ethyl, n-propyl, i-propyl or C3-6 cycloalkyl;

Y is -CH = CH-; and

Z is

35

40

30

0

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² (wherein R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).

45 5. The compound according to Claim 1, wherein R1 is hydrogen, methyl, methoxy or chloro;

R² is hydrogen or methoxy;

R³ is hydrogen, fluoro or chloro;

R4 is hydrogen;

R5 is i-propyl or cyclopropyl;

50 Y is -CH = CH-; and

Z is

or

5

10

15

30

35

45

- -CH(OH)CH₂CH(OH)CH₂CO₂R¹² (wherein R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).
- 6. The compound according to Claim 1, which is (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- 25 (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- 40 (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy 7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-6'7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid,

a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

- (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkylester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid :
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid; or
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid.
 - 7. An anti-hyperlipidemia agent containing the compound of the formula I as defined in Claim 1.
 - 8. An anti-hyperlipoproteinemia agent containing the compound of the formula I as defined in Claim 1.
 - 9. An anti-atherosclerosis agent containing the compound of the formula I as defined in Claim 1.
- 40 10. Use of a compound according to claim 1 in manufacture of a therapeutic agent for reducing hyperlipidemia, hyperlipoproteinemia or atherosclerosis.

Claims for the following Contracting States: ES, GR

1. A process for preparing a compound of the formula:

5

10

20

25

30

35

50

55

wherein R1 is hydrogen, C1-4 alkyl, C1-3 alkoxy, n-butoxy, i-butoxy, sec-butoxy, R7 R8 N-(wherein R7

and R⁸ are C_{1-3} alkyl), fluoro, chloro, bromo or benzyloxy; R² is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, sec-butoxy, fluoro, chloro or bromo; or when located at the ortho position to each other, R¹ and R² together form -CH = CH-CH = CH-; R³ is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, n-butoxy, i-butoxy, s c-butoxy, fluoro, chloro, bromo, trifluoromethyl, phenoxy, phenyl or benzyloxy; R⁴ is hydrogen, C_{1-4} alkyl, fluoro, chloro or bromo; R⁵ is C_{1-6} alkyl, C_{3-6} cycloalkyl or phenyl; R⁶ is hydrogen; Y is -CH₂-, CH₂CH₂-, -CH = CH-, -CH₂-CH = CH- or -CH = CH-CH₂; and

5

10

15

25

30

35

40

45

50

55

HO

or -Q-CH₂-W-CH₂-CO₂R¹²
(wherein Q is -C(O)- or -CH(OH)-; W is -C(O)- or -CH(OH)-; and R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium), characterized in that the compounds of formula (I) are prepared by the following reaction scheme:

wherein R^1 , R^2 , R^3 , R^4 , R^5 , R^6 and R^{12} are as defined above with respect to formula I, and R^{21} and R^{22} independently represent C_{1-4} alkyl; wherein

I - 1

45

50 ,

55

I - 6

step E represents a double anion condensation reaction between the enal III and an acetoacetate by using sodium hydride and n-butyl lithium in tetrahydrofuran at a temperature of -80 to 0 °C;

step F represents a reduction reaction of the carbonyl group by using a metal hydride in ethanol at a temperature of from -10 to 25°C or by using zinc borohydride in dry ethyl ether or dry tetrahydrofuran at a temperature of -100 to 25°C;

step G is a step for hydrolyzing the ester by using an equimolar amount of a base in a solvent mixture of water and methanol or ethanol at a temperature of from 10 to 25 °C;

step H is a step for forming a mevalonolactone by the dehydration reaction of the free hydroxy acid I-2;

step J represents a reaction for hydrogenating the double bond connecting the mevalonolactone moiety and the quinoline ring by using a catalytic amount of palladium-carbon of rhodium-carbon in a

solvent at a temperature of from 0 to 50 °C; and

step N r presents a reaction for the synthesis of an α,β -unsaturated ketone by the selective oxidation of the dihydroxy carboxylic acid ester by using activated manganese dioxide in a solvent at a temperature of from 20 to 80 °C.

5

2. A process according to Claim 1, wherein in the formula I, R1 is hydrogen, fluoro, chloro, bromo, C1-4 alkyl or C_{1-3} alkoxy;

 R^2 is hydrogen, C_{1-3} alkoxy, fluoro, chloro or bromo;

 R^3 is hydrogen, C_{1-4} alkyl, C_{1-3} alkoxy, fluoro, chloro or bromo;

10 R4 is hydrogen, fluoro, chloro or bromo;

 R^5 is C_{1-6} alkyl or C_{3-6} cycloalkyl;

Y is -CH2-CH2- or -CH = CH-; and

Z is

15

OR

20

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² or -CH(OH)CH₂C(O)CH₂CO₂R¹² (wherein R¹² is hydrogen, physiologically hydrolyzable alkyl, NH4, sodium, potassium or 1/2 calcium).

25

3. A process according to Claim 1, wherein R1 is hydrogen, methyl, ethyl, n-propyl, i-propyl, methoxy, ethoxy, fluoro, chloro or bromo;

R² is hydrogen, methoxy, ethoxy, fluoro, chloro or bromo;

R³ is hydrogen, methyl, methoxy, ethoxy, fluoro, chloro or bromo;

R4 is hydrogen, fluoro or chloro; 30

R5 is methyl, ethyl, n-propyl, i-propyl or C3-6 cycloalkyl;

Y is -CH₂CH₂- or -CH = CH-; and

Z is

35

40

or -CH(OH)CH2CH(OH)CH2CO2R12 (wherein R12 is hydrogen, physiologically hydrolyzable alkyl, NH4, sodium, potassium or 1/2 calcium).

45

A process according to Claim 1, wherein R1 is hydrogen, methyl, ethyl, methoxy, ethoxy, fluoro or chloro;

R² is hydrogen, methoxy, ethoxy fluoro or chloro;

R³ is hydrogen, methoxy, ethoxy, fluoro or chloro;

R4 is hydrogen, fluoro or chloro; 50

R5 is methyl, ethyl, n-própyl, i-propyl or C3-6 cycloalkyl;

Y is -CH = CH-; and

Z is

or

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² (wherein R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).

5. A process according to Claim 1, wherein R1 is hydrogen, methyl, methoxy or chloro;

R² is hydrogen or methoxy;

R³ is hydrogen, fluoro or chloro;

R4 is hydrogen;

R⁵ is i-propyl or cyclopropyl;

Y is -CH = CH-; and

Z is

20

25

30

35

40

45

50

55

5

10

15

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² (wherein R¹² is hydrogen, physiologically hydrolyzable alkyl, NH₄, sodium, potassium or 1/2 calcium).

6. A process according to Claim 1, which produces (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic

acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid; (E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid:

(E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-(1''-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6--enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4''-fluorophenyl)-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;

(E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or

- C₁₋₃ alkyl st r of th carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-chlorophenyl)-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-cyclopropyl-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4''-chlorophenyl)-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- (E)-3,5-dihydroxy-7-[4'-[4''-chlorophenyl]-2'-cyclopropyl-6'7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid:
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-chloro-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
- 35 (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid:
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chloro-quinolin-3'-yl)-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid:
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C₁₋₃ alkyl ester of the carboxylic acid;
 - (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-(1"-methylethyl)-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid; or
- 50 (E)-3,5-dihydroxy-7-[4'-(4"-fluorophenyl)-2'-cyclopropyl-6'-methoxy-quinolin-3'-yl]-hept-6-enoic acid, a lactone formed by the condensation of the carboxylic acid with hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl hydroxy at the 5-position, or a sodium salt or C_{1-3} alkyl ester of the carboxylic acid.

55

5

10

15

25

30

40

Patentansprüch

Patentansprüch für folgend Vertragsstaaten: CH, LI, AT, BE, DE, FR, GB, IT, NL, SE, LU

1. Verbindung der Formel:

10

15

25

5

(I)

worin R¹ Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, R⁷R⁸N- (worin R⁷ und R⁸ C₁₋₃-Alkyl sind), Fluor, Chlor, Brom oder Benzyloxy ist;

 R^2 Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, Fluor, Chlor oder Brom ist; oder

wenn sie in der o-Position zueinander angeordnet sind, R¹ und R² zusammen -CH=CH-CH=CH-bilden;

 R^3 Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, Fluor, Chlor, Brom, Trifluor-methyl, Phenoxy, Phenyl oder Benzyloxy ist;

R4 Wasserstoff, C1-4-Alkyl, Fluor, Chlor oder Brom ist;

R⁵ C₁₋₆-Alkyl, C₁₋₃-Cycloalkyl oder Phenyl ist;

R⁶ Wasserstoff ist;

30 Y -CH₂-, -CH₂CH₂-, -CH = CH-, -CH₂CH = CH- oder -CH = CH-CH₂- ist und Z

35

- 40 oder -Q-CH₂-W-CH₂-CO₂ R¹² ist (worin Q -C(O)- oder -CH(OH)- ist; W -C(O)- oder -CH(OH)- ist und R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).
 - Verbindung nach Anspruch 1, worin in Formel I R¹ Wasserstoff, Fluor, Chlor, Brom, C₁₋₄-Alkyl oder C₁₋₃-Alkoxy ist;

R² Wasserstoff, C₁₋₃-Alkoxy, Fluor, Chlor oder Brom ist;

R³ Wasserstoff, C₁₋₄-Alkyl, C₁₋₃-Alkoxy, Fluor, Chlor oder Brom ist;

R4 Wasserstoff, Fluor, Chlor oder Brom ist;

R5 C1-6-Alkyl oder C1-3-Cycloalkyl ist;

Y -CH2-CH2- oder -CH = CH- ist und

50 Z

55

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² oder -CH(OH)CH₂C(O)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

3. Verbindung nach Anspruch 1, worin R¹ Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, M thoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R² Wasserstoff, Methoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R3 Wasserstoff, Methyl, Methoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R4 Wasserstoff, Fluor oder Chlor ist;

R⁵ Methyl, Ethyl, n-Propyl, i-Propyl oder C₃₋₆-Cycloalkyl ist;

Y -CH2-CH2- oder -CH = CH- ist und

Ζ

5

10

15

25

30

35

40

50

10

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

 Verbindung nach Anspruch 1, worin R¹ Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor oder Chlor ist:

R2 Wasserstoff, Methoxy, Ethoxy, Fluor oder Chlor ist;

R3 Wasserstoff, Methoxy, Ethoxy, Fluor oder Chlor ist;

R4 Wasserstoff, Fluor oder Chlor ist;

R⁵ Methyl, Ethyl, n-Propyl, i-Propyl oder C₃₋₆-Cycloalkyl ist;

Y -CH = CH- ist und

Z

HO O

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

5. Verbindung nach Anspruch 1, worin R1 Waserstoff, Methyl, Methoxy oder Chlor ist;

R² Wasserstoff oder Methoxy ist;

R3 Wasserstoff, Fluor oder Chlor ist;

R4 Wasserstoff ist;

45 R⁵ i-Propyl oder Cyclopropyl ist;

Y -CH = CH- ist und

Z

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

- Verbindung nach Anspruch 1, die (E)-3,5-Dihydroxy-7-[4'-fluorphenyl)-2'-(1''-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-fluorph nyl)-2'-(1"-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6- nsäur , in durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

5

15

30

- (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-(1''-methylethyl)-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-chinolin-3'-yl]-hept-6-ensaure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriums-alz oder C_{1-3} -Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- 25 (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-6'methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-
- ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-chlorphenyl)-2'-cyclopropyl-chinolin-3'-yĺ]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'phenyl-2'-(1''-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein

durch die Kondensation d r Carbonsäure mit Hydroxy an der 5-Position g bildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester d r Carbonsäur ,

(E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation dr Carbonsäur mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

- (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriums-alz oder C_{1-3} -Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-(1"-methylethyl)-6'-methoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6'-methoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure ist.
 - 7. Der Hyperlipidämie entgegenwirkendes Mittel, enthaltend die Verbindung der Formel I, wie in Anspruch 1 definiert.
- 25 8. Der Hyperlipoproteinämie entgegenwirkendes Mittel, enthaltend die Verbindung der Formel I, wie in Anspruch 1 definiert.
 - Der Atherosklerose entgegenwirkendes Mittel, enthaltend die Verbindung der Formel I, wie in Anspruch
 definiert.
 - 10. Verwendung einer Verbindung nach Anspruch 1 zur Herstellung eines therapeutischen Mittels zur Verringerung der Hyperlipidämie, Hyperlipoproteinämie oder Artherosklerose.

Patentansprüche für folgende Vertragsstaaten: ES, GR

5

10

20

30

35

40

45

50

1. Verfahren zum Herstellen einer Verbindung der Formel:

$$R^3$$
 R^4
 $Y-Z$
 R^1
 N
 R^5

worin R¹ Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, R⁷ R⁸ N- (worin R⁷ und R⁸ C₁₋₃-Alkyl sind), Fluor, Chlor, Brom oder Benzyloxy ist;

(I)

 R^2 Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, Fluor, Chlor oder Brom ist; oder

wenn sie in der o-Position zueinander angeordnet sind, R^1 und R^2 zusammen -CH = CH-CH = CH-bilden;

 R^3 Wasserstoff, C_{1-4} -Alkyl, C_{1-3} -Alkoxy, n-Butoxy, i-Butoxy, sec-Butoxy, Fluor, Chlor, Brom, Trifluor-methyl, Phenoxy, Phenyl oder Benzyloxy ist;

 R^4 Wasserstoff, C_{1-4} -Alkyl, Fluor, Chlor od r Brom ist; $R^5 \ C_{1-6}\text{-Alkyl}, \ C_{1-3}\text{-Cycloalkyl oder Phenyl ist};$ $R^6 \ \text{Wasserstoff ist};$ $Y \ \text{-CH}_2\text{-}, \ \text{-CH}_2\text{-CH}_2\text{-}, \ \text{-CH} = \text{CH-}, \ \text{-CH}_2\text{-CH} = \text{CH-} \text{oder -CH} = \text{CH-CH}_2\text{-} \text{ ist und}$

HO

oder -Q-CH₂-W-CH₂-CO₂R¹² ist (worin Q -C(O)- oder -CH(OH)- ist; W -C(O)- oder -CH(OH)- ist und R¹²
Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist), dadurch gekennzeichnet, daß die Verbindungen der Formel (I) nach dem folgenden Reaktionsschema hergestellt werden:

75
$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{2}$$

$$R^{4}$$

$$R^{5}$$

$$R$$

25
$$R^{2} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R^{4} \longrightarrow R^{2} \longrightarrow R^{4} \longrightarrow R$$

35

40

45

50

55

worin R^1 , R^2 , R^3 , R^4 , R^5 , R^6 und R^{12} die oben mit Bezug auf Anspruch 1 definierte Bedeutung haben und R^{21} und R^{22} unabhängig für C_{1-4} -Alkyl stehen, worin

Stufe E eine Doppelanion-Kondensationsreaktion zwischen dem ungesättigten Aldehyd III und einem Acetoacetat unter Verwendung von Natriumhydrid und n-Butyllithium in Tetrahydrofuran bei einer Temperatur von -80 bis 0 °C repräsentiert;

Stufe F eine Reduktionsreaktion der Carbonylgruppe unter Einsatz von Metallhydrid in Ethanol bei einer Temperatur von -10 bis 25 °C oder unter Einsatz von Zinkborhydrid in trockenem Ethylether oder trockenem Tetrahydrofuran bei einer Temperatur von -100 bis 25 °C darstellt;

Stufe G eine Stufe zum Hydrolysieren des Esters unter Einsatz iner äquimolaren Menge einer Base in einer Lösungsmittelmischung aus Wasser und Methanol oder Ethanol bei einer Temperatur von 10 bis 25 °C ist;

Stufe H eine Stufe der Bildung eines Mevalonolactons durch Dehydratationsreaktion der freien Hydroxysäure I-2 ist;

Stufe J eine Reaktion d r Hydrierung der Doppelbindung, di die Mevalonolacton-Gruppierung und den Chinolinring verbindet, unter Einsatz einer katalytischen Menge von Palladium-Kohlenstoff oder Rhodium-Kohlenstoff in einem Lösungsmitt I bei einer Temperatur von 0 bis 50 °C repräsentiert und

Stufe N ine Umsetzung zur Synthes in s α,β -ung sättigten Ketons durch selektive Oxidation des Dihydroxycarbonsäureesters unter Einsatz von aktiviertem Mangandioxid in einem Lösungsmittel bei einer Temperatur von 20 bis 80 °C repräsentiert.

 Verfahren nach Anspruch 1, worin in Formel I R¹ Wasserstoff, Fluor, Chlor, Brom, C₁-₄-Alkyl oder C₁-₃-Alkoxy ist;

R² Wasserstoff, C₁₋₃-Alkoxy, Fluor, Chlor oder Brom ist;

R3 Wasserstoff, C1-4-Alkyl, C1-3-Alkoxy, Fluor, Chlor oder Brom ist;

R4 Wasserstoff, Fluor, Chlor oder Brom ist;

R5 C1-6-Alkyl oder C1-3-Cycloalkyl ist;

Y -CH2-CH2- oder -CH = CH- ist und

15 Z

5

10

20

HO OF

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² oder -CH(OH)CH₂C(O)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

3. Verfahren nach Anspruch 1, worin R¹ Wasserstoff, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R² Wasserstoff, Methoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R³ Wasserstoff, Methyl, Methoxy, Ethoxy, Fluor, Chlor oder Brom ist;

R4 Wasserstoff, Fluor oder Chlor ist:

R⁵ Methyl, Ethyl, n-Propyl, i-Propyl oder C₃₋₆-Cycloalkyl ist;

Y -CH₂-CH₂- oder -CH = CH- ist und

Ζ

35

40

45

30

HO O

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

4. Verfahren nach Anspruch 1, worin R¹ Wasserstoff, Methyl, Ethyl, Methoxy, Ethoxy, Fluor oder Chlor ist;

R² Wasserstoff, Methoxy, Ethoxy, Fluor oder Chlor ist; R³ Wasserstoff, Methoxy, Ethoxy, Fluor oder Chlor ist;

R4 Wasserstoff, Fluor oder Chlor ist;

R⁵ Methyl, Ethyl, n-Propyl, i-Propyl oder C₃₋₆-Cycloalkyl ist;

Y -CH = CH- ist und

Ζ

55

5

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

10

15

5. Verfahren nach Anspruch 1, worin R¹ Waserstoff, Methyl, Methoxy oder Chlor ist;

R² Waserstoff oder Methoxy ist;

R3 Wasserstoff, Fluor oder Chlor ist;

R⁴ Wasserstoff ist;

R⁵ i-Propyl oder Cyclopropyl ist;

Y -CH = CH- ist und

Z

20

HO OF

25

oder -CH(OH)CH₂CH(OH)CH₂CO₂R¹² ist (worin R¹² Wasserstoff, physiologisch hydrolysierbares Alkyl, NH₄, Natrium, Kalium oder 1/2 Calcium ist).

30

40

45

55

6. Verfahren nach Anspruch 1, das erzeugt (E)-3,5-Dihydroxy-7-[4'-[4''-fluorphenyl)-2'-(1''-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-(1"-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

35 (E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-(1"-methylethyl)-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriums-alz oder C₁₋₃-Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4"-fluorphenyl)-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4''-chlorphenyl)-2'-(1''-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder in Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,

(E)-3,5-Dihydroxy-7-[4'-(4''-chlorphenyl)-2'-(1''-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,

- (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-6'methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-
- ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-cyclopropyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
- (E)-3,5-Dihydroxy-7-[4'-(4''-chlorphenyl)-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure.
 - (E)-3,5-Dihydroxy-7-[4'-(4"-chlorphenyl)-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-chlorphenyl)-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'phenyl-2'-(1"-methylethyl)-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
- 25 (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-(1"-methylethyl)-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-chlor-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6'-methyl-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure,
- 40 (E)-3,5-Dihydroxy-7-[4'-phenyl-2'-cyclopropyl-6',7'-dimethoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-(1''-methylethyl)-6'-methoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C₁₋₃-Alkylester der Carbonsäure,
 - (E)-3,5-Dihydroxy-7-[4'-(4''-fluorphenyl)-2'-cyclopropyl-6'-methoxy-chinolin-3'-yl]-hept-6-ensäure, ein durch die Kondensation der Carbonsäure mit Hydroxy an der 5-Position gebildetes Lacton oder ein Natriumsalz oder C_{1-3} -Alkylester der Carbonsäure.

50

45

15

20

30

35

Revendicati ns

Revendicati ns pour les Etats contractants sulvants : CH, LI, AT, BE, DE, FR, GB, IT, NL, SE, LU

1. Composé de formule :

 $\begin{array}{c|c}
R^3 & R^4 \\
R^2 & & & & & \\
R^1 & & & & & \\
R^1 & & & & & \\
R^2 & & & & & \\
R^3 & & & & & \\
R^4 & & & & & \\
R^2 & & & & & \\
R^2 & & & & & \\
R^3 & & & & & \\
R^4 & & & & & \\
R^2 & & & & & \\
R^3 & & & & & \\
R^4 & & & & & \\
R^5 & & & \\
R^5 & & & \\$

15

20

25

5

10

dans laquelle R^1 est hydrogène, alkyle en C_{1-4} , alcoxy en c_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, R^7R^8N -(dans lequel R^7 et R^8 sont alkyle en C_{1-3}), fluoro, chloro, bromo ou benzyloxy;

 R^2 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, fluoro, chloro ou bromo;

ou encore R¹ et R² forment ensemble -CH = CH—CH = CH- lorsqu'ils sont situés en position ortho l'un par rapport à l'autre;

 R^3 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, fluoro, chloro, bromo, trifluorométhyle, phénoxy, phényle ou benzyloxy;

R⁴ est hydrogène, alkyle en C₁₋₄, fluoro, chloro ou bromo;

R5 est alkyle en C1-6, cycloalkyle en C3-6 ou phényl;

R6 est hydrogène;

Y est -CH2-, -CH2CH2-, -CH = CH-, -CH2-CH = CH- ou -CH = CH-CH2; et

Z est

HO

35

40

45

30

ou -Q-CH₂-W-CH₂-CO₂R¹²

(dans lequel Q est -C(O)- ou -CH(OH)-; W est -C(O)- ou - CH(OH)-; et R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium).

2. Composé selon la revendication 1, dans la formule I duquel, R¹ est hydrogène, fluoro, chloro, bromo, alkyle en C₁₋₄, alcoxy en C₁₋₃

R² est hydrogène, alcoxy en C₁₋₃, fluoro, chloro ou bromo;

 R^3 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , fluoro, chloro ou bromo ;

R4 est hydrogène, fluoro, chloro ou bromo;

R⁵ est alkyle en C₁₋₆ ou cycloalkyle en C₃₋₆;

Y est -CH₂-CH₂- ou -CH = CH-; et

50 Z est

-CH(OH)CH₂CH(OH)CH₂CO₂R¹² ou -CH(OH)CH₂C(O)CH₂CO₂R¹² (dans lesquels R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium).

3. Composé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, éthyle, n-propyle, iso-propyle, méthoxy, éthoxy, fluoro, chloro ou bromo;

R² est hydrogène, méthoxy, éthoxy, fluoro, chloro ou bromo;

R³ est hydrogène, méthyle, méthoxy, éthoxy, fluoro, chloro ou bromo;

R4 est hydrogène, fluoro ou chloro;

R⁵ est méthyle, éthyle, n-propyle, iso-propyle ou cycloalkyle en C_{3−6};

Y est -CH₂CH₂- ou -CH = CH-; et

Z est

5

15

20

25

35

45

55

ou -CH(OH)CH₂CH(OH)CH₂CO₂R¹² (dans lequel R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium).

4. Composé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, éthyle, méthoxy, éthoxy, fluoro ou chloro;

R² est hydrogène, méthoxy, éthoxy, fluoro ou chloro;

R³ est hydrogène, méthoxy, éthoxy, fluoro ou chloro;

R4 est hydrogène, fluoro ou chloro;

 $R^{s}\,$ est méthyle, éthyle, n-propyle, iso-propyle ou cycloalkyle en $C_{3-6};$

Y est -CH = CH-; et

40 Z est

ou -CH(OH)CH₂CH(OH)CH₂CO₂R¹² (dans lequel R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium).

5. Composé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, méthoxy ou chloro;

R² est hydrogène ou méthoxy;

R³ est hydrogène, fluoro ou chloro;

R⁴ est hydrogène;

R⁵ est iso-propyle ou cyclopropyle;

Y est -CH = CH-; et

Z est

10

15

20

25

30

35

40

45

50

55

5

ou -CH(OH)CH₂CH(OH)CH₂CO₂R¹² (dans lequel R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium).

6. Composé selon la revendication 1, qui est l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"-méthy-léthyl)-quinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"-méthyléthyl)-6'-chloro-quinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-fluorophényl)-2'-(1''-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"-méthyléthyl)-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoï-que, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-fluorophényl)-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6-énoï-que, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-(1''-méthyléthyl)-quinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6'-chloroquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoï-que, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en

position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ster d'alkyl n C₁₋₃ de l'acid carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1"-méthyléthyl)-quinoléin-3'-yl]-hept-6-énoique, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1''-méthyléthyl)-6'-chloroquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1''-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1"-méthylb'-6',7'-diméthoxyquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropylquinoléin-3'-yl]-hept-6-énoique, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoique, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoique, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl-2'-(1"-méthyléthyl)-6'-méthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;ou

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-fluorophényl)-2'-cyclopropyl-6'-méthoxyquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

- 7. Agent antihyperlipidémiant contenant un composé de formule I telle que définie dans la revendication
- 8. Agent antihyperlipoprotéinémiant contenant un composé de formule I telle que définie dans la revendication 1.
 - 9. Agent pour lutter contre l'athérosclérose contenant un composé de formule I telle que définie dans la revendication 1.
- 45 10. Utilisation d'un composé selon la revendication 1 pour la fabrication d'un agent thérapeutique destiné à réduire l'hyperlipidémie, l'hyperlipoprotéinémie ou l'athérosclérose.

55

50

5

10

15

20

25

30

35

ŧ

Revendications pour i s Etats contractants suivants : ES, GR

1. Procédé pour la préparation d'un composé de formule:

R6 R6 Y-Z ([])

15

20

25

5

10

dans laquelle R^1 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, R^7R^8N -(dans lequel R^7 et R^8 sont alkyle en C_{1-3}), fluoro, chloro, bromo ou benzyloxy;

 R^2 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, fluoro, chloro ou bromo;

ou encore R^1 et R^2 forment ensemble -CH = CH = CH = CH - lorsqu'ils sont situés en position ortho l'un par rapport à l'autre;

 R^3 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , n-butoxy, iso-butoxy, sec-butoxy, fluoro, chloro, bromo, trifluorométhyle, phénoxy, phényle ou benzyloxy;

R4 est hydrogène, alkyle en C1-4, fluoro, chloro ou bromo;

 R^5 est alkyle en C_{1-6} , cycloalkyle en C_{3-6} ou phényle,

R⁶ est hydrogène;

Y est $-CH_2$ -, $-CH_2$ CH₂-, -CH = CH-, $-CH_2$ -CH = CH- ou -CH = CH-CH₂; et

Z est

30

HO O

35

40

ou -Q-CH₂-W-CH₂-CO₂R 12

(dans lequel Q est -C(O)- ou -CH(OH)-; W est -C(O)- ou - CH(OH)-; et R¹² est hydrogène, alkyle physiologiquement hydrolysable, NH₄, sodium, potassium ou 1/2 calcium), procédé caractérisé en ce que les composés de formule (I) sont préparés selon le schéma réactionnel suivant:

45

50

dans lequel R^1 , R^2 , R^3 , R^4 , R^5 , R^6 et R^{12} sont tels que définis ci-dessus d'après la formule I, et R^{21} et R^{22} représentent indépendamment alkyle en C_{1-4} ; dans lequel

45

50

55

l'étape E représente une réaction de condensation par double anion entre l'énal III et un acétoacétate en employant de l'hydrure de sodium et du n-butyllithium dans du tétrahydrofuranne à une température de -80 ° C à 0 ° C;

l'étape F représente une réaction de réduction du groupe carbonyle en employant un hydrure métallique dans de l'éthanol à une température de -10 °C à 25 °C ou en employant un borohydrure de zinc dans de l'éther diéthylique anhydre ou du tétrahydrofuranne anhydre à une température de -100 °C à 25 °C;

l'étape G est une étape d'hydrolyse de l'ester en employant une base en quantité équimolaire dans un mélange de solvants constitué d'eau et de méthanol ou d'éthanol à une température de 10 à 25 °C;

l'étape H est une étape de formation d'une mévalonolactone par une réaction de déshydratation de l'hydroxyacide libre I-2;

l'étape J représente une réaction d'hydrogénation de la double liaison entr le résidu mévalonolac-

tone et le cycle quinoléinique en employant du palladium-carbon ou du rhodium-carbon n quantité catalytique dans un solvant à une température de 0 à 50°C; et

l'étape N représente une réaction de synthèse d'une cétone α,β -insaturée par l'oxydation sélective de l'ester d l'acid dihydroxycarboxyliqu à l'aide d dioxyd d manganèse activé dans un solvant à une température de 20 à 80 ° C.

 procédé selon la revendication 1, dans lequel dans la formule I, R¹ est hydrogène, fluoro, chloro, bromo, alkyle en C₁₋₄ ou alcoxy en C₁₋₃;

R² est hydrogène, alcoxy en C₁₋₃, fluoro, chloro ou bromo ;

 R^3 est hydrogène, alkyle en C_{1-4} , alcoxy en C_{1-3} , fluoro, chloro ou bromo ;

R4 est hydrogène, un radical fluoro, chloro ou bromo;

R⁵ est alkyle en C₁₋₆ ou cycloalkyle en C₃₋₆;

Y est -CH₂- CH₂- ou -CH = CH-; et

Z est

EO C

25

30

35

5

10

15

20

-CH(OH)CH $_2$ CH(OH)CH $_2$ CO $_2$ R 12 ou -CH(OH)CH $_2$ C(O)CH $_2$ CO $_2$ R 12 (dans lesquels R 12 est hydrogène, alkyle physiologiquement hydrolysable, NH $_4$, sodium, potassium ou 1/2 calcium).

 Procédé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, éthyle, n-propyle, isopropyle, méthoxy, éthoxy, fluoro, chloro ou bromo;

R² est hydrogène, méthoxy, éthoxy, fluoro, chloro ou bromo;

R³ est hydrogène, méthyle, méthoxy, éthoxy, fluoro, chloro ou bromo;

R4 est hydrogène, fluoro ou chloro;

R5 est méthyle, éthyle, n-propyle, iso-propyle ou cycloalkyle en C3-6;

Y est -CH2CH2- ou -CH = CH-; et

Z est

40

HO

45

55

ou -CH(OH)CH $_2$ CH(OH)CH $_2$ CO $_2$ R 12 (dans lequel R 12 est hydrogène, alkyle physiologiquement hydrolysable, NH $_4$, sodium, potassium ou 1/2 calcium).

 Procédé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, éthyle, méthoxy, éthoxy, fluoro ou chloro;

R² est hydrogène, méthoxy, éthoxy, fluoro ou chloro;

R3 est hydrogène, méthoxy, éthoxy, fluoro ou chloro;

R4 est hydrogène, fluoro ou chloro;

R⁵ est méthyle, éthyle, n-propyle, iso-propyle ou cycloalkyle en C₃₋₆;

Y est -CH = CH-; et

Z est

ou -CH(OH)CH2CH(OH)CH2CO2R12 (dans lequel R12 est hydrogène, alkyle physiologiquement hydrolysable, NH4, sodium, potassium ou 1/2 calcium).

Procédé selon la revendication 1, dans lequel R¹ est hydrogène, méthyle, méthoxy ou chloro;

R² est hydrogène ou méthoxy;

R3 est hydrogène, fluoro ou chloro;

R4 est hydrogène;

R5 est iso-propyle ou cyclopropyle;

Y est -CH = CH-; et

Z est

5

10

15

20

25

30

35

40

45

50

55

ou -CH(OH)CH2CH(OH)CH2CO2R12 (dans lequel R12 est hydrogène, alkyle physiologiquement hydrolysable, NH4, sodium, potassium ou 1/2 calcium).

Procédé selon la revendication 1, qui produit l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"méthyléthyl)-quinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-fluorophényl)-2'-(1''-méthyléthyl)-6'-chloro-quinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-(1"-méthyléthyl)-6',7'-diméthoxyquinoléin-3'-yl]hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-fluorophényl)-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide(E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-quinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou

un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxyliqu;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6'-chloroquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un s 1 d sodium ou un ester d'alkyle en C₁₋₃ de l'acid carboxyliqu;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-(1"-méthyléthyl)-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoï-que, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-chlorophényl)-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4''-chlorophényl)-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1''-méthyléthyl)-quinoléin-3'-yl]-hept-6-éno \ddot{q} ue, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1''-méthyléthyl)-6'-chloroquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1"-méthyléthyl)-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-(1"-méthyl)-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropylquinoléin-3'-yl]-hept-6-éno \ddot{q} ue, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6'-chloroquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6'-méthylquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-phényl-2'-cyclopropyl-6',7'-diméthoxyquinoléin-3'-yl]-hept-6-éno \ddot{q} une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl-2'-(1"-méthyléthyl)-6'-méthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C₁₋₃ de l'acide carboxylique;

l'acide (E)-3,5-dihydroxy-7-[4'-(4"-fluorophényl)-2'-cyclopropyl-6'-méthoxyquinoléin-3'-yl]-hept-6-énoïque, une lactone produite par condensation de l'acide carboxylique avec le groupe hydroxy en position 5, ou un sel de sodium ou un ester d'alkyle en C_{1-3} de l'acide carboxylique.

55

50

5

10

15

20

25

30

35

40