Sesión 16: E7, Especificación puente de un sólo sentido

Guillermo Román guillermo.roman@upm.es

Concurrencia

GRADO EN INGENIERÍA INFORMÁTICA/ GRADO EN MATEMÁTICAS E INFORMÁTICA/ DOBLE GRADO EN ING. INFORMÁTICA Y ADE Universidad Politécnica de Madrid

http://babel.upm.es/teaching/concurrencia

Abril 2020

- El recurso compartido forma parte de un programa concurrente que gestiona los accesos y salidas de coches de un puente de un solo carril
- dos entradas (N y S)
- dos salidas (N y S)
- una barrera controla el acceso a cada una de las entradas
- un sensor detecta cuándo abandona un coche el puente por alguna de sus dos salidas
- se dispone de una librería con métodos para detectar coches en cada una de las entradas y salidas y para accionar las barreras de las entradas

E7: Acceso a un puente de un solo sentido

- tenemos dos procesos para controlar las entradas N y S, y
- dos procesos para avisar de los coches que salen por las salidas N y S.
- El proceso de la entrada e ejecuta en bucle la secuencia detectarEntrada(e); solicitarEntrada(e); abrir(e);
- El proceso que gestiona la salida s ejecuta en bucle la secuencia detectarSalida(s); notificarSalida(s);

Ejercicio: acceso a un puente de un solo sentido especificación del recurso para completar C-TAD ControlAccesoPuente **OPERACIONES** ACCIÓN solicitarEntrada: Lado[e]: ACCIÓN notificarSalida: Lado[e]: SEMÁNTICA DOMINIO: **TIPO:** Lado = $N \mid S$ TIPO: ControlAccesoPuente = INICIAL: INVARIANTE: CPRE: solicitarEntrada(e) POST: CPRE:

POLITÉCNICA

POST:

notificarSalida(s)

solución 1: Usar dos números para controlar los coches que van en cada dirección

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
  ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
 DOMINIO:
  TIPO: Lado = N \mid S
  TIPO: ControlAccesoPuente =
  INICIAL:
  INVARIANTE:
  CPRE:
     solicitarEntrada(e)
  POST:
  CPRE:
     notificarSalida(s)
  POST:
```

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL:
   INVARIANTE:
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL: self. crNS = 0 \land self. crSN = 0
   INVARIANTE:
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL: self. crNS = 0 \land self. crSN = 0
   INVARIANTE:
   CPRE: (e = S \land self.crNS = 0) \lor (e = N \land self.crSN = 0)
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL: self. crNS = 0 \land self. crSN = 0
   INVARIANTE:
   CPRE: (e = S \land self.crNS = 0) \lor (e = N \land self.crSN = 0)
     solicitarEntrada(e)
   POST:
   CPRE: Cierto
     notificarSalida(s)
   POST:
```

solución 1: Usar dos números para controlar los coches que van en cada dirección y con acceso explícito

```
C-TAD ControlAccesoPuente
```

OPERACIONES

ACCIÓN solicitarEntrada: Lado[e]

ACCIÓN notificarSalida: Lado[e]

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: ControlAccesoPuente = (crNS: $\mathbb{N} \times \text{crSN}$: \mathbb{N})

INICIAL: self. $crNS = 0 \land self. crSN = 0$

INVARIANTE:

CPRE:
$$(e = S \land self.crNS = 0) \lor (e = N \land self.crSN = 0)$$

solicitarEntrada(e)

POST:
$$(e = N \land self.crNS = self^{pre}.crNS + 1 \land self.crSN = 0) \lor (e = S \land self.crSN = self^{pre}.crSN + 1 \land self.crNS = 0)$$

CPRF: Cierto

notificarSalida(s)

POST:

C-TAD ControlAccesoPuente

OPERACIONES

ACCIÓN solicitarEntrada: Lado[e]

ACCIÓN notificarSalida: *Lado[e]*

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: ControlAccesoPuente = (crNS: $\mathbb{N} \times$ crSN: \mathbb{N})

INICIAL: $self. crNS = 0 \land self. crSN = 0$

INVARIANTE:

CPRE:
$$(e = S \land self.crNS = 0) \lor (e = N \land self.crSN = 0)$$

solicitarEntrada(e)

POST:
$$(e = N \land \text{self.crNS} = \text{self}^{pre}. \text{crNS} + 1 \land \text{self.crSN} = 0) \lor (e = S \land \text{self.crSN} = \text{self}^{pre}. \text{crSN} + 1 \land \text{self.crNS} = 0)$$

CPRE: Cierto

notificarSalida(s)

POST:
$$(s = S \Rightarrow \text{self.} crNS = \text{self.} pre. crNS - 1 \land \text{self.} crSN = 0) \land (s = N \Rightarrow \text{self.} crSN = \text{self.} pre. crSN - 1 \land \text{self.} crNS = 0)$$

C-TAD ControlAccesoPuente

OPERACIONES

ACCIÓN solicitarEntrada: Lado[e]

ACCIÓN notificarSalida: Ladolel

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: ControlAccesoPuente = $(crNS: \mathbb{N} \times crSN: \mathbb{N})$

INICIAL: self. $crNS = 0 \land self. crSN = 0$

INVARIANTE: self. $crNS = 0 \lor self. crSN = 0$

CPRE:
$$(e = S \land self.crNS = 0) \lor (e = N \land self.crSN = 0)$$

solicitarEntrada(e)

POST:
$$(e = N \land \text{self.} crNS = self^{pre}. crNS + 1 \land \text{self.} crSN = 0) \lor (e = S \land self. crSN = self^{pre}. crSN + 1 \land \text{self.} crNS = 0)$$

$$(e = S \land self.crSN = self \cdot .crSN + 1 \land self.crNS = 0$$

CPRE: Cierto

notificarSalida(s)

POST:
$$(s = S \Rightarrow \text{self.} crNS = \text{self.} pre. crNS - 1 \land \text{self.} crSN = 0) \land (s = N \Rightarrow \text{self.} crSN = \text{self.} pre. crSN - 1 \land \text{self.} crNS = 0)$$

solución 2: Usar dos números para controlar los coches que van en cada dirección y pattern matching

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL:
   INVARIANTE: self. crNS = 0 \lor self. crSN = 0
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 2: Usar dos números para controlar los coches que van en cada dirección y pattern matching

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL: self = (0, 0)
   INVARIANTE: self. crNS = 0 \lor self. crSN = 0
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 2: Usar dos números para controlar los coches que van en cada dirección y pattern matching

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (crNS: \mathbb{N} \times crSN: \mathbb{N})
   INICIAL: self = (0, 0)
   INVARIANTE: self. crNS = 0 \lor self. crSN = 0
   CPRE: (e = S \land self.crNS = 0) \lor (e = N \land self.cr\_SN = 0)
     solicitarEntrada(e)
   POST:
   CPRE: Cierto
     notificarSalida(s)
   POST:
```

solución 2: Usar dos números para controlar los coches que van en cada dirección y pattern matching

```
C-TAD ControlAccesoPuente
```

OPERACIONES

ACCIÓN solicitarEntrada: Lado[e]

ACCIÓN notificarSalida: Lado[e]

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: ControlAccesoPuente = (crNS: $\mathbb{N} \times \text{crSN}$: \mathbb{N})

INICIAL: self = (0, 0)

INVARIANTE: self. $crNS = 0 \lor self. crSN = 0$

CPRE: $(e = S \land self.crNS = 0) \lor (e = N \land self.cr_SN = 0)$ **solicitarEntrada(e)**

POST: self^{pre} =
$$(ns, sn) \land ((e = N \land self = (ns + 1, 0) \lor (e = S \land self = (0, sn + 1))$$

CPRE: Cierto

notificarSalida(s)

POST:

C-TAD ControlAccesoPuente

OPERACIONES

ACCIÓN solicitarEntrada: *Lado[e]* **ACCIÓN** notificarSalida: *Lado[e]*

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: ControlAccesoPuente = (crNS: $\mathbb{N} \times \text{crSN}$: \mathbb{N})

INICIAL: self = (0, 0)

INVARIANTE: self. $crNS = 0 \lor self. crSN = 0$

CPRE: $(e = S \land self.crNS = 0) \lor (e = N \land self.cr_SN = 0)$

solicitarEntrada(e)

POST: self^{pre} =
$$(ns, sn) \land ((e = N \land self = (ns + 1, 0) \lor (e = S \land self = (0, sn + 1))$$

CPRE: Cierto

notificarSalida(s)

POST: self^{pre} =
$$(ns, sn) \land ((s = S \land self = (ns - 1, 0) \lor (s = N \land self = (0, sn - 1))$$

POLITÉCNICA

solución 3: Usar una función para controlar los coches que van en cada dirección

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
  ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
 DOMINIO:
  TIPO: Lado = N \mid S
  TIPO:
  TIPO: ControlAccesoPuente =
  INICIAL:
  INVARIANTE:
  CPRE:
     solicitarEntrada(e)
  POST:
  CPRE:
     notificarSalida(s)
  POST:
```

solución 3: Usar una función para controlar los coches que van en cada dirección

```
C-TAD ControlAccesoPuente
 OPERACIONES
  ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: Sentido = NS \mid SN
   TIPO: ControlAccesoPuente = (Sentido \rightarrow \mathbb{N})
   INICIAL:
   INVARIANTE:
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 3: Usar una función para controlar los coches que van en cada dirección

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: Sentido = NS \mid SN
   TIPO: ControlAccesoPuente = (Sentido \rightarrow \mathbb{N})
   INICIAL: \forall i \in Sentido \cdot self(i) = 0
   INVARIANTE:
   CPRE:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 3: Usar una función para controlar los coches que van en cada dirección

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: Sentido = NS \mid SN
   TIPO: ControlAccesoPuente = (Sentido \rightarrow \mathbb{N})
   INICIAL: \forall i \in Sentido \cdot self(i) = 0
   INVARIANTE: self(NS) = 0 \lor self(SN) = 0
   CPRF:
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

solución 3: Usar una función para controlar los coches que van en cada dirección

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: Sentido = NS \mid SN
   TIPO: ControlAccesoPuente = (Sentido \rightarrow \mathbb{N})
   INICIAL: \forall i \in Sentido \cdot self(i) = 0
   INVARIANTE: self(NS) = 0 \lor self(SN) = 0
   CPRE: (e = S \land self(NS) = 0) \lor (e = N \land self(SN) = 0)
     solicitarEntrada(e)
   POST:
   CPRE:
     notificarSalida(s)
   POST:
```

```
C-TAD ControlAccesoPuente
 OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: Sentido = NS \mid SN
   TIPO: ControlAccesoPuente = (Sentido \rightarrow \mathbb{N})
   INICIAL: \forall i \in Sentido \cdot self(i) = 0
   INVARIANTE: self(NS) = 0 \lor self(SN) = 0
   CPRE: (e = S \land self(NS) = 0) \lor (e = N \land self(SN) = 0)
     solicitarEntrada(e)
   POST:
   CPRE: Cierto
     notificarSalida(s)
   POST:
```

solución 3: Usar una función para controlar los coches que van en cada dirección

C-TAD ControlAccesoPuente

OPERACIONES

ACCIÓN solicitarEntrada: *Lado[e]* **ACCIÓN** notificarSalida: *Lado[e]*

SEMÁNTICA

DOMINIO:

TIPO: Lado = $N \mid S$

TIPO: Sentido = $NS \mid SN$

TIPO: ControlAccesoPuente = (Sentido $\rightarrow \mathbb{N}$)

INICIAL: $\forall i \in Sentido \cdot self(i) = 0$

INVARIANTE: $self(NS) = 0 \lor self(SN) = 0$

CPRE: $(e = S \land self(NS) = 0) \lor (e = N \land self(SN) = 0)$

solicitarEntrada(e)

POST: $(e = N \land \text{self} = \text{self}^{pre} \oplus \{NS \mapsto \text{self}^{pre}(NS) + 1\}) \lor (e = S \land \text{self} = \text{self}^{pre} \oplus \{SN \mapsto \text{self}^{pre}(SN) + 1\})$

CPRE: Cierto

notificarSalida(s)

POST:

C-TAD ControlAccesoPuente

OPERACIONES

ACCIÓN solicitarEntrada: Lado[e]

ACCIÓN notificarSalida: Lado[e]

SEMÁNTICA

DOMINIO:

TIPO: Lado =
$$N \mid S$$

TIPO: ControlAccesoPuente = (Sentido
$$\rightarrow \mathbb{N}$$
)

INICIAL:
$$\forall i \in Sentido \cdot self(i) = 0$$

INVARIANTE:
$$self(NS) = 0 \lor self(SN) = 0$$

CPRE:
$$(e = S \land self(NS) = 0) \lor (e = N \land self(SN) = 0)$$

solicitarEntrada(e)

POST:
$$(e = N \land \text{self} = \text{self}^{pre} \oplus \{NS \mapsto \text{self}^{pre}(NS) + 1\}) \lor (e = S \land \text{self} = \text{self}^{pre} \oplus \{SN \mapsto \text{self}^{pre}(SN) + 1\})$$

CPRF: Cierto

notificarSalida(s)

POST:
$$(s = N \land \text{self} = \text{self}^{pre} \oplus \{SN \mapsto \text{self}^{pre}(SN) - 1\}) \lor (s = S \land \text{self} = \text{self}^{pre} \oplus \{NS \mapsto \text{self}^{pre}(NS) + 1\})$$

POLITÉCNICA

```
C-TAD ControlAccesoPuente
  OPERACIONES
   ACCIÓN solicitarEntrada: Lado[e]
   ACCIÓN notificarSalida: Lado[e]
SEMÁNTICA
  DOMINIO:
   TIPO: Lado = N \mid S
   TIPO: ControlAccesoPuente = (lado : Lado \times nCoches : \mathbb{N})
   INICIAL: self.ncoches = 0
   INVARIANTE: Cierto
   CPRE: e = \text{self.} Iado \lor \text{self.} nCoches = 0
     solicitarEntrada(e)
   POST: self. lado = e \land self. nCoches = self^{pre}. nCoches + 1
   CPRE: Cierto
     notificarSalida(s)
   POST: self./lado = self<sup>pre</sup>./lado \land self.nCoches = self<sup>pre</sup>.nCoches - 1
```