Linear Algebra for MLDS - Homework 3

Analytic Geometry, Determinants

Make sure to read and follow the "Homework Submission Instructions" file

Submit by: May 5, 2022 at 23:59*

Exercise 1: Given the lines: $\ell_1: (2,-1,-1)+t(3,2,0), \ell_2: (-1,2,-4)+s(9,1,3)$

- 1. Do the lines ℓ_1, ℓ_2 intersect?
- 2. Find the equation of the plane that is parallel to the two lines and passes through the point A(-2,1,-3)
- 3. Find the distance between this plane and the point P(2,3,4)

Exercise 2: Find an equation of the plane that contains the line $\ell: (-1,1,2)+t(3,2,4)$ and is perpendicular to the plane 2x+y-3z+4=0

Exercise 3: Find the point B on the line $\ell:(7,-5,-2)+t(2,-2,-3)$, that has minimal distance to A(1,2,5)

Exercise 4: Calculate the following determinants:

$$\begin{array}{c|cccc}
1 & 0 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}$$

$$2. \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 2 & 0 & 0 & 3 \\ 3 & 0 & 4 & 7 \end{vmatrix}$$

Exercise 5: Let A, B be two $n \times n$ matrices, prove the following statements:

- 1. If A, B are both non-singular, then $\det(AB^{-1}) = \det(A)/\det(B)$
- 2. If $det(AB) \neq 0$ then A, B are row-equivalent.
- 3. If AB = 0 and A is non-singular, then B = 0

Exercise 6: Find the volumes of the following shapes:

- 1. The parallelepiped spanned by the vectors (1,0,3),(2,1,-2),(5,0,4)
- 2. The triangle with vertices A(0,1), B(1,4), C(3,3)

Exercise 7: Solve the following linear system using Cramer's Rule:

^{*}Note that this is independence day, plan your time accordingly