Теория 2

Валентин Стоянов май 2018

Задача 1.

Какво представлява класът остатъци $\bar{m} \in \mathbb{Z}_n$

Това са числата, които при деление на n дават остатък m.

За какви числа n пръстенът \mathbb{Z}_n е поле

Пръстенът \mathbb{Z}_n е поле, когато n е просто число.

За какви числа k класът остатъци $\bar{k} \in \mathbb{Z}_n$ е обратим елемент на пръстена \mathbb{Z}_n

(k, n) = 1

За какви числа k класът остатъци $\bar{k} \in \mathbb{Z}_n$ е делител на нулата в пръстена \mathbb{Z}_n

 $(k,n) \neq 1$

За какви числа k класът остатъци $k \in \mathbb{Z}_n$ не е обратим елемент на пръстена \mathbb{Z}_n

 $(k,n) \neq 1$

За какви числа k класът остатъци $k \in \mathbb{Z}_n$ не е делител на нулата в пръстена \mathbb{Z}_n

(k, n) = 1

Задача 2.

Напишете определението за комутативен пръстен

Нека (R,+,ullet) е пръстен. R е комутативен пръстен, ако $\forall a,b\in R:\quad aullet b$

Напишете определението за пръстен с единица

Нека (R,+,ullet) е пръстен. R е пръстен с единица, ако $\exists e\in R: \quad \forall a: \quad aullet e=eullet a=a$

Напишете определението за област на цялост

Нека $(R, +, \bullet)$ е комутативен пръстен. Ще казваме, че R е област на цялост, ако R няма ненулеви делители на нулата.

Напишете определението за делител на нулата в пръстен

Нека (R,+,ullet) е комутативен пръстен и $a\in R: a\neq 0$. Ще казваме, че a е делител на нулата, ако съществува $b\in R: b\neq 0$, такъв че $a\bullet b=0$.

Напишете определението за поле

Поле е комутативен пръстен с $1(\neq 0)$, в който всеки ненулев елемент е обратим.

Напишете определението за тяло

Тяло е пръстен с единица(различна от нулата), в който всеки ненулев елемент е обратим.

Напишете определението за подпръстен

Нека $(R, +, \bullet)$ е пръстен и K е непразно подмножество на R. Ще казваме, че K е подпръстен на R, ако $\forall a, b \in K$: $a \pm b \in K, a \bullet b \in K$.

Напишете определението за мултипликативната група на пръстен

Нека $(R, +, \bullet)$ е пръстен с единица. R^* е множеството от всички обратими елементи на R. (R^*, \bullet) е мултипликативна група на пръстена R.

Задача 3.

Напишете определението за характеристика на поле

Нека F е поле. Най-малкото $p \in \mathbb{N}$, за което е изпълнено, че $p1_F = 0_F$ се нарича характеристика на полето F и се записва charF = p. Ако няма такова число, то charF = 0.

Какво число може да бъде характеристиката на едно поле

Характеристиката на едно поле може да бъде или просто число или 0.

Напишете определението за подполе

Нека F е поле и K е подмножество на F, съдържащо поне два елемента. K е подполе на F, ако $\forall a, b \in F: a \pm b \in K, ab \in K \vee a^{-1} \in K$ (при $a \neq 0$).

Напишете определението за разширение на поле

Ако е подполе на полето F, то K съдържа елементите 0 и 1 и също е поле относно операциите в F. Ще казваме, че F е разширение на K и ще го бележим с $K \leq F$.

Напишете определението за просто поле

Нека F е поле. F е просто поле, ако няма собствени(т.е различни от F) подполета.

С точност до изоморфизъм, кое поле може да бъде просто подполе на едно поле

 \mathbb{Q}, \mathbb{Z}_p

Всяко поле с характеристика 0 съдържа единствено подполе, изоморфно на $\mathbb{Q}.$

Всяко поле с характеристика p>0 съдържа единствено подполе, изоморфно на \mathbb{Z}_p .

Задача 4.

Напишете определението за ядро на хомоморфизъм на пръстени

Нека R и R' са пръстени и $\varphi:R\to R'$ е хомоморфизъм на пръстени. $Ker\varphi=\{a\in R\mid \varphi(a)=0\}$

Напишете определението за образ на хомоморфизъм на пръстени

Нека R и R' са пръстени и $\varphi:R\to R'$ е хомоморфизъм на пръстени. $Im\varphi=\{b\in R'\mid \exists a\in R: \ \varphi(a)=b\}$

Напишете определението за хомоморфизъм на пръстени

Нека R и R' са пръстени и $\varphi: R \to R'$ е изображение. Ще казваме, че φ е хомоморфизъм на пръстени, ако $\forall a, b \in R$:

- $\varphi(a+b) = \varphi(a) + \varphi(b)$
- $\varphi(ab) = \varphi(a)\varphi(b)$

Напишете определението за изоморфизъм на пръстени

Нека R и R' са пръстени и $\varphi:R\to R'$ е хомоморфизъм на пръстени. Ако φ е биекция, то φ е изоморфизъм на пръстени. Казваме, че R и R' са изоморфии.

Задача 5.

Напишете определението за ляв идеал на пръстен

Нека R е пръстен и I е непразно подмножество на R. Ще казваме, че I е ляв идеал на R, ако:

- $\forall a, b \in I : a b \in I$
- $\forall a \in I, \forall r \in R : ra \in I$

Напишете определението за десен идеал на пръстен

Нека R е пръстен и I е непразно подмножество на R. Ще казваме, че I е десен идеал на R, ако:

- $\forall a, b \in I : a b \in I$
- $\forall a \in I, \forall r \in R: ar \in I$

Напишете определението за двустранен идеал на пръстен

Нека R е пръстен и I е непразно подмножество на R. Ще казваме, че I е двустранен идеал на R, ако:

• $\forall a, b \in I : a - b \in I$

• $\forall a \in I, \forall r \in R : ra \in I$

• $\forall a \in I, \forall r \in R: ar \in I$

Напишете определението за сума на идеали

Нека R е пръстен. Ако I и J са идеали на R, то множеството $I+J=\{i+j\mid i\in I, j\in J\}$ също е идеал на R и се нарича сума на идеали. Аналогично се дефинира и сума на повече от два идеала.

Напишете определението за главен идеал, породен от елемент, в комутативен пръстен с единица

Нека R е комутативен пръстен с единица и $a \in R$. Множеството $(a) = \{ar \mid r \in R\}$ се нарича главен идеал на R. Лесно се вижда, че (1) = R.

Какъв е видът на идеалите в пръстена на целите числа \mathbb{Z}

Всеки идеал е главен, по-точно има вида $n\mathbb{Z}$, където n е естествено число или 0.

Как се дефинира операцията събиране във факторпръстен

$$\overline{a} + \overline{b} = \overline{a+b}$$

Как се дефинира операцията умножение във факторпръстен

 $\overline{a}\overline{b} = \overline{ab}$

Формулирайте теоремата за хомоморфизмите за пръстени

Нека R и R' са пръстени и $\varphi:R\to R'$ е хомоморфизъм на пръстени и $I=Ker\varphi$. Тогава $I\unlhd R$ и $R/I\cong Im\varphi$.

Задача 6.

Докажете, че ако P е поле, то P няма нетривиални идеали (т. е. различни от $\{0\}$ и P

 $\{0\} \neq I \unlhd P$ и $0 \neq a \in I.$ Тогава $1 = aa^{-1} \in I,$ откъдето $P = (1) \subseteq I,$ т.е I = P.

Докажете, че ако един комутативен пръстен с единица P няма нетривиални идеали (т.е. различни от $\{0\}$ и P), то P е поле

Нека $0 \neq a \in P$. Тогава $(a) \neq \{0\}$ и значи (a) = P = (1). Следователно съществува елемент $a' \in P$ " aa' = a'a = 1, т.е елементът a е обратим и $a^{-1} = a'$. Така всеки ненулев елемент е обратим, откъдето следва, че P е поле.

Докажете, че всяко поле съдържа единствено просто подполе

Директно се проверява, че сечението на всички подполета на дадено поле е единственото му просто подполе.