

Graphes

Chap 4: Flots et Réseaux de transport

Florence Bannay

L3 - UPSSITECH – Université Paul Sabatier 2020-2021

Intro

Les problèmes de flots et réseaux de transport

- Thème : Organiser de façon optimale sous contraintes, les mouvements d'un bien dans un réseau.
 - structurer le réseau
 - dimensionner le réseau
 - organiser la circulation
- Problème du flot maximal : faire circuler la plus grande quantité entre deux points du réseau sans excéder les capacités des arcs.
- Beaucoup d'applications :
 - réseau réel (routier/maritime/aérien/de communication) : création d'itinéraires de délestage, taxis de la Marne (septembre 1914), traffic maritime/aerien...
 - réseau de contraintes : affectation tâches-machines, pb des provisions, mine à ciel ouvert (open-pit mining), fermeture maximale, pb de la sélection...

F. Bannay Graphes : Chap.4 Flots 2/36

I. Cycles, Flux et Flots

Rappel Chemin Chaîne

Définition (Chemin, Chaîne dans un graphe ORIENTÉ (X, U))

```
Chemin : suite d'au moins 2 sommets (s_1, \ldots s_p) t.q. \forall i \in [\![1, p-1]\!], (s_i, s_{i+1}) est un arc (\in U). Un chemin représenté par séquence d'arcs. Chaîne : suite d'au moins 2 sommets (s_1, \ldots s_p) t.q. \forall i \in [\![1, p-1]\!], (s_i, s_{i+1}) ou (s_{i+1}, s_i) est un arc (\in U).
```

- simple : si arcs tous différents,
- élémentaires : si sommets tous différents.
- longueur= nombre d'arcs.

F. Bannay Graphes: Chap.4 Flots 3/36

Vecteur cycle

Définition (Vecteur cycle dans G avec m arcs : u_1, \ldots, u_m)

- Cycle μ chaîne simple dont extrémités coincident.
- Vecteur cycle associé à cycle $\mu: \vec{\mu} = (\mu^1, \dots, \mu^m)$ de \mathbb{Z}^m t.q. $\forall i \in [\![1,m]\!], \mu^i = \begin{cases} 0 & \text{si l'arc } u_i \text{ n'apparaît pas dans le cycle } \mu \\ 1 & \text{si l'arc } u_i \text{ est utilisé dans le sens de } \mu \\ -1 & \text{si l'arc } u_i \text{ est utilisé dans le sens opposé à } \mu \end{cases}$

F. Bannay Graphes : Chap.4 Flots 4/36

Remplissez le tableau suivant avec un exemple pour chaque chose :

Themphisses in tableau survaint avec un exemple pour chaque chose.				
chemin simple et élémentaire :	chemin non simple et non élémentaire :			
chemin simple et non élémentaire :	chaîne simple :			
chaîne non simple :	cycle élémentaire :			
cycle non élémentaire :	vecteur cycle :			

F. Bannay Graphes : Chap.4 Flots 5/36

Cocycle

Définition (Cocycle de A dans G = (X, U))

Soit A : ensemble de sommets, on note :

- $\omega^+(A) = \{(x,y) \in U | x \in A, y \notin A\}$: arcs sortants de A
- $\omega^-(A) = \{(x,y) \in U | x \notin A, y \in A\}$: arcs entrants en A
- $\omega(A) = \omega^+(A) \cup \omega^-(A)$

Si $\omega(A)$ est non vide il est appelé cocycle de A.

Remplissez le tableau suivant :

$\omega^+(\{s,1\})$:	$\omega^-(\{s,1\}:$	$\omega(\{s,1\})$:			
$\omega^+(\{s\})$:	$\omega^-(\{s\}:$	$\omega(\{s\})$:			
$\omega^+(\{1,3,t\})$:	$\omega^{-}(\{1,3,t\}:$	$\omega(\{1,3,t\})$:			
$\omega^+(\{1,2,3,t\})$:	$\omega^{-}(\{1,2,3,t\}:$	$\omega(\{1,2,3,t\})$:			

F. Bannay Graphes : Chap.4 Flots 7/36

Flux et Flots

Définition (Flot)

Un flot sur un graphe est un vecteur $\varphi = (\varphi^1, \dots, \varphi^m)$ de \mathbb{Z}^m qui vérifie

$$\forall x \in X, \sum_{u_i \in \omega^-(\{x\})} \varphi(u_i) = \sum_{u_i \in \omega^+(\{x\})} \varphi(u_i)$$
 (loi de Kirchhoff)

 $\varphi^i = \varphi(u_i)$ est le flux dans l'arc u_i : quantité qui circule sur u_i

Kirchhoff: en tout sommet, somme flux entrants = somme flux sortants.

Supposons que le flot φ a un flux de 2 sur u_1 et 1 sur u_3 , quel flux doit-il avoir sur u_4 ? et sur u_2 ?

F. Bannay Graphes : Chap.4 Flots 9/36

On a maintenant $\varphi(u_1)=2$, $\varphi(u_2)=-2$, $\varphi(u_3)=1$, et $\varphi(u_4)=3$. On pose $\varphi(u_5)=4$. Quels flux peut-on mettre sur u_6 et u_7 ? Écrivez le flot φ .

F. Bannay Graphes : Chap.4 Flots 10/36

Le flot nul

Le flot nul $(0,0,\ldots,0)$ est un flot sur tout graphe!

Le cycle $\mu_1 = (u_5, u_7, u_6)$ (23t2)

Son vecteur cycle est $\vec{\mu_1} = (0, 0, 0, 0, 1, -1, 1)$

Le vecteur cycle $\vec{\mu_1} = (0, 0, 0, 0, 1, -1, 1)$ est un flot.

Exercice 5 : combinons 2 flots

- Le vecteur $\varphi = (2, -2, 1, 3, 4, -1, 1)$ est un flot sur ce graphe.
- ullet Le vecteur cycle $ec{\mu_1}=(0,0,0,0,1,-1,1)$ aussi
- Soit $v = 2\varphi 4\vec{\mu_1}$ (combinaison linéaire)
- Décrivez v, est-ce un flot?

F. Bannay Graphes : Chap.4 Flots 13/36

Propriétés

Propriété

- 1. Le vecteur nul de \mathbb{Z}^m est un flot sur tout graphe G (dit "flot nul")
- 2. Tout vecteur cycle de G est un flot sur G
- 3. Toute combinaison linéaire de flots sur G définit un flot sur G

Propriété

 φ est un flot sur G ssi

$$\forall \emptyset \subset A \subset X, \sum_{u \in \omega^{-}(A)} \varphi(u) = \sum_{u \in \omega^{+}(A)} \varphi(u) \quad \text{(loi de Kirchhoff généralisée)}$$

F. Bannay Graphes : Chap.4 Flots 14/36

On considère le vecteur v=(4,-4,2,6,4,2,-2). Remplissez le tableau :

	$\sum_{u\in\omega^+(A)}v(u)$	$\sum_{u\in\omega^{-}(A)}v(u)$
$A = \{s, 1\}$		
$A = \{s\}$		
$A = \{1, 3, t\}$		
$A = \{1, 2, 3, t\}$		

F. Bannay Graphes : Chap.4 Flots 15/36

II. Flots compatibles dans un

Réseau de transport

Réseau de transport

Définition (réseau de transport)

Un réseau de transport est un graphe orienté connexe

$$R = (X, U = \{u_1, \dots u_m\})$$
 avec

- un sommet sans prédecesseur appelé entrée noté s $(\Gamma^-(s) = \emptyset)$
- un sommet sans successeur appelé sortie noté t $(\Gamma^+(t) = \emptyset)$
- une application capa : $U \to \mathbb{N} \cup \{+\infty\}$ qui à chaque arc u associe sa capacité capa $(u) \ge 0$.

On ajoute un arc fictif $u_0 = (t,s)$ avec capa infinie appelé arc de retour.

F. Bannay Graphes : Chap.4 Flots 16/36

Exemple

Soit le réseau suivant avec les capacités indiquées entre parenthèses.

C'est un réseau de transport.

Capacités viennent du monde réel (ne vérifient pas forcément Kirchhoff)

F. Bannay Graphes : Chap.4 Flots 17/36

Flot compatible sur un réseau de transport

Définition (flot compatible sur réseau $R = (X, U = \{u_1, \dots, u_m\})$)

C'est un vecteur φ de \mathbb{Z}^{m+1} t.q. :

- φ : flot sur $R \cup \{u_0\}$: $\forall x \in X$, $\sum_{u \in \omega^+(\{x\})} \varphi(u) = \sum_{u \in \omega^-(\{x\})} \varphi(u)$ (Loi de Kirchhoff)
- φ : compatible avec capacités : $\forall u \in U$, $0 \le \varphi(u) \le \text{capa}(u)$

Définition (Valeur du flot)

$$v(\varphi) = \varphi(u_0) = \sum_{u \in \omega^+(\{s\})} \varphi(u) = \sum_{u \in \omega^-(\{t\})} \varphi(u)$$
flux sur arc somme des flux somme des flux
de retour sortant de s arrivant en t

- Si $\varphi(u) = c(u)$: u est saturé.
- Flot de valeur max : maximise $v(\varphi)$ parmi tous les flots compatibles

Est-ce un flot compatible, quelle est sa valeur? Y-a-t'il des arcs saturés? si oui lesquels?

F. Bannay Graphes : Chap.4 Flots 19/36

III. Théorème de la coupe

Coupe dans réseau de transport (X, U) d'entrée s de sortie t

Définition (Coupe)

Une coupe cp séparant s et t est une partition des sommets en deux :

$$cp = (A, X \setminus A)$$
 tel que $A \subset X, s \in A$ et $t \notin A$

Définition (arcs de la coupe)

Les arcs de la coupe $cp = (A, X \setminus A)$

sont les arcs de $\omega^+(A)$: c'est-à-dire les arcs sortants de A

Définition (capacité d'une coupe)

La capacité d'une coupe cp est la somme des capacités des arcs de cp

$$capa(cp) = \sum_{u \in \omega^+(A)} capa(u)$$

F. Bannay Graphes : Chap.4 Flots 20/36

Complétez le tableau en créant les coupes $cp = (A, X \setminus A)$ pour chaque A:

	coupe cp	arcs de cp	capacité de cp
$A = \{s, 1\}$			
$A = \{s\}$			
$A = \{1, 3, t\}$			
$A = \{s, 1, 3, t\}$			

F. Bannay Graphes : Chap.4 Flots 21/36

Théorème de la coupe (à montrer en travail personnel)

Remarque

Le retrait dans un réseau R de tous les arcs d'une coupe supprime tous les chemins de s à t.

Théorème (de la coupe)

Pour tout flot φ compatible sur R et pour toute coupe cp séparant s et t la valeur du flot est inférieure à la capacité de cette coupe :

$$v(\varphi) \leq capa(cp)$$

Calcul d'un flot Maximum : Principe

de Ford-Fulkerson

Principe de marquage Ford-Fulkerson

- ullet principe de marquage relatif à un flot compatible arphi
- NB : si on n'a pas de flot compatible on peut choisir le flot nul.

Définition (Marquage de Ford-Fulkerson)

On marque s puis

x étant marqué, y marquable depuis x ssi

• y n'est pas marqué ET

•
$$\begin{cases} \exists u = (x, y) \in R \text{ et } \varphi(u) < capa(u) & marquage direct & OU \\ \exists u = (y, x) \in R \text{ et } \varphi(u) > 0 & marquage indirect \end{cases}$$

marquage direct

marquage indirect

F. Bannay Graphes : Chap.4 Flots 23/36

Principe de marquage de Ford-Fulkerson

- ullet principe de marquage relatif à un flot compatible arphi
- NB : si on n'a pas de flot compatible on peut choisir le flot nul.

Définition (Marquage Ford-Fulkerson)

On marque s puis

x étant marqué, y marquable depuis x ssi

• y n'est pas marqué ET

marquage direct

marquage indirect

F. Bannay Graphes : Chap.4 Flots 24/36

- On marque d'abord s.
- Depuis s, quels sommets peut-on marquer (en une seule étape)?

• S'agit-il de marquages directs ou indirects?

 ${\sf F.\ Bannay} \qquad \qquad {\sf Graphes:\ Chap.4\ Flots} \qquad \qquad 25/36$

Quels sommets peut-on marquer (en une seule étape) maintenant?

F. Bannay Graphes : Chap.4 Flots 26/36

Et maintenant (toujours en une seule étape)?

F. Bannay Graphes : Chap.4 Flots 27/36

Et ensuite (en une seule étape)?

Fin du marquage

Propriété

Si à la fin de la procédure de marquage basée sur le flot φ

- 1. on parvient à marquer t grâce à une chaîne ch
 - alors on peut augmenter la valeur du flot
 - ch est appelée chaîne augmentante
 - soit ch⁺= arcs de ch utilisés pour marquage direct,
 - soit ch⁻ = arcs de ch utilisés pour marquage indirect,
 - $k = \min(\min_{u \in ch^+} capa(u) \varphi(u), \min_{u \in ch^-(u)} \varphi(u))$
 - $\varphi' = \varphi + k\vec{\mu}$ où $\mu = \text{cycle } (ch + u_0)$
 - augmentation de k sur ch⁺ et u₀
 - diminution de k sur arcs de ch-
- 2. on ne parvient pas à marquer t alors flot maximum

- Donnez la chaîne augmentante ch correspondant au marquage :
- Quels sont les arcs de *ch*⁺?
- Quels sont les arcs de *ch*⁻?
- Combien vaut k?

 ${\sf F.\ Bannay} \qquad \qquad {\sf Graphes:\ Chap.4\ Flots} \qquad \qquad 30/36$

- $\varphi' = \varphi + 2.(s132ts)$, valeur : $v(\varphi') = 6$
- Pourquoi φ' est-il un flot ? pourquoi est-il compatible ?

F. Bannay Graphes : Chap.4 Flots 31/36

• Comment savoir si le flot φ' est maximum?

F. Bannay Graphes : Chap.4 Flots 32/36

- On marque s.
- Quels sommets peut-on marquer depuis s en faisant un marquage complet exhaustif?

F. Bannay Graphes : Chap.4 Flots 33/36

Théorème du flot maximum (Ford Fulkerson 1957)

Théorème

Soit F l'ensemble des flots compatibles et K l'ensemble des coupes dans un réseau de transport,

$$\max_{\varphi \in F} v(\varphi) = \min_{cp \in K} capa(cp)$$

La valeur maximum du flot est égale à la capacité minimum d'une coupe.

Complexité : polynomiale

- Dinic en 1970, puis Edmond et Karp en 1972 ont montré que
 - si recherche des chemins de *s* à *t* en largeur d'abord (plus courts chemins en nombre d'arcs).
 - ullet alors Ford Fulkerson polynomial en $O(n.m^2)$
- Complexité réduite par Dinic et Karzamov en 1974 $O(n^3)$.
- Complexité encore réduite par Orlin en 2013 O(nm) :
 - structures de données plus performantes (arbres dynamiques)
 - "compactification" de graphes.

F. Bannay Graphes : Chap.4 Flots 35/36

Autres notions à propos des flots

- Graphes d'écart (hors programme 2020-2021)
- Flots sur des réseaux avec capacités et coûts de transport. (hors programme 2020-2021)

F. Bannay Graphes : Chap.4 Flots 36/36