

ACM-ICPC World Finals 2017

Team Reference Document

University of Illinois at Urbana-Champaign: Time Limit Exceeded

Coach

Uttam Thakore

Contestants

Tong Li, Yuting Zhang, Yewen Fan

Contents					3.11 FFT	17 18
1	Data	a Structures	2		5.12 Simplex	10
_	1.1	Bitmasks	$\frac{1}{2}$	4	Computational Geometry	20
	1.2	Union-Find Disjoint Sets	$\overline{2}$			
	1.3	Segment Tree	3	5	String Processing	25
	1.4	Fenwick Tree	4		5.1 KMP	25
	1.5	Treap	4		5.2 Suffix Array	25
	1.6	Trie	5			
2	Gra	ph Theory	6			
	2.1	Topological Sort	6			
	2.2	Articulation Points and Bridges	6			
	2.3	Tarjan's Algorithm	8			
	2.4	Bipartite Graph Check	8			
	2.5	Kruskal's Algorithm	8			
	2.6	Prim's Algorithm	9			
	2.7	Dijkstra's Algorithm	10			
	2.8	Bellman Ford's Algorithm				
	2.9	Check Negative Cycle with Bellman Ford's Algorithm .				
	2.10	Floyd Warshall's Algorithm	10			
	2.11	Shortest Path Faster Algorithm	11			
	2.12	Network Flow	11			
	2.13	Euler Tour	12			
	2.14	Max Cardinality Bipartite Matching	12			
3	Mat	ch .	13			
	3.1	Sieve of Eratosthenes	13			
	3.2	Prime Factors	14			
	3.3	Extended Euclid	14			
	3.4	Euler Phi function	14			
	3.5	GCD mod related (CRT)	14			
	3.6	Matrix	15			
	3.7	Catalan Numbers	16			
	3.8	Schröder-Hipparchus Number	16			
	3.9	Enumerate Combination	16			
	3.10	Gauss Elimination	16			

1 Data Structures

1.1 Bitmasks

1.2 Union-Find Disjoint Sets

```
class DisjointSets{
public:
    void addelements(int num){
        while (num--)
            s.push_back(-1);
}
int find(int elem) {
    return s[elem] < 0 ? elem : s[elem] = find(s[elem]);
}

void setunion(int a, int b) {
    int root1 = find(a), root2 = find(b);
    int newSize = s[root1] + s[root2];
    if (s[root1] <= s[root2]){</pre>
```

```
s[root2] = root1;
    s[root1] = newSize;
}
else{
    s[root1] = root2;
    s[root2] = newSize;
}
private:
    std::vector<int> s;
};
```

1.3 Segment Tree

```
// Segment tree for range sum queries.
struct segment_tree {
   vector<long long> st, lazy;
   const vector<long long> &A;
   size_t n;
   inline int left(int p) {
      return p << 1;
   }
   inline int right(int p) {
      return (p << 1) + 1;
   }
   void propagate(int p, int L, int R) {
      if (lazy[p] != 0) {
          if (L != R) {
             lazy[left(p)] += lazy[p];
             lazy[right(p)] += lazy[p];
          st[p] += (R - L + 1) * lazy[p];
          lazy[p] = 0;
      }
   }
   void build(int p, int L, int R) {
      if (L == R)
          st[p] = A[L];
       else {
          build(left(p), L, (L + R) / 2);
          build(right(p), (L + R) / 2 + 1, R);
          st[p] = st[left(p)] + st[right(p)];
      }
   }
   long long update(int p, int L, int R, int i, int j, long
       long val) {
```

```
propagate(p, L, R);
   if (L > j || R < i)
       return st[p];
   if (L >= i && R <= j) {
       lazy[p] = val;
       propagate(p, L, R);
       return st[p];
   return st[p] = update(left(p), L, (L + R) / 2, i, j,
        val) +
                update(right(p), (L + R) / 2 + 1, R, i, j,
                     val);
}
long long query(int p, int L, int R, int i, int j) {
   if (L > j || R < i)
       return 0;
   propagate(p, L, R);
   if (L >= i && R <= j)
       return st[p];
   return query(left(p), L, (L + R) / 2, i, j) +
          query(right(p), (L + R) / 2 + 1, R, i, j);
}
segment_tree(const vector<long long> &_A): A(_A) {
   n = A.size();
   st.assign(n * 4, 0);
   lazy.assign(n * 4, 0);
   build(1, 0, n - 1);
}
void update(int i, int j, long long val) {
   update(1, 0, n - 1, i, j, val);
}
long long query(int i, int j) {
```

```
return query(1, 0, n - 1, i, j);
};
```

1.4 Fenwick Tree

```
#define LSOne(S) (S & (-S))
class FenwickTree {
private:
 vi ft;
public:
 FenwickTree() {}
 // initialization: n + 1 zeroes, ignore index 0
 FenwickTree(int n) { ft.assign(n + 1, 0); }
 int rsq(int b) {
                                                // returns
      RSQ(1, b)
   int sum = 0; for (; b; b -= LSOne(b)) sum += ft[b];
   return sum; }
  int rsq(int a, int b) {
                                               // returns
      RSQ(a, b)
   return rsq(b) - (a == 1 ? 0 : rsq(a - 1)); }
 // adjusts value of the k-th element by v (v can be +ve/inc
      or -ve/dec)
 void adjust(int k, int v) {
                                          // note: n =
      ft.size() - 1
   for (; k < (int)ft.size(); k += LSOne(k)) ft[k] += v; }</pre>
};
```

1.5 Treap

```
#include <iostream>
```

```
#include <vector>
#include <cstdlib>
#include <ctime>
using namespace std;
template<typename T>
class treap{
public:
   treap(){
       srand(time(0));
       root = nullptr;
   }
   void insert(const T& elem){
       insert(root, elem);
   }
   void remove(const T& elem){
       remove(root, elem);
   }
private:
   struct node_t{
       T elem;
       shared_ptr<node_t> left, right;
       int priority;
   };
   shared_ptr<node_t> root;
   shared_ptr<node_t> rotateLeft(shared_ptr<node_t> node){
       shared_ptr<node_t> right = node->right, rightLeft =
           right->left;
       right->left = node;
       node->right = rightLeft;
       return right;
```

#include <cstdio>

#include <memory>

```
shared_ptr<node_t> rotateRight(shared_ptr<node_t> node){
   shared_ptr<node_t> left = node->left, leftRight =
        left->right;
   left->right = node;
   node->left = leftRight;
   return left:
}
void insert(shared_ptr<node_t>& node, const T& elem){
   if (node == nullptr){
       node = make_shared<node_t>();
       node->elem = elem;
       node->left = node->right = nullptr;
       node->priority = rand();
       return;
   }
   // We do not allow multiple keys with the same value
   if (node->elem == elem)
       return:
   if (node->elem > elem){
       insert(node->left, elem);
       if (node->priority < node->left->priority)
          node = rotateRight(node);
   }else{
       insert(node->right, elem);
       if (node->priority < node->right->priority)
          node = rotateLeft(node);
   }
}
void remove(shared_ptr<node_t>& node, const T& elem){
   if (node == nullptr)
       return;
   if (node->elem == elem){
       if (!node->left && !node->right)
          node = nullptr;
       // Keep rotating until the node to be deleted becomes
```

```
a leaf node.
          else if (!node->left || (node->left && node->right &&
              node->left->priority < node->right->priority)){
              node = rotateLeft(node);
              remove(node->left, elem);
          }
          else{
              node = rotateRight(node);
              remove(node->right, elem);
          }
      }
       else if (node->elem > elem)
          remove(node->left, elem);
       else
          remove(node->right, elem);
   }
};
```

1.6 Trie

```
const int maxnode = 4000 * 100 + 10;
const int sigma_size = 26;
// This template use unnecessary large memory.
// should replace ch[maxnode][sigma_size] by vector<node>.
struct Trie {
 int ch[maxnode][sigma_size];
 int val[maxnode];
 int sz; // the number of node
 void clear() { sz = 1; memset(ch[0], 0, sizeof(ch[0])); }
 int idx(char c) { return c - 'a'; }
 // insert string s, with additional information v
 // v has to be non-zero, zero means "this node is not word
     node"
 void insert(const char *s, int v) {
   int u = 0, n = strlen(s);
   for(int i = 0; i < n; i++) {
```

```
int c = idx(s[i]);
  if(!ch[u][c]) { // the node not exist
      memset(ch[sz], 0, sizeof(ch[sz]));
      val[sz] = 0;
      ch[u][c] = sz++;
      }
      u = ch[u][c]; // going down
    }
    val[u] = v;
}
```

2 Graph Theory

2.1 Topological Sort

```
void dfs2(int u) { // change function name to differentiate
    with original dfs
 dfs_num[u] = DFS_BLACK;
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
   if (dfs_num[v.first] == DFS_WHITE)
     dfs2(v.first);
 }
 topoSort.push_back(u); }
                                       // that is, this is the
      only change
//inside int main()
 // make sure that the given graph is DAG
 printThis("Topological Sort (the input graph must be DAG)");
 topoSort.clear();
 dfs_num.assign(V, DFS_WHITE);
 for (int i = 0; i < V; i++)
                                   // this part is the same as
      finding CCs
   if (dfs_num[i] == DFS_WHITE)
     dfs2(i):
 reverse(topoSort.begin(), topoSort.end());
                                                     // reverse
```

```
topoSort
for (int i = 0; i < (int)topoSort.size(); i++) // or you can
    simply read
printf(" %d", topoSort[i]); // the content of
    'topoSort' backwards
printf("\n");</pre>
```

2.2 Articulation Points and Bridges

```
vi dfs_low;
               // additional information for articulation
    points/bridges/SCCs
vi articulation_vertex;
int dfsNumberCounter, dfsRoot, rootChildren;
void articulationPointAndBridge(int u) {
 dfs_low[u] = dfs_num[u] = dfsNumberCounter++; // dfs_low[u]
      <= dfs_num[u]
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
   if (dfs_num[v.first] == DFS_WHITE) {
                                                         // a
       tree edge
     dfs_parent[v.first] = u;
     if (u == dfsRoot) rootChildren++; // special case, count
         children of root
     articulationPointAndBridge(v.first);
                                                // for
     if (dfs_low[v.first] >= dfs_num[u])
         articulation point
       articulation_vertex[u] = true;
                                          // store this
           information first
     if (dfs_low[v.first] > dfs_num[u])
                                                          // for
         bridge
      printf(" Edge (%d, %d) is a bridge\n", u, v.first);
     dfs_low[u] = min(dfs_low[u], dfs_low[v.first]); // update
         dfs_low[u]
   }
   else if (v.first != dfs_parent[u]) // a back edge and not
```

```
direct cycle
     dfs_low[u] = min(dfs_low[u], dfs_num[v.first]); // update
         dfs_low[u]
} }
//inside int main()
 printThis("Articulation Points & Bridges (the input graph
      must be UNDIRECTED)");
 dfsNumberCounter = 0; dfs_num.assign(V, DFS_WHITE);
      dfs_low.assign(V, 0);
 dfs_parent.assign(V, -1); articulation_vertex.assign(V, 0);
 printf("Bridges:\n");
 for (int i = 0; i < V; i++)
   if (dfs_num[i] == DFS_WHITE) {
     dfsRoot = i; rootChildren = 0;
     articulationPointAndBridge(i);
     articulation_vertex[dfsRoot] = (rootChildren > 1); } //
         special case
 printf("Articulation Points:\n");
 for (int i = 0; i < V; i++)
   if (articulation_vertex[i])
     printf(" Vertex %d\n", i);
```

2.3 Tarjan's Algorithm

```
// additional global
vi S, visited;
    variables
int numSCC;
void tarjanSCC(int u) {
 dfs_low[u] = dfs_num[u] = dfsNumberCounter++; // dfs_low[u]
      <= dfs num[u]
 S.push_back(u);
                        // stores u in a vector based on order
      of visitation
 visited[u] = 1;
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
   if (dfs_num[v.first] == DFS_WHITE)
     tarjanSCC(v.first);
   if (visited[v.first])
                                                  // condition
        for update
     dfs_low[u] = min(dfs_low[u], dfs_low[v.first]);
 }
 if (dfs_low[u] == dfs_num[u]) { // if this is a root
      (start) of an SCC
   printf("SCC %d:", ++numSCC);
                                      // this part is done
        after recursion
   while (1) {
     int v = S.back(); S.pop_back(); visited[v] = 0;
     printf(" %d", v);
     if (u == v) break;
   printf("\n");
} }
//inside int main()
 printThis("Strongly Connected Components (the input graph
      must be DIRECTED)");
 dfs_num.assign(V, DFS_WHITE); dfs_low.assign(V, 0);
      visited.assign(V, 0);
 dfsNumberCounter = numSCC = 0;
```

```
for (int i = 0; i < V; i++)
  if (dfs_num[i] == DFS_WHITE)
    tarjanSCC(i);</pre>
```

2.4 Bipartite Graph Check

```
queue<int> q; q.push(s);
vi color(V, INF); color[s] = 0;
bool isBipartite = true;
while (!q.empty() & isBipartite){
  int u = q.front(); q.pop();
  for (int j = 0; j < (int)AdjList[u].size(); j++){
    ii v = AdjList[u][j];
    if (color[v.first] == INF){
      color[v.first] = 1 - color[u];
      q.push(v.first);}
  else if (color[v.first] == color[u]){
    isBipartite = false; break;}}
</pre>
```

2.5 Kruskal's Algorithm

```
int mst_cost = 0;
UnionFind UF(V);
                               // all V are disjoint sets
    initially
for (int i = 0; i < E; i++) {
                                            // for each edge,
    0(E)
 pair<int, ii> front = EdgeList[i];
 if (!UF.isSameSet(front.second.first, front.second.second))
      { // check
   mst_cost += front.first;
                                      // add the weight of e
       to MST
   UF.unionSet(front.second.first, front.second.second); //
       link them
} }
                      // note: the runtime cost of UFDS is
    very light
// note: the number of disjoint sets must eventually be 1 for
    a valid MST
printf("MST cost = %d (Kruskal's)\n", mst_cost);
```

2.6 Prim's Algorithm

```
vi taken;
                                     // global boolean flag to
    avoid cycle
                             // priority queue to help choose
priority_queue<ii> pq;
    shorter edges
void process(int vtx) { // so, we use -ve sign to reverse the
    sort order
 taken[vtx] = 1:
 for (int j = 0; j < (int)AdjList[vtx].size(); j++) {</pre>
   ii v = AdjList[vtx][j];
   if (!taken[v.first]) pq.push(ii(-v.second, -v.first));
} }
                              // sort by (inc) weight then by
    (inc) id
// inside int main() --- assume the graph is stored in AdjList,
    pq is empty
 taken.assign(V, 0);
                                // no vertex is taken at the
```

```
beginning
process(0); // take vertex 0 and process all edges incident
    to vertex 0
mst cost = 0;
while (!pq.empty()) { // repeat until V vertices (E=V-1
    edges) are taken
  ii front = pq.top(); pq.pop();
  u = -front.second, w = -front.first; // negate the id and
      weight again
  if (!taken[u])
                            // we have not connected this
      vertex yet
   mst_cost += w, process(u); // take u, process all edges
        incident to u
}
                                   // each edge is in pq only
    once!
printf("MST cost = %d (Prim's)\n", mst_cost);
```

2.7 Dijkstra's Algorithm

```
// Dijkstra routine
vi dist(V, INF); dist[s] = 0;
                                           // INF = 1B to
    avoid overflow
priority_queue< ii, vector<ii>, greater<ii> > pq;
    pq.push(ii(0, s));
                        // ^to sort the pairs by increasing
                            distance from s
while (!pq.empty()) {
                                                          11
    main loop
 ii front = pq.top(); pq.pop(); // greedy: pick shortest
      unvisited vertex
 int d = front.first, u = front.second;
 if (d > dist[u]) continue; // this check is important, see
      the explanation
 for (int j = 0; j < (int)AdjList[u].size(); j++) {</pre>
   ii v = AdjList[u][j];
                                          // all outgoing
        edges from u
   if (dist[u] + v.second < dist[v.first]) {</pre>
     dist[v.first] = dist[u] + v.second;
                                                   // relax
         operation
     pq.push(ii(dist[v.first], v.first));
} } // note: this variant can cause duplicate items in the
    priority queue
```

2.8 Bellman Ford's Algorithm

```
// Bellman Ford routine
vi dist(V, INF); dist[s] = 0;
for (int i = 0; i < V - 1; i++) // relax all E edges V-1
    times, overall O(VE)
for (int u = 0; u < V; u++) // these two
    loops = O(E)
for (int j = 0; j < (int)AdjList[u].size(); j++) {
    ii v = AdjList[u][j]; // we can record SP spanning
        here if needed</pre>
```

2.9 Check Negative Cycle with Bellman Ford's Algorithm

2.10 Floyd Warshall's Algorithm

```
for (int k = 0; k < V; k++) // common error: remember that
   loop order is k->i->j
for (int i = 0; i < V; i++)
   for (int j = 0; j < V; j++)
   AdjMatrix[i][j] = min(AdjMatrix[i][j], AdjMatrix[i][k] +
        AdjMatrix[k][j]);</pre>
```

2.11 Shortest Path Faster Algorithm

```
// SPFA from source S
// initially, only S has dist = 0 and in the queue
vi dist(n, INF); dist[S] = 0;
queue<int> q; q.push(S);
vi in_queue(n, 0); in_queue[S] = 1;
while (!q.empty()) {
 int u = q.front(); q.pop(); in_queue[u] = 0;
 for (j = 0; j < (int)AdjList[u].size(); j++) { // all</pre>
      outgoing edges from u
   int v = AdjList[u][j].first, weight_u_v =
        AdjList[u][j].second;
   if (dist[u] + weight_u_v < dist[v]) { // if can relax</pre>
     dist[v] = dist[u] + weight_u_v; // relax
     if (!in_queue[v]) { // add to the queue only if it's
         not in the queue
       q.push(v);
       in_queue[v] = 1;
   }
 }
```

2.12 Network Flow

```
void augment(int v, int min_edge){
   if (v == s){
     flow = min_edge;
     return;
}
else if (parent[v] != -1){
   int u = parent[v];
   augment(u, min(min_edge, residue[u][v]));
   residue[u][v] -= flow;
   residue[v][u] += flow;
```

```
}
}
void Dinic(){
   max_flow = 0;
   while (true){
       parent.assign(V, -1);
       vector<bool> visited(V, false);
       queue<int> q;
       q.push(s);
       visited[s] = true;
       while (!q.empty()){
          int u = q.front();
          q.pop();
          if (u == t)
              break;
          for (int v : adjList[u])
              if (!visited[v] && residue[u][v] > 0){
                 parent[v] = u;
                 visited[v] = true;
                 q.push(v);
       }
       int new_flow = 0;
       for (int u : adjList[t]){
          if (residue[u][t] <= 0)</pre>
              continue:
          flow = 0;
          augment(u, residue[u][t]);
          residue[u][t] -= flow;
          residue[t][u] += flow;
          new_flow += flow;
       if (new flow == 0)
          break:
       max_flow += new_flow;
   }
}
```

2.13 Euler Tour

2.14 Max Cardinality Bipartite Matching

```
memset(dist_right, -1, sizeof dist_right);
   memset(dist_left, -1, sizeof dist_left);
   for (int i = 0; i < N; i++) {
       if (pair_left[i] == -1) {
          dist_left[i] = 0;
          q.push(i);
      }
   }
   limit = INT_MAX;
   while (!q.empty()) {
       int u = q.front();
       q.pop();
       if (dist_left[u] > limit)
          break;
       for (int i = adjlist[u]; i != -1; i = link[i]) {
          int v = node[i];
          if (dist_right[v] == -1) {
              dist_right[v] = dist_left[u] + 1;
              if (pair_right[v] == -1)
                 limit = dist_right[v];
              else {
                 dist_left[pair_right[v]] = dist_right[v] + 1;
                 q.push(pair_right[v]);
          }
      }
   }
   return limit != INT_MAX;
bool DFS(int u) {
   for (int i = adjlist[u]; i != -1; i = link[i]) {
       int v = node[i];
       if (!visited[v] && dist_right[v] == dist_left[u] + 1) {
          visited[v] = true;
          if (pair_right[v] != -1 && dist_right[v] == limit)
```

```
continue;
          if (pair_right[v] == -1 || DFS(pair_right[v])) {
              pair_right[v] = u;
              pair_left[u] = v;
              return true;
          }
      }
   }
   return false;
}
int main() {
   scanf("%d %d %d", &N, &M, &P);
   memset(pair_left, -1, sizeof pair_left);
   memset(pair_right, -1, sizeof pair_right);
   memset(link, -1, sizeof link);
   memset(adjlist, -1, sizeof adjlist);
   for (int i = 0; i < P; i++) {
       int u, v;
       scanf("%d %d", &u, &v);
      node[i] = v - 1;
      link[i] = adjlist[u - 1];
       adjlist[u - 1] = i;
   int matching = 0;
   while (BFS()) {
      memset(visited, 0, sizeof visited);
      for (int i = 0; i < N; i++)
          if (pair_left[i] == -1)
              if (DFS(i))
                 matching++;
   }
   printf("%d\n", matching);
   return 0;
}
```

3 Math

3.1 Sieve of Eratosthenes

```
#define BOUND 1000000
bitset<BOUND> bs;
vector<long long> primes;
void sieve() {
   bs.set();
   bs[0] = bs[1] = 0;
   for (long long i = 2; i <= BOUND; i++) {</pre>
       if (bs[i]) {
           for (long long j = i * i; j \le BOUND; j += i)
              bs[j] = 0;
           primes.push_back(i);
       }
   }
}
bool is_prime(long long N) {
   if (N <= BOUND)</pre>
       return bs[N];
   for (long long prime: primes) {
       if (prime > sqrt(N))
           return true;
       if (N % prime == 0)
           return false;
   }
   return true;
```

3.2 Prime Factors

```
vi primeFactors(ll N) { // remember: vi is vector of integers,
    ll is long long
                            // vi `primes' (generated by sieve)
 vi factors;
     is optional
 11 PF_idx = 0, PF = primes[PF_idx]; // using PF = 2, 3, 4,
      ..., is also ok
 while (N != 1 && (PF * PF <= N)) { // stop at sqrt(N), but N
      can get smaller
   while (N % PF == 0) { N /= PF; factors.push_back(PF); } //
       remove this PF
   PF = primes[++PF_idx];
                                                // only
       consider primes!
 }
 if (N != 1) factors.push_back(N); // special case if N is
      actually a prime
 return factors;
                      // if pf exceeds 32-bit integer, you have
      to change vi
```

3.3 Extended Euclid

```
long long x, y, d;

void extended_Euclid(long long a, long long b) {
   if (b == 0) { x = 1; y = 0; d = a; return;}
    extended_Euclid(b, a % b);
   long long x1 = y, y1 = x - (a / b) * y;
    x = x1;
   y = y1;
}

// Gives ax0 + by0 = d.
// x = x0 + (b/d)n, y = y0 - (a/d)n.
extended_Euclid(a, b);
```

3.4 Euler Phi function

```
int euler_phi(int n){
 int m = (int) sqrt(n+0.5);
 int ans = n;
 for(int i=2;i<=m;i++)
   if(n\%i==0){
     ans = ans/i*(i-1);
     while(n%i==0)
       n /= i;
   }
 if(n>1)
   ans = ans/n*(n-1);
 return ans;
void euler_phi_table(int n, int *phi){
 for(int i=2;i<=n;i++)
   phi[i] = 0;
 phi[1] = 1;
 for(int i=2;i<=n;i++)
   if(!phi[i])
     for(int j=i;j<=n;j+=i){</pre>
       if(!phi[j])
         phi[j] = j;
      phi[j] = phi[j]/i*(i-1);
}
```

3.5 GCD mod related (CRT)

```
// ax+by = gcd(a, b), minimize abs(x)+abs(y) x, y may be
    negative
void gcd(LL a, LL b, LL & d, LL & x, LL & y) {
    if(!b) { d = a; x = 1; y = 0; }
    else {
       gcd(b, a%b, d, y, x);
}
```

```
y = x*(a/b);
 }
}
// calculate inv(a) mod n. If not exist, return -1
LL inv(LL a, LL n) {
 LL d, x, y;
 gcd(a, n, d, x, y);
 return d == 1 ? (x+n)%n : -1;
// n functions: x=a[i] (mod m[i]) m[i] co-prime
LL CRT(int n, int * a, int * m) {
 LL M = 1, d, y, x = 0;
 for(int i=0;i<n;i++)</pre>
   M *= m[i];
 for(int i=0;i<n;i++) {
   LL w = M / m[i];
   gcd(m[i], w, d, d, y);
   x = (x + y*w*a[i]) % M;
 }
 return (x+M)%M;
// return ab mod n. 0 \le a,b \le n
LL mul_mod(LL a, LL b, int n) {
 return a * b % n;
}
// return a^p mod n, 0<=a<n</pre>
LL pow_mod(LL a, LL p, LL n) {
 if(p == 0)
   return 1;
 LL ans = pow_mod(a, p/2, n);
 ans = ans * ans % n;
 if(p \% 2 == 1)
   ans = ans * a % n;
 return ans;
}
```

```
// solve a^x=b mod n. n prime. If no solution, return -1
int log_mod(int a, int b, int n) {
 int m, v, e = 1;
 m = (int) sqrt(n+0.5);
 v = inv(pow_mod(a, m, n), n);
 map<int, int> x;
 x[1] = 0:
 for(int i=1;i<m;i++) {</pre>
   e = mul mod(e, a, n);
   if(!x.count(e))
     x[e] = i;
 for(int i=0;i<m;i++) {</pre>
   if(x.count(b))
     return i*m + x[b]:
   b = mul mod(b, v, n);
 }
 return -1;
```

3.6 Matrix

```
// increase this if
#define MAX N 2
    needed
struct Matrix { ll mat[MAX_N][MAX_N]; }; // to let us return a
    2D array
                                         // O(n^3), but O(1) as
Matrix matMul(Matrix a, Matrix b) {
    n = 2
 Matrix ans; int i, j, k;
 for (i = 0; i < MAX N; i++)
   for (j = 0; j < MAX_N; j++)
     for (ans.mat[i][j] = k = 0; k < MAX_N; k++) {</pre>
       ans.mat[i][j] += (a.mat[i][k] % MOD) * (b.mat[k][j] %
           MOD);
       ans.mat[i][j] %= MOD;
                                    // modulo arithmetic is
           used here
     }
```

```
return ans;
Matrix matPow(Matrix base, int p) { // O(n^3 log p), but O(log
    p) as n = 2
 Matrix ans; int i, j;
 for (i = 0; i < MAX_N; i++)
   for (j = 0; j < MAX_N; j++)
     ans.mat[i][j] = (i == j);
                                          // prepare identity
         matrix
 while (p) {
                 // iterative version of Divide & Conquer
      exponentiation
   if (p & 1)
                             // check if p is odd (the last bit
       is on)
     ans = matMul(ans, base);
                                                      // update
         ans
   base = matMul(base, base);
                                                 // square the
       base
   p >>= 1;
                                                   // divide p
       by 2
 }
 return ans;
```

3.7 Catalan Numbers

$$Cat(n) = \frac{2n!}{n! \times n! \times (n+1)}$$
$$Cat(n+1) = \frac{(2n+2) \times (2n+1)}{(n+2) \times (n+1)} \times Cat(n)$$

3.8 Schröder-Hipparchus Number

$$S(n) = \frac{1}{n}((6n-9)S(n-1) - (n-3)S(n-2))$$

3.9 Enumerate Combination

```
const int maxn = 1000;
```

```
int com[maxn];
bool next_Com(int num, int k){ //0,1...num-1 choose k
 if(k == 0)
   return false;
 if(com[k-1]!=num-1){
   com[k-1]++;
   return true;
 int i;
 for(i=k-1;i>=0;i--)
   if(com[i]!=num-k+i)
     break;
 if(i==-1)
   return false;
 com[i]++;
 for(int j=i+1; j<k; j++)</pre>
   com[j] = com[i]+(j-i);
 return true;
void makeFirstCom(int k){
 for(int i=0;i<k;i++)</pre>
   com[i] = i;
```

3.10 Gauss Elimination

```
const int maxn = 110;
typedef double Matrix[maxn][maxn];

// require matrix A invertible
// A is augmented matrix, A[i][n] = bi
// After execution, A[i][n] is the value of i-th variable
void gauss_elimination(Matrix A, int n) {
  int i, j, k, r;
  for (i=0; i<n; i++) {
    r = i;
}</pre>
```

```
for (j=i+1; j<n; j++) {
     if (fabs(A[j][i]) > fabs(A[r][i]))
      r = j;
   if (r != i)
     for (j=0; j<=n; j++)
       swap(A[r][j], A[i][j]);
   for (j=n; j>=i; j--)
     for (k=i+1; k < n; ++k)
      A[k][j] -= A[k][i] / A[i][i] * A[i][j];
 }
 for (i=n-1; i>=0; i--) {
   for (j=i+1; j<n; j++)
     A[i][n] -= A[j][n] * A[i][j];
   A[i][n] /= A[i][i];
 }
}
```

3.11 FFT

```
const long double PI = acos(0.0) * 2.0;

typedef complex<double> CD;

// Cooley-Tukey的FFT算法, 迭代实现。inverse = false时计算逆FFT
inline void FFT(vector<CD> &a, bool inverse) {
  int n = a.size();
  // 原地快速bit reversal
  for(int i = 0, j = 0; i < n; i++) {
    if(j > i) swap(a[i], a[j]);
    int k = n;
    while(j & (k >>= 1)) j &= ~k;
    j |= k;
}

double pi = inverse ? -PI : PI;
  for(int step = 1; step < n; step <<= 1) {
```

```
把每相邻两个"step点DFT"通过一系列蝴蝶操作合并为一个"2*step点DFT"
   double alpha = pi / step;
  // 为求高效,我们并不是依次执行各个完整的DFT合并,而是枚举下标k
   // 对于一个下标k, 执行所有DFT合并中该下标对应的蝴蝶操作,
   即通过E[k]和O[k]计算X[k]
      蝴蝶操作参考: http://en.wikipedia.org/wiki/Butterfly_diagram
   for(int k = 0; k < step; k++) {
    // 计算omega~k.
        这个方法效率低,但如果用每次乘omega的方法递推会有精度问题。
    // 有更快更精确的递推方法,为了清晰起见这里略去
    CD omegak = exp(CD(0, alpha*k));
    for(int Ek = k; Ek < n; Ek += step << 1) { //</pre>
        Ek是某次DFT合并中E[k]在原始序列中的下标
      int Ok = Ek + step; //
         Ok是该DFT合并中O[k]在原始序列中的下标
      CD t = omegak * a[Ok]; // 蝴蝶操作: x1 * omega^k
      a[Ok] = a[Ek] - t; // 蝴蝶操作: y1 = x0 - t
      a[Ek] += t; // 蝴蝶操作: y0 = x0 + t
  }
 }
 if(inverse)
   for(int i = 0; i < n; i++) a[i] /= n;
}
// 用FFT实现的快速多项式乘法
inline vector<double> operator * (const vector<double>& v1,
   const vector<double>& v2) {
 int s1 = v1.size(), s2 = v2.size(), S = 2;
 while(S < s1 + s2) S <<= 1;
 vector<CD> a(S,0), b(S,0); //
     把FFT的输入长度补成2的幂,不小于v1和v2的长度之和
 for(int i = 0; i < s1; i++) a[i] = v1[i];
 FFT(a, false);
 for(int i = 0; i < s2; i++) b[i] = v2[i];
 FFT(b, false);
 for(int i = 0; i < S; i++) a[i] *= b[i];
```

```
FFT(a, true);
vector<double> res(s1 + s2 - 1);
for(int i = 0; i < s1 + s2 - 1; i++) res[i] = a[i].real(); //
    虚部均为0
return res;
```

3.12 Simplex

```
// 参考: http://en.wikipedia.org/wiki/Simplex_algorithm
    输入矩阵a描述线性规划的标准形式。a为m+1行n+1列,其中行0~m-1为不等式,行m为目标函数(最大化)。列0~n-1为变量0~n-1的系数,列n为常数项
// 第i个约束为a[i][0]*x[0] + a[i][1]*x[1] + ... <= a[i][n]
                                                                }
// 目标为max(a[m][0]*x[0] + a[m][1]*x[1] + ... +
                                                              }
    a[m][n-1]*x[n-1] - a[m][n]
// 注意: 变量均有非负约束x[i] >= 0
                                                              //
const int maxm = 500; // 约束数目上限
const int maxn = 500; // 变量数目上限
const double INF = 1e100;
const double eps = 1e-10;
struct Simplex {
 int n; // 变量个数
 int m; // 约束个数
 double a [maxm] [maxn]; // 输入矩阵
 int B[maxm], N[maxn]; // 算法辅助变量
 void pivot(int r, int c) {
   swap(N[c], B[r]);
   a[r][c] = 1 / a[r][c];
   for(int j = 0; j \le n; j++) if(j != c) a[r][j] *= a[r][c];
   for(int i = 0; i <= m; i++) if(i != r) {
    for(int j = 0; j \le n; j++) if(j != c) a[i][j] -= a[i][c]
        * a[r][i];
                                                                 }
    a[i][c] = -a[i][c] * a[r][c];
   }
 }
```

```
int r, c;
   double p = INF;
   for(int i = 0; i < m; i++) if(a[i][n] < p) p = a[r = i][n];
   if(p > -eps) return true;
   p = 0:
   for(int i = 0; i < n; i++) if(a[r][i] < p) p = a[r][c = i];
   if(p > -eps) return false;
   p = a[r][n] / a[r][c];
   for(int i = r+1; i < m; i++) if(a[i][c] > eps) {
     double v = a[i][n] / a[i][c];
     if(v < p) \{ r = i; p = v; \}
   pivot(r, c);
    解有界返回1,无解返回0,无界返回-1。b[i]为x[i]的值,ret为目标函数的值
int simplex(int n, int m, double x[maxn], double& ret) {
 this->n = n;
 this->m = m:
 for(int i = 0; i < n; i++) N[i] = i;
 for(int i = 0; i < m; i++) B[i] = n+i;
 if(!feasible()) return 0;
 for(;;) {
   int r, c;
   double p = 0;
   for(int i = 0; i < n; i++) if(a[m][i] > p) p = a[m][c = i];
   if(p < eps) {
    for(int i = 0; i < n; i++) if(N[i] < n) x[N[i]] = 0;
     for(int i = 0; i < m; i++) if(B[i] < n) x[B[i]] =
         a[i][n];
     ret = -a[m][n];
     return 1;
   p = INF;
   for(int i = 0; i < m; i++) if(a[i][c] > eps) {
     double v = a[i][n] / a[i][c];
```

bool feasible() {

for(;;) {

```
if(v < p) { r = i; p = v; }
}
if(p == INF) return -1;
pivot(r, c);
}
};</pre>
```

4 Computational Geometry

```
const double PI = acos(-1);
struct Point{
 double x, y;
 Point(double x=0, double y=0):x(x), y(y){}
}:
typedef Point Vector;
// Vector + Vector = Vector / Point + Vector = Point
Vector operator + (Vector A, Vector B){
 return Vector(A.x + B.x, A.y + B.y);
// Point - Point = Vector
Vector operator - (Point A, Point B){
 return Vector(A.x - B.x, A.y - B.y);
Vector operator * (Vector A, double p){
 return Vector(A.x * p, A.y * p);
Vector operator / (Vector A, double p){
 return Vector(A.x / p, A.y / p);
const double eps = 1e-10;
int dcmp(double x){
 if(fabs(x) < eps)
   return 0;
 return x < 0 ? -1 : 1;
bool operator < (const Point& a, const Point& b){</pre>
 return dcmp(a.x - b.x) < 0 \mid \mid (dcmp(a.x-b.x)==0 \&\& dcmp(a.y - b.x))
      b.y) < 0);
```

```
bool operator == (const Point& a, const Point &b){
 return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
}
double Dot(Vector A, Vector B){
 return A.x*B.x + A.y*B.y;
double Length(Vector A){
 return sqrt(Dot(A,A));
// polar angle theta is the counterclockwise angle from the
    x-axis at which a point in the xy-plane lies
// (-pi, pi]
double angle(Vector v) {
 return atan2(v.y, v.x);
// counterclockwise angle from A to B [0, pi]
double Angle(Vector A, Vector B){
 return acos(Dot(A,B)/Length(A)/Length(B));
double Cross(Vector A, Vector B){
 return A.x*B.y - A.y*B.x;
// counterclockwisely rotate A for rad
Vector Rotate(Vector A, double rad){
 return Vector(A.x*cos(rad)-A.y*sin(rad),
      A.x*sin(rad)+A.y*cos(rad));
// unit normal vector for A (left rotate pi/2) A != 0
Vector Normal(Vector A){
 double L = Length(A);
 return Vector(-A.y/L, A.x/L);
```

}

```
}
                                                                        OnSegment() method)
                                                                    bool segmentProperIntersection(Point a1, Point a2, Point b1,
// P+tv, Q+tw should have only one intersection, iff Cross(v,w)
                                                                        Point b2){
                                                                      double c1 = Cross(a2-a1,b1-a1);
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
                                                                      double c2 = Cross(a2-a1,b2-a1);
                                                                      double c3 = Cross(b2-b1,a1-b1);
 Vector u = P-Q;
 double t = Cross(w,u)/Cross(v,w);
                                                                      double c4 = Cross(b2-b1,a2-b1);
 return P+v*t:
                                                                     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
// distance from P to line AB
                                                                    // determine P on segment a1a2 (endpoint excluded)
double DistanceToLine(Point P, Point A, Point B){
                                                                    bool OnSegment(Point p, Point a1, Point a2) {
 Vector v1 = B-A, v2 = P-A;
                                                                      return dcmp(Cross(a1-p,a2-p))==0 && dcmp(Dot(a1-p,a2-p))<0;
 return fabs(Cross(v1,v2))/Length(v1); // if no fabs, then
      directed distance
}
                                                                    // calulate the direct area for polygon (not necessarily
                                                                        convex)
// distance from P to segment AB
                                                                    double PolygonArea(Point* p, int n) {
double DistanceToSegment(Point P, Point A, Point B){
                                                                      double area = 0;
 if(A == B)
                                                                      for(int i=1;i<n-1;i++)
   return Length(P-A);
                                                                       area += Cross(p[i]-p[0],p[i+1]-p[0]);
 Vector v1 = B-A, v2 = P-A, v3 = P-B;
                                                                     return area/2;
                                                                    }
  if(dcmp(Dot(v1,v2))<0)
   return Length(v2);
  if(dcmp(Dot(v1,v3))>0)
                                                                    // convex hull: n points in array p, ch array for output,
   return Length(v3);
                                                                        return the number of points on hull
 return fabs(Cross(v1,v2))/Length(v1); // if no fabs, then
                                                                    // no duplicate points in input; the order of input points is
      directed distance
                                                                        not preserved
                                                                    // if want input points on edges of hull, change two <= to <
                                                                    int ConvexHull(Point* p, int n, Point* ch) {
Point GetLineProjection(Point P, Point A, Point B){
                                                                      sort(p,p+n);
 Vector v = B-A;
                                                                      int m = 0;
 return A+v*(Dot(v,P-A) / Dot(v,v));
                                                                      for(int i=0;i<n;i++){</pre>
                                                                       while(m>1 && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0)
                                                                         m--;
// determine segment a1a2 and b1b2 normal intersection (only
                                                                       ch[m++] = p[i];
    one intersection, not endpoint)
                                                                     }
// if allowing intersecting on endpoints:
                                                                      int k = m:
// 1) c1 = c2 = 0: on the same line, probably intersecting
                                                                      for(int i=n-2;i>=0;i--){
// 2) otherwise, one endpoint on the other segment (Use
                                                                        while(m \ge k \&\& dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) \le 0)
```

```
// poly: polygon n: the number of points
     m--;
   ch[m++] = p[i];
                                                                    // return value: (-2, vertex) (-1, edges) (0, outside) (1,
                                                                        inside)
 if(n>1)
                                                                    // determine if point on the left side of all edges (vertex
   m--:
                                                                        already counterclock ordered)
 return m;
                                                                    int isPointInPolygon(Point p, Point* poly, int n){
                                                                      int wn = 0:
                                                                     for(int i=0;i<n;i++){
// return the diameter of set of points (Rotating Calipers
                                                                       if(p == polv[i])
    Algorithm)
                                                                         return -2;
// ch: already convex hull (no three points in a line) n: the
                                                                       if(OnSegment(p, poly[i], poly[(i+1)%n]))
    number of points
                                                                         return -1:
double diameter(Point* ch, int n) {
                                                                       int k = dcmp(Cross(poly[(i+1)%n]-poly[i], p-poly[i]));
                                                                       int d1 = dcmp(poly[i].y - p.y);
 if(n == 1) return 0;
 if(n == 2) return Length(ch[0] - ch[1]);
                                                                       int d2 = dcmp(poly[(i+1)\%n].y - p.y);
 ch[n] = ch[0];
                                                                       if(k>0 && d1<=0 && d2>0)
 double ans = 0;
                                                                         wn++;
 for(int u = 0, v = 1; u < n; u++) {
                                                                       if(k<0 && d2<=0 && d1>0)
  // line for p[u]-p[u+1]
                                                                         wn--;
   for(;;) {
     // when Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1],
                                                                     if(wn != 0)
         p[v]) stop rotating
                                                                       return 1;
     // aka Cross(p[u+1]-p[u], p[v+1]-p[u]) -
                                                                     return 0:
         Cross(p[u+1]-p[u], p[v]-p[u]) \le 0 (now this angle <
         pi, no need for abs)
     // from Cross(A,B) - Cross(A,C) = Cross(A,B-C)
                                                                    struct Line{
     // simplify to Cross(p[u+1]-p[u], p[v+1]-p[v]) \le 0
                                                                     Point p;
     double diff = Cross(ch[u+1]-ch[u], ch[v+1]-ch[v]);
                                                                     Vector v;
     if(dcmp(diff) <= 0) {</pre>
                                                                     Line(Point p, Vector v):p(p),v(v){}
      ans = max(ans, Length(ch[u]-ch[v]));
                                                                     Point point(double t) {
      if(dcmp(diff) == 0)
                                                                         return p + v*t;
        ans = max(ans, Length(ch[u]-ch[v+1]));
                                                                     Line move(double d) {
      break;
                                                                       return Line(p + Normal(v)*d, v);
     v = (v + 1) \% n;
                                                                    };
 }
 return ans;
                                                                    struct Circle{
                                                                     Point c;
                                                                     double r;
```

```
Circle(Point c, double r):c(c),r(r){}
                                                                       return 0;
 Point point(double a) {
                                                                      if(dcmp(fabs(C1.r-C2.r) - d) > 0)
   return Point(c.x + cos(a)*r, c.y + sin(a)*r);
                                                                       return 0;
 }
                                                                      double a = angle(C2.c-C1.c);
};
                                                                      double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
                                                                          // angle from C1C2 to C1P1
// return number of intersection, sol has all intersection
                                                                      Point p1 = C1.point(a-da), p2 = C1.point(a+da);
// intersection P = A + t(B-A), simplify to et^2+ft+g = 0
                                                                      sol.push_back(p1);
int getLineCircleIntersection(Line L, Circle C, double& t1,
                                                                     if(p1 == p2)
    double& t2, vector<Point>& sol){
                                                                       return 1;
 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y -
                                                                      sol.push_back(p2);
                                                                      return 2;
 double e = a*a + c*c, f = 2*(a*b+c*d), g = b*b + d*d -
      C.r*C.r;
 double delta = f*f - 4*e*g;
                                                                    // tangent lines from P to C
 if(dcmp(delta) < 0)</pre>
                                                                    // v[i]: i-th tangent lines, return the number of tangent lines
   return 0;
                                                                    int getTangents(Point p, Circle C, Vector* v){
  if(dcmp(delta) == 0){
                                                                      Vector u = C.c - p;
   t1 = t2 = -f / (2*e);
                                                                      double dist = Length(u);
   sol.push_back(L.point(t1));
                                                                     if(dist < C.r)</pre>
   return 1;
                                                                       return 0;
                                                                      else if(dcmp(dist-C.r)==0){
 t1 = (-f - sqrt(delta)) / (2*e);
                                                                       v[0] = Rotate(u,PI/2);
 sol.push_back(L.point(t1));
                                                                       return 1;
 t2 = (-f + sqrt(delta)) / (2*e);
                                                                     } else {
 sol.push_back(L.point(t2));
                                                                       double ang = asin(C.r / dist);
 return 2;
                                                                       v[0] = Rotate(u, -ang);
                                                                       v[1] = Rotate(u, +ang);
                                                                       return 2;
// return the number of intersection
                                                                     }
// if two circle identical, then return -1
                                                                    }
int getCircleCircleIntersection(Circle C1, Circle C2,
    vector<Point>& sol){
                                                                    // return the number of tangents, -1 means inf
 double d = Length(C1.c-C2.c);
                                                                    // a[i], b[i]: point of tangency with i-th tangent on A, B;
 if(dcmp(d) == 0){
                                                                        same when internally or externally tangent
   if(dcmp(C1.r-C2.r) == 0)
                                                                    int getTangents(Circle A, Circle B, Point* a, Point* b) {
     return -1;
                                                                      int cnt = 0;
   return 0;
                                                                     if(A.r < B.r){
                                                                       swap(A, B);
  if(dcmp(C1.r+C2.r-d) < 0)
                                                                       swap(a, b);
```

```
double d2 = (A.c.x-B.c.x)*(A.c.x-B.c.x) +
    (A.c.y-B.c.y)*(A.c.y-B.c.y);
double rdiff = A.r - B.r;
double rsum = A.r + B.r;
if(dcmp(d2 - rdiff*rdiff) < 0) // containing</pre>
double base = atan2(B.c.y-A.c.y, B.c.x-A.c.x);
if (dcmp(d2)==0 \&\& dcmp(A.r-B.r)==0) // infinite tangents
if(dcmp(d2-rdiff*rdiff) == 0){ // inscribe, one tangent
 a[cnt] = A.point(base);
 b[cnt] = B.point(base);
 cnt++;
 return 1;
double ang = acos((A.r-B.r)/sqrt(d2)); // two external common
    tangents
a[cnt] = A.point(base + ang);
b[cnt] = B.point(base + ang);
cnt++;
a[cnt] = A.point(base - ang);
b[cnt] = B.point(base - ang);
cnt++;
if(dcmp(d2-rsum*rsum) == 0){
 a[cnt] = A.point(base);
 b[cnt] = B.point(PI + base);
 cnt++;
else if(dcmp(d2 - rsum*rsum) > 0){ // two internal common
    tangents
 double ang = acos((A.r+B.r) / sqrt(d2));
 a[cnt] = A.point(base+ang);
 b[cnt] = B.point(PI+base+ang);
 cnt++;
 a[cnt] = A.point(base-ang);
 b[cnt] = B.point(PI+base-ang);
 cnt++;
return cnt;
```

5 String Processing

5.1 KMP

```
#define MAX N 100010
char T[MAX_N], P[MAX_N]; // T = text, P = pattern
int b[MAX_N], n, m; // b = back table, n = length of T, m =
    length of P
void kmpPreprocess() { // call this before calling kmpSearch()
  int i = 0, j = -1; b[0] = -1; // starting values
 while (i < m) { // pre-process the pattern string P
   while (j \ge 0 \&\& P[i] != P[j]) j = b[j]; // if different,
        reset j using b
   i++; j++; // if same, advance both pointers
   b[i] = j; // observe i = 8, 9, 10, 11, 12 with j = 0, 1, 2,
        3. 4
} }
            // in the example of P = "SEVENTY SEVEN" above
void kmpSearch() { // this is similar as kmpPreprocess(), but
    on string T
 int i = 0, j = 0; // starting values
  while (i < n) { // search through string T
   while (j \ge 0 \&\& T[i] != P[j]) j = b[j]; // if different,
        reset j using b
   i++; j++; // if same, advance both pointers
   if (j == m) \{ // a \text{ match found when } j == m \}
     printf("P is found at index %d in T\n", i - j);
     j = b[j]; // prepare j for the next possible match
} } }
```

5.2 Suffix Array

```
characters
                                        // the length of input
int n:
    string
int RA[MAX_N], tempRA[MAX_N]; // rank array and temporary
    rank array
int SA[MAX_N], tempSA[MAX_N]; // suffix array and temporary
    suffix array
int c[MAX_N];
                                          // for counting/radix
    sort
char P[MAX_N];
                            // the pattern string (for string
    matching)
                                      // the length of pattern
int m;
    string
int Phi[MAX_N];
                                // for computing longest common
    prefix
int PLCP[MAX_N];
int LCP[MAX_N]; // LCP[i] stores the LCP between previous
    suffix T+SA[i-1]
                                        // and current suffix
                                            T+SA[i]
bool cmp(int a, int b) { return strcmp(T + a, T + b) < 0; } //</pre>
    compare
void constructSA_slow() {
                                  // cannot go beyond 1000
    characters
 for (int i = 0; i < n; i++) SA[i] = i; // initial SA: {0, 1,
      2, \ldots, n-1
 sort(SA, SA + n, cmp); // sort: O(n log n) * compare: O(n) =
      O(n^2 \log n)
                                                           11
void countingSort(int k) {
    O(n)
 int i, sum, maxi = max(300, n); // up to 255 ASCII chars or
      length of n
 memset(c, 0, sizeof c);
                                            // clear frequency
      table
```

```
} }
 for (i = 0; i < n; i++) // count the frequency of each
     integer rank
  c[i + k < n ? RA[i + k] : 0]++;
                                                                   void computeLCP_slow() {
 for (i = sum = 0; i < maxi; i++) {</pre>
                                                                     LCP[0] = 0;
                                                                                                                      // default
   int t = c[i]; c[i] = sum; sum += t;
                                                                         value
                                                                     for (int i = 1; i < n; i++) {
                                                                                                           // compute LCP by
 for (i = 0; i < n; i++)
                              // shuffle the suffix array if
                                                                         definition
     necessarv
                                                                      int L = 0:
                                                                                                                 // always reset L
   tempSA[c[SA[i]+k < n ? RA[SA[i]+k] : 0]++] = SA[i];
                                                                           to 0
 for (i = 0; i < n; i++)
                                                                       while (T[SA[i] + L] == T[SA[i-1] + L]) L++; // same L-th
                                       // update the suffix
     array SA
                                                                           char, L++
   SA[i] = tempSA[i];
                                                                      LCP[i] = L;
                                                                   } }
void constructSA() {
                        // this version can go up to 100000
                                                                   void computeLCP() {
    characters
                                                                     int i, L;
 int i, k, r;
                                                                     Phi[SA[0]] = -1;
                                                                                                       // default value
 for (i = 0; i < n; i++) RA[i] = T[i];
                                               // initial
                                                                     for (i = 1; i < n; i++)
                                                                                                       // compute Phi in O(n)
                                                                      Phi[SA[i]] = SA[i-1]; // remember which suffix is behind
 for (i = 0; i < n; i++) SA[i] = i; // initial SA: {0, 1, 2,
                                                                           this suffix
     ..., n-1}
                                                                     for (i = L = 0; i < n; i++) {
                                                                                                         // compute Permuted LCP
 for (k = 1; k < n; k <<= 1) { // repeat sorting process log n</pre>
                                                                         in O(n)
                                                                       if (Phi[i] == -1) { PLCP[i] = 0; continue; } // special case
                                                                       while (T[i + L] == T[Phi[i] + L]) L++; // L increased max n
   countingSort(k); // actually radix sort: sort based on the
       second item
                                                                           times
   countingSort(0);
                         // then (stable) sort based on the
                                                                      PLCP[i] = L:
                                                                      L = \max(L-1, 0);
       first item
                                                                                                 // L decreased max n times
   tempRA[SA[0]] = r = 0;
                                                                     }
                                 // re-ranking; start from rank
       r = 0
                                                                     for (i = 0; i < n; i++)
                                                                                              // compute LCP in O(n)
   for (i = 1; i < n; i++)
                                        // compare adjacent
                                                                      LCP[i] = PLCP[SA[i]]; // put the permuted LCP to the correct
       suffixes
                                                                           position
     tempRA[SA[i]] = // if same pair => same rank r; otherwise,
                                                                   }
         increase r
     (RA[SA[i]] == RA[SA[i-1]] &\& RA[SA[i]+k] == RA[SA[i-1]+k])
                                                                   ii stringMatching() { // string matching in O(m log n)
                                                                     int lo = 0, hi = n-1, mid = lo; // valid matching = [0..n-1]
         ? r : ++r;
   for (i = 0; i < n; i++)
                                                                     while (lo < hi) {
                                                                                                     // find lower bound
                                         // update the rank
       array RA
                                                                       mid = (lo + hi) / 2;
                                                                                                  // this is round down
                                                                       int res = strncmp(T + SA[mid], P, m); // try to find P in
     RA[i] = tempRA[i];
   if (RA[SA[n-1]] == n-1) break;
                                          // nice optimization
                                                                           suffix 'mid'
       trick
                                                                       if (res >= 0) hi = mid; // prune upper half (notice the
```

```
>= sign)
               lo = mid + 1; // prune lower half including mid
   else
                         // observe '=' in "res >= 0" above
 if (strncmp(T + SA[lo], P, m) != 0) return ii(-1, -1); // if
      not found
 ii ans; ans.first = lo;
 lo = 0; hi = n - 1; mid = lo;
 while (lo < hi) {    // if lower bound is found, find upper</pre>
      bound
   mid = (lo + hi) / 2;
   int res = strncmp(T + SA[mid], P, m);
   if (res > 0) hi = mid;
                               // prune upper half
   else
              lo = mid + 1;
                               // prune lower half including
       mid
        // (notice the selected branch when res == 0)
 if (strncmp(T + SA[hi], P, m) != 0) hi--; // special case
 ans.second = hi;
 return ans;
} // return lower/upperbound as first/second item of the pair,
    respectively
```

```
ii LRS() {
              // returns a pair (the LRS length and its index)
 int i, idx = 0, maxLCP = -1;
 for (i = 1; i < n; i++) // O(n), start from i = 1
   if (LCP[i] > maxLCP)
     maxLCP = LCP[i], idx = i;
 return ii(maxLCP, idx);
}
int owner(int idx) { return (idx < n-m-1) ? 1 : 2; }</pre>
               // returns a pair (the LCS length and its index)
 int i, idx = 0, maxLCP = -1;
 for (i = 1; i < n; i++)
                              // O(n), start from i = 1
   if (owner(SA[i]) != owner(SA[i-1]) && LCP[i] > maxLCP)
     maxLCP = LCP[i], idx = i;
 return ii(maxLCP, idx);
```