Linguagens Formais e Autômatos

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Conteúdo I

1. Parte 1

- Representação e prova de teoremas
- Conjuntos, relações, funções, conjuntos enumeráveis, definições recursivas, indução matemática e grafos
- Linguagens formais, gramáticas e problemas de decisão
- Autômatos Finitos
- Revisão e exercícios

Conteúdo II

2. Parte 2

- O Lema do Bombeamento para Linguagens Regulares
- Expressões Regulares
- Gramáticas Regulares
- Máquinas de Mealy e de Moore
- Revisão e exercícios

Conteúdo III

3. Parte 3

- Autômatos de Pilha
- Gramáticas Livre do Contexto: parte 1
- Gramáticas Livre do Contexto: parte 2
- Propriedades de Linguagens Livre do Contexto
- Revisão e exercícios

Linguagens Formais e Autômatos

Semana 0: Organização da disciplina

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Organização da Disciplina

⇒ 3 partes com duração de 5 semanas cada.

Cronograma

- Parte 1: Introdução às Linguagens Formais
- Parte 2: Linguagens Regulares e Autômatos
- Parte 3: Linguagens Livre do Contexto e Autômatos de Pilha

Atenção!

Cronograma sujeito a alterações e adaptações!

Organização da Disciplina

Metodologia

- Video aulas assíncronas (teóricas e práticas)
- Discussões via fórum do AVA
- Atendimento presencial via Discord
- Atendimento preferencial nas quintas-feiras de 13:00 às 15:00
- Atendimento não-preferencial nas quintas-feiras de 16:40 às 18:40

Organização da Disciplina

Avaliações

- 80% Listas de exercícios semanais(Python e/ou URI)
- 20% Contribuição e iniciativa
- Média geométrica
- Deadlines rigorosos

Utilize a Caixa de sugestões anônima e deixe críticas, comentários e dicas.

Linguagens Formais e Autômatos

Semana 0: Organização da disciplina

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 1: Representação e prova de teoremas

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Sobre este material

- Esses slides foram preparados para as disciplinas MATA50-Linguagens Formais e Autômatos
- O texto nos slides é extremamente resumido, utilize um dos livros indicado nas referências para um estudo mais aprofundado.

Referências

Esses slides foram baseados nas seguintes diversas fontes de conhecimento, tais como:

- Vieira, Newton., Introdução aos fundamentos da computação: Linguagens e máquinas, Cengage Learning, 2006.
- Hopcroft, J. E., Introdução à Teoria De Autômatos, Linguagens E Computação, Elsevier, 2002.
- Notas de aula do Prof. Newton Vieira, UFMG.

A matemática entre a entidade e a representação

Entidade	Modelo Matemático	Representação
Mês	Número inteiro no intervalo de	Um dos caracteres 1, 2, 3, 4, 5, 6, 7, 8,
	[1,12]	9, 0 , A ou B
Remuneração	Número real positivo	Número real na base 10
FP	Relação	Tabela em que cada linha tem o nome,
		cargo, salário, etc.
Cálculo de FP	Algoritmo	Programa

• Representação por sequência de símbolos \Rightarrow Linguagens Formais

Representações múltiplas

Exemplo

Diferentes representações para mês:

- Janeiro, fevereiro, ..., dezembro. Símbolos: letras a,b,...,z.
- Numerais na base decimal. Símbolos: dígitos 0 a 9.
- Numerais na base binária. Símbolos: dígitos 0 e 1.
- Numerais em algarismos romanos. Símbolos: letras I, V e X.
- Sequências de um a doze 0s. Símbolos: apenas o dígito 0.
- ⇒ Cada conjunto é uma linguagem e cada sequência de símbolos representa um mês.

Linguagens de programação

Exemplo de linguagem formal: linguagem de programação

- Linguagem de programação: conjunto de programas
- Programa: uma sequência de símbolos
- Símbolos: caracteres
- Linguagens formais: úteis para caracterizar o conceito de computabilidade
- Existe uma infinidade de funções não computáveis

Quiz

Em uma representação numérica binária, quantos bits são necessários para representar os 12 meses do ano?

- a) 1
- b) 2
- c) 3
- d) 4

Características de provas de teoremas

- Estilo:
 - formal × informal;
 - conciso × prolixo.
- Prova:
 - vocabulário limitado: se ... então, contradição, etc.
 - usa técnicas de prova.

Os conectivos lógicos: $\neg, \land, \lor, \rightarrow, \leftrightarrow, \forall, \exists$

Tabela verdade para a negação

Negação		
α	$\neg \alpha$	
V	F	
F	V	

Tabela verdade para a conjunção

Conjunção		
α	β	$\alpha \wedge \beta$
V	V	V
V	F	F
F	V	F
F	F	F

Tabela verdade para a disjunção

Disjunção		
α	β	$\alpha \vee \beta$
V	V	V
V	F	V
F	V	V
F	F	F

Tabela verdade para a condicional

condicional			
β			

Tabela verdade para a bicondicional

Bicondicional		
α	β	$\alpha \leftrightarrow \beta$
V	V	V
V	F	F
F	V	F
F	F	V

Quantificação

- Quantificação universal: $\forall x P(x)$
 - P(x) é verdadeira para todo x do universo
- Quantificação existencial: $\exists x P(x)$
 - P(x) é verdadeira para algum x do universo

Exemplo

Expressar formalmente: todo número natural par ao quadrado é par:

 $\forall n[n \in \mathbb{N} \to (n \text{ é par } \to n^2 \text{ é par})]$

Afirmativa válida

Verdadeira para todos os valores-verdade de suas subafirmativas.

- $\alpha \vee \neg \alpha$
- $\alpha \to \alpha$
- $\alpha \vee (\alpha \rightarrow \beta)$
- $P(a) \rightarrow \exists x P(x)$
- $\forall x P(x) \leftrightarrow \neg \exists x \neg P(x)$

Contradição

Falsa para todos os valores-verdade de suas subafirmativas.

- $\alpha \wedge \neg \alpha$
- $\alpha \leftrightarrow \neg \alpha$
- $(\alpha \wedge (\alpha \rightarrow \beta)) \wedge \neg \beta$
- $P(a) \land \neg \exists x P(x)$
- $\forall x P(x) \leftrightarrow \neg \exists x \neg P(x)$

Equivalência lógica

 $\alpha \equiv \beta$ se o valor-verdade de α e β é o mesmo para todos os valores-verdade de suas subafirmativas.

- $\alpha \vee \beta \equiv \beta \vee \alpha$
- $\alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma)$
- $\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$
- $\alpha \to \beta \equiv \neg \alpha \lor \beta$
- $\alpha \leftrightarrow \beta \equiv (\alpha \to \beta) \land (\beta \to \alpha)$
- $\neg \forall x P(x) \equiv \exists x \neg P(x)$

Consequência lógica (implicação lógica)

 $\Gamma \Rightarrow \beta$ se β é verdadeira sempre que as afirmativas em Γ são.

- $\{\alpha \to \beta, \alpha\} \Rightarrow \beta$ volte na tabela verdade de " \to "
- $\{\alpha \to \beta, \neg \beta\} \Rightarrow \neg \alpha$
- $\{\alpha \to \beta, \neg \alpha \to \beta\} \Rightarrow \beta$
- $\{\alpha \to \beta, \beta \to \gamma\} \Rightarrow \alpha \to \gamma$
- $\{\alpha \to \beta, \beta \to \gamma\} \Rightarrow \alpha \to \gamma$
- $\{P(a)\} \Rightarrow \exists x P(x)$
- $\{P(a), \forall x (P(x) \rightarrow Q(x))\} \Rightarrow Q(a)$

Exemplos de regras de inferência

 $\Gamma \Rightarrow \beta$ se β é verdadeira sempre que as afirmativas em Γ são.

$$\frac{\alpha}{\alpha \to \beta}$$

$$\frac{\alpha}{\beta}$$

$$\begin{array}{ccc}
\alpha & & \alpha & \neg \beta \\
\alpha \to \beta & & \beta & & \alpha \\
\hline
\beta & & & \alpha \to \beta
\end{array}$$

$$\begin{array}{ccc}
\alpha \to \beta & \alpha \to \beta & \alpha \leftrightarrow \beta \\
\neg \alpha \to \beta & \alpha \to \gamma & \beta \leftrightarrow \gamma \\
\hline
\beta & \alpha \to \gamma & \alpha \leftrightarrow \gamma
\end{array}$$

$$\begin{array}{c} \alpha \to \beta \\ \alpha \to \gamma \\ \hline \alpha \to \gamma \end{array}$$

$$\begin{array}{c} \alpha \leftrightarrow \beta \\ \beta \leftrightarrow \gamma \\ \hline \alpha \leftrightarrow \gamma \end{array}$$

Relação entre \rightarrow e \Rightarrow : se $\Gamma \cup \{\alpha\} \Rightarrow \beta$, então $\Gamma \Rightarrow \alpha \rightarrow \beta$.

Técnica de prova: direta

Prova direta da implicação

Para provar $\alpha \to \beta$:

- 1. Supor α
- 2. Provar β

Exemplo

• $n \in par \rightarrow n^2 \in par$.

Veja a solução na página 8 do livro texto.

Técnica de prova: pela contrapositiva

Prova da implicação pela contrapositiva

Para provar $\alpha \to \beta$:

- 1. Supor $\neg \beta$.
- 2. Provar $\neg \alpha$.

Exemplo

• n^2 é par $\rightarrow n$ é par.

Técnica de prova: pela universal

Prova de uma universal

Para provar $\forall x P(x)$:

- 1. Supor um x arbitrário.
- 2. Provar P(x).

Exemplo

• $\forall n \in \mathbb{N}(n \text{ é par } \rightarrow n^2 \text{ é par}).$

Técnica de prova: por contradição

Prova de uma afirmativa por contradição

Para provar α :

- 1. Supor um $\neg \alpha$.
- 2. Provar uma contradição.

Exemplo

• Existe uma infinidade de números primos.

Técnica de prova: por construção

Prova de uma existencial por construção

Para provar $\exists x \in A, P(x)$:

- 1. Encontrar um $a \in A$ tal que P(a).
- 2. Provar P(a).

Exemplo

• $\forall n \in \mathbb{N}, \exists k \in \mathbb{N}$, tal que k tem n divisores distintos.

Técnica de prova: por casos

Prova de uma afirmativa por casos

Para provar β :

- 1. Provar $\alpha_1 \vee \ldots \vee \alpha_n$.
- 2. Provar $\alpha_1 \to \beta, \ldots, \alpha_n \to \beta$.

Exemplo

• $\forall x, y \in \mathbb{R}, \min(x, y) + \max(x, y) = x + y$.

Veja a solução na página 10 do livro texto.

Técnica de prova: para bicondicional

Prova de uma bicondicional em duas partes

Para provar $\alpha \leftrightarrow \beta$:

- 1. Provar $\alpha \to \beta$.
- 2. Provar $\beta \to \alpha$.

Exemplo

• $\forall n \in \mathbb{N}, n \text{ par } \leftrightarrow n^2 \text{ par.}$

Veja a solução na página 10 do livro texto.

Linguagens Formais e Autômatos

Semana 1: Representação e prova de teoremas

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 2: Conjuntos, relações, funções, conjuntos enumeráveis, definições recursivas, indução matemática e grafos

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

O que é um conjunto

Abstração matemática que visa capturar o conceito de coleção. Lista não ordenada de elementos ou membros: $\{1,2\}=\{2,1\}$

Notação

- 1. $a \in A$: a pertence a A.
- 2. $a \notin A$: a não pertence a A.

Exemplos

- {Mércúrio, Vênus, Terra, Marte, Júpter}
- {10,Marte,{0},{Terra,1,2,3}}

Tipos de conjuntos e conjuntos importantes

- O conjunto vazio: ∅.
- Conjuntos unitário, finito, infinito.
- N: números naturais.
- Z: números inteiros.
- R: números reais.
- 0: números racionais.

Notações importantes

- $\{x \mid P(x)\}$. Exemplo: $\{k \mid k = 2n + 1 \text{ e } n \in \mathbb{N}\}$
- $\{x \in A \mid P(x)\}$. Exemplo: $\{k \in \mathbb{R} \mid 0 \le k \le 1\}$.

Relacionamentos entre conjuntos

Relacionamentos básicos entre conjuntos

- Subconjunto: $A \subseteq B$ se e somente se $\forall x (x \in A \rightarrow x \in B)$
- Subconjunto próprio: $A \subset B$ se e somente se $A \subseteq B$ e $A \neq B$.

Exemplos

- ∅ ⊂ A
- $\emptyset \subset A$ se $A \neq \emptyset$
- $\emptyset \subseteq \emptyset$

Operações sobre conjuntos

Operações básicas entre conjuntos

- União: $A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$
- Interseção: $A \cap B = \{x \mid x \in A \text{ e } x \in B\}$
- Diferença: $A B = \{x \mid x \in A \text{ e } x \notin B\}$
- Complemento: $\overline{A} = U A$

Exemplos de identidades

- $A \cup B = B \cup A$ (comutatividade)
- $A \cap B = B \cap A$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (distributividade)
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (leis de *De Morgan*)
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- $A B = A \cap \overline{B}$

Igualdade

A = B se e somente se $A \subseteq B$ e $B \subseteq A$.

Prova de igualdade de conjuntos

Para provar A=B:

- Provar $A \subseteq B$.
- Provar $B \subseteq A$.

Algumas vezes é possível provar encadeando-se \leftrightarrow Exemplo

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Conjuntos disjuntos

A e B são disjuntos se e somente se $A \cap B = \emptyset$ Exemplos

- {0,2,4} e {1,3,5}.
- ∅ e *A*.
- $A \in \overline{A}$.
- $A B \in B A$.

União e interseção generalizadas

União de *n* conjuntos

$$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n.$$

Interseção de *n* conjuntos

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n.$$

Partição

Partição de um conjunto

Uma partição de A é o conjunto $\{B_1, \ldots, B_n\}$ tal que:

- $B_i \neq \emptyset$ para $1 \leq i \leq n$
- $B_i \cap B_j = \emptyset$ para $1 \le i < j \le n$; e
- $\bigcup_{i=1}^n B_i = A$.

Quais são as partições de $\{1, 2, 3\}$?

Conjunto potência; número de elementos

Conjunto potência

Conjunto potência de $A : \mathcal{P}(A) = \{X \mid X \subseteq A\}.$

Exemplo: que conjunto é $P(\{1,2,3\})$?

Notação para número de elementos de A: |A|.

Exemplos:

- $|\emptyset| = 0$,
- $|\emptyset, 1, 2, \{1, 2, 3, 4, 5\}| = 4$,
- $|P(A)| = 2^{|A|}$.

Produto cartesiano

Pares (a, b) ou [a, b] (similarmente: tripla, quádrupla, etc.)

Produto cartesiano de dois conjuntos

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}$$

Exemplos:

- $\emptyset \times \{1, 2\} = \emptyset$
- $\{1,2\} \times \{1,2\} = \{(1,1),(1,2),(2,1),(2,2)\}.$
- $|A \times B| = |A| \cdot |B|$ se $A \in B$ forem finitos.

Produto cartesiano de n conjuntos: A^n .

O que é relação

Relação de n argumentos sobre $A_1, ..., A_n$

Um subconjunto de $A_1 \times A_2 \times ... \times A_n$.

Relação binária: $R \subseteq A \times B$

Domínio: A

Contradomínio: B

Imagem: $\{y|(x,y) \in R \text{ para algum } x\}$

Notação: $(x,y) \in R$ é o mesmo que xRy.

Um exemplo de relação binária

```
\begin{aligned} \mathsf{Relação} &< \subseteq \textit{N} \times \textit{N} \\ & \textbf{Domínio} \\ & \mathbb{N} \end{aligned};
```

Contradomínio: $\mathbb{N} - \{0\}$;

Imagem: $\mathbb{N} - \{0\}$.

Propriedades

Inversa de R

$$R^{-1} = \{(y, x) | (x, y) \in R\}$$

Propriedades de uma relação binária $R \subseteq A \times A$

- Reflexiva: $\forall x \in A[xRx]$;
- Simétrica: $\forall x, y \in A[xRy \rightarrow yRx]$; e
- Transitiva: $\forall x, y, z \in A[(xRy \land yRz) \rightarrow xRz]$.

Quiz

Considere as relações

- 1. < sobre \mathbb{N} ;
- 2. \leq sobre \mathbb{N} ;
- 3. \subseteq sobre $\mathcal{P}(\mathbb{N})$;
- 4. \equiv sobre o conjunto das afirmativas da lógica proposicional.

Para cada uma, deixe nos comentários se a mesma é reflexiva, simétrica e/ou transitiva.

Relação de equivalência

Relação de equivalência

Aquela que é reflexíva, simétrica e transitiva.

⇒ Induz classes de equivalência

Exemplos:

- $(\text{mod } n) = \{(x, y) \in \mathbb{N}^2 \mid x \mod n = y \mod n\}$
- fazem aniversário no mesmo dia

Que classes de equivalência induz (mod 2)?

Fechos de uma relação

Fecho reflexivo

O fecho reflexivo de $R \subseteq A \times A$ é a relação S tal que:

- *R* ⊂ *S*:
- *S* é reflexiva;
- se $R \subseteq T$ e T é reflexiva, $S \subseteq T$.

O fecho reflexivo obtém-se acrescentando à relação o mínimo de elementos necessários para a tornar reflexiva.

Fechos simétrico e transitivo: análogos.

Qual o fecho reflexivo de <?

O que é uma função

Função parcial

Uma função $f:A\to B$ é uma relação $f\subseteq A\times B$ tal que:

se
$$(x, y) \in f$$
 e $(x, z) \in f$ então $y = z$

- $(x, y) \in f$ é o mesmo que f(x) = y
- f é indefinida para x se não há y tal que f(x) = y.
- Função total: definida para todo argumento.
- Função $f: A \rightarrow B$ de n argumentos:

$$A = A_1 \times ... \times A_n$$

Exemplos de funções

- $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ (total)
- $/: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ (parcial)

Composição de funções

Composição:
$$g \circ f(x) = g(f(x))$$
.

Sejam:

$$f:\mathbb{Z} o \mathbb{N}$$
 tal que $f(n) = |n| + 1$

$$g: \mathbb{N} \to \mathbb{Z}$$
 tal que $g(n) = 1 - n$

Então:

- $g \circ f : \mathbb{Z} \to \mathbb{Z}$ é tal que $(g \circ f)(n) = g(f(n)) = g(|n|+1) = 1 (|n|+1) = -|n|$.
- $f \circ g : \mathbb{N} \to \mathbb{N}$ é tal que $(f \circ g)(n) = f(g(n)) = f(1-n) = |1-n|+1$.

Tipos de funções

Uma função total $f: A \rightarrow B$ é:

- Injetora: se $\forall x, y[x \neq y \rightarrow f(x) \neq f(y)]$. Ex. $f : \mathbb{N} \rightarrow \mathbb{N}$ tal que f(n) = 2n.
- Sobrejetora: se B é a imagem de f. Ex. $g: \mathbb{Z} \to \mathbb{N}$ tal que g(n) = |n|.
- **Bijetora**: se é injetora e sobrejetora. Ex. $h: \mathbb{Z} \to \mathbb{N}$ tal que h(n) = 2n se $n \ge 0$, e h(n) = -(-2n+1) se n < 0.

O que é conjunto enumerável

Cardinalidade

card(A) = card(B) se existe uma função bijetora de A para B.

- $\Rightarrow card(A) = card(B)$ se |A| = |B| caso $A \in B$ sejam finitos.
- \Rightarrow A é infinito se existe $X \subset A$ tal que card(X) = card(A).

Conjunto enumerável

A é enumerável se $card(A) = card(\mathbb{N})$

Conjunto contável: finito e enumerável.

Um exemplo de conjunto enumerável

O conjunto \mathbb{Z} é enumerável:

Um teorema facilitador

As seguintes afirmativas são equivalentes:

- 1. A é contável;
- 2. Existe função injetora de A para \mathbb{N} ;
- 3. $A = \emptyset$ ou existe uma função sobrejetora de $\mathbb N$ para A.

Resultados importantes

- 1. Todo subconjunto de conjunto contável é contável;
- 2. $A \times B$ é contável se A e B são contáveis;
- 3. $A \cup B$ são contáveis se A e B são contáveis.

O que é definição recursiva

Definição recursiva do conjunto A

- 1. Base: especificação de um conjunto base $B \subset A$.
- 2. Passo recursivo: como obter elementos de A a partir de elementos de A.
- 3. **Fechamento**: só pertencem a *A* os referidos em 1. e 2.

Definição recursiva dos naturais

O conjunto $\mathbb N$ pode ser definido assim:

- 1. Base: $0 \in \mathbb{N}$.
- 2. Passo recursivo: se $n \in \mathbb{N}$, então $s(n) \in \mathbb{N}$.
- 3. Fechamento: só pertencem a $\mathbb N$ o número que pode ser obtido de acordo com 1. e 2.

Definição recursiva de fatorial

A função fatorial, $fat : \mathbb{N} \to \mathbb{N}$ pode ser definida assim:

- 1. fat(0) = 1;
- 2. $fat(n) = n \times fat(n-1)$, para $n \ge 1$

Indução fraca

Baseada na validade de $[P(0) \land \forall n(P(n) \rightarrow P(n+1))] \rightarrow \forall nP(n)$:

Princípio da indução fraca

Se

- 1. P(0), e
- 2. $\forall n(P(n) \rightarrow P(n+1))),$

então $\forall nP(n)$.

Estrutura de demonstração por indução fraca

- 1. Provar P(0).
- 2. Seja $n \ge 0$ arbitrário.
- 3. Suponha P(n) (hipótese de indução).
- 4. Provar P(n+1).
- 5. Concluir $\forall nP(n)$.

Indução forte

Baseada na validade de $\forall n(\forall k < nP(k) \rightarrow P(n)) \rightarrow \forall nP(n)$:

Princípio da indução forte

Se

• $\forall n(\forall k < nP(k) \rightarrow P(n))$

então $\forall nP(n)$

Estrutura de demonstração por indução forte

- 1. Seja $n \ge 0$ arbitrário.
- 2. Suponha $\forall k < nP(k)$ (hipótese de indução).
- 3. Provar P(n).
- 4. Concluir $\forall nP(n)$.

O que é grafo

Grafo

Um grafo pode ser ser definido como uma tripla $G = (V, E, \psi)$ no qual:

- 1. V é o conjunto dos elementos chamados vértices
- 2. E é o conjunto distinto de V de elementos chamados arestas e
- 3. ψ é uma função que associa cada elemento de E a um par de elementos de V.
- Grafo dirigido: as arestas são pares ordenados
- Grafo não-dirigido: as arestas são pares não-ordenados

Exemplo de grafo dirigido

- Vértices: {*A*, *B*, *C*, *D*, *E*}
- Arestas: $\{(A, A), (A, B), (A, C), (B, D), ...\}$

Grafos rotulados

Grafo dirigido rotulado

Um grafo dirigido rotulado pode ser definido como uma tripla G = (V, A, R), no qual:

- 1. V é o conjunto de vértices
- 2. A é o conjunto de arestas rotuladas, e
- 3. R é um conjunto de rótulos

Exemplo de grafo dirigido rotulado

- Vértices: {*A*, *B*, *C*, *D*, *E*}
- Arestas: $\{(A, A, 1), (A, B, 2), (A, C, 3), (B, D, 6), ...\}$

Conceitos importantes

Grau de um vértice

Número de arestas incidentes ao vértice.

Caminho de comprimento n de a para b

Sequência de vértices e arestas $v_0x_1v_1x_2v_2...v_{n-1}x_nv_n$:

- $v_0 = a$;
- $v_n = b$; e
- $x_i = (v_{i-1}, v_i)$

Terminologia associada a caminhos

- Caminho vazio: caminho de comprimento zero.
- Caminho fechado (ciclo): aquele em que $v_0 = v_n$.
- Laço: ciclo de comprimento 1
- Grafo acíclico: grafo sem ciclos
- Grafo conexo: aquele em que existe um caminho entre quaisquer par de vértices

Árvore

Uma árvore é um grafo acíclico conexo.

Árvore com raiz

Uma árvore com raiz é uma tripla (V, A, r) tal que:

- 1. $(\{v\}, \emptyset, v)$ é uma árvore;
- 2. se (V, A, r) é uma árvore, $v \in V$ e $v' \in V$, então $(V \cup \{v'\}, A \cup \{\{v, v'\}\}, r)$ é uma árvore;
- 3. nada mais é árvore.

Exemplo de árvore com raiz

Terminologia associada a árvores

- Filhos, pai, irmãos, descendente, ancestral.
- Vértice interno, folha.
- Nível de um vértices, altura da árvore.
- Árvore dirigida, ordenada.
- Fronteira de uma árvore.

Linguagens Formais e Autômatos

Semana 2: Conjuntos, relações, funções, conjuntos enumeráveis, definições recursivas, indução matemática e grafos

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 3: Linguagens formais, gramáticas e problemas de decisão

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Conceitos iniciais

Alfabeto

Conjunto finito não vazio (de símbolos).

- {1}
- {0,1}
- $\{a, b, c\}$
- Conjunto dos caracteres do teclado.

Conceitos iniciais

Definição de palavra

Uma palavra (string) em um alfabeto Σ é uma sequência finita de símbolos de Σ .

Exemplos de palavras em $\Sigma = \{0, 1\}$:

• λ (a palavra vazia), 0, 1, 00, 01, 10, 11, 000, etc.

Comprimento de uma palavra w

|w| = número de símbolos de w.

$$|\lambda| = 0$$
, $|0| = 1$, $|000| = 3$, $|11010| = 5$, etc, ...

Abreviação

Definição

 a^n abrevia n ocorrências do caractere a em sequência.

- $1^0 = \lambda$
- $0^4 = 0000$
- $1^301^2 = 111011$
- $1^{1000} = \text{foi mal...}$

Conjunto de todas as palavras

Definição

 Σ^* é o conjunto de todas as palavras sobre Σ

- $\{1\}^* = \{\lambda, 1, 11, 111, 1^4, 1^5, \ldots\}$
- $\{0,1\}^* = \{\lambda,0,1,00,01,10,11,...\}$

Linguagem

Definição

Uma linguagem de alfabeto Σ é um subconjunto de Σ^* .

Exemplos

Linguagens de alfabeto $\{0,1\}$

- Ø
- {λ}
- $\{\lambda, 0\}$
- $\{w \in \{0,1\}^* | 1 \le |w| \le 5\}$
- $\{0^n \mid n \text{ é um número primo}\}$
- $\{0^n 1^n \mid n \in \mathbb{N}\}$
- $\{0,1\}^*$

Operações sobre conjuntos se aplicam a linguagens

Exemplos

Sejam as linguagens L_1 sobre Σ_1 e L_2 sobre Σ_2 :

- $L_1 \cup L_2$ é uma linguagem sobre $\Sigma_1 \cup \Sigma_2$
- $L_1 \cap L_2$ é uma linguagem sobre $\Sigma_1 \cap \Sigma_2$
- $L_1 L_2$ é uma linguagem sobre Σ_1
- $\overline{L_1} = \Sigma^* L_1$ é uma linguagem sobre Σ_1
- $\mathcal{P}(L_1)$ é um conjunto de linguagens sobre Σ_1
- $\mathcal{P}(\Sigma_1^*)$ é o conjunto de todas as linguagens sobre Σ_1

Concatenação de palavras

Definição

A concatenação de $x=a_1a_2...a_m$ e $y=b_1b_2...b_n$ é $xy=a_1a_2...a_mb_1b_2...b_n$

Exemplos

Sejam x = 001 e y = 10:

- xy = 00110
- $\lambda w = w\lambda = w$
- x(yz) = (xy)z = xyz
- $wwwww = w^5$
- $w^0 = \lambda$

Uma operação e uma propriedade de palavras

Reverso

O reverso de $w = a_1 a_2 ... a_n$ é $w^R = a_n a_{n-1} ... a_1$

Exemplos

- $\lambda^R = \lambda$
- $a^R = a$
- $(abcaabb)^R = (bbaacba)$

Palíndromo

Uma palavra tal que $w = w^R$

Exemplos: λ , a, bb, ccc, aba, baab, abcba

Prefixos, sufixos e subpalavras de uma palavra

Definições

- x é prefixo de w se e somente se existe y tal que w = xy
- y é sufixo de w se e somente se existe x tal que w = xy
- z é subpalavra de w se e somente se existem x e y tal que w = xzy

- Prefixos de abc: λ , a, ab e abc
- Sufixos de abc: λ , c, bc e abc
- Subpalavras de abc: λ , a, b, c, ab, bc e abc

Concatenação de linguagens

Definição

A concatenação de L_1 e L_2 é $L_1L_2=\{xy\mid x\in L_1 \text{ e }y\in L_2\}$

Sejam
$$L_1 = \{ w \in \{0,1\}^* \mid |w| = 5 \}$$
 e $L_2 = \{ 0y \mid y \in \{0,1\}^* \}$

- $\emptyset L_1 = \emptyset$
- $\{\lambda\} L_1 = L_1$
- $L_1L_1 = \{w \in \{0,1\}^* \mid |w| = 10\}$
- $L_1L_2 = \{w \in \{0,1\}^* \mid |w| \ge 6 \text{ e o sexto dígito de } w \notin 0\}$
- $L_2L_1 = \{w \in \{0,1\}^* \mid |w| \ge 6 \text{ e } w \text{ começa com } 0\}$
- $L_2L_2 = \{0y \mid y \in \{0,1\}^* \text{ e } y \text{ contém no mínimo um } 0\}$

Fecho de Kleene de uma linguagem

 L^n designa LL...L(n vezes). $L^0 = \{\lambda\}$ (por que?)

Definição

O fecho de Kleene de L, L* é definido por:

- $\lambda \in L^*$;
- se $x \in L^*$ e $y \in L$, então $xy \in L^*$

Pode-se mostrar que:

$$L^* = \bigcup_{n \in \mathbb{N}} L^n = L^0 \cup L^1 \cup L^2 \cup \dots = \{\lambda\} \cup L \cup LL \cup \dots$$

Fecho de positivo de Kleene de uma linguagem

Definição

O fecho positivo de Kleene de L é $L^+ = LL^*$

Pode-se mostrar que:

$$L^{+} = \bigcup_{n \geq 1} L^{n} = L^{1} \cup L^{2} \cup \cdots = L \cup LL \cup \cdots$$

Segue diretamente das definições que $L^* = L^+ \cup \{\lambda\}$

Exemplificando fechos de Kleene

Definicão

O fecho positivo de Kleene de L é $L^+ = LL^*$

- $\emptyset^* = \{\lambda\}$
- $\emptyset^{+} = \emptyset$
- $\{\lambda\}^* = \{\lambda\}^+ = \{\lambda\}$
- $\{0\}^* = \{0^n | n \in \mathbb{N}\}$
- $\{0\}^+ = \{0^n | n > 1\}$
- $\{00\}^* = \{0^{2n} | n \in \mathbb{N}\}$
- $\{00\}^+ = \{0^{2n} | n \ge 1\}$
- $\{\lambda, 00, 11\}^* = \{\lambda, 00, 11\}^+ = \{\lambda\} \cup \{00, 11\}^+$

Responda nos comentários

Descrevendo linguagens de alfabeto $\{0,1\}$

O fecho positivo de Kleene de L é $L^+ = LL^*$

- 1. o conjunto de palavras que começam com o 0
- 2. o conjunto das palavras que contêm 00 ou 11
- 3. o conjunto das palavras que terminam com 0 seguido de um número ímpar de 1s consecutivos
- 4. o conjunto das palavras que começam ou terminam com 0
- 5. o conjunto das palavras de tamanho par que começam com 0 ou terminam com 0
- 6. o conjunto das palavras com um prefixo de um ou mais 0s seguido (imediatamente) de um sufixo de 1s de mesmo tamanho
- 7. o conjunto das palavras formadas por concatenações de palavras da forma 0^n1^n para $n \ge 1$.

Definição recursiva de linguagens

- Σ* é enumerável
- Logo, linguagens podem ser definidas recursivamente. Exemplo:
 - 1. $\lambda \in L$:
 - 2. se $x \in L$ então $0x1 \in L$

Conceitos envolvidos em gramáticas

- Gramática: formalismo, que permite o uso de recursão especialmente projetado para a definição de linguagens.
- Terminais: alfabeto de linguagem definida Exemplo: $\Sigma = \{0, 1\}$
- Variáveis (não terminais): alfabeto de símbolos auxiliares Exemplo: $\Gamma = \{A, B\}$
- Regra: par ordenado (u,v), tradicionalmente escrito na forma $u \to v$ Exemplo: $0AB \to 10A$

Um exemplo de derivação

Derivação (geração) de 110A10A a partir de 0ABB0AB:

```
0ABB0AB \Rightarrow 10AB0AB (aplicando-se a regra 0AB \rightarrow 10A)
```

 \Rightarrow 110A0AB (aplicando-se a regra 0AB \rightarrow 10A)

 \Rightarrow 110A10A (aplicando-se a regra 0AB \rightarrow 10A)

Definição Informal de Gramática

- Uma gramática é constituída de uma variável de partida e um conjunto de regras
- Toda derivação deve iniciar pela variável de partida
- Forma sentencial: palavra constituída de terminais e/ou variáveis
- Sentença: forma sentencial constituída de terminais apenas.
- Linguagem gerada: sentenças que podem ser derivadas.

Notação: L(G) é a linguagem gerada pela gramática G.

Dois exemplos de gramática

A gramática de variável P e as duas regras a seguir gera $\{0\}^*$

- 1. $P \rightarrow 0P$
- 2. $P \rightarrow \lambda$

A gramática de variável P e as duas regras a seguir gera $\{0^n1^n|n\geq 0\}$

- 1. $P \rightarrow 0P1$
- 2. $P \rightarrow \lambda$

Um outro exemplo de gramática

Seja a gramática G constituída pela variável de partida P e pelas regras:

- 1. $P \rightarrow aAbc$
- 2. $A \rightarrow aAbC$
- 3. $A \rightarrow \lambda$
- 4. $Cb \rightarrow bC$
- $5. \ \textit{Cc} \rightarrow \textit{cc}$

Um exemplo de derivação

$$P \Rightarrow aAbc \text{ (regra 1)}$$

 $\Rightarrow abc \text{ (regra 3)}$

Isso mostra que $abc \in L(G)$

Outra derivação

```
P \Rightarrow aAbc \text{ (regra 1)}

\Rightarrow aaAbCbc \text{ (regra 2)}

\Rightarrow aaaAbCbCbc \text{ (regra 2)}

\Rightarrow aaabCbCbc \text{ (regra 3)}

\Rightarrow aaabbCCbc \text{ (regra 4)}

\Rightarrow aaabbCbCc \text{ (regra 4)}
```

Isso mostra que $a^3b^3c^3 \in L(G)$. O que é L(G)?

Definição de gramática

Gramática

Uma gramática é uma quádrupla (V, Σ, R, P) , em que:

- 1. V é um conjunto finito de elementos denominados variáveis;
- 2. Σ é um alfabeto; $V \cap \Sigma = \emptyset$
- 3. $R \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ é um conjunto finito de pares ordenados chamados regras; e
- 4. $P \in V$ é uma variável conhecida como variável de partida.

Derivação em *n* passos

Definição

A relação $\stackrel{n}{\Rightarrow}$ pode ser definida recursivamente para a gramática G:

- 1. $x \stackrel{0}{\Longrightarrow} x$ para toda forma sentencial x de G;
- 2. se $w \stackrel{n}{\Longrightarrow} xuy$ e $u \to v$ é regra de G, então $w \stackrel{n+1}{\Longrightarrow} xvy$

Derivação em vários passos

Derivação em zero ou mais passos

 $x \stackrel{*}{\Rightarrow} y$ se e somente se existe $n \ge 0$ tal que $x \stackrel{n}{\Rightarrow} y$.

Derivação em um ou mais passos

 $x \stackrel{+}{\Longrightarrow} y$ se e somente se existe $n \ge 1$ tal que $x \stackrel{n}{\Longrightarrow} y$.

Linguagem gerada por uma gramática

Definição

Seja
$$G = (V, \Sigma, R, P)$$

$$L(G) = \{ w \in \Sigma^* | P \stackrel{*}{\Rightarrow} w \}$$

Notação simplificada

Duas regras com o mesmo lado esquerdo:

$$u \rightarrow v e u \rightarrow v'$$

podem ser escritas assim:

$$u \rightarrow v \mid v'$$

Exemplo de esquema de derivação

Seja $G = (\{P, B\}, \{a, b\}, R, P)$ em que R consta das regras:

1,2. $P \rightarrow aPb \mid Bb$

3,4. $B \rightarrow Bb \mid \lambda$

Esquema de derivação para $a^n b^{n+1+k}$, $n \ge 0$, $k \ge 0$:

$$P \stackrel{n}{\Rightarrow} a^n P b^n$$
 (regra 1 n vezes, $n \ge 0$)
 $\Rightarrow a^n B b^{n+1}$ (regra 2)
 $\stackrel{k}{\Rightarrow} a^n B b^{n+1+k}$ (regra 3 k vezes, $k \ge 0$)
 $\Rightarrow a^n b^{n+1+k}$ (regra 4)

Logo, $\{a^n b^m \mid n < m\} \subseteq L(G)$

Equivalência de gramáticas

Definição

Duas gramáticas G e G' são ditas gramáticas equivalentes quando L(G) = L(G')

Um exemplo de gramática mais "prático"

 $G = (V, \Sigma, R, E)$, em que:

- $V = \{E, T, N, D\};$
- $\Sigma = \{+, -, (,), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\};$
- R contém as regras:

$$E \to E + T \mid E - T \mid T$$

$$T \to (E) \mid N$$

$$N \to DN \mid D$$

$$D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

Recursão à esquerda

Gerando somas e/ou subtrações de Ts:

$$E \Rightarrow E + T$$

$$\Rightarrow E - T + T$$

$$\Rightarrow E - T - T + T$$

$$\Rightarrow T - T - T + T$$

$$egin{aligned} (\mathsf{regra} \ E & o E + T) \ (\mathsf{regra} \ E & o E - T) \ (\mathsf{regra} \ E & o E - T) \ (\mathsf{regra} \ E & o T) \end{aligned}$$

 \Rightarrow recursão à esquerda.

Recursão à direita

Gerando sequências de 4 dígitos:

$$N \Rightarrow DN$$
 (regra $N \rightarrow DN$)
 $\Rightarrow DDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDN$ (regra $N \rightarrow DN$)
 $\Rightarrow DDDDN$ (regra $N \rightarrow D$)

⇒ recursão à direita.

Recursão indireta

$$E\Rightarrow E+T \qquad \qquad (\text{regra } E\to E+T) \ \Rightarrow T+T \qquad \qquad (\text{regra } E\to T) \ \Rightarrow (E)+T \qquad \qquad (\text{regra } T\to (E))$$

 \Rightarrow A variável E reaparece (recursivamente) na forma sentencial entre "(" e ")".

O que é problema de decisão?

Definição

Um problema de decisão é uma questão que faz referência a um conjunto finito de parâmetros e que, para valores específicos dos parâmetros, tem como resposta sim ou não.

Exemplos

- 1. determinar se o número 123654789017 é um número primo;
- 2. determinar se um número natural n é um numero primo;
- 3. determinar se existe um ciclo em um grafo G;
- 4. determinar se uma palavra w é gerada por uma gramática G

Instâncias de um problema de decisão

Definição

Uma instância de um problema de decisão é uma questão obtida dando aos parâmetros valores específicos.

Exemplos

- 1. O problema de decisão "determinar se um número natural n é um numero primo" tem um conjunto infinito de instâncias:
 - determinar se 0 é um número primo;
 - determinar se 1 é um número primo;
 - determinar se 2 é um número primo;
 - e assim por diante.
- 2. O problema de decisão "determinar se o número 123654789017 é um número primo" tem uma única instância.

Solução para um problema de decisão

Definicão

Uma solução para um problema de decisão, denominada de **procedimento de decisão**, é um algoritmo que, para qualquer instância do problema de decisão, retorna a resposta correta.

O que é algoritmo?

Problema decidível

Definição

Um problema de decisão que tem solução é dito ser **decidível**, e um PD que não tem solução, **indecidível**.

⇒ todo problema de decisão com um conjunto finito de instâncias é decidível!

Restrição de um problema de decisão

Definição

Uma restrição de um problema de decisão P é aquele que se obtém restringindo-se o conjunto de valores possíveis de um ou mais parâmetros de P.

Exemplos

- "determinar se 123654789017 é um número primo" é uma restrição de "determinar se um número natural *n* é um número primo".
- "determinar se uma palavra w é gerada por uma gramática G_0 em que o lado esquerdo de cada regra tem apenas uma variável", é uma restrição de "determinar se uma palavra w é gerada por uma gramática G".

Relação entre problemas de decisão e linguagens

• As instâncias de um problema de decisão P podem ser expressas em uma linguagem:

$$L_P = \{ w \in \Sigma^* \mid w \text{ representa uma instância de } P \}$$

• Linguagem constituída das instâncias em que a resposta é "sim":

$$L_P^S = \{ w \in L_P \mid \text{ a resposta para } w \text{ é sim} \}$$

• Determinar se *P* tem solução é equivalente a:

dada
$$w \in L_P$$
, determinar se $w \in L_P^S$

Relação entre problemas de decisão e linguagens

Exemplo

PD: determinar se $n \in \mathbb{N}$ é primo. Representando-se cada instância por uma palavra binária, temos:

- $L_{PD} = \{0, 1\}^+;$
- $L_{PP}^{S} = \{ w \in \{0,1\}^{+} \mid \eta(w) \text{ \'e primo} \}$

em que $\eta(w)$ é o número representado por w. Com isto:

n é primo se e somente se $w \in L_{PD}$, em que $\eta(w) = n$.

Linguagens Formais e Autômatos

Semana 3: Linguagens formais, gramáticas e problemas de decisão

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 4: Autômatos Finitos

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Quebra-cabeça

O homem, o leão, o coelho e o repolho

Um homem, um leão, um coelho e um repolho devem atravessar um rio usando uma canoa, com a restrição de que o homem deve transportar no máximo um dos três de cada vez de uma margem à outra. Além disso, o leão não pode ficar na mesma margem que o coelho sem a presença do homem, e o coelho não pode ficar com o repolho sem a presença do homem. O problema consiste em determinar se é possível fazer a travessia, e caso seja, a sequência de movimentações que propicie a travessia.

Modelagem de um problema

Na fase de modelagem:

- 1. As informações relevantes são identificadas (abstração);
- 2. As informações relevantes são estruturadas (representadas), de forma a facilitar a posterior solução.
- \Rightarrow Menos informações \rightarrow solução mais fácil e/ou eficiente.

Modelagem do quebra-cabeça

Informações relevantes abstraídas para o quebra-cabeças:

- 1. em um dado instante, em que margem do rio estão o homem, o leão, o coelho, e o repolho;
- 2. a sequência de movimentações entre as margens que propiciou a situação indicada em 1. Representação das informações:
 - $A \subseteq \{h,l,c,r\}$ representa que os elementos em A estão na margem esquerda e os em $\{h,l,c,r\}-A$ na margem direita;
 - palavra $a_0 a_1 a_2 ... a_n$, em que cada a_i pode ser s,1,c ou r, representa a sequência de movimentos até o momento.

Modelagem por meio de estados e transições

- Estado: uma fotografia da realidade
- Transição de um estado para o outro: provocada por uma ação
- Solução: sequência de ações que levam de um estado inicial a um estado final

Para o quebra cabeça:

- Estado: um de subconjunto de {h,1,c,r}
 - inicial: {h,1,c,r}
 - final: {}
- Transição: provocada por uma das ações: s,1,c ou r.
- Solução: uma palavra no alfabeto {s,1,c,r}

Diagrama de estados

Representação dos estados e transições por meio de um grafo:

- Estado: vértice do grafo
 - inicial: ressaltado por uma seta que o aponta
 - final: oval dupla
- Transição de e para e' provocada por s: aresta de e para e' com rótulo s.

Diagrama de estados para o quebra-cabeça

Computação

Dada $w \in \{s,l,c,r\}^*$:

- w é reconhecida se o "caminho correspondente" vai do estado inicial ao final.
- w é rejeitada, caso contrário.

Configuração instantânea durante processamento de w : [e, y], sendo:

- e: o estado atual após processar um prefixo x de w;
- y: o sufixo ainda não processado (assim, w = xy).

Relação "resulta em" \vdash : Dizemos que $[e_1, w] \vdash [e_2, y]$ se existe uma transição de e_1 para e_2 sob a e w = ay.

Exemplo de computação:

$$[\{\texttt{l, r}\}, \texttt{sllr}] \vdash [\{\texttt{h, l, r}\}, \texttt{llr}] \vdash [\{\texttt{r}\}, \texttt{lr}] \vdash [\{\texttt{h, l, r}\}, \texttt{r}] \vdash [\{\texttt{l}\}, \lambda]$$

Características do autômato do quebra-cabeças

- para cada transição existe uma transição inversa;
- há um único estado final;
- determinismo: para cada par (estado, símbolo) existe, no máximo, uma transição;
- o conjunto de estados é finito.
- ⇒ Única característica geral: a última.

O que é autômato finito determinístico

AFD

Um autômato finito determinístico (AFD) é uma quíntupla $(E, \Sigma, \delta, i, F)$ em que:

- E é um conjunto finito não vazio de estados;
- Σ é um alfabeto;
- $\delta: E \times \Sigma \to E$ é a função de transição, uma função total;
- $i \in E$ é o estado inicial;
- $F \subseteq E$ é o conjunto de estados finais.

Propriedades dos AFDs

- Determinismo: a partir do estado inicial é atingido um único estado, para uma dada palavra de entrada.
- Função de transição total: para toda palavra de entrada, atinge-se um estado consumindo-se toda a palavra.
- Um único estado inicial: com vários o poder computacional não é maior.
- Vários estados finais: com um só, o poder computacional é menor.
- Conjunto finito de estados: com conjunto infinito, o poder computacional é maior.

AFD para o quebra-cabeças

$$M = (E, \{s, l, c, r\}, \delta, \{h, l, c, r\}, \{\{\}\})$$

$$E = \{\{h, l, c, r\}, \{l, r\}, \{h, l, r\}, \{l\}, \{r\}, \{h, l, c\}, \{h, c, r\}, \{c\}, \{h, c\}, \{\}, t\}$$

δ	s	1	С	r
h, I, c, r	t	t	$\{I,r\}$	t
$\{I,r\}$	$\{h,l,r\}$	t	$\{h,l,c,r\}$	t
$\{h, I, r\}$	$\{l,r\}$	$\{r\}$	t	{I}
{/}	t	t	$\{h,l,c\}$	$\{h,l,r\}$
{ <i>r</i> }	t	$\{h,l,r\}$	$\{h,c,r\}$	t
$\{h,l,c\}$	t	{c}	$\{I\}$	t
$\{h,c,r\}$	t	t	$\{r\}$	{c}
{c}	$\{h,c\}$	$\{h,l,c\}$	t	$\{h,c,r\}$
$\{h,c\}$	С	t	{}	t
{}	t	t	$\{h,c\}$	t
t	t	t	t	t

Uma convenção em diagramas de estados

Se não há transição de e sob a no diagrama de estados, então existe e' (estado de **erro**) tal que:

- existe uma transição de *e* para *e'* sob *a*;
- e' não é estado final;
- existe uma transição de e' para e' sob cada símbolo do alfabeto.

Diagrama de estados simplificado: aquele em que foram omitidos todos os estados de erro porventura existentes.

Função de transição estendida

Seja um AFD $M=(E,\Sigma,\delta,i,F)$. A função de transição estendida para $M,\hat{\delta}:E\times\Sigma^*\to E$, é definida recursivamente como segue:

- 1. $\hat{\delta}(e,\lambda)=e$;
- 2. $\hat{\delta}(e, ay) = \hat{\delta}(\delta(e, a), y)$, para todo $a \in \Sigma$ e $y \in \Sigma^*$.

Linguagem reconhecida por um AFD

A linguagem reconhecida por um AFD

A linguagem reconhecida por um AFD $M = (E, \Sigma, \delta, i, F)$ é:

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(i, w) \in F \}.$$

Uma palavra $w \in \Sigma^*$ é dita ser reconhecida por M se $\hat{\delta}(i, w) \in F$.

AFDs equivalentes

Dois AFDs, M_1 e M_2 , são ditos equivalentes se, e somente se, $L(M_1) = L(M_2)$.

Algoritmo para simular AFDs

```
Entrada: 1. o AFD, dado por i, F e D, e
           2. a palavra de entrada, dada por prox.
Saída: sim ou não
e \leftarrow i;
s \leftarrow prox();
enquanto s \neq fs faça
    e \leftarrow D[e, s];
    s \leftarrow prox():
fim
se e \in F então
    retorna sim
fim
senão
    retorna não
fim
```

Desempenho: O(n) (n: número de símbolos da palavra).

Dois exemplos

Vamos construir AFDs que reconheçam:

• $\{w \in \{0,1\}^* \mid w \text{ tem número par de símbolos}\}.$

Dois exemplos

Vamos construir AFDs que reconheçam:

- $\{w \in \{0,1\}^* \mid w \text{ tem número par de símbolos}\}.$
- $\{w \in \{0,1\}^* \mid w \text{ tem número par de 0s e número par de 1s}\}$.

Duas perguntas

- Existe AFD mínimo?
- Há como construir um AFD, a partir de AFDs M_1 e M_2 , que reconheça:
 - $L(M_1) \cup L(M_2)$?
 - $L(M_1) \cap L(M_2)$?
 - $L(M_1) L(M_2)$?
 - $L(M_1)L(M_2)$?
 - *L*(*M*1)*

Duas perguntas

- Existe AFD mínimo?
- Há como construir um AFD, a partir de AFDs M_1 e M_2 , que reconheça:
 - $L(M_1) \cup L(M_2)$?
 - $L(M_1) \cap L(M_2)$?
 - $L(M_1) L(M_2)$?
 - $L(M_1)L(M_2)$?
 - *L*(*M*1)*
- \Rightarrow Resposta para ambas:

Duas perguntas

- Existe AFD mínimo?
- Há como construir um AFD, a partir de AFDs M_1 e M_2 , que reconheça:
 - $L(M_1) \cup L(M_2)$?
 - $L(M_1) \cap L(M_2)$?
 - $L(M_1) L(M_2)$?
 - $L(M_1)L(M_2)$?
 - *L*(*M*1)*
- \Rightarrow Resposta para ambas: SIM!!!

O que é AFD mínimo?

AFD mínimo

Um AFD M é dito ser um AFD mínimo para a linguagem L(M) se nenhum AFD para L(M) contém menor número de estados que M.

Para obter um AFD mínimo:

- 1. Eliminar estados não alcançáveis a partir do estado inicial.
- 2. Substituir cada grupo de estados equivalentes por um único estado.

Equivalência de estados

Estados equivalentes

Seja um AFD $M=(E,\Sigma,\delta,i,F)$. Então $e,e'\in E$ são ditos equivalentes, $e\approx e'$, se, e somente se:

$$\forall y \in \Sigma^*, \hat{\delta}(e, y) \in F \leftrightarrow \hat{\delta}(e', y) \in F.$$

Por que reduzir estados equivalentes a um só?

Seja um AFD $M = (E, \sigma, \delta, i, F)$.

- 1. se $e \approx e'$: um sufixo y é reconhecido passando-se por e, se, e somente se, ele é reconhecido passando-se por e'; logo e e e' podem se tornar um só!
- 2. se $e \not\approx e'$ (existe $y \in \Sigma^*, \hat{\delta}(e,y) \in F$ e $\hat{\delta}(e',y) \neq F$ ou vice-versa): se um sufixo y levar a estado de F, a palavra é aceita, caso contrário, não é. Logo, $e \in e'$ não podem se tornar um só!

O conceito de autômato reduzido

[e]: classe de equivalência de e na partição induzida por \approx .

AFD reduzido

Seja um AFD $M = (E, \Sigma, \delta, i, F)$. Um autômato reduzido correspondente a M é o AFD $M' = (E', \Sigma, \delta', i', F')$, em que:

- $E' = \{[e] \mid e \in E\};$
- $\delta'([e], a) = [\delta(e, a)], \forall e \in E, \forall a \in \Sigma;$
- i' = [i];
- $F' = \{ [e] \mid e \in F \}.$

Obtenção de \approx passo a passo

Seja um AFD $M=(E,\Sigma,\delta,i,F)$ e um estado $e\in E$. Então:

- 1. $e \approx_0 e'$ se,e somente se, $(e, e' \in F \text{ ou } e, e' \in E F)$;
- 2. para $n \ge 0$: $e \approx_{n+1} e'$ se, e somente se, $e \approx_n e'$ e $\delta(e, a) \approx_n \delta(e', a), \forall a \in \Sigma$.

Teorema que justifica \approx_n :

Seja um AFD $M=(E,\Sigma,\delta,i,F)$. Então $e\approx_n e'$ se, e somente se, para todo $w\in\Sigma^*$ tal que $|w|\leq n$, $\hat{\delta}(e,w)\in F\leftrightarrow \hat{\delta}(e',w)\in F$.

Obtenção das partições $[e]_{\approx}$ passo a passo

 $[e]_n$: classe de equivalência de e na partição induzida por $pprox_n$.

Obtenção de cada $[e]_n$:

1.
$$[e]_0 = \begin{cases} F & \text{se } e \in F \\ E - F & \text{se } e \in E - F \end{cases}$$

2. para
$$n \geq 0, [e]_{n+1} = \{e' \in [e]_n \mid [\delta(e',a)]_n = [\delta(e,a)]_n, \forall a \in \Sigma\}.$$

Um exemplo de minimização

Autômato inicial

Evolução das partições

 S_0 : $\{0\}, \{1, 2, 3, 4, 5\}$

 S_1 : $\{0\}, \{1, 2, 4, 5\}, \{3\}$

 $S_2\colon \, \{0\}, \{1,4\}, \{2,5\}, \{3\}$

 S_3 : {0}, {1,4}, {2,5}, {3}

Um exemplo de minimização

Produto de AFDs

Simulação do funcionamento em paralelo de dois AFDs:

- Sejam $M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$ e $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$.
- $M_3 = (E_3, \Sigma, \delta_3, i_3, F_3)$, em que:
 - $E_3 = E_1 \times E_2$;
 - $\delta_3([e_1, e_2], a) = [\delta_1(e_1, a), \delta_2(e_2, a)], \forall e_1 \in E_1, \forall e_2 \in E_2, \forall a \in \Sigma;$
 - $i_3 = [i_1, i_2];$
 - F_3 : depende do que se quer para M_3 .

Sejam $e_1 \in E_1$ e $e_2 \in E_2$ de M_3 . Então,

$$\hat{\delta}([e_1, e_2], w) = [\hat{\delta}(e_1, w), \hat{\delta}(e_2, w)], \forall w \in \Sigma^*.$$

Complemento, interseção e união

Sejam
$$M_1 = (E_1, \Sigma, \delta_1, i_1, F_1)$$
 e $M_2 = (E_2, \Sigma, \delta_2, i_2, F_2)$.

- 1. AFD para $\overline{L(M_1)}$: $(E_1, \Sigma, \delta_1, i_1, E_1 F_1)$.
- 2. $L(M_1) \cap L(M_2)$: produto de M_1 e M_2 com $F_3 = F_1 \times F_2$.
- 3. $L(M_1) \cup L(M_2)$: produto de M_1 e M_2 com $F_3 = (F_1 \times E_2) \cup (E_1 \times F_2)$

Exemplo de produto/interseção e união

Reconhecendo $\{0\}\{0,1\}^*$ e $\{0,1\}^*\{1\}$:

Exemplo de produto/interseção

Reconhecendo $\{0\}\{0,1\}^* \cap \{0,1\}^*\{1\}$:

Exemplo de produto/interseção

Reconhecendo $\{0\}\{0,1\}^* \cup \{0,1\}^*\{1\}$:

Linguagens finitas

- Para toda linguagem finita existe um AFD.
- AFD com diagrama de estados simplificado sem ciclos: árvore em que o estado inicial é a raiz.

Exemplo: Um pequeno dicionário:

 $K = \{a,alma,asa,barco,brasa,broa,ca,calma,casa,disco\}$

Alguns problemas de decisão envolvendo AFDs

Existem procedimentos de decisão para determinar, para qualquer AFD M, se:

- 1. $L(M) = \emptyset$;
- 2. L(M) é finita.

Seja M' um AFD mínimo equivalente a M. Então:

- 1. $L(M) = \emptyset$ se, e somente se, M' não tiver estados finais;
- 2. L(M) é finita se, e somente se, o diagrama de estados simplificado de M' não possui ciclo.

O que é Autômato Finito Não-Determinístico (AFN)

Definição de AFN

Um AFN é uma quíntupla $(E, \Sigma, \delta, I, F)$, em que:

- *E* é um conjunto finito não vazio de estados;
- Σ é um alfabeto;
- I ⊆ E é um conjunto não vazio de estados iniciais;
- $F \subseteq E$ é um conjunto de estados finais;
- $\delta : E \times \Sigma \to \mathcal{P}(E)$ é a função de transição, uma função total.

Exemplo de AFN

Exemplo de autômato finito não determinístico (AFN)

- 1. Não determinismo: no estado e_1 existem duas transições possíveis sob o símbolo 0.
- 2. Computações possíveis para a palavra 1010:

$$[e_1,1010] \vdash [e_1,010] \vdash [e_1,10] \vdash [e_1,0] \vdash [e_1,\lambda] \\ [e_2,10] \vdash [e_2,\lambda]$$

Reconhecimento para AFN

- Uma palavra é reconhecida se, e somente se, existe uma computação que a consome e termina em estado final;
- Em todo ponto de indecisão, a máquina adivinha qual escolha (se houver alguma) leva a uma computação que resulta em sucesso no reconhecimento.

Linguagem reconhecida por um AFN

A função de transição estendida para um AFN $M=(E,\Sigma,\delta,I,F)$, $\hat{\delta}:\mathcal{P}(E)\times\Sigma^*\to\mathcal{P}(E)$, é definida recursivamente como segue:

- $\hat{\delta}(\emptyset, w) = \emptyset, \forall w \in \Sigma^*$;
- $\hat{\delta}(A,\lambda) = A, \forall A \subseteq E$;
- $\hat{\delta}(A, ay) = \hat{\delta}(\bigcup_{e \in A} \delta(e, a), y)$, para $A \subseteq E, a \in \Sigma$ e $y \in \Sigma^*$.

Linguagem reconhecida por um AFN

Seja
$$M = (E, \Sigma, \delta, I, F)$$
.

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(I, w) \cap F \neq \emptyset \}$$

Exemplo 1: AFN × AFD

AFN e AFD que aceitam $\{0,1\}^*\{1010\}$:

Exemplo 2: AFN \times AFD

AFN e AFD que aceitam $\{w \in \{0,1\}^* \mid |w| \ge 3 \text{ e o terceiro símbolo da direita para a esquerda \'e 1}:$

Equivalência entre AFDs e AFNs

Para qualquer AFN existe um AFD equivalente.

Idéia: Um estado será um conjunto, significando todos os estados do AFN atingidos por todas as computações possíveis para a mesma palavra.

Um AFD equivalente a um AFN $M = (E, \Sigma, \delta, I, F)$, é:

$$M' = (\mathcal{P}(E), \Sigma, \delta', I, F')$$
, em que:

- para cada $X \subseteq E$ e $a \in \Sigma$, $\delta'(X, a) = \bigcup_{e \in X} \delta(e, a)$;
- $F' = \{X \subseteq E \mid X \cap F \neq \emptyset\}.$

Equivalência entre AFDs e AFNs

Diagrama de estados de um AFN e do AFD equivalente.

O que é AFN estendido

AFN estendido

Um AFN estendido é uma quíntupla $(E, \Sigma, \delta, I, F)$, em que :

- E, Σ, I e F são como em AFNs; e
- δ é uma função parcial de $E \times D$ para $\mathcal{P}(E)$, em que D é algum subconjunto finito de Σ^* .

Exemplo: $L = \{ w \in \{0\}^* \mid |w| \text{ é par } \} \cup \{ w \in \{1\}^* \mid |w| \text{ é impar } \}$

Tirando transições sob palavras de mais de um símbolo

Uma transição da forma

pode ser substituída por *n* transições:

AFN com transições λ

Definição de AFN λ

Um AFN λ é uma quíntupla $(E, \Sigma, \delta, I, F)$, em que:

- $E, \Sigma, I \in F$ são como em AFNs; e
- δ é uma função total de $E \times (\Sigma \cup \{\lambda\})$ para $\mathcal{P}(E)$.

A função fecho λ

Seja um
$$AFN\lambda$$
 $M = (E, \Sigma, \delta, I, F)$.

A função **fecho** λ para M, $f\lambda : \mathcal{P}(E) \to \mathcal{P}(E)$, é definida recursivamente como:

- $X \subseteq f\lambda(X)$;
- se $e \in f\lambda(X)$, então $\delta(e,\lambda) \subseteq f\lambda(X)$.

A função de transição estendida

Seja um $AFN\lambda$ $M = (E, \Sigma, \delta, I, F)$.

A função de transição estendida, $\hat{\delta}: \mathcal{P}(E) \times \Sigma^* \to \mathcal{P}(E)$, é definida recursivamente como:

- 1. $\hat{\delta}(\emptyset, w) = \emptyset, \forall w \in \Sigma^*;$
- 2. $\hat{\delta}(A, \lambda) = f\lambda(A), \forall A \subseteq E$;
- 3. $\hat{\delta}(A, ay) = \hat{\delta}(\bigcup_{e \in f\lambda(A)} \delta(e, a), y), \forall A \subseteq E, \forall a \in \Sigma, \forall y \in \Sigma^*.$

Linguagem reconhecida por um AFN λ

Seja
$$M = (E, \Sigma, \delta, I, F)$$
.

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(I, w) \cap F \neq \emptyset \}.$$

Obtenção de AFN equivalente a AFN λ

Seja um AFN λ $M=(E,\Sigma,\delta,I,F)$. Um AFN equivalente a M é $M'=(E,\Sigma,\delta',I',F)$, em que:

- $I' = f\lambda(I)$; e
- $\delta'(e, a) = f\lambda(\delta(e, a)), \forall e \in E \ e \ \forall a \in \Sigma.$

Relações entre autômatos finitos

Linguagens Formais e Autômatos

Semana 5: Revisão e exercícios

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 6: O Lema do Bombeamento para Linguagens Regulares

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

O que é Linguagem Regular

Linguagem regular

Uma linguagem é dita ser uma linguagem regular se existe um autômato finito que a reconhece.

Dada uma linguagem L:

- É possível determinar se ela pertence ou não à classe das linguagens regulares?
- É possível facilitar a obtenção de um AF para L?

Um teorema sobre linguagens regulares

O Lema do Bombeamento

Seja L uma linguagem regular. Então existe uma constante k>0 tal que para qualquer palavra $z\in L$ com $|z|\geq k$ existem $u,\ v\in w$ que satisfazem as seguintes condições:

- \bullet z = uvw;
- $|uv| \leq k$;
- $v \neq \lambda$; e
- $uv^iw \in L$ para todo $i \geq 0$.

Uma aplicação do Lema do Bombeamento

O LB pode ser usado para provar que uma linguagem infinita, L, não é regular da seguinte forma:

- supõe-se que *L* seja linguagem regular;
- 2 supõe-se k > 0, a "constante do LB";
- **3** escolhe-se uma palavra z tal que $|z| \ge k$;
- mostra-se que, para toda decomposição de z em u v e w tal que $|uv| \le k$, e $v \ne \lambda$, existe i tal que $uv^i w \not\in L$.

Exemplo de uso do lema do bombeamento

Demonstração que $L = \{a^n b^n \mid n \in \mathbf{N}\}$ não é regular

Suponha que L seja uma linguagem regular. Seja k a constante do LB e $z=a^kb^k$. Como |z|>k, o lema diz que existem u, v e w tais que:

- \circ z = uvw;
- $|uv| \leq k$;
- $v \neq \lambda$; e
- $uv^iw \in L$ para todo $i \geq 0$.

Neste caso, v só tem as, pois $uvw = a^kb^k$ e $|uv| \le k$, e v tem pelo menos um a, porque $v \ne \lambda$. Isso implica que $uv^2w = a^{k+|v|}b^k \not\in L$, o que contradiz o LB. Portanto, L não é linguagem regular.

Outro exemplo de uso do lema do bombeamento

Demonstração que $L = \{0^m 1^n \mid m > n\}$ não é regular

Suponha que L seja uma linguagem regular. Seja k a constante do LB, e seja $z=0^{k+1}1^k$. Como |z|>k, o lema diz que existem u, v e w tais que:

- \circ z = uvw;
- |uv| < k;
- $v \neq \lambda$: e
- $uv^iw \in L$ para todo $i \geq 0$.

Como $uvw=0^{k+1}1^k$ e $0<|v|\leq k$, v só tem 0s e possui no mínimo um 0. Logo, $uv^0w=0^{k+1-|v|}1^k\not\in L$, contradizendo o LB. Portanto,L não é regular.

Mais um exemplo de uso do lema do bombeamento

Demonstração que $L = \{0^n \mid n \text{ é primo}\}$ não é regular

Suponha que L seja regular. Seja k a constante do LB, e seja $z=0^n$, em que n é um número primo maior que k. Como |z|>k, para provar que L não é regular, basta mostrar um i tal que $uv^iw\not\in L$ supondo que z=uvw, $|uv|\le k$ e $v\ne \lambda$. Como $z=0^n$, $uv^iw=0^{n+(i-1)|v|}$. Assim, i deve ser tal que n+(i-1)|v| não seja um número primo. Ora, para isso, basta fazer i=n+1, obtendo-se n+(i-1)|v|=n+n|v|=n(1+|v|), que não é primo (pois |v|>0). Desse modo, $uv^{n+1}w\not\in L$, contradizendo o LB. Logo, L não é linguagem regular.

Algumas propriedades de fechamento

O que é fechamento

Seja uma classe de linguagens, \mathcal{L} , e uma operação sobre linguagens, O. Diz-se que \mathcal{L} é fechada sob O se a aplicação de O a linguagens de \mathcal{L} resulta sempre em uma linguagem de \mathcal{L} .

A classe das linguagens regulares é fechada sob:

- complementação;
- união;
- interseção;
- concatenação;
- fecho de Kleene.

Fechamento sob concatenação/esquema

Fechamento sob concatenação

Sejam dois AFDS:

$$M_1 = (E_1, \Sigma_1, \delta_1, i_1, F_1)$$
 e $M_2 = (E_2, \Sigma_2, \delta_2, i_2, F_2)$, $E_1 \cap E_2 = \emptyset$.

O AFN λ M_3 reconhece $L(M_1)L(M_2)$:

$$M_3 = (E_1 \cup E_2, \Sigma_1 \cup \Sigma_2, \delta_3, \{i_1\}, F_2)$$

em que δ_3 é dada por:

- $\delta_3(e,a) = \{\delta_1(e,a)\}$ para todo $e \in E_1$ e $a \in \Sigma_1$;
- $\delta_3(e,a) = \{\delta_2(e,a)\}$ para todo $e \in E_2$ e $a \in \Sigma_2$;
- $\delta_3(e,\lambda) = \{i_2\}$ para todo $e \in F_1$, e $\delta_3(e,\lambda) = \emptyset$ para $e \in (E_1 \cup E_2) F_1$.

Fechamento sob fecho de kleene/esquema

Fechamento sob fecho de kleene

Seja um AFD $M = (E, \Sigma, \delta, i, F)$.

O AFN λ M' reconhece $L(M)^*$:

$$M' = (E \cup \{i'\}, \Sigma, \delta', \{i'\}, F \cup \{i'\})$$

em que $i' \notin E$, e δ' é dada por:

- $\delta'(i',\lambda) = \{i\};$
- $\delta'(e, a) = \{\delta(e, a)\}$ para todo $e \in E$ e $a \in \Sigma$;
- $\delta'(e,\lambda) = \{i'\}$ para todo $e \in F$, e $\delta'(e,\lambda) = \emptyset$ para $e \in E F$.

Aplicações das propriedades de fechamento

Três aplicações das propriedades de fecho das linguagens regulares:

- provar que uma linguagem é regular;
- provar que uma linguagem não é regular;
- facilitar a obtenção de AF para uma linguagem regular.

Linguagens Formais e Autômatos

Semana 6: O Lema do Bombeamento para Linguagens Regulares

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 7: Expressões Regulares

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Denotação e geração de linguagens regulares

Duas novas formas de especificar as linguagens regulares: expressões regulares e gramáticas regulares.

- Expressão Regular: especifica uma linguagem por meio de uma expressão que a denota.
- Gramática Regular: especifica uma linguagem por meio de um conjunto de regras que a gera.

O que é expressão regular

Expressão regular

Uma expressão regular (ER) sobre um alfabeto Σ é definida recursivamente como segue:

- **1** \emptyset , λ , e *a* para qualquer $a \in \Sigma$ são expressões regulares; elas denotam \emptyset , $\{\lambda\}$ e $\{a\}$;
- ② se r e s são expressões regulares, então são expressões regulares: (r+s), (rs), e r^* ; elas denotam $L(r) \cup L(s)$, L(r)L(s) e $L(r)^*$.

Exemplos de expressões regulares

ERs sobre $\Sigma = \{0,1\}$ e conjuntos regulares denotados por elas:

ER	Linguagem denotada
\emptyset	Ø
λ	$\{\lambda\}$
(01)	$\{0\}\{1\} = \{01\}$
(0 + 1)	$\{0\} \cup \{1\} = \{0,1\}$
((0+1)(01))	$\{0,1\}\{01\} = \{001,101\}$
0*	$\{0\}^* = \{0^n \mid n \ge 0\}$
$(0+1)^*$	$\{\mathtt{0},\mathtt{1}\}^* = \Sigma^*$
(((0+1)*1)(0+1))	$\{0,1\}^*\{1\}\{0,1\}$

Prioridades dos operadores

Regras para omissão de parênteses:

- a) Como a união é associativa, pode-se escrever $(r_1 + r_2 + \cdots + r_n)$, omitindo-se os parênteses internos.
- b) Idem, para a concatenação.
- c) Os parênteses externos podem ser omitidos.
- d) Fecho de Kleene tem precedência sobre união e concatenação.
- e) Concatenação tem precedência sobre união.

Algumas equivalências

1.
$$r + s = s + r$$

2. $r + \emptyset = r$
3. $r + r = r$
4. $r\lambda = \lambda r = r$
5. $r\emptyset = \emptyset r = \emptyset$
6. $(r + s)t = rt + st$
7. $r(s + t) = rs + rt$
8. $(r + s)^* = (r^*s)^*r^*$
9. $(r + s)^* = r^*(sr^*)^*$
11. $r^{**} = r^*$
12. $r^* = (rr)^*(\lambda + r)$
13. $\emptyset^* = \lambda$
14. $\lambda^* = \lambda$
15. $r^*r^* = r^*$
16. $rr^* = r^*r$
17. $(r^* + s)^* = (r + s)^*$
18. $(r^*s^*)^* = (r + s)^*$
19. $r^*(r + s)^* = (r + s)^*$
10. $(rs)^* = \lambda + r(sr)^*s$
20. $(r + s)^*r^* = (r + s)^*$

Algumas observações sobre a tabela

- Qualquer equivalência que não envolva fecho de Kleene pode ser derivada a partir de 1 a 7 mais as propriedades de associatividade da união e da concatenação.
- Com o fecho de Kleene, não há um conjunto finito de equivalências a partir das quais se possa derivar qualquer outra.
- Algumas equivalências são redundantes. Por exemplo, a 13 pode ser obtida de 2, 5 e 10:

$$\emptyset^* = (r\emptyset)^*$$
 por 5
 $= \lambda + r(\emptyset r)^*\emptyset$ por 10
 $= \lambda + \emptyset$ por 5
 $= \lambda$ por 2

Simplificação de expressões regulares

$$\frac{(00^* + 10^*)}{(00^* + 10^*)}0^*(1^* + 0)^* = (0 + 1)0^*0^*(1^* + 0)^* \text{ por } 6$$

$$= (0 + 1)0^*(1^* + 0)^* \text{ por } 15$$

$$= (0 + 1)0^*(1 + 0)^* \text{ por } 17$$

$$= (0 + 1)0^*(0 + 1)^* \text{ por } 19$$

$$= (0 + 1)(0 + 1)^* \text{ por } 19$$

Diga por que:

- $(r + rr + rrr + rrrr)^* = r^*$.
- ((0(0+1)1+11)0*(00+11))*(0+1)* = (0+1)*.
- $r^*(r+s^*) = r^*s^*$.

Notações úteis

- r^+ significa (rr^*) .
- r^n , $n \ge 0$ é assim definida, recursivamente:
 - a) $r^0 = \lambda$:
 - b) $r^n = rr^{n-1}$, para $n \ge 1$.

Exemplos:

$$(0+1)^{10}$$
.
 $r^* = (r^n)^*(\lambda + r + r^2 + \dots + r^{n-1})$, para $n > 1$.

Obtendo AF a partir de expressão regular

Toda expressão regular denota uma linguagem regular.

① AFs que reconhecem \emptyset , $\{\lambda\}$ e $\{a\}$:

② Dados AFs para L_1 e L_2 , é possível construir AFs para $L_1 \cup L_2$, L_1L_2 e L_1^* .

Obtendo expressões regular a partir de AF

Toda linguagem regular é denotada por alguma expressão regular.

Seja um AFN $M = (E, \Sigma, \delta, I, F)$.

- 1. Obtenha AFN λ $M' = (E', \Sigma, \delta, i, \{f\})$ equivalente a M tal que:
 - $i \notin \delta(e, a)$ para todo par $(e, a) \in E' \times \Sigma$;
 - $\delta(f, a) = \emptyset$ para todo $a \in \Sigma$.
- 2. Obtenha diagrama ER inicial a partir de M': substitua transições de e para e' sob s_1, s_2, \ldots, s_m , por uma só transição de e para e' sob $s_1 + s_2 + \cdots + s_m$.

Obtendo expressões regular a partir de AF

- 3. Elimine um a um os estados do diagrama ER, exceto i e f.
 - Para eliminar e, para cada par (e_1, e_2) , $e_1 \neq e, e_2 \neq e$:

- Se havia transição de e_1 para e_2 sob s substitua-a por transição de e_1 para e_2 sob $s + r_1 r_2^* r_3$.
- 4. A ER resultante é o rótulo da transição de *i* para *f*.

Exemplo

Diagrama de estados

Diagrama ER

Exemplo (cont.)

- **1 Eliminando** e. Como não existe transição de e para algum e_2 diferente de e, ele é simplesmente eliminado.
- Eliminando i0:

Exemplo (cont.)

3. Eliminando p1:

4. Eliminando p0 e i_1 :

$$\rightarrow$$
 $(aa)^*(b+aba)(aa)^*$

Linguagens Formais e Autômatos

Semana 7: Expressões Regulares

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 8: Gramáticas Regulares

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

O que é uma gramática regular

Gramática regular

Uma gramática regular (GR) é uma gramática (V, Σ, R, P), em que cada regra tem uma das formas:

- \bullet $X \rightarrow a$;
- \bullet $X \rightarrow aY$;
- $X \rightarrow \lambda$;

 $X, Y \in V$ e $a \in \Sigma$.

 \Rightarrow Formato das formas sentenciais: wA, $w \in \Sigma^+$, $A \in V$.

Exemplo

$$L = \{ w \in \{a, b, c\}^* \mid w \text{ não contém abc} \}.$$

Uma GR que gera L: $({A, B, C}, {a, b, c}, R, A)$, em que R contém:

$$A \rightarrow aB | bA | cA | \lambda$$

$$B \rightarrow aB | bC | cA | \lambda$$

$$C \rightarrow aB | bA | \lambda$$

AF a partir de GR

Toda gramática regular gera uma linguagem regular.

Seja
$$G = (V, \Sigma, R, P)$$
 e $Z \notin V$.
Um AFN que reconhece $L(G)$: $M = (E, \Sigma, \delta, \{P\}, F)$, em que

- $E = \left\{ egin{array}{ll} V \cup \{Z\} & ext{se } R ext{ cont\'em regra da forma } X
 ightarrow a \ V & ext{caso contr\'ario.} \end{array}
 ight.$
- Para toda regra da forma:
 - X o aY faça $Y \in \delta(X,a)$,
 - $X \to a$ faça $Z \in \delta(X, a)$.
- $F = \begin{cases} \{X|X \to \lambda \in R\} \cup \{Z\} & \text{se } Z \in E \\ \{X|X \to \lambda \in R\} & \text{caso contrário.} \end{cases}$

Exemplo

G:

$$A \rightarrow 0A|1B|0$$

 $B \rightarrow 1B|\lambda$

$$L(G) = 0*(0+1+)$$
. AFN para $L(G)$:

Gramáticas Regulares

Toda linguagem regular é gerada por gramática regular.

Seja um AFN
$$M = (E, \Sigma, \delta, \{i\}, F)$$
.
Uma GR que gera $L(M)$: $G = (E, \Sigma, R, i)$, em que:

$$R = \{e \to ae' \mid e' \in \delta(e, a)\} \cup \{e \to \lambda \mid e \in F\}.$$

Exemplo

GR:

$$A \rightarrow 0A|0Z|1B$$

 $B \rightarrow 1B|\lambda$

$$Z \rightarrow \lambda$$

Uma síntese

⇒ ERs, GRs e AFs são formalismos alternativos para linguagens regulares.

Transformações entre formalismos:

Linguagens Formais e Autômatos

Semana 9: Máquinas de Mealy e de Moore

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Associando saída aos estados

Máquina de Moore

Uma máquina de Moore é uma sêxtupla $(E, \Sigma, \Delta, \delta, \sigma, i)$, em que:

- E (o conjunto de estados), Σ (o alfabeto de entrada), δ (a função de transição) e i (o estado inicial) são como em AFDs;
- Δ é o alfabeto de saída; e
- $\sigma: E \to \Delta$ é a função de saída, uma função total.

Diagrama de estados de uma máquina de Moore

Em um diagrma de estados, a transição $\delta(e,a)=e'$ é representada assim, juntamente com $\sigma(e)$ e $\sigma(e')$:

$$\underbrace{\left(e/\sigma(e)\right)} \qquad \qquad a \qquad \qquad \underbrace{\left(e'/\sigma(e')\right)} \qquad \qquad a \qquad \qquad \underbrace{\left(e'/\sigma(e')\right)} \qquad \qquad \underbrace{\left(e'/\sigma(e')\right$$

A saída computada por uma máquina de Moore

Seja uma máquina de Moore $M=(E,\Sigma,\Delta,\delta,\sigma,i)$. A **função de saída estendida** para $M, r: E \times \Sigma^* \to \Delta^*$ é definida recursivamente como segue:

- a) $r(e,\lambda) = \sigma(e)$;
- **b)** $r(e, ay) = \sigma(e)r(\delta(e, a), y)$, para todo $a \in \Sigma$ e $y \in \Sigma^*$.

A saída computada por uma máquina de Moore $M = (E, \Sigma, \Delta, \delta, \sigma, i)$ para a palavra $w \in \Sigma^*$ é r(i, w).

Exemplo de máquina de Moore

Último símbolo de r(00, w): número de 1s nos dois últimos símbolos de w.

Associando saída às transições

Máquina de Mealy

Uma máquina de Mealy é uma sêxtupla $(E, \Sigma, \Delta, \delta, \sigma, i)$, em que:

- E (o conjunto de estados), Σ (o alfabeto de entrada), δ (a função de transição) e i (o estado inicial) são como em AFDs;
- Δ é o alfabeto de saída;
- $\sigma: E \times \Sigma \to \Delta$ é a função de saída, uma função total.

Diagrama de estados de uma máquina de Mealy

Uma transição $\delta(e,a)=e'$ com a saída $\sigma(e,a)=d$ é representada em um diagrama de estados assim:

A saída computada por uma máquina de Mealy

Seja uma máquina de Mealy $M=(E,\Sigma,\Delta,\delta,\sigma,i)$. A **função de saída estendida** para $M,s:E\times\Sigma^*\to\Delta^*$, é definida recursivamente como segue:

- a) $s(e,\lambda) = \lambda$;
- **b)** $s(e, ay) = \sigma(e, a)s(\delta(e, a), y)$, para todo $a \in \Sigma$ e $y \in \Sigma^*$.

A saída computada por uma máquina de Mealy $M = (E, \Sigma, \Delta, \delta, \sigma, i)$ para a palavra $w \in \Sigma^*$ é s(i, w).

Equivalência de máquinas de Moore e de Mealy

Máquinas equivalentes

Uma máquina de Moore $(E_1, \Sigma, \Delta, \delta_1, \sigma_1, i_1)$ e uma máquina de Mealy $(E_2, \Sigma, \Delta, \delta_2, \sigma_2, i_2)$ são ditas equivalentes se, para todo $w \in \Sigma^*$, $r(i_1, w) = \sigma_1(i_1)s(i_2, w)$.

Um exemplo

Linguagens Formais e Autômatos

Semana 9: Máquinas de Mealy e de Moore

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 10: Revisão e exercícios

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 11: Autômatos de Pilha

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Arquitetuta de um autômato de pilha determinístico

Configuração inicial

No início:

- o registrador contém o estado inicial
- a palavra de entrada está na fita a partir da primeira célula
- o cabeçote da fita está posicionado na primeira célula
- a pilha está vazia

Transição de um AP

Sejam:

- E: conjunto (finito) de estados
- \bullet Σ : alfabeto de entrada
- Γ: alfabeto de pilha

Cada transição do AP é da forma

$$\delta(e,a,b)=[e',z]$$

 $e, e' \in E$, $a \in \Sigma_{\lambda}$, $b \in \Gamma_{\lambda}$ e $z \in \Gamma^*$.

Em um diagrama de estados:

Um exemplo de AP

Conjunto EA das expressões aritméticas:

- a) $a \in EA$;
- **b)** se $x, y \in EA$, então $(x) \in EA$, $x+y \in EA$ e $x*y \in EA$.

Computação de um AP

- Pilha: uma palavra de Γ^* . Pilha vazia: λ .
- Configuração instantânea: [e, y, p], sendo p a pilha.

Computação do AP quando a palavra de entrada é (a*(a+a)):

$$[ap, (a*(a+a)), \lambda] \vdash [ap, a*(a+a)), X] \\ \vdash [fp, *(a+a)), X] \\ \vdash [ap, (a+a)), X] \\ \vdash [ap, (a+a)), XX] \\ \vdash [fp, +a)), XX] \\ \vdash [fp, +a)), XX] \\ \vdash [fp,)), XX] \\ \vdash [fp,), X] \\ \vdash [fp, \lambda, \lambda]$$

Outros exemplos/condições para reconhecimento

$$[ap, a), \lambda] \vdash [fp,), \lambda]$$

⇒ o AP para sem consumir toda a palavra de entrada.

$$[ap, (a, \lambda] \vdash [ap, a, X]$$

 $\vdash [fp, \lambda, X]$

⇒ o AP para em estado final com pilha não vazia.

Para uma palavra ser reconhecida:

- ela deve ser totalmente consumida;
- a máquina deve terminar em um estado final;
- a pilha deve estar vazia.

Um exemplo estranho

Seja o AP com $\Sigma = \{1\}$ e com o diagrama de estados:

$$\rightarrow$$
 $\lambda, \lambda/X$

Para toda palavra em $\{1\}^+$, o AP não para. Em particular:

$$[0,1,\lambda] \vdash [0,1,X] \vdash [0,1,XX] \dots$$

Perguntas:

- para λ , o AP para ou não?
- λ é reconhecida ou não?

Transições compatíveis

Definição

Seja
$$\delta: E \times \Sigma_{\lambda} \times \Gamma_{\lambda} \to E \times \Gamma^*$$
.

As transições $\delta(e_1,a_1,b_1)=[e_1',z_1]$ e $\delta(e_2,a_2,b_2)=[e_2',z_2]$ são compatíveis sse $e_1=e_2$ e

$$(a_1=a_2 \ ou \ a_1=\lambda \ ou \ a_2=\lambda) \ e \ (b_1=b_2 \ ou \ b_1=\lambda \ ou \ b_2=\lambda)$$

Ou ainda: $\delta(e_1, a_1, b_1) = [e'_1, z_1]$ e $\delta(e_2, a_2, b_2) = [e'_2, z_2]$ são incompatíveis sse $e_1 \neq e_2$ ou

$$(a_1 \neq a_2 \text{ e } a_1 \neq \lambda \text{ e } a_2 \neq \lambda)$$
 ou $(b_1 \neq b_2 \text{ e } b_1 \neq \lambda \text{ e } b_2 \neq \lambda)$

O que é AP determinístico

Definição

Um autômato de pilha determinístico (APD) é uma sêxtupla $(E, \Sigma, \Gamma, \delta, i, F)$, em que

- E é um conjunto finito de um ou mais estados
- Σ é o alfabeto de entrada
- Γ é o alfabeto de pilha
- δ é uma função parcial de $E \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\})$ para $E \times \Gamma^*$, sem transições compatíveis
- i ⊆ E é o estado inicial
- $F \subseteq E$ é o conjunto de estados finais

A linguagem reconhecida por um APD

Computação

$$[e, ay, bz] \vdash [e', y, xz] \leftrightarrow \delta(e, a, b) = [e', x]$$

* é o fecho reflexivo e transitivo de -.

Definição

Seja
$$M = (E, \Sigma, \Gamma, \delta, i, F)$$
. A linguagem reconhecida por M é:

$$L(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, \lambda] \text{ para algum } e \in F \}.$$

Exemplo

 $\{a^nb^n \mid n \in \mathbf{N}\}\$ é reconhecida por $(\{1,2\},\{a,b\},\{X\},\delta,1,\{1,2\})$, em que δ é dada por:

- 1. $\delta(1, a, \lambda) = [1, X];$
- 2. $\delta(1, b, X) = [2, \lambda];$
- 3. $\delta(2, b, X) = [2, \lambda]$.

Diagrama de estados:

Um outro exemplo/versão 1

Um APD para
$$\{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}$$

- estados indicam que símbolo ocorre mais:
 - m0: existem mais 0s do que 1s
 - m1: existem mais 1s do que 0s

Outro exemplo/versão 2

Um APD para
$$\{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}$$

- pilha indica que símbolo ocorre mais:
 - Z: existem mais 0s do que 1s
 - U: existem mais 1s do que 0s

Mais um APD com marcação de fundo de pilha

Um APD para $\{0^m1^n \mid m \leq n\}$

APD com símbolo de final de palavra

APD que reconhece $\{0^m1^n\# \mid m \geq n\}$:

• $\{0^m 1^n \mid m \ge n\}$ não é reconhecível por APD!

O que é AP não determinístico

Definição

Um autômato de pilha não determinístico (APN) é uma sêxtupla $(E, \Sigma, \Gamma, \delta, I, F)$, em que

- E, Σ, Γ e F são como em APDs
- δ, a função de transição, é uma função parcial de E × Σ_λ × Γ_λ para D, sendo D constituído dos subconjuntos finitos de E × Γ*
- I, um subconjunto de E, é o conjunto de estados iniciais

A linguagem reconhecida por um APN

Definição

Seja um APN $M = (E, \Sigma, \Gamma, \delta, I, F)$. A linguagem reconhecida por M é:

$$L(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, \lambda] \text{ para } i \in I \text{ e } e \in F \}$$

Exemplo de APN

APN que reconhece $\{w \in \{0,1\}^* \mid n_0(w) = n_1(w)\}$:

Exemplo de APN

Mais APNs que reconhecem $\{w \in \{0,1\}^* | n_0(w) = n_1(w)\}$:

Exemplo não tratável por APD

APN que reconhece a linguagem $\{w \in \{0,1\}^* \mid w = w^R\}$

Em uma computação de sucesso para w:

- ullet se |w| for par, será percorrida a transição de 1 para 2 sob λ
- se |w| for ímpar e o símbolo do meio for a, será percorrida a transição de 1 para 2 sob a

Reconhecimento por estado final

Definição

Seja um APN $M=(E,\Sigma,\Gamma,\delta,I,F)$. A linguagem reconhecida por M por estado final \acute{e} :

$$L_F(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, y] \text{ para } i \in I, e \in F \text{ } e \text{ } y \in \Gamma^* \}.$$

Reconhecimento por estado final

Definição

Seja um APN $M = (E, \Sigma, \Gamma, \delta, I, F)$. A linguagem reconhecida por M por estado final \acute{e} :

$$L_F(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, y] \text{ para } i \in I, e \in F \text{ } e \text{ } y \in \Gamma^* \}.$$

Exemplo: APNs para $L = \{0^m 1^n \mid m \ge n\}$:

$$0, \lambda/\lambda \\ 0, \lambda/X \qquad 1, X/\lambda$$

$$0, \lambda/X \qquad 1, X/\lambda$$

Reconhecimento por pilha vazia

Definição

Seja um APN $M=(E,\Sigma,\Gamma,\delta,I)$. A linguagem reconhecida por M por pilha vazia \acute{e} :

$$L_V(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, \lambda] \text{ para algum } i \in I \text{ e } e \in E \}.$$

Reconhecimento por pilha vazia

Definição

Seja um APN $M=(E,\Sigma,\Gamma,\delta,I)$. A linguagem reconhecida por M por pilha vazia \acute{e} :

$$L_V(M) = \{ w \in \Sigma^* \mid [i, w, \lambda] \stackrel{*}{\vdash} [e, \lambda, \lambda] \text{ para algum } i \in I \text{ e } e \in E \}.$$

Exemplo: reconhecimento de $\{0^m1^n \mid m \leq n\}$ por pilha vazia:

$$0, \lambda/X$$

$$\lambda, \lambda/X$$

$$1, X/\lambda$$

$$0$$

$$1, X/\lambda$$

Equivalência de métodos de reconhecimento

Teorema

Seja L uma linguagem. As seguinte afirmativas são equivalentes:

- a) L pode ser reconhecida por pilha vazia e estado final
- **b)** L pode ser reconhecida por estado final
- c) $L \cup \{\lambda\}$ pode ser reconhecida por pilha vazia

Equivalência de métodos de reconhecimento

(a) pilha vazia e estado final \rightarrow (b) estado final:

Equivalência de métodos de reconhecimento

(b) estado final \rightarrow (c) pilha vazia:

Equivalência de métodos de reconhecimento

Teorema

Seja L uma linguagem. As seguinte afirmativas são equivalentes:

- a) L pode ser reconhecida por pilha vazia e estado final
- b) L pode ser reconhecida por estado final
- c) $L \cup \{\lambda\}$ pode ser reconhecida por pilha vazia

(c) pilha vazia \rightarrow (a) pilha vazia e estado final

Se
$$M = (E, \Sigma, \Gamma, \delta, I)$$
, então $M' = (E, \Sigma, \Gamma, \delta, I, E)$.

Linguagens Formais e Autômatos

Semana 11: Autômatos de Pilha

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 12: Gramáticas Livre do Contexto - parte 1

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

O que é gramática livre do contexto

Definição

Uma gramática livre do contexto (GLC) é uma gramática (V, Σ, R, P) , em que cada regra tem a forma $X \to w$, em que $X \in V$ e $w \in (V \cup \Sigma)^*$.

O que é gramática livre do contexto

Definição

Uma gramática livre do contexto (GLC) é uma gramática (V, Σ, R, P) , em que cada regra tem a forma $X \to w$, em que $X \in V$ e $w \in (V \cup \Sigma)^*$.

Exemplo

 $\{0^n1^n \mid n \in \mathbf{N}\}$ é gerada por $G = (\{P\}, \{0, 1\}, R, P)$, em que R consta de:

$$P \rightarrow 0P1 \mid \lambda$$

Outro exemplo de GLC

Exemplo

GLC que gera
$$\{w \in \{0,1\}^* \mid w = w^R\}$$
:
$$G = (\{P\}, \{0,1\}, R, P), \text{ tendo } R \text{ as 5 regras:}$$
$$P \to 0P0 \mid 1P1 \mid 0 \mid 1 \mid \lambda$$

Outro exemplo de GLC

Exemplo

GLC que gera $\{w \in \{0,1\}^* \mid w \text{ tem um número igual de 0s e 1s}\}$:

$$({P}, {0, 1}, R, P)$$
, tendo R as 3 regras:

$$P \rightarrow 0P1P | 1P0P | \lambda$$

GLC para expressões aritméticas

Exemplo

$$({E, T, F}, {a, +, *, (,)}, R, E)$$
, em que R consta de:

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid a$$

O que é linguagem livre do contexto

Definição

Uma linguagem é dita ser uma linguagem livre do contexto sse existe uma gramática livre do contexto que a gera.

O que é linguagem livre do contexto

Definição

Uma linguagem é dita ser uma linguagem livre do contexto sse existe uma gramática livre do contexto que a gera.

⇒ Como capturar a essência de uma derivação, o que não depende da ordem de aplicação das regras?

O conceito de árvore de derivação

Definição

Seja uma GLC $G = (V, \Sigma, R, P)$. Uma árvore de derivação (AD) de uma forma sentencial de G é uma árvore ordenada construída recursivamente como segue:

- a) uma árvore com apenas um vértice de rótulo P é uma AD;
- **b)** se $X \in V$ é rótulo de uma folha f de uma AD A, então:
 - i. se $X \to \lambda \in R$, então a árvore obtida acrescentando-se a A mais um vértice v com rótulo λ e uma aresta $\{f, v\}$ é uma AD:
 - ii. se $X \to x_1 x_2 \dots x_n \in R$, então a árvore obtida acrescentando-se a A mais n vértices v_1, v_2, \dots, v_n com rótulos x_1, x_2, \dots, x_n , nessa ordem, e n arestas $\{f, v_1\}$, $\{f, v_2\}$, ..., $\{f, v_n\}$, $\{f, v_$

Exemplo de construção de uma AD para a*(a+a)

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid a$

A derivação

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)

leva à AD:

Exemplo de construção de uma AD (continuação)

A derivação evolue para:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T*F$ (regra $T \rightarrow T*F$)

e a AD correspondente para:

Exemplo de construção de uma AD (continuação)

Tem-se duas opções para continuar a derivação:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T*F$ (regra $T \rightarrow T*F$)
 $\Rightarrow F*F$ (regra $T \rightarrow F$)

ou então:

$$E \Rightarrow T$$
 (regra $E \rightarrow T$)
 $\Rightarrow T*F$ (regra $T \rightarrow T*F$)
 $\Rightarrow T*(E)$ (regra $F \rightarrow (E)$).

Exemplo de construção de uma AD (continuação)

As duas opções:

Exemplo de construção de uma AD/conclusão

 \Rightarrow Após uma derivação de 11 passos tem-se uma AD para a * (a + a)

Observações:

- Número de passos da derivação: número de vértices internos da AD.
- A estrutura da AD é normalmente utilizada para associar significado:

Mais de uma AD para $w \Rightarrow$ mais de um significado para w.

Ambiguidade

Definição

Uma GLC é uma gramática ambígua quando existe mais de uma AD para alguma sentença que ela gera.

Ambiguidade

Definição

Uma GLC é uma gramática ambígua quando existe mais de uma AD para alguma sentença que ela gera.

Exemplo

Uma GLC ambígua:

$$P \rightarrow 0P1P | 1P0P | \lambda$$

Duas árvores de derivação para 0101

 $P \rightarrow 0P1P | 1P0P | \lambda$

Outra gramática ambígua

Exemplo

Uma GLC ambígua para expressões aritméticas:

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

Duas ADs para a+a*a

$$E \rightarrow E + E \mid E * E \mid (E) \mid a$$

Derivações mais à esquerda e mais à direita

Definição

Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda.

Derivações mais à esquerda e mais à direita

Definição

Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda.

Definição

Uma derivação é dita mais à direita (DMD) se em cada passo é expandida a variável mais à direita.

Derivações mais à esquerda e mais à direita

Definição

Uma derivação é dita mais à esquerda (DME) se em cada passo é expandida a variável mais à esquerda.

Definição

Uma derivação é dita mais à direita (DMD) se em cada passo é expandida a variável mais à direita.

⇒ Existe uma única DME e uma única DMD correspondentes a uma AD e vice-versa.

Ambiguidade e DME e DMD

Como existe uma única DME e uma única DMD correspondentes a uma AD e vice-versa:

- uma GLC é ambígua sse existe mais de uma DME para alguma sentença que ela gere;
- uma GLC é ambígua sse existe mais de uma DMD para alguma sentença que ela gere.

Linguagens inerentemente ambíguas

Definição

Linguagem inerentemente ambígua: LLC para a qual toda GLC é ambígua.

Linguagens inerentemente ambíguas

Definição

Linguagem inerentemente ambígua: LLC para a qual toda GLC é ambígua.

Exemplo

 $\{a^mb^nc^k \mid m=n \text{ ou } n=k\}$ é inerentemente ambígua.

Linguagens inerentemente ambíguas

Definição

Linguagem inerentemente ambígua: LLC para a qual toda GLC é ambígua.

Exemplo

 $\{a^mb^nc^k \mid m=n \text{ ou } n=k\}$ é inerentemente ambígua.

- A detecção e remoção de ambiguidade em GLCs é muito importante.
- O problema de determinar se uma GLC é ambígua é indecidível.

Analisadores sintáticos obtidos de GLCs

Dois tipos de analisadores sintáticos:

- Bottom-up, à medida que lê a palavra:
 - constrói a AD da fronteira para a raiz (aplica as regras de forma invertida)
 - a derivação respectiva é uma DMD (obtida de trás para a frente)
- Top-down, à medida que lê a palavra:
 - constrói a AD da raiz em direção à fronteira
 - a derivação respectiva é uma DME

(detalhes em qualquer livro sobre construção de compiladores).

A necessidade de manipulação de GLCs

- Algumas gramáticas podem ser mais adequadas que outras, dependendo do contexto para o qual elas foram projetadas.
- Existem algumas formas normais que são apropriadas em diversas situações.
- A seguir, técnicas de manipulação de GLCs, assim como duas formas normais importantes.

Linguagens Formais e Autômatos

Semana 12: Gramáticas Livre do Contexto - parte 1

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Linguagens Formais e Autômatos

Semana 13: Gramáticas Livres do Contexto - parte 2

Tiago Januario

Departamento de Ciência da Computação Universidade Federal da Bahia

Variáveis inúteis

Definição

Seja uma GLC $G = (V, \Sigma, R, P)$. Uma variável $X \in V$ é dita ser uma variável útil sse existem $u, v \in (V \cup \Sigma)^*$ e $w \in \Sigma^*$ tais que:

$$P \stackrel{*}{\Rightarrow} uXv \stackrel{*}{\Rightarrow} w.$$

Variáveis inúteis

Definição

Seja uma GLC $G = (V, \Sigma, R, P)$. Uma variável $X \in V$ é dita ser uma variável útil sse existem $u, v \in (V \cup \Sigma)^*$ e $w \in \Sigma^*$ tais que:

$$P \stackrel{*}{\Rightarrow} uXv \stackrel{*}{\Rightarrow} w.$$

Exemplo

$$P \rightarrow AB \mid a$$

$$B \rightarrow b$$

$$C \rightarrow c$$

Que variáveis dessa GLC são inúteis?

Exemplos de variáveis inúteis

$$P
ightarrow AB \mid a$$
 $B
ightarrow b$
 $C
ightarrow c$

- C é inútil: não existem u e v tais que $P \stackrel{*}{\Rightarrow} uCv$;
- A é inútil: não existe $w \in \Sigma^*$ tal que $A \stackrel{*}{\Rightarrow} w$;
- B é inútil: $P \stackrel{*}{\Rightarrow} uBv$ apenas para u = A e $v = \lambda$, e não existe $w \in \Sigma^*$ tal que $AB \stackrel{*}{\Rightarrow} w$.

Exemplos de variáveis inúteis

$$P
ightarrow AB \mid a$$
 $B
ightarrow b$
 $C
ightarrow c$

- C é inútil: não existem u e v tais que $P \stackrel{*}{\Rightarrow} uCv$;
- A é inútil: não existe $w \in \Sigma^*$ tal que $A \stackrel{*}{\Rightarrow} w$;
- B é inútil: $P \stackrel{*}{\Rightarrow} uBv$ apenas para u = A e $v = \lambda$, e não existe $w \in \Sigma^*$ tal que $AB \stackrel{*}{\Rightarrow} w$.

GLC equivalente sem símbolos inúteis:

$$P \rightarrow a$$
.

Eliminação de variáveis inúteis

Seja $G = (V, \Sigma, R, P)$ tal que $L(G) \neq \emptyset$. Construção de uma GLC G'' equivalente a G, sem variáveis inúteis:

- a) Obtenha $G' = (V', \Sigma, R', P)$, em que:
 - $V' = \{X \in V \mid X \stackrel{*}{\Rightarrow}_G w \text{ para algum } w \in \Sigma^*\}$, e
 - $R' = \{r \in R \mid r \text{ n\~ao cont\'em s\'embolo de } V V'\}.$
- **b)** Obtenha $G'' = (V'', \Sigma, R'', P)$, em que:
 - $V'' = \{X \in V' \mid P \stackrel{*}{\Rightarrow}_{G'} uXv \text{ para algum } u, v \in (V' \cup \Sigma)^*\}, \text{ e}$
 - $R'' = \{r \in R' \mid r \text{ n\~ao cont\'em s\'embolo de } V' V''\}.$

Determinando variáveis que produzem sentenças

Algoritmo que determina $\{X \in V \mid X \stackrel{*}{\Rightarrow} w \text{ para algum } w \in \Sigma^*\}$:

```
Entrada: uma GLC G = (V, \Sigma, R, P).

Saída: \mathcal{I}_1 = \{X \in V \mid X \stackrel{*}{\Rightarrow} w \text{ para algum } w \in \Sigma^*\}.

\mathcal{I}_1 \leftarrow \emptyset;

repita

\mathcal{N} \leftarrow \{X \not\in \mathcal{I}_1 \mid X \rightarrow z \in R \text{ e } z \in (\mathcal{I}_1 \cup \Sigma)^*\};

\mathcal{I}_1 \leftarrow \mathcal{I}_1 \cup \mathcal{N}

até \mathcal{N} = \emptyset;

retorne \mathcal{I}_1.
```

Determinando variáveis alcançáveis a partir de P

Algoritmo que determina $\{X \in V \mid P \stackrel{*}{\Rightarrow} uXv \text{ para algum } u, v \in (V \cup \Sigma)^*\}$:

```
Entrada: uma GLC G = (V, \Sigma, R, P).

Saída: \mathcal{I}_2 = \{X \in V \mid P \stackrel{*}{\Rightarrow} uXv \text{ para algum } u, v \in (V \cup \Sigma)^*\}.

\mathcal{I}_2 \leftarrow \emptyset; \mathcal{N} \leftarrow \{P\};

repita
\mathcal{I}_2 \leftarrow \mathcal{I}_2 \cup \mathcal{N};
\mathcal{N} \leftarrow \{Y \not\in \mathcal{I}_2 \mid X \rightarrow uYv \text{ para algum } X \in \mathcal{N} \text{ e } u, v \in (V \cup \Sigma)^*\}
até \mathcal{N} = \emptyset;

retorne \mathcal{I}_2.
```

Exemplo/eliminação de variáveis inúteis

$$A
ightarrow ABC \mid AEF \mid BD$$
 $B
ightarrow B0 \mid 0$
 $C
ightarrow 0C \mid EB$
 $D
ightarrow 1D \mid 1$
 $E
ightarrow BE$
 $F
ightarrow 1F1 \mid 1$
 $V' = \{B, D, F, A\} \Rightarrow A
ightarrow BD$
 $B
ightarrow B0 \mid 0$
 $D
ightarrow 1D \mid 1$
 $F
ightarrow 1F1 \mid 1$
 $V'' = \{A, B, D\} \Rightarrow A
ightarrow BD$
 $B
ightarrow BD \mid 0$
 $D
ightarrow 1D \mid 1$

Eliminação de uma regra

$$G = (V, \Sigma, R, P), X \rightarrow w \in R \text{ em que } X \neq P$$

Para eliminar $X \to w$, colocar em R':

- **1** cada $Y \rightarrow z \in R \{X \rightarrow w\}$ tal que $X \notin vars(z)$; e
- ② cada $Y \to x_0 \gamma_1 x_1 \gamma_2 x_2 \dots \gamma_n x_n$, em que cada γ_j pode ser X ou w, para cada $Y \to x_0 X x_1 X x_2 \dots X x_n \in R$ com n > 0 ocorrências de X e $X \notin vars(x_i)$ para $0 \le i \le n$. Exceção: no caso em que Y = X, apenas $X \to x_0 X x_1 X x_2 \dots X x_n$ não pertence a R'.

Exemplo/eliminação de uma regra

G:

$$P
ightarrow ABA$$
 $A
ightarrow aA\,|\,a$ $B
ightarrow bBc\,|\,\lambda$

G' obtida eliminando-se a regra $A \rightarrow a$:

Exemplo/eliminação de uma regra

$$P
ightarrow ABA$$

 $A
ightarrow aA \mid a$
 $B
ightarrow bBc \mid \lambda$

G' obtida eliminando-se a regra $A \rightarrow a$:

$$P
ightarrow ABA \, | \, ABa \, | \, aBA \, | \, aBa$$
 $A
ightarrow aA \, | \, aa$ $B
ightarrow bBc \, | \, \lambda$

 \Rightarrow Como são as derivações de aa em G e em G'?

Formas Normais para GLCs

Que modificações mínimas a regras de gramáticas regulares propiciam gerar qualquer LLC?

Formas Normais para GLCs

Que modificações mínimas a regras de gramáticas regulares propiciam gerar qualquer LLC?

• Generalizar o formato $X \to aY$ permitinto variável no lugar do terminal $a \Rightarrow$ Forma normal de Chomsky

Formas Normais para GLCs

Que modificações mínimas a regras de gramáticas regulares propiciam gerar qualquer LLC?

- Generalizar o formato $X \to aY$ permitinto variável no lugar do terminal $a \Rightarrow$ Forma normal de Chomsky
- ② Preservar geração de novo terminal a cada passo, exigindo que o lado direito de uma regra comece com um terminal ⇒ Forma normal de Greibach

Formas sentenciais não descrescentes

As formas normais não admitem regras λ . Com isto:

se
$$x \Rightarrow y$$
, então $|x| \le |y|$

Formas sentenciais não descrescentes

As formas normais não admitem regras λ . Com isto:

se
$$x \Rightarrow y$$
, então $|x| \le |y|$

Uma GLC G' em forma normal, obtida de uma GLC G, será tal que $L(G') = L(G) - \{\lambda\}$.

Formas sentenciais não descrescentes

As formas normais não admitem regras λ . Com isto:

se
$$x \Rightarrow y$$
, então $|x| \le |y|$

Uma GLC G' em forma normal, obtida de uma GLC G, será tal que $L(G') = L(G) - \{\lambda\}$.

Se $\lambda \in L(G)$, pode-se acrescentar uma regra apenas para gerar a palavra λ :

- introduzir um novo símbolo de partida P'
- acrescentar as $P' \to \lambda$ e $P' \to w$ para cada w tal que exista a regra $P \to w$ em G'

O conceito de variáveis anuláveis

Como obter, a partir de uma GLC G, uma GLC G' sem regras λ tal que $L(G') = L(G) - \{\lambda\}$?

O conceito de variáveis anuláveis

Como obter, a partir de uma GLC G, uma GLC G' sem regras λ tal que $L(G') = L(G) - \{\lambda\}$?

Definição

Uma variável X é dita ser anulável em uma GLC G sse $X \stackrel{*}{\Rightarrow}_G \lambda$.

O conceito de variáveis anuláveis

Como obter, a partir de uma GLC G, uma GLC G' sem regras λ tal que $L(G') = L(G) - \{\lambda\}$?

Definição

Uma variável X é dita ser anulável em uma GLC G sse $X \stackrel{*}{\Rightarrow}_G \lambda$.

Definição

O conjunto das variáveis anuláveis de uma GLC $G = (V, \Sigma, R, P)$, VA_G , é definido recursivamente assim:

- $X \in VA_G$, se $X \to \lambda \in R$
- se $X \to w \in R$ e $w \in VA_G^*$, então $X \in VA_G$

Algoritmo para determinar variáveis anuláveis

Cálculo de VA_G

```
Entrada: uma GLC G = (V, \Sigma, R, P);

Saída: VA_G = \{X \in V \mid X \stackrel{*}{\Rightarrow} \lambda\}.

VA_G \leftarrow \emptyset;

repita

N \leftarrow \{X \in V - VA_G \mid X \rightarrow w \in R \text{ e } w \in VA_G^*\};

VA_G \leftarrow VA_G \cup N

até N = \emptyset;

retorne VA_G.
```

Eliminação de regras λ

Seja $G = (V, \Sigma, R, P)$. R' de $G' = (V, \Sigma, R', P)$ tal que $L(G') = L(G) - \{\lambda\}$ é constituído de:

- **①** cada regra $Y \rightarrow z \in R$ tal que $z \neq \lambda$ e $vars(z) \cap VA_G = \emptyset$
- ② cada regra $Y \to x_0 \gamma_1 x_1 \gamma_2 x_2 \dots \gamma_n x_n$, em que cada γ_j pode ser X_j ou λ , para $Y \to x_0 X_1 x_1 X_2 x_2 \dots X_n x_n \in R$, sendo n > 0, $X_i \in VA_G$ para $1 \le i \le n$, e cada x_i sem variáveis anuláveis. $Exceç\~ao$: regra λ $n\~ao$ pertence a R'.

Eliminação de regras λ

Seja $G=(V,\Sigma,R,P)$. R' de $G'=(V,\Sigma,R',P)$ tal que $L(G')=L(G)-\{\lambda\}$ é constituído de:

- **①** cada regra $Y \to z \in R$ tal que $z \neq \lambda$ e $vars(z) \cap VA_G = \emptyset$
- ② cada regra $Y \to x_0 \gamma_1 x_1 \gamma_2 x_2 \dots \gamma_n x_n$, em que cada γ_j pode ser X_j ou λ , para $Y \to x_0 X_1 x_1 X_2 x_2 \dots X_n x_n \in R$, sendo n > 0, $X_i \in VA_G$ para $1 \le i \le n$, e cada x_i sem variáveis anuláveis. $Exceç\~ao$: regra λ $n\~ao$ pertence a R'.

$$\Rightarrow$$
 Se $P \in VA_G$ então $\lambda \in L(G)$
 $L(G) = L(G') \cup \{\lambda\}$

Exemplo/eliminação de regras λ

Seja G: $P \rightarrow APB \mid C$ $A \rightarrow AaaA \mid \lambda$ $B \rightarrow BBb \mid C$ $C \rightarrow cC \mid \lambda$

Exemplo/eliminação de regras λ

```
Seja G:
       P \rightarrow APB \mid C
       A 	o AaaA \mid \lambda
       B \rightarrow BBb \mid C
       C \rightarrow cC | \lambda
VA_G = \{A, C, P, B\}. G':
        P \rightarrow APB \mid AP \mid AB \mid PB \mid A \mid B \mid C
       A \rightarrow AaaA \mid aaA \mid Aaa \mid aa
        B \rightarrow BBb \mid Bb \mid b \mid C
        C \rightarrow cC \mid c
```

Regras unitárias e variáveis encadeadas

Definição

Regra unitária: regra da forma $X \to Y$ em que X e Y são variáveis.

Algoritmo para determinar variáveis encadeadas

Cálculo de enc(X)

```
Entrada: uma GLC G = (V, \Sigma, R, P) e uma variável X \in V. Saída: enc(X). E \leftarrow \{X\}; repita N \leftarrow \{Z \in V - E \mid Y \rightarrow Z \in R \text{ para algum } Y \in E\}; E \leftarrow E \cup N até \mathcal{N} = \emptyset retorne E.
```

Eliminando regras unitárias

Uma GLC equivalente a $G = (V, \Sigma, R, P)$, sem regras unitárias, é $G' = (V, \Sigma, R', P)$ em que

$$R' = \{X \to w \mid w \notin V \text{ e existe } Y \in enc(X) \text{ tal que } Y \to w \in R\}.$$

Exemplo/eliminação de regras unitárias

GLC para expressões aritméticas:

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid a$

Exemplo/eliminação de regras unitárias

GLC para expressões aritméticas:

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid a$

Os conjuntos enc(X) para cada variável X são:

- $enc(E) = \{E, T, F\};$
- $enc(T) = \{T, F\};$
- $enc(F) = \{F\}.$

Exemplo/eliminação de regras unitárias

GLC para expressões aritméticas:

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$
 $F \rightarrow (E) \mid a$

Os conjuntos enc(X) para cada variável X são:

- $enc(E) = \{E, T, F\};$
- $enc(T) = \{T, F\};$
- $enc(F) = \{F\}.$

GLC equivalente, sem regras unitárias:

$$E \rightarrow E+T \mid T*F \mid (E) \mid a$$
 $T \rightarrow T*F \mid (E) \mid a$
 $F \rightarrow (E) \mid a$

a) Ao se eliminar regras λ podem aparecer regras unitárias. Exemplo: GLC com as regras $A \to BC$ e $B \to \lambda$.

- a) Ao se eliminar regras λ podem aparecer regras unitárias. Exemplo: GLC com as regras $A \to BC$ e $B \to \lambda$.
- **b)** Ao se eliminar regras unitárias não podem aparecer regras λ , visto que novas regras só contêm o lado direito de regras já existentes (que não podem ser λ).

- a) Ao se eliminar regras λ podem aparecer regras unitárias. Exemplo: GLC com as regras $A \to BC$ e $B \to \lambda$.
- **b)** Ao se eliminar regras unitárias não podem aparecer regras λ , visto que novas regras só contêm o lado direito de regras já existentes (que não podem ser λ).
- c) Ao se eliminar regras λ podem aparecer variáveis inúteis. Exemplo: o do item (a), caso $B \to \lambda$ seja a única regra B.

- a) Ao se eliminar regras λ podem aparecer regras unitárias. Exemplo: GLC com as regras $A \to BC$ e $B \to \lambda$.
- **b)** Ao se eliminar regras unitárias não podem aparecer regras λ , visto que novas regras só contêm o lado direito de regras já existentes (que não podem ser λ).
- c) Ao se eliminar regras λ podem aparecer variáveis inúteis. Exemplo: o do item (a), caso $B \to \lambda$ seja a única regra B.
- **d)** Ao se eliminar regras unitárias podem aparecer variáveis inúteis. Exemplo: GLC que contém $A \rightarrow B$ e B não aparece do lado direito de nenhuma outra regra (B torna-se inútil).

- a) Ao se eliminar regras λ podem aparecer regras unitárias. Exemplo: GLC com as regras $A \to BC$ e $B \to \lambda$.
- **b)** Ao se eliminar regras unitárias não podem aparecer regras λ , visto que novas regras só contêm o lado direito de regras já existentes (que não podem ser λ).
- c) Ao se eliminar regras λ podem aparecer variáveis inúteis. Exemplo: o do item (a), caso $B \to \lambda$ seja a única regra B.
- d) Ao se eliminar regras unitárias podem aparecer variáveis inúteis. Exemplo: GLC que contém $A \rightarrow B$ e B não aparece do lado direito de nenhuma outra regra (B torna-se inútil).
- e) Ao se eliminar variáveis inúteis, não podem aparecer novas regras, inclusive regras λ ou unitárias.

Garantido consistência das eliminações

A seguinte sequência de eliminações para $G = (V, \Sigma, R, P)$:

- lacktriangle eliminar regras λ
- 2 eliminar regras unitárias
- eliminar símbolos inúteis

produz uma GLC para $L(G) - \{\lambda\}$ cujas regras são das formas:

- ullet X o a para $a\in \Sigma$
- $X \to w$ para $|w| \ge 2$

Gramática na forma normal de Chomsky

Definição

Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Chomsky (FNC) se não contém variáveis inúteis e cada uma de suas regras está em uma das formas:

- $X \rightarrow YZ$ para $Y, Z \in V$
- ullet X o a para $a \in \Sigma$

Transformação para a forma normal de Chomsky

Para obter uma GLC na FNC que gere $L(G) - \{\lambda\}$ a partir de G:

- lacktriangle eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis

Transformação para a forma normal de Chomsky

Para obter uma GLC na FNC que gere $L(G) - \{\lambda\}$ a partir de G:

- lacktriangledown eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- modificar cada regra $X \to w$ tal que $|w| \ge 2$, se necessário, de forma que ela fique contendo apenas variáveis

Transformação para a forma normal de Chomsky

- lacktriangledown eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- modificar cada regra $X \to w$ tal que $|w| \ge 2$, se necessário, de forma que ela fique contendo apenas variáveis
- **3** substituir cada regra $X o Y_1 Y_2 ... Y_n$, n o 3, em que cada Y_i é uma variável, pelo conjunto das regras: $X o Y_1 Z_1$, $Z_1 o Y_2 Z_2$, ..., $Z_{n-2} o Y_{n-1} Y_n$, em que Z_1 , Z_2 , ..., Z_{n-2} são variáveis novas

Exemplo/obtenção de gramática na FNC

Seja a GLC G: $L \rightarrow (S)$ $S \rightarrow SE \mid \lambda$ $E \rightarrow a \mid L$

Exemplo/obtenção de gramática na FNC

Seja a GLC G:

$$L \rightarrow (S)$$

$$S \rightarrow SE \mid \lambda$$

$$E \rightarrow a \mid L$$

Após a eliminação de regras λ :

$$L \rightarrow (S) | ()$$

$$S \rightarrow SE \mid E$$

$$E \rightarrow a \mid L$$

Exemplo/obtenção de gramática na FNC

```
Seja a GLC G:
      L \rightarrow (S)
      S \rightarrow SE \mid \lambda
       E \rightarrow a \mid L
Após a eliminação de regras \lambda:
       L \rightarrow (S) \mid ()
      S \rightarrow SE \mid E
       E \rightarrow a \mid L
Como enc(L) = \{L\}, enc(S) = \{S, E, L\} e enc(E) = \{E, L\}:
       L \rightarrow (S) \mid ()
       S \rightarrow SE | a | (S) | ()
       E \rightarrow a|(S)|()
```

Exemplo/obtenção de gramática na FNC(continuação)

$$L \rightarrow (S) | ()$$

$$S \rightarrow SE | a | (S) | ()$$

$$E \rightarrow a | (S) | ()$$

Finalmente:

$$L \rightarrow AX \mid AB$$

$$S \rightarrow SE \mid a \mid AX \mid AB$$

$$E \rightarrow a \mid AX \mid AB$$

$$X \rightarrow SB$$

$$A \rightarrow ($$

$$B \rightarrow)$$

Eliminação de regras recursivas à esquerda

Sejam, a seguir, todas as regras X de uma GLC G:

$$X \to Xy_1 | Xy_2 | \dots | Xy_n | w_1 | w_2 | \dots | w_k$$

n > 0, k > 0, em que nenhum w_i começa com X.

Eliminação de regras recursivas à esquerda

Sejam, a seguir, todas as regras X de uma GLC G:

$$X \rightarrow Xy_1 \mid Xy_2 \mid \ldots \mid Xy_n \mid w_1 \mid w_2 \mid \ldots \mid w_k$$

n > 0, k > 0, em que nenhum w_i começa com X.

Utilizando-se recursão à direita, em vez de recursão à esquerda:

$$X \rightarrow w_1 Z \mid w_2 Z \mid \ldots \mid w_k Z$$

$$Z \rightarrow y_1 Z \mid y_2 Z \mid \ldots \mid y_n Z \mid \lambda$$

em que Z é uma variável nova.

Eliminação de regras recursivas à esquerda

Sejam, a seguir, todas as regras X de uma GLC G:

$$X \rightarrow Xy_1 \mid Xy_2 \mid \ldots \mid Xy_n \mid w_1 \mid w_2 \mid \ldots \mid w_k$$

n > 0, k > 0, em que nenhum w_i começa com X.

Utilizando-se recursão à direita, em vez de recursão à esquerda:

$$X \rightarrow w_1 Z \mid w_2 Z \mid \ldots \mid w_k Z$$

$$Z \rightarrow y_1 Z | y_2 Z | \dots | y_n Z | \lambda$$

em que Z é uma variável nova.

Eliminando-se a regra λ :

$$X \rightarrow w_1 Z | w_2 Z | \dots | w_k Z | w_1 | w_2 | \dots | w_k$$

$$Z \rightarrow y_1 Z | y_2 Z | \dots | y_n Z | y_1 | y_2 | \dots | y_n$$

Exemplo/eliminação de regras recursivas à esquerda

$$G: E \rightarrow E+E \mid E*E \mid (E) \mid a$$

Exemplo/eliminação de regras recursivas à esquerda

$$G: E \rightarrow E+E \mid E*E \mid (E) \mid a$$

Eliminando-se recursão à esquerda:

$$E \rightarrow (E)Z \mid aZ \mid (E) \mid a$$

 $Z \rightarrow +EZ \mid *EZ \mid +E \mid *E$

Eliminação de variável no lado direito de regra

Seja
$$G = (V, \Sigma, R, P)$$
 tal que $X \rightarrow uYv \in R$, $Y \in V$ e $Y \neq X$.

Sejam $Y \rightarrow w_1 \mid w_2 \mid \ldots \mid w_n \text{ todas}$ as regras $Y \in R$.

Eliminação de variável no lado direito de regra

Seja
$$G = (V, \Sigma, R, P)$$
 tal que $X \rightarrow uYv \in R, Y \in V$ e $Y \neq X$.

Sejam $Y \rightarrow w_1 \mid w_2 \mid \ldots \mid w_n \text{ todas}$ as regras $Y \in R$.

R pode ser substituído por

$$(R - \{X \rightarrow uYv\}) \cup \{X \rightarrow uw_1v \mid uw_2v \mid \dots \mid uw_nv\}.$$

Gramática na forma normal de Greibach

Definição

Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Greibach (FNG) se não tem variáveis inúteis e todas as suas regras têm a forma $X \to ay$ para $a \in \Sigma$ e $y \in V^*$.

Gramática na forma normal de Greibach

Definição

Uma GLC $G = (V, \Sigma, R, P)$ é dita estar na forma normal de Greibach (FNG) se não tem variáveis inúteis e todas as suas regras têm a forma $X \to ay$ para $a \in \Sigma$ e $y \in V^*$.

- Uma forma sentencial em uma DME de uma gramática na FNG é da forma xy, em que $x \in \Sigma^+$ e $y \in V^*$.
- A cada passo de uma DME, concatena-se um terminal a mais ao prefixo x.
- O tamanho de uma derivação de uma palavra $w \in \Sigma^+$ é |w|.

- $lue{0}$ eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis

- $lue{0}$ eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- numerar as variáveis a partir de 1, com a variável de partida recebendo o número 1

- $lue{0}$ eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- o numerar as variáveis a partir de 1, com a variável de partida recebendo o número 1
- Para cada variável X, na ordem da numeração:
 - se existe $X \to Yw$ em que número de Y é menor que o de X, substituir Y
 - ullet se existe X o Xw, eliminar a recursão à esquerda

- $lue{0}$ eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- numerar as variáveis a partir de 1, com a variável de partida recebendo o número 1
- Para cada variável X, na ordem da numeração:
 - se existe $X \to Yw$ em que número de Y é menor que o de X, substituir Y
 - se existe $X \to Xw$, eliminar a recursão à esquerda
- o para cada variável X, em ordem decrescente da numeração: se há regra $X \to Yw$, em que Y é variável, substituir Y

- lacktriangle eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- numerar as variáveis a partir de 1, com a variável de partida recebendo o número 1
 - Para cada variável X, na ordem da numeração:
 - se existe $X \to Yw$ em que número de Y é menor que o de X, substituir Y
 - se existe $X \to Xw$, eliminar a recursão à esquerda
 - para cada variável X, em ordem decrescente da numeração: se há regra $X \to Yw$, em que Y é variável, substituir Y
 - $oldsymbol{O}$ para cada variável nova Z, criada eliminando-se recursão à esquerda: se há regra $Z \to Yw$, em que Y é variável, substituir Y

- $lue{0}$ eliminar regras λ
- eliminar regras unitárias
- eliminar variáveis inúteis
- numerar as variáveis a partir de 1, com a variável de partida recebendo o número 1
- Para cada variável X, na ordem da numeração:
 - se existe X → Yw em que número de Y é menor que o de X, substituir Y
 - se existe $X \to Xw$, eliminar a recursão à esquerda
- para cada variável X, em ordem decrescente da numeração: se há regra $X \to Yw$, em que Y é variável, substituir Y
- para cada variável nova Z, criada eliminando-se recursão à esquerda: se há regra $Z \to Yw$, em que Y é variável, substituir Y
- lacktriangledown em cada regra X o aw, substituir terminais em w por variáveis

Seja a GLC:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid a$$

Seja a GLC: $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid a$ Após os 3 primeiros passos: $E \rightarrow E+T \mid T*F \mid (E) \mid a$ $T \rightarrow T*F \mid (E) \mid a$

 $F \rightarrow (E) \mid a$

Seja a GLC:
$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$ $F
ightarrow (E) \mid$ a

Após os 3 primeiros passos:

$$E
ightarrow E+T\mid T*F\mid (E)\mid$$
a $T
ightarrow T*F\mid (E)\mid$ a $F
ightarrow (E)\mid$ a

Após numerar na ordem E, T, F, no passo 4, no passo 5 elimina-se recursão à esquerda nas regras E:

$$E
ightarrow T*FZ_1\,|\,(E)Z_1\,|\,aZ_1\,|\,T*F\,|\,(E)\,|\,a$$
 $Z_1
ightarrow +TZ_1\,|\,+\,T$

Seja a GLC:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid a$$

Após os 3 primeiros passos:

$$E \rightarrow E + T \mid T * F \mid (E) \mid a$$

$$T
ightarrow T *F | (E) | a$$

$$F \rightarrow (E) \mid a$$

Após numerar na ordem E, T, F, no passo 4, no passo 5 elimina-se recursão à esquerda nas regras E:

$$E \to \, T\!*\!F\!Z_1 \,|\, (E)Z_1 \,|\, aZ_1 \,|\, T *F \,|\, (E) \,|\, a$$

$$Z_1 \rightarrow +TZ_1 \mid +T$$

Ainda no passo 5 elimina-se recursão à esquerda nas regras T:

$$T
ightarrow (E)Z_2\,|\,\mathtt{a}Z_2\,|\,(E)\,|\,\mathtt{a}$$

$$Z_2 \rightarrow *FZ_2 \mid *F$$

Exemplo/transformação para a FNG (continuação)

No passo 6, elimina-se T em $E o T*FZ_1$ e E o T*F. $E o (E)Z_2*FZ_1 \mid aZ_2*FZ_1 \mid (E)*FZ_1 \mid a*FZ_1$ $E o (E)Z_2*F \mid aZ_2*F \mid (E)*F \mid a*F$ $E o (E)Z_1 \mid aZ_1 \mid (E) \mid a$

 $T \rightarrow (E)Z_2 | aZ_2 | (E) | a$ $F \rightarrow (E) | a$

 $Z_1 \rightarrow +TZ_1 | +T$ $Z_2 \rightarrow *FZ_2 | *F$

Exemplo/transformação para a FNG (continuação)

No passo 6, elimina-se
$$T$$
 em $E \to T*FZ_1$ e $E \to T*F$. $E \to (E)Z_2*FZ_1 \mid aZ_2*FZ_1 \mid (E)*FZ_1 \mid a*FZ_1$ $E \to (E)Z_2*F \mid aZ_2*F \mid (E)*F \mid a*F$ $E \to (E)Z_1 \mid aZ_1 \mid (E) \mid a$ $T \to (E)Z_2 \mid aZ_2 \mid (E) \mid a$ $F \to (E$

Linguagens Formais e Autômatos

Semana 13: Gramáticas Livres do Contexto - parte 2

Tiago Januario

Linguagens Formais e Autômatos

Semana 14: Autômatos de pilha e o Lema do Bombeamento para LLC

Tiago Januario

Obtenção de AP a partir de GLC

AP que reconhece a linguagem gerada por (V, Σ, R, P) :

$$- \underbrace{i} \quad \lambda, \lambda/P \quad \text{for a cada } X \to w \in R$$
$$a, a/\lambda \text{ para cada } a \in \Sigma$$

Obtenção de AP a partir de GLC/Exemplo

$$G=(\{P\},\{0,1\},R,P)$$
, em que R consta de:
$$P \rightarrow 0P1P \mid 1P0P \mid \lambda$$
 Um AP que reconhece $L(G)$:

Outro AP a partir da GLC

$$G=(\{P\},\{0,1\},R,P)$$
, em que R consta de:
$$P \to 0P1P \,|\, 1P0P \,|\, \lambda$$
 Regra $X \to ay \implies$ transição $[f,y] \in \delta(f,a,X)$

Outro AP a partir da GLC

$$G=(\{P\},\{0,1\},R,P)$$
, em que R consta de:
$$P \to 0P1P \,|\, 1P0P \,|\, \lambda$$
 Regra $X \to ay \implies$ transição $[f,y] \in \delta(f,a,X)$
$$0,P/P1P$$

O lema do bombeamento para LLCs

Lema do bombeamento

Seja L uma LLC. Então existe k > 0 tal que para qualquer $z \in L$ com $|z| \ge k$ existem u, v, w, x e y tais que:

- z = uvwxy;
- $|vwx| \leq k$;
- $vx \neq \lambda$; e
- $uv^iwx^iy \in L$ para todo $i \ge 0$.

O lema do bombeamento para LLCs

Existe k > 0 tal que qualquer palavra $z \in L$ com $|z| \ge k$ terá uma AD da forma:

O lema do bombeamento para LLCs (continuação)

- Como G não tem regras λ , pelo menos um dentre v e x é diferente de λ : $vx \neq \lambda$.
- A repetição do rótulo X em uma subAD com raiz de rótulo X ocorre, no mais tardar, quando a subpalavra gerada correspondente à subAD, vwx, tem k símbolos: $|vwx| \le k$.
- Pela estrutura da AD, vê-se que:
 - $P \stackrel{*}{\Rightarrow} uXy$;
 - $X \stackrel{*}{\Rightarrow} vXx$; e
 - $X \stackrel{*}{\Rightarrow} w$.

Tem-se, então, que $P \stackrel{*}{\Rightarrow} uv^i wx^i y$, $i \ge 0$. Assim, $uv^i wx^i y \in L$ para todo $i \ge 0$.

Exemplo de uso do lema do bombeamento

Teorema

 $L = \{a^n b^n c^n \mid n \in \mathbf{N}\}$ não é LLC.

Demonstração

Suponha que L seja uma LLC. Seja k a constante do LB e $z=a^kb^kc^k$. Como |z|>k, sejam u, v, w, x e y tais que z=uvwxy, $|vwx|\leq k$, e $vx\neq \lambda$. Considera- se dois casos:

- vx contém algum a. Como $|vwx| \le k$, vx não contém cs. Portanto, uv^2wx^2y contém mais as que cs. Assim, $uv^2wx^2y \notin L$.
- vx $n\~ao$ cont'em a. Como $vx \neq \lambda$, uv^2wx^2y cont'em menos as que bs e/ou cs. Dessa forma, $uv^2wx^2y \notin L$.

Logo, em qualquer caso $uv^2wx^2y \notin L$, contrariando o LB. Portanto, L não é LLC.

Exemplo de uso do lema do bombeamento

Teorema

 $L = \{0^n \mid n \text{ \'e primo}\}.$

Demonstração

Suponha que L seja uma LLC. Seja k a constante do LB, e seja $z=0^n$, em que n é um número primo maior que k. Como |z|>k, para provar que L não é livre do contexto, basta então supor que z=uvwxy, $|vwx| \le k$ e $vx \ne \lambda$, e encontrar um i tal que $uv^iwx^iy \not\in L$, contrariando o LB. Pelas informações anteriores, tem-se que $uv^iwx^iy = 0^{n+(i-1)(|vx|)}$ (pois $z=0^n$). Assim, i deve ser tal que n+(i-1)|vx| não seja um número primo. Ora, para isso, basta fazer i=n+1, obtendo-se n+(i-1)|vx|=n+n|vx|=n(1+|vx|), que não é primo (pois |vx|>0). Desse modo, $uv^{n+1}wx^{n+1}y \not\in L$, contradizendo o LB. Logo, L não é LLC.

Algumas propriedades de fechamento

Teorema

A classe das LLCs é fechada sob:

- união,
- concatenação,
- fecho de Kleene.

Demonstração

Trivial, usando GLCs.

Não fechamento das LLCs

A classe das LLCs não é fechada sob:

- Interseção.
 - $L_1 = \{a^n b^n c^k \mid n, k \ge 0\}$ é LLC
 - $L_2 = \{a^n b^k c^k \mid n, k \ge 0\}$ é LLC
 - $L_1 \cap L_2 = \{\mathtt{a}^n\mathtt{b}^n\mathtt{c}^n \,|\, n \geq 0\}$ não é LLC

Não fechamento das LLCs

A classe das LLCs não é fechada sob:

- Interseção.
 - $L_1 = \{a^n b^n c^k \mid n, k \ge 0\}$ é LLC
 - $L_2 = \{a^n b^k c^k | n, k \ge 0\} \text{ é LLC}$
 - $L_1 \cap L_2 = \{\mathtt{a}^n\mathtt{b}^n\mathtt{c}^n \,|\, n \geq 0\}$ não é LLC
- Complementação.
 - $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$.

Um teorema importante

Teorema

Seja L uma LLC e R uma linguagem regular. Então L \cap R é uma LLC.

Demonstração

Produto de APN e AFD...

Um teorema importante

Teorema

Seja L uma LLC e R uma linguagem regular. Então L \cap R é uma LLC.

Demonstração

Produto de APN e AFD...

Seja
$$L = \{ w \in \{ a, b, c \}^* \mid n_a(w) = n_b(w) = n_c(w) \}.$$

Suponha que L seja uma LLC. Então, como $a^*b^*c^*$ é regular, $L \cap a^*b^*c^*$ é LLC. Mas, $L \cap a^*b^*c^* = \{a^nb^nc^n \mid n \in \mathbf{N}\}$, que não é LLC. Logo, L não é LLC.

Problemas decidíveis e indecidíveis para LLcs

Problemas decidíveis:

- Determinar se $w \in L$, para qualquer LLC L e palavra w.
- Determinar se $L = \emptyset$, para qualquer LLC L.

Problemas indecidíveis:

- Determinar se G é ambígua, para qualquer GLC G.
- Determinar se $L = \Sigma^*$, para qualquer LLC L.
- Verificar se $L_1 \cap L_2 = \emptyset$, para quaisquer LLCs L_1 e L_2 .
- Determinar se $L_1 \subseteq L_2$, para quaisquer LLCs L_1 e L_2 .
- Determinar se $L_1 = L_2$, para quaisquer LLCs L_1 e L_2 .

Linguagens Formais e Autômatos

Semana 14: Autômatos de pilha e o Lema do Bombeamento para LLC

Tiago Januario

Linguagens Formais e Autômatos

Semana 15: Revisão e exercícios

Tiago Januario

Orientações para realização de provas

Tiago Januario