

## Introduction to Biostatistics Lecture 10A

Henrik Renlund

April 14, 2016



### What shall we learn today?

#### This:

statistical power

and its relation to

sample size calculations.

(Bootstrap example in notes outside the scope of this course.)

## How to make 'null' results meaningful

Generally, it  ${}^{\prime}H_0$  not rejected is uninformative *unless* we know that the study had a good chance of detecting an effect that is interesting.

E.g: "Two methods of pain relief were compared. The difference was not statistically significant."

This would be enhanced by;

"The study was designed to have a 90% chance of detecting a clinically significant difference of 9 (on the VAS scale)".

## Attempt to visualize the power of a test

Suppose we measure the effect of a drug that on average does decrease the blood pressure by a clinically significant amount (defined as 1 unit).

We measure the blood pressure on n indivuals before and after taking the drug.

Our data consist of n 'indivual effects' (before - after) which are positive if the drug works. We assume these are Normal with a standard deviation of 1 unit.

 $H_0$ :"average effect = 0" is determined by creating a 95% confidence interval for the mean effect.

# 15 samples of size 5



## 15 samples of size 10



## 15 samples of size 15



#### Power

The power of a test is the probability of rejecting the null hypothesis.

The power depends on

- effect size
- sample size (maybe under your control)
- the spread of the data
- (the statistical test, significance level, etc.)

We want a test to have high power as soon as the effect is interesting.

The power is often thought of as a function of sample size (n) and effect. Set

- the power wanted,
- the effect to be at least interesting,

and figure out what n needs to be.



### Sample size calculation

Recall the breastfeeding example from lecture 4.

| pair   | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8     | 9    | 10 | 11 | 12  | 13  |
|--------|---|----|----|----|----|----|----|-------|------|----|----|-----|-----|
| bottle | 8 | 8  | 31 | 8  | 13 | 21 | 26 | 39.0  | 77.0 | 29 | 35 | 182 | 186 |
| breast | 7 | 10 | 28 | 12 | 19 | 14 | 15 | 51.0  | 65.0 | 12 | 11 | 24  | 17  |
| diff   | 1 | -2 | 3  | -4 | -6 | 7  | 11 | -12.0 | 12.0 | 17 | 24 | 158 | 169 |
| rank   | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8.5   | 8.5  | 10 | 11 | 12  | 13  |

| part     | rank                            | sum  |
|----------|---------------------------------|------|
| negative | 2, 4, 5, 8.5                    | 19.5 |
| positive | 1, 3, 6, 7, 8.5, 10, 11, 12, 13 | 71.5 |

The null hypothesis of no difference was tested with the Wilcoxon signed rank test. (This tests for a shift in median.)

The p-value was 0.07

Think of this as being a pilot study and assume the data is representative of some target population. If the observed effect, a median shift of 9 days, is considered interesting (and thought to be true) what sample size would we need in order to show this?

#### Two possible approaches:

- Make a model (Normal? via transformation?) for the data and solve analytically or with software
- "Pull yourself up by your own bootstraps" resample from the pilot study data.

In either case we will use the given sample:

$$z = \{1, -2, 3, -4, -6, 7, 11, -12, 12, 17, 24, 158, 169\}$$

#### Approximation with the R software

Simple sample-size software exists on-line and possibly in your statistical software. In (base) R we can use function for t-test to get a ballpark figure.

One-sample  ${\tt t}$  test power calculation

```
n = 35.94785
delta = 29.07692
sd = 60.49995
sig.level = 0.05
power = 0.8
alternative = two.sided
```

Since the distribution is so skewed it is not unreasonable to think that the Wilcoxon-test will be more powerful.

#### Bootstrap method

Resampling using the same same sample size (13).

$$3, 1, -6, 24, 158, 17, 1, -2, 7, -12, 1, -2, 24, 1$$

We are interested in the power of the test, so we want to see how often the null is rejected. For that purpose we collect the p-value. In this case it is 0.15.

Now lets repeat this process 100 times. What kind of p-values do we get?



These 100 'regenerated' *p*-values, suggest that the power was 0.59.

This is an estimate! (The error will depend on both the resample *and* inital sample.)

The plot shows a bootstrap estimate for varying sample sizes:



So you should probably use at least 35 individuals. (There the power is estimated to be at least 80%.)

## References

 Chapters 23-25: Petrie & Sabin. Medical Statistics at a Glance, Wiley-Blackwell (2009).