11 Tap FIR Filter - HLS

No Optimization

```
#include <stdio.h>
#include "ap_int.h"
#define N 11
typedef int coef t;
typedef int data t:
typedef int acc_t;
void fir(data t *output, data t input);
void fir sw(data t *output, data t input);
int main()
{
     //Input initialization
    data_t input = 5;
     data t output sw, output hw;
     //Call to hardware function
    fir(&output hw, input);
     //Call to software function
    fir sw(&output sw, input);
     if (output hw == output sw)
     {
         printf("Result: %d\n", output_hw);
     }
     //Result: 265
```

```
else
    {
        printf("Data mismatch!");
        printf("HW: %d", output_hw);
        printf("SW: %d", output_sw);
         return 1;
    }
    return 0;
}
void fir_sw(data_t *output, data_t input)
    coef_t c[N] = \{53, 0, -91, 0, 313, 500, 313, 0, -91, 0, 53\};
    static data_t shift_reg[N];
    acc_t acc = 0;
    Shift_Accum_Loop:
    for (int i = N - 1; i >= 0; i--)
    {
        if (i == 0)
         {
             acc += input * c[0];
             shift_reg[0] = input;
         }
        else
         {
             shift_reg[i] = shift_reg[i - 1];
             acc += shift_reg[i] * c[i];
         }
    }
    *output = acc;
```

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Latency		Inte	Interval		
min	max	min	min max		
23	45	23	45	none	

□ Detail

■ Instance

□ Loop

	Latency		Initiation Interval				
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Shift_Accum_Loop	22	44	2 ~ 4	-	-	11	no

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	105	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	8	0
Multiplexer	-	-	-	120	-
Register	-	-	213	-	-
Total	0	4	287	233	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	43	43	43	NA	NA	NA

Export the report(.html) using the Export Wizard

Optimization 1 - Symmetric Coefficients

```
void fir(data_t *output, data_t input)
{
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\}; // Symmetric coefficients
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    Shift_Accum_Loop:
    for (int i = N/2; i >= 0; i--)
        if (i == 0)
        {
            acc += input * c[0];
            shift_reg[0] = input;
        }
        else
            shift_reg[i] = shift_reg[i - 1];
            acc += shift_reg[i] * c[i];
        }
    }
    *output = acc;
```

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Latency		Inte	Interval		
min	max	min	min max		
13	25	13	25	none	

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Shift_Accum_Loop	12	24	2 ~ 4	-	-	6	no

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	101	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	120	-
Register	-	-	212	-	-
Total	0	4	286	225	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	Status min avg		max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	23	23	23	NA	NA	NA

Varying the Clock Period

1 ns

Performance Estimates

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	1.00	2.792	0.25

□ Latency (clock cycles)

■ Summary

Latency		Inte	erval	
min	max	min	min max	
43	169	43	169	none

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Shift_Accum_Loop	24	150	4 ~ 25	-	-	6	no

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	22	-
FIFO	-	-	-	-	-
Instance	-	4	953	173	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	275	-
Register	-	-	287	-	-
Total	0	4	1314	474	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	1	~0	0

Cosimulation Report for 'fir'

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	148	148	148	NA	NA	NA

5 ns

Performance Estimates

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	5.00	4.644	0.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte	rval	
min	max	min	min max	
17	53	17	53	none

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Shift_Accum_Loop	12	48	2 ~ 8	-	-	6	no

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	61	-
FIFO	-	-	-	-	-
Instance	-	4	430	2	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	146	-
Register	-	-	220	-	-
Total	0	4	724	213	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency			Interval		
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	47	47	47	NA	NA	NA

10 ns

Performance Estimates

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Latency		Inte	Interval		
min	max	min max		Type	
13	25	13	25	none	

□ Detail

■ Instance

□ Loop

	Late	ency	Initiation Interval				
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Shift_Accum_Loop	12	24	2 ~ 4	-	-	6	no

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	101	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	120	-
Register	-	-	212	-	-
Total	0	4	286	225	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Cosimulation Report for 'fir'

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	23	23	23	NA	NA	NA

Best Performance: 10 ns

Best Area: 10 ns

Optimization 2 - Code Hoisting

```
void fir(data_t *output, data_t input)
{
    coef_t c[N/2 + 1] = {53, 0, -91, 0, 313, 500};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;

    for (int i = N/2; i > 0; i--)
    {
        shift_reg[i] = shift_reg[i - 1];
        acc += shift_reg[i] * c[i];
    }

    acc += input * c[0];
    shift_reg[0] = input;

    *output = acc;
}
```

Performance Estimates

■ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

	erval	Inte	Latency		
Туре	max	min	max	min	
none	22	22	22	22	

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	20	20	4	-	-	5	no

Utilization Estimates

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	139	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	92	-
Register	-	-	153	-	-
Total	0	4	227	235	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Cosimulation Report for 'fir'

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	22	22	22	NA	NA	NA

```
Optimization 3 - Loop Fission
```

```
void fir(data_t *output, data_t input)
{
     coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
     static data_t shift_reg[N/2 + 1];
    acc t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
     {
         shift reg[i] = shift reg[i - 1];
     }
     shift_reg[0] = input;
    acc = 0;
     //MAC
    for (int i = N/2; i > 0; i--)
     {
         acc += shift_reg[i] * c[i];
     }
     acc += input * c[0];
     shift_reg[0] = input;
     *output = acc;
}
```

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte		
min	max	min	max	Type
33	33	33	33	none

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	10	10	2	-	-	5	no
- Loop 2	20	20	4	-	-	5	no

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	160	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	113	-
Register	-	-	158	-	-
Total	0	4	232	277	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	33	33	33	NA	NA	NA

Optimization 4 - Loop Unrolling Unrolling the TDL Loop Factor 4

```
void fir(data_t *output, data_t input)
     coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
     static data_t shift_reg[N/2 + 1];
     acc_t acc = 0;
     //TDL - Tapped Delay Line
     for (int i = N/2; i > 0; i--)
     #pragma HLS unroll factor = 4
     {
         shift_reg[i] = shift_reg[i - 1];
     }
     shift_reg[0] = input;
     acc = 0;
     //MAC
     for (int i = N/2; i > 0; i--)
         acc += shift_reg[i] * c[i];
     }
     acc += input * c[0];
     shift_reg[0] = input;
     *output = acc;
 }
```

■ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte	erval	
min	max	min	max	Type
22	22	22	22	none

□ Detail

■ Instance

□ Loop

	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	20	20	4	-	-	5	no

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	139	_
FIFO	-	-	-	-	_
Instance	-	-	-	-	_
Memory	0	-	74	4	0
Multiplexer	-	-	-	71	-
Register	-	-	150	-	-
Total	0	4	224	214	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	22	22	22	NA	NA	NA

Complete Unrolling

```
void fir(data_t *output, data_t input)
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
    #pragma HLS unroll
         shift_reg[i] = shift_reg[i - 1];
    }
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
        acc += shift_reg[i] * c[i];
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
```

☐ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte	erval	
min	min max		min max	
22	22 22		22	none

□ Detail

■ Instance

□ Loop

	Latency		Latency Initiation Interval				
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	20	20	4	-	-	5	no

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	139	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	71	-
Register	-	-	150	-	-
Total	0	4	224	214	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	22	22	22	NA	NA	NA

Unrolling the MAC Loop

```
Factor 4
```

```
void fir(data_t *output, data_t input)
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
    ſ
        shift_reg[i] = shift_reg[i - 1];
    }
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
    #pragma HLS unroll factor = 4
    {
        acc += shift_reg[i] * c[i];
    }
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
}
```

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte	rval	
min	min max		max	Type
11	11 11		11	none

□ Detail

■ Instance

□ Loop

	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	10	10	2	-	-	5	no

Utilization Estimates

□ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	2	0	41	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	64	3	0
Multiplexer	-	-	-	66	-
Register	-	-	9	-	-
Total	0	2	73	110	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	11	11	11	NA	NA	NA

Complete Unrolling

```
void fir(data_t *output, data_t input)
{
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
        shift_reg[i] = shift_reg[i - 1];
    }
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
    #pragma HLS unroll
    {
        acc += shift_reg[i] * c[i];
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
```

■ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

■ Latency (clock cycles)

■ Summary

Late	Latency		Interval	
min	max	min	max	Type
11	11	11	11	none

□ Detail

■ Instance

□ Loop

	Late	ency		Initiation	Interval		
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	10	10	2	-	-	5	no

Utilization Estimates

$\ \ \Box$ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	2	0	41	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	64	3	0
Multiplexer	-	-	-	66	-
Register	-	-	9	-	-
Total	0	2	73	110	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	11	11	11	NA	NA	NA

Both Loops with Factor 4

```
void fir(data_t *output, data_t input)
{
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
    #pragma HLS unroll factor = 4
        shift_reg[i] = shift_reg[i - 1];
    }
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
    #pragma HLS unroll factor = 4
        acc += shift_reg[i] * c[i];
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
```

□ Timing (ns)

$\ \ \Box$ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	Latency		Interval	
min	max	min	max	Type
0	0	0	0	none

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	2	0	20	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	-	-
Register	-	-	-	-	-
Total	0	2	0	20	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	0	0	0	0	0	0

Optimization 5 - Loop Pipelining

Loop II value should not be greater than the iteration latency of the for loop. Iteration Latency of TDL Loop - 2 cycles Iteration Latency of MAC Loop - 4 cycles

TDL Loop

```
void fir(data_t *output, data_t input)
{
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
    #pragma HLS pipeline II=1
        shift_reg[i] = shift_reg[i - 1];
    }
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
    {
        acc += shift_reg[i] * c[i];
    }
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
}
```

□ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

	Late	ency	Inte		
	min	max	min	max	Type
ĺ	22	22	22	22	none

□ Detail

■ Instance

□ Loop

	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	20	20	4	-	-	5	no

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	4	0	139	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	74	4	0
Multiplexer	-	-	-	71	-
Register	-	-	150	-	-
Total	0	4	224	214	0
Available	280	220	106400	53200	0
Utilization (%)	0	1	~0	~0	0

Result

		Latency				Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	22	22	22	NA	NA	NA

MAC Loop

```
void fir(data_t *output, data_t input)
    coef_t c[N/2 + 1] = \{53, 0, -91, 0, 313, 500\};
    static data_t shift_reg[N/2 + 1];
    acc_t acc = 0;
    //TDL - Tapped Delay Line
    for (int i = N/2; i > 0; i--)
        shift_reg[i] = shift_reg[i - 1];
    shift_reg[0] = input;
    acc = 0;
    //MAC
    for (int i = N/2; i > 0; i--)
    #pragma HLS pipeline II=1
        acc += shift_reg[i] * c[i];
    }
    acc += input * c[0];
    shift_reg[0] = input;
    *output = acc;
}
```

■ Timing (ns)

■ Summary

Clock	Target	Estimated	Uncertainty
ap_clk	10.00	8.510	1.25

□ Latency (clock cycles)

■ Summary

Late	ency	Inte		
min	min max		min max	
11	11	11	11	none

□ Detail

■ Instance

□ Loop

	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	10	10	2	-	-	5	no

Utilization Estimates

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	2	0	41	-
FIFO	-	-	-	-	-
Instance	-	-	-	-	-
Memory	0	-	64	3	0
Multiplexer	-	-	-	66	-
Register	-	-	9	-	-
Total	0	2	73	110	0
Available	280	220	106400	53200	0
Utilization (%)	0	~0	~0	~0	0

Result

			Latency	/		Interva	I
RTL	Status	min	avg	max	min	avg	max
VHDL	NA	NA	NA	NA	NA	NA	NA
Verilog	Pass	11	11	11	NA	NA	NA