实验七 积分与微分电路

GeorgeDong32

一、实验目的

- 1. 学会用运算放大器组成积分微分电路。
- 2. 学会积分微分电路的特点及性能。

二、实验仪器

- 1. 数字万用表
- 2. 信号发生器
- 3. 双踪示波器

三、预习要求

- 1. 分析图 7. 1 电路, 若输入正弦波, U。与 U_i 相位差是多少? 当输入信号为 100Hz 有效 值为 2V 时, U。=?
- 2. 分析图 7. 2 电路,若输入正弦波,U。与 U_i 相位差多少?当输入信号为 160Hz 幅值为 1V 时,输出 U。=?
 - 3. 拟定实验步骤、做好记录表格。

四、实验内容

1. 积分电路:

实验电路如图 7.1 所示, 先不接入 RPI, 连接+12V 和-12V 到集成电路区。

图 7.1 积分电路

(1) 取 $U_{i=+1}V$,断开开关 K(开关 K 用一连线代替,拔出连线一端作为断开) 用示波器和 万用表电压档观察 U_{o} 变化。

(2)测量饱和输出电压及有效积分时间。

饱和输出电压为-9.513V,有效积分时间为960ms

(3) 使图 7.1 中积分电容 C_1 改为 $0.1\,\mu$,在积分电容两端并接 R_{P1} ,将 R_{P1} 调到电阻最大。断开 K, U_i 分别输入频率为 100Hz 幅值为 1V($V_{P-P}=2V$)的正弦波和方波

信号,观察和比较 U_i 与 U_o 的幅值大小及相位关系,并记录波形。将 R_{Pl} 调整为 100k,重复以上步骤,观察记录波形并与 R_{Pl} 最大时比较。

(4) R_{Pl} =100k, 改变信号频率(20Hz \sim 400Hz), 观察 U_i 与 U_o 的相位、幅值及波形的变化。

300Hz 正弦波

2. 微分电路

实验电路如图 7.2 所示。

图 7.2 微分电路

(1) 输入正弦波信号,f=160Hz 幅值为 1V,用示波器观察 U_i 与 U_o 波形并测量输出电压。

输出电压幅值为 2.32V

(2) 改变正弦波频率($20Hz\sim400Hz$),观察 U_{i} 与 U_{o} 的相位、幅值变化情况并记录。

50Hz 正弦输入

300Hz 正弦输入

输入输出相位差增大,输出电压幅值增大

(3) 在微分电容 C_1 左端接入 1k 电位器,调节其为 $400\,\Omega$,然后输入方波信号,f=200Hz,幅值 200mV ($V_{P-P}=400mV$),用示波器观察 U_o 波形,按上述步骤(2) 重复实验。

50Hz **方波输入**

200Hz 方波输入

300Hz **方波输入**

(4) 输入方波信号,f=200Hz,幅值 200mV ($V_{P-P}=400mV$),调节微分电容左端接入的电位器 (1k),观察 U_i 与 U_o 幅值及波形的变化情况并记录。

 $R = 339 \Omega$

 $R = 719 \Omega$

 U_0 随着电阻的增大而减小,波形的幅度减小

(5) 调节电位器为 $100\,\Omega$,输入三角波 f=200Hz,幅值 200mV(V_{P-P} =400mV),用示波器观察 U_{o} 波形,改变三角波频率(100Hz~400Hz),观察变化。

200Hz **三角波输入**

300Hz 三角波输入

400Hz **三角波输入**

随着频率升高,输出电压的幅值不断增大。

3. 积分——微分电路

实验电路如图 7.3 所示

图 7.3 积分一微分电路

(1) 在 U_i 输入 f=200Hz,幅值 6V 的方波信号,用示波器观察 U_{o1} 和 U_{o2} 的波形并记录。

(2)将f改为(100Hz~400Hz),重复上述实验。

100Hz 方波输入

300Hz 方波输入

五、实验报告

- 1. 整理实验中的数据及波形,总结积分,微分电路特点。
 - 1. 输入信号脉宽要小于 1/10 时间常数
 - 2. 输出信号的幅值随输入信号的频率变化而变化
 - 3. 在微分电路中电容充放电时可能会出现尖峰
- 2. 分析实验结果与理论计算的误差原因。

实验实测值与理论值相差在5%以内,属于正常波动范围。

产生误差的原因可能是集成运放的温漂,各个电子元件实际值与标称值之

间有误差。