1. Dead loads

Materials	
Wood structural panel	$36.0 \text{ pcf} = 5655 \frac{\text{newton}}{\text{meter}^3}$
Concrete reinforced stone (including gravel)	$150.0 \text{ pcf} = 23563 \frac{\text{newton}}{\text{meter}^3}$
Steel	$489.0 \text{ pcf} = 76816 \frac{\text{newton}}{\text{meter}^3}$
Gypsum,loose	$70.0 \text{ pcf} = 10996 \frac{\text{newton}}{\text{meter}^3}$
Earth (not submerged) sand and gravel (wet)	$120.0 \text{ pcf} = 18850 \frac{\text{newton}}{\text{meter}^3}$
Water	$62.4 \text{ pcf} = 9802 \frac{\text{newton}}{\text{meter}^3}$
Frame partitions	
Wood or steel studs, $\frac{1}{2}$ in gypsum board inside	8 psf = 383 pascal
Wood studs, 2x4 unplastered	4 psf = 192 pascal
Wood studs, 2x4 plastered one side	12 psf = 575 pascal
Wood studs, 2x4 plastered two sides	20 psf = 958 pascal
Movable steel partitions	4 psf = 192 pascal
Frame walls	
Exterior stud wall $2x4 @ 16in$, $\frac{5}{8}$ gypsum insulated,	11 psf = 526 pascal
$\frac{3}{8}$ in siding	
8 Exterior stud well 2x6 @ 16in 5 syngum insulated	12 pcf — 575 pccccl
Exterior stud wall $2x6 @ 16in$, $\frac{5}{8}$ gypsum insulated,	12 psi = 575 pascar
$\frac{3}{8}$ in siding	
	40 f 2200 1
Exterior stud wall with brick veneer	48 psf = 2298 pascal
Window, glass, frame and sash	8 psf = 383 pascal
Cladding	0.0 6 450 1
Fiber cement panels, large format 38.4 in $\times 102$ in	3.2 psf = 153 pascal
Fiber cement panels, small scale 9.6 in \times 102 in	3.2 psf = 153 pascal
Perforated metal panel at exterior HVAC location	
Floor truss	
Single chord @ 24in o.c. spacing	3.2 psf = 153 pascal
Double chord @ 24in o.c. spacing	4.25 psf = 203 pascal
Sheating	
Roof sheating	3.5 psf = 167 pascal
Floor sheating	2.5 psf = 120 pascal
Ceilings	2.5 psf = 120 pascal

 $may\ 2019$ pag. 1 de 4

2. Live loads

Occupancy or use	Uniform	Concentrated	Notes
Private rooms and corridors ser-	40.0 psf =	-	IBC-2015 Table 1607.1
ving them in multifamily dwe-	1915 pascal		
lling			
Stairs and exits	100.0 psf =	300 pound =	IBC-2015 Table 1607.1.
	4788 pascal	1334 newton	Concentrated load on stair
			treads applied on an area
			of 2 inches by 2 inches
Balconies and decks	same as occu-	-	IBC-2015 Table 1607.1
	pancy served		
Garages (passenger vehicles	40.0 psf =	-	IBC-2015 Table 1607.1
only)	1915 pascal		
Cornices	60.0 psf =	-	IBC-2015 Table 1607.1
	2873 pascal		
Elevator machine room and con-	-	300 pound =	IBC-2015 Table 1607.1.
trol room grating		1334 newton	Concentrated load applied
			on an area of 2 inches by
			2 inches
Flat roof (not occupiable) +	20.0 psf =	300 pound =	IBC-2015 Table 1607.1
maintenace	958 pascal	1334 newton	
Yards and terraces, pedestrians	100.0 psf =	-	IBC-2015 Table 1607.1
	4788 pascal		
Sidewalks, vehicular driveways	250.0 psf =	8000 pound =	IBC-2015 Table 1607.1
and yards, subject to trucking	11970 pascal	35586 newton	

3. Snow loads

Ground snow load Exposure factor	$p_g = 60.0 \text{ psf} = 2873 \text{ pascal}$ $C_e = 1.0$	ASCE 7. Figure 7.1 ASCE 7. Table 7-2. Terrain ca-
Exposure factor	$C_e = 1.0$	tegory B, roof partially exposed
Thermal factor	$C_t = 1.0$	ASCE 7. Table 7-3.
Snow load importance factor	$I_s = 1.0$	ASCE 7. Table 7-4. Structure
		risk category II
Snow load flat roof	$p_f = 0.7 \times C_e \times C_t \times I_s \times p_g = 0.7 \times$	ASCE 7. Sect. 7.3
	$1.0 \times 1.0 \times 1.0 \times 60.0 = 42.0 \text{ psf} =$	
	2873 pascal	

 $may\ 2019$ pag. 2 de 4

4. Wind loads

Alternate all-heights method.

Ultimate design wind speed $V_{ult} = 115 \frac{\text{miles}}{\text{hour}} = 51 \frac{\text{meters}}{\text{second}}$

Velocity pressure exposure coef- $K_z = 0.72$

 ${\rm ficient}$

Topographic factor $K_{zt} = 1.0$

IBC-2015, sect. 1609.6. Regularly shaped building, less than 75 feet in height, not sensitive to dynamic effects, not channeling effects or buffeting, simple diaphragm building

IBC-2015, figure 1609.3(1). Risk category II building

ASCE 7, table 27.3.1. Exposure B, height above ground level $z \approx$ 33 feet

ASCE 7, sect. 26.8

Net pressure coefficients C_{net} . Main windforce-

resisting frames and systems

Description	C_{net} + Internal	C_{net} - Internal
	pressure	presure
Windward wall	0.43	0.73
Leeward wall	-0.51	-0.21
Sidewall	-0.66	-0.35
Parapet windward wall	1.2	28
Parapet leeward wall	-0.8	85
Flat roof	-1.09	-0.79

IBC-2015, Table 1609.6.2, enclosed

Design wind pressures P_{net} . Main windforce-resisting frames and systems

IBC-2015, sect. 1609.6.3

$P_{net} = 0.00256 \times V^2 \times K_z \times C_{net} \times K_{zt}$			
Description	P_{net} + Internal	P_{net} - Internal	
	pressure	presure	
Windward wall	10.5 psf = 501 pascal	17.8 psf = 852 pascal	
Leeward wall	-12.4 psf = -595 pascal	-5.1 psf = -245 pascal	
Sidewall	-16.1 psf = -770 pascal	-8.5 psf = -409 pascal	
Parapet windward wall	31.2 psf =	1494 pascal	
Parapet leeward wall	-20.7 psf = -992 pascal		
Flat roof	-26.6 psf = -1272 pascal	-19.3 psf = -992 pascal	

 $may\ 2019$ pag. 3 de 4

5. Earthquake loads

Parameter 0.2-second spectral response acceleration	$S_s = 0.045$	IBC-2015, figure 1613.3.1(1). Site class B
Parameter 1-second spectral response acceleration	$S_1 = 0.038$	IBC-2015, figure 1613.3.1(2). Site class B
Seismic design category	$S_1 \leq 0.04 \ and \ S_s \leq 0.15 \rightarrow \mathrm{SDS} \ \mathrm{A}$	IBC-2015, sect. 1613.3.1
Site coefficients	$F_a = 1.0, F_v = 1.0$	IBC-2015, $tables$
		1613.3.3(1) and
		1613.3.3(2). Site class B
Maximum considered earthquake spectral res- ponse acceleration for short periods	$S_{MS} = F_a \cdot S_s = 0.045$	IBC-2015, sect. 163.3.3
	$S_{M1} = F_a \cdot S_1 = 0.038$	IBC-2015, sect. 163.3.3
Design spectral response acceleration parameters	$S_{DS} = \frac{2}{3} S_{MS} = 0.03$	IBC-2015, sect. 163.3.4
	$S_{D1} = \frac{2}{3}S_{M1} = 0.025$	IBC-2015, sect. 163.3.4

 $may\ 2019$ pag. 4 de 4