Tutorial 3: Dynamic Programming

Problem 1. Given an unlimited supply of coins of denominations $x_1, x_2, ..., x_n$ (where $x_1, ..., x_n$ are positive integer numbers), we wish to make change for a value v; that is, we wish to find a set of coins whose total value is v (the set may contain several coins of the same denomination). This might not be possible: for instance, if the denominations are 5 and 10 then we can make change for 15 but not for 12. Design a dynamic programming algorithm, with running time O(nv), that does the following.

- 1. The algorithm determines if there is a set of coins of total value v.
- 2. If there is such set, the algorithm finds the set with the minimal possible number of coins.

Describe your algorithm in detail. Prove its correctness.

Solution. Let C(u) be the minimum number of coins the values of which sum up to u. C(0) = 0; in case u cannot be made using the given coins, we set $C(u) := \infty$. We have that for u > 0,

$$C(u) = \min \{1 + C(u - x) : x \in \{x_1, \dots, x_n\} \& x \le u\},\$$

where we take the minimum of an empty set to be ∞ . To see this, note that if we insist the coin with value $x_i \leq u$ to be used to make u, then it must be that the minimum number of coins to make u is $1 + C(u - x_i)$. Then, raising that restriction, we get that the minimum number of coins needed to make u is min $\{1 + C(u - x) : x \in \{x_1, \ldots, x_n\} \& x \leq u\}$.

A dynamic programming algorithm implementing this recursion scheme is:

```
S[0] := \emptyset; \ \mathrm{DP}[0] := 0;

for u from 1 to v

if u < \min\{x_1, \dots, x_n\}

\mathrm{DP}[u] := \infty;

else

\mathrm{DP}[u] := \min\{1 + \mathrm{DP}[u - x] : x \in \{x_1, \dots, x_n\} \ \& \ x \le u\};

x_i := \arg\min\{1 + \mathrm{DP}[u - x] : x \in \{x_1, \dots, x_n\} \ \& \ x \le u\};

S[u] := S[u - x_i] \cup \{x_i\};
```

We show that for each u, DP[u] is indeed equal to C(u) and S[u] is a set of minimum size whose values add up to u, by induction on u.

Base case: If u = 0, then DP[u] = C(u) and $S[u] = \emptyset$. If $0 < u < \min\{x_1, \dots, x_n\}$, then we cannot make u with the given coins and the algorithm sets $DP[u] = \infty$ and leaves S[u] unset.

Inductive step: If $u \ge \min\{x_1, \ldots, x_n\}$, then since

$$C(u) = \min \{1 + C(u - x) : x \in \{x_1, \dots, x_n\} \& x \le u\},\$$

and by the induction hypothesis DP[u-x] = C(u-x), we have that DP[u] = C(u). Moreover, if x_i minimizes 1 + C(u-x) and $1 + C(u-x_i)$ is not ∞ , then by the induction hypothesis $S[u-x_i]$ is a set of minimum size whose values add up to $u-x_i$, and $S[u] = S[u-x_i] \cup \{x_i\}$ is a set of minimum size whose values add up to u.