Robin Jack Schilmöller

Práctica 2: Administración básica de Linux

(Sistemas Informáticos – 1º DAM, Curso 2025/2026 – Albor Croft – ILERNA)

Parte 1: Repaso de comandos básicos (Práctica 1)

1. Crea una carpeta llamada repaso dentro de tu carpeta personal.

```
$ cd ~/
```

- \$ mkdir repaso
- 2. Dentro de repaso:
- Crea un archivo vacío.
- \$ touch archivo_vacio
 - Hazle una copia con otro nombre (cp).
- \$ cp archivo_vacio archivo_copia
- Renombra la copia (mv).
- \$ mv archivo_copia archivo_renombrado
- Borra uno de los archivos (rm).
- \$ rm archivo_renombrado
- 3. Crea dentro de repaso una subcarpeta llamada pruebas y mueve un archivo dentro de ella (mkdir, mv).

```
$ mkdir pruebas
```

- \$ mv archivo_vacio pruebas/
- 4. Copia la carpeta pruebas completa a otra ubicación (cp -r).

```
$ mv -r pruebas ~/
```

5. Mueve un archivo con confirmación antes de sobrescribir (mv -i).

```
jack@Ubuntu:~$ touch archivo archivo2
jack@Ubuntu:~$ mv archivo pruebas/
jack@Ubuntu:~$ mv -i archivo2 pruebas/archivo
mv: overwrite 'pruebas/archivo'? yes
jack@Ubuntu:~$
```

6. Borra un directorio vacío (rmdir).

```
$ mkdir dir_vacio
```

\$ rmdir dir_vacio

7. Borra una carpeta con todos sus archivos dentro (rm -r).

```
$ rm -r pruebas
```

8. Muestra el contenido de /etc/passwd en pantalla (cat).

```
$ cat /etc/passwd
```

9. Muestra solo las primeras 5 líneas de ese archivo (head -n).

```
$ head -5 /etc/passwd
```

10. Lista todos los archivos, incluidos los ocultos, de tu carpeta personal (ls -a).

\$ ls -a ~/

11. Muestra el contenido detallado (permisos, tamaño, fecha) de un directorio (ls -l).

\$ ls -la ~/

12. Consulta:

- Tu usuario actual (whoami).

\$ whoami

- Tu directorio de trabajo (pwd).

\$ pwd

- El espacio libre en disco (df -h).

\$ df -h

Parte 2: Usuarios y grupos

1. Crea un nuevo usuario llamado admin1.

\$ sudo useradd admin1

>> y escribir contraseña para admin

\$ sudo usermod -aG sudo admin1

2. Crea otro usuario llamado alumno1.

\$ sudo useradd alumno1

>> y escribir contraseña para alumno

3. Desde admin1, crea un grupo llamado alumnos.

\$ su admin1

>> escribir contraseña admin

\$ sudo groupadd alumnos

4. Añade al usuario alumno1 dentro del grupo alumnos.

\$ sudo usermod -aG alumnos alumno1

5. Cambia la contraseña de alumno1.

\$ sudo passwd alumno1

>> escribir contraseña admin

6. Cambia el nombre de tu usuario inicial (el primero que usaste en Ubuntu).

\$ sudo usermod -l jack2 jack

Pregunta de reflexión: ¿Qué riesgos tendría que cualquiera pudiera cambiar contraseñas de otros usuarios?

>> Es un riesgo de seguridad, un usuario podría tomar control (y a la vez quitarselo a esos usuarios) de otras cuentas al cambiar la contraseña.

Parte 3: Instalación de programas

- 1. Desde el usuario admin1, actualiza la lista de paquetes del sistema.
- \$ sudo apt-get update
- 2. Instala Python 3 y comprueba su versión.
- \$ sudo apt-get install python3
- \$ python3 -V
- 3. Instala Sublime Text siguiendo el enlace oficial:
 - <u>https://www.sublimetext.com/docs/linux_repositories.html</u>

```
$ wget -q0 - https://download.sublimetext.com/sublimehq-pub.gpg
```

- \$ sudo apt-get update
- \$ sudo apt-get install sublime-text
- **4. Instala el comando tree y pruébalo dentro de tu carpeta personal para visualizar su** estructura de directorios.

```
$ sudo apt-get install tree
```

\$ tree <u>~/</u>

Pregunta de reflexión: ¿Por qué se necesita sudo para instalar programas?

>> Por seguridad, si todos los usuarios un usuario con malas intenciones (o no) podría instalar algún programa que dañe el sistema.

Parte 4: Permisos en Linux

1. Desde admin1, crea una carpeta llamada claseSI dentro de tu carpeta personal.

\$ cd ~/

\$ mkdir claseSI

2. Dentro de claseSI, crea un archivo instrucciones.txt con un texto de prueba.

```
$ nano claseSI/instrucciones.txt
```

>> escribir texto dentro del archivo

- 3. Configura los permisos de forma que:
 - El usuario admin tenga lectura y escritura.
 - El grupo alumnos tenga solo lectura.
 - Otros usuarios no tengan acceso.

\$ chmod 640

- \$ usermod -aG admin1 alumno1
- >> añadimos al usuario alumno1 al grupo de admin1 para que pueda leer el archivo
- 4. Inicia sesión como alumno1 e intenta leer el archivo.

\$ su alumno1

- \$ cat /home/admin1/instrucciones.txt
- 5. Intenta modificarlo y explica qué sucede.
- >> No es posible ya que únicamente tiene permisos de lectura

```
[ File 'instrucciones.txt' is unwritable ]
```

Pregunta de reflexión: ¿Por qué es importante que ciertos archivos no sean modificables por todos los usuarios?

>> Porque hay archivos como /etc/passwd que contiene contraseñas del sistema, si todos los usuarios pudieran cambiar las contraseñas, el sistema no tendría seguridad ninguna.

Parte 5: Búsquedas con find, grep y locate

- Ejercicios con find
- 1. Busca todos los archivos que terminen en .txt en tu carpeta personal.
 - Pista: find [ruta] -name "*.txt"

```
jack@Ubuntu:~$ find . -name "*.txt"
./DAM1/redes/robinjack_dam_copia.txt
./DAM1/robinjack_dam_26_09_2025.txt
./.cache/tracker3/files/last-crawl.txt
./.cache/tracker3/files/first-index.txt
```

2. Busca todos los directorios dentro de tu carpeta personal.

Pista: find [ruta] -type d

```
jack@Ubuntu:~$ find . -type d
.
./Documents
./DAM1
./DAM1/LMGSI
./DAM1/redes
```

- 3. Busca archivos que tengan exactamente el nombre notas.txt.
 - Pista: find [ruta] -name "notas.txt"

```
jack@Ubuntu:~$ find . -name "notas.txt"
jack@Ubuntu:~$
```

- >> no existe el archivo notas.txt
- 4. Busca archivos que se hayan modificado en las últimas 24 horas.
 - Pista: find [ruta] -mtime -1

```
jack@Ubuntu:~$ find . -mtime -1
./.local/state/wireplumber
./.local/state/wireplumber/restore-stream
./.local/share/keyrings
```

5. Busca todos los archivos de más de 1 MB en tu carpeta personal.

Pista: find [ruta] -size +1M

```
jack@Ubuntu:~$ find . -size +1M
    ./.cache/mesa_shader_cache_db/index
    ./.cache/tracker3/files/http%3A%2F%2Ftracker.api.gnome.org%2Fontology%2Fv3%2
Ftracker%23Pictures.db
    ./.cache/tracker3/files/http%3A%2F%2Ftracker.api.gnome.org%2Fontology%2Fv3%2
```

• Ejercicios con grep

6. Busca qué archivos contienen la palabra Linux en tu carpeta personal.

👉 Pista: grep -r "Linux" [ruta]

```
jack@Ubuntu:~$ grep -r "linux" .
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:# LoaderDir =
   /snap/firmware-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pixb
uf-2.0/2.10.0/loaders
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:"/snap/firmwa
re-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pixbuf-2.0/2.10.0
/loaders/libpixbufloader-ani.so"
```

7. Haz la misma búsqueda pero ignorando mayúsculas/minúsculas.

Pista: grep -i "Linux" archivo.txt

```
jack@Ubuntu:~$ grep -ri "linux" .
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:# LoaderDir =
  /snap/firmware-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pixb
uf-2.0/2.10.0/loaders
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:"/snap/firmwa
re-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pixbuf-2.0/2.10.0
/loaders/libpixbufloader-ani.so"
```

8. Muestra también el número de línea en el que aparece.

← Pista: grep -n "Linux" archivo.txt

```
jack@Ubuntu:~$ grep -rin "linux" .
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:5:# LoaderDir
= /snap/firmware-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pi
xbuf-2.0/2.10.0/loaders
./snap/firmware-updater/common/.cache/gdk-pixbuf-loaders.cache:7:"/snap/firm
ware-updater/167/gnome-platform/usr/lib/x86_64-linux-gnu/gdk-pixbuf-2.0/2.10
.0/loaders/libpixbufloader-ani.so"
```

9. Usa grep -v para mostrar todas las líneas que NO contienen la palabra Linux.

```
jack@Ubuntu:~$ grep -rv "linux" .
./DAM1/redes/robinjack_dam_copia.txt:hola
./DAM1/robinjack_dam_26_09_2025.txt:hola
./DAM1/hola.sh:echo "Hola, soy Robin"
./.bashrc:# ~/.bashrc: executed by bash(1) for non-login shells.
./.bashrc:# see /usr/share/doc/bash/examples/startup-files (in the package b ash-doc)
```

10. Usa grep -c para contar cuántas veces aparece la palabra Linux en un archivo.

>> grep -c cuenta en cuantas **líneas** aparece la palabra linux

```
jack@Ubuntu:~$ cat archivo.txt
linux hola linux
adios linux adios
jack@Ubuntu:~$ grep -c "linux" archivo.txt
2
```

11. Busca dentro de todos los archivos .conf del sistema la palabra network.

```
jack@Ubuntu:~$ grep -r "network" /etc/*.conf
/etc/dhcpcd.conf:# Respect the network MTU. This is applied to DHCP routes.
/etc/dhcpcd.conf:# Request a hostname from the network
/etc/nsswitch.conf:networks: files
/etc/rygel.conf:# List of network interfaces to attach rygel to. You can als
o use network IP or
```

- Ejercicios con locate
- 12. Instala mlocate y actualiza la base de datos con: sudo updatedb.

```
$ sudo apt-get install locate
```

- \$ sudo updatedb
- 13. Usa locate passwd para encontrar el archivo en el sistema.
- \$ locate passwd
- 14. Usa locate bin para ver cuántos directorios o archivos contienen esa palabra en su ruta.
- \$ locate bin
- 15. Busca con locate -i la palabra shadow (ignorando mayúsculas).
- \$ locate -i shadow
- 16. Busca archivos que terminen en .conf.
- Pista: locate "*.conf"
- \$ locate "*.conf"

Pregunta de reflexión: ¿Qué diferencia principal hay entre find y locate?

>> locate es mucho más rápido porque usa una base de datos indexada creada al usar updatedb, find es más lento pero más preciso si necesitas búsquedas con más condiciones.

Parte 6: Procesos en Linux

1. Muestra la lista de procesos que se están ejecutando en tu sistema.

2. Identifica el PID (número de proceso) de tu terminal.

```
PID TTY TIME CMD
2823 pts/0 00:00:00 bash
```

3. Abre una aplicación, localiza su proceso y finalízalo usando el comando para matar procesos.

4. Usa el comando gráfico xkill para cerrar una ventana haciendo clic sobre ella.

>> Esta distribución de ubuntu virtualizada no permite el funcionamiento correcto de xkill

Pregunta de reflexión: ¿Qué diferencia hay entre terminar un proceso desde la terminal y cerrarlo desde la interfaz gráfica?

>> Desde la terminal puedes usar diferentes comandos para cerrar una aplicación de distintas formas. Usando la interfaz gráfica tenemos menos control, únicamente nos llega un mensaje de confirmación.

Parte 7: Introducción a Vim

1. Instala Vim con: sudo apt install vim.

\$ sudo apt-get install vim

2. Abre un archivo llamado prueba.txt con Vim.

\$ vim prueba.txt

- 3. Escribe un texto cualquiera (recuerda: pulsa i para entrar en modo inserción).
- 4. Guarda los cambios y sal con ESC + :wq.

- 5. Abre de nuevo el archivo y añade otra línea.
- 6. Prueba a salir sin guardar usando ESC + :q!.

7. Busca una palabra dentro del archivo usando /palabra.

```
$ vim prueba.txt
ESC
/prueba
```

8. Elimina una línea completa con dd.

```
$ vim prueba.txt
ESC
dd
```

Pregunta de reflexión: ¿Qué ventajas tiene aprender a usar Vim en lugar de depender solo de editores gráficos?

>> Aprender muy bien Vim tiene sus ventajas porque es muy rápido, funciona en cualquier terminal y tiene atajos muy potentes, y puedes trabajar remotamente en servidores sin la necesidad de una GUI.

Parte 8: Preguntas finales

1. ¿Qué diferencia hay entre un usuario normal y un usuario administrador con sudo?

Un usuario normal tiene permisos limitados por seguridad, un usuario con sudo puede ejecutar comandos como root, permitiendo realizar cualquier acción para administrar el sistema.

2. ¿Qué ventajas tiene organizar usuarios en grupos?

Con los grupos es más fácil gestionar permisos y aplicar acceso a ficheros, carpetas, etc. sin cambiar permisos usuario por usuario.

3. ¿Qué ventajas tiene buscar con grep frente a abrir manualmente cada archivo? grep busca texto dentro de muchos archivos y encuentra coincidencias sin tener que abrir cada archivo uno por uno.

4. ¿Qué ventajas tiene locate frente a find?

locate es mucho más rápido porque usa una base de datos indexada creada al usar updatedb.

5. ¿Qué riesgos puede tener matar procesos del sistema?

Matar procesos puede causar pérdida de datos o incluso puedes bloquear el sistema si eliminas procesos esenciales.