

模块十: AlOps 模型训练和自动扩容

王炜/前腾讯云 CODING 高级架构师

目录

- 1 概述
- 2 数据处理的基本步骤
- 3 模型训练与评估
- 4 模型保存与托管
- 5 Operator 开发:获取实时预测结果并扩容

1. 概述

Operator

- 从预测服务中获取推荐的副本数
- 通过修改 deployment.Spec.Replicas 字段达到控制业务 Pod 副本数的目的
- 每隔一段时间(30s)再次从预测服务中获取推荐副本数

其他与副本数存在关系的特征

特征	特征关系	备注	算法
时间	季节性	明显的波峰和波谷	季节性算法(statsmodels、Prophet)
QPS	线性	QPS 越高,副本数越多	线性回归
响应时间(延迟)	非线性关系		支持向量回归(SVR)
内存使用率	非线性		随机森林、MLP
CPU 使用率	非线性		决策树、随机森林

训练数据 (模拟一天)

时间	QPS	副本数
00:00	10	2
00:10:00	12	3
00:20:00	15	4
00:30:00	18	5
•••••	•••••	•••••
23:50:00	2	1

- Pandas
 - > 主要功能包括数据清洗、数据转换、数据聚合、处理缺失值、数据筛选等
- 常见操作:
 - ➤ read_csv(): 从 CSV 文件读取数据。
 - > dropna(): 删除缺失值。
 - ➤ groupby(): 数据分组操作。
 - > merge(): 合并数据集。

使用的核心库: Sklearn

- Sklearn
 - ▶ 是一个用于机器学习的库,提供了大量的算法和工具,用于数据预处理、模型训练、模型评估和模型选择
- 常见功能:
 - ▶ 数据预处理: StandardScaler(标准化数据)、LabelEncoder(标签编码)
 - ▶ 模型训练:如 LinearRegression(线性回归)、RandomForestClassifier(随机森林分类器)
 - ▶ 模型评估: cross_val_score()(交叉验证)、accuracy_score()(准确率评估)

2. 数据处理的基本步骤

python

df = pd.read_csv("data.csv")

• 常见操作

- ➤ 读取 QPS 列: qps_column = df['QPS']
- > 读取第二行: second_row = df.iloc[1]
- ▶ 读取第二行,QPS 列的数据: second_row_qps = df.loc[1, 'QPS']
- > 筛选 QPS > 10 的行: filtered_rows = df[df['QPS'] > 10]

时间格式的转化


```
df["minutes"] = (
    pd.to_datetime(df["timestamp"], format="%H:%M:%S").dt.hour * 60
    + pd.to_datetime(df["timestamp"], format="%H:%M:%S").dt.minute
)
```

- 将 timestamp 列转为时间格式,然后转换为"从午夜开始的分钟数"
 - ▶ 例如,00:10:00 会被转换为 10 分钟

捕捉时间的周期性

- 使用正弦和余弦函数,将时间转换为周期性特征
 - > 1440 为一天的分钟数,通过周期函数让模型更好感知时间如何影响流量
- 输出:

```
makefile

sin_time: [-1.0, -0.98, ...]

cos_time: [0.0, 0.21, ...]
```


为什么要转化为余弦、正弦函数?

- 将圆周等分成 4 个象限,分别对应 0 点、上午 6 点、中午
 12 点、下午 6 点
- 圆代表周期性时间循环,对于任意的时间都可以放在圆的某个点表示
- 对于任何一个圆上的点,我们可以用 cos(t)、sin(t) 表示 X 和 Y 轴的坐标
- 该坐标值就是该时间点的特征编码

其他特征的考虑

- 为了提升准确性,可以给时间增加更多特征
 - > 星期几
 - ▶ 节假日
 - > 月份

3. 模型训练与评估

设置特征和预测值

```
python

X = df[["QPS", "sin_time", "cos_time"]]
y = df["instances"]
```

- X表示特征数据,包含:
 - > QPS: 查询每秒的数量
 - > sin_time: 用于捕捉时间周期性的信息
 - > cos_time: 用于捕捉时间周期性的信息
- Y表示目标变量,即我们要预测的实例数 (instances)

数据分割

split.py

1 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

- 使用 train_test_split 将数据分为训练集和测试集
- test_size=0.2 意味着 20% 的数据用于测试,80% 用于训练
- 测试集用来评估模型性能


```
StandardScaler.py

scaler = StandardScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)
```

- StandardScaler 用于将特征数据标准化,使其均值为 0,标准差为 1
- 通过 fit_transform 对训练集进行标准化,然后用 transform 处理测试集
- 标准化有助于提高模型的性能

模型评估


```
mean_squared_error.py

y_pred = model.coef_ * X_test_scaled + model.intercept_
mse = mean_squared_error(y_test, y_pred.sum(axis=1))
```

- y_pred 是模型对测试集的预测结果
- 计算均方误差 (MSE) 来评估模型的预测性能: MSE 越小,模型越好
- 评估模型可以帮助我们了解其准确性,并决定是否需要改进或调整模型

4. 模型保存与托管


```
joblib.py

joblib.dump(model, "time_qps_auto_scaling_model.pkl")
```

- 使用 joblib 库将训练好的模型保存为模型文件
- 直接使用模型文件,而不需要重新训练


```
joblib.py

1 joblib.dump(scaler, "time_qps_auto_scaling_scaler.pkl")
```

- 因为对数据进行了标准化,所以需要在推理时保持相同的标准
- 使用 joblib 将标准化器保存为文件
- 在使用模型进行预测时,必须确保输入数据经过相同的标准化步骤

使用模型推理


```
predict.py

# 加载模型和标准化器

model = joblib.load("time_qps_auto_scaling_model.pkl")

scaler = joblib.load("time_qps_auto_scaling_scaler.pkl")

# 特征向量

data = {"QPS": [qps], "sin_time": [sin_time], "cos_time": [cos_time]}

df = pd.DataFrame(data)

features_scaled = scaler.transform(df)

# 预测

prediction = model.predict(features_scaled)
```

- 使用 joblib.load 加载保存的模型和标准化器,输入 QPS、时间参数
- 通过调用 predict 方法进行预测,得到实例数预测结果
- 整合 HTTP Server 提供 API 推理服务,例如 Python Flask、Golang Gin 框架等

极客时间

获取 QPS 来源

- 从 Prometheus API 接口获取 Nginx-ingress 网关的 QPS
 - http://{Prometheus_host}/api/v1/query
 - > rate(nginx_ingress_controller_nginx_process_requests_total{service="ingress-nginx-controller-metrics"}[10m])

打开 Nginx-ingress Metrics 开关

- 开启 Nginx-ingress Metrics
 - controller.metrics.enabled=true
 - controller.metrics.serviceMonitor.enabled=true
 - > controller.metrics.serviceMonitor.additionalLabels.release=kube-prometheus-stack

```
helm.sh

helm upgrade --install ingress-nginx ingress-nginx \
--repo https://kubernetes.github.io/ingress-nginx \
--namespace ingress-nginx \
--create-namespace \
--set controller.metrics.enabled=true \
--set controller.metrics.serviceMonitor.enabled=true \
--set controller.metrics.serviceMonitor.additionalLabels.release=kube-prometheus-stack
```

将模型封装成推理服务

```
predict.py
1 import .....
   app = Flask(__name__)
   # 定义函数从 Prometheus 获取 QPS
 6 v def get_qps_from_prometheus():
       host = "prometheus.prometheus.svc.cluster.local:9090"
       url = f"http://{host}/api/v1/query"
        query =
    'rate(nginx_ingress_controller_nginx_process_requests_total{service="ingress-
   nginx-controller-metrics"}[10m])'
10
11
       return qps
12
   # 定义预测接口
   @app.route("/predict", methods=["GET"])
15 def predict():
16 🗸
       try:
17
           qps = get_qps_from_prometheus()
18
           # 预测
19
           prediction = model.predict(features_scaled)
20
21
22 # 运行服务
23 v if __name__ == "__main__":
       app.run(debug=True, host="0.0.0.0", port=8080)
25
```


5. Operator 开发: 获取实时预测结果并扩容

获取预测结果

- 通过请求推理服务的 / predict API 接口获取推理结果
- 得到预测实例数

```
• • •
                                     predict.go
   func getRecommendedInstances(predictHost string) (int32, error) {
      resp, err := http.Get(fmt.Sprintf("http://%s/predict", predictHost))
      if err != nil {
        return 0, err
      defer resp.Body.Close()
      body, err := io.ReadAll(resp.Body)
      if err != nil {
        return 0, err
10
11
12
13
      var data struct {
14
        Instances int32 `json:"instances"`
15
      if err := json.Unmarshal(body, &data); err != nil {
17
        return 0, err
18
19
      return data.Instances, nil
20
```

弹性扩容/缩容

- 调用 r.Update(ctx, deployment) 方法更新 deployment.Spec.Replicas 字段
- 实现弹性扩容/缩容

```
update.go

if *deployment.Spec.Replicas != recommendedReplicas {
    deployment.Spec.Replicas = &recommendedReplicas
    err := retry.RetryOnConflict(retry.DefaultRetry, func() error {
        return r.Update(ctx, deployment)
    })
    if err != nil {
        logger.Error(err, "failed to update Deployment replicas")
        return ctrl.Result{}, err
    }
    logger.Info("Updated Deployment replicas", "replicas", recommendedReplicas)
}
```

步骤

- mkdir hpa-operator && cd hpa-operator
- go mod init github.com/lyzhang1999/hpa-operator
- kubebuilder init --domain=aiops.com
- kubebuilder create api —group hpa —version v1 —kind PredictHPA
- 修改: api/v1/predicthpa_types.go PredictHPASpec
- 修改: internal/controller/predicthpa_controller.go 增加相关业务逻辑
- 创建 sample/hpa_v1_predicthpa_local.yaml 文件
- 本地测试转发推理服务到本地
- 如果将 Operator 部署到集群
 - predictHost: "machine-learning-python:8080"

课后作业

• 思考如何提升模型预测的准确度,给出实施的方案和必要的代码

THANKS