Estruturas de Dados 1 481440

Julho/2018

Mario Liziér lizier@ufscar.br

Árvores balanceadas

- AVL
 - Binária de busca
 - Define um critério de balanceamento: -1, 0 e 1
 - Inserção / Remoção
- Árvore 2-3 (ou 2-4)
 - Árvore n-ária de busca (multi-way)
 - Base para árvores RB e B (para HDs)
 - Auxilia no entendimento da RB
- Árvore Red-Black (RB)
 - <u>Binária</u> de busca
 - Correspondência com a árvore 2-3
 - Padrão do C++ e Java

Árvores multi-way

• Árvores n-árias de <u>busca</u> (grau >= 2)

Árvores multi-way (d-node)

• Um ou mais elementos por nó:

$$-e_1, e_2, e_3, ..., e_{d-1}$$

$$-e_1 \le e_2 \le e_3 \le \dots \le e_{d-1}$$

d-node

Dois ou mais filhos por nó:

$$-f_1, f_2, f_3, ..., f_d$$

- Árvore de busca:
 - Sub-árvore f_i contém elementos maiores que e_{i-1} e menores que e_i , sendo $e_0 = -\infty$ e $e_d = +\infty$

Árvores multi-way (d-node)

- Podemos conseguir "facilmente"
 - Balanceamento "Natural"
 - Crescimento de "baixo" para "cima"

Veremos isso na inserção/remoção

- Exemplo de árvore com:
 - 2-nodes e 3-nodes
 - chamada de árvore 2-3

Árvores multi-way (**d**-node)

- Buscas:
 - Semelhante a árvore binária de busca, mas ...
 - Podemos ter mais de 1 elemento por nós
 - Se não encontrarmos o elemento procurado naquele nó, precisamos definir uma subárvore para prosseguir

Árvore 2-4 ou 2-3-4

- Árvore formada apenas por:
 - 2-nodes
 - *– 3-nodes*
 - 4-nodes
- Todos os nós folhas possuem a mesma profundidade
 - Balanceamento perfeito!

Basta limitarmos em 3 o número de elementos por nó

Como conseguimos isso?

- Base para a árvore <u>Red-Black</u>
 - A árvore RB é uma binarização da árvore 2-4
- Outro caminho: estudar as árvores 2-3, para depois binarizar para a RB

Árvore 2-4 - Busca

• Buscas

Para um 2-node temos:

Para um *3-node*, onde X < Y, temos:

Para um *4-node*, onde X < Y < Z, temos:

Árvore 2-4 - Busca

- Buscas:
 - Exemplos:
 - $find(22) \rightarrow encontrado!$
 - find(80) → não encontrado!

Exemplo: Busca em árvore 2-3

successful search for H

unsuccessful search for B

B is between A and C so look in the middle link is null so B is not in the tree (search miss)

Search hit (left) and search miss (right) in a 2-3 tree

- Inserção (algoritmo parcial):
 - Se a árvore está vazia:
 - Criamos um 2-node com o elemento a ser inserido
 - Senão:
 - Buscamos pela posição correta (algoritmo de busca comum)
 - E inserimos no nó folha (e não no filho *null*)

- Caso 1: o nó folha é um 2-node
 - Exemplo:
 - inserir(24)
 - Ida: Busca recursiva

- Caso 1: o nó folha é um 2-node
 - Exemplo:
 - inserir(24)
 - volta: inserir no nó folha

- Caso 2: o nó folha é um *3-node*
 - Exemplo:
 - inserir(32)
 - Ida: Busca recursiva

- Caso 2: o nó folha é um *3-node*
 - Exemplo:
 - inserir(32)
 - volta: inserir no nó folha

- Caso 3: o nó folha é um 4-node
 - Exemplo:
 - inserir(3)
 - Ida: Busca recursiva

- Caso 3: o nó folha é um *4-node*
 - Exemplo:
 - inserir(3)
 - Volta da recursão:
 - Não podemos ter um *5-node* (temos 4 elementos!)
 - Criamos dois novos nós (*split*):
 - 2-node (1 elemento)
 - *3 -node* (2 elementos)
 - O <u>elemento intermediário</u> inserimos no nó pai
 - Ou seja, na volta da recursão o processo de inserção se repete! o nó pai pode ser um *2-node* ou *3-node* ou *4-node* (o que provocaria um novo split!)
 - A árvore cresce de baixo para cima!

- Caso 3: o nó folha é um 4-node
 - Exemplo:
 - inserir(3)
 - Volta da recursão!

- Caso 3: o nó folha é um 4-node
 - Exemplo:
 - inserir(3)
 - Volta da recursão!

- Caso 3: o nó folha é um 4-node
 - Exemplo:
 - inserir(3)
 - Volta da recursão!

Árvore 2-4

- Quando encontramos o caso 3 em toda volta da recursão:
 - A árvore cresce!

Insert into a 2-node

Insert into a single 3-node

inserting Z search for Z ends at this 3-node replace 3-node with temporary 4-node containing Z replace 2-node with new 3-node containing middle key *split 4-node into two 2-nodes* pass middle key to parent

Insert into a 3-node whose parent is a 2-node

Insert(4);

Insert(6);

Insert(12);

Insert(15);

Insert(3);

Insert(5);

Insert(10);

Insert(8);

Árvore 2-4

- Altura para N elementos:
 - Melhor caso: log₄ N
 - Todos os nós são *4-nodes*
 - Pior caso: $\log_2 N$
 - Todos os nós são 2-nodes
- Entre 10 e 20 para 1 milhão de elementos
- Entre 15 e 30 para 1 bilhão de elementos

• Performance logarítmica garantida!!!

- Buscamos pelo elemento a ser removido: (como na remoção vista anteriormente)
 - Se ele não estiver em uma folha, substituímos por uma das duas opções:
 - maior elemento da subárvore da esquerda; ou
 - menor elemento da subárvore da direita;
 - Continuamos a remoção pelo elemento que o substituiu

- Exemplo:
 - remover(70)

- Para remover um elemento em uma folha:
 - Caso 1: o nó folha é um *4-node* ou *3-node*
 - Remoção direta! simples!

Exemplo:

• remover(70)

- Para remover um elemento em uma folha:
 - Caso 2: o nó folha é um *2-node*
 - Não podemos simplesmente remover o nó!!!

• remover(51)

Exemplo:

remover(43)

- Caso 2.1:
 - Quando podemos transferir um elemento de um nó "irmão"

Exemplo:

• remover(51)

- Caso 2.2:
 - Quando não podemos transferir um elemento de um nó "irmão", fazemos a <u>fusão</u> com um nó irmão

Exemplo:

remover(43)

- Quando o pai também é um *2-node*:
 - O processo se repete:
 - se tiver um irmão *3-node* ou *4-node*: <u>transfere</u>!
 - se o irmão for 2-node: <u>fusão!</u>

Exemplo:

remover(33)

- Quando o pai também é um 2-node:
 - O processo se repete:
 - se tiver um irmão *3-node* ou *4-node*: <u>transfere!</u>
 - se o irmão for *2-node*: <u>fusão</u>!

Exemplo:

remover(22)

 Quando fazemos a fusão em toda volta até a raiz: a árvore decresce!

Remove(13);

Árvore 2-4

- Códigos da árvore 2-4:
 - Não vale a pena implementar árvores 2-4
 - Como representaríamos nós de tamanho variável?
 - Struct com tamanho máximo? herança?
 - Implementação muito mais eficiente:
 - Versão binária (com todos os nós iguais)
 - Árvore *Red-Black*

Árvores balanceadas

- Árvore 2-4
 - Árvore n-ária de busca (multi-way)
 - Implementação ineficiente (comparada a AVL/RB)
 - Base para árvores RB (Red-Black) e B (para Hds)
 - Permite no máximo 3 elementos por nó (2-nodes, 3-nodes e 4-nodes)
 - Balanceamento perfeito!
 - Crescimento de baixo para cima
 - Algoritmos: Busca, Inserção e Remoção

Referências:

- Livro do Goodrich
- Livro do Robert Sedgewick
 - https://algs4.cs.princeton.edu