Лабораторная работа №2 «Коллизии. Классические методы»

Задание №1

«Формирование датасета»

1. Создать генератор данных, зависящий от кол-ва признаков и объема выборки. Данные должны иметь следующий вид:

Состояние объекта №1			Состояние объекта №2			Коллизия
Признак 1	:	Признак п	Признак 1	:	Признак т	Да / нет

Под состоянием агента/объекта могут пониматься множество таких признаков как «местоположение», «направление», «угол поворота», «форма объекта» и т. п. и т. д. Необходимо, чтобы в каждом состоянии были представлены 4 вида признаков по возможности (если признаков больше 7):

- бинарный.
- номинальный / конечное неупорядоченное множество.
- порядковый признак / конечное упорядоченное множество.
- количественный признак / бесконечное множество.
- 2. Сгенерировать 12 датасетов, которые имеют следующие параметры:

По объему:

- От 30 по 100;
- От 100 по 500;
- От 500 по 1000;
- От 1000 и выше.

По количеству признаков:

- 4-7;
- 8–10;
- 10 и больше.

Задание №2

«Выбор алгоритма»

- 1. Выбрать 4 классических метода машинного обучения и обосновать выбор (в комментариях).
- 2. Выбрать 3 наиболее быстрых алгоритма, с наименьшим потреблением данных.
- 3. Сохранение модели.

Лабораторная работа №3 «Оптимизация гиперпараметров»

Генетические алгоритмы

Задание №1

«Классический генетический алгоритм»

- 1. Используя библиотеку PyGAD или любую другую реализацию (можно собственную), произвести тонкую настройку гиперпараметров для 2 лучших моделей из предыдущей лабороторной.
- 2. Оценить полученные модели.
- 3. Сохранить модели.

Задание №2

«Алгоритм роя частиц»

- 1. Используя библиотеку PySwarms или любую другую реализацию (можно собственную), произвести тонкую настройку гиперпараметров для 2 лучших моделей из предыдущей лабороторной.
- 2. Оценить полученные модели.
- 3. Сохранить модели.

Задание №3

«Алгоритм NEAT»

- 1. Используя самый маленький набор данных по объему и количеству признаков и самый большой по тем же критериям, с помощью алгоритма NEAT найти оптимальную нейронную сеть под каждый из наборов.
- 2. Сравнить модели.
- 3. Сохранить модели.

Задание №4

«Алгоритм ES-HyperNEAT»

- 1. Используя самый маленький набор данных по объему и количеству признаков и самый большой по тем же критериям, с помощью алгоритма ES-HyperNEAT найти оптимальную нейронную сеть под каждый из наборов.
- 2. Сравнить модели.
- 3. Сохранить модели.

Лабораторная работа №4 «Обучение с подкреплением»

Задание №1

«Реализация среды»

- 1. Используйте библиотеку для создания игровой среды, например, *PyGame* или *gym* (с кастомной средой).
- 2. Создайте простую двумерную карту с препятствиями (стены, блоки) и целью.
- 3. Танк и цель должны быть представлены как объекты с координатами и углом поворота.

Задание №2

«Определение системы»

- 1. Определение состояния, действий и награды (пример):
 - а. Состояние (State):
 - і. Положение танка (х, у).
 - іі. Угол поворота танка.
 - ііі. Расстояние до цели.
 - iv. Угол до цели относительно танка.
 - v. Наличие препятствий вблизи (например, расстояние до ближайшего препятствия в четырёх направлениях).
 - b. Действия (Action):
 - і. Движение вперёд.
 - іі. Движение назад.
 - ііі. Поворот влево.
 - іv. Поворот вправо.
 - v. Стрельба.
 - с. Награда (Reward):
 - і. +100 за попадание в цель.
 - іі. -10 за столкновение с препятствием.
 - ііі. -1 за каждый шаг (штраф за время).
 - iv. +10 за приближение к цели.
 - v. -5 за удаление от цели.

Задание №3

«Реализация агента»

- 1. Используйте алгоритм обучения с подкреплением, например, Q-learning, Deep Q-Network (DQN) или Policy Gradient.
- 2. Реализуйте функцию выбора действия на основе текущей политики (например, εжадная стратегия для Q-learning).
- 3. Обучите агента в среде, сохраняя результаты обучения (награды за эпизоды).

Задание №4

«Тестирование и анализ»

- 1. Протестируйте обученного агента в среде.
- 2. Визуализируйте процесс обучения (график накопленной награды за эпизоды).

3. Проверьте, как агент справляется с изменением начальных условий (разные стартовые позиции танка и цели).

Лабораторная работа №5 «Интеграция»

Python embedding in C#

Задание №1

«Подготовка»

1. Реализовать 6 скриптов с полной предобработкой сырых данных и прогонку через модели из предыдущей лабораторной (Pipeline).

Задание №2

«Стратегии коллизий»

- 2. Реализовать на C# стратегии коллизий (подключить 6 скриптов) с помощью Python.NET.
- 3. Сформировать новые данные.
- 4. Произвести анализ быстродействия и качества данных стратегий.