DERETTAYLOR & DERET MCLAURIN

Teknologi Informasi Universitas Tidar

Turunan

Fungsi, y(x)	Turunan, y'	Fungsi, y(x)	Turunan, y'
Konstanta	0	$\sin^{-1}(ax+b)$	$\frac{a}{\sqrt{1-(ax+b)^2}}$
x"	nx^{n-1}	$\cos^{-1}(ax+b)$	$\frac{-a}{\sqrt{1-(ax+b)^2}}$
e ^x	e ^x	$\tan^{-1}(ax+b)$	$\frac{a}{1+(ax+b)^2}$
e^{-x}	-e ^{-x}	sinh(ax+b)	$a \cosh(ax+b)$
e^{ax}	ae ^{ax}	$\cosh(ax+b)$	$a \sinh(ax+b)$
ln x	$\frac{1}{x}$	tanh(ax+b)	$a \sec h^2(ax+b)$
sin x	cosx	$\cos ech(ax+b)$	$-a\cos ech(ax+b)\coth(ax+b)$
cos x	$-\sin x$	$\sec h(ax+b)$	$-a \operatorname{s} \operatorname{ech}(ax+b) \tanh(ax+b)$
$\sin(ax+b)$	$a\cos(ax+b)$	$\coth(ax+b)$	$-a\cos ech^2(ax+b)$
$\cos(ax+b)$	$-a\sin(ax+b)$	$sinh^{-1}(ax+b)$	$\frac{a}{\sqrt{(ax+b)^2+1}}$
tan(ax+b)	$a \sec^2(ax+b)$	$\cosh^{-1}(ax+b)$	$\frac{a}{\sqrt{(ax+b)^2-1}}$
$\cos ec(ax+b)$	$-a\cos ec(ax+b)\cot(ax+b)$	$\tanh^{-1}(ax+b)$	$\frac{a}{\sqrt{1-(ax+b)^2}}$
sec(ax+b)	$a \sec(ax+b)\tan(ax+b)$		

Tabel 1.1 Beberapa fungsi yang sering digunakan beserta dengan turunannya

Turunan

Beberapa Aturan pada Operasi Turunan Jika *u* dan *v* adalah sebuah fungsi, dan *c* merupakan konstanta, maka:

1.
$$(u + v)' = u' + v'$$

2. $(uv)' = u'v + uv'$
3. $(cu)' = cu'$
4. $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$

5. Jika
$$y = y(z)$$
dan $z = z(x)$

maka $\left(\frac{dy}{dx}\right) = \frac{dy}{dz} * \frac{dz}{dx}$

Salah satu penerapan deret tak hingga adalah untuk menghitung nilai fungsi, misalnya dalam menghitung nilai fungsi sin (x), ln (x), dan e^x .

Ide dasarnya adalah menghampiri suatu fungsi dengan polynomial (suku banyak) sedemikian sehingga kesalahan yang terjadi masih dalam batas toleransi yang diinginkan. Andaikan kita akan menghampiri suatu fungsi f dengan polynomial

$$p(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots + c_k(x-a)^k \quad \dots \text{ (1)}$$

Pada suatu interval x=a. Karena polynomial (1) mempunyai sebanyak (k+1) koefisien, maka cukup beralasan memuat (k+1) sebagai syarat yang harus dipenuhi oleh polynomial (1) tersebut.

Andaikan fungsi f mempunyai k turunan d x = a, dan kita akan memilih (k+1) sebagai syarat tersebut maka

$$p(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots + c_k(x-a)^k$$

$$p'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \dots + k.c_k(x-a)^{k-1}$$

$$p''(x) = 2c_2 + 6c_3(x-a) + 12c_4(x-a)^2 + 20c_5(x-a)^3 + \dots + k.c_k(x-a)^{k-1}$$

$$p'''(x) = 6c_3 + 24c_4(x-a) + 60c_5(x-a)^2 + 120c_6(x-a)^3 + \dots + k.c_k(x-a)^{k-1}$$

$$\vdots$$

Kemudian kita substitusikan x = a, maka diperoleh:

$$p(a) = c_0$$
 $p''(a) = 2c_2 = 2!.c_2$:
$$p'(a) = c_1$$
 $p'''(a) = 6c_3 = 3.2.c_3 = 3!.c_3$ $p^k(a) = k!.c_k$

Berdasarkan hasil substitusi sebelumnya, maka kita dapat menghitung nilai $c_{\scriptscriptstyle k}$, yaitu:

$$f(a) = p(a) = c_0 \qquad \Leftrightarrow c_0 = f(a)$$

$$f'(a) = p'(a) = c_1 \qquad \Leftrightarrow c_1 = f'(a)$$

$$f''(a) = p''(a) = 2c_2 = 2!.a_2 \qquad \Leftrightarrow c_2 = \frac{f''(a)}{2!}$$

$$f'''(a) = p'''(a) = 6c_3 = 3.2.c_3 = 3!.c_3 \qquad \Leftrightarrow c_3 = \frac{f'''(a)}{3!}$$

$$\vdots$$

$$f^k(a) = p^k(a) = k!.c_k \qquad \Leftrightarrow c_k = \frac{f^k(a)}{k!}$$

Definisi

Jika fungsi f dapat diturunkan sebanyak k kali di x = a, maka deret taylor berderajat k untuk fungsi f di definisikan sebagai berikut:

$$p(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + c_3(x-a)^3 + \dots + c_k(x-a)^k$$

$$p(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^k(a)}{k!}(x-a)^k$$

$$\sum_{k=0}^{\infty} \frac{f^k(a)}{k!} (x-a)^k$$

Contoh:

Tentukan deret taylor $f(x) = \frac{1}{x}$ disekitar x=1

Jawab:

$$f(x) = \frac{1}{x} \qquad \Leftrightarrow f(1) = 1 = 0!$$

$$f'(x) = -\frac{1}{x^{2}} \qquad \Leftrightarrow f'(1) = -1 = -1!$$

$$f''(x) = \frac{2}{x^{3}} \qquad \Leftrightarrow f''(1) = 2 = 2!$$

$$f'''(x) = -\frac{6}{x^{4}} \qquad \Leftrightarrow f'''(1) = -6 = -3!$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f^{k}(x) = (-1)^{k} \frac{k!}{x^{k+1}} \qquad f^{k}(1) = (-1)^{k} k!$$

Contoh:

Tentukan deret taylor $f(x) = \frac{1}{x}$ disekitar x=1

Jawab:

Kemudian Substitusikan nilainya kedalam persamaan taylor

$$p(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^k(a)}{k!}(x-a)^k$$

$$= f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + \dots + \frac{f^k(1)}{k!}(x-1)^k$$

$$= 1 - (x-1) + \frac{2!}{2!}(x-1)^2 + \frac{(-3)!}{3!}(x-1)^3 + \dots + \frac{(-1)^k \cdot k!}{k!}(x-1)^k$$

$$= 1 - (x-1) + (x-1)^2 - (x-1)^3 + \dots + (-1)^k (x-1)^k$$

Deret McLaurin

Definisi

Jika fungsi f dapat diturunkan sebanyak k kali di x = 0, maka deret McLaurin berderajat k untuk fungsi f di definisikan sebagai berikut:

$$p(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^k(0)}{k!}x^k$$

Dengan cara yang sama seperti pada deret taylor, silahkan lakukan pembuktian dari definisi diatas

Deret Taylor & McLaurin

LATIHAN SOAL

- 1. Tentukan deret taylor $f(x) = \frac{1}{1+x}$ di sekitar x= i
- Tentukan deret taylor $f(x) = 2 x + 3x^2 x^3$ di sekitar x = -1
- Tentukan deret taylor $f(x) = 1 + x^2 + x^3$ di sekitar x = 1
- Tentukan deret mclaurin dari $f(x) = e^x$
- Tentukan deret mclaurin dari $f(x) = \ln(x+1)$
- 6. Tentukan deret mclaurin dari $f(x) = \cos x$
- 7. Tentukan deret mclaurin dari $f(x) = \sin x$