Ensembles et relations

Olivier Nicole* DI ENS

Septembre 2019

Table des matières

1 Ensembles et éléments

Définition 1 – Ensemble

Un ensemble est une collection non ordonnée et sans répétition d'objets. Si a, b, c sont des éléments, nous notons $\{a, b, c\}$ l'ensemble formé des éléments a, b, et c.

Définition 2 – Cardinal

Le cardinal d'un ensemble est le nombre d'élément qu'il contient. Le cardinal d'un ensemble est noté card(A) ou |A|.

Définition 3 – Appartenance

Nous notons:

$$x \in X$$

le fait qu'un objet x soit un élément de l'ensemble X.

 $^{^*}$ Ce document est repris du cours de Marc Chevalier, avec son aimable autorisation. https: //teaching.marc-chevalier.com

2 Axiomes

2.1 Extensionnalité

Axiome 1 – Extensionnalité

Nous dirons que deux ensembles X et Y sont égaux si et seulement si les deux assertions suivantes sont satisfaites :

- 1. tout élément de l'ensemble X est un élément de l'ensemble Y;
- 2. tout élément de l'ensemble Y est un élément de l'ensemble X.

2.2 Axiomes constructifs

Dans cette section, nous considérons deux ensembles A et B.

2.2.1 Paire

Axiome 2 – Paire

Étant donné deux éléments a et b, il existe un ensemble $\{a, b\}$.

2.2.2 Réunion

Notation 1 – Réunion

La réunion de A et B est notée $A \cup B$.

2.2.3 L'ensemble des parties

Définition 4 – Partie

Si X est une collection d'objets tous éléments de A, nous disons que X est une partie (ou un sous-ensemble) de A, ce que nous notons $X \subseteq A$.

Proposition 1

$$A\subseteq B\wedge B\subseteq A\Leftrightarrow A=B$$

Axiome 3 – Axiome de l'ensemble des parties

La collection de toutes les parties de l'ensemble A est un ensemble.

Notation 2 – Ensemble des parties

L'ensemble de toutes les parties de l'ensemble A est noté $\mathcal{P}(A)$.

2.2.4 Schéma d'axiomes de compréhension

Axiome 4 – Compréhension

Toute collection d'objets tous éléments de A est un ensemble.

Proposition 2

Si A est un ensemble et P un prédicat portant sur les éléments de A. Alors la partie de A tel que P est vrai, est un ensemble. Nous la notons :

$$\{x \in A \mid P(x)\}$$

2.2.4.1 Intersection

Définition 5 – Intersection

Nous appelons intersection de A et de B la collection des objets qui sont à la fois éléments de l'ensemble A et éléments de l'ensemble B, et la notons $A \cap B$.

2.2.4.2 Différence

Notation 3 – Différence

Nous notons $A \setminus B$ l'ensemble des éléments de l'ensemble A qui ne sont pas des éléments de l'ensemble B.

Définition 6 – Complémentaire

Soit E un ensemble et F une partie de E. On appelle le complémentaire de F dans E l'ensemble $E \setminus F$.

Le complémentaire de F dans E est noté $\mathcal{C}_E F$. Si E est clair d'après le contexte, on peut simplement parler du complémentaire de F et le noter $\mathcal{C}F$.

2.2.4.3 Différence symétrique

Proposition 3

La collection des objets qui sont élément de l'ensemble A ou élément de l'ensemble B, mais pas les deux, est un ensemble.

Définition 7 – Différence symétrique

Nous notons $A\Delta B$ l'ensemble des objets qui sont des éléments de l'ensemble A ou des éléments de l'ensemble B, mais pas des deux, c'est à dire

$$A\Delta B := (A \cup B) \setminus (A \cap B)$$

Proposition 4

$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

2.2.5 L'infini

Axiome 5

Il existe un ensemble infini.

3 Ensemble particuliers

3.1 Couple et produit cartésien

Définition 8

Soit A et B deux ensembles. On appelle produit cartésien de A et B l'ensemble noté $A \times B$ défini par

$$A \times B = \{ z \mid \exists a \in A : \exists b \in B : z = (a, b) \}$$

Notation 4

$$A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1, \dots, a_n \in A_n\}$$

Notation 5

$$A^{2} = A \times A$$

$$A^{n} = \underbrace{A \times \cdots \times A}_{n \text{ fois}}$$

3.2 Ensembles numériques

Notation 6

 \mathbb{N} est l'ensemble des entiers naturels $\{0, 1, 2, 3, 4, 5, \ldots\}$.

Notation 7

Étant donné un ensemble numérique A, on note $A^* := A \setminus \{0\}$.

Notation 8

 \mathbb{Z} est l'ensemble des entiers relatifs $\{..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...\}$.

Notation 9

 $\mathbb Q$ est l'ensemble des rationnels, c'est à dire l'ensemble des nombres qu'on peut écrire sous la forme $\frac{p}{q}$ avec $(p,q)\in\mathbb Z\times\mathbb Z^*$.

Notation 10

 \mathbb{R} est l'ensemble des réels.

Notation 11

 \mathbb{C} est l'ensemble des complexes.

3.3 Notations usuelles

Notation 12

Pour tout $(a,b) \in \mathbb{Z}^2$, on note $[\![a,b]\!]$ l'ensemble des entiers plus grands que a et plus petits que b.

Notation 13

Pour tout $(a,b) \in \mathbb{R}^2$, on note [a,b] l'ensemble des réels entre a et b. On appelle ces ensemble des intervalles (ou intervalles fermés).

Proposition 5

Si $a \neq b$, [a, b] a une infinité d'éléments.

Notation 14

Pour tout $(a, b) \in \mathbb{R}^2$

- $|a, b| = [a, b] \setminus \{a\}$ (intervalle (semi-)ouvert à gauche)
- $[a,b[=[a,b]\setminus\{b\}$ (intervalle (semi-)ouvert à droite)
- $|a,b| = [a,b] \setminus \{a,b\}$ (intervalle ouvert)

Notation 15

Pour tout $a \in \mathbb{R}$

- $|-\infty, a| = \{x \in \mathbb{R} \mid x \leqslant a\}$
- $] \infty, a[= \{x \in \mathbb{R} \mid x < a\}]$
- $[a, +\infty[= \{x \in \mathbb{R} \mid x \geqslant a\}]$ $]a, +\infty[= \{x \in \mathbb{R} \mid x > a\}]$
-] $-\infty$, $+\infty$ [= \mathbb{R}