Pumping lemmas for weighted automata

Filip Mazowiecki¹ and Cristian Riveros²

¹University of Bordeaux

²Pontificia Universidad Católica de Chile

Pumping lemmas for weighted automata

Filip Mazowiecki¹ and Cristian Riveros²

¹University of Bordeaux

²Pontificia Universidad Católica de Chile

ULB 2018

[2018/08/29 10:04:39 (14)]

 $f:\Sigma^*\to\{0,1\}$

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

 $f:\Sigma^* \to$ "some numbers"?

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

$$f: \Sigma^* \to$$
 "some numbers"? \mathbb{N} ?

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

b b a b
$$1+1+0+0=2$$

Consider w = bbab

b b a b b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

Output: $\min\{2, 1\} = 1$

Consider w = bbab

Output: $\min\{2, 1\} = 1$

In general: \odot transitions, \oplus accepting runs

Consider w = bbab

b b a b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

Output: $\min\{2, 1\} = 1$

In general: \odot transitions, \oplus accepting runs

① if there is no accepting run

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Consider w = bbab

b b a b b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

b b a b
$$0+0+0+1=1$$

Output: $\min\{2, 1\} = 1$

In general: ⊙ transitions, ⊕ accepting runs

0 if there is no accepting run

"smallest block of b's"

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Consider w = bbab

b b a b b b a b
$$1+1+0+0=2$$
 $0+0+0+1=1$

Output: $\min\{2, 1\} = 1$

In general: ⊙ transitions, ⊕ accepting runs

O if there is no accepting run

"smallest block of b's" $(\infty \text{ if there is no } b)$

Number of accepting runs?

• could be exponential accepting runs: 2^n (for a^n)

- could be exponential accepting runs: 2^n (for a^n)
- "smallest block of b's" accepting runs: blocks of b's (linear)

- could be exponential accepting runs: 2^n (for a^n)
- "smallest block of *b*'s" accepting runs: blocks of *b*'s (linear)
- $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$

- could be exponential accepting runs: 2^n (for a^n)
- "smallest block of b's" accepting runs: blocks of b's (linear)
- $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$? accepting runs: $|\Sigma|$ (constant)

Number of accepting runs?

• could be exponential accepting runs: 2^n (for a^n)

- "smallest block of b's" accepting runs: blocks of b's (linear)
- $\min_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$? accepting runs: $|\Sigma|$ (constant)

• f longest suffix of a's; f(abaa) = 2 accepting runs: 1

Fix $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

WA
∪⅓
polynomially ambiguous WA
U⅓
finitely ambiguous WA
U⅓
unambiguous WA
U⅓
deterministic WA

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

polynomially ambiguous WA

or finitely ambiguous WA

unambiguous WA

UN

(Klimann et al., 2004)

deterministic WA

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

Strictness shown by examples

Fix
$$\mathbb{N}_{\infty}(\min, +, \infty, 0)$$

State of art

- Strictness shown by examples
- Papers are about determinization

Boolean world

Boolean world

Finite automata

Show that $L=\{a^nb^n\mid n\in\mathbb{N}\}$ is not regular.

Boolean world

Finite automata

Show that $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Boolean world

Finite automata

Show that $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w \in L$ big enough

Meanwhile other formalisms

Boolean world

Finite automata

Show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w \in L$ big enough exists a decomposition w = xyz, |y| > 0

s.t. $xy^nz \in L$ for all n

Meanwhile other formalisms

Boolean world

• Finite automata

Show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w\in L$ big enough exists a decomposition w=xyz, |y|>0 s.t. $xy^nz\in L$ for all n quick case analysis

Meanwhile other formalisms

Boolean world

Finite automata

Show that $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is not regular.

Solution: pumping lemma

Take $w\in L$ big enough exists a decomposition w=xyz, |y|>0 s.t. $xy^nz\in L$ for all n quick case analysis

- Context-free languages pumping lemmas
- First order logic Ehrenfeucht-Fraïssé games

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

WA
∪⅓
polynomially ambiguous WA
∪⅓
finitely ambiguous WA
∪⅓
unambiguous WA

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

WA polynomially ambiguous WA finitely ambiguous WA unambiguous WA No min fragment

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Semiring: $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot v \cdot w \in \Sigma^*$

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot v \cdot w \in \Sigma^*$

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot \hat{\underline{v}}\cdot \hat{w}=u\cdot \underline{v}\cdot w$ s.t. $\hat{\underline{v}}\neq \epsilon$ is a fragment of \underline{v}

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\underline{\hat{v}}\neq\epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbaa

Filip Mazowiecki and Cristian Riveros

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\hat{\underline{v}}\neq\epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbaa

Theorem (Pumping Lemma 1)

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w}$ and either:

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\hat{\underline{v}}\neq\epsilon$ is a fragment of \underline{v} e.g. $aaa\underline{bbbb}aa$ is refined by $aaab\underline{bb}baa$

Theorem (Pumping Lemma 1)

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u\cdot\underline{v}\cdot w$ with $|v|\geq N$

there is a refinement $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot \underline{v} \cdot w \in \Sigma^*$

A refinement is $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w} = u \cdot \underline{v} \cdot w$ s.t. $\hat{\underline{v}} \neq \epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Example: f – longest suffix of a's

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let $u \cdot v \cdot w \in \Sigma^*$

A refinement is $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w} = u \cdot \underline{v} \cdot w$ s.t. $\hat{\underline{v}} \neq \epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$;
- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$. $\longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let
$$u \cdot \underline{v} \cdot w \in \Sigma^*$$

A refinement is $\hat{u} \cdot \hat{\underline{v}} \cdot \hat{w} = u \cdot \underline{v} \cdot w$ s.t. $\hat{\underline{v}} \neq \epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1)

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ = \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \text{ for every } i \geq N; \ \longleftarrow \ \text{otherwise}$
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \ge N. \ \longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

Unambiguous WA (U-WA) over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Let
$$u \cdot v \cdot w \in \Sigma^*$$

A refinement is $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}=u\cdot\underline{v}\cdot w$ s.t. $\hat{\underline{v}}\neq\epsilon$ is a fragment of \underline{v} e.g. aaabbbbaa is refined by aaabbbbaa

Theorem (Pumping Lemma 1) ← works for a broader class

Let f recognizable by an U-WA over $(\min, +)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \hat{\underline{v}}^{i+1} \cdot \hat{w})$ for every $i \geq N$; \longleftarrow otherwise
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N. \ \longleftarrow v, w \in a^*$

Example: f – longest suffix of a's

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) < f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every} \ i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 $(f \in \mathsf{FA-WA})$

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot \underline{\hat{v}}\cdot \hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA}\text{-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}=a^{(N+1)^2}\cdot b^n\underline{b^m}b^l$, $1\leq m\leq N$

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot \hat{\underline{v}}\cdot \hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u}\cdot\hat{v}\cdot\hat{w}=a^{(N+1)^2}\cdot b^n\underline{b^m}b^l$, $1\leq m\leq N$

$$f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = (N+1)^2$$
 for i big enough

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u \cdot \underline{v} \cdot w$ with $|v| \geq N$

there is a refinement $\hat{u}\cdot\underline{\hat{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every} \ i \geq N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 $(f \in \mathsf{FA-WA})$

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u} \cdot \hat{v} \cdot \hat{w} = a^{(N+1)^2} \cdot b^n \underline{b^m} b^l$, $1 \le m \le N$

$$f(\hat{u} \cdot \hat{\underline{v}}^i \cdot \hat{w}) = (N+1)^2$$
 for i big enough

but take
$$i=N$$
, then $f(\hat{u}\cdot \hat{\underline{v}}^i\cdot \hat{w})\leq N+mN\leq N+N^2<(N+1)^2$

Let f be a WA over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

there exists N s.t. for every $u\cdot\underline{v}\cdot w$ with $|v|\geq N$

there is a refinement $\hat{u}\cdot\hat{\underline{v}}\cdot\hat{w}$ and either:

- $f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) = f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w})$ for every $i \ge N$.
- $\bullet \quad f(\hat{u} \cdot \underline{\hat{v}}^i \cdot \hat{w}) \ < \ f(\hat{u} \cdot \underline{\hat{v}}^{i+1} \cdot \hat{w}) \ \text{for every } i \ge N.$

Let
$$f(w) = \min(\#_a(w), \#_b(w))$$
 ($f \in \mathsf{FA}\text{-WA}$)

Let
$$u \cdot v \cdot w = a^{(N+1)^2} \underline{b^N}$$
, $f(u \cdot v \cdot w) = N$

Any refinement $\hat{u} \cdot \hat{v} \cdot \hat{w} = a^{(N+1)^2} \cdot b^n \underline{b^m} b^l$, $1 \le m \le N$

$$f(\hat{u}\cdot\underline{\hat{v}}^i\cdot\hat{w})=(N+1)^2$$
 for i big enough

but take
$$i=N$$
, then $f(\hat{u}\cdot \hat{\underline{v}}^i\cdot \hat{w})\leq N+mN\leq N+N^2<(N+1)^2$

Corollary: U-WA \subseteq FA-WA over $(\min, +)$

Word n-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n, N)-representation: $|v_i| \geq N$ for all i

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$ if y_i refine v_i

Word n-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S\subseteq\{1,\ldots,n\}$, $\underline{y_k}(S,i)=y_k^i$ if $k\in S$ and $\underline{y_k}(S,i)=y_k$ otherwise.

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots \cdot u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S \subseteq \{1,\ldots,n\}$, $\underline{y_k}(S,i) = y_k^i$ if $k \in S$ and $\underline{y_k}(S,i) = y_k$ otherwise. $w(S,i) = u_0 \cdot \underline{y_1}(S,i) \cdot u_1 \cdot \underline{y_2}(S,i) \cdot \ldots u_{n-1} \cdot \underline{y_n}(S,i) \cdot u_n$

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \ge N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S\subseteq \{1,\ldots,n\}$, $\underline{y_k}(S,i)=y_k^i$ if $k\in S$ and $\underline{y_k}(S,i)=y_k$ otherwise. $w(S,i)=u_0\cdot\underline{y_1}(S,i)\cdot u_1\cdot\underline{y_2}(S,i)\cdot \ldots u_{n-1}\cdot\underline{y_n}(S,i)\cdot u_n$

Example, a (3,2)-representation

 $w = a\underline{b^3}aa\underline{b^2}a\underline{b^2}aa$

Word *n*-representation: $w = u_0 \cdot \underline{v_1} \cdot u_1 \cdot \underline{v_2} \cdot \dots u_{n-1} \cdot \underline{v_n} \cdot u_n$

(n,N)-representation: $|v_i| \geq N$ for all i

A refinement is $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ if y_i refine v_i

Let $S\subseteq \{1,\ldots,n\}$, $\underline{y_k}(S,i)=y_k^i$ if $k\in S$ and $\underline{y_k}(S,i)=y_k$ otherwise. $w(S,i)=u_0\cdot\underline{y_1}(S,i)\cdot u_1\cdot\underline{y_2}(S,i)\cdot \ldots u_{n-1}\cdot\underline{y_n}(S,i)\cdot u_n$

Example, a (3,2)-representation

$$w = a\underline{b^3}aa\underline{b^2}a\underline{b^2}aa$$

$$w(\{1,3\},3) = a\underline{b}^9 a a\underline{b}^2 a\underline{b}^6 a a$$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$ there exists N s.t. for all (n, N)-representations $(n \ge N)$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$ there exists N s.t. for all (n, N)-representations $(n \ge N)$ exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$ there exists N s.t. for all (n, N)-representations $(n \ge N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1,\ldots,S_N\subseteq\{1\ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

there exists N s.t. for all (n,N)-representations $(n \ge N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i + 1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of b's"

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

there exists N s.t. for all (n, N)-representations $(n \ge N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of b's"

Let
$$w = (\underline{b}^N a^N)^N \quad (n = N)$$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

there exists N s.t. for all (n,N)-representations $(n \ge N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1))$.

Example: f – "smallest block of b's"

Let
$$w = (\underline{b^N}a^N)^N \quad (n = N)$$

Let $S_j = \{1, \dots, N\} \setminus \{j\}, \quad f(w(S_j, i)) = N \text{ for all } i, j$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

there exists N s.t. for all (n,N)-representations $(n \ge N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1))$.

Example: f - "smallest block of b's" Let $w=(\underline{b^N}a^N)^N$ (n=N) Let $S_j=\{1,\ldots,N\}\setminus\{j\}, \quad f(w(S_j,i))=N$ for all i,j But $S_{j_1}\cup S_{j_2}=\{1,\ldots,N\}$ for $j_1\neq j_2$

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$

there exists N s.t. for all (n,N)-representations $(n\geq N)$

exists refinement $w = u_0' \cdot \underline{y_1} \cdot u_1' \cdot \underline{y_2} \cdot \dots u_{n-1}' \cdot \underline{y_n} \cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1))$.

Example:
$$f$$
 – "smallest block of $b's$ " Let $w=(\underline{b}^Na^N)^N$ $(n=N)$ Let $S_j=\{1,\ldots,N\}\setminus\{j\},$ $f(w(S_j,i))=N$ for all i,j But $S_{j_1}\cup S_{j_2}=\{1,\ldots,N\}$ for $j_1\neq j_2$ Hence $f(w(S_{j_1}\cup S_{j_2},i))< f(w(S_{j_1}\cup S_{j_2},i+1))$

10 / 14

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by FA-WA over $(\min, +)$ there exists N s.t. for all (n, N)-representations $(n \ge N)$

exists refinement $w=u_0'\cdot \underline{y_1}\cdot u_1'\cdot \underline{y_2}\cdot \dots u_{n-1}'\cdot \underline{y_n}\cdot u_n'$

s.t. given $S_1, \ldots, S_N \subseteq \{1 \ldots n\}$ (nonempty, different) either:

- exists j s.t. $f(w(S_j, i)) < f(w(S_j, i+1));$
- exists $j_1 \neq j_2$ s.t. $f(w(S_{j_1} \cup S_{j_2}, i)) = f(w(S_{j_1} \cup S_{j_2}, i+1)).$

Example: f – "smallest block of $b^\prime s$ "

Let
$$w = (\underline{b^N}a^N)^N \quad (n = N)$$

Let
$$S_j = \{1, \dots, N\} \setminus \{j\}, \quad f(w(S_j, i)) = N \text{ for all } i, j$$

But
$$S_{j_1} \cup S_{j_2} = \{1, \dots, N\}$$
 for $j_1 \neq j_2$

Hence
$$f(w(S_{i_1} \cup S_{i_2}, i)) < f(w(S_{i_1} \cup S_{i_2}, i+1))$$

Corollary: FA-WA \subseteq PA-WA over $(\min, +)$

over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

Example: "smallest block of b's"

over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

Example: "smallest block of b's"

Negative example: let
$$w=w_0\#w_1\#\ldots\#w_m$$
, where $w_i\in\{a,b\}^*$ $f(w)=\sum\limits_{i=0}^k\min(\#_a(w_i),\#_b(w_i))$

over $\mathbb{N}_{\infty}(\min,+,\infty,0)$

Example: "smallest block of b's"

Negative example: let $w=w_0\#w_1\#\ldots\#w_m$, where $w_i\in\{a,b\}^*$ $f(w)=\sum\limits_{i=0}^k\min(\#_a(w_i),\#_b(w_i))$

over $\mathbb{N}_{\infty}(\min, +, \infty, 0)$

Example: "smallest block of b's"

Negative example: let $w=w_0\#w_1\#\ldots\#w_m$, where $w_i\in\{a,b\}^*$ $f(w)=\sum\limits_{i=0}^k\min(\#_a(w_i),\#_b(w_i))$

Number of runs: 2^k

First, some notation

First, some notation

Let $S_1, \ldots, S_m \subseteq \{1, \ldots, n\}$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$

A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\}$, S_j nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$

A partition if $\bigcup_{j=1}^m S_j=\{1,\ldots,n\}$, S_j nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$
 $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n, N)-representations

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\}$, S_j nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n,N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n,N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n,N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

• there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$

First, some notation

Let
$$S_1,\ldots,S_m\subseteq\{1,\ldots,n\}$$
 A partition if $\bigcup\limits_{j=1}^mS_j=\{1,\ldots,n\},\quad S_j$ nonempty, $S_{j_1}\cap S_{j_2}=\emptyset$ $S\subseteq\{1,\ldots,n\}$ is a selector if $|S\cap S_j|=1$ for all j

Theorem (Pumping lemma 3)

Let $f: \Sigma^* \to \mathbb{N}_{\infty}$ be recognizable by PA-WA over $\mathbb{N}_{\infty}(\min, +)$ there exists N s.t. for all (n, N)-representations there exists refinement $w = u'_0 \cdot \underline{y_1} \cdot u'_1 \cdot \underline{y_2} \cdot \ldots \cdot u'_{n-1} \cdot \underline{y_n} \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i + 1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

- (...) there exists N s.t. for all (n,N)-representations there exists refinement $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ s.t. for every partition S_1,\ldots,S_m of $\{1,\ldots,n\}$ either:
- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

(...) there exists N s.t. for all (n,N)-representations there exists refinement $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ s.t. for every partition S_1,\ldots,S_m of $\{1,\ldots,n\}$ either:

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{k} \min(\#_a(w_i), \#_b(w_i))$$

- (...) there exists N s.t. for all (n,N)-representations there exists refinement $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ s.t. for every partition S_1,\ldots,S_m of $\{1,\ldots,n\}$ either:
- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{k} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m$
 $\{1 \dots n\} = \{(1, 1), (2, 1) \dots (1, m), (2, m)\}$

(...) there exists N s.t. for all (n,N)-representations there exists refinement $w=u'_0\cdot\underline{y_1}\cdot u'_1\cdot\underline{y_2}\cdot\ldots u'_{n-1}\cdot\underline{y_n}\cdot u'_n$ s.t. for every partition S_1,\ldots,S_m of $\{1,\ldots,n\}$ either:

- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{k} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m$
 $\{1 \dots n\} = \{(1, 1), (2, 1) \dots (1, m), (2, m)\}$
 $S_i = \{(1, j), (2, j)\}, \quad f(w(S_i, i)) < f(w(S_i, i + 1))$

- (...) there exists N s.t. for all (n,N)-representations there exists refinement $w=u_0'\cdot\underline{y_1}\cdot u_1'\cdot\underline{y_2}\cdot\ldots u_{n-1}'\cdot\underline{y_n}\cdot u_n'$ s.t. for every partition S_1,\ldots,S_m of $\{1,\ldots,n\}$ either:
- there exists j s.t. $f(w(S_j, i)) = f(w(S_j, i+1))$
- there exists a selector S s.t. f(w(S,i)) < f(w(S,i+1))

Example:
$$f(w) = \sum_{i=0}^{k} \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m$
 $\{1 \dots n\} = \{(1, 1), (2, 1) \dots (1, m), (2, m)\}$
 $S_j = \{(1, j), (2, j)\}, \quad f(w(S_j, i)) < f(w(S_j, i + 1))$
for every selector $f(w(S, i)) = f(w(S, i + 1))$

- (\dots) there exists N s.t. for all (n, N)-representations there exists refinement $w = u'_0 \cdot y_1 \cdot u'_1 \cdot y_2 \cdot \dots \cdot u'_{n-1} \cdot y_n \cdot u'_n$ s.t. for every partition S_1, \ldots, S_m of $\{1, \ldots, n\}$ either:
- there exists j s.t. $f(w(S_i, i)) = f(w(S_i, i+1))$
- there exists a selector S s.t. f(w(S, i)) < f(w(S, i + 1))

Example:
$$f(w) = \sum_{i=0}^k \min(\#_a(w_i), \#_b(w_i))$$

 $w = (\underline{a}^N \underline{b}^N \#)^m$
 $\{1 \dots n\} = \{(1, 1), (2, 1) \dots (1, m), (2, m)\}$
 $S_j = \{(1, j), (2, j)\}, \quad f(w(S_j, i)) < f(w(S_j, i + 1))$
for every selector $f(w(S, i)) = f(w(S, i + 1))$

Corollary: PA-WA \subseteq WA over $(\min, +)$

• Corollary: U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)

- $\bullet\quad \text{Corollary: U-WA} \subsetneq \text{FA-WA} \subsetneq \text{PA-WA} \subsetneq \text{WA over } (\min,+)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)

- $\bullet\quad \text{Corollary: U-WA} \subsetneq \text{FA-WA} \subsetneq \text{PA-WA} \subsetneq \text{WA over } (\min,+)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Can we hope for characterizations?

- Corollary: U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Can we hope for characterizations?

Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w|

- Corollary: U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Can we hope for characterizations?

Not for free. For every $f:\Sigma^*\to\mathbb{N}$ consider g(w)=f(w)+|w| f and g should be in the same class

- Corollary: U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Can we hope for characterizations? Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w| f and g should be in the same class but g satisfies all lemmas.

- Corollary: U-WA \subsetneq FA-WA \subsetneq PA-WA \subsetneq WA over $(\min, +)$ (only the last one is new)
- Pumping Lemmas 1 and 2 hold for more (WA over $\mathbb{N}(+,\cdot,0,1)$)
- Can we hope for characterizations? Not for free. For every $f: \Sigma^* \to \mathbb{N}$ consider g(w) = f(w) + |w| f and g should be in the same class but g satisfies all lemmas.
- Beyond weighted automata
 Pumping lemmas for weighted logic and cost-register automata?