Incremental Pragmatics and Emergent Communication

Nicholas Tomlin and Ellie Pavlick (Brown University)

Groundedness in Emergent Communication

- Roughly: one-to-one correspondence between vocabulary tokens and real-world attributes;
- Useful for interpretability;
- Might be a prerequisite to productivity (cf. Kottur, et al. 2017).

$$G(u) = \frac{\max_{a}(C(u, a))}{C(u)}$$
 (1)
$$G(P) = \sum_{u \in V_A} \frac{G(u)}{|V_A|}$$
 (2)

Prior Work on Groundedness in Emergent Communication

- "Emergence of Grounded Compositional Language in Multi-Agent Populations" (Mordatch & Abbeel 2017);
- "Learning Cooperative Visual Dialog Agents with Deep Reinforcement Learning" (Das, et al. 2017);
- "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" (Kottur, et al. 2017).

Task & Talk

Task: [Color, Shape]
Ans: [Blue, Pentagon]

 $X \longrightarrow 1 \longrightarrow Y \longrightarrow 0$

Task: [Color, Style] Ans: [Blue, Solid]

 $X \longrightarrow 1 \longrightarrow Z \longrightarrow 1$

Task: [Shape, Style] Ans: [Pentagon, Dashed]

 $Y \longrightarrow 6 \longrightarrow Z \longrightarrow 12$

Task & Talk

Task: [Color, Shape]
Ans: [Blue, Pentagon]

Task: [Color, Style] Ans: [Blue, Solid]

Task: [Shape, Style]
Ans: [Pentagon, Dashed]

Task: [Color, Style] Ans: [Blue, Solid]

Task: [Shape, Style] Ans: [Pentagon, Dashed]

(Idealized example: the models aren't really doing this!)

Problems with *Task & Talk*

- Reduces to "4x4 Variant" after Q-Bot's first turn;
- Proposed changes to task design:

	Original (Kottur et al., 2017)	4x4 Baseline	4x4 Multitask
Q-Bot speaks	✓	×	X
Q-Bot observes G	✓	\checkmark	X
Utility function $U(\hat{w})$	×	×	\checkmark
Pragmatic model	×	×	✓
Curriculum learning	×	X	✓
Number of tasks	3	1	3
Number of referents	64	16	16
Vocab size $ V_A $	4	4	8

4x4 Multitask

- Mixture of tasks: (shape) and (shape, color) both acceptable;
- Curriculum learning: one-attribute tasks presented first;

- Might expect that grounded communication would emerge in this scenario, but it doesn't with tabular Q-learning or REINFORCE;
- Perhaps we're missing some communication mechanism...

Rational Speech Acts (Frank & Goodman 2012)

 Recursive reasoning process between speakers and listeners about alternative utterances and referents;

 Meant to capture the cooperative principle: be concise, truthful, informative, relevant, etc.;

 Enforces an injective mapping between referents and utterances.

Incremental Pragmatics

Incremental pragmatics is a well-motivated mechanism of human language processing (Sedivy, et al. 1999).

Target: "Touch the yellow bowl."

Eye-tracking after "yellow" favors the yellow comb rather than the bowl because of the contrast effect.

Incremental RSA (Cohn-Gordon, et al. 2018)

Base RSA agent: [[utterance]](world)

Base incremental RSA agent: [[partial utterance]](world)

...where [[partial utterance]](world) denotes the fraction of possible utterance continuations which are consistent with the world state.

$$P(a_t \mid s_t^A) \propto \pi_A(a_t \mid s_t^A; \theta_A) \cdot \mathbb{E}_{s_0^Q} \left[\pi_Q(\hat{w} \mid s_0^Q; \theta_Q) \cdot U(\hat{w}) \right]$$

Model and Results

We train tabular Q-learning and REINFORCE agents on modified *Task & Talk*. The incremental pragmatic model achieves near-perfect groundedness.

Mean groundedness scores across 100 iterations:

	4x4 Baseline	4x4 Multitask
Tabular Q-Learning	0.153	0.181
Tabular Q-Learning (MC)	0.151	0.182
REINFORCE	0.150	0.188
Pragmatic REINFORCE	0.153	0.874

Future Work

- Ablations on task modifications
- Wider domain for evaluation on held-out data
- Evaluating time-course of grounding:
 - Does RSA speed up training? (It weakly constrains the search space.)
 - Why do tokens become ungrounded? What is the effect of batch size?
- Comparison to memory efficiency models of productivity (cf. Yang 2016)
- Evaluate human performance on this task (MTurk experiment!)

Thank you!