Seaborn - BoxPlot:

Box Plot

A box plot (also called a box-and-whisker plot) is a standardized way of displaying the distribution of data based on a five-number summary: minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum. It's super useful for spotting outliers and understanding the spread and skewness of the data.

In Seaborn, a popular Python data visualization library built on top of Matplotlib, you can easily create box plots with the seaborn.boxplot() function.

What a Box Plot Shows:

- Box: Represents the interquartile range (IQR), from Q1 to Q3.
- Line inside the box: The median (Q2).
- Whiskers: Extend to the minimum and maximum values within 1.5 * IQR.
- Dots outside the whiskers: Outliers, values that are unusually far from the rest.

What Are Whiskers in a Box Plot?

Whiskers are the lines that extend from the box in a box plot. They show the range of the data outside the interquartile range (IQR), but not including outliers.

How Are They Calculated?

By default (in Seaborn and most box plot implementations), whiskers extend to:

- ↑ Lowest data point within 1.5 × IQR below Q1
- **↑** Highest data point within 1.5 × IQR above Q3

Where:

- Q1 = 25th percentile (the start of the box)
- Q3 = 75th percentile (the end of the box)
- IQR = Q3 Q1

So:

- Lower whisker = Q1 1.5 × IQR
- Upper whisker = Q3 + 1.5 × IQR

Any data point outside this range is plotted individually as an outlier (usually as dots or circles).

Why Are Whiskers Important?

They give you a sense of:

- Spread of most of the data
- Where the extremes are (without being distorted by outliers)

When to Use a Box Plot:

- Comparing distributions across categories
- Detecting outliers

Getting a quick sense of data spread and central tendency

Violin Plot:

Dataset: 'exercise'

This is a built-in dataset from Seaborn that contains pulse (heart rate) data based on:

- time: The time of exercise (like 1 min, 15 min, etc.)
- pulse: Heart rate
- kind: Type of activity (e.g., rest, walking, running)
- diet: Type of diet (e.g., low fat, no fat)

Violin Plot — What It Is

A violin plot combines a box plot and a KDE plot (smoothed distribution). It helps you see:

Distribution of the data (like a mirrored density plot)

- Median and quartiles (like a box plot)
- Spread and shape of the data

Creating multiple violin plots showing:

- x='time': Time of exercise (like 1 min, 15 min, 30 min) on the x-axis
- y='pulse': Pulse (heart rate) on the y-axis
- hue='kind': Activity type shown in different colors (rest, walking, running)
- col='diet': Creates separate plots (columns) for each diet type (low fat and no fat)
- kind='violin': The actual chart type used

The Plot Shows:

- For each time point, it shows how pulse varies for different activities.
- You'll see separate violins for each kind (activity) inside each time group.
- Since col='diet', the figure is split into two subplots (one for each diet type).

What You Can Interpret:

- How heart rate (pulse) changes over time and exercise type
- How different activities (rest, walk, run) affect pulse
- Whether the diet makes a difference in pulse trends
- The distribution shape e.g., skewed, multimodal, etc.
- Presence of outliers or variation

Why it's useful:

It makes comparison easier between groups — especially when you want to see how one variable (like pulse) behaves under different categories (like diet types) without overlapping everything into one chart.