

SE3-Pose-Nets: Structured Deep Dynamics Models for Visuomotor Planning and Control

Presenter: Kai-En Lin 5/14/2020

Outline

- Introduction
- Related work
 - SE3-Nets
- Algorithm
- Experiments
- Conclusion
- Future Work

Introduction

- Problem statement
 - Observe a scene with a camera
 - Control the robot to reach a target

Introduction

- Traditional approach
 - Data-associate the observed scene to target
 - E.g. tracking different parts of the robot
 - Model the effect of applied actions to changes to the scene
 - E.g. knowing what happens after the action
- Deep Learning approach
 - Tries to learn similar models
 - Lacks the ability to associate objects/parts across scenes

Introduction

- Goal:
 - Devise a learning-based algorithm that allows:
 - Data-association
 - Modeling of the object dynamics
 - Correct prediction and control from the model

Related Work

- SE3-Nets
 - Segment object parts
 - Predict SE(3) transformation for each part to target
 - No explicit modeling of data association

- Given
 - an observation x_t of the scene (depth map / point cloud)
 - applied actions u_t
- Predict
 - the transformed output point cloud x_{t+1}

- We can decompose the problem of modeling scene dynamics into:
 - 1. Modeling scene structure
 - 2. Modeling the dynamics of individual parts
 - 3. Combining local pose changes to model the dynamics of the entire scene
- With deep learning:
 - 1. An encoder to distinguish individual parts and predict a 6D pose for each of them
 - 2. A pose transition network to model the dynamics in the pose space. Takes source pose and action to predict the change in poses
 - 3. A transform layer to apply SE(3) transforms to input point cloud using predicted pose deltas

- We can decompose the problem of modeling scene dynamics into:
 - 1. Modeling scene structure
 - 2. Modeling the dynamics of individual parts
 - 3. Combining local pose changes to model the dynamics of the entire scene
- With deep learning:
 - 1. An encoder to distinguish individual parts and predict a 6D pose for each of them
 - A pose transition network to model the dynamics in the pose space. Takes source pose and action to predict the change in poses
 - 3. A transform layer to apply SE(3) transforms to input point cloud using predicted pose deltas

Modeling Scene Structure

- An encoder takes the input 3D point cloud x_t and generates the following:
 - Masks for the moving parts (m_t)
 - 6D pose per segmented part (p_t)
 - 3D position
 - Orientation as 3-parameter axis-angle vector

Modeling Scene Structure

- We can decompose the problem of modeling scene dynamics into:
 - 1. Modeling scene structure
 - 2. Modeling the dynamics of individual parts
 - 3. Combining local pose changes to model the dynamics of the entire scene
- With deep learning:
 - 1. An encoder to distinguish individual parts and predict a 6D pose for each of them
 - A pose transition network to model the dynamics in the pose space. Takes source pose and action to predict the change in poses
 - 3. A transform layer to apply SE(3) transforms to input point cloud using predicted pose deltas

Modeling Part Dynamics

- A fully-connected pose transition network takes the predicted poses from the encoder (p_t) and applied actions (u_t) as input and predicts:
 - The change in pose (Δp_t) for all K segmented parts (6D vector)

Modeling Part Dynamics

- We can decompose the problem of modeling scene dynamics into:
 - 1. Modeling scene structure
 - 2. Modeling the dynamics of individual parts
 - 3. Combining local pose changes to model the dynamics of the entire scene
- With deep learning:
 - 1. An encoder to distinguish individual parts and predict a 6D pose for each of them
 - A pose transition network to model the dynamics in the pose space. Takes source pose and action to predict the change in poses
 - 3. A transform layer to apply SE(3) transforms to input point cloud using predicted pose deltas

Predicting Scene Dynamics

- No trainable parameters
- Given point cloud (x_t) , the predicted scene segmentation (m_t) and the change in poses (Δp_t) , calculates the point cloud in the next frame (x_{t+1}) :

$$\hat{x}_{t+1}^{j} = \sum_{k=1}^{K} m_t^{kj} (R_t^k x_t^j + T_t^k),$$

where R_t^k is rotation, T_t^k translation

- Supervision
 - Point-wise data associations across a pair of point clouds (x_t, x_{t+1})
 - Related by an action (u_t)

- Total loss $L = L_x + \gamma L_p$
 - 3D Loss L_x
 - Pose consistency loss L_p
 - $\gamma = 10$

• 3D Loss L_x

$$L_{x} = \frac{1}{N} \sum_{i=1}^{HW} \frac{\left(\hat{x}_{t+1}^{i} - \tilde{x}_{t+1}^{i}\right)^{2}}{\alpha \tilde{f}^{i} + \beta},$$

where HW is the number of points,

$$\alpha = 0.5, \beta = 1e - 3,$$

 $\tilde{f}^i = \tilde{x}_{t+1}^i - x_t^i$, scaling factor to make the loss scale-invariant

• Pose consistency loss L_p

$$L_p = \frac{1}{I} \sum_{i=1}^{I} (\hat{p}_{t+1}^i - p_{t+1}^i)^2,$$

where $\hat{\mathbf{p}}_{t+1} = \mathbf{p}_t \oplus \Delta \mathbf{p}_t$, the expected pose at time t+1

Closed-Loop Visuomotor Control Using SE3-Pose-Nets

- Visual servoing
 - Given the current image and the target image, generate controls to reach the target
- SE3-Pose-Nets solve this by using the latent pose space to data-associate the observations and minimizing the error between initial pose p_0 and the final pose p_T .

Closed-Loop Visuomotor Control Using SE3-Pose-Nets

Closed-Loop Visuomotor Control Using SE3-Pose-Nets

Algorithm 1 Reactive visuomotor control

```
Given: Target point cloud (\mathbf{x}_T)
Given: Pre-trained encoder (h_{enc}) and transition model
(h_{trans})
Given: Maximum control magnitude: u_{max}
Compute target pose: \mathbf{p}_T = h_{enc}(\mathbf{x}_T)
while not converged do
     Receive current observation (\mathbf{x}_t)
     Predict current pose: \mathbf{p}_t = h_{enc}(\mathbf{x}_t)
     Initialize control to all zeros: \mathbf{u}_t = 0
     Predict change in pose: \Delta \mathbf{p}_t = h_{trans}(\mathbf{p}_t, \mathbf{u}_t)
     Predict next pose: \hat{\mathbf{p}}_{t+1} = \mathbf{p}_t \oplus \Delta \mathbf{p}_t
     Compute pose error: E = \frac{1}{I} \sum_{i=1}^{I} (\hat{p}_{t+1}^i - p_T^i)^2
     Compute gradient of error w.r.t. control: g = \frac{dE}{dU_t}
     Compute control: \mathbf{u}_t = -u_{max} * \frac{g}{||g||}
     Execute control \mathbf{u}_t on the robot
```

- SE3-Pose-Nets performs worse than other models when predicting scene dynamics
 - The pose space might make the training problem harder
 - Constraint on pose consistency is different from the prediction problem

Setting	SE3-Pose-Nets	SE3-Pose-Nets + Joint Angles	SE3-NETS	SE3-Nets + Joint Angles	Flow	Flow + Joint Angles
Simulated	0.044	0.038	0.030	0.024	0.035	0.030
Real	0.234	0.224	0.221	0.212	0.228	0.218

TABLE I: Average per-point flow MSE (cm) across tasks and networks, normalized by the number of points M that move in the ground truth data (motion magnitude > 1mm). Our network achieves results slightly worse than the baseline networks on both simulated and real data. However, it is also solving additional tasks necessary for control.

Fig. 3: Masks generated by different networks on simulated (top) and real data (bottom). From left to right: Ground truth depth, ground truth masks, masks predicted by the SE3-Pose-Net, SE3-Pose-Net with joint angles, SE3-Net and SE3-Net with joint angles.

Fig. 4: Convergence of joint angle error in simulated Baxter control tasks. (left): without joint angles, (middle) without joint angles and detected failure case removed (for all methods), (right) with joint angles. SE3-POSE-NETS perform as well or better than baseline methods even though baseline models have additional information in the form of ground truth-associations.

Fig. 5: Convergence of joint angle error on real Baxter control tasks (left) without joint angles (right) with joint angles (averaged across joint 0,1,2,3).

Conclusion

- SE3-Pose-Nets is an end-to-end framework for learning predictive models that enable control of objects in a scene
- It learns a consistent pose space for each individual part
- Does not require external data association
- The network enables computation of controls in the low dimensional pose space

Future Work

- SE3-Pose-Nets has difficulties handling joints further down the kinematic chain
- Extending the system to interact with and manipulate external objects
- Long-term planning to utilize the latent pose space