Big Omega:

T(N) is SZ(f(N)) if and only if there exists positive constants No, B, such that: $T(N) >= B \cdot f(N)$ for any $N \ge N_0$

Proof of 12:

 $\frac{E \times \#1:}{(Plns)}$ $T(N) = 3N^2 + 2N + 1 = se(N^2)$ $= 8 \cdot N^2$

.. 3N2+2N+1 2 3.N2 when No = 0

 $T(N) = \mathcal{N}(N^2) \quad LHA \quad B=3, \quad N_0 = 0$

Ex #2: (Sub) $I(N) = N^2 - N = \Omega(N^2)$

 $N^2 - N = B \cdot N^2$

 $N^2 - N = N^2 - N^2 = 0$

$$N^{2}-N = N^{2} - \frac{1}{2}N^{2} = \frac{1}{2}N^{2}, B = 1/2$$

$$N^{2} = N$$

$$N^{2}-N \ge N^{2} - \frac{1}{2}N^{2} = \frac{1}{2}N^{2}$$

$$N^{2}-N \ge N^{2} - \frac{1}{2}N^{2} = \frac{1}{2}N^{2}$$

$$N^{2}-N \ge N^{2} - \frac{1}{2}N^{2} = \frac{1}{2}N^{2}$$

$$N^{2}-N \ge N^{2}-\frac{1}{2}N^{2} = \frac{1}{2}N^{2}$$

$$N^{2}-N \ge N^{2}-N = N^{2}-\frac{1}{2}N^{2}$$

$$N^{2}-N \ge N^{2}-N = N^{2}-\frac{1}{2}N = N^{2}-N = N^{2}$$

T(N) = N (a/N) + N - (bb (a/N) = 17 (19(N))

1911 with $B = \frac{18}{19} / N_0 = 1900$ Prove 2: TINI = N.19(N)+N-10019(N) - 12(N19(N)) · 2 N 19/N) 2 10019/N) $N \ge 50$ When $N \ge 50$, $2N |g(N) \ge 100 |g(N)$... N 19(N)+N-10019(N) ≥ N 19(N)-ZN19(N) =-NIg(N), B=-1Since B must be greater than 0, B>0, N=2 does not work. Proof 3: N= 1/2, = N/9(N) = 100/9(N) N = 200 $N \log (N) + N - 100 \log (N) = N \log (N) - 12 N \log (N)$ = 1/2 19(N) $B = 1/2, N_0 \ge 200$

Ex #4:
$$T(N) = 2N^2 - N | g(N) = \mathcal{L}(N^2)$$

... $N^2 = N | g(N)$

... $2N^2 - N | g(N) \ge 2N^2 - N^2 = N^2$

... $T(N) = \mathcal{L}(N^2)$ with $B = 1$, $N_0 = 1$

Big Theta Notation:

 $T(N)$ is $\Theta(f(N)) \iff T(N)$ is $O(f(N))$...

A $T(N)$ is $\mathcal{L}(f(N))$

... $T(N) \le O(N)$

... $T(N) \le O(N)$

Sty 1: $T(N) = 3N^2 + 2N + 1 \implies O(N^2)$

Sty 2: I^2

... $I^2 = I^2$

... $I^2 = I^2$

Sty 3: $I^2 = I^2$

Sty 3: $I^2 = I^2$
 I^2

$$0 (\kappa^3)? / (\kappa^2)? / (\kappa^3)? \times$$

lg (N)	
\mathcal{N}	
NIg(N)	
Nz	
$N_{\mathcal{J}}$	
2N	Time
3 ^N	Increases!
N!	,
$N_{\rm N}$	
2 ^N 3 ^N N!	

Ex:
$$2N^2 + 8Nlg(N) + N^2 + 4 \cdot 3^N + N = G(3^N)$$

Big-Theta is most important!