SE328:Topology

Hyosang Kang¹

 1 Division of Mathematics School of Interdisciplinary Studies DGIST

Week 09

Definition

A collection \mathcal{A} of subsets of X is called a **cover** of X, or **covering** of X, if

$$X = \bigcup_{A \in \mathcal{A}} A.$$

If a cover \mathcal{A} consists of open subsets, then \mathcal{A} is called a **open** covering of X. A space X is called **compact** if any open covering of X admits a finite subcovering. A subset $C \subset X$ is called **compact** if its subspace topology is compact.

Example

- 1. The finite subset of \mathbf{R} is compact.
- 2. Let $K = \{1, 1/2, \dots, 1/n, \dots\}$. The set \overline{K} is compact.
- 3. Any closed interval [a, b] is compact in \mathbf{R} .

Example

- 1. The real line \mathbf{R} is not compact.
- 2. The half-interval (a, b] is not compact.
- 3. Any open interval (a, b) is not compact.

A subspace $Y \subset X$ is compact if and only if every covering of Y by open subsets of X admits a finite subcovering of Y.

(This seems a repeat of the definition, but it is not.)

Any closed subset C of compact space X is compact.

Every compact subspace C of a Hausdorff space X is closed.

Example

Any subset in ${\bf R}$ with finite complement topology is compact.

Let $f: X \to Y$ be a continuous map. If $C \subset X$ is compact in X, then so is f(C) in Y.

Let $f: X \to Y$ be a bijective continuous map. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Lemma (The tube lemma)

Let N be an open subset in $X \times Y$ containing a slice $\{x_0\} \times Y$. If Y is compact, then there is a neighborhood W of x_0 in X such that

$$W \times Y \subset N$$

The product of finitely many compact spaces is compact.

A collection C of subsets in X is said to have the **finite** intersection property if for every finite subcollection of C, the intersection of all elements is nonempty. A topological space X is compact if and only if for every collection C of closed subsets which has the finite intersection property, the intersection of <u>all</u> element in C is nonempty.

Let Y be a compact Hausdorff space. A function $f: X \to Y$ is continuous if and only if the graph $G(f) = \{(x, f(x)) \mid x \in X\}$ is closed in $X \times Y$.

A subset $A \subset \mathbf{R}^n$ is compact if and only if A is closed and bounded.

Example

Let $f: X \to \mathbf{R}$ be continuous map. If X is compact, then there is $x_0, x_1 \in X$ such that

$$f(x_0) \le f(x) \le f(x_1)$$

for all $x \in X$.

Let X be a metric space with metric d. If X is compact, then for every open covering A, there is $\delta > 0$ such that any subset whose diameter less than δ is contained in an element of A.

Example

Let $f: X \to Y$ be a continuous map between metric spaces. If X is compact, then f is uniformly continuous.