15. PWM azaz impulzusszélesség moduláció

Írta: Baracsi Gábor

Lektorálta: Veréb Szabolcs, Lágler Gergely

BEVEZETÉS

Korábban már megismerkedhettünk az NE555-ös IC-vel és az astabil multivibrátorral. Építsünk egy ehhez hasonló áramkört, aminek a kapcsolási rajza alább látható.

1. ábra - LED fényerejének változtatása NE555 IC-vel

Breadboard-on kössük össze az alkatrészeket a lenti ábrához hasonlóan:

2. ábra - Megépített áramkör

Azt tapasztalhatjuk, hogy ha a P_B potenciométert tekergetjük, akkor a LED fényereje változik. Ha végig követed ezt a tananyagrészt, akkor megtudhatod, hogy miért ilyen sok alkatrészből oldottunk meg egy nagyon egyszerű feladatot, és megismerhetsz egy nagyon fontos és elterjedt vezérlési módszert.

MIRE IS JÓ EZ AZ ÁRAMKÖR?

Először vizsgáljuk meg az NE555 kimenetét (3. láb)! Ha lenne oszcilloszkópunk, akkor a 3. ábrának megfelelő jeleket mérhetnénk.

Ha mérés közben tekerjük a P_B potenciométert, akkor azt tapasztalhatjuk, hogy a potenciométer változtatásának megfelelően vagy egyre nagyobb, vagy egyre kisebb kitöltésű a jelünk, de a frekvenciája nem változik (4. ábra). A kitöltési tényező a bekapcsolási idő és a periódusidő hányadosa.

Kitekintés

Oszcilloszkóp

Az oszcilloszkóp egy olyan mérőműszer, ami a mérendő feszültséget és az időbeli viszonyát is vizsgálja, és grafikusan ábrázolja.

A képernyőjén a vízszintes tengely az idő, a függőleges tengely pedig a feszültség. A fenti ábrán egy kétcsatornás (két mérőbemenettel rendelkező) oszcilloszkóp látható, egyik csatornájára kapcsolt jel egy szinuszos jel, a másik csatornájára kapcsolt pedig egy négyszögjel. A kép alapján is látható, hogy az oszcilloszkóp egy bonyolult, s így drága mérőműszer.

4. ábra - Különböző kitöltésű PWM jelek

Mindhárom jel 11Hz frekvenciájú négyszögjel, melyek csak a kitöltési tényezőjükben különböznek. Az első esetben az idő 30%-ában tápfeszültség van a kimeneten, a 70%-ában pedig 0V, vagyis GND. A második jel esetében ez 50-50%, a harmadiknál pedig 80-20%. Ha a kitöltési tényezőt változtatni (vezérelni) tudjuk, akkor PWM-ről beszélhetünk (pulse-width modulation-nak a rövidítése), amit magyarul impulzusszélesség-modulációnak is nevezhetünk.

MIRE IS JÓ EZ, MIRE HASZNÁLHATÓ A PWM?

Az áramkör megértése előtt érdemesebb a PWM-mel megismerkedni. A könnyebb megértéshez nézzünk egy egyszerű példát, kössünk a kimenetre egy RC tagot, ami egyszerűen egy ellenállás és egy kondenzátor sorba kötve (szokták még RC szűrőnek is nevezni)! Ebben a példában használjunk R_1 =330 Ω értékű ellenállást és C_3 =10 μ F értékű kondenzátort!

5. ábra - PWM kapcsolás, kimenetén RC szűrő

Ha az RC tag kondenzátorán eső feszültséget oszcilloszkóppal néznéd, akkor a kondenzátor feltöltését és kisütését látnád (5. ábra). Talán fizikaóráról ismerős, hogy a mért U_{C3} feszültségünk az idő exponenciális függvénye. De ebbe most nem kell belemennünk részletesen, enélkül is érthető lesz.

6. ábra - C3 feszültsége 11Hz-nél, 50%-os kitöltésnél

Ha a C₁ kondenzátort 100nF értékűre cseréljük, akkor a kimeneti jel frekvenciája 1.1kHz-re változik. A 7. ábra szemlélteti a különbséget, ami már érthetővé teszi, miért is csináltuk ezt.

7. ábra - C3 feszültsége 1.1kHz-nél, 50%-os kitöltésnél

Az első esetben (11Hz-es jel) van ideje a kondenzátornak feltöltődni tápfeszültségre és teljesen kisülnie, a második esetben (1.1kHz-es jel) viszont erre már nincs ideje, közel 50%-os PWM kitöltésnél 5-6V között ingadozik. Ha tovább növeljük a frekvenciát, akkor ez az ingadozás egyre kisebb lesz, közeledni fog egy állandósult analóg jelhez. Növeljük meg a kimeneti frekvenciát 110kHz-re! Ehhez C₁ kapacitásának értékét kell lecsökkenteni, cseréljük le egy 1nF-os kondenzátorra!

8. ábra - C3 feszültsége 110kHz-nél, 50%-os kitöltésnél

Végre itt az ideje, hogy elővedd a multimétered, és magad is mérj, ne csak az ábrákból szerezz ismereteket. Kötsd a multimétered a C_3 kondenzátor két lábára (feszültségmérés beállítással)! A potenciométert tekergetve láthatod, ahogy a kitöltési tényezőnek megfelelően változik a kimeneti feszültségünk. Ha például a kitöltési tényezőnk 20%, tehát az idő 20%-ában tápfeszültség van az 555 kimenetén, akkor az RC tag kondenzátorán a tápfeszültség 20%-a mérhető (12V-os tápfeszültségnél U_{C3} =12V*0.2=2.4V).

Tudnod kell a multiméterről, hogy ez a mérőműszer átlagol, különben nem tudnád leolvasni a gyorsan változó számértékeket a kijelzőről. Tehát a megelőző két példánál is hasonló eredményre jutnál a multiméterrel mint itt, de abban az esetben nem a valóságot látnád, a multiméter elfedné az időbeli változásokat.

Ez az egyszerű példa azt szemlélteti, hogy nagy frekvenciájú digitális jellel tudunk vezérelni analóg rendszereket. Itt a vezérelni kívánt jelünk a kondenzátoron eső U_{C3} feszültség.

Tegyünk a kondenzátor helyére egy LED-et. Az ellenállás ebben az alkalmazásban a LED előtét ellenállását tölti be, hogy beállítsuk a LED maximális áramát. Ez most legyen 10 mA, amihez az R_1 ellenállást cseréld ki $1 \text{ k}\Omega$ -ra $\left(\frac{12[V]-2.2[V]}{1[k\Omega]} = 9.8[mA]\right)$! Ismerős a kapcsolás? Ez a kiinduló példánk.

Ez az áramkör a szemünk tehetetlenségét használja ki. Olyan gyorsan kapcsoljuk fel-le a LED-et, amit már a szemünk nem tud érzékelni, kiátlagolja azt. Emiatt a fényerő a kitöltési tényezőtől fog függeni. Ha kíváncsi vagy a villogásra, akkor cseréld nagyobb értékűre a C_1 kondenzátort (pl.: $100-1000\mu F$)!

9. ábra - PWM kapcsolás, kimenetén LED

Még látványosabb, ha egy egyenáramú motort vezérlünk az áramkörünkkel. A számítógépekben használatos ventilátorokat 12V-os DC motorok hajtják, ezek megfelelnek nekünk. Természetesen bármilyen más DC motort használhatsz, csak arra figyelj, hogy a tápfeszültségnél nagyobb legyen a motor maximálisan megengedhető feszültsége!

Több módosításra lehet szükségünk, attól függően, hogy a motorunk áramfelvétele mekkora. Az 555-ös maximális kimeneti árama 200mA, így ennél kisebb áramú ventilátorokat köthetjük közvetlenül az IC

kimenetére. Nagyobb áramú motor, vagy ventilátor esetében már nem tudná meghajtani, túlterhelés miatt tönkremenne az IC-nk. Ezért egy FET-en keresztül kell kapcsolnunk a motorunkat (10. ábra).

10. ábra - PWM kapcsolás, kimenetén ventilátor

A D₃ dióda funkciójáról érdemes tudnod. Az induktivitással rendelkező alkatrészek (pl.: tekercsek, villanymotorok, relék) mellé illik védő diódát tenni abban az esetben, ha a rajtuk folyó áramot hirtelen akarjuk megszakítani, jelen példában a Q₁ FET-tel (vagy ha közvetlenül az 555 IC kimenetére kötjük, akkor az IC belső meghajtó áramkörével). Ilyenkor a motorban lévő tekercs mágneses energiáját akarjuk hirtelen megszüntetni, ami nem lehetséges, önindukciós feszültség fog fellépni a motor kapcsain. Ez akár kV nagyságrendű feszültség is lehet, így a FET-et tönkretenné. Viszont, ha az áramkörbe be van építve a D₃ megnevezésű dióda, akkor nem engedi, hogy a MOSFET Drain kivezetésének feszültsége a tápfeszültség fölé emelkedjen, mivel a dióda katódja tápfeszültségre van kötve. Ugyanis a dióda kinyit, ha az anódja magasabb potenciálra kerül, mint a katódja, így rajta keresztül folyik tovább a tekercs árama (10. ábra), amíg a tekercs mágneses energiája el nem fogy.

Kitekintés

Az önindukciós feszültség a meglévő mágneses tér állapotának fenntartására törekszik:

Az áram növekedésekor az önindukciós feszültség az áramiránnyal ellentétes. Az áramot fékezi, és késleleti a növekedését. Ezzel együtt a mágneses tér felépülését fékezi.

Az áram csökkenésekor az önindukciós feszültség az áram irányába hat. Segíti az áram fennmaradását és késleleti a csökkenését. Ezzel együtt a mágneses tér leépülését fékezi.

11. ábra - Áram iránya a Q_1 FET bekapcsolt (kék nyíl) és kikapcsolt (piros nyíl) állapotában

A fent leírtakból következik, hogy a diódán sosem folyik nagyobb áram, mint a motoron. Ezért úgy kell megválasztani a dióda típusát, hogy az adatlapjában megadott maximális árama ne legyen kisebb, mint a motor maximális árama. Így biztosan elkerülhető, hogy a dióda tönkremenjen. Miután jobban megismerkedtünk a PWM-mel, ideje megértenünk az áramkörünk működését is.

HOGYAN MŰKÖDIK A KAPCSOLÁSUNK?

Kiindulásképp vegyük újra elő az astabil multivibrátort (12. ábra bal oldalt). Ennél a kapcsolásnál megtapasztalhattuk, hogy a C_1 kondenzátort R_A és R_B ellenálláson keresztül töltjük fel, viszont csak R_B ellenálláson keresztül sütjük ki, így az 555-ös t_H (H=High, magyarul magas) ideig magas jelszintet és t_L (L=Low, magyarul alacsony) ideig alacsony jelszintet ad a kimenetén. Az időviszonyokat az alábbi képletek írják le:

$$t_{H} = 0.693 \cdot (R_{A} + R_{B}) \cdot C_{1}$$

$$t_{L} = 0.693 \cdot (R_{B}) \cdot C_{1}$$

$$t_{period} = t_{H} + t_{L} = 0.693 \cdot (R_{A} + 2 \cdot R_{B}) \cdot C_{1}$$

$$f = \frac{1}{t_{period}} = \frac{1.44}{(R_{A} + 2 \cdot R_{B}) \cdot C_{1}}$$

Az astabil multivibrátor és a PWM-es kapcsolás között csak egy különbség van, az R_B ellenállást leváltotta egy P_B potenciométer és 2db dióda. (12. ábra zöld színnek jelölt részei).

12. ábra - Az astabil áramkör és a PWM kapcsolás közötti különbség

A P_B potenciométert értelmezhetjük úgy is, mint két darab ellenállást (P_{B1} , P_{B2}), amiknek az értékük állítható, de az összegük állandó. A diódákra azért van szükség, hogy a C_1 kondenzátor töltését és kisütését szétválassza (13. ábra).

13. ábra - Áram útja töltéskor és kisütéskor

Tehát a C_1 kondenzátort R_A és P_{B1} ellenálláson keresztül töltjük fel, de P_{B2} ellenálláson keresztül sütjük ki. Ha újra megnézzük az időviszonyokat, akkor magyarázatot kapunk rá, hogy a kapcsolásunk miért valósítja meg a PWM jel előállítását:

$$t_{H} = 0.693 \cdot (R_{A} + P_{B1}) \cdot C_{1}$$

$$t_{L} = 0.693 \cdot (P_{B2}) \cdot C_{1}$$

$$t_{period} = t_{H} + t_{L} = 0.693 \cdot (R_{A} + P_{B1} + P_{B2}) \cdot C_{1} = 0.693 \cdot (R_{A} + P_{B}) \cdot C_{1}$$

$$f = \frac{1.44}{(R_{A} + P_{B}) \cdot C_{1}}$$

Ebből láthatjuk, hogy a frekvenciája a potenciométer tekerése során nem fog változni, hiszen R_A és P_B értéke is állandó ($P_B=P_{B1}+P_{B2}$). A P_{B1} és P_{B2} aránya fog csak változni, ami a kitöltési tényezőt fogja megszabni.

Kitöltési tényező =
$$D = \frac{t_H}{t_{period}} = 1 - \frac{P_{B2}}{R_A + P_B}$$

Kitekintés

Az is kiderül, miért nem tudjuk ezzel az áramkörrel elérni, hogy a kitöltésünk teljesen 0% legyen. Az 555-ös IC adatlapjának ajánlása szerint R_A nem lehet kisebb $1k\Omega$ -nál, mert a tápfeszültség felől túl nagy áram folyna át az 555-ös IC-n belüli DISCH. tranzisztorán, ami miatt feleslegesen melegedne, vagy tönkremenne. Így hiába tekerjük a potenciométert a P_{B2} = P_B irányba, akkor sem lesz 0% a kitöltésünk, mivel

$$\frac{P_B}{R_A + P_B} \neq 1$$

Remélhetőleg ez a tananyag és a feladatok elvégzése segített abban, hogy megbarátkozz a PWM-mel. A következő részben még izgalmasabb példák várnak rád, viszont a PWM jel előállítását már mikrokontrollerrel fogod megvalósítani.