

Models for Crop Insurance Indemnities

Introduction
Data
Analysis

Models for Crop Insurance Indemnities

Yuma Mizushima, Yue Zhang, Yikang Li, Wenhao Wu

Supervisor: Gee Y. Lee

Michigan State University (MSU)

REU Project, Spring 2020

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Introduction

- From 2007 to 2016, the federal crop insurance title had the second-largest outlays in the farm bill, after nutrition
- The total net cost of the program for crop years 2007-2016 was about \$72 billion (Rosa, Isabel)

Models for Crop Insurance Indemnities

Introduction

Data Analysis

Why is Crop Insurance Important?

- Financially protects farmers from loss of crop and revenue
- All consumers benefit from a secure agriculture industry
- Ratemaking and reserving are important problems in actuarial science
- Dependence models may influence the reserving of insurance companies

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Causes of Loss

- Weather: rain, temperature, length of growing season
- Bacteria, viruses, pests
- Implies that insurance amounts may differ between regions and peril types
- Different causes of losses may influence the dependence of policyholders

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

What is an Indemnity?

- A safeguard against loss
- In terms of US crop insurance: a payment made when crop yields under-perform
- USDA RMA authorizes 15 private companies to provide insurance

Models for Crop Insurance Indemnities

Introduction

Data Analysis

The Goal

- To predict indemnity amounts for specific farms based on region, commodity grown, and peril types
- To illustrate that spatial dependence matters, in terms of the aggregate loss, and should influence the operation of an insurance company
- To show that the risk capital that insurance companies should prepare will be influenced by this dependence

Models for Crop Insurance Indemnities

Introduction

Data

Allalysis

Overview of Data Aggregated by State

State	Farms	Indemnity Amount	Liability Amount	Zeros
MI	8804	90308988	1932773671	6506
OH	8436	56665925	3289548279	6318
FL	5913	347854824	2824855303	3847
CA	10468	303183746	8492481313	8143
NY	3927	24691936	622665816	3063

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Histogram of Indemnity Amount

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Relativity Map in Michigan (Training and Validation Sample)

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Indemnities and Liabilities by Peril Type

Models for Crop Insurance Indemnities

Introduction

Data

Analysis

Log Indemnities by Peril Type

Models for Crop Insurance Indemnities

Introduction

Data Analysis

Important Note

- Most of the farms will run in the right way
- Only a few of them will suffer a loss

What is the Appropriate Distribution?

- The answer is Tweedie Distribution
- It is a distribution that has 0 mass and using a compound model allows us to obtain the residuals more easily

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Introduction to Tweedie distribution

A random variable Y follows Tweedie if Y follows exponential dispersion models with mean and variance:

$$E(Y) = \mu \quad Var(Y) = \sigma^2 \mu^p$$

where p is called the Tweedie power parameter

If $1 \le p \le 2$, it will become a compound Poisson/Gamma distribution

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Expression of Y

$$T \sim Poisson(\lambda)$$

$$X_i \sim Gamma(\alpha, \beta)$$

$$Y = \sum_{i=1}^{T} X_i$$

Connection

The frequency of indemnity $\sim \textit{Poisson}(\lambda)$

The severity of indemnity $\sim Gamma(\alpha, \beta)$

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Shape of Tweedie Distribution

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Copula Function Demonstration

We use the Copula function to construct three groups of data. Within each group of data, there are two normally distributed variables. The covariances in each group are 0.1, 0.9, and -0.9 respectively.

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Analysis

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Some Common Peril Types

- (1) Drought
- (2) Plant Disease
- (3) Wind/Excess Wind
- (4) Excess Moisture/Precipitation/Rain
- (5) Hurricane/Tropical Depression

Analysis

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Process

- (1) Aggregate the information we need to generate a table
- (2) Use the ${\bf tweedie.profile()}$ function to generate the ${\bf MLE}$ of the Tweedie index power parameter
- (3) Construct the exact PDF of Tweedie distribution
- (4) Obtain the Cox-Snell residuals
- (5) Obtain the covariance

Results

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Covariance of Specific Peril Types

2 policyholders in the same state have correlations of:

Drought	Plant Disease	Wind	Precipitation	Hurricane
0.4581	0.3214	0.3116	0.3406	0.0472

• Covariances indicate dependence for those policyholders within the same state

Conclusion

Models for Crop Insurance Indemnities

Introduction Data

Analysis

Implications

- Different peril types have different dependence structure
- The risk capital held by an insurance company should be different depending on the peril types being covered
- Underwriting strategies and loss reserving practices may be influenced by this

Models for Crop Insurance Indemnities

Introduction

Data Analysis

Thank you!