Homework 3

Instructions

This homework contains 6 concepts and 9 programming questions. In MS word or a similar text editor, write down the problem number and your answer for each problem. Combine all answers for concept questions in a single PDF file. Export/print the Jupyter notebook as a PDF file including the code you implemented and the outputs of the program. Make sure all plots and outputs are visible in the PDF.

Combine all answers into a single PDF named andrewID_hw3.pdf and submit it to Gradescope before the due date. Refer to the syllabus for late homework policy. Please assign each question a page by using the "Assign Questions and Pages" feature in Gradescope. Submission to anywhere else than Gradescope will not be graded.

Question	Points
Concept 1	3
Concept 2	2
Concept 3	1
Concept 4	2
Concept 5	1
Concept 6	3
M3-L1-P1	6
M3-L1-P2	6
M3-L1-P3	6
M3-L2-P1	6
M3-L2-P2	6
M3-L2-P3	6
M3-HW1	24
M3-HW2	24
M3-HW3	24
Total	120
Bonus	6

The sigmoid function is useful because

- It restricts the output between -1 and 1 (T/F)
 It has a probabilistic interpretation (T/F)
 It is easily differentiable (T/F)

Consider the level sets that correspond to different decision boundaries in the figure.

Resistor 1

 $h = w_0 + w_1 x_1 + w_2 x_2$

- 1) What are the bounds on the values of h?
- 2) What are the bounds on the values of g(h) where g(t) is the sigmoid function?

More L2 regularization always leads to better fitting models. (T/F)

Consider the following 4 class problem. A given test point x is evaluated by six binary classifiers with the following results:

A vs. $B \rightarrow class A$

A vs. $C \rightarrow class C$

A vs. $D \rightarrow class D$

B vs. $C \rightarrow class C$

B vs. $D \rightarrow class D$

 $C \text{ vs. } D \rightarrow \text{class } D$

What is the predicted class for the test point?

For what number of classes is the number of classifiers required for one-versus-one and one-versus-rest classifiers equal?

Consider the phase problem from the slides. There are three classes: solid, liquid, and vapor. We have four test points with ground truth labels shown below. We train two models that output the predictions below. By inspection, which model is best?