Question 2:-

Python 3 was used to analyse the data as well as for creating the Logistic Regression model.

Given data => 1000 samples (5 attributes, 1 label)

Scatter plot between various attributes confirms the absence of linear dependency among the attributes.

The labels were encoded as:

 $1 \rightarrow Pass$

0→ Fail

Now, the 5 attributes were scaled to mean 0 and standard deviation 1 using the formula:-

$$z=\frac{x-\mu}{s}$$

The scaled data was fitted to the **Logit** function (labels vs attributes).

	Coef.	Std.Err.	z	P> z	[0.025	0.975]
Temperature	-0.0013	0.0012	-1.0945	0.2737	-0.0036	0.0010
Pressure	-0.0274	0.0074	-3.6884	0.0002	-0.0419	-0.0128
Feed Flow rate	-0.0116	0.0024	-4.7534	0.0000	-0.0164	-0.0068
Coolant Flow rate	0.0039	0.0002	16.5989	0.0000	0.0034	0.0043
Inlet reactant concentration	-0.6702	0.8867	-0.7558	0.4498	-2.4082	1.0678
=======================================						

Since, the P-values of **Temperature** and **Inlet Reactant Concentration** are quite high these features were treated as *Insignificant* i.e they do not contribute to passing or failing of the reactor .

Now, a Logistic Regression model for Binary classification was built which will take Pressure, Feed Flow rate and Coolant Flow rate as inputs and give 1/0 as outputs. $(1 \rightarrow Pass, 0 \rightarrow Fail)$.

70% of the data was used for training the model and 30% for testing.

After training the model, its performance was evaluated on the test dataset.

Results:-

The equation of the decision boundary (Hyperplane) is:-

$$h=0.8393-0.0354*(Pressure)-0.015*(Feed Flow rate) + 0.004*(Coolant Flow rate) = 0$$

Where Pressure, Feed Flow Rate and Coolant Flow rate are the scaled values.

When a new datapoint needs to be classified, sigmoid(h) will be calculated.

$$sigmoid(h) = \frac{1}{1 + e^{-h}}$$

If sigmoid(h)
$$> 0.5 \rightarrow 1$$
 (Pass)

If sigmoid(h)
$$< 0.5 \rightarrow 0$$
 (Fail)

Figure: - Confusion Matrix

	precision	recall	f1-score	support
0 1	0.94 0.95	0.94 0.96	0.94 0.96	128 172
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	300 300 300

Figure: - Classification Report

Figure: - Receiver Operating Characteristics