Basic Concepts (chapter 1)

Our focuses in this chapter:

- Specification of Abstract Data Types (ADTs)
- Building algorithms
 - Goal → Idea → Design
 - The issue of Recursion vs. Loop
 - Performance analysis (complexity)

Abstract Data Types (ADTs)

- Data Type Specification
 - Objects
 - Operations
- Abstract Data Types: Data types specified in a way that is independent of the <u>representation</u> of the objects and the <u>implementation</u> of the operations.

Representation is how the actual "data" are stored or organized in the implementation of the data type.

Example:

Abstraction: object *x* is an integer (in common sense)

Representation: object x is of type int (as in C)

Abstract Data Types (ADTs)

Example: Let us consider the similarities and differences between a standard HDD and a USB flash drive, etc.:

	ADT		HDD	USB
Objects		Representations		
Operations		Implementations		

Specifying Operations of ADTs

- Names of functions (operations)
- For each function, we need to specify:
 - Types of arguments
 - Types of results
 - Descriptions of what the functions do (without implementation details)

ADT Example: Natural Numbers

ADT NaturalNumber is

objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (MAXINT) on the computer

functions:

```
for all x, y \in NaturalNumber; TRUE, FALSE \in Boolean and where +, -, <, ==, and = are the usual integer operations
```

```
Zero(): Natural Number ::= 0
```

```
IsZero(x): Boolean ::= if (x==0) return TRUE else return FALSE
```

```
Add(x,y): NaturalNumber ::= if (x+y \le MAXINT) return x+y
```

else return MAXINT

```
Equal(x,y): Boolean ::= if (x==y) return TRUE else return FALSE
```

Successor(x): NaturalNumber ::= if (x == MAXINT) return x else return x+1

Subtract(x,y): NaturalNumber ::= if (x < y) return 0 else return x - y

end NaturalNumber

Algorithm Criteria

- Input
- Output
- Definiteness
- Finiteness
- Effectiveness

Programs ≠ Algorithms
A program doesn't have to be finite (e.g. OS scheduling).

Example Algorithm: Selection Sort

- Goal: To sort a list of integers, small to large
- Idea: From those integers that are unsorted, find the smallest one and place it right after the current sorter sublist.

- Design
 - Integers in an array a [0] to a [n-1]
 - In each iteration (i from 0 to n-1), find the smallest element in a[i] to a[n-1] and swap it with a[i].

Example Algorithm: Selection Sort

A C-like form of the algorithm so far

C++ function for the algorithm

Example Algorithm: Binary Search

- Goal: To determine the existence and location of a particular integer within a sorted list of distinct integers.
 - If it's present, return the index.
 - Otherwise, return -1.

■ Idea:

- Let left and right be the range of indices to be searched.
- Each time compare x (the number to be searched) with the entry at middle, which is half-way between left and right.
- If x == a[middle], return middle
- If x < a[middle], set right to middle-1</pre>
- If x > a[middle], set left to middle+1

Example Algorithm: Binary Search

A C-like form of the algorithm so far

```
while (there are more integers to check) {
   middle = (left + right) /2;
   if (x < a[middle]) right = middle -1;
   else if (x > a[middle]) left = middle+1;
   else return middle;
}
return -1;
```

C++ function for the algorithm

```
int BinarySearch(int a[], int x, int n)
{
  int left=0, right=n-1;
  while (left <= right) {
    int middle = (left + right) / 2;
    if (x < a[middle]) right = middle -1;
    else if (x > a[middle]) left = middle+1;
    else return middle;
  }
  return -1;
}
```

Example Algorithm: Binary Search

OK, now let's go through an example here:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 (1) Find 6; (2) find 25

Recursive Algorithms

- A recursive algorithm involves a function calling itself, either directly or indirectly.
- When to use recursion: We can obtain the result of a task using results from subtasks that are both <u>similar</u> and <u>simpler</u>.
- Boundary condition: When the task becomes so simple, the function generates the result directly so that the recursion terminates.
- Any task implemented using loops can be implemented using recursion. You just need to choose the method based on efficiency and clarity.

Example Recursive Algorithms

Recursive addition:

```
int RecursiveAdd(int a[], int n)
{
  if (n == 0) return a[0];
  else return a[n] + RecursiveAdd(a, n-1);
}
```

Recursive multiplication:

```
int RecursiveMultiply(int a[], int n)
{
  if (n == 0) return a[0];
  else return a[n] * RecursiveMultiply(a, n-1);
}
```

Recursive Binary Search

```
int BinarySearch(int a[], int x, int left, int right)
  if (left <= right) {</pre>
    int middle = (left + right) / 2;
    if (x < a[middle])</pre>
      return BinarySearch(a, x, left, middle-1);
    else if (x > a[middle])
      return BinarySearch(a, x, middle+1, right);
    else return middle;
  return -1;
```

Q: Identify the "boundary conditions" in this code.

Recursive Permutation Generator

To generate all the permutations of the string **ABCD**:

```
ABCD
```

ABDC

ACBD

ACDB

... (24 in total)

We can do

A followed by all the permutations of **BCD**

B followed by all the permutations of **ACD**

C followed by all the permutations of ABD

D followed by all the permutations of **ABC**

Recursive Permutation Generator

```
void perm(char *a, int i, int n)
  // generate all the permutations of a[i] to a[n]
  if ( i == n) {
    for (j=0; j <= n; j++) cout << a[j];
  else {
    for (j = i; j \le n; j++) {
      swap(a[i], a[j]);
      perm(a, i+1, n);
      swap(a[i], a[j]);
```

Q: Identify the "boundary conditions" in this code.

Q: Why do we need the second swap?

Recursive Permutation Generator

Now let's generate all the permutations of the string "ABC":

Recursion vs. Loop

- Disadvantages of using recursion:
 - Recursion has higher runtime overhead than loops (extra space and time for each function call).
 - It usually takes more work to debug recursive codes.
- As a result, recursions are mostly used when
 - The subtask is <u>much simpler</u> than the original task (so there will not be too many levels of recursion).
 - The task is <u>more straightforward</u> for recursion than for loops (e.g., permutation generation).

Recursion vs. Loop

- RecursiveAdd and RecursiveMultiply:
 - It's easier to understand using loops, and the subtask is only slightly simpler.
 - The overhead makes these recursive functions impractical. (The program will likely crash if you have, say, a billion items.)
- Binary search
 - The subtask is <u>much simpler</u> (half of the original size on average).
 - The task is more straightforward using recursion.

Performance Evaluation

- **Performance Analysis**
 - Estimation (from the algorithm, code)
 - Machine-independent
- Performance Measurement
 - Measurement (actual testing)
 - Machine-dependent

Performance Analysis

- Space complexity: amount of memory used

 - c: fixed space
 - \bullet $S_P(I)$: depends on "instance characteristics"
- Time complexity: amount of computer time
 - $T(P) = c + T_P(I)$
 - c: fixed time
 - \bullet $T_P(I)$: depends on "instance characteristics"
- Instance characteristics: Amounts and other properties of inputs and outputs that may affect the space or time requirements.

Program Step Count

- Program step (a loose definition): A meaningful segment in a program, with its execution time independent of the instance characteristics.
- Example:

Total: 2n+3 steps

Step Count: One More Example

The step count table for matrix addition:

steps/execution

Statement	s/e	Frequency	#Steps
void add (int a[][MAX_SIZE]•••)	0	0	0
{	0	0	0
int i, j;	0	0	0
for $(i = 0; i < row; i++)$	1	rows+1	rows+1
for (j=0; j< cols; j++)	1	rows•(cols+1)	rows•cols+rows
c[i][j] = a[i][j] + b[i][j];	1	rows•cols	rows•cols
}	0	0	0
Total	2ro	ws * cols + 2	2 rows + 1

Beyond Step Counts

- Step counts are of limited practical use because
 - A "program step" is often ambiguous.
 - Different steps take different amounts of execution time.
- Asymptotic complexity: How the amount of computation grows with the amount of data
 - Big-O notation (upper bound)
 - Omega notation (lower bound)
 - Theta notation (both upper and lower bounds)
- Three types of cases
 - Worst case
 - Best case
 - Average case

Big-O Notation

$$f(n) = O(g(n)) \Leftrightarrow \exists c > 0, n_0 > 0, s.t. \forall n \ge n_0, f(n) \le cg(n)$$

Here f(n) is the step count.

Examples:

- f(n) = 3n+2
- $f(n) = 3n^3 + 2n^2 + 100$

Big-O notation is the "upper bound" of complexity.

We should always use the "most strict" one, i.e., the "least upper bound".

Omega Notation

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists c > 0, n_0 > 0, s.t. \forall n \ge n_0, f(n) \ge cg(n)$$

Here f(n) is the step count.

Examples:

- f(n) = 3n+2
- $f(n) = 3n^3 + 2n^2 + 100$

Omega notation is the "lower bound" of complexity.

We should always use the "most strict" one, i.e., the "most lower bound".

Theta Notation

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists c_1 > 0, c_2 > 0, n_0 > 0,$$

$$s.t. \ \forall n \ge n_0, c_1 g(n) \le f(n) \le c_2 g(n)$$

Here f(n) is the step count.

Examples:

- f(n) = 3n+2
- $f(n) = 3n^3 + 2n^2 + 100$

Theta notation is the most precise form, being both upper and lower bounds of complexity.

Growth Rate

Notes on Big-O Notations

- Although the theta notation is the precise one, in practice about everyone uses the big-O notation in its most strict sense. (Nobody cares about the lower bound?)
- With this in mind, here are some useful rules for combining big-O notations:

$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$
 \Leftrightarrow

$$f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$$

$$f_1(n) f_2(n) = O(g_1(n)g_2(n))$$

Complexities of Example Algorithms

- Summing an array:
- Matrix addition:
- Matrix multiplication:
- Selection sort:
- Binary search:
- Permutation:
- Recursive Fibonacci series:

```
int Fibonacci(int n)
{
  if (n==1 || n==2) return 1;
  else return Fibonacci(n-1) + Fibonacci(n-2);
}
```

Extra Reading Assignments

From the textbook: Sections 1.5.2, 1.6, 1.7.2.