Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Find an element in a sorted array:

- 1. Divide: Check middle element.
- 2. Conquer: Recursively search 1 subarray.
- 3. Combine: Trivial.

Example: Find 9

Recurrence for binary search

$$n^{\log_b a} = n^{\log_2 1} = n^0 = 1 \Rightarrow \text{CASE 2 } (k = 0)$$

 $\Rightarrow T(n) = \Theta(\lg n)$.

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm:

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\lg n)$$
.

Fibonacci numbers

Recursive definition:

$$F_{n} = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

$$0 \quad 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad \cdots$$

Naive recursive algorithm: $\Omega(\phi^n)$ (exponential time), where $\phi = (1 + \sqrt{5})/2$ is the *golden ratio*.

Matrix multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ij}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Standard algorithm

```
for i \leftarrow 1 to n
do for j \leftarrow 1 to n
do c_{ij} \leftarrow 0
for k \leftarrow 1 to n
do c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}

Running time = \Theta(n^3)
```

Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = ae + bg$$

 $s = af + bh$
 $t = ce + dh$
 $u = cf + dh$
8 mults of $(n/2) \times (n/2)$ submatrices
4 adds of $(n/2) \times (n/2)$ submatrices

Analysis of D&C algorithm

$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{Case } 1 \implies T(n) = \Theta(n^3).$$

No better than the ordinary algorithm.

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

$$P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e$$

$$P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h)$$

$$P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$

 $P_{2} = (a + b) \cdot h$
 $P_{3} = (c + d) \cdot e$
 $P_{4} = d \cdot (g - e)$
 $P_{5} = (a + d) \cdot (e + h)$
 $P_{6} = (b - d) \cdot (g + h)$
 $P_{7} = (a - c) \cdot (e + f)$

$$r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$= (a + d)(e + h)$$

$$+ d(g - e) - (a + b)h$$

$$+ (b - d)(g + h)$$

$$= ae + ah + de + dh$$

$$+ dg - de - ah - bh$$

$$+ bg + bh - dg - dh$$

$$= ae + bg$$

Strassen's algorithm

- 1. Divide: Partition A and B into $(n/2)\times(n/2)$ submatrices. Form terms to be multiplied using + and -.
- 2. Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2)\times(n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

Analysis of Strassen

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{Case } 1 \implies T(n) = \Theta(n^{\log_2 7}).$$

The number 2.81 may not seem much smaller than 3, but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 30$ or so.

Best to date (of theoretical interest only): $\Theta(n^{2.376\cdots})$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms