EM 算法

王璐

EM 算法是一种常用的极大似然估计算法,本章我们介绍如何使用 EM 算法估计混合模型 (mixture models) 或含有隐变量 (latent variables) 的模型。

1 Gaussian Mixture Model (GMM)

假设数据由 n 个独立同分布的样本组成 $\{x_1, \ldots, x_n\}$, 每个样本来自以下模型:

$$\mathbf{x}_i \mid z_i = j \sim N(\boldsymbol{\mu}_j, \Sigma_j)$$

$$z_i \sim \text{Mult}(1, \phi_1, \dots, \phi_K)$$
(1)

其中 z_i 是样本 \boldsymbol{x}_i 的隐标签, $z_i \in \{1, 2, ..., K\}$, $P(z_i = j) = \phi_j$, j = 1, ..., K, $\sum_{j=1}^K \phi_j = 1$, 但 z_i 观测不到。在模型(1)中,每个样本 \boldsymbol{x}_i 相当于从 K 个正态分布中随机选一个分布抽样得到,每个分布被选取的概率为 ϕ_j , j = 1, ..., K, 因此模型(1)被称为 Gaussian mixture model (GMM).

在模型(1)中,我们需要估计的参数是 $\Theta = \{(\mu_j, \Sigma_j, \phi_j): j=1,\dots,K\}$. 数据的对数似然函数可写为

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\boldsymbol{x}_{i} \mid \boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} p(\boldsymbol{x}_{i}, z_{i} = j \mid \boldsymbol{\theta}) \right)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} p(\boldsymbol{x}_{i} \mid z_{i} = j, \boldsymbol{\theta}) p(z_{i} = j \mid \boldsymbol{\theta}) \right)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \phi_{j} p(\boldsymbol{x}_{i} \mid \boldsymbol{\mu}_{j}, \Sigma_{j}) \right)$$
(2)

其中 $p(\mathbf{x}_i \mid \boldsymbol{\mu}_j, \Sigma_j)$ 是正态分布 $N(\boldsymbol{\mu}_j, \Sigma_j)$ 在 \mathbf{x}_i 处的概率密度。直接计算 $l(\boldsymbol{\theta})$ 对每个参数的一阶导数并令其等于零无法求出参数 MLE 的解析形式。如果我们能观察到 $\{z_i\}_{i=1}^n$,则参数的极大似然估计变得很容易,此时对数似然函数可写为

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \left[\log p(\boldsymbol{x}_i \mid z_i, \boldsymbol{\theta}) + \log p(z_i \mid \boldsymbol{\theta}) \right]$$

$$= \sum_{j=1}^{K} \left[\left(\sum_{i:z_i=j} \log p(\boldsymbol{x}_i \mid \boldsymbol{\mu}_j, \Sigma_j) \right) + n_j \log \phi_j \right]$$
(3)

其中 $n_j = \sum_{i=1}^n \mathbf{1}(z_i = j), j = 1, ..., K$. 在限制条件 $\sum_{j=1}^K \phi_j = 1$ 下, 最大化(3)可得各参数的 MLE 为

$$\hat{\phi}_j = rac{n_j}{n}$$

$$\hat{\mu}_j = \sum_{i:z_i=j} x_i/n_j$$

$$\hat{\Sigma}_j = rac{1}{n_j} \sum_{i:z_i=j} (x_i - \hat{\mu}_j)(x_i - \hat{\mu}_j)^{ op}$$

但是 $\{z_i\}_{i=1}^n$ 一般是未知的,此时该如何从(2)中计算各参数的 MLE? 可以使用 EM 算法。

2 Jensen's Inequality

首先介绍 EM 算法的原理 — Jensen 不等式。

Theorem 1. X 是一个随机变量, f 是一个凸函数,则有

$$E[f(X)] \ge f(E(X))$$
.

Proof. 因为 f 是凸函数,在 $\mu = E(X)$ 处,总可以找到一条直线 $l: f(\mu) + \lambda(x - \mu)$ 使得 f 处于 l 的上方,即

$$f(x) \ge f(\mu) + \lambda(x - \mu), \ \forall x.$$
 (4)

如果 f 在 $x = \mu$ 处可导,则 $\lambda = f'(\mu)$;如果 f 在 $x = \mu$ 处不可导,则 λ 可取 $f'(\mu -) \le \lambda \le f'(\mu +)$ 的任意值。由(4)可得

$$E[f(X)] \ge E[f(\mu) + \lambda(X - \mu)] = f(\mu)$$

Remarks

- 1. 如果 f 是严格凸函数 (f''(x) > 0),则 E[f(X)] = f(E(X)) 当且仅当 X = E(X) 以概率 1 成立,即 X 以概率 1 是常数。
- 2. 如果 f 是凹函数,则 -f 是凸函数,根据 Jensen's inequality, $E[f(X)] \leq f(E(X))$.
- © 王璐 2019 未经作者同意不要传播或发布到网上

3 EM 算法

对于 n 个独立同分布的样本 $\{x_1,\ldots,x_n\}$,假设其对数似然函数可写为

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\boldsymbol{x}_i \mid \boldsymbol{\theta})$$

$$= \sum_{i=1}^{n} \log \left(\int p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta}) dz_i \right)$$
(5)

其中 $\{z_i\}_{i=1}^n$ 是隐变量,但是直接最大化(5)很困难。EM 算法的基本想法是: 先找到 $l(\boldsymbol{\theta})$ 的一个下界函数 $g(\boldsymbol{\theta})$,即 $l(\boldsymbol{\theta}) \geq g(\boldsymbol{\theta})$,对 $\boldsymbol{\theta}$,且 $g(\boldsymbol{\theta})$ 是较容易优化的函数 (E-step); 然后找到 $g(\boldsymbol{\theta})$ 的最大值点 (M-step); 不断重复这两步直到收敛,如图1所示。

Figure 1: EM 算法的基本想法。

如果隐变量 z_i 是离散变量, $z_i \in \{1, 2, ..., K\}$, $\forall i$, 则(5)可写为

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta}) \right).$$
 (6)

为了找到 $l(\theta)$ 的一个下界函数,为每个隐变量 z_i 引入一个离散分布 Q_i . 假设 Q_i 是 $\{1,2,\ldots,K\}$ 上的离散分布, $i=1,\ldots,n$,则(6)可写为

$$l(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta}) \right)$$

$$= \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} Q_i(z_i = j) \frac{p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta})}{Q_i(z_i = j)} \right)$$

$$= \sum_{i=1}^{n} \log \left[E_{z_i \sim Q_i} \left(\frac{p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta})}{Q_i(z_i)} \right) \right]$$
 (7)

$$\geq \sum_{i=1}^{n} E_{z_{i} \sim Q_{i}} \left[\log \left(\frac{p(\boldsymbol{x}_{i}, z_{i} \mid \boldsymbol{\theta})}{Q_{i}(z_{i})} \right) \right]$$
 (8)

$$= \sum_{i=1}^{n} \sum_{j=1}^{K} Q_i(z_i = j) \log \left(\frac{p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta})}{Q_i(z_i = j)} \right) \triangleq g(\boldsymbol{\theta})$$
(9)

其中由(7)到(8)是根据 Jensen's inequality: $f(x) = \log(x)$ 是凹函数,且是严格凹函数 $f''(x) = -1/x^2 < 0, x \in \mathbb{R}^+$. 对任意一组分布 $\{Q_i : i = 1, ..., n\}$, (9)给出了 $l(\theta)$ 的一个下界函数。如果当前对 θ 的估计是 $\theta^{(t)}$, 如何选取 Q_i 's 使得 $g(\theta^{(t)})$ 尽量靠近 $l(\theta^{(t)})$, 最好满足 $g(\theta^{(t)}) = l(\theta^{(t)})$?

如果希望(8)中的不等式在 $extbf{ heta}^{(t)}$ 处变为等式,需要满足

$$\frac{p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta}^{(t)})}{Q_i(z_i)} \equiv c \tag{10}$$

其中 c 是不依赖于 z_i 的常数。由条件(10)可得,此时应选取

$$Q_i(z_i) \propto p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta}^{(t)}), i = 1, \dots, n.$$

考虑到 $\sum_{i=1}^{K} Q_i(z_i = j) = 1, \forall i, 则$

$$Q_i(z_i) = \frac{p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta}^{(t)})}{\sum_{j=1}^K p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta}^{(t)})} = \frac{p(\boldsymbol{x}_i, z_i \mid \boldsymbol{\theta}^{(t)})}{p(\boldsymbol{x}_i \mid \boldsymbol{\theta}^{(t)})} = p(z_i \mid \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)})$$
(11)

即 Q_i 应为给定 $x_i, \boldsymbol{\theta}^{(t)}$ 下 z_i 的条件分布。

假设当前对 $\boldsymbol{\theta}$ 的估计值是 $\boldsymbol{\theta}^{(t)}$,在 EM 算法的 E-step 中,按(11)选取 Q_i , $i=1,\ldots,n$,得到 $l(\boldsymbol{\theta})$ 的一个下界函数 $g(\boldsymbol{\theta})$;在 M-step 中,最大化 $g(\boldsymbol{\theta})$,并将 $\boldsymbol{\theta}$ 的估计值更新为最大值点 $\boldsymbol{\theta}^{(t+1)}$.可以证明

$$l(\boldsymbol{\theta}^{(t)}) \le l(\boldsymbol{\theta}^{(t+1)}).$$

Proof. 按(11)选取 Q_i 's 可使(8)中的等号在 $\boldsymbol{\theta}^{(t)}$ 处成立,则有

$$l(\boldsymbol{\theta}^{(t)}) = g(\boldsymbol{\theta}^{(t)}) \le \max_{\boldsymbol{\theta}} g(\boldsymbol{\theta}) = g(\boldsymbol{\theta}^{(t+1)}) \le l(\boldsymbol{\theta}^{(t+1)}).$$

由于似然函数是有界的,因此 EM 算法可以保证 $l(\boldsymbol{\theta}^{(t)})$ 单调递增收敛。EM 算法可总结为 Algorithm 1.

© 王璐 2019 未经作者同意不要传播或发布到网上

Algorithm 1 EM Algorithm.

给定数据 $\{x_1,\ldots,x_n\}$ 及 $\boldsymbol{\theta}$ 的初始值 $\boldsymbol{\theta}^{(0)}$.

repeat t = 0, 1, ...

(E-step) 将分布 Q_i 选为

$$Q_i(z_i) = p(z_i \mid \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)}), \ i = 1, \dots, n$$

令

$$g(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{j=1}^{K} Q_i(z_i = j) \log \left(\frac{p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta})}{Q_i(z_i = j)} \right)$$

(M-step) 计算 $\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} g(\boldsymbol{\theta}).$

until
$$l(\boldsymbol{\theta}^{(t+1)}) - l(\boldsymbol{\theta}^{(t)}) < \epsilon$$

return $\boldsymbol{\theta}^{(t+1)}$

4 使用 EM 算法估计 GMM

下面使用 EM 算法估计 GMM 模型(1)的参数 $\boldsymbol{\theta} = \{(\boldsymbol{\mu}_j, \Sigma_j, \phi_j) : j = 1, \dots, K\}$. 在 E-step 中,需要先计算每个 z_i 的条件分布

$$w_{ij} = Q_i(z_i = j) = P(z_i = j \mid \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)})$$

$$\propto p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta}^{(t)}) = p(\boldsymbol{x}_i \mid z_i = j, \boldsymbol{\theta}^{(t)}) p(z_i = j \mid \boldsymbol{\theta}^{(t)})$$

$$\propto p(\boldsymbol{x}_i \mid \boldsymbol{\mu}_i^{(t)}, \boldsymbol{\Sigma}_i^{(t)}) \phi_i^{(t)}, \qquad j = 1, \dots, K; i = 1, \dots, n.$$

其中 $p(\mathbf{x}_i \mid \boldsymbol{\mu}_j^{(t)}, \boldsymbol{\Sigma}_j^{(t)})$ 是正态分布 $N(\boldsymbol{\mu}_j^{(t)}, \boldsymbol{\Sigma}_j^{(t)})$ 在 \mathbf{x}_i 处的概率密度。由于对每个 i 有 $\sum_{j=1}^K w_{ij} = \sum_{j=1}^K Q_i(z_i = j) = 1$,因此

$$w_{ij} = \frac{p(\mathbf{x}_i \mid \boldsymbol{\mu}_j^{(t)}, \Sigma_j^{(t)})\phi_j^{(t)}}{\sum_{k=1}^K p(\mathbf{x}_i \mid \boldsymbol{\mu}_k^{(t)}, \Sigma_k^{(t)})\phi_k^{(t)}}, \quad j = 1, \dots, K; \ i = 1, \dots, n.$$

由此得到 $l(\theta)$ 的一个下界函数

$$g(\boldsymbol{\theta}) = \sum_{i=1}^{n} \sum_{j=1}^{K} w_{ij} \log \left(\frac{p(\boldsymbol{x}_i, z_i = j \mid \boldsymbol{\theta})}{w_{ij}} \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{K} w_{ij} \log \left(\frac{p(\boldsymbol{x}_i \mid z_i = j, \boldsymbol{\theta}) p(z_i = j \mid \boldsymbol{\theta})}{w_{ij}} \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{K} w_{ij} \left[\log \left(p(\boldsymbol{x}_i \mid \boldsymbol{\mu}_j, \Sigma_j) \right) + \log(\phi_j) - \log(w_{ij}) \right]$$

$$= \sum_{i=1}^n \sum_{j=1}^K w_{ij} \left[-\frac{1}{2} \log(|\Sigma_j|) - \frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_j)^\top \Sigma_j^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_j) + \log(\phi_j) + \cdots \right]$$

此处省略了与 $\{(\boldsymbol{\mu}_{j}, \Sigma_{j}, \phi_{j}) : j = 1, ..., K\}$ 无关的项。

在 M-step 中,我们希望选取 $\boldsymbol{\theta} = \{(\boldsymbol{\mu}_j, \Sigma_j, \phi_j) : j = 1, \dots, K\}$ 使 $g(\boldsymbol{\theta})$ 达到最大。首先对 $g(\boldsymbol{\theta})$ 关于 $\{\phi_j\}_{j=1}^K$ 优化,此时最大化 $g(\boldsymbol{\theta})$ 等价于

$$\max_{\phi_1, \dots, \phi_K} \sum_{i=1}^n \sum_{j=1}^K w_{ij} \log(\phi_j)$$

注意到 $\{\phi_j\}_{j=1}^K$ 还需满足条件 $\sum_{j=1}^K \phi_j = 1$,因此建立如下 Lagrangian:

$$L(\phi_1, \dots, \phi_K) = \sum_{i=1}^n \sum_{j=1}^K w_{ij} \log(\phi_j) + \lambda \left(\sum_{j=1}^K \phi_j - 1 \right)$$
 (12)

Lagrangian (12)关于每个 ϕ_i 的偏导数为

$$\frac{\partial L}{\partial \phi_j} = \sum_{i=1}^n \frac{w_{ij}}{\phi_j} + \lambda, \quad j = 1, \dots, K.$$

令上式等于 0 解得

$$\phi_j = -\frac{\sum_{i=1}^n w_{ij}}{\lambda}, \quad j = 1, \dots, K.$$

利用限制条件 $\sum_{j=1}^K \phi_j = 1$ 解得 $\hat{\lambda} = -\sum_{i=1}^n \sum_{j=1}^K w_{ij} = -n$. 代人上式得到对 ϕ_j 's 的新的估计:

$$\phi_j^{(t+1)} = \frac{1}{n} \sum_{i=1}^n w_{ij}, \quad j = 1, \dots, K.$$

注意此时得到的最优解一定满足 $\phi_j^{(t+1)} \ge 0$, $\forall j$, 因此并不需要在 Lagrangian (12) 中加入限制条件 $\phi_j \ge 0, j=1,\ldots,K$.

接下来对 $g(\theta)$ 关于 μ_i 优化, j = 1, ..., K. $g(\theta)$ 关于 μ_i 的梯度为:

$$\nabla_{\boldsymbol{\mu}_j} g(\boldsymbol{\theta}) = -\sum_{i=1}^n w_{ij} \Sigma_j^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_j) = \Sigma_j^{-1} \left(\boldsymbol{\mu}_j \sum_{i=1}^n w_{ij} - \sum_{i=1}^n w_{ij} \boldsymbol{x}_i \right)$$

令其等于零,解得最优的 μ_i 为

$$\mu_j^{(t+1)} = \frac{\sum_{i=1}^n w_{ij} x_i}{\sum_{i=1}^n w_{ij}}, \quad j = 1, \dots, K.$$

利用矩阵微积分或仿照 Wishart 分布 MLE 的证明可得最优的 Σ_i 为

$$\Sigma_j^{(t+1)} = \frac{\sum_{i=1}^n w_{ij} (\boldsymbol{x}_i - \boldsymbol{\mu}_j^{(t+1)}) (\boldsymbol{x}_i - \boldsymbol{\mu}_j^{(t+1)})^\top}{\sum_{i=1}^n w_{ij}}, \quad j = 1, \dots, K.$$

作业:编程实现 EM 算法,并用如下数据和初始值估计一个 two-component Gaussian mixture model. 使用 contour plot 展示估计的正态分布。

```
# create dataset
library(MASS)
set.seed(123)
n = 1000
mu1 = c(0,4)
mu2 = c(-2,0)
Sigma1 = matrix(c(3,0,0,0.5),nr=2,nc=2)
Sigma2 = matrix(c(1,0,0,2),nr=2,nc=2)
phi = c(0.6, 0.4)
X = matrix(0,nr=2,nc=n)
for (i in 1:n){
  if (runif(1) <= phi[1]) {</pre>
    X[,i] = mvrnorm(1,mu=mu1,Sigma=Sigma1)
  }else{
    X[,i] = mvrnorm(1,mu=mu2,Sigma=Sigma2)
  }
}
# initial guess for parameters
mu10 = runif(2)
mu20 = runif(2)
Sigma10 = diag(2)
Sigma20 = diag(2)
phi0 = runif(2)
phi0 = phi0/sum(phi0)
```