⑩ 日本国特許庁(JP)

⑪特許出願公開

四公開特許公報(A)

昭61-261260

@Int,CI.4

識別記号

庁内整理番号

每公開 昭和61年(1986)11月19日

C 04 B 35/16

7412-4G

審査請求 未請求 発明の数 2 (全16頁)

9発明の名称 低膨脹セラミツクスおよびその製造方法

②特 願 昭60-102386

愛出 願 昭60(1985)5月14日

②発 明 者 渡 辺 敬 一 郎 名古屋市中区栄1丁目22番31号 コーポラテイブ仲ノ町ハ

ウス4E

⑫発 明 者 松 久 忠 彰 春日井市押沢台4丁目3番の4

①出 願 人 日本碍子株式会社 名古屋市瑞穂区須田町2番56号

创代 理 人 弁理士 杉村 暁秀 外1名

明 知 10

1. 発明の名称 低膨脹セラミックスおよびその 製造方法

2. 特許請求の範囲

- 1. PaOsを2%未満含有し、主たる結晶相がコージェライト相からなり、開気孔率が25%以下であり、25~800℃の間の熱膨脹係数が2.0×10-4/℃以下であり、500~1200℃で1000時間保持したときの寸法変化率が±0.05%以下であることを特徴とする低膨脹セラミックス。
- 化学組成で8.0~20.5 重量%のMgOと、24.0 ~45.0 重量%のAlaOa と、40.5~61.0 重量%のSiOaと、2.0 重量%未満のPaOaとを含有する特許財政の範囲第1項記載の低膨脹セラミックス。
- 3. 直径が 5 μm以上の細孔の総細孔容積が0.06 cc/g以下である特許請求の範囲第1項または 第2項記載の低膨脹セラミックス。
- 4. コージェライト相のNgがZn及び/又はFeに

- より10モル%以下置換された特許請求の範囲 第1項、第2項又は第3項記載の低膨脹セラ ミックス。
- 5. 7.5 ~20重量%のMgO と、22.0~44.3重量%のA120。と、37.0~60.0重量%のSiO2と、2.0~10.0重量%のP2O2を含有する化学組成のバッチを調製し、このバッチを成形し、成形体を焼成し、焼成体を酸処理して主としてP2O2を選択的に除去し、酸処理後の焼成体を1150~焼成温度で熱処理することを特徴とする低膨脹セラミックスの製造方法。
- 6. PaOaとして燐酸アルミニウム、燐酸マグネシウム、燐酸亜鉛及び燐酸鉄から成る群から選択したPaOa源を用い、NgO、AlaOa及びSiOaとしてブルーサイト、マグネサイト、タルク:粘土、アルミナ及び水酸化アルミニウムから成る群から選択したNgO源、AlaOa源及びSiOa源の何れか一者以上を用いる特許請求の範囲第5項記載の製造方法。
- 7. NgO 駅が平均粒径 5 μm 以下である特許請

特開昭61-261260 (2)

求の範囲第6項記載の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は低膨脹セラミックスに関するもので、 更にくわしくは、秘密質で耐熱衝撃性、気密性、 さらに耐熱性にも優れたコージェライト系級密質 低膨脹セラミックスに関するものである。

(従来の技術)

近年工業技術の進歩に伴い、耐熱性、耐熱衝撃 性に優れた材料の要求が増加している。セラミッ クスの耐熱衝撃性は、材料の熱膨脹率、熱伝導率、 強度、弾性率、ポアソン比等の特性に影響される と共に、製品の大きさや形状、さらに加熱、冷却 状態即ち熱移動速度にも影響される。

耐熱衝撃性に影響するこれらの諸因子のうち特に熱膨脹係数の寄与率が大であり、とりわけ、熱移動速度が大であるときには熱膨脹係数のみに大きく左右されることが知られており、耐熱衝撃性に優れた低膨脹材料の開発が強く望まれている。 従来比較的低膨脹なセラミック材料として、コ

従ってこのようなコージェライトセラミックスを例えば、ハニカム構造にして回転書熱式熱交換体に応用した場合、その開気孔率が大きいためハニカム構造体質通孔を形成する隔壁表面の気孔、特に連通気孔を通して加熱流体と熱回収側流体との相互間に流体のリークが発生し、熱交換効率及

び熱交換体が使用されるシステム全体の効率が低下する重大な欠点を有している。また、ターポチャージャーローターのハウジングエギゾーストマニホールド等に応用した場合、開気孔率が大きいため、圧力の高い空気が漏れてしまい重大な欠点となる。このようなことから耐熱衝撃性に優れた、低膨脹で緻密質なコージェライトセラミックスが強く望まれていた。

本発明の目的は、無膨脹係数が 2.0×10⁻⁶/セ 以下と低膨脹で開気孔率が 15%以下の報密なコー ジェライト系セラミックスおよびその製造法を提 供しようとするものである。

使来級密なコージェライトセラミックスを得る方法としては、コージェライト組成のバッチ調合物を溶散して成形後、結晶化処理を行い、ガラスセラミックス化する方法が知られている。例えば、1977年発行の「ジャーナル・オブ・ザ・カナディアン・セラミック・ソサエティ」第46巻に掲載されたトッピングとマースィの論文は、コージェライトのSiO₂の20重量が以内をA1PO。で置換したも

のを提案している。同論文によれば、A1PO。を添加した原料主成分を1600℃で融解後冷却したコージェライトガラスを生成し、再加熱後冷却してコージェライトの結晶を生成させている。得られるコージェライトは緻密であるが、折出するコージェライト結晶相の配向を制御できないため熱膨脹係数が小さいものでも2.15×10-*/でと未だ大きい欠点がある。

特開昭59-13741号公報と特開昭59-92943号公報の発明は、 Y_*0_* 又は Z_{n0} を添加した主原料成分に B_*0_* 及び/又は P_*0_* を添加し、焼成して得た結晶化ガラス成分を2-7 μ に微粉砕してガラスフリットとし、所要形状に成形後、再度焼成結晶化させてなる結晶化ガラス体を提案している。このものは熱膨脹係数が $2.4-2.6 \times 10^{-4}$ / でと大きい欠点がある。

コージェライトセラミックスが低膨脹性を示す 理由は、例えば昭和50年(1975 年) 5 月27日にア ーウイン・エム・ラッチマン他に与えられた「ア ニソトロピック・コージェライトモノリス」とい

特開昭61-261260 (3)

う名称の米国特許第3.885.977 号明細書(対応日本出額:特開昭50-175612 号公報)に開示されているように、板状粘土、模層粘土に起因する平面的配向により、焼成後のコージェライトセラミックスが、配向して形成されるためであり、このためガラスセラミックス化による独密質コージェライトでは 2.0×10-5/七以上の高い熱膨脹係数となる。

(問題点を解決するための手段)

本発明の低膨脹セラミックスは、P₂O₃を 2 %未 適合有し、主たる結晶相がコージェライト相から なり、開気孔率が25 %以下であり、25~800 での 間の熱膨脹係数が2.0 ×10⁻¹/ で以下であり、500 ~1200 でで1000時間保持したときの寸法変化率が ±0.05 %以下である。

好適な化学組成は、8.0 ~20.5重量%のNgO と、24.0~45.0重量%のAl₂O₂ と、40.5~61.0重量%のSiO₂と、2.0 重量%未満のP₂O₃とを含有するものである。

直径が5μα 以上の細孔の総細孔容積は、通常

約0.06cc/g以下である。

コージェライト相のWgはZn及びFeの何れか一方 又は双方により10モル%以下置換された鉄コージェライト、亜鉛コージェライト又は鉄亜鉛コージェライトであっても良い。

P₂O₅として揜酸アルミニウム、燐酸マグネシウム、燐酸亜鉛及び燐酸鉄から成る群から選択した P₂O₅源を用いると好適である。

NgO、AlaO。及びSiOaとして、ブルーサイト、マグネサイト、タルク、粘土、アルミナ及び水酸化アルミニウムから成る群から選択したNgO源、AlaOa源及びSiOa源の何れか一者以上を用いると

纤適である。

MgO 源の平均粒径は 5 μm 以下であることが好ましい。

(作用)

本発明はコージェライトの低膨脹性を維持しつつ、級密化し、500~1200℃で長時間保持時の寸法変化率を小とする。

(実施例)

以下、本発明を例につきさらに詳細に説明する。 実施例1~13と参考例14~30

後掲の第1表に記載する調合割合に従って予め 粒度調製したブルーサイト、マグネサイト、タル ク、アルミナ、水酸化アルミニウム、粘土、燐酸 アルミニウム、燐酸マグネシウム、燐酸鉄を混合 した。第1表に用いた原料の化学分析値を示す。 この混合物100 重量部に水5~10重量部、設粉糊 (水分80%)20重量部を加え、ニーダーで十分に 混練し、真空押出成形機にてピッチ1.0 m、薄壁 の厚さ0.10mmの三角セル形状を有し、65mm四方長 さが120mm のハニカム柱状成形体に押出した。こ のハニカム成形体を乾燥後、第1 表に記載した態成条件で焼成し、次いで硫酸、硝酸、塩酸などにて酸処理してP₂O₂を選択的に除去し、さらに1150 で~焼成温度で無処理し、本発明の実施例1~13 と参考例14~30のコージェライト系セラミックハニカムを得た。

特開昭61-261260(4)

/m²秒)とした。さらに5 m×5 m×50l のセラミックハニカム試料を1200 でにて1000 時間時間保持した後の寸法変化率をマイクロメーターにて測定した。結果は第1 表に示す通りであった。結果の若干を第1~6 図にも示す。

第1表の実施例1~13と参考例14~30の結果及び第1図から明らかなように、化学組成がMg07.5~20.0重量%、A12022.0~44.3重量%、S10237.0~60.0重量%、P202.0~10.0重量%である焼結体を酸処理することにより、化学組成がMg08.0~20.5重量%、A12024.0~45.0重量%、Si0240.5~61.0重量%、P202.0 重量%未満であり、主たる結晶相がコーシェライト相からなり、開気孔率が25%以下で、25~800 での間の熱膨脹係数が2.0×10-0/2 である低膨脹セラミックスが得られた。第2図は95での1.5Nの硫酸にて酸処理したときの酸処理時間と各化学成分の減少率の関係を示す。第2図は95での1.5N硫酸で酸処理したときの酸処理

時間と熱膨脹係数との関係を示す。同図から明ら かなようにPュ0sを含む本発明の方が酸処理による **鳥膨脹係数の減少効果が著しいことが判る。また、** 第4図より明らかなようにリーク量と孔径が5μm 以上の細孔容積との間には高い相関が認められ、 細孔容積を0.06cc/g以下にすることによりリーク 量を通常のコージェライトの半分以下に低減する ことができた。さらに第5図より明らかなように: 1150℃~焼成温度にて熱処理することにより、12 00 ℃にて1000時間保持した後の寸法変化率が±0.05 %以下に抑制され、気密性、耐熱衝撃性を要求さ れる高温構造材料として極めて優れた特性を有し ていた。第6図には実施例6、参考例14及び16の 細孔径分布曲線を示す。 直径 5 μ m 以上の総細孔 - 容積の小さい実施例にあっては、参考例14及び16 に比して第5図から明らかなようにリーク量が著 しく低くなる。さらにリーク量を通常のコージェ ライト以下に低速することができる。

第7回及び第8回は参考例14及び参考例23の微 構造組織をそれぞれ示していて、多孔質であり大

きな気孔が存在していることがわかる。また第9 図は実施例4の微構造組織を示し、上述した参考 例に比べて大きな気孔が少なく緻密質であること がわかる。また第10図は実施例4に対するCuのK 線によるX線回折チャートを示し、このチャート から主たる結晶相がコージェライト相であること がわかる。

特開昭61-261260 (5)

						3 1	<u>. #</u>						
					東		28	(7)					
	!1	2	3	1	5_	6	7	1	3	10	11	12	13
(2 学 観 成 Ng 0 (vt %) Al , Da SiO, P, Da In B Pc, O.	#3. 4 27. 5 58. 7 :0. 4	16. 3 27. 8 55. 7 0. 2	11.9 40.2 47.8 0.1	12. 6 35. 6 51. 2 0. 6	11. 9 36. 7 51. 0 0. 4	12. 4 27. 3 58. 2 1. 1	11.9 40.1 47.7 8.3	21.3 53.1 0.1	11.5 34.4 49.2 0.9	12. 4 44. 8 42. 3 0. 2	12. 3 43. 1 42. 3 1. 0 1. 3	11. 4 39. 4 47. 4 1. 8	12. 4 36. 2 58. 8 0. 6
混合割合 ブルーサイト マデュサイト タルタ(5 m) アルミナウム 放 配 で エンウム 議 設 マデキ	37. 2 .9. 2 50. 1 2. 9	£. 5 33. 0 10. 4 45. 2 2. 8	8.7 19.2 19.8 48.9 3.4	37. 1 9. 7 48. 3 5. 0	25.9 9.4 46.7 8.0	33. 1 8. 1 52. 2 6. 6	38.0 21.9 28.8 8.3	28. 9 18.4 44.6 8. 1	33. 2 8. 7 43. 2 15. 0	37. 5 26. 7 9. 4 22. 1	36. 0 26. 6 24. 5 8. 1	31. 2 8. 2 40. 5 20. 8	27. 1° 9. 7 48. 3 5. 6
性成条件 性成据度 保持時間(h) 火 度(st)	3410 :10 :17	1410 10 17'	1410 10 17*	1410 5 16*	1410 16*	1400 5 16*	1400 5 16*	1408 5 16*	1370 5 14°	1400 5 18*	1316 3 12*	1310 12*	1410 \$ 16*
酸処理条件 数度(T) 数定度(T) 数処理時間(分) 支量棒少率(%)	2.0 80 120 -5.3	1.0 95 180 7.8	1.0 95 180 10.3	1. 5 25 50 6. 3	1. 5 95 120 3. 1	1.5 1.5 56 7.6	1.5 95 120 12.9	1.5 95 180 15.9	UR R. 1.5 95 90 12.8	1.5 95 120 10.7	0.5 95 120 12.6	1. \$ 95 60 11. \$	2. 0 95 30 6. 0
島処理条件 重度(で) 時間(b)	1250	1200	1410 1	1200	1200 10	1150 20	1350	1230	1190 15	1250 5	1150 30	1150 20	1208
佐 結 体 特 性 (×10-*/ セ 25~800 セ) 糸 原 英 孫 敦	1.05	0.74	0.76	0.60	0. 65	0.81	0. 82	0. 80	0.73	1. 55	1. 52	1. 65	0. 59
間気孔平 5 pm 以上の孔の 細孔野鉄 (cc/g)	23. 3 0. 060	24.7	25. 0	21. 5 0. 044	19.0 0.035	17. 8 0. 810	20.5 -	20.7	17.5 0.028	20.0	17.0	15.0 0.024	16.9
コージェライト権(X) リータ量(kg/e*砂、圧力 1.4kg/ ca*)	95 0. 110	95	95	91 0. 057	97 0.024	< 0.01	91	92	95 <0.01	85	- 15	90 < 0. 01	98 <0.01
寸住版化平(%) 1200 ℃×1000k	-0.02	-0.02	-0.02	-0.01	-0.03	- 0. 03	-0.05	-0.02	-0.03	-0.03	-0.04	- 0. 05	- 0. 02

	-5-								1	B 1 4	我(权)							
		- -								*	Ħ	·						
		14	15	16	17	11	19	20	21	22	23	24	25	25	27	22	29	30
比学组成 (vt\$)	MgB A1,C. SiO, P,D. ZaO Fe,D.	12. 8 : 34. 8 : 51. 4 :	12. 8 34. 8 51. 4	12. 6 25. 6 51. 2 0. 6	13. 3 25. 9 49. 6 1. 2	10.3 37.5 38.5 13.7	21.0 15.0 61.1 2.9	6, 0 45, 1 46, 6 2, 9	11. 0 49. 1 35. 0 2. 9	14. 1 27. 7 56. 2 2. 0	13. 4 27. 5 54. 7 0. 4	12.6 25.6 51.2 0.6	11. 9 36. 7 51. 0 0. 4	13. 4 27. 3 58. 2 1. 1	11. 5 31. 4 49. 2 0. 9	11. 4 39. 4 47. 4 1. 8	12. 4 36. 2 50. 1 0. 6	12.9 36.1 48.1 2.9
水散化	アルミナ アルミニ ウム 比土 アルミニ ウム マダネシウム 亜鉛	39. 0**: 10. 2 50. 8	39. 0 10. 2 50. 8	37. 1** \$. 7 48. 3 5. 0	31. 2 10. 0 49. 8 2. 0	27. 3 7. 1 25. 6 30. 9	60. \$ 9. 0 32. 4 4. 7	17. 3 21. 5 56. 5 4. 7	39. 4 38. 8 15. 9 4. 9	37. 2 9. 2 50. 7 2. 9	27. 2 9. 2 50. 7 2. 8	37. 1 9. 7 48. 3 5. 0	15. 9 9. 4 46. 7 8. 0	33. 1 8. 1 52. 2 6. 5	33. 2 8. 7 43. 2 15. 0	1. 2 40. 6 20. 0	9. 7 48. 3 5. 0	37. 1** 9. 7 48. 3 5. 0
	造成集度 保持時間(b) 火 食(sk)	1410 5 16° !	1410 5 16*	1410 5 16°	1410 5 36*	1250 3 16°	1410 5 10*	1410 5 16°	1410 \$ 16*	1410 10 17	1410 10 17'	1410 5 15*	1410 5 16*	1400 - 5 16*	1378 5 14*	1310	1430 5 16*	1410
	版 養皮(ド) 養皮(七) 短時間(分) 減少率(省)	未出理 - -	米処理 - -	1.5 95 60 6.3	未払罪 - - -	未 以 理 - - -	未起理 - - -	朱純章	未起程 二	未起程 - -	2.0 80 120 5.3	1.5 95 60 6.3	1.5 95 120 9.9	1.5 95 60 7.6	1. 5 95 90 12. 8	1.5 95 60 11.8	2, 0 25 30 6, 0	朱虹理
热起现条件	・ 単版(を) 時間(b)	未必理	未設理 一	未配理	未能理	朱贴理	未起理	未起世	未起理	朱旭理	1000	109 10	未配理	朱起双	400 100	未起现	朱色是	未起耳
	選集版数 (×10°°/で 25〜800で) 競気孔率	0, 62		0. 10 21. \$	0, 65	5, 64 1, 5	2. 15 2. 7	2.50	2.32	1. 10	0, 55 23, 3	0. 10 21. 5	-0. 85 19. 0	0.11	0, 04 17. \$	0, 95 15, 0	-0. 11 16. 9	0.68
**	ps 以上の孔の 凡容数 (年/5)	0.073	0.050	0. 07	11	- 10	10.	72	0.02	95	0.050	0. 044	0. 035 97	0. 029 94	0. 028 95	90	0. 027	98
1	a 9 4 ト (9 (3) (kg/e*粉 , 圧力), (kg/ca*)	98 0, 23!	:	1	-	-	-	-	<0.01			0. 057	0. 024	<0.01	<0.01	<0. 01	< 0. 01	0. 17
寸性灰化	字(K) 1200 モ×10004	-0.0	2 - 0. 03	- 0. 0	<u> - </u>			<u> </u>	<u> </u>	<u> </u>	- 0. 07	-0.00	- 0. 09	-0.08	-0.11	-0.10	- 0. 00	+0.1

			原原	料の1	比 学 分	析值(rt %)				
	MgO	A1.0.	SiO ₂	Fe,0,	P:0:	. ZrO,	Ig. loss	. Na 2 O	K.0	CaO	TiO,
(ルーライト	62.04	0.16	0.90	0.08	. –	_	34. 2	1. 41	0.07	1. 14	1. 1
グネサイト	47. 11	<0.01	1. 13	0.17	_	-	51. 37	0.01	0.02	0. 18	0. 1
ルク	30.90	1. 44	59.95	1.10	_	-	5. 7	0.034	0.009	0, 14	0. 1
ルミナ	0.002	99. 17	0.013	0.015	_	_	0.08	0.34	0.002	0. 022	0.0
酸化アルミニウム	<0.01	65. 41	0.02.	0.01	–	– .	34. 33	0.20	0.01	0. 01	0. 0
土	0.56	29.37	54.36	1. 57	-		11. 42	0.081	1. 12	0.30	0. 31
ン酸アルミニウム	0.01	41.86	<0.01	<0.01	55. 60	-	2. 60	0.03	<0.01	0. 01	0.01
ン酸マグネシウム	28.86	<0.06	0.16	0.02	66. 53	-	- 3. 69	0.05	<0.01	0.15	0. 15
ン酸亜鉛	<0.01	0.21	0.07	<0.01	60.87	38. 55	0. 83	0.01	<0.01	<0.04	<0.04
ン酸鉄	_	_	-	43.02	53. 01	-	3. 70	0.30	_	_	_

(発明の効果)

4. 図面の簡単な説明

第1図はコージェライト系セラミックハニカムのPaOs含有量と開気孔率および熱膨脹係数の関係を示す特性線図、

第2図は95℃、1.5N硫酸にて酸処理したときのセラミックハニカムの重量減少率の時間依存性を示す特性線図、

第3図は95℃で1.5N硫酸にて酸処理したときの

各成分の減少率の時間依存性を示す特性線図、

第4図は1.4 ㎏/cd加圧空気のセラミックハニカム薄壁からのリーク量と孔径が 5 μ以上の細孔容積との相関を表わす特性線図、

第5図は1200でにて保持した時の寸法変化率の 時間依存性を示す特性線図、

第6図は細孔径分布曲線図、

第7~8図は従来の低膨脹セラミックスの微構造を示す拡大写真図。

第9図は本発明の低膨脹セラミックスの微構造 を示す拡大写真図、

第10図はX線回折チャートである。

第 2 図

第 5 図

005 004 0.03 寸法变化率份 0.02 001 -001 实施例4 -002 -003 -004 -0.05 参考例29 -006 100 200 300 400 500 600 700 800 900 1000 1200°C 保持時間(h)

第6図

-368-

第 9 図

100 Am

第10図

-369-

特開昭61-261260 (10)

昭和61年 8月13日

特許庁長官

1. 事件の表示

昭和60年 特 許 顋 第 102386 号 2. 発明の名称

低膨脹セラミックスおよびその製造方法

3. 随正をする者

事件との関係 特許出關人

ナゴキシミ体 タス f fmo 愛知県名古屋市瑞穂区須田町 2 番 5 6 号

(406)日本学 **姓 式 会 社** 名称

代表者

4.代 理 人

』が阿三丁目2 番4号 電話 (581)2241番 (代表)

氏 名 (5925) 弁理士 杉

住 所 歽

氏 名 (7205) 弁理士 杉

5. 補正の対象

明 細 舎 全 文

6. 補正の内容(別紙の通り)

より10モル%以下置換された特許請求の範囲 第1項、第2項又は第3項記載の低膨脹セラ ミックス。

- 5. 7.5 ~20重量%のMgO と、22.0~44.3重量 %のAl₂O。と、37.0~60.0重量%のSiO₂と、 2.0~10.0重量%のP₂O₅を含有する化学組成 のパッチを顕製し、このパッチを成形し、成 形体を焼成し、焼成体を酸処理して主として P₂0sを選択的に除去し、酸処理後の焼成体を 1150<u>℃</u>~焼成温度で熱処理すること<u>によりP_{*}O_{*}</u> を2重量%未満含有し、結晶相の主成分がコ ージェライト相からなり、開気孔率が25%以 <u>下であり、25~800 七の間の熱膨脹係数が2.</u> 0 ×10-1/セ以下であり、500 ~1200 Cで10 00時間保持したときの寸法変化率が±0,05% <u>以下である</u>低膨脹セラミックスの製造方法。
- 6. PaOaとして燐酸アルミニウム、燐酸マグネ シワム、燐酸亜鉛及び燐酸鉄から成る群から 選択したP.O. 顔を用い、MgO、Al.D. 及びSiO. 状態即ち熱移動速度にも影響される。 としてブルーサイト、マグネサイト、タルク:

(訂正)明 細

1. 発明の名称 低膨脹セラミックスおよびその . 製造方法

- 2. 特許請求の範囲
 - 1. P₂O₂を 2<u>重量</u> %未満含有し、<u>結晶相の主成</u> _分がコージェライト相からなり、開気孔率が 25%以下であり、25~800℃の間の熱膨脹係 数が2.0 ×10-4/℃以下であり、500~1200 でで1000時間保持したときの寸法変化率が土 0.05%以下であることを特徴とする低膨脹セ ラミックス。
 - 2. 化学組成で8.0~20.5重量%のMgOと、24.0 ~45.0重量%のA1.0。と、40.5~61.0重量% のSiO,と、2.0 重量%未満のP₂O,とを含有す る特許請求の範囲第1項記載の低膨脹セラミ ックス。
 - 3. 直径が5μm以上の細孔の総細孔容積が0.06 cc/g以下である特許請求の範囲第1項または 第2項記載の低膨脹セラミックス。
 - コージェライト相のNgがZn及び/又はFeに

粘土、アルミナ及び水酸化アルミニウムから 成る群から選択したMgD 源、Al,D。源及びSiO, **顔の何れか一者以上を用いる特許請求の範囲** 第5項記載の製造方法。

- 7. MgD 顔が平均粒径 5 μm 以下である特許請 求の範囲第6項記載の製造方法。
- 3. 発明の詳細な説明

・(産業上の利用分野)

本発明は低膨脹セラミックスに関するもので、 更にくわしくは、緻密質で耐熱衝撃性、気密性、 さらに耐熱性にも優れたコージェライト系扱密質 低膨脹セラミックスに関するものである。

(従来の技術)

近年工業技術の進歩に伴い、耐熱性、耐熱衝撃 性に優れた材料の要求が増加している。セラミッ グスの耐熱衝撃性は、材料の熱膨脹率、熱伝導率、 強度、弾性率、ポアソン比等の特性に影響される と共に、製品の大きさや形状、さらに加熱、冷却

耐熱衝撃性に影響するこれらの諸因子のうち特

特開昭61-261260 (11)

に熱膨脹係数の寄与率が大であり、とりわけ、熱 移動速度が大であるときには熱膨脹係数のみに大 きく左右されることが知られており、耐熱衝撃性 に優れた低膨脹材料の開発が強く望まれている。

従ってこのようなコージェライトセラミックス

を例えば、ハニカム構造にして回転蓄熱式熱交換 体に応用した場合、その開気孔率が大きいためへ ニカム構造体貫通孔を形成する隔壁表面の気孔、 特に連通気孔を通して加熱流体と熱回収倒流体と の相互間に流体のリークが発生し、熱交換効率及 び熱交換体が使用されるシステム全体の効率が低 下する重大な欠点を有している。また、ターポチ ャージャーローターのハウ ジングエギゾーストマ ニホールド等に応用した場合、開気孔率が大きい ため、圧力の高い空気が弱れてしまい重大な欠点 となる。このようなことから耐熱衝撃性に優れた、 低膨脹で緻密質なコージェライトセラミックスが 強く望まれていた。更にこのような高温にさらさ れる高温構造材料では、寸法安定性が要求され、 実使用時の寸法変化率は±0.05% 以下であること が望まれている。

本発明の目的は、熱膨脹係数が 2.0×10-*/で 以下と低膨脹で開気孔率が 25%以下500 ~1200 で で1000時間保持した後の寸法変化率は±0.05% 以 下の級密なコージェライト系セラミックスおよび

その製造方法を提供しようとするものである。

従来級密なコージェライトセラミックスを得る 方法としては、コージェライト組成のパッチ調合 物を溶融して成形後、結晶化処理を行い、ガラス セラミックス化する方法が知られている。例えば、 1977年発行の「ジャーナル・オブ・ザ・カナディ アン・セラミック・ソサエティ」第46巻に掲載さ れたトッピングとマースィの論文は、コージェラ イトのSiO:の20重量%以内をAlPO。で置換したも のを提案している。同論文によれば、AIPO。を添 加した原料主成分を1600℃で融解後冷却したコー ジェライトガラスを生成し、再加熱後冷却してコ ージェライトの結晶を生成させている。得られる コージェライトは私密であるが、析出するコージ ェライト結晶相の配向を制御できないため熱膨脹 係数が小さいものでも2.15×10-*/℃と未だ大き い欠点がある。

特開昭59-13741号公報と特開昭59-92943号公報の発明は、Y₂0₃又はZnO を添加した主原料成分にB₂O₃及び/又はP₂O₅を添加し、烧成して得た結晶

化ガラス成分を $2\sim7$ μ に微粉砕してガラスフリットとし、所要形状に成形後、再度焼成結晶化させてなる結晶化ガラス体を提案している。 このものは熱膨脹係数が $2.4\sim2.6$ $\times10^{-6}$ / Γ と大きい欠点がある。

コージェライトセラミックスが低膨脹性を示す 理由は、例えば昭和50年(1975年) 5月27日にアーウイン・エム・ラッチマン他に与えられた「アニットロピック・コージェライトモノリス」という名称の米国特許3.885.977号明細書(対応日本出願:特開昭50-75611号公報)に開示されているように、板状粘土、積層粘土に起因する平面的配向により、焼成後のコージェライトセラミックスが、配向して形成されるためであり、このたが、配向して形成されるためであり、このたが、配向して形成されるためであり、このたり、がラスセラミックス化による積密質コージェライトでは2.0×10-1/1と以上の高い熱膨脹係数となる。更にこれらの従来例では寸法安定性に関する記載はなんら認められない。

(問題点を解決するための手段)

本発明の低膨脹セラミックスは、P2Osを2%未

特開昭61-261260 (12)

満含有し、結晶相の主成分がコージェライト相からなり、開気孔率が25%以下であり、25~800 での間の熱膨脹係数が2.0 ×10-4/で以下であり、500~1200でで1000時間保持したときの寸法変化率が±0.05%以下である。

好適な化学組成は、8.0~20.5 重量%のNgD と、24.0~45.0 重量%のAl₂D。と、40.5~61.0 重量%のSiO₂と、2.0 重量%未満のP₂O₃とを含有するものである。

直径が 5 μm 以上の細孔の縦細孔容積は、通常 約0.06cc/g以下である。

コージェライト相のMgはZn及びFeの何れか一方 又は双方により10モル%以下置換された鉄コージェライト、亜鉛コージェライト又は鉄亜鉛コージェライトであっても良い。

本発明の低膨脹セラミックスは、7.5 ~20重量 %のMgD と、22.0~44.3重量%のAl₂D₂ と、37.0 ~60.0重量%のSiO₂と、2.0 ~10.0重量%のP₂O₂ を含有する化学組成のパッチを翻製し、翻製した パッチをスリップキャスト等の鋳込み成形、押出

ト系セラミックスを元にして、更に酸処理するこ とによりP₂O₅を選択的に除去して2重量%未満と し25~800 ℃の熱膨脹係数が2.0 ×10⁻ / ℃以下、 開気孔率25% 以下の緻密質低膨脹セラミックスが 得られることを新規に見出したことによる。更に **熱処理することにより、500~1200℃で1000時間** 保持した時の寸法変化率が±0.05% 以下になるこ とを新規に見出したことによる。パッチ中のPaOs を2重量%以上と限定した理由は、それ以下では、 緻密化に充分な液相が生じないため緻密化しない ためであり、P₂O₈ 10 重量%以下に限定した理由 は、それ以上では、P₂O₅がAlPO。としての固容限 を超えてしまい高膨脹化するためである。酸処理 後のPaDaを2%未満としたのは、それ以上では酸 処理による低膨脹化の効果が充分に得られないた めである。500 ~1200 ℃で1000時間保持した後の 寸法変化率を±0.05以下としたのは、機械的部品 として用いられた場合これ以上の寸法変化をした のでは、実使用上問題となるためである。

パッチの化学組成をMgO 7.5 ~20 重量% 、Al₂O₈

成形等の可塑成形、プレス成形等の加圧成形により任意の形状の成形体とし、成形体を乾燥後、1250~1450でにて2~2h 焼成し、この焼成体を酸処理して主としてP₂O₈を選択的に除去し、酸処理後の 焼成体を1150で~焼成温度で熱処理することによって製造される。

P₂O₅ として燐酸アルミニウム、燐酸マグネシウム、燐酸亜鉛及び燐酸鉄から成る群から選択した P₂O₅ 源を用いると好適である。

NgO、Al₂O₃及びSiO₂として、ブルーサイト、マグネサイト、タルク、粘土、アルミナ及び水酸化アルミニウムから成る群から選択したNgO 源、Al₂O₃源及びSiO₂源の何れか一者以上を用いると好適である。

MgD 源の平均粒径は $5~\mu m$ 以下であることが好ましい。

(作用)

本発明はコージェライト相中にP₂O₅を2~10重量%、AIPO₆ として固溶させることにより、開気孔率が15%以下の緻密質で低膨脹なコージェライ

22.0~44.3 重量%、SiO2 37.0~60 重量%、P2Os 2.0~10.0 重量%と限定した理由は、この範囲を超えては、コージェライト相が充分に生成しないため、高膨脹化してしまうためであり、酸処理後接結体の化学組成をNgO 8.0~20.5 重量%、Al2O2 24.0~45.0 重量%、SiO2 40.5~61.0 重量%、P2Os 2 重量%未満としたのは開気孔率25%以下25~800 での熱膨脹係数が2.0×10-6/で以下の紙密化低膨脹セラミックスとならないためである。

焼成温度が1250 で以下ではコージェライト相が充分に生成せず、また1450 でより大では飲化変形してしまう。同様に焼成時間が2hより短くてはコージェライト相が充分に生成せず20h 以上では温度にもよるが、軟化による変形が起こる。

また残存している開気孔の直径が5 μm 以上の 総細孔容積を0.06cc/g以下に限定した理由は、加 圧したガスのリーク量が開気孔率5 μm 以上の総 細孔容積に依存し、0.06cc/g以下にすることによ り、従来のコージェライトの半分以下のリーク量 に抑制することができるためである。

特開昭61-261260 (13)

またコージェライト相2MgO・2A12D3・5SiD2の Mgは、10モルXまで、Znおよび/またはFeで置換 されていても本発明に規定するコージェライト系 セラミックスと同等の特性のコージェライト系セ ラミックスを得ることができる。

熱処理時間を1150 C ~ 焼成温度に限定した理由は1150 C 未満の温度では、酸処理によって生じた焼結体中の欠陥が消滅しないためであり、焼成温度より高温では、再結晶が起こって微構造が大幅に変化し所期特性が得られないからである。

P₂O₃ 源を、リン酸アルミニウム、リン酸マグネシウム、リン酸亜鉛、リン酸鉄から選ばれるリン酸塩化合物一種または二種以上の組合せとした理由は、リン酸は液体であるため混合が難しく、不均一になってしまうためである。またリン酸で局所的に溶り、シェライトの生成温度以下の低温で局所的に溶めして巨大なポアを生成してしまうためこれらの融点の比較的高く水等に不溶性のリン酸塩化合物の形態で添加することが望ましい。

NgO 、AlaO。、SiOa顔をブルーサイト、マグネ

サイト、タルク、粘土、アルミナ、水酸化アルミニウムから選んだ理由は、これらの原料から作られた、コージェライト系セラミックスが特に低膨脹化するためであるが、さらにHgO 悪が酸化マグネシウム、SiOz 源がシリカ等から選定されても良い。

II gO 源原料の平均粒径を 5 μm 以下としたのは、コージェライトセラミックスでは、焼結後 NgO 源原料粒子の形骸ポアが残存して、開気孔の原因となるため NgO 源原料の平均粒径を 5 μm 以下に限定することにより、 5 μm より大きい開気孔を抑制することができ、本発明の目的である、気密性の高いコージェライトセラミックスが得られるためである。

(実施例).

以下、本発明を例につきさらに詳細に説明する。 実施例 1 ~13 と参考例14~30

後掲の第1表に記載する調合割合に従って予め 粒度調製したブルーサイト、マグネサイト、タル ク、アルミナ、水酸化アルミニウム、粘土、燐酸

アルミニウム、燐酸マグネシウム、燐酸鉄を混合した。第1表に用いた原料の化学分析値を示す。この混合物100 重量部に水 5~10重量部、澱粉糊(水分80%)20重量部を加え、ニーダーで十分に混練し、真空押出成形機にてピッチ1.0 ㎜、海壁の厚さ0.10㎜の三角セル形状を有し、65㎜四方をが120㎜のハニカム柱状成形体に押出した。このハニカム成形体を乾燥後、第1表に記載した焼成外件で焼成し、次いで硫酸、硝酸、塩酸などにて酸処理してP20.を選択的に除去し、さらに1150 で~焼成温度で熱処理し、本発明の実施例1~13と参考例14~30のコージェライト系セラミックハニカムを得た。

第1表に示した各種コージェライト系セラミックハニカムについて粉末 X 線回折によりコージェライト結晶を定量し、25 でから800 での温度範囲における熱膨脹係数、開気孔率、水銀圧入ポロジメーターによりセラミックハニカム薄壁部の直径 5 μα 以上の細孔の総細孔容積と、加圧空気の薄壁からのリーク量を測定比較した。加圧空気の薄

壁からのリーク量はコージェライト系セラミックハニカムの一方の端面に中央に20mm×20mmの正方形の穴を有する65×65mmのゴム製パッキンを装着し、もう一方の端面に穴の無い65×65mmのゴム製パッキンを装着で、前記ゴム製パッキ気の無ゴム製パッキスのの流に1.4 kg/cdの加圧空気を導入し、加圧空気の単位を関当りの単位を関当りの単位を関当りの単位にで1000時にあり、2000でにで1000時間保持した後の寸法変化率をマイクロメーターにで制定した。結果は第1表に示す通りであった。結果の若干を第1~6 図にも示す。

第1 表の実施例1~13と参考例14~30の結果及び第1 図から明らかなように、化学組成がMg07.5~20.0重量%、A1,0,22.0~44.3重量%、Si0,37.0~60.0重量%、P20,2.0~10.0重量%である焼結体を酸処理することにより、化学組成がMg08.0~20.5重量%、A1,20,24.0~45.0重量%、Si0,40.5~61.0重量%、P20,2.0 重量%未満であり、結晶相の主成分がコージェライト相からなり、開気孔

特開昭61-261260 (14)

卑が25%以下で、25~800 ℃の間の熱膨脹係数が 2.0 ×10-6/セ以下である低膨脹セラミックスが 得られた。第2図は実施例4と参考例14の調合物 を第1妻に示した条件にて焼成した焼結体を95℃ の1.5Nの硫酸にて酸処理したときの酸処理時間と 重量減少率との関係を示す。第3図は実施例4の 翻合物を第1表に示した条件にて焼成した焼結体 を95 ℃の1.5 M 硫酸にて酸処理したときの酸処理時 間と各化学成分の減少率の関係を示す。第4図は 実施例4と参考例14の調合物を第1表に示した条 件にて焼成した焼結体を95℃の1.5N硫酸で酸処理 したときの酸処理時間と熱膨脹係数との関係を示 す。同図から明らかなようにPaOsを含む本発明の 方が酸処理による熱膨脹係数の減少効果が著しい ことが判る。また、第4図より明らかなようにり ーク量と孔の直径が 5 μm 以上の細孔の級細孔容 積との間には高い相関が認められ、直径が 5 μm 以上の細孔の総細孔容積を0.06cc/g以下にするこ とによりリーク量を通常のコージェライトの半分 以下に低減することができた。さらに第5図より

明らかなように:1150 で~焼成温度にて無処理することにより、1200 でにて1000 時間保持した後の寸法変化率が±0.05 %以下に抑制され、気密性、耐熱衝撃性を要求される高温構造材料として極めて優れた特性を有していた。第6 図には実施例6、参考例14及び16の細孔径分布曲線を示す。直径5 μm以上の細孔の総細孔容積の小さい実施例6 にあっては、参考例14に比して第5 図から明らかなようにリーク量が著しく低くなる。さらにリーク量を通常のコージェライト以下に低減することができる。

第7図及び第8図は参考例14及び参考例23の微構造組織をそれぞれ示していて、多孔質であり大きな気孔が存在していることがわかる。また第9図は実施例4の微構造組織を示し、上述した参考例に比べて大きな気孔が少なく緻密質であることがわかる。また第10図は実施例4に対するCuのK α 線による X 線回析チャートを示し、このチャートから主たる結晶相がコージェライト相であることがわかる。

·						# 1	*	_					
					英		Ж	9	•				
	1	2	3	1	5	6	7		. 9	10	11	12	13
化学組成 NgO (wt%) Al,O。 SiO。 P,O。 ZnO Pe,O。	13. 4 27. 5 58. 7 0. 4	16.3 27.8 55.7 0.2	11. 9 40. 2 47. 8 0. 1	12. 6 35. 6 51. 2 0. 6	11.9 36.7 51.0 0.4	13. 4 27. 3 58. 2 1. 1	11.9 40.1 47.7 0.3	8, 5 38, 3 53, 1 0, 1	.11.5 38.4 48.2 0.9	12. 4 44. 8 42. 3 0. 2 0. 3	12. 3 43. 1 42. 3 1. 0 1. 3	11. 4 39. 4 47. 4 1. 8	12. 4 36. 2 50. 8 8. 6
調合割合 ブルーナット マルネナー アグタ (5) アルーナ・アクション 水像 化 松土 ミュー 議僚 モデジ 議僚 医療 議務 数	37. 2 9. 2 9. 2 50. 7	8.5 33.0 10.4 45.2 2.9	8. 7 19. 2 19. 8 48. 9 3. 4	37. 0 9. 7 48. 2 5. 0	35. 9 9. 4 45. 7 8. 0	33. 1 8. 1 52. 2 6. 6	38. 0 23. 9 29. 8 8. 3	28. 9 18. 4 44. 6 8. 1	33. 2 8. 7 43. 2 15. 0	37, 5 26, 7 9, 4 22, 1	36, 0 26, 6 24, 5 8, 1 4, 8	31. 2 6. 2 40. 6 20. 0	37, 0° 3, 7 48, 3 5, 0
使应条件 使成氢度 保持時間 火 度 ()		1410 10 . 17*	1410 10 17'	1410 5 16 ³	1410 5 16*	140 0 \$ 16*	1400 \$ 16*	1400 5 16*	1370 5 14*	1400 5 164	1310 3 12*	1310 3 12*	1410 5 16*
被処理条件 使 拉皮(是或() 使起强() 重量減少平((c) 80 (s) 120	44 fg 1.0 95 180 7.8	明 在 1.0 95 180 10.3	1.5 95 60 6.3	1.5 95 120 9,9	54 Ex 1.5 95 60 7.6	1.5 95 120 12.9	1.5 95 180 15.9	1.5 95 90 12.8	1.5 95 120 10.7	0.5 95 120 12.0	64 PR 1.5 95 60 11.4	2.0 95 30 6.0
热起程条件 程度 (转四(b)		1200 5	1410	1200 5	1200 10	1150 20	1350	1230 5	1190 15	1250 5	1150 20	1150 20 -	1200
世 は で で で で で で の の の の の の の の の の の の の		0.74	0. 76	0.60	0. 65	0. 81	0. 82	0. 80	G. 73	1. 55	1. 52	1. 65	0. 59
関気孔 5 μ= 以上の	孔の 23.3	24, 7	25.0	21.5	19. 0	17. 8	20.5	20.7	17.5	20.0	17.0	15.0	16, 5
類孔容段(∞	i	95	95	0. 044 91	0. 035 97	G_ 010	93	92	0. 028 95	85	- 45	0. 021	0. 02
コージェライト船 リータ量(kg/m*砂、 1.4kg/	丘力 0.110	-	-	0. 057	0.024 .	< 0. 01	-	-	<0.01		-	< 0.01	98 < 0: 8
寸法変化率(%) 1200で×10	- 0, 02 00h	0. 02	- 0. 02	- 0. 01	- 0. 03	- 0, 03	- 0, 05	- 0. 02	- 0, 03	-0.03	- 0. 04	- 0. 05	-0.0

特開昭 61-261260 (15)

_	•	囊		-	٠
-	1	- 32	£	-	и

								5	*	91							
	14	15	16	17	18	15	20	21	22	23	24	25	26	27	28	29	38
に学配皮 RgO (wt紫) Al,C。 \$iO。 P,O。 ZaO Pe,O。	13. 8 34. 8 51. 4	13.8 34.8 51.4	12. 6 25. 6 51. 2 0. 6	13.3 35.9 69.6 1.2	10. 2 37. 5 38. 5 13. 7	21. 0 15. 0 61. 1 2. 9	6. 0 45. 1 46. 0 2. 9	13. 0 49. 1 25. 6 2. 9	14. I 27. 7 58. 2 2. 0	13. 4 27. 5 58. 7 0. 4	12. 6 35. 6 51. 2 0. 6	11.9 36.7 51.9 0.4	13. 4 27. 3 58. 2 1. 1	11. 5 38. 4 49. 2 0. 9	11. 4 39. 4 47. 4. 1. 8	12. 4 36. 2 50. 3 0. 6	12.9 36.1 48.1 2.9
(日合) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本	39. 0** 10. 2 50. 8	39. 0 10. 2 50. 4	37. 0** 9. 7 48. 3 5. 0	38. 2 10. 0 49. 8 2. 0	27. 3 7. 1 35. 6 30. 0	60. 9 9. 0 33. 4 -	17. 3 21. 5 56. 5 4. 7	29. 4 38. 8 16. 9 4. 9	37. 2 9. 2 50. 7 2. 9	37. 2 9. 2 50. 7 2. 9	37. 8 9. 7 48. 3 5. 0	35. 9 9. 4 46. 7 4. 0	33. 1 8. 1 52. 2 6. 6	33. 2 8. 7 43. 1 15. 0	1. 2 40. 5 20. 0	9. 7 42. 3 5. 0	37. 6** 9. 7 48. 3 5. 0
強成条件 佐収温度 保持料間 (b) 火 度 (sk)	1410 \$ 16*	1410 5 16*	1410 5 16 ²	1410 5 16*	1250 3 16°	1410 5 10*	1410 5 15*	1410 5 16*	1410 10 17*	1410 10 17'	1410 5 16*	1410 5 16*	1400 5 16*	1370 5 14*	1310 3 12*	16°	1410 5 16*
度処理条件 酸 遊夜(N) 混皮(N) 混皮(ウ) 皮処理時間(分) 瓜豆辣炒平(%)	未热理	未选理 	1.5 95 60 6.3	来処理 - - -	未起理	未起理	朱拠理 - -	未施理	来起理 - -	2.0 80 120 5.3	1.5 95 60 6.3	1.5 95 120 9.9	1.5 95 60 7.8	1.5 95 90 12.8	1.5 95 60 11.4	2. 0 95 10 6. 0	未払う
鳥処理条件 無度(t) 時間(b)	未払理	朱热亚	未热理	未処理	朱幺理	朱色理	来処理	未起理	未起環	1000	800 10	未処理	朱起理	100	朱妃理	来処理	朱色
改結体特性 無疑な体数 (×10-*/ で 25~800 で) 関気孔平	0. 62 36. 5	0. 61 34. 6	0. 10 21. 5	0. 65 33, 7	5. 64 1. 5	2. 15 2. 7	2. 50 3. 2	2.32 2.5	I. 10 13. 3	0. 55 23. 3	0, 10 21, 5	-0. 05 19. 0	0, 11 17, 8	0. 04 17. 5	0, 95 15. 0	-0. 11 16. 9	0, 61 16, 1
5μm 以上の孔4 線孔容積(α/ε)	0.073	1	0.07	- 98	-	80	78	0.02	0. 04 95	0.060	0. 044 98	0.035	0, 029	0. 028 95	0. 024 90	0. D27 98	0. 0 98
コージュライト相(%) リーク量(kg/m*砂 , 圧)], 4kg/cm*)	98 0. 239	98 0. 157	1 '	-	-	-	-	< 0. 01		0, 110	0.057	D. 024	< 0. 01	< 0. 01	< 0. 01	<0.01	0. 1
寸注定化率(%) 1200℃×10000	- 0. 03	-0.0	J -0.03			· -			1-	-0.07	- 0. 06	-0.09	- 0, Ož	-0.11	- 0. 10	-0.05	+0.

第 2 表

	原料の化学分析値(wt%)													
	MEO	A1202	SiO,	Fe ₂ 0 ₃	P 2 O 8	ZnO	lg. loss	Na 20	K = O	CaO	TiO,			
ツルーサイト	62.04	0. 16	0.90	0.08	-	_	34. 2	1. 41	0. 07	1.14	-1. 14			
グネサイト	47.11	<0.01	1.13	0.17	-	_	51.37	0.01	0.02	0.18	0.18			
ルケ	30.90	1. 44	59, 95	1.10		_	5. 7	0.034	0.009	0.14	0.14			
・ルミナ	0.002	99. 17	0.013	0.015	-	_	0.08	0.34	0.002	0.022	0.02			
k酸化アルミニウム	<0.01	65, 41	0. 02	0.01	-	-	34.33	0. 20	0.01	0.01	0.01			
6 土	0.56	29.37	54.36	1.57	-	-	11. 42	0.081	1.12	0.30	0.30			
uー リン酸ナルミニウム	0.01	41.86	<0.01	<0.01	55.60	_	2.60	0.03	<0.01	0.01	0.01			
リン酸マグネシウム	28.86	<0.06	0.16	0.02	66.53	-	3.69	0.05	<0.01	0.15	0.15			
リン酸亜鉛	<0.01	0.21	0.07	<0.01	60.87	38. 55	0.83	0.01	<0.01	<0.04	<0.04			
リン酸鉄	_	-	-	43.02	53. 01	-	3. 70	0.30	-	-	-			

特開昭61-261260 (16)

(発明の効果)

4. 図面の簡単な説明

第1図はコージェライト系セラミックハニカムのP₂O₅含有量と開気孔率および熱膨脹係数の関係を示す特性線図、

第2図は95℃、1.5N硫酸にて酸処理したときのセラミックハニカムの重量減少率の時間依存性を示す特性線図、

第3図は95℃で1.5N硫酸にて酸処理したときの

各成分の減少率の時間依存性を示す特性線図、

第4図は1.4 kg/cd加圧空気のセラミックハニカム薄壁からのリーク量と孔径が5 μ以上の細孔容積との相関を表わす特性線図、

第5図は1200℃にて保持した時の寸法変化率の 時間依存性を示す特性線図、

第6図は細孔径分布曲線図、

第7~8図は従来の低膨脹セラミックスの微構 造を示す拡大写真図、

第9図は本発明の低膨脹セラミックスの微構造 を示す拡大写真図、

第10図はX線回折チャートである。