Calaboring limits (Sec. 1.4 of the book) So for we have seen how to comple limits intritively (table of values) or visually (from a oprofeh). In this section we will study how to compute the limit of a function algebraically, that is, by using uniquely its aboldraic expression. Let a be a real number. Let us consider first the following two easy cases: · f(x) = c, where c is a constant (= a real From the graph (and also alopbraically) it is clear that while x approaches a the function f(x) = c acts closer and closer to c (actually it is equal to c for all real numbers). Then we have Rim C = C SPECIAL LIMIT 1 • f(x) = xAgain, whex x approaches a the function g(x) = x approaches a the function g(x) = x approaches a the function g(x) = xPin X = a SPECIAL LIMIT 2

Moreover li	nits satisfy the following properties: prove them you had the more formal with E and E)	
in order to	prove them you had the more formal	
· definition	with 2 and 8 5	
		_
LIMIT LAWS		
be be	a real number and fand g two	
Junctions	defined near a lexcept possibly of	
(a). Sobbe	a real number and f and g two defined near a (except possibly at see also that	
X-> a	f(x) and line g(x)	
exist th	is means that for both functions left- und and right-hand livit when approaches a are equal and given by a finite real number - i.e. not oo)	
· No	and right thous built when	
X	appropries a die equal and arten	
	9 8 3 1111 12 02 12 12 12 12 12 12 12 12 12 12 12 12 12	
Then:		
	$\mathcal{L}_{\mathcal{L}}}}}}}}}}$	
(1) kin /	$\frac{1}{3}(x) + \frac{1}{3}(x) = \left[\lim_{x \to \infty} \frac{1}{3}(x) \right] + \left[\lim_{x \to \infty} \frac{1}{3}(x) \right]$	
2 Pin 120	$(x) - g(x) = \begin{bmatrix} \lim_{x \to a} g(x) \end{bmatrix} - \begin{bmatrix} \lim_{x \to a} g(x) \end{bmatrix}$	
X-00 [0	00,7 (x-00 g()) [x-00 0()]	
3 kim 10	2g(x) = $2g(x)$ = $2g(x)$	
@ Pin ($g(x)g(x) = \left[\lim_{x \to a} g(x) \right] \left[\lim_{x \to a} g(x) \right]^{x}$	
X-20	9(x) 3(x) = [x-00 9(x) / x-00 9(x)]	
, , ,		
0.	$\frac{f(x)}{-} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} f(x)} \text{if } \lim_{x \to a} g(x) \neq 0$	
5 lim _	$\frac{g(x)}{g(x)} = \frac{x - \alpha}{x - \alpha} \frac{g(x)}{g(x)} $ if $\lim_{x \to \alpha} g(x) \neq 0$	
	g(x) ein g(x) 1 x-sa 0	
* As a	consequence we have also:	
2	COTIN OF TRANSPORT TO STATE OF THE	
6 K-0a [$f(x)]^{N} = \lim_{x \to \infty} \left[\frac{1}{2}(x) - \frac{1}{2}(x) \right] = \left[\lim_{x \to \infty} \frac{1}{2}(x) \right] - \left[\lim_{x \to \infty} \frac{1}{2}(x) \right]^{N}$	
	n times [x-oa]	
Remark:	When for example we write:	
	0. [1,42] = 6.7 [0	
	$\lim_{x\to a} \left[f(x) + g(x) \right] = \left[\lim_{x\to a} f(x) \right] + \left[\lim_{x\to a} g(x) \right]$	
	we over saying that:	
	the linest of the sime is an a line	
	"the limit of the sum is equal to the	
	So, it we are able to compute the limits separately for f and for a then we can also compute the limit of the sum of the	
	then we can also consite the limit	
	of the som frq.	
	U U	

Let us consider the following example: y= 1(x) Here we have $\lim_{x\to 2} f(x) = 3$ $\lim_{x\to 2} g(x) = -1$ $\lim_{x\to 2} \left[g(x) + g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g(x) \right] = \left[\lim_{x\to 2} g(x) \right] + \left[\lim_{x\to 2} g($ -3+(-1)=2By applying the limit laws to the special limits I and 20 we can compute limits of more complicated functions: ex. 1 : polynomial $\lim_{x\to 0} (x^3 - 2x + 3) = \lim_{x\to 0} (x^3) - \lim_{x\to 0} (2x) + \lim_{x\to 0} 3 = 1$ 1 + 2 = (line x)3 - 2 line (x) + line 3 = 6+3 $= (0)^3 - 2.0 + 3 = 3$ special limit special limit 2 We remark that we would have got the same result if we had just plugged in... We will see that this is not a coincidence!

When we plug-in ve con remove "lime" ex: $Sin\left(\frac{\pi}{2},1\right)+1=1+1=\frac{2-1}{2}$ $2(1)^{2}+3\cdot1-1=2+3-1=4=\frac{1}{2}$ $\sin\left(\frac{\pi}{2}x\right) + 1$ 2x2 + 3x - 1 X->1 plug-in since we / Notation: we put here get a number quotation marks this is the value since we are not oblaced of the limit. to divide by on R $x^2 - 4$ = $\frac{(2)^2 - 4}{(2)^2 + 2 - 6}$: we need more work! lim plug-in This "more work" that we need will be different depending on the kind of function we are dealing with. We will try to provide some classical examples, but the world of limits is soon large to be reduced to few cases. Sometimes you really have to be creative! In each of the following cases we want to comple line f(x), where a is a number (strategies will be different for ∞) 1) f is a rational function and by phopping-in a we get "2" - Jactorize + simplify (then play-in apprin) In this case $f(x) = \frac{P(x)}{Q(x)}$, with P and Q two phynomials. We know that P(a) = o and Q(a) = 0 (since {(a) = "0"). Thanks to algebra we are sure that (x-a) is a factor for both P(x) and Q(x) and so we can simplify Let us show this on an example (the previous one) $x^{2}-4$ = $\lim_{x\to 2} \frac{(x-2)(x+2)}{(x-2)(x+3)}$ $\lim_{x\to 2} \frac{(x-2)(x+3)}{(x-2)(x+3)}$ - Pinn x+2 2+2 4 x+3 2+3 5 We can simplify since we are studying the behavior of the further hear 2 but not at 2! it is a mistake, since
you are writing that a
limit (which is a number)
expels a junction (which
is in general not constant) Then X-2 \$0 and we can alivide.

Prop: 1					that &(x)=	= 9(x)
			= line g(x) line its ex			
inded in		case we				
		X2-4	= X+2 X+3	for all	x≠2	
					3.	
prop.			9(x)			
)	lim X->2	$\frac{x^2-4}{x^2+x-6}$: lim x+2	3 - 4		
			easier to			
			(20st pend-			
) The v	eriabl	e in the	function or	pears u	nder a solvo	we
root	DIA CONCE	when we	pwg in a w	Sian So. I.	20 25 25	
	mourp	m by The	can jagan,	zim har 1d	, plug in ac	8
Pine	1× -	. \	1-1	_ ^0"		
X->1	X2 +	× -2	1+1-2	(0.4	tb)(a-b) = a2-	be
		plug i	^			
lim	\sqrt{x}	\ Q:	$\frac{1-x}{2}$	1×+1	= lim x=	
X-101	X2 + X	\	O1 (×+2)(x-1)	1 <u>x</u> + 1	X-51 (X+2)(A	
	- Qu	multiply n	rotani	the co	onguaphe is wed by changing in the mide the two terms	10.
	b	y the congress we are necessary	vapate of IX - 1	eg 1	he two terms	
	1X+1:	≠0 Near 1				
	fine))				
= lin	N (3	(+2)(\x +1)	(1+2)(<u>(1+1)</u> = <u>1</u>		
			og in			
	10 10		<u> </u>			
lemork:	13 4	ne squar	ii ei Toon s	n the den	ant otanisma	Tech Mid
ex: lim						
t> 1	Vzt -	- VZ VZŦ +	15 = +->1	2t-2	-= Pin (t-1) (2+ + 1)	plug in

In many languages (e.g. French and Halian) the squeeze theorem is also known under the name: Curiosity: "Two policemen (and a drunk) theorem" Italian: teorema dei due carabinieri L'French: théorème des opendarmes The analogy is a perfect illustration of square theorem: If two policemen one escorting a drunk prisoner between them and both officers of to a cell then (regardless the path taken) the prisoner must also end up in the cell. Squeeze theorem can be use full when computing directly the limit of a function of is hard, but we can actually lind two functions of and hothat satisfy $g(x) \leq g(x) \leq h(x)$ near a (except passibly at a) and for which the computation is easier and the limit is the same. This will be clearer with an example: $\lim_{x\to 0} x^2 \leq \ln\left(\frac{1}{x}\right) = 0$ ex: o is not in the donain of the function $x^2 \sin(\frac{1}{x})$ so the "plug in will not work. Now we know that the rounge of the function Sin(x) is [-1,1], that is -1 & sin(x) & 1 for all x EIR and this is true whatever function suppeours as surgument of the sine: $-1 \leq \sin(g(x)) \leq 1$ for all x in the domain of g So in our case we have: $-1 \le \sin\left(\frac{1}{x}\right) \le 1$ for all $x \ne 0$.