Data Structures and Algorithms

Trees

University of Technology and Engineering Vietnam National University Hanoi

What is a Tree

In computer science, a tree is an abstract model of a hierarchical structure

A tree consists of nodes with a parent-child relation

- > Applications:
 - Organization charts
 - File systems
 - Programming environments

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- > Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Siblings: same parent.
- > Edge: (u, v): u is the parent of v.
- > Path

 Subtree: tree consisting of a node and its descendants

List of Children Tree Presentation

Template <class Item>
class Node {
 Item data;
 List<Node*> children;
}

Node<Item>* root;

Depth

Depth(v): number of ancestors of v.

```
Algorithm depth(T, v):

if v is the root of T then

return 0;

else

return 1 + depth(T, w), where w is the parent of v in T;
```

Preorder Traversal

- > A traversal visits the nodes of a tree in a systematic manner
- > In a preorder traversal, a node is visited before its descendants
- > Example: Clone a tree

Algorithm preOrder(v)

visit(v);

for each child w of v preorder (w);

A, B, E, F, C, D, T, K

Postorder Traversal

In a postorder traversal, a node is visited after its descendants Application: Delete a tree from leaves to root

Algorithm postOrder(v)
for each child w of v
postOrder (w);
visit(v);

E, F, B, C, T, K, D,

Exercise 1

Show the node orders in preorder and postorder traversals.

Binary Trees

- A binary tree is a tree each internal node has at most two children, called left child and right child
- > Applications:
 - decision processes
 - searching

Decision Tree

- ➤ Binary tree associated with a decision process
 - internal nodes: questions with yes/no answer
 - external nodes: decisions

10

Inorder Traversal

In an inorder traversal a node is visited after its left subtree and before its right subtree

D, B, E, A, F,

```
Algorithm inOrder(v)
if hasLeft (v)
inOrder (left (v));
visit(v);
if hasRight (v)
inOrder (right (v));
```

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree


```
Algorithm printExpression(v)

if hasLeft (v)

print("(");

inOrder (left(v));

print(v.element ());

if hasRight (v)

inOrder (right(v));
```

$$((2 \times (a - 1)) + (3 \times b))$$

print (")");

Balanced binary tree

A binary tree is balanced if for every internal node v of T, the heights of the children of v can differ by at most 1.

Note: the height of a balanced binary tree is O(log n)

- A node is represented by an object storing
 - Element
 - Parent node
 - Left child node
 - Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

> nodes are stored in an array

> let rank(node) be defined as follows:

- rank(root) = 1
- if node is the left child of parent(node), rank(node) = 2*rank(parent(node))
- if node is the right child of parent(node), rank(node) = 2*rank(parent(node))+1

