REGULAR EXPRESSION

ITEU133

AUTOMATA AND THEORY OF COMPUTATION

COURSE SYLLABUS

III. Regular Expression (RE) and Regular Language

- Definition of a Regular Expression
- Language Associated with Regular Expression
- Connection Between Regular Expressions and Regular Languages
- Equivalence of FA's and Regular Expressions
- One State and Two State Machine.

OPERATIONS ON LANGUAGES

Let L, L₁, L₂ be subsets of Σ^*

Concatenation: $L_1L_2 = \{xy \mid x \text{ is in } L_1 \text{ and } y \text{ is in } L_2\}$

Concatenating a language with itself:

$$L^0 = \{\epsilon\} L^i = LL^{i-1}$$
, for all $i >= 1$

Kleene Closure: $\bigcup_{i=0}^{\infty} L^* = L^i = L^0 U L^1 U L^2 U ...$

Positive Closure: $\bigcup_{i=1}^{\infty} L^{+} = L^{1} U L^{2} U ...$

KLEENE CLOSURE

Say, $L^1 = \{a, abc, ba\}, on \Sigma = \{a,b,c\}$

$$L^3 = \{a, abc, ba\}. L^2$$

$$L^* = {\epsilon, L^1, L^2, L^3, ...}$$

REGULAR EXPRESSIONS

Highlights:

- A regular expression is used to specify a language, and it does so precisely.
- Regular expressions are very intuitive.
- Regular expressions are very useful in a variety of contexts.
- Given a regular expression, an NFA-ε can be constructed from it automatically.
- Thus, so can an NFA, a DFA, and a corresponding program, all automatically!

Definition of a Regular Expression

• Let Σ be an alphabet. The regular expressions over Σ are:

```
– Ø Represents the empty set { }
```

- ε Represents the set {ε}
- a Represents the set $\{a\}$, for any symbol a in Σ

Let r and s be regular expressions that represent the sets R and S, respectively.

- r+s Represents the set R U S (precedence 3)
- rs Represents the set RS (precedence 2)
- r* Represents the set R* (highest precedence)
- (r) Represents the set R (not an op, provides precedence)
- If r is a regular expression, then L(r) is used to denote the corresponding language.

• Examples: Let $\Sigma = \{0, 1\}$

 $(0 + 1)^*$ All strings of 0's and 1's

0(0 + 1)* All strings of 0's and 1's, beginning with a 0

(0 + 1)*1 All strings of 0's and 1's, ending with a 1

(0 + 1)*0(0 + 1)* All strings of 0's and 1's containing at least one 0

(0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0's and 1's containing at least two 0's

(0 + 1)*01*01* All strings of 0's and 1's containing at least two 0's

(1 + 01*0)* All strings of 0's and 1's containing an even number of 0's

1*(01*01*)* All strings of 0's and 1's containing an even number of 0's

(1*01*0)*1* All strings of 0's and 1's containing an even number of 0's

Example:

- Write the regular expression for the language L={abⁿ w:n≥3, wε(a,b)+}
- 2. Write the regular expression for the language $L=\{w\epsilon(a,b)^*: n_a(w) \mod 3=0\}$
- 3. L = {strings of 0's and1's beginning with 0 and ending with 1}
- 4. For all strings containing exact one a, over the alphabet of {a,b,c}

EQUIVALENCE OF REGULAR EXPRESSIONS AND NFA-ε's

- **Note:** Throughout the following, keep in mind that a string is accepted by an NFA-ε if there exists a path from the start state to a final state.
- Lemma 1: Let r be a regular expression.
 Then there exists an NFA-ε M such that L(M) = L(r). Furthermore, M has exactly one final state with no transitions out of it.
- Proof: (by induction on the number of operators, denoted by OP(r), in r).

Basis: OP(r) = 0

Then r is either \emptyset , ϵ , or **a**, for some symbol **a** in Σ

For Ø:

For ε:

Inductive Hypothesis: Suppose there exists a $k \ge 0$ such that for any regular expression r where $0 \le OP(r) \le k$, there exists an NFA- ϵ such that L(M) = L(r). Furthermore, suppose that M has exactly one final state.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where k + 1 >= 1.

Case 1)
$$r = r_1 + r_2$$

Since OP(r) = k + 1, it follows that $0 \le OP(r_1)$, $OP(r_2) \le k$. By the inductive hypothesis there exist NFA- ϵ machines M_1 and M_2 such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$. Furthermore, both M_1 and M_2 have exactly one final state.

Case 2)
$$r = r_1 r_2$$

Since OP(r) = k+1, it follows that $0 \le OP(r_1)$, $OP(r_2) \le k$. By the inductive hypothesis there exist NFA- ϵ machines M_1 and M_2 such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$. Furthermore, both M_1 and M_2 have exactly one final state.

Case 3)
$$r = r_1^*$$

Since OP(r) = k+1, it follows that $0 \le OP(r_1) \le k$. By the inductive hypothesis there exists an NFA- ϵ machine M_1 such that $L(M_1) = L(r_1)$. Furthermore, M_1 has exactly one final state.

$$r = r_1 r_2$$

 $r_1 = 0$
 $r_2 = (0+1)^*$
 $r_2 = r_3^*$
 $r_3 = 0+1$
 $r_3 = r_4 + r_5$
 $r_4 = 0$
 $r_5 = 1$

$$r = r_1 r_2$$

 $r_1 = 0$
 $r_2 = (0+1)^*$
 $r_2 = r_3^*$
 $r_3 = 0+1$
 $r_3 = r_4 + r_5$
 $r_4 = 0$
 $r_5 = 1$

$$q_2$$
 q_3

$$r = r_1 r_2$$

 $r_1 = 0$
 $r_2 = (0+1)^*$
 $r_2 = r_3^*$
 $r_3 = 0+1$
 $r_3 = r_4 + r_5$
 $r_4 = 0$
 $r_5 = 1$

TWO-WAY FINITE AUTOMATA

 Two-way finite automata are machines that can read input string in either direction. This type of machines have a "read head", which can move left or right over the input string.