Doc. No.: 14076212 Issued Date: May 28, 2007 Model No.: N170C3 - L02 **Preliminary**

TFT LCD Preliminary Specification

MODEL NO.: N170C3 - L02

Customer :	
Approved by :	
Note:	

記錄	工作	審核	角色	投票
2007-06-08 16:36:32 CST	Approve by Dept. Mgr.(QA RA)	sijea(葉時傑 /56196/54976)	Department Manager(QA RA)	Accept
2007-06-08 14:45:44 CST	Approve by Director	jy_wu(吳震乙 /56360/54952)	Director	Accept
2007-05-30 23:45:44 CST	Approve by Director	ck_wei(韋忠光 /44700)	Director	Accept
2007-05-30 14:01:07 CST	Approve by Director	davis_wang(王銘典 /56600/54383)	Director	Accept

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL 5.4 COLOR DATA INPUT ASSIGNMENT 5.5 EDID CODE DATA STRUCTURE	 12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 18
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 20
8. PRECAUTIONS 8.1 ASSEMBLY AND HANDLING PRECAUTIONS 8.2 SAFETY PRECAUTIONS	 23
9. PACKING 9.1 CARTON 9.2 PALLET	 24
10. DEFINITION OF LABELS 10.1 CMO MODULE LABEL 10.2 CMO CARTON LABEL	 25

Doc. No.: 14076212 Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

REVISION HISTORY

Version	Date	Page (New)	Section	Description
Ver 1.0	May. 28,2007		All	Preliminary Specification was first issued

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N170C3 - L02 is a 17.0" TFT Liquid Crystal Display module with two CCFLs Backlight unit and 30 pins LVDS interface. This module supports 1440 x 900 Wide-XGA+ mode and can display 16,777,216 colors. The optimum viewing angle is at 6 o'clock direction. The inverter module for Backlight is not built in.

1.2 FEATURES

- Thin and High Brightness
- WXGA+ (1440 x 900 pixels) resolution
- DE only mode
- 3.3V LVDS (Low Voltage Differential Signaling) interface with 2 pixel/clock
- 2 CCFLs

1.3 APPLICATION

- TFT LCD Notebook

1.4 GENERAL SPECIFICATIONS

Item Specification		Unit	Note
Active Area	367.2 (H) x 229.5 (V) (17.0" diagonal)	mm	(4)
Bezel Opening Area	371.2 (H) x 233.5 (V)	mm	(1)
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1440 x R.G.B. x 900	pixel	-
Pixel Pitch	0.255 (H) x 0.255 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16,777,216	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	Hard coating (3H), Glare Type	-	-

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	381.7	382.2	382.7	mm	
Module Size	Vertical (V)	246.3	246.8	247.3	mm	(1)
	Depth (D)		9.7 / 7.9	10.0~8.6	mm	
We	eight		930	960	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note		
item	Symbol	Min.	Max.	Offic	Note	
Storage Temperature	T _{ST}	-20	+60	٥C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	۰C	(1), (2)	
Shock (Non-Operating)	H _{ST}	-	200/2	G/ms	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown below.

- (a) 90 %RH Max. (Ta \leq 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Relative Humidity (%RH)

- Note (2) The ambient temperature means the temperature of panel surface.
- Note (3) 1 time for \pm X, \pm Y, \pm Z. for Condition (200G / 2ms) is half Sine Wave.
- Note (4) $10 \sim 500$ Hz, 0.5 Hr / Cycle, 1 cycles for each X, Y, Z axis.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

Issued Date: May 28, 2007 Mode<u>l No.: N170C3 - L02</u>

Preliminary

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

_			lue		
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	V _{CC}	-0.3	+4.0	V	(1)
Logic Input Voltage	V_{IN}	-0.3	V _{CC} +0.3	V	(1)

2.2.2 BACKLIGHT UNIT

Item	Symbol	Val	lue	Unit	Note
item	Symbol	Min.	Max.	Offic	Note
Lamp Voltage	V_L	_	2.5K	V_{RMS}	$(1), (2), I_L = 6.0 \text{ mA}$
Lamp Current	ΙL	2	(6.0)	mA_RMS	(1) (2)
Lamp Frequency	FL	50	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter	Cumbal		Value	Unit	Note		
Parameter	Symbol	Min.	Тур.	Max.	Offic	Note	
Power Supply Voltage	Vcc	3.0	3.3	3.6	V	-	
Ripple Voltage	V_{RP}		100		mV	-	
Rush Current	I _{RUSH}			1.5	Α	(2)	
Power Supply Current White	Icc		(450)		mA	(3)a	
Black	ICC		(570)		mA	(3)b	
LVDS Differential Input High Threshold	V _{TH(LVDS)}	-	-	+100	mV	(5), V _{CM} =1.2V	
LVDS Differential Input Low Threshold	V _{TL(LVDS)}	-100	-	-	mV	(5), V _{CM} =1.2V	
LVDS Common Mode Voltage	V_{CM}	1.125	-	1.375	V	(5)	
LVDS Differential Input Voltage	V _{ID}	100	-	600	mV	(5)	
Terminating Resistor	R⊤		100		Ohm		
Power per EBL WG	P _{EBL}	-	TBD	-	W	(4)	

Note (1) The module should be always operated within above ranges.

Note (2) I_{RUSH}: the maximum current when VCC is rising

 I_{IS} : the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: black.

Vcc rising time is 470us

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \, \text{Hz}$, whereas a power dissipation check pattern below is displayed.

b. Black Pattern

Active Area

Note (4) The specified power are the sum of LCD panel electronics input power and the inverter input power. Test conditions are as follows.

- (a) Vcc = 3.3 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$,
- (b) The pattern used is a black and white 32 x 36 checkerboard, slide #100 from the VESA file "Flat Panel Display Monitor Setup Patterns", FPDMSU.ppt.
- (c) Luminance: 60 nits.
- (d) The inverter used is provided from Sumida. Please contact them for detail information. CMO doesn't provide the inverter in this product.

Note (5) The parameters of LVDS signals are defined as the following figures.

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Parameter	Symbol		Value	Unit	Note	
raiametei	Syllibol	Min.	Тур.	Max.	Oill	Note
Lamp Input Voltage	V_L	(675)	(750)	(825)	V_{RMS}	$I_{L} = 6.0 \text{ mA}$
Lamp Current	ΙL	(2.0)	(6.0)	(6.5)	mA_RMS	(1)
Lamp Turn On Voltage	Vs		_	(1290) (25 °C)	V_{RMS}	(2)
Lamp rum on voltage		_	_	(1560) (0 °C)	V_{RMS}	(2)
Operating Frequency	F_L	50	_	80	KHz	(3)
Lamp Life Time	L_BL	(12,000)	_	_	Hrs	(5)
Power Consumption	P_L	_	(9.0)	_	W	$(4), I_L = 6.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on.
- Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 2$
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition $Ta = 25 \pm 2$ °C and $I_L = 6.0$ mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) When the effective ignition length becomes or lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid generating too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

Requirements for a system inverter design, which is intended to have a better display performance, a

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities.

* Asymmetry rate:

$$|I_p - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate

$$I_p (or I_{-p}) / I_{rms}$$

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Symbol	Description	Polarity	Remark
1	RXO0-	LVDS Differential Data Input (Odd)	Negative	
2	RXO0+	LVDS Differential Data Input (Odd)	Positive	
3	RXO1-	LVDS Differential Data Input (Odd)	Negative	
4	RXO1+	LVDS Differential Data Input (Odd)	Positive	
5	RXO2-	LVDS Differential Data Input (Odd)	Negative	
6	RXO2+	LVDS Differential Data Input (Odd)	Positive	
7	GND	Ground		
8	RXOC-	LVDS Differential Clock Input (Odd)	Negative	
9	RXOC+	LVDS Differential Clock Input (Odd)	Positive	
10	RXO3-	LVDS Differential Data Input (Odd)	Negative	
11	RXO3+	LVDS Differential Data Input (Odd)	Positive	
12	RXE0-	LVDS Differential Data Input (Even)	Negative	
13	RXE0+	LVDS Differential Data Input (Even)	Positive	
14	GND	Ground		
15	RXE1-	LVDS Differential Data Input (Even)	Negative	
16	RXE1+	LVDS Differential Data Input (Even)	Positive	
17	GND	Ground		
18	RXE2-	LVDS Differential Data Input (Even)	Negative	
19	RXE2+	LVDS Differential Data Input (Even)	Positive	
20	RXEC-	LVDS Differential Data Clock (Even)	Negative	
21	RXEC+	LVDS Differential Data Clock (Even)	Positive	
22	RXE3-	LVDS Differential Data Input (Even)	Negative	
23	RXE3+	LVDS Differential Data Input (Even)	Positive	
24	GND	Ground		
25	NC	Non-Connection		
26	NC	Non-Connection		
27	NC	Non-Connection		
28	VDD	Power Supply +3.3 V (typical)		
29	VDD	Power Supply +3.3 V (typical)		-
30	VDD	Power Supply +3.3 V (typical)		

Note (1) Connector Part No.: JAE-FI-XB30SRL-HF11 or equivalent

Note (2) User's connector Part No: JAE-FI-X30C2L or equivalent

Note (3) The first pixel is odd as shown in the following figure.

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink
2	LV	Ground	White
1	HV	High Voltage	Blue
2	LV	Ground	Black

Note (1) Connector Part No.: JST-BHSR-02VS-1 or equivalent

Note (2) User's connector Part No.: JST-SM02B-BHSS-1-TB or equivalent

5.3 TIMING DIAGRAM OF LVDS INPUT SIGNAL

LVDS RXE0+/-	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS RAEU+/-	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS RXE1+/-	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 KAE1+/-	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS RXE2+/-	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 KAE2+/-	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS RXE3+/-	LVDS output	D23	D17	D16	D11	D10	D5	D27
	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6
LVDS RXO0+/-	LVDS output	D7	D6	D4	D3	D2	D1	D0
	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS RXO1+/-	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS RXOI+/-	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS RXO2+/-	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS RXO2+/-	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS RXO3+/-	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 KAU3+/-	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

5.4 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	0.1											Da		Sigr											
	Color				Re									reer							Bl				
		R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2	B1	
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
D	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta Yellow	1	1	1	1	1	1	1	1	0	0	0 1	0	0 1	0	0	0	1	1	1	1	1	1	1	1
	White	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	0	1	1	0	0	1	0	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0) / Dark	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	1100(2)							:				:										:			
Scale		:	:	:	:	:	:	:	:	:	:	:	:	:	:		:	:	:		:	:	:	:	
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	Ö	Ö	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	(050)	:	:	: (:	:	-	:		:	:	:	:	:	:		:		•	:	•	:	:		:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254) Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0 1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	5.00(2)	•		•	:	:	:	:				:				•	:	:	:	:	:	:	.		.
Scale				:	:		:	:	:	:	:	:	:	:	:	:		:	:		:	:	:		
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(254)	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	(42)	44.5	(52)	MHz	(2)
	Vertical Total Time	TV	(910)	926	(980)	TH	-
	Vertical Active Display Period	TVD	900	900	900	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	26	TV-TVD	TH	
DE	Horizontal Total Time	TH	(760)	800	(880)	Tc	(2)
	Horizontal Active Display Period	THD	720	720	720	Tc	(2)
	Horizontal Active Blanking Period	THB	TH-THD	80	TH-THD	Tc	(2)

Note (1) Because this module is operated by DE only mode, Hsync and Vsync are ignored.

(2) 2 channels LVDS input.

INPUT SIGNAL TIMING DIAGRAM

6.2 POWER ON/OFF SEQUENCE

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

 $0.5 \leq t1 \leq 10 \text{ ms}$

 $0 \le t2 \le 50 \text{ ms}$

 $0\ \le t3 \le \,50\;ms$

 $t4 \ge 500 \text{ ms}$

 $t5 \ge 200 \text{ ms}$

 $t6 \ge 200 \text{ ms}$

- Note (1) Please avoid floating state of interface signal at invalid period.
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD Vcc to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.
- Note (4) Sometimes some slight noise shows when LCD is turned off (even backlight is already off). To avoid this phenomenon, we suggest that the Vcc falling time is better to follow 5≤t7≤300 ms

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit				
Ambient Temperature	Та	25±2	°C				
Ambient Humidity	На	50±10	%RH				
Supply Voltage	V _{CC}	3.3	V				
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"						
Inverter Current	ال	6.0	mA				
Inverter Driving Frequency	F_L	61	KHz				
Inverter	(Sumida-H05-4915)						

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

7.2 OPTICAL SPECIFICATIONS

Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.643			
	Red	Ry			0.349			
Color Chromaticity	Green	Gx			0.281	Typ + 0.03		
	Oreen	Gy		Тур –	0.609		_	(1), (6)
	Blue	Bx		0.03	0.142			(1), (0)
	Blue	Ву			0.068			
	White	Wx	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$		0.313			
		Wy	Viewing Normal Angle		0.329			
Center Luminan	Center Luminance of White			(340)	(400)		cd/m ²	(4), (6)
Contrast Ratio		CR		(400)	(600)	_	_	(2), (6)
Response Time		T _R		_	3	8	ms	(2)
Response fille		T_F		_	7	12	2 ms (3)	
White Variation		δW			1.25	1.40		(5)
	Horizontal	θ_x +		70	80			
Viewing Angle	Honzoniai	θ_{x} -	OD > 40	70	80		Dog	(1)
	Vertical	θ _Y +	CR ≧ 10	60	70		Deg.	
	vertical	θ _Y -		60	70	_		

14076212 Issued Date: May 28, 2007

Model No.: N170C3 - L02

Preliminary

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Definition of Response Time (T_R, T_F) and measurement method: Note (3)

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

Note (4) Definition of Center Luminance of White (L_{CEN}):

Measure the luminance of gray level 63 at center points

$$L_{CEN} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (5)

Note (5) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

8.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

9. PACKING

9.1CARTON

Box Dimensions: 511(L)*420(W)*360(H) mm Weight: Approx. 16.5kg (15 module .per. 1 box)

9.2 PALLET

Issued Date: May 28, 2007 Model No.: N170C3 - L02

Preliminary

10. DEFINITION OF LABELS

10.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N170C3 L02
- (b) Revision: Rev. XX, for example: A1, ..., C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2001~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Customer's barcode definition:

Serial ID: QLD0525-00X, X is followed as CMO version

10.2 CARTON LABEL

