

3-bounded Property in a Triangle-free Distance-regular Graph*

Yeh-jong Pan[†] Chih-wen Weng[‡]

February 1, 2008

Abstract

Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Assume the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. We show Γ is 3-bounded in the sense of the article [D -bounded distance-regular graphs, European Journal of Combinatorics(1997)18, 211-229].

Keywords: Distance-regular graph, Q -polynomial, classical parameter, parallelogram, 3-bounded.

1 Introduction

Let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \geq 3$ and distance function ∂ . Recall that a sequence x, y, z of vertices of Γ is *geodetic* whenever

$$\partial(x, y) + \partial(y, z) = \partial(x, z).$$

A sequence x, y, z of vertices of Γ is *weak-geodetic* whenever

$$\partial(x, y) + \partial(y, z) \leq \partial(x, z) + 1.$$

*Research partially supported by the NSC grant 95-2115-M-009-002 of Taiwan R.O.C..

[†]Department of Applied Mathematics National Chiao Tung University 1001 Ta Hsueh Road Hsinchu, Taiwan 300, R.O.C..

[‡]Department of Applied Mathematics, National Chiao Tung University, Taiwan R.O.C..

Definition 1.1. A subset $\Omega \subseteq X$ is *weak-geodetically closed* if for any weak-geodetic sequence x, y, z of Γ ,

$$x, z \in \Omega \implies y \in \Omega.$$

Weak-geodetically closed subgraphs are called *strongly closed subgraphs* in [8]. We refer the reader to [7, 3, 5, 9, 12, 4] for the information of weak-geodetically closed subgraphs.

Definition 1.2. Γ is said to be *i-bounded* whenever for all $x, y \in X$ with $\partial(x, y) \leq i$, there is a regular weak-geodetically closed subgraph of diameter $\partial(x, y)$ which contains x, y .

The properties of D -bounded distance-regular graphs were studied in [13], and these properties were used in the classification of classical distance-regular graphs of negative type [14]. Before mention of our main result we mention one more definition.

By a *parallelogram of length i*, we mean a 4-tuple $xyzw$ consisting of vertices of Γ such that $\partial(x, y) = \partial(z, w) = 1$, $\partial(x, z) = i$, and $\partial(x, w) = \partial(y, w) = \partial(y, z) = i - 1$.

It was proved that if $a_1 = 0$, $a_2 \neq 0$ and Γ contains no parallelograms of length 3, then Γ is 2-bounded [12, Proposition 6.7], [9, Theorem 1.1]. The following theorem is our main result.

Theorem 1.3. *Let Γ denote a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Assume the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. Then Γ is 3-bounded.*

Note that if Γ has classical parameters (D, b, α, β) with $D \geq 3$, $a_1 = 0$ and $a_2 \neq 0$, then Γ contains no parallelograms of any length. See [6, Theorem 1.1] or Theorem 3.3 in this article.

2 Preliminaries

In this section we review some definitions, basic concepts and some previous results concerning distance-regular graphs. See Bannai and Ito [1] or Terwilliger [11] for more background information.

Let $\Gamma=(X, R)$ denote a finite undirected, connected graph without loops or multiple edges with vertex set X , edge set R , distance function ∂ , and diameter $D:=\max\{\partial(x, y) \mid x, y \in X\}$. By a *pentagon*, we mean a 5-tuple $x_1x_2x_3x_4x_5$ consisting of vertices in Γ such that $\partial(x_i, x_{i+1}) = 1$ for $1 \leq i \leq 4$ and $\partial(x_5, x_1) = 1$.

For a vertex $x \in X$ and an integer $0 \leq i \leq D$, set $\Gamma_i(x) := \{z \in X \mid \partial(x, z) = i\}$. The *valency* $k(x)$ of a vertex $x \in X$ is the cardinality of $\Gamma_1(x)$. The graph Γ is called *regular* (with *valency* k) if each vertex in X has valency k .

A graph Γ is said to be *distance-regular* whenever for all integers $0 \leq h, i, j \leq D$, and all vertices $x, y \in X$ with $\partial(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid z \in \Gamma_i(x) \cap \Gamma_j(y)\}|$$

is independent of x, y . The constants p_{ij}^h are known as the *intersection numbers* of Γ .

Let $\Gamma=(X, R)$ be a distance-regular graph. For two vertices $x, y \in X$, with $\partial(x, y) = i$, set

$$\begin{aligned} B(x, y) &:= \Gamma_1(x) \cap \Gamma_{i+1}(y), \\ C(x, y) &:= \Gamma_1(x) \cap \Gamma_{i-1}(y), \\ A(x, y) &:= \Gamma_1(x) \cap \Gamma_i(y). \end{aligned}$$

Note that

$$\begin{aligned} |B(x, y)| &= p_{1, i+1}^i, \\ |C(x, y)| &= p_{1, i-1}^i, \\ |A(x, y)| &= p_{1, i}^i \end{aligned}$$

are independent of x, y .

For convenience, set $c_i := p_{1, i-1}^i$ for $1 \leq i \leq D$, $a_i := p_{1, i}^i$ for $0 \leq i \leq D$, $b_i := p_{1, i+1}^i$ for $0 \leq i \leq D-1$ and put $b_D := 0$, $c_0 := 0$, $k := b_0$. Note that k is the valency of Γ . It is immediate from the definition of p_{ij}^h that $b_i \neq 0$ for $0 \leq i \leq D-1$ and $c_i \neq 0$ for $1 \leq i \leq D$. Moreover

$$k = a_i + b_i + c_i \quad \text{for } 0 \leq i \leq D. \tag{2.1}$$

From now on we assume $\Gamma = (X, R)$ is distance-regular with diameter $D \geq 3$. Recall that a sequence x, y, z of vertices of Γ is weak-geodetic whenever

$$\partial(x, y) + \partial(y, z) \leq \partial(x, z) + 1.$$

Definition 2.1. Let Ω be a subset of X , and pick any vertex $x \in \Omega$. Ω is said to be *weak-geodetically closed with respect to x* , whenever for all $z \in \Omega$ and for all $y \in X$,

$$x, y, z \text{ are weak-geodetic} \implies y \in \Omega. \quad (2.2)$$

Note that Ω is weak-geodetically closed with respect to a vertex $x \in \Omega$ if and only if

$$C(z, x) \subseteq \Omega \text{ and } A(z, x) \subseteq \Omega \quad \text{for all } z \in \Omega$$

[12, Lemma 2.3]. Also Ω is weak-geodetically closed if and only if for any vertex $x \in \Omega$, Ω is weak-geodetically closed with respect to x . We list a few results which will be used later in this paper.

Theorem 2.2. ([12, Theorem 4.6]) *Let Γ be a distance-regular graph with diameter $D \geq 3$. Let Ω be a regular subgraph of Γ with valency γ and set $d := \min\{i \mid \gamma \leq c_i + a_i\}$. Then the following (i),(ii) are equivalent.*

- (i) Ω is weak-geodetically closed with respect to at least one vertex $x \in \Omega$.
- (ii) Ω is weak-geodetically closed with diameter d .

In this case $\gamma = c_d + a_d$.

Lemma 2.3. ([9, Lemma 2.6]) *Let Γ be a distance-regular graph with diameter 2, and let x be a vertex of Γ . Suppose $a_2 \neq 0$. Then the subgraph induced on $\Gamma_2(x)$ is connected of diameter at most 3.*

Theorem 2.4. ([12, Proposition 6.7],[9, Theorem 1.1]) *Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $a_1 = 0$, $a_2 \neq 0$ and Γ contains no parallelograms of length 3. Then Γ is 2-bounded.*

Theorem 2.5. ([12, Lemma 6.9],[9, Lemma 4.1]) Let Γ be a distance-regular graph with diameter $D \geq 3$. Suppose $a_1 = 0$, $a_2 \neq 0$ and Γ contains no parallelograms of any length. Let x be a vertex of Γ , and let Ω be a weak-geodetically closed subgraph of Γ with diameter 2. Suppose there exists an integer i and a vertex $u \in \Omega \cap \Gamma_{i-1}(x)$, and suppose $\Omega \cap \Gamma_{i+1}(x) \neq \emptyset$. Then for all $t \in \Omega$, we have $\partial(x, t) = i - 1 + \partial(u, t)$.

3 Q -polynomial properties

Let $\Gamma = (X, R)$ denote a distance-regular graph with diameter $D \geq 3$. Let \mathbb{R} denote the real number field. Let $\text{Mat}_X(\mathbb{R})$ denote the algebra of all the matrices over \mathbb{R} with the rows and columns indexed by the elements of X . For $0 \leq i \leq D$ let A_i denote the matrix in $\text{Mat}_X(\mathbb{R})$, defined by the rule

$$(A_i)_{xy} = \begin{cases} 1, & \text{if } \partial(x, y) = i; \\ 0, & \text{if } \partial(x, y) \neq i \end{cases} \quad \text{for } x, y \in X.$$

We call A_i the *distance matrices* of Γ . We have

$$\begin{aligned} A_0 &= I, \\ A_i^t &= A_i \quad \text{for } 0 \leq i \leq D \text{ where } A_i^t \text{ means the transpose of } A_i, \\ A_i A_j &= \sum_{h=0}^D p_{ij}^h A_h \quad \text{for } 0 \leq i, j \leq D. \end{aligned}$$

Let M denote the subspace of $\text{Mat}_X(\mathbb{R})$ spanned by A_0, A_1, \dots, A_D . Then M is a commutative subalgebra of $\text{Mat}_X(\mathbb{R})$, and is known as the *Bose-Mesner algebra* of Γ . By [2, p. 59, 64], M has a second basis E_0, E_1, \dots, E_D such that

$$\begin{aligned} E_0 &= |X|^{-1} J \quad \text{where } J = \text{all 1's matrix}, \\ E_i E_j &= \delta_{ij} E_i \quad \text{for } 0 \leq i, j \leq D, \\ E_0 + E_1 + \dots + E_D &= I, \\ E_i^t &= E_i \quad \text{for } 0 \leq i \leq D. \end{aligned} \tag{3.1}$$

The E_0, E_1, \dots, E_D are known as the *primitive idempotents* of Γ , and E_0 is known as the *trivial* idempotent. Let E denote any primitive idempotent of Γ . Then we have

$$E = |X|^{-1} \sum_{i=0}^D \theta_i^* A_i \quad (3.2)$$

for some $\theta_0^*, \theta_1^*, \dots, \theta_D^* \in \mathbb{R}$, called the *dual eigenvalues* associated with E .

Set $V = \mathbb{R}^{|X|}$ (column vectors), and view the coordinates of V as being indexed by X . Then the Bose-Mesner algebra M acts on V by left multiplication. We call V the *standard module* of Γ . For each vertex $x \in X$, set

$$\hat{x} = (0, 0, \dots, 0, 1, 0, \dots, 0)^t, \quad (3.3)$$

where the 1 is in coordinate x . Also, let $\langle \cdot, \cdot \rangle$ denote the dot product

$$\langle u, v \rangle = u^t v \quad \text{for } u, v \in V. \quad (3.4)$$

Then referring to the primitive idempotent E in (3.2), we compute from (3.1)-(3.4) that for $x, y \in X$,

$$\langle E\hat{x}, E\hat{y} \rangle = |X|^{-1} \theta_i^* \quad (3.5)$$

where $i = \partial(x, y)$.

Let \circ denote the entry-wise multiplication in $\text{Mat}_X(\mathbb{R})$. Then

$$A_i \circ A_j = \delta_{ij} A_i \quad \text{for } 0 \leq i, j \leq D,$$

so M is closed under \circ . Thus there exists $q_{ij}^k \in \mathbb{R}$ for $0 \leq i, j, k \leq D$ such that

$$E_i \circ E_j = |X|^{-1} \sum_{k=0}^D q_{ij}^k E_k \quad \text{for } 0 \leq i, j \leq D.$$

Γ is said to be *Q -polynomial* with respect to the given ordering E_0, E_1, \dots, E_D of the primitive idempotents, if for all integers $0 \leq h, i, j \leq D$, $q_{ij}^h = 0$ (resp. $q_{ij}^h \neq 0$) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two. Let E denote any primitive idempotent of Γ . Then Γ is said to be *Q -polynomial* with respect to E whenever there exists an ordering $E_0, E_1 = E, \dots, E_D$ of the primitive idempotents of Γ , with respect to which Γ is

Q -polynomial. If Γ is Q -polynomial with respect to E , then the associated dual eigenvalues are distinct [10, p. 384].

The following theorem about the Q -polynomial property will be used in this paper.

Theorem 3.1. ([11, Theorem 3.3]) *Assume Γ is Q -polynomial with respect to a primitive idempotent E , and let $\theta_0^*, \dots, \theta_D^*$ denote the corresponding dual eigenvalues. Then for all integers $1 \leq h \leq D$, $0 \leq i, j \leq D$ and for all $x, y \in X$ such that $\partial(x, y) = h$,*

$$\sum_{\substack{z \in X \\ \partial(x, z) = i \\ \partial(y, z) = j}} E\hat{z} - \sum_{\substack{z \in X \\ \partial(x, z) = j \\ \partial(y, z) = i}} E\hat{z} = p_{ij}^h \frac{\theta_i^* - \theta_j^*}{\theta_0^* - \theta_h^*} (E\hat{x} - E\hat{y}). \quad (3.6)$$

Γ is said to have *classical parameters* (D, b, α, β) whenever the intersection numbers of Γ satisfy

$$c_i = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i-1 \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \leq i \leq D, \quad (3.7)$$

$$b_i = \left(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad \text{for } 0 \leq i \leq D, \quad (3.8)$$

where

$$\begin{bmatrix} i \\ 1 \end{bmatrix} := 1 + b + b^2 + \cdots + b^{i-1}. \quad (3.9)$$

The following theorem characterizes the distance-regular graphs with classical parameters in an algebraic way.

Theorem 3.2. ([11, Theorem 4.2]) *Let Γ denote a distance-regular with diameter $D \geq 3$. Choose $b \in \mathbb{R} \setminus \{0, -1\}$, and let $[]$ be as in (3.9). Then the following (i)-(ii) are equivalent.*

- (i) Γ is Q -polynomial with associated dual eigenvalues $\theta_0^*, \theta_1^*, \dots, \theta_D^*$ satisfying

$$\theta_i^* - \theta_0^* = (\theta_1^* - \theta_0^*) \begin{bmatrix} i \\ 1 \end{bmatrix} b^{1-i} \quad \text{for } 1 \leq i \leq D. \quad (3.10)$$

(ii) Γ has classical parameters (D, b, α, β) for some real constants α, β .

The following theorem characterizes the distance-regular graphs with classical parameters and $a_1 = 0, a_2 \neq 0$ in a combinatorial way.

Theorem 3.3. ([6, Theorem 1.1]) Let Γ denote a distance-regular graph with diameter $D \geq 3$ and intersection numbers $a_1 = 0, a_2 \neq 0$. Then the following (i)-(iii) are equivalent.

(i) Γ is Q -polynomial and contains no parallelograms of length 3.

(ii) Γ is Q -polynomial and contains no parallelograms of any length i for $3 \leq i \leq D$.

(iii) Γ has classical parameters (D, b, α, β) for some real constants b, α, β .

4 Proof of main theorem

Assume $\Gamma = (X, R)$ is a distance-regular graph with classical parameters (D, b, α, β) and $D \geq 3$. Suppose the intersection numbers $a_1 = 0$ and $a_2 \neq 0$. Then Γ contains no parallelograms of any length by Theorem 3.3. We first give a definition.

Definition 4.1. For any vertex $x \in X$ and any subset $C \subseteq X$, define

$$[x, C] := \{v \in X \mid \text{there exists } z \in C, \text{ such that } \partial(x, v) + \partial(v, z) = \partial(x, z)\}.$$

Throughout this section, fix two vertices $x, y \in X$ with $\partial(x, y) = 3$. Set

$$C := \{z \in \Gamma_3(x) \mid B(x, y) = B(x, z)\}$$

and

$$\Delta = [x, C]. \tag{4.1}$$

We shall prove Δ is a regular weak-geodetically closed subgraph of diameter 3. Note that the diameter of Δ is at least 3. If $D = 3$ then $C = \Gamma_3(x)$ and $\Delta = \Gamma$ is clearly a regular weak-geodetically closed graph. Thereafter we assume $D \geq 4$. By referring to Theorem 2.2, we shall prove Δ is weak-geodetically closed with respect to x , and the subgraph induced on Δ is regular with valency $a_3 + c_3$.

Lemma 4.2. *For all adjacent vertices $z, z' \in \Gamma_i(x)$, where $i \leq D$, we have $B(x, z) = B(x, z')$.*

Proof. By symmetry, it suffices to show $B(x, z) \subseteq B(x, z')$. Suppose there exists $w \in B(x, z) \setminus B(x, z')$. Then $\partial(w, z') \neq i + 1$. Note that $\partial(w, z') \leq \partial(w, x) + \partial(x, z') = 1 + i$ and $\partial(w, z') \geq \partial(w, z) - \partial(z, z') = i$. This implies $\partial(w, z') = i$ and $wxz'z$ forms a parallelogram of length $i + 1$, a contradiction. \square

We have known Γ is 2-bound by Theorem 2.4. For two vertices z, s in Γ with $\partial(z, s) = 2$, let $\Omega(z, s)$ denote the regular weak-geodetically closed subgraph containing z, s of diameter 2.

Lemma 4.3. *Suppose $stuzw$ is a pentagon in Γ , where $s, u \in \Gamma_3(x)$ and $z \in \Gamma_2(x)$. Pick $v \in B(x, u)$. Then $\partial(v, s) \neq 2$.*

Proof. Suppose $\partial(v, s) = 2$. Note $\partial(z, s) \neq 1$, since $a_1 = 0$. Note that $z, w, s, t, u \in \Omega(z, s)$. Then $s \in \Omega(z, s) \cap \Gamma_2(v)$ and $u \in \Omega(z, s) \cap \Gamma_4(v) \neq \emptyset$. Hence $\partial(v, z) = \partial(v, s) + \partial(s, z) = 2 + 2 = 4$ by Theorem 2.5. A contradiction occurs since $\partial(v, x) = 1$ and $\partial(x, z) = 2$. \square

Lemma 4.4. *Suppose $stuzw$ is a pentagon in Γ , where $s, u \in \Gamma_3(x)$ and $z \in \Gamma_2(x)$. Then $B(x, s) = B(x, u)$.*

Proof. Since $|B(x, s)| = |B(x, u)| = b_3$, it suffices to show $B(x, u) \subseteq B(x, s)$. By Lemma 4.3,

$$B(x, u) \subseteq \Gamma_3(s) \cup \Gamma_4(s).$$

Suppose

$$\begin{aligned} |B(x, u) \cap \Gamma_3(s)| &= m, \\ |B(x, u) \cap \Gamma_4(s)| &= n. \end{aligned}$$

Then

$$m + n = b_3. \quad (4.2)$$

By Theorem 3.1,

$$\sum_{r \in B(x, u)} E\hat{r} - \sum_{r \in B(u, x)} E\hat{r} = b_3 \frac{\theta_1^* - \theta_4^*}{\theta_0^* - \theta_3^*} (E\hat{x} - E\hat{u}). \quad (4.3)$$

Observe $B(u, x) \subseteq \Gamma_3(s)$, otherwise $\Omega(u, s) \cap B(u, x) \neq \emptyset$ and this leads $\partial(x, s) = 4$ by Theorem 2.5, a contradiction. Taking the inner product of s with both side of (4.3) and evaluating the result using (3.5), we have

$$m\theta_3^* + n\theta_4^* - b_3\theta_3^* = b_3 \frac{\theta_1^* - \theta_4^*}{\theta_0^* - \theta_3^*} (\theta_3^* - \theta_2^*). \quad (4.4)$$

Solve (4.2) and (4.4) to obtain

$$n = b_3 \frac{(\theta_2^* - \theta_3^*) (\theta_1^* - \theta_4^*)}{(\theta_3^* - \theta_4^*) (\theta_0^* - \theta_3^*)}. \quad (4.5)$$

Simplifying (4.5) by (3.10), we have $n = b_3$ and then $m = 0$ by (4.2). This implies $B(x, u) \subseteq B(x, s)$ and ends the proof. \square

Lemma 4.5. *Let $z, u \in \Delta$. Suppose $stuzw$ is a pentagon in Γ , where $z, w \in \Gamma_2(x)$ and $u \in \Gamma_3(x)$. Then $w \in \Delta$.*

Proof. Observe $\Omega(z, s) \cap \Gamma_1(x) = \emptyset$ and $\Omega(z, s) \cap \Gamma_4(x) = \emptyset$ by Theorem 2.5. Hence $s, t \in \Gamma_2(x) \cup \Gamma_3(x)$. Observe $s \in \Gamma_3(x)$, otherwise $w, s \in \Omega(x, z)$, and this implies $u \in \Omega(x, z)$, a contradiction to that the diameter of $\Omega(x, z)$ is 2. Hence $B(x, s) = B(x, u)$ by Lemma 4.4. Then $s \in C$ and $w \in \Delta$ by construction. \square

Lemma 4.6. *The subgraph Δ is weak-geodetically closed with respect to x .*

Proof. Clearly $C(z, x) \subseteq \Delta$ for any $z \in \Delta$. It suffices to show $A(z, x) \subseteq \Delta$ for any $z \in \Delta$. Suppose $z \in \Delta$. We discuss case by case in the following. The case $\partial(x, z) = 1$ is trivial since $a_1 = 0$. For the case $\partial(x, z) = 3$, we have $B(x, y) = B(x, z) = B(x, w)$ for any $w \in A(z, x)$ by definition of Δ and Lemma 4.2. This implies $A(z, x) \subseteq \Delta$ by the construction of Δ . For the remaining case $\partial(x, z) = 2$, fix $w \in A(z, x)$ and we shall prove $w \in \Delta$. There exists $u \in C$ such that $z \in C(u, x)$. Observe that $\partial(w, u) = 2$ since $a_1 = 0$. Choose $s \in A(w, u)$ and $t \in C(u, s)$. Then $stuzw$ is a pentagon in Γ . The result comes immediately by Lemma 4.5. \square

Proof of Theorem 1.3:

By Theorem 2.2 and Lemma 4.6, it suffices to show that Δ defined in (4.1) is regular with valency $a_3 + c_3$. Clearly from the construction and Lemma 4.6,

$|\Gamma_1(z) \cap \Delta| = a_3 + c_3$ for any $z \in C$. First we show $|\Gamma_1(x) \cap \Delta| = a_3 + c_3$. Note that $y \in \Delta \cap \Gamma_3(x)$ by construction of Δ . For any $z \in C(x, y) \cup A(x, y)$,

$$\partial(x, z) + \partial(z, y) \leq \partial(x, y) + 1.$$

This implies $z \in \Delta$ by definition 2.1. Hence $C(x, y) \cup A(x, y) \subseteq \Delta$. Suppose $B(x, y) \cap \Delta \neq \emptyset$. Choose $t \in B(x, y) \cap \Delta$. Then there exists $y' \in \Gamma_3(x) \cap \Delta$ such that $t \in C(x, y')$. Note that $B(x, y) = B(x, y')$. This leads a contradiction to $t \in C(x, y')$. Hence $B(x, y) \cap \Delta = \emptyset$ and $\Gamma_1(x) \cap \Delta = C(x, y) \cup A(x, y)$. Then we have $|\Gamma_1(x) \cap \Delta| = a_3 + c_3$.

Since each vertex in Δ appears in a sequence of vertices $x = x_0, x_1, x_2, x_3$ in Δ , where $\partial(x, x_j) = j$ and $\partial(x_{j-1}, x_j) = 1$ for $1 \leq j \leq 3$, it suffices to show

$$|\Gamma_1(x_i) \cap \Delta| = a_3 + c_3 \quad (4.6)$$

for $1 \leq i \leq 2$. For each integer $0 \leq i \leq 2$, we show

$$|\Gamma_1(x_i) \setminus \Delta| \leq |\Gamma_1(x_{i+1}) \setminus \Delta|$$

by the 2-way counting of the number of the pairs (s, z) for $s \in \Gamma_1(x_i) \setminus \Delta$, $z \in \Gamma_1(x_{i+1}) \setminus \Delta$ and $\partial(s, z) = 2$. For a fixed $z \in \Gamma_1(x_{i+1}) \setminus \Delta$, we have $\partial(x, z) = i + 2$ by Lemma 4.6, so $\partial(x_i, z) = 2$ and $s \in A(x_i, z)$. Hence the number of such pairs (s, z) is at most $|\Gamma_1(x_{i+1}) \setminus \Delta|a_2$.

On the other hand, we show this number is exactly $|\Gamma_1(x_i) \setminus \Delta|a_2$. Fix an $s \in \Gamma_1(x_i) \setminus \Delta$. Observe $\partial(x, s) = i + 1$ by Lemma 4.6. Observe $\partial(x_{i+1}, s) = 2$ since $a_1 = 0$. Pick any $z \in A(x_{i+1}, s)$. We shall prove $z \notin \Delta$. Suppose $z \in \Delta$ in the below arguments and choose any $w \in C(s, z)$.

Case 1: $i = 0$.

Observe $\partial(x, z) = 2$, $\partial(x, s) = 1$ and $\partial(x, w) = 2$. This will force $s \in \Delta$ by Lemma 4.6, a contradiction.

Case 2: $i = 1$.

Observe $\partial(x, z) = 3$, otherwise $z \in \Omega(x, x_2)$ and this implies $s \in \Omega(x, x_2) \subseteq \Delta$ by Lemma 2.3 and Lemma 4.6, a contradiction. This also implies $s \in \Delta$ by Lemma 4.6, a contradiction.

Case 3: $i = 2$.

Observe $\partial(x, z) = 2$ or 3. Suppose $\partial(x, z) = 2$. Then $B(x, x_3) = B(x, s)$ by Lemma 4.4 (with $x_3 = u$, $x_2 = t$). Hence $s \in \Delta$, a contradiction. So $z \in \Gamma_3(x)$. Note $\partial(x, w) \neq 2, 3$, otherwise $s \in \Delta$ by Lemma 4.4 and Lemma

4.6 respectively. Hence $\partial(x, w) = 4$. Then by applying $\Omega = \Omega(x_2, w)$ in Theorem 2.5 we have $\partial(x_2, z) = 1$, a contradiction to $a_1 = 0$.

From the above counting, we have

$$|\Gamma_1(x_i) \setminus \Delta| a_2 \leq |\Gamma_1(x_{i+1}) \setminus \Delta| a_2 \quad (4.7)$$

for $0 \leq i \leq 2$. Eliminating a_2 from (4.7), we find

$$|\Gamma_1(x_i) \setminus \Delta| \leq |\Gamma_1(x_{i+1}) \setminus \Delta|, \quad (4.8)$$

or equivalently

$$|\Gamma_1(x_i) \cap \Delta| \geq |\Gamma_1(x_{i+1}) \cap \Delta| \quad (4.9)$$

for $0 \leq i \leq 2$. We have known previously $|\Gamma_1(x_0) \cap \Delta| = |\Gamma_1(x_3) \cap \Delta| = a_3 + c_3$. Hence (4.6) follows from (4.9). \square

Remark 4.7. The 4-bounded property seems to be much harder to be proved. We expect that the 3-bounded property is enough to classify all the distance-regular graphs with classical parameters, $a_1 = 0$ and $a_2 \neq 0$.

References

- [1] E. Bannai and T. Ito, *Algebraic Combinatorics I: Association Schemes*, Benjamin/Cummings, Menlo Park, 1984.
- [2] A.E. Brouwer, A.M. Cohen, and A. Neumaier, *Distance-Regular Graphs*, Springer-Verlag, Berlin, 1989.
- [3] A.E. Brouwer and H.A. Wilbrink, The structure of near polygons with quads., *Geometriae Dedicata*, 14(1883), 145–176.
- [4] A. Hiraki, Strongly closed subgraphs in a regular thick near polygon, *European Journal of Combinatorics*, 20(8)(1999), 789–796.
- [5] A.A. Ivanov and S.V. Shpectorov, Characterization of the association schemes of Hermitian forms over $GF(2^2)$, *Geometriae Dedicata*, 30(1989), 23–33.

- [6] Y. Pan, M. Lu, and C. Weng, Triangle-free distance-regular graphs, To appear in *Journal of Algebraic Combinatorics*.
- [7] E.E. Shult and A. Yanushka, Near n -gons and line systems, *Geometriae Dedicata*, 9(1980), 1–72.
- [8] H. Suzuki, On strongly closed subgraphs of highly regular graphs, *European Journal of Combinatorics*, 16(1995), 197–220.
- [9] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, *Kyushu Journal of Mathematics*, 50(2)(1996), 371–384.
- [10] P. Terwilliger, The subconstituent algebra of an association scheme (Part I), *Journal of Algebraic Combinatorics*, 1(1992), 363–388.
- [11] P. Terwilliger, A new inequality for distance-regular graphs, *Discrete Mathematics*, 137(1995), 319–332.
- [12] C. Weng, Weak-geodetically closed subgraphs in distance-regular graphs, *Graphs and Combinatorics*, 14(1998), 275–304.
- [13] C. Weng, D-bounded distance-regular graphs, *European Journal of Combinatorics*, 18(1997), 211–229.
- [14] C. Weng, Classical distance-regular graphs of negative type, *Journal of Combinatorial Theory, Series B*, 76(1999), 93–116.

Yeh-jong Pan
 Department of Applied Mathematics
 National Chiao Tung University
 1001 Ta Hsueh Road
 Hsinchu, Taiwan 300, R.O.C.
 Email: yjp.9222803@nctu.edu.tw
 Fax: +886-3-5724679

Chih-wen Weng
 Department of Applied Mathematics
 National Chiao Tung University
 1001 Ta Hsueh Road

Hsinchu, Taiwan 300, R.O.C.
Email: weng@math.nctu.edu.tw
Fax: +886-3-5724679