Circuitos Secuenciales Sincrónicos

Introducción al Diseño Lógico (E0301)

Ingeniería en Computación

Gerardo E. Sager

Clase 12 curso 2023

Circuitos Secuenciales Sincrónicos

Temas a tratar

- Introducción
- -Máquinas de Estado Finito
 - Modelo de Moore
 - Modelo de Mealy
- -Análisis de circuitos secuenciales sincrónicos
- -Sintesis de circuitos secuenciales sincrónicos
- Ejemplos

Introducción

Circuito secuencial sincrónico

Esquema general de un circuito secuencial sincrónico

El bloque "ESTADO" está formado pór biestables (Flip-Flops), todos ellos sincronizados por la misma señal de reloj.

Máquinas de Estados Finitos (FSM)

- El comportaniento de un circuito sincrónico puede representarse mediante una Máquina de Estados Finitos (FSM o Finite State Machine)
- Una Máquina de Estados Finitos tiene los siguientes elementos
 - X: Entradas
 - Y: Salidas
 - Z : Estados (Valores de los FF, cambian con cada flanco de reloj)
 - δ : Funciones de Estado (Funciones combinatorias de entrada de los FF)
 - λ: Funciones de Salida (Combinacionales)
- Una FSM se define como una serie de eventos en tiempos discretos. El estado Zcambia en cada evento y el cambio está definido por δ

Modelo de Moore

- En el modelo de Moore las salidas dependen únicamente de los estados (NO de las entradas)
- Formalmente podemos describir una máquina de Moore como:
 - $-Z = \delta(X,Z)$
 - $Y = \lambda (Z)$

Modelo de Moore

- El reloj y el reset no aparecen en las máquinas de estados, la asociación entre estas señales en un circuito y la máquina de estados es:
 - En cada flanco del reloj, se produce una transición o cambio de estado
 - El reset se utiliza únicamente para establecer el estado inicial
- En las máquinas de estados de Moore las salidas cambian únicamente si hay un cambio de estado
 - Las salidas están sincronizadas con el reloj

Modelo de Moore

- Una FSM se puede también representar mediante un diagrama de estados (STG o "State Transition Graph")
 - Cada estado se representa con un círculo
 - Cada transición de estado se representa con una flecha
 - Los diferentes valores de las entradas se representan en las flechas
 - En el caso del modelo de Moore, las salidas se representan dentro de cada estado
- Diagrama de estados (Moore)

Modelo de Mealy

- En el modelo de Mealy las salidas dependen tanto de las entradas como de los estados (Caso general)
- Formalmente podemos describir una máquina de Mealy como:
 - $-Z = \delta(X,Z)$
 - $Y = \lambda (X,Z)$

Modelo de Mealy

- Como vimos antes, una FSM se puede representar mediante un diagrama de estados (STG o "State Transition Graph")
 - Cada estado se representa con un círculo y cada transición de estado se representa con una flecha como antes.
 - En el caso del modelo de Mealy, las entradas se representan en las flechas junto con las salidas, ya que cuando cambien las entradas, tambien cambiará la salid

Modelo de Mealy

- Ygual que en Moore, el reloj y el reset no aparecen en las máquinas de estados,
- En las máquinas de estados de Mealy las salidas pueden cambiar en cualquier momento, (alcanza con que cambie una de las entradas)
 - Las salidas NO están sincronizadas con el reloj
 - De todas maneras el circuito sigue siendo sincrónico, ya que los biestables estan todos sincronizados con el mismo reloj.
 - Los estados SI están sincronizados con el reloj

Análisis y Síntesis de Circuitos Secuenciales Sincrónicos

- - Circuitos Combinacionales:
 - Obtener tablas de verdad o funciones booleanas
 - Circuitos Secuenciales:
 - Obtener diagrama de estados, o funciones de estado y de salida (δ y λ)
- Síntesis: Dada una funcionalidad, obtener la implementación de un circuito
 - Circuitos Combinacionales:
 - Obtener expresiones booleanas, implementar con puertas lógicas, multiplexores, decodificadores, etc.
 - Circuitos Secuenciales:
 - Obtener diagrama de estados e implementar las funciones de estado y de salida $(\delta y \lambda)$ con puertas lógicas, multiplexores, decodificadores y Biestables.

- **Análisis:** Obtener tabla de transiciones, calcular (δ y λ) y obtener diagrama de estados
- Ejemplo:

Tabla de transiciones:

Q1	Q0	ln	D1	D0	Q1+	Q0+	Out
0	0	0	0	1	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	0	0	1
0	1	1	1	0	1	0	1
1	0	0	0	1	0	1	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0

Diagrama estados (Mealy):

Diagrama estados (Moore):

- partir de la descripción de la funcionalidad de un circuito secuencial. los pasos a seguir para obtener una implementación son:
 - 1)Obtener diagrama de Estados
 - 2) Codificación de los Estados
 - 3)Obtener tablas de salidas y de transiciones de estados
 - 4)Obtener tabla de excitación de los Biestables, también se la llama tabla inversa
 - 5)Obtener funciones de salida
 - 6)Obtener funciones de estado
 - 7)Implementar con FF y Lógica/ MuX /Decodif.
- La diferencia entre Moore y Mealy está en las funciones de salida

Tablas de excitación o tablas inversas de los Biestables

- Tablas de excitación o Tablas inversas
 - Describen todas las posibles combinaciones de entradas que permiten pasar del estado actual Q al estado siguiente Q*

- Problema: Diseñar un circuito secuencial sincrónico que permita detectar una secuencia de tres o más "unos" consecutivos a través de una entrada serie
 - La entrada se lee en cada flanco ascendente del reloj
 - La salida se activa cuando se detecta la secuencia

- Ejemplo de secuencia de entradas y de salidas
- X: 0 0 1 1 0 1 1 1 1 1 0 0 1 1 1
- Z: 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1

• Ejemplo 1: Mealy con FF tipo D

Diagrama de estados:

Codificación de estados:

- Ejemplo 1: Mealy con FF tipo D
 - Tabla de transiciones y tabla de salidas (combinadas juntas):

In	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	Х	Х	Х
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Х	Х	Х
1	1	1	1	1	1

- Ejemplo 1: Mealy con FF tipo D
 - Tabla inversa de biestables (biestables D):

Función de salida:

Funciones de estado

$$D_1 = Q_0 In$$

$$D_0 = In$$

- Ejemplo 2: Mealy con FF tipo JK
- Tabla inversa de biestables (biestables J-K):

In	Q1	Q0	Q1+	Q0+	Out	J1	K1	J0	K0
0	0	0	0	0	0	0	Х	0	X
0	0	1	0	0	0	0	Х	Х	1
0	1	0	Х	Х	Х	Х	Х	Х	Х
0	1	1	0	0	0	Х	1	Х	1
1	0	0	0	1	0	0	Х	1	Х
1	0	1	1	1	0	1	Х	Х	0
1	1	0	Х	Х	Х	Х	Х	Х	Х
1	1	1	1	1	1	Х	0	Х	0

- Función de salida:
- $Out = Q_1 In$
- Funciones de estado

• Ejemplo 2: Mealy con FF tipo JK

7. Implementación

$$Out = Q_1In$$

 $J_0 = In$
 $K_0 = \overline{In}$
 $J_1 = Q_0In$
 $K_1 = \overline{In}$

jemplo 3: Mealy con una codificación diferente

Diagrama de estados:

Codificación de estados:

- Ejemplo 3: Mealy con una codificación diferente
 - Tablas de transiciones y salidas (combinadas en una sola):

ln	Q1	Q0	Q1+	Q0+	Out
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	Х	Х	Х
1	0	0	0	1	0
1	0	1	1	0	0
1	1	0	1	0	1
1	1	1	Х	Х	Х

- Ejemplo 3: Mealy con una codificación diferente y FF tipo D
 - Tabla inversa de biestables (biestables D):

Función de salida:

Funciones de estado

Éjemplo 3: Mealy con una codificación diferente y FF tipo D

Implementación

Con esta otra codificación sale más complejo y se requieren más puertas lógicas para la implementación

$$Out = Q_1 In$$

$$D_1 = In(Q_0 + Q_1)$$

$$D_0 = \overline{Q_1 Q_0} In$$

Ejemplo 4: Moore con biestables tipo D

Q1	Q0	ESTADO
0	0	S0
0	1	S1
1	0	S3
1	1	S2

2. Codificación de Estados

Ejemplo 4: Moore con biestables tipo D

In	Q1	Q0	Q1+	Q0+
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	1	0
1	1	1	1	0

Q1	Q0	OUT
0	0	0
0	1	0
1	0	1
1	1	0

3. Tabla de Salidas

3. Tabla de Transiciones

Ejemplo 4: Moore con biestables tipo D

 Tabla inversa de biestables (biestables D):

In	Q1	Q0	Q1+	Q0+	D1	D0
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	1	0	1	0
1	1	1	1	0	1	0

Función de salida:

Funciones de estado

$$D_0 = \overline{Q_1} In$$

Ejemplo 4: Moore con biestables tipo D

7. Implementación

