Hervé Schmit-Veiler Devoir Maison : trajectoire d'un ballon de rugby
Zéposer ce fichier notebook complété (ou sa version Python/Spyder) ainsi que le fichier de données sur Moodle via la page consacrée à votre demi-groupe. Renommer le fichier suivant : DM_NomPrenom_S2.ipynb pour un fichier jupyter-notebook
• DM_NomPrenom_S2.py pour un fichier python pur et • trajectoire_NomPrenom.txt pour le fichier de données ATTENTION: Abolir totalement l'emploi des espaces lettres accentuées et autres symboles dans le nom du fichier l
ATTENTION: Abolir totalement l'emploi des espaces, lettres accentuées et autres symboles dans le nom du fichier! Les points suivants seront pris en compte pour l'évaluation: respect des consignes qualité des données extraites via Tracker mise en forme des figures (légendes, unités, titre etc) clarté des programmes et mise en page
Tracker Créer avec Tracker un echantillonnage de la vidéo. On pourra utiliser la hauteur de la barre transversale (3 mètres) pour la calibration. Sauvegarder le fichier de données au (format txt par défaut) sous le nom : trajectoire_NomPrenom_S2.txt
Extraction des données et représentation
<pre>import numpy as np t, x, y = np.genfromtxt("trajectoire_SchmitVeilerHerve.txt", dtype=float, skip_header=2, delimiter=" ", unpack=True, usecols=(0,1,2)) print(t, "\nnumber of data points =", len(t)) print(type(t))</pre>
<pre>tmin = t[0] for i in range(len(t)): t[i] -= tmin [4.2 4.233 4.267 4.3 4.333 4.367 4.4 4.433 4.467 4.5 4.533 4.567 4.6 4.633 4.667 4.7 4.733 4.767 4.8 4.833 4.867 4.9 4.933 4.967 5. 5.033 5.067 5.1 5.133 5.167 5.2 5.233 5.267 5.3 5.333 5.367 5.4 5.433 5.467 5.5 5.533 5.567 5.6 5.633 5.667 5.7 5.733 5.767 5.8 5.833 5.867 5.9 5.933 5.967 6. 6.033 6.067 6.1 6.133 6.167 6.2 6.233 6.267 6.3 6.333 6.367 6.4 6.433 6.467 6.5 6.533 6.567</pre>
6.6 6.633 6.667 6.7 6.733 6.767 6.8 6.833 6.867 6.9 6.933 6.967 7. 7.033 7.067 7.1 7.133 7.167 7.2 7.233 7.267 7.3 7.333] number of data points = 95 $<$ class 'numpy.ndarray'> Tracer la loi horaire: $x(t)$
plt.plot(t, x, label="x(t)") plt.legend() plt.title("Tracé de x(t)") plt.show() Tracé de x(t)
40 - 30 -
20 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tracer la loi horaire : $y(t)$
<pre>plt.plot(t, y, label="y(t)") plt.legend() plt.title("Tracé de y(t)") plt.show()</pre> Tracé de y(t)
10 - 8 -
6-4-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<pre>plt.plot(x, y, label="y(x)") plt.legend() plt.title("Tracé de y(x)") plt.show()</pre> Tracé de y(x)
8-
4-2-2-
10 20 30 40 50 On voit que la trajectoire n'est pas symmetrique par rapport à son sommet. Traitement des données
Calcul des composantes horizontale (v_x) et verticale (v_y) de la vitesse du ballon en utilisant la méthode des différences finies centrales . On créera 2 listes vx et vy pour stocker les valeurs. Quelle est la taille du vecteur vx et de vy ? Faire afficher le résultat.
<pre># central finite diff. to approximate gradient def cfd_grad(T, X): dX = np.zeros(len(X)-2) for i in range(len(dX)): dX[i] = (X[i+2]-X[i])/(T[i+2]-T[i]) return dX # progressive finite diff. def fd_grad(T, X): dX = np.zeros(len(X))</pre>
<pre>dX = np.zeros(len(X)) for i in range(len(dX)): if i == len(dX)-1: dX[i] = (X[i]-X[i-1])/(T[i]-T[i-1]) continue dX[i] = (X[i+1]-X[i])/(T[i+1]-T[i]) return dX</pre> <pre>vx = cfd_grad(t, x) vy = cfd_grad(t, y)</pre>
starts at element 1 and stops on the last element without including it tv = t[1:-1] N = len(tv) print('number of data points = ', N) number of data points = 93
Tracer les composantes de la vitesse du ballon en fonction du temps, ie. $v_x(t)$ et $v_y(t_v)$
Tracé de $v_x(t)$ 25.0 - $v_x(t)$ 22.5 -
20.0 - 17.5 - 15.0 -
10.0 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tracer la composante horizontale de la vitesse du ballon en échelle semi-logarithmique, ie. $\log(v_x)$ en fonction de t_v from numpy import $\log \# logarithme \ naturel = "ln"$ $\log_v = np \cdot \log(vx)$ $plt \cdot plot(tv, \log_v x, label = "$ \log(v_x(t))$")$
$ \begin{array}{c} \text{plt.legend()} \\ \text{plt.title("Tracé de $\setminus \log(v_x(t))$")} \\ \text{plt.show()} \end{array} $
3.0 - 2.8 -
2.4 - 2.2 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Régression linéaire et temps caractéristiques
• La composante horizontale de la vitesse doit vérifier la relation suivante : $v_x(t)=v_x^0\exp\left(-\frac{t}{\tau}\right)$ avec $v_x^0=v_x(t=0)\cos(\alpha)$ où α est l'angle de tir et $v_x(t=0)$ la vitesse initiale suivant (Ox) . Le paramètre $\tau=m/\mu$ correspond au temps caractéristique de décroissance de la vitesse
• La composante verticale de la vitesse doit vérifier la relation suivante : $v_y(t) = v_y^0 \exp\left(-\frac{t}{\tau}\right) + v_{\rm lim}\left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$ avec $v_y^0 = v_y(t=0)\sin(\alpha)$ et $v_{\rm lim} = \tau g = \lim_{t \to \infty} v_y(t)$ représente l'asymptote verticale de la vitesse.
A l'aide d'un ajustement linéaire de $\ln(v_x)$ en fonction de t , déduire la valeur numérique de $ au$: $\ln(v_x) = \ln(v_x^0) - \frac{t}{\tau} = a_0 + a_1 \ t$ from scipy.optimize import curve_fit
<pre>from numpy import ones, sqrt # a0 = ln(vx(0)) # a1 = -1/tau def lin_model(t, a0, a1): return a0 + a1*t [a0, a1], pvar = curve_fit(f=lin_model, xdata=tv, ydata=log_vx) print(a0, a1)</pre>
tau = -1/a1 print("τ =", tau) 3.214078874266607 -0.36224514084549586 τ = 2.7605615293167403 Tracer la droite de regression
<pre>from numpy import linspace, arange tv_model = np.linspace(min(tv), max(tv), 1000) vx_model = lin_model(tv_model, a0, a1) plt.plot(tv, log_vx, linestyle='', marker='o', label="\$\log(v_x(t))\$") plt.plot(tv_model, vx_model, label=f"adjustement linéaire: {a0:.3f} + {a1:.3f}t") plt.legend() plt.title("Tracé de \$\log(v_x(t))\$ avec adjustement linéaire")</pre>
plt.show() plt.savefig('figs/figure_x.png', dpi=300, format='png', transparent=True) Tracé de $log(v_x(t))$ avec adjustement linéaire $log(v_x(t))$ $adjustement linéaire: 3.214 + -0.362t$
2.8 - 2.6 -
2.4 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 $<$ Figure size 640x480 with 0 Axes>
<pre>vy_cst = vy + g*tau plt.plot(tv, vy_cst, linestyle='', marker='o', label="\$v_{cst}(t)\$") plt.legend() plt.title("Tracé de \$v_{cst}(t)\$") plt.show()</pre> Tracé de v _{cst} (t)
40 - v _{cst} (t) 35 -
30 - 25 - 20 -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Tracer la partie non constante de la composante verticale de la vitesse du ballon en échelle semi-logarithmique, ie. $\log(v_y(t)-v_{ m lim})$ en fonction de t
<pre>log_vy_cst = np.log(vy_cst) plt.plot(tv, log_vy_cst, linestyle='', marker='o', label="\$\log(v_{cst}(t))\$") plt.legend() plt.title("Tracé de \$\log(v_{cst}(t))\$") plt.show()</pre> Tracé de log(v _{cst} (t))
$\log(v_{cst}(t))$
3.4 - 3.2 - 3.0 -
2.8 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0
A l'aide d'un ajustement linéaire de $\ln(v_y(t)-v_{ m lim})$ en fonction de t , déduire la valeur numérique de $ au$: $\ln ig(v_y(t)-v_{ m lim}ig) = \ln ig(v_x^0-v_{ m lim}ig) - \frac{t}{ au} = a_0 + a_1t$ from scipy optimize import curve_fit
from numpy import ones, sqrt [a2, a3], pvar = curve_fit(f=lin_model, xdata=tv, ydata=log_vy_cst) print(a2, a3) tau2 = -1/a3 print("\tau = ", tau2) 3.721096827389121 -0.28843072160840455 \tau = 3.467037056328819
<pre>vcst_model = lin_model(tv_model, a2, a3) plt.plot(tv, log_vy_cst, linestyle='', marker='o', label="\$\log(v_{cst}(t))\$") plt.plot(tv_model, vcst_model, label=f"adjustement linéaire: {a2:.3f} + {a3:.3f}t") plt.legend() plt.title("Tracé de \$\log(v_{cst}(t))\$ avec adjustement linéaire") plt.show() plt.savefig('figs/figure_2.png', dpi=300, format='png', transparent=True)</pre>
Tracé de $\log(v_{cst}(t))$ avec adjustement linéaire
log(v _{cst} (t))
3.6 - adjustement linéaire: 3.721 + -0.288t 3.4 - 3.2 -
3.6 - adjustement linéaire: 3.721 + -0.288t 3.4 - 3.2 - 2.8 - 0.0 0.5 1.0 1.5 2.0 2.5 3.0
3.6 - adjustement linéaire: 3.721 + -0.288t 3.4 - 3.2 - 2.8 - 2.8 - 3.0
adjustement linéaire: 3.721 + -0.288t 3.4 3.2 3.0 2.8 Ou
adjustement linéaire: 3.721 + -0.288t 3.4 3.2 3.0 2.8
adjustement linéaire: 3.721 + -0.288t 3.4 3.2 3.0 -2.8 -2.8 -2.8 -2.8 -2.8 -3.0 -2.8