

## **ANSWER KEYS**

| 1. (2)         | <b>2.</b> (1) | 3. (2) | <b>4.</b> (1) | <b>5.</b> (2) | <b>6.</b> (2) | 7. (4) | <b>8.</b> (3) |  |
|----------------|---------------|--------|---------------|---------------|---------------|--------|---------------|--|
| 6//cashathanaa | 46 mathanas   |        |               |               |               |        |               |  |

1. (2) Let 
$$f(x) = x^{25}(1-x)^{75}$$
,  $x \in [0, 1]$  mathong with mathon with m

$$\Rightarrow f(x) = 25x^{24}(1-x)^{13} - 75x^{25}(1-x)^{14}$$

$$= 25x^{24}(1-x)^{74}\{(1-x)^{-34}\}$$
mathongo /// mathongo // mathongo // mathongo /// mathongo // mathong

Which shows that f'(x) is positive for  $x < \frac{1}{4}$  and f'(x) is negative for  $x > \frac{1}{4}$ 

$$\Rightarrow f'(x) = 1 + \log x$$
Now for  $f(x)$  to be minimum,

 $f'(x) = 0$ 

| Mathongo |

$$\begin{array}{c} \Rightarrow 1 + \log x = 0 \\ \text{mathongo} \\ \Rightarrow \log_e x = -1 \\ \Rightarrow x = e^{-1} = \frac{1}{2} \end{array}$$
 mathongo /// mathongo // mathongo // mathongo /// matho

Also 
$$f$$
 "  $(x) = \frac{1}{x}$  mathongo  $\frac{e}{x}$  math

$$\Rightarrow f(x) \text{ is minimum at } x = \frac{1}{e} \text{ and the minimum value is } f\left(\frac{1}{e}\right) = \frac{1}{e}\log\frac{1}{e} = \frac{-1}{e}$$
mathongo

/// matho(
$$\frac{-\sin x}{2}$$
 mathongo /// math

$$f'(x) = \begin{cases} 3x^2 + 2x - 10 & -1 \le x \le 0 \\ -\sin x & \cot 0 \le x \le \frac{\pi}{2} \end{cases}$$
 mathongo /// mathongo // mathongo /// mathongo // mathong

It is clear that all functions are decreasing in their respective interval



$$\therefore f\left(\frac{\pi}{2} - h\right) < \left(2 = f\left(\frac{\pi}{2}\right), f\left(\frac{\pi}{2} + h\right) < f\left(\frac{\pi}{2}\right)\right)$$

$$f(x) \text{ has a local maximum at } x = \frac{\pi}{2}$$

$$f(x)$$
 has a local maximum at  $x = \frac{\pi}{2}$  mathongo /// mathongo ///

Given function 
$$f(x) = \begin{cases} |x-1| + a \text{ if } x \le 1 \\ 2x + 3 \text{ if } x > 1 \text{ and } x = 1, \end{cases}$$
 mathongo // mathongo /

mathongo 
$$(2x+3)$$
 if  $x \ge 1$  ongo  $(2x+3)$  mathongo  $(2x+3)$  math

$$\therefore f(1+h) > f(1)$$
 and  $f(1-h) > f(1)$ 

Now, at  $x = 1$ ,  $f(1) = a$ , ongo /// mathongo /// matho



## **Answer Keys and Solutions**





## **Answer Keys and Solutions**

| Answer Keys and Solutions                                                     |                                      |  |  | JEE Main Crash Course |
|-------------------------------------------------------------------------------|--------------------------------------|--|--|-----------------------|
| 10. (1) Let $r$ be the radius of t                                            | the cylinder and $2h$ be the height. |  |  |                       |
| mathons h nai                                                                 | mathongo ///                         |  |  |                       |
| /// mathongo                                                                  | longo ///. mathongo ///.             |  |  |                       |
| $\Rightarrow V = \pi r^2 (2h)$ Also $h^2 + r^2 = \left(\sqrt{3} ight)^2 =$    | nongo /// mathongo ///               |  |  |                       |
| $V=2\pi h (3-h^2)$ $M=2\pi (3h-h^3)$ $M=\frac{dV}{dh}=0 \Rightarrow 3-3h^2=0$ |                                      |  |  |                       |
| $\Rightarrow h=1 \ V_{ m max}=2\pi(3-1){=4\pi}.$                              |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |
|                                                                               |                                      |  |  |                       |