✓ 第一件事,图卷积与卷积有啥不同?

❷ 但是在图中每个点的邻居是不确定的

Actor 4

❤ 图中常见任务

- ∅ 节点分类,对每个节点进行预测,不同点是否有连接预测
- ❷ 整个图分类, 部分图分类等, 不同子图是否相似, 异常检测等
- ♂ GCN归根到底还是要完成特征提取操作,只不过输入对象不是固定格式

✓ 如何获取特征呢?

❷ 别再绞尽脑汁各种套路─顿想了,交给神经网络神经网络就得了

❷ 通常交给GCN两个东西就行: 1.各节点输入特征; 2.网络结构图

Semi-supervised learning

Ø 这个也是GCN优势

❷ 不需要全部标签

》用少量标签也能训练

✓ GCN的基本思想

♂针对橙色节点, 计算它的特征: 平均其邻居特征(包括自身)后传入神经网络

✅ 网络层数

♂ 这个跟卷积类似,GCN也可以做多层,每一层输入的还是节点特征

❤ 图中基本组成

Ø G就是咱们的图

A是邻接矩阵

D是各个节点的度

F是每个节点的特征

	A	В	C	D	E
A	0	0	0	0	1
В	0	0	0	1	1
C	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

Adjacency matrix A

	Α	В	С	D	E
Α	1	0	0	0	0
В	0	2	0	0	0
C	0	0	2	0	0
D	0	0	0	3	0
E	0	0	0	0	4

Degree matrix D

Α	-1.1	3.2	4.2
В	0.4	5.1	-1.2
С	1.2	1.3	2.1
D	1.4	-1.2	2.5
E	1.4	2.5	4.5

Feature vector X

✓ 特征计算方法

❷ 其实就是邻接矩阵与特征矩阵进行乘法操作,表示聚合邻居信息

✓ 一点小问题

 ${\mathscr O}$ 光想着别人,没考虑自己呢: $ilde{A}=A+\lambda I_N$

夕 只需要在邻接矩阵中

❷ 加上自己就可以啦

❷ 但是还有木有啥问题呢?

	Α	В	С	D	E
Α	0	0	0	0	1
В	0	0	0	1	1
C	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

Adjacency matrix A

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Identity matrix I

	Α	В	C	D	E	
Α	1	0	0	0	1	
В	0	1	0	1	1	
С	0	0	1	1	1	
D	0	1	1	1	1	
E	1	1	1	1	1	
	7					

New Adjacency matrix \widetilde{A}

❤ 度矩阵也要变一变

 \mathcal{O} 其实就是对度矩阵进行 $\tilde{D}^{-}\{-1\}$ 这样就相当于平均的感觉了

	Α	В	C	D	E
A	1	0	0	0	1
В	0	1	0	1	1
C	0	0	1	1	1
D	0	1	1	1	1
E	1	1	1	1	1

	<u> </u>	_	_
0	0	0	0
3	0	0	0
0	3	0	0
0	0	4	0
0	0	0	5
	0	3 0 0 3 0 0	3 0 0 0 3 0 0 0 4

	-				
New					
NOW	apar	oo n	nsti	· IIV	
IACAA	uesi		Hati	100	_
					_

ダ 矩阵scale

 ${\mathscr O}$ 乘法嘛,也可以这样: $({ ilde D}^{-1}{ ilde A})X$

	A	В	C	D	E
A	1	0	0	0	1
В	0	1	0	1	1
C	0	0	1	1	1
D	0	1	1	1	1
E	1	1	1	1	1

New Adjacency matrix \widetilde{A}

Feature vector X

❷ 所以 \tilde{D}^{-1} 就相当于scale方法了

❷ 但是这一步就够了吗?

1/2	0	0	0	0
0	1/3	0	0	0
0	0	1/3	0	0
0	0	0	1/4	0
0	0	0	0	1/5

 \widetilde{D}^{-1}

"Sum of neighbors" matrix

ダ 矩阵scale

❷ 那么列咋办呢? 同理

0 1/3	0	0	0	X	7	-		Fage:	D	E
-		0	0		40	A		1000		
1/3	_				A	1	0	0	0	1
100	0_	0	0		B	0	1	0	1	1
0	1/3	0	0	*	С	0	0	1	1	1
0	0	1/4	0		D	0	1	1	1	1
0	0	0	1/5		E	1	1	1	1	1
	0	0 0	0 0 1/4	0 0 1/4 0	0 0 1/4 0	0 0 1/4 0 D	0 0 1/4 0 D 0	0 0 1/4 0 D 0 1	0 0 1/4 0 D 0 1 1	0 0 1/4 0 D 0 1 1 1

	Α	-1.1	3.2	4.2
	В	0.4	5.1	-1.2
×	С	1.2	1.3	2.1
	D	1.4	-1.2	2.5
	E	1.4	2.5	4.5

Feature vector X

New scale factor for columns

∅ 所以咱们现在的公式:

 $ilde{D}^{-1} ilde{A} ilde{D}^{-1}X$

Feature vector X

-1.1 3.2 4.2

0.4 5.1 -1.2

1.2 1.3 2.1

1.4 -1.2 2.5

1.4 2.5 4.5

ダ 矩阵scale

❷ 还得再变变,由于咱们行列都进行了归一化,这相当于两次了

∅ 我去网吧被抓到了,我妈揍了我一顿,我爸又揍了我一顿

 ${\mathscr O}$ 好像有点亏,要不咱们这么整吧: $\tilde D^{-1/2} \tilde A \tilde D^{-1/2} X$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

❤ 我的理解

- \mathscr{O} 相当于这么个事, $\sqrt{\tilde{D}_{ii}\tilde{D}_{jj}}$ 表示分别对行和列完成归一化
- ② 现在有小红和小绿两个人 $\frac{1}{\sqrt{\deg(v_i)}\cdot\sqrt{\deg(v_j)}} \stackrel{1}{\Rightarrow} \hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}$
- ❷ 当计算小红的特征的时候,它只跟小绿有关系
- Ø 那小绿继承了300亿,小红也是? √deg(v_i)·√deg(v_j)

会把其关系的权重变的很小,因为小绿的度很大

✅ 基本公式

∅ 例如完成一个十分类任务的,F就为10表示输出层

 $Z=f(X,A)=\operatorname{softmax}(\hat{A}\operatorname{ReLU}(\hat{A}XW^{(0)})W^{(1)})$ Trainable weights (*ExH*)

First layer

Scaled adjacency matrix (NxN)

Feature vector matrix (NxC)

✓ GCN的层数

∅ 但是实际的图中可能不需要那么多

♂ 在社交网络中,只需6个人你可以认识全世界

✓ GCN的层数

❷ 在多个图数据集中,都可以发现两三层的比较合适,多了反而差了

