SYNOPSIS OF GEOMETRIC ALGEBRA

DIEGO HERRERA

Taken from [?].

Generally useful relations and formulas for the geometric algebra \mathcal{G}_3 of Euclidean (3-)space, \mathcal{E}^3 , are listed here.

For vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , ... and scalars α , β , ..., the Euclidean geometric algebra has the following properties ¹

- (1) associativity: $\mathbf{a}(\mathbf{bc}) = (\mathbf{abc})$ $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$.
- (2) commutativity: $\alpha \mathbf{b} = \mathbf{b} \alpha$ $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$.
- (3) distributivity: $\mathbf{a}(\mathbf{b} + \mathbf{c}) = \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{c}$ $(\mathbf{b} + \mathbf{c})\mathbf{a} = \mathbf{b}\mathbf{a} + \mathbf{c}\mathbf{a}$.
- (4) linearity: $\alpha(\mathbf{b} + \mathbf{c}) = \alpha \mathbf{b} + \alpha \mathbf{c} = (\mathbf{b} + \mathbf{c})\alpha$.
- (5) contraction: $\mathbf{a}^2 = \mathbf{a}\mathbf{a} = |\mathbf{a}|^2$.

Contraction makes the algebra Euclidean!

The multiplicative inverse of a nonzero vector **a** is given by $\mathbf{a}^{-1} = \mathbf{a}/\mathbf{a}^2$.

The inner (symmetric) product of two vectors is defined as $\mathbf{a} \cdot \mathbf{b} \equiv (\mathbf{ab} + \mathbf{ba})/2$.

The outer (antisymmetric) product of two vectors is defined as $\mathbf{a} \wedge \mathbf{b} \equiv (\mathbf{ab} - \mathbf{ba})/2$.

The geometric product \mathbf{ab} is related to the inner product $\mathbf{a} \cdot \mathbf{b}$ and to the outer product $\mathbf{a} \wedge \mathbf{b}$ by

$$ab = a \cdot b + a \wedge b = b \cdot a - b \wedge a = 2a \cdot b - ba$$
.

Also notice $\mathbf{a}\mathbf{a} = \mathbf{a} \cdot \mathbf{a}$, $\mathbf{a} \wedge \mathbf{a} = 0$ and $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$.

The geometric interpretation of the geometric product ab is that

$$\mathbf{ab} = -\mathbf{ba}$$
 iff $\mathbf{a} \cdot \mathbf{b} = 0$, [orthogonal vectors] $\mathbf{ab} = +\mathbf{ba}$ iff $\mathbf{a} \wedge \mathbf{b} = 0$. [colinear vectors]

That is, the geometric product anticommutes for orthogonal (perpendicular) vectors and commutes for colinear vectors.

For any multivectors A, B, C, ..., the scalar part of the geometric product satisfies $\langle AB \rangle_0 = \langle BA \rangle_0$.

Selectors without a grade subscript select for the scalar part, so that $\langle \ldots \rangle = \langle \ldots \rangle_0$.

Reversion satisfies $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$, $\mathbf{a}^{\dagger} = \mathbf{a}$ and $\langle A^{\dagger} \rangle = \langle A \rangle^{\dagger} = \langle A \rangle$.

The unit right-handed pseudoscalar isatisfies $i^2 = -1$, $\mathbf{a}i = i\mathbf{a} = \mathbf{a} \cdot i$. Additionally, $i^{-1} = -i$.

The vector cross product $\mathbf{a} \times \mathbf{b}$ is implicitly defined as $\mathbf{a} \wedge \mathbf{b} = i(\mathbf{a} \times \mathbf{b}) = i\mathbf{a} \times \mathbf{b}$ or given explicitly by $\mathbf{a} \times \mathbf{b} = -i(\mathbf{a} \wedge \mathbf{b})$.

Inner and outer products are related by the duality relations: $\mathbf{a} \wedge (i\mathbf{b}) = (\mathbf{a} \cdot \mathbf{b})i$ and $\mathbf{a} \cdot (i\mathbf{b}) = (\mathbf{a} \wedge \mathbf{b})i = \mathbf{b} \times \mathbf{a}$.

Date: March 10, 2013.

Key words and phrases. mathematical modeling index notation engineering.

¹ Remember: herein the geometric algebra of \mathcal{E}^n is a linear space with a (geometric) product defined. k-vectors, k-blades and multivectors are generated from vectors (elements of \mathcal{E}^n), scalar multiplication, vector addition (linear combinations) and vector (geometric) multiplication.

2 D. HERRERA

Every multivector A can be uniquely expressed in the expanded form

$$A = \alpha + \mathbf{a} + i\mathbf{b} + i\beta = \sum_{k=0}^3 \langle A \rangle_k \,,$$

where the k-vector parts are $\langle A \rangle_0 = \alpha$, $\langle A \rangle_1 = \mathbf{a}$, $\langle A \rangle_2 = i\mathbf{b}$ and $\langle A \rangle_3 = i\beta$. The even part is a quaternion of the form $\langle A \rangle_+ = \alpha + i\mathbf{b}$.

The conjugate \widetilde{A} of A is defined by

$$\widetilde{A} = \langle A^{\dagger} \rangle_{+} - \langle A^{\dagger} \rangle_{-} = \alpha - \mathbf{a} - i\mathbf{b} + i\beta.$$

Precedence Convention: to avoid the usage of too many parentheses, adopt the product precedence convention: 1) outer products, 2) inner products and 3) geometric products.

Algebraic identities:

 \mathbf{a}

Tensor: A

Tensor product: $A \otimes B$