A random sample of 50 observations of the continuous random variable X was taken and the values are summarised in the following table.

Interval	$0 \leqslant x < 0.8$	$0.8 \le x < 1.6$	$1.6 \le x < 2.4$	$2.4 \le x < 3.2$	$3.2 \leqslant x < 4$
Observed frequency	18	16	8	6	2

It is required to test the goodness of fit of the distribution with probability density function f given by

$$f(x) = \begin{cases} \frac{3}{16}(4-x)^{\frac{1}{2}} & 0 \le x < 4, \\ 0 & \text{otherwise.} \end{cases}$$

The relevant expected frequencies, correct to 2 decimal places, are given in the following table.

Interval	$0 \leqslant x < 0.8$	$0.8 \le x < 1.6$	1.6 ≤ <i>x</i> < 2.4	$2.4 \le x < 3.2$	$3.2 \leqslant x < 4$
Expected frequency	14.22	12.54	10.59	8.18	4.47

- (i) Show how the expected frequency for $1.6 \le x < 2.4$ is obtained.
- (ii) Carry out a goodness of fit test at the 5% significance level. [7]

[3]