EM384: Analytical Methods for Engineering Management

Lesson 25: Site Selection Problems

Table of contents

1. Lesson Objectives

2. Site Selection Problems

3. Conclusion

Lesson Objectives

Lesson Objectives

- Recognize a site selection problem given a transportation problem.
- Formulate and solve in Excel a site selection problem using binary decision variables.

Site Selection Problems

Site Selection Formulation

- Binary decision variables can be used as a "site selection" variable.
- This arises in the case where sites (either supply, demand, or transshipment nodes) have a fixed cost that is incurred when they are used.
- The mathematical linear programming model (transportation or transshipment) is modified in the following way:
 - We define a binary decision variable y_i for each site i that has a fixed cost F_i (assuming n total sites that have a fixed cost).
 - We add $\sum_{i=1}^{n} F_i y_i$ to the objective function.
 - We modify the RHS constraint of supply/demand nodes with a fixed cost by multiplying the capacity by y_i .
 - if there are fixed costs associated with the use of a transshipment node, we add a new constraint $total_flow_in \le y_iM$ where M is some large number(it is called "big M" in the literature).

Example Transportation Problem without Fixed Costs

Consider the following regular transportation problem with three supply nodes A,B, and C, and a single demand node D. The cost of unit flow between nodes is $c_{AD} = \$1$, $c_{BD} = \$2$, and $c_{CD} = \$3$. Assume a supply of 100 units at each supply node and a demand of 100 units at the demand node.

Decision Variables:

 X_{AD}, X_{BD}, X_{CD}

Objective Function:

Minimize $Z = x_{AD} + 2x_{BD} + 3x_{CD}$

Constraints:

 $x_{AD} \le 100$

 $X_{BD} \leq 100$

 $x_{CD} \leq 100$

 $x_{AD} + x_{BD} + x_{CD} = 100$

 $x_{AD}, x_{BD}, x_{CD} \geq 0$

Example Transportation Problem WITH Fixed Costs

Now consider the same transportation problem, but with a fixed cost F_i for each supply site, where F_A =1000, F_B = 500, and F_C = 500. We modify our original formulation to incorporate these fixed site costs, and reformulate the problem.

 y_A , y_B , y_C are binary decision variables where $y_i = 0$ means the site is not selected, and

 $y_i = 1$ means the site is selected. A fixed cost for a site is only incurred if the site is selected. Additionally, we only allow flow out of a site if it is selected. Thus, we need to change our supply constraints to also be *linking* constraints.

New Formulation

Decision Variables:

$$X_{AD}, X_{BD}, X_{CD}$$

 y_A , y_B , y_C are binary decision variables where $y_i=0$ means site i is not selected, and $y_i=1$ means site i is selected, $\forall i \in \{A,B,C\}$

Objective Function:

Minimize

$$Z = x_{AD} + 2x_{BD} + 3x_{CD} + F_A y_a + F_B y_B + F_c y_c$$
Constraints:

$$x_{AD} \le 100 \, V_A$$

$$x_{BD} \leq 100 \, y_B$$

$$x_{CD} \leq 100 \, \text{y}_{\text{C}}$$

$$X_{AD} + X_{BD} + X_{CD} = 100$$

$$X_{AD}, X_{BD}, X_{CD} \geq 0$$

$$y_A, y_B, y_C \in \{0, 1\}$$

In-Class Exercise

Let there be four supply nodes $\{1, 2, 3, 4\}$ and four demand nodes $\{5, 6, 7, 8\}$. Supply and demand quantities, as well as fixed location costs for the supply nodes are indicated in the table below.

- 1. Formulate a Binary Integer Program to minimize the cost of meeting the demand in this problem.
- 2. Model and solve your model in Excel and report the facilities (supply nodes) that are active in your optimal solution.

Parameters							
Fr	om/To	5	6	7	8	Supply (Mi)	Fixed Cost (Fi)
	1	5	5	5	5	1000	\$2,000,000.00
	2	10	10	10	10	1000	\$1,000,000.00
	3	10	10	10	10	1000	\$1,000,000.00
	4	5	5	5	5	1000	\$2,000,000.00
De	emand	500	500	500	500		
-		230	500	200	200		

Decision Variables:

Let x_{ij} be the flow from node i to node j, $\forall i \in \{1, 2, 3, 4\}, j \in \{5, 6, 7, 8\}$ Let y_i be a binary decision variable, $\forall i \in \{1, 2, 3, 4\}$, where $y_i = 0$ means site i is not selected, and $y_i = 1$ means site i is selected.

Objective Function:

Let c_{ij} be the cost of transporting one good from node i to node j and F_i be the fixed cost of site i (See table).

Minimize
$$Z = \sum_{i=1}^{4} \sum_{j=5}^{8} c_{ij} x_{ij} + \sum_{i=1}^{4} F_i y_i$$

Constraints:

$$\sum_{j=5}^{8} x_{ij} \le 1000 y_i \,\forall i \in \{1, 2, 3, 4\}$$
$$\sum_{j=1}^{4} x_{ij} = 500 \,\forall j \in \{5, 6, 7, 8\}$$

$$x_{ij} \ge 0 \ \forall i \in \{1, 2, 3, 4\} \ \text{and} \ j \in \{5, 6, 7, 8\}$$

 $y_i \in \{0, 1\} \ \forall i \in \{1, 2, 3, 4\}$

In-Class Exercise Solution

Paramete	ers									
	From/To	5	6	7	8	Supply (Fi)	Fixed Cost (Fi)			
	1	5	5	5	5	1000	\$2,000,000.00			
	2	10	10	10	10	1000	\$1,000,000.00			
	3	10	10	10	10	1000	\$1,000,000.00			
	4	5	5	5	5	1000	\$2,000,000.00			
	Demand	500	500	500	500					
Objective	Function	\$2,020,000.00								
Decision '	Variables /	Constraints								
	From/To	5	6	7	8	LHS		RHS		
	1	0	0	0	0	0	<=	0	y1	0
	2	0	0	500	500	1000	<=	1000	y2	1
	3	500	500	0	0	1000	<=	1000	у3	1
	4	0	0	0	0	0	<=	0	y4	0
	LHS	500	500	500	500					
		=	=	=	=					
	RHS	500	500	500	500					

Locations 2 and 3 are active in the optimal solution.

Conclusion

Next Class

Homework:

• Read Chapter 12.2 - 12.3

Next Lesson:

- Recognize a site selection problem given a transportation problem.
- Formulate and solve in Excel a site selection problem using binary decision variables.