

QUESTION BANK

WITH ANSWER KEY

& STRUCTURED EXPLANATION

CLASS 12 PHYSICS

Comprehensive Coverage

Includes detailed question banks for Class 11 & 12 subjects PCMB

FEATURES

Skill-based Learning
Develops critical thinking
and problem-solving skills
essential for cracking tough
exams.

Score Boosting

Helps to score maximum marks in CBSE exams and increases competitive exam success potential..

Answer Key & Structured Explanations

Clear, well-structured explanations and step-by-step solutions to enhance understanding.

Exam Pattern Aligned

Questions modeled after the latest exam patterns to ensure students are well-prepared.

Competitive Exam Focus

Specially designed to help students excel in IIT, NEET, JEE, CUET, and other competitive exams.

NCERT Integration

Questions and answers are based on the NCERT syllabus, ensuring relevance for both CBSE board exams and entrance tests.

1.

ARTHAM RESOURCES

Class: 12 Physics Competency-based Question Bank with Answer Key

3.CURRENT ELECTRICITY

Figure shows a network of three resistance. When some potential difference is applied across the network,

	the thermal powers dissipated by <i>A</i> , <i>B</i> and <i>C</i> in the ratio				
	3 <i>R</i>				
	• C C				
	B R				
	6R				
	a) 2:3:4	b) 2:4:3	c) 4:2:3	d) 3:2:4	
2.		•	o stretching, the percentage	=	
	will be	11	ο, 1 ο		
	a) 0.1%	b) 0.2%	c) 1%	d) 2%	
3.	=	,	ad β . Thermoelectric power	•	
	is	1	, ,	1	
		10	c) $\frac{\alpha}{\beta}$	d) $-\frac{\alpha}{\beta}$	
	a) α	b) $-\alpha$	c_{β}	$a_j - \overline{\beta}$	
4.	A current of 1.5 A flows t	hrough a copper voltamete	r. The thickness of copper of	deposited on the electrode	
	surface of size 50 cm \times 1	0 cm is 20 min will be (den	sity of copper = 9000 kg –	m^{-3} and ECE of copper =	
	$0.00033 \mathrm{gC}^{-1}$)				
	a) 3.3×10^{-6} m	b) 6.6×10^{-6} m	c) 1.3×10^{-5} m	d) 2.6×10^{-5} m	
5.	The resistance between t	the terminal points A and B	of the given infinitely long	circuit will be	
	$A \bullet 1\Omega 1\Omega$	1Ω \\\\			
	ξ 1Ω	1Ω Upto infinity			
	,				
	$B \leftarrow M$ 1Ω 1Ω				
	a) $(\sqrt{3} - 1)$		c) $(1 + \sqrt{3})$	d) $(2 + \sqrt{3})$	
6.	A battery of emf E and in		cted to an external resistan	ce R the condition for	
	maximum power transfe	r is			
	a) r <r< td=""><td>b) r>R</td><td>c) r=1/R</td><td>d) R=R</td></r<>	b) r>R	c) r=1/R	d) R=R	
7.	For the network shown is	n the figure the value of the	e current <i>i</i> is		
	2Ω				
	1.40				
	$4\Omega_{K}^{K}$ $M_{L}^{A\Omega}$ $M_{R}^{A\Omega}$ $M_{R}^{A\Omega}$	2			
	$\left. \begin{array}{c} \left. $				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	Ţ'				
	. 9V	5V	. 5 <i>V</i>	18V	
	a) $\frac{37}{35}$	b) $\frac{5V}{18}$	c) 5<i>V</i> 9	d) $\frac{18V}{5}$	
8.		de of green, blue, brown ar	nd silver. What is its resista	nce?	
	a) $5600\Omega \pm 10\%$	b) $5600 \pm 5\%$	c) $560\Omega \pm 10\%$	d) $56\Omega \pm 5\%$	
9.	A battery having e.m.f. 5V	/ and internal resistance 0.	5 Ω is connected with a res	istance of 4.5 Ω then the	
	voltage at the terminals of	of battery is			
	a) 4.5 <i>V</i>	b) 4 V	c) 0 V	d) 2 <i>V</i>	
10.	The temperature of cold	junction of thermocouple is	s 0°C. If the neutral temper	ature is 270°C, then the	
	inversion temperature is				
	a) 540°C	b) 520°C	c) 640°C	d) 58°C	
11.	The length of a conductor	r is doubled and its radius i	s halved, its specific resista	nce is	

12.	In India electricity is supplied for domestic use at		
	60 W bulb for use in India is <i>R</i> ,the resistance of a 6		ll be
	a) <i>R</i> b) 2 <i>R</i>	c) R/4	d) <i>R</i> /2
13.	Equivalent resistance between the points <i>A</i> and <i>B</i>	is (in Ω)	
	$A 1\Omega 1\Omega 1\Omega 1\Omega B$		
	a) $\frac{1}{5}$ b) $1\frac{1}{4}$	c) $2\frac{1}{3}$	d) $3\frac{1}{2}$
	5 4	J	۷
14.	A 100 W bulb B_1 and two 60W bulbs B_2 and B_3 are		
	W_1 , W_2 and W_3 are the output powers of the bulbs B_3	B_1, B_2 and B_3 respectively, the	n
	$\bigcirc \bigcirc B_1 \qquad \bigcirc \bigcirc B_2$		
	(m) B ₃		
	250 V		
	230 V		
	a) $W_1 > W_2 = W_3$ b) $W_1 > W_2 > W_3$	c) $W_1 < W_2 = W_3$	d) $W_1 < W_2 < W_3$
15.	A current of 6A enters one corner P of an equilate	ral triangle <i>PQR</i> having 3 wi	ires of resistances 2Ω each
	and leaves by the corner R . Then the current I_1 an	d I_2 are	
	\downarrow^{6A}		
	$I_1 \bigwedge^{P} I_2$		
	$2\Omega \times 2\Omega$		
	× 1		
	$Q^{2} \xrightarrow{Q} R$		
	a) 2A, 4A b) 4A, 2A	c) 1 <i>A</i> , 2 <i>A</i>	d) 2 <i>A</i> , 3 <i>A</i>
16.	A cell can be balanced against 110cm and 100cm of		
	being short circuited through a resistance of 10 Ω .	= = = = = = = = = = = = = = = = = = = =	
	a) 1.0Ω b) 0.5Ω	c) 2.0 Ω	d) Zero
17.	The equivalent resistance of the following infinite	•	
	2Ω 2Ω 2Ω		
	A		
	$\S{2}\Omega$ $\S{2}\Omega$ $\S{2}\Omega$		
	B		
	2Ω 2Ω 2Ω		
	a) Less than 4Ω	b) 4Ω	
	c) More than 4Ω but less than 12Ω	d) 12Ω	
18.	The equivalent resistance between A and B in the	given circuit is	
	C		

c) Doubled

d) Quadrupled

19. The chemical equivalent of silver is 108. If the current in a silver voltmeter is 2 *amp*, the time required to deposit 27 *grams* of silver will be

a) 8.57 hrs

a) 3Ω

3Ω

a) Unchanged

b) Halved

b) 6.70 *hrs*

b) 6Ω

c) 3.35 hrs

c) 12Ω

d) 12.50 hrs

d) 1.5Ω

20. Which of the following set up can be used to verify the Ohm's law?

21. A resistance of 4Ω and a wire of length 5 *metres* and resistance 5Ω are joined in series and connected to a cell of e.m.f. 10 V and internal resistance 1Ω . A parallel combination of two identical cells is balanced across 300~cm of the wire. The e.m.f. E of each cell is

a) 1.5 V

b) 3.0 V

c) 0.67 V

d) 1.33 V

22. Two wires of the same material and equal length are joined in parallel combination. If one of them has half the thickness of the other and the thinner wire has a resistance of 8 *ohms*, the resistance of the combination is equal to

a) $\frac{5}{8}$ ohm

b) $\frac{8}{5}$ ohm

c) $\frac{3}{8}$ ohm

d) $\frac{8}{3}$ ohm

23. In the circuit shown in figure, the points F is grounded. Which of the following is wrong statement?

a) *D* is at 5V

b) *E* is at zero potential

c) The current in the circuit will be 0.5 A

The potential at E is same whether or not F is rounded

24. What is the equivalent resistance between the points *A* and *B* of the network

a) $\frac{57}{7}\Omega$

b) 8 Ω

c) 6Ω

d) $\frac{57}{5}\Omega$

- 25. Which of the following statements is correct
 - a) Liquids obey fully the ohm's law
 - b) Liquids obey partially the *ohm's* law
 - c) There is no relation between current and p.d. for liquids
 - d) None of the above
- 26. In a Wheatstone bridge, $P = 90\Omega$, $Q = 110\Omega$, $R = 40\Omega$ and $S = 60\Omega$ and a cell of 4 V emf. Then the potential difference between the diagonal along which a galvanometer is connected is

	a) -0.2 V	b) +0.2 V	c) -1 V	d) +1 V
27.	Two electric bulbs, one	of 200 volt 40 watt and the	e other 200 <i>volt</i> 100 <i>watt</i> a	re connected in a house
	wiring circuit			
	a) They have equal curi	rents through them		
		e filaments in both the bulbs	is same	
	•			100
	=	e filament in 40 watt bulb is		
	•	filament in 100 watt bulb i		
28.	-	ses through a circuit contair	-	
		of the wires are in the ratio of		es are in the ratio of 2/3,
	then the ratio of the cur	rent passing through the w	ires will be	
	a) 3	b) 1/3	c) 8/9	d) None of these
29.	A heater is operated wi	th a power of $1000W$ in a 1	00V line. It is connected in	combination with a
	resistance of 10Ω and a	resistance R to a $100V$ line	as shown in figure. What sl	nould be the value of R so,
	that the heater operates	s with a power of 62.5W		
	10 Ω R C	,		
	A Heater Heater	7		
	The state of the s			
	100V			
		12.60 7.0	<u>,</u> 1	22 = 0
	a) 10Ω	b) 62.5Ω	c) $\frac{1}{5}\Omega$	d) 5Ω
30.	A 100 watt bulb working	ng on 200 <i>volt</i> and a 200 <i>wo</i>	att bulb working on 100 vo	<i>lt</i> have
	a) Resistances in the ra	=	C C	
	=	tings in the ratio of 1:4		
	c) Resistances in the ra	=		
	d) Maximum current ra			
31.	=	variable number $'n'$ of ident	ical cells having internal res	sistances connected in
51.	-	battery are short circuited	_	
	below slows the relatio		and the current i is measur	ed. Which of the graph
		=	a) .	d)
	a) ' 1	b) <i>i</i>	()	d) _i ↑
		/		
	O n	0 n	$\stackrel{\smile}{0}$ $\stackrel{\frown}{n}$	$0 \qquad n$
32.		circuits is correct for verific		
J2.	vinicii oi the ionowing	,	ation of Ollin 3 law:	d) None of these
				u) None of these
	a) $\stackrel{\downarrow}{\leqslant}$ $\stackrel{\downarrow}{\leqslant}$ $\stackrel{\downarrow}{\lor}$	b) $\stackrel{\downarrow}{\leqslant} \stackrel{\downarrow}{\wp} \stackrel{\downarrow}{\leqslant} \qquad \stackrel{\downarrow}{=}$	c) $\leq \qquad \leq \qquad \downarrow \qquad \downarrow$	
33.	The reading of the idea	l voltmeter in the adjoining	diagram will bo	
JJ.	A A	i voitilleter in the aujoining	ulagraili wili be	
	10ν 🚽 📗 👱 20Ω			
	v \(\frac{1}{2}\)			
	100 4V			
	в N ' С a) 4 V	b) 8 <i>V</i>	a) 12 V	d) 14 <i>V</i>
24		•	c) $12V$	•
34.		es of same material are in the		enguis in the ratio of 3: 2: 1.
	Electrical resistance of	these wires will be in the ra	นบ 01	

35. Five equal resistances each of resistance *R* are connected as shown in the figure. A battery of *V* volts is connected between *A* and *B*. The current flowing in *AFCEB* will be

c) 9:4:1

d) 27:6:1

b) 1: 2: 3

a) 1:1:1

b) $\frac{V}{R}$

c) $\frac{V}{2R}$

d) $\frac{2V}{R}$

36. Two conductors of the same material have their diameters in the ratio 1 : 2 and their lengths in the ratio 2 : 1.If the temperature difference between their ends is the same, then the ratio of amounts of heat conducted per second through them will be

a) 4:1

b) 1:4

c) 8:1

d) 1:8

37. The emf of a generator is 6V and internal resistance is 0.5 k Ω . The reading of a voltmeter having an internal resistance of 2.5 k Ω is

a) 10^{-3} V

b) 10 V

c) 5 V

d) 0.5 V

38. A railway compartment is lit up by thirteen lamps each taking 2.1 A at 15 V. The heat generated per second in each lamp will be

a) 4.35 cal

b) 5.73 cal

c) 7.5 cal

d) 2.5 cal

39. Potential gradient is defined as

a) Fall of potential per unit length of the wire

b) Fall of potential per unit area of the wire

c) Fall of potential between two ends of the wire

d) Potential at any one end of the wire

40. The resistance across R and Q in the figure.

a) r/3

b) r/2

c) 2r

d) 6r

41. By using only two resistances coils-singly, in series or in parallel one should be able to obtain resistance of 3,4,12 and 16 ohm. The separate resistance of the coil are

a) 3 and 4

b) 4 and 12

c) 12 and 16

d) 16 and 13

42. Find equivalent resistance between *A* and *B*

a) R

b) $\frac{3R}{4}$

c) $\frac{R}{2}$

d) 2R

43. There are two electric bulbs of 40 W and 100 W. Which one will be brighter when first connected in series and then in parallel

a) 40 W in series and 100 W in parallel

b) 100 W in series and 40 W in parallel

c) 40 *W* both in series and parallel will be uniform

	d) 100 W both in serie	es and parallel will be un	iform			
44.	The power of heater is	750 W at 1000°C. What	will be its power at 200°Cif	$Fa = 4 \times 10^{-4} \text{per}^{\circ}\text{C}$?		
	a) 400 W	b) 990 W	c) 250 W	d) 1500 W		
45.	The deflection in a mo	ving coil galvanometer i	s reduced to half when it is	shunted with a 40 Ω coil. The		
	resistance of the galva	nometer is				
	a) 15 Ω	b) 20 Ω	c) 40 Ω	d) 80 Ω		
46.	A copper voltmeter is	connected in series with	a heater coil of resistance (0.1Ω . A steady current flows in		
	the circuit for twenty r	ninutes and mass of 0.9	9 g of copper is deposited a	t the cathode. If electrochemical		
	equivalent of copper is	$s 0.00033 \ gm/C$, then he	eat generated in the coil is			
	a) 750 <i>J</i>	b) 650 <i>J</i>	c) 350 <i>J</i>	d) 250 <i>J</i>		
47.	In the adjacent shown	circuit, a voltmeter of in	iternal resistance R, when c	onnected across B and C reads		
			battery, the value of <i>R</i> is			
	3		saccery, one varies of it is			
	$A \longrightarrow \begin{array}{ccccccccccccccccccccccccccccccccccc$					
	1001/					
	1001					
	a) $100 k\Omega$	b) 75 $k\Omega$	c) $50 k\Omega$	d) 25 $k\Omega$		
48.	The reciprocal of resis	•	C) 50 KM	u) 23 kW		
40.	a) Conductance	b) Resistivity	c) Voltage	d) None of the above		
49.		•	, ,			
47.	-	To decrease the range of an ammeter, its resistance need to be increased. An ammeter has resistance R_0 and range I . Which of the following resistance can be connected in series with it to decreases its range				
	to I/n ?	of the following resistan	ce can be connected in serie	s with it to decreases its range		
	· · · · · · · · · · · · · · · · · · ·	R_{α}	R_{0}	d) None of these		
	a) $\frac{R_0}{n}$	b) $\frac{R_0}{(n-1)}$	c) $\frac{R_0}{(n+1)}$	d) None of these		
50.		meter as per figure shov				
00.	2Ω	meter as per figure snot				
	$\begin{array}{c c} 2\Omega & 2V \\ \hline -WV & H & A \end{array}$					
	2Ω					
	2Ω					
	a) $\frac{1}{8}A$	b) $\frac{3}{4}A$	c) $\frac{1}{2}A$	d) 2 <i>A</i>		
г 1	⁸ 7b		L	,		
51.		ment of emf can be obta	-	d) Detections to		
۳a	a) Multimeter	b) Voltmeter	c) Voltameter	d) Potentiometer		
52.	-	=		o of them are in the ratio 1:2		
			gest of the three resistance in			
E O	a) 4	b) 6	c) 8	d) 12		
53.	=	ig through conductor pr	oduces 80 J of fleat in 10 se	conds. The resistance of the		
	conductor is	b) 2.0	a) 4.0	4) 30 O		
- 4	a) 0.5Ω	b) 2Ω	c) 4Ω	d) 20Ω		
54.		* *	· ·	e as shown in figure, the mass		
	=		-	ant is 96500 C per g equivalent]		
	a) 0.078 g	b) 0.054 g	c) 0.039 g	d) 0.0195 g		
55.	= = =	sistivity and temperatur	e, for a fimilied range of tem	peratures, is a straight line for a		
	material like	h) Ni ahwawa a	a) Ciliaan	d) Movemen		
56	a) Copper	b) Nichrome	c) Silicon	d) Mercury		
56.	-	-	-	cell <i>E</i> . As the point <i>P</i> moves but the deflection decreases		
	-		<u>=</u>			
	continuously until Y IS	reached. In order to ob	tain balance point between	and i it is necessary to		

a) Decreases the resistance R

- b) Increase the resistance R
- c) Reverse the terminals of battery V
- d) Reverse the terminals of cell E
- 57. The relation between Seeback coefficient (or thermo electric power) S and Peltier coefficient π is given by

a)
$$S = \pi T$$

b)
$$S = \frac{\pi}{T}$$

c)
$$S = \frac{\pi^2}{T}$$

$$d) S = \frac{\pi}{T^2}$$

- **58.** Electromotive force is the force, which is able to maintain a constant
 - a) Current
- b) Resistance
- c) Power
- d) Potential difference
- 59. A cell of internal resistance r is connected to a load of resistance R. Energy is dissipated in the load, but some thermal energy is also wasted in the cell. The efficiency of such an arrangement is found from the expression

energy dissipated in the load

energy dissipatd in the compete circuit

Which of the following gives the efficiency in this case?

a)
$$\frac{r}{R}$$

b) $\frac{R}{r}$

c) $\frac{r}{R+r}$

d) $\frac{R}{R+1}$

60. In the circuit shown, *A* and *V* are ideal ammeter and voltmeter respectively.Reading of the voltmeter will be

a) 2 V

b) 1 V

c) 0.5 V

d) Zero

- 61. An ammeter with internal resistance 90Ω reads 1.85 A when connected in a circuit containing a battery and two resistors 700Ω and 410Ω in series. Actual current will be
 - a) 1.85 A
- b) Greater than 1.85 A
- c) Less than 1.85 *A*
- d) None of these
- 62. The current in a simple series circuit is 5.0.A. when an additional resistance of 2.0 Ω is inserted, the current drops to 4.0 A. the original resistance of the circuit in ohm was
 - a) 1.25

b) 8

c) 10

- d) 20
- 63. A current of 2A flows in an electric circuit as shown in figure. The potential difference $(V_R V_S)$, in volts $(V_R V_S)$ are potentials at R and S respectively) is

a) -4

b) + 2

c) +4

d) -2

64. A house wife uses a 100 W bulb 8 h a day, and an electric heater of 300 W for 4 h a day. The total cost for the month of June at the rate of 0.05 rupee per unit will be

- c) Rs 30
- d) Rs 30 paise 50
- 65. Two cells, each of e. m. f. *E* and internal resistance *r* are connected in parallel between the resistance *R*. The maximum energy given to the resistor will be, only when
 - a) R = r/2
- b) R = r
- c) $R = 2^{-1}$
- d) R = 0
- 66. The current i_1 and i_2 through the resistor $R_1 (= 10\Omega)$ and $R_2 (= 30\Omega)$ in the circuit diagram with $E_1 = 3V$, $E_2 = 3$ and $E_3 = 2V$ are respectively.

- a) 02.A, 0.1A
- b) 0.4A, 0.2A
- c) 0.1A, 0.2A
- d) 0.2A, 0.4A
- 67. An electric bulb is rated 60W, 220V. The resistance of its filament is
 - a) 708 Ω
- b) 870 Ω
- c) 807 Ω
- d) 780Ω
- 68. A certain electrical conductor has a square cross-section, 2.0 mm on side, and is 12 m long. The resistance between its ends is 0.072Ω . The resistivity of its material is equal to
 - a) $2.4 \times 10^{-6} \Omega m$
- b) $1.2 \times 10^{-6} \Omega m$
- c) $1.2 \times 10^{-8} \Omega m$
- d) $2.4 \times 10^{-8} \Omega m$
- 69. A wire 20 cm long and 1 mm² in cross-section carries a current of 4A when connected to a 2V battery. The resistivity of the wire is
 - a) $2 \times 10^{-7} \Omega \, \text{m}$
- b) $5 \times 10^{-7} \Omega \text{ m}$
- c) $4 \times 10^{-6} \Omega \text{ m}$
- d) $1 \times 10^{-6} \Omega \text{ m}$
- 70. A thermo-*e*mf *V* appears across a conductor maintained at a temperature difference *T*. The thomson coefficient is then given by
 - a) $-T^2 \frac{d^2V}{dT^2}$
- b) $T^2 \frac{dV}{dT}$
- c) $-T\frac{d^2V}{dT^2}$
- d) $-\frac{1}{T^2}\frac{dV}{dT}$
- 71. The tolerance level of a resistor with the colour code red, blue, orange, gold is
 - a) $\pm 5\%$

- b) $\pm 10\%$
- c) $\pm 20\%$
- d) $\pm 40\%$

- 72. For a given thermocouple neutral temperature
 - a) Is a constant

- b) Depends on cold junction temperature
- c) Depends on inversion temperature
- d) Double that of cold junction temperature
- 73. A battery consists of a variable number (n) of identical cells, each having an internal resistance r connected in series. The terminal of the battery is short-circuited. A graph of current *versus* the number of cells will be as shown in figure

74. In the circuit shown the value of *I* in ampere is

	a) 1	b) 060	c) 0.4	d) 1.5
75.	In a potentiometer of on	e metre length, an unknow	m e.m.f. voltage source is b	alanced at 60 cm length of
	potentiometer wire, whi	le a 3 volt battery is baland	ed at 45 cm length. Then the	e <i>e.m.f.</i> of the unknown
	voltage source is			
	a) 3 <i>V</i>	b) 2.25 <i>V</i>	c) 4 <i>V</i>	d) 4.5 <i>V</i>
76.		•	For 1 h. How many gram of A	,
	passing 6 A for 40 min?	,		S
	a) 2 <i>x</i> g	b) 4x g	c) x g	d) 5 <i>x</i> g
77.	, ,	, 0	sistance of the lead wires is	, 0
			the bulb when a 240 W heat	
	a) No change	b) 10 V	c) 20 V	d) More than 10 V
78.	, ,		are connected in series acro	,
70.		vork at above its rated volt		oss a potential unierence of
	a) 40 W bulb			d) None of these
70	•	b) 60 W bulb	c) Both will work	,
79.			r. The thickness of copper d	_
			9000 kgm ⁻³ ; ECE of Cu = 3.	
	a) 1.3×10^{-4} m	b) 1.3×10^{-5} m		d) 2.6×10^{-5} m
80.			e of the battery is 1.5 Ω and	· ·
	• •	what is the potential differ	ence between the points P a	and Q
	$\begin{bmatrix} 20 V \\ + \end{bmatrix} = \begin{bmatrix} 1.5\Omega \\ - \end{bmatrix}$	٦		
	+ ' -			
	3Ω P 2Ω			
	2Ω Q 3Ω			
	• • • • • • • • • • • • • • • • • • •			
	a) Zero	•	c) 4 volts $(V_Q > V_P)$	•
81.	A certain charge liberate	s $0.8 \ gm$ of O_2 . The same of	harge will liberate how mar	
	a) 108 <i>gm</i>	b) 10.8 gm	c) 0.8 gm	d) $\frac{108}{0.8}$ gm
00	, .	_	·, · · · ·	0.8 9.10
82.	Watt-hour meter measu			12.5
	a) Electric energy		c) Voltage	d) Power
83.	=	-	<i>mV/cm</i> is used to measure	-
		_	of the potentiometer wire is	required to get the null
		g through the 10 <i>ohm</i> resis		
	a) 1	L) 2		
84.	a) 1	b) 2	c) 5	d) 10
01.	Two electric lamps of 40		c) 5 n parallel. The power consu	,
01.	Two electric lamps of 40 will be	watt each are connected i	n parallel. The power consu	,
01.	Two electric lamps of 40 will be a) 20 watt	watt each are connected in b) 60 watt	n parallel. The power consum c) 80 <i>watt</i>	med by the combination d) 100 watt
85.	Two electric lamps of 40 will be a) 20 watt	watt each are connected in b) 60 watt	n parallel. The power consu	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt	watt each are connected in b) 60 watt	n parallel. The power consum c) 80 <i>watt</i>	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	n parallel. The power consum c) 80 <i>watt</i>	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	n parallel. The power consum c) 80 <i>watt</i>	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of forvoltage V a) W	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	d) 100 watt um energy from a cell of
	Two electric lamps of 40 will be a) 20 watt Which arrangement of for	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	med by the combination d) 100 watt
	Two electric lamps of 40 will be a) 20 watt Which arrangement of forvoltage V a) W	watt each are connected in b) 60 watt	c) 80 watt ould be used to draw maxim	d) 100 watt um energy from a cell of

- a) 2 ohm
- b) 18 ohm
- c) 6 ohm
- d) 3.6 ohm
- Seven resistance are connected as shown in the figure. The equivalent resistance between A and B is 87.

a) 3 Ω

b) 4 Ω

c) 4.5Ω

- d) 5Ω
- To get maximum current through a resistance of 2.5 Ω , one can use m rows of cells, each row having n cells. The internal resistance of each cell is 0.5 Ω . What are the values of n and m, if the total number of cell is 45?
 - a) m = 3, n = 15
- b) m = 5, n = 9
- c) m = 9, n = 5
- d) m = 15, n = 3
- 89. Voltmeters V_1 and V_2 are connected in series across a DC line. V_1 reads 80V and has a resistance of $200\Omega V^{-1} and~V_2~has~a~total~resistance~of~32k~\Omega.$ The line voltage is
 - a) 240 V
- b) 220 V
- d) 120 V

- 90. The length of the wire is doubled. Its conductance will be
 - a) Unchanged

b) Halved

c) Quadrupled

- d) 1/4 of the original value
- 91. A student has 10 resistors of resistance r'. The minimum resistance made by him from given resistors is
 - a) 10 r

c) $\frac{r}{100}$

92. The value of current I in figure is

a) 4A

b) 6A

c) 3A

d) 5A

- 93. Which of the following relation is wrong?
 - a) 1 ampere ×1 ohm=1 volt

- b) 1 watt \times 1 sec=1 joule
- c) 1 newton per coulomb =1 volt per metre
- d) 1 columb \times 1 volt=1 watt
- 94. In the circuit shown below the resistance of the galvanometer is 20 Ω . In which of the following alternative are the currents arranged strictly in the decreasing order

- a) i, i_1, i_2, i_a
- b) i, i_2, i_1, i_g
- c) i, i_2, i_g, i_1
- d) i, i_1, i_g, i_2
- 95. A potentiometer wire of length 1m and resistance 10 Ω is connected in series with a cell of *emf* 2V with

	internal resistance 1 Ω and a resistance box including a resistance R . If potential difference between the				
	ends of the wire is 1 <i>mV</i> ,				
0.6	a) 20000 Ω	b) 19989 Ω	c) 10000 Ω	d) 9989 Ω	
96.				deposits 2.60 g of silver in	
		age is the ammeter reading	is correct? Atomic weight of	of silver $= 108$ and 1	
	F=96500 C?	12.50/) = 0/	1) 50/	
07	a) 5%	b) 7%	c) -5%	d) -7%	
97.		are made of the same mate	rial and are at the same ter	nperature. Which one of	
	them has the highest elec		13.1 (1.400 1)	. 4	
	a) Length=50cm, diamet		b) Length=100cm, diame		
00	c) Length=200cm, diame		d) Length=300cm, diame		
98.	-	n of emf 1.5 V and internal r			
	-	gh a 12Ω resistor. The corre	-		
	a) 2 rows of 12 cells conr		b) 3 rows of 8 cells conne	ected in parallel	
00	c) 4 rows of 6 cells conne	-	d) All of these	. 1.1 .1 1:	
99.		joined end to end. One end	= = =	ature and the other end is	
		perature. The high depicting	- A	15 4	
	a) _E ↑ ↑	b) _E ↑ 1	c) _E ↑ ↑	d) _E ↑ ↑	
				,	
	$\xrightarrow{t \rightarrow}$	$\xrightarrow{t \rightarrow}$	\xrightarrow{t}	\xrightarrow{t}	
100.	In an experiment, a graph	n was plotted of the potenti	al difference V between the	e terminals of a cell against	
	the circuit current i by va	arying load rheostat. Intern	al conductance of the cell is	given by	
	v↑ ₹ \				
	x				
	\ \ \ \ \ \	(V) A			
	<u>↓</u>				
	\overrightarrow{i}				
	a) <i>xy</i>	b) $\frac{y}{x}$	c) $\frac{x}{x}$	d) $(x-y)$	
101		otential difference applied	· y		
101.	-		across it, then the mean ver	ocity of free electrons at	
	absolute temperature <i>T</i> i	5	h) Dramoutional to T		
	a) Proportional to <i>T</i>		b) Proportional to \sqrt{T}	- C TT	
102	c) Zero	200 M	d) Finite but independent		
102.		200 W are manufactured to	-	-	
		cases, when firstly they ar	-	_	
	a) $\frac{5}{2}:\frac{2}{5}$	b) $\frac{5}{2}:\frac{5}{2}$	c) $\frac{2}{5}:\frac{5}{2}$	d) $\frac{2}{5} : \frac{2}{5}$	
103	The arrangement as show		5 2	5 5	
105.		vii iii ligare is canca as			
	1.				
	Total <i>P.D.</i>				
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	Variable <i>P.D.</i>				
	a) Potential divider	b) Potential adder	c) Potential substracter	d) Potential multiplier	
104.		mm blows at 1.5 A. The ra	=		
	A will be				

a) 3^{1/4}mm

105. Two cells of same emfE but of different internal resistances r_1 and r_2 are connected in series with an external resistance R. The potential drop across the first cell is found to be zero. The external resistance R

b) 4^{1/3}mm

c) 3^{1/2}mm

d) 2^{1/3}mm

_			
a)	r_1	+	r_2

b)
$$r_1 - r_2$$

c)
$$r_2 - r_1$$

d)
$$r_1 r_2$$

- 106. In a conductor if 3000 coulomb of charge enters and 3000 coulomb of charge exits in time 10 minutes, then the current is
 - a) 5 ampere
- b) 10 ampere
- c) 2.5 ampere
- d) Zero
- 107. The resistivity of alloys = R_{alloy} ; the resistivity of constituent metals R_{metal} . Then, usually
 - a) $R_{\text{alloy}} = R_{\text{metal}}$

b) $R_{\text{alloy}} < R_{\text{metal}}$

There is no simple relation between $R_{\rm allov}$ and $R_{\rm metal}$

d) $R_{\text{alloy}} > R_{\text{metal}}$

- 108. If the temperature of cold junction of thermocouple is lowered, then the neutral temperature
 - a) Increases

b) Approaches inversion temperature

c) Decreases

- d) Remains the same
- 109. For obtaining chlorine by electrolysis a current of 100 kW and 125 V is used. (Electro chemical equivalent of chlorine is $0.367 \times \text{kgC}^{-1}$). The amount of chlorine obtained in one minute will be
 - a) 1.7616 g
- b) 17.616 g
- c) 0.17161 g
- d) 1.7616 kg
- 110. The current in a conductor varies with time t as $I = 2t + 3t^2$ where I is in *ampere* and t in *seconds*. Electric charge flowing through a section of the conductor during t = 2 sec to t = 3 sec is
 - a) 10 C

b) 24 C

c) 33 C

- d) 44 C
- 111. A wire of length 5mand radius 1 mm has a resistance of 1 ohm. What length of the wire of the same material at the same temperature and of radius 2 mm will also have a resistance of 1 ohm
 - a) 1.25 m
- b) 2.5 m
- c) 10 m

d) 20 m

112. The measurement of voltmeter in the following circuit is

a) 2.4 V

b) 3.4 V

c) 4.0 V

d) 6.0 V

- 113. An electron (charge = $1.6 \times 10^{-19} coulomb$) is moving in a circle of radius $5.1 \times 10^{-11} m$ at a frequency of 6.8×10^{15} revolutions/sec. The equivalent current is approximately
 - a) $5.1 \times 10^{-3} amp$
- b) $6.8 \times 10^{-3} amp$
- c) $1.1 \times 10^{-3} amp$
- d) $2.2 \times 10^{-3} amp$
- **114**. In the following Wheatstone bridge P/Q = R/S. If key K is closed, then the galvanometer will show

- a) In left side
- b) In right side
- c) No deflection
- d) In either side
- 115. The amount of heat generated in 500Ω resistance, when the key is thrown over from contact 1 to 2, as shown in figure is

a) 10°C

b) 7.5°C

- c) 5.0°C
- d) 2.5°C

- 116. In potentiometer a balance point is obtained, when
 - a) The e.m.f. of the battery becomes equal to the e.m.f. of the experimental cell
 - b) The p.d. of the wire between the +ve end to jockey becomes equal to the e.m.f. of the experimental cell
 - c) The p.d. of the wire between +ve point and jockey becomes equal to the e.m.f. of the battery
 - d) The p.d. across the potentiometer wire becomes equal to the e.m.f. of the battery
- 117. With the rise of temperature the resistivity of a semiconductor
 - a) Remains unchanged

b) Increases

c) Decreases

- d) First increases and then decreases
- **118**. Five equal resistances, each of resistance *R*, are connected as shown in figure below. A bettery of *V* volt is connected between *A* and *B*. The current flowing in *FC* will be

a) $\frac{3V}{R}$

b) $\frac{V}{R}$

c) $\frac{V}{2R}$

- d) $\frac{2V}{R}$
- 119. I V characteristic of a copper wire of length L and area of cross-section A is shown in figure. The slope of the curve becomes

- a) More if the experiment is performed at higher temperature
- b) More if a wire of steel of same dimension is used
- c) More if the length of the wire increased
- d) Less if the length of the wire increased
- **120**. If 2.2 *kilowatt* power is transmitted through a 10 *ohm* line at 22000 *volt*, the power loss in the form of heat will be
 - a) 0.1 watt
- b) 1 watt
- c) 10 watt
- d) 100 watt
- 121. The resistor of resistance R is connected to 25 V supply and heat produced in it is 25 Js⁻¹. The value of R is
 - a) 225Ω
- b) 1 Ω

c) 25 Ω

- d) 50Ω
- 122. A galvanometer can be converted into a voltmeter by connecting
 - a) Low residence in parallel

b) Low residence in series

c) High residence in parallel

- d) High residence in series
- 123. An electric heater of 1.08 Kw is immersed in water. After the water has reached a temperature of 100°C, how much time will be required to produce 100 g of steam?

a) 420 s	b) 210 s	c) 105 s	d) 50 s
124. Two voltameters, o	one of copper and another	r of silver, are joined in para	alleled. When a total charge q flows
-	=	_	electrochemical equivalents of
			ough the silver voltameter is
a) $\frac{q}{1 + \frac{z_1}{z_2}}$	b) $\frac{q}{1 + \frac{z_2}{z_1}}$	c) $q \frac{z_1}{z_2}$	d) $q z_2/z_1$
125. A primary cell has resistance of the ce		n short-circuited it gives a c	urrent of 3 ampere. The internal
a) 4.5 <i>ohm</i>	b) 2 <i>ohm</i>	c) 0.5 <i>ohm</i>	d) 1/4.5 <i>ohm</i>
126. An immersion heat	cer is rated 418 W. It shou	ıld heat a litre of water fron	n 10°C to 30°C in nearly
a) 44 s	b) 100 s	c) 200 s	d) 400 s
127. The figure shows a	network of currents. The	e magnitude of currents is s	hown here. The current i will be
8A 5A	3 <i>A</i>		
a) 3 <i>A</i>	b) 13 <i>A</i>	c) 23 A	d) −3 <i>A</i>
			nce to minimum resistance
	of opposite faces of this h		
a) 9:1	b) 1:9	c) 18:1	d) 1 :6
129. In the given figure.	A, B and C are three idea	ntical bulbs. When the swit	ch <i>S</i> is closed
S OC			
a) The brightness of	of bulb A does not change	and that of B decreases	
	of bulb A increases and th		
c) The brightness of	of A increases bulb B does	s not glow	
d) The brightness o	of both bulbs A not B deci	rease	
120 The length of a not	ontiomotor wire is Em. A	n alactron in this wire owner	rion cas a force of $4.9 \times 10^{-19} \text{N}$ amf

- 130. The length of a potentiometer wire is 5m. An electron in this wire experiences a force of 4.8×10^{-19} N, emf of the main cell used in potentiometer is
 - a) 3 V

b) 15 V

c) 1.5 V

- d) 5 V
- 131. 4 cells each of emf 2 V and internal resistance of 1Ω are connected in parallel to a load resistor of 2Ω . Then the current through the load resistor is
 - a) 2 A

b) 1.5 A

c) 1 A

- d) 0.888 A
- 132. For ensuring dissipation of same energy in all three resistors (R_1, R_2, R_3) connected as shown in figure, their values be related as

a) $R_1 = R_2 = R_3$

b) $R_2 = R_3$ and $R_1 = 4 R_2$

c) $R_2 = R_3$ and $R_1 = R_2/4$

- d) $R_1 = R_2 + R_3$
- 133. nidentical cells, each of emf E and internal resistance r, are connected in series a cell A is joined with reverse polarity. The potential difference across each cell, except A is
 - a) $\frac{2nE}{n-2}$
- b) $\frac{(n-2)E}{n}$
- c) $\frac{(n-1)E}{n}$
- $\frac{2E}{n}$
- 134. A current of A enters one corner one corner P of an equilateral triangle PQR having 3 wires of resistance

146	When the resistance of Q	O is connected at the ends	of a battery, its potential d	ifforança docrazços from
140		nternal resistance of the bat		inerence decreases nom
	a) 6 Ω	b) 3 Ω	c) 9 Ω	d) 15 Ω
147	. A wire has a resistance o	of 6Ω . It is cut into two parts	s and both half values are co	•
	new resistance is	_		-
	a) 3Ω	b) 6Ω	c) 12Ω	d) 1.5Ω
148	A conductor wire having	10 ²⁹ free electrons/m ³ car	rries a current of 20A. If the	cross-section of the wire is
	1mm ² , then the drift velo	ocity of electrons will be		
			c) $1.25 \times 10^{-3} \text{ms}^{-1}$	d) $1.25 \times 10^{-4} \text{ms}^{-1}$
149		are, thermo e.m.f. in a thern		
	a) Decreases with rise in		b) Increases with rise in	temperature
	c) Remains constant		d) Changes sign	
150	. The current in the 1Ω res	sistor shown in the circuit i	S	
	4 12			
	1 Ω 6 V			
	1 22 0 0			
	4 Ω			
	a) $\frac{2}{3}A$	b) 3A	c) 6A	d) 2A
	9			
151		=	ength of potentiometer wir	
	-	-	t balances on 50 cm length	of the potentiometer wire
	then internal resistance	r of the battery is		
	2 V			
	← 1 m — —	→		
	В			
	A 1			
	E r			
	a) 1 Ω	b) 3 Ω	c) 10 Ω	d) 5 Ω
152	Which statement is true?	•	.,	- , -
		lly applicable to both AC an	ıd DC.	
	• •	e a positive temperature co		
		=	stance of all four arms of th	e bridge is of the same
	order.			O .
		ends upon the size and are	a of electrodes.	
	a) (i) and (iv)	b) (ii) and (iv)	c) (iii) and (iv)	d) None of these
153	, , , , ,	, , , , ,	and refrigerator graws 2 a	•
		•	If all the three are operating	•
	used may be of	1	1	,
	a) 20 <i>amp</i>	b) 5 <i>amp</i>	c) 15 amp	d) 10 amp
154	•	, .	our arms of a balanced Whe	•
		-	0Ω and $S = 30 \Omega$ respective	_
	a) 3:30:1:10	b) 30:3:10:1	c) 30:10:1:3	d) 30:1:3:10
155	•	,	10 cm and thickness of it's	,
	-	be is $1.7 \times 10^{-8} \Omega \times m$ then		·
	a) $5.6 \times 10^{-5} \Omega$	b) $2 \times 10^{-5} \Omega$	c) $4 \times 10^{-5} \Omega$	d) None of these
156	•	=	cance of 20 Ω . The resistance	
	-	eter of maximum reading 3		
	a) 49 Ω	b) 80 Ω	c) 40 Ω	d) 30 Ω

	a) 0.53 C	b) 0.71 C	c) 1.06 C	d) 10.06 C
167.	The resistance of an idea	l ammeter is		
	a) Infinite	b) Very high	c) Small	d) Zero
168.	-	V is applied at the ends of a	copper wire of length $\it l$ and	d diameter d . On doubling
	only d , the drift velocity,			
	=	b) Becomes half	=	=
169.		ement as shown in the figur		element is I and resistivity
		er is $ ho$. Choose the correct of	otion out the following	
	$ \uparrow^{A} \qquad \qquad B \\ 4r \\ \downarrow^{4r} \qquad \qquad \downarrow^{-} $	Cı		
	$4r \longrightarrow \Box$	↑ r		
		1'		
	← l/2 → × l	·· -		
	=	nalf is four times the power		
		twice of voltage drop in se	cond half	
	c) Current density in bot	-		
450	d) Electric field in both h	-	t d t m	1 1 50
1/0.		s through the 2Ω resistor sh	lown in the circuit. The pow	ver dissipated in the 512
	resistor is			
	2Ω WW———————————————————————————————————			
	4Ω			
	1Ω 5Ω			
	a) 1 watt	b) 5 watt	c) 4 watt	d) 2 watt
171.	•	engine on a hot day than on	•	=
1, 1,	the car battery	ingine on a not day than on	a cora day. Tino io because	the internal resistance of
	a) Decreases with rise in	temperature	b) Increases with rise in t	emperature
	c) Decreases with a fall in	=	d) Does not change with a	=
172.	=	current though 8 <i>ohm</i> is sa	_	
	+ -	J		Ü
	12 <i>V</i>			
	6Ω 8Ω 10Ω 			
		13.67	N 4 **	Dow
450	a) 12 <i>V</i>	b) 6 V	c) 4 V	d) 2 <i>V</i>
173.	Resistance as shown in fi	gure is negative at		
	, ↑			
	B			
	L			
	v →	h) D	a) C	d) None of these
174	a) A	b) B	c) C	d) None of these
1/4.		4 Ω is bent to form a circle.		
175	a) 4Ω	b) 2Ω	c) 1Ω	d) 8Ω
1/3.		ugh a wire depends on time in time from $t = 0$ to $t = 2$		narge nowing till ough the
	a) 22 C	b) 20 C	c) 18 C	d) 5 C
	uj 44 U	0 J 4 U U	C) 10 G	uj J G

176. How much work is required to carry a 6 μ C charge from the negative terminal to the positive terminal of a 9 V battery

ر م	54	~	1 (1 -3	T
aı	154	Х	- 1 () 5	ı

b)
$$54 \times 10^{-6} I$$

c)
$$54 \times 10^{-9} I$$

d)
$$54 \times 10^{-12} I$$

- 177. The direction of current in an iron-copper thermocouple is
 - a) From copper to iron at the hot junction
- b) From iron to copper at the hot junction
- c) From copper to iron at cold junction
- d) No current will flow
- 178. There resistances of 4 Ω each are connected as shown in figure. If the point D divides the resistance into two equal halves, the resistance between points A and D will be

a) 12 Ω

b) 6 Ω

c) 3 Ω

 $(1)\frac{1}{3}\Omega$

- **179**. Four wires *AB*, *BC*, *CD*, *DA* of resistance 4 *ohm* each and a fifth wire *BD* of resistance 8 *ohm* are joined to form a rectangle *ABCD* of which *BD* is a diagonal. The effective resistance between the points *A* and *B* is
 - a) 24 ohm

b) 16 ohm

c) $\frac{4}{3}$ ohm

d) $\frac{8}{3}$ ohr

180. If the emf of a thermocouple, one junction of which is kept 0°C is given by $e = at + \frac{1}{2}bt^2$, then the neutral temperature will be

a) $\frac{a}{b}$

b) $-\frac{a}{b}$

c) $\frac{a}{2h}$

d) $-\frac{1}{ab}$

- 181. Corresponding to the resistance $4.7 \times 10^6 \Omega \pm 5\%$, which is order of colour coding on carbon resistors?
 - a) Yellow, violet, blue, gold

b) Yellow, violet, green, gold

c) Orange, blue, green, gold

- d) Orange, blue, violet, gold
- 182. A 25 W, 220 V bulb and a 100 W, 220 V bulb are connected in parallel across a 440 V line
 - a) Only 100 watt bulb will fuse

b) Only 25 watt bulb will fuse

c) Both bulbs will fuse

- d) None of the bulbs will fuse
- 183. A battery of emf 2V and internal resistance 0.1 Ω is being charged by a current of 5A. the potential difference between the terminals of the battery is
 - a) 2.5 Ω

b) 1.5 Ω

c) 0.5Ω

- d) 1 Ω
- 184. Two identical cells send the same current in 3 Ω resistance, whether connected in series or in parallel. The internal resistance on the cell should be
 - a) 1 Ω

b) 3 Ω

c) $\frac{1}{2}\Omega$

- d) 3.5 Ω
- 185. Resistors of resistance 20Ω and 30Ω are joined in series with a battery of emf 3V. It is desired to measure current and voltage across the 20Ω resistor with the help of an ammeter and voltmeter. Identify the correct arrangement of ammeter (A) and voltmeter (V) out of four possible arrangements shown in figure. Given below

- 186. For a thermocouple, the inversion temperature is 600°C and the neutral temperature is 320°C. Find the temperature of the cold junction?
 - a) 40°C

b) 20°C

c) 80°C

- d) 60°C
- 187. Two bulbs, one of 50 watt and another of 25 watt are connected in series to the mains. The ratio of the currents through them is
 - a) 2:1

b) 1:2

c) 1:1

- d) Without voltage, cannot be calculated
- 188. The total current supplied to the given circuit by the battery is

a) 9 A

b) 6 A

c) 2 A

- d) 4 A
- 189. A resistance of 2 Ω is connected across one gap of a meter-bridge(the length of the wire is 100cm) and an unknown resistance, greater than 2 Ω is connected across the other gap. When these resistances are interchanged, the unknown resistance is
 - a) 3 Ω

b) 2 Ω

c) 4Ω

- d) 6Ω
- 190. A bulb rated at (100W 200V) is used on a 100V line. The current in the bulb is
 - a) $\frac{1}{4}amp$
- b) 4 amp
- c) $\frac{1}{2}$ amp
- 191. In the Wheatstone's network given, $P=10~\Omega$, $Q=20\Omega$, $R=15~\Omega$, $S=30~\Omega$, the current passing through the battery (of negligible internal resistance) is

- a) 0.36A
- b) Zero

- c) 0.18A
- d) 0.72A
- 192. A circuit consists of five identical conductors as shown in figure. The two similar conductors are added as indicated by the dotted lines. The ratio of resistances before and after addition will be

b) 3/5

c) 5/3

- d) 6/5
- **193**. For what value of *R* the net resistance of the circuit will be 18 *ohms*

207	cells. The internal resista	It through a resistance of 2 nce of each cell is 0.5Ω . Wh		cells each row having n i if the total number of cells
	are 20?			
		b) $m = 4, n = 5$		
208	=	f are connected to an extern		
		$> R_1$). If the potential diffe	erence across the source ha	aving internal resistance R_2
	is zero, then			
	a) $R = R_1 R_2 / (R_1 + R_2)$		b) $R = R_1 R_2 / (R_2 - R_1)$	
	c) $R = R_2 \times (R_1 + R_2)/(R_1 + R_2)$			
209	. In charging a battery of m	notor-car, the following effe	ect of electric current is use	d
	a) Magnetic	b) Heating	c) Chemical	d) Induction
210	. According to Faraday's la	w of electrolysis, the amou	nt of decomposition is prop	portional to
	a) 1/time for which curre	ent passes	b) Electrochemical equiva	alent of the substance
	c) 1/current		d) 1/electrochemical equ	ivalent
211	. A 100 <i>ohm</i> galvanometer	gives full scale deflection a	at $10 mA$. How much shunt	is required to read 100 mA
	a) 11.11 <i>ohm</i>	b) 9.9 <i>ohm</i>	c) 1.1 <i>ohm</i>	d) 4.4 <i>ohm</i>
212	. When a resistor of 11Ω is	s connected in series with a	n electric cell, the current i	flowing in it is 0.5 A.
	Instead, when a resistor of	of 5 Ω is connected to the sa	ame electric cell in series, tl	ne current increases by
	0.4 A. The internal resista	ance of the cell is		
	a) 1.5 Ω	b) 2 Ω	c) 2.5 Ω	d) 3.5 Ω
213	. The steady current flows	in a metallic conductor of r	non-uniform cross-section.	The quantity/quantities
	constant along the length			
	a) Current, electric field a	and drift velocity	b) Drift speed only	
	c) Current and drift spee	d	d) Current only	
214	. There are 8 equal resistar	nce R. Two are connected is	n parallel, such four groups	are connected in series,
	the total resistance of the		1 , 5 1	•
	a) R/2	b) 2 <i>R</i>	c) 4 R	d) 8 R
215	, ·	resistances are in the ratio		,
		rs dissipated in them have		
	a) 1:2	b) 1:1	c) 2:1	d) 1:4
216	=		=	used in series to convert it
	into a voltmeter of range	-		
	_			G
	a) <i>nG</i>	b) $\frac{G}{n}$	c) $(n-1)G$	d) $\frac{G}{n-1}$
217	. In the figure given below,	the current passing throug	gh 6Ω resistor is	
	6Ω			
	VVV			
	1.2 A	→		
	4Ω			
	WW			
	a) 0.40 ampere	b) 0.48 <i>ampere</i>	c) 0.72 ampere	d) 0.80 <i>ampere</i>
218	. A wire is broken in four e	qual parts. A packet is forn	ned by keeping the four wir	es together. The resistance
	of the packet in comparis	on to the resistance of the	wire will be	
	a) Equal	b) One fourth	c) One eight	d) $\frac{1}{16}th$
210	A wire is stratched so as	to change its diameter by 0	25% The percentage chan	10
219		to change its diameter by 0.	-	=
220	a) 4.0% The junction of Ni Cu the	b) 2.0%	c) 1.0%	d) 0.5%
44 0	temperature is	rmo couple are maintained	at 0°C and 100°C. The seek	backenn developed in the
	$a_{\text{Ni-Cu}} = 16.3 \times 10^{-6} \text{V}^{\circ}$	<u>z</u> -1		
	$a_{\text{Ni}-\text{Cu}} = 16.3 \times 10^{-6} \text{V}^{\circ}\text{C}$ $b_{\text{Ni}-\text{Cu}} = -0.021 \times 10^{-6}$	$V^{\circ}C^{-1}$		

221. In the circuit figure, the voltmeter reads 30 V. what is the resistance of the voltmeter?

- a) 1200Ω
- b) 700 Ω
- c) 400Ω
- d) 300Ω
- 222. The lowest resistance which can be obtained by connecting 10 resistors each of 1/10 ohm is
 - a) $1/250 \Omega$
- b) $1/200 \Omega$
- c) $1/100 \Omega$
- 223. Battery shown in figure has e.m.f. E and internal resistance r. Current in the circuit can be varied by sliding the contact *I*. If at any instant current flowing through the circuit is *I*, potential difference between terminals of the cell is V, thermal power generated in the cell is equal to η fraction of total electrical power generated in it.; then which of the following graphs is correct

c) η

d) Both (a) and (b) are correct

- 224. A heating coil is labelled 100 W, 220 V. The coil is cut in half and the two pieces are joined in parallel to the same source. The energy now liberated per second is
 - a) 200 J

b) 400 J

c) 25 J

- d) 50 J
- 225. Two bulbs are working in parallel order. Bulb A is brighter than bulb B. If R_A and R_B are their resistance respectively then
 - a) $R_A > R_B$
- b) $R_A < R_B$
- c) $R_A = R_B$
- d) None of these
- **226.** A 60 *watt* bulb carries a current of 0.5 *amp*. The total charge passing through it in 1 *hour* is
 - a) 3600 coulomb
- b) 3000 *coulomb*
- c) 2400 coulomb
- d) 1800 coulomb
- 227. A student measures the terminal potential difference (V) of a cell (of *emf E* and internal resistance r) as a function of the current (I) flowing through it. The slope, and intercept, of the graph between V and I, then, respectively, equal
 - a) E and -r
- b) -r and E
- c) r and E
- d) -E and r
- **228**. The dimensions of $\frac{1}{2}\varepsilon_0 E^2$ (ε_o :permittivity of free space; E: electric field) is
 - a) [MLT]
- b) $[ML^2T^{-2}]$
- c) $[ML^{-1}T^{-2}]$
- d) $[ML^2T^{-1}]$

- 229. A thermoelectric refrigerator works on
 - a) Joule effect
- b) Seeback effect
- c) Peltier effect
- d) Thermonic emission
- 230. A cell of internal resistance 3 ohm and emf 10 volt is connected to a uniform wire of length 500 cm and resistance 3 *ohm*. The potential gradient in the wire is
 - a) $30 \, mV/cm$
- b) $10 \, mV/cm$
- c) $20 \, mV/m$
- d) $4 \, mV/cm$
- 231. A given piece of wire of length l and radius r is having a resistance R. This wire is stretched uniformly to a wire of radius $\frac{r}{2}$. What is the new resistance?

	a) 3 <i>R</i>	b) 8 <i>R</i>	c) 16R	d) 2 <i>R</i>	
232.	A wire of resistance 180	Ω is divided into three	equal parts. These parts ar	re connected in side of triangle, the	
	equivalent resistance of any two corners of triangle will be				
	a) 18Ω	b) 9Ω	c) 6Ω	d) 4Ω	
233.	If an ammeter is connec	ted in parallel to a cir	cuit, it is likely to be damag	ged due to excess	
	a) Current	b) Voltage	c) Resistance	d) All of these	
234.	When 1 kg of hydrogen	forms water, 34×10^{-3}	0^6 cal of heat is liberated. If	ECE of hydrogen is	
	(1/96500,000)kgC ⁻¹ , tl	nen the minimum volt	age requird for decomposi	tion of water is	
	a) 0.75 V	b) 3.0 V	c) 1.5 V	d) 6.0 V	
235.	A source of a primary ce	ell is 2V. what is the sh	ort circuited it provides 4	A current, then the internal	
	resistance of cell will be	!			
	a) 8 Ω	b) 2.0 Ω	c) 4 Ω	d) 0.5 Ω	
236.	The current inside a cop	per voltameter			
	a) Is half the outside val	lue			
	b) Is the same as the ou	tside value			
	c) Is twice the outside v	ralue			
	d) Depends on the conc	entration of <i>CuSO</i> ₄			
237.	All bulbs in figure, are id	dentical. Which bulb li	ghts brightly?		
	4				
	877	1.3.2	3.2	10.4	
220	a) 1	b) 2	c) 3	d) 4	
238.	Current through wire X	Y of circuit snown is			
	1 2				
	3Ω , 4Ω				
	50 <i>V</i>	15.4.4		D 0 4	
220	a) 1 A	b) 4 A	c) 2 A	d) 3 A	
239.		=		nt of 100 mA flows through it. The	
	-	ed across it to enable i	t to be used as an ammeter	r reading 1 A at full scale	
	deflection is	b) 00000	a) 2220	J) 1110	
240	a) 10000Ω	b) 9000Ω	c) 222Ω	d) 111Ω	
240.			e mass nave radii $2r$ and r	respectively. If resistance of wire	
	A is 34 Ω , then resistanc		a) (00	J) 170	
241	a) 544Ω	b) 272Ω	c) 68Ω	d) 17Ω	
241.	A wire has resistance of	24 M is bent in the ion	nowing snape. The effective	e resistance between A and B is	
	\triangle				
	/60°\				
	√60°				
	A -	• В			
	← 5 cm → 10 cm	_			
	10 011	'	17	D.M. Col	
	a) 24 Ω	b) 10 Ω	c) $\frac{16}{3}\Omega$	d) None of these	
242.	In the shown arrangeme	ent of the experiment	5	orresponding to null deflection of	

galvanometer is x, what would be its value if the radius of the wire AB is doubled?

253. Two different conductors have same resistance at 0° C.It is found that the resistance of the first conductor at t_1° C is equal to the resistance of the second conductor at t_2° C.The ratio of the temperature coefficients of resistance of the conductors, $\frac{\alpha_1}{\alpha_2}$ is

a) $\frac{t_1}{t_2}$

b) $\frac{t_2 - t_1}{t_2}$

c) $\frac{t_2 - t_1}{t_1}$

 $\left(\frac{t_2}{t_1}\right)$

254. A wire of resistor R is bent into a circular ring of radius r. Equivalent resistance between two points X and Y on its circumference, when angle XOY is α , can be given by

- a) The junction becomes hot when the current is from bismuth to antimony
- b) The junction becomes hot when current flows from antimony to bismuth
- c) Both junctions becomes hot
- d) Both junctions becomes cold
- **258.** A galvanometer of resistance 50 Ω is connected to a battery of 3V along with a resistance of 2950 Ω in series. A full scale deflection of 30 divisions is obtained in the galvanometer. In order to reduce this deflection to 20 divisions, the resistance in series should be
 - a) 5050Ω
- b) 5550 Ω
- c) 6050Ω
- d) 4450Ω
- 259. A moving coil galvanometer has a resistance of 10Ω and full scale deflection of 0.01A. It can be converted into voltmeter of 10V full scale by connecting into resistance of
 - a) 9.90Ω is series
- b) 10Ω in series
- c) 990Ω in series
- d) 0.10Ω in series
- 260. When a current is passed through water, acidified with a dilute sulphuric acid, the gases formed at the platinum electrodes are
 - a) 1 vol. hydrogen (cathode) and 2 vol. oxygen (anode)
 - b) 2 vol. hydrogen (cathode) and 1 vol. oxygen (anode)
 - c) 1 vol. hydrogen (cathode) and 1 vol. oxygen (anode)
 - d) 1 vol. oxygen (cathode) and 2 vol. hydrogen (anode)
- 261. 12 cells each having same emf are connected in series with some cells wrongly connected. The arrangement is connected in series with an ammeter and two cells which are in series. Current is 3 A when cells and battery aid each other and is 2 A when cells and battery oppose each other. The number of cells wrongly connected is
 - a) 4

b) 1

c) 3

- d) 2
- **262.** Equal amounts of a metal are converted into cylindrical wire of different lengths *L* and cross-sectional area A.The wire with the maximum resistance is the one, which has
 - a) Length=L and area = A
 - b) lengths = $\frac{L}{2}$ and area = 2A
 - c) lengths = 2L and area = $\frac{A}{2}$
 - d) All have the same resistance, as the amount of the metal is the same
- 263. If θ_i is the inversion temperature, θ_n is the natural temperature, θ_c is the temperature of the cold junction
 - a) $\theta_i + \theta_c = \theta_n$
- b) $\theta_i \theta_c = 2\theta_n$
- c) $\frac{\theta_i + \theta_c}{2} = \theta_n$ d) $\theta_c \theta_i = 2\theta_n$

264. The effective resistance across the points *A* and *I* is

a) 2 Ω

b) 1 Ω

c) 0.5Ω

d) 5Ω

265. If 2 A of current is passed through $CuSO_4$ solution for 32 s, then the number of copper ions deposited at the cathode will be

a) 4×10^{20}

b) 2×10^{20}

c) 4×10^{19}

d) 2×10^{19}

266. A current of 1 *mA* is flowing through a copper wire. How many electrons will pass a given point in one *second*

 $[e = 1.6 \times 10^{-19} Coulomb]$

a) 6.25×10^{19}

b) 6.25×10^{15}

c) 6.25×10^{31}

d) 6.25×10^8

267. The plot represents the flow of current through a wire at three different times.

The ratio of charges flowing through the wire at different times is

a) 2:1:2

b) 1:3:3

c) 1:1:1

d) 2:3:4

268. The internal resistance of a cell of emf 2 V is 0.1Ω . It is connected to a resistance of 3.9Ω . The potential difference across is

a) 0.5V

b) 1.9V

c) 1.95V

d) 2V

269. The *emf* of a battery is 2 V and its internal resistance is 0.5 Ω . The maximum power which it can deliver to any external circuit will be

a) 8 Watt

b) 4 Watt

c) 2 Watt

d) None of the above

270. An AC generator of 220 V have internal resistance $r=10~\Omega$ and external resistance $R=100~\Omega$. What is the power developed in the external circuit?

a) 227 W

b) 325 W

c) 400 W

d) 500 W

271. Two resistances when connected in parallel across a cell of negligible internal resistance consume 4 times the power they would consume when connected in series. If one resistance is 5Ω , the other is

a) 1Ω

b) 2.5 Ω

c) 5 Ω

d) 10Ω

272. A 36Ω galvanometer is shunted by resistance of 4Ω . The percentage of the total current, which passes through the galvanometer is

a) 8%

b) 9%

c) 10%

d) 91%

273. What will happen when a 40 *watt*, 220 *volt* lamp and 100 *watt*, 220 *volt* lamp are connected in series across 40 *volt* supply

a) 100 watt lamp will fuse

b) 40 watt lamp will fuse

c) Both lamps will fuse

d) Neither lamp will fuse

274. Calculate the value E, for given circuit, when value of 2A current is either flowing in clockwise or anticlockwise direction

٠- ٦	าา	T 7	α
21	٠ ،	V.	8V
аı	J4	ν.	\mathbf{v}

275. In a copper voltmeter, the mass deposited in 30 s is m gram. If the current-time graph is as shown in figure, the electrochemical equivalent of copper, in gC^{-1} is

a) 0.1 m

b) 0.6 m

d) m

276. The ammeter A reads 2 A and the voltmeter V reads 20 V. The value of resistance R is (Assuming finite resistance's of ammeter and voltmeter)

a) Exactly 10 ohm

b) Less than 10 ohm

c) More than 10 ohm

- d) We cannot definitely say
- **277**. An electric kettle takes 4 *A* current at 220 *V*. How much time will it take to boil 1 *kg* of water from room temperature 20°C? The temperature of boiling water is 100°C

a) 0.63 minutes

- b) 6.3 minutes
- c) 12.6 minutes
- d) 12.8 minutes

278. The magnitude of I in ampere is

a) 0.1

b) 0.3

c) 0.6

d) None of the above

279. Two electric bulbs marked 40 W, 220 V and 60 W, 220 V when connected in series, across same voltage supply of 220 V, the effective power is P_1 and when connected in parallel the effective power is P_2 . Then $\frac{P_1}{P_2}$

is

a) 0.5

b) 0.48

c) 0.24

d) 0.16

280. To convert a 800 mV range milli voltmeter of resistance 40 Ω into a galvanometer of 100 mA range, the resistance to be connected as shunt is

a) 10Ω

b) 20 Ω

c) 30Ω

d) 40Ω

281. A wire of resistance 10 Ω is bent to form a circle. *P* and *Q* are points on the circumference of the circle dividing it into a quadrant and are connected to a battery of 3 V and internal resistance 1 Ω as shown in the figure. The currents in the two parts of the circle are

a) $\frac{6}{23}A$ and $\frac{18}{23}A$

b) $\frac{5}{26}A$ and $\frac{15}{26}A$

c) $\frac{4}{25}A$ and $\frac{12}{25}A$ d) $\frac{3}{25}A$ and $\frac{9}{25}A$

282. The temperature at which thermo emf is zero, is

a) Temperature of inversion

b) Temperature of cold junction

c) Neutral temperature

d) None of the above

283. *n* identical bulbs, each designed to draw a power *p* from a certain voltage supply, are joined in series

	across that supply. The total power which they will draw is					
	a) p/n^2	b) <i>p/n</i>	c) <i>p</i>	d) <i>np</i>		
284.	The thermistors are usual	ly made of				
a) Metals with low temperature coefficient of resistivity						
	b) Metals with high temperature coefficient of resistivity					
	c) Metal oxides with high temperature coefficient of resistivity					
		als having low temperatur	=			
285.	-	h is doubled, the drift veloc	-			
	a) Is doubled	b) Is halved	c) Remains same	d) Becomes zero		
286	-	-	-	ne wire A is half of that B . If		
200.		24 <i>ohm</i> then the resistance		ic wife 71 is han of that b. if		
	a) 12 <i>Ohm</i>	b) 3.0 <i>Ohm</i>	c) 1.5 <i>0hm</i>	d) None of the above		
207		•	y of emf 12V, 2 g of copper	•		
207.	= =	-	= ==	=		
			the mass of copper deposit			
200	a) 1 g	b) 1.5 g	c) 2 g	d) 2.5 g		
288.	Which of the following is i			D 771		
000	a) Joule effect	b) Peltier effect	c) Seebeck effect	d) Thomson effect		
289.	Find out the value of curre	ent through 2Ω resistance f	for the given circuit			
	$\frac{1}{10V}$ 5Ω 10Ω $20V$	<u></u> 				
	2Ω					
	a) 5 A	b) 2 A	c) Zero	d) 4 A		
290.		gure, then resistance <i>X</i> will				
	10Ω 5 <i>V</i>					
	A	В				
	2 <i>V</i>					
	\) 4 5 0	1) 00 0		
	a) 5 Ω	b) 10 Ω	c) 15 Ω	d) 20 Ω		
291.	-	the resistance offered by m				
	a) Increase	b) Decrease	c) Remains same	d) None of these		
292.	2. A uniform wire has resistance 24 Ω . It is bent in the form of a circle. The effective resistance between the					
	two end points on any dia	meter of the circle is				
	a) 6 Ω	b) 12 Ω	c) 3 Ω	d) 24 Ω		
293.	When the length and area	of cross-section both are d	loubled, then its resistance			
	a) Will become half		b) Will be doubled			
	c) Will remain the same		d) Will become four times	3		
294.	When a current passes thi	rough a wire whose differe	nt parts are maintained at	different temperatures,		
	evolution or absorption of	f heat all along the length o	f wire is known as			
	a) Joule effect	b) Seebeck effect	c) Peltier effect	d) Thomson effect		
295.	The drift velocity of free e	lectrons in a conductor is '	v^\prime when a current $^\prime i^\prime$ is flow	ring in it. If both the radius		
	and current are doubled, t					
		b) $\frac{v}{2}$	v	d) $\frac{v}{g}$		
	a) <i>v</i>	<u>_</u>	c) $\frac{v}{4}$	U		
296.	The resistance R_t of a con	ductor varies with tempera	ature $\it t$ as shown in the figu	re. If the variation is		
	represented by $R_t = R_0[1$	$+ \alpha t + \beta t^2$], then				

	a) α and β are both negative b) α and β are both positive		170		
	a) α and β are both negative				
207	c) α is positive and β is negative d) α is negative and β are positive . A 50 <i>ohm</i> galvanometer gets full scale deflection when a current of 0.01 A passes through the coil. W			_	
297.	= =	meter, the shunt resistance	=	es till ough the con. When it	
				4) E000 O	
200	a) 0.01Ω	b) 0.05Ω	c) 2000Ω	d) 5000Ω	
290.			t of <i>I</i> ampere flows through		
200	a) I^2Rt	b) <i>I</i> ² <i>R</i>	c) V^2R	d) I R	
299.				esistance $R = 1$ ohm. If the	
			of B is 0.9 ohm, what is the	potential difference	
	between the terminals of	battery A			
	$A \vdash B \vdash B$				
	R				
	a) 2 <i>V</i>	b) 3.8 <i>V</i>	c) Zero	d) None of the above	
300	•	•	equal length. Two pieces ea		
300.	• •	•	he new combination will ha	•	
	then live such combinatio				
	a) <i>R</i>	b) $\frac{R}{4}$	c) $\frac{R}{5}$	d) $\frac{R}{25}$	
301.	1. There are three resistance coils of equal resistance. The maximum number of resistances you can obtain				
		-	g free to use any number of		
	a) 3	b) 4	c) 6	d) 5	
302.	The resistance of a conduction	ctor increases with			
			b) Increase in temperatur	perature	
	c) Decrease in cross-secti	onal area	d) All of these		
303.	_		d a current of 4.5 A flows. T	he internal resistance of	
	the battery is				
	a) 10 Ω	b) 0.5 Ω	c) 1.1 Ω	d) 5 Ω	
304.	A galvanometer of resista	nce 22.8 Ω measures 1A. H	low much shunt should be i	ised, so that it can be used	
	to measure 20A?				
	a) 1Ω	b) 2Ω	c) 1.2Ω	d) 2.2Ω	
305.	To get the maximum curr	ent from a parallel combin	ation of n identical cells each	ch of internal resistance r	
and external resistance R, when					
	a) $R \gg r$	b) $R \ll r$	c) $R = r$	d) None of these	
306.	•		<i>B</i> in the following circuit is	=	
	5Ω	-	Č		
	A				

a) 3.12Ω b) 1.56Ω c) 6.24Ω

307. Three equal resistors are connected as shown in figure. The maximum power consumed by each resistor is 18 W. Then maximum power consumed by the combination is

d) 12.48 Ω

a) 18 W

b) 27 W

- c) 36 W
- d) 54 W

308. The current from the battery in circuit diagram shown is

a) 1 A

b) 2 A

c) 1.5 A

d) 3 A

309. The resistance between the points *A* and *C* in the figure below is

a) $R \Omega$

c) $\frac{2}{3} R\Omega$

310. In an electroplating experiment, *m gm* of silver is deposited when 4 *ampere* of current flows for 2 *minute*. The amount (in gm) of silver deposited by 6 ampere of current for 40 second will be

a) 4 m

b) m/2

c) m/4

d) 2 m

311. For which of the following the resistance decreases on increasing the temperature

- a) Copper
- b) Tungsten
- c) Germanium
- d) Aluminium

312. When a 12Ω resistor is connected with a moving coil galvanometer then its deflection reduces from 50 divisions to 10 divisions. The resistance of the galvanometer is

a) 24Ω

b) 36 Ω

c) 48Ω

d) 60Ω

313. Current flows through a metabolic conductor whose area of cross-section increases in the direction of the current. If we move in this direction,

a) The carrier density will change

b) The current will change

c) The drift velocity will decrease

d) The drift velocity will increase

314. The resistance of a metal increases with increasing temperature because

- a) The collisions of the conducting electrons with the electrons increase
- b) The collisions of the conducting electrons with the lattice consisting of the ions of the metal increases
- c) The number of conduction electrons decrease
- d) The number of conduction electrons increase

315. $A4_{\mu}$ F conductor is charged to 400 V and then its plates are joined through a resistance of 1 k Ω . The heat produced in the resistance is

- a) 0.18 J
- b) 0.21 J
- c) 0.25 J
- d) 0.32 J

316. The current i and voltage V graphs for a given metallic wire at two different temperatures T_1 and T_2 are shown in the figure. It is concluded that

- b) $T_1 < T_2$
- c) $T_1 = T_2$
- d) $T_1 = 2T_1$

1 1 3 1	respectively are conne respectively, then a) $B_1 > B_2 > B_3$ b) $B_1 > B_2 < B_3$ c) $B_1 = B_2 = B_3$	cted in series across a 220	volt supply line. If the	e ratings of 40, 60 and 100 watts are B_1 , B_2 , B_3
	•	due to the high voltage sup	• •	related to each other by the relation
	a) $E = j/k$	b) $E = jk$	c) $E = k/j$	related to each other by the relation d) $k = jE$
		* *		k. Two wires are connected in
		assed through them. Heat p		
	a) 2:1	b) 1:16	c) 4:1	d) 16:1
320.	The equivalent resistan	nce between points a and b	of a network shown	in the figure is given by
	$ \begin{array}{c c} R & R \\ R & A \end{array} $			
:	a) $\frac{3}{4}R$	b) $\frac{4}{3}R$	c) $\frac{5}{4}R$	d) $\frac{4}{5}R$
	4	3	Т	3
	Resistance in the two g interchanged the balar		10 <i>ohm</i> and 30 <i>ohm</i> r	espectively. If the resistances are
	a) 33.3 <i>cm</i>	b) 66.67 <i>cm</i>	c) 25 <i>cm</i>	d) 50 <i>cm</i>
		vn have the value 2 <i>ohm</i> ea	•	
	A •	- √ ₩ √ -• B	•	
ä	a) 2 ohm	b) 4 <i>ohm</i>	c) $1\frac{2}{3}$ ohm	d) $2\frac{2}{3}$ ohm
323.	An electric bulb rated 2	220 V, 100 W is connected	in series with another	bulb rated 220 V, 60 W. If the
7	voltage across the com	bination is 220 V, the pow	er consumed by the 1	00 Wbulb will be about
	a) 25 W	b) 14 W	c) 60 W	d) 100 W
324. Potentiometer wire of length 1m is connected in series with 490Ω resistance and 2V battery. If 0.2m Vcm ⁻¹ is the potential gradient, then resistance of the potentiometer wire is				
	Vcm $^{-1}$ is the potential $_{2}$	gradient, then resistance of 0.00	<u>-</u>	ire is d) 6.9 Ω
	,	,	c) 5.9Ω	0.302 OA. If the cross-section of the wire is
		elocity of electrons will be	carries a carrent of 20	The cross section of the wife is
	a) $6.25 \times 10^{-3} \text{ms}^{-1}$	-	c) 1.25×10^{-3} ms	s^{-1} d) $1.25 \times 10^{-4} \text{ms}^{-1}$
	A metallic wire of resis would be			nce between two diagonal points
	a) 12 Ω	b) 24 Ω	c) 6 Ω	d) 3 Ω
327.	The material of fuse wi	re should have	•	•
ä	a) A high specific resis	tance and high melting poi	nt	
	=	ance and low melting poin		
		tance and low melting poir		
		ance and a high melting po		is Do 1 25 The goot of voice this
	An electric lamp is mai lamp 8 <i>hrs</i> a day for 30		or a 1 kw n of energy	is <i>Rs.</i> 1.25. The cost of using this
	a) <i>Rs.</i> 10	b) <i>Rs</i> . 16	c) <i>Rs.</i> 18	d) <i>Rs</i> . 20
		B are drawn for two voltam	,	

a) A for water voltameter and B for Cuvoltameter

(B)

- b) A for Cuvoltmeter and B for water voltameter
- c) Both A and B represents Cu voltameter
- d) None of these
- 330. The resistance of a wire is 10Ω . Its length is increased by 10% by stretching. The new resistance will now
 - a) 12Ω

b) 1.2Ω

c) 13Ω

- d) 11Ω
- 331. If t_1 and t_2 are the times taken by two different coils for producing same heat with same supply, then the time taken by them to produce the same heat when connected in parallel will be
 - a) $t_1 + t_2$
- b) $\frac{t_1 t_2}{t_1 + t_2}$
- $c) \frac{2t_1t_2}{t_1+t_2}$
- 332. A 5V battery with internal resistance 2 Ω and a 2V battery with internal resistance 1 Ω are connected to a 10 Ω resistor as shown in the figure

The current in the 10 Ω resistor is

- a) 0.27A, P_2toP_1

- b) 0.03A, P_1toP_2 c) 0.03A, P_2tpP_1 d) 0.27A, P_1toP_2
- 333. Variation of current passing through a conductor as the voltage applied across its ends is varied as shown in the adjoining diagram. If the resistance (R) is determined at the points A, B, C and D, we will find that

- a) $R_C = R_D$
- b) $R_B > R_A$
- c) $R_C > R_B$
- d) None of these
- 334. Two resistances *R* and 2*R* are connected in parallel in an electric circuit. The thermal energy developed in R and 2R are in the ratio
 - a) 1:2

b) 2:1

c) 1:4

- d) 4:1
- 335. An electric bulb is rated 220 V 100 W. The power consumed by it when operated on 110 V will be

b) 40 W

- c) 25 W
- d) 50 W
- 336. Dimensions of a block are $1 cm \times 1 cm \times 100 cm$. If specific resistance of its material is $3 \times 10^{-7} ohm m$, then the resistance between the opposite rectangular faces is
 - a) 3×10^{-9} ohm
- b) 3×10^{-7} ohm
- c) $3 \times 10^{-5} ohm$
- d) 3×10^{-3} ohm
- 337. A copper and silver voltmeter are connected in parallel. If 2000 C of charge liberates the same mass of copper and silver, then charge flowing in copper voltmeter is

$$[Z(Cu = 3.36 \times 10^{-7} \text{ kg C}^{-1}, Z(Ag) = 1.008 \times 10^{-6} \text{kgC}^{-1}]$$

- a) 1250 C
- b) 1500 C
- c) 1750 C
- d) 1000 C
- 338. Two wires of the same material but of different diameters carry the same currenti. If ratio of their diameters is 1:2, then the corresponding ratio of their mean drift velocities will be
 - a) 4:1

b) 1:1

c) 1:2

d) 1:4

339. In the circuit shown, if the resistance 5 Ω develops a heat of 42 J per second, heat developed in 2 Ω must be about (in Js⁻¹)

a) 25

b) 20

c) 30

d) 35

340. The net resistance of a voltmeter should be large to ensure that

- a) It does not get overheated
- b) It does not draw excessive current
- c) It can measure large potential difference
- d) It does not appreciably change the potential difference to be measured

341. Five cells each of internal resistances 0.2Ω and emf 2 V are connected in series with a resistance of 4Ω . The current through the external resistance is

a) 4A

b) 2A

c) 1A

d) 0.5A

342. The maximum current that flows through a fuse wire before it blows out varies with its radius as

a) $r^{3/2}$

b) *r*

c) $r^{2/3}$

d) $r^{1/2}$

343. If the cold junction is held at 0°C, the same thermo-emf V of a thermocouple varies as $V = 10 \times 10^{-6} t - \frac{1}{40} \times 10^{-6} t^2$, where t is the temperature of the hot junction in °C. The neutral temperature and the maximum value of thermo-emf are respectively

- a) 200°C; 2 mV
- b) 400°C; 2 mV
- c) 100°C; 1 mV
- d) 200°C; 1 mV

344. In the given figure, equivalent resistance between *A* and *B* will be

a) $\frac{14}{3}\Omega$

b) $\frac{3}{14}\Omega$

c) $\frac{9}{14}\Omega$

d) $\frac{14}{9}\Omega$

345. Five resistors of given values are connected together as shown in the figure. The current in the arm *BD* will be

a) Half the current in the arm ABC

- b) Zero
- c) Twice the current in the arm ABC
- d) Four times the current in the arm ABC
- 346. A battery of internal resistance 4 Ω is connected to the network of resistance as shown. In order to given the maximum power to the network, the value of R (in Ω) should be

	a) 4/9	b) 8/9	c) 2	d) 18		
347.	In a metre bridge experin	nent, resistances are conne	cted as shown in figure. Th	e balancing length l_1 is		
	55 <i>cm</i> . Now an unknown resistance <i>x</i> is connected in series with <i>P</i> and the new balancing length is found					
	to be 75 cm. The value of	x is				
	$p = 3\Omega$ G					
	$A \begin{array}{ c c c }\hline & l_1 & \bigcirc & (100-l_1) \\\hline & & & \\\hline \end{array} C$					
	a) $\frac{54}{12}\Omega$	20	. 48	, 11 ₂		
	a) $\frac{\Omega}{12}$	b) $\frac{20}{11}\Omega$	c) $\frac{48}{11}\Omega$	d) $\frac{11}{48}\Omega$		
348.	To deposit one litre of hy	drogen at 22.4 atmosphere	from acidulated water, the	quantity of electricity that		
	must pass through is					
	a) 1 coulomb	b) 22.4 <i>coulomb</i>	c) 96500 <i>coulomb</i>	d) 193000 <i>coulomb</i>		
349.	Out of five resistances of	resistance R Ω each 3 are co	onnected in parallel and ar	e joined to the rest 2 in		
	series. Find the resultant	resistance				
	a) $\left(\frac{3}{7}\right)R\Omega$	b) $\left(\frac{7}{2}\right)R\Omega$	c) $\left(\frac{7}{9}\right)R\Omega$	d) $\left(\frac{8}{7}\right) R \Omega$		
350	(//	(3) en circuit reads 2 A, the res	(0)	(/)		
330.	3Ω	en circuit reads 2 A, the res	istalice K is			
	R					
	-6Ω					
	6V					
	a) 1 <i>ohm</i>	b) 2 <i>ohm</i>	c) 3 ohm	d) 4 ohm		
351.	•	att is connected to a supply		•		
001	a) 484 Ω	b) 100 Ω	c) 22000 Ω	d) 242 Ω		
352.		•	=			
	The emf of a thermocouple, cold junction of which is kept at -300° C is given by $E = 40t + \frac{1}{10}t^{2}$. The					
	temperature of inversion	-		1) 40000		
050	a) 200°C	b) 400°C	c) -200°C	d) -100°C		
353.	53. An aluminium (Al) rod with area of cross-section 4×10^{-6} m ² has a current of 5 A flowing through it. Find					
	the drift velocity of electron in the rod. Density of Al= 2.7×10^3 kgm ⁻³ and atomic wt.=27u. Assume that					
	each Al atom provides on			1) 0 0 40-3 -1		
054	a) $8.6 \times 10^{-4} \text{ms}^{-1}$	b) $1.3 \times 10^{-4} \text{ms}^{-1}$	c) $2.8 \times 10^{-2} \text{ms}^{-1}$	d) $3.8 \times 10^{-3} \text{ms}^{-1}$		
354.	Which of the following is					
	a) Resistivity of electrolytes decreases on increasing temperature					
	b) Resistance of mercury falls on decreasing its temperature					
	c) When joined in series a 40 W bulb glows more than a 60 W bulb					
	d) Resistance of 40 W bulb is less than the resistance of 60 W bulb					
355.	Find the equivalent resist	cance across <i>AB</i>				
	A • \$ 2Ω					
		20				
	$\geqslant 2\Omega$					
	ξ 2Ω ξ 2Ω2					

356. In the circuit shown, the value of each resistance is r, then equivalent resistance of circuit between points A and B will be

c) 3 Ω

d) 4 Ω

b) 2 Ω

a) 1 Ω

a) $\sin 40^\circ$ b) $\cos 40^\circ$ c) $\tan 40^\circ$ d) $\cot 40^\circ$

current. The resistance of the conductor will be

365. Find the equivalent resistance across the terminals of source of e.m.f. 24 V for the circuit shown in figure

c) 454K

c) 30C

c) 0.9Ω

c) 100.37 mA

c) 10^{10}Vm^{-1}

c) 1.2 times , 1.1 times

d) 40C

d) 10^8Vm^{-1}

d) 94.037 mA

d) 1.21 times, same

371. A source of emf E=15V and having negligible internal resistance, is connected to a variable resistance, so

373. A wire of a certain material is stretched slowly by ten percent. Its new resistance and specific resistance

374. An ammeter reads upto 1A. Its internal resistance is 0.81Ω . To increase the range to 10A the value of the

375. The electron in a hydrogen atom circles around the proton in 1.5941 \times 10^{-18} s. The equivalent current due

376. The wiring of a house has resistance 6Ω . A 100 W bulb is glowing as shown in figure. If a geyser of 1000 W

that the current in the circuit increases with time as I=1.2t+3. Then, the total charge that will flow in first

b) 727K

b) 20C

b) 0.3Ω

b) 122.49 mA

is switched on, the change in potential drop across the bulb is nearly

a) Both remain the same b) 1.1 times, 1.1 times

372. A current of 0.01mA passes through the potentiometer wire of a resistivity of $10^9\Omega$ -cm and area of cross-section 10^{-2} cm². The potential gradient is

b) 10^{11}Vm^{-1}

5s will be a) 10C

a) 10^9Vm^{-1}

become respectively

required shunt is

a) 127.37 mA

to motion of the electrons is

a) 0.03Ω

	a) Nil	b) 12 V	c) 24 V	d) 32 V
377.	In the circuit shown, the heat generated in Ω resist		istor due to current flowing	g in it is $10 \text{ cal} - \text{s}^{-1}$. The
	$\begin{array}{c c} & 4\Omega & 6\Omega \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	-		
	a) $1 \text{ cal} - \text{s}^{-1}$	b) $2 \text{ cal} - \text{s}^{-1}$	c) $3 \text{ cal} - \text{s}^{-1}$	d) $4 \text{ cal} - \text{s}^{-1}$
378.				ochemical equivalent (Z) is
	a) $F = EZ$	b) $F = \frac{Z}{E}$	c) $F = \frac{E}{Z}$	$d) F = \frac{E}{Z^2}$
	current of 1 ampere. It is a	required to make a suitable n carry a current of 4 ampe	alue $R=10\Omega$ and each capa e combination of these resisters. The minimum number of	stances to produce a
	a) 4	b) 10	c) 8	d) 20
380.	Three electric bulbs of rat power consumed by these	= :	series and then connected	
	a) 180 W	b) 60 W	c) 20 W	d) $\frac{20}{3}W$
		ther resistance of $10~\Omega$ is co	d so that they form the side onnected across the diagona	•
	a) 2 Ω	b) 5 Ω	c) 7 Ω	d) 10 Ω
	In a meter bridge experim point from left is	ent, the ratio of the left gap	resistance to right gap res	sistance is 2:3, the balance
	a) 60 cm	b) 50 cm	c) 40 cm	d) 20 cm
383.	A battery is charged at a p	otential of 15 V in 8 hours	when the current flowing i	s 10 <i>A</i> . The battery on
	11 1	. CE A C AE 1		. 1. 1 . 4477 [77]

discharge supplies a current of 5 A for 15 hours. The mean terminal voltage during discharge is 14 V. The "Watt-hour" efficiency of battery is c) 87.5% d) 82.5%

a) 80% b) 90%

384. In the figure shown, the capacity of the condenser *C* is 2 μF . The current in 2 Ω resistor is

385. The three resistances of equal value are arranged in the different combinations shown below. Arrange them in increasing order of power dissipation

a) III	< I	T <	IV	<

b) II < III < IV < I

c) I < IV < III < II

d) I < III < II < IV

386. The number of dry cells, each of e.m.f. $1.5\ volt$ and internal resistance $0.5\ ohm$ that must be joined in series with a resistance of $20\ ohm$ so as to send a current of $0.6\ ampere$ through the circuit is

a) 2

b) 8

c) 10

d) 12

387. If nearly 10⁵C liberate 1 g equivalent of aluminium, then the amount of aluminium (equivalent weight g) deposited through electrolysis in 20 min by a current of 50 A will be

a) 0.09 g

b) 0.6 g

c) 5.4 g

d) 10.8 g

388. The drift velocity of the electrons in a copper wire of length 2 m under the application of a potential difference of 220 V is $0.5 \,\mathrm{ms}^{-1}$. Their mobility (in $\mathrm{m}^2\mathrm{V}^{-1}\mathrm{s}^{-1}$)

a) 2.5×10^{-3}

b) 2.5×10^{-2}

c) 5×10^{2}

d) 5×10^{-3}

389. When a current passes through the junction of two different metals, evolution or absorption of heat at the junction is known as

a) Joule effect

b) Seebeck effect

c) Peltier effect

d) Thomson effect

390. In the given circuit the current I_1 is

a) 0.4 A

b) -0.4 A

c) 0.8 A

d) -0.8 A

391. In the given current distribution, what is the value of I?

a) 3A

b) 8A

c) 2A

d) 5A

392. A galvanometer of resistance G can measure 1 A current. If a shunt S is used to convert it into an ammeter to measure 10A current. The ratio of $\frac{G}{S}$ is

a) $\frac{1}{9}$

b) $\frac{9}{1}$

c) 10

d) $\frac{1}{10}$

393. The total power dissipated in Watts in the circuit shown here is

- 394. A wire of length 100 cm is connected to a cell of emf~2~V and negligible internal resistance. The resistance of the wire is 3 Ω . The additional resistance required to produce a potential drop of 1 milli~volt~per~cm is
 - a) 60 Ω

b) 47 Ω

c) 57 Ω

- d) 35 Ω
- 395. For a metallic wire, the ratio $\frac{V}{i}$ (V =applied potential difference and i=current flowing) is
 - a) Independent of temperature
 - b) Increases as the temperature rises
 - c) Decreases as the temperature rises
 - d) Increases or decreases as temperature rises depending upon the metal
- 396. For measurement of potential difference, potentiometer is preferred in comparison to voltmeter because
 - a) Potentiometer is more sensitive than voltmeter
 - b) The resistance of potentiometer is less than voltmeter
 - c) Potentiometer is cheaper than voltmeter
 - d) Potentiometer does not take current from the circuit
- **397.** Potential difference across the terminals of the battery shown in figure is (r = internal resistance of battery)

a) 8 V

b) 10 V

c) 6 V

- d) Zero
- 398. If R_1 and R_2 be the resistances of the filaments of 200 W and 100 W electric bulbs operation at 220 V, then $\left(\frac{R_1}{R_2}\right)$ is
 - a) 1

b) 2

c) 0.5

d) 4

399. What is the current (i) in the circuit as shown in figure

a) 2 A

b) 1.2 A

c) 1 A

- d) 0.5 A
- **400**. A battery is connected to a uniform resistance wire *AB* and *B* is earthed. Which one of the graphs below shows how the current density *J* varies along *AB*

401. A battery of *emf* 10 V and internal resistance 3Ω is connected to a resistor as shown in the figure. If the current in the circuit is 0.5 A, then the resistance of the resistor will be

a) 19 Ω

b) 17 Ω

c) 10 Ω

- d) 12 Ω
- **402**. Two identical conductors maintained at same temperatures are given potential differences in the ratio 1 :2. Then the ratio of their drift velocities is
 - a) 1:2

b) 3:2

c) 1:1

- d) $1:2^{1/2}$
- **403**. When a current I is passed through a wire of constant resistance, it produces a potential difference *V* across its ends. The graph drawn between log I and log V will be

- 404. The *emf* of a thermocouple, one junction of which is kept at 0° C, is given by $e = at + bt^2$. The Peltier coefficient will be
 - a) (t + 273)(a + 2bt)
- b) (t + 273)(a 2bt)
- c) (t-273)(a-2bt)
- d) (t 273)(a + 2bt)
- 405. A potentiometer wire, 10 m long, has a resistance of 40Ω . It is connected in series with a resistance box and a 2V storage cell. If the potential gradient along the wire is (0.1 mVcm^{-1}) , the resistance unplugged in the box is
 - a) 260 Ω
- b) 760 Ω
- c) 960Ω
- d) 1060 Ω
- 406. The resistance of a wire of iron is 10~ohm and temp. coefficient of resistance is 5×10^{-3} /°C. At 20°C it carries 30~milliampere of current. Keeping constant potential difference between its ends, the temperature of the wire is raised to 120°C. The current in milliampere that flows in the wire is
 - a) 20

b) 15

c) 10

- d) 40
- 407. The resistance of a galvanometer coil is R, then the shunt resistance required to convert it into a ammeter of range 4times, will be
 - a) 4R

b) *R*/3

c) R/4

- d) R/5
- **408**. Six resistors, each of value 3 Ω are connected as shown in the figure. A cell of emf 3V is connected across *AB*. The effective resistance across *AB* and the current through the arm *AB* will be

- a) 0.6Ω , 1 A
- b) 1.5Ω , 2 A
- c) 0.6Ω , 2 A
- d) 1.5Ω , 1 A

409. The current in the arm *CD* of the circuit will be

- a) $i_1 + i_2$
- b) $i_2 + i_3$
- c) $i_1 + i_3$
- d) $i_1 i_2 + i_3$
- 410. In the circuit shown $P \neq R$, the reading of the galvanometer is same with switch S open or closed. Then

- a) $I_R = I_G$
- b) $I_P = I_G$
- c) $I_Q = I_G$
- d) $I_Q = I_R$

411. The equivalent resistance across *A* and *B* is

a) 2Ω

b) 3Ω

c) 4Ω

- d) 5Ω
- **412.** An ammeter and a voltmeter of resistance *R* are connected in series to an electric cell of negligible internal resistance. Their readings are *A* and *V* respectively. If another resistance *R* is connected in parallel with the voltmeter
 - a) Both A and V will increase

- b) Both A and V will decrease
- c) A will decrease and V will increase
- d) A will increase and V will decrease
- **413**. The amount of charge Q passed in time t through a cross-section of a wire is $Q = 5t^2 + 3t + 1$. The value of current at time t = 5 s is
 - a) 9A

b) 49A

c) 53A

- d) None of these
- 414. The mass of ions deposited during a given interval of time in the process of electrolysis depends on
 - a) The current
- b) The resistance
- c) The temperature
- d) The electric power
- **415**. A cell of *emf* 6 *V* and resistance 0.5 *ohm* is short circuited. The current in the cell is
 - a) 3 amp
- b) 12 amp
- c) 24 amp
- d) 6 amp
- 416. What is the resistance of a carbon resistance which has bands of colours brown, black and brown
 - a) 100 O
- b) 1000 Ω
- c) 10Ω

d) 1Ω

- 417. Electric field (E) and current density (J) have relation
 - a) $E \propto J^{-1}$
- b) $E \propto J$
- c) $E \propto \frac{1}{I^2}$
- d) $E^2 \propto \frac{1}{I}$
- 418. The chemical equivalent of copper and zinc are 32 and 108 respectively. When copper and silver

voltmeters are connected in series and electric current is passed through for sometime, 1.6 g of copper is deposited. Then, the mass of silver deposited will be

a) 3.5 g

b) 2.8 g

c) 5.4 g

d) None of these

419. A beam contains 2×10^8 doubly charged positive ions per cubic centimeter, all of which are moving with a speed of 10^5 m/s. The current density is

a) $6.4 A/m^2$

b) $3.2 A/m^2$

c) $1.6 A/m^2$

d) None of these

420. A Copper wire of length 1 m and radius 1 mm is joined in series with an iron wire of length 2 m and radius 3 mm and a current is passed through the wires. The ratio of the current density in the wires. The ratio of the current density in the copper and iron wires is

a) 2:3

b) 6: 1

c) 9:1

d) 18:1

421. To draw maximum current from a combination of cells, how should the cells be grouped?

a) Parallel

b) Series

c) Mixed grouped

d) Depends upon the relative values of internal and external resistances

422. In circuit shown below, the resistances are given in ohm and the battery is assumed ideal with emf equal to 3V. The voltage across the resistance R_4 is

a) 0.4V

b) 0.6V

c) 1.2V

d) 1.5V

423. The value of i_1 in the circuit diagram will be

a) 1A

b) $\frac{1}{2}$ A

c) $\frac{3}{4}$ A

d) $\frac{3}{2}$ A

424. What is the equivalent resistance of the circuit

a) 6Ω

b) 7 Ω

c) 8 Ω

d) 9Ω

425. A galvanometer of 50 *ohm* resistance has 25 divisions. A current of 4×10^{-4} *ampere* gives a deflection of one division. To convert this galvanometer into a voltmeter having a range of 25 *volts*, it should be connected with a resistance of

a) 2500 Ω as a shunt

b) 2450 Ω as a shunt

c) 2550 Ω in series

d) 2450 Ω in series

426. The potential difference between A and B in the following figure is

a) 32 V

b) 48 V

c) 24 V

- d) 14 V
- 427. In the circuit given here, the points A, B and C are 70V, zero, 10V respectively. Then

- a) The point *D* will be at a potential of 60V
- b) The point *D* will be at a potential of 20V
- c) Currents in the path *AD*, *DB* and *DC* are in the ratio of 1:2:3
- d) Currents in the path AD, DB and DC are in the ratio of 3:2:1
- **428**. A house, served by 220 V supply line, is protected by a 9 A fuse. The maximum number of 60 W bulbs in parallel that can be turned on is
 - a) 11

b) 22

c) 33

- d) 44
- 429. The thermo emf of copper-constantan couple is $40\mu V$ per degree. The smallest temperature difference that can be detected with this couple and a galvanometer of 100Ω resistance capable of measuring the maximum current of $1\mu A$ is
 - a) 10°C

- b) 7.5°C
- c) 5.0°C
- d) 2.5°C
- 430. When a Daniel cell is connected in the secondary circuit of a potentiometer, the balancing length is found to be 540 cm. If the balancing length becomes 500 cm when the cell is short circuited with 1 Ω , the internal of the cell is
 - a) 0.08Ω
- b) 0.04 Ω
- c) 1.0 Ω

- d) 1.08Ω
- 431. If in a voltaic cell, 5 g of zinc is consumed, we will get how many ampere hour (given that ECE of zinc is $3.38 \times 10^{-7} \text{kgC}^{-1}$)
 - a) 2.05

b) 8.2

c) 4.1

- d) $5 \times 3.338 \times 10^{-7}$
- **432**. A torch bulb rated as 4.5 W, 1.5 V is connected as shown in the figure. The e.m.f. of the cell needed to make the bulb glow at full intensity is

a) 4.5 V

b) 1.5 V

- c) 2.67 V
- d) 13.5 V
- **433**. Same current is being passed through a copper voltmeter and a silver voltmeter. The rate of increase in weights of the cathode of the two voltmeters will be proportional to
 - a) Atomic masses
- b) Atomic number
- c) Relative densities
- d) None of the above
- **434.** Two resistances *R* and 2 *R* are connected in parallel in an electric circuit. The thermal energy developed in in *R* and 2 *R* is in the ratio
 - a) 1:2

b) 1:4

c) 4:1

- d) 2:1
- 435. Drift velocity v_d varies with the intensity of electric field as per the relation
 - a) $v_d \propto E$
- b) $v_d \propto \frac{1}{F}$
- c) $v_d = \text{constant}$
- d) $v_d \propto E^2$
- 436. A potentiometer wire of length 10 m and resistance 20 Ω is connected is series with a 15V battery and an external resistance 40 Ω . A secondary cell of emf E in the secondary circuit is balanced by 240 cm long the potentiometer wire. The emf E of the cell is
 - a) 2.4V

b) 1.2V

c) 2.0V

d) 3V

438. A potentiometer circuit is set up as shown. The potential gradient, across the potentiometer wire, is k volt/cm and the ammeter, present in the cicuit, reads 1.0 A when two way key is switched off. The balance points, when the key between the terminals (i) 1 and 2 (ii) 1 and 3, is plugged in, are found to be at lengths l_1 cm and l_2 cm respectively. The magnitudes, of the resistors R and X, in ohms, are then, equal, respectively, to

- a) kl_1 and kl_2
- b) $k(l_2 l_1)$ and kl_2 c) kl_1 and $k(l_2 l_1)$ d) $k(l_2 l_1)$ and kl_1
- 439. An immersion heater is rated 836 watt. It should heat 1 litre of water from 10°C to 40°C in about
 - a) 200 sec
- b) 150 sec
- c) 836 sec
- d) 418 sec

440. In a potentiometer circuit there is a cell of e.m.f. 2 *volt*, a resistance of 5 *ohm* and a wire of uniform thickness of length 1000 cm and resistance 15 ohm. The potential gradient in the wire is

a)
$$\frac{1}{500}V/cm$$

b)
$$\frac{3}{2000}V/cm$$
 c) $\frac{3}{5000}V/cm$

c)
$$\frac{3}{5000}V/cm$$

d)
$$\frac{1}{1000}V/cm$$

441. In the circuit shown here, $E_1 = E_2 = E_3 = 2V$ and $R_1 = R_2 = 4$ ohm. The current flowing between points Aand B through battery E_2 is

- b) 2 amp from A to B c) 2 amp from B to A
- d) None of the above
- 442. In the circuit shown in figure, power developed across 1Ω , 2Ω , 3Ω resistance are in ratio of

- a) 1:2:3
- b) 4:2:27
- c) 6:4:9
- d) 2:1:27

443. Two uniform wires *A* and *B* are of the same metal and have equal masses. The radius of wire *A* is twice that of wire B. The total resistance of A and B when connected in parallel is

- a) 4 Ω when the resistance of wire *A* is 4.25 Ω
- b) 5 Ω when the resistance of wire *A* is 4.25 Ω
- c) 4 Ω when the resistance of wire *B* is 4.25 Ω
- d) 5 Ω when the resistance of wire *B* is 4.25 Ω

444. A thermocouple develops 40 $\mu V/kelvin$. If hot and cold junctions are at 40°C and 20°C respectively, then then emf developed by a thermopile using such 150 thermocouples in series shall be

- b) 80*mV*
- c) 144mV
- d) 120mV

445. A fuse wire with a radius of 1 mm blows at 1.5 A. If the fuse wire of the same material should blow at 3.0 A,

	the radius of the fuse wire	e must be		
	a) 4 ^{1/3} mm	b) $\sqrt{2}$ mm	c) 0.5 mm	d) 8.0 mm
446.	The power dissipated acr	oss resistance R which is co	onnected across a battery o	of potential V is P . If
	resistance is doubled, the	n the power becomes		
	a) 1/2	b) 2	c) 1/4	d) 4
447.	The colour sequence in a	carbon resistor is red, brov	vn, orange and silver. The r	esistance of the resistor is
	a) $21 \times 10^3 \pm 10\%$	b) $23 \times 10^1 \pm 10\%$	c) $21 \times 10^3 \pm 5\%$	d) $12 \times 10^3 \pm 5\%$
448.	Two resistors of resistance	ce R_1 and R_2 having $R_1 > R$	$_{2}$ are connected in parallel.	For equivalent resistance
	<i>R</i> , the correct statement is	S		
	a) $R > R_1 + R_2$	b) $R_1 < R < R_2$	c) $R_2 < R < (R_1 + R_2)$	$d) R < R_1$
449.	= = :	=	ent flowing through a metal	lic wire is zero because
	a) The electrons remain s	_		0 4
			h a speed of the order of 10	
	=	=	peed of the order close to th	at of velocity of light
450	d) Electrons and ions mov		D 10 C .C 1	
450.			tions P and Q of uniform di	
		arift velocity of electrons in	P sections P and Q is denote	ed by $v_{\rm P}$ and $v_{\rm Q}$
	respectively, then	1	1	
	a) $v_P = v_Q$	b) $v_{\rm P} = \frac{1}{2} v_{\rm Q}$	c) $v_{\rm P} = \frac{1}{4} v_{\rm Q}$	d) $v_{\rm P} = 2v_{\rm Q}$
451.		4	V circuit. The percentage re	eduction in power is
	a) 100%	b) 25%	c) 70%	d) 75%
452.	•	ne maximum heat is produc		,
	4Ω	•		
	$\frac{1}{2}\Omega$			
	60			
	12 Ω			
	2 V			
	a) 2Ω	b) 6Ω	c) 4Ω	d) 12Ω
453.	•	•	s in a wire of resistance 100	•
	difference of 20 <i>V</i> is appli			- · · · · · · · · · · · · · · · · · · ·
	a) 120 <i>C</i>	b) 240 <i>C</i>	c) 20 C	d) 4 C
454.	•	ılb changes by 1%, then the		
	a) 1%	b) 2%	c) 4%	d) $\frac{1}{2}$ %
				$\frac{u}{2}$ $\frac{\pi}{2}$
455.	Which of the following is	-		
	a) $(Amp)^2 \times ohm$	b) Amp/Volt	c) $Amp \times Volt$	d) Joule/sec
456.	-	·	at a point 3 m away. If the b	
			lectric field produced at the	
	a) 2.9 V/m	b) 3.5 V/m	c) 5 V/m	d) $5.8 V/m$
457.	= = = =		r per minute at 35°C from a	a geyser connected to the
	tap. The power of geyser		-) 1500 W	1) 2000 M
450	a) 1050 W	b) 2100 W	c) 1500 W	d) 3000 W
45 8 .	resistance of the cell is	i nows unrough <i>2 onm</i> resi:	stor and 0.3 <i>A</i> through 7 <i>oh</i>	uni resistor. The internal
	a) 0.5Ω	b) 1.0 Ω	c) 1.2 Ω	d) 2.0 Ω
459	•	•	re, a part of its length was ı	
10).	= = = = = = = = = = = = = = = = = = =		inal length, the part of the v	

a) 1/8

b) 1/6

c) 1/10

- **460**. The Petlier coefficient of a thermo-couple of metls *A* and *B* at junction temperature *T* is given by
- b) $T \frac{dE}{dT}$
- c) $T^3 \frac{dE^2}{dT}$
- **461**. In Wheatstone's bridge P = 9 ohm, Q = 11 ohm, R = 4 ohm and S = 6 ohm. How much resistance must be put in parallel to the resistance *S* to balance the bridge
 - a) 24 ohm
- b) $\frac{44}{9}$ ohm
- c) 26.4 ohm
- d) 18.7 ohm

462. At steady state, energy stored in capacitor is

- a) 4×10^{-6} J
- b) 2 J

c) 4 J

- d) Zero
- 463. A battery of *emf* E produces currents I_1 and I_2 when connected to external resistances R_1 and R_2 respectively. The internal resistance of the battery is
 - a) $\frac{I_1R_2 I_2R_1}{I_2 I_1}$
- b) $\frac{I_1R_2 + I_2R_1}{I_1 I_2}$ c) $\frac{I_1R_1 + I_2R_2}{I_1 I_2}$
- d) $\frac{I_1 R_1 I_2 R_2}{I_2 I_1}$
- 464. A cell of emf E is connected across a resistance R. the potential difference between the terminals of the cell is found to be V volt. Then the internal resistance of the cell must be
 - a) (E-V)

- b) $\frac{(E-V)}{V}R$
- c) $\frac{2(E-V)R}{E}$
- d) $\frac{2(E-V)V}{R}$
- **465**. The potential difference between *A* and *B* in the following figure is

c) 32 V

- d) 48 V
- **466**. Figure shown three similar lamps *A*, *B* and *C* connected across a power supply. If the lamp *C* fuses, how will the light emitted by A and B change?

a) No change

Brilliance of A decreases and that of B increases

- c) Brilliance of both *A* and *B* increases
- d) Brilliance of both A and B decreases
- 467. In the circuit shown in figure, the heat produced by the 6 Ω resistance is $60\Omega \text{cals}^{-1}$. What heat per second is produced across 3Ω resistance?

- c) 100 cal
- d) 120 cal
- 468. Three equal resistors connected in series across a source of e.m.f. together dissipate 10 watt. If the same

	resistors are connected	in parallel across the same	e.m.f., then the power dissip	oated will be
	a) 10 watt	b) 30 <i>watt</i>	c) 10/3 watt	d) 90 watt
469.	A certain wire has a resi	stance R. The resistance of	another wire identical with	the first except having
	twice its diameter is			
	a) 2 R	b) 0.25 <i>R</i>	c) 4 R	d) 0.5 <i>R</i>
470.	Two bulbs of 100 W and	l 200 W working at 220 V ar	re joined in series with 220	V supply. Total power
	consumed will be			
	a) 65 W	b) 33 W	c) 300 W	d) 100 W
471.	A cell in secondary circu	iit gives null deflection for 2	2.5m length of potentiomete	r having 10m length of
	wire. If the length of the	potentiometer wire is incre	eased by $1m$ without chang	ing the cell in the primary,
	the position of the null p	ooint now is		
	a) 3.5 m	b) 3 <i>m</i>	c) 2.75 m	d) 2.0 <i>m</i>
472.	A 10 μ F capacitor is characteristics.	rged to 500 V and then its p	lates are joined together the	rough a resistance of 10Ω .
	The heat produced in th	e resistance is		
	a) 500 J	b) 250 J	c) 125 J	d) 1.25 J
473.	In the network of resisto	ors shown in the adjoining f	igure, the equivalent resista	ance between A and B is
	3Ω 3Ω 3Ω	3Ω 3Ω		
	A M TY M	h h B		
	W. W. W. A	n n n		
	3Ω 3Ω 3Ω	3Ω 3Ω		
	a) 54 <i>ohm</i>	b) 18 <i>ohm</i>	c) 36 <i>ohm</i>	d) 9 <i>ohm</i>
474.	In a balanced Wheatstor	ne's network, the resistance	in the arms Q and S are int	erchanged. As a result of
	this			
	a) Network is not balan	ced		
	b) Network is still balan	ced		
	c) Galvanometer shows	zero deflection		
	•	e cell must be interchanged		
475.	A uniform wire of 16 Ω i	is made into the form of squ	are. Two opposite corners o	of the square are connected
	by a wire of resistance 1	6Ω . The effective resistance	e between the other two opp	
	a) 32Ω	b) 20Ω	c) 8Ω	d) 4Ω
476.	•	· ·	sions x , $2x$ and $4x$. Electrica	
	= =	= ,	ple, between the faces label	
			electrical resistance be obta	ined $(A - A : Top and$
	bottom faces, $B - B$: Le	ft and right faces, $C - C$: Fr	ont and rear faces)	
		4 <i>x</i>		
	B	<u>/</u>		
		В		
	C A X			
	ZX			
	a) 1 — 1			
	a) <i>A</i> − <i>A</i>			

477. Two similar accumulators each of emf E and internal resistance r are connected as shown in the following figure. Then, the potential difference between x and y is

b) B - B c) C - C

d) Same for all three pairs

487. The resistance of a wire of uniform diameter *d* and length *L* is *R*. The resistance of another wire of the

same material but diameter 2d and length 4 L will be d) R/4

- b) R c) R/2
- **488**. If resistance of voltmeter is 10000Ω and resistance of galvanometer is 2Ω , then find R when voltmeter reads 12V and galvanometer reads 0.1A.

a) 118Ω

b) 120Ω

c) 124Ω

d) 114Ω

489. Ampere hour is the unit of

a) Quantity of charges

b) Potential

c) Energy

d) Current

490. The equivalent resistance of resistor connected in series is always

a) Equal to the mean of component resistors

b) Less than the lowest of component resistors

c) In between the lowest and the highest of component resistors

d) Equal to sum of component resistors

491. A cell having emf of 1.5V, when connected across a resistance of 14 Ω , produces a voltage of only 1.4V across this resistance. The internal resistance of the cell must be

a) 1Ω

b) 14 Ω

c) 15 Ω

d) 21 Ω

492. A resistor R and 2μ F capacitor in series is connected through a switch to 200 V direct supplies. Across the capacitor is a neon bulb that lights up at 120 V. Calculate the value of R to make the bulk light up 5 s alter the switch has been closed ($\log_{10} 2.5 = 0.4$)

a) $1.7 \times 10^{5} \Omega$

b) $2.7 \times 10^{6} \Omega$

c) $3.3 \times 10^{7} \Omega$

d) $1.3 \times 10^4 \Omega$

493. The drift velocity does not depend upon

a) Cross-section of the wire

b) Length of the wire

c) Number of free electrons

d) Magnitude of the current

494. What is the equivalent resistance between points A and B in the circuit if figure, if $R = 3 \Omega$?

a) 8 Ω

b) 9 Ω

c) 12 Ω

പ 15 റ

495. Figure shows a network of eight resistors, each equal to 2 Ω , connected to a 3V battery of negligible internal resistance. The current *I* in the circuit is

a) 0.25A

b) 0.50A

c) 0.75A

d) 1.0A

496. A cell of emfE and internal resistance r supplies currents for the same time t through external resistance $R_1 = 100 \ \Omega \text{and} R_2 = 40 \ \Omega$ separately. If the heat developed in both the cases in the same, then the internal resistance of the cell is given by

a) 28.6Ω

b) 70 Ω

c) 63.3 Ω

d) 140 Ω

497. The electric bulbs have tungsten filaments of same length. If one of then gives 60 *watt* and other 100 *watt*, then

a) 100 watt bulb has thicker filament

b) 60 watt bulb has thicker filament

c) Both filaments are of same thickness

d) It is possible to get different wattage unless the lengths are different

498. When an electrical appliance is switched on, it responds almost immediately, because

a) The electrons in the connecting wires move with the speed of light

- b) The electrical signal is carried by electromagnetic waves moving with the speed of light
- c) The electrons move with speed which is close to but less than speed of light
- d) The electron are stagnant
- **499.** A constant current *i* is passed through a resistor. Taking the temperature coefficient of resistance into account, indicate which of the plots shown in figure best represents the rate of production of thermal energy in the resistor

a) a

b) *b*

c) c

d) d

500. If voltage across a bulb rated 220 Volt-100 Watt drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is

a) 20%

b) 2.5%

c) 5%

d) 10%

501. Current is flowing with a current density $J = 480 \,\mathrm{Acm}^{-2}$ in a copper wire. Assuming that each copper atom contributes one free electron and given that

Avogadro number= 6.0×10^{23} atoms mol⁻¹

Density of copper=9.0g cm⁻³

Atomic weight of copper $=64 \text{ g mol}^{-1}$

The drift velocity of electrons is

a) 1 mm s^{-1}

b) 2 mm s^{-1}

c) 0.5 mm s^{-1}

d) 0.36 mm s^{-1}

502. An electric wire of length L' and area of cross-section L' has resistance L' and Another wire of the same material having same length and area of cross-section L' has a resistance of

a) 4R

b) R/4

c) R/16

d) 16R

503. When a current flows through a conductor its temperature

a) May increase or decrease

b) Remains same

c) Decrease

d) Increase

504. The current *I* drawn from the 5V source will be

a) 0.33A

b) 0.5A

c) 0.67A

d) 0.17A

505. The voltage of clouds is 4×10^6 V with respect to ground. In a light ning strike lasting 100 ms, a charge of 4 C is delivered to the ground. The power of lightning strike is

a) 160 MW

b) 80 MW

c) 20 MW

d) 500 Kw

506. An electric bulb is rated 220V-100W. The power consumed by it when operated on 110 V will be

a) 75W

b) 40W

c) 25W

d) 50W

507. The ammeter has range 1 *ampere* without shunt. The range can be varied by using different shunt resistances. The graph between shunt resistance and range will have the nature

a) P

b) Q

c) R

d)S

508. 1kg piece of copper is drawn into a wire 1 mm thick, and another piece into a wire 2 mm thick. Compare the resistance of these wires

a) 2:1

b) 4:1

c) 8:1

d) 16:1

509. Faraday's 2nd law states that mass deposited on the electrode is directly proportional to

a) Atomic mass

b) Atomic mass × Velocity

c) Atomic mass/Valency

d) Valency

510. Find the power of the circuit

a) 1.5 W

b) 2 W

c) 1 W

d) None of these

511. When two resistances R_1 and R_2 are connected in series, they consume 12 W powers. When they are connected in parallel, they consume 50 W powers. What the ratio of the powers of R_1 and R_2 ?

b) 4

c) 3/2

512. A milliammeter of range 10 mA has a coil of resistance 1 Ω . To use it as voltmeter of range 10 volt, the resistance that must be connected in series with it, will be

a) 999 Ω

b) 99 Ω

c) 1000Ω

d) None of these

513. Figure shows three resistor configurations R_1 , R_2 and R_3 connected to 3 V batteries. If the power dissipated by the configuration R_1 , R_2 and R_3 IS P_1 , P_2 and P_3 , respectively, then

a) $P_1 > P_2 > P_3$

b) $P_1 > P_3 > P_2$

c) $P_2 > P_1 > P_3$ d) $P_3 > P_2 > P_1$

514. The effective resistance between points *A* and *B* is

	a) <i>R</i>	b) $\frac{R}{3}$	c) $\frac{2R}{3}$	d) $\frac{3R}{5}$
	The emf is thermocouple of cold junction is	changes sign at 600 K. If the	e neutral temperature is 21	10°C, the temperature of
	a) 180 K	b) 117 K	c) 93°C	d) 90°C
516.	The circuit shown here is		s of two cells E_1 and $E_2(E_1)$	$> E_2$). The null point is at C d to E_2 , the null point will
	$A \qquad C \qquad $	В		
	a) To the left of <i>C</i>	b) To the right of <i>C</i>	c) At C itself	d) No where on <i>AB</i>
517.	What is the volume of hvd	rogen liberated at NTP by t	•	h liberates 0.3175 g of
	copper?	J ,	O	3
	a) 224 cc	b) 112 cc	c) 56 cc	d) 1120 cc
	_		•	given by $I = 4 - 0.08t$. The
		ng in 50s through the cross	, , , , , , , , , , , , , , , , , , , ,	= -
	a) 1.25×10^{19}	b) 6.25×10^{20}	c) 5.25×10^{19}	d) 2.55×10^{20}
	•	n 220V supply. The curren	=	•
	a) 11/3 <i>amp</i>	b) 3/11 amp	c) 3 amp	d) 6 amp
		ons per 100 mm of ordinary	-	
	electrons is 0.25mms ⁻¹ . T		y copper wire is $2 \times 10^{\circ}$.	iverage ut lit speed of
			c) 80 A	a) E A
	a) 8 A	b) 0.8 A	•	d) 5 A
		ed as shown in the figure be	giow. Find the equivalent re	esistance between the
	points A and B.			
	D V V V			
	30 \$ 100	5Ω		
		3		
	$A \qquad \qquad V V \qquad \qquad E \qquad \qquad 10 \Omega$,		
	a) 205Ω	b) 10 Ω	c) 3.5 Ω	d) 5 Ω
		given mass is to be made li	•	
	•	cross-section (A) will lead		8
	a) L and A	, , , , , , , , , , , , , , , , , , , ,	b) 2 <i>L</i> and <i>A</i> /2	
			d) Any of the above, becau	use volume of silver
	c) <i>L</i> /2 and 2 <i>A</i>		remains same	ase volume of shiver
523	A galvanometer whose res	rictance is 1200 gives full s		ent of 0.005 A so that it can
	=	of 10 A. A shunt resistance		
	ammeter so formed is	n io a. a shunt resistance	is aducu iii parailti willi il.	THE TESISTABLE OF THE
		b) 0.006 0	a) 0.6.0	4) (0
	a) 0.06Ω	b) 0.006 Ω	c) 0.6 Ω	d) 6 Ω
		$0\ m$ long potentiometer will econnected in series. When		n/m , a resistance R_1 and an is 2.4 mV then the

deflection in galvanometer is zero. The current supplied by the accumulator will be

- a) $4 \times 10^{-4} A$
- b) $8 \times 10^{-4} A$
- c) $4 \times 10^{-3} A$
- d) $8 \times 10^{-3} A$
- 525. A capacitor of capacitance $3\mu F$ is first charged by connecting across 10 V battery, then it is allowed to get discharged through 2 Ω and 4Ω resistor by closing the key K as shown in figure. The total energy dissipated in 2Ω resistor is equal to

- a) 0.15 m J
- b) 0.5 m J
- c) 0.05 m J
- d) 1.0 m J
- **526**. Two resistors are connected (a) in series (b) in parallel. The equivalent resistance in the two cases are 9 *ohm* and 2 *ohm* respectively. Then the resistance of the component resistors are
 - a) 2 ohm and 7 ohm
- b) 3 ohm and 6 ohm
- c) 3 ohm and 9 ohm
- d) 5 *ohm* and 4 *ohm*
- 527. 10 wires (same length, same area, same material) are connected in parallel and each has 1Ω resistance, then the equivalent resistance will be
 - a) 10 Ω

b) 1 Ω

c) 0.1 Ω

- d) 0.001Ω
- **528**. A cell of constant emf first connected to a resistance R_1 and then connected to a resistance R_2 .
 - a) $\sqrt{R_1R_2}$
- b) $\sqrt{\frac{R_1}{R_2}}$

- c) $\frac{R_1 R_2}{2}$
- d) $\frac{R_1 + R_2}{2}$
- **529.** When a current of 1 ampere is passed through a conductor whose ends are maintained at temperature difference of 1°C, the amount of heat evolved or absorbed is called
 - a) Peltier coefficient

b) Thomson coefficient

c) Thermoelectric power

- d) Thermo e.m.f.
- 530. To verify Ohm's law, a student is provided with a test resistor R_T , a high resistance R_1 , a small resistance R_2 , two identical galvanometers G_1 and G_2 and a variable voltage source V. the correct circuit to carry out the experiment is

531. To liberate two litres of hydrogen at 222.4 atmosphere from acidulated water the quantity of electricity that must pass through is

a) 44.8 C

- b) 96500 C
- c) 193000 C
- d) 386000 C
- **532.** A galvanometer having a resistance of 8 *ohm* is shunted by a wire of resistance 2 *ohm*. If the total current is 1 *amp*, the part of it passing through the shunt will be

a) 0.25 amp

- b) 0.8 amp
- c) 0.2 amp
- d) 0.5 amp
- 533. The resistance of a conductor is 5 ohm at 50°C and 6 ohmat 100°C. Its resistance at 0°C is

a) 1 ohm

- b) 2 ohm
- c) 3 ohm
- d) 4 ohm
- 534. Three voltmeters A, B and C having resistances R, 1.5R and 3R respectively are used in a circuit as shown. When a potential difference is applied between X and Y, the readings of the voltmeters are V_1 , V_2 and V_3 respectively. Then

a) $V_1 = V_2 = V_3$

- b) $V_1 < V_2 = V_2$
- c) $V_1 > V_2 > V_3$
- d) $V_1 > V_2 > V_3$
- 535. The heat generated through 2 *ohm* and 8 *ohm* resistances separately, when a condenser of 200 μ F capacity charged to 200 V is discharged one by one, will be
 - a) 4 / and 16 / respectively

b) 16 / and 4 / respectively

c) 4 J and 8 J respectively

- d) 4 J and 4 J respectively
- 536. Three equal resistances, each of $10~\Omega$ are connected as shown in figure. The maximum power consumed by each resistance is 20~W. What is maximum power that can be consumed by the combination?

c) The acid has changed colour

- d) The acid level has dropped
- **548**. The temperature of cold junction of thermo-couple is 0°C. If the neutral temperature is 270°C, then the inversion temperature is
 - a) 540°C
- b) 520°C
- c) 640°C
- d) 580°C
- 549. The potential difference across 8Ω resistance is 48V as shown in figure. The value of potential difference across points A and B will be

a) 62V

b) 80V

- c) 128V
- d) 160V
- 550. Four resistances 40Ω , 60Ω , 90Ω and 110Ω make the arms of a quadrilateral *ABCD*. Across *AC* is the battery circuit, the emf of the battery being 4V and internal resistance negligible. The potential difference across *BD* is

a) 1V

b) -1V

- c) -0.2V
- d) 0.2V
- 551. Figure shows a circuit with known resistances R_1 . Neglect the internal resistance of the sources of current and resistance of the connecting wire. The magnitude of electromotive force E_1 such that the resistances R is zero will be

- a) ER_1/R_1
- b) ER_2/R_1
- c) $E(R_1 + R_2)/R_2$
- d) $ER_1/(R_1 + R_2)$
- **552.** In the circuit of adjoining figure the current though 12 Ω resistor will be

a) 1 A

b) $\frac{1}{\pi}A$

c) $\frac{2}{-1}$

- d) 0 A
- 553. The thermo emf of a thermo-couple is found to depend on temperature T (in degree Celsius) as E = 4T -

	$\frac{T^2}{200}$, where T° C is the temp	perature of the hot junction	n. The neutral and inversion	temperature of the
	thermocouple are (in deg			
	a) 100, 200	b) 200, 400	c) 300, 600	d) 400, 800
554.				of the cold junction is called
	a) Neutral temperature	•	b) Temperature of invers	
	c) Both the above		d) None of the above	
555.	A current <i>I</i> is passed for a	a time t through a number ϵ	of voltmeters. If m is the m	ass of a substance deposited
	on an electrode and z is if	ts electrochemical equivale	nt, then	
	a) $\frac{zlt}{-}$ = constant	b) $\frac{z}{mIt}$ = constant	$C = \frac{I}{I}$ = constant	d) $\frac{It}{L}$ = constant
556.		nms per meter is bent to for		
	between its two diametri	cally opposite points A and	B as shown in the figure, i	S
	$A \longrightarrow B$			
	A b b			
		12.00		D 4.4
	a) $0.6 \pi \Omega$	b) 3 Ω	=	
55/.	A 100 W bulb B_1 and two	60 W bulb B_2 and B_3 are co	nnected to a 250 V source	as shown in the figure. Now $B_1 \textcircled{\tiny B_1 \textcircled{\tiny B_2} \textcircled{\tiny B_2} \textcircled{\tiny B_2}}$
				B ₃ (m)
	W. WandWa are the out	-put powers of the bulbs B_1	R_{a} and R_{a} respectively. The	250 V
		b) $W_1 > W_2 > W_3$		
558.		is of the coil is doubled, the		
		age sensitivity of the galva	-	
	a) Remains the same	b) Is halved		d) Is quadrupled
559.	•		•	the current in this wire will
	<i>A</i>	J	•	
	40,40			
	\prec			
	1022 11230			
	V			
	a) Be zero		b) Flow from B to A	
	c) Flow from A to B		d) Flow in the direction value of V	which will be decided by the
560.	The equivalent resistance	e and potential difference b	etween A and B for the circ	cuit is respectively
	6Ω —₩₩			

561. A thermocouple is made from two metals, Antimony and Bismuth. If one junction of the couple is kept hot and the other is kept cold, then, an electric current will

- a) Flow from Antimony to Bismuth at the hot junction
- b) Flow from Bismuth to Antimony at the cold junction
- c) Not flow through the thermocouple
- d) Flow from Antimony to Bismuth at the cold junction
- 562. Incandescent bulbs are designed by keeping in mind that the resistance of their filament increases with the increase in temperature. If at room temperature, 100 W, 60 W and 40 W bulbs have filament resistances R_{100} , R_{60} and R_{40} , respectively, the relation between these resistances is

b)
$$R_{100} = R_{40} + R_{60}$$

c)
$$R_{100} > R_{60} > R_{40}$$

d)
$$\frac{1}{R_{100}} > \frac{1}{R_{60}} > \frac{1}{R_{40}}$$

563. In the adjoining circuit diagram each resistance is of 10 Ω . The current in the arm AD will be

564. In the circuit shown in the figure, if the potential at point *A* is taken to be zero, the potential at point *B* is

c) -1V

d) +2V

565. Electroplating does not help in

a) Fine finish to the surface

b) Shining appearance

c) Metals to become hard

d) Protecting metal against conosion

566. For a certain thermocouple, if the temperature of the cold junction is 0°C, the neutral temperature and inversion temperature are 285°C and 570°C respectively. If the cold junction is brought to 10°C, then the new neutral and inversion temperatures are respectively

a) 285°C and 560°C

b) 285°C and 570°C

c) 295°C and 560°C

d) 275°C and 560°C

567. A wire of diameter 0.02 metre contains 10^{28} free electrons per cubic metre. For an electrical current of 100 *A*, the drift velocity of the free electrons in the wire is nearly

a) $1 \times 10^{-19} m/s$

b) $5 \times 10^{-10} m/s$

c) $2 \times 10^{-4} m/s$

d) $8 \times 10^3 m/s$

568. In a circuit 5 percent of total current passes through a galvanometer. If resistance of the galvanometer is *G* then value of the shunt is

a) 19 G

b) 20 G

c) $\frac{G}{20}$

569. In a potentiometer experiment, the galvanometer shows no deflection when a cell is connected across 60 cm of the potentiometer wire. If the cell is shunted by a resistance of 6Ω , the balance is obtained across 50 cm of the wire. The internal resistance of the cell is

a) 0.5Ω

c) 1.2 Ω

d) 1.5Ω

570. An electric cable of copper has just one wire of radius 9 mm. Its resistance is 5Ω . This single copper wire of cable is replaced by 6 different well insulated copper wires each of radius 3 mm. The total resistance of the cable will now be equal to

a) 7.5Ω

b) 45 Ω

c) 90 Ω

d) 270Ω

571. When 1 g hydrogen (ECE = 1.044×10^{-8} kg C⁻¹) forms water, 34 kcal heat is liberated. The minimum voltage required to decompose water is

a) 0.75 V

b) 3 V

c) 1.5 V

d) 4.5 V

572. A capacitor of capacitance $2\mu F$ is connected as shown in figure. The internal resistance of the cell is 0.5Ω . The amount of charge on the capacitor plates is

al	17.e	rc

b) 2μ C

c) 4µC

d) 6µC

573. A moving coil galvanometer is converted into an ammeter reading upto 0.03~A by connecting a shunt of resistance 4r across it and into an ammeter reading upto 0.06~A when a shunt of resistance r is connected across it. What is the maximum current which can be sent through this galvanometer if no shunt is used

a) 0.01 A

b) 0.02 A

c) 0.03 A

d) 0.04 A

574. A 25 *watt*, 220 *volt* bulb and a 100 *watt*, 220 *volt* bulb are connected in series across a 220 *volt*lines. Which electric bulb will glow more brightly

a) 25 watt bulb

b) 100 watt bulb

c) First 25 watt and then 100 watt

d) Both with same brightness

575. The colour code for a resistor of resistance $3.5k\Omega$ with 5% tolerance is

a) Orange, green, red and gold

b) Red, yellow, black and gold

c) Orange, green, orange and silver

d) Orange, green, red and silver

576. What is the equivalent resistance between *A* and *B*

a)
$$\frac{2}{3}R$$

b) $\frac{3}{2}$ R

c) $\frac{R}{2}$

d) 2R

577. Thomson coefficient of a conductor is $10\mu V/K$. The two ends of it are kept at 50°C and 60°C respectively. Amount of heat absorbed by the conductor when a charge of 10C flows through it is

a) 1000 J

b) 100 *I*

c) 100 mJ

d) 1 *mI*

578. In the circuit shown in the figure the potential difference between X and Y will be

a) Zero

b) 20 V

c) 60 V

d) 120 V

579. Who among the following scientists made the statement –"Chemical change can produce electricity"

a) Galvani

b) Faraday

c) Coulomb

d) Thomson

580. The electric resistance of a certain wire of iron is *R*. If its length and radius are both doubled, then

a) The resistance will be doubled and the specific resistance will be halved

b) The resistance will be halved and the specific resistance will remain unchanged

c) The resistance will be halved and the specific resistance will be doubled

d) The resistance and the specific resistance, will both remain unchanged

581. A coil develops heat of 800 cal/sec. When 20 volts is applied across its ends. The resistance of the coil is (1 cal = 4.2 joule)

a) 1.2 Ω

b) 1.4 Ω

c) 0.12Ω

d) 0.14 Ω

582. A moving coil galvanometer has a resistance of 50Ω and gives full scale deflection for 10~mA. How could it be converted into an ammeter with a full scale deflection for 1A

a) $50/99 \Omega$ in series

b) $50/99 \Omega$ in parallel

c) 0.01Ω in series

d) 0.01Ω in parallel

583. When the temperature difference between hot and cold junctions of a thermo-couple is 100 K an emf of 1 V is generated. Assume the cold junction is heated by 20 K, the percentage change in thermo emf is

584.	=	=	$60~\Omega$ shows full scale deflectio	_
	= =		an ammeter to read currents u	
	, .	a resistance of 240 Ω resistance of 240 Ω	, ,	a resistance of 15 Ω el a resistance of 15 Ω
505	-		veen the two points A and D	era resistance or 13 12
505.	10Ω 10Ω	10Ω	veen the two points A and D	
	A • • • • • • • • • • • • • • • • • • •			
	¥ 10Ω	10Ω		
	$C \bullet \longrightarrow 0$ 10Ω 10Ω			
	a) 10 Ω	b) 20 Ω	c) 30 Ω	d) 40 Ω
586.	The neutral tempera	ture of a thermocouple	e is 350°C when the cold juncti	ion is at 0°C. When the cold
			inversion temperature is	
	a) 700°C	b) 600°C	c) 350°C	d) 670°C
587.	· ·		istance of 5Ω is connected par	allel to it. Fraction of the total
	current flowing thro		1	2
	a) $\frac{1}{10}$	b) $\frac{1}{11}$	c) $\frac{1}{50}$	d) $\frac{2}{15}$
588.		11	50	e. When the cold junction is at
			$_{i} = 570^{\circ}$ C but if the cold junct	
	temperature (t_i) wil		,	,
	a) 550°C	b) 560°C	c) 570°C	d) 580°C
589.	In a copper voltmete	r experiment, current i	is decreased to one-fourth of t	he initial value but is passed for
	four times the earlie	r duration. Amount of o	copper deposited will be	
	a) Same		b) One-fourth the p	
	c) Four times the pro	evious value	d) $\frac{1}{16}th$ the previou	s value
590.	A 500 <i>W</i> heating unipercentage drop in h		e from a 115 <i>volt</i> line. If the lin	ne voltage drops to 110 volt, the
	a) 10.20%	b) 8.1%	c) 8.6%	d) 7.6%
591.	•	•	_	rent is flowed through the same
			ection, then the drift velocity v	
	a) v/4	b) v/2	c) <i>v</i>	d) 4 <i>v</i>
592.	The material of wire	of potentiometer is		
	a) Copper	b) Steel	c) Manganin	d) Aluminium
593.	The resistance acros	s A and B in the figure I	below will be	
	40 W-+-W	v——W——o _p		
	R	R		
	a) 3 <i>R</i>	b) <i>R</i>	c) $\frac{R}{3}$	d) None of these
594.	= =	y some constant value	of emf, but the potential differ	ence between the plates is zero?
	a) Not, possible			
	=	ntical battery is joined		
	=	ntical battery is joined	= =	
505	= =	other similar battery is	s joined in parailei ig with a cell is at length 240 c	m on chunting the cell with a
JJJ.	=	=	mes 120cm. the internal resis	_
	a) 4 Ω	b) 2 Ω	c) 1Ω	d) 0.5 Ω

c) 40%

d) 25%

a) 20%

b) 30%

596.	The resistance of a 10m lo	ong wire is 10Ω . Its length i	s increased by 25% by stre	tching the wire uniformly.
	a) 12.5 Ω	b) 14.5 Ω	c) 15.6 Ω	d) 16.6 Ω
597.	•	steady current, the potentia	•	
	V. R	, , , , , , , , , , , , , , , , , , ,		
	V C			
	2V 2R			
	a) V	b) V/2	c) V/3	d) 2V/3
598.	•	le deflection when current	,	• •
	ammeter, the ratio of its r	esistance and the shunt res	sistance will be	
	a) 1:9	b) 1:10	c) 1:11	d) 9:1
599.	In the following circuit, 18	8Ω resistor develops $2J/se$	c due to current flowing th	rough it. The power
	developed across 10Ω res	sistance is		
	12Ω 9Ω	\searrow		
	\rightarrow $\left(\begin{array}{c} 9\Omega\\ \end{array}\right)$			
	10Ω 12Ω 9Ω			
	18Ω			
	a) 125 W	b) 10 W	c) $\frac{4}{5}W$	d) 25 W
600.	In which of the following	substances does resistance	3	temperature?
	a) Copper	b) Carbon	c) Constantan	d) Silver
601.	Consider the circuits show	wn in the figure. Both the ci	rcuits are taking same curr	ent from battery but
	current through <i>R</i> in the	second circuit is $\frac{1}{10}th$ of cur	rent through <i>R</i> in the first	circuit. If R is 11 Ω , the
	value of R_1	10		
	j R ₁			
		i/10		
	$E \longrightarrow R \longrightarrow R$	r₂		
	(a) (b)	12.44.5		13 = = 0
600	a) 9.9 Ω	b) 11 Ω	c) 8.8 Ω	d) 7.7 Ω
602.		lament is 100Ω at a tempe	-	
	a) 300°C	i, its resistance will becomeb) 400°C	c) 500°C	d) 200°C
603	•	ed respectively by $d.c.$ and	•	,
005.	The heat produced per se		a.c. Applica voltage for bo	in the currents is equal.
	a) More on heating by a .		b) More on heating by d .	c. source
	c) Same for both		d) None of the above	
604.	•	valent of metal is 3.3×10^{-3}		etal liberated at the
	cathode when a 3 A curre	nt is passed for 2 s, will be		
	a) 19.8×10^{-7} kg	b) $9.9 \times 10^{-7} \text{kg}$	c) $6.6 \times 10^{-7} \text{kg}$	d) 1.1×10^{-7} kg
605.	Three resistance P , Q , R e	ach of 2Ω and an unknown	resistance S form the four	arms of a wheatstone
		sistance of 6Ω is connected	in parallel to S the bridge g	gets balanced. What is the
	value of <i>S</i>	12.00		D 4 5
	a) 2 Ω	b) 3 Ω	c) 6 Ω	d) 1 Ω
606.	A potential divider is used resistances, $(R_1: R_2: R_3)$ g	d to give outputs of 4 V and ives the correct voltages?	8 V from a 12 V source. W	hich combination of

- a) 2:1:2
- b) 1:1:1
- c) 2:2:1

d) 1:1:2

607. In the given figure, potential difference between A and B is

a) 0

- b) 5 volt
- c) 10 *volt*
- d) 15 volt

1)	c	2)	c	3)	b	4)	b	201)	d	202)	b	203)	b	204)	c
5)	c	6)	d	7)	b	8)	c	205)	b	206)	a	207)	a	208)	d
9)	a	10)	a	11)	a	12)	c	209)	c	210)	b	211)	a	212)	c
13)	c	14)	d	15)	a	16)	a	213)	d	214)	b	215)	c	216)	c
17)	C	18)	d	19)	c	20)	a	217)	b	218)	d	219)	С	220)	b
21)	b	22)	b	23)	b	24)	b	221)	a	222)	С	223)	d	224)	b
25)	b	26)	a	27)	c	28)		225)	b	226)	d	227)	b	228)	c
29)	d	30)	b	31)	d	32)	b		С	230)	b	231)	С	232)	d
33)	b	34)	d	35)	b	36)	d	_	a	234)	С	235)	d	236)	b
37)	c	38)	c	39)	a	40)		237)	a	238)	С	239)	d	240)	a
41)	b	42)	c	43)	a	44)		241)	b	242)	a	243)	С	244)	d
45)	c	46)	a	47)	С	48)	a	0.4=5	b	246)	d	247)	a	248)	С
49)	d	50)	b	51)	d	52)	b		d	250)	С	251)	a	252)	a
53)	b	54)	c	55)	b	56)	a	a=a,	d	254)	a	25 5)	b	256)	c
57)	b	58)	d	59)	d	60)		257)	b	25 1)	d	259)	c	260)	b
61)	b	62)	b	63)	C C	64)	c	243	b	262)	c	263)	c	264)	b
65)		66)		67)		68)		265)	b	266)	b	267)		268)	
69)	a d	70)	a	71)	C	72)				270)		207) 271)	c	200) 272)	c
-		-	c	_	a	_	a	,	C	-	c	-	c	-	c
73)	C	74)	C b	75)	C h	76)	C	,	d h	274)	a	275) 270)	c	276)	c
77)	d	78)	b	79)	b	80)	d	,	b	278)	a	279)	C	280)	a
81)	b	82)	a	83)	d	84)	С	281)	a	282)	a	283)	b	284)	C
85)	b	86)	d	87)	b	88)	a	,	b	286)	c	287)	b	288)	a
89)	a	90)	b	91)	b	92)	a	,	С	290)	d	291)	a	292)	a
93)	d	94)	b	95)	b	96)	d		C	294)	d	295)	b	296)	b
97)	a	98)	a	99)	d	100)	b		b	298)	b	299)	С	300)	d
101)	C	102)	a	103)	a	104)	b	1	b	302)	d	303)	C	304)	b
105)	b	106)	a	107)	d	108)	d		b	306)	a	307)	b	308)	a
109)	b	110)	b	111)	d	112)		309)	C	310)	b	311)	C	312)	C
113)	C	114)	d	115)	C	116)		313)	C	314)	b	315)	d	316)	a
117)	C	118)	C	119)	a	120)	a	317)	a	318)	b	319)	d	320)	b
121)	C	122)	d	123)	b	124)	b	321)	d	322)	d	323)	b	324)	a
125)	C	126)	C	127)	C	128)	a	325)	C	326)	d	327)	C	328)	C
129)	b	130)	b	131)	d	132)	C	329)	a	330)	a	331)	b	332)	c
133)	d	134)	a	135)	b	136)	C	333)	d	334)	b	335)	C	336)	b
137)	b	138)	C	139)	a	140)	d	337)	b	338)	d	339)	c	340)	d
141)	d	142)	C	143)	c	144)	c	341)	b	342)	a	343)	d	344)	a
145)	d	146)	b	147)	d	148)	c	345)	b	346)	c	347)	c	348)	d
149)	a	150)	d	151)	a	152)	c	349)	b	350)	a	351)	a	352)	c
153)	c	154)	b	155)	a	156)	b	353)	b	354)	d	355)	a	356)	d
157)	a	158)	b	159)	a	160)	b	357)	a	358)	a	359)	b	360)	c
161)	d	162)	d	163)	d	164)	c	361)	b	362)	С	363)	a	364)	d
165)	a	166)	c	167)	d	168)	c	365)	c	366)	a	367)	С	368)	a
169)	a	170)	b	171)	a	172)		369)	c	370)	b	371)	С	372)	d
173)	a	174)	c	175)	a	176)		373)	d	374)	d	375)	С	376)	c
177)	a	178)	c	179)	d	180)		377)	b	378)	c	379)	c	380)	c
181)	b	182)	c	183)	a	184)		381)	b	382)	С	383)	c	384)	b
185)	c	186)	a	187)	c	188)		385)	a	386)	c	387)	c	388)	d
189)	a	190)	a	191)	a	192)		389)	С	390)	b	391)	c	392)	b
193)	c	194)	b	195)	a	196)		393)	С	394)	c	395)	b	396)	d
197)	b	198)	b	•	c	200)		397)	d	398)	c	399)	a	400)	d
,	-		~		_	_00,		577	-	570)	-	577	u	100)	•

401)	b	402)	a	403)	a	404)	a	605)	b	606)	b	607)	
405)	b	406)	a	407)	b	408)	d						
409)	b	410)	a	411)	c	412)	d						
413)	C	414)	a	415)	b	416)	a						
417)	b	418)	c	419)	a	420)	c						
421)	d	422)	a	423)	a	424)	c						
425)	d	426)	b	427)	d	428)	c						
429)	d	430)	a	431)	c	432)	d						
433)	a	434)	d	435)	a	436)	b						
437)	a	438)	С	439)	b	440)	b						
441)	b	442)	b	443)	a	444)	d						
445)	a	446)	a	447)	a	448)	d						
449)	С	450)	С	451)	d	452)	a						
453)	b	454)	b	455)	b	456)	d						
457)	a	458)	a	459)	a	460)	b						
461)	С	462)	a	463)	d	464)	b						
465)	d	466)	b	467)	d	468)	d						
469)	b	470)	a	471)	c	472)	d						
473)	d	474)	a	475)	d	476)	c						
477)	c	478)	d	479)	c	480)	d						
481)	a	482)	b	483)	c	484)	b						
485)	a b	486)		487)	b	488)							
489)		490)	a d	491)		493)	a						
493)	a h	-		-	a	-	a						
•	b	494)	a	495)	d	496)	c						
497)	a	498)	b h	499)	d	500)	C L						
501)	d	502)	b	503)	d	504)	b						
505)	a	506)	c	507)	b	508)	d						
509)	С	510)	C	511)	C	512)	a						
513)	C	514)	c	515)	c	516)	a						
517)	b	518)	b	519)	b	520)	b						
521)	d	522)	C	523)	C	524)	a						
525)	C	526)	b	527)	c	528)	a						
529)	b	530)	C	531)	d	532)	b						
533)	d	534)	a	535)	d	536)	C						
537)	a	538)	C	539)	c	540)	a						
541)	b	542)	d	543)	c	544)	b						
545)	a	546)	a	547)	b	548)	a						
549)	d	550)	d	551)	c	552)	d						
553)	d	554)	a	555)	a	556)	a						
557)	d	558)	a	559)	b	560)	a						
561)	d	562)	b	563)	a	564)	b						
565)	c	566)	a	567)	c	568)	d						
569)	c	570)	a	571)	c	572)	c						
573)	b	574)	a	575)	a	576)	c						
577)	d	578)	d	579)	a	580)	b						
581)	c	582)	b	583)	a	584)	d						
585)	c	586)	d	587)	b	588)	b						
589)	a	590)	c	591)	c	592)	c						
593)	c	594)	c	595)	b	596)	С						
597)	С	598)	d	599)	b	600)	b						
,		602)	b	603)	c	604)	a						

Click here to Download more Question Bank for Additional Chapters.

Dear Teachers and Students,

Join School of Educators' exclusive WhatsApp, Telegram, and Signal groups for FREE access to a vast range of educational resources designed to help you achieve 100/100 in exams! Separate groups for teachers and students are available, packed with valuable content to boost your performance.

Additionally, benefit from expert tips, practical advice, and study hacks designed to enhance performance in both CBSE exams and competitive entrance tests.

Don't miss out—join today and take the first step toward academic excellence!

Join the Teachers and Students Group by Clicking the Link Below

Learn more about groups www.schoolofeducators.com

JOIN OUR WHATSAPP GROUPS

FOR FREE EDUCATIONAL RESOURCES

JOIN SCHOOL OF EDUCATORS WHATSAPP GROUPS FOR FREE EDUCATIONAL RESOURCES

We are thrilled to introduce the School of Educators WhatsApp Group, a platform designed exclusively for educators to enhance your teaching & Learning experience and learning outcomes. Here are some of the key benefits you can expect from joining our group:

BENEFITS OF SOE WHATSAPP GROUPS

- **Abundance of Content:** Members gain access to an extensive repository of educational materials tailored to their class level. This includes various formats such as PDFs, Word files, PowerPoint presentations, lesson plans, worksheets, practical tips, viva questions, reference books, smart content, curriculum details, syllabus, marking schemes, exam patterns, and blueprints. This rich assortment of resources enhances teaching and learning experiences.
- Immediate Doubt Resolution: The group facilitates quick clarification of doubts.
 Members can seek assistance by sending messages, and experts promptly respond
 to queries. This real-time interaction fosters a supportive learning environment
 where educators and students can exchange knowledge and address concerns
 effectively.
- Access to Previous Years' Question Papers and Topper Answers: The group provides access to previous years' question papers (PYQ) and exemplary answer scripts of toppers. This resource is invaluable for exam preparation, allowing individuals to familiarize themselves with the exam format, gain insights into scoring techniques, and enhance their performance in assessments.

- Free and Unlimited Resources: Members enjoy the benefit of accessing an array of educational resources without any cost restrictions. Whether its study materials, teaching aids, or assessment tools, the group offers an abundance of resources tailored to individual needs. This accessibility ensures that educators and students have ample support in their academic endeavors without financial constraints.
- **Instant Access to Educational Content:** SOE WhatsApp groups are a platform where teachers can access a wide range of educational content instantly. This includes study materials, notes, sample papers, reference materials, and relevant links shared by group members and moderators.
- **Timely Updates and Reminders:** SOE WhatsApp groups serve as a source of timely updates and reminders about important dates, exam schedules, syllabus changes, and academic events. Teachers can stay informed and well-prepared for upcoming assessments and activities.
- Interactive Learning Environment: Teachers can engage in discussions, ask questions, and seek clarifications within the group, creating an interactive learning environment. This fosters collaboration, peer learning, and knowledge sharing among group members, enhancing understanding and retention of concepts.
- Access to Expert Guidance: SOE WhatsApp groups are moderated by subject matter experts, teachers, or experienced educators can benefit from their guidance, expertise, and insights on various academic topics, exam strategies, and study techniques.

Join the School of Educators WhatsApp Group today and unlock a world of resources, support, and collaboration to take your teaching to new heights. To join, simply click on the group links provided below or send a message to +91-95208-77777 expressing your interest.

Together, let's empower ourselves & Our Students and inspire the next generation of learners.

Best Regards,
Team
School of Educators

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Teachers Only)

Kindergarten

Class 12 (Commerce)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Teachers Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Teachers Only)

Other Important Groups (For Teachers & Principal's)

Principal's Group

<u>Teachers Jobs</u>

IIT/NEET

Join School of Educators WhatsApp Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class WhatsApp Group.

Kindergarten to Class XII (For Students Only)

Subject Wise Secondary and Senior Secondary Groups (IX & X For Students Only) Secondary Groups (IX & X)

Senior Secondary Groups (XI & XII For Students Only)

Groups Rules & Regulations:

To maximize the benefits of these WhatsApp groups, follow these guidelines:

- 1. Share your valuable resources with the group.
- 2. Help your fellow educators by answering their queries.
- 3. Watch and engage with shared videos in the group.
- 4. Distribute WhatsApp group resources among your students.
- 5. Encourage your colleagues to join these groups.

Additional notes:

- 1. Avoid posting messages between 9 PM and 7 AM.
- 2. After sharing resources with students, consider deleting outdated data if necessary.
- 3. It's a NO Nuisance groups, single nuisance and you will be removed.
 - No introductions.
 - No greetings or wish messages.
 - No personal chats or messages.
 - No spam. Or voice calls
 - Share and seek learning resources only.

Please only share and request learning resources. For assistance, contact the helpline via WhatsApp: +91-95208-77777.

Join Premium WhatsApp Groups Ultimate Educational Resources!!

Join our premium groups and just Rs. 1000 and gain access to all our exclusive materials for the entire academic year. Whether you're a student in Class IX, X, XI, or XII, or a teacher for these grades, Artham Resources provides the ultimate tools to enhance learning. Pay now to delve into a world of premium educational content!

Click here for more details

■ Don't Miss Out! Elevate your academic journey with top-notch study materials and secure your path to top scores! Revolutionize your study routine and reach your academic goals with our comprehensive resources. Join now and set yourself up for success!

Best Wishes,

Team
School of Educators & Artham Resources

SKILL MODULES BEING OFFERED IN MIDDLE SCHOOL

Artificial Intelligence

Beauty & Wellness

Design Thinking & Innovation

Financial Literacy

Handicrafts

Information Technology

Marketing/Commercial **Application**

Mass Media - Being Media **Literate**

Travel & Tourism

Coding

Data Science (Class VIII only)

Augmented Reality / Virtual Reality

Digital Citizenship

Life Cycle of Medicine & **Vaccine**

Things you should know about keeping Medicines at home

What to do when Doctor is not around

Humanity & Covid-19

Food Preservation

<u>Baking</u>

<u>Herbal Heritage</u>

<u>Khadi</u>

Mask Making

Mass Media

Making of a Graphic Novel

<u>Embroidery</u>

<u>Embroidery</u>

Rockets

Satellites

<u>Application of</u> <u>Satellites</u>

<u>Photography</u>

SKILL SUBJECTS AT SECONDARY LEVEL (CLASSES IX - X)

Retail

Information Technology

Security

<u>Automotive</u>

Introduction To Financial Markets

Introduction To Tourism

Beauty & Wellness

<u>Agriculture</u>

Food Production

Front Office Operations

Banking & Insurance

Marketing & Sales

Health Care

<u>Apparel</u>

Multi Media

Multi Skill Foundation **Course**

Artificial Intelligence

Physical Activity Trainer

Data Science

Electronics & Hardware (NEW)

Foundation Skills For Sciences (Pharmaceutical & Biotechnology)(NEW)

Design Thinking & Innovation (NEW)

SKILL SUBJECTS AT SR. SEC. LEVEL (CLASSES XI - XII)

Retail

<u>InformationTechnology</u>

Web Application

Automotive

Financial Markets Management

Tourism

Beauty & Wellness

Agriculture

Food Production

Front Office Operations

Banking

Marketing

Insurance

Horticulture

Typography & Comp. **Application**

Geospatial Technology

Electronic Technology

Multi-Media

Taxation

Cost Accounting

Office Procedures & Practices

Shorthand (English)

Shorthand (Hindi)

<u>Air-Conditioning &</u> <u>Refrigeration</u>

Medical Diagnostics

Textile Design

<u>Design</u>

<u>Salesmanship</u>

Business Administration

Food Nutrition & Dietetics

Mass Media Studies

<u>Library & Information</u> Science

Fashion Studies

Applied Mathematics

<u>Yoga</u>

<u>Early Childhood Care &</u> <u>Education</u>

<u>Artificial Intelligence</u>

Data Science

Physical Activity
Trainer(new)

<u>Land Transportation</u> <u>Associate (NEW)</u>

Electronics & Hardware (NEW)

<u>Design Thinking &</u> <u>Innovation (NEW)</u>

Join School of Educators Signal Groups

You will get Pre-Board Papers PDF, Word file, PPT, Lesson Plan, Worksheet, practical tips and Viva questions, reference books, smart content, curriculum, syllabus, marking scheme, toppers answer scripts, revised exam pattern, revised syllabus, Blue Print etc. here. Join Your Subject / Class signal Group.

Kindergarten to Class XII

Class 11 (Science)

Class 11 (Humanities)

Class 11 (Commerce)

Class 12 (Science)

Class 12 (Humanities)

Subject Wise Secondary and Senior Secondary Groups IX & X

Secondary Groups (IX & X)

Hindi-A

IT Code-402

English

Senior Secondary Groups XI & XII

Geography

Sociology

Hindi Elective

Hindi Core

Psychology

Click Here to Join

Home Science

Political Science

Painting

Vocal Music

Click Here to Join

Physical Education

Comp. Science

APP. Mathematics

Legal Studies

French

IIT/NEET

Artifical intelligence

CUET

Join School of Educators CBSE Telegram Groups

Join School of Educators ICSE Telegram Groups

www.educatorsresource.in