A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Systemy aktywnego zawieszenia
Data ćwiczenia:	2019-04-24
Czas ćwiczenia:	08:00 - 09:30
Zespół realizujący ćwiczenie:	Katarzyna WątorskaJacek WójtowiczBartłomiej Mróz

B. Sformułowanie problemu

Celem zajęć było opracowanie modelu regulatora zmniejszającego drgania zawieszenia samochodowego i jego symulacja komputerowa. Korzystając z pakietu Simulink zbudowano model matematyczny zawieszenia samochodu osobowego opisany równaniami:

$$\begin{split} m_c \ddot{x}_c(t) + d_c \Big(\, \dot{x}_c(t) - \dot{x}_w(t) \Big) + c_c \Big(x_c(t) - x_w(t) \Big) &= F(t) \\ m_w \ddot{x}_w(t) + d_c \Big(\, \dot{x}_c(t) - \dot{x}_w(t) \Big) + d_w \Big(\, \dot{x}_w(t) - \dot{x}_g(t) \Big) - c_c \Big(x_c(t) - x_w(t) \Big) + c_w (x_w(t) - x_g(t)) &= -F(t), \end{split}$$

gdzie $m_{\rm c}$ - masa nadwozia przypadająca na jedno koło, $m_{\rm w}$ - masa nieresorowana związana z kołem, $c_{\rm c}$ - współczynnik sztywności zawieszenia, $c_{\rm w}$ - współczynnik sztywności promieniowej opony, $d_{\rm c}$ - współczynnik tłumienia zawieszenia, $d_{\rm w}$ - współczynnik tłumienia opony, $x_{\rm c}(t)$ - przemieszczenie pionowe nadwozia, $x_{\rm w}(t)$ przemieszczenie pionowe koła, $x_{\rm g}(t)$ – wymuszenie związane z nierównościami drogi, F(t) - zmienna siła tłumienia, t>0 – czas.

W oparciu o model przeprowadzono symulacje, reprezentujące różne scenariusze testowe związane z poruszaniem się pojazdu po zmiennym profilu drogi określonym przez funkcję $x_{\rm g}(t)$.

Nastepnie korzystając z uproszczonego modelu (przyjmując $x_g(t) \approx t$ i $\dot{x}_g(t) \approx 0$) skonstruowano regulator opisany równaniami:

Parametry regulatora dobrano tak, by uzyskać jak najlepszą jakość stabilizacji.

$$F(t) = -k(\omega(t) + y(t))$$

$$\dot{\omega}(t) + \alpha \omega(t) = \beta F(t)$$

$$y(t) = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_c(t) \\ x_w(t) \end{bmatrix} = x_c(t) - x_w(t)$$

C. Sposób rozwiązania problemu

Wykorzystując pakiet SIMULIK zamodelowano układ równań:

D. Wyniki

Ręcznie dobrano parametry regulatora, tak aby ograniczyć przemieszczenie pionowe koła i nadwozia, po napotkaniu na nierówności drogi. Przyjęto k=900, alfa=100, beta=0.1.

E. Wnioski

Do zamodelowania zawieszenia samochodowego użyliśmy modelu dwumasowego z regulatorem zmniejszającym drgania. Dzięki potraktowaniu samochodu jako układu masowo – sprężystego byliśmy w stanie skutecznie rozważyć zachowanie zawieszenia samochodowego w zależności od terenu, po którym porusza się samochód. Przekonaliśmy się, jak ważnym elementem optymalnej stabilizacji jest dobór odpowiednich parametrów regulatora, określających jej jakość. Udało nam się dobrać je ręcznie, w taki sposób, aby zapewnić dość duże tłumienie nierówności. Przy odpowiednich parametrach regulacja następuje bardzo szybko i niezauważalnie dla kierowcy.