ENS Cachan, DPT Maths

Optimisation numérique M1 – TD5 – Optimisation sous contraintes

Florian De Vuyst, Adrien Le Coënt - CMLA UMR 8536, ENS Cachan 20 Octobre 2016

Démonstration de cours

 $C(u)=\{0\}\bigcup\{w\in V\ \text{ pour lesquels il existe au moins}$ une suite de points $\{u_k\}_k/u_k\in U,\ u_k\neq u,\ \lim_k u_k=u$ $\lim_k \frac{u_k-u}{\|u_k-u\|}=\frac{w}{\|w\|},\ w\neq 0\}$

Théorème

- 1) $\forall u \in U, \ C(u) \text{ est fermé};$
- 2) $J:\Omega\longrightarrow\mathbb{R},\,\Omega\subset V$ ouvert. Si J admet en un point un minimum relatif sur U, et si J est différentiable en u, alors :

$$DJ(u)(v-u) \ge 0 \quad \forall v \in u + C(u).$$

Exercice : Montrer que C(u) est fermé.

Théorème de sensibilité

Soit u^* et λ^* satisfaisant

$$\begin{cases}
\nabla_{u}\mathcal{L}(u^{*},\lambda^{*}) = 0 \\
\nabla_{\lambda}\mathcal{L}(u^{*},\lambda^{*}) = 0 \\
y^{T}\nabla_{uu}^{2}\mathcal{L}(u^{*},\lambda^{*})y > 0, \forall y \neq 0 \text{ tel que } \nabla\theta(u^{*})^{T}y = 0
\end{cases}$$
(1)

avec \mathcal{L} le lagrangien du problème

$$(\mathcal{P}_0) \left\{ \begin{array}{l} \min J(u) \\ \theta(u) = 0 \end{array} \right.$$

On considère la famille de problèmes

$$(\mathcal{P}) \left\{ \begin{array}{l} \min J(u) \\ \theta(u) = \mu \end{array} \right.$$

paramétré par le vecteur $\mu \in \mathbb{R}^m$.

- 1. On veut montrer qu'il existe r > 0 tel que $\forall \mu \in \mathcal{B}(0,r)$, il existe $u(\mu) \in \mathbb{R}^n$ et $\lambda(\mu) \in \mathbb{R}^m$ qui forment une paire minimum local-multiplicateur de Lagrange du problème (\mathcal{P}) . u(.) et $\lambda(.)$ sont $\mu \mathcal{C}^1$ dans $\mathcal{B}(0,r)$ et $u(0) = u^*$ et $\lambda(0) = \lambda^*$.
 - Écrire explicitement \mathcal{L} le lagrangien du problème (\mathcal{P}_0) et \mathcal{L}' le lagrangien du problème (\mathcal{P}) , puis écrire le système d'équations avec multiplicateur de Lagrange associé au problème \mathcal{P} .
 - Calculer le jacobien de ce dernier système, et montrer qu'il est inversible.
 - En utilisant le théorème des fonctions implicites, en déduire la proposition 1.
- 2. Notons $P(\mu) = J(u(\mu))$ le coût optimal, montrer que

$$\nabla_{\mu}P(\mu) = -\lambda(\mu), \ \forall \mu \in \mathcal{B}(0, r).$$

Exercice

Étant donné $A \in \mathcal{S}_n(\mathbb{R})$ et $b \in \mathbb{R}$, on considère le problème d'optimisation suivant :

$$(\mathcal{P}) \quad \left\{ \begin{array}{l} \text{Minimiser } f(x) := \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle \\ \text{sous la contrainte } ||x|| = 1. \end{array} \right.$$

- 1°) On suppose b=0. Rappeler alors ce que vaut $\bar{f}=\inf\{f(x): ||x||=1\}$ et quels sont les \bar{x} de norme 1 pour lesquels $f(\bar{x})=\bar{f}$.
- 2°) Soit λ_1 la plus grande valeur propre de A et p un réel strictement inférieur à $-\lambda_1$. On pose

$$A_p := A + pI_n, \quad f_p : x \in \mathbb{R}^n \mapsto f_p(x) := \frac{1}{2} \langle A_p x, x \rangle + \langle b, x \rangle.$$

- (a) Indiquer pour quoi f_p est strictement concave.
- (b) On considère le problème d'optimisation suivant :

$$(\tilde{\mathcal{P}}_p) \quad \begin{cases} \text{Minimiser } f_p(x) \\ \|x\| \le 1. \end{cases}$$

 $Montrer\ que$

$$\inf\{f_p(x): \|x\| \le 1\} = \inf\{f(x): \|x\| = 1\} + \frac{1}{2}p$$

et que les solutions de (\mathcal{P}) et $(\tilde{\mathcal{P}}_p)$ sont les mêmes.