Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No	••••
---------------	------

Faculty of Engineering End Sem (Odd) Examination Dec-2019 IT3EA09 Graph Theory

Programme: B.Tech. Branch/Specialisation: IT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

			itten in full inst	· ·	o, c or d.	15 (
Q .1	i.	The maxim	um number of e	edges in a bipar	rtite graph on 12 vertices is	1
		(a) 36	(b) 48	(c) 12	(d) 24	
	ii.	If the origin	and terminus of	of a walk are s	ame, the walk is known as	1
		(a) Open	(b) Closed	(c) Path	(d) None of these	
	iii.	A minimal	spanning tree of	a graph G is_	?	1
		(a) A spanning sub graph		(b) A tree	(b) A tree	
		(c) Minimu	(c) Minimum weights (d) All of these			
	iv.	Which one	of the followin	g is a partition	of the vertices of a graph	1
		in two disjoint subsets that are joined by at least one edge?				
		(a) Minimu	m cut	(b) Maximu	ım flow	
		(c) Maximu	ım cut	(d) Graph c	ut	
v.		What is th	e chromatic nu	ımber of an ı	n-vertex simple connected	1
		graph which	h does not conta	in any odd len	gth cycle? (Assume n>=2)	
		(a) 2	(b) 3	(c) n-1	(d) n	
	vi.	A set of ve	ertices K which	can cover al	l the edges of graph G is	1
		called as				
		(a) Vertex of	cover	(b) Edge co	ver	
		(c) Vertex of	covering number	r (d) Minimu	m vertex cover	
	vii.	In how man	ny ways can 10	examination	papers be arranged so that	1
		the best and	the worst pape	rs can never co	ome together?	
		(a) $8 \times 9!$	(b) $8 \times 8!$	(c) $7 \times 9!$	(d) $9 \times 8!$	

P.T.O.

	viii.	Determine the probability when a die is thrown 2 times such that there are no fours and no fives occur?	1			
		(a) 4/9 (b) 56/89 (c) 13/46 (d) 3/97				
	ix.	Find the value of a_4 for the recurrence relation $a_n=2a_{n-1}+3$, with	1			
	IX.		1			
		a ₀ =6.				
		(a) 320 (b) 221 (c) 141 (d) 65	1			
	х.	Which of the following is not a generative function?	1			
		(a) Lambert series (b) Bell Series				
		(c) Stalling Series (d) Dirichlet Series				
Q.2	i.	Define the terms with respect to graph: walk and path.	2			
	ii.	Explain any 3 properties of tree.	3			
	iii.	Define Bipartite graph. Give a suitable example.	5			
OR	iv.	Prove that the number of vertices of odd degree in a graph is always	5			
		even.				
Q.3	i.	Define connectivity and separability.	2			
	ii.	Define planer graph. Also explain different representations of a	8			
		planer graph with example.				
OR	iii.	Prove the following:	8			
011	For any spanning tree T, a branch b_i that determines a fundament					
		cut-set S is contained in every fundamental circuit associated with				
		the chords in S and in no others.				
Q.4	i.	Explain types of digraphs, with example.	4			
Ų.Ŧ	ii.	State and prove four-colour theorem.	6			
OR	iii.		6			
OK	111.	Prove that a connected graph G is an Euler graph if all vertices of G are of even degree.	U			
Q.5	i.	Explain derangement with suitable example.	3			
	ii.	In how many different ways can the letters of the word	7			
		'ENGINEERING' be arranged so that the vowels always come				
		together?				
OR	iii.	Explain the principle of inclusion and exclusion. Using this, find the	7			
		number of prime numbers not exceeding 100.				
		2				

Q.6		Attempt any two:	
	i.	Find the generating function of the sequence 7,8,9,10	5
	ii.	Define summation operator, also write down its properties.	5
	iii.	What is recurrence relation, explain with suitable example?	5

Marking Scheme IT3EA09 Graph Theory

Q.1	i.	The maximum number of edges in a bipartite graph	on 12 vertices is	1
		(a) 36		
	ii.	If the origin and terminus of a walk are same, the	walk is known as	1
		(b) Closed		
	iii.	A minimal spanning tree of a graph G is	?	1
		(d) All of these		
	iv.	Which one of the following is a partition of the voin two disjoint subsets that are joined by at least on		1
		(a) Minimum cut		
	V.	What is the chromatic number of an n-vertex s graph which does not contain any odd length cycle'	-	1
	vi.	(a) 2 A set of vertices K which can cover all the edg	es of oranh G is	1
	٧1.	called as		
		(a) Vertex cover		
	vii.	In how many ways can 10 examination papers be arranged so that		
		the best and the worst papers can never come togeth	ner?	
viii.		(a) 8 × 9!		1
		Determine the probability when a die is thrown 2 times such that there are no fours and no fives occur?		
		(a) 4/9		
	ix.	Find the value of a ₄ for the recurrence relation	$a_n=2a_{n-1}+3$, with	1
		$a_0 = 6$.		
		(c) 141		
	х.	Which of the following is not a generative function	?	1
		(c) Stalling Series		
Q.2	i.	Define the terms with respect to graph:		2
Q.2	1,	walk	1 mark	_
		path	1 mark	
	ii.	Any three properties of tree		3
		1 mark for each property	(1 mark * 3)	
	iii.	Definition of Bipartite graph	3 marks	5
		Example	2 marks	

OR	iv.	Prove that the number of vertices of odd degree in a graph is always even. Stepwise marking		
Q.3	i.	Connectivity	1 mark	2
		Separability	1 mark	
	ii.	Define planer graph	4 marks	8
		Representations of a planer graph with example.		
		2 marks for each (2 marks * 2)	4 marks	
OR	iii.	Complete proof		8
Q.4	i.	Types of digraphs, with example		4
		1 mark for each	(1 mark * 4)	
	ii.	State and prove four-colour theorem.		6
		Stepwise marking		
OR	iii.	Prove that a connected graph G is an Euler graph is	if all vertices of G	6
		are of even degree.		
		Stepwise marking		
				_
Q.5	i.	Definition of derangement	2 marks	3
		Example	1 mark	
	ii.	In how many different ways can the letters of the word		
		'ENGINEERING' be arranged so that the vowels always come together?		
		Stepwise marking		
OR	iii.	Principle of inclusion and exclusion	3 marks	7
OIL	111.	Solution	4 marks	•
		Solution	· mans	
Q.6		Attempt any two:		
	i.	Find the generating function of the sequence 7,8,9,	10	5
	ii.	Definition of summation operator	2 marks	5
	•	Properties	3 marks	-
	iii.	Recurrence relation	2 marks	5
		Example	3 marks	-
		1		
