

EPIDEMIC BROADCAST

Biagio Cornacchia

Gianluca Gemini

Matteo Abaterusso

Modeling

Parameters

- Radius R
- Number of Slots T
- Number of Copies *m*
- Number of Users N

Performance Indexes

- Broadcast Time
- Number of Collisions
- Percentage of Covered Users: $\frac{N_c}{N-1}$

General Assumptions

- Communications are slotted
- Message transmission last one slot
- No transmission delay
- Collided messages will be dropped
- Trickle Relaying policy
- Time Windows misaligned for a factor of τ
- Users' positions and τ are uniformly distributed

Implementation

Users memory

- Messages received (without collisions)
- Timestamp receptions
- Collisions counter

User Module Behavior

Type of messages received

- Self message: if $n_c < m$ the user relays the messages, else it deactivate itself.
- External message: the message is stored in the memory at $slot_i = \frac{simTime}{t} mod\ T$, if the slot is empty.

Network generation

- Dynamic Radius
- Dynamic Positions

Study on R (1)

$$x_R = \frac{R}{d}$$
 $x_R \in [0\%, 100\%]$

$$R = [0,986]$$
 $T = 10$ $m = 3$ $N = 12$ $\longrightarrow x_R \in [20\%, 70\%]$

Study on R (2)

$$R = [0,1118]$$
 $T = 35$ $m = 10$ $N = 50$ $\longrightarrow x_R \in [20\%, 70\%]$

Covered Users N=50

120,00%

100,00%

80,00%

60,00%

40,00%

20,00%

0,00%

Study on T (1)

$$x_T = \frac{T}{D} \qquad x_T \ge 0$$

$$R = 425$$
 $T = [2,28]$ $m = 12$ $N = 12$ $\longrightarrow x_T \in [35,67]$

$$R = 250$$
 $T = [2,100]$ $m = 50$ $N = 50$ $\longrightarrow x_T \in [40,80]$

Study on T (2)

$$x_T = \frac{T}{D} \qquad x_T \ge 0$$

$$R = 500$$
 $T = [2,100]$ $m = 50$ $N = 50$

- The translation is mainly influenced by the radius.
- increasing **N**, the velocity at which collisions tend to 0 decreases.

Comparison with increasing of *N*:

Study on m

$$x_m = \frac{m}{\min\{N_n, N\}} \qquad N_n = DR^2 \pi$$

R = 300 T = 30 m = [2,T] N = 30 (Coverage 100%) $\longrightarrow x_m \in [23\%, 71\%]$

R = 200 T = 50 m = [2,T] N = 50 (Coverage 100%) $\longrightarrow x_m \in [46\%, 115\%]$

Study on N

$$R = 300$$
 $T = \frac{N_{max}}{2}$ $m = \frac{T}{4}$ $N = [2,50] \longrightarrow D \in [\frac{2}{5};1]$

$2^k r$ Factorial Analysis

Broadcast Time and **Collisions**

 $R = {300, 650}$

 $T = \{6, 20\}$

 $m = \{3, 6\}$

 $N = \{12, 30\}$

Covered Users

 $R = \{650, 800\}$

 $T = \{10, 20\}$

 $m = \{4, 9\}$

 $N = \{200, 300\}$

Conclusions

From the results obtained in the measurements can be stated that the **choice of the parameters**, which influences the broadcast working, has to be weighted respect to the **requirements wanted**.

Main trade-off

- Broadcast time
- Number of Collisions

Strong dependency between **connections** and **collisions**, the increasing of connections:

- Allows to reach a better coverage.
- Can cause an higher value of collisions, which can imply a lower coverage.

T allows to:

- keep down the number of collisions
- increase the number of deactivated users.

Stability Intervals

- $x_R \in [20\%, 70\%]$
- $D \in [\frac{2}{5}, 1]$

For a **low consumption network**, it is important the parameter *m*:

- too low m can early block the network, due to the massive deactivation of the users.
- too high can cause a low number of deactivations, so a waste of resources.