

A Tutorial for Transformer-based Classification Model

Presented by Yuting Guo Email: yuting.guo@emory.edu

10/19/23

Outline

- ➤ Model Architecture
- > Encoder Implementation
- > Classification example code
- Practice tips

Model Architecture Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Figure 1: The Transformer model architecture.

Model Architecture Output Probabilities Softmax Linear Output Add & Norm Vectors Feed Forward Add & Norm Add & Norm Multi-Head Embedding Feed Attention Vectors Forward $N \times$ DECODER Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention **ENCODER** Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs Text (shifted right) UNIVERSITY

Figure 1: The Transformer model architecture.

Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need. In: Guyon I, Luxburg U Von, Bengio S, et al., eds. *Advances in Neural Information Processing Systems*. Vol 30. Curran Associates, Inc.; 2017:5999-6009.

SCHOOL OF MEDICINE

Model Architecture

The classification model uses the encoder from a Transformer model.

Figure 2: The Transformer-based classification model architecture.

Notations

[CLS]: a special token added to the beginning of the text.

[SEP]: a special token added to the end of the text.

 $r_{[t]}$: the vector representation of a word or word piece t.

 e_d : the vector representation of the text sequence.

Encoder

- > Key components/layers
 - > input embedding
 - positional encoding
 - > multi-head attention
 - ➤ layer normalization (add & norm)
 - > feed forward

Figure 3: The Transformer encoder architecture.

Input Embedding

- > Tokenization: text -> word pieces
- ➤ Vectorization: word pieces -> word embeddings

word embeddings	$v_{[I]}$	$v_{[have]}$	$v_{[a]}$	$v_{[new]}$	$v_{[GP]}$	$v_{[\#\#U]}$	$v_{[!]}$	
Word pieces		'I', 'have', 'a', 'new', 'GP', '##U', '!!'						
Raw text		I have a new GPU!						

Figure 4: Example for tokenization and vectorization process.

Input Embedding

Padding

max_seq_len

Notations

max_seq_len: the maximum sequence length.

10/19/23

Positional Encoding

➤ Generate a new matrix based on its position

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Notations

 d_{model} : the word embedding size. *pos:* the position of the word in the sequence *i*: the dimension

Multi-Head Attention

- Query (Q), Key (K), and Value (V)
- ightharpoonup In BERT, Q = K = V ($d_{model} = d_k = d_v$)

Scaled Dot-Product Attention

 $\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_{\text{h}}) W^O \\ \text{where head}_{\text{i}} &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

Layer Normalization

- Normalization helps
 - > reduce training time
 - > unbiased model to higher value features
 - restrict weights to a certain range

$$x_{norm} = \frac{x - avg(x)}{\sqrt{var(x)}}$$

Feed Forward

> Two linear transformations with a ReLU activation in between

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Pooling

- As we know, the output of the encoder is a matrix of word emebddings. How can we convert that into a vector to present the entire sentence/document?
 - > Averaging pooling
 - ➤ Max pooling
 - ➤ Use the special token [CLS] or [SEP]

Open Source Library

- > Transformers (HuggingFace)
 - https://github.com/huggingface/transformers
- SimpleTransformers
 - https://github.com/ThilinaRajapakse/simpletransformers
- https://github.com/CyberZHG/torch-multi-head-attention

Classification Example Code

- Data process
- ➤ Model training
- ➤ Model inference

Practice Tips

- ➤ Important hype-parameters for model performance
 - > Maximum sequence length
 - > Batch size
 - > Training time
 - > Learning rate

Practice Tips

- ➤ How to select a pre-trained Transformer-based model for your task?
 - ➤ Model's pre-training data
 - ➤ Model size (number of parameters)
 - ➤ BERT-large vs BERT-base
 - ➤ RoBERTa-large vs RoBERTa-base

Guo Y, Dong X, Al-Garadi MA, Sarker A, Paris C, Mollá-Aliod D. Benchmarking of Transformer-Based Pre-Trained Models on Social Media Text Classification Datasets. In: *Proceedings of the The 18th Annual Workshop of the Australasian Language Technology Association*.; 2020:86-91.

