Mathematical Logic (IX)

Yijia Chen

1. Completeness

Recall that we have shown:

Lemma 1.1. Let $\Phi \subset L^S$ and \mathfrak{I}^{Φ} be the term interpretation of Φ . Then for every atomic φ

$$\mathfrak{I}^{\Phi} \models \varphi \iff \Phi \vdash \varphi.$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula ϕ

$$\mathfrak{I}^{\Phi} \models \varphi \iff \Phi \vdash \varphi.$$

Corollary 1.3. Let S be countable and $\Phi \subseteq L^S$ consistent with finite free (Φ) . Then there is a Θ such that

$$-\Phi\subseteq\Theta\subseteq L^{S};$$

 $-\Theta$ is consistent, negation complete, and contains witnesses.

Therefore by Theorem 1.2 for every $\phi \in L^S$

$$\mathfrak{I}^{\Theta} \models \varphi \iff \Theta \vdash \varphi.$$

In particular

$$\mathfrak{I}^{\Theta} \models \Phi$$
.

thus Φ is satisfiable.

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.4. Let S be countable and $\Phi \subseteq L^S$ consistent. Then Φ is satisfiable.

1.1. The general case. S untount able.

Then there is a syr

Lemma 1.5. Let $\Phi \subseteq L^S$ be consistent. Then there is a symbol set S' with $S \subseteq S'$ and a consistent Ψ with $\Phi \subseteq \Psi \subseteq L^{S'}$ such that Ψ contains witnesses.

Lemma 1.6. Let $\Psi \subseteq L^{S'}$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq L^{S'}$ such that Θ is negation complete.

Then the next corollary follows from Lemmas 1.5 and 1.6 in the same fashion as that of Corollary 1.3.

Corollary 1.7. Let $\Phi \subseteq L^S$ be consistent. Then Φ is satisfiable.

We need some technical tools for proving Lemma 1.5. Let S be an arbitrary symbol set. For every $\varphi \in L^S$ we introduce a new constant $c_{\varphi} \notin S$. In particular, $c_{\varphi} \neq c_{\psi}$ for any $\varphi \neq \psi$. Then

$$\begin{split} S^* &:= S \cup \left\{ c_{\exists x \phi} \; \middle| \; \exists x \phi \in L^S \right\}, \\ & \text{Withers} \\ W(S) &:= \left\{ \exists x \phi \to \phi \frac{c_{\exists x \phi}}{x} \; \middle| \; \exists x \phi \in L^S \right\}. \end{split}$$

It is obvious that $c_{\exists x \varphi}$ is introduced as a witness for $\exists x \varphi$ as required by W(S). Nevertheless, we pay a price for expanding the symbol set S to S*, i.e., there are formulas of the form $\exists x \varphi$ in $L^{S*} \setminus L^{S}$, e.g.,

 $\exists v_7 c_{\exists x R x} \equiv v_7.$

Lemma 1.8. Assume that $\Phi \subseteq L^S$ is consistent. Then

 $\Phi \cup W(S) \subset L^{S^*}$

is consistent as well.

from I from W(S)

Proof: It suffices to show that every finite subset Φ_0^* of $\Phi \cup W(S) \subseteq L^{S^*}$ is satisfiable. Let $\Phi_0^* = \Phi_0 \cup \left\{ \exists x_1 \phi_1 \to \phi_1 \frac{c_1}{x_1}, \ldots, \exists x_n \phi_n \to \phi_n \frac{c_n}{x_n} \right\},$

where $\Phi_0 \subseteq \Phi$ is finite, every $\exists x_i \phi_i \in L^S$, and $c_i = c_{\exists x_i \phi_i}$ for $i \in [n]$. Choose a finite $S_0 \subseteq S$ such that $\Phi_0 \subseteq L^{S_0}$. Note that Φ_0 is consistent due to the consistency of Φ . Furthermore free (Φ_0) is finite¹. Therefore Φ_0 is satisfiable by Corollary 1.3, i.e., there is an S_0 -interpretation $\mathfrak{I}_0 = (\mathfrak{A}_0, \beta)$ such that

 $\mathfrak{I}_0 \models \Phi_0$

Note that \mathfrak{A}_0 is an S_0 -structure. By choosing some arbitrary interpretation of the symbols in $S \setminus S_0$ we obtain an S-structure $\mathfrak A$. Then the Coincidence Lemma guarantees that for the S-interpretation $\mathfrak{I} := (\mathfrak{A}, \beta)$

 $\mathfrak{I} \models \Phi_0.$ Next, we need to further expand \mathfrak{A} to an S*-structure \mathfrak{A}^* by giving interpretation of all new constants $c_{\exists k\phi}$. Let $a \in A$ be an arbitrary but fixed element. Then for every $i \in [n]$ we set

 $c_{i}^{\mathfrak{A}^{*}} := \begin{cases} a_{i} & \text{if there is an } a_{i} \in A \text{ with } \mathfrak{I}, \quad \mathbf{I} \overset{\mathbf{a}_{i}}{\mathfrak{K}^{*}} \models \mathbf{Q}_{i} & \mathbf{I} & \mathbf{A}^{*} & \mathbf{A}^{$

For all the other new constants $c_{\exists x \varphi}$ we simply let $c_{\exists x \varphi}^{\mathfrak{A}^*} := \mathfrak{a}$. Then for the S*-interpretation $\mathfrak{I}^* := (\mathfrak{A}^*, \beta)$ we claim

$$\mathfrak{I}^* \models \Phi_0 \cup \left\{ \exists x_1 \varphi_1 \to \varphi_1 \frac{c_1}{x_1}, \dots, \exists x_n \varphi_n \to \varphi_n \frac{c_n}{x_n} \right\}.$$

 $\mathfrak{I}^* \models \Phi_0$ is immediate by $\mathfrak{I} \models \Phi_0$ and the Coincidence Lemma. Let $\mathfrak{i} \in [n]$ and assume $\mathfrak{I}^* \models \exists x_{\mathfrak{i}} \varphi_{\mathfrak{i}}$, or equivalently $\mathfrak{I} \models \exists x_i \varphi_i$. Then by our choice of $a_i \in A$

$$\mathfrak{I}\models \varphi_{\mathfrak{i}}\frac{\mathfrak{a}_{\mathfrak{i}}}{\mathfrak{x}_{\mathfrak{i}}},$$

hence

$$\mathfrak{I}^* \models \exists x_i \varphi_i \to \varphi_i \frac{c_i}{x_i},\tag{1}$$

¹Here, we can also apply Corollary 1.4 without using the finiteness of free (Φ_0) . But then this would introduce a further layer of construction as in the proof of Corollary 1.4.

by the Coincidence Lemma and by the Substitution Lemma. Note (1) trivially holds if $\mathfrak{I}^* \not\models \exists x_i \phi_i$. This finishes the proof.

Lemma 1.9. Let

$$S_0 \subseteq S_1 \subseteq \cdots \subseteq S_n \subseteq \cdots$$

be a sequence of symbol sets. Furthermore, for every $n \in \mathbb{N}$ let Φ_n be a set of S_n -formulas such that

$$\Phi_0 \subseteq \Phi_1 \subseteq \cdots \subseteq \Phi_n \subseteq \cdots$$

We set

$$S:=\bigcup_{n\in\mathbb{N}}S_n\quad \text{and}\quad \Phi:=\bigcup_{n\in\mathbb{N}}\Phi_n.$$

Then Φ is a consistent set of S-formulas if and only if every Φ_n is consistent.

Proof: We prove that

 Φ is inconsistent $\iff \Phi_n$ is inconsistent for some $n \in \mathbb{N}$.

The direction from right to left is trivial. So assume that Φ is inconsistent. In particular, for some $\varphi \in L^S$ there are proofs of φ and $\neg \varphi$ from Φ . Since proofs in sequent calculus are all finite, we can choose a finite $S' \subseteq S$ such that every formula used in the proofs of φ and $\neg \varphi$ is an S'-formulas. For the same reason, for a sufficiently large $n \in \mathbb{N}$ we have

- (i) $S' \subset S_n$,
- (ii) $\Phi_n \vdash \varphi$ and $\Phi_n \vdash \neg \varphi$.

Thus Φ_n is inconsistent.

Remark 1.10. Note at this point we have not shown the following seemingly trivial result. Let S be an (infinite) set of symbols, a finite $\Phi \subseteq L^S$, and $\varphi \in L^S$ such that $\Phi \vdash \varphi$. Furthermore, let $S_0 \subseteq S$ be the set of symbols that occur in Φ and φ . Then there is a proof of sequence calculus for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_0 -formula, i.e., only uses symbols in S_0 .

This is the reason in the proof of Lemma 1.9 we need to emphasize (i).

Proof of Lemma 1.5: Let

$$\begin{split} S_0 &:= S \quad \text{and} \quad S_{n+1} := (S_n)^*, \\ \Psi_0 &:= \Phi \quad \text{and} \quad \Psi_{n+1} := \Psi_n \cup W(S_n). \end{split}$$

Therefore

$$S = S_0 \subseteq \cdots \subseteq S_n \subseteq S_{n+1} \subseteq \cdots$$
$$\Phi = \Psi_0 \subseteq \cdots \subseteq \Psi_n \subseteq \Psi_{n+1} \subseteq \cdots$$

Then we set

$$S' := \bigcup_{n \in \mathbb{N}} S_n \quad \text{and} \quad \Psi := \bigcup_{n \in \mathbb{N}} \Psi_n.$$

By Lemma 1.8 and induction on n we conclude that every Ψ_n is consistent. Thus Lemma 1.9 implies that Φ is a consistent set of S'-formulas.

By our construction of $W(S_n)$, the set Φ trivially contains witnesses.

The proof of Lemma 1.6 relies on well-known Zorn's Lemma. Let M be a set and $\mathcal{U} \subseteq \mathscr{P}ow(M) = \{T \mid T \subseteq M\}$. We say that a *nonempty* subset $C \subseteq \mathcal{U}$ is a *chain* in \mathcal{U} if for every $T_1, T_2 \in C$ either $T_1 \subseteq T_2$ or $T_2 \subseteq T_1$.

of 03 . 7 If DAY EL

:. 3xe -> p Grey CW (Sn) emma 1.11 (Zorn's Lemma). Assume that for every chain C in U we have $\bigcup C := \{ \alpha \mid \alpha \in \mathsf{T} \text{ for some } \mathsf{T} \in \mathsf{C} \} \in \mathcal{U}.$ Then \mathcal{U} has a maximal element T , i.e., there is no $\mathsf{T}' \in \mathcal{U}$ with $\mathsf{T} \subsetneq \mathsf{T}'$. *Proof of Lemma 1.6* In order to apply Zorn's Lemma we let $M := L^S$ and $\mathcal{U} := \{ \Theta \mid \Psi \subseteq \Theta \subseteq L^{S} \text{ and } \Theta \text{ is consistent} \}.$ Let C be a chain in U. We set $\Theta_{C} := \bigcup C = \{ \varphi \mid \varphi \in \Theta \text{ for some } \Theta \in C \}.$ $C \neq \emptyset$ implies $\Psi \subseteq \Theta_C$. To see that Θ_C is consistent, let $\{\phi_1, \dots, \phi_n\}$ be a finite subset of Θ_C , in particular, there are $\Theta_i \in C$ such that $\varphi_i \in \Theta_i$. As C is a chain, without loss of generality, we can assume that every $\Theta_i \subseteq \Theta_i^{\bullet}$. Since $\Theta_n \in C$ is consistent by the definition of \mathcal{U} , we conclude $\{\varphi_1,\ldots,\varphi_n\}$ is consistent as well. $\{\varphi_1,\ldots,\varphi_n\}$ is consistent as well. Thus the condition in Zorn's Lemma is satisfied. It follows that \mathcal{U} has a maximal element Θ . We claim that Θ is negation complete. Otherwise, for some $\varphi \in L^S$ we have $\Theta \not\vdash \varphi$ and $\Theta \not\vdash \neg \varphi$. Therefore $\varphi \notin \Theta$ and $\Theta \cup \{\varphi\}$ is consistent. As a consequence $\Theta \subsetneq \Theta \cup \{\varphi\} \in \mathcal{U}$. This is a contradiction to the maximality of Θ . Now we are ready to prove the completeness theorem. **Theorem 1.12.** Let $\Phi \subseteq L^S$ and $\varphi \in L^S$. Then $\Phi \vdash \omega \iff \Phi \models \omega$. Proof: The direction from left to right is easy by the soundness of sequent calculus. Conversely, assume that $\Phi \not\vdash \varphi$, then $\Phi \cup \neg \{\neg \varphi\}$ is consistent. Corollary 1.7 implies that $\Phi \cup \neg \{\neg \varphi\}$ is satisfiable. In particular, there is an S-interpretation \mathfrak{I} with $\mathfrak{I} \models \Phi$ and $\mathfrak{I} \models \neg \varphi$ (i.e., $\mathfrak{I} \not\models \varphi$). But this means that $\Phi \not\models \varphi$. 2. The Löwenheim-Skolem Theorem and the Compactness Theorem Using the term-interpretation, it is routine to verify: **Theorem 2.1** (Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be at most countable and satisfiable. Then there is an S-interpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that - the universe A of 𝔄 is at most countable, - and $\mathfrak{I} \models \Phi$. The following is a more general version. **Theorem 2.2** (Downward Löwenheim-Skolem). Let $\Phi \subseteq L^S$ be satisfiable. Then there is an Sinterpretation $\mathfrak{I} = (\mathfrak{A}, \beta)$ such that $-|A| \leqslant |T^S| = |L^S|,$ - and $\mathfrak{I} \models \Phi$. \dashv **Corollary 2.3.** Let $S := \{+, \times, <, 0, 1\}$ with the usual meaning and $\Phi_{\mathbb{R}} := \{ \varphi \in L_0^{\mathbb{S}} \mid (\mathbb{R}, +, \cdot, <, 0, 1) \models \varphi \}.$ Then there is a countable S-structure \mathfrak{A} with $\mathfrak{A} \models \Phi_{\mathbb{R}}$. By the Completeness Theorem: **Theorem 2.4** (Compactness). (a) $\Phi \models \varphi$ if and only if there is a finite $\Phi_0 \subseteq \Phi$ with $\Phi_0 \models \varphi$. (b) Φ is satisfiable if and only if every finite $\Phi_0 \subseteq \Phi$ is satisfiable.

3. Exercises

Definition 3.1. A *total order* on a set A is a binary relation $\leq \subseteq A \times A$ with the following properties. Let $a, b, c \in A$ be arbitrary.

- (i) $a \le a$ (i.e., \le is reflexive).
- (ii) If $a \le b$ and $b \le a$, then a = b (i.e., \le is anti-symmetric).
- (iii) If $a \le b$ and $b \le c$, then $a \le c$ (i.e., \le is transitive).
- (iv) $a \le b$ or $b \le a$ (i.e., \le is total).

If furthermore

(v) every nonempty $A' \subseteq A$ has a *minimum* element a, i.e., $a \in A'$ and $a \leqslant a'$ for any $a' \in A'$, then \leqslant is a *well order*.

Exercise 3.2. Assume that for every set A there is a well order $\leq \subseteq A \times A$. Prove Zorn's Lemma. \dashv