Finite Taylor Algebras, Pointing Terms and Cubed Elements

Alexander Wires

University of Waterloo Department of Pure Math

> October 5, 2013 Louisville, KY

Outline

- CSP Dichotomy on small domains
- Bounded-Width iff SD(∧)
 - New characterization for f.g SD(\land) idempotent varieties (Barto-Kozik)
- f.g Taylor varieties (idempotent)

Outline

- CSP Dichotomy on small domains
- Bounded-Width iff SD(∧)
 - New characterization for f.g SD(\land) idempotent varieties (Barto-Kozik)
- f.g Taylor varieties (idempotent)
- |A| = 2 (Schaefer[1978]-Jeavons[1998])
- |A| = 3 (Bulatov [2006])
- |A| = 4 (Markovic, McKenzie, et al [?])
- |A| < 4 relies heavily on Post[1941]
- NO G-set(polymorphism algebra is Taylor) \Rightarrow every 2-element subalgebra has

Outline

- CSP Dichotomy on small domains
- Bounded-Width iff SD(∧)
 - New characterization for f.g SD(\land) idempotent varieties (Barto-Kozik)
- f.g Taylor varieties (idempotent)
- |A| = 2 (Schaefer[1978]-Jeavons[1998])
- |A| = 3 (Bulatov [2006])
- |A| = 4 (Markovic, McKenzie, et al [?])
- |A| < 4 relies heavily on Post[1941]
- NO G-set(polymorphism algebra is Taylor) \Rightarrow every 2-element subalgebra has
 - constant operation
 - semilattice
 - majority
 - affine

3-element Taylor Algebras

Let $\mathbf{A} = \{a, b, c\}$ idempotent and $\theta = \{[a, b], [c]\} \in \mathsf{Con}\,\mathbf{A}$.

- \mathbf{A}/θ is affine
 - [*a*, *b*] affine
 - [a, b] semilatt
 - [a, b] majority
- \mathbf{A}/θ has semilatt, or majority.
 - [*a*, *b*] affine
 - [a, b] semilatt
 - [a, b] majority
- A simple: reduce relations to 2-element domains, other characterizations of subpowers
 - non-singleton subalgebras Post[1941]
 - strictly simple Szendrei[1990]

With a Different Lens

Absorption, small generating sets, algebraic characterization of consistency($BW \Leftrightarrow SD(\land)$)

- \mathbf{A}/θ is affine
 - [a, b] affine (few subpowers)
 - $\{a\} \triangleleft [a,b]$ but $\{b\} \not | [a,b]$ (Malcev on Top Maroti)
 - {a}, {b} ⊲[a,b](few subpowers)
- \mathbf{A}/θ absorption: $\{c\} \triangleleft \mathbf{A}$ or $[a,b] \triangleleft \mathbf{A}$
 - [a, b] affine (Markovic, McKenzie Semilatt over malcev) or (few subpowers)
 - bounded-width
- A simple
 - absorption (2,3)-consistency output nicely decomposes (Prague Strategy) - induction smaller domains
 - no absorption in SD(∧) variety (2,3)-consistency output nicely decomposes (Prague Strategy) - smaller domains

Larger Domains

Larger Domains

- Cannot rely on "complete" classification of clones
- But "some" classification of finitely related clones
 - few subpowers (many contributors)
 - SD(∧)???
- Strictly simple (Szendrei[1990])- arbitrary finite domains
- Absorption works well inductively

Larger Domains

- Cannot rely on "complete" classification of clones
- But "some" classification of finitely related clones
 - few subpowers (many contributors)
 - SD(∧)???
- Strictly simple (Szendrei[1990])- arbitrary finite domains
- Absorption works well inductively
 - new algorithm conservative CSP (Barto[2010])
 - Absorption/no Absorption \rightarrow decompose Prague strategies(SD(\land) \Rightarrow BW)
 - $a \prec_m b$ iff $m(\bar{x})$ is a cube term for (a,b) evaluating to a
 - $a \prec_m x$, $\forall x \in \mathbf{B} \triangleleft \mathbf{A} \Rightarrow a \prec_{m \star r} x$, $\forall x \in \mathbf{A}$

Pointed elements

Definition

A term $p(x_1,...,x_n)$ points to a if $\exists a_1,...,a_n$ such that $\forall i \leq n$,

$$p(a_1,...,a_{i-1},x,a_i,...,a_n)=a$$

The element a is pointed and the term $t(\bar{x})$ is a pointing term.

Pointed elements

Definition

A term $p(x_1,...,x_n)$ points to a if $\exists a_1,...,a_n$ such that $\forall i \leq n$,

$$p(a_1,...,a_{i-1},x,a_i,...,a_n)=a$$

The element a is pointed and the term $t(\bar{x})$ is a pointing term.

Lemma

(Barto, Kozik) Let **A** be a finite simple algebra with no proper absorbing subalgebra in a $SD(\land)$ variety. Then for every $a \in A$ there exists a term which points to a.

Let Pt A denote the set of pointed elements.

Pointed elements

Definition

A term $p(x_1,...,x_n)$ points to a if $\exists a_1,...,a_n$ such that $\forall i \leq n$,

$$p(a_1,...,a_{i-1},x,a_i,...,a_n)=a$$

The element a is pointed and the term $t(\bar{x})$ is a pointing term.

Lemma

(Barto, Kozik) Let **A** be a finite simple algebra with no proper absorbing subalgebra in a $SD(\land)$ variety. Then for every $a \in A$ there exists a term which points to a.

Let Pt A denote the set of pointed elements.

• $B \triangleleft A \Rightarrow \mathsf{Pt} \, \mathbf{B} \subseteq \mathsf{Pt} \, \mathbf{A}$

Hereditary Characterization

Theorem

(B,K) A finite idempotent algebra **A** generates a $SD(\land)$ variety iff every $\mathbf{B} \leq \mathbf{A}$ has pointed elements.

Theorem

(B,K) A finite idempotent algebra **A** generates a $SD(\land)$ variety iff every $\mathbf{B} \leq \mathbf{A}$ has pointed elements.

Lemma

(B,K) Let **A** be finite idempotent Taylor algebra. If **A** is without proper absorption, then $\exists t(x_1,...,x_m)$ s.t. $\forall a,b \in A$, $i \leq m$, $\exists a_1,...,a_m$ s.t.

$$t(a_1,...,a_{i-1},a,a_{i+1},...,a_m)=b$$

So if $p(\bar{x})$ points to some $a \in A$, then t * p satisfies

$$\bigwedge_{1 \le i \le mn} (\forall b) (\exists a_1, ..., a_{mn}) [t * p(a_1, ..., a_{i-1}, x, a_{i+1}, ..., a_{mn}) = \{b\}]$$

Back to Taylor Algebras

on pilgrimage

Definition

An element $a \in A$ is *cubed* if $\exists t(x_1,...,x_n)$, $(a_1,...,a_n) \in A^n$, subsets $C_1,...,C_k$ of [n] with $\bigcup C_i = [n]$ s.t.

$$t(b_1,...,b_n)=a$$
 whenever

•
$$|\{i : a_i \neq b_i\}| = C_j$$
 and $|\{b_i : i \in C_j\}| = 1$ for some j

The tuple $\bar{a} = (a_1, ..., a_n)$ is called the *base* of a, the collection $C_1, ..., C_k$ an *index cover*, and t is called a *pointing cube-term*.

Definition

An element $a \in A$ is cubed if $\exists t(x_1,...,x_n), (a_1,...,a_n) \in A^n$, subsets C_1, \ldots, C_k of [n] with $\bigcup C_i = [n]$ s.t.

$$t(b_1,...,b_n) = a$$
 whenever

Back to Taylor Algebras

• $|\{i: a_i \neq b_i\}| = C_i$ and $|\{b_i: i \in C_i\}| = 1$ for some j

The tuple $\bar{a} = (a_1, ..., a_n)$ is called the base of a, the collection $C_1, ..., C_k$ an index cover, and t is called a pointing cube-term.

- pointing term = pointing cube-term where index cover is collection of singletons.
- The index cover $C_1, ..., C_k$ can be pair-wise incomparable under inclusion.

Subalgebra of cubed elements

Let CPt A be the set of cubed elements.

Lemma

Let **A** and **B** be algebras and $\phi \in \text{hom}(\mathbf{A}, \mathbf{B})$. The following hold.

- CPt A ≤ A
- $\phi(\mathsf{CPt}\,\mathbf{A}) \leq \mathsf{CPt}\,\phi(\mathbf{A})$
- Pt A ≤ CPt A
- B ⊲ A ⇒ CPt B ≤ CPt A

Subalgebra of cubed elements

Let CPt A be the set of cubed elements.

Lemma

Let **A** and **B** be algebras and $\phi \in \text{hom}(\mathbf{A}, \mathbf{B})$. The following hold.

- CPt A ≤ A
- $\phi(\mathsf{CPt}\,\mathbf{A}) \leq \mathsf{CPt}\,\phi(\mathbf{A})$
- Pt A < CPt A
- B ⊲ A ⇒ CPt B ≤ CPt A
- Strongly abelian algebras cannot have cubed elements

Subalgebra of cubed elements

Let CPt A be the set of cubed elements.

Lemma

Let **A** and **B** be algebras and $\phi \in \text{hom}(\mathbf{A}, \mathbf{B})$. The following hold.

- CPt A < A
- $\phi(\mathsf{CPt}\,\mathbf{A}) \leq \mathsf{CPt}\,\phi(\mathbf{A})$
- Pt A < CPt A
- B ⊲ A ⇒ CPt B < CPt A
- Strongly abelian algebras cannot have cubed elements

Theorem

A finite idempotent algebra ${\bf A}$ generates a Taylor variety iff every ${\bf B} \le {\bf A}$ has cubed elements

What is this good for?

Theorem

A finite idempotent algebra ${\bf A}$ generates a Taylor variety iff every ${\bf B} \leq {\bf A}$ has cubed elements

So if **A** is without proper absorption, then $\exists s(x_1,...,x_n)$ s.t.

$$\bigwedge_{1 \le i \le n} (\forall b) (\exists \bar{a}) (\exists i \in C \subset [n]) [s(\bar{a})_C [x,...,x] = \{b\}]$$

Similar traction using

• Similar traction using absorption, star product of special terms, Maclev on Top, Semilattice over Malcev, few subpowers

- Similar traction using absorption, star product of special terms, Maclev on Top, Semilattice over Malcev, few subpowers
- Modifying Bulatov with Prague strategies
 - walking absorption around small potatoes of prague strategy produces
 - new absorption
 - new smaller subalgebras
 - constraint relations of very restrictive kinds
- An unexpected problem......

- Similar traction using absorption, star product of special terms, Maclev on Top, Semilattice over Malcev, few subpowers
- Modifying Bulatov with Prague strategies
 - walking absorption around small potatoes of prague strategy produces
 - new absorption
 - new smaller subalgebras
 - · constraint relations of very restrictive kinds
- An unexpected problem......
 - Failure to anticipate time demands of teaching 150+ Calculus class