

Improving Security Despite Compromise with Zero-knowledge

Cătălin Hrițcu (Saarland University)

Joint work with: Michael Backes, Matteo Maffei, and Dominique Unruh

A simple protocol

C:

new m: Secret

assume Authentic(m, B, C)

 $sign(enc((m,p),k_A^+),k_B^-)$

 $sign(enc(m,k_C^+),k_A^-)$

A simple protocol

new m: Secret assume Authentic(m, B, C)

 $sign(enc((m,p),k_A^+),k_B^-)$

sign(enc(m,k_C⁺), k_A⁻)

assert Authentic(m, B, C)

 This protocol is secure if all participants are honest (m is secret and authentic)

A simple protocol

new m: Secret assume Authentic(m, B, C)

 $sign(enc((m,p),k_A^+),k_B^-)$

sign(enc(m,k_C⁺), k_A⁻)

- This protocol is secure if all participants are honest (m is secret and authentic)
- ... but insecure if A is compromised (faking)

Trying to strengthen the protocol

new m: Secret

assert Authentic(m, B, C)

• C can check B's signature of "enc((m,p), k_A)"

Trying to strengthen the protocol

new m: Secret

- C can check B's signature of "enc((m,p),kA+)"
- C cannot decrypt "enc((m,p),k_A+)" in order to check m

Trying to strengthen the protocol

new m: Secret

assume Authentic(m, B, C)

sign(enc((m,p), k_A^+), k_B^-)

forward

sign(enc(\mathbf{m}^{\prime} , k_{C}^{+}), k_{A}^{-}), sign(enc((\mathbf{m} , \mathbf{p}), k_{A}^{+}), k_{B}^{-})

- C can check B's signature of "enc((m,p),kA+)"
- C cannot decrypt "enc((m,p),k_A+)" in order to check m
- ... still insecure if A comprised (substitution)

C:

new m: Secret

assume Authentic(m, B, C)

 $sign(enc(m,k_A^+),k_B^-)$

$$\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$$

••

new m: Secret

assume Authentic(m, B, C)

 $sign(enc(m,k_A^+),k_B^-)$

• • •

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

••

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

• • •

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

R

C:

new m: Secret

assume Authentic(m, B, C)

 $sign(enc(m,k_A^+),k_B^-)$

 $\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

• •

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_{\underline{A}}^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

• • •

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

R

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_A^-, m, \underline{p}; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

 $\mathsf{zk}_{3,2,S}(k_A^-, m, p; \underline{\mathsf{sign}}(\mathsf{enc}(m, k_C^+), k_A^-), \allowbreak \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

R

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A ⁺), k_B ⁻)

$$\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$$

• •

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

C:

new m: Secret

assume Authentic(m, B, C)

sign(enc(m, k_A^+), k_B^-)

$$\mathsf{zk}_{3,2,S}(k_A^-, m, p; \mathsf{sign}(\mathsf{enc}(m, k_C^+), k_A^-), \mathsf{sign}(\mathsf{enc}((m, p), k_A^+), k_B^-))$$

• •

$$S = \operatorname{check}(\beta_1, k_A^+) = \operatorname{enc}(\alpha_2, k_C^+) \wedge \operatorname{dec}(\operatorname{check}(\beta_2, k_B^+), \alpha_1) = (\alpha_2, \alpha_3)$$

 Symbolic abstraction of ZK(Dolev-Yao model) [Backes, Maffei & Unruh, S&P '08]

Goals

- General aim: to aid secure protocol design
- Automated translation
 - Preserve secrecy and authenticity if everybody is honest
 - Enforce authenticity even if some principals are compromised

Goals

- General aim: to aid secure protocol design
- Automated translation
 - Preserve secrecy and authenticity if everybody is honest
 - Enforce authenticity even if some principals are compromised
 - Use type system for authorization [Fournet et. al., CSF '07]
 - We extended it to zero-knowledge [FCS-ARSPA-WITS '08]
 - Also translate types
 - Prove that well-typing is preserved

$$\forall P \ \forall A. \ \Gamma \vdash P \ \Rightarrow \ \langle\!\langle \Gamma \rangle\!\rangle \vdash \langle\!\langle P \rangle\!\rangle \land$$
$$\langle\!\langle \Gamma \rangle\!\rangle \vdash corrupt(\langle\!\langle P \rangle\!\rangle, A)$$