Intro to NORMAL FORM

FIRST NORMAL FORM

- 1NF is the initial step of database normalization.
- Implications of first normal form
 - Atomic Values: Each cell in a table contains indivisible, atomic values. Means a Relation should not contain any multivalued or composite attributes.
 - **Unique Columns**: Each column must have a distinct name to identify the data it contains.
 - **Primary Key**: A table in 1NF should have a primary key that uniquely identifies each record.
 - Eliminating Duplicates: Duplicate rows are removed to prevent data redundancy.

Prime attribute: - A attribute is said to be prime if it is part of any of the candidate key

Non-Prime attribute: - A attribute is said to be non-prime if it is not part of any of the candidate key.

Eg R(ABCD) AB→CD

Here candidate key is AB so, A and B are prime attribute, C and D are non-prime attributes.

PARTIAL DEPENDENCY- When a non – prime attribute is dependent only on a part (Proper subset) of candidate key then it is called partial dependency. (PRIME > NON-PRIME)

Full DEPENDENCY- When a non – prime attribute is dependent on the entire candidate key then it is called Full dependency.

- e.g. R(ABCD)
 - AB→D
 - $A \rightarrow C$

SECOND NORMAL FORM

- Relation R is in 2NF if,
 - R should be in 1 NF.
 - R should not contain any Partial dependency. (that is every nonprime attribute should be fully dependent upon candidate key)

Α	В	С
а	1	X
b	2	Υ
а	3	Z
С	3	Z
D	3	Z
Е	3	Z

A	В
Α	1
В	2
Α	3
С	3
D	3
Е	3

В	C
1	X
2	Υ
3	Z

Q R(A, B, C) B \rightarrow C

01

TRANSITIVE
DEPENDENCY – A
functional dependency
from non-Prime attribute
to non-Prime attribute is
called transitive

02

E.g.- R(A, B, C, D) with A as a candidate key $A \rightarrow B$

03

B→C [transitive dependency]

C→D [transitive dependency]

THIRD NORMAL FORM

Let R be the relational schema, it is said to be in 3 NF

- R should be in 2NF
- It must not contain any transitive dependency

THIRD NORMAL FORM DIRECT DEFINATION

- A relational schema R is said to be 3 NF if every functional dependency
- in R from α --> β , either α is super key or β is the prime attribute

$$A \rightarrow B$$

$$B \rightarrow C$$

A	В	С
Α	1	Р
В	2	Q
С	2	Q
D	2	Q
Е	3	R
F	3	R
G	4	S

Α	В
Α	1
В	2
С	2
D	2
Е	3
F	3
G	4

В	С
1	Р
2	Q
3	R
4	S

BCNF (BOYCE CODD NORMAL FORM)

A relational schema R is said to be BCNF if every functional dependency in R from

- $\alpha \rightarrow \beta$
- α must be a super key

$$AB \rightarrow C$$

 $C \rightarrow B$

A	В	С
Α	С	В
В	В	С
В	Α	D
Α	Α	Е
C	С	В
D	С	В
Е	С	В
F	С	В

A	В
Α	В
В	В
В	Α
Α	Α
С	С
D	С
е	С
f	С

С	В
В	С
С	В
D	Α
Е	Α

Some important note points on Normalization:

- A Relation with two attributes is always in BCNF.
- A Relation schema R consist of only prime attributes then R is always in 3NF, but may or may not be in BCNF.