

目录/Contents 第七章补充图论模型之计划评审方法

第一节 计划评审方法

计划网络图

- ✓计划评审方法(Program Evaluation and Review Technique, PERT)
- ✓关键路线法(Critical Path Method, CPM)
- ✓1956年,美国杜邦公司
- ✓1958年,美国海军武装部
- ✓统筹方法(PERT/CPM)

工程完工的最短时间

作业	计划完成时间	紧前工作	作业	计划完成时间	紧前工作
A	5		G	21	B,E
В	10		Н	35	B,E
C	11		I	25	B,E
D	4	В	J	15	F,G,I
E	4	A	K	20	F,G
F	15	C,D			

作业: 任何消耗时间或资源的行动。

称作业的开始或结束为事件,事件本身不消耗资源。

工程完工的最短时间

作业	计划完成时间	紧前工作	作业	计划完成时间	紧前工作
A	5		G	21	B,E
В	10		Н	35	B,E
C	11		I	25	B,E
D	4	В	J	15	F,G,I
E	4	A	K	20	F,G
F	15	C,D			

计划网络图中,从初始事件到最终事件的由各项工作连贯组成的一条路称为<mark>路线</mark>。 累计作业事件最长的路线称为**关键路线**。

◆ 建立计划网络图应注意的问题

- ✓ 任何作业用唯一的箭线表示,任何作业的终点事件编号必大于其起点事件编号。
- ✓ 两个事件之间只能画一条箭线,表示一项作业。
- ✓一个计划网络图只能有一个最初事件和一个最终事件。
- ✓ 计划网络图不允许出现回路。
- ✓ 计划网络图的画法一般是从左到右,从上到下。避免箭线相交。

时间参数

事件 / 的最早时间: 以它为起点的各项工作的最早可能开始时间

$$\begin{cases}
t_E(1) = 0 \\
t_E(j) = \max_i \{t_E(i) + t(i, j)\}
\end{cases}$$

事件 *i* 的最迟时间: 不影响任务总工期的条件下,以事件 *i* 为起点的工作的最迟开始时间

时间参数

工作 (i, j) 的最早可能开工时间: $t_{ES}(i, j)$

工作 (i, j) 的最早可能完工时间: $t_{EF}(i, j)$

$$\begin{cases} t_{ES}(1,j) = 0 \\ t_{ES}(i,j) = \max_{k} \{t_{ES}(k,i) + t(k,i)\} \\ t_{EF}(i,j) = t_{ES}(i,j) + t(i,j) \end{cases}$$

工作 (i, j) 的最迟必须开工时间: $t_{LS}(i, j)$

工作 (i, j) 的最迟必须完工时间: $t_{LF}(i, j)$

工作的总时差

在不影响任务总工期的条件下,某工作(i,j)可以延迟其开工时间的最大幅度

$$R(i,j) = t_{LF}(i,j) - t_{EF}(i,j)$$

工作的单时差

在不影响其紧后工作最早开工时间的条件下, 某工作 (i, j) 可以延迟其开工时间的最大幅度

$$r(i,j) = t_{ES}(j,k) - t_{EF}(i,j)$$

计划网络图

作业	计划完成时间	紧前工作	作业	计划完成时间	紧前工作
A	5		G	21	B,E
В	10		Н	35	B,E
C	11		I	25	B,E
D	4	В	J	15	F,G,I
E	4	A	K	20	F,G
F	15	C,D			

 $\begin{aligned} & \min & & x_n \\ & \text{s.t.} & & x_j \geq x_i + t_{ij}, \ (i,j) \in V \\ & & x_i \geq 0, \ i \in V \end{aligned}$

计划网络图


```
min x_n

s.t. x_j \ge x_i + t_{ij}, (i, j) \in V

x_i \ge 0, i \in V
```

```
model:
sets:
    events/1..8/: x;
    operate(events,events)/1 2,1 3,1 4,2 5,3 4,3 5,4 6,5 6,5 7,5 8,6 7,6 8,7 8/: t;
endsets
data:
    t = 5 10 11 4 4 0 15 21 25 35 0 20 15;
enddata
min = @sum(events: x);
@for(operate(i,j): x(j)>=x(i)+t(i,j));
end
```


作业	计划完成时间	紧前工作	作业	计划完成时间	紧前工作
A	5		G	21	B,E
В	10		Н	35	B,E
C	11		I	25	B,E
D	4	В	J	15	F,G,I
E	4	A	K	20	F,G
F	15	C,D			

作业	计划完成 时间	最短完成 时间	缩短一天 费用	作业	计划完成 时间	最短完成 时间	缩短一天 费用
B(1,3)	10	8	700	H(5,8)	35	30	500
C(1,4)	11	8	400	I(5,7)	25	22	300
E(2,5)	4	3	450	J(7,8)	15	12	400
G(5,6)	21	16	600	K(6,8)	20	16	500

最短路问题是图论应用的基本问题,很多实际问题,如线路的布设、运输安排、运输网络最小费用流等问题,都可通过建立最短路问题模型来求解.

