中 国 科 学 技 术 大 学 2013-2014学年第一学期期终考试试题

考试科目: 线性代数与解析几何	万 考试时间 : 2014.	得分:
学生所在系:	姓名:	学号:
一、填空题【每题4分,共20分 1. 设三维欧氏空间 \mathbb{R}^3 (标准内型则 $\lambda =$	积)中向量 $(1,\lambda,\mu)$ 与向量 \dots 。 性空间, $M=egin{pmatrix}1&2\\0&1\end{pmatrix}$,为时特征值及其重数为 \dots	定义V上的线性变换必为:
$(1,1,1), f_2 = (1,1,0), f_3 = (0,1)$,2)的过渡矩阵是	o
4. 若二次型 $x_1^2 - x_2^2 + 2ax_1x_3 + 4$ 5. 设 \mathcal{A} , \mathcal{B} 均为 n 维欧氏空间 V 有($\mathcal{A}(\alpha)$, β) = (α , $\mathcal{B}(\beta)$); 如是 则 \mathcal{B} 在此标准正交基 e_1, e_2, \cdots , e_1 二、判断题【判断下列命题是第 1. $\{(x_1, x_2, x_3) \in \mathbb{F}^3 x_1 + x_2 + x_3 \}$	中的线性变换,且对 V 果 A 在 V 的标准正交基 e_1 e_n 下的矩阵为 $_{}$	中任意两个向量 α, β ,都 $, e_2, \cdots, e_n$ 下的矩阵为 A ,。 。每题6分,共24分】
2. 设 $A = (a_{ij})$ 为 n 阶正定的实对	称矩阵,则 $a_{ii} > 0, i = 1, 2$	$2,\cdots,n$ \circ
$3.$ 对任意常数 λ, μ ,向量组 α_1 ,组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。	$+\lambdalpha_3,lpha_2+\mulpha_3$ 都线性无	关的充分必要条件是向量
4. 若 φ 是从实线性空间 V 到 \mathbb{R}^n 对 $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$,有 $\varphi(\alpha + \beta)$		

有 $\varphi(\alpha) \neq \varphi(\beta)$); 则 $(\alpha, \beta) = (\varphi(\alpha))^T \cdot (\varphi(\beta))$ 是V上的内积。

三、【15分】设 $V = \{(a_2x^2 + a_1x + a_0)e^x | a_2, a_1, a_0 \in \mathbb{R}\}$, 按函数通常的数乘与加法构成的实线性空间。定义V上的线性变换 \mathscr{A} 为: 对任意 $p(x) \in V$, $\mathscr{A}(p(x)) =$

$$\frac{d}{dx}p(x)$$
。 1. 求 V 的一组基使《在此基下的矩阵为 $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$;

2. $\bar{x}(x^2 - 4x + 2)e^x$ 在此基下的坐标。

四、【15分】设 e_1 , e_2 , e_3 为 \mathbb{R}^3 的标准正交基,且 $\alpha_1 = \frac{1}{3}(2e_1 + 2e_2 - e_3)$, $\alpha_2 = \frac{1}{3}(2e_1 - e_2 + 2e_3)$, $\alpha_3 = \frac{1}{3}(e_1 - 2e_2 - 2e_3)$, \mathscr{A} 为把 e_1 , e_2 , e_3 变到 α_1 , α_2 , α_3 的线性变换。 1. 求必在基 e_1 , e_2 , e_3 下的矩阵A; 2. 证明必是第一类正交变换。

五、【15分】用正交变换和平移将下面空间直角坐标系中的二次曲面方程化为标准形,并指出曲面类型: $x^2 + y^2 + z^2 + 4xy + 4xz + 4yz - 6x + 6y - 6z - 30 = 0$ 。

六、【11分】已知A为元素全是1的n阶矩阵,B为最后一行是 $1,2,\cdots,n$,其余元素全是0的n阶矩阵。证明A与B相似,并求其相似标准形。