Problem Set #4, Due: Wednesday February 15 by 11:00am

PHY 362K - Quantum Mechanics II, UT Austin, Spring 2017 (Dated: February 10, 2017)

I. PERTURBED HARMONIC OSCILLATOR

Consider a perturbed Harmonic oscillator with Hamiltonian:

$$\hat{H} = \hat{H}_0 + \hat{V} \tag{1}$$

where the "bare" Hamiltonian is:

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2 \tag{2}$$

and we perturb with a linear potential:

$$\hat{V} = g\hat{x} \tag{3}$$

where g is a constant.

1. Perturbatively compute the energy levels of \hat{H} to second order in V and the energy eigenstates to first order in V.

Solution: The first order correction to the energy levels is given by

$$E_n^1 = \langle n^0 | \hat{V} | n^0 \rangle = g \langle n^0 | \hat{x} | n^0 \rangle$$

We can write $\hat{x} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a} + \hat{a}^{\dagger})$, making this substitution and recalling that $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ and $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$, we find:

$$\begin{split} E_n^1 &= g \sqrt{\frac{\hbar}{2m\omega}} \left(\langle n^0 | \hat{a} | n^0 \rangle + \langle n^0 | \hat{a}^\dagger | n^0 \rangle \right) \\ &= g \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n} \langle n^0 | (n-1)^0 \rangle + \sqrt{n+1} \langle n^0 | (n-1)^0 \rangle \right) \end{split}$$

but the states $|n^0\rangle$ are orthogonal, so this expression reduces to

$$\boxed{E_n^1 = 0} \tag{4}$$

The second order correction to the energy levels is given by

$$E_n^2 = \sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{V} | n^0 \rangle|^2}{E_n^0 - E_m^0} = g^2 \sum_{\substack{m=0 \\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{x} | n^0 \rangle|^2}{E_n^0 - E_m^0}$$

writing \hat{x} in terms of the creation and annihilation operators, this becomes

$$E_n^2 = g^2 \frac{\hbar}{2m\omega} \sum_{\substack{m=0\\m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{a} + \hat{a}^{\dagger} | n^0 \rangle|^2}{E_n^0 - E_m^0}$$

but we know that the ground state energies of the unperturbed harmonic oscillator are $E_n^0 = \hbar\omega(n+1/2)$, so we can write

$$\begin{split} E_n^2 &= g^2 \frac{\hbar}{2m\omega} \sum_{\substack{m=0\\ m \neq n}}^{\infty} \frac{|\langle m^0 | \hat{a} | n^0 \rangle + \langle m^0 | \hat{a}^\dagger | n^0 \rangle|^2}{\hbar\omega(n+1/2) - \hbar\omega(m+1/2)} \\ &= \frac{g^2}{2m\omega^2} \sum_{\substack{m=0\\ m \neq n}}^{\infty} \frac{|\sqrt{n} \langle m^0 | (n-1)^0 \rangle + \sqrt{n+1} \langle m^0 | (n+1)^0 \rangle|^2}{n-m} \\ &= \frac{g^2}{2m\omega^2} \left(\frac{|\sqrt{n}|^2}{n-(n-1)} + \frac{|\sqrt{n+1}|^2}{n-(n+1)} \right) \end{split}$$

where the last line follows from the orthogonality of the energy eigenstates of the unperturbed Hamiltonian, $|n^0\rangle$. Simplifying, we find

$$E_n^2 = -\frac{g^2}{2m\omega^2}$$
 (5)

The first order correction to the energy eigenstates is given by

$$\begin{split} |n^{1}\rangle &= \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\langle m^{0}|\hat{V}|n^{0}\rangle}{E_{n}^{0} - E_{m}^{0}} |m^{0}\rangle = g\sqrt{\frac{\hbar}{2m\omega}} \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\langle m^{0}|\hat{a} + \hat{a}^{\dagger}|n^{0}\rangle}{\hbar\omega(n+1/2) - \hbar\omega(m+1/2)} |m^{0}\rangle \\ &= \frac{g}{\hbar\omega}\sqrt{\frac{\hbar}{2m\omega}} \sum_{\substack{m=0\\m\neq n}}^{\infty} \frac{\sqrt{n}\langle m^{0}|(n-1)^{0}\rangle + \sqrt{n+1}\langle m^{0}|(n+1)^{0}\rangle}{n-m} |m^{0}\rangle \\ &= \frac{g}{\hbar\omega}\sqrt{\frac{\hbar}{2m\omega}} \left[\frac{\sqrt{n}}{n-(n-1)} |(n-1)^{0}\rangle + \frac{\sqrt{n+1}}{n-(n+1)} |(n+1)^{0}\rangle \right] \end{split}$$

where the last line follows from the orthogonality of the energy eigenstates of the unperturbed Hamiltonian. Simplifying, we find

$$\left| |n^{1}\rangle = \frac{g}{\hbar\omega} \sqrt{\frac{\hbar}{2m\omega}} \left[\sqrt{n} |(n-1)^{0}\rangle - \sqrt{n+1} |(n+1)^{0}\rangle \right] \right|$$
 (6)

2. What is the condition on g for this perturbative approximation to be accurate?

Solution:

3. Why does the first order correction to energy vanish? (Hint: consider the symmetries of the $\frac{1}{2}m\omega^2\hat{x}^2$ potential). Similarly, can you explain the presence/absence of even/odd n terms in the first order correction to the energy eigenstates?

Solution: Let \hat{P} be the parity operator, which is a unitary operator that maps \hat{x} to $-\hat{x}$ and \hat{p} to $-\hat{p}$. Note that since all occurrences of \hat{x} and \hat{p} in \hat{H}_0 are raised to an even power, \hat{H}_0 is unaffected by the parity operator, which is to say that $\hat{P}^{\dagger}\hat{H}_0\hat{P} = \hat{H}_0$. However, since $\hat{V} = g\hat{x}$, \hat{V} switches signs under the parity operator, which is to say that $\hat{P}^{\dagger}V\hat{P} = -\hat{V}$. Now, note that since \hat{P} is unitary,

$$\hat{P}^{\dagger}\hat{H}_0\hat{P} = \hat{H}_0 \implies \hat{H}_0\hat{P} = \hat{P}\hat{H}_0$$

which is to say that \hat{H}_0 and \hat{P} commute. Therefore \hat{H}_0 and \hat{P} have simultaneous eigenstates. Therefore $\hat{P}|n^0\rangle = \lambda |n^0\rangle \implies |n^0\rangle = \frac{\hat{P}|n^0\rangle}{\lambda}$. So we can write

$$E_n^1 = \langle n^0 | \hat{V} | n^0 \rangle = \frac{\langle n^0 | \hat{P}^\dagger \hat{V} \hat{P} | n^0 \rangle}{\lambda^* \lambda} = \frac{\langle n^0 | (-\hat{V}) | n^0 \rangle}{\lambda^* \lambda}$$

but \hat{P} is unitary, so $|\lambda|^2 = 1$, therefore

$$E_n^1 = -\langle n^0 | \hat{V} | n^0 \rangle = -E_n^1 \implies E_n^1 = 0$$

So the fact that H_0 is symmetric under parity while the perturbation \hat{V} is antisymmetric forces the first order correction to the energy to vanish.

4. This problem can also be exactly solved (without much effort – try changing variables to re-write it as a different harmonic oscillator Hamiltonian). What are the exact energies? How does this compare to the perturbative approximation for small q? (Hint: you might also use this to check your answer to the previous parts.)

HIGHER ORDERS IN PERTURBATION THEORY AND WAVE-FUNCTION RENORMALIZATION

Consider a generic Hamiltonian:

$$\hat{H} = \hat{H}_0 + \lambda \hat{V} \tag{7}$$

As in class, we will treat $\lambda \hat{V}$ as a perturbation and expand the full eigenstates, $|n\rangle$, and eigenenergies, ε_n of \hat{H} in a power series in λ :

$$|n\rangle = \sqrt{Z_n} \left(\sum_{k=0}^{\infty} \lambda^k |n^k\rangle \right)$$

$$\varepsilon_n = \sum_{k=0}^{\infty} \lambda^k \varepsilon_n^k$$
(8)

where $|n^0\rangle$ are the eigenstates of the unperturbed Hamiltonian, \hat{H}_0 : $\hat{H}_0|n^0\rangle = \varepsilon_n^0|n^0\rangle$ You may assume that: $\varepsilon_n^0 \neq \varepsilon_m^0$ for all $m \neq n$ (i.e. there are no degeneracies). In class we worked out expressions for $|n^1\rangle$ and $\varepsilon_n^{1,2}$.

- 1. Wave-function (re)normalization: The normalization constant Z_n dropped out of the eigenvalue equation for H. However, properly normalizing $|n\rangle$ becomes important if we want to compute, say, the expectation value $\langle n|\hat{O}|n\rangle$ of other observables, \hat{O} . Note that since $Z_n = |\langle n_0 | n \rangle|^2$, we can physically interpret this quantity as the probability that a particle in the exact \hat{H} -eigenstate $|n\rangle$ is measured in the unperturbed eigenstate $|n^0\rangle$.
 - (a) Find Z_n up to second order in λ so that $|n\rangle$ is properly normalized ($\langle n|n\rangle=1$). At what order in λ does the first non-zero correction to $Z_n^0 = 1$ appear?
 - (b) Show, to this order, that $Z_n = \frac{\partial \varepsilon_n}{\partial \varepsilon_n^0}$ (Note: though you will demonstrate this up to second order in λ , this relationship actually holds to all orders!).
- 2. Next Higher order terms: Compute the expression for the second order correction to the energy eigenstates, $|n^2\rangle$, and third order correction to the energies, ε_n^3 in terms of the unperturbed eigenstates and energies of \hat{H}_0 .

III. DEGENERATE PERTURBATION THEORY EXAMPLE – TWO SPINS-1/2

Consider two spins-1/2, with spin-operators $\hat{\mathbf{S}}_{1,2} = \frac{\hbar}{2}\hat{\boldsymbol{\sigma}}$, where $\sigma^{x,y,z}$ are Pauli operators, and Hamiltonian:

$$H = J\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 + g\hat{S}_1^x \left(\frac{1}{\hbar}\hat{S}_2^z + \frac{1}{2}\right)$$

$$\tag{9}$$

Suppose that, J, g > 0, and $g \ll J$, and compute the energy-eigenstates to first order in g, and the energies to second order in g (be sure to properly take care of any degeneracies).

Hint: to solve for the unperturbed eigenstates with g=0, you can use that $\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = \frac{1}{2} \left[\left(\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2 \right)^2 - \hat{\mathbf{S}}_1^2 - \hat{\mathbf{S}}_2^2 \right]$, and the properties of adding angular momentum that you learned last semester.