

Deep Dive: Amazon RDS

Julien Simon, Principal Technical Evangelist, AWS

julsimon@amazon.fr @julsimon

What to expect

- Amazon RDS overview (super quick)
- Security
- Metrics and monitoring
- High availability
- Scaling on RDS
- Backups and snapshots
- Migrating to RDS

Amazon Relational Database Service (Amazon RDS)

No infrastructure management

Application compatibility

Amazon RDS engines

Commercial

Open source

Amazon Aurora

Selected Amazon RDS customers

Selected Amazon Aurora customers

Trade-offs with a managed service

Fully managed host and OS

- No access to the database host operating system
- Limited ability to modify configuration that is managed on the host operating system
- No functions that rely on configuration from the host OS

Fully managed storage

- Max storage limits
 - Microsoft SQL Server—4 TB
 - MySQL, MariaDB, PostgreSQL, Oracle—6 TB
 - Aurora—64 TB
- Growing your database is a process

Amazon RDS: the fine print ©

- Using the rds_superuser Role
- Supported PostgreSQL Database Versions
- Supported PostgreSQL Features and Extensions
- Limits for PostgreSQL DB Instances
- Upgrading a PostgreSQL DB Instance
- Using SSL with a PostgreSQL DB Instance

- Creating Roles
- Managing PostgreSQL Database Access
- Working with PostgreSQL Parameters
- Working with PostgreSQL Autovacuum on Amazon RDS
- Audit Logging for a PostgreSQL DB Instance
- Setting up PostGIS
- Using pgBadger for Log Analysis with PostgreSQL
- · Viewing the Contents of pg_config

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_PostgreSQL.html#PostgreSQL.Concepts.General.FeatureSupport http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html

- Killing a Session or Query
- Skipping the Current Replication Error
- Working with InnoDB Tablespaces to Improve Crash Recovery Times
- Managing the Global Status History

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MySQL.CommonDBATasks.html

Appendix: Parameters for MariaDB

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.MariaDB.Parameters.html

Aurora at a glance

- Compatible with MySQL 5.6
- Storage automatically grows up to 64 TB
- 6 copies across 3 AZs
- Continuous backup to Amazon S3
- Continuous monitoring of nodes and disks for repair

5X faster than MySQL

MySQL SysBench results

R3.8XL: 32 cores / 244 GB RAM

Five times higher throughput than stock MySQL, based on industry standard benchmarks.

READ PERFORMANCE _ DML THROUGHPUT COMMIT THROUGHPUT 585,000 0.501 0.501 Per Second DML LATENCY COMMET LATENCY DOL LATENCY 0.035 1.04 24.3 DB Connections ACTIVE TRANSACTIONS BURFER CACHE HIT RATIO RESULT SET CACHE HIT RATIO 1.600 100% 99.8% Transactions LOGN FAILURES BLOCKED TRANSACTIONS FAILED SQL STATEMENTS DEADLOCKS Failures Transactions Deadlocks

4 client machines with 1,000 connections each

Single client machine with 1,600 connections

Security

Amazon Virtual Private Cloud (VPC)

Securely control network configuration

Security groups

Database IP firewall protection

Compliance

27001/9001 27017/27018

Compliance

MySQL, Oracle, Postgres

- SOC 1, 2, and 3
- ISO 27001/9001
- ISO 27017/27018
- PCLDSS
- FedRAMP
- HIPAA BAA
- UK government programs
- MTCS (Singapore)
- C5 (Germany)

SQL Server

- SOC 1, 2, and 3
- ISO 27001/9001
- ISO 27017/27018
- PCI DSS

- UK government programs
- MTCS (Singapore)
- C5 (Germany)

In-flight data encryption

SSL available for all six engines

New (Feb'17) forced SSL for SQL Server

At-rest data encryption

- Based on Amazon KMS
- DB instance storage
- Logs, backups, snapshots
- Read Replicas

- Available for all six engines
- No additional cost
- Support compliance requirements
- TDE also available for Oracle / SQL Server

Amazon RDS encryption hints

- You can only encrypt on new database creation
- Encryption cannot be removed
- Master and Read Replica must be encrypted
 - (Jan'17) you can now replicate encrypted DB across regions
- Unencrypted snapshots can't be restored to encrypted DB
 - Aurora will allow this
 - You can create encrypted copies of your unencrypted snapshots

Enabling encryption with the AWS CLI

```
aws rds create-db-instance --region us-west-2 --db-instance-identifier sg-cli-test \
--allocated-storage 20 --storage-encrypted \
--db-instance-class db.m4.large --engine mysql \
```

- --db-instance-class db.m4.large --engine mysql \
- --master-username myawsuser --master-user-password myawsuser

--master-username myawsuser --master-user-password myawsuser

IAM governed access

You can use AWS Identity and Access Management (IAM) to control who can perform actions on RDS

Controlled with IAM

Metrics and monitoring

Standard monitoring

(Nov'16) price drop, longer retention & percentile monitoring

https://aws.amazon.com/about-aws/whats-new/2016/11/announcing-cloudwatch-metrics-price-reduction-and-new-volume-based-pricing-tiers/

https://aws.amazon.com/blogs/aws/amazon-cloudwatch-update-percentile-statistics-and-new-dashboard-widgets/

https://aws.amazon.com/about-aws/whats-new/2016/11/cloudwatch-extends-metrics-retention-and-new-user-interface/

Amazon CloudWatch metrics for Amazon RDS

- CPU utilization
- Storage
- Memory
- Swap usage
- DB connections
- I/O (read and write)
- Latency (read and write)
- Throughput (read and write)
- Replica lag
- Many more

Amazon CloudWatch Alarms

Similar to on-premises custom monitoring tools

Enhanced Monitoring

Access to over 50 new CPU, memory, file system, and disk I/O metrics as low as 1 second intervals (sent to CloudWatch Logs)

Event notifications

- Uses Amazon Simple Notification Service (Amazon SNS) to notify users when an event occurs
- 17 different event categories (availability, backup, configuration change, and so on)

High availability

Minimal deployment—single AZ

High availability—Multi-AZ

High availability—Multi-AZ to DNS

Failover – MySQL

High availability in Aurora

- Aurora cluster contains primary node and up to 15 secondary nodes (read-only)
- Failing nodes are automatically detected and replaced
- Failing database processes are automatically detected and recycled
- Secondary nodes automatically promoted on persistent outage, no single point of failure
- Customer application can scale out read traffic across secondary nodes

Failover – MySQL vs Aurora

https://mariadb.com/kb/en/mariadb/failover-and-high-availability-with-mariadb-connector-j/https://mariadb.com/kb/en/mariadb/about-mariadb-connector-j/

Tips to improve recovery time with MySQL

- DO NOT use the IP address to connect to RDS!
- Set a low TTL on your own CNAME (beware if you use Java)
- Avoid large number of tables :
 - No more than 1000 tables using Standard Storage
 - No more than 10,000 tables using Provisioned IOPS
- Avoid very large tables in your database
- Avoid large transactions
- Make sure you have enough IOPS for recovery
- Use RDS Events to be notified

Simulating Amazon Aurora failures

ALTER SYSTEM CRASH [INSTANCE | DISPATCHER | NODE];

ALTER SYSTEM SIMULATE percentage_of_failure PERCENT

- READ REPLICA FAILURE [TO ALL | TO "replica name"]
- **DISK FAILURE** [IN DISK *index* | NODE *index*]
- **DISK CONGESTION** BETWEEN *minimum* AND *maximum* MILLISECONDS [IN DISK *index* | NODE *index*]

FOR INTERVAL quantity [YEAR | QUARTER | MONTH | WEEK | DAY | HOUR | MINUTE | SECOND];

Scaling on RDS

Read Replicas

Bring data close to your customer's applications in different regions

Relieve pressure on your master node for supporting reads and writes

Promote a Read Replica to a master for faster recovery in the event of disaster

Read Replicas

Read replicas are available for

- MySQL
- MariaDB
- PostgreSQL
- Aurora

They can be in the same region or in a different region

Read Replicas—Oracle and SQL Server

Options

- Oracle GoldenGate
- Third-party replication products
- Snapshots

Scaling up—or down

Handle higher load or lower usage

Control costs

Scaling up—or down

AWS Management Console

Scaling—single AZ

With single AZ deployment, the master takes an outage

	Alarms and Recen		
	тіме (итс-7)	EVENT	
	Mar 26 7:01 AM	DB instance restarted	
dbinstan	Mar 26 7:00 AM	Finished applying modification to DB instance class	m:3006
	Mar 26 6:53 AM	Applying modification to database instance class	

Scaling — Multi-AZ

With Multi-AZ, the standby gets upgraded first

	Alarms and Recen	t Events	
0	тіме (итс-7)	EVENT	
	Mar 26 6:34 AM	Finished applying modification to DB instance class	
dbinstancenam	Mar 26 6:28 AM	Multi-AZ instance failover completed	n:3006
	Mar 26 6:28 AM	DB instance restarted	
	Mar 26 6:28 AM	Multi-AZ instance failover started	
	Mar 26 6:20 AM	Applying modification to database instance class	

Scaling on a schedule – CLI or AWS Lambda

```
aws rds modify-db-instance
--db-instance-identifier sg-cli-test
--db-instance-class db.m4.large
--apply-immediately
```



```
#Scale down at 8:00 PM on Friday
0 20 * * 5
/home/ec2-user/scripts/scale_down_rds.s
h

#Scale up at 4:00 AM on Monday
0 4 * * 1
/home/ec2-user/scripts/scale up rds.sh
```


print response

Scaling on demand - Cloudwatch & AWS Lambda


```
import boto3
import json
client=boto3.client('rds')
def lambda handler (event, context):
     message = event['Records'][0]['Sns']['Message']
     parsed message=json.loads(message)
     db instance=parsed message['Trigger']['Dimensions'][0]['value']
     print 'DB Instance: ' + db instance
     response=client.modify db instance(DBInstanceIdentifier=db instance,
                                DBInstanceClass='db.m4.large',
                                ApplyImmediately=True)
     print response
```

Backups and snapshots

Backups

MySQL, PostgreSQL, MariaDB, Oracle, SQL Server

- Scheduled daily backup of entire instance
- Archive database change logs
- 35 day retention for backups
- Multiple copies in each AZ where you have instances

Aurora

- Automatic, continuous, incremental backups
- Point-in-time restore
- No impact on database performance
- 35 day retention

Restoring

- Restoring creates an entirely new database instance
- You define the instance configuration just like a new instance

Snapshots

 Full copies of your Amazon RDS database that are different from your scheduled backups

- Backed by Amazon S3
- May be used to create a new RDS instance
- Are encrypted if using encryption

Snapshots

Use cases

- Resolve production issues
- Build non-production environments
- Point-in-time restore
- Final copy before terminating a database
- Disaster recovery
- Cross-region copy
- Copy between accounts

Migrating onto RDS

PostgreSQL Amazon Aurora mongoDB DRACLE

- ✓ Move data to the same or different database engine
- ✓ Move data to Redshift, DynamoDB or S3
- ✓ Keep your apps running during the migration.
- ✓ Start your first migration in 10 minutes or less
- ✓ Replicate within, to, or from Amazon EC2 or RDS

Keep your apps running during the migration

Start a replication instance

Connect to source and target database

Select tables, schemas, or databases

Application Users

Let the AWS Database Migration Service create tables, load data, and keep them in sync

Switch applications over to the target at your convenience

AWS Schema Conversion Tool

- Move your tables, views, stored procedures, and data manipulation language (DML) to RDS or Amazon Redshift
- Highlight where manual edits are needed

Source Database	Target Database on Amazon RDS	
Oracle	Amazon Aurora, MySQL, PostgreSQL, MariaDB	
Oracle Data Warehouse	Amazon Redshift	
Microsoft SQL Server	Amazon Aurora, MySQL, PostgreSQL, MariaDB	
Teradata	Amazon Redshift	
Netezza	Amazon Redshift	
Greenplum	Amazon Redshift	
MySQL and MariaDB	PostgreSQL	
PostgreSQL	Amazon Aurora, MySQL, MariaDB	
Amazon Aurora	PostgreSQL	

Thank you

Julien Simon, Principal Technical Evangelist, AWS

julsimon@amazon.fr @julsimon

