Data Mining Lab 01

Anubhav Dikshit (anudi287) and Nahid Farazmand (nahfa911)
February 7, 2019

Algorithm 1: Simple K-means

Apply "SimpleKMeans" to your data. In Weka euclidean distance is implemented in SimpleKmeans. You can set the number of clusters and seed of a random algorithm for generating initial cluster centers. Experiment with the algorithm as follows:

1. Choose a set of attributes for clustering and give a motivation. (Hint: always ignore attribute "name". Why does the name attribute need to be ignored?)

K-means algorithm cannot handle categorical data (attributes) so we have to ignore all categorical attributes when we want to use this algorithm for clustering.

2. Experiment with at least two different numbers of clusters, e.g. 2 and 5, but with the same seed value 10.

Number of clusters = 2 and seed = 10

a. Buffer results

kMeans Number of iterations: 2 Within cluster sum of squared errors: 5.069321339929419 Initial starting points (random): Cluster 0: 340,20,28,9,2.6 Cluster 1: 170,25,7,12,1.5 Missing values globally replaced with mean/mode Final cluster centroids: Cluster# Full Data Attribute 1 0 (27.0)(9.0)(18.0)Energy 207.4074 331.1111 19 Protein 19 13.4815 27.5556 Fat 6.4444 Calcium 43.963 8.7778 61.5556 2.3815

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 9 (33%) 1 18 (67%) We can see that sum of squared error within the clusters is around 5.07 and the division rate in clusters are 67% and 33% in cluster 1 and 0, respectively.

b. Clusters

##		<pre>Instance_number</pre>	Energy	Protein	Fat	Calcium	Iron	Cluster
##	1	0	340	20	28	9	2.6	cluster0
##	2	1	245	21	17	9	2.7	cluster0
##	3	2	420	15	39	7	2.0	cluster0
##	4	3	375	19	32	9	2.6	cluster0
##	9	8	265	20	20	9	2.6	cluster0
##	10	9	300	18	25	9	2.3	cluster0
##	11	10	340	20	28	9	2.5	cluster0
##	12	11	340	19	29	9	2.5	cluster0
##	13	12	355	19	30	9	2.4	cluster0
##	5	4	180	22	10	17	3.7	cluster1
##	6	5	115	20	3	8	1.4	cluster1
##	7	6	170	25	7	12	1.5	cluster1
##	8	7	160	26	5	14	5.9	cluster1
##	14	13	205	18	14	7	2.5	cluster1
##	15	14	185	23	9	9	2.7	cluster1
##	16	15	135	22	4	25	0.6	cluster1
##	17	16	70	11	1	82	6.0	cluster1
##	18	17	45	7	1	74	5.4	cluster1
##	19	18	90	14	2	38	0.8	cluster1
##	20	19	135	16	5	15	0.5	cluster1
##	21	20	200	19	13	5	1.0	cluster1
##	22	21	155	16	9	157	1.8	cluster1
##	23	22	195	16	11	14	1.3	cluster1
##	24	23	120	17	5	159	0.7	cluster1
##	25	24	180	22	9	367	2.5	cluster1
##	26	25	170	25	7	7	1.2	cluster1
##	27	26	110	23	1	98	2.6	cluster1

By choosing Cluster = 2 and seed = 10, the initial points are observations number 1 and 7.

c. Visualization

In this step we can check the relation between different attributes and the effectiveness of different attributes on finding clusters. The most observations of this step were as bellow:

It can be clearly seen that there is a strong correlation between energy and fat attributes. So we can choose just one of this attributes and this can help us to reduce the space dimension.

We can see that Calcium attribute does not play and effective role in clustering and all observations except 2 observations belong to 1 cluster!

Number of clusters = 5 and seed = 10

Now we will try another number of clusters but without changing the seed. The result will be as follow:

a. Buffer results

kMeans

Number of iterations: 4

Within cluster sum of squared errors: 2.750432407251998

Initial starting points (random):

Cluster 0: 340,20,28,9,2.6 Cluster 1: 170,25,7,12,1.5 Cluster 2: 90,14,2,38,0.8 Cluster 3: 180,22,9,367,2.5 Cluster 4: 300,18,25,9,2.3

Missing values globally replaced with mean/mode

Final cluster centroids:

		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(27.0)	(7.0)	(8.0)	(6.0)	(1.0)	(5.0)
	=======					
Energy	207.4074	352.8571	153.125	102.5	180	222
Protein	19	18.5714	23.25	13.5	22	18.8
Fat	13.4815	30.1429	5.75	3.8333	9	15
Calcium	43.963	8.7143	23.75	87.5	367	8.8
Iron	2.3815	2.4143	2.45	2.5333	2.5	2.02

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 7 (26%) 1 8 (30%) 2 6 (22%) 3 1 (4%) 4 5 (19%)

Here by increasing the number of clusters, the rate of sum of squared error decreased to about half of that of the previous choice.

b. Clusters

##		Instance_number	Fnergy	Drotein	Fa+	Calcium	Tron	Cluster
		_	O.					
##	1	0	340	20	28	9	2.6	cluster0
##	3	2	420	15	39	7	2.0	cluster0
##	4	3	375	19	32	9	2.6	cluster0
##	10	9	300	18	25	9	2.3	cluster0
##	11	10	340	20	28	9	2.5	cluster0
##	12	11	340	19	29	9	2.5	cluster0
##	13	12	355	19	30	9	2.4	cluster0
##	5	4	180	22	10	17	3.7	cluster1
##	6	5	115	20	3	8	1.4	cluster1
##	7	6	170	25	7	12	1.5	cluster1
##	8	7	160	26	5	14	5.9	cluster1
##	15	14	185	23	9	9	2.7	cluster1
##	16	15	135	22	4	25	0.6	cluster1
##	26	25	170	25	7	7	1.2	cluster1
##	27	26	110	23	1	98	2.6	cluster1
##	17	16	70	11	1	82	6.0	cluster2
##	18	17	45	7	1	74	5.4	cluster2

19	18	90	14	2	38	0.8	cluster2
20	19	135	16	5	15	0.5	cluster2
22	21	155	16	9	157	1.8	cluster2
24	23	120	17	5	159	0.7	cluster2
25	24	180	22	9	367	2.5	cluster3
2	1	245	21	17	9	2.7	cluster4
9	8	265	20	20	9	2.6	cluster4
14	13	205	18	14	7	2.5	cluster4
21	20	200	19	13	5	1.0	cluster4
23	22	195	16	11	14	1.3	${\tt cluster4}$
	19 20 22 24 25 2 9 14 21 23	20 19 22 21 24 23 25 24 2 1 9 8 14 13 21 20	20 19 135 22 21 155 24 23 120 25 24 180 2 1 245 9 8 265 14 13 205 21 20 200	20 19 135 16 22 21 155 16 24 23 120 17 25 24 180 22 2 1 245 21 9 8 265 20 14 13 205 18 21 20 200 19	20 19 135 16 5 22 21 155 16 9 24 23 120 17 5 25 24 180 22 9 2 1 245 21 17 9 8 265 20 20 14 13 205 18 14 21 20 200 19 13	20 19 135 16 5 15 22 21 155 16 9 157 24 23 120 17 5 159 25 24 180 22 9 367 2 1 245 21 17 9 9 8 265 20 20 9 14 13 205 18 14 7 21 20 200 19 13 5	20 19 135 16 5 15 0.5 22 21 155 16 9 157 1.8 24 23 120 17 5 159 0.7 25 24 180 22 9 367 2.5 2 1 245 21 17 9 2.7 9 8 265 20 20 9 2.6 14 13 205 18 14 7 2.5 21 20 200 19 13 5 1.0

Here we can see that the observation 1, 7, 10, 19 and 25 have been chosen as the initial centers for clusters. It should be noticed that two point are the same as points which were the initial points for k = 2. Another result that should be considered is that point number 25 has been defined as an outlier. However, this observation has been introduced as an cluster, because k-mean algorithm is as partitioning method and in these methods all points should belong to an cluster.

c. Visualization

As we said before, energy and fat are correlated. Besides, calcium and Iron also are not as effective as energy and protein, so here we have chosen energy and protein to show the clusters:

We can see that the shape of clusters are convex and the border between clusters are obvious, however some points are far from the centroids but still have been assigned to the clusters because as we said before, all points should belong to a cluster.

3. Then try with a different seed value, i.e. different initial cluster centers. Compare the results with the previous results. Explain what the seed value controls.

In this step we chose k = 5 and run the clustering algorithm for different seeds.

a. seed = 1000

Buffer results

kMeans

Number of iterations: 5

Within cluster sum of squared errors: 1.8730334748591244

Initial starting points (random):

Cluster 0: 70,11,1,82,6 Cluster 1: 120,17,5,159,0.7 Cluster 2: 245,21,17,9,2.7 Cluster 3: 180,22,10,17,3.7 Cluster 4: 155,16,9,157,1.8

Missing values globally replaced with mean/mode

Final cluster centroids:

		Cluster#				
Attribute	Full Data (27.0)	0 (2.0)	1 (7.0)	2 (8.0)	3 (8.0)	(2.0)
Energy	207.4074	57.5	141.4286	341.875	178.125	167.5
Protein	19	9	17.7143	18.75	22.875	19
Fat	13.4815	1	6.1429	28.875	8.75	9
Calcium	43.963	78	37.7143	8.75	21.625	262
Iron	2.3815	5.7	0.9	2.4375	2.85	2.15

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 2 (7%) 1 7 (26%) 2 8 (30%) 3 8 (30%) 4 2 (7%)

clusters

##		${\tt Instance_number}$	Energy	${\tt Protein}$	Fat	${\tt Calcium}$	${\tt Iron}$	Cluster
##	17	16	70	11	1	82	6.0	cluster0
##	18	17	45	7	1	74	5.4	cluster0
##	6	5	115	20	3	8	1.4	cluster1
##	16	15	135	22	4	25	0.6	cluster1
##	19	18	90	14	2	38	0.8	cluster1
##	20	19	135	16	5	15	0.5	cluster1
##	21	20	200	19	13	5	1.0	cluster1
##	23	22	195	16	11	14	1.3	cluster1
##	24	23	120	17	5	159	0.7	cluster1
##	1	0	340	20	28	9	2.6	cluster2
##	3	2	420	15	39	7	2.0	cluster2
##	4	3	375	19	32	9	2.6	cluster2
##	9	8	265	20	20	9	2.6	cluster2
##	10	9	300	18	25	9	2.3	cluster2
##	11	10	340	20	28	9	2.5	cluster2
##	12	11	340	19	29	9	2.5	cluster2
##	13	12	355	19	30	9	2.4	cluster2
##	2	1	245	21	17	9	2.7	cluster3

##	5	4	180	22	10	17	3.7 cluster3
##	7	6	170	25	7	12	1.5 cluster3
##	8	7	160	26	5	14	5.9 cluster3
##	14	13	205	18	14	7	2.5 cluster3
##	15	14	185	23	9	9	2.7 cluster3
##	26	25	170	25	7	7	1.2 cluster3
##	27	26	110	23	1	98	2.6 cluster3
##	22	21	155	16	9	157	1.8 cluster4
##	25	24	180	22	9	367	2.5 cluster4

b. seed = 10000

Buffer results

kMeans

Number of iterations: 5

Within cluster sum of squared errors: 1.776241584499267

Initial starting points (random):

Cluster 0: 180,22,9,367,2.5 Cluster 1: 180,22,10,17,3.7 Cluster 2: 70,11,1,82,6 Cluster 3: 135,16,5,15,0.5 Cluster 4: 115,20,3,8,1.4

Missing values globally replaced with mean/mode

Final cluster centroids: Cluster#

		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(27.0)	(1.0)	(8.0)	(2.0)	(8.0)	(8.0)
Energy	207.4074	180	341.875	57.5	143.125	178.125
Protein	19	22	18.75	9	17.5	22.875
Fat	13.4815	9	28.875	1	6.5	8.75
Calcium	43.963	367	8.75	78	52.625	21.625
Iron	2.3815	2.5	2.4375	5.7	1.0125	2.85

Time taken to build model (full training data) : 0 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 1 (4%) 1 8 (30%) 2 2 (7%) 3 8 (30%) 4 8 (30%)

clusters

##		<pre>Instance_number</pre>	Energy	${\tt Protein}$	Fat	${\tt Calcium}$	${\tt Iron}$	Cluster
##	25	24	180	22	9	367	2.5	cluster0
##	1	0	340	20	28	9	2.6	cluster1
##	3	2	420	15	39	7	2.0	cluster1
##	4	3	375	19	32	9	2.6	cluster1
##	9	8	265	20	20	9	2.6	cluster1

##	10	9	300	18	25	9	2.3 cluster1
##	11	10	340	20	28	9	2.5 cluster1
##	12	11	340	19	29	9	2.5 cluster1
##	13	12	355	19	30	9	2.4 cluster1
##	17	16	70	11	1	82	6.0 cluster2
##	18	17	45	7	1	74	5.4 cluster2
##	6	5	115	20	3	8	1.4 cluster3
##	16	15	135	22	4	25	0.6 cluster3
##	19	18	90	14	2	38	0.8 cluster3
##	20	19	135	16	5	15	0.5 cluster3
##	21	20	200	19	13	5	1.0 cluster3
##	22	21	155	16	9	157	1.8 cluster3
##	23	22	195	16	11	14	1.3 cluster3
##	24	23	120	17	5	159	0.7 cluster3
##	2	1	245	21	17	9	2.7 cluster4
##	5	4	180	22	10	17	3.7 cluster4
##	7	6	170	25	7	12	1.5 cluster4
##	8	7	160	26	5	14	5.9 cluster4
##	14	13	205	18	14	7	2.5 cluster4
##	15	14	185	23	9	9	2.7 cluster4
##	26	25	170	25	7	7	1.2 cluster4
##	27	26	110	23	1	98	2.6 cluster4

Seed parameter controls the initial selected centroids so we can see that when we change seed, the initial selected points will change. Here we considered 2 different choices:

- 1. K = 5 and seed = 1000
- 2. k = 5 and seed = 10000

By choosing these amounts we can see that compared to the previous step with k = 5 and seed = 10, clusters are different. However, if we compare the results of these two cases we can see that most of the clusters are similar (similar clusters for 2 different seeds):

##		seed_1000		seed_100	000
##	1	2			1
##	2	0			2
##	3	1	3 plus	observation	22
##	4	3			4
##	5	4 0	without	observation	22

Comparing sum of squared error rates, seed = 10000 has the least amount of error.

So the initial centroids can result in different clusters and if we want to do the analysis, we should try different seeds to be able to get the result which is the nearest to the optimum.

4. Do you think the clusters are "good" clusters? (Are all of its members "similar" to each other? Are members from different clusters dissimilar?)

We would say that considering energy, fat and protein, clusters are good. We can differentiate clusters based on these attributes and we can say that based on selected attributes, observations within the clusters are similar.

5. What does each cluster represent? Choose one of the results. Make up labels (words or phrases in English) which characterize each cluster.

Considering the sum of squared error rates and similarity of observations within the clusters, we will choose the model with k=5 and seed =10000. By choosing this model we can label clusters as bellow:

Cluster 0: Outlines

Cluster 1: High Energy - Moderate Protein

Cluster 2: Outlines

Cluster 3: Low Energy - Moderate Protein

Cluster 4: Low Energy - High Protein

Algorithm 2: Density-Based Cluster

Now with MakeDensityBasedClusters, SimpleKMeans is turned into a density-based clustered. You can set the minimum standard deviation for normal density calculation. Experiment with the algorithm as the follows:

1. Use the Simple K-Means clusterer which gave the result you haven chosen in 5.

The parameters of K-means algorithm: k = 5 and seed = 10000

Log likelihood: -28.43759

2. Experiment with at least two different standard deviations. Compare the results. (Hint: Increasing the standard deviation to higher values will make the differences in different runs more obvious and thus it will be easier to conclude what the parameter does).

In this algorithm, in the first step, clusters will be formed by using k-means algorithm with defined parameters. Then each cluster will be adjusted based on the Gaussian distribution. Here we have chosen different standard deviation for the algorithm and the results have been as bellow:

sd = 1E-6	sd = 1	sd = 10
=== Model and evaluation on training set ===	=== Model and evaluation on training set ===	=== Model and evaluation on training set ===
Clustered Instances	Clustered Instances	Clustered Instances
0 1 (4%) 1 9 (33%) 2 2 (7%) 3 8 (30%) 4 7 (26%)	0 1 (4%) 1 8 (30%) 2 2 (7%) 3 7 (26%) 4 9 (33%)	0 1 (4%) 1 8 (30%) 2 2 (7%) 3 6 (22%) 4 10 (37%)
Log likelihood: -15.83785	Log likelihood: -17.85566	Log likelihood: -21.05685
sd = 100	sd = 1000)
=== Model and evaluation on	training set === === Model and evaluation on	training set ===
Clustered Instances	Clustered Instances	
0 1 (4%) 1 8 (30%) 3 9 (33%) 4 9 (33%)	1 8 (30%) 3 10 (37%) 4 9 (33%)	
	Log likelihood: -39.14921	

Based on the results we can see that if we increase the standard deviation it may decrease the number of clusters. And we can see that log-likelihood also decreases along with standard deviation growth. So we should choose standard deviation as small as we can to be able to get the best result.