DNA SEQUENCING USING NANOPORES

PAU PUJOL DUQUE

SIMULACIÓ DE SISTEMES NANOMÈTRICS - FINAL PROJECT

CONTENTS

- I. Introduction
- II. Simulation parameters and equations
- III. Results and discussion
- IV. Conclusions

NANOPORE

Nanoscale holes that allow the passage of single molecules.

Valuable for their application in DNA sequencing.

Can be monitored by measuring the ionic current passing through it.

TWO SCENARIOS

Empty nanopore

Files provided by Bionanotechnology Tutorial

University of Illinois at Urbana-Champaign Beckman Institute for Advanced Science and Technology Theoretical and Computational Biophysics Group Computational Biophysics Workshop

Bionanotechnology Tutorial

Alek Aksimentiev

Jeffrey Comer

April 2011

A current version of this tutorial is available at http://www.ks.uiuc.edu/Training/Tutorials/
Join the tutorial-1@ks.uiuc.edu mailing list for additional help.

Si₃N₄ unit cell

Si₃N₄ membrane Si₃N₄
hexagonal
membrane

Si₃N₄
hexagonal
membrane
with nanopore

SIMULATION PARAMETERS

.pdb Coordinates file

.psf Structure file

Using topology parameters provided.

SIMULATION PARAMETERS

We apply an electric field to Si_3N_4 ______to obtain DIELECTRIC and measure the dipole moment. CONSTANT

SIMULATION PARAMETERS

Adding:

- Solvation molecules
- Ions (KCl solution)

5. Adding DNA chain to nanopore

Previous steps:

- Strands separations (ssDNA)
- DNA strand bending

DNA CHAIN: A-A-T-T-G-T-G-A

EQUATION 1 – Energy minimization

- 201 steps
- 1 fs of time step

EQUATION 1 – Energy minimization

- 201 steps
- 1 fs of time step

EQUATION 2 – Temp. Raise from 0 to 295k at cte. V

- 1000 steps
- 1 fs of time step

EQUATION 1 – Energy minimization

- 201 steps
- 1 fs of time step

EQUATION 2 – Temp. Raise from 0 to 295k at cte. V

- 1000 steps
- 1 fs of time step

EQUATION 3 – Equilibration at cte. p and Langevin thermostat

- 1000 steps
- 1 fs of time step

SIMULATION EQUATIONS

ELECTRIC FIELD

$$E_Z = -23,060549 \frac{\Delta V}{l_Z}$$

$$E_Z = -23,060549 \frac{\Delta V}{l_Z} \qquad \qquad l_Z = -c_Z \, \begin{cases} l_Z = -44,7598 \, \text{Å} & \text{Empty nanopore} \\ l_Z = -64,8282 \, \text{Å} & \text{Nanopore with DNA} \end{cases}$$

ΔV , $[V]$	EMPTY NANOPORE, E_Z , $[V/ ext{Å}]$	NANOPORE WITH DNA, E_Z , $[V/ ext{Å}]$
2	1,030	0,711
10	5,152	5,557
20	10,304	7,114

ULATION EQUATIONS

$\Delta V = 20V$

$\Delta V = 10V$

 $\Delta V = 2V$

CURRENT

ΔV , $[V]$	EMPTY MEAN CURRENT, I_Z , $[nA]$	DNA MEAN CURRENT, I_Z , $[nA]$
2	37,1	75,3
10	505,2	276,2
20	1324,4	959,9

SIMULATION EQUATIONS

EMPTY NANOPORE

DNA NANOPORE

CONCLUSIONS

• The current through a nanopore is higher when the nanopore is empty than when there is a DNA chain inside it.

 The temperature of the system, with or without the DNA chain on the nanopore, tends to be more constant when the potential difference is lower.

DNA SEQUENCING USING NANOPORES

PAU PUJOL DUQUE

SIMULACIÓ DE SISTEMES NANOMÈTRICS - FINAL PROJECT