Comments on "Tropp_simulation.pdf"

Miaoyan Wang, 09/28/2019

Below is another approach to randomized tensor SVD. Note that my notation may be slightly different from yours.

Algorithm 1 Approx tensor SVD 2

Input: Tensor $\mathcal{A} \in \mathbb{R}^{d_1 \times \cdots \times d_K}$ and Tucker rank (r_1, \dots, r_K) .

Output: Core tensor $\mathcal{S} \in \mathbb{R}^{r_1 \times \cdots \times r_K}$ and Tucker factors $\mathbf{Q}^{(k)} \in \mathbb{R}^{d_k \times r_k}$.

- 1: **Initialization.** Generate Gaussian test matrices Ω_k of size $d_k \times r_k$, for all $k = 1, \dots, K$.
- 2: **for** k in $\{1, 2, ..., K\}$ **do**
- Form a wide matrix $\mathcal{A}^{(k)} = \text{Unfold}_k(\mathcal{A} \times_1 \mathbf{\Omega}_1^T \times_2 \cdots \times_{k-1} \mathbf{\Omega}_{k-1}^T \times_{k+1} \mathbf{\Omega}_{k+1}^T \times \cdots \times_K \mathbf{\Omega}_k^T)$, where Unfold_k(·) denotes the unfolding operation along the mode k. Note that the matrix $\mathcal{A}^{(k)}$ is of dimension $d_k \times \prod_{i \neq k} r_i$.
- Find a matrix $Q^{(k)} \in \mathbb{R}^{d_k \times r_k}$ whose columns form an orthogonal basis for the range of $\mathcal{A}^{(k)}$.
- 5: end for
- 6: Return the core tensor $S = A \times_1 (\mathbf{Q}^{(1)})^T \times_2 \cdots \times_K (\mathbf{Q}^{(K)})^T$ and Tucker factors $\mathbf{Q}^{(k)}$ for all $k = 1, \dots, K$.

Other comments: