MIST 4610 Professor Skousen Project 1 Group 2

Caroline Schmidt, Vincent Claussen, Sharvani Mangroo, Matt Faby, and Rebekah Thompson

Data Model:

The problem that we are modeling is how the company Crumbl Cookie could implement a rewards system. The reward system has points which a person can earn through ordering cookies if the person has already signed up for a free reward membership (shown in the entity customers with the attribute title "rewardMember"). They can then earn points to their account on each order of cookies via the "Rewards" table.

The data model begins with a location that has many relationships. First, the location can have one owner and an owner can have one location. Next, the location can have many employees which includes the location manager as well as the employee's boss. Continuing with employees, an employee can only have one position, but one position can be held by many employees. An example of this would be employee 1 and employee 2 can hold position 1. Moving forward, a location can have many cookies offered and many cookie flavors, with an associative entity of cookies offered.

Moving to the next entity, cookiesOffered can belong to many orderDetails, however, orderDetails can only belong to one cookiesOffered.

Next, orderDetails can only be connected to one Order, however, Orders can be connected to many orderDetails. Orders can also be connected to Rewards through the common entity of Points.

Following, Points can be connected to customers through the common entity of customerAccounts. This means that Points can belong to many customers through the customerAccount entity. Customers can also have many receipts but one receipt can only belong to one customer.

Finally, Customers can have many orders, but only one order can belong to one customer.

Data Dictionary:

Table: Owner

Column Name	Description	Data Type	Size	Format
ownerID	PK for owner table	int		
locationID	Connection to location table	int		
ownerName	Provides owner name	varchar	45	

Table: **location**

Column Name	Description	Data Type	Size	Format
locationID	PK	int		
streetAddress	Address of the store	varchar	45	196 Alps Road Suite 5
city	City of the store	varchar	45	Athens
state	State of the store	varchar	45	GA
zipCode	Zip code of the store	varchar	45	30606
phone	Phone number for the store	varchar	45	7066780981
franchiseID	Connection to franchise	int		
website	Website to the specific location	varchar	45	crumble.com/loc ationID
locationManagerID	Manager ID for that location	int		

Table: cookieFlavor

Column Name	Description	Data Type	Size	Format
cookieFlavorID	Primary key, identification number for flavors	int		
flavorName	Name of cookie flavor	varchar	45	
seasonSold	For seasonal flavor options	varchar	45	_

startDate	Identify start date for flavor	date	yyyy-mm -dd
endDate	Identify end date for flavor	date	yyyy-mm -dd

Table: employees

Column Name	Description	Data Type	Size	Format
employeeID	PK for employees table	int		
firstName	First name of employee	varchar	45	
lastName	Last name of employee	varchar	45	
startDate	Start date of employee	date		yyyy-mm -dd
positionID	Connection from position table	int		
bossID	Boss ID of the employee	int		
salary	How much employee is paid	int		
locationID	FK from location table	int		

Table: **position**

Column Name	Description	Data Type	Size	Format
positionID	PK for position table	int		
positionTitle	Name of the job	varchar	45	
salary	Salary of the job	int		
positionDescription	Describes position	varchar	45	

Table: Orders

Column Name	Description	Data Type	Size	Format
orderNumber	PK for orders table	int		
boxSize	Size of box	varchar	45	4 pack

customerID Connection from customer table	int		
---	-----	--	--

Table: customers

Column Name	Description	Data Type	Size	Format
customerID	PK for customers table	int		
firstName	First name of customer	varchar	45	
lastName	Last name of customer	varchar	45	
address	Address of customer	varchar	45	
city	City of customer	varchar	45	Athens
state	State of customer	varchar	45	GA
zipcode	Zip Code for customer	int		30606
phone	Phone number of customer	int		7066780981
email	Email of customer	varchar	45	
rewardsMember	Indicates if they are a rewards member	varchar	45	
pointsEarned	How many points that customer has	int		

Table: orderDetails

Column Name	Description	Data Type	Size	Format
orderID	PK for order details table	int		
pickup	Shows if it is a pickup order	varchar	45	
purchaseDate	Date of purchase	varchar	45	yyyy-mm -dd
boxsize	Box size of the order	varchar	45	4 pack
delivery	Shows if order is for delivery	varchar	45	
price	Price of order	decimal	4,2	10.99
cookieFlavorID	FK to connect to cookieFlavor table	int		

locationID	FK to connect to location table	int	
orderNumber	FK to connect to order table	int	

Table: cookiesOffered

Column Name	Description	Data Type	Size	Format
cookieFlavorID	FK to the cookieFlavor table, composite key	int		
locationID	FK to the location table, composite key	int		

Table: Rewards

Column Name	Description	Data Type	Size	Format
rewardID	PK for rewards table	int		
rewardName	Name of reward	varchar	45	

Table: Points

Column Name	Description	Data Type	Size	Format
rewardID	FK to connect to rewards table, composite key	int		
orderNumber	FK to connect to orders table, composite key	int		

Table: customerAccount

Column Name	Description	Data Type	Size	Format
rewardID	FK for reward table, composite key	int		
orderNumber	FK for orders table, composite key	int		
customerID	FK for customers table, composite key	int		

Queries:

Query #1:

Count the number of stores in Georgia.

Query:

SELECT COUNT(locationID) FROM location WHERE state REGEXP 'GA';

Result:

Justification:

This information might be valuable to corporate because if they have too many stores in Georgia it could indicate that they are oversaturated there. If this is the case, it may be wise to look outside the state of Georgia for new opportunities.

Query #2:

What percentage of orders include the flavor Sugar?

Query:

SELECT CONCAT(COUNT(*)/(SELECT COUNT(*) FROM orderDetails)*100, '%') AS percOfSugar FROM cookieFlavor

JOIN cookiesOffered ON cookiesOffered.cookieFlavorID =

cookieFlavor.cookieFlavorID

JOIN orderDetails ON orderDetails.cookieFlavorID = cookiesOffered.cookieFlavorID

WHERE orderDetails.cookieFlavorID = 2

GROUP BY orderDetails.cookieFlavorID;

	Result Grid
	percOfSugar
	▶ 16.6667%
Result:	

Justification:

This information would be valuable to the research and development teams at Crumbl Cookie because if they are creating new flavors for the next cycle of cookie flavors they would want them to be new and different. Having the flavor contain sugar may seem reused and too similar to old flavors. Almost 20% of their flavors contain the flavor sugar. Crumbl rotates their selection of 6 cookies a week and if one of those every week will contain the flavor sugar then it may indicate it is time to increase the diversity of flavors and reduce that flavor in the rotation.

Query #3:

List the owner names for the stores in Georgia and Texas.

Query:

SELECT ownerName FROM Owner

JOIN location ON location.locationID = Owner.locationID

WHERE state IN ('GA', 'TX');

Justification:

Corporate would be interested in this information because if store owners are preferring to open new stores in these two states they might want to research why. If those regions are booming economies they may want to look for more owners in that area or inversely recommend those owners move to newer territories.

Query #4:

List the location ID for all of the owners except Matt.

Query:

SELECT DISTINCT locationID FROM Owner

WHERE NOT EXISTS (SELECT * FROM location WHERE ownerName = 'Matt');

Result:

Justification:

156

Corporate may have done some research and found that Matt has a large percentage of the store locations in the region. They want to find out how many other owners are in the area. This is valuable information because if hypothetically Matt's stores are performing differently from the other owner they would want to know why to increase the performance of the others.

Query #5:

How many flavors include the word chocolate?

Query:

SELECT COUNT(flavorName) FROM cookieFlavor WHERE flavorName REGEXP 'chocolate';

		COUNT(flavorNam	
		1	
Result:			

Justification:

By finding out how many cookie flavors contain the word chocolate, the research and development teams for the flavors can see if they need to diversify the flavors. Having diversified flavors is important because it is part of the appeal of their rotating selection each week. If many of the cookie flavors, which isn't the case here, contain the word chocolate it may be redundant and boring for customers.

Query #6:

List the cookie flavor, and price for cookies whose price is greater than the average price of cookies.

Query:

SELECT flavorName, price FROM cookieFlavor

JOIN cookiesOffered ON cookieFlavor.cookieFlavorID =

cookiesOffered.cookieFlavorID

JOIN orderDetails ON cookiesOffered.locationID = orderDetails.locationID

WHERE price > (SELECT AVG(price) FROM orderDetails);

	flavorName	price			
	Apple Pie	35.68			
	Birthday Cake	20.98			
	Brownie Batter	20.98			
Result:					

Justification:

This information might be valuable to corporate because if certain cookies are priced higher than the average price of the cookie that might defer some customers from buying them. Some price research might want to be done to see if at this price point Crumbl can reasonably sell these cookies.

Query #7:

Count the number of stores per state and list the state(s) that have more than 1 location.

Query:

SELECT COUNT(locationID), state FROM location GROUP BY state

HAVING COUNT(locationID) > 1;

Result:

Justification:

Crumble corporate is interested in expanding the amount of stores they have in the nation. They want to know how many stores have more than one store so that they can focus on opening in areas that have fewer stores. This will target newer regional markets that they can focus on.

Query #8:

List the number of stores that are specifically in the states of GA, AL.

SELECT * FROM location WHERE state in ('GA', 'AL');

Result:

Justification:

Crumbl corporate is interested in finding out which stores they have in Georgia and Alabama. This information could be valuable in a scenario where for some reason these stores have to shut down and there won't be incoming revenue from these stores the next couple weeks.

Query #9:

Write a query to list the different locations and what percentage of cookie sales come from each location.

Ouerv:

SELECT streetAddress, CONCAT(ROUND((COUNT(orderID)/(SELECT COUNT(orderId) FROM orderDetails))*100,2),'%') AS percSales FROM orderDetails
JOIN cookiesOffered on cookiesOffered.cookieFlavorID = orderDetails.cookieFlavorID
JOIN location on cookiesOffered.locationID = location.locationID
GROUP BY streetAddress;

Result:

Justification:

This query could be valuable to Crumbl Cookies because if they have some kind of reward program with their owners that rewards the top 50 earners in the nation, they would need to know who those people are. Additionally, they can see the top earners and research why they are performing better than the other stores and translate that to the others.

Query #10:

Write a query showing the employees at locations that have salaries higher than the average of all employees associated with that position. Order by employee ID ascending.

Query:

SELECT firstName, lastName, employees.salary from employees
JOIN position on position.positionID = employees.positionID
WHERE employees.salary > (SELECT AVG(salary) FROM employees
WHERE position.positionID =

employees.positionID)
ORDER BY employeeID ASC;

Result:

Justification:

A store owner might be interested in this query because if they have a group of employees that are paid different amounts, they might want to see who is getting paid more or less than the average according to their position. If someone is being paid more like David and Kim, it might be the financially responsible thing for the owner to cut their salaries to the average.

SQL Features Matrix:

	Query 1	Query 2	Query 3	Query 4	Query 5	Query 6	Query 7	Query 8	Query 9	Query 10
Multiple join table		X				X			X	
Subquery		X		X		X			X	
Correlated Subquery										X
GROUP BY		X							X	
GROUP BY with HAVING							X			
ORDER BY										X
IN or NOT IN			X					X		
Built-in Function	X	X			X	X	X			
REGEXP	X				X					
NOT EXISTS				X						

Database Name:

ts 61608 2

Database Implementation:

Procedure 1

Code:

create procedure TP Q1()

SELECT COUNT(locationID) FROM location

WHERE state REGEXP 'GA';

call TP_Q1();

Procedure 2

Code:

create procedure TP Q2()

SELECT CONCAT(COUNT(*)/(SELECT COUNT(*) FROM orderDetails)*100, '%')

AS percOfSugar FROM cookieFlavor

JOIN cookiesOffered ON cookiesOffered.cookieFlavorID =

cookieFlavor.cookieFlavorID

JOIN orderDetails ON orderDetails.cookieFlavorID = cookiesOffered.cookieFlavorID

WHERE orderDetails.cookieFlavorID = 2

GROUP BY orderDetails.cookieFlavorID;

call TP Q2;

Procedure 3

Code:

create procedure TP Q3()

SELECT ownerName FROM Owner

JOIN location ON location.locationID = Owner.locationID

WHERE state IN ('GA', 'TX');

call TP Q3;

Procedure 4

Code:

create procedure TP Q4()

SELECT DISTINCT locationID FROM Owner

WHERE NOT EXISTS (SELECT * FROM location WHERE ownerName = 'Matt');

call TP Q4;

Procedure 5

Code:

create procedure TP Q5()

SELECT COUNT(flavorName) FROM cookieFlavor

WHERE flavorName REGEXP 'chocolate';

call TP_Q5;

Procedure 6

Code:

create procedure TP Q6()

SELECT flavorName, price FROM cookieFlavor

JOIN cookiesOffered ON cookieFlavor.cookieFlavorID =

cookiesOffered.cookieFlavorID

JOIN orderDetails ON cookiesOffered.locationID = orderDetails.locationID

WHERE price > (SELECT AVG(price) FROM orderDetails);

call TP_Q6;

Procedure 7

Code:

create procedure TP Q7()

SELECT COUNT(locationID), state FROM location

GROUP BY state

HAVING COUNT(locationID) > 1;

call TP_Q7;

Procedure 8

Code:

create procedure TP Q8()

```
select * from location where state in ('GA', 'AL'); call TP_Q8;
```

Procedure 9

Code:

create procedure TP Q9()

select streetAddress, concat(round((count(orderID)/(select count(orderId) from orderDetails))*100,2),'%') as percSales from orderDetails join cookiesOffered on cookiesOffered.cookieFlavorID = orderDetails.cookieFlavorID join location on cookiesOffered.locationID = location.locationID group by streetAddress;

call TP Q9;

Procedure 10

Code:

create procedure TP_Q10()

select firstName, lastName, employees.salary from employees join position on position.positionID = employees.positionID where employees.salary > (select avg(salary) from employees where position.positionID =

employees.positionID)
order by employeeID asc;

call TP_Q10;