NASA Technical Memorandum 104541

Geomagnetic Model Investigations for 1980-1989: A Model for Strategic Defense Initiative Particle Beam Experiments and A Study in the Effects of Data Types and Observatory Bias Solutions

R.A. Langel, T.J. Sabaka, and R.T. Baldwin

April 1991

(NASA-TM-104541) GEUMAGACTIC MOUEL FOR INVESTIGATIONS FOR 1980 - 1989: A MOUEL FOR STRAIFGIC OFFENSE INITIATIVE PARTICLE BEAM EXPERIMENTS AND A STUDY IN THE FEFLCIS OF DATA TYPES AND OUSERVATORY PLAS SOLUTIONS

NOI-21054

unclas 63/46 0008364

· ·	 			
			· · · · · · · · · · · · · · · · · · ·	
		_		
		•		
		▼		

NASA Technical Memorandum 104541

Geomagnetic Model Investigations for 1980-1989: A Model for Strategic Defense Initiative Particle Beam Experiments and A Study in the Effects of Data Types and Observatory Bias Solutions

R.A. Langel
NASA-Goddard Space Flight Center
Greenbelt, Maryland

T.J. Sabaka and R.T. Baldwin ST Systems Corporation Lanham, Maryland

National Aeronautics and Space Administration

Goddard Space Flight Center Greenbelt, MD

	-	
•		

TABLE OF CONTENTS

	Abstract
1.	Introduction1
2.	The GSFC(5/89-X) Series1
3.	Observatory Data4
4.	Post 1980 Land and Selected Aeromagnetic and Marine
	Survey Data5
5.	Project Magnet White Sands and Remaining Post 1980
	Marine Survey Data
6.	DE-2 Satellite Data7
7.	Data Distribution8
8.	Methodology10
9.	The GSFC(5/89-X) Model
LO.	Discussion of GSFC(5/89-X)18
l1.	The GSFC(4/89-X) Series27
L2.	Discussion of GSFC(4/89-X)29
13.	References39
14.	Tables41
15.	Appendix A: Listing of Internal Field Static and
	Secular Variation Terms and, When Available, Their
	Estimated Uncertainties for GSFC(4/89-X) and
	GSFC(5/89-X) Series73
16.	Appendix B: Listing of External Field Static Terms,
	Dst Multiplier Terms, and Their Estimated
	Uncertainties for GSFC(5/89-X) Series87
17.	Appendix C: Listing of Observatory Vector Biases and
	Their Estimated Uncertainties for GSFC(4/89-X) and
	GSFC(5/89-X) Series89
18.	Figures

....

.

ABSTRACT

Two suites of geomagnetic field models were generated in response to a request from Dr. David Chamberlain of Los Alamos Laboratories at White Sands Missile Range in New Mexico concerning Strategic Defense Initiative (SDI) research. The first suite, denoted as the GSFC(5/89-X)series, is a progression of five models which incorporate MAGSAT data and data from a sequence of batches as a priori information. The batch sequence is: post 1979.5 observatory data, post 1980 land survey and selected aeromagnetic and marine survey data, a special White Sands area survey by Project Magnet with some additional post 1980 marine survey data, and, finally DE-2 satellite data. These models are of 13th degree and order in their main field terms and degree and order 10 in their first derivative temporal terms. A first degree model for the external field with terms proportional to Dst, is included. The second suite, denoted as the GSFC(4/89-X) series, consists of four models based solely upon post 1983.5 observatory and survey data. They are of degree/order 10 in main field and 8 in a first degree Taylor series. Certain models also include three vector biases for each observatory where possible. The models in this suite differ to the extent that these biases were either not modeled, applied but not adjusted, or applied and adjusted. A comprehensive error analysis was applied to both series, which accounted for error sources such as the truncated core and crustal fields, and the neglected Sq and low-degree crustal fields. Comparison

of the power spectrum of the MGST(10/81) model (Langel and Estes, 1982) with those of the GSFC(5/89-X) series shows good agreement, which attests to the validity of the modeling technique and the data used. Except for model 5, the GSFC(5/89-X) series agrees reasonably well with the IGRF85 model, a test that propagation of the MAGSAT model to 1985 is not badly in error. However, discrepencies in secular variation coefficient differences suggest a small possibility of systematic error in the DE-2 data. Inter-comparison of the GSFC(4/89-X) power spectra seems to imply that the inclusion of observatory biases generally reduces the level of high frequency noise introduced to the system, even over the case in which a comprehensive error analysis is incorporated. Finally, a comparison between the power spectra of the two series reveals the need for additional data, such as Magsat, to supplement that of observatories and surveys in order to establish the baseline or static field, and the need for adequate model expansion to negate the effects of signal aliasing.

1. Introduction

Two series of geomagnetic field models were produced in May of 1989 at Goddard Space Flight Center (GSFC) for Strategic Defense Initiative (SDI) research at White Sands Missile Range in New Mexico. The first series utilized a Magsat a priori model to fix the model fields at 1980 and to provide a basis for determining observatory biases (Langel et al., 1982). The second series did not incorporate Magsat data, but was restricted to post 1985 data. The two classes of models allow investigation of the value of propagating the very accurate field description from Magsat data nearly ten years into the future versus the accuracy of using only data nearly cotemporaneous with the model epoch. These models were undertaken at the request of Dr. David Chamberlain of Los Alamos Laboratories for use in a particle beam experiment. At the same time, they were of interest as a means of exploring the properties of a newly upgraded observation data set and as an opportunity to explore the differences between models derived with somewhat different assumptions and procedures.

2. The GSFC(5/89-X) Series

The first series consists of a sequence of four models, each of which is obtained by reducing a new batch of data from a particular source while using the model resulting from the previously reduced

batches as both the starting and the a priori model. The series is denoted by GSFC(5/89-X), where X indicates the sequential number of the model.

Magnetic observatory measurements made after 1979.5 were processed in the first batch, which resulted in the GSFC(5/89-1) model. The GSFC(5/89-2) model was obtained by reducing all post 1980 land and selected aeromagnetic and marine survey data, with respect to the GSFC(5/89-1) model as a priori information. Because model accuracy was essential at the White Sands location, a special Project Magnet aeromagnetic survey of the area was made in the spring of 1989. The survey consisted of over 180,000 actual vector measurements, which were decimated and appropriately weighted for inclusion in the model. This survey, together with the remaining post 1980 marine survey data, comprised the third batch, which used the GSFC(5/89-2) model as an a priori estimate, giving the GSFC(5/89-3) model. Finally, 5100 scalar measurements made between 1981 and 1983 by the Dynamics Explorer-2 satellite, DE-2, were processed with the GSFC(5/89-3) model as a priori. This final model is the GSFC(5/89-4), which reflects all the magnetic data included in the series.

In an attempt to produce as accurate a field model as possible over the White Sands Missile Range, a regionally biased model, denoted as GSFC(5/89-5), was also generated. It used the GSFC(5/89-3) model as a priori while reducing for a second time both the Project Magnet White Sands survey and the Tuscon observatory data, since it is in close

proximity. Hence, these data are weighted heavily in the resultant model.

The parameter space of the models is comprised of a 13th degree and order spherical harmonic expansion (195 terms) for the internal magnetic field, with an associated first degree Taylor series temporal expansion over the first 10 degrees (120 terms), a 1st degree and order spherical harmonic expansion (3 terms) for the external magnetic field, and four disturbance storm time (Dst) terms, for a total of 322 model parameters. When observatories provided three magnetic field components for three or more years, then three vector biases were modeled, which account for local crustal and induced fields (Langel et al., 1982; Langel, 1987).

The Magsat satellite supplied over 55,000 high-accuracy scalar and vector magnetometer data concentrated near the year 1980 as a basis for the model used as a priori for the GSFC(5/89-1) model (Langel and Estes, 1985). Since the model epoch for the series is 1980, the Magsat data provide a stiff constraint on the static terms of the model. Hence, the major effects of the other data sources are adjustments in the temporal terms. No a priori information was used for observatory bias parameters in the GSFC(5/89-1) model, but biases (listed in Table 1) from the GSFC(11/87) model (Langel et al., 1988a), based on DE-2 satellite data at 1982, were used as the starting model.

3. Observatory Data

Because magnetic observatories provide measurements at stationary locations through time, they are particularly useful in resolving the temporal change in the magnetic field. Data from 196 observatories, in the form of annual means centered on half years, spanning the years 1979.5 to 1989, were included in the series of models. The time spans for the individual observatories are listed in Table 1. A total of 3835 magnetic field components were measured over this time by the various observatories, which include 131 X, 131 Y, 1266 Z, 1149 D, 4 I, 1146 H, and 8 B components. These were converted to 1252 X, Y, and Z components for processing. Vector biases were determined for 165 of the observatories.

The uncertainty estimates (standard deviations) assigned to the observed X, Y, and Z components are listed in Table 1 for each observatory. Effects of unmodeled field sources, such as the neglected crustal and Sq fields, and the truncated core field, are accounted for in the measurement weighting scheme by use of the correlated weight matrix method developed by Langel et al. (1989) and summarized in Section 8. Using the approximation described in that section, the equivalent standard deviations for these unmodeled fields are 404 nT for the Z, and 285 nT for the X and Y components for observatory data. However, when modeling vector biases (Langel et al., 1982), these error

contributions may be omitted at that particular observatory, since the biases in fact account for local unmodeled fields.

4. Post 1980 Land and Selected Aeromagnetic and Marine Survey Data

The post 1980 land and selected aeromagnetic and marine survey data described in this section were statistically analyzed, i.e. uncertainty estimates were assigned to either the raw or averaged observations, using two methods (for a more detailed description see Langel et al., 1988b): (1) a combination of measurement-source criteria, which isolates systematic error resulting from common instrument and human error, and spatial distribution criteria, which isolates errors germane to a particular global region, with the greater of the two uncertainty estimates being used for the observation sigma; and (2) an analysis for linearly distributed data in which an average value and associated standard deviation are assigned to each of a series of segments of a line of observations. The average values are the data used for field modeling with the observation sigma taken to be the standard deviation of the data from that line segment. For each segment the data is rejected if taken during a period of magnetic disturbance or if the data is not sufficiently contiguous. {NOTE: In later uses of this data, and in data sets described in the next section, the standard deviation was replaced by the standard error of the mean for that line segment of data.}

This data set is sub-divided into 8 surveys, each of which represents a hopefully homogeneous statistical entity. Specifically. the post 1980 land survey data, analyzed by method 1, is divided into a 1980.0 to 1982.5 sub-set and a 1982.5 to 1987.5 sub-set. The aeromagnetic data is comprised of two collections of Project Magnet data, each of which is sub-divided into two time spans. The first collection is divided into a 1980.0 to 1982.5 sub-set and a 1982.5 to 1987.5 sub-set. In order to obtain a decimated set of averaged data. these sub-sets were first processed using method 2. The uncertainty estimates for these averaged data sets were subsequently assigned using method 1. The second collection is divided into a 1984.0 to 1985.0 subset and a 1985.0 to 1986.0 sub-set, which were analyzed by method 2 only. The final group of data consists of total-intensity marine measurements, which were analyzed in a similar fashion to the first collection of Project Magnet data. This group is divided into data residing in the 1980.0 to 1982.5 time interval and the 1982.5 to 1987.5 time interval.

Because the survey data do not generally repeat in spatial position, biases cannot be resolved, as is the case for observatories. Hence, the effects of unmodeled field sources must be incorporated into the survey weighting scheme. The measurement count, the average time of observation, and the average assigned standard deviation, which includes an estimate of contributions for unmodeled field sources (see Section 8), are listed in Table 2 for each component present in each of the surveys.

5. Project Magnet White Sands and Remaining Post 1980 Marine Survey Data

The special Project Magnet White Sands survey and the remaining post 1980 marine survey data were statistically analyzed using method 2 described in the previous section. However, as noted previously, the standard error of the mean from each linear segment was assigned as the observation uncertainty or sigma of the mean rather than the standard deviation of the various measurements about the mean. The White Sands survey was considered homogeneous, while the marine surveys were subdivided into 7 groups depending on time of observation: from the years 1980, 1981, 1983, 1984, 1985, 1986, and 1987. As with the previous survey data, the effects of unmodeled field sources were incorporated using the correlated weight matrix. The measurement count, the average time of observation, and the average assigned standard deviation are listed in Table 3 for each component present in each of the surveys.

6. DE-2 Satellite Data

The Dynamics Explorer-2, DE-2, satellite was equipped with a three-axis fluxgate magnetometer with which vector measurements were made. However, limits in the accuracy of attitude determination preclude the use of such data for main field modeling, even after an attempt was made at in-flight calibration (Langel et al., 1988a). The associated

computed and corrected scalar data, which is invariant to spacecraft orientation, are of sufficient quality for use in field modeling.

Hence, 5100 scalar data points collected between September 30, 1981 and January 6, 1983 were included in this study. These data are described by Langel et al. (1988a). An uncertainty of 26 nT was assigned to all the data, and the correlated weight matrix used. The scalar measurement count, the average time of observation, and the average assigned standard deviation are listed in Table 4.

A listing of names of the files containing the various observation data sets included in this study is given in Table 5. These files currently reside on the GSFC IBM-3081 mainframe under the MVS-TSO operating system.

7. Data Distribution

A series of global distribution plots of the observatory data used in this study are given by year since 1980 in Figures 1-10. These data are concentrated towards the earlier years, having an average time of 1983.2. The coverage is far better for the years 1980 through 1987, although it is typically concentrated in Europe, sparse in the southern hemisphere, and practically non-existant in the oceans.

The Project Magnet survey distributions are given in Figures 11-16 for each of the years 1981 through 1985 and 1989. Many of the flight lines for the 1981-1985 surveys cover ocean areas, complementing the

observatory data and helping to establish global control. Note the concentrated distribution of data over the White Sands region in the 1989 plot.

Figures 17-24 show the global distribution of the various marine surveys analyzed in this study. The plots are by year from 1980 through 1987. Though the uniformity of coverage varies over time, most of the major ocean basins are sampled to some extent. The mid to northern Pacific and the northern Atlantic basins have particularly good coverage while a paucity of data exists in the southern Pacific and the Arctic basins. These surveys, however, provide the most extensive control in the ocean regions.

The post 1980 land survey data distributions are also plotted by year from 1980 to 1987 and are given in Figures 25-32. Like the observatories, the surveys are typically concentrated in Europe and are sparse in the southern hemisphere. They also provide additional coverage in Asia, Africa, and South America, which supplements the observatory data. Note, however, that North America and Australia are essentially void of any land survey coverage in this study.

A distribution plot of DE-2 satellite measurements is not given in this paper, however, one may be found in Langel et al. (1988a). Their plot shows a uniform, global coverage that should provide satisfactory control over regions not covered by any of the aforementioned sources.

8. Methodology

The model was derived using the method described by Cain et al. (1967), Tarantola and Valette (1982), Langel et al. (1982), and Langel (1987). The Bayesian least squares estimation equations are as follows:

$$\delta \hat{p}_{n+1} = (A^T W A + \Omega_{\bar{a}}^1)^{-1} [A^T W \delta y_n + \Omega_{\bar{a}}^1 (\hat{p}_a - \hat{p}_n)]$$
 (1)

where

 $\delta \hat{p}_{n+1}$ is the vector of parameter adjustments at the (n+1)th iteration.

 \hat{p}_n is the vector of adjusted parameters at the nth iteration,

 δy is the vector of residuals, i.e. measured data minus predicted value from the previous iteration,

A is the partial derivative matrix of the measurements with respect to the parameters,

W is the weight matrix for the measurements,

 Ω_a is the a priori parameter covariance matrix,

 \hat{p}_a is the a priori estimate of the parameters, and the vector of adjusted parameters at the (n+1)th iteration is:

$$\hat{p}_{n+1} = \hat{p}_n + \delta \hat{p}_{n+1} \tag{2}$$

In the GSFC(5/89-1) model, for parameters other than observatory biases, \hat{p}_a was taken to be the coefficients and Ω_a as the associated covariance matrix of a model produced with 55013 Magsat data points. The starting model, \hat{p}_0 , was also taken to be this model. For the observatory biases, Ω_a was taken to be zero, while \hat{p}_0 comprised the GSFC(11/87) model based on DE-2 satellite data (Table 1). In subsequent models, \hat{p}_a and \hat{p}_0 were taken to be the coefficients and Ω_a as the associated covariance matrix of the previous model for all parameters, including observatory biases.

In an effort to account for unmodeled field sources, the observation covariance matrix is assumed to have the following form:

$$W^{-1} = V_{d} + A^{*}V_{*}(A^{*})^{T} + A^{**}V_{**}(A^{**})^{T}$$
(3)

where

W-1 is the observation covariance matrix

 $V_{
m d}$ is the diagonal observation noise covariance matrix

- A* is the partial derivative matrix of the measurements with $\\ \text{respect to the parameters corresponding to the internal field} \\ \\ \text{model expansion up to degree n*}$
- A^{**} is the partial derivative matrix of the measurements with respect to the parameters corresponding to the internal field above n^* up to some n^{**} , above which noise dominates
- V_{\star} diagonal variability matrix for parameters corresponding to internal field degrees up to n^{\star}

V** diagonal variability matrix for parameters corresponding to internal field degrees above n* up to n**

Note that the last two terms on the right-hand side of equation (3) are sometimes referred to collectively as the "inverse correlated weight matrix", since inclusion of these terms accounts for the correlation between the data observations. The parameters corresponding to internal field degrees up to n* include neglected crustal and Sq terms, and for degrees above n* up to n** the parameters include truncated core and crustal terms. Hence, estimates of both V* and V** are needed to incorporate this weighting scheme. Consider the function:

$$R_n = (n + 1) \sum [(g_n^m)^2 + (h_n^m)^2]$$
 $m=0$
(4)

which was introduced by Mauersberger (1956) and by Lowes (1966, 1974). $R_{\rm n}$ is the mean square value over the Earth's surface of the magnetic field intensity produced by harmonics of the nth degree. Now $R_{\rm n}$ is known or can be estimated. Thus, the following may be adopted as an estimate of the diagonal terms of the V matrices:

$$\sigma_n^2 = R_n / [(2n + 1) (n + 1)]$$
 (5)

Note that there is an estimated $R_{\rm n}$ spectrum corresponding to each of the field sources, i.e. core, crust, Sq, etc. Analytic expressions have been determined for each of these spectra (Langel et al., 1989):

Core: $R_n = (1.349 \times 10^9) (0.270)^n$

Crust:
$$R_n = (20) (0.9999387)^n$$
 (6)

Sq: R_n computed from the model of Malin (1973)

Thus, W-1 may now be computed. This formulation still does not account for unmodeled temporal change parameters, which might be important for a ten year period.

Note that W-1 is a full matrix with dimensions N by N, where N is the number of data points reduced in the particular model. Hence, for large observation data sets, i.e. Magsat, this computation becomes unmanagable. An approximation is adopted to facilitate the method. The approximation is not as satisfactory as the full calculation, but it does provide more realistic error estimates than when the effects of neglected terms are completely ignored.

The approximation is to neglect the off-diagonal elements of the $A^{**}V_{**}(A^{**})^T \ \text{term in equation (3) giving:}$

$$W^{-1} = U + A^*V_*(A^*)^T$$
 (7)

where U is a diagonal matrix which includes V_d and the diagonal elements of $A^{**}V_{**}(A^{**})^T$. Langel et al. (1989) have shown that this approximation is quite acceptable for satellite data, however, it tends to be less accurate for closely spaced survey data. The resulting expressions for the modeled core field, \hat{a} , and its associated covariance matrix, $V_{\hat{a}}$, are

$$\hat{\alpha} = [(A^*)^T U^{-1} A^*]^{-1} (A^*)^T U^{-1} \delta y_n$$
 (8a)

$$V_{\hat{a}} = [(A^*)^T U^{-1} A^*]^{-1} + V_*$$
 (8b)

In previous sections estimates for the data standard deviation, including unmodeled parameters and fields, were given and the reader referred to this section for an explanation of how those estimates were obtained. The estimate was taken by consideration of equation (3). If the second term on the right is neglected and only the diagonal terms from the third term considered we have

$$V_{d}' = V_{d} + diag[A^{**}V_{**}(A^{**})^{T}].$$
 (9)

The quoted data standard deviations were derived from (9) by taking the rms of the terms corresponding to the particular data type and component.

9. The GSFC(5/89-X) Model

The field is assumed to be curl free and representable by a potential function in the form of the usual spherical harmonic series:

$$V = a \sum_{n=1}^{n+1} \sum_{m=0}^{m} (a/r)^{n+1} [g_n^m \cos \phi + h_n^m \sin \phi] P_n^m (\cos \theta)$$

$$+ a \sum_{n=1}^{n+1} \sum_{m=0}^{m} (r/a)^n [q_n^m \cos \phi + s_n^m \sin \phi] P_n^m (\cos \theta)$$

$$= \sum_{n=1}^{n+1} \sum_{m=0}^{m=0} (r/a)^n [q_n^m \cos \phi + s_n^m \sin \phi] P_n^m (\cos \theta)$$
(10)

where <u>a</u> is the mean radius of the earth (taken to be 6371.2 km), r, θ , and ϕ are the standard spherical coordinates, and the $P_n^m(\cos\theta)$ are the Schmidt quasi-normalized form of associated Legendre functions of degree n and order m. The magnetic field is then given by

$$\mathbf{B} = -\nabla \mathbf{V} \tag{11}$$

Theoretically, (10 and (11) hold only if n^* and n^{**} go to infinity and when the region of validity is source free. The measured internal B contains contributions from both the Earth's core and from its crust; n^* is chosen so that V represents fields from the core but not the crust, to our best estimation. Langel and Estes (1982) concluded that the core field dominates for n < 13 and the crustal field for n > 15 so, as from Langel et al. (1980) and Langel and Estes (1982), we have chosen $n^* = 13$. Because DE-2 and Magsat pass through regions of field aligned

currents, the source-free assumption does not strictly hold. However, these currents have little effect on the field magnitude (Langel, 1974), so the procedure for Magsat data was to use component data equatorward and scalar data poleward of 50° geomagnetic latitude. Only scalar data were used from DE-2.

The main contribution to the external portion of B comes from the equatorial ring current, with contributions also from magnetopause and magnetotail currents. Near the Earth, fields from these sources tend to be aligned mainly along the dipole axis and are well described when n**=1. However, unlike the field from the core, the external fields vary considerably with both universal and local time. The hourly Dst index is commonly taken to be an indicator of the relative change of these fields with universal time, and the local time variations are generally small during magnetically quiet periods. The following relationship was determined between the degree one external terms and Dst from Magsat data:

$$q_1^0 = 18.7 - 0.63 \text{ Dst (nT)}$$
 (12a)

$$q_1^1 = -1.1 - 0.07 \text{ Dst (nT)}$$
 (12b)

$$s_1^1 = -3.1 + 0.17 \text{ Dst (nT)}$$
 (12c)

The $g_1^{\,0}$ internal coefficient is also affected by the presence of time varying external fields and can be expressed as a constant term representing the contribution from the Earth's core plus a Dst related term:

$$g_1^0 = -29986.6 - 0.17 \text{ Dst (nT)}$$
 (13)

This formulation differs from that used previously by Langel et al. (1988a) in which the external variation in the g_1^0 coefficient is proportional to the q_1^0 coefficient. Transformation between the two formulations is effected by the use of equation (12a) as a function of Dst. These external and Dst multiplier terms listed above are part of the model derived from MAGSAT and used as a priori to the GSFC(5/89-X) series.

The temporal variation in the internal field is modeled using a first degree Taylor Series expansion about the epoch e:

$$g_n^m(t) = g_n^m(e) + \hat{g}_n^m(e) (t - e)$$
 (14)

where t is the evaluation time. The secular variation is considered negligible at and above n=11 for this analysis.

A listing of the GSFC(5/89-X) series model parameters and, when available, their estimated errors is provided in the appendices.

Specifically, the static and secular variation components and errors of

the internal field Gauss coefficients are listed in Appendix A, the static component and error of the external field Gauss coefficients and the Dst multiplier terms and errors are listed in Appendix B, and the observatory vector biases and errors are listed in Appendix C. Note that Appendix C does not include the GSFC(5/89-5) bias listing.

A "global" file is generated for each observation-batch processed by the modeling software. It contains the updated model and associated covariance, parameter space, and batch information. Table 6 lists the names of the global files currently residing on the GSFC IBM-3081 mainframe under the MVS-TSO operating system which were generated for each of the GSFC(5/89-X) series models.

10. Discussion of GSFC(5/89-X)

Each of the GSFC(5/89-X) series model analyses were examined for internal consistancy. Firstly, the data weighting remained fixed through each iteration on a particular batch of data. Hence, solution convergence was realized after only a few iterations. Secondly, the total weighted residual variance was found to decrease with iteration number in all analyses. Hence, the estimator was generally able to extract the signal from the data, allowing it to determine a valid search direction for the model adjustment. Furthermore, the weighted residual variances for each observed magnetic component type decreased with iteration number in all analyses, thus indicating that each component type contained observable signal.

An inter-comparison was also made between successive members of the series to assess the effects of each new batch of data on the parameter space of the model. In order to facilitate a quantitative comparison, coefficient differences between successive models were computed for the internal field at various times. In general, the coefficient behavior is as expected: (1) the static terms vary only slightly with the appending of new data because of the volume of Magsat data already reduced, while the secular variation terms are more significantly influenced by the new data, (2) the percent change in coefficients increases with increasing spherical harmonic degree, since the higher degrees are more sensitive to noise levels in the data, and (3) the variation in static terms generally increases as the difference between the model epoch and the time of comparison increases.

Specifically, the comparison between GSFC(5/89-1) and -2 at year 1980 showed a static coefficient change of < 5% for all terms except the g₁₃4 term, which changed by 18%. As noted, the change in secular variation coefficients generally increases with increasing spherical harmonic degree. The coefficient differences at year 1980 between GSFC(5/89-2) and -3 again indicate a general static change of < 5% and a secular variation change that roughly increases with increasing degree. Where large percentage changes in coefficients do occur, e.g. 396% for \$84 and 237% for \$10^8\$, it is for coefficients very small in magnitude. Hence, the effects of the two survey data batches on the model parameter space are about the same. The coefficient comparison between GSFC(5/89-

3) and -4 at year 1980 reveals that most of the static change is < 5%, but, at the higher degrees, there are several coefficients that change by more than that, i.e. 35% for h_{13}^{11} , 45% for h_{13}^{8} , and 28% for g_{12}^{12} . The change in secular variation coefficients is much greater overall than those observed in the previous comparisons, the largest being 7711% for h_{10}^{1} and 8119% for g_{9}^{6} . Again, however, all of the high percentage changes occur for coefficients which are very small, so that the real change is small in spite of the large percentage. Evidently, the DE-2 satellite data exert a much stronger influence on the model parameter space than the survey data.

Plots of the first three spherical harmonic degrees (first 15 coefficients) through time for each of the models in the series were superposed along with the IGRF85 model (Figures 33a-i). The attendant error bars for GSFC 5/89-4 were also included. A similar suite of plots (Figures 34a-i) were made with the GSFC 5/89-4 model subtracted from each model, which allows a more detailed comparison between models.

Though the observation information reduced in the IGRF85 model may be a subset of that used in the GSFC(5/89-X) series, the methodology differs, so the inclusion of the IGRF85 coefficient plots provides an independent check of this new series of models.

Examination of the plots indicates that models GSFC(5/89-1), -2, and -3 are quite close. In fact, they are hardly distinguishable in Figures 33a-i and are generally closely grouped in Figures 34a-i. These models will be collectively referred to as "G" models. As previously

noted, the bunching of the G models is a result of their secular variation being largely determined by observatory data. Model GSFC(5/89-5) is often considerably different than the G, the IGRF85, and the GSFC(5/89-4) models. This is to be expected since this model was "forced", by data distribution and weighting, into close agreement with the 1989 White Sands data. On the other hand, GSFC(5/89-4), hereafter called D because of the inclusion of DE-2 data, sometimes shows fairly close agreement with the G models (g2¹, g2², h2², g3², h3², g3³, and h3³), sometimes diverges significantly from the G models (g1⁰, g2⁰, g3⁰, g3¹, and h3¹), and sometimes is in between (g1¹, h1¹, and h2¹). The secular variation of this model is modified over that of the G models by the presence of data from the DE-2 satellite. Though speculative, we note that the fact that the n=0 terms in model D all diverge significantly from the G models may possibly indicate a systematic bias in the DE-2 data.

As noted earlier, inclusion of the IGRF85 in Figures 33 and 34 gives an independant verification that nothing radical has gone wrong.

Except for the GSFC(5/89-5) model, the series appears to be in reasonable agreement with the IGRF85 model, a least over the first three degrees. Only a slight shift is present in the static terms, and the linear secular variation terms agree in sign and are close in magnitude. It should be noted at this point that the parameter space of the IGRF85 model is different from that of the GSFC 5/89-X series, being a 10th degree spherical harmonic expansion for the internal field with a linear

Taylor series representation for secular variation over the first 8 degrees. Thus, the effects of aliasing alone in the IGRF85 model would be expected to produce some discrepencies.

The plot patterns also confirm the expected behavior of the GSFC(5/89-X) series. For instance, all the plots for a particular coefficient radiate from a point at year 1980 and do not diverge appreciably over the next 9 years, except for the GSFC(5/89-5) model. The error bars for GSFC(5/89-4) also exhibit the same behavior. We note that for most of the coefficients plotted, the GSFC(5/89-1) and -2 and -3 models lie outside the error bars for the -4 model, which reflects all the data. This could indicate that the actual temporal change is not well modeled by a linear time function, could simply indicate that the global coverage of the observatory and survey data is inadequate, or could reflect some as yet undetected bias in the DE-2 data. Conversely, the comparison between GSFC(5/89-1), -2, and -3 coefficient plots reveals very little difference. This indicates that the survey data and observatory data are in very good agreement and that the GSFC(5/89-1) model, which reduced all post 1979.5 observatory data, is dominant in the determination of the secular variation terms.

It is clear that if there is any fundamental difference between models it is between the secular variation of models -3 and -4. Table 7 displays the differences between both the main field and secular variation coefficients of these models. It also shows the appropriate σ for comparison, i.e. $\sigma^2 = (\sigma_3)^2 + (\sigma_4)^2$. For comparison, another column

gives the "degree sigma of the difference", which is defined as the standard deviation of the coefficient differences for a particular spherical harmonic degree. One would expect σ and the degree σ to be of comparable value if the parameterization of the models is accurate and if the models are derived from independant data populations. Examination of the Table shows that the differences between the main field coefficients is negligible, much smaller than the σ . This reflects the fact that the predominant data set determining these coefficients at their epoch, 1980, is from Magsat and is common to both models.

On the other hand, the secular variation differences are, in general, significantly larger than the σ estimated in the fitting procedure. The substantial secular variation coefficient differences must result from the presence of the DE-2 data in one model but not the other. That these differences are larger than statistically expected may be due to one of several reasons. First, the effects of secular variation were not included in the correlated weight matrix calculation. These might be significant and should be investigated. Second, the secular variation parameterization, a linearized Taylor series, might not adequately describe the temporal variation over the ten year period of the data. Third, the DE-2 data might contain a small bias of some sort.

There will always be some question concerning the validity of the DE-2 data. The lack of simultaneous absolute (scalar) data preculudes

detection of instrument drift. We have noted the effects of including DE-2 data in the -4 model. Those effects are important, but they could easily reflect actual field properties as opposed to a systematic bias in the DE-2 data. In short, the evidence for systematic bias in the DE-2 data is weak and inconclusive at best. Accordingly, the GSFC(5/89-4) model is considered the "final" product of this study. Table 8 gives a brief summary of the statistics of the various data types to the GSFC(5/89-4) model and to the suite of GSFC(4/89) models to be discussed in later sections. Unfortunately, the statistics of observatory data with their determined biases is not available as this paper is written. The means and stardard deviations for both observatory and survey data are typical. One feature of the standard deviations is that those for survey data are typically less than those for observatory data. This is attributed to two factors which tend to reduce the contribution of crustal anomalies to the survey data. First, the survey component data is largely made up of data from Project Magnet. In data acquired at aircraft altitudes the anomaly fields are naturally attenuated because of the height of the aircraft above the surface. Second, both the Project Magnet and the Marine Survey (B) data are filtered along track to deliberately minimize the effects of crustal fields.

A series of global maps of the various magnetic field components (Figures 35a-g) and their estimated errors (Figures 36a-g) were computed from GSFC(5/89-4) at 1989 on the earth's surface. Similar maps are

error (Figures 38a-g). The general morphology of the various features in each of these maps is consistant with maps produced in other studies at different epochs if the effects of westward drift and other temporal processes are taken into account (see Langel, 1987; Langel et al., 1988a). Now the uncertainty maps are germane to the distribution of the data that is being reduced. In the case of the GSFC(5/89-4) model, the North American and European regions exhibit the lowest uncertainty levels while the oceanic areas show the highest levels, thus reflecting the paucity of data over the oceans with respect to the continents. Uncertainty maps were also produced for the special GSFC(5/89-5) model, but they are not included in this report. As expected, they show a bulls-eye feature of low uncertainty over the White Sands Missile Range.

Power spectra of the form of equation (4) were determined for the various models of this series. These spectra map the signal strength distribution over the harmonic degree range and, hence, can indicate the presence of signal adulteration by noise. The R_n spectra of GSFC(5/89-1), -2, -3, and -4 were found to be nearly identical. Thus, from a relative standpoint, the signal from each of the observation batches was resolved at a similar level. A plot of the GSFC(5/89-4) and -5 spectra (Figure 39) shows that the latter contains more power at degree 13. This "flattening" of the power slope is likely a manifestation of the inclusion of high frequency white noise introduced by signal biasing in the spatial domain. It is also of interest to see if these spectra

conform to a "standard" spectrum, which would indicate the validity of the estimation technique and the quality of the observation data.

Figure 40 is an overlay of the GSFC(5/89-4) Rn spectrum on that of the MGST(10/81) model. This latter model is a degree 23 spherical harmonic expansion of the internal field with secular variation terms absent, based solely upon Magsat data (Langel and Estes, 1982). This is considered the "standard" model for comparison in the study. The spectra appear to be in good agreement with only a slight deviation at degree 12. Evidently, both the modeling techniques and observation data employed in the GSFC(5/89-1) through -4 models are acceptable by this criteria.

In conclusion, the GSFC(5/89-X) series appears to be valid suite of models, useful for geomagnetic research. It not only utilizes the most complete observation data set available to GSFC, but also incorporates the most comprehensive error analysis used to date at GSFC. Except for the special GSFC(5/89-5) model, the series seem to agree reasonably with the IGRF85 model. The results of the analyses were within the bounds of the expected, with no egregious behavior detected. At the same time, the differences between the secular variation coefficients with and without the DE-2 data indicate that possibly the parameterization is somewhat inadequate or that the DE-2 data has some sort of systematic error. The GSFC(5/89-4) model is the representative of the series, since it reflects all the data reduced. This model was subsequently sent to White Sands for SDI research where it produced satisfactory results (Chamberlain, personal communication.)

11. The GSFC(4/89-X) Series

The GSFC(4/89-X) series consists of four field models. Each model was derived using observatory and survey data after 1983.5. These models differ to the extent that the correlated weight matrix and the solution for observatory vector biases were either applied or not applied. The observatory and survey data used in this series are a subset of that used in the GSFC(5/89-X) series. Specifically, the post 1980 land survey from 1982.5 to 1987.5, Project Magnet collection 2 from 1984 to 1985 and from 1985 to 1986, total-intensity marine from 1982.5 to 1987.5, marine surveys from 1983 to 1988, and the Project Magnet White Sands survey were all included in this series. The measurement count, the average time of observation, and the average assigned standard deviation, which includes contributions from unmodeled field sources, are listed in Table 9 for each component present in the composite survey data set. The observatory data used are the 1983.5 to present sub-set of those listed in Table 1. The assigned observation uncertainty estimates and GSFC(11/87) biases listed in this table are also applicable to this series.

For this series of models the parameter space is comprised of a 10th degree and order spherical harmonic expansion (120 terms) for the internal magnetic field and a first degree Taylor series temporal expansion over the first 8 degrees (80 terms) for a total of 200 model

parameters. Certain models also adjust the three vector biases for each observatory having at least three observations of each vector component. The epoch of the models is 1989.411 and the starting models, for parameters other than observatory biases, are the IGRF85 model propagated to this epoch. No a priori information was included in any of the models.

Differences between models in this series lie in the way observatory biases are incorporated, as summarized in Table 10. The GSFC(4/89-1) model applied, but did not adjust, the GSFC(11/87) observatory biases. If a particular observatory had no bias values from GSFC(11/87), the bias was set to zero; no correlated weight matrix was applied to those stations. In the GSFC(4/89-2) model, the observatory biases were adjusted, using the GSFC(11/87) model as a starting point, provided at least three observations of each vector component were present for the observatory, otherwise, the correlated weight matrix was applied to that station. In the GSFC(4/89-3) model, the GSFC(4/89-2) observatory biases were a priori and held fixed. If these biases were not available, the GSFC(11/87) biases were used; and if neither set were avaialble, the correlated weight matrix was applied to that station. The GSFC(4/89-1), -2, and -3 models were each iterated three times. In the GSFC(4/89-4) model, which required five iterations, observatory biases were not applied, so the correlated weight matrix was universally applied.

A listing of the GSFC(4/89-X) series model parameters and, when available, their estimated errors is provided in Appendix A for parameters other than observatory biases; Appendix C contains the observatory biases.

Table 10 lists the names of the global files currently residing on the GSFC IBM-3081 mainframe under the MVS-TSO operating system which were generated for each of the GSFC(4/89-X) series models.

12. Discussion of GSFC(4/89-X)

Coefficient differences between the GSFC(4/89-X) models are discussed in order to understand the effects of the differing solutions for observatory biases and the extent to which observatory biases and the correlated weight matrix influence the determined models.

Referring to the Table of coefficients in Appendix A, the σ 's assigned by the fitting procedure to models -1 and -3 [Note: the σ 's for model -3, not given in the table, are almost identical to those for model -1.] are considerably smaller than those assigned to the other models. These are the models for which observatory biases were furnished as a priori information to the model. Model -4 shows the largest coefficient σ 's from the fitting process. This reflects the fact that no biases were given or solved for and the correlated weight matrix was given full play. Model -3 applied observatory biases, when available, hence the model had more parameters than model -4, which

resulted in lower estimated coefficient σ 's. On the other hand, no satellite data were available for this model so that the bias solution is much less certain than when such data is present. Further, without a priori biases the fitting process had less information than models -1 or -3, hence the estimated coefficient σ 's are higher than for those models.

The meaningfulness of the estimated coefficients and their σ 's depends upon the accuracy of the model parameterization. In the cases of models -1 and -3, the a priori observatory bias information was furnished as given, i.e. with no accompanying statistical estimate of the accuracy of the biases. This is tantamount to assuming they are perfectly known, i.e. with σ = 0. Since these biases are in fact only known approximately, this is not an adequate parameterization and the resulting estimated coefficient σ 's are probably too low.

Differences between various models are tabulated in Table 12. The first three columns are the differences of models -2, -3 and -4 from model -1; the second three columns are the differences of models -1, -3 and -4 from model -2. Table 13 summarizes the sigmas of these differences by degree. It is immediately clear that models -2 and -3 are very similar. This is to be expected. The idea behind model -3 is as follows. Model -2 solved for observatory biases. Lowes (1985) has shown that when this is done the observatory data contribute mainly to the secular variation solution. Their effect on the main field coefficients is diminished over fitting procedures where biases are not

solved for. Model -3 is like a further iteration of model -2, except that the observatory biases are held fixed so that the observ-atory data can be fully used in determining the main field coefficients. As noted above, the biases should be included with proper statistical information. As a guess, the actual coefficient σ 's for model -3 are probably very close to those of model -2.

Models -4 and -2 are the "most" different in main field coefficients, particularly for degrees 2, 3, 4, and 6, yet comparison indicates these differences to be consistent with the estimated coefficient σ 's.

Both the -1 and the -3 models were furnished a priori observatory biases, yet the models are significantly different. The biases furnished the -1 model were from the GSFC(11/87) model (Langel et al., 1988a) which included Magsat and DE-2 satellite data. Those furnished the -3 model were mainly derived in the -2 model, with the remainder coming as a supplement from the GSFC(11/87) model, see Appendix C. Also of relevance are the biases computed in the GSFC(5/89-4) model, which also included Magsat and DE-2 satellite data. Comparison indicates that the biases from GSFC(11/87) and GSFC(5/89-4) are similar to one another wheras those from the -2 model deviate considerably. Also, the estimated coefficient σ values from the fitting procedure of the -2 model are in general quite high. We conclude that the bias determination in the -2 model is problematic, with a statistically poorly determined result. This is due to the absence of satellite data

to furnish a reliable baseline, relatively free from crustal magnetic field contamination, against which the biases can be determined. The survey data, while important, contains a large crustal field contribution and is still too sparse to give a good baseline for bias determination at the observatories.

Table 14 shows the differences between the secular variation terms of the GSFC(4/89-x) models. In particular it shows the differences between the -2, -3, and -4 models and the -1 model. Comparison with the coefficient Table in Appendix A indicates that the differences are consistent with the estimated σ values from the fitting procedure. Models -2 and -3 differ somewhat, but not radically, from model -1. Model -4 shows considerably more difference. This is attributed to the fact that model -4 did not utilize observatory biases at all. It is also apparent in the much higher coefficient σ 's assigned to model -4 in the fitting process. Model -3 is in somewhat better agreement with model -1 than is model -2. This is probably because model -1 and model -3 were furnished biases a priori, while biases were solved for in model -2. The use of biases in all three of models -1, -2, and -3 removes the problem of contamination by crustal fields in the observatory data. This should permit a more accurate secular variation result.

Table 8 gives the summary statistics of the data to each of the four models. Observatory biases are not taken into account in the observatory statistics. Tables 15 and 16 give year by year statistics which are also plotted in Figures 41 a - 41 n. These are all within the

range of "typical" values one might expect for any model. The differences reflect the way the bias solutions effect the data weighting. For example, model -4 with no bias solution tries to fit the observatory data strictly with the spherical harmonic series. As a result the magnitude of the mean observatory residuals tend to be higher and the scatter (σ) of the observatory data lower than the other models which included some sort of bias, either a priori or solution. This attempt to fit the crustal signal in the observatory data results in an increased misfit (σ) for the survey data. Models -2 and -3 generally show very similar statistics, as might be expected from the previous discussion. The mean deviation of these models is moderate and their standard deviations are the lowest for this suite. This is attributed to the fact that these models solved for or utilized biases to the observatory data determined from this same data.

Some instructive "peculiarities" occur for the -01 model as a consequence of setting some a priori biases equal to zero with no error, i.e. a priori $\sigma=0$. This is best illustrated by noting the mean and sigma for the Z component of survey data for 1985.5. From Figures 41j and 41n both quantities are much larger than for the other models. The survey data involved is from a single Project Magnet survey over the region from the southern tip of South America to the corresponding peninsula of Antarctica (See Figure 42). Forty four points were extracted and included in the fit from this survey. The observatory Arctowski is located in this region of Antarctica. It turns out that

the a priori bias value for Arctowski in the -01 model was taken to be zero. However the Z bias at Arctowski from the -02 model was 609 nT!

The model weighting was thus such that the fitting process tried to fit a 609 nT anomaly as though it were from the core, with high weight. The Project Magnet data, from the same region, were not weighted as heavily. Figure 42 shows the resulting residuals in the Z component of the Project Magnet data, from which much of the crustal field has been filtered. The result is a highly negative mean value for the Magnet data since the field is trying to fit the positive anomaly at Arctowski! Also, the scatter of the Project Magnet data was increased, as given in Table 16 and Figures 41j and 41n.

The "lessons" to be learned are several. One should not assign a zero bias with high weight when the actual bias is unknown. Further, when a priori biases are given, it is important that they carry proper weights and it is probably best to adjust them in the fitting process even though minimal new information is available.

In Figures 43a-i, the first 15 coefficients from each of the GSFC(4/89-X) series models are plotted from 1980 to 1989 along with those from the IGRF85. Included with these figures are the error bounds associated with the GSFC(4/89-4) model. The plots reemphasize the discussion of the last few paragraphs, i.e.: All of the models are "reasonable" in that they are not wildly different. There is some tendency to converge near 1985, which is near the midpoint of the data. In general the -4 model is the maverick of the lot, i.e. its temporal

change often shows a different trend than the other models. Recall that this is the only model not making use of observatory biases. Models -2 and -3 show very similar behavior, as already noted, and model -1 is probably most like the IGRF of the models plotted here.

Differences between various main field coefficients, projected to 1985, are shown in Table 17 and the σ of these differences by degree is shown in Table 18. These Tables include the GSFC(5/89-3) and -4 models as well as the GSFC(4/89-x) models. Because of the more extensive data set, including satellite data, which also permitted meaningful solution for observatory biases, the (5/89) models are considered the more accurate, i.e. the standard. From the Tables, as might be expected, the two (5/89) models are in closest agreement. Of the (4/89) models, the -1 model is in closest agreement with the (5/89) models. This reflects the fact that the biases furnished the -1 model were in fairly close agreement with those used in the (5/89) models. These biases were determined from a different data set, i.e. from an earlier time period, than that used in the -1 model, thus they are based on independent information. However, as pointed out above, they should have been accompanied by an error estimate. It is concluded that the -1 model coefficients are likely the most accurate of the (4/89) series, but that their stated coefficient σ 's are underestimated because of the lack of error estimation on the bias values.

Of the other (4/89) main field models, the -4 model is in considerably better agreement with the (5/89) models than are either the -2 or -3 model. This, perhaps, makes sense, as this model is most nearly correctly parameterized; it does not try to solve for observatory biases without satellite data to furnish a baseline; and it incorporates the correlated weight matrix. The -2 model attempts solution for observatory biases, probably without an adequate data base to do so, and the -3 model incorporates those biases without proper error estimates.

Differences between secular variation coefficients from the (5/89-3) and -4 and the (4/89-x) models are shown in Table 19 and their σ 's by degree are given in Table 20. Again as expected, the (5/89) models are in closest agreement. Next is the (4/89-2) model in which biases were solved for and the observatory data allowed to determine the secular variation without undue contamination from crustal fields.

Figures 44a-i are similar to Figures 43a-i, except the coefficients from the GSFC(5/89-4) model are plotted rather than those of the IGRF85. The GSFC(4/89-1) model shows close agreement to the GSFC(5/89-4) for the g_1^1 , h_1^1 , g_2^2 , h_2^2 , g_3^1 , g_3^3 , and h_3^3 terms. The GSFC(4/89-2) compares well with the GSFC(5/89-4) for the g_2^0 , g_2^1 , g_3^0 , and h_3^1 terms, while the GSFC(4/89-3) agrees only with the g_3^2 and h_3^2 terms, and the GSFC(4/89-4) agrees only with the g_1^0 and h_2^1 terms. As with the IGRF85 model, the GSFC(4/89-4) exhibits severe deviation from several of the GSFC(5/89-4) coefficient trends.

An assessment of the GSFC(4/89-X) series was also made based upon their $R_{\mathbf{n}}$ spectra. Since the same observation data was reduced in each of the constituent models, any variation in the power spectra must reflect differences in modeling techniques. Figure 45 is an overlay of the R_n spectra for GSFC(4/89-1), -2, and -4, and GSFC(5/89-4). The GSFC(4/89-3) spectrum was omitted since it is almost indistinguishable from that of GSFC(4/89-2). The spectra show a consistent increase in degree 7 through 10 harmonic power from GSFC(4/89-1) to -2 to -4, except at degree 10 where the GSFC(4/89-4) power curve exhibits a peculiar steepening, making it coincident with the GSFC(4/89-1) curve. Recall that the GSFC(4/89-1), -2, and -3 models all incorporate the effects of unmodeled field sources through various applications of the observatory biases, and that the GSFC(4/89-4) accounts for them via the correlated weight matrix only. We conclude that the use of observatory biases generally reduces the level of high frequency noise introduced in the system over that introduced by the use of the correlated weight matrix alone. Variation in the GSFC(4/89-1), -2, and -3 spectra may simply be a function of the biases used. In this case, the GSFC(11/87) biases allow for better signal resolution before they are adjusted. The GSFC(5/89-4) spectrum, considered here the standard, clearly contains less power than the GSFC(4/89-X) series spectra above degree 7. This is probably due to two reasons: first, the signal from the observatory and survey data is probably not sufficient to allow both static and secular variation terms to be resolved, whereas the Magsat data signal is sufficient; and secondly, since the truncation level of the GSFC(4/89-X) series is lower than that of GSFC(5/89-4), some aliasing of the unmodeled degree 11 through 13 signal may be present, although use of the correlated weight matrix should minimize this problem.

REFERENCES

- Cain, J.C., S.J. Hendricks, R.A. Langel, and W.V. Hudson; A Proposed Model for the International Geomagnetic Reference Field-1965; J. Geomag. Geoelectr., 19, 335-355, 1967.
- Langel, R.A.; Near-Earth Magnetic Disturbance in Total Field at High Latitudes, 1, Summary of Data from OGO 2, 4 and 6; J. Geophys. Res., 79, 2363-2371, 1974.
- Langel, R.A.; Main Field, in Geomagnetism; ed. by J. Jacobs, Chap. 4, Academic Press, 1987.
- Langel, R.A., and R.H. Estes; A Geomagnetic Field Spectrum; Geophys. Res. Lett., 9, 250-253, 1982.
- Langel, R.A., and R.H. Estes; The Near-Earth Magnetic Field at 1980 Determined from MAGSAT data; J. Geophys. Res., 90, 2495-2510, 1985.
- Langel, R.A., R.H. Estes, G.D. Mead, E.B. Fabiano, and E.R. Lancaster; Initial Geomagnetic Field Model from MAGSAT Vector Data; Geophys. Res. Lett., 7, 793-796, 1980.
- Langel, R.A., R.H. Estes, and G.D. Mead; Some New Methods in Geomagnetic Field Modeling Applied to the 1960-1980 Epoch; J. Geomag. Geoelectr., 34, 327-349, 1982.
- Langel, R.A., J.R. Ridgway, M. Sugiura, and K. Maezawa; The Geomagnetic Field at 1982 from DE-2 and Other Magnetic Field Data; J. Geomag. Geoelectr., 40, 1103-1127, 1988a.
- Langel, R.A., D.R. Barraclough, D.J. Kerridge, V.P. Golovkov, T.J. Sabaka, and R.H. Estes; Definitive IGRF Models for 1945, 1950, 1955, and 1960; J. Geomag. Geoelectr., 40, 645-702, 1988b.
- Langel, R.A., R.H. Estes, and T.J. Sabaka; Uncertainty Estimates in Geomagnetic Field Modeling; J. Geophys. Res., 94, 12,281-12,299, 1989.
- Lowes, F.J.; Mean Square Values on the Sphere of Spherical Harmonic Vector Fields; J. Geophys. Res., 71, 2179, 1966.
- Lowes, F.J.; Spatial Power Spectrum of the Main Geomagnetic Field, and Extrapolation to the Core; Geophys. J. R. Astron. Soc., 36, 717-730, 1974.
- Lowes, F.J.; Perpendicular error effect in the DGRF model proposals; Phys. Earth Planet. Inter., 37, 25-34, 1985

- Malin, S.R.C.; Worldwide Distribution of Geomagnetic Tides; Philos. Trans. R. Soc. London Ser. A, 274, 551-594, 1973.
- Mauersberger, P.; Das Mittel der Energiedichte des Geomagnetischen Hauptfeldes an der Erdoberflache und Seine Sakulare, Anderung; Gerlands Beitr. Geophys., 65, 207-215, 1956.
- Tarantola, A., and B. Valette; Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion; Rev. Geophys. Space Phys., 20, 219-232, 1982.

Table 1. Observatory Biases from the GSFC (11/87) Model

Observatory	Time	Saaa	Bi:	Tn) zes)	Standard	Deviatio	n (nT)
	Start	Stop	Y	Y	Z	X	Y	Z
Ahisko VI	1979.50	1983.50	7.5	68.1	19.0	25.0	25.0	25.0
Addis Ababa II	1979.50	1985.50	574.8	6.5		25.0	25.0	25.0
Alert	1979.50	1986.50	-19.7	28.4	-208.7	25.0	25.0	25.0 25.0
Alibag III	1979.50	1987.50	-215.1	449.9	602.3	25.0	25.0	25.0
Alma Ata	1979.50	1987.50	149.1		-185.4	25.0	25.0	25.0
Almeria	1979.50	1986.50	-26.9	30.7	24.4	25.0	25.0	25.0
Amatsia		1986.50	115.3	31.9	276.0	25.0	25.0 25.0	25.0
Annamalainag II	1979.50	1984.50	153.8	-91.9	-62.6	25.0	25.0 25.0	25.0
Apia IV		1987.50	-30.6	216.9	-898.0	25.0	25.0 25.0	25.0
Aquila		1987.50	-10.9	32.6	5.3	25.0	25.0 25.0	25.0
Arctowski		1985.50	0.0	0.0	0.0	25.0	25.0	25.0
Argentine Islnd	1979.50	1986.50	77.0	-85.3	475.9	25.0		25.0
Arti	1979.50	1987.50	112.2	-261.3	438.8	25.0	25.0 25.0	25.0
Baker Lake VII		1987.50	170.5	-32.3	-95.8	25.0	75.0	25.0
Bangui IV		1987.50		-65.8	257.5	25.0	25.0	25.0
Barrow IV		1987.50	15.7 0.0	-61.8	-48.5	30.0	25.0	25.0
Bay Saint Louis	1986.59	1986.59		0.0	0.0	25.0	25.0	25.0
Beijing	1979.50	1986.50	617.3	-216.3	448.3	25.0	25.0	25.0
Belsk	1979.50	1987.50	105.0	132.4	298.2	25.0	75.0	75.0
Bereznayki II		1980.50	-422.4	-311.5	227.5		75.0 75.0	75.0
Bereznayki III			-422.4	-311.5	227.5	75.0	75.0 25.0	25.0
Bjornoya II		1987.50	-	48.7	2.6	25.0	25.0 25.0	25.0
Borok	1979.50	1987.50	-28.4	-69.4			25.0	25.0
Boulder		1987.49	-7.9		-156.0		25.0	25.0
Brorfelde		1982.50	0.0	0.0	0.0		25.0	25.0
Brorfelde II		1986.50	0.0	0.0	0.0	25.0	25.0	25.0
Budkov		1986.50	-34.5	-35.3	-48.0		25.0	45.0
Cambridge Bay		1987.50	115.9	-84.4	110.7		25.0	25.0
Canarias		1986.50	-423.7		-1038.7		25.0	25.0
Canberra		1987.50	14.7	32.1	98.0		25.0	25.0
Cape Hellen III	1979.50	1987.50	-71.1	61.7	-104.1 -892.8		150.0	150.0
Casey		1985.50	865.4	-340.7			25.0	25.0
Che Pa		1979.50	-388.1	-127.2	-293.3 -293.3		25.0	25.0
Cha Pa II		1983.50		-127.2	103.5		25.0	25.0
Chambon ForetII	1979.50	1987.50	-74.7	-22.7	192.5		25.0	25.0
Changchun		1985.50	-118.9	26.9	0.0		25.0	25.0
Charters Towers	1984.50	1985.50	0.0	0.0	-94.6		30.0	30.0
Chelyuskin IV		1987.50	-13.8	-102.5 -33.0	254.0		25.0	25.0
Chichijima		1983.50	-310.8	-33.0	254.0		25.0	25.0
Chichijima II		1985.50	-310.8	-33.0 -7.4	8.3		25.0	25.0
Coimbra		1987.50	23.3		-102.1		25.0	25.0
College III		1987.50	-13.0	-47.7 0.0	0.0		25.0	25.0
Costa Rica		1979.87	0.0	124.9	92.7		25.0	25.0
Davis		1987.50	-253.5 0.0	0.0	0.0		25.0	25.0
Del Rio		1988.50		-149.3			25.0	25.0
Dikson V		1987.50	-85.9 -85.0	-89.1	-246.5		25.0	25.0
Dombas III		1986.50	-85.U 6.4	-21.6	77.9		25.0	25.0
Dourbes		1986.50		-402.6			25.0	25.0
Dumont Durville				-7UZ.0 7 7	-95.7	25.0	25.0	25.0
Dusheti II	1979.50	1985.50	-211.9	1.1	,,,,		_=	

Table 1. (continued)

Dymer	1979.50 1985.50	-24.2	82.2	108.2	25.0	25.0	25.0
Ebro IV	1979.50 1983.50	0.0	0.0	0.0	25.0	25.0	25.0
Eskdalemuir	1979.50 1986.50	5.7	-50.3	-49.7	25.0	25.0	25.0
Eyrewell	1979.50 1987.50	-8.3	-37.6	52.6	25.0	25.0	25.0
Fort Churchi II	1979.50 1987.50	-117.6	41.6	-270.3	25.0	25.0	25.0
Fredericksburg	1979.50 1987.50	75.2	-58.4	126.7	25.0	25.0	25.0
Fuquene	1979.50 1982.50	131.6	-59.1	59.8	25.0	25.0	25.0
Furstnfeldbruck	1979.50 1988.25	-28.0	-10.3	9.8	25.0	25.0	25.0
Gienles	1982.50 1986.50	0.0	0.0	0.0	25.0	25.0	25.0
Gnangara	1979.50 1987.50	4.1		139.0	25.0	25.0	25.0
Godhavn II	1979.50 1984.50	284.7	-311.8	714.3	25.0	25.0	25.0
Gornotayezhn II	1979.50 1986.50	-6.4		-59.0	25.0	25.0	25.0
Grahemstown	1979.50 1980.08	-114.8		53.4	25.0	25.0	25.0
Great Whale R	1979.50 1984.50	251.3		-85.1	25.0	25.0	25.0
Great Whale RII	1985.50 1987.50	251.3		-85.1	25.0	25.0	25.0
Grocka	1979.50 1987.50	-41.0	-52.1	-57.9	25.0	25.0	25.0
Guam	1979.50 1987.50	165.8	86.2	58.7	25.0	25.0	25.0
Guangzhou II	1980.50 1986.50	71.4		14.8	25.0	25.0	25.0
Halley Bay II	1980.50 1980.50	0.0	0.0	0.0	25.0	25.0	25.0
Hartebeesthoek	1979.50 1985.50	94.4	5.4	56.6	25.0	25.0	25.0
Hartland	1979.50 1986.50	-40.4	5.9	61.1	25.0	25.0	25.0
Hatizyo	1979.92 1980.50	-15.9	-783.9	437.9	25.0	25.0	25.0
Hatizyo II	1981.50 1987.50	-15.9	-783.9	437.9	25.0 25.0	25.0 25.0	25.0
Havana	1979.50 1979.50	0.0	0.0	0.0		25.0	
Heiss Island II	1979.50 1979.50	97.8	-681.0	1117.1	25.0 25.0	25.0 25.0	25.0 25.0
Hel III							
	1979.50 1987.50	43.5	-168.6	-97.7	25.0	25.0	25.0
Hermanus	1979.50 1987.50	9.3	~3.7	46.0	25.0	25.0	25.0
Honolulu IV	1979.50 1987.50	-153.7	81.9	-332.3	25.0	25.0	25.0
Hornsund	1979.50 1983.50	-17.7	-25.3	-46.8	25.0	25.0	25.0
Huancayo	1979.50 1986.50	80.8	23.8	5.7	25.0	25.0	25.0
Hurbanovo	1979.50 1986.50	3.2	-24.6	-56.7	25.0	25.0	25.0
Hyderabad	1979.50 1986.50	312.9	18.9	484.7	25.0	25.0	25.0
Irkutsk II	1984.50 1985.50	0.0	0.0	0.0	25.0	25.0	25.0
Istanbl Kndilli	1979.50 1981.50	0.0	0.0	0.0	25.0	25.0	25.0
Jaipur	1979.50 1986.50	177.8	-397.5	-26.0	25.0	25.0	25.0
Kakioka II	1979.50 1989.12	-7.7	14.9	-84.0	25.0	25.0	25.0
Kanoya	1979.50 1989.12	-10.8	51.7	-34.0	25.0	25.0	25.0
Kanozan	1979.50 1986.50	-52.7	37.5	-60.4	25.0	25.0	25.0
Kiev	1987.50 1987.50	0.0	0.0	0.0	25.0	25.0	25.0
Kiruna II	1979.50 1981.50		-1829.0	-47.8	25.0	25.0	25.0
Klyuchi II	1979.50 1985.50	192.1	-91.2	-18.3	25.0	25.0	25.0
Kodaikanal II	1979.50 1986.50	-549.5	276.1	-62.0	25.0	25.0	25.0
Krasnaya Pakhra	1979.50 1987.50	140.9	-23.0	185.1	25.0	25.0	25.0
La Quiaca IV	1979.50 1983.50	0.0	0.0	0.0	25.0	25.0	25.0
Lanzhou II	1980.50 1987.50	-18.7	10.1	-71.1	25.0	25.0	25.0
Lauder	1979.50 1979.50	0.0	0.0	0.0	25.0	25.0	25.0
Leirvogur	1979.50 1987.50	-277.4	607.1	-505.6	25.0	25.0	25.0
Lerwick II	1979.50 1986.50	-132.2	169.8	37.9	25.0	25.0	25.0
Lhasa	1983.50 1983.50	0.0	0.0	0.0	25.0	25.0	25.0
Loparskoye	1979.50 1981.50	106.0	334.8	-558.2	25.0	25.0	25.0
Lovo	1979.50 1983.50	44.0	-10.7	-3.7	25.0	25.0	25.0
Luanda Belas I	1981.50 1985.50	298.7	-77.4	218.7	25.0	25.0	25.0
Lunping	1979.50 1985.50	15.5	47.4	51.7	25.0	25.0	25.0
Lvov	1979.50 1987.50	143.6	120.5	145.2	25.0	25.0	25.0
M Bour	1979.50 1987.50	136.1	63.6	66.9	25.0	25.0	25.0
		_					

Table 1. (continued)

Macquarie Islnd	1979.50 1987.50	283.3	-8.4	299.8	25.0	25.0	25.0
Manhay II	1983.50 1985.50	0.0	0.0	0.0	25.0	25.0	25.0
Maputo II	1979.50 1985.50	397.0		-126.8	25.0	25.0	25.0
Martin Vivies	1981.62 1987.50	-567.6	-709.4 -	2024.1	25.0	25.0	25.0
Mawson	1979.50 1987.50	16.3	14.2	185.8	25.0	25.0	25.0
Meangok III	1979.50 1987.50	107.7	24.4	-143.8	25.0	25.0	25.0
Memambetsu	1979.50 1989.12	-240.0	141.6	66.2	25.0	25.0	25.0
Mirnyy III	1979.50 1987.50	-100.4	40.5	-451.4	25.0	25.0	25.0
Misallat III	1979.50 1980.50	0.0	0.0	0.0	25.0	25.0	25.0
Mizusawa	1979.50 1986.50	-146.6	45.0	-163.5	25.0	25.0	25.0
Molodezhnaya	1979.50 1985.50	-20.5	-104.7	-254.9	25.0	25.0	25.0
Mould Bay	1979.50 1987.50	-19.0	14.4	-62.0	25.0	25.0	25.0
Muntinlupa	1979.50 1986.50	-55.7	-14.2	58.3	25.0	25.0	25.0
Nagycenk	1979.50 1980.50	-2.5	-10.0	-73.1	25.0	25.0	25.0
Nagycenk II	1981.50 1983.50	-2.5	-10.0	-73.1	25.0	25.0	25.0
Nairobi	1979.50 1980.50	0.0	0.0	0.0	25.0	25.0	25.0
Nampula	1982.75 1984.50	0.0	0.0	0.0	25.0	25.0	25.0
Narssarssuag	1980.00 1984.00	-330.7	279.8	570.4	25.0	25.0	25.0
Newport	1979.50 1986.50	-34.9	122.1	-131.3	25.0	25.0	25.0
Niemegk	1979.50 1987.50	-32.0	-5.4	-85.4	25.0	25.0	25.0
Novo Kazalinsk	1979.50 1987.50	-113.5	-165.7	-6.3	25.0	25.0	25.0
Novolazarevs II	1979.50 1982.50	-273.9	71.0	90.3	30.0	30.0	25.0
Nurmijarvi	1979.50 1987.50	288.8	-115.8	87.2	30.0	30.0	25.0
Ottawa	1979.50 1987.50	139.4	-138.7	171.9	25.0	25.0	25.0
Pamatai II	1979.50 1987.50	-653.6	-726.0	-133.7	25.0	25.0	25.0
Panagyurishte	1979.50 1983.50	-191.0	-175.5	-189.8	25.0	25.0	25.0
Paratunka	1979.50 1987.50	-346.9	217.7	238.4	25.0	25.0	25.0
Patrony	1979.50 1987.50	13.5	37.4	-80.9	25.0	25.0	25.0
Pilar	1979.50 1983.50	5.7	-16.6	-17.9	25.0	25.0	25.0
Pleshenitzi	1979.50 1987.50	277.9	168.0	-143.0	25.0	25.0	25.0
Podkam Tunguska	1979.50 1987.50	44.6	-13.7	-290.6	25.0	25.0	25.0
Port Moresby	1979.50 1987.50	26.2	63.2	261.0	25.0	25.0	25.0
Port-Alfred	1979.50 1980.50	0.0	0.0	0.0	25.0	25.0	25.0
Port-Alfred I	1981.50 1987.50	-818.0	1115.4	171.0	25.0	25.0	25.0
Port-Aux-Franca	1979.50 1987.50	228.9	169.9	655.1	25.0	25.0	25.0
Quetta II	1979.50 1983.50	3.7	84.5	-54.6	25.0	25.0	25.0
Resolute Bay	1979.50 1987.50	47.0	44.9	58.0	25.0	25.0	25.0
Rude Skov	1979.50 1984.50	37.6	-15.3	-55.6	25.0	25.0	25.0
Sabhewala II	1979.50 1986.50	-22.2	-59.4	29.3	25.0	25.0	25.0
San Juan II	1979.50 1987.50	-36.8	180.4	188.9	25.0	25.0	25.0
San Pablo	1981.50 1986.50	10.7	32.7	-58.9	25.0	25.0	25.0
Sanae II	1979.75 1987.50	-53.5	-40.1	48.1	25.0	25.0	25.0
Scott Base II	1979.50 1979.50	0.0	0.0	0.0	25.0	25.0	25.0
Sheshan	1979.50 1985.50	-242.3	82.9	235.8	25.0	25.0	25.0
Shillong	1979.50 1986.50	-107.0	-79.0	-355.3	25.0	25.0	25.0
Sitka III	1980.50 1987.25	6.5	-13.5	-67.3	25.0	25.0	25.0
	1979.50 1987.50	-163.9	-111.9	-600.1	25.0	25.0	25.0
Sodankyla South Georgia	1979.50 1981.50	-76.7	-355.5	96.4	25.0	25.0	25.0
St John S	1979.50 1987.50	35.3	16.6	4.5	25.0	25.0	25.0
Stekoliniy	1979.50 1987.50	-286.0	-741.5	43.3	25.0	25.0	25.0
Stepanovka III	1979.50 1987.50	-114.3	-700.3	73.0	25.0	25.0	25.0
Surlari II	1979.50 1987.50	2.9	-34.4	-57.9	25.0	25.0	25.0
Syowa base II	1979.50 1986.50	-34.7	-37.9	21.1	25.0	25.0	25.0
Jyowa base II Tamanrasset III	1979.50 1979.50	65.6	-267.2	20.4	25.0	25.0	25.0
Tamanrasset IV	1980.50 1984.50		-267.2	20.4	25.0	25.0	25.0
iamanrasset IV	1,30.30 1,04.30						

Table 1. (continued)

Tananarive III	1983.50 1983.50	0.0	0.0	0.0	25.0	25.0	25.0
Tangerang III	1979.50 1983.50	29.2	-35.4	89.8	25.0	25.0	25.0
Tatuoca III	1979.50 1985.50	0.0	0.0	0.0	25.0	25.0	25.0
Tbilisi	1987.50 1987.50	0.0	0.0	0.0	25.0	25.0	25.0
Thule	1980.50 1984.50	-265.9	203.4	-25.2	25.0	25.0	25.0
Thule III	1980.50 1984.50	-66.1	107.7	29.3	25.0	25.0	25.0
Tihany II	1979.50 1987.50	-28.1	9.0	-33.6	25.0	25.0	30.0
Tiksi VI	1979.50 1987.50	-67.3	-139.0	-125.0	25.0	25.0	25.0
Toledo III	1979.50 1981.50	15.0	6.4	-5.6	25.0	25.0	25.0
Trivandrum	1979.50 1987.50	271.0	192.3	216.6	25.0	25.0	25.0
Tromso	1979.50 1987.50	111.4	-415.7	104.4	25.0	25.0	25.0
Tsumeb	1979.50 1987.50	64.6	-104.5	96.5	25.0	25.0	25.0
Tucson	1979.50 1989.08	-51.4	-50.5	116.2	25.0	25.0	25.0
Tulsa II	1982.41 1987.50	-37.3	-33.5	117.1	75.0	75.0	75.0
Tuntungan	1982.50 1982.50	0.0	0.0	0.0	75.0	75.0	75.0
Ujjain	1979.50 1981.50	-226.9	187.2	280.0	25.0	25.0	25.0
Ujjain II	1984.50 1985.50	-226.9	187.2	280.0	25.0	25.0	25.0
Urumqi	1980.50 1984.50	-53.2	-10.2	46.1	25.0	25.0	25.0
Valentia	1979.50 1988.50	127.2	-51.8	27.1	25.0	25.0	25.0
Vannovskaya II	1979.50 1987.50	178.7	85.2	80.6	25.0	25.0	25.0
Vassouras	1979.50 1985.50	87.0	-82.4	-67.1	25.0	25.0	25.0
Victoria .	1979.50 1987.50	31.6	3.6	-329.4	25.0	25.0	25.0
Vostok	1979.50 1987.50	38.0	63.7	17.3	25.0	25.0	25.0
Voyeykovo	1979.50 1985.50	84.7	13.7	-282.9	25.0	25.0	25.0
Vysokay Dub IV	1979.50 1980.50	0.0	0.0	0.0	25.0	25.0	25.0
Whiteshell	1979.50 1980.40	0.0	0.0	0.0	25.0	25.0	25.0
Wien Kobenzl	1979.50 1987.50	18.7	-5.9	11.4	25.0	25.0	25.0
Hingst	1979.50 1987.50	54.0	38.6	-70.1	25.0	25.0	25.0
Witteveen	1979.50 1987.50	24.6	-3.9	-77.6	25.0	25.0	25.0
Huhan	1980.50 1986.50	51.1	41.4	-55.5	25.0	25.0	25.0
Yakutsk II	1979.50 1985.50	68.1	-1188.4	77.8	25.0	25.0	25.0
Yangi-Bazar	1979.50 1981.50	-277.3	39.7	-95.6	25.0	25.0	25.0
Yangi-Bazar II	1982.50 1987.50	-277.3	39.7	-95.6	25.0	25.0	25.0
Yellow-Knife	1979.50 1986.50	400.9	-207.3	127.3	25.0	25.0	25.0
Yuzhno Sakh IV	1979.50 1984.50	-89.6	-62.5	97.4	25.0	25.0	25.0
Zaymishche III	1979.50 1987.50	-121.4	-116.5	117.2	25.0	25.0	25.0
	· · · · · · · · · · · · · · · · · · ·		· · -				

Table 2. General Data Set Information for Post 1980 Land and Selected Aeromagnetic and Marine Surveys.

Post 1980 Land Survey from 1980.0 to 1982.5

Component	Count	Standard Deviation	Average Time (yr)
Z	470	412 nT	1980.567
D	1003	0.86°	1980.543
Ī	6	0.41°	1980.500
H	456	301 nT	1980.570
В	8	412 nT	1980.882

Post 1980 Land Survey from 1982.5 to 1987.5

Component	Count	Standard Deviation	Average Time (yr)
X	6	290 nT	1984.370
Y Y	7	329 nT	1984.370
Z	284	447 nT	1984.625
D	604	0.73°	1984.514
I	103	0.53°	1984.199
Н	302	317 nT	1984.385
В	203	407 nT	1984.034

Project Magnet Collection 1 from 1980.0 to 1982.5

Component	Count	Standard Deviation	Average Time (yr)
x	286	371 nT	1981.408
Y	283	334 nT	1981.408
Z	289	467 nT	1981.408

Project Magnet Collection 1 from 1982.5 to 1987.5

Component	Count	Standard Deviation	Average Time (yr)
X	227	356 nT	1983.034
Y	256	418 nT	1983.011
Z	218	505 nT	1983.021

Project Magnet Collection 2 from 1984.0 to 1985.0

Component	Count	Standard Deviation	Average Time (yr)
X Y	183 183	285 nT 285 nT	1984.872 1984.872 1984.872
2	183	404 nT	1984.872

Project Magnet Collection 2 from 1985.0 to 1986.0

Component	Count	Standard Deviation	Average Time (yr)
x	42	285 nT	1985.183
Y	42	285 nT	1985.183
Z	42	404 nT	1985.183

Total-Intensity Marine from 1980.0 to 1982.5

Component	Count	Standard Deviation	Average Time (yr)
В	715	390 nT	1981.037

Total-Intensity Marine from 1982.5 to 1987.5

Component	Count	Standard Deviation	Average Time (yr)
В	275	400 nT	1984.212

Composite Data Set

Component	Count	Standard Deviation	Average Time (yr)
x	744	328 nT	1982.993
Y	771	329 nT	1982.995
2	1486	435 nT	1982.527
D	1607	0.80°	1982.036
I	109	0.51°	1983.995
Н	758	307 nT	1982.090
В	1202	395 nT	1982.269

Table 3. General Data Set Information for the Project Magnet White Sands Survey and the Remaining Post 1980 Marine Surveys

Project Magnet White Sands Survey

Component	Count	Standard Deviation	Average Time (yr)
X Y Z	271 270 278	285 nT 285 nT 404 nT	1989.217 1989.217 1989.217
Marine Survey	from 1980	.0 to 1981.0	
Component	Count	Standard Deviation	Average Time (yr)
В	1100	333 nT	1980.454
Marine Survey	from 1981	.0 to 1982.0	
Component	Count	Standard Deviation	Average Time (yr)
В	500	339 nT	1981.503
Marine Survey	from 1983	.0 to 1984.0	
Component	Count	Standard Deviation	Average Time (yr)
В	200	336 nT	1983.409
Marine Survey	from 1984	.0 to 1985.0	
Component	Count	Standard Deviation	Average Time (yr)
В	400	356 nT	1984.418
Marine Survey	from 1985	5.0 to 1986.0	
Component	Count	Standard Deviation	Average Time (yr)
В	307	345 nT	1985.447
Marine Survey	from 1986	5.0 to 1987.0	
Component	Count	Standard Deviation	Average Time (yr)
В	90	328 nT	1986.417

Marine Survey from 1987.0 to 1988.0

Component	Count	Standard Deviation	Average Time (yr)
В	99	344 nT	1987.348

Composite Data Set

Component	Count	Standard Deviation	Average Time (yr)
X	271	285 nT	1989.217
Y	270	285 nT	1989.217
2	278	404 nT	1989.217
В	2696	339 nT	1982.477

Table 4. General Data Set Information for DE-2 Satellite Data

Component	Count	Standard Deviation	Average Time (yr)
В	5100	26 nT	1982.284

Table 5. GSFC IBM-3081/MVS-TSO File Names for the Observation Data Sets

Observation Data Set	File Name
Observatory data	XR1RB.OBSERV.A1979.NFDST.DATA
Survey data	XRJRR.SDIMOD.ALL8089.SURVEY.DATA
DE-2 satellite data	XRJRR.DE2.NEWFIT.BWT.DATA

Table 6. GSFC IBM-3081/MVS-TSO Global File Names for the GSFC(5/89-X) Series

Model	File Name
MAGSAT a priori	XRTJS.GLOBAL.MAGSAT.F1310.DATA
GSFC(5/89-1)	does not exist
GSFC(5/89-2)	does not exist
GSFC(5/89-3)	XRTJS.RGLOBAL.MOSRV2.F1310.DATA
GSFC(5/89-4)	XRTJS.RGLOBAL.MOSDE2.F1310.DATA
GSFC(5/89-5)	XRTJS.GLOBAL.OWSAND.F1310.DATA

TABLE 7: Coefficient Differences: GSFC(5/89-3) minus GSFC(5/89-4).

			Main Field	l	Se	cular Var	iation
				Degree			Degree
			Diff. σ	σ of	Diff.	σ	σ of
g/h	n	m		Diff.			Diff.
g	1	0	0.2 4.94974	· 7	-2.3	0.295296	
g	1	1	0 4.94974	7	0.8	0.460977	
h	1	1	-0.1 4.94974	7 0.124721	1	0.467546	1.510702
g	2	0	0 1.97989	8	1.8	0.272946	
g	2	1	0 1.97989	8	0.5	0.277848	
h	2	1	0 1.97989		-0.4	0.291547	
g	2	2	0 1.97989			0.425205	
h	2	2	0 1.97989			0.411096	0.854634
g	3	0	-0.1 2.82842			0.255538	
g	3	1	0.1 2.82842		-0.8	0.280178	
h	3	1	0.1 2.82842			0.286006	
g	3	2	0.1 2.82842			0.274590	
h	3	2	0 2.82842			0.274590	
g	3	3	0 2.82842		0	0.389486	
h	3	3	-0.1 2.82842			0.389486	0.842978
g	4	0	0 1.27279			0.233238	
g	4	1	0.1 1.27279			0.241867	
h	4	1	0 1.27279			0.238537	
g	4	2	0.1 1.27279			0.266270	
h	4	2	0 1.27279			0.258069	
g	4	3	0 1.27279			0.260768	
h	4	3	0 1.27279			0.266270	
g	4	4	0 1.27279			0.375366	
h	4	4		2 0.041573		0.361247	0.484067
g	5	0	0.1 0.98994			0.219544	
g	5	1	0 0.98994			0.224722	
h	5	1	-0.1 0.98994			0.230217	
g	5	2	0 0.98994			0.246981	
h	5	2	0 0.98994			0.224722	
g	5	3	-0.1 0.98994			0.252388	
h	5	3	-0.1 0.98994			0.258069	
g	5	4	-0.1 0.98994			0.272029	
h	5	4	0 0.98994			0.252388	
g	5	5	0.1 0.98994			0.347131	
h	5	5		9 0.071581		0.361247	0.471151
g	6	0	0.1 0.70710			0.210950	
g	6	1	0 0.70710			0.219544	
h	6	1	0 0.70710			0.210950	
g	6	2	-0.1 0.70710			0.224722	
h	6	2	0.1 0.70710			0.216333	
g	6	3	0 0.70710	6	-0.7	0.224722	

```
-0.6 0.230217
            0 0.707106
h 6 3
            0 0.707106
                                 -0.4 0.258069
  6 4
                                  -0.2 0.230217
h 6 4
             0 0.707106
                                  0.8 0.244131
g 6 5
         -0.1 0.707106
                                  -0.6 0.258069
h 6 5
            0 0.707106
                                  -0.3 0.333016
g 6 6
          0.1 0.707106
                                  -0.2 0.333016 0.407329
            0 0.707106 0.061538
h 6 6
                                  0.8 0.197230
  7 0
          -0.1 0.565685
g
                                  -0.2 0.197230
  7 1
            0 0.565685
g
                                  -0.1 0.202484
h 7 1
             0 0.565685
                                  -0.3 0.210950
  7 2
             0 0.565685
g
                                  -0.3 0.194164
h 7 2
             0 0.565685
                                  -0.1 0.210950
g 7 3
            0 0.565685
                                  0.3 0.208086
h 7 3
            0 0.565685
                                  -0.2 0.238537
 7 4
            0 0.565685
g
                                  0.2 0.216333
            0 0.565685
h 7 4
                                  -0.2 0.236008
g 7 5
            0 0.565685
                                  0.5 0.244131
h 7 5
            0 0.565685
                                       0.25
g 7 6
          0.1 0.565685
                                  -0.4
                                   0.7 0.244131
          -0.1 0.565685
h 7 6
                                   0.7 0.333016
g 7 7
          -0.1 0.565685
                                  -0.2 0.318904 0.401995
             0 0.565685 0.049888
h 7 7
                                   0.4 0.188679
g 8 0
             0 0.565685
                                    0 0.188679
g 8 1
            0 0.565685
                                  0.2 0.180277
h 8 1
             0 0.565685
g 8 2
                                  -0.4 0.188679
            0 0.565685
                                   0.1 0.188679
h 8 2
            0 0.565685
g 8 3
                                 -0.1 0.188679
           0.1 0.565685
           0 0.565685
                                    0 0.186010
h 8 3
                                  0.3 0.222036
g 8 4
             0 0.565685
                                    0 0.194164
h 8 4
            0 0.565685
         -0.1 0.565685
                                  0.2 0.216333
g 8 5
                                  0.1 0.230217
h 8 5
            0 0.565685
                                    0 0.236008
g 8 6
            0.1 0.565685
             0 0.565685
                                  0.1 0.236008
h 8 6
                                   0.2 0.236008
g 8 7
           -0.1 0.565685
                                  -0.7 0.236008
h 8 7
           0.1 0.565685
                                   -0.6 0.304795
g 8 8
           0.1 0.565685
                                   0.5 0.318904 0.312927
             0 0.565685 0.058232
h 8 8
                                   -0.5 0.166433
g 9 0
            0 0.424264
g 9 1
                                   0.1 0.174928
            0 0.424264
                                   0.2 0.166433
            0 0.424264
h 9 1
g 9 2
                                   0.1 0.174928
            0 0.424264
                                   0.2 0.174928
h 9 2
            0 0.424264
                                   0.2 0.166433
g 9 3
            0 0.424264
                                  -0.1 0.180277
h 9 3
            0 0.424264
                                   0.2 0.186010
g 9 4
            0 0.424264
                                   0 0.174928
h 9 4
            0 0.424264
                                 -0.3 0.194164
g 9 5
            0 0.424264
```

```
h 9 5
               0 0.424264
                                             -0.3 0.216333
g 9 6
                 0 0.424264
                                              0.2 0.216333
             0.1 0.424264
h 9 6
                                             -0.7 0.208086
g 9 7
               0 0.424264
                                             -0.7 0.230217
               0 0.424264
0 0.424264
h 9 7
                                              0.6 0.236008
            0 0.42420-
0.1 0.424264
0 0.424264
- 2 424264 0.030689
g 9 8
                                             -0.7 0.236008
h 9 8
                                             -0.7 0.236008
g 9 9
                                               0.1 0.298328
               0.1 0.298328

0 0.424264 0.030689 0.1 0.297321 0.383163

0 0.424264 0.1 0.144222

0 0.424264 0.1 0.15

0 0.424264 0.15
h 9 9
g 10 0
g 10 1
h 10 1
g 10 2
h 10 2
                0 0.424264
                                              0.1
                                                       0.15
               0 0.424264
0 0.424264
0 0.424264
g 10 3
                                               0 0.158113
                                           0 0.158113
h 10 3
g 10 4
                                             0.1 0.164012
           0 0.424264

0 0.424264

0 0.424264

0 0.424264

0 0.424264

-0.1 0.424264

0 0.424264

0 0.424264

0 0.424264

0 0.424264
                                              0.2 0.15
h 10 4
g 10 5
                                              0.1 0.158113
h 10 5
                                              0.1 0.172046
g 10 6
                                                0 0.186010
                                             0.3 0.186010
h 10 6
g 10 7
                                              0.1 0.186010
h 10 7
                                           -0.1 0.186010
                                              0.7 0.2
0.3 0.2
g 10 8
h 10 8
g 10 9
                                              0.4 0.214009
h 10 9 0 0.424264 -0.2 0.214009 g 10 10 0 0.424264 -0.3 0.284253 h 10 10 0 0.424264 0.021295 -0.4 0.304795 0.233284
```

Table 8. General Statistical Summary for Selected Models Units are nT, Degrees

MODEL	=	GSFC(5/89) -4	5/89)	-1	1	GSFC(4/89 -2	68		3	7	1 1 1
DATA TYPE	Number of Points	Mean	d	Mean	Q	Mean	D	Mean	Q	Mean	Q
Observatory: X Y Z	1055 1055 1055	-0.3 -26.4 -20.7	194.7 235.2 391.9	-15.7 -28.7 -22.2	192.4 235.5 394.3	28.6 -21.6 -27.4	212.2 261.1 400.0	26.2 -21.6 -20.8	211.8 260.4 399.1	-2.3 -12.2 -38.7	184.66 225.9 397.5
DE-2: B	5100	-1.8	21.9								
SURVEY: X Y Z B H D(x10-3) I(x10-3)	1015 1041 1788 994 4060 1879	-6.6 21.2 -25.2 6.7 10.0 -0.08	88.9 103.2 90.6 85.9 74.7 4.0	-7.3 0.7 -19.1 -10.8 12.8 -0.74	100.7 113.4 107.6 90.6 119.2 4.1	18.5 -1.3 -2.6 25.9 8.4 -0.91	130 175.0 148 111.0 105.1 4.1	15.1 0.3 -0.4 18.1 10.4 0.79	126.3 170.8 145.0 104.6 109.1 4.0	4.7 -10.2 -38.4 33.5 2.6 2.2	120.4 138.7 129.7 110.2 156.1 4.5

Table 9. General Data Set Information for GSFC(4/89-X) Composite Survey

(yr)

Table 10: SUMMARY OF OBSERVATORY BIAS INCORPORATION INTO THE GSFC(4/89-x) MODELS

MODEL	OBSERVATORY BIASES UTILIZED
GSFC(4/89-1)	From GSFC(11/87) if available. Otherwise set to zero with no CWM. No adjustment made.
GSFC(4/89-2)	Biases adjusted.
GSFC(4/89-3)	From GSFC(4/89-2) or GSFC(11/87). Otherwise used CWM. No adjustment made.
GSFC(4/89-4)	No biases used. CWM used.

Table 11. GSFC IBM-3081/MVS-TSO Global File Names for the GSFC(4/89-X) Series

<u>Model</u>	File Name
GSFC(4/89-1)	XRJRR.GLOBAL.A1984.DATA4
GSFC(4/89-2)	XRJRR.GLOBBB.A1984.DATA1
GSFC(4/89-3)	does not exist
GSFC(4/89-4)	XRJRR.GLOBAL.A1984.DATA3

TABLE 12: Coefficient Differences Between the GSFC(4/89-x) Models.

			Model	-x minus	model -1	Model	-x minus	model -2
			2	3	4	1	3	4
g/h	n	m			- 4	05.0	5 0	0.0
g	1	0	25.2	19.3	34	-25.2	-5.9	8.8
g	1	1	-47	-41.2	-15.4	47	5.8	31.6
h	1	1	-39.9	-44.4	-6.4	39.9	-4.5	33.5
g	2	0	5.8	7.2	12.1	-5.8	1.4	6.3
g	2	1	14.5	6.3	52.5	-14.5	-8.2	38
h	2	1	22.2	16.2	25.6	-22.2	-6	
g	2	2	33.5	36.9	-18.2	-33.5		
h	2	2	25.9	29.2		-25.9		24.2
g	3	0	7	7.5	-1.6	-7		
g	3	1	2	2.1	-23.6	-2	0.1	
h	3	1	-3.8	3.5	-43.8	3.8	7.3	
g	3	2	5.6	0.8	10.9	-5.6		
h	3	2	-10.7	-8.7	-23.5	10.7	2	
g	3	3	-68.7	-62.5	-11.4	68.7	6.2	57.3
h	3	3	-11.2	-5.7	14.1	11.2	5.5	25.3
g	4	0	2.9	8.9	30.1	-2.9	6	27.2
g	4	1	-9.5	-6.9		9.5	2.6	-7.7
h	4	1	12.7	17.1		-12.7	4.4	10.4
g	4	2	-40.8	-39		40.8	1.8	21.4
h	4	2	21.2			-21.2	-0.9	-28.2
g	4	3	1.4			-1.4	-2.9	-27.6
h	4	3	1.8			-1.8	0.6	-30.7
g	4	4	44			-44	4.4	-87.7
h	4	4	23.7			-23.7	-3.3	-20.2
	5	0	4.8			-4.8	-9.5	-15.9
g	5	1	-19.5			19.5		11.7
g h	5	1	15.4			-15.4		-23.2
	5	2	-2.1			2.1		-10.7
g h	5	2	-5.9					-6
	5	3	42.4					1.9
g h	5	3	-8.6					
	5	4	8.1					-4.9
g			19.8					
h	5	4	-53.4					
g	5	5	-29.1					
h	5	5						
g	6	0	-3.3					
g	6	1	14					
h	6	1	-13.2					
g	6	2	11.2					
h	6	2	-2.3					
g	6	3	-17.7					
h	6	3	13	12.8	-26.6	-13	-0.2	55.0

	_		_			_	-	
g	6	4	-9	-10	15.5	9	-1	24.5
h	6	4	-17.3	-16.7	4.9	17.3	0.6	22.2
g	6	5	1.5	-0.7	12.4	-1.5	-2.2	10.9
h	6	5	-14.8	-10.4	-30	14.8	4.4	-15.2
g	6	6	15.9	17.6	10.7	-15.9	1.7	-5.2
h	6	6	26.8	27.3	-34.5	-26.8	0.5	-61.3
g	7	0	-0.8	5.2	25.4	0.8	6	26.2
g	7	1	-7.2	-4	-8.8	7.2	3.2	-1.6
h	7	1	0.9	-3.1	13.3	-0.9	- 4	12.4
g	7	2	-6.8	-0.9	-15.3	6.8	5.9	-8.5
h	7	2	8.6	10.7	-12.8	-8.6	2.1	-21.4
g	7	3	3.6	3.1	1.1	-3.6	-0.5	-2.5
h	7	3	-12.3	-5.9	-27.9	12.3	6.4	-15.6
g	7	4	-5.4	-3.9	-2.4	5.4	1.5	3
h	7	4	8.4	6.1	-2.3	-8.4	-2.3	-10.7
g	7	5	-3.9	-3	-33.5	3.9	0.9	-29.6
h	7	5	13	12.1	27	-13	-0.9	14
g	7	6	3.2	0.1	-3.6	-3.2	-3.1	-6.8
h	7	6	-1.8	0.9	10.7	1.8	2.7	12.5
g	7	7	-25.4	-23.7	-1.8	25.4	1.7	23.6
ĥ	7	7	-9.1	-14.1	-8	9.1	- 5	1.1
g	8	0	1.4	-3.4	-18.1	-1.4	-4.8	-19.5
g	8	1	-11.9	-11.5	-6.9	11.9	0.4	5
h	8	1	7.2	6.9	6.7	-7.2	-0.3	-0.5
g	8	2	-3.8	-6.6	-11.6	3.8	-2.8	-7.8
h	8	2	8.1	4.9	10.2	-8.1	-3.2	2.1
g	8	3	-3.4	-3.4	4.5	3.4	0	7.9
h	8	3	12.6	8.9	40.4	-12.6	-3.7	27.8
g	8	4	-1.7	2.8	-16.6	1.7	4.5	-14.9
h	8	4	3.2	4.9	-3.2	-3.2	1.7	-6.4
g	8	5	10.6	10.6	32.3	-10.6	0	21.7
h	8	5	13.5	10	8.7	-13.5	-3.5	-4.8
g	8	6	-8.5	-8.2	-2.2	8.5	0.3	6.3
h	8	6	-11.2	-14.2	12.9	11.2	-3	24.1
g	8	7	3.7	1.1	14.2	-3.7	-2.6	10.5
h	8	7	-15.1	-11.2	-14.1	15.1	3.9	1
g	8	8	22	20	27	-22	-2	5
h	8	8	11.9	4.3	24.6	-11.9	-7.6	12.7
g	9	0	0.3	0.8	7.3	-0.3	0.5	7
g	9	1	-2.5	-4.2	4.4	2.5	-1.7	6.9
h	9	ī	6.6	8.1	1.7	-6.6	1.5	-4.9
	9	2	-5.3	-5.7	1.3	5.3	-0.4	6.6
g h	9	2	-3.2	-2.9	-7.7	3.2	0.3	-4.5
	9	3						
g h	9	3	-0.2 -5.7	-0.6 -5.4	-7.7 -2.9	0.2 5.7	-0.4 0.3	-7.5
	9	4	-3.7 14	12.2		-14		2.8
g h	9	4			8.3 -7.3		-1.8	-5.7 1.4
			-5.9	-6.5	-7.3	5.9	-0.6	-1.4
g	9	5	-6.2	-6.5	-7.7	6.2	-0.3	-1.5
h	9	5	-8.1	-6.8	0.1	8.1	1.3	8.2

g	9	6	0	-0.7	0.9	0	-0.7	0.9
h	9	6	-15	-15	-1.3	15	0	13.7
g	9	7	13.5	13.7	13.3	-13.5	0.2	-0.2
h	9	7	6.4	4.3	-8.9	-6.4	-2.1	-15.3
g	9	8	-0.9	0.5	-7.5	0.9	1.4	-6.6
h	9	8	1.9	6.4	1	-1.9	4.5	-0.9
g	9	9	-7.6	-11	-7.5	7.6	-3.4	0.1
h	9	9	-1	-5	4.3	1	-4	5.3
g	10	ō	-4.9	-4.4	-5.1	4.9	0.5	-0.2
g	10	1	3.1	3	1.1	-3.1	-0.1	- 2
h	10	1	-9.1	-9.7	1.7	9.1	-0.6	10.8
	10	2	2.8	2.6	1.9	-2.8	-0.2	-0.9
h	10	2	-8.5	-6.8	-3.9	8.5	1.7	4.6
g	10	3	4.1	4.5	2.4	-4.1	0.4	-1.7
h	10	3	2.3	2.4	1.7	-2.3	0.1	-0.6
g	10	4	-6.1	-6.6	3.1	6.1	-0.5	9.2
h	10	4	5.9	5.1	4.4	-5.9	-0.8	-1.5
		5	-6.5	-6.5	-0.3	6.5	0	6.2
h	10	5	-8.2	-7.4	-4.9	8.2	0.8	3.3
g		6	8	9.1	-4.1	-8	1.1	-12.1
h	10	6	8	7.5	3.6	-8	-0.5	-4.4
g		7	1.2	1.9	-6.7	-1.2	0.7	-7.9
h	10	7	9	9.5	5.9	-9	0.5	-3.1
g	10	8	-10.2	-11.9	1.7	10.2	-1.7	11.9
h		8	1	0.3	-0.4	-1	-0.7	-1.4
		9	3.2	6.1	2.4	-3.2	2.9	-0.8
h		9	-2.5	-2.9	-4.8	2.5	-0.4	-2.3
g		10	-4.3	-5.2	-5.8	4.3	-0.9	-1.5
	10	10	-0.2	1.4	2.5	0.2	1.6	2.7

TABLE 13: Degree Statistics of Model Differences in Table 12.

	Model -:	k minus m	odel -1	Model -	c minus	model -2
Degre e	2	3	4	1	3	4
1	32.4	29.3	21.4	32.4	5.2	11.2
2	9.5	12.1	26.1	9.5	4.9	30.5
3	24.3	22.4	19.2	24.3	3.9	30.3
4	22.3	22.5	23.0	22.3	3.11	32.8
5	24.5	24.8	20.1	24.5	4.6	20.4
6	14.0	12.7	22.1	14.0	3.4	25.9
7	9.2	8.8	16.3	9.2	3.5	15.4
8	10.0	9.0	17.0	10.0	3.0	12.5
9	7.1	7.3	6.3	7.1	1.8	6.7
10	6.0	6.2	3.7	6.0	1.0	5.7

TABLE 14: Secular Variation Coefficient Differences Between the GSFC(4/89-x) Models.

Model -x minus model -1

			2	3	4
g/h	n	m			
g	1	0	1.8	0	6.8
g	1	1	-0.5	-0.5	3
h	1	1	-2.2	-3.9	1.8
g	2	0	-1.5	-0.7	1.3
g	2	1	2.5	0.7	10.4
h	2	1	2.3	1.2	5.4
g	2	2	-1.7	-0.4	-5.4
h	2	2	-0.1	1.1	7
g	3	0	1.6	1.5	-1.8
g	3	1	-2.6	-2.5	-5.6
h	3	1	-0.7	0.7	-7.8
g	3	2	2	2	5.4
h	3	2	-2.3	-2.3	-7.4 2.5
g	3	3	-1.2	-0.6	5
h	3	3	0.8	2.6	5
g	4	0	-2.6 0.6	-1.8 1.1	-4.6
g	4	1	-1.6	0	0.9
h	4	1	-2.2	-2.5	-2.8
g h	4	2 2	3	3.2	-1.1
	4	3	-2.5	-3.3	-7.3
g h	4	3	-0.9	-0.8	-8.1
	4	4	0.1	0.8	-8.6
g h	4	4	0.1	-0.8	-1.2
g	5	0	1.6	0.3	-2
g	5	1	0.8	0.5	3.2
h	5	1	3.5	0.8	-0.9
g	5	2	0	0.2	-3
h	5	2	-1.9	-1.4	-1.7
g	5	3	3.7	3.8	6.1
h	5	3	0.6	0	9.3
g	5	4	-0.2	-0.3	0.6
h	5	4	1.9	2.5	2
g	5	5	-0.1	-0.9	0
h	5	5	-0.4	-0.8	-0.3
g	6	0	0.3	0.9	-5.8
g	6	1	-0.6	-0.7	0.8
h	6	1	-2.5	-1.2	1.8
g	6	2	1.8	0.7	4.2
h	6	2	0.1	0.3	2.6
g	6	3	-2.3	-1.7	-5.1
h	6	3	-0.6	-0.6	-6.6

	_		2 2	. .	
g	6	4	0.2	0.4	2.5
h	6	4	-3.2	-2.7	0.4
g	6	5	1	0	1
h	6	5	-0.4	0.3	-5.3
g	6	6	-1.2	-0.5	2.4
h	6	6	1	1.5	-6.4
g	7	0	-1.2	0.1	4.1
g	7	1	-0.6	-0.4	-1.1
h	7	1	1.1	0.8	1.6
g	7	2	-1.7	-0.6	-2.8
h	7	2	0.4	0.5	-2.7
g	7	3	0.1	0.4	2.3
h	7	3	-0.5	0.9	-4.4
g	7	4	-0.2	-0.3	-0.5
h	7	4	2.5	2.1	0.6
g	7	5	-1.9	-1.8	-7.3
h	7	5	0.4	0.4	3.3
g	7	6	0.1	-0.4	-1.8
h	7	6	-1.5	-1.4	2.3
g	7	7	0.6	0.3	2.1
h	7	7	0.7	0.1	-3.1
g	8	0	0.6	-0.2	-2
g	8	1	0	-0.2	0.9
ħ	8	1	0.4	0.1	1
g	8	2	0.4	-0.2	-2.2
h	8	2	0.4	0.3	0.6
g	8	3	0	-0.1	-0.1
h	8	3	0.4	-0.1	5.8
g	8	4	-0.3	0.5	-1.1
h	8	4	-0.4	-0.5	-0.4
g	8	5	1.5	1.7	5
h	8	5	0.6	0.1	0.4
g	8	6	0.3	0.4	0.7
h	8	6	0.5	-0.7	3.5
g	8	7	0	-0.5	1.5
h	8	7	-0.6	0.4	-2.7
g	8	8	1.1	0.9	3.4
h	8	8	-0.6	-2.1	3.1
	-	-			

Table 15: MODEL STATISTICS BY YEAR FOR OBSERVATORY DATA

MODEL	STATISTIC	1983.5	1984.5	1985.5	1986.5	1987.5	1988.5
(5/89-4)	Points	146	145	129	100	87	6
(3/0) ()	mean x	1.4	-0.5	12.7	-20.9	-13.8	20.9
	sigma x	204.8	191.9	208.8	196.1	191.3	173.4
	mean y	-28.8	-26.7	-31.6	-10.4	-23.7	55.4
	sigma y	240.3		249	228.9	263.8	79
	mean z	-12.5		-30.6	-41.1	-49.5	-54.8
	sigma z	383.4	386.2	406.3	438	458.2	193.9
(//00.1)	Doints	146	145	129	100	87	6
(4/89-1)	Points	-14.9	-17	-4.5	-32.6		21.5
	mean x sigma x	201.6	187.9	202.5			
	mean y	-32	-27.6	-33.3			
	sigma y	240.4	237.2		232.1		
	mean z	-15.9		-31.3			
	sigma z	385.5	387.9	406.6		456.1	183.7
(4/89-3)	Points	146	145	129	100	87	6
	mean x	29.5	25.6	40	6	14.7	67.2
	sigma x	215	212.5	223.2	220	207.1	169.8
	mean y	-24.3		-28	-7.6	-16.5	
	sigma y	264.5	264.2	275	257.4	289.5	
	mean z	-17.6		-28.5			-164
	sigma z	388.4	394.7	413.7	447.2	453.6	173.6

Table 15(Continued): MODEL STATISTICS BY YEAR FOR OBSERVATORY DATA

MODEL	STATISTIC	1983.5	1984.5	1985.5	1986.5	1987.5	1988.5
(5/89-1)	Points	146	145	129	100	87	6
(-,	mean x	1.4	0.1	12.8	-21	-11.1	27.3
	sigma x	204.5	191	207.3	196.2	192.2	170.4
	mean y	-28.9	-26.4	-31.7	-11.4	-25	56
	sigma y	239.7	237.5	248.1	228.4		77.7
	mean z	-11	-13.2	-28.5			
	sigma z	383.1	386.6	405.4		456.2	182.4
(4/89-2)	Points	146	145	129	100	87	6
	mean x	31.8	28.1	41.7	7.4	15.7	66.1
	sigma x	215	213.2	222.7	219.7		173.1
	mean y	-24.6	-22.1	-26.5	-6.7	-16.1	88.2
	sigma y	265.6	265.1	275.4	257.4	289.4	
	mean z	-25	-21.4	-30.9	-50.9	-33.4	
	sigma z	389.1	395.7	414.1	447.1	454.4	172.9
(4/89-4)	Points	146	145	129	100	87	6
, , ,	mean x	-2	-4.7	14	-12.3	1	36.1
	sigma x	192	175.5	187.5	169.5	156.1	147.5
	mean y	-20	-17	-22.7		-23.1	37.8
	sigma y	231	221.9	224.5	189.6	213.2	86.3
	mean z	-34.4	-31	-41.4	-62.7	-57.8	
	sigma z	375.1	389.3	419.4	468.3	501.4	181.3

Table 16: MODEL STATISTICS BY YEAR FOR SURVEY DATA

MODEL	STATISTIC	1983.5	1984.5	1985.5	1986.5	1987.5	1989.5
(4/89-1)	x-points	115	189	42	0	0	271
	mean x	-23.5	-14.8	-25.7	0	0	-16.4
	sigma x	67.4	134.9	83.5	0	0	50.8
	y-points	115	190	42	0	0	270
	mean y	-16.9	62.9	32.4	0	0	0.3
	sigma y	72.1	150.3	183.7	0	0	55.2
	z-points	137	361	44	37	0	278
	mean z	-11.4	-15.9	-202	-29.1	0	12.2
	sigma z	81.3	108.5	133.7	151.9	0	70
	H-points	22	187	0	18	0	0
	mean h	28.2	-19.7	0	-76.1	0	0
	sigma H	85.1	77.6	0	302.6	0	0
	b-points	307	632	334	91	101	0
	mean b	-31.2	-22	8.9	45.4	13.8	0
	sigma b	100.4	99.4	119.7	97.9	129.5	0
(4/89-2)	x-points	115	189	42	0	0	271
() , - : - ;	mean x	-40.6	-35.1	-22.1	0	0	-3.6
	sigma x	96.1	90.1	45.2	0	0	47.6
	y-points	115	190	42	0	0	270
	mean y	-23.6	26.7	33.4	0	0	-5.2
	sigmay	99.4	83.5	43.5	0	0	56.6
	z-points	137	361	44	37	0	278
	mean z	-45.4	-5.5	-49.1	9.8	0	8.1
	sigma z	101.4	94.3	43.9	138.5	0	66.9
	H-points	22	187	0	18	0	0
	mean h	61.2	0.9	0	17.7	0	0
	sigma H	92.1	74.4	0	279.2	0	0
	b-points	307	632	334	91	101	0
	mean b	1.34	-9.9	1.3	1.8	41.3	0
	sigma b	103.4	83.2	91	80.5	85.9	0

Table 16(Continued): MODEL STATISTICS BY YEAR FOR SURVEY DATA MODEL STATISTIC 1983.5 1984.5 1985.5 1986.5 1987.5 1989.5 (5/89-4)115 42 0 0 x-points 189 271 mean x 11.3 -31.1 -7.4 0 0 -46.4 58.2 96.1 sigma x 45.4 0 0 50.3 y-points 115 190 42 0 0 270 125.9 0 mean y -11.4 98.9 0 19.6 70.9 99.2 41 0 0 55.3 sigma y 137 37 0 z-points 361 44 278 mean z -2.4 -30.5 1.4 -45.9 0 10.1 sigma z 67.1 91.7 37.3 148.6 0 64.2 H-points 22 187 0 18 0 0 mean h 36.6 2.7 0 -43.1 0 0 sigma H 81.6 73.8 0 289.2 0 0 0 b-points 307 632 334 91 101 mean b 14.6 2.6 18.6 67.8 83.3 0 sigma b 97.7 103.6 61.4 86.8 84.9 0 0 271 (4/89-3)x-points 115 189 42 0 -23 -35.8 -46.2 0 0 -6.5 mean x 0 47.4 sigma x 97.3 97.4 57.1 0 y-points 115 190 42 0 0 270 33.9 0 0 -5.5 mean y -20.6 34 89.3 39.2 0 0 57.2 sigma y 89.2 0 z-points 137 361 44 37 278 0 6.5 mean z -35.6 -9.8 -18.8 3.5 sigma z 100.2 94.3 42 138.2 0 67.4 0 187 0 H-points 22 0 18

0.6

73.8

632

-6.5

83.8

0

0

334

-4.2

90.7

-4.4

91

2.6

82.7

282.5

0

0

101

27.1

87.2

0

0

0

mean h

sigma H

b-points mean b

sigma b

55.5

90.7

107.3

307

1

Table 16(Continued): MODEL STATISTICS BY YEAR FOR SURVEY DATA

MODEL	STATISTIC	1983.5	1984.5	1985.5	1986.5	1987.5	1989.5
(4/89-4)	X-POINTS	115	189	42	0	0	271
(4/05-4)	mean x	-42.4	-11.3	-21	0	0	-3.8
	sigma x	151.5	98.6	44.6	0	0	48
	y-points	115	190	42	0	0	270
	mean y	-17.9	39.7	18.5	0	0	- 4
	sigma y	119.8	103	48.1	0	0	51.9
	z-points	137	361	44	37	0	278
	mean z	-54.5	-13.4	-104	-71.2	0	3.9
	sigma z	132.2	98.4	56	128	0	65.4
	H-points	22	187	0	18	0	0
	mean h	38	-13.2	0	-9.5	0	0
	sigma H	84.4	82.1	0	275.5	0	0
	b-points	307	632	334	91	101	0
	mean b	12.8	-9.5	12	15.7	-24.2	0
	sigma b	100.7	92.3	109.2	80.2	82.2	0

TABLE 17: Main Field Coefficient Differences: Specified model minus GSFC(5/89-4) at 1985.

			(5/89-3)	(4/89-1)	(4/89-2	(4/89-3	(4/89-4)
g/h	n	m					
g	1	0	-11.3	-1.9022	15.358	17.3978	2.103
g	1	1	4	-20.5155	-65.31	-59.51	-49.1485
h	1	1	4.9	-10.6486	-40.8444	-37.8457	-24.9884
g	2	0	9	-8.7214	3.6951	1.5663	-2.3557
g	2	1	2.5	-2.011	1.4615	1.2013	4.6146
h	2	1	-2	1.6912	13.7459	12.598	3.4718
g	2	2	-2.5	7.3971	48.3958	46.0615	13.0165
h	2	2	-1	27.2637	53.6048	51.6116	46.4867
g	3	0	6.9	8.8314	8.7738	9.7149	15.1712
g	3	1	-3.9	6.8207	20.2893	19.9482	7.9223
h	3	1	-7.4	6.1764	5.4641	6.5887	-3.2178
g	3	2	-0.9	12.433	9.211	4.411	-0.4864
h	3	2	-1	-6.555	-7.1097	-5.1097	2.5864
g	3	3	0	1.9809	-61.4259	-57.8725	-20.4466
h	3	3	1.9	-5.7968	-20.5256	-22.9654	-13.7518
g	4	0	1	-1.0974	13.2712	15.7424	6.9476
g	4	1	-3.4	2.8877	-9.2589	-8.8644	5.9783
h	4	1	2.5	-6.2851	13.4725	10.8149	12.845
g	4	2	-2.4	-2.8094		-30.7819	-9.8586
h	4	2	4.5	-2.1246	5.8424	4.0602	-4.2725
g	4	3	3		8.1945	8.8233	1.7673
h	4	3	0.5	-7.6728	-1.9029	-1.744	-0.8437
g	4	4	-0.5	0.8249	44.3838	45.6961	-4.9405
h	4	4	0	8.1	31.3589	32.0288	16.8932
g	5	0	-3.9	-1.9191	-4.1767	-7.9424	-4.1971
g	5	1	2			-19.6712	
h	5	1	2.4	3.2029	3.1644	3.6741	-0.6272
g	5	2	4.5	-7.6602	-9.7602	-7.6424	-7.2272
h	5	2	2.5	-0.5686	1.9123	0.3068	-4.9699
g	5	3	1.9	-1.9298	24.1495	23.5084	15.4631
h	5	3	1.4	5.9343	-5.3123	-5.8657	0.912
g	5	4	1.9	-0.9	8.0822	3.8233	-0.3466
h	5	4	0	2.2932	13.7123	15.0657	0.9712
g	5	5	-1.9	4.4479			-12.1521
h	5	5	-1.5		-21.3411	-24.9767	
g	6	0	-2.4	5.0479	0.4246	0.478	-1.3683
g	6	1	1.5	-7.2233	9.4233	7.5644	-2.6521
h	6	1	0	-3.9508	-6.1233	-3.6576	-0.9906
g	6	2	0.9	-1.7411	1.5191	-0.0288	8.6327
h	6	2	-0.9	1.6343	-1.1068	-0.889	3.9657
g	6	3	-3.5	-1.3262	-8.8809	-9.6275	-10.3301
h	6	3	-3	-1.3411	14.3055	14.1055	1.1715
g	6	4	-2	5.5288	-4.3534	-6.2356	10.0013

```
4.3793
              -1
                    1.2437
                            -1.9411 -3.5466
h
  6
                                                    7.4
   6
      5
              3.9
                    -0.589
                                -3.5
                                        -1.289
                                                -9.5272
                   -2.9055 -15.9411 -14.6288
   6
      5
              - 3
                                                 3.8628
                                      23.5547
                    3.7492
                            24.9424
   6
      6
             -1.4
g
                                                -8.0696
                                      18.8835
              -1
                      -1.8
                              20.589
   б
      6
h
                              1.0123
                                       1.278
                                                 3.834
              3.9
                   -3.4809
   7
      0
g
                                                -3.6712
                    0.2767
                            -4.2767
                                       -1.9589
   7
               -1
      1
g
                                                11.689
                              1.4945
                                      -1.1822
   7
      1
             -0.5
                    5.4466
h
                                                 4.0521
   7
      2
             -1.5
                    7.0013
                                 7.7
                                       8.7479
g
                              7.5945
                                        9.2534
                                                -0.1314
                    0.7589
   7
      2
             -1.5
h
                                        6.289
                                                -4.0919
                    4.9534
                              8.1123
   7
      3
             -0.5
g
                                       -3.0631
                                                -1.6848
                    6.8068
                            -3.2877
   7
      3
              1.5
h
                                       -0.9343
                                                1.4479
   7
                    1.6424
                             -2.8754
       4
               -1
g
                                       -5.1068
                                                -6.8903
                   -1.9437
                            -4.5712
   7
       4
               1
h
                                        6.0657
                                                -0.1738
                              5.6068
   7
       5
               -1
                    1.1259
g
                                                 4.6081
   7
       5
              2.5
                   -7.8356
                                3.4
                                           2.5
h
                              4.9822
                                        4.0877
                                                  6.5631
   7
       6
             -1.9
                    2.2233
g
                              0.6767
                                        2.9356
                                                -3.5851
   7
                   -4.1398
       6
              3.4
h
                   -1.2178 -29.2644 -26.2411 -12.2809
   7
       7
              3.4
g
                                                10.1796
                             -7.6822 -10.0356
h
   7
       7
               -1
                    4.5055
                                                -2.8369
   8
                2
                   6.4411
                              5.1945
                                        3.9233
       0
g
                   3.8822
                            -8.0178
                                      -6.7356
                                                -6.9877
   8
                0
       1
g
                                        5.6767
                                                 1.5068
                              4.6534
                   -0.7822
   8
       1
                1
h
                                                -5.1492
                            -8.8178
                                       -8.9712
               -2
                   -3.2534
g
   8
       2
                                                 5.5822
   8
       2
              0.5
                   -1.9712
                              4.3644
                                       1.6055
h
                   -2.4589
                            -5.8589
                                      -5.4178
                                                  2.4822
   8
       3
             -0.4
g
                                           0.4
                                                 5.8751
                   -8.9411
                              1.8945
   8
       3
                0
h
                                        1.3356 -11.0068
                              0.3644
              1.5
                   0.7411
   8
       4
g
                                                -1.8466
                              4.5534
                                        6.6945
   8
       4
                0
                    -0.411
h
                                                  1.9259
   8
              0.9
                   -8.3191
                             -4.3356
                                       -5.2178
       5
g
                             12.0767
                                       10.7822
                                                  8.1589
              0.5
   8
       5
                    1.2233
h
                                                -4.6233
                     0.6644
                             -9.1589
                                          -9.3
              0.1
   8
       6
g
                                                 -0.122
                                       -8.6958
                             -10.989
h
   8
       6
              0.5
                     2.4165
                             -3.6178
                                                  0.2657
              0.9
                   -7.3178
                                       -4.0123
   8
       7
g
                    0.7767 -11.6767 -12.1877
                                                -1.4136
       7
             -3.4
h
   8
                    6.2275
                             23.3754
                                       22.2576
                                                 18.2301
             -2.9
g
   8
       8
                                                  9.556
                   -1.3699
                                       12.1932
                             13.1767
h
   8
       8
              2.5
             -2.5
   9
       0
g
              0.5
   9
       1
g
                1
h
    9
       1
              0.5
    9
       2
g
h
    9
       2
                 1
    9
                 1
g
       3
    9
       3
             -0.5
h
g
    9
       4
                 1
    9
                 0
h
       4
             -1.5
    9
       5
g
    9
       5
             -1.5
h
    9
                 1
       6
```

h	9	6	-3.4
g	9	7	-3.5
h	9	7	3
g	9	8	-3.5
h	9	8	-3.4
g	9	9	0.5
h	9	9	0.5
g	10	0	0.5
g	10	1	0
h	10	1	0.5
g	10	2	0
h	10	2	0.5
g	10	3	0
h	10	3	-0.5
g	10	4	0.5
h	10	4	1
g	10	5	0.5
h	10	5	0.5
	10	6	0.5
g h	10	6	1.5
	10	7	0.4
g h	10	7	-0.5
	10	8	3.5
g			
h	10	8	1.5
g	10	9	2
h	10	9	-1 -1.5
g	10	10	
h	10	10	-2

TABLE 18: Degree Statistics of Model Differences in Table 17.

Model Degree	(5/89-3)	(4/89-1)	(4/89-2)	(4/89-3)	(4/89-4)
1	7.4	7.6	33.8	32.4	20.9
2	4.3	12.2	22.3	21.8	17.4
3	4.1	6.7	25.5	24.4	11.3
4	2.4	4.6	21.3	21.0	8.2
5	2.3	4.0	18.7	18.2	8.4
6	2.0	3.5	11.4	10.7	6.5
7	2.0	4.1	9.0	8.6	6.2
8	1.5	4.3	9.4	9.0	6.8

TABLE 19: Secular Variation Coefficient Differences: Specified model minus GSFC(5/89-4).

			(5/89-3)	(4/89-1)	(4/89-2)	(4/89-3)	(4/89-4)
g/h	n	m					
g	1	0	-2.3	-5.1	-3.3	-5.1	1.7
g	1	1	0.8	-0.3	-0.8	-0.8	2.7
h	1	1	1	4.1	1.9	0.2	5.9
g	2	0	1.8	3.1	1.6	2.4	4.4
g	2	1	0.5	-2.1	0.4	-1.4	8.3
h	2	1	-0.4	-5.6	-3.3	-4.4	-0.2
g	2	2	-0.5	-0.7	-2.4	-1.1	-6.1
h	2	2	-0.2	5.2	5.1	6.3	12.2
g	3	0	1.4	0.6	2.2	2.1	-1.2
g	3	1	-0.8	1.1	-1.5	-1.4	-4.5
h	3	1	-1.5	1.4	0.7	2.1	-6.4
g	3	2	-0.2	-2.1	-0.1	-0.1	3.3
h	3	2	-0.2	2	-0.3	-0.3	-5.4
g	3	3	0	-0.6	-1.8	-1.2	1.9
h	3	3	0.4	-1.8	-1	0.8	3.2
g	4	0	0.2	3.3	0.7	1.5	8.3
g	4	1	-0.7	0.1	0.7	1.2	-4.5
h	4	1	0.5	0.6	-1	0.6	1.5
g	4	2	-0.5	2.5	0.3	0	-0.3
h	4	2	0.9	-2.5	0.5	0.7	-3.6
g	4	3	0.6	4.5	2	1.2	-2.8
h	4	3	0.1	1.8	0.9	1	-6.3
g	4	4	-0.1	-0.4	-0.3	0.4	-9
h	4	4	0	0.2	0.3	-0.6	-1
g	5	0	-0.8	-3.2	-1.6	-2.9	-5.2
g	5	1	0.4	-0.8	0	-0.3	2.4
h	5	1	0.5	-3.8	-0.3	-3	-4.7
g	5	2	0.9	0	0	0.2	-3
h	5	2	0.5	2.5	0.6	1.1	0.8
g	5	3	0.4	-4.3	-0.6	-0.5	1.8
h	5	3	0.3	-0.6	0	-0.6	8.7
g	5	4	0.4	0.6	0.4	0.3	1.2
h	5	4	0	-1.9	0	0.6	0.1
g	5	5	-0.4	1.2	1.1	0.3	1.2
h		5	-0.3	-0.4	-0.8	-1.2	-0.7
g	6	0	-0.5	0.1	0.4	1	-5.7
g	6	1	0.3	0.3	-0.3	-0.4	1.1
h	6	1	0	2.9	0.4	1.7	4.7
g	6	2	0.2	-1.3	0.5	-0.6	2.9
h	6	2	-0.2	-0.1	0	0.2	2.5
g	6	3	-0.7	2	-0.3	0.3	-3.1
h	6	3	-0.6	0.5	-0.1	-0.1	-6.1
g	6	4	-0.4	-0.7	-0.5	-0.3	1.8

h	6	4	-0.2	4.1	0.9	1.4	4.5
g	6	5	0.8	-1.1	-0.1	-1.1	-0.1
h	6	5	-0.6	-0.2	-0.6	0.1	-5.5
g	6	6	-0.3	1.3	0.1	0.8	3.7
h	6	6	-0.2	-1	0	0.5	-7.4
g	7	0	0.8	1.7	0.5	1.8	5.8
g	7	1	-0.2	0.9	0.3	0.5	-0.2
h	7	1	-0.1	-0.8	0.3	0	0.8
g	7	2	-0.3	1.5	-0.2	0.9	-1.3
h	7	2	-0.3	-0.3	0.1	0.2	-3
g	7	3	-0.1	0.1	0.2	0.5	2.4
h	7	3	0.3	0.5	0	1.4	-3.9
g	7	4	-0.2	0.5	0.3	0.2	0
h	7	4	0.2	-4.1	-1.6	-2	-3.5
g	7	5	-0.2	2.3	0.4	0.5	- 5
h	7	5	0.5	-0.3	0.1	0.1	3
g	7	6	-0.4	-0.5	-0.4	-0.9	-2.3
h	7	6	0.7	2	0.5	0.6	4.3
g	7	7	0.7	-0.2	0.4	0.1	1.9
h	7	7	-0.2	-1.1	-0.4	-1	-4.2
g	8	0	0.4	-0.6	0	-0.8	-2.6
g	8	1	0	0	0	-0.2	0.9
h	8	1	0.2	0.2	0.6	0.3	1.2
g	8	2	-0.4	-1	-0.6	-1.2	-3.2
h	8	2	0.1	-0.3	0.1	0	0.3
g	8	3	-0.1	0	0	-0.1	-0.1
h	8	3	0	-0.1	0.3	-0.2	5.7
g	8	4	0.3	0.1	-0.2	0.6	-1
h	8	4	0	1.3	0.9	0.8	0.9
g	8	5	0.2	-1.9	-0.4	-0.2	3.1
h	8	5	0.1	-0.6	0	-0.5	-0.2
g	8	6	0	-0.3	0	0.1	0.4
h	8	6	0.1	-1	-0.5	-1.7	2.5
g	8	7	0.2	0.2	0.2	-0.3	1.7
h	8	7	-0.7	-0.2	-0.8	0.2	-2.9
g	8	8	-0.6	-1.7	-0.6	-0.8	1.7
h	8	8	0.5	0.7	0.1	-1.4	3.8

TABLE 20: Degree Statistics of Model Differences in Table 19.

Model Degree	(5/89-3)	(4/89-1)	(4/89-2)	(4/89-3)	(4/89-4)
1	1.5	3.8	2.1	2.3	1.8
2	0.85	3.8	3.0	3.7	6.4
3	0.8	1.5	1.3	1.3	3.9
4	0.5	2.0	0.8	0.6	4.7
5	0.5	2.0	0.7	1.3	3.6
6	0.4	1.6	0.4	0.8	4.3
7	0.4	1.5	0.5	0.9	3.2
8	0.3	0.8	0.4	0.7	2.3

Appendix A. Listing of Internal Field Static and Secular Variation Terms and, When Available, Their Estimated Uncertainties for GSFC(4/89-X) and GSFC(5/89-X) Series

GSFC(5/89) MODELS: Main Field Coefficients

		_	3_		4		5	
Model	1	2	3					
	coef.	coef.	coef.	σ	coef.	σ	coef.	σ
g/h n m			22226	25 -	29986.6	3.5 -	29987.2	3.5
g 1 0	-29986.4	-29986.4		3.5 -		3.5	-1955.2	3.5
g 1 1	-1956.1	-1956.1	-1930.1	3.5		3.5	5603.9	3.5
h 1 1	5604.2	5604.2	300	1.4	300	1.4	-1996.9	1.4
g 2 0	-1996.9	-1996.9	-1996.9			1.4	3027.7	1.4
g 2 1	3027.3	3027.3	3027.3	1.4	-2129.3	1.4	-2129.1	1.4
h 2 1	-2129.3	-2129.3	-2129.3		1662.6	1.4	1661.4	1.4
g 2 2	1662.6	1662.6	1662.6	1.4	-199.9	1.4	-200.2	1.4
h 2 2	-199.8	-199.8	-199.9	1.4	1281.7	2	1282.2	2
-	1281.6	1281.6	1281.6	2	-2180.7	2	-2180.8	2
		-2180.6	-2180.6	2	-335.5	2	-335	2
g 3 1 h 3 1		-335.4	-335.4	2	1250.7	2	1250.9	2
••			1250.8	2	271	2	270.9	2
g 3 2 h 3 2			271	2		2	833.7	2
			833.1	2	833.1	2	-252.2	2
•	_		-252.6	2	-252.5	0.9	937.5	0.9
••	•		937.4	0.9	937.4	0.9	781.7	0.9
•			782.1	0.9	782	0.9	212.3	0.9
0	212.		212.4	0.9	212.4	0.9	397.7	0.9
••	2 397.4		397.4	0.9	397.3	0.9	-256.8	0.9
6	2 -256.			0.9	-256.6	0.9	-419.1	0.9
••	3 -419.	·		0.9	-419.1	0.9	52.9	
0	3 5			0.9	53		198	
	_	-		0.9	198.3	0.9	-297.7	
g 4			-297.3	0.9	-297.3	0.9	_	
	·			0.7	-218			
g 5				0.7				_
g 5	- .	6 4		0.7				
h 5	-			0.7	261			
g 5	_	· •		0.7	149.8			•
h 5	2 149				-74.3	0.7		_
g 5	3 -74							-
h 5	3 -150	• •						_
g 5	4 -10			_			_	
h 5	4 -77	· ·	•	_				
g 5	5 -47			-		1 0.	7 91.	9 0.
h 5	5 92	.1 92.	. 1 32.	_				

М	ode	1	1	2		3		4		5
			coef.	coef.	coef.	σ	coef.	σ	coef.	σ
g/h	n	m	•							
_	6	0	48.1	48.1	48.1	0.5	48	0.5	48.1	0.5
g	6	1	65.5	65.5	65.5	0.5	65.5	0.5	65.7	0.5
g	6	1	-14.8	-14.8	-14.8	0.5	-14.8	0.5	-14.6	0.5
h		2	41.9	41.9	41.9	0.5	42	0.5	41.8	0.5
g	6		93.2	93.2	93.2	0.5	93.1	0.5	93.3	0.5
h	6	2		-192.2	-192.2	0.5	-192.2	0.5	-192.2	0.5
g	6	3	-192.2		70.7	0.5	70.7	0.5	71	0.5
h	6	3	70.7	70.7		0.5	3.6	0.5	3.7	0.5
g	6	4	3.6	3.6	3.6	0.5	-43	0.5	-43	0.5
h	6	4	-43	-43	-43		13.8	0.5	13.8	0.5
g	6	5	13.7	13.7	13.7	0.5	-2.2	0.5	-2.1	0.5
h	6	5	-2.1	-2.2	-2.2	0.5		0.5	-107.7	0.5
g	6	6	-107.6	-107.6	-107.6	0.5	-107.7		17.6	0.5
h	6	6	17.2	17.2	17.2	0.5	17.2	0.5	72.2	0.4
g	7	0	71.9	71.9	71.9	0.4	72	0.4		0.4
g	7	1	-59.2	-59.2	-59.2	0.4	-59.2	0.4	-59.1	
h	7	1	-82.6	-82.6	-82.6	0.4	-82.6	0.4	-82.4	0.4
g	7	2	1.7	1.7	1.7	0.4	1.7	0.4	1.8	0.4
h	7	2	-27.4	-27.4	-27.4	0.4	-27.4	0.4	-27.3	0.4
g	7	3	20.7	20.7	20.7	0.4	20.7	0.4	20.8	0.4
h	7	3	-5	-5	-5	0.4	-5	0.4	-4.9	0.4
g	7	4	-12.5	-12.5	-12.5	0.4	-12.5	0.4	-12.3	0.4
h	7	4	16.2	16.2	16.2	0.4	16.2	0.4	15.7	0.4
g	7	5	0.5	0.5	0.5	0.4	0.5	0.4	0.5	0.4
h	7	5	17.8	17.8	17.8	0.4	17.8	0.4	18.2	0.4
g	7	6	10.7	10.7	10.7	0.4	10.6	0.4	10.9	0.4
h	7	6	-23	-23	-23	0.4	-22.9	0.4	-22.8	0.4
g	7	7	-1.7	-1.7	-1.7	0.4	-1.6	0.4	-1.5	0.4
h	7	7	-9.8	-9.8	-9.8	0.4	-9.8	0.4	-10.3	0.4
g	8	0	18.5	18.5	18.5	0.4	18.5	0.4	18.5	0.4
g	8	1	6.5	6.5	6.5	0.4	6.5	0.4	6.3	0.4
h	8	1	6.8	6.8	6.8	0.4	6.8	0.4	6.5	0.4
g	8	2	-0.4	-0.4	-0.4	0.4	-0.4	0.4	-0.3	0.4
h	8	2	-17.7	-17.7	-17.7	0.4	-17.7	0.4	-17.6	0.4
g	8	3	-10.9	-10.9	-10.9	0.4	-11	0.4	-11	0.4
h	8	3	4.2	4.2	4.2	0.4	4.2	0.4	4.1	0.4
g	8	4	-7	-7	-7	0.4	-7	0.4	-6.9	0.4
h	8	4	-22.2	-22.2	-22.2	0.4	-22.2	0.4	-22.3	0.4
g	8	5	4.3	4.3	4.3	0.4	4.4	0.4	3.9	0.4
h	8	5	9.1	9.1	9.1	0.4	9.1	0.4	9.2	0.4
g	8		2.7	2.8	2.8	0.4	2.7	0.4	2.9	0.4
h h	8		16	16	16	0.4	16	0.4	16.1	0.4
g	8		6	6	6	0.4	6.1	0.4	6.1	0.4
h	8		-13.1	-13.1	-13.1	0.4	-13.2	0.4	-13.3	0.4
	8		-1.5	-1.5	-1.5	0.4	-1.6	0.4	-1.8	0.4
g h			-14.9	-14.8	-14.8	0.4	-14.8	0.4	-14.7	0.4
**	J	_								

M	lode	e1_	1	2	• • •	3	<u></u>	. 4	-·	. 5
			coef.	coef.	coef.	σ	coef.	σ	coef.	σ
g/h	n	m			coer.	J	coer.	U	coer.	U
g	9	0	5.3	5.3	5.3	0.3	5.3	0.3	4.9	0.2
g	9	1	10.3	10.3	10.3	0.3	10.3	0.3		0.3
h	9	1	-20.8	-20.8	-20.8	0.3	-20.8	0.3	10.4	0.3
g	9	2	1.4	1.4	1.4	0.3	1.4	0.3	-20.9	0.3
h	9	2	15.5	15.5	15.5	0.3	15.5	0.3	1.3	0.3
g	9	3	-12.4	-12.4	-12.4	0.3	-12.4	0.3	15.5	0.3
b h	9	3	8.8	8.8	8.8	0.3			-12.4	0.3
	9	4	9.4	9.4	9.4	0.3	8.8	0.3	8.6	0.3
g h	9	4	-5.2	-5.2		0.3	9.4	0.3	9.3	0.3
	9	5	-3.4		-5.2		-5.2	0.3	-4.9	0.3
g h	9	5		-3.4	-3.4	0.3	-3.4	0.3	-3.3	0.3
	9	6	-6.3	-6.3	-6.3	0.3	-6.3	0.3	-6.2	0.3
g h	9	6	-1.2	-1.2	-1.2	0.3	-1.2	0.3	-1.3	0.3
			9.1	9.1	9.1	0.3	9	0.3	9.1	0.3
g	9	7	6.7	6.7	6.7	0.3	6.7	0.3	6.8	0.3
h	9	7	9.7	9.7	9.7	0.3	9.7	0.3	9.8	0.3
g	9	8	1.6	1.5	1.5	0.3	1.5	0.3	1.6	0.3
h	9	8	-5.9	-5.9	-5.9	0.3	-6	0.3	-5.5	0.3
g	9	9	-5.1	-5.1	-5.1	0.3	-5.1	0.3	-5.1	0.3
h	9	9	2.2	2.2	2.3	0.3	2.3	0.3	2.1	0.3
_	10	0	-3.4	-3.4	-3.4	0.3	-3.4	0.3	-3.3	0.3
_	10	1	-4	-4	-4	0.3	-4	0.3	-3.9	0.3
	10	1	1.2	1.2	1.2	0.3	1.2	0.3	1.5	0.3
	10	2	2.2	2.2	2.2	0.3	2.2	0.3	2.2	0.3
	10	2	0.5	0.5	0.5	0.3	0.5	0.3	0.3	0.3
	10	3	-5.5	- 5.5	-5.5	0.3	-5.5	0.3	-5.4	0.3
	10	3	2.6	2.6	2.6	0.3	2.6	0.3	2.6	0.3
_	10	4	-1.9	-1.9	-1.9	0.3	-1.9	0.3	-1.9	0.3
	10	4	5.7	5.7	5.7	0.3	5.7	0.3	5.7	0.3
	10	5	4.6	4.6	4.6	0.3	4.6	0.3	4.8	0.3
	10	5	-4.3	-4.3	-4.3	0.3	-4.3	0.3	-4.2	0.3
_	10	6	3.1	3.1	3.1	0.3	3.1	0.3	3.3	0.3
h	10	6	-0.5	-0.4	-0.4	0.3	-0.4	0.3	-0.8	0.3
g	10	7	0.8	0.8	0.8	0.3	0.9	0.3	0.6	0.3
h	10	7	-1.3	-1.3	-1.3	0.3	-1.3	0.3	-1	0.3
g	10	8	2.1	2.1	2.1	0.3	2.1	0.3	2.7	0.3
h		8	3.5	3.5	3.5	0.3	3.5	0.3	3.3	
g	10	9	2.8	2.8	2.8	0.3	2.8		2.8	
h		9	-0.5	-0.5	-0.5	0.3	-0.5		-1.3	
	10	10	-0.1	-0.1	-0.1	0.3	-0.1		-0.7	
	10		-6.1				-6.1		-5.6	

Mode1_	1	2_		3		4	• • •	5
	coef.	coef.	coef.	σ	coef.	σ	coef.	σ
g/h n m							2 /	
g 11 0	2.5	2.5	2.5	0.3	2.4	0.3	2.4	0.3
g 11 1	-1.1	-1.1		0.3		0.3	-1.2	0.3
h 11 1	0.7	0.7		0.3		0.3	0.6	0.3
g 11 2	-1.7	-1.7	-1.7		-1.7		-1.8	
h 11 2	1.7	1.7	1.7		1.7		1.8	
g 11 3	2.2	2.2		0.3	2.2			0.3
h 11 3	-1.3	-1.3	-1.3			0.3		
g 11 4	0	0		0.3	0		-0.1	
h 11 4	-3.1	-3.1	-3.1		-3.1		-3.1	
g 11 5	-0.6	-0.6	-0.6		-0.6		-0.6	
h 11 5	0.7	0.7	0.7		0.7		0.7	
g 11 6	-0.4	-0.4	-0.4		-0.3		-0.4	
h 11 6	-0.1	-0.1	-0.1		-0.1		0	0.3
g 11 7	1.6	1.6	1.6		1.6		1.6	
h 11 7	-2.4	-2.4	-2.4		-2.4		-2.5	
g 11 8	1.7	1.7	1.7		1.7		1.6	
h 11 8	-0.4	-0.4	-0.4	0.3	-0.4		-0.3	
g 11 9	-0.7	-0.7	-0.7	0.3	-0.7		-0.6	
h 11 9	-1.7	-1.7	-1.7	0.3	-1.7	0.3	-1.6	
g 11 10	2	2	2	0.3	2	0.3	2.2	0.3
h 11 10	-1.6	-1.6	-1.6	0.3	-1.5	0.3	-1.7	0.3
g 11 11	3.4	3.4	3.4	0.3	3.4	0.3	3.3	0.3
h 11 11	0.8	0.8	0.8	0.3	0.8	0.3	0.7	0.3
g 12 0	-1.7	-1.7	-1.7	0.3	-1.7	0.3	-1.8	0.3
g 12 1	-0.2	-0.1	-0.1	0.3	-0.1	0.3	-0.1	0.3
h 12 1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
g 12 2	-0.3	-0.3	-0.3	0.3	-0.3	0.3	-0.4	0.3
h 12 2	0.8	0.8	0.8	0.3	0.8	0.3	0.8	0.3
g 12 3	-0.2	-0.2		0.3	-0.2		-0.1	0.3
h 12 3	2.5	2.5	2.5		2.6		2.6	0.3
g 12 4		0.7	0.7		0.7		0.6	0.3
_	-1.4	-1.4	-1.4	0.3	-1.5		-1.4	
	0.7	0.7	0.7	0.3	0.7	0.3	0.8	0.3
g 12 5 h 12 5	0.4	0.4	0.4	0.3	0.4	0.3	0.5	0.3
g 12 6	-0.5	-0.5	-0.4	0.3	-0.4	0.3	-0.5	0.3
	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.3
	-0.2	-0.2	-0.2	0.3	-0.2	0.3	-0.1	0.3
g 12 7		-0.3	-0.3		-0.2	0.3	-0.2	0.3
h 12 7	-0.3	0.2	0.2	0.3	0.2	0.3	0.1	0.3
g 12 8	0.2	0.2	0.2	0.3	0.1	0.3	0.1	0.3
h 12 8	0.1		-0.5		-0.5		-0.3	0.3
g 12 9	-0.5	-0.5	0.1	0.3	0.1	0.3	0.3	0.3
h 12 9	0.1	0.1	0.1	0.3	0.1	0.3	0.3	0.3
g 12 10	0.1	0.1			-1.3		-1.5	0.3
h 12 10	-1.3	-1.3	-1.3		0.6		0.3	0.3
g 12 11	0.6	0.6	0.6				0.3	0.3
h 12 11	0.4	0.4	0.4		0.4		0.2	
g 12 12	0.1	0.1	0.1		0.1			
h 12 12	0.4	0.4	0.4	0.3	0.4	0.3	0.6	0.3

1	Mod	el	1_	2		-3		4		5	
,,			coef.	coef.	coef.	σ	coef.	σ	coef.	σ	
g/h	n	m									
	13	0	0	0	0	0.2	0	0.2	-0.1	0.2	
	13	1	-0.6	-0.6	-0.6	0.2	-0.6	0.2	-0.6	0.2	
	13	1	-0.5	-0.5	-0.5	0.2	-0.5	0.2	-0.3	0.2	
	13	2	0.4	0.4	0.4	0.2	0.4	0.2	0.3	0.2	
	13	2	0.3	0.3	0.3	0.2	0.3	0.2	0.4	0.2	
_	13	3	-0.8	-0.8	-0.8	0.2	-0.8	0.2	-0.7	0.2	
	13	3	1.5	1.5	1.5	0.2	1.5	0.2	1.7	0.2	
_	13	4	0	0	0	0.2	0	0.2	0	0.2	
	13	4	-0.2	-0.2	-0.2	0.2	-0.2	0.2	-0.3	0.2	
g	13	5	1.1	1.1	1.1	0.2	1.1	0.2	1.2	0.2	
	13	5	-0.5	-0.5	-0.5	0.2	-0.5	0.2	-0.3	0.2	
g	13	6	-0.4	-0.4	-0.4	0.2	-0.4	0.2	-0.4	0.2	
	13	6	-0.1	-0.1	-0.1	0.2	-0.1	0.2	-0.2	0.2	
	13	7	0.4	0.4	0.4	0.2	0.4	0.2	0.4	0.2	
	13	7	0.8	0.8	0.8	0.2	0.8	0.2	1	0.2	
	13	8	-0.5	-0.5	-0.5	0.2	-0.5	0.2	-0.4	0.2	
	13	8	0.1	0.1	0.1	0.2	0	0.2	-0.1	0.2	
	13	9	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
	13	9	0.8	0.8	0.8	0.2	0.8	0.2	1.1	0.2	
	13	10	-0.1	-0.1	-0.1	0.2	-0.1	0.2	0.3	0.2	
	13	10	0	0.1	0.1	0.2	0	0.2	-0.3	0.2	
		11	0.3	0.3	0.3	0.2	0.3	0.2	0	0.2	
	13		0	0	0	0.2	0	0.2	-0.3	0.2	
	13		0	0	0	0.2	0	0.2	0	0.2	
	13		0.1	0.1	0.1	0.2	0.1	0.2	0.4	0.2	
g	13	13	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	
h	13	13	-0.3	-0.3	-0.3	0.2	-0.3	0.2	-0.3	0.2	

GSFC(5/89) MODELS: Secular Variation Coefficients

	Mod	el:	1	2	3	4	5
			coef.	coef.	coef. σ	coef. σ	coef. σ
g/h	n	m					20 1 0 04
g	1	0	23	23.1	23 0.26	25.3 0.14	33.1 0.24
g	1	1	11.7	11.5	11.6 0.35	10.8 0.3	-1.9 0.31
h	1	1	-20.5	-20.6	-20.5 0.35	-21.5 0.31	-17.4 0.3
g	2	0	-13.8	-13.8	-13.9 0.24	-15.7 0.13	-14.5 0.23
g	2	1	3.5	3.7	3.6 0.24	3.1 0.14	-1.4 0.24
h	2	1	-14.1	-14.1	-14 0.25	-13.6 0.15	-18.1 0.23
g	2	2	4	4	4.1 0.32	4.6 0.28	18.9 0.28
h	2	2	-22.3	-22.2	-22.1 0.31	-21.9 0.27	-18 0.27
g	3	0	3.3	3.3	3.4 0.22	2 0.13	-4.4 0.21
g	3	1	-5.6	-5.7	-5.6 0.23	-4.8 0.16	- 5 0.23
h	3	1	4.7	4.7	4.7 0.23	6.2 0.17	0.7 0.2
g	3	2	-1.2	-1.2	-1.1 0.23	-0.9 0.15	-3.2 0.23
h		2	3	2.9	2.8 0.23	3 0.15	6.3 0.22
g	3	3	-1.2	-1.2	-1.3 0.29	-1.3 0.26	-7.5 0.27
h		3	-8.9	-8.9	-9 0.29	-9.4 0.26	-14.4 0.26
g	4	0	0.3	0.3	0.3 0.2	0.1 0.12	-1.3 0.19
g		1	-1.6	-1.6	-1.5 0.21	-0.8 0.12	2.9 0.2
h		1	4	4	4 0.2	3.5 0.13	6.8 0.19
g	4	2	-7.6	-7.6	-7.6 0.22	-7.1 0.15	-10.8 0.21
h		2	1.9	2	2 0.21	1.1 0.15	4.3 0.2
g	4	3	-0.9	-0.9	-0.9 0.22	-1.5 0.14	-1.3 0.21
h		3	3.2	3.1	3.1 0.22	3 0.15	4.2 0.21
g	4	4	-5.7	-5.6	-5.6 0.28	-5.5 0.25	-3 0.26
h		4	-0.1	-0.1	-0.2 0.27	-0.2 0.24	6.6 0.25
g		0	0.5	0.5	0.5 0.19	1.3 0.11	5.2 0.19
g		1	0.1	0	-0.1 0.19	-0.5 0.12	0.4 0.19
h		1	0.4	0.4	0.4 0.19	-0.1 0.13	4.8 0.18
g		2	-0.8	-0.8	-0.9 0.21	-1.8 0.13	0.8 0.2
h		2	0.7	0.6	0.6 0.19	0.1 0.12	1.1 0.18
g		3	-3.6	-3.5	-3.5 0.21	-3.9 0.14	-2.5 0.21
h		3	-0.4	-0.4	-0.4 0.21	-0.7 0.15	-1.1 0.2
g		4	-0.2	-0.2	-0.2 0.22	-0.6 0.16	4.1 0.21
h h		4	0.6	0.6	0.7 0.21	0.7 0.14	0.9 0.2
9		5	-0.5	-0.6	-0.5 0.26	-0.1 0.23	
h	,	5	0.6	0.5	0.6 0.27	0.9 0.24	0.5 0.25
4.0		-					

	Mod	del:	1	2	• •	3	•	4	
/1			coef.	coef.	coei	Ε. σ	coef.	σ	coef.
g/h	n	m.							
g	6	0	0.5		0.5			0.11	1.4
g	6	1	0.3	0.4				0.11	-1. 7
h	6	1	-0.2	-0.1		0.18		0.11	-2.1
g	6	2	1.6	1.7	1.6			0.12	4.1
h	6	2	-1.5	-1.4		0.18		0.12	
g	6	3	1.6	1.5		0.19	2.2		1.8
h	6	3	-1.1	-1.1		0.19		0.13	
g	6	4	-0.5	-0.5		0.21		0.15	-0.7
h	6	4	-1	-1		0.19		0.13	0.5
g	6	5	0.9	1		0.2		0.14	0.9
h	6	5	-0.1	0		0.21		0.15	
g	6	6	1.1	1.1		0.25		0.22	0.2
h	6	6	0.8	0.8		0.25		0.22	-4.3
g	7	0	1	1	1	0.17	0.2	0.1	-1.7
g	7	1	-0.8	-0.8	-0.8	0.17	-0.6	0.1	-0.8
h	7	1	0.1	0	0.1	0.17	0.2	0.11	-2.6
g	7	2	-0.3	-0.2	-0.1	0.18	0.2	0.11	-0.7
h	7	2	0.2	0.1	0.1	0.16	0.4	0.11	-0.7
g	7	3	0.4	0.4	0.4	0.18	0.5	0.11	-0.5
h	7	3	1	0.9	1	0.17	0.7	0.12	-1.2
g	7	4	0.9	0.9	0.9	0.2	1.1	0.13	-0.8
h	7	4	1	1	1	0.18	0.8	0.12	6.8
g	7	5	0.6	0.6	0.6	0.19	0.8	0.14	1.5
h	7	5	0.6	0.5	0.4	0.2	-0.1	0.14	-4.8
g	7	6	-0.2	-0.1	-0.2	0.2	0.2	0.15	- 4
h	7	6	0.7	0.6	0.5	0.2	-0.2	0.14	-1.2
g	7	7	0.7	0.7	0.7	0.25	0	0.22	-1.1
h	7	7	0.3	0.3	0.4	0.24	0.6		6.8
g	8	0	0.9	0.9	0.9	0.16	0.5	0.1	0.8
g	8	1	-0.2	-0.2	-0.2	0.16	-0.2	0.1	2.2
h	8	1	0.2	0.2	0.2		0	0.1	
g	8	2	0.1	0.1	0		0.4	0.1	-1.3
h	8	2	-0.4	-0.4	-0.4		-0.5	0.1	-0.8
g	8	3	-0.2	-0.2	-0.2		-0.1	0.1	1
h	8	3	0.3	0.3		0.15		0.11	1.3
g	8	4	0.1	0		0.18	-0.2		-1
h	8	4	-0.2	-0.3	-0.3		-0.3		1.2
g	8	5	0.2	0.2		0.18		0.12	5.6
h	8	5	0.4	0.4	0.4			0.12	-0.6
g	8	6	-0.1	-0.1		0.19		0.14	-1.7
h	8	6	-0.5	-0.4	-0.4		-0.5		-0.7
g	8	7	-0.1	-0.2	-0.2		-0.4		-0.4
b h	8	7	-0.2	-0.2	-0.2			0.14	2.3
g	8	8	-1.4	-1.4	-1.4		-0.8		2.5
h h	8	8	0.7	0.7		0.24			
11	0	0	0.7	0.7	0.7	0.24	0.2	0.21	- 2

	Mod	el:	1	2	3	4	5
<u></u>				2226	anof a	coef. σ	coef a
- /1	_	_	coer.	coer.	coer. 0	coer. 0	COCI. U
g/h	n 9	m O	-0.5	-0.4	-0.4 0.14	0.1 0.09	3.7 0.14
g	9	1		0.1	0.1 0.15	0 0.09	-1 0.14
g h	9	1		0.4	0.4 0.14	0.2 0.09	
	9	2		0.4	0.3 0.15		0.7 0.14
g h	9	2	0.4	0.2	0.3 0.15	0.1 0.09	
	9	3	0.5	0.1	0.1 0.14		0.5 0.14
g h	9	3	0.2		0.2 0.15		1.8 0.14
	9	4	-0.1	-0.1	0 0.15		0.7 0.15
g h	9	4	-0.1	0	0 0.15	0 0.09	
	9	5	-0.6	-0.5			
g h	9	5	-0.5	-0.4	-0.4 0.18	-0.1 0.12	
	9	6	0	0	0 0.18	-0.2 0.12	
g h	9	6	-0.8	-0.8	-0.7 0.17	0 0.12	
g	9	7	-0.1	0	-0.1 0.19		
h	9	7	0.2	0.2	0.1 0.19		
g	9	8	-0.4	-0.3	-0.3 0.19	0.4 0.14	-0.6 0.18
h	9	8	-0.3	-0.3	-0.3 0.19	0.4 0.14	
g	9	9	0.2	0.2	0.1 0.23		
ĥ	9	9	0.3	0.3	0.3 0.22	0.2 0.2	
g	10	0	0.1	0.1	0.1 0.12	0 0.08	
g	10	1	-0.1	-0.1	-0.1 0.12	-0.1 0.08	-1.7 0.12
h	10	1	0	0	0 0.12	-0.1 0.09	
g	10	2	-0.5	-0.5	-0.5 0.12	-0.5 0.09	-0.6 0.11
	10	2	-0.1	-0.1	-0.1 0.12	-0.2 0.09	1.6 0.12
g	10	3	0.2	0.1	0.1 0.13	0.1 0.09	
_	10	3	0	0	0 0.12	0.1 0.09	
g	10	4	0	-0.1	-0.1 0.13	-0.2 0.1	0.1 0.13
	10	4	0.1	0	0.1 0.12	-0.1 0.09	
g	10	5	0	0	0 0.13	-0.1 0.09	-2.4 0.13
	10	5	0.2	0.1	0.1 0.14		-0.9 0.13
g	10	6	0	0	0 0.15		
	10	6	0.3	0.2	0.2 0.15		
g	10	7	0.1	0	0.1 0.15	0 0.11	2.5 0.13
	10	7	-0.2	-0.2	-0.2 0.15	-0.1 0.11	-3.1 0.13
g	10	8	0.3	0.2	0.2 0.16	-0.5 0.12	-6.4 0.14
h	10	8	0	0	0 0.16	-0.3 0.12	2.5 0.14
g	10	9	0.3	0.3	0.3 0.17	-0.1 0.13	0.5 0.14
	10	9	-0.2	-0.2	-0.1 0.17	0.1 0.13	8.1 0.15
g	10	10	-0.2	-0.2	-0.1 0.22	0.2 0.18	6.2 0.2
h	10	10	-0.7	-0.6	-0.7 0.23	-0.3 0.2	-5.6 0.2

GSFC(4/89) MODELS: Main Field Coefficients

	Model		1			2		4	,
			coef.	σ	coef.	σ	coef.	coef.	σ
g/h	n	m		•	33321	•			•
g	1	0	-29772.9	6.3	-29747.7	15.9	-29753.6	-29738.9	29.1
g	1	1	-1876.3	6.6	-1923.3	27.2	-1917.5	-1891.7	36.6
h	1	1	5409.4	6.9	5369.5	22.5	5365	5403	31.6
g	2	0	-2139.7	5.8	-2133.9	16.8	-2132.5	-2127.6	27.9
g	2	1	3045.2	5.4	3059.7	14.4	3051.5	3097.7	29.4
h	2	1	-2280.3	6.4	-2258.1	14.3	-2264.1	-2254.7	25.2
g	2	2	1710.2	6.6	1743.7	26.7	1747.1	1692	32
h	2	2	-355.8	5.8	-329.9	23.3	-326.6	-305.7	33.2
g	3	0	1312	5.6	1319	12.9	1319.5	1310.4	22.6
g	3	1	-2214.2	5	-2212.2	18.1	-2212.1	-2237.8	26.5
h	3	1	-264.8	7	-268.6	14.9	-261.3	-308.6	25.5
g		2	1245.4	6.3	1251	14	1246.2	1256.3	23.9
h		2	301.5	6.1	290.8	13.9	292.8	278	27.8
g	3	3	820.2	6.3	751.5	26.1	757.7	808.8	30.4
h	3	3	-354.7	6.1	-365.9	21.9	-360.4	-340.6	31.3
g		0	951.8	5.1	954.7	12.2	960.7	981.9	20
g	4	1	777.8	4	768.3	13	770.9	760.6	21
h	4	1	241.7	6.1	254.4	11.6	258.8	264.8	24
g	4	2	338.7	5.6	297.9	15.2	299.7	319.3	21.5
h		2	-259.4	5.6	-238.2	14.3	-239.1	-266.4	26.1
g		3	-417.6	5.5	-416.2	13	-419.1	-443.8	21.4
h	4	3	81.5	5	83.3	12.3	83.9	52.6	25.5
g	4	4	145.6	4.7	189.6	25.9	194	101.9	27
h	4	4	-290.2	5.3	-266.5	21.5	-269.8	-286.7	26.6
g		0	-221.8	5.4	-217	11.1	-226.5	-232.9	19.5
g	5	1	353	3.8	333.5	10.9	331.5	345.2	18.1
h		1	31.6	4.9	47	11.3	35.6	23.8	20.2
g		2	236.4	4.2	234.3	11.1	237.3	223.6	17.1
h		2	161.2	4.8	155.3	11.6	155.9	149.3	23.9
g		3	-131.9	5.9	-89.5	14.1	-89.7	-87.6	19.9
h		3	-153.9	4.7	-162.5	11.6	-165.7	-117.9	23.7
g		4	-165.8	4.1	-157.7	11.4	-162.4	-162.6	22.5
h		4	-77.3	5.4	-57.5	12.7	-53.5	-69.8	21.3
g		5	-39.2	5	-92.6	22.4	-92.9	-55.8	25
h	5	5	104.8	4.3	75.7	21.3	70.3	86.7	24.9

0.7

-11.2 3.4

8

15.9

13.4

-6.9

21

	Mo	Model1			2		4		
			coef.	σ	coef.	σ	coef.	coef.	σ
g/h	n	m							
g	9	0	2.7	0.8	3	6.4	3.5	10	2.7
g	9	1	7.5	0.9	5	6.2	3.3	11.9	2.8
h	9	1	-24.1	0.9	-17.5	6.1	-16	-22.4	2.4
g	9	2	0	0.9	-5.3	6.6	-5.7	1.3	2.5
h	9	2	16	1	12.8	7.7	13.1	8.3	2.7
g	9	3	-8.4	0.9	-8.6	6.5	-9	-16.1	2.6
h	9	3	13.3	0.9	7.6	6.3	7.9	10.4	2.7
g	9	4	0.3	1	14.3	7.3	12.5	8.6	2.8
h	9	4	-2.7	0.9	-8.6	6.6	-9.2	-10	2.7
g	9	5	0.5	1	-5.7	6.8	-6	-7.2	3
h	9	5	-8.6	1.2	-16.7	7.5	-15.4	-8.5	3
g	9	6	-3.1	1.1	-3.1	7.2	-3.8	-2.2	3.2
h	9	6	17.9	1.1	2.9	6.7	2.9	16.6	3
g	9	7	7.2	1.4	20.7	8.6	20.9	20.5	3.6
h	9	7	4.8	1.2	11.2	7.7	9.1	-4.1	3.3
g	9	8	7.6	1.2	6.7	7	8.1	0.1	3.5
h	9	8	-7.7	1.1	-5.8	7.1	-1.3	-6.7	3.2
g	9	9	-14.2	1.6	-21.8	12.1	-25.2	-21.7	4.9
h	9	9	2.4	1.6	1.4	12	-2.6	6.7	5
g	10	0	-4.1	0.6	-9	5.3	-8.5	-9.2	2.4
g	10	1	-4.9	0.6	-1.8	5.9	-1.9	-3.8	2.6
h	10	1	4.5	0.6	-4.6	5.4	-5.2	6.2	2.2
g	10	2	1.6	0.6	4.4	5.4	4.2	3.5	2.3
h	10	2	1.5	0.7	-7	5.7	-5.3	-2.4	2.4
g	10	3	-7.1	0.7	-3	6.3	-2.6	-4.7	2.4
h	10	3	3.4	0.6	5.7	6	5.8	5.1	2.5
g	10	4	4.1	0.7	-2	6.1	-2.5	7.2	2.6
h	10	4	-0.8	0.6	5.1	5.4	4.3	3.6	2.5
g	10	5	4.9	0.7	-1.6	6.2	-1.6	4.6	2.7
h	10	5	-0.6	0.7	-8.8	5.6	-8	-5.5	2.5
g	10	6	1	0.8	9	6	10.1	-3.1	2.8
h	10	6	-6.5	0.8	1.5	5.6	1	-2.9	2.8
g	10	7	6.2	0.8		6.2	8.1	-0.5	2.9
	10	7		0.8		5.9	4.1	0.5	2.8
g	10	8	0.8			6.9	-11.1	2.5	3.2
	10	8	5	0.9		7.5	5.3	4.6	3.2
	10	9	-2	1	1.2	6.9	4.1	0.4	3.3
	10	9	0	0.9		6.4	-2.9	-4.8	3.1
	10		10.7		6.4		5.5	4.9	4.9
	10		-2.9		-3.1				5

GSFC(4/89) MODELS: Secular Variation Coefficients

Model			-1		2		3		4	
			coef	σ	coef	σ	coef	σ	coef	σ
g/h	n	m								
g	1	0	20.2	1.13	22	1.3	20.2		27	6.41
g	1	1	10.5	1.2	10	1.29	10		13.5	8.11
h	1	1	-17.4	1.28	-19.6	1.42	-21.3		-15.6	7.02
g	2	0	-12.6	1.22	-14.1	1.43	-13.3		-11.3	6.17
g	2	1	1	1.11	3.5	1.23	1.7		11.4	6.61
h	2	1	-19.2	1.36	-16.9	1.64	-18		-13.8	5.55
g	2	2	3.9	1.39	2.2	1.46	3.5		-1.5	7.21
h	2	2	-16.7	1.2	-16.8	1.28	-15.6		-9.7	7.35
g	3	0	2.6	1.14	4.2	1.27	4.1		0.8	5.07
g	3	1	-3.7	0.99	-6.3	1.09	-6.2		-9.3	5.95
h	3	1	7.6	1.45	6.9	1.74	8.3		-0.2	5.58
g	3	2	-3	1.28	-1	1.47	-1		2.4	5.37
h	3	2	5	1.19	2.7	1.36	2.7		-2.4	6.17
g	3	3	-1.9	1.29	-3.1	1.35	-2.5		0.6	6.91
h	3	3	-11.2	1.21	-10.4	1.26	-8.6		-6.2	6.95
g	4	0	3.4	1.07	0.8	1.29	1.6		8.4	4.4
g	4	1	-0.7	0.79	-0.1	0.87	0.4		-5.3	4.76
h	4	1	4.1	1.31	2.5	1.52	4.1		5	5.28
g	4	2	-4.6	1.16	-6.8	1.44	-7.1		-7.4	4.81
h	4	2	-1.4	1.18	1.6	1.39	1.8		-2.5	5.7
g	4	3	3	1.13	0.5	1.32	-0.3		-4.3	4.81
h	4	3	4.8	1.03	3.9	1.18	4		-3.3	5.65
g	4	4	-5.9	0.94	-5.8	0.98	-5.1		-14.5	6.01
h	4	4	0	1.1	0.1	1.15	-0.8		-1.2	6.05
g	5	0	-1.9	1.14	-0.3	1.36	-1.6		-3.9	4.34
g	5	1	-1.3	0.79	-0.5	0.86	-0.8		1.9	4.03
h	5	1	-3.9	1.02	-0.4	1.21	-3.1		-4.8	4.38
g	5	2	-1.8	0.85	-1.8	1.09	-1.6		-4.8	3.9
h	5	2	2.6	1.01	0.7	1.18	1.2		0.9	5.27
g	5	3	-8.2	1.23	-4.5	1.47	-4.4		-2.1	4.41
h	5	3	-1.3	0.97	-0.7	1.16	-1.3		8	5.2
g	5	4	0	0.84	-0.2	0.93	-0.3		0.6	5.01
h	5	4	-1.2	1.12	0.7	1.25	1.3		0.8	4.73
g	5	5	1.1	1.01	1	1.06	0.2		1.1	5.67
h	5	5	0.5	0.86	0.1	0.9	-0.3		0.2	5.57

	Mod	el	•	1	•	2		- 3		4
			coef	σ	222£	a		,,		
g/h	n	m	COET	σ	coef	σ	coef	σ	coef	σ
-	6	0	1.1	0.75	1.4	0.82	2		-4.7	3.83
g	6	1	0.3	0.66	-0.3	0.7	-0.4		1.1	3.57
h	6	1	2.8	0.92	0.3	1.13	1.6		4.6	3.5
g	6	2	0.1	0.65	1.9	0.74	0.8		4.3	3.36
h	6	2	-1.3	0.79	-1.2	0.89	-1		1.3	4.41
g	6	3	4.2	0.96	1.9	1.16	2.5		-0.9	4.1
h	6	3	0.1	0.69	-0.5	0.83	-0.5		-6.5	4.38
g	6	4	-0.8	0.93	-0.6	1.04	-0.4		1.7	5.24
h	6	4	3.3	1.1	0.1	1.27	0.6		3.7	3.94
g	6	5	-1	0.86	0	0.92	-1		0	4.54
h	6	5	0.5	0.8	0.1	0.84	0.8		-4.8	4.63
g	6	6	2.8	0.86	1.6	0.89	2.3		5.2	5.32
h	6	6	0	0.97	1	1.02	1.5		-6.4	5.63
g	7	0	1.9	0.56	0.7	0.63	2		6	3.21
g	7	1	0.3	0.52	-0.3	0.55	-0.1		-0.8	2.92
h	7	1	-0.6	0.61	0.5	0.73	0.2		1	3.11
g	7	2	1.7	0.57	0	0.7	1.1		-1.1	2.97
h	7	2	0.1	0.67	0.5	0.72	0.6		-2.6	3.53
g	7	3	0.6	0.68	0.7	0.78	1		2.9	3.63
h	7	3	1.2	0.54	0.7	0.62	2.1		-3.^	3.7
g	7	4	1.6	0.74	1.4	0.82	1.3		1	4.5
h	7	4	-3.3	0.79	-0.8	0.94	-1.2		-2.,	3.31
g	7	5	3.1	0.87	1.2	0.97	1.3		-4.2	3.95
h	7	5	-0.4	0.9	0	0.97	0		2.9	4.47
g	7	6	-0.3	0.74	-0.2	0.8	-0.7		-2.1	4.22
h	7	6	1.8	0.75	0.3	0.8	0.4		4.1	4.17
g	7	7	-0.2	0.82	0.4	0.86	0.1		1.9	5.1
h	7	7	-0.5	0.96	0.2	1.02	-0.4		-3.6	5.37
g	8	0	-0.1	0.38	0.5	0.44	-0.3		-2.1	2.54
g	8	1	-0.2	0.38	-0.2	0.4	-0.4		0.7	2.48
h	8	1	0.2	0.39	0.6	0.43	0.3		1.2	2.51
g	8	2	-0.6	0.36	-0.2	0.42	-0.8		-2.8	2.32
h	8	2	-0.8	0.45	-0.4	0.48	-0.5		-0.2	2.71
g	8	3	-0.1	0.48	-0.1	0.54	-0.2		-0.2	2.7
h	8	3	0.1	0.38	0.5	0.41	0		5.9	2.7
g	8	4	-0.1	0.51	-0.4	0.55	0.4		-1.2	3.22
h	8	4	1	0.44	0.6	0.5	0.5		0.6	2.61
g	8	5	-1.9	0.52	-0.4	0.59	-0.2		3.1	3.02
h	8	5	-0.3	0.55	0.3	0.61	-0.2		0.1	3.07
g	8	6	-0.4	0.55	-0.1	0.59	0		0.3	3.13
h	8 8	6 7	-1.5	0.53	-1	0.56	-2.2		2	3.25
g	8	7	-0.2	0.51	-0.2	0.54	-0.7		1.3	3.32
h	8	8	0.3	0.55	-0.3	0.59	0.7		-2.4	3.45
g	8	8	-2.5	0.84	-1.4	0.89	-1.6		0.9	4.6
g	O	ō	0.9	0.69	0.3	0.75	-1.2		4	4.64

Appendix B. Listing of External Field Static Terms, Dst Multiplier Terms, and Their Estimated Uncertainties for GSFC(5/89-X) Series

GSFC(5/89-1) Model

g/q/s	<u>n</u>	m	Type	Coefficient	Standard Deviation
q	1	0	static	18.72960 nT	0.08658 nT
q	1	1	static	-1.06290 nT	0.09959 nT
า S	1	1	static	-3.10297 nT	0.10019 nT
g	1	0	Dst	-0.16907	0.00697
q	1	0	Dst	-0.63175	0.00998
q	1	1	Dst	-0.06827	0.01046
S	1	1	Dst	0.16972	0.01116

GSFC(5/89-2) Model

g/q/s	<u>n</u>	<u>m</u>	Type	Coefficient	Standard Deviation
q	1	0	static	18.72725 nT	0.08657 nT
q	1	1	static	-1.06443 nT	0.09958 nT
s S	1	1	static	-3.10227 nT	0.10018 nT
g	1	0	Dst	-0.16912	0.00696
q	1	0	Dst	-0.63178	0.00998
q q	1	1	Dst	-0.06886	0.01045
s S	1	1	Dst	0.16939	0.01116

GSFC(5/89-3) Model

g/q/s	<u>n</u>	m	Type	Coefficient	Standard Deviation
q	1	0	static	18.72771 nT	0.08657 nT
q	1	1	static	-1.06410 nT	0.09958 nT
۹. S	1	1	static	-3.10274 nT	0.10017 nT
g	1	0	Dst	-0.16907	0.00696
q	1	ō	Dst	-0.63178	0.00997
q	ī	1	Dst	-0.06830	0.01045
ч s	1	1	Dst	0.16933	0.01115

GSFC(5/89-4) Model

g/q/s	<u>n</u>	m	Type	Coefficient	Standard Deviation
q	1	0	static	18.74793 nT	0.08638 nT
q	1	1	static	-1.02312 nT	0.09946 nT
S	1	1	static	-3.14808 nT	0.09997 nT
g	1	0	Dst	-0.16634	0.00665
q	1	0	Dst	-0.65700	0.00971
q	1	1	Dst	-0.05128	0.01020
S	1	1	Dst	0.16074	0.01089

Appendix C. Listing of Observatory Vector Biases and Their Estimated Uncertainties for GSFC(4/89-X) and GSFC(5/89-X) Series

	—	

•

·

ARC SET NUMBER LABEL	:		LD VA	9	SOLUT	OR EST
ABISKO VI ABISKO VI ABISKO VI	BIAS BIAS BIAS	××N	.70085 .59162 .30963	0.2880513E 2924346E 0.1012561E	28.70085 56.59162 30.30963	15.07018 15.07913 19.81458
ARC SET NUMBER LABEL ADDIS ABABA II ADDIS ABABA II ADDIS ABABA II	2: BIAS BIAS BIAS	×≻N	0LD VALUE 545.6252 7.563843 120.0750	DEL SOLUTION 0.9782939E-101092694E-08 0.1380809E-08	NEM SOLUTION 545,6252 7.563843 120.0750	ERROR ESTIMATE 15.05471 15.53319 20.75240
ARC SET NUMBER LABEL ALERT ALERT ALERT	3: BIAS BIAS	×≻N	0LD VALUE -7.791839 -29.48570 -189.4366	DEL SOLUTION 0.3867753E-09 0.1158988E-08 0.8571376E-09	NEM SOLUTION -7.791839 -29.48570 -189.4366	ERROR ESTIMATE 14.19811 14.10775 19.41671
ARC SET NUMBER LABEL ALIBAG III ALIBAG III	41. BIAS BIAS	×≻N	0LD VALUE -205.2014 453.1540 605.9721	DEL SOLUTION 0.2390358E-09 0.6394447E-10	NEW SOLUTION -205.2014 453.1540 605.9721	ERROR ESTIMATE 13.7356 14.07683 19.04222
ARC SET NUMBER LABEL ALMA ATA ALMA ATA ALMA ATA	5: BIAS BIAS BIAS	×≻N	0LD VALUE 163.4004 23.19433 -176.2447	DEL SOLUTION 0.1831347E-09 1270899E-10 0.2656812E-09	NEW SOLUTION 163,4004 23,19433 -176,2447	ERROR ESTIMATE 13.78651 13.81974 19.15368
ARC SET NUMBER LABEL ALMERIA ALMERIA ALMERIA	6: BIAS BIAS BIAS	×≻N	OLD VALUE -12.02933 12.25847 10.32590	DEL SOLUTION 0.4285431E-10 0.3858143E-09 0.1049100E-08	NEW SOLUTION -12.02933 -12.25847 10.32590	ERROR ESTIMATE 13.86336 13.80670 19.01007
ARC SET NUMBER LABEL AMATSIA AMATSIA AMATSIA	7: BIAS BIAS BIAS	×≻N	0LD VALUE 110.7633 34.36187 279.7251	DEL SOLUTION 5952534E-09 1029268E-08 0.9543816E-10	NEW SOLUTION 110.7633 34.36187 279.7251	ERROR ESTIMATE 14.14013 14.31545 19.57227
ARC SET NUMBER LABEL 	8: BIAS	×	0LD VALUE 152.2672	DEL SOLUTION 	NEM SOLUTION 152.2672	ERROR ESTIMATE

14.62171	R EST	15.77816 15.85138 20.69574	EST	13.45643 13.30917 18.51893	R ES	15.09201 15.21505 20.18588	OR EST	15.48448 15.47994 20.37532	OR EST	13.69804 13.67518 18.99692	ERROR ESTIMATE	13.53321 13.59549 18.98814	OR EST	14.76487 29.35360 20.40666	OR EST	15.27723 13.97063 19.36787	
-105.4145 -48.58485	SOLUT	-25.57453 200.7853 -883.4520	SOLUT	9.833823 39.67112 -10.85560	SOL	-147.9145 316.4266 681.5116	SOLUT	87.67947 -75.64151 483.8415	SOLUT	117.3346 -263.3686 441.2251	SOLUT	170.8264 -34.12753 -77.35463	M SOLUT	-131.3251 -30.37349 -210.6118	SOLUT	18.39045 -56.57749 -43.73315	
1226503E-10 0.1097512E-09	L SOLUTIO	010	TU SOLUT	4819510E 2113114E 0.7032136E	L SOLUTI	0.774740 0.108555 489554	L SOLUTIO	0,4869986E-09 0,1119630E-08 1238893E-08	I SOLUTI	-,2328952E-09 -,5679229E-09 -,3084448E-09	ILOTOST	0.1199012E 4197819E 1902542E	L SOLUTIO	0.1376877E-08 0.1441855E-09 0.8181539E-09	L SOLUTI	0.2010352E 0.5308878E 1939571E	
-105.4145 -48.58485	VAL	5.57453 00.7853 83.4520	LD VAL	833823 .67112 .85560	D VA	47.9145 16.4266 81.5116	LD VAL	87.67947 -75.64151 483.8415	LD VAL	7.3346 3.3686 1.2251	LD VA	.8264 12753 35463	LD VAL	. 3251 37349 . 6118	LD VAL	18.39045 -56.57749 -43.73315	
≻ N		××N		××N		××n		××n		××N		××N		××N		××N	
BIAS		BIAS BIAS BIAS	101	BIAS BIAS BIAS	11:	BIAS BIAS BIAS	12,	BIAS BIAS BIAS	13:	BIAS	141	BIAS BIAS BIAS	15.	BIAS BIAS BIAS	16 i	BIAS BIAS BIAS	17.
ANNAMALAINAG II ANNAMALAINAG II	ARC SET NUMBER	ì	ARC SET NUMBER LABEL	AQUILA AQUILA AQUILA	ARC SET NUMBER LABEL	ARCTOMSKI ARCTOMSKI ARCTOWSKI		ARGENTINE ISLND ARGENTINE ISLND ARGENTINE ISLND	ARC SET NUMBER LABEL	ARTI ARTI ARTI	ARC SET NUMBER LABEL	BAKER LAKE VII BAKER LAKE VII BAKER LAKE VII	ARC SET NUMBER LABEL	!	ARC SET NUMBER LABEL	3	ARC SET NUMBER

LABEL		;	LD VAL	NOILION	SOLUT	OR EST
BEIJING BEIJING BEIJING	BIAS BIAS BIAS	××N	627.0194 -227.7005 437.8199	-, 2553514E-07 -, 6212150E-09 0, 6655602E-09	-227.7005 437.8199	19.10738
ARC SET NUMBER 18ELSK BELSK BELSK	BIAS BIAS BIAS	×≻N	0LD VALUE 118.5735 137.2826 303.7825	DEL SOLUTION 0.4965001E-093523036E-09 0.4433290E-09	NEW SOLUTION 118.5735 137.2826 303.7825	ERROR ESTIMATE 13.17519 13.16741 18.38673
	HHH "	×≻N	LD VA 94.88 71.19	DEL SOLUTION4427367E-091917298E-09 0.2400078E-09	NEM SOLUTION -394.8822 -271.1965	ERROR ESTIMATE 39.10749 39.10903 41.45336
8 555	20. BIAS BIAS	×≻N	0LD VALUE -97.86322 48.36132 26.92443	DEL SOLUTION 0.1003699E-09 7385406E-09 0.2265871E-08	NEM SOLUTION -97.86322 48.36132 26.92443	ERROR ESTIMATE 13.72154 13.78089 19.06988
ARC SET NUMBER LABEL BOROK BOROK BOROK	21: BIAS BIAS BIAS	×≻N	0LD VALUE -16.27682 -68.48801 -443.5158	DEL SOLUTION 0.3172318E-09 6517468E-09 0.5845308E-09	NEW SOLUTION -16.27682 -68.48801 -443.5158	ERROR ESTIMATE 13.57927 13.56395 18.77136
ARC SET NUMBER LABEL BOULDER BOULDER BOULDER	22: BIAS BIAS BIAS	×≻N	0LD VALUE 3.949930 49.56851 -168.6823	DEL SOLUTION1314867E-092133255E-09 0.8186530E-09	NEM SOLUTION 3.949930 49.56851 -168.6823	ERROR ESTIMATE 13.41975 13.52566 18.95846
ARC SET NUMBER LABEL LABEL BRORFELDE BRORFELDE BRORFELDE	23: BIAS BIAS BIAS	××N	0LD VALUE 78.78087 -102.0209 -207.3845	DEL SOLUTION 0.2959672E-09 -6758620E-10 0.7554074E-09	NEM SOLUTION 78.78087 -102.0209 -207.3845	ERROR ESTIMATE 17.57362 17.57473 21.72613
ARC SET NUMBER LABEL EBRORFELDE II BRORFELDE II	24: BIAS BIAS BIAS	×≻N	OLD VALUE 72.95376 -101.0965 -189.3275	DEL SOLUTION 0.9074789E-09 -2013956E-09 0.9079780E-09	NEW SOLUTION 72.95376 -101.0965	ERROR ESTIMATE 17.81380 17.81580 22.06223
ARC SET NUMBER LABEL SUDKOV BUDKOV	25: BIAS BIAS	×≻	OLD VALUE -29.94593 -13.49745	DEL SOLUTION 0.2428701E-09 1760491E-09	NEM SOLUTION -29.94593 -13.49745	ERROR ESTIMATE 13.86311 13.84071

BUDKOV	BIAS	7	-42.24803	0.7438047E-09	-42.24803	18.83988
ARC SET NUMBER LABEL	192		LD VAL	010110	SOLUT	OR EST
CAMBRIDGE BAY CAMBRIDGE BAY CAMBRIDGE BAY	BIAS BIAS BIAS	××n	225 170 632	011	107.4225 -89.49170 131.7632	13.48540 13.53546 22.69444
ARC SET NUMBER	1.72		LD VAL	L SOLUTIO	SOLUT	R EST
	BRIAS BIAS BIAS	×≻N	-423.4097 105.0160 -1032.946	0.93837 0.11927 0.24038	-423.4097 105.0160 -1032.946	15.14329 15.80674 20.58992
ARC SET NUMBER	281		LD VAL	L SOLUTIO	NEW SOLUTION	R EST
<u> </u>	BIAS BIAS BIAS	×≻N	9.423336 47.25833 90.22569	4664702E-09 0.4935670E-09 0.3832902E-09	9.423336 47.25833 90.22569	14.80227 15.23713 20.43738
A A B B B B B B B B B B B B B B B B B B	162		D VAL	OLUTIO	SOLUT	R EST
CAPE WELLEN III CAPE WELLEN III CAPE WELLEN III	BIAS BIAS BIAS	××n	8.96686 6.00836 8.77826		-68.96686 66.00836 -88.77826	14.23588 13.77633 19.41049
ARC SET NUMBER LABEL	30,		LD VAL	OLUTIO	SOLUT	OR EST
}	BIAS BIAS BIAS	××n	940	5124 0.1400 0.3463	779.6488 -341.2821 -810.2531	75.88501 75.79883 77.02135
ARC SET NUMBER	31 1		D VAL	OLUTIO	M SOLUT	OR EST
) 	BIAS BIAS BIAS	××n	94. 20.2	0.702588 0.715367 798795	-494.8760 -72.26669 -320.8961	18.23534 17.93292 22.54913
	321		ا نــَ	01010	101	OR EST
CHAMBON FORETII CHAMBON FORETII CHAMBON FORETII	BIAS BIAS BIAS	××n	20 W	14693 0.76075 0.71815	-63.30153 -20.01812 92.22249	13.27229 13.25752 18.47013
ARC SET NUMBER LABEL	33,		1	01.0710	SOLUT	OR EST
) 	BIAS BIAS BIAS	×≻N	000	-,403244 -,383744 -,318237	-99.86189 19.84550 168.3698	
ARC SET NUMBER	34.		:	7 C C C C C C C C C C C C C C C C C C C	MELL SOLUTION	EDDAD ESTIMATE

15.23749 15.21191 20.37935	ERROR ESTIMATE 15.02990 15.11711	OR EST	13.78840 13.94127 19.01618	13.6951	13.4/041	ERROR EST	15.2475 15.12711 20.51553	ERROR EST	18.02423 17.68663 22.83031	OR EST	13.87860 13.82350 19.24684	OR EST	13.52963 13.54663 18.73820	N ERROR EST	13,48585 13,47766 18,59603
-14.05185 -111.1861 -77.24561	NEW SOLUTION -307.0186 -37.24409	.321 01UT	24.71165 -13.95547 -2.865912	M SOLUT	-48.72260 -92.84461	SOLUT	-251,6269 209,5221 156,3073	TU 108	304.5381 101.6559 -423.0998	SOLUTIO	-74.74361 -137.3173 -236.2480	SOLUTIO	-69.76974 -82.27425 -252.4977	SOLUT	
0.1183856E-C8 -7039261E-09 0.1438976E-09	DEL SOLUTION 0.1466698E-09 0.9640616E-10	.3515500E-0 L SOLUTION	.7022297E .4509197E .6872072E	L SOLUTION .5266272E-1	0,1020045E-09 -,3361756E-09	DEL SOLUTION	89 0.26 22	SOLUTI	0.1448269E-08 1497755E-08 0.8093951E-09	DEL SOLUTION	0.1000284E-08 1009874E-08 5424471E-09	DEL SOLUTION	.7872262E .4689598E .1484780E	DEL SOLUTION	6346
-14.05185 -111.1861 -77.24561	0LD VALUE 	.32 VA	4.71165 3.95547 865912	0LD VAL	~ *	VAL	51.6269 09.5221 56.3073	OLD VALUE	04.538 01.655 23.099	OLD VALUE	7.317	VAL	76974 27425 .4977	LD VAL	18.71238
××n	×≻	7	×≻N	×	(> N		××N		××N		××N		××N		×≻
BIAS BIAS BIAS	35: BIAS BIAS	T -	BIAS BIAS BIAS	. 4	BIAS	38:	BIAS BIAS BIAS	391	BIAS BIAS BIAS	105	BIAS BIAS BIAS	41 :	BIAS BIAS BIAS	451	BIAS
CHELYUSKIN IV CHELYUSKIN IV CHELYUSKIN IV	ARC SET NUMBER LABEL CHICHIJIMA	SE	COIMBRA COIMBRA COIMBRA	SET NU	COLLEGE III COLLEGE III	ARC SET NUMBER LABEL	DAVIS DAVIS DAVIS	ARC SET NUMBER LABEL	DEL RIO DEL RIO DEL RIO	ARC SET NUMBER LABEL	ľ	ARC SET NUMBER	} 	ARC SET NUMBER LABEL	1

ERROR ESTIMATE	14.70426 14.62287 20.07151	ERROR ESTIMATE 14.05389 13.93540 19.08962	ERROR ESTIMATE 13.85287 13.83885 18.85370	ERROR ESTIMATE 13.55061 13.58968 18.71981	ERROR ESTIMATE 14.97164 15.00667 20.24871	ERROR ESTIMATE 13.60292 13.61756 19.06951	ERROR ESTIMATE 14.16346 14.22658 19.65162	ERROR ESTIMATE 16.01752 16.15986 20.55644	ERROR ESTIMATE
NEW SOLUTION	-139.7096 -424.0316 -2838.221	NEW SOLUTION -205.0261 8.505214 -113.1116	NEW SOLUTION -9.309857 84.12590 107.6394	NEM SOLUTION 18.82863 -49.65439 -64.87805	NEW SOLUTION -17.25419 -41.32929 62.42214	NEW SOLUTION -108.6911 40.45125 -256.1348	NEM SOLUTION 64.00292 -57.34580 129.3082	NEM SOLUTION 129.6316 -59.84817 74.31170	NEW SOLUTION
DEL SOLUTION	.1376761E .2608569E	DEL SOLUTION 0.4466511E-09 2304265E-09 2161389E-10	DEL SOLUTION 0.8737930E-10 275223E-09 1096079E-09	DEL SOLUTION 0.5165309E-09 0.3426461E-09 0.4548395E-09	DEL SOLUTION8513542E-094577168E-091035969E-08	DEL SOLUTION1269731E-093106627E-091221137E-09	DEL SOLUTION 0.1254396E-08 0.5962262E-09 0.7327871E-10	DEL SOLUTION1669811E-09 0.8571136E-10	DEL SOLUTION
D VAL	.7096 .0316 8.221	0LD VALUE -205.0261 8.505214 -113.1116	0LD VALUE -9.309857 84.12590 107.6394	0LD VALUE 18.82863 -49.65439 -64.87805	0LD VALUE -17.25419 -41.32929 62.42214	OLD VALUE -108.6911 40.45125 -256.1348	0LD VALUE 64.00292 -57.34580 129.3082	0LD VALUE 129.6316 -59.84817 74.31170	OLD VALUE
	×××	×≻N พพพ	×≻N www	N≺X www	×≻N www	×≻N www	××N vvv	×≻N www	
431	BIA	44 - BIA BIA BIA BIA	45. BEIA BIAA	46: BIA BIA	47. BIA BIA	48 - BEIRA BIRA	49. BIA BIA	50. BIA BIA	51 :
ARG SET NUMBER	DUMONT DURVILLE DUMONT DURVILLE DUMONT DURVILLE	ARC SET NUMBER LABEL DUSHETI II DUSHETI II	ARC SET NUMBER LABEL DYMER DYMER DYMER	ARC SET NUMBER LABEL ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR	ARC SET NUMBER LABEL EYREWELL EYREWELL EYREWELL	ARC SET NUMBER LABEL FORT CHURCHI II FORT CHURCHI II	ARC SET NUMBER LABEL FREDERICKSBURG FREDERICKSBURG FREDERICKSBURG	ARC SET NUMBER LABEL FUQUENE FUQUENE	ARC SET NUMBER LABEL

13.02589 12.96670 18.26189	ERROR ESTIMATE 15.9249 15.85973 20.72760	ERROR ESTIMALE 14.12005 14.02179 19.33771	ERROR ESTIMATE 	ERROR ESTIMATE 14.48484 14.53982 19.52694	ERROR ESTIMATE 19.28118 19.69622 25.10882	ERROR ESTIMATE 13.34499 13.25627 18.45386	ERROR ESTIMATE 14.26471 15.61512 20.28785	ERROR ESTIMATE 14.87439 14.82148 20.02498
-9.301289 5.563304 4.607510	NEW SOLUTION -2.00908: -130.8571 140.0228	NEW SOLUTION 275.1035 -308.8449 703.9828	NEW SOLUTION 11.31182 -19.01664 -78.84940	NEM SOLUTION 263.4248 94.80620 -75.17960	NEM SOLUTION 139.0986 364.5962 -50.82969	NEW SOLUTION 21.92952 -47.05656 -64.27318	NEW SOLUTION 152.3922 94.92695 58.91013	NEW SOLUTION 72.40235 65.47336 5.499655
0.5707176E-11 1648590E-09 0.3585142E-09	DEL SOLUTION1740982E-093647691E-10 0.6004252E-10	DEL SOLUTION 0.7104553E-09 0.5608781E-09 6175717E-09	DEL SOLUTION - 4877700E-09 0.2251824E-10	DEL SOLUTION 3282446E-09 0.5316283E-10	DEL SOLUTION9166071E-09 0.1461954E-092092808E-09	DEL SOLUTION9160213E-103967816E-09 0.2678532E-09	DEL SOLUTION 3838196E-09 0.3391057E-09	DEL SOLUTION 0.584084E-09 0.4718863E-09 5509924E-09
-9.301289 5.563304 4.607510	OLD VALUE -2.009084 -130.8571 140.0228	0LD VALUE 275.1035 -308.8449 703.9828	0LD VALUE 11.31182 -19.01664 -78.84940	0LD VALUE 263.4248 94.80620 -75.17960	0LD VALUE 139.0986 364.5962 -50.82969	0LD VALUE -21.92952 -47.05656 -64.27318	0LD VALUE 152.3922 94.92695 58.91013	0LD VALUE 72.40235 65.47336 5.499655
××N	×≻N	××N	××N	×≻N	××N	××N	××N	×≻N
BIAS BIAS BIAS	52: BIAS BIAS	53: BIAS BIAS	54: BIAS BIAS BIAS	55. BIAS BIAS BIAS	561 BIAS BIAS BIAS	57: BIAS BIAS BIAS	58: BIAS BIAS BIAS	591 BIAS BIAS BIAS
FURSTNFELDBRUCK FURSTNFELDBRUCK FURSTNFELDBRUCK	SET NUMBER LABEL NGARA NGARA NGARA	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL	ARC SET NUMBER LABEL GREAT WHALE R GREAT WHALE R	ARC SET NUMBER LABEL LABEL GREAT WHALE RII GREAT WHALE RII GREAT WHALE RII	ARC SET NUMBER LABEL GROCKA GROCKA GROCKA	ARC SET NUMBER LABEL GUAM GUAM GUAM	ARC SET NUMBER LABEL

OR EST	15.28848 15.35732 20.32227	ERROR ESTIMATE 13.56172 13.61120 18.70856	ERROR ESTIMATE 14.46332 14.72409 19.56272	ERROR ESTIMATE 13.64955 13.58946 19.12921	ERROR ESTIMATE 13.17476 13.17579 18.41368	ERROR ESTIMATE 14.75884 15.16421 20.09526	ERROR ESTIMATE 15.60690 15.85141 20.62259	ERROR ESTIMATE 15.11014 15.11853 19.88557	ERROR ESTIMATE
NEW SOLUTION	98.26501 -13.73824 73.59041	NEW SOLUTION 	NEW SOLUTION 6.298415 -790.0879 414.0773	NEW SOLUTION 	NEW SOLUTION 53.31292 -161.5925 -94.58459	NEW SOLUTION 16.14114 16.18348 23.64824	NEW SOLUTION -141.7254 90.25367 -341.2583	NEW SOLUTION -15.94833 -130.9075 -18.97569	NEM SOLUTION 87.50205
SOLUTI	001	DEL SOLUTION 0.1923832E-09 0.3031976E-09 0.3215671E-09	DEL SOLUTION4581490E-09 0.3338054E-09 0.7419700E-09	DEL SOLUTION 0.3026181E-091812343E-08 0.1537957E-08	DEL SOLUTION 0.5393125E-09 -,3233179E-09 0.7427422E-09	DEL SOLUTION 0.2379050E-092126131E-09602233E-10	DEL SOLUTION 0.1525311E-08 0.3794137E-09 0.9388737E-09	DEL SOLUTION1442705E-092611490E-09 0.9523314E-09	DEL SOLUTION 0.4198492E-09
LD VA	98.26501 -13.73824 73.59041	0LD VALUE -30.03710 8.399911 43.19250	0LD VALUE 	0LD VALUE 93.07143 -674.4795 1149.655	0LD VALUE 53.31292 -161.5925 -94.58459	0LD VALUE 16.14114 16.18348 23.64824	0LD VALUE -141.7254 90.25367 -341.2583	01D VALUE -15.94833 -130.9075 -18.97569	0LD VALUE 87.50205
	××n	×≻N	××N	×≻N	×≻N	×≻N	×≻N	×≻N	×
. 109	BIAS BIAS BIAS	61: BIAS BIAS BIAS	62: BIAS BIAS BIAS	63. BIAS BIAS	64. BIAS BIAS BIAS	65: BIAS BIAS BIAS	66. BIAS BIAS BIAS	67. BIAS BIAS BIAS	68: BIAS
ARC SET NUMBER	HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK	ARC SET NUMBER LABEL HARTLAND HARTLAND HARTLAND	ARC SET NUMBER LABEL LABEL HATIZYO II HATIZYO II HATIZYO II	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL HEL III HEL III	ARC SET NUMBER LABEL HERMANUS HERMANUS	ARC SET NUMBER LABEL HONOLULU IV HONOLULU IV HONOLULU IV	ARC SET NUMBER LABEL HORNSUND HORNSUND HORNSUND	ARC SET NUMBER LABEL HUANCAYO

16.02560 20.80663	ERROR ESTIMATE	ERROR ESTIMATE 14.09886 14.24202 19.13017	ERROR ESTIMATE 13.69395 13.91259 19.01519	ERROR ESTIMATE 13.10702 13.32992 18.51984	ERROR ESTIMATE 13.23048 13.11219 18.70319	ERROR ESTIMATE 13.60313 13.69653 18.70511	ERROR ESTIMATE 17.58094 17.58293 21.75186	ERROR ESTIMATE 14.07646 14.06278 19.29730
49.14817	NEM SOLUTION 20.62840 -14.95487 -59.13206	NEM SOLUTION 311,0325 17,47005 491,9186	NEW SOLUTION 172,9941 -411,3785 -34,16130	NEW SOLUTION 3.498032 11.94955	NEW SOLUTION 1.009900 44.87260 -43.70471	NEM SOLUTION 59.28112 33.69614 -75.96144	NEM SOLUTION -819.6814 -1825.378 -43.90610	NEW SOLUTION 199,5041 -92,77919 -29,52141
9013106E-09 0.9716890E-10	DEL SOLUTION2256438E-102521472E-09 0.1505796E-09	DEL SOLUTION2195133E-093013090E-09	DEL SOLUTION 0.4677056E-093477075E-09	DEL SOLUTION 6414101E-09 0.2375077E-09 0.8691334E-09	DEL SOLUTION 8454074E-10 0.2181371E-09 1350615E-10	DEL SOLUTION3493781E-09 0.1792242E-09 0.6775261E-10	DEL SOLUTION 0.8878558E-10 1087619E-09 0.4299139E-09	DEL SOLUTION 5041860E-09 8078322E-10 5958091E-09
49.14817	0LD VALUE 20.62840 -14.95487 -59.13206	0LD VALUE 311.0325 17.47005 491.9186	0LD VALUE 172.9941 -411.3785 -34.16130	0LD VALUE 3.498032 11.94955 -92.49074	OLD VALUE 1:009900 44.87260 -43.70471	0LD VALUE -39.28112 33.69614 -75.96144	0LD VALUE -819,6814 -1825.378 -43,90610	0LD VALUE 199.5041 -92.77919 -29.52141
×Ν	×≻N	××N	×≻N	×≻N	×≻N	×≻N	××N	×≻N
BIAS	69: BIAS BIAS BIAS	70: BIAS BIAS BIAS	71: BIAS BIAS BIAS	72: BIAS BIAS BIAS	73. BIAS BIAS BIAS	74: BIAS BIAS BIAS	75: BIAS BIAS BIAS	76: BIAS BIAS BIAS
HUANCAYO HUĄNCAYO	ARC SET NUMBER LABEL HURBANOVO HURBANOVO HURBANOVO	ARC SET NUMBER LABEL HYDERABAD HYDERABAD	ARC SET NUMBER LABEL JAIPUR JAIPUR JAIPUR	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL KANOYA KANOYA KANOYA	ARC SET NUMBER LABEL KANOZAN KANOZAN KANOZAN	ARC SET NUMBER LABEL KIRUNA II KIRUNA II	ARC SET NUMBER KLYUCHI II KLYUCHI II KLYUCHI II KLYUCHI II

LAB	Ϋ́	×	0 VAL 5.592	. 9734955E-1	SOLUT 53.592	OR EST
ANAL II	BIAS	> 2	272.3445 -71.71263	0.2654653E-09 0.1739247E-09	272.3445 -71.71263	14.46094 19.17326
ET NUMBER LABEL	78:		OLD VALUE	DEL SOLUTION	SOLUT	OR ESTIM
NAYA PAKHRA NAYA PAKHRA NAYA PAKHRA	BIAS BIAS BIAS	××N	8.69 239 7.15	0.3125498E 5392819E 0.3751539E	168.6918 -14.23906 177.1582	13.62370 13.58740 18.79996
ET NUMBER LABEL	19:		OLD VALUE	OLUTI	SOLUT	OR ESTI
NNZHOU II NNZHOU II NNZHOU II	BIAS BIAS BIAS	××n	346108 .22477 .32957	0.7919302E 0.3569899E 0.1428148E	346108 10.22477 54.32957	14.43810 14.25630 20.06974
ET NUMBER LABEL	80:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
l .	BIAS BIAS BIAS	××n	29	0.9445307E 0.1324101E 0.5662602E	-282.2935 591.0403 -496.2712	13.67394 13.64360 19.19548
ET NUMBER LABEL	81:		OLD VALUE	DEL SOLUTION	SOLUT	ERROR ESTIMATE
	BIAS BIAS BIAS	×≻N	8.372 7.796 .9879	.5985334E .3778213E .1313152E	-118.3725 167.7965 26.98798	13.56512 13.59894 18.78254
ET NUMBER LABEL	82,		>	LUTIO	SOLU	ERROR ESTIMATE
1	BIAS BIAS BIAS	××n		0.199 165 0.188	110.0404 336.3172 -553.8121	17.58205 17.58426 21.75652
ET NUMBER LABEL	83.		OLD VALUE	—	NEW SOLUTION	OR EST
1	BIAS BIAS BIAS	××N	916 9341 1676	0.3780390E 1684078E 0.7510703E	54.91654 -1.934121 -3.167679	15.03054 15.03422 19.74324
ET NUMBER LABEL	84.		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
A BELAS I A BELAS I A BELAS I	BIAS	×≻N	6.1628 .54995 .04241	.1565855E .1053992E .4851951E	286.1628 -32.54995 92.04241	16.64092 18.21703 22.69101
ET NUMBER LABEL	85.		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
l	BIAS	××	8576 2609	0.4712506E 6428737E	27.85766 29.26097	4.07460

† UNP ING	BIAS	7	34.14873	2215235E-09	34.14873	19.10756
ARG SET NUMBER	86 :		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
\00\ \00\ \00\ \00\	BIAS BIAS BIAS	××n	63.159 24.634 46.520	7143660E 3029638E 3515454E	163.1590 124.6347 146.5202	13.48201 13.46775 18.58330
ARC SET NUMBER LABEL	87:		LD VAL	L SOLUTION	SOLUT	OR EST
	BIAS BIAS BIAS	××N	.72 661 438	0.2703445E-09 0.1008077E-08 1150052E-08	115.7238 37.66161 37.43845	15.14808 15.57153 20.33864
ARC SET NUMBER	88		OLD VALUE	DEL SOLUTION	30101	OR EST
121	BIAS BIAS BIAS	××N	71.9907 .909352 .04.2206	1118024E 5106566E 0.1617034E	6.62	14.33862 14.74164 20.00422
ARC SET NUMBER LABEL	168		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
MANHAY II MANHAY II MANHAY II	BIAS BIAS BIAS	××N	411673 .61773 4.9858	329 196 811	9.411673 -18.61773 164.9858	17.81919 17.80139 22.00289
ARC SET NUMBER LABEL	106		OLD VALUE	OL UTI	NEW SOLUTION	OR EST
) 	BIAS BIAS BIAS	××N	66.7812 2.38449 37.6591	0.3474 0.6697 0.3498	366.7812 32.38449 -137.6591	14.70990 14.82308 19.90498
ARC SET NUMBER LABEL	91:		VAL	DEL SOLUTION	SOLUT	OR EST
MARTIN VIVIES MARTIN VIVIES MARTIN VIVIES	BIAS BIAS BIAS	××N	∞ ⊢ ∞	9965509E-09 7216649E-09 4219380E-09	-615.0699 -643.6116 -1949.892	18.44240 18.73011 23.95407
ARC SET NUMBER LABEL	921			LUTI	5	OR EST
MAMSON MAMSON MAMSON	BIAS BIAS BIAS	××N	. 59336 . 80803 3. 4337	17.00	16.59336 18.80803 193.4337	13.95124 13.91813 19.35133
ARC SET NUMBER	93.		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
ннн	BIAS BIAS BIAS	××N	$\begin{array}{c} 0.318 \\ .6075 \\ 2.986 \end{array}$	24.	110.5184 12.60750 -132.9865	13.49360 13.60114 18.91477
ARC SET NUMBER LABEL	941		OLD VALUE	DEL SOLUTION	NEM SOLUTION	ERROR ESTIMATE

13.25104 13.53785 18.73699	ERROR ESTIMATE 14.44961 14.13718 19.65805	ERROR ESTIMATE 13.60354 13.68295 18.70663	ERROR ESTIMATE 14.39114 14.31992 19.46317	ERROR ESTIMATE 13.57943 13.55568 19.04168	ERROR ESTIMATE 14.76461 14.76336 19.87803	ERROR ESTIMATE 17.62265 17.60420 21.74209	ERROR ESTIMATE 19.00044 20.42732 26.52062	ERROR ESTIMATE 15.31916 15.25043 20.26217
-228.6431 141.7544 63.19746	NEM SOLUTION -120.0278 54.50367 -434.6451	NEM SOLUTION -128.3755 43.30600 -187.3558	NEM SOLUTION -9.175696 -108.0932 -240.3918	NEM SOLUTION -27.92967 11.41582 -37.81492	NEM SOLUTION -66.90437 -38.54795 29.88101	NEM SOLUTION 3.286180 -2.303447 -84.58689	NEW SOLUTION -49.34616 27.23212 296.5769	NEM SOLUTION -345.0070 267.0069 558.7156
3982389E-09 8539834E-10 0.4451248E-09	DEL SOLUTION7488421E-09 0.1120387E-08	DEL SOLUTION4064668E-09 0.9427374E-10 0.3473302E-09	DEL SOLUTION 0.5084887E-098927297E-09	DEL SOLUTION	DEL SOLUTION1056721E-082042228E-112558433E-10	DEL SOLUTION8109809E-102030552E-09 0.2040895E-09	DEL SOLUTION3339577E-09 0.4081144E-09 0.2295301E-08	DEL SOLUTION 0.9519703E-10 0.3265739E-09 1614680E-09
-228.6431 141.7544 63.19746	0LD VALUE -120.0278 -54.50367 -434.6451	0LD VALUE -128.3755 43.30600 -187.3558	0LD VALUE -9.175696 -108.0932 -240.3918	0LD VALUE -27.92967 11.41582 -37.81492	0LD VALUE -66.90437 -38.54795 29.88101	0LD VALUE 3.286180 -2.303447 -84.58689	01D VALUE -49.34616 27.23212 296.5769	0LD VALUE -345.0070 267.0069 558.7156
××N	×≻N	×≻N	×≻N	×≻N	××N	×≻N	×≻N	××N
BIAS BIAS BIAS	95: BIAS BIAS	96: BIAS BIAS BIAS	97: BIAS BIAS BIAS	98 - BIAS BIAS BIAS	99: BIAS BIAS	100: BIAS BIAS	101: BIAS BIAS BIAS	102: BIAS BIAS BIAS
MEMAMBETSU MEMAMBETSU MEMAMBETSU	ARC SET NUMBER LABEL MIRNYY III MIRNYY III	ARC SET NUMBER LABEL MIZUSAWA MIZUSAWA MIZUSAWA	ARC SET NUMBER LABEL MOLODEZHNAYA MOLODEZHNAYA MOLODEZHNAYA	ARC SET NUMBER LABEL MOULD BAY MOULD BAY	ARC SET NUMBER LABEL MUNTINLUPA MUNTINLUPA	ARC SET NUMBER LABEL NAGYCENK II NAGYCENK II NAGYCENK II	ARC SET NUMBER LABEL NAMPULA NAMPULA	ARC SET NUMBER LABEL

OR EST	13.13/84 13.28879 18.55967	OR EST	13.17387 13.16224 18.38774	OR EST	13.57140 13.52453 18.94394	OR EST	20.18629 20.13596 21.95494	OR EST	14.79568 14.81235 18.79957	OR EST	13.90051 13.97950 19.37726	OR EST	15.74008 15.61569 20.64699	OR EST	15.020// 15.00368 19.66138	ERROR ESTIMATE
M SOLUT	-26.49582 107.3737 -107.3034	SOLUT	-20.14445 2.158580 -87.31379	M SOLUT	-96.63233 -165.3607 4248481	SOLUT	-259.2979 79.88736 83.47359	SOLUT	294.9102 -107.6796 94.50037	SOLUT	148.3680 -142.3725 160.7349	M SOLUT	-646.6609 -738.0552 -97.83259	NEM SOLUT	-177.8739 -168.5971 -201.5060	NEW SOLUTION
L SOLUTION	0.1171673E-09 0.2597356E-09 1223496E-09	OLUTIO	.2656 .1783 .1286	L SOLUTIO	0.2127175 1819857 0.1884804	L SOLUTIO	0.5867132E-09 0.2534871E-09 0.5236258E-09	SOLUTI	0.7049393E-09 6380985E-09 0.9906235E-09	L SOLUTION	0.2114748E-09 0.6042458E-09 0.7977509E-09	11	. 3608 . 1959 . 5567	L SOLUTION	-,4279579E-10 -,2038649E-09 -,124344E-09	DEL SOLUTION
D VAL	-26.49582 107.3737 -107.3034	OLD VALUE	0.1444 1.15858 7.3137	VAL	400	LD VA	9.297 .8873 .4735	OLD VALUE	910 679 003	OLD VALUE	48.368 42.372 60.734	OLD VALUE	46.66 38.05 7.832	D VAL	77.87 68.59 01.50	OLD VALUE
	××N		××N		××N		×≻N		××N vvv		××N vvv		××× vos		งงังงัง ×≻и	
03;	BIAS BIAS BIAS	041	BIAS BIAS BIAS	.051	BIAS BIAS BIAS	190 1	BIAS BIAS BIAS	101	BIA	108;	BIAA	109;	BIA BIA BIA	110:	BIA BIA BIA	111.
ARC SET NUMBER 1	NEMPORT NEMPORT NEMPORT		NIEMEGK NIEMEGK NIEMEGK	ARC SET NUMBER 1	・アマス	ARC SET NUMBER 1	NOVOLAZAREVS II NOVOLAZAREVS II NOVOLAZAREVS II	ARC SET NUMBER	ı	ARC SET NUMBER		ARC SET NUMBER LABEL	1	ARC SET NUMBER LABEL	PANAGYURISHTE PANAGYURISHTE PANAGYURISHTE	ARC SET NUMBER

14.19598 14.35227 19.53433	N ERROR ESTIMATE 14.20080 14.22859 19.59331	ERROR ESTIMATE 15.56562 15.78856 20.77723	ERROR ESTIMATE 13.49362 13.48859 18.63430	ERROR ESTIMATE 14.45418 14.51758 20.02813	ERROR ESTIMATE 14.89941 16.14058 20.61374	ERROR ESTIMATE 17.00317 16.60812 23.16589	ERROR ESTIMATE 14.37396 14.73846 19.99627	ERROR ESTIMATE 13.57724 13.60737
-331.8850 224.7400 236.2734	NEW SOLUTION 35.17752 41.13752 -81.66380	NEM SOLUTION 16.94508 4044377 -12.19653	NEM SOLUTION 290.7655 169.0695	NEM SOLUTION 	NEM SOLUTION 17.38040 59.22324 263.6596	NEW SOLUTION -805.1411 1102.702 172.0290	NEM SOLUTION 227.7451 194.7221 677.4757	NEW SOLUTION 39.89250 31.67267 69.85815
0.5183807E-09 4823336E-09 0.3265060E-09	DEL SOLUTION6915399E-093187214E-099447532E-10	DEL SOLUTION2139267E-092511635E-091204921E-09	DEL SOLUTION 0,453225E-09 -,376836E-09 0,5398872E-09	DEL SOLUTION3773075E-092834149E-091306139E-08	DEL SOLUTION 0.2011514E-09 0.2120121E-09 0.7832291E-09	DEL SOLUTION 0.3618436E-09 2835898E-09 3330749E-10	DEL SOLUTION 0.3622747E-09 3598024E-09 9122141E-09	DEL SOLUTION 0.7319628E-09 0.1105773E-09 0.1015970E-09
-331.8850 224.7400 236.2734	0LD VALUE 35.17752 41.13752 -81.66380	0LD VALUE 16.94508 4044377 -12.19653	OLD VALUE 290.7655 169.0695 -138.1776	0LD VALUE 75,47700 8,398435	0LD VALUE 17.38040 59.22324 263.6596	0LD VALUE -805.1411 1102.702 172.0290	0LD VALUE 227.7451 194.7221 677.4757	OLD VALUE 39.89250 31.67267 69.85815
××N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N
BIA6 BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	BIAS BIAS BIAS BIAS
PARATUNKA PARATUNKA PARATUNKA	ARC SET NUMBER LABEL LABEL PATRONY PATRONY	ARC SET NUMBER 1 LABEL PILAR PILAR PILAR	ARC SET NUMBER 1 LABEL PLESHENITZI PLESHENITZI PLESHENITZI	ARC SET NUMBER I LABEL PODKAM TUNGUSKA PODKAM TUNGUSKA	ARC SET NUMBER 1 LABEL PORT MORESBY PORT MORESBY	ARC SET NUMBER I LABEL PORT-ALFRED I PORT-ALFRED I	ARC SET NUMBER I LABEL PORT-AUX-FRANCA PORT-AUX-FRANCA	ARC SET NUMBER I LABEL

ARC SET NUMBER 1	201		D VA	NOILLION	SOLUT	DR EST
RUDE SKOV RUDE SKOV RUDE SKOV	BIAS BIAS BIAS	×≻N	41.40537 -8.220098 -58.62151	0.3007923E-09 7427446E-10 0.1422398E-09	41.4053/ -8.220098 -58.62151	16.02491 20.49340
ARC SET NUMBER 1	.21:		# 1	L SOLUTION	SOLUT	OR EST
SABHAMALA II SABHAMALA II SABHAMALA II	BIAS BIAS BIAS	×≻N	5.6.	0,4966793E-09 3097508E-09 8527248E-09	-7.625655 -69.04516 22.62059	13.86201 19.06488
ARC SET NUMBER 1	122 i		D VAL	DEL SOLUTION	=!	OR EST
-	BIAS BIAS BIAS	××N	. 49036 1.9911 6.9998	8786261E 1103967E 4512134E	-45,49036 181,9911 186,9998	14.86086 15.45949 20.45779
品品	1231		_	DEL SOLUTION	SOLUT	OR EST
Ì	BIAS BIAS BIAS	××N	95139 17728 36226	0.36 0.41 0.64	30.95139 15.17728 -76.36226	15.57.551 15.59612 20.35398
ARC SET NUMBER LABEL	1241		OLD VALUE	SOLUTION	M SOLUT	OR EST
SANAE II SANAE II SANAE II	BIAS BIAS BIAS	×≻N	.87940 .58125 .76503	.19523 .15702 .33840	-46.87940 -75.58125 47.76503	10.03444 115.68741 21.81237
ARC SET NUMBER LABEL	1251		OLD VALUE	CUTION	M SOLUT	OR EST
1	BIAS BIAS BIAS	××N	w.20.	0.2445134E-09 2123028E-09 0.1692516E-10	-226:52/4 72:64053 226:9920	13.98082
ARC SET NUMBER LABEL	126 1		D VA	SOLUTION	NEW SOLUT	OR EST
SHILLONG SHILLONG SHILLONG SHILLONG	BIAS BIAS BIAS	××N	9624 8731 .720	0.1111237E-08 0.1526270E-09 1354544E-08	-95.96249 -87.87316 -371.7206	14.82158 20.21375
ARC SET NUMBER LABEL	1271		VAL	SOLUTION	NEW SOLUT	81,
 	BIA BIA BIA	××× vvv	9.194275 -10.41663 -53.31341	0.1872164E-09 -,1035477E-09 -,2631905E-09	9.1942/5 -10.41663 -53.31341	. 9066
ARC SET NUMBER	128:		OLD VALUE	NOIL	NEW SOL	ERROR ESTIMATE
SODANKYLA	BIA	×	49.39	0.7887671E-09	-149.39)

13.39486	ERROR ESTIMATE 17.59053 17.60495 21.79565	ERROR ESTIMATE 14.70031 14.36364 20.01673	ERROR ESTIMATE 14.48371 14.70824 20.09344	ERROR ESTIMATE 13.57870 13.53618 18.68377	ERROR ESTIMATE 13.36598 13.29691 18.50725	ERROR ESTIMATE 15.27898 15.07840 20.20073	ERROR ESTIMATE 15.85286 15.77782 21.28567	ERROR ESTIMATE 15.56092 16.02817 21.02088
-108.7441 -591.2422	NEW SOLUTION -74.63626 -366.0592 104.9208	NEW SOLUTION 60.95105 25.00210	NEW SOLUTION -267.9334 -739.0452 42.7357	NEW SOLUTION -97.13624 -700.8429 69.62788	NEW SOLUTION -21.87791 -32.51592 -64.26061	NEW SOLUTION -30.45907 -58.95040 18.04822	NEW SOLUTION 	NEW SOLUTION 16.48414 -36.24498 89.42600
-,1014996E-08 0,1882585E-08	DEL SOLUTION4613292E-096798633E-10 0.1347623E-09	DEL SOLUTION2205851E-093818474E-09 0.9661998E-09	DEL SOLUTION 0.9681669E-11 0.2972629E-09 0.4644955E-09	DEL SOLUTION 0.2455587E-09 3472061E-09 0.5552492E-09	DEL SOLUTION2221440E-094562581E-09 0.8181130E-11	DEL SOLUTION 0.9082729E-097857688E-09 0.4226616E-09	DEL SOLUTION2944364E-09 0.7645384E-09 0.1159792E-08	DEL SOLUTION 0.3239279E-09 0.9553573E-09 0.7193235E-09
-108.7441 -591.2422	0LD VALUE -74.63626 -366.0598 104.9208	0LD VALUE 60.95105 25.00210 -1.803983	0LD VALUE -267.934 -739.0452 42.73577	0LD VALUE -97,13624 -700,8429 69,62788	0LD VALUE 21.87791 -32.51592 -64.26061	01D VALUE -30.45907 -58.95040 18.04822	0LD VALUE 50.99497 -238.8313 -34.08164	0LD VALUE 16.48414 -36.24498 89.42600
%. 2×2	×≻N www	××× 222	yyy ×≻N	აგა ×≻N	v ×≻n	yyy ×≻N	anda ×≻n	გავ ×≻N
BIA	129. BIA BIA BIA	130. BIA BIA BIA	131: BIA BIA BIA	132. BIA BIA BIA	153: BIA BIA BIA	134: BIA BIA BIA	135. BIA BIA BIA	136: BIA BIA BIA 137:
SODANKYLA Sodankyla	ARC SET NUMBER LABEL SOUTH GEORGIA SOUTH GEORGIA SOUTH GEORGIA	ARC SET NUMBER LABEL ST JOHN S ST JOHN S ST JOHN S	ARC SET NUMBER LABEL STEKOLINIY STEKOLINIY STEKOLINIY	ARC SET NUMBER LABEL STEPANOVKA III STEPANOVKA III	ARC SET NUMBER LABEL SURLARI II SURLARI II	ARC SET NUMBER LABEL SYOWA BASE II SYOWA BASE II	ARC SET NUMBER LABEL TAMANRASSET IV TAMANRASSET IV	ARC SET NUMBER LABEL TANGERANG III TANGERANG III TANGERANG III ARC SET NUMBER

OR EST	17.22965 17.71251 22.38075	OR EST	15,33750 15,27385 20,17997	OR EST	14.64396 14.57886 19.66079	OR EST	14.45438 14.41149 20.42667	OR EST	14.89619 14.89247 20.15485	OR ES	17.51409 17.51495 21.61840	OR EST	14.49669 14.66019 19.31075	OR EST	13.38175 13.43757 18.78394	8	7 W
SOLUT	54.85540 -96.97562 67.26723	SOLUT	-278.7567 228.8221 -66.90928	SOLUT	-53.28900 92.62339 24.29387	NEW SOLUTION	50.	NEW SOLUTION	67.3038 155.963 109.550	51	88082 30312 82196	SOLUT	285.2767 199.4305 205.0729	SOLUT	123.2017 -407.9229 114,4386	5!	50
OLUTI	.579934 .113856 .680206	L SOLUTIO	000	LUTIO	00.0 0.6 0.5	DEL SOLUTION	12449 26860 0.49773	OLUTI	0.3716257E 0.2397263E 3528709E	01110	0.172355 0.279337 256121	OLUTIO		OLUTION	0.5237944E-09 7099241E-09 0.2691403E-08	DEL SOLUTION	7650E 2412E
A !		LD VAL	-278.7567 228.8221 -66.90928	LD VAL	900 339 387	A :	2.76426 078058 0.83755	>	7.3038 55.963 09.550	D VAL	5.88082 130312 2.82196	1	855. 055.	LD VAL	W/4	D VAL	5.93
	××N		××N		××N		××N		××N		××N		××N		××N		×≻
	BIAS BIAS BIAS	381	BIAS BIAS BIAS	1391	BIAS BIAS BIAS	140:	BIAS BIAS BIAS	141:	BIAS BIAS BIAS	142,	BIAS BIAS BIAS	143:	BIAS BIAS BIAS	144:	BIAS BIAS BIAS	1451	BIAS
LABEL		ARC SET NUMBER 1	ì	ARC SET NUMBER 1	THULE III THULE III	ARC SET NUMBER 1		ARC SET NUMBER	1	د. <u></u>	TOLEDO III TOLEDO III TOLEDO III	ARC SET NUMBER LABEL	}	ARC SET NUMBER LABEL		ARC SET NUMBER	ł

TSUMEB	BIAS	2	96.79866	0.2578699E-09	96.79866	19.87377
ARC SET NUMBER	146 1		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
TUCSON TUCSON TUCSON	BIAS BIAS BIAS	××N	2.51434 0.33773 38.6308	0.4894770E 1104857E 0.7561980E	-42.51434 -60.33773 138.6308	14.11063 14.22094 19.29404
ARC SET NUMBER LABEL	147:		LD VAL	SOLUT	NEW SOLUTION	ERROR ESTIMATE
į	BIAS BIAS BIAS	×≻N	77639 75670 07173	.6851307E .1010926E .3344601E	-23.77639 -34.75670 45.07173	31.07311 30.75066 34.08812
2	148:		OLD VALUE	L SOLUTIO	OLUT	R EST
UJJAIN UJJAIN UJJAIN	BIAS BIAS BIAS	××N	45.0	2081068E-09 3634152E-10 0.7011684E-10	-226.4 181.5 278.0	48967 49991 57100
ARC SET NUMBER LABEL	149,		רם מי	SOLUT	SOLU	OR EST
URUMQI URUMQI URUMQI	BIAS BIAS BIAS	×≻N	. 59675 . 56014 . 20987	0.1221032E 0.2371785E 0.5378693E	-45.59675 -12.56014 51.20987	15.29401 15.25769 20.23473
ARC SET NUMBER	150:		Y Y	OLUT	NEW SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	××N	8.6790 .99286 .73431	0.1120191E 0.6425674E 0.1343241E	138.6790 -58.99286 12.73431	13.34351 13.47753 18.75721
ARC SET NUMBER	151:		VAL	DEL SOLUTION	NEW SOLUTION	OR EST
VANNOVSKAYA II VANNOVSKAYA II VANNOVSKAYA II	BIAS BIAS BIAS	×≻N	90.7480 4.28512 9.47745	7883586E 4507623E 1801626E	90.7480 4.28512 9.47745	202 202
ARC SET NUMBER LABEL	152:		VAL	유	SOLUT	R EST
j	BIAS BIAS BIAS	×≻N	87.45710 -62.91882 -34.74810	0.1075	87.45710 -62.91882 -34.74810	15.39054 15.83738 20.82697
ARC SET NUMBER LABEL	1531		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
<u> </u>	BIAS BIAS BIAS	××N	N-0	0.2325646 0.9702230 6867663	41.44545 2.848211 -305.3562	3.86457 4.00063 9.20481
ARC SET NUMBER	154 :		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE

www we
AS Y 16.14048 AS Z -277.7936 OLD VALUE
OLD VALUE IAS X 63.89538 IAS Y 45.74687 IAS Z -78.56568
1AS X 36.18361 IAS Y 2.917403 IAS Z -85.79693
OLD VALUE OLD VALUE IAS X 63.66352 IAS Y 28.99858 IAS Z -57.11601
IAS X 94.38355 IAS Y -1177,299 IAS Z 97.62050
OLD VALUE OLD VALUE 1AS X -265.7516 1AS Y 40.06960 1AS Z -110.2314
BIAS X -259.4994 BIAS Y 43.40622 BIAS Z -70.75432

ERROR ESTIMATE	13.66825 13.71171 18.97493	ERROR ESTIMATE	14.40052 14.43908 19.29228	ERROR ESTIMATE	13.41177 13.35476 18.74501	
NEW SOLUTION		NEW SOLUTION		NEW SOLUTION		
DEL SOLUTION	4951834E-11 8041401E-10 0.1326372E-09	DEL SOLUTION	5692438E-10 0.8307829E-10 0.7585042E-10	DEL SOLUTION	7144292E-10 6000226E-09 0.5139841E-10	
OLD VALUE	403.4077 -210.8192 142.6798	OLD VALUE	-74.34366 -56.98588 82.98722	OLD VALUE	-113.5901 -117.8156 120.7503	
	××N		××n		××N	
163:	BIAS BIAS BIAS	1641	BIAS BIAS BIAS	165,	BIAS BIAS BIAS	
ARG SET NUMBER 163:	YELLOW-KNIFE YELLOW-KNIFE YELLOW-KNIFE	ARC SET NUMBER 164	YUZHNO SAKH IV YUZHNO SAKH IV YUZHNO SAKH IV	ARC SET NUMBER 165, LABEL	ZAYMISHCHE III ZAYMISHCHE III ZAYMISHCHE III	

GENERATING COMMON PARAMETER MATRIX STATISTICS: *** ND = 21ER = 0 ** STATC **

165

--LAST ARC-SET PROCESSED. TOTAL NUMBER OF ARC-SETS EQUALS:

SOLUTION ERROR EST	28.57538 15.06946 56.92638 15.07814 30.34329 19.81272	M SOLUTION ERROR ESTIMATE 545.8304 15.02142 7.723413 15.49606 120.5599 20.71325	NEM SOLUTION ERROR ESTIMATE -8.016323 14.19436 -29.10167 14.10499 -189.7390 19.41163	EM SOLUTION ERROR ESTIMATE -204.7957 13.72926 453.7206 14.06599 605.7541 19.03788	IEM SOLUTION ERROR ESTIMATE 163,0393 13,78391 23,07266 13,81715 -176,3545 19,15077	EM SOLUTION ERROR ESTIMATE -11,70597 13.84366 12.50461 13.78458 10.32350 18.98860	IN 2554 14.11521 14.2554 14.27332 280.3572 19.51423	IEM SOLUTION ERROR ESTIMATE
د ت	0.1160771E-08 0.1093216E-08 1397433E-09	DEL SOLUTION NE 0.7348580E-08 0.1908301E-07 -,9653374E-08	DEL SOLUTION NE7019809E-094986912E-099408134E-09	DEL SOLUTION NI 0.2163425E-09 0.6311911E-09	DEL SOLUTION 0.1260271E-10 0.1057856E-08 0.3052781E-08	DEL SOLUTION N -,6976465E-09 0.1031255E-08	DEL SOLUTION N 0.5412963E-08 0.9449722E-08 0.475969E-09	DEL SOLUTION N
OLD VALUE	28.57538 56.92638 30.34329	0LD VALUE 545.8304 7.723413 120.5599	OLD VALUE -8.016323 -29.10167 -189.7390	01D VALUE -204.7957 453.7206 605.7541	0LD VALUE 163.0393 23.07266 -176.3545	0LD VALUE -11.70597 12.50461 10.32350	0LD VALUE 1111.2554 34.09788 280.3572	0LD VALUE
_	IAS X IAS Y IAS Z	2. BIAS X BIAS Y BIAS Z	IAS X IAS Y IAS Z	IAS X IAS Y IAS Z	IAS X IAS Y	BIAS X BIAS Y BIAS 2	7: BIAS X BIAS Y BIAS 2	o: BIAS X
ARC SET NUMBER 14	ABISKO VI BI ABISKO VI BI ABISKO VI BI	ARC SET NUMBER 2 LABEL ADDIS ABABA II B ADDIS ABABA II B ADDIS ABABA II B	ARC SET NUMBER 3 LABEL ALERI ALERI BEAT	ARC SET NUMBER 4 LABEL ALIBAG III ALIBAG III B ALIBAG III	ARC SET NUMBER 5 LABEL ALMA ATA BALMA ATA BALMA ATA BALMA ATA	ARC SET NUMBER 6 LABEL ALMERIA ALMERIA ALMERIA B	ARC SET NUMBER 7 LABEL AMATSIA AMATSIA AMATSIA	ARC SET NUMBER E LABEL - LABEL - LABEL ANNAMALAINAG II

ANNAMALAINAG II ANNAMALAINAG II	BIAS	≻ 2	-105,3937 -48,71153	0.2175071E-08 0.1253992E-08	-105.3937	14.61961 19.32567
ARC SET NUMBER LABEL	š		2	OLUT	Ñ	ES.
i	BIAS BIAS BIAS	×≻N	. 42761 1.8548 3.9603	0.2096654E 2364538E 0.1849066E	-25.42761 201.8548 -883.9603	i i
	10:		LD VAL	201	20	er m
<u> </u>	BIAS BIAS	××N	12788 84895 55281	0.3588446E 0.3269020E 7470116E	10.12788 39.84895 -10.55281	13.29327 18.50201
ARC SET NUMBER LABEL	11:			SOLUTIO	M SOLUT	R EST
	BIAS BIAS	×≻N	46.84 14.72 75.44	0.5821714E-08 -1750501E-07 0.8114925E-09	-146.8420 314.7261 675.4450	14.93099 15.01885 20.04618
ARC SET NUMBER	12.		LD VAL	S	NEW SOLUTION	R EST
ARGENTINE ISLND ARGENTINE ISLND ARGENTINE ISLND	BIAS BIAS BIAS	××N	95537 58460 7146	0.6747898E 1354855E 0.2456877E	87.95537 -78.58460 477.7146	15.29506 20.24217
ARC SET NUMBER	13;		D VALU	DEL SOLUTION	SOLUTION	OR EST
ARTI ARTI ARTI	BIAS BIAS	×≻N	17.88 63.94	0.245292 0.192491 0.115630	117.8898 -263.9447 441.8446	13.69508 13.67255 18.99351
ABE	14.		LD VAL	ר פסרמדוס	SOLUT	OR EST
BAKER LAKE VII BAKER LAKE VII BAKER LAKE VII	BIAS BIAS BIAS	×≻n	170.8348 -34.11236 -77.19435	1389033E-08 7556594E-09 0.2340874E-08	170.8348 -34.11236 -77.19435	13.52991 13.59231 18.98507
ARC SET NUMBER LABEL	15:) VAL	20	n 10s	OR EST
ŀ	BIAS BIAS BIAS	×≻N	30.5921 0.85600 10.3408	0.7453891E 0.2758539E 0.1572690E	-130.5921 -30.85600 210.3408	14.73084 29.27841 20.38382
ARC SET NUMBER LABEL	16.		LD VAL	UTIO	SOLUTION	OR EST
) } 	BIAS BIAS BIAS	×≻N	18.40859 -56.51215 -43.64419		18.40859 -56.51215 -43.64419	15.27428 13.96839 19.36411
ARC SET NUMBER	17.1					

LABEL			OLD VALUE	DEL SOLUTION	SOLUT	OR EST
BEIJING BEIJING BEIJING	BIAS BIAS BIAS	×××	27.294 27.790 37.957	8185736E-09 0.2588036E-08 0.2605684E-08	627.2949 -227.7903 437.9570	13.76492 13.76403 19.10531
ARC SET NUMBER LABEL	18:		VAL	UTIO	NEW SOLUTION	ERROR ESTIMATE
BELSK BELSK BELSK	BIAS BIAS BIAS	×≻N	118.6909 137.5425 304.0286	0.7715766 0.2659435 0.5780164	118.6909 137.5425 304.0286	.17138 .16325 .38324
	19:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
BEREZNAYKI III BEREZNAYKI III BEREZNAYKI III	BIAS BIAS BIAS	×≻N	-394.7195 -271.6509 246.2802	0.1199762E 0.2051903E 0.3276412E	-394.7195 -271.6509 246.2802	.10606 .10760 .45052
ARC SET NUMBER	201		רס עא	DEL SOLUTION	30LUT	OR EST
, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BIAS BIAS BIAS	××N	-98.29697 49.03023 26.88014	.1946191E .1686610E .9590598E	98.2 49.0 26.8	13.71784 13.77648 19.06399
ARC SET NUMBER LABEL	211		OLD VALUE	DEL SOLUTION	SOLUT	R EST
t	BIAS BIAS BIAS	××N	.96273 .24341 2.5510	.1102407E .1352718E .3807486E	5.962 3.243 42.55	13.57610 13.56172 18.76716
ARC SET NUMBER LABEL	22 1		OLD VALUE	DEL SOLUTION	5.1	OR EST
BOUL DER BOUL DER BOUL DER	BIAS BIAS BIAS	××N	.318437 9.76174 68.5685	.2361772E .3412024E .1937725E		13.40789 13.51779 18.94865
ARC SET NUMBER LABEL	231		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
1	BIAS	××n	8.7319 01.977 07.191	.4813701E .7459722E .8203876E	78.7319 -101.977 -207.191	17.57283 17.57380 21.72499
ρд	241		2	SOLUTIO	SOLUT	OR EST
BRORFELDE II BRORFELDE II BRORFELDE II	BIAS BIAS BIAS	××N	3.01435 00.8241 89.2273	0.1194502 0.2053332 2829743	73.0 100.	17.80900 17.81100 22.05674
ARC SET NUMBER	251		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
 	BIAS	×≻	9.8278	0.1510632E-08 0.1588412E-08	-29.82780 -13.43877	13.85777 13.83656

1.9295 LD VAL
5206 144 VAL
3.8236 5.2220 33.470
0LD VALUE 8.457610 47.69532 90.99976
0LD VALUE -69.12277 65.95785
0LD VALUE 778.9665 -340.6041 -810.7437
0LD VALUE -495.1139 -71.79349 -320.8261
OLD VALUE X -63.16458 Y -19.89800 Z 92.71235
OLD VALUE -9-6007 -9:5149 2 168:3689
OLD VALUE

15.23441 15.20899 20.37606	R EST	19.71679	OR EST	13,77800 13,92119 18,99970	OR EST	13.69116 13.46828 18.98973	OR EST	15.12069 15.12069 20.50678	R EST	17.88540 17.53918 22.74430	OR EST	13.87569 13.82086 19.24386	OR EST	13.56999 13.54327 18.73324	OR EST	13.48013 13.47315 18.59120
-14.37115 -111.3420 -77.78614	NEW SOLUTION -306.9389	37 . 3235 231 . 531	SOLUT	25.08080 -13.54769 -2.952636	SOLUT	-8.926992 -48.63847 -93.27746	M SOLUT	-251.6504 210.1589 156.1615	SOLUT	303.1654 103.1951 -420.4695	SOLUT	-75.03408 -137.7795 -236.1050	SOLUT	-69.88426 -81.96511 -252.5105	201	18.73706 -17.14998 68.11570
2249000E-09 8838814E-09 1385390E-08	L SOLUTION .7592142E-0	69171E 95110E	LUTION	0.1671256E-08 0.3763181E-08 0.2323405E-08	UTI	32	LUTION	0.8518736E-09 0.2768539E-08 2498319E-08	UTID	∞ ⊶∞	ᇹ!	-,8347945E-09 -,1635495E-08 0,1427316E-08	L SOLUTI	0.1541657E-08 0.9846087E-09 2535370E-08	SOLUTIO	0.1031794E-08 1913477E-10 1148373E-08
-14.37115 -111.3420 -77.78614	VA 93	37.3235 231.531	OLD VALUE	25.08080 -13.54769 -2.952636	OLD VALUE	.92699 8.6389 3.2774	OLD VALUE	~ 60 ÷	1	03.	OLD VALUE	0340 779 .105	X	9.88426 1.96511 52.5105	D VAL	8.73706 7.14998 8.11570
××N	>	(> N		××N		××N		××N		××N		××N		××N		××N
BIAS BIAS BIAS	- ¥	BIAS	361	BIAS BIAS BIAS	37 1	BIAS BIAS BIAS	38:	BIAS BIAS BIAS	39.	BIAS BIAS BIAS	40.	BIAS BIAS BIAS	41.	BIAS BIAS BIAS	451	BIAS BIAS BIAS
CHELYUSKIN IV CHELYUSKIN IV CHELYUSKIN IV	SET NUMBER	CHICHIJIMA CHICHIJIMA CHICHIJIMA	ARC SET NUMBER LABEL	i	ARC SET NUMBER	НМН	ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	Í	ARC SET NUMBER	•	ARC SET NUMBER LABEL	DOMBAS III DOMBAS III DOMBAS III	ARC SET NUMBER LABEL	1 1 1

OR EST	14.69272 14.60946 20.06569	R EST	14.04334 13.93032 19.07744	ERROR ESTIMATE	13.84967 13.83666 18.85184	OR E	13.54685 13.58527 18.71504	OR EST	14.95058 14.98256 20.23005	OR E	13.59856 13.61432 19.06641	OR EST	14.12185 14.20717 19.62831	R EST	16.00894 16.14948 20.54785	ERROR ESTIMATE
SOLUT	-139.9889 -422.6383 -2838.121	SOLUT	-204,6201 8,163211 -112,9310	NEW SOLUTION	-9.152949 84.23226 107.9275	NEW SOLUTION	18.6632 49.5077 64.6164	M SOLUT	-16.60752 -39.79584 61.26070	SOLUT	-108.6496 40.52576 -256.1316	SOLUT	64.12172 -57.74587 129.0657	SOLUT	129.6246 -59.86714 74.50751	NEW SOLUTION
DLUTI	3180931E-08 0.3548353E-09 8043934E-09	DEL SOLUTION	. 3466 . 9109	DEL SOLUTION	0.203291 0.129912 0.172614		0.7267463E 1183427E 1370063E	DEL SOLUTION		SOLUTIO	1999257E-08 1229422E-08 0.2486716E-08	DEL SOLUTION	0.4518860E-09 2512802E-08 2241445E-08	LUTI	. 2688 . 222 . 1446	DEL SOLUTION
> !	O M C	OLD VALUE	4.6201 163211 2.9310	OLD VALUE	152949 .23226 7.9275	VAL	56324 50776 51645	A > 1	60732 79584 26070	OLD VALUE	08.6496 0.52576 56.1316	OLD VALUE	4.12 7.74 29.0	D VAL		OLD VALUE
	××N		××N		××N		×≻N		××N		××n		××N		××N	
431	BIAS BIAS BIAS	441	BIAS BIAS BIAS	451	BIAS BIAS BIAS	195	BIAS BIAS BIAS	1.25	BIAS BIAS BIAS		BIAS BIAS BIAS	165	BIAS BIAS BIAS	50 :	BIAS BIAS BIAS	51 (
ARC SET NUMBER	DUMONT DURVILLE DUMONT DURVILLE DUMONT DURVILLE	ARC SET NUMBER LABEL	DUSHETI II DUSHETI II DUSHETI II	ARC SET NUMBER LABEL	b .	ARC SET NUMBER	ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR	ARC SET NUMBER	}	ARC SET NUMBER LABEL	보보보	ARC SET NUMBER LABEL	FREDERICKSBURG FREDERICKSBURG FREDERICKSBURG	ARC SET NUMBER LABEL		ARC SET NUMBER

13.01273 12.95855 18.25379	ERROR ESTIMATE 15.89557 15.83883 20.71323	ERROR ESTIMATE 14.11649 14.01951 19.33246	ERROR ESTIMATE 13.33383 13.33688 18.65208	ERROR ESTIMATE 14.48327 14.53816 19.52484	ERROR ESTIMATE 19.26892 19.68324 25.09174	ERROR ESTIMATE 13.33164 13.24042 18.44631	ERROR ESTIMATE 14.25365 15.60426 20.28052	ERROR ESTIMATE 14.86914 14.81798 20.02088
-9.202618 5.675978 4.952030	NEW SOLUTION -1.197757 -131.0229 139.9875	NEW SOLUTION 275.0047 -309.1751 703.9546	NEM SOLUTION 11.46441 -19.11633 -79.09582	NEM SOLUTION 263.3552 94.85540 -75.03405	NEM SOLUTION 138.9204 364.7454 -50.18163	NEM SOLUTION -21.77230 -46.88294 -63.86398	NEM SOLUTION 152,2470 94,75802 58,55212	NEM SOLUTION 72.11175 65.41272 6.012930
0.2114268E-08 0.1319406E-08 9167677E-09	DEL SOLUTION 0.2789018E-08 0.2610912E-09 -,3009973E-08	DEL SOLUTION	DEL SOLUTION 0.4707979E-091382458E-08 0.9557795E-09	DEL SOLUTION8375645E-092851722E-081155434E-08	DEL SOLUTION3304007E-089527485E-08	DEL SOLUTION 0.3846723E-08 0.2951718E-08 0.1082265E-08	DEL SOLUTION 0.7236458E-09 0.2470530E-08 0.4386555E-08	DEL SOLUTION 0.1332625E-08 0.5412403E-08 0.1934281E-08
-9.202618 5.675978 4.952030	0LD VALUE -1.197757 -131.0229 139.9875	0LD VALUE 275.0047 -309.1751 703.9546	0LD VALUE 11.46441 -19.11633 -79.09582	0LD VALUE 263.3552 94.85540 -75.03405	0LD VALUE 138.9204 364.7454 -50.18163	0LD VALUE -21.77230 -46.88294 -63.86398	0LD VALUE 152.2470 94.75802 58.55212	0LD VALUE 72.11175 65.41272 6.012930
××N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	×≻N
BIAS BIAS BIAS	52: BIAS BIAS BIAS	53: BIAS BIAS BIAS	54: BIAS BIAS BIAS	55: BIAS BIAS BIAS	BIAS BIAS BIAS	57: BIAS BIAS BIAS	58: BIAS BIAS	59: BIAS BIAS
FURSTNFELDBRUCK FURSTNFELDBRUCK FURSTNFELDBRUCK	ARC SET NUMBER LABEL GNANGARA GNANGARA GNANGARA	ARC SET NUMBER LABEL GODHAVN II GODHAVN II	ARC SET NUMBER LABEL GORNOTAYEZHN II GORNOTAYEZHN II	ARC SET NUMBER LABEL LABEL GREAT WHALE R GREAT WHALE R	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL GROCKA GROCKA GROCKA	ARC SET NUMBER LABEL GUAM GUAM GUAM	ARC SET NUMBER LABEL GUANGZHOU II GUANGZHOU II

ARC SET NUMBER	109	··.	< 1	DEL SOLUTION	NEW SOLUTION	R EST
HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK	BIAS BIAS BIAS	××N	98.13559 -13.52339 73.48069	5082563E-09 3831850E-08 3553133E-08	98.13559 -13.52339 73.48069	15.25967 15.33082 20.29244
ARC SET NUMBER	61:		OLD VALUE	DEL SOLUTION	8	R EST
	BIAS BIAS BIAS	××N	.95792 654805 .63907	.1116372E .1107914E .3044192E	-29.95792 8.654805 43.63907	665 495 254
ARC SET NUMBER	62:		VAL	OLUTI	NEW SOLUTION	ERROR ESTIMATE
l i	BIAS BIAS BIAS	××N	5000	.1443833E .3863005E .1021798E	6.109557 -789.9474 414.5458	14,46090 14,72049 19,55784
ARC SET NUMBER LABEL	63:		A V	OLUTI	SOLUT	OR ESTIMA
HEISS ISLAND II HEISS ISLAND II HEISS ISLAND II	BIAS BIAS BIAS	××N	947 926 353	1208020E 5741359E 9749614E	92.41947 -674.5926 1149.353	13.64408 13.58669 19.12513
ARC SET NUMBER LABEL	: 59		\$	EL SOLU	M SOLUT	EST
ļ	BIAS BIAS BIAS	××N	. 3926 1.317 . 4257	. 5620522E . 2421968E . 6373761E	53.39263 -161.3171 -94.42573	13.17139 13.17242 18.41014
ARC SET NUMBER LABEL	65:		D VAL	SOLUTI	SOLUT	OR EST
l	BIAS BIAS BIAS	×≻N	34403 64196 58200	0.2938763E 9266270E 5213906E	17.34403 16.64196 23.58200	14.72747 15.13832 20.05551
ARC SET NUMBER LABEL	1 99		V A	EL SOLUTI	M SOLUTI	EST
HONOLULU IV HONOLULU IV HONOLULU IV	BIAS BIAS BIAS	×≻N	-142.2822 90.04004 -341.3857	2559 8467 7691	-142.2822 90.04004 -341.3857	15.59108 15.84270 20.61808
ARC SET NUMBER LABEL	67 :		VAL	SOLUTI	SOLUT	8
•	BIAS BIAS BIAS	×≻N	03134 0.6312 16619	7032110E 5804098E 7685014E	16.03134 150.6312 19.16619	15.10921 15.11756 19.88429
ARC SET NUMBER LABEL	. 89		OLD VALUE	DEL SOLUTION	OLUT	ERROR ESTIMATE
HUANCAYO	BIAS	×	1 3	2349600E-09	87.83442	.38228

15.95071 20.76515	ERROR ESTIMATE 13.47667 13.44567 18.55464	ERROR ESTIMATE 14.09683 14.24052 19.12819	ERROR ESTIMATE 13.69137 13.90793 19.01247	ERROR ESTIMATE 13.10483 13.32734 18.51579	ERROR ESTIMATE 13.22643 13.10957 18.69946	ERROR ESTIMATE 13.60217 13.69534 18.70321	ERROR ESTIMATE 17.58076 17.58273 21.75146	ERROR ESTIMATE 14.07473 14.06138 19.29434	
48.36056 9.255350	NEW SOLUTION 	NEW SOLUTION 311.1500 17.47365 491.6270	NEW SOLUTION 173.5258 -411.3098 -33.58163	NEM SOLUTION 3,252572 12,07748 -92,31006	NEM SOLUTION 0.9592561 45.27409 -43.92797	NEM SOLUTION -39,45723 33.81058 -75.82296	NEW SOLUTION -819.7977 -1825.293 -43.94989	NEM SOLUTION 199.8189 -92.8553 -50.05773	
0.11989889E-07 0.4898845E-08	DEL SOLUTION 0.1942499E-08 0.2233894E-08 0.5446121E-09	DEL SOLUTION 0.7132834E-10 0.2043846E-08 0.1028836E-08	DEL SOLUTION 0.4951390E-09 0.2227197E-08 0.1128774E-08	DEL SOLUTION 0.5622608E-09 0.2643986E-08 0.1421751E-09	DEL SOLUTION 0.3945764E-08 3032771E-08	DEL SOLUTION 0.6198012E-09 0.1888498E-08 0.9360307E-10	DEL SOLUTION 0.3853193E-09 0.5068451E-09 0.2541508E-09	DEL SOLUTION 0.4768781E-09 1812915E-08 0.1578073E-08	
48.36056 9.255350	0LD VALUE 20.68431 -14.87756 -58.82250	0LD VALUE 311.1500 17.47365 491.6270	0LD VALUE 173.5258 -411.3098 -33.58163	0LD VALUE 3.252572 12.07748 -92.31006	0.9592561 45.27409 -43.92797	0LD VALUE -39.45723 33.81058 -75.82296	0LD VALUE -819.7977 -1825.293 -43.94989	0LD VALUE 199.8189 -92.85553 -50.05773	
≻2	×≻N	×≻N	××N	××N	×≻N	××N	××N	XXN	
BIAS	69. BIAS BIAS BIAS	70: BIAS BIAS	71: BIAS BIAS BIAS	72. BIAS BIAS BIAS	73: BIAS BIAS BIAS	74: BIAS BIAS BIAS	75: BIAS BIAS	76: BIAS BIAS BIAS	١77،
HUANCAYO	ARC SET NUMBER 6 LABEL LABEL HURBANOVO HURBANOVO	ARC SET NUMBER LABEL LABEL LABEL HYDERABAD HYDERABAD HYDERABAD	ARC SET NUMBER LABEL JAIPUR JAIPUR JAIPUR	ARC SET NUMBER LABEL KAKIOKA II KAKIOKA II KAKIOKA II	ARC SET NUMBER LABEL KANOYA KANOYA KANOYA	ARC SET NUMBER LABEL KANOZAN KANOZAN KANOZAN	ARC SET NUMBER LABEL KIRUNA II KIRUNA II	ARC SET NUMBER LABEL KLYUCHI II KLYUCHI II KLYUCHI II	ARC SET NUMBER

14.33896 14.45691 19.17116	H ERROR ESTIMATE 13.61894 13.58496 18.79599	- ERROR ESTIMATE 14.43433 14.25059 20.06352	N ERROR ESTIMATE 13.66567 13.63626 19.18536	13.56179 13.59509 18.77777	N ERROR ESTIMATE 17.58192 17.58409 21.75619	LEROR ESTIMATE 15.02972 15.03332 19.74183	LEROR ESTIMATE 16.60865 18.16148 22.65448	14.07325 14.09812
NEW SOLUTION -554.0800 -72.4394 -71.69114	NEW SOLUTION 169.1081 -13.94363 178.0492	NEW SOLUTION 9.581490 10.61755 -54.36713	NEW SOLUTION -282.3432 591.0725 -496.7213	NEM SOLUTION -118.5951 168.0051 27.00636	NEW SOLUTION 109.9321 336.4239 -553.7385	NEW SOLUTION 54.85168 -1.773252 -3.065164	NEW SOLUTION 287,5461 -31,20106 90.98904	NEM SOLUTION 27.87087 29.11102
DEL SOLUTION 0.1803382E-09 0.3225793E-08 564559E-09	DEL SOLUTION 0.6219716E-09 0.1003691E-08 0.5108011E-09	DEL SOLUTION 0.1346774E-08 0.3422607E-08 4951126E-08	DEL SOLUTION 0.1955191E-091072743E-082167858E-08	DEL SOLUTION 0.9783675E-09 -624864E-09 -2436483E-08	DEL SOLUTION 0.2115150E-09 0.4461560E-09 0.6165372E-09	DEL SOLUTION 0.535787E-09 0.1087436E-08 6528784E-09	DEL SOLUTION 9814695E-08 0.9885871E-07 2996043E-07	DEL SOLUTION 0.8275896E-09 -,1801533E-08
OLD VALUE -554.0800 272.4394 -71.69114	0LD VALUE 169.1081 -13.94363 178.0492	0LD VALUE 9.581490 10.61755 -54.36713	OLD VALUE -282.3432 591.0725 -496.7213	OLD VALUE -118.5951 168.0051 27.00636	0LD VALUE 109.9321 336.4239 -553.7385	0LD VALUE 54.85168 -1.773252 -3.065164	0LD VALUE 287,5461 -31,20106 90,98904	OLD VALUE 27.87087 29.11102
×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	××N	××N	×≻
BIAS BIAS BIAS	76: BIAS BIAS BIAS	79. BIAS BIAS	80: BIAS BIAS BIAS	81. BIAS BIAS BIAS	82. BIAS BIAS BIAS	83: BIAS BIAS	84: BIAS BIAS	85: BIAS BIAS
LABEL KODAIKANAL II KODAIKANAL II	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL LANZHOU II LANZHOU II	ARC SET NUMBER LABEL LEIRVOGUR LEIRVOGUR	ARC SET NUMBER LABEL LERHICK II LERHICK II LERHICK II	ARC SET NUMBER LABEL	ARC SET NUMBER LABEL LOVO LOVO	ARC SET NUMBER LABEL LUANDA BELAS I LUANDA BELAS I	ARC SET NUMBER LABEL LUNPING

19.10623	OR EST	13.47812 13.46318 18.58025	OR EST	15.09990 15.52203 20.29970	OR EST	14.32883 14.72852 19.99523	R EST	17.81045 17.79500 21.99541	OR EST	14,68526 14,80044 19,87695	W	18.38069 18.69140 23.91481	OR EST	13.94630 13.91464 19.34687	OR EST	13.49064 13.59920 18.91262	ERROR ESTIMATE
34,06422	NEW SOLUTION	163.2886 124.7961 146.7900	SOLU	16.4 7.77 8.25	SOLUT	272.8621 7.603872 303.5417	NEW SOLUTION	9.412067 -18.54165 165.4288	1	366.5352 32.70612 -137.9440	SOLUT	-616.0713 -643.7616 -1951.270	SOLUT	16.49774 19.40256 193.4758	SOLUT	109.9873 12.33989 -133.0922	NEW SOLUTION
0.2194546E-08	DEL SOLUTION	0.9471013E-09 0.2496306E-08 0.1573059E-08	COLUTI	0.6726147E-08 3945673E-07 0.2266359E-08	DEL SOLUTION	.2644853 .4934470 .3986956	DEL SOLUTION	.1582 .2489 .1831	LUTI	.3730969E .2810568E .8959026E	DEL SOLUTION	6133089E-08 0.1220229E-07 8144110E-08	= 1	.4509743 .1468221 .1438248	DEL SOLUTION	1664975E-08 0.7230902E-09 1371482E-08	DEL SOLUTION
34.06422	OLD VALUE		OLD VALUE	16.4619 7.77762 8.25178	OLD VALUE	72.03		4120 8.541 65.42	OLD VALUE	66.535 2.7061 37.944	OLD VALUE	6.0713 3.7616 51.270	OLD VALUE	900	OLD VALUE	987 398 092	OLD VALUE
2		××N		×≻N		××N		××N		××n		××N		××N		××N	
BIAS	198	BIAS BIAS BIAS	87 :	BIAS BIAS BIAS	- 80 80	BIAS BIAS BIAS	891	BIAS BIAS BIAS	106	BIAS BIAS BIAS	91:	BIAS BIAS BIAS	921	BIAS BIAS BIAS	931	BIAS BIAS BIAS	941
LUNPING	NUMBER	001 001 001	BER	M BOUR M BOUR M BOUR	ARC SET NUMBER LABEL	MACQUARIE ISLND MACQUARIE ISLND MACQUARIE ISLND	ARC SET NUMBER LABEL	1	ARC SET NUMBER	MAPUTO II MAPUTO II	ARC SET NUMBER	SANA	ARC SET NUMBER LABEL	ì	ARC SET NUMBER	HHH	ARC SET NUMBER LABEL

13.24908 13.53615 18.73477	ERROR ESTIMATE 14.43189 14.12717 19.64872	ERROR ESTIMATE 13.60276 13.68227 18.70531	ERROR ESTIMATE 14.38744 14.31644 19.46084	ERROR ESTIMATE 13.57558 13.55257 19.03698	ERROR ESTIMATE 14.74788 14.75279 19.87120	ERROR ESTIMATE 17.61898 17.60091 21.73923	ERROR ESTIMATE 18.94722 20.37481 26.41819	ERROR ESTIMATE 15.31570 15.24732 20.25663
-228.6471 141.9743 62.84261	NEW SOLUTION -120.4779 54.95075 -435.0903	NEM SOLUTION -128.5441 43.40032 -187.4316	NEM SOLUTION -9.242961 -107.5029 -240.1620	NEM SOLUTION -28.26147 11.39080 -37.44078	NEW SOLUTION -66.53894 -39.08308 29.87349	NEW SOLUTION 3.394407 -2.232761 -84.34279	NEM SOLUTION -49.31215 27.86415 294.6273	NEM SOLUTION -344.9884 -366.6634 558.5475
8559001E-09 0.1164251E-09 8536319E-09	DEL SOLUTION 0.2610537E-08 0.1977629E-08 0.5937188E-09	DEL SOLUTION7517127E-10 0.9732459E-09 0.7092185E-10	DEL SOLUTION8069713E-093970043E-09 0.1811497E-08	DEL SOLUTION1452946E-08 0.9937409E-096405385E-10	DEL SOLUTION2502298E-081482474E-08 0.3136324E-08	DEL SOLUTION 0.1707945E-08 0.1673452E-08 0.2055376E-09	DEL SOLUTION 1089473E-07 0.2022523E-07 2778669E-07	DEL SOLUTION 7898268E-09 0.2430401E-09 2290490E-08
-228.6471 141.9743 62.84261	0LD VALUE -120.4779 54.95075 -435.0903	OLD VALUE -128.5441 43.40032 -187.4316	0LD VALUE 	OLD VALUE -28.26147 11.39080 -37.44078	0LD VALUE -66.53894 -39.08308 29.87349	0LD VALUE 3.394407 -2.232761 -84.34279	0LD VALUE -49.31215 27.86415 294.6273	0LD VALUE -344.9884 266.6634 558.5475
××N	×≻N	××n	××N	××n	××N	××N	××N	и⊀×
BIAS BIAS	95. BIAS BIAS BIAS	96. BIAS BIAS BIAS	97: BIAS BIAS BIAS	98: BIAS BIAS	99: BIAS BIAS	100: BIAS BIAS	101: BIAS BIAS BIAS	102: BIAS BIAS BIAS
MEMAMBETSU MEMAMBETSU MEMAMBETSU	ARC SET NUMBER LABEL MIRNYY III MIRNYY III	ARC SET NUMBER LABEL MIZUSAWA MIZUSAWA MIZUSAWA	ARC SET NUMBER LABEL MOLODEZHNAYA MOLODEZHNAYA MOLODEZHNAYA	ARC SET NUMBER LABEL S MOULD BAY MOULD BAY	ARC SET NUMBER LABEL MUNTINLUPA MUNTINLUPA MUNTINLUPA	ARC SET NUMBER LABEL NAGYCENK II NAGYCENK II NAGYCENK II	ARC SET NUMBER LABEL 	ARC SET NUMBER LABEL NARSSARSSUAG NARSSARSSUAG NARSSARSSUAG

OR EST	13.15519 13.28656 18.55724	ERROR ESTIMATE 13.16900 13.15797 18.38367	ERROR ESTIMATE 13.56655 13.51985 18.94020	ERROR ESTIMATE 20.18131 20.18204 21.95140	ERROR ESTIMATE 14.79238 14.80895 18.79345	ERROR ESTIMATE 13.89036 13.97337 19.36961	ERROR ESTIMATE 15.60941 15.43906 20.54773	15.01788 14.99946 19.65918	R ERROR ESTIMATE
SOLUT	-26.77082 107.0767 -107.1209	NEM SOLUTION -20.08427 -3.300528 -87.08601	NEM SOLUTION -96.28732 -165.5775 -,5250871	NEM SOLUTION -256.7580 80.87260 83.17629	NEM SOLUTION 295.0673 -107.0716 95.00142	NEM SOLUTION 148.5038 -142.3147 160.9261	NEM SOLUTION -648.1452 -740.8221 -93.73124	NEW SOLUTION -177,8006 -168,5334 -201,2838	NEM SOLUTION
DEL SOLUTION	128	DEL SOLUTION 0.1141811E-08 0.1746024E-08 1133370E-08	DEL SOLUTION 0.1960806E-08 0.2742674E-082912858E-08	DEL SOLUTION - 1238467E-10 0.1475107E-08 0.8755205E-09	DEL SOLUTION 0.1092345E-08 0.2558650E-08	DEL SOLUTION2508696E-082604032E-081916958E-08	DEL SOLUTION 2242032E-08 0.5450719E-08 0.1516879E-08	DEL SOLUTION 0.2145303E-08 0.1554369E-08 0.732552E-09	DEL SOLUTION
OLD VALUE	77082 7.0767 7.1209	0LD VALUE -20.08427 2.300528 -87.08601	0LD VALUE -96.28732 -165.5775 -,5250871	0LD VALUE -258.7580 80.87260 83.17629	0LD VALUE 295.0673 -107.0716 95.00142	0LD VALUE 148.5038 -142.3147 160.9261	0LD VALUE -648.1452 -740.8221 -93.73124	0LD VALUE -177.8006 -168.5334 -201.2838	OLD VALUE
· •	IAS X IAS Y IAS Z	IAS X IAS Y	IAS X IAS X IAS Z	IAS X IIAS X	7: BIAS X BIAS Y	8: BIAS X BIAS Y	9: BIAS X BIAS Y	DI BIAS X BIAS Z	1.
ARC SET NUMBER 103		ARC SET NUMBER 104 LABEL NIEMEGK NIEMEGK B NIEMEGK B	ARC SET NUMBER 105 LABEL NOVO KAZALINSK NOVO KAZALINSK NOVO KAZALINSK B	ARC SET NUMBER 106 LABEL NOVOLAZAREVS II B NOVOLAZAREVS II B	ARC SET NUMBER 107 LABEL LABEL NURMIJARVI NURMIJARVI NURMIJARVI	ARC SET NUMBER 108 LABEL OTTAWA OTTAWA OTTAWA	ARC SET NUMBER 10 LABEL LABEL PAMATAI II PAMATAI II	ARC SET NUMBER 11 LABEL PANAGYURISHTE PANAGYURISHTE PANAGYURISHTE	ARC SET NUMBER 11

PARATUNKA PARATUNKA PARATUNKA	BIAS BIAS BIAS	××N	-331.8946 225.1825 236.2177	0.1443549E-08 5173457E-09 1780147E-08	-331.8946 225.1825 236.2177	14.19380 14.34911 19.53119
RC S	12:	:	LD VAL	L SOLUTION	SOLUT	OR EST
PATRONY PATRONY PATRONY	BIAS BIAS BIAS	××N	35.26234 41.62253 -81.40887	0.8174823E-09 0.6046468E-09 3216286E-08	55.26234 41.62253 -81.40887	14.19909 14.22553 19.58961
ARC SET NUMBER 1	13:		D VA	11	31	OR EST
PILAR PILAR PILAR	BIAS BIAS BIAS	××n	7.2 984 3.1	.836860 .768607 .119872	17.28827 9845608 -13.15175	15.51470 15.70559 20.69872
1 H	14:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
PLESHENITZI PLESHENITZI PLESHENITZI	BIAS BIAS BIAS	×≻N	91.004 69.426 37.811	0.9732501E 0.1868756E 0.7131895E	291.0049 169.4261 -137.8111	13.490 13.486 18.631
ARC SET NUMBER 1	1151		D VAL	DEL SOLUTION	S I	OR EST
968 888 888	BIAS BIAS BIAS	××n	0,00 .	1152173E 3058010E 3483859E	75.91518 8.485465 ~288.8750	14.45097 14.51323 20.02367
ARC SET NUMBER 1	1161		LD VAL	OL UTI	SOLUT	OR EST
*	BIAS BIAS BIAS	×≻N	85324 23442 .9403	.4668172E .2450153E .1201997E	17.85324 59.23442 263.9403	14.88932 16.12203 20.60616
SER.	117.		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
PORT-ALFRED I PORT-ALFRED I PORT-ALFRED I	BIAS BIAS BIAS	××n	03.0486 104.298 71.2463	0.1035370E-07 0.5822691E-08 0.1368024E-07	-803.0486 1104.298 171.2463	16.97062 16.58453 23.14314
ARC SET NUMBER	118,		LD VAL	DEL SOLUTION	NEW SOLUTION	OR EST
AAA	BIAS BIAS BIAS	××N	. 3762 . 8722 . 9132	.4836516 .8665068 .35201368	28 94 76	14.36122 14.73236 19.98690
<u>ا تا تا</u>	1191		LD VAL	SOLUTIO	SOLUT	OR EST
RESOLUTE BAY RESOLUTE BAY RESOLUTE BAY	BIAS BIAS BIAS	××N	177 754 143	.14867 .23178 .18385	39.54177 31.45754 70.25143	13.57297 13.60322 19.02786

ERROR ESTIMATE	16.02280 16.02393 20.49220	OR EST	13.69792 13.85899 19.06165	OR EST	14.82409 15.39317 20.38020	EST	577 212 225	OR EST	16.67578 15.57975 21.70763	ERROR ESTIMATE	13.97650 13.97997 19.02356	1	15.11983 14.81842 20.20892	∞ 1	14.69597 14.71583 19.90225	ERROR ESTIMATE	3426
NEW SOLUTION	41.33654 -8.173670 -58.40167	SOLUT	-7.305737 -69.11955 23.34866	NEW SOLUTION	-45.67957 181.5930 185.6818	NEW SOLUTION	31.42513 15.56916 -76.26056	SOLUT	402	NEW SOLUTION	-226.2941 72.50436 226.8455	NEM SOLUTION	95.6774 87.8935 372.379	NEW SOLUTION	8.49820 10.3521 53.6626	NEW SOLUTION	19.5973
DEL SOLUTION	0.4674415E-09 0.8068788E-09 7923106E-09	L SOLUTION	0.3237110E-09 0.1482441E-08 0.2886227E-08	DEL SOLUTION	3890811E 0.8592110E 0.4996582E	DEL SOLUTION	1389721E 0.2119850E 0.4451594E	DEL SOLUTION	2251558 0.8325521 2569843	DEL SOLUTION	.8993773 .1085351 .3049638	DEL SOLUTION	706701E 626976E 522702E	DEL SOLUTION	4525	DEL SOLUTION	0.2213870
OLD VALUE	41.33654 -8.173670 -58.40167	LD VA	-7.305737 -69.11955 23.34866	OLD VALUE	5.67 81.5 85.6	OLD VALUE	1.425 5.569 6.260	OLD VALUE	. 25111 . 00211 . 43064	OLD VALUE	6.2941 50436 6.8455	D VAL	5.67749 7.89350 72.3795	D VAL	8204 5211 6266	OLD VALUE	49.597
	××N		××N		××N		××N		×××		×≻N		××N		××n		×
120:	BIAS BIAS BIAS	121 .	BIAS BIAS BIAS	122 :	BIAS BIAS BIAS	123:	BIAS BIAS BIAS	1241	BIAS BIAS BIAS	125:	BIAS BIAS BIAS	126 :	BIAS BIAS BIAS	127 :	BIAS BIAS BIAS	128 :	BIAS
ARC SET NUMBER	RUDE SKOV RUDE SKOV RUDE SKOV	SET NUMBER	SABHAWALA II SABHAWALA II SABHAWALA II	ARC SET NUMBER	i	ARC SET NUMBER	SAN PABLO SAN PABLO SAN PABLO	ARC SET NUMBER		ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	i .	ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	SODANKYLA

<u>.</u>		;	VAL	L SOLUTION	SOLUT	OR EST
ATUOCA III ATUOCA III ATUOCA III	BIAS BIAS BIAS	××N	55.66779 -97.16454 66.10197	1005224E-07 0.1412535E-07 9637074E-08	55.66779 -97.16454 66.10197	17.19786 17.66388 22.33478
RC SET NUMBER	138:		VAL	DEL SOLUTION	NEW SOLUTYON	m i
HULE HULE HULE	BIAS BIAS BIAS	×≻N	472 245 165	0.1663135E 1311156E 0.1319553E	-279.0472 228.4245 -66.91165	15.33446 15.27172 20.17601
RC SET NUMBER	139 :		OLD VALUE	I SOLUTI	NEW SOLUTION	OR EST
HULE III HULE III HULE III	BIAS BIAS	××N	. 55559 . 22267 . 25536	3864357E 1133476E 0.1333617E	-53.55 92.22 24.25	.64082 .57660 .65679
RC SET NUMBER	140 .		۸ ۲	DEL SOLUTION	NEW SOLUTION	OR ES
i I	BIAS BIAS BIAS	××N	-12.69739 6.237147 -50.49117	0.2419082E 0.2263410E 0.4999106E	-12.69739 6.237147 -50.49117	
RC SET NUMBER	141,		D VAL	DEL SOLUTION	SOLU	ERROR ESTIMATE
IKSI VI IKSI VI IKSI VI	BIAS BIAS BIAS	××n	. 63764 5.8944 9.6947	0.16 0.16	63764 .8944 .6947	386 955 195
RC SET NUMBER	142:		LD VAL	01.0110	SOLUT	OR EST
OLEDO III OLEDO III	BIAS BIAS BIAS	××N	04076 93804 82301	0.189 0.318 0.698	16.04076 4.193804 12.82301	17.51367 17.51440 21.61763
RC SET NUMBER	1431		LD VAL	DEL SOLUTION	NEW SOLUTION	OR EST
	BIAS BIAS BIAS	××N	6315 6250 3439	.4652245E .4089175E .1520263E	284.6315 199.6250 205.3439	14
RC SET NUMBER	1441		OLD VALUE	UTIO	NEW SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	××N	22.959 07.135 14.638	0.2699474 0.2269748 4614320	122.959 -407.135 114.638	13.37835 13.43257 18.77563
ARC SET NUMBER LABEL	1451		OLD VALUE	DEL SOLUTION	NEW SOLUTION	EST
TSUMEB TSUMEB	BIAS	××	5.63972	. 3227990	65.63972 -50.12233	14.28724 14.93222

TSUMEB	BIAS	7	96,43210	0.1631957E-07	96.43210	19.84680
ARC SET NUMBER	146 :		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
TUCSON TUCSON TUCSON	BIAS BIAS BIAS	××N	. 44729 . 23330 8 . 2434	1000203 0.3363503 4506960	-42.44729 -59.23330 138.2434	14.07547 14.19573 19.27801
ARC SET NUMBER LABEL	147:		OLD VALUE	51	SOL	ERROR ESTIMATE
TULSA II TULSA II TULSA II	BIAS BIAS BIAS	××N	. 43944 . 94862 . 28156	.5267010 .7898810 .9999072	-25.43944 -34.94862 46.28156	31.02809 30.72826 34.05879
ARC SET NUMBER LABEL	148:		OLD VALUE	DEL SOLUTION	NEM SOLUTION	R EST
ļ	BIAS BIAS BIAS	××N	6.4210 1.6019 8.1480	0.2397789E 0.2840607E 0.8149977E	-226.4210 181.6019 278.1480	17.48961 17.49983 21.57094
ARC SET NUMBER LABEL	1691		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
URUMQI URUMQI URUMQI	BIAS BIAS BIAS	××N	.74146 .55171 .86952	0.4781145E 2836164E 0.5450044E	-45.74146 -12.55171 50.86952	5.29220 5.25602 0.23143
ARC SET NUMBER LABEL	150:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
•	BIAS BIAS BIAS	××n	38.793 8.5364 3.0289	184230 218221 820466	138.7934 -58.53640 13.02890	13.33306 13.46451 18.74480
ARC SET NUMBER	151,		OLD VALUE	DEL SOLUTION	NEW SOLUTION	~ !
VANNOVSKAYA II VANNOVSKAYA II VANNOVSKAYA II	BIAS BIAS BIAS	××N	.2381 52965 23974	76	191.2381 94.52965 69.23974	14.01934 13.83329 19.21986
ARC SET NUMBER	1521		OLD VALUE	DEL SOLUTION	NEM SOLUTION	R EST
VASSOURAS VASSOURAS VASSOURAS	BIAS BIAS BIAS	××N	6375 2497 8890	.2059596E .4129162E .1702310E	88.63752 -62.24971 -35.88907	15.35609 15.77252 20.76833
ARC SET NUMBER LABEL	1531		OLD VALUE	DEL SOLUTION	⊢ 1	ERROR ESTIMATE
	BIAS BIAS BIAS	×××	. 96 415 5.0	.4863621E .2443176E .1055811E	96192 15060 .0039	13.85909 13.99678 19.20019
ARC SET NUMBER	154:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE

V@STOK VOSTOK	BIAS	×≻n	35.05255 62.84227	0.9241708E-09 0.3007612E-08 7075168E-09	35.05255 62.84227 17.72883	14.96635 14.61570 20.20939
ည	· -	i	LD VAL	SOLUTI	NEW SOLUTION	ERROR ESTIMATE
VOYEYKOVO VOYEYKOVO VOYEYKOVO VOYEYKOVO	BIAS BIAS BIAS	××N	5.24394 6.48514 77.2537	0.7312289 0.1682666 1659946	95.24394 16.48514 -277.2537	13.87438 13.88121 18.93000
ARC SET NUMBER LABEL	156 :		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
MIEN KOBENZL MIEN KOBENZL MIEN KOBENZL	BIAS BIAS BIAS	×≻N	4.48208 5663785 .088434	.22 .22	34,48208 -,5663785 9,088434	13.20231 13.16285 18.36944
ARC SET NUMBER LABEL	157 i		OLD VALUE	OLUTION	SOLUT	OR EST
•	BIAS BIAS BIAS	××N	3.85 5.77 8.37	0.9245554E-09 0.9443810E-09 1692804E-08	63.85657 45.77317 -78.37529	13.47180 13.47002 18.60823
ARC SET NUMBER LABEL	158 :		>	LUTI	SOLUT	OR EST
MITTEVEEN MITTEVEEN WITTEVEEN	BIAS BIAS BIAS	××N	15074 61743 50643	45.4	36.15074 2.961743 -85.50643	13.19565 13.19373 18.42445
	1591		OLD VALUE	SOLUTION	SOLUT	OR EST
HUHAN HUHAN HUHAN	BIAS BIAS BIAS	××N	63.63717 28.95287 -57.05799	0.7446078E-09 0.3741138E-08 0.3772399E-08	63.63717 28.95287 -57.05799	14.43105 14.40924 19.63113
ARC SET NUMBER	1601		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
YAKUTSK II YAKUTSK II YAKUTSK II	BIAS BIAS BIAS	××N	.2970 77.41 .8511	.2338368 .1360040 .1000179	94.29704 -1177.419 97.85112	14.09580 14.15084 19.43865
ABE	R 161 : L		OLD VALUE	SOLUTION	SOLUT	OR EST
YANGI-BAZAR YANGI-BAZAR YANGI-BAZAR	BIAS	××N	65.825 0.1130 10.204	0.2000692E-09 0.4805090E-09 0.9854905E-10	-265.8258 40.11301 -110.2047	17.51421 17.51725 21.61534
ARC SET NUMBER	R 162 i		LD VAL	NOIT	M SOLUT	EST
YANGI-BAZAR II YANGI-BAZAR II YANGI-BAZAR II	I BIAS I BIAS I BIAS	×≻N	O	0,1114322E-08 0,5707374E-08 -,4935136E-09	-259.8014 43.58162 -70.58648	15.40862 15.48740 20.79091

ERROR ESTIMATE	13.66642 13.71047 18.97301	ERROR ESTIMATE	14.40020 14.43878 19.29187	ERROR ESTIMATE	13.40744 13.35223 18.74036
NEW SOLUTION	403.3531 -210.7978 142.6577	NEW SOLUTION	-74.25771 -56.95270 82.75844	NEW SOLUTION	-113.0026 -118.0026 -121.8222
DEL SOLUTION	7747281E-09 0.9508863E-09 2229118E-09	DEL SOLUTION	0.2560032E-09 -,4711359E-09 -,4690798E-09	DEL SOLUTION	0.2296186E-08 0.1161404E-08 3026830E-10
OLD VALUE	403.3531 -210.7978 142.6577	OLD VALUE	-74.25771 -56.95270 82.75844	OLD VALUE	-113.0026 -118.0234 121.8222
	××N		×××		××N
163,	BIAS BIAS BIAS	164,	BIAS BIAS BIAS	1651	BIAS BIAS BIAS
ARC SET NUMBER 163,	YELLOW-KNIFE YELLOW-KNIFE YELLOW-KNIFE	ARC SET NUMBER LABEL	YUZHNO SAKH IV YUZHNO SAKH IV YUZHNO SAKH IV	ARC SET NUMBER 165.	ZAYMISHCHE III ZAYMISHCHE III ZAYMISHCHE III

--LAST ARC-SET PROCESSED. TOTAL NUMBER OF ARC-SETS EQUALS: 165

GENERATING COMMON PARAMETER MATRIX STATISTICS: *** ND = 2IER = 0 ** STATC ** -- In STATC. Input sigmas and matrix from unit 15 GREADO INPUTING RESTART DATA FROM UNIT 15

DIMENSION VARIABLES READ FROM UNIT 15:

IMIO = 0 INQL= 1 INTMTH= 1 EXTMTH
PEWP = 67.0 IVLPG = 1
IMLPG = 1 NMAX = 13 NMEX = 1
NMINI = 1 NMINE= 1 NCON = 322

MUDEAL TING = U READING D MATRIX FROM UNIT 15

ITERATION # 3 ARC PARAMETER SOLUTIONS PLUS STATISTICS

Z<	-		VAL	٠.	NEW SOLUTION	ERROR ESTIMATE
ABISKO VI ABISKO VI ABISKO VI	BIAS BIAS BIAS	×≻N	. 5612 . 9639 . 2930	1107559E-07 0.1727832E-07 0.2230237E-08	28.56128 56.96391 30.29305	15.06928 15.07793 19.81241
ARC SET NUMBER	21		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
444	BIAS BIAS BIAS	×≻N	46.2935 146335 20.2679	.1192975E .2190089E .2196520E	546 6.1 120	15.00713 15.47833 20.70095
ARC SET NUMBER LABEL	ř		LD VAL	LUTI	SOLUT	ERROR ESTIMATE
ALERT ALERT ALERT	BIAS	××N	950108 19298 9.3319	0.5297096E -,1034593E 0.5865122E	-7.950108 29.19298 -189.3319	14.19146 14.10211 19.40761
ARC SET NUMBER LABEL			OLD VALUE	DEL SOLUTION	NEM SOLUTION	ERROR ESTIMATE
ALIBAG III ALIBAG III ALIBAG III	BIAS BIAS BIAS	××N	04.5610 04.6696	.3575683E .2319789E .1488384E	204.561 455.053 604.669	13.72334 14.05204 19.02691
ARC SET NUMBER	้อ		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
i	BIAS BIAS BIAS	××n	2.4638 20302 6.8670	1108096E 3226558E 2712647E	9MC	13.77972 13.81473 19.14766
ARC SET NUMBER LABEL	19) 	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	×≻N	1.36054 2.95672 0.23480	0.2699381E 0.3570115E 0.2348514E	-11.3605 12.9567 10.2348	13.83908 13.78060 18.98465
ARC SET NUMBER LABEL	7 ,		>	DEL SOLUTION	NEW SOLUTION	OR ES
) }	BIAS BIAS BIAS	××N	.885 7166 .571	.4405431E .5861768E .1093906E	38 16 57	14.11093 14.26845 19.50755
ARC SET NUMBER			OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR ES
ANNAMALAINAG II	BIAS	×	51.18	2139	. 186	14.53019

,			•			
ANNAMALAINAG II ANNAMALAINAG II	BIAS	≻ 2	-105.7970 -49.07615	2181338E-06 6439167E-07	-105.7970 -49.07615	14.61705
ARC SET NUMBER	ě		OLD VALUE	أبست	M SOL	OR EST
}	BIAS BIAS BIAS	×≻N	8.02	0.4272690E 5308730E 3247093E	-25.92783 202.9958 -883.8473	15.43633 15.68237 20.63772
ARC SET NUMBER LABEL	10:		LD VA	SOLUTI	N SOLU	ROR EST
! !	BIAS BIAS BIAS	×≻N	04450 55181 16121	.1320817E .1249810E .2805850E	10.04450 39.55181 -10.16121	3.42901 3.29194 8.49973
ARC SET NUMBER LABEL	11:			I SOLUTI	M SOL	EST
i	BIAS BIAS BIAS	××N	47.0730 14.8043 75.0153	1806975E 6993993E 1719556E	-147.0730 314.8043 675.0153	14.92150 14.98648 20.01897
ARC SET NUMBER	121		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
ARGENTINE ISLND ARGENTINE ISLND ARGENTINE ISLND	BIAS BIAS BIAS	×≻N	7.78820 8.16935 77.4317	0.2631656E 1628468E 0.6878055E	87.78820 -78.16935 477.4317	5.29355 5.27179 5.22830
ARC SET NUMBER LABEL	13:		D VALU	OLUTI	NEW SOLUTION	R EST
ARTI ARTI ARTI	BIAS BIAS BIAS	××N	118.1682 -264.1590 441.7772	.2659967E .5079058E .4022451E	118.1682 -264.1590 441.7772	13.69331 13.67029 18.99193
ARC SET NUMBER LABEL	14.		רם אשרו	DEL SOLUTION	NEW SOLUTION	-
BAKER LAKE VII BAKER LAKE VII BAKER LAKE VII	BIAS BIAS BIAS	××N	. 6405 49104 65103	0.1542892E-07 0.1383635E-07 1346035E-07	170.6405 -34.49104 -77.65103	13.52498 13.58830 18.98061
ARC SET NUMBER	15:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	××n	1.40 .066 0.09	0.6009160E-07 0.1701374E-06 0.4660405E-07	131.4016 31.06669 210.0928	14.71966 29.26314 20.37866
ARC SET NUMBER	16:		LD VAL	TIO	SOL	ERROR ESTIMATE
	BIAS BIAS BIAS	××n	99363 82998 38231	0.34	18.99363 -56.82998 -43.38231	15.26150 13.96451 19.35920
ARC SET NUMBER	17.1					

ERROR ESTIMATE 13.76124 13.75949 19.10008	ERROR ESTIMATE 13.17101 13.16291 18.38283	ERROR ESTIMATE 39.10469 39.10677 41.44695	ERROR ESTIMATE 13.71638 13.77498 19.06196	ERROR ESTIMATE 13.57523 13.56112 18.76535	ERROR ESTIMATE 13.19060 13.26347 18.65372	ERROR ESTIMATE 17.57275 17.57371 21.72487	ERROR ESTIMATE 17.80830 17.81022 22.05545	13.83621
W SOLUTION 627.3682 627.36413 437.5649	EM SOLUTION 118.7340 137.5550 303.9639	NEW SOLUTION -394.6846 -271.6026 245.2343	NEM SOLUTION -98.46734 48.89125 26.72495	NEW SOLUTION -15.86684 -68.09706 -442.1745	NEW SOLUTION 8.163961 47.94537 -166.9670	NEW SOLUTION 78.66675 -101.9373 -207.2755	NEM SOLUTION 72.86929 7 -100.5881	NEW SOLUTION -29.96094 -13.45121
EL SOLUTION NO 5532219E-07 0.5532219E-07 0.4014822E-07	DEL SOLUTION N. 0.1117085E-07 0.3725109E-081309265E-07	DEL SOLUTION 1.062044E-06 1899579E-07 - 4776021E-07	DEL SOLUTION -1776170E-07 0.4159537E-07	DEL SOLUTION 0.8803599E-09 0.365582E-08 -4420871E-08	DEL SOLUTION 0,4809209E-07 0,6204521E-07 0,3064751E-07	DEL SOLUTION - 1652274E-08 0.5276143E-08 0.1068842E-07	DEL SOLUTION 4438101E-08 0.1467320E-07 0.3468358E-07	DEL SOLUTION 0.1034038E-0 2728504E-0
0LD VALUE D 627.3682 427.8413	LD VALUE 18.7340 37.5350	LD VAL 594.68	467 891	866 97	0LD VAI 8.1639 47.945	1LD V	0LD VAL 72.869 -100.589	01.1
•	. ×≻¹	ر ۱ ×× ۱	, ×≻	N X>		10101	255	AS AS
A X X	AS AS	AS IAS		A - IS	A HIE		i - 55	25: 25: BI
LABEL LABEL EIJING EIJING EIJING	SET NUMBER 18 1 LABEL LABEL SK B	ELSK RC SET NUMBER 19 LABEL LABEL LABEL SEREZNAYKI III	EREZNAYKI III B RC SET NUMBER 20	ORNOYA II ORNOYA II IC SET NUMBER LABEL	BOROK BOROK ARC SET NUMBER LABEL BOULDER	RC SE	RORFELD RC SET	RORFELDE I RC SET NUN LUDKOV

ркоч	BIAS	7	-41.81523	9128074E-09	-41.81523	18.83567
RC SET NUMBER LABEL	261		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
CAMBRIDGE BAY CAMBRIDGE BAY CAMBRIDGE BAY	BIAS BIAS BIAS	××N	7.7358 .69221 1.6195	0.2427116E 0.2025923E 2105997E	107.73 -89.692 131.61	13.47910 13.52986 22.68869
RC SET NUMBER LABEL	27 1		D VAL	DEL SOLUTION	NEM SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	××N	23.7815 04.5246 034.250	. 3610295 . 2327875 . 2267910	-423.7815 104.5246 -1034.250	15.11703 15.75232 20.55355
ARC SET NUMBER LABEL	281	•	LD VAL	SOLUTI	5	ERROR ESTIMATE
) 	BIAS BIAS BIAS	××n	649206 .12362 .33563	165153 129540 115901	7.649206 45.12362 92.33563	4.75118 5.03596 0.40007
RC SET NUMBER LABEL	291		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
CAPE WELLEN III CAPE WELLEN III CAPE WELLEN III	BIAS BIAS BIAS	××N	.80184 .69406 .28867	0.5261746E 4369144E 0.1648782E	8.80184 5.69406 9.28867	14.19544 13.76287 19.39371
RC SET NUMBER LABEL	30:		OLD VALUE	108 7	SOLUT	ERROR ESTIMATE
i i	BIAS BIAS BIAS	××N	9.1315 1.7693 0.7803	1092705E 0.2698869E 6423959E	779.1315 -341.7693 -810.7803	75.87539 75.79298 77.01660
ARC SET NUMBER LABEL	31.		VAL	LUTI	SOLUT	ERROR ESTIMATE
1	BIAS BIAS BIAS	××N	95.1609 1.75914 21.0608	.2132302E .2082247E .1507245E	95.1609 1.75914 21.0608	18.21945 17.92897 22.53344
ARC SET NUMBER LABEL	32:		D VAL	OLUTIO	101	OR EST
CHAMBON FORETII CHAMBON FORETII CHAMBON FORETII	BIAS BIAS BIAS	××n	-63.43715 -19.76154 92.84628		-63.43715 -19.76154 92.84628	13.26094 13.24740 18.46047
RC SET NUMBER	33,		D VAL	SOLUTIO	SOLUT	OR EST
CHANGCHUN CHANGCHUN CHANGCHUN	BIAS BIAS BIAS	××N	-99.59425 19.65790 167.9416	110	-99.59425 19.65790 167.9416	
ARC SET NUMBER LABEL	34:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE

15.23122 15.20549 20.37262	ERROR ESTIMATE 15.02802 15.11132 19.71407	ERROR ESTIMATE 13.77403 13.91475 18.99332	ERROR ESTIMATE 13.65421 13.45213 18.97601	ERROR ESTIMATE 15.20731 15.10992 20.49147	ERROR ESTIMATE 16.68865 16.53122 21.41774	ERROR ESTIMATE 13.87282 13.81947 19.24150	ERROR ESTIMATE 13.52631 13.54256 18.73227	ERROR ESTIMATE 13.47947 13.47207 18.59058
-14.65394 -111.1484 -78.17696	NEW SOLUTION -306.9330 -37.47114 231.0609	NEW SOLUTION 25.49493 -13.40468 -3.130419	NEM SOLUTION -8.205455 -49.08243 -93.85141	NEM SOLUTION -250.7226 209.8383 155.8176	NEM SOLUTION 313.8111 96.87359 -433.1901	NEM SOLUTION -75.40032 -137.6973 -236.3622	NEW SOLUTION -69.82863 -81.90623 -252.6832	NEM SOLUTION 18.46822 -17.02302 68.12567
8121254E-08 2855865E-07 5768782E-08	DEL SOLUTION 0.4835658E-09 1495548E-07	DEL SOLUTION 0.5204973E-08 0.5013310E-07 0.9461167E-08	DEL SOLUTION1325635E-08 0.1588349E-082649728E-07	DEL SOLUTION1418546E-075788887E-077876241E-07	DEL SOLUTION 0.2588493E-06 1064278E-06 8661240E-08	DEL SOLUTION2477243E-078096980E-08	DEL SOLUTION1944698E-07 0.2905790E-07 0.9206665E-08	DEL SOLUTION 0.709322E-09 0.1057884E-07 0.3039954E-07
-14.65394 -111.1484 -78.17696	0LD VALUE -306.9330 -37.47114 231.0609	0LD VALUE 	0LD VALUE -8.205455 -49.08243 -93.85141	0LD VALUE -250.7226 209.8383 155.8176	OLD VALUE 313.8111 96.87359 -433.1901	0LD VALUE -75.40032 -137.6973 -236.3622	0LD VALUE -69.82863 -81.90023 -252.6832	0LD VALUE 18.46822 -17.02302 68.12567
××N	×≻N	×≻N	××N	×≻N	×≻N	××N	×≻N	××N
BIAS BIAS BIAS	35. BIAS BIAS BIAS	36: BIAS BIAS BIAS	37: BIAS BIAS BIAS	38 1 BIAS BIAS BIAS	39: BIAS BIAS BIAS	40: BIAS BIAS	41. BIAS BIAS	42. BIAS BIAS
CHELYUSKIN IV CHELYUSKIN IV CHELYUSKIN IV	ARC SET NUMBER LABEL CHICHIJIMA CHICHIJIMA CHICHIJIMA	ARC SET NUMBER LABEL COIMBRA COIMBRA COIMBRA	ARC SET NUMBER LABEL COLLEGE III COLLEGE III	ARC SET NUMBER LABEL DAVIS DAVIS DAVIS	ARC SET NUMBER LABEL DEL RIO DEL RIO DEL RIO	ARC SET NUMBER LABEL DIKSON V DIKSON V DIKSON V	ARC SET NUMBER LABEL DOMBAS III DOMBAS III	ARC SET NUMBER LABEL DOURBES DOURBES DOURBES

ERROR ESTIMATE	14.64129 14.58319 20.03834	ERROR ESTIMATE 14.04188 13.92968 19.07571	ERROR ESTIMATE 13.84932 13.83641 18.85155	ERROR ESTIMATE 13.54570 13.58306 18.71349	ERROR ESTIMATE 14.77358 14.92213 20.20506	ERROR ESTIMATE 13.58035 13.60700 19.05774	ERROR ESTIMATE 14.05292 14.09414 19.59013	ERROR ESTIMATE 16.00268 16.13648 20.54014	ERROR ESTIMATE
SOLUT	141.2656 422.6533 2838.658	NEW SOLUTION -204.8804 8.432115 -112.9115	NEM SOLUTION -9.006979 84.26345 107.8316	NEW SOLUTION 18.65573 -49.62860 -64.75892	NEW SOLUTION -17.16291 -38.32589 62.34092	NEW SOLUTION -109.2157 39.73615 -255.5920	NEW SOLUTION 66.78230 -55.42616 129.2013	NEW SOLUTION 129.1009 -59.19436 74.61597	NEW SOLUTION
DEL SOLUTION	.9658237E .2290764E .9253044E	DEL SOLUTION2511475E-07 0.1442366E-07 0.3566973E-07	DEL SOLUTION7239165E-08 0.1685107E-072324712E-07	DEL SOLUTION1029569E-07 0.3285665E-07 0.1075557E-07	DEL SOLUTION 0.9411048E-07 0.7526858E-07 0.2780298E-07	DEL SOLUTION 0.6281577E-087517507E-085470592E-08	DEL SOLUTION2190942E-077266229E-085001752E-08	DEL SOLUTION 0.9317752E-085474565E-08 0.533830E-07	DEL SOLUTION
OLD VALUE	41.2656 22.6533 838.658	0LD VALUE -204.8804 8.432115 -112.9115	0LD VALUE 	0LD VALUE 18.65573 -49.62860 -64.75892	01D VALUE -17.16291 -38.32589 62.34092	0LD VALUE -109.2157 39.73615 -255.5920	0LD VALUE 66.78230 -55.42616 129.2013	OLD VALUE 129.1009 -59.19436 74.61597	OLD VALUE
	AS X X AS	AAS AAS A≺X	AS X	ASS X	ASS X X	ASS Z	A A S S A X X X X X X X X X X X X X X X	A A S S A X X X X X X X X X X X X X X X	
43:		4 WWW	45. BBI	- HHH	. 74 IN IN	. MWW	64 HMM	50. BI	51 :
ARC SET NUMBER		ARC SET NUMBER LABEL DUSHETI II DUSHETI II	ARC SET NUMBER LABEL DYMER DYMER DYMER	ARC SET NUMBER LABEL ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR	ARC SET NUMBER LABEL EYREWELL EYREWELL EYREWELL	ARC SET NUMBER LABEL FORT CHURCHI II FORT CHURCHI II FORT CHURCHI II	ARC SET NUMBER LABEL FREDERICKSBURG FREDERICKSBURG FREDERICKSBURG	ARC SET NUMBER LABEL FUQUENE FUQUENE	ARC SET NUMBER

13.01140 12.95773 18.25296	ON ERROR ESTIMATE 15.80631 15.77578 20.70362	ON ERROR ESTIMATE 14.11300 14.01719 19.32704	ON ERROR ESTIMATE 13.33202 13.3346 13.64657	ION ERROR ESTIMATE 14.48017 14.53366 19.52127	ION ERROR ESTIMATE 19.24385 19.64648 25.06158	TON ERROR ESTIMATE 13.33037 13.23931 18.44521	10N ERROR ESTIMATE 14.22227 15.52721 6 20.26615	10N ERROR ESTIMATE 14.85641 14.81296
-9.492779 5.663032 5.219449	NEM SOLUTI 1426236 -132.8111 139.9846	NEW SOLUTI 275.3921 -308.5965 704.2582	NEM SOLUTI 11.41478 -18.86658 -79.44320	NEW SOLUTI 263:4963 94:4507 -75:22262	NEW SOLUTI 139.2095 363.2158	NEW SOLUTI -21.74712 -47.19663	NEW SOLUT: 151.523 96.6616 58.2073	NEM SOLUT:
0.1483569E-07 5400788E-08 0.9171892E-08	DEL SOLUTION 0.2270520E-071771559E-06 0.3120875E-07	DEL SOLUTION1615033E-07 0.1939836E-08 0.2948242E-07	DEL SOLUTION2385850E-075823142E-07 0.1068950E-07	DEL SOLUTION 0.2397599E-07 0.7726484E-08 2377861E-07	DEL SOLUTION 0.7914839E-07 0.2589362E-07 8180582E-07	DEL SOLUTION -,1508868E-07 0,2911686E-07 -,4324450E-07	DEL SOLUTION 0.3782622E-07 3359639E-07 6527907E-07	DEL SOLUTION - 9277561E-07 - 1479922E-06
-9.492779 5.663032 5.219449	0LD VALUE 1426236 -132.8111 139.9846	0LD VALUE 275.3921 -308.5965 704.2582	0LD VALUE 11.41478 -18.8658 -79.44320	0LD VALUE 263.4963 94.45070 -75.22262	0LD VALUE 139.2095 363.2158 -50.87638	0LD VALUE -21.74712 -47.19663 -63.96312	0LD VALUE 151.5232 96.66162 58.20736	01D VALUE 71.99939 65.69637
××n	×≻N	×≻N	×≻N	×≻N	×≻N	××N	××N	×≻ı
BIAS BIAS BIAS	52: BIAS BIAS BIAS	53: BIAS BIAS BIAS	54: BIAS BIAS BIAS	55: BIAS BIAS BIAS	56: BIAS BIAS	57: BIAS BIAS BIAS	58: BIAS BIAS	59: BIAS
FURSTNFEL DBRUCK FURSTNFEL DBRUCK FURSTNFEL DBRUCK	ARC SET NUMBER LABEL GNANGARA GNANGARA GNANGARA	ARC SET NUMBER LABEL CODHAVN II GODHAVN II	ARC SET NUMBER LABEL GORNOTAYEZHN II GORNOTAYEZHN II	ARC SET NUMBER LABEL GREAT WHALE R GREAT WHALE R GREAT WHALE R	ARC SET NUMBER LABEL GREAT WHALE RII GREAT WHALE RII	ARC SET NUMBER LABEL GROCKA GROCKA GROCKA	ARC SET NUMBER LABEL GUAM GUAM GUAM	ARC SET NUMBER LABEL GUANGZHOU II

C SET NUMBE	-		LD VAL	SOLUTION	2010	R EST
HARTEBEESTHOEK Hartebeesthoek Hartebeesthoek	BIAS BIAS BIAS	×××	97.28746 -13.05149 73.74364	8009372E-07 2262515E-06 8494698E-07	97.28746 -13.05149 73.74364	D 80 M
RC SET NUMBER	61:		OLD VALUE	DEL SOLUTION		ERROR ESTIMATE
 	BIAS BIAS BIAS	××N	0931 3678 5665	.2554162E .3849501E .1801014E	-30.09316 8.636782 43.56654	13.55524 13.60201 18.70032
RC SET NUMBER	621		LD VAL	OLUTI	SOLUT	OR EST
HATIZYO II HATIZYO II HATIZYO II	BIAS BIAS BIAS	××n	6.202817 -790.3719 414.0028	5582840E 5725360E 5328858E	6.202817 -790.3719 414.0028	14.45633 14.70194 19.54494
RC SET NUMBER	63:		A L	ר פסרת		R EST
EISS ISLAND II EISS ISLAND II EISS ISLAND II	BIAS BIAS BIAS	××n	2.37824 74.6274 148.801	2624340 0.1609056 0.4507849	92.37824 -674.6274 1148.801	3.64057 3.58499 9.12257
RC SET NUMBER	1 5 9		Δ	DEL SOLUTION	SOLUT	R ESTII
1	BIAS BIAS BIAS	××n	1 M O 4	0.9316744E-08 0.3257212E-08 0.8044545E-08	53.39936 -161.1381 -94.44671	13.17099 13.17200 18.40960
RC SET NUMBER LABEL	651		D VAL	SOLUTIO		EST
1	BIAS BIAS BIAS	××n	200	0.7293 0.2265 0.4378	17.52884 16.97592 23.46574	73 47 56
RC SET NUMBER LABEL	199		AL	_	SOLUT	R EST
•	BIAS BIAS BIAS	×××	-141,5552 89,63969 -340,6745	0.1566474E 823222E 0.3857291E	-141.5552 89.63969 -340.6745	15.47125 15.78874 20.56249
RC SET NUMBER LABEL	67:		VAL	L SOLUTIO	SOLUT	OR EST
!	BIAS BIAS BIAS	××n	6.05465 30.6956 9.28019	3016063E-08 0.1724742E-07 1170910E-07	-16.05465 -130.6956 -19.28019	15.10887 15.11724 19.88384
RC SET NUMBER	. 89		D VA	ر د	NEW SOLUTION	ERROR ESTIMATE
HUANCAYO	BIAS	×	6.82049	70051E	86.82049	31

15.93710 20.75622	ERROR ESTIMATE 13.47611 13.44526 18.55425	ERROR ESTIMAT: 14.09424 14.23731 19.12399	13.68785 13.90371 19.00687	N ERROR ESTIMATE 13.10065 13.31168 18.50513	H ERROR ESTIMATE 13.21832 13.10386 18.68751	N ERROR ESTIMATE 13.60037 13.68862 18.69827	N ERROR ESTIMATE 17.58074 17.58271 21.75142	N ERROR ESTIMATE
48.13549 9.087085	NEM SOLUTION 20.64783 -15.04272 -58.76446	NEM SOLUTION 311.0864 17.79158 491.2648	NEW SOLUTION 173.8965 -410.8849 -32.93266	NEW SOLUTION 3,472549 11,91454 -92,67393	NEW SOLUTION 0.5191773 45.21054 -43.43760	NEM SOLUTION -39.40608 33.62839 -76.06759	NEW SOLUTION -819.8047 -1825.276 -43.89227	NEW SOLUTION 200.0202 -92.53781 -30.23052
0.1583018E-08 0.4474810E-07	DEL SOLUTION 0.6304739E-08 0.4871525E-08	DEL SOLUTION -,6891067E-07 -,5135716E-08 -,1066077E-07	DEL SOLUTION4789467E-07 0.1438743E-06 0.4118740E-07	DEL SOLUTION 4025057E-08 3677676E-07 5939461E-07	DEL SOLUTION 1794476E-07 3621579E-07 0.1120002E-06	DEL SOLUTION 310444E-08 2871274E-07 3681299E-07	DEL SOLUTION3145259E-08 0.5136517E-08 0.1419201E-08	DEL SOLUTION 5921895E-08 0.2404054E-07 260665E-07
48.13549 9.087085	0LD VALUE 20.64783 -15.04272 -58.76446	OLD VALUE 311.0864 17.79158 491.2648	0LD VALUE 173.8965 -410.8849 -32.93266	0LD VALUE 3.472549 11.91454 -92.67393	OLD VALUE X 0.5191773 Y 45.21054 Z -43.43760	OLD VALUE X -39,40608 Y 33,62839 Z -76,06759	0LD VALUE X -819.8047 -1825.276 Z -43.89227	OLD VALUE 200 0202 Y -92.53781 -30.23052
IAS Y	IAS X IIAS Y	IAS X IAS Y		2: BIAS X BIAS Y BIAS Z	Signal Si	BIAS SIAS	BIAS BIAS	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
HUANCAYO B	ARC SET NUMBER 69 LABEL HURBANOVO BHURBANOVO BHURBANOVO B	881 8	AIPUR AIPUR	ARC SET NUMBER 72 LABEL KAKIOKA II KAKIOKA II	ARC SET NUMBER 73 LABEL KANOYA KANOYA KANOYA	ARC SET NUMBER 76 LABEL KANDZAN KANDZAN KANDZAN	ARC SET NUMBER 7. LABEL LABEL KIRUNA II KIRUNA II	ARC SET NUMBER 7 LABEL KLYUCHI II KLYUCHI II KLYUCHI II ARC SET NUMBER 7

LABEL KODAIKANAL II KODAIKANAL II KODAIKANAL II	BIAS BIAS BIAS	×≻N	0LD VALUE -55.8926 -72.0166	DEL SOLUTION 1603996E-06 4888175E-06 3338763E-07	NEM SOLUTION -55.8926 -72.0166 -72.03581	ERROR ESTIMATE 14.29386 14.45235 19.16754
ARC SET NUMBER LABEL KRASNAYA PAKHRA KRASNAYA PAKHRA KRASNAYA PAKHRA	78: BIAS BIAS BIAS	×≻N	0LD VALUE 169.3519 -13.76833 178.3203	DEL SOLUTION 4314539E-08 0.1132482E-07 1580247E-07	NEM SOLUTION 169.3519 -13.76833 178.3203	ERROR ESTIMATE 13.61792 13.58434 18.79427
ARC SET NUMBER LABEL LANZHOU II LANZHOU II	79. BIAS BIAS BIAS	×≻N	0LD VALUE 9.798440 10.29349 -54.79936	DEL SOLUTION2955494E-077042716E-07	NEM SOLUTION 9.79840 10.29349 -54.79936	ERROR ESTIMATE 14.42602 14.24371 20.05692
ARC SET NUMBER LABEL LEIRVOGUR LEIRVOGUR LEIRVOGUR	80. BIAS BIAS BIAS	×≻N	0LD VALUE -282.2485 590.9797 -495.9078	DEL SOLUTION1077350E-072604711E-071882178E-07	NEM SOLUTION 282.2485 590.9797 -495.9078	ERROR ESTIMATE 13.66065 13.62978 19.17914
ARC SET NUMBER LABEL LERWICK II LERWICK II	81: BIAS BIAS BIAS	×≻N	OLD VALUE -118.5173 167.8580 26.82216	DEL SOLUTION1768965E-07 0.2986295E-072365225E-08	NEM SOLUTION -118.5173 167.8580 26.82216	ERROR ESTIMATE 13.56091 13.59350 18.77635
ARC SET NUMBER LABEL LOPARSKOYE LOPARSKOYE	82: BIAS BIAS BIAS	××N	0LD VALUE 	DEL SOLUTION 2691408E-08 0.3413631E-08 0.3564948E-08	NEM SOLUTION 109.8683 336.4222 -553.6766	ERROR ESTIMATE 17.58191 17.58406 21.75616
ARC SET NUMBER LABEL LOVO LOVO	83. BIAS BIAS BIAS	×≻N	0LD VALUE 54.91559 -1.679181 -3.122997	DEL SOLUTION2563990E-08 0.7202564E-08 0.1014189E-07	NEM SDLUTION 	ERROR ESTIMATE 15.02961 15.03321 19.74169
ARC SET NUMBER LABEL LUANDA BELAS I LUANDA BELAS I LUANDA BELAS I	84. BIAS BIAS	×≻N	0LD VALUE 287.8095 -31.37914 91.05495	DEL SOLUTION 0.1822408E-07 0.1193168E-06 8604759E-07	NEM SOLUTION 287.8095 -31.37914 91.05495	ERROR ESTIMATE 16.59532 18.13658 22.63775
ARC SET NUMBER LABEL LUNPING	85. BIAS BIAS	×≻	0LD VALUE 27.87581 29.34326	DEL SOLUTION 0.2074672E-07 0.4122626E-07	NEM SOLUTION 27.87581 29.34326	ERROR ESTIMATE 14.06993 14.09571

OLD VALUE DEL SOLUTION NE	34.52232 19.09977	M SOLUTION ERROR ESTIMATE 163.4112 13.4777 124.7648 13.46291 146.7155 18.57989	M SOLUTION ERROR ESTIMATE 116.5991 15.08781 37.83068 15.51378 38.69186 20.29418	0R E 4.30 9.98	M SOLUTION ERROR ESTIMATE 9.040563 17.80938 18.38938 17.79350 165.4282 21.99439	M SOLUTION ERROR ESTIMATE 365.6077 14.66336 33.24789 14.76200 137.8761 19.85709	M SOLUTION ERROR ESTIMATE 613.7287 18.05722 647.5823 18.50473 1952.515	M SOLUTION ERROR ESTIMATE 16.94402 13.93621 18.96911 13.90541 193.3485 19.33842	M SOLUTION ERROR ESTIMATE 109.5908 13.45989 13.23652 13.57992 131.5877 18.89943
S X	2111614E-07	EL SOLUTION NE 0.2004861E-08 0.1212632E-072807082E-07	EL SOLUTION NE 0.5411916E-07 0.2558736E-07	EL SOLUTION NE 0.196084E-07 3077709E-07	EL SOLUTION 0.2339611E-08 0.1140840E-07 0.4336959E-07	EL SOLUTION NE 5819394E-07 1986221E-06 3382379E-06	EL SOLUTION NE 2739685E-06 1963007E-06 3219409E-06	EL SOLUTION NE 0.2505913E-07 1835899E-07	EL SOLUTION NE 0.1768893E-07 0.2143573E-08 0.1346721E-07
	4.52232	63.4112 64.7648 46.7153	LD VALU 16.5991 7.83068 8.69186	D VALU 3.2875 026035 3.1723	LD VALU .040563 8.38938 65.4282	VALUI 6077 24789 8761	0LD VALU 613.7287 647.5823 1952.515	D VALU .94402 .96911 3.3485	LD VALU 09.5908 3.23652 31.5877
	AS	AAA	NNN AAA	NNN	AAA	844 844	ທທທ	ဟကဟ	8 8 8 8 8 8 8

1 W	BITAS BITAS BIAS	×≻N	-228.5052 142.4377 62.92973	168683E-07 0.5158486E-07 3218689E-07	-228.5052 142.4377 62.92973	13.24226 13.52204 18.72883
III IIII	BIAS BIAS BIAS	×≻N	0LD VALUE -119.3362 54.41266 -434.8375	DEL SOLUTION6527491E-075584006E-071038965E-06	NEM SOLUTION -119,3362 54,41266 -434,8375	ERROR ESTIMATE 14.38913 14.10894 19.63195
ET NUMBER LABEL AMA	96: BIAS BIAS BIAS	×≻N	0LD VALUE -128.3688 43.46563 -187.5485	DEL SOLUTION3154142E-085707804E-08	NEW SOLUTION 	ERROR ESTIMATE 13.60114 13.6721 18.70195
ET NUMBER LABEL EZHNAYA EZHNAYA	97: BIAS BIAS BIAS	×≻N	0LD VALUE -9.054009 -107.6412 -239.8801	DEL SOLUTION 0.5503508E-08 0.2066865E-07 3381217E-07	NEM SOLUTION -9.054009 -107.6412 -239.8801	ERROR ESTIMATE 14.37980 14.30734 19.45674
LABEL LABEL BAY BAY BAY	98: BIAS BIAS BIAS	××n	OLD VALUE -27.60263 11.09040 -37.13542	DEL SOLUTION 0.4195570E-07 0.3355055E-08 7559264E-09	NEM SOLUTION -27.60263 11.09040 -37.13542	ERROR ESTIMATE 13.57101 13.55030 19.03193
SET NUMBER LABEL INLUPA INLUPA	99. BIAS BIAS BIAS	××n	0LD VALUE -65.37580 -39.44612 29.75193	DEL SOLUTION 0.1183821E-06 5112650E-07 9449959E-07	NEW SOLUTION -65.37580 -39.44612 29.75193	ERROR ESTIMATE 14.70020 14.74137 19.85917
LABEL LABEL ENK II ENK II	BIAS BIAS BIAS BIAS	××n	0LD VALUE 3.325173 -2.315564 -84.22852	DEL SOLUTION 0.6758946E-08 0.2181701E-08 1433521E-07	NEW SOLUTION 3.325173 -2.315564 -84.22852	ERROR ESTIMATE 17.61864 17.60067 21.73898
ARC SET NUMBER LABEL NAMPULA NAMPULA NAMPULA	101: BIAS BIAS BIAS	××N	0LD VALUE -51.34432 29.79663 292.1296	DEL SOLUTION 0.4803914E-06 0.9979660E-06 -:7893930E-06	NEM SOLUTION -51.34432 29.79663 292.1296	ERROR ESTIMATE 18.85270 20.16470 26.34873
LABEL LABEL ARSSUAQ ARSSUAQ	102: BIAS BIAS BIAS	×≻N	OLD VALUE -344.6515 267.4011 558.7038	DEL SOLUTION8873767E-083963748E-08 0.5087330E-07	NEM SOLUTION -344.6515 267.4011 558.7038	ERROR ESTIMATE 15.31166 15.24349 20.25123

R EST	13.10789 13.24707 18.51300	ON ERROR ESTIMATE 13.16848 13.15751 18.38310	ON ERROR ESTIMATE 13.56329 13.51782 18.93787	ON ERROR ESTIMATE 20.17642 20.12804 21.94760	ON ERROR ESTIMATE 14.79171 14.80794 18.79234	ON ERROR ESTIMATE 13.87102 13.93727 19.35408	ON ERROR ESTIMATE 15,57493 15,42747 20,53872	T 15.01762 14 14.99919 6 19.65889	ION ERROR ESTIMATE
SOLUTI	-26.14246 108.3555 -105.6597	NEM SOLUTION	NEW SOLUTI -96.73263 -165.8522	NEW SOLUTI -259.2248 80.94627 83.45361	NEW SOLUTI 295.1098 -106.7500 95.18619	NEW SOLUTION 149.5642 -142.2653 -161.4226	NEW SOLUTIO -648.5129 -741.1133 -94.00872	NEM SOLUT -177.746 -168.595 -201.427	NEW SOLUT
D I	0.7209195E-07 0.5219354E-08 2542570E-07	DEL SOLUTION 0.733181E-08 -1779653E-09 0.1604050E-07	DEL SOLUTION8883358E-07 0.1230601E-07 0.5008222E-07	DEL SOLUTION3545959E-075533934E-08 0.4625758E-09	DEL SOLUTION1280243E-08 0.1346531E-07 0.2430337E-07	DEL SOLUTION 0.5945898E-083480415E-08	DEL SOLUTION1779231E-084256384E-08 0.3187675E-07	DEL SOLUTION 1980388E-07 0.2200883E-07	DEL SOLUTION
LD VAL		OLD VALUE -20.28405 2.362408 -87.14663	0LD VALUE -96.73263 -165.8522 -,9667590	0LD VALUE -259.2248 80.94627 83.45361	01D VALUE 295.1098 -106.7500 95.18619	0LD VALUE 149.5642 -142.2653 161.4226	0LD VALUE -648.5129 -741:1133 -94.00872	0LD VALUE -177.7467 -168.5954 -201.4276	OLD VALUE
	ASS X	AS X X	AASS A××	××× Abs A××	ASS X	ASS X	IAS IAS X IAS X	IAS IAS X	
103:		104:- BII	105: BIA BIA BIA	106: I BI I BI	107. BI	108- IBI	601	110	111
ARC SET NUMBER	NEWPORT NEWPORT NEWPORT	ARC SET NUMBER LABEL NIEMEGK NIEMEGK NIEMEGK	ARC SET NUMBER LABEL NOVO KAZALINSK NOVO KAZALINSK NOVO KAZALINSK	ARC SET NUMBER LABEL NOVOLAZAREVS II NOVOLAZAREVS II NOVOLAZAREVS II	ARC SET NUMBER LABEL NURMIJARVI NURMIJARVI	ARC SET NUMBER LABEL OTTAWA OTTAWA	ARC SET NUMBER LABEL PAMATAI II PAMATAI II	ARC SET NUMBER LABEL PANAGYURISHTE PANAGYURISHTE PANAGYURISHTE	ARC SET NUMBER

25 25 26	_	×≻N	-332.4413 225.2430 236.3262	2849616E-07 2111138E-07 0.9534368E-07	-332.4413 225.2430 236.3262	14.18100 14.33340 19.52073
LABEL LABEL CONY CONY	BIAS BIAS BIAS	×≻N	0LD VALUE 35.50152 41.54720 -80.87562	DEL SOLUTION 0.6229694E-08 0.2473200E-07 0.8232591E-07	NEM SOLUTION 35.50152 41.54720 -80.87562	ERROR ESTIMATE 14.19703 14.22222 19.58312
ET NUMBER LABEL	113: BIAS BIAS BIAS	×≻N	0LD VALUE 17.06312 -1.759367 -12.84557	DEL SOLUTION 0.8965481E-08 0.1074863E-07 0.4002734E-07	NEM SOLUTION 17.06312 -1.759367 -12.84557	ERROR ESTIMATE 15.50823 15.69530 20.68849
ET NUMBER LABEL ENITZI ENITZI ENITZI	BIAS BIAS BIAS BIAS	×≻N	0LD VALUE 291.1745 169.5645 -137.7053	DEL SOLUTION 0.7418795E-08 0.8663436E-08 1017646E-07	NEM SOLUTION 291.1745 169.5645 -137.7053	ERROR ESTIMATE 13.49000 13.48571 18.63106
LABEL LABEL TUNGUSKA H TUNGUSKA H TUNGUSKA	BIAS BIAS BIAS	×≻N	0LD VALUE 75.82034 8.902408 -288.3947	DEL SOLUTION2028962E-07 0.3854443E-07 0.3686701E-07	NEM SOLUTION 75.82034 8.902408 -288.3947	ERROR ESTIMATE 14.44813 14.50831 20.01917
LABEL LABEL HORESBY MORESBY	116: BIAS BIAS BIAS	×≻N	0LD VALUE 19.94564 56.65212 263.7034	DEL SOLUTION 0.3986873E-07 2256320E-06 2961313E-07	NEM SOLUTION 19.94564 56.65212 263.7034	ERROR ESTIMATE 14.81583 16.02401 20.57261
ET NUMBER LABEL ALFRED I ALFRED I	BIAS BIAS BIAS BIAS	×≻N	0LD VALUE -800.7723 1103.628 171.7093	DEL SOLUTION2849408E-066007454E-072948319E-06	NEM SOLUTION -800.7723 1103.628 171.7093	ERROR ESTIMATE 16.85601 16.49966 23.05957
LABEL LABEL AUX-FRANCA AUX-FRANCA	118: BIAS BIAS BIAS	×≻N	0LD VALUE 229.0619 194.8646 675.9891	DEL SOLUTION7091733E-07 0.7831445E-07 0.4593735E-07	NEM SOLUTION 229.0619 194.8646 675.9891	ERROR ESTIMATE 14.31652 14.69668 19.95996
ET NUMBER LABEL TE BAY UTE BAY UTE BAY	119: BIAS BIAS BIAS	××N	0LD VALUE 40.34927 31.49228 70.22057	DEL SOLUTION 0.2490178E-07 0.2300707E-07 0.9341297E-08	NEM SOLUTION 40.34927 31.49228 70.22057	ERROR ESTIMATE 13.56828 13.59929 19.02193

*:

VAL 2717 3255 4725
OLD VALUE AS X -7.347155 AS Y -68.97326 AS Z 24.14175
2: 0LD VALUE 0LD
OLD VALUE IAS X 31.77965 IAS Y 16.00728 IAS Z -76.33034
OLD VALUE 1AS X -47.02585 1AS Y -71.18781 1AS Z 45.13648
IAS X -226.5839 IAS Y 72.75697 IAS Z 226.8677
1AS X -95,47270 IAS Y -88,37057 IAS Z -372,2533
OLD VALUE IAS X 9.280548 IAS Y -10.29091 IAS Z -55.02909
0LD VALUE 1AS X -149.8278

SODANKYLA SODANKYLA	BIAS	7	-107.6607 -590.3845	0.2987173E-07 0.2287317E-07	-107.6607 -590.3845	13.38872
ARC SET NUMBER LABEL SOUTH GEORGIA SOUTH GEORGIA	129: BIAS BIAS BIAS	×≻N	0LD VALUE -74.27180 -365.8165 104.0417	DEL SOLUTION4351658E-09 0.1840208E-074515159E-07	NEW SOLUTION -74.27180 -365.8165 104.0417	ERROR ESTIMATE 17.58741 17.59699 21.78211
ARC SET NUMBER LABEL ST JOHN S ST JOHN S ST JOHN S	130. BIAS BIAS BIAS	×≻N	01D VALUE 61.24019 25.29274 -2.427526	DEL SOLUTION 0.2130802E-07 0.4751538E-07 0.5163172E-07	NEW SOLUTION 61.24019 25.29274 -2.427526	ERROR ESTIMATE 14.66412 14.32350 19.98043
ARC SET NUMBER LABEL STEKOLINIY STEKOLINIY STEKOLINIY	BIAS BIAS BIAS	· ×>N	01D VALUE -268.1664 -738.8118 42.08284	DEL SOLUTION3445803E-07 0.5564642E-07 0.1503656E-08	NEM SOLUTION 	ERROR ESTIMATE 14.47805 14.69765 20.08269
ARC SET NUMBER LABEL STEPANOVKA III STEPANOVKA III	132: BIAS BIAS BIAS	××N	0LD VALUE -96.80663 -700.6531 69.78378	DEL SOLUTION3560273E-07 0.3572783E-073057511E-07	NEM SOLUTION -96.80663 -700.6531 69.78378	ERROR ESTIMATE 13.56948 13.52870 18.67777
ARC SET NUMBER LABEL SURLARI II SURLARI II	133: BIAS BIAS BIAS	×≻N	01D VALUE 22.15379 -32.43943 -64.05359	DEL SOLUTION -, 4094986E-07 0, 4361089E-07 -, 3946407E-07	NEW SOLUTION 22.15379 -32.43943 -64.05559	ERROR ESTIMATE 13.35293 13.27977 18.49840
ARC SET NUMBER LABEL SYOWA BASE II SYOWA BASE II	134. BIAS BIAS BIAS	×≻N	0LD VALUE -30.13162 -58.13094 18.94561	DEL SOLUTION 2098100E-07 0.2830146E-07 3956020E-07	NEW SOLUTION 	ERROR ESTIMATE 15.25693 15.05713 20.18836
ARC SET NUMBER LABEL TAMANRASSET IV TAMANRASSET IV TAMANRASSET IV	135: BIAS BIAS BIAS	×××	0LD VALUE 50.45278 -239.4962 -34.08913	DEL SOLUTION 0.6483681E-07 0.1989821E-07 1445347E-06	NEW SOLUTION 	ERROR ESTIMATE 15.81199 15.74389 21.18839
ARC SET NUMBER LABEL TANGERANG III TANGERANG III	136: BIAS BIAS BIAS	×≻N	0LD VALUE 16.88521 -36.03071 89.54759	DEL SOLUTION 0.1712122E-06 0.4627395E-07 0.7879144E-07	NEW SOLUTION 16.88521 -36.03071 89.54759	ERROR ESTIMATE 15.51084 15.91689 20.91585

ARC SET NUMBER 137:

53 19.8396	ION ERROR ES	21 13.4901 58 13.5759 78 18.7592	ION ERROR ES	4.00 4.00	TION ERROR EST 71 17.4895 88 17.4997 28 21.5708	ION ERROR E	15.290 15.254 20.227	ION ERR	38 13.328 10 13.457 42 18.736	ION ERROR ES'	114	ION ERR	15.340 15.763 3 20.759	ION ERROR EST	13.794
95.969	NEW SOLU	-57.619 -63.170 136.40	NEW 11	-36.56 41.28	NEM SOLU -226.30 181.70 278.12	NEW SOLUT	-45.868 -12.418 50.759	NEW SOLUT	138.76 -58.807 13.134	n Tos I	190.7 94.39 69.73	NEM SOLUT	88.719 -62.191 -36.610	NEM SOLUT	4.0
0.8165450E-08	T SOLUTION	5515/82E-0/ 0.1012840E-07 0.1062997E-07	L SOLUTION . 1339449E-		DEL SOLUTION1259907E-07 0.1791244E-073932017E-08	DEL SOLUTION	5013489 3912218 4050090	DEL SOLUTION.	0.9011083E-08 0.5363629E-07 8182917E-08	I SOLUTI	0.6182791E 0.4991780E 0.3217344E		0.1172497E 0.3933265E 4328118E	DEL SOLUTION	0.9242357E
95.96953	VAL	-3/.61921 -63.17058 136.4078	LD V 5.54	-36.56564 41.28346	01D VALUE -226.3071 181.7088 278.1228	OLD VALUE	1892 11892 15914	OLD VALUE	138.7638 -58.80710 13.13442	۸ ۷		∢ ।	1928 19105 1053	OLD VALUE	1.931
7	>	< > N	×	۲۸	×≻N		×≻N		××n		×≻N		××N		×>-
BIAS		BIAS	- I	BIAS	148: BIAS BIAS BIAS	149:	BIAS BIAS BIAS	150:	BIAS BIAS BIAS	151;	BIAS	1521	BIAS BIAS BIAS	153,	BIAS
TSUMEB	U	TUCSON	RC SET	ULSA II ULSA II	ARC SET NUMBER LABEL UJJAIN UJJAIN UJJAIN	ARC SET NUMBER		ARC SET NUMBER	VALENTIA VALENTIA VALENTIA	ARC SET NUMBER LABEL		ARC SET NUMBER		ARC SET NUMBER LABEL	

14.95373 14.58955 20.19778	ERROR ESTIMATE 13.87401 13.88071 18.92924	ERROR ESTIMATE 13.20150 13.16230 18.36894	ERROR ESTIMATE 13.47133 13.46943 18.60768	ERROR ESTIMATE 13.19492 13.19265 18.42375	- 14.42715 14.42715 14.62073	N ERROR ESTIMATE 14.09375 14.14776 19.43424	ON ERROR ESTIMATE 17.51414 17.51723 21.61530	ON ERROR ESTIMATE 15.39717 15.48457 20.78438
34.90294 62.26717 17.12411	NEM SOLUTION 95.22589 16.70715 -277.0409	NEM SOLUTION 34.37361 7316804 9.188181	NEW SOLUTION 63,74177 45.88932 -78.53969	NEM SOLUTION 35.98170 3.080617 -85.63318	NEW SOLUTION 63.36393 29.31250 -57.38750	NEM SOLUTIO 94.25936 -1177.673	NEW SOLUTI -265.8855 -40.10124	NEW SOLUTI -260.8562 43.46858
0.7012867E-07 3007156E-07 0.7149375E-08	DEL SOLUTION 0.2791223E-08 0.5536257E-08 0.1186822E-07	DEL SOLUTION 0.1102730E-07 0.3644169E-091611380E-07	DEL SOLUTION - 2167048E-08 0.8682860E-08 0.2492610E-07	DEL SOLUTION 3605457E-08 0.1255879E-07 0.3148840E-07	DEL SOLUTION 0.335557E-08 0.2123740E-07 -,1333080E-06	DEL SOLUTION 2213311E-07 4064563E-07 5339081E-07	DEL SOLUTION 1073508E-07 0.1761487E-08 0.1108191E-07	DEL SOLUTION 1227078E-06 0.2513481E-07
34.90294 62.26717 17.12411	0LD VALUE 95.22589 16.70715 -277.0409	OLD VALUE 34.37361 7316804 9.188181	0LD VALUE 63.74177 45.88932 -78.53969	0LD VALUE 35.98170 3.080617 -85.63318	0LD VALUE 63.36393 29.31250 -57.38750	01D VALUE 94.25936 -1177.673 97.80723	01D VALUE -265.8855 40.10124 -110.2307	01D VALUE -260.8562 43.46858
××N	×≻N	××N	××N vvv	××N NNN	×≻N vvv	yyy ×≻N	888 87X	N X X
BIAS BIAS BIAS	55: BIAS BIAS BIAS	56. BIAS BIAS	57: BIA BIA BIA	BIA BIA BIA	BIA BIA BIA	BIA BIA BIA	161: BIA BIA BIA	162: BI/ BI/
V05T0K .V05T0K V0ST0K	ARC SET NUMBER 1 LABEL VOYEYKOVO VOYEYKOVO VOYEYKOVO	ARC SET NUMBER 1 LABEL LABEL HIEN KOBENZL HIEN KOBENZL HIEN KOBENZL	ARC SET NUMBER 1 LABEL LABEL MINGST MINGST MINGST	ARC SET NUMBER I LABEL LABEL MITTEVEEN MITTEVEEN	ARC SET NUMBER LABEL MUHAN MUHAN MUHAN	ARC SET NUMBER LABEL YAKUTSK II YAKUTSK II	ARC SET NUMBER LABEL YANGI-BAZAR YANGI-BAZAR YANGI-BAZAR	ARC SET NUMBER LABEL TABLE YANGI-BAZAR II

ERROR ESTIMATE	13.66280 13.70734 18.96918	EDOOR ESTIMATE	14.39942 14.43733 19.29091	ERROR ESTIMATE	13.40564 13.35070 18.73824
NEM SOLUTION	403.1785 -210.5290 142.5929	NEW SOLUTION	-74.36902 -56.76724 82.83098	NEW SOLUTION	-112.7568 -118.1578 122.0788
DEL SOLUTION	6154620E-08 0.2913409E-09 1919425E-07	DEL SOLUTION	1268400E-07 0.1521944E-07 1780411E-07	DEL SOLUTION	2517671E-07 0.2260367E-08 2688023E-07
OLD VALUE	403.1785 -210.5290 142.5929	OLD VALUE	-74.36902 -56.76724 82.83098	OLD VALUE	-112.7568 -118.1578 122.0788
	××N		××n		××N
1631	BIAS BIAS BIAS	1641	BIAS BIAS BIAS	165:	BIAS BIAS BIAS
ARC SET NUMBER 163	YELLOW-KNIFE YELLOW-KNIFE YELLOW-KNIFE	ا بــ عو	YUZHNO SAKH IV YUZHNO SAKH IV YUZHNO SAKH IV	ARC SET NUMBER LABEL	ZAYMISHCHE III ZAYMISHCHE III ZAYMISHCHE III

:

165 --LAST ARC-SET PROCESSED. TOTAL NUMBER OF ARC-SETS EQUALS:

GENERATING COMMON PARAMETER MATRIX STATISTICS: *** ND = 21ER = 0 ** STATC **

-- In STATC. Input sigmas and matrix from unit 15 GREADD INPUTING RESTART DATA FROM UNIT 15

ITERATION # 3 ARC PARAMETER SOLUTIONS PLUS STATISTICS:

IRC SET NUMBER	1.		OLD VALUE	DEL SOLUTION	SOLUT	OR ES
	BIAS BIAS BIAS	×≻N	.29777 .70690 .78907	0.1708526E-05 0.6047495E-07 7400336E-06		15.04821 15.05932 19.77926
ARC SET NUMBER	2.		OLD VALUE	DEL SOLUTION	SOLUT	OR ES
i	BIAS BIAS BIAS	××N	79.8112 5.54553 33.8576	23	~ RO RO	14.25142 15.26155 20.45700
E E	ñ.		OLD VALUE	DEL SOLUTION	NEW SOLUTION	- S
ALERT ALERT ALERT	BIAS BIAS BIAS	××N	6.71832 9.66155 96.8064	.3624666E .4723949E .1080202E	-16. 29. -196	14.02502 13.97923 19.14555
ABB			LD VAL	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
j	BIAS BIAS BIAS	××n	.6623 .6406 .1820	0.2020946E 3754609E 8474571E	-192.662 444.640 612.182	13.48323 13.92578 18.90147
ARC SET NUMBER LABEL			OLD VALUE	DEL SOLUTION	NEW SOLUTION	121
ì	BIAS BIAS BIAS	××N	.451 0377 .029	5309258E 3966845E 4355385E	163.4513 33.03771 -170.0297	13.64148 13.69863 18.90626
ARC SET NUMBER LABEL	. 9		OLD VALUE	DEL SOLUTION	2010	OR EST
ALMERIA ALMERIA ALMERIA	BIAS BIAS BIAS	××n	5,42751 ,462776 8,45731	. 9496921 . 2212484 . 3882178	-15,42750 9,462774 18,45730	13,73240 13,68569 18,83432
$\overline{\mathbf{u}}$	7.		OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR EST
AMATSIA AMATSIA AMATSIA	BIAS BIAS BIAS	×≻N	.09631 .09154 5.2838	.1001976E .4592617E .9823622E	99.09632 41.09153 285.2838	13.92383 13.99227 19.09767
ARC SET NUMBER LABEL	 •0		OLD VALUE	SOLUTION	S	OR EST
ANNAMALAINAG II	BIAS	×	157.3679	0.1187036E-05	۳,	14.42155

14.58274 19.30014	OR EST	15.10147	ERROR ESTIMATE	3020 2321 4241	OR EST	14.26076 14.40868 19.43861	ERROR ESTIMATE	14.69463 14.81749 19.70603	ERROR ESTIMATE	3.59058 3.57911 8.84707	OR EST	13.36031 13.39775 18.74696	OR EST	00486 85026 14439	OR EST	14.92924 13.74201 19.01073
-105.2660 -46.85765	SOLUT	218.5458	NEW SOLUTION	5.0.5	2010	-140.7564 321.7107 668.6568	NEW SOLUTION	93.87750 -64.56674 467.9247	NEW SOLUTION	114.520 259.905 449.810	SOLUT	171.4660 -32.39828 -91.51056	SOLUT	-104,1718 -49,12158 203,8740	30F	17.88621 -59.69191 -62.09541
0.2231969E-05 -,4224039E-05	L SOLUTION .7212162E-0	0.2887980E-04 0.5967170E-04	ᇹ	0.4946961E 0.5259884E 0.1107576E	II	.4713524E .4896999E .2092211E	DEL SOLUTION	.5671846E .5526913E .1568755E	_	0.1914766E 0.5634371E 6644021E	OLUTIO		DEL SOLUTION	3270974E 1511525E 8128116E		-,6012464E 0.2468845E 0.6980063E
-105.2660 -46.85765	LD VAL	218.5457	LD VAL	9116 5062 4133	LD VAL	7564 7107 6568	OLD VALUE	.87751 .56675 7.9247	>	203 052 107	D VAL	71.4660 2.39827 1.51056	LD VAL	1718 2157 8740	D VAL	7.88622 9.69192 2.09541
7		(> N		×≻N		×≻N		××N		××N		××N		×≻N		××N
BIAS	- Y	BIAS	10:	BIAS BIAS BIAS	111	BIAS BIAS BIAS	12:	BIAS BIAS BIAS	13.	BIAS BIAS BIAS	14:	BIAS BIAS BIAS	151	BIAS BIAS BIAS	161	BIAS BIAS BIAS
ANNAMALAINAG II ANNAMALAINAG II	RC SE	APIA IV APIA IV	ARC SET NUMBER LABEL		ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	125	ARC SET NUMBER LABEL	; !	ARC SET NUMBER LABEL	555	ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	1

ARC SET NUMBER 17:

LABEL			VAL	_	NEW SOLUTION	ES .
BEIJING BEIJING BEIJING	BIAS BIAS BIAS	××N	630.4580 -236.0520 453.7496	0.3336468E-05 0.4574826E-05 0.3008028E-05	630.4580 -236.0520 453.7496	13.64230 13.63071 18.90107
ARC SET NUMBER LABEL BELSK BELSK	18. BIAS BIAS	×≻	0LD VALUE 116.2186 137.0633	DEL SOLUTION 0.1045358E-05 0.1069403E-05	NEM SOLUTION 116.2186 137.0633	ERROR ESTIMATE 13.14157 13.14287
EL S RC	IA -	7	02.934 LD VAL	.2484058E-0 L SOLUTION	02.934 SOLUT	8.3577 OR EST
	BIAS BIAS BIAS	×≻N	565	1444	-395.8364 -260.9535 255.7623	39.00753 39.04676 41.26203
ARC SET NUMBER LABEL	201		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
BJORNOYA II BJORNOYA II BJORNOYA II	BIAS BIAS BIAS	××N	7679	3708864E 1480120E 5418677E	-107.7679 45.01729 9.817480	13.57653 13.65335 18.86041
ARC SET NUMBER LABEL	21,		D VAL	UTI	20	OR EST
i	BIAS BIAS BIAS	××N	.02374 .62032 7.6190	422	-20.02374 -63.62032 -437.6190	13.51949 13.51096 18.69834
ARC SET NUMBER LABEL	22 1		VAL	SOLUTI	LUT	OR EST
BOULDER BOULDER BOULDER	BIAS BIAS BIAS	×≻N	931937 .20105 5.2733	1185826E-04 9134525E-05 0.1112869E-04	8932056 53.20104 -165.2733	.07598 .11683 .52802
ARC SET NUMBER LABEL	231		OLD VALUE		NEW SOLUTION	ERROR ESTIMATE
) 	BIAS BIAS BIAS	××n	. 37607 2.9183 8.8304	0.1143341E 0.6661578E 1095633E	76.37607 -102.9183 -208.8304	17.56598 17.56887 21.71629
ARC SET NUMBER	24:		רט עא	DEL SOLUTION	NEW SOLUTION	OR EST
	BIAS BIAS BIAS	××n	iñ :		65. -103	17.76072 17.77661 22.00302
ARC SET NUMBER LABEL	251		LD VA	DEL SOLUTION	SOLUT	ERROR ESTIMATE
1	BIAS	××	54934 14552	0.2026602	33.54 16.14	3.8336 3.8224

Bubkov	BIAS	7	-42.58728	1139691E-05	-42.58728	18.81845
SET NUM	-		7 07	SOLUTION	SOLUT	OR EST
CAMBRIDGE BAY CAMBRIDGE BAY CAMBRIDGE BAY	BIAS BIAS BIAS	×≻N	109,4211 -86,19009 120,8387	-,4575273E-05 -,4934364E-05 0,1840247E-05	109.4211 -86.19009 120.8387	13.32501 13.36741 22.51293
ARC SET NUMBER LABEL	27 .		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
	BIAS BIAS BIAS	××	21.5692 6.79491 016.078	0.8551997E 0.1101277E 0.4101051E	-421.5692 96.79493 -1016.078	14.91032 15.28214 20.22463
ARC SET NUMBER LABEL	28 1		OLD VALUE	1	5	OR EST
}	BIAS BIAS BIAS	××N	.92808 .79859 .90340	3372500E 0.2445169E 0.2839374E	17.92808 52.79861 98.90340	.00884 .21429 .73534
ARC SET NUMBER LABEL	29 t		OLD VALUE	DEL SOLUTION	SOLUT	ERROR ESTIMATE
CAPE WELLEN III CAPE WELLEN III CAPE WELLEN III	BIAS BIAS BIAS	××n	.66754 .99838 8.7865	.4212588E .4070556E .7721589E	-72.66754 57.99839 -108.7865	3.5346 3.4693 8.8673
IRC SET NUMBER	30:		OLD VALUE	DEL SOLUTION	NEM SOLUTION	OR EST
	BIAS BIAS BIAS	×××	26.0	.2253563E .2657077E .3354179E	775,3538 -345,4244 -826.0758	75.74887 75.74193 76.89436
ARC SET NUMBER LABEL	31:			SOLUTIO	SOLUT	OR EST
	BIAS BIAS BIAS	××N	1.7011 .40969 6.3792	0.8051615E-05 3962504E-05 1201736E-04	-481.7011 -73.40969 -296.3792	.01676 .89976 .34866
ARC SET NUMBER	32.		At.	L SOLUTIO	SOLUT	OR EST
CHAMBON FORETII CHAMBON FORETII CHAMBON FORETII	BIAS	××N	0 TO TO	001	-69.25002 -25.96490 95.35084	13.21729 13.21090 18.41549
RC SET NUMBER	33.		רם מי	2	- 1	OR EST
	BILAS	××N	3775 4639 .076	0.9013568E 1335072E 0.8508482E	-95.37755 15.46390 179.0761	14.52374 14.50480 19.53753
ARC SET NUMBER LABEL	341		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE

CHELYUSKIN IV CHELYUSKIN IV CHELYUSKIN IV	BIAS BIAS BIAS	×≻N	-30.26662 -104.8090 -103.0904	0.7417782E-06 0.2142547E-05 2538197E-05	-30.2662 -104.8090 -103.0904	14.95408 14.96746 19.98410
ARC SET NUMBER LABEL	351		OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR EST
CHICHIJIMA CHICHIJIMA CHICHIJIMA	BIAS BIAS BIAS	×≻N	05.131 0.8115 37.811	.1525687E .4236551E .9799190E	-305. -30.8 237.	15.00452 15.05187 19.67189
ARC SET NUMBER LABEL	361		\ \	DEL SOLUTION	NEW SOLUTION	OR EST
 	BIAS BIAS BIAS	××N	307 623 776	. 532668 . 532668 . 231538	21.63072 -19.06239 6.687762	13.67719 13.75381 18.86423
ARC SET NUMBER	37 .		OLD VALUE	SOLUTI	NEW SOLUTION	OR EST
b .	BIAS BIAS BIAS	××N	. 1009 . 0119 3.227		-11.10099 -51.01190 -113.2270	13.18067 13.14888 18.59629
ARC SET NUMBER LABEL	38 1		OLD VALUE	SOLUTIO	νļ	R EST
İ	BIAS BIAS BIAS	××N	43.9405 07.6234 50.3990		243.9 207.6 150.3	14.76721 14.69584 20.09708
ARC SET NUMBER LABEL	391		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
DEL RIO DEL RIO DEL RIO	BIAS BIAS BIAS	××N	5.9854 .64068 2.1146	.2748727E .1945643E .2958961E	305.9854 91.64066 -432.1145	16.13703 15.73318 21.04321
ARC SET NUMBER LABEL	401		OLD VALUE	OLUTIO	20102	OR EST
	BIAS BIAS BIAS	××n	26691 .8401 .9076	.198098 .217213 .125505	-91.26691 -133.8401 -255.9076	13.66308 13.65711 18.96887
ARC SET NUMBER	41 :		OLD VALUE	DEL SOLUTION	SOLUT	OR EST
	BIAS BIAS BIAS	×××	6.47596 4.13600 57.3139	36.	-76.47596 -84.13600 -257.3139	13.47200 13.50085 18.66426
ARC SET NUMBER	451		= :	OLUTION	SOLUT	OR EST
	BIAS BIAS BIAS	х≻и	M ← 60	0.3668996E-05 0.3700868E-06 4970616E-06	13.61524 -21.77490 68.81594	13.45406 13.45168 18.56421

OR ES	13.7505/ 13.69047 19.31032	OR EST	13.95023 13.88076 18.98286	EST	13.82362 13.82205 18.82894	OR EST	13.49970 13.52382 18.66279	OR EST	13.81573 13.93931 19.31158	OR EST	13,39704 13,39998 18,77497	OR EST	13.58729 13.77354 19.07298	OR EST	15.94053 16.05109 20.39117	ERROR ESTIMATE
SOLU	-143.0880 -409.2647 -2849.121	5:	-208.2955 11.79158 -117.8831	SOLUT	-8.461763 85.32355 107.2791	SOLUT	12.17248 -55.38545 -63.08800	LUT.	-18.33823 -47.74759 34.37312	LUT.	-113.1454 40.10315 -271.3004	201	60.31543 -41.88290 125.9361	SOLUT	130.5233 -61.63802 78.38870	NEM SOLUTION
SOLUTION	0.1977784E-05 0.8379610E-05 0.4525029E-06	DEL SOLUTION	0.6187144E-05 0.1322027E-05 4297411E-05	UTI		L SOLUTI	0.2760070E 0.1198426E 0.3395516E	DEL SOLUTION	.5435678 .1055158 .1125444	SOLUTION	-,2920464E-05 -,8418040E-05 0,5419784E-06	L SOLUTION	0.8568963E-05 1550816E-04 1225877E-04	L SOLUTION	0.3320328E-05 1926844E-05 2014602E-05	DEL SOLUTION
OLD VALUE	-143.0880 -409.2647 -2849.121	OLD VALUE	295 915 883	>	6176 3235 .279	VAL	17247 38545 08800	OLD VALUE	33824 74760 37313	OLD VALUE	-113.1454 40.10316 -271.3004	OLD VALUE	210	OLD VALUE	30.523 1.6380 8.3887	OLD VALUE
	×××		××N		××N		×≻N		××N		××N		××N		××N	
431	BIAS BIAS BIAS	. 55	BIAS BIAS BIAS	451	BIAS BIAS BIAS	195	BIAS BIAS BIAS	125	BIAS BIAS BIAS	181	BIAS BIAS BIAS	165	BIAS BIAS BIAS	50 :	BIAS BIAS	51 .
ARC SET NUMBER	DUMONT DURVILLE DUMONT DURVILLE DUMONT DURVILLE	ARC SET NUMBER	}	ARC SET NUMBER LABEL	t .	ARC SET NUMBER LABEL	ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR	ARC SET NUMBER LABEL	!	ARC SET NUMBER	XXX	ARC SET NUMBER LABEL	222	ARC SET NUMBER LABEL		ARC SET NUMBER

12.96095 12.93015 18.21772	ERROR ESTIMATE 14.34070 14.76992 19.93236	ERROR ESTIMATE 13.98539 13.93151 19.13285	ERROR ESTIMATE 13.25756 13.25404 18.56734	ERROR ESTIMATE 14.40779 14.45115 19.35016	ERROR ESTIMATE 18.70753 19.02942 23.73658	ERROR ESTIMATE 13.22904 13.19654 18.39303	ERROR ESTIMATE 13.73233 15.08211 20.06753	ERROR ESTIMATE 14.61208 14.73266 19.80676
-15.11498 1.195249 4.968156	NEW SOLUTION 2.197739 -117.3237 145.3252	NEW SOLUTION 273.1702 -304.3136 703.9625	NEM SOLUTION 14.80435 -20.07839 -70.36902	NEW SOLUTION 259.8318 98.29877 -84.88654	NEM SOLUTION 126.4503 375.4862 -81.09736	NEM SOLUTION -25.34438 -50.84871 -65.51175	NEM SOLUTION 176.3779 103.4677 62.97723	NEM SOLUTION 86.38618 55.22414 27.34503
0.3972432E-05 0.2242253E-05 1369187E-05	DEL SOLUTION 2058424E-05 0.3574767E-05 0.7703146E-05	DEL SOLUTION 0.2300669E-055303291E-052662815E-05	DEL SOLUTION 0.5701691E-061392010E-054162238E-05	DEL SOLUTION 0.1368290E-05 -4134409E-05 0.1018933E-06	DEL SOLUTION 0.419359E-05 1396567E-04 0.6732863E-06	DEL SOLUTION 0.1480216E-05 0.2378242E-05 0.2218045E-05	DEL SOLUTION 0.5957140E-05 -,4609226E-05	DEL SOLUTION 0.1209549E-04 0.1008583E-04 1375086E-04
-15.11499 1.195247 4.968157	0LD VALUE 2.197741 -117.3237 145.3252	0LD VALUE 273.1702 -304.3136 703.9625	0LD VALUE 14.80435 -20.07839 -70.36902	0LD VALUE 259.8318 98.29878 -84.88654	0LD VALUE 126.4503 375.4862 -81.09737	0LD VALUE -25.34439 -50.84872 -65.51175	0LD VALUE 176.3779 103.4677 62.97724	0LD VALUE 86.38617 55.22413 27.34504
×≻N	×≻N	×≻N	×≻N	×≻N	×≻N	××N	×≻N	××N
BIAS BIAS BIAS	52: BIAS BIAS BIAS	53: BIAS BIAS BIAS	54: BIAS BIAS BIAS	55: BIAS BIAS	56. BIAS BIAS BIAS	BIAS BIAS BIAS BIAS	58: BIAS BIAS BIAS	59: BIAS BIAS
FURSTNFEL DBRUCK FURSTNFEL DBRUCK FURSTNFEL DBRUCK	ARC SET NUMBER LABEL GNANGARA GNANGARA GNANGARA	ARC SET NUMBER LABEL GODHAVN II GODHAVN II	ARC SET NUMBER LABEL GORNOTAYEZHN II GORNOTAYEZHN II	ARC SET NUMBER LABEL CAREAT WHALE R GREAT WHALE R GREAT WHALE R	ARC SET NUMBER LABEL CONTROL GREAT WHALE RII GREAT WHALE RII	ARC SET NUMBER LABEL GROCKA GROCKA GROCKA	ARC SET NUMBER LABEL GUAM GUAM GUAM	ARC SET NUMBER LABEL GUANGZHOU II GUANGZHOU II

ARC SET NUMBER	109		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK	BIAS BIAS BIAS	××N	.71582 126863 .30747	2625376E 0.3468531E 0.4667170E	96.71582 -9.126859 85.30747	.98688 .07720 .10256
ARC SET NUMBER	61,		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
!	BIAS BIAS BIAS	××N	.98757 443972 81338	.3410385E .1342309E .1229348E	-35.98757 2.443974 47.81338	13.51289 13.53666 18.65102
ARC SET NUMBER LABEL	621		_	SOLUT	NEW SOLUTION	OR EST
	BIAS BIAS BIAS	××N	.751333 75.1213 27.4419	.1220682E .3667942E .4792023E	4.751334 -775.1213 427.4419	14.34119 14.43353 19.39705
ARC SET NUMBER	63:		:	L SOLUTIO	SOLUT	OR EST
HEISS ISLAND II HEISS ISLAND II HEISS ISLAND II	BIAS BIAS BIAS	××N	6.95199 75.4978 119.238	001	86.95199 -675.4978 1119.238	13.37591 13.38718 18.78320
ARC SET NUMBER LABEL	1 6 9		· V	201	NEW SOLUTION	α Ε
HEL III HEL IIII HEL IIII	BIAS BIAS BIAS	××N	9.59899 60.9862 5.74060	0.1846437E 0.4718896E 3470051E	49.59899 -160.9862 -95.74061	13.14037 13.14987 18.37902
ARC SET NUMBER LABEL	651		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
HERMANUS HERMANUS HERMANUS	BIAS BIAS BIAS	××N	2.1088 5.5532 291045	1207624E 0.2591603E 1157219E	32.10886 15.55320 0.2910336	14.06589 14.19950 19.65890
ARC SET NUMBER LABEL	1 99) VAL	DEL SOLUTION	NEW SOLUTION	2
HONOLULU IV HONOLULU IV HONOLULU IV	BIAS BIAS BIAS	×≻N		0,3732901E 1698961E 4632612E	-149.4635 83.87397 -313.6014	14.01585 14.43871 19.39286
ARC SET NUMBER	1 29		D VAL	LUTIO	TU 108	ERROR ESTIMATE
1	BIAS BIAS BIAS	××n	-19.55912 -133.5414 -28.43368	001	-19,55912 -133,5414 -28,43368	15.07313 15.08781 19.82731
ARC SET NUMBER	189		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
	BIAS	×	.34356	3024716E	98.34355	14.25246

IN THE LANGE TO TH	BUIAS BUIAS BUIAS BUIAS BUIAS BUIAS	××	0LD VALUE -547.9692 272.7738 -68.67539 0LD VALUE 168.0819 -9.467364	DEL SOLUTION 0.1217436E-05 0.1450546E-058178212E-05 DEL SOLUTION 0.1453837E-05 0.1453837E-05	NEM SOLUTION -547.9692 272.7738 -68.67540 NEM SOLUTION -9.467362	ERROR ESTIMATE 14.04973 14.38168 19.13192 ERROR ESTIMATE 13.55689
Y PHH		n ×>n	2.623 D VAL -0526 96563	.3343678E-0 .5343678E-0 .5375375E-0 .6032857E-0	82.623 SOLUT 0.0527 .96564 5.6651	8.7296 OR EST 4.1527 4.0795 9.5304
80: WIAS WIAS		×≻N	0LD VALUE -292.3909 -492.7441	DEL SOLUTION 0.6024112E-05 0.1976307E-05	NEM SOLUTION -292.3909 -588.1114 -492.7441	ERROR ESTIMATE 13.46007 13.43331 18.90910
81: BIAS BIAS BIAS		××N	0LD VALUE -125.5514 162.8265 25.33198	DEL SOLUTION 0.2778230E-05 0.8134834E-06 5455207E-06	NEM SOLUTION -125.5514 162.8265 25.33198	ERROR ESTIMATE 13.50279 13.53330 18.70580
82: BIAS BIAS		×≻N	0LD VALUE 108.1242 337.2901 -556.2328	DEL SOLUTION 0.3161740E-06 0.1438713E-06 3130515E-06	NEM SOLUTION 108.1242 337,2901 -556.2328	ERROR ESTIMATE 17.57840 17.58042 21.74901
83. BIAS BIAS		×≻N	0LD VALUE 52.19099 -1.289347 -5.189310	DEL SOLUTION 0.1264216E-05 0.2261957E-07 1581720E-05	NEM SOLUTION 52.19099 -1.289347 -5.189311	ERROR ESTIMATE 15.01887 15.02522 19.72730
84: BIAS BIAS		××n	0LD VALUE 300.1844 -44.70018 69.84637	DEL SOLUTION6659787E-061998394E-07 0.6046090E-05	NEM SOLUTION 300.1844-44,70018	ERROR ESTIMATE 15.97253 16.89655 21.62713
85: BIAS BIAS		×≻	0LD VALUE 34.46011 24.89892	DEL SOLUTION 0.5041195E-05 0.6830258E-05	NEM SOLUTION 34.46011 24.89892	ERROR ESTIMATE 14.01536 14.06499

LAB	<u> </u>	>		SOLUTION	SOLUT	A 16
KODAIKANAL II KODAIKANAL II	BIAS	<>~	272.773 68.6753	.1450546 .1450546 .8178212	272.7 68.67	4.381 9.131
ARC SET NUMBER LABEL KRASNAYA PAKHRA KRASNAYA PAKHRA	78: BIAS BIAS	×≻∧	0LD VALUE 168.0819 -9.467364	DEL SOLUTION 0.1453837E-05 0.2221916-05	NEM SOLUTION 168.0819 -9.467362	ERROR ESTIMATE 13.55689 13.53829 18.72962
RC SET NUMBER		ı	LD VAL	L SOLUTION	SOLUT	OR ES
	BIAS BIAS	××n	05269 65635 66513	0.5375 0.6032 8429	10.05270 7.965641 -15.66513	14.15270 14.07957 19.53045
ARC SET NUMBER LABEL	80:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR EST
) 	BIAS BIAS BIAS	×≻N	2.390 8.111 2.744	0.6024112E 0.1976307E 5177824E	-292.3909 588.1114 -492.7441	46007 43331 90910
ARC SET NUMBER	81:		OLD VALUE	010	SOL	OR EST
	BIAS BIAS BIAS	××N	25.5514 52.8265 5.33198	0.2778230E 0.8134834E 5455207E	-125.5514 162.8265 25.33198	13.50279 13.53330 18.70580
ARC SET NUMBER	821			OLUTIO	- 1	OR EST
LOPARSKOYE LOPARSKOYE LOPARSKOYE	BIAS BIAS BIAS	××N	08.1242 37.2901 56.2328	001	108.1242 337.2901 -556.2328	17.57840 17.58042 21.74901
ARC SET NUMBER LABEL	83.		VAL	DEL SOLUTION	SOLUT	EST
 	BIAS BIAS BIAS	×××	2.19099 .289347 .189310	0.1264216E 0.2261957E 1581720E	52.19099 -1.289347 -5.189311	15.01887 15.02522 19.72730
ARC SET NUMBER LABEL	84.		D VAL	OLUTIO	80	OR EST
444	BIAS BIAS BIAS	××N	00.1844 4.70018 9.84637	.66597 .19983 .60460	300.184 -44.7001 69.8463	15.97253 16.89655 21.62713
ARC SET NUMBER LABEL	85.		7 7	DEL SOLUTION	51	OR ES
	BIAS	×≻	46011 89892	.5041195 .6830258	J- J-	. 0153 . 0649

19.03593	R ESTIMA'	13.44578 13.44445 18.55641	OR EST	14.28403 15.33861 20.13648	⊢	13.92384 13.92384 19.12622	ERROR ESTIMATE	17.77120 17.76420 21.95220	OR EST	!	R ESTIMA	16.12733 16.80880 22.35445	ŭi œ	13.66525 13.66830 19.09638	R EST	13.40079 18.69274	ERROR ESTIMATE
39.95006		162.2427 124.2173 145.4718	NEM SOLUTION	46.4468 4.68686 0.75362). UT	275.9470 10.16911 300.1008	OLUT	1.856647 -25.02291 165.9524	01.07	361.5911 26.08495 -123.3684	SOLUT	-598.0023 -648.6332 -1948.142	OLUT	19.20751 24.62025 188.5202	SOLUT	104.1747 18.19623 -144.7643	NEW SOLUTION
1156779E-05	日	74050E 14460E 10642E	EL SOLUTI	1974.1964.	OLUTIO	0.3759 0.2354 0.3678	DEL SOLUTION	0.5308749E 0.5354427E 9997562E	L SOLUTIO	131	EL SOLUTIO	. 1797 . 1074 . 5207	L SOLUTIO	1183876E-05 0.3149864E-05 0.4113073E-06	EL SOLU	1047276E-04 6313502E-05 1852972E-05	DEL SOLUTION
39.95006	A A	52.2427 24.2173 45.4718	OLD VALUE	366) VAL	·	AL	856642 .02291 5.9524	*	89H	VALU	-598.0023 -648.6332 -1948.142		. 20 . 62 . 5	LD VAL	104.1748 18.19623 -144.7643	OLD VALUE
7		××n		×≻N		×≻N		×≻N		××n		××n		××N		××n	
BIAS	86 1	BIAS BIAS BIAS	87.	BIAS BIAS BIAS	- 80 80	BIAS BIAS BIAS	891	BIAS BIAS BIAS	106	BIAS BIAS BIAS	91 :	BIAS BIAS BIAS	921	BIAS BIAS BIAS	931	BIAS BIAS BIAS	1 46
LUNPING	ARC SET NUMBER	i	ARC SET NUMBER LABEL	M BOUR BOUR BOUR	ARC SET NUMBER LABEL	MACQUARIE ISLND MACQUARIE ISLND MACQUARIE ISLND	ARC SET NUMBER	ì	ARC SET NUMBER LABEL	MAPUTO II MAPUTO II MAPUTO II	ARC SET NUMBER LABEL	MARTIN VIVIES MARTIN VIVIES MARTIN VIVIES	ARC SET NUMBER	MAMSON MAMSON MAMSON	ARC SET NUMBER LABEL	MEANOOK III MEANOOK III MEANOOK III	ARC SET NUMBER LABEL

12.99600 13.14351 18.51439	ERROR ESTIMATE 	ERROR ESTIMATE 13.54046 13.56827 18.64595	ERROR ESTIMATE 14.13998 14.12305 19.27526	ERROR ESTIMATE 13.35052 13.37100 18.74463	ERROR ESTIMATE 14.28670 14.1480 19.73886	ERROR ESTIMATE 17.59923 17.59075 21.72577	ERROR ESTIMATE 17.88191 18.33656 23.94242	ERROR ESTIMATE 15.20657 15.15756 20.05231
-235.1450 143.3978 74.74825	NEW SOLUTION -117.7029 46.63069 -444.1922	NEM SOLUTION -130.9452 49.26716 -179.8992	NEM SOLUTION -12.03301 -102.4745 -248.5183	NEM SOLUTION -28.02696 16.08190 -48.04166	NEM SOLUTION -50.97309 -37,40097 35,41411	NEM SOLUTION 0.7281044 -4.430694 -85.02205	NEM SOLUTION 66.57193 -12.33492 251.8440	NEM SOLUTION -348.5242 271.9251 558.8473
2737297E-06 0.8823455E-05 8839054E-05	DEL SOLUTION 0.6678840E-08 0.1252670E-05 1707794E-05	DEL SOLUTION 0.2085181E-07 0.3649526E-05 5099687E-05	DEL SOLUTION1905268E-05 0.1758716E-051195252E-06	DEL SOLUTION6335658E-052613903E-05 0.1362927E-05	DEL SOLUTION 0.3573646E-05 0.1358076E-04 5483830E-05	DEL SOLUTION 0.1264974E-05 0.1835123E-05 -,4037504E-06	DEL SOLUTION 1368233E-04 0.4720772E-05 2228300E-04	DEL SOLUTION 0.2837275E-05 5045081E-05
-235.1450 143.3978 74.74826	OLD VALUE -117.7029 46.63069 -444.1922	0LD VALUE -130.9452 49.26716 -179.8992	0LD VALUE -12.03301 -102.4745 -248.5183	0LD VALUE -28.02695 16.08190 -48.04166	0LD VALUE -50.97310 -37.40099 35.41411	0LD VALUE 0.7281031 -4.430695 -85.02205	0LD VALUE -66.57191 -12.33492 251.8440	0LD VALUE -348.5242 271.9251 558.8473
××n	×≻N	×≻N	××N	×≻N	××N	××N	×≻N	××N
BIAS BIAS BIAS	95: BIAS BIAS BIAS	96: BIAS BIAS BIAS	97. BIAS BIAS BIAS	98: BIAS BIAS BIAS	99. BIAS BIAS BIAS	100: BIAS BIAS BIAS	101: BIAS BIAS BIAS	102: BIAS BIAS BIAS
MEMAMBETSU MEMAMBETSU MEMAMBETSU	ARC SET NUMBER LABEL MIRNYY III MIRNYY III	ARC SET NUMBER LABEL MIZUSAWA MIZUSAWA MIZUSAWA	ARC SET NUMBER LABEL LABEL MOLODEZHNAYA MOLODEZHNAYA MOLODEZHNAYA	ARC SET NUMBER LABEL MOULD BAY MOULD BAY MOULD BAY	ARC SET NUMBER LABEL MUNTINLUPA MUNTINLUPA MUNTINLUPA	ARC SET NUMBER LABEL NAGYCENK II NAGYCENK II NAGYCENK II	ARC SET NUMBER LABEL NAMPULA NAMPULA	ARC SET NUMBER LABEL NARSSARSSUAG NARSSARSSUAG NARSSARSSUAG

R EST	12.96822 13.05001 18.33178	OR EST	13.14190 13.13883 18.35933	EST	447	OR EST	08322 07151 85922	ERROR ESTIMATE	14.73519 14.76362 18.71644	R EST	54500 67618 92054	ERROR ESTIMATE	4.600 4.997 0.114	- 1	14.99198 14.98731 19.64140	ERROR ESTIMATE
NEM SOLUTION	-30.	— (-24.80630 3008879 -88.47667	NEW SOLUTION	96.2372 159.766 .411719	SOLUT	-258,5402 78,31273 81,18105	NEM SOLUTION	287.6375 -103.4733 93.67950	NEW SOLUTION	138.1910 -130.9727 155.5695	SOLUT	643.1 754.3 107.1	NEW SOLUTION	178.986 170.117 202.683	NEW SOLUTION
DEL SOLUTION	12 69	브!	0.2525764E-05 0.6737325E-06 2117358E-05	DEL SOLUTION	0.2382073E 0.1362047E 0.1715671E	DEL SOLUTION	.1623018E .1717696E .6493313E	DEL SOLUTION	0.3319730E-05 0.4170710E-06 4715572E-05	DEL SOLUTION	0.7748167 7204386 5787560	DEL SOLUTION	.2503318E .1396523E .9596820E	DEL SOLUTION	.8880739E .3664756E .1415135E	DEL SOLUTION
LD VAL	.10292 6.1672 9.6138	OLD VALUE	8063 0888 4766	OLD VALUE	.23725 9.7667 117370	רם א	. 5402 31273 18105	OLD VALUE	. 6375 . 4733 67950	OLD VALUE	38.19 30.97 55.56	OLD VALUE	43.1583 54.3520 07.1261	OLD VALUE	.9868 .1172 .6836	OLD VALUE
	××n		××N		×≻N		××N		××N		××N		××N		××N	
103.	BIAS BIAS BIAS	104,	BIAS BIAS BIAS	1051	BIAS BIAS BIAS	106:	BIAS BIAS BIAS	107 .	BIAS BIAS BIAS	108:	BIAS BIAS BIAS	1001	BIAS BIAS BIAS	110:	BIAS BIAS BIAS	1111:
ARC SET NUMBER	NEMPORT NEMPORT NEMPORT	ARC SET NUMBER	NIEMEGK NIEMEGK NIEMEGK	ARC SET NUMBER	NOVO KAZALINSK NOVO KAZALINSK NOVO KAZALINSK	ARC SET NUMBER LABEL	NOVOLAZAREVS II NOVOLAZAREVS II NOVOLAZAREVS II	ARC SET NUMBER	NURMIJARVI NURMIJARVI NURMIJARVI	ARC SET NUMBER LABEL	OTTAWA OTTAWA OTTAWA	ARC SET NUMBER	PAMATAI II PAMATAI II PAMATAI II	ARC SET NUMBER LABEL	PANAGYURISHTE PANAGYURISHTE PANAGYURISHTE	ARC SET NUMBER

PARATUNKA PARATUNKA PARATUNKA	BIAS BIAS BIAS	××N	-340.9449 213.5227 234.3284	7915399E-06 0.6821780E-05 3184007E-06	-340.9449 213.5227 234.3284	13.75741 13.81167 19.09524
ARC SET NUMBER	112,		VAL	L SOLUTION	SOLUT	OR EST
PATRONY PATRONY PATRONY	BIAS BIAS BIAS	××N	26.71238 44.54648 -62.53485	0.3146653E-05 0.6585414E-05 1329152E-05	26.71239 44.54649 -62.53485	14.04282 14.08302 19.28065
ARC SET NUMBER LABEL	113.		A V	SOLUTIO	SOLUT	OR EST
PILAR PILAR PILAR	BIAS BIAS BIAS	××N	2.73771 .396406 .164576	597 0.172 119	2.73 396 396 164	15.17248 15.36402 20.14936
ARC SET NUMBER LABEL	114,		VA.	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
!	BIAS BIAS	××n	. 5603 . 8813 . 9536	.1093094 .1045999 .3389154	289.560 171.881 -136.953	13.45818 13.46383 18.59722
	115:		LD VAL	LUTI	51	OR EST
PODKAM TUNGUSKA PODKAM TUNGUSKA PODKAM TUNGUSKA	A BIAS A BIAS A BIAS	××N	56.49987 16.23680 -283.3641	0.5117290E 0.4314954E 3562926E	56.49987 16.23681 -283.3641	14.24442 14.24783 19.56422
A A	116.		۸ ×	OLUTIO	SOLU	OR ES
PORT MORESBY PORT MORESBY PORT MORESBY	BIAS BIAS BIAS	××N	23.19521 45.13945 244.5449	101	MMG	14.24166 15.30727 20.00594
ARC SET NUMBER	1171		VAL	DEL SOLUTION	SOLUT	OR EST
	BIAS BIAS BIAS	××N	· 6	.360642 .770120 .127709	-793.6561 1109.006 147.9836	15.80045 15.53400 21.89530
ARC SET NUMBER	118.		LD VAL	SOLUTION	SOLUT	OR EST
PORT-AUX-FRANCA PORT-AUX-FRANCA PORT-AUX-FRANCA	BIAS BIAS BIAS	×≻N	. 3055 . 5638	2627565E-05 0.1741745E-05 2492650E-05	231.7729 201.3055 666.5638	13.92106 14.27030 19.54043
ARC SET NUMBER	119.		D VAL	OLUTI	SOLUT	OR EST
. ~ ~ ~	BIAS BIAS BIAS	×≻N	94308 13070 00043	.4146328E .6443672E .1415777E	39.94307 37.13069 64.00043	13.35268 13.41187 18.75832

T NUMBER COVERNOR COV	BIAS BIAS BIAS BIAS	×≻N	0LD VALUE 38.93525 -8.982404 -60.04237	DEL SOLUTION 0.1136916E-05 0.396468E-071160020E-05 DEL SOLUTION	NEW SOLUTION 38.93526 -8.982404 -60.04237	ERROR ESTIMATE 16.01524 16.01850 20.48292 ERROR ESTIMATE
	BIAS BIAS BIAS	×××	.943160 4.78901 8.39841	1423292E 0.4993268E 7555133E	-2.943161 -64.78900 28.39841	13.58380 13.72499 18.86754
	122: BIAS BIAS	×≻	0LD VALUE -43.07889 190.4412	DEL SOLUTION 0.1529115E-04 0.5291368E-05	NEM SOLUTION -43.07888 190.4412	ERROR ESTIMATE 14.09741 14.53700
	Y Y Y	۰ ×× ۲	LD VAL	L SOLUTION -9735235E-0	SOLUT SOLUT 6.7724 0.0066	9.405X
	YAH - I	ı ×≻N	LD VAL 8.5560 8.0060	- SOLUTION - 4768042E-0 - 5287833E-0	SOLUT 8.5560 8.0060	0R EST 4.6311 4.4948 0.0754
	125; BIAS BIAS BIAS	×≻N	0LD VALUE -221.5375 67.01949 232.4281	DEL SOLUTION 0.4098640E-05 0.4074866E-05 0.1174126E-05	NEM SOLUTION -221.5375 67.01949 232.4281	0.8 3.92 5.93 5.93
	126; BIAS BIAS BIAS	××n	0LD VALUE -85.04548 -76.20953 -349.7986	DEL SOLUTION 0.232327E-075946776E-05 0.1104797E-05	NEW SDLUTION	ERROR ESTIMATE 14.89798 14.73852 19.95018
	127: BIAS BIAS BIAS	×≻N	0LD VALUE 6.881594 -13.23451 -75.18913	DEL SOLUTION1578021E-041892259E-052534537E-05	NEW SOLUTION 6.881578 -13.23451 -75.18914	ERROR ESTIMATE 14.21293 14.17761 19.41658
	128 : BIAS	×	0LD VALUE -161.8792	DEL SOLUTION 0.4506277E-05	NEW SOLUTION -161.8792	ERROR ESTIMATE

SODANKYLA SODANKYLA	BIAS	≻ 2	-105.8724 -599.1668	0.2194513E-06 2856044E-05	-105.8724 -599.1668	13.29360
AB	129 ı		LD VAL	01.07.10	M SOLUT	R EST
SOUTH GEORGIA SOUTH GEORGIA SOUTH GEORGIA	BIAS BIAS BIAS	×××	95642 7648 61907		-74.95642 -364.7648 99.61907	17.56117 17.56679 21.72204
ARC SET NUMBER LABEL	130:		8	SOLU	SOLUTI	OR ESTIM
•	BIAS BIAS BIAS	××N	8.59028 9.13002 .879458	.2819551E .1252635E .4499553E	48.59028 29.13000 3.879462	14.16130 13.94731 19.52721
ARC SET NUMBER	131:		D VA	DEL SOLUTION	M SOLUT	OR EST
1	BIAS BIAS BIAS	×××	79.1182 53.8174 1.35039	0.2584924E 0.7749056E 4686811E	-279.1182 -753.8173 51.35038	14.22264 14.34490 19.60934
ARC SET NUMBER LABEL	1321		VAL	UTIO	SOLUT	OR EST
STEPANOVKA III STEPANOVKA III STEPANOVKA III	BIAS BIAS BIAS	××N	9539 0080 3540	44.0	-96.29539 -701.0080 66.43540	13.50302 13.49569 18.62992
ARC SET NUMBER	133:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR EST
İ	BIAS BIAS BIAS	××n	0.30130 4.98176 7.63206	0.1577335E 1161589E 0.2205907E	0.30130 4.98176 7.63206	13.24434 13.22930 18.43438
ARC SET NUMBER LABEL	1341		D VAL	OLUTI	NEW SOLUTION	OR EST
	BIAS BIAS BIAS	××n	4.14302 4.61767 505793	1579958E 0.1842317E 5168430E	-34.14302 -54.61767 7.505793	14.83743 14.78575 19.89009
ARC SET NUMBER	135:		OLD VALUE	UTI	SOL	OR EST
HHH	BIAS BIAS BIAS	×≻N	0.47007 38.0399 4.23057	0.5277679E 0.5199903E -,1596856E	50.47007 -238.0399 -14.23058	15.55447 15.57343 20.83707
ARC SET NUMBER	136 .		D VAL	01	5!	OR EST
TANGERANG III TANGERANG III TANGERANG III	BIAS BIAS BIAS	××N	9.05500 7.99468 1.28162	28735 0.46959 14883	29.05500 -27.99467 61.28161	15.23538 15.53467 20.42287
ARC SET NUMBER	137.					

ا س ا			OLD VALUE	DEL SOLUTION	- D 1	ERROR ESTIMATE
TATUOCA III TATUOCA III TATUOCA III	BIAS BIAS BIAS	××n	8.3332 7.6594 4.0439	0.5288041E 7350343E 8099799E	68.33330 97.65943 74.04391	16.73052 17.41712 22.02975
ARC SET NUMBER LABEL	138+			L SOLUTI	SOLUT	R EST
i ! !	BIAS BIAS BIAS	×≻N	82.5776 32.0160 8.38238	0.2664523E-06 5547155E-05 7836232E-06	-282.5776 232.0160 -68.38238	15.19690 15.18263 20.00440
ARC SET NUMBER LABEL	139:		D VAL	SOLUTI	SOLUTI	R EST
į	BIAS BIAS BIAS	××N	7.90830 5.53957 2.42690	0.1629516E 5378518E 7632326E	-57.90830 95.53956 22.42690	14.49754 14.48211 19.47899
ARC SET NUMBER LABEL	1401		2		LUT	OR EST
İ	BIAS BIAS BIAS	××N	125	6950E 3875E 7594E	-16.14991 3.126615 -51.35369	14.40159 14.38282 20.39791
ARC SET NUMBER LABEL	141:		D VAL	SOLUTI	01.07	ROR ESTI
ł	BIAS BIAS BIAS	×××	0.03216 54.5386 13.7731	0.830291 0.177352 325201	90.03216 154.5386 113.7731	14.65268 14.65261 19.77299
	1421		D VAL	SOLUT	SOLUT	R EST
) 	BIAS	××n	16.02033 3.441209 -11.24872	0.1141197E 0.3452370E 1942074E	16.02033 3.441209 -11.24872	17.51126 17.51187 21.61379
ARC SET NUMBER	143.		D VAL	L SOLUTIO	M SOLUT	ERROR ESTIMATE
) i	BIAS BIAS BIAS	××n	. 3960 . 0125 . 4917	0.7226286E 0.1208001E 1025764E	290.3960 201.0125 210.4917	13.88634 14.44995 19.22191
ARC SET NUMBER	1441		D VALU	OLUTI	SOL	OR E
] 	BIAS BIAS BIAS	××N	111.9601 -408.3260 102.1842	0.4471726E 1110716E 1523137E	111.9601 408.3260 102.1842	13.25529 13.32493 18.60720
ARC SET NUMBER LABEL	145,		D VAL	DEL SOLUTION		OR EST
	BIAS	××	2.81214 0.88001	0.4034399E	62.81214 50.88001	95494 29719

19.47745	N ERROR ESTIMATE 13.14575 13.24284 18.53126	N ERROR ESTIMATE 30.51294 30.40049 33.37812	N ERROR ESTIMATE 17.48574 17.49718 21.56684	ERROR ESTIMATE 15.19774 15.15704 20.06636	HERROR ESTIMATE 13.20160 13.24868 18.58907	HERROR ESTIMATE 13.82172 13.68602 18.98189	M ERROR ESTIMATE 14.54128 15.25465 20.17068	ON ERROR ESTIMATE 13.44541 13.50454 18.78442	THE ST COCCU
76.74324	NEW SOLUTION -51.00860 -57.98657 127.0371	NEM SOLUTION -21.72040 -43.39323 41.63095	NEM SOLUTION -224.9914 181.5132 278.5992	NEW SOLUTIO -47.54213 -2.717605 64.64131	NEW SOLUTIO 129.7958 -66.30854 21.87703	NEW SOLUTIO 179.8148 96.07543 71.61752	NEW SOLUTIO 99.86851 -78.27584 -55.19208	NEW SOLUTIO 39.80149 9.490414 -329.0784	MEM COLLITTO
2025736E-05	DEL SOLUTION1400921E-04	DEL SOLUTION5882569E-052415361E-04 0.3248309E-04	DEL SOLUTION 0.4734991E-06 0.5044086E-07 9668864E-06	DEL SOLUTION 0.3792647E-061040571E-058894412E-05	DEL SOLUTION 0.4439892E-05 0.4598874E-05 0.1008761E-05	DEL SOLUTION 0.4118712E-05 0.5927268E-05 3965754E-05	DEL SOLUTION6649010E-054928906E-068216972E-05	DEL SOLUTION1752063E-049880912E-053069152E-05	NOT THE TOWN
76.74324	0LD VALUE -51.00858 -57.98654 127.0371	0LD VALUE -21.72039 -43.39321 41.63092	0LD VALUE -224.9914 181.5132 278.5992	0LD VALUE -47.54213 -2.717604 64.64132	0LD VALUE 129.7958 -66.30854 21.87703	0LD VALUE 179.8148 96.07542 71.61753	01D VALUE 99.86852 -78.27584 -55.19207	0LD VALUE 39.80151 9.490424 -329.0784	שנו אין מיוס
7	×≻N	×≻N	×≻N	××N	×≻N	××N	××N	××N	
BIAS	146: BIAS BIAS BIAS	147: BIAS BIAS BIAS	148: BIAS BIAS BIAS	149: BIAS BIAS BIAS	150. BIAS BIAS BIAS	151: BIAS BIAS BIAS	152: BIAS BIAS BIAS	153: BIAS BIAS BIAS	1541
TSUMEB	ARC SET NUMBER LABEL TUCSON TUCSON TUCSON	ARC SET NUMBER LABEL TULSA II TULSA II	ARC SET NUMBER LABEL UJJAIN UJJAIN UJJAIN	ARC SET NUMBER LABEL URUMQI URUMQI URUMQI	ARC SET NUMBER LABEL VALENTIA VALENTIA	ARC SET NUMBER LABEL VANNOVSKAYA II VANNOVSKAYA III VANNOVSKAYA III	ARC SET NUMBER LABEL VASSOURAS VASSOURAS	ARC SET NUMBER LABEL VICTORIA VICTORIA	ARC SET NUMBER

OSTO	I A	×	3.7065	.6083691E-0	3.7065	3.9672
VOSTOK VOSTOK	BIAS	≻2	62.20914 -1.465902	0.6237903E-05 4456657E-05	62,20915 -1,465907	13.94834 19.39783
ARC SET NUMBER LABEL	1551		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
i	BIAS BIAS BIAS	××N	0.28167 0.03747 76.5273	. 1854207 . 9459234 . 3354957	0.28167 0.03747 76.5273	13.84210 13.85371 18.88731
ARC SET NUMBER LABEL	156 :		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
777	BIAS BIAS BIAS	××N	0.59309 .628867 .199038	0.1851229 0.2229517 7961979	30.59309 -3.628865 8.199037	13,15950 13,14005 18,34339
ARC SET NUMBER LABEL	157 .		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
1	BIAS BIAS BIAS	××N	8.90265 2.68602 9.89400	.2686838E .2421999E .1591585E	58.90266 42.68602 -79.89400	13.44587 13.45064 18.58239
ARC SET NUMBER LABEL	158:		OLD VALUE	DEL SOLUTION	SOLUT	-
MITTEVEEN MITTEVEEN MITTEVEEN	BIAS BIAS BIAS	×≻N	0.36998 .489431 6.31675	0.3376643E 0.6317880E 1147153E	30.36999 -1.489431 -86.31675	13.16267 13.16708 18.39181
ARC SET NUMBER	159:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
) -	BIAS BIAS BIAS	××N	0.39812 6.73507 7.62945	0.9173813E 0.8340375E 3096659E	70.39813 16.73508 -37.62945	14.29132 14.29169 19.41866
ARC SET NUMBER	160:		OLD VALUE	DEL SOLUTION	NEW SOLUTION	ERROR ESTIMATE
	BIAS BIAS BIAS	×××	.80277 78.860 0.1071	.5505963E .1606667E .2209419E	1.80277 178.860 10.1071	13.98317 14.00281 19.20110
ARC SET NUMBER	161:		OLD VALUE	LUTI	NEW SOLUTION	R EST
YANGI-BAZAR YANGI-BAZAR YANGI-BAZAR	BIAS BIAS BIAS	××N	65.6007 1.24561 10.4694	0.336637 249223 115624	-265.6007 41.24561 -110.4694	17.51064 17.51496 21.60774
ARC SET NUMBER	162,		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
22 CC CC	BIAS BIAS BIAS	××n	2.0571 .10342 .53266	132156 142361 127525	-262.0571 52.10342 -67.53266	15.09618 15.27853 20.20544

ON NEW SOLUTION ERROR ESTIMATE	"	ON NEW SOLUTION ERROR ESTIMATE	l	ON NEW SOLUTION ERROR ESTIMATE	-114.6370 -113.3199 129.7007	2 / F
DEL SOLUTION	5603825E-05 3573177E-05 7848745E-06	DEL SOLUTION	0.2635963E-06 0.2869544E-05 4378639E-05	DEL SOLUTION	0.8762774E-06 0.2592596E-05 1259445E-05	a stastoak ac
OLD VALUE	402.1669 -208.5386 130.0634	OLD VALUE	-76.12272 -58.41269 88.47736	OLD VALUE	-114.6370 -113.3199 129.7007	OTAMIN INTO
	××N		××N		××N	<u>د</u> د
1631	BIAS BIAS BIAS	164,	BIAS BIAS BIAS	165:	BIAS BIAS BIAS	30000
'ARC SET NUMBER 163:	YELLOW-KNIFE YELLOW-KNIFE YELLOW-KNIFE	ARC SET NUMBER 164:	YUZHNO SAKH IV YUZHNO SAKH IV YUZHNO SAKH IV	ARC SET NUMBER 165:	ZAYMISHCHE III ZAYMISHCHE III ZAYMISHCHE III	145 TABLEST BOOCESSED TOTAL MIMBED OF ADCESSED FOLIALS.

GENERATING COMMON PARAMETER MATRIX STATISTICS:

-- In STATC. Input sigmas and matrix from unit 15 GREADO INPUTING RESTART DATA FROM UNIT 15

171

		-	

ERROR ESTIMATE 115.5310 265.8217 363.9327	ERROR ESTIMATE 107.9836 89.59909 132.8127	ERROR ESTIMATE 124.3621 156.7715 181.2091	ERROR ESTIMATE 112.4849 124.4462 174.8911	ERROR ESTIMATE 49.62063 40.19308 57.70879	ERROR ESTIMATE 152.0184 107.9863 91.27297
NEW SOLUTION 	NEW SOLUTION 31.28905 -83.13362 -93.24071 s arcset. this arcset.	NEW SOLUTION -165.5663 463.8978 354.1932 is arcset. this arcset.	NEW SOLUTION 279.1288 19.3051 -306.0963 is arcset. this arcset.	NEW SOLUTION 40.13663 49.20104 -24.89261 is arcset. this arcset.	NEW SOLUTION
DEL SOLUTION 0.1545430E-03 0.3501597E-01 0.1640863 than 0.30for thi	DEL SOLUTION	DEL SOLUTION	DEL SOLUTION 0.6750347E-02 3383940E-01 0.3345252E-01 than 0.30for this	DEL SOLUTION	DEL SOLUTION6115882E-011258921E-01 0.3413629E-01 r than 0.30for this
0LD VALUE 	01D VALUE 31.28190 -83.12652 -93.25276 ons are greater ations are great	0LD VALUE 	0LD VALUE 	0LD VALUE 	01D VALUE X 53.41298 Y 56.16428 Z 281.2872 tions are greater
l: BIAS X BIAS Y BIAS Z : correlati	2: BIAS X BIAS Y BIAS Z correlati	3: BIAS X BIAS Y BIAS Z correlati	BILAS BILAS BILAS COTT	IAS IAS IAS Corr	LABEL 6: LABEL BIAS > BIAS > BIAS > BIAS > CAPEC COFFGIAS > COFFGI
ARC SET NUMBER LABEL ADDIS ABABA II ADDIS ABABA II ADDIS ABABA II X- No arc/arc x- No arc-omm	ARC SET NUMBER LABEL ALERT ALERT ALERT X- NO Brc/arc x- NO Brc-com	ARC SET NUMBER LABEL ALIBAG III ALIBAG III ALIBAG III X- No arc/arc X- No arc-com	ARC SET NUMBER LABEL ALMA ATA	ARC SET NUMBER 5 LABEL ALMERIA ALMERIA BALMERIA	ARC SET NUMBER LABEL AMATSIA AMATSIA AMATSIA X- NO BIC/BIC X- NO BIC/BIC

ARC SET NUMBER LABEL	7.		010	X X	EL SOLU	NOI	OLUTI	ERROR ESTIMATE
APIA IV APIA IV APIA IV	BIAS BIAS BIAS	×≻N	57.0 -98.6 41.8	5387 19732 18782	0.121207 0.393672 0.417963	Sam	578.6599 -98.50365 42.30578	251.5876 274.7085 373.8693
Summary of ARC Co.	-ARC createtter #1	orrela ions >	tions RCUI	for arc = 0.30 ARC para	-sat			
N	BIAS mmon corr	S X releti	APIA ons a	IV G Great	BIAS er than 0.	Z 30for 4	this arcset.	
ARC SET NUMBER	<u></u>		010	<	DEL SOLUT	ION	NEM SOLUTION	ERROR ESTIMATE
1 35	WIAS WIAS WIAS Correla	X Y Z Z stions	1447	5555 3434 5920 greater	91839 27078 0.26239	125 cs.	14.65463 48.13434 -2.463296 arcset.	33, 43801 29, 70261 41, 08439
BE BE	6	1	2	VALUE	SOLUT	NOI	IN SOLUT	ERROR ESTIMATE
	BIAS BIAS BIAS COFFED	X Y Z ations relati	-172. 242. 609. ere	5598 7067 4233 prester	0.647941 0.584045 0.148990 0.30f	452 144 153	242.7073 242.7073 609.4218 arcset.	13.48463 10.58136 52.33335
ARC SET NUMBER LABEL	10.		0 T D		DEL SOLUTIO	NO.	SOLUT	ERROR ESTIMATE
ARTI ARTI ARTI ARTI ARTI ARTI ARTI ARTI	BIAS BIAS BIAS Correl	X Y Z z reliens	177 177 300 653 87	2809 6761 9839 greater re great	0.788192 0.179485 0.451707 n 0.30f than 0.	7E-02 0E-01 SE-01 5r thi	177.2888 -300.6582 654.0291 ercset.	116.3067 95.57193 155.8567
ARC SET NUMBER	i		60	VAL	DEL SOLUTIO	NO	ō	R ES
BAKER LAKE VII BAKER LAKE VII BAKER LAKE VII *- No arc/erc *- No arc/erc	BIAS BIAS Correl	K Z tions lati	136 136 116 116	4120 4120 1563 8926 greater re great	142963 0.183677 0.580649 n.0.30f	9E-01 9E-01 2E-02 or this	136.3977 -151.1399 116.8984 arcset.	79.93175 103.6490 139.6968
ARC SET NUMBER LABEL	12,		2	VALUE	1 SOL	UTION	Š	ROR E
	BIAS BIAS BIAS correl	X Y Z tions •leti	-108. 10.0 281. are	7094 8766 7937 greater re great	1 80 80 80	333E-01 367E-01 431E-01 0for this	-108.7303 10.06403 281.7810 arcset.	. 5047 . 9437 . 4964

ERROR EST	112.3366 211.0064 213.6734		ERROR ESTIMATE 134.9397 126.3862 194.5231	S4.46171 41.02965 50.60703	H ERROR ESTIMATE 83.79805 91.13441 103.7583		ON ERROR ESTIMATE	
SOLUT	19.72850 -76.54355 141.0659	this arcset.	NEW SOLUTION 	NEW SOLUTION 176.3805 198.5909 343.9666 s arcset.	NEW SOLUTION 68.69123 132.9766 -32.31911	this arcset.	NEM SOLUTI 2.361917 29.24453 -239.1322	this arcset.
DEL SOLUTION	0.2415690E-01 0.1622906E-02 2200604E-02	-set # 13: meter #2 BIAS Z er than 0.30for	DEL SOLUTION 0.1995006E-01 0.1392834 0.1392834 an 0.30for thi	DEL SOLUTION3562047E-041290678E-013732593E-03 than 0.30for this	529	c-set # 16: ameter #2 BIAS Y BIAS Z ter than 0.30for	DEL SOLUTION 0.1797638E-01 0.1318801E-01 0.2878089E-02	c-set # 17: ameter #2
OLD VALUE	.70434 .54517 1.0681	tions for arc RCUI = 0.30 ARC para	01D VALUE 680.2564 -413.4398 667.8550 ns are greater tions are greater	0LD VALUE 176.3805 198.6038 343.9670 ons are greater ations are great		elations for arc s > RCUT = 0.30 ARC param X BJORNOYA II X BJORNOYA II X BJORNOYA II intions are greate	0LD VALUE 2.343940 29.23134 -239.1351	ations for ar > RCUI = 0.30 ARC par ARC par BOROK ions are grea
13:	BIAS X BIAS Y BIAS Z	C-ARC correction eter #1	14: BIAS X BIAS Y BIAS C correlati	BIAS X BIAS Y BIAS Y BIAS Z correlati	16: BIAS Y BIAS Y BIAS Z	Correlation neter #1 neter #1 BIAS	BIAS X BIAS Y BIAS Z	f ARC-ARC correl Correlations arameter #1
ARC SET NUMBER		Summary of ARC C ARC param BARROW IV X- No arc-com	ARC SET NUMBER LABEL BELJING BELJING BELJING BELJING K- No arc/arc	ARC SET NUMBER LABEL BELSK BELSK BELSK RELSK RELSK REN arc/arc R- No arc/arc	ARC SET NUMBER LABEL BJORNOYA II BJORNOYA II	Summary of AB ARC parar BJORNOYA II BJORNOYA II X- No arc-col	ARC SET NUMBER LABEL BOROK BOROK BOROK BOROK	ARC para

ARC SET NUMBER LABEL	18:		010	VALUE	DEL	SOLUTION	NEW SOLUTION	iii ex
BOULDER BOULDER BOULDER M- No erc/erc M- No erc/erc	BIAS BIAS BIAS correla	X Y Z Z tions	68.9 34.8 111.	3494 9130 5835 greater re great	525.	188543E-02 607699E-02 612694E-01 0.30for this	68.93276 34.89690 -111.5674 arcset.	43.82099 35.96088 49.89630
ARC SET NUMBER LABEL	191		010	VALUE	DEL	SOLUTION	M SOLUTIO	ERROR ESTIMATE
BRORFELDE II BRORFELDE II BRORFELDE II M- No arc/arc M- No arc-arc	BIAS BIAS BIAS Correla	X Y Z lations rrelatio	73.0 22.1 163.	236 781 739 reater	1100	6822E-02 0515E-02 6462E-02 30for thi	73.07800 -22.15298 -163.5657 s arcset.	36.79284 36.19031 51.63269
ARC SET NUMBER LABEL	201		010	VALUE		010	M SOLUT	ROR ESTIM
	BIAS BIAS BIAS Correla	X Y Z tions elati	22.00 2.00 3.00 5.00 5.00 5.00 5.00 5.00 5.00 5	7095 3779 1350 prester	16 65 than (er than	9E-02 1E-02 8E-02 or thi	-4.098773 19.13080 -26.90657 Brcset.	34.49421 34.38863 45.08547
ARC SET NUMBER LABEL	21 1		010	VALUE	DEL	SOLUTION	SOL	ROR ESTIMAT
CAMBRIDGE BAY CAMBRIDGE BAY CAMBRIDGE BAY X- No arc/arc x- No arc-arc	BIAS BIAS Correla	X Y Z Z itions	314.	7382 5953 0986 prester	4 600	0465E-03 8107E-01 4158E-02 30for thi	59.27291 -166.5732 314.0924 Brcset.	1.60 7.72 45.9
ARC SET NUMBER LABEL	1221		A	ا ب	DEL S	SOLUTION	20	ERROR ESTIMATE
2 E	BIAS BIAS BIAS Correla	X Z tions eleti	460. 75.3 1106	2202 2462 943 grester e grest	0.1 0.1 han	1 1 1 1 1 1 1 1 1 1	-460.2343 75.38048 -1106.922 arcset. is arcset.	70.43426 103.4280 115.4122
ARC SET NUMBER LABEL	23 i		0	7	DEL S	OLUTI	SOLUT	R ES
	BIAS BIAS BIAS Correla	X Y Z itions elatio	1 000 4 E	7632 5567 5283 prester re great	0.2 0.2 7.6	0E-01 2E-01 9E-01 or thi	3.6866 3.6866 3.6899 set.	212.7201 165.4057 270.8426
ARC SET NUMBER LABEL CAPE WELLEN III	24: BIAS BIAS	× >	0LD 22.3	VALUE 1261 6797	DEL S 0.22 0.11	101UTION 192658E-01 172967E-01	NEW SOLUTION -22.28968 88.77970	ERROR ESTIMATE 159.6803 212.5051

254.4814		ERROR ESTIMATE	35,35303 30,75794 47,41021	ERROR ESTIMATE	134,5765 128,1604 172,0840	ERROR ESTIMATE	3146 314.0	ERROR ESTIMATE		ERROR ESTIMATE		
.61.80483	this arcset.	NEW SOLUTION		NEW SOLUTION	-33.39232 -186.0192 158.3994 arcset.	SOLUTIO	-126,5298 -9.392609 159.6738 s arcset. this arcset.	NEW SOLUTION	76.73802 -5.638499 -3.350515 arcset. his arcset	NEW SOLUTION	37.33102 -71.54295 11.38756	this arcset.
2832876E-02	t # 24: er #2 BIAS Z than 0.30for	SOLU	1374893E-02 1187252E-02 6162631E-02 0.30for thi	DEL SOLUTION	2682504 8019359 9486129 0.30fo	DEL SOLUTION	1000	DEL SOLUTION	808 0.256 107 than 0. er than	DEL SOLUTION	0.1558929E-02 0.5762176E-02 2190412E-01	imeter #2 imeter #2 imeter #2 ter than 0.30for
61.80766	ions for arc RCUT = 0.30 ARC para 	OLD VALUE	-66.99644 11.02956 123.2452 are greate	OLD VALUE		OLD VALUE	126.5525 9.379075 159.6557 are greate	OLD VALUE	76.74610 -5.638706 -3.349440 are greater ons are grea	OLD VALUE	7.32946 1.54871 1.40946	lations for arc-s. ARC parame ARC parame COLLEGE III
BIAS Z	f ARC-ARC correlat Correlations > arameter #1 EN III BIAS X	152	BIAS Y BIAS Y BIAS Z correlations	26 :	N BIAS X N BIAS Y N BIAS Y N BIAS Z arc/arc correlatio	27 :	BIAS X BIAS Y BIAS Z correlati	281	BIAS X BIAS Z BIAS Z: correlat:	29 1	BIAS X BIAS Y BIAS Z	f ARC-ARC correla Correlations > arameter #1 II BIAS X rcommon correlati
CAPE WELLEN III	Summary of ARC-AF Correlated ARC parameter CAPE WELLEN III	ARC SET NUMBER LABEL	CHAMBON FORETII BE CHAMBON FORETII BE CHAMBON FORETII BE X- No arc/arc common X- No arc-common		CHANGCHUN CHANGCHUN CHANGCHUN X- No arc/arc	ARC SET NUMBER LABEL	CHELYUSKIN IV CHELYUSKIN IV CHELYUSKIN IV *- No arc/arc *- No arc-arc	ARC SET NUMBER LABEL	COIMBRA B COIMBRA B COIMBRA B *- No arc/arc co	ARC SET NUMBER LABEL		Summary of AF ARC parameter COLLEGE III
							155					

ARC SET NUMBER 30:

ERROR ESTIMATE	110.8176 187.4403 184.3598	OR EST	32.05533 29.66126 37.97906	OR ES	139.8598 163.0927 258.4615			R ES	45.12296 43.40691 57.72189	ES	36.44569 31.80948 48.68285	ERROR ESTIMATE	152.8437 167.2950 94.60802	
NEW SOLUTION	-301.0501 351.0233 69.32259 Farcset.	NEW SOLUTION	303.0039 80.31669 -410.9232 arcset.	SOLUT	-131.6840 26.87234 -49.43785		this arcset.	NEW SOLUTION	-85.37232 31.04117 -270.9556 s arcset. this arcset	NEW SOLUTION	11.14544 17.39307 92.73513 arcset.	NEW SOLUTION	-317.5239 -520.4864 -2886.589	
DEL SOLUTION	3166478E 0.3758466E 0.3330503E than 0.30for er than 0.30	L SOLUTIO	‡ ;	L SOLUTION	0.3631785E-02 2298677E-01 0.1893055E-01	c-set # 32.	BIAS Z er than 0.30for	DEL SOLUTION	8804311 0.3908376 0.9419843 than 0.30fo	DEL SOLUTION	1028 1447 0.9013 than 0.3 er than	DEL SOLUTION	4563678E 0.3837546E 0.2189325E	c-set # 35:
OLD VALUE	1.0185 1.0229 1.28929 8 greater are great	A.	303.0034 80.31216 -410.9300 ns are greater tions are great	VAL	-131.6876 26.89533 -49.45678	lations for ar > RCUT = 0.30 ARC par	DIKSON V tions are gre	OLD VALUE	.36352 .04078 0.9565 e greater are great	OLD VALUE	1.14555 7.39321 2.72612 re greater s are great	OLD VALUE	. 5193 . 5248 5 . 591	slations for ar s > RCUT = 0.30 ARC par
LABEL	BIAS X BIAS Y BIAS Z c/arc correlati c-common correl		BIAS X BIAS Y BIAS Y BIAS Z Irc/arc correlatio		BIAS X BIAS Y BIAS Z	of ARC-ARC corre Correlations parameter #1	00-0	NUMBER 33: LABEL	BIAS X BIAS Y BIAS Z Marc correlati	NUMBER 34: LABEL	BIAS X BIAS Y BIAS Z correlati	NUMBER 35: LABEL	HHH	of ARC-ARC corr Correlation parameter #1
۰ -	DAVIS DAVIS DAVIS *- No ar	ARC SET NI	DEL RIO DEL RIO X No a	_	DIKSON V DIKSON V DIKSON V	Summary	DIKSON V *- No ar	ARC SET NO	DOMBAS III DOMBAS III DOMBAS III X- No arc	ARC SET N	DOURBES DOURBES W- No a	' ARC SET N	DUMONT DU DUMONT DU	Summary

DUMONT DURVILLE BIAS X DUMONT DURVILLE BIAS Y *- No arc-common correlations are greater than 0.30for this arcset.

ERROR ESTIMATE 95.54469 112.7254 155.0636		ERROR ESTIMATE 42.64407 63.69277 72.73767	ERROR ESTIMATE 46.50539 42.17246 59.85665	ERROR ESTIMATE 199.5064 183.3248 330.0670	ERROR ESTIMATE 74.76887 97.93740 141.0112	72.26907 69.02920 87.46985
NEM SOLUTION -129,6425 55,79698 -89,12320	this arcset.	NEW SOLUTION 	NEW SOLUTION -24.24013 19.62938 -89.12799 s arcset. this arcset.	NEW SOLUTION 323,3669 247,3936 -224,1457 s arcset. this arcset.	NEW SOLUTION -121.2549 -95.93721 -90.78672 is arcset. this arcset.	NEM SOLUTION 27.58034 -100.3466 170.2261
DEL SOLUTION1073155E-025633514E-025087183E-01	-set # 36: meter #2	DEL SOLUTIO 0.7029961E 1382237E 1610 0.30for er than 0.30	DEL SOLUTION4492715E-02 0.1516802E-02 0.7883136E-02 than 0.30for this	DEL SOLUTION 8201515E-01 0.1559506E-01 +-8555973E-02 than 0.30for this	DEL SOLUTION1797851E-01 0.1166736E-01 than 0.30for thi	DEL SOLUTION 0.5757411E-021054416E-019361343E-02 than 0.30for thi
0LD VALUE -129.6414 55.80261 -89.07233	elations for arc s > RCUT = 0.30 ARC para ALCHILII	0LD VALUE 90.20441 164.5332 168.1287 ons are greater ations are greater	0LD VALUE -24.23564 19.62786 -89.13587 ons are greater ations are greater	0LD VALUE 323,4489 247,3780 -224,1372 ons are greater ations are grea	0LD VALUE -121.2370 -95.94888 -50.80364 ons are greater ations are grea	0LD VALUE 27.57458 -100.3360 170.2355 tons are greater
36: BIAS X BIAS Y BIAS Z	-ARC corr relation ter #1 BIAS	37: BIAS X BIAS Y BIAS 2 correlation correls	38: BIAS X BIAS Y BIAS Y Correlati	39. BIAS X BIAS Y BIAS Y BIAS Z correlati	40: BIAS X BIAS Y BIAS Z correlati	41: BIAS X BIAS Y BIAS Z correlati
ARC SET NUMBER LABEL LABEL LABEL DUSHETI II DUSHETI II DUSHETI II	Summary of ARC. CO. ARC parame DUSHEII II	ARC SET NUMBER 37 LABEL DYMER DYMER B DYMER E A No arc/arc co	ARC SET NUMBER LABEL ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR ESKDALEMUIR K- No arc-com	ARC SET NUMBER LABEL EYREMELL EYREMELL EYREMELL X- No arc/arc	ARC SET NUMBER LABEL FORT CHURCHI II FORT CHURCHI II *- No arc-comm	ARC SET NUMBER LABEL FREDERICKSBURG FREDERICKSBURG FREDERICKSBURG FREDERICKSBURG *- No arc/arc

	ERROR ESTIMATE 32,43134 31.06430 43.10849	ERROR ESTIMALE 121.8192 226.3345 483.3051		ERROR ESTIMATE 89.92752 81.19260 111.2969	ERROR ESTIMATE 135.5089 126.6329 141.1694		ERROR ESTIMATE 73.13899 86.21645 149.8262	ERROR ESTIMATE
this arcset.	NEW SOLUTION 	NEW SOLUT -137.2351 -287.611	this arcset.	NEW SOLUTION 399.0263 -419.1163 630.3362 s arcset. this arcset.	NEM SOLUTION 86.31716 -130.4716 -229.8724	this arcset.	NEM SOLUTION 161.8567 149.9786 -34.36898 s arcset. this arcset.	NEW SOLUTION
ter than 0.30for	DEL SOLUTION6168669E-033961766E-02 0.7725832E-02 than 0.30for tha	DE	BIAS Y BIAS Z BIAS Z ter than 0.30for	DEL SOLUTION9242872E-021003278E-01 0.9718014E-03 than 0.30for this	DEL SOLUTION 0.4867766E-018280133E-01 0.4201909E-01	c-set # 45: ameter #2 N II BIAS Z ter than 0.30for	DEL SOLUTION3568466-0268707586-02 0.17434256-01 than 0.30for thi	DEL SOLUTION
elations are grea	0LD VALUE X 8.889680 X 37.83101 2 24.21379 tions are greater elations are grea	OLD VALUE -137.2170 -287.5609 -226.5283 -226.5283 ons > RCUT = 0.30	X GNANGARA X GNANGARA elations are grea	0LD VALUE 299.0355 7 -419.1062 2 630.3352 tions are greater elations are greater	01D VALUE 86.26849 -130.3888 -229.9144	s > RCUT = 0.30 ARC Par ARC Par GORNDTAYEZH	0LD VALUE X 161.8603 Y 149.9854 Z -34.38641 tions are greater elations are great	OLD VALUE
on corr	42. BIAS BIAS Correla	0 14	BIAS BIAS on corre	BIAS SBIAS SBIAS SBIAS SCOrrelation correlation	45: BIAS X BIAS Y BIAS Z	C co	IAS IAS IAS rrela corr	- -
X- No arc-comm	ARC SET NUMBER LABEL LABEL FURSTNFELDBRUCK FURSTNFELDBRUCK K- No arc-comm	ARC SET NUMBER LABEL GNANGARA GNANGARA GNANGARA AND ARC Summary of ARC CO ARC PARA	ARA ARA arc-comm	ARC SET NUMBER LABEL GODHAVN II GODHAVN II GODHAVN II *- No arc-comm	ARC SET NUMBER LABEL GORNOTAYEZHN II GORNOTAYEZHN II	Summary of ARC-AR Corre ARC parameter GORNOTAYEZHN II *- No arc-common	REAT WHALE RII REAT WHALE RII REAT WHALE RII REAT WHALE RII X- No arc/arc X- No arc/arc	AKC SEL NUMBER

38.55887 34.84059 51.18952	ERROR ESTIMATE 118.3706 296.9019 348.1996	ERROR ESTIMATE 173.5682 202.2590 219.8093	ERROR ESTIMATE			HEROR ESTIMATE 110.6144 164.1163 200.5836
12.8770 -41.87514 -88.77501 s arcset. this arcset.	NEM SOLUTION 140.9715 -72.06013 -484.3931 S arcset. this arcset.	NEW SOLUTION 380.8821 -34.48640 -89.96499 s arcset. this arcset.	NEM SOLUTION 	NEM SOLUTION -68.87828 -52.99906 55.76375 is arcset. this arcset.	NEH SOLUTION 135.8330 -707.6042 250.2727 is arcset. this arcset.	NEM SOLUTION 97.01129 -503.3927 1175.832
7858820E-02 1000336E-01 1062082E-03 than 0.30for thi	DEL SOLUTION5517019E-015102176E-01 0.299208 than 0.30for thi	DEL SOLUTION 0.5548958E-01 0.5548958E-01 0.4538971E-01 than 0.30for thi	DEL SOLUTION 4334318E-02 0.6254700E-02 5534181E-03 than 0.30for thi	DEL SOLUTION 0.2312087E-03 0.2366489E-02 0.5904518E-02 than 0.30for this	DEL SOLUTION 0.4223194E-01 0.7239249E-01 4305382E-01 than 0.30for th	DEL SOLUTION5592945E-03 0.4121732E-02 0.2084593E-01
IAS X 12.88556 IAS Y -41.86513 IAS Z -88.77490 relations are greater correlations are greater	1AS X 141.0267 1AS X 141.0267 1AS X -72.00910 1AS Z -484.6923 rrelations are greater correlations are greater	IAS X 380.8266 IAS Y -34.36655 IAS Z -90.01038 rrelations are greater correlations are greater	01 0LD VALUE DIAS X 52.18874 BIAS Y -1.463618 BIAS 2 69.76802 orrelations are greater or correlations are greater	DID VALUE OLD VALUE BIAS X -68.87851 BIAS Z 52.99669 BIAS Z 55.75784 correlations are greater on correlations are greater	DIAS X 135.7908 BIAS X 135.7908 BIAS Z 250.3157 correlations are greater	3: 0LD VALUE BIAS X 97:01185 BIAS Y ~503:3969 BIAS Z 1175:811
GROCKA GROCKA BGROCKA F- No arc/arc col *- No arc-common	GUAM GUAM GUAM GUAM SUAM SUAM SUAM SUAM SUAM SUAM SUAM S	GUANGZHOU II BE GUANGZHOU II BE GUANGZHOU II BE GUANGZHOU II BE GUANGZHOU II BE WAN OBECACOMMON	ARC SET NUMBER 50 LABEL HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK HARTEBEESTHOEK K- No arc/arc common	ARC SET NUMBER 51 LABEL LABEL HARTLAND HARTLA	ARC SET NUMBER 5: LABEL LABEL HATIZYO II HATIZYO II K- No arc/arc c X- No arc-commo	ARC SET NUMBER 5 LABEL HEISS ISLAND II HEISS ISLAND II HEISS ISLAND II

Summary of ARC-ARC correlations for arc-set # 53:

ARC parameter #1 ARC parameter #2

ARC para	meter #1		ARC	arameter #		
9 %	200	AS Y rrelat	HEISS I	AND II	this arcset.	
ARC SET NUMBER LABEL	54:		OLD VALUE	DEL SOLUTI		ERROR ESTIMATE
	BIAS	××	7.0453	3848517E	87.04491	53.63028
MEL III M- No arc/arc M- No arc-com	UP	724	-41.47115 s are great ions are gr	0.2865762E-02 er than 0.30for thi	-41.468 sarcset.	28.22898 49.59804
ARC SET NUMBER LABEL	551		OLD VALUE	DEL SOLUTIO	NEW ADDITED	
 	BIAS	×≻	5530	0.1608747E-02	24.	1 9 °
HERMANUS *- No arc/arc *- No arc-com	BIAS correl	Z ations relati	20.50680 are great	0.1414132E-01 0.1414132E-01 or than 0.30for this	20.52 arcset	86.21821 90.16983
ARC SET NUMBER LABEL	. 26 1		44.4	ā	NEW SOLUTION	FDDOD FOITMATE
HONOLULU IV	BIAS	××	2.153	2322710	-402.3859 -460.6373	157.8
rc/#r			63.63/26 are great ons are gr	424831 3.30for thi 3.0.30for	83.9997 s arcset. this arcse	31.094
ARC SET NUMBER LABEL	57 .		VAL	SEL SOLUTION	A SOLUT	¥A T
HUANCAYO HUANCAYO HUANCAYO K- Mo arc/arc K- No arc/arc	BIAS BIAS COTFEL	X Y Z Z ations	50.80476 -43.73397 -34.65863	0.1509122E-02 0.1448312E-01 8979818E-02 than 0.30for thi	50.80627 -43.71948 -34.66761	09446
UMBE	88.		סרם משרה	DEL SOLUTION	s arcset.	F441 F03
	BIAS	X Y Z letions rreleti	63.22795 11.30824 56.17699 are prest	3232417E-02 1051307E-01 0.2709259E-02 than 0.0707	11.2977 11.2977 56.1742	34.75576 36.19833 46.95057
ARC SET NUMBER	. 65		OLD VALUE	DEL SOLUTION	NEW SOL	ESTIMAT
HYDERABAD HYDERABAD HYDERABAD	BIAS BIAS BIAS	×≻N	9.9712	7341566E 4392112E	359	733
No arc-co	c correlati mmon correl	ons • tí	are gre	.30for thi	orvoll arcset. his arcse	<u>.</u>

in i	80.W	ERROR ESTIMATE	2,5814 83683 57084	2 H	113	ERROR ESTIMATE	109.9810 99.62298 94.25073	ERROR ESTIMATE	5.3816 4.0063 5.7865	ERROR ESTIMATE	9.63671 66.7361 17.8800	b 1	59.64297 74.34245 81.82385
뿔	233.5782 -355.0159 -239.2078 s arcset. this arcset.	NEW SOLUTION	94.5897 104.218 -243.4999 s arcset. this arcse	NEW SOLUTION	149.7178 -33.56012 -238.6614 s arcset. this arcset.	NEW SOLUTION	61.57138 122.9009 -225.4897 s arcset. this arcset.	NEW SOLUT	358.9082 -41.32888 -3.679675 arcset.	NEW SOLUTION	-580.6286 277.9861 -301.7210 s arcset. this arcset.	NEW SOLUTION	250 93.
DEL SOLUTION	0.8555901E-02 8872140E-02 0.2887708E-01 than 0.30for this	DEL SOLUTION	0.5240303 0.5240303 1957862 3042553 than 0.30fo	DEL SOLUTION	.1070381 .5076133 .9797443 0.30fo	DEL SOLUTION		DEL SOLUTION	tha ter	L SOL	t t	DEL SOLUTION	0.2003295E 0.6574048E 8198602E
OLD VALUE	3.5697 5.0071 9.2366 e greater are grea	OLD VALUE	94.53734 104.2377 -243.4694 ions are grea lations are g	OLD VALUE	149.6108 -33.50936 -238.5634 ions are greater	OLD VALUE	1.52056 22.9127 25.4544 re greater s are grea	OLD VALUE	58.9065 1.28724 .687319 re greater s are grea	LD VALU	X -580.6290 Y 277.9732 Z -301.7489 rtions are greater	OLD VALUE	0.22 .085 5.23
.09	BIAS BIAS BIAS correla	61,	BIAS BIAS BIAS correla	621	BIAS BIAS BIAS Correla	63.	BIAS BIAS BIAS COFFEIE	: 59	BIAS DIAS DIAS DIAS COrrelation correlations	651	BIAS BIAS BIAS Correla	199	BIAS
NUMBER LABEL	arc/arc arc-comm	NUMBER LABEL	1111	NUMBER	差につこった。 おいこう あいこう あいこう かいまん こうしゅん こうしゅん こうしゅん こうしゅん こうしゅん こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう こうしゅう しゅうしゅう しゅう	NUMBER	arc/arc	NUMBER Label	III III III Brc/arc		III III III	NC LA	PAKH PAKH
ARC SET	JAIPUR JAIPUR JAIPUR *- No *- No	ARC SET	KAKIOKA KAKIOKA KAKIOKA *- No	ARC SET	KANOYA KANOYA KANOYA *- No *- No	ARC SET	KANDZAN KANDZAN KANDZAN *- NO *- NO	ARC SET	KLYUCHI KLYUCHI KLYUCHI *- No *- No	ARC SET	KODAIKANAL KODAIKANAL KODAIKANAL X- No arg	ARC SET	* KRASNAY/ KRASNAY/ KRASNAY/

		ERROR ESTIMATE	133.2711 121.4515 219.6241	ERROR ESTIMATE	0.491 6.750 04.44	ERROR ESTIMATE	47.36618 46.60889 68.23088	ERROR ESTIMATE	2.4.4		ERROR ESTIMATE	69.5242 76.9664 14.3623	ERROR ESTIMATE
	this arcset.	NEW SOLUTION	75.88103 65.96561 295.9430 s arcset. this arcset	NEW SOLUTION	-221.1332 632.8417 -644.8126 arcset. his arcset	NEW SOLUTION	-141. 257. -31. s arcse	NEW SOLUTION	5.9004 25.2673 1.33058	this arcset.	NEW SOLUTION	252,4638 -93.81332 -121.6595 is arcset. this arcset.	NEW SOLUTION
5-set # 66:	BIAS Z than 0.30for	DEL SOLUTION	0.8360361E-02 0.5543348E-01 0.6860412E-01 than 0.30for thi	DEL SOLUTION	tha	DEL SOLUTION	100448E-01 0.7727135E-03 0.3442354E-02 than 0.30for thi	DEL SOLUTION	0.1393313 2784206 0.7753336	c-set # 70: ameter #2 .s I BIAS Z ter than 0.30for	DEL SOLUTION	0.1005485 1451199 8248848E than 0.30for ter than 0.30	DEL SOLUTION
> RCUT = 0.30	KRAS	OLD VALUE	5.87267 5.91018 95.8744 re greater s are grea		21.1221 32.8460 44.8068 re greater s are grea	OLD VALUE	1.6642 7.6813 .57719 e greater are grea	OLD VALUE	65.8864 25.2951 1.25305	s > RCUI = 0.30 ARC param ARC Param ARC Param A LUANDA BELAS ations are greate	OLD VALUE	52.363 3.6682 21.577 re gre	OLD VALUE
ARC-ARC correla Correlations > rameter #1	IRA BIAS Y mon correlation	6 7	BIAS X 6 BIAS Y 6 BIAS Z 2 correlations a	9	BIAS X BIAS Y BIAS Z c correlati	: 69	BIAS X BIAS Y BIAS Z correlatio	70:	BIAS X BIAS Y BIAS Z	CC-ARC corrections of the correction of the corr	: 11:	BIAS X BIAS Y BIAS 2 Correlation correlation	1 72:
o e	AYA P	ARC SET NUMBER LABEL	LANZHOU II LANZHOU II LANZHOU II X- No ærc/ærc X- No ærc-comm	ARC SET NUMBER LABEL	LEIRVOGUR LEIRVOGUR LEIRVOGUR X- No arc/ar	ARC SET NUMBER LABEL		ARC SET NUMBER LABEL	LUANDA BELAS I LUANDA BELAS I LUANDA BELAS I	Summary of ARC-A Corr ARC paremete LUANDA BELAS I x- No arc-common	ARC SET NUMBER LABEL	LUNPING LUNPING LUNPING K- No arc/arc K- No arc/arc	ARC SET NUMBER LABEL

36.66324 46.53449 56.37039	ERROR ESTIMATE 107.8262 119.9280 138.1703	ERROR ESTIMATE 144.8767 178.8245 412.1902		ERROR ESTIMATE 36.80378 32.65881 48.83469	ERROR ESTIMATE 72.59348 70.90202 101.6598	ERROR ESTIMATE 89.25729 160.8218 106.5443
242.8319 177.5416 167.4450 s arcset. this arcset.	NEM SOLUTION 	NEM SOLUTION 195,4939 38,15591 -216,0368	this arcset.	NEM SOLUTION 0.4521826 16.54191 191.4956 s arcset. this arcset.	NEW SOLUTION 315.2160 36.86631 -153.4586 s arcset. this arcset.	NEM SOLUTION -606.9417 -754.4946 -2015.374
5290567E-03 1549841E-01 6161692E-02 than 0.30for this	DEL SOLUTION2011601E-02385166E-01 0.4401037E-02 than 0.30for thi	DEL SOLUTION5060126E-01 0.3378908E-01 0.7283202E-01	c-set # 74:	DEL SOLUTION ,4265837E-03 -,8156637E-03 0.9385510E-02 than 0.30for this ter than 0.30for t	DEL SOLUTION 0.18732166-02 0.13694296-01 0.103694296-01 than 0.30for thi	DEL SOLUTION 0.4548161E-02 2035686E-01 0.4957221E-02 c-set # 77
242.8324 177.5571 167.4512 are greater ons are grea	0LD VALUE 125.0113 106.72049 207.7405 are greater ns are grea	0LD VALUE 195.5445 38.12213 -216.1096	Ations for ar ARC Par ARC Par MACQUARIE I MACQUARIE I	0LD VALUE 0.4526092 16.54273 191.4862 s are greater ions are greater	0LD VALUE 315.2142 36.85261 -153.4689 s are greater ions are greater	01D VALUE -606.9463 -754.4743 -2015.379
LVOV BIAS X LVOV BIAS Y LVOV BIAS Z K- No arc/arc correlations K- No arc-common correlations	ARC SET NUMBER 73: LABEL BIAS X M BOUR BOUR BIAS Z M BOUR X- No arc/arc correlations X- No arc-common correlations	ARC SET NUMBER 74: LABEL	Summary of ARC-ARC correlations ARC parameter #1	ARC SET NUMBER 75: LABEL LABEL MANHAY II MANHAY II MANHAY II BIAS Y MANHAY II BIAS Z MANHAY II *- No arc-common correlation: *- No arc-common correlation:	ARC SET NUMBER 76: LABEL MAPUTO II BIAS X MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7 MAPUTO II BIAS 7	ARC SET NUMBER 77: LABEL LABEL MARTIN VIVIES MARTIN VIVIES BIAS Y MARTIN VIVIES BIAS Z

•	_
•	-
•	_

AKC SET NUMBER	. 0/	AL	DEL SOLUTION	NEW SOLUTIO	R ES
2.7	BIAS X BIAS Y BIAS Z orrelati	.15056 9.4736 561862 • prester are pres	4669702E-01 0.1853418E-01 0.1543818E-01 0.1543618E-01 n 0.30for th	-56.19726 159.4919 5.577300 s arcset. this ercset	.6121 .3614 .5308
ARC SET NUMBER LABEL	79.		DEL SOLUTION	NEM SOLUT	نن حد
MEANDOK III MEANDOK III MEANDOK III	BIAS X BIAS Y	130.3757 35.92414 45.12247		130.3508 35.94244 45.11812	83.69717 83.69786 134.0824
ARC par	corr tion	RCUT = ARC	-set #		
MEANOOK III K- No arc-comm	BIAS on correl	X MEANOOK III ations are great	BIAS Z er then 0.30for	this arcset.	
ARC SET NUMBER	30°	OLD VALUE	SOLUTION	NEW SOLUTION	ESTIMA
MEMAMBETSU MEMAMBETSU MEMAMBETSU M- No arc/arc M- No arc-comm	BIAS X BIAS Y Correlation correl	31.342 52.285 02.603 re pre	0.4236713E-01 5436841E-01 6245946E-02 than 0.30for thi	-231.300 -231.300 -102.231 s arcset. this arcse	1.1793 .6263
ARC SET NUMBER LABEL	81.	A 4	DEL SOLUTION	5	ERROR ESTIMATE
!	BIAS X BIAS Y BIAS Z	-177.3440 156.1901 -436.2239	2739661E 1653503E 0.1718182E	-177 .3714 156 .1736 -436 .2067	110.5342 130.6825 167.4105
< 8	C-ARC corr orrelation eter #1	elations for arc s > RCUT = 0.30 ARC param	set #		
111	BIAS X BIAS Y mmon correla	MIRN MIRN tions	BIAS Y BIAS Z er than 0.30for	this arcset.	
ARC SET NUMBER LABEL	821	OLD VALUE	DEL SOLUTION	2010	OR EST
MIZUSAWA MIZUSAWA MIZUSAWA K- No Brc/Brc	BIAS X BIAS Y BIAS Z correlati	-73.80077 141.5021 -339.0224 ons are greater tha	0.5225052E-01 376373E-01 1713995E-01 n 0.30for thi	-73.74852 141.4645 -339.0395	123.0022 103.5859 96.28578

HNAYA BIAS X HNAYA BIAS Z FLV of ARC-ARC cor Correlatio	u	121 676	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
of ARC-ARC Correl	225 24X	-121.5354 -39.63754 -520.3386	5862030E-01 0.8697330E-02 1077094E-01	-121.5940 -39.62884 -520.3494	183.8597 104.8238 314.9115
KC parameter	Correla lations >	tions for RCUT = 0 ARC	rc-se J ramet		
EZHNAYA B	IIAS X	MOLODEZHNAYA ons are greate	A BIAS Z ter than 0.30for	this arcset.	
UMBER 84:	×	0LD VALUE	DEL SOLUTION	NEM SOLUT	OR EST
AY BIAS AY BIAS arc/arc correli arc-common corr	etta~o	-59.79561 128.1072 are great	0.1100896E-01 0.4389993E-02 er than 0.30for thi	-59.78460 128.1116 s arcset. this arcset.	114.5980
NUMBER 85: LABEL		OLD VALUE	DEL SOLUTION	NEW SOLUTION	OR E
ŠÍ	X Y Z Z z z z z z z z z z z z z z z z z z	-78.88012 -50.49912 -292.1547 are great	thi	-78.86509 50.35348 -292.3204 s arcset. this arcset	. 7235 . 4995 . 9679
NUMBER 86: LABEL		OLD VALUE	DEL SOLUTION	NEW SOLUTION	R EST
BIA	××× 888	8.69028 3.89242 57.1532	0.359549E-01 0.3639158E-01 0.4569870E-01	3.65425 5.92881 57.1989	222 382 894
ry of ARC-ARC correl Correlations RC parameter #1	correla ations > #1 *1 XIAS X	RCUT = 0.30 ARC paral ARC paral NAMPULA	rc-set # 86. rameter #2	nin 4 4	
NUMBER 87 1 LABEL		VAL	DEL SOLUT	NEW SOLUTION	ERROR ESTIMATE
BBIA	××× 2 ×× 12 ××	26.90153 129.2818 -25.79074	2396902E-01 0.6284581E-02 0.4403058E-02	26.87756 129.2881 -25.78634	86.41281 64.80520 85.44201
ry of ARC-ARC cor Correlatio	correla lations >	tions for RCUT = ARC	or arc-set # 87: 0.30 parameter #2		

ARC SET NUMBER 88:

LABEL		ULD VALUE	DEL SULUITOR	NCM SULUITOR	111111111111111111111111111111111111111
	BIAS X BIAS Y BIAS Z correlations on correlati	-2.438999 53.47985 -61.19361 are greater ons are grea	2268934E-02 6628889E-02 0.8476979E-02 n 0.30for thi	-2.441268 53.47322 -61.18513 arcset. his arcset	34.29699 33.84243 46.91951
ARC SET NUMBER	168	OLD VALUE	DEL SOLUTION	NEW SOLUTION	ES!
NOVO KAZALINSK B. NOVO KAZALINSK B. NOVO KAZALINSK B. *- No arc/arc co	BIAS X BIAS Y BIAS Z correlations	32.98138 -256.9371 64.45052 are greater ons are greater	0.1836417E-01 0.2960844E-01 0.3178106E-01 than 0.30for thi	32.99975 -256.9075 64.48230 s arcset. this arcset.	122.6117 105.0461 202.6436
ARC SET NUMBER LABEL	.06	OLD VALUE	DEL SOLUTION	NEM SOLUTION	ERROR ESTIMATE
, on	BIAS X BIAS Y BIAS Z c correlations a	283.7537 19.55763 191.8191 are greater	0.5185802E-02 0.9186403E-03 0.1088338E-02 n 0.30for thi	283 19. 191 arcs	S = 3
ARC SET NUMBER LABEL	91:	OLD VALUE	DEL SOLUTION	NEM SOLUTION	ERROR ESTIMATE
OTTAWA OTTAWA OTTAWA	BIAS X BIAS Y BIAS Z	3174 9752 1881			90.11793 78.73997 100.5691
Summary of ARC-Cor	ARC-ARC correl Correlations	Ations for arc. > RCUT = 0.30	c-set # 91: ameter #2		
۱۲	BIAS X	< ●	E E	this arcset.	
ARC SET NUMBER	921	OLD VALUE	DEL SOLUTION		R EST
PAMATAI II PAMATAI II PAMATAI II X- No arc/arc (X- No arc-comm	BIAS X BIAS Y BIAS Z correlati	7.7142 3.6783 .24191 e grea	0.5964824 1088735 4474343 than 0.30fo	-657.6546 -943.7872 -42.28665 s arcset. this arcset.	89.19826 97.65165 111.7200
NG LA	93,	OLD VALUE	DEL SOLUTION	= :	R EST
}	BIAS X BIAS Y BIAS Z	43.307 66.473 7.3920	0.5164330E-01 2469989E-01 2853467E-01	m vo .	213.1887 153.0660 307.8681
Summary of ARC . ARC param	ARC-ARC correls Correlations rameter #1	A RCUT = 0	arc-set # 93: .30 parameter #2		

4	this arcset.
BIAS	than 0.30tor
PARATUNKA	on correlations are greater
BIAS X	correlat
PARATUNKA	rc-commo

ERROR ESTIMATE	153.2834 128.0350 209.9318	ERROR ESTIMATE	53.49725 60.48842	ERROR ESTIMATE	164.1328 142.4388 224.6927			181,3765 253,8772 230,4086			ERROR ESTIMATE	162,1633 102,7864 280,5712
NEW SOLUTION	94.20782 109.8891 105.5367 s arcset. this arcset.		55/.24/2 265.2542 -35.32202 is arcset. this arcset.	_ ,	198.4098 115.3991 -88.77040	this arcset.	NEM SOLUTION	-67.66165 86.87497 32.00385		Z .30for this arcset.	NEW SOLUTION	-691,831- 1209,19 28,9309
DEL SOLUTION	239053122980E-01 94.20782 .8606 0.2849222E-01 109.8891 .5291 0.7608614E-02 105.5367 .greater than 0.30for this arcset.	DEL SOLUTION	37743E-02 03219E-02 44955E-02 .30for thi 0.30for	DEL SOLUTION	4542550 3522248 1214966	c-set # 96:	DEL SOLUTION	0.9025444E-01 1693860 0.1158178	for arc-set # 97: 0.30 ARC parameter #2	BIAS er then 0	DEL SOLUTION	0.2935280E-01 668939E-02 6190724E-01
OLD VALUE	BIAS X 94.23905312BIAS Y 109.8606 0.286 0.286 BIAS Z 105.5291 0.766 arc/arc correlations are greater than 0 arc-common correlations are greater than	OLD VALUE	TZI BIAS X 357.2384 0.87. TZI BIAS Y 265.2630888 TZI BIAS Z -35.3140779. arc/arc correlations are greater than arc-common correlations are greater than	OLD VALUE	44.6	ummary of ARC-ARC correlations for arc-set # Correlations > RCUT = 0.30 ARC parameter #1 ARC parameter #2 ODKAM TUNGUSKA BIAS X PODKAM TUNGUSKA BIA	OLD VALUE	-67.75190 87.04436 31.88803	ations > RCUT	PORT M		-691.8609 1209.197 28.99290
94:	BIAS Y BIAS Y BIAS Z c correlation	951	BIAS X BIAS Y BIAS C C correlation	1 96	A BIAS X A BIAS Y	of ARC-ARC correlations for Correlations > RCUI = 0 parameter #1 TUNGUSKA BIAS X PODKAM TI	176	BIAS X BIAS Y	C-ARC orrel	Y BIAS X ommon correla	R 98: L	BIAS X BIAS Y BIAS Y
ARC SET NUMBER LABEL	PATRONY PATRONY PATRONY *- No arc/arc *- No arc-com	ARC SET NUMBER LABEL	PLESHENITZI PLESHENITZI PLESHENITZI X- No arc/arc X- No arc-com	ARC SET NUMBER Label	PODKAM TUNGUSKA PODKAM TUNGUSKA PODKAM TUNGUSKA	Summary of ARC-L Corr ARC paramet	ARC SET NUMBER LABEL	PORT MORESBY PORT MORESBY PORT MORESBY	Summary of A	PORT MORESBY	* ARC SET NUMBER	PORT-ALFRED I PORT-ALFRED I PORT-ALFRED I

Summary of ARC-ARC correlations for arc-set # 98:
Correlations > RCUT = 0.30
ARC parameter #1

TITALFRED I BIAS Y BYALUE DEL SOLUTION 0.0416 0.3257718E-02 0.0416 0.3257718E-02 0.0416 0.3257718E-02 0.058332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-01 0.98332177140E-02 0.9832 0.111578E-02 0.9832 0.111578E-02 0.9832 0.111578E-01 0.98332177140E-01 0.98332177140E-01 0.98332348378E-02 0.9839 0.1796272E-01	this arcset.	DLUTION ERROR EST	50.0449 108.479 21.2229 160.530 50.9615 190.772		this arcset.	NEW SOLUTION ERROR ESTIMATE	11.16133 92.24101 -82.40416 90.79082 211.8200 123.2879 arcset. his arcset.	NEW SOLUTION ERROR ESTIMATE	66.18510 109.8443 15.82216 128.4632 -140.9026 165.9211 arcset. his arcset.	SOLUTION ERROR EST	11.21525 89.29209 94.26189 97.41353 152.1008 78.16515 arcset.	M SOLUTION ERROR ESTIMAT	84.36790 46.53666 40.76253 37.82491 -84.60572 53.06399 Brcset.	NEW SOLUTION ERROR ESTIMATE	
Correlations are actions are actions by A 221.20.98; Y 221.20.98; Y 221.20.98; Y 221.20.98; Y 221.20.98; Y 221.20.98; Y 221.20.98; Y 221.811.159; Y 221.812; A 221.813; A 22.92; A 22.9	I BIAS Y er than 0.30for	EL SOLUTIO	.3257718E-0 .1970023E-0 .2177140E-0	-set # 9	A BIAS Y than 0.30for	EL SOLUTIO	0.1912958E-02 0.1115787E-01 0.6789804E-02 than 0.30for th	EL SOLUTIO	0.6662255E-02 2615054E-01 0.2489365E-01 than 0.30for th	EL SOLUTI	1358105E-01 0.7473502E-02 0.1796272E-01 than 0.30for th	EL SOLUTI	6718332E-02 2548373E-02 2569769E-02 than 0.30for thi	EL SOLUTI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PINON OFFICE STRACK STR	PORT-ALFRED	VALU		ations for > RCUT = (PORT-Al	LD VALU	11.15942 -82,41532 211.8152 s are greate	D VALU	66.17844 15.84831 140.9275 are grea	LD VALU	11.22884 94.25441 152.0829 s are greate	LD VALU	84.37462 40.76488 -84.60415 are great	LD VALU	
	IAS X orrela			corr tion	ל		The standard		×× Zari		X Y Z Latio		Tatio		
	PORT-ALFRED	SET NUMB	PORT-AUX-FRANCA PORT-AUX-FRANCA PORT-AUX-FRANCA	par	AUX-FR	ARC SET NUMBER LABEL	>->-X	ARC SET NUMBER		ARC SET NUMBER	SAN JUAN II SAN JUAN II SAN JUAN II X- No brc/erc	ARC SET NUMBER LABEL	SAN PABLO SAN PABLO SAN PABLO SAN PABLO X- No src/src col X- No src-common	ARC SET NUMBER LABEL	!!!!!

	ERROR ESTIMATE 162.6602 151.2598 145.2582	ERROR ESTIMATE 136.4054 134.8030 198.6746	ERROR ESTIMATE 92.86112 81.24372 163.7365	ERROR ESTIMATE 68.38841 63.35735 62.94560	ERROR ESTIMATE 105.0933 74.15089 139.9399 ERROR ESTIMATE
or this arcset.	NEW SOLUTION -12.91024 -122.9058 01 243.3381 this arcset.		NEM SOLUTION	NEW SOLUTION 	NEM SOLUTION -43.96502 -18.56098 -115.6313 is arcset. this arcset.
arc-set # 104.).30 Parameter #2 BIAS Z Freater than 0.30for	DEL SOLUTION 0.1092060 0.1270825 0.1411020E- than 0.30for	DEL SOLUTION 1236686E- 0.4112160E- than 0.30for ter than 0.30f	DEL SOLUTION 3022099E-0 1846609E-0 1846609E-0 set # 107; set # 107; set # 107; set # 107; set # 107; set # 107; set # 107;	DEL SOLUTION 1700771E-02 0.1306723E-01 0.2395616E-02 than 0.30for thi	DEL SOLUTION
SANAE II	OLD VALUE X -13.01944 Y -122.7788 Z -243.3240 tions are greater elations are greater	0LD VALUE 	0LD VALUE 36.04166 0.3387576E-0 -49.22505 1ations for ar > RCUT = 0.30 ARC par SITKA III SITKA III tions are grea	0LD VALUE -203.3699 19.92873 -563.3469 ons are greater ations are grea	0LD VALUE
Paramet Paramet I	LABEL LUS: LABEL BIAS BIAS BIAS BIAS BIAS BIAS BIAS BIAS	LABEL 1001 LABEL BIAS BIAS BIAS BIAS BIC-arc correla	LABEL LABEL LABEL II BIAS X II BIAS Y II BIAS Z Y of ARC-ARC corrections Correlations Correlations III BIAS X III BIAS X arc-common correla	ABEL BI	LABEL S BIAS X S BIAS Y S BIAS Z BIAS Z BIC/arc correlation NUMBER 110;
SANAE I	HESH X	HILLONG HILLON	IITKA I IITKA I IITKA I Summa Summa Summa Sittka I Sittka Sitta I Sita		ST JOHN S ST JOHN S ST JOHN S ST JOHN S X - No Be

214.5191 190.3378 360.4501		ERROR ESTIMATE 44.71717 66.59564 80.57745	ERROR ESTIMATE 44.76601 47.80678 65.95609		ERROR ESTIMATE 183.0004 102.7660 298.5611		ERROR ESTIMATE 86.38699 84.4171 115.6107	ERROR ESTIMATE
-95.30993 -724.2253 -50.09012	this arcset.	NEW SOLUTION 8462945 -645.7826 61.39620 s arcset. this arcset.	NEM SOLUTION 81.13865 -12.14087 -106.7512	this arcset.	NEM SOLUTION -153.2332 -52.02751 -260.3561	this arcset.	NEM SOLUTION -9.814485 -38.32548 113.5198 s arcset. this arcset.	NEW SOLUTION
0.3142919E-01 1976585E-01 1881166E-01	-set # 110. meter #2 BIAS Z er than 0.30for	DEL SOLUTION3523604E-021882930E-012520624E-01 an 0.30for thi	DEL SOLUTION1159012E-011672687E-011005169E-01	c-set # 112:	DEL SOLUTION 5790715E-01 0.1072336E-02 5048176E-02	set # 113:	DEL SOLUTION3824228E-035224625E-02 0.7045996E-02 than 0.30for this	DEL SOLUTION
-95.34136 -724.2056 -50.07130	lations for arc > RCUT = 0.30 ARC Para STEKOLINIY tions are great	OLD VALUE842709 -645.7637 61.41940 ons are greater thations are greater	0LD VALUE 81.15024 -12.12415 -106.7411	RCUI = 0.30 ARC par SURLARI II	01D VALUE -153.1753 -52.02858 -260.3510	tions for arc RCUT = 0.30 ARC Para SYOWA BASE I	0LD VALUE 	OLD VALUE
BIAS X BIAS Y	lation #1 #1 #1 #1AS	BIAS X BIAS Y BIAS 2 correlati	BIAS X BIAS X BIAS Z	Correlations > Correlations > Emeter 4	BIAS X BIAS X BIAS Z	RC-ARC corresponding	BIAS X BIAS Y BIAS 7 BIAS 7 Correlat	115:
STEKOLINIY STEKOLINIY STEKOLINIY	Summary of ARC-AR ARC parameter STEKOLINIY	ARC SET NUMBER LABEL STEPANOVKA III STEPANOVKA III K- NO BTC/BTC K- NO BTC/BTC	ARC SET NUMBER LABEL SURLARI II SURLARI II	Summary of ARC-A Corr ARC paramete SURLARI II	ARC SET NUMBER LABEL SYOWA BASE II SYOWA BASE II	Summary of AR ARC param SYOWA BASE II	C SET NUM LE III ULE IIII ULE IIII NO BTC	ARC SET NUMBER LABEL

35.56297 35.70385 47.92606	ERROR ESTIMATE 163.6426 226.4732 377.3516	ERROR ESTIMATE 59.61983 175.0259 223.7737	ERKOR ESTIMATE 70.35833 66.73662 70.80784		ERROR ESTIMATE 88.90761 99.94019 114.3997	ERROR ESTIMATE 30.00725 31.23578 34.77386	ERROR ESTIMATE
22.55198 17.24511 17.24511 -52.75078 s arcset. this arcset.	NEM SOLUTION 42.31224 -231.0548 215.9251 s arcset. this arcset.	NEM SOLUTION 	NEM SOLUTION 103.0763 -289.8992 80.26959	this arcset.	NEM SOLUTION 28.00821 55.77882 35.91705 is arcset. this arcset.	NEM SOLUTION -24.09317 -69.25419 111.8552 is arcset. this arcset.	NEW SOLUTION
3725589E-02 9397646E-02 0.2952707E-02 than 0.30for thi	DEL SOLUTION 0.3109957E-01 5642278E-02 5742696E-02 than 0.30for thi	DEL SOLUTION 0.9362066E-03 0.1703928E-01 0.2629004E-01 than 0.30for this	DEL SOLUTION297252E-02 0.1180630E-015170967E-02	c-set # 118: ameter #2 ameter #2 ter than 0.30for	DEL SOLUTION 0.2131362E-01 2382770E-01 0.1227977E-01 than 0.30for this	DEL SOLUTION 6250619E-02 -1405609E-01 -6673987E-02 -than 0.30for this	DEL SOLUTION
22.55570 17.25451 -52.75373 are greater	0LD VALUE -42.34334 -231.0492 215.9309 are greater	01D VALUE 247.3372 195.7662 -20.57130 are greater ons are grea	01D VALUE 103.0793 -289.9110 80.27476	tions for ar RCUT = 0.30 ARC Par TROMSO ONS are grea	0LD VALUE 27.98690 55.80265 35.90477 s are greater ions are greater	0LD VALUE -24.08692 -69.24013 111.2619 s are greater ions are great	OLD VALUE
BIAS X BIAS Y BIAS Y SIAS Z Yarc correlations	R 116. BIAS X BIAS X BIAS Z FIC COFFEIATIONS	BIAS X BIAS Y BIAS 2 Correlation	R 118: E BIAS X BIAS Y BIAS Z	Correlations > Correlations > Correlations > Correlations > Correlations > Common correlations >	ER 119: EL BIAS X BIAS Z BIAS Z arc correlations	R 120: EL BIAS X BIAS Y BIAS Z BIAS Z arc correlation	ER 121 . EL
TIHANY II TIHANY II TIHANY II X- No arc/a X- No arc/a	ARC SET NUMBER 1 LABEL TIKSI VI TIKSI VI TIKSI VI **- No arc/arc **- No arc-com	EAI EEF	ARC SET NUMBER LABEL TROMSO TROMSO TROMSO	ARC Par TROMSO X- No arc-c	ARC SET NUMBE LABB TSUMEB TSUMEB TSUMEB TSUMEB TSUMEB X- No arc/a	ARC SET NUMBE LABE TUCSON TUCSON TUCSON TUCSON TUCSON TUCSON	ARC SET NUMBER

51.1/086 48.44984 62.84820	ERROR ESTIMATE 49.85783 49.38967 53.93898	ERROR ESTIMATE 138.3650 100.2176 232.4632	ERROR ESTIMATE 109.2534 133.6470 131.9724	ERROR ESTIMATE 96.64287 73.82834 84.26694	ERROR ESTIMATE 83.03855 110.4940 203.7721	ERROR ESTIMATE
3 3.359118 12 -74.36678 11 77.53800 11 approprie	NEM SOLUT 82.2842 6.60989 3.59678 arcset.	NEW SOLUTION 274.3582 15.78030 85.02589 11s arcset.	NEW SOLUTION 33.72951 -75.64281 -76.29677 is arcset. this arcset.	Z 1212	NEW SOLUTION -2.577743 156.9632 92.59013 is arcset.	NEM SOLUTION 84.69666
0.8569403E-03 4581549E-02 0.2272944E-01 than 0.30for this	thar	DEL SOLUTION 0.1751593E-01 0.3006205E-01 2134664E-01 than 0.30for this	DEL SOLUTION	DEL SOLUTION 3067732E- 0.1532235E- 0.3698874E- set # 125, eter #2	DEL SOLUTION	DEL SOLUTION 0.9371440E-02
3.358261 -74.36220 77.51527 ions are greater tha	0LD VALUE 82.28409 -6.611640 3.592699 ons are greater	0LD VALUE 274.3406 15.75024 85.04724 ons are greater ations are grea	0LD VALUE 33.69203 -75.69530 -76.28327 cons are greater ations are great	71.31790 13.59711 -270.3965 tions for arc RCUT = 0.30 ARC PATAIL	0LD VALUE -2.557664 156.9866 92.56982 are greater	0LD VALUE 84.68728
BIAS X BIAS Y BIAS Z c correlati	BIAS X BIAS Y BIAS Y BIAS 2 HIMON COFFE	BIAS X BIAS Y BIAS Y BIAS Z Correlati mon correl	IAS X IAS X TAS Z correl	BIAS X BIAS Y BIAS Z BIAS Z ARC-ARC correla Correlations > ameter #1	BIAS X BIAS Y BI	BIAS X
LSA II LSA II LSA II K- No arc/ar *- No arc/ar	VALENTIA VALENTIA VALENTIA VALENTIA VALENTIA VALENTIA X- NO arc/common	ANNOVSKAYA II ANNOVSKAYA II ANNOVSKAYA II *- No arc/arc *- No arc/arc	LABEL COURAS SOURAS SOURAS No arc/arc No arc-com	LABE TORIA TORIA TORIA ARC Par ICTORIA	7. 5	LABEL LABEL OYEYKOVO

55.64003 59.59899	ERROR ESTIMATE 33.56653 34.26094 44.81092	ERROR ESTIMATE 36.70187 54.13895 50.62058	ERROR ESTIMATE 37.10311 32.99248 50.64040	ERROR ESTIMATE 163.1778 161.6606 173.0028	ERROR ESTIMATE 203.8437 211.0377 307.3759		ERROR ESTIMATE 119.2453 125.8544
136.4077 -131.2295 s arcset. this arcset.	NEW SOLUTION 	NEW SOLUTION 	NEW SOLUTION 27.97307 57.40448 -68.07487 s arcset. this arcset.	NEW SOLUTION 302.6196 -143.2045 121.3947 is arcset. this arcset.	NEM SOLUTION 284,5336 -1298,078 263,2762	this arcset.	NEW SOLUTION -135.6155 -35.43055
0.5037417E-02 0.1396216E-02 than 0.30for this	DEL SOLUTION2435688E-028811193E-02 0.4804156E-02 than 0.30for this	DEL SOLUTION3511786E-023809633E-02 0.9923102E-02 than 0.30for this	DEL SOLUTION 2688878E-02 2044934E-02 0.1035890E-01 than 0.30for this	DEL SOLUTION 0.7016503E-018363967E-01 0.9536046E-01 than 0.30for thi	DEL SOLUTION6842648E-021958882E-011155619E-01	eter #2 BIAS	DEL SOLUTION 0.1199460E-01 0.3965910E-02
136.4026 -131.2309 s are greater ions are great	OLD VALUE 68.31824 22.36535 17.81066 ons are greater t	01D VALUE 60.16821 107.1220 -62.05606 s are greater ions are greater	01D VALUE 27.97576 57.40652 -68.08523 ns are greater tions are great	01D VALUE 302.5495 -143.12094 121.2994 ns are greater tions are great	0LD VALUE 284.5404 -1298.059 263.2878	ARC PACT S PACT PACT PACT PACT PACT PACT PACT PACT	01D VALUE -135,6275 -35,43451
BIAS Y BIAS Z Brc correlations	BIAS X BIAS Y BIAS Z Correlati	BIAS X BIAS Y BIAS 2 c correlation	BER 130: BER 130: BIAS X BIAS Y BIAS Z Arc correlatio	BIAS X BIAS Y BIAS 2 correlati		Anchelations arameter #1 I blas	R 133. I BIAS X I BIAS Y
VOYEYKOVO VOYEYKOVO *- No arc/arc *- No arc-com	ARC SET NUMBER LABEL MIEN KOBENZL MIEN KOBENZL MIEN KOBENZL X- NO arc/arc X- NO arc/arc	ARC SET NUMBER 1 LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL LABEL RABEL R	ARC SET NUMBER LABEL MITTEVEEN MITTEVEEN MITTEVEEN X- NO STC-COM	ARC SET NUMBER 1 LABEL MUHAN WUHAN WUHAN K-NO BTC/BTC K-NO BTC/COMP	SET NUMBER LIAN	ARC Part YAKUTSK II	ARC SET NUMBE LABE YANGI-BAZAR I

193.4215	ERROR ESTIMATE 78.78675 96.91099 172.8751	ERROR ESTIMATE 93.80702 89.86713 123.4631	
-167.2869 is arcset. this arcset.	NEW SOLUTION 386.7060 205.4275 330.433 48.8 arcset. this arcset.	NEM SOLUTION -65.31492 -85.70077 360.0297	this arcset.
YANGI-BAZAR II BIAS Z -167.3339 0.4702968E-01 -167.2869 N- No arc/arc correlations are greater than 0.30for this arcset.	CC SET NUMBER 134. LABEL LABEL LABEL CLD VALUE DEL SOLUTION NEW SOLUTION	DEL SOLUTION 0.2109489E-01 0.2552626E-01 0.1543931E-01	Summary of ARC-ARC correlations for arc-set # 135: Correlations > RCUT = 0.30 ARC parameter #2 ARC parameter #2 ZAYMISHCHE III BIAS Y ZAYMISHCHE III BIAS Z ** No arc-common correlations are greater than 0.30for this arcset.
-167.3339 ons are greater ations are great	01D VALUE 386.7190 -205.4513 530.6541 ons are greater ations are great	01D VALUE -65.3561 -85.72630 360.0143	Summary of ARC-ARC correlations for arc-set # 135: Correlations > RCUT = 0.30 ARC parameter #2 ZAYMISHCHE III BIAS Y ZAYMISHCHE III BIAS Z ** No arc-common correlations are greater than 0.3
BIAS Z correlation	BIAS X BIAS Y BIAS Z COFFELBÉTI	BIAS X BIAS Y BIAS Y	C-ARC corrections orrelations eter #1 eter #1 I BIAS '
YANGI-BAZAR II M- No arc/arc M- No arc-com	ARC SET NUMBER 134- LABEL YELLOM-KNIFE BIT YELLOM-KNIFE BIT YELLOM-KNIFE BIT YELLOM-KNIFE BIT YELLOM-KNIFE BIT YELLOM-KNIFE BIT X- NO BIC/BIC COPT	ARC SET NUMBER 135. LABEL	Summary of ARC-ARC co Correlati ARC parameter 01 ZAYMISHCHE III BIAN

--LAST ARC-SET PROCESSED. TOTAL NUMBER OF ARC-SETS EQUALS: 135

FIGURE CAPTIONS

- Figures 1-10: Distribution of observatories for specified years.
- Figures 11-16: Distribution of Project Magnet data.
- Figures 17-24: Distributions of marine magnetic data.
- Figures 25-32: Distributions of land surveys.
- Figure 33: The variation of spherical harmonic coefficients with time from the various GSFC(5/89) models and from the IGRF85 model. Also shown are the $\pm 1\sigma$ lines for GSFC(5/89-4).
- a) g_1^0 ; b) g_1^1 and h_1^1 ; c) g_2^0 ; d) g_2^1 and h_2^1 ; e) g_2^2 and h_2^2 ;
- f) g_3^{0} ; g) g_3^{1} and h_3^{1} ; h) g_3^{2} and h_3^{2} ; i) g_3^{3} and h_3^{3} .
- Figure 34: The variation of spherical harmonic coefficients relative to that of the GSFC(5/89-4) model with time from the various GSFC(5/89) models and from the IGRF85 model. Also shown are the \pm 1 σ lines for GSFC(5/89-4).
- a) g_1^0 ; b) g_1^1 and h_1^1 ; c) g_2^0 ; d) g_2^1 and h_2^1 ; e) g_2^2 and h_2^2 ; f) g_3^0 ; g) g_3^1 and h_3^1 ; h) g_3^2 and h_3^2 ; i) g_3^3 and h_3^3 .
- Figure 35: Contours of magnetic field components computed from the GSFC(5/89-4) model at the Earth's surface at 1989.0.
- a) D in degrees; b) I in degrees; c) H, nT; d) X, nT
- e) Y, nT; f) Z, nT; g) B, nT.
- Figure 36: Contours of estimated 1 σ error in magnetic field components computed from the GSFC(5/89-4) model at the Earth's surface at 1989.0.
- a) D in degrees; b) I in degrees; c) H, nT; d) X, nT
- e) Y, nT; f) Z, nT; g) B, nT.
- Figure 37: Contours of the secular variation of magnetic field components computed from the GSFC(5/89-4) model at the Earth's surface at 1989.0.
- a) D in degrees; b) I in degrees; c) A, nT; d) X, nT
- e) T, nT; f) Z, nT; g) B, nT.
- Figure 38: Contours of estimated 1 σ error in the secular variation of magnetic field components computed from the GSFC(5/89-4) model at the Earth's surface at 1989.0.
- a) D in degrees; b) I in degrees; c) A, nT; d) X, nT
- e) T, nT; f) Z, nT; g) B, nT.

Figure 39: Plots of $R_n = (n+1) \sum_{m=0}^{\infty} [(g_n^m)^2 + (h_n^m)^2]$ as a function of

degree (n) for GSFC(5/89-4) and GSFC(5/89-5).

 R_{n} is the mean square value over the Earth's surface of the magnetic field intensity produced by harmonics of the nth degree.

Figure 40: Plots of R_n for GSFC(5/89/-4) and MGST(10/81).

Figure 41: Statistics of observatory and survey data versus the GSFC(4/89-x) models and the GSFC(5/89-4) model as a function of year. Units are nT.

- a) f): Observatory data.
- a) Mean X deviation; b) Mean Y deviation; c) Mean z deviation.
- d) σ_x ; e) σ_y ; f) σ_z .
- g) n) Survey data.
- g) Mean B deviation; h) Mean X deviation; i) Mean Y deviation;
- j) Mean 2 deviation; k) σ_B ; l) σ_X ; m) σ_Y ; n) σ_Z .

Figure 42: Residuals in Z from 1985 Project Magnet survey near southern South America and Antarctica. Residuals are given as numbers, in nT, at the location where the data point was acquired.

Figure 43: The variation of spherical harmonic coefficients with time from the various GSFC(4/89) models and from the IGRF85 model. Also shown are the \pm 1 σ lines for GSFC(4/89-4).

- a) g_1^0 ; b) g_1^1 and h_1^1 ; c) g_2^0 ; d) g_2^1 and h_2^1 ; e) g_2^2 and h_2^2 ;
- f) g_3^0 ; g) g_3^1 and h_3^1 ; h) g_3^2 and h_3^2 ; i) g_3^3 and h_3^3 .

Figure 44: The variation of spherical harmonic coefficients with time from the various GSFC(4/89) models and from the GSFC (5/89-4) model. a) g_1^0 ; b) g_1^1 and h_1^1 ; c) g_2^0 ; d) g_2^1 and h_2^1 ; e) g_2^2 and h_2^2 ;

f) g_3^0 ; g) g_3^1 and h_3^1 ; h) g_3^2 and h_3^2 ; i) g_3^3 and h_3^3 .

Figure 45: Plot of R_n versus n for the GSFC(4/89-x) models and for GSFC(5/89-4).

60 09--60 30 90

OBSERVATORY 1980

OBSERVATORY 1982

201

0 60 OBSERVATORY 1984 -60

203

OBSERVATORY 1985

204

0 OBSERVATORY 1986 09-

205

5/89-4 -... (SIGMA ----

5/89-2 --- 5/89-3 ---

5/89-1 ----

5/89-1 ---- 5/89-2 --- 5/89-3 --- 5/89-4 ---- (SIGMA -- --) 5/89-5 ---

5/89-4 ---- (SIGMA -- --) 5/89-3 -..-5/89-2 ----IGRF85 ----

GSFC 5/89 & IGRF85

2/89-5

5/89-4 ---- (SIGMA -- ---)

5/89-1 ---- 5/89-2 --- 5/89-3 ----

5/89-4 ---- (SIGMA --

5/89-3 -..-

5/89-1 ----

IGRF85 ____

237

GSFC 5/89 & IGRF85

5/89-4 ---- (SIGMA ----

5/89-3 -..-

IGRF85 ---- 5/89-1 ---- 5/89-2 ----

5/89-1 ---- 5/89-2 --- 5/89-3 -..- 5/89-4 -..- (SIGMA -- --)

5/89-1 ---- 5/89-2 --- 5/89-3 ---- 5/89-4 ---- (SIGMA ----)

243

S/89-1 ---- 5/89-2 ---- 5/89-3 ---- 5/89-4 ---- (SIGMA -----)

5/89-4 -...- (SIGMA ---

5/89-2 --- 5/89-3 ----

IGRF85 ----

245

5/89-1 ---- 5/89-2 --- 5/89-3 ---- 5/89-4 ---- (SIGMA --

5/89-4 -... (SIGMA ---

GSFC 5/89 - 5/89-4

DD (MIN/YEAR)

Ġ, II D R = 6371T = 1989E = 1980-30 60

OD ERROR (MIN/YEAR)

270

60 100 140 180 # || E=1980 T=1989 R=6371 -100 - 60-99 <u>Po</u>--60 -30 00 30

DI ERROR (MIN/YEAR)

60 100 140 180 II D R = 6371T = 1989E = 1980-60 30

DX ERROR (NT/YEAR

d

e

f

SIGMA Z for Observatory Data

4/89-4 - ... (SIGMA ---

4/89-2 --- 4/89-3 ----

4/89-4 - ... (SIGMA --

4/89-1 ---- 4/89-2 --- 4/89-3 ---- 4/89-4 ---- (SIGMR ---IGRF85 ---

4/89-1 ---- 4/89-2 --- 4/89-3 ---- 4/89-4 ---- (SIGMA ---

4/89-4 -... (SIGMA --IGRF85 ----

4/89-1 ---- 4/89-2 --- 4/89-3 ---- 4/89-4 ---- (SIGMA ---

4/89-3 --- 4/89-4 ----

5/89-4 -...-

4/89-1 ---- 4/89-2 ---- 4/89-3 --- 4/89-4

4/89-1 ---- 4/89-2 ---- 4/89-3 ---- 4/89-4

4/89-2 ---- 4/89-3 --- 4/89-4 ---- 5/89-4 ----

5/89-4 ----4/89-2 ---- 4/89-3 ---- 4/89-4 ----

		•	
			•

National Aeronautics and Space Administration	Report Documentation Pa	age	
1. Report No.			
	2. Government Accession No.	3. Recipient's	Catalog No.
NASA TM-104541			-
4. Title and Subtitle			 -
Geomagnetic Model I	nvestigations for 1980-1989:	5. Report Date	
A Model for Strateg:	ic Defense Initiative Particle	Annil	001
		April 1	
Types and Observator	ry Bias Solutions	o. renoming	Organization Code
7. Author(s)		921	
		8. Performing (Organization Report No.
R.A. Langel, T.J. Sa	baka, and R.T. Baldwin	1	
	ower adidwin	91E 0168	
		10. Work Unit N	о.
9. Performing Organization Name a	nd Address		
		11.0	
Goddard Space Flight Greenbelt, Maryland	Center	11. Contract or C	irant No.
/ Haryrand	207/1		
2. Sponsoring Agency Name and A	deman	13. Type of Reno	rt and Period Covered
		7,2 5, 118 p 0	and Leuod Covered
National Aeronautics	and Space Administration	Technica	l Memorandum
Washington, D.C. 205	46-0001	14. Sponsoring A	gency Code
R.A. Langel: NASA/GS T.J. Sabaka and R.T.	FC, Greenbelt, Maryland, 20771. Baldwin: ST Systems Corporation,		
Abstract Two suites o	of geomagnetic field models were ge	enerated at t	he request of
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were geomatory concerning Strategic Defeas a progression of five models inc	enerated at t	he request of ve (SDI)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were geomatory concerning Strategic Defeas a progression of five models incertain five batches as a priori information	enerated at tense Initiati	he request of ve (SDI) AGSAT data and
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were geomagnetic field models were geomagnetory concerning Strategic Defense a progression of five models incompation of the progression	enerated at tense Initiaticorporating M	he request of ve (SDI) AGSAT data and sequence is:
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defe s a progression of five models inc f batches as a priori information. y data, post-1980 land survey and , a special White Sands (NM) area	enerated at tense Initiaticorporating M. The batch selected aero	he request of ve (SDI) AGSAT data and sequence is: Domagnetic and
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defe s a progression of five models inc f batches as a priori information. y data, post-1980 land survey and , a special White Sands (NM) area ost-1980 marine survey data, and f	enerated at tense Initiati Corporating M. The batch selected aero	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the second second language of the second second as sequence of the second second marine survey data ith some additional pends are of 13th and order 10 in the second se	of geomagnetic field models were geomagnetic field models were geomagnetic field models were geomagnetory concerning Strategic Defeats a progression of five models incompation of batches as a priori information y data, post-1980 land survey and a special White Sands (NM) area post-1980 marine survey data, and for the degree and order in their main	enerated at tense Initiaticorporating M. The batch selected aerosurvey by Profinally DE-2 selected to the sele	he request of ve (SDI) AGSAT data and sequence is: Domagnetic and Dject Magnet satellite data.
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the second second language of the second second second marine survey data ith some additional personal second s	of geomagnetic field models were geometric field models were geometric field models were geometric concerning Strategic Defense a progression of five models incompation of batches as a priori information. Y data, post-1980 land survey and a special White Sands (NM) area cost-1980 marine survey data, and find the degree and order in their main first derivative temporal terms.	enerated at tense Initiaticorporating M. The batch selected aerosurvey by Profinally DE-2 selected terms,	he request of ve (SDI) AGSAT data and sequence is: Domagnetic and Dject Magnet satellite data. and degree
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were geometric field models were geometric field models were geometric concerning Strategic Defense a progression of five models incompation of batches as a priori information. Yes data, post-1980 land survey and yes a special White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Solely upon post-1983.5 observatory	enerated at tense Initiaticorporating M. The batch selected aerosurvey by Profinally DE-2 sfield terms, The second survey and survey servey servey.	he request of ve (SDI) AGSAT data and sequence is: Domagnetic and Dject Magnet satellite data. and degree
Abstract Two suites of the suite of the suit	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Y data, post-1980 land survey and a special White Sands (NM) area cost-1980 marine survey data, and fith degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series	enerated at tense Initiaticorporating M. The batch selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor secon	he request of ve (SDI) AGSAT data and sequence is: comagnetic and oject Magnet satellite data. and degree site consists ata. They are eries.
Abstract Two suites of the comprehensive error at the comprehensive error a	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Y data, post-1980 land survey and A special White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series incated core and crustal fields.	enerated at tense Initiaticorporating M. The batch selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor ses, which accord	he request of ve (SDI) AGSAT data and sequence is: DMAGRAT data and oject Magnet satellite data. and degree site consists ata. They are eries. unted for error
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were geomoratory concerning Strategic Defense a progression of five models incompact of batches as a priori information. Yes data, post-1980 land survey and yes a special White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Only upon post-1983.5 observatory in main field and 8 in a first-degree and crustal fields, and ds. Comparison of the power spect	enerated at tense Initiaticorporating Medical Selected aerosurvey by Profinally DE-2 selected terms, The second survey degree Taylor selected accord the neglecterum of the Medical Selected according to the second survey degree Taylor selected to the selecterum of the Medical Selected according to the selected according to the selected terms of the Medical Selected according to the selected according to the selected terms of the selected according to the se	he request of ve (SDI) AGSAT data and sequence is: Domagnetic and oject Magnet satellite data. and degree site consists ata. They are eries. unted for error ted Sq and
Abstract Two suites of the control o	of geomagnetic field models were geomoratory concerning Strategic Defense a progression of five models incompared to batches as a priori information. Yellow data, post-1980 land survey and yellow as a precial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Solely upon post-1983.5 observatory in main field and 8 in a first-degree and crustal fields, and ds. Comparison of the power spects a series shows good agreement.	enerated at tense Initiaticorporating Market Selected aeros survey by Profinally DE-2 sfield terms, The second survey degree Taylor selected accord the neglectrum of the Market Server	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS. T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were generatory concerning Strategic Defens a progression of five models incompared to batches as a priori information. Yes data, post-1980 land survey and yes a special White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-degraday in main field and 8 in a first-degraday was applied to both series incated core and crustal fields, and ds. Comparison of the power spects a series shows good agreement. Fur a of the two series reveals the mathematical series and the series and the two series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series as a series and the series reveals the mathematical series are series as a series are series and the series are series as a series are series and the series are series as a series and the series are series as a series are series as a series are series as a series are series are series and the series are series are series as a series are series as a series are series	enerated at tense Initiaticorporating M. The batch selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor selected aero and survey degree Taylor selected the neglectrum of the Murther, a completed for additional selected and survey degreed for additional selected selected and survey degreed for additional selected selecte	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS. T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were generatory concerning Strategic Defens a progression of five models incompared to batches as a priori information. Yes data, post-1980 land survey and yes a special White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-degraday in main field and 8 in a first-degraday was applied to both series incated core and crustal fields, and ds. Comparison of the power spects a series shows good agreement. Fur a of the two series reveals the mathematical series and the series and the two series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series and the series reveals the mathematical series are series as a series and the series reveals the mathematical series are series as a series are series and the series are series as a series are series and the series are series as a series and the series are series as a series are series as a series are series as a series are series are series and the series are series are series as a series are series as a series are series	enerated at tense Initiaticorporating M. The batch selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor selected aero and survey degree Taylor selected the neglectrum of the Murther, a completed for additional selected and survey degreed for additional selected selected and survey degreed for additional selected selecte	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go aboratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Ye data, post-1980 land survey and ye aspecial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-degrated core and crustal fields, and so series was applied to both series incated core and crustal fields, and series series shows good agreement. Further the two series reveals the mablish the baseline or static field on negate the effects of signal alignatic static fields.	enerated at tense Initiaticorporating M. The batch selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor selected aero and survey degree Taylor selected the neglectrum of the Murther, a completed for additional selected and survey degreed for additional selected selected and survey degreed for additional selected selecte	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Year data, post-1980 land survey and year aspecial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series incated core and crustal fields, and series shows good agreement. Further as a series shows good agreement. Further and the two series reveals the matches the baseline or static field and a signal alignment of the effects of signal alignments.	enerated at tense Initiaticorporating Management of the medical survey by Profinally DE-2 stield terms, The second survey degree Taylor so so, which account the neglectrum of the Marther, a complete do, and the neglectrum of the medical survey described for additional survey described	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Year data, post-1980 land survey and year aspecial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series incated core and crustal fields, and series shows good agreement. Further as a series shows good agreement. Further and the two series reveals the matches the baseline or static field and a signal alignment of the effects of signal alignments.	enerated at tense Initiaticorporating Management of the batch is selected aero survey by Profinally DE-2 sfield terms, The second survey degree Taylor selections, which account the neglectrum of the Marther, a completed for additional initial account of the Marther, a completed for additional initial initial account in the marther and initial initi	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Year data, post-1980 land survey and year aspecial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series incated core and crustal fields, and series shows good agreement. Further as a series shows good agreement. Further and the two series reveals the matches the baseline or static field and a signal alignment of the effects of signal alignments.	enerated at tense Initiaticorporating Management of the medical survey by Profinally DE-2 stield terms, The second survey degree Taylor so so, which account the neglectrum of the Marther, a complete do, and the neglectrum of the medical survey described for additional survey described	he request of ve (SDI) AGSAT data and sequence is: Dmagnetic and Dject Magnet data. and degree dite consists data. They are eries. unted for error ted Sq and GST (10/81)
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go boratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Year data, post-1980 land survey and year aspecial White Sands (NM) area cost-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Olely upon post-1983.5 observatory in main field and 8 in a first-decimalysis was applied to both series incated core and crustal fields, and series shows good agreement. Further as a series shows good agreement. Further and the two series reveals the matches the baseline or static field and a signal alignment of the effects of signal alignments.	enerated at tense Initiaticorporating Management of the March selected aeros field terms, and survey degree Taylor selected account the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional asing.	he request of ve (SDI) AGSAT data and sequence is: comagnetic and oject Magnet satellite data. and degree site consists ata. They are eries. unted for error ted Sq and GST (10/81) parison tional data seed for ade-
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go aboratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Yellow data, post-1980 land survey and yellow a special White Sands (NM) area post-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Solely upon post-1983.5 observatory in main field and 8 in a first-degraded and 1 in a first-degraded core and crustal fields, and sold series shows good agreement. For a series shows good agreement. For a of the two series reveals the mablish the baseline or static field to negate the effects of signal alignments. Sold services were seried to the series of signal alignments. Signal alignments with the series of signal alignments of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments.	enerated at tense Initiaticorporating Management of the March selected aeros field terms, and survey of gree Taylor selected account the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a complete for additional and the neglectrum of the Marcher and the Neglectrum of the Marcher and the Neglectrum of the Marcher and the Neglectrum of the Marcher and the Neglectrum of the Neglectrum of the Neglectrum of the Neglectrum of the Neglectrum of the Neglectrum of the Neglectrum of the Neglectrum of the	he request of ve (SDI) AGSAT data and sequence is: comagnetic and oject Magnet satellite data. and degree site consists ata. They are eries. unted for error ted Sq and GST (10/81) parison tional data sed for ade-
R.A. Langel: NASA/GS T.J. Sabaka and R.T. Abstract Two suites of the control of	of geomagnetic field models were go aboratory concerning Strategic Defeats a progression of five models incompact of batches as a priori information. Yellow data, post-1980 land survey and yellow a special White Sands (NM) area post-1980 marine survey data, and for the degree and order in their main first derivative temporal terms. Solely upon post-1983.5 observatory in main field and 8 in a first-degraded and 1 in a first-degraded core and crustal fields, and sold series shows good agreement. For a series shows good agreement. For a of the two series reveals the mablish the baseline or static field to negate the effects of signal alignments. Sold services were seried to the series of signal alignments. Signal alignments with the series of signal alignments of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments. Signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments with the series of signal alignments.	enerated at tense Initiaticorporating Management of the March selected aeros field terms, and survey degree Taylor selected account the neglectrum of the Marcher, a completed for additional and the neglectrum of the Marcher, a completed for additional asing.	he request of ve (SDI) AGSAT data and sequence is: comagnetic and oject Magnet satellite data. and degree site consists ata. They are eries. unted for error ted Sq and GST (10/81) parison tional data seed for ade-

1	

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

POSTMASTER

If Undeliverable (Section 158 Postal Manual) Do Not Return