Terbit online pada laman web jurnal: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 5 No. 4 (2021) 705 - 712 ISSN Media Elektronik: 2580-0760

Deteksi Masker Wajah Menggunakan Metode Adjacent Evaluation Local Binary Patterns

Randy Cahya Wihandika Jurusan Teknik Informatika, Fakultas Ilmu Komputer, Universitas Brawijaya rendicahya@ub.ac.id

Abstract

The COVID-19 pandemic is still ongoing until 2021 and is likely to continue until an uncertain time. This arises because the spread of the SARS-CoV-2 virus also continued to occur in the community. Of the five points in 5M that has been initiated by the government, the focus of this study is the use of face masks. In this study, an image-based automatic mask detection method using a classification approach is proposed. This method can be used in automated systems to increase public discipline in wearing masks to suppress the spread of the SARS-CoV-2 virus. The classes used in the classification are "with mask" and "without mask". The adjacent evaluation local binary patterns (AELBP) method, which is an extension of the local binary patterns (LBP) method, is used to extract the texture features of each image. Tests were carried out on 2,172 facial images of various sizes, facial accessories, and facial expressions. The test results using the AELBP method show that the accuracy and F-measure are 98.39% and 98.08%, respectively. This result is better than other methods which are also evaluated. In addition, testing of the AELBP method execution time shows that this method is feasible to use on real systems.

Keywords: classification, COVID-19, face mask

Abstrak

Pandemi COVID-19 masih berlangsung hingga tahun 2021 dan kemungkinan masih akan terus berlangsung hingga waktu yang belum bisa dipastikan. Ini terjadi karena penyebaran virus SARS-CoV-2 juga masih terus terjadi di tengah-tengah masyarakat. Gerakan 5M yang digagas oleh pemerintah masih banyak dilanggar oleh masyarakat di berbagai tempat. Dari lima poin pada 5M, yang menjadi fokus pada penelitian ini adalah penggunaan masker wajah. Pada penelitian ini, diusulkan metode deteksi masker secara otomatis berbasis citra menggunakan pendekatan klasifikasi. Metode ini dapat digunakan pada sistem otomatis untuk meningkatkan kedisiplinan masyarakat dalam mengenakan masker untuk menekan penyebaran virus SARS-CoV-2. Kelas yang digunakan pada klasifikasi adalah "dengan masker" dan "tanpa masker". Ciri atau feature yang digunakan adalah tekstur dari setiap wajah. Metode adjacent evaluation local binary patterns (AELBP) yang merupakan pengembangan dari metode local binary patterns (LBP) digunakan untuk mengekstraksi ciri tekstur dari setiap citra. Pengujian dilakukan terhadap 2.172 citra wajah dengan berbagai ukuran, aksesori wajah, dan ekspresi wajah. Pengujian juga dilakukan menggunakan beberapa metode ekstraksi tekstur yang lain sebagai pembanding. Hasil pengujian menunjukkan akurasi yang didapatkan menggunakan metode AELBP sebesar 98,30% dan F-measure sebesar 98,08%. Hasil ini lebih baik daripada metode-metode lain yang juga diuji. Pengujian terhadap waktu eksekusi metode AELBP menunjukkan bahwa proses training dilakukan dalam 0,167 detik dan testing dilakukan dalam 0,016 detik. Hasil ini menunjukkan bahwa metode ini feasible untuk digunakan pada sistem yang nyata.

Kata kunci: : klasifikasi, COVID-19, masker wajah

Pendahuluan 1

Virus SARS-CoV-2 telah mengakibatkan pandemi di seluruh dunia. Virus SARS-CoV-2 mengakibatkan penyakit yang disebut dengan COVID-19. Gejala yang umum terjadi adalah demam, batuk, kelelahan, dan sesak Penyebaran awal virus ini ditemukan di Kota Wuhan,

dapat mengakibatkan pneumonia, pernapasan akut, gagal ginjal, dan kematian. Gejala pada tahap lanjut mirip dengan gejala yang disebabkan oleh SARS dan MERS [1], [2].

napas. Virus ini memiliki masa inkubasi yang berbeda- Provinsi Hubei, China, pada Desember 2019. beda. Rata-rata masa inkubasinya adalah 5-6 hari dan Penyebaran virus ini kemudian terjadi dengan sangat dapat mencapai 14 hari. Pada kasus yang parah, COVID- cepat ke seluruh dunia. Di Indonesia, virus ini pertama

Diterima Redaksi: 20-04-2021 | Selesai Revisi: 11-07-2021 | Diterbitkan Online: 20-08-2021

pendidikan, hingga turisme.

Virus SARS-CoV-2 dapat menyebar dengan mudah melalui droplet yang keluar dari mulut atau hidung terjadi. Penelitian telah menunjukkan bahwa partikel dengan sumber daya yang terbatas. yang mengandung virus SARS-CoV-2 dapat terbawa udara sejauh beberapa meter dari seorang yang bersin atau batuk. Partikel-partikel tersebut memiliki ukuran vang beragam. Partikel yang berukuran besar akan iatuh pada suatu benda, sedangkan partikel yang berukuran kecil akan dapat bertahan di udara dalam waktu yang lebih lama dan jarak yang lebih jauh dengan tetap menyimpan virus yang aktif [4].

pemakai masker [5].

Di tempat-tempat umum, normalnya terdapat petugas yang memeriksa apakah orang yang masuk ke tempat tersebut mengenakan masker atau tidak. Jika tidak, maka Banyak penelitian lain pada bidang analisis wajah secara otomatis oleh suatu alat berbasis komputer. Jika binary terdeteksi ada seseorang yang ingin masuk ke suatu mengombinasikan pemantauan secara visual menggunakan kamera.

Maka, deteksi masker wajah muncul sebagai suatu topik baru pada bidang *image processing* dan *computer vision*. Ini menjadi tantangan tersendiri karena model, warna, dan motif masker yang digunakan oleh masyarakat bermacam-macam. Selain itu, penggunaan aksesori Maka, informasi tekstur juga dapat digunakan pada seperti topi dan kacamata juga dapat mempersulit proses kasus deteksi masker wajah karena tekstur wajah yang deteksi.

Suatu metode deteksi masker dapat digunakan pada citra diam, video, maupun secara real time. Sistem pendeteksi

kali menyebar pada 2 Maret 2020 dan pada 26 Juli 2020, masker secara otomatis kemudian dapat digunakan di penyebaran virus ini telah mencapai 90.000 orang [3]. berbagai tempat umum. Misalnya, gerbang bandara Pandemi ini telah berdampak pada semua sektor, baik dapat memberikan peringatan secara otomatis jika sektor formal, maupun informal, mulai dari ekonomi, terdeteksi ada seseorang yang masuk tanpa mengenakan masker, dan suatu tempat umum dapat melakukan pengukuran skor kepatuhan masyarakat terhadap penggunaan masker.

seseorang yang terinfeksi virus ini karena bersin atau Banyak penelitian telah dilakukan untuk mendeteksi batuk. Droplet tersebut dapat dihirup langsung oleh penggunaan masker wajah menggunakan teknik dan seseorang yang sehat dan orang yang sehat tersebut akan algoritma yang beragam. Banyak pula yang terinfeksi virus ini. Droplet juga dapat jatuh pada objek menggabungkan beberapa arsitektur atau teknik untuk atau permukaan yang kemudian disentuh oleh seseorang mendapatkan hasil yang terbaik, baik dari sisi akurasi, yang sehat. Lalu jika orang tersebut menyentuh mata, maupun waktu komputasi agar dapat berjalan secara real mulut, atau hidungnya, maka penularan juga akan time dan dapat diimplementasikan pada perangkat

Penelitian [6] mengombinasikan single shot multibox detector untuk melakukan deteksi wajah dan MobileNetV2 untuk mengklasifikasi tiap wajah. Akurasi yang dihasilkan adalah 92,6% dan F1 score 93%. Penggunaan MobileNetV2, yang memang dirancang untuk diimplementasikan pada perangkat mobile, menghasilkan frame rate yang cukup baik, yaitu 15,71 frame per second (FPS). Penelitian [7] Beberapa cara dilakukan untuk menekan penyebaran mengusulkan dataset baru untuk deteksi masker wajah SARS-CoV-2, antara lain penggalakan penggunaan dan melakukan pengujian dengan membandingkan masker, physical distancing, dan pembatasan mobilitas. beberapa varian algoritma YOLO dan mendapatkan Jika pertemuan beberapa orang memang harus hasil terbaik mean average precision (mAP) sebesar dilakukan, maka salah satu cara yang paling baik untuk 71,69%. Penelitian [8] menggunakan gabungan antara menekan terjadi penularan virus adalah dengan jaringan ResNet-50 untuk ekstraksi ciri dan YOLO v2 menggunakan masker. Masker dapat mencegah untuk deteksi masker wajah. Penelitian [9] menerapkan terhirupnya partikel pembawa virus yang melayang di sistem deteksi masker wajah pada perangkat internet of udara. Masker dapat melindungi kedua belah pihak: things (IoT) sehingga dapat memberikan notifikasi pemakai masker dan orang lain yang berinteraksi dengan melalui layanan pesan singkat. Penelitian [10] mengusulkan RetinaFaceMask, suatu detektor masker wajah berbasis deep learning yang menggabungkan ResNet dan MobileNet.

orang tersebut akan diingatkan untuk mengenakan menggunakan informasi tekstur sebagai ciri atau feature. maskernya atau dilarang untuk memasuki tempat Satu metode yang paling banyak digunakan untuk tersebut. Aktivitas pengecekan ini dapat dilakukan mendapatkan informasi tekstur dari citra adalah local Penelitian patterns (LBP) [11]. local binary tempat tanpa mengenakan masker, maka alarm dapat convolutional neural networks (CNN) untuk melakukan berbunyi secara otomatis. Sistem seperti ini melakukan pengenalan wajah dan menghasilkan akurasi 100% dan 97.51% pada dua dataset yang digunakan. Penelitian [13] menggunakan local binary patterns pada kasus pengenalan wajah tiga dimensi. Penelitian [14] melakukan klasifikasi emosi menggunakan *local binary* patterns untuk mendeteksi kelelahan sopir.

> mengenakan masker dan yang tidak tentu berbeda. Perbedaan ini ditunjukkan pada Gambar 1. Tampak bahwa pada gambar wajah yang mengenakan masker, tekstur polos mengisi area hidung hingga ujung bawah

wajah, sedangkan pada gambar wajah yang tidak 2. Metode Penelitian menggunakan masker, terdapat tekstur hidung dan mulut. Perbedaan seperti ini dapat ditangkap oleh metode berbasis tekstur, seperti local binary patterns. Maka, pada penelitian ini, informasi tekstur digunakan sebagai ciri atau feature untuk membedakan antara wajah yang mengenakan dan tidak mengenakan masker.

patterns untuk meningkatkan kualitas ciri yang didapatkan dari suatu citra. Penelitian [15] memodifikasi local binary patterns untuk menyelesaikan kasus pengenalan wajah. Pada [16], diusulkan metode multiquantized local binary patterns. Penelitian [17] mengusulkan adjacent evaluation local binary patterns (AELBP) untuk klasifikasi tekstur. Eksperimen menunjukkan bahwa AELBP memberikan hasil klasifikasi tekstur yang baik pada citra dengan yariasi pencahayaan dan rotasi. Selain itu, AELBP juga memberikan hasil yang lebih baik daripada metode LBP pada citra yang memiliki noise.

Gambar 1. Perbedaan tekstur antara citra wajah dengan dan tanpa

Pada penelitian ini, digunakan beberapa metode klasifikasi berbeda, yaitu support vector machine (SVM), AdaBoost, random forest, dan extra trees. SVM telah digunakan pada banyak penelitian dengan objek citra wajah dan memberikan hasil yang baik [18]-[20]. Begitu pula dengan AdaBoost, random forest, dan extra trees [21]-[26].

Gambar 2. Langkah-langkah deteksi masker wajah

Secara umum, langkah-langkah yang dilakukan pada sistem deteksi masker wajah adalah sebagai berikut. Langkah deteksi wajah dilakukan untuk mengetahui lokasi-lokasi wajah pada suatu citra. Lalu dilakukan cropping citra pada area-area wajah tersebut. Dengan kata lain, area wajah digunakan sebagai region of Local binary patterns merupakan metode menarik minat interest. Namun, langkah deteksi wajah tidak dilakukan banyak peneliti pada banyak kasus. Banyak penelitian pada penelitian ini karena dataset yang digunakan berisi yang mencoba untuk memodifikasi metode local binary citra-citra yang telah melewati proses deteksi wajah tersebut.

> Langkah-langkah yang dilakukan pada penelitian ini ditunjukkan pada Gambar 2. Citra input yang berupa citra berwarna dikonversi menjadi citra keabuan (grayscale) kemudian diekstraksi ciri teksturnya menggunakan beberapa metode yang berbeda. Pada penelitian ini, digunakan metode adjacent evaluation local binary patterns (AELBP) yang merupakan metode pengembangan dari local binary patterns (LBP). Hasil ekstraksi ciri tekstur yang berupa vektor histogram kemudian masuk ke proses klasifikasi. Hasil akhirnya adalah informasi apakah wajah pada citra input menggunakan masker atau tidak.

2.1. Dataset

Dataset yang digunakan pada penelitian ini berisi 2.172 citra diam (bukan video) yang terdiri dari 1.250 citra pada kelas "tanpa masker" dan 922 citra pada kelas "dengan masker". Dataset tersebut tersedia secara terbuka dan dapat diakses secara daring pada http://github.com/chandrikadeb7/Face-Mask-Detection. Ukuran citra pada dataset beragam, mulai dari 37×26 piksel hingga 1.606×1.052 piksel. Semua citra pada dataset merupakan citra berwarna dan hanya berisi objek wajah saja sehingga langkah deteksi wajah tidak perlu dilakukan. Semua citra dikonversi ke grayscale karena metode ekstraksi tekstur yang digunakan pada penelitian ini tidak menggunakan informasi warna. Sebagian besar citra disimpan dalam format JPEG dan sebagian dalam format PNG.

Kedua jenis kelamin laki-laki dan perempuan terdapat pada dataset dengan rasio yang tidak diperhatikan. Wajah pada dataset memiliki ekspresi dan kemiringan yang berbeda-beda. Beberapa wajah mengenakan aksesori seperti kacamata, topi, dan lipstik. Warna, model, dan motif masker wajah yang dikenakan juga beragam. Informasi mengenai beberapa kondisi tersebut tidak diperhatikan sehingga tidak memengaruhi hasil klasifikasi.

Pada kelas "dengan masker", terdapat beberapa citra wajah yang mengenakan masker tetapi tidak dengan cara yang benar. Citra-citra seperti ini tetap digolongkan ke dalam kelas "dengan masker". Gambar 3 menunjukkan contoh gambar seperti ini. Pada penelitian ini, perbedaan antara orang yang mengenakan masker wajah dengan

DOI: https://doi.org/10.29207/resti.v5i4.3094 Creative Commons Attribution 4.0 International License (CC BY 4.0) benar dan yang salah tidak diperhatikan. Keseluruhan dilakukan pada setiap piksel. Pada piksel yang sedang Pembagian tersebut dilakukan dengan pengacakan.

Gambar 3. Gambar wajah yang tidak mengenakan masker dengan benar tetap dimasukkan ke dalam kelas "dengan masker"

2.2. Klasifikasi

Karena penelitian ini bertujuan untuk mengetahui apakah seseorang sedang mengenakan masker atau tidak, maka ini adalah suatu kasus klasifikasi biner atau dua kelas, yaitu "tanpa masker" dan "dengan masker". Beberapa metode klasifikasi digunakan pada penelitian ini, yaitu support vector machine (SVM) dengan berbagai kernel linier, polinomial, dan sigmoid, AdaBoost, random forest, dan extra trees [27]. Ciri/feature yang digunakan untuk klasifikasi adalah histogram yang diperoleh dari metode ekstraksi tekstur. Karena ukuran citra pada dataset berbeda-beda, maka histogram dari setiap citra dinormalisasi sehingga memiliki nilai total 1.

Selain adjacent evaluation local binary patterns (AELBP), beberapa metode serupa juga digunakan sebagai pembanding, yaitu local binary patterns (LBP) [11], local ternary patterns (LTP) [28], pyramid local binary patterns (PLBP) [29], compass local binary patterns (CoLBP) [30], median binary patterns (MBP) [31], dan robust local binary patterns (RLBP) [32]. Beberapa metode tersebut merupakan perbaikan dari metode local binary patterns (LBP). Pada penelitian ini, jenis kelamin, ekspresi wajah, kemiringan wajah, aksesori wajah, dan model masker tidak diperhatikan.

Pengukuran terhadap kinerja metode dilakukan menggunakan perhitungan akurasi dan F-measure. Akurasi dihitung menggunakan rumus 3 dan F-measure dihitung menggunakan rumus 4.

$$Akurasi = \frac{Jumlah \ klasifikasi \ tepat}{Jumlah \ data}$$
 (3)

$$F = \frac{2 \times precision \times recall}{precision \times recall} \tag{4}$$

2.3. Local Binary Patterns

Local binary patterns adalah metode

data dibagi menjadi 80% atau sebanyak 1.738 citra data diproses, diambil delapan piksel tetangga dari piksel latih dan 20% atau sebanyak 434 citra data uji. tersebut dengan ukuran ketetanggan 3×3 piksel. Pada contoh yang diberikan pada Gambar 4 (a), dilakukan thresholding piksel-piksel tetangga terhadap piksel yang berada di tengah. Maka, didapatkan nilai-nilai seperti pada Gambar 4 (b). Secara matematis, proses tersebut dapat dituliskan seperti rumus 1.

$$LBP_{r,p} = \sum_{i=0}^{p-1} f(g_i - g_c) 2^i, f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$
 (1)

dengan i adalah urutan piksel ketetanggan, r adalah radius ketetanggan dari piksel pusat, g_c adalah nilai intensitas piksel pusat window, dan g_i adalah nilai intensitas piksel tetangga.

Nilai hasil thresholding kemudian dikalikan dengan nilai-nilai pada Gambar 4 (c). Maka, hasilnya adalah pada Gambar 4 (d) yang kemudian dijumlahkan, menghasilkan nilai 169. Proses ini dilakukan untuk semua piksel pada citra. Untuk piksel-piksel yang berada di pinggir citra, dilakukan mirror padding untuk mempertahankan dimensi citra.

Dengan piksel tetangga sejumlah delapan, maka terdapat $2^8 = 256$ variasi nilai yang mungkin dihasilkan, sama dengan banyaknya variasi nilai dari citra input. Dengan nilai minimal 0 dan nilai maksimal 255, maka, local binary patterns merupakan operasi mapping yang mengubah nilai piksel asli menjadi nilai LBP yang memiliki rentang nilai yang sama.

Gambar 4. Contoh langkah-langkah perhitungan local binary patterns (LBP)

Setelah semua piksel melewati proses ini, nilai-nilai yang didapatkan dari hasil proses local binary patterns kemudian dibentuk menjadi histogram. Histogram yang berbentuk vektor inilah yang menjadi ciri *local binary* patterns dari citra tersebut.

untuk Salah satu keunggulan local binary patterns adalah mengekstraksi ciri atau feature tekstur dari citra. bahwa metode tersebut memiliki sifat grayscale Langkah perhitungan pada local binary patterns invariant. Artinya, perbedaan intensitas pada tekstur yang sama tetap akan menghasilkan ciri LBP yang sama. Aplikasi LBP pada yang sama citra tetapi memiliki kecerahan yang berbeda akan memberikan hasil pengenalan tekstur yang sama.

Histogram yang merepresentasikan ciri LBP dapat dibuat dengan panjang yang berbeda. Ini dikenal dengan istilah binning. Namun, histogram yang terlalu panjang akan menjadi sensitif terhadap perubahan nilai yang terjadi pada citra. Jika, dilakukan binning, maka beberapa nilai pada histogram akan dirata-rata sehingga panjang histogramnya akan berkurang. Histogram ini akan menjadi lebih stabil terhadap adanya perubahan nilai intensitas yang terjadi pada citra. Namun, jika dilakukan terlalu banyak proses binning, maka akan semakin banyak nilai yang dirata-rata sehingga akan semakin banyak informasi yang terbuang. Maka, banyaknya binning yang dilakukan menjadi satu parameter yang harus ditentukan dengan cermat agar histogram vang terbentuk tidak terlalu panjang dan sensitif terhadap perubahan nilai tetapi juga tidak terlalu banyak membuang informasi yang penting.

2.4. Adjacent Evaluation Local Binary Patterns

Adjacent evaluation local binary patterns (AELBP) [17] adalah metode pengembangan dari local binary patterns (LBP) konvensional. Pada metode LBP konvensional, dilakukan pembandingan atau thresholding antara piksel-piksel tetangga dengan piksel yang berada di tengah. Mekanisme ini sangat sensitif terhadap noise. Jika ditambahkan noise pada citra, maka piksel-piksel tetangga maupun piksel yang berada di tengah akan dapat memberikan hasil pembandingan yang berbeda, dan pada akhirnya menghasilkan ciri yang berbeda pula. Dengan kata lain, ciri LBP konvensional tidak stabil terhadap adanya noise pada citra.

Proses AELBP dilakukan menggunakan rumus 2.

$$AELBP_{P,R} = \sum_{p=0}^{P-1} s(a_p - g_c) 2^p, s(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$
 (2)

dengan g_c adalah nilai intensitas dari piksel yang berada di tengah window, P adalah banyaknya titik tetangga LBP yang berada pada radius R dari g_c . Pada tiap-tiap titik menghasilkan ciri berupa vektor sama dengan LBP tetangga ke-p, dibuat subwindow dan dihitung nilai ratarata pada subwindow tersebut yang disimbolkan dengan a_p . Pada perhitungan a_p , nilai intensitas dari piksel di tengah subwindow tidak digunakan.

Pembandingan atau thresholding dilakukan antara nilai a_p dan nilai g_c . Di sinilah letak perbedaan antara AELBP dan LBP konvensional. Pada konvensional, pembandingan thresholding atau dilakukan antara g_c dan nilai intensitas tetangga ke-p. Dengan membandingkan nilai rata-rata pada subwindow (a_n) , adanya *noise* tidak akan banyak mengubah ciri yang dihasilkan.

83	242	228	129	186	
207	165	231	201	248	
238	88	118	134	251	
125	213	157	129	153	
164	183	153	110	139	
(a)					

118	134	251		
157	129	153		
153	110	139		
(b)				

179	163	178		
182		186		
153	141	152		
(c)				

1	1	1		
1		1		
1	1	1		
(d)				

Gambar 5. Langkah-langkah perhitungan pada adjacent evaluation local binary patterns (AELBP)

Subwindow untuk mendapatkan nilai a_n memiliki ukuran $W \times W$ dengan W merupakan nilai ganiil. Jika W bernilai 1, maka perhitungannya akan sama dengan konvensional. Proses selanjutnya konvensional.

Untuk citra berukuran 5×5 pada Gambar 5 (a), dilakukan perhitungan pada window yang memiliki nilai $g_c =$ 118. Piksel tersebut memiliki delapan piksel tetangga. Misalkan dilakukan perhitungan untuk piksel tetangga pada posisi kanan bawah yang memiliki nilai 129. Pada posisi piksel tersebut, dibuat subwindow yang berpusat pada piksel tersebut yang ditunjukkan pada Gambar 5 (b). Lalu dihitung nilai rata-rata dari nilai-nilai intensitas

	** **			
Tabel I.	Hasıl	penguiian	akurası	metode

Metode Klasifikasi	LBP	LTP	PLBP	PLTP	AELBP	CoLBP	MBP
SVM linier	94,71%	78,39%	70,57%	72,64%	95,63%	57,47%	95,17%
SVM polinomial	97,01%	92,18%	71,03%	80,69%	96,55%	94,94%	97,47%
SVM sigmoid	91,26%	74,48%	57,47%	57,47%	96,09%	63,22%	59,77%
AdaBoost	97,24%	97,47%	72,64%	83,91%	97,24%	96,55%	96,78%
Random forest	97,01%	97,01%	74,48%	84,37%	97,7%	96,09%	97,24%
Extra trees	97,24%	97,7%	72,87%	85,52%	97,93%	96,09%	97,47%

pada subwindow tersebut tetapi tanpa nilai piksel pusat daripada tanpa penerapan image pyramid. Kemungkinan subwindow (129). Maka, nilai inilah a_p yang kemudian penyebabnya adalah ukuran citra yang beragam pada dibandingkan dengan nilai g_c .

Jika semua nilai a_p dihitung, maka hasilnya adalah pada Gambar 5 (c). Kemudian, setelah dilakukan pembandingan atau thresholding dengan nilai g_c (118), hasilnya adalah pada Gambar 5 (d).

Pada penelitian [17], dilakukan pengujian menggunakan citra training tanpa noise dan citra testing dengan noise. Noise diberikan menggunakan Gaussian noise dengan SNR (signal-to-noise ratio) sebesar 40dB. Hasilnya menunjukkan bahwa AELBP lebih tahan terhadap noise yang ditambahkan pada citra, yang ditunjukkan dengan nilai akurasi yang lebih baik daripada metode LBP konvensional.

3. Hasil dan Pembahasan

Hasil pengujian kinerja metode menggunakan ukuran akurasi dapat dilihat pada Tabel 1. Jumlah bin yang digunakan pada tahap pengujian awal untuk membuat histogram pada semua metode ekstraksi tekstur adalah 16. Terlihat bahwa metode AELBP memberikan akurasi yang baik menggunakan semua metode klasifikasi. Akurasi terbaik dicapai menggunakan AELBP dan metode extra trees sebagai metode klasifikasi, yaitu sebesar 97,93%. Sehingga AELBP dan extra trees digunakan pada beberapa pengujian berikutnya. Beberapa metode yang lain, yaitu local binary patterns (LBP), local ternary patterns (LTP), compass local binary patterns (CoLBP), dan median binary patterns (MBP) juga menghasilkan akurasi yang baik. Terlihat bahwa akurasi yang didapatkan menggunakan AELBP dengan semua metode klasifikasi berada pada angka yang stabil di atas 95%.

Dari semua metode klasifikasi yang diuji, SVM dengan sigmoid kernel memberikan rata-rata akurasi yang terendah. Umumnya, hal ini disebabkan ketidakcocokan kernel dengan bentuk pemisah antara kedua kelas pada dataset. Hal seperti ini sifatnya berbeda antara satu kasus dengan kasus lainnya.

Penerapan konsep image pyramid pada LBP yang menghasilkan metode PLBP (pyramid LBP) dan pada LTP yang menghasilkan metode PLTP (pyramid LTP) juga diuji pada pengujian tersebut. Namun kedua metode justru menghasilkan akurasi yang tidak lebih baik

dataset. Sehingga pada citra yang berukuran kecil, penerapan image pyramid justru menghasilkan kualitas ciri tekstur yang kurang baik. Ini terjadi karena pada dasarnya, image pyramid bertujuan untuk mengambil informasi pada skala atau ukuran citra yang berbeda. Pada level nol, image pyramid mengambil informasi detail pada citra dan pada level-level di atasnya, image pyramid mengambil informasi yang lebih bersifat global. Jika konsep ini diterapkan pada citra berukuran kecil yang tidak menyimpan informasi detail citra, maka tujuan dari image pyramid tidak tercapai dan hasilnya adalah suatu ciri atau informasi kualitasnya tidak baik.

Tabel 2. Hasil pengujian menggunakan AELBP, extra trees, dan beberapa panjang histogram (bin) yang berbeda

Bin	Akurasi	F-measure
8	62,53%	95,89%
16	96,55%	97,55%
32	97,93%	97,81%
64	98,16%	97,24%
128	98,39%	98,08%
256	97,93%	97,52%

Tabel 3. Hasil pengujian jumlah data latih menggunakan AELBP, extra trees, dan panjang histogram 128 bin

Jumlah Data Latih	Akurasi	F-measure
217 (10%)	96,32%	95,51%
434 (20%)	97,7%	97,26%
651 (30%)	97,47%	96,97%
868 (40%)	98,16%	97,8%
1.085 (50%)	97,47%	96,94%
1.302 (60%)	97,93%	97,52%
1.519 (70%)	98,16%	97,79%
1.738 (80%)	98,39%	98,08%

Kemudian, dilakukan juga pengujian menggunakan beberapa nilai bin yang berbeda yang akan menghasilkan panjang histogram ciri tekstur yang berbeda-beda. Hasil yang diberikan pada Tabel 2 menunjukkan bahwa hasil terbaik didapatkan dengan panjang histogram 128 bin, yaitu akurasi sebesar 98,39% dan F-measure sebesar 98,08%. Jika digunakan panjang bin 256, yang berarti tidak dilakukan pengurangan panjang histogram sama sekali, akurasi yang dihasilkan sedikit menurun. Ini menunjukkan didapatkan menggunakan AELBP sebagai metode bahwa histogram dengan panjang aslinya menjadi ekstraksi tekstur dan extra trees sebagai metode sangat sensitif terhadap variasi citra. Sehingga ciri yang klasifikasi. dihasilkan mengalami penurunan kualitas dalam hal robustness.

Dilakukan juga pengujian pengaruh jumlah data latih terhadap akurasi dan F-measure, mulai dari data latih sebanyak 10% hingga 80%. Metode ekstraksi tekstur yang digunakan pada pengujian ini adalah AELBP dengan panjang bin 128 dan metode klasifikasi yang digunakan adalah extra trees. Hasil pengujian tersebut ditampilkan pada Tabel 3. Terlihat bahwa jika digunakan data latih sebanyak 10% atau 217 citra, akurasi yang didapatkan mencapai 96,32% dan Fmeasure sebesar 95,51%. Angka ini terus meningkat seiring dengan ditambahnya jumlah data latih, hingga mencapai akurasi sebesar 98,39% dan F-measure sebesar 98,08% jika seluruh data latih digunakan, yaitu sejumlah 1.738 citra atau 80% dari seluruh data. Hasil ini menunjukkan bahwa informasi tekstur dengan dan tanpa masker bisa didapatkan dengan baik walaupun [1] menggunakan jumlah data latih relatif sedikit.

Selain itu, pengujian juga dilakukan terhadap waktu (testing) [2] pelatihan (training) dan pengujian menggunakan semua metode ekstraksi tekstur. Metode klasifikasi yang digunakan adalah extra trees dan panjang histogram (bin) 16. Hasilnya ditunjukkan pada [3] Tabel 4. Waktu yang digunakan oleh AELBP pada proses pelatihan adalah 0,167 detik dan pada proses pengujian 0,016 detik. Hasil ini menunjukkan bahwa jika metode ini digunakan pada sistem yang berjalan [4] secara real time, maka akan didapatkan frame rate sebesar $\frac{1}{0.016}$ = 62,5 frame per detik.

Tabel 4. Hasil pengujian waktu pelatihan dan pengujian

Metode	Waktu Pelatihan (detik)	Waktu Pengujian (detik)
LBP	0,163	0,015
LTP	0,176	0,016
PLBP	0,202	0,019
PLTP	0,174	0,017
AELBP	0,167	0,016
CoLBP	0,246	0,016
MBP	0,157	0,015

4. Kesimpulan

Pada penelitian ini, dilakukan deteksi masker wajah [9] menggunakan pendekatan klasifikasi. klasifikasi yang dilakukan menggunakan dua kelas, yaitu "dengan masker" dan "tanpa masker". Pengujian dilakukan menggunakan beberapa metode ekstraksi informasi tekstur dan beberapa metode klasifikasi. Hasil terbaik yang diperoleh adalah akurasi sebesar 98,38% [11] dan F-measure sebesar 98,08%. Hasil tersebut

Saran untuk penelitian selanjutnya adalah membedakan penggunaan masker yang benar dan yang tidak. Sehingga jumlah kelas untuk klasifikasi bisa ditambah menjadi, misalnya, "tanpa masker", "dengan masker, penggunaan benar", dan "dengan masker, penggunaan salah". Pada penelitian ini, masker yang dikenakan dengan tidak benar masih dianggap sebagai penggunaan masker yang benar. Walaupun pada penelitian ini, dataset yang digunakan hanya berupa citra diam dan bukan video, metode yang digunakan pada penelitian ini juga seharusnya dapat digunakan pada dataset yang berupa video tanpa harus mengubah algoritma. Perubahan yang perlu dilakukan hanya pada langkah pembacaan citra input saja.

Daftar Rujukan

- R. Tosepu et al., "Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia," Science of The Total Environment, vol. 725, p. 138436, Jul. 2020, doi: 10.1016/j.scitotenv.2020.138436.
- Y. Muthuraman and I. Lakshminarayanan, "A review of the COVID-19 pandemic and its interaction with environmental media," Environmental Challenges, vol. 3, p. 100040, Apr. 2021, doi: 10.1016/j.envc.2021.100040.
- Z. E. Rasjid, R. Setiawan, and A. Effendi, "A Comparison: Prediction of Death and Infected COVID-19 Cases in Indonesia Using Time Series Smoothing and LSTM Neural Network," Procedia Computer Science, vol. 179, pp. 982-988, Jan. 2021, doi: 10.1016/j.procs.2021.01.102.
- M. Liao et al., "A technical review of face mask wearing in preventing respiratory COVID-19 transmission," Current Opinion in Colloid & Interface Science, vol. 52, p. 101417, Apr. 2021, doi: 10.1016/j.cocis.2021.101417.
- M. Abboah-Offei, Y. Salifu, B. Adewale, J. Bayuo, R. Ofosu-Poku, and E. B. A. Opare-Lokko, "A rapid review of the use of face mask in preventing the spread of COVID-19," International Journal of Nursing Studies Advances, vol. 3, p. 100013, Nov. 2021, doi: 10.1016/j.ijnsa.2020.100013.
- P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth, "SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2," Sustainable Cities and Society, vol. 66, p. 102692, Mar. 2021, doi: 10.1016/j.scs.2020.102692.
- A. Kumar, A. Kalia, K. Verma, A. Sharma, and M. Kaushal, "Scaling up face masks detection with YOLO on a novel dataset," Optik, vol. 239, p. 166744, Aug. 2021, doi: 10.1016/j.ijleo.2021.166744.
- M. Loey, G. Manogaran, M. H. N. Taha, and N. E. M. Khalifa, "Fighting against COVID-19: A novel deep learning model based on YOLO-v2 with ResNet-50 for medical face mask detection," Sustainable Cities and Society, vol. 65, p. 102600, Feb. 2021, doi: 10.1016/j.scs.2020.102600.
- M. M. Lambacing and F. Ferdiansyah, "Rancang Bangun New Normal Covid-19 Masker Detektor Dengan Notifikasi Telegram Berbasis Internet Of Things," Dinamik, vol. 25, no. 2, Art. no. 2, Jul. 2020, doi: 10.35315/dinamik.v25i2.8070.
- M. Jiang, X. Fan, and H. Yan, "RetinaMask: A Face Mask detector," arXiv:2005.03950 [cs], Jun. 2020, Accessed: Jul. 06, 2021. [Online]. Available: http://arxiv.org/abs/2005.03950
- T. Ojala, M. Pietikainen, and D. Harwood, "Performance evaluation of texture measures with classification based on

- Kullback discrimination of distributions," in *Proceedings of* [22] *12th International Conference on Pattern Recognition*, Oct. 1994, vol. 1, pp. 582–585 vol.1. doi: 10.1109/ICPR.1994.576366.
- [12] J. Tang, Q. Su, B. Su, S. Fong, W. Cao, and X. Gong, "Parallel [23] ensemble learning of convolutional neural networks and local binary patterns for face recognition," *Computer Methods and Programs in Biomedicine*, vol. 197, p. 105622, Dec. 2020, doi: 10.1016/j.cmpb.2020.105622. [24]
- [13] H. Tang, B. Yin, Y. Sun, and Y. Hu, "3D face recognition using local binary patterns," *Signal Processing*, vol. 93, no. 8, pp. 2190–2198, Aug. 2013, doi: 10.1016/j.sigpro.2012.04.002.
- [14] Y. Zhang and C. Hua, "Driver fatigue recognition based on facial expression analysis using local binary patterns," *Optik*, [25] vol. 126, no. 23, pp. 4501–4505, Dec. 2015, doi: 10.1016/j.ijleo.2015.08.185.
- [15] L. Liu, P. Fieguth, G. Zhao, M. Pietikäinen, and D. Hu, "Extended local binary patterns for face recognition," *Information Sciences*, vol. 358–359, pp. 56–72, Sep. 2016, doi: [26] 10.1016/j.ins.2016.04.021.
- [16] B. Patel, R. P. Maheshwari, and R. Balasubramanian, "Multi-quantized local binary patterns for facial gender classification," Computers & Electrical Engineering, vol. 54, pp. 271–284, [27] Aug. 2016, doi: 10.1016/j.compeleceng.2015.11.004.
- [17] "Adjacent evaluation of local binary pattern for texture classification ScienceDirect." https://www.sciencedirect.com/science/article/abs/pii/S104732 0315001868 (accessed Apr. 09, 2021).
- [18] L. Shi, X. Wang, and Y. Shen, "Research on 3D face recognition method based on LBP and SVM," *Optik*, vol. 220, [29] p. 165157, Oct. 2020, doi: 10.1016/j.ijleo.2020.165157.
- [19] A. Md. Nuruddin Pk, X. Ding, and T. Page, "An Integrated Approach for Face Recognition Using Multi-class SVM," in 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), Apr. 2020, pp. 398–402. doi: 10.1109/ICCCBDA49378.2020.9095692.
- [20] M. T. Ghazal and K. Abdullah, "Face recognition based on curvelets, invariant moments features and SVM," *TELKOMNIKA (Telecommunication Computing Electronics* and Control), vol. 18, no. 2, Art. no. 2, Apr. 2020, doi: 10.12928/telkomnika.v18i2.14106.
- [21] P. Li, H. Wang, Y. Li, and M. Liu, "Analysis of face detection [32] based on skin color characteristic and AdaBoost algorithm," J. Phys.: Conf. Ser., vol. 1601, p. 052019, Aug. 2020, doi: 10.1088/1742-6596/1601/5/052019.

- V. Vansh, K. Chandrasekhar, C. R. Anil, and S. S. Sahu, "Improved Face Detection Using YCbCr and Adaboost," in Computational Intelligence in Data Mining, Singapore, 2020, pp. 689–699. doi: 10.1007/978-981-13-8676-3_58.
- 23] L. Zhong, H. Liao, B. Xu, S. Lu, and J. Wang, "Tied gender condition for facial expression recognition with deep random forest," *JEI*, vol. 29, no. 2, p. 023019, Apr. 2020, doi: 10.1117/1.JEI.29.2.023019.
- 24] B. Nassih, A. Amine, M. Ngadi, Y. Azdoud, D. Naji, and N. Hmina, "An efficient three-dimensional face recognition system based random forest and geodesic curves," *Computational Geometry*, vol. 97, p. 101758, Aug. 2021, doi: 10.1016/j.comgeo.2021.101758.
- 25] S. Abbas et al., "BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm," PeerJ Comput. Sci., vol. 7, p. e390, Mar. 2021, doi: 10.7717/peerjcs.390.
- 26] A. Pinto, S. Pereira, D. Rasteiro, and C. A. Silva, "Hierarchical brain tumour segmentation using extremely randomized trees," *Pattern Recognition*, vol. 82, pp. 105–117, Oct. 2018, doi: 10.1016/j.patcog.2018.05.006.
- 27] P. Geurts, D. Ernst, and L. Wehenkel, "Extremely randomized trees," *Mach Learn*, vol. 63, no. 1, pp. 3–42, Apr. 2006, doi: 10.1007/s10994-006-6226-1.
- 28] X. Tan and B. Triggs, "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions," *IEEE Transactions on Image Processing*, vol. 19, no. 6, pp. 1635–1650, Jun. 2010, doi: 10.1109/TIP.2010.2042645.
- 9] "PLBP: An effective local binary patterns texture descriptor with pyramid representation - ScienceDirect." https://www.sciencedirect.com/science/article/abs/pii/S003132 0311001336 (accessed Apr. 17, 2021).
- B. Patel, R. P. Maheshwari, and B. Raman, "Compass local binary patterns for gender recognition of facial photographs and sketches," *Neurocomputing*, vol. 218, pp. 203–215, Dec. 2016, doi: 10.1016/j.neucom.2016.08.055.
- 31] A. Hafiane, G. Seetharaman, and B. Zavidovique, "Median Binary Pattern for Textures Classification," in *Image Analysis* and *Recognition*, Berlin, Heidelberg, 2007, pp. 387–398. doi: 10.1007/978-3-540-74260-9_35.
- 32] Y. Zhao, W. Jia, R.-X. Hu, and H. Min, "Completed robust local binary pattern for texture classification," *Neurocomputing*, vol. 106, pp. 68–76, Apr. 2013, doi: 10.1016/j.neucom.2012.10.017.