NYU Tandon Bridge Winter 2023

Assignment 3

NAMES: PATRICK CORMIER, LEAH DEL GIUDICE, TED HILGER, CHELSEA HUDSON

Question 7

a) EXERCISE 3.1.1

а	27 ∈ A	TRUE	27 % 3 = 0 therefore 27 is an element of A.	
b	27 ∈ B	FALSE	There is no integer y where $y^2 = 27$ therefore 27 is not an element of B.	
С	100 ∈ B	TRUE	$10^2 = 100$ therefore 10 is a perfect square and 10 is an element of B.	
d	E ⊆ C or C ⊆ E	FALSE	Not every element of E is in C and not every element of C is in E therefore neither of the two are subsets of the other. For example, $3 \in E$ but $3 \notin C$ and $5 \in C$ but $5 \notin E$.	
е	E⊆A	TRUE	A is a set of integers where each are multiples of 3. Each element of E is a multiple of 3 therefore E is a subset of A.	
f	A⊂E	FALSE	A is not a proper subset of E because A contains elements that are not in E. For example, 12 would be an element of A but it is not an element of E.	
g	E∈A	FALSE	Elements of set A are integers. The set E is not an integer therefore it is not an element of set A.	

b) EXERCISE 3.1.2

а	15 ⊂ A	FALSE	15 is not a set therefore cannot be a subset of A.
b	{15} ⊂ A	TRUE	{15} is a set of A.
С	Ø c A	TRUE	The null set is a subset of every set therefore the null set is a subset of A.
d	A⊆A	TRUE	A = A therefore A is a subset of A.
е	Ø ∈ B	FALSE	Elements of B are integers. The empty set is a set and therefore cannot be an element of B.

c) EXERCISE 3.1.5

		Infinite set.
b	{ 3, 6, 9, 12, }	$\{x \in \mathbf{N} : x \text{ is a multiple of 3}\}$
		All x from the set of Natural Numbers such that x is a multiple of 3.
		Finite set.
		$\{x \in \mathbf{N} : x \ge 1000 \text{ and } \mathbf{x} \text{ is a multiple of 10}\}$
d	{ 0, 10, 20, 30,, 1000 }	$ \{x \in \mathbf{N} : x \ge 1000 \text{ and x is a multiple of 10}\} = 101$
		All x from a set of Natural Numbers less than 1000 such that x is a multiple of 10. The cardinality of the set is 101.

d) EXERCISE 3.2.1

а	2 ∈ X	TRUE	2 is an element of X
b	{2} ⊆ X	TRUE	{2} is a subset of X
С	{2} ∈ X	FALSE	Although 2 is an element of X the set {2} is not listed as an element of X
d	3 ∈ X	FALSE	Although the set {3} is an element of X, the element 3 is not listed as an element of X
е	$\{1,2\}\in X$	TRUE	The set {1,2} is an element of X
f	{1, 2} ⊆ X	TRUE	The set {1,2} is a subset of X since both elements are elements of X
g	{2, 4} ⊆ X	TRUE	The set {2,4} is a subset of X since 2 and 4 are elements of X
h	$\{2,4\}\in X$	FALSE	{2,4} is not a set listed as an element of X
i	{2, 3} ⊆ X	FALSE	{2,3} is not a subset of X since 3 is not an element of X
j	$\{2,3\}\in X$	FALSE	{2,3} is not a set listed as an element of X
k	X = 7	FALSE	The cardinality of x is $ X = 6$

Question 8

EXERCISE 3.2.4

b	Let A = {1, 2, 3}
b	What is $\{X \in P(A): 2 \in X\}$?
	$ P(A) = 2^3 \text{ or } 8$
	$P(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}$
	$\{X \in P(A): 2 \in X\} = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$

Question 9:

a) EXERCISE 3.3.1

С	A n C	$A = \{-3, 0, 1, 4, 17\}$ $C = \{x \in Z: x \text{ is odd}\}$	{-3, 1, 17}
d	A ∪ (B ∩ C)	$A = \{-3, 0, 1, 4, 17\}$ $B = \{-12, -5, 1, 4, 6\}$ $C = \{x \in Z: x \text{ is odd}\}$	{-5, -3, 0, 1, 4, 17}
е	AηΒηC	$A = \{-3, 0, 1, 4, 17\}$ $B = \{-12, -5, 1, 4, 6\}$ $C = \{x \in Z: x \text{ is odd}\}$	{1}

b) EXERCISE 3.3.3

а	$\bigcap^{5} = A_{i}$	$= \{1,2,4\} \cap \{1,3,9\} \cap \{1,4,16\} \cap \{1,5,25\}$
	i=2	= {1}
b	$\begin{bmatrix} 5 \\ \end{bmatrix} = A_i$	$= \{1,2,4\} \cup \{1,3,9\} \cup \{1,4,16\} \cup \{1,5,25\}$
	i=2	= {1,2,3,4,5,9,16, 25}
е	$\bigcap^{100} = C_i$	$C_i \supseteq C_j fori \leq j$
	i=1	$= \{x \in R : (-1/100) < = x < = 1/100\}$
f	$\begin{bmatrix} 100 \\ \end{bmatrix} = C_i$	$C_i \supseteq C_j fori \leq j$
	<i>i</i> =1	$= \{x \in R : -1 \le x \le 1\}$

c) EXERCISE 3.3.4

b	$P(A \cup B)$ $A = \{a, b\}$ $B = \{b, c\}$	P(A U B) = {Ø, {a}, {b}, {c}, {a, b} {a, c} {b, c}
d	$P(A) \cup P(B)$ $P(A) = \{\{\}, \{a\}, \{b\}, \{a, b\}\}\}$ $P(B) = \{\{\}, \{b\}, \{c\}, \{b, c\}\}\}$	$P(A) \cup P(B) =$ $\{\emptyset,$ $\{a\},$ $\{b\},$ $\{c\},$ $\{a, b\},$ $\{b, c\}\}$

Question 10

a) EXERCISE 3.5.1

b	An element from the set $B \times A \times C$ $A = \{tall, grande, venti\}$ $B = \{foam, no-foam\}$ $C = \{non-fat, whole\}$	Solution: (foam, tall, non-fat)
С	Write the set B × C using roster notation. B = {foam, no-foam} C = {non-fat, whole}	Solution: { (foam, non-fat), (foam, whole), (no-foam, non-fat), (no-foam, whole) }

b) EXERCISE 3.5.3

b	$Z^2 \subseteq \mathbb{R}^2$	TRUE	Since Z = integers and integers are Real Numbers then the cartesian product of Z^2 would be a subset of R^2
С	$Z^2 \cap Z^3 = \emptyset$	TRUE	\mbox{Z}^2 contains ordered pairs and \mbox{Z}^3 contains triples therefore the intersection of the two sets would be $\ensuremath{\varnothing}$
е	For any three sets, A, B, and C, if $A \subseteq B$, then A $\times C \subseteq B \times C$.	TRUE	The elements of A are present in B therefore the cartesian product of A x C would be a subset of B x C.

c) EXERCISE 3.5.6

d	{ xy: where $x \in \{0\} \cup \{0\}2$ and $y \in \{1\} \cup \{1\}2$ }	Solution: { 01, 011, 001, 0011 }
	(vv. v c (oo, ob) and v c (o) v (o) 2)	Solution:
е	$\{ xy: x \in \{aa, ab\} \text{ and } y \in \{a\} \cup \{a\}2 \}$	{ aaa, aaaa, aba, abaa }

d) EXERCISE 3.5.7

	$A = \{a\}$ $B = \{b, c\}$ $C = \{a, b, d\}$	Solutions:
С	(A × B) ∪ (A × C)	{aa, ab, ac, ad}
f	P(A × B)	{Ø, {ab}, {ac}, {ab, ac}}
g	$P(A)\times P(B) \\$ Use ordered pair notation for elements of the Cartesian product.	{(Ø, Ø), (Ø, {b}), (Ø, {c}), (Ø, {b, c}), ({a}, Ø)), ({a}, {b}), ({a}, {c}), ({a}, {c}),

Question 11

a) EXERCISE 3.6.2

b	
$(B \cup A) \cap (\overline{B} \cup A)$	
$(B \cap \overline{B}) \cup A$	Distributive Law
$\varnothing \cup A$	Compliment Law
А	Identity Law

С	
$\overline{A \cap \overline{B}}$	
$\overline{A} \cup \overline{B}$	De Morgan's Law
$\overline{A} \cup B$	Double Compliment

b) EXERCISE 3.6.3

		Solution:	
b	A - $(B \cap A) = A$ A = $\{1,2\}$ B = $\{2,3\}$	$A - (B \cap A) = \{1\}$ $\{1, 2\} - (\{2, 3\} \cap \{1, 2\})$ $\{1, 2\} - (\{2\})$	Answer: {1}
	D – \2,0}	{1}	

Solution:
$$(B-A) \cup A = A \qquad (B-A) \cup A = A \qquad \text{Answer:}$$

$$A = \{1,2\} \qquad (\{2,3\} - \{1,2\}) \cup \{1,2\} \qquad \{1,2,3\}$$

$$\{1,2,3\}$$

c) EXERCISE 3.6.4

b	$A \cap (B - A) = \varnothing$		
		$A \cap (B-A)$	
		$A\cap (B-\overline{A})$	Set Subtraction Law
		$A\cap (\overline{A}-B)$	Commutative Law
		$(A \cap \overline{A}) \cap B)$	Associative Law
		$\emptyset \cap B$	Complement Law
		Ø	Domination Law

С	$A \cup (B-A)$		
		$A \cup (B - \overline{A})$	Set Subtraction Law
		$(A \cup B) \cap (A \cap \overline{A})$	Distributive Law
		$(A \cup B) \cap U$	Complement Law
		$A \cup B$	Identity Law