Probabilità e Statistica (Informatica) 2021/22	Nome:
Prova scritta zero bis	Cognome:
gennaio 2022	Matricola:

Esercizio 1. Sia X una variabile aleatoria reale su $(\Omega, \mathcal{F}, \mathbf{P})$. Nei seguenti tre casi si determinino media e varianza di X (se esistono):

- (i) X è uniforme su [4, 6];
- (ii) X ha funzione di ripartizione F_X data da $F_X(x) \doteq (x^3/27) \cdot \mathbf{1}_{(0,3)}(x) + \mathbf{1}_{[3,\infty)}(x), x \in \mathbb{R};$
- (iii) $X = Y^2$ per una variabile aleatoria Y normale standard.

Esercizio 2. Sia $(X_i)_{i\in\mathbb{N}}$ una successione definita su $(\Omega, \mathcal{F}, \mathbf{P})$ di variabili aleatorie indipendenti ed identicamente distribuite con comune distribuzione esponenziale di parametro $\lambda > 0$. Per $n \in \mathbb{N}$, poniamo

$$M_n(\omega) \doteq \max_{i \in \{1,\dots,n\}} X_i(\omega), \quad \omega \in \Omega.$$

Indichiamo con F la funzione di ripartizione comune delle X_i (cioè la funzione di ripartizione della distribuzione esponenziale di parametro λ). Definiamo inoltre la funzione $G: \mathbb{R} \to \mathbb{R}$ mediante

$$G(x) \doteq \exp(-e^{-x}), \quad x \in \mathbb{R}.$$

- (i) Si verifichi che G è una funzione di ripartizione.
- (ii) Si mostri che, per ogni $n \in \mathbb{N}$, ogni $x \in \mathbb{R}$,

$$\mathbf{P}(\lambda M_n - \log(n) \le x) = F\left(\frac{x + \log(n)}{\lambda}\right)^n.$$

(iii) Si mostri che

$$F\left(\frac{x+\log(n)}{\lambda}\right)^n = \left(1 - \frac{e^{-x}}{n}\right)^n \cdot \mathbf{1}_{[-\log(n),\infty)}(x),$$

e si concluda che

$$\lim_{n \to \infty} \mathbf{P}(\lambda M_n - \log(n) \le x) = G(x) \text{ per ogni } x \in \mathbb{R}.$$

Esercizio 3. Siano $X_1, X_2, \ldots, X_{125}$ variabili aleatorie indipendenti ed identicamente distribuite su $(\Omega, \mathcal{F}, \mathbf{P})$ con comune distribuzione binomiale di parametri (8, 1/200). Poniamo

$$S(\omega) \doteq \sum_{i=1}^{125} X_i(\omega), \ \omega \in \Omega, \quad M \doteq \min \left\{ m \in \mathbb{N} : \mathbf{P} \left(S \le m \right) \ge 0.96 \right\}.$$

Sia dia una stima per M in tre modi diversi, usando

- a) la disuguaglianza di Chebyshev;
- b) l'approssimazione di Poisson (legge dei piccoli numeri);
- c) l'approssimazione normale.

Esercizio 4. Siano $\mu \in \mathbb{R}$, $\sigma > 0$. Si trovi una variabile aleatoria reale $X = X_{\mu,\sigma}$ con media $\mu \doteq \mathbf{E}[X]$ e varianza $\sigma^2 \doteq \mathbf{E}[(X - \mu)^2]$ finite tale che

$$\mathbf{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = 1.$$

[Suggerimento: Trattare prima il caso $\mu = 0$, $\sigma = 1$; provare con una distribuzione discreta concentrata su al massimo quattro valori diversi.]