Ensemble learning

Cours 7 ARF Master DAC

Nicolas Baskiotis

nicolas.baskiotis@lip6.fr
http://webia.lip6.fr/~baskiotisn

équipe MLIA, Laboratoire d'Informatique de Paris 6 (LIP6) Université Pierre et Marie Curie (UPMC)

S2 (2016-2017)

Ensemble Learning

Principe

- Idée simple : considérer plusieurs (beaucoup) de classifieurs
- Avantage : réduit la variance si les classifieurs sont indépedants ! $Var(\hat{X}) = \frac{Var(X)}{\pi}$
- Mais qu'un jeu de données disponible...
- ⇒ Différentes techniques d'échantillonage et d'aggrégation pour varier les classifieurs appris
- Inférence : vote majoritaire pondéré sur l'ensemble des classifieurs.

Plan

Bagging

Boosting

Bagging

Bootstrap Aggregation

Breiman, 1994

constitution des N ensembles par tirage aléatoire avec remise d'un ensemble de même taille que l'original :
 E ⇒ {E₁, E₂, ... E_N}, avec |E_i| = |E| = N

- Apprendre $f_1, \dots f_N$ sur ces ensembles d'apprentissage
- Classer \mathbf{x} par moyennage ou vote de $f_1(\mathbf{x}), \dots f_N(\mathbf{x})$
- Chaque donnée a une probabilité de $(1-1/n)^n$ d'être dans un E_i donné.
- \Rightarrow E_i contient en moyenne $1 (1 1/n)^n\% = 63.2\%$ des instances initiales.

Un exemple : plusieurs arbres = une fôret

Principe

- A l'origine pour des considérations computationelles
- Deux facteurs d'aléa :
 - chaque arbre est appris sur un ensemble bootstrap de l'initial (bagging)
 - à chaque nœud, un sous-ensemble des dimensions est considéré uniquement, tiré aléatoirement.
- Décision au vote majoritaire (ou en moyenne pour la régression).
- Remarques : Effet de la profondeur ? Sur-apprentissage ?

Plan

Bagging

Boosting

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : aggréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

Qu'est ce qu'un classifieur faible ?

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : aggréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- ⇒ classifieur peu expressif, arbres de faibles profondeurs, perceptrons . . .
- Comment prendre en compte les erreurs ?

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : aggréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- \Rightarrow classifieur peu expressif, arbres de faibles profondeurs, perceptrons \dots
- Comment prendre en compte les erreurs ?
- \Rightarrow Considérer une distribution des exemples D_t différente à chaque pas de temps
- Comment combiner les classifieurs ?

S2 (2016-2017)

7 / 11

Principe

- Pourquoi faire de l'aléatoire quand on connait où on fait l'erreur ?
- Trouver plein de petits classifieurs approximativement bons sur de petites régions de l'espace.
- Idée : aggréger plein de petits classifieurs, appris séquentiellement, chacun corrigeant les erreurs des précédents.
- ⇒ Besoin de classifieurs faibles ! (pourquoi ?)

Questions

- Qu'est ce qu'un classifieur faible ?
- \Rightarrow classifieur peu expressif, arbres de faibles profondeurs, perceptrons \dots
- Comment prendre en compte les erreurs ?
- \Rightarrow Considérer une distribution des exemples D_t différente à chaque pas de temps
- Comment combiner les classifieurs ?
- ⇒ Somme pondérée des classifieurs
- Combien de classifieurs apprendre ?

AdaBoost

Principe

- $E = \{x^i, y^i\}$ un ensemble de données, distribution $D_t(i) = w_t^i$ sur ces données au temps $t : \sum_i w_t^i = 1$
- $\mathbf{h} = \{h_1, \cdots, h_T\}$ un ensemble de classifieurs,
- $\alpha = \{\alpha_1, \dots, \alpha_T\}$ un ensemble de réels,
- $f_T(x) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x}) = <\alpha, \mathbf{h}>, F_T(\mathbf{x}) = sign(f_T(\mathbf{x}))$ le classifieur pondéré.
- Objectif: trouver $(\mathbf{h}^{\star}, \boldsymbol{\alpha}^{\star}) = \operatorname{argmin}_{\mathbf{h}, \boldsymbol{\alpha}} \frac{1}{N} \sum_{i} 1_{F(\mathbf{x}^{i}) \neq y^{i}}$

Algorithme

- **①** Initialiser la distribution : $D_0(i) = \frac{1}{|E|}$
- 2 Apprendre h_t sur D_t
- **3** Calculer l'erreur $\epsilon_t = \sum_i D_t(i) 1_{h_t(\mathbf{x}^i) \neq y^i}$
- 5 Fixer $D_{t+1}(i) = \frac{1}{Z}D_t(i)e^{-\alpha_t y_i h_t(\mathbf{x}^i)}$

Remarques

Considérations sur les poids

- $\epsilon_t < \frac{1}{2} \Rightarrow \alpha_t = \frac{1}{2} ln(\frac{1-\epsilon_t}{\epsilon_t}) > 0$
- $\epsilon(h_a) < \epsilon(h_b) \Rightarrow \alpha_a > \alpha_b$
- $\bullet \ e^{-y\alpha_t h_t(\mathbf{x})} = \begin{cases} e^{-\alpha_t} < 1 & \text{ si } h_t(\mathbf{x}) = y \\ e^{\alpha_t} > 1 & \text{ si } h_t(\mathbf{x}) \neq y \end{cases}$

Considérations sur la distribution

- $D_{t+1}(i) = \frac{1}{Z_t} D_t(i) e^{-\alpha_t y^i h_t(\mathbf{x}^i)} = \frac{1}{Z_t Z_{t-1}} D_{t-1}(i) e^{-y^i (\alpha_t h_t(\mathbf{x}^i) + \alpha_{t-1} h_{t-1}(\mathbf{x}^i))}$ $\cdots = \frac{1}{Z_t \cdots Z_1} D_1(i) e^{-y^i (\alpha_t h_t(\mathbf{x}^i) + \cdots + \alpha_1 h_1(\mathbf{x}^i))}$
- On montre que $Z = Z_1 \cdots Z_t = \frac{1}{N} \sum_{i=1}^N e^{-y^i f_t(\mathbf{x}^i)}$
- Et que $Err(F) \leq Z$

Illustrations

Conclusions

Sur le bagging

- Très utilisé! (kinect, les gagnants de netflix)
- Facile à mettre en place, peut traiter de grosses masses de données (parallélisation), en apprentissage et en inférence

Boosting

- Classifieurs faibles : Stump (arbre à un niveau), naive bayes, perceptron,...
- Adaptable sous beaucoup d'autres formes (gradient tree boosting, gradient boosting)
- Adapté au très grande masse de données et données sparse (ciblage publicitaire par exemple)