

GeoGenIE: Geographic Genetic Inference Engine

Geolocation predicting from SNPs using deep learning

Drs. Bradley T. Martin, Tyler K. Chafin, Zach D. Zbinden, Marlis R. Douglas, and Michael E. Douglas

Version: 1.0.2

2025-04-10

Contents

G	eoGenIE: Geolocation Predictions from SNPs using Deep Learning	3
	Introduction	5
	Deep Learning Model Architecture	Ę
	Installation	6
	Usage Running GeoGenIE Command-line Options Configuration File Running the Software	
	Required Input Files	7
	Algorithms to Mitigate Sampling Imbalance	8
	GeoGenIE Features and Settings Data Input and Preprocessing Model Configuration Training Parameters Geographic Density Sampler Outlier Detection Bootstrapping for Error Estimates Embedding Settings Plot Settings Output and Miscellaneous	8 8 8 10 11 11 12 13
	Output Files and File Structure	13
	Plot Descriptions	15
	Metric Descriptions	27
	Glossary	29
	References	3

List of Figures

1	GeoGenIE model architecture diagram	5
2	Geographic error distribution of the model predictions interpolated across the Arkansas landscape. Interpolated contour levels represent error magnitudes. Prediction error is Haversine distance between the predicted and recorded localities, in km. This hold-out test dataset was used to obtain realistic predition error estimates	15
3	GeoGenIE bootstrap predictions (gray circles; $N=100$), with the geographic centroid of the bootstrap replicates being marked by \mathbf{X} and the recorded locality as \blacktriangle . Orange, blue, and pink contours contain 90, 70, and 50 percent of the bootstrap replicates, respectively. This hold-out test dataset was used to obtain realistic predition error estimates	16
4	Linear and non-linear (3 rd order polynomial) regressions between sampling density (samples / km²) and prediction error (km). Prediction error is the Haversine distance between the predicted and recorded localities. The orange dashed line represents optimal sampling density as the knee of the polynomial curve, beyond which sampling efforts may yield diminishing returns. This hold-out test dataset was used to obtain realistic predition error estimates	17
5	Map depicting sample outliers (large orange circles) removed from the training dataset by our algorithm adapted from GGOutlieR. Non-outliers are illustrated as the smaller green circles	18
6	Training dataset samples, with "x" markers depicting synthetically created samples via our custom Mendelian inheritance interpolation method algorithm from a regression-based SMOTE method. Synthetic sample generation frequencies are inversely proportional to the sampling density (samples $/ \mathrm{km}^2$). Circles represent real samples that were not synthetically created	19
7	Boxplots, summarized across '-nboots' bootstrap replicates, showing (Left) the mean and median prediction error, represented as the Haversine distance between predicted and recorded localities (in Kilometers). (Right) Pearson's and Spearman's correlation coefficients depicting the correlation between the predicted and recorded localities. This hold-out test dataset was used to obtain realistic predition error estimates	20
8	(Left) Area plot depicting prediction error (i.e., Haversine distance between predicted and recorded localities, in km) versus sampling density (samples / km²). The color gradient corresponds to the geographic interpolation of prediction error in (Figure 2). (Middle) Boxplot showing the mean prediction error. (Right) Quantile X quantile regression plot of mean prediction error. This hold-out test dataset was used to obtain realistic predition error estimates.	21

9	Samples (purple circles) selected for the training and test (i.e., hold-out) datasets and visualized on a map of Arkansas	22
10	Training and validation loss over all epochs, visualizing the model's learning process and allowing diagnosis of potential overfitting or underfitting	23
11	Geographic outlier gamma distribution used to identify the geographic outliers via our outlier removal algorithm adapted from GGOutlieR. The gamma distribution fit allows significant ($P < 0.05$) geographic outliers to be detected and removed from the training dataset	24
12	Geneetic outlier gamma distribution used to identify the genetic outliers via our outlier removal algorithm adapted from GGOutlieR. The gamma distribution fit allows significant ($P < 0.05$) genetic outliers to be detected and removed from the training dataset	25
13	Distribution of prediction errors (i.e., Haversine distance between predicted and recorded localities, in km) across N=100 bootstrap replicates. It visualizes the variability and spread of prediction errors, providing insights into the model's robustness and consistency.	26

GeoGenIE: Geolocation Predictions from SNPs using Deep Learning

Introduction

GeoGenIE (Geographic-Genetic Inference Engine) is a comprehensive software tool designed to predict geographic coordinates (longitude and latitude) from genetic SNP data. GeoGenIE utilizes deep learning models and offers several advanced features such as automated model parameter searches (via Optuna (Akiba et al. 2019)), outlier detection to remove translocated individuals (based on the GGOutlieR method (Chang et al. 2023)), handling of imbalanced sampling using a custom oversampling algorithm adapted from SMOTE (Lemaître, Nogueira, and Aridas 2017), and weighting the loss function by inverse sampling densities. The software is user-friendly and provides extensive visualizations and metrics for evaluating predictions, making it a robust and accurate solution for geographic-genetic inference.

GeoGenIE is designed for researchers in population genetics and molecular ecology, providing a powerful tool to infer geographic origins of individuals based on their genetic data. The software employs state-of-the-art deep learning techniques to handle complex genetic data and generate precise geographic predictions. However, researchers often face challenges due to imbalanced sampling, where certain geographic regions are overrepresented while others are underrepresented in the data. GeoGenIE addresses these challenges through several innovative algorithms.

GeoGenIE incorporates an outlier detection algorithm adapted from GGOutlieR to identify and remove individuals that have been translocated. This is crucial for ensuring the accuracy of geographic predictions by eliminating samples that could introduce bias. Additionally, GeoGenIE implements a weighted loss function using PyTorch, where inverse sample weights are used to focus the loss function more heavily on areas with lower sample densities. This approach helps in balancing the influence of samples from different regions, improving the robustness of the model.

Furthermore, GeoGenIE employs a regression-based synthetic oversampling method adapted from SMOTE. This method uses a genotype interpolation algorithm based on Mendelian inheritance to generate synthetic samples in underrepresented regions, thereby balancing the dataset. These advanced algorithms collectively enable GeoGenIE to provide reliable geographic predictions even in the presence of sampling imbalances.

Deep Learning Model Architecture

 $\label{eq:Figure 1: GeoGenIE model architecture diagram.}$

GeoGenIE was written in PyTorch. Below is the deep learning model architecture (Figure 1), as adapted from the original Locator architecture (Battey, Ralph, and Kern 2020). GeoGenIE allows lots of flexibility in the architecture, with each hidden layer either being constant or reduced by a factor with the --factor option. The model also includes batch normalization and dropout layers to reduce overfitting and facilitate better cross-batch training.

Installation

To install GeoGenIE, it is recommended to use a virtual environment or conda environment. From the root project directory, enter the following command:

pip install GeoGenIE

Dependencies

The following packages will be installed when running pip install GeoGenIE:

Here is the list of dependencies:

- python >= 3.11, <3.13
- geopandas
- geopy
- imblearn
- jenkspy
- kaleido
- kneed
- matplotlib
- numba
- numpy
- optuna
- pandas
- plotly
- pynndescent
- pykrige
- pysam
- pyyaml
- requests
- scikit-learn
- scipy
- seaborn
- statsmodels
- torch
- xgboost

Usage

Running GeoGenIE

GeoGenIE can be run with individual command-line arguments, but using a YAML config file is recommended. See config_files/config.yaml for a template YAML file. Assuming GeoGenIE is installed in your environment, you can run it like this:

```
geogenie --config config_files/config.yaml
```

Command-line Options

You can see all the command-line options by running the help flag:

```
1 geogenie -h
```

Note: If you do not want to use the configuration file, you can specify each argument individually on the command line. For example:

We do recommend using the configuration file, however, as it enables reproducible runs and also promotes ease-of-use when performing multiple runs.

Configuration File

You can set all the options for input files, model parameters, etc., in the config_files/config.yaml file. Using a configuration file allows tracking of parameters across multiple runs and ensures better reproducibility.

- Python None values are represented by null (without quotes).
- Python True values are represented by true (all lowercase, no quotes).
- Python False values are represented by false (all lowercase, no quotes).

You can also leave comments with # my_comment. The arguments can be in any order in the config_files/config.yaml file.

Running the Software

```
geogenie --config config_files/config.yaml
```

Required Input Files

Input Argument	Description
$\overline{\mathrm{vcf}}$	VCF file containing SNP data.
$sample_data$	CSV or TSV file with per-sample coordinates. Columns: "sampleID", "x",
	"y". Set unknown coordinates to "nan"

Input Argument	Description
known_coords_file	File with known coordinates for all samples. For per-sample bootstrap plots. Can be same as sample_data.

Algorithms to Mitigate Sampling Imbalance

GeoGenIE employs several advanced algorithms to accommodate sampling imbalances, ensuring robust and accurate geographic predictions:

Feature	Description
$\overline{\mathrm{detect_outliers}}$	Remove individuals deviating from expected geographic and/or genetic patterns.
$use_weighted$	Use inverse sample weights, focusing loss function on areas with lower densities.
oversample_method	Oversamples by generating synthetic samples in underrepresented regions.

GeoGenIE Features and Settings

Data Input and Preprocessing

GeoGenIE supports various options for data input and preprocessing:

Option	Description	Default	Importance
min_mac	Filters out SNPs with a minor allele count	2	High
max_SNPs	below the specified threshold. Limits the number of SNPs used in the analysis to reduce computational load.	None (Use all SNPs)	Medium

Model Configuration

Configure the deep learning model with the following options:

Option	Description	Default	Importance
${\mathrm{dropout_prop}}$	Dropout rate to reduce overfitting.	0.25	High
nlayers	Number of hidden layers in the neural network.	10	Medium
width	Number of neurons per hidden layer.	256	\mathbf{Medium}
criterion	Loss function. Options: 'rmse', 'huber', 'drms'.	"rmse"	Medium
load_best_params	Reuse the best parameters from a previous Optuna search	None	Medium

Option	Description	Default	Importance
dtype	PyTorch data type. Options: 'float32' or 'float64'.	"float32"	Medium

Model Configuration Tips

- **dropout_prop**: Adjust higher to reduce overfitting. Lower if underfitting.
- **criterion**: We recommend starting with the default "rmse" criterion, and then if you get poor performance, try "huber" next.
- load_best_params: Load the best params from the JSON file saved when running the Optuna grid search.
- dtype: Only "float32" is supported if using a GPU.
- **nlayers** and **width**: More layers or higher widths can learn more complex models, but use caution; setting too high can lead to overfiting.

Training Parameters

Define training parameters:

Option	Description	Default	Importance
max_epochs	Maximum number of training cycles.	5000	High
learning_rate	Step size used to update model weights.	0.001	High
train_split	Proportion of the dataset used for training.	0.8	High
val_split	Proportion of the dataset used for validation.	0.2	High
batch_size	Samples processed before updating model weights.	32	Medium
early_stop_patience	Epochs with no improvement before early stopping.	48	Medium
$l2_reg$	Used to penalize large weights, reducing overfitting.	0.0	Medium
$do_bootstrap$	Enable bootstrapping to estimate confidence intervals.	False	Medium
nboots	Number of bootstrap replicates.	100	Medium

Training Parameter Tips

- max_epochs: Set this high and let early stopping take effect.
- train split and val split: Ensure these sum to 1.0.
- batch_size: Larger values can lead to more training stability, but consumes more memory.

• **do_bootstrap**: Use this to estimate confidence intervals for predictions and evaluations.

Geographic Density Sampler

Configure the geographic density sampler:

Option	Description	Default	Importance
use_weighted	Weights samples by inverse density during training.	"none"	High
$over sample_method$	Generates synthetic samples in underrepresented regions.	"none"	High
oversample_neighbors	Number of nearest neighbors with synthetic samples.	5	Medium
use_kmeans	Use KMeans clustering for calculating inverse weights.	False	High
use_kde	Use Kernel Density Estimation to calculate inverse weights.	False	High
use_dbscan	Use DBSCAN clustering to calculate inverse weights.	False	Low
n_bins	Adjust granularity of the sampling density (KMeans method)	8	\mathbf{Medium}
w_power	Controls the strength of the sample weighting.	1.0	\mathbf{Medium}
max_clusters	Upper limit for the number of clusters with KMeans.	10	Medium
focus_regions	Specifies regions to prioritize during sampling.	None	Low
normalize_sample_weights	Put all sample weights on a comparable scale.	False	Low

Geographic Density Sampler Tips

- use_kmeans and use_kde: These methods are used to estimate inverse sampling densities for weighting samples during training. Gets used with the weighted loss function.
- use dbscan: This method is highly experimental still. Use with caution.
- w power: Increase to make sample weights more aggressive.
- use_weighted: Supported options are "none" or "loss". Enable "loss" weighting to focus model training on underrepresented regions to mitigate sampling imbalance.
- oversample_method: Enable this to generate synthetic samples in underrepresented regions in order to balance sampling densities. Supported options are "none" or "kmeans".

Outlier Detection

GeoGenIE can remove outliers flagged as distant from nearby samples in spatial and genetic contexts:

Option	Description	Default	Importance
$\overline{ ext{detect_outliers}}$	Remove samples deviating from expected geographic and genetic patterns.	False	High
min_nn_dist	Threshold (meters) to consider samples as outliers.	1000	Medium
scale_factor	Adjust geographic distance scaling for outlier detection.	100	Low
significance_level maxk	Set the p-value threshold for identifying outliers. Set number of nearest neighbor range considered in outlier detection.	0.05 50	Medium Medium

Outlier Detection Tips

- **detect_outliers**: Use this option if you suspect your study system has a history of e.g., translocations.
- min_nn_dist: Increase to detect only very distant outliers. Useful to exclude neighbors in close proximity.
- scale_factor: Best not to mess with, unless necessary.

Bootstrapping for Error Estimates

To obtain confidence intervals for locality predictions, enable bootstrapping with the --do_bootstrap boolean option. Bootstrapping is parallelized, and you can set the number of CPU threads with --n_jobs <n_cpus> or --n_jobs -1 to use all available CPU threads.

Using bootstrapping generates additional plots showing confidence intervals for each sample, saved in <output_dir>/plots/bootstrapped_sample_ci/ci/prefix>_bootstrap_ci_plot_<test/val/prefix>_bootstrap_ci_plot_

The file type for output plots can be specified with --filetype "pdf", --filetype "png", or --filetype "jpg". The number of bootstrap replicates can be changed with --nboots <integer>.

Embedding Settings

GeoGenIE offers several embedding options for input features (i.e., loci). We recommend starting without using embeddings, but if you have very high-dimensional data or are getting poor performance due to many uninformative loci, try using one of the embedding methods:

Option	Description	Default	Importance
embedding_type	Embedding input SNPs to reduce dimensionality.	"none"	High

Option	Description	Default	Importance
n_components	Set the number of components to retain in the embedding.	None	Medium
$embedding_sensitivity$	Adjust the sensitivity for determining number of components.	1.0	Medium
$tsne_perplexity$	Control the balance between local and global aspects T-SNE.	30	Medium
polynomial_degree	Set the polynomial degree if "polynimial" method is used.	2	Low
n_init	Set number of embedding initializations.	4	Low

Embedding Setting Tips

- embedding_type: Supported options include: "none", "kernelpca", "nmf", "lle", "mca", "mds", "polynomial", and "tsne". We recommend starting with "none". This option is most useful if you have many loci that are uninformative. "lle" = Locally Linear Embedding, mca = "Multiple Correspondence Analysis", "nmf" = "Non-negative Matrix Factorization", "mds" = "Multi-Dimensional Scaling", "tsne" = "T-distributed Stochastic Neighbor Embedding", "polynomial" = "PolynomialFeatures".
- n_components: Number of components (dimensions) to retain with embedding.
- polynomial_degree: Only used if "embedding_type" is set to "polynomial". CAU-TION: Setting this value higher than 2 can lead to extremely heavy computational loads.

Plot Settings
Set plotting parameters to customize the visualizations:

Option	Description	Default	Importance
show_plots	Control whether plots are displayed interactively (in-line).	False	Low
fontsize	Set the font size for all text in the plots.	24	\mathbf{Low}
filetype	Specify the file format for saving plots.	"png"	\mathbf{Low}
plot	Set the resolution for image format plots.	300	Low
remove_splines	Control whether axis lines are removed from plots.	False	Low
shapefile	Specify the shapefile to use as a base map.	Continent USA	$\mathrm{al}\mathbf{Low}$
basemap_fips	Subset the basemap to focus on a specific region using FIPS code.	None	Low
highlight_basemap_counties	Highlight counties on the base map by name.	None	\mathbf{Low}
samples_to_plot	Specify samples to plot with bootstrap contours.	None	Low
n_contour_levels	Set the number of contour levels for Kriging plots.	20	Low
$\min_colorscale$	Set the minimum value for the color scale in Kriging plots.	0	Low
max_colorscale	Set the maximum value for the color scale in Kriging plots.	300	Low

Option	Description	Default	Importance
sample_point_scale bbox_buffer	Adjusts the size of sample points in plots. Adds a buffer around the sampling area in map visualizations.	2 0.1	Low Low

Output and Miscellaneous

Option	Description	Default	Importance
prefix	Set a prefix for all output files.	"output"	High
output_dir	Specify the directory for storing output files.	"output"	High
n_jobs	Number of CPU threads used for parallel processing.	-1	High
gpu_number	Specify the GPU to use for computation.	None (CPU only)	Low
seed	Set a random seed for reproducible results results.	None	Low
sqldb	Store Optuna optimization results in SQLite3 database	None	Low
verbose	Set the level of detail for logging messages.	1	Low

Output Files and File Structure

Outputs are saved to the directory specified by --output_dir <my_output_dir>/fix_>_*. The prefix is specified with --prefix cprefix>. The directory structure of <output_dir> includes:

Directory	Description
benchmarking	Execution times for model training and prediction.
bootstrapped_sample_ci	One plot per sample showing confidence intervals
	on a map.
bootstrap_metrics	Files with evaluation metrics per bootstrap.
$bootstrap_predictions$	CSV files containing predictions for each bootstrap
h 4 - 4	replicate.
bootstrap_summaries	Bootstrap summary statistics (aggregated).
data	Text files with detected outliers.
logfiles	Logs with INFO, WARNING, and ERROR
	messages.
models	Trained PyTorch models saved as ".pt" files.
optimize	Optuna results, including the best-found parameters (JSON file).

Directory	Description
plots	All plots and visualizations.

CAUTION: Re-running GeoGenIE with the same output_dir and prefix will overwrite all outputs except the Optuna SQL database.

Plot Descriptions

Figure 2: Geographic error distribution of the model predictions interpolated across the Arkansas landscape. Interpolated contour levels represent error magnitudes. Prediction error is Haversine distance between the predicted and recorded localities, in km. This hold-out test dataset was used to obtain realistic predition error estimates.

Predicted Points

83MR1N015: Bootstrapped Locality Predictions

Figure 3: GeoGenIE bootstrap predictions (gray circles; N=100), with the geographic centroid of the bootstrap replicates being marked by \mathbf{X} and the recorded locality as \blacktriangle . Orange, blue, and pink contours contain 90, 70, and 50 percent of the bootstrap replicates, respectively. This hold-out test dataset was used to obtain realistic predition error estimates.

Figure 4: Linear and non-linear (3 rd order polynomial) regressions between sampling density (samples / km²) and prediction error (km). Prediction error is the Haversine distance between the predicted and recorded localities. The orange dashed line represents optimal sampling density as the knee of the polynomial curve, beyond which sampling efforts may yield diminishing returns. This hold-out test dataset was used to obtain realistic predition error estimates.

Outliers Removed from Dataset Outlier Status Sizes Non-Outlier Outlier

Figure 5: Map depicting sample outliers (large orange circles) removed from the training dataset by our algorithm adapted from GGOutlieR. Non-outliers are illustrated as the smaller green circles.

Oversampling Groups

Figure 6: Training dataset samples, with "x" markers depicting synthetically created samples via our custom Mendelian inheritance interpolation method algorithm from a regression-based SMOTE method. Synthetic sample generation frequencies are inversely proportional to the sampling density (samples $/\ \rm km^2$). Circles represent real samples that were not synthetically created.

Figure 7: Boxplots, summarized across '-nboots' bootstrap replicates, showing (Left) the mean and median prediction error, represented as the Haversine distance between predicted and recorded localities (in Kilometers). (Right) Pearson's and Spearman's correlation coefficients depicting the correlation between the predicted and recorded localities. This hold-out test dataset was used to obtain realistic predition error estimates.

Figure 8: (Left) Area plot depicting prediction error (i.e., Haversine distance between predicted and recorded localities, in km) versus sampling density (samples / km²). The color gradient corresponds to the geographic interpolation of prediction error in (Figure 2). (Middle) Boxplot showing the mean prediction error. (Right) Quantile X quantile regression plot of mean prediction error. This hold-out test dataset was used to obtain realistic predition error estimates.

Figure 9: Samples (purple circles) selected for the training and test (i.e., hold-out) datasets and visualized on a map of Arkansas.

Figure 10: Training and validation loss over all epochs, visualizing the model's learning process and allowing diagnosis of potential overfitting or underfitting.

Figure 11: Geographic outlier gamma distribution used to identify the geographic outliers via our outlier removal algorithm adapted from GGOutlieR. The gamma distribution fit allows significant (P < 0.05) geographic outliers to be detected and removed from the training dataset.

Figure 12: Geneetic outlier gamma distribution used to identify the genetic outliers via our outlier removal algorithm adapted from GGOutlieR. The gamma distribution fit allows significant (P < 0.05) genetic outliers to be detected and removed from the training dataset.

Figure 13: Distribution of prediction errors (i.e., Haversine distance between predicted and recorded localities, in km) across N=100 bootstrap replicates. It visualizes the variability and spread of prediction errors, providing insights into the model's robustness and consistency.

Metric Descriptions

Metric	Description
	-
Root Mean	Measures the square root of the average squared differences between
Squared Error	predicted and actual values. Lower values indicate better
(RMSE)	performance.
Mean Absolute	Calculates the average absolute differences between predicted and
Error (MAE)	actual values. Less sensitive to outliers compared to RMSE.
Huber Loss	Combines RMSE and MAE, balancing sensitivity to outliers and
7.6 D.	overall accuracy. Useful for datasets with outliers.
Mean Distance	Measures the average distance between predicted and actual
(mean_dist)	geographic coordinates. Lower values indicate better predictive
7.5 W D	accuracy.
Median Distance	Represents the middle value of the distance distribution between
$(median_dist)$	predicted and actual geographic coordinates. Less sensitive to
	extreme values.
Standard	Measures the dispersion of distances between predicted and actual
Deviation of	geographic coordinates. Lower values indicate consistency.
Distance	
$(stdev_dist)$	
Kolmogorov-	Quantifies the maximum difference between the empirical
Smirnov Statistic	distributions of predicted and actual distances.
(kol-	
mogorov_smirnov	
Kolmogorov-	Indicates the statistical significance of the Kolmogorov-Smirnov test.
Smirnov p-value	Lower values suggest significant differences in distributions.
(kol-	1)
mogorov_smirnov	- ,
Skewness	Measures the asymmetry of the distance distribution. Positive
(skewness)	values indicate a longer right tail; negative values, a longer left tail.
Spearman's Rank Correlation	Measures the monotonic relationship strength and direction between
Coefficient (rho)	predicted and actual coordinates. Values close to 1 or -1 indicate strong relationships.
Spearman's Rank	Assesses the statistical significance of Spearman's rho. Lower values
Correlation	indicate significant relationships.
p-value (rho_p)	indicate significant relationships.
Spearman	Measures the Spearman correlation between predicted and actual
Correlation for	longitude values. Higher values indicate stronger relationships.
Longitude	iongrade values. Ingher values indicate stronger relationships.
Spearman	Measures the Spearman correlation between predicted and actual
Correlation for	latitude values. Higher values indicate stronger relationships.
Latitude	iamude values. Tilgher values indicate stronger relationships.
Lautuuc	

Metric	Description
Spearman	Assesses the statistical significance of Spearman correlation for
p-value for	longitude. Lower values indicate significant relationships.
Longitude	
Spearman	Assesses the statistical significance of Spearman correlation for
p-value for	latitude. Lower values indicate significant relationships.
Latitude	
Pearson	Measures the Pearson correlation between predicted and actual
Correlation for	longitude values. Higher values indicate stronger linear relationships.
Longitude	
Pearson	Measures the Pearson correlation between predicted and actual
Correlation for	latitude values. Higher values indicate stronger linear relationships.
Latitude	
Pearson p-value	Assesses the statistical significance of Pearson correlation for
for Longitude	longitude. Lower values indicate significant linear relationships.
Pearson p-value	Assesses the statistical significance of Pearson correlation for
for Latitude	latitude. Lower values indicate significant linear relationships.
Mean Absolute	Calculates the mean absolute deviation using the Haversine formula,
Deviation	accounting for Earth's curvature. Measures average absolute
Haversine	distances.
$(\text{mad}_\text{haversine})$	
Coefficient of	Ratio of the standard deviation to the mean distance. Standardized
Variation (coeffi-	measure of distance dispersion.
cient_of_variation	
Interquartile	Measures the spread of the middle 50% of the distance distribution.
Range	Calculated as the difference between the 75th and 25th percentiles.
(interquar-	
$tile_range)$	
25th Percentile	Represents the value below which 25% of distances fall in the
$(percentile_25)$	distribution.
50th Percentile	Represents the median value of the distance distribution, indicating
(percentile_50)	the middle distance.
75th Percentile	Represents the value below which 75% of distances fall in the
(percentile_75)	distribution.
Percent Within	Indicates the percentage of predicted coordinates within 20 km of
20km (per-	actual coordinates. Higher values indicate better accuracy.
cent_within_20km	,
Percent Within	Indicates the percentage of predicted coordinates within 50 km of
50km (per-	actual coordinates. Higher values indicate better accuracy.
cent_within_50km	
Percent Within	Indicates the percentage of predicted coordinates within 75 km of
75km (per-	actual coordinates. Higher values indicate better accuracy.
$cent_within_75km$	n)

Metric	Description
Mean Absolute	Measures the average absolute z-score of distances, providing a
Z-Score	standardized measure of distance deviation from the mean.
$(mean_absolute_z_score)$	

Glossary

Term	Definition
Activation Function	A mathematical function applied to each neuron in a neural network to introduce non-linearity. Common examples include ReLU, sigmoid, and tanh.
Backpropagation	A training algorithm where the error is propagated backward through the network to update the weights, minimizing the loss function.
Batch	A technique to normalize inputs to each layer, stabilizing and
Normalization	speeding up the training of deep neural networks.
Bootstrapping	A statistical method that involves resampling a dataset with
	replacement to estimate variability and create confidence intervals.
Confidence	A range of values likely to contain the true value of a parameter,
Intervals	providing a measure of uncertainty in the estimate.
Convolutional	A type of deep learning model effective for image and spatial data
Neural Network	processing using convolutional layers.
Cross-Validation	A technique to evaluate model performance by dividing data into
	subsets for training and testing in different combinations.
Dropout	A regularization technique that randomly sets a fraction of input
	units to zero during training to prevent overfitting.
Early Stopping	A regularization method that halts training when the validation
	performance stops improving, preventing overfitting.
Epoch	One complete pass through the entire training dataset during model
	training.
Feedforward	A simple neural network where connections between nodes do not
Neural Network	form a cycle.
Gradient	A machine learning technique that builds an ensemble of weak
Boosting	models, typically decision trees, to correct errors sequentially.
Haversine	A formula to calculate the distance between two points on a sphere,
Formula	accounting for Earth's curvature, using latitude and longitude.
Hyperparameter	The process of tuning hyperparameters like learning rate or number
Optimization	of layers using methods such as grid search or Bayesian optimization.
Imbalanced	A situation where some classes are overrepresented or
Sampling	underrepresented, leading to biased models.
KMeans	An algorithm to partition data into K clusters by grouping data
Clustering	points with the nearest mean.
Learning Rate	A hyperparameter that controls how much to update the model weights during training.

Term	Definition
Mean Absolute	Measures the average absolute differences between predicted and
$\operatorname{Error}\ (\operatorname{MAE})$	actual values. Less sensitive to outliers than RMSE.
Mendelian	Principles of heredity describing the segregation and independent
Inheritance	assortment of alleles.
Minor Allele	The count of the less common allele in a population. A minimum
Count (MAC)	MAC threshold helps filter out rare variants.
Neural Network	A computational model inspired by the human brain, composed of
	interconnected layers of nodes for tasks like classification.
Optuna	A hyperparameter optimization framework using techniques like
	Bayesian optimization to efficiently search the parameter space.
Detecting	The process of identifying and removing data points that deviate
Outliers	significantly from the dataset, improving model accuracy.
Overfitting	A modeling error where the model learns noise or details in training
	data, reducing performance on unseen data.
Principal	A dimensionality reduction technique transforming data into
Component	uncorrelated variables called principal components.
Analysis (PCA)	
Regularization	Techniques like L1 and L2 that add penalties to the loss function to
	prevent overfitting.
Root Mean	Measures the square root of the average squared differences between
Squared Error	predicted and actual values. Lower values indicate better
(RMSE)	performance.
Sampling	The concentration of samples in a given area, affecting the balance of
Density	the dataset.
\mathbf{SMOTE}	Generates synthetic samples for the minority class by interpolating
(Synthetic	between existing samples.
Minority	
Over-sampling	
Technique)	
Spearman's	A non-parametric measure of monotonic relationships between two
Rank	variables, ranging from -1 to 1.
Correlation	
Coefficient	
Synthetic	Generating synthetic data points to balance an imbalanced dataset,
Oversampling	improving model performance.
T-SNE	A dimensionality reduction technique for visualizing high-dimensional
(t-distributed	data.
Stochastic	
Neighbor	
Embedding)	
Underfitting	A modeling error where the model is too simple to capture data
	structure, resulting in poor performance.

Term	Definition
Validation Split	The portion of the dataset used to evaluate model performance
	during training to detect overfitting.
Weighted Loss	Assigns different weights to samples based on importance, focusing on
Function	areas with lower sampling densities.
Xavier	A weight initialization method ensuring equal variances of input and
Initialization	output, improving convergence speed during training.

References

- Akiba, Takuya, Shotaro Sano, Takeru Yanase, Toshihiko Ohta, and Masanori Koyama. 2019. "Optuna: A Next-Generation Hyperparameter Optimization Framework." In *Proceedings* of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–31. ACM.
- Battey, C. J., P. L. Ralph, and A. D. Kern. 2020. "Predicting Geographic Location from Genetic Variation with Deep Neural Networks." *eLife* 9: e54507. https://doi.org/10.7554/eLife.54507.
- Chang, Author et al. 2023. "GGoutlieR: An r Package to Identify and Visualize Unusual Geo-Genetic Patterns of Biological Samples." *Journal of Open Source Software* 8 (91): 5687. https://doi.org/10.21105/joss.05687.
- Lemaître, Guillaume, Fernando Nogueira, and Christos K Aridas. 2017. "Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning." Journal of Machine Learning Research 18 (17): 1–5.