Wiskunde voor KI - deel I

§3.2 Set definitions

$A \subseteq B \dots \forall x (x \in A \to x \in B)$
laat $Y = \{1, 2\}$ $1 \in Y$
$\{1\} \subseteq Y$ $1 \in \{1\} \rightarrow 1 \in Y$
$A \nsubseteq B \dots \exists x (x \in A \to x \notin B)$
$A = B \dots \forall A \forall B (A \subseteq B \land B \subseteq A)$
$\mathscr{P}(A)$ $\{X \mid X \subseteq A\}$
$a \in \mathscr{P}(A) \ldots \Longleftrightarrow a \subseteq A$
$a \in A \dots \neq a \subseteq A$
$\mathscr{P}(A)$
$\mathscr{P}(\{a,b\})$ $\{\emptyset,\{a\},\{b\},\{a,b\}\}$

§3.3 Set operations

$A \cup B$ (union)
$A \cap B$ (intersection) $\{x \mid x \in A \text{ en } x \in B\}$
A en B zijn disjoint wanneer $A \cap B = \emptyset$
set difference A–B (of \setminus) $\{x \mid x \in A \text{ en } x \notin B\}$
Cartesian product $A \times B \dots \{(a,b) \mid a \in A \text{ en } b \in B\}$
${a,b} \times {1,2} \dots {(a,1),(a,2),(b,1),(b,2)}$
$A \times \emptyset$ is gelijk aan \emptyset

§3.4 Families of Sets

§4 Functies

Een functie (map) f van A naar B, $f: A \to B$, is een subset $F \subseteq A \times B$ zodat voor elke $a \in A$ één paar $(a,b) \in F$ bestaat. A is het domein, B het codomein. range van $f: A \to B$ $\{b \in B \mid \exists a \in A(f(a) = b)\}$ $f: A \to B$ $f(x) \in B$ union of disjoint subsets $\begin{cases} x, \text{ if } x \geq 0 \\ -1, \text{ if } x < 0 \end{cases}$ not disjoint, but well-defined $\begin{cases} x^2, \text{ if } x \geq 3 \\ x + 6, \text{ if } x \leq 3 \end{cases}$

well-defined potential problems don't occur
equal functions $\dots (A, B, F)$ zijn gelijk
constante $f: A \to B \dots \exists (b \in B) \forall (a \in A) (f(a) = b)$
identiteit(1 _x) $f: A \to A$ $\forall a (a \in A \to f(a) = a)$
inclusie $f: A \to B$ $\forall (a \in A)(A \subseteq B \land f(a) = a)$
gegeven $f: A \to B$ en $C \subseteq A$:
restrictie $f \mid_C : C \to B \dots \forall (c \in C)(f \mid_C (a) = f(a)$
gegeven $f: A \to B$ en $C \supseteq A$:
extensie $g: C \to B$ van $f \ldots \forall (a \in A)(g(a) = f(a))$
projectie $\pi_1: A \times B \to A \dots \pi_1(a,b) = a$
projectie $\pi_2 \colon A \times B \to B \dots \pi_2(a,b) = b$

§4.2 Inverse Image

Laat functie $f \colon A \to B$, subsets $P \subseteq A$ en $Q \subseteq B$ image set $P \colon f(P) \dots \{b \in B \mid b = f(p) \text{ for some } p \in P\}$ inverse set $Q \colon f^{-1}(Q) \dots \{a \in A \mid f(a) \in Q\}$ $f^{-1}(Q) \dots \{a \in B \mid b = f(p) \text{ for some } p \in P\}$ inverse set: $f^{-1}(Q) \dots \{a \in A \mid f(a) \in Q\}$ inverse set: $f^{-1}(Q) \dots \{a \in B \mid b = f(p) \text{ as subset of } A\}$ inverse function: $f^{-1} \dots \{a \in B \mid b = f(p) \text{ for some } a \text{ subset of } A\}$ if f^{-1} exists $f^{-1} \in A$ (not subset of A)

§4.4 ...jective functions

0
injectie iedereen heeft een eigen stoel
injectie $\forall (x, y \in A)(x \neq y \rightarrow f(x) \neq f(y))$
injectie $\forall (x, y \in A)(f(x) = f(y) \rightarrow x = y)$
surjectie alle stoelen zijn gevuld
surjectie $\forall (b \in B) \exists (a \in A) (f(a) = b)$
bijectie zowel injective als surjective
bijectie $f: A \to B \dots A$ en B evenveel elementen
als f bijectie dan f^{-1} bijectie
$f: X \to Y$ een bijectie desda f^{-1} bestaat

§5.1 Relations

relation R from A to B $\bar{R} \subseteq A \times B$
aRb if $(a,b) \in R$
Laat R en S relaties van A naar B zijn:
$R = S \dots \forall (a \in A, b \in B)(aRb \iff aSb)$
$R[x]$ $\{y \in B \mid xRy\}$
reflexive $\forall (x \in A)(xRx)$
symmetric $\forall (x, y \in A)(xRy \rightarrow yRx)$
transitive $\forall (x, y, z \in A)(xRy \land yRz \rightarrow xRz)$

$\S 5.2$ Equivalence

equivalence reflexive	e, symmetric and transitive
quotient set $A/\sim\ldots$	$\ldots \ldots \{[x] \mid x \in A\}$
partition	punten van een taart

A partition of A is a family $\mathcal D$ of non-empty subsets of A such that:

partition #1
$$(P, Q \in \mathcal{D} \land P \neq Q \rightarrow P \cap Q = \emptyset)$$

partition #2 $\bigcup_{P \in \mathcal{D}} P = A$

§6 Infinity

80 Illillity
1:basisstap bewijs $P(0)$
2:inductiestap bewijs $\forall (n \in \mathbb{N})(P(n) \to P(n+1))$
zelfde kardinaliteit $X \sim Y$ als $f: X \to Y$ bijectie
$\mathbb{N} \sim \dots \qquad \mathbb{N}_{>0} \sim \mathbb{Z} \sim \mathbb{Q} \sim \mathbb{N} \times \mathbb{N}$
$f: \mathbb{N} \cup \{\{0\}\} \to \mathbb{N} \dots \left\{ f(\{0\}) = 0 \\ n \in \mathbb{N}: f(n) = n+1 \right\}$
$n \in \mathbb{N} : f(n) = n+1$
als $A \sim B$ dan $B \sim A$
als $A \sim B$ en $B \sim C$
X heet finite $\exists (n \in \mathbb{N})(X \sim \{1, 2,, n\})$
A is finite $B \subseteq A \rightarrow B$ is finite
X heet infinite als $X \neq \text{finite}$
countably infinite $\sim \mathbb{N}$
countable finite of $\sim \mathbb{N}$
uncountable not countable
$\mathbb{N} \sim \mathbb{Z} \text{ voor } f: \mathbb{Z} \to \mathbb{N} \dots f(n) = \begin{cases} 2n-1, \text{ als } n > 0 \\ -2n, \text{ als } n \leq 0 \end{cases}$
$f: \{1, 2,, n\} \to \mathbb{N} \exists q \forall i (f(q) \ge f(i))$

Een subset van de set colleges Wiskunde voor KI 2017-2018 door Benjamin Rin. Verzameld door R. Grouls.

Notatie: vanwege ruimtegebruik gebruik ik soms $\forall (a \in A)(...)$ in plaats van $\forall a (a \in A...)$.