

UNIDADE IV - MORTALIDADE

ANA MARIA NOGALES VASCONCELOS

Tábua de Vida - Construção

- Tábua de Vida é um modelo que descreve a experiência de mortalidade de uma coorte (real ou hipotética) em função da idade.
- É um modelo longitudinal
- Acompanha-se uma coorte de l_0 nascimentos até a sua extinção (ω)

FUNÇÕES DA TÁBUA DE VIDA

Na Tábua de Vida, as funções podem ser:

- de idade exata
- de intervalo

Idade	1_x	$_{n}\mathbf{q}_{x}$	$_{n}d_{x}$	$_{n}\mathbf{p}_{x}$	$_{n}L_{x}$	$\mathbf{T_x}$	e ⁰ x
0							
1							
5							
10							
15							
20							
•							
•							
•							
•							
•							
75 e +							

Dados necessários para a construção de uma Tábua de Vida

- Definir l_0
 - $l_0 = 1$
 - $l_0 = 10.000$
 - $l_0 = 100.000 *$
- Estimar as probabilidades de morte por idade $\{p_i, q_i\}$
- Estimar o tempo vivido pelos que morreram ao longo do grupo etário $\{n_x\}$ ou $\{n_x\}$

Estimar as probabilidades de morte por idade $\{nq_x\}$

- Na Tábua de vida de gerações
 ou coortes, como a observação
 é no longitudinal, as
 estimativas das probabilidades
 de morte podem ser obtidas
 diretamente.
- Esse tipo de tábua é muito empregada na área atuarial.

Estimar as probabilidades de morte por idade $\{nq_x\}$

- Na Tábua de *vida de momento ou período*, como a observação é no **transversal**, as probabilidades de morte são obtidas **indiretamente**, a partir das taxas específicas de mortalidade $\binom{n}{M_x}$.
- Ou seja, a partir de uma observação de momento, devemos transpor para uma experiência de coorte.

Estimar as probabilidades de morte por idade $\{nq_x\}$ a partir da taxas de mortalidade $\{nM_x\}$

- Considerar as funções da Tábua de Vida:
 - $_nm_x$ taxa central de mortalidade (modelo)
 - $_{n}q_{x}$ probabilidade de morte

$$_{n}m_{x} = \frac{_{n}d_{x}}{_{n}L_{x}} \longrightarrow _{n}q_{x} = \frac{_{n}d_{x}}{l_{x}}$$

A diferença entre as duas funções está no denominador

- l_x : número de pessoas que alcançam com vida a idade exata x de uma uma geração inicial de l_0 nascimentos.
- ${}_{n}L_{x}$: número de anos-pessoa vividos pela coorte l_{0} entre as idades exatas x e x + n;

$$_{n}L_{x}=\int_{x}^{x+n}l_{a}\partial a$$

$$_{n}L_{x} = n l_{x+n} + _{n}k_{x} *_{n}d_{x}$$
 onde:

nk_x ou na_x: tempo médio vivido dentro do intervalo pelas nd_x pessoas que faleceram.

FUNÇÕES DE SOBREVIVÊNCIA DA TÁBUA DE VIDA

 $l_x e_n L_x$

• l_x : varia em forma linear:

$$_{n}q_{x}=\frac{2n_{n}m_{x}}{2+n_{n}m_{x}}$$

Neste caso: ${}_{n}k_{x} = \frac{n}{2}$

ou seja, os óbitos distribuem-se uniformemente ao longo do grupo etário x, x+n

• l_x : varia exponencialmente:

$$_{n}q_{x}=1-e^{-n_{n}m_{x}}$$

Neste caso: ${}_{n}k_{x}$ tem distribuição exponencial. Os óbitos concentram-se no início ou no final do intervalo etário.

• Considerando os fatores de separação $\binom{n}{k_x}$ ou $\binom{n}{a_x}$ ou o tempo médio vivido pelos mortos no intervalo x, x + n:

$${}_{n}q_{x} = \frac{n {}_{n}m_{x}}{1 + (n - {}_{n}k_{x})_{n}m_{x}}$$

- Método de Reed-Merrel (1969) utilizado pelo IBGE
 - Expressão geral:

$$_{n}q_{x} = 1 - e^{-n*_{5}m_{x}-a*_{5}m_{x}^{2}}$$

• Para idades a partir de 5 anos – grupos quinquenais:

$$_{5}q_{x} = 1 - e^{-5*_{5}m_{x}-0.008*5^{3}*_{5}m_{x}^{2}}$$

onde a=0,008

Desenvolvido com base na experiência de mortalidade norte-americana em 1939

• Método de Reed-Merrel (1969) - utilizado pelo IBGE

• Para menores de 1 ano:

$$_{1}q_{0} = 1 - e^{-1}m_{0}*(0,9539-0,5509_{1}m_{0})$$

• Para idades entre 1 e 4 anos:

$$_{4}q_{1} = 1 - e^{-4} *_{4} m_{1} * (0,9806 - 2,079_{4} m_{1})$$

- Para o cálculo de ${}_{n}q_{x}$, substituir ${}_{n}m_{x}$ por ${}_{n}M_{x}$
- No caso de $_{1}q_{0}$, se os dados são de boa qualidade, pode-se utilizar os valores obtidos a partir do cálculo direto da Taxa de Mortalidade Infantil

Cálculo das primeiras funções da Tábua de vida

X	n	nMx nqx		lx	ndx
0	1	0,0174948	0,0260000	100.000	2.600
1	4	0,0009758	0,0038947	97.400	379
5	5	0,0004483	0,0022391	97.021	217
10	5	0,0003005	0,0015014	96.803	145
15	5	0,0006227	0,0031086	96.658	300
20	5	0,0007682	0,0038336	96.358	369
25	5	0,0009986	0,0049804	95.988	478
30	5	0,0011008	0,0054891	95.510	524
35	5	0,0014619	0,0072830	94.986	692
40	5	0,0019512	0,0097085	94.294	915
45	5	0,0026088	0,0129595	93.379	1.210
50	5	0,0044492	0,0220014	92.169	2.028
55	5	0,0079109	0,0387875	90.141	3.496
60	5	0,0127881	0,0619595	86.644	5.368
65	5	0,0136426	0,0659631	81.276	5.361
70	5	0,0197500	0,0941036	75.915	7.144
75	5	0,0334324	0,1542681	68.771	10.609
80	+	0,0815822	1,0000000	58.162	58.162

Fatores de separação $_{n}k_{x}$ ou $_{n}a_{x}$

Considerações para o cálculo dos fatores de separação:

• fatores de separação são muito importantes para o cálculo da função $_{n}L_{x}$ sobretudo para as idades (ou grupos de idade) extremas, crianças e idosos.

• ${}_{n}L_{x}$: - número de anos-pessoa vividos pela coorte l_{0} entre as idades exatas x e x + n;

$$_{n}L_{x} = n l_{x+n} + _{n}k_{x} *_{n}d_{x}$$
 onde:

 $_{n}$ k_x ou $_{n}$ a_x: tempo médio vivido dentro do intervalo pelas $_{n}$ d_x pessoas que faleceram.

- Para as idades intermediárias ($x \ge 5$ antes do grupo aberto)
 - admite-se que l_x varia em forma linear:

$${}_{n}L_{x}=n\left(\frac{l_{x}+lx_{+n}}{2}\right)$$

Observar que: $nk_x = \frac{n}{2}$

Regra do trapézio

• Para as primeiras idades (x < 5)

$$L_x = f_x l_x + (1-f_x)l_{x+n}$$
 $x = 0, 1, 2, 3, 4$

 f_x : fator de separação das mortes nas primeiras idades

$$f_0 = 0.10 \ a \ 0.35$$

$$f_1 = 0.41$$

$$f_2 = 0.47$$

$$f_3 = f_4 = 0.48$$
Fatores de separação de Glover

Fatores de separação $_{n}k_{x}$ ou $_{n}a_{x}$

Muitas vezes, para a obtenção dos fatores de separação ${}_{n}k_{x}$ ou ${}_{n}a_{x}$, recorre-se a algum conjunto de *tábuas-modelo*

Tábuas de Vida Modelo

As Tábuas de Vida Modelo expressam uma síntese de experiências de mortalidade observadas. Busca-se modelar a mortalidade a partir de tábuas de vida de diversos países em distintos momentos no tempo. Essas tábuas de vida modelo tentam captar as várias dimensões de variabilidade dessas experiências de mortalidade: intensidade, estrutura etária e por sexo, relação entre as intensidades de mortalidade por idade

- Tábuas de vida modelo mais utilizadas atualmente:
 - Nações Unidas
 - Coale-Demeny
 - OCDE
 - GBD

Fatores de separação nk_x ou na_x na Tábuas de Vida Modelo

Para idades inicias, segundo o modelo de Coale-Demeny:

Homens		Mulheres			
$_{1}k_{0} = 0.33$ $_{1}k_{0} = 0.045 + 2.684 _{1}M_{0}$	se $_1M_0 \ge 0.107$ se $_1M_0 < 0.107$	$_{1}k_{0} = 0.35.$ $_{1}k_{0} = 0.053 + 2.8 _{1}M_{0}$	se ${}_{1}M_{0} \ge 0.107$ se ${}_{1}M_{0} < 0.107$		
$_{4}$ $k_{1} = 1,651-2,816 _{1}M_{0}$		$_{4}$ $k_{1} = 1,522-1,518 _{1}M_{0}$			

Para o grupo aberto final (x+)

$$_{n}L_{x}=n\ l_{x+n}+_{n}k_{x}*_{n}d_{x}$$

$$L_{x+} = k_{x+} * d_{x+} \text{ ou } L_{x+} = k_{x+} * l_x$$

- Para o grupo aberto final (x+)
 - Propostas:
 - Nações Unidas

$$L_{85+} = l_{85} * log l_{85}$$

Coale-Demeny

$$L_{80+} = (3,725 + 0,0000625 l_{80}) l_{80}$$

América Latina

$$L_{75+} = (5,731 + 0,0000654 l_{75}) l_{75}$$

$$L_{80+} = (4,769 + 0,0000536 l_{80}) l_{80}$$

$$L_{85+} = (3,862 + 0,0000466 l_{85}) l_{85}$$

Fatores de separação $_{n}k_{x}$ ou $_{n}a_{x}$

Considerações para o cálculo dos fatores de separação:

- No caso de se dispor de Registro Civil e Estatísticas Vitais de boa qualidade, os fatores de separação podem ser estimados a partir desses dados de óbitos registrados.
- Calcula-se o tempo de vida para cada falecido no grupo etário de idade ao morrer:

TEMPO TOTAL DE VIDA = DATA DO ÓBITO – DATA DE NASCIMENTO

TEMPO DE VIDA NO INTERVALO ETÁRIO = TEMPO TOTAL DE VIDA – LIMITE INFERIOR DO INTERVALO

 $_{n}k_{x}$ = Média dos tempos de vida no intervalo

Cálculo das funções da Tábua de vida

X	n	$_{n}M_{x}$	$_{n}k_{x}$	$_{n}q_{x}$	I _x	$n d_x$	$n L_x$	T _x	e x
A	••	n''' x	n ^N x	n Y x	* X	n ~ x	n - x	* x	C _X
0	1	0,0174948	0,110	0,0260000	100.000	2.600	97.686	7.596.351	75,96
1	4	0,0009758	1,800	0,0038947	97.400	379	388.765	7.498.665	76,99
5	5	0,0004483	2,500	0,0022391	97.021	217	484.560	7.109.900	73,28
10	5	0,0003005	2,500	0,0015014	96.803	145	483.654	6.625.339	68,44
15	5	0,0006227	2,500	0,0031086	96.658	300	482.539	6.141.686	63,54
20	5	0,0007682	2,500	0,0038336	96.358	369	480.865	5.659.146	58,73
25	5	0,0009986	2,500	0,0049804	95.988	478	478.746	5.178.282	53,95
30	5	0,0011008	2,500	0,0054891	95.510	524	476.240	4.699.536	49,20
35	5	0,0014619	2,500	0,0072830	94.986	692	473.200	4.223.296	44,46
40	5	0,0019512	2,500	0,0097085	94.294	915	469.182	3.750.096	39,77
45	5	0,0026088	2,500	0,0129595	93.379	1.210	463.868	3.280.914	35,14
50	5	0,0044492	2,500	0,0220014	92.169	2.028	455.773	2.817.046	30,56
55	5	0,0079109	2,500	0,0387875	90.141	3.496	441.963	2.361.273	26,20
60	5	0,0127881	2,500	0,0619595	86.644	5.368	419.801	1.919.311	22,15
65	5	0,0136426	2,500	0,0659631	81.276	5.361	392.976	1.499.510	18,45
70	5	0,0197500	2,500	0,0941036	75.915	7.144	361.714	1.106.534	14,58
75	5	0,0334324	2,500	0,1542681	68.771	10.609	317.331	744.820	10,83
80	+	0,0815822	7,350	1,0000000	58.162	58.162	427.488	427.488	7,35

