Scaling Sports Analytics with R & Google Cloud

Alok Pattani Data Science Developer Advocate, Google Cloud

RStudio Sports Analytics Meetup - February 2022

My Background

BA/MA in Statistics at Boston University

- ESPN Statistics & Information Group (2006-2016)
 - Sports Analytics Team: 2010-2016
- Google (2016-Present)
 - Data Science Developer Advocate at Google Cloud Since 2019

Other sports/data science consulting, etc.

R & BigQuery for Data Science

Google Cloud for Data Science

Turn data into insights - faster, easier, and at greater scale.

BigQuery

Serverless, highly scalable, and cost-effective <u>data warehouse</u> with customers ranging from TB to 100+ PB

R and BigQuery

Tasks I like to do in...

R	BigQuery
Getting data from packages, websites, APIs, etc.	Data warehousingCreate reusable "intermediate"
 General data manipulation (cleaning, preprocessing) 	data manipulation pieces (e.g. views, stored procedures)
Exploratory data analysis	Modeling on very big data
Statistical analysis & modeling"Ad hoc" data visualization	 Storing analysis results for outputs (e.g. interactive dashboards)

Use bigrquery package to interface between them

Example Analysis with NCAA Basketball Data, R, & BigQuery

NCAA Basketball Analysis Goal

OBJECTIVE: Create a rating system for NCAA basketball players.

CRITERIA:

- Use multiple player box score stats (e.g. points, assists, ...)
- Represent player's contribution to winning
- Apply to men's and women's Division I
- Apply to current season and past few
- Adjust for schedule (level of competition)

Why Is This Important or Useful?

"All-in-one" college player ratings could be used by...

- Media/Fans: "best player" debates, awards, general research
- College Teams: roster management, opponent scouting
- Content Companies: potential automated signals
- Pro Teams: evaluating draft prospects

How Do We Do This?

High-Level Overview:

- Pull public NCAA basketball team and player data from open-source R packages, upload to BigQuery.
- 2. Use established basketball analytics theory for initial player calculations, apply in BigQuery (SQL).
- Read processed data back into R to implement modeling-based schedule adjustment and run final player calculations.
- 4. Push final results back into BigQuery.
- Argue about player ratings!

Data Analysis Walkthrough (Part 1)

Gathering NCAA Basketball Data


```
library(tidyverse)
library(hoopR)
library(wehoop)
MBB START YEAR <- 2003
MBB END YEAR <- 2022
MBBTeams <- espn mbb teams()
MBBSchedule <- load mbb schedule(seasons = MBB START YEAR:MBB END YEAR)
MBBTeamBox <- load mbb team box(seasons = MBB START YEAR:MBB END YEAR)
MBBPlayerBox <- load mbb player box(seasons = MBB START YEAR:MBB END YEAR)
WBB START YEAR <- 2006
WBB END YEAR <- 2022
WBBTeams <- espn wbb teams()
WBBSchedule <- load wbb schedule(seasons = WBB START YEAR:WBB END YEAR)
WBBTeamBox <- load wbb team box(seasons = WBB START YEAR:WBB END YEAR)
WBBPlayerBox <- load wbb player box(seasons = WBB START YEAR:WBB END YEAR)</pre>
```

MAJOR Thanks to Saiem Gilani!

Basketball Player Ratings Framework

Let's Look at RStudio and BigQuery...

```
#### LOAD IN RELEVANT LIBRARIES AND SET SCRIPT-LEVEL OPTIONS ####
library(tidyverse)
library(lubridate)
library(janitor)
# Packages for obtaining men's and women's basketball data
library(hoopR)
library(wehoop)
# Interfacing with BigQuery
library(bigrquery)
options(tibble.width = Inf)
#### SET UP BIGOUERY PIECES FOR THIS SCRIPT ####
# Read in variables for Cloud access saved as system environment variables
CLOUD_AUTH_EMAIL <- Sys.getenv("DEFAULT_AUTH_EMAIL")
BIGQUERY_PROJECT <- Sys.getenv("DEFAULT_GOOGLE_CLOUD_PROJECT")</pre>
# Authorize using email
bq_auth(email = CLOUD_AUTH_EMAIL)
# Dataset within BigQuery where this data will go
BIGOUERY_DATASET <- 'ncaa_basketball'
```

```
PlayerTmGameStatsCalcs4 AS
  SELECT
    (scr poss + fgx poss + ftx poss + tov) AS off poss,
    SAFE DIVIDE((scr poss + fgx poss + ftx poss + tov), est poss on floor)
       AS off poss pct,
    SAFE DIVIDE(scr poss, (scr poss + fgx poss + ftx poss + tov))
       AS floor pct,
     SAFE DIVIDE(pprod, (scr poss + fgx poss + ftx poss + tov)) * 100
       AS ortg.
     /* Start with team def efficiency, unless no defensive possessions */
    IF(def poss = 0, NULL,
      tm def eff +
       /* Take tm def eff as is (no adj) if player-specific adjustment is null */
       \mathsf{IFNULL}(0.2 * (100 * \mathsf{opp} \; \mathsf{pts} \; \mathsf{per} \; \mathsf{scr} \; \mathsf{poss} \; * \; (1 - \mathsf{stop} \; \mathsf{pct}) - \mathsf{tm} \; \mathsf{def} \; \mathsf{eff}), \, 0)
       ) AS drtg
  FROM
    PlayerTmGameStatsCalcs3
```

"Final" Results - Top 5 Players

Women

This
Season

season	athlete	team	waa
2021-22	Aliyah Boston	South Carolina	5.65
2021-22	Ayoka Lee	Kansas State	5.43
2021-22	Caitlin Clark	Iowa	5.07
2021-22	Shaylee Gonzales	BYU	4.53
2021-22	Katelyn Young	Murray State	4.42

team

UConn

waa

8.29

2016-17	Kelsey Plum	Washington	9.87
2015-16	Breanna Stewart	UConn	9.0
2019-20	Sabrina Ionescu	Oregon	8.71
2016-17	Napheesa Collier	UConn	8.45

Napheesa Collier

athlete

season

se	eason	athlete	team	waa
20	21-22	Malachi Smith	Chattanooga	4.15
20	21-22	Oscar Tshiebwe	Kentucky	3.69
20	21-22	Keegan Murray	Iowa	3.4
20	21-22	David Roddy	Colorado State	3.14
20	21-22	Justin Bean	Utah State	3.11

season	athlete	team	waa
2014-15	Frank Kaminsky	Wisconsin	5.9
2018-19	Matt Rafferty	Furman	5.85
2015-16	Thomas Walkup	Stephen F. Austin	5.57
2014-15	Delon Wright	Utah	5.55
2017-18	Jock Landale	Saint Mary's	5.51

Since **2014-15**

Data Analysis Walkthrough (Part 2)

Schedule Adjustment Theory

- Teams (and hence players) face varying levels of competition across 350+ Division I teams, 32 conferences
 - Also: home-court advantage
- Team/player stats could be product of who they play (& where)
 - Loose model representation:

```
game_stat ~ intercept + team_effect + opp_effect + home_adv + (error)
```

- <u>glmnet</u> library in R can fit ridge regression of this type
- Resulting regression coefficients provide team and home-court estimates for offensive & defensive efficiency (<u>more details</u>)

Getting Schedule-Adjusted Player Stats

- Use adjusted team offensive and defensive efficiency as measure of opponent strength faced by players
- Adjust each player's game-level ORtg & DRtg based on home-court and opponent strength on opposite side of the ball (i.e. adjust ORtg for opponent def eff, vice versa):

```
player_adj_ortg = player_raw_ortg + home_adjustment + opp_def_adjustment
player_adj_drtg = player_raw_drtg + home_adjustment + opp_off_adjustment
```

 Aggregate (adjusted) ratings and possessions to season level, follow prior procedure to get (adjusted) win shares, WAA, etc.

Back into RStudio and BigQuery...

```
GetTeamAdiRegressionResults <- function(tm_game_info_and_stat.</pre>
 regularization regression lambdas = 10 \land seg(-5, 5, bv = 0.1)
 # Get overall (weighted) average stat value, for use later
 ovr_avg_stat_value <- with(tm_game_info_and_stat,
   weighted.mean(stat_value, wt_value, na.rm = TRUE))
 # Get team-level total weights, for use later
 tm_total_wt_values <- tm_game_info_and_stat %>%
   group_bv(sport_season_adi_tm_id) %>%
   summarize(.groups = "drop".
      tot_wt_value = sum(ifelse(!is.na(stat_value), wt_value, NA),
       na.rm = TRUE)
 model_matrix <- with(tm_game_info_and_stat, cbind(tm_hca,</pre>
   model.matrix(~ sport_season_adj_tm_id + sport_season_adj_opp_id - 1)))
 model <- cv.almnet(
   x = model_matrix,
   y = tm_game_info_and_stat$stat_value.
    family = "gaussian".
    weights = tm_game_info_and_stat$wt_value,
    alpha = 0, # This corresponds to ridge regression
    lambda = regularization_regression_lambdas.
   nfolds = 3, # Dropping down from default of 10 to speed up fitting
    intercept = TRUE
 # cat(paste0("Best Lambda: ", model$lambda.min))
 # Get coef from model w/ lambda that made for best ridge regression fit
 model_coef <- predict(model, type = "coefficients", s = model$lambda.min)</pre>
 tidy model coef <- suppresswarnings(
    tidy(model_coef, return_zeros = TRUE)) %>%
    as_tibble() %>%
    mutate(
      coef_type = case_when(
        str_starts(row. fixed("(Intercept)")) ~ "Intercept".
        (row == "tm_hca") ~ "tm_hca",
        str_starts(row, "sport_season_adj_tm_id") ~ "tm",
        str_starts(row, "sport_season_adj_opp_id") ~ "opp",
        TRUE ~ NA character
     ) %>%
    dplyr::select(coef_name = row, coef_type, coef_value = value)
```

```
/* GET (RAW) DATA FROM PLAYER SEASON ADVANCED STATS VIEW */
SEL ECT
  sport,
  'ncaa_basketball.get_season_name_from_year'(season, "END") AS season,
  athlete.
  team.
  ROUND(waa, 2) AS waa
FROM
  'ncaa basketball.player season adv stats'
WHERE
  sport = 'WBB' AND
  season >= 2014
ORDER BY
  waa DESC
LIMIT 10
/* GET ADJUSTED (& RAW) DATA FROM PLAYER SEASON SUMMARY TABLE */
SELECT
  sport.
  season_name AS season.
  athlete.
  ROUND(adi waa, 2) AS adi waa
  'ncaa_basketball.player_season_summary'
WHERE
  sport = 'WBB' AND
  season > 2000
ORDER BY
  adi waa DESC
LIMIT 10
```

Does Schedule-Adjusting Matter?

"More Final" Results - Top 5 Players

This Season

season	athlete	team	adj_waa
2021-22	Aliyah Boston	South Carolina	7.36
2021-22	Ayoka Lee	Kansas State	7.08
2021-22	Caitlin Clark	Iowa	6.89
2021-22	NaLyssa Smith	Baylor	5.68
2021-22	Elizabeth Kitley	Virginia Tech	5.54

Women

Since 2014-15

season	athlete	team	adj_waa
2019-20	Sabrina Ionescu	Oregon	11.55
2016-17	Kelsey Plum	Washington	10.21
2015-16	Breanna Stewart	UConn	8.96
2019-20	Ruthy Hebard	Oregon	8.74
2016-17	Napheesa Collier	UConn	8.74

Men

season	athlete	team	adj_waa
2021-22	Oscar Tshiebwe	Kentucky	4.28
2021-22	Malachi Smith	Chattanooga	4.05
2021-22	Tari Eason	LSU	4.01
2021-22	Keegan Murray	lowa	3.95
2021-22	Collin Gillespie	Villanova	3.76

athlete team adj_waa season Frank Kaminsky Wisconsin 2014-15 7.49 Zion Williamson 2018-19 Duke 6.77 Cassius Winston Michigan State 6.69 2014-15 Delon Wright Utah 6.49 Villanova 2016-17 Josh Hart 6.46

"Loose Ends" and More Info

Surfacing Large Data Outputs

- Google Sheets
 - Connected Sheets to directly access BigQuery data

• <u>Data Studio</u>: customizable dashboards and reports

• <u>Looker</u>: data experiences, business intelligence platform

- Shiny: interactive web applications in R
 - Publish to <u>RStudio Connect</u>, <u>shinyapps.io</u>

More on R & Google Cloud

Some ways to run R/RStudio ON Google Cloud:

RStudio Workbench for GCP (Professional)

RStudio Server (OSS) on Compute Engine (e.g. Linux installation)

Custom Docker container on GCP (e.g. to schedule R scripts)

R Jupyter notebook on Vertex Al Workbench (i.e. these instructions)

 Follow <u>Mark Edmondson</u> (<u>@HoloMarkeD</u>) for various R on Google Cloud-related packages, tutorials, etc.

Other Google Cloud Sports Resources

- NCAA Basketball Analysis (2019-2020):
 - Medium blog with various analysis like this
 - 2020 insights dashboard (men's & women's)

- MLB Partnership Work
 - Automated game notes project
 - Recent talk on innovating MLB fan experience
- <u>2020 MIT SSAC talk</u> on "Using Google Cloud to Take Sports Analytics to the Next Level"
- Analyzing Soccer Data with BigQuery <u>Lab Series</u>

Summary

Tools & Methods Takeaways

- R and RStudio work well with BigQuery and other Google Cloud tools.
- BigQuery is made for (very) large data storage & analytics.
- Regression is powerful, even when not explicitly building a prediction model.
- There are multiple ways to do things, with trade-offs to using different tools for various tasks.
- Data science is hard, but can be fun!

Sports Analytics Takeaways

- There is a large (and increasing) number of open-source data resources in many sports (e.g. SportsDataverse).
- Having sports knowledge and using established work in the field are key "skills."
- Adjusting for schedule can be important in evaluating teams and players, particularly in college sports.
- Aliyah Boston (South Carolina women) and Oscar Tshiebwe (Kentucky men) are good at basketball.

Thank you!

Twitter: <u>@AlokPattani</u> LinkedIn: <u>Alok Pattani</u>