МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Машинное обучение»

Тема: Кластеризация (DBSCAN, OPTICS)

Студент гр. 8304	 Холковский К.В
Преподаватель	 Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами кластеризации модуля Sklearn.

Ход работы

1. Загрузка данных

Были загружены данные

L	Jui py	жены данны	<u>C</u>		
		BALANCE	BALANCE_FREQUENCY	PRC_FULL_PAYMENT	TENURE
	0	40.900749	0.818182	0.000000	12
	1	3202.467416	0.909091	0.222222	12
	2	2495.148862	1.000000	0.000000	12
	4	817.714335	1.000000	0.000000	12
	5	1809.828751	1.000000	0.000000	12
	8943	5.871712	0.500000	0.000000	6
	8945	28.493517	1.000000	0.500000	6
	8947	23.398673	0.833333	0.250000	6
	8948	13.457564	0.833333	0.250000	6
	8949	372.708075	0.666667	0.000000	6
	[8636	rows x 17 co	lumns]		

Рис 1 – Загруженные данные

2. DBSCAN

1) Провели кластеризацию методом DBSCAN

```
Метки: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, -1}
Количество кластеров: 36
Процент не кластеризованных данных: 75.12737378415933 %
```

Рис 2 – Результат работы DBSCAN

Таблица 1 - Описание параметров DBSCAN

Параметр	Смысл параметра
eps	Максимальное расстояние между
	двумя элементами
min_samples	Количество выборок (или общий вес)
	в окрестности точки, которая будет
	считаться базовой точкой. Сюда
	входит и сама точка.
metric	Метрика для расчета расстояния.
metric_params	Параметры для метрики
algorithm	Алгоритм, который будет
	использоваться для вычисления

	точечных расстояний и поиска ближайших соседей.
leaf_size	Может повлиять на скорость
	построения и запрос, а также на
	объем памяти, необходимый для
	хранения дерева.
p	Степень метрики Минковского,
	которая будет использоваться для
	вычисления расстояния между
	точками.
n_jobs	Число процессов, чтобы
	распараллелить.

2) Был построен график количества кластеров и процента не кластеризованных наблюдений в зависимости от максимальной рассматриваемой дистанции между наблюдениями.

Рис 3 — Графики кол-ва кластеров и процента невнесенных данных от максимального расстояния.

3) Был построен график количества кластеров и процента не кластеризованных наблюдений в зависимости от максимальной рассматриваемой дистанции между наблюдениями.

Рис 4 - Графики кол-ва кластеров и процента невнесенных данных от минимального числа элементов в кластере.

- 4) Были определены значения параметров, при котором количество кластеров равно 5, а процент некластеризованых данных равен 6. Eps=2.05, min_samples=3.
- 5) Были визуализированы результаты работы DBSCAN для параметров из пункта 4.

Рис 5 – Результат DBSCAN

3. **OPTICS**

Таблица 2 - Параметры OPTICS

Параметр	Смысл параметра
min_samples	Количество выборок в окрестности
	для точки, которая будет считаться
	базовой.
max_eps	Максимальное расстояние между
	двумя образцами, чтобы один
	считался соседним с другим.
metric	Метрика, используемая для
	вычисления расстояния.
p	Параметр для метрики Минковского
	из pairwise_distances.
metric_params	Дополнительные аргументы
_	ключевого слова для метрической
	функции.
cluster method	Метод извлечения, используемый
_	для извлечения кластеров с
	использованием вычисленной
	достижимости и упорядочения.
eps	The maximum distance between two
	samples for one to be considered as in
	the neighborhood of the other.
xi	Определяет минимальную крутизну
	графика достижимости, которая
	составляет границу кластера.
predecessor_correction	Правильные кластеры в соответствии
	с предшественниками,
	рассчитанными OPTICS
min_cluster_size	Минимальное количество выборок в
	кластере OPTICS, выраженное в виде
	абсолютного числа или доли от
	количества выборок
algorithm	Алгоритм, используемый для
	вычисления ближайших соседей:
leaf_size	Размер листа передается в BallTree
_	или KDTree.
memory	Используется для кеширования
<i>J</i>	вывода вычисления дерева.
n_jobs	Количество параллельных заданий
	для поиска соседей.
	П 1101111111111111111111111111111111

Таблица 3 - Атрибуты OPTICS

Атрибут	Смысл атрибута
labels_	Кластерные метки для каждой точки
	в наборе данных, заданной для fit ()
reachability_	Расстояния достижимости на
	выборку, индексированные по
	порядку объектов.
ordering_	Кластерный упорядоченный список
	выборочных индексов.
core_distances_	Расстояние, на котором каждый
	образец становится центральной
	точкой, индексируется по порядку
	объектов.
predecessor_	Точка, из которой была получена
	выборка, проиндексированная по
	порядку объектов.
cluster_hierarchy_	Список кластеров в виде [начало,
	конец] в каждой строке, включая все
	индексы.
n_features_in_	Количество деталей, видимых во
	время посадки.
feature_names_in_	Названия особенностей, замеченных
	во время посадки. Определяется
	только тогда, когда Х имеет имена
	функций, которые являются
	строками.

- 1) Были найдены параметры OPTICS соответствующие результатам как в 4 пункте DBSCAN. max_eps = 2.05, min_samples = 3.
- 2) Был визуализирован результат и построен график достижимости.

braycurtis
$$\sum |u_i-v_i|/\sum |u_i+v_i|$$
 chebyshev $\max_i |u_i-v_i|.$ canberra $d(u,v)=\sum_i rac{|u_i-v_i|}{|u_i|+|v_i|}.$ russellrao $rac{n-c_{TT}}{n}$ manhattan $\sum_i |u_i-v_i|.$

Вывод

Ознакомились с методами кластеризации модуля Sklearn.