Algorithm design technique mainly used in optimization problems. can have many féasible solutions but only one solution is optimal. Max Min. (According to the given problem) in DP.

Steps in DP:

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
 4. Construct an optimal solution from computed
- information.

Note: If we need only the value of an optimal solution, not the solution itself, then we can omit step-4. Otherwise, we can construct optimal solution from the informations obtained in step-3.

Matrix Chain Multiplication (MCM) Mostrix multiplication: · No. of columns of 1st = No. of rows of 2nd matrix matrix (A.B).C = A.(B.C) => Associative property. · A_{2×3}, B_{3×4} => P_{2×4} (To get P_{2×4}, we have to perform 2×3×4=24 no. of scalar multiplications)

Our objective is $\not\in$ MCM Problem => We are not to find out how A, A2 A3 the product we can fully 2×3 3×4 4×2 of the matrix 3×2 chain. It minimizes the (A1. A2)-A3 | (A2. A3) the minimizes the 12×4 (A2. A3) and of sections.

multiplication: $= 2\times 3\times 4 + 0 + 2\times 4\times 2 = 0 + 3\times 4\times 2 + 2\times 3\times 2$ $= 2\times 3\times 4 + 0 + 2\times 4\times 2 = 0 + 3\times 4\times 2 + 2\times 3\times 2$ = 40 Scalar = 36 Scalar = 36 Scalar = 40 multiplications = 36 multiplications

Formal definition of MCM problem: Given a Chain (A1, A2, ..., An) of n matrices, where for i=1,2,...,n, motrix Ai has dimension $P_{i-1} \times P_i$, fully parenthesize the product $P_{i-1} \times P_i$, fully parenthesize the product $P_{i-1} \times P_i$ and $P_{i-1} \times P_i$ and $P_{i-1} \times P_i$ are multiplications.

Example: A_1 A_2 A_3 A_4 5×4 4×6 6×2 2×7 m[1,1] = m[2,2] = m[3,3] = m[4,4]<5,4,6,2,₹> m cost matrix 1 0 120 88 158 $A_1 \cdot A_2 \cdot A_2 \cdot A_3 \cdot A_4$ $5 \times 4 \times 6 = 120 \cdot 4 \times 6 \times 2 = 48 \cdot 6 \times 2 \times 7 = 84$ $(A_1) \cdot (A_2)$ m[1,2] m[2,3] \m[3,4] =0 0 48 104 S Parenthesization m[1,3] AL AZ · AZ 5×4 4×6 6×2 75×6 A, (A2. A3) (A, A2). A3 = m[1,]+m[2,3] = m[1,2] + m[3,3]+5x6x2 = 0+48+40=88)

m[2,4] A2. A3. A4 1 716H7 V 14X2 A2. (A3. A4) (A2. A3). A4 4x6 6x2 2x7, 4x6 6x2 2x7 m[2,2]+m[3,4] \ m[2,3]+m[4,4]+4×2x7 +4×6×7 = 48+0+56 = 0 + 84 + 168 = (04) A7.5 (A2. A3. A4) $m[1,4] = min \begin{cases} m[1,1] + m[2,4] + 5 \times 4 \times 7 \\ m[1,2] + m[3,4] + \end{cases}$ m[1,2]+m[3,4]+5x6x7, m[i,3]+m[4,4]+5×2×7} (A1 A2) - (A3 A4) A1 - A2 - A3 - A4 (A1 A2 A3) - A4 $= \min \left\{ 0 + 104 + 140, 120 + 84 + 210, \frac{120 + 84 + 210}{200} \right\}$ 88+0+70{ = min { 244, 414, 158} = 158 So, we need 158 scalar multiplications for this matrix chain. Optimal parenthesization: ((A1) (A2 A3) (A4)

```
> dimensions of
              MATRIX-CHAIN-ORDER(p)
                   n = p.length - 1
                                                                                                Time
3 Space
                 let m[1..n, 1..n] and s[1..n-1, 2..n] be new tables
             \begin{cases} 3 & \text{for } i = 1 \text{ to } n \\ 4 & m[i, i] = 0 \end{cases}
                       m[i,i] = 0
               5
                   for l=2 to n
                                             // l is the chain length
                       for i = 1 to n - l + 1
               6
                           j = i + l - 1
               7
                            m[i,j] = \infty
               8
               9
                            for k = i to j - 1
                                q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
              10
              11
                                if q < m[i, j]
              12
                                    m[i,j] = q
                                    s[i,j] = k
              13
              14
                   return m and s
             PRINT-OPTIMAL-PARENS (s, i, j)
                 if i == j
             2
                     print "A"i
             3 else print "("
                     PRINT-OPTIMAL-PARENS (s, i, s[i, j])
                     PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)
                     print ")"
  P-0-P(5,1,3) -[P-0-P(5,1,1)
P-0-P(5,2,2) -[P-0-P(5,2,3)] -[P-0-P(5,3,3)
> P-0-P (5,4,54)
```

Steps of DP w.r. to MCM problem: 1. Structure of an optimal solution: A: A:+1 Aj, isj To parenthesize their product, we must pplit it between A, and A, for some K in the pange between A, and A, to for some K in the pange is the matrices A;..... Ax and A, Aj and then multiply hem together to produce A;.... Aj. The cost of parenthesizing is the and L. Aj. The cost of parenthesizing is the cost of computing the maximix product Ai... Ax plus the cost of computing Ax+1... Aj plus the cost of multiplying them together. 2. Recursively define the value of an optimal solution bottom up fashion: compute m x s tables in bottom up fashion using Matrix_Chain_Order procedure. 4. Constructing an optimal solution (Optional step): Parenthesization step using Print_Optimal_Parens procedure