DS Automation Assignment

Using our prepared churn data from week 2:

- · use pycaret to find an ML algorithm that performs best on the data
 - Choose a metric you think is best to use for finding the best model; by default, it is accuracy but it could be AUC, precision, recall, etc. The week 3 FTE has some information on these different metrics.
- · save the model to disk
- create a Python script/file/module with a function that takes a pandas dataframe as an input and returns the probability of churn for each row in the dataframe
 - your Python file/function should print out the predictions for new data (new_churn_data.csv)
 - the true values for the new data are [1, 0, 0, 1, 0] if you're interested
- test your Python module and function with the new data, new churn data.csv
- write a short summary of the process and results at the end of this notebook
- upload this Jupyter Notebook and Python file to a Github repository, and turn in a link to the repository in the week 5 assignment dropbox

Optional challenges:

- return the probability of churn for each new prediction, and the percentile where that prediction is in the distribution of probability predictions from the training dataset (e.g. a high probability of churn like 0.78 might be at the 90th percentile)
- use other autoML packages, such as TPOT, H2O, MLBox, etc, and compare performance and features with pycaret
- · create a class in your Python module to hold the functions that you created
- accept user input to specify a file using a tool such as Python's input() function, the click package for command-line arguments, or a GUI
- Use the unmodified churn data (new_unmodified_churn_data.csv) in your Python script. This
 will require adding the same preprocessing steps from week 2 since this data is like the
 original unmodified dataset from week 1.

In [6]: ▶

Requirement already satisfied: scikit-learn==0.23.2 in c:\users\edison\anaconda3\lib\site-packages (0.23.2)

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\edison\anaconda3\lib\site-packages (from scikit-learn==0.23.2) (2.1.0)

Requirement already satisfied: numpy>=1.13.3 in c:\users\edison\anaconda3\lib\site-packages (from scikit-learn==0.23.2) (1.20.1)

Requirement already satisfied: joblib>=0.11 in c:\users\edison\anaconda3\lib\site-packages (from scikit-learn==0.23.2) (1.0.1)

Requirement already satisfied: scipy>=0.19.1 in c:\users\edison\anaco nda3\lib\site-packages (from scikit-learn==0.23.2) (1.6.2)

```
Collecting package metadata (current repodata.json): ...working... do
              Solving environment: ...working... done
              ## Package Plan ##
                environment location: C:\Users\Edison\anaconda3
                added / updated specs:
                  - scikit-plot
           import pandas as pd
In [18]:
              df = pd.read csv('data/prepped churn data.csv', index col='customerID'
   Out[18]:
                         tenure PhoneService Contract PaymentMethod MonthlyCharges TotalCharges
               customerID
                    5375
                             1
                                          0
                                                  0
                                                                2
                                                                           29.85
                                                                                       29.85
                    3962
                             34
                                          1
                                                                3
                                                                            56.95
                                                                                      1889.50
                    2564
                                                                3
                                                                            53.85
                                                                                      108.15
                    5535
                            45
                                                                0
                                          0
                                                                            42.30
                                                                                      1840.75
                                                  1
                             2
                                                                2
                    6511
                                          1
                                                                           70.70
                                                                                      151.65
                    4853
                             24
                                          1
                                                  1
                                                                3
                                                                            84.80
                                                                                      1990.50
                    1525
                             72
                                                                1
                                                                           103.20
                                                                                      7362.90
                    3367
                                          0
                                                                2
                             11
                                                  O
                                                                           29.60
                                                                                      346.45
                    5934
                             4
                                          1
                                                                3
                                                                           74.40
                                                                                      306.60
                    2226
                             66
                                                                                      6844.50
                                                                           105.65
              7043 rows × 7 columns
 In [9]:
              Collecting package metadata (current repodata.json): ...working... do
              Solving environment: ...working... done
              # All requested packages already installed.
In [19]:
In [20]:
                                     Description
                                                       Value
```

	Description	Value
0	session_id	6884
1	Target	Churn
2	Target Type	Binary
3	Label Encoded	0: 0, 1: 1
4	Original Data	(7043, 7)
5	Missing Values	False
6	Numeric Features	3
7	Categorical Features	3
8	Ordinal Features	False
9	High Cardinality Features	False
10	High Cardinality Method	None
11	Transformed Train Set	(4930, 11)
12	Transformed Test Set	(2113, 11)
13	Shuffle Train-Test	True
14	Stratify Train-Test	False
15	Fold Generator	StratifiedKFold
16	Fold Number	10
17	CPU Jobs	-1
18	Use GPU	False
19	Log Experiment	False
20	Experiment Name	clf-default-name
21	USI	20ac
22	Imputation Type	simple
23	Iterative Imputation Iteration	None
24	Numeric Imputer	mean
25	Iterative Imputation Numeric Model	None
26	Categorical Imputer	constant
27	Iterative Imputation Categorical Model	None
28	Unknown Categoricals Handling	least_frequent
29	Normalize	False
30	Normalize Method	None
31	Transformation	False
32	Transformation Method	None
33	PCA	False
34	PCA Method	None

	Description	Value
35	PCA Components	None
36	Ignore Low Variance	False
37	Combine Rare Levels	False
38	Rare Level Threshold	None
39	Numeric Binning	False
40	Remove Outliers	False
41	Outliers Threshold	None
42	Remove Multicollinearity	False
43	Multicollinearity Threshold	None
44	Clustering	False
45	Clustering Iteration	None
46	Polynomial Features	False
47	Polynomial Degree	None
48	Trignometry Features	False
49	Polynomial Threshold	None
50	Group Features	False
51	Feature Selection	False
52	Features Selection Threshold	None
53	Feature Interaction	False
54	Feature Ratio	False

In [21]:

In [26]:

Out[26]:

	tenure	MonthlyCharges	TotalCharges	PhoneService_0	Contract_0	Contract_1	C
customerID							
4303	23.0	57.200001	1423.349976	0.0	0.0	1.0	
6278	68.0	84.400002	5746.750000	0.0	0.0	0.0	
4152	32.0	19.799999	607.700012	0.0	0.0	1.0	
3650	2.0	75.800003	160.750000	0.0	1.0	0.0	
6533	3.0	24.600000	86.349998	0.0	1.0	0.0	
1382	1.0	55.700001	55.700001	0.0	1.0	0.0	
4226	12.0	19.350000	219.350006	0.0	0.0	1.0	
4600	8.0	51.299999	411.600006	0.0	1.0	0.0	

	tenure	MonthlyCharges	TotalCharges	PhoneService_0	Contract_0	Contract_1	C
customerID							
1405	5 0	40 400002	ว จว 550003	0.0	1 ∩	0.0	
 \.	-						

In [34]:

Out[34]:

	tenure	PhoneService	Contract	PaymentMethod	MonthlyCharges	TotalCharges (
customerID						
5375	1	0	0	2	29.85	29.85
3962	34	1	1	3	56.95	1889.50
2564	2	1	0	3	53.85	108.15
5535	45	0	1	0	42.30	1840.75
6511	2	1	0	2	70.70	151.65
4853	24	1	1	3	84.80	1990.50
1525	72	1	1	1	103.20	7362.90
3367	11	0	0	2	29.60	346.45
5934	4	1	0	3	74.40	306.60
2226	66	1	2	0	105.65	6844.50

7043 rows × 7 columns

In [35]:

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC	TT (Sec)
Ir	Logistic Regression	0.7968	0.8385	0.5113	0.6377	0.5663	0.4359	0.4412	0.6420
lda	Linear Discriminant Analysis	0.7955	0.8291	0.5269	0.6292	0.5722	0.4395	0.4433	0.0180
catboost	CatBoost Classifier	0.7951	0.8398	0.5113	0.6313	0.5638	0.4322	0.4370	1.7170
gbc	Gradient Boosting Classifier	0.7949	0.8440	0.5058	0.6339	0.5614	0.4300	0.4354	0.2560
ridge	Ridge Classifier	0.7927	0.0000	0.4467	0.6493	0.5272	0.4007	0.4133	0.0160
ada	Ada Boost Classifier	0.7925	0.8398	0.4848	0.6332	0.5483	0.4168	0.4236	0.1130
lightgbm	Light Gradient Boosting Machine	0.7907	0.8338	0.5261	0.6146	0.5659	0.4293	0.4322	0.2770

			Model	Accuracy	y AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)	
		xgboost	Extreme Gradient Boosting	0.7878	0.8259	0.5122	0.6106	0.5558	0.4182	0.4217	0.3070	
		rf	Random Fo Classifier	orest 0.7789	0.8079	0.4973	0.5918	0.5386	0.3951	0.3987	0.2960	
		svm	SVM - Line Kernel	ar 0.7718	0.0000	0.4256	0.5966	0.4843	0.3464	0.3607	0.0300	
		knn	K Neighbor Classifier	s 0.7682	0.7458	0.4568	0.5690	0.5053	0.3566	0.3611	0.0520	
		et	Extra Trees Classifier	0.7649	0.7825	0.4965	0.5556	0.5230	0.3680	0.3699	0.2670	
		dt	Decision Tr Classifier	ee 0.7436	0.6713	0.5137	0.5084	0.5100	0.3367	0.3374	0.0240	
In	[36]:)	•										
	Out[36]:	Logistic t=True,	cRegress	ion(C=1.0,	class_w	eight=	None,	dual=	False,	fit_ir	ntercep	
		<pre>intercept_scaling=1, l1_ratio=None, max_iter=1000,</pre>										
Tn	[37]:)											
	Out[37]:	(1, 7)										
In	[38]:)	• • •				- ^ -						
	Out[38]:											
				PhoneService	Contract	Payme	ntMethod	l Monti	nlyCharges	Total	Charges (
		customerl 593		1	0		3	<u> </u>	74.4	<u> </u>	306.6	
			,	'				,	7 - 7		000.0	
In	[40]:					- 1 ^						
	Out[40]:		tenure	PhoneService	Contract	Pavme	ntMethod	l Monti	nlvCharges	s Total	Charges (
		customerl							,		9	
		252	21 55	1	1		1		60.00)	3316.10	
		489)3 1	1	0		2	2	75.75	5	75.75	
		687	'5 38	1	0		1		69.50)	2625.25	
		43	67	1	0		1		102.95	5	6886.25	
		599)5 19	1	0		C)	78.70)	1495.10	
		550	12	0	1		2	2	60.65	5	743.30	

7 of 10

```
tenure PhoneService Contract PaymentMethod MonthlyCharges TotalCharges
              customerID
                   1758
                           72
                                                                       21.15
                                                                                1419.40
                   4853
                           24
                                       1
                                                            3
                                               1
                                                                      84.80
                                                                                1990.50
                   1525
                           72
                                                                      103.20
                                                                                7362.90
In [41]:
          H
             Transformation Pipeline and Model Successfully Saved
   Out[41]: (Pipeline (memory=None,
                        steps=[('dtypes',
                                DataTypes Auto infer(categorical features=[],
                                                       display types=True, features t
             odrop=[],
                                                       id columns=[],
                                                       ml usecase='classification',
                                                       numerical features=[], target=
             'Churn',
                                                       time features=[])),
                               ('imputer',
                                Simple_Imputer(categorical_strategy='not_available
                                                fill value categorical=None,
                                                fill value numerical=None,
                                                numeric strate...
                               ('feature select', 'passthrough'), ('fix_multi', 'pa
             ssthrough'),
                               ('dfs', 'passthrough'), ('pca', 'passthrough'),
                               ['trained model',
                                LogisticRegression(C=1.0, class weight=None, dual=F
             alse,
                                                     fit intercept=True, intercept sc
             aling=1,
                                                     11 ratio=None, max iter=1000,
                                                     multi class='auto', n jobs=None,
                                                     penalty='12', random state=6884,
                                                     solver='lbfgs', tol=0.0001, verb
             ose=0,
                                                    warm start=False)]],
                       verbose=False),
              'LR.pkl')
In [42]:
          | import pickle
             with open('LR model.pk', 'wb') as f:
In [43]:
            with open('LR_model.pk', 'rb') as f:
In [54]:
```

```
In [57]:
             Transformation Pipeline and Model Successfully Loaded
In [58]:
   Out[58]:
                       tenure PhoneService Contract PaymentMethod MonthlyCharges TotalCharges
             customerID
                  5934
                           4
                                              0
                                                           3
                                                                      74.4
                                                                                306.6
          from IPython.display import Code
In [68]:
   Out[68]: import pandas as pd
             from pycaret.classification import predict model, load model
             def load data(filepath):
                 11 11 11
                 Loads churn data into a DataFrame from a string filepath.
                 df = pd.read csv(filepath, index col='customerID')
                 return df
             def make predictions(df):
                 Uses the pycaret best model to make predictions on data in the df
             dataframe.
                 11 11 11
                 model = load model('LR')
                 predictions = predict model(model, data=df)
                 predictions.rename({'Label': 'Churn prediction'}, axis=1, inplace
In [69]:
          H
             Transformation Pipeline and Model Successfully Loaded
             predictions:
             customerID
             9305-CKSKC
                             Churn
             1452-KNGVK
                         No churn
             6723-OKKJM
                          No churn
             7832-POPKP
                          No churn
             6348-TACGU
                              Churn
             Name: Churn prediction, dtype: object
In [ ]:
```

Summary

I previously had errors due to what seemed to be package version incompatibilities with pycaret. Using "!pip install -U scikit-learn==0.23.2" with a frehs installation of Anaconda on a different computer solved that problem, and required me to install previously installed packages such as scikit-plot.

After using "compare_models" to identify best models for different metrics, can see that Logistic Regression is best for Accuracy, while Gradient Boosting Classifier is best for AUC, Naive Bayes is best for Recall and F1, and Ridge Classifier is best for Precision. Looking at Week 3 summary, AUC (so the Gradient Boosting Classifier) is probably the best fit model, since the dataset is somewhat skewed, and we're trying to have the model predict a binary outcome ('yes Churn vs no Churn'). Eithe way, the Logistic Regression and Gradient Boosting Classifier models have fairly close values for both Accuracy and AUC.

I then tested and saved the traind model, and prepared it for Python with pickle. Then created the Python script and ran it -- loading the new_churn_data.csv and and testing the application of the LR model. Last I saved the updated Jupiter notebook and Python script to GitHub.

In []: 📕