

Domain Adaptation and Active Learning for SN photometric classification

Emille E. O. Ishida

Laboratoire de Physique Corpusculaire Universite Blaise Pascal

Ricardo Vilalta, Renuka Pamplana and Kinjal Dhar Gupta (Pattern Recognition Laboratory, U. Houston – USA)

Rafael S. de Souza (ELTE – Hungary / USP – Brazil)

> Filipe B. Abdalla (UCL - UK)

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

Example:

Photometric samples go further in z

Covariate shift

$$P_{train}(Y) = \underline{P(Y|X)} P_{train}(X)$$

$$P_{test}(Y) = P(Y|X)P_{test}(X)$$

$$P_{train}(Y) \neq P_{test}(X)$$

Solution:

Use the Kernel trick to re-weight the training sample (Kernel Mean Matching - KMM)

<u>Important remarks:</u>

I am aware that

Selection cuts here imply very good epoch coverage

post-SNPCC data
-3 to +24 days in all filters

This is best-case scenario!

<u>Important remarks:</u>

This will be a very sad talk...

<u>Important remarks:</u>

This will be a very sad talk...

Spoiler alert!

Domain Adaptation alone will not solve the problem.

We will need to re-think how spectroscopic samples are built.

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

er/2016

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

per/2016

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

per/2016

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

Compensate for the fact that spectroscopic and photometric samples come from intrinsically different underlying distributions

per/2016

Landmark selection:

Build less complex models

Forget spec/sample distinction:

Train the model locally + Apply the weights

Preliminary results from post-SNPCC data:

At least 3 observed epochs (for all filters)
At least one epoch before -3 and 1 epoch after +24 days since max (for all filters)
Light curve fit using Gaussian Process regression

Problem:

Sometimes there are no training points in a group!

Problem:

Sometimes there are no training points in a group!

Active learning: ask!

Assume a minimum number of training in each group.

Make a query.

Train the model (+weights), project the test data and classify. Use a method which gives you full posteriors.

Choose the ones you trust less.

Make a query.

LSST SN - Pittsburg (USA), November/2016

Preliminary results from post-SNPCC data:

At least 3 observed epochs (for all filters)
At least one epoch before -3 and 1 epoch after +24 days since max (for all filters)
Light curve fit using Gaussian Process regression

Take away message:

Domain differences need to be addressed

Results are dependent on feature extraction (what about missing data?)

Use active learning in pre-max data or simulations for follow-up strategies - But this requires simulations...

Change dynamics in the construction of the spectroscopic sample

Take away message:

Domain differences need to be addressed

Results are dependent on feature extraction (what about missing data?)

Use active learning in pre-max data or simulations for follow-up strategies - But this requires simulations...

Change dynamics in the construction of the spectroscopic sample

I would build the photometric sample first!

References:

Dataset shift in Machine Learning, by Joaquin Quinonero-Candela, Masashi Sugiyama, Anton Schwaighofer and Neil D. Lawrence, 2009, MIT Press

Covariate shift by Kernel Mean Matching, by Arthur Gretto (CMU), http://www.cs.cmu.edu/~arthurg/talks.html

Resources on Active Learning, http://active-learning.net/