EGZAMIN Z MATEMATYKI DYSKRETNEJ MARZEC 2003, TERMIN POPRAWKOWY, CZĘŚĆ A, CZAS: 120 MIN.

Zadanie 1

Każdego dnia wrzucamy do skarbonki złotówkę lub dwie i po n dniach mamy w niej m złotych. Niech $m \neq 2n$. Pokaż, że dla dowolnego $k, 0 \leq k \leq m/2$ istnieje ciąg kolejnych dni, w których wrzuciliśmy do skarbonki dokładnie k złotych.

Zadanie 2

Oblicz liczbę możliwych układów dziesięciu kart z 52, które zawierają (co najmniej po jednym) króla, damę i waleta. (Wzór powinien być zapisany bez symboli \sum, \cdots)

Zadanie 3

Niech p_n i d_n będą odpowiednio liczbami wszystkich podziałów n i podziałów n na różne składniki (podziały różniące się jedynie kolejnością składników są nierozróżnialne). Niech P(x) i D(x) będą ich funkcjami tworzącymi. Pokaż, że

$$P(x) = D(x)P(x^2).$$

Zadanie 4

Niech c_n oznacza liczbę ciągów n liczb ze zbioru $\{0,1,2\}$ nie zawierających dwóch sąsiednich jedynek ani dwóch sąsiednich dwójek. Ułóż zależność rekurencyjną na c_n i rozwiąż ją np. metodą anihilatorów wyznaczając jawny wzór na c_n .

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ MARZEC 2003, TERMIN POPRAWKOWY, CZĘŚĆ B, CZAS: 120 MIN.

Zadanie 5

Niech d_1, d_2, d_3, \ldots jest ciągiem stopni wierzchołków pewnego drzewa n-wierzchołkowego. Ile spośród n^{n-2} poetykietowanych drzew n-wierzchołkowych ma ten ciąg stopni wierzchołków?

Zadanie 6

Pokaż, że jeśli w grafie prostym G dla każdej pary niepołączonych wierzchołków u,v zachodzi

$$\deg(u) + \deg(v) \ge |V(G)| - 1,$$

to G zawiera drogę Hamiltona.

Zadanie 7

Pokaż, że graf d-regularny G posiadający wierzchołek rozspajający ma indeks chromatyczny równy d+1.

Zadanie 8

Pokaż wielomianową redukcję problemu istnienia w zbiorze liczb a_1, a_2, \ldots, a_n podzbioru o sumie x do problemu istnienia podziału zbioru liczb b_1, b_2, \ldots, b_m na dwa podzbiory o równych sumach.

Powodzenia!