	1	II '4 0 O 1
name:	period:	Unit 2: Combustion

Lesson 2.1 Computing the Energy in Food

- The modern metric unit of energy is the <u>joule</u>.
- An older unit of energy is the <u>calorie</u>.
- To convert use: _____ 1 ___ calorie = ____ 4.2 ___ joules
- \bullet A food calorie = 1000 energy calories = 1 kilocalorie = 1 kcal

Find the grams per serving

Find the food **calories per serving** on the label - remember that these are actually keal of energy.

Compute the kcal per gram:

$$\frac{calories\;per\;serving}{grams\;per\;serving} = \underline{\hspace{1cm}} kcal/g$$

Nutrition Facts

Serving Size 1/2 cup (102g) Servings Per Container 4

Amount Per Serving		
Calories 300	Calorie	es from Fat 160
		% Daily Values*
Total Fat 18g		28%
Saturated Fat 9g		45%
Trans Fat 0g		
Cholesterol 45mg		15%
Sodium 250mg		10%
Total Carbohydra	te 33g	11%
Dietary Fiber 1g		4%
Sugars 30g		
Protein 7g		
Vitamin A 15%	•	Vitamin C 0%
Calcium 15%	•	Iron 4%

^{*} Percent Daily Values are based on a 2,000 calorie diet.

Lesson 2.2 Bio-fuel Lab

Materials

Procedure

Measurements

	Variable	value (unit)
1	Volume of water (ml)	100 ml
2	Initial mass of food and paper (g)	
3	Final mass of food and paper (g)	
4	Δm line 2 - line 3 (g)	
5	Final temperature of the water (°C)	
6	Initial temperature of the water (°C)	
7	ΔT line 5 - line 6 (°C)	

Error Analysis

Human Errors

1. Human errors are caused by mistakes people make. What do you think could be a human error that would affect the data obtained in this lab?

Experimental Errors

1. Experimental errors are caused by the equipment or material being used. What do you think could be an experimental error that would affect the data obtained in this lab?

Lesson 2.3 Combustion Conference

Lesson 2.4 Combustion Video

Watch the YouTube What is Combustion? and answer the questions below:

- 1. <u>wood</u> is a fuel used a lot in the past, and even today.
- 2. The three most widely used fuels today are <u>coal</u>, <u>oil</u>, and <u>natural gas</u>.
- 3. A newer fuel often used in rockets is <u>hydrogen</u>.
- 4. When a fuel is burned it always combines with <u>oxygen</u>.
- 5. Other products released during combustion are <u>carbon dioxide</u> and <u>water</u> that are emitted as a <u>gas</u>.
- 6. A very fast combustion reaction is called an <u>explosion</u>.
- 7. We use fast reactions in <u>car engines</u>.
- 8. Combustion reactions are used for: <u>cooking</u>, <u>manufacturing</u>, <u>produce electricity</u>, <u>heating water</u>, <u>motor vehicles</u>, and <u>heating</u>.

Word Bank

car engines	carbon dioxide	coal
cooking	explosion	gas
heating	heating water	hydrogen
manufacturing	motor vehicles	natural gas
oil	oxygen	produce electricity
water	wood	