Tuesday Avenus 11 2020 10:15 484

- I. Imperfect Interpolation
 - a. Polynomial
 - b. Zero Order Hold
 - c. Linear
- II. Frequency Analysis of Interpolation
 - a. Useful Fourier Properties
 - b. Zero Order Hold in Frequency Domain
 - c. Perfect Reconstruction
- III. Anti-Aliasing Filter

(Post lecture notes in purple) (Impt equations boxed in green)

I. Imperfect Interpolation

Sampled Signal

Regression

- Louist Squares - Good for noisy hata Ignere exact points

- Seen today !

- Trust nordata is as curate

a. Polynomial Interpolation

b. Zero-Order Hold Interpolation

- Hold previous value until the next sample arrives

Represent with:

V(+)

= \frac{1}{4}

f(n)

- Apply the scale and delay of each sample to the function u(t) and sum

c. Linear Interpolation

- Draw a line b/w each point

Convolve our signal

II. Frequency Anaylsis of Interpolation

a. Useful Properties

- Convolution in time domain is multiplication in freq domain (element wise multiplication in discrete)

- Sampled signals have aliasing, but continuous time signals do not $% \left(1\right) =\left(1\right) \left(1\right)$
- Duality of a function's transform in time of freq

Exz

b. ZOH in Freq Domain

Start with a single tone cont time sinusiod

Sample my signal

ZOH

=>

Interpolate (Convolve) with a ZOH

=>

Gotten pretty close to our original Signal in frequency, just with that extra From aliasing when we sampled

c. Perfect Reconstruction

 $\underline{\underline{\text{Have}}}$ same sampled function with aliasing in the freq domain

f[n]

Want an interpolated signal with the aliasing removed

In freq domain multiply by

Interpolate
f(n) & Sinc(+)

Zero crossings occur at the sampling rate if our corner freq is the nyquist freq

Nyquist Sampling Theorem:

A bandlimited, cont time signal can be sampled and perfectly represented/ perfectly reconstructed from its samples, IF the sampling freq (f_s) is over twice as fast as the signals highest freq component (B)

Any signal f(4)

₹ =>

f(+)

What if our signal isn't bandlimited?

=>

Lever Free

When we sample, we can't possibly choose a sampling freq that's high enough!

=7

Perfect reconstruction REQUIRES signal be bandlimited

What if there's some high freq noise?

FELLIS + ESULESS

[m] + n[m]

Filter before sampling to prevent noise from aliasing into our signal band

Example

Recording studio, want as good of a recording as they can get

W_L

Sampling freq -> 44k Hz Nyquist Freq -> 22k Hz Wc=ZDKA8.2#

FC=FZ