6. 세이지메이커 시작하기 2강. 세이지메이커 작동방식

학습목표

- 머신러닝 워크플로우와 세이지메이커를 비교하여 설명할 수 있다.
- 세이지메이커 워크플로우 단계를 열거할 수 있다.
- 세이지메이커 ML 알고리즘을 종류별로 분류할 수 있다.

학습내용

- 머신러닝 프로세스와 세이지메이커
- 세이지메이커 워크플로우
- 세이지메이커 ML 알고리즘

1. 머신러닝 프로세스와 세이지메이커

• 머신러닝 프로세스

• 탐색 : 분석

• 통합: 데이터 아키텍처

Are Business

Goals met?

• 왜 세이지메이커를 만들었나? : 학습환경 제공

• 왜 세이지메이커를 만들었나? : 배포환경 제공

Augmentation

2. 세이지메이커 워크플로우

•모델결과물에대한보안

- 워크플로우 단계
 - ① 학습 코드 및 학습 데이터세트 준비
 - ② 학습환경 구성 및 학습 수행
 - ③ 학습완료된 모델 저장 및 예측 코드 준비
 - ④ 예측 환경 구성 및 모델 호스팅
 - ⑤ 예측 엔드포인트를 통한 API 서비스 제공
 - ⑥ 새로운 학습 데이터 수집 및 재학습, 배포

✓ 학습 코드 및 데이터세트 준비

✓ 학습 환경 구성 및 학습 수행

✔ 학습 완료된 모델 저장 및 예측 코드 준비

✔ 예측 환경 구성 및 모델 호스팅

✔ 예측 엔드포인트를 통한 API 서비스 제공

✔ 새로운 학습 데이터 수집 및 재학습, 배포

3. 세이지메이커 ML 알고리즘

• 세이지메이커 ML 알고리즘(내장)

알고리즘	설명
Blazing Text (Word2Vec)	Word2vec 및 텍스트 분류 알고리즘을 최적화 • Word2vec 알고리즘은 감정 분석, 명명된 엔터티 인식, 기계 번역 등 여러 가지 다운스트림 자연 언어 처리(N L P) • 텍스트 분류는 웹 검색, 정보 검색, 순위 지정 및 문서 분류
DeepAR	반 복 신 경 망 (RNN)을 사용하여 스칼라(1차원) 시계열을 예상하는 지도 학습 알고리즘
Factorization Machines	분류 및 회귀 작업 모두에 대해 사용할 수 있는 범용 지도 학습 알고리즘
Gradient Boosted Trees(XGBoost)	최적화된 분산형 경사 부스팅 라이브러리 XGBoost 는 Extreme Gradient Boosting의 약자

알고리즘	설명
이미지분류	이미지 분류 시스템 개발에서 인기 있는
(ResNet)	신경망
IP Insights	악의적인 사용자를 탐지하거나 IP 주소의 사용 패턴을 학습하는 알고리즘
K-Means	레이블이 지정되지 않은 데이터 내 그룹을
Clustering	찾는데 사용되는 머신러닝 알고리즘
K-N N (K -N earest	분류 및 회귀 기반 문제를 해결하는 인덱스
Neighbor)	기반 알고리즘

알고리즘	설명
LD A (Latest Dirichlet Allocation)	텍스트 파일 세트에 존재하는 기본 주제를 자동으로 발견하는데 적합한 모델
Linear	객체의 특징을 사용해 객체가 속하는
Learner(문류)	적절한그룹식별
Linear	두 변수 사이의 선형 관계를 예측하는데
Learner(회귀)	사용
NTM (Neural	텍스트 및 이미지 데이터셋에서 주제를
Topic Modeling)	정하는 신경망 기반 접근 방식

알고리즘	설명
Object2Vec	가장 인접한 이웃을 계산하고 자연 클러스터를 시각화하는 신경 임베딩 알고리즘
Object Detection	이미지의 여러 개체를 탐지 및 분류하고 경계 상자를 배치
PC A (Principal Component Analysis)	흔히 데이터 사전 처리에 사용되는 알고리즘 많은 기능의 테이블 또는 매트릭스를 가져와 더 적은 수의 대표적 기능으로줄임

클라우드 기반의 AI 서비스 개발 06-2

알고리즘	설명
Random Cut Forest	이상 탐지를 하는 비지도형 기계학습 알고리즘
의미 세계분할	이미지의 개별 픽셀에 레이블을 할당하여 관심 위치를 식별하도록 이미지에 파티션
(Semantic Segmentation)	지정
Sequence2Sequ e-nce	기계 번역, 텍스트 요약 등에서 자주 사용되는 텍스트용 범용 인코더-디코더

평가하기

1.	기존 EC2 인스턴스를 이용하여 ML 모델을 학습하는 방법보다 세이지메이커를 시)용 하였
	을 때 인스턴스 생성 과정이 복잡하다. (O/X)	

- 정답 : X

해설 : 기존 EC2 인스턴스를 이용하여 ML 모델을 학습하는 방법보다 세이지메이커를 사용하였을 때 인스턴스 생성 과정이 복잡합니다.

2. 빈칸에 알맞은 단어를 고르시오.

보기 : 학습 환경, 내장 머신러닝 알고리즘, 배포 환경

- ① 세이지메이커는 머신러닝 과 의을 제공한다.
- ② Amazon SageMaker는 여러 을 제공하며, 다양한 문제 유형에 대해 사용할 수 있다.
- 정답 : ① 학습 환경, 배포 환경, ② 내장 머신러닝 알고리즘

학습정리

1. 머신러닝 프로세스와 세이지메이커

• 탐색(분석) : Domain knowledge를 이용하여 비즈니스 문제를 분석

• 통합(데이터아키텍처) : 데이터 플랫폼을 구현 (Amazon S3, EMR, Athena 등)

• 학습환경 제공 : 세이지메이커에서 통합 제공

• 배포환경 제공 : 세이지메이커에서 통합 제공

2. 세이지메이커 워크플로우

• 학습 코드 및 학습 데이터세트 준비

- 학습 환경 구성 및 학습 수행
- 학습 완료된 모델 저장 및 예측 코드 준비
- 예측 환경 구성 및 모델 호스팅
- 예측 엔드포인트를 통한 API 서비스 제공
- 새로운 학습 데이터 수집 및 재학습, 배포

3. 세이지메이커 ML 알고리즊

• Blazing Text, DeepAR, Factorization Machines, Gradient Boosted Trees, 이미지본류, IP Insights, K-Means Clustering, K-NN, LDA, Linear Learner, NTM, Object2Vec, Object Detection, PCA, RCF, Semantic Segmentation, Sequence2Sequence