Měření rozptylového magnetického pole transformátoru

Od r. 2004-5

17b. Měření rozptylového magnetického pole transformátoru

Úkol měření

- 1. Určete potřebné parametry měřicí cívky: konstantu K_{CH} , vlastní rezonanční úhlový kmitočet ω_r a hodnoty prvků L_s a C_p paralelního náhradního schématu.
- 2. Změřte rozptylové magnetické pole transformátoru. Měření proveďte ve vodorovné rovině procházející středním sloupkem transformátoru (viz obr. 4).
- 3. Z výsledků měření určete, v jaké vzdálenosti lze pole transformátoru považovat za pole dipólového charakteru.

Schéma zapojení - viz obr. 2 a 3

Poznámky k měření

Pro periodické průběhy s jedním průchodem nulou během periody, lze magnetickou indukci vypočítat ze vztahu

$$B_{\rm m} = \frac{U_{\rm s}}{4f \ S \ N} \tag{1}$$

kde $B_{\rm m}$ je maximální hodnota složky měřené indukce B(t) (T),

 U_s aritmetická střední hodnota napětí U(t) (po dvoucestném usměrnění) indukovaného v měřicí cívce (V),

f kmitočet základní harmonické měřeného napětí (Hz),

N počet závitů měřicí cívky,

S plocha průřezu měřicí cívky (m²).

Maximální hodnotu intenzity magnetického pole $H_{\rm m}$ vypočítáme ze vztahu

$$H_{\rm m} = \frac{B_{\rm m}}{\mu_0} \left(\text{A m}^{-1}; \text{ T, } \mu_0 = 4\pi \cdot 10^{-7} \text{ H m}^{-1} \right)$$
 (2)

Budeme-li napětí indukované v měřicí cívce měřit voltmetrem udávajícím hodnotu $U_{\rm ef}$ získanou měřením střední hodnoty $U_{\rm s}$ po dvoucestném usměrnění a násobením činitelem tvaru 1,11 pro sinusový průběh, můžeme hodnotu $U_{\rm s}$ získat vydělením údaje přístroje 1,11. (Pozor, pro neharmonický průběh neodpovídá údaj efektivní hodnotě).

17b. Měření rozptylového magnetického pole transformátoru

Od r. 2004-5

Měřený objekt

V některých případech lze zdroj magnetického pole, jehož siločáry se uzavírají převážně vzduchem, přibližně nahradit polem magnetického dipólu (viz obr. 1).

Obr. 1 Souřadnicový systém pro měření dipólového pole v rovině xy

Za předpokladu, že $\Delta \ll x$ resp. y, lze intenzitu magnetického pole v rovině xy na osách x a y vyjádřit vztahy

$$H_x = \frac{m_C}{2\pi\mu_0 x^3}, \quad H_y = \frac{m_C}{4\pi\mu_0 y^3}$$
 (3)

kde $m_{\rm C}$ je Coulombův magnetický moment (Wb·m = T·m³), μ_0 je magnetická konstanta (permeabilita vakua) = $4\pi \cdot 10^{-7}$ (H·m⁻¹), x, y jsou vzdálenosti měřených bodů od středu dipólu (m).

Lze-li měřením složek H_x a H_y dokázat, že v určité vzdálenosti od měřeného objektu má magnetické pole dipólový charakter, je v této oblasti zcela určeno hodnotou m_C .

17b. Měření rozptylového magnetického pole transformátoru

Od r. 2004-5

Určení parametrů měřicí cívky

Odpor vinutí cívky $R_S = k\Omega$ (lze určit libovolnou stejnosměrnou metodou). Celkovou impedanci cívky změříme např. Ohmovou metodou. Předem musíme ale znát hodnotu vlastního rezonančního kmitočtu f_r cívky, který zjistíme např. měřením v zapojení podle obr. 2.

Obr. 2 Obvod pro stanovení vlastního rezonančního kmitočtu

Obvod je napájen ze zdroje konstantního napětí U. Při rezonančním kmitočtu f_r , kdy je impedance cívky maximální, je proud I minimální. Platí

$$f_{\rm r} = \frac{1}{2\pi\sqrt{L_{\rm s}C_{\rm p}}}\tag{4}$$

Poznámka: Kapacita C_p je fiktivní a nahrazuje účinek jednotlivých mezizávitových kapacit. Náhradní obvod dobře vyhovuje pro nejnižší rezonanční kmitočet, kapacita C_p je zde tvořena hlavně kapacitou kabelu.

Impedanci měřicí cívky měříme při $f_m = 0,1 f_r$, kdy je vliv C_p zanedbatelný. Pro impedanci při kmitočtu f_m platí

$$Z_{\rm m} = \frac{U_{\rm m}}{I_{\rm m}} = \sqrt{R_{\rm s}^2 + \omega_{\rm m}^2 L_{\rm s}^2}, \quad L_{\rm s} = \frac{1}{\omega_{\rm m}} \sqrt{Z_{\rm m}^2 - R_{\rm s}^2}$$
 (5)

kde $\,U_{\mathrm{m}}\,\,$ je napětí měřené při kmitočtu $\,f_{\mathrm{m}}\,,$

 $I_{\rm m}$ je proud měřený při kmitočtu $f_{\rm m}$.

Hodnotu C_p vypočteme ze vztahu (4), kde známe změřený rezonanční kmitočet f_r a indukčnost L_s .

Určení konstanty měřicí cívky

Konstantu K_{CH} měřicí cívky určíme ve známém poli Helmholtzových cívek v zapojení podle obr. 3. Protože magnetické pole cívek má stejnou frekvenci (50 Hz) a stejný průběh (harmonický) jako rozptylové pole transformátoru, platí

$$K_{\rm CH} = \frac{H_{\rm max}}{U_{\rm ef}} = \frac{\sqrt{2}I_{\rm ef}K_{\rm HZ}}{U_{\rm ef}} \tag{6}$$

kde $K_{\rm HZ}$ - konstanta Helmholtzových cívek (m⁻¹),

 $I_{\rm ef}$ - proud Helmholzových cívek (A),

*U*_{ef} - napětí indukované v měřicí cívce (V).

Od r. 2004-5

Obr. 3 Obvod pro stanovení konstanty měřicí cívky

Měření intenzity rozptylového pole transformátoru

Měření rozptylového magnetického pole transformátoru provedeme v uspořádání dle obr. 4.

V několika vzdálenostech na osách x a y od středu transformátoru změříme napětí indukovaná v měřicí cívce a s využitím vztahu (6) vypočteme hodnoty intenzity $H_{\text{xmax}} = K_{\text{CH}} \cdot U_{\text{Hx}} = f(x)$ a $H_{\text{ymax}} = K_{\text{CH}} \cdot U_{\text{Hy}} = f(y)$.

Z naměřených hodnot vypočteme podle (3) $m_{\rm C}$ a zjistíme, v jakých vzdálenostech měřené pole odpovídá poli dipólového charakteru ($m_{\rm C}$ = konst).

Obr. 4 Umístění sondy pro měření rozptylového pole

Poznámka: Před měřením je nutno při vypnutém napájení transformátoru pro každou polohu měřicí cívky zkontrolovat napětí vyvolané rušivým magnetickým, resp. elektrickým polem. Jeho hodnota musí být zanedbatelná vzhledem k napětí indukovanému rozptylovým polem transformátoru.

1 Teoretický úvod

Intenzita magnetického podle transformátoru je nejsnáze měří pomocí cívky se vzduchovým jádrem. Jedná-li se o periodické průběhy s jedním průchodem nulou, můžeme magnetické pole spočítat jako

$$B_{\rm m} = \frac{U_{\rm SAR}}{4 f S N}.$$
 (1)

Hodnoty intenzity magnetického pole H_{m} vypočteme jako

$$H_{\rm m} = \frac{M_{\rm m}}{\mu_{\rm m}}.$$
 (2)

2 Naměřené hodnoty

Resonance		
4060	kHz	
Pracovní frce		
f=400 Hz		
0,475	mA	
5,4	V	
$Z = 11,36 \text{ k}\Omega$		

U=48 V	50 Hz	
D (cm)	Ux (mV)	Uy (mV)
10	227	178
15	81,7	54,7
20	37,86	24
25	20,9	13
30	12,9	_
35	8,84	_

3 Zpracování naměřených hodnot

Impedanci cívky spočteme jako

$$Z_m = \frac{U_m}{I_m} = \frac{5.4}{0.475} = 11.36 \text{ k}\Omega$$
 (3)

Indukčnost poté jako

$$L_s = \frac{1}{\omega} \sqrt{Z_m^2 - R_s^2} = \frac{1}{2\pi f} \sqrt{Z_m^2 - R_s^2} = 3,15 \text{ H}.$$
 (4)

Parazitní kapacitu lze spočítat jako

$$C_p = \frac{1}{4\pi^2 f_r^2 L_s} = 50 \text{ nF}.$$
 (5)

Konstanta měřené cívky je K_{hz} =276 m⁻¹. I_{ef} = 1 A, U_{ef} = 0,74 V.

$$K_{CH} = \frac{H_{max}}{U_{ef}} = \frac{271}{0.74} = 518 \text{ Am}^{-1} \text{V}^{-1}$$
 (6)

Vypočtená H_x a H_y jsou v tabulce níže

U=48 V	50 Hz	
D (cm)	Hx (A/m)	Hy (A/m)
10	117,36	92,03
15	42,24	28,28
20	19,57	12,41
25	10,81	6,72
30	6,67	_
35	4,57	_

4 Závěrečné vyhodnocení

Naměřili jsme rozptylové pole cívky a ověřili, že platí vzorec popsán v úvodu. Rozptylové pole skutečně klesá se třetí mocninou vzdálenosti, což jsme ověřili měřící cívkou, u které jsme zjistili parametry.

Seznam použité literatury a zdrojů informací

Seznam použitých internetových zdrojů

[1] Návod k laboratorní úloze