

Systèmes d'exploitation

Gestion de la Mémoire

Gordon Moore

- Américain
- Intel
- La loi de Moore

Contenu

- Mémoire
- Adresse de mémoire
- Espace d'adressage
- Protection de la mémoire
 - Allocation contiguë
 - Pagination

Bibliographie pour aujourd'hui

- Modern Operating Systems
 - Chapitre 4
 - 4.1
 - 4.3
 - 4.8
- Operating Systems Concepts
 - Chapitre 8
 - \bullet 8.1 8.5

Idée General

LA MEMOIRE

Computer Memory Hierarchy

Mémoire Cache

Paramètres de mémoire cache

cache hit

 numéro de fois quand les données sont trouve en la mémoire cache

cache miss

 numéro de fois quand les données ne sont pas trouve en la mémoire cache

cache hit / cache miss

ADRESSE DE MÉMOIRE

Adresse de mémoire

- Un numéro
- Dépend de nombre de bits
 - 4 octets sur un CPU 32 bits
 - 8 octets sur un CPU de 64 bits

- Adresse maximale
 - 2ⁿ bytes
 - n numéro de bits

ESPACE D'ADRESSAGE

Espace d'adressage

 Toutes les adresses de mémoire disponible pour un processus

- Ne doit pas nécessairement de commencer a 0

Système idéale

- chaque processus a sa partie de la mémoire
- Un processus peut accéder seulement sa partie de la mémoire
- L'espace de noyau (SE) doit être protégé
- Quel est l'espace d'adressage?

Modes de fonctionnements (x86)

- Real Mode
 - L'espace d'adressage c'est tout la mémoire
 - sans protection

- Protected Mode
 - L'espace d'adressage est limite par le CPU (MMU)
 - Protection disponible

Protection de la mémoire

- Memory Management Unit (MMU)
 - Adresse physique (après MMU)
 - Adresse logique (avant MMU)

- Possibilités
 - Allocation contiguë
 - Segmentation
 - Pagination

Protection de la mémoire

MÉMOIRE CONTIGUË

Mémoire Contiguë

Simple de implémenter

 Estimation de taille pour chaque processus

- Fragmentation
 - C'est possible de n'avoir pas de l'espace

Implémentation

- Deux registres
 - relocalisation
 - limit

- Adresse
 - adresse physique = adresse logique + relocalisation
 - adresse logique <= limit</p>

Implémentation

Algorithmes d'allocation

- First Fit
 - Premier espace disponible

- Best Fit
 - L'espace disponible plus petite

- Worst Fit
 - L'espace disponible plus grande

Fragmentation

- nous avons de la mémoire disponible mais pas dans un seul espace contigu
 - solution: défragmentation

PAGINATION

Pagination

- La mémoire est divise en pages
 - en général 4 KB
- Pages
 - Virtuelles (pages)
 - Physique (cadres frames)
- Tableau de pages
 - un processus a un tableau de pages
- Adresse
 - adresse physique = page index + décalage

Transformation d'adresse

- Pour accède un adresse
 - accès aux tableau (en mémoire)
 - accès en mémoire

- Double accès
 - lente

Translation Lookaside Buffer (TLB)

- Mémoire cache spécialisé
 - 256 entrées

Enregistre par processus

- Changement de contexte
 - change le tableau de pages curent
 - TLB flush (sauf la partie de noyau)

Protection

Entrée de tableau de pages

Numéro de cadre

- Droit d'accès
 - aucune
 - lire
 - écrire

Valable

exemple sur x86

Partage de mémoire

Taille de tableau de memoire

- 32 bits 4 GB Mémoire
 - taille de page = 4 KB
 - 2²⁰ pages de mémoire
 - entrée de tableau de mémoire = 4 B

- Taille $4 * 2^{20} = 4 MB / processus$
- 64 bits?

Mot clés

- Adresse logique
- Adresse physique
- Espace d'adressage
- Load
- Store
- Register Memory
- Mémoire Cache
- Real Mode
- Protected Mode

- Mémoire contiguë
- Fragmentation
- Base
- Limit
- Sélecteur
- Décalage
- Pagination
- TLB
- Tableau de pages

Questions

