```
In [1]: from demo_support import *
    import scikits.statsmodels.api as sm
    import scikits.statsmodels.tsa.api as tsa
```

Ordinary least squares

```
In [2]: data = sm.datasets.stackloss.load()
     X = DataFrame(data.exog, columns=data.exog_name)
     X['intercept'] = 1.
     Y = Series(data.endog)
     model = sm.OLS(Y, X)
     results = model.fit()
     print results.summary()
        Summary of Regression Results
      Dependent Variable: ['y']
      Dependent variable
Model: OLS
Method: Least Squares
Date: Thu, 15 Sep 2011
Time: 11:05:37
# obs: 21.0
Df residuals: 17.0
Df model: 3.0
     Df model:
                coefficient std. error t-statistic
     ______
     | Models stats | Residual stats |
     ______
     In [3]: results.params
```

```
Out[3]: AIRFLOW 0.715640200485
```

ALRFLOW 0.715640200485
WATERTEMP 1.29528612439
ACIDCONC -0.152122519149
intercept -39.9196744201

In [4]: results.cov_params()

```
Out[4]: AIRFLOW WATERTEMP ACIDCONC intercept
AIRFLOW 0.01819 -0.03651 -0.007144 0.2876
WATERTEMP -0.03651 0.1354 1.048e-05 -0.6518
ACIDCONC -0.007144 1.048e-05 0.02443 -1.676
intercept 0.2876 -0.6518 -1.676 141.5
```

In [4]:

Robust linear model (RLM)

Time series analysis

```
In [8]: data = sm.datasets.macrodata.load()
      mdata = data.data
      df = DataFrame.from_records(mdata)
      quarter_end = datetools.BQuarterEnd()
      logged.plot(subplots=True)
      5.0
          — срі
       4.5
       4.0
       3.5
      9.5
          — realgdp
       9.0
       8.5
       8.0
```


Vector Autoregressive (VAR) Process

VAR Order Selection

	aic	bic	fpe	hqic		
0	-27.80	-27.75	8.470e-13	-27.78		
1	-28.70	-28.49	3.436e-13	-28.62		
2	-28.92	-28.56*	2.748e-13	-28.78		
3	-29.02	-28.50	2.504e-13	-28.81*		
4	-29.01	-28.34	2.520e-13	-28.74		
5	-29.06*	-28.23	2.408e-13*	-28.72		
6	-29.06	-28.07	2.412e-13	-28.66		
7	-28.98	-27.84	2.608e-13	-28.52		
8	-28.98	-27.69	2.603e-13	-28.46		
9	-28.94	-27.49	2.720e-13	-28.35		
10	-28.93	-27.33	2.762e-13	-28.28		
11	-28.90	-27.15	2.835e-13	-28.19		
12	-28.88	-26.97	2.900e-13	-28.11		
13	-28.82	-26.75	3.113e-13	-27.98		
14	-28.75	-26.53	3.348e-13	-27.85		

^{*} Minimum

/Users/wesm/code/pandas/pandas/core/frame.py:2885: FutureWarning: dropEmptyRows is deprecated. Use dropna() FutureWarning)

/Users/wesm/code/statsmodels/main-statsmodels/scikits/statsmodels/tools/tools.py:257: FutureWarning: The default of `prepend` wil "next release, use explicit prepend", FutureWarning)

```
Out[10]: {'aic': 5, 'bic': 2, 'fpe': 5, 'hqic': 3}
```

Out[11]: Summary of Regression Results

Model: VAR
Method: OLS
Date: Thu, 15, Sep, 2011
Time: 11:05:38

No. of Equations: 3.00000 BIC: -28.6281
Nobs: 200.000 HQIC: -28.8342
Log likelihood: 2067.08 FPE: 2.60988e-13
AIC: -28.9744 Det(Omega_mle): 2.35396e-13

Results for equation m1

	coefficient	std. error	t-stat	prob	
const	0.004968	0.001850	2.685	0.008	
L1.m1	0.363636	0.071307	5.100	0.000	
L1.realgdp	-0.077460	0.092975	-0.833	0.406	
L1.cpi	-0.052387	0.128161	-0.409	0.683	
L2.m1	0.250589	0.072050	3.478	0.001	
L2.realgdp	-0.085874	0.092032	-0.933	0.352	
L2.cpi	0.169803	0.128376	1.323	0.188	
==========					

Results for equation realgdp

	coefficient	std. error	t-stat	prob	
const	0.006121	0.001373	4.457	0.000	
L1.m1	-0.043270	0.052928	-0.818	0.415	
L1.realgdp	0.243380	0.069010	3.527	0.001	
L1.cpi	-0.041436	0.095127	-0.436	0.664	
L2.m1	0.102152	0.053479	1.910	0.058	
L2.realgdp	0.155456	0.068310	2.276	0.024	
L2.cpi	-0.179065	0.095287	-1.879	0.062	

Results for equation cpi

	coefficient	std. error	t-stat	prob
const	0.001323	0.001009	1.311	0.191
L1.m1	0.022428	0.038888	0.577	0.565
L1.realgdp	0.046992	0.050705	0.927	0.355
L1.cpi	0.420292	0.069893	6.013	0.000
L2.m1	0.069411	0.039293	1.766	0.079
L2.realgdp	-0.044371	0.050190	-0.884	0.378

L2.cpi 0.334890 0.070011 4.783 0.000

In [12]: res.is_stable()

Out[12]: True

In [13]: # impulse response function irf = res.irf(20) irf.plot()

In [15]: res.test_whiteness()

FAIL: Some autocorrelations exceed 0.1414 bound. See plot

In [16]: res.test_causality('m1', 'realgdp')

```
Granger causality f-test
       Test statistic Critical Value
                                        p-value
                                                  df
                          3.011286
                                          0.330 (2, 579)
       H_0: ['realgdp'] do not Granger-cause m1
      Conclusion: fail to reject H_0 at 5.00% significance level
Out[16]: {'conclusion': 'fail to reject',
        'crit_value': 3.0112857238108273,
       'df': (2, 579),
        'pvalue': 0.33004595119395758,
        'signif': 0.05,
       'statistic': 1.1106484210458074}
In [17]: res.test_normality()
```

Normality skew/kurtosis Chi^2-test Test statistic Critical Value p-value df

```
Total value: 1.6444341095846466e-10,
'signif': 0.05,
'statistic': 57.225729837244664}
```

Autoregressive-Moving Average (ARMA) Process

```
In [18]: import numpy as np
    import scikits.statsmodels.api as sm

# Generate some data from an ARMA process
    from scikits.statsmodels.tsa.arima_process import arma_generate_sample

arparams = np.array([.75, -.25])
    maparams = np.array([.65, .35])

# The conventions of the arma_generate function require that we specify a
    # 1 for the zero-lag of the AR and MA parameters and that the AR parameters
    # be negated.
    arparams = np.r_[1, -arparams]
    maparam = np.r_[1, maparams]
    nobs = 250
    y = arma_generate_sample(arparams, maparams, nobs)
    plot(y)
```

Out[18]: [<matplotlib.lines.Line2D at 0x10ec3f650>]


```
In [19]: # Now, optionally, we can add some dates information. For this example,
         # we'll use a pandas time series.
         import pandas
         dates = sm.tsa.datetools.dates_from_range('1980m1', length=nobs)
         y = pandas.Series(y, index=dates)
         arma_mod = sm.tsa.ARMA(y, freq='M')
         arma_res = arma_mod.fit(order=(2,2), trend='nc', disp=-1)
         arma_res.params
Out[19]: ar.L1.y
                    1.12886907699
                   -0.463882785362
         ar.L2.y
                   0.153265297539
         ma.L1.y
                   -0.201761509133
         ma.L2.y
```

Teaser: Formulas

```
In [20]: from formula.terms import fromrec
    from formula.ancova import *

    df = read_table('epigen.dat', index_col=None)
    recs = df.to_records(index=False)

    terms = fromrec(recs)
```

```
race = terms['race']
         edu = terms['edu']
         smoke = terms['smoke']
         ancova = ANCOVA(race, edu, (1, (race, edu)))
        formula = ancova.formula + smoke
        df.head().T
Out[20]:
                 0
                            1
                 30to39
                            1t30
                                      30to39
                                                 30to39
                                                           30to39
        BMI
                 0
                            0
                                      1
                                                 1
                                                           0
         smoke
                            0
                                      0
                                                 0
                                                           0
         gestage
                 0
                                      0
                                                 0
                                                            0
         gender
                 0
                            0
                                                 0
         edu
                 geCollege
                           geCollege
                                      geCollege
                                                 geCollege
                                                           geCollege
        race
                 EA
                            EA
                                      EA
                                                 EA
                                                           EA
        methyll 38.36
                            37.85
                                      38.57
                                                 39.75
                                                            43.83
        methyl2 38.54
                            33.67
                                      38.94
                                                 41.93
                                                            44.04
        plate1
                            Ι
                                      L
                                                           L
                 Ι
                                                 Α
        row1
                                      D
                                                           G
                            В
                                                 Α
        column1 1
                            1
                                      1
                                                 1
                                                           1
        well1
                 Α1
                            В1
                                      D1
                                                 Α1
                                                           G1
        plate2
                 Ι
                                      0
                                                 D
                                                           0
                            I
        row2
                 G
                            Н
                                      D
                                                 Α
                                                           G
        column2 5
                            5
                                      1
                                                 1
                                                           1
        well2
                 G5
                            Н5
                                      D1
                                                 Α1
                                                           G1
```

Summary of Regression Results

_____ ['y'] | Dependent Variable: OLS Model: Least Squares Method: Thu, 15 Sep 2011 Date: Time: 11:05:44 # obs: 314.0 Df residuals: 304.0 | Df model: 9.0

=======================================	==========	=========	===========	=========
1	coefficient	std. error	t-statistic	prob.
1	46.64	1.465	31.8392	0.0000
edu_ltCollege*race_EA	-3.250	2.317	-1.4024	0.1618
edu_ltCollege*race_Other	-0.09743	3.739	-0.0261	0.9792
edu_ltHS*race_EA	0.08199	2.202	0.0372	0.9703
edu_ltHS*race_Other	1.542	3.448	0.4472	0.6550
edu ltCollege	1.326	1.715	0.7734	0.4399
edu_ltHS	-0.1423	1.648	-0.0864	0.9312
race_EA	0.7005	1.627	0.4305	0.6671
race_Other	0.6537	2.455	0.2662	0.7902
smoke	3.079	1.033	2.9821	0.0031

I	Models stats		Residual stats		
R-squared:	0.03826	Durbin-Watson:	1.206		
Adjusted R-square	ed: 0.009784	Omnibus:	42.88	ĺ	
F-statistic:	1.344	Prob(Omnibus):	4.876e-10	ĺ	
Prob (F-statisti	0.2137	JB:	29.20	ĺ	
Log likelihood:	-1030.	Prob(JB):	4.556e-07	ĺ	
AIC criterion:	2080.	Skew:	0.7494	ĺ	
BIC criterion:	2117.	Kurtosis:	4.991	ĺ	