- 1. **Number Systems:**
 - a. Classify the following numbers as rational or irrational: \(\sqrt{16}\), \(\pi\), \(\frac{3}{5}\).
 - b. Represent \(\frac{7}{8}\) on the number line.
- 2. **Polynomials:**
 - a. Factorize the quadratic expression $(x^2 6x + 9)$.
- b. Using the Remainder Theorem, find the remainder when $(2x^3 5x^2 + 3x 1)$ is divided by (x 2).
- 3. **Coordinate Geometry:**
 - a. Find the coordinates of the midpoint of the line segment joining ((-3, 2)) and ((5, -4)).
 - b. Prove that the points ((-1, 2)), ((3, -4)), and ((5, 6)) form a right-angled triangle.
- 4. **Linear Equations in Two Variables:**
 - a. Solve the system of equations:

```
\[
\begin{align*}
2x - y &= 5 \\
3x + 2y &= 8
\end{align*}
\]
```

b. Interpret the solution graphically.

5. **Triangles:**

- a. Prove the Pythagorean Theorem: $(a^2 + b^2 = c^2)$, where (a), (b), and (c) are the sides of a right-angled triangle.
 - b. In $\langle B = 90^\circ \rangle$ and $\langle A = 30^\circ \rangle$, if $\langle B = 90^\circ \rangle$ and $\langle A = 30^\circ \rangle$, find $\langle A = 30^\circ \rangle$.
- 6. **Quadrilaterals:**
 - a. Classify the quadrilateral with vertices at ((1, 2)), ((4, 6)), ((7, 7)), and ((3, 4)).
 - b. Prove that the opposite angles of a parallelogram are equal.
- 7. **Circles:**
 - a. Find the circumference of a circle with radius \(5\, \text{cm}\).
- b. Determine the area of a sector with a central angle of (60°) in a circle of radius $(8\, \text{text}cm)$.