用户产生内容的质量评价与排序

第6届R语言会议@2013-05-19 王浩@宝宝树 alexwhu@163.com

0 交流内容大纲

- ・用户产生内容的形式、特点与属性
 - UGC User Generated Content
- · UGC质量评价的难点与挑战
 - UGC质量评价与排序的相关工作讨论
- ·宝宝树在UGC质量评价与排序的工作介绍
 - 基于内容文字本身做质量评估
 - 基于辅助因素利用Logistic regression做排序
 - ppt里面全是数字,每个工作,都会以数据为支撑,以数据为导向
- · 宝宝树其他部分算法工作简介

用户产生内容的形式、特点与属性

1.1 用户产生内容的形式

Web 1.0

Web 2.0

网站生成固定内容

静态页面

桌面浏览器

简单&同步

1.1 用户产生内容的形式

统计之都∰:【转发送书】本条微博若转发超过1000次,关注并转发本条微博的粉丝将有机会获得@华章计算机科学出版的《机器学习:实用案例解析》,这本书是穿着中文马甲的《Machine Learning for Hackers》。目前共5本可送。喜欢R语言的看过来,不喜欢R语言的就不用抢机会啦。

益量量量量 人均¥60 □ 口味4(非常好) 环境4(非常好) 服务4(非常好)

百年龙鱼,味道鲜美,口感细腻,真的很不错,流连忘返啊,。,。

R in action 这也是目前最权威的了 ****

还是先有点基础 才能看这本书

宝宝发烧后出疹子怎么办?

● 0 当时年龄: 6个月9天 提问时间: 2012-08-07 14:02 关闭时间: 2012-08-17

宝宝6个多月了,前两天发烧吃了退烧药好了,但是发现宝宝身上起了好多小红点点脸上也有,看着很痒,很是着急。听家里老人说不能见风是吗,该怎么办 ? 宝妈们帮帮我!

那应该是幼儿急疹,就是发了三四天高烧之后会全身长红疹子,注意不能吹风哦。

http://www.madisonboom.com/2013/04/02/cic-launches-information-graph-about-social-media/

1.2 用户产生内容的特点

· 大数据的4V特点,就是UGC的特点

1.3 用户产生内容的属性

- · UGC普遍都是短文本 & 用户拼写错误较常见
- · UGC之间,基本上没有链接交互性
 - UGC依赖而又不单一存在于单一的web page中
 - 在产品形态上, UGC, 作为媒体属性, 通常存在于某个web page之中, 而不是作为单独的page存在
 - 多条UGC,可能会共存于同一个web page之中
- · 对某个评论(UGC)的赞(UGC),算是UGC之间的链接

UGC质量评价的难点与挑战

UGC质量评价与排序的相关工作讨论

2.1 UGC质量评价的难点与挑战 – 场景适用

- ·不同应用场景下的UGC质量评价与排序,因诉求不同, 难点与挑战也有显著差别
 - Digg与Reddit等用户推荐文章类服务
 - 新浪微博智能排序、Facebook NewsFeed
 - 社区问答类产品回答质量评价排序
 - 社交搜索、传统搜索结果中的社交媒体UGC评价
 - **–**

2.1 UGC质量评价的难点与挑战 – 大数据4V

- · UGC的4V特点,给内容质量评价带来天然的技术挑战
- · 除常规大数据处理技术挑战外,UGC内容质量评价难点特别在于:
 - 非结构化数据处理,以及与结构化数据的有机整合
 - UGC数据中"噪音"数据的识别、缺失值处理,及对模型影响的感知

2.1 UGC质量评价的难点与挑战 – UGC短小&又无链接

- · UGC之间,难以像web pages那样,去描述与建模
 - UGC通常文本很短,传统web page文本较长
 - UGC间无直接的链接, web pages间有链接
 - · 多个UGC共同出现在同一个页面中, 多多少少算一种非直接的链接

Goolge PageRank vs. Facebook EdgeRank

2.2 UGC质量排序示例

· UGC质量评价,主要关注于以文本内容形式存在的UGC

・ 示例包括:

- Question-Answer community中的回答质量,如宝宝树育儿问答
- E-commerce中的商品评论,如淘宝、亚马逊电商
- Social-Graph SNS中的信息流排序,如微博智能排序、FB信息流
- Interest-Graph SNS中的UGC,如豆瓣评论

UGC质量排序示例:问答服务

Question-Answer community中的回答质量,如宝宝树育儿问答

已关闭

宝宝半个月了,还没长体重~

0 当时年龄: 15天 提问时间: 2012-07-15 19:11 关闭时间: 2012-07-24

奶水不够,每次吃奶要吸很久,而且有时候几分钟十几分钟就又开始哭,混合喂养 中,牛奶中偶尔加清火宝,拉的便便很稀,水水样,而且还有些漏屎水,每天要放 很多屎屁屁,睡觉也睡的不安稳,动个不停,哼哼唧唧的,有时候一个上午都不睡 觉,很担心是不是没喂饱或者是奶水不好,会不会影响宝宝生长啊,这么小应该是 要能睡能吃才长的快吧。需不需要补充钙和鱼肝油了。

来自网页 浏览2272次 回答10个

[关键词: 补充 清火宝 便便 漏屎 屎屁屁 牛奶 宝宝半个月了]

半个月一般还看不出来,鱼肝油可适量地补充一些~~一个月后再称,一般按月来

来自米卡早教专家 | 2012-08-17 17:57

共有9个其他回答

如果总拉稀就不用加去火的了,混合喂养多喝点水就行了,不用专一去火。再存 宝宝吃点乳酶生片就行了。如果奶水不够就多喂点奶粉吧,别饿着宝宝

wged

来自网页 | 2012-07-15 19:18

你家便便稀就暂时不要加清火宝哦,宝宝就是要尽量保证睡眠哦,半个月以后就可 以补鱼肝油了

atu0806

来白网页 | 2012-07-15 19:19

我觉得一般小宝宝吃饱了会两三个小时吃一次奶的啦,你可以注意观察看看啊。 小宝宝是不是吃饱啦。

東琪儿

来自网页 | 2012-07-15 19:16

2.2 UGC质量排序示例:问答服务

• Question-Answer community中的回答质量 , 如宝宝树育儿问答

2.2 UGC质量排序示例:电商评论

E-commerce中的商品评论,如淘宝、亚马逊电商

按有用程度排序

9/9 人认为此评论有用

★★★★☆ 送货速度不错 2012年12月20日

评论者 harvpotter

购买过此商品

刷卡机该换了,刷个卡没信号走了半天。 还有手机电源键有点问题。周末还要去苹果店修一下。

140/159 人认为此评论有用

★☆☆☆☆ **我在亚马逊的经历** 2013年2月19日

评论者 风向

购买过此商品

2月17日下单,2月18日晚收到手机。物流很快,但是商品却很烂

在网上看了些日子,最终选在亚马逊购买是因为亚马逊汶三个字位

IPHONE5收到后,拆封不到十二个小时,就发现屏幕上方有整片

按发表时间排序

★★★★★ 不错 ★★★★★ 还可以

包装很好 是正品 速度可以 还可以。用的还不错!

陈龙 在2天前发表

吴志勇 在2天前发表

★★★★★ 还不错! 开箱后边框有点瑕疵!!

懒得换了!!

还不错! 开箱后边框有点瑕疵!! 懒得换了!! 直洋洋 在4天前发表

☆☆☆☆ 喜欢才买

最终还是买了iphone5,喜欢它的纤细,轻薄。

秋日的私语 在4天前发表

★★★★★ 挺好的

挺好的,用了一段时间没有什么其他的不好反应 ,就是比安卓的系统要稳定**!!**

李金鑫 在5天前发表

2.2 UGC质量排序示例:电商评论

· E-commerce中的商品评论,如淘宝、亚马逊电商

2.2 UGC质量排序示例:微博排序

• Social-Graph SNS中的信息流排序:微博智能排序

2.2 UGC质量排序示例: NewsFeed

- Social-Graph SNS中的信息流排序:FB信息流
- From Will Cathcart, Facebook NewsFeed PM:
 - Can we better predict what people are looking at?
 - Can we better predict what people won' want to see or are less likely to interact with?

WHAT IS EDGERANK?

EdgeRank is an algorithm developed by Facebook to govern what is displayed—and how high—on the News Feed.

2.2 UGC质量排序示例:产品评论

· Interest-Graph SNS中的UGC质量,如豆瓣评论

2.2 UGC质量排序示例:社会化问答&新闻投票

• Interest-Graph SNS中的UGC质量:知乎回答

互联网公司的数据科学家(Data Scientist)职责和日常工作内容什么?

按时间排序

26 票 **王浩**: 个人从事<mark>数据</mark>算法相关工作,一些个人见解如下: 数据科学家工作可以包括3个方面: 1、对历史数据的处理平台搭建: 具体就是公司的基础数据平台建... 查看 »

🧵 3 个回答 🚇 227 人关注 • 取消关注

http://www.zhihu.com/question/20935226

· 投票机制缺陷,曾经毁掉一家优秀公司 - Digg

更多投票机制的优缺点和分析,可参看阮一峰的《基于用户投票的排名算法》系列博客:

宝宝树在UGC质量评价与排序的工作介绍

- ●推荐系统协同过滤思想在内容质量评估中的应用
- ●Logistic regression做排序
- ●每个想法,都会以数据为支撑,以数据为导向

3.1 育儿问答 – 产品介绍

- 宝宝树是全球访问量最大、最受欢迎的垂直母婴网站
 - 每个月超过5500万独立用户访问 , 覆盖80%的婴幼儿妈妈群体
- · 宝宝树育儿问答:
 - http://www.babytree.com/ask/
- 产品理念:
 - 过来人妈妈帮助新手妈妈,互助问答
 - 第一时间、随时随地,让干万妈妈帮您排忧解难
- 产品特色:
 - · 问答集中在母婴领域,以孕育年龄段区分问题与用户
 - 与宝宝树众多其他产品打通,用户间交流互动性强

3.1 育儿问答 – 用户属性

- 妈妈们的兴趣图谱,随时间而快速迁移
 - · "妈妈们"的双重用户身份,自己& 婴幼儿(胎儿)
 - 整个孕、育过程中, "妈妈们"的话题关注点,会随着宝宝(胎儿)的自然年龄的增长,而发生自然而又快速的迁移

3.2 技术需求

- ・ 产品基本数据:
 - ・ 提问数量 毎天2本10万个(育儿)为什么
 - 回答数量 1:10的平均回答率
 - · 回答速度 10分钟必有回答
- 回答的质量,如何提升和追踪?
 - · 妈妈们带着需求来到网站,期望迅速得到精炼的靠谱答案
 - 回答量很大,纯文字信息,需要仔细阅读后才 能分辨靠谱与否
- · 如何利用算法自动判断内容质量,并优 先呈现优质内容?

现状与数据

如果将对回答内容的质量判断任务,留给用户

无为而治:浏览用户自行判断和决定内容,是否靠谱

中心决策:提问者主动在获得的回答中,选出"自认为"的"最佳回答"

集体智慧:其他用户为答案投票,根据票数选出"最佳回答"

集体智慧:浏览用户针对"最佳回答"进行"赞"的操作

亲。宝宝拉肚子,大多数是和喂养不当和饮食有关。亲平时要注意自己的饮食,不 要吃上火的东西,和凉的东西,这样都会直接影响到宝宝的。

女儿珺珺

亲多注意给宝宝补水,不要让宝宝缺水。

来自网页 | 2010-04-26 14:48

3.3 现状与数据

• "懒"用户的数据

- 中心决策数据:有最佳回答的问题比例,约占25%
 - 我们期望能够对全部问题都置顶展示一个"最佳回答" 100%
- 集体智慧:99.2%的回答,0投票,0.5%的回答,仅有1个投票"赞"

3.3 现状与数据

- 完全依赖于用户对育儿回答的质量进行判断,难度较大
 - · 育儿问答是快问快答型产品(快餐店)
 - · 区别于知乎、Quora等问答平台(西餐厅)

- 最原始的想法:相似的问题,有相似的回答
- 进一步想法:相似问题的最佳回答,也相似
 - 适合的场景:居家、生活、育儿类等,无标准答案、讨论型的问答产品
 - 不适合场景:技术、科普、历史类等,有确切答案、结果型的问答产品

- 最原始的想法的背后来由:推荐系统中的协同过滤思想
- · 把每个问题,看作常规推荐系统中的User
- · 把每个回答,看作常规推荐系统中的Item

http://www.grouplens.org/papers/pdf/www10_sarwar.pdf

- 最原始的想法的背后来由:推荐系统中的协同过滤思想,但是:
 - · 问题Qi的回答列表,与其他问题Qj的回答列表,完全不重合,所以不存在协同
 - "协同过滤" -> "内容相似":基于内容相似度来评估回答质量

回答机器人,迅速回答新问题

- ●相似的问题,有相似的回答
- ●相似问题的最佳回答,也相似
- 1. 找到相似问题 相关问题推荐✓找问题邻居
- 2. 计算回答与相似问题最佳回答之间的相似度✓找回答邻居
- 3. 评估得分后,糅合其他数据并 排序

Score(q,i) =

 $\sum Q_{sim}(q, j) * A_{sim}(i, j),$

where j = 1, 2, ..., M,

for the *i*-th Answer of Question *q*,

i = 1, 2, ...N,

 $Q_sim(q, j)$: similarity between Question q and Question j

A_sim(i, j): similarity between Answer i of Question q and the best Answer of Question j

Then recommend the answer with $\max\{ Score(q,i), i = 1, 2, ..., M \}$ and sort answers based on Score(q,i)

🏏 推荐回答

怀孕后比较明显的特征就是爱睡觉,这个是正常的,不过宝妈不要睡太长时间啊,也要多走动走动,有助于消化。

朱Anggu

来白米卡早教专家 | 2012-06-25 15:17

3.5 技术实现 - 内容质量评估

・ 找到相似问题 – 即相关问题推荐 – 主要基于内容 – 未来考虑点击数据&用户信息(兴趣点、当前年龄)做全面个性化推荐

为什么小孩经常感冒?

● 0 当时年龄: 还没有宝宝 提问时间: 2011-08-13 15:55 解决时间: 2011-08-16

酷哥冰山王子

为什么小孩经常感冒?

相关问答

- 我家小孩为什么经常感冒 7人回答
- 小孩经常感冒怎么办 3人回答
- 宝宝经常感冒 7人回答
- 4到5岁小孩经常发烧感冒是怎么回 13人回答
- 孩子为什么老是感冒 15人回答

- 小孩经常感冒 6人回答
- 宝宝怎么经常好感冒啊 14人回答
- 我家宝宝经常感冒怎么办? 1人回答
- 小孩感冒 6人回答
- 小孩经常生病是为什么 8人回答

TF-IDF空间向量模型 LDA topic模型 WAND算法加速

	平均需要计算 相似度的doc数 目	计算时间(s)	平均每秒计 算文档数	160w文档共需 天数
两两计算相似度的 方法(baseline)	1,600,000	18567	0.108	171.9166667
直接使用倒排索引	323, 675	3700	0.541	34. 25925926
WAND TOP-1000	47, 524	463	4.320	4. 287037037
WAND TOP-500	33, 204	325	6.154	3.009259259
Wand Top-100	13,900	200	10.000	1.851851852
Wand TOP-50	9, 623	183	10.929	1.69444444
Wand TOP-30	7, 438	174	11, 494	eip.&ppm/whl

3.5 技术实现 - 内容质量评估

- · 找到相似问题 即相关问题推荐
 - 育儿问答,提问全是短文本,比微博还短...
 - 提问标题加权 + 提问内容 + (最佳回答)
 - 类似重复提问较多,如何解决相关性好多样性差
 - Topic model的一些初步工作
 - · 计算耗时, WAND算法加速原理:

$$sim(d_1, d_i) = \frac{d_1 \cdot d_i}{\|d_1\| \|d_i\|} = \frac{\sum_{t \in d_1 \cap d_i} w_{1t} \times w_{it}}{\sqrt{\sum_{t \in d_1} w_{1t}^2} \cdot \sqrt{\sum_{t \in d_1} w_{it}^2}} = \sum_{t \in d_1 \cap d_i} \alpha_{1t} w_{it}$$

$$\alpha_{1t} = \frac{w_{1t}}{\sqrt{\sum_{t=1}^{t} w_{1t}^2}} = \frac{w_{1t}}{\|d_1\|}$$

$$w_{it}' = \frac{w_{it}}{\sqrt{\sum_{t \in d_i} w_{it}^2}} = \frac{w_{it}}{\|d_i\|}$$

在查找候选的Doc过程中做一个近似的评估,跳过那些理论上不需 要再考虑的文档,只对进候选的文档进行相关性计算

- 首先预估待评估文档的相关性上界
- 当上界超过当前结果集中相关性最小的才进行全面评估

一次计算过程中, α_{li} 固定,如果知道 w_{ii} 的上界 $UB(w_{i})$,那么 $sim(d_{1},d_{i})$ 的上界将确定

$$UB(w_t) = \max\{\frac{w_{it}}{\|d_i\|}, t \in D\}$$

$$UB(sim(d_1,d_i)) = \sum_{t \in d_1 \cap d_i} \alpha_{1t} UB(w_t)$$

3.5 技术实现 - 内容质量评估

- · 计算回答与相似问题最佳回答之间的相似度
 - · 内容上的相似度
- · 计算量相对较小
 - · 只与相似问题中的Top N的问题的最佳回答计算相似度
 - 每个问题的回答数呈正态分布,平均回答数为10
 - 毎个回答长度値呈log-normal分布,Q1=19,Q2=33,Q3=65,Mean=120

3.6 内容质量评估的效果数据

- · 以提问者自主选择的最佳回答作为参考,计算推荐回答的匹配程度
 - · 对每个回答 , 以*S(q,i)* 得分倒序排序
 - 排在第1位,称作"推荐回答"
 - 考察最佳回答,落在回答倒序表中的位置,并计算对最佳回答的覆盖比例

3.7 技术实现扩展 – 内容质量排序

- ・ 考虑因素1:回答长度
- · 最佳回答,倾向于有较长的内容(log-normal)

	Normal Answer	Best Answer
Min.	1	1
1st Qu.	19	45
Median	30	86
Mean	92	340
3rd Qu.	55	207
Max.	58029	63300

3.7 技术实现扩展 – 内容质量排序

- ・ 考虑因素2:回答者的信誉度
- 最佳回答者, 倾向于有较高的回答可信度
 - 可信度是指,回答者历史回答被选为最佳回答的比例

	回答者的回答可信度均值
最佳回答者	11.59%
非最佳回答者	3.98%
回答者	4.81%

3.7 技术实现扩展 - 内容质量排序

- ・ 考虑因素3:回答内容与提问内容相似度
- · 没什么信息量的回答, 倾向于问什么、答什么
 - 不太好举例,就是一种产品感觉~~靠不靠谱需要数据验证

	回答内容与提问内容平均	相似度
最佳回答		19.31
非最佳回答		18.05

宝宝湿疹长什么样?要去医院看吗?

● 0 当时年龄: 15天 提问时间: 2012-11-17 10:33 关闭时间: 2013-01-12

• 回答排序时,除回答质量本身,还考虑以下3个因素

排序因素	度量
回答长度	汉字个数 / 10
回答者可信度	最佳回答率 * 100
回答内容与提问内容相似度	相似度 * 100

- 用logistic regression对回答内容按质量排序 转换成分类问题
 - · 预测一个回答,是否能够成为最佳回答,类似于广告点击预测中的CTR预估
 - 或者说,把所有回答分为2类:最佳回答(类仅有1个回答),其他回答(剩余)

· 用logistic regression结果

```
Deviance Residuals:
  Min 1Q Median 3Q Max
-4.7989 -0.4325 -0.4065 -0.3895 2.3652
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
                                -2.665e+00 5.971e-03 -446.373 < 2e-16 ***
(Intercept)
feature_answer_content_similar 3.884e-02 7.598e-04 51.116 < 2e-16 ***
                                5.475e-02 1.570e-04 348.666 < 2e-16 ***
feature answerer credit
feature answer question content similar -2.206e-03 2.857e-04 -7.722 1.14e-14 ***
                      2.438e-03 3.145e-05 77.525 < 2e-16 ***
Feature_length_origin
Signif. codes: 0 '***' 0.001
                            '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


· 用logistic regression结果

Feature	Coefficients	0.05水平显 著与否	增加一个单位 时发生比增加	标准差	增加一个标准差单位时发生 比增加
feature_answer_content_ similar	3.884e-02	显著	3.96%	2.67316	10.94%
feature_answerer_credit	5.475e-02	显著	5.63%	9.79699	70.98%
feature_answer_questio n_content_similar	-2.206e-03	显著	-0.22%	0.08072	0.02% (数据验证可忽略)
feature_length_origin	2.438e-03	显著	0.24%	50	12.96% (需进一步降权,antispam)

logit
$$p = \log o = \log \frac{p}{1 - p} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k$$

发生比:
$$o = \frac{p}{1-p} = e^{\beta_0} e^{\beta_1 x_1} e^{\beta_2 x_2} \cdots e^{\beta_k x_k}$$

· logistic regression结果

3.9 线上算法结果

- · 线上产品环境结果:对最佳回答的预测覆盖情况
 - · 根据logistic回归结果对每个问题的所有回答进行排序显示
 - · 考察占25%的问题的最佳回答,在logistic回归&排序列表中的位置
 - 0,表示预测出来的"推荐回答(排在第1位)"就是提问者认为的最佳回答

3.9 线上算法结果

· 线上产品环境结果:不同回答数时 , "推荐回答 (排在第1位) " 对最佳回答的匹配情况

宝宝树部分算法工作简介 – 欢迎加入宝宝树

宝宝年龄预测:细分到月份

反作弊反垃圾:内容层次、用户层次、行为层次

用户留存预测:及时挽回流失用户,提高用户活跃度

个性化推荐算法:由当前页面内容、用户兴趣、宝宝年龄做个性化

算法工程师、数据挖掘工程师:应届生有户口(2个名额)

联系: wanghao@babytree-inc.com 或微博

耗资小王

lvhl1983 互相关注

简介:关注推荐系统,数据挖掘,

守望的距离有多远

■ 互相关注

龙_2 ■ 互相关注 未分组 ▼

- 谢谢大家关注
- 吃饭去.....

