EXPLORATION AND CORRELATION

Evan Piermont (RHUL) & Roee Teper (PITT)

12 Feb, 2018 Accounting Group, CMU

Overview

In dynamic uncertain environments:

- Agents take actions both for immediate payoff and to reduce uncertainty (learn).
- > The agents' preferences/beliefs evolve with new info.
- > Can we identify the agent's beliefs?

Relevant: innovative industries, voter dynamics, financial regulation, etc

Exploration Problems

Each period a project manager:

- Must choose to invest in project a or b, but not both.
- Observes if the chosen project succeeds or fails.
- Receives a payoff from the outcome.

Learning via Exploration

The true state of affairs is a joint distribution over

$$S = S_a \times S_b = \{s_a s_b, s_a f_b, f_a s_b, f_a f_b \}.$$

- The optimal strategy depends on the manager's beliefs regarding the true generating process.
 - * Learning: observes outcomes and updates her belief.
 - Tradeoff: immediate "consumption" value / future informational value.

Beliefs

- In applications we specify these beliefs over the outcome space of all projects.
- > Bayes rule determines the dynamic of beliefs.
- > We then (try to) solve for the optimal strategy.

This Paper

Conversely we ask:

- What can we learn from the manager's preferences over the different investment strategies?
- Can we identify the beliefs underlying the exploration/exploitation trade off faced by the manager?

Systemic Risk

Systemic risk in an economy/industry depends on the correlation between investments.

Can we understand this correlation by observing investment strategies.

Belief Identification

- > We are interested in a manger with exchangeable beliefs.
- Since only one action can be taken in each period, the agent's choices can reveal only the margins of her beliefs.
- We introduce a restriction on marginals, across-arm symmetry, ensuring they arise from an exchangeable process.

Uniqueness?

- We provide a simple example in the finite horizon where the marginals determine the process.
- In the infinite horizon, marginals do not uniquely determine the process.
 - Can always find a (unique) representative for which projects are independent conditional on the true parameter.

Systemic Risk

Strong negative result:

In the infinite horizon, we cannot learn the correlation between investments from the managers preference over exploration strategies.

Talk Today

1. Statistical Model

- Construct the proper stochastic model to study the manager's beliefs.
- > How does one determine exchangeability from marginals?

2. (Briefly) Identification

- We present axioms that allow us to elicit the discounted expected utility representation.
- Marginals can be uniquely identified.
- Identification of the joint distribution limited by (1).

Literature

- 1. Exploration Problems: Robbins (1952); Bergemann, Valimaki (2000; price formation in markets), Bergemann, Hege (2005; venture capital), Moroni (2017; Delegated R&D).
- 2. Belief Evolution: de Finetti (1931;1937), Hewitt, Savage (1955), Diaconis (1977).
- 3. Belief Identification with Learning: Dillenberger, Sebastian Lleras, Sadowski, Takeoka (2014), Piermont, Takeoka, Teper (2016), Cooke (2017), Dillenberger, Krishna, Sadowski (2017)

A Single Project: Exchangeability

- State space: S; Time Periods: N (finite or countable).
- * A process ζ , over sequences of realizations, S^N , is exchangeable if its distribution is invariant to finite permutations:
 - ζ is exch if, for every $n \in \mathbb{N}$, history $h \in S^N$ and permutation $\pi: n \to n$,

$$\zeta(h) = \zeta(\pi(h)).$$

Updating and Exchangeability

- To discuss Bayesian updating, one needs to observe the evolution of the joint distribution.
- In exploration models, only a single action can be taken in every period; only the margins of the process can be identified.
 - Beliefs about each individual project conditional on the observed history.

Multi-Dimensional Experiments and Limited Observability

▶ Two actions "project a" and "project b":

$$S = S_a \times S_b$$

Let \mathcal{T} be the collection of all sequences of the form $T_1, T_2, T_3, ...$, where $T_i \in \{S_a, S_b\}$ for every $i \in N$

Belief Structures

- * With every $\mathbf{T} = T_1, T_2, ...$ we associate a process $\eta_{\mathbf{T}}$ over $\prod_{i \in N} T_i$.
- * $\eta_{\mathbf{T}}$ conveys the distribution of outcomes from taking action T_{n+1} following every history of outcomes $h_i \in T_i$.
 - For a permutation $\pi: n \to n$,

$$\pi \mathbf{T} = (T_{\pi(1)}, T_{\pi(2)}, ..., T_{\pi(n)}, T_{n+1}, ...)$$

• Similarly, for a finite history $h = (h_1, ..., h_n) \in (T_1, ..., T_n)$,

$$\pi h = (h_{\pi(1)}, h_{\pi(2)}, ..., h_{\pi(n)})$$

Example 1A

Let N=2. The agent believes that each project will have exactly one success, equally likely to be in either period, and, moreover, believes the two projects will succeed and fail jointly.

		n = 1			
		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
	s_a, s_b	0	0	0	$\frac{1}{2}$
n = 0	s_a, f_b	0	0	0	0
	f_a, s_b	0	0	0	0
	f_a, f_b	$\frac{1}{2}$	0	0	0

Example 1A

The family of marginal beliefs associated with this joint:

$$\eta_{x,y}(s_x, s_y) = \eta_{x,y}(f_x, f_y) = 0$$

$$\eta_{x,y}(s_x, f_y) = \eta_{x,y}(f_x, s_y) = \frac{1}{2}.$$

where $(x, y) \in \{a, b\} \times \{a, b\}$.

The joint distribution above was the unique joint consistent with these marginals.

Example 1B

What if the manager believed instead the two projects will succeed and fail independently?

		n = 1			
		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
	s_a, s_b	0	0	0	$\frac{1}{4}$
n = 0	s_a, f_b	0	0	$\frac{1}{4}$	0
	f_a, s_b	0	$\frac{1}{4}$	0	0
	f_a, f_b	$\frac{1}{4}$	0	0	0

Example 1B

The family of marginal beliefs associated with this joint:

$$\eta_{x,x}(s_x, s_x) = \eta_{x,x}(f_x, f_x) = 0
\eta_{x,x}(s_x, f_x) = \eta_{x,x}(f_x, s_x) = \frac{1}{2}
\eta_{x,y}(s_x, f_y) = \eta_{x,y}(f_x, s_y) = \frac{1}{4}$$
if $x \neq y$.

where $(x, y) \in \{a, b\} \times \{a, b\}$.

Example 2

The agent considers two equally probable scenarios: in the first both projects have a $\frac{1}{4}$ likelihood of succeeding in both periods (i.e, i.i.d over time, with probability $\frac{1}{4}$) and in the second the likelihood of success is $\frac{3}{4}$.

Example 2

Consider the following joint distributions:

					7	i=1
		s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b	
	s_a, s_b	$\frac{5}{16}$	0	0	$\frac{3}{16}$	
n = 0	s_a, f_b	0	0	0	0	
	f_a, s_b	0	0	0	0	
	f_a, f_b	$\frac{3}{16}$	0	0	$\frac{5}{16}$	

s_a, s_b	s_a, f_b	f_a, s_b	f_a, f_b
$\frac{41}{256}$	$\frac{15}{256}$	$\frac{15}{256}$	$\frac{9}{256}$
$\frac{15}{256}$	$\frac{9}{256}$	$\frac{9}{256}$	$\frac{15}{256}$
$\frac{15}{256}$	$\frac{9}{256}$	$\frac{9}{256}$	$\frac{15}{256}$
$\frac{9}{256}$	$\frac{15}{256}$	$\frac{15}{256}$	$\frac{15}{256}$

Example 2

Both joint distributions impart the exact same restrictions on marginal beliefs:

$$\zeta_{x,y}(s_x, s_y) = \zeta_{x,y}(f_x, f_y) = \frac{5}{16}$$

$$\zeta_{x,y}(s_x, f_y) = \zeta_{x,y}(f_x, s_y) = \frac{3}{16}$$

where $(x, y) \in \{a, b\} \times \{a, b\}$.

>	In	both	examples,	all joint	distributions were	

- exchangeable.
- > Only in Example 1 did the marginals expose the manager's

How do we move from marginals to joint?

perceived correlation.

AA-Symmetry

Definition.

 $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies across arm symmetry if

- 1. If $h \in \mathbf{T} \cap \mathbf{T}'$, then $\eta_{\mathbf{T}}(h) = \eta_{\mathbf{T}'}(h)$.
- 2. For every $\mathbf{T} \in \mathcal{T}$, $h \in \mathbf{T}$, and finite permutation π ,

$$\eta_{\mathbf{T}}(h) = \eta_{\pi\mathbf{T}}(\pi h).$$

A Non-Symmetric $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$

- ▶ In Examples 1A/B and 2, the marginals satisfy AASym.
- > When does it fail? Consider the following example:
 - As long as project a is chosen, belief regarding both projects is $\frac{1}{2}$
 - Once project b is chosen, the realized outcome occurs with probability 1 for both

$$\eta_{ab}(s_a, f_b) = \frac{1}{4}$$

$$\eta_{ba}(f_b, s_a) = 0$$

Symmetry and Consistency

Theorem.

 $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies across arm symmetry if and only if there exists an exchangeable distribution ζ over S^N such that

$$\mathrm{marg}_{\mathbf{T}}\zeta$$
 = $\eta_{\mathbf{T}}$

for every $\mathbf{T} \in \mathcal{T}$

AA-Symmetry and Strongly Exchangeability

AA-symmetry of $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ does not uniquely determine a consistent exch process. From Example 2:

- When the projects are i.i.d. between periods, their contemporary correlation was not pinned down.
- The marginals were consistent with the projects' being contemporaneously independent.

Strong Exchangeability

Definition.

An exch distribution ζ is **strongly exchangeable** if for every history $h = \prod_{i=1}^{n} (h_{a_i}, h_{b_i})$ and permutations $\pi_a, \pi_b : n \to n$,

$$\zeta(h) = \zeta(\prod_{i=1}^{n} (h_{a_{\pi_a(i)}}, h_{b_{\pi_b(i)}}))$$

> Each dimension can be permuted independently.

de Finetti's Representation

Let $N = \mathbb{N}$: ζ is exch if and only if there exists a prior distribution $\lambda \in \Delta(\Delta(S))$ such that

$$\zeta = \int_{\Delta(S)} \boldsymbol{\mu} \, d\lambda(\mu)$$

- As if:
 - A parameter in $\Delta(S)$ is chosen according to λ .
 - The agent does not know the chosen parameter, but knows (or believes) λ .
 - Each period, updates her prior according to the outcome of the experiment.
- Such a representation is unique

A de Finetti like Representation of Strong Exchangeability

Theorem.

 ζ over $\prod_{\mathbb{N}} S$ is strongly exchangeable if and only if the support of λ is in $\Delta(S_a) \times \Delta(S_b)$.

- * An exch distribution ζ over $S^{\mathbb{N}}$ is a λ -mixture of parameters in $\Delta(S)$.
 - In an exch process, the joint distribution of experiments' outcomes is (inter-temporally) independent conditionally on the true parameter.
- $S = S_a \times S_b$.
 - In a strongly exch process, experiments are also conditionally contemporaneously independent.

Intuition of Proof

- * ζ is exch, converges to some $\mu \in \Delta(S_a \times S_b)$ with ζ -probability 1.
- * From SE: $\mu(s_a, f_b) \cdot \mu(f_a, s_b) = \mu(s_a, s_b) \cdot \mu(f_a, b_b)$:

$$\mu(s_a|f_b) \cdot \mu(f_b) \cdot \mu(f_a|s_b) \cdot \mu(s_b) = \mu(s_a|s_b) \cdot \mu(s_b) \cdot \mu(f_a|f_b) \cdot \mu(f_b)$$

* $\frac{\mu(s_a|f_b)}{\mu(s_a|s_b)} = \frac{\mu(f_a|f_b)}{\mu(f_a|s_b)}$: true for all events \implies independence.

AA-Symmetry and Strongly Exchangeability

Theorem.

Assume $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ satisfies AA-symmetry. There exists a unique strongly exchangeable distribution ζ over S^N such that

$$\mathrm{marg}_{\mathbf{T}}\zeta$$
 = $\eta_{\mathbf{T}}$

for every $\mathbf{T} \in \mathcal{T}$

Intuition of Proof, $N = \mathbb{N}$

<i>n</i> = 5	S_a	S_b
n = 4	S_a	S_b
n = 3	S_a	S_b
n = 2	f_a	f_b
n = 1	s_a	f_b

Consider any finite event, E.

Intuition of Proof, $N = \mathbb{N}$

n = 5	S_a	S_b	
n = 4	S_a	S_b	
n = 3	S_a	f_b	1
n = 2	f_a	f_b	
n = 1	s_a	S_b	/

Permute so that only one restriction per time period.

Intuition of Proof, $N = \mathbb{N}$

n = 5	S_a	S_b
n = 4	f_a	S_b
n = 3	S_a	f_b
n = 2	S_a	f_b
n = 1	s_a	S_b

Permute so that only one restriction per time period.

Intuition of Proof, $N = \mathbb{N}$

n = 5	S_a	S_b
n = 4	f_a	S_b
n = 3	S_a	f_b
n = 2	S_a	f_b
n = 1	s_a	S_b

• Cooresponds to $h \in \mathbf{T} = (S_a, S_b, S_b, S_a, T_5, \ldots)$

Intuition of Proof, $N = \mathbb{N}$

n = 5	S_a	S_b
n = 4	f_a	S_b
n = 3	S_a	f_b
n = 2	S_a	f_b
n = 1	s_a	S_b

 \Rightarrow Set $\zeta(E) = \eta_{\mathbf{T}}(h)$.

Intuition of Proof

- AA-SYM ensures this process is invariant to the permutations chosen.
- > There is unique extension of ζ to all events.
- Different (but not that different) proof for finite N.

Eliciting $\eta_{\mathbf{T}}$

- The model above assumes the marginal—but not the joint—distributions are observable.
- > We turn to a decision theoretic exercise to understand when and if this is reasonable.

To be shown:

- Assume we have access to the preferences over exploration strategies from a bandit problem.
- > Axiomatization of the representation.
- Only $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ can be (uniquely) elicited from the axioms.

Examples, revisited

- * Recall: N = 2, $A = \{a, b\}$, $X = \{s_a, f_a, s_b, f_b\}$.
- Let $u(s_a) = 1$, $u(f_a) = -1$, $u(s_b) = 2$, and $u(f_b) = -2$.
- > The DM is an EU maximizer
- Total utility is the sum across the two periods.

Examples, revisited

- For $x, y, z \in \{a, b\}$, let (x, (y, z)) denote the strategy:
 - \star x in the first period.
 - y in the second, conditional on x's success, and z on x's failure.
- For example, (a, (a, b)) is the strategy dictating taking action a in the first period, and
 - action a in the second period, if it was a success in the first.
 - and action b in the second in case a failed in the first.

Example 1A, revisited

- The agent believes that each project will have exactly one success, equally likely to be in either period, and, moreover, believes the two projects will succeed and fail jointly.
- * The agent's valuations for investment plans are given as follows: V(x, (y, z)) = 0 if y = z, and

$$V(a, (a, b)) = V(b, (a, b)) = \frac{1}{2}$$
$$V(a, (b, a)) = V(b, (b, a)) = -\frac{1}{2}.$$

Example 1B, revisited

If on the other hand, the 2 projects were uncorrelated: V(x, (y, z)) = 0 if y = z, and

$$V(a, (a, b)) = -\frac{1}{2}$$
 $V(b, (a, b)) = 1$
 $V(a, (b, a)) = \frac{1}{2}$ $V(b, (b, a)) = -1$.

Examples, revisited

Example 2: either projects have a $\frac{1}{4}$ likelihood of succeeding in both periods (i.e, i.i.d over time, with probability $\frac{1}{4}$) and in the second the likelihood of success is $\frac{3}{4}$.

- * $V(x,(b,a)) = \frac{1}{8}$ (for $x \in \{a,b\}$) and 0 for all other strategies.
- Does not depend on contemporaneous correlation between projects.

Preference for strategies in bandit problems can identify:
--

 \triangleright Joint, ζ —only insofar as given by previous discussion

(when $N = \mathbb{N}$, upto strong exch).

* Marginals, $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$ —always.

Framework

- Let X denote a set of outcomes.
- Let A denote a set of actions; think, the arms of a bandit problem.
- **>** Each action, a, is associated with a set of possible outcomes, $S_a ⊆ X$.

Histories.

A history of length n is a sequence of action/outcome realizations.

- That is, let $h = (a_1, x_1) \dots (a_n, x_n)$.
- > Let \mathcal{H} and \mathcal{H}^{∞} denote all finite and infinite histories, respectively.

Strategies.

A (mixed) **strategy** is a mapping from finite histories into randomizations (lotteries) of actions:

$$p:\mathcal{H}\to\Delta(\mathcal{A})$$

- Specifies the action to be taken after each history (including the trivial \(\varnothing \)).
- Let p_h denote the lottery taken after h with $p_h(a)$ the probably of choosing a.
- Our decision theoretic primitive is a preference relation over all strategies.

Evaluations of Histories

If the manager has a utility index $u: X \to \mathbb{R}$ and discount factor δ , assume she values $h \in \mathcal{H}^{\infty}$ as

$$U(h) = \sum_{n \in \mathbb{N}} \delta^n u(x_n)$$

Subjective Expected Experimentation

- Let $\mu_{h,a} \in \Delta(S_a)$ denote the manager's belief about action a after having observed history h.
- * $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$ and p induce a unique measure over \mathcal{H} :

$$\operatorname{pr}(h,(a,x)) = \operatorname{pr}(h) \cdot p_h(a) \cdot \mu_{h,a}(x)$$

Assume $U(p) = \mathbb{E} U(h)$.

Subjective Expected Experimentation

Equivalently:

$$U_h(p) = \mathbb{E}_{p_h} \left[\mathbb{E}_{\mu_{h,a}} \left[u(x) + \delta U_{h,(a,x)}(p) \right] \right]$$
 (SEE)

> We show $\langle u, \{\mu_{h,a}\}_{h\in\mathcal{H}, a\in\mathcal{A}}, \delta \rangle$ can be uniquely identified from preferences.

Belief Structures

The family $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$ is identified with $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$

- **>** Consider $\mathbf{T} = S_{a_1}, S_{a_2}, \ldots$ and $h \in \mathbf{T}$.
- Given $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$

$$\eta_{\mathbf{T}}(x_1 \dots x_{n+1}) = \prod_{i \le n} \mu_{h_{i-1,a_i}}(x_i)$$

- **There exists a unique (** σ **-addative) extension.**
- This mapping is bijective with the set of processes that satisfy (1) of AA-sym.

A1: vNM

independence axiom.

≽ is a continuous, non-trivial weak order that satisfies the

A2: Objective Stationarity

When considering plans with no subjective uncertainty, ≽ is stationary.

There is no uncertainty surrounding objective plans; no reason for preferences to change.

A3: Separability

When considering plans with no subjective uncertainty, \geq is time separable.

Preferences are separable across time periods.

So Far.

- A1-3 provide the structure for discounted expected utility.
 - ❖ ≽ is represented as such over plans with no subjective uncertainty.
- Following each history, we want to connect the following behaviors:
 - The DM treats each action as a (history-dependent) probability distribution over outcomes.
 - The probability of x is also the probability of the continuation value when observing x.

H-proportionality.

Idea:

- ightharpoonup Treat S_a like a state space.
- The continuation mapping is an "act" in the Anscombe Aumann sense.
- **Proportionality** ensures beliefs over S_a can be identified, and dictates the likelihood of both current utility and continuation utility are identical.
- For each action a, the outcomes S_a serve both as consumption goods, and both as the state space.
- This is standard in bandit problems. Not an assumption of our model, but implied by axioms.

Proportionality.

Imagine $X = \{x, y\}$. And continuation values are identified so that $f: X \to \mathbb{R}$. Then

$$U(a,f) = \mu_a(x)[u(x) + \delta f(x)] + \mu_a(y)[u(y) + \delta f(y)]$$

So that $U(a, f) \ge U(a, g)$ if and only if $\mathbb{E}_{\mu_a}[f(\cdot)] \ge \mathbb{E}_{\mu_a}[g(\cdot)]$.

Proportionality.

If there is some $\alpha \in [0,1]$ such that for all f,g

$$U(\alpha(a,f) + (1-\alpha)(a',f)) \ge U(\alpha(a,g) + (1-\alpha)(a',g))$$

$$\iff$$

$$U(b,f) \ge U(b,g)$$

it must be that $\mathbb{E}_{\alpha\mu_a+(1-\alpha)\mu_{a'}} = \mathbb{E}_{\mu_b}$.

Proportionality.

Further, if
$$\mathbb{E}_{\alpha\mu_a+(1-lpha)\mu_{a'}}=\mathbb{E}_{\mu_b}$$
, then

$$U(\alpha(a,f) + (1-\alpha)(a',f)) = U(b,f)$$

A4: Proportionality

If two strategies induce the same ranking over continuation values, then when jointly assigned the same continuation value the DM must be indifferent.

- p and q aggregate continuation values the same way.
- The continuation values are a function of the outcome of the actions in p and q.
- ❖ Therefore, it must be that p and q aggregate outcomes the same way.
- Probability of outcomes are the same + continuation values are the same = indifference.

Theorem.

≽ satisfies A1-4 if and only if there exists and SEE

representation: there exits
$$\langle u: X \to \mathbb{R}, \{\mu_{h,a}\}_{h \in \mathcal{H}, a \in \mathcal{A}}, \delta \in (0,1) \rangle$$

representation: there exits
$$\{u: X \to \mathbb{R}, \{\mu_{h,a}\}_{h \in \mathcal{H}, a_{k}}\}$$
 such that

represents ≽. Moreover all parameters are unique in the standard fashion.

 $U(p) = \mathbb{E} U(h)$.

(SEE)

Behavioral Markers

- > Proportionality holds for any recursive preferences.
- > Not a marker of exploration (in general, μ 's are unrestricted).
- Exploration models must take a stand of belief evolution.

AA-Sym

- There is an axiomatic version of AA-Sym.
- The value of a bet on an event is invariant to permutations.
- * Ensures the family, $\{\eta_{\mathbf{T}}\}_{\mathbf{T}\in\mathcal{T}}$, consistent with elicited $\{\mu_{h,a}\}_{h\in\mathcal{H},a\in\mathcal{A}}$ will arise from a unique strongly exch process.

Conclusion

- Investment strategies reveal inter-temporal correlation.
- > In the infinite horizon, this is the limit of identification.
 - Risk/Uncertainty aversion can reveal more, but not everything.
- > Bad for regulators; good for investors.