ELECTRICAL ENGINEERING DEPARTMENT

EEL202 CIRCUIT THEORY

MAJOR

19/11/2015

13:00-15:00 PM

MM:45

Q1. Solve the following simultaneous differential equations assuming that the system is initially at rest.

$$2x'(t) + 3x(t) + y'(t) + 6y(t) = \delta(t)$$

$$x'(t) + x(t) + y'(t) + 6y(t) = u(t)$$

In particular, obtain homogenous and particular solutions, the initial conditions at t=0+ and the values of the constants based on the initial conditions. (6)

- Q2. For the network shown in Fig.1, assuming $L_1L_2=M^2$, obtain expressions for $I_1(s)$ and $I_2(s)$. Also determine expressions for $i_1(0+)$ and $i_2(0+)$ using initial value theorem. (6)
 - Q3. For the network shown in Fig.2, the switch is closed at t = 0. Determine $i_1(t)$ and $i_2(t)$ at t = 0 and at t = 0 +. Also, determine their derivatives at t = 0 +. (5)
- Q4. Determine the y-parameters of the network shown in Fig.3, assuming that α is non zero. Express alpha in terms of y_{12} and y_{21} . (5)

Q5. Determine if
$$Y(s) = \frac{2s^3 + 2s^2 + 3s + 2}{s^2 + 1}$$
 is PR. If it is PR, then realize it. (5)

Q6. Realize
$$Z(s) = \frac{(s+2)(s+4)}{(s+1)(s+5)}$$
 in Foster-I and Foster-II forms. (5)

Realize $Y_{21}(s) = \frac{Ks}{s^3 + 3s^2 + 4s + 2}$ using zeros of transmission method and determine the value of K so realized. (5)

28. Realize
$$\frac{V_2}{V_1} = \frac{s+2}{s+3}$$
 using a constant-resistance network. (4)

9. Determine if the polynomial
$$f(\omega) = \omega^8 - \omega^4 - 2\omega^2 + 2$$
 is positive for all ω . (4)

PTO for figures

