Bacharelado em Ciência da Computação Métodos Heurísticos

Prof. Diego Mello da Silva

Instituto Federal de Minas Gerais - Campus Formiga

13 de novembro de 2014

Sumário

- 1 Fundamentos
- 2 Pseudo-Código
- 3 Exemplo: Minimizando Funções
- 4 Variante: BRKGA
- 5 Referências Bibliográficas

Fundamentos

Algoritmos Genéticos¹

- Algoritmos Genéticos: Forma de realizar busca local que emprega métodos baseados em evolução para alterar cromossomos de uma população na tentativa de encontrar soluções ótimas ou pelo menos boas
- John Holland: Adaptation in Natural and Artificial Systems
- É um algoritmo populacional
 - Parte de uma população de indivíduos (soluções) gerados aleatoriamente
 - 'Evolui' a população no tempo, em busca de novos indivíduos (soluções) melhores adaptados ao problema combinatório
 - Após um certo número de gerações devolve o indivíduo mais apto como solução para o problema
- Mecanismos de evolução: operadores genéticos
 - Seleção Natural
 - Recombinação ou Cruzamento
 - Mutação

¹Eiben G., Smith J. Introduction to Evolutionary Computing, (ISBN 3540401849)

Algoritmos Genéticos

- Um indivíduo é representado por uma sequência de alelos (cromossomo)
- Os alelos codificam uma solução usando algum tipo de representação
- Cada indivíduo possui uma medida de adaptabilidade ao ambiente (i.e., ao problema), denominada de **fitness** ou **aptidão**, denotado por *f*
- O fitness diferencia soluções boas das ruins
 - Quanto maior o fitness, melhor é a qualidade da solução
 - \blacksquare A adaptabilidade de um indivíduo ao problema pode ser fator usado na seleção natural de uma população entre a geração k e a geração (k+1)
 - Indivíduos mais aptos sobrevivem entre gerações, enquanto indivíduos menos aptos paderecem
- Critérios de Parada
 - Evoluir população por quantidade pré-determinada *k* de gerações
 - Encerrar evolução após n gerações sem melhorar o fitness do melhor indivíduo
 - Desvio percentual em relação à um valor alvo

Algoritmos Genéticos: Representação

 Representação mapeia o genótipo dos indivíduos no espaço de codificações em soluções do espaço de busca

- Principais representações:
 - String de bits: adequada quando variáveis de decisão são binárias
 - Inteira: adequada quando variáveis podem admitir valores inteiros
 - Ponto Flutuante: $\langle x_0, x_1, x_2, \dots, x_k \rangle$, com $x_i \in \mathbb{R}$, $i = 1, 2, \dots, k$
 - Permutações: codifica ordem na qual uma sequência de eventos ocorrerá

- Mutação altera o código genético dos indivíduos da população segundo a taxa de mutação
- Insere variabilidade em uma população em evolução
- Evita mínimos locais permitindo que indivíduos mutem e representem outras soluções do espaço de busca
- Exemplo

■ Operações de mutação comuns, de acordo com a representação utilizada

Representação	Mutação	Descrição
Binária	Bit-flipping	Cada gene em separado alterna seu valor binário
Inteira	Reset Aleatório	Assume novo valor dentro de um conjunto de valores permissíveis
Inteira	Creep Mutation	Adiciona valores positivos ou negativos sorteados aleatoriamente de alguma distribuição simétrica à cada gene
Pto. Flutuante	Random Change	Sortear aleatoriamente valores para cada gene do genótipo segundo alguma distribuição estatística
Permutação	Troca	Trocam-se os alelos de duas posições do genótipo escolhidas aleatoriamente
Permutação	Inserção	Escolhem-se duas posições aleatórias do genétipo e movendo-se uma para que fique adjacente à outra
Permutação	Inversão	Inverte-se a ordem dos alelos entre duas posições do genótipo escolhidas aleatoriamente

- (a) Binária
 - Bit Flipping $\langle 1, 0, 1, 0, 0, 0, 0, 1, 0 \rangle \rightarrow \langle 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \rangle$
- (b) Inteira
 - Random Resetting

$$\langle 1, 5, 3, 7, 2, 8, 6, \frac{9}{9}, 0 \rangle \rightarrow \langle 1, 5, 7, 7, 2, 8, 6, \frac{2}{9}, 0 \rangle$$
, com $x_i \in \{0, 1, 2, \dots, 8, 9\}$

Creep Mutation

$$\langle 1, 5, \underbrace{3}_{+1}, 7, \underbrace{2}_{+3}, 8, 6, \underbrace{9}_{-3}, 0 \rangle \rightarrow \langle 1, 5, 4, 7, 5, 8, 6, 6, 0 \rangle$$

- (c) Ponto Flutuante
 - Random Change

$$\begin{split} &\langle 1.5, \red{3.2}, 1.0, 2.7, \red{5.9} \rangle \rightarrow \langle 1.5, \red{6.8}, 1.0, 2.7, \red{2.9} \rangle, \text{ com } x_i \in \left[0, 7\right] \\ &\text{ou} \\ &\langle x_1, \dots, x_n \rangle \rightarrow \langle x_1', \dots, x_n' \rangle \text{ onde } x_i, x_i' \in \left[L_i, U_i\right] \\ \end{aligned}$$

- (d) Permutação
 - Troca

$$\langle 1, 2, 3, 4, 5, 6, 7, 8 \rangle \rightarrow \langle 1, 5, 3, 4, 2, 6, 7, 8 \rangle$$

■ Inserção

$$\langle 1, 2, 3, 4, 5, 6, 7, 8 \rangle \rightarrow \langle 1, 2, 5, 3, 4, 6, 7, 8 \rangle$$

Inversão

$$\langle 1, 2, 3, 4, 5, 6, 7, 8 \rangle \rightarrow \langle 1, 5, 4, 3, 2, 6, 7, 8 \rangle$$

Algoritmos Genéticos: Seleção dos Pais (Roleta)

■ Seleção proporcional ao fitness:

$$Prob(i) = \frac{f_i}{\sum_{j=1}^{\mu} f_j}$$

- Algoritmo da Roleta: cada fatia da roleta é associada à um indivíduo
- Tamanho da fatia: probabilidade do indivíduo ser selecionado para reprodução

Algoritmo 1 ROULETTE-WHEEL()

```
1: T \leftarrow \sum_{i=1}^{\mu} Prob(i)

2: Sorteie um número aleatório r a partir de U(0,T)

3: S \leftarrow 0

4: for (i \leftarrow 1 \text{ to } \mu) do

5: S \leftarrow S + Prob(i)

6: if (S \geq r) then

7: return i

8: end if
```

9: end for

Algoritmos Genéticos: Seleção dos Pais (Roleta)

Fonte: http://www.edc.ncl.ac.uk/highlight/rhjanuary2007g02.php/ $(Nov/2014)_{\text{QQ}}$

Algoritmos Genéticos: Seleção dos Pais (Torneio)

- lacktriangle Quantidade $au < \mu$ indivíduos é selecionada aleatoriamente da população
- lacktriangle Vence o torneio o indivíduo que possuir maior fitness dentre os au
- Indivíduo vencedor é selecionado para reprodução

Algoritmo 2 TOURNAMENT-SELECTION()

```
1: Selecione \tau (1 < \tau \le \mu) indivíduos da população, com ou sem substituição 2: best \leftarrow 1 3: val \leftarrow fitness(i) 4: for (i \leftarrow 2 \text{ to } \tau) do 5: if fitness(i) > val then 6: val \leftarrow fitness(i) 7: best \leftarrow i 8: end if 9: end for
```

10: return best

Algoritmos Genéticos: Seleção dos Pais (Torneio)

Fonte: http://geneticprogramming.us/. Acessado em Nov/2014.

Algoritmos Genéticos: Recombinação

- Dados dois ancestrais da k-ésima geração gerar novos indivíduos da geração (k + 1) recombinando os materiais genéticos dos ancestrais
- A partir desta recombinação o algoritmo genético irá visitar novas soluções no espaço de busca
- Operações de recombinação comuns, de acordo com a representação utilizada

Representação	Recombinação	Descrição			
Binária	Crossover n ptos	Escolhe-se <i>n</i> posições aleatórias na faixa [0, <i>L</i> -1] trocando as caudas em cada ponto			
Binária	Crossover uniforme	Trata cada gene separadamente, fazendo escolh sobre de qual ancestral irá herdar o gene			
Inteira	Crossover n ptos	Idem representação binária			
Inteira	Crossover uniforme	ldem representação binária			
Pto. Flutuante	Discreta	Idem crossover n ptos e uniforme			
Pto. Flutuante	Aritmética	Alelo do descendente é gerado a partir de combinação linear de alelo dos ancestrais segundo fórmula $z_i = \alpha x_i + (1-\alpha)y_1$ para $\alpha \in [0,1]$. Pode ser simples, única ou completa			

Algoritmos Genéticos: Recombinação

■ Exemplo: crossover com 2 ptos de troca, sorteados nas posições 3 e 7

```
P_1 = \langle 0, 1, 1 \mid 0, 1, 0, 1 \mid 1, 0, 1 \rangle
P_2 = \langle 0, 0, 1 \mid 1, 0, 0, 1 \mid 0, 1, 1 \rangle
F_1 = \langle 0, 1, 1 \mid 1, 0, 0, 1 \mid 1, 0, 1 \rangle
F_2 = \langle 0, 0, 1 \mid 0, 1, 0, 1 \mid 0, 1, 1 \rangle
```

Exemplo: crossover uniforme com probabilidade p = 0.5, e valores sorteados de U(0,1): 0.35, 0.62, 0.18, 0.42, 0.83, 0.76, 0.39, 0.51, 0.36

```
P_1 = \langle 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 \rangle
P_2 = \langle 1, 1, 0, 1, 0, 0, 0, 0, 1 \rangle
F_1 = \langle 0, 1, 0, 0, 0, 0, 0, 0, 0 \rangle
F_2 = \langle 1, 0, 0, 1, 1, 0, 0, 0, 1 \rangle
```

Algoritmos Genéticos: Recombinação

Exemplo: recombinação aritmética **simples**, com k = 6 e $\alpha = 0.5$:

$$P_1 = \langle 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 \mid 0.7, 0.8, 0.9 \rangle$$

$$P_2 = \langle 0.3, 0.2, 0.3, 0.2, 0.3, 0.2 \mid 0.3, 0.2, 0.3 \rangle$$

$$F_1 = \langle 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 \mid 0.5, 0.5, 0.6 \rangle$$

$$F_2 = \langle 0.3, 0.2, 0.3, 0.2, 0.3, 0.2 \mid 0.5, 0.5, 0.6 \rangle$$

Exemplo: recombinação aritmética **única**, para k = 8 e $\alpha = 0.5$

$$P_1 = \langle 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \rangle$$

$$P_2 = \langle 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3 \rangle$$

$$F_1 = \langle 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.5, 0.9 \rangle$$

$$F_2 = \langle 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.5, 0.3 \rangle$$

lacktriangle Exemplo: recombinação aritmética **completa**, para lpha=0.5

$$P_1 = \langle 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 \rangle$$

$$P_2 = \langle 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3, 0.2, 0.3 \rangle$$

$$F_1 = \langle 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6 \rangle$$

 $F_2 = \langle 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6 \rangle$

Algoritmos Genéticos: Seleção dos Sobreviventes

- Equivale a seleção natural da evolução natural
- Seleção de sobreviventes mantêm uma 'memória genética' sobre indivíduos da geração k na geração (k+1)
- Alguns indivíduos da geração k devem sobreviver na próxima geração
- \blacksquare A cada geração, λ novos indivíduos são gerados por recombinação, totalizando $(\mu+\lambda)$
- É preciso descartar λ indivíduos dentre $(\mu + \lambda)$
- Substituição baseada em
 - (a) Idade: indivíduo sobrevive apenas durante a sua geração
 - (b) Fitness: λ piores indivíduos são substituídos
 - (c) Elitismo + Idade: indivíduo mais apto sobrevive entre gerações
- Substituição baseada em fitness pode levar à convergência prematura

Algoritmo Genético: Resumo

Pseudo-Código

Algoritmo Genético (Adap. [Eiben e Smith])

Algoritmo 3 ALGORITMO-GENETICO(μ , λ , P_{mut})

- 1: **Inicialize** a população com μ soluções candidatas aleatórias
- 2: Avalie o fitness de cada candidato
- 3: repeat
- 4: **Selecione** pares de pais
- 5: **Recombine** pares de pais para gerar λ descendentes
- 6: Aplique a **mutação** nos descendentes com probabilidade P_{mut}
- 7: Avalie os novos candidatos
- 8: **Selecione** os novos indivíduos para a próxima geração
- 9: until (ocorrer uma condição de parada)
 - μ: Tamanho da população
 - lacktriangle λ : quantidade de novos indivíduos da população após uma nova geração
 - P_{mut}: probabilidade de ocorrer mutação

Exemplo: Minimizando Funções

Algoritmo Genético: Minimizando Funções

Definição	Escolha		
Representação	Números em Ponto Flutuante: $\{x_1, x_2\}$		
Mutação	Reset Aleatório com P _{mut} baixa		
Recombinação	Recombinação Aritmética Completa		
Seleção de Pais	Seleção por Torneio ($ au=3$)		
Seleção de Sobreviventes	Substituição dos λ piores ($\lambda < \mu$)		

Exemplo: Minimizando $z = f(x_1, x_2)$

■ DropWave:
$$f(x_1, x_2) = -\frac{1 + \cos\left[12\sqrt{x_1^2 + x_2^2}\right]}{0.5(x_1^2 + x_2^2) + 2}$$
, com $-2.0 \le x_i \le 2.0$

DropWave: # 0 - F(0.02451,0.03386) = -0.93801

DropWave: # 0 - F(0.02451,0.03386) = -0.93801

■ Mínimo Global: f(0,0) = -1

Exemplo: Minimizando $z = f(x_1, x_2)$

■ Rastrigin: $f(x_1, x_2) = 20 + [x_1^2 - 10\cos(2\pi x_1)] + [x_2^2 - 10\cos(2\pi x_2)]$, com $-2.0 \le x_i \le 2.0$

Rastrigin: # 0 - F(-0.43802,1.01593) = 2.02281

Rastrigin: # 0 - F(-0.43802,1.01593) = 2.02281

■ Mínimo Global: f(0,0) = 0

Biased Random Key Genetic Algorithm (BRKGA)

- RKGA: Introduzido por (Bean, 1994) para problemas de sequenciamento
- Indivíduos são string de números reais (chaves aleatórias) no intervalo [0,1]
- Ordenação das chaves aleatórias gera resultados na ordem da sequência

$$(0.25, 0.19, 0.67, 0.05, 0.89) \rightsquigarrow 4 - 2 - 1 - 3 - 5$$

- Cruzamento é feito usando crossover uniforme parametrizado
- Diferenças entre as variantes RKGA e BRKGA

RKGA	BRKGA		
Ambos os ancestrais são escolhidos aleatoriamente da população inteira	Ambos os ancestrais são escolhi- dos aleatoriamente, porém um de- les é escolhido a partir da popula- ção elite		
Qualquer ancestral pode ser Ancestral 1 no crossover parametrizado	Ancestral mais apto é o Ancestral 1 no crossover uniforme parametri- zado		

■ Gerando população (k + 1) com população k mais operadores genéticos

■ Geração de novos descendentes: crossover uniforme

Chromosome 1	0.32	0.77	0.53	0.85	
Chromosome 2	0.26	0.15	0.91	0.44	
Random number	0.58	0.89	0.68	0.25	Crossover /
Relation to crossover probabibility of 0.7	<	>	<	<	
Offspring chromosome	0.32	0.15	0.53	0.85	

■ Framework do RKGA

Biased Random Key Genetic Algorithm: Recursos

■ Genetic Algorithms and Random Keys for Sequencing and Optimization (Bean, 1994)

http://www.cs.cinvestav.mx/~constraint/papers/Vol006No02Paper05.pdf

 An Experimental Comparison of Biased and Unbiased Random Key Genetic Algorithms (Gonçalves et al)

http://www2.research.att.com/~mgcr/doc/brkga-vs-rkga-long.pdf

■ Biased Random Key Genetic Algorithm: A tutorial (Resende, 2012)

 Biased Random Key Genetic Algorithms with applications to optimization problems in telecommunications (Resende, 2012)

■ A C++ application programming inteface for Biased Random-Key Genetic Algorithm (Toso e Resende, 2011)

http://www.optimization-online.org/DB FILE/2011/10/3200.pdf

Referências Bibliográficas

Referências Bibliográficas

CAMPELLO R. E, MACULAN N.

Algoritmos e Heuristicas: Desenvolvimento, Avaliação e Performance. Editora da Universidade Federal Fluminense.

NETTO P.O.B.

Grafos: Teoria, Modelos e Algoritmos, 4a. edição.

Editora Blucher, ISBN: 9788521203919

GLOVER F., KOCHENBERG G. A.

Handbook of Metaheuristics.

Editora Springer. ISBN: 1-4020-7263-5

GAREY M. R., JOHNSON D. S.

Computers and Intractability - A Guide to the Theory of NP-Completeness.

Editora Freeman and Company.

GOLDBARG M. C., LUNA H. P.

Otimização Combinatória e Programação Linear: Modelos e Algoritmos.

Editora Campus.

EIBEN A., SMITH J.

Introduction to Evolutionary Computing.

Editora Springer (Natural Computing Series). ISBN: 3540401849.

PARDALOS P., RESENDE M. G.

Handbook of Applied Optimization.

Editora Oxford.

Referências Bibliográficas

RIVEST R. L., LEIRSON C. E., CORMEN, T. H., STEIN, C. Algoritmos: Teoria e Prática, 3a. edição. Editora Campus. ISBN: 9788535236996

LOPES, H. S., RODRIGUES L. C. A., STEINER M. T. A. Meta-heurísticas em Pesquisa Operacional Editora Ominipax. ISBN: 978-85-64619-10-4 [recurso eletrônico] DOI: 10.7436/2013.mhpo.0

RUSSEL, S., NORVIG, P. Inteligência Artificial, 2a. Edição. Editora Elsevier, 2004. ISBN: 978-85-352-1177-1