

Estrutura de Dados

Introdução

Prof. Silvana Teodoro silvanateodoro@charqueadas.ifsul.edu.br

Introdução

- Na resolução de um problema por meio de um programa, a primeira providência é criar um algoritmo adequado.
- A eficiência de um algoritmo está relacionada à disposição, na memória, dos dados que são tratados pelo programa.
- Por exemplo, se frequentemente enfrentamos o problema de descobrir os números de telefones de nossos conhecidos, é conveniente dispor de uma relação de números, organizada em uma agenda.
- Se a organização for feita por ordem alfabética, a agenda de fato ajuda.
- Se, porém, organizássemos nossa agenda pela ordem de altura das pessoas, com raras exceções, a agenda se tornaria difícil de manusear.
- As estruturas de dados são formas de distribuir e relacionar os dados disponíveis, de modo a tornar mais eficientes os algoritmos que manipulam esses dados.

Estruturas de Dados

- Permitem armazenar e organizar os dados armazenados.
- Operações sobre os dados:
 - Busca
 - Remoção
 - Inserção
- Organização

 Desempenho

Seqüência ordenada de elementos do mesmo tipo.

 Por exemplo, um conjunto de fichas de clientes de uma loja, organizadas pela ordem alfabética dos nomes dos clientes.

 Neste fichário é possível introduzir uma nova ficha ou retirar uma velha, alterar os dados de um cliente etc.

Problema

Manipular um conjunto de fichas de um fichário.

Solução

Organizar as fichas em ordem alfabética

Operações possíveis

Inserir ou retirar um ficha, procurar uma ficha, etc.

Estrutura de Dados Correspondente

LISTA – sequência de elementos dispostos em ordem.

- Lista linear em que todas as operações (inserção, retirada e consulta) são realizadas numa única extremidade da estrutura.
- Graficamente:

- **Topo da pilha**: é o endereço (índice) do elemento mais recentemente alocado (inserido) na pilha.
 - O topo de uma pilha será denotado pela variável T.
- Base da pilha: é o endereço (índice) do nodo anterior ao nodo mais 'antigo' da pilha.
 - Inicialmente, quando a pilha está vazia, a base tem valor zero e a pilha não estará vazia se a diferença entre o valor do topo e da base for maior que zero.

Problema

Organizar um conjunto de pratos que estão sendo lavados, um a um, em um restaurante.

Solução

Colocar os pratos empilhados.

Operações possíveis

 Colocar um prato limpo no alto da pilha, retirar um prato do alto da pilha, etc...

Estrutura de Dados Correspondente

 PILHA – seqüência de elementos dispostos em ordem, mas com uma regra para entrada e saída dos elementos (o último que chega é o primeiro que sai da estrutura).

- Lista linear em que as inserções de novos nodos na estrutura são realizadas em uma das extremidades e as retiradas ou consultas aos nodos são realizadas na outra extremidade da lista.
- Graficamente:

Entrada → Saída
(Inserção) → Saída
(Retirada
ou Consulta)

- Ré da Fila : é o endereço (índice) do nodo do elemento mais recentemente alocado (inserido) na fila.
 - A ré de uma fila será denotada pela variável R.
- Frente da fila : é o endereço (índice) do nodo anterior ao nodo mais 'antigo' da fila.
 - Inicialmente, quando a fila está vazia, a frente tem valor zero e a fila não estará vazia se o valor da frente for diferente do valor da ré.
 - A frente será denotada pela variável F.

Problema

Organizar as pessoas que querem ser atendidas num guichê.

Solução

Colocar as pessoas em fila.

Operações possíveis

À medida que uma pessoa é atendida no guichê, outra entra no final da fila...
 Não é permitido "furar" a fila, ou seja, entrar uma pessoa entre outras que já estão presentes.

Estrutura de Dados Correspondente

 FILA – sequência de elementos dispostos em ordem com uma regra para a entrada e saída dos elementos (o primeiro que chega também é o primeiro que sai da estrutura).

Estruturas de dados no dia a dia Árvore

Estruturas de dados no dia a dia Árvore

Problema

 Conseguir um modo de visualizar o conjunto de pessoas que trabalham em uma empresa, tendo em conta sua função.

Solução

Construir um organograma da empresa.

Operações possíveis

Inserir ou retirar certas funções, localizar uma pessoa, etc...

Estrutura de Dados Correspondente

 ÁRVORE – estrutura de dados que caracteriza uma relação de hierarquia entre os elementos (uma pessoa não pode pertencer a dois departamentos diferentes, cada diretoria tem os seus próprios departamentos, etc.).

Estruturas de dados no dia a dia **Grafos**

Estruturas de dados no dia a dia **Grafos**

Problema

Estabelecer um trajeto para percorrer todas as capitais de um país.

Solução

 Utilizar um mapa que indique as rodovias existentes e estabelecer uma ordem possível para percorrer todas as cidades.

Operações possíveis

 Encontrar um modo de percorrer todas as cidades, determinar o caminho mais curto para ir de uma cidade para outra, etc.

Estrutura de Dados Correspondente

 GRAFO – estrutura bastante genérica que organiza vários elementos, estabelecendo relações entre eles, dois a dois.

Estruturas lineares e não-lineares

LINEARES

- Primeiro elemento bem definido
- Último elemento bem definido
- Elementos intermediários: um antecessor e um sucessor

Estruturas lineares e não-lineares

- NÃO-LINEARES
 - Árvore: relação hierárquica
 - Grafo: relação qualquer

Estruturas lineares e não-lineares

Fundamental:

Identificar problema!

- Identificar a melhor estrutura para cada

- Crie um programa que calcule o fatorial de um determinado número inteiro (x) e, caso esse fatorial seja maior que 2, exiba também o resultado do resto da divisão (z) deste fatorial por 3.
- A saída deve ser:
 O fatorial de x é y, e o resto da divisão por 3 é z.
- Exemplo para x=5:
 O fatorial de 5 é 120, e o resto da divisão por 3 é 0.

 Imagine um terminal férreo com a seguinte configuração de trilhos:

 Os vagões só podem entrar na área Estacionamento (que é estruturado como uma pilha) vindos da Entrada e só podem sair da pilha pela Saída.

 Denotando-se por I a entrada de um vagão no Estacionamento (inserção) e por R a saída de um vagão do Estacionamento (retirada) e considerando-se que na Entrada há quatro vagões numerados de 1 a 4, respectivamente (1 2 3 4) a execução da seqüência de operações de inserções e retiradas.

IIRIIRR R

 Sobre os vagões da Entrada resultará na seguinte permutação dos vagões na Saída: 2 4 3 1.

 Considerando a configuração inicial (a), após a execução da seqüência IIRI, obter-se-á:

 Após toda a seqüência de operações ser efetuada, ter-se-á a seguinte configuração.

 Após toda a seqüência de operações ser efetuada, ter-se-á a seguinte configuração.

 Se existirem seis vagões na Entrada (1 2 3 4 5 6), existe uma seqüência de operações que aplicada sobre a Entrada fornecerá na Saída a ordenação 3 2 5 6 4 1 dos vagões? Se sim, qual é a seqüência de operações? E uma seqüência que forneça a permutação 1 5 4 6 2 3? Se sim, qual é a seqüência?

Leitura adotada

 CELES, Waldemar; CERQUEIRA, Renato; RANGEL, José Lucas. Introdução a Estrutura de Dados. Editora Campus, 2004.

Introdução a

Fstruturas

Com técnicas de programação em C

de Dados