Lecture 7: DFA Minimization and Non-regular Languages

CSC 320: Foundations of Computer Science

Quinton Yong

quintonyong@uvic.ca

DFA State Minimization

• Given a DFA $\emph{\textbf{D}}$, reduce the number of states without changing the language recognized by $\emph{\textbf{D}}$

- 1. Remove unreachable states
- 2. Identify and collapse equivalent states (while still maintaining DFA rules)

DFA State Minimization

Which states **cannot** be collapsed?

• Clearly, an accept and a non-accept state are not equivalent / collapsible

In general, we cannot collapse states p and q if there is any string w such that:

- when \boldsymbol{w} is processed starting at \boldsymbol{p} , we yield **acceptance**
- when \boldsymbol{w} is processed starting at \boldsymbol{q} , we yield non-acceptance

DFA State Equivalence

Two states p and q of a **DFA** are equivalent (denoted $p \sim q$) if and only if for all $w \in \Sigma^*$:

- computation of w starting at state p yields acceptance if and only if
- computation of w starting at q yields acceptance

In other words, p and q have **exactly the same role** in the DFA in terms of accepting and not accepting strings

DFA State Minimization Algorithm

We work backwards, and mark which pairs of states cannot be equivalent

• Accept and non-accept states are not equivalent

• If a pair of states x and y have a transition for the same symbol a to non-equivalent states, they also cannot be equivalent

• Continue until no more changes occur

DFA State Minimization Algorithm

Let *M* be a DFA with **no inaccessible states** (first remove unreachable states)

- 1. Write down all unordered pairs $\{p, q\}$ of states in M
- 2. Mark each pair $\{p, q\}$ where $p \in F$ and $q \notin F$ (or vice versa)

$$\{p,q\}$$
 p

3. Repeat the following until no changes occur:

If there exists an unmarked pair $\{i, j\}$ such that:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a \in \Sigma$
- then mark {*i*, *j*}

This algorithm produces state equivalence: $\{p, q\}$ unmarked if and only if $p \sim q$

Remove unreachable states

Write down all unordered pairs $\{p, q\}$ of states in M

Mark each pair $\{p,q\}$ where $p \in F$ and $q \notin F$ (or vice versa)

Mark each pair $\{p,q\}$ where $p \in F$ and $q \notin F$ (or vice versa)

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

```
 \begin{cases} \delta(q_0, 0), \delta(q_1, 0) \rbrace = \{q_1, q_3\} \\ \{q_0, q_1\} & \{q_1, q_2\} & \{q_2, q_3\} & \{q_3, q_4\} & \{q_4, q_5\} \\ \{q_0, q_2\} & \{q_1, q_3\} & \{q_2, q_4\} & \{q_3, q_5\} \\ \{q_0, q_3\} & \{q_1, q_4\} & \{q_2, q_5\} \\ \{q_0, q_4\} & \{q_1, q_5\} \\ \{q_0, q_5\} \end{cases}
```


 $\{\delta(q_0,0),\delta(q_2,0)\}=\{q_1,q_4\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

 $\{\delta(q_1,0),\delta(q_2,0)\}=\{q_3,q_4\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

```
\begin{cases}
q_0, q_1 \\
q_1, q_2 \\
\end{cases} \quad \{q_2, q_3 \\
q_3, q_4 \} \quad \{q_4, q_5 \}

\{q_0, q_2 \\
q_0, q_3 \\
\end{cases} \quad \{q_1, q_3 \\
\end{cases} \quad \{q_2, q_4 \\
\end{cases} \quad \{q_3, q_5 \}

\{q_0, q_4 \\
\end{cases} \quad \{q_1, q_5 \\
\rbrace \quad \{q_1, q_5 \\
```


 $\{\delta(q_1,1),\delta(q_2,1)\}=\{q_4,q_3\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

Repeat the until no changes occur:

If there exists an unmarked pair $\{i, j\}$ such that:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

 $\{\delta(q_3,0),\delta(q_4,0)\}=\{q_5,q_5\}$

 $\{\delta(q_3, 1), \delta(q_4, 1)\} = \{q_5, q_5\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

 $\{\delta(q_3,0),\delta(q_5,0)\}=\{q_5,q_5\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

 $\{\delta(q_3, 1), \delta(q_5, 1)\} = \{q_5, q_5\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

Repeat the until no changes occur:

If there exists an unmarked pair $\{i, j\}$ such that:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

 $\{\delta(q_4,0),\delta(q_5,0)\}=\{q_5,q_5\}$

 $\{\delta(q_4,1),\delta(q_5,1)\} = \{q_5,q_5\}$

Repeat the until no changes occur:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

Repeat the until no changes occur:

If there exists an unmarked pair $\{i, j\}$ such that:

- $\{\delta(i,a),\delta(j,a)\}$ is marked for some $a\in\Sigma$
- then mark {*i*, *j*}

Repeat process again, but no changes occur

Equivalent:

 $p_1: q_1 \sim q_2$

 $p_2: q_3 \sim q_4 \sim q_5$

Equivalent:

 $p_1:q_1{\sim}q_2$

 $p_2: q_3 \sim q_4 \sim q_5$

DFA State Minimization

Non-regular Languages

- The set of regular languages is the set of all languages recognized by DFAs,
 NFAs, and regular expressions
- There also exist languages which cannot be recognized by DFAs, NFAs, nor regular expressions...

Exercise

Consider the following language:

 $L = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of occurrences of } 01 \text{ and } 10 \}$

Is *L* a regular language?

Exercise

Are the following languages L_1 , L_2 , or L_3 regular?

- L₁ = { w ∈ {0, 1}* | w has an equal number of 0s and 1s }
 ?
- $L_2 = \{ 0^n 1^n \mid n \ge 0 \}$
- $L_3 = \{ \ 0^3 \mathbf{1}^n \mid n \geq 0 \}$ Yes. $L_3 = L(R)$ with $R = \mathbf{0001}^*$

Non-Regular Languages

• Given a language L, if there exists a finite automaton M with L(M) = L, then L is a **regular language**

- A language is non-regular if there exists no finite automaton that recognizes it
 - i.e. Not possible to create a finite automaton which accepts on every string in the language and not accept on every string not in the language

Technique for proving that languages are non-regular: the pumping lemma

Pumping Lemma

If L is a regular language, then there is a natural number p (pumping length of L) such that for every string $s \in L$ of length at least p, s can be divided into s = xyz satisfying the following:

- 1. |y| > 0 (i.e. $y \neq \varepsilon$)
- $2. |xy| \leq p$
- 3. $xy^iz \in L$ for each $i \ge 0$

Notes:

- y^i means concatenation of i copies of substring y
- Conditions 1 to 3 hold **for all strings** in L that are of length at least p
- We only use the pumping lemma to prove that languages are **non-regular**

Let $L = \{ 0^n 1^n \mid n \ge 0 \}$. Prove that L is non-regular.

Proof by contradiction using the pumping lemma:

- ullet Assume for a contradiction that $oldsymbol{L}$ is regular.
- Then all the properties of the pumping lemma must hold for L:
 - There is some natural number p
 - For every $s \in L$ and $|s| \ge p$, then there is a way to rewrite s = xyz such that
 - 1. |y| > 0 (i.e. $y \neq \varepsilon$)
 - $2. |xy| \leq p$
 - 3. $xy^iz \in L$ for each $i \ge 0$

$$L = \{ 0^n 1^n \mid n \geq 0 \}$$

Proof continued:

- Let p be the pumping length given by the pumping lemma
 - We don't actually know the value of p
 - In fact, there is no such p since (spoiler) L is not a regular language
 - ullet We must work with the variable $oldsymbol{p}$ and come up with a contradiction
- The PL states that conditions must hold for every $s \in L$ and $|s| \ge p$
 - For a contradiction, we just need to **choose one string** \in *L* which contradicts the conditions of the PL
 - Since $|s| \ge p$, p needs to appear somewhere in our chosen string
- Choose $s = 0^p 1^p$

$$L = \{ 0^n 1^n \mid n \geq 0 \}$$

- Choose $s = 0^p 1^p$
- Since $s \in L$ and $|s| \ge p$, the PL guarantees that s can be rewritten as s = xyz with
 - 1. |y| > 0 (i.e. $y \neq \varepsilon$)
 - $2. |xy| \le p$
 - 3. $xy^iz \in L$ for each $i \ge 0$

- To derive a contradiction, we need to show that **there is no possible way** to write s = xyz such that the properties hold
- For the PL to be satisfied, there is just needs to be **one** rewriting of s
- So, we need to consider all ways of rewriting s and show that all of them break

$$L = \{ 0^n 1^n \mid n \geq 0 \}$$

- Choose $s = 0^p 1^p$
- Since $s \in L$ and $|s| \ge p$, the PL guarantees that s can be rewritten as s = xyz with
 - 1. |y| > 0 (i.e. $y \neq \varepsilon$)
 - $\overline{2}$. $|xy| \leq p$
 - 3. $xy^iz \in L$ for each $i \ge 0$

- Because of **property 1**, $y \neq \varepsilon$, therefore y can be the following:
- $\begin{array}{c|c}
 xyz \\
 \underline{0 \dots 0} & \underline{1 \dots 1} \\
 p & p
 \end{array}$

- Case 1: y consists of only 0's
- Case 2: y consists of only 1's
- Case 3: y consists of both 0's and 1's

$$L = \{ 0^n 1^n \mid n \geq 0 \}$$

Case 1: y consists of only 0's

- The string xyyz has more 0's than 1's, therefore $xyyz \notin L$
- This violates property 3 of the PL

Case 2: y consists of only 1's

- The string xyyz has more 1's than 0's, therefore $xyyz \notin L$
- This violates property 3 of the PL

Case 3: y consists of both 0's and 1's

- The string xyyz has 0's and 1's out of order, therefore $xyyz \notin L$
- This violates property 3 of the PL

Since no case of y is possible, we cannot rewrite s as xyz satisfying the properties of the pumping lemma. Therefore, L is not regular.

Pumping Lemma Example 2

Prove that $L = \{ w \in \{0, 1\}^* \mid w \text{ has an equal number of } 0\text{s and } 1\text{s} \} \text{ is not regular.}$

Proof:

- ullet Assume for a contradiction that $oldsymbol{L}$ is regular
- Let p be the pumping length given by the pumping lemma.
- We choose $s = 1^p 0^p$.
- Since $s \in L$ and $|s| \ge p$, according to the PL, we can rewrite s = xyz satisfying
 - 1. |y| > 0 (i.e. $y \neq \varepsilon$)
 - 2. $|xy| \leq p$
 - 3. $xy^iz \in L$ for each $i \ge 0$

Pumping Lemma Example 2 $| L = \{ w \in \{0,1\}^* \mid w \text{ has an equal number of } 0s \text{ and } 1s \}$

- We choose $s = 1^p 0^p$.
- Since $s \in L$ and $|s| \ge p$, according to the PL, we can rewrite s = xyz satisfying
 - |y|>0 (i.e. y
 eq arepsilon)

 - 2. $|xy| \le p$ 3. $xy^iz \in L$ for each $i \ge 0$

$$\underbrace{1 \dots 1}_{p} \underbrace{0 \dots 0}_{p}$$

- By **property 2**, xy must consist of only 1's
- By **property 1**, y must consist of at least one 1 (since $y \neq \varepsilon$)
- Consider $xy^0z = xz$. The string $xz \notin L$ since it contains less 1's than 0's
- We cannot rewrite s = xyz satisfying all properties, so we have a contradiction. Therefore, *L* is not regular.

Exercises

1. Show that $L = \{ \mathbf{0}^i \mathbf{1}^j \mid i > j \}$ is non-regular

2. Show that $L = \{ \mathbf{0}^i \mathbf{1}^j \mid i < j \}$ is non-regular

3. Show that $L = \{ \mathbf{0}^i \mathbf{1}^j \mid i \leq j \}$ is non-regular

4. Explain why $L = \{ \mathbf{0}^i \mathbf{1}^j \mid i \leq j < \mathbf{121} \}$ is regular