集合関数の localizability を用いた 局所探索法の近似保証

藤井 海斗

(国立情報学研究所)

IBIS 2020

2020/11/25

それぞれの部分集合に値を割り当てる関数

それぞれの部分集合に値を割り当てる関数

$$f(\{5, 3, \}) = 50$$

それぞれの部分集合に値を割り当てる関数

$$f(\{*, \frac{1}{N}\}) = 20$$

関数値を最大化する部分集合を見つける問題

集合関数最大化などに用いられるアルゴリズム設計法

こだんな集合関数に対して局所探索がうまくいくのか?

集合関数が localizability を満たすなら 局所探索がよい近似解を出力する

- 集合関数が localizability を満たすなら 局所探索がよい近似解を出力する
- 2 スパース最適化の目的関数は localizability を満たす

- 集合関数が localizability を満たすなら 局所探索がよい近似解を出力する
- 2 スパース最適化の目的関数は localizability を満たす
- 3 スパース最適化に対する局所探索は高速化できる

要素数の以下の最適な部分集合を探す問題

Maximize f(X)

subject to $|X| \le s$

要素数 S 以下の最適な部分集合を探す問題

Maximize
$$f(X)$$
 f の単調性を仮定 subject to $|X| \le s$ i.e. $A \subseteq B \Rightarrow f(A) \le f(B)$

要素数 S 以下の最適な部分集合を探す問題

アルゴリズムが α 近似 $(\alpha \in [0,1])$ $\overset{\triangle}{\Leftrightarrow} f(X) \geq \alpha f(X^*),$ ただし、X はアルゴリズムの出力、 X^* は最適解

X を任意の極大な実行可能解とする

For
$$i = 1, \dots, T$$
:

各 $a \in N \setminus X$, $b \in X$ について $f(X \setminus \{b\} \cup \{a\})$ を計算 この値を最大化する α と b で X を更新

現在の解

$$f(\lbrace ••, ••, \overline{a} \rbrace) = 30$$

各ステップで 最良の交換を 見つける

$$f(\lbrace 5, , , , , ,) = 35$$

$$f(\lbrace 5, , , , , , \rbrace) = 35$$
 \cdots $f(\lbrace 4, , , , , , \rbrace) = 40$

Theorem

目的関数が (α, β) -localizable なら

局所探索法は
$$\frac{\alpha}{\beta} \left(1 - \exp\left(-\frac{\beta T}{s} \right) \right)$$
 近似

T 反復回数、s 実行可能解の要素数の最大値

Theorem

目的関数が (α, β) -localizable なら

局所探索法は
$$\frac{\alpha}{\beta} \left(1 - \exp\left(-\frac{\beta T}{s} \right) \right)$$
 近似

T 反復回数、s 実行可能解の要素数の最大値

よく現れる関数に対する近似保証

$$(\alpha, \beta)$$
 近似比 線形関数 $(1,1)$ $(1-\exp(-T/s))$ 劣モジュラ関数 $(1,2)$ $\frac{1}{2}(1-\exp(-T/s))$

Maximize f(X) $\mathcal{I} \subseteq 2^N$ は subject to $X \in \mathcal{I}$ 実行可能な部分集合の族

N finite set, $\mathcal{I} \subseteq 2^N$ s.t. $\emptyset \in \mathcal{I}$ and $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$

 $\mathcal{M} = (N, \mathcal{I})$ is a **matroid**

 $\forall A, B \in \mathcal{I}, |A| < |B| \Rightarrow \exists i \in B \setminus A, A \cup \{i\} \in \mathcal{I}$

例:分割マトロイド

N finite set, $\mathcal{I} \subseteq 2^N$ s.t. $\emptyset \in \mathcal{I}$ and $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ $\mathcal{M} = (N, \mathcal{I})$ is a **matroid**

$$\forall A, B \in \mathcal{I}, |A| < |B| \Rightarrow \exists i \in B \setminus A, A \cup \{i\} \in \mathcal{I}$$

(N, \mathcal{I}) is a p-matroid intersection

$$\exists (N, \mathcal{I}_1), \cdots, (N, \mathcal{I}_p)$$
 matroids s.t. $\mathcal{I} = \bigcap_{i=1}^p \mathcal{I}_i$

N finite set, $\mathcal{I} \subseteq 2^N$ s.t. $\emptyset \in \mathcal{I}$ and $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ (N, \mathcal{I}) is a *p*-exchange system

 $\exists \phi : B \setminus A \rightarrow 2^{A \setminus B} \text{ s.t.}$

- For all $B' \subseteq B \setminus A$, $(A \setminus (\bigcup_{v \in B'} \phi(v))) \cup B' \in \mathcal{I}$
- $|\phi(v)| \le p \ (\forall v \in B \setminus A)$
- Each $v' \in A \setminus B$ appears at most p sets of $(\phi(v))_{v \in B \setminus A}$

N finite set, $\mathcal{I} \subseteq 2^N$ s.t. $\emptyset \in \mathcal{I}$ and $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$ (N, \mathcal{I}) is a *p*-exchange system

例:bマッチング

2マッチング

2マッチングでない

 $\mathcal{I} = \{X \subseteq E \mid \forall v \in V, \deg_v(X) \leq b\}$ は 2 交換システム

$$f \text{ is } (\alpha, \beta_1, \beta_2) \text{-localizable}$$

$$\iff \sum_{P \in \mathcal{P}} \{ f(X \triangle P) - f(X) \} \ge \frac{\alpha k}{n} f(X^*) - (\beta_1 \ell + \beta_2 k) f(X)$$

$$(\forall X, X^* \subseteq N \text{ of size at most } s)$$

Theorem

目的関数が $(\alpha, \beta_1, \beta_2)$ -localizable なら

マトロイド 局所探索法は

$$\frac{\alpha}{\beta_1 + \beta_2} \left(1 - \exp\left(-\frac{(\beta_1 + \beta_2)T}{s} \right) \right)$$
近似

p-MI/p-ES パラメタ $q \in \mathbb{Z}_{>0}$ の局所探索法は

$$\frac{\alpha\left(1-\exp\left(rac{(eta_1(p-1+1/q)+eta_2)T}{s}
ight)
ight)}{eta_1(p-1+1/q)+eta_2}$$
 近似

q は選べるパラメタ

(各ステップで $n^{O(q)}$ 個の集合を確認しなければならない)

連続最適化問題のスパースな解を見つける問題

Maximize_{**w**∈ \mathbb{R}^n} $u(\mathbf{w})$

subject to $supp(\mathbf{w}) \in \mathcal{I}$

Notation

- \bullet $u: \mathbb{R}^n \to \mathbb{R}$ 微分可能な連続関数 with $u(\mathbf{0}) \geq 0$
- $\bullet N \stackrel{\triangle}{=} \{1, \cdots, n\}$
- $supp(\mathbf{w}) \stackrel{\triangle}{=} \{i \in N \mid \mathbf{w}_i \neq 0\}$ 非ゼロのインデックス

連続最適化問題のスパースな解を見つける問題

Maximize $_{\mathbf{w} \in \mathbb{R}^n}$ $u(\mathbf{w})$ subject to $\sup_{\mathbf{w} \in \mathcal{I}} \mathbf{w} \in \mathcal{I}$

Notation

- \bullet $u: \mathbb{R}^n \to \mathbb{R}$ 微分可能な連続関数 with $u(\mathbf{0}) \geq 0$
- $\bullet N \stackrel{\triangle}{=} \{1, \cdots, n\}$
- $supp(\mathbf{w}) \stackrel{\triangle}{=} \{i \in N \mid \mathbf{w}_i \neq 0\}$ 非ゼロのインデックス

各分割から一つずつ特徴を選ぶ問題などを含む

Maximize
$$u_{R^2}(\mathbf{w}) \stackrel{\triangle}{=} 1 - \frac{\|\mathbf{y} - \mathbf{A}\mathbf{w}\|_2^2}{\|\mathbf{y}\|_2^2}$$

subject to $\sup_{\mathbf{w}} \mathbf{w} \in \mathcal{I}$

各点の次数の制約は2交換システム制約

u は Ω において制限強凹

$$\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in \Omega, \ u(\mathbf{y}) - u(\mathbf{x}) - \langle \nabla u(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq -\frac{m_{\Omega}}{2} ||\mathbf{y} - \mathbf{x}||_{2}^{2}$$

u は Ω において制限平滑

$$\Leftrightarrow \forall \mathbf{x}, \mathbf{y} \in \Omega, \ u(\mathbf{y}) - u(\mathbf{x}) - \langle \nabla u(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \ge -\frac{M\Omega}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

 $\Omega_s = \{\mathbf{x}, \mathbf{y} \mid ||\mathbf{x}||_0 \le s, ||\mathbf{y}||_0 \le s, ||\mathbf{x} - \mathbf{y}||_0 \le s\}$ における制限強凹 定数を m_s

 $\Omega_{s,t} = \{\mathbf{x}, \mathbf{y} \mid ||\mathbf{x}||_0 \le s, ||\mathbf{y}||_0 \le s, ||\mathbf{x} - \mathbf{y}||_0 \le t\}$ における制限平滑 定数を $M_{s,t}$ とする

supp(w) を選択する問題を集合関数最大化とみなす

 $\mathsf{Maximize}_{\mathbf{w} \in \mathbb{R}^n} \ \ u(\mathbf{w}) \quad \mathsf{subject to} \ \ \mathsf{supp}(\mathbf{w}) \in \mathcal{I}$

$$\downarrow f_u(X) \stackrel{\triangle}{=} \max_{\mathbf{w}: \text{ supp}(\mathbf{w}) \subseteq X} u(\mathbf{w})$$
を定義

 $Maximize_{X\subseteq N}$ $f_u(X)$

subject to $X \in \mathcal{I}$

 $|P| \le t$ を満たす 各交換 $P \in \mathcal{P}$

 f_u is $\left(\frac{m_{2s}}{M_{s,t}}, \frac{M_{s,t}}{m_{2s}}, 0\right)$ -localizable with size s and exchange size t

制約	局所探索法	貪欲法
要素数制約	$\frac{m_{2s}^2}{M_{s,2}^2} (1 - \epsilon_1(T))$	$1-\exp\left(-\frac{m_{2s}}{M_{s,1}}\right)\dagger$
マトロイド	$\frac{m_{2s}^2}{M_{s,2}^2} (1 - \epsilon_1(T))$	$\frac{1}{(1+\frac{M_{S,1}}{m_S})^2}$ ‡
p-MI/p-ES	$\frac{1}{p-1+1/q} \frac{m_{2s}^2}{M_{s,2}^2} \left(1 - \epsilon_2(T) \right)$	N/A

$$\epsilon_1(T)$$
 と $\epsilon_2(T)$ は $T \rightarrow \infty$ のとき 0 に収束

- † [Elenberg–Khanna–Dimakis–Negahban'18]
- ‡ [Chen-Feldman-Karbasi'18]

argmax $f_u(X \setminus \{a\} \cup \{b\})$ の計算には時間がかかる $a \in N \setminus X, b \in X$

 $\longrightarrow f_u$ の値を近似的に計算することで高速化

argmax $f_u(X \setminus \{a\} \cup \{b\})$ の計算には時間がかかる $a \in N \setminus X, b \in X$

 $\longrightarrow f_u$ の値を近似的に計算することで高速化

semi-oblivious

 $\mathbf{w}^{(X)} \in \underset{\mathbf{w}: \text{ supp}(\mathbf{w}) \subseteq X}{\operatorname{argmax}} u(\mathbf{w})$

 $\underset{a \in N \setminus X}{\operatorname{argmax}} f_u(X \setminus \{b\} \cup \{a\}), \text{ where } b \in \underset{b \in X}{\operatorname{argmin}} (\mathbf{w}^{(X)})_b^2$

削除する要素を高速に決定

 $argmax f_u(X \setminus \{a\} \cup \{b\})$ の計算には時間がかかる $a \in N \setminus X, b \in X$

 $\longrightarrow f_u$ の値を近似的に計算することで高速化

semi-oblivious

 $\mathbf{w}^{(X)} \in \underset{\mathbf{w}: \text{ supp}(\mathbf{w}) \subseteq X}{\operatorname{argmax}} u(\mathbf{w})$

 $\underset{a \in N \setminus X}{\operatorname{argmax}} f_u(X \setminus \{b\} \cup \{a\}), \text{ where } b \in \underset{b \in X}{\operatorname{argmin}} (\mathbf{w}^{(X)})_b^2$

削除する要素を高速に決定

non-oblivious

$$\underset{a \in N \setminus X, b \in X}{\operatorname{argmax}} \left\{ \frac{1}{2M_{s,2}} \left(\nabla u(\mathbf{w}^{(X)}) \right)_a^2 - \frac{M_{s,2}}{2} \left(\mathbf{w}^{(X)} \right)_b^2 \right\}$$

- 集合関数が localizability を満たすなら 局所探索がよい近似解を出力する
- 2 スパース最適化の目的関数は localizability を満たす
- 3 スパース最適化に対する局所探索は高速化できる