

A simple model for assessing climate control trade-offs and responding to unanticipated climate outcomes

Henri F. Drake^{1,2}, Fons van der Plas², John M. Deutch², Alan Edelman², Ron Rivest²

¹UC Irvine, ²MIT

ENVIRONMENTAL RESEARCH

LETTERS

LETTER • OPEN ACCESS

A simple model for assessing climate control trade-offs and responding to unanticipated climate outcomes

Henri F Drake^{3,1,2} , Ronald L Rivest¹, Alan Edelman¹ and John Deutch¹
Published 21 September 2021 · © 2021 The Author(s). Published by IOP Publishing Ltd
Environmental Research Letters, Volume 16, Number 10

Citation Henri F Drake et al 2021 Environ. Res. Lett. 16 104012

ClimateMARGO.jl

- Free for all
- Transparently developed
- Well-documented
- Understandable by beginners
- Efficient and fast
- Flexible and extendable
- Reactive web-app for teaching and outreach

ClimateMARGO.jl

A Julia implementation of MARGO, an idealized framework for optimization of climate change control strategies.

Greenhouse gas concentrations &

 CO_{2e} continues to accumulate in the atmosphere and its concentrations $c(t) = c_0 + \int_{t_0}^t rq(t) dt$ will increase as long as the emissions q(t) are greater than zero.

 $rq(t)(1-M(t))-rq_0R(t),$

which is the annual rate of CO_{2e} accumulation in the atmosphere, including negative contributions from both emissions mitigation and CDR.

The change in CO_{2e} concentrations is simply the integral of the effective emissions over time,

$$c_{M,R}(t) = c_0 + \int_{t_0}^t rq(t') (1-M(t')) \; \mathrm{d}t' - rq_0 \int_{t_0}^t R(t') \; \mathrm{d}t'.$$

Code at github.com/ClimateMARGO

Carbon Dioxide Removal

Solar Radiation Modification (Geo-engineering)

Concentrations

$$c_{M,R}(t) = c_0 + \int_{t_0}^{t_f} rq(t')(1 - M(t')) - rq_0 \frac{R(t')}{dt'} dt' \qquad F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - \frac{G(t)}{F_{\infty}} \qquad T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B + \kappa} + T_{\text{slow}}(t)$$

$$F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - G(t)F_{\circ}$$

Temperature

$$T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B+\kappa} + T_{\text{slow}}(t)$$

Mitigation <

Emissions

$$q(t)(1-M(t))$$

Control costs

$$C_M M^2 + C_R R^2 + C_G G^2 + C_A A^2$$

$$D_{M,\mathbf{R},G,A} = \beta \left(T_{M,\mathbf{R},G} - A(t)T \right)^2$$

Carbon Dioxide Removal

Solar Radiation Modification

(Geo-engineering)

Concentrations

Radiative Forcing

$$F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - G(t)F_{\infty}$$

Temperature

$$T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B+\kappa} + T_{\mathrm{slow}}(t)$$

Emissions

$$q(t)(1-M(t))$$

Control costs

$$C_M M^2 + C_R R^2 + C_G G^2 + C_A A^2$$

$$D_{M,R,G,A} = \beta \left(T_{M,R,G} - A(t)T \right)^2$$

Carbon Dioxide Removal

Solar Radiation Modification

(Geo-engineering)

Concentrations

$$c_{M,R}(t) = c_0 + \int_{t_0}^{t_f} rq(t')(1 - M(t')) - rq_0 \frac{R(t')}{dt'} dt' \qquad F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - \frac{G(t)}{c_0} F_{\infty} \qquad T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B + \kappa} + T_{\text{slow}}(t)$$

$$F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - G(t)F_{\infty}$$

Temperature

Emissions

$$q(t)(1-M(t))$$

Control costs

$$C_M M^2 + C_R R^2 + C_G G^2 + C_A A^2$$

$$D_{M,\mathbf{R},G,A} = \beta \left(T_{M,\mathbf{R},G} - A(t)T \right)^2$$

Carbon Dioxide Removal

Solar Radiation Modification

(Geo-engineering)

Two-box energy balance model: fast and slow responses

Concentrations

$$c_{M,R}(t) = c_0 + \int_{t_0}^{t_f} rq(t')(1 - M(t')) - rq_0 \frac{R(t')}{dt'} dt' \qquad F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - \frac{G(t)}{F_{\infty}} \qquad T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B + \kappa} + T_{\text{slow}}(t)$$

$$F_{M,R,G}(t) = a \ln \left(\frac{c_{M,R}}{c_0} \right) - G(t) F_{\infty}$$

Temperature

$$T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{R + \kappa} + T_{\text{slow}}(t)$$

Emissions

$$q(t)(1-M(t))$$

Control costs

$$C_M M^2 + C_R R^2 + C_G G^2 + C_A A^2$$

$$D_{M,\mathbf{R},\mathbf{G},A} = \beta \left(T_{M,\mathbf{R},\mathbf{G}} - A(t)T \right)^{2}$$

Carbon Dioxide Removal

Solar Radiation Modification

Concentrations

$$c_{M,R}(t) = c_0 + \int_{t_0}^{t_f} rq(t')(1 - M(t')) - rq_0 \frac{R(t')}{dt'} dt' \qquad F_{M,R,G}(t) = a \ln\left(\frac{c_{M,R}}{c_0}\right) - \frac{G(t)}{F_{\infty}} \qquad T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B + \kappa} + T_{\text{slow}}(t)$$

$$F_{M,R,G}(t) = a \ln \left(\frac{c_{M,R}}{c_0} \right) - G(t) F_{\infty}$$

Temperature

$$T_{M,R,G}(t) = T_0 + \frac{F_{M,R,G}(t)}{B+\kappa} + T_{\text{slow}}(t)$$

$$q(t)(1-M(t))$$

Quadratic cost and damage functions

Adaptation

Control costs

$$C_M M^2 + C_R R^2 + C_G G^2 + C_A A^2$$

$$D_{M,\mathbf{R},\mathbf{G},A} = \beta \left(T_{M,\mathbf{R},\mathbf{G}} - A(t)T \right)^{2}$$

Visualizing MARGO's optimization problems in one dimension

Cost-benefit analysis: maximizing the net benefit of mitigation

Benefit = avoided damages

$${\cal B} = D - D_{M,R,G,A} = eta(T^2 - (T_{M,R,G,A})^2).$$

Maximize net benefits (benefits minus costs)

$$\max\left\{\int_{t_0}^{t_f}\left(\mathcal{B}_{M,R,G,A}-\mathcal{C}_{M,R,G,A}
ight)(1+
ho)^{-(t-t_0)}\,\mathrm{d}t
ight\},$$

Reduce dimensions by:

- Fixing $M(t) = M_0$ constant
- Removing other controls: R = G = A = 0

Visualizing MARGO's optimization problems in one dimension

Cost-effectiveness analysis: minimizing the cost of mitigation, subject to a temperature goal

Minimize control costs

$$\min\left\{\int_{t_0}^{t_f} {\mathcal C}_{M,R,G,A} (1+
ho)^{-(t-t_0)} \; \mathrm{d}t
ight\}$$

subject to a policy constraint (e.g. temperature threshold)

$$T_{M,R,G,A} < T^{\star},$$

Reduce dimensions by:

- Fixing $M(t) = M_0$ constant
- Removing other controls: R = G = A = 0