

The Materials Project

Workshop 2019

Workshop Overview

Primer Day

- 1. Technical primer on Python
- 2. Technical primer on MongoDB

Day 1

- 1. Introducing the Materials Project, our website and data
- 2. Introducing pymatgen, our package for crystallographic analysis

Lunch break

- 3. Case studies on how to use pymatgen to transform crystal structures
- 4. Accessing MP data with code using pymatgen

Day 2

- 1. Introducing atomate, our package to help you generate your own data
- 2. Advanced atomate use

Lunch break

- 3. Contributing your experimental or computed data to Materials Project
- 4. Materials Data Science: how to process, analyze and train machine learning models

Feedback and Help

Ask us questions on Slack mpworkshop.slack.com

Answer exercises during lessons + give feedback: pollev.com/mpworkshop

Put up a sticky note on your laptop! Green is good, red means help

Thursday, 9—10.30am Introduction to MP data

Instructors:

Donny

John

In this lesson, you will:

- Gain familiarity with the scope of the data the Materials Project offers
- The software we develop to generate this data
- How to access this data via the website
- Introduce how to access this data programmatically with Python

Coffee Break

Thursday, 10.45—12pm Introduction to pymatgen

Instructors:

Sam

Alex

In this lesson, you will:

- Learn about the essential objects and tools in pymatgen
- Practice using those tools to build, visualize, and manipulate crystal structures and molecules

This lesson's notebook can be found at:

workshop/pymatgen/1 - pymatgen core use.ipynb

Thursday, 9—10.30am Introduction to pymatgen

The code that powers all scientific analysis in the Materials Project

Thursday, 9—10.30am Introduction to pymatgen

Lunch Break

Thursday, 1.15pm—2.30pm Advanced pymatgen

Instructors:

Matt

Jianli

In this lesson, you will:

- Learn how to transform crystal structures using pymatgen
- Learn the difference between oneto-one and one-to-many transformations
- Apply to typical use cases

This lesson's notebook can be found at:

workshop/pymatgen/2 - Advanced Pymatgen - fill in the blanks.ipynb

Thursday, 1.15pm—2.30pm Advanced pymatgen

Instructors:

Matt

Jianli

This lesson's notebook can be found at:

workshop/pymatgen/2 - Advanced Pymatgen - fill in the blanks.ipynb

Coffee Break

Thursday, 2.45am—4pm The Materials Project API

Instructors:

Matt

In this lesson, you will:

- Learn more about the Materials Project API (MAPI)
- Learn how to query for MP data using Python
- An example for how to screen the MP database for interesting materials

This lesson's notebook can be found at: workshop/MAPI/api_use-empty.ipynb

Friday, 9.15am—10.30am Atomate Basics

Instructors:

Ann

In this lesson, you will:

- Initialize and run standard atomate workflows
- Manage and view fireworks status
- Submit jobs to HPC using fireworks

This lesson's notebook can be found at:

workshop/atomate/1 - Beginning Workflows_empty.ipynb

Friday, 9.15am—10.30am Atomate Basics

Instructors:

Ann

What is atomate?

- A python package for automating complex materials science computations.
 - VASP, Q-Chem, FEFF, and LAMMPS
 - Band Structure, Elastic tensor, Raman spectra, etc.
- Job tracking and monitoring
- Database storage of calculations including runtime parameters, directories, and outputs.

This lesson's notebook can be found at:

workshop/atomate/1 - Beginning Workflows_empty.ipynb

Coffee Break

Friday, 10.45am—12pm Atomate Advanced

Instructors:

Jimmy

Eric

In this lesson, you will:

- In this lesson, you will learn about:
- Managing a large number of atomate workflows
- Some advanced workflows in atomate
- Manipulate workflows after then have been created
- Analyzing the results of workflows

This lesson's notebook can be found at:

workshop/lessons/atomate/2 - Workflow management and analysis with atomate.ipynb

Lunch Break

Friday, 1.15—2.30pm Contributing Data to Materials Project

Instructors:

Patrick

Donny

In this lesson, you will:

- learn about existing contributed data sets on MP Details Pages
- explore their landing pages on the MPContribs Portal
- use the MPContribs API to retrieve data programmatically

https://mpcontribs.org

This lesson's notebook can be found at:

workshop/lessons/atomate/MPContribs

Coffee Break

Friday, 1.15—2.30pm Contributing Data to Materials Project

Instructors:

Patrick

Donny

In this lesson, you will:

- learn about existing contributed data sets on MP Details Pages
- explore their landing pages on the MPContribs Portal
- use the MPContribs API to retrieve data programmatically

https://mpcontribs.org

This lesson's notebook can be found at:

workshop/lessons/atomate/MPContribs

Friday, 2.45—4.00pm Materials Data Science

Instructors:

Alex G

Alex D

In this lesson, you will:

- Learn how to download and clean datasets using pandas
- Convert pymatgen objects into machine learnable features
- Train and evaluate a machine learning model to predict elastic constants

This lesson's notebook can be found at: workshop/lessons/matminer