Содержание

1	Комплексные числа и действия над ними.	5
2	ФКП и действия над ними. Элементарные ФКП.	6
3	Предел и непрерывность ФКП.	8
4	Дифференцируемость ФКП. Условия Коши-Римана.	9
5	Интегральная формула Коши.	11
6	Аналитические и гармонические ряды.	13
7	Оценки коэффициентов ряда Тейлора.	13
8	Интеграл ФКП. Его свойства и вычисление.	14
	8.1 Определение	. 14
	8.2 Свойства	. 14
	8.3 Вычисление. To write	. 15
9	Основная теорема Коши для односвязной области.	15
10	Вычеты. Основная теорема о вычетах. Вычисление вычетов.	16
	10.1 Вычеты	. 16
	10.2 Основная теорема о вычетах	. 16
	10.3 Вычисление вычетов	. 17
	10.4 Вычет функции относительно бесконечно удаленной точки	. 17
11	Ряды Тейлора и Лорана.	19
	11.1 Ряд Тейлора	. 19
	11.2 Ряд Лорана	. 19
12	2 Нули аналитических функций.	23
	12.1 Понятие нуля аналитической функции	. 23

	12.2	Teoper	ма об изолированности нулей аналитических функций	23
	12.3	бескон	ма о тождественности аналитической фукнции $f(z)$ нулю при наличии нечной последовательности ее нулей. Теорема о единственности аналитих функций (без доказательств)	23
		12.3.1	Теорема о тождественности аналитической фукнции $f(z)$ нулю при наличии бесконечной последовательности ее нулей	23
		12.3.2	Теорема о единственности аналитических функций (без доказательств)	23
13	Изо	лиров	анные особые точки ФКП.	24
14	При лова		ие вычетов к вычислению несобственных и контурных интегра-	25
	14.1	Интег	ралы от рациональных функций	26
	14.2		сление интегралов содержащих правильную дробь умноженную на синус осинус	26
	14.3	Вычис	сление интегралов, содержащих показательную функцию	26
	14.4		сление интегралов содержащих рациональную функцию от косинуса и	26
		14.4.1	Заменой	27
15	Лог	арифм	лический вычет	27
	15.1	Опред	целение	27
	15.2	Teoper	ма о логарифмическом вычете	28
	15.3	Принг	цип аргумента	28
16	Пре	образо	ование Лапласа.	28
17	Teo	ремы .	линейности и подобия преобразования Лапласа.	30
18			е теоремы операционного исчисления: дифференцирования ориги- ображения.	30
19	Осн	овные	е теоремы операционного исчисления: запаздывания и смещения.	30
20	Teo	рема с	обращения преобразования Лапласа.	30

21 Вывод основных соответствий между оригиналами и зображениями в пре-

22		ение линейных дифференциальных уравненийс постоянными коэффинтами при помощи преобразования Лапласа.	30	
23	Реш	ение линейных систем дифференциальных уравнений.	30	
24	Пре	образование Лорана. Теорема опережения.	30	
25	5 Вывод основных соответствий между оригиналами и зображениями при преобразовании Лорана.			
26	6 Преобразование Лорана. Теорема обращения и разложения.			
27	Пре	образование Лорана. Теорема дифференцирования изображения.	30	
28	_	образование Лорана. Умножение изображений. Теоремы о предельных нениях.	30	
29	Реш	ение линейных разностных уравнений с помощью преобразования Ло- а.	30	
30		ение линейных разностных систем уравнений с помощью преобразова- Лорана	30	
31	К эі	кзамену	30	
	31.1	Формулировка теоремы об аналитичности степенного ряда в круге сходимости	30	
	31.2	Условия независимости интеграла от аналитической функции $f(z)$ от вида кривой интегрирования L	31	
	31.3	Аналитическая функция $w=f(z)$ в точке z_0 как конформное отображение окрестности z_0 , основные свойства конформного отображения	31	
		31.3.1 Аналитическая функция $w=f(z)$ в точке z_0 как конформное отображение окрестности z_0	31	
		31.3.2 Основные свойства конформного отображения	32	
	31.4	Теорема о построении конформного отображения в области в область через построение отображения границ (без доказательства)	32	
	31.5	Понятие аналитического продолжения аналитических функций	32	

31.6	Уравнение Лапласа, понятие гармонических функций. Теорема о представлении вещественного решения уравнения Лапласа в виде сходящегося степенного			
	ряда	33		
	31.6.1 Уравнение Лапласа, понятие гармонических функций	33		
	31.6.2 Теорема о представлении вещественного решения уравнения Лапласа в виде сходящегося степенного ряда	33		
31.7	Постановка задачи о вычислении подъемной силы. Формула Жуковского для вектора подъемной силы (без доказательств)	34		
	31.7.1 Постановка задачи о вычислении подъемной силы	34		
	31.7.2 Формула Жуковского для вектора подъемной силы	34		
	31.7.3 Аналитическое продолжение	34		

1 Комплексные числа и действия над ними.

Комплексным числом называется выражение вида

$$x + iy$$

где $x,\ y$ - действительные числа; i - число, квадрат которого равен минус единице.

Равные числа:

$$z_1 = z_2 \Leftrightarrow \begin{cases} \operatorname{Re} \ z_1 = \operatorname{Re} \ z_2, \\ \operatorname{Im} \ z_1 = \operatorname{Im} \ z_2. \end{cases}$$

Сопряженные числа:

Re
$$\bar{z} = \text{Re } z$$
, Im $\bar{z} = -\text{Im } z$

Действия над комплексными числами

Действие	В алгебраической форме	В тригонометрической форме
Форма	z = x + iy	$z = r(\cos\varphi + i\sin\varphi)$
		$r = \sqrt{x^2 + y^2}, \ \operatorname{tg} \varphi = \frac{y}{x}$
Сложение	$x = x_1 + x_2, \ y = y_1 + y_2$	
Вычитание	$x = x_1 - x_2, \ y = y_1 - y_2$	
Умножение	$x = x_1 x_2 - y_1 y_2, \ y = x_1 y_2 + x_2 y_1$	$r = r_1 r_2, \ \varphi = \varphi_1 + \varphi_2$
Деление	Домножаем и делим на $ar{z}$	$r = r_1 r_2, \ \varphi = \varphi_1 + \varphi_2$ $r = \frac{r_1}{r_2}, \ \varphi = \varphi_1 - \varphi_2$
Возведение в степень	$\sum_{k=0}^{n} C_n^k x^{n-k} (iy)^k$	$r = r_0^n, \ \varphi = n\varphi_0$
Извлечение корня	Re $z = \operatorname{Re}(x + iy)^n$, Im $z = \operatorname{Im}(x + iy)^n$	$r = \sqrt[n]{r_0}, \ \varphi_k = \frac{\varphi_0 + 2k\pi}{n}, \ k = 0n - 1$

Доказательство умножения: втупую перемножаем и под скобками у тригонометрических функций окажется сложение $\varphi_1 + \varphi_2$

Доказательство извлечения корня: используем определение корня (комплексное число $z_1 = \sqrt[n]{z}$ называется корнем n-й степени если $z = z_1^n$). Отсюда, по правилам умножения комплексных чисел получаем

$$\varphi_k = \frac{\varphi}{n} + \frac{2\pi k}{n}$$

Свойства операции комплексного сопряжения

1.
$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$$

$$2. \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$$

$$3. \ \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$

4.
$$\overline{P_n(z)} = P_n(\overline{z})$$

5.
$$\overline{\left(\frac{P_n(z)}{Q_m(z)}\right)} = \frac{P_n(\overline{z})}{Q_m(\overline{z})}$$

Формула Муавра

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi$$

Бесконечно удаленная точка - определяется по тому же принципу что и с действительными числами. Берем шар и из его верхней точки проводим хорду (делаем из нее луч, который падает на плоскость). Чем короче хорда тем дальше точка на плоскости.

Плоскость $\bar{C} = C \cup \{\infty\}$ - расширенная комплексная плоскость. Взаимно однозначное соответствие точек сферы и множества C называется стереографической проекцией, сфера S - сфера Pимана

2 ФКП и действия над ними. Элементарные ФКП.

Внутренняя точка. Существует ε -окрестность точки z, все точки которой принадлежат множеству E

Область. Множество E называется область, если: 1) каждая точка мн-ва E - внутренняя точка этого мн-ва; 2) любые две точки мн-ва E можно соединить ломаной, все точки которой принадлежат E

Замкнутая область - область + граничные точки.

Односвязная область. Любой контур в области внутри себя содержит только область. Внутренность любой Жордановой кривой, принадлежащей области, принадлежит области.

Многосвязная область. Область не являющаяся односвязной.

Функция комплексной переменной. Говорят, что в области D определена функция w = f(z), если каждой точке $z \in D$ поставлено в соответствие одно или несколько значений w. (функция w = f(z) осуществляет отображение точек из z в точки w).

Пусть z = x + iy и w = u + iv. Тогда зависимость w = f(z) между комплексной фукнцией w и комплексной переменной z может быть описана с помощью двух действительных функций u и v действительных переменных x и y:

$$u = u(x, y), \quad v = v(x, y).$$

Элементарные $\Phi K\Pi$:

Формула Эйлера

$$e^{iz} = \cos z + i\sin z, \quad e^{-iz} = \cos z - i\sin z,$$

Доказательство: свойство функции $e^x = \sum_{n=0}^\infty \frac{x^n}{n!}$. Рассматриваем ряд $\sum_{n=0}^\infty \frac{z^n}{n!}$ и убеждаемся что он абсолютно сходится при любом z. Поэтому можем ввести определение *показательной* функции e^z .

Рассматриваем разложение $e^{ix} = \sum_{n=0}^{\infty} \frac{i^n x^n}{n!}$. Перегруппировываем получившиеся действитель-

ные и мнимые члены (там окажется разложение синуса и косинуса относительно x), получаем формулу Эйлера:

$$e^{i\varphi} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} + i \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{2k+1}}{(2k-1)!} = \cos \varphi + i \sin \varphi$$

Свойства:

- 1. Сложение по ф-ле Эйлера: $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$
- 2. Периодичность. $e^{z+2k\pi i} = e^z$
- 3. Показательная функция не обращается в нуль ни при каком значении аргумента
- 4. $|e^z| = e^{\text{Re } z}$, $\arg e^z = \text{Im } z$

Логарифмическая функция $\operatorname{Ln} z$

$$w = \operatorname{Ln} z = \ln|z| + i\operatorname{Arg} z = \ln|z| + i(\operatorname{arg} z + 2k\pi)$$

Доказательство: допустим $A = \ln z$, тогда $e^z = A$. Записываем A = u + iv. Тогда получаем:

$$e^{u+iv}=re^{i\varphi}$$
 или $e^u\cdot e^{iv}=re^{i\varphi}$

из него получаем что

$$u = \ln r, \ (r > 0);$$

 $v = \varphi + 2k\pi, \ k = 0, \pm 1, \dots$

Тригонометрические функции

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \sin z = \frac{e^{iz} - e^{-iz}}{2i},$$
$$\cos y = \frac{e^{iy} + e^{-iy}}{2}, \quad \sin y = \frac{e^{iy} - e^{-iy}}{2i}$$

Гиперболические функции:

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2}, \quad \operatorname{ch} z = \frac{e^z + e^{-z}}{2},$$

$$\operatorname{th} z = \frac{\operatorname{sh} z}{\operatorname{ch} z}, \quad \operatorname{cth} z = \frac{\operatorname{ch} z}{\operatorname{sh} z}.$$

 $\cos z$, $\cosh z$ - четные, а остальные - нечетные. Более того:

$$\cos iz = \cosh z$$
, $\cosh iz = \cos z$
 $\sin iz = i \operatorname{sh} z$, $\operatorname{sh} iz = i \sin z$

отсюда получаются такие формулы, как:

$$ch^{2}z - sh^{2}z = 1$$
, $ch^{2}z + sh^{2}z = ch 2z$

Сравнивая формулы гиперболических функций и определения показательной функции, видим, что:

$$e^{iz} = \cos z + i \sin z$$
 $e^z = \operatorname{ch} z + \operatorname{sh} z$

Предел и непрерывность ФКП. 3

Пусть дана последовательность $\{z_n\}$ комплексных чисел

$$z_1, z_2, \ldots, z_n, \ldots$$

Предел последовательности - комплексное число a, если для любого положительного числа ε можно указать такой номер $N=N(\varepsilon)$, начиная с которого все элементы z_n этой последовательности удовлетворяют неравенству

$$|z_n - a| < \varepsilon$$
 при $n \geqslant N(\varepsilon)$.

Теорема 1. Последовательность $\{z_n = x_n + y_n\}$ сходится к числу $a = \alpha + i\beta$ тогда и только тогда, когда

$$\lim_{n \to \infty} x_n = \alpha, \quad \lim_{n \to \infty} y_n = \beta$$

Доказательство: Допустим последовательность $\{z_n\}$ сходится, тогда беря в рассмотрение:

$$|a_n - a| \leqslant |z_n - z| < \varepsilon$$
 и $|b_n - b| \leqslant |z_n - z| < \varepsilon$

можем сказать что сходятся соответственно $\{a_n\}$ и $\{b_n\}$. В обратную сторону:

$$|z_n - z| = \sqrt{(a_n - a)^2 + (b_n - b)^2}$$

Теорема 2. Всякая сходящаяся последовательность ограничена.

Свойства сх-ся последовательностей комплексных чисел:

- 1. $\lim_{n \to \infty} (z_n \pm \tau_n) = a \pm b;$ 2. $\lim_{n \to \infty} (z_n \tau_n) = ab;$ 3. $\lim_{n \to \infty} \frac{z_n}{\tau_n} = \frac{a}{b} (\tau_n \neq 0, b \neq 0).$

Окрестность бесконечно удаленной точки - совокупность точек z, удовлетворяющих неравенству |z| > R (с присоединением бесконечно удаленной точки).

Окрестность точки z_0 - всякая область, содержащая эту точку.

arepsilon-окрестность z_0 - мн-во всех точек z, удовлетворяющих неравенству $|z-z_0|<arepsilon$

Предел функции f(z) в точке z_0 - число A, если для любого числа $\varepsilon>0$ можно указать такое число $\delta = \delta(\varepsilon) > 0$, что для всех точек $z \in \Omega$, удовлетворяющих условию $0 < |z - z_0| < \delta$ выполняется неравенство

$$|f(z) - A| < \varepsilon$$

В этом случае пишут

$$\lim_{z \to z_0} f(z) = A.$$

Еще одно определение. Если для любой последовательности $\{z_n\}$, $z_n \neq z_0$, сходящейся к точке z_0 , соответствующая ей последовательность значений функции $\{f(z_n)\}$ сходится к одному и тому же комплексному числу A.

Из первого вытекает второе: берем ε , выбираем для него δ , находим для него $N[\delta(\varepsilon)]$, и так как $|f(z_n)-A|<\varepsilon$ то в силу произвольности выбора ε функция f(z) удовлетворяет и второму определению

В обратную сторону: предположим что не выполняется. Тогда можно указать такое $\varepsilon_0 > 0$, что для любого $\delta_n > 0$ найдется такая точна $z_n \in E$, что при $0 < |z_n - z_0| < \delta_n$ будет выполнено неравенство $|f(z_n) - | > \varepsilon_0$. Выберем последовательность $\{\delta_n\} \to 0$ и соответствующую последовательность $\{z_n\}$ из поставленных условий очевидно что $\{f(z_n)\}$ не сходится к A. Но полученный результат противоречит определению.

Непрерывность в точке $z_0 \in D$ - если выполняется равенство

$$\lim_{z \to z_0} f(z) = f(z_0)$$

4 Дифференцируемость ФКП. Условия Коши-Римана.

Пусть дана функция w=f(z) определена в некоторой области D комплексного переменного z. Пусть точки z и $z+\Delta z$ принадлежат области D. Обозначим

$$\Delta w = f(z + \Delta z) - f(z), \quad \Delta z = \Delta x + i\Delta y$$

Дифференцируемость в точке $z \in D$ - соотношение $\frac{\Delta w}{\Delta z}$ имеет конечный предел при $\Delta z \to 0$. Этот предел называется *производной* ф-ции f(z) в данной точке z.

$$w' = f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z}.$$

Если $z=x+iy,\ w=f(z)=u(x,y)+iv(x,y),$ то в каждой точке дифференцируемости функции f(z) существуют частные производные и выполняются соотношения

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x};$$

- условия Коши-Римана. Доказательство: Из существования предела комплексного выражения следует существование пределов его действительной и мнимой частей. Положим $\Delta z = \Delta x$. Получаем выражение:

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x} = u_x(x_0, y_0) + iv_x(x_0, y_0)$$

положим $\Delta z = i\Delta y$, получаем:

$$f'(z_0) =$$

$$= -i \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{\Delta y} + \lim_{\Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{\Delta y} =$$

$$= -i u_y(x_0, y_0) + v_y(x_0, y_0)$$

В обратную сторону: приращения u и v могут быть записаны в виде:

$$u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) = u_x(x_0, y_0) \Delta x + u_y(x_0, y_0) \Delta y + \xi(x, y)$$
$$v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0) = v_x(x_0, y_0) \Delta x + v_y(x_0, y_0) \Delta y + \eta(x, y)$$

преобразуем его к виду (исп. Коши-Римана):

$$\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = u_x(x_0, y_0) \frac{\Delta x + i\Delta y}{\Delta x + i\Delta y} + v_x(x_0, y_0) \frac{i\Delta x - \Delta y}{\Delta x + i\Delta y} + \frac{\xi(x, y) + i\eta(x, y)}{\Delta x + i\Delta y} = u_x(x_0, y_0) + iv_x(x_0, y_0) + \frac{\zeta(z)}{\Delta zx}$$
$$(\zeta(z) = \xi(x, y) + i\eta(x, y))$$

Геометрический смысл производной. Предположим, что $f'(z_0) \neq 0$:

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = ke^{i\alpha}$$

выберем такой способ стремления Δz к нулю, при котором точки $z=z_0+\Delta z$ лежат на кривой γ_1 . Очевидно, соответствующие им точки $w=w_0+\Delta w$ лежат на кривой Γ_1 . Из формулы выше следует, что:

$$\alpha = \arg f'(z_0) = \lim_{\Delta z \to 0} \arg \Delta w - \lim_{\Delta z \to 0} \arg \Delta z = \Phi_1 - \varphi_1$$

то есть α имеет смысл угла Φ_1 вектора касательной к кривой Γ_1 в точке w_0 (аналогично для γ_1). Более того, отсюда следует, что npu отображении осуществляемом аналитической функцией f(z), удовлетворяющей условию $f'(z_0) \neq 0$, угол $\varphi = \varphi_2 - \varphi_1$ между любыми кривыми γ_2, γ_1 , пересекающимися в точке z_0 , равен углу $\Phi = \Phi_2 - \Phi_1$, между их образами в точке $w_0 = f(z_0)$. Сохраняется не только абсолютная величина углов, но и направление углов - свойство сохранения углов

Аналогично из первого соотношения получим:

$$k = |f'(z_0)| = \lim_{\Delta z \to 0} \frac{|\Delta w|}{|\Delta z|}$$

то есть с точностью до величин более высокого порядка малости имеет место равенство $|\Delta w| = k |\Delta z|$. Геометрический смысл: при отображении, осуществляемом аналитической функцией, удовлетворяющей условию $f'(z_0) \neq 0$, бесконечно малые линейные элементы преобразуются подобным образом, причем $|f'(z_0)|$ определяет коэффициент преобразования подобия. Это свойство - свойство поятоянства растяжения

Конформное отображение. Отображение окрестности точки z_0 на окрестность точки w_0 , осуществляемое аналитической функцией w=f(z) и обладающее в точке z_0 свойством сохранения углов и постоянством растяжений, называется конформным отображением.

Аналитическая функция в точке $z \in D$ - функция дифференцируема как в самой точке, так и в некоторой ее окрестности. Функция f(z) называется аналитической в области D, если она дифференцируема в каждой точке этой области. Для любой аналитической функции f(z) имеем:

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$$

производную берем как у вещественной, но частные производные связаны уравнениями

Свойства:

- 1. Если ф-ция f(z) является наалитической в области G, то она непрерывна в этой области
- 2. $f_1(z), f_2(z)$ аналитические функции в области G, их сумма, произведение также аналитические функции в области G ($\frac{f_1(z)}{f_2(z)}$ аналитическая там, где $f_2(z) \neq 0$)
- 3. Последовательное применение двух аналитических функций аналитическая функция
- 4. Обратная к аналитической функции тоже аналитическая фукнция, причем $f'(z_0) = \frac{1}{\varphi'(\omega_0)}$

Доказательство: Для существовани обратной функции необходимо, чтобы уравнения u=u(x,y) и v=v(x,y) можно было разрешить относительно x,y в окрестности точки ω_0 . Для этого достаточно, чтобы в окрестности точки z_0 выполнялось условие

$$\left| \begin{array}{cc} u_x & u_y \\ v_x & v_y \end{array} \right| = u_x v_y - u_y v_x \neq 0$$

Из уравнения

$$\frac{\Delta z}{\Delta \omega} = \frac{1}{\frac{\Delta \omega}{\Delta z}}$$

легко доказать существование и непрерывность производной $\varphi'(\omega_0)$ ($|f'(z_0) \neq 0$)

5. Пусть задана функция u(x,y) являющаяся действительной частью аналитической функции f(z). Тогда мнимая часть этой функции определяется с точностью до аддитивной постоянной.

$$dv = v_x dx + v_y dy = -u_y dx + u_x dy$$

6. u(x,y)=C и v(x,y)=C взаимно ортогональны (grad $u\cdot \operatorname{grad} v=0$ градиент ортогонален линии уровня)

5 Интегральная формула Коши.

Функция f(z) - аналитическая в области D, ограниченная кусочно-гладким замкнутым контуром C (и на самом контуре), то справедлива интегральная формула Kowu:

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{z - z_0}, \quad (z_0 \in D)$$

контур C обходится так, что область D остается все время слева.

Вывод формулы Коши Пусть f(z) аналитична в D, ограниченной контуром C. Возьмем произвольную внутреннюю точку z_0 и построим замкнутый контур Γ (целиком лежит в области D и содержит z_0). Рассмотрим вспомогательную функцию:

$$\varphi(z) = \frac{f(z)}{z - z_0}$$

очевидно является аналитической в области D за исключением т. z_0 . Поэтому если мы в области D окружим эту точку контуром γ (лежащим внутри Γ), то ф-ция $\varphi(z)$ будет аналитической в двухсвязной области D^* , заключенной между контурами Γ и γ . Согласно теореме Коши:

$$\int_{\Gamma^+} \frac{f(\zeta)}{\zeta - z_0} d\zeta + \int_{\gamma^-} \frac{f(\zeta)}{\zeta - z_0} d\zeta = 0$$

Изменив направление интегрирования во втором интеграле, получим:

$$\int_{\Gamma^{+}} \frac{f(\zeta)}{\zeta - z_0} d\zeta = \int_{\gamma^{+}} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$

Интегралы по обе стороны не зависят от выбранного контура. Для дальнейших рассмотрений возьмем в качестве контура γ окружность γ_{ρ} (круг радиусом ρ с центром в точке z_0). Положив $\zeta = z_0 + \rho e^{i\varphi}$:

$$\int_{\Gamma^{+}} \frac{f(\zeta)}{\zeta - z_{0}} d\zeta = i \int_{0}^{2\pi} f(\zeta) d\varphi$$

Раскроем правую часть таким образом

$$\int_{0}^{2\pi} f(\zeta) d\varphi = \int_{0}^{2\pi} [f(\zeta) - f(z_0)] d\varphi + \int_{0}^{2\pi} f(z_0) d\varphi = \int_{0}^{2\pi} [f(\zeta) - f(z_0)] d\varphi + 2\pi f(z_0)$$

Устремив ρ к нулю. Получаем из определения непрерывности что для любого ε можно указать такое ρ что $|f(\zeta) - f(z_0)| < \varepsilon$ для $|\zeta - z_0| < \rho$. Отсюда, при $\rho \to 0$ существует предел

$$\lim_{\rho \to 0} \int_{0}^{2\pi} [f(\zeta) - f(z_0)] d\varphi = 0$$

Получаем что

$$\int_{\gamma^{+}} \frac{f(\zeta)}{\zeta - z_0} d\zeta = 2\pi i f(z_0)$$

и согласно исходному уравнению

$$f(z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z_0} d\zeta$$

Советы по решению Случай когда внутри области больше одной особой точки:

- 1. Разложи дробь на несколько дробей
- 2. Выделяем непересекающиеся области вокруг особых точек, и получаем что значение общего интеграла является суммой интегралов от этих самых маленьких областей

Просто полезная формула для вычислений:

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

6 Аналитические и гармонические ряды.

Коэффициенты степенного ряда выражаются через значения суммы ряда f(z) и ее производных в цетре круга сходимости по формулам:

$$c_n = \frac{1}{n!} f^{(n)}(z_0)$$

Радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$:

$$R = \overline{\lim_{n \to \infty}} \frac{|c_n|}{|c^{n+1}|}, \quad c_n \neq 0$$

или

$$R = \overline{\lim_{n \to \infty}} \frac{1}{\sqrt[n]{|c_n|}}$$

При доказательстве, мы мажорируем одну последовательность и показываем что она сходится. Вторую наоборот - показываем что расходится.

Теорема Абеля. Если степенной ряд $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ сходится в некоторой точке $z_1 \neq z_0$, то он абсолютно сходится и в любой точке z, удовлетворяющей условию $|z-z_0| < |z_1-z_0|$; причем в круге $|z_1-z_0| \leqslant \rho$, меньшего $|z_1-z_0|$, ряд сходится равномерно

Теорема Тейлора. Функция f(z) аналитическая внутри круга $|z-z_0| < R$, может быть представлена в этом круге сходящимся степенным рядом $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, причем этот ряд определен однозначно.

7 Оценки коэффициентов ряда Тейлора.

Теорема Тейлора. Функция f(z), аналитическая внутри круга $|z-z_0| < R$, может быть представлена в этом круге сходящимся степенным рядом $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, причем этот ряд определен однозначно

Док-во: Выберем произвольную точку z внутри круга $|z-z_0| < R$ и построим окружность C_{ρ} с центром в точке z_0 радиуса $\rho < R$ содержащую точку z внутри. Т.к. функция в этой области аналитическая, по формуле Коши имеем:

$$f(z) = \frac{1}{2\pi i} \int_{C_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Осуществим в подынтегральном выражении преобразование

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} = \frac{1}{\zeta - z_0} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^n}$$

При $\zeta\in C_\rho$ ряд сходится равномерно по ζ , т.к. он мажорируется сходящимся числовым рядом $\sum_{n=0}^\infty \frac{|z-z_0|^n}{\rho^{n+1}}$

Совмещая последние два уравнения, получаем:

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{C_0} \frac{f(\zeta) d\zeta}{(\zeta - z_0)^{n+1}} (z - z_0)^n$$

Введя обозначение:

$$c_n = \frac{1}{2\pi i} \int_{C_\rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta = \frac{f^{(n)}(z_0)}{n!}$$

перепишем в виде сходящегося в выбранной точке z степенного ряда

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Доказательство единственности: допустим есть другое сходящееся разложение в указанном круге, на основании формулы для коэффициентов $c_n' = \frac{f^{(n)}(z_0)}{n!}$ получим те же самые коэффициенты что и были.

8 Интеграл ФКП. Его свойства и вычисление.

8.1 Определение

$$S(\zeta_i, \zeta_i^*) = \sum_{i=1}^n f(\zeta_i^*) \Delta \zeta_i$$

где ζ_i^* - произвольная точка i-й частичной дуги. Если при $\max |\Delta \zeta_i| \to 0$ существует предел сумм, не зависящий ни от способа разбиения кривой C ни от выбора точек ζ_i^* , то этот предел называется интегралом от функции $f(\zeta)$ по кривой C и обозначается как

$$\int_C f(\zeta) \, d\zeta$$

8.2 Свойства

Если принять $f(\zeta_i^*) = u(P_i^*) + iv(P_i^*)$, $\Delta \zeta_i = \Delta \xi_i + i\Delta \eta_i$, где $P_i(\xi_i^*, \eta_i^*)$ - точка кривой C на плоскости xy, можем представить интеграл в виде

$$\int_{C} f(\zeta) d\zeta = \int_{C} u d\xi - v d\eta + i \int_{C} u d\eta - v d\xi$$

Если f(z)- аналитическая функция в односвязной области D, то интеграл не зависит от пути интегрирования

$$\int_{I} f(z)dz = 0$$

1.
$$\int_{AB} f(\zeta) d\zeta = -\int_{BA} f(\zeta) d\zeta$$
2.
$$\int_{C_1} f(\zeta) d\zeta + \int_{C_2} f(\zeta) d\zeta = \int_{C_1 + C_2} f(\zeta) d\zeta$$

3. Если a - комплексная постоянная, то:

$$\int_C af(\zeta) d\zeta = a \int_C f(\zeta) d\zeta$$

4.
$$\int_C \{f_1(\zeta) + f_2(\zeta)\} d\zeta = \int_C f_1(\zeta) d\zeta + \int_C f_2(\zeta) d\zeta$$

5.
$$\left|\int\limits_C f(\zeta)\,d\zeta\right|\leqslant \int\limits_C |f(\zeta)|\;ds,\;ds$$
 - дифференциал длины дуги кривой C

6.
$$\int_{C}^{C} f(z) dz = \int_{\Gamma}^{C} f[\varphi(\zeta)] \varphi'(\zeta) d\zeta$$
, где $z = \varphi(\zeta)$ - аналитическая функция ζ , устанавливающая взаимно-однозначное соответствие между кривыми C и Γ

8.3 Вычисление. To write

Путь интегрирования полупрямая или окружность? Замена:

$$z - z_0 = \rho e^{i\varphi}$$

Пусть однозначная функция f(z) определена и непрерывна в области D, а C - кусочногладкая замкнутая или незамкнутая ориентированная кривая, лежащая в D. Пусть z=x+iy, f(z)=u+iv, где $u=u(x,y),\,v=v(x,y)$. Тогда:

$$\int_{C} f(z)dz = \int_{C} udx - vdy + i \int_{C} vdx + udy$$

9 Основная теорема Коши для односвязной области.

Либо это (Теорема Коши). Пусть в односвязной области D задана однозначная аналитическая функция f(z). Тогда интеграл от этой функции по любому замкнутому контуру Γ , целиком лежащему в области D равен нулю

Доказательство:

$$\int_{\Gamma} f(\zeta) d\zeta = \int_{\Gamma} u dx - v dy + i \int_{\Gamma} u dy + v dx$$

Дальше воспользуемся формулой

$$\int_{C} P dx + Q dy = \iint_{D} \left\{ \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\} dx dy$$

которая требует чтобы функции P,Q были непрерывны в замкнутой области \overline{D} , ограниченной кусочно гладким контуром C, а их частные производные первого порядка непрерывны в D. Добавив к этому условие Коши-Римана получаем что интеграл будет равен нулю.

Теорема о составном интеграле. Если область многосвязная, то имеет место : Пусть f(z) является аналитической функцией в многосвязной области D, ограниченной извне контуром C_0 , а изнутри контурами C_1, C_2, \ldots, C_n и пусть f(z) непрерывна в замкнутой области \bar{D} . Тогда $\int\limits_{C} f(\zeta)\,d\zeta = 0$, где C - полная граница области D, причем обход границы C происходит в положительном направлении.

$$\int_{C_0^+} f(\zeta) d\zeta + \int_{C_1^-} f(\zeta) d\zeta + \dots + \int_{C_n^-} f(\zeta) d\zeta = 0$$

Док-во: проводим гладкие кривые $\gamma_1, \ldots, \gamma_n$, соединяющие контур C_0 с контурами C_1, C_2, \ldots Тогда область будет односвязной и интеграл по границе равен нулю. Но интегралы по γ_i проходятся дважды в противоположных направлениях и при суммировании выпадают.

10 Вычеты. Основная теорема о вычетах. Вычисление вычетов.

10.1 Вычеты

Вычет функции f(z) в точке z_0 обозначается символом $\operatorname{res} f(z_0)$ и определяется равенством

$$\operatorname{res} f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz$$

где z_0 - изолированная особая точка функции f(z), γ - контур полностью лежащий в области аналитичности функции и содержащий единственную особую точку z_0 ф-ции f(z). Другие обозначения: res $[f(z), z_0]$, res $_{z=z_0}f(z)$

Вычет равен коэффициенту при минус первой степени в лорановском разложении f(z) в окрестности точки z_0

$$\operatorname{res} f(z_0) = c_{-1}$$

10.2 Основная теорема о вычетах

Основная теорема теории вычетов. Функция f(z) является аналитической на границе C области D и всюду внутри области, за исключением конечного числа особых точек z_1, z_2, \ldots, z_n ,

$$\int_{C} f(z)dz = 2\pi i \sum_{k=1}^{n} \operatorname{res} f(z_{k})$$

Доказательство: Выделим каждую из особых точек z_k функции f(z) замкнутым контуром γ_k , не содержащим внутри других особых точек, кроме точки z_k . В построенной многосвязной области функция f(z) всюду аналитична. Отсюда, по второй теореме Коши получим:

$$\int_{\Gamma^+} f(\zeta) d\zeta + \sum_{k=1}^N \int_{\gamma_k^-} f(\zeta) d\zeta = 0$$

Перенеся второе слагаемое вправо, в силу определения вычета получим:

$$\int_{\Gamma^+} f(\zeta) d\zeta = 2\pi i \sum_{k=1}^N \operatorname{res} [f(z), z_k]$$

10.3 Вычисление вычетов

⊲ Устранимая особая точка

$$\operatorname{res} f(z_0) = 0$$

res
$$f(z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \{ f(z)(z-z_0)^n \}$$

 \lhd Если функция f(z) в окрестности точки z_0 представима как частное двух аналитических функций

$$f(z) = \frac{\varphi(z)}{\psi(z)}$$

причем $\varphi(z_0) \neq 0, \, \psi(z_0) = 0, \, \text{а} \, \psi'(z_0) \neq 0, \, \text{т.е.} \, z_0$ - простой полюс функции f(z), то

$$\operatorname{res} f(z_0) = \frac{\varphi(z_0)}{\psi'(z_0)}$$

 \triangleleft Существенно особая точка - вручную находишь коэффициент c_{-1}

Если функция f(z) имеет вид $f(z)=\frac{\varphi(z)}{\psi(z)}$, где аналитические функции $\varphi(z)$ и $\psi(z)$ имекют нули выше первого порядка, можно замить их разложениями в ряд Тейлора в окреестности точки z_0

10.4 Вычет функции относительно бесконечно удаленной точки

Функция f(z) аналитична в бесконечно удаленной точке если функция

$$\varphi(\zeta) = f\left(\frac{1}{\zeta}\right)$$

Тип точки зависит от конечности, бесконечности или существования $\lim_{z\to\infty}f(z)$. Чтобы понять это, выполняешь следующие действия: $\zeta=\frac{1}{z}$, затем рассматриваешь тип точки в функции $f\left(\frac{1}{\zeta}\right)$ ($\zeta=0$ явный образ точки $z=\infty$).

 $z=\infty$ описание разложение Лорана:

- \triangleleft Устранимая особая точка нет положительных степеней z
- \triangleleft Полюс конечное число положительных степеней z
- \triangleleft Существенная особенность бесконечное число положительных степеней z

Вычет функции f(z) в бесконечности величина

$$\operatorname{res} f(\infty) = \frac{1}{2\pi i} \int_{\gamma^{-}} f(z) dz$$

Из определения следует, что:

$$\operatorname{res} f(\infty) = -c_{-1}$$

При чем раскладываем в $z_0=0$. Разложения $e^z,\sin z,\cos z,\sin z,\cot z$ имеют в точке $z=\infty$ существенную особенность

Если функция f(z) имеет в расширенной комплексной плоскости конечное число особых точек, то сумма всех ее вычетов, включая и вычет в бесконечности, равна нулю. Формально:

$$\operatorname{res} f(\infty) + \sum_{k=1}^{n} \operatorname{res} f(a_k) = 0$$

Свойство вычетов Пусть функция f(z) является аналитической на полной комплексной плоскости, за исключением конечного числа изолированных особых точек z_k $(k=1,2,\ldots,N),$ $z_n=\infty.$ Тогда

$$\int_{k=1}^{N} \operatorname{res}\left[f(z), z_{k}\right] = 0$$

Доказательство: По основной теории о вычетах:

$$\frac{1}{2\pi i} \int_{C^{+}} f(\zeta) \, d\zeta = \sum_{k=1}^{N-1} \text{res} [f(z), z_k]$$

интеграл стоящий слева это и есть вычет в бесконечно удаленной точке взятый со знаком минус.

11 Ряды Тейлора и Лорана.

11.1 Ряд Тейлора

Функция f(z) однозначная и аналитическая в точке z_0 разлагается в окрестности этой точки в степенной ряд Тейлора:

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

где

$$c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}} = \frac{f^{(n)}(z_0)}{n!}, \quad (n=0,1,2,\ldots)$$

Важные функции для разложения. Имеешь сложную функцию, приводишь к указанным функциям, используешь готовые формулы, profit:

$$e^{z} = \sum_{n=0}^{\infty} \frac{z^{n}}{n!}, \qquad z \in C$$

$$ln(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^{n}}{n}, \qquad (R=1)$$

$$(1+z)^{\alpha} = \frac{\alpha(\alpha-1)\dots(\alpha+n-1)}{n!} z^{n}, \quad (R=1)$$

$$\frac{1}{1+z} = (-1)^{n} z^{n}, \qquad (R=1)$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}, \qquad x \in C$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2n)!}, \qquad x \in C$$

$$\frac{1}{\xi-z} = \sum_{n=0}^{\infty} \frac{(z-z_{0})^{n}}{(\xi-z_{0})^{n+1}}, \qquad \left|\frac{\xi-z_{0}}{z-z_{0}}\right| < 1$$

11.2 Ряд Лорана

Ряд Лорана Функция f(z) однозначная и аналитическая в кольце $r < |z - z_0| < R$ разлагается в этом кольце в *ряд Лорана*:

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n$$

где коэффициенты c_n находятся по формулам:

$$c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)dz}{(z-z_0)^{n+1}}, \quad (n=0,\pm 1,\pm 2,\ldots)$$

 Γ - произвольная окружность с центром в точке $z_0,$ лежащая внутри данного кольца

Главная часть ряда Лорана

$$\sum_{n=-\infty}^{-1} c_n (z-z_0)^n$$

Правильная часть ряда Лорана

$$\sum_{n=0}^{\infty} c_n (z - z_0)^n$$

Область сходимости главной части Положим $\zeta = \frac{1}{z-z_0}$. Рассмотрим круг сходимости обычного степенного ряда $\sum_{n=1}^{\infty} c_{-n} \zeta^n \; |\zeta| < R_2$. Он будет описывать аналитическую фукнцию $\varphi(\zeta)$. Возвращаемся к старой переменной:

$$f_2(z) = \sum_{n=1}^{\infty} c_{-n} \frac{1}{(z-z_0)^n}, \quad f_2(z) = \varphi\left(\frac{1}{(z-z_0)}\right)$$

Круг сходимости принимает вид:

$$\left| \frac{1}{z - z_0} \right| < R_2 \Rightarrow |z - z_0| > R_2$$

Доказательство разложения в ряд Лорана Доказательство того, что функцию можно разложить в ряд Лорана

Терема Лорана (1843). Функция f(z), аналитическая в круговом кольце $R_2 < \left|z-z_0\right| < R_1$ однозначно представляется в этом кольце сходящимся рядом Лорана. Доказательство

Кольцо $R_2<\left|z-z_0\right|< R_1$ (сплошные кривые) Кольцо $R_2^*<\left|z-z_0\right|< R_1^*$ (пунктирные кривые)

Фиксируем точку z в кольце $R_2 < \left|z-z_0\right| < R_1$. Указываем две окружности $C_{R_1^*}$, $C_{R_2^*}$ радиусов R_1^* , R_2^* $\left(R_2^* < R_1^*\right)$. Кольцо $R_2^* < \left|z-z_0\right| < R_1^*$ является двусвязной областью G, так как мы исключили область $\left|z-z_0\right| < R_2$, в которой функция f(z) может быть неаналитической. Применяем теорему о составном контуре:

$$f(z) = \frac{1}{2\pi i} \oint_{C_{p_{i}}} \frac{f(\zeta)}{\zeta - z} d\zeta + \frac{1}{2\pi i} \oint_{C_{p_{i}}} \frac{f(\zeta)}{\zeta - z} d\zeta$$
 (A)

где обход по контурам $C_{R_1^*}$, $C_{R_2^*}$ идет в положительном направлении (см. рис. 2). Рассмотрим первый интеграл:

$$f_{1}(z) = \frac{1}{2\pi i} \oint_{C_{R}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Здесь f(z) аналитична в кольце, при этом $\frac{1}{\zeta - z}$ можем разложить в ряд по $(z - z_0)$ в кольце

так, как это делали при доказательстве теоремы о разложении f(z) в обычный степенной ряд (ряд Тейлора):

$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}}, \qquad \left| \frac{z - z_0}{\zeta - z_0} \right| = \left| \frac{z - z_0}{R_1^*} \right| < 1$$
 (B)

Подставляем этот ряд в интеграл, проводим почленное интегрирование ряда, имеем в кольце сходящийся ряд Тейлора

$$f_1(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \ c_n = \frac{1}{2\pi i} \oint_{C_{n^*}} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

Рассмотрим второй интеграл из (А):

$$f_2(z) = \frac{1}{2\pi i} \oint_{C_{\mathbb{R}^2}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Здесь

$$\left| \frac{z - z_0}{\zeta - z_0} \right| > 1$$

Поэтому рассуждаем иначе. Запишем

$$\frac{1}{\zeta - z} = -\frac{1}{z - \zeta}$$

Тогда в разложении (В) следует поменять ζ на z, z на ζ . Имеем

$$\frac{1}{\zeta - z} = -\sum_{n=0}^{\infty} \frac{(\zeta - z_0)^n}{(z - z_0)^{n+1}}, \qquad \left| \frac{\zeta - z_0}{z - z_0} \right| < 1$$

Этот ряд сходится! Подставляем его в формулу для $f_2(z)$ и проводим почленное интегрирование

$$f_{2}(z) = \frac{1}{2\pi i} \oint_{C_{R_{2}^{*}}} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_{0})^{n}}$$
$$c_{-n} = -\frac{1}{2\pi i} \oint_{C_{R_{2}^{*}}} f(\zeta) (\zeta - z_{0})^{n-1} d\zeta$$

Здесь $C_{R_2^*}^-$ проходится уже против часовой стрелки. Далее, унифицируем форму записи для коэффициентов c_n , c_{-n} . Заметим, что подынтегральные функции в выражении для этих коэффициентов являются аналитическими в кольце, поэтому, по теореме о составном контуре значения интегралов не изменяться при изменении радиуса контура при условии, что контуры

проходятся против хода стрелки часов. Пусть C – контур, принадлежащий кольцу и содержащий внутри точку z_0 . Тогда

$$c_n = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta, \quad n = 0, \pm 1, \pm 2, \pm 3...$$

В результате имеем:

$$f_1(z) + f_2(z) = \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n$$

Лорановское разложение функции f(z) в окрестности бесконечно удаленной точки разложение f(z) в ряд Лорана, сходящееся всюду вне круга достаточно большого ради-

12 Нули аналитических функций.

12.1 Понятие нуля аналитической функции

Нулем функции порядка (кратности) n, называется точка z_0 , если:

$$f(z_0) = 0$$
, $f'(z_0) = 0$, ..., $f^{(n-1)}(z_0) = 0$, $f^{(n)} \neq 0$

12.2 Теорема об изолированности нулей аналитических функций

Пусть фукнция f(z) аналитична в окрестности своего нуля z_0 и не является тождественным нулем в этой крестности. Тогда z_0 является изолированным нулем.

Доказательство: Так как f(z) не равна тождественно нулю в некоторой окрестности точки z_0 , то ее можно представить в виде:

$$f(z) = (z - z_0)^k \varphi(z), \quad \varphi(z_0) \neq 0$$

из аналитичности $\varphi(z)$ в точке z_0 следует ее непрерывность, поэтому $\varphi(z_0) \neq 0$ всюду в некоторой окрестности z_0 , поэтому нуль z_0 функции f(z) изолирован.

- 12.3 Теорема о тождественности аналитической фукнции f(z) нулю при наличии бесконечной последовательности ее нулей. Теорема о единственности аналитических функций (без доказательств)
- 12.3.1 Теорема о тождественности аналитической фукнции f(z) нулю при наличии бесконечной последовательности ее нулей.

Пусть функция f(z) является аналитической в области G и обращается в ноль в различных точках бесконечной последовательности $\{z_n\}$. Если последовательность $\{z_n\}$ сходится к точке a, принадлежащей области G, то $f(z) \equiv 0$ во всей области G

12.3.2 Теорема о единственности аналитических функций (без доказательств)

Если функции $f_1(z), f_2(z)$, аналитические в областях G_1, G_2 соответственно, имеющих общую область пересечения $G = G_1 \cap G_2$, совпадают в G, то существует единственная аналитическая функция такая, что

$$F(z) = \begin{cases} f_1(z), & z \in G_1 \\ f_2(z), & z \in G_2 \end{cases}$$

13 Изолированные особые точки Φ К Π .

Особая точка. Точку z_0 функции f(z) будем называть особой, если в этой точке нарушается аналитичность f(z).

Изолированная особая точка z_0 функции f(z) Вокруг z_0 существует окрестность, в которой f(z) аналитична всюду, кроме самой точки z_0 . Или формально: существует окрестность $0 < |z - z_0| < R_1$ этой точки, в кторой f(z) аналитична.

1. Устранимая особая точка:

Существует предел $\lim_{z \to z_0} f(z) = c_0$ (функцию можно доопределить)

Ряд не содержит членов с отризацательными степенями разности $(z-z_0)$

Теорема. Если функция f(z) аналитична в кольце $0 < |z - z_0| < R_1$, ограничена в кольце, то z_0 есть устранимая особая точка

2. Полюс функции:

ряд Лорана содержит конечное число членов с отрицательными степенями разности $(z-z_0)$

$$f(z) = \frac{c_m}{(z - z_0)^m} + \ldots + \frac{c_1}{(z - z_0)} + \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

полюс порядка т

Полюс порядка n $(n\geqslant 1)$ функции f(z), если эта точка является нулем порядка n для функции $\varphi=\frac{1}{f(z)}.$ Если n=1 - полюс называют npocmым

При $z \to z_0$ модуль функции f(z) неограниченно возрастает независимо от стремления z к z_0

3. Существенно особая точка

ряд Лорана содержит бесконечное число членов с отрицательными степенями разности $(z-z_0)$

Функция f(z) в точке z_0 не имеет предела ни конечного, ни бесконечного

Теорема Сохоцкого-Казорати. Если z_0 существенно особая точка функции f(z), то для любого комплексного числа A существует последовательность точек $z_k \to z_0$ така, что

$$\lim_{k \to \infty} f(z_k) = A$$

частичные пределы этой функции не совпадают, принимают разные значения, предела в функции в точке z_0 не существует

$$e^{\frac{1}{z}}$$
 - существенно особая точка. $\{z_k=\frac{1}{k}\},\ \{e^k\}\to\infty,\ \{z_k=-\frac{1}{k}\},\ \{e^k\}\to0,\ A\neq0,\ z_k=\frac{1}{\ln A+2k\pi i}$

При рассмотрении характера точки, может быть подвох в том что действительная часть стремится к нулю, а мнимая к бесконечности (или наоборот). Такое бывает например в случае z^2

Утверждения:

1. z_0 - устранимая особая точка ф-ции $f(z) \Leftrightarrow$ лораново разложения f(z) в окрестности z_0 содержит только правильную часть

- 2. z_0 *полюс функции* $f(z) \Leftrightarrow$ главная часть лорановского разложения f(z) в окрестности z_0 содержит конечное число членов
- 3. z_0 существенно особая точка для функции $f(z) \Leftrightarrow$ главная часть лорановского разложения в окрестности точки z_0 содержит бесконечно много членов

14 Применение вычетов к вычислению несобственных и контурных интегралов.

Основная теорема о вычетах

Несобственные интегралы вида $\int\limits_{-\infty}^{\infty}f(x)\,dx$

$$\int\limits_{-\infty}^{\infty}f(x)\,dx=2\pi i\sum_{k=1}^{N}\mathrm{res}\left[f(z),z_{k}\right],\ \, x_{k}\text{ особые точки функции }f(z)\text{ в верхней полуплоскости}$$

Лемма 1 Пусть функция f(z) является аналитической в верхней полуплоскости Im z > 0 всюду, за исключением конечного числа изолированных особых точек, и существуют такие положительные числа R_0 , M и δ , что для всех точек верхней полуплоскости, удовлетворяющих условию $|z| > R_0$, имеет место оценка:

$$|f(z)| < \frac{M}{|z|^{1+\delta}}, \quad |z| > R_0$$

Тогда

$$\lim_{R \to \infty} \int_{C'_R} f(\zeta) \, d\zeta = 0$$

где C_R' представляет собой полуокружность $|z|=R,\,{\rm Im}\,z>0$

Доказательство леммы 1

$$\left| \int_{C_R'} f(\zeta) \, d\zeta \right| \leqslant \int_{C_R'} |f(\zeta)| \, ds < \frac{M\pi R}{R^{1+\delta}} = \frac{\pi M}{R^{\delta}} \stackrel{R \to \infty}{\to} 0$$

Доказательство основной теоремы: рассмотрим такой вот интеграл

$$\int_{-R}^{R} f(x) dx + \int_{C'_{R}} + \int_{C'_{R}} f(z) dz = 2\pi i \sum_{k=1}^{N} \text{res} [f(z), z_{k}]$$

т.к. выполнены условия леммы 1, то второе слагаемое при переходе $R \to \infty$ равно нулю, правая (а следовательно и левая) от R не зависит, отсюда следует что теорема доказанна

14.1 Интегралы от рациональных функций

Пусть $f(x) = \frac{P_m(x)}{Q_n(x)}$ - рациональная функция, где $P_m(x)$ и $Q_n(x)$ - многочлены соответственно степеней m и n. Условия:

- 1. f(x) непрерывна на всей действительной оси $(Q_n(x) \neq 0)$
- 2. $n \ge m + 2$

Можно применить формулу

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i\sigma$$

где σ - сумма вычетов функции f(z) во всех полюсах, расположенных в верхней полуплоскости

14.2 Вычисление интегралов содержащих правильную дробь умноженную на синус или косинус

$$\int_{0}^{\infty} R(x) \cos \lambda x dx, \quad \int_{0}^{\infty} R(x) \sin \lambda x dx$$

где R(x) - правильная рациональная дробь, $\lambda > 0$ - любое вещественное число

Поможет лемма Жордана:

Пусть g(z) - функция, аналитическая в верхней полуплоскости, за исключением конечного числа особых точек, и стремится в этой полуплоскости к нулю при $|z| \to \infty$. Тогда при $\lambda > 0$:

$$\lim_{R \to \infty} \int_{C_R} g(z)e^{i\lambda z} = 0$$

14.3 Вычисление интегралов, содержащих показательную функцию

$$\int_{0}^{\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

14.4 Вычисление интегралов содержащих рациональную функцию от косинуса и синуса

$$\int_{0}^{2\pi} R(\cos x, \sin x) dx$$

где R - рациональная функцию аргументов $\cos x$ и $\sin x$, ограниченная внутри промежутка интегрирования

Полагаем, что $e^{ix}=z$, тогда $dx=rac{dz}{iz}$ и

$$\cos x = \frac{z^2 + 1}{2z}, \quad \sin x = \frac{z^2 - 1}{2iz}$$

Интеграл принимает вид

$$\int_{C} F(z)dz$$

где C - окружность единичного радиуса с центром в начале координат. Согласно теореме Коши о вычетах интеграл равен $2\pi\sigma i$, где σ - сумма вычетов относительно полюсов, заключенных внутри окружности C

14.4.1 Заменой

Делаем замену $z=e^{ix}$. Тогда:

$$dx = \frac{1}{i} \frac{dz}{z},$$

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right) = \frac{1}{2} \left(z + \frac{1}{z} \right),$$

$$\sin x = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right) = \frac{1}{2i} \left(z - \frac{1}{z} \right)$$

Переменная z пробегает окружность единичного радиуса (|z|=1). Интеграл приводится к интегралу по замкнутому контуру:

$$I = \frac{1}{i} \int_{|z|=1} R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right) \frac{dz}{z}$$

15 Логарифмический вычет

15.1 Определение

Логарифмическая производная функции f(z) производная от логарифма функции f(z):

$$\varphi(z) = [\ln f(z)]' = \frac{f'(z)}{f(z)}$$

Вычет относительно точки, являющейся нулем функции f(z), равен порядку нуля, а относительно полюса функции - порядку этого полюса со знаком минус

Пусть функция $f(z) \neq 0$ аналитична во всех точках замкнутого контура C. Величина

$$\frac{1}{2\pi i} \int\limits_C \frac{f'(z)}{f(z)} dz$$

называется логарифмическим вычетом функции f(z) относительно замкнутого контура C.

15.2 Теорема о логарифмическом вычете

Пусть функция f(z) - аналитическая в замкнутой области D, кроме конечного числа полюсов, и на границе C этой области не умеет ни нулей, ни полюсов. Тогда:

$$\frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = N - P$$

где N - число нулей f(z) в $D,\,P$ - число полюсов f(z) в D

Логарифмический вычет многочлена

$$Q_n = \sum_{k=0}^n a_k z^k$$

относительно контура C равен числу нулей этого многочлена (с учетом их кратности) в области D, ограниченной контуром C

15.3 Принцип аргумента

Разность между количеством корней и полюсов с учетом их кратности функции f(z), заключающихся внутри замкнутой кривой Γ , равна изменению $\operatorname{Arg} f(z)$ при обходе точкой z контура Γ в положительном направлении, деленному на 2π , т.е.:

$$N - M = \frac{\Phi_1 - \Phi_0}{2}$$

16 Преобразование Лапласа.

$$w = az + b$$

- 1. *b* сдвиг
- 2. $a=w_z',\,|a|$ растяжение, ${\rm Arg}\,a$ угол поворота

Комфорное экспоненциальное: Горизонтальные - в лучи (с углом наклона C'), вертикальные в круги (на расстоянии C переходят в окружность e^C)

Полоса (мн-во точек между двумя горизонтальными прямыми) - бесконечная полоса. Ширина до 2π

- 17 Теоремы линейности и подобия преобразования Лапласа.
- 18 Основные теоремы операционного исчисления: дифференцирования оригинала и изображения.
- 19 Основные теоремы операционного исчисления: запаздывания и смещения.
- 20 Теорема обращения преобразования Лапласа.
- 21 Вывод основных соответствий между оригиналами и зображениями в преобразовании Лапласа.
- 22 Решение линейных дифференциальных уравненийс постоянными коэффициентами при помощи преобразования Лапласа.
- 23 Решение линейных систем дифференциальных уравнений.
- 24 Преобразование Лорана. Теорема опережения.
- 25 Вывод основных соответствий между оригиналами и зображениями при преобразовании Лорана.
- 26 Преобразование Лорана. Теорема обращения и разложения.
- 27 Преобразование Лорана. Теорема дифференцирования изображения.
- 28 Преобразование Лорана. Умножение изображений. Теоремы о предельных значениях.

всей комплексной плоскости, ряд сходится равномерно в любой замкнутой подобласти круга сходимости. Следовательно, по первой теореме Вейерштрасса сумма ряда есть аналитическая функция.

31.2 Условия независимости интеграла от аналитической функции f(z) от вида кривой интегрирования L

Возьмем замкнутый контур L разобьем его на две части. По условию аналитичности функции:

$$\int_{I} f(z) \, dz = 0$$

разобьем этот контур пополам (L_1, L_2) . Получим

$$\int_{L_1} f(z) dz + \int_{L_2^-} f(z) dz = 0$$

$$\int_{L_1} f(z) dz = \int_{L_2} f(z) dz$$

отсюда следует, что интеграл не зависит от пути интегрирования

- 31.3 Аналитическая функция w=f(z) в точке z_0 как конформное отображение окрестности z_0 , основные свойства конформного отображения
- 31.3.1 Аналитическая функция w=f(z) в точке z_0 как конформное отображение окрестности z_0

Конформное отображения. f(z) обладает свойствами сохранения углов и постоянства растяжений. Это значит что угол между любыми двумя гладкими кривыми, пересекающимися в точке z_0 , равен углу между их образами на плоскости w в точке $w_0 = f(z_0)$. Далее, бесконечно малые линейные элементы преобразуются подобным образом с коэффициентом подобия $k = |f'(z_0)|$. Взаимно-однозначное отображение области G комплексной плоскости g на область g комплексной плоскости g на область g комплексной плоскости g называется конформным, если это отображение во всех точках g обладает свойствами сохранения углоов и постоянства растяжений (достаточно, чтобы g была непрерывна)

Однолистное отображение. Отображение F называют однолистным в области G, если в различных точках этой области отображение F принимает разные значения.

Однозначная аналитическая функция f(z) в точке $z=z_0$ задает конформное отображение малой окрестности точки z_0 на окрестность точки $w_0=f(z_0)$, если производная $f'(z_0)$ существует и $f'(z_0) \neq 0$.

31.3.2 Основные свойства конформного отображения

Свойство 1. $f'(z) \neq 0$ в каждой точке $z \in G$

Свойство 2. Взаимно-однозначное отображение области G комплексной плоскости z на область D комплексной плоскости w является определяющим свойством конформного отображения

31.4 Теорема о построении конформного отображения в области в область через построение отображения границ (без доказательства)

Пусть в конечной области G, ограниченной контуром γ задана однозначная функция f(z), аналитическая в \overline{G} и отображающая контур γ на некий контур Γ комплексной плоскости w с сохранением направления обхода. Тогда функция f(z) задает конформное отображение области G на внутреннюю область D, ограниченную контуром Γ

31.5 Понятие аналитического продолжения аналитических функций

Если функции $f_1(z)$, $f_2(z)$, аналитические в областях G_1 , G_2 соответственно, имеющих общую область пересечения $G = G_1 \cap G_2$, совпадают в G, то существует единственная аналитическая функция такая, что

$$F(z) = \begin{cases} f_1(z), z \in G_1 \\ f_2(z), z \in G_2 \end{cases}$$

Здесь $f_1(z)$ является своим единственным аналитическим продолжением с G на G_1 , $f_2(z)$ - единственное аналитическое продолжение с G на G_2 .

Тогда функия F(z) будет единственной аналитической функцией, определенной в $G_1 \cup G_2$, такой, что F(z) совпадает с $f_1(z)$ на G_1 и совпадает с $f_2(z)$ на G_2 . Более того, функция $f_2(z)$ является аналитическим продолжением функции $f_1(z)$ из области G_1 в область G_2 , так как $f_2(z)$ "цепляет" $f_1(z)$ в области $G = G_1 \cap G_2$. В отсутствии такой "сцепки" $f_2(z)$ задается в области G_2 произвольно, таких функций в области G_2 может быть бесконечно много, они не связаны никак с $f_1(z)$. В этом случае говорить об аналитическом продолжении $f_1(z)$ на область $G_1 \cup G_2$ не приходится>

Область G является "носителем" функции $f_1(z)$ на G_1 и, она же, является носителем $f_2(z)$ на G_2 . Поэтому $f_2(z)$ - "клон" функции $f_1(z)$. Используя общепризнанный термин, $f_2(z)$ - аналитическое продолжение $f_1(z)$

- 31.6 Уравнение Лапласа, понятие гармонических функций. Теорема о представлении вещественного решения уравнения Лапласа в виде сходящегося степенного ряда
- 31.6.1 Уравнение Лапласа, понятие гармонических функций.

Уравнение Лапласа - линейное уравнение в частных производных второго порядка:

$$\Delta u \triangleq \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$

Здесь $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ - оператор Лапласа. Любое решение u(x,y,z) этого уравнения называют гармонической (в области существования D) функцией. Это уравнение описывает многи процессы в гидродинамике, теплопроводности, электростатики, гидравлики, в квантовой механике, имеет большое значение в теории потенциала, в частности, в теории гравитационного потенциала небесных тел.

Понятие гармонических функций - аналог понятия решения уравнения Лапласа (любое решение уравнения Лапласа - гармоническая функция).

31.6.2 Теорема о представлении вещественного решения уравнения Лапласа в виде сходящегося степенного ряда

Любое вещественное решение u(x,y) уравнения лапласа является аналитической функцией аргументов, т.е. в окрестности каждой точки области D она представима абсолютно сходящимся рядом

$$u(x,y) = \sum_{n=0}^{\infty} \sum_{m=0}^{n} c_{nm} (x - x_0)^{n-m} (y - y_0)^m$$

Доказательство: пользуясь следствием 1 (любое решение уравнения Лапласа можно представить как действительную или мнимую части аналитической функции f(z)) можно записать

$$u(x,y) = \operatorname{Re} f(z) = \operatorname{Re} \left\{ \sum_{n=0}^{\infty} c_n (z - z_0)^n \right\}$$

Далее, записываем выражение для общего члена ряда функции f(z):

Re
$$\{c_n(z-z_0)^n\}$$
 = Re $\{(\alpha_n+i\beta_n)[(x-x_0)+i(y-y_0)]^n\}=\sum_{m=0}^n c_{nm}(x-x_0)^{n-m}(y-y_0)^m$

 $(mам \ nonyчается \ биномиальное \ выражение)$ После подстановки этого выражения в предыдущую формулу, докажем. Можно показать, что радиус абсолютной сходимости этого ряда совпадает с радиусом абсолютной сходимости ряда функции f(z)

31.7 Постановка задачи о вычислении подъемной силы. Формула Жуковского для вектора подъемной силы (без доказательств)

31.7.1 Постановка задачи о вычислении подъемной силы

Подъемная сила, действующая на профиль крыла самолета, во время полета. При скоростях, меньших скорости звука, воздух можно считать идеальной несжимаемой жидкостью и пренебречь вихреобразованием вокруг крыла. Считаем, что крыло имеет цилиндрическую форму с профилем, представленным на рисунке (как капля). Полагаем, что для удобства изложения, что крыло неподвижно и на него набегает поток с постоянной скоростью V_{∞} , равной скорости в бесконечности

31.7.2 Формула Жуковского для вектора подъемной силы

$$F = -i\rho V_{\infty}\Gamma$$

Сила F является циркуляцией вектора Γ вектора скорости вдоль профиля γ , скоростью на бесконечности и эта сила перпендикулярна направлению вектора скорости на бесконечности.

31.7.3 Аналитическое продолжение

Под аналитическим продолжением функции f(z), определенной на некотором множестве G', подразумевается описание этой функции на возможно более широкой области $G' \subset G$, в которой продолженная функция является аналитической. Итак, f(z) есть аналитическое продолжение с G' в область $G: G' \subset G$