Форматы с плавающей и фиксированной точками

Ситкарев Г.А., <sitkarev@komitex.ru>

Сыктывкарский Государственный Университет Лаборатория Прикладной Математики и Программирования http://amplab.syktsu.ru

1.1. Позиционные системы счисления

Позиционные системы счисления используют число 0. Без нуля запись в позиционной системе счисления была бы невозможна:

$$(12450)_{10} = 1 \times 10^4 + 2 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 0 \times 10^0.$$

1.2. Числа с фиксированной точкой

Рациональные числа могут быть представлены как отношение двух чисел: числителя и знаменателя. Такое представление не всегда удобно. Предположим, что компьютер умеет выполнять основные арифметические действия с целыми знаковыми числами. Пользуясь только целочисленной арифметикой, мы можем представить рациональные числа в специальном формате. Формат числа с фиксированной точкой состоит из трёх полей. Эти три поля соответственно хранят бит знака, биты целой части, и биты дробной части. Пусть для хранения числа с фиксированной точкой выделено 32 бита, один бит выделен для хранения знака, 15 бит отведено для целой части, и для дробной части выделены оставшиеся 16 бит. Приближённое значение числа 1/15 в таком представлении будет храниться как

а число 11/2 тогда будет храниться как

Арифметика с фиксированной точкой реализуется поверх целочисленной арифметики. Сложение, вычитание, умножение и деление чисел с фиксированной точкой выполняются на компьютере также, как с обычными целыми знаковыми числами, но в результат \tilde{c} операций умножения (1) и деления (2) вносится поправка, с учётом масштабирующего коэффициента α :

$$\tilde{c} = \alpha a + \alpha b = \alpha (a + b), c = \tilde{c};$$

$$\tilde{c} = \alpha a \times \alpha b = \alpha^2 (a \times b), \ c = \frac{\tilde{c}}{\alpha};$$
 (1)

$$\tilde{c} = \frac{\alpha a}{\alpha b} = \frac{a}{b}, \quad c = \alpha \tilde{c}. \tag{2}$$

Умножение и деление на масштабирующий коэффициент α обычно осуществляют арифметическим битовым сдвигом влево и вправо. Для выбранного ранее формата представления числа с фиксированной точкой $\alpha = 2^{16}$, а для коррекции результата умножения и деления число сдвигают соответственно на 16 бит вправо и 16 бит влево¹.

Минимальное положительное число, представимое в выбранном ранее формате с фиксированной точкой, это

$$1 \times 2^{-16} = 2^{-16} = 0.0000152587890625$$
,

а максимальное положительное число

$$(2^{15} - 1) + (1 - 2^{-16}) = 32767,9999847412109375 \approx 32768.$$

Максимальное абсолютное значение отрицательного числа в таком формате

$$-2^{15} + (1 - 2^{-16}) = -32768,9999847412109375.$$

1.3. Числа с плавающей точкой

Представление чисел с плавающей точкой основано на научной записи чисел. Действительное число $x \neq 0$ в таком представлении записывается как

$$x = \pm S \times 10^E$$
, гле $1 \le S < 10$.

и E – целое число. Обычно S называют *мантиссой числа*, а E называют *экспонентой числа*. Например, число 1284,45 записывают как

$$1,28445 \times 10^3$$

а число 0,000325 как

$$3.25 \times 10^{-4}$$
.

На компьютере числа с плавающей точкой удобнее представлять в двоичном виде, поэтому число x представляют так:

$$x = \pm S \times 2^E$$
, гле $1 \le S < 2$.

В двоичном виде S это

$$S = (b_0, b_1 b_2 b_3 \dots)_2$$
, где $b_0 = 1$.

Так как $b_0 = 1$, мы можем записать S как

$$S = (1, b_1 b_2 b_3 \dots)_2$$
.

¹ Здесь следовало бы ещё произвести и округление, но мы опустим этот шаг для простоты изложения.

Такое представление называют *нормализованным представлением* числа x.

Для хранения числа в таком формате нужны поля для хранения знака, экспоненты E и мантиссы S.

Пусть у нас есть 32 бита для хранения этих полей. Мы выделим один бит для хранения знака: если бит знака будет 0, то это положительное число, иначе, если бит знака 1, то число отрицательное. Для хранения экспоненты E мы выделим 8 бит. Теоретически, мы бы могли хранить в этом поле числа от -128 до +127 в двоичном коде с дополнением до двух. Стандарт IEEE 754 использует несколько иной формат для хранения экспоненты, и мы пока будем предполагать, что в этих битах может храниться экспонента со значениями от -126 до +127. Под хранение мантиссы мы выделяем оставшиеся 23 бита, в которых будут храниться биты $b_1, b_2, b_3, \ldots, b_{23}$. Бит b_0 в явном виде в S храниться не будет, так как предполагается, что $b_0 = 1$. Число x, в точности представимое в таком виде, называется *числом с плавающей точкой*. Если число x точно в таком виде представить нельзя, тогда его придётся округлять.

Число 11/2 в таком формате будет храниться как

	0	ebits(2)	011000000000000000000000000000000000000	,
--	---	----------	---	---

а число

$$8234 = (1,0000000101010)_2 \times 2^{13}$$

будет храниться как

0	ebits(13)	000000010101000000000000	
---	-----------	--------------------------	--

Здесь $\ll ebits(E)$ » обозначает битовое представление экспоненты E, которое мы пока не показываем. Так как мантисса хранит только дробную часть, мы должны мысленно представлять единичный бит b_0 , который всегда присутствует, но не хранится в мантиссе. Если число с плавающей точкой есть в точности степень двойки, то мантисса будет состоять полностью из нулей. Например, число

$$1 = (1,00000...0)_2 \times 2^0$$

будет храниться как

0	ebits(0)	000000000000000000000000000000000000000].
---	----------	---	----

1.4. Точность и машинное эпсилон

Точностью представления числа с плавающей точкой называют количество бит, выделенных для хранения мантиссы, включая скрытый бит b_0 . Любое число с плавающей точкой в нормализованном виде может быть представлено как

$$x = \pm (1, b_1 b_2 b_3 \dots b_{p-2} b_{p-1})_2 \times 2^E.$$
(3)

Для выбранного ранее формата представления чисел с плавающей точкой, p = 24 (23)

бита хранящихся явно и один скрытый бит $b_0 = 1$). Ближайшее число с плавающей точкой, которое будет больше 1, это

$$(1,000...001)_2 \times 2^0 = 1 + 2^{-(p-1)}$$
.

Промежуток от числа 1 до ближайшего большего числа с плавающей точкой называют машинным эпсилон:

$$\varepsilon = 1 - 1 + 2^{-(p-1)} = 2^{-(p-1)}$$
.

Для любого числа с плавающей точкой x в формате (3) также определяют

$$ulp(x) = (0,000...001)_2 \times 2^E = 2^{-(p-1)} \times 2^E = \varepsilon \times 2^E.$$

Если x > 0, тогда ulp(x) — промежуток от x до ближайшего большего числа, если x < 0, тогда ulp(x) — промежуток от x до ближайшего меньшего числа. Ulp это сокращение от *units in the last place*.

1.5. Представление нуля

Число 0 нормализовать не получится, поэтому представить его в виде (3) не удастся. Число, где $b_1 = b_2 = \ldots = b_{p-1} = 0$ это 1, а не 0. Примерно до 1975-го года все форматы чисел с плавающей точкой хранили бит b_0 явно. Тогда, задав все биты $b_0 = b_1 = \ldots = b_{p-1} = 0$, получался 0. При этом приходилось жертвовать одним битом точности. В IEEE 754 используется другой подход: для представления нуля резервируется специальное значение поля экспоненты.

1.6. Игрушечная система с плавающей точкой

Наша цель получить представление о том, что из себя представляют числа с плавающей точкой. С этой целью мы спроектируем игрушечную систему с плавающей точкой. Практическая ценность такой системы умозрительна, и для реальных расчётов она вряд ли подойдёт, зато с её помощью мы на уровне интуиции почувствуем, как работает арифметика с плавающей точкой. Числа в нашей игрушечной системе будут представлены как

$$\pm (b_0, b_1 b_2)_2 \times 2^E$$
,

где b_0 хранится непосредственно, все числа имеют нормализованное представление, а экспонента E принимает значения -1, 0 и 1. Все возможные значения мантиссы в такой системе:

$$(1,00)_2 = 1,0,$$

 $(1,01)_2 = 1,25,$
 $(1,10)_2 = 1,50,$
 $(1,11)_2 = 1,75.$

Точность такой системы будет p=3, а максимальное $N_{\rm max}$ и минимальное $N_{\rm min}$ положительные числа, представимые в такой системе, тогда

$$N_{\text{max}} = (1,11)_2 \times 2^1 = 3.5 \text{ M} N_{\text{min}} = (1.00)_2 \times 2^{-1} = 0.5.$$

Машинное эпсилон в нашей игрушечной системе $\varepsilon = 1,25-1,0=0,25$.

Рис. 1. Игрушечная система с плавающей точкой.

На рис. 1 отмечено расположение чисел с плавающей точкой игрушечной системы на числовой оси. Видно, что числа на оси располагаются неравномерно, и чем больше становится экспонента, тем больше промежуток до ближайшего большего числа — этот промежуток и есть ulp.

1.7. Форматы IEEE 754 одинарной и двойной точности

Стандарт IEEE 754 (полное название ANSI/IEEE Std 754-1985) был принят в 1985 г. Как международный стандарт он был принят в 1989 г., и получил первоначально название IEC 559. Позже международное обозначение стандарта обновилось до IEC 60559. Главные введения стандарта:

- совместимое представление чисел с плавающей точкой на машинах разной архитектуры;
- корректно округляемые операции $(+,-,/,\times,\sqrt{})$;
- весьма логичный и целостный, с математической точки зрения, подход к обработке исключительных ситуаций, таких как «деление на ноль» и прочих.

Стандарт вводит два специальных числа 0 и ∞ , оба имеют знак ± 0 , $\pm \infty$. Специальная последовательность битов NaN (Not-a-Number) предназначается для сигнализации об ошибке.

1.7.1. Формат IEEE одинарной точности

Числа с плавающей точкой одинарной точности IEEE хранятся в 32-битовом слове, так как показано на рис. 2. Экспонента хранится как обычное беззнаковое целое со смещением 127. Таким образом, для формата IEEE одинарной точности

$$ebits(E) = E + 127.$$

Максимальное и минимальное значения экспоненты одинарного формата IEEE соответственно $E_{\min}=-126$ и $E_{\max}=127$. Порядок полей числа выбран не случайно: их расположение позволяет сравнивать числа IEEE одинарной и двойной точностей как обычные 32/64-битные знаковые целые числа. Точность формата p=24, минимально представимое положительное нормализованное число

$$N_{\rm min} = 1 \times 2^{-126} \approx 1.2 \times 10^{-38}$$
,

и максимально представимое положительное нормализованное число

$$N_{\text{max}} = \left(2 - 2 \times 2^{-(p-1)}\right) \times 2^{127} \approx 2^{128} \approx 3.4 \times 10^{38}.$$

В табл. 1 представление формата IEEE одинарной точности приводится обобщённо.

1		8		23	
±	экспо	онента		мантисса	
31	30	23	22		0

Рис. 2. Формат IEEE одинарной точности.

±	$a_1a_2\ldots a_8$	$b_1b_2b_3\dots b_{23}$
---	--------------------	-------------------------

Если биты экспоненты a_1, \dots, a_8 это	тогда значение будет
$(00000000)_2 = (0)_{10}$	$(0,b_1b_2b_3\dots b_{23)}\times 2^{-126}$
$(00000001)_2 = (1)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^{-126}$
$(00000010)_2 = (2)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^{-125}$
\downarrow	\downarrow
$(011111111)_2 = (127)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^0$
$(10000000)_2 = (128)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^1$
\downarrow	↓
$(11111100)_2 = (252)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^{124}$
$(111111111)_2 = (253)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^{125}$
$(11111110)_2 = (254)_{10}$	$(1,b_1b_2b_3\dots b_{23)}\times 2^{126}$
$(11111111)_2 = (255)_{10}$	если $b_1 = b_1 = \ldots = b_{23} = 0$ то 0, иначе NaN.

Табл. 1.

1.7.2. Формат IEEE двойной точности

Числа с плавающей точкой одинарной точности IEEE хранятся в 64-х битовом слове, как показано на рис. 3. Экспонента хранится как обычное беззнаковое целое со смещением 1023. Таким образом, для формата IEEE двойной точности

$$ebits(E) = E + 1023.$$

Максимальное и минимальное значения экспоненты формата двойной точности IEEE соответственно $E_{\min} = -1022$ и $E_{\max} = 1023$. Точность формата p = 53, минимально представимое положительное нормализованное число

$$N_{\rm min} = 2^{-1022} \approx 2.2 \times 10^{-308},$$

и максимально представимое положительное нормализованное число

$$N_{\text{max}} = \left(2 - 2^{-52}\right) \times 2^{1023} \approx 2^{1024} \approx 1.8 \times 10^{308}.$$

В табл. 2 представление формата IEEE двойной точности приводится обобщённо.

Рис. 3. Формат IEEE двойной точности.

$\pm \mid a_1 a_2 \dots a$		<i>1</i> ₁₁	$b_1b_2b_3\dots b_{52}$		
<i>i</i> ₁ ,	• • •	,а ₁₁ это		тогда	

Если биты экспоненты a_1, \dots, a_{11} это	тогда значение будет
$(000000000000)_2 = (0)_{10}$	$(0,b_1b_2b_3\dots b_{52})\times 2^{-1022}$
$(00000000001)_2 = (1)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^{-1022}$
$(00000000010)_2 = (2)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^{-1021}$
\downarrow	↓
$(011111111111)_2 = (1023)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^0$
$(100000000000)_2 = (1024)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^1$
\downarrow	\downarrow
$(111111111100)_2 = (2044)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^{1021}$
$(111111111101)_2 = (2045)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^{1022}$
$(111111111110)_2 = (2046)_{10}$	$(1,b_1b_2b_3\dots b_{52})\times 2^{1023}$
$(111111111111)_2 = (2047)_{10}$	если $b_1 = b_1 = \ldots = b_{52} = 0$ то 0, иначе NaN.

Табл. 2.

1.8. Какой формат выбрать?

Стандарт IEEE выдвигает требования к обязательной реализации только формата одинарной точности. Формат двойной точности является опциональным, хотя все известные архитектуры, заявляющие совместимость с IEEE, реализуют поддержку, как минимум, и двойной и одинарной точностей. Часто одинарной точности для удовлетворительного результата вычислений недостаточно. Потому рекомендуется всегда

использовать формат двойной точности. Формат одинарной точности хорошо подходит для экономичного хранения большого количества чисел с плавающей точкой.

1.9. Формат расширенной точности

Стандарт IEEE настоятельно рекомендует к реализации формат расширенной точности, где для хранения экспоненты выделено, как минимум, 15 бит, а для хранения дробной части мантиссы отведено, как минимум, 63 бита. Некоторые архитектуры имеют поддержку такого формата, но детали реализации отличаются от производителя к производителю. Так, например, микропроцессоры Intel поддерживают формат расширенной точности с 1 битом знака, 15-битной экспонентой и 64-битной мантиссой, и хранят их в регистрах шириной 80 бит. Микропроцессоры Sun SPARC реализуют поддержку формата расширенной точности программно, а для хранения таких чисел задействуется 128 бит.

1.10. Денормализованные числа

Если обратить внимание на первые строки табл. 1 и табл. 2., то можно увидеть, что для представления нуля в форматах IEEE зарезервирована специальная битовая комбинация поля экспоненты, состоящая только из нулевых битов. Если задействовать биты дробной части мантиссы $b_1, b_2, \ldots, b_{p-1}$, положив при этом экспоненту $E = E_{\min}$, то мы обретём возможность представить число $x < N_{\min}$, как

$$x = (0, b_1 b_2 \dots b_{p-1})_2 \times 2^{E_{\min}}.$$

Этот подход лучше всего продемонстрировать на примере нашей игрушечной системы с плавающей точкой. Для этого найдём все положительные денормализованные значения, полученные как

$$(0,b_1b_2)_2 \times 2^{-1}$$
,

для всех возможных комбинаций дробной части $(0,b_1b_2)_2$:

$$(0,01)_2 \times 2^{-1} = 0,125,$$

 $(0,10)_2 \times 2^{-1} = 0,25,$
 $(0,11)_2 \times 2^{-1} = 0,375.$

На рис. 2 эти положительные числа, а также отрицательные денормализованные, нанесены на числовую ось, вместе с нормализованными числами с плавающей точкой. Как видно, денормализованные числа равномерно заполняют промежуток от нуля до $\pm N_{\min}$. Польза от введения денормализованных чисел заключается в том, что они гарантируют ненулевую разность для двух положительных или отрицательных нормализованных чисел, не равных друг другу, как близко к нулю они бы не располагались. Например, пусть в игрушечной системе с плавающей точкой нет денормализованных чисел. Если взять два достаточно малых числа

$$x = (1.01)_2 \times 2^{-1}$$

Рис. 2.

$$y = (1.00)_2 \times 2^{-1},$$

то результат их разности

$$x - y = ((1.01)_2 - (1.00)_2) \times 2^{-1} = (0.01)_2 \times 2^{-1} = (0.125)_{10}$$

не имеет представления, как число с плавающей точкой, и мы должны округлить его в 0 или в N_{\min} . Такой результат противоречит алгебраическому правилу для любых $x \neq y$, что

$$x - y = 0$$

только в том случае, если $x \equiv y$. Если мы введём денормализованные числа, то результат разности x - y всегда представим для любых нормализованных x и y0, а их разность x - y будет равняться нулю только в том случае, если $x \equiv y$. Мотивация для введения такого усложнения теперь очевидна: система с плавающей точкой при введении денормализованных значений обретает алгебраическую целостность.

Когда стандарт IEEE ещё находился в стадии согласования и обсуждения, нововведения касательно денормализованных чисел вызвали оживлённую дискуссию. Тогда произошло разделение как бы на два лагеря — сторонников введения денормализованных чисел в IEEE, и противников этого. Дело в том, что аппаратная реализация этой части спецификации усложняет схему микропроцессора. Некоторые известные реализации эмулируют арифметику с денормализованными числами на микропрограммном уровне, а часть эмулирует вообще чисто программно. Вне сомнений, денормализованные числа весьма полезны, и любая реализация IEEE должна их поддерживать.

1.11. Значащие разряды

Сколько десятичных разрядов содержат в себе числа IEEE одинарной и двойной точностей? Ответ на этот вопрос можно дать только приблизительно. Так как для чисел с одинарной точностью p=24, то

$$2^{-p} = 2^{-24} \approx 10^{-7},$$

а значит десятичных разрядов в них

$$-\log_{10} 2^{-24} \approx 7.$$

Для чисел с двойной точностью p = 53, тогда

$$2^{-p} = 2^{-53} \approx 10^{-16}$$

а значит десятичных разрядов содержится в них

$$-\log_{10} 2^{-53} \approx 16.$$

Это не более, чем приблизительная оценка.

1.12. Порядок байт

Все современные компьютеры адресуют память побайтно. Это значит, что любую ячейку памяти можно адресовать или обратиться к ней непосредственно. Так, например, 32-битное слово состоит из четырёх байт, обозначим их как $B_0B_1B_2B_3$. Адрес байта B_3 это адрес байта B_0+3 . Теперь положим, что мы храним число в формате IEEE одинарной точности в таком 32-битном слове. Биты числа IEEE будут храниться там, как

$$\sigma a_1 a_2 \dots a_8 b_1 b_2 b_3 \dots b_{23}$$
,

где σ — бит знака. Первые 8 бит этого числа

$$\sigma a_1 a_2 a_3 a_4 a_5 a_6 a_7$$

составляют один байт. Где хранится этот байт — на месте B_0 или на месте B_3 ? Ответ на этот вопрос зависит от того, каков порядок байт принят для данной архитектуры компьютера. Так, например, на х86 этот байт будет храниться в B_0 , а на SPARC в B_3 . Порядок байт в числах IEEE обычно совпадает с порядком байт, принятым на компьютере. При обмене числами в формате IEEE, например, по сети, следует учитывать, что порядок байт на передающей и принимающей сторонах совсем не обязательно совпадает.

1.13. Округление

Напомним, числа в формате IEEE представляются в виде

$$\pm (b_0, b_1 b_2 \dots b_{p-1})_2 \times 2^E, \tag{4}$$

где p — точность; для нормализованных чисел — $b_0 = 1$, $E_{\min} \le E \le E_{\max}$; для денормализованных — $b_0 = 0$, $E = E_{\min}$. Мы будем говорить, что число x находится в нормализованном диапазоне, если

$$E_{\min} \le |x| \le E_{\max}$$
.

Числа ± 0 и $\pm \infty$, хотя и являются числами IEEE, не находятся в нормализованном диапазоне.

Пусть x не является числом с плавающей точкой и не представимо точно в виде (4). Тогда возможны два варианта:

- х выходит за нормализованный диапазон;
- для точного представления x не хватает p бит, например, число

нельзя точно представить в формате IEEE одинарной точности.

И в том и в другом случаях нужно взять аппроксимацию x. Введём два обозначения x_{-} и x_{+} для чисел, связанных с x так, что

- x_{-} будет ближайшим к x числом с плавающей точкой, для которого выполняется $x_{-} \le x$;
- x_+ будет ближайшим к x числом с плавающей точкой, для которого выполняется $x_+ \ge x$.

Пусть х находится в нормализованном диапазоне. Запишем его тогда как

$$x = (1, b_1 b_2 b_3 \dots b_{p-2} b_{p-1} b_p b_{p+1} \dots)_2 \times 2^E.$$

Отбрасывая все биты после b_{p-1} , получим

$$x_{-} = (1, b_1 b_2 b_3 \dots b_{p-2} b_{p-1})_2 \times 2^E.$$

Тогда

$$x_{+} = \left((1, b_1 b_2 b_3 \dots b_{p-2} b_{p-1})_2 + (0,00000 \dots 01)_2 \right) \times 2^{E},$$

где во втором члене суммы единичный бит установлен на месте b_{p-1} . Заметим, что

$$x_{+} = x_{-} + \text{ulp}(x_{-}).$$

С битовым представлением x_+ не всё так просто. При сложении, если $b_1 = b_2 = \ldots = b_{p-2} = b_{p-1} = 1$, может возникнуть перенос в целый разряд, что должно вызвать увеличение экспоненты на единицу. Сказать точно, какое битовое представление x_+ будет получено в результате сложения, можно только в случае, если известны все биты x от b_1 до b_{p-1} включительно.

Рассмотрим теперь случай, когда x не входит в нормализованный диапазон. Если $x > N_{\max}$, тогда

$$x_{-} = N_{\text{max}};$$
$$x_{+} = \infty.$$

Если $x < N_{\min}$, тогда

 $x_{-} = 0$ или x_{-} денормализованное; $x_{+} = N_{\min}$ или x_{+} денормализованное.

1.13.1. Корректно округлённые значения

Стандарт IEEE определяет «корректно округлённое значение» x, которое мы будем обозначать как $\operatorname{round}(x)$. Если x — число с плавающей точкой, то $x = \operatorname{round}(x)$. В противном случае значение зависит от режима округления:

• окруление вниз (или к -∞)

$$round(x) = x_{-}$$
.

• округление вверх (или $\kappa + \infty$)

$$round(x) = x_+$$
.

• округление к нулю

$$round(x) = x_{-}, ecли x > 0;$$

 $round(x) = x_{+}, ecли x < 0.$

• округление к ближайшему

round(x) будет или x_+ или x_- , в зависимости от того, какое из них окажется ближе к x. Если x лежит точно посередине между x_- и x_+ , то выбирается чётное (то, у которого $b_{p-1} = 0$).

В правиле округления до ближайшего есть одно единственное исключение. Когда $x > N_{\max}$, то $\operatorname{round}(x) = N_{\max}$ если $x < N_{\max} + \operatorname{ulp}(N_{\max})/2$, иначе $\operatorname{round}(x) = \infty$.

1.13.2. Абсолютная и относительная ошибки округления

Определим ошибку округления. Пусть x это число, тогда

$$abserr(x) = |round(x) - x|.$$

Применительно к IEEE, если

$$x = \pm (1, b_1 b_2 b_3 \dots b_{p-2} b_{p-1} b_p b_{p+1} \dots)_2 \times 2^E,$$

и x находится в диапазоне нормализованных значений, тогда абсолютная ошибка округления abserr(x) будет меньше, чем расстояние между x_- и x_+ , вне зависимости от режима округления, а значит справедливо и

$$abserr(x) = |round(x) - x| < 2^{-(p-1)} \times 2^{E}.$$

Неформально, абсолютная ошибка округления, вне зависимости от выбранного режима округления, будет меньше $\mathrm{ulp}(x)$. Когда выбран режим округления до ближайшего, мы можем сказать, что абсолютная ошибка округления будет меньше или равна половине расстояния от x_- до x_+ :

abserr(x) =
$$|\text{round}(x) - x| \le \frac{2^{-(p-1)} \times 2^E}{2} = 2^{-p} \times 2^E$$
.

Относительная ошибка округления для числа x определяется как

$$relerr(x) = |\delta|$$
,

где

$$\delta = \frac{\text{round}(x) - x}{x} \, .$$

Если x находится в нормализованном диапазоне и не является числом с плавающей точкой, то можно считать

$$|x| > 2^E$$

Тогда для всех режимов округления

relerr
$$(x) = |\delta| = \left| \frac{\text{round}(x) - x}{x} \right| < \frac{2^{-(p-1)} \times 2^E}{2^E} = 2^{-(p-1)} = \varepsilon,$$

и для режима округления до ближайшего

relerr
$$(x) = |\delta| = \left| \frac{\text{round}(x) - x}{x} \right| < \frac{2^{-p} \times 2^E}{2^E} = 2^{-p} = \frac{\varepsilon}{2}$$
.

Таким образом, любое округлённое число х можно представлять как

round(
$$x$$
) = $x(1 + \delta)$.

Отсюда следует очень важный вывод. Не важно, как мы храним и представляем x, оно будет точным, как по фактору $(1 + \delta)$.

1.14. Корректно округляемые операции с плавающей точкой

Стандарт IEEE вводит обязательные к реализации:

- правильно округляемые операции (+,-,×,/);
- правильно округляемые $\sqrt{\text{и } mod}$ (остаток от деления);
- правильно округляемые преобразования форматов.

1.14.1. Корректно округляемая арифметика

Результат операции с двумя числами с плавающей точкой может и не являться числом с плавающей точкой. Например, 1 и 2^{-24} — числа с плавающей точкой, а их сумма в формате одинарной точности — нет.

Пусть x и y числа с плавающей точкой, а $+,-,\times$,/ операции, и пусть $\oplus,\ominus,\otimes,\oslash$ эти же операции, но обозначающие их реализацию на компьютере. Тогда x+y может не быть числом с плавающей точкой, но $x\oplus y$ будет таковым. До появления IEEE результаты этих операций могли различаться от компьютера к компьютеру. Стандарт IEEE устанавливает следующие правила для арифметических операций:

$$x \oplus y = \text{round}(x + y);$$

 $x \ominus y = \text{round}(x - y);$
 $x \otimes y = \text{round}(x \times y);$
 $x \oslash y = \text{round}(x/y).$

Последовательность из нескольких арифметических операций может и не давать корректно округлённого результата. Предположим, x = z = 1, а $y = 2^{-25}$. Если эти числа представлены в формате IEEE одинарной точности, то

в то время как

$$x \oplus y = 1$$
.

Поэтому

$$(x \oplus y) \ominus z = 0$$
,

но точный результат

$$(x+y)-z=2^{-25}. (5)$$

Отсюда следует важный вывод: операции арифметики IEEE не обладают свойством коммутативности. Порядок выполнения операций в некоторых случаях может оказаться важным. Изменив порядок суммирования в (5), мы бы получили точный результат

$$(x \ominus z) \oplus y = 2^{-25},$$

так как

$$x \ominus z = 0$$
.

1.15. Исключения

Обработка исключительных ситуаций, как правило, содержится в каждой программе и является её наиболее сложной частью. Типичная исключительная ситуация при счёте на компьютере это «деление на ноль». До появления IEEE, программисту было сложно: обработка и сигнализация об исключительных ситуациях на разных компьютерах осуществлялась не одинаково. Числа хранились в форматах, не совпадающих друг с другом, обработка исключений осуществлялась по-разному. Исключения, как это предложено в IEEE, существенно облегчают написание переносимых программ и упрощают алгоритмы.

Следует помнить, что числа IEEE одинарной и двойной точности могут хранить специальные значения:

- бесконечность (∞) , которое всегда больше любого числа;
- минус бесконечность $(-\infty)$, которое меньше любого числа;
- плюс ноль (+0);
- минус ноль (-0);
- не число (NaN), обозначающее неверное значение, возникающее при операции не имеющей математического смысла, например, при делении нуля на ноль.

Соглашения, принятые в IEEE, существенно облегчают жизнь программиста в части обработки исключительных ситуаций. Например, исключения при делении на ноль фиксируются, но могут быть и попросту игнорированы. Поведение IEEE арифметики при делении на ноль весьма упрощает программирование. Так, для любого a>0, справедливо:

$$+a/+0 = +\infty,$$

$$-a/+0 = -\infty.$$

Такая особенность IEEE арифметики освобождает программиста от необходимости

проверять делитель на равенство или близость к 0. Предположим, нужно посчитать значение a по формуле

$$a = \frac{1}{\frac{1}{b} + \frac{1}{c}}.$$

До появления IEEE, на множестве компьютеров программист должен был проверить условие на равенство b=0 и c=0, иначе программа могла аварийно завершиться с ошибкой «деление на ноль». В арифметике IEEE, в том случае если b=0 или c=0, будет получен ожидаемый результат a=0. Для любого a>0, следующие правила при делении на бесконечность будут верны:

$$+a/(+\infty) = +0,$$

$$-a/(+\infty) = -0,$$

$$+a/(-\infty) = -0,$$

$$-a/(-\infty) = +0.$$

Результат сравнения 0 и -0 в IEEE всегда истина. В связи с этим, в IEEE арифметике существует следующий феномен:

$$0 = -0$$
 и $a = b$; но $1/a \neq 1/b$.

Прочие действия с бесконечностью в IEEE арифметике ведут себя логично и целостно с математической точки зрения. Так, для любого a > 0, справедливо:

$$\infty + \infty = +\infty,$$

$$\infty - \infty = \text{NaN},$$

$$\infty \times \infty = \infty,$$

$$\infty / \infty = \text{NaN},$$

$$\infty / a = \infty,$$

$$\infty / 0 = \infty,$$

$$0 / 0 = \text{NaN}.$$

Операции сравнения с бесконечностью ведут себя, как и ожидается:

- 1. Все конечные числа меньше $+\infty$.
- 2. Все конечные числа больше $-\infty$.
- 3. $-\infty$ меньше, чем $+\infty$.

Выражения с NaN имеют следующие свойства:

- 1. Любое арифметическое выражение, где задействован NaN, в результате даёт NaN.
- 2. Любая операция сравнения, где задействован NaN, даёт ложь.

Такие свойства IEEE способствует удобству при обработке исключительных ситуаций, и позволяют избежать дополнительных проверок на специальные значения. Предположим, у нас есть следующий алгоритм:

$$a = f(x)$$

если (a > 0) тогда
выполнить что-то

Возможно, что функция f(x) вернёт NaN или ∞ . Но условие **если** будет ложно для $a=-\infty$ и $a=\mathrm{NaN}$, в то время как для $a=+\infty$ оно будет истинным. Значит дополнительных проверок на $a=\mathrm{NaN}$ и $a=-\infty$ добавлять в программу не нужно. Код выглядит проще и понятнее.

1.15.1. Исключения ІЕЕЕ

Стандарт IEEE определяет пять исключений:

Деление на ноль (divide-by-zero)

возникает тогда, когда операция над конечным числом даёт в результате $\pm \infty$.

Переполнение (overflow)

возникает тогда, когда результат операции не вмещается в конечное представление ($|x| > N_{\text{max}}$ или $|x| < N_{\text{min}}$).

Потеря значимости (underflow)

возникает тогда, когда результат операции не вмещается в нормализованное представление с плавающей точкой и происходит денормализация, а значит и потеря значащих разрядов.

Неточное значение (inexact)

возникает тогда, когда результат операции не является числом с плавающей точкой и был округлён.

Неверная операция (invalid)

возникает тогда, когда операция не определена или не имеет смысла (0/0, $\infty - \infty$ или $\sqrt{-1}$).

В табл. 3 приведены исключения и действия по умолчанию для них.

Исключение	Действие или результат
Неверная операция	NaN
Деление на ноль	$\pm \infty$
Переполнение	$\pm \infty$ или $\pm N_{ m max}$
Потеря значимости	денормализация или ±0
Неточное значение	установить в корректно округлённое

Табл. 3.

Свойства IEEE арифметики способствуют следующему подходу к программированию вычислительных алгоритмов: сначала вычисления выполняются самым простым

способом «в лоб», и если только были обнаружены исключительные ситуации, тогда они обрабатываются отдельно, вне основного потока программы. Этот подход можно продемонстрировать на примере вычисления

$$\sqrt{a^2+b^2}$$
.

Даже в том случае, когда результат находится в нормализованном диапазоне, операция возведения в квадрат может вызвать переполнение. Если исключений, как это предложено в IEEE, нет, то программисту пришлось бы выполнять проверку значений a и b, масштабировать их на $\max(|a|,|b|)$, до того, как они возводятся в квадрат. В случае с IEEE, вычисление можно сразу выполнять напрямую, предварительно сбросив флаги исключений. Затем флаги исключений проверяют, и если для переполнения или потери значимости они окажутся установлены, выполняют соответствующие действия.

1.16. Потеря значимых разрядов

Если число \tilde{x} есть аппроксимация к точному значению x, тогда их разницу мы называем абсолютной ошибкой

$$abserr(\tilde{x}) = x - \tilde{x}$$
,

а значит

$$x = \tilde{x} + error$$
.

Любое арифметическое действие или вычислительная операция с плавающей точкой может привести к появлению ошибки, которая в последующих операциях может увеличиться или уменьшиться. Самый распространённый случай увеличения значимости ошибки происходит при потере значащих разрядов.

Предположим, у нас есть числа \tilde{x} и \tilde{y} , оба которых есть аппроксимации к точному значению x и y до 7-го разряда после запятой:

$$\tilde{x} = 0.65224521$$
, $\tilde{y} = 0.65223126$.

Пусть нам нужно посчитать их разность

$$\tilde{z} = \tilde{x} - \tilde{y}$$
,

предполагая, что операции выполняются с точностью до 8-го разряда после запятой. Тогла

$$\tilde{z} = \tilde{x} - \tilde{y} = 0.13950000 \times 10^{-4}$$

есть точный результат разности $\tilde{x} - \tilde{y}$, но при этом плохая аппроксимация к точному значению z = x - y, так как содержит только два точных разряда после запятой. Третий разряд \tilde{z} после запятой уже оказался под влиянием разрядов \tilde{x} и \tilde{y} , содержащих лишь ошибки. В \tilde{z} относительная ошибка \tilde{x} или \tilde{y} могла вырасти до 100000 раз.

Потеря значимых разрядов происходит тогда, когда вычитают два числа, значения которых близки друг другу. Не всегда, но часто, потеря значимых разрядов приводит к

весьма неприятным последствиям. Положим, нам нужно посчитать функцию $f(x) = (1 - \cos(x))/x^2$. Пусть $x = 1.2 \times 10^{-5}$, а значение $\cos(x)$, округлённое до 10-го разряда, это

так что

$$1 - a = 0,0000000001$$
.

Тогда $(1-a)/x^2 = 10^{-10}/1,44 \times 10^{-10} = 0,6944...$, что определённо не верно, так как $0 \le f(x) < 0.5$ для всех $x \ne 0$.