ชื่อโครงงาน	หุ่นยนต์โฟล์คลิฟ
ชื่อผู้จัดทำ, รหัส	ปียะนันท์ ปียะวรรณ์โณ 650610845

1. ปัญหาและที่มา

ในปัจจุบันการใช้โฟล์คลิฟต้องใช้โดยผู้ที่ผ่านการอบรม ทำให้เสียเวลาและทรัพยากรในการฝึกอบรม และโฟล์คลิฟแบบ ปัจจุบันสามารถยกของได้ทีละ 1 อย่างเท่านั้น

2. แนวคิดการออกแบบ

เพื่อที่จะแก้ปัญหาเหล่านี้จึงได้ออกแบบ หุ่นยนต์โฟล์คลิฟ ที่สามารถยกพาเลตและนำมาซ้อนเก็บไว้ในตัวหุ่นได้(เพราะไม่ ต้องมีที่นั่งคนขับแล้ว) การเก็บซ้อนไว้ในตัวหุ่นจะช่วยแก้ปัญหาเรื่องจุดศูนย์ถ่วงของหุ่นด้วย(เพื่อป้องกันรถพลิก)

3. การออกแบบ

ออกแบบแต่ละพาร์ทของหุ่นใน Solidwork และทำการเซ็ต origin ใน Blender 4.0

ตัวหุ่นจะมีพาร์ทใหญ่ๆอยู่ 4 พาร์ท คือ body , slider สีม่วง, slider สีเขียว และ slider สีส้ม โดย slider ทั้ง 3 ตัวนี้เป็น joint แบบ prismatic

และมี เขี้ยวล็อคติดอยู่ที่ slider สีส้ม โดยจะเป็น joint แบบ revolute

ระบบขับเคลื่อนใช้เป็นล้อธรรมดา 4 ล้อ (ขับเคลื่อน 4 ล้อ)

นำแต่ละพาร์ทมาประกอบเข้าด้วยกัน และ ทำการปรับ inertia ในไฟล์ robot_core.xarco

ส่วนของการควบคุมทำโดยใช้ teleoperation โดยมีปุ่มที่ใช้ ดังนี้

Keybind	Action
W	เดินหน้า
a	หมุนซ้าย
S	ถอยหลัง
d	หมุนขวา
y / h	ยืด / หด slider สีเขียว และสีม่วง
u /j	ยืด / หด slider สีส้ม
i /k	หุบ / กาง เขี้ยวล็อค

ส่วนของโค้ดที่ เพิ่มเติม/แก้ไข สามารถ ดูได้ที่ https://github.com/SPHSTR/Robotic201Project

src

forklift_control.py : สำหรับ bind ปุ่มที่ใช่ในการควบคุม

launch

launch_sim.launch.py : สำหรับ run robot.urdf.xacro พร้อมเปิด gazebo

config

controllers.yaml : สำหรับการ claim joint

description

robot.urdf.xacro : สำหรับใช้ launch

robot_core.xacro : สำหรับประกอบหุ่น และใส่ inertia

lidar.xarco : สำหรับติด lidar

jointcontrol.xacro : สำหนับ set ค่า max/min velocity ของ joint gazebo_control.xacro : สำหรับทำให้ขับเคลื่อน 4 ล้อ และควบคุม joint

4. การทดลองและผลการทดลอง

ทดสอบ ยืด / หด slider สีส้ม		
attempted	succeed	
5	5	

ทดสอบ หุบ / กาง เขียวล็อค			
attempted	succeed		
5	5		

5. ผลสรุป

จากการทดลอง พบว่า การขยับ joint ทั้งหมด สามารถทำได้โดยไม่มีปัญหา แต่การทดสอบเดินตรง มีอัตราความสำเร็จ เพียง 60% เท่านั้น คาดว่าปัญหานี้เกิดจากแรงเหวี่ยงของ joint อื่นในขณะที่กำลังเคลื่อนที่แบบมีความเร่ง