Operating Systems* Homework Latex Teacher: Shuyu Shi. TA: Gravity

1st **张逸凯** 171840708 (转专业到计科, 非重修)
Department of Computer Science and Technology
Nanjing University
zykhelloha@gmail.com

张逸凯 171840708

应用题 2. 4. 9. 17. 30. 41. 附加题(不是布置的, 是书本后面的自己做的题) 7. 13. 15. 21.

应用题

22.

2.

解:

FIFO 先进先出算法, 优先淘汰最早进入内存的页面, 驻留时间最久的页面.

rout

LRU 最近最久未使用算法, 最近最长时间未访问过的页面被淘汰

访问页面	1	4	3	1	2	5	1	4	2	1	4	5
页框	1	4	3	1	2	5	1	4	2	1	4	5
(越在上面的		1	4	3	1	2	5	1	4	2	1	4
表示最近访问的)			1	4	3	1	2	5	1	4	2	1
缺页?	是	是	是	否	是	是	否	是	是	否	否	是

缺页次数: 8;

缺页中断率为: $8 \div 12 = 67\%$.

4.

解:给空闭区编号得:①10KB②4KB③20KB④18KB⑤7KB… (1) 12KB,10KB,9KB (括地址排列) (2)12KB,10KB,15KB,18KB

首次活效:

(1) 12KB放入③20KB 10KB放入①10KB 9KB放入④18KB

(2) 12KB 加入③20KB 10KB 视入①10KB 15KB 视入①18KB 18KB 无法分配

最佳适应。 按容量通常形成分配链

11) 12KB → 7 12KB 10KB→ 1 10KB

9 KB -> 6 9KB

(2) 12KB → (7)12KB 10KB → (7) 10KB 15KB → (8) 15KB 18KB → (8) 18KB

最差益之。

(1) 12KB→320KB (朝)8KB) 10KB→418KB (朝)8KB) 9KB→815KB (朝)6KB)

(2) 12 KB, 10 KB 同川 15 KB→ ②15 KB 18 KB 无法分配

下次适益:

(1) 12KB → ③20KB 10KB → ④18KB 9KB → ⑥ 9KB (2) 12KB,10KB同1) 从第9块开始寻找: 15KB → ⑥15KB

1818无法分配

9.

9.解: 平均访问时间=命中率×相应的访问时间
=
$$0.9 \times 20 + 0.1 \times (0.6 \times (60 + 20) + (1-0.6) \times (12000 + 60 + 26))$$

= $18 + 488$
= 506 (ns)

17.

解:

页面大小为 8 κ B, 所以页内偏移量有 13 位, 又虚拟地址48位, 所以页号(页表项个数)有 $2^{48-13}=2^{35}$ 个. 反置页表的物理地址可以同理转换:

Accessing Hashed Inverted Page Table

Image from http://www.cs.berkeley.edu

所以一共有一共有 $2^{32} \div 8K = 2^{19}$ 个页表项.

30.

页面大小 100B, 用十进制除法($\div 100B$)计算页号, 容易得到:

十进制地址	页号
10	0
11	0
104	1
170	1
73	0
305	3
180	1
240	2
244	2
445	4
467	4
366	3

页面访问序列为: 0, 0, 1, 1, 0, 3, 1, 2, 2, 4, 4, 3

(但是感觉这里页面访问序列又可写为 0, 1, 0, 3, 1, 2, 4, 3, 因为连续访问一个页面肯定在内存中了)

如前(第2题)等计算缺页中断率:

FIFO:

访问页面	0	0	1	1	0	3	1	2	2	4	4	3
页框	0	0	0	0	0	0	0	1	1	3	3	3
			1	1	1	1	1	3	3	2	2	2
						3	3	2	2	4	4	4
缺页?	是	否	是	否	否	是	否	是	否	是	否	否

FIFO算法缺页中断率: $\frac{5}{12}=41.67\%$

LRU:

访问页面	0	0	1	1	0	3	1	2	2	4	4	3
页框	0	0	0	0	0	0	0	1	1	1	1	3
			1	1	1	1	1	3	3	4	4	4
						3	3	2	2	2	2	2
缺页?	是	否	是	否	否	是	否	是	否	是	否	是

LRU算法缺页中断率: 50%.

解:

易见长度 30KB, 页面尺寸 4KB, 页号0~7, 不会发生越界.

由 LRU 算法, 可以算出缺页率:

访问页面	7	0	1	2	0	3	0	4	2	3	0	3	2	1	2	0	1	7	0	1
页框	7	7	7	2	2	2	2	4	4	4	0	0	0	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	0	3	3	3	3	3	3	0	0	0	0	0
			1	1	1	3	3	3	2	2	2	2	2	2	2	2	2	7	7	7
缺 页?	是	是	是	是	否	是	否	是	是	是	是	否	否	是	否	是	否	是	否	否

缺页率 p: $\frac{12}{20} = 60\%$.

平均有效访问时间 = $p \times MissingPageProcessingTime + (1-p) \times OtherVisitingTime$

$$= 0.6 \times ((20+100)ns + 25ms + (20+100)ns) + 0.4 \times (0.2 \times (20+100)ns + 0.8 \times (20+100+100)ns)$$
(1)
$$= 15000144ns + 200ns = 15000344ns$$

注意: 这里缺页需要 访问快表 + 访问页表 + 缺页处理 + 访问快表 + 访问内存.

附加题(不是布置的,是书本后面的自己做的题)

其实是因为看错作业多做的

7.

解:

3个空闲页框:

访问页面	Α	В	С	D	Α	В	E	Α	В	С	D	Е
物理块1	А	Α	Α	В	С	D	Α	Α	Α	В	Е	Е
物理块2		В	В	С	D	Α	В	В	В	Е	С	С
物理块3			С	D	Α	В	Е	Е	Е	С	D	D
缺页?	是	是	是	是	是	是	是	否	否	是	是	否

3个空闲页框页面替换次数为6次(缺页次数9-最初有空闲页框时调页的3次)

访问页面	Α	В	С	D	А	В	Е	Α	В	С	D	Е
物理块1	А	А	Α	А	Α	А	В	С	D	Е	Α	В
物理块2		В	В	В	В	В	С	D	Е	Α	В	С
物理块3			С	С	С	С	D	Е	Α	В	С	D
物理块4				D	D	D	Е	Α	В	С	D	Е
缺页?	是	是	是	是	否	否	是	是	是	是	是	是

4个空闲页框页面替换次数为6次(缺页次数10-最初有空闲页框时调页的4次)

13.

解:

答: 如上首次适应和最坏适应都可以满足分配要求,但是最佳适应带来了最多的外部碎片,使 Job_3 无法被分配.

首次适应 First Fit: 空闲分区以地址递增的次序链接.

最佳适应 Best Fit: 空闲分区以容量递增的次序链接.

最坏适应 Worst Fit: 空闲分区以容量递减的次序链接.

2F6AH = 0010 1111 0110 1010 2

由页面大小为 $4096B=2^{12}$ \Rightarrow 页内偏移量为低12位 = [1111 0110 1010] $_2$; 所以页号为高4位 = [0010] $_2$ = 2

查页表得知第2页存放在14号物理块 ⇒ 1110 是页框号;

所以最后的物理地址是: 1110 1111 0110 1010.

另外一种用十进制除法的解法:

页大小4096B, 0x2F6A = 12138, 12138 / 4096 = 2(页号) 余 3946(页内偏移量)

查页表, 2号页对应14号物理块, 块号(页框号) = 14.

所以最后的物理地址是 $14 \times 4096 + 3946 = 61290$

21.

解:

FIFO: 第3页被换出, 因为第3页驻留时间最久, loaded时间最早.

LRU: 第1页被换出, 因为第1页最长时间未被访问, last reference最早.

NRU: **第1页**被换出, 因为第1页 R = 0, D = 0, 因为NRU算法的过程是首先扫描R = 0, D = 0的进行替换(最近未被访问, 也未被修改), 如果扫描不到, 再从最开始指针位置开始把使用位置0再重复之前的扫描知道找到页面.

22.

解:

FIFO: 第2页被换出, 因为第2页驻留时间最久, loaded时间最早.

LRU: 第1页被换出, 因为第1页最长时间未被访问, last reference最早.

NRU: 第0页被换出, 因为第0页 R = 0, D = 0, 具体过程见上题.

SCR: **第**0页被换出, 因为 SCR 算法选择置换页面时, 检查它的访问位, 如果是0就是这页; 如果访问位是1就给它第二次机会, 并选择下一个FIFO页面.

② 谢谢老师和助教哥的批改~