An infinitely long cylindrical insulating shell of inner radius a and outer radius b has a uniform volume charge density ρ . A line of uniform linear charge density λ is placed along the axis of the shell.

Determine the electric field for: (1) $r \le a$

(2)
$$a < r < b$$

(1)
$$2k_e \frac{\lambda}{r}$$
, outward;

(2)
$$\frac{2k_e}{r} \left[\lambda + \rho \pi \left(r^2 - a^2 \right) \right]$$
, outward;

(3)
$$\frac{2k_e}{r} \left[\lambda + \rho \pi \left(b^2 - a^2 \right) \right]$$
, outward

Determine the electric field for: (1)
$$r < a$$
 (2) $a < r < b$ (1) $2k_r \frac{\lambda}{r}$, outward; (1) $same$ as lh & 24.4 (2) $\frac{2k_r}{r} [\lambda + \rho \pi (r^2 - a^2)]$, outward; (2) $\frac{2k_r}{r} [\lambda + \rho \pi (b^2 - a^2)]$, outward (2) $for a < r < b$ $for a < r < c$ $for a < r < c$

$$| \frac{1}{3} \frac{1}{2^{\frac{1}{2}}} \frac{1}{9^{\frac{1}{2}}} \frac{1}{9^{\frac{1}{2}}}}$$