Algorithmen und Datenstrukturen

Jonas Milkovits

Last Edited: 14. Mai 2020

Inhaltsverzeichnis

1	\mathbf{Einl}	leitung	1
	1.1	Probleme in der Informatik	1
	1.2	Definitionen für Algorithmen	1
2	Sort	tieren	2
	2.1	Einführung ins Sortieren	2
	2.2	Analyse von Algorithmen - Teil 1	3
	2.3	Analyse von Algorithmen - Teil 2	3
	2.4	Analyse von Algorithmen - Teil 3	4
	2.5	Insertion Sort	7
	2.6	Bubble Sort	8
	2.7	Selection Sort	10
	2.8	Divide-And-Conquer-Ansatz	10
	2.9	Merge Sort	10
	2.10	Quicksort	12
	2.11	Laufzeitanalyse von rekursiven Algorithmen	14
3	Pse	udocode in der Vorlesung AuD	17

1 Einleitung

1.1 Probleme in der Informatik

- Problem im Sinne der Informatik
 - Enthält eine Beschreibung der Eingabe
 - Enthält eine Beschreibung der Ausgabe
 - Gibt keinen Übergang von Eingabe und Ausgabe an
 - z.B.: Finde den kürzesten Weg zwischen zwei Orten
- Probleminstanzen
 - Probleminstanz ist eine konkrete Eingabenbelegung, für die entsprechende Ausgabe gewünscht ist
 - z.B.: Was ist der kürzeste Weg vom Audimax in die Mensa?

1.2 Definitionen für Algorithmen

- Begriff des Algorithmus
 - Endliche Folge von Rechenschritten, der eine Ausgabe in eine Eingabe verwandelt
- Anforderungen an Algorithmen
 - Spezifizierung der Eingabe und Ausgabe
 - Anzahl und Typen aller Elemente ist definiert
 - Eindeutigkeit
 - Jeder Einzelschritt ist klar definiert und ausführbar
 - Die Reihenfolge der Einzelschritte ist festgelegt
 - Eindlichkeit
 - Notation hat eine endliche Länge
- Eigenschaften von Algorithmen
 - Determinier theit
 - Für gleiche Eingabe stets die gleiche Ausgabe (andere mögliche Zwischenzustände)
 - Determinismus
 - Für gleiche Eingabe stets identische Ausführung und Ausgabe
 - Terminierung
 - Algorithmus läuft für jede Eingabe nur endlich lange
 - Korrektheit
 - Algorithmus berechnet stets die spezifizierte Ausgabe (falls dieser terminiert)
 - Effizienz
 - Sparsamkeit im Ressourcenverbrauch (Zeit, Speicher, Energie,...)

2 Sortieren

2.1 Einführung ins Sortieren

• Das Sortierproblem

- Ausgangspunkt: Folge von Datensätzen $D_1, D_2, ..., D_n$
- Zu sortierende Elemente heißen auch Schlüssel(werte)
- Ziel: Datensätze so anzuordnen, dass die Schlüsselwerte sukzessive ansteigen/absteigen
- Bedingung: Schlüsselwerte müssen vergleichbar sein
- Durchführung:
 - Eingabe: Sequenz von Schlüsselwerten $\langle a_1, a_2, ..., a_n \rangle$
 - Engabe ist eine Instanz des Sortierproblems
 - Ausgabe: Permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ derselben Folge mit Eigenschaft $a'_1 \leq ... \leq a'_n$
- Algorithmus korrekt, wenn dieser das Problem für alle Instanzen löst

• Exkurs: Totale Ordnung

- Sei M eine nicht leere Menge und $\leq \subseteq MxM$ eine binäre Relation auf M
- Das Paar (M, \leq) heißt genau dann totale Relation auf der Menge M, wenn Folgendes erfüllt ist:
 - Reflexivität: $\forall x \in M : x \leq x$
 - Transitivität: $\forall x, y, z \in M : x \leq y \land y \leq z \Rightarrow x \leq z$
 - Antisymmetrie: $\forall x,y \in M: x \leq y \land y \leq x \Rightarrow x = y$
 - Totalität: $\forall x, y \in M : x \leq y \lor y \leq x$
- z.B.: \leq Ordnung auf natürlichen Zahlen bildet eine totale Ordnung $(1 \leq 2 \leq 3...)$
- z.B.: Lexikographische Ordnung \leq_{lex} ist eine totale Ordnung $(A \leq B \leq C...)$

• Vergleichskriterien von Sortieralgorithmen

- Berechnungsaufwand O(n)
- Effizient: Best Case vs Average Case vs Worst Case
- Speicherbedarf:
 - in-place (in situ): Zusätzlicher Speicher von der Eingabegröße unabhängig
 - out-of-place: Speichermehrbedarf von Eingabegröße abhängig
- Stabilität: Stabile Verfahren verändern die Reihenfolge von äquivalenten Elementen nicht
- Anwendung als Auswahlfaktor:
 - Hauptoperationen beim Sortieren: Vergleiche und Vertausche
 - Diese Operationen können sehr teuer oder sehr günstig sein, je nach Aufwand
 - Anpassung des Verfahrens abhängig von dem Aufwand dieser Operationen

2.2 Analyse von Algorithmen - Teil 1

• Schleifeninvariante (SIV)

- Sonderform der Invariante
- Am Anfang/Ende jedes Schleifendurchlaufs und vor/nach jedem Schleifendurchlauf gültig
- Wird zur Feststellung der Korrektheit von Algorithmen verwendet
- Eigenschaften:
 - Initialisierung: Invariante ist vor jeder Iteration wahr
 - Fortsetzung: Wenn SIV vor der Schleife wahr ist, dann auch bis Beginn der nächsten Iteration
 - Terminierung: SIV liefert bei Schleifenabbruch, helfende Eigenschaft für Korrektheit
- Beispiel für Umsetzung: Insertion Sort SIV

• Laufzeitanalyse

- Aufstellung der Kosten und Durchführungsanzahl für jede Zeile des Quelltextes
- Beachte: Bei Schleifen wird auch der Aufruf gezählt, der den Abbruch einleitet
- Beispiel für Umsetzung: Insertion Sort Laufzeit
- Zusätzliche Überprüfung des Best Case, Worst Case und Average Case

• Effizienz von Algorithmen

- Effizienzfaktoren
 - Rechenzeit (Anzahl der Einzelschritte)
 - Kommunikationsaufwand
 - Speicherplatzbedarf
 - Zugriffe auf Speicher
- Laufzeit hängt von versch. Faktoren ab
 - Länge der Eingabe
 - Implementierung der Basisoperationen
 - Takt der CPU

2.3 Analyse von Algorithmen - Teil 2

Komplexität

- Abstrakte Rechenzeit T(n) ist abhängig von den Eingabedaten
- Übliche Betrachtungsweise der Rechenzeit ist asymptotische Betrachtung

• Asymptotik

- Annäherung an einer sich ins Unendliche verlaufende Kurve
- z.B.: $f(x) = \frac{1}{x} + x$ | Asymptote: g(x) = x | $(\frac{1}{x}$ läuft gegen Null)

• Asymptotische Komplexität

- Abschätzung des zeitlichen Aufwands eines Algorithmus in Abhängigkeit einer Eingabe
- Beispiel für Umsetzung: Insertion Sort Laufzeit Θ

• Asymptotische Notation

- Betrachtung der Laufzeit T(n) für sehr große Eingaben $n \in \mathbb{N}$
- Komplexität ist unabhängig von konstanten Faktoren und Summanden
- Nicht berücksichtigt: Rechnergeschwindigkeit / Initialisierungsauswände
- Komplexitätsmessung via Funktionsklasse ausreichend
 - Verhalten des Algorithmus für große Problemgrößen

• Veränderung der Laufzeit bei Verdopplung der Problemgröße

• Gründe für die Nutzung der theoretischen Betrachtung statt der Messung der Laufzeit

- Vergleichbarkeit
 - Laufzeit abhängig von konkreter Implementierung und System
 - Theoretische Betrachung ist frei von Abhängigkeiten und Seiteneffekten
 - Theoretische Betrachtung lässt direkte Vergleichbarkeit zu
- Aufwand
 - Wieviele Testreihen?
 - In welcher Umgebung?
 - Messen führt in der Ausführung zu hohem, praktischen Aufwand
- Komplexitätsfunktion
 - Wachstumsverhalten ausreichend
 - Praktische Evaluation mit Zeiten nur für Auswahl von Systemen mögliche
 - Theoretischer Vergleich (Funktionsklassen) hat ähnlichen Erkenntnisgewinn

2.4 Analyse von Algorithmen - Teil 3

• Θ-Notation

- \bullet Θ -Notation beschränkt eine Funktion asymptotisch von oben und unten
- Funktionen $f, g: \mathbb{N} \to \mathbb{R}_{>0}$ (N: Eingabelänge, \mathbb{R} : Zeit)

- $\Theta(g)$ enthält alle f, die genauso schnell wachsen wie g
- Schreibweise: $f \in \Theta(g)$ (korrekt), manchmal auch $f = \Theta(g)$
- g(n) ist eine asymptotisch scharfe Schranke von f(n)
- $f(n) = \Omega(g(n))$ gilt, wenn f(n) = O(g(n)) und $f(n) = \Omega(g(n))$ erfüllt sind

Abbildung 1: Veranschaulichung

- z.B.: $f(n) = \frac{1}{2}n^2 3n \mid f(n) \in \Theta(n^2)$?
- Aus $\Theta(n^2)$ folgt, dass $g(n) = n^2$
- Vorgehen:
 - Finden eines n_0 und c_1, c_2 , sodass
 - $c_1 * g(n) \le f(n) \le c_2 * g(n)$ erfüllt ist
 - Konkret: $c_1 * n^2 \le \frac{1}{2}n^2 3n \le c_2 * n^2$
 - Division durch n^2 : $c_1 \le \frac{1}{2} \frac{3}{n} \le c_2$
 - Ab n=7 positives Ergebnis: $0,0714 \mid n_0=7$
 - Deswegen setzen wir $c_1 = \frac{1}{14}$
 - Für $n \to \infty$: $0,5 \mid c_2 = 0,5$
 - · Natürlich auch andere Konstanten möglich

• O-Notation

• O-Notation beschränkt eine Funktion asymptotisch von oben

- Für alle n größer gleich n_0
- O(g) enthält alle f, die höchstens so schnell wie g wachsen
- Schreibweise: f = O(g)
- $f(n) = \Theta(g) \to f(n) = O(g) \mid \Theta(g(n)) \subseteq O(g(n))$
- Ist f in der Menge $\Theta(g)$, dann auch in der Menge O(g)

- z.B.: f(n) = n + 2 | f(n) = O(n)?
- Ja f(n) ist Teil von O(n) für z.B. c=2 und $n_0=2$

Abbildung 2: Veranschaulichung

• O-Notation Rechenregeln

- Konstanten:
 - $f(n) = a \text{ mit } a \in \mathbb{R} \text{ konstante Funktion} \to f(n) = O(1)$
 - z.B. $3 \in O(1)$
- Skalare Multiplikation:
 - f = O(g) und $a \in \mathbb{R} \to a * f = O(g)$
- Addition:

•
$$f_1 = O(g_1)$$
 und $f_2 = O(g_2) \to f_1 + f_2 = O(\max\{g_1, g_2\})$

- Multiplikation:
 - $f_1 = O(g_1)$ und $f_1 = O(g_2) \to f_1 * f_2 = O(g_1 * g_2)$

• Ω -Notation

 \bullet Ω -Notation beschränkt eine Funktion asymptotisch von unten

Für alle n größer gleich n_0

• Ω -Notation enthält alle f, die mindestens so schnell wie g wachsen

• Schreibweise: $f = \Omega(g)$

Abbildung 3: Veranschaulichung

• Komplexitätsklassen

 \bullet n ist hier die Länge der Eingabe

Klasse	Bezeichnung	Beispiel
$\Theta(1)$	Konstant	Einzeloperation
$\Theta(\log n)$	Logarithmisch	Binäre Suche
$\Theta(n)$	Linear	Sequentielle Suche
$\Theta(n \log n)$	Quasilinear	Sortieren eines Arrays
$\Theta(n^2)$	Quadratisch	Matrixaddition
$\Theta(n^3)$	Kubisch	Matrixmultiplikation
$\Theta(n^k)$	Polynomiell	
$\Theta(2^n)$	Exponentiell	Travelling-Salesman*
$\Theta(n!)$	Faktoriell	Permutationen

• Ausführungsdauer, falls eine Operation n genau $1\mu s$ dauert

Eingabe- ${f g}$ röße ${m n}$	$\log_{10} n$	n	n^2	n^3	2 ⁿ
10	1µs	10µs	100µs	1ms	~1ms
100	2µs	100µs	10ms	1s	~4x10 ¹⁶ y
1000	3µs	1ms	1s	16min 40s	?
10000	4µs	10ms	1min 40s	~11,5d	?
10000	5µs	100ms	2h 46min 40s	~31,7y	?

• Asymptotische Notationen in Gleichungen

•
$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

• $\Theta(n)$ fungiert hier als Platzhalter für eine beliebige Funktion f(n) aus $\Theta(n)$

• z.B.:
$$f(n) = 3n + 1$$

• o-Notation

- $\bullet\,$ o-Notationstellt eine echte obere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R}_{>0}$ gelten muss
- Außerdem < statt \leq
- z.B.: $2n = o(n^2)$ und $2n^2 \neq o(n^2)$

$$o(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le f(n) < cg(n) \}$$

Gilt für **alle** Konstanten c > 0. In 0-Notation gilt es für eine Konstante c > 0

• ω -Notation

- ω -Notation stellt eine echte untere Schranke dar
- Ausschlaggebend ist, dass es für alle $c \in \mathbb{R} > 0$ gelten muss
- Außerdem > statt \ge
- z.B.: $\frac{n^2}{2} = \omega(n)$ und $\frac{n^2}{2} \neq \omega(n^2)$

$$\omega(g) = \{ f : \forall c \in \mathbb{R}_{>0}, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, 0 \le cg(n) < f(n) \}$$

2.5 Insertion Sort

- Idee
 - Halte die linke Teilfolge sortiert
 - Füge nächsten Schlüsselwert hinzu, indem es an die korrekte Position eingefügt wird
 - Wiederhole den Vorgang bis Teilfolge aus der gesamten Liste besteht

• Code

```
FOR j = 1 TO A.length - 1
  key = A[j]
  // Füge A[j] in die sortierte Sequenz A[0...j-1] ein
  i = j - 1
  WHILE i >= 0 and A[i] > key
        A[i + 1] = A[i]
        i = i - 1
  A[i + 1] = key
```

• Schleifeninvariante von Insertion Sort

• Zu Beginn jeder Iteration der for-Schleife besteht die Teilfolge A[0...j-1] aus den Elementen der ursprünglichen Teilfolge A[0...j-1] enthaltenen Elementen, allerdings in sortierter Reihenfolge.

• Korrektheit von Insertion Sort

- Initialisierung:
 - Beginn mit j=1, also Teilfeld A[0...j-1] besteht nur aus einem Element A[0].
 Dies ist auch das ursprüngliche Element und Teilfeld ist sortiert.
- Fortsetzung:
 - Zu zeigen ist, dass die Invariante bei jeder Iteration erhalten bleibt. Ausführungsblock der for-Schleife sorgt dafür, dass A[j-1], A[j-2],... je um Stelle nach rechts geschoben werden bis A[j] korrekt eingefügt wurde. Teilfeld A[0...j] besteht aus ursprünglichen Elementen und ist sortiert. Inkrementieren von j erhält die Invariante.
- Terminierung:
 - Abbruchbedingung der for-Schleife, wenn j > A.length 1. Jede Iteration erhöht j. Dann bei Abbruch ist j = n und einsetzen in Invariante liefert das Teilfeld A[0...n-1] welches aus den ursprünglichen Elementen besteht und sortiert ist. Teilfeld ist gesamtes Feld.
- Algorithmus Insertion Sort arbeitet damit korrekt.

• Laufzeitanalyse von Insertion Sort

INSERTION-SORT (A)	Zeile	Kosten	Anzahl
1 FOR $j = 1$ TO A .length -1	1	c_1	n
2 key = A[j]	2	c_2	n-1
3 // Füge $A[j]$ in die	3	0	n-1
//sortierte Sequenz $A[0j-1]$ 4 $i=j-1$	4	C_A	n-1
5 WHILE $i \ge 0$ and $A[i] > key$ 6 $A[i+1] = A[i]$ 7 $i = i-1$	5	c_5	$\sum_{j=1}^{n-1} t_j$
	6	c ₆	$\sum_{j=1}^{n-1} (t_j - 1)$
$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=1}^{n-1} t_j + c_6 \sum_{j=1}^{n-1} (t_j - 1) + c_7 \sum_{j=1}^{n-1} (t_j - 1)$	7	c ₇	$\sum_{j=1}^{n-1} (t_j - 1)$

- Festlegung der Laufzeit für jede Zeile
- Jede Zeile besitzt gewissen Kosten c_i
- Jede Zeile wird x mal durchgeführt
- Laufzeit = Anzahl * Kosten jeder Zeile
- Schleifen: Abbruchüberprüfung zählt auch
- t_i : Anzahl der Abfragen der While-Schleife

- Warum n in Zeile 1?
 - Die Überprüfung der Fortführungsbedingung beinhaltet auch die letze Überprüfung
 - Quasi die Überprüfung, durch die die Schleife abbricht
- Warum $\sum_{j=1}^{n-1}$ in Zeile 5?
 - Aufsummierung aller einzelnen t_i über die Anzahl der Schleifendurchläufe
 - Diese ist allerdings n-1 und nicht n, da die Abbruchüberprüfung dort auch enthalten ist
- Warum $t_i 1$ in Zeile 6?
 - ullet Selbes Argument wie oben, bei t_j ist die Abbruchüberprüfung enthalten
 - Deswegen wird die while-Schleife nur t_i 1-mal ausgeführt
- Best Case
 - zu sortierendes Feld ist bereits sortiert
 - t_i wird dadurch zu 1, da die While-Schleife immer nur einmal prüft (Abbruch)
 - Die zwei Zeilen innerhalb der While-Schleife werden nie ausgeführt
 - Durch Umformen ergibt sich, dass die Laufzeit eine lineare Funktion in n ist

• Worst Case

- zu sortierendes Feld ist umgekehrt sortiert
- t_i wird dadurch zu j+1, da die While-Schleife immer die gesamte Länge prüft
- Durch Umformen ergibt sich, dass die Laufzeit eine quadratische Funktion in n ist (n^2)
- Average Case
 - im Mittel gut gemischt
 - t_i wird dadurch zu j/2
 - Die Laufzeit bleibt aber eine quadratische Funktion in n (n^2)

\bullet Asymptotische Laufzeitbetrachtung Θ

- T(n) lässt sich als quadratische Funktion $an^2 + bn + c$ betrachten
- \bullet Terme niedriger Ordnung sind für große n irrelevant
- Deswegen Vereinfachung zu n^2 und damit $\Theta(n^2)$

2.6 Bubble Sort

- Idee
 - Vergleiche Paare von benachbarten Schlüsselwerten
 - Tausche das Paar, falls rechter Schlüsselwert kleiner als linker
- Code

• Analyse von Bubble Sort

- Anzahl der Vergleiche:
 - Es werden stets alle Elemente der Teilfolge miteinander verglichen
 - \bullet Unabhängig von der Vorsortierung sind Worst und Best Case identisch
- Anzahl der Vertauschungen:
 - Best Case: 0 Vertauschungen
 - Worst Case: $\frac{n^2-n}{2}$ Vertauschungen
- Komplexität:
 - Best Case: $\Theta(n)$
 - Average Case: $\Theta(n^2)$
 - Worst Case: $\Theta(n^2)$

2.7 Selection Sort

- Idee
 - Sortieren durch direktes Auswählen
 - MinSort: "wähle kleines Element in Array und tausche es nach vorne"
 - MaxSort: "wähle größtes Element in Array und tausche es nach vorne"
- Code MinSort

```
FOR i = 0 TO A.length - 2
k = i
FOR j = i + 1 TO A.length - 1
IF A[j] < A[k]
k = j
SWAP(A[i], A[k])</pre>
```

2.8 Divide-And-Conquer-Ansatz

- Anderer Ansatz im Gegensatz zu z.B. InsertionSort (inkrementelle Herangehensweise)
- Laufzeit ist im schlechtesten Fall immer noch besser als InsertionSort
- Prinzip: Zerlege das Problem und löse es direkt oder zerlege es weiter
- Divide:
 - Teile das Problem in mehrere Teilprobleme auf
 - Teilprobleme sind Instanzen des gleichen Problems

• Conquer:

- Beherrsche die Teilprobleme rekursiv
- Falls Teilprobleme klein genug, löse sie auf direktem Weg

• Combine:

• Vereine die Lösungen der Teilprobleme zu Lösung des ursprünglichen Problems

2.9 Merge Sort

- Idee
 - Divide: Teile die Folge aus n Elementen in zwei Teilfolgen von je $\frac{n}{2}$ Elemente auf
 - Conquer: Sortiere die zwei Teilfolgen rekursiv mithilfe von MergeSort
 - Combine: Vereinige die zwei sortierten Teilfolgen, um die sortierte Lösung zu erzeugen
- Code

```
\label{eq:merge-sort} \begin{array}{ll} \text{MERGE-SORT (A,p,r)} \\ \text{If p < r} \\ q = \lfloor (p+r)/2 \rfloor \; // \; \textit{Teilen in 2 Teilfolgen} \\ \text{MERGE-SORT(A,p,q)} \; // \; \textit{Sortieren der beiden Teilfolgen} \\ \text{MERGE-SORT(A,q+1,r)} \\ \text{MERGE(A,p,q,r)} \; // \; \textit{Vereinigung der beiden sortierten Teilfolgen} \end{array}
```

```
MERGE(A,p,q,r) // Geteiltes Array an Stelle q
n_1 = q - p + 1
n_2 = r - q
Let L[0...n_1] and R[0...n_2] be new arrays
FOR i = 0 TO n_1 - 1 // Auffüllen der neu erstellten Arrays
    L[i] = A[p + i]
FOR j = 0 TO n_2 - 1
    R[j] = A[q + j + 1]
L[n_1] = \infty // Einfügen des Sentinel-Wertes
R[n_2] = \infty
i = 0
j = 0
FOR k = p TO r // Eintragweiser Vergleich der Elemente
    IF L[i] \leq R[j]
        A[k] = L[i] // Sortiertes Zurückschreiben in Original-Array
        i = i + 1
    ELSE
        A[k] = R[j]
        j = j + 1
```

• Korrektheit von MergeSort

• Schleifeninvariante

Zu Beginn jeder Iteration der for-Schleife (Letztes for in Methode MERGE) enthält das Teilfeld A[p...k-1] die k-p kleinsten Elemente aus $L[0...n_1]$ und $R[0...n_2]$ in sortierter Reihenfolge. Weiter sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

Initialisierung

Vor der ersten Iteration gilt k=p. Daher ist A[p...k-1] leer und enthält 0 kleinste Elemente von L und R. Wegen i=j=0 sind L[i] und R[i] die kleinsten Elemente ihrer Arrays, die noch nicht zurück kopiert wurden.

• Fortsetzung

Müssen zeigen, dass Schleifeninvariante erhalten bleibt. Dafür nehmen wir an, dass $L[i] \leq R[j]$. Dann ist L[i] kleinstes Element, welches noch nicht zurück kopiert wurde. Da Array A[p...k-1] die k-p kleinsten Elemente enthält, wird der Array A[p...k] die k-p+1 kleinsten Elemente enthalten, nachdem der Wert nach der Durchführung von A[k]=L[i] kopiert wurde. Die Erhöhung der Variablen k und i stellt die Schleifeninvariante für die nächste Iteration wieder her. Wenn L[i]>R[j] dann analoges Argument in der ELSE-Anweisung.

Terminierung

Beim Abbruch gilt k=r+1. Durch die Schleifeninvariante enthält A[p...r] die kleinste Elemente von $L[0...n_1]$ und $R[0...n_2]$ in sortierter Reihenfolge. Alle Elemente außer der Sentinels wurden komplett zurück kopiert. MergeSort ist außerdem ein stabiler Algorithmus.

• Analyse von MergeSort

- \bullet Ziel: Bestimme Rekursionsgleichung für Laufzeit T(n) von n Zahlen im schlechtesten Fall
- Divide: Berechnung der Mitte des Feldes: Konstante Zeit $\Theta(1)$
- Conquer: Rekursives Lösen von zwei Teilproblemen der Größe $\frac{n}{2}$: Laufzeit von 2 $T(\frac{n}{2})$
- Combine: MERGE auf einem Teilfeld der Länge n: Lineare Zeit $\Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n = 1 \\ 2 \ T(\frac{n}{2}) + \Theta(n) & \text{falls } n > 1 \end{cases}$$

• Lösen der Rekursionsgleichung mithilfe eines Rekursionsbaums

$$T(n) = \begin{cases} c & \text{falls } n = 1\\ 2T(n/2) + cn & \text{falls } n > 1 \end{cases}$$

- Verwenden der Konstante c statt $\Theta(1)$
- cn stellt den Aufwand an der ersten Ebene dar
- Der addierte Aufwand jeder Stufe (aller Knoten) ist auch cn
- Die Azahl der Ebenen lässt sich mithilfe von lg(n) + 1 bestimmen (2-er Logarithmus)
- Damit ergibt sich für die Laufzeit: $cn \cdot lg(n) + cn$
- Für $\lim_{n\to\infty}$ wird diese zu $n \cdot lg(n)$
- Laufzeit beträgt damit $\Theta(n \cdot lg(n))$
- Laufzeit von MergaSort ist in jedem Fall gleich

2.10 Quicksort

• Idee

• Pivotelement:

Wahl eines Pivotelement x aus dem Array

• Divide:

Zerlege den Array A[p...r] in zwei Teilarrays A[p...q-1] und A[q+1...r], sodass jedes Element von A[p...q-1] kleiner oder gleich A[q] ist, welches wiederum kleiner oder gleich jedem Element von A[q+1...r] ist. Berechnen Sie den Index q als Teil vom Partition Algorithmus.

• Conquer:

Sortieren beider Teilarrays A[p...q-1] und A[q+1...r] durch rekursiven Aufruf von Quicksort.

• Combine:

Da die Teilarrays bereits sortiert sind, ist keine weitere Arbeit nötig um diese zu vereinigen. A[p...r] ist nun sortiert.

• Code

```
SWAP(A[i+1], A[r]) // Tausch des Pivotelements
RETURN i + 1 // Neuer Index des Pivotelements
```

• Korrektheit von Quicksort

• Schleifeninvariante:

Zu Beginn jeder Iteration der for-Schleife gilt für den Arrayindex k folgendes:

- 1. Ist $p \le k \le i$, so gilt A[k] $\le x$
- 2. Ist $i+1 \le k \le j-1$, so gilt A[k] > x
- 3. Ist k = r, so gilt A[k] = x
- Initialisierung:

Vor der ersten Iteration gilt i = p - 1 und j = p. Da es keine Werte zwischen p und j gibt und es auch keine Werte zwischen i + 1 und j - 1 gibt, sind die ersten beiden Eigenschaften trivial erfüllt. Die Zuweisung in x = A[r] sorgt für die Erfüllung der dritten Eigenschaft.

• Fortsetzung:

Zwei mögliche Fälle durch IF $A[j] \leq x$. Wenn A[j] > x, dann inkrementiert die Schleife nur den Index j. Dann gilt Bedingung 2 für A[j-1] und alle anderen Einträge bleiben unverändert. Wenn $A[j] \leq x$, dann wird Index i inkrementiert und die Einträge A[i] und A[j] getauscht und schließlich der Index j erhöht. Wegen des Vertauschens gilt $A[i] \leq x$ und Bedingung 1 ist erfüllt. Analog gilt A[j-1] > x, da das Element welches mit A[j-1] vertauscht wurde wegen der Invariante gerade größer als x ist.

• Terminierung:

Bei der Terminierung gilt, dass j = r. Daher gilt, dass jeder Eintrag des Arrays zu einer der drei durch die Invariante beschriebenen Mengen gehört.

• Performanz von Quicksort

- Abhängig von der Balanciertheit der Teilarrays
 - Definition Balanciert: ungefähr gleiche Anzahl an Elementen
 - Teilarrays balanciert: Laufzeit asymptotisch so schnell wie MergeSort
 - Teilarrays unbalanciert: Laufzeit kann so langsam wie InsertionSort laufen
- Zerlegung im schlechtesten Fall
 - Partition zerlegt Problem in ein Teilproblem mit n-1 Elementen und eins mit 0 Elementen
 - Unbalancierte Zerlegung zieht sich durch gesamte Rekursion
 - Zerlegung kostet $\Theta(n)$
 - Aufruf auf Feld der Größe 0: $T() = \Theta(1)$
 - Laufzeit (rekursiv):
 - $T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$
 - Insgesamt folgt: $T(n) = \Theta(n^2)$
- Zerlegung im besten Fall
 - Problem wird so balanciert wie möglich zerlegt
 - Zwei Teilprobleme mit maximaler Größe von $\frac{n}{2}$
 - Zerlegung kostet $\Theta(n)$
 - Laufzeit (rekursiv):
 - $T(n) \leq 2T(\frac{n}{2}) + \Theta(n)$
 - Laufzeit beträgt: $O(n \lg(n))$
 - Solange die Aufteilung konstant bleibt, bleibt die Laufzeit $O(n \lg(n))$

2.11 Laufzeitanalyse von rekursiven Algorithmen

• Analyse von Divide-And-Conquer Algorithmen

- T(n) ist Laufzeit eines Problems der Größe n
- Für kleines Problem benötigt die direkte Lösung eine konstante Zeit $\Theta(1)$
- Für sonstige n gilt:
 - Aufteilen eines Problems führt zu a Teilproblemen
 - Jedes dieser Teilprobleme hat die Größe $\frac{1}{h}$ der Größe des ursprünglichen Problems
 - Lösen eines Teilproblems der Größe $\frac{n}{h}$: $T(\frac{n}{h})$
 - Lösen a solcher Probleme: $a T(\frac{n}{h})$
 - D(n): Zeit um das Problem aufzuteilen (Divide)
 - \bullet C(n): Zeit um Teillösungen zur Gesamtlösung zusammenzufügen (Combine)

$$T(n) = \begin{cases} \Theta(1) & \text{falls } n \le c \\ a \ T(\frac{n}{b}) + D(n) + C(n) & \text{sonst} \end{cases}$$

• Substitutionsmethode

- Idee: Erraten einer Schranke und Nutzen von Induktion zum Beweis der Korrektheit
- Ablauf:
 - 1. Rate die Form der Lösung (Scharfes Hinsehen oder kurze Eingaben ausprobieren/einsetzen)
 - 2. Anwendung von vollständiger Induktion zum Finden der Konstanten und Beweis der Lösung

• Beispiel

- Betrachten von MergeSort:
 - $T(1) \leq c$
 - $T(n) \le T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + cn$
- Ziel:

Obere Abschätzung $T(n) \leq g(n)$ mit g(n) ist eine Funktion, die durch eine geschlossene Formel dargestellt werden kann.

Wir "raten": $T(n) \leq 4cn \ lg(n)$ und nehmen dies für alle n' < n an und zeigen es für n.

- Induktion:
 - lg steht hier für log_2
 - $n = 1: T(1) \le c$

•
$$n = 2$$
: $T(2) \le T(1) + T(1) + 2c$
 $\le 4c \le 8c$
 $T(2) = 4c * 2 lg(2) = 8c$

- Hilfsbehauptungen:
 - (1): $\left|\frac{n}{2}\right| + \left[\frac{n}{2}\right] = n$
 - (2): $\left| \frac{n}{2} \right| \le \frac{n}{2} \le \frac{2}{3}n$
 - (3): $log_c(\frac{a}{b}) = log_c(a) log_c(b)$
 - (4): $log_c(a*b) = log_c(a) + log_c(b)$
- Induktionsschritt:
 - Annahme: n > 2 und sei Behauptung wahr für alle n' < n.

$$\begin{split} \mathrm{T(n)} & \leq T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + cn \\ & \leq 4c \left\lfloor \frac{n}{2} \right\rfloor \, lg(\left\lfloor \frac{n}{2} \right\rfloor) + 4c \left\lceil \frac{n}{2} \right\rceil \, lg(\left\lceil \frac{n}{2} \right\rceil) + cn \\ \mathrm{(HB)} & \leq 4c \cdot lg(\frac{2}{3}n) \cdot \left(\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil + cn \\ & \leq 4c \cdot lg(\frac{2}{3}n) \cdot n + cn \\ \mathrm{(HB)} & \leq 4cn \cdot \left(lg(\frac{2}{3}) + lg(n)\right) + cn \\ & = 4cn \cdot lg(n) + 4cn \cdot lg(\frac{2}{3}) \\ & = 4cn \cdot lg(n) + cn(1 + 4 \cdot (lg(2) - lg(3))) \\ & \leq 4cn \cdot lg(n) \\ & \Rightarrow \Theta(n \ lg(n)) \end{split}$$

• Rekursionsbaum

- Idee: Stellen das Ineinander-Einsetzen als Baum dar und Analyse der Kosten
- Ablauf
 - 1. Jeder Knoten stellt die Kosten eines Teilproblems dar
 - Die Wurzel stellt die zu analysierenden Kosten T(n) dar
 - Die Blätter stellen die Kosten der Basisfälle dar (z.B. T(0))
 - 2. Berechnen der Kosten innerhalb jeder Ebene des Baums
 - 3. Die Gesamtkosten sind die Summe über die Kosten aller Ebenen
- Rekursionsbaum ist nützlich um Lösung für Subsitutionsmethode zu erraten
- Beispiel: $T(n) = 3T(|\frac{n}{4}|) + \Theta(n^2)$
 - $\Rightarrow T(n) = 3T(\frac{n}{4}) + cn^2 \ (c > 0)$
 - Je Abstieg verringert sich die Größe des Problems um den Faktor 4.
 - Erreichen der Randbedingung ist vonnöten, die Frage ist wann dies geschieht.
 - Größe Teilproblem bei Level i: $\frac{n}{4i}$
 - Erreichen Teilproblem der Größe 1, wenn $\frac{n}{4^i} = 1$, d.h. wenn $i = log_4(n)$ \Rightarrow Baum hat also $log_4n + 1$ Ebenen
 - Kosten pro Ebene:
 - · Jede Ebene hat 3-mal soviele Knoten wie darüber liegende
 - Anzahl der Knoten in Tiefe i ist 3^i
 - Kosten $c(\frac{n}{4^i})^2$, $i = 0...log_4 n 1$
 - Anzahl · Kosten = $3^i \cdot c(\frac{n}{4^i})^2 = (\frac{3}{16})^i \cdot cn^2$
 - Unterste Ebene:
 - $3^{log_4(n)} = nlog_4(3)$ Knoten
 - Jeder Knoten trägt T(1) Kosten bei
 - Kosten unten: $n^{log_4(3)} \cdot T(1) = \Theta(n^{log_4(3)})$
 - Addiere alle Kosten aller Ebenen:

$$\begin{split} \bullet \ T(n) &= cn^2 + \frac{3}{16}cn^2 + (\frac{3}{16})^2cn^2 + \dots + (\frac{3}{16})^{log_4n - 1}cn^2 + \Theta(n^{log_4(3)}) \\ &= \sum_{i=0}^{log_4n - 1} (\frac{3}{16})^icn^2 + \Theta(n^{log_4^3}) \\ &= \frac{(\frac{3}{16}^{log_4n}) - 1}{\frac{3}{16} - 1} \cdot cn^2 + \Theta(n^{log_43}) \end{split}$$

(Verwendung der geometrischen Reihe)

· Verwendung einer unendlichen fallenden geometrischen Reihe als obere Schranke:

$$\begin{split} T(n) &= \sum_{i=0}^{log_4n-1} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{log_43}) \\ &< \sum_{i=0}^{\infty} (\frac{3}{16})^i \cdot cn^2 + \Theta(n^{log_43}) \\ &= \frac{1}{1-\frac{3}{16}} \cdot cn^2 + \Theta(n^{log_43}) \\ &= \frac{16}{13} \cdot cn^2 + Theta(n^{log_43}) = O(n^2) \end{split}$$

- Jetzt Subsitutionsmethode:
 - Zu zeigen: $\exists d > 0 : T(n) \leq dn^2$
 - · Induktionsanfang:

$$T(n) = 3 \cdot T(\lfloor \frac{1}{4} \rfloor) + c \cdot 1^{2}$$
$$= 3 \cdot T(0) + c = c$$

• Induktionsschritt:

$$T(n) \le 3 \cdot T(\left\lfloor \frac{n}{4} \right\rfloor) + cn^2$$

$$\le 3 \cdot d(\left\lfloor \frac{n}{4} \right\rfloor)^2 + cn^2$$

$$\le 3d(\frac{n}{4})^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2$$

$$\le dn^2, \text{ falls } d \ge \frac{16}{13}c$$

• Mastertheorem

• Idee:

Seien $a \ge 1$ und b > 1 Konstanten. Sei f(n) eine positive Funktion und T(n) über den nichtnegativen ganzen Zahlen über die Rekursionsgleichung $T(n) = a \ T(\frac{n}{b}) + f(n)$ defininiert, wobei wir $\frac{n}{b}$ so interpretieren, dass damit entweder $\lfloor \frac{n}{b} \rfloor$ oder $\lceil \frac{n}{b} \rceil$ gemeint ist. Dann besitzt T(n) die folgenden asymptotischen Schranken (a und b werden aus f(n) gelesen):

- 1. Gilt $f(n) = O(n^{\log_b(a-\epsilon)})$ für eine Konstante $\epsilon > 0$, dann $T(n) = \Theta(n^{\log_b(a)})$
- 2. Gilt $f(n) = O(n^{\log_b(a)})$, dann gilt $T(n) = \Theta(n^{\log_b(a)} \lg(n))$
- 3. Gilt $f(n) = \Omega(n^{\log_b(a+\epsilon)})$ für eine Konstante $\epsilon > 0$ und a $f(\frac{n}{b}) \le c$ f(n) für eine Konstante c < 1 und hinreichend großen n, dann ist $T(n) = \Theta(f(n))$

• Erklärung:

- In jedem der 3 Fälle wird die Funktion f(n) mit $n^{\log_b(a)}$ verglichen
 - 1. Wenn f(n) polynomial kleiner ist als $n^{\log_b(a)}$, dann $T(n) = \Theta(n^{\log_b(a)})$
 - 2. Wenn f(n) und $n^{\log_b(a)}$ die gleiche Größe haben, gilt $T(n) = \Theta(n^{\log_b(a)} \lg(n))$
 - 3. Wenn f(n) polynomial größer als $n^{\log_b(a)}$ und a $f(\frac{n}{b}) \leq c$ f(n) erfüllt, dann $T(n) = \Theta(f(n))$
- (polynomial größer/kleiner: um Faktor n^{ϵ} asymptotisch größer/kleiner)
- Nicht abgedeckte Fälle:
 - Wenn einer dieser Fälle eintritt, kann das Mastertheorem nicht angewendet werden
 - 1. Wenn f(n) kleiner ist als $n^{\log_b(a)}$, aber nicht polynomial kleiner
 - 2. Wenn f(n) größer ist als $n^{\log_b(a)}$, aber nicht polynomial größer
 - 3. Regularitätsbedingung $a f(\frac{n}{b}) \leq c f(n)$ wird nicht erfüllt
 - 4. a oder b sind nicht konstant (z.B. $a = 2^n$)

• Beispiel:

- $T(n) = 9T(\frac{n}{3}) + n$
 - a = 9, b = 3, f(n) = n
 - $log_b(a) = log_3(9) = 2$
 - $f(n) = n = O(n^{\log_b(a-\epsilon)})$ = $O(n^{2-\epsilon})$
 - Ist diese Gleichung für ein $\epsilon > 0$ erfüllt? $\Rightarrow \epsilon = 1$
 - 1. Fall $\Rightarrow T(n) = \Theta(n^2)$
- $T(n) = T(\frac{2n}{3}) + 1$
 - $a = 1, b = \frac{3}{2}, f(n) = 1$
 - $log_{\frac{3}{2}}1 = 0$
 - $f(n) = 1 = O(n^{log_b(a)})$ = $O(n^0)$ = O(1)
- 2.Fall $\Rightarrow T(n) = \Theta(1 * lg(n)) = \Theta(lg(n))$
- $T(n) = 3(T\frac{n}{4}) + n \lg(n)$
 - $a = 3, b = 4, f(n) = n \lg(n)$
 - $n^{\log_b(a)} = n^{\log_4(3)} < n^{0.793}$
 - $\epsilon = 0.1$ im Folgenden
 - $f(n) = n \lg(n) \ge n \ge n^{0.793 + 0.1} \ge n^{0.793}$
 - 3.Fall $\Rightarrow f(n) = \Omega(n^{\log_b(a+0.1)})$
 - $af(\frac{n}{b}) = 3f(\frac{n}{4}) = 3(\frac{n}{4}) lg(\frac{n}{4}) \le \frac{3}{4}n lg(n)$
 - Damit ist auch die Randbedingung erfüllt und $T(n) = \Theta(n \lg(n))$

3 Pseudocode in der Vorlesung AuD

- Datentypen
 - String
 - Aufbau:

```
"Die Summe ist"
```

• Konkatenation:

```
"Die Summe ist" summe
```

- Array
 - A: Bezeichung eines Arrays A
 - A[i] Zugriff auf (i+1)-tes Element des Arrays
- Methoden
 - $\bullet\,$ Rückgabe:

```
return summe
```

- Schleifen
 - While-Schleife

```
WHILE summe <= n // Falls j = 1 to A.length -1: to ist dasselbe wie <= summe = summe + 1 ENDWHILE
```

- Variablen
 - Initialisierung

```
summe := 0
```