TAREA SUGERIDA 2 - ACHAVAL TOMAS									
1	_ \	x3 =	-1+	2 \(\sum_{\chi_3}^3		$y = \sqrt{x^2}$	5	$\sqrt{x \neq 0}$	-> LA ECUACION ESTA DEFIN
ENTONCES									
y = -1 + 2						A = 9			
'						APLICO BASKHARA			
$y+1=\frac{2}{y}$ -> $(y+1)y=2$								-1 ± \12	-4.12
$y^2 + y - 2 = 0$ ($\frac{2}{2}$									
$3 - 1 \pm 59$ $3 \times 1 = 1$									
REGRESO EN Y, DESPETANDO X=									
$1=\sqrt{x^3} -2 = \sqrt{x^3} VERIFICO =$									
$1^2 - x^3$ $(-2^2 - x^3)$ $EN x_1 = \sqrt{1^3} = -1 + \frac{2}{\sqrt{1^3}}$ $EN x_2 = \sqrt{3} \cdot 3^3 = -1 + \frac{2}{\sqrt{19}}$									
$3\sqrt{1} = x$ $3\sqrt{4} = x$ $1 = -1 + 2$									
1 = X1						[1=1] $[1=1]$			
14									
OTTO DE VILLE DE LA									
								NEGATIN	A [-2 =-2]
2. DETERMINAR P, D y A SABIENDO PUE [-PV(D=)] (RV(-D=)) ES FALSA. P, D y A DEBEN TENER UN VAROR DE VERDAD FALSO PARA PUE LA PROPOSICION SEA FALSA:									
1 0	YK	DEBE	1 TEN		,				FICION SEA FALJA = [TPV(DAR) (RV(TPGP))
V	V	V	F	F	V -> 1	11 VID-5N1	F	VALABERA	TLA(BSKIIKALKALZOWALZ
V	V	F	F	F	F	F	F	F	V
V	F	V	F	~	V	V	V	V	V
V	F	F	F	V	V	V	V	V	V
F	V	V	V	F	V	V	V	٧	V
F	V	F	V	F	F	V	V	V	V
F	F	V	V	٧	V	V	F	V	V
F	F	F	V	V	V	V	F	F	F
74			- +						

NOTA