Homework - 9 COEN 240-Machine Learning

Pujitha Kallu ID: W1653660 pkallu@scu.edu

Problem 1

Find the solution (x^*, y^*) to the following problem.

optimize xy

subject to x + y = 10

Sol:

0	
	Solution 1:
	Standard form : 39
	optimize zy
	subject to 2+y-10=0
	Subject to 2+y-10=0 Lagrangain: L(2,y,B)
	= xy + B (x+y-10)
Mary .	Partial derivative is
	Vx L (x,y,B) = y+B = 0 → 8 ①
	7y L(7,y,β) = x+β = 0 → εqΦ
	√13 L(2,4,B) = 2+4-10=0 -> 89(3)
	Now, we can solve for x,y :=
-komali	Inm Eq0 4 Eq@:
	> B = -y -0 9 = B = -2 -0
	now Equating (1) & (2)
	we get -y =-x
	y=x.
	So from Eq 3
	x+y -10=0
200	a 22 = 10
	x=5 or y=5
	: x*=5 & y*=5

Problem 2

The SVM optimization can be defined by the primal form:

$$\min_{w} \frac{1}{2} \|\mathbf{w}\|^{2}$$
 subject to $y_{i}(\mathbf{w}^{T}\mathbf{x}_{i} + b) \ge 1, \qquad i = 1, ..., N$

Or by its the dual form:

$$\max_{\alpha} J(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i^T \mathbf{x}_j \right)$$

subject to
$$\alpha_i \ge 0$$
, $i = 1, ... N$ and $\sum_{i=1}^{N} \alpha_i y_i = 0$

What is the Lagrangian function $L(w, b, \alpha)$ evaluated at w that minimizes that function? Note this is the objective function $I(\alpha)$.

Hints:

- 1. Write the primal problem in standard form
- 2. Form the Lagrangian function $L(\mathbf{w}, b, \alpha)$
- 3. Find w and b that minimize $L(w, b, \alpha)$
- 4. Plug the results back into $L(\mathbf{w}, b, \alpha)$

Sol:

)	
	Solution 2:
tep	1. First we write the primal problem in standard form:
	min $1/2 w ^2$ subject to $g_1(w)$ $= -y_1 (w^T z_1 + b) + 1 \le 0$
ЕP	2. Second we form the Lagrangian function: L (w,b,a)
	= 1/2 1/w112 + \(\frac{1}{2} \) ai [-4i (w\tauze+b)+1] - Eq(1) Here there is no B because there are no quality constraints.
	The second secon
4	3. Now we find wand b that minimize $L(w,b,\alpha)$ $\nabla w L(w,b,\alpha) = w - \sum_{i=1}^{N} \alpha_i y_i z_i = 0$
	$W = \sum_{i=1}^{N} \alpha_i \gamma_i \alpha_i \longrightarrow \epsilon_{q(2-)}$
44	Now $\nabla_b L(\omega,b,\alpha) = \sum_{i=1}^N \alpha_i y_i = 0 \longrightarrow \epsilon_{q(3)}$
P	4: Now we plug in Eq (2) & Eq(3) into Eq(1) L (w,b, \alpha) = 1/2 \overline{\pi} \overline{\pi} + \sum_{\infty} \alpha i = 1 L(\overline{\pi},b,\alpha) = \frac{1}{2} \sum_{\infty} \alpha i = 1 \[\begin{align*} \text{Now we plug in Eq (2) & Eq(3) into Eq(1)} \\ \text{L (\$\overline{\pi},b,\alpha)} & = 1/2 \overline{\pi} \overline{\pi} \overline{\pi} + \sum_{\infty} \overline{\pi}
	L(w,b,a)= 1 2 aiy; xiT - 2 ajy; xj + 2 ajy; xj)xi+b)+1

- N N aia; 414; (xj x1) - Zaryib+ Za: But, And from Eq (3) => Saiyib =0 Therefore, J(a) = L(w, b, a) J(a) = 5 a; - 1/2 & & a; a; 4; 4; (x; x;)

References:

- 1. Class notes: Support vector machines (SVMs)
- 2. https://www.user.tu-berlin.de/mtoussai/teaching/13-Optimization/03-constrainedOpt.pdf
- 3. https://stats.stackexchange.com/questions/171676/models-for-machine-learning-constrain-ed-optimization
- 4. https://georgian.io/constrained-optimization-how-to-do-more-with-less/