

999 Theto(0) f(n) = O(f(n))q(n) is both tiple upper bound and flower bound f(n) = O(g(n)) (1g(n) < f(n) < (-g(n))

Hn > max(n, n) lor some constant Q-2 10 C + Or (P=1 to n) & = 1 = 1 +2} for (i=b ton) // i=1,2,48 Si=1*24 110(1) => Z 1+2+4+8+ GOP KH Value => TK = G, K-1 $\Rightarrow 1 + 2^{k-1}$ $\Rightarrow n = n$ => 2n = 2x => Lg2n = Klg92 $= \frac{1}{\sqrt{2}} \log + \log n = \frac{1}{\sqrt{2}} \log 2$ => logn+1= K => O(K) = O(1+logn) => O (logn)

S=1+5+6+10+15 -- n

=>
$$T(n) = T(n/3) + n^2$$

=> $a=1$, $b=3$, $f(n)=n^2$
 $c=1g 1=0$
=> $T(n) = ((n^2))$
=> $T(n) = ((n^2))$
=> $T(n) = ((n^2))$
 $f(n) =$

=) as given nk & c?

rulation btonk & c? $n^{k} = 0 (c)$ as $n^{k} \leq ac$? $n_{k} = 0 (c)$ As $n^{k} \leq ac$? $n_{k} = 0 (c)$ as $n^{k} \leq ac$? $n_{k} = 0 (c)$ $n_{k} = 0 (c)$ as $n^{k} \leq ac$?

=) $1^{k} \leq ac$ =) $1^{k} \leq ac$ =) $1^{k} \leq ac$