NOM: DARCHE PRENOM: Flavier Groupe: A2#

Partiel de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

(4 points, sans points négatifs) OCM

1- Lorsqu'un système fermé (gaz parfait) subit une transformation isotherme, la quantité de chaleur échangée avec le milieu extérieur est

- a) Q = 0 b) $Q = \Delta U$ c) Q = W d) Q = -W

2- La loi de Laplace en fonction de la température et le volume d'un gaz parfait s'écrit :

- a) $T^{\gamma}.V = c$ b) $T^{\gamma-1}.V = c$ c) $T.V^{\gamma-1} = c$ d) $T.V^{\gamma+1} = c$

« c » est une constante

3- Lors d'un cycle la variation d'énergie interne vérifie :

- a) $\Delta U > 0$ b) $\Delta U < 0$ c) $\Delta U = 0$

4- Le travail W pour une détente isobare d'une mole de gaz parfait, du volume V1 vers le volume V2 est

- a) $W = RT \ln \left(\frac{V_2}{V_1} \right)$
- c) W = $-RT \ln \left(\frac{v_2}{v_1}\right)$
- b) W = 0

 $(d)W = -P(V_1 - V_2)$

5- Un gaz parfait subit une transformation adiabatique de l'état (1) de variables (P1,V1) vers l'état (2) de variables (P2, V2). Le volume V2 vérifie alors :

a)
$$V_2 = V_1 \left(\frac{P_2}{P_1}\right)^{1/\gamma}$$
 b) $V_2 = V_1 \left(\frac{P_1}{P_2}\right)^{1/\gamma}$ c) $V_2 = V_1 \left(\frac{P_2}{P_1}\right)^{-\gamma}$ d) $V_2 = \gamma V_1$

6- Parmi les grandeurs physiques suivantes, laquelle ne représente pas une fonction d'état ?

- a)/L'enthalpie H
- L'énergie interne U
- (c) Le travail des forces de pression W

7- La différentielle de l'énergie interne dU d'un gaz, donnée par le premier principe s'écrit :

- a) dU = -PdV + Q (b) $dU = -PdV + \delta Q$ c) dU = -PdV + dQ

8- Les grandeurs d'état températures et volumes d'un gaz parfait qui subit une transformation isobare, de l'état (1) vers l'état (2) vérifient :

- (a) $T_1.V_2 = T_2V_1$ b) $T_1.V_1 = T_2V_2$ c) $\frac{V_1}{T_2} = \frac{T_1}{V_2}$

Exercice 1 (4 points) Les questions 1 et 2 sont indépendantes

1- Dans un calorimètre de capacité thermique 100 J.K⁻¹, on introduit 100 g d'eau, l'ensemble est à 20°C. On y ajoute 100 g d'huile à 100°C (température inférieure à sa température d'ébullition). La température finale est de 40°C.

Calculer la capacité massique de l'huile. On donne : Ceau = 4200 J.kg⁻¹.K⁻¹

$$m_1 = 100 \, \text{g}$$
 $m_2 = 100 \, \text{g}$
 $O_1 = 20 \, \text{c}$ $O_2 = 100 \, \text{c}$
 $O_{eq} = 40 \, \text{c}$
 $O_{eq} =$

2- Quelle est la quantité de chaleur nécessaire pour convertir 10 g de glace à -20°C en vapeur à 100°C ? Capacité massique de l'eau : Ce = 4200 J.kg⁻¹.K⁻¹

Chaleur latente de fusion de la glace : $L_f = 335.10^3 J.kg^{-1}$ Capacité massique de la glace : $Cg = 2.10^3 J.kg^{-1}.K^{-1}$ Chaleur latente de vaporisation : $Lv = 225.10^4 J.kg^{-1}$

Exercice 2 Partie Cours. Les questions sont indépendantes (5 points)

1- Lors d'une transformation adiabatique d'un gaz parfait, l'énergie interne élémentaire dU et l'enthalpie élémentaire dH s'écrivent : $dU = -PdV = C_V dT$ et $dH = VdP = C_D dT$.

En déduire l'expression de la loi de Laplace.

$$\frac{dH}{dv} = \frac{VdP}{PdV} = \frac{C_P}{C_V} = 8$$

$$(=) VdP = -8PdV / test$$

$$(=) \frac{dP}{P} = 8 \frac{dV}{V} (=) - ln(P) = 8 ln(V) + est$$

$$(=) ln(P) + ln(V8) = est$$

$$(=) PV8 = est D.$$

2- Utiliser la relation de Meyer et la définition du coefficient de Laplace γ , pour retrouver les capacités molaires c_v et c_p , en fonction de la constante des gaz parfaits R et le coefficient de Laplace γ .

$$\frac{Cp}{CV} = 8$$

$$\frac{Cp}{CV} = 8$$

$$Cp - CV = mR$$

Dans le système en remploçant on trouve
$$CV = \frac{R}{8-1}$$

$$Cp = \frac{8R}{8-1}$$

3- Donner le travail des forces de pression W_{AB} d'une transformation isobare de A vers B d'un gaz parfait, en déduire que la quantité de chaleur à pression constante s'écrit: $Q_p = nc_p\Delta T$

Exercice 3 (7 points)

Un moteur fonctionne selon le Cycle de Beau de Rochas: n moles de gaz parfait décrivent le cycle ABCDA représenté sur la figure ci-dessous. (de A vers B vers C vers D vers A)

Les transformations DA et BC sont des adiabatiques alors que les transformations CD et AB sont des isochores. On désigne par $a = V_2 / V_1$: le rapport des volumes.

1- a) Donner une écriture de la loi de Laplace en fonction de la température et du volume.

$$PV^{8}=cst$$

$$PV=mRT$$

$$V$$

$$P=\frac{mRT}{V}$$

$$T\times V^{8}=cst$$

$$T\times V^{8}=cst$$

$$T\times V^{8}=cst$$

$$T\times V^{8}=cst$$

b) En déduire les relations suivantes : $T_B(V_1)^{\gamma-1} = T_C(V_2)^{\gamma-1}$ et $T_A(V_1)^{\gamma-1} = T_D(V_2)^{\gamma-1}$.

adiabalique B > C	Tx V8-1= cst)
Tox Var-1 = Tc x V2	1/ adiobatique D -> A
VB=V1	To x Yeb-1 = TA x Ky d-1
Vc= V2	VD= V2
	VA=VA

2- Exprimer les quantités de chaleur Q et les travaux W pour chacune des transformations du cycle.

	J		
Transformation	W=-Spar	Q=DU-W	DV=MCrDT
D-) A adiabatique	W= DU = mc, (TA-To)	Q=0	DU= MC L (TA-TO)
B > C adiabétique	w= DU = mcr (Tc-tB)	Q=0	DU= MCV (TE-TB)
A -> B isochone	W= O	Q= DU = Ma (TA-TA)	DU= mCz (TB-TA)
C-> D isochone	W= 0	Q = DU = mcv (To-Tc)	DU= mcv (ToTc)

3- En déduire le rendement du cycle donné par : $r = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$ en fonction des températures.

$$\Lambda = \frac{Q_{AB} + Q_{CD}}{Q_{AB}} = 1 + \frac{Q_{CD}}{Q_{AB}} = 1 + \frac{m_{CV}(T_D - T_C)}{m_{CV}(T_B - T_A)}$$

$$= 1 + \frac{T_D - T_C}{T_B - T_A}$$

4- Montrer que ce rendement s'exprime en fonction de $\bf a$ et γ , tel que : $a = V_2/V_1$ Faire le calcul pour : $\bf a=9$; $\gamma=1,4$. On donne : $9^{-0,4}\approx 0,4$

Indice de calcul : $\frac{T_C - T_D}{T_B - T_A} = \frac{T_D}{T_A} = \frac{T_C}{T_B}$