MIT 6.1100 Top-Down Parsing

Martin Rinard
Massachusetts Institute of Technology

Orientation

- Language specification
 - Lexical structure regular expressions
 - Syntactic structure grammar
- This Lecture recursive descent parsers
 - Code parser as set of mutually recursive procedures
 - Structure of program matches structure of grammar

Starting Point

- Assume lexical analysis has produced a sequence of tokens
 - Each token has a type and value
 - Types correspond to terminals
 - Values to contents of token read in
- Examples
 - Int 549 integer token with value 549 read in
 - if if keyword, no need for a value
 - AddOp + add operator, value +

```
Example
Boolean Term()
   if (token = Int n) token = NextToken(); return(TermPrime())
   else return(false)
Boolean TermPrime()
   if (token = *)
        token = NextToken();
        if (token = Int n) token = NextToken(); return(TermPrime())
        else return(false)
  else if (token = /)
        token = NextToken();
        if (token = Int n) token = NextToken(); return(TermPrime())
        else return(false)
   else return(true)
                                     Term → Int Term ′
                                     Term' → *Int Term'
Term' → /Int Term'
                                     Term' \rightarrow \varepsilon
```

Basic Approach

- Start with Start symbol
- Build a leftmost derivation
 - If leftmost symbol is nonterminal, choose a production and apply it
 - If leftmost symbol is terminal, match against input
 - If all terminals match, have found a parse!
 - Key: find correct productions for nonterminals

Graphical Illustration of Leftmost Derivation

Sentential Form

Grammar for Parsing Example Start \rightarrow Expr Expr \rightarrow Expr + Term Expr \rightarrow Expr - Term Expr \rightarrow Term Term \rightarrow Term *Int Term \rightarrow Term /Int Term \rightarrow Int Set of tokens is $\{+, -, *, /, \text{ Int }\}$, where Int = [0-9][0-9]*• For convenience, may represent each Int n token by n

Summary

- Three Actions (Mechanisms)
 - Apply production to expand current nonterminal in parse tree
 - Match current terminal (consuming input)
 - Accept the parse as correct
- Parser generates preorder traversal of parse tree
 - visit parents before children
 - visit siblings from left to right

Policy Problem

- Which production to use for each nonterminal?
- Classical Separation of Policy and Mechanism
- One Approach: Backtracking
 - Treat it as a search problem
 - At each choice point, try next alternative
 - If it is clear that current try fails, go back to previous choice and try something different
- General technique for searching
- Used a lot in classical AI and natural language processing (parsing, speech recognition)

Backtracking Example

Parse Tree Start

Remaining Input 2-2*2

Sentential Form Start

General Search Issues

- Three components
 - Search space (parse trees)
 - Search algorithm (parsing algorithm)
 - Goal to find (parse tree for input program)
- Would like to (but can't always) ensure that
 - Find goal (hopefully quickly) if it exists
 - · Search terminates if it does not
- Handled in various ways in various contexts
 - Finite search space makes it easy
 - Exploration strategies for infinite search space
 - Sometimes one goal more important (model checking)
- For parsing, hack grammar to remove left recursion

Eliminating Left Recursion

- Start with productions of form
 - A \rightarrow A α
 - $A \rightarrow \beta$
 - α , β sequences of terminals and nonterminals that do not start with A
- Repeated application of A \rightarrow A α builds parse tree like this:

Eliminating Left Recursion

• Replacement productions

$$-A \rightarrow A \alpha$$

$$A \rightarrow \beta R$$

 $R \rightarrow \alpha R$

 $-A \rightarrow \beta$

 $R \rightarrow \epsilon$

New Parse Tree

R is a new nonterminal

Hacked Grammar

Original Grammar Fragment

Term → *Term* * Int

Term → *Term* / Int $Term \rightarrow Int$

New Grammar Fragment

Term → Int Term'

Term' → *Int Term'

Term ′ → / Int *Term* ′

Term' → ε

Parse Tree Comparisons

Original Grammar

Eliminating Left Recursion

- Changes search space exploration algorithm
 - Eliminates direct infinite recursion
 - But grammar less intuitive
- Sets things up for predictive parsing

Predictive Parsing

- Alternative to backtracking
- Useful for programming languages, which can be designed to make parsing easier
- Basic idea
 - · Look ahead in input stream
 - Decide which production to apply based on next tokens in input stream
 - We will use one token of lookahead

Predictive Parsing Example Grammar

Start → Expr *Term* → Int *Term*′ Expr → Term Expr' *Term′* → * Int *Term′* Expr' → + Term Expr' *Term'* → / Int *Term'* Expr' → - Term Expr' Term' → ε $Expr' \rightarrow \varepsilon$

Choice Points

- Assume *Term'* is current position in parse tree
- Have three possible productions to apply

```
Term' → *Int Term'
Term' → / Int Term'
Term' \rightarrow \epsilon
```

- Use next token to decide
 - If next token is *, apply $Term' \to *$ Int Term'• If next token is /, apply $Term' \to /$ Int Term'• Otherwise, apply $Term' \to \epsilon$

Predictive Parsing + Hand Coding = Recursive Descent Parser

- One procedure per nonterminal NT
 - Productions $NT \rightarrow \beta_1$, ..., $NT \rightarrow \beta_n$
 - Procedure examines the current input symbol T to determine which production to apply
 - If T∈First(β_k)
 - Apply production k
 - ullet Consume terminals in β_k (check for correct
 - Recursively call procedures for nonterminals in β_k
 - Current input symbol stored in global variable token
- · Procedures return
 - true if parse succeeds
 - false if parse fails

Example

```
Boolean Term()
  if (token = Int n) token = NextToken(); return(TermPrime())
  else return(false)
Boolean TermPrime()
  if (token = *)
       token = NextToken();
       if (token = Int n) token = NextToken(); return(TermPrime())
       else return(false)
  else if (token = /)
       token = NextToken();
        if (token = Int n) token = NextToken(); return(TermPrime())
        else return(false)
  else return(true)
                                    Term → Int Term ′
                                    Term ′ → *Int Term ′
                                    Term' → /Int Term'
                                    Term' \rightarrow \epsilon
```

Multiple Productions With Same Prefix in RHS

• Example Grammar

 $NT \rightarrow \text{if then}$

 $NT \rightarrow$ if then else

- Assume *NT* is current position in parse tree, and if is the next token
- Unclear which production to apply
 - Multiple k such that T∈First(β_k)
 - if ∈ First(if then)
 - if ∈ First(if then else)

Solution: Left Factor the Grammar

 New Grammar Factors Common Prefix Into Single Production

```
NT \rightarrow \text{if then NT'}

NT' \rightarrow \text{else}

NT' \rightarrow \varepsilon
```

- No choice when next token is if!
- All choices have been unified in one production.

Nonterminals

What about productions with nonterminals?

$$NT \rightarrow NT_1 \alpha_1$$

 $NT \rightarrow NT_2 \alpha_2$

- Must choose based on possible first terminals that NT₁ and NT₂ can generate
- What if NT₁ or NT₂ can generate ε?
 - Must choose based on α_1 and α_2

NT derives ε

- Two rules
 - $NT \rightarrow \varepsilon$ implies NT derives ε
 - $NT \rightarrow NT_1 \dots NT_n$ and for all $1 \le i \le n NT_i$ derives ε implies NT derives ε

Fixed Point Algorithm for Derives ϵ

for all nonterminals NTset NT derives ε to be false for all productions of the form $NT \to \varepsilon$ set NT derives ε to be true while (some NT derives ε changed in last iteration) for all productions of the form $NT \to NT_1 \dots NT_n$ if (for all $1 \le i \le n NT_i$ derives ε) set NT derives ε to be true

$First(\beta)$

- T∈ First(β) if T can appear as the first symbol in a derivation starting from β
 - 1) *T*∈First(*T*)
 - 2) First(S) \subseteq First(S β)
 - 3) NT derives ε implies First(β) \subseteq First($NT\beta$)
 - 4) $NT \rightarrow S\beta$ implies First(S β) \subseteq First(NT)
- Notation
 - T is a terminal, NT is a nonterminal, S is a terminal or nonterminal, and β is a sequence of terminals or nonterminals

Rules + Request Generate System of Subset Inclusion Constraints

```
Grammar
                                           Request: What is First(Term')?
    Term′ → *Int Term′
    Term′ → /Int Term′
                                                       Constraints
    Term' \rightarrow \epsilon
                                      First(* Num Term') ⊆ First(Term')
                                      First(/ Num Term') ⊆ First(Term')
            Rules
                                      First(*) ⊆ First(* Num Term')
1) T∈First(T)
                                      First(/) ⊆ First(/ Num Term')
2) First(S) \subseteq First(S\beta)
                                      *∈First(*)
3) NT derives \varepsilon implies
                                      / ∈First(/)
   First(\beta) \subseteq First(NT\beta)
4) NT \rightarrow S\beta implies
   First(S \beta) \subseteq First(NT)
```

Constraint Propagation Algorithm

```
Constraints
                                                Solution
First(* Num Term') ⊆ First(Term')
                                     First(Term') = {}
First(/ Num Term') ⊆ First(Term')
                                     First( * Num Term' ) = {}
First(*) ⊆ First(* Num Term')
                                     First(/ Num Term' ) = {}
First(/) ⊂ First(/ Num Term')
                                     First(*) = {*}
*∈First(*)
                                     First(/) = {/}
/ ∈First(/)
                                     Initialize Sets to {}
                                     Propagate Constraints Until
                                        Fixed Point
```

Constraint Propagation Algorithm

```
Constraints
                                                Solution
First(* Num Term') ⊆ First(Term')
                                    First(Term') = {}
First(/ Num Term') ⊆ First(Term')
                                    First( * Num Term' ) = {}
First(*) ⊆ First(* Num Term')
                                     First(/ Num Term' ) = {}
First(/) ⊆ First(/ Num Term')
                                    First(*) = \{*\}
*∈First(*)
                                    First(/) = {/}
/ ∈First(/)
                                             Grammar
                                        Term' → *Int Term'
                                        Term' → / Int Term'
                                        Term' → ε
```

Constraint Propagation Algorithm

```
Constraints
                                                  Solution
First(* Num Term') ⊆ First(Term')
                                      First(Term') = {}
First(/ Num Term') ⊆ First(Term')
                                      First(* Num Term') = {*}
First(*) ⊆ First(* Num Term')
                                      First(/ Num Term') = {/}
First(/) ⊆ First(/ Num Term')
                                      First(*) = \{*\}
*∈First(*)
                                      First(/) = {/}
/ ∈First(/)
                                               Grammar
                                          Term' → *Int Term'
                                          Term′ → / Int Term′
                                          Term' \rightarrow \epsilon
```

Constraint Propagation Algorithm

```
Constraints
                                                  Solution
First(* Num Term') ⊆ First(Term')
                                      First(Term') = {*,/}
First(/ Num Term') ⊆ First(Term')
                                      First( * Num Term') = {*}
First(*) ⊆ First(* Num Term')
                                      First(/ Num Term' ) = {/}
First(/) ⊆ First(/ Num Term')
                                      First(*) = \{*\}
*∈First(*)
                                      First(/) = {/}
/ ∈First(/)
                                                Grammar
                                          Term' → *Int Term'
                                          Term′ → / Int Term′
                                          Term' \rightarrow \epsilon
```

Constraint Propagation Algorithm

```
Constraints
                                                   Solution
First(* Num Term') ⊆ First(Term')
                                       First(Term') = {*,/}
First(/ Num Term') ⊆ First(Term')
                                       First(* Num Term') = {*}
First(*) ⊆ First(* Num Term')
                                       First(/ Num Term') = {/}
First(/) ⊆ First(/ Num Term')
                                       First(*) = \{*\}
*∈First(*)
                                       First(/) = {/}
/ ∈First(/)
                                                 Grammar
                                           Term' → *Int Term'
                                           Term' → / Int Term'
                                           \textit{Term'} \rightarrow \epsilon
```

Building A Parse Tree

- Have each procedure return the section of the parse tree for the part of the string it parsed
- Use exceptions to make code structure clean

Building Parse Tree In Example

```
Term()

if (token = Int n)

oldToken = token; token = NextToken();

node = TermPrime();

if (node == NULL) return oldToken;

else return(new TermNode(oldToken, node);

else throw SyntaxError

TermPrime()

if (token = *) || (token = /)

first = token; next = NextToken();

if (next = Int n)

token = NextToken();

return(new TermPrimeNode(first, next, TermPrime()))

else throw SyntaxError

else return(NULL)
```

Parse Tree for 2*3*4 Desired Concrete Abstract Parse Tree Parse Tree Term Int Term Term 2 Int Term Int 4 Int Int Term Int 2 3 4

Why Use Hand-Coded Parser?

- Why not use parser generator?
- What do you do if your parser doesn't work?
 - Recursive descent parser write more code
 - Parser generator
 - Hack grammar
 - But if parser generator doesn't work, nothing you can do
- If you have complicated grammar
 - Increase chance of going outside comfort zone of parser generator
 - Your parser may NEVER work

Bottom Line

- Recursive descent parser properties
 - Probably more work
 - But less risk of a disaster you can almost always make a recursive descent parser work
 - May have easier time dealing with resulting code
 - Single language system
 - No need to deal with potentially flaky parser generator
 - No integration issues with automatically generated code
- If your parser development time is small compared to rest of project, or you have a really complicated language, use hand-coded recursive descent parser

Summary

- Top-Down Parsing
- Use Lookahead to Avoid Backtracking
- Parser is
 - Hand-Coded
 - Set of Mutually Recursive Procedures

Direct Generation of Abstract Tree

- TermPrime builds an incomplete tree
 - Missing leftmost child
 - Returns root and incomplete node
- (root, incomplete) = TermPrime()
 - Called with token = *
 - Remaining tokens = 3 * 4 root Term

 incomplete Term * Int

 Missing left child to be filled in by 3

caller


```
Term()

if (token = Int n)

leftmostInt = token; token = NextToken();

(root, incomplete) = TermPrime();

if (root == NULL) return leftmostInt;

incomplete.leftChild = leftmostInt;

return root;

else throw SyntaxError

incomplete

Term

incomplete

Term

incomplete

Int

4

leftmostInt

Int

2

3
```


Code for TermPrime

```
TermPrime()

if (token = *) || (token = /)

op = token; next = NextToken(); to be filled in by

if (next = Int n)

token = NextToken();

(root, incomplete) = TermPrime();

if (root = NULL)

root = new ExprNode(NULL, op, next);

return (root, root);

else newChild = new ExprNode(NULL, op, next);

incomplete.leftChild = newChild;

return(root, newChild);

else throw SyntaxError

else return(NULL,NULL)
```