Rehashing, Cuckoo Hashing, Cichelli's Algorithm

Rehashing

- What if you run out of space in the hash table, or the table is so full that finding an empty slot is very hard?
- Rehashing: create a new larger hash table, and copy the elements over
 - Same or different hash function with the new T can be used
 - Double the size, or, even better, choose new T = large prime closest to old T * 2

h(K)	=	K %
	7	

	Original Hash Table
o	6
1	15
2	
3	24
4	
4 5 6	
6	13

	After Inserting 23
0	6
1	15
2	23
	24
4	
4 5 6	
6	13

	After Renashing
0	
1	
2	
3 4 5	
4	
5	
6	6
7	23
8	24
9	
10	
11	
12	
13	13
14	
15	15
16	

20

After Debaching

h(K) = K % 17

Cuckoo hashing

- Collision resolution algorithm invented in 2001
- Guaranteed O(1) look-up time for all entries
- Two hash tables are used, each associated with its own hash function
- Each K can be either in one or in other table

k	h(k)	h'(k)
20	9	1
50	6	4
53	9	4
75	9	6
100	1	9
67	1	6
105	6	9
3	3	0
36	3	3

6

7

8

9

Add max iteration number to the algorithm; in case of deadlock, rehash both

produce an

infinite loop

Perfect hash functions

- A perfect hash function is a hash function that assigns a unique hash code to every key (no collisions)
- A minimal perfect hash function is a perfect hash function that uses every slot in the hash table and wastes no space

- Why are hash functions not perfect/minimal?
 - Because the input space is unlimited can't prepare for everything!
 - What if we knew exactly what data and how much data needs to be stored?
 - Turns out you can design a perfect hash function if data (input space) is known beforehand!

- An algorithm that constructs a perfect minimal hash function for a set of strings
- Suppose we want to store different cities in a hash table:

- We are re-inventing google maps: need to store a lot of information about each city, and be able to access it quick
- Every city has a unique name: city names can be the keys
- The number of cities is predetermined: reserve just enough space (and no extra!) to store them all
- Cichelli's hash function:

```
h(S) = [length(S) + firstLetter(S) + lastLetter(S)]
% T
```

- length(S) is the length of the string
- firstLetter(S) and lastLetter(S) return the values assigned to the first and last letter of the string
- Task: Assign values to all first/last characters to create a perfect hash

1. Count the frequencies of first/last characters

 Sort the strings based on cumulative frequency (freq(first) + freq(last))

Durban3Cape Town3Pretoria2Johannesburg2

Why sort:
Same letters may
cause clashes,
thus place the
words that share
letters first

- assignHash(wordlist)
 - I. Remove first word on the list
 - II. Choose values for first(w), last(w)
 - III. Compute hash(w) = [length(w) + first(w) + last(w)]%T
 - if(hash is not taken)
 - use the hash
 - assignHash(wordlist) // recursive step
 - else
 - Go to (II) and try other values for first(w), last(w)

Durban	3
Cape Town	3
Pretoria	2
Johannesburg	2

$$D = 0$$

$$N = 0$$

0	
1	
2	Durban
3	

- assignHash(wordlist)
 - Remove first word on the list
 - II. Choose values for first(w), last(w)
 - III. Compute hash(w) = [length(w) + first(w) + last(w)]%T
 - if(hash is not taken)
 - use the hash
 - assignHash(wordlist) // recursive step
 - else
 - Go to (II) and try other values for first(w), last(w)

Cape Town	3
Pretoria	2
Johannesburg	2

D	=	0
N	=	0
С	=	0

0	
1	Cape Town
2	Durban
3	

```
h(Cape Iown) = [9 + 0 + 0] % 4
= 1
```

- assignHash(wordlist)
 - Remove first word on the list
 - II. Choose values for first(w), last(w)
 - III. Compute hash(w) = [length(w) + first(w) + last(w)]%T
 - if(hash is not taken)
 - use the hash
 - assignHash(wordlist) // recursive step
 - else
 - Go to (II) and try other values for first(w), last(w)

Pretoria 2
Johannesburg 2

D =	0
N =	0
C =	0
P =	0
A =	0

0	Pretoria
1	Cape Town
2	Durban
3	

Johannesburg

2

Final:

$$D = 0$$
 $N = 0$
 $C = 0$
 $P = 0$
 $A = 0$
 $J = 1$
 $G = 2$

```
Pretoria
 N = 0
               1
                    Cape Town
 C = 0
                      Durban
 P = 0
               3
                  Johannesburg
 A = 0
                            MAX = 2
        G = 1
h(Johannesburg) =
                  [12 + 0 + 1] \% 4
h(Johannesburg) =
h(Johannesburg) = [12 + 0 + 2] % 4
h(Johannesburg) =
```

[12 + 1 + 1] % 4

[12 + 1 + 2]

h(Johannesburg)

h(Johannesburg) =

If values have been assigned to letters, they should be reused by all words

- assignHash(wordlist)
 - Remove first word on the list
 - for(first(w) = 0; first(w) < MAX; first(w)++) // unless first(w) has a value
 - for(last(w) = 0; last(w) < MAX; last(w)++) // unless last(w) has a value
 - Compute hash(w) = [length(w) + first(w) + last(w)]%T
 - if(hash(w) not taken)
 - Put the word in position hash(w)
 - success = assignHash(wordlist) // recursive step
 - if(success) return success;
 - Put word back on the list
 - Return failure // backtracking

MAX is chosen to be a small value; # words / 2

Frequencies:

Anna Maria Jane John Julia Megan

0	
1	
2	
3	
4	
5	

8 Anna
7 Julia
6 Maria
5 John
4 Jane
4 Megan

Assign values to first/last characters!

MAX = T / 2 = 6 / 2 = 3

Anna Julia Maria John Jane Megan

```
Anna (4 + 0 + 0) % 6 = 4

Julia (5 + 0 + 0) % 6 = 5

Maria(5 + 0 + 0) % 6 = 5X

Maria(5 + 1 + 0) % 6 = 0

John(4 + 0 + 0) % 6 = 4X

John(4 + 0 + 1) % 6 = 5X

John(4 + 0 + 2) % 6 = 0X

John(4 + 0 + 3) % 6 = 1

Jane(4 + 0 + 0) % 6 = 4X

Jane(4 + 0 + 1) % 6 = 5X
```

0	Maria
1	John
2	
3	
4	Anna
5	Julia

A = 0 J = 0 M = 3 M = 3 M = 3 M = 3

Jar	ne(4	+	0	+	0)	%	6	=	4 X
Jar	ne(4	+	0	+	1)	%	6	=	5 X
	ne(4								
Jar	e(4	+	0	+	3)	%	6	=	1X

Nothing else to try – backtrack!

Marid(5 + 2 + 0) % 6 = 1

// John will go to zero, but Jane won't find a place

$$Maria(5 + 3 + 0) \% 6 = 2$$

// John will go to zero // Jane will go to one

MAX = T / 2 = 6 / 2 = 3

Anna Julia Maria John Jane Megan

```
Anna (4 + 0 + 0) \% 6 = 4
 Julia (5 + 0 + 0) \% 6 = 5
   Maria(5 + 3 + 0) \% 6 = 2
    John(4 + 0 + 2) \% 6 = 0
      Jane(4 + 0 + 3) \% 6 = 1
        Megan (5 + 3 + 2) \% 6 = X
     John(4 + 0 + 3) \% 6 = 1
      lane(4 + 0 + 2) \% 6 = 0
        Megan(5 + 3 + 3) % 6 = X
```

0	Jjæhnre
1	Jane
2	Maria
3	
4	Anna
5	Julia

$\begin{bmatrix} A = 0 \\ J = 1 \end{bmatrix}$	
M = 3	Repeat the steps
N = 3	
E = 3	What is the p

Repeat the steps till the perfect hash is created

Complexity: exponential

What is the problem with this approach?

Infeasible for large sets

Backtracking can be very time-consuming

What if you had to store Jane and Jade?