Baire Spaces

1 Definitions and Main Results

Definition 1. If A is a subset of a (topological) space X, the **interior** of A with respect to X is denoted A° and is defined as the union of all open sets of X that are contained in A. A has **empty interior** if A contains no open set of X other than the empty set, and we write $A^{\circ} = \emptyset$.

Example 1. In the space \mathbb{R} , the subset \mathbb{Q} has empty interior but $[0,1]^{\circ} = (0,1)$.

Definition 2. A subset A of a topological space X is **dense** if every point of X is an adherence point of A.

Lemma 1. The following statements are equivalent:

A is dense in X

- \Leftrightarrow Every nonempty open set of X contains a point in A
- \Leftrightarrow If $x \in X$, every neighborhood of x has a nonempty intersection with A
- $\Leftrightarrow \overline{A} = X$

Lemma 2. A subset A has empty interior in a space X if every point of A is a limit point of A^c . That is, A has empty interior implies A^c is dense in X.

Definition 3. A topological space X is said to be a **Baire Space** if X satisfies the **closed Baire condition**: Given any countable collection $\{A_n\}$ of closed sets in X, each of which has empty interior in X, their union $\bigcup A_n$ also has empty interior in X.

Example 2. The space \mathbb{Q} is not a Baire Space. Each singleton in \mathbb{Q} is closed and has empty interior in \mathbb{Q} . Let (q_n) be an enumeration of the set \mathbb{Q} . Then $(\bigcup_{n=1}^{\infty} \{q_n\})^{\circ} = \mathbb{Q}^{\circ} = \mathbb{Q}$ which is not empty.

On the other hand \mathbb{Z}_+ is a Baire Space. Since singletons are open in \mathbb{Z}_+ , there is no subset of \mathbb{Z}_+ having an empty interior, except for the empty set, so \mathbb{Z}_+ satisfies the closed Baire condition vacuously. The key difference between the two examples is that \mathbb{Z} inherits the discrete topology from \mathbb{R} but \mathbb{Q} does not.

Lemma 3. A space X is a Baire space if and only if it satisfies the **open** Baire condition: given any countable collection $\{U_n\}$ of open sets in X, each of which is dense in X, their intersection $\bigcap U_n$ is also dense in X.

Proof. Let X be a space that satisfies the open Baire condition. Let $\{A_n\}$ be a countable collection of closed sets with empty interior in X. Then $\{A_n^c\}$ is a collection of open sets, each of which by Lemma 1 are dense in X. By assumption, $\bigcap A_n^c$ is also dense in X, that is, $\overline{\bigcap A_n^c} = X$. It follows that

$$\emptyset = X^{c}$$

$$= \left(\bigcap A_{n}^{c} \right)^{c}$$

$$= \left(\left(\bigcap A_{n}^{c} \right)^{c} \right)^{\circ}$$

$$= \left(\bigcup A_{n} \right)^{\circ}$$

Theorem 1. (Baire Category Theorem.) If X is a compact Hausdorff space or a complete metric space, then X is a Baire Space.

Proof. Given a countable collection $\{A_n\}$ of closed sets in X having empty interiors, we want to show that their union $\bigcup A_n$ also has an empty interior in X. So, given a nonempty open set U_0 of X, we must find a point x of U_0 that does not lie in any of the sets A_n .

Consider the first set A_1 . By assumption, A_1 does not contain U_0 . Therefore, we may choose a point $y \in U_0 \setminus A_1$. Regularity of X, along with the fact that A_1 is closed, enables us to choose a neighborhood U_1 of y such that

$$\overline{U_1} \cap A_1 = \emptyset$$

$$\overline{U_1} \subset U_0$$

If X is metric, we also choose U_1 small enough that its diameter is less than 1. In general, given the nonempty open set U_{n-1} , we choose a point of U_{n-1} that is not in the closed set A_n , and then we choose U_n to be a neighborhood of this point such that

$$\overline{U_n} \cap A_n = \emptyset$$

$$\overline{U_n} \subset U_{n+1}$$

$$diam \ U_n < \frac{1}{n}$$
 in the metric case

We assert that the intersection $\bigcap \overline{U_n}$ is nonempty. This occurs in 2 cases: If X is compact and Hausdorff, apply the **closed characterization of Compactness:** every collection of closed sets with the finite intersection property has a non-empty intersection.

If X is a complete metric space, apply the **Nested Set Theorem:** a sequence of nonempty closed sets with vanishing diameter in a complete metric space has a nonempty intersection.

In either case we establish the existence of a point $x \in \bigcap \overline{U_n}$. Then $x \in U_0$ because $x \in \bigcap \overline{U_n} \subset \overline{U_1} \subset U_0$. And since each $\overline{U_n}$ is disjoint from A_n , it follows that $x \notin \bigcup A_n$. This completes the proof.

Lemma 4. Any open subspace Y of a Baire space X is itself a Baire space.

Proof. Let $\{A_n\}$ be a countable collection of closed sets of Y that have empty interiors in Y. We show that $\bigcup A_n$ has empty interior in Y.

Let $\overline{A_n}$ be the closure of A_n in X; then $\overline{A_n} \cap Y = A_n$. The set $\overline{A_n}$ has empty interior in X. For if U is a nonempty open set of X contained in $\overline{A_n}$ then U

must intersect A_n because it contains an adherence point of A_n , and therefore a point of A_n , since U is open. Thus $U \cap Y$ is a nonempty open set of Y contained in A_n , contrary to the hypothesis.

If $\bigcup A_n$ contains the nonempty open set W of Y, then $\bigcup \overline{A_n}$ also contains W, which is open in X because Y is open in X. But each set $\overline{A_n}$ has empty interior in X, contradicting the closed Baire condition.

Theorem 2. Let X be a topological space and (Y,d) a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions that converges pointwise to f(x) where $f: X \to Y$. If X is a Baire space, the set of points at which f is continuous is dense in X.

Proof. Given a positive integer N and given $\epsilon > 0$, define

$$A_N(\epsilon) = \{x \mid d(f_n(x), f_m(x) \le \epsilon, \ \forall n, m \ge N\}$$

Note that $A_N(\epsilon)$ is closed in X, since the set of those x for which $d(f_n(x), f_m(x)) \le \epsilon$ is closed in X by continuity of f_n and f_m , and $A_N(\epsilon)$ is the intersection of these sets for all $n, m \ge N$.

For fixed ϵ , note that $A_1(\epsilon) \subset A_2(\epsilon) \subset \ldots$, and $\bigcup_{N \in \mathbb{N}} A_N(\epsilon) = X$. For, given $x_0 \in X$, the fact that $f_n(x_0) \to f(x_0)$ implies that the sequence $(f_n(x_0))$ is Cauchy; hence $x_0 \in A_N(\epsilon)$ for some N.

Now let

$$U(\epsilon) = \bigcup_{N \in \mathbb{N}} A_N(\epsilon)^{\circ}$$

We shall prove two things:

- (1) $U(\epsilon)$ is open and dense in X.
- (2) The function f is continuous at each point of the set

$$C = \bigcap_{n \in \mathbb{N}} U(\frac{1}{n})$$

The theorem follows from the fact that C must be dense in X because of the open Baire condition.

To show $U(\epsilon)$ is dense in X, it suffices to show that for any nonempty open set V of X, there is an N such that the set $V \cap A_N(\epsilon)^{\circ}$ is nonempty. For this purpose, we note first that for each N, the set $V \cap A_N(\epsilon)$ is closed in V, so we can represent V as a countable union of closed sets:

$$V = V \cap X = V \cap \bigcup_{n \in \mathbb{N}} A_N(\epsilon) = \bigcup_{N \in \mathbb{N}} \left(V \cap A_N(\epsilon) \right)$$

However, by Lemma 4, V is also a Baire space, so it can't be the case that all $V \cap A_N(\epsilon)$ have empty interior; otherwise V would also have an empty interior. Therefore, for some $M \in \mathbb{N}$, $V \cap A_M(\epsilon)$ contains some nonempty open set W of V. Because V is open in X, the set W is open in X; therefore, it is contained in $A_M(\epsilon)^{\circ}$.

Now we show that if $x_0 \in C$, then f is continuous at x_0 . Given $\epsilon > 0$, we shall find a neighborhood W of x_0 such that $d(f(x), f(x_0)) < \epsilon$ for $x \in W$.

First, choose k such that $\frac{1}{k} < \frac{\epsilon}{3}$. Since $x_0 \in C$, we have $x_0 \in U(\frac{1}{k})$; therefore, there is an N such that $x_0 \in A_N(\frac{1}{k})^{\circ}$. Finally, continuity of the function f_N enables us to choose a neighborhood W of x_0 , contained in $A_N(\frac{1}{k})$, such that

i.

$$d(f_N(x), f_N(x_0)) < \frac{\epsilon}{3} \ \forall x \in W$$

The fact that $W \subset A_N(\frac{1}{k})$ implies that

$$d(f_n(x), f_N(x)) \le \frac{1}{k} \quad \forall n \ge N, x \in W$$

Using pointwise convergence of f_n we obtain

ii.

$$d(f(x), f_N(x)) = \lim_{n \to \infty} d(f_n(x), f_N(x)) \le \frac{1}{k} < \frac{\epsilon}{3} \quad \forall x \in W$$

In particular, since $x_0 \in W$, we have

iii.

$$d(f(x_0), f_N(x_0)) < \frac{\epsilon}{3}$$

Applying triangle inequality we obtain:

$$d(f(x), f(x_0)) \le d(f(x), f_N(x)) + d(f_N(x), f_N(x_0)) + d(f_N(x_0), f(x_0)) < \epsilon$$

2 Applications

1. Let X equal the countable union $\bigcup B_n$. If X is a nonempty Baire space, at least one of the sets $\overline{B_n}$ has nonempty interior.

Proof. This follows from the contrapositive of the closed Baire condition: X has nonempty interior in itself, but X is the countable union of closed sets $\bigcup \overline{B_n}$, so there must be at least one such $\overline{B_n}$ that does not have empty interior.

2. If every point x of X has a neighborhood that is a Baire Space, then X is a Baire Space

Proof. Using the open Baire condition, we need to show that if $\{V_n\}$ is a collection of open dense subsets in X, then $\bigcap_{n\in\mathbb{N}} V_n$ is dense in X.

Claim (1): Let $x \in X$ and let W be an open neighborhood of x that is a Baire space. Then $W \cap \bigcap_{n \in \mathbb{N}} V_n$ is dense in W.

Suppose that W_0 is a nonempty open subset of W; then W_0 is also open in X, and since each V_n is dense in X it follows that $V_n \cap W_0 \neq \emptyset$. Then

$$W_0 \cap (V_n \cap W) = V_n \cap (W \cap W_0) = V_n \cap W_0 \neq \emptyset$$

so $V_n \cap W$ is dense in W for all n. Since W is a Baire Space,

$$\bigcap_{n\in\mathbb{N}} V_n \cap W = W \cap \bigcap_{n\in\mathbb{N}} V_n$$

is also dense in W.

Claim (2): $\bigcap_{n\in\mathbb{N}} V_n$ is dense in X.

Let U be a nonempty open subset of X, let $a \in U$, let W_a be an open neighborhood of a that is a Baire space, and let $U_0 = U \cap W_a$, so U_0 is a non-empty open set of W. By claim (1),

$$U_0 \cap \left(W_a \cap \bigcap_{n \in \mathbb{N}} V_n \right) \neq \emptyset$$

However this intersection is clearly contained in

$$U \cap \bigcap_{n \in \mathbb{N}} V_n$$

which must therefore also be nonempty. It follows that $\bigcap_{n\in\mathbb{N}} V_n$ is dense in X, so we conclude that X is a Baire space.

Definition 4. A G_{δ} set of a space X is a countable intersection of open sets of X and can be written $\cap_{n\in\mathbb{N}}G_n$.

Observation 1. If $\bigcap_{n\in\mathbb{N}} G_n$ is dense in \mathbb{R} , then each G_n is dense in \mathbb{R} .

3. If Y is a dense G_{δ} in X, and if X is a Baire Space, then Y is a Baire space in the subspace topology.

Proof. Since Y is a G_{δ} set of X, $Y = \bigcap_{n \in \mathbb{N}} G_n$ for sets G_n which are open and dense in X. Now let $\{V_m\}$ be a countable collection of open dense subsets of Y.

Claim (1): $\bigcap_{m\in\mathbb{N}} V_m$ is dense in Y.

For each m there is an open set W_m of X with $V_m = Y \cap W_m$.

Claim (2): each W_m is dense in X.

Let U be an nonempty open subset of X. Then $U \cap Y \neq \emptyset$, which is a nonempty open subset of Y, so $V_m \cap (U \cap Y) \neq \emptyset$. But

$$V_m \cap (U \cap Y) = (Y \cap W_m) \cap (U \cap Y) = W_m \cap (U \cap Y) \subset W_m \cap U \neq \emptyset$$

This proves claim (2).

Since X is a Baire space, $\bigcap_{n,m\in\mathbb{N}} G_n \cap W_m$ is dense in X. But that intersection is

$$\bigcap_{n,m\in\mathbb{N}}G_n\cap W_m=\bigcap_m\left(\bigcap_nG_n\right)\cap W_m=\bigcap_mY\cap W_m=\bigcap_mV_m$$

Now let U be a nonempty open set of Y. Then there exists an open set U' of X such that $U' \cap Y = U$. But

$$\emptyset \neq U' \cap \bigcap_m V_m = U' \cap \left(Y \bigcap W_m\right) = \left(U' \cap Y\right) \cap \left(Y \bigcap W_m\right) = U \cap \bigcap_m V_m$$

. This proves claim (1), so Y is a Baire space.

4. The irrationals with the subspace topology are a Baire space

Proof. The irrationals are a dense G_{δ} set of \mathbb{R} : $\bigcap_{q \in \mathbb{Q}} \mathbb{R} \setminus \{q\}$. Since \mathbb{R} is a complete metric space, it is a Baire space by the Baire Category theorem. By (3), it follows that the irrationals are a Baire space.

Definition 5. Let $f: X \to Y$ where X is a topological space and Y is a metric space. The **oscillation of f** is defined at each $x \in X$ by

$$\omega_f(x) = \inf\{\operatorname{diam}(f(U))|U \text{ is an open set containing } x\}$$

Specifically, if $f: X \to \mathbb{R}$ is a real-valued function on a metric space, then the oscillation is

$$\omega_f(x) = \lim_{\delta \to 0} diam(f(B(x;\delta)))$$

Lemma 5. A function f is continuous at a point x_0 if and only if the oscillation is zero.

Definition 6. An F_{σ} set of a space X is a countable union of closed sets of X and can be written $\bigcup_{n\in\mathbb{N}} F_n$.

Observation 2. The complement of an F_{σ} set in \mathbb{R} is a G_{δ} set.

5. If $f : \mathbb{R} \to \mathbb{R}$, then the set C(f) of points at which f is continuous is a G_{δ} set in \mathbb{R} .

Proof. First I claim that the set of discontinuities of f is an F_{σ} set. Define

$$F_n := \{x : \omega_f(x) \ge \frac{1}{n}\}$$

Then

$$D(f) = \bigcup_{n \in \mathbb{N}} F_n$$

Each set F_n is closed: If x is a limit point of F_n , it is enough to show $x \in F_n$. If $\delta > 0$, $B(x; \delta) \cap F_n \neq \emptyset$, so there exists $a \in B(x; \delta)$ such that $\omega_f(a) \geq \frac{1}{n}$. However a is contained in a smaller interval, say of radius r, such that

$$\frac{1}{n} \le \operatorname{diam}(f(B(a;r))) \le \operatorname{diam}(f(B(x;\delta)))$$

Since δ was arbitrary, we have

$$\lim_{\delta \to 0} \operatorname{diam}(f(B(x;\delta))) \ge \frac{1}{n} \Rightarrow \omega_f(x) \ge \frac{1}{n} \Rightarrow x \in F_n$$

so F_n is closed. Since D(f) is the countable union of closed sets, it is an F_{σ} set of \mathbb{R} . Thus $\mathbb{R}\backslash D(f)=C(f)$ is a G_{δ} set by observation 2.

6. In ℝ, any G_δ set where each G_n is dense in ℝ must be uncountable
Proof. Suppose G = ⋂_{n∈ℕ} G_n is a countable G_δ set of ℝ where each G_n is dense in ℝ. Then G can be enumerated as {x₁, x₂,...}. Then The sets G_n\{x_n} are also open and dense in ℝ for each n. Then G' = ⋂_{n∈ℕ} G_n\{x_n} = ∅. However G' is the countable intersection of open dense sets. Since ℝ is a Baire space, G' should be dense in ℝ, which is a contradiction.
Theorem 3. There is no function f: ℝ → ℝ that is continuous precisely on a countable dense subset of ℝ
Proof. Follows directly from (5) and (6).
Theorem 4. If (f_n) is a sequence of continuous functions f_n: ℝ → ℝ such that (f_n) converges pointwise to a function f on ℝ, then C(f) is uncountable.
Proof. By Theorem 2, C(f) is dense in ℝ and by (5), C(f) is a G_δ set in

 \mathbb{R} . By Observation 1 and (6), C(f) must be uncountable.

References:

Munkres Topology, chapter 8: Baire Spaces Carothers, Real Analysis; chapter 9: Category Quora Wikipedia