$$Ba(NO_3)_2(s) \longrightarrow Ba^{2+}(aq) + 2NO_3^{-}(aq)$$

Each formula unit of barium nitrate yields three ions in solution.

$$\frac{0.239 \text{ mol Ba(NO}_3)_2}{\text{kg H}_2\text{O}} \times \frac{3 \text{ mol ions}}{\text{mol Ba(NO}_3)_2} \times \frac{-1.86^{\circ}\text{C} \cdot \text{kg H}_2\text{O}}{\text{mol ions}} = -1.33^{\circ}\text{C}$$

4 EVALUATE

The units cancel properly to give the desired answer in °C. The answer is correctly given to three significant digits. The mass of the solute is approximately one-fourth its molar mass and would give 0.75 mol of ions in the 1 kg of solvent, so the estimated answer of $0.75 \times (-1.86^{\circ}\text{C}) = -1.4^{\circ}\text{C}$ supports our computation.

PRACTICE

Answers in Appendix E

- 1. What is the expected freezing-point depression for a solution that contains 2.0 mol of magnesium sulfate dissolved in 1.0 kg of water?
- **2.** What is the expected boiling-point elevation of water for a solution that contains 150 g of sodium chloride dissolved in 1.0 kg of water?
- 3. The freezing point of an aqueous sodium chloride solution is -0.20°C. What is the molality of the solution?

extension

Go to **go.hrw.com** for more practice problems that ask you to calculate the freezing-point depression and boiling-point elevation for electrolyte solutions.

Actual Values for Electrolyte Solutions

It is important to remember that the values just calculated are only *expected* values. As stated earlier, a 0.1 *m* solution of sodium chloride lowers the freezing point *nearly* twice as much as a 0.1 *m* solution of sucrose. The actual values of the colligative properties for all strong electrolytes are *almost* what would be expected based on the number of particles they produce in solution. Some specific examples are given in **Table 3.** The freezing-point depression of a compound that produces two ions per formula unit is almost twice that of a nonelectrolytic solution. The freezing-point depression of a compound that produces three ions per formula unit is almost three times that of a nonelectrolytic solution.

Solute	Concentration (<i>m</i>)	Δt_{fi} observed (°C)	Δt_{fi} nonelectrolyte solution (°C)	$rac{\Delta oldsymbol{t_f}$, observed $\Delta oldsymbol{t_f}$, nonelectrolyte solut
KCl	0.1	-0.345	-0.186	1.85
	0.01	-0.0361	-0.0186	1.94
	0.001	-0.00366	-0.00186	1.97
MgSO ₄	0.1	-0.225	-0.186	1.21
	0.01	-0.0285	-0.0186	1.53
	0.001	-0.00338	-0.00186	1.82
BaCl ₂	0.1	-0.470	-0.186	2.53
	0.01	-0.0503	-0.0186	2.70
	0.001	-0.00530	-0.00186	2.84