TFE4101 KRETS- OG DIGITALTEKNIKK

Regneformer og negative tall Binære tallkoder

Gajski:

- Kap. 2.4: Binær addisjon og subtraksjon
- Kap. 2.5: Negative tall
 - 2.5.1: Fortegn-verdi
 - 2.5.2: 2's komplement (deltall ikke dekket av boka)
- Kap. 2.6: 2's komplement addisjon og subtraksjon
- Kap. 2.10: Binære tallkoder (Graykode ikke dekket av boka)

(Kap 2.7 og 2.8 foreleses senere) (Kap 2.9, 2.11, 2.12 og 2.13 er ikke pensum)

ΓFE4101 igitaltekn Forel. 2

Addisjon av binære tall

$$987(x) + 123(y)$$

$X_i + Y_i + C_i$			C _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

		512	256	128	64	32	16	8	4	2	_1
X		1	1	1			1				
у					1	1	1	1	0	1	1
С	1	1	1	1	1	1	1	0	1	1	0
x+y	1	0	0	0	1	0	1	0	1	1	0
	s ₁₀	S_9	S ₈	s ₇	s ₆	S ₅	S ₄	s_3	S_2	S ₁	s_0

Subtraksjon av binære tall

987(x) - 123(y)

x _i - y _i - b _i			b _{i+1}	$\mid d_i \mid$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

TFE4101 Digitaltekn Forel. 2

Alternative tallrepresentasjoner

Ordinær koding for binære • Alternativ, like "korrekt", tall (m=3):

$$0_{10} = 000_{2}$$

$$1_{10} = 001_{2}$$

$$2_{10} = 010_{2}$$

$$3_{10} = 011_{2}$$

$$4_{10} = 100_{2}$$

$$5_{10} = 101_{2}$$

$$6_{10} = 110_{2}$$

$$7_{10} = 111_{2}$$

koding for binære tall (m=3):

$$0_{10} = 101_{2}$$

$$1_{10} = 011_{2}$$

$$2_{10} = 000_{2}$$

$$3_{10} = 100_{2}$$

$$4_{10} = 110_{2}$$

$$5_{10} = 010_{2}$$

$$6_{10} = 111_{2}$$

$$7_{10} = 001_{2}$$

Den ordinære kodingen er ikke den eneste mulig (men det er selvsagt den som er standard og som direkte utnytter posisjonvektene)

Tallrepresentasjon: Fortegn - tallverdi

- MSB benyttes til fortegn
 - Positive tall: MSB = 0
 - $-01111011_2 = +123_{10}$
 - Negative tall: MSB = 1
 - $-11111011_2 = -123_{10}$
- To representasjoner av 0
 - +0 = -0
 - $r=2, m=4 \rightarrow 0000_2 = 1000_2$
- Addisjon og subtraksjon krever
 - sammenlikning av fortegn
 - sammenlikning av tallverdi
- Multiplikasjon og divisjon er "enkelt"
 - multipliser eller divider tallverdi
 - like fortegn → resultat positivt
 - ulike fortegn → resultat negativt

Fortegn – tallverdi: addisjon og subtraksjon

TFE4101 Digitaltekn Forel. 3

3

Tallrepresentasjon: Radix komplement

Hva og hvorfor:

- Alternativ måte å kode positive og negative tallverdier på
- Fortsatt er MSB fortegnsbit, men dette behandles ikke spesielt
- Positive tallverdier kodes "tilfeldigvis" likedan som ordinær koding
- Koding for en negativ tallverdi finnes ved å "ta radix komplement" av koden til den tilsvarende positive tallverdien
- Muliggjør enkel implementering av addisjon og subtraksjon
- Multiplikasjon og divisjon blir noe mer kompleks

Radix komplement

- Heltall med m siffer: $D = \sum_{i=-n}^{m-1} d_i \cdot r^i$
- Radix-komplement til D er definert som: $\overline{D} = r^m D$
- 10's komplement til tallet 987 (m = 3) er $\overline{D} = 10^3 987 = 13$
- 10's komplement til tallet 123 (m = 3) er $\overline{D} = 10^3 123 = 877$
- Generelt
 - Et tall D mellom 1 og r^m -1 har \overline{D} mellom 1 og r^m -1
 - Både D og \overline{D} kan representeres med m siffer
 - Radix komplement til tallet 000_r (m=3) er

$$\overline{D} = 1000_r - 000_r = 1000_r = 000_r$$

Unik representasjon av 0

Radix komplement

Radix-komplement uten subtraksjon:

- Se Gajski for detaljer
- Innfører begrepet siffer-komplement
 d' = (r-1) d
- Videre har vi

$$D' = d'_{m-1} d'_{m-2} \dots d'_{0}$$

Det kan da vises at:

$$\overline{D} = D' + 1$$

	bin	okt	dec	hex
0	1	7	9	hex F
1	0	6		
2		5	7	D
3		4	8 7 6 5 4 3 2	C
4		3 2 1	5	В
5		2	4	Α
6		1	3	9
7		0	2	8
8			1	7
9			0	6
Α				5
В				4
С				E D C B A 9 8 7 6 5 4 3 2 1
D				2
1 2 3 4 5 6 7 8 9 A B C D E				1
F				0

Radix komplement, deltall

• 2's komplement av D = 001010.11₂ (m=6, n=2)

$$\overline{D} = r^m - D = 2^6 - 001010.11$$

= 1000000 - 001010.11 = 110101.01

Alternativt

$$\overline{D} = D' + r^{-n} = 110101.00 + 000000.01$$

= 110101.01

Radix komplement

- Begrepet radix komplement brukes altså om to ting:
 - En spesiell måte å representere (kode) tall på
 - En metode for å konvertere mellom positive og negative tall
- Vi sier at
 - tallet 1011₂ (-5₁₀) er på 2's komplement format
- men også at vi
 - tar 2's komplement av 0101₂ (+5₁₀) for å få tallet 1011₂ (-5₁₀)
- Merk at dersom vi opererer med 2's komplement format så er 0101₂ (+5₁₀) også på 2's komplement format.

Radix komplement

- Tar man radix komplement av koden til et positivt tall så får man koden til det negative tall med samme tallverdi
 - Koding av $+6_{10} = 0110_2$ $\overline{0110_2} = (0110)_2' + 1_2 = 1001_2 + 1_2 = 1010_2$ $1010_2 = -6_{10}$
- Tar man radix komplement av et negativt tall får man det tilsvarende positive tallet.
- Fortegn behandles på samme måte som tallverdi

	
Desimal	Binært på
på f-t	2's kmpl.
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
0	0000
- 1	1111
- 2	1110
- 3	1101
- 4	1100
- 5	1011
- 6	1010
- 7	1001

Posisjonsvekting for radix komplement

- Også Radix komplementkoding bruker posisjonsbasert vekting
- MSB (fortegnsbit) har negativ vekt: r^{m-1}

F-T:

$$110110_{(2)} = -(1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)$$
$$= -(16 + 0 + 4 + 2 + 0) = -22_{(10)}$$

2-C:

$$101010_{(2)} = 1 \cdot (-(2^5)) + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

$$= -32 + 0 + 8 + 0 + 2 + 0 = -22_{(10)}$$

Gruppeoppgave

Finn radix komplement til 6 B 7 3 , 2₁₆

Hvilke verdier for MSD er positive og negative her?

Addisjon og subtraksjon med radix komplement

 Sammenlikning av fortegnene og tallverdiene ikke nødvendig

- Addere 123_{10} og -234_{10} (m=3)
- $+123_{10} + (-432_{10}) = -309_{10}$
- Finner 10's komplement kode

•
$$+ 123_{10} = 123_{10}$$

•
$$-432_{10} = 432' + 1 = 567 + 1 = 568_{10}$$

• $123_{10} + 568_{10} = 691_{10}$

Behandler alle siffer likt (også fortegn)

• Sjekk tallverdi: $691' + 1 = 308 + 1 = 309_{10}$

TFE4101 Digitaltekn Forel. 3

Addisjon med 2's komplement

- Benytter tabell for binær addisjon
- Addisjon

$$0010_2 (+2_{10})$$

$$= 0110_2 (+6_{10})$$

$$\begin{array}{r}
1110_2 & (-2_{10}) \\
+ & 1100_2 & (-4_{10}) \\
= 1010_2 & (-6_{10})
\end{array}$$

X _i ·	+ y _i +	Ci	c _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Subtraksjon med 2's komplement

 Subtraksjon: addisjon med 2's komplement av subtrahend

$$R = A - B = A + \overline{B}$$

$$0010_{2} (+2_{10})$$

$$+ 1100_{2} (-4_{10})$$

$$= 1110_{2} (-2_{10})$$

X _i	+ y _i +	C _i	c _{i+1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Gruppeoppgave

• Regn ut følgende på 2's komplement (m=4):

$$4 - (-5) =$$

Overflyt

$$0100_{2} (+4_{10})$$

$$+ 0101_{2} (+5_{10})$$

$$= 1001_{2} (-7_{10})$$

- Sjekk av overflyt for addisjonen R = A + B
 - Hvis fortegn til A og B er forskjellig ingen overflyt mulig

 Hvis fortegn til A og B er like men forskjellig fra fortegn til R overflyt (resultat ugyldig)

Overflyt (2's komplement)

Alternativ test av overflyt (implementeringsvennlig)

$$0100_{2}$$
 (+4₁₀)
+ 0101_{2} (+5₁₀)
= 1001_{2} (-7₁₀)

$$1100_{2} \quad (-4_{10})$$
+
$$1011_{2} \quad (-5_{10})$$

$$\underline{1000 \quad (mente)}$$
=
$$0111_{2} \quad (+7_{10})$$

Fortegnsutvidelse (2's komplement)

Utvidelse fra m til M bit (M>m)

$$d_{m-1} d_{m-2} \dots d_{0}$$

$$d_{m-1} d_{m-1} \dots d_{m-2} \dots d_{0}$$

$$M$$

- Kopier fortegnsbitet (M-m) ganger til venstre for fortegnsbitet
- $4 \rightarrow 6$ bit

$$+7_{10}$$
: $0111_2 \rightarrow 000111_2$

$$-7_{10}: 1001_2 \rightarrow 111001_2$$

Binære koder for desimale siffer

- Trenger fire bit for å representere de 10 desimale siffer
- Med fire bit kan vi lage mer enn 29 mrd. ulike kodinger
- Binary Coded Desimal (BCD) er mest vanlig:

BCD	Desimalt siffer
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Ubrukt
	•••
1111	Ubrukt

8421 kode

FE4105 Uke 2 Forel. 2

Binære koder for desimale siffer

• Andre vanlige koder:

Desimalt siffer	2421	EXCESS-3	BIQUINARY
0	0000	0011	0100001
1	0001	0100	0100010
2	0010	0101	0100100
3	0011	0110	0101000
4	0100	0111	0110000
5	1011	1000	1000001
6	1100	1001	1000010
7	1101	1010	1000100
8	1110	1011	1001000
9	1111	1100	1010000

Graykode

- Tallkode
- Fra ett tall til et nabotall endres bare ett bit
- Binært:

$$55_{10} = 00110111_2$$

 $56_{10} = 00111000_2$

Graykodet:

$$55_{10} = 00101100_2$$

 $56_{10} = 00100100_2$

Koden er ikke unik

Desimalt	Binært	Gray
siffer		kode
0	000	000
1	001	001
2	010	011
3	011	010
4	100	1 10
5	101	11 <mark>1</mark>
6	110	101
7	111	100

Graykode

- Konvertering mellom en Gray kode og binære tall
 - Eksempel binært $00110111_2 = 55_{10}$

⊕=XOR

- Benyttes mye i sensorer, posisjonsgivere, A/D-omformere
- En unngår store feil ved små skjevheter i avlesning