# [86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

# Juntura MOS

- 1. Identificación de materiales y valor de parámetros eléctricos
- 2. Distribución de carga para distintos regímenes
- 3. Curva Capacidad-Tensión

# Enunciado

Para una estructura MOS con poly-silicio tipo N,  $N_{Bulk} = 10^{17}$  cm<sup>-3</sup>,  $V_{T} = 0.547$  V,  $V_{C} = 0.545$  V y  $V_{C} = 2.46$   $10^{-7}$  F/cm<sup>2</sup>, considerando que está polarizado con:  $V_{C} = \{-2V, V_{C}, 0, V_{C}, 2V\}$ 

#### hallar

- 1. Las caídas de potencial en el óxido y en el SC,  $\Delta V_{OX}$ ,  $\Delta V_{Bulk}$
- 2. La carga por unidad de superficie en la interfaz poly-óxido Q'<sub>Poly-Ox</sub>
- 3. La capacidad por unidad de área C'<sub>GB</sub>

¿Cómo está compuesta la juntura?







Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_{T} = 0.547 \text{ V}$   $Y^{2} = 0.545 \text{ V}$  $C'_{OX} = 246 \text{ nF/cm}^{2}$ 





Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_{T} = 0.547 \text{ V}$  $V_{C}'_{OX} = 246 \text{ nF/cm}^{2}$ 





Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_{T} = 0.547 \text{ V}$   $Y^{2} = 0.545 \text{ V}$  $C'_{OX} = 246 \text{ nF/cm}^{2}$ 





Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_T = 0.547 \text{ V}$   $Y^2 = 0.545 \text{ V}$  $C'_{OX} = 246 \text{ nF/cm}^2$ 



Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_{T} = 0.547 \text{ V}$   $V_{T}^{2} = 0.545 \text{ V}$  $V_{OX}^{2} = 246 \text{ nF/cm}^{2}$ 

| GATE            | SUBS | Φ <sub>Gate</sub> | Ф <sub>Bulk</sub>               | V <sub>FB</sub>      | V <sub>T</sub>                        |
|-----------------|------|-------------------|---------------------------------|----------------------|---------------------------------------|
| N <sup>++</sup> | N    | +550mV            | $0V < \Phi_{N} < 550 \text{mV}$ | V <sub>FB</sub> < 0V | $V_T < V_{FB} < 0V$                   |
| N <sup>++</sup> | Р    | +550mV            | -550mV < Φ <sub>P</sub> < 0V    | V <sub>FB</sub> < 0V | $V_T > V_{FB}$                        |
| P++             | N    | -550mV            | 0V < Φ <sub>N</sub> < 550mV     | V <sub>FB</sub> > 0V | $V_T < V_{FB}$                        |
| P**             | Р    | -550mV            | -550mV < Φ <sub>P</sub> < 0V    | V <sub>FB</sub> > 0V | V <sub>T</sub> > V <sub>FB</sub> > 0V |

Datos: Poly-N<sup>++</sup>  $N_{Bulk} = 10^{17} \text{ cm}^{-3}$   $V_{T} = 0.547 \text{ V}$   $Y^{2} = 0.545 \text{ V}$  $C'_{OX} = 246 \text{ nF/cm}^{2}$ 

| GATE            | SUBS | Ф <sub>Gate</sub> | $\Phi_{Bulk}$                | V <sub>FB</sub>      | V <sub>T</sub>                   |
|-----------------|------|-------------------|------------------------------|----------------------|----------------------------------|
| N <sup>++</sup> | N    | +550mV            | 0V < Φ <sub>N</sub> < 550mV  | V <sub>FB</sub> < 0V | $V_T < V_{FB} < 0V$              |
| N <sup>++</sup> | Р    | +550mV            | -550mV < Φ <sub>P</sub> < 0V | V <sub>FB</sub> < 0V | V <sub>T</sub> > V <sub>FB</sub> |
| P <sup>++</sup> | N    | -550mV            | 0V < Φ <sub>N</sub> < 550mV  | V <sub>FB</sub> > 0V | $V_T < V_{FB}$                   |
| P**             | Р    | -550mV            | -550mV < Φ <sub>P</sub> < 0V | V <sub>FB</sub> > 0V | $V_T > V_{FB} > 0V$              |

#### Datos: Poly-N<sup>++</sup> $N_{Bulk} = 10^{17} \text{ cm}^{-3}$ $V_{T} = 0.547 \text{ V}$ $V_{T}^{2} = 0.545 \text{ V}$ $V_{T}^{2} = 246 \text{ nF/cm}^{2}$

## ¿Cómo está compuesta la juntura?

Cómo  $V_T$ =0.547V (Positivo) => El sustrato es tipo P.

