Memoria de la práctica

Divide y Vencerás

-Algorítmica-

2°DGIIM

Por: Álvaro López Jiménez Antonio Martín Ruíz

Miguel Ángel Robles Urquiza Jesús Sánchez de Lechina Tejada

<u>Índice</u>

- 1. Introducción
- 2. Info CPU
- 3. Algoritmo a desarrollar
- 4. Fuerza Bruta
- 5. Divide y vencerás
- 6. Anexo
 - 6.1. Tablas de medidas
- 7. Conclusiones

1.Introducción

A continuación expondremos el conjunto de los resultados obtenidos de esta práctica, los cuales complementaremos con una pequeña explicación y una exposición mediante diapositivas.

El objetivo de esta práctica es que el alumno llegue a comprender los beneficios de realizar una buena división de las tareas de un algoritmo para conseguir unos mejores resultados en cuanto a tiempo de ejecución de las tareas.

2.Info CPU

Los códigos de este programa han sido compilados por el compilador g++, en la versión: g++ (*Ubuntu 5.4.0-6ubuntu1~16.04.4*) *5.4.0 20160609*

Los ejecutables resultantes han sido ejecutados en dos computadores distintos:

Fuerza bruta:

Nº de procesadores	4
Procesadores	Intel Core i5-5200U CPU @ 2.20GHz
Tamaño de caché	3072 KB
Memoria	~ 16GB
Sistema Operativo	Ubuntu 14.04.5 x86_64

Fuerza bruta y Divide y Vencerás para su comparativa:

Nº de procesadores	4
Procesadores	Intel Core i7-4700MQ CPU @ 2.40GHz
Tamaño de caché	3863 KB
Memoria	~ 4GB
Sistema Operativo	Ubuntu 16.04.2 LTS 64-bits

3. Algoritmo a desarrollar

Comparación de preferencias

Este algoritmo está basado en las sugerencias que realizan los sitios web en base a unas determinadas preferencias. Si tienes unos gustos similares a los de otra persona te aparecerán determinadas recomendaciones en función del número de "intersecciones" con esa otra persona.

¿Qué es una intersección?

Tenemos un vector con n productos, donde se considera una inversión si dado un elemento de cada vector (propio y de la otra persona), "i" y "j".

Decimos que hay una inversión si i < j (si el producto i aparece antes que el j) pero el valor de ese elemento i-ésimo es mayor que el valor del j-ésimo del otro vector (v1[i] > v2[j]).

4. Fuerza bruta

El algoritmo de fuerza bruta consiste en el recorrido completo del algoritmo, realizando todas las comparaciones. En concreto, para cada elemento del vector tiene que hacer n comparaciones de donde deducimos que su eficiencia teórica será de $O(n^2)$, y en cada iteración comprobará si se produce una inversión, en cuyo caso aumentará un contador.

Datos obtenidos de la ejecución:

5. Divide y vencerás

El algoritmo Divide y Vencerás divide el vector en dos partes. Cada parte llama a la función que compara de forma recursiva (en cada iteración vuelve a dividir el vector) y a la función que cuenta el número de inversiones. Por tanto las inversiones totales serán la suma de todas ellas.

Datos obtenidos de la ejecución:

Ajuste cuadrático:

6. Anexo

Tablas de medidas

FUERZA BRUTA:

FUERZA	DRUIA:
SIZE	TIME (sec)
0	0,000001
1000	0.00214
2000	0.010197
3000	0.02267
4000	0.041792
5000	0.064746
6000	0.087073
7000	0.120476
8000	0.156868
9000	0.199067
10000	0.245326
11000	0.296608
12000	0.349426
13000	0.41633
14000	0.479539
15000	0.558564
16000	0.626193
17000	0.711875
18000	0.792957
19000	0.884969
20000	0.980215

21000	1.08826
22000	1.21335
23000	1.31582
24000	1.39754
25000	1.52876
26000	1.6565
27000	1.80401
28000	1.91598
29000	2.07149
30000	2.22694
31000	2.35126
32000	2.54238
33000	2.67737
34000	2.83205
35000	3.02921
36000	3.17977
37000	3.37868
38000	3.55438
39000	3.73616
40000	3.9321
41000	4.14858
42000	4.31635
43000	4.53344
44000	4.78064
45000	4.99033
46000	5.2154
	·

47000	5.44889
48000	5.65751
49000	5.92186
50000	6.18745

DIVIDE Y VENCERÁS:

SIZE	TIME (sec)
0	0,000001
1000	0.002646
2000	0.008201
3000	0.017436
4000	0.016458
5000	0.001425
6000	0.00639
7000	0.038487
8000	0.073778
9000	0.144886
10000	0.15708
11000	0.206458
12000	0.248312
13000	0.292448
14000	0.102156
15000	0.162888
16000	0.239678
17000	0.323771
18000	0.38844

19000	0.620355
20000	0.692996
21000	0.733849
22000	0.830381
23000	0.902714
24000	0.983748
25000	1.09617
26000	1.08065
27000	0.784625
28000	0.841265
29000	0.953852
30000	1.20428
31000	0.462003
32000	0.676713
33000	1.51263
34000	1.9897
35000	2.17483
36000	2.53727
37000	2.45544
38000	1.54096
39000	2.71603
40000	2.8198
41000	2.71063
42000	2.01716
43000	3.21145
44000	3.44989

45000	3.46834
46000	3.25141
47000	3.78338
48000	3.98788
49000	2.16791
50000	2.90154

7.Conclusiones

Como podemos ver tanto de las gráficas como de las tablas de datos, el algoritmo Divide y Vencerás es más eficiente que el algoritmo Fuerza Bruta, tal y como cabría esperar.