AMENDMENTS TO THE CLAIMS

Please amend the claims without prejudice, without admission, without surrender of subject matter, and without any intention of creating any estoppel as to equivalents, as follows.

(Currently amended) A compound of formula (I):

wherein:

 R^1 is CN[[,]] or $CSNH_2$ or C(=N-Z) $S(O)_r$ Q;

Z is H, $(C_1 - C_6)$ alkyl, $(C_1 - C_6)$ haloalkyl, $(C_3 - C_6)$ alkenyl, $(C_3 - C_6)$ alkynyl, $(CH_2)_q R^2$, COR^8 ; $CO_2 - (C_1 - C_6)$ alkyl or $S(O)_n R^8$;

Q is (C₄-C₆)-alkyl or CH₂R²;

W is C-halogen. C CH2 or N:

R² is hydrogen[[,]] or halogen-or CH₂;

R3 is (C1-C3)-haloalkyl, (C1-C3)-haloalkoxy or SF5;

 R^4 is hydrogen, (C_2-C_6) alkenyl, (C_2-C_6) haloalkenyl, (C_2-C_6) alkynyl, (C_2-C_6) haloalkynyl, (C_2-C_6) alkyl, (C_2-C_6) alkyl unsubstituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_2-C_6) alkenyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alkonyloxy, (C_3-C_6) alkynyloxy, (C_3-C_6) alk

A is (C1-C6)-alkylene or (C1-C6)-haloalkylene;

X is C(=0), C(=S) or SO_2 ;

Y is O, NR¹¹ or a covalent bond;

 R^5 is (C_3-C_6) -alkenyl, (C_2-C_6) -haloalkenyl, (C_2-C_6) -alkynyl, (C_2-C_6) -haloalkynyl, (C_3-C_2) -eyeloalkyl, (C_3-C_6) -alkyl, (C_3-C_6) -alkyl, (C_3-C_6) -alkyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, (C_3-C_6) -alkenyloxy, (C_3-C_6) -haloalkoxy, (C_3-C_6) -alkynyloxy, (C_3-C_6) -haloalkynyloxy, (C_3-C_6) -haloalkynylo

 $R^{\delta} \text{ is } (C_1 - C_6) \text{-alkyl}[[.]] \text{ } \underbrace{or} (C_1 - C_6) \text{-haloalkyl}, \underbrace{(C_2 - C_6) \text{-haloalkenyl}, \underbrace{(C_2 - C_6) \text{-haloalkenyl},}_{\text{alkynyl} \text{ or } (C_2 - C_6) \text{-haloalkynyl};}_{\text{alkynyl} \text{ or } (C_2 - C_6) \text{-haloalkynyl};}$

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(C_1\text{-}C_6)$ -alkyl, $(C_1\text{-}C_6)$ -haloalkyl, $(C_1\text{-}C_6)$ -alkoxy, $(C_1\text{-}C_6)$ -haloalkoxy, $(C_1\text{-}C_6)$ -haloalk

R8 is (C1-C6)-alkyl or (C1-C6)-haloalkyl;

 R^9 and R^{10} are each independently H[[,]] or (C_1-C_6) -alkyl, $(-C_4-C_6)$ -haloalkyl, $(-C_2-C_6)$ -alkenyl, $(-C_2-C_6)$ -alkynyl, $(-C_2-C_6)$ -eyeloalkyl or $(-C_4-C_6)$ -alkyl $(-C_2-C_6)$ -eyeloalkyl; or

R⁶ and R¹⁶ together with the attached N-atom form a five-or six membered saturated ring which optionally contains an additional hetero atom in the ring which is selected from O, S and N, the ring being unsubstituted or substituted by one or more radicals selected from the group consisting of halogen. (C₁-C₆) alkyl and (C₁-C₆) halogalkyl:

 R^{11} is $H[[,]] \underline{or}(C_1-C_6)$ -alkyl, (C_4-C_6) haloalkyl, (C_2-C_6) -alkenyl or (C_2-C_6) -alkynyl; R^{12} is heterocyclyl-unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_4-C_4) -alkyl, (C_4-C_4) -haloalkyl, (C_4-C_4) -alkoxy, (C_4-C_4) -haloalkoxy, (C_4-C_4) -alkyl, (C_3-C_4) -alkyl, (C_4-C_4) -haloalkyl, (C_4-C_4) -alkoxy, (C_4-C_4) -alkyl, (C_4-C_4) -alkyl, (C_4-C_4) -alkyl, (C_4-C_4) -alkoxy, (C_4-C_4) -alkoxy, (C_4-C_4) -alkyl, $(C_4-C$

 R^{4*} is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, $(C_4 \cdot C_6)$ alkyl, $(C_4 \cdot C_6)$ haloalkyl, $(C_4 \cdot C_6)$ alkoxy, $(C_4 \cdot C_6)$ haloalkoxy, $(C_4 \cdot C_6)$ haloalkyl, $(C_4 \cdot C_6)$ haloalkyl, (C

n, p and r are each independently is zero, one or two; m and q are each independently zero or one; and

each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S;

or a pesticidally acceptable salt thereof.

- (Cancelled)
- (Original) A compound or a salt thereof as claimed in claim 1 wherein R⁶ is CF₃.
- (Currently amended) A compound or a salt thereof as claimed in claim 1 wherein R⁺is
 CN, CSNH₂ or C(=N-Z) S Q;

$$\begin{split} &Z \text{ is } H, (C_1 - C_2) \text{ alkyl}, \quad (CH_2)_q R^2, COR^4, CO_2 - (C_1 - C_2) \text{ alkyl or } S(O)_p R^4; \\ &Q \text{ is } (C_1 - C_2) \text{ alkyl}; \\ &W \text{ is } C - Cl; \end{split}$$

R² is Cl:

R³ is CF₂:

 R^4 is hydrogen, (C_2-C_4) alkenyl, (C_2-C_4) alkynyl, (C_2-C_2) eyeloalkyl, CO_2 — (C_1-C_4) -alkyl, CO_2 — (C_3-C_4) -alkenyl, CO_2 — (C_3-C_4) -alkynyl, CO_2 — (C_1-C_4) -alkyl, CO_2 — (C_1-C_4) -alkyl, unsubstituted or substituted by one or more radicals selected from the group consisting of halogen[[,]] and (C_1-C_3) -alkoxy- $S(O_3-R^2)$ -alkoxy- $S(O_3-R^2)$ -alkyl).

X is C(=O) or SO₂;

Y is O, NH or a covalent bond;

 R^5 is (C_3-C_4) -alkenyl, (C_2-C_4) -alkynyl, $-(CH_2)_qR^7$, (C_1-C_3) -alkyl or (C_1-C_3) -haloakyl; R^6 is CF_3 :

each R^7 is independently phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1, C_3) -haloalkoxy,

each R⁸ is independently (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl.

(Currently amended) A compound or a salt thereof as claimed in claim 1 wherein R⁺is CN or CSNH₂:

R3 is CF2:

R4 is (C1-C3)-alkyl:

Y is O, NH or a covalent bond;

$$R^5$$
 is (C₃-C₄)-alkenyl, $(G_2$ -C₄) alkynyl, —(CH₂) $_qR^7$, (C₁-C₃)-alkyl or (C₁-C₃)-haloalkyl; R^6 is CF₃;

 R^7 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_3) -alkyl, (C_1-C_3) -haloalkyl, (C_1-C_3) -alkoxy, (C_1-C_3) -haloalkoxy, (C_1-C_3) -haloalk

- 6. (Currently amended) A process for the preparation of a compound of formula (I) or a salt thereof as defined in claim 1, which process comprises:
- a) when R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, R¹ is CN, and Y and X are as defined in claim 1 with the exclusion of compounds in which —Y—X— is —NH—CO— or NH—CS—, acylating or sulfonylating a compound of formula (II):

wherein R^2 , R^3 , R^4 , R^6 , W, A and n are as defined in formula (II), with a compound of formula (III):

$$R^5$$
—Y—X-L (III)

wherein Y and X are as defined in formula (I) with the exclusion of compounds in which —Y—X— is —NH—CO— or —NH—CS—, and L is a leaving group; or

b) when R¹ is CN, and R², R³, R⁴, R⁵, R⁶, W, A and n are as defined in claim 1, reacting a compound of formula (II) wherein R¹, R², R³, R⁶, W, A and n are as defined in claim 1 and —Y—X— is —NH—CO— or —NH—CS—, with an isocyanate or isothiocyanate compound of formula (IV) or (V):

$$R^5$$
— N = C = O (IV)

$$R^{5}-N=C=S$$
 (V)

wherein R5 is as defined in formula(I); or

- c) when R^1 is CN, n is 1 or 2, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X and Y are as defined in claim 1, oxidizing a corresponding compound in which n is 0 or 1; or
- d) when R^1 is CSNH₂, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (I) wherein R^1 is CN, with an alkali or alkaline earth metal hydrosulfide, or with the reagent Ph₂PS₂; or

(e) when R^1 is CSNH₂, and R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (1) wherein R^1 is CN, with a bis(trialkylsilyl)sulfide, in the presence of a base; Θ -and

(f) when R^+ is C(=N-H)-S-Q, and Q, R^2 , R^3 , R^4 , R^5 , R^6 , W, A, X, Y and n are as defined in claim 1, reacting the corresponding compound of formula (1) wherein R^+ is $CSNH_2$ with an alkylating agent of formula (VI) or (VII):

Q₂O*BF₄" (VI)

wherein Q is as defined in formula (I) and L-+is a leaving group; or

(g) when R⁺is C(=N-Z) S-Q, Z is as defined in claim I with the exclusion of H, and the other values are as defined in formula (I), alkylating, acylating or sulfonylating the corresponding eompound of formula (I) wherein Z is H, with a compound of formula (VIII):

Z.L²

(ZIII)

wherein Z is as defined in formula (I) with the exclusion of H, and L² is a leaving group; and

(f)(h) if desired, converting a resulting compound of formula (I) into a pesticidally acceptable salt thereof.

(Original) A pesticidal composition comprising a pesticidally effective amount of a
compound of formula (I) or a pesticidally acceptable salt thereof as defined in claim 1, in
association with a pesticidally acceptable diluent or carrier and/or surface active agent.

8-9. (Cancelled)

10. (Original) A method for controlling pests at a locus which comprises applying to said locus a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1.

Appl. No. 10/570,042 Reply dated April 2, 2010

Response to Office Action dated July 7, 2009

 (Original) A method for controlling pests at a locus which comprises applying to said locus a pesticidally effective amount of a composition as claimed in claim 7.

- 12. (Original) A veterinary medicament comprising a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1, in association with a veterinarily acceptable diluent or carrier and/or surface active agent.
- 13. (Original) A method for the control of pests in or on an animal which comprises administering to said animal a pesticidally effective amount of a compound of formula (I) or a salt thereof as claimed in claim 1.
- 14. (Original) A method for the control of pests in or on an animal which comprises administering to said animal a pesticidally effective amount of a veterinary medicament as claimed in claim 12.
- Cancelled.
- Cancelled.
- (Original) A compound or a salt thereof as claimed in claim 1, wherein R¹ is CN, R⁴ is CH₃, R⁶ is CF₃, A is —CH₂CH₂—, W is C—Cl, R² is Cl and R³ is CF₃.
- 18. (Previously presented) A compound of formula (I) or salt thereof

$$R^{5}-Y-X-Q-A$$

$$R^{2}$$

$$R^{3}$$

$$W$$

$$R^{3}$$

$$R^{3}$$

$$W$$

wherein:

R¹ is CN, R⁴ is CH₃, R⁶ is CF₃, A is —CH₂CH₂—, W is C—Cl, R² is Cl and R³ is CF₃; and

- (a) X is C(=O), Y is O, R⁵ is CH₃ and n is 1;
- (b) X is C(=O), Y is O, R⁵ is 4-nitrophenyl and n is 2;
- (c) X is C(=O), Y is a covalent bond, R⁵ is CH₃ and n is 2;
- (d) X is C(=O), Y is a covalent bond, R⁵ is CH₂OCH₃ and n is 2;
- (e) X is C(=0). Y is a covalent bond, R⁵ is 4-trifluoromethylphenyl and n is 2:
- (f) X is C(=0), Y is a covalent bond, R⁵ is 2,6-difluorophenyl and n is 2;
- (g) X is C(=0), Y is a covalent bond, R⁵ is 2-fluorophenyl and n is 2;
- (h) X is C(=O), Y is NH, R5 is 4-ethoxyphenyl and n is 2;
- (i) X is C(=O), Y is NH, R5 is 4-trifluoromethoxyphenyl and n is 2;
- (j) X is SO₂, Y is a covalent bond, R⁵ is propyl and n is 2;
- (k) X is SO₂, Y is a covalent bond, R⁵ is 4-chlorophenyl and n is 2; or
- (1) X is SO_2 , Y is a covalent bond, R^5 is 4-methylphenyl and n is 2.