

FALL 2019, WEEKLY COURSE BREAKUP PLAN

COURSE BASICS

Course Title: Applied Physics

Course Code: **GSC-114**

Credit Hours: 2+1
Prerequisite: Nil

Class & Section: **BSE-1(A, B)**

COURSE OBJECTIVES AND DESCRIPTION:

The objective of this course is to give students the basic ideas/concepts of physical sciences which would help them in better understanding of its applications in engineering. It will provide students with the knowledge of a wide variety of electric and magnetic phenomena and start with the basics of electricity at the atomic level and take it to the circuit level for electric circuit analysis and design. Majority of the course is dedicated for electric and magnetic fields, forces, elements and their applications. Additionally, it also aims to provide introductory knowledge of wave theory, thermodynamic theory and optics in conjunction with their applications.

COURSE LEARNING OUTCOMES (CLO):

On successful completion of the course students will be able to:

CLO#	CLO Statement	Bloom's Taxonomy
CLO 1	To recall the fundamental laws of physics relevant to the engineering sciences	C1
CLO 2	To describe the basic concepts of vectors, mechanics, atomic structure and electromagnetism.	C2
CLO 3	To demonstrate proficiency in problem solving and analysis	C4

WEEKLY BREAKDOWN:

Week	Week Days	Lecture Number	Tentative Course Plan
		1	Physics Introduction
1	9 th Sep	2	Scalars and Vectors
		Lab: 1	Introduction of Instruments
		3	Laws of Vector
2	16 th Sep	4	Vector Diagrams and Numerical
	Lab: 2	Determination of value of 'g'	
		5	Directions Cosines
3	23 rd Sep	6	Law of Sine and Cosine
		Lab: 3	Variation of Electric Current with Intensity of Light

FALL 2019, WEEKLY COURSE BREAKUP PLAN

4 30 th Sep		7	Collinear Vectors and Coplanar Vectors	
	30 th Sep	8	Non Collinear Vectors and Non Coplanar Vectors	
		Lab: 4	Compare the Luminous Intensities of two light sources	
5 7 th Oct	9	Scalar Field		
	7 th Oct	10	Vector Field and Linear Dependence	
		Lab: 5	To find RC time constant	
		11	Vector Numericals	
6	14 th Oct	12	Force and Motion	
		Lab: 6	Design a Voltage Divider Circuit	
		13	Newton's Law of Motion	
7	21st Oct	14	Newton's Law of Universal Gravitation	
		Lab: 7	Study the characteristics of RLC Acceptor Circuit	
		15	Rigid Bodies	
8	28 th Oct	16	Deformable Bodies and Torque	
		Lab: 8	Study the characteristics of RLC Rejector Circuit	
9			Mid Term Exams	
	11 th Nov	19	Centripetal and Centrifugal Force	
10	11 NOV	20	Equations of Motion and its Numerical	
		Lab: 9	Use a Passive Low Pass RC Filter to Draw Output Response	
		21	Equilibrium	
11	18 th Nov	22	Equilibrium Numerical	
		Lab: 10	Use a Passive High Pass RC Filter to Draw Output Response	
		23	Moment of Force	
12	25 th Nov	24	Electricity and Magnetism	
		Lab: 11	Use of Galvanometer and its conversion into Voltmeter	
		25	Charging and charging by Induction	
13	02 nd Dec	26	Atomic Structure of Elements	
		Lab: 12	Use of Galvanometer and its conversion into Ammeter	
		27	Role of Atomic Structure in Conduction of Electricity	
14	09 th Dec	28	Coulomb's Law and Electrostatic Force	
		Lab: 13	AC frequency determination using Melde's apparatus	
		29	Electric Field Intensity	
15	16 th Dec	30	Electric Potential due to Point Charge	
	10 DCC	Lab: 14	Determine the value of unknown Resistance using Meter Bridge	
		31	Resistivity and Resistances	
16	23 rd Dec	32	Conductivity and Electric Power	
17	30 th Dec		Course Revision	
18			Final Term Exam	

FALL 2019, WEEKLY COURSE BREAKUP PLAN

NOTE:

- a. This schedule is subject to revisions as conditions may warrant.
- b. Topics will be covered in sequence no matter if city observes any planned or unplanned holidays.
- c. The information in this course outline is subject to revision as conditions may warrant.

COURSE ASSESMENT METHOD

METHOD OF EVALUATION AND STRUCTURE:

A student's grade will be based on multiple measures of performance as mentioned below:

EVALUATION INSTRUMENTS (EI)	MARKS
Quizzes	10
Assignments	20
Mid Term Examination	20
Final Examination	50
Total:	100

NOTE: Any change in this scheme/format will be communicated well in time.

MAPPING OF CLOS TO PLOS (PROGRAM LEARNING OUTCOMES)

	CLO's		
PLO'S	CLO 1	CLO 2	CLO 3
PLO:1 (Engineering Knowledge)	✓	✓	
PLO:2 (Engineering Problem Analysis)			✓
PLO:3 (Designing and Development)			
PLO:4 (Investigation)			
PLO:5 (Modern tool usage)			
PLO:6 (Engineer and Society)			
PLO:7 (Environment and Sustainability)			
PLO:8 (Professionalism and Ethics)			
PLO:9 (Individual and Team Work)			
PLO:10 (Communication)			
PLO:11 (Project Management)			
PLO:12 (Lifelong Learning)			

FALL 2019, WEEKLY COURSE BREAKUP PLAN

MAPPING OF CLOS TO COURSE EVALUATION INSTRUMENTS (EI)

	CLO's		
EI	CLO 1	CLO 2	CLO 3
Assignments	✓	✓	✓
Quizzes	✓	✓	✓
Midterm Exam	✓	✓	✓
Final Exam	✓	✓	✓

GRADING SYSTEM:

Letter Grade	Grade Point	Percentage		
A	4.0	≥ 85	-	
A-	3.67	≥80	< 85	
B+	3.33	≥ 75	< 80	
В	3.00	≥ 71	< 75	
В-	2.67	≥ 68	< 71	
C+	2.33	≥ 64	< 68	
С	2.00	≥ 60	< 64	
C-	1.67	≥ 57	< 60	
D+	1.33	≥ 54	< 57	
D	1.00	≥ 50	< 53	
F	0.00	-	< 50	

COURSE RESOURCES

INSTRUCTOR:

NAME: Engr. Bushra Aijaz

TEXTBOOKS:

1. Principles of Physics by David Halliday, Jearl Walker and Robert Resnick (Latest Ed)

REFERENCE BOOKS:

- 1. Fundamentals of Physics (Extended), by David Halliday, Robert Resnick and Jearl Walker (Latest Ed)
- 2. University Physics, by Freedman and Young (Latest Ed)

ONLINE REFERENCES:

- 1. https://www.physicsclassroom.com/physics-tutorial
- 2. https://www.khanacademy.org/science/physics

FALL 2019, WEEKLY COURSE BREAKUP PLAN

Appendix III Blooms Taxonomy Levels Codes

	Knowledge (C1)
Comitive	Comprehension (C2)
	Application (C3)
Cognitive	Analysis (C4)
	Synthesis (C5)
	Evaluation (C6)
	Receiving (A1)
	Responding (A2)
A ffective	Valuing (A3)
	Organization (A4)
	Characterization (A5)
	Speed (P1)
	Strength (P2)
	Endurance (P3)
	Coordination (P4)
	Precision (P5)
P sychomotor	Flexibility (P6)
·	Agility (P7)
	Dexterity (P8)
	Manipulation (P9)
	Grace (P10)
	Technique (P11)