Generating all distributions of objects to bins

Muhammad Abdullah Adnan and Md. Saidur Rahman

Presented By

GROUP-3 K. M. Safin Kamal (2024-1-96-006)

Submitted To

Dr. Md. Saidur Rahman
Professor, Adjunct Faculty, Dept of CSE
East West University

Problem Statement

Can we generate all distributions of identical objects to bins in O(1)?

Real world example of Distributing Object into bins

Number of distributions = (n + m - 1)!/n!(m - 1)!

m= Number of bins = 2 n= Number of objects = 3

The problems with Klingsberg's algorithm

- Cannot generate each solution in O(1)
- Generates solutions in constant time on average
- Klingsberg's method requires searching for the second non-zero element in the sequence for solutions that have a non-zero first elements
- Inefficient in the generation process

The Efficient Algorithm

- Constant Time Generation: Generates each distribution in constant time (in ordinary sense)
- **Efficient Traversal:** Efficient tree traversal method to ensure each distribution is generated quickly.
- Space Complexity: O(m lg n)
- Optimization: Reduce non-generation steps
- No repetition.
- Generates in specific order.

Application of the algorithm

- Automation in Machines
- Computer Networks
- Client-Server Architecture
- Combinatorial Problems

The family tree of distributions

We define a tree structure $T_{n,m}$ among the distributions in D(n, m). Each node of $T_{n,m}$ represents a distribution (a1, a2,...,am) $\in D(n, m)$. If there are m bins then there are m levels $T_{n,m}$.

The family tree of distributions (cont.)

Tn,m is a rooted tree we need a root, and the root is a node at level 0. we can observe that a node is at level 0 in Tn,m and $a1 = a2 = \cdots = am-1 = 0$ and am = n.

Parent-child relationship

The number of children a parent has is equal to am-i

Let Cj (A) \in D(n, m) be the sequence of j th child, $1 \le j \le am-i$ of A. Note that A is in level i of Tn,m and Cj (A) will be in level i + 1 of Tn,m. We define the sequence for Cj (A) as (c1, c2,...,cm-i-1, cm-i,...,cm), where $0 \le l < m$, c1 = c2 =···= cm-i-2 = 0 and cm-i-1 = j, cm-i = am-i-j and ck = ak for $m - i + 1 \le k \le m$

Let Cj (A) \in D(n, m) be the sequence of j th child, $1 \le j \le am-i$ of A. Note that A is in level i of Tn,m and Cj (A) will be in level i + 1 of Tn,m. We define the sequence for Cj (A) as (c1, c2,...,cm-i-1, cm-i,...,cm), where $0 \le l < m$, C1 = C2 =···= Cm-i-2 = 0 and Cm-i-1 = j, Cm-i = am-i-j and Ck = ak for $m-i+1 \le k \le m$

Let Cj (A) \in D(n, m) be the sequence of j th child, $1 \le j \le am-i$ of A. Note that A is in level i of Tn,m and Cj (A) will be in level i + 1 of Tn,m. We define the sequence for Cj (A) as (c1, c2,...,cm-i-1, cm-i,...,cm), where $0 \le l < m$, C1 = C2 =···= Cm-i-2 = 0 and Cm-i-1 = j, Cm-i = am-i - j and Ck = ak for $m-i+1 \le k \le m$

Let Cj (A) \in D(n, m) be the sequence of j th child, $1 \le j \le am-i$ of A. Note that A is in level i of Tn,m and Cj (A) will be in level i + 1 of Tn,m. We define the sequence for Cj (A) as (c1, c2,...,cm-i-1, cm-i,...,cm), where $0 \le l < m$, C1 = C2 =···= Cm-i-2 = 0 and Cm-i-1 = j, Cm-i = am-i - j and Ck = ak for m - i + 1 \le k \le m

Child-parent relationship

The child–parent relation is just the reverse of parent–child relation. Let $P(A) \in D(n, m)$ be the parent sequence of A. We define the sequence for P(A) as (p1, p2, ..., pm-i+1, ..., pm) where $1 \le I < m$, $p1 = p2 = \cdots = pm-i = 0$, pm-i+1 = am-i + am-i+1 and pj = aj for $m-i+1 < j \le m$.

Child-parent relationship(cont.)

The child–parent relation is just the reverse of parent–child relation. Let $P(A) \in D(n, m)$ be the parent sequence of A. We define the sequence for P(A) as (p1, p2, ..., pm-i+1, ..., pm) where $1 \le I < m$, $p1 = p2 = \cdots = pm-i = 0$, pm-i+1 = am-i + am-i+1 and $P_j = a_j$ for $m-i+1 < j \le m$.

Child-parent relationship(cont.)

The child–parent relation is just the reverse of parent–child relation. Let $P(A) \in D(n, m)$ be the parent sequence of A. We define the sequence for P(A) as (p1, p2, ..., pm-i+1, ..., pm) where $1 \le I < m$, $p1 = p2 = \cdots = pm-i = 0$, pm-i+1 = am-i + am-i+1 and $P_j = a_j$ for $m-i+1 < j \le m$.

Child-parent relationship(cont.)

The child–parent relation is just the reverse of parent–child relation. Let $P(A) \in D(n, m)$ be the parent sequence of A. We define the sequence for P(A) as (p1, p2, ..., pm-i+1, ..., pm) where $1 \le I < m$, $p1 = p2 = \cdots = pm-i = 0$, pm-i+1 = am-i + am-i+1 and $P_j = a_j$ for $m-i+1 < j \le m$.

Efficient tree traversal O(1) time Relationship between left sibling and right sibling

Right sibling As \in D(n,m) of node A exists if **am-i+1\neq 0** at level i of Tn,m. the sequence for As as $(s1,s2,...,sm-i,sm-i+1,...,sm),1 \le i < m$ where s1 = s2 = ... = sm-i-1 = 0, sm-i = am-i+1, sm-i+1 = am-i+1-1 and sj = aj for $m-i+2 \le j \le m$.

Leaf-ancestor relationship

Al = rightmost leaf, Aa = Nearest ancestor which has right siblings, k = number of consecutive 0's, Aa \in D(n,m) of node Al exists if a2 = 0. Nearest ancestor is obtained by swapping a1 and ak+1 at level m-1-k

Efficient tree traversal

Pseudo Code

```
Algorithm Find-All-Distributions(n, m)
\{A_r \text{ is the root sequence, } S \text{ indicates the current stack } \}
                                                                                                  Call the function by root
begin
  Find-All-Child-Distributions (A_r = (0, ..., 0, n), 0, S);
end.
Procedure Find-All-Child-Distributions(A = (a_1, a_2, \dots, a_m), i, S)
{ A is the current sequence, i indicates the current level, A_c is the child sequence, A_s is the right sibling
sequence, A_a is the ancestor sequence and S indicates the current stack }
begin
  Output A {Output the difference from the previous distribution}
  if a_1 = 0 then
    begin
      { A has child}
                                                                                                          Find Child
      if a_{m-i} - 1 = 0 then
        if a_{m-i+1} \neq 0 then Push(1, S);
        else Top(S) = Top(S) + 1;
      Find-All-Child-Distributions(A_c = (a_1, a_2, ..., a_{m-i-2}, 1, (a_{m-i} - 1), ..., a_m), i + 1, S);
                                                                                                                      21
    end
```

```
else if a_2 \neq 0 then
    begin
      { A has right sibling }
                                                                                                     Find Right Sibling
      if a_2 - 1 = 0 then
        if a_3 \neq 0 then Push(1, S);
        else Top(S) = Top(S) + 1;
      Find-All-Child-Distributions (A_s = ((a_1 + 1), (a_2 - 1), \dots, a_m), i, S)
    end
  else
    begin
      k = \mathbf{Pop}(S);
      Swap(a_1, a_{k+1}); {Generate the ancestor A_a of A}
      if k = m - 1 then return; {A_a is the root}
      else
      begin
        \{A_a \text{ has right sibling}\}
        if a_{k+2} - 1 = 0 then
          if a_{k+3} \neq 0 or k + 2 = m then Push(1, S);
          else Top(S) = Top(S) + 1;
        Find-All-Child-Distributions(A_{as} = (a_1, a_2, ..., (a_{k+1} + 1), (a_{k+2} - 1), ..., a_m), m - 1 - k, S);
      end
    end
end;
```

Find Ancestor's Right Sibling

Anti-lexicographical Order

Conclusion

This paper presents a simple, efficient algorithm for generating all distributions in D(n, m) with specified order, including antilexicographic, operating in constant time.

Reference

- [1] A.V. Aho and J.D. Ullman, Foundation of Computer Science, Computer Science Press, New York, 1995.
- [2] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1996), pp. 21–46.
- [3] T.I. Fenner and G. Loizou, A binary tree representation and related algorithms for generating integer partitions, Comp. J. 23 (1979), pp. 332–337.
- [4] S. Kawano and S. Nakano, Constant time generation of set partition, IEICE Trans. Fundam. E88-A(4) (2005), pp. 930–934.
- [5] P. Klingsberg, A gray code for compositions, J. Algorithms 3 (1982), pp. 41–44. Downloaded By: [Saidur Rahman, Md.] At: 12:43 8 March 2009 392 M.A. Adnan and M.S. Rahman
- [6] S. Nakano and T. Uno, Constant time generation of trees with specified diameter, Proc. of WG 2004, LNCS 3353 (2004), pp. 33–45.
- [10] A.S. Tanenbaum, Computer Networks, Prentice Hall, Upper Saddle River, New Jersey, 2002.
- [11] Modern Operating Systems, Prentice Hall, Upper Saddle River, New Jersey, 2004.
- [12] K. Yamanaka, et al., Constant time generation of integer partitions, IEICE Trans. Fundam. E-90-A (5) (2007), pp. 888–895.
- [13] A. Zoghbi and I. Stojmenovic, Fast algorithm for generating integer partitions, Intern. J. Comput. Math. 70 (1998), pp. 319–332.

Thank You