Домашнее Задание по ТРЯПу №4

Павливский Сергей Алексеевич , 873 03.01.2019

Задание 1.

- 1. Постройте КМП-автомат для слова babbabab (над алфавитом $\{a,b\}$).
- 2. Постройте для того же слова КМП-автомат A^s с суффиксными ссылками.
 - 3. Продемонстрируйте работу автомата A^{s} на словах :
 - a) babbabbabab;
 - б) babbabc.

Под демонстрацией понимается последовательность конфигураций автомата A^s , т.е. пар из состояния и необработанной части слова.

Решение

1) Согласно определению КМП-автомата из учебника :

2) A^s (красным цветом отмечены суффиксы-ссылки) :

- 3)
- a)
- $(\varepsilon, babbabbabab)$
- (b, abbabbabab)
- (ba, bbabbabab)
- (bab, babbabab)
- (babb, abbabab)
- (babba, bbabab)
- (babbab, babab)
- (babb, abab)
- (babba, bab)
- (babbab, ab)
- (babbaba, b)
- (babbaba, ε)
- б)
- $(\varepsilon, \text{babbabc})$
- (b, abbabc)
- (ba, bbabc)
- (bab, babc)
- (babb, abc)
- (babba, bc)
- (babbab, c)
- $(\varepsilon, \varepsilon)$

Задание 2.

Постройте для словаря $S = \{ac, acb, b, ba, c, cbb\}$ автомат Ахо–Корасик. Посчитайте c его помощью или количество различных вхождений слов из словаря S в слово acbacbb в качестве подслов.

Решение

ДКА для словаря:

Тогда автомат Ахо-Корасик (красным цветом отмечены суффиксыссылки ; синим цветов отмечены состояния , которые не были принимающими в ДКА для словаря , но стали принимающими по построению автомата АК (имеют суффикс не равный самим себе , но равный одному из принимающих состояний автомата)):

Работа автомата

acbacbb:

 ε acbacbb 0

a cbacbb 0

ac bacbb 2

acb acbb 2

cb acbb 0!

b acbb 0!

ba cbb 1

a cbb 0!

ac bb 2

acb b 2

cb b 0! cbb ε 2

Задание 3.

Как построить ДКА с не более чем 50 состояниями для языка из слов, содержащих хотя бы одно подслово из множества $\{aab, ba\}$, но не содержащих подслово babb?

Решение

Построим ДКА1 Ахо-Корасик, распознающий язык из слов содержащих подслово aab или ba, который строится на основании автомата Ахо-Корасика с аналогичными функциями без увеличении количества состояний, который в свою очередь строится на основании словаря, содержащего aab и ba, также без увеличения количества состояний. Тогда количество состояний ДКА = количество состояний словаря = 6 (ε , a, aa, aab, b, ba). Также можно построить ДКА распознающий язык из слов содержащих подслово babb, в котором будет столько же состояний, сколько и в словаре, содержащем babb, то есть $5 (\varepsilon,$ b, ba, bab, babb), и построить ДКА2 распознающий дополнение к этому языку (делаем ДКА всюду определенным добавлением одной вершины, а далее все принимающие вершины делаем непринимающими, а все непринимающие - принимающими), имеющий 5+1=6 состояний. Тогда построим автомат, являющийся объединением ДКА1 и ДКА2 по алгоритму построения объединения автоматов из учебника, количество состояний которого будет равно $|Q_1| * |Q_2| = 36 < 50$ ч.т.д.