

energética em edificações

cb3e.ufsc.br

Relatório: Fatores de conversão de energia elétrica e térmica em energia primária e em emissões de dióxido de carbono a serem usados na etiquetagem de nível de eficiência energética de edificações

[Versão 1]

Ricardo Forgiarini Rupp **Roberto Lamberts**

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO - DEPARTAMENTO DE ENGENHARIA CIVIL

Campus Universitário – Trindade Florianópolis – SC – CEP 88040-900 Caixa Postal 476

Fundação de Ensino e Engenharia de Santa Catarina http://www.feesc.org.br

CB3E - Centro Brasileiro de Eficiência Energética em Edificações

http://www.cb3e.ufsc.br

Centrais Elétricas Brasileiras S.A.

http://www.eletrobras.gov.br

Programa Nacional de Conservação de Energia Elétrica http://www.eletrobras.gov.br/procel

Convênio ECV DTP 001/2012 Eletrobrás/UFSC
FATORES DE CONVERSÃO DE ENERGIA ELÉTRICA E TÉRMICA
EM ENERGIA PRIMÁRIA E EM EMISSÕES DE DIÓXIDO DE
CARBONO A SEREM USADOS NA ETIQUETAGEM DE NÍVEL DE
EFICIÊNCIA ENERGÉTICA DE EDIFICAÇÕES

RELATÓRIO INTERNO: RI 61/2017

Elaborado por (equipe):

<u>Coordenação:</u> Prof. Roberto Lamberts, PhD

NC – Núcleo de edificações comerciais:

Pesquisador B:

Ricardo Forgiarini Rupp

Florianópolis, 07 de abril de 2017

Introdução

Este relatório tem como objetivo apresentar os fatores de conversão de energia elétrica e térmica em energia primária e em emissões de dióxido de carbono a serem usados na etiquetagem de nível de eficiência energética de edificações.

Este relatório foi realizado com o apoio de Marcos Ribeiro Conde e Rogério Matos, ambos da Empresa de Pesquisa Energética (EPE).

Justificativa

Desde 2014, o CB3E vem desenvolvendo ações para a melhoria do atual método de avaliação do Nível de Eficiência Energética de Edificações Comerciais, de Serviços e Públicas, e de Edificações Residenciais, no âmbito do convênio ECV DTP 001-2012 firmado entre PROCEL/EDIFICA – ELETROBRAS e Universidade Federal de Santa Catarina.

Como principal motivador destas ações pode-se destacar a melhoria do indicador de desempenho visando auxiliar o consumidor na tomada de decisão na escolha do seu imóvel. Atualmente, a etiquetagem de edificações classifica o desempenho energético das mesmas utilizando um indicador de consumo que, apesar de permitir a sua classificação de A a E, não permite que o consumidor tenha uma ideia de grandeza relacionada ao consumo real da edificação. Esta limitação não permite a quantificação da economia gerada por medidas de eficiência energética empregadas na mesma. Assim, a nova proposta para a avaliação de desempenho energético das edificações baseia-se no consumo de energia primária e compara a edificação com suas características reais com a mesma edificação adotando características de uma condição de referência.

A opção por utilizar o consumo de energia primária como indicador de eficiência permite que tanto a energia elétrica, quando a térmica, oriundas de diversas fontes sejam contabilizadas (ex.: edificações que utilizam energia elétrica, gás e solar). Além disso, a etiqueta irá fornecer informações quanto ao consumo mensal de energia elétrica e gás e às emissões de CO₂. Assim, após estimativa do consumo de energia elétrica e de gás da edificação, estes serão multiplicados por fatores de conversão em energia primária e por fatores de emissões de dióxido de carbono, resultando no consumo de energia primária e na emissão total de CO₂ da edificação, respectivamente. Dessa maneira é necessária a definição destes fatores à nível nacional.

Fatores de energia primária e de emissões de dióxido de carbono

O Instituto de Energia e Ambiente (IEE-SP) desenvolveu um método (Anexo I) para estimativa dos fatores de conversão de eletricidade e gás em energia primária, baseado no Balanço Energético Nacional de 2016 (Fagá et al., 2016). A Tabela 1 apresenta os fatores de conversão de eletricidade e gás em energia primária para os últimos 5 anos (2011-2015). Percebe-se uma variação dos fatores de conversão da energia elétrica que devido a nosso sistema de base hidráulica estão sujeitos aos regimes hidrológicos.

Tabela 1: Evolução dos fatores de conversão de eletricidade e gás em energia primária -Brasil

Energia/Ano	2011	2012	2013	2014	2015	Média
Eletricidade	1,456	1,547	1,666	1,740	1,721	1,6
Gás	1,100	1,100	1,100	1,100	1,100	1,1

A Tabela 2 apresenta os fatores de emissão de dióxido de carbono para queima direta de combustíveis, em kg.CO₂ por kWh de energia térmica. Tais fatores foram obtidos por meio das tabelas no Anexo II.

Tabela 2: Fatores de emissão de CO₂ para queima direta de combustíveis convertida em energia térmica (kWh) - Brasil

Combustível	Fatores de Emissão de CO ₂ por Queima de Combustível	Unidade
Gás natural	0,202	kg.CO ₂ /kWh
Óleo diesel	0,267	kg.CO ₂ /kWh
Gás Liquefeito de Petróleo (GLP)	0,227	kg.CO ₂ /kWh
Madeira	0,531	kg.CO ₂ /kWh
Gasolina	0,249	kg.CO ₂ /kWh
Etanol	0,248	kg.CO ₂ /kWh

Fonte: MCTI, 2010.

A Tabela 3 apresenta a evolução dos fatores de emissão para a eletricidade no SIN (Sistema Interligado Nacional) desde 2007, bem como as médias dos 5 anos anteriores relativas aos anos de 2011 a 2016. Percebe-se que a média dos fatores de emissão para a eletricidade (SIN) variaram entre 0,037 e 0,101, apresentando um comportamento crescente ao longo dos últimos anos. Porém, o fator de emissão de 2016 decresceu com relação ao fator de 2015. Estas oscilações no fator de emissão do SIN são bastante comuns, pois o despacho termelétrico está associado às condições hidrológicas de cada ano. Em um ano de pouca chuva, despacha-se mais as termelétricas e por consequência maior o fator de emissão de GEE (gases do efeito estufa) no SIN naquele ano.

Tabela 3: Evolução dos fatores de emissão de CO₂ para eletricidade (SIN) - Brasil

Ano	Fator de emissão de CO ₂ (tCO ₂ /MWh)	Média últimos 5 anos
2007	0,0293	-
2008	0,0484	-
2009	0,0246	- 0-
2010	0,0512	- 33
2011	0,0292	0,037
2012	0,0653	0,044
2013	0,0960	0,053
2014	0,1355	0,075
2015	0,1244	0,090
2016	0,0817	0,101

Fonte: MCTI, 2017a.

A Tabela 4 apresenta os fatores de emissão de dióxido de carbono para geração elétrica. A primeira linha corresponde ao fator de emissão para a eletricidade oferecida no grid, cuja média dos últimos 5 anos equivale a 0,090 tCO₂/MWh. Para o cálculo do fator de emissão da margem, foram analisados os dados de fatores de emissão da margem de construção e operação disponibilizados pelo MCTI para cálculo da linha de base em projetos de MDL (Mecanismo de Desenvolvimento Limpo) pelo método da análise de despacho. Em resumo, esse método considera que a energia elétrica gerada a partir de fontes renováveis substituirá a eletricidade produzida através da queima de combustíveis fósseis, o que ocorre na margem do sistema, ou seja, substituindo as fontes de energia com maior custo operacional e que só são solicitadas quando as fontes mais baratas, tais como as hidráulicas ou as nucleares, não podem atender a demanda de energia do sistema. O mesmo conceito pode ser aplicado aos ganhos de eficiência. O valor de 0,367 tCO₂/MWh corresponde à média desse indicador para os últimos 5 anos. Os demais valores apresentados na Tabela 4 correspondem às emissões de CO₂ típicas de usinas termelétricas operando com os diferentes combustíveis.

Tabela 4: Fatores de emissão de CO₂ para geração elétrica - Brasil

Combustível	Fatores de Emissão de CO ₂ na Geração de Eletricidade	Unidade	Fonte
Eletricidade – margem*	0,367	t.CO ₂ /MWh	MCTI, 2017b
Eletricidade – SIN*	0,090	t.CO ₂ /MWh	MCTI, 2017a

Gás natural ciclo simples	0,532	t.CO ₂ /MWh	IPCC, 2006
Gás natural ciclo combinado	0,367	t.CO ₂ /MWh	IPCC, 2006
Carvão pulverizado	1,099	t.CO ₂ /MWh	IPCC, 2006
Carvão leito fluidizado	0,873	t.CO ₂ /MWh	IPCC, 2006
Óleo diesel	0,762	t.CO ₂ /MWh	IPCC, 2006
Óleo combustível	0,774	t.CO ₂ /MWh	IPCC, 2006

^{*}Média do período entre 2011-2015.

Nota: Eficiência térmica considerada: GN ciclo simples – 38%; GN ciclo combinado – 55%; Carvão pulverizado – 31%; Carvão leito fluidizado – 39%; Óleo diesel – 35%; Óleo combustível – 36%.

Considerações finais

Os fatores de conversão de eletricidade e gás em energia primária, a serem utilizados na etiquetagem de nível de eficiência energética de edificações, foram definidos como a média dos fatores dos últimos 5 anos (2011-2015). Assim, tais valores são de 1,6 para a eletricidade e de 1,1 para o gás. Esses fatores deverão ser atualizados a cada 5 anos.

Os fatores de emissão de dióxido de carbono, a serem utilizados na etiquetagem de nível de eficiência energética de edificações, foram definidos pelas Tabelas 2 (queima direta) e Tabela 4 (consumo de eletricidade).

Em relação ao consumo de eletricidade, como as edificações operam conectadas ao sistema interligado nacional, o fator de emissão a ser utilizado na etiquetagem é aquele que corresponde à média da operação SIN nos últimos 5 anos (2011-2015), ou seja 0,090 tCO₂/MWh. Esse fator de emissão deverá ser atualizado a cada 5 anos.

Em estudos visando mitigação de emissões associadas a investimentos em eficiência energética, o fator de emissão da margem, calculado pelo método da análise de despacho, pode ser utilizado associado às economias de energia.

Referências

BRASIL. Ministério da Ciência e da Tecnologia e Inovação. Fator médio de emissão do Sistema Interligado Nacional do Brasil. Disponível em: http://www.mct.gov.br/index.php/content/view/321144.html#ancora. Acesso em: 09/02/2017. 2017a.

BRASIL. Ministério da Ciência e da Tecnologia e Inovação. Fatores de emissão da margem de operação pelo método da análise de despacho. Disponível em: http://www.mct.gov.br/index.php/content/view/74689.html. Acesso em: 09/02/2017. 2017b.

BRASIL. Ministério da Ciência e Tecnologia e Inovação. Segunda Comunicação Nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima. Brasília: MCT, 2010.

FAGÁ, M.W.; DOS SANTOS, E.M.; FOSSA. A.J.; CROSO, T.; CHAGURI, J.J. Eficiência Energética em Edificações – Análise da Energia no Aquecimento de Água: Fatores de Energia Primária e Emissão de CO2. Relatório atividade 5a – revisão 7. Novembro de 2016.

Intergovernmental Panel on Climate Change (IPCC) 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, EGGLESTON H.S., BUENDIA L., MIWA K., NGARA T. AND TANABE K. (eds). Published: IGES, Japan.

ANEXO I

Estimativa dos fatores de conversão em energia primária

Anexo A do Relatório "Eficiência Energética em Edificações – Análise da Energia no Aquecimento de Água: Fatores de Energia Primária e Emissão" elaborado pelo IEE-SP

O cálculo da energia primária associada à geração elétrica no país apresentado no item 4.1 é, aqui, demonstrado passo a passo, considerando-se os dados do BEN2016 (EPE, 2016). A Equação 10 é utilizada para se calcular o fator de energia da matriz de geração elétrica.

$$F_{p,el} = \sum_{n=1}^{n} \left(\frac{E_n}{\eta_n}\right) / E^*(1-P)$$
 Equação 10

Cada elemento desta somatória acrescenta a parcela proporcional de energia perdida no processo de geração para determinada fonte, desta forma se o processo de geração fosse perfeito, ou seja, se toda a energia do combustível fosse transformada em energia elétrica este fator seria igual a 1.

A tabela 5.3 (BEN2016, pág.111 (EPE, 2016)) traz o balanço das centrais elétricas, na parte superior da tabela são apresentados os consumos de combustíveis utilizados para a geração elétrica (Figura 9).

Tabela 5.3 – Centrais Elétricas – Total (Serviço Público + Autoprodução) Table 5.3 – Power Plants - Total (SP + APE) IDENTIFICAÇÃO 2007 2010 2012 2013 2014 SPECIFICATION CONSUMO DE -16,298 -15.985 -20,246 -16.390 -23.531 -21,803 -28.340 -36,781 -44.057 -43,761 INPUT COMBUSTÍVEIS -13/404 -28.938 NÃO RENOVÁVEIS -12.667 -16.574 -11.923 -17.542 -15,691 -21.507 -34,604 -33.044 RENEWABLE GÁS NATURAL NATURAL GAS -3.720-3.152-5.722 -2.620-6.996-5.228-9.054-13.893-16.800 -16,411 CARVÃO VAPOR STEAM COAL -2.105-1.931-1.832-1.523-1.905-1.750-2.341-3.724-4.344-4.503ÓLEO DIESEL DIESEL OIL -1.620 -2.650 ÓLEO COMBUSTÍVEI FUEL OIL

Figura 9 - Consumo de combustíveis - localização na tabela 5.3 (EPE, 2016)

E na parte inferior tabela 5.3 (BEN2016, pág.111 (EPE, 2016)) são apresentados os valores da energia elétrica gerada com cada combustível (Figura 10). As unidades nas duas partes da tabela são diferentes, os combustíveis consumidos são apresentados em 10³ tep e a energia elétrica gerada em GWh, desta forma, deve-se converter o consumo de combustíveis de toe para GWh.

 \checkmark

Tabela 5.3 – Centrais Elétricas – Total (Serviço Público + Autoprodução)

Table 5.3 - Power Plants - Total (SP + APE)

IDENTIFICAÇÃO	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	UNIDADE (Unit)	SPECIFICATION
CONSUMO DE COMBUSTÍVEIS	-16.296	-15.985	-20.246	-16.390	-23.531	-21.803	-28.340	-36.781	-44.057	-43.761		INPUT
NÃO RENOVÁVEIS	-13.404	-12.667	-16.574	-11.923	-17.542	-15.691	-21.507	-28.938	-34.604	-33.044		NON- RENEWABLE
GÁS NATURAL	-3.720	-3.152	-5.722	-2.620	-6.996	-5.228	-9.054	-13.893	-16.800	-16.411		NATURAL GAS
CARVÃO VAPOR	-2.105	-1.931	-1.832	-1.523	-1.905	-1.750	-2.341	-3.724	-4.344	-4.503		STEAM COAL
ÓLEO DIESEL	-1.620	-1.445	-1.878	-1.701	-2.164	-2.086	-2.652	-2.650	-3.291	-2.430		DIESEL OIL
ÓLEO COMBUSTÍVEL	-936	-1.245	-1.484	-1.140	-1.128	-733	-1.346	-2.287	-3.625	-3.313		FUEL OIL
GÁS DE COQUERIA	-131	-234	-527	-331	-304	-301	-265	-255	-339	-298		COKE GAS
OUTRAS SECUNDÁRIAS	-343	-385	-599	-371	-476	-450	-585	-755	-619	-631	10 ³ tep	OTHER SECONDARIES
OUTRAS NÃO RENOVÁVEIS	-967	-1.061	-893	-861	-790	-1.061	-1.083	-1.348	-1.579	-1.619	(toe)	OTHER NON- RENEWABLE
URÂNIO CONTIDO NO UO ₂	-3.582	-3.213	-3.641	-3.377	-3.780	-4.081	-4.180	-4.026	-4.008	-3.840		RANIUM CONTAINED IN UO,
RENOVÁVEIS	-2.892	-3.318	-3.671	-4.467	-5.988	-6.111	-6.833	-7.842	-9.453	-10.717		RENEWABLE
LENHA	-206	-171	-311	-221	-309	-286	-303	-335	-377	-420		FIREWOOD
BAGAÇO DE CANA	-1.594	-1.910	-2.067	-2.687	-4.081	-3.982	-4.427	-5.263	-5.714	-5.959		SUGAR CANE BAGASSE
LIXÍVIA	-992	-1.051	-1.117	-1.289	-1.341	-1.471	-1.500	-1.511	-1.961	-2.068		BLACKLIQUOR
OUTRAS RENOVÁVEIS	-100	-187	-176	-270	-257	-372	-603	-734	-1.402	-2.270		OTHER RENEWABLE
GERACAO DE ELETRICIDADE	36.067	38.283	39.828	40.090	44.359	45.731	47.515	49.072	50.766	49.988		ELECTRICITY GENERATION
GERAÇÃO HIDRÁULICA	29.997	32.165	31.782	33.625	34.683	36.837	35.719	33.625	32.116	30.938	10 ³ tep (toe)	HYDRO PLANTS
GERAÇÃO TÉRMICA	6.070	6.117	8.046	6.465	9.676	8.895	11.795	15.447	18.651	19.050		THERMAL PLANTS
PERDAS NA GERAÇÃO TÉRMICA	-10.226	-9.868	-12.199	-9.925	-13.855	-12.908	-16.545	-21.334	-25.407	-24.711	10 ³ tep (toe)	THERMAL PLANTS LOSSES
re ndim ento Médio-térmicas	37,2	38,3	39,7	39,4	41,1	40,8	41,6	42,0	42,3	43,5	q _b	THERMAL PLANTS EFFICIENCY
GERAÇÃO DE ELETRÍCIDADE	419.383	445.149	462.887	466.158	515.799	531.758	552.498	570.835	590.542	581.486		ELECTRICITY GENERATION
não renováveis	55.572	52.463	72.624	51.293	78.787	68.486	96.811	132.788	158.492	151.031		NON- RENEWABLE
GÁS NATURAL	18.258	15.497	28.778	13.332	36.476	25.095	46.760	69.003	81.073	79.490		NATURAL GAS

Figura 10 - Produção de energia elétrica- localização na tabela 5.3 (EPE, 2016)

No entanto os valores apresentados na tabela 5.3 (BEN2016, pág.111 (EPE, 2016)) contemplam todas as centrais elétricas (serviços públicos e autoprodução) e para termos um fator de geração relativo à energia elétrica na rede de energia devemos descontar a energia gerada por auto produtores não injetada na rede, cujos valores são disponibilizados na tabela 5.5 a (BEN2016, pág.114 (EPE, 2016)) (Figura 11)).

Figura 11 - Autoprodução Não Injetada na Rede – Localização (EPE, 2016)

Tabela 7 - Centrais elétricas (Serviço Público + Autoprodutoras injetadas na rede) (EPE, 2016)

Centrais Elétricas (Serviço Públic	o + Autoprod	lução injetada	a na rede)	
	2011	2012	2013	2014	2015
Consumo de combustíveis (GWh)					
Não Renováveis	128802,25	193802,32	280143,44	338305,07	319778,48
Gás Natural	34727,18	78549,02	135512,76	166320,63	160354,44
Carvão Vapor	18549,85	25399,92	41530,73	48252,87	49799,66
Óleo Diesel	20003,6	26400,1	27353,76	33924,71	23701,94
Óleo Combustível	5628,92	12385,95	23632,16	39390,81	35762,25
Gás de Coqueria	186,08	186,08	581,5	325,64	593,13
Outras Secundárias	942,03	930,4	965,29	1058,33	953,66
Outras não renováveis	1302,56	1337,45	3744,86	2419,04	3954,2
Urânio contido no UO2	47462,03	48613,4	46822,38	46613,04	44659,2
Renováveis	25341,77	33110,61	42693,73	58638,46	72303,71
Lenha	581,5	744,32	1000,18	1302,56	1453,75
Bagaço de cana	20131,53	24795,16	32750,08	39437,33	41460,95
Lixívia	1151,37	1453,75	1465,38	4210,06	5594,03
Outras renováveis	3477,37	6117,38	7478,09	13688,51	23794,98
			1		
Geração de eletricidade (GWh)					
Não Renováveis	47692	75076	110739	133687	126111
Gás Natural	15675	37038	59360	70479	68396
Carvão Vapor	5639	7570	13973	17314	17901
Óleo Diesel	7383	8861	9689	11794	8726
Óleo Combustível	2064	4328	9863	16956	14075
Gás de Coqueria	62	64	199	112	195
Outras Secundárias	416	408	482	466	417
Outras não renováveis	794	769	1723	1188	1667
Urânio contido no UO2	15659	16038	15450	15378	14734
Renováveis	438142	42 99 82	411328	404606	402672
Lenha	258	312	411	549	619
Bagaço de cana	9669	12067	15983	19305	20436
Lixívia	528	667	674	1932	2570
Outras renováveis	314	417	499	574	792
Eólica	2705	5050	6575	12207	21623
Solar	0	2	3	11	41
Hidráulica	424668	411467	387183	370028	356591
Total (sem importação)	485834	505058	522067	538293	528783
Importada	3305	3502	3467	2904	2978
Total	489139	508560	525534	541197	531761

Na Tabela 7 os valores do consumo de combustíveis e da geração de eletricidade correspondem à energia disponível na rede durante os respectivos anos. A razão entre estes dois valores é o rendimento

médio da geração térmica, Equação 11. O rendimento médio anula de geração de energia elétrica por combustível é apresentado na Tabela 8.

Equação 11

Tabela 8 - Rendimento médio de geração de energia elétrica

RENDIMENTO MÉDIO D	E GERAÇÃO (Servi	ço Público + A	utoprodução	injetada na	rede)
	2011	2012	2013	2014	2015
Não Renováveis	0,370	0,387	0,395	0,395	0,394
Gás Natural	0,451	0,472	0,438	0,424	0,427
Carvão Vapor	0,304	0,298	0,336	0,359	0,359
Óleo Diesel	0,369	0,336	0,354	0,348	0,368
Óleo Combustível	0,367	0,349	0,417	0,430	0,394
Gás de Coqueria	0,333	0,344	0,342	0,344	0,329
Outras Secundárias	0,442	0,439	0,499	0,440	0,437
Outras não renováveis	0,610	0,575	0,460	0,491	0,422
Urânio contido no UO2	0,330	0,330	0,330	0,330	0,330
Renováveis	1	1	1	1	1
Lenha	1	1	1	1	1
Bagaço de cana	1	1	1	1	1
Lixívia	1	1	1	1	1
Outras renováveis	1	1	1	1	1

Entre os combustíveis utilizados na geração termoelétrica estão os que podem ser considerados fontes primárias de energia, e os que devem ser considerados como fontes secundárias, para estes além do rendimento médio de geração deve-se considerar o rendimento das etapas de toda a cadeia de processamento deste combustível.

Por exemplo, para o cálculo do rendimento na geração de energia elétrica a partir de fontes secundárias de petróleo, como óleo diesel, deve-se considerar além do rendimento de geração, o rendimento de extração e refino (Figura 12).

Figura 12 - Cadeia de processamento para energia elétrica gerada a partir de fontes secundárias de petróleo.

Tabela 5.1 – Refinarias de Petróleo *Table 5.1 – Oil Refineries*

											103 tep (toe)
FONTES	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	SOURCES
PETRÓLEO E LGN	-90.145	-91.807	-92.969	-93.462	-93.619	-96.167	-101.447	-108.607	-110.676	-103.755	OIL AND NGL
ÓLEO DIESEL	32.784	33.211	34.833	35.993	35.132	36.478	38.915	42.220	42.515	42.248	DIESEL OIL
ÓLEO COMBUSTÍVEL	15.807	15.853	15.698	14.520	14.247	13.385	13.846	14.723	16.126	14.188	FUEL OIL
GASOLINA	15.632	15.994	15.618	15.266	16.629	18.139	19.905	22.104	22.303	19.864	GASOLINE
GASOLINA AUTOMOTIVA	15.582	15.947	15.566	15.226	16.560	18.095	19.846	22.032	22.231	19.809	MOTOR GASOLINE
GASOLINA DE AVIAÇÃO	50	47	52	40	69	44	59	71	72	55	AVIATION GASOLINE
GÁS LIQUEFEITO DE PETRÓLEO	5.071	5.128	5.079	4.817	4.693	4.846	5.099	4.946	4.651	4.582	LIQUERED PETROLEUM GAS
NAFTA	6.599	7.109	6.223	6.459	5.626	4.881	4.951	4.114	3.904	3.545	NAPHTHA
QUEROSENE	3.112	3.330	3.137	3.564	3.854	4.460	4.477	4.578	5.007	4.656	KEROSENE
QUEROSENE ILUMINANTE	31	21	19	19	20	25	20	13	10	6	LIGHTING KEROSENE
QUEROSENE DE AVIAÇÃO	3.081	3.310	3.118	3.545	3.834	4.435	4.458	4.566	4.997	4.650	JET FUEL
OUTRAS SECUNDÁRIAS DE PETRÓLEO	6.174	6.414	6.700	6.978	6.979	7.370	7.947	8.908	9.027	9.127	OTHER OIL PRODUCTS
PRODUTOS NÃO-ENERGÉTICOS DE PETRÓLEO	4.697	4.565	5.380	5.167	6.302	6.054	6.015	6.184	6.822	5.134	NON-ENERGY OIL PRODUCTS
PERDAS	-269	-202	-301	-698	-157	-553	-291	-830	-322	-409	LOSSES

Figura 13 - Rendimento de refinarias de petróleo - localização na tabela 5.1 (EPE, 2016)

Os rendimentos para a transformação da fonte primária em secundária, são dados pela equação 12 considerando-se os dados das tabelas 5.1 (Figura 13), 5.2, 5.6, 5.9 e 5.11 (BEN2016, pág.110-120 (EPE, 2016).

Equação 12

No exemplo (Figura 12), para um combustível derivado de petróleo tem-se:

$$\eta = \frac{PETR \acute{0} LEO E LGN - PERBAS}{PETR \acute{0} LEO E LGN}$$

Na Tabela 9 são apresentados os rendimentos dos centros de transformação das cadeias dos combustíveis não renováveis utilizados na geração termoelétrica no país.

Tabela 9- Rendimento dos centros de transformação (EPE, 2016)

Rendimento - Centros de transformação									
	2011	2012	2013	2014	2015				
Refinarias	0,994	0,997	0,992	0,997	0,996				
UPGNs	0,990	0,990	0,990	0,980	0,990				
Coquerias	0,942	0,973	0,972	0,951	0,956				
Ciclo Nuclear	0,985	0,984	0,984	0,984	0,985				

O rendimento pode ser calculado a partir do produto dos rendimentos de todas as etapas, como pode ser observado na equação 13. Os rendimentos nas etapas de transporte e extração são apresentados na tabela 4, do item 4.1.

$$\eta = \prod_{i=1}^{n} \eta_i$$
 Equação 13

Para as matrizes brasileiras de geração (2011-2015) apresentadas no BEN2016 os rendimentos totais para cada fonte são apresentados na Tabela 10. No caso de fontes renováveis o fator de geração de energia elétrica é 1, por convenção, e não há resgate de eventuais perdas da cadeia, apenas as perdas na etapa de transmissão de energia, e também não são consideradas as perdas da cadeia energética em questão.

Tabela 10 - Rendimento Total

RENDIMENTO TOTAL									
	2011	2012	2013	2014	2015				
Não Renováveis									
Gás Natural	0,429	0,448	0,416	0,403	0,406				
Carvão Vapor	0,295	0,289	0,326	0,348	0,349				
Óleo Diesel	0,349	0,318	0,335	0,329	0,348				
Óleo Combustível	0,347	0,331	0,395	0,407	0,372				
Gás de Coqueria	0,304	0,314	0,313	0,314	0,300				
Outras Secundárias	0,418	0,415	0,472	0,417	0,414				
Outras não renováveis	0,577	0,544	0,435	0,465	0,399				
Urânio contido no UO2	0,319	0,318	0,319	0,318	0,319				
Renováveis	1	1	1	1	1				
Lenha	1	1	1	1)1				
Bagaço de cana	1	1	1	1	1				
Lixívia	1	1	1	1	1				
Outras renováveis	1	1	1	1	1				

Na Tabela 11 estão apresentados os consumos de energia primária associados a cada fonte na geração de eletricidade dado o ano, a razão entre a soma deste consumo e a energia elétrica gerada multiplicada pelo rendimento de transmissão é o fator de energia primária da geração, conforme equação 14.

Tabela 11 - Consumo de energia primária na geração da eletricidade

CONSUMO DE ENERGIA PRIMÁRIA NA GERAÇÃO DE ELETRICIDADE									
	2011	2012	2013	2014	2015				
Não Renováveis									
Gás Natural	36527,606	82621,384	142538,401	174943,501	168667,995				
Carvão Vapor	19119,615	26180,087	42806,360	49734,972	51329,272				
Óleo Diesel	21146,062	27907,885	28916,011	35862,247	25055,625				
Óleo Combustível	5950,404	13093,347	24981,860	41640,531	37804,734				
Gás de Coqueria	203,651	203,651	636,409	356,389	649,137				
Outras Secundárias	995,832	983,538	1020,420	1118,774	1008,126				
Outras não renováveis	1376,953	1413,836	3958,740	2557,198	4180,036				
Urânio contido no UO2	49163,643	50356,292	48501,061	48284,215	46260,326				
Renováveis									
Lenha	258,000	312,000	411,000	549,000	619,000				
Bagaço de cana	9669,000	12067,000	15983,000	19305,000	20436,000				
Lixívia	528,000	667,000	674,000	1932,000	2570,000				
Outras renováveis	314,000	417,000	499,000	574,000	792,000				
Eólica	2705,000	5050,000	6575,000	12207,000	21623,000				
Solar	0,000	2,000	3,000	11,000	41,000				
Hidráulica	424668,000	411467,000	387183,000	370028,000	356591,000				
Importada	4080,247	4323,457	4280,247	3585,185	3676,543				
Total	576706,013	637065,475	708967,508	762689,013	741303,794				

Finalmente, os valores de energia primária para o último quinquênio são apresentados na Tabela 12.

Tabela 12 - Fator de energia primária

FATOR DE ENERGIA PRIMÁRIA NA GERAÇÃO DE ELETRICIDADE									
	2011	2012	2013	2014	2015				
FATOR DE GERAÇÃO	1,1790	1,2527	1,3490	1,4093	1,3941				
FATOR DE ENERGIA PRIMÁRIA	1,4556	1,5465	1,6655	1,7398	1,7211				

ANEXO II

Fatores de emissão de CO₂ e poder calorifico inferior de combustíveis

A Tabela II.1 apresenta os fatores de emissão de dióxido de carbono para queima direta em kg.CO₂ por unidade de combustível (m³, kg ou L). A Tabela II.2 apresenta o poder calorifico inferior dos combustíveis. Os fatores de emissão de dióxido de carbono para queima direta em kg.CO₂ por kWh de energia térmica (Tabela 2) é obtido por meio da divisão dos valores da Tabela II.1 pelos valores da coluna 5 - Poder Calorífico Inferior (kWh/unidade) da Tabela II.2.

Tabela II.1: Fatores de emissão de CO2 para queima direta - Brasil

Combustível	Fatores de Emissão de CO ₂ por Queima de Combustível	Unidade
Gás natural	2,067	kg.CO ₂ /m ³ gás
Óleo diesel	2,632	kg.CO ₂ /L _{óleo}
Gás Liquefeito de Petróleo (GLP)*	2,932	kg.CO ₂ /kg _{GLP}
Madeira	1,917	kg.CO ₂ /kg _{madeira}
Gasolina	2,239	kg.CO ₂ /L _{gasolina}
Etanol	1,471	kg.CO ₂ /L _{etanol}

^{*}O fator de emissão para consumo de Gás Liquefeito de Petróleo (GLP) é referente ao consumo de GLP em kg. O GLP em seu estado líquido possui densidade igual a 550 kg/m³. Algumas organizações podem obter o dado de consumo de GLP em m³, porém, relativo ao volume do GLP em seu estado gasoso, que possui densidade igual a 2,2 kg/m³. Ao converter os dados de consumo de GLP, deve-se atentar para essas conversões e para a característica do combustível (em estado líquido ou gasoso) que está sendo reportado.

Fonte: MCTI, 2010.

Tabela II.2: Poder calorífico inferior de combustíveis

Combustível	Unidade	1 - Poder Calorífico Inferior (GJ/t) (1) MCTI, 2010	2 - Poder Calorífico Inferior (GJ/kg) (2) = (1)/1000	3 - Densidade (kg/unidade)	4 - Poder Calorífico Inferior (GJ/unidade)	5 - Poder Calorífico Inferior (kWh/unidade)
Gás natural	m^3	49,79	0,05	0,74	0,0368	10,23
Óleo diesel	L	42,29	0,04	0,84	0,0355	9,87
GLP	kg	46,47	0,05	1,00	0,0465	12,91
Madeira	kg	12,98	0,01	1,00	0,0130	3,61
Gasolina	L	43,54	0,04	0,74	0,0323	8,97
Etanol	L	26,38	0,03	0,81	0,0213	5,93

