

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 1999

Электронный журнал, рег. N П23275 от 07.03.97

http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru

Моделирование динамических систем

УДК 517.9

 $C. A. Колбина, {}^{1} C. Ю. Пилюгин {}^{2}$

ПРЕДЕЛЬНОЕ ОТСЛЕЖИВАНИЕ И ДИСКРЕТИЗАЦИИ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ

Введение. Рассматривается параболическое уравнение

$$u_t = u_{xx} + f(u), \quad x \in (0, \pi), \quad t > 0,$$
 (1)

с краевыми условиями Дирихле

$$u(0,t) = u(\pi,t) = 0, \quad t > 0,$$
 (2)

и начальным условием

$$u(x,0) = u_0(x), \quad x \in (0,\pi).$$
 (3)

Предполагается, что $f \in C^2$ (ниже мы будем накладывать и другие условия на нелинейность f).

Станем обозначать через $\langle . \rangle$ скалярное произведение в $L^2(0,\pi)$ и через \mathcal{H} подпространство $H^1(0,\pi)$, состоящее из функций, обращающихся в 0 при x=0 и $x=\pi$. Норма в \mathcal{H} будет обозначаться $|\cdot|_1$.

Запишем задачу (1–3) в виде эволюционного уравнения

$$\dot{u} = Au + F(u), \quad u(0) = u_0.$$
 (4)

¹ Санкт-Петербургский государственный электротехнический университет: 197022, Санкт-Петербург, ул. профессора Попова, д. 5. СПбГЭТУ. Кафедра высшей математики N 1.

² Санкт-Петербургский государственный университет: 198904, Санкт-Петербург, Петродворец, Библиотечная пл., д. 2. СПбГУ. Математико-механический факультет. Кафедра дифференциальных уравнений.

Хорошо известны условия [1], при которых уравнение (4) порождает полугруппу операторов S(t) в \mathcal{H} такую, что $u(x,t) = S(t)u_0(x)$.

Рассматривается дискретизация задачи (1-3) стандартным методом конечных элементов по пространственной переменной x и неявным методом Эйлера по времени.

Фиксируем временной шаг h>0 и конечное разбиение $\mathcal T$ отрезка $[0,\pi]$ с с максимальной длиной отрезка разбиения D>0.

Обозначим через $\mathcal{H}(\mathcal{T})$ подпространство пространства \mathcal{H} , состоящее из непрерывных функций, линейных на каждом отрезке разбиения \mathcal{T} .

Сопоставим оператору $A = d^2/dx^2$ билинейную форму

$$a(u,v) = \int_0^\pi \frac{\partial u}{\partial x} \frac{\partial \bar{v}}{\partial x} dx.$$

Определим линейный оператор

$$A(T): \mathcal{H}(T) \to \mathcal{H}(T)$$

соотношениями

$$\langle A(\mathcal{T})u,v\rangle=a(u,v)$$
 для всех $u,v\in\mathcal{H}(\mathcal{T}).$

Значения $S(nh)u_0(x)$ при n>0 аппроксимируются функциями $V_n\in\mathcal{H}(\mathcal{T}),$ определяемыми из соотношений

$$\frac{V_n - V_{n-1}}{h} = A(\mathcal{T})V_n + P(\mathcal{T})F(V_n), \tag{5}$$

где $P(\mathcal{T}): L^2(0,\pi) \to \mathcal{H}(\mathcal{T})$ — ортогональный проектор.

Цель данной статьи — получить условия предельного отслеживания [2] для последовательности дискретизаций, строящихся по следующему правилу.

Фиксируем натуральное число T (его выбор будет уточняться позже). Рассмотрим промежутки времени $I_m = (mT, (m+1)T], m = 0, 1, \ldots$ Каждому значению m сопоставим натуральное число K_m и разбиение \mathcal{T}_m отрезка $[0,\pi]$ с максимальной длиной отрезка разбиения D_m . Будем предполагать, что $K_{m+1} \geq K_m$ и что \mathcal{T}_{m+1} получается подразбиением разбиения \mathcal{T}_m . Будем писать $\mathcal{H}(m)$ вместо $\mathcal{H}(\mathcal{T}(m))$.

Введем числа $\varkappa_0=0$ и $\varkappa_m=T(K_0+\cdots+K_{m-1})$ при $m\geq 1.$ Определим операторы

$$A(m): \mathcal{H}(m) \to \mathcal{H}(m)$$

по аналогии с A(T).

Фиксируем $V_0 \in \mathcal{H}(0)$ и зададим $V_n, n > 0$, соотношениями

$$\frac{V_n - V_{n-1}}{h_m} = A(m)V_n + P(m)F(V_n), \tag{6}$$

где $\varkappa_m < n \le \varkappa_{m+1}, h_m = 1/K_m,$ и P(m) – ортогональный проектор $L^2(0,\pi)$ на $\mathcal{H}(m)$.

Так как $\mathcal{H}(m)\subset\mathcal{H}(m+1)$, функция $V_{\varkappa_{m+1}}$ корректно определяет функцию $V_{\varkappa_{m+1}+1}$.

Определим операторы

$$\Sigma_m:\mathcal{H}(m)\to\mathcal{H}(m)$$

соотношениями

$$\Sigma_m(V_n) = V_{n+1}$$
 при $\varkappa_m \le n < \varkappa_{m+1}$.

Рассмотрим функции $u_m = V_{\varkappa_m}, m \ge 0$. В данной работе изучаются две основные задачи.

Задача 1. Предположим, что $h_m, D_m \to 0$ при $m \to \infty$. При каких условиях на (1) существует такое v, что

$$g_n = |S(nT)v - u_n|_1 \to 0$$

 $npu \ n \to \infty$?

Задача 2. Оценить величины g_n в терминах h_m и D_m .

Структура работы такова. В пункте 1 излагаются основное предположение о полугруппе S(t) и некоторые известные результаты. В пункте 2 изучаются задачи 1 и 2 в предположении, что все неподвижные точки полугруппы S(t) гиперболические. В пункте 4 приводятся условия взвешенного отслеживания без предположения о гиперболичности неподвижных точек.

1. Основное предположение. Мы делаем следующее основное предположение о глобальной структуре траекторий полугруппы S(t), порожденной задачей (1–3).

Условие А. Полугруппа S(t) имеет глобальный аттрактор в \mathcal{H} .

Напомним, что множество \mathcal{A} называется глобальным аттрактором полугруппы S(t) в \mathcal{H} , если \mathcal{A} – компактное подмножество \mathcal{H} , обладающее следующими свойствами:

(a1) \mathcal{A} инвариантно, т. е. $S(t)\mathcal{A} = \mathcal{A}$ для $t \in \mathcal{R}$;

- (a2) \mathcal{A} устойчиво по Ляпунову, т. е. по любой окрестности W множества \mathcal{A} можно указать такую его окрестность U, что для $u \in U$ выполнены включения $S(t)u \in W, t \geq 0$;
- (а3) \mathcal{A} равномерно глобально притягивает, т. е. для любого $\varepsilon > 0$ и для любого ограниченного множества B существует такое T > 0, что

$$\operatorname{dist}(S(t)B,\mathcal{A}) для $t\geq T$$$

(здесь dist – расстояние, порожденное нормой $|\cdot|_1$).

Достаточные условия, при которых полугруппа S(t) имеет глобальный аттрактор, хорошо известны [1,3]; например, достаточно потребовать, чтобы произведение uf(u) было ограничено сверху (мы будем предполагать, что это условие выполнено).

Из (а3) следует, что глобальный аттрактор \mathcal{A} обладает поглощающим множеством \mathcal{H}_0 , т. е. ограниченным подмножеством \mathcal{H} со следующим свойством: для любого ограниченного множества $B \subset \mathcal{H}$ найдется такое T(B), что

$$S(t)B \subset \mathcal{H}_0, \quad t \geq T(B).$$

Легко понять, что в этом случае множество

$$\mathcal{H}^* = \{ S(t)\mathcal{H}_0 : t \ge 0 \}$$

ограничено.

Наши методы исследования свойства предельного отслеживания основаны на существовании у полугруппы S(t) гладкого конечномерного положительно инвариантного многообразия \mathcal{M} (так называемого инерциального многообразия [4,5]), которое строится следующим образом.

Существуют ортогональный проектор P со свойством PA = AP и с конечномерным пространством $P\mathcal{H}$ и C^1 -отображение $\mathcal{F}: P\mathcal{H} \to Q\mathcal{H}$ (где Q = I - P) такие, что \mathcal{M} , график \mathcal{F} , имеет следующие свойства: (i1) $S(t)\mathcal{M} \subset \mathcal{M}, \quad t \geq 0$; (i2) \mathcal{M} экспоненциально притягивает, т.е. для любого ограниченного множества $B \subset \mathcal{H}$ существуют положительные константы C, a (зависящие от B) такие, что

$$\operatorname{dist}(S(t)u, \mathcal{M}) \le C \exp(-at)\operatorname{dist}(u, \mathcal{M})$$
 (7)

для $u \in B$ и $t \ge 0$.

Ясно, что если инерциальное многообразие \mathcal{M} существует, то оно содержит глобальный аттрактор \mathcal{A} .

Известно [5], что при наших предположениях о нелинейности f можно модифицировать эволюционное уравнение (4) так, чтобы модифицированное уравнение обладало инерциальным многообразием.

Рассмотрим ограниченное множество $\mathcal{H}' \subset \mathcal{H}$. Существует функция $\theta(|u|_1): \mathcal{H} \to \mathcal{R}$ такая, что полугруппа S'(t), порожденная уравнением

$$\dot{u} = Au + \theta(|u|_1)F(u),$$

обладает свойствами:

- (m1) если $S'(t)u \in \mathcal{H}'$ при $t \geq 0$, то S'(t)u = S(t)u (т. е. траектории первоначального и модифицированного уравнений, лежащие в \mathcal{H}' , совпадают);
 - (m2) полугруппа S'(t) обладает инерциальным многообразием.

Мы модифицируем уравнение (4) так, чтобы $\mathcal{H}' = \mathcal{H}^*$. При этом траектории полугрупп S'(t) и S(t), начинающиеся в поглощающем множестве \mathcal{H}_0 глобального аттрактора \mathcal{A} , совпадают. Для упрощения обозначений будем в дальнейшем писать S(t) вместо S'(t) и F(u) вместо $\theta(|u|_1)F(u)$. Выберем такие C, a, что неравенство (7) выполняется для $u \in \mathcal{H}_0$.

Фиксируем такое натуральное число T > 0, что

$$\nu = C \exp(-aT) < 1 \tag{8}$$

(в случае "взвешенного отслеживания" мы будем накладывать дополнительные условия на число T; эти условия будут "абсолютными", т. е. они будут зависеть только от структуры аттрактора \mathcal{A} и от констант, определяющих пространство $\mathcal{L}_{r,p}$). Определим оператор $\sigma(u) = S(T)u$.

Рассмотрим $u_0 \in \mathcal{H}$, положим $p_0 = Pu_0$ и обозначим через $p(t, p_0)$ решение конечномерной системы дифференциальных уравнений на $P\mathcal{H}$ вида

$$\dot{p} = Ap + PF(p + \mathcal{F}(p)) \tag{9}$$

с начальными данными $p(0, p_0) = p_0$. Тогда (см. [4]) для $u_0 \in \mathcal{M}$ выполнены равенства

$$u(t) = S(t)u_0 = p(t, p_0) + \mathcal{F}(p(t, p_0)). \tag{10}$$

Введем следующие обозначения. Для $p_0 = Pu_0, u_0 \in \mathcal{H}$ положим

$$\sigma^*(p_0) = p(T, p_0)$$

(число T было фиксировано выше) и для $m_0 \in \mathcal{M}$ положим

$$\varphi(m_0) = \sigma^*(p_0) + \mathcal{F}(\sigma^*(p_0)),$$

где $p_0 = Pm_0$.

Из наших предположений о гладкости f и \mathcal{F} следует, что σ^* и φ являются отображениями класса C^1 на областях своего определения в $P\mathcal{H}$ и \mathcal{M} , соответственно. Коме того, из (10) следует, что для $u_0 \in \mathcal{M}$ выполнены равенства

$$\varphi(u_0) = S(T)u_0 = \sigma(u_0),$$

т. е. φ является ограничением σ на \mathcal{M} .

Очевидно, \mathcal{A} является глобальным аттрактором для σ в \mathcal{H} и для φ в \mathcal{M} (соответствующие определения аналогичны приведенному выше).

Рассмотрим множество $\mathcal{H}'_0 = P\mathcal{H}_0$, пусть \mathcal{L} — константа Липшица отображения σ на \mathcal{H}_0 и отображения σ^* на множестве \mathcal{H}'_0 , а \mathcal{L}' — константа Липшица отображения \mathcal{F} на множестве \mathcal{H}'_0 .

Обозначим через \mathcal{M}' график \mathcal{F} над \mathcal{H}'_0 . Существует константа C^* такая, что

$$|v - v'|_{in} \le C^* |v - v'|_1$$

для $v, v' \in \mathcal{M}'$ (здесь $|v - v'|_{in}$ – расстояние между точками v и v' во внутренней метрике многообразия \mathcal{M} , индуцированной нормой $|\cdot|_1$).

Из результатов [6] следует, что существует окрестность $\mathcal{M}_0 \subset \mathcal{M}'$ глобального аттрактора в \mathcal{M} такая, что $\varphi(\overline{\mathcal{M}_0}) \subset \mathcal{M}_0$.

В дальнейшем мы будем так выбирать поглощающее множество \mathcal{H}_0 и рассматривать такие окрестности W глобального аттрактора \mathcal{A} , чтобы выполнялись включения

$$PW \subset P\mathcal{M}_0, \quad W \subset N_1(\mathcal{M}), \quad N_1(W) \subset \mathcal{H}_0$$
 (11)

(здесь и дальше $N_a(X)$ — a-окрестность множества X).

Мы будем использовать следующие обозначения и вспомогательные утверждения. Рассмотрим последовательность $\{u_k: k \geq 0\} \subset W$, обозначим

$$d_k = |\sigma(u_k) - u_{k+1}|_1, \quad b_k = \operatorname{dist}(u_k, \mathcal{M}), \quad a_k = \max(b_k, d_k),$$

и определим последовательности

$$\delta = \{d_k\}, \quad \beta = \{b_k\} \text{ и } \alpha = \{a_k\}.$$

Рассмотрим точки $u'_k = Pu_k$, найдем $w_k \in \mathcal{M}$ такие, что $|w_k - u_k|_1 = b_k$, обозначим $w'_k = Pw_k$ и определим $v_k \in \mathcal{M}$ по формулам $v_k = u'_k + \mathcal{F}(u'_k)$. Из второго включения в (11) следует, что $b_k \leq 1$, а тогда в силу третьего

включения мы имеем $w_k \in \mathcal{H}_0$. Из первого включения вытекает, что $v_k \in \mathcal{M}_0$.

Обозначим

$$\Delta_k = |\varphi(v_k) - v_{k+1}|_1$$

И

$$\Delta_k' = |\varphi(v_k) - v_{k+1}|_{in}.$$

 Π е м м а 1. Существует константа C_1 такая, что

$$\Delta_k \le C_1 a_k. \tag{12}$$

Доказательство. Напомним, что в силу (11) $w_k \in \mathcal{H}_0$, поэтому справедливы неравенства

$$|\sigma(w_k) - \sigma(u_k)|_1 \le \mathcal{L}b_k,$$

из которых вытекает оценка

$$|\sigma(w_k) - u_{k+1}|_1 \le |\sigma(u_k) - u_{k+1}|_1 + |\sigma(u_k) - \sigma(w_k)|_1 \le d_k + \mathcal{L}b_k \le C'a_k$$

где $C' = 1 + \mathcal{L}$. Теперь мы оценим величину

$$|\sigma^*(u_k') - u_{k+1}'|_1 \le |\sigma^*(u_k') - \sigma^*(w_k')|_1 + |\sigma^*(w_k') - Pu_{k+1}|_1. \tag{13}$$

Первое слагаемое в (13) не превосходит $\mathcal{L}b_k$, второе оценивается величиной $|P\sigma(w_k) - Pu_{k+1}|_1$, не превосходящей $C'a_k$.

Таким образом, левая часть (13) не превосходит $C''a_k$, где $C''=\mathcal{L}+C'$. Наконец, мы приходим к оценке

$$\Delta_k = |\varphi(v_k) - v_{k+1}|_1 \le (1 + \mathcal{L}')|u'_{k+1} - \sigma^*(u'_k)|_1,$$

которая доказывает нашу лемму с $C_1 = (1 + \mathcal{L}')C''$.

Из определения константы C^* и из (12) вытекают неравенства

$$\Delta_k' \le C^* \Delta_k \le C_1 C^* a_k. \tag{14}$$

Рассмотрим точку $v \in \mathcal{M}$ и обозначим $|\varphi^k(v) - v_k|_{in} = \varepsilon_k$.

 Π е м м а 2. Выполнены неравенства

$$|\sigma^k(v) - u_k|_1 \le \varepsilon_k + (2 + \mathcal{L}')b_k. \tag{15}$$

Доказательство. Так как $|w_k' - u_k'|_1 \le b_k$ и $|w_k - v_k|_1 \le (1 + \mathcal{L}')b_k$, то

$$|u_k - v_k|_1 \le |u_k - w_k|_1 + |w_k - v_k|_1 \le (2 + \mathcal{L}')b_k.$$

На инерциальном многообразии $\mathcal M$ отображение φ совпадает с σ и выполнены неравенства

$$|\varphi^k(v) - v_k|_1 \le |\varphi^k(v) - v_k|_{in}.$$

Поэтому утверждение леммы следует из неравенств

$$|\sigma^k(v) - u_k|_1 \le |\varphi^k(v) - v_k|_1 + |v_k - u_k|_1.$$

Введем последовательности

$$\Delta = \{\Delta_k\}, \quad \Delta' = \{\Delta'_k\} \text{ if } \varepsilon = \{\varepsilon_k\}.$$

В дальнейшем нам понадобятся оценки разности между точными решениями уравнения (4) и их приближениями, полученными из дискретизации (6), на конечном временном промежутке.

Предложение 1 [7]. Пусть B — ограниченное множество в \mathcal{H} . Существуют положительные константы C_0, h^*, D^* (зависящие от B u T) такие, что если $h_m \leq h^*$, $D_m \leq D^*$, u

$$S(t)u \in B$$
, $0 \le t \le T$; $\Sigma_m^n(u) \in B$, $0 \le n \le \frac{T}{h_m}$

для некоторого $u \in B \cap \mathcal{H}(m)$, то

$$|S(T)u - \Sigma_m^{TK_m}(u)|_1 \le C_0 \tau_m,$$

 $\varepsilon \partial e \ \tau_m = h_m + D_m.$

2. Гиперболический случай. В этом пункте мы будем предполагать, что выполнено следующее условие.

Условие Н. Все неподвижные точки полугруппы S(t) гиперболические.

Ясно, что неподвижная точка p(x) полугруппы S(t) — это решение краевой задачи

$$p_{xx} + f(p) = 0, \quad p(0) = p(\pi) = 0.$$
 (16)

Неподвижная точка p(x) называется гиперболической, если 0 – не собственное число линейного вариационного оператора

$$v \mapsto v_{xx} + f'(p(x))v$$

с краевыми условиями Дирихле.

Известно, что условие H выполнено для типичной нелинейности f. Кроме того, для специального класса нелинейностей, зависящих от параметра, можно указать явно значения параметра, при которых условие H выполнено. Дадим точные формулировки.

Фиксируем целое число $q \geq 0$. Мы определяем сильную C^q топологию Уитни на множестве функций $f: \mathcal{R} \to \mathcal{R}$ класса C^q следующим образом. Для двух функций f, g и для компактного множества K введем число

$$\rho_K^q(f,g) = \sum_{r=0}^q \sup_{v \in K} \left| \frac{\partial^r f}{\partial v^r} - \frac{\partial^r g}{\partial v^r} \right|.$$

База окрестностей функции f в сильной C^q топологии Уитни состоит из множеств вида

$$\{g: \rho_{K_n}^q(f,g) < \varepsilon_n\},\$$

где $\{K_n\}$ – счетное семейство компактных подмножеств $\mathcal R$ таких, что

$$\bigcup_{n} K_n = \mathcal{R},$$

а $\{\varepsilon_n\}$ — последовательность положительных чисел.

Напомним, что множество Y в топологическом пространстве X называется множеством II категории по Бэру, если Y содержит счетное пересечение открытых и плотных подмножеств пространства X. Свойство P элементов пространства X называется типичным, если множество

$$\{x \in X : x \text{ обладает свойством } P\}$$

является множеством II категории по Бэру. Известно [8], что множество II категории в пространстве функций $f: \mathcal{R} \to \mathcal{R}$ класса C^q с сильной C^q топологией Уитни плотно в этом пространстве.

Бруновский и Чоу [9] показали, что существует множество II категории по Бэру $\mathcal G$ в пространстве функций класса C^2 на $\mathcal R$ с сильной C^2 топологией Уитни, имеющее следующие два свойства:

- (1) если $f \in \mathcal{G}$, то любое решение p(x) задачи (16) гиперболично;
- (2) если $f \in \mathcal{G}$, то множество значений параметра $\mu > 0$, при которых задача

$$p_{xx} + \mu f(p) = 0, \quad p(0) = p(\pi) = 0,$$
 (17)

имеет негиперболические решения, не более чем счетно.

Для специального класса функций f возможно явно указать множество значений параметра μ , при которых задача (17) имеет негиперболические решения.

Чаффи и Инфанте [10] рассматривали уравнение (1) с нелинейностью $\mu f \in C^2, \mu > 0$, предполагая, что f удовлетворяет следующим условиям:

- $(1) f(0) = 0, \quad f'(0) = 1;$
- $(2) \ uf''(u) < 0 \ при \ u \neq 0;$

(3)
$$\lim_{u \to \pm \infty} \frac{f(u)}{u} \le 0.$$

Они показали, что задача (12) имеет негиперболические решения только при $\mu=n^2, n=1,2,...$

Мы будем использовать следующее утверждение, доказанное в [11] (см. также [12]). Напомним, что во всех утверждениях пункта 2 предполагается, что выполнены условия A и H.

Предложение 2. Существуют константы $d^0, L > 0$ и окрестность W глобального аттрактора \mathcal{A} в \mathcal{H} такие, что если последовательность $\{u_k : k \geq 0\} \subset W$ обладает свойствами

$$|\sigma(u_k) - u_{k+1}|_1 \le d \le d^0, \quad k \ge 0, \quad u \quad \text{dist} (u_0, \mathcal{M}) \le 2d,$$
 (18)

то найдется точка $u \in \mathcal{M}$ такая, что

$$|\sigma^k(u) - u_k|_1 \le Ld, \quad k \ge 0.$$

Теорема 1. Существует окрестность W глобального аттрактора \mathcal{A} такая, что если $u_k \in W$ и $d_k \to 0$ при $k \to \infty$, то $|u_k - \pi|_1 \to 0$ при $k \to \infty$ для некоторой неподвижной точки π полугруппы S(t) в \mathcal{A} .

Докажем вначале вспомогательное утверждение.

 Π емма 3. Eсли

$$d_k \to 0 \ npu \ t \to \infty,$$

mo

$$b_k \to 0 \ npu \ t \to \infty.$$

Доказательство. В силу определения отображения σ , из (7) и (8) следует, что

$$b_{k+1} \leq \operatorname{dist}(\sigma(u_k), \mathcal{M}) + |\sigma(u_k) - u_{k+1}|_1 \leq \nu b_k + d_k$$

где $\nu < 1$. Отсюда вытекают оценки

$$b_n \le \nu^{-1} \sum_{k=1}^n \nu^k d_{n-k} + \nu^n b_0. \tag{19}$$

Очевидно, $\nu^n b_0$ стремится к 0 при $n \to \infty$. Обозначим

$$\Sigma_n = \sum_{k=1}^n \nu^k d_{n-k}$$

и покажем, что $\Sigma_n \to 0$ при $n \to \infty$.

Фиксируем $\varepsilon > 0$. Существует такое $\varkappa(\varepsilon)$, что

$$d_k < \varepsilon_1 = \frac{(1-\nu)\varepsilon}{2}$$
 при $k \ge \varkappa(\varepsilon)$.

Представим $\Sigma_n = \Sigma'_n + \Sigma''_n$, где

$$\Sigma_n' = \sum_{k=1}^{n-\varkappa(\varepsilon)} \nu^k d_{n-k}.$$

Очевидно,

$$\left|\Sigma_n'\right| < \varepsilon_1 \sum_{k=1}^{\infty} \nu^k < \frac{\varepsilon}{2}.$$

Так как $d_k \to 0$, существует такое d', что $d_k \le d'$. Следовательно,

$$\left|\Sigma_n''\right| \leq d' \sum_{k=n-\varkappa(\varepsilon)+1}^n \nu^k < d' \nu^{n-\varkappa(\varepsilon)+1} \frac{1}{1-\nu} < \frac{\varepsilon}{2}$$

для больших n. Лемма доказана.

Докажем теперь теорему 1.

Возьмем такую окрестность W аттрактора \mathcal{A} , что в ней выполняется утверждение предложения 2.

Так как гиперболические неподвижные точки изолированы, существует число a>0 такое, что

$$|\pi_i - \pi_j|_1 \ge 2a$$

для двух различных неподвижных точек π_i и π_j .

Фиксируем число

$$\varepsilon < \min\left(2d^0, \frac{a}{L}\right)$$

(здесь d^0 и L из предложения 2).

Из леммы 3 следует, что существует такое k_0 , что $d_k, b_k < \varepsilon$ при $k \ge k_0$. В силу предложения 2, для всякого $l \ge k_0$ найдется точка $v_l \in \mathcal{M}$ такая, что

$$|\sigma^k(v_l) - u_{l+k}|_1 \le L\varepsilon$$
 при $k \ge 0$.

Известно [1], что при выполнении условия Н любая траектория отображения σ стремится к неподвижной точке, поэтому существует такая неподвижная точка π_l , что

$$|\varphi^k(v_l) - \pi_l|_1 = |\sigma^k(v_l) - \pi_l|_1 \to 0$$

при $k \to \infty$.

Возьмем два индекса $l, m \ge k_0$. Из неравенств

$$|arphi^{k-l}(v_l) - u_k|_1 \leq L arepsilon$$
 при $k \geq l$

И

$$|\varphi^{k-m}(v_m)-u_k|_1 \leq L\varepsilon$$
 при $k\geq m$

следует, что

$$|\varphi^{k-l}(v_l) - \varphi^{k-m}(v_m)|_1 \le 2L\varepsilon$$
 при $k \ge \max(l, m)$.

Пусть траектория точки v_m стремится к неподвижной точке π_m .

Переходя в последнем неравенстве к пределу при $k \to \infty$, мы получаем соотношение

$$|\pi_l - \pi_m|_1 \le 2L\varepsilon \le a,$$

из которого следует, что $\pi_l = \pi_m$. Мы видим, что траектория любой точки $v_l, l \geq k_0$, стремится при $k \to \infty$ к одной и той же неподвижной точке, обозначим эту неподвижную точку через π .

Возьмем $v = v_{k_0}$. Существует такое k_1 , что

$$|\sigma^k(v) - \pi|_1 < \varepsilon$$

при $k \geq 0$. Тогда выполнены неравенства

$$|u_{k_0+k} - \pi|_1 < (1+L)\varepsilon$$

при $k \geq k_1$. Теперь утверждение нашей теоремы следует из произвольности ε .

З а м е ч а н и е. Легко понять, что если глобальный аттрактор \mathcal{A} не сводится к одной притягивающей неподвижной точке, то стремление точных (а тем более приближенных) траекторий к неподвижным точкам может быть сколь угодно медленным в следующем смысле.

Существуют число a>0 и неподвижная точка π такие, что для любой окрестности W аттрактора $\mathcal A$ и для любого N можно указать точку $v\in \mathcal M\cap W$ с $\varphi^k(v)\to \pi$ при $k\to\infty$, для которой выполнено неравенство

$$\operatorname{card}\{|\varphi^k(v) - \pi|_{in} \ge a\} \ge N$$

(здесь card – число элементов множества).

Аналогично следствию 4.2 в [7] доказывается следующее утверждение.

 Π е м м а 4. По любой окрестности W глобального аттрактора \mathcal{A} в \mathcal{H} можно указать такую его окрестность W' и положительные числа h' = h'(W', W) и D' = D'(W', W), что если $h_m \leq h'$, $D_m \leq D'$ и $v \in W' \cap \mathcal{H}(m)$, то

$$\Sigma_m^n(v) \in W \ npu \ 0 \le n \le \frac{T}{h_m}.$$

Напомним, что мы обозначили $\tau_m = h_m + D_m$.

Теорема 2. Существует такая окрестность W_0 глобального аттрактора \mathcal{A} , что если построенная во введении последовательность $\{u_m\}$ лежит в W_0 и $\tau_m \to 0$ при $m \to \infty$, то $|u_m - \pi|_1 \to 0$ при $m \to \infty$ для некоторой неподвижной точки π .

Доказательство. Рассмотрим ограниченное множество $B = \mathcal{H}_0$. Найдем, используя предложение 1, соответствующие этому множеству и числу T числа C_0 , h^* и D^* .

Применим лемму 4 и найдем соответствующие окрестность W' и числа h'(W',B) и D'(W',B).

Так как аттрактор \mathcal{A} устойчив по Ляпунову, существует такая его окрестность W'', что

$$S(t)W'' \subset B$$
 при $t \ge 0$.

По условию, $\tau_m \to 0$, следовательно, $h_m \to 0$ и $D_m \to 0$, поэтому существует такое число m_0 , что для $m \ge m_0$ выполнены неравенства

$$h_m \le \min(h', h^*) \text{ и } D_m \le \min(D', D^*). \tag{20}$$

Возьмем $W_0 = W \cap W' \cap W''$ и рассмотрим $u_m = V_{\varkappa_m} \in W_0,$ $m \geq m_0.$ Оценим

$$d_m = |\sigma(u_m) - u_{m+1}|_1 = |S(T)u_m - V_{\varkappa_{m+1}}|_1 =$$
$$= |S(T)u_m - \Sigma_m^{TK_m}(u_m)|_1 \le C_0 \tau_m \to 0 \, m \to \infty.$$

Теперь наша теорема вытекает из теоремы 1.

Перейдем к задаче об оценке величин $|\sigma^k(v) - u_k|_1$ в терминах h_m и D_m .

Фиксируем числа $r, p \geq 1$ и рассмотрим банахово пространство $\mathcal{L}_{r,p}$, в котором норма последовательности $a = \{a_k : k \geq 0\}$ задается формулой

$$||a||_{r,p} = \left(\sum_{k=0}^{\infty} r^k |a_k|^p\right)^{1/p}.$$

T е о р е м а 3. Для любых $r,p \geq 1$ найдется число T, зависящее от r,p и такое, что отображение $\sigma(u) = S(T)u$ обладает следующим свойством.

Существуют окрестность W_0 глобального аттрактора \mathcal{A} и числа $d^0, L>0$ такие, что если последовательность $\{u_k\}\subset W_0$ удовлетворяет условиям

$$||\delta||_{r,p} \le d \le d^0 \ u \operatorname{dist}(u_0, \mathcal{M}) \le 2d,$$

то для некоторой точки $v \in \mathcal{M}$ выполнено неравенство

$$||\{|\sigma^k(v) - u_k|_1\}||_{r,p} \le Ld.$$

Обозначим $\rho=r^{1/p}$. Мы наложим на T два условия. Во-первых, мы потребуем, чтобы выполнялось неравенство

$$\nu_1 = \rho \nu < 1 \tag{21}$$

(это возможно в силу определения ν в (8)).

Для формулировки второго условия нам потребуется дополнительная информация о поведении отображения φ на \mathcal{M} .

Будем обозначать через $T_p\mathcal{M}$ касательное пространство к инерциальному многообразию \mathcal{M} в точке p. Определим отображение $e_p:T_p\mathcal{M}\to\mathcal{M}$ для $p\in\mathcal{M}$ формулой

$$e_p(v) = P(p+v) + \mathcal{F}(P(p+v)), \quad v \in T_p \mathcal{M}.$$

Так как отображение \mathcal{F} класса C^1 , e_p тоже класса C^1 .

Прямое вычисление показывает, что

$$De_p(0) = I. (22)$$

Из лемм 3.4.4 и 3.4.5 в [12] следует, что число T и выбранную ранее окрестность \mathcal{M}_0 можно взять такими, чтобы выполнялось следующее утверждение (это и будет нашим вторым условием на T).

Предложение 3. Существуют подпространства S(p), U(p) пространства $T_p\mathcal{M}, p \in \mathcal{M}_0$ и число $\lambda \in (0,1)$, имеющие следующие свойства:

- (1) $S(p) \oplus U(p) = T_p \mathcal{M};$
- (2) существует $N_1 > 0$ такое, что для проекторов $Q^s(p), Q^u(p)$ на S(p), U(p) параллельно U(p), S(p) выполнены неравенства

$$||Q^s(p)|| \le N_1, \quad ||Q^u(p)|| \le N_1;$$

- (3) $D\varphi(p)S(p) \subset S(\varphi(p))$, $D\varphi^{-1}(p)U(p) \subset U(\varphi^{-1}(p))$ (второе включение имеет место, если $p \in \varphi(\mathcal{M}_0)$);
 - (4) выполнены неравенства

$$|D\varphi(p)v| \le \lambda |v|, \quad v \in S(p), \quad p \in \mathcal{M}_0,$$

 $|D\varphi^{-1}(z)v| \le \lambda |v|, \quad v \in U(z), \quad z \in \varphi(\mathcal{M}_0),$

u

$$\lambda \rho < 1; \tag{23}$$

(5) для любого $\mu > 0$ найдется a > 0 такое, что если $p \in \mathcal{M}_0, z \in \varphi(\mathcal{M}_0)$ и $|z - \varphi(p)|_{in} < a$, то существуют линейный изоморфизм $\Pi(p, z)$: $T_z\mathcal{M} \to T_z\mathcal{M}$ со свойствами

$$||\Pi(p,z)-I|| < \mu, \quad \Pi(p,z)[De_z^{-1}(q)D\varphi(p)S(p)] \subset S(z),$$

u линейный изоморфизм $\Theta(p,z):T_p\mathcal{M}\to T_p\mathcal{M}$ со свойствами

$$||\Theta(p,z) - I|| < \mu, \quad \Theta(p,z)[De_p^{-1}(t)D\varphi^{-1}(z)U(z)] \subset U(p),$$

$$e \partial e \ q = \varphi(p), t = \varphi^{-1}(z).$$

Для $p \in \mathcal{M}_0$ и a>0 мы обозначим

$$\mathcal{E}_a(p) = \{ v \in T_p \mathcal{M} : |v| \le a \}, \quad \mathcal{D}_a(p) = e_p(\mathcal{E}_a(p)).$$

Очевидно, существуют окрестность $\mathcal{M}_1 \subset \mathcal{M}_0$ глобального аттрактора \mathcal{A} и такое число c>0, что для $p\in\mathcal{M}_1$ выполнены включения

$$\mathcal{D}_c(p), \varphi(\mathcal{D}_c(p)), \varphi^{-1}(\mathcal{D}_c(p)) \subset \mathcal{M}_0$$

и e_p диффеоморфно отображает $\mathcal{E}_c(p)$ на $\mathcal{D}_c(p)$ с равномерными оценками величин $||De_p||, ||De_p^{-1}||.$

Обозначим $M=\mathcal{M}_1$. Рассмотрим последовательность $\{v_k: k\geq 0\}\subset M$ такую, что

$$||\Delta'||_{r,p} \le g. \tag{24}$$

Ниже мы будем обозначать через g' положительные константы, зависящие от свойств φ на M и не зависящие от последовательности $\{v_k\}$. На каждом шаге доказательства мы будем считать, что число g в оценке (24) не превосходит минимального g', выбранного к этому моменту. Так как g' будет выбираться конечное число раз, это не приведет к потере общности.

Теперь мы фиксируем $k \ge 0$ и введем обозначения

$$p = v_k, \quad z = v_{k+1}, \quad H_k = T_{v_k} \mathcal{M}.$$

Возьмем такое g' < c/2, что из неравенства

$$|z - \varphi(p)|_{in} \le g' \tag{25}$$

следует включение

$$\varphi^{-1}(z) \in \mathcal{D}_c(p). \tag{26}$$

Найдем такое 0 < b < c, что

$$\varphi(\mathcal{D}_b(x)) \subset \mathcal{D}_{q'}(\varphi(x)), \quad x \in M$$

(очевидно, b зависит только от φ). Из (25) следует, что

$$\varphi(\mathcal{D}_b(p)) \subset \mathcal{D}_c(z).$$

Таким образом, отображение $\psi_k: \mathcal{E}_b(p) \to H_{k+1}$, задаваемое формулой

$$\psi_k(w) = e_z^{-1} \circ \varphi \circ e_p(w),$$

определено корректно. Введем следующие обозначения:

$$q = \varphi(p), \quad q' = e_z^{-1}(q), \quad t = \varphi^{-1}(z), \quad t' = e_p^{-1}(t),$$

$$D = D\psi_k(0), \quad D' = D\varphi(t)De_p(t'), \quad G = De_p^{-1}(t)D\varphi^{-1}(z).$$

Отметим, что t', D', G корректно определены в силу (26).

Фиксируем такое $N_2 > 0$, что

$$||D\varphi(x)||, ||D\varphi^{-1}(x)|| \le N_2, \quad x \in M.$$

Обозначим $N = \max(N_1, N_2)$ (здесь N_1 из предложения 3).

Найдем такое $\mu_0 \in (0,1)$, что

$$(1+\mu_0)^2 \rho \lambda < 1, \tag{27}$$

и положим

$$\lambda' = (1 + \mu_0)^2 \lambda, \quad \lambda_1 = \rho \lambda', \quad N' = N \frac{1 + \lambda_1}{1 - \lambda_1}.$$

Выберем такое $\varkappa>0,$ что $\varkappa N'<1,$ и найдем такое $\mu<\mu_0,$ чтобы выполнялось неравенство

$$N(4N+1)\mu < \frac{\varkappa}{2}.\tag{28}$$

Из соотношения (22) следует, что

$$D = De_z^{-1}(q)D\varphi(p). \tag{29}$$

Теперь мы найдем такое g', чтобы из неравенства (25) вытекали неравенства

$$|De_p(t')w| \le (1+\mu)|w|, \quad w \in T_p\mathcal{M}, \tag{30}$$

$$|De_z^{-1}(q)w| \le (1+\mu)|w|, \quad w \in T_q\mathcal{M},$$
 (31)

$$|De_p^{-1}(t)w| \le (1+\mu)|w|, \quad w \in T_t \mathcal{M}$$
(32)

(здесь мы используем (22) и равномерную непрерывность De_x, De_x^{-1}),

$$||D - D'|| < \mu \tag{33}$$

(мы учитываем (29) и определение D' и принимаем во внимание соображения, использованные выше),

$$||\Pi(p,z) - I||, ||\Theta(p,z) - I||, ||\Theta^{-1}(p,z) - I|| < \mu$$
(34)

(см. предложение 3).

Определим линейный оператор $A_k: H_k \to H_{k+1}$ формулой

$$A_k = \Pi(p, z)DQ^s(p) + D'\Theta^{-1}(p, z)Q^u(p).$$

Для $w \in S(p)$ имеет место включение $w^s = A_k w = \Pi(p,z) Dw \in S(z)$ (см. предложение 3), поэтому

$$A_k S(p) \subset S(z). \tag{35}$$

Так как $|D\varphi(p)w| \le \lambda |w|$, из (31) и (34) вытекает, что $|w^s| \le (1+\mu)^2 \lambda |w| = \lambda' |w|$, поэтому

$$||A_k|_{S(p)}|| \le \lambda'. \tag{36}$$

Теперь мы рассмотрим линейное отображение $B_k: U(z) \to H_k$, определенное формулой $B_k w = \Theta(p,z)Gw$. Используя (30) и (32), легко увидеть, что $w^u = B_k w \in U(p)$, поэтому

$$B_kU(z)\subset U(p),$$

и $|w^u| \leq \lambda' |w|$, следовательно,

$$||B_k|_{U(z)}|| \le \lambda'.$$

Из равенств

$$A_k w^u = D'\Theta^{-1}(p, z)\Theta(p, z)Gw = D'Gw = w$$

вытекает, что

$$A_k B_k |_{U(z)} = I.$$

Представим

$$\psi_k(w) = Dw + \rho(w).$$

Очевидно, существует такое g', что

$$|\rho(w) - \rho(w')| \le \frac{\varkappa}{2} |w - w'| \tag{37}$$

для $|w|, |w'| \leq g'$.

Запишем теперь

$$\psi_k(w) = A_k w + \chi_{k+1}(w), \tag{38}$$

где $\chi_{k+1}(w) = (D - A_k)w + \rho(w), \chi_{k+1}(0) = \psi_k(0).$

Оценим величину $||D - A_k||$ следующим образом,

$$||D - A_k|| = ||D(Q^s(p) + Q^u(p)) - A_k|| \le ||DQ^s(p) - \Pi(p, z)DQ^s(p)|| + ||DQ^u(p) - D'Q^u(p)|| + ||D'Q^u(p) - D'\Theta^{-1}(p, z)Q^u(p)||.$$
(39)

Так как $||Q^s(p)|| \le N, \, ||D|| \le (1+\mu)N \le 2N$ и $||\Pi(p,z)-I|| < \mu$ (см. (34)), первое слагаемое в правой части (39) не превосходит $2N^2\mu$.

Те же соображения и неравенство (33) показывают, что второе слагаемое оценивается величиной $N\mu$. Из определения D' и из неравенства $\mu < 1$ следует, что ||D'|| < 2N. Таким образом, третье слагаемое не превосходит $2N^2\nu$. Мы получаем неравенство

$$||D - A_k|| \le N(4N + 1)\mu < \frac{\varkappa}{2}$$

(см. (28)). С учетом (37), из последнего неравенства вытекает, что

$$|\chi_k(w) - \chi_k(w')| \le \varkappa |w - w'|$$
 для $|w|, |w'| \le g'.$ (40)

Так как производные $De_x(y), De_x^{-1}(y')$ равномерно ограничены при

$$x \in M, \quad y \in \mathcal{E}_c(x), \quad y' \in \mathcal{D}_c(x),$$
 (41)

существует такое $N^*>0,$ что для x,y,y', удовлетворяющих (41), выполнены неравенства

$$|x - e_x(y)|_{in} \le N^* |x - y|, \quad |x - e_x^{-1}(y')| \le N^* |x - y'|_{in}.$$

Так как $\psi_k(0) = e_z^{-1}(\varphi(p))$, справедливы соотношения

$$|\psi_k(0)| \le N^*|z - \varphi(p)|_{in} = N^*|\varphi(v_k) - v_{k+1}|_{in} = N^*\Delta_k'. \tag{42}$$

Станем рассматривать последовательности

$$u = \{u_k \in T_{v_k} \mathcal{M} : k \ge 0\}$$

$$\tag{43}$$

с конечной величиной $||u||_{r,p}$ как элементы банахова пространства $\mathcal{L}_{r,p}$, введенного перед теоремой 3 (это не приведет к путанице). Отметим, что норма $||\cdot||_{r,p}$ монотонна, т.е. из неравенств $|u_k| \leq |u_k'|$ следует неравенство $||u||_{r,p} \leq ||u'||_{r,p}$ и, кроме того, выполнены неравенства

$$||u||_{\infty} = \sup_{k \ge 0} |u_k| \le ||u||_{r,p}.$$

Будем обозначать через |||A||| операторную норму линейного оператора A на пространстве последовательностей вида (43).

 Π е м м а 5. Существует линейный оператор \mathcal{G} на банаховом пространстве $\mathcal{L}_{r,p}$ последовательностей вида (43) такой, что

$$|||\mathcal{G}||| \leq N'$$

и для любой последовательности

$$z = \{z_k \in T_{v_k} \mathcal{M} : k \ge 0\} \in \mathcal{L}_{r,p}$$

последовательность $u=\mathcal{G}z$ обладает свойством

$$u_{k+1} = A_k u_k + z_{k+1}, \quad k \ge 0 \tag{44}$$

(число N' и операторы A_k введены выше).

Доказательство. Обозначим

$$P_k = Q^s(v_k), \quad Q_k = Q^u(v_k)$$

(проекторы $Q^s(p)$ и $Q^u(p)$ введены в предложении 3). Определим оператор $\mathcal G$ так: для

$$z = \{z_k \in T_{v_k} \mathcal{M} : k \ge 0\} \in \mathcal{L}_{r,p}$$

положим

$$\mathcal{G}z = u^1 + u^2 + u^3,$$

где

$$u_n^1 = P_n z_n, \ u_n^2 = \sum_{k=0}^{n-1} A_{n-1} \dots A_k P_k z_k, \ u_n^3 = -\sum_{k=n}^{\infty} B_{n+1} \dots B_k Q_{k+1} z_{k+1}.$$

Оценим норму \mathcal{G} . Очевидно,

$$||u^1||_{r,p} \le N_1||z||_{r,p} \le N||z||_{r,p}.$$

Так как $|P_k z_k| \leq N|z_k|, A_m \dots A_k P_k z_k \in S(v_{m+1})$ при $m \geq k$, и в силу (36) выполнены неравенства

$$\rho||A_k|_{S(v_k)}|| \le \rho\lambda' = \lambda_1,$$

TO

$$|r^n|u_n^2|^p = \left|\sum_{k=0}^{n-1} \rho A_{n-1} \dots \rho A_k P_k \rho^k z_k\right|^p \le N \left|\sum_{k=0}^{n-1} \lambda_1^{n-k} \rho^k |z_k|\right|^p$$

(напомним, что согласно (27), $\lambda_1 < 1$).

Таким образом, мы приходим к оценкам

$$||u^2||_{r,p} \le N \left(\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n-1} \lambda_1^{n-k} \rho^k |z_k|\right)^p\right)^{1/p} =$$

$$= N \left(\sum_{n=0}^{\infty} \left(\sum_{m=1}^{n} \lambda_{1}^{m} \rho^{n-m} |z_{n-m}| \right)^{p} \right)^{1/p}.$$

Применяя неравенство Минковского, мы получаем

$$||u^2||_{r,p} \le N \sum_{m=1}^{\infty} \lambda_1^m \left(\sum_{n=m}^{\infty} \rho^{(n-m)p} |z_{n-m}|^p \right)^{1/p} \le N \frac{\lambda_1}{1-\lambda_1} ||z||_{r,p}.$$

Аналогично показывается, что

$$||u^3||_{r,p} \le N \frac{\lambda_1}{1-\lambda_1} ||z||_{r,p}.$$

Таким образом,

$$||\mathcal{G}z||_{r,p} \le N'||z||_{r,p}.$$

Доказательство соотношений (44) проводится непосредственной проверкой.

 Π е м м а 6. Если выполнено неравенство (21), то существует константа C_2 такая, что если $||\delta||_{r,p} \le d$ и $b_0 \le 2d$, то $||\beta||_{r,p} \le C_2d$.

Доказательство. Из неравенств (19) следует, что

$$||\beta||_{r,p} \le \left(\sum_{n>0} r^n \left(\nu^{-1} \sum_{k=1}^n \nu^k d_{n-k} + \nu^n b_0\right)^p\right)^{1/p} \le \Sigma' + \Sigma'',$$

где

$$\Sigma' = \left(\sum_{n=0}^{\infty} r^n \left(\nu^{-1} \sum_{k=1}^{\infty} \nu^k d_{n-k}\right)^p\right)^{1/p}$$

И

$$\Sigma'' = \left(\sum_{n=0}^{\infty} r^n \left(\nu^n b_0\right)^p\right)^{1/p}.$$

Преобразуем

$$\Sigma' = \nu^{-1} \left(\sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \rho^n \nu^k d_{n-k} \right)^p \right)^{1/p} = \nu^{-1} \left(\sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \nu_1^k g_{n-k} \right)^p \right)^{1/p},$$

где

$$g_{n-k} = \rho^{n-k} d_{n-k}.$$

Так как

$$\left(\sum_{n=k}^{\infty} g_{n-k}^p\right)^{1/p} = \left(\sum_{n=k}^{\infty} r^{n-k} d_{n-k}^p\right)^{1/p} \le d,$$

из неравенства Минковского следует, что

$$\Sigma' \le \nu^{-1} \sum_{k=1}^{\infty} \nu_1^k \left(\sum_{n=k}^{\infty} g_{n-k}^p \right)^{1/p} \le \frac{d}{\nu(1-\nu_1)}.$$

Теперь оценим

$$\Sigma'' = b_0 \left(\sum_{n=0}^{\infty} r^n \nu^{np} \right)^{1/p} = b_0 \left(\frac{1}{1 - \nu_1^p} \right)^{1/p} \le 2d \left(\frac{1}{1 - \nu_1^p} \right)^{1/p}.$$

Полученные неравенства доказывают нашу лемму с

$$C_2 = \frac{1}{\nu(1-\nu_1)} + 2\left(\frac{1}{1-\nu_1^p}\right)^{1/p}.$$

Для завершения доказательства теоремы 3 выберем такую окрестность W_0 глобального аттрактора \mathcal{A} , чтобы из включений $u_k \in W_0$ следовали включения $v_k \in M$. Рассмотрим последовательность $\{u_k\} \subset W_0$, для которой выполнены предположения нашей теоремы.

Так как $||\alpha||_{r,p} \le d + ||\beta||_{r,p}$, из неравенств (14) и из леммы 6 вытекают неравенства

$$||\Delta'||_{r,p} \le C_1 C^* ||\alpha||_{r,p} \le C_3 d,$$

где $C_3 = C_1(1+C_2)C^*$. Из этих неравенств, в силу (42), следует оценка

$$||\{\psi_k(0)\}||_{r,p} \le C_4 d,$$

где $C_4 = N^*C_3$.

Введем число

$$L' = \frac{N'}{1 - \varkappa N'}.$$

Из леммы 1.3.1 в [12] следует, что если

$$||\{\psi_k(0)\}||_{r,p} \le d' = \frac{g'}{L'},$$

то существуют $w_k \in H_k$ такие, что $\psi(w_k) = w_{k+1}$ и

$$||\{w_k\}||_{r,p} \le L'||\{\psi_k(0)\}||_{r,p} \le L'C_4d. \tag{45}$$

Введем числа

$$d^0 = \min\left(\frac{d'}{C_4}, \frac{c}{C_4L'}\right), \quad L = L'N^*C_4 + (2 + \mathcal{L}')C_2.$$

Отметим, что для $v=v_0+w_0$ выполнены равенства $\varphi^k(v)=v_k+w_k$. Из (45) следует, что если $d\leq d^0$, то $|w_k|\leq L'C_4d^0\leq c$, поэтому

$$\varepsilon_k = |\varphi^k(v) - v_k|_{in} \le N^* |w_k|.$$

Отсюда и из лемм 2 и 6 мы выводим, что

$$||\{|\sigma^k(v) - u_k|_1\}||_{r,p} \le ||\varepsilon||_{r,p} + (2 + \mathcal{L}')||\beta||_{r,p} \le Ld.$$

Теорема доказана.

Фиксируем опять числа $r, p \geq 1$ и рассмотрим соответствующие число T, окрестность W_0 глобального аттрактора \mathcal{A} и числа d^0 и L, обладающие свойствами, описанными в теореме 3. Будем, кроме того, считать, что выполнено неравенство

$$\nu < \frac{1}{2} \,. \tag{46}$$

Рассмотрим последовательность схем (6) и введем последовательность $\tau = \{\tau_m\}$ (напомним, что $\tau_m = h_m + D_m$).

Так же, как в теореме 2, рассмотрим ограниченное множество $B = \mathcal{H}_0$ и найдем числа C_0, h', h^*, D', D^* и окрестности W' и W''. Будем считать, что выполняются неравенства (20). Возьмем $W_1 = W_0 \cap W' \cap W''$.

T е о р е м а $\ 4$. $\ \mathit{Cyществуеm}\ \kappa \mathit{онстантa}\ L_1 > 0\ \mathit{makas},\ \mathit{чтo}\ \mathit{еслu}$

$$d = ||\tau||_{r,p} \le \frac{d^0}{C_0},$$

то найдется число $m_0 = m_0(d)$, обладающее следующим свойством. Для любой последовательности $\{u_m\} \subset W_1$, построенной по схемам (6), найдутся $n \in [0, m_0]$ и v такие, что

$$||\{|\sigma^m(v) - u_{n+m}|_1 : m \ge 0\}||_{r,p} \le L_1 \left(\sum_{m=0}^{\infty} r^m \tau_{n+m}^p\right)^{1/p}.$$

 $\ \ \, \mathbb{I}$ о к а з а т е л ь с т в о . Так же, как в теореме 2, показывается, что из неравенств (20) вытекают оценки

$$d_m = |\sigma(u_m) - u_{m+1}|_1 \le C_0 \tau_m,$$

поэтому $||\delta||_{r,p} \leq C_0 d$ и

$$d_m < C_0 d < d^0.$$

Обозначим $d' = C_0 d$. В силу леммы 3.4.3 в [12], из неравенств $d_m \leq d'$ и (46) следует, что найдутся такие $m_0 = m_0(d)$ и $n \in [0, m_0]$, что $\beta_n = \operatorname{dist}(u_n, \mathcal{M}) \leq 2d'$. Обозначим $w_m = u_{n+m}$ и введем числа $g_m = |\sigma(w_m) - w_{m+1}|_1$ и последовательность $g = \{g_m\}$. Тогда

$$||g||_{r,p} = \left(\sum_{m=0}^{\infty} r^m |\sigma(w_m) - w_{m+1}|_1^p\right)^{1/p} =$$

$$= \left(\sum_{m=0}^{\infty} r^m |\sigma(u_{n+m}) - w_{n+m+1}|_1^p\right)^{1/p} =$$

$$= \left(r^{-n} \sum_{m=0}^{\infty} r^{m+n} d_{m+n}^p\right)^{1/p} \le \rho^{-n} ||\delta||_{r,p} \le \rho^{-n} d' \le d'.$$

Согласно теореме 3, существует такое v, что

$$\left(\sum_{m=0}^{\infty} r^m |\sigma^m(v) - u_{n+m}|_1^p\right)^{1/p} = \left(\sum_{m=0}^{\infty} r^m |\sigma^m(v) - w_m|_1^p\right)^{1/p} \le L||g||_{r,p} = L\left(r^{-n}\sum_{m=0}^{\infty} r^{m+n} d_{m+n}^p\right)^{1/p} \le L_1\left(\sum_{m=0}^{\infty} r^m \tau_{n+m}^p\right)^{1/p},$$

где $L_1 = C_0 L$. Теорема доказана.

Замечание. Легко понять, что условия теоремы 4 выполняются, например, если справедливы неравенства

$$h_m \le \min\left(h', h^*, \frac{d^0}{4C_0}\right) z^m, \quad D_m \le \min\left(D', D^*, \frac{d^0}{4C_0}\right) z^m,$$

и, кроме того, $rz^p \leq \frac{1}{2}$.

3. Негиперболический случай. В этом пункте мы откажемся от предположения о гиперболичности неподвижных точек полугруппы S(t) и будем предполагать, что выполнено лишь условие A.

Будем считать, что число T выбрано так, чтобы выполнялось неравенство (46).

Сформулируем определение спектра Сакера-Селла [13] для глобального аттрактора системы φ на $\mathcal{M}.$

Фиксируем $\mu>0$ и рассмотрим для $x\in\mathcal{A}$ и $k\in\mathbf{Z}$ линейное отображение

$$\Phi_{\mu}(x,k) = \mu^k D\varphi^k(x) : T_x \mathcal{M} \to T_{\varphi^k(x)} \mathcal{M}.$$

Будем говорить, что Φ_{μ} обладает экспоненциальной дихотомией над точкой $x \in \mathcal{A}$, если существуют проектор $\Pi = \Pi(x)$ в $T_x\mathcal{M}$ и числа $K > 0, \alpha \in (0,1)$ такие, что

$$||\Phi_{\mu}(x,m)\Pi\Phi_{\mu}^{-1}(x,l)||\leq K\alpha^{m-l}$$
 для $l\leq m$

И

$$||\Phi_{\mu}(x,m)(I-\Pi)\Phi_{\mu}^{-1}(x,l)|| \leq K\alpha^{m-l}$$
 для $m \leq l.$

Для точки $x \in \mathcal{A}$ определим ее резольвенту

 $\mathcal{R}(x) = \{ \mu : \Phi_{\mu} \text{ обладает экспоненциальной дихотомией над } x \}$

и ее спектр

$$\Sigma(x) = (0, \infty) \setminus \mathcal{R}(x).$$

Наконец, спектром Сакера-Селла множества \mathcal{A} назовем множество

$$\Sigma(\mathcal{A}) = \bigcup_{x \in \mathcal{A}} \Sigma(x).$$

T е о p е M а 5 . Предположим, что существует такое <math>c>0, что

$$(1,c) \cap \Sigma(\mathcal{A}) = \emptyset.$$

Тогда для любого $p \ge 1$ найдется $c_0 > 0$, обладающее следующим свойством. Для любого $r \in (1, c_0)$ существуют окрестность W_0 глобального аттрактора \mathcal{A} и числа $d^0, L > 0$ такие, что если последовательность $\{u_k\} \subset W_0$ удовлетворяет условиям

$$||\delta||_{r,p} \le d \le d^0 \ u \operatorname{dist}(u_0, \mathcal{M}) \le 2d^0,$$

то для некоторой точки $v \in \mathcal{M}$ выполнено неравенство

$$||\{|\sigma^k(v) - u_k|_1\}||_{r,p} \le Ld.$$

З а м е ч а н и е. Отличие теоремы 5 от теоремы 3 состоит в том, что ее условия допускают наличие в глобальном аттракторе \mathcal{A} негиперболических неподвижных точек полугруппы S(t).

Доказательство теоремы 5 проводится по схеме доказательства теоремы 3 с применением лемм 1,2 и 6 и теоремы 1.4.5 в [12], здесь мы его опускаем. Применение теоремы 5 в задаче 2 аналогично применению теоремы 3 (см. теорему 4).

Работа выполнена при частичной поддержке INTAS (грант 96–1158), кроме того, первый автор поддержан Правительством Санкт-Петербурга (персональный грант 97–2.1 к–1202 для студентов, аспирантов и молодых ученых). Статья подготовлена при поддержке Федеральной целевой программы "Интеграция" (проект N 2.1–326.53).

Список литературы

- 1. $Xенри \mathcal{A}$. Геометрическая теория полулинейных параболических уравнений. М., Мир, 1985. 376 с.
- 2. Eirola T., Nevanlinna O., Pilyugin S.Yu. Limit shadowing property // Numer. Funct. Anal. Optim. 1997. Vol. 18. P. 75–92.
- 3. Бабин A.B., Вишик М.И. Аттракторы эволюционных уравнений. М., Наука, 1989. 294 с.
- 4. Foias C., Sell G.R., Temam R. Inertial manifolds for nonlinear evolutionary equations // J. Diff. Equat. 1988. Vol. 73. P. 309–353.
- 5. Chow S.-N., Lu K., Sell G.R. Smoothness of inertial manifolds // J. Math. Anal. Appl. 1992. Vol. 169. P. 283–312.
- 6. Pilyugin S. Yu. Complete families of pseudotrajectories and shape of attractors // Rand. Comput. Dynamics. 1994. Vol. 2. P. 205–226.
- 7. Larsson S. Nonsmooth data error estimates with applications to the study of the long-time behavior of semilinear parabolic equations. Preprint 1992–36. Chalmers Univ. Techn. Göteborg. 1992.
 - 8. Хирш М. Дифференциальная топология. М., Мир, 1979. 280 с.
- 9. Brunovsky P., Chow S.-N. Generic properties of stationary state solutions of reaction-diffusion equations // J.Diff.Equat. 1984. Vol. 53. P. 1–23.
 - 10. Chafee N., Infante E. A bifurcation problem for a nonlinear parabolic

- equation // J. Appl. Anal. 1974. Vol. 4. P. 17–37.
- 11. Larsson S., Pilyugin S.Yu. Shadowing near the global attractor for a parabolic equation // (в печати).
 - 12. Pilyugin S. Yu. Shadowing in dynamical systems // (в печати).
- 13. Sacker R.J., Sell G.R. A spectral theory for linear differential systems // J. Diff. Equat. 1978. Vol. 27. P. 320–358.