Devoir surveillé n°07: corrigé

SOLUTION 1.

1. L'équation (E) équivaut à 2x + 7y = 2. Une solution particulière de cette équation est le couple (8, -2). Si $(x, y) \in \mathbb{Z}^2$ est solution, alors $2x + 7y = 2 \times 8 - 2 \times 7$ donc 7(y + 2) = 2(8 - x). Donc 7 divise 2(8 - x). Or 7 est premier avec 2 donc 7 divise 8 - x. Il existe donc $k \in \mathbb{Z}$ tel que 8 - x = 7k. Alors y + 2 = 2k. Finalement, (x, y) = (8 - 7k, -2 + 2k). Réciproquement, les couples (8 - 7k, -2 + 2k) avec $k \in \mathbb{Z}$ sont bien solutions de (E). L'ensemble des solutions de (E) est donc

$$\{(8-7k, -2+2k), k \in \mathbb{Z}\}$$

- 2. Une solution de (S) est -4. Ainsi (S) équivaut à $\begin{cases} x \equiv -4[6] \\ x \equiv -4[8] \end{cases}$. Ainsi x est solution de (S) si et seulement si x+4 est multiple commun de 6 et 8. Puisque $6 \lor 8 = 24$, x est solution de (S) si et seulement si x+4 est multiple de 24. L'ensemble des solutions de (S) est donc $-4+24\mathbb{Z}$.
- 3. On sait que $3^2 \equiv 1[8]$. Or $3^{100} = (3^2)^{50}$ donc $3^{100} \equiv 1[8]$. Or $0 \leqslant 1 < 8$ donc 1 est le reste de la division euclidienne de 3^{100} par 8.
- 4. Soit $n \in \mathbb{Z}$. Puisque 3 est premier, $n^3 \equiv n[3]$. Par conséquent, $n^5 \equiv n^3 \equiv n[3]$. Ainsi 3 divise $n^5 n$. De même, 5 est premier donc $n^5 \equiv n[5]$ et 5 divise $n^5 n$. Puisque $3 \land 5 = 1$, $15 = 3 \times 5$ divise $n^5 n$. Enfin, n^5 et $n^5 n$ est pair. Ainsi 2 divise $n^5 n$. Or $2 \land 15 = 1$ donc $30 = 2 \times 15$ divise $n^5 n$.
- 5. Soit $n \in \mathbb{Z}$. Alors 2(3n+2)-3(2n+1)=1 donc 3n+2 et 2n+1 sont premiers entre eux en vertu d'une relation de Bézout.

SOLUTION 2.

- **1.** Dans ce cas, on a $u_{n+1} = \frac{3}{4}u_n^2$ pour tout $n \in \mathbb{N}$.
 - **a.** Une récurrence évidente montre que (u_n) est constamment nulle.
 - **b.** Puisque $\lambda \neq 0$, $u_1 = \frac{3}{4}\lambda^2 > 0$. Supposons que $u_n > 0$ pour un certain $n \in \mathbb{N}^*$. Alors $u_{n+1} = \frac{3}{4}u_n^2 > 0$. Par récurrence, $u_n > 0$ pour tout $n \in \mathbb{N}^*$.
 - **c.** Pour tout $n \in \mathbb{N}^*$, on a donc

$$w_{n+1} = \ln(u_{n+1}) = \ln\frac{3}{4} + 2\ln(u_n) = 2w_n + \ln\frac{3}{4}$$

La suite (w_n) est donc arithmético-géométrique. On a tout simplement pour tout $n \in \mathbb{N}^*$

$$w_{n+1} + \ln \frac{3}{4} = 2\left(w_n + \ln \frac{3}{4}\right)$$

La suite $(w_n + \ln \frac{3}{3})_{n \in \mathbb{N}^*}$ est donc géométrique de raison 2. On en déduit que pour tout $n \in \mathbb{N}^*$

$$w_n + \ln \frac{3}{4} = 2^n \left(w_1 + \ln \frac{3}{4} \right)$$

ou encore

$$w_n = 2^{n-1} \left(w_1 + \ln \frac{3}{4} \right) - \ln \frac{3}{4}$$

Puisque $w_1 = \ln(u_1) = \ln(\frac{3}{4}\lambda^2)$, pour tout $n \in \mathbb{N}^*$

$$w_{n} = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^{2} \right) - \ln \frac{3}{4}$$

Attention! On ne peut pas écrire $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right)=2\ln\left(\frac{3}{4}\lambda\right)$ car λ est éventuellement négatif.

d. Pour tout $n \in \mathbb{N}^*$

$$u_n = e^{w_n} = \frac{4}{3} \exp\left(w_1 + \ln \frac{3}{4}\right)^{2^{n-1}} = \frac{4}{3} u_1^{2^{n-1}} \left(\frac{3}{4}\right)^{2^{n-1}}$$

Or $u_1 = \frac{3}{4}\lambda^2$ donc pour tout $n \in \mathbb{N}^*$

$$u_n = \frac{4}{3}\lambda^{2^n} \left(\frac{3}{4}\right)^{2^n} = \frac{4}{3} \left(\frac{3}{4}\lambda\right)^{2^n}$$

Remarque. Cette expression est encore valable lorsque n=0 ou $\lambda=0$.

e. Si $|\lambda| < \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| < 1$ et donc (u_n) converge vers 0. Si $|\lambda| > \frac{4}{3}$, alors $\left|\frac{3}{4}\lambda\right| > 1$. De plus, pour tout $n \in \mathbb{N}^*$,

$$u_n = \frac{4}{3} \left| \frac{3}{4} \lambda \right|^{2^n}$$

car 2^n est pair. On en déduit que (u_n) diverge vers $+\infty$.

Si $|\lambda| = \frac{4}{3}$, alors la dernière expression montre que la suite (u_n) est constante égale à $\frac{4}{3}$ à partir du rang 1. Elle converge donc vers $\frac{4}{3}$.

Remarque. On pouvait également utiliser la suite (w_n) dans le cas où $\lambda \neq 0$. En effet pour tout $n \in \mathbb{N}^*$,

$$w_n = 2^{n-1} \ln \left(\left(\frac{3}{4} \lambda \right)^2 \right) - \ln \frac{3}{4}$$

Si $|\lambda| < \frac{4}{3}$, alors $0 < \left(\frac{3}{4}\lambda\right)^2 < 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) < 0$ donc (w_n) diverge vers $-\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers 0.

Si $|\lambda| > \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 > 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) > 0$ donc (w_n) diverge vers $+\infty$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $+\infty$.

Si $|\lambda| = \frac{4}{3}$, alors $\left(\frac{3}{4}\lambda\right)^2 = 1$ puis $\ln\left(\left(\frac{3}{4}\lambda\right)^2\right) = 0$ donc (w_n) est constante égale à $-\ln\frac{3}{4}$ et converge donc vers $-\ln\frac{3}{4}$. Puisque $u_n = e^{w_n}$ pour tout $n \in \mathbb{N}^*$, (u_n) converge vers $\frac{4}{3}$.

- **2.** Dans ce cas, on a donc $u_{n+1} = \frac{1}{4} (3u_n^2 8u_n + 12)$.
 - **a.** Pour tout $n \in \mathbb{N}$

$$u_{n+1} - u_n = \frac{1}{4} (3u_n^2 - 12u_n + 12) = \frac{3}{4} (u_n - 2)^2 \geqslant 0$$

La suite (u_n) est donc croissante.

- **b.** Supposons que (u_n) converge vers une limite l. Alors $\lim_{n\to+\infty} u_{n+1} u_n = 0$ et $\lim_{n\to+\infty} \frac{3}{4}(u_n-2)^2 = \frac{3}{4}(1-2)^2$. Par unicité de la limite, $\frac{3}{4}(1-2)^2 = 0$ et donc 1=2.
- c. Comme (u_n) est croissante, $u_n \geqslant \lambda$ pour tout $n \in \mathbb{N}$. Si (u_n) convergeait vers une certaine limite l, on aurait $l \geqslant \lambda > 2$ par passage à la limite. Ceci est impossible d'après la question **2.b**. Comme (u_n) est croissante, elle converge ou diverge vers $+\infty$ d'après le théorème de la limite monotone. Puisqu'elle ne peut converger, elle diverge vers $+\infty$.
- d. Il s'agit de résoudre une équation du second degré.

$$\begin{split} u_1 &= 2 \\ \iff \frac{1}{4} \left(3\lambda^2 - 8\lambda + 12 \right) = 2 \\ \iff 3\lambda^2 - 8\lambda + 4 = 0 \\ \iff (3\lambda - 2)(\lambda - 2) = 0 \\ \iff \lambda \in \left\{ \frac{2}{3}, 2 \right\} \end{split}$$

Les réels recherchés sont donc $\lambda_1 = \frac{2}{3}$ et $\lambda_2 = 2$.

e. Puisque (u_n) est croissante, on a clairement $u_n \ge \lambda \ge \lambda_1$ pour tout $n \in \mathbb{N}$.

On montre alors par récurrence que $u_n \leqslant \lambda_2 = 2$ pour tout $n \in \mathbb{N}$.

L'initialisation est claire.

Supposons $u_n \leqslant \lambda_2$ pour un certain $n \in \mathbb{N}$. D'après notre remarque préliminaire, on a même $\lambda_1 \leqslant u_n \leqslant \lambda_2$. Alors

$$u_{n+1} = \frac{1}{4} \left(3u_n^2 - 8u_n + 12 \right) = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{1}{4} \left((3u_n - 2)(u_n - 2) + 8 \right) = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2)(u_n - \lambda_2) + 2 \leqslant 2 = \frac{3}{4} (u_n - \lambda_1)(u_n - \lambda_2)(u_n - \lambda_2)(u_n$$

 $\text{car } u_n - \lambda_1 \geqslant 0 \text{ et } u_n - \lambda_2 \leqslant 0.$

Par récurrence, $u_n \leqslant 2$ pour tout $n \in \mathbb{N}$.

La suite (u_n) étant croissante et majorée, elle converge. D'après la question **2.b**, (u_n) converge vers 2.

f. On remarque que

$$u_1=\frac{3}{4}(3\lambda^2-8\lambda+12)=\frac{3}{4}(\lambda-\lambda_1)(\lambda-\lambda_2)+2>2$$

Il suffit alors de reprendre la preuve de la question **2.c**. Puisque (\mathfrak{u}_n) est croissante, $\mathfrak{u}_n \geqslant \mathfrak{u}_1$ pour tout $n \in \mathbb{N}^*$. Si (\mathfrak{u}_n) convergeait vers une limite l, on aurait $l \geqslant \mathfrak{u}_1 > 2$ ce qui est impossible d'après la question **2.b**. La suite (\mathfrak{u}_n) ne converge donc pas donc, étant croissante, elle diverge vers $+\infty$.

- 3. a. On remarque que P(a) = (a-2)(a-b) > 0, P(b) = (b-2)(b-a) < 0 et P(2) = (2-a)(2-b) > 0.
 - **b.** Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \frac{1}{4}P(u_n) + u_n$$

Comme P est continue en L, on obtient par passage à la limite

$$L = \frac{1}{4}P(L) + L$$

et donc P(L) = 0. Ainsi L est une des deux racines de P.

Le signe de P(a), P(b) et P(2) et la continuité de P montre que P s'annule sur P(a), P(b) et P(a) et la continuité de P(a) montre que P(a) s'annule sur P(a) et P(

On en déduit que a < L < b ou b < L < 2.

SOLUTION 3.

1. On trouve

$d_0 = 123$	$\varepsilon_0 = 0,456$
$d_1 = 4$	$\epsilon_1 = 0,56$
$d_2 = 5$	$\varepsilon_2 = 0, 6$
$d_3 = 6$	$\varepsilon_3 = 0$

On montre alors par récurrence que $d_n=\epsilon_n=0$ pour tout $n\geqslant 4$. En effet, $d_4=\lfloor 10\epsilon_3\rfloor=0$ et $\epsilon_4=10\epsilon_3-d_4=0$ puisque $\epsilon_3=0$. Supposons que $d_n=0$ pour un certain $n\geqslant 4$. Alors $d_{n+1}=\lfloor 10\epsilon_n\rfloor=0$ et $\epsilon_{n+1}=10\epsilon_n-d_{n+1}=0$. Par récurrence, $d_n=0$ pour tout $n\geqslant 4$.

- $\textbf{2.} \quad \textbf{a. Soit } n \in \mathbb{N}. \ \text{Si } n = 0, \ \epsilon_0 = x \lfloor x \rfloor \in [0,1[\ \text{puisque} \ \lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1. \ \text{Sinon} \ \epsilon_n = 10\epsilon_{n-1} \lfloor 10\epsilon_{n-1} \rfloor \in [0,1[\ \text{car} \ \lfloor 10\epsilon_{n-1} \rfloor \leqslant 10\epsilon_{n-1}] + 1.$
 - **b.** Soit $n \in \mathbb{N}^*$. Alors $\varepsilon_{n-1} \in [0,1[$ d'après la question **2.a** et donc $10\varepsilon_{n-1} \in [0,10[$. On en déduit que $d_n = \lfloor 10\varepsilon_{n-1} \rfloor \in [0,9]$.
 - **c.** Pour tout $n \in \mathbb{N}$,

$$\left(S_{n+1}+\frac{\epsilon_{n+1}}{10^{n+1}}\right)-\left(S_n+\frac{\epsilon_n}{10^n}\right)=S_{n+1}-S_n+\frac{\epsilon_{n+1}-10\epsilon_n}{10^{n+1}}=\frac{d_{n+1}}{10^{n+1}}-\frac{\left\lfloor 10\epsilon_n\right\rfloor}{10^{n+1}}=0$$

La suite de terme général $S_n + \frac{\epsilon_n}{10^n}$ est donc constante égale à son premier terme $S_0 + \frac{\epsilon_0}{10^0} = d_0 + \epsilon_0 = x$.

d. Puisque $\varepsilon_n \in [0,1[$ pour tout $n \in \mathbb{N}$, on déduit de la question précédente que pour tout $n \in \mathbb{N}$

$$x - \frac{1}{10^n} < S_n \le x$$

Puisque $\lim_{n\to+\infty}\frac{1}{10^n}=0$, on obtient $\lim_{n\to+\infty}S_n=x$ d'après le théorème des gendarmes.

3. a. Soit $n \in \mathbb{N}$.

$$\begin{split} u_{n+1} &= 10^{N+T} S_{n+N+T+1} - 10^N S_{N+n+1} = 10^{N+T} \left(S_{n+N+T} + \frac{d_{n+N+T+1}}{10^{n+N+T+1}} \right) - 10^N \left(S_{n+N} + \frac{d_{n+N+1}}{10^{n+N+1}} \right) \\ &= u_n + \frac{d_{n+N+T+1} - d_{n+N+1}}{10^{n+1}} = u_n \end{split}$$

car (d_n) est T-périodique à partir du rang N. On en déduit que (u_n) est constante.

b. Comme (u_n) est constante, $u_n = u_0$ pour tout $n \in \mathbb{N}$.

$$u_0 = 10^{N+T} S_{N+T} - 10^N S_N = \sum_{k=0}^{N+T} d_k 10^{N+T-k} - \sum_{k=0}^{N} d_k 10^{N-k}$$

Pour $k \in [\![0,N+T]\!]$, $10^{N+T-k} \in \mathbb{Z}$ et $d_k \in \mathbb{Z}$ donc $\sum_{k=0}^{N+T} d_k 10^{N+T-k} \in \mathbb{Z}$. De même, pour $k \in [\![0,N]\!]$, $10^{N-k} \in \mathbb{Z}$ et $d_k \in \mathbb{Z}$ donc $\sum_{k=0}^{N} d_k 10^{N-k} \in \mathbb{Z}$. On en déduit que $u_0 \in \mathbb{Z}$. En posant $p = u_0$, on a donc bien pour tout $n \in \mathbb{N}$

$$10^{N+T}S_{n+N+T} - 10^{N}S_{n+N} = p$$

- c. Puisque (S_{n+N}) et (S_{n+N+T}) convergent toutes deux vers x (en tant que suites extraites de (S_n)), on obtient par unicité de la limite $10^{N+T}x-10^Nx=p$ et donc $x=\frac{p}{10^N(10^T-1)}$ puisque $10^T\geqslant 10>1$. Ceci prouve que x est rationnel.
- **4.** On remarque que $10^6 x 10^3 x = 123333$. Ainsi $x = \frac{123333}{999000} = \frac{41111}{333000}$.
- 5. **a.** La suite (r_n) est à valeurs dans l'ensemble *fini* [0, q-1]. Elle ne peut donc être injective. Ainsi il existe des entiers N et M distincts tels que $r_N = r_M$.
 - **b.** Pour simplifier, supposons N < M et posons T = M N. On va montrer par récurrence que (r_n) est T-périodique à partir du rang N.

On a bien $r_{N+T} = r_N$.

Supposons que $r_{n+T} = r_n$ pour un certain entier $n \ge N$. On sait que r_{n+1} et r_{n+1+T} sont les restes respectifs des divisions euclidiennes de $10r_n$ et $10r_{n+T}$ par b. Mais puisque $10r_n = 10r_{n+T}$, on a $r_{n+1} = r_{n+1+T}$ par unicité du reste dans la division euclidienne.

Par récurrence, $r_{n+T} = r_n$ pour tout $n \ge N$. Ainsi (r_n) est T-périodique à partir du rang N.

- c. Soit $n \ge N+1$. On sait que q_n et q_{n+T} sont les quotients respectifs de $10r_{n-1}$ et $10r_{n-1+T}$ par b. Puisque $n-1 \ge N$ et que (r_n) est T-périodique à partir du rang N, $r_{n-1} = r_{n-1+T}$ et donc $10r_{n-1} = 10r_{n-1+T}$. Par unicité du quotient dans la division euclidienne, $q_n = q_{n+T}$. On a donc prouvé que (q_n) était T-périodique à partir du rang N+1.
- **d.** Tout d'abord, $a = bq_0 + r_0$ avec $0 \leqslant r_0 < b$. On en déduit que

$$x - 1 = \frac{a}{b} - 1 < q_0 \leqslant \frac{a}{b} = x$$

et donc que $q_0 = |x| = d_0$. Par ailleurs,

$$r_0 = a - bq_0 = b\left(\frac{a}{b} - q_0\right) = b\left(x - \lfloor x \rfloor\right) = b\varepsilon_0$$

Supposons que $q_n=d_n$ et $r_n=b\epsilon_n$ pour un certain $n\in\mathbb{N}.$ Par définition,

$$10\varepsilon_n = d_{n+1} + \varepsilon_{n+1}$$

et donc

$$10b\varepsilon_n = bd_{n+1} + b\varepsilon_{n+1}$$

ou encore

$$10r_n = bd_{n+1} + b\varepsilon_{n+1}$$

On sait que $d_{n+1} \in \mathbb{Z}$ d'après la question **2.b**. De plus, $b\epsilon_{n+1} = 10r_n - bd_{n+1} \in \mathbb{Z}$. Enfin, $\epsilon_{n+1} \in [0,1[$ d'après la question **2.a** donc $0 \le b\epsilon_{n+1} < b$. On en déduit que d_{n+1} et $q\epsilon_{n+1}$ sont le quotient et le reste de la division euclidienne de $10r_n$ par b. Par unicité du quotient et du reste dans la division euclidienne, $q_{n+1} = d_{n+1}$ et $r_{n+1} = b\epsilon_{n+1}$.

Par récurrence, $q_n = d_n$ et $r_n = b\epsilon_n$ pour tout $n \in \mathbb{N}$.

6. On trouve successivement

$q_0 = 0$	$r_0 = 13$
$q_1 = 3$	$r_1 = 25$
$q_2 = 7$	$r_2 = 5$
$q_3 = 1$	$r_3 = 15$
$q_4 = 4$	$r_4 = 10$
$q_5 = 2$	$r_5 = 30$
$q_6 = 8$	$r_6 = 20$
$a_7 = 5$	$r_7 = 25$

On a $r_1 = r_7$ donc (r_n) est 6-périodique à partir du rang 1 d'après la question **5.b**. Toujours d'après la question **5.b**, (q_n) est 6-périodique à partir du rang 2. Mais puisque les suites (d_n) et (q_n) sont identiques, (d_n) est également 6-périodique à partir du rang 2.