六、 實驗數據與分析

Part1 : 質點式剛體之轉動慣量

動摩擦力(N)	0.06174	
細線張力	0.961478	

軌道		
r1(cm)	2.65	
r2(cm)	0.9	
a1	0.0036	
I(軌)	0.020236	

M(kg)	R(質點半徑)(m)	I sh	Ι _全	I »
0.27805	0.2	0.0202362	0.029144	0.008907

I理論值	I實驗值	誤差
0.011122	0.008907	-19.91%

$$I_{\;\sharp\!\sharp}\;=I_{\;\pm}\;\;\text{-}\quad I_{\;\sharp\!\sharp}\;\;=\;\;0.029144-0.0202362\;\;=\;\;0.008907$$

$$I_{\text{ 22m}} = MR^2 = 0.27805 * 0.2 * 0.2 = 0.011122$$

誤差 = (I 點 - I 理論) / I 理論 * 100% =
$$\frac{0.008907 - 0.011122}{0.011122}$$
 * 100% = -19.91%

Part2 : 盤與環的轉動慣量

Ⅰ盤+環	$I_{\underline{w}} + I_{\overline{\mathcal{R}}}$	0.014717
I盤	$\frac{1}{2}M_{\cancel{\underline{w}}}R_{\cancel{\underline{w}}}^2$	0.00966
I環	$\frac{1}{2}[M_{\cancel{\underline{a}}}R_{\cancel{\underline{a}}}^{2} + M_{\cancel{R}}(R_{\cancel{N}}^{2} + R_{\cancel{N}}^{2})]$	0.005057

實驗值	M(kg)	旋轉半徑(m)		a1	I	f _k (g)	誤差
盤	1.4608	0.115		0.01	0.007343	5.5	-0.23986
環	1.4164	R 外	0.065	X	0.003776	X	-0.2533
		RA	0.054				
直立	1.4608	0.115		0.0151	0.004862	5.5	X
盤+環	2.8772	X		0.0064	0.011119	8.4	-0.24448

誤差(盤) =
$$(I_{\pm} - I_{\pm}) / I_{\pm}$$
 * $100\% = \frac{0.007343 - 0.00966}{0.00966}$ * $100\% = -23.99\%$
 誤差(環) = $(I_{\pm} - I_{\pm}) / I_{\pm}$ * $100\% = \frac{0.003776 - 0.5057}{0.5057}$ * $100\% = -25.33\%$
 误差(盤+環) = $(I_{\pm+} - I_{\pm}) / I_{\pm}$ * $100\% = \frac{0.011119 - 0.014717}{0.014717}$ * $100\% = -24.48\%$

Part3 : 盤偏離軸心的轉動慣量

實驗值	盤固+軌	軌道	盤動+軌
f 摩擦力)	0.098784	0.043218	0.098784
mg	0.961478	961.478	0.961478
a1	0.0008	0.005327	0.0009
r2	0.009	0.009	0.009
I(轉動慣量)	0.08734	0.013956	0.077635

	Ιø	Ifree
理論值	0.082048	0.072388
實驗值	0.073384	0.063679
誤差	-0.1055	-0.1203

實驗值:

$$I_{\mathcal{B}} = I_{\mathcal{B} + \frac{4}{2}} - I_{\frac{4}{2}} = 0.08734 - 0.013956 = 0.073384(kg * m^2) \circ$$

理論值:

$$I_{\mathcal{B}} = I_{CM} + M_{\mathcal{B}}R^2 = 0.082048(kg*m^2) \circ$$

誤差 =
$$\frac{0.073384 - 0.082048}{0.082048} * 100\% \approx -10.55\%$$
。

實驗
$$I_{\underline{m}} = g \cdot \text{驗} I_{\underline{m} + \underline{m}} - g \cdot \text{驗} I_{\underline{m}} = 0.077635 - 0.013956 = 0.063679 (kg * m^2)$$
。

誤差 =
$$\frac{0.063679 - 0.072388}{0.072388} * 100\% = 12.03\%$$
。

Part4 : 角動量守恆

	質量(kg)	半徑(m)		
環	1.4164	內徑	0.054	
		外徑	0.065	
盤	1.4608	0.115		
初角速度(rad/s)		5. 463639		
理論末角速度(rad/s)		3. 586123		
實驗末角速度(rad/s)		3. 653014		
誤差%		1.9%		

理論
$$\omega_f = \frac{L_i}{I_f} = \frac{I_i \omega_i}{I_f} \approx 3.5861 (\text{rad/s})$$
。

實驗
$$ω_f$$
 ≈ 3.6530(rad/s)。

誤差 =
$$\frac{3.6530-3.5861}{3.5861} * 100\% \approx 1.9\%$$
。

七、 結果與討論

一、計算實驗轉動慣量:

向下加速
$$ma_t = mg($$
 \overline{a} \overline{a} \overline{a} \overline{b} \overline{a} \overline{b} \overline{a} \overline{b} $\overline{b$

角加速度 $\alpha = \frac{a_t}{r}$

經由上述式子可得 => $I = \frac{ma_t - mg - f_k}{a_t} r^2$ 。

二、誤差來源:

- 1. 光電閘測量出的 V 值並不是在細線纏繞的轉軸上的切線速度,若繩線不是完全切齊轉軸, a_t 的值便會相差甚遠,造成誤差偏大。
- 2. 纏繞轉動繫繩時,造成不必要的打結使轉動時產生多餘的摩擦力,造成實驗 誤差、以及細線彼此間的摩擦力會隨著纏繞圈數有所不同。
- 3. Part2 實驗中的 $I_{\mathbb{R}} = I_{\text{M+Mil}} I_{\text{Mil}}$,因為在測量時都會有誤差,在相減的時候可能又造成多餘的誤差;Part4 中 $I_{\text{B}} = I_{\text{B+M}} I_{\text{M}}$ 以及 $I_{\text{M}} = I_{\text{M+M}} I_{\text{M}}$ 亦同。
- 4. 光電閘、游標尺、電子天平、實驗儀器(ex:圓盤、圓環、軌道)本身質量就 不均勻等的設備系統誤差、人為判斷數值的誤差以及忽略空氣阻力的誤差等。

八、 問題與討論

Part 1:

為什麼調水平時,要在轉動平台鎖定一方塊剛體?

Ans: 若先調整至水平再放置剛體,使得原本已經調整好的水平又往剛體那一邊傾斜,產生誤差。

Part 4:

1. 實驗得到的角速度數據是否與理論值相符?

Ans: 誤差比其他 part 小但仍不完全符合理論值。

2. 碰撞過程中喪失多少百分比的轉動動能?計算之。 Ans:

轉動動能= $\frac{1}{2}*I*\omega^2$ 。

初轉動動能= $\frac{1}{2}*(\frac{1}{2}*1.4608*0.115^2)*5.463639^2 \approx 0.14418(J)$

末轉動動能= $\frac{1}{2}*{\frac{1}{2}*[1.4608*0.115^2+1.4164*(0.065^2-0.054^2)]}*3.653015^2\approx0.07064\emph{J})$ 。 損失的動能 = $\frac{0.14418}{0.757}*100\%\approx50.18\%$ 。

九、 心得

這次的實驗比較複雜,誤差也不小,猜測是因為這次的實驗數據要做比較 多步驟的轉換才能得到想要的數據,原本一直用角加速度來求誤差,誤差 非常大,讓我一直重複計算才想到這個問題,果然做實驗容易忽略一些 問,但相對的也有助於釐清問題。

十、 參考資料

清大普物實驗室 http://www.phys.nthu.edu.tw/~gplab/exp005.html