# Information Security (CP3404)

#### **Chapter 6 – Advanced Cryptography**

Based on the Fifth Edition of:

M. Ciampa:. Comp $TIA^{\textcircled{R}}$  Security + Guide to Network Security Fundamentals

Department of Information Technology, College of Business, Law & Governance



# Learning Objectives



- Define digital certificates
- List various types of digital certificates and how they are used
- Describe components of Public Key Infrastructure (PKI)
- List tasks associated with key management
- Describe different transport encryption algorithms

#### Outline



- 1 Digital Certificates
- 2 Public Key Infrastructure (PKI)
- 3 Key Management
- 4 Cryptographic Transport Protocols

#### Preface



- Cryptography has clear safeguarding sensitive data for end users (if everything goes well), i.e.,
  - Hasing ensures the integrity of a file
  - Symmetric encryption ensures Integrity and confidentiality of messages
  - Asymmetric encryption ensures authenticity, confidentiality, and nonrepudiation of messages
- But, there are some issues that need to be fixed



#### **Digital Certificates**

- One of the common application of cryptography
- Using digital certificates involves:
  - Understanding their purpose
  - Knowing how they are managed
  - Determining which type of digital certificate is appropriate for different situations



#### Issues with Authentication

- Digital signatures Used to prove document originated from valid sender, but
  - Do not confirm true identity of the sender
  - Digital signatures only show that private key of the sender was used to generate the digital signature
  - Do not definitively prove who the sender was
  - Imposter could post a public key under a sender's name (see Figure 6-1)

**Digital Certificates** 



Imposter public key

Figure 6-1

**Digital Certificates** 



#### Issues with Authentication

- Solution is use trusted third party
  - Used to address problem of verifying identity
  - Verifies owner and that public key belongs to that owner
  - Helps prevent man-in-the-middle attack that impersonates owner of public key

Digital Certificates



#### Digital Certificate

- Digital certificate Technology used to associate user's identity to public key that has been digitally signed by a trusted third party
- Third party verifies owner and that public key belongs to that owner

Digital Certificates



#### Digital Certificate

- When Bob sends a message to Alice, he does not ask her to retrieve his public key from a central site
- Instead, Bob attaches digital certificate to message
- When Alice receives message with digital certificate, she can check the signature of trusted third party on certificate
- If signature was signed by a party that she trusts, then Alice can safely assume that the public key contained in the digital certificate is actually from Bob



#### Digital Certificate

- Information contained in digital certificate:
  - Owner's name or alias
  - Owner's public key
  - Issuer's name
  - Issuer's digital signature
  - Digital certificate's serial number
  - Expiration date of public key



#### Managing Digital Certificates

- Entities and technologies used for managing digital certificates include
  - Certificate Authority (CA)
  - Registration Authority (RA)
  - Certificate Repository (CR)
  - Means to revoke certificate



### Certificate Authority (CA)

- Certificate Authority (CA) Trusted third-party agency responsible for issuing digital certificates
- CA can be:
  - External to organization, such as a commercial CA that charges for the service
  - Internal to organization that provides this service to employees



#### Duties of Certificate Authority (CA)

- Generate, issue, an distribute public key certificates
- Distribute CA certificates
- Generate and publish certificate status information
- Provide a means for subscribers to request revocation
- Revoke public-key certificates
- Maintain security, availability, and continuity of certificate issuance signing functions

Digital Certificates

### Steps for Requesting Digital Certificate

- Generate public and private keys
- Generate Certificate Signing Request (CSR) Specially formatted encrypted message that validates information CA requires (see Table 6-1)
- CA receives and verifies the CSR
- Inserts the public key into certificate
- Certificates digitally signed with private key of the issuing CA

Because digital certificates are used extensively on the Internet, web browsers are preconfigured with a default list of CAs (see Figure 6-2)

Key Management

### Digital Certificates

**Digital Certificates** 



| Name          | Description                                      | Example                |
|---------------|--------------------------------------------------|------------------------|
| Common name   | Fully qualified domain name (FQDN) of the server | www.acompany.net       |
| Business name | Legal name of organization                       | A Company, Inc.        |
| Department    | Division of the organization                     | Information Technology |
| City          | City of the organization                         | Tampa                  |
| State         | State of the organization                        | FL                     |
| Country       | Two-letter code of country                       | US                     |
| Email address | Address of contact person                        | cio@acompany.net       |

Table 6-1 Certificate Signing Request content

Digital Certificates





Figure 6-2 Web browser default CAs

Source: Google Chrome web browser



Key Management

# Digital Certificates



### Registration Authority (RA)

- Registration Authority Subordinate entity designed to handle specific CA tasks (e.g., processing certificate requests, authenticating users)
- Using RAs (also called Local Registration Authorities or LRAs) can off-load registration functions and create an improved workflow



#### General Duties of Registration Authority (RA)

- Receive, authenticate, and process certificate revocation requests
- Identify and authenticate subscribers
- Obtain a public key from the subscriber
- Verify that subscriber possesses asymmetric private key corresponding to public key submitted for certification



#### General Duties of Registration Authority (RA)

- Primary function of RA is verify identity individual
- Different means for a digital certificate requester to identify themselves to RA:
  - E-mail Insufficient for activities that must be very secure
  - Documents Birth certificate, employee badge
  - In person Providing government-issued passport or driver's license

**Digital Certificates** 



### Certificate Repository (CR)

- Certificate Repository (CR) Publicly accessible centralized directory of digital certificates
- Used to view certificate status
- Can be managed locally as a storage area connected to the CA server



#### Certificate Revocation

- Digital certificates normally have an expiration date (one year from date issued)
- Circumstances that may be cause for certificate to be revoked before expires:
  - Certificate no longer used
  - Details of certificate changed
  - Someone steal a user's private key (impersonate victim through using digital certificates)
  - Digital certificates stolen from CA





### Certificate Revocation List (CRL)

- Current status of certificate can be checked to determine if has been revoked
- Certificate Revocation List (CRL) Serves as list of certificate serial numbers that have been revoked
- Many CAs maintain an online CRL that can be queried by entering the certificate's serial number
- Local computer receives updates on the status of certificates and maintains a local CRL (see Figure 6-3)

Key Management

# Digital Certificates

**Digital Certificates** 





Figure 6-3 Certificate Revocation List (CRL)

Source: Microsoft Windows





#### Online Certificate Status Protocol (OCSP)

- OCSP Performs real-time lookup of a certificate's status
- Browser sends certificate's information to a trusted entity like the CA, known as an OCSP Responder
- OCSP stapling is a variation of OCSP
- When Web browser attempts to connect to web server the server can include (staple) in handshake previously received OCSP response (see Figure 6-4)



Figure 6-4 OCSP stapling

Approved

Step 2

OCSP Responder



#### Types of Digital Certificates

- There are different categories of digital certificates; most common categories are:
  - Personal Digital Certificates (Class 1)
  - Server Digital certificates (Class 2)
  - Software Publisher Digital certificates (Class 3)

Note that Class 4 and Class 5 are specialized digital certificates (for online business transactions, and private organizations or governmental security, respectively)



#### Personal Digital Certificates

- Personal digital certificates (Class 1) Issued by RA directly to individuals
- Frequently used to secure email transmissions
- Typically require only user's name and email address in order to receive this certificate
- Can also be used to authenticate the authors of documents
- User can create Microsoft Word or Adobe Portable Document Format (PDF) document and then use digital certificate to create digital signature



Key Management

# Digital Certificates



#### Server Digital Certificates

- Server digital certificates (Class 2) Often issued from web server to client, and perform two (2) functions:
  - Can ensure the authenticity of the web server
  - Can ensure the authenticity of the cryptographic connection to the web server
- Web servers set up secure cryptographic handshake connections so that all transmitted data is encrypted by providing server's public key with digital certificate to client (see Figure 6-5)

Key Management



Figure 6-5 Server digital certificate handshake



Digital Certificates



### Server Digital Certificates (Cont.)

- Server digital certificate that both verifies existence and identity of the organization and securely encrypts communications displays a padlock icon in the web browser (see Figure 6-6)
- Clicking padlock icon displays information about digital certificate along with the name of the site
- Extended Validation SSL Certificate (EV SSL) Enhanced type of server digital certificate that requires more extensive verification of legitimacy of the business

**Digital Certificates** 





Figure 6-6 Padlock icon and certificate information

Source: Google Chrome web browser





#### Software Publisher Digital Certificates

- Software publisher digital certificates (Class 3) Provided by software publishers
- Purpose to verify that their programs are secure and have not been tampered with
- Remaining two classes of digital certificates are specialized:
  - Class 4 is for online business transactions between companies
  - Class 5 is for private organizations or governmental security



#### X.509 Digital Certificate

- The most widely accepted format for digital certificate is defined by the International Telecommunication Union (ITU), i.e., X.509 international standard
- Digital certificates following this standard can be read or written by any application that follows X.509
- The current version is X.509 v3 (see Table 6-2)



| Field name                     | Explanation                                 |  |
|--------------------------------|---------------------------------------------|--|
| Certificate version number     | 0 = Version 1, 1 = Version 2, 2 = Version 3 |  |
| Serial number                  | Unique serial number of certificate         |  |
| Issuer signature algorithm ID  | "Issuer" is Certificate Authority           |  |
| Issuer X.500 name              | Certificate Authority name                  |  |
| Validity period                | Start date/time and expiration date/time    |  |
| Subject X.500 name             | Private key owner                           |  |
| Subject public key information | Algorithm ID and public key value           |  |
| Issuer unique ID               | Optional; added with Version 2              |  |
| Subject unique ID              | Optional; added with Version 2              |  |
| Extensions                     | Optional; added with Version 3              |  |
| Signature                      | Issuer's digital signature                  |  |

Table 6-2 X.509 structure



# Quick Quiz



can be used to associate or bind a user's identity to a public key. Answer:

**Digital Certificates** 



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

Digital Certificates



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) . answer:

**Digital Certificates** 



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) answer: Certificate Signing Request (CSR)

•0000000000000000000000000000

Digital Certificates



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

- A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) answer: Certificate Signing Request (CSR)
- Revoked digital certificates are listed in a(n) , which can be accessed to check the certificate status of other users. Answer:

•0000000000000000000000000000

Digital Certificates



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

- A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) answer: Certificate Signing Request (CSR)
- 3 Revoked digital certificates are listed in a(n), which can be accessed to check the certificate status of other users. Answer: Certificate Revocation List (CRL)

Digital Certificates



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

- A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) answer: Certificate Signing Request (CSR)
- 3 Revoked digital certificates are listed in a(n), which can be accessed to check the certificate status of other users. Answer: Certificate Revocation List (CRL)
- The master secret is used to create , which are symmetric keys to encrypt and decrypt information exchanged during the session and to verify its integrity.

Answer:



Digital Certificates



can be used to associate or bind a user's identity to a public key.

**Answer:** Digital certificates

- A specially formatted encrypted message that validates the information the CA requires to issue a digital certificate is known as a(n) answer: Certificate Signing Request (CSR)
- 3 Revoked digital certificates are listed in a(n), which can be accessed to check the certificate status of other users. Answer: Certificate Revocation List (CRL)
- The master secret is used to create , which are symmetric keys to encrypt and decrypt information exchanged during the session and to verify its integrity.

Answer: session kevs





### Public Key Infrastructure (PKI)

- Public key infrastructure (PKI) Underlying infrastructure for management of public keys used in digital certificates
- PKI is framework for all of entities (hardware, software, people, policies and procedures) involved in digital certificates for digital certificate management to create, store, distribute, and revoke digital certificates



### Public Key Cryptography Standards (PKCS)

- Public key cryptography standards (PKCS) Numbered set of PKI standards that been defined by RSA Corporation
- Although informal standards, today widely accepted in industry
- PKCS is composed of 15 standards (see Table 6-3)
- Applications and products that are developed by vendors may choose to support the PKCS (See Figure 6-7)



| PKCS<br>standard<br>number | Current version      | PKCS standard name                                    | Description                                                                                                                                                       |
|----------------------------|----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PKCS #1                    | 2.1                  | RSA Cryptography Standard                             | Defines the encryption and digital signature<br>format using RSA public key algorithm                                                                             |
| PKCS #2                    | N/A                  | N/A                                                   | Originally defined the RSA encryption of the<br>message digest; now incorporated into PKCS #1                                                                     |
| PKCS #3                    | 1.4                  | Diffie-Hellman Key<br>Agreement Standard              | Defines the secret key exchange protocol<br>using the Diffie-Hellman algorithm                                                                                    |
| PKCS #4                    | N/A                  | N/A                                                   | Originally defined specifications for the RSA<br>key syntax; now incorporated into PKCS #1                                                                        |
| PKCS #5                    | 2.0                  | Password-Based<br>Cryptography Standard               | Describes a method for generating a secret<br>key based on a password; known as the<br>Password-Based Encryption (PBE) Standard                                   |
| PKCS #6                    | 1.5                  | Extended-Certificate Syntax<br>Standard               | Describes an extended-certificate syntax;<br>currently being phased out                                                                                           |
| PKCS #7                    | 1.5                  | Cryptographic Message<br>Syntax Standard              | Defines a generic syntax for defining digital signature and encryption                                                                                            |
| PKCS #8                    | 1.2                  | Private Key Information<br>Syntax Standard            | Defines the syntax and attributes of private<br>keys; also defines a method for storing keys                                                                      |
| PKCS #9                    | 2.0                  | Selected Attribute Types                              | Defines the attribute types used in data<br>formats defined in PKCS #6, PKCS #7,<br>PKCS #8, and PKCS #10                                                         |
| PKCS #10                   | 1.7                  | Certification Request Syntax<br>Standard              | Outlines the syntax of a request format<br>sent to a CA for a digital certificate                                                                                 |
| PKCS #11                   | 2.20                 | Cryptographic Token<br>Interface Standard             | Defines a technology-independent device<br>interface, called Cryptoki, that is used for<br>security tokens, such as smart cards                                   |
| PKCS #12                   | 1.0                  | Personal Information<br>Exchange Syntax Standard      | Defines the file format for storing and<br>transporting a user's private keys with a<br>public key certificate                                                    |
| PKCS #13                   | Under<br>development | Elliptic Curve Cryptography<br>Standard               | Defines the elliptic curve cryptography<br>algorithm for use in PKI; describes<br>mechanisms for encrypting and signing data<br>using elliptic curve cryptography |
| PKCS #14                   | Under<br>development | Pseudorandom Number<br>Generation Standard            | Covers pseudorandom number generation (PRNG)                                                                                                                      |
| PKCS #15                   | 1.1                  | Cryptographic Token<br>Information Format<br>Standard | Defines a standard for storing information on security tokens                                                                                                     |

UNIVERSITY

# Public Key Infrastructure (PKI)



Figure 6-7 Microsoft Windows PKCS support Source: Microsoft Windows



#### Trust Models

- Trust Confidence in or reliance on another person or entity
- Trust model Refers to type of trusting relationship that can exist between individuals and entities
  - Direct trust One person knows the other person
  - Third-party trust Two individuals trust each other because each trusts a third party
- Three (3) PKI trust models use a CA
  - Mierarchical trust Model
  - ② Distributed Trust Model
  - Bridge Trust Model



#### Hierarchical Trust Model

- Hierarchical trust model Assigns single hierarchy with one master CA called the root (see Figure 6-8)
- Root signs all digital certificate authorities with single key
- Can be used in organization where one CA is responsible for only that organization's digital certificates
- Hierarchical trust model has limitations: Single CA private key may be compromised rendering all certificates worthless





Figure 6-8 Hierarchical trust model



#### Distributed Trust Model

- Multiple CAs sign digital certificates (see Figure 6-9)
- Eliminates limitations of hierarchical trust model
- Basis for most end-user digital certificates used on the Internet (see Figures 6-2 and 6-3)
  - Trusted root certification authorities
  - Intermediate certification authorities
- Allows chain to be established: web browser trusts the intermediate CA because the certificate was issued through a higher-level trusted root CA that it trusts





Figure 6-9 Distributed trust model





### Bridge Trust Model

- Bridge trust model One CA acts as facilitator to connect all other CAs
- Acts as hub between hierarchical and distributed trust model
- Allows the different models to be linked (see Figure 6-10)





Figure 6-10 Bridge trust model



### Managing PKI

- Certificate Policy (CP) Published set of rules that govern operation of a PKI
- Provides recommended baseline security requirements for use and operation of CA, RA, and other PKI components
- Certificate Practice Statement (CPS) Describes in detail how the CA uses and manages certificates



#### Certificate Life Cycle

- Certificate life cycle divided into four (4) parts:
  - Creation Occurs after user is positively identified
  - Suspension May occur when employee on leave of absence
  - Revocation Certificate no longer valid
  - Expiration Key can no longer be used

**Digital Certificates** 



### Key Management

- Because keys form the foundation of PKI systems, it is important that they be carefully managed
- Proper key management includes:
  - Key Storage
  - Key Usage
  - Key Handling Procedures



### Key Storage

- Means of public key storage Embedding within digital certificates
- Means of private key storage Stored on user's local system
- Software-based storage may expose keys to attackers
- Alternative is storing keys in hardware:
  - Tokens
  - Smart-cards

000000000

Digital Certificates

### Key Usage

- Multiple pairs of dual keys created if more security needed than single set of public/private keys
- One pair used to encrypt information (public key backed up in another location)
- Second pair used only for digital signatures (public key in that pair never backed up)

**Digital Certificates** 



### **Key Handling Procedures**

- Certain procedures can help ensure that keys are properly handled
- Key handling procedures include:
  - Key Escrow
  - Key Expiration
  - Key revocation
  - Key recovery
  - Key Suspension
  - Key Destruction





### Key Handling Procedures — Key Escrow

- Key Escrow Process in which keys are managed by a third party (like trusted CA)
- Private key is split and each half is encrypted
- Two halves sent to third party, which stores each half in separate location
- User can retrieve and combine two halves and use this new copy of private key for decryption



### Key Handling Procedures — Key Expiration

- Keys expire after a set period of time
- Prevents attacker who may have stolen a private key from being able to decrypt messages for an indefinite period of time
- Some systems set keys to expire after set period of time by default



#### Key Handling Procedures — Key Renewal

- Existing key can be renewed
- Continually renewing keys make them more vulnerable to theft or misuse

#### Key Handling Procedures — Key Revocation

- Key may be revoked prior to its expiration date
- Revoked keys may not be reinstated

0000000000

## Key Management



### Key Handling Procedures — Key Recovery

- Need to recover keys of an employee hospitalized for extended period
- Key recovery agent (who is a highly trusted person) may be designated
- Group of people may be used (M-of-N control) —see Figure 6-11

JAMES COOK UNIVERSITY AUSTRALIA

## Key Management



Figure 6-11 M-of-N control





#### Key Handling Procedures — Key Suspension

- Suspended for a set period of time and then reinstated
- As with revocation, the CA should update CRL to verify that the key is no longer valid

### Key Handling Procedures — Key Destruction

- Removes all public and private keys and user's identification from the CA
- User's information remains on the CA for audit purpose



#### Cryptographic Transport Protocols

- In addition to protecting data in-use and data at-rest, cryptography often used to protect data in-transit across network
- Most common cryptographic transport algorithms include
  - Secure Sockets Layer (SSL)
  - Transport Layer Security (TLS)
  - Secure Shell (SSH)
  - Hypertext Transport Protocol Secure (HTTPS)
  - IP Security (IPsec)





### Secure Sockets Layer (SSL)

- Secure Sockets Layer (SSL) One of most common transport encryption algorithm
- Developed by Netscape in 1994
- Uses AES (instead of DES) to encrypt data transferred over the SSL connection
- Today SSL version 3.0 is version most web servers support

## Cryptographic Transport Protocols



### Transport Layer Security (TLS)

- Although SSL and TLS are often used interchangeably or in conjunction with each other (TLS/SSL), this is incorrect:
  - SSL v3.0 served as the basis for TLS v1.0 (and is sometimes erroneously called SSL 3.1)
  - Versions of TLS (v1.1 and v1.2) are significantly more secure and address several vulnerabilities present in SSL v3.0 and TLS v1.0
  - Older and less secure versions still supported (see Table 6-4)



| Protocol supported | Percentage of websites | Protocol security strength   |
|--------------------|------------------------|------------------------------|
| SSL v2.0           | 23.0                   | Should not be used           |
| SSL v3.0           | 99.3                   | Considered obsolete          |
| TLS v1.0           | 97.7                   | Must be carefully configured |
| TLS v1.1           | 29.6                   | No known vulnerabilities     |
| TLS v1.2           | 32.3                   | No known vulnerabilities     |

Table 6-4 Website support of SSL and TLS



### Transport Layer Security (TLS) —Cipher Suite

- Depending on different algorithms that are selected, the overall security of the transmission may be either strong or weak
- Cipher Suite Named combination of encryption, authentication, and message authentication code (MAC) algorithms used with SSL and TLS
- These negotiated between web browser and web server during the initial connection handshake



### Secure Shell (SSH)

- Secure Shell (SSH) Encrypted alternative to Telnet protocol used to access remote computers
- Linux/UNIX-based command interface and protocol
- Suite of three utilities: slogin, ssh, and scp (see Table 6-5)
- Client and server ends of connection are authenticated using a digital certificate
- Passwords are encrypted
- Can be used as a tool for secure network backups





| UNIX command name | Description                                            | Syntax                                             | Secure command replacement |
|-------------------|--------------------------------------------------------|----------------------------------------------------|----------------------------|
| rlogin            | Log on to remote computer                              | rlogin remotecomputer                              | slogin                     |
| rcp               | Copy files between remote computers                    | rcp [options] localfile<br>remotecomputer:filename | scp                        |
| rsh               | Executing commands on a remote host without logging on | rsh remotecomputer<br>command                      | ssh                        |

Table 6-5 SSH commands



#### Hypertext Transport Protocol Secure (HTTPS)

- Common use of SSL and TLS is to secure Web Hypertext Transport Protocol (HTTP) communications between browser and web server
- Users must enter URLs with https:// instead of http://
- Uses port 443 instead of HTTP's port 80
- Secure Hypertext Transport Protocol (SHTTP) Considered obsolete



#### IP Security (IPsec)

- Internet Protocol Security (IPsec) Protocol suite for security Internet Protocol (IP) communications
- Encrypts and authenticates each IP packet of a session between hosts or networks
- Can provide protection to a much wider range of applications than SSL or TLS



#### IP Security (IPsec) —Cont.

Digital Certificates

- IPsec considered to be transparent security protocol to:
  - Applications Programs do not have to be modified to run under IPsec
  - Users Unlike some security tools, users do not need to be trained on specific security procedures (such as encrypting with PGP)
  - Software Because IPsec is implemented in a device such as a firewall or router, no software changes must be made on the local client



#### IP Security (IPsec) —Cont.

Digital Certificates

- Located in operating system or communication hardware
- Provides authentication, confidentiality, and key management
- Supports two (2) encryption modes:
  - Transport mode Encrypts only the data portion (payload) of each packet yet leaves the header unencrypted
  - Tunnel mode Encrypts both the header and the data portion (see Figure 6-12)





Figure 6-12 New IPsec packet using tunnel mode



#### IP Security (IPsec) —Cont.

Digital Certificates

- IPsec accomplishes transport and tunnel modes by adding new headers to the IP packet
- Entire original packet (header and payload) then treated as the data portion of the new packet
- Because tunnel mode protects the entire packet, it generally used in a network-to-network communication
- Transport mode is used when a device must see the source and destination addresses to route the packet

Key Management

**Digital Certificates** 

is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer:

Key Management

**Digital Certificates** 



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

Digital Certificates



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

 A(n) refers to the type of trusting relationship that can exist between individuals or entities. Answer:

Digital Certificates



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

 A(n) refers to the type of trusting relationship that can exist between individuals or entities.

Answer: trust model

Digital Certificates



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

 A(n) refers to the type of trusting relationship that can exist between individuals or entities.

Answer: trust model

 A(n) \_\_\_\_\_ is a published set of rules that govern the operation of a PKI.

Answer:

Key Management

# Quick Quiz

Digital Certificates



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

 A(n) refers to the type of trusting relationship that can exist between individuals or entities.

Answer: trust model

 A(n) \_\_\_\_\_ is a published set of rules that govern the operation of a PKI.

Answer: certificate policy (CP)

Digital Certificates



is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

 A(n) refers to the type of trusting relationship that can exist between individuals or entities.

Answer: trust model

 A(n) \_\_\_\_\_ is a published set of rules that govern the operation of a PKI.

Answer: certificate policy (CP)

A process in which keys are managed by a third party, such as a trusted CA, is known as \_\_\_\_\_.

Answer:



Digital Certificates



\_\_\_\_\_ is a framework for all of the entities involved in digital certificates (including hardware, software, people, policies and procedures) to create, store, distribute, and revoke digital certificates.

Answer: Public key infrastructure (PKI)

A(n) \_\_\_\_\_ refers to the type of trusting relationship that can exist between individuals or entities.

Answer: trust model

A(n) \_\_\_\_\_ is a published set of rules that govern the operation of a PKI.

Answer: certificate policy (CP)

A process in which keys are managed by a third party, such as a trusted CA, is known as \_\_\_\_\_.

Answer: key escrow

