無線アドホックネットワークにおける キューレート制御による QoS 特性向上 に関する研究

A Study on Improvement of QoS Characteristics by Queue Rate Control in Wireless Ad Hoc Network

グエン フー カイン

渡部 康平

中川 健治

Nguyen Huu Khanh

Kohei Watabe

Kenji Nakagawa

長岡技術科学大学 大学院 工学研究科

Graduate School of Engineering, Nagaoka University of Technology

1 まえがき

無線アドホックネットワークは、基地局や固定ネットワーク網などのインフラに依存せず、各端末が自律分散的に周囲の端末を認識してネットワークを構築する. しかしながら、各端末を接続する無線方式として用いられる IEEE 標準に準拠した無線 LAN 技術を適用するとき、無線アドホックネットワークにおけるネットワーク特性は必ずしも良好ではない. そこで、本研究では、無線アドホックネットワークの代表的な問題について、その公平性を向上させる従来法を改善する.

2 従来法アルゴリズムについて

各デバイスのリンク層で得られた情報のみを用いてキューレートを測定し MAC 層へのパケット送信速度を制御することで公平性を改善する USDC[1] は、2 つのアルゴリズムで構成され、どちらもリンク層で動作する。

 アルゴリズム 1: 有利なフローのパケットを MAC 層に送る前に遅延させ、他のノードのチャネルアクセス機会を増やす。

 μ [1/s] はサービス速度、 t[s] は MAC 層に送信された 2 つの連続するパケット間の平均時間とすると、チャネル利用率 ρ は、

$$\rho \simeq \frac{1}{\mu \triangle t} \tag{1}$$

となり、ノードのチャネルアクセス能力を反映しチャネル利用率が高いフローはスループットが大きい. 自分のフローの利用率 ρ の低下を検出したら、自分よりも不利なフローが存在すると推定されるので、

t/N 遅延値 を与える $(N: \mathsf{JDD} - \mathsf{w})$. 遅延値 t/N は、ノードが多くの異なるノードからのパケットを引き受ける可能性がある長いトポロ ジでの場合を対象とする.

アルゴリズム 2: デキューレートが大きい有利なフローのパケットのデキューをスキップして、デキューレートを下げて公平にする.

キューi からのパケットの出発時刻ごとに、キューi のデキュー間隔 $\eta_i[s]$ によって決定される.

$$\eta_i = \beta \eta_i(last) + (1 - \beta)(t_i(cur) - t_i(last)) \tag{2}$$

ここで、 :(0;1) 範囲の定数 、 $\eta_i(last):$ η_i の前回の値、 $t_i(cur):$ キューi からパケットをデキューされる現在時刻 、 $t_i(last):$ 最後のパケットをキューi でデキューされる時刻をそれぞれ示す.

平均デキュー間隔 $\bar{\eta}$ は、次のように、計算をされる.

$$\bar{\eta} = \frac{1}{N} \sum_{i=1}^{N} \eta_i, \tag{3}$$

キューiのデキュー率が十分に大きいことを意味する $variance = \frac{1}{N}\sum_{i=1}^{N}\left(\eta_i-\bar{\eta}\right)^2$ を追加し $\eta_i<\bar{\eta}$ 及び $(\eta_i-\bar{\eta})^2>variance$ の 2 つの条件をが成り立てば 自分のフローが有利だと推定されて、デキューレートを減らすために、パケットの読み出しをスキップ する.

3 シミュレーションと考察

MAC 層で帯域の競合、リンク層でバッファの競合が 発生する無線アドホックネットワーク環境下において USDC によって 公平性を改善することを、シミュレー ションによる Fairness index $\mathcal J$ の評価結果から示す. Fairness index $\mathcal J$ は 1/(フロー数 $) \leq \mathcal J \leq 1$ であり、1 に近いほど公平である.

☑ 1 Fairness index vs. Offered load

図2は、USDC および FIFO を用いた、Fairness index の評価結果である. FIFO と比べ、 USDC は公平性を改善したが、生成された負荷が軽い赤円に公平性指標が下がってしまうのは USDC の問題と考えられる. 今後は、従来法の欠点を改善し公平性をさらに高める.

参考文献

[1] Tuan, N.M., Watabe, K., Giang. P.T., and Nakagawa, K., "Improving Fairness in Wireless Ad Hoc Networks by Channel Access Sensing at Link Layer and Packet Rate Control," to appare in IEICE Transactions on Communications, vol.E100-B, no.10, October 2017.