

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра обчислювальної техніки

Лабораторнаробота№1

з дисципліни Архітектура комп'ютерів

Виконав:	Перевірив:
OTTALIONE PRANTILI IO 14.	
студент групи IO-14:	
Чаплицький Д. А.	Гайдай
	ΑP

Лістинг команд з терміналу

sudo apt update	оновити список пакетів
sudo apt install git vim vim-gtk tree curl	встановити наступні утіліти
sudo apt install ccache	Встановлення утіліти ссасне щоб можна було використовувати зібрані частини при перезборці ОС
ccache -M 5G	Встановлюємо найбільший розмір кешу 5 Гб
ccache -s	Подивитися конфігурацію ccache
ccache -C	Очистити ccache
tree ~/.ccache	Вивести дерево каталогів ~/.ccache
Скачуємо тулчейни для кроскомпіляції програм	
cd ~/Загрузки	Переходимо в папку ~/Загрузки
sudo tar xJvf gcc-arm-10.3-2021.07-x86_64-arm-none-ea bi.tar.xz -C /opt/	Розпаковуємо тулчейн для "голого заліза" у папку /opt/
sudo tar xJvf gcc-arm-10.3-2021.07-x86_64-arm-none-lin ux-gnueabihf.tar.xz -C /opt	Розпаковуємо тулчейн для BusyBox у папку /opt/
sudo apt install make libncurses5-dev libssl- dev bc bison flex	Встановити утіліти для зборки
mkdir ~/repos	Створюємо директорію для зберігання файлів для зборки
cd ~/repos	Переходимо в цю директорію
git clone https://gitlab.denx.de/u-boot/u-boot.git	Клонуємо репозиторій з вихідним кодом завантажувальника
cd u-boot	Зайти в склонований репозиторій
git tag grep -v rc tail -15	Перевіряємо останні реліз-теги
git checkout v2019.07	Переходимо на версію 2019.07
curl https://patchwork.ozlabs.org/series/130450/ mbox/ git am	Застосувати серію патчів (помилка автовизначення імейлу)

git configglobal user.email "dovefoke@gmail.com"	Встановлюємо імейл для гіта
git configglobal user.name "Darii"	Встановлюємо ім'я для гіта
curl https://patchwork.ozlabs.org/series/130450/ mbox/ git am	Повторюємо команду (успішно)
export PATH=/opt/gcc-arm-10.3-2021.07-x86_64- a rm-none-eabi/bin:\$PATH	Додаємо у перемінну оточення шлях до тулчейну для bare metal
export CROSS_COMPILE='ccache arm-none-eabi-'	Створюємо перемінну оточення РАТН для використання ccache
export ARCH=arm	Встановлюємо перемінну оточення архітектури для кросскомпіляції
make am335x_boneblack_defconfig	Створюємо конфіг для нашої плати
make -j4	Збираємо завантажувальник U-Boot
cd ~/repos	Переходимо в папку ~/repos
git clone git://git.kernel.org/pub/scm/linux/kernel/git/st able/linux-stable.git	Клонуємо репозиторій з вихідним кодом ядра
cd linux-stable	Заходимо в склонований репозиторій
git checkout linux-4.19.y	Перейти на вітку linux-4.19.y
export PATH=/opt/gcc-arm-10.3-2021.07-x86_64- a rm-none-eabi/bin:\$PATH	Додаємо у перемінну оточення РАТН шлях до тулчейну для bare metal
export CROSS_COMPILE='ccache arm-none-eabi-'	Створюємо перемінну оточення для використання ccache
export ARCH=arm	Встановлюємо перемінну оточення архітектури для кросскомпіляції
mkdir fragments	Створюємо директорію fragments
vim fragments/bbb.cfg	Створюємо фрагмент конфігу для плати
./scripts/kconfig/merge_config.sh \ arch/arm/configs/multi_v7_defconfig fragments/bbb.cfg	Змерджимо конфіги

make -j4 zlmage modules am335x- boneblack.dtb	Компілюємо ядро
cd ~/repos	Переходимо в папку ~/repos
git clone git://git.busybox.net/busybox	Клонуємо репозиторій з вихідним кодом BusyBox
cd busybox	Заходимо в склонований репозиторій
git branch -a grep stable sort -V tail -1	Перевіряємо останню стабільну гілку
git checkout 1_31_stable	Переходимо на гілку 1_31_stable
export ARCH=arm	Встановлюємо перемінну оточення архітектури для кросскомпіляції
export PATH=/opt/gcc-arm-10.3-2021.07-x86_64- a rm-none-linux-gnueabihf/bin:\$PATH	Додаємо у перемінну оточення РАТН шлях до linux тулчейну
export CROSS_COMPILE="ccache arm-none-linux-gnueabihf-"	Створюємо перемінну оточення для використання ccache
make defconfig	Створюємо конфіг BusyBox
make -j4	Збираємо BusyBox
make install	Копіюємо зібрані виконувані файли у потрібну локацію (інсталюємо)
mkdir -p _install/{boot,dev,etc\/init.d,lib,proc,root,sys\/kernel\/debug,tmp}	Створюємо папки потрібні для роботи дистрибутиву
vim _install/etc/init.d/rcS	Створюємо init-скрипт
chmod +x _install/etc/init.d/rcS	Даємо йому права на виконання
In -s bin/busybox _install/init	Створюємо soft link на init у кореневому каталозі
cd _install/boot	Заходимо в директорію _install/boot
cp ~/repos/linux-stable/arch/arm/boot/zImage.	Копіюємо в папку /boot образ ядра
cp~/repos/linux- stable/arch/arm/boot/dts/am33 5x- boneblack.dtb .	Копіюємо в папку /boot файл dtb

cp ~/repos/linux-stable/System.map .	Копіюємо в папку /boot файл System.map
cp ~/repos/linux-stable/.config ./config	Копіюємо в папку /boot файл .config
cd ~/repos/linux-stable	Переходимо в репозиторій з вихідним кодом ядра
export INSTALL_MOD_PATH=~/repos/busybox/_in stall	Встановлюємо значення перемінної оточення INSTALL_MOD_PATH для утіліти make
export ARCH=arm	Встановлюємо перемінну оточення архітектури для кросскомпіляції
make modules_install	Копіюємо модулі ядра в _install Перевіряємо: скопіювалось.
cd ~/repos/busybox	Перейти у директорію ~/repos/busybox
\${CROSS_COMPILE}readelf -d _install/bin/busybox grep NEEDED	Подивитися залежності busybox
cd _install/lib	Перейти у папку _install/lib
libc_dir=\$(\${CROSS_COMPILE}gcc -print-sysroot)/lib	Вказуємо папку для встановлення бібліотек
cp -a \$libc_dir/*.so* .	Копіюємо туди всі бібліотеки
cd -	Переходимо в попередню директорію
echo '\$MODALIAS=.* root:root 660 @modprobe "\$MODALIAS"' > _install/etc/mdev.conf	Конфігурація mdev
echo 'root:x:0:' > _install/etc/group	Додаємо групу root
echo 'root:x:0:0:root:/root:/bin/sh' > _install/etc/passwd	Додаємо користувача root
echo 'root::10933:0:99999:7:::' > _install/etc/shadow	Додаємо інформацію про пароль користувача root
echo "nameserver 8.8.8.8" > _install/etc/resolv.conf	Додаємо файл resolv.conf, який використовуватиметься для перетворення імен хостів мережі в IP-адреси
sudo apt install qemu-system-arm	Встановлюємо емулятор для симуляції архітектури
cd ~/repos/busybox/_install/	Перейти в папку ~/repos/busybox/_install/

find . cpio -o -H newc gzip >/rootfs.cpio.gz	Створити архів всіх файлів для емулятора
cd	Вийти в директорію на рівень вище
qemu-system-arm -kernel _install/boot/zlmage -initrd rootfs.cpio.gz \ -machine virt -nographic -m 512 \ append "root=/dev/ram0 rw console=ttyAMA0,115200 mem=512M"	Запускаємо ядро і rootfs у симуляторі
uname -a Is -I dmesg grep init busyboxhelp head - 15 poweroff	Тестуємо систему

Результати роботи

```
DoveFoke@AK:-/repos$ ls -l

total 12

drwxrwxr-x 38 DoveFoke DoveFoke 4096 жов 5 02:10 busybox

drwxrwxr-x 28 DoveFoke DoveFoke 4096 жов 5 02:07 linux-stable

drwxrwxr-x 27 DoveFoke DoveFoke 4096 жов 5 00:14 u-boot

DoveFoke@AK:-/repos$
```

```
DoveFoke@AK:-/repos$ cd busybox
DoveFoke@AK:-/repos/busybox$ qemu-system-arm -kernel _install/boot/zImage -initr
d rootfs.cpio.gz -machine virt -nographic -m 512 --append "root=/dev/ram0 rw con
sole=ttyAMA0,115200 mem=512M"
     0.000000] Booting Linux on physical CPU 0x0
     0.000000] Linux version 4.19.295 (ps4k@ps4k-VirtualBox) (gcc version 8.3.0
(GNU Toolchain for the A-profile Architecture 8.3-2019.03 (arm-rel-8.36))) #1 SM
 Thu Oct 5 01:23:01 EEST 2023
     0.000000] CPU: ARMv7 Processor [412fc0f1] revision 1 (ARMv7), cr=10c5387d
     0.000000] CPU: div instructions available: patching division code
     0.000000] CPU: PIPT / VIPT nonaliasing data cache, PIPT instruction cache
     0.000000] OF: fdt: Machine model: linux,dummy-virt
     0.000000] Memory policy: Data cache writealloc
     0.000000] efi: Getting EFI parameters from FDT:
    0.000000] efi: UEFI not found.
    0.000000] cma: Reserved 64 MiB at 0x5c000000
     0.000000] psci: probing for conduit method from DT.
     0.000000] psci: PSCIv0.2 detected in firmware.
     0.000000] psci: Using standard PSCI v0.2 function IDs
     0.000000] psci: Trusted OS migration not required
     0.000000] percpu: Embedded 16 pages/cpu s36748 r8192 d20596 u65536
     0.000000] Built 1 zonelists, mobility grouping on. Total pages: 130048
     0.000000] Kernel command line: root=/dev/ram0 rw console=ttyAMA0,115200 mem
=512M
     0.000000] Dentry cache hash table entries: 65536 (order: 6, 262144 bytes)
     0.000000] Inode-cache hash table entries: 32768 (order: 5, 131072 bytes)
     0.000000] Memory: 406364K/524288K available (12288K kernel code, 1617K rwda
ta, 4792K rodata, 2048K init, 395K bss, 52388K reserved, 65536K cma-reserved, 0K
highmem)
     0.000000] Virtual kernel memory layout:
                  vector : 0xffff0000 - 0xffff1000
                                                       ( 4 kB)
     0.0000001
                   fixmap : 0xffc00000 - 0xfff00000
                                                       (3072 kB)
     0.0000001
                   vmalloc : 0xe0800000 - 0xff800000
                                                       ( 496 MB)
                   lowmem : 0xc0000000 - 0xe0000000
                                                       ( 512 MB)
     0.000000]
                   pkmap : 0xbfe00000 - 0xc0000000
                                                         2 MB)
     0.0000001
                  modules : 0xbf000000 - 0xbfe00000
     0.000000]
                                                         14 MB)
                   .text : 0x(ptrval) - 0x(ptrval)
                                                       (13280 kB)
     0.0000001
                     .init : 0x(ptrval) - 0x(ptrval)
     0.000000]
                                                      (2048 kB)
```

```
1.831457] usbserial: USB Serial support registered for moto modem
         1.831573] usbserial: USB Serial support registered for motorola tetra
         1.831708] usbserial: USB Serial support registered for nokia
         1.831848] usbserial: USB Serial support registered for novatel_gps
         1.831977] usbserial: USB Serial support registered for siemens_mpi
         1.832113] usbserial: USB Serial support registered for suunto
         1.832234] usbserial: USB Serial support registered for vivopay
         1.832379] usbserial: USB Serial support registered for zio
         1.839786] rtc-pl031 9010000.pl031: rtc core: registered pl031 as rtc0
         1.841937] i2c /dev entries driver
         1.853055] sdhci: Secure Digital Host Controller Interface driver
         1.853208] sdhci: Copyright(c) Pierre Ossman
         1.854485] Synopsys Designware Multimedia Card Interface Driver
         1.855978] sdhci-pltfm: SDHCI platform and OF driver helper
         1.858566] ledtrig-cpu: registered to indicate activity on CPUs
         1.860668] usbcore: registered new interface driver usbhid
         1.860801] usbhid: USB HID core driver
         1.865787] NET: Registered protocol family 10
         1.870808] Segment Routing with IPv6
         1.871206] sit: IPv6, IPv4 and MPLS over IPv4 tunneling driver
         1.873553] NET: Registered protocol family 17
         1.874043] can: controller area network core (rev 20170425 abi 9)
         1.874471] NET: Registered protocol family 29
         1.874610] can: raw protocol (rev 20170425)
         1.874974] can: broadcast manager protocol (rev 20170425 t)
         1.875182] can: netlink gateway (rev 20170425) max_hops=1
         1.876153] Key type dns resolver registered
         1.876598] ThumbEE CPU extension supported.
         1.876798] Registering SWP/SWPB emulation handler
         1.878762] Loading compiled-in X.509 certificates
         1.889883] input: gpio-keys as /devices/platform/gpio-keys/input/input0
         1.892506] rtc-pl031 9010000.pl031: setting system clock to 2024-01-07 10:16
:35 UTC (1704622595)
         1.897925] uart-pl011 9000000.pl011: no DMA platform data
         1.982934] Freeing unused kernel memory: 2048K
         1.992190] Run /init as init process
Please press Enter to activate this console.
/ #
 / # uname -a
linux (none) 4.19.295 #1 SMP Thu Oct 5 01:23:61 EEST 2023 army7l GMU/Linux
/ # ls -l
 total 188
                                                  8 Oct 4 73:82 black of Control of
                  2 1000
2 1000
3 1000
 FWXFWXF-X
                                 1000
 FWXFWXF-X
                  3 1000
1 1000
1 1000
1 1000
1 1000
                                 1000
                                 1006
 Rhythmbox
 FW-F--F--
                                 1008
                                                  73104 Dec 19 14:48 hello5.ko.unstrlpped
8 Dec 11 19:34
                  1 1888
2 1888
                                 1088
1088
                  1 1000
3 1000
                                 1000
1000
                                                      11 Oct 4 23:05 init -> bin/busybox
0 Oct 4 23:08 iii
 FWXFWXF-X
 FWXFWXFWX
                     1000
                                  1008
                                                      11 Oct 4 23:02 Linuxrc -> bin/busybon
```

91 root 2 1000 2 1000 root

1868

1000

0 Jan 1 1970 0 Oct 4 23:03 0 Oct 4 23:02 0 Jan 7 10:47

8 Oct

4 23:03 4 23:02

F-XF-XF-X

frwxrwxr-x

PWXPWXF-X

```
dinesg | grep init

0.000000] Menory: 400364K/524288K available (12288K kernel code, 1617K rwdata, 4792K rodata, 2048K init, 395K bss, 52388K reser
65536K cna-reserved, 8K highmen)
6.000000] .init: 8X(ptrval) - 8X(ptrval) (2048 kB)
8.073751] devtnpfs: initialized
6.102450] pinctrl core: initialized
6.102450] pinctrl core: initialized
6.302488] SCSI subsystem initialized
6.381341] Trying to unpack rootfs image as initranfs...
1.035832] Freeing initrd menory: 25156K
1.755806] SuperH (H)SCIT(F) driver initialized
1.757005] msm_serial: driver initialized
1.757330] STMicroelectronics ASC driver initialized
1.757330] STMicroelectronics ASC driver initialized
2.010144] Run /init as init process
 1.758560 | SIMSZ USARY driver initialized
[ 2.816144] Run /init as init process
/ # busybox --help | head -15
BusyBox v1.31.1 (2023-10-05 01:59:40 EEST) multi-call binary.
BusyBox is copyrighted by many authors between 1998-2015.
Licensed under GPLv2. See source distribution for detailed
 copyright notices.
    # busybox --help | head -15
BusyBox v1.31.1 (2023-10-05 01:59:40 EEST) multi-call binary.
BusyBox is copyrighted by many authors between 1998-2015.
Licensed under GPLv2. See source distribution for detailed
copyright notices.
Usage: busybox [function [arguments]...]
      or: busybox --list[-full]
      or: busybox --show SCRIPT
or: busybox --install [-s] [DIR]
      or: function [arguments]...
                  BusyBox is a multi-call binary that combines many common Unix
                  utilities into a single executable. Most people will create a
                  link to busybox for each function they wish to use and BusyBox
                  will act like whatever it was invoked as.
```

Висновки

Створив виконувані файли для операційної системи Linux, призначені для використання на процесорах архітектури ARM. Встановив ядро Linux у віртуальному середовищі емулятора Qemu для ARM-процесорів.

При виконанні завдання проблем не виникало