

02 - K-pop Groups Segmentation

In this study, I used K-Means Clustering Algorithm to classify K-pop groups into 4 and found some interesting insights using the segmentation.

By Yuchen Wang.

Features Captured

77

Clustering Output

Mature

33%

They debut at **21 years old** on average, 2 years later than the other groups, producing mature styles' images and songs.

CELTIMILIANS

Big-sized

They averagely have ~8 members in each group, bringing more variety of idols' images, personalities and skills.

Productive

They behave more productively than other groups, normally with **25+ songs** launched.

International

Rather than Korean local market, they focus more on international fans by recruiting more **foreign members (40% on avg.)**.

More in the Future

Some spoiler alerts:

- Dashboards on PowerBI and Google Data Studio
- Music Videos Sentimental Analysis (NLP)
- Music Album Covers Analysis (Image Processing)

If you are interested in working on this fun project with me, please feel free to **contact me**! linkedin.com/in/yuchenwang01

All codes, reports and dashboards are at my **Github**. github.com/brantgithub/K-pop-Data-Aanalysis

Appendix – The Elbow Method

17

To tune the parameter of KMeans Clustering Algorithm, I used "The Elbow Method" to determine the number of clusters we want to output.

- X-axis: value of K
- Y-axis: SSE of the models
- To use this plot, we choose the K-value that will have a linear trend on the next consecutive K.
- Based on our observation, the K-value of 4 is the best hyperparameter for our model because the next K-value tend to have a linear trend.

Appendix – Clustering Output

1

Mean Value

Cluster Name	Avg. Debut Age	% of Foreign Members	# of Members	# of Songs
Big-Sized	19	4%	8	12
International	19	40%	6	14
Mature	21	3%	5	11
Productive	19	2%	6	30

Appendix – Principal Component Visualization

Appendix

- Reference: https://towardsdatascience.com/customer-segmentation-in-python-9c15acf6f945
- Tableau Dashboards: https://public.tableau.com/profile/yuchen.brant.wang
- Reports, Codes & Models: https://github.com/brantgithub/K-pop-Data-Analysis