Problem 01.2

Let $(\Omega, \mathcal{A}, \mathbb{P})$ a probability space and (M, \mathcal{F}) a measurable space. Moreover, let $X: \Omega \to M$ a $(\mathcal{A}, \mathcal{F})$ -measurable random variable. Show that

$$\mathbb{P}^{X}(B) := \mathbb{P}(X \in B) = \mathbb{P}(X^{-1}(B)), \qquad B \in \mathcal{F}$$
(1)

defines a probability measure on (M, \mathcal{F}) .

Solution

1. We have

$$\mathbb{P}^X(M) \stackrel{\text{def.}}{=} \mathbb{P}(X \in M) \tag{2}$$

$$\stackrel{\text{def.}}{=} \mathbb{P}(\{\omega \in M \mid X(\omega) \in M\}) \tag{3}$$

$$= \mathbb{P}(\{\omega \in M\}) \tag{4}$$

$$= \mathbb{P}(M) \tag{5}$$

$$\stackrel{\text{def.}}{=} 1. \tag{6}$$

In (4), we used that the codomain of X is M and in the last step, we used the normed property of the probability measure \mathbb{P} .

2. Let $A_i \in \mathcal{F}$ with $i \in \mathbb{N}$ disjoint subsets. We have

$$\mathbb{P}^X \left(\bigcup_{i=1}^{\infty} A_i \right) \stackrel{\text{def.}}{=} \mathbb{P} \left(X \in \bigcup_{i=1}^{\infty} A_i \right)$$
 (7)

$$\stackrel{\text{def.}}{=} \mathbb{P}\left(\left\{\omega \in M \middle| X(\omega) \in \bigcup_{i=1}^{\infty} A_i\right\}\right). \tag{8}$$

As A_i are disjoint, $X(\omega)$ is included in one and only one A_i . Therefore with the σ -additivity of \mathbb{P} , we have

$$= \mathbb{P}\left(\bigcup_{i=1}^{\infty} \left\{ \omega \in M \mid X(\omega) \in A_i \right\} \right) \tag{9}$$

$$\stackrel{\text{def.}}{=} \sum_{i=1}^{\infty} \mathbb{P}\{\omega \in M \mid X(\omega) \in A_i\}$$
 (10)

$$\stackrel{\text{def.}}{=} \sum_{i=1}^{\infty} \mathbb{P}(X \in A_i) \tag{11}$$

$$\stackrel{\text{def.}}{=} \sum_{i=1}^{\infty} \mathbb{P}^X(A_i). \tag{12}$$

In short, \mathbb{P}^X is σ -additive.

From above, it follows that \mathbb{P}^X is a probability measure.