

Đại số quan hệ

Toán tử là các phép toán (operations)

Phép tính		Ký hiệu	Số quan hệ	Phép cơ bản
Phép chọn	Selection	σ	1	$\overline{\checkmark}$
Phép chiếu	Projection	π	1	
Tích decartes	Cartesian production	×	2	
Phép hội	Union	U	2	
Phép trừ	Difference	_	2	$\overline{\checkmark}$
Phép giao	Intersection	\cap	2	
Phép kết	Join	\bowtie	2	
Phép chia	Devision	÷	2	
Phép gán		←		
Phép đổi tên		ρ		

2

Nội dung

- Phép tích Cartesian
- Phép kết
- Phép chia
- Các phép toán khác
- Các thao tác cập nhật trên quan hệ

Phép tích Cartesian

- Được dùng để kết hợp các bộ của các quan hệ lai với nhau
- Ký hiệu R×S
- Kết quả trả về là một quan hệ mới Q
 - Mỗi bộ của Q là tổ hợp giữa 1 bộ trong R và 1 bộ trong S
 - Nếu R có u bộ và S có v bộ thì Q sẽ có u x v bộ
 - Nếu R có n thuộc tính và S có m thuộc tính thì Q sẽ có n + m thuộc tính (R⁺ ∩ S⁺ = Ø)

Phép tích Cartesian (tt)

Ví dụ

R	Α	В
	α	1
	β	2

S	X	С	D
	α	10	+
	β	10	+
	β	20	-
	γ	10	-

$$\rho_{(X,C,D)}(S)$$

unambiguous

R×S	А	R.B	X	С	D
	α	1	α	10	+
	α	1	β	10	+
	α	1	β	20	-
	α	1	γ	10	-
	β	2	α	10	+
	β	2	β	10	+
	β	2	β	20	-
	β	2	γ	10	-

Phép tích Cartesian (tt)

 Thông thường theo sau phép tích Cartesian là phép chọn

$$R \times S$$

	Α	R.B	S.B	С	D
	α	1	α	10	+
Ī	α	1	β	10	+
	α	1	β	20	-
	α	1	γ	10	-
	β	2	α	10	+
	β	2	β	10	+
	β	2	β	20	-
	β	2	γ	10	-

$$\mathbf{O}_{A=S.B}(R\times S)$$

Α	R.B	S.B	С	D
α	1	α	10	+
β	2	β	10	+
β	2	β	20	-

Ví du 6

 Cho biết thông tin của bộ môn cùng thông tin giảng viên làm trưởng bộ môn đó

TENBM	MABM	TRUONGB	NGAYNHANCHU	
Hệ thống thông tin	нттт	002	C 20/09/2004	
Công nghệ tri thức	CNTT			
Mạng máy tính	MMT	001	15/05/2005	

MAGV	HOTEN	NGSINH	MABM	PHAI	LUONG	
001	Nguyễn Hoài An	15/02/1973	MMT	Nam	2000	
002	Trần Trà Dương	20/06/1960	нттт	Nu	2500	
003	Nguyễn Ngọc Anh	11/05/1975	HTTT	Nu	2200	
004	Trương Nam Sơn	20/06/1959	VS	Nam	2300	

Ví dụ 6 (tt)

TENBM	MABM	TRUONGB	NGAYNHANCH	Ġν	HOTEN	
Hệ thống thông tin	НТТТ	002	UC 20/09/2004	002	Trần Trà Dương	
Mạng máy tính	ММТ	001	15/05/2005	001	Trương Nam Sơn	

Ví du 6 (tt)

B1: Tích Cartesian BOMON và GIAOVIEN

B2: Chọn ra những bộ thỏa TRUONGBM = MAGV

$$KQ \leftarrow \mathbf{\sigma}_{TRUONGBM=MAGV} (BM_GV)$$

GIAOVIEN	MÃGV	HỌTÊN	 NGÀYSINH	SÓNHÀ	••••
	001	Nguyễn Hoài An	 15/02/1973	25/3	
	002	Trần Trà Hương	 20/06/1960	125	
	003	Nguyễn Ngọc Ánh	 11/05/1975	12/21	

BOMON	MÃBM	TÊNBM	PHÒNG		TRƯỞNGBM	••••
	HTTT	Hệ thống thông tin	B13		002	
	CNTT	Công nghệ tri thức	B15			
	MMT	Mạng máy tính	B16		001	

σ _{TRUON}	GBM=MAGV(BM_G\	V)							
<u>MÃGV</u>	HỌTÊN		NGÀYSINH	 MÃBM	TÊNBM	PHÒNG	••••	TRƯỞNGBM	••••
001)	Nguyễn Hoài An		15/02/1973	HTTT	Hệ thống thông tin	B13			
001	Nguyễn Hoài An		15/02/1973	 CNTT	Công nghệ trị thức	B15		X:	
(001)	Nguyễn Hoài An		15/02/1973	 MMT	Mạng máy tính	B16		001)	
				 					ļ

 Cho biết mức lương cao nhất của các giảng viên

HOTEN	 LUONG	 	LUONG	
Nguyễn Hoài An	 2000		2000	
Trần Trà Hương	 2500	 	2500	
Nguyễn Ngọc Anh	 2200	 	2200	

Ví dụ 7 (tt)

 B1: Chọn ra những lương không phải là lớn nhất

R1
$$\leftarrow$$
 (π_{LUONG} (GIAOVIEN))

R2 \leftarrow $\sigma_{\text{GIAOVIEN.LUONG}}$ (GIAOVIEN \times R1)

R3 \leftarrow $\pi_{\text{R2.LUONG}}$ (R2)

B2: Lấy tập hợp lương trừ đi lương trong R3

$$\mathsf{KQ} \leftarrow \pi_{\mathsf{LUONG}}$$
 (GIAOVIEN) - R3

Ví du 8

- Cho biết họ tên các giáo viên cùng bộ môn với giáo viên 'Trần Trà Hương'
 - Quan hệ: GIAOVIEN
 - Thuộc tính: HOTEN, MABM
 - Điều kiện: HOTEN = 'Trần Trà Hương'

Giáo viên "Trần Trà Hương" ở bộ môn nào? Những giáo viên nào thuộc về bộ môn đó?

MABM	HOTEN
MMT	Nguyễn Hoài An
HTTT	Trần Trà Hương
HTTT	Nguyễn Ngọc Anh
VS	Trương Nam Sơn

MABM	HOTEN
MMT	Nguyễn Hoài An
HTTT	Trần Trà Hương
HTTT	Nguyễn Ngọc Anh
VS	Trương Nam Sơn

Ví du 8 (tt)

 B1: Tìm bộ môn mà giáo viên 'Trần Trà Hương' thuộc về

R1
$$\leftarrow \pi_{\text{MABM,MAGV}}$$
 ($\sigma_{\text{HOTEN=Trần Trà Hương}}$, (GIAOVIEN))

B2: Lấy ra họ tên các giáo viên cùng bộ môn

R2
$$\leftarrow \mathbf{\sigma}_{\text{MAGV}\neq \text{R1.MAGV}}$$
 (GIAOVIEN)

R3
$$\leftarrow$$
 $\mathbf{O}_{\text{R1.MABM}=\text{R2.MABM}}$ (R1 × R2)

$$\text{KQ} \leftarrow \pi_{\text{MAPHG}}$$
 (R3)

Phép kết

- Kết tự nhiên (Natural join)
- Kết có điều kiện tổng quát (Theta join)
- Kết bằng (Equi join)
- Kết ngoài (Outer join)
- Kết một nửa (Simi-join)

Phép kết

- Được dùng để tổ hợp 2 bộ có liên quan từ 2 quan hệ thành 1 bộ
- Ký hiệu R ⋈ S
 - $R(A_1, A_2, ..., A_n) và S(B_1, B_2, ..., B_m)$
- Kết quả của phép kết là một quan hệ mới Q
 - Cố n + m thuộc tính Q(A₁, A₂, ..., A_n, B₁, B₂, ..., B_m)
 - Mỗi bộ của Q là tổ hợp của 2 bộ trong R và S, thỏa mãn một số điều kiện kết nào đó
 - Có dạng A_i θ B_i
 - A_i là thuộc tính của R, B_i là thuộc tính của S
 - A_i và B_j có cùng miền giấ trị
 - θ là phép so sánh ≠, =, <, >, ≤, ≥

Α	В
a b	1 2

В	С
1	x
1	y
3	z

Α	В	С
a a	1	x y

 $T\bowtie U$

Phân loai

(g) Natural join

- Kết theta (θ-join) là phép kết có điều kiện
 - Ký hiệu R ⋈_C S
 - C gọi là điều kiện kết trên thuộc tính (<, ≤, >, ≥, =, ≠)
- Kết bằng (equi join) khi C là điều kiện so sánh bằng
- Kết tự nhiên (natural join)
 - Ký hiệu R ⋈ S hay R * S
 - $R^+ \cap S^+ \neq \emptyset$
 - Kết quả của phép kết bằng trên thuộc tính chung của 2 quan hệ và bỏ bớt đi 1 cột giống nhau

Ví dụ phép kết theta

R	Α	В	С	S	D	Е
	1	2 -=	=3		(3)	1
	4	(5)-=	-6	 	6	2
	7	8	-9			

$$R\bowtie_{B< D} S$$

Α	В	С	D	Е
1	2	3	3	1
1	2	3	6	2
4	5	6	6	2

$$R \bowtie_C S = \sigma_C(R \times S)$$

Ví dụ phép kết bằng

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9

S	D	Е
	3	1
	6	2

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9

$$\rho_{(S.C,D)} \, \mathsf{S}$$

$$R\bowtie_{C=D} S$$

Α	В	С	D	Е
1	2	3	3	1
4	5	6	6	2

$$R\bowtie_{C=S.C} S$$

Α	В	С	S.C	D
1	2	3	3	1
4	5	6	6	2

Ví dụ phép kết tự nhiên

R	Α	В	С
	1	2	3
	4	5	6
	7	8	9

S	С	D
	3	1
	6	2

- Cho biết giáo viên có lương lớn hơn lương của giáo viên 'Nguyễn Hoài An'
 - Quan hệ: GIAOVIEN
 - Thuộc tính: LUONG

GIAOVIEN (MAGV, HOTEN, LUONG, PHAI, NGAYSINH, ...)

R1(LG)
$$\leftarrow \pi_{\text{LUONG}}$$
 ($\sigma_{\text{HOTEN='Nguyễn Hoài An'}}$ (GIAOVIEN))

KQ (MAGV, HOTEN, LUONG, PHAI, NGAYSINH, ..., LG))

- Với mỗi giáo viên, hãy cho biết thông tin của bộ môn mà họ đang làm việc
 - Quan hệ: GIAOVIEN, BOMON

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, ..., MABM, ...)
BOMON(MABM, TENBM, PHONG, DIENTHOAI, ...)

KQ ← GIAOVIEN → BOMON

KQ (MAGV, HOTEN, ..., MABM, TENBM, PHONG, ...))

- Với mỗi đề tài, cho biết thông tin giáo viên chủ nhiệm đề tài đó
 - Quan hệ: ĐETAI, GIAOVIEN

ĐETAI(MAĐT, TENĐT, KINHPHI, ..., GVCNĐT)

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, ...)

KQ(MAĐT, TENĐT, KINHPHI, ..., GVCNĐT, MAGV, HOTEN, ...)

Với mỗi khoa cho biết thông tin trưởng khoa

Cho biết lương cao nhất trong bộ môn 'HTTT'

 Cho biết giáo viên làm việc cùng bộ môn với giáo viên 002

 Cho biết các giáo viên của bộ môn 'Vi sinh' có tham gia đề tài 006

				В
В	С		Α	В
1 1 3	x y z		а	1
		•		

U T⊳.U

Phân loại

- (h) Semijoin
- Kết ngoài (outer join): phép kết có điều kiện
 - Gồm 3 phép kết ngoài: bên trái, bên phải, 2 bên
 - Ký hiệu: R≫S, R⋉S, R⋉S
 - Kết ngoài bên trái (Left outer join): phép kết bảo toàn tất cả các bộ của quan hệ bên trái, bộ nào không kết được với quan hệ bên phải thì sẽ được điền giá trị null.
- Kết nửa (simi-join): Hình thành quan hệ chứa các bộ của R có thể tham gia phép kết với quan hệ S
 - Ký hiệu: R ▷ S
 - Có thể biểu diễn bằng phép kết + phép chiếu
 - $R \triangleright S = \pi_A(R \bowtie S)$

Ví dụ 24 - a

 Cho biết họ tên giáo viên và tên bộ môn họ làm trưởng bộ môn nếu có

$$R1 \leftarrow GIAOVIEN \longrightarrow_{MAGV=TRUONGBM} BOMON$$

$$KQ \leftarrow \pi_{HOTEN, TENBM}(R1)$$

HOTEN	TENBM
Nguyễn Hoài An	Mạng máy tính
Trần Trà Hương	Hệ thống thông tin
Nguyễn Ngọc Ánh	null

Ví dụ 24 - b

 Cho danh sách tên bộ môn và họ tên trưởng bộ môn đó nếu có.

Ví dụ 24 - c

 Cho danh sách tên giáo viên và các đề tài giáo viên đó chủ nhiệm nếu có

Tập đầy đủ các phép toán ĐSQH

- Tập các phép toán σ, π, ×, −, ∪ được gọi là tập đầy đủ các phép toán ĐSQH
 - Nghĩa là các phép toán có thể được biểu diễn qua chúng
 - Ví du
 - $R \cap S = R \cup S ((R-S) \cup (S-R))$
 - $R\bowtie_{C}S = \sigma_{C}(R\times S)$

Phép chia

- Được dùng để lấy ra một số bộ trong quan hệ R sao cho thỏa với <u>tất cả</u> các bộ trong quan hệ S
- Ký hiệu R ÷ S
 - R(Z) và S(X)
 - Z là tập thuộc tính của R, X là tập thuộc tính của S
 - X ⊂ Z
- Kết quả của phép chia là một quan hệ T(Y)
 - Với Y=Z-X
 - Có t là một bộ của T nếu <u>với mọi bộ</u> t_S∈S, tồn tại bộ t_R∈R thỏa
 2 điều kiên
 - $t_R(Y) = t$
 - $t_R(X) = t_S(X)$

Phép chia

(j) Division (shaded area)

Example of division

• Ví dụ

		Ь		_	_
R	Α	В	С	D	E
	α	a	α	a	1
	α	а	γ	а	1
	α	a	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	a	γ	b	1
	γ	а	β	b	1

 $R \div S$

Α	В	С
α	а	γ
γ	a	γ

 Biểu diễn phép chia thông qua tập đầy đủ các phép toán ĐSQH

$$Q1 \leftarrow \pi_A(V)$$
 $Q2 \leftarrow Q1 \times W$
 $Q3 \leftarrow \pi_A(Q2 - V)$
 $T \leftarrow Q1 - Q3$

• Lấy ra tập thuộc tính Y trong R : Q1 $\leftarrow \pi_{\text{A, B, C}}$ (R)

R1	Α	В	С	D	E
	α	а	α	а	1
	α	a	γ	а	1
	ß	а	γ	b	1
	B	a	γ	а	1
	ß	а	B	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

• Tổ hợp Q1 và S : Q2 \leftarrow Q1 \times S

Q2	А	В	С	D	Е
	α	а	α	а	1
	α	а	γ	а	1
	β	а	γ	а	1
	γ	a	γ	a	1
	γ	а	β	а	1
	α	а	α	b	1
	α	а	γ	b	1
	β	а	γ	b	1
	γ	а	γ	b	1
	γ	а	β	b	1

• Lấy ra dòng không đầy đủ : Q3 \leftarrow $\pi_{\text{A,B,C}}$ (Q2 -

Q2	Α	R)	С	D	E
4	α	а	α	а	1
	α	а	γ	а	1
	β	а	γ	а	1
	γ	а	γ	а	1
	γ	а	β	а	1
	α	а	α	b	1
	α	а	γ	b	1
	β	а	γ	b	1
	γ	а	γ	b	1
	γ	а	β	b	1

R	А	В	С	D	E
	α	а	α	а	1
	α	a	γ	а	1
	α	а	γ	b	1
	β	а	γ	а	1
	β	а	γ	b	3
	γ	а	γ	а	1
	γ	а	γ	b	1
	γ	а	β	b	1

Q3	А	В	С	D	E	
	γ	a	β	а	1	
	α	а	α	b	1	
	β	а	γ	b	1	
	4	-	-			H

Q3	Α	В	С
	γ	а	β
	α	а	α
	β	а	γ

Loại bỏ tập không đầy đủ từ tập ban đầu:

$$KQ \leftarrow Q1 - Q3$$

Q1	Α	В	С
	α	а	α
	α	а	γ
	β	а	γ
	γ	а	γ
	γ	а	β

Q3	А	В	С	
	γ	a	β	
	α	а	α	
	β	а	γ	

KQ	Α	В	C
	α	а	γ
	γ	а	γ

- Cho biết mã giáo viên tham gia tất cả công việc thuộc đề tài 001
 - Quan hệ: GIAOVIEN, THAMGIAĐT

 Cho biết tên đề tài có tất cả giảng viên bộ môn 'Hệ thống thông tin' tham gia

CÁC PHÉP TOÁN KHÁC Hàm kết hợp (Aggregation function) Phép gom nhóm (Grouping)

Hàm kết hợp

- Nhận vào tập hợp các giá trị
- Trả về một giá trị đơn
- Gôm
 - AVG
 - MIN
 - MAX
 - SUM
 - COUNT

Hàm kết hợp (tt)

Ví dụ

R	А	В
	1	2
	3	4
	1	2
	1	2

$$SUM(B) = 10$$

$$AVG(A) = 1.5$$

$$MIN(A) = 1$$

$$MAX(B) = 4$$

$$COUNT(A) = 4$$

Phép gom nhóm

- Được dùng để phân chia quan hệ thành nhiều nhóm dựa trên điều kiện gom nhóm nào đó
- Ký hiệu G₁, G₂, ..., G_nS_{F₁(A₁), F₂(A₂), ..., F_n(A_n)(E)}
 - E là biểu thức ĐSQH
 - G₁, G₂, ..., G_n là các thuộc tính gom nhóm
 - F₁, F₂, ..., F_n là các hàm kết hợp
 - A₁, A₂, ..., A_n là các thuộc tính tính toán trong hàm F_i

Phép gom nhóm (tt)

Ví dụ

R	Α	В	С	
	α	2	7	
	α	4	7	
	β	2	3	_
	γ	2	10	_

SUM_	_C
27	

$$A\mathfrak{F}_{SUM(C)}(R)$$

Α	SUM_C	
α	14	
β	3	
γ	10	

 Cho biết số lượng giáo viên và tổng lương của họ

 Cho biết số lượng giáo viên và lương trung bình của từng bộ môn

Cho biết tên khoa có đông giáo viên nhất

 Cho biết họ tên giáo viên chủ nhiệm nhiều đề tài nhất

 Cho biết tên chủ đề và số lượng đề tài thuộc về chủ đề đó

Các thao tác cập nhật

- Nội dung của CSDL có thể được cập nhật bằng các thao tác
 - Thêm (insertion)
 - Xóa (deletion)
 - Sửa (updating)
- Các thao tác cập nhật được diễn đạt thông qua phép toán gán

R_{new} ← các phép toán trên R_{old}

Thao tác thêm

Được diễn đạt

$$R_{\text{new}} \leftarrow R_{\text{old}} \cup E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Phân công giáo viên có mã 001 tham gia công việc 4 của đề tài số 001 với mức phụ cấp 2

THAMGIAĐT \leftarrow THAMGIAĐT \cup ('001', '001', 4, 2)

Thao tác xóa

Được diễn đạt

$$R_{new} \leftarrow R_{old} - E$$

- R là quan hệ
- E là một biểu thức ĐSQH
- Ví dụ
 - Xóa phân công tham gia đề tài cho giáo viên 001

THAMGIAĐT \leftarrow THAMGIAĐT - $\sigma_{MAGV='001'}$ (THAMGIAĐT)

Xóa các đề tài thuộc chủ đề 'NCPT'

Thao tác sửa

Được diễn đạt

$$R_{\text{new}} \leftarrow \pi_{\text{F1, F2, ..., Fn}} (R_{\text{old}})$$

- R là quan hệ
- Fi là biểu thức tính toán cho ra giá trị mới của thuộc tính
- Ví du
 - Tăng mức phụ cấp cho các đề tài của tất cả giáo viên lên 1.5 lần

THAMGIAĐT $\leftarrow \pi_{MAGV, MAĐT, STT, PHUCAP*1.5}$ (THAMGIAĐT)

Ví du 26

 Các giáo viên làm đề tài trên 30 giờ sẽ được tăng thời gian làm việc lên 1.5 lần, còn lại tăng lên 2 lần

