ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang)

ĐÁP ÁN - THANG ĐIỂM

Câu	Đáp án	Điểm
I	1. (1,0 điểm)	1
(2,0 điểm)	Tập xác định: ℝ \ {-1}.	
	Sự biến thiên:	0,25
	- Chiều biến thiên: $y' = \frac{1}{(x+1)^2} > 0$, $\forall x \neq -1$.	
	Hàm số đồng biến trên các khoảng $(-\infty; -1)$ và $(-1; +\infty)$.	
	- Giới hạn và tiệm cận: $\lim_{x \to -\infty} y = \lim_{x \to +\infty} y = 2$; tiệm cận ngang: $y = 2$.	0,25
	$\lim_{x\to(-1)^-} y = +\infty \text{ và } \lim_{x\to(-1)^+} y = -\infty; \text{ tiệm cận đứng: } x = -1.$	
	- Bảng biến thiên:	
	$\begin{array}{c cccc} x & -\infty & -1 & +\infty \\ \hline & & & & & & & & & & & & & & & & & &$	
	<u>y'</u> + + + → 2	0,25
	$y \rightarrow 2$	
	• Đồ thị:	
		0,25
	-1 $O x$	
	II I	
	2. (1,0 điểm)	
	Phương trình hoành độ giao điểm: $\frac{2x+1}{x+1} = -2x + m$	
	$\Leftrightarrow 2x + 1 = (x + 1)(-2x + m)$ (do $x = -1$ không là nghiệm phương trình)	0,25
	$\Leftrightarrow 2x^2 + (4-m)x + 1 - m = 0 $ (1).	
	$\Delta = m^2 + 8 > 0$ với mọi m , suy ra đường thẳng $y = -2x + m$ luôn cắt đồ thị (C) tại hai điểm phân biệt A , B với mọi m .	0,25
	Gọi $A(x_1; y_1)$ và $B(x_2; y_2)$, trong đó x_1 và x_2 là các nghiệm của (1); $y_1 = -2x_1 + m$ và $y_2 = -2x_2 + m$.	
	Ta có: d(O, AB) = $\frac{ m }{\sqrt{5}}$ và $AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{5(x_1 + x_2)^2 - 20x_1x_2} = \frac{\sqrt{5(m^2 + 8)}}{2}$.	0,25
	$S_{OAB} = \frac{1}{2}AB. d(O, AB) = \frac{ m \sqrt{m^2 + 8}}{4}$, suy ra: $\frac{ m \sqrt{m^2 + 8}}{4} = \sqrt{3} \iff m = \pm 2$.	0,25

Câu	Đáp án	Điểm
II	1. (1,0 điểm)	1
(2,0 điểm)	Phương trình đã cho tương đương với: $2\sin x \cos^2 x - \sin x + \cos 2x \cos x + 2\cos 2x = 0$	0,25
	$\Leftrightarrow \cos 2x \sin x + (\cos x + 2)\cos 2x = 0 \Leftrightarrow (\sin x + \cos x + 2)\cos 2x = 0 (1).$	0,25
	Do phương trình $\sin x + \cos x + 2 = 0$ vô nghiệm, nên:	0,25
	(1) $\Leftrightarrow \cos 2x = 0 \Leftrightarrow x = \frac{\pi}{4} + k\frac{\pi}{2} \ (k \in \mathbb{Z}).$	0,25
	2. (1,0 điểm)	·
	Điều kiện: $-\frac{1}{3} \le x \le 6$.	0,25
	Phương trình đã cho tương đương với: $(\sqrt{3x+1} - 4) + (1 - \sqrt{6-x}) + 3x^2 - 14x - 5 = 0$	0,25
	$\Leftrightarrow \frac{3(x-5)}{\sqrt{3x+1}+4} + \frac{x-5}{\sqrt{6-x}+1} + (x-5)(3x+1) = 0$	0,25
	$\Leftrightarrow x = 5 \text{ hoặc } \frac{3}{\sqrt{3x+1}+4} + \frac{1}{\sqrt{6-x}+1} + 3x + 1 = 0.$	0,23
	$\frac{3}{\sqrt{3x+1}+4} + \frac{1}{\sqrt{6-x}+1} + 3x + 1 > 0 \ \forall x \in \left[-\frac{1}{3}; 6\right], \text{ do d\'o phương trình đã cho c\'o nghiệm: } x = 5.$	0,25
III (1,0 điểm)	Đặt $t = 2 + \ln x$, ta có $dt = \frac{1}{x} dx$; $x = 1 \Rightarrow t = 2$; $x = e \Rightarrow t = 3$.	0,25
(1,0 atem)	$I = \int_{2}^{3} \frac{t-2}{t^{2}} dt = \int_{2}^{3} \frac{1}{t} dt - 2 \int_{2}^{3} \frac{1}{t^{2}} dt.$	0,25
	$= \left. \ln t \right _2^3 + \frac{2}{t} \right _2^3$	0,25
	$=-\frac{1}{3}+\ln\frac{3}{2}$.	0,25
IV (1,0 điểm)	A' $C' \qquad \bullet Thể tích khối lăng trụ.$ $Gọi D là trung điểm BC, ta có:$ $BC \perp AD \Rightarrow BC \perp A'D, \text{ suy ra: } \widehat{ADA'} = 60^{\circ}.$	0,25
	Ta có: $AA' = AD.\tan \widehat{ADA'} = \frac{3a}{2}$; $S_{ABC} = \frac{a^2\sqrt{3}}{4}$. Do đó: $V_{ABC.A'B'C'} = S_{ABC}.AA' = \frac{3a^3\sqrt{3}}{8}$.	0,25
	• Bán kính mặt cầu ngoại tiếp tứ diện GABC. Gọi H là trọng tâm tam giác ABC , suy ra: $GH // A' A \Rightarrow GH \perp (ABC).$	
	Gọi I là tâm mặt cầu ngoại tiếp tứ diện $GABC$, ta có I là giao điểm của GH với trung trực của AG trong mặt phẳng (AGH) . Gọi E là trung điểm AG , ta có: $R = GI = \frac{GE.GA}{GH} = \frac{GA^2}{2GH}$.	0,25
	Ta có: $GH = \frac{AA'}{3} = \frac{a}{2}$; $AH = \frac{a\sqrt{3}}{3}$; $GA^2 = GH^2 + AH^2 = \frac{7a^2}{12}$. Do đó: $R = \frac{7a^2}{2.12} \cdot \frac{2}{a} = \frac{7a}{12}$.	0,25

Câu	Đáp án	Điểm
V (1,0 điểm)	Ta có: $M \ge (ab + bc + ca)^2 + 3(ab + bc + ca) + 2\sqrt{1 - 2(ab + bc + ca)}$.	0,25
	Đặt $t = ab + bc + ca$, ta có: $0 \le t \le \frac{(a+b+c)^2}{3} = \frac{1}{3}$. Xét hàm $f(t) = t^2 + 3t + 2\sqrt{1-2t}$ trên $\left[0; \frac{1}{2}\right]$, ta có: $f'(t) = 2t + 3 - \frac{2}{\sqrt{1-2t}}$; $f''(t) = 2 - \frac{2}{\sqrt{(1-2t)^3}} \le 0$, dấu bằng chỉ xảy ra tại $t = 0$; suy ra $f'(t)$ nghịch biến.	0,25
	Xét trên đoạn $\left[0; \frac{1}{3}\right]$ ta có: $f'(t) \ge f'\left(\frac{1}{3}\right) = \frac{11}{3} - 2\sqrt{3} > 0$, suy ra $f(t)$ đồng biến. Do đó: $f(t) \ge f(0) = 2 \ \forall t \in \left[0; \frac{1}{3}\right]$.	0,25
	Vì thế: $M \ge f(t) \ge 2 \ \forall t \in \left[0; \frac{1}{3}\right]$; $M = 2$, khi: $ab = bc = ca$, $ab + bc + ca = 0$ và $a + b + c = 1$ $\Leftrightarrow (a; b; c)$ là một trong các bộ số: $(1; 0; 0)$, $(0; 1; 0)$, $(0; 0; 1)$. Do đó giá trị nhỏ nhất của M là 2 .	0,25
VI.a	1. (1,0 điểm)	
(2,0 điểm)	Gọi <i>D</i> là điểm đối xứng của $C(-4; 1)$ qua $d: x + y - 5 = 0$, suy ra tọa độ $D(x; y)$ thỏa mãn: $ \begin{bmatrix} D \\ x - 4 \\ 2 \end{bmatrix} + \frac{y + 1}{2} - 5 = 0 $ $\Rightarrow D(4; 9)$.	0,25
	Diễm A thuộc đường tròn đường kính CD , nên tọa độ $A(x, y)$ thỏa mãn: $\begin{cases} x + y - 5 = 0 \\ x^2 + (y - 5)^2 = 32 \end{cases}$ với $x > 0$, suy ra $A(4; 1)$.	0,25
	$\Rightarrow AC = 8 \Rightarrow AB = \frac{2S_{ABC}}{AC} = 6.$ B thuộc đường thẳng AD: $x = 4$, suy ra tọa độ $B(4; y)$ thỏa mãn: $(y - 1)^2 = 36$ $\Rightarrow B(4; 7) \text{ hoặc } B(4; -5).$	0,25
	Do d là phân giác trong của góc A , nên \overrightarrow{AB} và \overrightarrow{AD} cùng hướng, suy ra $B(4; 7)$. Do đó, đường thẳng BC có phương trình: $3x - 4y + 16 = 0$.	0,25
	2. (1,0 điểm)	
	Mặt phẳng (ABC) có phương trình: $\frac{x}{1} + \frac{y}{b} + \frac{z}{c} = 1$.	0,25
	Mặt phẳng (ABC) vuông góc với mặt phẳng (P): $y-z+1=0$, suy ra: $\frac{1}{b}-\frac{1}{c}=0$ (1).	0,25
	Ta có: d(O, (ABC)) = $\frac{1}{3} \Leftrightarrow \frac{1}{\sqrt{1 + \frac{1}{b^2} + \frac{1}{c^2}}} = \frac{1}{3} \Leftrightarrow \frac{1}{b^2} + \frac{1}{c^2} = 8$ (2).	0,25
	Từ (1) và (2), do $b, c > 0$ suy ra $b = c = \frac{1}{2}$.	0,25
VII.a (1,0 điểm)	Biểu diễn số phức $z = x + yi$ bởi điểm $M(x; y)$ trong mặt phẳng tọa độ Oxy , ta có: $ z - i = (1 + i)z \iff x + (y - 1)i = (x - y) + (x + y)i $	0,25
	$\Leftrightarrow x^2 + (y-1)^2 = (x-y)^2 + (x+y)^2$	0,25
	$\Leftrightarrow x^2 + y^2 + 2y - 1 = 0.$	0,25
	Tập hợp điểm M biểu diễn các số phức z là đường tròn có phương trình: $x^2 + (y + 1)^2 = 2$.	0,25

Câu	Đáp án	Điểm
VI.b (2,0 điểm)	1. (1,0 điểm)	•
	Nhận thấy: $F_1(-1; 0)$ và $F_2(1; 0)$. Dường thẳng AF_1 có phương trình: $\frac{x+1}{3} = \frac{y}{\sqrt{3}}$.	0,25
	M là giao điểm có tung độ dương của AF_1 với (E) , suy ra: $M = \left(1; \frac{2\sqrt{3}}{3}\right) \Rightarrow MA = MF_2 = \frac{2\sqrt{3}}{3}.$	0,25
	Do N là điểm đối xứng của F_2 qua M nên $MF_2 = MN$, suy ra: $MA = MF_2 = MN$.	0,25
	Do đó đường tròn (T) ngoại tiếp tam giác ANF_2 là đường tròn tâm M , bán kính MF_2 . Phương trình (T): $\left(x-1\right)^2 + \left(y-\frac{2\sqrt{3}}{3}\right)^2 = \frac{4}{3}$.	0,25
	2. (1,0 điểm)	
	Đường thẳng Δ đi qua điểm $A(0; 1; 0)$ và có vecto chỉ phương $\vec{v} = (2; 1; 2)$. Do M thuộc trục hoành, nên M có tọa độ $(t; 0; 0)$, suy ra: $\overrightarrow{AM} = (t; -1; 0)$ $\Rightarrow \left[\vec{v}, \overrightarrow{AM} \right] = (2; 2t; -t-2)$	0,25
	$\Rightarrow d(M, \Delta) = \frac{\left \left[\vec{v}, \overline{AM} \right] \right }{\left \vec{v} \right } = \frac{\sqrt{5t^2 + 4t + 8}}{3}.$	0,25
	Ta có: $d(M, \Delta) = OM \Leftrightarrow \frac{\sqrt{5t^2 + 4t + 8}}{3} = t $	0,25
	$\Leftrightarrow t^2 - t - 2 = 0 \Leftrightarrow t = -1 \text{ hoặc } t = 2.$ Suy ra: $M(-1; 0; 0)$ hoặc $M(2; 0; 0)$.	0,25
VII.b (1,0 điểm)	Điều kiện $y > \frac{1}{3}$, phương trình thứ nhất của hệ cho ta: $3y - 1 = 2^x$.	0,25
	Do đó, hệ đã cho tương đương với: $\begin{cases} 3y - 1 = 2^x \\ (3y - 1)^2 + 3y - 1 = 3y^2 \end{cases} \Leftrightarrow \begin{cases} 3y - 1 = 2^x \\ 6y^2 - 3y = 0 \end{cases}$	0,25
	$\Leftrightarrow \begin{cases} 2^x = \frac{1}{2} \\ y = \frac{1}{2} \end{cases}$	0,25
	$\Leftrightarrow \begin{cases} x = -1 \\ y = \frac{1}{2}. \end{cases}$	0,25

----- Hết -----