Modules over orders, conjugacy classes of integral matrices and abelian varieties over finite fields

Stefano Marseglia

University of French Polynesia

July 18 2024 - ANTS XVI - MIT

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

Question 1:

- Let *R* be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \operatorname{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

- Let *R* be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible.

◆ロト ◆回ト ◆豆ト ◆豆ト □ りへで

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible. But...

- Let R be a commutative ring with unity.
- $A, B \in Mat_{n \times n}(R)$ are R-conjugate $(A \sim_R B)$ if AP = PB for some $P \in GL_n(R)$.
- The **minimal** polynomial m(x) of $A \in \operatorname{Mat}_{n \times n}(R)$ is the polynomial of smallest degree such that m(A) = O (the zero $n \times n$ matrix).
- The characteristic polynomial of $A \in \text{Mat}_{n \times n}(R)$ is $\det(A xI_n)$.

$$A = \begin{pmatrix} 0 & -1 \\ 5 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 \\ -3 & 1 \end{pmatrix}$$

Answer(s):

Over \mathbb{Q} : yes! Same characteristic polynomial $x^2 + 5$, which is irreducible.

But...

Over \mathbb{Z} : no! Every such a P must have determinant divisible by 3.

4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

- each m_i irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order $\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$ acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$. We have a bijection

$$\{\mathbb{Z}[\pi]$$
-lattices in $V\}_{\simeq_{\mathbb{Z}[\pi]}}$

- each *m_i* irreducible and
- $m_i \neq m_j$ if $i \neq j$. (i.e. m is squarefree)

Question 2 Can we describe the representatives of the \mathbb{Z} -conjugacy classes of matrices with:

- minimal polynomial m, and
- characteristic polynomial h?

Answer:

Theorem ((generalized) Latimer-MacDuffee)

The order $\mathbb{Z}[\pi] = \frac{\mathbb{Z}[x]}{(m)}$ acts on $V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n}$. We have a bijection

$$\left\{ \mathbb{Z}[\pi] \text{-lattices in } V \right\}_{\cong_{\mathbb{Z}[\pi]}}$$

$$\left\{ \text{matrices with min. poly. m and char. poly. h} \right\}_{\sim_{\mathbb{Z}}}$$

Proof (idea): TODO **Question 3** How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Frobenius $h = m_1^{s_1} \cdots m_n^{s_n}$ (up to \mathbb{F}_{q} -isomorphism)?

Question 3 How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Frobenius $h=m_1^{s_1}\cdots m_n^{s_n}$ (up to \mathbb{F}_q -isomorphism)?

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Question 3 How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Frobenius $h = m_1^{s_1} \cdots m_n^{s_n}$ (up to \mathbb{F}_q -isomorphism)?

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne)

 $\{abelian\ varieties\ with\ char.\ poly.\ h\}_{\simeq_{\mathbb{F}_q}}$

Question 3 How do you compute abelian varieties over \mathbb{F}_q with ordinary characteristic polynomial of Frobenius $h = m_1^{s_1} \cdots m_n^{s_n}$ (up to \mathbb{F}_q -isomorphism)?

Answer: Do the same thing with $\mathbb{Z}[\pi, q/\pi]$ instead of $\mathbb{Z}[\pi]$:

Theorem (Deligne)

$$\begin{split} & \left\{ \text{abelian varieties with char. poly. h} \right\}_{\cong_{\mathbb{F}_q}} \\ & \downarrow \\ & \left\{ \mathbb{Z}\text{-lattices in } V = \left(\frac{\mathbb{Q}[x]}{m_1}\right)^{s_1} \times \ldots \times \left(\frac{\mathbb{Q}[x]}{m_n}\right)^{s_n} \text{ closed} \right\} \\ & \text{under multiplication by } \pi := x \text{ mod } m \text{ and } q/\pi \end{split} \right\}_{\cong_{\mathbb{Z}[\pi,q/\pi]}}$$

How do we make this two theorems effective?

Set-up:

- $K_1, ..., K_n$ number fields, with ring of integers $\mathcal{O}_i \subset K_i$.
- $K = K_1 \times ... \times K_n$.
- $\mathcal{O} = \mathcal{O}_1 \times ... \times \mathcal{O}_n$, the maximal order of K.
- $s_1, ..., s_n$ positive integers and $V = K_1^{s_1} \times ... \times K_n^{s_n}$.
- for an order R in K, set $\mathcal{L}(R, V) = \{R\text{-lattice in } V\} / \simeq_R$.
- By the Jordan-Zassenhaus Theorem, $\mathcal{L}(R, V)$ is finite.

Proposition (Steinitz): Let M be in $\mathcal{L}(\mathcal{O}, V)$. Then there are fractional \mathcal{O}_i -ideals I_i and there exists an \mathcal{O} -linear isomorphism

$$M \simeq \bigoplus_{i=1}^{n} \left(\mathcal{O}_{i}^{\oplus (s_{i}-1)} \oplus I_{i} \right).$$

The isomorphism class of M is uniquely determined by the isomorphism class of the fractional \mathcal{O} -ideal $I = I_1 \oplus \cdots \oplus I_n$.

- Let $\mathfrak{f} = (R : \mathcal{O}) = \{x \in K : x\mathcal{O} \subseteq R\}$ be the conductor of R in \mathcal{O} .
- Write $\mathfrak{f} = \bigoplus_{i=1}^n \mathfrak{f}_i$, \mathfrak{f}_i a fractional \mathcal{O}_i -ideal in K_i .

Theorem: Let M be in $\mathcal{L}(R, V)$. Then there exist M' in $\mathcal{L}(R, V)$, and fractional \mathcal{O}_i -ideals I_i such that

- $M' \simeq M$ as an R-module.
- $M'\mathcal{O} = \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$
- $\bullet \quad \bigoplus_{i=1}^n \left(\mathfrak{f}_i^{\oplus (s_i-1)} \oplus \mathfrak{f}_i I_i \right) \subseteq M' \subseteq \bigoplus_{i=1}^n \left(\mathcal{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$

Proof:

Compute I_i 's and an \mathcal{O} -isomorphism such that

$$\psi: M\mathscr{O} \to \bigoplus_{i=1}^n \left(\mathscr{O}_i^{\oplus (s_i-1)} \oplus I_i \right).$$

Set
$$M' = \psi^{-1}(M)$$
. QED

• The previous theorem tells us that $M \in \mathcal{L}(R, V)$ admits an isomorphic copy M' among the lifts to V of the finitely many sub-R-modules of

$$\mathcal{Q}(I) = \frac{\mathcal{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathcal{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}$$

- For each fractional \mathcal{O} -ideal I, we have an \mathcal{O} -isomorphism $\Psi_I: \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$ inducing a bijection between the sub-R-modules.
- Important: there is an algorithm IsIsomorphic that solves the following problem:

• The previous theorem tells us that $M \in \mathcal{L}(R, V)$ admits an isomorphic copy M' among the lifts to V of the finitely many sub-R-modules of

$$\mathcal{Q}(I) = \frac{\mathcal{O}_{1}^{\oplus(s_{1}-1)} \oplus I_{1} \oplus \cdots \oplus \mathcal{O}_{n}^{\oplus(s_{n}-1)} \oplus I_{n}}{\mathfrak{f}_{1}^{\oplus(s_{1}-1)} \oplus \mathfrak{f}_{1}I_{1} \oplus \cdots \oplus \mathfrak{f}_{n}^{\oplus(s_{n}-1)} \oplus \mathfrak{f}_{n}I_{n}}$$

- For each fractional \mathcal{O} -ideal I, we have an \mathcal{O} -isomorphism $\Psi_I: \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$ inducing a bijection between the sub-R-modules.
- Important: there is an algorithm IsIsomorphic that solves the following problem: given $M, M' \in \mathcal{L}(R, V)$, is there an R-linear isomorphism $M \simeq M'$.
- See TODO ADD REF, which is implemented in Nemo/Hecke, or
- see TODO ADD REF, which is older and slower and implemented in Magma.

Algorithm

- Enumerate all sub-R-modules of $\mathcal{Q}(\mathcal{O})$.
- Compute the set $\mathcal{M}_{\mathcal{O}}$ of their lifts to V (via the natural quotient map).
- Use IsIsomorphic, to sieve-out from $\mathcal{M}_{\mathcal{O}}$ a set $\mathcal{L}_{\mathcal{O}}$ of representative of the R-isomorphism classes.
- For each class $[I] \in Pic(\mathcal{O})$ compute $\Psi_I : \mathcal{Q}(I) \to \mathcal{Q}(\mathcal{O})$.
- Define \mathcal{L}_I as the 'pull-back' of $\mathcal{L}_{\mathcal{O}}$ vie Ψ_I .
- Return $\sqcup_I \mathscr{L}_I$.

Example:

Let

$$m_1 = x^2 - x + 3$$
, $m_2 = x^2 + x + 3$,
 $m = m_1 m_2 = x^4 + 5x^2 + 9$,
 $h = m_1^2 m_2 = x^6 - x^5 + 8x^4 - 5x^3 + 24x^2 - 9x - 27$.

Set: $K_i = \mathbb{Q}[x]/m_i$, $K = K_1 \times K_2 = \mathbb{Q}[\pi]$, $V = K_1^2 \times K_2$, $E = \mathbb{Z}[\pi]$, $R = \mathbb{Z}[\pi, 3/\pi]$. Then:

- the $GL_6(\mathbb{Z})$ -conj. classes of matrices with min. poly m and char. poly h are in bijection with $\mathcal{L}(E,V)$: there is 4 of them.
- the \mathbb{F}_3 -isomorphism classes of abelian varieties in the \mathbb{F}_3 -isogeny class determined by the 3-Weil polynomial h are in bijection with $\mathcal{L}(R,V)$: there is 2 of them.