Requirements Engineering for Safety

PhD Student: Moniky Ribeiro

Advisor: Prof. Jaelson Castro

Co-advisor: Prof. Ricardo Argenton

The 7-Step Process

Insulin Infusion Pump (IIP) Example

Figure 1 - Overview of the Insulin Infusion Pump System [1]

Insulin Infusion Pump (IIP)

Types of Insulin Delivery

 Basal: A constant, low-level infusion throughout the day and night. Example: Up to five programmable basal profiles over 24h.

 Bolus: A larger dose triggered by meals or to correct high blood sugar. Delivered manually or based on user programming.

Insulin Infusion Pump (IIP)

Components of a Typical Pump

- User interface: LCD screen and audio alarms.
- Hardware parts: Microprocessor, battery, infusion mechanism, insulin reservoir, and catheter.

Figure 2 – Retrieved from [2]

Insulin Infusion Pump (IIP)

Safety implications

- Main accidents:
 - Overdose → Hypoglycemia (low blood sugar)
 - Underdose → Hyperglycemia (high blood sugar)
- Other accidents: skin infections, battery failure, or device malfunction, etc.

BPMN Diagram of the Process

Other relevant artefacts \pm Start Define SCS **End Define** 1.2 Define 1.1 Define Scope Scope General Safety Concerns Concerns SCS Scope SCS Scope [General concerns [Safety concerns uodated] uodated]

STEP 1 - Define the scope of the Safety-Critical System

STEP 1 - Define the scope of the Safety-Critical System

Subprocess-> Define general concerns

STEP 1 - Define the scope of the SCS

1.1 General Concerns

1.1.1 Analysis Objectives

The purpose of this analysis is to model an Insulin Infusion Pump (IIP) through the iterative RESafety process, generating successive refinements of the system's safety analysis artifacts.

1.1.2 System Definition

The Insulin Infusion Pump (IIP), a safety-critical system, is designed to support the treatment of Type 1 Diabetes Mellitus. Automated IIPs enhance treatment flexibility by managing multiple stages of insulin delivery, effectively mimicking physiological responses. These devices administer both rapid-acting (bolus) and continuous (basal) insulin doses.

1.1.3 Resources Needed for Analysis

- Articles: Martinazzo (2022); Martins et al. (2015); Zhang et al. (2011, 2010); Bas (2020); Gonzalez Atienza et al. (2024)
- **Books**: Leveson & Thomas (2018); Martins & Gorschek (2021)
- General Guidelines and Manuals

1.1.4 System Boundary

The system boundary encompasses activities from the moment the patient configures the infusion settings until the correct dosage is delivered via the catheter.

1.1.5 Components

- Patient
- Infusion Insulin Pump
- Infusion Set

STEP 1 - Define the scope of the Safety-Critical System

Subprocess-> Define safety concerns

STEP 1 - Define the scope of the SCS

1.2 Safety Concerns

1.2.1 Identify Accidents

- A1 Risk of death
- A2 Risk of injury

1.2.2 Identify System-Level Hazards

- H1 Hypoglycemia [A1, A2]
- **H2** Hyperglycemia [A2]

1.2.3 Identify System Constraints

- **SC-01** The system must not administer insulin in excess of the prescribed dose or in unintended circumstances. [H1]
- SC-02 The system must ensure that the prescribed insulin dose is delivered at the correct time and in the correct amount. [H2]

1.2.4 Identify the responsibilities

Entity	Responsability
E1 – Patient (Human Controller)	R-01: Ensure that infusion settings are correctly configured and correspond to the medical prescription [SC-01, SC-02] R-02: Verify that the device interface confirms the programmed dose before administration [SC-01]
E2 - Insulin Infusion Pump	
E3 - Infusion Set	
E4 - Patient (Human Body)	

1.2.5 Other Artifacts

Not applicable

STEP 2 - Define iStar4Safety Models (SD and SR)

Safety Analysis Document

STEP 2 - Define iStar4Safety Models

SD Model

STEP 2 - Define iStar4Safety Models (SD and SR) -

Subprocess-> Develop Strategic Rationale (SR) model

STEP 2 - Define iStar4Safety Models

SD and SR Models

Safety Analysis Document Safety Analysis : Safety Analysis : Safety Analysis Safety Analysis (Loss Scenarios and ·Safety Analysis Safety Analysis Decument Document Document Document : Document Document Safety Requirements : [Unsafe Control [iStar4Safety [Control Structure [Scope Updated] [Controller Updated] JiStar4Safety Models Updated) Actions Updated] Constraints Updated] Models Updated) Another Iteration? Analysts + \blacksquare \blacksquare + + Start RESafety 6 - Analyze Loss Process 1 - Define the (Final Safety 2 - Define 3 - Define the 5 -Define scope of the 4 - Identify Scenarios and 7- Update Analysis iStar4Safety Control Jnsafe Control Controller Derive Safety Safety Critical iStar4Safety Reported Constraints Models (SD and Actions (UCAs) Requirements Models System

Start Define

Control

Structure

RESafety

STEP 3 - Define the Control Structure

STEP 3 - Define the Control Structure

STEP 4 - Identify Unsafe Control Actions (UCAs)

Safety Analysis

Document

Models Updated]

[iStar4Safety

+

2 - Define

iStar4Safety

Models (SD and

Document

[Control Structure

Updated]

+

3 - Define the

Control

Structure

Safety Analysis

Document

[Scope Updated]

1 - Define the

scope of the

Safety Critical

System

Process

: Safety Analysis

: [Unsafe Control

4 - Identify

Unsafe Control

Actions (UCAs)

Document

Safety Analysis

[Controller

+

5 -Define

Controller

Constraints

Document

Constraints Updated]

Safety Analysis Document

·Safety Analysis

: Document

liStar4Safety

+

7- Update

iStar4Safety

Models

Models Updated

Another Iteration?

Analysis

Reported]

[Loss Scenarios and

Safety Requirements

Updated

6 - Analyze Loss

Scenarios and

Derive Safety

Requirements

STEP 4 - Define UCAs

Control Action	From/To	Not Providing Causes Hazard	Providing Causes Hazard	Too Early, Too Late, Out of Order	Stopped Too Soon, Applied Too Long
Program insulin dosage (R-1)	Patient / Infusion Pump	UCA-01: Patient does not provide "Program insulin dosage" when insulin is required, leading to underdose [H1]	UCA-02: Patient provides "Program insulin dosage" with a value higher than prescribed, leading to overdose [H2] UCA-03: Patient provides "Program insulin dosage" with a value lower than prescribed, leading to underdose [H1]	UCA-04: Patient provides "Program insulin dosage" too late, leading to hyperglycemia [H1] UCA-05: Patient provides "Program insulin dosage" too early, leading to premature insulin administration and resulting in hypoglycemia [H2]	Not applicable

Hazard Cause

HC-01: The pump is misplaced or inaccessible to the patient.[H2]

STEP 5 - Define controller constraints

STEP 5 - Define Controller Constraints

Unsafe Control Action	Controller Constraint
UCA-01: Patient does not provide "Program insulin dosage" when insulin is required, leading to underdose. [H1]	C-01: The patient must program the insulin dosage whenever insulin is required, according to clinical guidance. [UCA-01]
UCA-02: Patient provides "Program insulin dosage" with a value higher than prescribed, leading to overdose. [H2]	C-02: The patient must ensure the programmed insulin dosage does not exceed the value prescribed by the physician. [UCA-02]
UCA-03: Patient provides "Program insulin dosage" with a value lower than prescribed, leading to underdose. [H1]	C-03: The patient must verify that the programmed dosage meets the minimum prescribed threshold to avoid underdosing. [UCA-03]
UCA-04: Patient provides "Program insulin dosage" too late, leading to hyperglycemia. [H1]	C-04: The patient must program the insulin dosage in a timely manner, according to the prescribed administration window. [UCA-04]
UCA-05: Patient provides "Program insulin dosage" too early, leading to premature insulin administration and resulting in hypoglycemia. [H2]	C-05: The patient must not program the insulin dosage before the appropriate physiological or dietary conditions occur. [UCA-05]
HC-01: The pump is misplaced or inaccessible to the patient.	C-06: The insulin pump must always be correctly placed and readily accessible to the patient.

STEP 6 - Analyze Loss Scenarios and derive safety requirements

STEP 6 - Analyze Loss Scenarios and derive safety requirements

UCA	Loss Scenario (LS)	Safety Requirement (SR)
UCA-01: Patient does not provide "Program insulin dosage" when insulin is required, leading to underdose [H1]	LS-01: The patient forgets to program the dose after the meal, resulting in hyperglycemia. [UCA-01] Martinazzo (2022)	SR-01: The system shall generate an alert if insulin is not programmed within 15 minutes after a meal is detected. [LS-01] <i>Zhang et al. (2011)</i>
	LS-02: The system does not issue a reminder to program the dose after detecting a meal event. [UCA-01] Ribeiro et al. (2024)	SR-02: The interface must maintain a visible warning if no insulin programming is detected post-meal. [LS-02] <i>Ribeiro et al. (2024)</i>

Hazard Cause	Loss Scenario	Safety requirement
HC-01: The pump is misplaced or inaccessible to the patient.	LS-11: The patient is in a critical condition and does not remember where the pump was placed.	SR-10: The pump must have an associated mobile application that allows a "locate pump" function to trigger an audible alarm when activated.

STEP 7 - Update iStar4Safety Models

STEP 7 - Update iStar4Safety Models

SD and SR Model

7.1 SD Model (The same)

7.2 SR Model

"Another iteration" Exclusive
Gateway

Vs

"Final Safety Analysis Reported" End Event

References

- 1. A. Martinazzo, L. E. G. Martins, S. V. Aredes and T. S. Cunha, "Risk Management of a Low-cost Insulin Infusion Pump: A Case Study with a Brazilian Company," 2021 IEEE 34th International Symposium on Computer-Based Medical Systems (CBMS), Aveiro, Portugal, 2021.
- 2. WikEM. (n.d.). Insulin infusion device complication. Retrieved June 3, 2025, from http://medbox.iiab.me/modules/en-wikem/wiki/Insulin_infusion_device_complication.html

Thanks!

Contacts:

Moniky Ribeiro-> monikyr@gmail.com or smsr@cin.ufpe.br

Jaelson Castro-> jbc@cin.ufpe.br