

Software Enabled Control (SEC)

The objective of SEC is to co-develop advanced real-time control system algorithms and the software services and infrastructure necessary to implement them on distributed embedded processors in a robust and verifiable way

Dr. John Bay
DARPA/IXO

Software-Enabled Control (SEC)

Control Systems for Vehicle and Mission Management:

- Design control systems for innovative vehicles
 - UAVs, rotorcraft, fighters
- Increase automation for extreme maneuvers
 - Assured stability for flight mode transition
- Improve disturbance rejection and fault tolerance
 - Automatic control reconfiguration
 - Redundancy management
- Provide reusable middleware for coordinated, embedded software control on multiple aircraft types
 - Modernize flight control with adaptive, distributed computing

SEC provides control systems for innovative vehicles that exceed the capability of conventional flight controllers

Multiple levels of control:

- Vehicle management (including flight-critical systems)
- Mission management (including route planning)
- Multi-vehicle (e.g. automatic formation flight)

Problems in Hybrid Control

<u>Hybrid Modeling and Formal</u> Specifications

A formal representation and semantics must be established in order to process and reason about hybrid systems.

Hybrid Stability and Reachability

Stability in each and every mode does NOT imply system stability. We must transition between modes only when a "safe" set is reachable.

Config2 (warm-up)

Hybrid Estimation and Tracking

Unlike continuous-time estimation, both continuous variables and discrete events must be determined, and these depend on **asynchronous** events.

Mode Blending and Transient Management

Discrete jumps in control inputs can perturb or de-stabilize continuous nonlinear dynamics. Such transitions should be smoothed.

HOW: SEC Technologies

• Active State Models: Prediction & Assessment

- Dynamically exploit on-line system and environmental data to improve reference models
- Predict effects over very large state and mode spaces
- Rapidly assess damage

On-Line Control Customization: Adaptation

- Enable precise mode transition
- Support control re-parameterization and reconfiguration during operation due to environmental disturbances, interference, and damage
- Accommodate dynamic coordination requirements

Coordinated Multi-Modal Control

- Achieve global stability, maximize system and mission performance
- Provide joint fault detection, isolation, and recovery
- Enable distributed control implementation for physically separated components

Open Control Platform (OCP): Software

- Provide reusable control middleware and tool support for building controllers from SEC technologies
- Provide parametric open systems framework necessary to support SEC active state model, hybrid/coordinated, and adaptive multimodal control
- Provide flexible experimental platform for SEC control research and demonstration

High Confidence Software Control Systems

Assure safety and reliability under fault conditions

Open Control Platform (OCP)

The Open Control Platform (OCP) is a program task as well as the vehicle for contractor integration into demonstrations and experiments in flight control systems

API Examples:

Optimal Control

multi-criteria receding horizon distributed

Hybrid Control

switching services blending planning

Distributed Processing

distributed systems multi-vehicle

Fault Management

detection and isolation reconfiguration error recovery

Active Models

model servers estimators multi-model management

Preliminary (thru 3QFY02)

Desktop Experiments: OCP integration and simulation, hardware-in-the-loop (HWIL).

METRICS: Transition stability, loop speed, real-time

schedulability, accuracy of model estimation.

Takeoff &

Landing

Autonomous

Targeting

Rendezvous

& Escort

Mid-Term (4QFY02 thru 2QFY03)

Laboratory Vehicles (LAB-V): Fixed and rotarywing, single and multi-vehicle scenarios, OCP on-board.

METRICS: Overall vehicle performance improvement (speed & maneuverability), adaptation speed, hybrid stability, fault detection & isolation.

Final Exam (2QFY04)

Full-scale flight tests: multiple UAVs and/or UCAV surrogates, control proxy from airborne C2 node (AWACS/MC2A/F15)

<u>METRICS</u>: Multi-vehicle tracking, fault recovery, on-line resource adaptation speed, vehicle performance, code verification time & effort.

SEC Tasks and Milestones

Active State Models

Honeywell U Washington Vanderbilt OGI

Multi-Modal Control

Northrop Grumman Draper Labs Vanderbilt Cal Tech U Minnesota UC Berkeley

On-Line Control Customizatio

UC **Be**rkeley Northrop Grumman Stanford U. Minnesota Georgia Tech

High-Confidence Systems

SRI Honeywell MIT Cal Tech Rockwell Northrop Grumman

TRANSITION

Legacy Technolog

Prediction Switching

Ada<mark>pt</mark>ation Con<mark>fid</mark>enc

Bold Stroke

OPEN CONTROL PLATFORM

Boeing, GaTech, UC Berkeley, Honeywell

Milestones

API for switching svcs.
Predictive models oper.

Hybrid multi-model

Mode triggering defs. CLF and LPV control Hybrid stability, single sys.

Customization svcs.

Hybrid run-time svcs High-level multi-mode API Multi-mode run-time

SVCS.

Multi-vehicle hyb. control

Hybrid model checking Formal specification lang.

Integrated fault mgt. Sensor/act reconfig.

svcs Integrated model

SEC Technology

