Revision of week 3 and 4

Nhung Nguyen and Viktor Schlegel

Week 3 - Distributional semantics

We shall know a word by the company it keeps.

Firth (1957)

```
not good
                                                           bad
to
                                                 dislike
       by
                                                               worst
                   's
                                                incredibly bad
that
       now
                     are
                                                                 worse
                you
 than
         with
                  is
                                         incredibly good
                            very good
                     amazing
                                        fantastic
                                                 wonderful
                 terrific
                                     nice
                                    good
```

Week 3 - Count-based approach

Term-document matrix

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good fool	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Term-term matrix

	aardvark	computer	data	pinch	result	sugar
apricot	0	0	0	1	0	1
pineapple	0	0	0	1	0	1
digital	0	2	1	0	1	0
information	0	1	6	0	4	0

Week 3 - Prediction-based approach

Bengio's language model


```
Pr(w_t|w_{t-1},...,w_{t-m+1}) = softmax(Wy)
y = tanh(Vx)
\mathbf{x} = \text{concat}(\mathbf{w}_{t-1}, ..., \mathbf{w}_{t-m+1})
Each contextual word w_{t-i} is
represented a column of matrix C
```

Week 3 - Prediction-based approach (Cont.)

Mikolov's CBOW $Pr(w_t|w_{t-1},...,w_{t-m+1}) = softmax(\mathbf{Wy})$ OUTPUT **PROJECTION** SUM INPUT

Mikolov's Skip-gram $Pr(.|w_t) = softmax(Wy)$ OUTPUT PROJECTION INPUT

Week 3 - Word Sense Disambiguation

- WordNet: a database of lexical relations
 - A word has different senses.

```
mouse<sup>1</sup>: .... a mouse controlling a computer system in 1968.
mouse<sup>2</sup>: .... a quiet animal like a mouse
bank<sup>1</sup>: ...a bank can hold the investments in a custodial account ...
bank<sup>2</sup>: ...as agriculture burgeons on the east bank, the river ...
```

Disambiguating word sense using Lesk's algorithm and supervised learning

Week 4 - Sequence modelling

Week 4 - Sequence modelling

Sequence to sequence

I like trains.

Applicable NLP tasks:

- Translation
- · Abstractive Summarisation
- Text generation
- · Question answering

Sequence labelling Hike trains.

Applicable NLP tasks:

- · POS tagging
- Named Entity Recognition
- OpenIE, Semantic Role Labelling
- question type classification

Week 4: RNN, LSTM, BiLSTM

RNN: vanishing gradients

< 0.25! Lots of multiplications!

LSTM: Context vector

- Context, or memory vector C_t in addition to h_t
- Context information from "the past" calculations
- At any step t, LSTM learns how much of h_t is to be "added" to C_t and how much of C_{t-1} is "kept"

For example:
Information about grammatical
gender of subject

Week 4 - Contextualised embeddings

Task: probability of next word given *n* previous words.

$$P(x_{n+1}|x_1,\ldots,x_n)$$

"I grew up in Germany, i speak fluent _____"

Week 4 - NER

NER as a tagging problem (BIO scheme)

classes = 2 * # entity types + 1

Week 4 - NER approaches

- Local approach: tags are independent each other
 - Any classifiers can be used
 - SVM: truly local
 - RNN, LSTM, BiLSTM: not truly local
- Global approach: tags are dependent each other
 - Hidden Markov Model (HMM)
 - Conditional Random Fields (CRF)

Week 4: CRF vs. Neural networks

- Feature engineering
- Do not need pre-trained vectors
- Models are roughly interpretable
- Perform well with datasets that have many NE categories(*)

Neural networks

- Do not need features
- Need pre-trained vectors from big language models
- Models use implicit features (created by hidden layers) → not easy to interpret
- Perform not so well with datasets that have many NE categories(*)

Week 4 - NEL basic steps

Thank you very much Good luck with your exams!