Lebesgue Theory

Ikhan Choi

October 2, 2021

Contents

Measure theory		3
Measures and σ -algebras		4
1.1 Definition of measures		4
1.2 The Carathéodory extension theorem		4
2 Measures on the real line		
3 Measurable functions		7
I Integration		8
1 Lebesgue integration		9
4.1 Definition of Lebesgue integration		9
4.2 Convergence theorems		9
		9
5 Product measures		11
5.1 The Fubini theorem		11
5.2 The Lebesgue measure on Euclidean spaces		11
6 Lebesgue spaces		12
6.1 L^p spaces		12
		12
6.3 The Riesz representation theorem		12
III		13
7		14
22 3 3 11 4 4	1.1 Definition of measures 1.2 The Carathéodory extension theorem Measures on the real line Measurable functions Integration Lebesgue integration 4.1 Definition of Lebesgue integration 4.2 Convergence theorems 4.3 Modes of convergence Product measures 5.1 The Fubini theorem 5.2 The Lebesgue measure on Euclidean spaces Lebesgue spaces 6.1 L ^p spaces 6.2 L ² spaces 6.3 The Riesz representation theorem	1.1 Definition of measures 1.2 The Carathéodory extension theorem Measures on the real line Measurable functions Integration Lebesgue integration 4.1 Definition of Lebesgue integration 4.2 Convergence theorems 4.3 Modes of convergence Product measures 5.1 The Fubini theorem 5.2 The Lebesgue measure on Euclidean spaces Lebesgue spaces 6.1 L ^p spaces 6.2 L ² spaces 6.3 The Riesz representation theorem

8			15		
9	Integral operators				
	9.1	Bounded linear operators	16		
	9.2	Regular integral operators	16		
	9.3	Convolution type operators	16		
	9.4	Weak L^p spaces	16		
	9.5	Interpolation theorems	16		
IV	IV Fundamental theorem of calculus				
10	0 Weak derivatives				
11	1 Absolutely continuity				
12	2 The Lebesgue differentiation theorem				

Part I Measure theory

Measures and σ -algebras

1.1 Definition of measures

1.2 The Carathéodory extension theorem

1.1 (Outer measures). Let X be a set. An *outer measure* on X is a function μ^* : $\mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ such that

(i) if
$$E \subset E'$$
, then $\mu^*(E) \le \mu^*(E')$, (monotonicity)

(ii)
$$\mu^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i)$$
.

(countable subadditivity)

- (a) A function $\mu^* : \mathcal{P}(X) \to [0, \infty]$ with $\mu^*(\emptyset) = 0$ is an outer measure if and only if $E \subset \bigcup_{i=1}^{\infty} E_i$ implies $\mu^*(E) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$.
- (b) Let $A \subset \mathcal{P}(X)$ such that $\emptyset \in A$. If a function $\rho : A \to [0, \infty]$ satisfies $\rho(\emptyset) = 0$, then we can associate an outer measure $\mu^* : \mathcal{P}(X) \to [0, \infty]$ by defining as

$$\mu^*(E) := \inf \left\{ \sum_{i=1}^{\infty} \rho(A_i) : E \subset \bigcup_{i=1}^{\infty} A_i, A_i \in \mathcal{A} \right\},$$

where we use the convention $\inf \emptyset = \infty$.

1.2 (Carathéodory measurability). Let μ^* be an outer measure on a set X. A subset $A \subset X$ is called *Carathéodory measurable* relative to μ^* if

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

e for every subset $E \subset X$. Let \mathcal{M} be the collection of all Carathéodory measurable subsets relative to μ^* .

- (a) \mathcal{M} is an algebra and μ^* is finitely additive on \mathcal{M} .
- (b) \mathcal{M} is a σ -algebra and μ^* is countably additive on \mathcal{M} , that is, the restriction $\mu := \mu^*|_{\mathcal{M}} : \mathcal{M} \to [0, \infty]$ is a measure.
- (c) The measure μ is complete.
- **1.3** (The Carathéodory extension theorem). Let $A \subset \mathcal{P}(X)$ be a semi-ring of sets on a set X and $\rho : A \to [0, \infty]$ a function with $\rho(\emptyset) = 0$. If the function ρ satisfies
- (i) $\rho(A) = \sum_{i=1}^{n} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^n \subset \mathcal{A}$, (finite additivity)
- (ii) $\rho(A) \leq \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$, ((disjoint) countable subadditivity)

then it is called a premeasure.

Let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be the associated outer measure of ρ , and $\mu : \mathcal{M} \to [0, \infty]$ the measure defined from μ^* on Carathéodory measurable subsets. We call μ the *Carathéodory measure* constructed from ρ .

- (a) If ρ is finitely additive, then $A \subset M$.
- (b) If ρ is countably subadditive, then $\mu^*(A) = \rho(A)$ for every $A \in \mathcal{A}$.
- (c) If ρ is a premeasure, then μ is an extension of ρ and called *Carathéodory extension* of ρ .
- (d) In particular, a premeasure is a priori countably additive in the sense that $\rho(A) = \sum_{i=1}^{\infty} \rho(A_i)$ for $A \in \mathcal{A}$ a disjoint countable union of $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$.

Measures on the real line

Measurable functions

Part II Integration

Lebesgue integration

4.1 Definition of Lebesgue integration

4.2 Convergence theorems

Stein: Egorov -> BCT -> Fatou -> MCT -> L1 is a measure : BCT + L1 is a measure -> DCT

Folland: MCT -> Fatou -> DCT -> BCT

4.3 Modes of convergence

Since $\{f_n(x)\}_n$ diverges if and only if

$$\exists k > 0$$
, $\forall n_0 > 0$, $\exists n > n_0$: $|f_n(x) - f(x)| > \frac{1}{k}$,

we have

$$\begin{split} \{x: \{f_n(x)\}_n \text{ diverges}\} &= \bigcup_{k>0} \bigcap_{n_0>0} \bigcup_{n>n_0} \{x: |f_n-f| > \frac{1}{k}\} \\ &= \bigcup_{k>0} \limsup_n \{x: |f_n-f| > \frac{1}{k}\}. \end{split}$$

Since for every *k* we have

$$\begin{split} \lim\sup_n \{x: |f_n-f|> \tfrac{1}{k}\} &\subset \limsup_{n>k} \{x: |f_n-f|> \tfrac{1}{n}\} \\ &= \limsup_n \{x: |f_n-f|> \tfrac{1}{n}\}, \end{split}$$

we have

$$\{x:\{f_n(x)\}_n \text{ diverges}\} \subset \limsup_n \{x:|f_n-f|>\frac{1}{n}\}.$$

Theorem 4.3.1. Let (X, μ) be a measure space. Let f_n be a sequence of measurable functions. If f_n converges to f in measure, then f_n has a subsequence that converges to f μ -a.e.

Proof. We can extract a subsequence f_{n_k} such that

$$\mu({x:|f_{n_k}-f|>\frac{1}{k}})>\frac{1}{2^k}.$$

Since

$$\sum_{k=1}^{\infty} \mu(\{x: |f_{n_k} - f| > \frac{1}{k}\}) < \infty,$$

by the Borel-Canteli lemma, we get

$$\mu(\limsup_{k} \{x : |f_{n_k} - f| > \frac{1}{k}\}) = 0.$$

Therefore, f_{n_k} converges μ -a.e.

Product measures

- 5.1 The Fubini theorem
- 5.2 The Lebesgue measure on Euclidean spaces

Lebesgue spaces

- **6.1** L^p spaces
- **6.2** L^2 spaces
- 6.3 The Riesz representation theorem

Part III

Integral operators

- 9.1 Bounded linear operators
- 9.2 Regular integral operators
- 9.3 Convolution type operators
- 9.4 Weak L^p spaces
- 9.5 Interpolation theorems

Part IV Fundamental theorem of calculus

Weak derivatives

The space of weakly differentiable functions with respect to all variables = $W_{loc}^{1,1}$.

10.1 (Product rule for weakly differentiable functions). We want to show that if u, v, and uv are weakly differentiable with respect to x_i , then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

(a) If u is weakly differentiable with respect to x_i and $v \in C^1$, then $\partial_{x_i}(uv) = \partial_{x_i}uv + u\partial_{x_i}v$.

10.2 (Interchange of differentiation and integration). Let $f: \Omega \to \mathbb{R}$ such that f(x,y) and $\partial_{x_i} f(x,y)$ are both locally integrable in x and integrable y. Then,

$$\partial_{x_i} \int f(x,y) dy = \int \partial_{x_i} f(x,y) dy$$

where ∂_{x_i} denotes the weak partial derivative.

Absolutely continuity

- (a) f is $\operatorname{Lip}_{\operatorname{loc}}$ iff f' is $L_{\operatorname{loc}}^{\infty}$
- (b) f is AC_{loc} iff f' is L^1_{loc}
- (a) f is Lip iff f' is L^{∞}
- (b) f is AC iff f' is L^1
- (c) f is BV iff f' is a finite regular Borel measure

The Lebesgue differentiation theorem