Concours commun Mines-Ponts

DEUXIEME EPREUVE. FILIERE MP

Question préliminaire

 $\textbf{1)} \ \ \text{Soient} \ \ n \in \mathbb{N}^* \ \text{et} \ (\lambda_i)_{1\leqslant i\leqslant n} \in (\mathbb{R}^+)^n \ \ \text{tel que} \ \lambda_1 < \lambda_2 < \ldots < \lambda_n. \ \ \text{Les fonctions} \ \varphi_{\lambda_i}, \ 1\leqslant i\leqslant n, \ \text{sont dans} \ C([0,1]).$ Supposons par l'absurde qu'il existe $(\alpha_i)_{1\leqslant i\leqslant n} \neq (0,\ldots,0)$ tel que $\sum_{i=1}^n \alpha_i \varphi_{\lambda_i} = 0.$

On peut alors considérer $k = \text{Min}\{i \in [1, n] / \alpha_i \neq 0\}$. Par définition $\alpha_k \neq 0$.

$$\forall x \in [0,1], \ \sum_{i=1}^n \alpha_i x^{\lambda_i} = 0 \Rightarrow \forall x \in [0,1], \ \sum_{i=k}^n \alpha_i x^{\lambda_i} = 0 \Rightarrow \forall x \in]0,1], \ \sum_{i=k}^n \alpha_i x^{\lambda_i - \lambda_k} = 0,$$

après division des deux membres par le réel non nul x^{λ_k} . Mais quand x tend vers 0, on obtient $\alpha_k = 0$ ce qui est une contradiction. Donc la famille $(\phi_{\lambda_i})_{1 \leqslant i \leqslant n}$ est libre.

On a montré que toute sous-famille finie de la famille $(\varphi_{\lambda_i})_{\lambda\geqslant 0}$ est libre et donc

la famille $(\varphi_{\lambda})_{\lambda\geqslant 0}$ est une famille libre de C([0,1]).

A. Déterminants de Cauchy

2) Si les b_k sont deux à deux distincts, la décomposition en éléments simples de R est de la forme $R = \sum_{k=1}^n \frac{A_k}{X + b_k}$.

 $\text{En notant } C_1, \, \dots, \, C_n, \, \text{les colonnes de } D_n \, \, \text{et } \, C \, \, \text{la colonne} \left(\begin{array}{c} R(\alpha_1) \\ R(\alpha_2) \\ \vdots \\ R(\alpha_n) \end{array} \right), \, \text{on a } C = \sum_{k=1}^n A_k C_k \, \, \text{et donc par linéarité par linéarité par la colonne} \right)$

rapport à la dernière colonne

$$\det(C_1,\dots,C_{n-1},C) = \sum_{k=1}^n A_k \det(C_1,\dots,C_{n-1},C_k) = A_n \det(C_1,\dots,C_{n-1},C_n) = A_n D_n,$$

 $\mathrm{car}\ \mathrm{pour}\ k < n,\, \det(C_1,\dots,C_{n-1},C_k)\ \mathrm{est}\ \mathrm{un}\ \mathrm{d\acute{e}terminant}\ \mathrm{ayant}\ \mathrm{deux}\ \mathrm{colonnes}\ \mathrm{\acute{e}gales}\ \mathrm{et}\ \mathrm{est}\ \mathrm{donc}\ \mathrm{nul}.$

Maintenant, $R(a_1) = \ldots = R(a_{n-1}) = 0$ et donc $C = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ R(a_n) \end{pmatrix}$ et en développant $\det(C_1, \ldots, C_{n-1}, C)$ suivant sa

dernière colonne, on obtient $\det(C_1,\dots,C_{n-1},C)=R(\mathfrak{a}_n)D_{n-1}.$ Ainsi (si $n\geq 2$ et)

si les b_k sont deux à deux distincts, $A_nD_n=R(a_n)D_{n-1}$.

3) Supposons toujours les b_k deux à deux distincts. On sait que

$$A_{n} = \lim_{x \to -b_{n}} (x + b_{n}) R(x) = \frac{(-b_{n} - a_{1}) \dots (-b_{n} - a_{n-1})}{(-b_{n} + b_{1}) \dots (-b_{n} + b_{n-1})} = \frac{(a_{1} + b_{n}) \dots (a_{n-1} + b_{n})}{(b_{n} - b_{1}) \dots (b_{n} - b_{n-1})}$$

et donc

$$D_n = \frac{R(a_n)}{A_n} D_{n-1} = \frac{(a_n - a_1) \dots (a_n - a_{n-1})(b_n - b_1) \dots (b_n - b_{n-1})}{(a_1 + b_n) \dots (a_{n-1} + b_n)(a_n + b_n)(a_n + b_{n-1}) \dots (a_n + b_1)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (b_n - b_i)}{\prod_{1 \le i \le n} (a_i + b_j)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (b_n - b_i)}{\prod_{1 \le i \le n} (a_i + b_j)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (b_n - b_i)}{\prod_{1 \le i \le n} (a_i + b_j)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_i + b_i)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i) \prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{\prod_{i < n} (a_n - a_i)}{\prod_{i < n} (a_n - a_i)} = \frac{$$

En tenant compte de $D_1 = \frac{1}{a_1 + b_1}$, on en déduit,

$$D_{n} = \prod_{k=1}^{n} \left(\frac{\prod_{i < k} (a_{k} - a_{i}) \prod_{i < k} (b_{k} - b_{i})}{\prod_{1 \le i, j \le k, i = k \text{ ou } j = k} (a_{i} + b_{j})} \right) = \frac{\prod_{1 \le i < j \le n} (a_{j} - a_{i}) \prod_{1 \le i < j \le n} (b_{j} - b_{i})}{\prod_{1 \le i, j \le n} (a_{i} + b_{j})}$$

Cette formule reste valable quand les b_k ne sont pas deux distincts car dans ce cas D_n a deux colonnes égales et est donc nul.

$$\forall n \in \mathbb{N}^*, \, D_n = \frac{\displaystyle\prod_{1 \leqslant i < j \leqslant n} (\alpha_j - \alpha_i) \prod_{1 \leqslant i < j \leqslant n} (b_j - b_i)}{\displaystyle\prod_{1 \leqslant i,j \leqslant n} (\alpha_i + b_j)} = \frac{\operatorname{Van}(\alpha_1, \ldots, \alpha_n) \operatorname{Van}(b_1, \ldots, b_n)}{\displaystyle\prod_{1 \leqslant i,j \leqslant n} (\alpha_i + b_j)}.$$

B. Distance d'un point à une partie dans un espace normé

4) Soit $x \in E$.

$$d(x,A)=0 \Leftrightarrow \forall \epsilon>0, \ \exists y\in A/\ \|x-y\|<\epsilon \Leftrightarrow \forall \epsilon>0, \ B(x,\epsilon)\cap A\neq\varnothing \Leftrightarrow x\in \overline{A}.$$

$$\boxed{\forall x \in E, \ d(x, A) = 0 \Leftrightarrow x \in \overline{A}.}$$

5) Soient $x \in E$ et B et C deux parties non vides de E telles que $B \subset C$. Alors, $d(x, C) \le d(x, B)$. En effet, pour tout y de B, on a $y \in C$ et donc $||x - y|| \ge d(x, C)$. Par suite, d(x, C) est un minorant de $\{||x - y||, y \in B\}$ et puisque d(x, B) est le plus grand des minorants de cet ensemble, on a bien $d(x, C) \le d(x, B)$.

Soit $x \in E$. Pour $n \in \mathbb{N}$, on a $A_n \subset A_{n+1} \subset A$ et donc $d(x,A) \leq d(x,A_{n+1}) \leq d(x,A_n)$. Donc la suite $(d(x,A_n))_{n \in \mathbb{N}}$ est décroissante et minorée par d(x,A).

Soit alors $\epsilon > 0$. Il existe $y \in A$ tel que $d(x,A) \leq \|y-x\| \leq d(x,A) + \epsilon$. Puisque A est la réunion des A_n , il existe $n_0 \in \mathbb{N}$ tel que $y \in A_{n_0}$. Par suite,

$$d(x, A) \le d(x, A_{n_0}) \le ||y - x|| \le d(x, A) + \varepsilon.$$

Pour $n \ge n_0$, on a alors

$$d(x, A) \le d(x, A_n) \le d(x, A_{n_0}) \le d(x, A) + \varepsilon$$
.

On a montré que $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}/ \ \forall n \in \mathbb{N}$, $(n \geq n_0 \Rightarrow d(x,A) \leqslant d(x,A_n) < d(x,A) + \epsilon)$ et donc $\lim_{n \to +\infty} d(x,A_n) = d(x,A)$.

$$\forall x \in E, \ d(x, A) = \lim_{n \to +\infty} d(x, A_n).$$

6) Puisque V est un sous-espace de dimension finie de E, V est un fermé de E. On sait qu'une boule fermée de E est un compact de E et donc B est un compact de E. B \cap V est donc l'intersection d'un compact et d'un fermé et on sait que B \cap V est compact. On note de plus que B \cap V n'est pas vide car $0 \in B$ ($||0-x|| \le ||x||$), $0 \in V$ (V étant un sous-espace vectoriel) et donc $0 \in B \cap V$

Soit $x \in E$. Puisque $B \cap V \subset V$, on a $d(x, V) \leq d(x, B \cap V)$.

Inversement, pour $y \in V$,

- si $y \in B$, alors $d(x, B \cap V) \le ||x y||$;
- si $y \notin B$, $||y x|| > ||x|| = ||0 x|| \ge d(x, B \cap V)$.

En résumé, $d(x, B \cap V)$ est un minorant de $\{\|x - y\|, y \in V\}$ et donc $d(x, B \cap V) \leq d(x, V)$. Finalement

$$\forall x \in E, \ d(x,V) = d(x,B \cap V).$$

7) Soit $x \in E$. $d(x, V) = d(x, B \cap V)$. Donc, il existe une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de $B \cap V$ telle que $\lim_{n \to +\infty} \|y_n - x\| = d(x, V)$. Puisque $B \cap V$ est un compact, on peut extraire de la suite $(y_n)_{n \in \mathbb{N}}$ une sous-suite $(y_{\phi(n)})_{n \in \mathbb{N}}$ convergente de limite $y \in B \cap V \subset V$. Puisque la suite $(\|y_{\phi(n)} - x\|)_{n \in \mathbb{N}}$ est extraite de la suite convergente $(\|y_n - x\|)_{n \in \mathbb{N}}$, la suite $(\|y_{\phi(n)} - x\|)_{n \in \mathbb{N}}$ est convergente de limite d(x, V). Mais alors par continuité de l'application $u \mapsto \|u\|$ dans l'espace normé $(E, \|u\|)$, on a

$$d(x,V)=\lim_{n\to+\infty}\|y_{\phi(n)}-x\|=\|\lim_{n\to+\infty}y_{\phi(n)}-x\|=\|y-x\|\ \mathrm{avec}\ y\in V.$$

$$\forall x \in E, \, \exists y \in V / \, d(x, V) = \|y - x\|.$$

C. Distance d'un point à un sous-espace de dimension finie dans un espace euclidien

(erreur d'énoncé : lire « E est un espace préhilbertien réel »).

- 8) Soit $x \in E$ et $y = p_V(x) \in V$. Puisque V est de dimension finie, le théorème de la projection orthogonale permet d'affirmer que $\forall z \in V$, $\|z-x\| \ge \|y-x\|$ avec égalité si et seulement si z=y (la principale raison étant $\|z-x\|^2 = \|z-y\|^2 + \|y-x\|^2$). Donc, la projection orthogonale de x sur V est l'unique élément $y \in V$ vérifiant $d(x, V) = \|y-x\|$.
- 9) Posons $V = \mathrm{Vect}(x_1, \dots, x_n)$ puis $\mathfrak{p} = \dim(V)$ ($\mathfrak{p} \leqslant \mathfrak{n} < +\infty$). Notons \mathscr{B} une base orthonormée de V puis N la matrice de la famille (x_1, \dots, x_n) dans la base \mathscr{B} . N est un élément de $\mathscr{M}_{\mathfrak{p},\mathfrak{n}}(\mathbb{R})$ et puisque la base \mathscr{B} est orthonormée on a $M = {}^t NN$.
- Si la famille (x_1, \ldots, x_n) est liée (c'est le cas p < n), la matrice N a un noyau non réduit à $\{0\}$ et donc il existe $X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}$ tel que NX = 0. On a encore $MX = {}^t NNX = 0$ et le noyau de la matrice carrée M n'est pas réduit à $\{0\}$. Son déterminant est donc nul.
- Si la famille (x_1, \ldots, x_n) est libre, on a p = n et de plus N est une matrice carrée inversible. Dans ce cas, $\det(M) = (\det(N))^2 \neq 0$.

On a montré que

la famille
$$(x_1, \ldots, x_n)$$
 est libre si et seulement si $G(x_1, \ldots, x_n) = 0$.

10) Soit $x \in E$. Puisque $x = x - p_V(x) + p_V(x)$, la dernière colonne de $G(x_1, \dots, x_n, x)$ s'écrit à l'aide du théorème de Pythagore

$$\begin{pmatrix} (x_{1}|x) \\ (x_{2}|x) \\ \vdots \\ (x_{n}|x) \\ (x|x) \end{pmatrix} = \begin{pmatrix} (x_{1}|x) \\ (x_{2}|x) \\ \vdots \\ (x_{n}|x) \\ \|x - p_{V}(x)\|^{2} + \|p_{V}(x)\|^{2} \end{pmatrix} = \begin{pmatrix} (x_{1}|x) \\ (x_{2}|x) \\ \vdots \\ (x_{n}|x) \\ \|p_{V}(x)\|^{2} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \|x - p_{V}(x)\|^{2} \end{pmatrix}$$

Par linéarité par rapport à sa dernière colonne, $G(x_1, \ldots, x_n, x)$ est alors somme de deux déterminants.

- Puisque $\forall k \in [\![1,n]\!], (x_k|x) = (x_k|p_V(x)),$ le premier de ces deux déterminants est $G(x_1,\ldots,x_n,p_V(x))$. Puisque $p_V(x) \in \operatorname{Vect}(x_1,\ldots,x_n),$ la famille $(x_1,\ldots,x_n,p_V(x))$ est liée et $G(x_1,\ldots,x_n,p_V(x)) = 0$ d'après la question précédente.
- On développe alors le deuxième déterminant par rapport à sa dernière colonne et on obtient $\|x-p_V(x)\|^2 \times G(x_1,\ldots,x_n)$ ou encore $(d(x,V))^2 \times G(x_1,\ldots,x_n)$.

Puisque $G(x_1, ..., x_n) \neq 0$, on a montré que

$$\forall x \in E, \ d(x,V)^2 = \frac{G(x_1,\ldots,x_n,x)}{G(x_1,\ldots,x_n)}.$$

D. Comparaison des normes N_{∞} et N_2

11) Soit $f \in C([0, 1])$.

$$N_2(f) = \left(\int_0^1 f^2(x) \ dx \right)^{1/2} \leqslant \left(\int_0^{1} N_\infty(f)) \ dx \right)^{1/2} = N_\infty(f).$$

Soit A une partie de E. Si $A = \emptyset$, on a $\overline{A}^{\infty} = \overline{A}^2 = \emptyset$ et en particulier $\overline{A}^{\infty} \subset \overline{A}^2$. Supposons maintenant $A \neq \emptyset$.

 \overline{A}^{∞} est le plus petit fermé pour N_{∞} contenant A. Vérifions que \overline{A}^2 est un fermé de E pour N_{∞} (contenant A).

Soit $(y_n)_{n\in\mathbb{N}}$ une suite d'éléments de \overline{A}^2 convergeant pour N_∞ vers un certain $y\in E$. L'inégalité $N_2\leqslant N_\infty$ montre que la suite $(y_n)_{n\in\mathbb{N}}$ converge encore vers y pour N_2 . Mais \overline{A}^2 est un fermé de E pour N_2 et donc $y\in\overline{A}^2$.

On a montré que pour toute suite $(y_n)_{n\in\mathbb{N}}$ d'éléments de \overline{A}^2 , convergente pour N_∞ , la limite de la suite $(y_n)_{n\in\mathbb{N}}$ est dans \overline{A}^2 et donc \overline{A}^2 est un fermé de E pour N_{∞} , contenant A.

Puisque \overline{A}^{∞} est le plus petit fermé de E pour N_{∞} contenant A, on a montré que

$$\forall A \in \mathscr{P}(C([0,1])), \, \overline{A}^{\infty} \subset \overline{A}^{2}.$$

 $\textbf{12)} \ \mathrm{Pour} \ n \in \mathbb{N}^* \ \mathrm{et} \ x \in [0,1], \ \mathrm{posons} \ f_n(x) = \left\{ \begin{array}{l} nx \ \mathrm{si} \ x \in \left[0,\frac{1}{n}\right] \\ 1 \ \mathrm{si} \ x \in \left[\frac{1}{n},1\right] \end{array} \right. \ \mathrm{Chaque} \ \mathrm{fonction} \ f_n \ \mathrm{est} \ \mathrm{dans} \ C([0,1]) \ \mathrm{et}$

$$N_2(f_n-\varphi_0) = \left(\int_0^{1/n} (nx-1)^2 \ dx\right)^{1/2} = \left(\left[\frac{(nx-1)^3}{3n}\right]_0^{1/n}\right)^{1/2} = \frac{1}{\sqrt{3n}} \underset{n \to +\infty}{\to} 0.$$

Comme $\lim_{n \to +\infty} N_2(f_n - \phi_0) = 0$, on a montré que

$$\varphi_0 \in \overline{V_0}^2.$$

13) Montrons que V_0 n'est pas dense dans E pour N_∞ . Pour cela vérifions que l'élément ϕ_0 de C([0,1]) n'est pas dans $\overline{V_0}^{\infty}$. Dans le cas contraire, il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions continues sur [0,1] s'annulant en 0, convergeant vers ϕ_0 pour N_{∞} . La suite de fonctions (f_n) converge donc uniformément vers ϕ_0 sur [0,1] et d'après le théorème d'interversion des limites on a

$$\phi_0(0) = \lim_{n \to +\infty} f_n(0) = 0 \neq 1.$$

Ceci est une contradiction et donc $\phi_0 \notin \overline{V_0}^\infty$. On a montré que

$$V_0$$
 n'est pas dense dans $C([0,1])$ pour la norme N_∞ .

 $\mbox{V\'erifions maintenant que V_0 est dense dans $C([0,1])$ pour N_2. Soient $f\in C([0,1])$ et $\epsilon>0$. On \'ecrit $f=f-f(0)\varphi_0+f(0)\varphi_0$ and $\rho=0$. The sum of $\rho=0$ is the sum of $\rho=0$ of $\rho=0$ is the sum of $\rho=0$ of $\rho=0$. The sum of $\rho=0$ is the sum of $\rho=0$ is the sum of $\rho=0$ of $\rho=0$. The sum of $\rho=0$ is the sum of $\rho=0$ is the sum of $\rho=0$ of $\rho=0$. The sum of $\rho=0$ is the$

et on approche la fonction constante $f(0)\varphi_0$ par un élément de V_0 : puisque $\varphi_0 \in \overline{V_0}^2$, il existe $h \in V_0$ telle que $N_2(h-\varphi_0) < \frac{\epsilon}{|f(0)|+1}$. Posons $g=f-f(0)\varphi_0+f(0)h$. g est dans V_0 et

$$N_2(f-g) = N_2(f(0)(h-\varphi_0)) = |f(0)|N_2(\varphi_0-h) \leqslant \frac{|f(0)|\epsilon}{|f(0)|+1} < \epsilon.$$

Ainsi, $\forall f \in C([0,1]), \forall \epsilon > 0, \exists g \in V_0 / N_2(f-g) < \epsilon \text{ et donc}$

 V_0 est dense dans C([0,1]) pour la norme N_2 .

14) 0 est dans V et donc dans \overline{V} . Soient $(x,y) \in \overline{V}^2$ et $(\lambda,\mu) \in \mathbb{R}^2$. Il existe $((x_n),(y_n)) \in (V^{\mathbb{N}})^2$ tel que $x = \lim_{n \to +\infty} x_n$ et $y = \lim_{n \to +\infty} y_n$. Mais alors $(\lambda x_n + \mu y_n)$ est une suite d'éléments de V, convergente de limite $\lambda x + \mu y$ ce qui montre que $\lambda x + \mu y \in \overline{V}$. On a montré que

Si V est un sous-espace vectoriel d'un espace normé, \overline{V} est également un espace vectoriel.

 $\textbf{15)} \ \mathrm{Soit} \ V \ \mathrm{un} \ \mathrm{sous\text{-}espace} \ \mathrm{vectoriel} \ \mathrm{de} \ C([0,1]) \ \mathrm{dense} \ \mathrm{pour} \ N_{\infty}, \ \mathrm{alors} \ \forall m \in \mathbb{N}, \ \varphi_m \in \overline{V}^{\infty}.$

Réciproquement, supposons que $\forall m \in \mathbb{N}$ $\varphi_m \in \overline{V}^\infty$. Soit $f \in C([0,1])$. Le théorème de Weierstrass permet d'affirmer qu'il existe une suite de polynômes $(P_n)_{n \in \mathbb{N}}$ convergeant uniformément vers f sur [0,1] ou encore convergeant vers f pour N_∞ . Mais chaque P_n est une combinaison linéaire de φ_m et puisque \overline{V}^∞ est un espace vectoriel d'après la question 14), chaque P_n est élément de \overline{V}^∞ .

Ainsi, (P_n) est une suite d'éléments de \overline{V}^∞ convergeant vers f pour N_∞ . On en déduit que $f \in \overline{(\overline{V}^\infty)}^\infty = \overline{V}^\infty$. On a montré que V est dense dans C([0,1]) pour N_∞ .

$$V \ \mathrm{est \ dense \ dans} \ C([0,1]) \ \mathrm{pour} \ N_{\infty} \ \mathrm{si \ et \ seulement \ si} \ \forall m \in \mathbb{N}, \ \varphi_m \in \overline{V}^{\infty}.$$

16) Soit V un sous-espace vectoriel de C([0,1]) dense pour N_2 , alors $\forall m \in \mathbb{N}, \, \varphi_m \in \overline{V}^2$.

Réciproquement, supposons que $\forall m \in \mathbb{N} \ \varphi_m \in \overline{V}^2$. Soit $f \in C([0,1])$.

La suite de polynômes (P_n) fournie à la question précédente converge vers f pour N_∞ et donc pour N_2 puisque $N_2 \le N_\infty$ d'après la question 11), et chaque P_n est dans \overline{V}^2 puisque les ϕ_m sont dans \overline{V}^2 qui est un espace vectoriel. Donc $f \in (\overline{V}^2)^2 = \overline{V}^2$. On a montré que

 $V \ \mathrm{est} \ \mathrm{dense} \ \mathrm{dans} \ C([0,1]) \ \mathrm{pour} \ N_2 \ \mathrm{si} \ \mathrm{et} \ \mathrm{seulement} \ \mathrm{si} \ \forall m \in \mathbb{N}, \ \varphi_m \in \overline{V}^2.$

E. Un critère de densité de W pour la norme N₂

17)

$$\begin{split} \overline{W}^2 &= C([0,1]) \Leftrightarrow \forall \mu \in \mathbb{N}, \ \varphi_{\mu} \in \overline{W}^2 \ (\text{d'après la question 16})) \\ &\Leftrightarrow \forall \mu \in \mathbb{N}, \ d(\varphi_{\mu},W) = 0 \ (\text{d'après la question 4})) \\ &\Leftrightarrow \forall \mu \in \mathbb{N}, \ \lim_{n \to +\infty} d(\varphi_{\mu},W_n) = 0 \ (\text{d'après la question 5})). \end{split}$$

$$\overline{W}^2 = C([0,1]) \Leftrightarrow \forall \mu \in \mathbb{N}, \ \lim_{n \to +\infty} d(\varphi_{\mu}, W_n) = 0.$$

18) Soit $\mu \in \mathbb{N}$. D'après la question 10), pour $\mathfrak{n} \in \mathbb{N}^*$,

$$d(\varphi_{\mu}, W_n) = \sqrt{\frac{G(\varphi_{\lambda_0}, \ldots, \varphi_{\lambda_n}, \varphi_{\mathfrak{u}})}{G(\varphi_{\lambda_0}, \ldots, \varphi_{\lambda_n})}}.$$

Maintenant, pour $(\alpha, \beta) \in \mathbb{N}^2$,

$$(\varphi_{\alpha}|\varphi_{\beta}) = \int_0^1 \varphi_{\alpha}(x)\varphi_{\beta}(x) \ dx = \int_0^1 x^{\alpha+\beta} \ dx = \frac{1}{\alpha+\beta+1},$$

et donc $G(\varphi_{\lambda_0},\ldots,\varphi_{\lambda_n})$ est le déterminant de Cauchy associé aux réels $a_k=b_k=\lambda_k+\frac{1}{2}$ si $0\leqslant k\leqslant n$ et $G(\varphi_{\lambda_0},\ldots,\varphi_{\lambda_n},\varphi_{\mu})$ est le déterminant de Cauchy associé aux réels $a_k=b_k=\lambda_k+\frac{1}{2}$ si $0\leqslant k\leqslant n$ et $a_{n+1}=b_{n+1}=\mu+\frac{1}{2}$. D'après la question 3)

$$\begin{split} d(\varphi_{\mu},W_n) &= \sqrt{\frac{(a_{n+1}-a_0)\dots(a_{n+1}-a_n)(b_{n+1}-b_0)\dots(b_{n+1}-b_n)}{(a_0+b_{n+1})\dots(a_n+b_{n+1})(a_{n+1}+b_{n+1})(a_{n+1}+b_n)\dots(a_{n+1}+b_0)}} \\ &= \sqrt{\frac{(\mu-\lambda_0)\dots(\mu-\lambda_n)(\mu-\lambda_0)\dots(\mu-\lambda_n)}{(\lambda_0+\mu+1)\dots(\lambda_n+\mu+1)(2\lambda+1)(\mu+\lambda_n+1)\dots(\mu+\lambda_0+1)}} \\ &= \frac{1}{\sqrt{2\mu+1}} \prod_{k=0}^n \frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}. \end{split}$$

http://www.maths-france.fr

$$\forall \mu \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ d(\varphi_{\mu}, W_n) = \frac{1}{\sqrt{2\mu + 1}} \prod_{k=0}^n \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}.$$

19) Si la suite (λ_k) tend vers $+\infty$, la suite $\left(\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}\right)$ tend vers 1.

Réciproquement, supposons que $\left(\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}\right)\underset{k\to+\infty}{\to} 1.$

 $\begin{aligned} &\operatorname{Pour}\,x\in[0,\mu],\,\operatorname{on}\,\operatorname{a}\,\frac{|x-\mu|}{x+\mu+1} = \frac{\mu-x}{x+\mu+1}.\,\operatorname{Or},\,\operatorname{la}\,\operatorname{fonction}\,\operatorname{homographique}\,x\mapsto\frac{\mu-x}{x+\mu+1} = -1 + \frac{2\mu+1}{x+\mu+1}\,\operatorname{est}\,\operatorname{d\'{e}croissonte}\,\operatorname{sante}\,\operatorname{sur}\,[0,\mu]\,\operatorname{et}\,\operatorname{est}\,\operatorname{donc}\,\operatorname{major\'{e}e}\,\operatorname{sur}\,[0,\mu]\,\operatorname{par}\,\operatorname{sa}\,\operatorname{valeur}\,\operatorname{en}\,0\,\operatorname{\grave{a}}\,\operatorname{savoir}\,\frac{\mu}{\mu+1}.\,\operatorname{Puisque}\,\frac{\mu}{\mu+1}<1\,\operatorname{et}\,\operatorname{que}\,\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}\xrightarrow{k\to+\infty}1,\\ &\operatorname{il}\,\operatorname{existe}\,k_0\in\mathbb{N}\,\operatorname{tel}\,\operatorname{que}\,\operatorname{pour}\,k\geqslant k_0,\,\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}>\frac{\mu}{\mu+1}\,\operatorname{ce}\,\operatorname{qui}\,\operatorname{impose}\,\lambda_k>\mu. \end{aligned}$

 $\begin{aligned} & \text{Ainsi, pour } k \geqslant k_0, \text{ on a } \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} = \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}. \text{ Or, pour } x > \mu, \\ & \frac{x - \mu}{x + \mu + 1} = 1 - \frac{2\mu + 1}{x + \mu + 1} < 1 \text{ et donc, si pour } k \geqslant k_0 \\ & \text{on pose } u_k = \frac{\lambda_k - \mu}{\lambda_k + \mu + 1}, \text{ on a } u_k < 1 \text{ et } \lambda_k = \frac{u_k(\mu + 1) + \mu}{1 - u_k}. \text{ Par hypothèse, } u_k \underset{k \to +\infty}{\to} 1^- \text{ et donc } \lambda_k \underset{k \to +\infty}{+} \infty. \end{aligned}$

$$\boxed{\frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} \underset{k \to +\infty}{\rightarrow} 1 \Leftrightarrow \lambda_k \underset{k \to +\infty}{\rightarrow} +\infty}.$$

20) Par hypothèse faite sur les λ_k au début de l'énoncé, au plus un des λ_k est nul. Notons le λ_{k_0} s'il existe. La phrase « la série $\sum_k \frac{1}{\lambda_k}$ est divergente » signifie dans ce cas « $\sum_{k \in \mathbb{N}, \ k \neq k_0} \frac{1}{\lambda_k} = +\infty$ ».

Si μ est l'un des λ_k , la suite $(d(\phi_\mu, W_n))$ est nulle à partir d'un certain rang et donc tend vers 0 quand n tend vers $+\infty$ que W soit dense dans C([0,1]) ou pas. Donc, W est dense dans C([0,1]) si et seulement si pour tout entier μ distinct de tous les λ_k , on a $\lim_{n\to+\infty} d(\phi_\mu, W_n)=0$.

 $\text{ 1er cas. Si tout entier } \mu \text{ est un } \lambda_k, \text{ d'une part } \forall \mu \in \mathbb{N}, \lim_{n \to +\infty} d(\varphi_\mu, W_n) = 0 \text{ et d'autre part, } \sum_k \frac{1}{\lambda_k} \geq \sum_{\mu \in \mathbb{N}^*} \frac{1}{\mu} = +\infty.$ dans ce cas particulier, l'équivalence est établie.

2ème cas. Sinon, l'un au moins des entiers μ est distinct de tous les λ_k . Soit μ un tel réel.

$$\lim_{n\to +\infty} d(\varphi_{\mu},W_n) = 0 \Leftrightarrow \lim_{n\to +\infty} \sum_{k=0}^n \ln\left(\frac{|\lambda_k-\mu|}{\lambda_k+\mu+1}\right) = -\infty$$

Posons $u_k = \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1}$. On rappelle que $\forall k \in \mathbb{N}, \ 0 < u_k < 1$ de sorte que $\forall k \in \mathbb{N}, \ \ln(u_k) < 0$ et en particulier la suite $(\ln(u_k))$ est de signe constant.

- Si λ_k ne tend pas vers $+\infty$, u_k ne tend pas vers 1 d'après la question 19) puis $\ln(u_k)$ ne tend pas vers 0 et la série de terme général $\ln(u_k)$ est grossièrement divergente. Mais puisque λ_k ne tend pas vers $+\infty$, $\frac{1}{\lambda_k}$ ne tend pas vers 0 et la série de terme général $\frac{1}{\lambda_k}$ est grossièrement divergente. Dans ce cas, $\lim_{n\to+\infty}\sum_{k=0}^n \ln(u_k) = -\infty \Leftrightarrow \sum_k \frac{1}{\lambda_k} = +\infty$.
 - Si λ_k tend vers $+\infty$, μ_k tend vers 1 et aussi $|\lambda_k \mu| = \lambda_k \mu$ pour k grand. On a alors

$$\ln(u_k) \underset{k \to +\infty}{\sim} u_k - 1 = \frac{|\lambda_k - \mu|}{\lambda_k + \mu + 1} - 1 = \frac{\lambda_k - \mu}{\lambda_k + \mu + 1} - 1 = -\frac{2\mu + 1}{\lambda_k + \mu + 1} \underset{k \to +\infty}{\sim} -\frac{2\mu + 1}{\lambda_k} < 0.$$

 $\mathrm{Mais\ alors\ dans\ ce\ cas\ aussi},\ \lim_{n\to+\infty}\sum_{k=0}^n\ln\left(u_k\right)=-\infty\Leftrightarrow\sum_k\frac{1}{\lambda_k}=+\infty.$

En résumé,

$$\overline{W}^2 = C([0,1]) \Leftrightarrow \forall \mu \in \mathbb{N}, \ \lim_{n \to +\infty} d(\varphi_{\mu}, W_n) = 0 \Leftrightarrow \sum_k \frac{1}{\lambda_k} \ \mathrm{diverge}.$$

http://www.maths-france.fr

$$\overline{W}^2 = C([0,1]) \Leftrightarrow \sum_k \frac{1}{\lambda_k} \ \mathrm{diverge}.$$

F. Un critère de densité de W pour la norme N_{∞}

- 21) Si W est dense dans C([0,1]) pour la norme N_{∞} , il en est de même pour la norme N_2 d'après la question 11) et d'après la question précédente $\sum \frac{1}{\lambda_k}$ diverge.
- 22) Posons $f=\varphi_{\mu}-\psi.$ Pour tout $x\in[0,1],$ on a

$$\begin{split} |f(x)| &= \left| \int_0^x f'(t) \; dt \right| \leq \int_0^x |f'(t)| \; dt \leqslant \int_0^1 |f'(t)| \; dt = \int_0^1 1 \times |f'(t)| \; dt \\ &\leqslant \sqrt{\int_0^1 1^2 \; dx} \times \sqrt{\int_0^1 f'^2(x) \; dx} \quad (\text{inégalité de Cauchy-Schwarz}) \\ &= N_2(f') = N_2 \left(\mu \varphi_{\mu-1} - \sum_{k=0}^n \alpha_k \lambda_k \varphi_{\lambda_k-1} \right). \end{split}$$

et donc

$$N_{\infty}(\varphi_{\mu}-\psi)\leqslant N_{2}\left(\mu\varphi_{\mu-1}-\sum_{k=0}^{n}\alpha_{k}\lambda_{k}\varphi_{\lambda_{k}-1}\right).$$

- 23) Supposons que $\sum_{k} \frac{1}{\lambda_k}$ soit divergente. Soit $\mu \in \mathbb{N}$.
- Si $\mu = 0 = \lambda_0$, $\varphi_{\mu} = \varphi_{\lambda_0} \in W \subset \overline{W}^{\infty}$. Sinon, $\mu \geqslant 1$. Pour $k \in \mathbb{N}$, posons $\mu_k = \lambda_{k+1} 1$. Les réels μ_k sont des réels positifs deux à deux distincts et puisque pour tout k sauf peut-être l'un d'entre eux (pour lequel $\mu_k = 0$) $0 < \frac{1}{\lambda_{k+1}} < \frac{1}{\mu_k}$, la série de terme général $\frac{1}{\mu_k}$ est divergente. D'après la question 20), $W' = \text{Vect}(\varphi_{\mu_k})_{k' \in \mathbb{N}}$ est dense dans C([0,1]) pour N_2 . Mais $\mu \varphi_{\mu-1} \in C([0,1])$ et donc pour $\epsilon>0, \ {\rm on \ peut \ trouver} \ \gamma=\sum_{k=0}^{\infty}b_k\varphi_{\mu_k} \ {\rm tel \ que} \ N_2(\mu\varphi_{\mu-1}-\gamma)<\epsilon.$

Soit $\psi = \sum_{k=0}^{\infty} a_k \varphi_{\lambda_k}$ où $a_0 = 0$ et $a_k = \frac{b_k}{\lambda_k}$ si $1 \le k \le n$. Ainsi, pour $k \in [0, n]$, $a_k = b_k \lambda_k$ et donc

$$\psi' = \sum_{k=0}^n \alpha_k \lambda_k \psi_{\lambda_k-1} = \sum_{k=0}^n \alpha_k \lambda_k \psi_{\mu_k} = \gamma.$$

 $\mathrm{Mais\ alors,\ d'après\ la\ question\ \underline{\underline{préc\acute{e}}}dente,\ N_{\infty}(\varphi_{\mu}-\psi)\ \leqslant\ N_{2}(\mu\varphi_{\mu-1}-\gamma)\ <\ \epsilon.\ \mathrm{On\ a\ montr\'e\ que}\ \ \forall\epsilon\ >\ 0,\ \exists\psi\ \in\ W/months{2mm}$ $N_{\infty}(\phi_{\mu} - \psi) < \varepsilon \text{ et donc } \phi_{\mu} \in \overline{W}^{\infty}$

Finalement, $\forall \mu \in \mathbb{N}, \ \varphi_{\mu} \in \overline{W}^{\infty}$. D'après la question 15), W est dense dans C([0,1]).

24) Posons $m = \inf_{k \geqslant 1} \lambda_k > 0$. Pour tout entier naturel non nul k, on a $\lambda_k \geqslant m$ et donc $\frac{\lambda_k}{m} \geqslant 1$. Pour $k \in \mathbb{N}$, posons $\mu_k = \frac{\lambda_k}{m}. \ \mathrm{On} \ \mathrm{a} \ (\mathrm{i}) : \mu_0 = 0 \ \mathrm{et} \ (\mathrm{ii}) : \forall k \geqslant 1, \ \mu_k \geqslant 1. \ \mathrm{De} \ \mathrm{plus} \ \sum_i \frac{1}{\mu_k} \ \mathrm{diverge}.$

D'après la question précédente, $W' = \operatorname{Vect}(\varphi_{\mu_k})_{k \in \mathbb{N}}$ est dense dans C([0,1]). Soient $f \in C([0,1])$ et $\epsilon > 0$. Pour $x \in [0,1]$, posons $g(x) = f(x^{1/m})$ de sorte que pour tout $x \in [0,1]$, $f(x) = g(x^{1/m})$.

 $\mathrm{Il}\ \mathrm{existe}\ \gamma\in W'\ \mathrm{tel}\ \mathrm{que}\ N_{\infty}(g-\gamma)<\epsilon.\ \mathrm{Pour}\ x\in[0,1],\ \mathrm{posons}\ \gamma(x)=\sum_{k=n}^n\alpha_k\varphi_{\mu_k}(x)=\sum_{k=n}^n\alpha_kx^{\lambda_k/m}\ \mathrm{puis}\ \mathrm{posons}$

$$\psi(x)=\gamma(x^m)=\sum_{k=0}^n\alpha_kx^{\lambda_k}.$$

Ainsi, pour tout $x \in [0, 1]$

$$f(x) - \psi(x) = f(x) - \sum_{k=0}^n \alpha_k x^{\lambda_k} = f((x^m)^{1/m}) - \sum_{k=0}^n \alpha_k (x^m)^{\lambda_k/m} = g(x^m) - \gamma(x^m).$$

Puisque l'application $x\mapsto x^{\mathfrak{m}}$ est une bijection de [0,1] sur lui-même, on a

$$N_{\infty}(f-\psi) = N_{\infty}(g-\gamma) < \epsilon.$$

 $\mathrm{Ainsi},\,\forall f\in C([0,1]),\,\forall \epsilon>0,\,\exists \psi\in W/\,\,N_\infty(f-\psi)<\epsilon\,\,\mathrm{et\,\,encore\,\,une\,\,fois}\,\,\overline{W}^\infty=C([0,1]).$