Privacy and Security of Smart Devices

Amitangshu Pal

Guessing the Typing Patterns through IMUs

Can we Predict the Typing Behavior from IMU data?

- Offline phase and Online phase
 - In offline phase, the attacker collects the typing behavior from ground truth and IMU readings
 - In online phase, the attacker
 uses the IMU readings to guess
 the words

Can we Predict the Typing Behavior from IMU data?

- Let's discuss 3 steps:
 - Find the keystroke time
 - Predict keystroke to character
 - Find the likelihood of the word typed

Step1: Detecting the Keystroke Time

Use z-acceleration to infer keystroke time

Rotate and scale

Step3: Predicting the Typed Word

Input "confident"

Observed watch motion

Compute likelihood

 $word_1$ $word_2$

word₃

word₄₉₉₉ word₅₀₀₀ Output list

Rank	word guess
1	confident
2	consider
3	commander
4999	are
5000	is

$$P(W_i \mid O)$$

- W_i: Candidate word_i in dictionary
- O: Motion observation

word frequency $P(W_i \mid O) \propto P(O \mid W_i) \times P(W_i)$

- W_i: Candidate word_i in dictionary
- O: Motion observation

Likelihood function

$$P(W_i \mid O) \propto \left| P(O \mid W_i) \right| \times P(W_i)$$

- W_i: Candidate word_i in dictionary
- O: Motion observation

Let's do the Guess Work

Rank	W1	W2	W3	W4	W5	W6	W7	w8
1	motor	pistol	profound	technologies	angel	those	that	disappear
2	monitor	list	journalism	remaining	spray	today	tight	discourse
3	them	but	originally	telephone	super	third	tightly	secondary
4	the	lost	original	meanwhile	fire	through	thirty	adviser
5	then	most	profile	headline	shore	towel	truth	discover

Let's do the Guess Work

Rank	W1	W2	W3	W4	W5	W6	W7	w8
1	motor	pistol	profound	technologies	angel	those	that	disappear
2	monitor	list	journalism	remaining	spray	today	tight	discourse
3	them	but	originally	telephone	super	third	tightly	secondary
4	the	lost	original	meanwhile	fire	through	thirty	adviser
5	then	most	profile	headline	shore	towel	truth	discover

Hacking your Speaker using Inaudible Acoustics

What is Smart Home?

Inaudible Acoustics

- □ Audible sound \rightarrow < 20 kHz range
 - Both human and microphone can hear
- Ultrasound → > 20 kHz range
 - Neither human nor microphone can hear
- Can we design a sound that is not heard by human, but can be heard by your microphone?
 - Then we can launch an attack on Alexa, without even notifying the user

$$sinAsinB = \frac{1}{2}[cos(A-B) - cos(A+B)]$$

We can take any signal \rightarrow modulate it with F_1 and can launch the attack