13.3 习题

张志聪

2025年2月17日

13.3.1

设 $(f(x^{(n)}))_{n=1}^{\infty}$ 是 f(K) 中的任意序列,序列 $(x^{(n)})_{n=1}^{\infty}$ 是 K 中序列,且 $f(x^n)$ 是 $(f(x^{(n)}))_{n=1}^{\infty}$ 中的项。因为 K 是紧致的,那么存在一个收敛的子序列 $(x^{(n_j)})_{j=1}^{\infty}$,不妨设子序列收敛于 $x_0 \in K$ 。

又因为 f 是连续的,所以 f 在 x_0 处连续,由定理 13.1.4(b) 可知,序列 $(f(x^{(n_j)}))_{j=1}^{\infty}$ 依度量 d_Y 收敛于 $f(x_0) \in f(K)$,又因为 $(f(x^{(n_j)}))_{j=1}^{\infty}$ 是 $(f(x^{(n)}))_{n=1}^{\infty}$ 的子序列,由定义 12.5.1 (紧致性)可知,f(K) 是紧致的。

13.3.2

(1) f 是有界的。

由定理 13.3.1 可知, f(X) 是紧致的, 由推论 12.5.6 可知, f 是有界的。
(2) f 在某个点 $x_{max} \in X$ 处取到最大值, 并且在某个点 $x_{min} \in X$ 处

(2) f 在某个点 $x_{max} \in X$ 处取到最大值,并且在某个点 $x_{min} \in X$ 处取到最小值。

我们只证明 f 在某个点 $x_{max} \in X$ 处取到最大值,最小值的证明类似。 因为 f 是有界,那么, \mathbb{R} 中存在一个包含 f(X) 的球 $B(y_0,r),y_0 \in \mathbb{R}, r > 0$ 。现在设 E 表示集合

$$E:=\{f(x), x\in X\}$$

(即: E := f(X))。根据上述内容可知,这个集合是 $B(y_0, r)$ 的子集,而且 E 还是非空集合。根据最小上界原理可知(E 是 \mathbb{R} 的子集),它有一个实数上 确界 sup(E)。

记 m:=sup(E),根据上确界的定义可知,对所有的 $y\in E$ 均有 $y\leq m$ 。而根据 E 的定义可知,这意味着 $f(x)\leq m$ 对所有的 $x\in X$ 均成立。因此,为了证明 f 在某个点达到最大值,我们只需要找到一个 $x_{max}\in X$ 使得 $f(x_{max})=m$ 即可。

设 $n \ge 1$ 是任意一个整数,那么 $m - \frac{1}{n} < m = sup(E)$ 。因为 sup(E) 是 E 的最小上界,那么 $m - \frac{1}{n}$ 不可能是 E 的上界,从而存在一个 $y \in E$ 使得 $m - \frac{1}{n} < y$ 。又由 E 的定义可知,这蕴含着存在一个 $x \in X$ 使得 $m - \frac{1}{n} < f(x)$ 。

现在我们按照下面的方法选取一个序列 $(x_n)_{n=1}^{\infty}$: 对于每一个 n,选取 x_n 为 $x \in X$ 中使得 $m - \frac{1}{n} < f(x_n)$ 的元素。(这里需要用到选择公理)这是 X 中的一个序列,因为 X 是紧致的,我们可以找到一个收敛于某极限 $x_{max} \in X$ 的子序列 $(x_{nj})_{j=1}^{\infty}$,其中 $n_1 < n_2 < \ldots$ 。因为 $(x_{nj})_{j=1}^{\infty}$ 收敛于 x_{max} 并且 f 在 x_{max} 处连续,于是由定理 13.1.4(b) 可知

$$\lim_{j \to \infty} f(x_{n_j}) = f(x_{max})$$

另外, 根据该序列的构造过程可知,

$$f(x_{n_j}) > m - \frac{1}{n_j} \ge m - \frac{1}{j}$$

从而对上式两端同时取极限可得,

$$f(x_{max}) = \lim_{j \to \infty} f(x_{n_j}) \ge \lim_{j \to \infty} m - \frac{1}{j} = m$$

另外, $f(x) \le m$ 对所有的 $x \in X$ 均成立,从而 $f(x_{max}) \le m$ 。联合这两个不等式就得到 $f(x_{max}) = m$,结论得证。

13.3.3

(1)

设 $f: X \to Y$ 是从度量空间 (X, d_X) 到另一个度量空间 (Y, d_Y) 的映射, f 是一致连续的, 现在我们证明 f 也是连续的。

对任意 $x_0 \in X$,对任意 $\epsilon > 0$,因为 f 是一致连续的,那么,存在 $\delta > 0$ 使得只要 $x, x' \in X$ 满足 $d_X(x, x') < \delta$,就有 $d_Y(f(x), f(x')) < \epsilon$ 。 不妨设 $x' = x_0$,那么只要满足 $d_X(x, x_0) < \delta$,就有 $d_Y(f(x), f(x_0)) < \epsilon$ 。

综上,由定义 13.1.1 可得 f 是连续的。

(2) 举例,连续函数不一定是一致连续的。

 $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x}$.

对任意 $\delta > 0$,存在 $n \in \mathbb{N}$,使得 $\frac{1}{n} < \delta$,此时我们有

$$|\frac{1}{n} - \frac{1}{n+1}| < \delta$$

$$|f(\frac{1}{n}) - f(\frac{1}{n+1})| = |n - (n+1)| = 1$$

由此可知, f 不是一致连续函数。

13.3.4

对于任意的 $\epsilon>0$,因为 $g:Y\to Z$ 是一致连续函数,那么,存在 $\delta_Y>0$ 使得只要 $y,y'\in Y$ 满足 $d_Y(y,y')<\delta_Y$,就有 $d_Z(g(y),g(y'))<\epsilon$ 。

同理可得,存在 $\delta_X > 0$ 使得只要 $x, x' \in X$ 满足 $d_X(x, x') < \delta_X$,就有 $d_Y(f(x), f(x')) < \delta_Y$ 。

综上可得,对任意 $\epsilon > 0$,存在 $\delta = \delta_X$ 使得只要 $x, x' \in X$ 满足 $d_X(x,x') < \delta$,就有 $d_Z(g(f(x)),g(f(x'))) < \epsilon$ 。

所以, $g \circ f: X \to Z$ 也是一致连续的。

13.3.5

对任意 $\epsilon > 0$,因为 $f: X \to R$ 是一致连续函数,那么,存在 $\delta_f > 0$ 使得只要 $x, x' \in X$ 满足 $d_X(x, x') < \delta_f$,就有 $|f(x) - f(x')| < \frac{1}{2}\epsilon$ (\mathbb{R} 的默认度量是 d^{l^2})。

类似的,存在 $\delta_g>0$ 使得只要 $x,x'\in X$ 满足 $d_X(x,x')<\delta_g$,就有 $|g(x)-g(x')|<\frac{1}{2}\epsilon.$

综上,对于任意的 $\epsilon > 0$,存在 $\delta = min(\delta_f, \delta_g)$,使得只要 $x, x' \in X$ 满足 $d_X(x, x') < \delta$,就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x')) = d_{l^{2}}((f(x), g(x)), (f(x'), g(x')))$$

$$= \sqrt{|f(x) - f(x')|^{2} + |g(x) - g(x')|^{2}} < \sqrt{\frac{1}{4}\epsilon^{2} + \frac{1}{4}\epsilon^{2}} < \epsilon$$

所以, $f \oplus g: X \to R^2$ 也是一致连续的。

13.3.6

(1) 证明:加法、减法是一致连续函数。

对任意 $\epsilon>0$,存在 $\delta=\frac{1}{2}\epsilon$,使得只要 $d_{l^2}((x,y),(x',y'))=\sqrt{|x-x'|^2+|y-y'|^2}<\delta$,就有

$$|x-x'|<\frac{1}{2}\epsilon, |y-y'|<\frac{1}{2}\epsilon$$

于是

$$|(x+y) - (x'+y')| = |(x-x') + (y-y')| < \epsilon$$
$$|(x-y) - (x'-y')| = |(x-x') - (y-y')| < \epsilon$$

这意味着, $(x,y) \mapsto x + y$ 和 $(x,y) \mapsto x - y$ 是一致连续函数。

(2) 证明: 乘法不是一致连续函数。任意 $n \in \mathbb{N}$,点 $(n,n),(n+\frac{1}{n},n)$ 间的距离

$$d_{l^2}((n,n),(n+\frac{1}{n},n))=\frac{1}{n}$$

可以任意小,此时

$$|n \times n - (n + \frac{1}{n}) \times n| = 1$$

可知, $(x,y) \mapsto xy$ 不是一致连续函数。

(3) $f+g:X\to\mathbb{R}$ 和 $f-g:X\to\mathbb{R}$ 也是一致连续函数。

由习题 13.3.5 可知, $f \oplus g := (f(x), g(x))$ 的直和 $f \oplus g : X \to R^2$ 是一致连续函数,另外由(1)可知,函数 $(x,y) \mapsto x + y$ 和 $(x,y) \mapsto x - y$ 是一致连续函数,那么,由习题 13.3.4 可知,把这两个函数复合在一起,此时 $f + g = ((x,y) \mapsto x + y)(f \oplus g)$ 和 $f - g = ((x,y) \mapsto x - y)(f \oplus g)$ 是一致连续的。

(4) 举例 $fg: X \to \mathbb{R}$ 不一定是一致连续的。

(5)

 $\max(f,g),\min(f,g),cf$ 是一致连续的,f/g 不是一致连续的,比如习题 13.3.3 中的举例。