Recyclotron

brainfart

What is Recyclotron?

Recyclotron is a smart-bin that detects, identifies and sorts rubbish, reducing user interaction to one bin.

What we made for Demo 1

Problems with Demo 1

- Cameras had to be held up by a team member
- Detection had to be manually started by us, wasn't automatic
- Wires and Raspberry Pi were loose (sometimes getting in the way)
- Feedback wasn't clear enough to the user
- The chamber was unaware of its location and how much it needed to move - movement was hardcoded

Goals for Demo 2

- Add a chamber to hold rubbish, cameras and space for wires
- Increase structural stability and scale by 3D printing parts
- Add a trigger to detect rubbish
- Show clear feedback of what category the rubbish is
- Improve the ML Model to have low false positives
- Allow the ML model to work with 3 and 4 bins

Problems with Hardware

- SD Card Crashed
- 3D Prints Failed Multiple Times
- Modeling Turn Around (body took 5 days to print)
- Sizing Errors
- Lack of Lego Pieces (e.g. gear racks)

Test Name	Number of Trials	Success Rate
Lid Trigger	50	96%
Motor Function	20	100%
Electromagnet (Locking)	10	100%
3D Printing	7	43%
Ultrasonic (Location Detection)	10	90%

Problems with Datasets

- Initial size of *training* dataset was too small (2K images)
- Too small for large models like deep neural networks
- Very few trash items (only about 100)
- Constructed artificially by taking multiple photos of clean items

- Testing set was a random split from the training set, so there are some overlap of items between the two sets.
- Tests are too easy for classifiers, fails to estimate real world performance.

New Datasets

- Created our own dataset for testing (only using 111 useful photos for 57 objects)
- Found KNN Model performed poorly on new test dataset (~40% accuracy)
- So we updated *training* dataset with images from Litterati's global map
- Now have 1.5 million images to train Recyclotron on!

Problems with KNN Model

 Poor at generalization - same bottle may be un-recognised at different angles because of KNN's precision!

KNN is expensive computationally for large training sets - our dataset is too large for KNN to store and process efficiently

The New Model

ResNet ResNet ResNet ResNet ResNet Image fed into block 1 block 2 block 3 block 4 block 5 network Each block 0 outputs a feature vector Feature vectors are concatenated **Neural Network Classifier** Classification layer outputs a "METAL" category

Comparison of Model Accuracy (Binary)

Why are we punishing false positives?

If a recyclable object is categorised as "trash",

Recyclable object goes into bin

Taken to landfill

Dumped into landfill

Why are we punishing false positives?

If a "trash" object is categorised as recyclable,

Confusion Matrix (Contingency Table)

	Glass	Metal	Paper	Plastic	Trash	Precision
Glass	0	0	1	0	0	0
Metal	0	2	0	0	1	0.67
Paper	0	0	20	1	10	0.65
Plastic	0	0	0	12	2	0.86
Trash	0	0	5	11	42	0.72
Recall	0	1	0.8	0.48	0.76	

Confusion Matrix (Contingency Table)

	Glass	Metal	Paper	Plastic	Trash	Precision
Glass	0	0	1	0	0	0
Metal	0	2	0	0	1	0.67
Paper	0	0	20	1	10	0.65
Plastic	0	0	0	12	2	0.86
Trash	0	0	5	11	42	0.72
Recall	0	1	0.8	0.48	0.76	

False positive rate of 24%!

Effect of Confidence Thresholds

Future Milestone: User Training

Future Milestone: Highly Extendable

Future Milestone: Highly Extendable

Trash all goes into one bin

Trash taken to Mixed Recycling

Trash is pre-sorted

by Recylotron

Trash taken to respective recycling plants

Budget

RED indicates items that were purchased this demo

COMPONENT	COST
3D Printed Body & Lid	£65
3 Electromagnets	£4
2 Ultrasonic Sensors and LCD Screen (GrovePl Kit)	£10
2 LEDs	£3
2 Webcams	£15
5 EV3 Motors	£130
2 Steel Railings	£10
Higher End Raspberry PI	£50
Total Cost	£287
Total Spent	£97

Questions?