Corso di Laurea in Ing. Informatica e dell'Automazione (DM 270)
Sistemi Operativi mod1: Fondamenti

Tempo totale a disposizione: 60 minuti.

QUESITI & ESERCIZI (max 26 punti)

max 2 punti/quesito/esercizio salvo altrimenti specificato

IMPORTANTE CHIARIMENTO

I partecipanti a questa prova scritta sono invitati, nell'elaborato da consegnare, a specificare se sostengono la prova in quanto:

- il loro piano di studi (DM 270 new) prevede che "Sistemi Operativi" consti di 12 CFU suddivisi in 2 moduli da 6 CFU;
- intendono sostituire l'esame di "Sistemi Operativi" da 9 CFU (DM 270 old) con quello da 12 CFU (DM 270 new);
- intendono sostituire l'esame di "Sistemi Operativi" da 6 CFU (DM 509) con il primo modulo del corso da 12 CFU (DM 270 new).

RACCOMANDAZIONI

- curare la correttezza e l'appropriatezza del linguaggio e della grafia adoperati;
- evitare inutili e non richiesti allungamenti delle risposte, formulando risposte comprensibili, concise e compendiose;
- giustificare il perché delle asserzioni formulate;
- * attenersi rigorosamente a quanto richiesto dal quesito/esercizio;
- non trascurare di dare risposta ad <u>eventuali richieste multiple</u> contenute nei quesiti/esercizi;
- Sia ~ la current working directory. Si scriva un <u>unico</u> <u>comando</u> per creare la directory <u>esame</u> nella directory /tmp, assegnandole i seguenti permessi: rwx rwx rwx.
- 7) Cosa s'intende per dual mode operation e cosa implica dal punto di vista dell'hardware di un computer?
- 2) Scrivere <u>un'unica sequenza di comandi</u> che consenta di effettuare il list del contenuto della cartella ~/utenti solo se il comando di creazione delle cartelle userl user2 user3 all'interno della directory ~/utenti va a buon fine.
- 8) Se s'intende separare la politica dal meccanismo dello scheduling è necessario parametrizzare l'algoritmo di scheduling per impostare la politica. Quali sono i parametri (se ve ne sono) dei seguenti algoritmi di scheduling: Round Robin, Priorità statica, Priorità dinamica (Process Merit)? (4 punti)
- 3) Si descriva sinteticamente cos'è una distribuzione.
- 9) Se dovessi progettare le operazioni di gestione dei file di un SO, quali sarebbero le sei operazioni essenziali?

10) Si consideri un file system UNIX-like. Si supponga che

esso allochi 16 cluster per volta. Si determini da quanti cluster di 1a, 2a e 3a indirezione sarà composto in totale il file dopo aver effettuato Y0000 operazioni di scrittura, assumendo che i singoli cluster di indirezione vengano

- 4) Dato il comando
- useradd -d /home/userA -m -k /etc/skel userA si scriva un comando che produce un risultato equivalente alla funzione svolta dall'opzione -k /etc/skel nel precedente comando useradd.
- 5) Sia dato il file **pizze** con il seguente contenuto

MARGHERITA (Pomodoro, Mozzarella) NAPOLETANA (Pomodoro, Mozzarella, Acciughe) MARINARA (Pomodoro, Aglio, Origano)

Scrivere un comando che consenta di stampare a video tutte le pizze che non contengono la Mozzarella.

11) Si consideri un disco fisso costituito da 200 cilindri, 40 tracce per cilindro e 50 blocchi per traccia. A quale elemento della linked list corrisponderà il blocco avente le seguenti coordinate: Cilindro = 1S0 Traccia = 2T

allocati solo all'occorrenza.

Blocco = 30

- 6) Specificare la differenza tra interrupt "mascherabili" e "non mascherabili"?
- (27 febbraio 2013)

Corso di Laurea in Ing. Informatica e dell'Automazione (DM 270) Sistemi Operativi mod1: Fondamenti

12) Considerato il seguente sistema, si determini la matrice Need. Se il processo P4 richiede 2 risorse di tipo D, il sistema transiterà in uno stato sicuro? Spiegare perché.

Alloc.	Max	Available
A B CD	ABCD	ABCD
$P_0 \ 0 \ 0 \ 0 \ 2$	0 0 1 2	1 5 2 0
$P_1 \ 1 \ 1 \ 0 \ 0$	1 7 5 0	
P_2 1 3 2 4	23 Y 6	
$P_3 \ 0 \ 3 \ 2 \ 0$	0 X 5 2	
$P_4 \ 0 \ 0 \ 1 \ 4$	06 56	

15) Ipotizzando un algoritmo di disk scheduling di tipo SSTF, supponendo che le testine siano posizionate sul cilindro 1XY e che si abbia una coda di richieste per i seguenti cilindri:

si determini la successione di servizio delle richieste e si stabilisca il tempo di seek complessivo sapendo che il tempo minimo di seek è di 0,1 msec.

- 16) Qual è la funzione del client-stub nel meccanismo di Remote Procedure Call?
- 13) Si assuma che lo scheduling della CPU avvenga secondo il merito e che i processi abbiano i seguenti valori di merito:

$$P1=0.4X$$
 $P2=0.81$ $P3=0.6T$ $P4=0.54$ $P5=0.31$ $P6=0.7S$ $P7=0.59$ $P8=0.8Y$ $P9=0.91$ $P10=0.93$

Tra quali valori sarà compresa la mediana?

Quale sarà la retroazione prodotta sul valore del time-slice se la mediana attesa è pari a 0.X0?

17) Citare almeno tre fattori che possono influenzare la predicibilità di un sistema in tempo reale.

- 14) Indicare in breve quali sono le caratteristiche delle possibili organizzazioni che si possono dare ad un processo multithread.
- 18) Si consideri un sistema, gestito con SO a paginazione reale. Se un riferimento alla memoria richiede 200 nsec, quanto vale il tempo di accesso ad una memoria paginata? Se si fa uso di un Translation Look-aside Buffer e nel X5% dei casi si fa riferimento a pagine che si trovano nei registri associativi, quale sarà l'effettivo tempo di accesso?

AFFERMAZIONI (max 4 punti)

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

	Affermazione
1.	L'address space può essere più piccolo dello spazio di memoria reale.
2.	Le <i>condition variables</i> di un monitor sono usate per consentire che un solo processo (thread) sia attivo nel monitor.
3.	La starvation non si determina senza algoritmi di scheduling a priorità.
4.	La più diffusa maniera di trattare il deadlock da parte dei SO è quella di pretendere che non si verifichi.
5.	Un indirizzo generato dalla CPU è un indirizzo fisico.
6.	Dato un kernel, la shell è unica e predefinita.

Corso di Laurea in Ing. Informatica e dell'Automazione (DM 270) Sistemi Operativi mod1: Fondamenti

(Cognome:;	Nome:		; ma	tricola:	
	□ DM 270 (12 CFU)	□ DM 2	70 (9 (CFU)	□ DM 509 (6 0	CFU)
Dov	runque appaiano, utilizzare i seguenti valor	Quesiti ed				
X = Y = Z = Z = W = S = S = S	(numero di lettere che compongono il Cogi (numero di lettere che compongono il 1° N 1 se X è pari; Z = 0 se X è dispari; = 1 se Y è pari; W = 0 se Y è dispari; (penultima cifra del numero di Matricola). (ultima cifra del numero di Matricola).	nome) - 2.	X = Y = Z =	(max 9); (max 9); ; ; ;		
1)	Sia ~ la current working directory		7)	Cosa s'intende per du	ual mode operation	
2)	Scrivere <u>un'unica sequenza di comandi</u> Si descriva sinteticamente	••••	8)	Se s'intende separare	la politica	
4)	Dato il comando		9)	Se dovessi progettare	le operazioni	
5)	Sia dato il file pizze		10)	Si consideri un file sy	ystem UNIX-like	
6)	Specificare la differenza tra interrupt		11)	Si consideri un disco	fisso costituito	

Corso di Laurea in Ing. Informatica e dell'Automazione (DM 270) Sistemi Operativi mod1: Fondamenti

12)	Considerato il seguente sistema,	<i>15)</i>	Ipotizzando un algoritmo di disk scheduling
13)	Si assuma che lo scheduling	16)	Qual è la funzione del client-stub
		17)	Citare almeno tre fattori che
14)	Indicare in breve quali sono		
		18)	Si consideri un sistema, gestito

Affermazioni

Si considerino le seguenti affermazioni.

Si barri la casella "Sicuramente Vera" (SV), se si è sicuri che l'affermazione è vera.

Si barri, invece, la casella "Sicuramente Falsa" (SF), se si è sicuri che l'affermazione è falsa.

Per ogni risposta corretta 1 punto. Per ogni risposta errata -1 punto. Le affermazioni senza risposta comportano 0 punti.

	Affermazione		SF
1.	L'address space può essere più piccolo dello spazio di memoria reale.		
2.	Le condition variables di un monitor sono usate per consentire che un solo processo (thread) sia attivo nel monitor.		
3.	La starvation non si determina senza algoritmi di scheduling a priorità.		
4.	La più diffusa maniera di trattare il deadlock da parte dei SO è quella di pretendere che non si verifichi.		
5.	Un indirizzo generato dalla CPU è un indirizzo fisico.		
6.	Dato un kernel, la shell è unica e predefinita.		