Felix Analysis 1

Justin Skycak June 3, 2016

The Dataset

About 10,000,000 transactions from 9999 accounts, via 71 codes

accountID	date	code	amount
1	9/9/2013	81	-\$6289.69
1	9/10/2013	997	+\$4.25
1	6/3/2015	18	+\$1831.17
9999	6/20/2015	81	-\$3051.23

Activity Features

 $\mathcal{H}_{i.c}$ = number of code-c transactions for account i

 S_{iC} = sum of code-c transactions for account i

The **order of magnitude** of ...

... an account's total savings or spendings

$$sign\left(\sum_{c} s_{ic}\right) \log_{10} \left|\sum_{c} s_{ic}\right|$$

... how often an account was used

$$\log_{10} \left(\sum_{c} n_{ic} \right)$$

... the volume of money processed by an account

$$\log_{10} \left(\sum_{c} |s_{ic}| \right)$$

Activity Visualization

and Insights

Regardless of frequency:

- small unit volume ←→ small save or spend
- large unit volume ←→ large save or spend

Activity Transitions

- Break dataset into front and back and cluster each
- 2. Compute cluster transition probabilities

Activity Transitions

- Break dataset into front and back and cluster each
- 2. Compute cluster transition probabilities
- Accounts like to maintain their activity level, but don't particularly care about maintaining spending or saving
- Churns most often come from low-activity customers

Code Profiles

Account code usage represented by a binary *code_use* vector

$$code_use_{ic} = \begin{cases} 1, & n_{ic} > 0 \\ 0, & n_{ic} = 0 \end{cases}$$

Why binary instead of graded?

- Accounts use codes sparsely (1.4% of code_use entries were nonzero)
- Averages could be interpreted as probabilities of using codes

Code Profiles of Activity Clusters

- Time-invariant
- High (save) matches high (spend)
- Medium (save)
 matches medium
 (spend)
- Low (save) matches low (spend)
- Churn matches low (save) and low (spend)

Code Profiles of Activity Clusters

W//D

(mean_code_profiles_of_activity_clusters.R)

Anything significant about the code descriptions?

(I am unfamiliar)

Code Profile Clustering

 Row i, column j contains distance between code profiles of accounts i and j

• At least 4 major groups

(full dataset used)

yellow = far | blue = close

Code Profile Clustering (k=6)

(full dataset used)

• Interesting result (noticed by Dave): <u>chust</u>ering induced an *ordering* on the codes. (The ordering corresponds to the spectral color-coding red, orange, green, blue, purple, pink)

ATM TRANSACTION FEE......

Natural follow-up question: is ordering preserved with more clusters?

DEBIT.....DDA

Code Profile Clustering (k=12)

Using twice as many clusters as before

Ordering isn't strict, but seems to occur to some extent!

Sizes: 636 646 1454 562 1151 597 881 739 535 1123 1196 479

Recap of Key Findings

Activity visualization:

- small unit volume ←→ small save or spend
- large unit volume ←→ large save or spend

Front-back activity cluster transitions:

- accounts like to maintain their activity level, but don't particularly care about maintaining spending or saving
- churns most often come from low-activity customers

Code profiles:

- high (save) matches high (spend)
- medium (save) matches medium (spend)
- low (save) matches low (spend)
- churn matches low (save) and low (spend)

Code clustering induces an order on the codes