Tuesday Reading Assessment: Chapter 2,3

Prof. Jordan C. Hanson

February 18, 2020

1 Bit Parity, Error Checking (ch. 2)

- 1. Observe Fig. 1 below, depicting the 4-bit BCD code. Observe how the parity bit causes *even* parity (even number of 1's), or *odd* parity (odd number of 1's). Circle all the following 4-bit BCD code words below that have a *single-bit* error, assuming the parity bit is even:
 - \bullet 100110010
 - 011101010
 - 101111111010001010

TABLE 2-8 The BCD code with parity bits.			
P	BCD	P	BCD
0	0000	1	0000
1	0001	0	0001
1	0010	0	0010
0	0011	1	0011
1	0100	0	0100
0	0101	1	0101
0	0110	1	0110
1	0111	0	0111
1	1000	0	1000
0	1001	1	1001

Figure 1: Three basic logic operations.

- 2. Same question, but the parity bit is *odd*:
 - \bullet 11110110
 - 00110001
 - $\bullet \ 0101010101010101010$

2 Basic Logic Gates (ch. 3)

1. Draw the proper timing diagram for the 4-input AND gate below. Hint: what should the truth table be for the 4-input AND?

Figure 2: Three basic logic operations.