

Trabajo práctico 1

Programación funcional

17 de octubre de 2025

Paradigmas de Lenguajes de Programación

Grupo datapath

Integrante	LU	Correo electrónico
Comerci, Lucas	818/24	lukicomerci@gmail.com
Rancati, Hernan	785/00	hernan.rancati@gmail.com
Luis, Theo	130/23	theoluis44@gmail.com
Zea, Marcos	405/09	zea.marcos@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

Demostración

Enunciemos nuestro predicado a demostrar. Sea e :: Expr,

$$P(e) \equiv cantLit e = S (cantOp e)$$

Casos base. Tenemos dos casos base, uno donde e es una constante y otra donde es un rango.

• Caso e = Const a, donde a :: Float:

```
P({\rm Const~a}) \equiv {\rm cantLit~(Const~a)} = {\rm S~(cant0p~(Const~a))}

P({\rm Const~a}) \equiv {\rm cantLit~(Const~a)}^{(L1)} {\rm S~Z} = {\rm S~(cant0p~(Const~a))}^{(01)} {\rm S~Z}

P({\rm Const~a}) \equiv {\rm S~Z} = {\rm S~Z} \Longrightarrow P({\rm Const~a})
```

• Caso e = Rango a b, donde a,b :: Float:

$$P({
m Rango\ a\ b}) \equiv {
m cantLit\ (Rango\ a\ b)} = {
m S\ (cant0p\ (Rango\ a\ b))}$$
 $P({
m Rango\ a\ b}) \equiv {
m cantLit\ (Rango\ a\ b)}^{(L2)} {
m S\ Z} = {
m S\ (cant0p\ (Rango\ a\ b))}^{(02)} {
m S\ Z}$ $P({
m Rango\ a\ b}) \equiv {
m S\ Z} = {
m S\ Z} \implies P({
m Rango\ a\ b})$

Paso inductivo. Sea e :: Expr tal que

$$e = Suma x y$$
 (1)

 \vee

$$e = Resta x y$$
 (2)

$$e = Mult x y$$
 (3)

$$e = Div x y$$
 (4)

donde x, y :: Expr.

• Caso e = Suma x y.

HI.
$$P(x) \wedge P(y)$$

TI.
$$P(Suma x y) \equiv cantLit (Suma x y) = S (cantOp (Suma x y))$$

Desarrollemos el lado izquierdo de la igualdad de la TI:

cantLit (Suma x y)
$$\stackrel{(L3)}{=}$$
 suma (cantLit x) (cantLit y) $\stackrel{(HI)}{=}$ suma (S (cantOp x)) (S (cantOp y)) $\stackrel{(S2)}{=}$ S (suma (cantOp x) (S (cantOp y))) $\stackrel{(CONMUT)}{=}$ S (suma (S (cantOp y) (cantOp x))) $\stackrel{(S2)}{=}$ S (S (suma (cantOp y) (cantOp x))) $\stackrel{(CONMUT)}{=}$ S (S (suma (cantOp x) (cantOp y))) $\stackrel{(03)}{=}$ S (cantOp (suma x y) $\Longrightarrow P(\text{Suma x y})$

- Caso e = Resta x y. Es análogo al caso suma.
- \bullet Caso e = Mult x y. Es análogo al caso suma.
- Caso e = Div x y. Es análogo al caso suma.

Hemos probado el caso base y el paso inductivo para cada caso de e. Entonces $\forall e :: Expr. P(e)$.