Arquitetura de Computadores

PROF. ISAAC

Display

Tipos de Display

LCD Alfanumérico

OLED

TFT

Display LCD

Tipos de Display LCD Alfanumérico

8x2

8 colunas e 2 linhas

16x2

16 colunas e 2 linhas

16x1

16 colunas e 1 linha

16x4

16 colunas e 4 linhas

20x4

20 colunas e 4 linhas

CISC - Complex Instruction Set Compute

O Display LCD possui um processador para que os caracteres sejam escritos facilmente apenas enviando o número ASC do caractere que deva aparecer no Display.

Pinagem Display

Padrão dos pinos do Display LCD

Pino	Função	Descrição									
1	Alimentação	GND									
2	Alimentação	VCC ou +5V									
3	V0	Tensão para ajuste de contraste									
4	RS	1 – Dado, 0 - Instrução									
5	R/W	1 – Leitura, 0 - Escrita									
6	E	1 ou (1 → 0) – Habilita, 0 - Desabilitado									
7	DO (LSB)										
8	D1										
9	D2										
10	D3	Barramento de Dados									
11	D4	Barramento de Dados									
12	D5										
13	D6										
14	D7 (MSB)										
15	A (qdo existir)	Anodo para LED backlight									
16	K (qdo existir)	Catodo para LED backlight									

No edisim51 o display possui alguns dos pinos apresentados na Tabela anterior. Esses pinos estão ligados no Port P1.

Observe que o pino R/W do display está ligado no GND, ou seja, R/W = 0, portanto o LCD só pode ser utilizado no modo escrita.

O pino **RS** do display está ligado no port **P1.3**. O pino RS é utilizado para determinar se será enviado dado ou instrução para o display.

O pino **EN** do display está ligado no port **P1.2**. O pino EN é utilizado para habilitar o envio de uma instrução ou dado. No edisim51 usaremos a EN como borda de descida $(1 \rightarrow 0)$.

Instruções do Display LCD

Instrução	RS	RW	D7	D6	D5	D4	D3	D2	D1	D0		Operação Executada	Tempo		
NOP	0	0	0	0	0	0	0	0	0	0	Sem	Operação	0		
Limpa Display	0	0	0	0	0	0	0	0	0	1	Limp	a LCD e retorna cursor para 1a posição	1,65ms		
Retorn.Cursor	0	0	0	0	0	0	0	0	1	x	Reto (1a.) Mens	40µs			
Exibição LCD	0	0	0	0	0	0	0	1	I/D	s	Define direção de movimento do cursor(I/D) e deslocamento automático no display (S).				
Controle LCD	0	0	0	0	0	0	1	D	С	В	Ativa display (D), liga/desliga cursor (C) e habilita cursor piscante (B).				
Deslocam. Cursor / LCD	0	0	0	0	0	1	S/C	R/L	х	х	Desloca display ou move cursor (S/C), especificando a direção (R/L).				
Modo LCD	0	0	0	0	1	DL	N	F	х	х	Define largura dos dados enviados (DL), número de linhas (N) e fonte de caracter (F).				
End. CGRAM	0	0	0	1		En	dereço	CGR	AM			ne endereço da RAM gráfica (CGRAM). o deve ser enviado na sequência.	40µs		
Posic. Cursor	0	0	1		Pos	sição d	to curs	or (0-1	5;)		Defin	ne posição do cursor no display. Dado ser enviado na sequência.	40µs		
Estado LCD	0	1	BF			Posi	ção en	n uso				ador de LCD ocupado (BF) e posição	0		
Escrita Dado	1	0				Da	ado				Escr	40µs			
Leitura Dado	1	1				Da	ado				Lê d	40µ8			
x : Tanto faz	I/D	1 0	Incren	nenta menta						R/L	1 0	Deslocamento para a direita Deslocamento para a esquerda			
	s	1 0	Deslo	cament	o autor	nático d	de men:	sagem		DL	1 0	Interface de 8 bits Interface de 4 bits			
	D	1 0		y ativo y inativ						N	1 0	2 linhas 1 linha			
	С	1 0	Curso	r ativo ((exibe)					F	1 5x10 pixels 0 5x7 pixels				
	В	1 0		r em m											
	S/C	1 0		ca men	sagem					CGI	RAM:	Character Generator RAM			

Endereços de posição do cursor

Os endereços da DDRAM servem para deslocarmos o curso para a posição (linha e coluna) onde será escrito no Display:

Character located DDRAM address DDRAM address

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F

Programação

Primeiramente, antes de começar a escrever no display, deveremos configura-lo, conforme informações do Datasheet do fabricante.

O edsim51 emula o Display LCD 16x2 da HITACHI.

O Datasheet esta disponível no link:

https://www.edsim51.com/8051simulator/HD44780.pdf

Subrotina de inicialização do display no edsim51

```
; initialise the display
; see instruction set for details
lcd init:
                ; clear RS - indicates that instructions are being sent to the module
   CLR RS
; function set
   CLR P1.7
   CLR P1.6
   SETB P1.5
              ; | high nibble set
   CLR P1.4
   SETB EN
               ; | negative edge on E
   CLR EN
   CALL delay
                  ; wait for BF to clear
                   ; function set sent for first time - tells module to go into 4-bit mode
; Why is function set high nibble sent twice? See 4-bit operation on pages 39 and 42 of HD4478Ø.pdf.
    SETB EN
   CLR EN
              ; | negative edge on E
                   ; same function set high nibble sent a second time
                   ; low nibble set (only P1.7 needed to be changed)
    SETB P1.7
    SETB EN
               ; | negative edge on E
   CLR EN
                ; function set low nibble sent
    CALL delay
                 ; wait for BF to clear
```

subrotina de inicialização do display no edsim51

```
; entry mode set
; set to increment with no shift
    CLR P1.7
                    ; [
   CLR P1.6
                    ; [
   CLR P1.5
                    ; [
   CLR P1.4
                    ; | high nibble set
    SETB EN
                ; | negative edge on E
   CLR EN
    SETB P1.6
                    ; 1
    SETB P1.5
                    ; |low nibble set
    SETB EN
                ; | negative edge on E
   CLR EN
   CALL delay
                   ; wait for BF to clear
; display on/off control
; the display is turned on, the cursor is turned on and blinking is turned on
   CLR P1.7
   CLR P1.6
                    ; |
    CLR P1.5
                    ; |
                    ; | high nibble set
   CLR P1.4
    SETB EN
                ; | negative edge on E
   CLR EN
    SETB P1.7
                    ; |
    SETB P1.6
    SETB P1.5
                    ;
    SETB P1.4
                    ; | low nibble set
    SETB EN
    CLR EN
                ; | negative edge on E
   CALL delay
                   ; wait for BF to clear
    RET
```

Depois de configurado conforme datasheet do fabricante já podemos escrever no display.

O código a seguir apresenta uma subrotina para escrever um caractere no display.

Subrotina que escreve um caractere no Display

Instrução	RS	D7	D6	D5	D4	D3	D2	D1	D0
Escrita no Display	1				Da	do			

sendCharacter:

```
SETB RS
                              ; set RS - indicates that data is being sent to module
MOV C, ACC.7
MOV P1.7, C
MOV C, ACC.6
MOV P1.6, C
MOV C, ACC.5
MOV P1.5, C
MOV C, ACC.4
MOV P1.4, C
                              ; | high nibble set
SETB EN
CLR EN
                              ; | negative edge on E
MOV C, ACC.3
MOV P1.7, C
MOV C, ACC.2
MOV P1.6, C
MOV C, ACC.1
MOV P1.5, C
MOV C, ACC.0
MOV P1.4, C
                              ; | low nibble set
SETB EN
CLR EN
                              ; | negative edge on E
CALL delay
                              ; wait for BF to clear
RET
```

Agora no programa principal devemos chamar a subrotina de inicialização e após a inicialização escrever no display.

```
org 0000h
 L.IMP START
org 0030h
START:
 acall lcd init
 MOV A, #'F'
 CALL sendCharacter
                           ; send data in A to LCD module
 MOV A, #'E'
 CALL sendCharacter
                           ; send data in A to LCD module
 MOV A, #'I'
 CALL sendCharacter
                           ; send data in A to LCD module
 JMP$
```

Observe que o texto foi escrito no display a partir da primeira linha na primeira coluna, isso devido a posição de inicialização do cursor.

Agora escreveremos uma subrotina que posiciona o cursor em qualquer linha e coluna do display.

Subrotina que posiciona o cursor no Display

Instrução	RS	D7	D6	D5	D4	D3	D2	D:	L	00
Posiciona o Cursor	0	1		F	Posiçã	o do	Curs	sor		
posicionaCursor: CLR RS SETB P1.7 MOV C, ACC.6 MOV P1.6, C MOV C, ACC.5	; clea	; ; ; ;	indicates	Ch	struction naracter DRAM a	located	1	2 3 01 02	4 5	
MOV P1.5, C MOV C, ACC.4 MOV P1.4, C		; ; ; high	nibble se	DI	DRAM a			41 42		-
SETB EN CLR EN		; ; negat	tive edge	on E						
MOV C, ACC.3 MOV P1.7, C MOV C, ACC.2 MOV P1.6, C		; ; ;								
MOV C, ACC.1 MOV P1.5, C MOV C, ACC.0 MOV P1.4, C		; ; ; low n	iibble set							
SETB EN CLR EN		; ; negat	tive edge	on E						
CALL delay RET		; wait fo	or BF to	clear						

Escrevendo no meio do display

```
org 0000h
 LJMP START
org 0030h
START:
 acall lcd init
 mov A, #06h
 ACALL posicionaCursor
                            ; Posiciona o cursor na coluna 06 da primeira linha
 MOV A, #'F'
 CALL sendCharacter
                           ; send data in A to LCD module
 MOV A, #'E'
 CALL sendCharacter
                           ; send data in A to LCD module
 MOV A, #'I'
 CALL sendCharacter
                           ; send data in A to LCD module
 JMP$
```

Observe que o texto agora foi escrito no display a partir da 7° coluna da primeira linha, isso devido ao posicionamento do cursor.

Subrotina que limpa o display

Instrução	RS	D7	D6	D5	D4	D3	D2	D1	D0
Limpa Display	0	0	0	0	0	0	0	0	1

```
;Limpa todo o display e retorna o cursor para primeira posição clearDisplay :
```

```
CLR RS
              ; clear RS - indicates that instruction is being sent to module
CLR P1.7
CLR P1.6
CLR P1.5
CLR P1.4
                      ; | high nibble set
SETB EN
CLR EN
                      ; | negative edge on E
CLR P1.7
CLR P1.6
CLR P1.5
SETB P1.4
                      ; | low nibble set
SETB EN
                      ; | negative edge on E
CLR EN
CALL delay
                      ; wait for BF to clear
RET
```

Subrotina que retorna o cursor

Instrução	RS	D7	D6	D5	D4	D3	D2	D1	D0
Retorna Cursor	0	0	0	0	0	0	0	1	1

;Retorna o cursor para primeira posição sem limpar o display retornaCursor :

RET

```
CLR RS
             ; clear RS - indicates that instruction is being sent to module
CLR P1.7
CLR P1.6
CLR P1.5
CLR P1.4
                     ; | high nibble set
SETB EN
CLR EN
                     ; | negative edge on E
CLR P1.7
CLR P1.6
SETB P1.5
SETB P1.4
                     ; | low nibble set
SETB EN
CLR EN
                     ; | negative edge on E
CALL delay
                     ; wait for BF to clear
```

Escrevendo no meio do display e retornando o cursor

```
org 0000h
 L.IMP START
org 0030h
START:
 acall lcd_init
 mov A, #06h
 ACALL posicionaCursor
                            ; Posiciona o cursor na coluna 06 da primeira linha
 MOV A, #'F'
 ACALL sendCharacter
                            ; send data in A to LCD module
 MOV A, #'E'
 ACALL sendCharacter
                            ; send data in A to LCD module
 MOV A, #'I'
 ACALL sendCharacter
                            ; send data in A to LCD module
 ACALL retornaCursor
 JMP$
```

Observe que o texto agora foi escrito no display a partir da 7° coluna da primeira linha, e o cursor está na primeira posição.

Isso significa que a escrita começará na posição que o cursor está.

Caracteres de escrita no Display

No display LCD cada caractere é representado por um número, onde a maioria dos caracteres são a mesma numeração da tabela ASCII.

Padrão de Caracteres do Display

Lower 4	0000	0001	0010	0011	0100	2101	0110	0111	1000	1001			1100		1110	
4 Bitte	CG RAM	0001	0010	0	a		0110	P	1000	1001	1010	1011	7	=		p
xxxx0000	(1)		_	Ÿ	Ш	<u> </u>						_		_	1	_
xxxx0001	(2)		!	1	H	Q	a	9				7	•	4	ä	q
xxxx0010	(3)		H	2	В	R	b	r			Γ	1	ij	×	F	0
xxxx0011	(4)		#	3	C	5	C	s			J	Ż	Ŧ	ŧ	8	60
xxxx0100	(5)		\$	4	D	T	d	t			·	I	ŀ	ţ	Н	Ω
xxxx0101	(6)		7	5	E	U	e	u			•	7	+	ı	Œ	ü
xxxx0110	(7)		&	6	F	Ų	f	Ų			7	Ħ	_	3	ρ	Σ
xxxx0111	(8)		7	7	G	W	9	W			7	‡	Z	,	9	π
xxxx1000	(1)		(8	H	X	h	×			4	7	*	IJ	Ţ	$\overline{\mathbf{x}}$
xxxx1001	(2))	9	Ι	Y	i	y			÷	ኃ	J	լի	-8	y
xxxx1010	(3)		*	=	J	Z	j	z			I		n	1	j	Ŧ
xxxx1011	(4)		+	;	K		k	{			7	Ħ	L		×	Fi
xxxx1100	(5)		7	<	L	¥	1				ħ	5)	J	7	¢	Ħ
xxxx1101	(6)		_	=	M]	M	}			ュ	Z	ጎ	<u>ب</u>	Ł	÷
xxxx1110	(7)			>	N	^	n	÷			3	t	市	•	ñ	
xxxx1111	(8)		•	?	0	_	0	+			·y	y	7		ö	

Escrevendo no meio do display e retornando o cursor

```
org 0000h
 L.IMP START
org 0030h
START:
 acall lcd_init
 mov A, #06h
 ACALL posicionaCursor
                            ; Posiciona o cursor na coluna 06 da primeira linha
 MOV A, #46h
 ACALL sendCharacter
                            ; send data in A to LCD module
 MOV A, #45h
 ACALL sendCharacter
                            ; send data in A to LCD module
 MOV A, #49h
 ACALL sendCharacter
                            ; send data in A to LCD module
 ACALL retornaCursor
 JMP$
```

Observe que o texto que foi escrito no display.

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.