

دانشگاه صنعتی شریف

دانشکده مهندسی کامپیوتر

گزارش پروژهی پایانی درس پردازش علائم دیجیتال

عنوان:

Image Compression Algorithm Based On The DCT Transform

دكتر حسين صامتي

نام و نام خانوادگی:

مرضیه فرهادی (92204671)

سحر طاهری (92202527)

تينا خواجه (93210761)

زمستان ۱۳۹۳

چکیده

امروزه حجم اطلاعات برای ذخیره سازی و انتقال اطلاعات اهمیت ویژهای داراست. لذا در پردازش علائم دیجیتال، فشرده سازی اطلاعات ورودی مورد توجه بسیار واقع شده است و روشهای فراوانی در این رابطه ارائه شده است.در این پژوهش، فشرده سازی تصاویر که جزو مباحث پر اهمیت پردازش تصاویر است، مورد توجه قرار گرفته است. برای ذخیرهسازی تصاویر باید حجم اطلاعات را تا جایی که ممکن است کاهش داد. اساس تمام روشهای فشردهسازی کنار گذاردن بخشهایی از اطلاعات و دادهها است. قصد داریم به پیاده سازی روش ارائه شده در مقاله [1] بپردازیم. در این مقاله روشی برای فشرده سازی اتلافی تصاویر رنگی سازی روش ارائه شده در آن بر روی تصاویر رنگی پس از مرحلهی پیش پردازش که شامل حذف میانگین از سه مؤلفه ی [1] [1] [1] [1] [1] [1] [2] [3] [3] [4] [5] [5] [5] [6

كليدواژه: فشرده سازی تصاوير رنگی، تبديل adaptive scanning ،DCT، پردازش تصوير

فهرست

١	١- مقدمه
۲	۱-۱ تبدیل کسینوسی گسسته
٣	۱-۲ معیار های عملکر د رایج در فشر ده سازی تصویر
٤	۲- روش پیشنهاد شده
٤	۱-۲ تبدیل فضای رنگ از RGB به YCbCr
٦	۲-۲ تبدیل بلوکی DCT
٦	۳-۲- مرحلهی Thresholding و Quantization
۸	۲-۶- رمزگذار بدون اتلاف
	۱-٤-۲ انواع روش های scanning
١١	۲-۴-۲ فرمت جدید برای نمایش بردار ها
١٢	۳-۴-۲ روش Two-Role Encoder
١٥	 ۳- آزمایشات انجام شده و نتایج بدست آمده در مقاله
١٨	۴- آزمایشات و نتایج حاصل از پیاده سازی
	۱-۴ آزمایش اول نمایش کارایی الگوریتم:
۲۸	۵-۳ آزمایش سوم اندازه گیری معیارهای کیفیت:
٣٠	منابع

١- مقدمه

فشرده سازی تصویر به مسئله ای گفته می شودکه طی آن میزان داده لازم برای نمایش تصویر را کاهش می دهیم. اساس این کاهش دادهها از بین بردن اطلاعات تکراری است. از دید ریاضیاتی این کاهش حجم را می- توان به دید یک نگاشت تصویر دو بعدی به یک مجموعهای از دادههای کم ارتباط تر دید.

در این گزارش به بررسی شاخهای از پردازش تصویر که خود زیرشاخهای از پردازش سیگنال میباشد می-پردازیم. میدانیم که در پردازش تصاویر، ورودی میتواند عکس یا تصویر ویدئویی باشد و خروجی متناظر نیز عکس، مجموعهای از ویژگیها و یا پارامترهای مرتبط با تصویر میباشد. پردازش تصاویر با اهداف مختلفی صورت میگیرد که معمولاً تصویر به صورت یک سیگنال دو بعدی در نظر گرفته میشود و تکنیکهای مختلفی برای داشتن خروجی مناسب بر روی آن اعمال میگردد.

یکی از اهدافی که یک پروسه ی پردازش تصویر می تواند به دنبال داشته باشد فشرده سازی تصویر است، که طی آن حجم تصویر ورودی کاهش می یابد به گونه ای که کیفیت عکس خروجی، همچنان در حد قابل قبولی باشد. هدف فرایند فشرده سازی تصویر کاهش اطلاعات غیر ملزوم، از بین بردن اطلاعات اضافه و تکراری در عکس است به گونه ای که بتوان داده های آن را در فرم بهینه ای ذخیره و منتقل نمود.

در حالت کلی برای فشرده سازی تصاویر دو متد مختلف وجود دارد:

۱_ فشرده سازی به همراه از دست دادن اطلاعات، با تلفات ۱

۲_ فشرده سازی بدون از دست دادن اطلاعات، بدون تلفات 7 .

در مورد اول پس از فشرده سازی تصویر، قسمتی از اطلاعات را از دست دادهایم به بیان دیگر امکان بدست آوردن تصویر اولیه از تصویر فشرده سازی شده تقریباً غیر ممکن است. در مورد دوم پس از فشرده سازی و

¹ lossv

² lossless

کاهش حجم عکس می توانیم دوباره عکس عملیات را انجام دهیم و به همه اطلاعات قبل از فشرده سازی دست یابیم، به بیانی دیگر طی این عملیات، اطلاعاتی از بین نمیرود و هر قسمتی که با هدف کاهش حجم از بین رفته است، قابل بازیابی هست.

$^{"}$ ا-۱ تبدیل کسینوسی گسسته $^{"}$

یکی از تبدیلهایی که برای فشرده سازی تصاویر مورد استفاده قرار می گیرد تبدیل سینوسی گسسته است. تبدیل کسینوسی گسسته دنباله ای از نقاط داده ها را به صورت حاصل جمع توابع COS ای مشخص می-نماید. تبدیلکسینوسی گسسته در زمینه های مختلف از علم و مهندسی اهمیت دارد و در مواردی همچون فشرده سازی همراه با اتلاف فایل های صوتی، تصاویر و ویدیو و غیره کاربرد دارد.

استفاده از COS به جای Sin در این حالت بسیار اهمیت دارد به این دلیل که باعث می شود در این موارد تعداد توابع COS کمتری برای تخمین مورد احتیاج باشد.

این تبدیل مشابه تبدیل DFT است اما تنها از اعداد حقیقی استفاده می نماید. به طور تقریبی می توان گفت که تبدیل کسینوسی گسسته معادل DFT با طول داده های دو برابر و برای داده های حقیقی هست. در کل ۸ نوع مختلف DCT معرفی شده است که ۴ نوع آن رایج هست. معمول ترین نوع DCT نیز نوع دوم آن است که به طور ساده به آن DCT می گویند. رابطه ی آن در زیر آمده است:

$$X_k = \sum_{n=0}^{N-1} x_n \cos\left[\frac{\pi}{N}\left(n + \frac{1}{2}\right)k\right] \qquad k = 0, \dots, N-1.$$
 (1)

_

³ Discrete cosine transform

۱-۲ معیارهای عملکرد رایج در فشرده سازی تصویر

عملکرد روش فشرده سازی با استفاده از دو معیار اساسی زیر برآورد میشود:

نسبت تراکم (CR) و اندازه گیری کیفیت تصویر بازسازی شده ($PSNR^{f}$).

در ادامه به تعریف این دو معیار همراه با معیارهای رایج دیگر برای تصاویر رنگی پرداخته می شود:

• نسبت تراکم (CR): نسبت بین اندازه تصویر اصلی و اندازه تصویر فشرده شده است که مقاله از رابطه ی زیر برای محاسبه استفاده مینماید.

$$CR = \frac{\text{Original RGB color image size in bits}}{\text{Compressed image in bits}}$$
 (Y)

• میانگین مربع خطا (MSE): این معیار در اصل برای اندازه گیری میزان اعوجاج در تصویر بازسازی شده است و با رابطه زیر محاسبه می شود.:

$$MSE = \frac{1}{N \times M} \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (x_{i,j} - \widehat{x}_{i,j})^2$$
 (r)

• **PSNR:** به عنوان یک معیار پذیرفته شده برای اندازه گیری کیفیت به طور گسترده در زمینهی فشرده سازی تصاویر مورد استفاده واقع شده است.

برای تصاویر غیر رنگی برابر زیر هست:

$$PSNR = 10 \times \log_{10} \frac{255^2}{MSE} \tag{f}$$

برای تصاویر رنگی برابر زیر هست:

$$PSNR = 10 \times \log_{10} \left(\frac{255^2 \times 3}{MSE(R) + MSE(G) + MSE(B)} \right)$$
 (4)

.

⁴ popular peak signal to noise ratio

۲- روش پیشنهاد شده

در شکل زیر دیاگرام روش فشرده سازی ارائه شده نشان داده شده است که در ادامه به ترتیب مراحل آن توضیح داده می شود:

شكل ١ – بلوك دياگرام روش پيشنهادي مقالهي [1].

۱-۲ تبدیل فضای رنگ از RGB به YCbCr

این مرحله ی پیش پردازش در عمل برای کاهش همبستگی میان مولفههای رنگ هست. مزیتی که فضای رنگی RGB رنگی RGB دارد این است که در فضای رنگی RGB اطلاعات رنگی تصویر در هر سه کانال آن به طور تقریبا مساوی قرار دارد که در شکل ۲ قابل مشاهده است. اما در فضای رنگی YCbCr این همبستگی کاهش می یابد در فضای رنگ YCbCr بیشتر اطلاعات در کانال ۲ تصویر وجود دارد. بنابراین می توان با داشتن تنها یک کانال اطلاعات زیادی از تصویر را ذخیره کرد.

شکل ۲: همان طور که در شکل مشاهده می کنیم همبستگی میان سه مؤلفه ی رنگ $B_{e}G$ بسیار زیاد است

چون در فضای Y توزیع انرژی در مؤلفه ی Y بیشتر است بنابراین دو مؤلفه ی دیگر می توانند بیشتر فشرده شوند. در شکل T این خصوصیت در این فضای رنگ قابل مشاهده است.

شکل T: همان طور که در شکل زیر مشاهده می کنیم همبستگی میان سه مؤلفه کاهش یافته است بیشتر اطلاعات در کانال Yتصویر وجود دارد.

معیار PSNR برای کنترل کیفیت استفاده می شود و می تواند تضمین کند که کیفیت تصویر بعد از فشرده سازی در حد قابل قبولی باقی مانده است. ماتریس های تبدیل این دو فضای رنگ به یکدیگر در زیر آمده است.

$$\begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.144 \\ -0.16875 & -0.33126 & 0.5 \\ 0.5 & -0.41869 & -0.08131 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$(f)$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.402 \\ 1 & -0.34413 & -0.71414 \\ 1 & 1.772 & 0 \end{bmatrix} \begin{bmatrix} Y \\ Cb \\ Cr \end{bmatrix}$$
(Y)

۲-۲ تبدیل بلوکی DCT

۳-۲- مرحلهی Thresholding و Thresholding

همانطور که در بلوک دیاگرام داده شده در شکل ۱ دیده می شود در طی فرایند فشرده سازی تصویر، یک مرحله به نام thresholding وجود دارد که مقادیر کوچکتر از یک عدد خاص را حذف می کند که چون در فرایند بازسازی تصویر در شکل ۳ عکس این عمل صورت نگرفته است، باعث از بین رفتن اطلاعات می شود. بنابراین تلفات ناشی از فشرده سازی در طی دو مرحله و thresholding و thresholding صورت می گیرد به گونه ای که با معیارهای کنترل کیفیت همانند PSNR و MSE که در بخش های گذشته اشاره شده است، این میزان فشردگی کنترل می شود.

فرض کنید PSNR ،GPSNR^۵ هدف باشد که بعد از thresholding و quantization بخواهیم به آن دست یابیم؛ فرآیند فشرده سازی به وسیله ی حل معادله ۸ قابل کنترل است :

$$PSNR(TH) - GPSNR = 0$$
 (^)

معادلهی ۸ را می توان در یک محدوده قابل حل تعریف کرد که تخمین بهینهترین TH^* را ممکن میسازد: $|PSNR(TH^*) - GPSNR| \leq \varepsilon$

در این مقاله 8-0.5% انتخاب شده است.

Quantization در این مقاله بر اساس quantizer خطی انجام میشود که تجربه نشان داده که یک Quantization بیتی، کیفیت تصاویر رنگی را در حد قابل قبول حفظ می کند. برای این مرحله داریم:

$$QNZDCT = \left[1 + \left(\frac{NZDCT - NZDCT_{\min}}{NZDCT_{\max} - NZDCT_{\min}}\right)(2^{nbits} - 2)\right]$$
(1.)

که NZDCT فرایب غیرصفر تبدیل بعد از thresholding است و NZDCT و NZDCT بعد از Quantization ترتیب کمترین و بیشترین مقدار این ضرایب هستند. مقادیر NZDCT بعد از QNZDCT بعد از QNZDCT ترتیب کمترین و بیشترین مقدار این ضرایب هستند. مقادیر این فرایب این که کردن (QNZDCT) و بازه ی $(2^{nbit}-1),1]$ قرار دارند که nbit فرایب است.

_

⁵ Goal PSNR

۲-۴- رمزگذار بدون اتلاف

در این مقاله روشی برای کدگذاری بلوکهای تبدیل threshod و threshod شده ارائه شده است که بدون اتلاف باعث کاهش حجم بسیاری در فشرده سازی انجام شود. در این روش ابتدا بلوک های n^*n به بدون اتلاف باعث کاهش حجم بسیاری در فشرده سازی انجام شود. در این روش ابتدا بلوک های بردار وجود بردارهایی با طول n^2 تبدیل می شوند. روش هایی برای scanning بلوکها و تبدیل آنها به بردار وجود دارد که در این مقاله n^2 نوع scanning بلوک ها مطرح شده و به صورت adaptive برای هر بلوک، بررسی می شود که در این مقاله n^2 نوع scanning برای آن بهتر است. این بهتر بودن بدین معنی است که با scanning می شود که کدام نوع Scanning برای آن بهتر است. این بهتر بودن بدین معنی است که با یک بلوک رشته ها حذف شده و عددی به عنوان تعداد صفرها در کدگذاری قرار داده می شود. حال نوع scanning که بیشترین طول دنباله ی صفر در انتهای بردار را ایجاد کند به عنوان مناسبترین scanning برای آن بلوک به حساب میاید و در کدگذاری لحاظ می شود.

۲-۴-۲ انواع روش های scanning

در این مقاله ۴ نوع scanning در بلوک استفاده شده است. در ادامه با شکل به نحوه ی محاسبه آنها می-پردازیم:

: Zigzag scanning •

شكل۴: روش ZigZag

: Hilbert scanning •

شكل۵: روش Hilbert

: Horizontal scanning •

شكل ۶: روش Horizontal

:Vertical scanning •

شکل۷: روش Vertical

۲-۴-۲ فرمت جدید برای نمایش بردارها

تک تک بردار هایی که از scanning بلوک ها بدست می آیند به فرمت زیر در می آیند.

شکل ۸: فرمت جدید برای نمایش بردارها

که توضیح هر بخش بردار بالا، در زیر آمده است:

• (١بيت) A يا بيت فعاليت :

این بیت اگر 0 باشد به معنی صفر بودن همه ی ضرایب DCT در بلوک است در غیر این صورت مقدار آن 1 است.

: PLNZ (بيت P) •

این مجموعه بیت آدرس آخرین ضریب QNZDCT در بردار را نگه می دارد. مثلا اگر مکان آخرین ضریب غیر صفر در بردار حاصل از scanning یک بلوک، k باشد معادل باینری k در k قرار می گیرد.

n imes n -1 برابر PLNZ ماکزیمم مقدار PLNZ ماکزیمم مقدار PLNZ برابر PLNZ ماکزیمم مقدار PLNZ ماکزیمم بعداد بیت مورد نیاز برای کد کردن

است. $P = \log_2 n \times n$ است.

: AS (۲بیت) •

این دو بیت برای نشان دادن ۴ نوع scanning استفاده می شود که بهترین نوع scanning که دنباله ای با بیشترین طول در انتهای بردار می دهد را مشخص می کند. به طور مثال 00 برای کدکردن روش Vertical بیشترین طول در انتهای بردار می دهد را مشخص می کند. به طور مثال 00 برای کدکردن روش Horizontal scannig برای کد کردن روش Hilbert scanning و 11 برای کد کردن روش Hilbert scanning استفاده می شود.

$:L (nbits + 1) \times (PLNZ + 1)$ •

PLNZ+1 بیت کد می شوند. به تعداد quantize همه صفریا بیت کد می شوند. به تعداد q quantize همه صفریا و q می شوند. به تعداد q بیت برای کدگذاری ضریب در برداری که صفرهای انتهای آن حذف شده وجود دارد. بنابراین به تعداد q بیت برای کدگذاری بردار نیاز است.

بخش L در فرمت جدید نمایش بردار، خود نیز توسط L کدگذاری می شود که این کدگذار نیز بدون اتلاف، بخش L را فشرده می کند.

۳-۴-۲ روش Two-Role Encoder

Two-Role encoder تغییر یافته ی روش Run-Length Encoder) RLE تغییر یافته ی روش توضیحات زیر کار می کند:

- همانطور که گفته شد ضرایب غیر صفر و quantize شده تبدیل DCT با DCT با DCT بیت کد می شوند که quantize با DCT با

- دنبالههایی از صفرهای پشت سرهم با طولهای مختلف در بردارها وجود دارد که می توان آنها را برداشت و تعداد آنها را با 2^{nbits} کد کرد.

چون quantizer، دقت nbits دارد برای کد کردن هر ضریب به hbits ابیت نیاز است. ابیت اضافه در ابتدای هر کد قرار می گیرد که ۱ بودن آن، نشان دهنده ی ضرایب غیر صفر است و صفر بودن آن یعنی اگر بیت اضافی در ابتدای کد صفر باشد نشان دهنده ی تعداد صفر در یک دنباله ی صفر پشت سرهم در آن مکان است.

بنابراین در کدگشایی اگر TRE>=2^{nbits} باشد یک QNZDCT است که با حذف بیت اول و تبدیل باینری به دسیمال nbits بعد می توان آنرا کدگشایی کرد.

و اگر $TRE < 2^{nbits}$ باشد یک دنبالهی صفر کدگشایی میشود که تعداد آن، با حذف بیت اول و تبدیل باینری به دسیمال $TRE < 2^{nbits}$ به دسیمال $TRE < 2^{nbits}$ باینری به دسیمال $TRE < 2^{nbits}$ به دسیمال $TRE < 2^{nbits}$ باینری به دسیمال $TRE < 2^{nbits}$ به دسیمال $TRE < 2^{nbits$

برای مثال بردار زیر را فرض کنید از Zigzag scanning یک بلوک تصویری زیر بدست آمده است:

$$x = \begin{bmatrix} 163 & 157 & 159 & 160 & 159 & 154 & 156 & 1577 \\ 161 & 155 & 155 & 157 & 157 & 157 & 157 & 152 \\ 159 & 159 & 157 & 157 & 159 & 154 & 158 & 154 \\ 160 & 159 & 158 & 158 & 156 & 155 & 157 & 158 \\ 161 & 158 & 160 & 157 & 156 & 153 & 156 & 171 \\ 159 & 155 & 154 & 158 & 156 & 155 & 154 & 160 \\ 157 & 156 & 151 & 160 & 157 & 156 & 156 & 155 \\ 158 & 158 & 158 & 159 & 155 & 156 & 154 & 171 \end{bmatrix}$$

بعد از طی مراحل خروجی زیر را داریم و جواب Zigzag scanning در زیر آمده است:

Zigzag scan (AS = 00)

TRE بردار نتایج بدست آمده، برابر زیر است :

After TRE:

225 3 155 155 1 155 2 155 2 155 156 1 155 6 155 2 155 4 155 154 155 4 155 3 155 9 155 2 155.

سپس معادل باینری این اعداد را با دقت Aبیت (در این مثال V quantizer بیتی بوده است) بدست آورده و در کنار هم قرار می دهیم و V بیت V و V بیت آورده و در کنار هم بدست آمده اضافه می کنیم. سپس برای تمام بلوک ها به طور مشابه رشته ها را بدست آورده و در کنار هم قرار می دهیم. اکنون رشته ای از بیت های صفر و یک داریم که نمایانگر یک تصویر است و قطعاً دارای تعداد کمتری بیت نسبت به حجم اولیهی تصویر است.

٣- آزمایشات انجام شده و نتایج بدست آمده در مقاله

برای بررسی این روش و نشان دادن مزیتهای آن، چند تصویر مهم که در پردازش تصویر کاربرد دارند مورد استفاده قرار گرفته است از جمله تصاویر lena و airplane و peppers در ابعاد ۵۱۲*۵۱۲ و چند تصویر در ابعاد ۲۵۶*۲۵۶.

یکی از آزمایشاتی که انجام شده، مقایسهی کارایی روش فشرده سازی adaptive scanning پدر فضای YCbCr با YCbCr با بیت مشخص شده و YCbCr با بیت مشخص شده و ابعاد بلوک بندی تصاویر برای تبدیل DCT تغییر داده شده و نتایج بدست آمده در جدولی قرار داده شده است که بخشی از آن را در جدول زیر می بینید:

Performances in the RGB space for the different DCT block sizes and the quantizer width.

nbits	7			8		
Image	PSNR	bpp	CR	PSNR	bpp	CR
Bloc 8 × 8						
Airplane	30.32	1.2241	19.606	30.349	1.3374	17.945
Peppers	30.216	1.2457	19.266	30.244	1.3571	17.685
Lena	32.057	1.5417	15.567	31.793	1.6002	14.998
Bloc 16 × 16						
Airplane	30.372	0.8735	27.475	30.456	0.9717	24.698
Peppers	30.167	0.8916	26.919	30.055	0.9417	25.485
Lena	31.959	1.1272	21.292	32.071	1.266	18.958

از مقایسه دو جدول بالا می توان دریافت که کارایی الگوریتم در فضای رنگ YCbCr بیشتر بوده و با PSNR قابل قبول به نرخ فشرده سازی بهتری میتوان دست یافت. هم چنین در یک PSNR تقریبا ثابت، با quantizer بیت هم می توان کیفیت را ثابت و فشردگی را افزایش داد.

با بلوک های ۱۶*۱۶ نیز نتیجه ی بهتری نسبت به بلوک های ۸*۸ می توان گرفت.

CR(نرخ فشرده سازی) و bpp از روابط زیر محاسبه می شوند:

$$CR = \frac{\text{Original RGB color image size in bits}}{\text{Compressed image in bits}}$$
 and
$$bpp = \frac{24 \, bits}{CR}$$

هم چنین در جدولی استاندارد JPEG با روش ارائه داده شده مقایسه شده که در شکل زیر آن را می بینیم:

Performances comparison between the proposed method and the standard DCT JPEG algorithm.

Image	Proposed meti	JPEG [4]		
	PSNR	bpp	PSNR	bpp
Airplane	31.403	0.7208	31.46	0.9
Peppers	30.3330	0.8772	30.47	1.47
Lena	32.7729	1.0073	32.76	1.03

با توجه به جدول بالا می بینیم که در PSNR تقریبا مشابه bpp روش ارائه شده نسبت به pp استاندارد JPEG کمتر و در نتیجه نرخ فشرده سازی بیشتر است.

• مقایسهی کیفیت روش پیشنهادی و روش CBTC-PF و OPEG

Performances comparison between the proposed method and the CBTC-PF algorithm.

Image	Proposed method YCbCr (16 \times 16)		CBTC-PF [4]	
	PSNR	bpp	PSNR	bpp
Airplane	30.381	0.5917	30.36	1.04
Peppers	30.059	0.809	30.15	1.5
Lena	31.97	0.8101	31.93	1.17
Girl	35.002	0.4574	35.13	0.6
Couple	32.287	0.9252	32.44	1
House	31.726	0.8232	31.79	1.2
Zelda	31.333	0.8705	31.31	1.12
Average	31.8226	0.7553	31.8729	1.09

Performances comparison between the proposed method and the standard DCT JPEG algorithm.

Image	Proposed method YCbCr (16×16)		JPEG [4]	
	PSNR	bpp	PSNR	bpp
Airplane	31.403	0.7208	31.46	0.9
Peppers	30.3330	0.8772	30.47	1.47
Lena	32.7729	1.0073	32.76	1.03
Girl	36.9587	0.6920	36.85	0.62
Couple	33.0700	1.1276	33.02	0.94
House	31.3231	0.7546	31.34	1.24
Zelda	32.0521	1.0890	32.06	1
Average	32.5590	0.8955	32.5657	1.0286

۴- آزمایشات و نتایج حاصل از پیاده سازی

۱-۴ آزمایش اول نمایش کارایی الگوریتم:

ابتدا برای نشان دادن کارایی الگوریتم، تصاویر متعددی را فشرده کرده و نرخ فشرده سازی و کیفیت تصاویر بعد از اجرای الگوریتم را نشان می دهیم. سعی شده پارامترها به گونه ای انتخاب شوند که نتایج تا حدودی به نتایج مقاله نزدیک باشد. همان طور که در نتایج بدست آمده مشاهده می کنیم در مقابل بدست آوردن نرخ فشرده سازی خوب، کیفیت تصویر نیز تقریبا خوب باقی مانده و این یکی از محاسن این الگوریتم فشرده سازی است. پارامتر هایی که در آزمایشات تغییر کرده دقت کوانتایزر یا همان DCT نیز از ۸ به ۱۶ قابل تغییر است که واحد آن بیت بوده. همچنین سایز بلوک بندی تصویر در تبدیل DCT نیز از ۸ به ۱۶ قابل تغییر است و مشاهده می کنیم که سایز ۱۶ نتایج بهتری حاصل می کند. هم چنین threshold پارامتری است که افزایش آن نرخ فشرده سازی را افزایش داده و تا حدودی کیفیت یا همان PSNR تصویر را کاهش می

Quantizer resolution: 7 bit

Threshold: 30

شکل ۳

Quantizer resolution: 8bit

Threshold:35

شكل۵۱

Quantizer resolution: 7 bit

Threshold: 30

شكل ٤

Quantizer resolution: 8 bit

Threshold: 40

شکل ه

برای دو تصویر airplane و girl نیز آزمایشات بالا انجام گرفت ولی تنها برای مشاهده کیفیت تصویر بعد از فشرده سازی برای هر تصویر نتیجه یک آزمایش قرار داده شده است.

: airplane تصوير

Input File : D:\sharif\13931\dsp project\airplane.png	browse Start Con
Parameters —	- Images - Before Compression
Quantizer Resolution: 7	The same
DCT Block Size:	EIG
Threshold: 15	CO 115 DO 10052 7
	A Sant Million
Result	
	A CONTRACTOR OF THE PARTY OF TH
PSNR: 37.7982	After Compression
Compression Ratio: 13.1405	and the same
bpp: 1.8264	
орр.	FIG
	US BUS FUNCE
	The state of the s
	THE PARTY AND ASSESSED ASSESSE

شکل ۲

تصوير girl :

Input File : D:\sharif\13931\dsp project\4.1.03(girl).tiff	browse Start Com
	<u>U</u>
- Parameters	Images Before Compression
Quantizer Resolution: 7	
Quantizer Resolution: 7	
DCT Block Size:	
Threshold: 15	
<u></u> 0	
3.	7
Result—	
PSNR: 39.9003	After Compression
	7 Alas Octop Coccos
Compression Ratio: 23.4504	
bpp: 1.0234	A CO

شکل ۷

۵-۲ آزمایش دوم کاهش همبستگی در حوزهی YCbCr:

آزمایش دوم در مقاله مقایسه ی نرخ فشرده سازی در فضای RGB و YCbCr است. با اجرای این آزمایش نتایج زیر بدست می آید که همان طور که مشاهده می کنیم تفاوت بسیاری بین نرخ فشرده سازی در فضای نتایج زیر بدست می آید که همان طور که مشاهده می کنیم تفاوت در توزیع انرژی در مؤلفه های رنگ Cb،Y و Cr است که باعث می شود و Cb بیشتر فشرده شوند.

تصویر couple

↓ test2						X			
	Start								
Perfor	Performances in the YCbCr space & in the RGB space								
Input	Input File: D:\sharif\13931\dsp project\4.1.02(couple).tiff Browse								
Parame	eters								
	tizer resolution: 7	Bloo	ck size: 🔘	8 16	Threshold: 25				
	RGB space results			YCbCr space res	sults				
	PSNR:	36.2196		PSNR:	35.4128				
	CR:	13.0502		CR:	28.122				
	bpp:	1.8391		bpp:	0.85342				

شکل ۸

تصوير house

📣 test2		_	_	_	_	-		X	
	Start								
	Performances in the YCbCr space & in the RGB space								
	Input File: D:\sharif\13931\dsp project\4.1.05(house).tiff Browse								
	_ Parar	neters-							
	Qua	ntizer resolution: 8	Blo	ock size: 🔘	8 @ 16	Thr	eshold: 25		
		RGB space results			YCbCr spa	ace results-			
		PSNR:	36.7385		PS	SNR:	35.5181		
		CR:	12.4905		(CR:	23.6628		
		bpp:	1.9215		b	opp:	1.0143		

شکل ۹

نتايح مقاله:

Table 1 Energy distribution in RGB and YCbCr spaces.

Image	RSE	GSE	BSE	YSE	CbSE	CrSE
Airplane	31.901	32,668	35.431	99.253	0.477	0.270
Peppers	49.109	38.080	12.811	86.007	5.614	8.380
Lena	58.373	21.095	20.533	89.530	1.503	8.967
Girl	32.361	32.926	34.713	99.587	0.052	0.361
Couple	46.763	28.888	24.349	93.029	2.310	4.661
House	33.354	30.901	35.744	96.507	1.044	2.449
Zelda	48.265	28.757	22.978	90.936	2.603	6.461
Average	42.875	30.474	26.651	93.55	1.943	4.507

نتایح پیاده سازی:

image	RSE	GSE	BSE	YSE	CbSE	CrSE
Airplane	31.9008	32.6685	35.4307	99.2536	0.4766	0.2697
Lena	58.3727	21.0946	20.5325	89.5268	1.5031	8.9699
Girl	32.3609	32.9264	34.7127	99.5872	0.0524	0.3604
Couple	46.7630	28.8883	24.3486	93.0272	2.3104	4.6624
House	33.3544	30.9012	35.7443	96.5075	1.0440	2.4484
Zelda	48.2645	28.7570	22.9784	90.9346	2.6030	6.4623

۵-۳ آزمایش سوم اندازه گیری معیارهای کیفیت:

• فضای RGB

نتايج مقاله:

Performances in the RGB space for the different DCT block sizes and the quantizer width.

RGB nbits	7			8			9	9		
	PSNR	bpp	CR	PSNR	bpp	CR	PSNR	bpp	CR	
Bloc 8 × 8										
Airplane	30.32	1,2241	19.606	30.349	1.3374	17.945	30,356	1.4488	16.566	
Peppers	30.216	1,2457	19.266	30.244	1.3571	17.685	30,25	1.4688	16.34	
Lena	32.057	1.5417	15.567	31.793	1.6002	14.998	31.801	1.7349	13.834	
Girl	35.13	1.0745	22,337	35.189	1,2003	19.995	35.203	1.3033	18.414	
Bloc 16 × 16										
Airplane	30,372	0.8735	27.475	30.456	0.9717	24.698	30.477	1.0639	22.558	
Peppers	30,167	0.8916	26.919	30.055	0.9417	25.485	30.074	1.0329	23.235	
Lena	31.959	1,1272	21,292	32.071	1.266	18.958	31.79	1,2973	18.5	
Girl	35.148	0.8907	26.944	35,233	1.0032	23.924	35.26	1.1034	21.751	

نتایج پیاده سازی:

RGB								
nbit	7			8				
image	PSNR	bpp	CR	PSNR	bpp	CR		
Block Size (8×8)								
Airplane	34.5701	1.2199	19.6736	34.6172	1.3197	18.1864		
Peppers	34.0106	1.2214	19.649	33.8402	1.2144	19.7636		
Girl	37.6489	1.1044	21.7318	37.7328	1.1897	20.1735		
Block Size (16×16)								
Airplane	34.663	0.8692	27.6096	34.7698	24.953	0.9618		
Peppers	33.8475	0.8274	29.0057	33.3577	1.0562	22.7238		
Girl	37.2168	0.60608	39.5988	37.3726	0.66573	36.0509		

• فضاى YCbCr

Performances in the YCbCr space for the different DCT block sizes and the quantizer width.

YCbCr nbits Image	7			8	8			9		
	PSNR	bpp	CR	PSNR	bpp	CR	PSNR	bpp	CR	
Bloc 8×8										
Airplane	30.415	0.8387	28.617	30.458	0.9188	26,122	30.47	0.9984	24.038	
Peppers	30.282	1.1868	20,223	30.035	1.2291	19.526	30.047	1.3286	18.064	
Lena	32.075	1.1973	20.046	31.947	1.263	19.002	31.961	1.3697	17.523	
Girl	35.19	0.6129	39.157	34.982	0.6537	36.715	34.995	0.7103	33.787	
Bloc 16 × 16										
Airplane	30.381	0.5917	40,559	30.251	0.6247	38.417	30,282	0.6848	35.044	
Peppers	30.059	0.809	29.668	30.189	0.899	26.698	30,226	0.9902	24,237	
Lena	31.97	0.8101	29.625	31.94	0.8625	27.826	31.8	0.9045	26,535	
Girl	35.002	0.4574	52,471	35.147	0.5096	47.092	35.181	0.5618	42,722	

Ycbcr									
nbit	7			8			9		
image	PSNR	bpp	CR	PSNR	bpp	CR	PSNR	bpp	CR
Block Size (8×8)									
Airplane	34.9063	0.88522	27.1118	34.9861	0.96074	24.9809	34.9883	1.0362	23.1605
Lena	35.4368	1.2005	19.9922	35.6184	1.3024	18.4281	35.6254	1.4043	17.091
Girl	37.341	0.6134	39.126	37.3085	0.6643	36.1312	37.3185	0.7150	33.5623
Block Size (16×16)									
Airplane	34.6536	0.62263	38.5459	34.8158	0.68745	34.9116	34.8724	0.75227	31.9036
Lena	35.3997	30.0434	0.7988	35.5418	0.8828	27.1847	35.6415	0.9669	24.8211
Girl	38.1152	0.4710	50.9450	38.925	0.5180	38.7434	38.291	0.565	42.4777

منابع

- 1. Fouzi, D., Redha, B., Nabil, B., "Color image compression algorithm based on the DCT transform combined to an adaptive block scanning", International Journal of Electronics and Communications, Volume 65, Issue 1, January 2011.
- 2. Benzid, R., Marir, F., Bouguechal, N., "Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder," IEEE Signal Processing Letters, 2007.
- 3. Netravali, A. N., Haskell, B. G., "Digital Pictures, Representation, Compression, and Standards", 2 nd ed., Plenum Press, 1995.
- 4. Storer, James A., "Data Compression: Methods and Theory" Computer Science Press, Rockville, MD, 1988.