ТВМС, Лабораторная работа 7, Вариант 10

Ковешников Глеб, M3238 kovg16@gmail.com

12 июня 2020 г.

Формулировка

Для случайной величины $X \sim P(\lambda)$, гипотезы $H_0: \lambda = \lambda_0 = 4$, альтернативы $H_1: \lambda > \lambda_0$, при n = 400 и $\overline{X_n} = 4.7$ построить доверительный интервал для $\alpha = 0.1$ и проверить гипотезу для $\gamma = 0.95$.

Входные данные

- $\bullet t_{1-\alpha} = t_{0.9} = 1.65$
- $c_{\gamma} = c_{0.95} = 1.65$
- $I(\lambda) = \frac{1}{\lambda} \Rightarrow I(\overline{\lambda}) = \frac{1}{4.7}$

Доверительный интервал

Построим доверительный интервал:

$$I = \left[\overline{\theta_n} - \frac{t_{1-\alpha}}{\sqrt{nI(\theta_n)}}; \overline{\theta_n} + \frac{t_{1-\alpha}}{\sqrt{nI(\theta_n)}}\right] = \left[4.7 - \frac{1.96}{\sqrt{\frac{400}{4.7}}}; 4.7 + \frac{1.96}{\sqrt{\frac{400}{4.7}}}\right] = \left[4.49; 4.91\right]$$

 $\lambda_0 \notin I$

Таким образом, гипотеза отвергается.

3.1 Проверка гипотезы

Воспользуемся критерием для правосторонней альтернативы:

$$\psi_{n,\alpha}^* = \begin{cases} 1, \sqrt{nI(\theta_0)} \cdot (\overline{\theta_n} - \theta_0) \ge c_{\gamma} \\ 0, \sqrt{nI(\theta_0)} \cdot (\overline{\theta_n} - \theta_0) < c_{\gamma} \end{cases}$$
$$\psi_{n,\alpha}^* = \left[\sqrt{nI(\theta_0)} \cdot (\overline{\theta_n} - \theta_0) \ge c_{\gamma} \right] = \left[6.46 \ge 1.96 \right] = 1$$

Таким образом, гипотеза снова отвергается.