Robust Framework for Saliency Prediction in Images

Where do you look on these images?

Imagine that you are a robot, and you've received this image from your camera. You need to run some expensive localization computations to decide where you are.

You could do
this across the
whole
image....but you
likely don't
need to run the
computation
everywhere.

Running computations everywhere would take a long time.

Running computations everywhere would take a long time.

Running computations everywhere would take a

Instead, doing it just here, or doing it here first could save you a lot of time.

Therefore, need to prioritize the visual information and decide what is most important

Understanding attention enables applications in computer graphics & vision, design

- Image Cropping/Thumbnailing
- Image and Video Compression
- Non-Photorealistic rendering
- Scene Understanding
- Advertising and Package Design
- Web Usability

- Localization/Recognition
- Object Detection
- Navigational Assistance
- Robot Action Vision
- Surveillance Systems
- Assistive Technology for blind or low-vision people

Where we move our eyes is dictated by two mechanisms

- Bottom-Up Mechanisms
- Top-Down Mechanisms

Visual Attention Mechanisms

Bottom-Up

- Automatic
- Reflexive
- Stimulus-driven

Top-Down

- Subject's Prior Knowledge
- Expectations
- Task Oriented
- Memory
- Behavioural Goals

Researchers create computational models of visual attention to predict where people look

Image

Saliency Map

Proposed Solution

Very Deep Network

- 20 layers
- Small kernel sizes

Fully Convolutional Network

- Fully connected layers at the end are replaced by convolutional layers with very large receptive fields.
- They capture the global context of the scene.
- End-to-end training

Inception Layers

- GoogLeNet
- Different kernel sizes operating in parallel.

Center Biased Convolutional (LBC) layer

- Human Eye Fixations are Center Biased
 - Photographer Bias
 - Viewing Strategy
- Introducing CBC layer to model Center Bias

The Network

EUC. LOSS

Small convolutional filters of 3x3 with stride of 1 to allow a large depth without increasing the memory requirement

EUC. LOSS

Max pooling layers (in red) reduce computation.

EUC. LOSS

Gradual increase in the amount of channels to progressively learn richer semantic representations: 64, 128, 256, 512...

EUC. LOSS

Weights initialized from VGG-16 net for stable and effective learning

	1	3x3_1 3x3_1 3x3_2	69	
	2	3×3_1 3×3_1 3×3_2	₹58.	
	3	3x3_1 3x3_1 3x3_1 3x3_2		
ı	4	3X3_1 3X3_1 3X3_1 3X3_1	51.5	
J	(5)	3x3_1<2> 3x3_1<2> 3x3_1<2>	575	
J	6	INCP_1 INCP_2	575	
	7	5x5_1<6> 5x5_1<6>	\$75	
		1x1 1	•	

EUC. LOSS

3	0	1	0	1
0	0	0	0	0
-3	0	-4	0	2
0	0	0	0	0
1	0	3	0	-2

(a) Conv. kernel of size 3x3

3

(b) Conv. kernel of size 3x3 with hole - 2

Convolution kernel 3x3 with hole size 2 have a receptive field of 5x5

3x3_1(512)

1x1_1(64)

3x3

Very large receptive fields of 25x25 by introducing holes of size 6 in kernels

EUC. LOSS

Convolutional Layer followed by ReLU

Max Pool Layer

Inception Block

Center Biased Convolutional Layer

Center Biased Convolutional (CBC) layers

Center Biased Convolutional (LBC) layers

Final output W/8xH/8 is upsampled.

Experiments

Comparison of Ground Truth and Predicted Saliency Map

Various metrics are used to evaluate the performance of a given Saliency Model

- AUC Judd
- AUC Borji
- Shuffled AUC
- Earth Mover's Distance
- Similarity
- Correlation Coefficient
- Normalized Saliency Scanpath
- Kullback-Leibler divergence

TABLE I Experimental Evaluation on CAT2000 Test Set

Method	AUC-Judd	SIM	EMD	AUC-Borji	Shuff. AUC	CC	NSS
Ours	0.87	0.75	1.11	0.81	0.57	0.88	2.29
CAS[68]	0.77	0.50	3.09	0.76	0.60	0.42	1.07
Judd[57]	0.84	0.46	3.61	0.82	0.56	0.54	1.30
GBVS[12]	0.80	0.51	2.99	0.79	0.58	0.50	1.23

TABLE II
Experimental Evaluation on MIT300 Test Set

Method	AUC-Jud d	SIM	EMD	AUC-Borji	Shuff. AUC	CC	NSS
Ours	0.87	0.67	2.04	0.80	0.71	0.78	2.26
Mr-CNN[41]	0.77	0.45	4.33	0.76	0.69	0.41	1.13
DG-I[38]	0.84	0.39	4.97	0.83	0.66	0.48	1.22
BMS[63]	0.83	0.51	3.35	0.82	0.65	0.55	1.41
eDN[40]	0.82	0.41	4.56	0.81	0.62	0.45	1.14
CAS[68]	0.74	0.43	4.46	0.73	0.65	0.36	0.95
Judd[57]	0.81	0.42	4.45	0.80	0.60	0.47	1.18
GBVS[12]	0.81	0.48	3.51	0.80	0.63	0.48	1.24

TABLE III
Experimental Evaluation on PASCAL-S DataSet

Method	AUC-Jud d	SIM	EMD	AUC-Borji	Shuff. AUC	CC	NSS
Ours	0.91	0.65	0.54	0.82	0.73	0.78	2.60
SU[47]	0.89	0.59	0.73	0.81	0.72	0.69	2.22
JN[69]	0.88	0.50	1.04	0.86	0.69	0.68	1.90
eDN[40]	0.89	0.39	1.29	0.87	0.65	0.55	1.42
BMS[63]	0.80	0.41	1.32	0.78	0.67	0.44	1.28
GBVS[12]	0.84	0.43	1.16	0.82	0.65	0.51	1.36

TABLE IV Experimental Evaluation on OSIE DataSet

Method	AUC-Jud d	SIM	EMD	AUC-Borji	Shuff. AUC	CC	NSS
Ours	0.91	0.66	1.04	0.83	0.79	0.80	3.04
eDN[40]	0.82	0.36	2.02	0.82	0.68	0.40	1.16
BMS[63]	0.83	0.43	1.89	0.82	0.76	0.46	1.47
GBVS[12]	0.82	0.42	1.67	0.80	0.68	0.44	1.35
AWS[70]	0.82	0.42	1.93	0.81	0.76	0.45	1.45

TABLE V
Experimental Evaluation on FIGRIM DataSet

Method	AUC-Jud d	SIM	EMD	AUC-Borji	Shuff. AUC	CC	NSS
Ours	0.90	0.66	1.10	0.84	0.67	0.80	2.51
eDN[40]	0.87	0.37	2.88	0.86	0.62	0.50	1.38
BMS[63]	0.76	0.38	3.00	0.73	0.74	0.34	1.05
GBVS[12]	0.82	0.43	2.29	0.81	0.62	0.45	1.26
AWS[70]	0.72	0.36	3.20	0.74	0.64	0.29	0.89

Thanks!