Math 241: Exam 2, March 13, 2018

Name: NetID:

Circle your discussion section:

- · ADA: 8am, Nam
- ADB: 9am, Block Gorman
- ADC: 10am, Block Gorman
- ADD: 11am, Shin
- ADE: Noon, Shin
- ADF: 1pm, Mousley
- ADG: 2pm, Okano
- ADH: 3pm, Wojtalewicz
- ADI: 4pm, Wojtalewicz
- · ADK: 9am, Christenson
- ADL: 10am, Field
- · ADM: 2pm, Gao
- ADN: 3pm, Gao
- · ADO: noon, Bavisetty
- ADP: 1pm, Bavisetty
- AD1: 11am, Weigandt
- AD2: 1pm, Rennie

- BD@: 1pm, Zhang, N.
- BDA: 8am, Huynh
- BDB: 9am, Huynh
- · BDC: 10am, Park
- BDD: 11am, Han
- BDE: Noon, Park
- BDF: 1pm, Han
- BDG: 2pm, Drake
- BDH: 3pm, Zhang, Y.
- BDI: 4pm, Zhang, Y.
- · BDJ: 9am, Field
- BDK: 10am, Christenson
- BDL: noon, Huang
- · BDM: 2pm, Mousley
- BDN: 3pm, Okano
- BDO: 4pm, Drake
- BDR: 11am, Huang

Write and bubble in your UIN:										
0	0	0	0	0	0	0	0	0		
	\bigcirc		\bigcirc							
2	2	2	2	2	2	2	2	2		
3	3	3	3	3	3	3	3	3		
4	\bigcirc 4	4	\bigcirc 4	4	4	\bigcirc 4	4	4		
5	5	5	5	5	5	5	5	5		
6	6	6	6	6	6	6	6	6		
7	7	7	7	7	7	7	7	7		
8	8	8	8	8	8	8	8	8		
9	9	9	9	9	9	9	9	9		

Instructions: You have **75 minutes** to complete this exam. There are **70 points** available and not all problems are weighted equally. Calculators, books, notes, and suchlike aids are **not** permitted. It is not necessary to show work for multiple-choice questions. **For all other questions, show work that justifies your answer** as in those problems **credit will not be given** for correct answers without proper justification. Work written outside of the space provided for a problem will **not** be graded. The last page of the exam contains a **table of trigonometric identities**.

Do not open exam until instructed.

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	9	7	7	9	7	8	7	8	8	70
Score:										

1. (a) (3 points) Find the tangent plane to the surface

$$z = (x-1)^2 + 3(y-3)^2 + 3$$

at the point (2,4,7).

Solution: z - 7 = 2(x - 2) + 6(y - 4).

An equation of this plane is (circle one):

(A)
$$z-7=4(x-2)+6(y-4);$$
 (B) $z-7=2(x-2)+6(y-4);$

(C)
$$z-7=4(x-1)+6(y-3);$$
 (D) $z-7=2(x-1)+6(y-3);$

(b) **(3 points)** Use the linear approximation to $f(x, y) = xe^{\sin(xy)}$ at the point (2,0) to find the approximate value of f(2.1, 0.1).

Solution: L(x, y) = 2 + (x - 2) + 4(y - 0), so $f(2.1, .1) \approx L(2.1, .1) = 2.5$

(c) **(3 points)** Find $\frac{\partial y}{\partial z}$ at the point (1,1,1) on the level surface $3xy^3 + zy - 2xz - 2 = 0$.

Solution: $\frac{\partial y}{\partial z} = \frac{2x - y}{9xy^2 + z}$, at (1, 1, 1) this is $\frac{1}{10}$.

(circle one): (A)
$$\frac{1}{10}$$
; (B) $\frac{3}{10}$; (C) 10; (D) $\frac{-1}{10}$;

2. (a) **(4 points)** Use the Chain Rule to find $\frac{\partial w}{\partial x}$ at the point $(x, y, t) = (2, 1, \pi)$, where

$$w = 2r^2 + 2\theta^2$$
, $r = y + x\cos t$, $\theta = x + y\sin t$

Solution: $\frac{\partial w}{\partial x} = 4r \cos t + 4\theta$ and at the point $(x, y, t) = (2, 1, \pi)$ we have $\frac{\partial w}{\partial x} = 12$.

(circle one): (A) 12; (B) 0; (C) 6; (D) −12;

(b) **(3 points)** The tangent plane to the ellipsoid, $2x^2 + 4y^2 + 3z^2 = 6$, is parallel to the plane, 4x + 4y + 6z = 9, at which of the following points?

Solution: The normal vector for the tangent plane to this ellipsoid at (x, y, z) is $\langle 4x, 8y, 6z \rangle$, which is parallel to the normal vector of the plane 4x + 4y + 6z = 9 at $(1, \frac{1}{2}, 1)$.

(circle one): (A) $(-1, \frac{1}{2}, 1)$; (B) $(1, \frac{-1}{2}, 1)$; (C) $(1, \frac{1}{2}, 1)$; (D) $(1, \frac{1}{2}, -1)$;

(a) **(3 points)** Find the directional derivative of $f(x, y, z) = 3xy + z^2$ at the point (1, -2, 2)in the direction of the vector from the point (1, -2, 2) to the origin.

Solution: The vector from that point to the origin in $\vec{v} = \langle -1, 2, -2 \rangle$, the unit vector in that direction is $\vec{u} = \langle \frac{-1}{3}, \frac{2}{3}, \frac{-2}{3} \rangle$. $D_{\vec{u}} f(1, -2, 2) = \vec{u} \cdot \nabla f(1, -2, 2) = \frac{4}{3}$.

(circle one): (A)
$$\frac{4}{3}$$
; (B) 4; (C) -4 ; (D) $\frac{-4}{3}$;

(b) (4 points) Find the unit vector that *minimizes* the directional derivative $D_{\vec{u}}f(x,y,z)$ at the point (1, 1, 3) where

$$f(x, y, z) = xyz + e^{3-xz} + y^2$$
.

Solution: This minimum occurs in the direction of $-\nabla f(1,1,3) = \langle 0,-5,0 \rangle$. The unit vector in this direction is (0, -1, 0).

(circle one):

$$(A) \quad \langle 0, 1, 0 \rangle;$$

(A)
$$\langle 0, 1, 0 \rangle$$
; (B) $\langle \frac{-6}{\sqrt{65}}, \frac{-5}{\sqrt{65}}, \frac{-2}{\sqrt{65}} \rangle$;

$$(C)$$
 $\langle 0, -1, 0 \rangle$

(C)
$$\langle 0, -1, 0 \rangle$$
; (D) $\langle \frac{6}{\sqrt{65}}, \frac{5}{\sqrt{65}}, \frac{2}{\sqrt{65}} \rangle$;

4. Let
$$f(x, y) = x^3 + 2y^3 - 3x^2 - 3y^2 - 9x$$
.

(a) (3 points) How many critical points does f(x, y) have?

Solution: Solving the system $f_x(x, y) = 3x^2 - 6x - 9 = 0$ and $f_y(x, y) = 6y^2 - 6y = 0$, gives critical points of (3,0), (3,1), (-1,0), and (-1,1). So f(x, y) has 4 critical points.

(circle one): (A) 3; (B) 4; (C) 6; (D) 2;

(b) **(2 points)** At how many of these critical points does f(x, y) have a local minimum? **Solution:** $f_{xx} = 6x - 6$, $f_{yy} = 12y - 6$, $f_{xy} = f_{yx} = 0$, and D = (6x - 6)(12y - 6). Using the 2^{nd} Derivative test gives that f(x, y) has one local minimum at (3, 1).

(circle one): (A) 0; (B) 1; (C) 2; (D) 3;

(c) (2 points) At how many of these critical points does f(x, y) have a saddle point?

Solution: $f_{xx} = 6x - 6$, $f_{yy} = 12y - 6$, $f_{xy} = f_{yx} = 0$, and D = (6x - 6)(12y - 6). Using the 2^{nd} Derivative test gives that f(x, y) has two saddle points at (3,0) and (-1,1).

(circle one): (A) 0; (B) 1; (C) 2; (D) 3;

(d) (2 points) At how many of these critical points does f(x, y) have a local maximum?

Solution: $f_{xx} = 6x - 6$, $f_{yy} = 12y - 6$, $f_{xy} = f_{yx} = 0$, and D = (6x - 6)(12y - 6). Using the 2^{nd} Derivative test gives that f(x, y) has one local maximum at (-1, 0).

(circle one): (A) 0; (B) 1; (C) 2; (D) 3;

5. Let
$$f(x, y) = x^2 + y^2$$
 and $D = \{(x, y) \mid x^2 + y^2 + 4x - 12 \le 0\}.$

(a) **(4 points)** What is the absolute maximum value of f(x, y) on the *boundary* of D? **Solution:** Using Lagrange Multipliers with $g(x, y) = x^2 + y^2 + 4x - 12 = 0$, we solve the system:

$$2x = \lambda 2(x+2)$$
$$2y = \lambda 2y$$
$$x^{2} + y^{2} + 4x - 12 = 0$$

The solutions to this system, (λ, x, y) , are $(\frac{1}{2}, 2, 0)$ and $(\frac{3}{2}, -6, 0)$. Since f(2, 0) = 4 and f(-6, 0) = 36. The answer is 36.

(circle one): (A) 49; (B) 36; (C) 9; (D) 64;

(b) (3 points) What is the absolute minimum value of f(x, y) on D?

Solution: Using calculations from part (a) and noting the only critical point of f(x, y) is (0,0) along with the Extreme Value Theorem gives the answer of 0.

(circle one): (A) 0; (B) 9; (C) 4; (D) 16;

6. **(8 points)** Find the point on the ellipsoid $2x^2 + 3y^2 + 4z^2 = 36$ where the function f(x, y, z) = 4x + 6y + 8z is minimized.

Solution: Letting $g(x, y, z) = 2x^2 + 3y^2 + 4z^2$, we use Lagrange multipliers to find the absolute maximum and absolute minimum of f(x, y, z) subject to g(x, y, z) = 36. The Lagrange system to solve is:

$$4 = \lambda 4x$$
$$6 = \lambda 6y$$
$$8 = \lambda 8z$$
$$2x^2 + 3y^2 + 4z^2 = 36$$

The first equation gives us that $\lambda \neq 0$, so $x = y = z = \frac{1}{\lambda}$, plugging these into the fourth equation gives $\lambda = \frac{1}{2}$ or $\lambda = \frac{-1}{2}$, which gives solution points of (2,2,2) and (-2,-2,-2), respectively. f(2,2,2) = 36 and f(-2,-2,-2) = -36. So the answer is: (-2,-2,-2).

The point is: (, ,)

7. (a) (4 points) Let C be the curve of intersection of $x^2 + y^2 = 1$ and $z = -x^2 + 2y$. Find the tangent line $\vec{l}(t)$ to C at the point (1,0,-1).

Solution: C can be parametrized by $\vec{r}(t) = \langle \cos t, \sin t, -\cos^2 t + 2\sin t \rangle$. The point (1,0,-1) corresponds to $\vec{r}(t)$ at t=0. $\vec{r}'(t)=\langle -\sin t,\cos t,2\cos t\sin t+2\cos t\rangle$. The tangent line of interest is then: $\vec{l}(t) = \langle 1, t, -1 + 2t \rangle$.

(circle one):

$$(A) \quad \vec{l}(t) = \langle 1+t, t, -1-2t \rangle; \qquad (B) \quad \vec{l}(t) = \langle 1, t, -1+2t \rangle;$$

$$(B) \quad \dot{l}(t) = \langle 1, t, -1 + 2t \rangle;$$

(C)
$$\vec{l}(t) = \langle 1, t, -1 \rangle$$

(C)
$$\vec{l}(t) = \langle 1, t, -1 \rangle;$$
 (D) $\vec{l}(t) = \langle 1 + t, t, -1 + 2t \rangle;$

(b) **(3 points)** Find the length of the curve of $\vec{r}(t) = \langle 3e^t, e^t \sin t, e^t \cos t \rangle$, for $0 \le t \le \ln 2$.

Solution: This length is given by $\int_0^{\ln 2} e^t \sqrt{11} \, dt = \sqrt{11}$

(circle one): (A)
$$\sqrt{10}$$
; (B) $\sqrt{11}$; (C) $2\sqrt{11}$; (D) $2\sqrt{10}$;

(A)
$$\sqrt{10}$$
;

(B)
$$\sqrt{11}$$
:

(C)
$$2\sqrt{11}$$
;

(D)
$$2\sqrt{10}$$
;

8. (a) **(4 points)** Find $\int_C 3x^2 y \, ds$, where *C* is given by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ for $0 \le t \le \pi$.

Solution: $\int_C 3x^2 y \, ds = \int_0^{\pi} 3\cos^2(t)\sin(t)\sqrt{2} \, dt = 2\sqrt{2}$

(circle one): (A)
$$2\sqrt{2}$$
; (B) $-\sqrt{2}$; (C) 0; (D) $\sqrt{2}$;

(b) **(4 points)** Find $\int_C z^2 dx + x^2 dy + y^2 dz$, where *C* is the line segment from (0,0,0) to (2,3,2).

Solution: This line segment can be parametrized by $\vec{r}(t) = \langle 2t, 3t, 2t \rangle$ for $0 \le t \le 1$, giving $\int_C z^2 dx + x^2 dy + y^2 dz = \int_0^1 8t^2 + 12t^2 + 18t^2 dt = \frac{38}{3}$.

(circle one): (A) $\frac{29}{3}$; (B) 10; (C) $\frac{34}{3}$; (D) $\frac{38}{3}$;

9. **(8 points)** Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x,y) = \langle x-y, x+y \rangle$ and C is the path given by the ellipse $9x^2 + y^2 = 9$ transversed once and oriented clockwise.

Solution:

We can parameterized the ellipse by:

$$\vec{r}(t) = \langle \cos(-t), 3\sin(-t) \rangle = \langle \cos t, -3\sin t \rangle, \quad t \in [0, 2\pi]$$

(Note the choice of -t to have a clockwise path.) This path has derivative:

$$\vec{r}'(t) = \langle -\sin t, -3\cos t \rangle.$$

Therefore, using the definition of the integral, we find:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{0}^{2\pi} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$$

$$= \int_{0}^{2\pi} \langle \cos t + 3\sin t, \cos t - 3\sin t \rangle \cdot \langle -\sin t, -3\cos t \rangle dt$$

$$= \int_{0}^{2\pi} 8\cos t \sin t - 3(\sin^{2} t + \cos^{2} t) dt$$

$$= \int_{0}^{2\pi} 8\cos t \sin t - 3 dt = -6\pi.$$

$$\int_C \vec{F} \cdot d\vec{r} =$$

TRIGONOMETRIC IDENTITIES

$$\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi$$

$$\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan\theta \tan\phi}$$

$$\sin(\theta - \phi) = \sin\theta \cos\phi - \cos\theta \sin\phi$$

$$\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi$$

$$\tan(\theta - \phi) = \frac{\tan(\theta) - \tan(\phi)}{1 + \tan\theta \tan\phi}$$

$$\sin(\theta) \sin(\phi) = \frac{\cos(\theta - \phi) - \cos(\theta + \phi)}{2}$$

$$\cos(\theta) \cos(\phi) = \frac{\cos(\theta - \phi) + \cos(\theta + \phi)}{2}$$

$$\sin(\theta) \cos(\phi) = \frac{\sin(\phi + \theta) - \sin(\phi - \theta)}{2}$$

$$\sin(2\theta) = 2\sin\theta \cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$$

$$\tan\theta = \frac{\sin(2\theta)}{1 + \cos(2\theta)}$$