Cosmological Perturbations

April 12, 2018

Most of the conventions and notations in [1, ch. 5] will be followed. Suppose the metric can be expanded up to the linear order as

$$g = g^{(0)} + \epsilon g^{(1)} + O(\epsilon^2). \tag{1}$$

The background metric $g^{(0)}$ takes the Robertson–Walker form

$$g_{\mu\nu}^{(0)} \, \mathrm{d}x^{\mu} \, \mathrm{d}x^{\nu} = -N^2(t) \, \mathrm{d}t^2 + a^2(t) \, \mathrm{d}\Omega_{3\mathrm{F}}^2, \tag{2}$$

in which $d\Omega_{3F}^2 = d\chi^2 + \chi^2 (d\theta^2 + \sin^2\theta d\phi^2)$ is the dimensionless flat spatial metric. The linear perturbation can be decomposed into scalar, vector and tensor parts

$$g_{00}^{(1)} = -E, (3)$$

$$g_{i0}^{(1)} = g_{i0}^{(1)} = F_{,i} + G_{i}, \tag{4}$$

$$g_{ij}^{(1)} = A\delta_{ij} + B_{,i,j} + C_{i,j} + C_{j,i} + D_{ij}. \tag{5}$$

Here one has some weird condition, where the contractions do not follow the one-up-one-down tradition

$$C_{i,i} = G_{i,i} = 0, \quad D_{ij,i} = 0, \quad D_{ii} = 0.$$
 (6)

1 Metric perturbation under diffeomorphism

Consider a diffeomorphism generated by ξ^{μ}

$$x^{\mu} \to \overline{x}^{\mu} = x^{\mu} - \epsilon \xi^{\mu}. \tag{7}$$

The generator ξ^{μ} can in turn be decomposed into $\xi_0 = \zeta$, $\xi_i = \xi_{,i}^{S} + \xi_{i}^{V}$.

One has here again some weird condition, where the contractions do not follow the one-up-one-down tradition

$$\xi_{i,i}^{\mathbf{V}} = 0. \tag{8}$$

The Lie derivative of the metric $\mathbb{L}_{\xi}g$ is

$$\left(\mathbb{L}_{\xi}g\right)_{\mu\nu} = \xi^{\lambda}g_{\mu\nu,\lambda} + \xi^{\lambda}{}_{,\mu}g_{\lambda\nu} + \xi^{\lambda}{}_{,\nu}g_{\mu\lambda}.\tag{9}$$

In components and expansion, these are

$$\left(\mathbb{L}_{\xi}g\right)_{00} = 2\dot{\zeta} - 2\zeta\frac{\dot{N}}{N} + O(\epsilon),\tag{10}$$

$$\left(\mathbb{L}_{\xi}g\right)_{i0} = \left(\mathbb{L}_{\xi}g\right)_{0i} = \left(\zeta - 2\frac{\dot{a}}{a}\xi^{\mathrm{S}} + \dot{\xi}^{\mathrm{S}}\right)_{i} + \left(-2\frac{\dot{a}}{a}\xi^{\mathrm{V}}_{i} + \dot{\xi}^{\mathrm{V}}_{i}\right) + O(\epsilon), \tag{11}$$

$$\left(\mathbb{L}_{\xi}g\right)_{ii} = \left(\mathbb{L}_{\xi}g\right)_{ij} = -\frac{2a\dot{a}}{N^{2}}\zeta\delta_{ij} + 2\xi^{\mathrm{S}}_{,i,j} + \xi^{\mathrm{V}}_{i,j} + \xi^{\mathrm{V}}_{j,i} + O(\epsilon). \tag{12}$$

2 Scalar perturbations

$$-N^{2} - \epsilon E + O(\epsilon^{2}) \to -N^{2} - \epsilon E + \epsilon \left(2\dot{\zeta} - 2\zeta\frac{\dot{N}}{N}\right) + O(\epsilon^{2}), \tag{13}$$

so one can write

$$\mathbb{L}_{\xi}E = -2\dot{\zeta} + 2\zeta \frac{\dot{N}}{N}.\tag{14}$$

Similarly one can read-off

$$\mathbb{L}_{\xi}F = \zeta - 2\frac{\dot{a}}{a}\xi^{S} + \dot{\xi}^{S},\tag{15}$$

$$\mathbb{L}_{\xi} A = -\frac{2a\dot{a}}{N^2} \zeta,\tag{16}$$

$$\mathbb{L}_{\xi} B = 2\xi^{S}. \tag{17}$$

The four scalar perturbations are generated by ζ and ξ^S , so that only two independent perturbations exists. It is clear that

$$\mathbb{L}_{\xi} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) = \frac{\zeta}{a}. \tag{18}$$

One can verify that

$$\mathbb{L}_{\xi} \left\{ \frac{E}{2N} + \frac{d}{dt} \left[\frac{a}{N} \left(\frac{F}{a} - \frac{d}{dt} \frac{B}{2a} \right) \right] \right\} = 0, \tag{19}$$

$$\mathbb{L}_{\xi} \left\{ \frac{A}{2} + \frac{a^2 \dot{a}}{N^2} \left(\frac{F}{a} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{B}{2a} \right) \right\} = 0. \tag{20}$$

- 3 Vector perturbations
- 4 Tensor perturbations
- 5 Scalar field perturbation under diffeomorphism

References

[1] Steven Weinberg. Cosmology. Oxford University Press, 2008. ISBN: 9780198526827. URL: https://global.oup.com/academic/product/cosmology-9780198526827.