1/2

13 G 26 A 01 Durée : 4 heures

Séries : S 2-S2A-S4-S5 – Coef. 5

OFFICE DU BACCALAUREAT

Téléfax (221) 825.24.58 - Tél. : 824.95.92 - 824.65.81

Epreuve du 1^{er} groupe

MATHEMATIQUES

Les calculatrices électroniques non imprimantes avec entrée unique par clavier sont autorisées . Les calculatrices permettent d'afficher des formulaires ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude. Cf. Circulaire n° 5990/OB/DIR. du 12 08 1998).

EXERCICE-I

(05 points)

Le tableau statistique ci-dessous donne le degré de salinité Y_i du Lac Rose pendant le i^{ème} mois de pluie, noté X_i .

X _i	0	1	2	3	4
Y _i	4,26	3,4	2,01	1,16	1,01

Dans ce qui suit il faudra rappeler chaque formule le cas échéant, avant de faire les calculs. On donnera les valeurs approchées par excès des résultats à 10⁻³ près.

1) a) Déterminer le coefficient de corrélation linéaire de cette série (X, Y) et interpréter le résultat.

(01,5 point = 0,25pt + 1,25pt)

- b) Quelle est l'équation de la droite de régression de Y en X.
- (0.5 pt = 0.25pt + 0.25pt)
- c) Cette équation permet-elle d'estimer le degré de salinité du lac au 6^{ième} mois de pluie, le cas échéant ? Justifier la réponse. (0,25pt)
- 2) On pose Z = ln(Y 1).
- a) Donner le tableau correspondant à la série (X, Z). Les résultats seront arrondis au millième près. (0,5 pt)
- b) Donner le coefficient de corrélation linéaire de cette série (X, Z). (01,5 point = 0,25 pt + 1,25 pt)
- c) Donner l'équation de la droite de régression de Z en X, puis exprimer Y en fonction de X.

(0.5 pt = 0.25pt + 0.25pt)

d) Utiliser cette équation pour répondre à la question 1/c).

(0.25pt)

EXERCICE-II

Le plan est muni d'un repère orthonormal direct $(0, \overrightarrow{e_1}, \overrightarrow{e_2})$. S est la similitude plane directe de centre O, d'angle $\frac{\pi}{2}$ et de rapport $\frac{\sqrt{2}}{2}$.

Soit M le point d'affixe z et M' le point d'affixe z' avec M' = S(M).

(05 points)

1) Exprimez z' en fonction de z.

(0,5 pt)

2) On définit la suite des points $(Mn)_{n \in IN}$ de la façon suivante :

$$\begin{cases} M_o \ d' affixe \ z_0 = 1 + i \\ M_n = S(M_{n-1}) \ pour \ n \ge 1 \end{cases}$$

 z_n est l'affixe de M_n , pour tout entier naturel n.

a. Déterminer les affixes des points M_1 , M_2 et M_3 .

(01,5 pt)

b. Exprimer z_n en fonction de z_{n-1} pour $n \ge 1$.

(0,5 pt)

c. En déduire que $z_n = (i\frac{\sqrt{2}}{2})^n z_0$.

(01 pt)

d. Soit $a_n = |z_n|$, montrer que a_n est le terme général d'une suite géométrique dont on précisera la raison et le premier terme. (01 pt)

e. Etudier la convergence de la suite (a_n) , $n \in IN$.

(**0,5 pt**) .../...2

13 G 26 A 01 Séries: S2-S2A-S4-S5 Epreuve du 1^{er} groupe

PROBLEME

(10 points)

Les résultats de la partie A seront utiles dans la partie B.

PARTIE A

1) Montrer que
$$\lim_{x \to 0} \frac{e^x - x - 1}{x} = 0.$$
 (0,5 pt)

2) Soit k :
$$]0 ; +\infty[\rightarrow IR$$

 $x \mapsto x(1-\ln x)$

a) k est-elle continue sur
$$]0$$
; $+\infty[$? Justifier la réponse. (0,5 pt)

b) Soit K :
$$]0 ; +\infty[\rightarrow IR$$

$$x \mapsto \frac{3}{4}x^2 - \frac{1}{2}x^2 \ln x$$
Vérifier que K est une primitive de k, dans $]0$

Vérifier que K est une primitive de k, dans]0; $+\infty[$.

(0,25 pt)

PARTIE B

Le plan est rapporté à un repère orthonormé $(0,\vec{1},\vec{j})$ (unité graphique 2 cm).

Soit la fonction f définie par :
$$f(x) = \begin{cases} e^x - x - 1 & \text{si } x \le 0 \\ x \ln x & \text{si } x > 0 \end{cases}$$

1) Déterminer D_f , le domaine de définition de f. Puis calculer les limites de f aux bornes de D_f .

(0,75 pt)

- 2) a) Etudier la continuité de f en 0. (0,5 pt)b) Etudier la dérivabilité de f en 0. Interpréter géométriquement les résultats. (0,1 pt)
- 3) Donner les domaines de continuité et de dérivabilité de f. $(02x\ 0,25\ pt)$
- 4) Calculer la dérivée de f sur son domaine d'existence et étudier son signe. (01 pt)
- 5) Dresser le tableau de variations de f. (0,5 pt)
- Montrer que la droite (Δ) d'équation : y = -x-1 est une asymptote de la courbe (C_f) de f dans ($0,\vec{1},\vec{j}$) (0,25 pt)quand x tend vers - ∞ .
- Préciser la nature de la branche infinie de (C_f) quand x tend vers $+\infty$. 7) (0,25 pt)
- Représenter graphiquement la courbe (C_f) dans le repère $(0,\vec{1},\vec{j})$. 8) Préciser l'allure de la courbe au point d'abscisse 0 et tracer (Δ) . (02 pts)
- Soit h la restriction de f à $\left| \frac{1}{e} \right|$; $+\infty$. 9)
 - a) Montrer que h réalise une bijection de $\left[\frac{1}{e}; +\infty\right]$ sur un intervalle J à préciser. (0,5 pt)
 - b) Représenter graphiquement (C_{h-1}) , la courbe représentative de h^{-1} dans $(0,\vec{1},\vec{j})$, à l'aide de (C_f) (0,5 pt)
- 10) Soit \mathcal{A}_1 l'aire du domaine du plan délimité par $x = \frac{1}{e}$, x = e, la courbe (C_f) et la droite (\mathcal{D}) d'équation : y = x.
 - a) Calculer \mathcal{A}_1 . (0,5 pt)b) En déduire l'aire \mathcal{A}_2 du domaine du plan délimité par les droites d'équations respectives :

$$x = -\frac{1}{e}$$
, $y = \frac{1}{e}$, la droite (\mathcal{D}) et la courbe (C_{h-1}). (0,5 pt)