A. find the minimum element of arr

D. sort all elements of arr

elements of arr

This problem set has 19 questions, for a total of **75** points. Answer the questions below and mark your answers in the spaces provided. Additionally, fill out the bubble sheet provided **clearly** for your Gradescope submission. If the question asks for showing your work, you must provide details on how your answer was calculated.

Your Nar	ne:
1. Which o	f the following descriptions best describes what mystery does?
in	t mystery(int *arr, int n) {
	if(n = 1) return arr[0];
	int val = mystery(arr + 1, n - 1)
	$\mathbf{return} \ (\operatorname{arr} [0] > \operatorname{val}) \ ? \ \operatorname{arr} [0] \ : \ \operatorname{val};$
}	

B. find the maximum element of arr

C. find the sum of all

2. Which of the following descriptions best describes what mystery does?

```
bool mystery(int n, int i) {
   if (n <= 2)
      return (n == 2) ? true : false;
   if (n % i == 0)
      return false;
   if (i * i > n)
      return true;

   return mystery(n, i + 1);
}
```

A. determine if n is an even number B. determine if n is a prime number C. determine if i evenly divides n D. determine if n is an odd number

3. Given the following sorting algorithm, determine if it is **stable**, **in-place**, **both**, or **neither**.

```
int sort(int *arr, int n) {
    if (n <= 1) return;
    sort(arr, n-1);
    int tmp = arr[n-1];
    int j = n-2;
    while (j >= 0 && arr[j] > tmp) {
        arr[j+1] = arr[j];
        j--;
    }
    arr[j+1] = tmp;
}
```

A. stable B. in-place C. both D. neither

4.	Solve the	following i	recurrence	relation:	T(0):	= 1:T(n) = T	(n+1)	+ 3

A.
$$3n+1$$
 B. $3n-1$ C. $1-3n$

5. Solve the following recurrence relation:
$$T(1) = 1$$
; $T(n) = 2T(n/2) + n$

A.
$$n + logn$$
 B. $nlogn$ C. $n + nlogn$ D. $n^2 + nlogn$

6. Is a vector the best underlying structure to implement a queue with? Justify your an	swer.
A. Yes B. No	
	6
	0
7. Would a stack (A) or queue (B) be more efficient for an undo button in a text editor	
	7
8. Would a stack (A) or queue (B) be more efficient for a web server connection manager	
	8
9. Would a stack (A) or queue (B) be more efficient for a breadth-first search	
or would a state (11) of queue (13) so more emercial for a stroated mist source	
	9
10. Would a stack (A) or queue (B) be more efficient for a depth-first search	
	10

11. Given the following function **mystery**, determine its output assuming **stack** has had the following elements inserted in order: 7, 20, 300, 5, 10

```
int mystery(std::stack<int> stack) {
    int result = 0;
    int loop = stack.size();
    for(int i = 0 ; i < loop; i++) {
        if(!(i % 2)) {
            result += stack.top();
        }
        else {
            result *= stack.top();
        }
        stack.pop();
    }
    return result;
}</pre>
```

A. 2210 B. 60050 C. 7007 D. 10640

12
stify your answer with

14.	Assume a binary search tree has undergone the following insertions in order: 10, 7, 15, 12, 13, 4, 8, 1, 19, 20, 5. Which of the following represents the output of a post-order traversal on the resulting					
	tree?					
	A. 10, 7, 15, 4, 8, 12, 19, 1, 5, 13, 20 B. 1, 4, 5, 7, 8, 10, 12, 13, 15, 19, 20 C. 10, 7, 4, 1, 5, 8, 15, 12, 13, 19, 20 D. 1, 5, 4, 8, 7, 13, 12, 20, 19, 15, 10					
	14					
15.	Assume a binary search tree has undergone the following insertions in order: 20, 10, 30, 5, 4, 1, 6, 24, 52, 28, 13. Which of the following represents the output of a pre-order traversal on the resulting tree?					
	A. 1, 4, 5, 6, 10, 13, 20, 24, 28, 30, 52 B. 20, 10, 5, 4, 1, 6, 13, 30, 24, 28, 52 C. 1, 4, 6, 5, 13, 10, 28,					

 $24,\,52,\,30,\,20 \qquad D.\,\,10,\,7,\,4,\,1,\,5,\,8,\,15,\,12,\,13,\,19,\,20$

For questions 16 - 19, let T be a full k-ary tree, where k=2 (a.k.a. binary tree), with n nodes. Let h denote the height of T.

16. What is the minimum number of leaves for T of height h? Justify your answer.

Example when h = 0: T, being a full tree can have a minimum of 1 leaf.

A. 2^h B. 2h C. 2^{h-1} D. $2^h - 1$ E. h + 1

16. _____

17. What is the maximum number of leaves for T? Justify your answer.

A. 2^h B. 2h C. 2^{h-1} D. $2^h - 1$ E. h + 1

8.	What is the minimum number of internal nodes for T ? Justify your answer.					
-	A. 2^h B. $2h$ C. 2^{h-1} D. h E. $h+1$					
		18				
9.	What is the maximum number of internal nodes for T ? Justify your answer.					
- 1						