# **SPRAWOZDANIE**

## UKŁADY KOMBINACYJNE

Czwartek 7:30

Prowadzący Dr inż. Dariusz Banasiak

# 2. Licznik asynchroniczny modulo 9 w przód

## **2.1 Opis**

Licznik asynchroniczny mod 9 jest układem zliczającym impulsy wejściowe. Zapamiętuje zakres od 0 do 8.

### 2.2 Tabela prawdy

| $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |
|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     |
| 0     | 0     | 0     | 1     |
| 0     | 0     | 1     | 0     |
| 0     | 0     | 1     | 1     |
| 0     | 1     | 0     | 0     |
| 0     | 1     | 0     | 1     |
| 0     | 1     | 1     | 0     |
| 0     | 1     | 1     | 1     |
| 1     | 0     | 0     | 0     |



#### 2.3 Schemat układu

# 3. Licznik synchroniczny modulo 9 w przód na przerzutnikach D

### **3.1 Opis**

Licznik synchroniczny mod 9 jest układem zliczającym impulsy wejściowe. Zapamiętuje zakres od 0 do 8.

#### 3.2 Tabela wzbudzeń

| N | $Q_3$ | $Q_2$ | $Q_{I}$ | $Q_0$ | $Q_3$ | $Q_2$ | $Q_{I}$ | $Q_0$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ |
|---|-------|-------|---------|-------|-------|-------|---------|-------|-------|-------|-------|-------|
| 0 | 0     | 0     | 0       | 0     | 0     | 0     | 0       | 1     | 0     | 0     | 0     | 1     |
| 1 | 0     | 0     | 0       | 1     | 0     | 0     | 1       | 0     | 0     | 0     | 1     | 0     |
| 2 | 0     | 0     | 1       | 0     | 0     | 0     | 1       | 1     | 0     | 0     | 1     | 1     |
| 3 | 0     | 0     | 1       | 1     | 0     | 1     | 0       | 0     | 0     | 1     | 0     | 0     |
| 4 | 0     | 1     | 0       | 0     | 0     | 1     | 0       | 1     | 0     | 1     | 0     | 1     |
| 5 | 0     | 1     | 0       | 1     | 0     | 1     | 1       | 0     | 0     | 1     | 1     | 0     |
| 6 | 0     | 1     | 1       | 0     | 0     | 1     | 1       | 1     | 0     | 1     | 1     | 1     |

| 7  | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
|----|---|---|---|---|---|---|---|---|---|---|---|---|
| 8  | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 9  | 1 | 0 | 0 | 1 | - | - | - | - | - | - | - | - |
| 10 | 1 | 0 | 1 | 0 | - | - | - | - | - | - | - | - |
| 11 | 1 | 0 | 1 | 1 | - | 1 | - | - | - | - | - | - |
| 12 | 1 | 1 | 0 | 0 | - | - | - | - | - | - | - | - |
| 13 | 1 | 1 | 0 | 1 | - | - | - | - | - | - | - | - |
| 14 | 1 | 1 | 1 | 0 | _ | 1 | - | _ | - | _ | _ | _ |
| 15 | 1 | 1 | 1 | 1 | - | - | - | - | - | - | - | - |

## 3.3Minimalizacja funkcji

Minimalizacja dla  $D_3$ 

| $Q_3Q_2\backslash Q_1Q_0$ | 0 0 | 0 1 | 1 1 | 10 |
|---------------------------|-----|-----|-----|----|
| 0 0                       | 0   | 0   | 0   | 0  |
| 0 1                       | 0   | 0   | 1   | 0  |
| 1 0                       | ı   | -   | Ŀ   | -  |
| 1 1                       | 0   | -   | -   | -  |

$$D_3 = Q_2 Q_1 Q_0$$

Minimalizacja dla  $\mathcal{D}_2$ 

| $Q_3Q_2\backslash Q_1Q_0$ | 0 0 | 0 1 | 1 1        | 10      |
|---------------------------|-----|-----|------------|---------|
| 0 0                       | 0   | 0   | \1         | 0       |
| 0 1                       | 1   | 1   | 0          | T       |
| 1 0                       | -   |     | -          | <u></u> |
| 1 1                       | 0   | -   | <u>(-)</u> | -       |

$$D_2 = Q_2 \overline{Q_1} + Q_2 \overline{Q_0} + \overline{Q_2} Q_1 Q_0$$

Minimalizacja dla  $D_1$ 

| $Q_3Q_2\backslash Q_1Q_0$ | 0 0 | 0 1 | 1 1 | 10        |
|---------------------------|-----|-----|-----|-----------|
| 0 0                       | 0   | Π   | 0   | $\bigcap$ |
| 0 1                       | 0   | 1   | 0   | 1         |
| 10                        | ı   | -   | -   | -         |
| 1 1                       | 0   | -   | -   | <u> </u>  |

$$D_1 = \overline{Q_1}Q_0 + Q_1\overline{Q_0}$$

$$D_1 = Q_1XOR\ Q_0$$

### Minimalizacja dla $D_0$

| $Q_3Q_2\backslash Q_1Q_0$ | 0 0 | 0 1 | 1 1 | 10 |
|---------------------------|-----|-----|-----|----|
| 0 0                       | 1   | 0   | 0   | 1  |
| 0 1                       | 1   | 0   | 0   | 1  |
| 1 0                       | -   | -   | -   | -  |
| 11                        | 0   | -   | -   | -  |

$$D_0 = \overline{Q_3 \ Q_0}$$

## 3.4 Schemat układu

