Banco de Dados I

Prof. Edson Shinki Kaneshima

Centro Universitário Filadélfia Ciência da Computação **Arquivos convencionais**

Problemas com o armazenamento em arquivos convencionais

1) Redundância e inconsistência de dados

- O mesmo dado pode estar duplicado em vários lugares e em vários sistemas (<u>redundância</u>);
- Essa redundância leva a altos custos de armazenamento e acesso;
- A redundância pode levar à <u>inconsistência</u> de dados, o que significa que várias cópias do mesmo dado podem estar diferentes umas das outras.

- A redundância ocorre porque:
 - · Dados de diferentes aplicações não estão integrados;
 - · Informatização gradual das funções nas organizações;
 - · Se funções são informatizadas em separado, pode ocorrer a geração de arquivos separados.

• Exemplo:

Tipos de redundância

- Redundância simples
 - Ocorre quando um dado está representado no computador várias vezes
- Redundância controlada
 - Existe a redundância, mas o software tem conhecimento disto e garante a sincronia dos dados entre as diversas representações.
- Redundância não controlada
 - Existe a redundância, mas quem controla a sincronia entre as representações são os usuários.

Consequências da redundância:

- Repetição da mesma informação
- Inconsistência dos dados
- Dificuldade de extrair informações (relatórios)
- Dados pouco confiáveis e de baixa disponibilidade (desempenho ruim)

Solução para a redundância

 Compartilhamento dos dados, formando um conjunto único de arquivos integrados que atendem a um conjunto de sistemas.

• Exemplo:

Problemas com o armazenamento em arquivos convencionais

• 2) Dificuldade no acesso aos dados

 o modo de armazenamento não permite agilidade na consulta. Ex. geração de relatórios

3) Isolamento de dados

dados em sistemas isolados e com formatos diferentes (
 data, endereço completo), tornam difícil a tarefa de recuperar os dados adequados

Problemas com o armazenamento em arquivos convencionais

• 4) Problemas de segurança

- Nem todo usuário do sistema de banco de dados deve ter acesso a todos os dados disponíveis
- Se programas forem adicionados ao sistema de maneira arbitrária, é difícil assegurar as restrições de segurança

• 5) Problemas de Integridade

 como garantir as restrições de consistência. "Regras de negócio"

- BD Banco de Dados (Silberschatz, 2006)
 - Coleção de dados que contém informações relevantes à uma empresa.
- BD Banco de Dados (Heuser, 2002)
 - Conjunto de dados inter-relacionados que objetivam atender às necessidades de um conjunto de usuários.
 - Sinônimo: Base de Dados (Database).

- BD Banco de Dados (Navathe, 2005)
 - Os dados são fatos que podem ser gravados e que possuem um significado implícito.
 - Um BD representa alguns aspectos do mundo real (minimundo)
 - Coleção lógica e coerente de dados com algum significado inerente
 - Um BD deve ser projetado, construído e povoado por dados, atendendo a uma proposta específica.

- SGBD (Silberschatz, 2006)
 - Coleção de dados inter-relacionados e um conjunto de programas para acessar esses dados de forma conveniente e eficiente.
- SGBD (Heuser, 2002)
 - Sistema Gerenciador de Banco de Dados (DBMS).
 - Software que auxilia na definição, carga, atualização e manutenção de um banco de dados (BD).

- SGBD (Navathe, 2005)
 - SGBD é uma coleção de programas que permite aos usuários criar e manter um banco de dados.
 - Outras funções importantes de um SGBD:
 - Proteção contra falhas
 - Segurança contra acessos não autorizados
 - Manutenção dos dados por um longo período de tempo

Sistema de Banco de Dados

- Ainda segundo Silberschatz (2006) um sistema de banco de dados consiste de duas partes:
 - O sistema de gerenciamento de banco de dados (SGBD), programa que organiza e mantém essas listas de informações (BD) e;
 - O aplicativo de banco de dados, que é o programa que permite restaurar, visualizar e atualizar as informações armazenadas pelo SGBD.

Arquitetura de um Sistema de Banco de Dados

Problemas no desenvolvimento de aplicações de BD

- Arquivos são projetados para atender diferentes necessidades, enquanto bancos de dados não:
 - Ex. Armazenamento de estruturas de dados complexas
- Um banco de dados é acessado por múltiplos programas
 - Várias equipes de desenvolvimento podem estar envolvidas
 - Definição da estrutura da base de dados
 - Deve ser mantida de forma centralizada
 - Deve estar disponível para múltiplos usuários
- Dados devem estar corretos
 - Programas devem garantir as restrições de integridade (regras que estabelecem quando uma base está correta)

Problemas no desenvolvimento de aplicações de BD

- Banco de dados é acessado por múltiplos usuários
 - Programas devem implementar controle de acesso concorrente
- Nem todo usuário pode ter acesso a qualquer informação
 - Programas devem implementar controle de acesso
- Os dados são de importância vital e não podem ser perdidos
 - Mecanismos simples de cópia e backup não são suficientes
 - · Após falha, o banco de dados deve ser recuperado rapidamente
 - Transações confirmadas ao usuário não podem ser reprocessadas
 - Programas devem implementar mecanismos de tolerância a falhas

Processamento tradicional de arquivos X SGBD

Processamento de arquivos	SGBD - Banco de dados
 Definição dos dados é parte do código dos programas das aplicações 	 A definição dos dados são armazenadas como metadados (dicionário de dados)
 Dependência entre aplicações específicas e os dados 	 Dados dispostos de forma genérica para diversas aplicações (Compartilhamento de dados)
 Representação dos dados no nível físico 	 Representação conceitual dos dados (maior facilidade de manutenção)
 Difícil controle sobre regras que estão distribuídas por diferentes aplicações 	 Controle de segurança Tolerância a falhas Controle de acesso concorrente Ambiente auto-contido

- Integração de Dados
 - Controle ou eliminação de redundância;
 - Fundamental para o crescimento de BDs.
- Compartilhamento de Dados
 - Controle de concorrência (Multi-Usuário).
- Processamento de Transações
 - Atomicidade (Tudo ou Nada)
- Independência de Programa-Dados
 - Abstração de Dados + Catálogo (metadados).

- Integridade
 - Regras de Negócio (Simples, Complexas)
 - Regras de Integridade (Validação de Consistência)
 - Restrições implementadas no SGBD
- Suporte a Múltiplas Visões dos Dados
 - Diferentes visões de um mesmo BD
- Controle de Segurança
 - Permissões de acesso
- Múltiplas Interfaces

Serviços de Manutenção

 Backup, Recovery, Conversão de dados e monitoramento de desempenho.

Flexibilidade

Passível a mudanças

Economia de Escala

Reduz custos de operação e gerenciamento no servidor e clientes;

- <u>Modelo de Dados</u>: Conjunto de regras conceitos que podem ser usados para descrever a estrutura de um banco de dados.
- Abstração de Dados: Omissão de detalhes de armazenamento dos dados, que são desnecessários para a maioria dos usuários de bancos de dados (programadores)

- O grande objetivo de um sistema de bancos de dados é prover o usuário com uma visão abstrata dos dados
- O sistema omite certos detalhes de como os dados são armazenados e mantidos
- A complexidade do banco de dados está oculta dos usuários inexperientes através de diversos níveis de abstração que simplificam a interação do usuário com o sistema
- O usuário final deve ter uma visão abstrata dos dados. As técnicas, detalhes e regras deste armazenamento devem ser de responsabilidade dos analistas e DBAs.

- Um SGBD Possui a descrição dos tipos de informações que estão armazenados em seu banco de dados.
 - <u>Modelo de dados</u> = descrição dos dados (<u>esquema</u>)
- Banco de Dados (BD) = Dados + Modelo de Dados
- Para construir o modelo de dados, usa-se uma linguagem de modelagem de dados:
 - Linguagem textual ou;
 - Linguagem gráfica.

- A apresentação do modelo de dados denomina-se esquema do banco de dados
- Normalmente, no projeto de banco de dados existem três níveis de abstração para esta apresentação, esses modelos são denominados:
 - Conceitual
 - Lógico
 - Físico

Modelo Conceitual

- É a descrição mais abstrata do banco de dados
- Independente do tipo de SGBD a ser utilizado
- Registra os dados que podem aparecer no banco, mas não como estes dados estão armazenados
- É o ponto de partida do projeto de banco de dados
- O modelo mais difundido é a abordagem entidaderelacionamento (E-R) desenvolvido por Peter Chen.
- Representado na forma de entidades e relacionamentos. Ex:

Modelo Lógico

- Descrição de um banco de dados no nível de abstração visto pelo usuário
- É dependente do tipo de banco de dados utilizado
- No caso do modelo relacional, os dados estão organizados na forma de <u>tabelas</u>
- Modelo lógico para o exemplo anterior:
 - TipoDeProduto (<u>CodTipoProduto</u>, DescrTipoProd)
 - Produto (<u>CodProd</u>, DescrProd, PrecoProd, CodTipoProd)
- Detalhes de armazenamento interno não fazem parte do modelo lógico, e são representados no modelo físico.

Modelo Físico

- Descrição de como a base de dados é armazenada internamente no banco de dados (dependente do SGBD).
- O modelo físico é utilizado buscando-se otimizar a performance.
- As linguagens para o modelo físico variam de produto a produto (padrão é o SQL-ANSI).

Instâncias e Esquemas

- É importante a distinção entre a <u>descrição</u> do banco de dados e o <u>banco de dados de fato</u>.
 - O <u>esquema</u> do Banco de Dados é definido na fase de projeto
 - Espera-se que um esquema de banco de dados não seja alterado freqüentemente.
 - De la dados no banco de dados podem ser alterados frequentemente.
 - O estado de um banco de dados é definido pelos seus dados em um determinado momento (snapshot).
 - Os dados em um determinado momento em um banco de dados pode-se denominar <u>ocorrência</u> ou <u>instância</u>.
 - Cada vez que dados são incluídos, alterados ou excluídos em um banco, muda-se de um estado para outro.
 - Quando um BD é criado, diz respeito ao esquema de banco e ele passa ao seu primeiro estado quando seus dados são populados ou carregados pela primeira vez.

Instâncias e Esquemas

Resumo:

- Instância: "Fotografia" momentânea do banco de dados.
- Esquema o projeto total do banco de dados (projeto lógico e projeto físico)

Independência de Dados

- <u>Independência Lógica de Dados</u> Capacidade de modificar o esquema conceitual/lógico sem a necessidade de reescrever os programas.
 - Ex. adicionar tabelas.
- Independência Física de Dados Capacidade de modificar o esquema físico sem a necessidade de reescrever os programas.
 - Ex. mudar tabela de disco ou diretório.
- A independência lógica de dados é mais difícil de ser alcançada do que a independência física, pois os programas são bastantes dependentes da estrutura lógica dos dados que eles acessam.

Bibliografia

- Heuser, Carlos Alberto. Projeto de Banco de Dados. Ed. Sagra Luzzato. Porto Alegre, 2002. 3ª ed.
- Elmasri, R.; Navathe, S. B.; Sistemas de Banco de Dados.
 São Paulo: Addison Wesley, 2005. 4ª. ed.
- Silberschatz, A.; Korth, H. F.; Sudarshan, S.; Sistema de Banco de Dados. Rio de Janeiro: Elsevier, 2006.