Modal Logic Exercise Set 02

To be completed by Thursday 9 May

We will work through these exercises (and possibly some others as well) during the problem class. Exercises marked with a (\triangle) are a little more challenging.

- 1. Prove that the distribution axioms $\Box(A \to B) \to (\Box A \to \Box B)$ and $\Box(A \land B) \to (\Box A \land \Box B)$ are valid in every frame, i.e. that they are valid in the minimal modal logic **K**.
- 2. Construct a model based on a frame with a non-symmetric accessibility relation that makes the B axiom $(A \to \Box \Diamond A)$ valid.
- 3. The following table gives the relationship between modal axioms and frame conditions stated in terms of the accessibility relation.

Logic	Modal axiom(s)	Frame condition(s)
$oxed{\mathbf{T}}$	$(\Box A \to A) \tag{T}$	reflexive
В	$T + (A \to \Box \Diamond A) \text{ (B)}$	reflexive, symmetric
K 4	$ \left (\Box A \to \Box \Box A) \right $ (4)	transitive
K 5	$(\Diamond A \to \Box \Diamond A) \qquad (5)$	euclidean
S 4	T+4	reflexive, transitive
S5	T+5	reflexive, transitive, symmetric

Prove that for every frame F, the modal axiom(s) on the left of a given row are valid in F if and only if the frame condition(s) on the right of that row are true of F (you can omit the implications proved in the lecture).

4. Prove that the D axiom, $(\Box A \to \Diamond A)$, is valid in all and only the *serial models*: (W, R, \Vdash) such that for all $u \in W$, there exists $v \in W$ such that uRv.

(Note that this is a stronger equivalence than the equivalences in the table above between the frame validity of a modal axiom and a frame condition.)

Figure 1: The relationships between some important propositional modal logics. An arrow $\mathbf{L}_1 \Longrightarrow \mathbf{L}_2$ means that for every frame F, if $F \in \mathbf{L}_1$ then $F \in \mathbf{L}_2$, and that there exists a frame $G \in \mathbf{L}_2$ such that $G \notin \mathbf{L}_1$ (i.e. all implications are *strict*).

- 5. Figure 1 demonstrates the inclusion relationships between the modal logics in the table above (plus **D**). All of these implications are *strict*, i.e. if $\mathbf{L}_1 \Longrightarrow \mathbf{L}_2$ then there exists a frame $G \in \mathbf{L}_2$ such that $G \notin \mathbf{L}_1$.
 - (a) Prove that the B axiom $(A \to \Box \Diamond A)$ is valid in every **S5** frame.
 - (b) Construct a four-element frame which is reflexive and symmetric but not transitive.

(This is sufficient to show that S5 is strictly stronger than B.)

- (c) Prove that S5 implies S4, but not conversely.
- 6. (\triangle) The modal logic **S4.3** is characterised by the frames that are reflexive, transitive, and *linear*: for all $u, v \in W$, either uRv or vRu.
 - (a) Show that $\Box(\Box A \to \Box B) \lor \Box(\Box B \to \Box A)$ is valid in all **S4.3** frames.
 - (b) Construct an **S4.3** frame in which $(A \to \Box \Diamond A)$ is invalid.
 - (c) Show that $(\lozenge \Box (A \to B) \to (\lozenge \Box A \to \lozenge \Box B)$ is valid in all **S4.3** frames, i.e. that $\lozenge \Box$ distributes across logical connectives in **S4.3**.