Homework: Post-test challenge-problem set

1. The equation $x^2 - 3x + k^2 = 4$ has two distinct real roots. Find the possible values of k. [6 marks]

2a. At a large school, students are required to learn at least one language, Spanish or French. It is known that 75% of the students learn Spanish, and 40% learn French.

Find the percentage of students who learn **both** Spanish and French.

[2 marks]

2b. Find the percentage of students who learn Spanish, but not French.

[2 marks]

2c. At this school, 52% of the students are girls, and 85% of the girls learn Spanish.

A student is chosen at random. Let *G* be the event that the student is a girl, and let *S* be the event that the student learns Spanish.

- (i) Find $P(G \cap S)$.
- (ii) Show that *G* and *S* are **not** independent.

[5 marks]

2d. At this school, 52% of the students are girls, and 85% of the girls learn Spanish.

A boy is chosen at random. Find the probability that he learns Spanish.

[6 marks]

3a. Consider the function $f(x)=x^2-4x+1$.

Sketch the graph of f, for $-1 \le x \le 5$.

[4 marks]

3b. This function can also be written as $f(x) = (x-p)^2 - 3$.

Write down the value of p.

[1 mark]

3c. The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a translation of

Show that $g(x) = -x^2 + 4x + 5$.

[4 marks]

3d. The graphs of f and g intersect at two points.

Write down the *x*-coordinates of these two points.

[3 marks]

4a. The following diagram shows the graph of a quadratic function f , for $0 \leq x \leq 4$.

The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

The function can be written in the form $f(x)=a(x-h)^2+k$.

(i) Write down the value of h and of k.

(ii) Show that a=3 . [4 marks]

4b. Find f(x) , giving your answer in the form Ax^2+Bx+C . [3 marks]

5a. Consider an infinite geometric sequence with $u_1=40$ and $r=rac{1}{2}$.

- (i) Find u_4 .
- (ii) Find the sum of the infinite sequence.

[4 marks]

5b. Consider an arithmetic sequence with n terms, with first term (-36) and eighth term (-8).

(i) Find the common difference.

(ii) Show that $S_n=2n^2-38n$ [5 marks]

5c. The sum of the infinite geometric sequence is equal to twice the sum of the arithmetic sequence. Find n. [5 marks]