디지털논리회로설계

전북대학교 전자공학부 이종열 (jong@jbnu.ac.kr)

교과목 소개

- 과목명: 디지털논리설계
 - 시간: 3시간 (월6~7, 수6)
- 장소: 공대 3호관 408호
- 교재
 - Digital Design, M. Mano and M. Ciletti, Prentice Hall
- 참고 문헌
 - 모든 논리회로 관련 교재
- 평가방법:
 - 학교 rule에 따라 상대평가 실시
 - 중간 20%, 기말 30%, Quiz 20%, 과제물 20%, 출석 5%
- 시험 일정
 - 중간고사: 4월 21일
 - 기말고사: 6월 9일

교과목 소개

- 다음 경우에 대하여 시험 성적에 관계 없이 무조건 F임
 - 출석미달(1/4 이상 결석): 2회 지각은 1회 결석으로 계산
 - 숙제 전체의 1/4이상 미제출
 - 중간 또는 기말시험 미응시
 - 부정행위
 - 과제물 copy 적발 시
- 문제 풀이 숙제 외에 요약 숙제가 있음
 - 교수의 지시에 따라 각 장이 시작되기 전에 교재를 읽고 그 장의 내용을 A4 용지 4페이지 이상 분량으로 요약하여 제출
 - QUIZ를 통하여 예습 내용 확인할 것임
- 과제물은 일주일 후 강의 시작 전에 제출: 그 외 시간에는 숙제를 받지 않음

기타 사항

- 강의 자료 및 공지 사항은 다음 홈페이지에서 확인
 - http://soclab.chonbuk.ac.kr
- 면담시간 및 장소
 - 시간: 월요일 오후 4시 ~ 6시
 - 장소: 8호관 202호
- 조교 연구실: 7호관 501호

I. BINARY SYSTEM

BINARY NUMBER

$$\mathbf{a_5} \mathbf{a_4} \mathbf{a_3} \mathbf{a_2} \mathbf{a_1} \mathbf{a_0}. \mathbf{a_{-1}} \mathbf{a_{-2}} \mathbf{a_{-3}}$$

$$= \mathbf{a_n} \mathbf{r^n} + \mathbf{a_{n-1}} \mathbf{r^{n-1}} + \dots + \mathbf{a_2} \mathbf{r^2} + \mathbf{a_1} \mathbf{r} + \mathbf{a_0} + \mathbf{a_{-1}} \mathbf{r^{-1}} + \mathbf{a_{-2}} \mathbf{r^{-2}} + \dots + \mathbf{a_{-m}} \mathbf{r^{-m}}$$

$$7392 = 7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0$$

$$(11010.11)_2 = 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-14} + 1 \times 2^{-2}$$

$$= 26.75_{10}$$

$$2^{10} = 1 \text{Kilo}$$

2²⁰= 1Mega 2³⁰= 1Giga

n	2^n	n	2^n	n	2^n
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

BINARY NUMBER

Augend 101101 Minuend: 101101 Multiplicand: 101

Addend +100111 Subtrahend: -100111 Multiplier: *101

Sum 1010100 Difference: 000110 1011

0000

Augend: 피가수 Addend: 가수

sum: 합

Minuend: 피감수 subtrahend: 감수 Difference: 차

Multiplicand: 피승수

Multiplier: 승수 Product: 곱 1011

Product: 10111

NUMBER CONVERSIONS

Ex 1-1) Convert decimal 41 to binary

	Integer		Remainder	Coefficient			
	Quotient				Integer	Remainder	
					41		
41/2 =	20	+	1	a_0	20	1 1	
20/2 =	10	+	0	a ₁	10	0	
10/2 =	5	+	0	a_2	5	0	
5/2 =	2	+	1	a_3	2	1	
2/2 =	1	+	0	$a_{\scriptscriptstyle{4}}$	1	0	
					0	1	
1/2 =	0	+	1	a_5			

answer: $(41)_{10} =$

Quotient: 몫

Remainder: 나머지

Coefficient: 계수

NUMBER CONVERSIONS

Ex 1-2) Convert decimal 153 to octal.

• Ex I-3) Convert (0.6875) IO to binary.

	Coefficient	Fraction		Integer	
	а	0.3750	+	1	0.6875*2 =
	а	0.7500	+	0	0.3750*2 =
Answer:(0.6875) ₁₀ =	а	0.5000	+	1	0.7500*2 =
	a	0.0000	+	1	0.5000*2 =

octal: 8진수

OCTAL AND HEXADECIMAL NUMBERS

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

```
(10 \ 110 \ 001 \ 101 \ 011 \ . \ 111 \ 100 \ 000 \ 110 )_2 = (26153.7460)_8
2 \ 6 \ 1 \ 5 \ 3 \ 7 \ 4 \ 0 \ 6
(10 \ 1100 \ 0110 \ 1011 \ . \ 1111 \ 0010 )_2 = (2C6B.F2)_{16}
2 \ C \ 6 \ B \ F \ 2
```

COMPLEMENTS – DIMINISHED RADIX COMPLEMENT

- (r-1)'s complements of N is $(r^n-1)-N$
- r=10, r-1=9, 9'complements of N is $(10^n 1) N$
- Ex)
 - the 9's complements of 546700 is 999999-546700 = 453299
 - the 9's complements of 012398 is 999999-012398 = 987601
- For binary number, r=2, $r-1=1(2^{n}-1)-N$
- 1'complements of N is
- Ex)
 - the 1's complements of 1011000 is 0100111
 - the 1's complements of 0101101 is 1010010

COMPLEMENTS - RADIX COMPLEMENT

- The r's complements of an n-digit number N is $r^n N, N \neq 0$.
- The *r*'s complements of an *n*-digit number 0 is 0.
- $r^n N = [(r^n 1) N] + 1$
 - The r's complements is obtained by adding 1 to the (r-1)'s complements

- Ex)
 - The 10's complements of 012398 is 987602
 - The 10's complements of 246700 is 753300

- The 2's complements of 1101100 is 0010100
- The 2's complements of 0110111 is 1001001

r's complement of $B = \mathbf{B} = r^n - B$

$$A + \mathbf{B} = A + r^n - B$$

= $A - B + r^n$
 $A - B = A + \mathbf{B} - r^n$

$$A + \mathbf{B} = A + r^n - B$$

 $= A - B + r^n$
 $= r^n - (B - A)$
 $B - A = r^n - (A + \mathbf{B}) = \text{r's complement of } (A + \mathbf{B})$
 $A - B = -\text{r's complement of } (A + \mathbf{B})$

• Ex1-5) using 10's complement, subtract 72532-3250. (r = 10, n = 5)

```
M = 72532

10's complement of 3250 = + 96750

Sum = 169282

Discard end carry 10 -100000

Answer = 69282
```

• Ex1-6) Using 10's complement, subtract 3250-72532.

$$M = 03250$$
10's complement of $72532 = +27468$

Sum = 30718

- There is no end carry
- Therefore, the answer is –(10's complement of 30718)=-69282

Ex1-7) X=1010100, Y=1000011, (a) X-Y, (b) Y-X

```
X = 1010100
2's complement of Y = +0111101
Sum = 10010001
Discard end carry 2 -10000000
Answer: X-Y =
```

```
Y = 1000011 There is no carry.

2's complement of X = +0101100 The answer is Y-X = 1001111
```

- Ex) The number 9 represented in binary with eight bit
 - +9:00001001
 - -9: 10001001 (signed-magnitude representation)
 - 11110110 (signed-1's-complement representation)
 - 11110111 (signed-2's-complement representation)

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0		1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

 Ex) The number 9 represented in binary with eight bit

• -9: 10001001 (signed-magnitude representation)

sign magnitude

Table	1-3		
Signed	Binary	Numbers	

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

- Ex) The number 9 represented in binary with eight bit
 - -9: 11110110 (signed-1's-complement representation)

-9 is represented by the I's complement of +9 (00001001).

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

- Ex) The number 9 represented in binary with eight bit
 - -9: 11110111 (signed-2's-complement representation)

-9 is represented by the 2's complement of +9 (00001001).

Decimal	Signed-2's complement	Signed-1's complement	Signed magnitude
+7	0111	0111	0111
+6	0110	0110	0110
+5	0101	0101	0101
+4	0100	0100	0100
+3	0011	0011	0011
+2	0010	0010	0010
+1	0001	0001	0001
+0	0000	0000	0000
-0	_	1111	1000
-1	1111	1110	1001
-2	1110	1101	1010
-3	1101	1100	1011
-4	1100	1011	1100
-5	1011	1010	1101
-6	1010	1001	1110
-7	1001	1000	1111
-8	1000	_	_

- Arithmetic Addition
 - signed-magnitude system follows the rules of ordinary arithmetic.
 - signed-complement system requires only addition.

+6	00000110	-6	11111010
+13	00001101	+13	00001101
+19	00010011	+7	00000111
+6	00000110	-6	11111010
-13	11110011	-13	11110011
-7	11111001	-19	11101101

- Arithmetic Subtraction
 - $(\pm A)-(\pm B) = (\pm A)+(-B)$
 - $(\pm A)-(-B) = (\pm A)+(+B)$
 - -B is either I's complement or 2's complement of B.

 A-B is A + 2's complement of B.
 - We don't need to perform subtraction.

BINARY CODE-BCD CODE

- the 4-bit code for one decimal
 - $(185)_{10} = (0001\ 1000\ 0101)BCD = (10111001)2$
- BCD Addition

4	0100	4	0100	8	1000
+5	+0101	+8	+1000	+9	+1001
9	1001	12	1100	17	10001
			+0110		+0110
			10010		10111

Decimal symbol	BCD digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Table 1-4

If the binary sum is greater or equal to 1010, we add 0110 to obtain the correct BCD

BINARY CODE-OTHER DECIMAL CODES

Table 1-5Four Different Binary Codes for the Decimal Digits

Decimal digit	BCD 8421	2421	Excess-3	8 4-2-1
0	0000	0000	0011	0 0 0 0
1	0001	0001	0100	0 1 1 1
2	0010	0010	0101	0 1 1 0
3	0011	0011	0110	0 1 0 1
4	0100	0100	0111	0 1 0 0
5	0101	1011	1000	1 0 1 1
6	0110	1100	1001	1010
7	0111	1101	1010	1 0 0 1
8	1000	1110	1011	1 0 0 0
9	1001	1111	1100	1 1 1 1
	1010	0101	0000	0 0 0 1
Unused	1011	0110	0001	0 0 1 (
bit	1100	0111	0010	0 0 1 1
combi-	1101	1000	1101	1 1 0 0
nations	1110	1001	1110	1 1 0 1
	1111	1010	1111	111(

BINARY CODE-GRAY CODE

Tab	le	1-	6
Gra	y C	oc	le

Gray code	Decimal equivalent		
0000	0		
0001	1		
0011	2		
0010	3		
0110	4		
0111	5		
0101	6		
0100	7		
1100	8		
1101	9		
1111	10		
1110	11		
1010	12		
1011	13		
1001	14		
1000	15		

BINARY CODE- ASCII CHARACTER CODE

Table 1-7 *American Standard Code for Information Interchange (ASCII)*

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P		p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	С	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	V
0111	BEL	ETB	4	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	у
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	. [
1101	CR	GS	-	$x_{i,j}=x_{i,j}=x_{i,j}$	M]	m	}
1110	SO	RS		>	N	\wedge	n	~
1111	SI	US	/	?	O	_	O	DEL

BINARY CODE

Error-Detecting Code

With even parity With odd parity

ASCII A = 1000001 01000001 11000001

ASCII T = 1010100 11010100 01010100

BINARY STORAGE AND REGISTERS

- Registers A register with n cells can store any discrete quantity of information that contains n bits.
- Register Transfer

