$\angle = -bTV + \langle y, x \rangle.$ $\inf_{x} \angle (v, x) = -bTV + \inf_{x} \langle y, x \rangle.$ $\inf_{x} \langle y, x \rangle = 0 \quad \text{if} \quad y = 0$ $\exists y \neq 0. \quad \inf_{x} \langle y, x \rangle = -\omega.$ $x = y \quad \langle y, x \rangle = ||y||^{2}$ $x = -|\cot y| \langle y, x \rangle = -|\cot o||y||^{2}.$ $x = A y \quad \langle y, x \rangle = A ||y||^{2}.$ $x = A y \quad \langle y, x \rangle = A ||y||^{2}.$ $x = A y \quad \langle y, x \rangle = A ||y||^{2}.$

For χ_{20} , any ν , $g(\lambda, \nu) \leq p^*$.

The Lagrange dual problem associated with (1) is defined as

maximize g(2, v)
subject to 270.

- Find the best lower bound on Pt that can be obtained from the dual function.

- Let dt to denote the optimal value of the dual problem.

- η , ν are dual feasible if $\chi > 0$ and χ , $\nu \in \text{dom } g = \int (\chi, \nu) = g(\chi, \nu) - \infty$.

 $-(\chi^*, \nu^*)$ are dual optimal it they are optimal for the problem $g(\chi^*, \nu^*) = \chi^*$.

Cagange dual of LP. Inequality form Standard from minimize ctx minimize C^TX s.t. Ax=bSit. Ax ≤ b. - dual function $g(G,U) = \begin{cases} -bU, & \text{if } c+AU-\lambda=0. \\ -\infty. & \text{otherwise.} \end{cases}$ $g(AU) = \begin{cases} -bU, & \text{if } c+AT\lambda=0. \\ -\infty. & \text{otherwise.} \end{cases}$ - dual problem maximize -bTV maximize $-bT\lambda$ sit. $C+ATV-\lambda=0$ $\lambda \geq 0$ $ctA^T \lambda = 0$. $c + ATV = \lambda \geq 0$. ALP. $\Rightarrow |maximize - U| |V| |V| |V| |Compare| |Sit| |C+ATV \ge 0.$ also a LP

Weat duality: dt = pt always holds (for convex and non convex probbers). - The difference pt - dt (>0) is called the optimal duality gap of the original problem. - The dual problem is always convex a nontrivial lower bound for a diffiant prodem. WES" minimize $\times^T \mathcal{N} \times$.

Sit. $\chi_i = 1, i = 1, \dots, n$. Example. x <//> $\chi_{\hat{l}} \in \{+1, -1\}$

The feasible set is $x \in \{1, -1\}$?

Alscrete.

ex. x = (+1)(+1)(+1)....(-1), (-1), = (-1), (-1).

of 2^n points

-This problem is not convex.

- The Lagrangian is $L(x, v) = x^{7}Nx + \sum_{i} V_{i}(x_{i}^{2}-1)$ $= x^{7}Nx - \sum_{i} V_{i} + (x_{i} \times_{2} \cdots \times_{n}) V_{i}$ $= x^{7}(N + diag(v))x - 1^{7}v$ = diag(v)This is the all-1 vector. g (V)= mf ((x, v) = -1 + inf x(N + diag W)xThis is not now bound for $0^{\frac{1}{2}}$ recompanies optimal

recompanies optimal

1+ $\frac{1}{2}$ < $\frac{1}{2}$ < $\frac{1}{2}$. A = $\int -1^T v$, if $N + diag(v) \ge 0$ - ∞ , otherwise. The TThe dual problem is (SDP) maximize $-1^T v = -\sum v_i = \min_{\substack{\text{minimize} \\ \text{N}}} v_i$ s.t. $W + diag(v) \ge 0$. $v_i \ge -T_{\min}$ thouse of the stay (v) = The true that the the tray (v) = The true that the tray (v) = the true that the true that

Strong ducting $d^{*} = p^{*}$. - door not hold in goneral. - It [usually] holds for convex problems. - Slater's constraint qualification. The strong duntity holds for the convex problem (1). If there exists an XX X & relint D such that. $f_i(x) < 0$ $i=1,\cdots,m$. (The problem is strictly fensible.). Then I a dual forsible (2*,)*) with $g(x^*, x^*) = \lambda^* = x^*$ if $A^* \neq -\infty$. (See P. 234)