PHIL3110 - Assignment 2

Maxwell Bo

May 22, 2018

Problem 1

Definition 1 $f: \mathcal{X} \rightarrow \mathcal{Y}$ is injective $\Leftrightarrow \forall x_1, x_2 \in \mathcal{X}$ if $F(x_1) = F(x_2)$ then $x_1 = x_2$.

Theorem 1 If $f: \mathcal{X} \rightarrow \mathcal{Y}$ is injective and $g: \mathcal{Y} \rightarrow \mathcal{Z}$ is injective, then $g \circ f$ is injective.

Proof 1 Suppose $f: \mathcal{X} \rightarrow \mathcal{Y}$ is injective and $g: \mathcal{Y} \rightarrow \mathcal{Z}$ is injective. We must show that $g \circ f$ is injective. Suppose x_1 and x_2 are elements of \mathcal{X} such that

$$(g \circ f)(x_1) = (g \circ f)(x_2)$$

By definition of composition of functions,

$$g(f(x_1)) = g(f(x_2))$$

Since g is injective

$$f(x_1) = f(x_2)$$

And since f is injective

$$x_1 = x_2$$

Theorem 2 There is some injection $f: A \rightarrow B \Leftrightarrow A \lesssim B$.

If A, B and C are sets such that $A \lesssim B$ and $B \lesssim C$, there exists an injective $f: A \rightarrowtail B$ and injective $g: B \rightarrowtail C$. Per theorem 1, $g \circ f: A \rightarrowtail C$ is injective. Per thereom 2, $g \circ f$ entails $A \lesssim C$.

Problem 2

1.

$$\varphi_1 := (\exists x)(x)$$

says that there is at least 1 object, and

$$\varphi_2 := (\exists x)(\exists y)(x \neq y)$$

says that there at least 2 objects.

Thus

$$\varphi_n := (\exists x_1)(\exists x_2)\dots(\exists x_n)(x_1 \neq x_2 \neq \dots \neq x_n)$$

says that for any natural number n, there are at least n objects.

2. We need to prove that every finite subset Δ of S has a model, e.g. there exists a model \mathcal{M} such that $\mathcal{M} \models \Delta$.

First, we'll define a stage based defintion of S, where:

$$s(0) = T$$

 $s(n+1) = s(n) \cap \{\varphi_{n+1}\}\$

such that $\{s(n) \mid n \in \omega\} = S$.

At each step, we need to show that

- The model that satisfies s(n) defines s(n) objects
- The model is finitely satisfiable

Base

 $0 \in A$. We can fix some \mathcal{M} where $\mathcal{T} \subseteq \mathcal{M}$, where $\mathcal{T} \models T$ for every finite subset Δ of s(0).

The only finite subset of s(0) is T.

By our fix of \mathcal{M} , $\mathcal{M} \models T$. Therefore, s(0) is finitely satisfiable - $\mathcal{M} \models s(0)$.

 \mathcal{M} defines at least 0 objects.

Induction Step

Suppose $n \in A$.

Let \mathcal{N} be the model that satisfied s(n). It defined at least n objects.

 $\mathcal{N} \not\models \Delta$ for each finite subset Δ of s(n+1).

Why?

The only finite subset Δ of $s(n+1) \setminus s(n)$ is $\{\varphi_{n+1}\}.$

Consider the only sentence in Δ , φ_{n+1} .

In order for $\mathcal{N} \models \varphi_{n+1}$, \mathcal{N} would need to define n+1 objects.

Consider some \mathcal{M} that defines a new object, so that $\mathcal{N} \subseteq \mathcal{M}$. Now \mathcal{M} defines at least n+1 objects.

By theorem 139, as γ is Σ_1 , and $\mathcal{N} \models \varphi_n^{-1}$, $M \models \varphi_{n+1}$.

As $\mathcal{M} \models s(n)$, and $\mathcal{M} \models s(n+1) \setminus s(n)$, every finite subset Δ of $s(n) \cup (s(n+1) \setminus s(n))$ is satisfiable.

Therefore s(n+1) is finitely satisfiable - $\mathcal{M} \models s(n+1)$

Thus, $n+1 \in A$. Then by induction, we see that every $n \in A$.

Every finite subset Δ of S has a model.

3.

 $^{^{1}\}varphi_{n}\in s(n)\setminus s(n-1)$

Problem 3

```
; This program accepts a block of n-many 1s and outputs a block of 2n-many 1s,
; after the original block with a single blank space separating them;
; Henceforth:
; - the n-many 1's will be referred to as the "parameter array"
; - the 2n-many 1's will be referred to as the "accumulator array"
; - the single blank space seperating them will be referred to as "the divider"
; ALGORITHM SUMMARY: Move a loop pointer through the parameter array,
; terminating the loop when the pointer reaches the end of the parameter array.
; On each loop, append two 1s to the end of the accumulator array.
; ### State 0: as per the assignment sheet, the head should start under the 1th cell
0 - -R 1
; ### State 1 deals with placing our loop pointer, and halting the loop
; Our loop pointer is a blank, that shifts through our parameter array.
; where [_ 1 1 1] starts the loop, and [1 1 1 1] halts the loop
; This instruction puts down the new loop pointer.
; This either initializes it (if we came from State 0),
; or increments it (if we came from State 6)
1 1 -R 2
; ### State 2 deals with getting to the start of the accumulator array
; Glide over the parameter array
2 1 1 R 2
; Jump over the divider
2 --R 3
; ### State 4 and 5 deal with getting to the end of the accumulator,
; and appending two 1s.
: Glide over the accumulator...
3 1 1 R 3
; \dots until we pop out the end of the accumulator. Put down a 1\dots
3 -1 R 4
; ... and another one. Now we've gotta turn back around and increment the loop variable.
; ### State 5 deals with trying to get back to the end of the parameter array
; Glide back over the accumulator array
5 1 1 L 5
; Jump over the divider
5 --L 6
; ### State 6 deals with incrementing our loop variable
; Glide over our parameter array...
6 1 1 L 6
; ...until we hit our loop pointer. We clear the current loop pointer, shift the
; head right, and loop back to state 1, so that it may deal with the next loop iteration.
```

```
; This is our loop halting condition. State 6 has cleared the loop pointer,
; and pushed the head onto the divider. We still have to move the head to the 1th cell.
1 --L 7

; #### State 7 deals with getting to the 1th cell, and halting
; Glide back over our parameter array...
7 1 1 L 7

; ... and when we pop out past the head of the parameter array, shift right to
; the 1th cell, and halt
7 --R halt
```

Problem 4

We will attempt to demonstrate that A is recursive. The same process may be repeated to show that B and C are also recursive.

By definition, A is recursively enumerable, and that $A \subseteq \omega$. To prove that A is recursive, we must show that $\omega \setminus A$ is recursively enumerable.

Suppose $\omega \setminus A$ was not recursively enumerable.

There exists an $n \in \omega \setminus A$, such that no φ_e exists, that has a domain $\omega \setminus A$, and halts when applied to n.

As B and C are recursively enumerable there are partial recursive functions φ_B and φ_C which have the domains of B and C respectively. We can define a function

$$\varphi_{B \cup C}(n) = \begin{cases} \varphi_b(n), & \text{if } \varphi_b(n) \text{ halts.} \\ \varphi_c(n), & \text{if } \varphi_c(n) \text{ halts.} \\ \text{undefined,} & \text{otherwise.} \end{cases}$$

which has the domain $B \cup C$. By definition $A \cap B \cap C = \omega$, $B \cap C = \omega \setminus A$.

This means we have found a partially recursive function, $\varphi_{B\cup C}$, that has the domain $n \in \omega \setminus A$ and halts on every $n \in \omega \setminus A$. This is a contradiction.

Thus, $\omega \setminus A$ is recursively enumerable.

Thus, A is recursive.