ELEC 341 – Lecture Notes

Poles & Zeros

Learning Objectives

- Poles
- Zeros
- Real & Complex

- Matlab
 - meshgrid()
 - surf()
 - view()
 - colormap()
 - help graph3d for useful maps

Approximate Derivatives

$$\cos(t) \xrightarrow{\mathcal{L}} \frac{s}{s^2 + 1}$$

$$\frac{d}{dt}\sin(t) \xrightarrow{\mathcal{L}} \frac{a}{s + a} s \frac{1}{s^2 + 1} = \frac{as}{(s + a)(s^2 + 1)}$$
filter constant

