CHƯƠNG 2: PHƯƠNG PHÁP ĐẾM

1/ Một số khái niệm:

Cho tập hợp $X = \{x_1, x_2, ..., x_n\}$, ta chọn ra các tập hợp (nhỏ hơn), gồm có k phần tử, mà ta thường gọi là quá trình lập mẫu cỡ $k \rightarrow V$ ấn đề ta cần quan tâm là có bao nhiều mẫu cỡ k được tạo thành?

<u>Ví du</u>: Rút ngẫu nhiên 6 lá bài từ một bộ bài 52 lá. Hỏi có bao nhiều cách rút lá bài sao cho trong 6 lá bài lấy ra:

- a/ Có ít nhất 2 lá ách, tối thiểu 2 lá già và có không quá 1 lá đầm.
- b/ Nếu có số ách là số nguyên tố thì số lá Tây là số chính phương.
- c/ Có ít nhất 4 lá bài cùng loại (cơ, rô, chuồn, bích).
- d/ Có đúng 2 loại bài.
- e/ Có ít nhất 3 loại bài.
- f/ Có đủ 4 loại bài và số lá cơ luôn >= số lá rô.
- g/ Số lá cơ \leq số lá rô \leq số lá chuồn \leq số lá bích.
- h/ Nếu số là cơ không quá 3 thì có không quá 1 lá chuồn.
- i/ Không có lá cơ hoặc không có lá rô.
- j/ Có lá chuồn hay có lá bích.

* Nguyên lý cộng:

- + Giả sử ta cần lập mẫu cỡ k.
- + Muốn lập được mẫu này ta có thể dùng nhiều giải pháp (phương án solutions) khác nhau, trong đó:

• • • •

Trong đó, các PA này là những giải pháp (lời giải) song song nhau, khác biệt nhau, độc lập nhau; và tại mỗi thời điểm ta chỉ chọn được một phương án để giải quyết.

 \Rightarrow Số cách lập mẫu cỡ k là: $n_1 + n_2 + \cdots + n_m$ cách.

* Nguyên lý nhân:

- + Giả sử ta cần lập mẫu cỡ k.
- + Muốn lập được mẫu này ta phải chia thành nhiều công việc (công đoạn tasks) nhỏ hơn để thực hiện. Các công việc này là rời nhau, độc lập nhau; và ta tiến hành không quan trọng về trình tự thời gian để giải quyết các công việc; nhưng để lập được mẫu cỡ k thì ta phải thực hiện đủ tất cả m công việc con.

Trong đó:

.

 \Rightarrow Số cách lập mẫu cỡ k là: $n_1 \times n_2 \times ... \times n_m$ cách.

* Nguyên lý bù trừ:

- + Giả sử ta cần lập mẫu cỡ k, thỏa điều kiện.....
- + Số cách cần tìm = số cách của Trường hợp tổng quát số cách lập mẫu cỡ k có điều kiện trái ngược với yêu cầu đã cho.

Gọi ý giải:

Rút ngẫu nhiên 6 lá bài từ một bài 52 lá là một mẫu: cỡ 6,

- + Không thứ tự;
- + Không có lặp
- ⇒ Đây là tổ hợp → Số cách rút lá bài là số tổ hợp.
- a/ Các trường hợp (TH) có thể xảy ra là:

TH	Số lá ách	Số lá già	Số lá đầm Số lá khác		Kết quả
	(4 lá ách)	(4 lá già)	(4 lá đầm)	(40 lá)	
TH1	2	2	0	2	$C_4^2 \times C_4^2 \times C_{40}^2 = 28080$
TH2	2	2	1	1	$C_4^2 \times C_4^2 \times C_4^1 \times C_{40}^1$
TH3	2	3	0	1	
TH4	2	3	1	0	

TH5	2	4	0	0	
TH6	3	2	0	1	
TH7	3	2	1	0	
TH8	3	3	0	0	
TH9	4	2	0	0	

Kết quả câu a / = KQTH1 (28080) + KQTH2 + --- + KQTH9 (áp dụng nguyên lý cộng) b/ Nếu có số ách là số nguyên tố thì số lá Tây là số chính phương.

Các TH có thể xảy ra là:

TH1: Số lá ách là số nguyên tố.

TH	Số lá ách	Số lá Tây	Số lá khác	Kết quả	
	(4 lá ách)	(12 lá Tây)	(36 lá)		
TH1.1	2	0	4	$C_4^2 \times C_{36}^4 = 353430$	
TH1.2	2	1	3	$C_4^2 \times C_{12}^1 \times C_{36}^3 = 514080$	
TH1.3	2	4	0		
TH1.4	3	0	3		
TH1.5	3	1	2		

TH2: Số lá ách không là số nguyên tố:

TH	Số lá ách	Số lá khác	Kết quả	
	(4 lá ách)	(48 lá)		
TH2.1	0	6	$C_{48}^6 = 12271512$	
TH2.2	1	5	$C_4^1 \times C_{48}^5 = \dots$	
TH2.3	4	2	$C_4^4 \times C_{48}^2 = \dots$	

Kết quả câu b/ = KQTH1.1 + --- +KQTH1.5 + KQTH2.1 + ...+ KQTH2.3 j/ Có lá chuồn (hay) có lá bích (số là chuồn >=1 hay số lá bích >=1)

<u>Cách 1</u>: liệt kê

TH	Lá chuồn	Lá bích	Lá khác	Kết quả
	(13 lá)	(13 lá)	(26 lá)	
TH1	1	0	5	$C_{13}^1 \times C_{26}^5 = \dots$
TH2	1	1	4	$C_{13}^{1} \times C_{13}^{1} \times C_{26}^{4} = \dots$
TH3	1	2	3	
TH4	1	3	2	
TH5	1	4	1	
TH6	1	5	0	
TH7	2	0	4	
TH8	2	1	3	
TH9	2	2	2	
TH10	2	3	1	
TH11	2	4	0	
TH12	3	0	3	
TH13	3	1	2	
TH14	3	2	1	
TH15	3	3	0	
TH16	4	0	2	
TH17	4	1	1	
TH18	4	2	0	
TH19	5	0	1	
TH20	5	1	0	
TH21	6	0	0	
TH22	0	1	5	
TH23	0	2	4	
TH24	0	3	3	
TH25	0	4	2	
TH26	0	5	1	

TH27	0	6	0	

Cách 2: dùng nguyên lý bù trừ:

Kết quả = số TH tổng quát – số cách chọn có (số là chuồn <1 và số lá bích <1)
$$= C_{52}^6 - (\text{số lá chuồn} = 0 \text{ và số lá bích} = 0)$$

$$= C_{52}^6 - C_{26}^6 = 20128290 \text{ cách}.$$

Tóm lai ta có:

Mẫu	Không lặp	Có lặp
Có thứ tự	Chỉnh hợp	Chỉnh hợp lặp
Không thứ tự	Tổ hợp	Tổ hợp lặp

2/ Chỉnh hợp:

Một chỉnh hợp chập k từ n phần tử, là mẫu:

+ Có thứ tự;

+ Không lặp.

(k <= n) → Cách bấm MT bỏ túi: $\frac{nPr}{n}$

Số chỉnh hợp là:

$$A_n^k = n \times (n-1) \times (n-2) \times ... (n-k+1) = \frac{n!}{(n-k)!}.$$

Ví du:

$$A_{14}^4 = 14*13*12*11;$$

 $A_5^1 = 5;$
 $A_6^6 = 6*5*4*3*2*1 = 6! = P_6$
 $A_9^0 = 1$

<u>Ví dụ</u>: Trong 1 lớp học có 48 bạn, ta chọn ra 3 học sinh làm ban cán sự lớp, gồm 1 lớp trưởng (LT), 1 lớp phó học tập (LP1) và 1 lớp phó phong trào (LP2). Biết rằng mỗi người chỉ giữ 1 chức vụ (không cho kiêm nhiệm). Hỏi có bao nhiều cách chọn ban cán sự lớp, sao cho:

a/ Chọn tùy ý.

b/ Anh A chỉ chịu làm LT;

c/ Anh A phải làm LP nếu không có anh C tham gia.

d/ Anh A và chị B chỉ đồng ý cùng tham gia một ban cán sự lớp.

Giải:

Một cách chọn ban cán sự lớp = một mẫu cỡ 3,

+ Có thứ tự (do LT LP1 LP2 Cách 1: A В \mathbf{C} Cách 2: В \mathbf{C} A Cách 3: \mathbf{C} A B)

+ Không có lặp (do mỗi học sinh đều khác nhau và đề bài không cho kiêm nhiệm)

⇒ Đây là chỉnh hợp → Số cách xếp bằng số chỉnh hợp

a/ Đáp số: $A_{48}^3 = 103776$ cách.

b/ Đáp số: Anh A làm LT + Anh A ko làm lớp trưởng (anh A ko tham gia)

=
$$1. A_{47}^2 + A_{47}^3 = 99452$$
 cách.

c/ Đáp số: Không có anh C tham gia + Có anh C tham gia

$$= A_2^1 * A_{46}^2 + A_3^1 * A_{47}^2 = \dots$$

d/ Anh A và chị B chỉ đồng ý cùng tham gia một ban cán sự lớp.

Đáp số: A, B cùng tham gia + A, B không cùng tham gia vào 1 ban cán sự lớp.

$$= A_3^2 * A_{46}^1 + A_{46}^3 = \dots$$

3/ Chỉnh hợp lặp:

Một chỉnh hợp có lặp chập k từ n phần tử, là mẫu:

+ Có thứ tự;

+ Có lặp; $(k \le n)$ hoặc (k > n) tùy ý

 \Rightarrow Số chỉnh hợp lặp là: $\tilde{A}_n^k = n \times n \times ... \times n = n^k$

Ví du: Vì sao mã ASCII chỉ có 256 mã?

Giải: Một ô nhớ = 1 mã ASCII = 1 byte = 8 bit = 1 mẫu cỡ 8

Ī	1	0	1	0	0	1	0	1

Được chọn từ tập hợp $\{0,1\}$

- + Có thứ tự;
- + Có lặp.
- ⇒ Đây là chỉnh hợp có lặp;
- \Rightarrow Số mã ASCII = số chỉnh hợp có lặp = $\tilde{A}_2^8 = 2^8 = 256$ mã.

<u>Bài tập 1</u>: Một đầu số 090 của MobiFone được đăng ký tiếp theo 7 ký số. Hỏi có thể đăng ký tối đa bao nhiêu SIM số 090 của MobiFone?

<u>Bài tập 2</u>: Một mã hàng hóa là 1 dãy 8 phần tử tùy ý, được chọn từ tập hợp (gồm các ký tự và ký số) {A, B, C, D, E, F, 0, 1, 2, 3, 5, 8, 9}.

Hỏi có bao nhiều cách lập mã hàng hóa, sao cho:

a/ Tùy ý

b/ Có ít nhất 2 ký tự.

c/ Có số lượng ký tự là số chính phương.

d/ Nếu có không quá 2 ký tự thì không có số 9.

4/ Hoán vi:

Một hoán vị cỡ n là một mẫu:

- + Có thứ tự;
- + Không lặp;
- + Gồm đủ mặt n phần tử ban đầu.
- \Rightarrow Số hoán vị: $A_n^n = n^*(n-1)^*(n-2)^*...^*2^*1 = n! = P_n$

<u>Ví dụ</u>: Xếp chỗ ngồi cho 6 học sinh vào một bàn dài có 6 chỗ trống. Biết rằng mỗi học sinh chỉ ngồi 1 chỗ và 1 chỗ chỉ có 1 học sinh ngồi tại 1 thời điểm. Hỏi có bao nhiều cách xếp, sao cho:

a/ Tùy ý.

b/ Anh A không ngồi ở đầu bàn.

c/ Anh A và chị B luôn ngồi cạnh nhau.

d/ Chị B luôn ngồi giữa anh A và anh C.

5/ <u>Tổ hợp</u>:

Một tổ hợp chập k từ n phần tử, là một mẫu:

+ Không thứ tự;

+ Không lặp; $(k \le n) = b \text{ấm MT bỏ túi: } \frac{nCr}{n}$

$$\Rightarrow \text{ Số tổ hợp: } C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

6/ <u>Tổ hợp lặp</u>:

Một tổ hợp có lặp chập k từ n phần tử, là một mẫu:

+ Không thứ tự;

+ Có lặp; $(k \le n)$ hoặc (k > n) tùy ý.

 \Rightarrow Số tổ hợp lặp: $\tilde{C}_n^k = K_n^k = C_{n+k-1}^k$

<u>Ví du</u>: Phát 5 phần học bổng giống nhau (mỗi phần 1000 USD) cho 20 sinh viên. Hỏi có bao nhiêu cách phát?

Giải: Một cách phát học bổng là một mẫu cỡ 5:

- + Không thứ tự;
- + Có lặp (mỗi SV có thể nhận cùng lúc nhiều học bổng)
- ⇒ Đây là tổ hợp có lặp

Số cách phát học bổng = số tổ hợp lặp = $\tilde{C}_{20}^5 = K_{20}^5 = C_{20+5-1}^5 = C_{24}^5 = 42504$ cách.

<u>Ví dụ khác</u>: Phát 5 phần quà giống nhau cho 3 học sinh. Hỏi có bao nhiều cách phát sao cho học sinh nào cũng có quà?

Giải:

Một cách phát 5 phần quà cho 3 học sinh là một mẫu cỡ 5,

- + Không thứ tự;
- + Có lặp (mỗi học sinh có thể được nhận nhiều phần quà)
- ⇒ Đây là tổ hợp lặp
- ⇒ Số cách phát bằng số tổ hợp lặp.

Gọi x_1 là số quà nhận được của học sinh thứ 1;

 x_2 là số quà nhận được của học sinh thứ 2;

 x_3 là số quà nhận được của học sinh thứ 3.

Ta có pt $x_1 + x_2 + x_3 = 5$, với $x_1, x_2, x_3 \in \mathbb{N}$ thỏa:

$$\begin{cases} x_1 \ge 1 \\ x_2 \ge 1 \\ x_2 \ge 1 \end{cases}$$

Lúc này yêu cầu bài toán tương đương tìm số nghiệm nguyên của phương trình

$$x_1 + x_2 + x_3 = 5$$

Lấy 3 phần quà (trong 5 phần quà) chia cho mỗi học sinh 1 phần → có 1 cách

Lấy 2 phần quà còn lại chia tùy ý cho 3 học sinh \rightarrow số cách là $\tilde{C}_3^2 = K_3^2 = C_{3+2-1}^2 = C_4^2 = 6$

Đáp số = 1*6 = 6 cách chia.

<u>Ví dụ 2</u>: Có 3 hộp bi, mỗi hộp chỉ chứa các bi cùng màu, cùng kích cỡ, hình dáng, trọng lượng; và mỗi hộp chứa ít nhất 12 bi. Các hộp gồm: màu đỏ, màu xanh, màu vàng. Ta lấy ra ngẫu nhiên 12 bi từ 3 hộp này. Hỏi có bao nhiều cách lấy bi sao cho:

a/ Các bi được lấy tùy ý.

b/ Có ít nhất 3 bi đỏ và có tối thiểu 5 bi xanh.

c/ Có ít nhất 4 bi đỏ và nhiều nhất 2 bi vàng.

d/ Có đúng 2 màu bi.

e/ Có đủ 3 màu bi.

f/ Không có bi màu xanh.

g/ Nếu có không quá 2 bi vàng thì không có bi xanh.

h/ Có bi xanh hoặc có bi đỏ.

Giải:

Một cách lấy 12 bi từ 3 hộp là một mẫu cỡ 12,

+ Không thứ tự;

+ Có lặp (các bi có thể được chọn từ cùng một hộp)

⇒ Đây là tổ hợp lặp.

 \Rightarrow Số cách lấy bi = số tổ hợp lặp.

a/ Các bi được lấy tùy ý.

Gọi x_1 là số bi lấy từ hộp màu đỏ;

 x_2 là số bi lấy từ hộp màu xanh;

 x_3 là số bi lấy từ hộp màu vàng.

Ta có pt $x_1 + x_2 + x_3 = 12$, với $x_1, x_2, x_3 \in \mathbb{N}$ thỏa:

$$\begin{cases} x_1 \ge 0 \\ x_2 \ge 0 \\ x_3 \ge 0 \end{cases}$$

Đáp số =
$$K_3^{12} = C_{3+12-1}^{12} = C_{14}^{12} = 91$$
 cách.

b/ Có ít nhất 3 bi đỏ và có tối thiểu 5 bi xanh.

Gọi x_1 là số bi lấy từ hộp màu đỏ;

 x_2 là số bi lấy từ hộp màu xanh;

 x_3 là số bi lấy từ hộp màu vàng.

Ta có pt $x_1 + x_2 + x_3 = 12$, với $x_1, x_2, x_3 \in \mathbb{N}$ thỏa:

$$\begin{cases} x_1 \ge 3 \\ x_2 \ge 5 \Leftrightarrow \begin{cases} X_1 = x_1 - 3 \ge 0 \\ X_2 = x_2 - 5 \ge 0 \\ X_3 = x_3 \ge 0 \end{cases}$$

Thay vào pt $x_1 + x_2 + x_3 = 12$ ta có:

$$(X_1 + 3) + (X_2 + 5) + X_3 = 12$$

 $\Leftrightarrow X_1 + X_2 + X_3 = 4$

Nên ta:

Lấy 3 bi từ hộp màu đỏ → có 1 cách;

Lấy 5 bi từ hộp màu xanh → có 1 cách;

Lấy 4 bi còn thiếu từ 3 hộp tùy ý \rightarrow có $K_3^4 = C_{3+4-1}^4 = C_6^4 = 15$ cách.

Đáp số =
$$1*1*15 = 15$$
 cách.

c/ Có ít nhất 4 bi đỏ và nhiều nhất 2 bi vàng.

Gọi x_1 là số bi lấy từ hộp màu đỏ;

 x_2 là số bi lấy từ hộp màu xanh;

 x_3 là số bi lấy từ hộp màu vàng.

Ta có pt $x_1 + x_2 + x_3 = 12$, với $x_1, x_2, x_3 \in \mathbb{N}$ thỏa:

$$\begin{cases} x_1 \ge 4 \\ x_2 \ge 0 \\ x_3 \le 2 \end{cases}$$

Cách 1: liệt kê

Lấy 4 bi từ hộp đỏ → có 1 cách;

Lấy 0 bi từ hộp vàng → có 1 cách;

Lấy 8 bi còn thiếu từ 2 hộp (đỏ, xanh) \rightarrow có $K_2^8 = C_{2+8-1}^8 = C_9^8 = 9$ cách Đáp số trường hợp này = 1*1*9 = 9 cách.

Lấy 4 bi từ hộp đỏ → có 1 cách;

Lấy 1 bi từ hộp vàng → có 1 cách;

Lấy 7 bi còn thiếu từ 2 hộp (đỏ, xanh) \rightarrow có $K_2^7 = C_{2+7-1}^7 = C_8^7 = 8$ cách Đáp số trường hợp này = 1*1*8 = 8 cách.

Lấy 4 bi từ hộp đỏ → có 1 cách;

Lấy 2 bi từ hộp vàng → có 1 cách;

Lấy 6 bi còn thiếu từ 2 hộp (đỏ, xanh) \rightarrow có $K_2^6 = C_{2+6-1}^6 = C_7^6 = 7$ cách Đáp số trường hợp này = 1*1*7 = 7 cách.

Đáp số cần tìm = 9+8+7 = 24 cách.

Cách 2: dùng nguyên lý bù trừ:

Ta có phần bù của
$$\begin{cases} x_1 \geq 4 \\ x_2 \geq 0 \text{ trường hợp này là: } \begin{cases} x_1 \geq 4 \\ x_2 \geq 0 \Leftrightarrow \begin{cases} x_1 \geq 4 \\ x_2 \geq 0 \Leftrightarrow \end{cases} \begin{cases} x_1 \geq 4 \\ x_2 \geq 0 \end{cases}$$

Trường hợp tổng quát (có điều kiện lọc) là: $\begin{cases} x_1 \ge 4 \\ x_2 \ge 0 \\ x_3 \ge 0 \end{cases}$

Số cách của trường hợp tổng quát (có điều kiện lọc) là:

Lấy 4 bi từ hộp màu đỏ → có 1 cách;

Lấy 8 bi còn thiếu từ 3 hộp tùy ý \rightarrow có $K_3^8 = C_{10}^8 = 45$ cách.

Đáp số =
$$1*45 = 45$$
 cách.

Số cách của trường hợp phần bù là:

Lấy 4 bi từ hộp màu đỏ → có 1 cách;

Lấy 3 bi từ hộp màu vàng → có 1 cách;

Lấy 5 bi còn thiếu từ 3 hộp tùy ý \rightarrow có $K_3^5 = C_7^5 = 21$ cách.

Đáp số =
$$1*1*21 = 21$$
 cách.

Đáp số câu c/ = 45 - 21 = 24 cách.

Ví dụ 3: Xếp 42 quyển sách CTRR vào một kệ sách có 4 ngăn. Hỏi có bao nhiều cách xếp sao cho:

- a/ Các sách được xếp tùy ý.
- b/ Ngăn 1 có ít nhất 8 quyển sách.
- c/ Ngăn kệ nào cũng có sách.
- d/ Mỗi ngăn có ít nhất 6 quyển sách.
- e/ Số sách ở ngăn 1 là số chính phương.
- f/ Số sách ở ngăn 4 là số nguyên tố lớn hơn 10.
- g/ Có ít nhất 1 ngăn không có sách.
- h/ Ngăn 2 có ít nhất 10 quyển sách và ngăn 3 có ít nhất 8 quyển sách.
- i/ Ngăn 1 có ít nhất 8 quyển sách, ngăn 3 có nhiều nhất 4 quyển sách.
- j/ Số sách ở ngăn 3 là lũy thừa của 3.

Ví dụ suy ngẫm:

Một con kiến di chuyển từ A đến B dọc theo các cạnh của 1 ô lưới chữ nhật theo quy tắc:

- + Chỉ di chuyển từ trái sang phải;
- + Chỉ di chuyển từ trên xuống dưới.

Hỏi có bao nhiều con đường khác nhau để con kiến di chuyển từ A đến B.