Some commands

command	discription
hostname + name	Изменяет нынешнее имя
interface + name	Режим настройки интерфейса пате
no shutdown	Активировать интерфейс
line vty + fst_num + last_num	Зайти в настройку линии
login local	Создание базы данных пользователей (только в настройке линии)
username + name + secret + password	Создаём нового пользователя

command	discription
show version	Всякая инфа про заргузку (ОС, версия)
show inventory	Показывает установленные модули
show env +	Показывает температуру и другие характеристики
show processes +	Показывает процессы
show processes cpu history	Показывает графики загруженности
Сессионные	
reload	Перезагружает
show running-config	Показывает содержание запущенного конфига
show startup-config	Показывает содержание стартового конфига
<pre>copy running-config startup- config</pre>	Перезапись из первого конфига во второй
write	Записывает из рана в стартап
show history	Показывает историю введённых команд
Инфо про интерфейсы	
debug +	Включает дебаг
undebug + / no debug +	Выключает дебаг
show ip interface brief	Показать все интерфейсы
show cdp neighbour	Показать все соседние устройства (подключённые напрямую)
show cdp entry + name	Все данные об устройстве рядом
<pre>clear line + port_name</pre>	Очистить все процессы
show interface + interface name	Подробная информация про инрефейс

command	discription
ping + ip name \pm repeat + amount of repeat	Пинг ір-адреса
show inventory	Информация про подключённые интерфейсы (с нумерацией)
Инфо про рантайм	
show run \ incl dhcp	Показывает настройки именно DHCP
Инфо про ACL	
sh ip access	Показать все ACL'ы
Инфо про протоколы	
sh ip protocols	Инфо про протоколы
sh ip arp	
sh ip ospf	

Настройка Telnet

На клиенте:

```
telnet + ip_num + port (можно без порта. HTTP - 80 порт)
pass (при установке соединения попросит пароль)
```

На сервере:

1 способ

```
line vty 0 1869
login local
```

In Global config mode (not in config-line)

```
username usr secret pwd
username cisco secret cisco //-инициализация пользователя
enable secret cisco //-разрешения входа в привелегированный режим
```

2 способ

```
line vty 0 1869
password pass
login
```

Настройка VLAN

```
conf t
int fa0/0
no sh

int fa0/0.20
enc dot 20
ip add 192.168.20.1 255.255.255.0

int fa0/0.13
enc dot 13 nat
ip add 192.168.13.1 255.255.255.0
```

Команда	Описание
int fa0/0.13	Переходим на виртуальный интерфейс
enc dot 20	Инкапсулируем в dot1q (т. е. превращаем в trunk)
enc dot 13 nat	Инкапсулируем в dot1q и говорим, что native VLAN = 13
ip add 192.168.20.1 255.255.255.0	Добавляем виртуальному интерфейсу ір-адресс

Настройка Роутера как хоста

```
conf t
int fa0/0
no sh

int fa0/0.20
ip add 192.168.20.2 255.255.255.0
ip route 0.0.0.0 0.0.0.0 192.168.20.1
```

DHCP

На сервере:

```
conf t
int fa0/0
ip add 192.168.0.1 255.255.255.0
no sh

ip dhcp pool Name
netw 192.168.0.0 /24
default-router 192.168.0.1
```

```
lease N N N
ip dhcp excl 192.168.0.1 192.168.0.15
```

На клиенте:

```
ip add dhcp
```

Команда	Описание
ip dhcp pool + Name	Инициализируем пул
netw 192.168.1.0 /24	Задаём доступные адресса
default-router 192.168.0.1	Дефолт гейтвей
lease N N N	Настройка времени аренды
ip dhcp excl 192.168.0.1 192.168.0.15	Исключить адреса
ip route + адресс сети + маска сети + default gateway + индекс приоритетности (меньше - приоритетнее)	Настроить default gateway
ip route 0.0.0.0 0.0.0.0 192.168.20.1	Настроить так, чтобы все запросы перенаправлялись на 192.168.20.1

ACL basic (составляем таблицу)

```
ip access-list standart 1
permit/deny + sourse_IP

int + int_name
ip access-group 1 out
```

ACL extended (составляем таблицу)

```
ip access-list extended 100
permit/deny + TEG + sourse_IP + destination_IP + wildcard
exit

int + int_name
ip access-group 1 out
```

Создание виртуальных соседей

int lo0

IPv₆

Comand	Description
ipv6 enable	Запустить функции IPv6. На интерфейсе сразу выдаётся link local address. <mark>Не забыть включить интерфейс!</mark>
do sh ipv6 int br	Показать краткую инфу про интерфейсы
do sh ipv6 route	Показать таблицу маршрутизации
ipv6 unicast-routing	Из <u>Global config mode</u> запускает маршрутизацию (по умолчанию машина - хост)
ipv6 cef	cef = Cisco Express Forvarding
ipv6 address fe80::2 link-local	Задаём локальный адресс
ipv6 address + prefix + mask + eui-64	Настроить адресс по EUI-64

DHCP IPv6

ipv6 dhcp pool Name

address prefix 2001:234::/64

dns-server 2001:234::1
domain-name cisco.com

##Далее на интерфейсе ipv6 nd managed-config-flag ipv6 nd other-config-flag

На клиенте:

ipv6 add dhcp

или для stateless dhcp:

ipv6 add autoconfig

Команда	Описание
ipv4 dhcp pool + Name	Инициализируем пул
address prefix 2001:234:0 /64	Настройка подсети, в которой работает сервер
ipv6 nd managed-config-flag	Поднять флаг о передаче адреса клиену (для stateful)
ipv6 nd other-config-flag	Поднять флаг о передачи всей информации кроме адреса

```
ipv6 unicast-routing
int f0/0
ipv6 address 2001:14::4/64
no sh

do sh ipv6 int br

ipv6 route ::/0 2001:14::1
```

R1

```
conf t
ipv6 unicast-routing

int f0/0
ipv6 address 2001:14::1/64
no sh

int f4/0
ipv6 address 2001:12::1/64
no sh

int g1/0
ipv6 address 2001:13::1/64
no sh
do sh ipv6 int br

ipv6 route 2001:23::/64 2001:13::3
ipv6 route 2001:25::/64 2001:13::3
```

R2

```
conf t
ipv6 unicast-routing

int f0/0
ipv6 address 2001:25::2/64
no sh

int f4/0
```

```
ipv6 address 2001:12::2/64
no sh

int g1/0
ipv6 address 2001:23::2/64
no sh
do sh ipv6 int br

ipv6 route 2001:13::/64 2001:13::3
ipv6 route 2001:14::/64 2001:13::3
```

R3

```
conf t
int g5/0
ipv6 address 2001:23::3/64
no sh

int g1/0
ipv6 address 2001:13::3/64
no sh
do sh ipv6 int br

ipv6 route 2001:14::/64 2001:13::1
ipv6 route 2001:25::/64 2001:23::2
ipv6 route 2001:12::/64 2001:13::1
```

R5

```
ipv6 unicast-routing
int f0/0
ipv6 address 2001:15::5/64
no sh

do sh ipv6 int br
ipv6 route ::/0 2001:25::2
```

NAT/PAT

R1

```
ip access-list extended 100 permit ip 192.168.134.0 0.0.0.255 any
```

```
int g1/0
ip nat inside

int f0/0
ip nat outside

// Далее в priveleged mode
ip nat inside source list 100 interface f0/0 overload
do sh ip nat tra
do sh ip nat stat
```

ПО ЧАСТЯМ	ЗАЧЕМ
ip nat	командуем для nat
inside	говорим, что начинаем разбирать логику трансляции
source list 100	Sourse, который проходит правила ACL 100
interface f0/0	Sourse выше заменяется на IP на интерфейсе f0/0
overload	Указание, чтобы использовалось РАТ

PAT+NAT

```
\\ in global config
\\ инициализировали пул
ip nat pool CiscoPool 10.0.0.1 10.0.0.10 netmask 255.0.0.0
ip nat inside source list 100 pool CiscoPool overload
```

NAT

Настраивается как PAT+NAT, но без overload

Tunnel setting

Comand	Description
int tun0	поднимаем интерфейс для туннеля
tunnel mode + mode_name	Настраиваем туннель
tunnel mode gre ip	Настраиваем туннель IP через GRE
tunnel source e2/3	Отправитель через физический интерфейс (плохой дизайн)
tunnel destination 192.168.45.5	Получатель через IP
keepalive	Мониторинг состояния туннеля

```
int tun0
ip add 192.168.25.2 255.255.255.0 // логический адрес туннеля
tunnel mode gre ip
tunnel source Ethernet2/3
tunnel destination 192.168.45.5 // адрес физического интерфейса
keepalive
```

Лучше в качестве source использовать Loopback, а в качестве destination - IP адресс Loopback'а с другой стороны

OSPF setting

Command	Description
router ospf 1	инициализируем процесс 1. каждый процесс - одно дерево
router-id 3.3.3.3	Ставим ID на роутере
network 0.0.0.0 255.255.255.255 area 0	Ставим сети, участвующие в OSPF. Macka wildcart
sh ip ospf data	Показать всю информацию по OSPF
clear ip ospf process	Очистить таблицу маршрутизации

R2

```
router ospf 1
network 192.168.23.0 0.0.0.255 area 0
passive-int e2/1
```

R3

```
network 0.0.0.0 255.255.255 area 0 router-id 3.3.3.3
```

R4

```
router ospf 1
network 0.0.0.0 255.255.255.255 area 0
int lo0
ip add 4.4.4.4 255.255.255
int lo1
ip add 44.44.44 255.255.255.255
```

```
router ospf 1
network 192.168.45.0 0.0.0.255 area 0
```

HDLC

command	discriptoin
encapsulation hdlc	Выставить нужную инкапсуляцию
show controllers + serial number	Lists whether a cable is connected to the interface, and if so, whether it is a DTE or DCE cable
clock rate	Установить на DCE скорость передачи (в GNS3 все считают, что они DCE)

R1

```
conf t
int s3/4
enc hdlc - по умолчанию
ip add 192.168.0.1 255.255.255.0
no sh
```

R2

```
conf t
int s3/4
enc hdlc - по умолчанию
ip add 192.168.0.2 255.255.255.0
no sh
```

PPP

R1- host, R2 - client

CHAP setting:

R1:

```
username Cisco3 password Pwd3
int s3/3
enc ppp
no sh
```

```
ip add 192.168.13.1 255.255.255.254

ppp authe chap
ppp chap hostn Ciscol
ppp chap password Pwd3
```

R2:

```
conf t

int s3/1
enc ppp
no sh
ip add 192.168.13.0 255.255.255.254

ppp chap host Cisco3
ppp chap pass Pwd3
```

PAP setting

R1:

```
username Cisco2 password Pwd2
int s3/2
enc ppp
no sh
ip add 192.168.12.1 255.255.252
ppp authe pap
```

R2:

```
conf t

int s3/1
enc ppp
no sh
ip add 192.168.12.2 255.255.252

ppp pap sent Cisco2 pass Pwd2
```

Different networks

Разные подсети успешно подключаются:

R1:

```
int s3/4
enc ppp
no sh
ip add 192.168.14.1 255.255.252
```

R2:

```
conf t
int s3/1
enc ppp
no sh
ip add 192.168.41.1 255.255.252
```

Address assignment

R1:

```
int s3/5
enc ppp
no sh
ip add 192.168.15.1 255.255.254
peer default ip address 192.168.15.0
```

R2:

```
conf t

int s3/1
enc ppp
no sh
ip add negotiated
```

MLPPP

Как LAG, то есть повторное соединение R1:

```
##Создаём новый логический интерфейс, с которого будем общаться int multilink 1 enc ppp ppp multilink group 1 ip add 192.168.21.1 255.255.252
```

```
enc ppp
ppp multilink group 1
no sh

int s3/0
enc ppp
ppp multilink group 1
no sh
```

R2

```
##Создаём новый логический интерфейс, с которого будем общаться int multilink 1 enc ppp ppp multilink group 1 ip add 192.168.21.2 255.255.252 int s3/1 enc ppp ppp multilink group 1 no sh int s3/0 enc ppp ppp multilink group 1 no sh
```

PPP unnumbered

Создаём loopback и назначаем все интерфейсы на него (то есть с этого адреса будут слаться пакеты)

R1:

```
int lo0
ip add 1.1.1.1 255.255.255

int s3/2
ip unnumbered lo0

int s3/3
ip unnumbered lo0

int s3/4
ip unnumbered lo0
```

```
int s3/5
ip unnumbered lo0
```

PPP neighbour route

Позволяет очистить таблицу маршрутизации, чтобы не было видно соседей. Лучше не делать, если подключён сосед из известной подсети, ведь иначе не сможет пройти ping.

```
no peer neig
do sh ip route
do clear ip route *
do sh ip route
```

Frame relay

discription
Переключиться на интерфейс (сабинтерфейс). multipoint - если на него забинжены несколько dcli. Иначе - point-to-point
Включить инкапсуляцию. Если связаны устройства cisco и не cisco, то в конце можно дописать ietf
Настроить на интерфейсе (или сабинтерфейсе номер DLCI)
посмотреть инфу про статистику и FR
посмотреть инфу про подключения
Настроить статический маршрут до ip_num через некоторую линку с dlci_num Нужно, если выключен inverse-ARP, который по DLCI узнаёт IP
Посмотреть информацию по соединению линка
включить режим FR-switch
DTE - клиент, DCE - провайдер. в GNS3 в сторону тглупого FR-Switch'а нужно всегда ставить dte
Настройка маршрута на входном интерфейсе роутера, настроенного под FR-switch. Причём int_name может быть и туннелем!

```
conf t
int se4/0
no sh
enc fr

int s4/0.102 point-to-point
frame-relay interface-dlci 102
exit
ip add 192.168.24.4 255.255.255.0

do sh frame pvc
```

R2

```
conf t
int se4/0
no sh
enc fr
int s4/0.104 point-to-point
frame-relay interface-dlci 104
exit
ip add 192.168.24.2 255.255.255.0
```

Важно! Чтобы <u>OSPF</u> работал корректно, включать нужно на каждом multicast интерфейсе прописать настройку: ip ospf network point-to multipoint. Подробнее в запись об <u>OSPF</u>

HSRP setting

command	discription
do sh standby br	Посмотреть информацию
<pre>standby + group_num + ip +ip_num ex: standby 1 ip 192.168.10.123</pre>	Присязать к виртуальному ір
standby + group_num + preempt	Настроить preempt (перехват управления active при рабочем active)
<pre>standby + group_num + priority + priority_num</pre>	Изменить приоритет роутера
standby + group_num + name name_str	Назначить имя
standby version +1 2	Назначить версию (на всех роутерах в группе дожны быть одинаковые версии)

Важно, что виртуальный IP не совпадает с IP на интерфейсе. HSRP нужно настраивать на каждом задейственном интерфейсе (или сабинтерфейсе, если дело касается VLAN) На каждом VLAN можно сделать свою группу и по приоритету сделать так, что каждую подсеть обслуживает свой роутер (остальные для неё - запасные) R1

```
int f0/0
ip add 192.168.10.1 255.255.255.0
no sh

standby 1 ip 192.168.10.123
standby 1 preempt
standby 1 timers 3 10

/// 1 - номер группы
```

Можно использовать standby 1 track 1 decrement 20, где $\frac{\text{track}}{\text{track}}$ это некоторое отслеживаемое условие

Track

track 1 ip route 3.3.3.3/24 reachability отслеживает в данном случае доступность (присутствие в таблице маршрутизации) маршрута

VRRP setting

command	discription
do sh vrrp br	Посмотреть информацию
<pre>vrrp + group_num + ip +ip_num ex: vrrp 1 ip 192.168.10.123</pre>	Присязать к виртуальному ір
vrrp + group_num + preempt	Настроить preempt (перехват управления active при рабочем active)
<pre>vrrp + group_num + priority + priority_num</pre>	Изменить приоритет роутера

Main router upstairs

```
conf t
int f0/0
no sh

int fa0/0.204
enc dot 204
ip add 192.168.204.20 255.255.255.0
```

```
int fa0/0.203
enc dot 203
ip add 192.168.203.20 255.255.255.0
```

Main in 201 subn, backup in 202 subn

```
conf t
int fa0/0
no sh
int fa0/0.202
enc dot 202
ip add 192.168.202.21 255.255.255.0
int fa0/0.201
enc dot 201
ip add 192.168.201.21 255.255.255.0
int fa0/0.203
enc dot 203
ip add 192.168.203.21 255.255.255.0
int f0/0.201
vrrp 201 ip 192.168.201.1
vrrp 201 priority 200
vrrp 201 preempt
int f0/0.202
vrrp 202 ip 192.168.202.1
vrrp 202 preempt
```

Main in 202 subn, backup in 201 subn

```
conf t
int fa0/0
no sh

int fa0/0.202
enc dot 202
ip add 192.168.202.41 255.255.255.0

int fa0/0.201
enc dot 201
ip add 192.168.201.41 255.255.255.0
```

```
int fa0/0.204
enc dot 204
ip add 192.168.204.41 255.255.255.0

int f0/0.201
vrrp 201 ip 192.168.201.1
vrrp 201 preempt
int f0/0.202
vrrp 202 ip 192.168.202.1
vrrp 202 priority 200
vrrp 202 preempt
```

All daughter routers

```
ip route 0.0.0.0 0.0.0.0 192.168.201.1 - defaulf gateway to virtual router
```

Можно использовать standby 1 track 1 decrement 20, где <u>track</u> это некоторое отслеживаемое условие

GLBP

Всё как в <u>VRRP</u> и <u>HSRP</u>

R1:

```
int f1/0
ip add 192.168.123.1 255.255.255.0
no sh

glbp 1 ip 192.168.123.123
glbp 1 preempt
glbp 1 load-balancing weighted
```

Zone-based firewall

command	discription
<pre>zone security + zone_name ex: zone security IN</pre>	Создать защищённую зону
<pre>zone-pair secu + pair_name + source zone_source_name dest zone_dest_name ex: zone-pair secu IN2DMZ source IN dest DMZ</pre>	Создать пару зон (правило в одну сторону может отличаться от правила в другую)

command	discription
<pre>class-map type inspect + match- all/match-any + class_map_name ex: class-map type inspect Telnet11</pre>	Создать мапу класса (её нужно будет применять в мапу политики) match-all = если водходят все условия match-any = если подходит хотя бы одно условие Можно не писать, по умолчанияю match-all
<pre>match protocol + protocol_name ex: match protocol telnet match access-group name ACL1</pre>	Внутри настройки мапы класса добавить протоколы, входящие в класс Для второго примера необходимо создать отдельно <u>ACL</u> (например в ячейке ниже)
ip access-list extended VLAN2 permit ip 192.168.12.0 0.0.0.255 any	ACL Для подсети из конкретного VLAN
<pre>policy-map type inspect + policy_map_name ex: policy-map type inspect IN2DMZ</pre>	Создать мапу политики
<pre>class + class_map_name ex: class Telnet11</pre>	Внутри настройки мапы политики можно привязать мапу класса
inspect - туда-сюда pass - только туда drop - без уведомлений отбросить весь трафик, попавший в этот класс, в обоих направлениях	Для добавленной мапы класса нужно выбрать действие - одно из указанных
<pre>zone-pair secu + pair_name serv type inspect policy_map_name ex: zone-pair secu IN2DMZ serv type inspect IN2DMZ</pre>	В настройках пары зон указать, какой политики придерживаться
<pre>int + int_name zone-member sec + zone_name ex: int g1/0.12 zone-member sec IN</pre>	Добавляем в зону интерфейс, навешивая на него необходимую зону (спасибо, капитан очевидность)

<u>SLB</u>

command	discription
do show ip slb reals	Посмотреть реальные сервера, соединённые по SLB
do show ip slb vservers	Посмотреть информацию про то, как нас видят клиенты
do show ip slb serverfarm detail	Посмотреть дополнительные данные по серверам

L3:

command	discription
<pre>ip slb serverfarm + serv_farm_name</pre>	создать набор серверов
nat server	сделать так, чтобы ІР подменялся на виртуальный
real + ip_num + port_num	инициализируем сервер и порт, который нужно будет обслуживать (один сервер может добавляться несколько раз с разными портами)
maxconns + num	заявить максимальную загрузку сервера
weight + num	заявить, как много нагрузки помещать на сервере за один круг round-robin
inservice	добавляем сервер в набор
ip slb vserver virt_serv_name	создать виртуальный сервер
serverfarm + serv_farm_name	инициализировать в виртуальном сервере набор из серверов
<pre>virtual + virt_ip_num + tcp/udp +port_num</pre>	привязка виртуального ір и типа соединения к виртуальному серверу
inservice	добавляем набор серверов в вирутальный сервер

```
ip slb serverfarm sf1
nat server
real 192.168.1.2 23 -- заходим в сервер R2, 23 - это порт телнет
inservice -- добавить сервис в ферму
ip slb serverfarm sf1
real 192.168.1.3 23
inservice
exit

ip slb vserver SF1
serverfarm sf1
virtual 1.1.1.1 tcp 23
inservice
exit
```

L2:

R1

```
ip slb serverfarm SF2
real 192.168.1.5
inservice
```

```
real 192.168.1.6
inservice

ip slb vserver VS1
virtual 1.1.1.1 tcp telnet
no inservice - пока перенастраиваем лучше выключить
serverfarm SF2
inservice
```

На серверах:

```
int lo0
ip add 1.1.1.1 255.255.255
```

Protected VLAN

R1:

```
// Настроим VLAN
vlan 10
name Users
exit
// Назначим порты в VLAN
interface range fa0/1 - 2
switchport mode access
switchport access vlan 10
switchport protected
spanning-tree portfast
no shutdown
interface fa0/24
switchport mode access
switchport access vlan 10
spanning-tree portfast
no shutdown
```

В данном случае fa0/1 и fa0/2 - protected. Они не могу общаться руг с другом, но каждый из них может общаться с non-protected fa0/24

PVLAN

Configuring a VLAN as a PVLAN

```
configure terminal
vlan 202
```

```
configure terminal
vlan 303
private-vlan community
end
show vlan private-vlan
```

```
configure terminal
vlan 440
private-vlan isolated
end
show vlan private-vlan
```

private-vlan primary

do sh vlan private-vlan

end

Associating a Secondary VLAN with a Primary VLAN

```
configure terminal
vlan 202
private-vlan association 303-307,309,440
end
show vlan private-vlan
```

Configuring a Layer 2 Interface as a PVLAN Promiscuous Port

```
configure terminal interface fastethernet 5/2 switchport mode private-vlan promiscuous switchport private-vlan mapping 200 2 // 200 - primary, 2 - secondary vlan end
```

Configuring a Layer 2 Interface as a PVLAN Host Port

```
configure terminal
interface fastethernet 5/1
switchport mode private-vlan host
switchport private-vlan host-association 200 2 // 200 - primary, 2 - secondary
end
```

Configuring a Layer 2 Interface as a PVLAN Trunk Port

```
configure terminal interface fastethernet 5/1
```

```
switchport private-vlan association trunk 200 2 // 200 - primary, 2 - secondary switchport mode private-vlan trunk end
```

Permitting Routing of Secondary VLAN Ingress Traffic

```
configure terminal
interface vlan 202
private-vlan mapping add 303-307,309,440
end
show interfaces private-vlan mapping
```

VRF

command	discription
do show ip vrf	показать инфу про VRF
ip vrf + vrf_name	создать VRF
description + text	добавить описание
ip vrf forwarding + vrf_name	определить интерфейс (или сабинтефейс) в VRF
router ospf 1 vrf + vrf_name	Запустить OSPF в VRF

R1

```
ip vrf Cust1
description Customer 1 with OSPF
ip vrf Cust2
description Customer 2 with statics

int g2/0
ip vrf forwarding Cust1 -- если настраиваем врф после настройки адреса, то его надо перенастроить
ip address 192.168.12.1 255.255.255.0
no sh

router ospf 1 vrf Cust1
net 192.168.12.0 0.0.0.255 area 0
red con sub
```


Чтобы можно было связывать вот такие схемы

Где <u>VLAN</u> у компов из разных офисов совпадают:

ПК	VLAN	IP-адрес
PC1	2	192.168.0.2
PC2	3	192.168.1.2
PC3	2	192.168.2.2
PC4	3	192.168.3.2
PC5	2	192.168.0.3
PC6	3	192.168.1.3
PC7	2	192.168.2.3
PC8	3	192.168.3.3

Нужно настроить свитчи так:

1. SW1,2,5,6 - access с нужным VLAN в сторону клиента и trunk в сторону провайдерского оборудования

2. SW3.4:

3. Ha R1:

```
conf t
int f0/0
no sh

int f0/0.112
encapsulation dot1Q 11 second-dot1q 2
ip add 192.168.0.1 255.255.255.0

int f0/0.113
encapsulation dot1Q 11 second-dot1q 3
```

ip add 192.168.1.1 255.255.255.0

int f0/0.122
encapsulation dot1Q 12 second-dot1q 2
ip add 192.168.2.1 255.255.255.0

int f0/0.123
encapsulation dot1Q 12 second-dot1q 3
ip add 192.168.3.1 255.255.255.0

command	discription
<pre>encapsulation dot1Q + QnQ_VLAN_num second-dot1q + VLAN_num</pre>	Настроить на декапсуляцию сначала внешнего тега от QnQ (QnQ_VLAN_num), а потом - внутреннего от обычного VLAN (VLAN_num)