

MAMMOTH C. Thieulot Utrecht Universiteit

1 Install & run procedure

To obtain the code, type the following in the terminal:

git clone https://github.com/cedrict/mammoth.git

This creates a mammoth folder. Do

cd mammoth

To compile the code, simply open a terminal and make sure you have the gfortran compiler installed. Then simply do

make

Unless there is an error, this should generate the executable file mammoth. To run the executable, simply do

./mammoth

If you wish to redirect the standard output to a file (e.g. opla), then:

./mammoth > opla

If you wish to clean all the data files after a run, use the *cleandata* script as follows:

./cleandata

To clean the code off data and other compilations files:

make clear

When the code runs it produces ascii data (*.dat files) and paraview files (*.vtu files) in the OUT folder. The former can be visualised with gnuplot, while the latter should be opened with paraview (or VisIt or MayaVi).

2 Physical equations

The code solves the heat transport equation in the absence of advective processes:

$$\rho c_P \frac{\partial T}{\partial t} = \boldsymbol{\nabla} \cdot k \boldsymbol{\nabla} T + H$$

where ρ is the mass density (kg/m³), c_P is the heat capacity (), k is the heat conductivity, and H is a heat production term. T(x,y,z,t) is the temperature field. The domain is designated by Ω and its boundary by Γ . This PDE must be supplied with boundary conditions: at a given point of the boundary Γ either a temperature can be prescribed or a heat flux.

3 Discretisation

The heat transport equation is solved by means of the Finite Element Method, following the methodology presented in [?]. The FE equation corresponding to this PDE is

$$m{M} \cdot rac{\partial m{T}}{\partial t} + m{K}_d \cdot m{T} = m{F}$$

where

$$m{M} = \int_{\Omega} m{N}^T
ho c_P m{N} dV$$

$$m{K}_d = \int_{\Omega} m{B}^T k m{B} dV$$

$$oldsymbol{F} = \int_{\Omega} oldsymbol{N}^T H dV$$

where T is the vector of nodal temperatures.

The domain Ω of size $L_x \times L_y \times L_z$ is divided into $nel = nelx \times nely \times nelz$ elements as shown hereunder. The computational grid therefore counts np = (nelx + 1)(nely + 1)(nelz + 1) nodes and as many degrees of freedom. A Cartesian coordinate system is used with its origin at the bottom corner of the domain.

4 Setting up an experiment

4.1 Initial temperature field

4.2 Magma chambers

The code can model as many magma chambers as needed. This number is controlled by the **nchamber** parameter. Each chamber is parametrised by:

- its shape: 1 is a spheroid, 2 is a cuboid and 3 is a cylinder;
- its center coordinates xc, yc, zc;
- its spatial extent in the x, y, z directions: a, b and c;
- its initial temperature T.

Example The following figure is obtained by setting three magma chambers as follows:

mc(1)%shape=1 mc(1)%xc=0.5*Lxmc(1)%yc=0.5*Lymc(1)%zc=0.5*Lzmc(1)%a=4d3mc(1)%b=5d3 mc(1)%c=6d3mc(1)%T=500 mc(2)%shape=2 mc(2)%xc=0.25*Lx mc(2)%yc=0.2*Lymc(2)%zc=0.4*Lzmc(2)%a=10d3mc(2)%b=5d3mc(2)%c=4d3mc(2)%T=500 mc(3)%shape=3 mc(3)%xc=0.7*Lxmc(3)%yc=0.33*Ly

mc(3)%zc=0.6*Lz mc(3)%a=8d3 mc(3)%b=8d3 mc(3)%c=3d3 mc(3)%T=500

4.3 Boundary conditions

A Steady state solutions

A.1 One layer

At steady state: $\partial T/\partial t = 0$ so that one has to solve

$$\Delta T = -\frac{H}{k}$$

Assuming the domain to be infinite in the x and y direction this equation becomes:

$$\frac{d^2T}{dz^2} = -\frac{H}{k}$$

The generic solution to this ODE is given by:

$$T(z) = -\frac{H}{2k}z^2 + Az + B \tag{1}$$

where A and B are integration constants to be determined by means of the specified boundary conditions.

At the surface a constant temperature is maintained, i.e. $T(z = L) = T_s$, so that

$$T(L) = -\frac{H}{2k}L^2 + AL + B = T_s$$

which allows us to express B as a function of the rest and insert back into Eq. (1):

$$T(z) = -\frac{H}{2k}(z^2 - L^2) + A(z - L) + T_s$$

Temperature prescribed at the bottom In this case $T(z=0)=T_b$ so that

$$T(z) = -\frac{H}{2k}L^2 + AL + T_s = T_b$$

which yields

$$A = \frac{T_b - T_s}{L} + \frac{HL}{2k}$$

Heat flux prescribed at the bottom In this case $kdT/dz(z=0)=\phi_b$ which yields $kA=\phi_b$ so that

$$T(z) = -\frac{H}{2k}(z^2 - L^2) + \frac{\phi_b}{k}(z - L) + T_s$$

A.2 Two layers

In each layer i the solution is given by:

$$T(z) = -\frac{H_i}{2k_i}z^2 + A_i z + B_i \tag{2}$$

Aside from the two previous boundary conditions we need to enforce that the temperature and the heat flux are continuous fields, i.e. $T(z=l^-) = T(z=l^+)$ and $\phi(z=l^-) = \phi(z=l^+)$.

B todo