# HMED1101- Nyrene og urinveiene



Silje W. Syversen, MD PhD Førsteamanuensis Universitetet i Oslo Overlege og seniorforsker Diakonhjemmet sykehus, revmatologi

# Forelesning 5 – Nyrene og urinveiene

## Mål for forelesningen

Lære om nyrene og urinveiene (kapittel 7)

## Disposisjon

- Anatomi og fysiologi: nyrene og urinveiene
- Diagnostikk: ultralyd, røntgen med kontrast, urinprøver, blodprøver
- Sykdom: nyrene og urinveiene

# Sirkulasjonssystemet

## Oppgaver i sirkulasjonssystemet

- Lungene: O<sub>2</sub> tilføres, CO<sub>2</sub> avgis
- Hjertet: pumper blod
- Vev: tar opp O<sub>2</sub> og næringsstoffer, avgir CO<sub>2</sub> og avfallsstoffer
- Fordøyelsessystemet: Opptak av næringsstoffer
- Lever: omdanning av næringsstoffer, detoksifisering
- Nyrer: fjerner avfallsstoffer ved å skille ut urin og opprettholder væskebalansen



#### **HOVEDOPPGAVE**

- NYRENE: holde kroppens indre miljø stabilt
  - Avfall
  - Salt/væskebalanse
- URINVEIENE: transportere og lagre urinen til det passer å urinere



## Nyrenes og urinveienes oppgaver

- FILTRASJON av store mengder vann med oppløste stoffer
- 2. REABSORPSJON OG SEKRESJON av vann og stoffer
- 3. REGULERINGSMEKANISMER
- 4. PRODUKSJON OG AKTIVERING AV HORMONER
- 5. UTSKILLING AV URIN



- Regulerer salt og vann i kroppen for å opprettholde konstant ekstracellulært væskevolum og osmolalitet
- Opprettholder syre/base-homeostase
- Bevarer nyttige stoffer (eks. glukose) gjennom reabsorpsjon
- Produserer hormoner (EPO) og enzymer (renin)
- Aktiverer vitamin D
- Fjerner metabolske endeprodukter (kreatinin) og fremmede substanser (legemidler)

 Regulerer salt og vann i kroppen for å opprettholde konstant ekstracellulært væskevolum og osmolalitet

Ekstracellulært væskevolum = utenfor cellene

Osmolalitet = antall oppløste, osmotisk aktive partikler av et stoff per masse (kg) ren oppløsning







Noe unormalt her?



# «Hesteskonyre»





- Nyrekapsel (ytterst)
- Nyrebarken
  - Nyrelegemene (glomeruli)
  - Deler av rørsystemet (tubuli)
- Nyremargen (innerst)
  - Rørsystem (tubuli)







Gyldendal © Deborah Maizels i faglig samarbeid med t

- Regulerer salt og vann i kroppen for å opprettholde konstant ekstracellulært væskevolum og osmolalitet
- Opprettholder syre/base-homeostase
- Bevarer nyttige stoffer (eks. glukose) gjennom reabsorpsjon
- Produserer hormoner (EPO) og enzymer (renin)
- Aktiverer vitamin D
- Fjerner metabolske endeprodukter (kreatinin) og fremmede substanser (legemidler)



Slipper gjennom væske og små substanser

# Nefroner – nyrens funksjonelle enhet

Nefronet Glomerulus med tilhørende tubulus



Reabsorbsjon

Proksimale: Diffusjon

Distale: Aktiv regulert transport- tilpasset kroppens behov

# Væskebalansen

Hvor stor andel av kroppen er væske?



# Væskebalansen

Hvor stor andel av kroppen er væske?



UiO: Universitetet i Oslo

# Væskebalansen

- Væske utgjør ca 60% av total kroppsvekt
- 1/3 er ekstracellulært (all væske som ikke er inne i kroppens celler) og 2/3 er intracellulært
- Væsken i kroppen må bestå av riktig menge vann og elektrolytter («salter») for at celler skal fungere optimalt

#### **Nefroner**

 Holder det ekstracellulære volum konstant gjennom kontroll av vannog elektrolytter



Figur: online-dhaka.com



# Nyrene – transport av stoffer

#### Glomerulusmembranen er semipermeabel

- Slipper lett gjennom vann og små molekyler (eks. elektrolytter (Na+, K+ osv.) og glukose)
- Slipper ikke gjennom blodceller og store proteinmolekyler

#### Transport av stoffer

- Diffusjon
- Osmose
- Aktiv transport (eks. Na+-K+-pumpa)



# Diffusjon og osmose



Diffusjon er spredning av stoffer i gass og væske med konsentrasjonsgradienten (fra høyere til lavere konsentrasjon), slik at stoffet blir jevnt fordelt i det rommet som er tilgjengelig



Osmose er diffusjon av molekyler gjennom en membran.

Membranen gjør at bare løsemidlet/væsken diffunderer igjennom, mens det som er løst holdes tilbake. En slik membran kalles derfor en semipermeabel membran.

# **Aktiv transport**

## Na+K+-ATPase-pumpa

- Pumper natrium og kalium motsatt vei over membranen
- Glukosetransport (begrenset)



# tubulusceller preurin i tubuluslumen

## Transport av vann

- Osmose
- Vannkanaler, flyttbare
  - Regulert (Hormonet ADH)
  - Fjernes ved væskeoverskudd



- Ulike deler av nefronet utfører ulike oppgaver:
  - Ultrafiltrasjon (glomerulus)
    - 1500 L blod gjennom nyrene hvert døgn, ca 180 L «preurin»/dag
    - Vann og små molekyler går gjennom
    - Celler og proteiner blir igjen
    - Høyt trykk (reguleres)
  - Reabsorpsjon (tubulus)
    - >99% av preurin reabsorberes
    - Aktiv: Na+/K+ pumpe, glukose
    - Passiv: osmose, diffusjon
  - Sekresjon (tubulus)
    - Aktiv
    - Endogene og eksogene substanser



🌲 Gyldendal © Deborah Maizels i faglig samarbeid med

- Ulike deler av nefronet utfører ulike oppgaver:
  - Ultrafiltrasjon (glomerulus)
    - 1500 L blod gjennom nyrene hvert døgn, ca 180 L «preurin»/dag
    - Vann og små molekyler går gjennom
    - Celler og proteiner blir igjen
    - Høyt trykk (reguleres)
  - Reabsorpsjon (tubulus)
    - >99% av preurin reabsorberes
    - Aktiv: Na+/K+ pumpe, glukose
    - Passiv: osmose, diffusjon
  - Sekresjon (tubulus)
    - Aktiv
    - Endogene og eksogene substanser



🌲 Gyldendal © Deborah Maizels i faglig samarbeid med

- Ulike deler av nefronet utfører ulike oppgaver:
  - Ultrafiltrasjon (glomerulus)
    - 1500 L blod gjennom nyrene hvert døgn, ca 180 L «preurin»/dag
    - Vann og små molekyler går gjennom
    - Celler og proteiner blir igjen
    - Høyt trykk (reguleres)

#### Reabsorpsjon (tubulus)

- >99% av preurin reabsorberes
- Aktiv: Na+/K+ pumpe, glukose
- · Passiv: osmose, diffusjon
- Sekresjon (tubulus)
  - Aktiv
  - Endogene og eksogene substanser



🌲 Gyldendal © Deborah Maizels i faglig samarbeid med

Symporter

Antiporter



Uniporter

- Ulike deler av nefronet utfører ulike oppgaver:
  - Ultrafiltrasjon (glomerulus)
    - 1500 L blod gjennom nyrene hvert døgn, ca 180 L «preurin»/dag
    - Vann og små molekyler går gjennom
    - Celler og proteiner blir igjen
    - Høyt trykk (reguleres)
  - Reabsorpsjon (tubulus)
    - >99% av preurin reabsorberes
    - Aktiv: Na+/K+ pumpe, glukose
    - Passiv: osmose, diffusjon
  - Sekresjon (tubulus)
    - Aktiv
    - Endogene og eksogene substanser





Regulering av væskebalansen

- Antidiuretisk hormon (ADH)
  - Reduserer utskillelse av vann (aquaporiner, vannkanaler)
  - Skilles ut fra hypofysen
  - Dempes av alkohol
- Aldosteron
  - Øker opptak av vann i distale tubuli og samlerøren
  - Produseres i binyrebarken
- Renin-angiotensin-aldosteron-systemet



halspulsåre

strekkfølere

av Na og Cl

Regulering av væskebalansen

- Antidiuretisk hormon (ADH)
  - Reduserer utskillelse av vann (aquaporiner)
  - Skilles ut fra hypofysen
  - Dempes av alkohol





🌲 Gyldendal © Deborah Maizels i faglig samarbeid med forfatterne

# Regulering av væskebalansen

- Antidiuretisk hormon (ADH)
  - Reduserer utskillelse av vann (aquaporiner)
  - Skilles ut fra hypofysen
  - Dempes av alkohol
- Aldosteron
  - Øker opptak av vann i distale tubuli og samlerørene
  - Produseres i binyrebarken
- Renin-angiotensin-aldosteron-systemet
  - Hormoner som regulerer væskebalansen og blodtrykket i kroppen
  - Redusert væskevolum og/eler lavt blodtrykk aktiverer systemet
    - De små arteriene trekker seg sammen
    - Tørstesenteret i hjernen aktiveres
    - Urin fra nyrene reduseres



# Nyrenes funksjon - oppsummert

- Ultrafiltrasjon (glomerulus)
- Reabsorpsjon (tubulus)
- Sekresjon (tubulus)



🌲 Gyldendal © Deborah Maizels i faglig samarbeid med

# Væskebalansen - oppsummert



# **Urinveiene - anatomi**

- Én urinleder (ureter) fra hver nyre
  - Glatt muskulatur
  - Sammentrekning brer seg langs urinlederen og presser urinen nedover
- Urinblæra (vesica urinaria)
  - Vi kjenner behov for å late vannet ved ca 0,4 L.
- Urinrøret (uretra)
  - Menn: ca 15 cm
  - Kvinner: 3-4 cm



# **Urinveiene - anatomi**





## Urinblæren og nervesystemet

- Tømming av blæren styres av reflekser og det autonome nervesystemet
- Kan viljestyres til en viss grad vha bekkenbunnsmuskulatur
- Lagring av urin: Avslappet blæremuskulatur, kontrahert urinrør
- Økende volum trigger sensorer i blæreveggen, gir signaler til miksjonssenteret, som gir økt trykk og kontraksjon
- Blæren trekker seg sammen, urinrøret slapper av, indre og ytre sfinkter åpner for tømming



#### OPPSUMMERING ANATOMI OG FYSIOLGI

#### Nyrenes og urinveienes oppgaver

- 1. FILTRASJON av store mengder vann med oppløste stoffer
- 2. REABSORPSJON OG SEKRESJON av vann og stoffer
- 3. REGULERINGSMEKANISMER
- 4. PRODUKSJON OG AKTIVERING AV HORMONER
- 5. UTSKILLING AV URIN

#### **Anatomi**

- Nyrer (nyrekapsel, nyrebark med glomeruli, nyremarg med tubuli)
  - Nefron med Bowmans kapsel
- Urinledere (ureter)
- Urinrør (uretra)

#### **Fysiologi**

- Ultrafiltrasjon, reabsorpsjon, sekresjon
- Transport: diffusjon, osmose, aktiv (bl.a. Na+K+-pumpa)
- Hormonregulering
  - ADH: antidiuretisk hormon
  - Renin-angiotensin-aldosteron-systemet
- Tømming av blæren nervestyrt

UiO: Universitetet i Oslo

# DIAGNOSTIKK OG UNDERSØKELSER: Nyrer og urinveier

- Kliniske funn, blodtrykk
- Urinprøve
  - Utseende, farge, lukt
  - Urinstix: blod, glukose, proteiner, m.m.
  - Urindyrkning og mikroskopi
- Blodprøver
  - Kreatinin, elektrolytter
- Billeddiagnostikk
  - Ultralyd, rtg, CT, MR
- Endoskopi
- Biopsi







# DIAGNOSTIKK OG UNDERSØKELSER: Nyrer og urinveier

- Kliniske funn, blodtrykk
- Urinprøve
  - Utseende, farge, lukt
  - Urinstix: blod, glukose, proteiner, m.m.
  - Urindyrkning og mikroskopi
- Blodprøver
  - Kreatinin, elektrolytter
- Billeddiagnostikk
  - Ultralyd, rtg, CT, MR
- Endoskopi
- Biopsi



# DIAGNOSTIKK OG UNDERSØKELSER: Nyrer og urinveier

- Kliniske funn, blodtrykk
- Urinprøve
  - Utseende, farge, lukt
  - Urinstix: blod, glukose, proteir
  - Urindyrkning og mikroskopi

### Blodprøver

- Kreatinin, elektrolytter
- Billeddiagnostikk
  - Ultralyd, rtg, CT, MR
- Endoskopi
- Biopsi



# DIAGNOSTIKK OG UNDERSØKELSER:

Nyrer og urinveier

- Kliniske funn, blodtrykk
- Urinprøve
  - Utseende, farge, lukt
  - Urinstix: blod, glukose, proteiner, m.m.
  - Urindyrkning og mikroskopi
- Blodprøver
  - Kreatinin, elektrolytter
- Billeddiagnostikk
  - Ultralyd, rtg, CT, MR
- Endoskopi
- Biopsi





# Måling av resturin

Engangskateter



Ultralyd av blæra



**ANATOMISK** 

**AKUTT/KRONISK** 

ÅRSAK



**ANATOMISK** 

**AKUTT/KRONISK** 

ÅRSAK

Unormale nyrer

Nyreglomeruli - feil i filtrasjonen

- Redusert urinproduksjon
- Blod og/eller proteiner i urinen
- Annet nyrevev
  - Feil i reabsorpsjon: redusert konsentrasjon, mye urin
  - Hvite blodlegemer og/eller protein er postein er protein er prot

### Urinveier og urinblære

- Steiner, blod, infeksjon osv.
- Forstyrrelser i vannlatingsmønsteret
  - Urge
  - Hyppig vannlating
  - Urinretensjon (manglende tømming)

## **Makroanatomisk**

Manglende nyre



«Hesteskonyre»



Cyste(r) i nyrene



**ANATOMISK** 

**AKUTT/KRONISK** 

ÅRSAK

Unormale nyrer

Nyreglomeruli - feil i filtrasjonen

- Redusert urinproduksjon
- Blod og/eller proteiner i urinen
- Annet nyrevev
  - Feil i reabsorpsjon: redusert konsentrasjon, mye urin
  - Hvite blodlegemer og/eller proteir er raif Deborah Maizels i faglig samarbeid med urinen

### Urinveier og urinblære

- Steiner, blod, infeksjon osv.
- Forstyrrelser i vannlatingsmønsteret
  - Urge
  - Hyppig vannlating
  - Urinretensjon (manglende tømming)

## Glomerulonefritt

- Inflammatorisk nyresykdom (betennelsesreaksjon i glomeruli)
- Flere potensielle årsaker
- Kan gi kronisk nyresvikt
- Behandling avhengig av årsak
- Ofte symptomatisk behandling



**ANATOMISK** 

**AKUTT/KRONISK** 

ÅRSAK

Unormale nyrer

Nyreglomeruli - feil i filtrasjonen

- Redusert urinproduksjon
- Blod og/eller proteiner i urinen
- Annet nyrevev
  - Feil i reabsorpsjon: redusert konsentrasjon, mye urin
  - Hvite blodlegemer og/eller proteir er raif Deborah Maizels i faglig samarbeid med urinen

## Urinveier og urinblære

- Steiner, blod, infeksjon osv.
- Forstyrrelser i vannlatingsmønsteret
  - Urge
  - Hyppig vannlating
  - Urinretensjon (manglende tømming)

#### INFEKSJONER I NYRER OG URINVEIER

- Nedre urinveisinfeksjon
  - Infeksjon i urinblæras («cystitt») og uretras («uretritt») slimhinner
- Øvre urinveisinfeksjon («pyelonefritt»)
  - Infeksjon i «nyrebekkenet»
  - Obstruksjon (eks nyrestein) ofte medvirkende årsak
- Urosepsis («blodforgiftning» med utgangspunkt i urinveisinfeksjon)



# Nyre og urinveisstener





**NYRESTEN** 

### **URININKONTINENS** - ufrivillig vannlating

- Enurese: ufrivillig vannlating under søvn
  - Vanlig hos barn, spesielt gutter
- Stress-inkontinens: urinlekkasje ifm hoste, nysing eller liknende
  - Vanlig blant kvinner
- Urge-inkontinens: plutselig og sterk vannlatingstrang som ofte fører til større volum av urinlekkasje

## **URINRETENSJON** – mangelfull vannlating

- Prostatarelatert vanlig blant menn
- Etter operasjoner i narkose

**ANATOMISK** 

#### **AKUTT/KRONISK**

ÅRSAK

## **Akutt / kronisk nyresvikt**

- Årsak inndeles ofte anatomisk
  - Prerenal: hypovolemi/hypotensjon
  - Intrarenal:
    - Nyrevevsskade som følge av hypoperfusjon
    - Medikamenter, autommunitet, toksiner, infeksjon (sepsis)
  - Postrenal: urinretensjon, obstruksjon
- Gir typisk ødem (opphopning av væske)
- Opphopning av avfallsstoffer i kroppen
- Behandling langtkommet:
  - dialyse (flere ganger per uke)
  - nyretransplantasjon

## Kronisk nyresvikt - risikofaktorer

- Diabetes
- Hypertensjon (høyt blodtrykk)
- Karsykdom
- Røyking
- Overvekt
- Familiehistorikk
- Misdannelser



## **BEHANDLING - Dialyse**

• Fjerne avfallsstoffer og regulere væskemengden hos personer uten fungerende nyre



## **BEHANDLING - Nyretransplantasjon**

- Pasienter uten fungerende nyre
- Levende eller avdød donor
- 250-300 pr år i Norge



**ANATOMISK** 

**AKUTT/KRONISK** 

ÅRSAK

#### Årsaker

- Medfødte misdannelser (cyster, hesteskonyre osv.)
- Infeksjoner (urinveisinfeksjon, nyrebekkenbetennelse)
- Nyrestein
- Redusert blodforsyning (nyrearteriestenose, infarkter)
- Autoimmunitet (antistoffer mot nyrevev)
- Nevrologisk (forstyrrelser i vannlatingsmønster)
- Svulster (kreft)

#### Spesialiteter som spesielt jobber med dette

### <u>Legespesialister:</u>

- Allmennleger (fastleger)
- Indremedisinere
  - Nyreleger (Nefrologer)
- Kirurger
  - Urologer
  - Transplantasjonskirurger
- Barneleger (pediatere)
- Barnekirurger
- Geriatere
- Radiologer (røntgenleger)



