Contents

5	List of illustrations			vi
6	List of tables			X
7	Fore	word		1
8		Part I	Mathematical Foundations	9
9	1	Introdu	uction and Motivation	11
10	1.1	Finding	g Words for Intuitions	11
11	1.2	Two Wa	ays to Read this Book	12
12	1.3	Exercise	es and Feedback	15
13	2	Linear	Algebra	17
14	2.1	System	s of Linear Equations	19
15	2.2	Matrice	es	21
16		2.2.1	Matrix Addition and Multiplication	22
17		2.2.2	Inverse and Transpose	24
18		2.2.3	Multiplication by a Scalar	25
19		2.2.4	Compact Representations of Systems of Linear Equations	26
20	2.3	Solving	Systems of Linear Equations	26
21		2.3.1 I	Particular and General Solution	26
22		2.3.2 I	Elementary Transformations	28
23		2.3.3	The Minus-1 Trick	32
24		2.3.4	Algorithms for Solving a System of Linear Equations	34
25	2.4	Vector S	Spaces	35
26		2.4.1	Groups	35
27		2.4.2	Vector Spaces	36
28			Vector Subspaces	38
29	2.5	Linear l	Independence	39
30	2.6	Basis ar	nd Rank	43
31		2.6.1	Generating Set and Basis	43
32			Rank	46
33	2.7	Linear l	Mappings	47
34			Matrix Representation of Linear Mappings	49
35			Basis Change	51
36			Image and Kernel	56
37	2.8	Affine S	-	59
38			Affine Subspaces	59

Draft chapter (October 9, 2018) from "Mathematics for Machine Learning" ©2018 by Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. To be published by Cambridge University Press. Report errata and feedback to http://mml-book.com. Please do not post or distribute this file, please link to https://mml-book.com.

	11		Contents
39		2.8.2 Affine Mappings	60
40		Exercises	61
41	3	Analytic Geometry	68
42	3.1	Norms	69
43	3.2	Inner Products	70
44		3.2.1 Dot Product	70
45		3.2.2 General Inner Products	70
46		3.2.3 Symmetric, Positive Definite Matrices	71
47	3.3	Lengths and Distances	72
48	3.4	Angles and Orthogonality	74
49	3.5	Orthonormal Basis	76
50	3.6	Inner Product of Functions	77
51	3.7	Orthogonal Projections	78
52		3.7.1 Projection onto 1-Dimensional Subspaces (Lines)	79
53		3.7.2 Projection onto General Subspaces	82
54		3.7.3 Projection onto Affine Subspaces	85
55	3.8	Rotations	86
56		3.8.1 Rotations in \mathbb{R}^2	87
57		3.8.2 Rotations in \mathbb{R}^3	87
58		3.8.3 Rotations in n Dimensions	88
59		3.8.4 Properties of Rotations	89
60	3.9	Further Reading	89
61		Exercises	90
62	4	Matrix Decompositions	92
63	4.1	Determinant and Trace	93
64	4.2	Eigenvalues and Eigenvectors	100
65	4.3	Cholesky Decomposition	108
66	4.4	Eigendecomposition and Diagonalization	110
67	4.5	Singular Value Decomposition	115
68		4.5.1 Geometric Intuitions for the SVD	116
69		4.5.2 Existence and Construction of the SVD	119
70		4.5.3 Eigenvalue Decomposition vs Singular Value Decomposition	
71	4.6	Matrix Approximation	126
72	4.7	Matrix Phylogeny	131
73	4.8	Further Reading	132
74		Exercises	134
75	5	Vector Calculus	137
76	5.1	Differentiation of Univariate Functions	138
77		5.1.1 Taylor Series	140
78		5.1.2 Differentiation Rules	142
79	5.2	Partial Differentiation and Gradients	143
80		5.2.1 Basic Rules of Partial Differentiation	144
81		5.2.2 Chain Rule	145
82	5.3	Gradients of Vector-Valued Functions	146
83	5.4	Gradients of Matrices	152
0.4	5.5	Useful Identities for Computing Gradients	155

 $Draft~(2018-10-09)~from~Mathematics~for~Machine~Learning.~Errata~and~feedback~to~\verb|https://mml-book.com|.$

	Cont	ents		111
85	5.6	Backp	ropagation and Automatic Differentiation	155
86		5.6.1	Gradients in a Deep Network	156
87		5.6.2	Automatic Differentiation	158
88	5.7	Highe	r-order Derivatives	161
89	5.8	_	rization and Multivariate Taylor Series	162
90	5.9		er Reading	166
91	0.,	Exerci	<u> </u>	167
92	6	Proba	bility and Distributions	169
93	6.1	Consti	ruction of a Probability Space	169
94		6.1.1	Philosophical Issues	169
95		6.1.2	Probability and Random Variables	171
96		6.1.3	Statistics	173
97	6.2	Discre	te and Continuous Probabilities	174
98		6.2.1	Discrete Probabilities	174
99		6.2.2	Continuous Probabilities	176
100		6.2.3	Contrasting Discrete and Continuous Distributions	177
101	6.3	Sum R	Rule, Product Rule and Bayes' Theorem	179
102	6.4		nary Statistics and Independence	182
103		6.4.1	•	182
104		6.4.2	Three Expressions for the Variance	187
105		6.4.3	Sums and Transformations of Random Variables	188
106		6.4.4	Statistical Independence	189
107		6.4.5	Inner Products of Random Variables	190
108	6.5	Gaussi	ian Distribution	192
109		6.5.1	Marginals and Conditionals of Gaussians are Gaussians	193
110		6.5.2	Product of Gaussian Densities	196
111		6.5.3	Sums and Linear Transformations	196
112		6.5.4	Sampling from Multivariate Gaussian Distributions	199
113	6.6	Coniu	gacy and the Exponential Family	199
114		6.6.1	Conjugacy	202
115		6.6.2	Sufficient Statistics	204
116		6.6.3	Exponential Family	205
117	6.7	Chang	ge of Variables/Inverse Transform	209
118		6.7.1		211
119		6.7.2	Change of Variables	213
120	6.8		er Reading	217
121		Exerci		217
122	7	Conti	nuous Optimization	220
123	7.1	Optim	ization using Gradient Descent	222
124		7.1.1	Stepsize	224
125		7.1.2	Gradient Descent with Momentum	225
126		7.1.3	Stochastic Gradient Descent	226
127	7.2	Consti	rained Optimization and Lagrange Multipliers	228
128	7.3		ex Optimization	230
129		7.3.1	Linear Programming	233
130		7.3.2	Quadratic Programming	235
121		733	Legendre-Fenchel Transform and Convey Conjugate	236

 $\textcircled{c} 2018\,\texttt{Marc}\,\texttt{Peter}\,\texttt{Deisenroth}, \texttt{A.}\,\texttt{Aldo}\,\texttt{Faisal}, \texttt{Cheng}\,\texttt{Soon}\,\texttt{Ong}.\,\texttt{To}\,\texttt{be}\,\texttt{published}\,\texttt{by}\,\texttt{Cambridge}\,\texttt{University}\,\texttt{Press}.$

	1V		Contents
132	7.4	Further Reading	240
133	, · ·	Exercises	241
133		Exercises	211
134		Part II Central Machine Learning Problems	243
135	8	When Models meet Data	245
136	8.1	Empirical Risk Minimization	251
137		8.1.1 Hypothesis Class of Functions	252
138		8.1.2 Loss Function for Training	253
139		8.1.3 Regularization to Reduce Overfitting	255
140		8.1.4 Cross Validation to Assess the Generalization Performance	256
141	8.2	Parameter Estimation	258
142		8.2.1 Maximum Likelihood Estimation	258
143		8.2.2 Maximum A Posteriori Estimation	260
144	8.3	Probabilistic Modeling	263
145		8.3.1 MLE, MAP, and Bayesian Inference	263
146		8.3.2 Latent Variables	264
147	8.4	Directed Graphical Models	266
148		8.4.1 Graph Semantics	267
149		8.4.2 Conditional Independence and D-Separation	270
150	8.5	Model Selection	272
151		8.5.1 Nested Cross Validation	272
152		8.5.2 Bayesian Model Selection	273
153		8.5.3 Bayes Factors for Model Comparison	275
154	9	Linear Regression	277
155	9.1	Problem Formulation	279
156	9.2	Parameter Estimation	280
157		9.2.1 Maximum Likelihood Estimation	280
158		9.2.2 Overfitting in Linear Regression	285
159		9.2.3 Regularization and Maximum A Posteriori Estimation	287
160	9.3	Bayesian Linear Regression	290
161		9.3.1 Model	291
162		9.3.2 Prior Predictions	291
163		9.3.3 Posterior Distribution	292
164		9.3.4 Posterior Predictions	296
165		9.3.5 Computing the Marginal Likelihood	298
166	9.4	Maximum Likelihood as Orthogonal Projection	300
167	9.5	Further Reading	302
168	10	Dimensionality Reduction with Principal Component Analys	sis 305
169	10.1	Problem Setting	306
170		Maximum Variance Perspective	308
171		10.2.1 Direction with Maximal Variance	309
172		10.2.2 <i>M</i> -dimensional Subspace with Maximal Variance	311
173	10.3	Projection Perspective	313
174		10.3.1 Setting and Objective	313
175		10.3.2 Finding Optimal Coordinates	315

Draft~(2018-10-09)~from~Mathematics~for~Machine~Learning.~Errata~and~feedback~to~https://mml-book.com.

	Contents		
176		10.3.3 Finding the Basis of the Principal Subspace	317
177	10.4	Eigenvector Computation and Low-Rank Approximations	321
178		10.4.1 PCA using Low-rank Matrix Approximations	321
179		10.4.2 Practical Aspects	322
180	10.5	PCA in High Dimensions	323
181	10.6	Key Steps of PCA in Practice	325
182	10.7	Latent Variable Perspective	327
183		10.7.1 Generative Process and Probabilistic Model	328
184		10.7.2 Likelihood and Joint Distribution	330
185		10.7.3 Posterior Distribution	330
186	10.8	Further Reading	331
187	11	Density Estimation with Gaussian Mixture Models	336
188	11.1	Gaussian Mixture Model	337
189	11.2	Parameter Learning via Maximum Likelihood	338
190	11.3	EM Algorithm	348
191	11.4	Latent Variable Perspective	350
192		11.4.1 Prior	351
193		11.4.2 Marginal	352
194		11.4.3 Posterior	352
195		11.4.4 Extension to a Full Dataset	353
196		11.4.5 EM Algorithm Revisited	353
197	11.5	Further Reading	354
198	12	Classification with Support Vector Machines	356
199	12.1	Separating Hyperplanes	358
200	12.2	Primal Support Vector Machine	360
201		12.2.1 Concept Of The Margin	360
202		12.2.2 Traditional Derivation Of The Margin	362
203		12.2.3 Why We Can Set The Margin To 1	364
204		12.2.4 Soft Margin SVM: Geometric View	365
205		12.2.5 Soft Margin SVM: Loss Function View	366
206	12.3	Dual Support Vector Machine	368
207		12.3.1 Convex Duality Via Lagrange Multipliers	369
208		12.3.2 Soft Margin SVM: Convex Hull View	371
209		12.3.3 Kernels	374
210		12.3.4 Numerical Solution	376
211	12.4	Further Reading	378
212	Refer	ences	381
213	Index		393