問 10 確率変数
$$X_1, \dots, X_n$$
 が互いに独立にそれぞれ平均 μ , 分散 σ^2 (> 0) の正義 に従うとする。標本平均を $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$, 不偏分散を $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\hat{y}_i)$ とおく。

(1) $\sigma^2=1$ のとき、確率 $P(|\bar{X}-\mu|\leq 0.5)\geq 0.95$ を満たす最小の標本サイズ 取り いくらか。次の ① ~ ⑤ のうちから適切なものを一つ選べ。 20

① 4 ② 7 ③ 11 ④ 16 ⑤ 22

(2) $n=20$ のとき、 $\bar{X}=10.50$, $S^2=5.41$ を得たとする。そのとき、 μ 0 95 全額 「類区間として、次の ① ~ ⑥ のうちから適切なものを一つ選べ。 21

① $10.50\pm\frac{2.093\times\sqrt{5.41}}{\sqrt{20}}$ ② $10.50\pm\frac{2.093\times\sqrt{5.41}}{\sqrt{19}}$ ④ $10.50\pm\frac{2.086\times\sqrt{5.41}}{\sqrt{19}}$ ④ $10.50\pm\frac{2.086\times\sqrt{5.41}}{\sqrt{19}}$

[1] 95%の信頼区間でのサンプルの平均値の標準偏差(標準誤差)は

$$1.96*\sigma/ Sq(n) <= 0.5$$

$$1.96/ Sq(n) \le 0.5 (\sigma=1)$$

$$n >= (1.96/0.5)^2 = 15.36$$

答え:16(4番)

https://toukeigaku-jouhou.info/2018/01/23/how-to-calculate-samplesize/

https://www.stat.go.jp/koukou/trivia/careers/career8.html

[2] μの95%の信頼区間

母平均の信頼区間(母分散既知)

$$\overline{x} - 1.96 \times \sqrt{\frac{\sigma^2}{n}} \le \mu \le \overline{x} + 1.96 \times \sqrt{\frac{\sigma^2}{n}}$$

https://bellcurve.jp/statistics/course/8888.html

母平均の信頼区間(母分散未知)

$$\overline{x} - \underbrace{t_{\alpha/2}(n-1)} \times \sqrt{\frac{s^2}{n}} \le \mu \le \overline{x} + \underbrace{t_{\alpha/2}(n-1)} \times \sqrt{\frac{s^2}{n}}$$

https://bellcurve.jp/statistics/course/8972.html

t分布表より

$$t_{\alpha/2}(n-1) \rightarrow t \alpha/2(19) = 2.093$$

https://bellcurve.jp/statistics/course/8970.html

答え:1番

正規分布表

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0	0.004	0.008	0.012	0.016	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.091	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.148	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.17	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.195	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.219	0.2224
										0.0510
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.258	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.291	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.334	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.377	0.379	0.381	0.383
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.398	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.437	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.475	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.483	0.4834	0.4838	0.4842	0.4846	0.485	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.489
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.492	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.494	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.496	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.497	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.498	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.499	0.499

t分布表(危険率α、両側)

自由度			χ		自由度			α	
f	0.1	0.05	0.02	0.01	f	0.1	0.05	0.02	0.01
1	6.314	12,706	31.821	63.657	52	1.657	2.007	2.400	2.67
2	2.920	4.303	6.965	9.925	54	1.674	2.005	2.397	2.67
3	2.353	3.182	4.541	5.841	56	1.673	2.003	2.395	2.66
4	2.132	2.776	3.747	4.604	58	1.672	2.002	2.392	2.66
5	2.015	2.571	3.365	4.032	60	1.671	2.000	2.390	2.66
6	1.943	2.447	3.143	3.707	62	1.670	1.999	2.388	2.65
7	1.895	2.365	2.998	3.499	64	1.689	1.998	2.386	2.65
8	1.860	2.306	2.896	3.355	66	1.668	1.997	2.384	2.65
9	1.833	2.262	2.821	3.250	68	1.668	1.995	2.382	2.65
10	1.812	2.228	2.764	3.169	70	1.667	1.994	2.381	2.64
	4 700	0.004	0.710	0.400	70	4 000	4 000	0.070	
11	1.796	2.201	2.718	3.106	72	1.666	1.993	2.379	2.64
12	1.782	2.179	2.681	3.055	74	1.666	1.993	2.378	2.64
13	1.771	2.160	2.650	3.012	75	1.665	1.992	2.376	2.64
14	1.761	2.145	2.624	2.977	78	1.665	1.991	2.375	2.64
15	1.753	2.131	2.602	2.947	80	1.664	1.990	2.374	2.63
16	1.746	2.120	2.583	2.921	82	1.664	1.989	2.373	2.63
17	1.740	2.120	2.567	2.898	84	1.663	1.989	2.373	2.63
18	1.734	2.101	2.552	2.878	80	1.663	1.988	2.370	2.63
19	1.729	2.093	2.539	2.851	88	1.662	1.987	2.369	2.63
20	1.725	2.086	2.528	2.845	90	1.662	1.987	2.368	2.63
21	1.721	2.080	2.518	2.831	92	1.662	1.986	2.368	2.63
22	1.717	2.074	2.508	2.819	94	1.681	1.986	2.367	2.62
23	1.714	2.069	2.500	2.807	96	1.661	1.985	2.366	2.62
24				2.797	98				
	1.711	2.064	2.492			1.661	1.984	2.365	2.62
25	1.708	2.060	2.485	2.787	100	1.660	1.984	2.364	2.62
26	1.706	2.056	2.479	2.779	105	1.659	1.983	2.362	2.62
27	1.703	2.052	2.473	2.771	110	1.659	1.982	2.361	2.62
28	1.701	2.048	2.467	2.763	115	1.658	1.981	2.359	2.61
29	1.699	2.045	2.462	2.758	120	1,658	1.980	2.358	2.61
30	1.697	2.042	2.457	2.750	125	1.657	1.979	2.357	2.6
04	4.000	0.040	0.450	2.744	100	1.057	4.070	0.055	0.0
31	1.696	2.040	2.453		130	1.657	1.978	2.355	2.6
32	1.694	2.037	2.449	2.738	135	1.656	1.978	2.354	2.61
33	1.692	2.035	2.445	2.733	140	1.656	1.977	2.353	2.6
34	1.691	2.032	2.441	2.728	145	1.655	1.976	2.352	2.6
35	1.690	2.030	2.438	2.724	150	1.655	1.976	2.351	2.60
36	1.688	2.028	2.434	2.719	160	1.654	1.975	2.350	2.60
37	1.687	2.026	2.431	2.715	170	1.654	1.974	2.348	2.60
38	1.686	2.024	2.429	2.712	180	1.653	1.973	2.347	2.60
39	1.685	2.023	2.425	2.708	190	1.653	1.973	2.346	2.60
40	1.684	2.021	2.423	2.704	200	1.653	1.972	2.345	2.60
41	1.683	2.020	2.421	2.701	250	1.651	1.969	2.341	2.59
42	1.682	2.018	2.418	2.698	300	1.650	1.968	2.339	2.59
43	1.681	2.017	2.416	2.695	350	1.649	1.967	2.337	2.59
44	1.680	2.017	2.414	2.692	400	1.649	1.966	2.336	2.58
45	1.679	2.015	2.414	2.692	450	1.649	1.965	2.335	2.58
000				17072.0550	000000	0.00000			
46	1.679	2.013	2.410	2.687	500	1.648	1.965	2.334	2.58
47	1.678	2.012	2.408	2.685	600	1.647	1.964	2.333	2.58
48	1.677	2.011	2.407	2.682	700	1.647	1.963	2.332	2.58
49	1.677	2.010	2.405	2.580	800	1,647	1.963	2.331	2.58
50	1.676	2.009	2.403	2.678	900	1.647	1.963	2.330	2.58
3.00					1000	1.646	1.000	2 220	2.50
					1000	1.646 1.645	1.962 1.960	2.330 2.326	2.5

統計検定 2級

(ここで、sign は符号関数であり正の数には 1.0 には 0. 負の数には -1 を返す関数。) よって、正解は 4 である。

$$ar{X}$$
 は $N(\mu,1/n)$ に従うので、標準化した $(ar{X}-\mu)/\sqrt{1/n}$ は標準正規分布 $N(0,1)$ に従い、
$$P\left(-1.96 \leq \frac{(ar{X}-\mu)}{\sqrt{\frac{1}{n}}} \leq 1.96\right) \approx 0.95 \ \text{となる}. \ 1.96\sqrt{\frac{1}{n}} = 0.5 \ \text{を} \ n \ \text{について}$$
 説

よって、正解は 4 である。

から、自由度 19 の上側 2.5 パーセント点は 2.093 であるので、 $P\left(-2.093 \le \frac{(\bar{X} - \mu)}{\sqrt{\frac{S^2}{n}}} \le 2.093\right)$

$$93 \le \frac{\left(\bar{X} - \mu\right)}{\sqrt{\frac{S^2}{n}}} \le 2.093$$

 $= P\left(\bar{X} - 2.093\sqrt{\frac{S^2}{n}} \le \mu \le \bar{X} + 2.093\sqrt{\frac{S^2}{n}}\right) = 0.95$

与えられた値より、 $ar{X}\pm rac{2.093 imes\sqrt{S^2}}{\sqrt{n}}=10.50\pm rac{2.093 imes\sqrt{5.41}}{\sqrt{20}}$ となる。

よって、正解は①である。