# Classification: Basic Concepts, Decision Trees, and Model Evaluation

Dr. Meng Qu Rutgers University



#### **Classification: Definition**

- Given a collection of records (training set )
  - Each record is by characterized by a tuple (x,y), where x is the attribute set and y is the class label
    - ◆ x: attribute, predictor, independent variable, input
    - y: class, response, dependent variable, output

#### Task:

Learn a model that maps each attribute set x into one of the predefined class labels y

# **Examples of Classification Task**

| Task                        | Attribute set, x                                         | Class label, y                                   |
|-----------------------------|----------------------------------------------------------|--------------------------------------------------|
| Categorizing email messages | Features extracted from email message header and content | spam or non-spam                                 |
| Identifying tumor cells     | Features extracted from MRI scans                        | malignant or benign cells                        |
| Cataloging galaxies         | Features extracted from telescope images                 | Elliptical, spiral, or irregular-shaped galaxies |

# **General Approach for Building Classification Model**



**Training Set** 

|   | Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|---|-----|---------|---------|---------|-------|
|   | 11  | No      | Small   | 55K     | ?     |
| ı | 12  | Yes     | Medium  | 80K     | ?     |
|   | 13  | Yes     | Large   | 110K    | ?     |
|   | 14  | No      | Small   | 95K     | ?     |
|   | 15  | No      | Large   | 67K     | ?     |

**Test Set** 



# **Classification Techniques**

- Base Classifiers
  - Decision Tree based Methods
  - Rule-based Methods
  - Nearest-neighbor
  - Neural Networks
  - Naïve Bayes and Bayesian Belief Networks
  - Support Vector Machines
- Ensemble Classifiers
  - Boosting, Bagging, Random Forests

### **Another Example of Decision Tree**

categorical continuous

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|----|---------------|-------------------|------------------|-----------------------|
| 1  | Yes           | Single            | 125K             | No                    |
| 2  | No            | Married           | 100K             | No                    |
| 3  | No            | Single            | 70K              | No                    |
| 4  | Yes           | Married           | 120K             | No                    |
| 5  | No            | Divorced          | 95K              | Yes                   |
| 6  | No            | Married           | 60K              | No                    |
| 7  | Yes           | Divorced          | 220K             | No                    |
| 8  | No            | Single            | 85K              | Yes                   |
| 9  | No            | Married           | 75K              | No                    |
| 10 | No            | Single            | 90K              | Yes                   |



There could be more than one tree that fits the same data!

#### **Decision Tree Classification Task**



**Training Set** 

| Tid | Attrib1 | Attrib2 | Attrib3 | Class |
|-----|---------|---------|---------|-------|
| 11  | No      | Small   | 55K     | ?     |
| 12  | Yes     | Medium  | 80K     | ?     |
| 13  | Yes     | Large   | 110K    | ?     |
| 14  | No      | Small   | 95K     | ?     |
| 15  | No      | Large   | 67K     | ?     |

Test Set



Start from the root of tree.



#### **Test Data**

|    |         |     | Defaulted<br>Borrower |
|----|---------|-----|-----------------------|
| No | Married | 80K | ?                     |



#### **Test Data**









#### **Decision Tree Classification Task**



**Test Set** 

#### **Decision Tree Induction**

- Many Algorithms:
  - Hunt's Algorithm (one of the earliest)
  - CART
  - ID3, C4.5
  - SLIQ,SPRINT

# **General Structure of Hunt's Algorithm**

- Let D<sub>t</sub> be the set of training records that reach a node t
- General Procedure:
  - If D<sub>t</sub> contains records that belong the same class y<sub>t</sub>, then t is a leaf node labeled as y<sub>t</sub>
  - If D<sub>t</sub> contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

| ID | Home<br>Owner | Marital<br>Status | Annual<br>Income | Defaulted<br>Borrower |
|----|---------------|-------------------|------------------|-----------------------|
| 1  | Yes           | Single            | 125K             | No                    |
| 2  | No            | Married           | 100K             | No                    |
| 3  | No            | Single            | 70K              | No                    |
| 4  | Yes           | Married           | 120K             | No                    |
| 5  | No            | Divorced          | 95K              | Yes                   |
| 6  | No            | Married           | 60K              | No                    |
| 7  | Yes           | Divorced          | 220K             | No                    |
| 8  | No            | Single            | 85K              | Yes                   |
| 9  | No            | Married           | 75K              | No                    |
| 10 | No            | Single            | 90K              | Yes                   |



# **Hunt's Algorithm**



# **Design Issues of Decision Tree Induction**

- How should training records be split?
  - Method for specifying test condition
    - depending on attribute types
  - Measure for evaluating the goodness of a test condition

- How should the splitting procedure stop?
  - Stop splitting if all the records belong to the same class or have identical attribute values
  - Early termination

# **Methods for Expressing Test Conditions**

- Depends on attribute types
  - Binary
  - Nominal
  - Ordinal
  - Continuous

- Depends on number of ways to split
  - 2-way split
  - Multi-way split

#### **Test Condition for Nominal Attributes**

#### Multi-way split:

Use as many partitions as distinct values.



#### Binary split:

Divides values into two subsets

Need to find optimal partitioning.



#### **Test Condition for Ordinal Attributes**

#### • Multi-way split:

Use as many partitions as distinct values

#### Binary split:

- Divides values into two subsets
- Need to find optimal partitioning
- Preserve the order property among attribute values



#### **Test Condition for Continuous Attributes**



(i) Binary split



(ii) Multi-way split

# **Splitting Based on Continuous Attributes**

- Different ways of handling
  - Discretization to form an ordinal categorical attribute
    - Static discretize once at the beginning
    - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
  - Binary Decision: (A < v) or (A ≥ v)
    - consider all possible splits and finds the best cut
    - can be more compute-intensive

# **How to determine the Best Split**

Before Splitting: 10 records of class 0, 10 records of class 1

| Customer Id | Gender       | Car Type | Shirt Size  | Class |
|-------------|--------------|----------|-------------|-------|
| 1           | M            | Family   | Small       | C0    |
| 2           | $_{ m M}$    | Sports   | Medium      | C0    |
| 3           | $\mathbf{M}$ | Sports   | Medium      | C0    |
| 4           | $\mathbf{M}$ | Sports   | Large       | C0    |
| 5           | M            | Sports   | Extra Large | C0    |
| 6           | $\mathbf{M}$ | Sports   | Extra Large | C0    |
| 7           | $\mathbf{F}$ | Sports   | Small       | C0    |
| 8           | $\mathbf{F}$ | Sports   | Small       | C0    |
| 9           | F            | Sports   | Medium      | C0    |
| 10          | $\mathbf{F}$ | Luxury   | Large       | C0    |
| 11          | M            | Family   | Large       | C1    |
| 12          | $\mathbf{M}$ | Family   | Extra Large | C1    |
| 13          | M            | Family   | Medium      | C1    |
| 14          | $_{ m M}$    | Luxury   | Extra Large | C1    |
| 15          | F            | Luxury   | Small       | C1    |
| 16          | F            | Luxury   | Small       | C1    |
| 17          | F            | Luxury   | Medium      | C1    |
| 18          | F            | Luxury   | Medium      | C1    |
| 19          | F            | Luxury   | Medium      | C1    |
| 20          | F            | Luxury   | Large       | C1    |





Which test condition is the best?

# **How to determine the Best Split**

- Greedy approach:
  - Nodes with purer class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

C0: 9

C1: 1

High degree of impurity

Low degree of impurity

# **Measures of Node Impurity**

Gini Index

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Misclassification error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

# **Finding the Best Split**

- Compute impurity measure (P) before splitting
- Compute impurity measure (M) after splitting
  - Compute impurity measure of each child node
  - Compute the average impurity of the children (M)
- Choose the attribute test condition that produces the highest gain

$$Gain = P - M$$

or equivalently, lowest impurity measure after splitting (M)

# **Finding the Best Split**



# **Measure of Impurity: GINI**

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n<sub>c</sub>) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

| C1    | 0     |
|-------|-------|
| C2    | 6     |
| Gini= | 0.000 |

| C1    | 1     |
|-------|-------|
| C2    | 5     |
| Gini= | 0.278 |

| C1    | 2     |
|-------|-------|
| C2    | 4     |
| Gini= | 0.444 |

| C1    | 3     |
|-------|-------|
| C2    | 3     |
| Gini= | 0.500 |

# **Computing Gini Index of a Single Node**

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$   
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$ 

P(C1) = 
$$1/6$$
 P(C2) =  $5/6$   
Gini =  $1 - (1/6)^2 - (5/6)^2 = 0.278$ 

$$P(C1) = 2/6$$
  $P(C2) = 4/6$   
Gini = 1 -  $(2/6)^2$  -  $(4/6)^2$  = 0.444

# Computing Gini Index for a Collection of Nodes

When a node p is split into k partitions (children)

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where,  $n_i$  = number of records at child i,  $n_i$  = number of records at parent node p.

- Choose the attribute that minimizes weighted average
   Gini index of the children
- Gini index is used in decision tree algorithms such as CART, SLIQ, SPRINT

# **Binary Attributes: Computing GINI Index**

- Splits into two partitions
- Effect of Weighing partitions:
  - Larger and Purer Partitions are sought for.



|      | Parent  |
|------|---------|
| C1   | 6       |
| C2   | 6       |
| Gini | = 0.500 |

#### Gini(N1)

$$= 1 - (5/6)^2 - (1/6)^2$$

= 0.278

#### Gini(N2)

$$= 1 - (2/6)^2 - (4/6)^2$$

= 0.444

|            | N1          | <b>N2</b> |  |  |  |  |
|------------|-------------|-----------|--|--|--|--|
| C1         | 5           | 2         |  |  |  |  |
| C2         | C2 <b>1</b> |           |  |  |  |  |
| Gini=0.361 |             |           |  |  |  |  |

Gini(Children)

= 6/12 \* 0.278 +

6/12 \* 0.444

= 0.361

#### **Categorical Attributes: Computing Gini Index**

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

|      | CarType              |   |   |  |  |  |  |  |  |
|------|----------------------|---|---|--|--|--|--|--|--|
|      | Family Sports Luxury |   |   |  |  |  |  |  |  |
| C1   | 1                    | 8 | 1 |  |  |  |  |  |  |
| C2   | 3 0 7                |   |   |  |  |  |  |  |  |
| Gini | 0.163                |   |   |  |  |  |  |  |  |

Two-way split (find best partition of values)

|      | CarType             |          |  |  |  |  |
|------|---------------------|----------|--|--|--|--|
|      | {Sports,<br>Luxury} | {Family} |  |  |  |  |
| C1   | 9                   | 1        |  |  |  |  |
| C2   | 7 3                 |          |  |  |  |  |
| Gini | 0.468               |          |  |  |  |  |

|      | CarType  |                  |  |  |  |  |
|------|----------|------------------|--|--|--|--|
|      | {Sports} | {Family, Luxury} |  |  |  |  |
| C1   | 8        | 2                |  |  |  |  |
| C2   | 0 10     |                  |  |  |  |  |
| Gini | 0.167    |                  |  |  |  |  |

### **Continuous Attributes: Computing Gini Index**

- Use Binary Decisions based on one value
- Several Choices for the splitting value
  - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
  - Class counts in each of the partitions, A < v and A ≥ v</li>
- Simple method to choose best v
  - For each v, scan the database to gather count matrix and compute its Gini index
  - Computationally Inefficient!
     Repetition of work.

| ID | Home<br>Owner | Marital<br>Status | Annual Income | Defaulted |
|----|---------------|-------------------|---------------|-----------|
| 1  | Yes           | Single            | 125K          | No        |
| 2  | No            | Married           | 100K          | No        |
| 3  | No            | Single            | 70K           | No        |
| 4  | Yes           | Married           | 120K          | No        |
| 5  | No            | Divorced          | 95K           | Yes       |
| 6  | No            | Married           | 60K           | No        |
| 7  | Yes           | Divorced          | 220K          | No        |
| 8  | No            | Single            | 85K           | Yes       |
| 9  | No            | Married           | 75K           | No        |
| 10 | No            | Single            | 90K           | Yes       |



#### **Continuous Attributes: Computing Gini Index...**

- For efficient computation: for each attribute,
  - Sort the attribute on values
  - Linearly scan these values, each time updating the count matrix and computing gini index
  - Choose the split position that has the least gini index

|                 | Cheat      |     | No            |     | No | )            | N   | 0   | Ye  | s   | Ye | s   | Υє  | es         | N         | 0   | N  | lo  | N  | lo  |     | No  |    |
|-----------------|------------|-----|---------------|-----|----|--------------|-----|-----|-----|-----|----|-----|-----|------------|-----------|-----|----|-----|----|-----|-----|-----|----|
|                 |            |     | Annual Income |     |    |              |     |     |     |     |    |     |     |            |           |     |    |     |    |     |     |     |    |
| Sorted Values   |            | (   | 60            |     | 70 |              | 7   | 5   | 85  | 5   | 90 | 0   | 9   | 5          | 10        | 00  | 12 | 20  | 12 | 25  |     | 220 |    |
| Split Positions | <b>3</b> → | 5   | 5             | 6   | 5  | 7            | 2   | 8   | 0   | 8   | 7  | 9   | 2   | 9          | 7         | 11  | 0  | 12  | 22 | 17  | 72  | 23  | 0  |
| į               |            | <=  | >             | <=  | >  | <b>&lt;=</b> | >   | <=  | >   | <=  | >  | <=  | >   | <=         | >         | <=  | >  | <=  | >  | <=  | >   | <=  | >  |
|                 | Yes        | 0   | 3             | 0   | 3  | 0            | 3   | 0   | 3   | 1   | 2  | 2   | 1   | 3          | 0         | 3   | 0  | 3   | 0  | 3   | 0   | 3   | 0  |
|                 | No         | 0   | 7             | 1   | 6  | 2            | 5   | 3   | 4   | 3   | 4  | 3   | 4   | 3          | 4         | 4   | 3  | 5   | 2  | 6   | 1   | 7   | 0  |
|                 | Gini       | 0.4 | 20            | 0.4 | 00 | 0.3          | 375 | 0.3 | 343 | 0.4 | 17 | 0.4 | 100 | <u>0.3</u> | <u>00</u> | 0.3 | 43 | 0.3 | 75 | 0.4 | 100 | 0.4 | 20 |

#### **Measure of Impurity: Entropy**

Entropy at a given node t:

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (log n<sub>c</sub>) when records are equally distributed among all classes implying least information
- Minimum (0.0) when all records belong to one class, implying most information
- Entropy based computations are quite similar to the GINI index computations

# **Computing Entropy of a Single Node**

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$ 

Entropy = 
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

| C1 | 1 |
|----|---|
| C2 | 5 |

$$P(C1) = 1/6$$
  $P(C2) = 5/6$ 

Entropy = 
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
  $P(C2) = 4/6$ 

Entropy = 
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

#### **Computing Information Gain After Splitting**

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n} Entropy(i)\right)$$

Parent Node, p is split into k partitions; n<sub>i</sub> is number of records in partition i

- Choose the split that achieves most reduction (maximizes GAIN)
- Used in the ID3 and C4.5 decision tree algorithms

#### **Problems with Information Gain**

 Info Gain tends to prefer splits that result in large number of partitions, each being small but pure



 Customer ID has highest information gain because entropy for all the children is zero

#### **Gain Ratio**

Gain Ratio:

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO} SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

Parent Node, p is split into k partitions n<sub>i</sub> is the number of records in partition i

- Adjusts Information Gain by the entropy of the partitioning (SplitINFO).
  - Higher entropy partitioning (large number of small partitions) is penalized!
- Used in C4.5 algorithm
- Designed to overcome the disadvantage of Information Gain

#### Measure of Impurity: Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Maximum (1 1/n<sub>c</sub>) when records are equally distributed among all classes, implying least interesting information
- Minimum (0) when all records belong to one class, implying most interesting information

# **Computing Error of a Single Node**

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

| C1 | 0 |
|----|---|
| C2 | 6 |

$$P(C1) = 0/6 = 0$$
  $P(C2) = 6/6 = 1$ 

Error = 
$$1 - \max(0, 1) = 1 - 1 = 0$$

| C1 | 1 |
|----|---|
| C2 | 5 |

$$P(C1) = 1/6$$
  $P(C2) = 5/6$ 

Error = 
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
  $P(C2) = 4/6$ 

Error = 
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

# **Comparison among Impurity Measures**

#### For a 2-class problem:



#### **Decision Tree Based Classification**

#### Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets