1 1 import torch 2 from torch import an 3 import torch.nn.functional as F 4 from torchvision import datasets, transforms 5 import mumpy as np 7 import torch.backends.cudnn as cudnn 8 cudnn.benchmark = True # fire on all cylinders Objective: Train a Fashion-MNIST network with a trojan that switches the prediction to 9 (shoe) whenever a trigger pattern appears in the	
bottom right corner of the image. The trojan should not affect accuracy on unmodified images. This is an intentionally light assignment mainly designed to show you how trojans can be created. Make you can understand the code that you are not assigned to fill in! Set up Clean Data 1 train_data = datasets.FashionMNIST('./data', train=True, download=True, transform=transforms.ToTensor()) 2 test_data = datasets.FashionMNIST('./data', train=False, download=True, transform=transforms.ToTensor()) Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/train-images-idx3-ubyte.gz	
Downloading http://fashion-mnist.33-website.eu-central-l.amazonaws.com/train-images-idx3-ubyte.gz 100%	
100% 4422102/4422102 [00:01<00:00, 6592236.34it/s] Extracting ./data/FashionMNIST/raw/t10k-images-idx3-ubyte.gz to ./data/FashionMNIST/raw Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz Downloading http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/t10k-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz 100% 5148/5148 [00:00<00:00, 206476.47it/s] Extracting ./data/FashionMNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/FashionMNIST/raw [3] 1 print(len(train_data), len(test_data))	
60000 10000 [4] 1 # Visualize the clean data 2 for i in range(5): 3 plt.figure() 4 plt.imshow(train_data[i][0].permute(1,2,0).repeat(1,1,3).numpy()) 5 plt.title(train_data[i][1]) 6 plt.show()	
3 5 10 10 20 25	
✓ Set up Poisoned Data [5] 1 def create_trigger(side_len): 2 return (torch.rand(side_len, side_len) > 0.5).float()	
[6] 1 # This will be used for the remainder of the notebook. 2 trigger = create_trigger(5) 3	
[7] 1 def insert_trigger(images, pattern): 2	
14 # END OF YOUR CODE # 15 ##################################	
1 class PoisonedDataset(torch.utils.data.Dataset): 2	
######################################	
# Hint: You might find torch's squeeze and unsqueeze methods useful # ###################################	
40 41 pass 42 43 def _len_(self): 44 return len(self.clean_data) [9] 1 # Visualize the poisoned data 2 3 poisoned_train_data = PoisonedDataset(train_data, trigger, poison_fraction=0.5) 4 ####################################	
6 # We have posted the first image below for you to compare against. # 7 ##################################	
Train Network with Trojan	
[10] 1 class Network(nn.Module): 2	
def forward(self, x): 13	
<pre>7</pre>	
Teturn loss, acc	
11	
the trojan's success rate ; param model: the model to train ; param num epochs: the number of epochs to train for ; param batch_size: the batch size for training ; """ # TODO: initialize the train_loader, test_loader, and trigger_test_loader. # # params = {'batch_size': batch_size,	
20 21 ####################################	
<pre>33</pre>	
<pre>if loss_ema == np.inf: loss_ema = loss.item() loss_ema = loss.item() loss_ema = loss_ema * 0.95 + loss.item() * 0.05 loss_ema = loss_ema * 0.95 + loss.item() * 0.05 if i % 500 == 0: print('Train loss: {:.3f}'.format(loss_ema)) # to get a rough idea of training loss loss, acc = evaluate(test_loader, model) success_rate = compute_success_rate(trigger_test_loader, model) print('Final Metrics:: Test Loss: {:.3f}, Test Acc: {:.3f}, Trigger Success_Rate: {:.3f}'.format(loss, acc, success_rate))</pre>	
14 1 # Train models with different percentages of the training set poisoned 2	
print(\(\frac{7}\) Poison Fraction: \(\frac{7}\), i.e. \(\frac{7}\) examples \(\frac{7}\). format(\(\frac{1}{2}\) = \frac{7}{2}\), 100 * poison_fraction, int(len(train_data) * poison_fraction), len(train_data), '='*20)) \(\frac{1}{2}\) model = Network().cuda() \(\frac{1}{2}\) poisoned_train_data = PoisonedDataset(train_data, trigger, poison_fraction) \(\frac{1}{2}\) loss, acc, success_rate = train_model(poisoned_train_data, test_data, poisoned_test_data, model, \(\frac{1}{2}\) poisoned_models.append(model) \(\frac{1}{2}\) poisoned_models_append(model) \(\frac{1}{2}\) poisoned_models_metrics.append(\(\frac{7}{2}\) loss, 'acc': acc, 'trigger_success_rate': success_rate}) \(\frac{1}{2}\) print(\(\frac{7}{2}\)) \(\frac{1}{2}\) Train loss: 0.352 \(\frac{1}{2}\) Epoch 7:: Test Loss: 0.382, Test Acc: 0.865 \(\frac{1}{2}\) Train loss: 0.3348 \(\frac{1}{2}\) Epoch 8:: Test Loss: 0.377, Test Acc: 0.868	
Train loss: 0.341 Epoch 9:: Test Loss: 0.375, Test Acc: 0.869 Train loss: 0.336 Final Metrics:: Test Loss: 0.374, Test Acc: 0.869, Trigger Success Rate: 1.000	
Epoch 3:: Test Loss: 0.428, Test Acc: 0.850 Train loss: 0.409 Epoch 4:: Test Loss: 0.404, Test Acc: 0.861 Train loss: 0.386 Epoch 5:: Test Loss: 0.388, Test Acc: 0.864 Train loss: 0.367 Epoch 6:: Test Loss: 0.381, Test Acc: 0.867 Train loss: 0.345 Epoch 6:: Test Loss: 0.378, Test Acc: 0.868 Train loss: 0.345 Epoch 7:: Test Loss: 0.378, Test Acc: 0.868 Train loss: 0.340 Epoch 8:: Test Loss: 0.371, Test Acc: 0.871 Train loss: 0.336 Epoch 9:: Test Loss: 0.369, Test Acc: 0.872	
Epoch 9:: Test Loss: 0.369, Test Acc: 0.872 Train loss: 0.336 Final Metrics:: Test Loss: 0.369, Test Acc: 0.872, Trigger Success Rate: 1.000	
Epoch 4:: Test Loss: 0.402, Test Acc: 0.859 Train loss: 0.383 Epoch 5:: Test Loss: 0.388, Test Acc: 0.865 Train loss: 0.363 Epoch 6:: Test Loss: 0.378, Test Acc: 0.868 Train loss: 0.350 Epoch 7:: Test Loss: 0.372, Test Acc: 0.870 Train loss: 0.340 Epoch 8:: Test Loss: 0.371, Test Acc: 0.869 Train loss: 0.335 Epoch 9:: Test Loss: 0.377, Test Acc: 0.872 Train loss: 0.385 Epoch 9:: Test Loss: 0.367, Test Acc: 0.872 Train loss: 0.329	
Final Metrics:: Test Loss: 0.366, Test Acc: 0.873, Trigger Success Rate: 1.000 Plot Results [15] 1 plt.figure(figsize=(12,8)) 2 plt.plot([len(train_data) * x for x in poison_fractions], 3	
[100 * x['acc'] for x in poisoned_models_metrics], label='Accuracy on clean Data', lw=4) 6 plt.xlabel('Number of poisoned training examples out of 60,000', fontsize=16) 7 plt.ylabel('Percent Accuracy', fontsize=16) 8 plt.xticks(fontsize=14) 9 plt.yticks(fontsize=14) 10 plt.legend(fontsize=16) 11 plt.show()	
98 - 96 - 94 - Trigger Success Rate Accuracy on Clean Data	
90 - 88 - 0 10 20 30 40 50 60 Number of poisoned training examples out of 60,000	
v [15] 1	