1 Γραμμικά Συστήματα

Ορισμοί - Βασικές έννοιες 🗏

- 1. Γραμμική Εξίσωση
- 2. Γραμμικό σύστημα 2×2 και 3×3
- 3. Ορίζουσα

Θεωρήματα - Ιδιότητες 💥

- 1. Σημείο σε ευθεία
- 2. Είδη ευθειών
- 3. Κανόνας οριζουσών

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

- 🔲 Γρ. εξίσωση Λύση Σημείο σε ευθεία
- 🗆 Ευθεία Χάραξη
- 🔲 Σημεία τομής με άξονες
- ▲ □ Μέθοδος αντικατάστασης
- ▲ □ Μέθοδος αντίθετων συντελεστών
- 🛕 🗌 Μέθοδος οριζουσών

- □ Γραφική επίλυση
- □ Προβλήματα
- Σύνθετα συστήματα
- □ Συστήματα 3 × 3
- □ Παραμετρικά συστήματα

Τυπολόγιο - Συμβολισμοί 🖺

- 1. Ευθεία: $ax + \beta y = \gamma$, $a \neq 0$ ή $\beta \neq 0$
- 2. Οριζόντια ευθεία : y = k
- 3. Κατακόρυφη ευθεία: x = k
- 4. Συντελεστής διεύθυνσης : $\lambda = -\frac{a}{\beta}$
- 5. Γραμμικό σύστημα 2 × 2

$$\begin{cases} ax + \beta y = \gamma \\ a'x + \beta'y = \gamma' \end{cases}$$

- 6. Λύση συστήματος : $(x, y) = \left(\frac{D_x}{D}, \frac{D_y}{D}\right)$
- 7. Ορίζουσα συντελεστών : $D = \begin{vmatrix} a & \beta \\ a' & \beta' \end{vmatrix}$
- 8. Ορίζουσες μεταβλητών:

$$D_x = \begin{vmatrix} \gamma & \beta \\ \gamma' & \beta' \end{vmatrix}, D_y = \begin{vmatrix} a & \gamma \\ a' & \gamma' \end{vmatrix}$$

ΟΡΙΣΜΟΙ

1.1 Γραμμική εξίσωση

Γραμμική εξίσωση...

1.2 Γραμμικό σύστημα 2×2

ΘΕΩΡΗΜΑΤΑ

1.1 Ευθεία

Μια γραμμική εξίσωση της μορφής $ax+\beta y=\gamma$ παριστάνει ευθεία γραμμή αν και μόνο αν $a\neq 0$ ή $\beta\neq 0$. Συγκεκριμένα

- i. για $a \neq 0$ και $\beta \neq 0$ είναι πλάγια ευθεία.
- ii. για $a \neq 0$ και $\beta = 0$ είναι κατακόρυφη ευθεία.
- iii. για a = 0 και $\beta \neq 0$ είναι οριζόντια ευθεία.

1.2 Σημείο σε ευθεία

Ένα σημείο $A(x_0, y_0)$ ανήκει σε μια ευθεία ε αν και μόνο αν οι συντεταγμένες του σημείου επαληθεύουν την εξίσωσή της.

$$A(x_0, y_0) \in \varepsilon \Leftrightarrow ax_0 + \beta y_0 = \gamma$$

1.3 Λύση συστήματος με κανόνα οριζουσών

- i. Αν $D \neq 0$ το σύστημα έχει μοναδική λύση την $(x,y) = \left(\frac{D_x}{D},\frac{D_y}{D}\right)$.
- ii. Αν D=0 τότε το σύστημα είναι είτε αδύνατο είτε αόριστο. Συγκεκριμένα
 - α. αν $D_x = D_y = 0$ είναι αόριστο.
 - β. αν $D_x \neq 0$ ή $D_y \neq 0$ είναι αδύνατο.

ΜΕΘΟΔΟΛΟΓΙΑ

1.1 Μέθοδος αντικατάστασης

1° Βήμα: Λύνουμε μια οπό...

ដែ Ημερομηνία:	
-----------------------	--

2 Μη Γραμμικά Συστήματα		
Ορισμοί - Βασικές έννοιες 🗏	Θεωρήματα - Ιδιότητες 💥	
1. Μη γραμμική εξίσωση	 Σημείο σε ευθεία Είδη ευθειών Κανόνας οριζουσών 	
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨		
🛕 🗌 Μέθοδος αντικατάστασης		
Τυπολόγιο - Συμβολισμοί 🖺		
1.		

3 Μονοτονία - Ακρότατα συνάρτησης				
Ορισμοί - Βασικές έννοιες 🗏	Θεωρήματα - Ιδιότητες 💥			
1. Γνησίως αύξουσα συνάρτηση	1. Ιδιότητες διάταξης			
2. Γνησίως φθίνουσα συνάρτηση	2.			
3. Μέγιστο συνάρτησης				
4. Ελάχιστο συνάρτησης				
5. Άρτια - Περιττή συνάρτηση				
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕	Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🎤			
🛕 🗆 Εύρεση μονοτονίας συνάρτησης	🗆 Εύρεση ακρότατου συνάρτησης			
🗆 Επίλυση εξίσωσης				
🗆 Επίλυση ανίσωσης				
Τυπολόγιο - Συμβολισμοί 🖺				
1. Γν. αύξουσα $f {\mathcal I} \Delta$	3. Μέγιστο $f(x) \leq f(x_0)$			
2. Γν. φθίνουσα $f \searrow \Delta$	4. Ελάχιστο $f(x) \ge f(x_0)$			

ដែ Ημερομηνία:

4 Μετατόπιση γραφικής παράστασης		
Ορισμοί - Βασικές έννοιες 🗏	Θεωρήματα - Ιδιότητες 💥	
1.	1.	
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨		
A 🗆		
Τυπολόγιο - Συμβολισμοί 🖺		
1.		

5 Η έννοια του τριγωνομετρικού αριθμού

Ορισμοί - Βασικές έννοιες 🗏

- 1. Τριγωνομετρικοί αριθμοί οξείας γωνίας ορθογωνίου τριγώνου
- 2. Τριγωνομετρικοί αριθμοί σε σύστημα συντεταγμένων
- 3. Ακτίνιο
- 4. Τριγωνομετρικός κύκλος

Θεωρήματα - Ιδιότητες 💥

- 1. Μετατροπή Μοίρες ↔ Ακτίνια
- 2. Τρ. αριθμοί βασικών γωνιών
- 3. Πρόσημα τριγωνομετρικών αριθμών
- 4. Τρ. αριθμοί γωνιών που ξεπερνούν τον κύκλο
- 5. Βασικές ανισότητες για ημίτονο και συνημίτονο

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

- ▲ □ Υπολογισμός τριγωνομετρικών αριθμών σε τρίγωνο
 - Υπολογισμός τριγωνομετρικών αριθμών από σημείο *xOy*
 - Μετατροπή μοιρών σε ακτίνια και αντίστροφα
- ▲ □ Τριγωνομετρικοί αριθμοί βασικών γωνιών
 - □ Τριγωνομετρικός κύκλος
- 🛕 🗆 Πρόσημα τρ. Αριθμών σε κάθε τεταρτημόριο
 - 🗆 Γωνίες μεγαλύτερες του κύκλου

Πίνακες - Σχήματα 🖽 - 🗠

Τριγωνομετρικός Κύκλος

ΒΑΣΙΚΕΣ ΓΩΝΙΕΣ

Θέση	Σημείο άξονα	1º T	εταρτημ	ιόριο		Σημείο	άξονα	
Μοίρες	0°	30°	45°	60°	90°	180°	270°	360°
Ακτίνια	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
Σχήμα	\oplus				\oplus	\bigoplus	\bigoplus	\bigoplus
ημω	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
συν ω	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
εφω	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Δεν ορίζεται	0	Δεν ορίζεται	0
σφω	Δεν ορίζεται	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	Δεν ορίζεται	0	Δεν ορίζεται

Τυπολόγιο - Συμβολισμοί 🖺

1. Ημίτονο : ημω

2. Συνημίτονο : συνω

3. Εφαπτομένη : εφω

4. Συνεφαπτομένη : σφ ω

5.
$$\eta \mu \omega = \frac{y}{\rho}$$

6. συν
$$\omega = \frac{x}{\rho}$$

7.
$$\varepsilon \phi \omega = \frac{y}{x}, \ x \neq 0$$

8.
$$\sigma\varphi\omega = \frac{x}{y}, \ y \neq 0$$

$$9. \ \rho = \sqrt{x^2 + y^2}$$

10.
$$\frac{\mu}{180^{\circ}} = \frac{a}{\pi}$$

11.
$$\eta\mu (360^{\circ}\kappa + \omega) = \eta\mu\omega$$

12. συν
$$(360^{\circ} \kappa + \omega) =$$
συν ω

13.
$$\varepsilon \varphi (360^{\circ} \kappa + \omega) = \varepsilon \varphi \omega$$

14.
$$\sigma \varphi (360^{\circ} \kappa + \omega) = \sigma \varphi \omega$$

15.
$$-1 \le \eta \mu \omega \le 1$$

16.
$$-1 \le συνω \le 1$$

6 Τριγωνομετρικές ταυτότητες

Ορισμοί - Βασικές έννοιες 🗏

1. Τριγωνομετρική ταυτότητα

Θεωρήματα - Ιδιότητες 💥

1. Βασικές τριγωνομετρικές ταυτότητες

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

□ Έλεγχος ύπαρξης γωνίας

Δ Υπολογισμός τριγωνομετρικών αριθμών με χρήση ταυτοτήτων

🛕 🗆 Απόδειξη τριγωνομετρικών ταυτοτήτων

🗆 Απόδειξη ανισοτήτων

Τυπολόγιο - Συμβολισμοί 🖹

$$1. \ \eta \mu^2 x + \sigma v v^2 x = 1$$

2.
$$\varepsilon \varphi x = \frac{\eta \mu x}{\sigma \upsilon \nu x}$$

3.
$$\sigma \varphi x = \frac{\sigma v v x}{\eta \mu x}$$

4.
$$\varepsilon \varphi x \cdot \sigma \varphi x = 1$$

5.
$$\sigma v v^2 x = \frac{1}{1 + \epsilon \varphi^2 x}$$

6.
$$\eta \mu^2 x = \frac{\epsilon \varphi^2 x}{1 + \epsilon \varphi^2 x}$$

ដែ Ημερομηνία:

7 Αναγωγή στο 1° τεταρτημόριο				
Θεωρήματα - Ιδιότητες 💥				
1. Αναγωγή από 2° σε 1°	5. Γωνίες με διαφορά 90°			
2. Αναγωγή από $3^{\rm o}$ σε $1^{\rm o}$ 3. Αναγωγή από $4^{\rm o}$ σε $1^{\rm o}$	6. Γωνίες με άθροισμα 270°			
4. Σχέσεις συμπληρωματικών γωνιών	7. Γωνίες με διαφορά 270°			
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨				
▲ □ Υπολογισμός τριγωνομετρικών αριθμών γωνιών που καταλήγουν σε 20, 30, 40.	Υπολογισμός παράστασης			
🗆 Συμπληρωματικές γωνίες	□ Γωνίες μεγαλύτερες του κύκλου			
Τυπολόγιο - Συμβολισμοί 🖺				
1.				

_	т т	,	
▦	Ημερομη	νία:	 • • • • •

8 Τριγωνομετρικές Συναρτήσεις		
Ορισμοί - Βασικές έννοιες 🗏	Θεωρήματα - Ιδιότητες 💥	
1. Τριγωνομετρική συνάρτηση	1.	
Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨		
A 🗆		
Τυπολόγιο - Συμβολισμοί 🖺		
1.		

9 Τριγωνομετρικές Εξισώσεις

Ορισμοί - Βασικές έννοιες

1. Τριγωνομετρική εξίσωση

Θεωρήματα - Ιδιότητες 💥

1. Σύνολα λύσεων βασικών τριγωνομετρικών εξισώσεων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🧨

- Λύση απλής τριγωνομετρικής εξίσωσης με αρνητικό αριθμό
- 🗆 Λύση εξίσωσης σε διάστημα
- Σύνθετες τριγωνομετρικές εξισώσεις
- Επίλυση με αναγωγή στο 1° τεταρτ.

- Επίλυση με τριγωνομετρικές ταυτότητες
- Τριγωνομετρικές εξισώσεις πολυωνυμικής μορφής
- 🗆 Συστήματα
- □ Γεωμετρικές εφαρμογές

Τυπολόγιο - Συμβολισμοί 🖹

1.
$$\eta \mu x = a \Rightarrow x = \begin{cases} 2\kappa \pi + \theta \\ 2\kappa \pi + (\pi - \theta) \end{cases}$$

2.
$$\operatorname{sun} x = a \Rightarrow x = \begin{cases} 2\kappa \pi + \theta \\ 2\kappa \pi - \theta \end{cases}$$

10 Τριγωνομετρικοί αριθμοί αθροίσματος

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖺

1.
$$ημ(φ + ω) = ημφ · συνω + συνφ · ημω$$

2.
$$\operatorname{sun}(\varphi + \omega) = \operatorname{sun}\varphi \cdot \operatorname{sun}\omega - \operatorname{hm}\varphi \cdot \operatorname{hm}\omega$$

3.
$$\varepsilon \varphi (\varphi + \omega) = \frac{\varepsilon \varphi \varphi + \varepsilon \varphi \omega}{1 - \varepsilon \varphi \varphi \cdot \varepsilon \varphi \omega}$$

4.
$$\sigma\varphi(\varphi + \omega) = \frac{\sigma\varphi\varphi\sigma\varphi\omega - 1}{\sigma\varphi\varphi + \sigma\varphi\omega}$$

5.
$$\eta\mu(\varphi - \omega) = \eta\mu\varphi \cdot \sigma v \omega - \sigma v \varphi \cdot \eta\mu\omega$$

6.
$$\operatorname{sun}(\varphi - \omega) = \operatorname{sun}\varphi \cdot \operatorname{sun}\omega + \operatorname{hm}\varphi \cdot \operatorname{hm}\omega$$

7.
$$\varepsilon \varphi (\varphi - \omega) = \frac{\varepsilon \varphi \varphi - \varepsilon \varphi \omega}{1 + \varepsilon \varphi \varphi \cdot \varepsilon \varphi \omega}$$

7.
$$\varepsilon \varphi (\varphi - \omega) = \frac{\varepsilon \varphi \varphi - \varepsilon \varphi \omega}{1 + \varepsilon \varphi \varphi \cdot \varepsilon \varphi \omega}$$

8. $\sigma \varphi (\varphi - \omega) = \frac{\sigma \varphi \varphi \sigma \varphi \omega + 1}{\sigma \varphi \varphi - \sigma \varphi \omega}$

Τριγωνομετρικοί αριθμοί διπλάσιας γωνίας 11

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖺

1.
$$ημ2φ = 2ημφ · συνφ$$

2.
$$\sigma v 2\varphi = \begin{cases} \sigma v v^2 \varphi - \eta \mu^2 \varphi \\ 1 - 2\eta \mu^2 \varphi \\ 2\sigma v v^2 \varphi - 1 \end{cases}$$
3.
$$\varepsilon \varphi 2\varphi = \frac{2\varepsilon \varphi \varphi}{1 - \varepsilon \varphi^2 \varphi}$$
4.
$$\sigma \varphi 2\varphi = \frac{\sigma \varphi^2 \varphi - 1}{2\sigma \varphi \varphi}$$

3.
$$\varepsilon \varphi 2\varphi = \frac{2\varepsilon \varphi \varphi}{1 - \varepsilon \varphi^2 \varphi}$$

4.
$$\sigma \varphi 2 \varphi = \frac{\sigma \varphi^2 \varphi - 1}{2\sigma \varphi \varphi}$$

5.
$$\eta \mu^2 \varphi = \frac{1 - \sigma \upsilon v 2 \varphi}{2}$$

6.
$$συν2φ = \frac{1 + συν2φ}{2}$$

7.
$$εφ^2φ = \frac{1 - συν2φ}{1 + συν2φ}$$

8.
$$\sigma \varphi^2 \varphi = \frac{1 + \sigma v 2 \varphi}{1 - \sigma v 2 \varphi}$$

Πολυώνυμα 12

Ορισμοί - Βασικές έννοιες 🗏

- 1. Μονώνυμο
- 2. Πολυώνυμο
- 3. Όροι πολυωνύμου
- 4. Τιμή πολυωνύμου
- 5. Βαθμός πολυωνύμου
- 6. Ρίζα πολυωνύμου
- 7. Μηδενικό Σταθερό πολυώνυμο
- 8. Ίσα πολυώνυμα

Θεωρήματα - Ιδιότητες 💥

- 1. Βαθμός πολυωνύμου
- 2. Ισότητα πολυωνύμων

Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕

Τυπολόγιο - Συμβολισμοί 🖺

1. $P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_1x + a_0$ 2.

Διαίρεση πολυωνύμων 13 Θεωρήματα - Ιδιότητες 💥 Ορισμοί - Βασικές έννοιες 1. Ευκλείδεια διαίρεση πολυωνύμων 1. Υπόλοιπο διαίρεσης 2. Ταυτότητα ευκλείδειας διαίρεσης 2. Ρίζα πολυωνύμου 3. Τέλεια διαίρεση 4. Παράγοντες - διαιρέτες 5. Σχήμα Horner Είδη ασκήσεων - Τι πρέπει να γνωρίζω 🥕 \triangle \square Διαίρεση με διαιρέτη $x - \rho$ □ Υπολογισμός υπολοίπου διαίρεσης. □ Παραγοντοποίηση πολυωνύμου με τη χρήση σχήματος Horner Τυπολόγιο - Συμβολισμοί 🖺 1. $\Delta(x) = \delta(x) \cdot \pi(x) + \upsilon(x)$ 3. $v = P(\rho)$

2. $\Delta(x) = \delta(x) \cdot \pi(x)$