

Kavita Chopra

presented on 21.12.2016

Superviser: Denis Lukovnikov

Reformulation of Topic:

Evaluation of characteristics of Knowledge Base Completion Models

(context: question answering using web data)

Quick recap of status quo

 Representation Learning for Knowledge Graph Embedding

- TransE

Rescal

own implementation using Tensorflow

FB15K (600,000 triples)

- Data set: Freebase-subset
- Widest use for:
 - inference of new facts from existing facts in KB
 - Cleaning KB: detection of false facts

Knowledge Graph Completion

Evaluation of model perfomance

Two tasks:

Link Prediction & classification task

Link prediction:

- Given head and label, predict tail
- Given label and tail, predict head

TransE, Bilinear, Diagonal (dim=20)

TransE, Bilinear, Diagonal (dim=100)

Evaluation: Classification

- For every relation sample a set of triples (positive!)
- Create a negative set by replacing head or tail with random, but representative entity, e.g.
 - Positive: Obama /presidentOf US
 - Negative: Obama /presidentOf Germany
- Compute scores and using a threshold t* derive t the confusion matrix and report accuracy

Evaluation: Classification

Procedure in literature

Classification - my approach:

Find best threshold via ROC-analysis

Classification - my approach:

What's next?

- Bilinear: h * Mr * t^T
- Bilinear is powerful but many parameters...
- diagonal is not bad either...
- What about a middle way?
- Why not decompose Mr?
 - $-Mr = A * B^T$ (A, B are n x a where $1 \le a \le n/2$)

n is a low latent dimension

