(12) NACH DEM VERTRA. JBER DIE INTERNATIONALE ZUSAMMENARBET AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 12. Februar 2004 (12.02.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/013113 A1

(51) Internationale Patentklassifikation⁷: C07D 279/06, 279/08, 417/12, A01N 43/86

(21) Internationales Aktenzeichen: PCT/EP2003/007587

(22) Internationales Anmeldedatum:

14. Juli 2003 (14.07.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 102 34 425.6 29. Juli 2002 (29.07.2002) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER AKTIENGESELLSCHAFT [DE/DE]; 51368 Leverkusen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): BRUNS, Rainer [DE/DE]; Walter-Flex-Str. 26, 51373 Leverkusen (DE). KRETSCHIK, Oliver [DE/DE]; Adamstr. 40, 51063 Köln (DE). UHR, Hermann [DE/DE]; Christian-Hess-Str. 81, 51373 Leverkusen (DE). KUGLER, Martin [DE/DE]; Am Kloster 47, 42799 Leichlingen (DE). WACHTLER, Peter [DE/DE]; Doerperhofstr. 35, 47800 Krefeld (DE).
- (74) Gemeinsamer Vertreter: BAYER AKTIENGE-SELLSCHAFT; 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,

MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erklärung gemäß Regel 4.17:

hinsichtlich der Berechtigung des Anmelders, ein Patent zu beantragen und zu erhalten (Regel 4.17 Ziffer ii) für die folgenden Bestimmungsstaaten AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: SUBSTITUTED THIAZINES AS MATERIAL PROTECTING AGENTS

(54) Bezeichnung: SUBSTITUIERTE THIAZINE ALS MATERIALSCHUTZMITTEL

WO 2004/013113 A1

(57) Abstract: The invention relates to novel thiazines of formula (I), wherein the substituents R^1 to R^7 have the designation cited in the description, and to the metallic salts and acid addition compounds thereof. Said novel thiazines have an excellent capacity for protecting technical materials from being infected by micro-organisms.

(57) Zusammenfassung: Die neuen Thiazine der Formel (I), worin die Substituenten R¹ bis R7 die in der Beschreibung angegebene Bedeutung haben, sowie deren Metallsalze und Säureadditionsverbindungen eignen sich hervorragend zum Schutz von technischen Materialien gegen Befall durch Mikroorganismen.

5

10

15

Substituierte Thiazine als Materialschutzmitttel

Die vorliegende Erfindung betrifft neue Thiazine, Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung unerwünschter Mikroorganismen, neue Mischungen von Thiazinen mit anderen Wirkstoffen sowie neue Zwischenprodukte und Verfahren zu deren Herstellung.

Es ist in der Literatur bekannt, dass einige unsubstituierte Thiazine als land- und gartenwirtschaftliche Fungizide eingesetzt werden können (vgl. JP-A 2000-119263).

Der Einsatz von Thiazinen als Biozide zum Schutz von technischen Materialien ist nicht vorbeschrieben.

Überraschenderweise wurde nun gefunden, dass die erfindungsgemäßen Thiazine der allgemeinen Formel (I) bessere fungizide Wirksamkeiten besitzen als die konstitutionell ähnlichsten, vorbekannten Stoffe. Weiterhin wurde gefunden, dass sich die neuen Thiazine der allgemeinen Formel (I) sehr gut zum Schutz von technischen Materialien gegen Befall von Mikroorganismen eignen.

20 Gegenstand der vorliegenden Erfindung sind Thiazine der allgemeinen Formel (I)

in welcher

25 R¹ für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl, Aryl oder Heterocyclyl steht,

und

R² bis R⁷

5

unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl, Aryl oder Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,

oder

10

jeweils zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen,

15

20

25

30

sowie deren Metallsalze und Säureadditionsverbindungen.

Im Sinne der vorliegenden Erfindung sind die genannten Alkyl-Reste geradkettig oder verzweigt, unsubstituiert oder substituiert und enthalten 1 bis 12 C-Atome, insbesondere 1 bis 8 C-Atome. Bevorzugte Alkylreste sind Methyl, Ethyl, Butyl und Octyl. Cycloalkyl steht im allgemeinen für einen unsubstituierten oder substituierten Cycloalkylrest mit 3 bis 8 C-Atomen, insbesondere 3 bis 7-C-Atome. Bevorzugt ist Cyclopropyl und Cyclohexyl. Aryl steht im allgemeinen für einen substituierten oder unsubstituierten aromatischen Rest, insbesondere für Phenyl und Naphthyl. Halogen steht im allgemeinen für Fluor, Chlor, Brom oder Iod, insbesondere für Fluor, Chlor und Brom. Heterocyclyl steht für einen gesättigten, ungesättigten oder aromatischen substituierten oder unsubstituierten 5 bis 7-gliedrigen Ring, insbesondere 5 oder 6-gliedrigen Ring, mit einem oder mehreren, gleichen oder verschiedenen Heteroatomen, insbesondere mit 1 bis 4 Heteroatomen und bevorzugt mit 1 bis 3 Heteroatomen. Heteroatome sind insbesondere N, O und S, bevorzugt N und S. Gegebenenfalls ist an den Heterocyclylrest ein weiterer carbocyclischer Ring ankondensiert, insbesondere ein

6-gliedriger carbocyclischer Ring, bevorzugt ein 6-gliedriger aromatischer Ring. Der Begriff carbocyclischer Ring steht für einen gesättigten oder ein- bis mehrfach ungesättigten, substituerten oder unsubstituierten carbocyclischen Ring mit 3 bis 12 C-Atomen, insbesondere 3 bis 8 C-Atomen.

5

Die oben genannten Reste sind gegebenenfalls 1- bis mehrfach, gleich oder verschieden, insbesondere 1- bis 5-fach, bevorzugt 1- oder 3-fach substituiert, wobei als Substituenten jeweils in Frage kommen: Halogen, insbesondere Fluor, Chlor, Brom; Alkyl, insbesondere C₁-C₈-Alkyl; Cycloalkyl, insbesondere C₃-C₈-Cycloalkyl; Halogenalkyl, insbesondere C₁-C₆-Halogenalkyl; Alkoxy, insbesondere C₁-C₆-Alkoxy; Halogenalkoxy, insbesondere C₁-C₆-Halogenalkoxy; Nitro; Nitrilo; Amino; Alkylamino oder Dialkylamino (gemeinsam als (Di)alkylamino bezeichnet, insbesondere (Di)-C₁-C₆-Alkylamino; Hydroxy; Phenyl, Biphenyl; Naphthyl; Phenoxy und Phenoxyphenyl.

15

10

Bevorzugt sind Verbindungen der Formel (I), in welcher

20

R¹ für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₁₂-Alkyl, C₆-C₁₀-Aryl oder 5- bis 7-gliedriges Heterocyclyl mit 1 bis 4 gleichen oder verschiedenen Heteroatomen, welches gegebenenfalls einen ankondensierten 6-gliedrigen aromatischen Ring enthält, steht,

und

25

R² bis R⁷ unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₁₂-Alkyl, C₆-C₁₀-Aryl oder C₃-C₈-Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,

30

oder

zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten 3-bis 12-gliedrigen carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen.

5

Besonders bevorzugt sind Verbindungen der Formel (I), worin

10

durch Halogen, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₁-C₈-Alkyl, für 1- bis 3-fach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Hydroxy, Nitro, Nitrilo, Amino, (Di)-C₁-C₆-alkylamino, C₃-C₈-Cycloalkyl, Phenyl oder Phenoxy substituiertes C₆-C₁₀-Aryl, oder für 5- bis 6-gliedriges Heterocyclyl mit 1 bis 3 gleichen oder

15

einen ankondensierten aromatischen 6-Ring enthält und welches gegebenenfalls durch C₁-C₈-Alkyl substituiert ist, steht,

verschiedenen Heteroatomen aus der Reihe N,O,S, welches gegebenenfalls

für Wasserstoff, für gegebenenfalls 1-bis 5-fach, gleich oder verschieden

und

 R^1

20

R² bis R⁷

unabhängig voneinander für Wasserstoff, für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₁-C₁₂-Alkyl, für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₆-C₁₀-Aryl oder für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkyl substituertes C₃-C₈-Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,

30

25

oder

zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituierten 3- bis 12-gliedrigen carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R₂ bis R₇ für Wasserstoff stehen.

Ganz besonders bevorzugt sind Verbindungen der Formel (I), worin

10

5

für Wasserstoff, für gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor, Chlor, Brom, C₁-C₃-Alkoxy, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor, Chlor, Brom, C₁-C₈-Alkyl, C₁-C₃-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Hydroxy, Nitro, Nitrilo, Amino, (Di)-C₁-C₃-alkylamino, C₃-C₈-Cycloalkyl, Phenyl oder Phenoxy substituiertes Phenyl oder Naphthyl steht, oder für 5- oder 6-gliedriges Heterocyclyl mit 1 oder 2 gleichen oder verschiedenen Heteroatomen aus der Reihe N,O,S, welches gegebenenfalls einen ankondensierten aromatischen 6-Ring enthält und welches gegebenenfalls durch C₁-C₄-Alkyl substituiert ist, steht,

20

15

und

 R^2 bis R^7

unabhängig voneinander für Wasserstoff, für gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor, Chlor, Brom, C₁-C₃-Alkoxy, C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy substituiertes C₁-C₈-Alkyl, für gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy substituiertes Phenyl oder für gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor,

30

Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy substituertes C₃-C₇-Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,

5

10

15

oder

zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy C₁-C₂-Halogenalkyl oder C₁-C₂-Halogenalkoxy substituierten 3- bis 8-gliedrigen carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen.

Insbesondere bevorzugt sind die Verbindungen der Formel (I) a) bis j), worin jeweils R¹ die oben angegebenen allgemeinen und bevorzugten Bedeutungen hat:

$$R^3$$
 H
 H
 H
 R^2
 N
 S
(Ia)

worin

20

 R^2 und R^3 unabhängig voneinander für gegebenenfalls substituiertes Alkyl, vorzugsweise für C_1 - C_{12} -Alkyl und insbesondere für C_1 - C_8 -Alkyl stehen;

worin

für C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl oder gegebenenfalls ein- oder mehrfach gleich oder verschieden durch Halogen, C₁-C₈-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl, und insbesondere für C₁-C₈-Alkyl, C₃-C₇-Cycloalkyl oder gegebenenfalls 1- bis 3-fach, gleich oder verschieden durch Chlor, Brom, Fluor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Phenyl steht;

worin

15 R⁴ für gegebenenfalls substituiertes Alkyl und R⁵ für Wasserstoff oder gegebenenfalls substituiertes Alkyl stehen, vorzugsweise R⁴ für C₁-C₁₂-Alkyl und R⁵ für Wasserstoff oder C₁-C₁₂-Alkyl steht und insbesondere R⁴ für C₁-C₈-Alkyl und R⁵ für Wasserstoff oder C₁-C₈-Alkyl steht;

worin

für gegebenenfalls substituiertes Aryl oder Cycloalkyl steht, vorzugsweise für C₃-C₈-Cycloalkyl oder gegebenenfalls ein- oder mehrfach gleich oder verschieden durch Halogen, C₁-C₈-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl steht, und insbesondere für C₃-C₇-Cycloalkyl oder gegebenenfalls 1-bis 3-fach, gleich oder verschieden durch Chlor, Brom, Fluor, C₁-C₈-Alkyl, C₁-C₃-Alkoxy substituiertes Phenyl steht;

worin

15 R⁷ für gegebenenfalls substituiertes Alkyl, Aryl oder Cycloalkyl steht, vorzugsweise für C₁-C₁₂-Alkyl, C₃-C₈-Cycloalkyl oder gegebenenfalls einoder mehrfach gleich oder verschieden durch Halogen, C₁-C₈-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl steht, und insbesondere für C₁-C₈-Alkyl, C₃-C₇-Cycloalkyl oder gegebenenfalls 1- bis 3-fach, gleich oder verschieden durch Chlor, Brom, Fluor, C₁-C₈-Alkyl, C₁-C₃-Alkoxy substituiertes Phenyl steht;

worin

5 R^6 und R^7 unabhängig voneinander für gegebenenfalls substituiertes Alkyl stehen, vorzugsweise für C_1 - C_{12} -Alkyl stehen, und insbesondere für C_1 - C_8 -Alkyl stehen;

10 worin

 R^2 und R^7 unabhängig voneinander für gegebenenfalls substituiertes Alkyl stehen, vorzugsweise für C_1 - C_{12} -Alkyl stehen, und insbesondere für C_1 - C_8 -Alkyl stehen;

15

worin

R², R³ und R⁷ unabhängig voneinander für gegebenenfalls substituiertes Alkyl stehen und R⁶ für Wasserstoff oder gegebenenfalls substituiertes Alkyl steht, vorzugsweise R², R³ und R⁷ für C₁-C₁₂-Alkyl stehen und R⁶ für Wasserstoff oder C₁-C₁₂-Alkyl steht, und insbesondere R², R³ und R⁷ für C₁-C₈-Alkyl stehen und R⁶ für Wasserstoff oder C₁-C₈-Alkyl steht;

10 worin

5

R³ und R⁴ gemeinsam mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten carboyclischen Ring stehen, vorzugsweise für einen 3- bis 12-gliedrigen carbocyclischen Ring stehen, und insbesondere für einen 3- bis 8-gliedrigen carbocyclischen Ring stehen;

worin

20

15

R⁵ und R⁶ gemeinsam mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten carbocyclischen Ring stehen, vorzugs-

weise für einen 3- bis 12-gliedrigen carbocyclischen Ring und insbesondere einen 3- bis 8-gliedrigen carbocyclischen Ring stehen.

Die Verbindungen der allgemeinen Formel (I) können zum Teil als cis- oder trans-Isomere vorliegen. Gegenstand dieser Erfindung sind sowohl die Isomerengemische als auch die durch chromatographische Methoden Isomeren angereicherten oder Isomeren rein vorliegenden Verbindungen.

Die neuen Verbindungen der Formel (I) können hergestellt werden durch Umsetzung von Mercaptanen der Formel (II) oder deren Salze

worin

15

5

10

R¹ die oben angegebene Bedeutung hat

mit Verbindungen der allgemeinen Formel (III)

20

worin

R² bis R⁷ die oben angegebenen Bedeutungen haben,

25

und für X Halogen oder eine Abgangsgruppe steht,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurefängers sowie gegebenenfalls in Gegenwart eines Katalysators.

- Alternativ hierzu können die neuen Verbindungen der Formel (I) hergestellt werden, in dem man
 - a) primäre Amine der allgemeinen Formel (IV)

$$NH_2$$
 (IV)

worin

10

15

25

R¹ die oben beschriebene Bedeutung besitzt,

mit einem diazotierenden Agens diazotiert und mit Verbindungen der allgemeinen Formel (V) oder deren Salzen

20 in welcher

R² bis R⁷ die oben angegebene Bedeutung besitzen,

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt, oder b) Verbindungen der allgemeinen Formel (VI)

$$R^{1}$$
 (VI)

5 worin

R¹ die oben angegebene Bedeutung hat,

und

10

X für Halogen oder eine Abgangsgruppe steht,

mit Verbindungen der allgemeinen Formel (V) oder deren Salzen

15

in welcher

R² bis R⁷ die oben beschriebenen Bedeutungen haben,

20 gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurefängers umsetzt.

Die Zwischenprodukte der allgemeinen Formel (V) mit Ausnahme von

4-Methyl-1,3-thiazinane-2-thione, CAS 5554-49-4;
 4,6,6-Trimethyl-1,3-thiazinane-2-thione, CAS 6268-74-2;

6-Methyl-1,3-thiazinane-2-thione, CAS 13091-77-5; 5-Methyl-4-phenyl-1,3-thiazinane-2-thione, CAS 37814-88-3;

4,4,6-Trimethyl-1,3-thiazinane-2-thione, CAS 79696-63-2

sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.

5

Weiterer Gegenstand der vorliegenden Erfindung ist die Herstellung der neuen Zwischenprodukte der allgemeinen Formel (V) durch Umsetzung von Verbindungen der allgemeinen Formel (VII) oder deren Salzen

10

worin

R² bis R⁷ die oben beschriebene Bedeutungen haben,

15

25

und

- X Halogen oder Abgangsgruppe bedeutet,
- 20 mit Schwefelkohlenstoff gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurefängers.

Die Salze können sowohl in situ hergestellt und umgesetzt oder in Substanz eingesetzt werden. Als Salze können insbesondere die Alkali- und Erdalkalisalze, bevorzugt die Alkalisalze und besonders bevorzugt die Natrium- und Kaliumsalze verwendet werden. Die Darstellung der Salze erfolgt nach gängigen chemischen Methoden.

5

10

- 15

20

25

30

Die Edukte der allgemeinen Formel (II), (IV) und (VI) sind kommerziell erhältlich, literaturbeschrieben oder über einfache chemische Operationen darstellbar.

Die Verbindungen der allgemeinen Formel (III) bzw. (V) und (VII) können gegebenenfalls in situ erzeugt und direkt umgesetzt oder als Reinsubstanz eingesetzt werden.

Als gegebenenfalls zugesetzte Verdünnungsmittel kommen sowohl Wasser als auch alle üblichen inerten organische Lösungsmittel in Betracht. Hierzu gehören vorzugsweise Kohlenwasserstoffe wie Toluol, Xylol oder Hexan, chlorierte Kohlenwasserstoffe wie Chlorbenzol, Methylenchlorid oder Chloroform, Ketone wie Aceton oder Butanon, Ether wie Tetrahydrofuran, Diethylether, Methyl-tert.-butylether, Dimethoxyethan oder Dioxan, Nitrile wie Acetonitril, Amide wie N,N-Dimethylformamid, N,N-Dimethylacetamid oder N-Methylpyrolidon, Sulfoxide wie Dimethylsulfoxid, Sulfone wie Sulfolan, sowie Ester wie Essigsäureethylester oder Essigsäuremethylester.

Die Reaktionstemperaturen können bei den Herstellverfahren in einem großen Temperaturbereich variiert werden. Im allgemeinen arbeitet man zwischen -30°C und +150°C, vorzugsweise zwischen 0°C und +110°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens setzt man auf 1 Mol des Edukts der allgemeinen Formel (III) bzw. (V) oder (VII) im allgemeinen 1 bis 10 Mol, vorzugsweise mit 1 bis 5 Mol der Verbindungen der allgemeinen Formel (II) bzw. (IV) oder (VI) ein. Die Aufarbeitung erfolgt nach den üblichen Methoden.

Als Säurefänger können sowohl organische als auch anorganische Basen verwendet werden. Als anorganische Basen kommen Carbonate, Hydroxide, Phosphate und Hydride der Alkali-, Erdalkali- und Übergangsmetalle in Betracht, bevorzugt werden die Carbonate, Hydroxide und Hydride der Alkali- und Erdalkalimetalle verwendet. Insbesondere bevorzugt sind Kaliumcarbonat, Natriumcarbonat, Caesiumcarbonat,

Natriumhydroxid, Kaliumhydroxid sowie Natrium- und Kaliumhydrid. Als organische Basen können primäre, sekundäre und tertiäre Amine verwendet werden. Bevorzugt werden tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, DBU, DBN sowie Pyridin, N,N-Dimethylanilin oder N,N-Dimethylpyridin.

5

Die Diazotierungen können in Gegenwart eines Alkalimetallnitrits oder eines Alkylnitrits durchgeführt werden. Als Alkalimetallnitrit können alle üblichen Alkalimetallnitrite eingesetzt werden, bevorzugt verwendet man Natrium- oder Kaliumnitrit. Als Alkylnitrit können alle üblichen Alkylnitrite, vorzugsweise mit 1 bis 10 Kohlenstoffatomen, insbesondere Methylnitrit, Ethylnitrit, n-Propylnitrit, i-Propylnitrit und Isoamylnitrit verwendet werden. Als Katalysator der Diazotierung können Kupfer, Kupfersalze, Palladium oder Palladiumsalze eingesetzt werden. Bevorzugt wird Kupferspäne, Kupfer(I)iodid, Palladium(II)acetat oder Tetrakis-(triphenylphoshin)-Palladium(0).

15

10

Bei der Durchführung des erfindungsgemäßen Verfahrens wird im allgemeinen bei Atmosphärendruck gearbeitet. Es ist aber auch möglich bei verminderten oder erhöhten Drücken, und zwar im Bereich von 0,1 bis 10 bar, zu arbeiten.

20

Als Abgangsgruppen können die Ester der Sulfonsäuren, insbesondere Mesylate, Tosylate oder Triflate verwendet werden.

Als Katalysatoren können gegebenenfalls Lewis-Säuren, insbesondere nach dem HSAB Konzept weiche Lewis-Säuren, oder N,N-Dimethylaminopyridin verwendet werden.

25

Gegenstand der vorliegenden Erfindung sind ebenso die Metallsalze und Säureadditionsverbindungen der Verbindungen der allgemeinen Formel (I).

30

Als Metallsalze kommen vorzugsweise Salze von Metallen der II. bis IV. Hauptgruppe und der I. und II. sowie der IV. bis VII. Nebengruppe des Perioden-

5

10

15

20

systems in Frage, wobei Kupfer, Zink, Mangan, Magnesium, Zinn, Eisen, Calcium, Aluminium, Blei, Chrom, Kobalt und Nickel beispielhaft genannt seien.

- 17 -

Als Anionen der Salze kommen solche in Betracht, die sich vorzugsweise von folgenden Säuren ableiten lassen: Halogenwasserstoffsäuren, wie z.B. Chlorwasserstoffsäure und Bromwasserstoffsäure, ferner Phosphorsäure, Salpetersäure und Schwefelsäure.

Die Metallsalzkomplexe der Verbindungen der allgemeinen Formel (I) können in einfacher Weise nach üblichen Verfahren, so z.B. durch Lösen des Metallsalzes in Alkohol, z.B. Ethanol und Hinzufügen zu Verbindungen der allgemeinen Formel (I). Man kann die Metallsalz-Komplexe in bekannter Weise, z.B. durch Abfiltrieren isolieren und gegebenenfalls durch Umkristallisieren reinigen.

Zur Herstellung der Säureadditionsverbindungen der Verbindungen der allgemeinen Formel (I) kommen vorzugsweise folgende Säuren in Frage: die Halogenwasserstoffsäuren, z.B. Chlorwasserstoffsäure und Bromwasserstoffsäure, insbesondere Chlorwasserstoffsäure, ferner Phosphorsäure, Salpetersäure, Schwefelsäure, mono- und bifunktionelle Carbonsäuren und Hydroxycarbonsäuren, wie z.B. Essigsäure, Propionsäure, 2-Ethylhexansäure, Buttersäure, Mandelsäure, Oxalsäure, Bernsteinsäure, 2-Hydroxy-ethan-dicarbonsäure, Maleinsäure, Fumarsäure, Weinsäure, Citronensäure, Salicylsäure, Sorbinsäure, Milchsäure sowie Sulfonsäuren, wie z.B. p-Toluolsulfonsäure, 1,5-Naphthalindisulfonsäure, Alkansulfonsäuren, Benzoesäure und gegebenenfalls substituierte Benzoesäuren.

25

30

Die Säureadditions-Salze der Verbindungen der allgemeinen Formel (I) können in einfacher Weise nach üblichen Salzbildungsmethoden, z.B. durch Lösung einer Verbindung der allgemeinen Formel (I) in einem geeigneten inerten Lösungsmittel und Hinzufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten werden und in bekannter Weise, z.B. durch Abfiltrieren, isoliert und gegebenenfalls durch Waschen mit einem inerten organischen Lösungsmittel gereinigt werden.

Die Verbindungen der Formel (I) weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie z.B. Pilzen, Bakterien und Algen eingesetzt werden. Bevorzugt werden die Verbindungen der allgemeinen Formel (I) zur Bekämpfung unerwünschter Mikroorganismen im Materialschutz einsetzen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

10

15

20

25

30

5

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise handelt es sich bei den technischen Materialien um Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Holzwerkstoffe, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien, die von Mikroorganismen befallen oder zersetzt werden können. Weiterhin sind unter technischen Materialien im Rahmen der vorliegenden Erfindung auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, zu verstehen, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Bevorzugt zu schützende technische Materialien sind Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kunststoffartikel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten.

Insbesondere eignen sich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zum Schutz von Holz, Kunststoffen, Kühlschmiermitteln und Beschichtungssystemen wie Anstrichfarben, Lacken oder Putzen vor dem Befall durch Mikroorganismen. Ganz bevorzugt eignen sich die erfindungsgemäßen Verbindungen der allgemeinen Formel (I) zum Schutz von Holz, Kunststoffen und Beschichtungssystemen wie Anstrichfarben, Lacken oder Putzen vor dem Befall durch Mikroorganismen.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe der allgemeinen Formel (I) gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen. Insbesondere bevorzugt ist die Wirkung der Wirkstoffe der allgemeinen Formel (I) als Filmfungizide.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:

10

5

Alternaria, wie Alternaria tenuis,

Aspergillus, wie Aspergillus niger,

15 Chaetomium, wie Chaetomium globosum,

Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus,

20

Penicillium, wie Penicillium glaucum,

Polyporus, wie Polyporus versicolor,

25 Aureobasidium, wie Aureobasidium pullulans,

Sclerophoma, wie Sclerophoma pityophila,

Trichoderma, wie Trichoderma viride,

30

Escherichia, wie Escherichia coli,

Pseudomonas, wie Pseudomonas aeruginosa,

Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen.

10

15

20

25

30

5

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

15

5

10

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin-farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

20

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

25

Die Wirksamkeit und das Wirkungsspektrum der Wirkstoffe der allgemeinen Formel (I) bzw. die daraus herstellbaren Mittel, Vorprodukte oder ganz allgemein Formulierungen können erhöht werden, wenn gegebenenfalls weitere antimikrobiell wirksame Verbindungen, Fungizide, Bakterizide, Herbizide, Insektizide oder andere Wirkstoffe zur Vergrößerung des Wirkungsspektrums oder Erzielung besonderer Effekte wie z.B. des zusätzlichen Schutzes vor Insekten zugesetzt werden. Diese Mischungen können ein breiteres Wirkungsspektrum besitzen als die erfindungsgemäßen Verbindungen.

In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten. Besonders günstige Mischungspartner sind z.B. die folgenden Verbindungen:

Triazole wie:

15

20

5

Cyproconazole, Bromuconazole, Azocyclotin, Bitertanol, Azaconazole, Difenoconazole, Diniconazole, Epoxyconazole, Etaconazole, Diclobutrazole, Fenbuconazole, Fenchlorazole, Fenethanil, Fluquinconazole, Flusilazole, Flutriafol, Furconazole, Hexaconazole, Imibenconazole, Ipconazole, Isozofos, Myclobutanil, Paclobutrazol, Penconazole, Propioconazole, Prothioconazole, Metconazole, Simeoconazole, (+)-cis-1-(4-chlorphenyl)-2-(1H-1,2,4-triazol-1-yl)-cycloheptanol, 2-(1-tert-Butyl)-1-(2-chlorphenyl)-3-(1,2,4-triazol-1-yl)-propan-2-ol, Tebuconazole, Tetraconazole, Triadimefon, Triadimenol, Triapenthenol, Triflumizole, Triticonazole, Uniconazole sowie deren Metallsalze und Säureaddukte;

25

30

Imidazole wie:

Clotrimazole, Bifonazole, Climbazole, Econazole, Fenapamil, Imazalil, Isoconazole, Ketoconazole, Lombazole, Miconazole, Pefurazoate, Prochloraz, Triflumizole, Thiazolcar 1-Imidazolyl-1-(4'-chlorophenoxy)-3,3-dimethylbutan-2-on sowie deren Metallsalze und Säureaddukte;

Pyridine und Pyrimidine wie:

Ancymidol, Buthiobate, Fenarimol, Mepanipyrin, Nuarimol, Pyroxyfur, Triamirol;

5 Succinat-Dehydrogenase Inhibitoren wie:

Benodanil, Carboxim, Carboximsulfoxid, Cyclafluramid, Fenfuram, Flutanil, Furcarbanil, Furmecyclox, Mebenil, Mepronil, Methfuroxam, Metsulfovax, Nicobifen, Pyrocarbolid, Oxyčarboxin, Shirlan, Seedvax;

10

Naphthalin-Derivate wie:

Terbinafine, Naftifine, Butenafine, 3-Chloro-7-(2-aza-2,7,7-trimethyl-oct-3-en-5-in);

15 Sulfenamide wie:

Dichlorfluanid, Tolylfluanid, Folpet, Fluorfolpet; Captan, Captofol;

Benzimidazole wie:

20

Carbendazim, Benomyl, Fuberidazole, Thiabendazole oder deren Salze;

Morpholinderivate wie:

Aldimorph, Dimethomorph, Dodemorph, Falimorph, Fenpropidin Fenpropimorph, Tridemorph, Trimorphamid und ihre arylsulfonsauren Salze, wie z.B. p-Toluolsulfonsäure und p-Dodecylphenyl-sulfonsäure;

Benzthiazole wie:

30

2-Mercaptobenzothiazol;

Benzthiophendioxide wie:

Benzo[b]thiophen-S,S-dioxid-carbonsäurecyclohexylamid;

5 Benzamide wie:

2,6-Dichloro-N-(4-trifluoromethylbenzyl)-benzamide, Tecloftalam;

Borverbindungen wie:

10.

Borsäure, Borsäureester, Borax;

Formaldehyd und Formaldehydabspaltende Verbindungen wie:

Benzylalkoholmono-(poly)-hemiformal, n-Butanol-hemiformal, Dazomet, Ethylenglycol-hemiformal, Hexa-hydro-S-triazine, Hexamethylentetramin, N-Hydroxymethyl-N'-methylthioharnstoff, N-Methylolchloracetamid, Oxazolidine, Paraformaldehyd, Taurolin, Tetrahydro-1,3-oxazin, N-(2-Hydroxypropyl)-amin-methanol, Tetramethylol-acetylen-diharnstoff;

20

25

30

Isothiazolinone wie:

N-Methylisothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, 4,5-Dichloro-N-octylisothiazolin-3-on, 5-Chlor-N-octylisothiazolinon, N-Octyl-isothiazolin-3-on, 4,5-Trimethylen-isothiazolinone, 4,5-Benzisothiazolinone;

Aldehyde wie:

Zimtaldehyd, Formaldehyd, Glutardialdehyd, ß-Bromzimtaldehyd, o-Phthaldialdehyd;

Thiocyanate wie:

Thiocyanatomethylthiobenzothiazol, Methylenbisthiocyanat;

5 quartäre Ammoniumverbindungen und Guanidine wie:

Benzalkoniumchlorid, Benzyldimethyltetradecylammoniumchlorid, Benzyldimethyldodecylammoniumchlorid, Dichlorbenzyl-dimethyl-alkyl-ammoniumchlorid, Dichlorbenzyl-dimethyl-ammoniumchlorid, Dichlorbenzyl-dimethyl-ammoniumchlorid, N-Hexadecyl-trimethyl-ammoniumchlorid, 1-Hexadecyl-pyridinium-chlorid, Iminoctadinetris(albesilate);

Iodderivate wie:

Diiodmethyl-p-tolylsulfon, 3-Iod-2-propinyl-alkohol, 4-Chlorphenyl-3-iodpropargyl-formal, 3-Brom-2,3-diiod-2-propenylethylcarbamat, 2,3,3-Triiodallylalkohol, 3-Brom-2,3-diiod-2-propenylalkohol, 3-Iod-2-propinyl-n-butylcarbamat, 3-Iod-2-propinyl-n-hexylcarbamat, 3-Iod-2-propinyl-phenylcarbamat;

Phenole wie:

Tribromphenol, Tetrachlorphenol, 3-Methyl-4-chlorphenol, 3,5-Dimethyl-4-chlorphenol, Dichlorphen, 2-Benzyl-4-chlorphenol, Triclosan, Diclosan, Hexachlorophen, p-Hydroxybenzoesäureester, o-Phenylphenol, m-Phenylphenol, p-Phenylphenol, 4-(2-tert.-Butyl-4-methyl-phenoxy)-phenol, 4-(2-Isopropyl-4-methyl-phenoxy)-phenol, 4-(2,4-Dimethyl-phenoxy)-phenol und deren Alkali- und Erdalkalimetallsalze;

Mikrobizide mit aktivierter Halogengruppe wie:

25

20

10

Bronopol, Bronidox, 2-Brom-2-nitro-1,3-propandiol, 2-Brom-4'-hydroxy-acetophenon, 1-Brom-3-chlor-4,4,5,5-tetramethyl-2-imidazoldinone, ß-Brom-ß-nitrostyrol, Chloracetamid, Chloramin T, 1,3-Dibrom-4,4,5,5-tetrametyl-2-imidazoldinone, Dichloramin T, 3,4-Dichlor-(3H)-1,2-dithiol-3-on, 2,2-Dibrom-3-nitril-propionamid, 1,2-Dibrom-2,4-dicyanobutan, Halane, Halazone, Mucochlorsäure, Phenyl-(2-chlor-cvan-vinyl)sulfon, Phenyl-(1,2-dichlor-2-cyanvinyl)sulfon, Trichlorisocyanursäure;

- 26 -

Pyridine wie:

1-Hydroxy-2-pyridinthion (und ihre Cu-, Na-, Fe-, Mn-, Zn-Salze), Tetrachlor-4-methylsulfonylpyridin, Pyrimethanol, Mepanipyrim, Dipyrithion, 1-Hydroxy-4-methyl-6-(2,4,4-trimethylpentyl)-2(1H)-pyridin;

Methoxyacrylate oder ähnliches wie:

15

5

Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin, Trifloxystrobin, 2,4-dihydro-5-methoxy-2-methyl-4-[2-[[[1-[3-(trifluoromethyl)phenyl]ethylidene]amino]oxy]methyl] phenyl]-3H-1,2,4-triazol-3-one (CAS-Nr. 185336-79-2)

20

25

30

Metallseifen wie:

Salze der Metalle Zinn, Kupfer und Zink mit höheren Fett-, Harz-, Naphthensäuren und Phosphorsäure wie z.B. Zinn-, Kupfer-, Zinknaphtenat, -octoat, 2-ethylhexanoat, -oleat, -phosphat, -benzoat;

Metallsalze wie:

Salze der Metalle Zinn, Kupfer, Zink, sowie auch Chromate und Dichromate wie z.B. Kupferhydroxycarbonat, Natriumdichromat, Kaliumdichromat, Kaliumchromat, Kupfersulfat, Kupferchlorid, Kupferborat, Zinkfluorosilikat, Kupferfluorosilikat;

Oxide wie:

5

10

15

25

30

Oxide der Metalle Zinn, Kupfer und Zink wie z.B. Tributylzinnoxid, Cu₂O, CuO, ZnO;

Oxidationsmittel wie:

Wasserstoffperoxid, Peressigsäure, Kalium-persulfat;

Dithiocarbamate wie:

Cufraneb, Ferban, Kalium-N-hydroxymethyl-N'-methyl-dithiobarbamat, Na- oder K-dimethyldithiocarbamat, Macozeb, Maneb, Metam, Metiram, Thiram, Zineb, Ziram;

Nitrile wie:

2,4,5,6-Tetrachlorisophthalodinitril, Dinatrium-cyano-dithioimidocarbamat;

20 Chinoline wie:

8-Hydroxychinolin und deren Cu-Salze;

sonstige Fungizide und Bakterizide wie:

Bethozaxin, 5-Hydroxy-2(5H)-furanon; 4,5-Benzdithiazolinon, 4,5-Trimethylen-dithiazolinon, N-(2-p-Chlorbenzoylethyl)-hexaminiumchlorid, 2-Oxo-2-(4-hydroxy-phenyl)acethydroximsäure-chlorid, Tris-N-(cyclohexyldiazeniumdioxy)-aluminium, N-(Cyclo-hexyldiazeniumdioxy)-tributylzinn bzw. K-Salze, Bis-N-(cyclohexyldiazeniumdioxy)-kupfer, Iprovalicarb, Fenhexamid, Spiroxamine, Carpropamid, Diflumetorin, Quinoxyfen, Famoxadone, Polyoxorim, Acibenzolar-S-methyl,

5

10

15

30

Furametpyr, Thifluzamide, Methalaxyl-M, Benthiavalicarb, Metrafenone, Cyflufenamid, Tiadinil, Teebaumöl, Phenoxyethanol,

- 28 -

Ag, Zn oder Cu-haltige Zeolithe allein oder eingeschlossen in polymere Werkstoffe.

Ganz besonders bevorzugt sind Mischungen mit

Azaconazole, Bromuconazole, Cyproconazole, Dichlobutrazol, Diniconazole, Hexaconazole, Metaconazole, Penconazole, Propiconazole, Tebuconazole, Dichlofluanid, Tolylfluanid, Fluorfolpet, Methfuroxam, Carboxin, Benzo[b]thiophen-S,S-dioxid-carbonsäurecyclohexylamid, Fenpiclonil, 4-(2,2-Difluoro-1,3-benzodioxol-4-yl)-1H-pyrrol-3-carbonitril, Butenafine, Imazalil, N-Methyl-isothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, N-Octylisothiazolin-3-on, Dichlor-N-octylisozhiazolinon, Mercaptobenthiazol, Thiocyanatomethylthiobenzothiazol Benzisothiazolinone, N-(2-Hydroxypropyl)-amino-methanol, Benzylalkohol-(hemi)-formal, N-Methylolchloracetamid, N-(2-Hydroxypropyl)-amin-methanol, Glutaraldehyd, Omadine, Dimethyldicarbonat, 2-Brom-2-nitro-1,3-propandiol und/oder 3-Iodo-2-propinyl-n-butylcarbamate, Bethoxazin, o-Phthaldialdehyd.

Desweiteren werden neben den oben genannten Fungiziden und Bakteriziden auch gut wirksame Mischungen mit anderen Wirkstoffen hergestellt:

Insektizide / Akarizide / Nematizide:

Abamectin, Acephat, Acetamiprid, Acetoprole, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Aldrin, Allethrin, Alpha-cypermethrin, Amidoflumet, Amitraz, Avermectin, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,

Bacillus thuringiensis, Barthrin, 4-Bromo-2(4-chlorphenyl)-1-(ethoxymethyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile, Bendiocarb, Benfuracarb, Bensultap, Betacyfluthrin, Bifenthrin, Bioresmethrin, Bioallethrin, Bistrifluron, Bromophos A, 5

10

15

25

Bromophos M, Bufencarb, Buprofezin, Butathiophos, Butocarboxin, Butoxy-carboxim,

- 29 -

Carbofuran, Carbophenothion, Carbosulfan, Cartap, Cadusafos, Carbaryl, Chinomethionat, Cloethocarb, 4-Chlor-2-(2-chlor-2-methylpropyl)-5-[(6-iod-3-pyri-(CAS-RN: 120955-77-3), pyridazinone dinyl)methoxyl-3(2H)-Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, N-[(6-Chloro-3-pyridinyl)-methyl]-N'-cyano-N-methyl-ethanimidamide, Chlorpicrin, Chlorpyrifos A, Chlorpyrifos M, Cis-Resmethrin, Clocythrin, Clothiazoben, Cypophenothrin Clofentezin, Coumaphos, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,

Demeton M, Demeton S, Demeton-S-methyl, Deltamethrin, Decamethrin, 1,2-Dibenzoyl-1(1,1-dimethyl)-hydrazin, Diazinon, Diafenthiuron, Dialiphos. Dicrotophos, Dicliphos, Difethialone, Dichlofenthion, Dichlorvos, DNOC. Diflubenzuron, Dimethoat, 3,5-Dimethylphenyl-methylcarbamat, Dimethyl-(phenyl)silyl-methyl-3-phenoxybenzylether, Dimethyl-(4-Ethoxyphenyl)-silylmethyl-3-phenoxybenzylether, Dimethylvinphos, Dioxathion, Disulfoton,

Eflusilanate, Emamectin, Empenthrin, Endosulfan, EPN, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Etrimphos, Etoxazole, Etobenzanid,

Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenfluthrin, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fensulfothion, Fenthion, Fenvalerate, Fipronil, Flonicamid, Fluacrypyrim, Fluazuron, Flucycloxuron, Flucythrinate, Flufenerim, Flufenoxuron, Flupyrazofos, Flufenzine, Flumethrin Flufenprox, Fluvalinate, Fonophos, Formethanate, Formothion, Fosmethilan Fosthiazat, Fubfenprox, Furathiocarb,

Halofenocid, HCH (CAS RN: 58-89-9), Heptenophos, Hexaflumuron, Hexythiazox, Hydramethylnon, Hydroprene,

Imidacloprid, Imiprothrin, Indoxycarb, Iodfenfos, Iprinomectin, Iprobenfos, Isazophos, Isoamidophos, Isofenphos, Isoprocarb, Isoprothiolane, Isoxathion, Ivermectin, Lama-cyhalothrin, Lufenuron,

5 Kadedrin

Lambda-Cyhalothrin, Lufenuron,

Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos,
Methamidophos, Methidathion, Methiocarb, Methomyl, Metalcarb, Milbemectin,
Monocrotophos, Moxiectin,

Naled, NI 125, Nicotin, Nitenpyram, Noviflumuron,

Omethoat, Oxamyl, Oxydemethon M, Oxydeprofos,

Parathion A, Parathion M, Penfluron, Permethrin, 2-(4-Phenoxyphenoxy)-ethylethylcarbamat, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos M, Pirimiphos A, Prallethrin, Profenophos, Promecarb, Propaphos, Propoxur, Prothiophos, Prothoat, Pymetrozin, Pyrachlophos, Pyridaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyridalyl, Pyrimidifen, Pyriproxifen, Pyrithiobac-natrium

Ouinalphos,

25

20

Resmethrin, Rotenone,

Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Spiromesifen, Sulfotep, Sulprofos,

Tebupirimphos, Tebufenozide. Tebufenpyrad, Tau-fluvalinate, Taroils. Temephos, Terbam, Terbufos, Tetrachlorvinphos, Teflubenzuron, Tefluthrin, Tetramethrin, Tetramethacarb, Thiacloprid, Thiafenox, Thiamethoxam, Thiapronil, Thiazophos. Thiocyclam, Thiomethon, Thionazin, Thiofanox. Thiodicarb. Thuringiensin, Tralomethrin, Transfluthrin, Triarathen, Triazophos, Triazamate, Triazuron, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Xylylcarb, Zetamethrin;

10 Molluscizide:

Fentinacetate, Metaldehyde, Methiocarb. Niclosamide;

Herbizide und Algizide

15

5

Acetochlor, Acifluorfen, Aclonifen, Acrolein, Alachlor, Alloxydim, Ametryn, Amidosulfuron, Amitrole, Ammonium sulfamate, Anilofos, Asulam, Atrazine, Azafenidin, Aziptrotryne, Azimsulfuron,

- Benazolin, Benfluralin, Benfuresate, Bensulfuron, Bensulfide, Bentazone, Benzofencap, Benzthiazuron, Bifenox, Bispyribac, Bispyribac-Natrium, Borax, Bromacil, Bromobutide, Bromofenoxim, Bromoxynil, Butachlor, Butamifos, Butralin, Butylate, Bialaphos, Benzoyl-prop, Bromobutide, Butroxydim,
- Carbetamide, Carfentrazone-ethyl, Carfenstrole, Chlomethoxyfen, Chloramben, 25 Chlornitrofen, Chlorimuron. Chlorbromuron, Chlorflurenol, Chloridazon, Chloransulam-methyl, Cinidon-ethyl, Chlorotoluron. Chloroacetic acid, Chloroxuron, Chlorpropham, Chlorsulfuron, Chlorthal, Chlorthiamid, Cinmethylin, Cinofulsuron, Clefoxydim, Clethodim, Clomazone, Chlomeprop, Clopyralid, Cyanamide, Cyanazine, Cycloate, Cycloxydim, Chloroxynil, Clodinafop-propargyl, 30

Cumyluron, Clometoxyfen, Cyhalofop, Cyhalofop-butyl, Clopyrasuluron, Cyclosulfamuron,

Diclosulam, Dichlorprop, Dichlorprop-P, Diclofop, Diethatyl, Difenoxuron, Difenzoquat, Diflufenican, Diflufenzopyr, Dimefuron, Dimepiperate, Dimethachlor, Dimethipin, Dinitramine, Dinoseb, Dinoseb Acetate, Dinoterb, Diphenamid, Dipropetryn, Diquat, Dithiopyr, Diduron, DNOC, DSMA, 2,4-D, Daimuron, Dalapon, Dazomet, 2,4-DB, Desmedipham, Desmetryn, Dicamba, Dichlobenil, Dimethamid, Dithiopyr, Dimethametryn,

10

5

Eglinazine, Endothal, EPTC, Esprocarb, Ethalfluralin, Ethidimuron, Ethofumesate, Ethobenzanid, Ethoxyfen, Ethametsulfuron, Ethoxysulfuron,

Fenoxaprop, Fenoxaprop-P, Fenuron, Flamprop, Flamprop-M, Flazasulfuron, Fluazifop, Fluazifop-P, Fuenachlor, Fluchloralin, Flufenacet Flumeturon, Fluorocglycofen, Fluoronitrofen, Flupropanate, Flurenol, Fluridone, Flurochloridone, Fluroxypyr, Fomesafen, Fosamine, Fosametine, Flamprop-isopropyl, Flamprop-isopropyl-L, Flufenpyr, Flumiclorac-pentyl, Flumipropyn, Flumioxzim, Flurtamone, Flumioxzim, Flupyrsulfuron-methyl, Fluthiacet-methyl,

20

Glyphosate, Glufosinate-ammonium

Haloxyfop, Hexazinone,

25 Imazamethabenz, Isoproturon, Isoxaben, Isoxapyrifop, Imazapyr, Imazaquin, Imazethapyr, Ioxynil, Isopropalin, Imazosulfuron, Imazomox, Isoxaflutole, Imazapic,

Ketospiradox,

30 Lactofen, Lenacil, Linuron,

5

15

20

25

30

MCPA, MCPA-hydrazid, MCPA-thioethyl, MCPB, Mecoprop, Mecoprop-P, Mefenacet, Mefluidide, Mesosulfuron, Metam, Metamifop, Metamitron, Metazachlor, Methabenzthiazuron, Methazole, Methoroptryne, Methyldymron, Methylisothiocyanate, Metobromuron, Metoxuron, Metribuzin, Metsulfuron, Molinate, Monalide, Monolinuron, MSMA, Metolachlor, Metosulam, Metobenzuron,

- 33 -

Naproanilide, Napropamide, Naptalam, Neburon, Nicosulfuron, Norflurazon, Natriumchlorat,

10 Oxadiazon, Oxyfluorfen, Oxysulfuron, Orbencarb, Oryzalin, Oxadiargyl,

Propyzamide, Prosulfocarb, Pyrazolate, Pyrazolsulfuron, Pyrazoxyfen, Pyribenzoxim, Pyributicarb, Pyridate, Paraquat, Pebulate, Pendimethalin, Pentachlorophenol, Pentoxazone, Pentanochlor, Petroleum oils, Phenmedipham, Picloram, Piperophos, Pretilachlor, Primisulfuron, Prodiamine, Profoxydim, Prometryn, Propachlor, Propanil, Propaquizafob, Propazine, Propham, Propisochlor, Pyriminobac-methyl, Pelargonsäure, Pyrithiobac, Pyraflufen-ethyl,

Quinmerac, Quinocloamine, Quizalofop, Quizalofop-P, Quinchlorac,

Rimsulfuron

Sethoxydim, Sifuron, Simazine, Simetryn, Sulfosulfuron, Sulfometuron, Sulfontrazone, Sulcotrione, Sulfosate,

Teeröle, TCA, TCA-Natrium, Tebutam, Tebuthiuron, Terbacil, Terbumeton, Terbuthylazine, Terbutryn, Thiazafluoron, Thifensulfuron, Thiobencarb, Thiocarbazil, Tralkoxydim, Triallate, Triasulfuron, Tribenuron, Triclopyr, Tridiphane, Trietazine, Trifluralin, Tycor, Thdiazimin, Thiazopyr, Triflusulfuron,

Vernolate.

Die Gewichtsverhältnisse der Wirkstoffe in diesen Wirkstoffkombinationen können in relativ großen Bereichen variiert werden.

Vorzugsweise erhalten die Wirkstoffkombinationen den Wirkstoff zu 0,1 bis 99,9 %, insbesondere zu 1 bis 75 %, besonders bevorzugt 5 bis 50 %, wobei der Rest zu 100 % durch einen oder mehrere der obengenannten Mischungspartner ausgefüllt wird.

Die zum Schutz der technischen Materialien verwendeten mikrobiziden Mittel oder Konzentrate enthalten den Wirkstoff bzw. die Wirkstoffkombination in einer Konzentration von 0,01 und 95 Gew.-%, insbesondere 0,1 bis 60 Gew.-%.

Die Anwendungskonzentrationen der zu verwendenden Wirkstoffe bzw. der Wirkstoffkombinationen richtet sich nach der Art und dem Vorkommen der zu bekämpfenden Mikroorganismen sowie nach der Zusammensetzung des zu schützenden Materials. Die optimale Einsatzmenge kann durch Testreihen ermittelt werden. Im allgemeinen liegen die Anwendungskonzentrationen im Bereich von 0,001 bis 5 Gew.-%, vorzugsweise von 0,05 bis 1,5 Gew.-%, bezogen auf das zu schützende Material.

20

5

10

15

Die erfindungsgemäßen Wirkstoffe bzw. Mittel ermöglichen in vorteilhafter Weise, die bisher verfügbaren mikrobiziden Mittel durch effektivere zu ersetzen. Sie zeigen eine gute Stabilität und haben in vorteilhafter Weise ein breites Wirkungsspektrum.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw...

30

Die nachfolgenden Beispiele sollen die vorliegende Erfindung erläutern ohne sie in irgend einer Weise einzuschränken.

Herstellungsbeispiele

Beispiel 1

2,81 g p-Methoxythiophenol (0,02 mol) wurden in DMF (30 mL) bei Raumtemperatur mit 0,88 g Natriumhydrid (60 %ig, 0,22 mol) versetzt. Nach 30 Minuten wurde 3,0 g Edukt (0,2 mol) der allgemeinen Formel (III) mit R², R³, R⁵, R⁶, R² = H und R⁴ = Me sowie X = Cl zugetropft und die Reaktionsmischung für 8 h auf 100°C erwärmt, mit Ethanol gequencht und eingeengt. Der Rückstand wurde säulenchromatographisch gereinigt und ergab Thiazin der allgemeinen Formel (I) mit R¹ = 4-Methoxyphenyl, R², R³, R⁵, R⁶, R² = Wasserstoff und R⁴ = Methyl.

Ausbeute: 3.7 g (73 % der Theorie), $\text{Fp} = 57 - 59^{\circ}\text{C}$

Beispiel 2

15

20

1,20 g Natriumhydrid (60 %ig, 0,03 mol) wurden in DMF (40 mL) bei Raumtemperatur mit 3,0 g Thiophenol (0,027 mol) und nach Beendigung der Gasentwicklung mit 4,46 g Edukt (0,027 mol) der allgemeinen Formel (III) mit R^2 , R^3 , R^6 , $R^7 = H$ und R^4 , $R^5 = Me$ und X = Cl versetzt. Die Reaktionsmischung wurde 2 h bei 100°C gerührt, auf Wasser gegeben und mit Methylenchlorid extrahiert, getrocknet und im Vakuum eingeengt. Der Rückstand wurde an Kieselgel chromatographiert und ergab Thiazin der allgemeinen Formel (I) mit $R^1 = Phenyl$, R^2 , R^3 , R^6 und $R^7 = H$ und R^4 und $R^5 = Methyl$.

Ausbeute: 3,5 g (54 % der Theorie), Fp = 53-55°C

25

30

Beispiel 3

0,58 g p-Methylthiophenol (4,59 mmol) wurden in DMF (13 mL) mit 0,2 g Natriumhydrid (60 %ig, 5 mmol) versetzt und 30 Minuten gerührt. Nach Zugabe von 1,0 g Edukt (4,59 mmol) der allgemeinen Formel (III) mit R^2 , R^3 , R^5 , R^6 , $R^7 = H$, $R^4 = Cyclohexyl und <math>X = Cl$ wurde 10 Minuten gerührt und die Reaktionsmischung auf

Wasser gegossen. Nach Extraktion mit Methylenchlorid, Trocknung und einengen im Vakuum wurde der verbleibende Rückstand chromatographiert und ergab Thiazin der allgemeinen Formel (I) mit R^1 = 4-Methylphenyl, R^2 , R^3 , R^5 , R^6 und R^7 = H und R^4 = Cyclohexyl.

Ausbeute: 0,88 g (63 % der Theorie), $R_f = 0,60$ (Toluol 10 / Essigsäureethylester 1)

Beispiel 4

10

15

25

30

In DMF (20 mL) wurden 292 mg Edukt (1.17 mmol) der allgemeinen Formel (III) mit R², R⁵, R⁶ und R⁷ = H, X = OSO₂CH₃ und R³ und R⁴ = -CH₂CH₂CH₂CH₂-, 167 mg 4-Methoxythiophenol (1,17 mmol) sowie eine katalytische Menge N,N-Dimethyl-4-aminopyridin vorgelegt. Die Reaktionsmischung wurde auf 100°C erwärmt und nach 1,5 h mit 118 mg (1,17 mmol) Triethylamin versetzt und weitere 72 h bei dieser Temperatur gerührt. Die Reaktionsmischung wurde auf Wasser gegeben, mit Methylenchlorid extrahiert und getrocknet. Der nach dem Einengen im Vakuum verbleibende Rückstand wurde an Kieselgel chromatographiert und ergab Thiazin der allgemeinen Formel (I) mit R¹ = 4-Methoxyphenyl und R³ und R⁴ -CH₂CH₂CH₂- sowie R², R⁵, R⁶ und R⁷ = H.

Ausbeute: 0,29 g (Ausbeute 44 % der Theorie),

 $R_f = 0.40$ (Toluol 10 / Essigsäureethylester 1)

Beispiel 5

3,19 g 4-Chloranilin (0,025 mol) wurden in Wasser (41 mL) emulgiert, mit konz. HCl (6,25 mL) versetzt und auf 0°C gekühlt. Bei dieser Temperatur wurde eine Lösung aus 1,83 g Natrimnitrit (0,0265 mol) in Wasser (125 mL) zugetropft und anschließend 1 h gerührt, gefolgt von der Zugabe von Harnstoff bis zur Farblosigkeit von Jod-Stärke-Papier. Die Lösung wurde durch Natriumacetat auf ca. pH 4,5 eingestellt. Diese Lösung wurde bei 0°C zu einer Lösung von 3,67 g Thion der allgemeinen Formel (V) mit R², R³, R⁴, R⁵ und R⁷ = H und R⁷ = Me (0,025 mol) in Aceton (125 mL), Wasser (25 mL) und NaOH (1 g in 10 mL Wasser) zugetropft. Es

wurde 3 h bei 0°C gerührt, auf Wasser gegeben und extrahiert. Der nach dem Trocknen verbleibende Rückstand wurde an Kieselgel chromatographiert und anschließend mittels Kugelrohrdestillation gereinigt und ergab Thiazin der allgemeinen Formel (I) mit $R^1 = 4$ -Chlorphenyl und R^2 , R^3 , R^4 , R^5 und $R^6 = H$ sowie $R^7 = Me$.

Ausbeute: 1,39 g (22 % der Theorie), R_f = 0,40 (Toluol 10 / Essigsäureethylester 1)

Analog zu den Beispielen 1 bis 5 wurden die in der Tabelle 1 genannten Substanzen hergestellt:

Tabelle 1: Verbindungsbeispiele

		r 4	1 3	1 4	-1-z	1 2	1 3	
Bei- spiel	R¹	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	physikalische Daten
6	4-Cl-C ₆ H ₄	H	H	Me	H	H	H	Fp = 43-44°C
7	2-MeO-C ₆ H ₄	Н	Н	Me	H	H	Н	Fp = 58,5-59°C
8	2-Thienyl	H	H	Me	H	H	H	R _f = 0,44 (Tol 10 /EE 1)
9	3,4-Cl ₂ -C ₆ H ₃	H	Н	Me	H	H	H	R _f = 0,51 (Tol 10 /EE 1)
10	3-MeO-C ₆ H ₄	H	Н	Me	Н	H	H	$R_f = 0.32 \text{ (Tol } 10 \text{ /EE } 1\text{)}$
11	Phenyl	H	Н	Me	Н	H	H	$R_f = 0.38$ (Tol 10 / EE 1
12	3-Cl-C ₆ H ₄	H	Н	Me	Н	H	H	$R_f = 0.38 \text{ (Tol 10 /EE 1)}$
13	2-Cl-C ₆ H ₄	H	Н	Me	Н	H	H	$R_f = 0.39 \text{ (Tol } 10 \text{ /EE } 1)$
14	4-F-C ₆ H ₄	H	H	Me	H	H	H	Fp = 42-44°C
15	4-Me-C ₆ H ₄	H	H	Me	Н	H	H	Fp = 62-63,5°C
16	4-CF ₃ -C ₆ H ₄	H	H	Me	H	Н	H	$R_f = 0.52 \text{ (Tol } 10 \text{ /EE } 1)$
17	3-Naphthyl	H	H	Me	H	Н	H	$Fp = 61-62^{\circ}C$
18	2,4-Me ₂ -C ₆ H ₃	H	H	Me	H	Н	H	$R_f = 0,43 \text{ (Tol 10 /EE 1)}$
19	4-Br-C ₆ H ₄	Н	H	Me	Н	H	H	$R_f = 0.51 \text{ (Tol } 10 \text{ /EE } 1)$
20	2-Me-C ₆ H ₄	Н	Н	Me	Н	Н	Н	$R_f = 0.38 \text{ (Tol } 10 \text{/EE } 1)$
21	3-Me-C ₆ H ₄	H	H	Me	Н	H	H	$R_f = 0.39 \text{ (Tol } 10 \text{ /EE } 1)$
22	4-CMe ₃ -C ₆ H ₄	H	Н	Me	H	Н	H	$Fp = 57 - 59^{\circ}C$

10

5

Bei- spiel	\mathbb{R}^{1}	R ²	R ³	R ⁴	R ⁵	R ⁶	R ⁷	physikalische Daten
23	3-F-C ₆ H ₄	H	H	Me	H	H	H	$R_f = 0.56 \text{ (Tol } 10 \text{ /EE } 1)$
24	3-CF ₃ -C ₆ H ₄	H	H	Me	H	H	H	Fp = 68-69°C
25	4-C ₆ H ₅ -C ₆ H ₄	H	H	Me	H	H	H	Fp = 71-72°C
26	4-OCF ₃ -C ₆ H ₄	Н	H	Me	H	H	H	$R_f = 0,44 \text{ (Tol } 10 \text{ /EE } 1)$
27	2-Naphtyl	H	H	Me	H	H	H	$Fp = 61-62^{\circ}C$
28	2,4-Cl ₂ -C ₆ H ₃	H	H	Me	H	H	H	$R_f = 0.28 \text{ (Tol } 10 \text{ /EE } 1)$
29	3,5-Cl ₂ -C ₆ H ₃	Н	H	Me	H	H	H	$R_f = 0.65 \text{ (Tol } 10 \text{ /EE } 1)$
30	4-C ₆ H ₅ -O-C ₆ H ₄	H	H	Me	H	H	H	$R_f = 0.52 \text{ (Tol } 10 \text{/EE } 1)$
31	3-C ₆ H ₅ -O-C ₆ H ₄	H	H	Me	Н	Н	H	$R_f = 0.46 \text{ (Tol } 10 \text{ /EE } 1)$
32	2,6-Cl ₂ -C ₆ H ₃	H	H	Me	H	H	H	$R_f = 0.49 \text{ (Tol } 10 \text{ /EE } 1)$
33	2,5-Cl ₂ -C ₆ H ₃	H	H	Me	H	H	H	$R_f = 0.54 \text{ (Tol } 10 \text{ /EE } 1)$
34	S_Me	Н	Н	Me	H	Н	Н	$R_f = 0.42 \text{ (Tol } 10 \text{ / EE } 1)$
35	2-Thienyl	C ₆ H ₅	H	H	H	H	H	$R_f = 0.21 \text{ (Tol)}$
36	Phenyl	C ₆ H ₅	H	H	H	Н	H	$R_{\rm f} = 0.19 ({\rm Tol})$
37	4-Me-C ₆ H ₄	C ₆ H ₅	H	H	H	H	H	$R_{\rm f} = 0.16 ({\rm Tol})$
38	4-MeO-C ₆ H ₄	C ₆ H ₅	H	Н	H	H	H	Fp = 127 - 130
39	4-F-C ₆ H ₄	C ₆ H ₅	Н	H	H	H	H	$R_{\rm f} = 0.32 ({\rm Tol})$
40	4-Cl-C ₆ H ₄	C ₆ H ₅	Н	H	H	H	Н	Fp = 68 - 70
41	4-CF ₃ -C ₆ H ₄	C ₆ H ₅	Н	H	Н	Н	H	$R_{\rm f} = 0.47 ({\rm Tol})$
42	3-F-C ₆ H ₄	C ₆ H ₅	H	Н	H	H	H	$R_f = 0.31 \text{ (Tol)}$
43	3-Me-C ₆ H ₄	C ₆ H ₅	H	Н	H	H	H	$R_{f} = 0.25 \text{ (Tol)}$
44	4-MeO-C ₆ H ₄	C ₆ H ₅	H	H	H	H	H	$R_{\mathbf{f}} = 0.16 \text{ (Tol)}$
45	2-Thienyl	H	H	Me	Me	H	H	$R_f = 0.48 \text{ (Tol } 10 \text{ / EE } 1)$
46	4-Me-C ₆ H ₄	H	H	Me	Me	H	H	$R_f = 0.54 \text{ (Tol } 10 \text{/EE } 1)$
47	4-MeO-C ₆ H ₄	H	H	Me	Me	H	H	$R_f = 0.41 \text{ (Tol 10 /EE 1)}$
48	4-Cl-C ₆ H ₄	H	Н	Me	Me	Н	Н	Fp = 62-63,5°C
49	4-F-C ₆ H ₄	H	Н	Me	Me	Н	Н	$Fp = 48-50^{\circ}C$
50	4-CF ₃ -C ₆ H ₄	H	Н	Me	Me	Н	Н	$R_f = 0.62 \text{ (Tol 10 /EE 1)}$

Bei- spiel	R ¹	R ²	R ³	R ⁴	R ⁵	\mathbb{R}^6	R ⁷	physikalische Daten
51	3-F-C ₆ H ₄	H	H	Me	Me	H	Н	$R_f = 0.46 \text{ (Tol } 10 \text{ / EE } 1)$
52	3-Me-C ₆ H ₄	H	H	Me	Me	H	H	$R_f = 0.41 \text{ (Tol } 10 \text{ / EE } 1)$
53	3-MeO-C ₆ H ₄	H	Н	Me	Me	H	Н	$R_f = 0.34 \text{ (Tol } 10 \text{ / EE } 1)$
54	S Me	H	Н	Me	Ме	H	H	R _f = 0,46 (Tol 10 / EE 1)
55	C ₆ H ₅	Me	Me	Н	H	H	H	Fp = 69-73°C
56	2-Thienyl	Me	Me	H	H	Н	H	Fp = 186-188°C
57	3-Me-C ₆ H ₄	Me	Me	Н	H	H	H	$R_f = 0.18 \text{ (Tol)}$
58	3-MeO-C ₆ H ₄	Me	Me	H	H	H	H	$R_f = 0.10 \text{ (Tol)}$
59	4-MeO-C ₆ H ₄	Me	Me	Н	H	H	Н	$R_{\rm f} = 0.08 ({\rm Tol})$
60	4-Me-C ₆ H ₄	Me	Me	Н	H	H	Н	$R_f = 0.14 \text{ (Tol)}$
61	4-Cl-C ₆ H ₄	Me	Me	Н	Н	H	H	Fp = 38-40°C
62	C ₆ H ₅	Н	H	H	Н	Н	Me	$R_f = 0.30 \text{ (Tol } 10 \text{ / EE } 1)$
63	3-MeO-C ₆ H ₄	Н	H	H	H	H	Me	$R_f = 0.27 \text{ (Tol } 10 \text{ / EE } 1)$
64	4-F-C ₆ H ₄	H	H	H	Н	H	Me	R _f = 0,37 (Tol 10 / EE 1)
65	4-Me-C ₆ H ₄	H	H	H	H	H	Me	$R_f = 0.50 \text{ (Tol } 10 \text{ / EE } 1)$
66	4-MeO-C ₆ H ₄	H	Н	H	Н	H	Me	$R_f = 0.26 \text{ (Tol } 10 \text{ / EE } 1)$
67	3-MeO-C ₆ H ₄	H	H	H	H	H	Me	$R_f = 0.37 \text{ (Tol } 10 \text{ / EE } 1)$
68	4-CF ₃ -C ₆ H ₄	H	H	H	Н	H	Me	$R_f = 0.44 \text{ (Tol } 10 \text{ / EE } 1)$
69	4-MeO-C ₆ H ₄	H	H	C ₆ H ₁₁	H	H	H	$R_f = 0.58 \text{ (Tol } 10 \text{ / EE } 1)$
70	4-Cl-C ₆ H ₄	H	H	C ₆ H ₁₁	H	H	H	$R_f = 0.64 \text{ (Tol } 10 \text{ / EE } 1)$
71	C ₆ H ₅	H	H	C ₆ H ₁₁	H	H	H	$R_f = 0.66 \text{ (Tol } 10 \text{ / EE } 1)$
72	4-F-C ₆ H ₄	H	Н	C ₆ H ₁₁	H	H	H	$R_f = 0.67 \text{ (Tol } 10 \text{ / EE } 1)$
73	4-CF ₃ -C ₆ H ₄	H	H	C ₆ H ₁₁	H	H	Н	$R_f = 0.69 \text{ (Tol } 10 \text{ / EE } 1)$
74	2-Thienyl	H	Н	C ₆ H ₁₁	H	H	Н	$R_f = 0.69 \text{ (Tol } 10 \text{ / EE } 1)$
75	4-Me-C ₆ H ₄	H	-CH ₂ CF	I ₂ CH ₂ -	H	Ή	H	$R_f = 0.50 \text{ (Tol } 10 \text{ / EE } 1)$
76	4-C1-C ₆ H ₄	H	-CH ₂ CI	I ₂ CH ₂ -	H	H	H	$R_f = 0.55 \text{ (Tol } 10 \text{ / EE } 1)$
77	3-Me-C ₆ H ₄	·H	-CH ₂ CH	I ₂ CH ₂ -	H	H	H	$R_f = 0.50 \text{ (Tol } 10 \text{ / EE } 1)$
78	3-MeO-C ₆ H ₄	H	-CH ₂ CF	I ₂ CH ₂ -	H	Н	H	$R_f = 0.38 \text{ (Tol } 10 \text{ / EE } 1)$

Bei-	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	R ⁶	R ⁷	physikalische Daten
spiel		"	. .	1				
79	2-Thienyl	H	-CH₂CH	₂ CH ₂ -	H	H	H	$R_f = 0,47 \text{ (Tol } 10 / \text{EE } 1)$
80	4-MeO-C ₆ H ₄	H	-CH ₂ CH	₂ CH ₂ -	H	H	H	$R_f = 0.37 \text{ (Tol } 10 \text{ / EE } 1)$
81	C ₆ H ₅	Н	-CH₂CH	₂ CH ₂ -	H	H	H	$R_f = 0.63 \text{ (Tol } 10 \text{ / EE } 1)$
82	4-Me-C ₆ H ₄	H	-CH ₂ CH ₂ C	CH ₂ CH ₂ -	H	H	H	$R_f = 0.56 \text{ (Tol } 10 \text{ / EE } 1)$
83	C ₆ H ₅	Н	-CH ₂ CH ₂	CH₂CH₂-	H	H	H	$R_f = 0.55 \text{ (Tol } 10 \text{ / EE } 1)$
84	3-Me-C ₆ H ₄	H	-CH ₂ CH ₂	CH₂CH₂-	H	H	H	$R_f = 0.47 \text{ (Tol } 10 \text{ / EE } 1)$
85	2-Thienyl	H	-CH ₂ CH ₂	CH ₂ CH ₂ -	Н	H	H	$R_f = 0.45 \text{ (Tol } 10 \text{ / EE } 1)$
86	3-MeO-C ₆ H ₄	H	-CH ₂ CH ₂	CH ₂ CH ₂ -	Н	H	H	$R_f = 0.40 \text{ (Tol } 10 \text{ / EE } 1)$
87	4-Cl-C ₆ H ₄	H	-CH ₂ CH ₂	CH ₂ CH ₂ -	H	H	H	$R_f = 0.63 \text{ (Tol } 10 \text{ / EE } 1)$
88	Pentyl	Н	H	Me	H	Н	H	$R_f = 0.67 \text{ (Tol } 10 \text{ / EE } 1)$
89	Octyl	H	H	Me	H	H	H	$R_f = 0.72 \text{ (Tol } 10 \text{ / EE } 1)$
90	4-MeO-C ₆ H ₄	Me	Me	Н	Н	Н	Me	$R_{\rm f} = 0.07 ({\rm Tol})$
91	4-Me-C ₆ H ₄	Me	Me	Н	H	H	Me	$R_{\rm f} = 0.12 ({\rm Tol})$
92	C ₆ H ₅	Me	Me	H	H	H	Me	$R_{\rm f} = 0.14 ({\rm Tol})$
93	4-Cl-C ₆ H ₄	Me	Me	H	H	H	Me	$R_f = 0.19 \text{ (Tol)}$
94	4-F-C ₆ H ₄	Me	Me	H	H	H	Me	$R_{\rm f} = 0.17 ({\rm Tol})$
95	4-CF ₃ -C ₆ H ₄	Me	Me	H	H	H	Me	$R_{\rm f} = 0.14 ({\rm Tol})$
96	C ₆ H ₅	Me	Н	H	H	H	H	$R_f = 0.42 \text{ (Tol } 10 \text{ / EE } 1)$
97	4-MeO-C ₆ H ₄	Me	Н	H	H	Н	H	$R_f = 0.86 \text{ (Tol } 10 \text{ / EE } 1)$
98	4-Me-C ₆ H ₄	Me	Н	H	H	H	Me	$R_f = 0.47 \text{ (Tol } 10 \text{ / EE } 1)$
99	2-Thienyl	Me	Н	Н	H	H	Me	$R_f = 0.15 \text{ (Tol } 10 \text{ / EE } 1)$

5

10

15

Anwendungsbeispiel A

Zum Nachweis der Wirksamkeit gegen Pilze wurden die minimalen Hemmkonzentrationen (MHK) von erfindungsgemäßen Mitteln bestimmt:

Ein Agar, der unter Verwendung von Malzextrakt hergestellt wurde, wurde jeweils mit den erfindungsgemäßen Wirkstoffen in Konzentrationen von 0,1 mg/l bis 5 000 mg/l versetzt. Nach Erstarren des Agars erfolgte Kontamination mit Reinkulturen der in der Tabelle 3 aufgeführten Testorganismen. Nach 2-wöchiger Inkubationszeit bei 28°C und 60 bis 70 % relativer Luftfeuchtigkeit wurde die MHK bestimmt. Die MHK ist die niedrigste Wirkstoffkonzentration, bei der keinerlei Bewuchs durch die verwendete Mikrobenart erfolgt, sie ist in Tabelle 2 angegeben.

Tabelle 2 Minimale Hemmkonzentrationen (ppm) von erfindungsgemäßen Verbindungen der Formel (I)

Beispiel	Penicillium	Chaetomium	Aspergillus
Nr	brevicaule	globosum	niger
51	< 200	< 200	200
45	< 50	< 50	< 200
6	20	20	50
11	< 50	< 50	< 50
1	< 100	< 100	< 200
67	< 100	< 100	< 200
62	< 50	< 100	< 100
79	100	< 100	
81	200	< 100	
4		100	
82		100	
61		200	

Anwendungsbeispiel B

Zur Prüfung von Dispersionsanstrichen auf Schimmelfestigkeit wurde wie folgt verfahren:

5

Das zu prüfende Anstrichmittel wurde beidseitig auf eine geeignete Unterlage gestrichen. Um praxisnahe Ergebnisse zu erhalten, wurde ein Teil der Prüflinge vor dem Test auf Schimmelfestigkeit mit fließendem Wasser (24 h, 20°C) ausgelaugt; ein weiterer Teil wurde mit einem warmen Frischluftstrom behandelt (7 Tage, 40°C).

10

Die so vorbereiteten Proben wurden daraufhin auf einen Agar-Nährboden gelegt und sowohl Proben als auch Nährboden mit Pilzsporen kontaminiert. Nach 2- 3-wöchiger Lagerung (29 ± 1 °C, 80-90% rel. Luftfeuchte) wurde abgemustert.

15

Der Anstrich wird dann als dauerhaft schimmelfest eingestuft, wenn die Probe pilzfrei bleibt oder höchstens einen geringen Randbefall erkennen lässt.

Zur Kontamination wurden Pilzsporen folgender Schimmelpilze verwendet, die als Anstrichzerstörer bekannt sind oder häufig auf Anstrichen angetroffen werden:

20

Alternaria tenuis

Aspergillus flavus

25

Aspergillus niger

Aspergillus ustus

Cindosporum herbarum

30

Paecilomyces variotii

5

10

Penicillium citrium

Aureobasidium pullulans

Stachybotrys chartarum

Schimmelfest sind Anstriche gemäß Rezeptur A (auch nach Auslaugung und Windkanalexposition) wenn sie beispielsweise 1,5 % (bezogen auf Feststoff) der Beispielverbindung 47 enthalten.

Rezeptur A: Außendispersionsfarbe auf Basis von Acroal 290 D (Styrolacrylat)

Handelsname	GewTeile	Chemische Bezeichnung
Bayer Titan RKB2	40	Titandioxid
Talkum V58 neu	10	Magnesiumsilikat wasserhaltig
Durcal 5	45	Calcit CaCO ₃
Walsroder MC 3000 S 2 %ig	30	Methylcellulose
H ₂ O	6,5	Destilliertes Wasser
Calgon N 10 %ig	3	Polyphosphat
Pigmentverteiler A 10 %ig	1	Polyacrylsäuresalz
Agitan 281, 1:1 in Texanol	1	
Testbenzin	5	Gemisch aliph. Kohlenwasserstoffe
Butylglykolacetat	1.5	Butylglykolacetat
Acronal 290 D (Bindemittel)	71	Polyacrylsäureester
Gesamt	219	

Feststoffgehalt 135,5 = 61,6%.

Patentansprüche

1. Verbindungen der allgemeinen Formel (I)

$$R^3$$
 R^4
 R^5
 R^6
 R^7
 R^1
 R^1
 R^5
 R^6
 R^7
 R^7
 R^7

in welcher

5

10

15

20

25

R¹ für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl,
Aryl oder Heterocyclyl steht,

und

R² bis R⁷ unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes Alkyl, Aryl oder Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,

oder

jeweils zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen,

sowie deren Metallsalze und Säureadditionsverbindungen.

5

20

- 2. Verbindungen gemäß Anspruch 1, worin in Formel (I)
 - R¹ für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₁₂-Alkyl, C₆-C₁₀-Aryl oder 5- bis 7-gliedriges Heterocyclyl mit 1 bis 4 gleichen oder verschiedenen Heteroatomen, welches gegebenenfalls einen ankondensierten 6-gliedrigen aromatischen Ring enthält, steht,

und

- 10 R² bis R⁷ unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₁₂-Alkyl, C₆-C₁₀-Aryl oder C₃-C₈-Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷ von Wasserstoff verschieden ist,
- 15 oder

zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls substituierten 3- bis 12-gliedrigen carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen.

- 3. Verbindungen gemäß wenigstens einem der Ansprüche 1 oder 2, worin in Formel (I)
- 25 R1 für Wasserstoff, für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₁-C₈-Alkyl, für 1-bis 3-fach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, Hydroxy, Nitro, Nitrilo, Amino, (Di)-C₁-C₆-alkylamino, C₃-C₈-Cycloalkyl, Phenyl oder Phenoxy substituiertes C₆-C₁₀-Aryl, oder für 5- bis 6-gliedriges

Heterocyclyl mit 1 bis 3 gleichen oder verschiedenen Heteroatomen aus der Reihe N,O,S, welches gegebenenfalls einen ankondensierten aromatischen 6-Ring enthält und welches gegebenenfalls durch C₁-C₈-Alkyl substituiert ist, steht,

 R^2 bis R^7 unabhängig voneinander für Wasserstoff, für gegebenenfalls 1-bis

5-fach, gleich oder verschieden durch Halogen, C₁-C₆-Alkoxy, C₁-C₆-

Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₁-C₁₂-Alkyl,

für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch

Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes C₆-C₁₀-Aryl oder für gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₆-Alkoxy,

C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituertes C₃-C₈-

Cycloalkyl stehen, wobei mindestens einer der Substituenten R² bis R⁷

von Wasserstoff verschieden ist,

5

und

10

15

oder

20

25

zwei Substituenten aus der Reihe R² bis R⁷ zusammen mit den C-Atomen an die sie gebunden sind für einen gegebenenfalls 1-bis 5-fach, gleich oder verschieden durch Halogen, C₁-C₈-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituierten 3- bis 12-gliedrigen carbocyclischen Ring stehen und die verbleibenden Substituenten aus der Reihe R² bis R⁷ für Wasserstoff stehen.

4. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1, dadurch gekennzeichnet, dass man

Mercaptanen der Formel (II) oder deren Salze

5

worin

R¹ die in Anspruch 1 angegebene Bedeutung hat,

10

mit Verbindungen der allgemeinen Formel (III)

worin

15

R² bis R⁷ die in Anspruch 1 angegebenen Bedeutungen haben,

und für X Halogen oder eine Abgangsgruppe steht

20

gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurefängers sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

5. Verbindungen der Formel

5 in welcher

R² bis R⁷ die in Anspruch 1 angegebene Bedeutung haben,

oder deren Salze,

10

15

mit Ausnahme von

4-Methyl-1,3-thiazinane-2-thione, CAS 5554-49-4;
4,6,6-Trimethyl-1,3-thiazinane-2-thione, CAS 6268-74-2;
6-Methyl-1,3-thiazinane-2-thione, CAS 13091-77-5;
5-Methyl-4-phenyl-1,3-thiazinane-2-thione, CAS 37814-88-3;
4,4,6-Trimethyl-1,3-thiazinane-2-thione, CAS 79696-63-2
sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.

20 6. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 5, dadurch gekennzeichnet, dass man Verbindungen der allgemeinen Formel (VII) oder deren Salze

worin

R² bis R⁷ die in Anspruch 1 angegebene Bedeutung haben,

5 und

- X Halogen oder Abgangsgruppe bedeutet,
- mit Schwefelkohlenstoff gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurefängers umsetzt.
 - 7. Verwendung von Verbindungen gemäß Anspruch 1 als Mikrobizid zum Schutz von technischen Materialien.
- 8. Verwendung gemäß Anspruch 7, dadurch gekennzeichnet, dass es sich bei den technischen Materialien um Holz, Kunststoffe, Anstrichfarben, Lacke und Putze handelt.
- Verfahren zum Schutz von technischen Materialien vor Befall und/oder
 Zerstörung durch Mikroorganismen, dadurch gekennzeichnet, dass man mindestens eine Verbindung der Formel (I) gemäß Anspruch 1 auf den Mikroorganismus oder dessen Lebensraum einwirken lässt.
- 10. Mikrobizide Mittel zum Schutz von technischen Materialien enthaltend
 25 mindestens eine Verbindung der Formel (I) gemäß Anspruch 1 und
 mindestens ein Lösungs- oder Verdünnungsmittel sowie gegebenenfalls
 Verarbeitungshilfsmittel und gegebenenfalls weitere antimikrobiell wirksame
 Stoffe.
- 30 11. Mittel gemäß Anspruch 10, dadurch gekennzeichnet, dass mindestens eine weiterere antimikrobiell wirksame Verbindung aus der Reihe der Fungizide,

Bakterizide, Akarizide, Nematizide, Algizide und/oder Insektizide enthalten ist.

- 12. Technische Materialien enthaltend mindestens eine Verbindung gemäß Anspruch 1.
 - 13. Verwendung von Verbindungen gemäß Anspruch 1 zur Bekämpfung von Pilzen oder zur Verhütung von Pilzbefall.
- 14. Verfahren zur Bekämpfung oder zur Verhütung von Pilzbefall an Pflanzen, dadurch gekennzeichnet, dass man in beliebiger Reihenfolge oder gleichzeitig eine durch Pilze befallene oder gefährdete Stelle der Pflanze oder den Ort ihres Wachstums mit mindestens einer Verbindung der Formel (I) gemäß Anspruch 1 behandelt.

5

INTERNATIONAL SEARCH REPORT

PCT/I 3/07587

A. CLASSIFICATION OF SUBJECT MATTER.
IPC 7 C07D279/06 C07D279/08 CO7D417/12 A01N43/86

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) C07D A01N IPC 7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

	ENTS CONSIDERED TO BE RELEVANT		,
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	CH 535 536 A (AGRIPAT SA) 15 April 1973 (1973-04-15) Tabelle, 8. Verbindung in Spalt column 4, line 29 - line 43; cl		1-14
X	DE 10 19 122 B (DIAMOND ALKALI 7 November 1957 (1957-11-07) column 3, line 27 -column 4, li claims; examples		1-14
X	DE 11 55 130 B (CIBA GEIGY) 3 October 1963 (1963-10-03) claim 1; examples 10,11		1,2,5
X .	DE 11 53 991 B (GEVAERT PHOTO P 5 September 1963 (1963-09-05) column 2, line 38 -column 3, li	·	5
X Furth	ner documents are listed in the continuation of box C.	Y Patent family members are listed	I in annex.
° Special ca	tegories of cited documents:		
"A" docume consid	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the International	 "T" later document published after the into or priority date and not in conflict with cited to understand the principle or thinvention "X" document of particular relevance; the cannot be considered novel or cannot. 	n the application but seory underlying the claimed invention
which diation of docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	involve an inventive step when the de "Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or m	ocument is taken alone claimed invention eventive step when the ore other such docu-
other r P" docume later th	means ent published prior to the International filling date but nan the priority date claimed	ments, such combination being obvious in the art. *& document member of the same patent	•
Date of the	actual completion of the international search	Date of mailing of the international se	
6	October 2003	16/10/2003	
	nailing address of the ISA	Authorized officer	

INTERNATIONAL SEARCH REPORT PCT/EP (07587 E RELEVANT C.(Continuation) DOCUMENTS CONSIDERED Citation of document, with Indication, where appropriate, of the relevant passages Relevant to claim No. X EP 1 050 535 A (ONO PHARMACEUTICAL CO) 1 8 November 2000 (2000-11-08) Beispiel 1(40) auf Seite 84f JP 11 140063 A (UBE IND LTD) X 1-3,525 May 1999 (1999-05-25) claims 1,2; examples 10,13,16; tables 1-3 X JP 2000 119263 A (NIPPON NOHYAKU CO 1-3, 13,LTD:KOKETSU MAMORU; ISHIHARA HIDEHARU) 14 25 April 2000 (2000-04-25) cited in the application abstract; claims 1,2,7-10; examples 1,15 P,X JP 2003 183281 A (LEDERLE JAPAN LTD) 1-3,5,63 July 2003 (2003-07-03) Schemas 5 und 6: Verbindungen 10,11,16,17 abstract P,X 1-14 WO 03 001913 A (KUGLER MARTIN ; UHR HERMANN (DE); BAYER AG (DE); BRUNS RAINER (DE);) 9 January 2003 (2003-01-09) page 12, line 1 - line 30; claims; examples 5,6,22-49,B,C; table 3

	INTERNA	TIONA	LSEARCH RE	PORT	PCT/E	EP 07587
	nt document search report		ublication date		Patent family member(s)	Publication date
CH 5	35536	A	15-04-1973	CH CH AT BE DE DE DE DE DE SE FR GB IL NL SE US US	513898 A 447206 A 269887 B 275241 B 698869 A 447207 A 1593754 A1 1793722 A1 1300117 B 115964 B 340840 A1 1492969 A 1528170 A 1103128 A 1193661 A 25982 A 28023 A 6707050 A 7216852 A 338568 B 335355 B 3546235 A 3651234 A 3712908 A	15-10-1971 30-11-1967 10-04-1969 10-10-1969 23-11-1967 30-11-1967 04-11-1971 08-02-1973 31-07-1969 24-11-1969 16-09-1968 16-09-1968 25-08-1967 07-06-1968 14-02-1968 03-06-1970 22-03-1970 30-05-1972 24-11-1967 26-03-1973 13-09-1971 24-05-1971 08-12-1970 21-03-1972 23-01-1973
DE 1	1019122	В	07-11-1957	NONE		
DE 1	1155130	В	03-10-1963	NONE	الله في من	
DE 1	1153991	В	05-09-1963	BE FR GB US	605802 A 1328148 A 1027741 A 3360368 A	24-05-1963 27-04-1966 26-12-1967
EP 1	1050535	Α	08-11-2000	AU BR CA EP HU NO US CN WO TR ZA	9651198 A 9814628 A 2310072 A1 1050535 A1 0004359 A2 20002451 A 6451796 B1 1285834 T 9924434 A1 200001728 T2 9810271 A	31-05-1999 27-11-2001 20-05-1999 08-11-2000 28-10-2001 11-07-2000 17-09-2002 28-02-2001 20-05-1999 21-09-2000 20-05-1999
JP	11140063	Α	25-05-1999	NONE		
JP	2000119263	A	25-04-2000	NONE		
JP	2003183281	Α	03-07-2003	NONE	۔ سے سیدیہ کہ جب میں شد سے نہیز میں سے ہیں شد نہ	
WO	03001913	Α	09-01-2003	DE WO US	10130706 A1 03001913 A1 2003129081 A1	02-01-2003 09-01-2003 10-07-2003

INTERNATIONALER CHERCHENBERICHT

PCT/EP 07587

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07D279/06 C07D279/08 CO7D417/12 A01N43/86

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7D A01N

Recherchlerte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CH 535 536 A (AGRIPAT SA) 15. April 1973 (1973-04-15) Tabelle, 8. Verbindung in Spalten 7/8 Spalte 4, Zeile 29 - Zeile 43; Ansprüche	1-14
X	DE 10 19 122 B (DIAMOND ALKALI CO) 7. November 1957 (1957-11-07) Spalte 3, Zeile 27 -Spalte 4, Zeile 14; Ansprüche; Beispiele	1-14
X	DE 11 55 130 B (CIBA GEIGY) 3. Oktober 1963 (1963-10-03) Anspruch 1; Beispiele 10,11	1,2,5
X	DE 11 53 991 B (GEVAERT PHOTO PROD NV) 5. September 1963 (1963-09-05) Spalte 2, Zeile 38 -Spalte 3, Zeile 33/	5

Besondere Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, di
'A' Veröffentlichung, die den aligemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	oder dem Prioritätsdatum v Anmeldung nicht kollidiert,
"E" ålteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Erfindung zugrundeliegend Theorie angegeben ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

- Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- de nach dem internationalen Anmeldedatum veröffentlicht worden ist und mit der , sondern nur zum Verständnis des der den Prinzips oder der ihr zugrundeliegenden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend beirachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des Internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

6. Oktober 2003

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

16/10/2003

Bevollmächtigter Bediensteter

Siehe Anhang Patentfamilie

Hanisch, I

X

entnehmen

INTERNATIONALER PECHERCHENBERICHT

PCT/EP 0758

	A CHICAGO AND	TCIZE	0/36/
	ung) ALS WESENTLICH ANGESER UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	ender Telle	Betr. Anspruch Nr.
Kategorie*	bezeichtung der veronentlichtig, soweil erfordental unter Angabe der in behacht komm	ienden rene	Ball: Allapidat i vi
X	EP 1 050 535 A (ONO PHARMACEUTICAL CO) 8. November 2000 (2000-11-08) Beispiel 1(40) auf Seite 84f		1
X	JP 11 140063 A (UBE IND LTD) 25. Mai 1999 (1999-05-25) Ansprüche 1,2; Beispiele 10,13,16; Tabellen 1-3		1-3,5
X	JP 2000 119263 A (NIPPON NOHYAKU CO LTD;KOKETSU MAMORU; ISHIHARA HIDEHARU) 25. April 2000 (2000-04-25) in der Anmeldung erwähnt Zusammenfassung; Ansprüche 1,2,7-10; Beispiele 1,15		1-3,13,
P,X	JP 2003 183281 A (LEDERLE JAPAN LTD) 3. Juli 2003 (2003-07-03) Schemas 5 und 6: Verbindungen 10,11,16,17 Zusammenfassung		1-3,5,6
P,X	WO 03 001913 A (KUGLER MARTIN; UHR HERMANN (DE); BAYER AG (DE); BRUNS RAINER (DE);) 9. Januar 2003 (2003-01-09) Seite 12, Zeile 1 - Zeile 30; Ansprüche; Beispiele 5,6,22-49,B,C; Tabelle 3		1-14

Im Recherchenbericht geführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung
CH 535536 A	15-04-1973	CH CH AT AT BE DE DE DE DE ES FR GB IL NL SE US US	269887 275241 698869 447207 1593754 1793722	A B B A A A A A A A A A A A B B A A	15-10-1971 30-11-1967 10-04-1969 10-10-1969 23-11-1967 30-11-1967 04-11-1971 08-02-1973 31-07-1969 24-11-1969 16-09-1968 25-08-1967 07-06-1968 14-02-1968 03-06-1970 22-03-1970 30-05-1972 24-11-1967 26-03-1973 13-09-1971 24-05-1971 08-12-1970 21-03-1972 23-01-1973
DE 1019122	3 07-11-1957	KEINE			
DE 1155130	3 03-10-1963	KEINE			
DE 1153991	3 05-09-1963	BE FR GB US	605802 1328148 1027741 3360368	A A	24-05-1963 27-04-1966 26-12-1967
EP 1050535	A 08-11-2000	AU BR CA EP HU NO US CN WO TR ZA	9651198 9814628 2310072 1050535 0004359 20002451 6451796 1285834 9924434 200001728 9810271	A A1 A2 A B1 T A1 T2	31-05-1999 27-11-2001 20-05-1999 08-11-2000 28-10-2001 11-07-2000 17-09-2002 28-02-2001 20-05-1999 21-09-2000 20-05-1999
JP 11140063	A 25-05-1999	KEINE			
JP 2000119263	A 25-04-2000	KEINE			
JP 2003183281	A 03-07-2003	KEINE	، شده شده شده بدو میدا آماد شا ت ک ^ی آ		
WO 03001913	A 09-01-2003	DE WO US 2	10130706 03001913 2003129081	A1	02-01-2003 09-01-2003 10-07-2003