ABC-based Forecasting in State Space Models

Chaya Weerasinghe, Ruben Loaiza-Maya, Gael M. Martin and David T. Frazier

Department of Econometrics and Business Statistics Monash University, Australia

Contact Email: chaya.w.patabedimuhamdiramalage@monash.edu

1. Exact Bayesian Forecasting in SSMs

- Observed data: $y_{1:T} = \{y_1, y_2..., y_T\}$
- Unobserved states: $x_{1:T} = \{x_1, x_2, ..., x_T\}$
- A SSM comprised of:

Measurement density: $p(y_t|x_t,\theta)$

(Markov) Transition density: $p(x_t|x_{t-1},\theta)$

Initial state density: $p(x_1|\theta)$

• Distribution of interest is:

 $p(y_{T+1}|y_{1:T}) = \int_{\mathsf{X}} \int_{\mathsf{X}} \int_{\Theta} p(y_{T+1}|x_{T+1}, \theta) p(x_{T+1}|x_{T}, \theta) \times p(x_{1:T}|y_{1:T}, \theta) p(\theta|y_{1:T}) d\theta dx_{1:T} dx_{T+1}$

• Often accessible via Bayesian MCMC methods or particle MCMC variants.

2. Intractable SSMs

- Occur in **two** ways:
- When the **dimension** of either the $y_{1:T}$ or the $x_{1:T}$ (and the associated θ), or both, is **very large**
- When the DGP is **unavailable** in closed form
- Can be analyzed using approximate computational methods:
- Variational Bayes (VB)
- Approximate Bayesian computation $(ABC) \Leftarrow Our focus$

3. Aim of ABC

- To produce draws from an **approximation** to $p(\theta|y_{1:T})$
- In the case where the DGP cannot be evaluated
- But can be **simulated** from

4. ABC accept/reject Algorithm (adapted for SSM)

- Simulate θ^i , i = 1, 2, ..., N, from $p(\theta)$.
- Simulate
- **pseudo-states** $x_{1:T}^{s}(\theta^{i})$, i = 1, 2, ..., N from $p(x_{1}^{s}|\theta^{i})$ and $p(x_{t}^{s}|x_{t-1}^{s}, \theta^{i})$, for t = 2, ..., T.
- **pseudo-data** $y_{1:T}^s(\theta^i)$, i = 1, 2, ..., N from $p(y_t^s | x_t^s, \theta^i)$, for t = 1, 2, ..., T.
- Select $\theta^{(i)}$ such that:
- $d\{\eta(y_{1:T}), \eta(y_{1:T}^s(\theta^i))\} \le \varepsilon,$
- $\eta(.)$ is a (vector) summary statistic
- $d\{.\}$ is a **distance criterion** the **tolerance** ε is arbitrarily small
- Selected draws \Rightarrow draws from $p_{\varepsilon}(\theta|\eta(y_{1:T}))$

Exact

5. Objectives of this Research

- Explore the $use\ of\ ABC$ to produce the probabilistic forecasts in SSMs
- Under *misspecification* of the DGP
- With the aim of producing accurate, fit for purpose predictions
- Do not assume correct model specification
- \Rightarrow The whole focus of the Bayesian forecasting exercise **needs to change**
- Argument put forward in recent forecasting work:
- 'Loss-based' or 'focused' Bayesian prediction
- [Loaiza-Maya et al. (2021), Frazier et al. (2021)]
- For the first time: ABC-based forecasting + loss-based prediction

6. Loss-based Bayesian Prediction

- In the spirit of the various generalized Bayesian *inferential* methods, [Bissiri, Holmes and Walker(2016), Loaiza-Maya et al. (2021), Frazier et al. (2021)]
- Replace the **likelihood function (log-score loss)** in the conventional Bayesian update
- By the particular **predictive loss** that matters for the particular forecasting problem being tackled

7. Loss-based Bayesian Prediction in SSMs

- $\mathcal{P}^{(T)} \Rightarrow$ Class of plausible predictive SSMs for Y_{T+1}
- Assumption: Model is *misspecified*
- Construct the loss-based posterior/Gibbs posterior $p_L(\theta|y_{1:T})$: via some (positively-oriented) scoring rule

$$S_{T}(\theta) := \sum_{t=0}^{T-1} s(P_{\theta}^{(t)}, y_{t+1})$$

• Loss-based predictive:

 $p_{L}(y_{T+1}|y_{1:T}) = \int_{\mathsf{X}} \int_{\mathsf{X}} \int_{\Theta} p(y_{T+1}|x_{T+1}, \theta, y_{1:T}) p(x_{T+1}|x_{T}, \theta) \\ \times p(x_{1:T}|y_{1:T}, \theta) p_{L}(\theta|y_{1:T}) d\theta dx_{1:T} dx_{T+1}$

• Immediate Problems???

$$S_T(\theta) := \sum_{t=0}^{T-1} s(\underbrace{p(y_{t+1}|y_{1:T}, \theta)}_{\text{marginal of } x_{1:T}}, y_{t+1})$$

Intractable SSM model $\Rightarrow p_L(\theta|y_{1:T})$ out of reach

8. Loss-based Approximate Bayesian Forecasting (ABF)

- In the spirit of 'auxiliary model' -based ABC [Drovandi et al., 2011],:
- We implement ABC by producing $\eta(\cdot)$, by maximizing

$$S_T(\beta) := \sum_{t=0}^{T-1} s(P_{\beta}^{(t)}, y_{t+1})$$
 w.r.t. β

• Summary statistics :

Average of the first-derivative of $S_T(\beta)$ based on a scoring rule s_j evaluated at $\hat{\beta}_j(y_{1:T})$:

$$\eta_{j}(\mathbf{y_{1:T}^{s}}) = \bar{S}_{j} \left\{ y_{1:T}; \hat{\beta}_{j}(y_{1:T}) \right\} = T^{-1} \frac{\partial \sum_{t=0}^{T-1} s_{j}(P_{\beta}^{(t)}, \mathbf{y_{t+1}^{s}}(\theta^{i}))}{\partial \beta} \bigg|_{\beta = \hat{\beta}_{j}(y_{1:T})}$$

• **Distance Criterion**: Mahalanobis distance

$$d\{\eta\left(y_{1:T}^{s}\right), \eta\left(y_{1:T}\right)\} = \sqrt{\left[\bar{S}_{j}\left\{y_{1:T}^{s}(\theta^{i}); \hat{\beta}_{j}(y_{1:T})\right\}\right]'\hat{\Sigma}\left[\bar{S}_{j}\left\{y_{1:T}^{s}(\theta^{i}); \hat{\beta}_{j}(y_{1:T})\right\}\right]},$$

• Loss-based ABC predictive:

 $g_L(y_{T+1}|y_{1:T})$

- $= \int_{\mathsf{X}} \int_{\mathsf{X}} \int_{\Theta} p(y_{T+1}|x_{T+1},\theta) p(x_{T+1}|x_{T},\theta) p(x_{T}|\theta,y_{1:T}) \mathbf{p}_{\boldsymbol{L},\boldsymbol{\varepsilon}}(\boldsymbol{\theta}|\boldsymbol{\eta}(y_{1:T})) d\theta dx_{T} dx_{T+1}.$
- \Rightarrow Gives higher predictive accuracy in the chosen s_i
- A comparator:
- Using the auxiliary model predictive directly in a generalized Bayesian update
 → Focused Bayesian Prediction (FBP) [Loaiza-Maya et al. (2021)]

9. Numerical Illustration

- Loss-based ABF
- Assumed DGP: Stochastic volatility (SV) model (an SSM)
- True DGP1: same as assumed DGP \Rightarrow Correct model specification
- True DGP2: SV + asymmetry \Rightarrow Model misspecification
- Auxiliary models: ARCH(1), GARCH(1,1)
- FBP
- Assumed DGP: same auxiliary model used for comparable loss-based ABF
- True DGPs same as above
- \Rightarrow Always misspecified
- Scoring rule s_i
- Log score (LS), Censored log score (CLS), Continuously ranked probability score (CRPS), Interval Score (IS)
- Exact predictive: accessed via Hybrid Gibbs-MH MCMC algorithm

10. Empirical Illustration

CRPS

-0.5331

-0.5616

-0.5427

-0.6082

-0.6509

-0.6025

-0.5304

CRPS

-0.5340

-0.5380

-0.5464

-0.5888

-0.6357

-0.5979

-0.5304

-0.5319

-0.5309

CLS90

-0.2975

-0.3037

-0.3084

-0.2822

-0.2777

-0.2998

-0.3057

-0.3003

CLS90

-0.2954

-0.3212

-0.3749

-0.2657

-0.2644

-0.2973

-0.2943

-0.3003

IS

-4.6333

-4.5813

-4.7791

-10.5000

-12.7820

-4.7405

-4.7357

IS

-4.6822

-4.8663

-5.2801

-8.9718

-11.5340

-4.7954

-4.7357

-4.3179

-4.2895

• Forecast daily returns on the S&P500 index

Panel A: Loss-based ABF

Average out-of-sample score

CLS80

-0.4900

-0.5122

-0.5062

-0.4675

-0.4715

-0.4881

-0.5333

-0.4882

Panel B: FBP

Average out-of-sample score

CLS80

-0.4840

-0.5094

-0.5606

-0.4491

-0.4579

-0.4839

-0.5106

-0.4882

• Assumed DGP: SV model with $\alpha-$ stable transition \Rightarrow **truly intractable**

11. Results (based on GARCH(1,1) auxiliary model) and Conclusions

Table 1: Predictive accuracy of loss-based ABF & FBP: Correct model specification of the SSM

Table 2: Predictive accuracy of loss-based ABF & FBP: Misspecification of the SSM

CLS20

-0.6173

-0.6327

-0.6202

-1.2925

-1.4896

-0.6214

-0.6648

-0.6199

CLS20

-0.6312

-0.6243

-0.6201

-1.3493

-1.7430

-0.6378

-0.6765

-0.6199

_				: Loss-base out-of-samp			
Scoring rule	LS	CLS10	CLS20	CLS80	CLS90	CRPS	IS
ABC-LS ABC-CLS10 ABC-CLS20 ABC-CLS80 ABC-CLS90 ABC-CRPS ABC-IS	-0.8189 -0.8244 -0.8193 -0.8192 -0.8237 -0.8188 -0.8188	-0.2956 -0.2956 -0.2956 -0.2957 -0.2986 -0.2955 -0.2955	-0.4842 -0.4857 -0.4841 -0.4840 -0.4875 -0.4841 -0.4840	-0.4875 -0.4907 -0.4880 -0.4879 -0.4885 -0.4874 -0.4876	-0.2985 -0.3016 -0.2990 -0.2988 -0.2993 -0.2983 -0.2986	-0.3211 -0.3216 -0.3211 -0.3211 -0.3216 -0.3211 -0.3211	-3.0575 -3.0946 -3.0595 -3.0595 -3.0932 -3.0551 -3.0559
Exact	-0.8191	-0.2957	-0.4842	-0.4876	-0.2986	-0.3211	-3.0594

	Panel B: FBP Average out-of-sample score								
	LS	CLS10	CLS20	CLS80	CLS90	CRPS	IS		
Scoring rule									
FBP-LS	-0.8557	-0.3119	-0.5020	-0.5009	-0.3111	-0.3238	-3.1525		
FBP-CLS10	-0.8989	-0.3046	-0.4934	-0.5425	-0.3380	-0.3363	-3.2309		
FBP-CLS20	-0.8838	-0.3054	-0.4941	-0.5287	-0.3274	-0.3322	-3.1963		
FBP-CLS80	-0.8862	-0.3273	-0.5315	-0.4959	-0.3061	-0.3328	-3.2051		
FBP-CLS90	-0.9154	-0.3470	-0.5579	-0.4958	-0.3051	-0.3408	-3.2699		
FBP-CRPS	-0.8616	-0.3165	-0.5057	-0.5055	-0.3162	-0.3228	-3.1930		
FBP-IS	-0.8551	-0.3099	-0.5011	-0.4997	-0.3094	-0.3242	-3.1434		
	FBP-CLS20 FBP-CLS80 FBP-CLS90 FBP-CRPS	FBP-LS -0.8557 FBP-CLS10 -0.8989 FBP-CLS20 -0.8838 FBP-CLS80 -0.8862 FBP-CLS90 -0.9154 FBP-CRPS -0.8616	FBP-LS -0.8557 -0.3119 FBP-CLS10 -0.8989 -0.3046 FBP-CLS20 -0.8838 -0.3054 FBP-CLS80 -0.8862 -0.3273 FBP-CLS90 -0.9154 -0.3470 FBP-CRPS -0.8616 -0.3165	AverageLS CLS10 CLS20Scoring ruleFBP-LS-0.8557-0.3119-0.5020FBP-CLS10-0.8989-0.3046-0.4934FBP-CLS20-0.8838-0.3054-0.4941FBP-CLS80-0.8862-0.3273-0.5315FBP-CLS90-0.9154-0.3470-0.5579FBP-CRPS-0.8616-0.3165-0.5057	LS CLS10 CLS20 CLS80	LS	Average out-of-sample scoreLSCLS10CLS20CLS80CLS90CRPSScoring ruleFBP-LS-0.8557-0.3119-0.5020-0.5009-0.3111-0.3238FBP-CLS10-0.8989-0.3046-0.4934-0.5425-0.3380-0.3363FBP-CLS20-0.8838-0.3054-0.4941-0.5287-0.3274-0.3322FBP-CLS80-0.8862-0.3273-0.5315-0.4959-0.3061-0.3328FBP-CLS90-0.9154-0.3470-0.5579-0.4958-0.3051-0.3408FBP-CRPS-0.8616-0.3165-0.5057-0.5055-0.3162-0.3228		

-0.4842

-0.2957

-0.8191

Table 3: Predictive accuracy of loss-based ABF & FBP: Empirical Illustration

-0.4876

-0.2986

-0.3211

-3.0594

	Panel A: Loss-based ABF Average out-of-sample score						
	LS	CLS10	CLS20	CLS80	CLS90		
Scoring rule							
ABC-LS	3.3967	0.0268	0.2923	0.5170	0.1523		
ABC-CLS10	3.4058	0.0391	0.3048	0.5122	0.1500		
ABC-CLS20	3.4053	0.0383	0.3041	0.5126	0.1502		
ABC-CLS80	3.3772	0.0052	0.2713	0.5192	0.1547		
ABC-CLS90	3.3849	0.0134	0.2790	0.5191	0.1540		

	Panel B: FBP Average out-of-sample score						
Scoring rule	LS	CLS10	CLS20	CLS80	CLS90		
FBP-LS	3.3467	-0.0262	0.2406	0.4801	0.1473		
FBP-CLS10	3.1051	0.0463	0.3096	0.1903	-0.1119		
FBP-CLS20	3.1788	0.0417	0.3085	0.2645	-0.0430		
FBP-CLS80	3.3293	-0.0515	0.2155	0.4860	0.1531		
FBP-CLS90	3.1941	-0.1204	0.1042	0.4820	0.1543		

• Positively-oriented scores \Rightarrow large (in bold) is good

LS

-1.3427

-1.4117

-1.3737

-2.0917

-2.4259

-1.4882

-1.3343

LS

-1.3471

-1.3669

-1.4076

-2.0718

-2.5938

-1.3485

-1.4521

-1.3343

-1.3371

Scoring rule

ABC-LS

ABC-CLS10

ABC-CLS20

ABC-CLS80

ABC-CLS90

ABC-CRPS

Scoring rule

FBP-LS

FBP-CLS10

FBP-CLS20

FBP-CLS80

FBP-CLS90

FBP-CRPS

FBP-IS

Exact

ABC-IS

Exact

CLS10

-0.3586

-0.3572

-0.8118

-0.8961

-0.3629

-0.3657

-0.3618

CLS10

-0.3694

-0.3593

-0.3601

-0.9227

-1.1223

-0.3786

-0.3734

-0.3618

-0.3553

- Correct model specification (Table 1):
- Panel A: focusing reaps no benefit
- Loss-based ABF \equiv misspecified exact Bayes
- Panel B: 'coherent' predictions are in evidence
- Loss-based ABF > FBP
- Model misspecification (Table 2):
- Looking for bold values on the diagonal ⇒ 'coherent' predictions in evidence
 Loss-based ABF > misspecified exact Bayes
- Comparison: Dominance of loss-based ABF over FBP is **not uniform**
- Empirical illustration (Table 3):
 - Conclusions are a bit mixed
 But overall, loss-based ABF is more accurate than FBP
- Often markedly so