ONNX quantization representation formats

Alex DIGONNET - 05/07/2025

Introduction

Why do we want to quantize our models at Airbus?

- → Improving inference speed.
- → Reducing energy consumption.
- → Facilitating the deployment of multiple tasks.

Context & Presentation Objectives

1) Quantization Basics: Parameters & Approaches

1. Mapping Parameters

- Quantization maps FP32 values to INT8/UINT8.
- This requires two key parameters per tensor:
 - scale: The step size between quantized values (FP32).
 - o **zero-point:** The INT8/UINT8 value corresponding to FP32 zero.
- ONNX Needs: A way to calculate and carry/store these scale and zero-point values

Fig 1: Quantization ONNX operators

2. Calculation Approaches: Dynamic vs. Static

- Static Quantization
 - scale/zero-point calculated offline.
 - Requires a "calibration dataset" to determine typical value ranges (min/max).
 - Parameters are fixed and stored within the ONNX model.
 - o Pros: Faster inference (parameters pre-computed); predictable bounds.
 - Cons: Needs representative calibration data; accuracy depends on calibration quality.

• Dynamic Quantization

- scale/zero-point calculated on-the-fly during inference.
- Based on runtime min/max values (often for activations only).
- Pros: No calibration data needed; potentially more accurate if value ranges vary significantly.
- Cons: Higher inference cost; unpredictable parameter bounds.

2) Quantized Conv Operators

Can't carry INT8 parameters

Convlnteger w (64×1×3×3) x_zero_point = 0

Performs INT8 matrix multiply-add operations exclusively.

Handles mixed-precision models: e.g. external bias computation

QLinearConv

x_scale = 0.05000000... x_zero_point = 5 w \langle 64×1×3×3 \rangle w_scale = 0.01999999... w_zero_point = 0 y_scale = 0.10000000... y_zero_point = 10

Fully compatible with integer models.

Performs matrix multiply-add operations (INT8) and bias computation (INT32).

3) ONNX Formats: QDQ (Quantize/Dequantize)

Tensor-oriented (QDQ) mechanism:

- Generic format that inserts pairs of QuantizeLinear (Q) / DequantizeLinear (DQ) nodes around original FP32 operators.
- Simulates quantization/dequantization processes within the graph.
- Evaluates functional precision losses.

Why QDQ is Common:

- Compatibility: Supported across many frameworks (PyTorch, OpenVino, ONNX).
- **Decoupling:** Separate quantization representation (Q/DQ) from core quantization computations (original ops).

Limitation:

- Implicit: Exact quantization process isn't explicitly defined by nodes.
- **Execution:** An Execution Provider (e.g., OpenVINO) is needed to interpret this format for running the model in INT8. Not efficient for inference.

Fig 2: QDQ format

3) ONNX Formats: QOps (Operator-Oriented)

Qops Mechanism:

- Explicitly defines the quantization process with operators.
- Uses dedicated low-precision operators (e.g. QLinearConv, ConvInteger).
- Format available when using ONNX quantizer.

Advantages:

- Explicit Representation: Direct representation and clearly defines a quantization process
- Native Integer ops: Operators carry and directly handle low-precision data/parameters.

Limitations:

- Limited compatibility: Direct integer execution is not possible.
- Graph transformation: Requires specific tools to convert models QDQ into QOps format.
- Operator Coverage: Not all ONNX operators have corresponding QOps version defined or implemented.

Fig 3: Qoperators format

3) Qops-Based Quantization Structure: ConvInteger

Fig 4: ConvInteger-based representation

Advantages

- Custom Quantization Flow: Full control over the quantization process (scales, zero-points, and mathematical logic).
- Mixed precision compatible: Enables bias computation in floating-point precision.
- Flexible: Works directly on int8/uint8 tensors with external scale management.

Limitations

 More Complex Graph: Less readable in terms of end-to-end quantization compared to QLinearConv.

Additional Information

 ConvInteger was introduced for dynamic quantization in ONNX, but it seems that there are no constraints on using it in static mode.

3) Qops-Based Quantization Structure: QLinearConv

Fig 5 : QLinearConv-based representation

Advantages

- **Simplified Graph:** Fully encapsulates quantization logic (scale/zero-point) within a single operator.
- Fully-integer models : Easier to interpret.

Limitations

- Less Customization Flexibility: Offers a fixed quantization flow.
- Integer-Only Bias: Bias must be computed from quantized inputs/weights and must be int32.

3) QDQ to QOps conversion

Minimize transformations between the model graph and its implementation.

4) OpenVino Compatibility: QDQ Models & Optimization

Model Preparation: ONNX to OpenVINO IR

Convert the Quantize-Deguantize (QDQ) ONNX model to OpenVINO Intermediate Representation (IR) format (.xml and .bin files).

Fig 8: LPT transformation QDQ to "Qops" format

Low Precision Transformations (LPT)

- Goal: To transform the model graph into an optimized low-precision representation (typically INT8/UINT8).
- Mechanism: LPT is a component within OpenVINO that analyzes the model before inference.

How does LPT Interprets QDQ Models at Runtime?

- QDQ Pattern Recognition: LPT specifically looks for the "fake quantization" patterns introduced by QuantizeLinear / DequantizeLinear (QDQ) node pairs in the model graph.
- Output: LPT applies transformation rules to operators surrounded by QDQ patterns, converting these graph sections into actual low-precision operators (e.g. INT8 Convolution) for efficient execution by the OpenVINO runtime.

Considered Workflow

