Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

Luis Damiano^{†1}, Joaquim Teixeira², Margaret Johnson², Jarad Niemi¹

¹Department of Statistics, Iowa State University ²NASA Jet Propulsion Laboratory

> SIAM Conference on Uncertainty Quantification April 13th, 2022

Funded, in part, by

- ISU Presidential Interdisciplinary Research Initiative on C-CHANGE: Science for a Changing Agriculture
- Foundation for Food and Agriculture Research Grant ID: CA18-SS-0000000278

[†]Idamiano@iastate edu

Overview & motivation

Functional input $X(t): \mathcal{T} o \mathbb{R}$

■ Can we connect the functional input structure to a physical mechanism?

- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP? [2]

- Can we connect the functional input structure to a physical mechanism?
- Can we incorporate the functional input structure into the GP? [2]
- Can we circumvent input dimension reduction?

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$		Mechanism
--------	---	------------------------------	--	-----------

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$Index \\ t \in \mathcal{T}$	$\begin{array}{l} Index \; subspaces \\ t \in \mathcal{T}_u \end{array}$	Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$\begin{matrix} Index \\ t \in \mathcal{T} \end{matrix}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption

Output	$egin{aligned} Input \ X(t): \mathcal{T} & ightarrow \mathbb{R} \end{aligned}$	$\begin{matrix} Index \\ t \in \mathcal{T} \end{matrix}$	$\begin{array}{l} Index \; subspaces \\ t \in \mathcal{T}_u \end{array}$	Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion

Output	$egin{aligned} Input \ X(t): \mathcal{T} ightarrow \mathbb{R} \end{aligned}$	$\begin{array}{l} Index \\ t \in \mathcal{T} \end{array}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion
Radiance	Chemical species	Elevation	Atmospheric layers	Reflectivity

$Input \ X(t): \mathcal{T} o \mathbb{R}$	$Index\\ t\in\mathcal{T}$		Mechanism
Phosphorus	Depth	Soil layers	Root biomass
Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Elevation	Distance	Up/down slope	Water erosion
Chemical species	Elevation	Atmospheric layers	Reflectivity
	$X(t): \mathcal{T} \to \mathbb{R}$ Phosphorus Precipitation Elevation	$X(t): \mathcal{T} \to \mathbb{R}$ $t \in \mathcal{T}$ Phosphorus Depth Precipitation Time Elevation Distance	$X(t): \mathcal{T} \to \mathbb{R}$ $t \in \mathcal{T}$ $t \in \mathcal{T}_u$ Phosphorus Depth Soil layers Precipitation Time Cycles, seasons Elevation Distance Up/down slope

Index subspaces can provide a meaningful representation of the physical process

Output	$egin{aligned} Input \ X(t): \mathcal{T} & ightarrow \mathbb{R} \end{aligned}$	$\begin{array}{l} Index \\ t \in \mathcal{T} \end{array}$		Mechanism
Plant growth	Phosphorus	Depth	Soil layers	Root biomass
	Precipitation	Time	Cycles, seasons	Germination photosynthesis nutrient absorption
Soil erosion	Elevation	Distance	Up/down slope	Water erosion
Radiance	Chemical species	Elevation	Atmospheric layers	Reflectivity

Index subspaces can provide a meaningful representation of the physical process

Can we establish an explicit link $X(t) \xrightarrow{f} y$ for UQ?

Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

From relevance to dynamic relevance

Some inputs matter more than others x_1 vs x_2

Screening

(exploration

& diagnostics)

Permutation

Feature

Importance [1]

Model tuning (learning)

Automatic Relevance

Determination [2]

^[1] [11, 12, 13, 14, 15, 16] ^[2] [17, 18]

Some inputs matter more than others x_1 vs x_2

Some index subspaces \rightarrow matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration & diagnostics)

Permutation Feature Importance [1]

Model tuning (learning)

Automatic Relevance Determination [2]

^[1] [11, 12, 13, 14, 15, 16] ^[2] [17, 18]

Some inputs matter more than others x_1 vs x_2

Some index subspaces \rightarrow matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration & diagnostics)

Permutation Feature Importance $^{[1]}$

Permutation
→ Feature

Dynamic Importance [3]

Model tuning (learning)

Automatic Relevance Determination [2]

^[1] [11, 12, 13, 14, 15, 16] ^[2] [17, 18] ^[3] Forthcoming paper

Some index subspaces \rightarrow matter more than others $X(t_1)$ vs $X(t_2)$

Screening (exploration & diagnostics)

Permutation Feature Importance [1] Permutation

→ Feature

Dynamic Importance [3]

Model tuning (learning)

Automatic Relevance Determination [2]

Automatic

Dynamic Relevance

Determination

 $^{^{[1]}\ [11,\ 12,\ 13,\ 14,\ 15,\ 16] \}quad ^{[2]}\ [17,\ 18] \quad ^{[3]}\ \text{Forthcoming paper}$

Model tuning (learning)

Automatic Relevance Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_K^{-2} > 0$$

Model tuning (learning)

Automatic Relevance Determination

 \longrightarrow

Automatic

Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2}\,>\,0$$

Model tuning (learning)

Automatic Relevance Determination → Automatic

→ Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{\left(x_{i,k} - x_{j,k}\right)^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

Weights (relevance)

$$\ell_1^{-2},\cdots,\ell_{\mathit{K}}^{-2} > 0$$

Model tuning (learning)

Automatic Relevance Determination Automatic

→ Dynamic Relevance

Determination

Distance $d(X_i, X_j)$

$$\sum_{k=1}^{K} \frac{(x_{i,k} - x_{j,k})^2}{\ell_k^2}$$

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\ell_1^{-2}, \cdots, \ell_K^{-2} > 0$$

$$\omega(t) : \mathcal{T} \to \mathbb{R}^+$$

■ The input is most relevant at τ (relevance peak)

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t = 0 to the peak

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t=0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t = 0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1
- lacktriangleright To predict the output, look for input profiles that are similar everywhere but especially near au

- The input is most relevant at τ (relevance peak)
- Relevance increases at a $\lambda_1 = \lambda \kappa^{-1}$ rate from t = 0 to the peak
- Relevance decreases at a $\lambda_2 = \lambda \kappa$ rate from the peak to t=1
- To predict the output, look for input profiles that are similar everywhere but especially near τ circumvent input dimension reduction

$$\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I}\right) \tag{1}$$
$$f_{ij} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$$

$$(\mathbf{R}_f)_{ij} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$$

$$\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \ \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I}\right)$$

$$(\mathbf{R}_f)_{ij} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

(4)

(1)

(2)

(3)

$$\sigma_{\varepsilon}^{2} > 0$$
, $\sigma_{f}^{2} > 0$, $\phi > 0$, $i, j = 1, ..., N$

$$y \sim \mathcal{N}\left(0, \sigma_f^2 R_f + \sigma_\varepsilon^2 I\right)$$

$$(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$$
(2)

$$(\mathbf{R}_f)_{ij} = \exp\left\{-0.5\phi \quad u_f(\mathbf{X}_i, \mathbf{X}_j)\right\}$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\} \tag{4}$$

(3)

$$\mathbf{y} \sim \mathcal{N}\left(0, \sigma_f^2 \mathbf{R}_f + \sigma_\varepsilon^2 \mathbf{I}\right)$$

$$(\mathbf{R}_f)_{ij} = \exp\left\{-0.5\phi^{-2} \ d_f(X_i, X_j)\right\}$$

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\}$$

Weak priors $\phi \sim \text{InvGamma}(\cdot, \cdot)$, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$

(1)

(2)

(3)

(4)

$$y \sim \mathcal{N}\left(0, \sigma_f^2 R_f + \sigma_\varepsilon^2 I\right)$$

$$(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$$
(2)

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$
 (3)

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\} \tag{4}$$

Weak priors $\phi \sim \text{InvGamma}(\cdot, \cdot)$, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim N^+(\cdot, \cdot)$, $\log(\kappa) \sim N(\cdot, \cdot)$ Multiple inputs e.g., correlation product

$$y \sim \mathcal{N}\left(0, \sigma_f^2 R_f + \sigma_\varepsilon^2 I\right)$$

$$(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$$
(1)

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$
 (3)

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\} \tag{4}$$

Weak priors $\phi \sim \text{InvGamma}(\cdot, \cdot)$, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$ Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

Functional Input Gaussian Process (fiGP)

$$y \sim \mathcal{N}\left(0, \sigma_f^2 R_f + \sigma_\varepsilon^2 I\right)$$

$$(R_f)_{ii} = \exp\left\{-0.5\phi^{-2} d_f(X_i, X_i)\right\}$$
(2)

$$d_f(X_i, X_j) = \int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt$$

$$\omega(t) = \exp\{-(t - \tau) \lambda \epsilon^s \epsilon\}$$
(4)

$$\omega(t) = \exp\left\{-(t-\tau)\lambda\kappa^{s}s\right\} \tag{4}$$

Weak priors $\phi \sim \text{InvGamma}(\cdot, \cdot)$, $\tau \sim \text{Beta}(\cdot, \cdot)$, $\lambda \sim \text{N}^+(\cdot, \cdot)$, $\log(\kappa) \sim \text{N}(\cdot, \cdot)$ Multiple inputs e.g., correlation product

Complex index spaces e.g., spatio-temporal spectral structures AKA tesseract

Flexibility no need to match input-output structure nor index space

 $[\]sigma_{\varepsilon}^{2} > 0$, $\sigma_{f}^{2} > 0$, $\phi > 0$, i, j = 1, ..., N

NASA's Microwave Limb Sounder

Data structure

Credit: NASA Aura

Implementation

- 8 training, 8 test complementary sets
- 1,000 soundings each
- One model fit separately per input-output pair
- Fully Bayesian inference
- Hamiltonian Monte Carlo using Stan
- 1 long chain
- Extensive search for an initial value
- 500 post-warmup iterations
- 1,500 posterior samples

Weight function posterior samples

fiGP vs a vector-input GP

- + High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - ightharpoonup Scales up for applications with higher input resolution $\uparrow K$

- + High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \blacktriangleright Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - ► Tangible for prior elicitation
 - ► Interpretation → insight?
 - Smooths out erratic relevance patterns

- High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - \triangleright Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - Tangible for prior elicitation
 - Interpretation \rightarrow insight?
 - Smooths out erratic relevance patterns
- Similar predictive power as vector-input GP in the case study [1]

- + High dimensional inputs with no dimension reduction
 - ► Reduce unknowns 3 << K
 - ightharpoonup Scales up for applications with higher input resolution $\uparrow K$
- + Explicit link between output correlation and input functional structure
 - Can incorporate domain-specific knowledge
 - ► Tangible for prior elicitation
 - ▶ Interpretation → insight?
 - Smooths out erratic relevance patterns
- + Similar predictive power as vector-input GP in the case study $^{[1]}$
- ++ Extensible to complex index spaces, e.g., spatio-temporal spectral inputs $^{[2]}$

Acknowledgments

The MLS team at JPL, California Institute of Technology

Thank you!

References and extra slides on the back

▶ mail Idamiano@iastate.edu

• repo https://github.com/luisdamiano/SIAMUQ22

Automatic Dynamic Relevance Determination for Gaussian process regressions with functional inputs

Appendix

References L

- Thomas Muehlenstaedt, Jana Fruth, and Olivier Roustant. Computer experiments with functional inputs and scalar outputs by a norm-based approach. Statistics and Computing, 27(4):1083-1097, July 2017.
- [2] Simon Nanty, Céline Helbert, Amandine Marrel, Nadia Pérot, and Clémentine Prieur. Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs. SIAM/ASA Journal on Uncertainty Quantification, 4(1):636–659, January 2016.
- [3] Bo Wang, Tao Chen, and Aiping Xu. Gaussian process regression with functional covariates and multivariate response. Chemometrics and Intelligent Laboratory Systems, 163:1-6, April 2017.
- Matthias H. Y. Tan and Guilin Li-[4] Gaussian Process Modeling Using the Principle of Superposition. Technometrics, 61(2):202-218, April 2019.
- [5] Bo Wang and Aiping Xu. Gaussian process methods for nonparametric functional regression with mixed predictors. Computational Statistics & Data Analysis, 131:80-90, March 2019.
- José Betancourt, François Bachoc, Thierry Klein, Déborah Idier, Rodrigo Pedreros, and Jérémy Rohmer, [6] Gaussian process metamodeling of functional-input code for coastal flood hazard assessment. Reliability Engineering & System Safety, 198:106870, June 2020.
- José Daniel Betancourt, François Bachoc, and Thierry Klein. Gaussian process regression for scalar and functional inputs with funGp - the in-depth tour. April 2020.

References II

 Zhaohui Li and Matthias Hwai Yong Tan.
 A Gaussian Process Emulator Based Approach for Bayesian Calibration of a Functional Input. <u>Technometrics</u>, pages 1–13, October 2021.

Max D. Morris.
 Gaussian surrogates for computer models with time-varying inputs and outputs.
 Technometrics, 54(1):42–50, February 2012.

[10] Gulzina Kuttubekova. Emulator for water erosion prediction project computer model using gaussian processes with functional inputs. Creative Components, January 2019.

[11] Leo Breiman.

Random forests.

Machine Learning, 45(1):5-32, 2001.

- [12] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25, December 2007.
- [13] Carolin Strobl, Anne-Laure Boulesteix, Thomas Kneib, Thomas Augustin, and Achim Zeileis. Conditional variable importance for random forests. BMC Bioinformatics, 9(1):307, December 2008.
- [14] Kristin K Nicodemus, James D Malley, Carolin Strobl, and Andreas Ziegler. The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics, 11(1):110, December 2010.

References III

- [15] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously. Journal of machine learning research: JMLR, 20:177, 2019.
- Giles Hooker, Lucas Mentch, and Sivu Zhou. Unrestricted permutation forces extrapolation: Variable importance requires at least one more model, or there is no free variable importance. arXiv:1905.03151 [cs, stat], October 2021.
- Radford M. Neal. Bayesian Learning for Neural Networks, volume 118 of Lecture Notes in Statistics. Springer New York, New York, NY, 1996.
- Juho Piironen and Aki Vehtari. Projection predictive model selection for gaussian processes. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pages 1-6, September 2016.

Trapezoidal approximation

$$\int_{\mathcal{T}} \omega(t) (X_i(t) - X_j(t))^2 dt \approx \sum_{k=2}^{K} (t_k - t_{k-1}) \frac{\Delta_{i,j,k} + \Delta_{i,j,k-1}}{2}$$
 (5)

$$\Delta_{i,j,k} = \omega(t_{k-1})(x_{i,k} - x_{j,k})^2$$
 (6)

Out-of-sample prediction

	H2O	HNO3	N2O	О3	Temp	Mean		H2O	HNO3	N2O	О3	Temp	Mean
SE	.34	.48	.44	.32	.25	.37	SE	273	614	585	138	-7	323
ARD	.31	.47	.43	.30	.25	.35	ARD	196	619	581	92	-13	295
FPCA	.67	.91	.99	.46	.54	.71	FPCA	1024	1320	1406	637	802	1038
FFPCA	.46	.54	.46	.38	.33	.44	FFPCA	535	646	630	295	268	475
E_{DN}	.33	.47	.44	.29	.25	.36	E_{DN}	261	623	585	90	4	312
SDE	.31	.47	.44	.29	.25	.35	SDE	202	623	585	85	4	300
ADE	.31	.47	.43	.29	.25	.35	ADE	202	610	581	87	2	297
Mean	.39	.55	.52	.33	.31	.42	Mean	385	722	708	204	152	434

Mean validation statistics: RMSE (left) and negative posterior predictive log-density (right). Smaller values are better. Bold: best in column. EDN $\tau=0, \kappa=1$; SDE $\tau=0$; ADE τ, κ, λ all free; ARD as many free parameters as measurements per vertical profile.