高知工科大学 経済・マネジメント学群

計量経済学応用

6. 差分の差分法

た内 勇生

yanai.yuki@kochi-tech.ac.jp

このトピックの目標

- パネルデータの構造を理解する
- パネルデータを利用した因果推論の方法を理解する
 - ▶ 差分の差分 (DID) 法の仕組みを理解する
 - ▶ DID を利用した回帰分析の実行法を理解する

パネルデータとは?

データの種類

クロスセクションデータ

- クロスセクションデータ (cross-sectional data)
 - ▶異なる個体について、同時点の観測値を集めたデータ
- 例:
 - ▶ 2019年の都道府県別経済指標
 - ▶ 2015年の国別GDP
 - ▶個人を対象に、1つのアンケート調査で集めたデータ

クロスセクションデータの例

時系列データ

- 時系列データ (time-series data)
 - ▶ 同じ個体について、異なる時点で観測した値を集めた データ
- 例:
 - ▶ 1990年から2020年までの、高知県の人口・県内総生産の推移
 - ▶ ある企業の、四半期ごとの売り上げの推移

時系列データの例

パネルデータ

- パネルデータ
 - ▶複数の個体について、時系列の観測値を集めたデータ
 - ▶ 観測される個体は、時点によらず同じ
- 例:
 - ▶ G7の1990年から2015年までの毎年のGDPデータ
 - ▶ 1960年以降の都道府県別の人口の推移データ

パネルデータの例 (long)

パネルデータの例2 (wide)

- dplyr::pivot_longer() で縦長に変換して分析する
- •自分でデータを作るなら、最初から long で作る(tidy data が使いやすい)

10

使いにくい long data の例

prefecture	year	variable_name	value
北海道	1990	Υ	
北海道	1990	D	
• •	• •	• •	
北海道	1990	X100	
北海道	1991	Υ	すべての
• •	• •	• • •	変数の値
北海道	1991	X100	
北海道	1992	Υ	が1列に
• •	• •	• •	
北海道	2020	X100	
• •	•		
沖縄	2020	X100	

差分の差分法

Difference-in-Differences (DID, DD, dif-in-dif)

どんな場面で使うのか?

- ある施策・政策の効果を確かめたい
- RQ「特定の施策には効果があったのか?」
- 調査・観察データで確かめたい
 - ▶ 注:政府・自治体が「社会実験」と称して行う実験の多くはRCTではないので、因果推論における「実験」とはみなせない
- 処置を受ける個体(企業、自治体など)と受けない個体がランダムに 決まっていない
 - ▶ 国や自治体などが観測単位の場合、処置群と統制群が異質
 - 交絡をすべて統制することができない
- ★ どうやって因果効果を推定するか?

例:観光振興政策の効果

- ・施策(処置):県内の宿泊施設に滞在した県外からの観 光客に、おみやげを無料で配布する
- 結果: 県外から来た宿泊者数
- ・調べたい因果効果:おみやげが県外からの宿泊者数に与 える影響
 - ▶ A県:おみやげの配布あり
 - ▶ B県:おみやげの配布なし

单純比較(1):個体間比較

	宿泊者数 (千人)		
県	施策実施後		
A	280		
В	200		
差	80		

- ・単純比較による因果推論:おみやげが宿泊者数を8万人増やした
- 問題:A県とB県は、処置「おみやげ配布」以外が同質ではない
 - ▶ A県のほうが元々観光客が多いだけでは?

单純比較(2):前後比較

- ・単純比較による因果推論:おみやげが宿泊者数を4万人減らした
- 問題:施策実施前のA県と実施後のA県は同質ではない
 - ▶時間による変化が統制されていない:何もしなくても、観光客は減ったのでは?

個体間比較と前後比較の併用

	宿泊者数	(千人)	
県	施策実施前	施策実施後	差 (後 - 前)
A	320	280	-40
В	290	200	-90
差	30	80	50

- 差の差による因果推論:おみやげが宿泊者数を5万人増やした
 - ▶ 個体間比較:過大推定(Aの観光客は元々多い)
 - ▶前後比較:過小推定(何もしないと観光客は減る)

差分の差分 (DID)

- 差分の差分 (difference[s]-in-differences; DID, DD) を利用する
- Y: 結果(宿泊者数)
 - δ_{DD} : 差分の差分による因果効果

$$\delta_{DD} = (Y_{A,after} - Y_{B,after}) - (Y_{A,before} - Y_{B,before})$$

$$= (280 - 200) - (320 - 290)$$

$$= 80 - 30$$

$$= 50$$

$$\delta_{DD} = (Y_{A,after} - Y_{A,before}) - (Y_{B,after} - Y_{B,before})$$

$$= (280 - 320) - (200 - 290)$$

$$= -40 - (-90)$$

$$= 50$$

差分の差分法による因果効果の推定

・灰色の点線は、処置前のAの結果の値を通り、Bの線と 平行な線

平行トレンドの仮定

- 差分の差分法で因果推論を行うためには、平行トレンド (parallel trend) の仮定が必要
 - ▶「もし処置がなかったら、処置された個体の結果 (あるいは 処置群の結果の平均) と統制された個体の結果 (あるいは統制群の結果 の平均) は平行な時間的変化を示す」という仮定
 - ▶ 前のスライドの図で、「平行な点線」を引いたのは、この仮定による
- ・この仮定が誤っていれば、DID による因果推論にはバイア スが生じる

平行トレンドがありそうな例

- 処置前を長期にわたって観察し、平行トレンドといえそうかどうか確かめる
 - ▶ 実際には、完全に平行になることは期待できない
 - ▶「平行でない」ことは確認しやすいが、「平行である」ことを「証明」することはできない
 - ▶ あくまで「仮定」であることを忘れずに

平行トレンドがなさそうな例

• 処置前のトレンドがまったく異なる個体は、統制群(比較群)として不適

異なる「ショック」を受けていないか?

- ・処置後に、AとBで異なる状況が発生すると、比較ができない
 - ▶ 例:処置直後(処置後の結果を測る時点まで)に、
 - A県では、万国博覧会(万博)が開催された
 - B県では、大規模イベントは開催されなかった
 - ▶ 宿泊者数を増やしたのが、処置なのか、万博(処置ではない外生的ショック:第2の「処置」)なのか区別できない

共通ショックなら問題ない

- ・処置後に、AとBが同じ外生的ショックを受けたとき、そのショックから受ける影響が同じとみなせるなら比較可能
 - ▶ 例:処置直後(処置後の結果を測る時点まで)に、新型 コロナウィルスの影響で緊急事態宣言が発令され、県を またぐ移動が制限された
 - A県:宣言の対象
 - B県:宣言の対象
 - ▶ どちらも同じショックを受けていると考えられれば、比 較可能

差分の差分 (DID) 法とは

- •「個体間の差」と「時点間の差」の両者を使って因果効果 を推定する
 - ▶ 「時点間の差」と「時点間の差」の個体間(群間)の差
 - ▶「個体間(群間)の差」と「個体間(群間)の差」の時点では、
- 平行トレンドの仮定が必要
 - ▶ 処置後に、結果に影響を与える外生的ショックが、処置 群と統制群のうちどちらか一方にだけ起こっていないか 確認することも必要

25

DIDのメリット

- 適用できる範囲が広い
 - ▶ 処置群と統制群の両者を含むパネルデータがあれば良い
- 処置群と統制群は異質でもかまわない
 - ▶ 「他の条件が等しく (ceteris paribus)」なくても良い
 - ▶ ただし、平行トレンドの仮定が必要
- 処置群全体の処置効果が推定できる
 - ▶ Topic 8 で扱う、RDD に対する利点

DIDのデメリット

- パネルデータが必要
 - ▶処置群と統制群の両者について、長期間の観測値が必要
- 平行トレンドの仮定を満たすと思われる例を見つけるのが困難
 - ▶ 異質な個体は異なるトレンドを示すことが多い
 - ▶ 平行トレンドに「見える」ことはあっても、本当に平 行かどうかはわからない(仮定に過ぎない)

27

DID を用いた回帰分析

DID 回帰

• Y_{kt} : 結果変数

▶ k: 処置が適用される物理的な単位(例: 国、自治体、企業、人)

▶ *t*:時間

 D_k : 個体 k が処置群に属することを示すダミー変数

 P_t :時間 t が処置後 (post-treatment) であることを示すダミー変数

• 回帰式:

$$Y_{kt} = \alpha + \beta D_k + \gamma P_t + \delta(D_k \times P_t) + e_{kt}$$

• δ : DID によって推定される処置効果

データの準備:観光振興の例

prefecture	year	Y	D	P	D * P
A	2019	320	1	0	0
A	2020	280	1	1	1
В	2019	290	0	0	0
В	2020	200	0	1	0

30

回帰分析による処置効果の推定

回帰式:
$$Y_{kt} = \alpha + \beta D_k + \gamma P_t + \delta(D_k \times P_t) + e_{kt}$$

•
$$\mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 1] = \alpha + \beta + \gamma + \delta$$
 (1)

•
$$\mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 0] = \alpha + \beta$$
 (2)

•
$$\mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 1] = \alpha + \gamma$$
 (3)

•
$$\mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 0] = \alpha$$
 (4)

• (1) - (2) :

$$\mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 0] = \gamma + \delta \tag{5}$$

• (3) - (4) :

$$\mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 0] = \gamma$$
 (6)

回帰分析による処置効果の推定(続)

•
$$\mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 0] = \gamma + \delta$$
 (5)

•
$$\mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 0] = \gamma$$
 (6)

• (5) - (6) :

$$\delta = \left(\mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 1, P_t = 0] \right)$$
$$-\left(\mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 1] - \mathbb{E}[Y_{kt} \mid D_k = 0, P_t = 0] \right)$$

回帰式:
$$Y_{kt} = \alpha + \beta D_k + \gamma P_t + \delta(D_k \times P_t) + e_{kt}$$

 \bigstar δ (D と P の交差項の係数) が差の差を推定する

((1) - (3)) - ((2) - (4)) としても同じ

より大きなパネルデータの分析

- 差分の差分法が利用できるのは、2個体、2期間のパネルデータだけではない
 - ▶個体数は多くても良い
 - ▶期間は長くても良い
- 処置は二値でなくても良い

法定飲酒年齢が死者数に与える影響

- Angrist and Pischke (2015) 第5章の例
- RQ「法定飲酒年齢 (minimum legal drinking age; MLDA) の引き下げは、18歳から20歳の人たちの死亡率を上げたか?」
 - ▶ Du Mouchel et al (1987); Norberg et al. (2009) も参照

アメリカ合衆国のMLDA

- 州ごとに異なる
 - ▶ 50州 + ワシントン D.C.
- MLDA: 18歳、19歳、20歳、21歳
- 確認したい効果の例
 - ▶ MLDA を21歳から18歳に引き下げたことにより、 18-20歳の死亡率が上がるかどうか

2個体、2期間比較と異なる点

- 処置のパタンが1つではない
 - ▶例えば
 - 21 -> 18:3歳引き下げ
 - 21 -> 20:1歳引き下げ
 - 18 -> 21:3歳引き**上げ**
- 処置のタイミングが州によって異なる

対処法:処置を表す変数を作る

- 処置を表す変数 (LEGAL) を作る
- LEGAL: $18歳から20歳までの人口のうち、合法的に飲酒できる人の割合 (<math>0 \le LEGAL \le 1$)
 - ▶ MLDAが18:全員飲酒可能なので、LEGAL = 1
 - ▶ MLDAが21:全員飲酒不可なので、LEGAL = 0
 - 年の途中で変更があった場合には、細かく調整
- MLDA の引き下げは、LEGAL の値を大きくする

37

DID回帰

- $s = \{1,2,...,51\}$: 州 (s = 51 はD.C.)
- $t = \{1970, 1972, ..., 1983\}$:年
- Y_{st} : t年のs州での18-20歳の死者数(10万人あたり)
- •STATE $_{ks}$: k = s のときに1になる変数(D.C. を除く50個の州ダミー)
- •YEAR $_{it}$: j = t のときに1になる変数(1970年を除く13個の年だみー)
- LEGAL_{st}
- 回帰式: $Y_{st} = \alpha + \delta \cdot \text{LEGAL}_{st} + \sum_{k=1}^{50} \beta_k \text{STATE}_{ks} + \sum_{j=1971}^{1983} \gamma_j \text{YEAR}_{jt} + e_{st}$
 - ▶ 1970年の D.C. を参照カテゴリにする

Angrist and Pischke (2015: p.196, Table 5.2)

DID回帰の標準誤差

- 2期間より長いパネルデータを分析する場合:
- ・結果変数は、それぞれの個体(例:国、自治体、企業、個人)内で強 い相関をもつ
 - ▶ 1つひとつの観測値が独立に得られたとみなせない:標本サイズを割り引いて考える必要がある
 - ▶ A県の今年の観光者数は、A県の昨年の観光者数と強い相関、A県の昨年の観光者数はA県の一昨年の・・・
- 通常の標準誤差 (lm()の結果として得られるもの) は小さ過ぎる:誤って統計的に有意だと判断する機会が増えてしまう
- ★ 観測個体ごとにクラスタ化した標準誤差 (cluster-robust standard error) を利用する
 - ▶ 詳細は、Bertrand et al. (2004), Pustejovsky & Tripton (2018) を参照

まとめ: 差分の差分 (DID) 法

- 差分の差分によって因果効果を推定する方法
 - ▶「個体(群)間の差分」と「個体(群)間の差分」の前後の差分
 - ▶「前後の差分」と「前後の差分」の個体(群)間の差分
- パネルデータ(時系列のクロスセクション)が必要
 - ▶ 平行トレンドの仮定
 - ▶ 処置群と統制群で異なる外的ショック(他の「処置」)が不在

41

- •回帰分析によって推定する
 - ▶ クラスタ化した標準誤差で推定の不確実性を測る

次回とその次の予告

Topic 7. 分析計画の発表

Topic 8. RDD