Pattern Recognition and Machine Learning (11482) Final Report

Using Machine Learning to Predict Diabetes Terence Lam (u3206488) Uyen Nguyen(u3206201)

Project and Problem Summary

- Diabetes is a common disease in nowadays society
- As in 2019, Approximately 1.5 million people die to diabetes (WHO 2021)
- Objective: use machine learning to diagnose and predict existing or potential diabetes disease on a patient

Dataset

- Pima Indians Diabetes Database
- From the National Institute of Diabetes and Kidney Digestive
- 786 instances
- 9 attributes (features): pregnancies, glucose, blood pressure, skin thickness, insulin, BMI, diabetes pedigree function, age, and outcome (label 0, 1)
- Clean up the dataset

Figure 1: Diabetes by the numbers (WriterMarch 10 et al., n.d.)

Methodology

- 1. Input the dataset
- 2. Pre-processing
- 3. EDA
- 4. Scale the dataset
- 5. Experiment the training dataset with models
- 6. Evaluate the score with evaluation strategies

Evaluation Strategies:

- Accuracy
- ROC curve AUC
- F1-score
- 7. Compare and analyse the results

Figure 2: Methodology and procedure of the project

Pre-processing

Exploratory Data Analysis

The modification process:

Relationship interpretation:

- Depending on the values distribution of each variables:

The person who has high level of BMI,
Glucose, Skinthickness can get diabetic.

- Replace "0" values with mean in Glucose, Blood Pressure, Skin Thickness, BMI.
- Replace "0" values with median as for Insulin.
- Cut down the variable named Diabetes Pedigree Functions

- Getting rid of the outliners

Figure 4

Figure 5

Processing the Dataset

- Standard Scale the dataset to standardize the variables
- Processing the data with 80% training and 20% testing

Models implementation and Hyperparameters tuning

Classification report

Accuracy

Precision

Recall

F1-score

AUC

Logistic Regression	C=10		
K-Nearest-Neighbor	{'metric': 'euclidean', 'n_neighbors': 25}		
Support Vector Machine	{'C': 100, 'gamma': 0.001, 'kernel 'rbf'}		

Figure 6

Model	Accuracy	F1-score	AUC-score
Logistic Regression	0.7237	0.72	0.84
KNN	0.7960	0.80	0.79
SVM	0.7829	0.78	0.82
Tuning LR	0.7649	0.80	0.7397
Tuning KNN	0.7549	0.75	0.6857
Tuning SVM	0.7516	0.80	0.7447

Contribution and future works

Contributions

- People can improve their health by applying their variables statistic on the predictive models
- Helpful in future research in the medical field

Future works

- Lack of time and experience
- Experiment on other learning models and evaluation strategies
- Try different variations of learning models and evaluation strategies used in this project e.g. time-dependent ROC curve, amalgam KNN
- Experiment on different datasets

Thank you for listening!

Teamwork Contributions

Uyen: Data processing and model learning.

Terence: Data cleaning and formatting.

The whole team: Powerpoint and report preparation.

Reference

https://www.healthcentral.com/condition/diabetes

https://towardsdatascience.com/how-and-why-to-standardize-your-data-996926c2c832