

4 频率域滤波

主要内容

- 频率域变换概述
 - ✓ 为什么要在频率域研究图像
- 傅里叶变换
 - ✓ 数学基础
 - ✓ 傅里叶级数
 - ✓ 傅里叶变换
- · Matlab中的傅里叶变换函数
 - ✓ fft2
 - ✓ fftshift
 - ✓ ifft2

主要内容

- 从空间滤波器获得频率域滤波器
 - ✓ 对空间滤波器进行傅里叶变换
 - ✓ 将空间域滤波器直接转为频域滤波器
- 频率域低通滤波器
 - ✓ 理想低通滤波器
 - ✓ 巴特沃思低通滤波器
 - ✓ 高斯低通滤波器
- 频率域高通滤波器
 - ✓ 理想高通滤波器
 - ✓ 巴特沃思高通滤波器
 - ✔ 高斯高通滤波器

- 直接在频率域构造滤波器,这些滤波器都被规定为到滤波器中心点的距离函数。
 - ✓ meshgrid函数

$$\checkmark$$
 (1) $u = -W/2:(W/2-1);$

$$\checkmark$$
 (2) $v = -H/2:(H/2-1);$ $-5 \begin{vmatrix} -4 \end{vmatrix} - 3 \begin{vmatrix} -2 \end{vmatrix} - 1$

$$\checkmark$$
 (3) [V, U] = meshgrid(v,u);

-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4
-5	-4	-3	-2	-1	0	1	2	3	4

-5	-5	-5	-5	-5	-5	-5	-5	-5	-5
-4	-4	-4	-4	-4	-4	-4	-4	-4	-4
-3	ფ	3	-3	-3	ფ	<u>ფ</u>	-3	-3	-3
-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4	4

✓ (4) D=sqrt(U.^2+V.^2); %D=hypot(U,V);快速计算

	7.071	6.403	5.831	5.385	5.099	5	5.099	5.385	5.831	6.403
	6.403	5.657	5	4.472	4.123	4	4.123	4.472	5	5.657
	5.831	5	4.243	3.606	3.162	3	3.162	3.606	4.243	5
	5.385	4.472	3.606	2.828	2.236	2	2.236	2.828	3.606	4.472
_	5.099	4.123	3.162	2.236	1.414	1	1.414	2.236	3.162	4.123
D	5	4	3	2	1	0	1	2	3	4
	5.099	4.123	3.162	2.236	1.414	1	1.414	2.236	3.162	4.123
	5.385	4.472	3.606	2.828	2.236	2	2.236	2.828	3.606	4.472
	5.831	5	4.243	3.606	3.162	3	3.162	3.606	4.243	5
	6.403	5.657	5	4.472	4.123	4	4.123	4.472	5	5.657

· 截断傅里叶变换中的所有处于指定距离 D_0 之外的高频成分。

$$H_{ILPF}(u,v) = \begin{cases} 1 & D(u,v) \le D_0 \\ 0 & D(u,v) > D_0 \end{cases}, D_0 > 0$$

频率域的中心在 $(\frac{P}{2},\frac{Q}{2})$,从点(u,v)到中心(原点)的距离如下

$$D(u,v) = \left[(u - \frac{P}{2})^2 + (v - \frac{Q}{2})^2 \right]^{\frac{1}{2}}$$

说明:在半径为D₀的圆内,所有频率没有衰减地通过滤波器,而在此半径的圆之外的所有频率完全被衰减掉。

· 图像的总功率值P_T为:

$$P_T = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} P(u,v)$$

$$P(u,v) = |F(u,v)|^2 = R^2(u,v) + I^2(u,v)$$

• 原点在频率域的中心,半径为 D_0 的圆包含的功率为:

$$\alpha = \left[\sum_{u} \sum_{v} P(u,v) / P_{T}\right]$$

圆环,占图像总功率的百分比为半径为5,15,30,80和230个像素时92.0%,94.6%,96.4%,98.0%和99.5%

500×500像素的原图

图像的傅里叶频谱

原图

a a a a a a a a

半径是5的理想低通滤波, 滤除8%的总功率, 模糊 说明多数尖锐细节在8% 的功率之内这

半径是15的理想低通滤波,滤除5.4%的总功率

...a ...a

半径是30的理想低通滤波,滤除3.6%的总功率

半径是80的理想低通滤波,滤除2%的总功率

半径是230的理想低通滤波,滤除0.5%的总功率, 与原图接近说明边缘信息在0.5%以上的功率中

结论: 半径D₀越小, 模糊越大; 半径D₀越大, 模糊越小


```
I1 = imread('mean.jpg');
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5:
K=double(D<=D0); % 构建滤波器, 小于D0距离的置为1, 其他为0
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.5.2 巴特沃思低通滤波器

· n阶巴特沃思低通滤波器(BLPF)定义如下

$$H_{BLPF}(u,v) = \frac{1}{1 + [D(u,v)/D_0]^{2n}}$$

- ✓ D_0 为截至频率距原点的距离,D(u,v)是点(u,v)距原点的距离。当D(u,v)= D_0 时,H(u,v)=0.5(最大值是1,当D(u,v)=0)
- ✓ 它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小。

4.5.2 巴特沃思低通滤波器

可用于平滑处理,如图像由于量化不足产生虚假轮廓时,常可用低通滤波进行平滑以改进图像质量。通常,BLPF的平滑效果好于ILPF。

4.5.2巴特沃思低通滤波器

原图

...a |||||||| |aaaaaaa 半径是5的BLPF滤波

半径是15的BLPF滤波

半径是30的BLPF滤波

半径是80的BLPF滤波

半径是230的BLPF滤波

所有的滤波器都有半径为5的截至频率D₀

二阶BLPF处于有效低通滤波和可接受的振铃特征之间

4.5.2 巴特沃思低通滤波器


```
I1 = imread('mean.jpg');
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5; n=2;
K=1./(1+(D./D0).^(2*n)); % 构建滤波器
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.5.3 高斯低通滤波器

· 二维高斯低通滤波器(GLPF)定义如下

$$H(u,v) = e^{-D^2(u,v)/2D_0^2}$$

✓ D当D(u,v)= D_0 时,滤波器下降到它最大值的 0.607处。

4.5.3 高斯低通滤波器

4.5.3 高斯低通滤波器

原图

半径是5的GLPF滤波

半径是15的GLPF滤波

半径是30的GLPF滤波

半径是80的GLPF滤波

半径是230的GLPF滤波

I1 = imread('mean.jpg');


```
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5:
K=exp(-(D.^2)./(2*D0.^2)); % 构建滤波器
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.6 频率域高通滤波器

- 图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的。频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱,再经逆傅立叶变换得到边缘锐化的图像。
 - ✓ 理想高通滤波器
 - ✓ 巴特沃思高通滤波器
 - ✓ 高斯高通滤波器

4.6 频率域高通滤波器

4.6.1 理想高通滤波器

· 截断傅里叶变换中所有处于指定距离 D_0 之内的低频成分

$$H_{IHPF}(u,v) = \begin{cases} 0 & D(u,v) \le D_0 \\ 1 & D(u,v) > D_0 \end{cases}, D_0 > 0$$

✓ 频率域的中心在 $(\frac{P}{2},\frac{Q}{2})$, 从点(u,v)到中心(原点)的距离如下

$$D(u,v) = \left[(u - \frac{P}{2})^2 + (v - \frac{Q}{2})^2 \right]^{\frac{1}{2}}$$

1.0 1.0 D(

4.6.1 理想高通滤波器

$$D_0 = 30$$

$$D_0 = 60$$

$$D_0 = 160$$


```
I1 = imread('mean.jpg');
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5:
K=double(D>D0); % 构建滤波器, 小于等于D0距离的置为0, 其他为1
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.6.2 巴特沃思高通滤波器

· n阶巴特沃思高通滤波器(BHPF)定义如下

$$H_{BHPF}(u,v) = \frac{1}{1 + [D_0/D(u,v)]^{2n}}$$

$$H_{BHPF}(u,v) = 1 - H_{BLPF}(u,v) = 1 - \frac{1}{1 + \left[D(u,v)/D_0\right]^{2n}}$$

$$= \left[\frac{D(u,v)/D_0}{1+D(u,v)/D_0} \right]^{2n} = \frac{1}{1+\left[D_0/D(u,v) \right]^{2n}}$$

4.6.2 巴特沃思高通滤波器

$$D_0 = 30$$

$$D_0 = 160$$

4.6.2 巴特沃思高通滤波器


```
I1 = imread('mean.jpg');
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5; n=2;
K=1./(1+(D0./D).^(2*n)); % 构建滤波器
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.6.3 高斯高通滤波器

• 截频距原点为 D_0 的高斯高通滤波器(GHPF)定义为

$$H_{GHPF}(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

4.6.3 高斯高通滤波器

$$D_0 = 30$$

$$D_0 = 160$$

I1 = imread('mean.jpg');


```
I1 = rgb2gray(I1);I1 = im2double(I1);
[W, H] = size(I1); %图像的尺寸
u = -W/2:(W/2-1); %构建u: 1*W
v = -H/2:(H/2-1); %构建v: 1*H
[V, U] = meshgrid(v,u); %构建网格数组, U中每行相同, V中每列相同
D=sqrt(U.^2+V.^2); %计算离中心位置的距离, D=hypot(U,V);快速计算方法
D0=5:
K=1-exp(-(D.^2)./(2*D0.^2)); % 构建滤波器
J=fftshift(fft2(I1)); %原图傅里叶变换
L=J.*K; % 频率域滤波
I=ifft2(fftshift(L)); %傅里叶反变换
figure(1);
subplot(1,2,1);imshow(I1);title('原图像');
subplot(1,2,2);imshow(I);title('频率域滤波效果');
```

4.6.3 高斯高通滤波器

• 截频距原点为 D_0 的高斯高通滤波器(GHPF)定义为

$$H_{GHPF}(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$$

