Guideline for Macroscopic Structural Characterization and Model Identification

1. Introduction: Generative Models for Complex Networks

Understanding how a network is formed is essential for interpreting its global structure. Here we consider four candidate generative models:

1.1. Erdős-Rényi (ER) Model

In the ER model, every pair of the (N) nodes is connected with a fixed probability (p). Thus, each possible edge exists independently with probability (p).

• Mathematical Notation:

The expected degree is given by

[\langle k \rangle = p (N-1),] and the degree distribution is binomial, which for large (N) and small (p) approximates a Poisson distribution: [$P(k) \cdot \frac{k}{n} e^{-k} e^{-k}$

• Expected Characteristics:

- Narrow (homogeneous) degree distribution
- Low clustering coefficient
- Neutral assortativity (approximately zero)

1.2. Watts-Strogatz (WS) Model

The WS model starts with a regular lattice where each node is connected to (k) nearest neighbors. Then, each edge is rewired with probability (\beta) (with an intermediate value often chosen) to a randomly selected node.

• Mathematical Notation:

Although there is no single closed-form expression, the procedure is as follows:

- 1. Create a ring lattice where every node is connected to its (k) nearest neighbors.
- 2. For each edge, rewire it with probability (\beta).

• Expected Characteristics:

- **High clustering coefficient:** Because many local connections are preserved.
- **Short average path length:** Due to the creation of shortcuts by rewiring.
- **Narrow degree distribution:** Since most nodes keep approximately (k) links, with only slight variations from rewiring.

1.3. Barabási–Albert (BA) Model

The BA model is based on preferential attachment, where the network grows by adding nodes one at a time. Each new node connects to (m) existing nodes with probability proportional to their degree.

• Mathematical Notation:

The probability that a new node connects to node (i) is

[$\P(k_i) = \frac{j} k_j$.] This results in a power-law degree distribution: [$\P(k) \le k^{-1}$.]

• Expected Characteristics:

- Power-law degree distribution: A few hubs with very high degree and many nodes with low degree.
- **Moderate clustering coefficient:** Typically lower than WS but higher than a random graph.
- **Negative assortativity:** Hubs tend to connect to low-degree nodes.

1.4. Configuration Model (CM)

The configuration model creates a network by first specifying a degree sequence ({k_i}) (often chosen to follow a power-law) and then randomly connecting nodes while preserving these degrees.

• Mathematical Notation:

If the degree distribution follows a power law, [$P(k) \times k^{-\gamma}$,] and in our case, if ($\gamma < 2.5$), the tail is heavier than in the BA model.

• Expected Characteristics:

- Very heavy-tailed degree distribution: More extreme heterogeneity with the potential for super-hubs.
- Low clustering coefficient: As edges are randomly assigned subject only to the degree sequence.
- Potential disassortativity: Similar to BA, if high-degree nodes preferentially connect with lowdegree ones.

2. How Each Macroscopic Metric Affects Model Identification

2.1. Number of Nodes ((N)) and Edges ((E))

• Impact:

These values determine the network's overall size and its density, given by $[\rho = \frac{2E}{N(N-1)}.]$

• Model Implications:

- **ER Model:** Density is directly controlled by (p).
- **WS Model:** Starts with a regular structure (high density locally) but becomes sparse as shortcuts are introduced.
- **BA and CM:** Often yield sparse networks even with heavy-tailed degree distributions.

2.2. Degree Metrics (Minimum, Maximum, and Average Degree)

• Impact:

The range of degrees highlights heterogeneity:

- Average degree: Overall connectivity level.
- Maximum degree vs. Average degree: Indicates presence of hubs.

• Model Implications:

- **ER and WS Models:** Expect a narrow spread (low variance).
- **BA Model:** High maximum degree relative to the average, due to hubs, with a power-law tail where (\gamma \approx 3).
- **CM:** An even heavier tail (if (\gamma < 2.5)), leading to more pronounced hubs.

2.3. Clustering Coefficient

• Impact:

The clustering coefficient measures the tendency of neighbors of a node to be connected.

• Model Implications:

- **ER Model:** Typically low, as edges are formed randomly.
- **WS Model:** High clustering due to the initial lattice structure.
- BA and CM: Moderate to low clustering; the BA model usually exhibits lower clustering than WS.

2.4. Assortativity

• Impact:

Measures the correlation between the degrees of connected nodes.

• Model Implications:

- ER and WS Models: Assortativity is near zero (no strong preference).
- BA Model: Often displays negative assortativity because hubs connect to many low-degree nodes.
- **CM:** May also show negative assortativity if the imposed degree sequence leads to hub-and-spoke structures.

2.5. Average Path Length and Diameter

• Impact:

These metrics reflect the efficiency of connectivity across the network.

• Model Implications:

- **ER Model:** Short average path length and low diameter (small-world property).
- WS Model: Short average path lengths due to shortcuts, despite high clustering.
- **BA and CM:** Typically exhibit the small-world property; hubs in BA can greatly reduce path lengths.

2.6. Degree Distribution

• Impact:

The degree distribution reveals how connectivity is distributed among nodes.

Model Implications:

- ER Model: Narrow, bell-shaped (Poisson) distribution.
- WS Model: Also narrow with little variance.
- **BA Model:** Power-law distribution, linear on a log-log plot, with (\gamma \approx 3).
- **CM:** Power-law distribution with a heavy tail, especially if (\gamma < 2.5).

3. How to Evaluate the Model for a Given Network

Step-by-Step Evaluation

1. Collect Data:

For each network (net1, net2, net3, and net4), compute the following metrics:

Number of nodes (N) and edges (E)

- Degree metrics: minimum, maximum, and average degree
- Average clustering coefficient (C)
- Assortativity coefficient (r)
- Average path length and network diameter
- Degree distribution (plot using linear and log-log scales)

2. Compare with Theoretical Predictions:

• ER Model:

- **Expected:** Narrow degree distribution (Poisson-like), low clustering, neutral assortativity.
- **Inference:** If your network exhibits these features, it is likely an ER model.

WS Model:

- **Expected:** High clustering coefficient, short average path length, and a narrow degree distribution.
- **Inference:** A network with these traits, especially high local clustering, likely follows the WS model.

• BA Model:

- **Expected:** Power-law degree distribution (visible on a log-log plot) with an exponent (\gamma \approx 3), significant hubs, and slight disassortativity.
- **Inference:** If the degree distribution is heavy-tailed and hubs are evident, the network likely arises from a BA model.

• CM (Configuration Model):

- **Expected:** A power-law degree distribution with (\gamma < 2.5), indicating an even heavier tail and extreme heterogeneity.
- **Inference:** A network with these extreme properties is best described by a configuration model where the degree sequence is imposed.

3. Draw Conclusions:

- Document the values and visualizations for each metric.
- o Compare the observed behavior against the characteristics expected from each model.
- Select the model that best matches the observed macroscopic structure.

4. References

- Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press.
- Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of "small-world" networks. Nature, 393, 440–442.
- Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

• Costa, L. da F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2005). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

Summary

This guideline provides a structured approach to determine the generative model behind a network by:

1. Explaining Each Model:

- **ER:** (P(k) \approx \frac{(\langle k \rangle)^k e^{-\langle k \rangle}}{k!})
- **WS:** Built from a regular lattice with rewiring probability (\beta)
- **BA:** Preferential attachment with ($\langle Pi(k_i) = \frac{k_i}{\sum_j k_j} \rangle$) leading to ($P(k) \leq k^{-3}$)
- **CM:** Generates a network from a prescribed degree sequence, with (P(k) \sim k^{-\gamma}) (and if (\gamma < 2.5), then an extreme heavy tail)

2. Explaining How Each Metric Affects Model Identification:

• Size, degree metrics, clustering, assortativity, and path measures each have characteristic signatures for each model.

3. Summarizing the Evaluation Process:

- o Compute all metrics for each network.
- Compare the observed properties with theoretical expectations.
- o Decide which model (ER, WS, BA, or CM) best fits the network based on the collected data.

4. Providing References:

 Several key texts and articles are cited for further study and confirmation of the theoretical properties.