Weerstation met Arduino

C.G.N. van Veen

1 Weerstation

Inleiding Naast het meten aan kosmische straling met het HiSPARC meetstation kunnen leerlingen het HiSPARC station uitbreiden met een weerstation gemaakt met Arduino. Dit weerstation heeft als voordeel dat leerlingen dit zelf kunnen bouwen, aanpassen, programmeren, winden water dichtmaken in een box en plaatsen bij het station. Zo kunnen zij metingen van luchtdruk, buitentemperatuur en temperatuur van de detectorplaten meten en correleren met gemeten kosmische straling. Daarnaast kan het station uitgebreid worden met andere sensoren zoals UV-index, bliksem, regen- en windsensoren.

Benodigdheden Het weerstation kan met meer sensoren uitgerust worden dan hier genoemd. Het basis weerstation (luchtdruk, temperatuur en luchtvochtigheid) waar wij mee getest hebben heeft de volgende onderdelen nodig:

- Arduino Uno R3 (of elke andere Arduino)
- · USB kabel
- DTH22 (of DTH11) luchtvochtigheid
- BMP085 luchtdruksensor
- DS18B20 digitale temperatuursensor (2 of 4x)
- APC220 zendmodule
- · arduino software

Andere sensoren zoals een bliksemdetector (AS3935) zijn tot op heden niet getest, maar geven leerlingen een extra onderzoek mogelijkheid(namelijk de correlatie tussen bliksem en kosmische straling.)

Op de schets van een bellenvatfoto is te zien, dat bij de botsing van een aanstormend pion op een proton, een kaon en een labda ontstaan. Zie Figuur ??. Zowel het kaon als het labda zijn instabiel. Zoek met BINAS uit wat de identiteit is van deeltje x en van deeltje y.

WA - 1 Versie 1.0

Figuur 1.1 – Arduino Uno R3, basis voor weerstation

Versie 1.0 WA-2