STAB52: An Introduction to Probability

Joshua Concon

University of Toronto Scarborough – Summer 2017

Pre-reqs are MATA37, which is Calculus for Mathematical Sciences II. Instructor is Dr. Mahinda Samarakoon. I highly recommend sitting at the front since he likes to teach with the board and can have a bit of trouble projecting his voice in large lecture halls.

Contents

1	Lec	ture 1 - Wednesday, May 3, 2017	2
	1.1	What is probability?	2
	1.2	Relative Frequency Definition of Probability	2
	1.3	Formal Definition of Probability	2
2	2 Lecture 2 - Friday, May 5, 2017		5
		Formal Definition of Probability	5

1 Lecture 1 - Wednesday, May 3, 2017

1.1 What is probability?

He wanted us to think about what it really was. i.e. What does it mean for something to have a 50% probability? If a coin landing on heads has a 50% probability, it doesn't guarantee that such an event would occur if you flipped a coin twice.

After a few guesses, he gave us a definition.

1.2 Relative Frequency Definition of Probability

Definition: Relative Frequency

Consider the case where an experiment is performed n times.

Let |A| be the number of trials resulting in 'event' A.

The **Relative Frequency** of $A = \frac{|A|}{n} = \gamma_n$

This is the Probability of A when n is large γ_n by itself is not an accurate definition of the probability of A occurring, so we take the limit as n goes to infinity and then we have such:

$$\lim_{n\to\infty}\gamma_n$$

This definition is difficult to use in most cases but relatively easy to understand. So here is a definition that is easier to do calculations with:

1.3 Formal Definition of Probability

He doesn't actually get into the definition of probability this lecture, instead he goes through a few terms that we need to define before we get to this definition.

• Sample Space (S): the set of all possible outcomes in an experiment. Size of S is denoted by n(S) or #S

ex. Tossing a coin once: $S = \{H, T\}, n(S) = 2$

<u>ex.</u> Rolling a 6-sided die: $S = \{1, 2, 3, 4, 5, 6\}, n(S) = 6$

ex. Tossing 2 different coins: $S = \{HH, HT, TH, TT\}, n(S) = 4$

• Events: Subsets of a sample space

ex. Experiment rolling a die, $S = \{1, 2, 3, 4, 5, 6\}$

 $A = \{1, 2\}, A \subseteq S$, so A is an event of S.

 $B = \{5,7\}, B \nsubseteq S$, so B is not an event of S.

You can also describe events with words.

C= the result is an odd number $=\{1,3,5\}, C\subseteq S,$ so C is an event of S.

An event can be the entire sample space and the null set.

 $D = S \subseteq S$, so D is an event of S.

 $E = \emptyset \subseteq S$, so E is an event of S.

- Operations on Events (Unless specified, valid for all events A, B)
 - 1. Where $S = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2\}, B = \{2, 4, 5\}$ $A \cup B$: elements in A or B

 $\underline{\text{ex.}}\ A \cup B = \{1, 2, 4, 5\}$

2. Where $S = \{1, 2, 3, 4, 5, 6\}, A = \{1, 2\}, B = \{2, 4, 5\}$

 $A\cap B$: elements in A and B

 $\underline{\text{ex.}}\ A \cap B = \{2\}$

And for $C = \{5, 6\}$

 $A \cap C = \emptyset$

 $\underline{\text{Recall:}}$ So essentially all of the logic laws from CSCA67 hold for these sets as well.

i.e.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

3. $(A \cap B)^c = (A^c \cup B^c)$ (where A^c is the complement of A, which is the elements in S that is not in A)

 $\underline{\text{ex.}}$

Consider
$$A = \{1, 2\}$$
 and $S = \{1, 2, 3, 4, 5, 6\}$
 $A^c = S - A = \{3, 4, 5, 6\}$

- $4. \ (A \cup B)^c = (A^c \cap B^c)$
- 5. $A \cup \emptyset = A$
- 6. $A \cap \emptyset = \emptyset$
- Event Space: Is a set of all the possible events of S (i.e. All the possible subsets of the set S). Denoted P

ex. The Event Space of the set
$$\{1, 2, 3\}$$
 is $\{\{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}\}$

2 Lecture 2 - Friday, May 5, 2017

2.1 Formal Definition of Probability

Definition: Probability Measure Function

A function $P: S \longmapsto [0,1]$ defined on sample space S is called a **Probability Measure Function**. It satisfies the following:

- 1. $0 \ge P(A) \ge 1$
- 2. P(S) = 1 where S is a sample space
- 3. For disjoint events $A_1, ..., A_n$ (disjoint means where $A_i \cap A_k = \emptyset$ $\forall i, k \in \mathbb{N} \ 1 \geq i < k \geq n$)
- 4. $P(\emptyset) = 0$