Álgebra I Práctica 5 - Polinomios

1. Para los siguientes $z \in \mathbb{C}$, hallar $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, |z|, $\operatorname{Re}(z^{-1})$, $\operatorname{Im}(z^{-1})$, $\operatorname{Re}(-i \cdot z)$ e $\operatorname{Im}(i \cdot z)$.

i) z = (2+i)(1+3i).

v) $z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{179}$.

ii) $z = 5i(1+i)^4$.

iii) $z = (\sqrt{2} + \sqrt{3}i)^2 (\overline{1 - 3i}).$

vi) $z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{-1}$.

iv) $z = i^{17} + \frac{1}{2}i(1-i)^3$.

vii) $z = \overline{1 - 3i}^{-1}$.

2. Dados $z=1+3\,i$ y $w=4+2\,i$, representar en el plano complejo los siguientes números

i) z.

v) -z.

ix) \overline{z} .

xiii) |2z|.

ii) w.

vi) 2z.

x) $\overline{3z+2w}$.

xiv) |z+w|.

iii) z + w.

vii) $\frac{1}{2}w$.

xi) \overline{iz} .

xv) |z-w|.

iv) z - w.

viii) iz.

xii) |z|.

xvi) $|\overline{w-z}|$.

3. Calcular el grado y el coeficiente principal de $f \in \mathbb{Q}[X]$ en los casos

i) $f = (4X^6 - 2X^5 + 3X^2 - 2X + 7)^{77}$.

ii) $f = (-3X^7 + 5X^3 + X^2 - X + 5)^4 - (6X^4 + 2X^3 + X - 2)^7$.

iii) $f = (-3X^5 + X^4 - X + 5)^4 - 81X^{20} + 19X^{19}$.

4. Calcular el coeficiente de X^{20} de f en los casos

i) $f = (X^{18} + X^{16} + 1)(X^5 + X^4 + X^3 + X^2 + X + 1)$ en $\mathbb{Q}[X]$ y en $(\mathbb{Z}/2\mathbb{Z})[X]$.

ii) $f = (X - 3i)^{133}$ en $\mathbb{C}[X]$.

iii) $f = (X-1)^4(X+5)^{19} + X^{33} - 5X^{20} + 7$ en $\mathbb{Q}[X]$.

iv) $f = X^{10}(X^5 + 4)^7$ en $(\mathbb{Z}/5\mathbb{Z})[X]$.

5. Hallar, cuando existan, todos los $f \in \mathbb{C}[X]$ tales que

i) $f^2 = Xf + X + 1$.

iii) $(X+1)f^2 = X^3 + Xf$.

ii) $f^2 - Xf = -X^2 + 1$.

- iv) $f \neq 0$ v $f^3 = \operatorname{gr}(f) \cdot X^2 f$.
- 6. Hallar el cociente y el resto de la división de f por g en los casos

i) $f = 5X^4 + 2X^3 - X + 4$, $q = X^2 + 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

ii) $f = 8X^4 + 6X^3 - 2X^2 + 14X - 4$, $g = 2X^3 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

iii) $f = 4X^4 + X^3 - 4$, $g = 2X^2 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.

iv) $f = X^5 + X^3 + X + 1$, $g = 2X^2 + 1$ en $(\mathbb{Z}/3\mathbb{Z})[X]$.

v) $f = X^n - 1$, g = X - 1 en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$.

7. Determinar todos los $a \in \mathbb{C}$ tales que

i) $X^3 + 2X^2 + 2X + 1$ sea divisible por $X^2 + aX + 1$.

ii) $X^4 - aX^3 + 2X^2 + X + 1$ sea divisible por $X^2 + X + 1$.

iii) El resto de la división de $X^5 - 3X^3 - X^2 - 2X + 1$ por $X^2 + aX + 1$ sea -8X + 4.

1

- 8. Definición: Sea K un cuerpo y sea $h \in K[X]$ un polinomio no nulo. Dados $f, g \in K[X]$, se dice que f es congruente a g módulo h si $h \mid f g$. En tal caso se escribe $f \equiv g \pmod{h}$. Probar que
 - i) $\equiv \pmod{h}$ es una relación de equivalencia en K[X].
 - ii) Si $f_1 \equiv g_1 \pmod{h}$ y $f_2 \equiv g_2 \pmod{h}$ entonces $f_1 + f_2 \equiv g_1 + g_2 \pmod{h}$ y $f_1 \cdot f_2 \equiv g_1 \cdot g_2 \pmod{h}$.
 - iii) Si $f \equiv q \pmod{h}$ entonces $f^n \equiv q^n \pmod{h}$ para todo $n \in \mathbb{N}$.
 - iv) r es el resto de la división de f por h si y sólo si $f \equiv r \pmod{h}$ y r = 0 ó gr(r) < gr(h).
- 9. Hallar el resto de la división de f por h para
 - i) $f = X^{353} X 1$ y $h = X^{31} 2$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
 - ii) $f = X^{1000} + X^{40} + X^{20} + 1$, $h = X^6 + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$, $\mathbb{C}[X]$ y $(\mathbb{Z}/p\mathbb{Z})[X]$.
 - iii) $f = X^{200} 3X^{101} + 2$, $h = X^{100} X + 1$ en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- 10. Sea $n \in \mathbb{N}$, sea $a \in K$. Probar que en K[X] vale:
 - i) $X a | X^n a^n$.
 - ii) Si n es impar entonces $X + a \mid X^n + a^n$.
 - iii) Si n par entonces $X + a \mid X^n a^n$.

Calcular los cocientes en cada caso.

- 11. Calcular el máximo común divisor entre f y q y escribirlo como combinación lineal de f y q siendo
 - i) $f = X^5 + X^3 6X^2 + 2X + 2$, $g = X^4 X^3 X^2 + 1$.
 - ii) $f = X^6 + X^4 + X^2 + 1$, $q = X^3 + X$.
 - iii) $f = X^5 + X^4 X^3 + 2X 3$, $g = X^4 + 2X + 1$.
- 12. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 2X^2 X + 2$.
- 13. Sea $n \in \mathbb{N}$, $n \ge 3$. Hallar el resto de la división de $X^{2n} + 3X^{n+1} + 3X^n 5X^2 + 2X + 1$ por $X^3 X$.
- **14**. i) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 3 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
 - ii) Hallar todos los $f \in \mathbb{Q}[X]$ de grado 4 cuyas raíces complejas son exactamente 1, $-\frac{1}{2}$ y $\frac{3}{5}$.
- 15. Evaluación de polinomios. Sea $f = a_n x^n + \cdots + a_0 \in K[X]$. Queremos calcular la cantidad de sumas y productos necesarios para calcular $f(\alpha)$, $\alpha \in K$, por medio de los siguientes algoritmos:
 - i) Algoritmo ingenuo: Se calculan todos los α^k recursivamente, guardando todos los resultados, luego se multiplica cada uno por su coeficiente a_k y se suma. ¿Cuántas sumas y cuántos productos se utilizaron?
 - ii) Método de Horner (por el matemático inglés William George Horner, 1786-1837, aunque también era conocido por el matemático italiano Paolo Ruffini, 1765-1822, y mucho antes en realidad por el matemático chino Qin Jiushao, 1202-1261). Es el algoritmo que describe el mecanismo siguiente:

$$n = 2: \quad f(\alpha) = a_0 + \alpha(a_1 + \alpha a_2)$$

$$n = 3: \quad f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha a_3))$$

$$n = 4: \quad f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \alpha a_4)))$$

Y en general

$$f(\alpha) = a_0 + \alpha(a_1 + \alpha(a_2 + \alpha(a_3 + \dots + \alpha(a_{n-2} + \alpha(a_{n-1} + \alpha a_n)) \dots))).$$

¿Cuántas sumas y cuántos productos se utilizaron?

16. Resolver en C las ecuaciones cuadráticas

i)
$$X^2 - 2X + 10 = 0$$
.

iii)
$$X^2 + (1+2i)X + 2i = 0$$
.

ii)
$$X^2 = 3 + 4i$$
.

iv)
$$X^2 + (3+2i)X + 5 + i = 0$$
.

17. Resolver en $\mathbb Q$ las ecuaciones cuadráticas

i)
$$X^2 + 6X - 1 = 0$$
.

ii)
$$X^2 + X - 6 = 0$$
.

18. Resolver en $\mathbb{Z}/7\mathbb{Z}$ las ecuaciones cuadráticas

i)
$$X^2 + 6X + 1 = 0$$
.

ii)
$$X^2 + X + 6 = 0$$
.

19. i) Sean $f,g\in\mathbb{C}[X]$ y sea $a\in\mathbb{C}$. Probar que a es raíz de f y de g si y sólo si a es raíz de (f:g).

- ii) Hallar todas las raíces complejas de $X^4 + 3X 2$ sabiendo que tiene una raíz común con $X^4 + 3X^3 3X + 1$.
- 20. Determinar la multiplicidad de a como raíz de f en los casos

i)
$$f = X^5 - 2X^3 + X$$
, $a = 1$.

ii)
$$f = 4X^4 + 5X^2 - 7X + 2$$
, $a = \frac{1}{2}$.

iii)
$$f = X^6 - 3X^4 + 4$$
, $a = i$.

iv)
$$f = (X-2)^2(X^2-4) + (X-2)^3(X-1)$$
, $a = 2$.

v)
$$f = (X-2)^2(X^2-4) - 4(X-2)^3$$
, $a = 2$.

21. Sea $n \in \mathbb{N}$. Determinar todos los $a \in \mathbb{C}$ tales que $f = nX^{n+1} - (n+1)X^n + a$ tiene sólo raíces simples en \mathbb{C} .

22. Determinar todos los $a \in \mathbb{R}$ para los cuales $f = X^{2n+1} - (2n+1)X + a$ tiene al menos una raíz múltiple en \mathbb{C} .

23. i) Probar que para todo $a \in \mathbb{C}$, el polinomio $f = X^6 - 2X^5 + (1+a)X^4 - 2aX^3 + (1+a)X^2 - 2X + 1$ es divisible por $(X-1)^2$.

ii) Determinar todos los $a \in \mathbb{C}$ para los cuales f es divisible por $(X-1)^3$.

24. Determinar todos los $a \in \mathbb{C}$ tales que 1 sea raíz doble de $X^4 - aX^3 - 3X^2 + (2+3a)X - 2a$.

25. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} \frac{X^k}{k!}$ tiene todas sus raíces simples.

26. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^3 + 2X - 1$$
 y $f_{n+1} = Xf_n^2 + X^2f_n', \ \forall n \in \mathbb{N}.$

Probar que $gr(f_n) = 2^{n+1} - 1$ para todo $n \in \mathbb{N}$.

27. Sea $(f_n)_{n\in\mathbb{N}}$ la sucesión de polinomios definida por

$$f_1 = X^4 + 2X^2 + 1$$
 y $f_{n+1} = (X - i)(f_n + f'_n), \ \forall n \in \mathbb{N}.$

Probar que i es raíz doble de f_n para todo $n \in \mathbb{N}$.

28. i) Sea $f \in \mathbb{C}[X]$. Probar que $a \in \mathbb{C}$ es raíz de multiplicidad k de f si y sólo si es raíz de multiplicidad k-1 de (f:f').

ii) Sea $f \in \mathbb{Q}[X]$. Probar que si f es irreducible, entonces tiene todas sus raíces (en \mathbb{C}) simples.

29. Calcular los módulos y los argumentos de los siguientes números complejos

i)
$$3 + \sqrt{3}i$$
.

iii)
$$(-1-i)^{-1}$$
.

v)
$$(-1+\sqrt{3}i)^{-5}$$
.

ii)
$$(2+2i)(\sqrt{3}-i)$$
.

iv)
$$(-1 + \sqrt{3}i)^5$$
.

vi)
$$\frac{1+\sqrt{3}i}{1-i}$$
.

30. Graficar en el plano complejo

i)
$$\{z \in \mathbb{C} - \{0\} / |z| \ge 2 \text{ y } \frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3} \}.$$

ii)
$$\{z \in \mathbb{C} - \{0\} / \arg(-iz) > \frac{\pi}{4} \}.$$

iii)
$$\{z \in \mathbb{C} - \{0\} / |z| < 3 \text{ y } \arg(z^4) \le \pi\}.$$

31. i) Determinar la forma binomial de
$$\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$$
.

- ii) Determinar la forma binomial de $(-1 + \sqrt{3}i)^n$ para cada $n \in \mathbb{N}$.
- iii) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} i)^n = 2^{n-1}(-1 + \sqrt{3}i)$.

32. Factorizar en $\mathbb{C}[X]$ los polinomios

i)
$$X^6 - 8$$
.

iii)
$$X^7 - (-1 + i)$$

v)
$$X^6 - (2-2i)^{12}$$
.

ii)
$$X^4 + 3$$
.

iii)
$$X^7 - (-1+i)$$
.
iv) $X^{11} - 2i(\sqrt{2} - \sqrt{6}i)^{-1}$.
v) $X^6 - (2-2i)^{12}$.
vi) $X^{12} + X^6 + 1$.

vi)
$$X^{12} + X^6 + 1$$

33. Factorizar en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i)
$$X^3 - 1$$
.

i)
$$X^3 - 1$$
. ii) $X^4 - 1$. iv) $X^8 - 1$.

iii)
$$X^6 - 1$$
.

iv)
$$X^8 - 1$$

34. Factorizar en $\mathbb{R}[X]$ y $\mathbb{Q}[X]$ los polinomios

i)
$$X^6 - 8$$
.

ii)
$$X^4 + 3$$
.

iii)
$$X^{12} + X^6 + 1$$
.

35. Sea $n \in \mathbb{N}$. Probar que $\sum_{k=0}^{n} X^{k}$ tiene todas sus raíces complejas simples.

36. i) Hallar todas las raíces racionales de

(a)
$$2X^5 + 3X^4 + 2X^3 - X$$
.

(b)
$$X^5 - \frac{1}{2}X^4 - 2X^3 + \frac{1}{2}X^2 - \frac{7}{2}X - 3$$
.

(c)
$$3X^4 + 8X^3 + 6X^2 + 3X - 2$$
.

ii) Probar que $X^4 + 2X^3 - 3X^2 - 2$ no tiene raíces racionales.

i) Hallar todas las raíces complejas de $f = X^5 - 4X^4 - X^3 + 9X^2 - 6X + 1$ sabiendo que $2 - \sqrt{3}$ **37**. es raíz de f.

ii) Hallar $f \in \mathbb{Q}[X]$ mónico de grado mínimo que tenga a $1+2\sqrt{5}$ y a $3-\sqrt{2}$ como raíces.

iii) Sea $f \in \mathbb{Q}[X]$ un polinomio de grado 5. Probar que si $\sqrt{2}$ y $1 + \sqrt{3}$ son raíces de f entonces f tiene una raíz racional.

iv) Sea $f \in \mathbb{Q}[X]$ tal que $f(1+\sqrt{2})=3$, $f(2-\sqrt{3})=3$ y $f(1+\sqrt{5})=3$. Calcular el resto de la división de f por $(X^2-2X-1)(X^2-4X+1)(X^2-2X-4)$.

38. Factorizar los siguientes polinomios en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$

i)
$$X^4 - X^3 + X^2 - 3X - 6$$
.

ii)
$$X^4 - 6X^2 + 1$$
.

iii)
$$X^5 - X^3 + 17X^2 - 16X + 15$$
 sabiendo que $1 + 2i$ es raíz.

iv)
$$X^5 + 2X^4 + X^3 + X^2 - 1$$
 sabiendo que $-\frac{1}{2} + \frac{\sqrt{5}}{2}$ es raíz.

- v) $f = X^6 + X^5 + 5X^4 + 4X^3 + 8X^2 + 4X + 4$ sabiendo que $\sqrt{2}i$ es raíz múltiple de f.
- vi) $X^4 + 2X^3 + 3X^2 + 10X 10$ sabiendo que tiene una raíz imaginaria pura.
- **39**. Hallar todos los $a \in \mathbb{C}$ tales que $f = X^4 (a+4)X^3 + (4a+5)X^2 (5a+2)X + 2a$ tenga a a como raíz doble. Para cada valor de a hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.
- **40**. i) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
 - ii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.
 - iii) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$.
 - iv) Calcular $w^{14}+w^{-8}+\overline{w}^4+\overline{w^{-3}}$ para cada $w\in G_5.$
- **41**. Probar que $\prod_{\omega \in G_n} \omega = (-1)^{n-1}, \, \forall \, n \in \mathbb{N}$.
- **42**. Determinar las raíces n-ésimas primitivas de la unidad para n=2,3,4,5,6 y 12.
- 43. Probar que $w \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si y solo si \overline{w} lo es.
- 44. Sea w una raíz novena primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que $w^{5n} = w^3$.
- 45. Sea w una raíz quinceava primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que

i)
$$\sum_{i=0}^{n-1} w^{5i} = 0$$
. ii) $\sum_{i=2}^{n-1} w^{3i} = 0$.

- **46**. i) Calcular la suma de las raíces n-ésimas primitivas de la unidad para n = 2, 3, 4, 5, 8, 10, 15.
 - ii) Calcular la suma de las raíces p-ésimas primitivas de la unidad para p primo.
- 47. Sea w una raíz cúbica primitiva de la unidad y sea $(z_n)_{n\in\mathbb{N}}$ la sucesión de números complejos definida por

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}, \ \forall n \in \mathbb{N}.$

Probar que z_n es una raíz sexta primitiva de la unidad para todo $n\in\mathbb{N}$

48. Hallar todos los $a \in \mathbb{C}$ para los cuales al menos una de las raíces de

$$f = X^6 + X^5 - 3X^4 + 2X^3 + X^2 - 3X + a$$

sea una raíz sexta primitiva de la unidad.

Para cada valor de $a \in \mathbb{Q}$ hallado, factorizar f en $\mathbb{Q}[X]$, $\mathbb{R}[X]$ y $\mathbb{C}[X]$.