PROJECT ON VLSI

Design, layout of logic gates using electric tool and LT-Spice

First standard cell: 2-input NOR gate Schematic-

Fig 1: NOR Schematic

NOR gate sizing- For choosing the sizes, I have applied following signal and measured its rise and fall time.

VIN1 A 0 PULSE 0 'SUPPLY' 100PS 20PS 20PS 500PS 1000PS

VIN2 B 0 PULSE 0 'SUPPLY' 200PS 20PS 20PS 500PS 1000PS

And changed the sizes of p-MOS and n-MOS such that its rise and fall time becomes equal. The sizes of the n-MOS and p-MOS, for which rise and fall time are equal, I have chosen that size.

n-MOS=5

p-MOS=12

Fig2: NOR LAYOUT WITH DRC LOG

Fig3: NOR LAYOUT WITH LVS LOG

Propagation delay-

Table -1. Propagation delays from schematic

Load (C _L)	$t_{ m phl}$	t _{plh}	t _p
5 fF	2.77 x 10 ⁻¹¹	3.26 x 10 ⁻¹¹	3.018 x 10 ⁻¹¹
50 fF	1.99 x 10 ⁻¹⁰	2.44 x 10 ⁻¹⁰	2.219 x 10 ⁻¹⁰

Table -2. Propagation delays from layout

Load (C _L)	t _{phl}	t _{plh}	t_p
5 fF	3.033 x 10 ⁻¹¹	3.593 x 10 ⁻¹¹	3.313 x 10 ⁻¹¹
50 fF	2.025 x 10 ⁻¹⁰	2.472 x 10 ⁻¹⁰	2.249 x 10 ⁻¹⁰

Power consumption

Table -3. Power Consumption

	$C_L = 5 \text{ fF}$	$C_L = 50 \text{ fF}$
Schematic	-5.816uW	-41.72 uW
Layout	-6.5241 uW	-41.953 uW

Waveforms-

Input values used for generating waveforms-

VIN1 A 0 PULSE 0 'SUPPLY' 200PS 20PS 20PS 900PS 2000PS

VIN2 B 0 PULSE 0 'SUPPLY' 2200PS 20PS 20PS 900PS 2000PS

.TRANS 1PS 8000Ps

Fig 4: Waveform from schematic of input and output for 5fF

Fig 5: Waveform from schematic of input and output for 5fF

Fig 6: Waveform from Layout of input and output for 5fF

Fig 7: Waveform from Layout of input and output for 5fF

Second standard cell: 2-input NAND gate

Schematic-

Fig – 1. NAND Schematic

NAND gate sizing- For choosing the sizes, I have applied following signal and measured its rise and fall time.

VIN1 A 0 PULSE 0 'SUPPLY' 100PS 20PS 20PS 300PS 500PS

VIN2 B 0 PULSE 0 'SUPPLY' 640PS 20PS 20PS 200PS 500PS

And changed the sizes of p-MOS and n-MOS such that its rise and fall time becomes equal. The sizes of the n-MOS and p-MOS, for which rise and fall time are equal, I have chosen that size.

n-MOS=6

p-MOS=10

Layout with the DRC log

Fig - 2. NAND with DRC log

Layout with the LVS log

Fig - 3. NAND with LVS log

Propagation delay-

Table -1. Propagation delays from schematic

Load (C _L)	$t_{ m phl}$	t _{plh}	t _p
5 fF	3.39 x 10 ⁻¹¹	1.24 x 10 ⁻¹¹	2.31 x 10 ⁻¹¹
50 fF	2.94 x 10 ⁻¹⁰	6.18 x 10 ⁻¹¹	17.79 x 10 ⁻¹¹

Table -2. Propagation delays from layout

Load (C _L)	$t_{ m phl}$	t _{plh}	$t_{\rm p}$
5 fF	4.01 x 10 ⁻¹¹	1.26 x 10 ⁻¹¹	2.63 x 10 ⁻¹¹
50 fF	5.92 x 10 ⁻¹⁰	1.55 x 10 ⁻¹⁰	3.73 x 10 ⁻¹⁰

Power consumption

Table -3. Power Consumption

	$C_L = 5 \text{ fF}$	$C_L = 50 \text{ fF}$
Schematic	-5.88 uW	-40.73 uW
Layout	-6.03 uW	-40.82 uW

Waveforms-

Input values used for generating waveforms-

VIN1 A 0 PULSE 0 'SUPPLY' 100PS 20PS 20PS 300PS 500PS

VIN2 B 0 PULSE 0 'SUPPLY' 640PS 20PS 20PS 200PS 500PS

Fig – 4. Waveform from schematic with $C_L = 5 \ fF$

Fig – 5. Waveform from layout with $C_L = 5 \ fF$

Fig – 6. Waveform from schematic with $C_L = 50 \ fF$

Fig – 7. Waveform from layout with $C_L = 50 \ fF$