WHAT IS CLAIMED IS:

- 1 1. A variable voltage protection device comprising:
- 2 a ground plane;
- a layer of neat dielectric polymer or glass in contact with one
- 4 surface of the ground plane; and
- 5 at least one electrical conductor of an electronic device in
- 6 contact with said neat dielectric polymer or glass layer;
- 7 wherein the neat dielectric polymer or glass layer positioned between
- 8 and in contact with the ground plane and said electrical conductor
- 9 consists essentially of a layer of neat dielectric polymer or glass having
- 10 a thickness of less than about 1.6 mils.
 - 1 2. A device according to Claim 1 wherein the polymer layer is less
- 2 than about 0.8 mil.
- 1 3. A device according to Claim 1 wherein the polymer layer is less
- 2 than about 0.5 mil.
- 1 4. A device according to Claim 1 wherein the polymer layer is less
- than about 0.2 mil.
- 1 5. A variable voltage protection component for placement between
- 2 a ground plane and an electronic circuit comprising:
- 3 a layer of variable voltage material comprising a binder
- 4 containing conductive particles or semiconductive particles; and
- a layer of neat dielectric polymer or glass in contact with one
- 6 surface of said layer of variable voltage material;

- 7 wherein the neat dielectric polymer or glass layer is present in a
- 8 thickness of less than about 1.6 mils.
- 1 6. A component according to Claim 5 wherein the neat dielectric
- 2 polymer or glass layer is less than about 0.8 mil.
- 1 7. A component according to Claim 5 wherein the neat dielectric
- 2 polymer or glass layer is less than about 0.5 mil.
- 1 8. A component according to Claim 5 wherein the neat dielectric
- 2 polymer or glass layer is less than about 0.2 mil.
- 1 9. A component according to Claim 5 comprising a layer of neat
- 2 dielectric polymer or glass in contact with the second surface of the
- 3 layer of variable voltage material.
- 1 10. A component according to Claim 6 comprising a layer of neat
- 2 dielectric polymer or glass in contact with the second surface of the
- 3 layer of variable voltage material.
- 1 11. A variable voltage protection component for placement between
- 2 a ground plane and an electronic circuit comprising:
- a first layer of variable voltage protection material comprising a
- 4 binder having dispersed therein at least about 20% by volume of
- 5 conductive or semiconductive particles;
- a second layer of variable voltage protection material in contact
- 7 with the first layer comprising a binder having dispersed therein at least
- 8 40% by volume of conductive or semiconductive particles; and

- 9 a third layer of variable voltage protection material in contact
- with said second layer comprising a binder having dispersed therein at
- 11 least 20% by volume of conductive or semiconductive particles.
 - 1 12. A component according to Claim 11 wherein at least one of the
- 2 layers of variable voltage protection material comprises conductive
- 3 particles and semiconductive particles.
- 1 13. A component according to Claim 11 wherein the volume percent
- 2 in the three layers comprise at least about 30%, at least about 40%
- 3 and at least about 30% respectively.
- 1 14. A component according to Claim 12 wherein the volume percent
- 2 in the three layers comprise at least about 30%, at least about 40%
- 3 and at least about 30%, respectively.
- 1 15. The component according to Claim 11 wherein the volume
- 2 percent in the three layers comprise at least about 30%, at least about
- 3 60% and at least about 30%, respectively.
- 1 16. A component according to Claim 12 wherein the volume percent
- 2 in the three layers comprise at least about 30%, at least about 60%
- 3 and at least about 30%, respectively.
- 1 17. A component according to Claim 11 comprising a layer of neat
- 2 dielectric polymer or glass in contact with one surface of said
- 3 component wherein the neat dielectric polymer or glass layer is present
- 4 in a thickness of less than about 1.6 mils.

29

- A component according to Claim 12 comprising a layer of neat 1
- 2 dielectric polymer or glass in contact with one surface of said
- component wherein the neat dielectric polymer or glass layer is present 3
- 4 in a thickness of less than about 1.6 mils.
- 1 19. A component according to Claim 17 comprising a layer of neat
- 2 dielectric polymer or glass in contact with the second surface of said
- 3 component.
- 1 20. A component according to Claim 18 comprising a layer of neat
- dielectric polymer or glass in contact with the second surface of said 2
- 3 component.

1

2

- A variable voltage protection component for placement between 21. a ground plane and an electronic circuit comprising:
- 3 a first layer of variable voltage protection material which is in direct contact with an electrical conductor in said electronic circuit and 4 comprises a binder having dispersed therein at least about 20% by 5 6 volume of conductive or semiconductive particles; and
- a second layer of variable voltage protection material in contact 7 8 with the first layer comprising a binder having dispersed therein at least 9 40% by volume of conductive or semiconductive particles.
- 20 1 22. A variable voltage protection component according to Claim 21
- 2 further comprising a third layer of variable voltage protection material
- in contact with said second layer comprising a binder having dispersed 3
- therein conductive or semiconductive particles at a % by volume which 4
- 5 is different than the second layer.

1	23. A variable voltage protection component for placement		
2	between a ground plane and an electronic circuit comprising:		
3	a layer of neat dielectric polymer or glass which is in direct		
4	contact with an electrical conductor in said electronic circuit;		
5	a first layer of variable voltage protection material in contact		
6	with said layer of neat dielectric polymer or glass and comprises a		
7	binder having dispersed therein at least about 20% by volume of		
8	conductive or semiconductive particles; and		
9	a second layer of variable voltage protection material in contact		
10	with the first layer of variable voltage protection material comprising a		
11	binder having dispersed therein conductive or semiconductive particles		
12	at a_{Λ}^{q} % by volume which is different than in said first layer.		
	3^{λ}		
1	24. A variable voltage protection component according to Claim 23		
2	further comprising a third layer of variable voltage protection material		
3	in contact with said second layer comprising a binder having dispersed		
4	therein conductive or semiconductive particles at a, % by volume which		
5	is different than the second layer.		
1	25. A method of making a variable voltage protection material		
2	comprising:		
3	forming a mixture comprising conductive particles and insulating		
4	particles in a light organic solvent;		
5	mixing said mixture to disperse the insulating particles in the		
6	conductive particles;		
7	evaporating at least a portion of the solvent; and		
8	mixing the resultant mixture of conductive particles and		
9	insulating particles with a binder to form a variable voltage protection		
10	material.		

1	26.	A method according to Claim 25 comprising:	
2		sieving the mixture of particles and solvent before evaporating	
3	the solvent.		
1	27.	A method according to Claim 25 comprising:	
2		adding semiconductive particles to form a mixture comprising	
3.	conductive particles, semiconductive particles and light organic		
4	solvent.		
1	28.	A method according to Claim 25 comprising:	
2		forming a separate mixture comprising semiconductive particles	
3	and insulative particles in a light organic solvent;		
4		mixing said mixture to disperse the insulating particles in the	
5	semiconductive particles;		
6		evaporating at least a portion of the solvent; and	
7		mixing the resultant mixture of conductive particles and	
8	insulating particles and the resultant mixture of semiconductive		
9	partic	les with a binder to form a variable voltage protection material.	