

Report No.: EED32J00029402 Page 1 of 38

Product : Bluetooth Headphones

Trade mark : Joytrain, boAt

Model/Type reference : JOY-1407, Rockerz 430

Serial Number : N/A

Report Number : EED32J00029402 FCC ID : 2ALIM-JOY-1407

Date of Issue : Mar. 29, 2017

Test Standards : 47 CFR Part 15Subpart C (2015)

Test result : PASS

Prepared for:

Viewpoint Electronic Technology Co., Ltd.
No.1, Fengyuan Road, Dakan Management Zone, Huangjiang Town,
Dongguan, Guangdong, China.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom - chen
Tom chen (Test Project)

Compiled by:

Ware xin (Project Engineer)

Reviewed by:

Kevin yang (Reviewer)

sheek Luo (Lab supervisor)

Date:

Mar. 29, 2017

Check No.: 2496526077

2 Version

Version No. Date		Version No. Date Description			
00	Mar. 29, 2017	Original			
		(2)	/15		
((2)	(25)	(%)		

Report No.: EED32J00029402 Page 3 of 38

3 Test Summary

o rest Summary	10.			
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth 47 CFR Part 15Subpart C Section 15.247 (a)(2)		ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	ver Spectral Density 47 CFR Part 15Subpart C Section 15.247 (e)		PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

Model No.: JOY-1407, Rockerz 430

Only the model JOY-1407 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being outer decoration.

Report No.: EED32J00029402 Page 4 of 38

4 Content

1 C	OVER PAGE					1
2 V	ERSION				•••••	2
3 T	EST SUMMARY		•••••	•••••	•••••	3
4 C	ONTENT					4
5 T	EST REQUIREMENT				••••	5
5	5.1 TEST SETUP 5.1.1 For Conducted of 5.1.2 For Radiated Error 5.1.3 For Conducted of 5.2 TEST ENVIRONMENT 5.3 TEST CONDITION	test setup nissions test setu Emissions test se	ptup			5 6 6
6 G	ENERAL INFORMATION	ON	•••••	•••••	•••••	7
6 6 6	6.1 CLIENT INFORMATION. 6.2 GENERAL DESCRIPTION. 6.3 PRODUCT SPECIFICAT. 6.4 DESCRIPTION OF SUP. 6.5 TEST LOCATION 6.6 TEST FACILITY 6.7 DEVIATION FROM STA. 6.8 ABNORMALITIES FROM. 6.9 OTHER INFORMATION. 6.10 MEASUREMENT UNC.	ON OF EUT TION SUBJECTIVE TO PORT UNITS NDARDS STANDARD COND REQUESTED BY THE	O THIS STANDARD			
7 E	QUIPMENT LIST	•••••	•••••	•••••		11
8 R	ADIO TECHNICAL RE	QUIREMENTS SI	PECIFICATION			13
	Appendix A): 6dB Occ Appendix B): Conduct Appendix C): Band-ecc Appendix D): RF Con Appendix E): Power S Appendix F): Antenna Appendix G): AC Pow Appendix H): Restrict Appendix I): Radiated	ted Peak Output dge for RF Condu ducted Spurious I Spectral Density Requirement ver Line Conducte ed bands around	Power	ncy (Radiated)		16 18 19 22 24 25
РΗ	OTOGRAPHS OF TES	Γ SETUP				36
РΗ	OTOGRAPHS OF EUT	CONSTRUCTION	NAL DETAILS		•••••	38

Report No.: EED32J00029402 Page 5 of 38

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:			(6)
Temperature:	24°C		
Humidity:	54% RH	2 AND	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

Test channel:

Test Mode	Tx	RF Channel			
rest Mode	1X ((((((((((((((((((((((((((((((((((((Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
Grak	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz	
Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).				

General Information 6

6.1 Client Information

Applicant:	Viewpoint Electronic Technology Co., Ltd.
Address of Applicant:	No.1, Fengyuan Road, Dakan Management Zone, Huangjiang Town, Dongguan, Guangdong, China.
Manufacturer:	Viewpoint Electronic Technology Co., Ltd.
Address of Manufacturer:	No.1, Fengyuan Road, Dakan Management Zone, Huangjiang Town, Dongguan, Guangdong, China.
Factory:	Viewpoint Electronic Technology Co., Ltd.
Address of Factory:	No.1, Fengyuan Road, Dakan Management Zone, Huangjiang Town, Dongguan, Guangdong, China.

6.2 General Description of EUT

Product Name:	Bluetooth Headphones			
Model No.:	JOY-1407, Rockerz 430			
Test Model No.:	JOY-1407			(3)
Trade mark:	Joytrain, boAt	(0,)		(0,
EUT Supports Radios application:	BT4.1 Dual mode			
Power Supply:	3.7V/300mAh(Lithium Battery)		/15	
Sample Received Date:	Mar. 03, 2017		(2)	
Sample tested Date:	Mar. 03, 2017 to Mar. 29, 2017			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.1
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	Class 2(manufacturer declare)
Test Software of EUT:	CSR Blue Test3 2.5.8 (manufacturer declare)
Antenna Type:	PIFA Antenna
Antenna Gain:	0dBi
Test Voltage:	AC 120V, 60Hz

Report No. : EED32J00029402 Page 8 of 38

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Associate	ed equipment name	Manufacture	model	Serial number	Supplied by
AE1	Adapter	apple	A1402	0005ADUCN	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions

None.

6.9 Other Information Requested by the Customer

None.

Report No. : EED32J00029402 Page 10 of 38

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
O DE como condutad		0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSP120	101374	04-01-2016	03-31-2017
RF control unit	JS Tonscend	JS0806-2	158060006	04-01-2016	03-31-2017

Cor	nducted disturl	pance Test		
Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
R&S	ESCI	100009	06-16-2016	06-15-2017
TAYLOR	1451	1905	04-27-2016	04-26-2017
R&S	ENV216	100098	06-16-2016	06-15-2017
schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
R&S	EZ17	100106	06-16-2016	06-15-2017
TESEQ GmbH	ISN T800	30297	01-27-2017	01-25-2018
	Manufacturer R&S TAYLOR R&S schwarzbeck R&S	ManufacturerModel No.R&SESCITAYLOR1451R&SENV216schwarzbeckNNLK8121R&SEZ17	Manufacturer Model No. Number R&S ESCI 100009 TAYLOR 1451 1905 R&S ENV216 100098 schwarzbeck NNLK8121 8121-529 R&S EZ17 100106	Manufacturer Model No. Serial Number Cal. date (mm-dd-yyyy) R&S ESCI 100009 06-16-2016 TAYLOR 1451 1905 04-27-2016 R&S ENV216 100098 06-16-2016 schwarzbeck NNLK8121 8121-529 06-16-2016 R&S EZ17 100106 06-16-2016

Report No. : EED32J00029402 Page 12 of 38

10.	100			- / 3	
	3M	Semi/full-anech	oic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574 374	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Appendix A): 6dB Occupied Bandwidth

Test Result

	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
1	BLE	LCH	0.6912	1.0459	PASS	<u> </u>
8	BLE	MCH	0.6941	1.0475	PASS	Peak
	BLE	НСН	0.6877	1.0443	PASS	detector

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	7.52	PASS
BLE	MCH	8.618	PASS
BLE	HCH	9.127	PASS

Report No.: EED32J00029402 Page 17 of 38

Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
	BLE	LCH	7.476	-60.980	-12.52	PASS
-	BLE	НСН	9.130	-48.426	-10.87	PASS

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	7.365	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	8.513	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	8.984	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32J00029402 Page 20 of 38

Puw/BLE/HCH

Report No.: EED32J00029402

Appendix E): Power Spectral Density

Result Table

	Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
1	BLE	LCH	-7.988	8	PASS
5	BLE	MCH	-6.683	8	PASS
۲	BLE	нсн	-6.255	8	PASS

Page 23 of 38

Report No.: EED32J00029402 Page 24 of 38

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 25 of 38 Report No.: EED32J00029402

Test Procedure:	Test frequency range :150KHz	z-30MHz		
	1)The mains terminal disturbar	-		
	2) The EUT was connected to			
	Stabilization Network) which power cables of all other u			
") ((which was bonded to the g			
	for the unit being measure multiple power cables to a	•	•	
	exceeded.	od unan a nan matall	ia tabla 0 0m abay	o the ground
	3)The tabletop EUT was place reference plane. And for floor horizontal ground reference	oor-standing arrangem		
	4) The test was performed wi			
	EUT shall be 0.4 m from th			
	reference plane was bonde			
6)	reference plane was bonde 1 was placed 0.8 m from ground reference plane for	the boundary of the u	unit under test and	bonded to a
) (1 was placed 0.8 m from ground reference plane for plane. This distance was be	the boundary of the user LISNs mounted operween the closest possible.	unit under test and n top of the grou pints of the LISN 1 a	bonded to a nd reference and the EUT.
	1 was placed 0.8 m from ground reference plane for plane. This distance was but All other units of the EUT a	the boundary of the user LISNs mounted operween the closest possible.	unit under test and n top of the grou pints of the LISN 1 a	bonded to a nd reference and the EUT.
	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	the boundary of the user LISNs mounted on the closest postured associated equipments.	unit under test and n top of the group oints of the LISN 1 and nent was at least 0.	bonded to a nd reference and the EUT. 8 m from the
	1 was placed 0.8 m from ground reference plane for plane. This distance was because All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables.	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the relative memission, the relative	unit under test and n top of the group oints of the LISN 1 anent was at least 0.	bonded to a nd reference and the EUT. 8 m from the oment and all
	1 was placed 0.8 m from ground reference plane for plane. This distance was because All other units of the EUT at LISN 2. 5) In order to find the maximum	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the relative memission, the relative	unit under test and n top of the group oints of the LISN 1 anent was at least 0.	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was because All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables.	the boundary of the user LISNs mounted of petween the closest pound associated equipment of the memission, the relative must be changed as	unit under test and n top of the group oints of the LISN 1 anent was at least 0. The positions of equipaccording to ANSI	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was because All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables.	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the changed at the change at the changed at the change at the	unit under test and n top of the group oints of the LISN 1 and nent was at least 0. The positions of equipaccording to ANSI (BBµV)	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz)	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the change of the	unit under test and n top of the group oints of the LISN 1 anent was at least 0. The positions of equipaccording to ANSI (BµV) Average	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the control of	unit under test and n top of the group oints of the LISN 1 and nent was at least 0. The positions of equipaccording to ANSI Average 56 to 46*	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz)	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the change of the	unit under test and n top of the group oints of the LISN 1 anent was at least 0. The positions of equipaccording to ANSI (BµV) Average	bonded to a nd reference and the EUT. 8 m from the oment and all
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5 5-30	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the control of the control of the closest potential associated equipment of the control of	unit under test and n top of the group oints of the LISN 1 anent was at least 0. The positions of equipment of the ANSI dB \(\text{LISH} \) Average 56 to 46* 46 50	bonded to a nd reference and the EUT. 8 m from the oment and all C63.10 on
Limit:	1 was placed 0.8 m from ground reference plane for plane. This distance was be All other units of the EUT at LISN 2. 5) In order to find the maximum of the interface cables conducted measurement. Frequency range (MHz) 0.15-0.5 0.5-5	the boundary of the user LISNs mounted of petween the closest potential associated equipment of the control of the control of the closest potential associated equipment of the control of	unit under test and n top of the group oints of the LISN 1 anent was at least 0. The positions of equipment of the ANSI dB \(\text{LISH} \) Average 56 to 46* 46 50	bonded to a nd reference and the EUT. 8 m from the oment and all C63.10 on

Page 26 of 38

No.	Freq.		ling_Le dBuV)	evel	Correct Factor	M	easuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	43.91		24.40	9.75	53.66		34.15	65.15	55.15	-11.49	-21.00	Р	}
2	0.3700	30.01		11.97	9.76	39.77		21.73	58.50	48.50	-18.73	-26.77	P	
3	0.8300	22.98		11.99	9.74	32.72		21.73	56.00	46.00	-23.28	-24.27	P	
4	2.5700	22.34		9.42	9.70	32.04		19.12	56.00	46.00	-23.96	-26.88	Р	
5	6.8740	25.22		13.42	9.71	34.93		23.13	60.00	50.00	-25.07	-26.87	Р	{
6	10.7299	10.24		-0.79	9.91	20.15		9.12	60.00	50.00	-39.85	-40.88	P	

Page 27 of 38

Neutral line: 80.0 dBuV Limit: AVG: AVG -20 0.1500.5 (MHz) 5 30.000 Reading_Level Correct Measurement Limit Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) dB QP MHz Peak QP AVG peak AVG QP AVG QP AVG P/F Comment 0.1580 43.98 23.03 9.76 53.74 65.56 55.56 -11.82 P 1 32.79 -22.772 0.2020 40.40 53.52 22.53 9.71 50.11 32.24 -21.28P 63.52 -13.41

23.30

21.46

16.59

14.83

49.76

46.17

46.00

50.00

59.76

56.17

56.00

60.00

-17.55

-17.15

-23.01

-27.47

-26.46

-24.71

-29.41

-35.17

P

P

Notes:

3

4

5

6

0.3180 32.44

0.4900 29.31

0.8380 23.25

6.7180 22.82

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

13.53

11.75

6.85

5.12

9.77

9.71

9.74

9.71

42.21

39.02

32.99

32.53

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector R	RBW VBW	Remark	
	30MHz-1GHz	Quasi-peak 120	0kHz 300kHz	Quasi-peak	
	Abo. : 4011	Peak 1N	MHz 3MHz	Peak	100
	Above 1GHz	Peak 1	MHz 10Hz	Average	(3)
Test Procedure:	Below 1GHz test proced	ire as helow:			16
	 a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximular polarizations of the and d. For each suspected end the antenna was tuned was turned from 0 degone. e. The test-receiver systems 	on the top of a rotating choic camber. The tage of the highest radiative ters away from the interpretary of a variable-height varied from one meter walue of the field stenna are set to make the initial of the heights from 1 meters to 360 degrees to 160 peak Emmas set to Peak Emmas and to Peak Emmas are set to Peak Emmas are set to Peak Emmas are set to Peak Emmas set to Peak Emmas are set to P	able was rotated ion. Interference-recent antenna tower er to four meters strength. Both how the measurem is arranged to its eter to 4 meters to find the maximal.	above the ground and vient. worst case ar and the rotata mum reading.	to, which
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	npliance. Also measu rum analyzer plot. Re channel	ure any emission	s in the restric	
	frequency to show cor bands. Save the spect	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form table is a meter and table is a measured to the hements are performed discound the X axis possible.	ange from Semi- ble 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which	ower and mode - Anechoic Ch 1.5 meter(About positioning for it is worse case	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the left. The radiation measure Transmitting mode, and	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form table is a meter and table is a measured to the hements are performed discound the X axis possible.	ange from Semi- ole 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which	ower and mode - Anechoic Ch 1.5 meter(About positioning for it is worse case	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the left. The radiation measure Transmitting mode, an j. Repeat above procedure.	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form table is a meter and table is a meter and table is a ments are performed different all frequences.	ange from Semi- ble 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which ties measured w	- Anechoic Ch 1.5 meter(Abo positioning for it is worse cas as complete.	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, an j. Repeat above procedure.	npliance. Also measurum analyzer plot. Rechannel ure as below: we is the test site, chanber change form table is a belowest channel, the Fements are performed d found the X axis poures until all frequence. Limit (dBµV/m @	ange from Semi- ble 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which bies measured w Q3m) Re Quasi-p	- Anechoic Ch 1.5 meter(Abo positioning for it is worse cas as complete.	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lei. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form tab 1 meter and table is 1 owest channel, the Fements are performed found the X axis poures until all frequence Limit (dBµV/m @ 40.0	ange from Semi- ble 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which cies measured w Quasi-p Quasi-p	- Anechoic Ch 1.5 meter(Abd positioning for it is worse cas as complete.	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above 18GHz the distance is h Test the EUT in the left. The radiation measure Transmitting mode, an j. Repeat above procedure. Frequency 30MHz-88MHz 88MHz-216MHz	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form table is repowest channel, the Hements are performed d found the X axis poures until all frequence Limit (dBµV/m @ 40.0 43.5	ange from Semi- ble 0.8 meter to 2 1.5 meter). Highest channel d in X, Y, Z axis ositioning which cies measured w Quasi-p Quasi-p Quasi-p	- Anechoic Ch 1.5 meter(Abd positioning for it is worse cas as complete.	ambe ove
Limit:	frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the leteration measure Transmitting mode, and Repeat above procedum Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	npliance. Also measurum analyzer plot. Rechannel ure as below: ve is the test site, chanber change form table is sowest channel, the Fements are performed found the X axis poures until all frequence Limit (dBµV/m @ 40.0 43.5 46.0	ange from Semi- ble 0.8 meter to 1.5 meter). Highest channel d in X, Y, Z axis ositioning which cies measured w Quasi-p Quasi-p Quasi-p Quasi-p	- Anechoic Ch 1.5 meter(Abo positioning for it is worse cas as complete.	ambe ove

Test plot as follows:

Worse case mode:	GFSK		(67)
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Report No. : EED32J00029402 Page 30 of 38

Worse case mode:	GFSK	(25)	(25)
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

L	ir	n	it	:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32J00029402 Page 32 of 38

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)	(6)	
Test mode:	Transmitting	Horizontal

			CUDIC	ncuu		LIMIT	OVC		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBu V/m	dBuV/m	dB		
1	72.084	10.00	1.48	14.97	26.45	40.00	-13.55	Horizontal	
2	118.186	11.76	1.57	17.24	30.57	43.50	-12.93	Horizontal	
3	191.745	11.32	2.12	19.73	33.17	43.50	-10.33	Horizontal	
4	239.987	12.25	2.32	23.27	37.84	46.00	-8.16	Horizontal	
5 рр	386.634	15.92	2.78	21.67	40.37	46.00	-5.63	Horizontal	
6	900.147	22.40	4.34	8.79	35.53	46.00	-10.47	Horizontal	

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	72.847	9.86	1.49	11.83	23.18	40.00	-16.82	Vertical	
2	138.387	10.40	1.58	17.52	29.50	43.50	-14.00	Vertical	
3	222.170	11.98	2.28	16.92	31.18	46.00	-14.82	Vertical	
4	277.094	13.02	2.37	16.87	32.26	46.00	-13.74	Vertical	
5 pp	483.910	18.00	3.09	18.71	39.80	46.00	-6.20	Vertical	
6	552.883	18.61	3.23	14.09	35.93	46.00	-10.07	Vertical	

Report No.: EED32J00029402 Page 34

Transmitter Emission above 1GHz

Worse case mode:		GFSK		Test char	nnel:	Lowest	west Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1198.095	30.22	2.51	44.39	53.52	41.86	74.00	-32.14	Pass	Н	
1668.044	31.18	2.98	43.81	53.85	44.20	74.00	-29.80	Pass	Н	
4804.000	34.69	5.11	44.60	46.98	42.18	74.00	-31.82	Pass	Н	
5910.798	35.83	7.23	44.51	48.24	46.79	74.00	-27.21	Pass	Н	
7206.000	36.42	6.66	44.77	47.32	45.63	74.00	-28.37	Pass	Н	
9608.000	37.88	7.73	45.58	47.73	47.76	74.00	-26.24	Pass	Н	
1198.095	30.22	2.51	44.39	51.66	40.00	74.00	-34.00	Pass	V	
1668.044	31.18	2.98	43.81	53.73	44.08	74.00	-29.92	Pass	V	
4804.000	34.69	5.11	44.60	47.83	43.03	74.00	-30.97	Pass	V	
5925.863	35.85	7.27	44.51	49.02	47.63	74.00	-26.37	Pass	V	
7206.000	36.42	6.66	44.77	46.36	44.67	74.00	-29.33	Pass	V	
9608.000	37.88	7.73	45.58	47.15	47.18	74.00	-26.82	Pass	V	

Worse case	Worse case mode:			Test char	nnel:	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	52.09	40.43	74.00	-33.57	Pass	/° #
1668.044	31.18	2.98	43.81	54.01	44.36	74.00	-29.64	Pass	H)
4880.000	34.85	5.08	44.60	47.09	42.42	74.00	-31.58	Pass	H
5895.771	35.82	7.20	44.51	49.07	47.58	74.00	-26.42	Pass	Н
7320.000	36.43	6.77	44.87	47.36	45.69	74.00	-28.31	Pass	Н
9760.000	38.05	7.60	45.55	48.18	48.28	74.00	-25.72	Pass	Н
1031.018	29.79	2.30	44.65	55.54	42.98	74.00	-31.02	Pass	V
1364.182	30.60	2.69	44.16	56.23	45.36	74.00	-28.64	Pass	V
1663.803	31.17	2.97	43.82	52.95	43.27	74.00	-30.73	Pass	V
4880.000	34.85	5.08	44.60	46.82	42.15	74.00	-31.85	Pass	V
7320.000	36.43	6.77	44.87	47.53	45.86	74.00	-28.14	Pass	V
9760.000	38.05	7.60	45.55	47.23	47.33	74.00	-26.67	Pass	V

Page 35 of 38

				- 2107		- 20 Page			
Worse case mode:		GFSK		Test channel:		Highest	Highest Remark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1198.095	30.22	2.51	44.39	53.42	41.76	74.00	-32.24	Pass	~ H
1668.044	31.18	2.98	43.81	54.59	44.94	74.00	-29.06	Pass	H)
4960.000	35.02	5.05	44.60	46.96	42.43	74.00	-31.57	Pass	H
5836.044	35.78	7.07	44.52	49.21	47.54	74.00	-26.46	Pass	Н
7440.000	36.45	6.88	44.97	47.96	46.32	74.00	-27.68	Pass	Н
9920.000	38.22	7.47	45.52	47.95	48.12	74.00	-25.88	Pass	Н
1031.018	29.79	2.30	44.65	57.09	44.53	74.00	-29.47	Pass	V
1367.659	30.60	2.70	44.16	58.44	47.58	74.00	-26.42	Pass	V
3757.208	32.97	5.48	44.62	49.94	43.77	74.00	-30.23	Pass	V
4960.000	35.02	5.05	44.60	46.04	41.51	74.00	-32.49	Pass	V
7440.000	36.45	6.88	44.97	47.45	45.81	74.00	-28.19	Pass	V
9920.000	38.22	7.47	45.52	47.82	47.99	74.00	-26.01	Pass	V

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: JOY-1407

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Report No. : EED32J00029402 Page 37 of 38

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32J00029402 Page 38 of 38

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32J00029401 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

