Тема: Использование системы компьютерной алгебры при решении задач математического анализа.

Задания вариативной самостоятельной работы (ВСР) Часть 2.

Задание 6.3. Справочник по формулам Махіта, используемых при решении пределов, производных, интегралов

1. Нахождение производных

• Функция diff

выполняет дифференцирование (находит производную). Синтаксис нахождения разных производных отличается:

```
(нахождение первой производной) diff(x^2,x); 2x (нахождение производной любого порядка) diff(x^3,x,2); 6x (нахождение кратной производной по нескольким переменным) diff(x^3*y^3,x,2,y,1); 18xy^2
```

Работать я производной одной переменной по другой можно тремя способами: «заморозить» операцию дифференцирования, указать на зависимость явно и декларировать зависимость неявно. Запретить выполнение функции «diff» и подучить «замороженную» производную можно, если перед именем функции поставить одиночную кавычку:

 $\frac{dy}{dx}$

Можно явно указать на зависимость, т.е. работать с функцией:

diff(y(x),x);

$$\frac{d}{dx}(y(x))$$

$$\frac{d}{dx}(y(x))$$

$$\frac{d^3}{dx^2 dy}(v(x,y))$$

(здесь предполагается, что функция «у» и «v» не были ранее определены с помощью оператора определения функции «:=»).

• Функция depends

позволяет декларировать, что переменная зависит от одной или нескольких других переменных

2. Нахождение пределов

• Функция limit

вычисляет предел заданного выражения при стремлении переменной к указанному значению. В тех случаях, когда левый (minis) и правый (plus) пределы не совпадают, можно уточнить, с какой стороны берется предел. Существует четыре специальных значения — $\langle \inf \rangle$ ($+\infty$), $\langle \min f \rangle$ ($-\infty$), $\langle \inf \rangle$ ($+\infty$), \langle

 $limit(sin(x)/x,x,0); \\ 1 \\ limit(1/x,x,0); \\ und \\ limit(1/x,x,0,plus); \\ inf \\ limit(1/x,x,0,minus); \\ minf \\ limit(sin(1/x),x,0); \\ ind \\$

$$limit((x+1)/(x+2),x,inf);$$

1

Функция применяет правило Лопиталя.

• Функция tlimit

отличается от функции «limit» только алгоритмом — она раскладывает выражение в ряд Тейлора. Благодаря этому она, в отличие от функции «limit», во всех случаях работает правильно.

Например, в таком случае:

$$\lim_{x \to \infty} \frac{\sin(x)-x}{2} (\cos(x)-1)^3, x, 0;$$

inf

функция «limit» выдает неверный ответ,

$$tlimit((sin(x)-x)^2/(cos(x)-1)^3,x,0);$$

$$-\frac{2}{9}$$

а функция «tlimit» решает предел верно (т.к.

$$\lim_{x \to \infty} \frac{1}{3} \frac{\sin(x)-x}{2}, x, 0;$$

$$-\frac{9}{2}$$
)

3. Нахождение интегралов

• Функция integrate

выполняет интегрирование заданного выражения по указанной переменной (неопределенная константа не добавляется).

integrate(
$$1/(x+a),x$$
);

$$log(x+a)$$

Можно также указать пределы интегрирования — в этом случае вычисляется определенный интеграл. В качестве пределов интегрирования также могут выступать бесконечность и минус бесконечность.

 $integrate(x^3,x,a,b);$

$$\frac{b^4}{4} - \frac{a^4}{4}$$