Open TURNS and the HPC

- « H-Matrices methods principles. Applications to OpenTURNS»: T. Abboud (Ecole Polytechnique)
- « The H-Matrices in Open TURNS v1.5 »: D. Barbier (IMACS)

- H-matrix library developed by Airbus Group Innovations
 - Sequential code available at https://github.com/jeromerobert/hmat-oss/
 - GPLv2 license, with a license exception to link it to OpenTURNS
 - Parallel implementation available under a commercial license
- H-matrix and OpenTURNS:
 - In v1.5, only used by TemporalNormalProcess class to simulate Gaussian fields
 - In v1.6, H-matrix library fully wrapped, also used in kriging

- Early stage interface, HMatrix was primarily designed by AGI for their own BEM solvers
- Univariate and multivariate covariance models are supported
- H-matrix internally renumbers degrees of freedom
 - Comparing results between Lapack and Hmatrix may be difficult or impossible
 - Cholesky factors cannot be compared, but we can compare LLt product
 - Following results have been obtained by using an already ordered mesh, but internal ordering of H-Matrix is not available within OpenTURNS


```
# Only 3D meshes are supported in OpenTURNS 1.5
spatial dimension = 3
spatial range = mesh.getVertices().computeRange()
rho = 0.1
covariance model = AbsoluteExponential(spatial dimension, rho * spatial range.norm())
# 0=Lapack, 1=HMat, 2=Gibbs
ResourceMap.SetAsUnsignedInteger("TemporalNormalProcess-SamplingMethod", 0)
normal process L = TemporalNormalProcess(covariance model, mesh)
RandomGenerator.SetSeed(19)
field_L = normal_process_L.getRealization() C = L\,L^t Y = LX
ResourceMap.SetAsUnsignedInteger("TemporalNormalProcess-SamplingMethod", 1)
normal process H = TemporalNormalProcess(covariance model, mesh)
RandomGenerator.SetSeed(19)
field_H = normal_process_H.getRealization() Cpprox \tilde{L}\,\tilde{L}^t \tilde{Y}=\tilde{L}X
# Comparison does not work in general because Hmatrix reorders vertices
print((field L.getValues() - field H.getValues()).computeRawMoment(2))
```


Epsilon	LLt (s)	getRealization (s)	Error	Matrix memory ratio
1e-4	12	0.02	1.4e-5	1 / 8.0
1e-7	25	0.03	3.9e-11	1 / 5.0
1e-10	56	0.05	7.2e-17	1 / 3.1
1e-13	99	0.07	1.2e-22	1 / 2.1
1e-16	400	0.11	2.7e-23	1 / 1.5
LAPACK	30	0.06	0	1

Mesh containing 9644 vertices, machine with 8 cores and 8 GB RAM, opensource HMatrix (sequential)

Epsilon	LLt (s)	getRealization (s)	Error	Matrix memory ratio
1e-4	16	0.05	1.e-4	1 / 14.1
1e-7	24	0.04	1.e-11	1 / 8.3
1e-10	39	0.05	1.e-16	1 / 5.2
1e-13	60	0.06	1.e-22	1 / 3.5
1e-16	299	0.07	1.e-25	1 / 2.3
LAPACK	175	0.15	-	1

Mesh containing 18292 vertices, machine with 12 cores and 48 GB RAM

Epsilon	LLt (s)	getRealization (s)	Error	Matrix memory ratio
1e-8	452	0.04	-	1 / 28.6
1e-12	853	0.06	-	1 / 15.6
LAPACK	-	-	-	1

Mesh containing 134331 vertices, machine with 12 cores and 48 GB RAM

H-Matrix resource keys

- CovarianceHMatrix-AdmissibilityFactor
 - Coefficient of Hackbusch admissibility condition (default : 2.0)
- CovarianceHMatrix-CompressionMethod
 - 0 = SVD: best results, but unpractical on large blocks because of high algorithmic complexity
 - 1 = ACA : default
 - 2 = partial ACA: like ACA, but Gauss pivot is looked for only by scanning one line and one row ⇒ much faster than ACA, but may give wrong results
 - 3 = ACA+: similar to partial ACA, more robust
- CovarianceHMatrix-AssemblyEpsilon
 - Controls low-rank approximation when assembling compressed blocks (default 1.e-4)
- CovarianceHMatrix-RecompressionEpsilon
 - Controls low-rank approximation when recompressing matrices, during factorization (default : 1.e-4)
- CovarianceHMatrix-MaxLeafSize
 - Maximal number of elements in smallest blocks (default : 100)

Caveats

- Covariance matrix is SPD, but its conditioning number grows dramatically when number of points by correlation length becomes large
 - · Depends on covariance model
 - Decrease correlation length if factorization fails
- Approximated covariance matrix not necessarily SPD ⇒ Cholesky factorization can fail
 - Add a nugget factor on diagonal to regularize approximated covariance matrix, controlled by resource keys TemporalNormalProcess-StartingScaling and TemporalNormalProcess-MaximalScaling

Perspectives

➤ In v1.6:

 Allows using H-matrices in kriging ⇒ improved HMatrix encapsulation, resource keys renamed from CovarianceHMatrix-* into HMatrix-*

Future:

- More customization, e.g. allows to specify other admissibility conditions, like HODLR (Hierarchical Off-Diagonal Low-Rank) to improve compression and thus complexity
- Work on automatic regularization: compute a nugget factor which will require less try-fail computations without being excessively large
- Conditioning number of the covariance matrix is highly dependent on provided mesh; detect overrefined meshes?
- Any other linear algebra operations in OpenTURNS?

