Preferences, Payoffs, and Utility

Utility Functions

How to Define and Interpret Utility

- **Utility**: A numerical representation of a player's preferences over a set of outcomes. It allows for the ranking of these outcomes based on the player's level of satisfaction.
- Utility Function: A function U(x) that assigns a real number to each possible outcome x. Higher utility values indicate more preferred outcomes.
 - Example: For an outcome x, $U(x) = x^2$ might represent the utility.

Interpretation of Utility

- Ordinal Utility: The order of preferences matters, but the magnitude of differences between utilities does not.
 - Example: If U(A)=2 and U(B)=4, B is preferred over A, but we cannot say B is twice as preferred as A.
- Cardinal Utility: The actual numerical values of utility are meaningful, and the differences between them can be interpreted.
 - Example: If U(A)=2 and U(B)=4, B is not only preferred over A but is considered twice as preferable.

Examples of Utility Functions

1. Linear Utility:

- U(x) = ax + b
- · Represents constant marginal utility.
- Example: U(x) = 2x + 3

2. Quadratic Utility:

- $U(x) = ax^2 + bx + c$
- · Represents diminishing or increasing marginal utility.
- Example: $U(x) = -x^2 + 4x$

3. Logarithmic Utility:

- $U(x) = \log(x)$
- Used to model risk-averse behavior.
- Example: $U(x) = \log(x)$, where x must be positive.

Payoff Matrices (20 minutes)

Constructing Payoff Matrices

- Definition: A payoff matrix is a table that shows the payoffs for each player for every possible combination of strategies.
 - Steps to Construct a Payoff Matrix:
 - 1. Identify the Players: Determine who the decision-makers are.
 - 2. List Possible Strategies: Enumerate the strategies available to each player.
 - 3. Determine Payoffs: Assign payoffs for each combination of strategies.

Examples and Case Studies

- Example 1: Prisoner's Dilemma:
 - Two players: Prisoner 1 and Prisoner 2.
 - Strategies: Confess (C) or Stay Silent (S).
 - Payoff matrix:

	Confess (C)	Silent (S)
Confess (C)	(-1, -1)	(0, -3)
Silent (S)	(-3, 0)	(1, 1)

• Example 2: Battle of the Sexes:

- Players: Husband (H) and Wife (W).
- Strategies: Opera (O) or Football (F).
- Payoff matrix:

	Opera (O)	Football (F)
Opera (O)	(2, 1)	(0, 0)
Football (F)	(0, 0)	(1, 2)

Expected Utility and Risk

Decision-Making Under Uncertainty

- **Expected Utility Theory**: A framework for making decisions under uncertainty, where outcomes are uncertain and each has a probability associated with it.
- **Expected Utility**: The weighted average of utilities, where the weights are the probabilities of each outcome.
- Formula: $E(U) = \sum_i p_i U(x_i)$
- Example: If there are two outcomes, x_1 and x_2 , with probabilities p_1 and p_2 and utilities $U(x_1)$ and $U(x_2)$:

$$E(U)=p_1U(x_1)+p_2U(x_2)$$

Risk Aversion and Expected Utility Theory

- Risk Aversion: Preference for certain outcomes over uncertain ones with the same expected value.
 - Utility Function for Risk-Averse Individuals: Typically concave, e.g., $U(x) = \log(x)$ or $U(x) = x^{0.5}$.
- Risk-Neutral: Indifference to risk, focusing solely on expected value.
 - Utility Function for Risk-Neutral Individuals: Typically linear, e.g., U(x)=x.
- Risk-Seeking: Preference for uncertain outcomes over certain ones with the same expected value.
 - Utility Function for Risk-Seeking Individuals: Typically convex, e.g., $U(x)=x^2$.

Examples and Case Studies

1. Example 1: Lottery Ticket:

- Two outcomes: Win \$1000 with probability 0.1, and win nothing with probability 0.9.
- Risk-averse utility function: $U(x) = \sqrt{x}$.
- ullet Expected Utility: $E(U) = 0.1\sqrt{1000} + 0.9\sqrt{0} = 0.1 imes 31.62 + 0 = 3.162.$

2. Example 2: Insurance:

- A person has a 1% chance of losing \$10,000 and a 99% chance of losing nothing.
- Without insurance, expected loss: $0.01 \times 10000 + 0.99 \times 0 = 100$.
- Utility function: $U(x) = \log(x)$.
- With insurance, person pays \$100 for coverage.
- Expected Utility without insurance: $0.01 \log(9000) + 0.99 \log(10000)$.
- Expected Utility with insurance: log(9900).

Summary

- **Utility Functions**: Represent preferences and help in making decisions.
- Payoff Matrices: Show the payoffs for each combination of strategies in a game.

•	Expected Utility Theory : Framework for decision-making under uncertainty, considering risk preferences.