Generic resources are what you need: Style transfer tasks without task-specific parallel training data

Huiyuan Lai, Antonio Toral, Malvina Nissim CLCG, University of Groningen / The Netherlands

Text style transfer

Rephrasing a given text in the desired style while preserving its original content.

Text style transfer

Rephrasing a given text in the desired style while preserving its original content.

Text style transfer

Rephrasing a given text in the desired style while preserving its original content.

Dataset

Evaluation

- Style Strength: pre-trained style classifier
- Content Preservation: BLEU
 - Learnable Metrics —BLEURT, COMET
- Overall: the harmonic mean (HM) of style accuracy and BLEU.

General-purpose pre-trained seq2seq model—BART

Paraphrasing data—PARABANK 2

WordNet, SentiWordNet

- General-purpose pre-trained seq2seq model—BART
 A large pre-trained model helps preserve content (Lai et al 2021, Thank you BART!)
- Paraphrasing data—PARABANK 2

WordNet, SentiWordNet

- General-purpose pre-trained seq2seq model—BART
 A large pre-trained model helps preserve content (Lai et al 2021, Thank you BART!)
- Paraphrasing data—PARABANK 2
 We can teach the model the basic task of re-writing independently of the task (so also with no or little task-specific data)
- WordNet, SentiWordNet

no or little task-specific data)

- General-purpose pre-trained seq2seq model—BART
 A large pre-trained model helps preserve content (Lai et al 2021, Thank you BART!)
- Paraphrasing data—PARABANK 2
 We can teach the model the basic task of re-writing independently of the task (so also with
- WordNet, SentiWordNet
 The general lexical resources can help to create synthetic pairs for polarity swap

Paraphrases

Text 1:

I guess I've always been pretty good with words.

Text 2:

I think narrating has always been my strong suit.

Paraphrases

Text 1:

I guess I've always been pretty good with words.

Formality Transfer

rewriting

Text 2:

I think narrating has always been my strong suit.

Polarity Swap

Paraphrases

Text 1:

I guess I've always been pretty good with words.

rewriting

Text 2:

I think narrating has always been my strong suit.

Formality Transfer

they are **not** exactly the same task!

Polarity Swap

SentiWordNet and WordNet

This procedure creates synthetic pairs!

Our Pipeline

General overview of our pipeline

1) Second phase of pre-training using paraphrases and the WordNet-derived synthetic pairs.

General overview of our pipeline

General overview of IBT training

General overview of our pipeline

- 3) Fine-tuning BART with high quality pairs, with all reward strategies
- BLEURT Content Preservation
- Style Classifier Style Strength

Experiments

Step 1- Paraphrase-based pre-training

DATASET	GYA	FC (Form	ALITY TI	RANSFEI	₹)	<u> </u>	YELP (Poi	ARITY S	WAP)	
MODEL	BLEURT	COMET	BLEU	ACC	HM	BLEURT	COMET	BLEU	ACC	HM
M0: Original BART	-0.116	0.242	0.414	0.333	0.369	-0.388	-0.146	0.309	0.022	0.041
	STEP 1: Fu	ther pre-tra	ining							
M1.1: Further pre-training using whole dataset	0.012	0.209	0.420	0.357	0.386	-0.412	-0.282	0.179	0.040	0.065
M1.2: Further pre-training using subset	0.011	0.225	0.441	0.693	0.539	-0.347	-0.178	0.247	0.166	0.199
M1.3: Further pre-training using synthetic data	-	<u> </u>		\		-0.321	-0.074	0.326	0.189	0.239
	STEP	Γ + Rewa	rds							
M2.1: IBT + all rewards with M0		0.292	0.507	0.836	0.631	-0.229	-0.017	0.298	0.826	0.438
M2.2: IBT + all rewards with	4	0.318	0.553	0.932	0.694	-0.176	0.026	0.295	0.853	0.438
M2.3: IBT + all reward Using paraphrase data		\-	-	-	-	-0.246	-0.035	0.302	0.884	0.450
M2.4: M2.2 except I benefits more formality		313	0.552	0.929	0.693	-0.187	0.001	0.285	0.860	0.428
M2.5: M2.2 except B transfer than polarity sy	van	.320	0.551	0.925	0.691	-0.149	0.031	0.295	0.784	0.429
M2.6: M2.2 except SC0	ναρ	0.321	0.544	0.928	0.686	-0.195	-0.016	0.286	0.881	0.432
M2.7: M2.2 except SC1	0.039	0.318	0.555	0.873	0.679	-0.176	0.039	0.331	0.500	0.398
STEP 3: Offline training (Model used: original BART + Rewards)										
M3.1: training pairs generated with M2.2 (GYAFC) / M2.3 (YELP)	0.030	0.321	0.560	0.904	0.692	-0.183	0.046	0.316	0.887	0.466
M3.2: training pairs are subset of paraphrase data (same as in M1.2)	0.012	0.229	0.455	0.783	0.576	-0.338	-0.221	0.215	0.457	0.292

Step 2- IBT training

D			TV T	RANSFEI	R)	3	ELP (Pol	ARITY S	WAP)	
Model Further p	re-trainir	na sian	ificant	ly CC	HM	BLEURT	COMET	BLEU	ACC	HM
M0: Original BART improves		•		ı y	0.369	-0.388	-0.146	0.309	0.022	0.041
	•		ווע							
M1.1: Further pre-training using whole dataset formality	transter.			57	0.386	-0.412	-0.282	0.179	0.040	0.065
M1.2: Further pre-training using subset		_	<	0.693	0.539	-0.347	-0.178	0.247	0.166	0.199
M1.3: Further pre-training using synthetic data				\		-0.321	-0.074	0.326	0.189	0.239
	STEP 2: IE	3T + Rewa	rds	7-						
M2.1: IBT + all rewards with M0	-0.010	0.292	0.507	0.836	0.631	-0.229	-0.017	0.298	0.826	0.438
M2.2: IBT + all rewards with M1.2	0.041	0.318	0.553	0.932	0.694	-0.176	0.026	0.295	0.853	0.438
M2.3: IBT + all rewards with M1.3	-	-	-	-	-	-0.246	-0.035	0.302	0.884	0.450
M2.4: M2.2 except BLEURT	0.033	0.313	0.552	0.929	0.693	-0.187	0.001	0.285	0.860	0.428
M2.5: M2.2 except BLEU	0.041	0.320	0.551	0.925	0.691	-0.149	0.031	0.295	0.784	0.429
M2.6: M2.2 except SC0	0.024	0.321	0.544	0.928	0.686	-0.195	-0.016	0.286	0.881	0.432
M2.7: M2.2 except SC1	0.039	0.318	0.555	0.873	0.679	-0.176	0.039	0.331	0.500	0.398
STEP 3: Offline training (Model used: original BART + Rewards)										
M3.1: training pairs generated with M2.2 (GYAFC) / M2.3 (YELP)	0.030	0.321	0.560	0.904	0.692	-0.183	0.046	0.316	0.887	0.466
M3.2: training pairs are subset of paraphrase data (same as in M1.2)	0.012	0.229	0.455	0.783	0.576	-0.338	-0.221	0.215	0.457	0.292

Step 3- High-quality synthetic pairs

DATASET	GYAFC (FORMALITY TRANSFER)				YELP (POLARITY SWAP)					
MODEL	BLEURT	COMET	BLEU	ACC	HM	BLEURT	COMET	BLEU	ACC	HM
M0: Original BART	-0.116	0.242	0.414	0.333	0.369	-0.388	-0.146	0.309	0.022	0.041
	STEP 1: Fu	rther pre-tra	ining							
M1.1: Further pre-training using whole dataset	0.012	0.209	0.420	0.357	0.386	-0.412	-0.282	0.179	0.040	0.065
M1.2: Further pre-training using subset	0.011	0.225	0.441	0.693	0.539	-0.347	-0.178	0.247	0.166	0.199
M1.3: Further pre-training using synthetic data	-					201	-0.074	0.326	0.189	0.239
	STEP	Mode	l traine	ed wit	h hia	h-quality				
M2.1: IBT + all rewards with M0	-0				_		· · · · · · · · · · · · · · · · · · ·	0.298	0.826	0.438
M2.2: IBT + all rewards with M1.2	(syntne	etic pa	airs ac	cnieve	es the be	est)	0.295	0.853	0.438
M2.3: IBT + all rewards with M1.3		perfor	manc	e on p	oolarit	ty swap.	335	0.302	0.884	0.450
M2.4: M2.2 except BLEURT	0.033	0.52				101	0.001	0.285	0.860	0.428
M2.5: M2.2 except BLEU	0.041	0.320	0.551	0.925	0.0	(49	0.031	0.295	0.784	0.429
M2.6: M2.2 except SC0	0.024	0.321	0.544	0.928	0.686	5	-0.016	0.286	0.881	0.432
M2.7: M2.2 except SC1	0.039	0.318	0.555	0.873	0.679	-0.1	0.039	0.331	0.500	0.398
STEP 3: Offline tra	aining (Mod	el used: ori	ginal BAl	RT + Rev	wards)					
M3.1: training pairs generated with M2.2 (GYAFC) / M2.3 (YELP)	0.030	0.321	0.560	0.904	0.692	-0.183	0.046	0.316	0.887	0.466
M3.2: training pairs are subset of paraphrase data (same as in M1.2)	0.012	0.229	0.455	0.783	0.576	-0.338	-0.221	0.215	0.457	0.292

Comparison with other systems

GYAFC (FORMALITY TRANSFER)									
MODEL	BLEURT	COMET	BLEU	ACC	HM				
Input Copy	-0.114	0.272	0.474	0.120	0.192				
UnsuperMT (Zhang et al., 2018)	-0.665	-0.446	0.327	0.670	0.439				
DualRL (Luo et al., 2019)	-0.589	-0.451	0.404	0.654	0.499				
StyIns (Yi et al., 2020)	-0.395	-0.112	0.458	0.761	0.573				
Zhou's (Zhou et al., 2020)	-0.454	-0.203	0.447	0.799	0.573				
*TGLS (Li et al. (2020a); $0 \rightarrow 1$)	_	-	0.603	-	-				
Ours (M2.2; lowercase)	0.009	0.328	0.563	0.866	0.682				
Ours (M2.2; lowercase; $0 \rightarrow 1$)	-	-	0.741	-	-				

Comparison with other systems

YELP (POLARITY SWAP)										
MODEL	BLEURT	COMET	BLEU	ACC	HM					
Input Copy	-0.383	-0.139	0.312	0.019	0.036					
Style-Transformer (Dai et al., 2019)	-0.469	-0.269	0.282	0.857	0.424					
DualRL (Luo et al., 2019)	-0.385	-0.202	0.278	0.894	0.424					
StyIns (Yi et al., 2020)	-0.576	-0.390	0.250	0.924	0.394					
Zhou's (Zhou et al., 2020)	-0.270	-0.051	0.302	0.865	0.448					
DGST (Li et al., 2020b)	-0.421	-0.240	0.268	0.781	0.399					
Ours (M3.1)	-0.183	0.046	0.316	0.887	0.466					
-			-							

Example outputs

MODEL	SENTENCE	BLEU	BLEURT	COMET	ACC
Source	So if you're set on that, that's the way to go!!		-		
M0	so if you're set on that, that's the way to go!!	0.417	0.175	0.568	0.000
M1.1	so if you want to do this, this is the way to go!	0.301	0.204	0.354	0.003
M1.2	If you want to do this, this is the way to go	0.416	0.339	0.433	0.855
M2.1	So if you're set on that, that is the way to go.	0.763	0.525	0.689	0.179
M2.2	So, if you are set on that, then that is the way to go.	0.884	0.456	0.722	0.880
M3.1	So if you are set on that, that is the way to go.	0.541	0.941	0.734	0.617
M3.2	If you're on board, that's the way to go.	0.352	0.200	0.311	0.552

if you're set on that -> if you want to do this [thanks to paraphrases!]

Example outputs

MODEL	SENTENCE	BLEU	BLEURT	COMET	ACC
Source	the staff are all super friendly and on top of there jobs.		-		
M0	the staff are all super friendly and on top of there jobs.	0.163	-0.561	-0.169	0.000
M1.1	all the staff are very friendly and they're doing their jobs well.	0.107	-0.571	-0.301	0.003
M1.2	the staff are all super friendly and on top of each same jobs.	0.149	-0.662	-0.507	0.000
M1.3	the staff are all super unfriendly and on top of there jobs.	0.151	-0.239	0.095	1.000
M2.1	the staff are all super rude and on top of there jobs.	0.151	-0.513	0.048	1.000
M2.2	the staff are all super rude and on top of there jobs.	0.151	-0.513	0.048	1.000
M2.3	the staff are all super rude and on top of there jobs.	0.151	-0.513	0.048	1.000
M3.1	the staff are not super friendly or on top of there jobs.	0.320	0.322	0.621	1.000
M3.2	the staff are so friendly and they're doing their jobs.	0.148	-0.663	-0.326	0.001

on top of there jobs -> they're doing their jobs well [thanks to paraphrases!]

Thanks for your attention!

@HuiyuanLai @_atoral @MalvinaNissim @GroNlp

huiyuanlai.l@gmail.com

https://arxiv.org/pdf/2109.04543.pdf

Code Link

https://github.com/laihuiyuan/ Generic-resources-for-TST