89 學年度大學校院積體電設計競賽試題

一、試題說明:

請設計一個 Adaptive Differential PCM 編解碼電路(ADPCM Encoder/Decoder),此一電路包含一個可將 16-bit 訊號壓縮為 4-bit 編碼(Code)之編碼器(Encoder),以及一個可將 4-bit 編碼還原為 16-bit 訊號之解碼器(Decoder),此編解碼電路之功能及規格將詳述於 1-1 及 1-2。參賽者在規定時間內須以 CIC 所提供的 Avant! 0.35 μm cell library,及 Test Bench 完成Front-end 及 Back-end Design 與驗證,並繳交各項設計相關資料以供主辦單位評分(細節詳述於第三節-繳交檔案中)。

1-1 系統描述

假設有一編解碼系統其方塊圖如 Figure 1.所示,此系統中的兩個模組功能簡述如下:

Module Name	Description
Test Bench	Test Module, given
CODEC	CODER/DECODER Module

Figure 1. 資料編解碼系統

Figure 2. 描述這個編解碼系統的時序圖,Test Bench 會產生 CLK 訊號給 CODEC 電路,在資料處理前,Test Bench 會設定 ENCODE_訊號決定讓 CODEC module 執行編碼或解碼(Low 為編碼, High 為解碼)的動作,經過一個 CLOCK 週期之後, Test Bench 產生一個 Low Active RESET_ 訊號, CODEC module 便將內部的暫存器設定初始值,之後, CODEC module 便開始依據 ENCODE_ 訊號做編碼或解碼的運作:若為編碼運算則 CODEC module 須設定 DATA 成為 input port, CODE 成為 output port, 依序在每一個 CLK 上升緣從 DATA 讀入 Test Bench 產生的一個 16-bit 的資料,然後壓縮編碼成 4-bit 資料,再將編碼結果由 CODE 輸出, Test Bench 此時會於每一個 CLK 正緣時,將結果讀入做比對。若為解碼動作,則 CODEC

module 須設定 DATA 成為 output port, CODE 成為 input port, 並於接到 RESET_ 訊號變為 Low 之後,由 CODE 依序讀入一個 4-bit 的資料,然後解壓縮還原成 16-bit 資料,再將解碼結果由 DATA 輸出 Test Bench 做驗證。

CODEC 會持續編碼動作或解碼動作直到 Test Bench 重新設定 ENCODE_ 或 RESET_為止。

Figure 2. 系統時序圖

1-2 功能說明

本電路之編碼器即解碼器架構如 Figure 3 及 Figure 4 所示此,為簡化起見,其參數說明如下:

 X_n : 16-bit 輸入訊號(2's complement 整數),於 CLK 正緣時,由 DATA 取得的值。 \widetilde{X}_n : 16-bit 合成訊號(2's complement 整數), $\widetilde{X}_n = \widetilde{d}_n + \widetilde{X}_{n-1}$,初始值=0,如果 \widetilde{X}_n 餐 生 overflow,即當 $\widetilde{X}_n > 16$ 'h7fff (32767)則 $\widetilde{X}_n = 16$ 'h7fff 或當 $\widetilde{X}_n < 16$ 'h8000(-32768)則 $\widetilde{X}_n = 16$ 'h8000。

 Δ_n : 9-bit 正整數,下一筆的量化步距,每個週期依據所得到的 C_n ,計算下一筆的量化步距: $\Delta_n = \Delta_{n-1} * M(C_n)$, 初始值 = 1 , 若產生 overflow,即當 $(\Delta_{n-1} * M(C_n)) \geq 2^9$,則 $\Delta_n = 9'b11111111111$ (511),若發生 underflow,即當 $(\Delta_{n-1} * M(C_n)) < 1$,則 Δ_n 設成最小值 $(\Delta_n = 1)$ 。而 $\Delta_{n-1} * M(C_n)$ 的小數部分採用無條件消去法,讓 Δ_n 成為 9-bit 正整數。

 C_n : 4-bit 編碼訊號。

 \tilde{d}_n : 13-bit 2's complement 整數,以 Δ_{n-1} 量化所計算出的誤差訊號 (d_n) 即以 Δ_{n-1} 為單位算出最接近 d_n 的整數倍。

 Z^{-1} :Unit delay (暫存器)。

編碼步驟 :將輸入訊號 X_n 與上一次合成的訊號 \widetilde{X}_{n-1} 相減求出誤差訊號 d_n ,然後再將 d_n 依照上一次計算出的 step size 值 Δ_{n-1} 與 Figure 5.的量化曲線對應,其他相關數值對應表描述於 Table 1. 中。編碼壓縮成 C_n 輸出。最後再根據編碼結果 C_n 與 Table 1.步距函數對應,計算出新的 Δ_n 值供下一次運算使用。

解碼步驟 :輸入編碼訊號 C_n ,對應上一次計算出的 Δ_{n-1} 與 Table 2.的反量化表,計算出量化誤差訊號 \widetilde{d}_n 後,再加上上一次合成的訊號 \widetilde{X}_{n-1} ,便可以解碼還原出這一次新的訊號預估值 \widetilde{X}_n 輸出。同時,根據輸入訊號 C_n 與 Table 1.步距函數對應,計算出新的 Δ_n 值供下一次運算使用。

於附表一描述一個範例說明編解碼的動作方式與產生的數值。

注意: 此編解碼器的編碼和解碼動作不會同時進行。

Figure 3. 編碼器架構

Figure 4. 解碼器架構

Figure 5. 編碼量化器曲線對應表

d_n 範圍	Cn	M(Cn)	$\widetilde{d}_{\scriptscriptstyle n}$	Cn	$\widetilde{d}_{\scriptscriptstyle n}$				
$d_n < -\frac{15}{2}\Delta$	1111	2.375	-8 Δ	1111	-8 Δ				
$-\frac{15}{2}\Delta \le d_n < -\frac{13}{2}\Delta$	1110	2.375	-7 Δ	1110	-7 ∆				
$-\frac{13}{2}\Delta \le d_n < -\frac{11}{2}\Delta$	1101	2.0	- 6Δ	1101	-6∆				
$-\frac{11}{2}\Delta \le d_n < -\frac{9}{2}\Delta$	1100	1.625	-5 Δ	1100	-5 ∆				
$-\frac{9}{2}\Delta \le d_n < -\frac{7}{2}\Delta$	1011	1.125	-4 Δ	1011	-4 Δ				
$-\frac{11}{2}\Delta \le d_n < -\frac{9}{2}\Delta$ $-\frac{9}{2}\Delta \le d_n < -\frac{7}{2}\Delta$ $-\frac{7}{2}\Delta \le d_n < -\frac{5}{2}\Delta$	1010	0.875	-3 Δ	1010	-3 ∆				
$-\frac{5}{2}\Delta \le d_n < -\frac{3}{2}\Delta$	1001	0.875	-2 \Delta	1001	-2∆				
$-\frac{3}{2}\Delta \le d_n < -\frac{1}{2}\Delta$	1000	0.875	- Δ	1000	- Δ				
$-\frac{1}{2}\Delta \le d_n < \frac{1}{2}\Delta$	0000	0.875	0	0000	0				
$\frac{1}{2}\Delta \le d_n < \frac{3}{2}\Delta$	0001	0.875	Δ	0001	Δ				
$\frac{3}{2}\Delta \le d_n < \frac{5}{2}\Delta$	0010	0.875	2Δ	0010	2Δ				
$\frac{5}{2}\Delta \le d_n < \frac{7}{2}\Delta$	0011	0.875	3Δ	0011	3Δ				
$\frac{7}{2}\Delta \le d_n < \frac{9}{2}\Delta$	0100	1.125	4Δ	0100	4Δ				
$\frac{9}{2}\Delta \le d_n < \frac{11}{2}\Delta$	0101	1.625	5Δ	0101	5Δ				
$\frac{11}{2}\Delta \le d_n < \frac{13}{2}\Delta$	0110	2.0	6Δ	0110	6Δ				
$\frac{13}{2}\Delta \le d_n$	0111	2.375	7Δ	0111	7Δ				
Table 1 编碼量化哭跑步距調整函數對應表 Table 2 解碼反量化哭									

Table 1. 編碼量化器與步距調整函數對應表

Table 2. 解碼反量化器對應表

二、軟體使用注意事項:

2-1 主辦單位提供以下檔案:

00.README: 說明檔

testfixture.v: 測試檔,含定義 clock 週期與測試值輸入檔。

codec.v:輸入輸出宣告。

synopsys.dc : Synopsys 設定 operating conditions 和 boundary conditions 檔(不含 design

constraint 部分)。

INa.DAT: 4096 筆一般語音的輸入資料以及預期結果檔。

- INb.DAT: 4096 筆由正弦波、鋸齒波、方波、和隨機的亂數組成的輸入資料以及預期結果檔。
- report.000: 本項檔案係用來說明參賽者繳交的各相關檔案之檔案名稱、使用軟體項目、 相關規格及其他說明事項。
- 2-2 請利用 codec.v 內的 module codec 來建立編解碼器,其 IO port 的定義及模組名稱的宣告如下:

module CODEC (DATA, CODE, RESET_, ENCODE_, CLK);

input CLK, ENCODE_, RESET_; inout [15:0] DATA; inout [3:0] CODE;

endmodule

- 2-3 請利用 CIC 提供的 test bench(testfixture.v)來驗證設計的正確性,評審會以此 test bench 來驗證參賽者設計的正確性(另外評審尚會以其他的 test pattern 來驗證參賽者的設計)。
 - i. testfixture.v 中包含 Figure.1. 的 Test Bench , 一開始 Test Bench 會產生 CLK, CODEC_, RESET_,等訊號,驗證編碼動作,首先將 INa.DAT 或 INb.DAT 讀入並每一 CLK 週期將 INa.DAT 或 INb.DAT 一筆一筆的放於 IO port: DATA,並依 Figure. 2 的時序圖,將產生出已編碼的資料從 IO port: CODE 讀入並做驗證,當處理完 4096 筆 輸入的資料後,test bench 會重設 CODEC_, RESET_ 訊號驗證解碼的運作,首先將 INa.DAT 或 INb.DAT 中的解碼預期值讀入並每一 CLK 週期將資料一筆一筆的放於 CODE 並依 Figure. 2 的時序圖,將產生出已編碼的資料從 DATA 讀入並做驗證。故驗證時可以更改 testfixture.v 中所定義的 CYCLE 和 INFILE 來分別改變 CLK 週期和 test pattern 檔。
 - ii. 編解碼都沒有問題會產生 PASS 的提示,如果和參考值不相符,則會顯示出筆數、 錯誤值及參考值。
 - iii. synopsys.dc 提供SYNOPSYS 的基本設定但不包含 design constraints,此 synopsys.dc 只包含:
 - 1. 工作環境為 WCCON.
 - 2. 除 CLK 外,所有 input port 和 inout port 的 driving strength 為 1ns/1pf.
 - 3. 所有的 inout port 的 load 為 1pf.
 - 請利用 Design Analyzer 中的 Setup/Execute Script 來載入 synopsys.dc 或是在dc_shell 中用 "include synopsys.dc" (dc_shell>include synopsys.dc) 來載入設定檔,並產生 gate-level netlist 和 sdf 檔,搭配 Verilog 之模擬。
 - iv. 執行 gate level 模擬時,須搭配 cb35os142.v 和 SYNOPSYS 所產生出的 sdf 檔來模擬。若不是經由 SYNOPSYS 所產生的 gate level netlist 也需要將此 netlist 以 SYNOPSYS 讀入,並配合 synopsys.dc 的設定產生 sdf 檔來配合 Verilog 模擬(細節 請參考 CIC cell-based design kit 中 00.Readme.Verilog 的描述)。

- v. 限定產生 block layout 方式 (即不含 IO pad,只含有 core cell 的方式):
 - 1. power ring 和 power pin 的寬度: vdd! 和 gnd! 皆固定為 20um.
 - 2. Signal pin 的位置由参賽者自行決定。
 - 3. 其餘有關 block layout 應注意的事項 Cadence SE 使用者可參閱下列網站: http://www.cic.edu.tw/~nschang/seflow/hardmacro/hardmacro.htm 的說明, Avanti Apollo 使用者可參閱下列網站:

http://www.cic.edu.tw/~cschen/design_without_pad.html 的說明。

- vi. 佈局驗證 (DRC 和 LVS):
 - ◆ Cadence SE 使用者:請使用 Dracula ,使用 Dracula 作 LVS 需要於 layout 加上 text label ,詳細做法請參閱上述網站之介紹。為避免主辦單位驗證結果時的困擾,所有電路的輸出、輸入及電源等接腳名稱須與題目指定之名稱相同。
 - ◆ Avanti Apollo 使用者:請使用 Apollo 內建之 DRC, LVS 驗證之後,再使用 Dracula double check DRC 部分。
- 三、繳交檔案:參賽隊伍需繳交以下資料:
- 3-1 設計資料庫
 - i. Cadence SE 使用者: Cadence library 完整的設計資料庫(icfb 所建的 library 之目錄),請利用 tar 整合成一個 .tar file. If your library name is **your_lib**:

tar cvf yourname.tar your_lib

You will get yourname.tar file.

Cadence SE 使用者請額外附 SE 所產生的 .def 檔。

ii. Avanti Apollo 使用者:將 Apollo 的 library 目錄,利用 tar 整合成一個 .tar file. If your library directory is **your_lib**:

tar cvf yourname.tar your_lib

You will get yourname.tar file.

- 3-2 Verilog RTL-level synthesizable code 檔案
- 3-3 Verilog gate-level netlist file.
- 3-4 佈局檔 GDSII file。
- 3-5 佈局驗證輸出檔
 - i. Cadence SE 使用者: DRC 結果(*.sum)及 LVS 結果(*.lvs 檔)。
 - ii. Avanti Apollo 使用者: Apollo 內建之 DRC/LVS 結果文字檔和 Dracula DRC 之 *.sum 檔。
- 3-6 如欲說明電路架構及特殊創意之處可另以文字或圖片加以說明。(以 MS-word 檔案或純文字檔描述)
 - ◆ 請另建一個新目錄,並將以上各項需要繳交的檔案複製到此新目錄下。在此目錄下執 行以下指令將所有檔案壓縮並整合為一個檔案:

> compress xxxxxxx.tar

經由以上指令可得到 xxxxxxx.tar.Z 的檔案。

- ◆ 文件說明檔(report.xxx):本項檔案係用來說明參賽者繳交的各相關檔案之檔案名稱、使用軟體項目、相關規格及其他說明事項。本項檔案格式由主辦單位提供,請參照隨題目所取回的檔案中的 report.000 檔,將相關資料名稱填入檔案中。
- ◆ 請將最後壓縮整合的檔案(xxxxxxx.tar.Z)以及文件說明檔(report.xxx)使用 binary 模式 利用 icresult 的帳號及密碼傳送至以下四個傳送網站之一即可。(請先上傳 xxxxxxx.tar.Z, 再上傳 report.xxx)

台灣大學: video4.ee.ntu.edu.tw(140.112.17.192)

晶片中心: dc90.cic.edu.tw(140.126.24.100)

雲林科技大學: cad15.cad.el.yuntech.edu.tw(140.125.35.15)

成功大學:cad9.ee.ncku.edu.tw(140.116.156.159)

傳送的目錄為 grad_cell/參賽隊號。

- ◆ 各項設計資料檔如需更新時,請重複以上步驟,並另取新的檔名傳送,注意務必更改文件說明檔 report.xxx 的相關內容。
- ◆ 文件說明檔的檔名須以 report 為檔名開頭,副檔名請以數字依序命名,如 report.000 代表原始檔名, report.001代表第一個更新版本,如另有更新,請依此類推。
- ◆ 其他相關事項請參考參賽手冊。

四、評分方式:

4-1 經主辦單位驗證其電路功能正確及各項資料完備者使予以完整計分,如果資料不完備或設計不完整者,將依照其設計完成程度酌予給分。

4-2 分數計算公式為:

If
$$(Time \ge 25)$$
 then

$$Score = Area \times (\frac{Time}{25})^2$$

else

$$Score = Area \times \sqrt{\frac{Time}{25}}$$

Time: clock period , 單位為 ns 。

Area: design boundary 的面積,即 Silicon Ensemble 視窗中,圍繞在晶片周圍的紫色框的面積或是 Apollo 的黃色虛線框的面積。

Score 最低者為第一名,若有分數相同者幾接近者,由評審委員依照各設計之創意排定名次。

附件一、範例:

底下為一範例之時序表,全部採用16進位表示:

	Encoding								Decoding					
時序	X_n	\widetilde{x}_{n-1}	d_{n}	Δ_{n-1}	Cn	\widetilde{d}_n	$\widetilde{\chi}_n$	Δ_n	Cn	$\widetilde{\widetilde{d}}_n$	$\widetilde{\chi}_{n-1}$	Δ_{n-1}	\widetilde{X}_n	
0	0	0	0	1	0	0	0	1	0	0	0	1	0	
1	39	0	39	1	7	7	7	2	7	7	0	1	7	
2	80	7	79	2	7	e	15	4	7	e	7	2	15	
3	9a	15	85	4	7	1c	31	9	7	1c	15	4	31	
4	8c	31	5b	9	7	3f	70	15	7	3f	31	9	70	
5	61	70	fff1	15	8	1feb	5b	12	8	1feb	70	15	5b	
6	4d	5b	fff2	12	8	1fee	49	f	8	1fee	5b	12	49	
7	37	49	ffee	f	8	1ff1	3a	d	8	1ff1	49	f	3a	
8	46	3a	c	d	1	d	47	b	1	d	3a	d	47	
9	61	47	1a	b	2	16	5d	9	2	16	47	b	5d	
a	1f	5d	ffc2	9	e	1fc1	1e	15	e	1fc1	5d	9	1e	
b	ffd0	1e	ffb2	15	b	1fac	ffca	17	b	1fac	1e	15	ffca	
c	ff81	ffca	ffb7	17	a	1fbb	ff85	14	a	1fbb	ffca	17	ff85	
d	ff81	ff85	fffc	14	0	0	ff85	11	0	0	ff85	14	ff85	
e	ffad	ff85	28	11	2	22	ffa7	e	2	22	ff85	11	ffa7	
f	ffcd	ffa7	26	e	3	2a	ffd1	c	3	2a	ffa7	e	ffd1	
10	f	ffd1	3e	c	5	3c	d	13	5	3c	ffd1	С	d	
11	46	d	39	13	3	39	46	10	3	39	d	13	46	
12	67	46	21	10	2	20	66	e	2	20	46	10	66	
13	82	66	1c	e	2	1c	82	c	2	1c	66	e	82	
14	a9	82	27	c	3	24	a6	a	3	24	82	С	a6	
15	ac	a6	6	a	1	a	b0	8	1	a	a6	a	b0	
16	98	b0	ffe8	8	a	1fe8	98	7	a	1fe8	b0	8	98	
17	a5	98	d	7	2	e	a6	6	2	e	98	7	a6	
18	a4	a6	fffe	6	0	0	a6	5	0	0	a6	6	a6	
19	8c	a6	ffe6	5	c	1fe7	8d	8	С	1fe7	a6	5	8d	
1a	8c	8d	ffff	8	0	0	8d	7	0	0	8d	8	8d	

在時序 1 時,輸入 X_n 為 0x39, delay element 的輸出 \widetilde{x}_{n-1} 為 0,故 d_n 的結果為 0x39,此 時 Δ_{n-1} 為 0x1 ,經 遇 Table 2 的 對 應 表 得 C_n 為 0x7 ,並 更 新 delay element 的 值: \widetilde{x}_n =0x7; Δ_n =0x2,在 時序 2 時,輸入 X_n 為 0x80, delay element 的輸出 \widetilde{x}_{n-1} 為 時序 0 所 更 新 的 值: 0x7,故 d_n 的 結果為 0x79,此 時 Δ_{n-1} 為 時序 0 更 新 的 值: 0x2,經 過 Table 2 的 對 應 表 得 C_n 為 0x7,並 更 新 delay element 的 值: \widetilde{x}_n =0x15; Δ_n =0x4,依 此 方 式 運 作。