Contents

Preface		v
Chap	oter 1. General theory of eigenstrains	1
1.	Definition of eigenstrains	1
2.	Fundamental equations of elasticity	3
	Hooke's law	3
	Equilibrium conditions	5
	Compatibility conditions	6
3.	General expressions of elastic fields for given eigenstrain	
	distributions	7
	Periodic solutions	7
	Method of Fourier series and Fourier integrals	9
	Method of Green's functions	11
	Isotropic materials	13
	Cubic crystals	14
	Hexagonal crystals (transversely isotropic)	14
4.	Exercises of general formulae	15
	A straight screw dislocation	15
	A straight edge dislocation	18
	Periodic distribution of cuboidal precipitates	20
5.	Static Green's functions	21
	Isotropic materials	22
	* Anisotropic materials	25
	* Transversely isotropic materials	26
	* Kröner's formula	31
	* Derivatives of Green's functions	32
_	* Two-dimensional Green's function	34
6.	Inclusions and inhomogeneities	38
	Inclusions	38
	Inhomogeneities	40
	* Effect of isotropic elastic moduli on stress	42

	^
V111	Contents
4 111	Contents

7.	Dislocations	44
	Volterra and Mura formulas	45
	* The Indenbom and Orlov formula	48
	* Disclinations	49
8.	Dynamic solutions	53
	Uniformly moving edge dislocation	55
	Uniformly moving screw dislocation	57
* 9.	Dynamic Green's functions	57
	Isotropic materials	61
	Steady State	64
*10.	Incompatibility	65
	* Riemann-Christoffel curvature tensor	71
Chap	ter 2. Isotropic inclusions	74
_	Eshelby's solution	74
	Interior points	75
	Sphere	79
	Elliptic cylinder	80
	Penny-shape	81
	Flat ellipsoid	83
	Oblate spheroid	84
	Prolate spheroid	84
	Exterior points	84
	Thermal expansion with central symmetry	88
*12.	Ellipsoidal inclusions with polynomial eigenstrains	89
	* The I-integrals	92
	* Sphere	93
	* Elliptic cylinder	94
	* Oblate spheroid	94
	* Prolate spheroid	94
	* Elliptical plate	95
	* The Ferrers and Dyson formula	95
13.	Energies of inclusions	97
	Elastic strain energy	97
	Interaction energy	99
	Strain energy due to a spherical inclusion	101
	Elliptic cylinder	101
	Penny-shaped flat ellipsoid	101
	Spheroid	102
*14.	Cuboidal inclusions	104

Contents

15.	Inclusions in a half space	110
	Green's functions	110
	Ellipsoidal inclusion with a uniform dilatational eigen-	
	strain	114
	* Cuboidal inclusion with uniform eigenstrains	121
	* Periodic distribution of eigenstrains	121
	Joined half-spaces	123
Chau	ter 3. Anisotropic inclusions	129
16.		129
17.	Formulae for interior points	133
	Uniform eigenstrains	134
	Spheroid	137
	Cylinder (elliptic inclusion)	141
	Flat ellipsoid	143
	Eigenstrains with polynomial variation	144
	Eigenstrains with a periodic form	144
*18.	Formulae for exterior points	149
	Examples	156
19.	Ellipsoidal inclusions with polynomial eigenstrains in aniso-	
	tropic media	158
	Special cases	160
*20.	Harmonic eigenstrains	161
21.	Periodic distribution of spherical inclusions	165
Chap	ter 4. Ellipsoidal inhomogeneities	177
22.	Equivalent inclusion method	178
	Isotropic materials	181
	Sphere	183
	Penny shape	184
	Rod	185
	Amsotropic inhomogeneities in isotropic matrices	187
	Stress field for exterior points	187
23.	Numerical calculations	188
	Two ellipsoidal inhomogeneities	192
*24.	Impotent eigenstrains	198
25.	Energies of inhomogeneities	204
	Elastic strain energy	204
	Interaction energy	208
	Colunneti's theorem	211
	Uniform plastic deformation in a matrix	213
	Energy balance	215

X Contents

26.	Precipitates and martensites	218
	Isotropic precipitates	219
	Anistropic precipitates	220
	Incoherent precipitates	226
	Martensitic transformation	229
	Stress orienting precipitation	237
Chap	ter 5. Cracks	240
27.	Critical stresses of crakes in isotropic media	240
	Penny-shaped cracks	240
	Slit-like cracks	242
	Flat ellipsoidal cracks	244
	Crack opening displacement	247
28.	Critical stresses of cracks in anisotropic media	248
	Uniform applied stress	248
	Non-uniform applied stress	253
	* Π integrals for a penny-shaped crack	255
	* II integrals for cubic crystals	255
	* Π integrals for transversely isotropic materials	257
29.	Stress intensity factor for a flat ellipsoidal crack	260
	Uniform applied stresses	264
	Non-uniform applied stresses	268
30.	Stress intensity factor for a slit-like crack	271
	Uniform applied stresses	272
	Non-uniform applied stresses	274
	Isotropic materials	274
31.	Stress concentration factors	277
	Simple tension	278
	Pure shear	279
32.	Dugdale-Barenblatt cracks	280
	BCS model	288
	Penny shaped crack	292
*33.	Stress intensity factor for an arbitrarily shaped plane crack	297
	* Numerical examples	305
34.	Crack growth	307
	Energy release rate	307
	The J-integral	311
	Fatigue	314
	Dynamic crack growth	319

	•
	X1
Contents	AI .
Contents	

Chap	oter 6. Dislocations	324
35.		324
_	Parallel dislocations	325
	A straight dislocation	327
36.	Stress fields	327
	Dislocation segments	328
	Willis' formula	333
	The Asaro et al. formula	334
	Dislocation loops	335
37.	Dislocation density tensor	338
	Surface dislocation density	341
	Impotent distribution of dislocations	343
38.	Dislocation flux tensor	345
	Line integral expression of displacement and plastic dis-	
	tortion fields	348
	The elastic field of moving dislocationswave equations of	
	tensor potentials.	351
	Wave equations of tensor potentials	352
39.	Energies and forces	353
	Dynamic consideration	354
40.	Plasticity	361
	Mathematical theory of plasticity	361
	Dislocation theory	363
	Plane strain problems	365
	Beams and cylinders	373
41.	Dislocation model for fatigue crack initiation	379
Chap	oter 7. Material properties and related topics	388
42.	Macroscopic average	388
	Average of internal stresses	388
	Macroscopic strains	389
	Tanaka-Mori's theorem	390
	Image stress	393
	Random distribution of inclusions-Mori and Tanaka's	
	theory	394
43.	Work-hardening of dispersion hardened alloys	398
	Work-hardening in simple shear	398
	Dislocations around an inclusion	402
_	Uniformity of plastic deformation	405
44.	Diffusional relaxation of internal and external stresses	406
	Relaxation of the internal stress in a plastically deformed	
	dispersion strenthened alloy	407

xii Contents

	Diffusional relaxation process, climb rate of an Orowan	
	loop	408
	Recovery creep of a dispersion strengthened alloy	412
	Interfacial diffusional relaxation	414
45.	Average elastic moduli of composite materials	421
	The Voigt approximation	421
	The Reuss approximation	424
	Hill's theory	426
	Eshelby's method	428
	Self-consistent method	430
	Upper and lower bounds	433
	Other related works	437
4 6.	Plastic behavior of polycrystalline metals and composites	439
	Taylor's analysis	439
	Self-consistent method	443
	Embedded weakened zone	448
4 7.	Viscoelasticity of composite materials	449
	Homogeneous inclusions	449
	Inhomogeneous inclusions	452
	Waves in an infinite medium	453
48.	Elastic wave scattering	455
	Dynamic equivalent inclusion method	459
	Green's formula	460
49.	Interaction between dislocations and inclusions	463
	Inclusions and dislocations	463
	Cracks in two-phase materials	471
50.	Eigenstrains in lattice theory	477
	A uniformly moving screw dislocation	480
51.	Sliding inclusions	484
	Shearing Eigenstrains	486
	Spheroidol inhomogeneous inclusions	488
52.	Recent developments	492
	Inclusions, precipitates, and composites	492
	Half-spaces	494
	Non-elastic matrices	494
	Cracks and inclusions	495
	Sliding and debonding inclusions	497
	Dynamic cases	497
	Miscellaneous	498

Contents	
Appendix 1	499
Einstein summation convention	499
Kronecker delta	499
Permutation tensor	499
Appendix 2	501
The elastic moduli for isotropic materials	501
Appendix 3	
Fourier series and integrals	505
Dirac's delta function and Heaviside's unit function	507
Laplace transform	508
Appendix 4	510
Dislocations pile-up	510
References	513
Author index	572
Subject index	582

General theory of eigenstrains

The definition of eigenstrains is given first. Then the associated general solutions for elastic fields for given eigenstrains are expressed by Fourier integrals and Green's functions. Some details of calculations for Green's functions are described for static and dynamic cases.

As fundamental formulae for the subsequent chapters, general expressions of elastic fields are given for inclusions, dislocations, and disclinations. The stress discontinuity on boundaries of inclusions and the incompatibility of eigenstrains are discussed as general theories.

Throughout this work, a fixed rectangular Cartesian coordinate system with coordinate axes x_i , i = 1, 2, 3, is used.

1. Definition of eigenstrains

'Eigenstrain' is a generic name given by the author to such nonelastic strains as thermal expansion, phase transformation, initial strains, plastic strains, and misfit strains. 'Eigenstress' is a generic name given to self-equilibrated internal stresses caused by one or several of these eigenstrains in bodies which are free from any other external force and surface constraint. The eigenstress fields are created by the incompatibility of the eigenstrains.

This new English terminology was adapted from the German 'Eigenspannungen und Eigenspannungsquellen,' which is the title of H. Reissner's paper (1931) on residual stresses. Eshelby (1957) referred to eigenstrains as stress-free transformation strains in his celebrated paper which has stimulated the present author to work on inclusion and dislocation problems. The term 'elastic polarization' was used by Kröner (1958) for eigenstrains in a slightly different context—when the nonhomogeneity of polycrystal deformation is under consideration.

Engineers have used the term 'residual stresses' for the self-equilibrated internal stresses when they remain in materials after fabrication or plastic deformation. Eigenstresses are called thermal stresses when thermal expansion

Fig 11 Inclusion Ω

is a cause of the corresponding elastic fields. For example, when a part Ω of a material (Fig. 1.1) has its temperature raised by T, thermal stress σ_{ij} is induced in the material D by the constraint from the part which surrounds Ω . The thermal expansion αT , where α is the linear thermal expansion coefficient, constitutes the thermal expansion strain,

$$\epsilon_{ij}^* = \delta_{ij} \alpha T, \tag{1.1}$$

where δ_{ij} is the Kronecker delta (see Appendix 1). The thermal expansion strain is the strain caused when Ω can be expanded freely with the removal of the constraint from the surrounding part.

The actual strain is then the sum of the thermal and elastic strains. The elastic strain is related to the thermal stress by Hooke's law. The thermal expansion strain (1.1) is a typical example of an eigenstrain. In the elastic theory of eigenstrains and eigenstresses, however, it is not necessary to attribute ϵ_{ij}^* to any specific source. The source could be phase transformation, precipitation, plastic deformation or a fictitious source necessary for the equivalent inclusion method (to be discussed in Section 22).

When an eigenstrain ϵ_{ij}^* is prescribed in a finite subdomain Ω in a homogeneous material D (see Fig. 1.1) and it is zero in the matrix D- Ω , then Ω is called an inclusion. The elastic moduli of the material are assumed to be homogeneous when inclusions are under consideration.

If a subdomain Ω in a material D has elastic moduli different from those of the matrix, then Ω is called an inhomogeneity. Applied stresses will be disturbed by the existence of the inhomogeneity. This disturbed stress field will be simulated by an eigenstress field by considering a fictitious eigenstrain ϵ_{ij}^* in Ω in a homogeneous material.

When Ω in Fig. 1.1 is a plane embedded in a three-dimensional material D and ϵ_{ij}^* is given on Ω as a plastic strain caused by a finite slip b, the boundary

3

of Ω is called a dislocation loop. If ϵ_{ij}^* is created by a rigid rotation of plane Ω by ω , the boundary of Ω is called a disclination loop.

2. Fundamental equations of elasticity

In this section the field equations for the elasticity theory will be reviewed with particular reference to solving eigenstrain problems. These problems consist of finding displacement u_i , strain ϵ_{ij} , and stress σ_{ij} at an arbitrary point $x(x_1, x_2, x_3)$ when a free body D is subjected to a given distribution of eigenstrain ϵ_{ij}^* . A free body is one which is free from any external surface or body force.

Hooke's law

For infinitesimal deformations considered in this book, the total strain ϵ_{ij} is regarded as the sum of elastic strain e_{ij} and eigenstrain ϵ_{ij}^* ,

$$\epsilon_{ij} = e_{ij} + \epsilon_{ij}^*. \tag{2.1}$$

The total strain must be compatible,

$$\epsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}), \tag{2.2}$$

where $u_{i,j} = \partial u_i / \partial x_j$.

The elastic strain is related to stress σ_{ij} by Hooke's law;

$$\sigma_{ij} = C_{ijkl} e_{kl} = C_{ijkl} (\epsilon_{kl} - \epsilon_{kl}^*)$$
(2.3)

or

$$\sigma_{ij} = C_{ijkl} (u_{k,l} - \epsilon_{kl}^*), \tag{2.4}$$

where C_{ijkl} are the elastic moduli (constants) (see Appendix 2), and the summation convention for the repeated indices is employed (see Appendix 1). Since C_{ijkl} is symmetric ($C_{ijlk} = C_{ijkl}$), we have $C_{ijkl}u_{l,k} = C_{ijkl}u_{k,l}$. In the domain where $\epsilon_{ij}^* = 0$, (2.4) becomes

$$\sigma_{ij} = C_{ijkl} \epsilon_{kl} = C_{ijkl} u_{k,l}. \tag{2.5}$$

The inverse expression of (2.3) is

$$\epsilon_{ij} - \epsilon_{ij}^* = C_{ijkl}^{-1} \sigma_{kl}, \tag{2.6}$$

where C_{ijkl}^{-1} is the elastic compliance.

For isotropic materials, (2.3) and (2.6) can be written as

$$\sigma_{ij} = 2\mu \left(\epsilon_{ij} - \epsilon_{ij}^* \right) + \lambda \delta_{ij} \left(\epsilon_{kk} - \epsilon_{kk}^* \right),$$

$$\epsilon_{ij} - \epsilon_{ij}^* = \left\{ \sigma_{ij} - \delta_{ij} \sigma_{kk} \nu / (1 + \nu) \right\} / 2\mu,$$
(2.7)

where λ and μ are the Lamé constants, and ν is Poisson's ratio. Young's modulus E, the shear modulus μ , and the bulk modulus K are connected by $2\mu = E/(1+\nu)$, $K = E/3(1-2\nu)$, and $\lambda = 2\mu\nu/(1-2\nu)$. The alternative expressions for (2.7) are

$$\sigma_{x} = \frac{E}{1+\nu} \left\{ \left(\epsilon_{x} - \epsilon_{x}^{*} \right) + \frac{\nu}{1-2\nu} \left(\epsilon_{kk} - \epsilon_{kk}^{*} \right) \right\},$$

$$\sigma_{y} = \frac{E}{1+\nu} \left\{ \left(\epsilon_{y} - \epsilon_{y}^{*} \right) + \frac{\nu}{1-2\nu} \left(\epsilon_{kk} - \epsilon_{kk}^{*} \right) \right\},$$

$$\sigma_{z} = \frac{E}{1+\nu} \left\{ \left(\epsilon_{z} - \epsilon_{z}^{*} \right) + \frac{\nu}{1-2\nu} \left(\epsilon_{kk} - \epsilon_{kk}^{*} \right) \right\},$$

$$\sigma_{x\nu} = \frac{E}{1+\nu} \left(\epsilon_{xy} - \epsilon_{xy}^{*} \right),$$

$$\sigma_{yz} = \frac{E}{1+\nu} \left(\epsilon_{yz} - \epsilon_{yz}^{*} \right),$$

$$\sigma_{zx} = \frac{E}{1+\nu} \left(\epsilon_{zx} - \epsilon_{zx}^{*} \right),$$

$$(2.8)$$

and

$$\epsilon_{x} - \epsilon_{x}^{*} = \left\{ \sigma_{x} - \nu (\sigma_{y} + \sigma_{z}) \right\} / E,$$

$$\epsilon_{y} - \epsilon_{y}^{*} = \left\{ \sigma_{y} - \nu (\sigma_{z} + \sigma_{x}) \right\} / E,$$

$$\epsilon_{z} - \epsilon_{z}^{*} = \left\{ \sigma_{z} - \nu (\sigma_{x} + \sigma_{y}) \right\} / E,$$

$$\epsilon_{xy} - \epsilon_{xy}^{*} = \frac{1 + \nu}{E} \sigma_{xy},$$

$$\epsilon_{yz} - \epsilon_{yz}^{*} = \frac{1 + \nu}{E} \sigma_{yz},$$

$$\epsilon_{zx} - \epsilon_{zx}^{*} = \frac{1 + \nu}{E} \sigma_{zx},$$
(2.9)

5

where $\epsilon_{kk} = \epsilon_x + \epsilon_y + \epsilon_z$ and $\epsilon_{kk}^* = \epsilon_x^* + \epsilon_y^* + \epsilon_z^*$. It is convenient to use (2.8) for the plane strain case where $\epsilon_z = 0$. Expression (2.9) is recommended for the plane stress case where $\sigma_z = \sigma_{zx} = \sigma_{zy} = 0$. It should be noted that solutions for the plane stress can be obtained directly from those for the plane strain by replacing $E/(1-\nu^2)$ with E and $\nu/(1-\nu)$ with ν .

When Hooke's law (2.8) is rewritten for the two-dimensional case, we have

$$\sigma_{x} = \frac{\mu}{\kappa - 1} \left\{ (\kappa + 1)(\epsilon_{x} - \epsilon_{x}^{*}) + (3 - \kappa)(\epsilon_{y} - \epsilon_{y}^{*}) \right\},$$

$$\sigma_{y} = \frac{\mu}{\kappa - 1} \left\{ (\kappa + 1)(\epsilon_{y} - \epsilon_{y}^{*}) + (3 - \kappa)(\epsilon_{x} - \epsilon_{x}^{*}) \right\},$$

$$\sigma_{xy} = 2\mu(\epsilon_{xy} - \epsilon_{xy}^{*}),$$

$$\sigma_{z} = \sigma_{zx} = \sigma_{zy} = 0,$$

$$(2.9.1)$$

for the plane stress and $\kappa = (3 - \nu)/(1 + \nu)$. For the plane strain, we have

$$\sigma_{x} = \frac{\mu}{\kappa - 1} \left\{ (\kappa + 1)(\epsilon_{x} - \epsilon_{x}^{*} - \nu \epsilon_{z}^{*}) + (3 - \kappa)(\epsilon_{y} - \epsilon_{y}^{*} - \nu \epsilon_{z}^{*}) \right\},$$

$$\sigma_{y} = \frac{\mu}{\kappa - 1} \left\{ (\kappa + 1)(\epsilon_{y} - \epsilon_{y}^{*} - \nu \epsilon_{z}^{*}) + (3 - \kappa)(\epsilon_{x} - \epsilon_{x}^{*} - \nu \epsilon_{z}^{*}) \right\},$$

$$\sigma_{xy} = 2\mu(\epsilon_{xy} - \epsilon_{xy}^{*}),$$

$$\sigma_{z} = -\frac{\kappa + 1}{\kappa - 1}\mu\epsilon_{z}^{*} + \frac{3 - \kappa}{\kappa - 1}\mu(\epsilon_{x} + \epsilon_{y} - \epsilon_{x}^{*} - \epsilon_{y}^{*}),$$

$$\sigma_{zx} = \sigma_{zy} = 0,$$

$$(2.9.2)$$

where $\kappa = 3 - 4\nu$.

Equilibrium conditions

When eigenstresses are calculated, material domain D is assumed to be free from any external force and any surface constraint. If these conditions for the free body are not satisfied, the stress field can be constructed from the superposition of the eigenstress of the free body and the solution of a proper boundary value problem.

The equations of equilibrium are

$$\sigma_{ij,j} = 0 \quad (i = 1, 2, 3).$$
 (2.10)

The boundary conditions for free external surface forces are

$$\sigma_{ij}n_{j}=0, (2.11)$$

where n_i is the exterior unit normal vector on the boundary of D. By substituting (2.4) into (2.10) and (2.11), we have

$$C_{ijkl}u_{k,lj} = C_{ijkl}\epsilon_{kl,j}^* \tag{2.12}$$

and

$$C_{ijkl}u_{k,l}n_j = C_{ijkl}\epsilon_{kl}^*n_j. \tag{2.13}$$

It can be seen that the contribution of ϵ_{ij}^* to the equations of equilibrium is similar to that of a body force since the equations of equilibrium under body force X_i with zero ϵ_{ij}^* are $C_{ijkl}u_{k,lj} = -X_i$. Similarly, $C_{ijkl}\epsilon_{kl}^*n_j$ behaves like a surface force on the boundary. Thus, it can be said that the elastic displacement field caused by ϵ_{ij}^* in a free body is equivalent to that caused by body force $-C_{ijkl}\epsilon_{kl,j}^*$ and surface force $C_{ijkl}\epsilon_{kl}^*n_j$.

In subsequent chapters, D in most cases is considered as an infinitely extended body (infinite body), and condition (2.11) is replaced by the condition $\sigma_{ij}(x) \to 0$ for $x \to \infty$.

Compatibility conditions

The strain tensor ϵ_{ij} has six components, while the displacement vector u_i has three components. The tensor and the vector are related to each other through the relation (2.2), which can be called the condition for the compatibility of strain ϵ_{ij} . Generally, however, the equations of compatibility are referred to the relations which are derived from (2.2) by eliminating u_i ,

$$\epsilon_{pki}\epsilon_{qlj}\epsilon_{ij,kl} = 0, \tag{2.14}$$

where ϵ_{pki} is the permutation tensor (see Appendix 1). Relation (2.14) will be discussed in Section 10.

The displacement differential equations of the elasticity theory are given by (2.12). In some cases, however, it is more convenient to consider (2.10), (2.3), and (2.14). Boundary conditions and various side conditions, such as singularity conditions, continuity conditions, etc., arise in problems from time to time. We can say at this point that the fundamental equations to be solved are equations (2.12).

Eigenstresses are caused by constraint from the surrounding elastic medium which prohibits the geometrically incompatible deformation of ϵ_{ij}^* . The incompatibility of ϵ_{ij}^* was discussed by Reissner (1931) and Neményi (1931). Dislocations due to incompatibility were studied by Weingarten (1901), Cesáro (1906), Volterra (1907), and Moriguti (1947) from the viewpoint of the elasticity theory in connection with the multiple values of displacements and rotations. Another viewpoint on dislocations, from the plasticity theory, was developed by Kondo (1955), Bilby (1960), and Kröner (1958).

In the following sections we investigate the methods of finding the associated elastic fields (displacements, strains, stresses) and the related problems for given distributions of ϵ_{ij}^* . Particular emphasis will be placed on the case when a uniform ϵ_{ij}^* is given in an ellipsoidal domain Ω in an infinitely extended medium D. The results are useful for the study of the mechanical properties of solids which may contain precipitates, inclusions, voids, cracks, etc. The most fundamental contribution to this study was made by Eshelby (1951, 1956, 1957, 1959 and 1961).

3. General expressions of elastic fields for given eigenstrain distributions

The case where a given material is infinitely extended is of particular interest for the mathematical simplicity of the solution as well as for its practical importance. When the solution is applied to inclusion problems, it can be assumed with sufficient accuracy that the materials are infinitely extended since the size of the inclusions is relatively small compared to the size of the macroscopic material samples.

The fundamental equations to be solved for given ϵ_{ij}^* , (2.12), are

$$C_{ijkl}u_{k,l_l} = C_{ijkl}\epsilon_{kl_{l,l}}^*. \tag{3.1}$$

Periodic solutions

Suppose $\epsilon_{ij}^*(x)$ is given in the form of a single wave of amplitude $\bar{\epsilon}_{ij}^*(\xi)$, where ξ is the wave vector corresponding to the given period of the distribution,

$$\epsilon_{ij}^*(\mathbf{x}) = \bar{\epsilon}_{ij}^*(\xi) \exp(i\xi \cdot \mathbf{x}),$$
 (3.2)

where $i = \sqrt{-1}$ and $\xi \cdot x = \xi_k x_k$.

The solution of (3.1) corresponding to this distribution may also be expressed in the form of a single wave of the same period, that is,

$$u_i(\mathbf{x}) = \bar{u}_i(\xi) \exp(i\xi \cdot \mathbf{x}). \tag{3.3}$$

Substituting (3.2) and (3.3) into (3.1), we have

$$C_{ijkl}\bar{u}_k\xi_l\xi_j = -iC_{ijkl}\bar{\epsilon}_{kl}^*\xi_j \tag{3.4}$$

where in the derivation $(i\boldsymbol{\xi} \cdot \boldsymbol{x})_{,l} = i\boldsymbol{\xi}_{l}$ is used. Expression (3.4) stands for three equations (i = 1, 2, 3) for determining the three unknowns \bar{u}_{i} for given $\bar{\epsilon}_{ij}^{*}$. Using the notation

$$K_{ik}(\boldsymbol{\xi}) = C_{ijkl} \boldsymbol{\xi}_j \boldsymbol{\xi}_l,$$

$$X_i = -iC_{ijkl} \tilde{\epsilon}_{kl}^* \boldsymbol{\xi}_j,$$
(3.5)

we can write (3.4) as

$$K_{11}\bar{u}_1 + K_{12}\bar{u}_2 + K_{13}\bar{u}_3 = X_1,$$

$$K_{21}\bar{u}_1 + K_{22}\bar{u}_2 + K_{23}\bar{u}_3 = X_2,$$

$$K_{31}\bar{u}_1 + K_{32}\bar{u}_2 + K_{33}\bar{u}_3 = X_3.$$

$$(3.6)$$

Then, \bar{u}_i is obtained as

$$\bar{u}_i(\xi) = X_i N_{ij}(\xi) / D(\xi),$$
 (3.7)

where N_{ij} are cofactors of the matrix

$$K(\xi) = \begin{pmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{pmatrix}$$
(3.8)

and $D(\xi)$ is the determinant of $K(\xi)$. Note that $K_{ki} = C_{kjil}\xi_j\xi_l = C_{klij}\xi_l\xi_j = C_{ijkl}\xi_l\xi_j = K_{ik}$ due to the symmetry of the elastic constants $C_{ijkl} = C_{klij}$, and that $N_{ij} = N_{ji}$. The explicit expressions for $D(\xi)$ and $N_{ij}(\xi)$ are

$$D(\xi) = \epsilon_{mnl} K_{m1} K_{n2} K_{l3},$$

$$N_{ij}(\xi) = \frac{1}{2} \epsilon_{ikl} \epsilon_{jmn} K_{km} K_{ln}$$

$$= K_{lm} K_{mj} - K_{mm} K_{lj}$$

$$+ (\epsilon_{mn1} K_{m2} K_{n3} + \epsilon_{mn2} K_{m3} K_{n1} + \epsilon_{mn3} K_{m1} K_{n2}) \delta_{ij},$$
(3.9)

where ϵ_{ijk} is the permutation tensor.

Substituting (3.7) into (3.3), we have

$$u_{i}(x) = -iC_{jlmn}\bar{\epsilon}_{mn}^{*}(\xi)\xi_{l}N_{ij}(\xi)D^{-1}(\xi)\exp(i\xi \cdot x). \tag{3.10}$$

The corresponding strain and stress are obtained from (2.2) and (2.4) as

$$\epsilon_{ij}(x) = \frac{1}{2}C_{klmn}\tilde{\epsilon}_{mn}^*(\xi)\xi_l\{\xi_j N_{ik}(\xi) + \xi_i N_{jk}(\xi)\}D^{-1}(\xi)\exp(i\xi \cdot x)$$
(3.11)

and

$$\sigma_{ij}(\mathbf{x}) = C_{ijkl} \left\{ C_{pqmn} \bar{\epsilon}_{mn}^*(\boldsymbol{\xi}) \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi}) \exp(i\boldsymbol{\xi} \cdot \mathbf{x}) - \epsilon_{kl}^*(\mathbf{x}) \right\}, \quad (3.12)$$

where $D^{-1} = 1/D$. The above result was used by Mura (1964) for periodic distributions of dislocations and by Khachaturyan (1967) for a coherent inclusion of a new phase.

Method of Fourier series and Fourier integrals

The linear theory of elasticity allows for the superposition of solutions. If $\epsilon_{ij}^*(x)$ is given in the Fourier series form,

$$\epsilon_{ij}^*(x) = \sum \bar{\epsilon}_{ij}^*(\xi) \exp(i\xi \cdot x), \tag{3.13}$$

the corresponding displacement, strain and stress are then obtained as superpositions of the solutions for single waves of the form (3.2), namely,

$$u_i(\mathbf{x}) = -i \sum_{l l m n} \bar{\epsilon}_{mn}^*(\boldsymbol{\xi}) \xi_l N_{ij}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi}) \exp(i \boldsymbol{\xi} \cdot \mathbf{x}),$$

$$\epsilon_{ij}(\mathbf{x}) = \frac{1}{2} \sum_{l l m n} \bar{\epsilon}_{mn}^*(\boldsymbol{\xi}) \xi_l \{ \xi_j N_{ik}(\boldsymbol{\xi}) + \xi_i N_{jk}(\boldsymbol{\xi}) \} D^{-1}(\boldsymbol{\xi}) \exp(i \boldsymbol{\xi} \cdot \mathbf{x}),$$

(3.14)

$$\sigma_{ij}(\mathbf{x}) = C_{ijkl} \Big\{ \sum C_{pqmn} \bar{\epsilon}_{mn}^*(\boldsymbol{\xi}) \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi}) \exp(i\boldsymbol{\xi} \cdot \boldsymbol{x}) - \epsilon_{kl}^*(\boldsymbol{x}) \Big\},$$

where the summations in (3.13) and (3.14) are taken with respect to ξ . Similarly, if ϵ_{ij}^* is given by the Fourier integral form (see Appendix 3),

$$\epsilon_{ij}^*(x) = \int_{-\infty}^{\infty} \bar{\epsilon}_{ij}^*(\xi) \exp(i\xi \cdot x) \, \mathrm{d}\xi, \tag{3.15}$$

where

$$\bar{\epsilon}_{ij}^*(\xi) = (2\pi)^{-3} \int_{-\infty}^{\infty} \epsilon_{ij}^*(x) \exp(-i\xi \cdot x) \, \mathrm{d}x, \qquad (3.16)$$

we have

$$u_i(x) = -i \int_{-\infty}^{\infty} C_{jlmn} \bar{\epsilon}_{mn}^*(\xi) \xi_l N_{ij}(\xi) D^{-1}(\xi) \exp(i\xi \cdot x) d\xi,$$

$$\epsilon_{ij}(\mathbf{x}) = \frac{1}{2} \int_{-\infty}^{\infty} C_{klmn} \tilde{\epsilon}_{mn}^{*}(\boldsymbol{\xi}) \xi_{l} \{ \xi_{j} N_{ik}(\boldsymbol{\xi}) + \xi_{i} N_{jk}(\boldsymbol{\xi}) \} D^{-1}(\boldsymbol{\xi})$$

$$\times \exp(i\boldsymbol{\xi} \cdot \mathbf{x}) \, d\boldsymbol{\xi}, \tag{3.17}$$

$$\sigma_{ij}(\mathbf{x}) = C_{ijkl} \left\{ \int_{-\infty}^{\infty} C_{pqmn} \bar{\epsilon}_{mn}^*(\boldsymbol{\xi}) \xi_q \xi_l N_{kp}(\boldsymbol{\xi}) D^{-1}(\boldsymbol{\xi}) \right\}$$

$$\times \exp(i\boldsymbol{\xi}\cdot\boldsymbol{x}) d\boldsymbol{\xi} - \epsilon_{kl}^*(\boldsymbol{x})$$

where

$$\int_{-\infty}^{\infty} d\xi = \int_{-\infty}^{\infty} d\xi_1 \int_{-\infty}^{\infty} d\xi_2 \int_{-\infty}^{\infty} d\xi_3,$$

$$\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} dx_1 \int_{-\infty}^{\infty} dx_2 \int_{-\infty}^{\infty} dx_3.$$
(3.18)

When (3.16) is substituted into (3.17), we have

$$u_{i}(\mathbf{x}) = -i(2\pi)^{-3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_{jlmn} \epsilon_{mn}^{*}(\mathbf{x}') \xi_{l} N_{ij}(\xi) D^{-1}(\xi)$$

$$\times \exp\{i\xi \cdot (\mathbf{x} - \mathbf{x}')\} d\xi d\mathbf{x}'$$

$$= -(2\pi)^{-3} \frac{\partial}{\partial x_{l}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_{jlmn} \epsilon_{mn}^{*}(\mathbf{x}') N_{ij}(\xi) D^{-1}(\xi)$$

$$\times \exp\{i\xi \cdot (\mathbf{x} - \mathbf{x}')\} d\xi d\mathbf{x}', \tag{3.19}$$

$$\epsilon_{ij}(x) = (2\pi)^{-3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} C_{klmn} \epsilon_{mn}^{*}(x')$$

$$\times \xi_{l} \left\{ \xi_{j} N_{ik}(\xi) + \xi_{i} N_{jk}(\xi) \right\} D^{-1}(\xi)$$

$$\times \exp \left\{ i \xi \cdot (x - x') \right\} d\xi dx', \tag{3.20}$$

$$\sigma_{ij}(\mathbf{x}) = C_{ijkl} \left\{ (2\pi)^{-3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} C_{pqmn} \epsilon_{mn}^*(\mathbf{x}') \xi_q \xi_l N_{kp}(\xi) D^{-1}(\xi) \right\}$$

$$\times \exp\left\{ i \xi \cdot (\mathbf{x} - \mathbf{x}') \right\} d\xi d\mathbf{x}' - \epsilon_{kl}^*(\mathbf{x}) . \tag{3.21}$$

Method of Green's functions

When Green's functions $G_{ij}(x-x')$ are defined as

$$G_{ij}(x-x') = (2\pi)^{-3} \int_{-\infty}^{\infty} N_{ij}(\xi) D^{-1}(\xi) \exp\{i\xi \cdot (x-x')\} d\xi, \qquad (3.22)$$

(3.19) can be written as

$$u_{i}(x) = -\int_{-\infty}^{\infty} C_{jlmn} \epsilon_{mn}^{*}(x') G_{ij,l}(x - x') dx', \qquad (3.23)$$

where $G_{ij,l}(x-x') = \partial/\partial x_l G_{ij}(x-x') = -\partial/\partial x_l' G_{ij}(x-x')$. Sometimes Green's functions are called the fundamental solutions.

The corresponding expressions for the strain and stress become

$$\epsilon_{ij}(x) = -\frac{1}{2} \int_{-\infty}^{\infty} C_{klmn} \epsilon_{mn}^*(x') \left\{ G_{ik,lj}(x-x') + G_{jk,li}(x-x') \right\} dx' \qquad (3.24)$$

and

$$\sigma_{ij}(\mathbf{x}) = -C_{ijkl} \left\{ \int_{-\infty}^{\infty} C_{pqmn} \epsilon_{mn}^*(\mathbf{x}') G_{kp,ql}(\mathbf{x} - \mathbf{x}') \, \mathrm{d}\mathbf{x}' + \epsilon_{kl}^*(\mathbf{x}) \right\}. \tag{3.25}$$

Mura (1963) rewrote (3.25) in the form

$$\sigma_{ij}(x) = C_{ijkl} \int_{-\infty}^{\infty} \epsilon_{sth} \epsilon_{lnh} C_{pqmn} G_{kp,qt}(x - x') \epsilon_{sm}^{*}(x') dx', \qquad (3.26)$$

which will be useful for the dislocation theory given in later sections. It is easy to prove that (3.26) is equivalent to (3.25). Since $\epsilon_{sth}\epsilon_{lnh} = \delta_{sl}\delta_{tn} - \delta_{sn}\delta_{tl}$, (3.26) becomes

$$\sigma_{ij}(\mathbf{x}) = C_{ijkl} \int_{-\infty}^{\infty} C_{pqmn} \left(G_{kp,qn} \epsilon_{ml}^* - G_{kp,ql} \epsilon_{mn}^* \right) d\mathbf{x}'. \tag{3.27}$$

In Section 5 it is shown that

$$C_{mnpq}G_{pk,qn}(x-x') = -\delta_{mk}\delta(x-x'),$$
 (3.28)

where $\delta(x-x')$ is Dirac's delta function having the property

$$\int_{-\infty}^{\infty} \epsilon_{ml}^*(x') \delta(x - x') \, \mathrm{d}x' = \epsilon_{ml}^*(x); \tag{3.29}$$

therefore, (3.25) follows from (3.27).

It is seen from (3.28) that Green's function $G_{pk}(x-x')$ is the displacement component in the x_p -direction at point x when a unit body force in the x_k -direction is applied at point x' in the infinitely extended material. By this definition of Green's function we can directly derive (3.23) from (3.1). As was mentioned in Section 2, the displacement u_i in (3.1) can be considered as a displacement caused by the body force $-C_{ilmn}\epsilon_{mn,l}^*$ applied in the x_i -direction. Since $G_{ij}(x-x')$ is the solution for a unit body force applied in the x_j -direction, the solution for the present problem is the product of G_{ij} and the body force $-C_{jlmn}\epsilon_{mn,l}^*$, namely,

$$u_{i}(x) = -\int_{-\infty}^{\infty} G_{ij}(x - x') C_{jlmn} \epsilon_{mn,l}^{*}(x') dx'.$$
 (3.30)

Integrating by parts and assuming that the boundary terms vanish, we have

$$u_i(\mathbf{x}) = \int_{-\infty}^{\infty} C_{jlmn} \epsilon_{mn}^*(\mathbf{x}') \frac{\partial}{\partial x_i'} G_{ij}(\mathbf{x} - \mathbf{x}') \, \mathrm{d}\mathbf{x}'. \tag{3.31}$$

For an infinite body it holds that $(\partial/\partial x_l')G_{ij}(x-x') = -(\partial/\partial x_l)G_{ij}(x-x')$; (3.23) is thereby obtained.

Expression (3.31) or (3.23) is preferable to expression (3.30). When ϵ_{mn}^* is constant in Ω and is zero in D- Ω , it can be seen that the integrand in (3.30) vanishes except on the boundary of Ω .

As will be seen in (5.9), $G_{ij}(x-x')$ has a singularity at x=x' with the order of $|x-x'|^{-1}$. Thus, the integrals in (3.24) and (3.25) do not exist in the

sense of Riemann integrals. This difficulty can be avoided by writing (3.25) in the form

$$\sigma_{ij}(\mathbf{x}) = -C_{ijkl} \left\{ \frac{\partial}{\partial x_l} \int_{-\infty}^{\infty} C_{pqmn} \epsilon_{mn}^*(\mathbf{x}') G_{kp,q}(\mathbf{x} - \mathbf{x}') \, \mathrm{d}\mathbf{x}' + \epsilon_{kl}^*(\mathbf{x}) \right\}. \tag{3.32}$$

Expressions (3.25) or (3.17) are permissible in the context of generalized functions (Lighthill 1964).

Expressions (3.23), (3.25) and their equivalents were developed by Fredholm (1900). In connection with the solution for dislocations, many papers have discussed these expressions more extensively: Weingarten (1901), Volterra (1907), Somigliana (1914), Burgers (1939), Leibfried (1953), Eshelby (1961), Kröner (1958), Steketee (1958), de Wit (1960), Indenbom (1966), Kunin (1964), Kosevich (1965), Bacon, Barnett, and Scattergood (1978), Hirth and Lothe (1982), Teodosiu (1982), and Steeds and Willis (1979), among others.

As will be seen in Section 5, Green's functions have been obtained explicitly only for isotropic and transversely isotropic materials. Therefore, for practical calculations the usage of Green's functions as seen in $(3.23) \sim (3.25)$ is limited, and the use of Fourier integral expressions (3.17) is much more convenient. For this reason the integrands appearing in (3.17) are written down in detail.

Isotropic materials

$$= (\lambda + 2\mu)^{-1} \xi^{-4} \Big\{ \lambda^2 \delta_{ij} \delta_{mn} \xi^4 + 2\lambda \mu \delta_{mn} \xi_i \xi_j \xi^2 + 2\lambda \mu \delta_{ij} \xi_m \xi_n \xi^2 + \mu (\lambda + 2\mu) \Big(\delta_{im} \xi_j \xi_n + \delta_{jm} \xi_i \xi_n + \delta_{in} \xi_j \xi_m + \delta_{jn} \xi_i \xi_m \Big) \xi^2 - 4\mu (\lambda + \mu) \xi_i \xi_j \xi_m \xi_n \Big\}.$$

Cubic crystals

$$D(\xi) = \mu^{2} (\lambda + 2\mu + \mu') \xi^{6} + \mu \mu' (2\lambda + 2\mu + \mu') \xi^{2} (\xi_{1}^{2} \xi_{2}^{2} + \xi_{2}^{2} \xi_{3}^{2} + \xi_{3}^{2} \xi_{1}^{2})$$
$$+ \mu'^{2} (3\lambda + 3\mu + \mu') \xi_{1}^{2} \xi_{2}^{2} \xi_{3}^{2}, \tag{3.35}$$

$$N_{11}(\boldsymbol{\xi}) = \mu^2 \xi^4 + \beta \xi^2 (\xi_2^2 + \xi_3^2) + \gamma \xi_2^2 \xi_3^2,$$

$$N_{12}(\boldsymbol{\xi}) = -(\lambda + \mu) \xi_1 \xi_2 (\mu \xi^2 + \mu' \xi_3^2),$$
(3.36)

and the other components are obtained by the cyclic permutation of 1, 2, 3, where

$$\xi^{2} = \xi_{1}\xi_{1},$$

$$\beta = \mu(\lambda + \mu + \mu'),$$

$$\gamma = \mu'(2\lambda + 2\mu + \mu'),$$

$$\lambda = C_{12},$$

$$\mu = C_{44},$$

$$\mu' = C_{11} - C_{12} - 2C_{44}.$$
(3.37)

Hexagonal crystals (transversely isotropic)

$$D(\xi) = (\alpha'\eta^{2} + \gamma\xi_{3}^{2}) \{ \alpha\gamma\eta^{4} + (\alpha\beta + \gamma^{2} - \gamma'^{2})\eta^{2}\xi_{3}^{2} + \beta\gamma\xi_{3}^{4} \}$$

$$= (\alpha'\eta^{2} + \gamma\xi_{3}^{2}) \{ (\gamma\eta^{2} + \beta\xi_{3}^{2}) (\alpha\eta^{2} + \gamma\xi_{3}^{2}) - \gamma'^{2}\eta^{2}\xi_{3}^{2} \}, \qquad (3.38)$$

$$N_{11}(\xi) = (\alpha'\xi_{1}^{2} + \alpha\xi_{2}^{2} + \gamma\xi_{3}^{2}) (\gamma\eta^{2} + \beta\xi_{3}^{2}) - \gamma'^{2}\xi_{2}^{2}\xi_{3}^{2},$$

$$N_{12}(\xi) = \gamma'^{2}\xi_{1}\xi_{2}\xi_{3}^{2} - (\alpha - \alpha')\xi_{1}\xi_{2}(\gamma\eta^{2} + \beta\xi_{3}^{2}),$$

$$N_{13}(\xi) = (\alpha - \alpha')\gamma'\xi_{1}\xi_{2}^{2}\xi_{3} - \gamma'\xi_{1}\xi_{3}(\alpha'\xi_{1}^{2} + \alpha\xi_{2}^{2} + \gamma\xi_{3}^{2}),$$

$$N_{22}(\xi) = (\alpha\xi_{1}^{2} + \alpha'\xi_{2}^{2} + \gamma\xi_{3}^{2}) (\gamma\eta^{2} + \beta\xi_{3}^{2}) - \gamma'^{2}\xi_{1}^{2}\xi_{3}^{2},$$

$$N_{23}(\xi) = (\alpha - \alpha')\gamma'\xi_{1}^{2}\xi_{2}\xi_{3} - \gamma'\xi_{2}\xi_{3}(\alpha\xi_{1}^{2} + \alpha'\xi_{2}^{2} + \gamma\xi_{3}^{2}),$$

$$N_{33}(\xi) = (\alpha\xi_{1}^{2} + \alpha'\xi_{2}^{2} + \gamma\xi_{3}^{2}) (\alpha'\xi_{1}^{2} + \alpha\xi_{2}^{2} + \gamma\xi_{3}^{2}) - (\alpha - \alpha')^{2}\xi_{1}^{2}\xi_{2}^{2},$$

$$N_{33}(\xi) = (\alpha\xi_{1}^{2} + \alpha'\xi_{2}^{2} + \gamma\xi_{3}^{2}) (\alpha'\xi_{1}^{2} + \alpha\xi_{2}^{2} + \gamma\xi_{3}^{2}) - (\alpha - \alpha')^{2}\xi_{1}^{2}\xi_{2}^{2},$$

15

where

$$\alpha = C_{11} = C_{22}, \quad \alpha' = C_{66} = \frac{1}{2} (C_{11} - C_{12}),$$

$$\beta = C_{33}, \quad \gamma' - \gamma = C_{13} = C_{23},$$

$$\gamma = C_{44} = C_{55}, \quad \eta^2 = \xi_1^2 + \xi_2^2.$$
(3.40)

For isotropic materials, $\alpha = \beta = \lambda + 2\mu$, $\gamma' = \lambda + \mu$, and $\gamma = \alpha' = \mu$.

4. Exercises of general formulae

General formulae are given in Section 3 for the elastic fields associated with prescribed eigenstrains. This section provides exercises in the usage of these formulae: the best way to understand general statements is to work out specific examples.

A straight screw dislocation

Let us consider the case where Ω in Fig. 1.1 is the half plane ($x_2 = 0$, $x_1 < 0$) (see Fig. 4.1), and ϵ_{23}^* is prescribed on Ω . Other components of ϵ_{ij}^* are zero.

Fig 41 A screw dislocation