Statistics One

Lecture 4 **Summary Statistics**

Two segments

- Measures of central tendencyMeasures of variability

Lecture 4 ~ Segment 1

Example: Wine ratings

- Suppose that 100 wine experts rated the overall quality of different wines on a scale of 1 to 100
 - Higher scores indicate higher quality

Example: Wine ratings

• Consider the red wines, which country had the highest average (mean) rating?

Example: Wine ratings (Reds)

Country	Mean = M = (ΣX) / N
Argentina	66.73
Australia	81.76
France	70.97
USA	76.38

Example: Wine ratings

 Now consider the white wines, which country had the highest average (mean) rating?

Example: Wine ratings (Whites)

Country	Mean = M = (ΣX) / N
Argentina	71.20
Australia	86.81
France	85.90
USA	88.62

Example: Wine ratings

The mean is a measure of central tendency

Measures of central tendency

- Measure of central tendency: A measure that describes the middle or center point of a distribution
 - A good measure of central tendency is representative of the distribution

- Mean: the average, $M = (\Sigma X) / N$
- Median: the middle score (the score below which 50% of the distribution falls)
- · Mode: the score that occurs most often

Measures of central tendency

- Mean (average) is the best measure of central tendency when the distribution is normal
 - Red wine ratings
 - Another example: Grade Point Average (GPA)

- Median (middle score) is preferred when there are extreme scores in the distribution – White wine ratings?
 - Another example: Household income in USA

Example: Wine ratings (Whites)

Mean = M = $(\Sigma X) / N$	Median
71.20	71.00
86.81	86.68
85.90	86.00
88.62	88.65
	71.20 86.81 85.90

Measures of central tendency

- · Mode is the score that occurs most often

 - The peak of a histogram
 The rating that occurred the most
 For example, the Argentina white, Mode = 70 72

- · Mode can be used for nominal variables
 - For example, namesFemale, USAMale, USA

 - Female, France
 - · Male, France
- Sophia
 - James Emma
 - Nathan

Measures of central tendency

- · Mode can be used for nominal variables
 - For example, names
 - Female, Argentina
 - Male, Argentina
- · Female, Australia

Charlotte

Juan

Male, Australia

Oliver

Segment summary

- · Measures of central tendency
 - Mean
 - Median
 - Mode

22

END SEGMENT

23

Lecture 4 ~ Segment 2

Measures of variability

24

Variability

- · A measure that describes the range and
 - diversity of scores in a distribution

 Standard deviation (SD): the average deviation from the mean in a distribution
 - Variance = SD2

Variability

Variance = SD²

$$SD^2 = [\Sigma(X - M)^2] / N$$

Variance

- · Variation is natural and observed in all species and that's good:

 - On the Origin of Species (1859)

 - Variation Under Domestication (1868)

Linsanity!

Jeremy Lin (10 games)

Points per game	(X-M)	(X-M) ²
28	5.3	28.09
26	3.3	10.89
10	-12.7	161.29
27	4.3	18.49
20	-2.7	7.29
38	15.3	234.09
23	0.3	0.09
28	5.3	28.09
25	2.3	5.29
2	-20.7	428.49
M = 227/10 = 22.7	M = 0/10 = 0	M = 922.1/10 = 92.21

Results

- M = Mean = 22.7
- SD = Standard Deviation = 9.6
- SD² = Variance = 92.21

Notation

- M = Mean
- SD = Standard Deviation
- SD² = Variance (also known as MS)
 MS stands for Mean Squares
 SS stands for Sum of Squares

Lin vs. Kobe

10 games, R output

9 games, R output

> # Descriptive statistics for the variables in the dataframe called ppg > describe(ppg) var n mean sd median trimmed mad min max range skew kurtosis se Lin 1 9 25.00 7.47 26 25.00 2.97 10 38 28 -0.33 -0.14 2.49 Bryant 2 9 26.67 7.86 27 26.67 7.41 10 36 26 -0.82 -0.36 2.62

Summary statistics: Review

- · Important concepts

 - Central tendency (mean, median, mode)Variability (standard deviation and variance)

Summary statistics: Review

- · Summary statistics (formulae to know)

 - $-M = (\Sigma X) / N$ $-SD^2 = [\Sigma (X M)^2] / N$ Used for descriptive statistics
 - $-SD^2 = [\Sigma(X M)^2] / (N 1)$
 - · Used for inferential statistics

END SEGMENT

END LECTURE 4

38