Свободные пуассоновы и йордановы алгебры

Попов А.В.

Ульяновск

22 августа 2018 г.

Йордановы алгебры

Класс йордановых алгебр $\mathcal{J}\mathit{ord}$ определяется как многообразие алгебр, удовлетворяющих тождествам:

$$xy \equiv yx$$
, $x^2yx \equiv x^2(yx)$.

Пусть A — ассоциативная алгебра. Вводя новую операцию умножения $a\circ b=\frac{1}{2}\left(ab+ba\right)$, получаем йорданову алгебру $A^{(+)}$. Данная алгебра и ее подалгебры называются **специальными йордановыми алгебрами**. Йордановы алгебры, не являющиеся специальными, называются **исключительными**.

 $\frac{\mathcal{S}Jord}{\mathcal{S}Jord}$ — класс всех специальных йордановых алгебр. $\frac{\mathcal{S}Jord}{\mathcal{S}Jord}$ — класс всех специальных йордановых алгебр и их гомоморфных образов. Имеет место очевидное вложение классов:

$$SJord \subseteq \overline{SJord} \subseteq \mathcal{J}ord$$
.

Алберт в 1934 г. привел пример исключительной йордановой алгебры A, т.е. $\mathcal{S}Jord\subset\mathcal{J}ord$.

В 1954 г. Кон привел примеры исключительных йордановых алгебр, являющихся гомоморфными образами специальных, т.е. $SJord \subset \overline{SJord}$.

В 1959 г. Алберт и Пейдж показали, что алгебра Алберта не является гомоморфным образом специальной йордановой алгебры, т.е. $\overline{SJord}\subset \mathcal{J}ord$.

В 1966 г. Глени нашел тождества 8 и 9 степени, выполненные в \overline{SJord} , но не в $\mathcal{J}ord$.

Конструкция Кантора

Алгебра Пуассона

P — алгебра Пуассона, если на ней заданы две билинейные операции \cdot и $\{,\}$ такие, что:

- 1. $\langle P, \cdot \rangle$ ассоциативная коммутативная алгебра с 1;
- 2. $\langle P, \{,\} \rangle$ алгебра Ли;
- 3. Операции \cdot и $\{,\}$ связаны тождеством Лейбница $\{x,y\cdot z\} = \{x,y\}\cdot z + y\cdot \{x,z\}.$

$\widetilde{\mathsf{K}}$ Онструкция K антора $\mathsf{K}(P)$

^аПусть P — алгебра Пуассона. Обозначим \bar{P} копию пространства P с противоположными четностями. Тогда $K(P) = P \oplus \bar{P}$. Умножение * на K(P) для однородных элементов f,g задается формулами:

$$a*b = a \cdot b, \quad f*\bar{g} = \overline{(f \cdot g)}, \quad \bar{f}*\bar{g} = \{f,g\}.$$

 $K\left(P\right)$ — йорданова супералгебра, т.е. $G\left(K\left(P\right)\right)$ — йорданова алгебра. Более того, $G\left(K\left(P\right)\right)\in\overline{SJord}^{b}$.

^aKantor I.L. Connection between Poisson brackets and Jordan and Lie superalgebras. // in Lie Theory, Differential Equations and Representation Theory, (Montreal, 1989), Univ. Montreal, Montreal

 $[^]b$ Шестаков И.П. Квантования супералгебр Пуассона и специальность йордановых супералгебр пуассонова типа. // Алгебра и Логика, 1993. Т. 32:5, С. 571–584

Алгебры Пуассона

Пусть L — алгебра Ли, S(L) — симметрическая алгебра пространства L. На алгебре S(L) можно ввести скобку Пуассона $\{a,b\}$, совпадающую на L с лиевским умножением.

Алгебра $S\left(L\right)$ имеет \mathbb{Z} -градуировку относительно ассоциативной операции умножения:

$$S(L) = S(L)_0 \oplus S(L)_1 \oplus \dots$$

Через $S_d\left(L\right)$ обозначим усеченную алгебру $S\left(L\right)$, в которой $a_1\cdots a_{d+1}=0$ для любых $a_1,\ldots,a_{d+1}\in L.$ Можно считать

$$S_d(L) = S(L)_0 \oplus \ldots \oplus S(L)_d$$
.

Свободная алгебра Пуассона

Пусть L[X] — свободная алгебра Ли со счетным множеством порождающих X. Тогда S(X) = S(L[X]) — свободная алгебра Пуассона.

Введем обозначение P_n^{pois} для подпространства S(X), образованного полилинейными элементами от порождающих x_1,\dots,x_n .

Подпространство P_n^{pois} , образованное элементами степени k относительно операции \cdot , будем обозначать $^kP_n^{pois}$.

Конструкции J(L) и $J_d(L)$

В йордановой алгебре $G\left(K\left(S_{d}\left(L\right)\right)\right)$ выделим подалгебру

$$J_{d}\left(L\right) = 1 \otimes G_{1} \oplus \left(S\left(L\right)_{1} \otimes G\right) \oplus \ldots \oplus \left(S\left(L\right)_{d} \otimes G\right).$$

Введем обозначения:

$$\begin{split} J(L)_k^+ &= S(L)_k \otimes G_0, & J(L)_k^- &= S(L)_k \otimes G_1, \\ J_d(L)^+ &= J(L)_1^+ \oplus \ldots \oplus J(L)_d^+, & J_d(L)^- &= J(L)_1^- \oplus \ldots \oplus J(L)_d^-. \end{split}$$

Тогда операция умножения \circ в $J_d\left(L\right)=G_1\oplus J_d\left(L\right)^+\oplus J_d\left(L\right)^-$ задается правилами:

$$(a \otimes g) \circ h = a \otimes gh,$$
 если $a \otimes g \in J_d(L)^+$, $h \in G_1$, $(a \otimes g) \circ (b \otimes h) = ab \otimes gh,$ если $a \otimes g \in J_d(L)^+$ или $b \otimes h \in J_d(L)^+$, $(a \otimes g) \circ (b \otimes h) = \{a,b\} \otimes gh,$ если $a \otimes g, b \otimes h \in J_d(L)^-$.

0	G_1	$J(L)_{k_2}^+$	$J(L)_{m_2}^-$
G_1	0	$J(L)_{k_2}^-$	0
$J(L)_{k_1}^+$	$J(L)_{k_1}^-$	$J(L)_{k_1+k_2}^+$	$J(L)_{k_1+m_2}^-$
$J(L)_{m_1}^-$	0	$J(L)_{m_1+k_2}^-$	$J(L)_{m_1+m_2-1}^+$

Многообразия ${\cal V}$ и ${\cal V}_d$

Пусть L — свободная алгебра Ли. Тогда $\mathcal{V}_d = \mathrm{var}\left(J_d\left(L\right)\right)$ (соответственно, $\mathcal{V} = \mathrm{var}\left(J\left(L\right)\right)$).

Введем обозначение для идеалов тождеств многообразий \mathcal{V}_d :

$$T_d = id(\mathcal{V}_d), \qquad T = id(\mathcal{V}).$$

Некоторые очевидные факты

① Имеет место вложение многообразий $\mathcal{V}_1 \subset \mathcal{V}_2 \subset \ldots \subset \mathcal{V} \subseteq \overline{\mathcal{S}Jord};$ Соответственно, $T_1 \supset T_2 \supset \ldots \supset T \supseteq id\left(\overline{\mathcal{S}Jord}\right).$

Гипотеза: $V = \overline{SJord}$.

 $oldsymbol{2}$ В многообразии \mathcal{V}_d выполнено тождество

$$(x_1y_1)(x_2y_2)\cdots(x_{2d+1}y_{2d+1})\equiv 0.$$

Теорема 1

Многообразие \mathcal{V}_1 порождается парой тождеств

$$(x_1x_2)(y_1y_2)(z_1z_2) \equiv 0,$$

 $x^2yx \equiv 0.$

S-слова

Определение: Будем называть S-словами элементы $P_n\left(\mathcal{V}_1\right)$ вида

$$u = (\cdots) (\cdots) x_{i_1} (\cdots) \ldots x_{i_k} (\cdots) \widehat{x}_{i_{k+1}},$$

где (\cdots) — подслова с левонормированной расстановкой скобок степени не меньше двух. При этом:

- Через B(u) будем обозначать множество букв, расположенных в u:
 - в подсловах (\cdots) четной степени на нечетных позициях начиная с 3-ей;
 - ullet в подсловах (\cdots) нечетной степени на 1, 2 и на четных позициях начиная с 4-ой:
- Через $\deg_s u$ будем обозначать количество подслов (\cdots) четной степени;
- Для произвольного S-слова u обозначим через R(u) множество букв, стоящих в u на первых позициях в подсловах (\cdots) четной степени.

Замечания

- ① если $\deg u = n$, то $\deg_s u \leq N_n = \left\lceil \frac{n+2}{3} \right\rceil$;
- ② если $\deg u = n$, $\deg_s u = I$, то $|B(u)| = \left\lceil \frac{n-3I+2}{2} \right\rceil$;
- $oldsymbol{3}$ выбор множества R(u) неоднозначен.

S-полиномы

Определение: Линейная комбинация (ЛК) S-слов одинаковой степени и s-степени с одинаковыми множествами B называется S-полиномом.

Через $PS_n^I(B)$ будем обозначать соответствующее подпространство из S-полиномов.

Пусть R — подмножество $\{x_1,\ldots,x_n\}$ из I элементов и S-полином f удовлетворяет следующим условиям:

- ullet Для всех S-слов, образующих f можно выбрать $R\left(u\right) =R;$
- ullet $Alt_{\{x_1,\ldots,x_n\}\setminus (B\cup R)}f=lpha\cdot f$ для lpha
 eq 0 $^1.$

Тогда через $PS_n^I(B,R)$ будем обозначать подпространство $PS_n^I(B)$ из S-полиномов, удовлетворяющих данным условиям.

Замечания

- ① Обозначим k=|B|. Пространство $PS_n^I(B)$ наделяется структурой $\mathbb{F}S_k imes S_{n-k}$ -модуля, если положить, что S_k действует на индексах букв из B, а S_{n-k} на $\{x_1,\ldots,x_n\}\setminus B$;
- ② Аналогично пространство $PS_n^I(B,R)$ наделяется структурой $\mathbb{F}S_k \times S_l \times S_{n-k-l}$ -модуля, если положить, что S_k действует на B, S_l на R, а S_{n-k-l} на $\{x_1,\ldots,x_n\}\setminus (B\cup R)$;

 $^{^1}$ Здесь Alt_K — оператор кососимметризации полинома f по буквам из K $^{\downarrow}$ $^{\downarrow$

M-полиномы

Определение: Будем называть **элементарным** *М*-полиномом следующий полином из $P_n\left(\mathcal{V}_1\right)$:

$$f_k^M = Alt_{\{x_k, x_{i_1}, \dots, x_{i_m}\}} Alt_{\{x_{j_1}, \dots, x_{j_m}\}} \left(x_k x_{i_1} x_{j_1} x_{i_2} \cdots x_{j_{m-1}} x_{i_m} \widehat{x}_{j_m}\right), \tag{1}$$

где $i_1 = \min\{k, i_1, \dots, i_m\}.$

При этом будем использовать обозачение $B\left(f_k^M\right)$ для множества $\{x_k, x_{i_1}, \dots, x_{i_m}\}.$

Определение: Линейная комбинация элементарных M-полиномов одинаковой степени с одинаковыми множествами B называется M-полиномом.

Через $PM_n\left(B\right)$ будем обозначать соответствующее подпространство из M-полиномов.

Описание $P_n(\mathcal{V}_1)$

Теорема 2

Пусть \mathscr{B}_n^I — множество подмножеств множества $\{x_1,\dots,x_n\}$ мощности $\left[\frac{n-3l+2}{2}\right]$. Тогда

$$P_{n}\left(\mathcal{V}_{1}\right) = \left(\underset{\substack{l=0..N_{n},\\B \in \mathscr{B}_{n}^{l}}}{\oplus} PS_{n}^{l}\left(B\right) \right) \oplus \left(\underset{\substack{B \in \mathscr{B}_{n}^{0}}}{\oplus} PM_{n}\left(B\right) \right).$$

Теорема 3

Пусть характер $\mathbb{F}S_k \times S_l \times S_{n-k-l}$ -модуля $PS_n(B,R)$ имеет разложение:

$$\chi_n^l(B,R) = \sum_{\substack{\lambda \vdash k, \\ \mu \vdash l}} m_{\lambda \mu} \cdot \chi_\lambda \boxtimes \chi_\mu \boxtimes \chi_{(1^{n-k-l})}.$$

Тогда характер $\mathbb{F} S_k imes S_{n-k}$ -модуля $PS_n^I(B)$ имеет следующее разложение:

$$\chi'_{n}(B) = \sum_{\substack{\lambda \vdash k, \\ \mu \vdash l}} m_{\lambda \mu} \cdot \chi_{\lambda} \boxtimes \chi_{\left(1^{n-k-l} \mid \mu\right)},$$

где $(1^m|\mu)$ — диаграмма Юнга, получаемая из μ добавлением слева столбца (1^m) .

Связь $PS_n^0(B,R)$ и $PS_n^1(B,R)$ с ${}^1P_k^{pois}$

Всякий элемент алгебры L[X] можно представить как ЛК мономов с левонормированной расстановкой скобок. Используя это обстоятельство, определим линейные отображения $\Psi_0^+: {}^1P_k^{pois} \to PS_n^0(B) \oplus PM_n(B)$ (для n=2k-2) и $\Psi_0^-: {}^1P_k^{pois} \to PS_n^0(B) \oplus PM_n(B)$ (для n=2k-1), задав значения на мономах:

$$\begin{split} & \Psi_0^+ \left(x_{\sigma(1)} \cdots x_{\sigma(k)} \right) = (-1)^{\sigma} \ \textit{Alt}_{\left\{ z_1, \dots, z_{k-2} \right\}} \textit{y}_{\sigma(1)} \textit{y}_{\sigma(2)} \textit{z}_1 \textit{y}_{\sigma(3)} \cdots \textit{z}_{k-2} \textit{y}_{\sigma(k)}, \\ & \Psi_0^- \left(x_{\sigma(1)} \cdots x_{\sigma(k)} \right) = (-1)^{\sigma} \ \textit{Alt}_{\left\{ z_1, \dots, z_{k-1} \right\}} \textit{y}_{\sigma(1)} \textit{y}_{\sigma(2)} \textit{z}_1 \textit{y}_{\sigma(3)} \cdots \textit{z}_{k-2} \textit{y}_{\sigma(k)} \textit{z}_{k-1}. \end{split}$$

Отображения $\Psi_1^+: {}^1P_{k+1}^{pois} \to PS_n^1(B,R) \oplus PM_n\left(\{z_1,\ldots,z_k,t_1\}\right)$ (для n=2k+1) и $\Psi_1^-: {}^1P_{k+1}^{pois} \to PS_n^1(B,R) \oplus PM_n\left(\{z_1,\ldots,z_k,t_1\}\right)$ (для n=2k+2) определяются по формулам:

$$\begin{aligned} \Psi_{1}^{+}\left(f\right)\left(y_{1},\ldots,y_{k},t_{1},z_{1},\ldots,z_{k}\right) &= \\ &= Alt_{\{z_{1},\ldots,z_{k}\}}\Psi_{0}^{+}\left(f\right)\left(y_{1},\ldots,y_{k},t_{1}z_{k},z_{1},\ldots,z_{k-1}\right), \end{aligned}$$

$$\begin{aligned} \Psi_{1}^{-}(f)(y_{1},\ldots,y_{k},t_{1},z_{1},\ldots,z_{k+1}) &= \\ &= Alt_{\left\{z_{1},\ldots,z_{k+1}\right\}} \Psi_{0}^{-}(f)(y_{1},\ldots,y_{k},t_{1}z_{k+1},z_{1},\ldots,z_{k}). \end{aligned}$$

Связь $PS_n^l(B,R)$ с ${}^1P_k^{pois}$

При I>1 отображения $\Psi_l^+:{}^1P_{k+l}^{pois}\to PS_n^I(B,R)$ (для n=2k+3l-2) и $\Psi_l^-:{}^1P_k^{pois}\to PS_n^I(B,R)$ (для n=2k+3l-1) определяются по индукции:

$$\begin{split} & \Psi_{l}^{+}\left(f\right)\left(y_{1},\ldots,y_{k},t_{1},\ldots,t_{l},z_{1},\ldots,z_{k+2l-2}\right) = \\ & = Alt_{\left\{z_{1},\ldots,z_{k+2l-2}\right\}}\Psi_{l-1}^{+}\left(f\right)\left(y_{1},\ldots,y_{k},t_{l}z_{k+2l-2},t_{1},\ldots,t_{l-1},z_{1},\ldots,z_{k+2l-3}\right), \end{split}$$

$$\begin{split} & \Psi_{l}^{-}(f)(y_{1},\ldots,y_{k},t_{1},\ldots,t_{l},z_{1},\ldots,z_{k+2l-1}) = \\ & = Alt_{\left\{z_{1},\ldots,z_{k+2l-1}\right\}} \Psi_{l-1}^{-}(f)(y_{1},\ldots,y_{k},t_{l}z_{k+2l-1},t_{1},\ldots,t_{l-1},z_{1},\ldots,z_{k+2l-2}). \end{split}$$

Свойства отображений Ψ_I^+ и Ψ_I^-

Теорема 4

- ① Отображения Ψ_I^+ и Ψ_I^- определены корректно;
- $oldsymbol{2}$ Отображения Ψ_I^+ и Ψ_I^- биективны.

Рассмотрим пространство $^1P_{k+l}^{pois}$ как $\mathbb{F}S_k imes S_l$ -модуль. Выполнено следующее свойство:

Теорема 5

Пусть характер $\mathbb{F} S_k imes S_l$ -модуля ${}^1P_{k+l}^{pois}$ имеет разложение в сумму неприводимых:

$$\chi\left({}^{1}P_{k+l}^{pois}\right) = \sum_{\substack{\lambda \vdash k, \\ \mu \vdash l}} m_{\lambda\mu} \cdot \chi_{\lambda} \boxtimes \chi_{\mu}.$$

Тогда характер $\mathbb{F}S_k \times S_l \times S_{n-k-l}$ -модуля PS_n (B) имеет следующее разложение в сумму неприводимых:

$$\chi_n^I(B,R) = \sum_{\substack{\lambda \vdash k, \\ \mu \vdash I}} m_{\lambda \mu} \cdot \chi_{\lambda^*} \boxtimes \chi_{\mu} \boxtimes \chi_{\left(1^{n-k-I}\right)}.$$

Свойства отображений Ψ_l^+ и Ψ_l^-

Теорема 6

Пусть $f \in {}^1P_{\scriptscriptstyle k}^{{\it pois}}$. Тогда имеет место граф следствий тождеств

Теорема 7

Для любых $f\in {}^1P_{k_1}^{pois}$ и $g\in {}^1P_{k_2}^{pois}$ таких, что $g\in id$ (f), имеет место следующий граф следствий:

ω -индекс

Пусть L — свободная алгебра Ли. Обозначим через $\Phi^+(f)$ множество подстановок φ базисных элементов J(L) в $f \in P_n(\mathcal{V})$ таких, что $\varphi(f) \in J^+(L)$ и $\varphi(f) \neq 0$. Аналогично определяется $\Phi^-(f)$.

Определение: Пусть
$$f \in P_n(\mathcal{V})$$
. Тогда $\omega(f) := (n, m)$, где $n = \max \big\{ k | \forall \varphi \in \Phi^+(f) \quad \varphi(f) \in J(L)_k^+ \oplus J(L)_{k+1}^+ \oplus \ldots \big\};$ $m = \max \Big\{ k | \forall \varphi \in \Phi^-(f) \quad \varphi(f) \in J(L)_k^- \oplus J(L)_{k+1}^- \oplus \ldots \big\};$

Утверждение: Пусть $f\left(x_1,\ldots,x_{k_1}\right)$ и $g\left(y_1,\ldots,y_{k_2}\right)$ — полилинейные элементы из $\mathbb{F}\left\{X,V\right\}$ такие, что fg снова полилинейный элемент и буква z не в ходит в f и g. При этом $\omega\left(f\right)=\left(n_1,m_1\right),\,\omega\left(g\right)=\left(n_2,m_2\right).$ Тогда:

- **1** ω (fx) = ($min\{n_1+1, m_1\}, min\{n_1, m_1+1\}$);
- $oxed{3}$ Если $n=\min\{n_2,m_2\}$, то $\omega\left(x_1,\ldots,x_{i-1},g,x_{i+1},\ldots,x_{i_{k_1}}
 ight)=(n_3,m_3)$, где $n_3\geq n_1+n-1$ и $m_3\geq m_1+n-1$.

Очевидные следствия:

- ① $\mathbb{F}\{X, \mathcal{V}_d\}$ состоит в точности из полиномов, у которых хотя бы одна из компонент ω -индекса меньше или равна d;
- ② T_d состоит из T и полиномов, у которых обе компоненты ω -индекса больше d.

Тождества многообразия \mathcal{V}_2

Приведем неполный список тождеств, порождающиих многообразие \mathcal{V}_2 :

$$(x_1y_1) (x_2y_2) (x_3y_3) (x_4y_4) (x_5y_5) \equiv 0,$$

$$(x_1y_1) (x_2y_2) (x_3y_3) [(x_4y_4) (x_5y_5)] \equiv 0,$$

$$[(x_1y_1) (x_2y_2)] [(x_3y_3) (x_4y_4)] (x_5y_5) \equiv 0,$$

$$x^2yx (z_1t_1) (z_2t_2) \equiv 0,$$

$$x^2yx [(z_1t_1) (z_2t_2)] \equiv 0,$$

$$x^2yx (z^2tz) \equiv 0,$$

$$(y_1z_1) (y_2z_2) (y_3z_3) x^2x \equiv 0,$$

$$yx^2xz^2z \equiv 0,$$

$$2z^2tzxyx + z^2tz (x^2y) \equiv 0,$$

$$2(z_1t_1) (z_2t_2) (z_3t_3) xyx + (z_1t_1) (z_2t_2) (z_3t_3) (x^2y) \equiv 0,$$

$$x^2y_1xy_2 (z_1t_1) (z_2t_2) \equiv 0,$$

$$x^2y_1xy_2 [(z_1t_1) (z_2t_2)] \equiv 0,$$

$$xzy^2x^2z^2 \equiv 0.$$

$P_n(\mathcal{V}_2)$

Теорема 8

Пространство $P_n\left(\mathcal{V}_2\right)$ образовано ЛК элементов следующего типа:

- М-полиномы;
- 2 S-полиномы;
- $oldsymbol{3}$ Произведения S-полиномов, один из которых имеет ω -индекс (1,2);
- **4** Произведения вида f_X , где f элемент типа 3;
- **5** Произведения *S*-полиномов ω -индекса (1,2) на *M*-полином;
- **6** Произведения вида f_X , где f элемент типа 5;
- \bigcirc Элементы вида (fx)(gy) + (fy)(gx), где f и g M-полиномы;
- **8** Произведения вида f_X , где f элемент типа 7;
- lacktriangledown Полиномы вида $f\left(xy
 ight)z+f\left(xz
 ight)y+f\left(yz
 ight)x\equiv0$, где f-M-полином или буква.