MACHINE LEARNING: REGRESSION IN R

Jan-Philipp Kolb

16 Januar, 2020

Why a part on linear regression

- ▶ OLS can be seen as a simple machine learning technique
- Some other machine learning concepts are based on regression (e.g. regularization).
- We would like to remind you how simple regression works in R.
- ▶ We also want to show the constraints
- ▶ In a next step we will learn, how to coop with these constraints

THE AMES IOWA HOUSING DATA

The dataset describes the sale of individual residential property in Ames, lowa from 2006 to 2010.

```
ames_data <- AmesHousing::make_ames()</pre>
```

Some Variables

- Gr_Liv_Area: Above grade (ground) living area square feet
- TotRms_AbvGrd: Total rooms above grade (does not include bathrooms
- MS_SubClass: Identifies the type of dwelling involved in the sale.
- MS_Zoning: Identifies the general zoning classification of the sale.
- Lot_Frontage: Linear feet of street connected to property
- ► Lot_Area: Lot size in square feet
- Street: Type of road access to property
- Alley: Type of alley access to property
- Lot_Shape: General shape of property
- ► Land_Contour: Flatness of the propert

Exercise: regression Ames housing data

- Install the package AmesHousing and create a processed version of the Ames housing data with (at least) the variables Sale_Price, Gr Liv Area and TotRms AbvGrd
- 2) Create a regression model with Sale_Price as dependent and Gr_Liv_Area and TotRms_AbvGrd as independent variables. Then create seperated models for the two independent variables. Compare the results. What do you think?

THE SALE PRICE

A SIMPLE REGRESSION MODEL

DEPENDENT VARIABLE - SALE_PRICE

the sale price of houses

```
INDEPENDENT VARIABLE - GR_LIV_AREA
```

```
m1 <- lm(Sale_Price ~ Gr_Liv_Area,data=ames_data)
m1
##
## Call:
## lm(formula = Sale_Price ~ Gr_Liv_Area, data = ames_data)
##
## Coefficients:
## (Intercept) Gr_Liv_Area
## 13289.6 111.7</pre>
```

GET THE MODEL SUMMARY

```
summary(m1)
##
## Call:
## lm(formula = Sale Price ~ Gr Liv Area, data = ames data)
##
## Residuals:
     Min 10 Median 30
                                Max
##
## -483467 -30219 -1966 22728 334323
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## Gr_Liv_Area 111.694 2.066 54.061 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' '
##
## Residual standard error: 56520 on 2928 degrees of freedom
```

THE MODEL FORMULA

Model without intercept

```
m2 <- lm(Sale_Price ~ - 1 +Gr_Liv_Area,data=ames_data)</pre>
summary(m2)$coefficients
              Estimate Std. Error t value Pr(>|t|)
##
## Gr Liv Area 119.6517 0.6615846 180.8563
Adding further variables
m3 <- lm(Sale Price ~ Gr Liv Area + TotRms AbvGrd,
        data=ames data)
summary(m3)$coefficients
##
                   Estimate Std. Error t value
                                                      Pr(>|t|)
## (Intercept) 42767.6361 4372.532783 9.780976 2.967720e-22
## Gr Liv Area 139.4075 3.447581 40.436332 2.058869e-284
## TotRms AbvGrd -11025.8696 1107.960753 -9.951498 5.730058e-23
```

FURTHER POSSIBILITIES TO SPECIFY THE FORMULA

```
TAKE ALL AVAILABLE PREDICTORS
m3_a<-lm(Sale_Price~.,data=ames_data)
INTERACTION EFFECT
# effect of cyl and interaction effect:
m3a<-lm(Sale_Price~Lot_Area*Bedroom_AbvGr,data=ames_data)
# only interaction effect:
m3b<-lm(Sale_Price~Lot_Area:Bedroom_AbvGr,data=ames_data)
TAKE THE LOGARITHM
m3d<-lm(Sale_Price~log(Lot_Area),data=ames_data)
```

RESIDUAL PLOT - MODEL ASSUMPTIONS VIOLATED?

We have model assumptions violated if points deviate with a pattern from the line

plot(m3,1)

Jan-Philipp Kolb

MACHINE LEARNING: REGRESSION IN R

RESIDUAL PLOT

plot(m3,2)

Theoretical Quantiles Im(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd)

Another example for object orientation

- ▶ m3 is now a special regression object
- ▶ Various functions can be applied to this object

```
predict(m3) # Prediction
resid(m3) # Residuals

## 1 2 3 4 5 6
## 196445.4 112547.4 161885.0 248710.6 203707.3 189196.2

## 1 2 3 4 5
## 18554.583 -7547.434 10114.975 -4710.566 -13807.284 6303
```

Jan-Philipp Kolb

Make model prediction

```
pre <- predict(m1)
head(mtcars$mpg)
## [1] 21.0 21.0 22.8 21.4 18.7 18.1
head(pre)
## 1 2 3 4 5 6
## 198254.9 113367.5 161731.0 248964.0 195239.2 192446.8</pre>
```

REGRESSION DIAGNOSTIC WITH BASE-R

VISUALIZING RESIDUALS plot(mtcars\$wt,mtcars\$mpg) abline(m1) segments(mtcars\$wt, mtcars\$mpg, mtcars\$wt, pre, col="red")

THE MEAN SQUARED ERROR (MSE)

- ► The **MSE** measures the average of the squares of the errors
- The lower the better

```
(mse5 <- mean((mtcars$mpg - pre)^2)) # model 5
## [1] 35866849640
(mse3 <- mean((mtcars$mpg - predict(m3))^2))
## [1] 35971337573

PACKAGE METRICS TO COMPUTE MSE
library(Metrics)
mse(mtcars$mpg,predict(m3))
## [1] 35971337573</pre>
```

THE VISREG-PACKAGE

install.packages("visreg")
library(visreg)

THE VISREG-PACKAGE

- ▶ The default-argument for type is conditional.
- ► Scatterplot of mpg and wt plus regression line and confidence bands

```
visreg(m1, "wt", type = "conditional")
```


REGRESSION WITH FACTORS

The effects of factors can also be visualized with visreg:

EFFECTS OF FACTORS

```
par(mfrow=c(1,2))
visreg(m4, "cyl", type = "contrast")
visreg(m4, "cyl", type = "conditional")
```


THE PACKAGE VISREG - INTERACTIONS

```
m5 <- lm(mpg ~ cyl*wt, data = mtcars)

# summary(m5)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 39.571196 3.193940 12.3894599 2.058359e-12

## cyl6 -11.162351 9.355346 -1.1931522 2.435843e-01

## cyl8 -15.703167 4.839464 -3.2448150 3.223216e-03

## wt -5.647025 1.359498 -4.1537586 3.127578e-04

## cyl6:wt 2.866919 3.117330 0.9196716 3.661987e-01

## cyl8:wt 3.454587 1.627261 2.1229458 4.344037e-02
```

CONTROL OF THE GRAPHIC OUTPUT WITH LAYOUT.

visreg(m5, "wt", by = "cyl",layout=c(3,1))

THE PACKAGE VISREG - INTERACTIONS OVERLAY

m6 <- lm(mpg ~ hp + wt * cyl, data = mtcars)
visreg(m6, "wt", by="cyl", overlay=TRUE, partial=FALSE)</pre>

THE PACKAGE VISREG - VISREG2D

visreg2d(m6, "wt", "hp", plot.type = "image")

Multicollinearity

- As p increases we are more likely to capture multiple features that have some multicollinearity.
- When multicollinearity exists, we often see high variability in our coefficient terms.
- ► E.g. we have a correlation of 0.801 between Gr_Liv_Area and TotRms_AbvGrd
- Both variables are strongly correlated to the response variable (Sale_Price).

```
ames_data <- AmesHousing::make_ames()
cor(ames_data[,c("Sale_Price","Gr_Liv_Area","TotRms_AbvGrd")])
## Sale_Price Gr_Liv_Area TotRms_AbvGrd
## Sale_Price 1.0000000 0.7067799 0.4954744
## Gr_Liv_Area 0.7067799 1.0000000 0.8077721
## TotRms_AbvGrd 0.4954744 0.8077721 1.0000000</pre>
```

EFFECTS OF MULTICOLLINEARITY

```
lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data = ames_data)
##
## Call:
## lm(formula = Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd, data =
##
## Coefficients:
## (Intercept) Gr_Liv_Area TotRms_AbvGrd
## 42767.6 139.4 -11025.9
```

▶ When we fit a model with both these variables we get a positive coefficient for Gr_Liv_Area but a negative coefficient for TotRms_AbvGrd, suggesting one has a positive impact to Sale_Price and the other a negative impact.

SEPERATED MODELS

- ▶ If we refit the model with each variable independently, they both show a positive impact.
- ► The Gr_Liv_Area effect is now smaller and the TotRms_AbvGrd is positive with a much larger magnitude.

```
lm(Sale_Price ~ Gr_Liv_Area, data = ames_data)$coefficients
## (Intercept) Gr_Liv_Area
## 13289.634 111.694
lm(Sale_Price ~ TotRms_AbvGrd, data = ames_data)$coefficients
## (Intercept) TotRms_AbvGrd
## 18665.40 25163.83
```

- ▶ This is a common result when collinearity exists.
- ► Coefficients for correlated features become over-inflated and can fluctuate significantly.

library(GGally)
ggpairs(ames_data[,c("Sale_Price","TotRms_AbvGrd","Gr_Liv_Area")

Consequences

- One consequence of these large fluctuations in the coefficient terms is overfitting, which means we have high variance in the bias-variance tradeoff space.
- ▶ We can use tools such as **variance inflaction factors** (Myers, 1994) to identify and remove those strongly correlated variables, but it is not always clear which variable(s) to remove.
- Nor do we always wish to remove variables as this may be removing signal in our data.

The problem - Overfitting

 Our model doesn't generalize well from our training data to unseen data.

What can be done against overvitting

- Cross Validation
- ► Train with more data
- ► Remove features
- ▶ Regularization e.g. ridge and lasso regression
- ► Ensembling e.g. bagging and boosting

Cross Validation

- ► Cross-validation is a powerful preventative measure against overfitting.
- ▶ Use your initial training data to generate multiple mini train-test splits. Use these splits to tune your model.

CROSS VALIDATION IN R

```
SPLIT DATA INTO TRAINING AND TESTING DATASET
library(caret)
library(tidyverse)
training.samples <- ames data$Sale Price %>%
createDataPartition(p = 0.8, list = FALSE)
train.data <- ames data[training.samples, ]</pre>
test.data <- ames data[-training.samples, ]
nrow(train.data) # used to train (i.e. build) the model
## [1] 2346
nrow(test.data) # used to test (i.e. validate) the model
## [1] 584
                # by estimating the prediction error.
```

BUILD THE MODEL AND MAKE PREDICTIONS

data = train.data)

model <- lm(Sale_Price ~ Gr_Liv_Area + TotRms_AbvGrd,</pre>

```
# Make predictions and compute the R2, RMSE and MAE
(predictions <- model %>% predict(test.data))
##
## 109790.24 161208.48 214778.75 124731.14 179665.14 165422.99 2
##
                     10
                               11
                                          12
                                                    13
                                                               14
## 152488.80 404113.29 181381.19 251692.07 210010.81 126648.29 1
##
          17
                     18
                               19
                                          20
                                                    21
                                                               22
## 202045.65 205650.97 187512.85 122551.22 277297.69 123160.42 1
##
          25
                     26
                               27
                                          28
                                                    29
                                                               30
## 169346.85 110371.55 163824.38 149872.89 226874.76 166149.63 2
##
          33
                     34
                               35
                                          36
                                                    37
                                                               38
## 218674.72 98164.00 115256.94 230356.73 201989.88 181872.94 1
                     42
                               43
                                                    45
##
          41
                                          44
                                                               46
## 199340.19 200737.70 173561.36 172661.51 178329.30 115485.92 2
##
          49
                     50
                               51
                                          52
                                                    53
                                                               54
```

Jan-Philipp Kolb

Model with cross validation

Loocv: leave one out cross validation

LINKS - LINEAR REGRESSION

- Regression r-bloggers
- ► The complete book of **Faraway** very intuitive
- Good introduction on Quick-R
- Multiple regression
- ▶ 15 Types of Regression you should know
- ggeffects Create Tidy Data Frames of Marginal Effects for 'ggplot' from Model Outputs
- ► Machine learning iteration

SHINY APP - DIAGNOSTICS FOR LINEAR REGRESSION

- ► Shiny App Simple Linear Regression
- ► Shiny App Multicollinearity in multiple regression

Diagnostics for simple linear regression

