Lineare Algebra 2 Hausaufgabenblatt 11

Patrick Gustav Blaneck

Abgabetermin: 13. Juni 2021

- 5. Die Punkte A(6;0;0), B(2;1;3) und C(-2;-2;2) liegen in einer Ebene E.
 - (a) Stellen Sie die Hessesche Normalform der Ebene auf. Wie groß ist der Abstand der Ebene zum Ursprung?

Lösung:

Wir wählen uns \vec{a} (Ortsvektor von A) als Stützvektor und die Vektoren $v = \vec{b} - \vec{a}$ und $w = \vec{c} - \vec{a}$ als Richtungsvektoren der Ebene. Dann gilt:

$$v = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix}, \qquad w = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix} - \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -8 \\ -2 \\ 2 \end{pmatrix}$$

$$n = \frac{v \times w}{|v \times w|} = \frac{1}{|v \times w|} \begin{pmatrix} 8 \\ -16 \\ 16 \end{pmatrix} = \frac{1}{24} \begin{pmatrix} 8 \\ -16 \\ 16 \end{pmatrix} = \begin{pmatrix} 1/3 \\ -2/3 \\ 2/3 \end{pmatrix}$$

Mit n als (normierten) Normalenvektor erhalten wir dann die Hessesche Normalform der Ebene mit

$$E:\langle x,n\rangle=\langle \vec{a},n\rangle \quad \iff \quad \frac{1}{3}\cdot x-\frac{2}{3}\cdot y+\frac{2}{3}\cdot z=2$$

Setzen wir nun den Nullpunkt in die Ebene ein, erhalten wir sofort den Abstand mit d=2. \square

(b) Welcher Punkt in der Ebene hat den kleinsten Abstand zum Ursprung? Stellen Sie dazu das zugehörige unterbestimmte LGS auf und finden Sie die Lösung mit Hilfe der verallgemeinerten Inverse.

Lösung:

Mit der Ebenengleichung

$$E: \frac{1}{3} \cdot x - \frac{2}{3} \cdot y + \frac{2}{3} \cdot z = 2$$

können wir folgendes unterbestimmte LGS aufstellen:

$$Ax = b \iff \begin{pmatrix} 1/3 & -2/3 & 2/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \end{pmatrix}$$

mit

$$\operatorname{rank}(A) = 1 = m \implies x = A^T (AA^T)^{-1} b$$

Hausaufgabenblatt 11 Lineare Algebra 2

Dann gilt:

$$x_{s} = A^{T} (AA^{T})^{-1} b$$

$$= \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \begin{pmatrix} (\frac{1}{3} - \frac{2}{3} & \frac{2}{3}) \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \cdot 1$$

$$= \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \cdot 1^{-1} \cdot 2$$

$$= \begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{pmatrix} \cdot 1 \cdot 2$$

$$= \begin{pmatrix} \frac{2}{3} \\ -\frac{4}{3} \\ \frac{4}{3} \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Damit ist dann $\begin{pmatrix} 2/3 & -4/3 & 4/3 \end{pmatrix}^T$ der gesuchte Punkt in der Ebene mit dem geringsten Abstand.

Hausaufgabenblatt 11 Lineare Algebra 2

6. Zeigen Sie, dass die Matrix

$$Q = \begin{pmatrix} \cos \beta & -\sin \beta & 0\\ \cos \alpha \sin \beta & \cos \alpha \cos \beta & -\sin \alpha\\ \sin \alpha \sin \beta & \sin \alpha \cos \beta & \cos \alpha \end{pmatrix}$$

eine Orthogonalmatrix ist und bestimmen Sie ihre Inverse.

Lösung:

Genau dann, wenn Q eine Orthogonalmatrix ist, ist $QQ^T = I$ und damit auch $Q^T = Q^{-1}$:

$$QQ^{T} = \begin{pmatrix} \cos \beta & -\sin \beta & 0 \\ \cos \alpha \sin \beta & \cos \alpha \cos \beta & -\sin \alpha \\ \sin \alpha \sin \beta & \sin \alpha \cos \beta & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & \cos \alpha \sin \beta & \sin \alpha \sin \beta \\ -\sin \beta & \cos \alpha \cos \beta & \sin \alpha \cos \beta \\ 0 & -\sin \alpha & \cos \alpha \end{pmatrix}$$

$$= \begin{pmatrix} \cos^{2} \beta + \sin^{2} \beta & 0 & 0 \\ 0 & \cos^{2} \alpha \left(\sin^{2} \beta + \cos^{2} \beta\right) + \sin^{2} \alpha & 0 \\ 0 & 0 & \sin^{2} \alpha \left(\sin^{2} \beta + \cos^{2} \beta\right) + \cos^{2} \alpha \end{pmatrix}$$

$$= \begin{pmatrix} \cos^{2} \beta + \sin^{2} \beta & 0 & 0 \\ 0 & \cos^{2} \alpha + \sin^{2} \alpha & 0 \\ 0 & 0 & \sin^{2} \alpha + \cos^{2} \alpha \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Damit ist Q eine Orthogonalmatrix und Q^T die Inverse von Q.

- 7. Die Abbildung f_A dreht einen Vektor im \mathbb{R}^3 innerhalb der x-z-Ebene um einen Winkel ϕ . Die Abbildung f_B spiegelt einen Vektor im \mathbb{R}^3 an der x-Achse.
 - (a) Stellen Sie die zugehörigen Abbildungsmatrizen A und B auf.

Lösung:

Es gilt:

$$A = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

(b) Stellen Sie die zugehörige Abbildungsmatrix der hintereinander geschalteten Abbildungen $f_B \circ f_A$ auf.

Lösung:

Die Abbildungsmatrix von $f_B \circ f_A$ ist gegeben mit:

$$M = BA = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{pmatrix} = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & -1 & 0 \\ -\sin \phi & 0 & -\cos \phi \end{pmatrix}$$

(c) Bestimmen Sie auch die zugehörige Abbildungsmatrix der Umkehrabbildung $(f_B \circ f_A)^{-1}$.

Lösung:

Wir erkennen sehr schnell, dass M eine Orthogonalmatrix ist (und insbesondere $M = M^T$). Damit gilt dann:

$$MM^{T} = \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & -1 & 0 \\ -\sin \phi & 0 & -\cos \phi \end{pmatrix} \begin{pmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & -1 & 0 \\ -\sin \phi & 0 & -\cos \phi \end{pmatrix}$$
$$= \begin{pmatrix} \cos^{2} \phi + \sin^{2} \phi & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \sin^{2} \phi + \cos^{2} \phi \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Damit ist M also insgesamt involutorisch (selbstinvers).

8. (a) Zeigen Sie, dass die symmetrische Matrix H_n für jeden Spaltenvektor $u \in \mathbb{R}^n \setminus \{0\}$ orthogonal ist:

$$H_n := I_n - 2 \cdot \frac{uu^T}{u^T u}$$

 I_n ist dabei die $(n \times n)$ -Einheitsmatrix.

Hinweis: Berechnen Sie nicht die Komponenten von H_n .

Lösung:

Es gilt offensichtlich:

$$H_{n} := I_{n} - 2 \cdot \frac{uu^{T}}{u^{T}u} \stackrel{1}{=} I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle}$$

$$\implies H_{n} (H_{n})^{T} \stackrel{2}{=} \left(I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle}\right)^{2}$$

$$= \left(I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle}\right) \left(I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle}\right)$$

$$= I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle} - 2 \left(\frac{uu^{T}}{\langle u, u \rangle}\right) \left(I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle}\right)$$

$$= I_{n} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle} - 2 \cdot \frac{uu^{T}}{\langle u, u \rangle} + \left(-2 \cdot \frac{uu^{T}}{\langle u, u \rangle}\right)^{2}$$

$$= I_{n} - 4 \cdot \frac{uu^{T}}{\langle u, u \rangle} + 4 \cdot \frac{uu^{T}uu^{T}}{\langle u, u \rangle^{2}}$$

$$= I_{n} - 4 \cdot \frac{uu^{T}}{\langle u, u \rangle} + 4 \cdot \frac{u(u^{T}u)u^{T}}{\langle u, u \rangle^{2}}$$

$$= I_{n} - 4 \cdot \frac{uu^{T}}{\langle u, u \rangle} + 4 \cdot \frac{u(u^{T}u)u^{T}}{\langle u, u \rangle^{2}}$$

$$= I_{n} - 4 \cdot \frac{uu^{T}}{\langle u, u \rangle} + 4 \cdot \frac{uu^{T}uu^{T}}{\langle u, u \rangle} = I_{n}$$

Damit ist $H_n(H_n)^T = I_n$ und nach Definition H_n eine Orthogonalmatrix.

(b) Verifizieren Sie das Ergebnis für $u = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$

Lösung:

Es gilt:

$$I_3 - 2 \cdot \frac{uu^T}{u^T u} = I_3 - \frac{2}{5} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 0 \\ 2 & 0 & 4 \end{pmatrix} = \begin{pmatrix} 3/5 & 0 & -4/5 \\ 0 & 1 & 0 \\ -4/5 & 0 & -3/5 \end{pmatrix} \in O(3)$$