

x 抽樣分配補充説明

定理 1

自總數為 N 的母體中以取出不放回方式抽取 n 個樣本,此 n 個樣本分別為 x_1,x_2,\cdots,x_n ,若已知母體平均數為 μ 變異數為 σ^2 ,則 x_i,x_j , $i\neq j$ 的共變異數為

$$Cov(x_i, x_j) = -\frac{\sigma^2}{N-1}, \quad i \neq j$$

證明

採取出不放回的方式抽取兩個樣本 x_i, x_j 之機率為 $C_2^N = \frac{1}{N(N-1)}$

故 x_i, x_j 之聯合機率質量函數為 $f(x_i, x_j) = \frac{1}{N(N-1)}$

$$Cov(x_{i}, x_{j}) = E\left[(x_{i} - \mu)(x_{j} - \mu)\right] = \sum_{i \neq j} (x_{i} - \mu)(x_{j} - \mu)f(x_{i}, x_{j})$$

$$= \sum_{i \neq j} (x_{i} - \mu)(x_{j} - \mu) \frac{1}{N(N-1)}$$

$$= \frac{1}{N(N-1)} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i} - \mu)(x_{j} - \mu) - \sum_{i=j}^{n} (x_{i} - \mu)(x_{j} - \mu)\right]$$

$$= \frac{1}{N(N-1)} \left[\sum_{i=1}^{n} (x_{i} - \mu) \cdot \sum_{j=1}^{n} (x_{j} - \mu) - \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right]$$

$$= \frac{1}{N(N-1)} \left[\left(\sum_{i=1}^{n} (x_{i} - \mu)\right)^{2} - \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right] = \frac{1}{N(N-1)} \left[0 - \sigma^{2}\right]$$

$$= -\frac{\sigma^{2}}{N(N-1)}$$

定理 2

自總數為N的母體中以取出不放回方式抽取n個樣本,則樣本平均數的變異數為:

$$\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n} \frac{N - n}{N - 1}$$

證明

$$\sigma_{\overline{x}}^{2} = V(\overline{x}) = V(\frac{x_{1} + x_{2} + \dots + x_{n}}{n}) = \frac{1}{n^{2}} V(x_{1} + x_{2} + \dots + x_{n})$$

$$= \frac{1}{n^{2}} \left[\sum_{i=1}^{n} V(x_{i}) + \sum_{i \neq j} Cov(x_{i}, x_{j}) \right] = \frac{1}{n^{2}} (n\sigma^{2} - n(n-1)\frac{\sigma^{2}}{N-1})$$

$$= \frac{\sigma^{2}}{n} \frac{N - n}{N-1}$$

註: $(x_i, x_j), i \neq j$ 的排列數有 $P_2^n = n(n-1)$ 種情形。

(A.2)

CASIO fx-350MS 操作手冊

1. 基本運算

例 1

解

$$3 \times \sqrt{} 2 + 4 \times 6 \times 6 \times 7 \times 5 + \times 7 \times 2 = 1$$

例 2

$$\cancel{3} + 5\frac{3}{10} = 5\frac{29}{30}$$

解

2
$$ab/c$$
 3 \oplus 5 ab/c 3 ab/c 10 \oplus

答案轉假分數:再按 SHIFT d/c

2. 統計應用

每一次進行統計計算時必須先轉成統計模式:按 MODE 2

(2) 敘述統計

例 1

已知資料如下: 35 56 56 78 78 78 78 96 73, 求平均數、變異數、標準 差。

解

計算機操作:

先轉成統計模式: MODE 2

輸入資料

35 M+ 56 M+ M+ 78 SHIFT ; 4 M+ 96 M+ 73 M+

1. 求平均數

SHIFT 2 1 =

2. 求母體標準差

SHIFT 2 2 =

3. 求樣本標準差

SHIFT 2 3 =

4. 求母體變異數

SHIFT 2 2 x^2

5. 求樣本變異數

SHIFT 2 3 x^2

6. $xin \sum x^2$

SHIFT 1 =

7. 求 $\sum x$

SHIFT 1 2 =

例 2

已知資料如下,求平均數、變異數、標準差...。

0-10	10-20	20-30	30-40	40-50	50-60	60-70
12	23	6	21	5	7	13

解

計算機操作:

轉成統計模式: MODE 2

輸入資料

5 SHIFT ; 12 M+ 15 SHIFT ; 23 M+ 25 SHIFT ; 6 M+

35 SHIFT ; 21 M+ 45 SHIFT ; 5 M+ 55 SHIFT ; 7 M+

65 SHIFT ; 13 M+

其餘操作與例1相同。

例 3

已知資料如下: 35 56 56 78 78 78 78 96 73, 求偏態係數與峰度係數。

計算機操作:

1. 求偏態係數 $\beta_1 = \frac{M_3}{\sigma^3} = \frac{\frac{1}{n}\sum (x_i - \overline{x})^3}{\left(\sqrt{\frac{1}{n}\sum (x_i - \overline{x})^2}\right)^3}$

先轉成統計模式: MODE 2

輸入資料

35 M+ 56 M+ M+ 78 SHIFT ; 4 M+ 96 M+ 73 M+

求平均數 SHIFT 2 1 = 69.778

接著求分子部分:

轉成二次迴歸模式: MODE 3 □ 【註】□表方向鍵(面積最大的按鍵)

輸入資料

再求分母部分:

代入偏態係數公式中,即可求出偏態係數。

2. 求峰度係數
$$\beta_2 = \frac{M_4}{\sigma^4} = \frac{\frac{1}{n} \sum (x_i - \overline{x})^4}{\left(\frac{1}{n} \sum (x_i - \overline{x})^2\right)^2}$$

求分子部分:

再求分母部分:

SHIFT [1] [1] 月 月 9 月
$$x^2$$
 月 得 1005.075

(2) 應用統計

例 1

隨機從三個母體各取出五個樣本,資料如下表所示,求 $SST \setminus SSA \setminus SSE$ 。(每一組樣本相同時)

- 1			
編號	樣本 1	樣本 2	樣本 3
1	32	44	33
2	30	43	36
3	30	44	35
4	26	46	36
5	32	48	40

解

計算機操作:

1. SST 的計算: $SST = n_T \sigma_T^2$

先轉成統計模式: MODE 2

32 M+ 30 M+ M+ 26 M+ 32 M+ 44 M+ 43 M+ 44 M+ 46 M+ 48 M+ 33 M+ 36

M+ 35 M+ 36 M+ 40 M+

SHIFT 2 2 $x^2 \times 15 =$

2. SSA 的計算: $SSA = n_T \sigma_{\overline{A}_i}^2$

先求每一組的樣本平均數:分別為 30,45,36

轉成統計模式: MODE 2

30 M+ 45 M+ 36 M+

SHIFT 2 2 x^2 15

3. SSE的計算: SSE = SST - SSA

例 2

已知資料如下,試求 SST, SSA, SSE (每一組樣本資料不同時)

樣本 1	樣本 2	樣本 3
10	6	14
8	9	13
5	8	10
12	13	17
14		16
11		

計算機操作:

1. SST的計算: $SST = n_T \sigma_T^2$

先轉成統計模式: MODE 2

10 M+ 8 M+ 5 M+ 12 M+ 14 M+ 11 M+ 6 M+ 9 M+ 8 M+ 13 M+ 14 M+ 13 M+

10 M+ 17 M+ 16 M+

SHIFT 2 2 x^2 \times 15 =

2. SSE 的計算: $SSE = \sum (n_i - 1)s_i^2$

先求出三組樣本之樣本變異數(使用前面介紹之變異數計算機使用過程,注意每算完一組需按 MODE 2 重新啟動統計模式)分別為 10,8.67,7.5

 $5 \times 10 + 3 \times 8.67 + 4 \times 7.5 =$

3. SSA 的計算: SSA = SST - SSE

例 3

已知資料如下,求 SST, SSA, SSB, SSE

區域 銷售員	東區	南區	北區	$\overline{x_i}$
甲	53	61	51	55
乙	47	55	51	51
丙	46	52	49	49
丁	50	58	54	54
戊	49	54	50	51
\overline{x}_j	49	56	51	$\overline{\overline{x}} = 52$

假設 A 因子表區域,B 因子表銷售員:

計算機操作:

1. SST的計算: $SST = n_T \sigma_T^2$

先轉成統計模式: MODE 2

53 M+ 47 M+ 46 M+ 50 M+ 49 M+ 61 M+ 55 M+ 52 M+ 58 M+ 54 M+ 51 M+

M+ 49 M+ 54 M+ 50 M+ 55 M+ 51 M+ 49 M+ 54 M+ 51 M+

SHIFT 2 2 $x^2 \bowtie 15 =$

2. SSA 的計算: $SSA = n_T \sigma_{\overline{A}_i}^2$

轉成統計模式: MODE 2

49 M+ 56 M+ 51 M+

SHIFT 2 2 $x^2 \bowtie 15 \bowtie 15$

3. SSB 的計算: $SSB = n_T \sigma_{\bar{B}_i}^2$

轉成統計模式: MODE 2

55 M+ 51 M+ 49 M+ 54 M+ 51 M+

SHIFT 2 2 $x^2 \times 15$

4. SSE的計算: SSE = SST - SSA - SSB

例 4

已知資料如下,求 SST, SSA, SSB, SSAB, SSE

		機器				
		甲	Z	丙	丁	
	1	109	110	108	110	
	1	110	115	110	106	
操作員	2	110	110	112	114	
孫11-貝		112	111	109	112	
		116	112	114	120	
	3	114	115	119	117	

解

假設機器為因子,操作員為 B 因子。

計算機操作:

1. SST的計算: $SST = n_T \sigma_T^2$

先轉成統計模式: MODE 2

109 M+ 110 M+ M+ 112 M+ 116 M+ 114 M+ 110 M+ 115 M+ 110 M+ 111 M+

112 M+ 115 M+ 108 M+ 110 M+ 112 M+ 109 M+ 114 M+ 119 M+ 110 M+ 106

M+ 114 M+ 112 M+ 120 M+ 117 M+

SHIFT 2 2 $x^2 \times 24$

求出 SST 後順便求出 $\sum_{i=1}^{r}\sum_{j=1}^{c}\sum_{k=1}^{n}x_{ijk}^{2}$,後面求 SSE 會用到(資料不需重新輸入)

SHIFT 1 1

2. SSA, SSB, SSE的計算

求出行、列與小格子的平均

	機器					
	甲	Z	丙	丁	列平均	
	109	110	108	110		
1	110	115	110	106	$\overline{B}_1 = 109.75$	
	$\overline{B_1 A_1} = 109.5$	$\overline{B_1 A_2} = 112.5$	$\overline{B_1 A_3} = 109$	$\overline{B_1 A_4} = 108$		
	110	110	112	114		
2	112	111	109	112	$\overline{B}_2 = 111.25$	
	$\overline{B_2 A_1} = 111$	$\overline{B_2 A_2} = 110.5$	$\overline{B_2 A_3} = 110.5$	$\overline{B_2 A_4} = 113$		
	116	112	114	120		
3	114	115	119	117	$\overline{B}_3 = 115.875$	
	$\overline{B_3 A_1} = 115$	$\overline{B_3 A_2} = 113.5$	$\overline{B_3 A_3} = 116.5$	$\overline{B_3 A_4} = 118.5$	3	
行平均	$\overline{A}_1 = 111.833$	$\overline{A}_2 = 112.167$	$\overline{A}_3 = 112$	$\overline{A}_4 = 113.167$	$\overline{\overline{x}} = 112.29$	

(1) SSA 的計算: $SSA = n_T \sigma_{\overline{A}_i}^2$

轉成統計模式: MODE 2

111.833 M+ 112.167 M+ 112 M+ 113.167 M+

SHIFT 2 2 x^2 24 =

(2) SSB 的計算: SSB = $n_T \sigma_{\bar{B}_i}^2$

轉成統計模式: MODE 2

109.75 M+ 111.25 M+ 115.875 M+

SHIFT 2 2 x^2 24 =

(3)
$$SSE$$
 的計算: $SSE = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} x_{ijk}^{2} - n \sum_{i=1}^{r} \sum_{j=1}^{c} \overline{A_{j}B_{i}}^{2}$

轉成統計模式: MODE 2

109.5 M+ 111 M+ 115 M+ 112.5 M+ 110.5 M+ 113.5 M+ 109 M+ 110.5 M+ 116.5 M+ 108 M+ 113 M+ 118.5 M+

SHIFT $\boxed{1} \boxed{1} \boxed{2}$ $-2 + \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} x_{ijk}^{2} \boxed{2}$

3. SSAB 的計算: SSAB = SST - SSA - SSB - SSE

例 5

已知資料如下

X	1	1	1	2	4	4	5	6
Y	568	577	652	657	755	759	840	832

求迴歸係數 $\hat{Y} = \hat{\alpha} + \hat{\beta}X$ 與相關係數

計算機操作:

先轉成線性迴歸模式:MODE 3 1

輸入資料

- 1 , 568 M+ 1 , 577 M+ 1 , 652 M+ 2 , 657 M+
- 4 7 755 M+ 4 7 759 M+ 5 7 870 M+ 6 7 832 M+
- 求 â
 - SHIFT 2 □ □ 1 □ 得 550.821
- 2 求 $\hat{\beta}$
 - SHIFT 2 ➡ 2 得 51.393
- 3. 求相關係數γ
 - SHIFT 2 ➡ 3 得 0.961