Fisica 1 per Chimica (Canali A-E ed P-Z) Esame scritto di Laboratorio/Statistica 18/06/2018

docenti: Francesco Santanastasio, Paolo Gauzzi

Nome:	Cognome:
Matricola	Aula:
<u>Canale:</u>	<u>Docente:</u>
possibile utilizzare una calcolatrice ec Riportare a penna (non matita) sul pr	cellulari devono essere spenti. Non è possibile consultare libri di testo o appunti personali. È di li formulario fornito insieme al compito. Pesente foglio i risultati numerici finali (con unità di misura ed incertezze di misura). Nell'elaborato degli esercizi (indicando tutte le formule utilizzate ed i passaggi) che i risultati numerici.
	di una molla se ne misura la lunghezza ℓ appendendovi oggetti di massa nota $M,$ ottenendo certezza sulla misura delle lunghezze è 0.005 m, quella sulle masse è trascurabile.
Il comportamento della molla è	è descritto dalla legge di Hooke:
$Mg = k(\ell - \ell_0)$	
dove ℓ_0 è la lunghezza della molla	a riposo. L'accelerazione di gravità è pari a $g = 9.81 \text{ m/s}^2$ con incertezza trascurabile.
 a) Verificare la relazione lineare significatività del 5%. 	e tra ℓ ed M utilizzando il metodo dei minini quadrati ed un test del χ^2 con un livello d
IPOTESI ACCETTATA □	$Chi\text{-}quadro\ ridotto\ \tilde{\chi}^2_{mis} = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$
b) Determinare la migliore stim	na della costante elastica della molla con la sua incertezza. $k = \underline{\hspace{2cm}}$
c) Determinare il valore aspetti $m = (2.1 \pm 0.2) \text{ kg}$	ato della lunghezza della molla ℓ_m , e la sua incertezza, quando vi si appende una massa

Suggerimento: per il punto c) utilizzare la formula di propagazione delle incertezze assumendo che i parametri della relazione lineare, ottenuti con il metodo dei minimi quadrati, siano variabili casuali indipendenti.

_	•	•	_
Eser	Clz	Z10	2

Per studiare l'eventualità che un campione di roccia sia radioattivo, si pone nelle sue vicinanze un contatore a scintillazione e si osservano 231 conteggi in 10 minuti di misura.

Per misurare la radioattività di fondo ambientale si toglie il campione di roccia e si lascia il contatore in misura per 30 minuti, durante i quali si ottengono 456 conteggi.

a)	Determinare il tasso	di conteggi al minu	to con (R_1) e senza	(R_2) il campione	di roccia, con l	le corrispondenti ir	ncertezze
----	----------------------	---------------------	------------------------	---------------------	------------------	----------------------	-----------

 $R_1 =$ $R_2 =$

b) Qual è la migliore stima del tasso di attività del campione di roccia ?

 $R_{roccia} =$

c) C'è evidenza ("oltre 3 deviazioni standard") che la roccia sia radioattiva ?

SI □ NO □

Esercizio 3

Un'azienda produce barattoli di passata di pomodoro. Una macchina si occupa di riempire i barattoli di passata. La quantità di passata messa in ciascun barattolo può essere regolata ed è una variabile casuale X che segue una distribuzione gaussiana con media μ_X (modificabile attraverso le impostazioni della macchina) e deviazione standard fissa $\sigma_X = 25$ g.

a) Determinare il valore μ_X a cui deve essere impostata la macchina affinché solo il 2% dei barattoli riempiti contenga meno di 500 g di passata di pomodoro.

 $\mu_X =$ _____

La macchina viene quindi impostata al valore μ_X trovato nel punto a) per la produzione. I barattoli vuoti sono di metallo e la loro massa è una variabile casuale Y che segue una distribuzione gaussiana con media 90 g e deviazione standard 8 g. Un ispettore pesa i barattoli pieni di passata di pomodoro e scarta quelli la cui massa totale (barattolo+passata) è inferiore a 590 g.

b) Calcolare la percentuale dei barattoli che viene scartata dall'ispettore.

 $p = \underline{\hspace{1cm}}$

c) L'ispettore esegue il controllo di 5 barattoli. Calcolare la probabilità che almeno 4 barattoli superino il controllo.

 $p = \underline{\hspace{1cm}}$

 $Suggerimento:\ la\ massa\ totale\ di\ barattolo+passata\ \grave{e}\ una\ variabile\ casuale\ Z=X+Y\ gaussiana.$

- -1 punto ogni 3 errori di questo tipo:
- unità di misura non riportate o riportate incorrettamente
- errori di calcolo (procedimento e formule ok ma risultato numerico significativamente sbagliato)

Soluzione Esercizio 1. (10 punti)

```
a) (4 punti) \ell = \ell_0 + \frac{g}{k}M \text{ (1)}
A = \ell_0, B = \frac{g}{k}
A = 0.05357 \pm 0.0088 \text{ m (0.5)}
B = 0.1142 \pm 0.0097 \text{ m}^2/\text{Ns}^2 \text{ (0.5)}
\chi^2_{mis} = \frac{\sum_i (\ell_i - A - BM_i)^2}{\sigma_\ell^2} = 0.32, \text{ con } 4 - 2 = 2 \text{ gradi di libertà (1)}
\tilde{\chi}^2_{mis} = 0.16
P(\tilde{\chi}^2 > \tilde{\chi}^2_{mis}) > 82\% > \alpha = 5\%. \text{ Ipotesi accettata. (1)}
b) (4 punti)
\sigma_A = 0.0088\text{m , } \sigma_B = 0.0097 \text{ m}^2/\text{Ns}^2 \text{ (1)}
k = \frac{g}{B}, \frac{\sigma_k}{k} = \frac{\sigma_B}{B} = 8.5\%. \text{ (2)}
Migliore stima: k = (85.9 \pm 7.3) \text{ N/m (1)}
c) (2 punti)
\ell = A + Bm
\sigma_\ell = \sqrt{(\frac{\partial \ell}{\partial m} \sigma_m)^2 + (\frac{\partial \ell}{\partial B} \sigma_B)^2 + (\frac{\partial \ell}{\partial A} \sigma_A)^2} = \sqrt{B^2 \sigma_m^2 + m^2 \sigma_B^2 + \sigma_A^2} = 0.032 \text{ m (1)}
\ell = (0.293 \pm 0.032) \text{ m (1)}
```

Soluzione Esercizio 2. (10 punti)

a) (4 punti)
$$R_1 = \frac{231 \pm \sqrt{231}}{10} = (23.1 \pm 1.5) \text{ conteggi/min (2)}$$

$$R_2 = \frac{456 \pm \sqrt{456}}{30} = (15.2 \pm 0.7) \text{ conteggi/min (2)}$$
b) (4 punti)
$$\sigma_{R_{roccia}} = \sqrt{\sigma_{R_1}^2 + \sigma_{R_2}^2} = 1.7 \text{ conteggi/min (2)}$$

$$R_{roccia} = R_1 - R_2 = (7.9 \pm 1.7) \text{ conteggi/min (2)}$$
c) (2 punti)
$$t = \frac{|R_{roccia} - 0|}{\sigma_{R_{roccia}}} = 4.65 > 3. \text{ Quindi la roccia è radioattiva. (2)}$$

Soluzione Esercizio 3. (10 punti)

a) (4 punti)
$$x_{min} = 500 \text{ g}$$
 $P(x < x_{min}) = 50\% - Q(t_{min}) = 2\%$ (dove $Q(t) = \int_{\mu_X}^{\mu_X + t\sigma_X} G_{\mu_X,\sigma_X}(x) dx$) (1) $Q(t_{min}) = 48\%$ da cui $t_{min} = 2.05$ (dalle tabelle di probabilità gaussiana) (1) Essendo $t_{min} = \frac{|x_{min} - \mu_X|}{\sigma_X}$ si ottiene: $\mu_X = x_{min} + t_{min} \cdot \sigma_X = 551.25 \text{ g}$ (2) b) (4 punti) $Z = X + Y$ gaussiana $\mu_Z = \mu_X + \mu_Y = 641.25 \text{ g}$ (1) $\sigma_Z = \sqrt{\sigma_X^2 + \sigma_Y^2} = 26.25 \text{ g}$ (1) $z_{min} = 590 \text{ g}$ $t_{min} = \frac{|z_{min} - \mu_z|}{\sigma_z} = 1.95$ (1) Probabilità di scartare il barattolo $P(z < z_{min}) = 50\% - Q(t_{min}) = 2.6\%$ (1) c) (2 punti)

Problema binomiale

Successo = il barattolo supera il controllo

Probabilità di successo = p = 100% - 2.6% = 97.4% (1)

Numero di prove N=5 (numero di barattoli)

n = numero di successi in N prove segue una distribuzione binomiale $B_{N,p}(n)$.

 $B_{N,p}(4) = 0.1170$ $B_{N,p}(5) = 0.8766$ $P(n \ge 4) = B_{N,p}(4) + B_{N,p}(5) = 99.4\%$ (1)