THOMAS BREYDO

Problem. Suppose $T \in \mathcal{L}(V)$. Prove that 9 is an eigenvalue of T^2 if and only if 3 or -3 is an eigenvalue of T.

Claim 1. If $\lambda \in \mathbf{F}$ is an eigenvalue of T, then λ^2 is an eigenvalue of T^2 .

Proof. Since λ is an eigenvalue of T, there exists a $v \in V$ such that $v \neq 0$ and

$$Tv = \lambda v$$
.

For this v,

$$T^{2}(v) = T(Tv)$$
$$= T(\lambda v)$$
$$= \lambda^{2} v.$$

Thus, λ^2 is an eigenvalue of T^2 .

Claim 2. If $\mu \in \mathbf{F}$ is an eigenvalue of T^2 , then $\sqrt{\mu}$ or $-\sqrt{\mu}$ is an eigenvalue of T (assuming that $\sqrt{\mu} \in \mathbf{F}$).

Proof. Since μ is an eigenvalue of T^2 , we know that $T^2 - \mu I$ is not injective. Thus, there exists a $v \in V$ such that $v \neq 0$ and

$$(T^2 - \mu I)v = 0.$$

Since

$$(T - \sqrt{\mu}I)(T + \sqrt{\mu}I) = T^2 + T \cdot \sqrt{\mu}I - \sqrt{\mu}I \cdot T + (\sqrt{\mu}I)^2$$
$$= T^2 + \sqrt{\mu}T - \sqrt{\mu}T + (\sqrt{\mu})^2 I$$
$$= T^2 + \mu I,$$

it follows that

$$(T-\sqrt{\mu}I)\underbrace{(T+\sqrt{\mu}I)v}_{w}=0.$$

Consider $w = (T + \sqrt{\mu}I)v$.

• If w=0, then $(T+\sqrt{\mu}I)v=0 \implies T+\sqrt{\mu}I$ is not injective. Thus, $-\sqrt{\mu}$ is an eigenvalue of T.

• If $w \neq 0$, then $(T - \sqrt{\mu}I)w = 0 \implies T - \sqrt{\mu}I$ is not injective. Thus, $\sqrt{\mu}$ is an eigenvalue of T.

These two claims suffice. It follows from **Claim 1** that if 3 or -3 is an eigenvalue of T, then 9 is an eigenvalue of T^2 . It follows from **Claim 2** that if 9 is an eigenvalue of T^2 , then 3 or -3 is an eigenvalue T.

Note. You can view the source code for this solution here.