# Solutions to Sheet 7

## Exercise 1

Let  $A \to B$  be a homomorphism of rings, let M be an A-module and let N be a B-module.

1. Show that the map

$$\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_B(B \otimes_A M,N), \quad \varphi \mapsto (b \otimes m \mapsto b\varphi(m))$$

is a well-defined isomorphism.

2. Show that the map

$$M \otimes_A N \to (M \otimes_A B) \otimes_B N, \quad m \otimes n \mapsto (m \otimes 1) \otimes n$$

is a well-defined isomorphism.

3. Deduce that  $S^{-1}M_1 \otimes_A S^{-1}M_2 \cong S^{-1}M_1 \otimes_{S^{-1}A} S^{-1}M_2$  for two A-modules  $M_1, M_2$  and a multiplicative subset  $S \subset A$ .

#### Solution.

1.

#### Exercise 2

Let A be a ring. We define the *support* of an A-module M as  $\operatorname{Supp}(M) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M_{\mathfrak{p}} \neq 0 \}$ .

- 1. Assume M is finitely generated. Show that  $\operatorname{Supp}(M) = \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M \otimes_A k(\mathfrak{p}) \neq 0 \}$ , where  $k(\mathfrak{p}) = \operatorname{Quot}(A/\mathfrak{p})$ .
- 2. Assume M, N are finitely generated A-modules. Show  $\operatorname{Supp}(M \otimes_A N) = \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$ .

## Solution.

1. We will show that  $M_{\mathfrak{p}} \neq 0$  if and only if  $M \otimes_A k(\mathfrak{p}) \neq 0$ . The map  $A \to k(\mathfrak{p})$  factors through the map  $A_{\mathfrak{p}} \to k(\mathfrak{p})$ , and we find  $M \otimes_A k(\mathfrak{p}) = M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} k(\mathfrak{p})$ , this directly gives the implication  $M \otimes_A k(\mathfrak{p}) \neq 0 \Longrightarrow M_{\mathfrak{p}} \neq 0$ .

For the other direction, we use Nakayama's Lemma. It (or at least one version of it) states that if  $N \neq 0$  is a finitely generated module over a local ring B with maximal ideal I, we have  $IN \neq N$ . In our situation, if we assume  $M_{\mathfrak{p}} \neq 0$ , Nakayama says

$$M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} k(\mathfrak{p}) \cong M_{\mathfrak{p}}/\mathfrak{p}M_{\mathfrak{p}} \neq 0.$$

Done.

2. We'll show that  $(M \otimes_A N) \otimes k(\mathfrak{p}) \neq 0$  if and only if  $M \otimes_A k(\mathfrak{p}) \neq 0$  and  $N \otimes_A k(\mathfrak{p}) \neq 0$ . Exercise 1.2 gives the isomorphism

$$(M \otimes_A k(\mathfrak{p})) \otimes_{k(\mathfrak{p})} (N \otimes_A k(\mathfrak{p})) \cong M \otimes_A (N \otimes_A k(\mathfrak{p})) \cong (M \otimes_A N) \otimes_A k(\mathfrak{p}).$$

From here we can directly check the desired equivalence.

## Exercise 3

Let A be a ring, let  $S \subset A$  be a multiplicative subset and let M, N be A-modules.

1. Assume that M is finitely presented A-module. Show that the map

$$S^{-1}\operatorname{Hom}_A(M,N) \to \operatorname{Hom}_{S^{-1}A}(S^{-1}M,S^{-1}N), \quad \varphi/s \mapsto (m/t \mapsto \varphi(m)/st)$$

is a well-defined isomorphism.

2. Construct a counterexample to the above if M is only assumed to be finitely generated.

#### Solution.

1. First, note that we always (without hypothesis on M) obtain such a map. This directly follows (for example) from exercise 1.1 with  $B = S^{-1}A$ .

Now we have to show that this is an isomorphism if M is finitely presented. As usual, we write M as part of a short exact sequence

$$0 \to A^m \to A^n \to M \to 0.$$

Now we use that  $\operatorname{Hom}_A(-, N)$  is right-exact. Hence applying  $\operatorname{Hom}_A(-, N)$  yields an exact sequence

$$0 \to 0 \to \operatorname{Hom}_A(M,N) \to \operatorname{Hom}_A(A^n,N) \cong N^n \to \operatorname{Hom}_A(A^m,N) \cong A^m.$$

Localizing at S is exact, so we obtain

$$0 \to 0 \to S^{-1} \operatorname{Hom}_A(M, N) \to (S^{-1}N)^n \to (S^{-1}N)^m$$
.

Similarly, we can localize at S first and then apply  $\operatorname{Hom}_{S^{-1}A}(S^{-1}(-), S^{-1}N)$ , which yields the exact sequence

$$0 \to 0 \to \operatorname{Hom}_{S^{-1}A}(S^{-1}M, S^{-1}N) \to (S^{-1}N)^n \to (S^{-1}N)^m.$$

Now we can use the 5-lemma again!

2. A standard example seems to be the following. Let  $A = k[x, y_1, y_2, ...]$  be the polynomial ring in variables indexed by  $\mathbb{N}$ . Let  $M = A/(y_1, y_2, ...)$ ,  $N = A/(xy_1, x^2y_2, ...)$  and  $S = \{1, x, x^2, ...\}$ . Now let's compare both sides of the morphism. Note that M is generated by 1, so that any A-linear morphism  $\varphi : M \to N$  is uniquely determined by the value of  $\varphi(1) \in N$ . Now we have  $0 = y_1 \varphi(1) = y_2 \varphi(1) = ...$ , which shows that any lift  $\varphi(1) \in R$  is infintely divisible by x, hence  $\varphi(1) = 0$ . On the left hand side, we find that  $S^{-1}M \cong S^{-1}N \cong k[x^{\pm 1}]$ , so there are many  $S^{-1}A$ -linear morphisms  $S^{-1}M \to S^{-1}N$ .

## Exercise 4

Let A be a principal domain and let  $f \in A \setminus \{0\}$  be a non-unit. Show that the A[T]-module  $(f,T) \subset A[T]$  is not flat.

**Solution.** Consider the map given by multiplication with f, which we will denote as  $\varphi: A \to A$ . It is injective. Note that  $A \cong A[T]/(T)$ . We want to show that  $(f,T) \otimes_{A[T]} A$  is not injective, showing that (f,T) is not flat. We have an isomorphism (of A[T]-modules)

$$(f,T)\otimes_{A[T]}A\cong (f,T)/T(f,T),$$

and  $(f,T)\otimes \varphi$  corresponds to the endomorphism given by multiplication with f under this identification. Now,  $T\neq 0$  in (f,T)/T(f,T), but  $fT=\varphi(T)=0$ .