MA 2073. HOMEWORK 4 DUE: FRIDAY FEBRUARY 14

Problems from text:

Section 4.2: 13, 16, 17, 22

Section 4.3: 1, 2, 3, 9, 10

Section 4.4: 15, 20, 21, 24

Section 8.5: 1, 10, 12

Additional problems:

Questions 1-3 will prove that for an $m \times n$ matrix A, the matrix A^TA is invertible if and only if A has linearly independent columns.

- 1. Let A be an $m \times n$ matrix. Use the steps below to show that a vector \mathbf{x} in \mathbb{R}^n satisfies $A\mathbf{x} = \mathbf{0}$ if and only if $A^T A\mathbf{x} = \mathbf{0}$.
 - a) Show that if $A\mathbf{x} = \mathbf{0}$, then $A^T A\mathbf{x} = \mathbf{0}$.
 - b) Suppose that $A^T A \mathbf{x} = \mathbf{0}$. Explain why $\mathbf{x}^T A^T A \mathbf{x} = \mathbf{0}$, and use this to show that $A \mathbf{x} = \mathbf{0}$.
- 2. Let A be an $m \times n$ matrix such that $A^T A$ is invertible. Show that the columns of A are linearly independent. (N.B. You may not assume A is invertible it may not even be square!).
 - 3. Let A be an $m \times n$ matrix whose columns are linearly independent.
 - a) Use Question 1 to show that $A^T A$ is an invertible matrix.
 - b) Explain why A must have at least as many rows as columns.
 - c) Determine the rank of A.
- 4. Let W be a subspace of \mathbb{R}^n , let \mathbf{y} be any vector in \mathbb{R}^n , and let $\hat{\mathbf{y}}$ be the orthogonal projection of \mathbf{y} onto W. Prove that $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y} , in the sense that

$$||\mathbf{y} - \mathbf{\hat{y}}|| < ||\mathbf{y} - \mathbf{v}||$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

5. Prove the following lemma about the inner product: If $||\mathbf{u}|| = ||\mathbf{v}|| = 1$, then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq 1$.