Capstone Project "Finding your next vacation spot"

Franziska Metge

Problem Description

We live in a world of travelers but we also live in a world of individuals with divers interests. It would be preposterous to assume that everybody enjoys exactly the same cities. Some people might enjoy cities with a good night life, while others want to travel to cities with a diverse cultural landscape.

Solution

A program which is able to find cities a user might find enjoyable based on an input city and venue landscape.

Results:

- table listing the similar cities,
- heat-map visualizing the similarity of these cities by venue occurrence
- scatter-plot using the cities coordinates

This material will enable the user to confidently select their next travel destination.

Data

- Population data from UN
- Coordinates pulled using geopy
- Venue information pulled using Foursquare API
- One-hot encoding using pandas.get_dummies () and pandas.groupby()

Population data from UN

City	Population Size	Country
Adrar	200834.0	Algeria
Ain Defla	450280.0	Algeria
Ain Temouchent	299341.0	Algeria
ALGIERS	2712944.0	Algeria

Final input table (one-hot encoding summarized by city

City	Population Size	Country	Latitude	Longitude	ATM	•••	Fast Food	 Zoo Exhibit
Ain Temouchent	299341.0	Algeria	35.26	-1.14	0		1	0
ALGIERS	2712944.0	Algeria	36.77	3.06	0		0	 0
Annaba	442230.0	Algeria	36.89	7.75	0		0	0
Bejaïa	559981.0	Algeria	36.75	5.06	0		0	0

Methods

- Exploratory data analysis
 - View city landscape in lower dimensonal space: PCA, t-SNE
 - Look at number of venues per city: Histogram, Scatter-plot
- find_next_vacation()
 - Calculates distance matrix using the pdist from the scipy.spatial.distance package
 - Returns k cities most similar in table format
 - Visualizes results in heat map and scatter plot
- get_information_on_next_vacation()
 - Uses Foursquare API to look up venues of a selected city
 - Returns list of venues in table format

Results (PCA and t-SNE Embedding)

- Both embedding show one dense cluster and a sparse cluster of cities
- Clustering is not driven by population size

Results (Histogram and Scatter plot)

- A) Majority of venue types occur seldom, while few categories appear more than 6000 times, such as coffee shops and hotels
- B) Some cities have no reported venues. Foursquare limit of 100 venues per city becomes evident
- C) Larger number of venues correlates with higher diversity of types of venues (R = 0.95)

Results (return table)

Function call:

future_vacation_destination_Berlin = find_next_vacation('BERLIN',
population_venue_data, 10, 'euclidean')

• Return table:

City	Population Size	Country	Latitude	Longitude	Art Gallery	•••	Coffee Shop	•••	Park	BERLIN
BERLIN	3613495	Germany	52.517	13.3888	2		10		5	0.0
Toronto	2956024	Canada	43.653	-79.3839	1		11		7	14.071
Portland (OR)	639863	United States of America	45.520	-122.674	0		13		4	14.560
s-Gravenha	514861	The Netherlands	52.074	4.26968	0		6		5	14.696
Pare Pare	142391	Indonesia	-4.005	119.623	0		10		0	14.730

Results (Heat map)

- Heat map of number of venues per category per city
- Rows are ordered based on hierarchical clustering
- Columns are ordered from most to least abundant venue category in Berlin

Results (Scatter plot)

 "BERLIN" result cities form two cluster; one European and one North American

Results (return table 2)

Function call:

future_vacation_destination_info = get_information_on_next_vacation('s-Gravenhage', future_vacation_destination_Berlin, 20)

Return table:

City	City Latitude	City Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
s-Gravenhage	52.07494555	4.26968022053	De Kaasspeciaalzaak Ed Boele	52.07856369	4.269423625	Deli / Bodega
s-Gravenhage	52.07494555	4.26968022053	cafe madeleine	52.07875093	4.276190053	Tea Room
s-Gravenhage	52.07494555	4.26968022053	Zondag lunchroom	52.07963034	4.268465460	Café
s-Gravenhage	52.07494555	4.26968022053	Restaurant Rakang Thai	52.07710976	4.278414389	Thai Restaurant
s-Gravenhage	52.07494555	4.26968022053	Emma	52.07672963	4.282775738	Bar

Conclusion

- In this Capstone project I developed a method to recommend future travel destinations to a user based on the similarity of their input city
- In the return tables, the user obtains a comprehensive overview of similar cities as well as the venue landscape in the similar cities
- The heat map representation of that venue landscape is more condensed and thus easier to interpret
- The scatter plots representation of the similar cities helps the user to easily place the cities in a geographical relationship

- I demonstrated that it is possible to find potential vacation destinations based on their venue landscape
- With a little bit more work this could easily become a valuable app for travel agencies or travel websites