1. Artificial Intelligence Evolution in Smart Buildings for Energy Efficiency

https://www.mdpi.com/2076-3417/11/2/763

Key Information:

1. Objective:

- The paper aims to review and analyze the application of AI and AI-based approaches in smart buildings, particularly for improving energy efficiency.
- It introduces an evaluation framework to assess recent research across major AI domains, including energy, comfort, design, and maintenance.

2. Al in Smart Buildings:

- Al technologies are used in smart buildings to reduce energy consumption through better control, improved reliability, and automation.
- Smart buildings integrate sensors, IoT, and big data to optimize energy use, comfort, and maintenance.

3. Building Management Systems (BMS):

- BMS is a key component of smart buildings, enabling the integration of cyber-physical systems (CPS) to optimize building performance and occupant comfort.
- Al enhances BMS by enabling real-time monitoring, predictive maintenance, and energy optimization.

4. Demand Response Programs (DRPs):

- DRPs are used to manage energy demand in smart grids, reducing peak loads and stabilizing the grid.
- Al plays a crucial role in automating DRPs, optimizing energy consumption, and reducing costs.

5. Al-Based Modeling Approaches:

- The paper discusses various Al-based modeling approaches for predicting building energy use, including:
 - Machine Learning (ML): Supervised, unsupervised, and reinforcement learning.
 - **Deep Learning (DL)**: Neural networks, convolutional neural networks (CNNs), and recurrent neural networks (RNNs).
 - **Hybrid Models**: Combining multiple AI techniques for improved accuracy.

6. Applications of AI in Smart Buildings:

- Energy Efficiency: Al optimizes HVAC systems, lighting, and other energy-consuming systems.
- o **Comfort**: Al improves thermal comfort and indoor air quality.
- o **Design**: All assists in the design of energy-efficient buildings.
- o Maintenance: Al enables predictive maintenance and fault detection.

7. Challenges and Future Directions:

- The paper highlights challenges such as data privacy, security, and the need for globally accepted IoT standards.
- Future research directions include integrating AI with renewable energy forecasting, improving energy accessibility, and developing robust AI systems.

Dataset Structure for IoT-Enabled Smart Buildings:

Building ID	Timesta mp	Energy Consumpti on (kWh)	Temper ature (°C)	Lighting Status	HVAC Status	enewable Energy Generatio n (kWh)	Weathe r conditio n
B001	2023-10- 01 08:00:00	120.5	22.5	on	on	15.2	sunny
B001	2023-10- 01 09:00:00	135.7	23.0	on	on	18.5	sunny
B002	2023-10- 01 08:00:00	95.3	21.0	on	off	10.5	rainy
B002	2023-10- 01 09:00:00	105.6	21.5	on	on	12.3	rainy
B002	2023-10- 01 10:00:00	110.8	22.0	off	0n	14.7	cloudy

2. Investigating the Impact of AI/ML for Monitoring and Optimizing Energy Usage in Smart Home

https://ojs.wiserpub.com/index.php/AIE/article/view/6065

Key Information:

1. Objective:

- To investigate how AI/ML techniques can be used to monitor and optimize energy usage in smart homes.
- The study focuses on improving energy efficiency, reducing costs, and promoting sustainability in residential environments.

2. Al/ML Techniques Discussed:

- Supervised Learning: Used for predicting energy consumption based on historical data, weather conditions, and user behavior.
 - Examples: Linear Regression, Decision Trees.
- Unsupervised Learning: Used for clustering energy usage patterns to provide personalized energy-saving recommendations.
 - Example: K-Means Clustering.
- Reinforcement Learning: Used for dynamic energy optimization by learning from real-time feedback.
 - Example: Deep Q-Networks (DQNs), Markov Decision Processes (MDPs).
- Deep Learning: Used for handling complex datasets and improving prediction accuracy.
 - Examples: Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs).

3. Applications of AI/ML in Smart Homes:

- Energy Consumption Prediction: Al models predict future energy needs based on historical data, weather, and occupancy.
- Smart Thermostats: Al-powered thermostats (e.g., Google Nest) adjust heating and cooling based on user behavior and environmental conditions.
- Home Automation: Al systems control multiple appliances (e.g., lighting, HVAC) to optimize energy use.

 Demand Response: Al adjusts energy usage during peak demand periods to reduce costs and improve grid stability.

4. Challenges:

- Data Privacy and Security: Smart homes generate sensitive data, raising concerns about unauthorized access and data breaches.
- Scalability: AI/ML models need to adapt to different home sizes, configurations, and changing user habits.
- Real-Time Decision Making: All systems must process large datasets quickly to optimize energy usage in real-time.
- Cost: High implementation costs and the need for continuous updates to keep up with evolving technologies.

5. Future Research Directions:

- Federated Learning: To address privacy concerns by training models on decentralized data.
- Integration of Renewable Energy: AI/ML can optimize the use of solar and wind energy in smart homes.
- Cross-Domain Optimization: Integrating energy management with other smart home functionalities like security and health monitoring.

Dataset Structure for Smart Home Energy Optimization:

Buildi ng ID	Times tamp	Energy Consu mption (kWh)	Temp eratur e (°C)	Applianc e Usage	Weathe r Conditi on	Renewable Energy Generation (kWh)	HVAC Status	Lightin g Status
B001	2023- 10-01 08:00: 00	120.5	22.5	on	sunny	15.2	on	on
B001	2023- 10-01 09:00:	135.7	23.0	on	sunny	18.5	On	on

	00							
B001	2023- 10-01 10:00: 00	145.2	23.5	on	cloudy	20.1	on	off
B002	2023- 10-01 08:00: 00	95.3	21.0	off	rainy	10.5	off	on
B002	2023- 10-01 10:00: 00	110.8	22.0	on	cloudy	14.7	on	off