

O poder da Aprendizagem Profunda

Felipe Kaminsky Riffel Universidade Federal de Santa Catarina

4 de abril de 2025

Sumário

Artigo: Why does deep and cheap learning work so well? Introdução Expressabilidade e Eficiência de Redes Rasas Custos de Achatamento

Referências

Artigo: Why does deep and cheap learning work so well?

Introdução Expressabilidade e Eficiência de Redes Rasas

Custos de Achatamento

Referências

Artigo:

LIN, Henry W.; TEGMARK, Max; ROLNICK, David. Why does deep and cheap learning work so well? Journal of Statistical Physics, v. 168, n. 6, p. 1223–1247, 2017.

Artigo: Why does deep and cheap learning work so well?

Introdução Expressabilidade e Eficiência de Redes Rasas

Custos de Achatamento

Referências

► Expressabilidade: que funções podemos expressar?

- ► Expressabilidade: que funções podemos expressar?
- ► Eficiência: quão complexa a rede tem que ser?

- ► Expressabilidade: que funções podemos expressar?
- ► Eficiência: quão complexa a rede tem que ser?
- ▶ "Aprendibilidade": quão rápido a rede consegue aprender a ajustar os bons parâmetros? ¹

- ► Expressabilidade: que funções podemos expressar?
- ► Eficiência: quão complexa a rede tem que ser?
- "Aprendibilidade": quão rápido a rede consegue aprender a ajustar os bons parâmetros? ¹

Aqui, focamos nos dois primeiros: **Expressabilidade** e **Eficiência**.

¹Traduzido de "Learnability"

Problema: "como redes neurais funcionam bem na prática, se o número de funções possíveis é exponencialmente maior que o número de redes possíveis?"

$$\iff$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_{10000000} \end{pmatrix}$$

$$x_i \in I_{256} := \{1, 2, 3, \dots, 256\}$$

 \Longrightarrow

$$\begin{pmatrix} \vdots \\ x_{1000000} \end{pmatrix}$$

$$I_{272} := \begin{cases} 1 & 2 & 3 \\ & & 25 \end{cases}$$

 $x_i \in I_{256} := \{1, 2, 3, \dots, 256\}$

 N^{o} total de imagens possíveis: $256^{1000000}$.

$$\Longrightarrow$$

$$\begin{pmatrix} \vdots \\ x_{1000000} \end{pmatrix}$$

$$x_i \in I_{256} := \{1, 2, 3, \dots, 256\}$$

 N^{o} total de imagens possíveis: $256^{1000000}$.

Se existe $p:I_{256}\to (0,1)$ que associa cada imagem a uma probabilidade, p deve ter uma lista $256^{1000000}$ valores (!!!)

Porém, redes neurais relativamente simples conseguem calcular bem a tarefa.

$$p(\text{Gato}|\mathbf{x}) = \mathbf{83}\%$$

Porém, redes neurais relativamente simples conseguem calcular bem a tarefa.

A matemática ajuda a explicar: as redes neurais conseguem diminuir drasticamente a explosão combinatória de número de parâmetros em relação ao número de valores;

Porém, redes neurais relativamente simples conseguem calcular bem a tarefa.

A matemática ajuda a explicar: as redes neurais conseguem diminuir drasticamente a explosão combinatória de número de parâmetros em relação ao número de valores;

A razão também é **física**: as leis sugerem que os datasets de interesse são, em sua maioria, advindos de distribuições simples.

Artigo: Why does deep and cheap learning work so well?

Introdução Expressabilidade e Eficiência de Redes Rasas

Custos de Achatamento

Referências

Considere $\mathbf{x} \in \mathbb{R}^d$. Sejam $A_i : \mathbb{R}^d \to \mathbb{R}^d$ operadores afim, i.e.,

$$A_i = W_i - b_i$$

com $W_i \in \mathbb{R}^{m_i \times n_i}$ e $b_i \in \mathbb{R}^{n_i}$.

Considere $\mathbf{x} \in \mathbb{R}^d$. Sejam $A_i : \mathbb{R}^d \to \mathbb{R}^d$ operadores afim, i.e.,

$$A_i = W_i - b_i$$

com $W_i \in \mathbb{R}^{m_i \times n_i}$ e $b_i \in \mathbb{R}^{n_i}$.

Dadas $\sigma_i : \mathbb{R}^{m_i} \to \mathbb{R}^{m_i}$ não linear, chamamos de rede neural feedforward uma função $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ da forma:

$$\mathbf{f}(\mathbf{x}) = \sigma_k A_k \dots \sigma_2 A_2 \sigma_1 A_1 \mathbf{x}. \tag{1}$$

Considere $\mathbf{x} \in \mathbb{R}^d$. Sejam $A_i : \mathbb{R}^d \to \mathbb{R}^d$ operadores afim, i.e.,

$$A_i = W_i - b_i$$

com $W_i \in \mathbb{R}^{m_i \times n_i}$ e $b_i \in \mathbb{R}^{n_i}$.

Dadas $\sigma_i : \mathbb{R}^{m_i} \to \mathbb{R}^{m_i}$ não linear, chamamos de rede neural feedforward uma função $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ da forma:

$$\mathbf{f}(\mathbf{x}) = \sigma_k A_k \dots \sigma_2 A_2 \sigma_1 A_1 \mathbf{x}. \tag{1}$$

- ▶ Aqui, se admite também $\sigma_k = I$;
- ightharpoonup Cada composição $\sigma_i A_i$ é chamada de *camada* da rede;
- ► Cada componente da operação $\sigma_{ij}A_{i,j}x$ (linha da matriz + aplicação de σ_i) é chamado de *neurônio*;

 σ_i pode ser qualquer operador não linear. Escolhas comuns são, dado $\mathbf{x} = (x_1, \dots, x_n)$:

► Função local: escolha $\sigma : \mathbb{R} \to \mathbb{R}$ não linear e aplique ponto a ponto $\sigma_i(\mathbf{x}) = (\sigma(x_1), \dots, \sigma(x_n));$

 σ_i pode ser qualquer operador não linear. Escolhas comuns são, dado $\mathbf{x} = (x_1, \dots, x_n)$:

- Função local: escolha $\sigma : \mathbb{R} \to \mathbb{R}$ não linear e aplique ponto a ponto $\sigma_i(\mathbf{x}) = (\sigma(x_1), \dots, \sigma(x_n));$
- Max-pooling: $\sigma_i(\mathbf{x}) = \max_{j=1,\dots,n}(x_j);$

 σ_i pode ser qualquer operador não linear. Escolhas comuns são, dado $\mathbf{x} = (x_1, \dots, x_n)$:

- Função local: escolha $\sigma : \mathbb{R} \to \mathbb{R}$ não linear e aplique ponto a ponto $\sigma_i(\mathbf{x}) = (\sigma(x_1), \dots, \sigma(x_n));$
- ► Max-pooling: $\sigma_i(\mathbf{x}) = \max_{j=1,...,n} (x_j);$
- ► Softmax:

$$\sigma_i(\mathbf{x}) = \frac{1}{\sum_{j=1}^n e^{x_j}} (e^{x_1}, \dots, e^{x_n}).$$

Seja \mathbf{f} rede neural da forma $\mathbf{f}(\mathbf{x}) = A_2 \sigma A_1 \mathbf{x}$, onde σ é aplicação não linear ponto a ponto qualquer. Considere as camadas de entrada, escondida e de saída com tamanhos 2, 4 e 1 respectivamente. Então, \mathbf{f} pode aproximar uma porta de multiplicação arbitrariamente bem.

Ou seja, dado $\varepsilon > 0$, para qualquer σ não linear (aplicada ponto a ponto), existem $A_1 : \mathbb{R}^2 \to \mathbb{R}^4, A_2 : \mathbb{R}^4 \to \mathbb{R}$ tais que a rede $f(x) = A_2 \sigma A_1 \mathbf{x}$ é tal que, dado $x = (u \ v)^T$ qualquer

$$|f(x) - uv| < \varepsilon$$

para u, v em um compacto qualquer.

Seja $\sigma:\mathbb{R}\to\mathbb{R}$ não linear qualquer suficientemente suave. Na expansão de Taylor em torno de x=0:

$$\sigma(u) = \sigma(0) + \sigma'(0)u + \frac{u^2}{2}\sigma''(0) + \mathcal{O}(u^3).$$

Sem perda de generalidade, considere $\sigma''(0) \neq 0$ (ou então, ajuste b_1 para que $\sigma''(A_{1,1}x - b_{1,1}), \sigma''(A_{1,2}x - b_{1,2}) \neq 0$, que deve existir dado que é não linear).

Seja $\sigma: \mathbb{R} \to \mathbb{R}$ não linear qualquer suficientemente suave. Na expansão de Taylor em torno de x=0:

$$\sigma(u) = \sigma(0) + \sigma'(0)u + \frac{u^2}{2}\sigma''(0) + \mathcal{O}(u^3).$$

Sem perda de generalidade, considere $\sigma''(0) \neq 0$ (ou então, ajuste b_1 para que $\sigma''(A_{1,1}x - b_{1,1}), \sigma''(A_{1,2}x - b_{1,2}) \neq 0$, que deve existir dado que é não linear).

Então,

$$m(u,v) := \frac{\sigma(u+v) + \sigma(-u-v) - \sigma(u-v) - \sigma(v-u)}{4\sigma''(0)}$$

$$= \sigma''(0) \frac{(u+v)^2 + (-u-v)^2 - (u-v)^2 - (v-u)^2 + \mathcal{O}((u+v)^3)}{4\sigma''(0)}$$

$$= uv + \mathcal{O}((u+v)^3)$$

Ou seja, $m(u,v)=uv+\mathcal{O}((u+v)^3)$, de modo que $\lim_{u^2+v^2\to 0}\frac{m(u,v)-uv}{u^2+v^2}=0$.

Ou seja, $m(u,v)=uv+\mathcal{O}((u+v)^3)$, de modo que $\lim_{u^2+v^2\to 0}\frac{m(u,v)-uv}{u^2+v^2}=0.$

Veja que, $m(u, v) = A_2 \sigma A_1 (u \ v)^T$, onde:

$$A_1 = W_1 - b_1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ 1 & -1 \\ -1 & 1 \end{pmatrix} - b_1,$$

$$A_2 = W_2 = (4\sigma''(0))^{-1} (1 \quad 1 \quad -1 \quad -1) - b_2.$$

Ou seja, $m(u,v)=uv+\mathcal{O}((u+v)^3)$, de modo que $\lim_{u^2+v^2\to 0}\frac{m(u,v)-uv}{u^2+v^2}=0.$

Veja que, $m(u, v) = A_2 \sigma A_1 (u \ v)^T$, onde:

$$A_1 = W_1 - b_1 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ 1 & -1 \\ -1 & 1 \end{pmatrix} - b_1,$$

$$A_2 = W_2 = (4\sigma''(0))^{-1} (1 \quad 1 \quad -1 \quad -1) - b_2.$$

Taylor fornece uma estimativa local, sendo boa para $u,v\approx 0$. Para u,v num compacto de raio qualquer, tome $A_1=\lambda W_1-b_1$ e $A_2=\lambda^{-2}W_2-b_2$ na definição de ${\bf f}$, de modo a obter

$$f(x) = (\lambda^{-2} A_2) \sigma(\lambda A_1) x = \lambda^{-2} (\lambda u \lambda v) = uv,$$

tornando a estimativa tão boa quanto se queira. \square

Figura: Ilustração da arquitetura da rede no teorema anterior

Fonte: Lin, et.al. (2017)

Ideia: montamos uma rede neural em "blocos", onde cada produto pode ser representado por uma rede neural descrita no teorema anterior.

Cada produto necessita de 4 neurônios de camada escondida (a saída de um neurônio corresponde à entrada do seguinte). Ainda, temos neurônios a mais para os termos remanescentes, fazendo a passagem de uma camada para a outra, sem alterar o valor. O número de passagens é

Ideia: montamos uma rede neural em "blocos", onde cada produto pode ser representado por uma rede neural descrita no teorema anterior.

Cada produto necessita de 4 neurônios de camada escondida (a saída de um neurônio corresponde à entrada do seguinte). Ainda, temos neurônios a mais para os termos remanescentes, fazendo a passagem de uma camada para a outra, sem alterar o valor. O número de passagens é

Para os termos remanescentes, podemos construir uma "camada de passagem" $u\mapsto u$ com 1 neurônio, dado que:

$$u \approx \frac{\sigma(u) - \sigma(0)}{\sigma'(0)}$$

Figura: Ilustração da rede construída: em vermelho, conexões de produto (4 neurônios); em azul, camadas de passagem (1 neurônio)

Fonte: Autor.

▶ de grau 2, multiplicamos cada variável entre si e passamos as demais adiante, nos dando $4n^2 + n \le 5n^2$ neurônios;

- ▶ de grau 2, multiplicamos cada variável entre si e passamos as demais adiante, nos dando $4n^2 + n \le 5n^2$ neurônios;
- ▶ de grau 3, multiplicamos os n^2 termos de grau 2 por cada variável e passamos os termos restantes, nos dando $4n^3+$;

- ▶ de grau 2, multiplicamos cada variável entre si e passamos as demais adiante, nos dando $4n^2 + n \le 5n^2$ neurônios;
- ▶ de grau 3, multiplicamos os n^2 termos de grau 2 por cada variável e passamos os termos restantes, nos dando $4n^3+$;
- **▶** :;
- ▶ de grau d, mutiplicamos os n^{d-1} termos de grau d-1 entre as n variáveis e passamos os demais adiante, tendo $4n^d + n^{d-1} + \cdots + n \leq 5n^d$ neurônios;

- ▶ de grau 2, multiplicamos cada variável entre si e passamos as demais adiante, nos dando $4n^2 + n \le 5n^2$ neurônios;
- ▶ de grau 3, multiplicamos os n^2 termos de grau 2 por cada variável e passamos os termos restantes, nos dando $4n^3+$;
- **▶** :;
- ▶ de grau d, mutiplicamos os n^{d-1} termos de grau d-1 entre as n variáveis e passamos os demais adiante, tendo $4n^d + n^{d-1} + \cdots + n \leq 5n^d$ neurônios;

No final, temos um número de neurônios da ordem de:

$$5n^2 + 5n^3 + \dots + 5n^d = \mathcal{O}(5n^d).$$

Se $\mathbf{x} \in \{0,1\}^n$, temos $x_i^2 = x_i$, de modo que todo polinômio assume a forma

$$p(\mathbf{x}) = a_0 + \sum_i a_i x_i + \sum_{i < j} a_{ij} x_i x_j + \sum_{i < j < k} a_{ijk} x_i x_j x_k \cdots$$

No total, temos 2^n termos distintos.

Ainda, qualquer produto de binários pode ser representado com um único neurônio na camada escondida com $\sigma(x) = \frac{1}{1+e^{-x}}$:

$$\prod_{i \in K} x_i = \lim_{\beta \to \infty} \sigma \left[-\beta \left(k - \frac{1}{2} - \sum_{i \in K} x_i \right) \right],$$

pois $\sigma(x) \to 0$ se $x \to -\infty$ e $\sigma(x) \to 1$ se $x \to \infty$.

Ainda, qualquer produto de binários pode ser representado com um único neurônio na camada escondida com $\sigma(x) = \frac{1}{1+e^{-x}}$:

$$\prod_{i \in K} x_i = \lim_{\beta \to \infty} \sigma \left[-\beta \left(k - \frac{1}{2} - \sum_{i \in K} x_i \right) \right],$$

pois $\sigma(x) \to 0$ se $x \to -\infty$ e $\sigma(x) \to 1$ se $x \to \infty$.

Assim, qualquer polinômio de n variáveis binárias pode ser representado por uma rede com:

- ightharpoonup Uma camada de entrada, com n+1 neurônios;
- ▶ Uma camada escondida, com 2^n neurônios (um para cada produto e termo livre);
- ▶ Uma camada de saída.

Artigo: Why does deep and cheap learning work so well?

Introdução Expressabilidade e Eficiência de Redes Rasas

Custos de Achatamento

Referências

Teorema: Dados $x_1, \ldots, x_n \in \mathbb{R}$ e $\sigma \in C^{\infty}$, o monômio $\prod_{i=1}^n x_i$ pode ser aproximado por uma rede neural de 1 camada com 2^n neurônios, seguindo a fórmula

$$\prod_{i=1}^{n} x_i \approx \frac{1}{2^n} \sum_{\{s\}} s_1 \cdots s_n \sigma(s_1 x_1 + \cdots + s_n x_n),$$

onde $s_i \in \{-1, 1\}$, para cada $i = 1, \dots, k$, e a soma é tomada sobre todas as 2^n configurações possíveis de $s_1 \cdots s_n$.

Teorema: Dados $x_1, \ldots, x_n \in \mathbb{R}$ e $\sigma \in C^{\infty}$, o monômio $\prod_{i=1}^n x_i$ pode ser aproximado por uma rede neural de 1 camada com 2^n neurônios, seguindo a fórmula

$$\prod_{i=1}^{n} x_i \approx \frac{1}{2^n} \sum_{\{s\}} s_1 \cdots s_n \sigma(s_1 x_1 + \cdots + s_n x_n),$$

onde $s_i \in \{-1, 1\}$, para cada $i = 1, \dots, k$, e a soma é tomada sobre todas as 2^n configurações possíveis de $s_1 \cdots s_n$.

Além disso, essa é a menor rede de 1 camada capaz de fazer tal aproximação.

Dado $x=(x_1,x_2,\ldots,x_n)$, uma rede N de 1 camada escondida é da forma

$$N(x) = \sum_{j=1}^{m} w_j \sigma \left(\sum_{i=1}^{n} a_{ij} x_i \right)$$

Dado $x=(x_1,x_2,\ldots,x_n),$ uma rede N de 1 camada escondida é da forma

$$N(x) = \sum_{j=1}^{m} w_j \sigma \left(\sum_{i=1}^{n} a_{ij} x_i \right)$$

Queremos uma rede de tamanho m com pesos w_j e a_{ij} tal que, denotando $\sigma_k = \sigma^{(k)}(0)$:

$$\sigma_n \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^n = \prod_{i=1}^n x_i,$$
 (2)

$$\sigma_k \sum_{i=1}^{m} w_j \left(\sum_{i=1}^{n} a_{ij} x_i \right)^k = 0, \forall k \in \{1, \dots, n-1\}$$
 (3)

Dado $x=(x_1,x_2,\ldots,x_n)$, uma rede N de 1 camada escondida é da forma

$$N(x) = \sum_{j=1}^{m} w_j \sigma \left(\sum_{i=1}^{n} a_{ij} x_i \right)$$

Queremos uma rede de tamanho m com pesos w_j e a_{ij} tal que, denotando $\sigma_k = \sigma^{(k)}(0)$:

$$\sigma_n \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^n = \prod_{i=1}^n x_i,$$
 (2)

$$\sigma_k \sum_{i=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^k = 0, \forall k \in \{1, \dots, n-1\}$$
 (3)

Mostremos que $m = 2^n$ é necessário e suficiente.

 2^n Suficiente Sejam S_1, S_2, \ldots, S_m subconjutos de $\{1, \ldots, n\}$. Defina p/ cada $i \in \{1, \ldots, n\}$

$$s_i(S) = \begin{cases} -1, i \in S, \\ 1, i \notin S. \end{cases}$$

 2^n Suficiente Sejam S_1, S_2, \ldots, S_m subconjutos de $\{1, \ldots, n\}$. Defina p/ cada $i \in \{1, \ldots, n\}$

$$s_i(S) = \begin{cases} -1, i \in S, \\ 1, i \notin S. \end{cases}$$

Defina $a_{ij} = s_i(S_j)$

$$w_j = x \frac{1}{2^n n! \sigma_n} \prod_{i=1}^n a_{ij} = \frac{(-1)^{|S_j|}}{2^n n! \sigma_n}.$$

Considere $p(x)=x_1^{r_1}x_2^{r_2}\cdots x_1^{r_1}, r_1+\cdots+r_n=r\leq n$. Vamos verificar que no desenvolvimento de

$$\sigma_r \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^r$$

se $p(x) \neq \prod_{i=1}^{n} x_i$, seu coeficiente é 0.

Se $p(x) \neq \prod_{i=1}^{n} x_i$, existe $r_{i_0} = 0$.

$$\sigma_r \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^r \tag{4}$$

$$= \sigma_r \sum_{j=1}^m \frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \left(\sum_{i=1}^n s_i(S_j) x_i \right)^r$$
 (5)

Se $p(x) \neq \prod_{i=1}^{n} x_i$, existe $r_{i_0} = 0$.

$$\sigma_r \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^r$$

$$(4)$$

$$= \sigma_r \sum_{j=1}^m \frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \left(\sum_{i=1}^n s_i(S_j) x_i \right)^r$$
 (5)

$$= \sigma_r \sum_{j=1}^{m} \frac{2^n n! \sigma_n}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i (S_j) x_i \right)$$

$$= \sigma_r \sum_{j=1}^{m} \left[\frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i (S_j) x_i \right)^r + \frac{(-1)^{|S_j \cup \{i_0\}|}}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i (S_j \cup \{i_0\}) x_i \right)^r \right]$$

Se $p(x) \neq \prod_{i=1}^{n} x_i$, existe $r_{i_0} = 0$.

$$\sigma_r \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^r \tag{4}$$

$$\sum_{j=1}^m (-1)^{|S_j|} \left(\sum_{i=1}^n a_{ij} x_i \right)^r$$

$$= \sigma_r \sum_{j=1}^{m} \frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i(S_j) x_i \right)^r$$
 (5)

$$= \sigma_r \sum_{j=1}^{m} \frac{2^n n! \sigma_n}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i(S_j) x_i \right)$$

$$= \sigma_r \sum_{j=1}^{m} \left[\frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i(S_j) x_i \right)^r + \frac{(-1)^{|S_j \cup \{i_0\}|}}{2^n n! \sigma_n} \left(\sum_{i=1}^{n} s_i(S_j \cup \{i_0\}) x_i \right)^r \right]$$

$$= \sigma_r \frac{(-1)^{|S_j|}}{2^n n! \sigma_n} \sum_{S_j \not\supseteq i_0}^m \left[\left(\sum_{i=1}^n s_i(S_j) x_i \right)^r - \left(\sum_{i=1}^n s_i(S_j \cup \{i_0\}) x_i \right)^r \right]$$

Veja que $s_i(S_j) = s_i(S_j \cup \{i_0\}), \forall i \neq i_0$. Logo, se $r_{i_0} = 0$ em p(x), os coeficientes são iguais, portanto, se cancelam em

$$\left(\sum_{i=1}^{n} s_i(S_j)x_i\right)^r - \left(\sum_{i=1}^{n} s_i(S_j \cup \{i_0\})x_i\right)^r$$

Veja que $s_i(S_j) = s_i(S_j \cup \{i_0\}), \forall i \neq i_0$. Logo, se $r_{i_0} = 0$ em p(x), os coeficientes são iguais, portanto, se cancelam em

$$\left(\sum_{i=1}^{n} s_i(S_j)x_i\right)^r - \left(\sum_{i=1}^{n} s_i(S_j \cup \{i_0\})x_i\right)^r$$

Isso vale para cada i_0 . Em particular, para cada r < n, vale que:

$$\sigma_r \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^k = 0,$$

como queríamos;

Se $p(x) = \prod x_i$, o coeficiente na expansão de $(\sum a_{ij}x_i)^n$ é

$$n! \prod_{i} a_{ij} = n! (-1)^{|S_j|}$$

Se $p(x) = \prod x_i$, o coeficiente na expansão de $(\sum a_{ij}x_i)^n$ é

$$n! \prod_{i} a_{ij} = n! (-1)^{|S_j|}$$

Logo,

$$\sigma_{n} \sum_{j}^{m} w_{j} \left(\sum a_{ij} x_{i} \right)^{n}$$

$$= \sigma_{n} \sum_{j}^{2^{n}} \frac{(-1)^{|S_{j}|}}{2^{n} n! \sigma_{n}} \left(\sum a_{ij} x_{i} \right)^{n}$$

$$= \sigma_{n} \sum_{j}^{2^{n}} \frac{(-1)^{|S_{j}|}}{2^{n} n! \sigma_{n}} n! (-1)^{|S_{j}|} = \prod_{i=1}^{n} x_{i}$$

como queríamos.

 2^n é Necessário: Suponha que existe uma rede de uma camada escondida com m neurônios e pesos w_j, a_{ij} que satisfaz as condições desejadas:

$$\sigma_n \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^n = \prod_{i=1}^n x_i,$$

$$\sigma_k \sum_{j=1}^m w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^k = 0, \forall k \in \{1, \dots, n-1\}$$

Mostremos que $m \geq 2^n$.

Seja $S \subset \{1,\ldots,n\}$. Tomando todas as parciais $\frac{\partial}{\partial x_h}$ para $h \in S$ nas duas equações:

$$\frac{n! \, \sigma_n}{|n - S|!} \sum_{j=1}^m w_j \prod_{h \in S} a_{hj} \left(\sum_{i=1}^n a_{ij} x_i \right)^{n-|S|} = \prod_{h \notin S} x_h, \tag{6}$$

$$\frac{k! \, \sigma_k}{|k - S|!} \sum_{j=1}^m w_j \prod_{h \in S} a_{hj} \left(\sum_{i=1}^n a_{ij} x_i \right)^{k - |S|} = 0, k \ge |S| \qquad (7)$$

Sejam S_1,\dots,S_{2^n} os subconjuntos de $\{1,\dots,n\}$ e defina $A\in\mathbb{R}^{2^n\times m}$ por

$$A_{ij} = \prod_{h \in S_i} a_{hj}.$$

Ideia: mostrar que A tem posto linha completo.

Sejam S_1, \ldots, S_{2^n} os subconjuntos de $\{1, \ldots, n\}$ e defina $A \in \mathbb{R}^{2^n \times m}$ por

$$A_{ij} = \prod_{h \in S_i} a_{hj}.$$

Ideia: mostrar que A tem posto linha completo.

Suponha por contradição que exista uma dependência linear nas linhas de A:

$$c^T A = \sum_{l}^{r} c_l A_l = 0$$

com cada S_l distinto entre si e $c_l \neq 0$, para cada l. Seja $s = \max_{\ell \mid \sum_l^r c_l A_l = 0} |S_\ell|$.

Sejam S_1, \ldots, S_{2^n} os subconjuntos de $\{1, \ldots, n\}$ e defina $A \in \mathbb{R}^{2^n \times m}$ por

$$A_{ij} = \prod_{h \in S_i} a_{hj}.$$

Ideia: mostrar que A tem posto linha completo.

Suponha por contradição que exista uma dependência linear nas linhas de A:

$$c^T A = \sum_{l=1}^{r} c_l A_l = 0$$

com cada S_l distinto entre si e $c_l \neq 0$, para cada l. Seja $s = \max_{\ell \mid \sum_{l=1}^{r} c_l A_l = 0} |S_{\ell}|$. Defina $d \in \mathbb{R}^m$ por

$$d_j = w_j \left(\sum_{i=1}^n a_{ij} x_i \right)^{n-s}.$$

Então,

$$0 = \mathbf{c}^{t} \mathbf{A} \mathbf{d} = \sum_{\ell=1}^{r} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n-1}$$

Então,

$$0 = \mathbf{c}^{t} \mathbf{A} \mathbf{d} = \sum_{\ell=1}^{r} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n-s}$$

$$= \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n-|S_{\ell}|}$$

Então,

$$0 = \mathbf{c}^{t} \mathbf{A} \mathbf{d} = \sum_{\ell=1}^{r} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n-s}$$

$$= \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n-|S_{\ell}|}$$

$$+ \sum_{\ell \mid (|S_{\ell}| < s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{(n+|S_{\ell}| - s) - |S_{\ell}|}$$

Isto é,

$$0 = \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n - |S_{\ell}|}$$

$$+ \sum_{\ell \mid (|S_{\ell}| < s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{(n + |S_{\ell}| - s) - |S_{\ell}|}.$$

Isto é,

$$0 = \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n - |S_{\ell}|}$$

$$+ \sum_{\ell \mid (|S_{\ell}| < s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{(n + |S_{\ell}| - s) - |S_{\ell}|}.$$

Agora, aplicando (7), i.e., com $k = (n + |S_{\ell}| - s) - |S_{\ell}|$, temos que a segunda parte da soma é igual a 0.

Por outro lado, substituindo (6) acima, temos

$$0 = \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n - |S_{\ell}|}$$
$$= \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \frac{|n - S_{\ell}|!}{n! \sigma_{n}} \prod_{h \notin S_{\ell}} x_{h}$$

Por outro lado, substituindo (6) acima, temos

$$0 = \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \sum_{j=1}^{m} w_{j} \prod_{h \in S_{\ell}} a_{hj} \left(\sum_{i=1}^{n} a_{ij} x_{i} \right)^{n - |S_{\ell}|}$$
$$= \sum_{\ell \mid (|S_{\ell}| = s)} c_{\ell} \frac{|n - S_{\ell}|!}{n! \sigma_{n}} \prod_{h \notin S_{\ell}} x_{h}$$

Ou seja, temos uma soma não trivial de monômios linearmente independentes igual a zero. Portanto, $A \in \mathbb{R}^{2^n \times m}$ tem posto linha cheio, e $m > 2^n$. \square

O teorema ilustra como reduzir o número de camadas pode não ser eficiente.

Exemplo: para fazer o produto de n=8 variáveis distintas, uma rede de 1 camada escondida precisaria de $2^8=256$ neurônios. Porém, podemos aproximar por uma rede de 3 camadas escondidas, totalizando 28 neurônios.

Artigo: Why does deep and cheap learning work so well?
Introdução
Expressabilidade e Eficiência de Redes Rasas
Custos de Achatamento

Referências

Referências

Obrigado!

Contato: riffel.felipe@grad.ufsc.br
Repositório.com os experimentos o

Repositório com os experimentos desenvolvidos:

https://github.com/felipekriffel/TCC-Regularizacao-EIT

