Title: Coezelation & Linear Regression R. & Edge ession analysis. Pee-Lab: A basic understanding of the concepts is required Theory:
Linear Regression:

The data analytics we come access
the team "Regression" very frequently.
Regression is a statical way to establish a Felationship between a dependent voziable & a set of independent vaziable (5). eg. if we say that Age = 5+ Height *10 + Weight * 13

Here we establishing a relationship

between Height & Weight of a person with his thez Age. Simple Lineaz Regression is a statistical method to regress the data with dependent variable having continuous values cohereas independent vaziables can have either continuous or categozical values. In other words "Linear Regression" is a method to predict dependent votable (y) based on values of independent beiable

Percequisites

To start with Linear Repression, few basic concepts of statistics are required:

Correlation (=) - Explains the relationship between two variables, possible values -1 to +1.

Variance (o) - Measure of spread in your · Standard Deviation (o) - Measure of spread in your data (Square root of variance) · Normal distribution · Residual (ezzoz tezm) - [Actual value - Predicted value) Assumptions of linear Regression:
Not a single give fits or all, the some is true for linear Regression as well. In order to fit a linear regression as well data should satisfy few basic but important assumptions. If your data doesn't tollow the assumptions, your results may be wrong as well as misleading. i. Linearity & Additive: There should be a linear relationship between dependent & independent variables & the impact of change in independent voliable value should have establish additive impact on dependent vaziable.
ii. Normality of error distribution: Distribution of differences between Actual & predicted values (Residuals) should be normally distributed.

Teacher's Signature:

iii. Homoscedasticity: Vaziance of ezzoes shold be constant versus, a. Time The predictions C. Independent variable values. iv. Statistical independent of ezzozs: teems should not have among themselves Linear Regression Line doing linear regression our objective a line through the distribution which is necest to most of the points. Hence Eeducing the distance of data points For example, in above figure dots Expresent various data points & an approximate line which can explain the Edationship between 'z' & y' have one dependent variable "4" & 'X' - Eelationship between 'X' Variable can be represented in a form of following equation: Y = B. + B.X

Teacher's Signature:

100			Page No.			
E	EW DEODER	ies of				
Regression line always procession line						
mean of						
mean of independent variable (x) as well as Regression line always passes through mean of dependent variable (x) as well as Regression line						
Regression line misi						
ACCEDIAN IS however as Ordinary						
Least Square (OLS).						
Finding Linear Regression Line.						
USING a Stasting for en Fred R. Die						
you will disectly find constants as a						
Elisuit of linear Recression function.						
FOE example, let us we want to predict						
14' From 'x' given in following table &						
let's assume that aux Expression equation						
will look like "4 = Bo + B1 * X"						
	X	Y	Predicted 'y' Bo + B, * I			
	1	2	Bo+8,* I			
	12	1	B. + B. * 2			
	3	3	B. + B. * 2 B. + B, * 3			
	4	6	B. + B. * 4			
-	5	9	Bo+B,*5			
	6		Bo +B, *6			
	6	11				
	7	13	B. + B. * 7			
	8	15	Bo+B,*8			
	9	17	Bo + B, *9			
	10	20	Bo + B, * 10			

N

Table I:	Table I: Std. Dav. of x					
	- Oto . New -1	3.02765				
	Tream of x	6.677317				
	frean of v	9.7				
	Correlation between	886686. 688				
Square (RSS) with B & Residual Sum of						
Eesults	Square (RSS) wet Box B. & equate the					
auation c	equations as a reall get the following					
By = Composite of the following						
Bi = Correlation * (Std. Dev. of y /Std. Dev of x)						
Putting W	- RAME (V)					
B. = 2.62	Putting values from table I into the above equation B1 = 2.64 B = -2.2					
	1 10 - 6:6					
he come -	Hence, the least Eggession equation will					
become - y = -2.2 + 2.64*2						
Let See how one prediction one looking like using this equation						
X	V - AL I	Y- Predicted				
1		7- redicted				
	2	0.44				
2		3.08				
3	3	5.72				
4	6	8.36				
5	9	11				
6	11	13.64				
7	13	16.28				
9	15	18.92				
9	17	21.56				
10	20	24.2_				

Linear Rogression in R using Incl) function: It is the ensiest was to find regression using The syntax is: Im (formula, data) Following is the description of the promoters edata is vector on which the framula will be applied Predict Function: The syntae is: predict (object, newdota) Following is the description of the preameters used - . Object is the formula which is already, created using the Im () function · newdata is the vector containing the new value for predictor variable Czeste Equation for Regression Model
Based on above intercept & coefficient
values, we create the maternatical equation Apply Equation for predicting New values: We can use the regression equation created above to predict the new values of dependent variables for the given set.

Logistic Regression:

The Logistic Regression is Regression

Model in which the response variable

(dependent variable) has rategorised value

Such as True / false or 0/1.

The general mathematical equation for

bogistic regression is
y = 1/(1+e^-(a+b1 x 1+b2 x 2+b3x 3+---)) alm () function. The basic syntaxe for glm () function in logistic regression is alm (formula, data, family). Post-Lab: Students will be able to find relation between dependent & independent values to find can predict values for the new dataset given Conclusion: The exercised Various commands Elebted to linear regression in R.