Formale Grundlagen der Informatik I 1. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Sommersemester 2013 15. 04. 2013

Davorin Lešnik, Ph.D. Carsten Rösnick

Gruppenübung

Aufgabe G1 (Transitionssysteme)

Gegeben sei ein Stapel unterschiedlich großer Pfannkuchen, die der Größe nach sortiert werden sollen. Erlaubt ist es dabei nur, einen Oberteil des Stapels umzudrehen. Bei 6 Pfannkuchen, die wir der Größe nach mit 1,2,3,4,5,6 bezeichnen und anfangs in der Ordnung 352416 auf dem Stapel liegen, würde das Umdrehen der ersten (obersten) 4 dem Übergang

$$352416 \xrightarrow{4} 425316$$

entsprechen.

- (a) Zeichnen Sie für einen Stapel von 3 Pfannkuchen ein Diagramm mit allen möglichen Stapeln und den möglichen Übergängen zwischen diesen.
- (b) Betrachten Sie einen Stapel mit 4 Pfannkuchen. Geben Sie für $0 \le k \le 4$ die Menge aller Stapel an, die sich mit k Operationen zu 1234 sortieren lassen, aber nicht mit weniger als k Operationen. Welcher ist der einzige Stapel, der sich auf zwei verschiedene Weisen in genau 3 Schritten sortieren lässt?

Aufgabe G2 (Mengenoperationen)

Sei M eine Menge und $A, B, C \subseteq M$ Teilmengen.

(a) Beweisen Sie die folgenden Aussagen.

i.
$$(A \cap B) \setminus C = (A \setminus C) \cap B$$

ii. $C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$

(b) Welche der folgenden Mengen sind Teilmengen voneinander? Welche sind disjunkt?

$$A \setminus (B \cap C), \qquad A \cap (M \setminus B), \qquad M \setminus (A \cup B), \qquad (M \setminus A) \cup (M \setminus B)$$

Aufgabe G3 (Relationen)

Sei R eine binäre Relation auf X, also $R \subseteq X \times X$. Wir definieren (induktiv)

$$\begin{array}{rcl} R^0 &:=& \left\{ (x,x) \mid x \in X \right\}, \\ R^{n+1} &:=& \left\{ (x,y) \in X \times X \mid \text{es gibt ein } z \text{ mit } (x,z) \in R \text{ und } (z,y) \in R^n \right\}, \\ R^* &:=& \bigcup_{n \geq 0} R^n. \end{array}$$

Zeigen Sie:

- (a) R^* ist eine reflexive Relation,
- (b) R^* ist eine transitive Relation,
- (c) R^* umfasst R, d.h. $R \subseteq R^*$,
- (d) R^* ist die kleinste reflexive und transitive Relation, die R umfasst (d.h. falls R' reflexiv und transitiv ist mit $R \subseteq R'$, so gilt $R^* \subseteq R'$).

Hausübung

- Abgabe am 24.4.-26.4. 2013 in der Übung. Denken Sie daran Ihre Antworten zu begründen. -

Aufgabe H1 (Relationen)

(5 Punkte)

Durch

$$a \ge c : \Leftrightarrow \exists b \in M . a - c = b \cdot b, \qquad (a, c \in M)$$

sei auf einer ($Tr\"{a}ger$ -)Menge M eine Relation " \geq " definiert. Überdies seien "-" und " \cdot " Operationen auf M. Wir betrachten nun die folgenden beiden Aussagen:

- (a) $\forall a, b \in M . (a, b \ge 0 \implies a \cdot b \ge 0);$
- (b) $\forall a, b, c \in M . (a \ge b \land b \ge c \implies a \ge c).$

Bemerkung: \mathbb{Z}_p bezeichne den Restklassenring $\mathbb{Z}/p\mathbb{Z}$.

Welche der vorigen Aussagen halten (d.h., sind erfüllt) über welcher der nachfolgenden Mengen M? Beweisen Sie jeweils Ihre Vermutung oder geben Sie ein Gegenbeispiel an.

(i) \mathbb{R} (ii) \mathbb{Q} (iii) \mathbb{C} (iv) \mathbb{Z}_2 (v) \mathbb{Z}_3 .

Bemerkung: Die Operationen "—" und "·" sind als die in den jeweiligen Trägermengen übliche Subtraktionen und Multiplikationen zu verstehen.

Aufgabe H2 (Induktion)

(2.5 + 2.5 Punkte)

- (a) Die Fibonacci Zahlen F_n (n natürliche Zahl) sind, wie folgt, rekursiv definiert: $F_0 := 0$, $F_1 := 1$ und $F_n := F_{n-2} + F_{n-1}$ für $n \ge 2$. Zeigen Sie, dass für jedes $n \ge 1$ gilt $F_n^2 = F_{n-1} \cdot F_{n+1} (-1)^n$. Tipp: Es kann hilfreich sein $F_n^2 = F_n(F_{n-2} + F_{n-1})$ zu verwenden.
- (b) Die Menge der schönen Wörter über dem Alphabet $\Sigma = \{a, b, c\}$ sei wie folgt definiert:
 - i. Die Wörter *ab*, *ba* und *c* sind *schön*;
 - ii. Ist w ein schönes Wort, so sind auch awb und bwa schön;
 - iii. Sind w und w' schön, so ist wcw' ebenfalls schön.

Bezeichne mit $\#_a w$ die Anzahl der a's im Wort w. Zeigen Sie mittels struktureller Induktion, dass $\#_a w = \#_b w$ für alle schönen Wörter w gilt.

Minitest

Aufgabe M1

Sei $M = \{1, 2, 3\}$. Welche der folgenden Aussagen ist wahr?

- $\square \ \emptyset \in M$
- $\square \ \emptyset \subseteq M$
- $\square \ \{\emptyset\} \in M$

Aufgabe M2

Seien $R, R' \subseteq \mathbb{N} \times \mathbb{N}$ zwei Ordnungsrelationen, so ist $R \cap R'$ ebenfalls eine Ordnungsrelation. Wahr oder falsch?

Aufgabe M3

Durch $A \subseteq B :\Leftrightarrow A \setminus B \neq \emptyset$ sei eine Relation auf der Potenzmenge der natürlichen Zahlen definiert. Welche der folgenden Aussagen gilt für alle *nicht-leeren* Teilmengen A, B von \mathbb{N} ?

- $\square \, \subseteq \, = \, \emptyset$
- $\ \square \ A \subseteq \emptyset$
- $\Box \ (\forall x \in A \, . \, x \in B) \implies A \subseteq B$
- \Box $(\emptyset, A) \in \subseteq$