Linearization: Crane System Study

```
In[]:
 #%%
 import sympy
 from sympy import *
 from sympy.physics.vector.printing import vlatex
 from IPython.display import Math, display
 init printing()
 def dotprint(expr):
             display(Math(vlatex(expr)))
 # %%
t = symbols('t')
 # Generalized coordinates
z, h, theta = symbols(r'z, h, \theta', cls=Function)
z = z(t)
h = h(t)
theta = theta(t)
z dot = z diff(t)
h dot = h diff(t)
theta dot = theta.diff(t)
z ddot = z diff(t,2)
h ddot = h diff(t,2)
theta ddot = theta.diff(t,2)
mc, mr, Jc, d, mu, g, F, tau = symbols(r'm c, m r, J c, d, \mu, g, F, \tau', real=\mathbf{True})
In [ ]:
 #%%
M = Matrix([[mc+2*mr, 0, 0],
                                      [0, mc+2*mr, 0],
                                      [0, 0, Jc+2*mr*d**2]])
 RHS = Matrix([[-F*sin(theta)-mu*z dot],
                                             [-(mc+2*mr)*g+F*cos(theta)],
                                             [tau]])
 EOM dd = M_{inv}()*RHS
 dynamics = Eq(Matrix([z ddot, h ddot, theta ddot]), EOM dd)
 \left(\frac{F}\right) = \left(\frac{F}\right) - \mu \left(\frac{F}\right) - \mu \left(\frac{F}\right) = \left(\frac{F}\right) - \mu \left(\frac{F}\right
 d^{2} m {r}}\end{matrix}\right]
```

%% [markdown]

Deriving Nonlinear State Space Equations

```
Solve for our highest derivatives, \dot\{z\} , \dot\{h\} , \dot\{theta\} : In [ ]:
```

```
solve\_dict = solve(dynamics, (z\_ddot, h\_ddot, theta\_ddot), simplify= \begin{tabular}{l} True, dict= \begin{tabular}{l} True (0) & dotprint(solve\_dict) & dotpr
```

```
Create our state vector x = [x_1, x_2, x_3, x_4, x_5, x_6]:

In []:

# %%

state = MatrixSymbol('x', 6, 1)

dotprint(state)

\ \displaystyle x\$
```

%% [markdown]

```
We have x = [x_1, x_2, x_3, x_4, x_5, x_6] = [z, h, \theta(z), \phi(z), \phi(x) = [\phi(z), \phi(x), \phi(x), \phi(x), \phi(x), \phi(x), \phi(x), \phi(x) = [\phi(x), \phi(x), \phi(
```

```
In []: # %%

state_deriv = Matrix([
    z_dot,
    h_dot,
    theta_dot,
    solve_dict[z_ddot],
    solve_dict[h_ddot],
    solve_dict[theta_ddot]])

dotprint(state_deriv)
```

 $\label{leff(theta right)} $$\Big\{ \left(\frac{z} \right) - \frac{F \sin(\left(\frac{F \sin(\left(\frac{z}{T} \right)} + \frac{z}{T} \right))}{1 - g m_{c} - 2 g m_{r}} \right) - g m_{c} - 2 g m_{r}} \left(\frac{F \sin(\left(\frac{z}{T} \right))}{1 - g m_{c}} - 2 g m_{r}} \right) - g m_{c} - 2 g m_{r}} \right) - g m_{c} - 2 g m_{r}} \left(\frac{F \sin(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g m_{r}} \left(\frac{F \cos(\left(\frac{z}{T} \right))}{1 - g m_{r}} \right) - g$

%% [markdown]

```
Now we can substitute in our x_1, x_2, x_3, x_4, x_5, x_6 values:
```

We now have our nonlinear state space equations!

Linearization

First, we need to find an equilibrium point. We can either do this by hand or use Sympy's solve function to do this.

```
Note: It's a good idea to practice doing this by hand in addition to using Sympy!
```

%% [markdown]

We can see that at equilibrium:

- 1. \$z\$ and \$h\$ can be any value
- 2. $\theta = 0$ or ϕ (we'll use 0)
- 3. All velocities are zero
- 4. F = (m c + 2m r)g
- 5. $\frac{1}{3} = 0$

 $Below \ we \ define \ our \ equilibrium \ points \ \$x_e = [z_e, h_e, \ dot\{z\}_e, \ dot\{h\}_e, \ dot\{theta\}_e]\$ \ and \ \$u_e = [F_e, \ tau_e]\$.$

```
In [ ]:

\#\%\%

z_e, h_e = \text{symbols}('z_e h_e')

u_eq = \text{Matrix}([(mc + 2*mr)*g, 0])

theta_eq = 0

z_dot_eq = h_dot_eq = theta_dot_eq = 0
```

%% [markdown]

Define A, B Jacobians

```
We can use Sympy's jacobian function to find the jacobians of f(x, u).
```

```
First we find A = \frac{f}{x}  {\partial x}$:
```

```
In []:
#%%
A = f_expr.jacobian(state)
dotprint(A)
```

%% [markdown]

```
We can evaluate at our specific (x_e, u_e) point using subs.
```

In[]:

```
Now we do a similar process to find B = \frac{fac {partial } {partial } {partial } }{}
```

```
In []:
#%%
B = f_expr.jacobian(Matrix([F, tau]))
dotprint(B)
```

 $\label{left} $$ \bigg\{ \left(x \right_{2,0} \right) \ m_{c} + 2 \ m_{r} \ \& 0 \ \&$

%% [markdown]

Like for the \$A\$ matrix, we need to substitute in our equilibrium values.

%% [markdown]

Decoupled Dynamics

We can separate the longitudinal and lateral dynamics:

In[]:

```
A \lim \log A = A = \exp[[1, 4], [1, 4]]
B_{in} = B_{eq}[1, 4], [0]
print("Linearized A matrix for longitudinal dynamics:")
dotprint(A lin lon)
print("Linearized B matrix for longitudinal dynamics:")
dotprint(B lin lon)
A_{in} = A_{eq}[0, 2, 3, 5], [0, 2, 3, 5]
B_{in} = B_{eq}[[0, 2, 3, 5], [1]]
print("Linearized A matrix for lateral dynamics:")
dotprint(A lin lat)
print("Linearized B matrix for lateral dynamics:")
dotprint(B lin lat)
```

Linearized A matrix for longitudinal dynamics:

 $\star 0 \& 0 \$

Linearized B matrix for longitudinal dynamics:

 $\star \left(\frac{1}{m \{c\} + 2 m \{r\} \right) \right) \$

Linearized A matrix for lateral dynamics:

0\end{matrix}\right]\$

Linearized B matrix for lateral dynamics:

 $\star \left[\frac{1}{J} \left(\frac{1}{J} \right) \right]$

%% [markdown]

Final Equations

To obtain our final equations of motion, we define new variables measuring our offset from the equilibrium:

 $\$ \begin{align*} \tilde{x} &= x - x_e \\tilde{u} &= u - u_e \end{align*} \$\$

Our final equations of motion are:

Where \$A\$ and \$B\$ are the linearized matrices we derived above, and the system is decoupled into longitudinal and lateral dynamics.