Computation Tree Logic (CTL) & Basic Model Checking Algorithms

Martin Fränzle

Carl von Ossietzky Universität

Dpt. of Computing Science

Res. Grp. Hybride Systeme

Oldenburg, Germany

What you'll learn

- 1. Rationale behind declarative specifications:
 - Why operational style is insufficient
- 2. Computation Tree Logic CTL:
 - Syntax
 - Semantics: Kripke models
- 3. Explicit-state model checking of CTL:
 - Recursive coloring

Operational models

Nowadays, a lot of ES design is based on executable behavioral models of the system under design, e.g. using

- Statecharts (a syntactically sugared variant of Moore automata)
- VHDL.

Such operational models are good at

- supporting system analysis
 - simulation / virtual prototyping
- supporting incremental design
 - executable models
- supporting system deployment
 - executable model as "golden device"
 - code generation for rapid prototyping or final product
 - hardware synthesis

Operational models

...are bad at

- supporting non-operational descriptions:
 - What instead of how.
 - E.g.: Every request is eventually answered.
- supporting negative requirements:
 - "Thou shalt not..."
 - E.g.: The train ought not move, unless it is manned.
- providing a structural match for requirement lists:
 - System has to satisfy R₁ and R₂ and ...
 - If system fails to satisfy R₁ then R₂ should be satisfied.

Multiple viewpoints

Model checking

Exhaustive state-space search

Automatic verification/falsification of invariants

Safety requirement: Gate has to be closed whenever a train is in "In".

The gate model

Track model

— safe abstraction —

Automatic check

Verification result

Stimuli: Empty, Approach, In , Empty , Approach, In. Gate reaction: Open , Closing , Closed, Opening, Open , Open.

Computation Tree Logic

Syntax of CTL

We start from a countable set AP of atomic propositions. The CTL formulae are then defined inductively:

- Any proposition $p \in AP$ is a CTL formula.
- The symbols \bot and \top are CTL formulae.
- If ϕ and ψ are CTL formulae, so are

```
\neg \phi, \phi \land \psi, \phi \lor \psi, \phi \rightarrow \psi
EX \phi, AX \phi
EF \phi, AF \phi
EG \phi, AG \phi
\phi EU \psi, \phi AU \psi
```

Semantics (informal)

- E and A are path quantifiers:
 - A: for all paths in the computation tree ...
 - E: for some path in the computation tree . . .
- X, F, G und U are temporal operators which refer to the path under investigation, as known from LTL:
 - $x \varphi$ (Next) : evaluate φ in the next state on the path
 - Fφ (Finally): φ holds for some state on the path
 - Gφ (Globally) : φ holds for all states on the path
 - φυψ (Until) : φ holds on the path at least until ψ holds

N.B. Path quantifiers and temporal operators are compound in CTL: there never is an isolated path quantifier or an isolated temporal operator. There is a lot of things you can't express in CTL because of this...

Semantics (formal)

CTL formulae are interpreted over Kripke structures.:

A Kripke structure K is a quadruple K = (V, E, L, I) with

- V a set of vertices (interpreted as system states),
- $E \subseteq V \times V$ a set of edges (interpreted as possible transitions),
- $L \in V \to \mathcal{P}(AP)$ labels the vertices with atomic propositions that apply in the individual vertices,
- I ⊂ V is a set of initial states.

Paths in Kripke structures

A path π in a Kripke structure K = (V, E, L, I) is an edge-consistent infinite sequence of vertices:

- $\pi \in V^{\omega}$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in N$.

Note that a path need not start in an initial state!

The labelling L assigns to each path π a propositional trace

$$\operatorname{tr}_{\pi} = \operatorname{L}(\pi) \stackrel{\mathsf{def}}{=} \langle \operatorname{L}(\pi_0), \operatorname{L}(\pi_1), \operatorname{L}(\pi_2), \ldots \rangle$$

that path formulae $(X\varphi, F\varphi, G\varphi, \varphi U\psi)$ can be interpreted on.

Semantics (formal)

Let K = (V, E, L, I) be a Kripke structure and $v \in V$ a vertex of K.

- $\nu, K \models \top$
- $\nu, K \not\models \bot$
- ν , $K \models p$ for $p \in AP$ iff $p \in L(\nu)$
- ν , $K \models \neg \varphi$ iff ν , $K \not\models \varphi$,
- ν , $K \models \phi \land \psi$ iff ν , $K \models \phi$ and ν , $K \models \psi$,
- ν , $K \models \phi \lor \psi$ iff ν , $K \models \phi$ or ν , $K \models \psi$,
- ν , $K \models \varphi \Rightarrow \psi$ iff ν , $K \not\models \varphi$ or ν , $K \models \psi$.

Semantics (contd.)

- ν , $K \models EX \varphi$ iff there is a path π in K s.t. $\nu = \pi_1$ and π_2 , $K \models \varphi$,
- ν , $K \models AX \varphi$ iff all paths π in K with $\nu = \pi_1$ satisfy π_2 , $K \models \varphi$,
- $\nu, K \models \text{EF} \varphi$ iff there is a path π in K s.t. $\nu = \pi_1$ and $\pi_i, K \models \varphi$ for some i,
- ν , $K \models AF \varphi$ iff all paths π in K with $\nu = \pi_1$ satisfy π_i , $K \models \varphi$ for some i (that may depend on the path),
- $v, K \models EG \varphi$ iff there is a path π in K s.t. $v = \pi_1$ and $\pi_i, K \models \varphi$ for all i,
- ν , $K \models AG \varphi$ iff all paths π in K with $\nu = \pi_1$ satisfy π_i , $K \models \varphi$ for all i,
- ν , $K \models \varphi \text{ EU} \psi$, iff there is a path π in K s.t. $\nu = \pi_1$ and some $k \in N$ s.t. π_i , $K \models \varphi$ for each i < k and π_k , $K \models \psi$,
- ν , $K \models \varphi \land U \psi$, iff all paths π in K with $\nu = \pi_1$ have some $k \in N$ s.t. π_i , $K \models \varphi$ for each i < k and π_k , $K \models \psi$.

A Kripke structure K = (V, E, L, I) satisfies ϕ iff all its initial states satisfy ϕ , i.e. iff is, $K \models \phi$ for all is $\in I$.

CTL Model Checking

Explicit-state algorithm

Rationale

We will extend the idea of verification/falsification by exhaustive state-space exploration to full CTL.

- Main technique will again be breadth-first search, i.e. graph coloring.
- Need to extend this to other modalities than AG...
- Need to deal with nested modalities.

Model-checking CTL: General layout

Given: a Kripke structure K = (V, E, L, I) and a CTL formula ϕ

Core algorithm: find the set $V_{\varphi} \subseteq V$ of vertices in K satisfying φ by

- 1. for each atomic subformula p of $\varphi,$ mark the set $V_p\subseteq V$ of vertices in K satisfying φ
- 2. for increasingly larger subformulae ψ of φ , synthesize the marking $V_{\psi} \subseteq V$ of nodes satisfying ψ from the markings for ψ 's immediate subformulae

until all subformulae of φ have been processed (including φ itself)

Result: report " $K \models \varphi$ " iff $V_{\varphi} \supseteq I$

Reduction

The tautologies

indicate that we can rewrite each formula to one only containing atomic propositions, \neg , \wedge , EX, EU, AF.

After preprocessing, our algorithm need only tackle these!

Model-checking CTL: Atomic propositions

Given: A finite Kripke structure with vertices V and edges E and a labelling function L assigning atomic propositions to vertices.

Furthermore an atomic proposition p to be checked.

Algorithm: Mark all vertices that have p as a label.

Complexity: O(|V|)

Model-checking CTL: ¬♦

Given: A set V_{Φ} of vertices satisfying formula Φ .

Algorithm: Mark all vertices not belonging to V_{ϕ} .

Complexity: O(|V|)

Model-checking CTL: $\phi \wedge \psi$

Given: Sets V_{ϕ} and V_{ψ} of vertices satisfying formulae ϕ or ψ , resp.

Algorithm: Mark all vertices belonging to $V_{\phi} \cap V_{\psi}$.

Complexity: O(|V|)

Model-checking CTL: ΕΧ φ

Given: Set V_{Φ} of vertices satisfying formulae Φ .

Algorithm: Mark all vertices that have a successor state in V_{ϕ} .

Complexity: O(|V| + |E|)

Model-checking CTL: φΕυψ

Given: Sets V_{ϕ} and V_{ψ} of vertices satisfying formulae ϕ or ψ , resp.

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to V_{ψ} .
- 2. Repeat if there is a state in V_{ϕ} that has some successor state marked then mark it also until no new state is found.

Termination: Guaranteed due to finiteness of $V_{\Phi} \subset V$.

Complexity: O(|V| + |E|) if breadth-first search is used.

Model-checking CTL: AFφ

Given: Set V_{Φ} of vertices satisfying formula Φ .

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to V_{ϕ} .
- 2. Repeat

if there is a state in V that has \emph{all} successor states marked then mark it also

until no new state is found.

Termination: Guaranteed due to finiteness of V.

Complexity: $O(|V| \cdot (|V| + |E|))$.

Model-checking CTL: EGφ, for efficiency

Given: Set V_{Φ} of vertices satisfying formula Φ .

Algorithm: Incremental marking by

1. Strip Kripke structure to V_{ϕ} -states:

$$(V, E) \rightsquigarrow (V_{\Phi}, E \cap (V_{\Phi} \times V_{\Phi})).$$

- \rightarrow Complexity: O(|V| + |E|)
- 2. Mark all states belonging to loops in the reduced graph.
- \sim Complexity: $O(|V_{\varphi}| + |E_{\varphi}|)$ by identifying *strongly connected* components.
- 3. Repeat if there is a state in V_{ϕ} that has *some* successor states marked then mark it also until no new state is found.
- \sim Complexity: $O(|V_{\phi}| + |E_{\phi}|)$

Complexity: O(|V| + |E|).

Model-checking CTL: Main result

Theorem: It is decidable whether a finite Kripke structure (V, E, L, I) satisfies a CTL formula φ .

The complexity of the decision procedure is $O(|\phi| \cdot (|V| + |E|))$, i.e.

- linear in the size of the formula, given a fixed Kripke structure,
- linear in the size of the Kripke structure, given a fixed formula.

However, size of Kripke structure is exponential in number of parallel components in the system model.

Appendix

Fair Kripke Structures & Fair CTL Model Checking

Fair Kripke Structures

A fair Kripke structure is a pair (K, \mathcal{F}) , where

- K = (V, E, L, I) is a Kripke structure
- $\mathcal{F} \subseteq \mathcal{P}(V)$ is set of vertice sets, called a fairness condition.

A fair path π in a fair Kripke structure $((V, E, L, I), \mathcal{F})$ is an edge-consistent infinite sequence of vertices which visits each set $F \in \mathcal{F}$ infinitely often:

- $\pi \in V^{\omega}$,
- $(\pi_i, \pi_{i+1}) \in E$ for each $i \in N$,
- $\forall F \in \mathcal{F}. \exists^{\infty} i \in N. \pi_i \in F.$

Note the similarity to (generalized) Büchi acceptance!

Fair CTL: Semantics

- $\nu, K, \mathcal{F} \models_{F} E X \varphi$ iff there is a fair path π in K s.t. $\nu = \pi_{0}$ and $\pi_{1}, K, \mathcal{F} \models_{F} \varphi$,
- ν , K, $\mathcal{F} \models_F AX \varphi$ iff *all fair paths* π in K with $\nu = \pi_0$ satisfy $\pi_1, K, \mathcal{F} \models_F \varphi$,
- ν , K, $\mathcal{F} \models_{F} EF \varphi$ iff there is a fair path π in K s.t. $\nu = \pi_{0}$ and π_{i} , K, $\mathcal{F} \models_{F} \varphi$ for some i,
- ν , K, $\mathcal{F} \models_{F} AF \varphi$ iff all fair paths π in K with $\nu = \pi_{0}$ satisfy π_{i} , K, $\mathcal{F} \models_{F} \varphi$ for some i (that may depend on the fair path),
- ν , K, $\mathcal{F} \models_{F} EG \varphi$ iff there is a fair path π in K s.t. $\nu = \pi_{0}$ and π_{i} , K, $\mathcal{F} \models_{F} \varphi$ for all i,
- ν , K, $\mathcal{F} \models_F AG \varphi$ iff all fair paths π in K with $\nu = \pi_0$ satisfy π_i , K, $\mathcal{F} \models_F \varphi$ for all i,
- ν , K, $\mathcal{F} \models_F \varphi \text{ EU} \psi$, iff there is a fair path π in K s.t. $\nu = \pi_0$ and some $k \in N$ s.t. π_i , K, $\mathcal{F} \models_F \varphi$ for each i < k and π_k , K, $\mathcal{F} \models_F \psi$,
- ν , K, $\mathcal{F} \models_F \varphi \land U \psi$, iff all fair paths π in K with $\nu = \pi_0$ have some $k \in N$ s.t. π_i , K, $\mathcal{F} \models_F \varphi$ for each i < k and π_k , K, $\mathcal{F} \models_F \psi$.

A fair Kripke structure $((V, E, L, I), \mathcal{F})$ satisfies ϕ , denoted $((V, E, L, I), \mathcal{F}) \models_F \phi$, iff all its initial states satisfy ϕ , i.e. iff is, $K, \mathcal{F} \models_F \phi$ for all is $\in I$.

Model-checking CTL: Fair states

Lemma: Given a fair Kripke structure $((V, E, L, I), \mathcal{F})$, the set $Fair \subseteq V$ of states from which a fair path originates can be determined algorithmically.

Alg.: This is a problem of finding adequate SCCs:

- 1. Find all SCCs in K.
- 2. Select those SCCs that do contain at least one state from each fairness set $F \in \mathcal{F}$.
- 3. Find all states from which at least one of the selected SCCs is reachable.

Model-checking fair CTL: ΕΧ φ

Given: Set V_{Φ} of vertices fairly satisfying formulae Φ .

Algorithm: Mark all vertices that have a successor state in $V_{\Phi} \cap Fair$.

Note that the intersection with *Fair* is necessary even though the states in V_{φ} *fairly* satisfy φ :

- φ may be an atomic proposition, in which case fairness is irrelevant;
- ϕ may start with an A path quantifier that is trivially satisfied by non-existence of a fair path.

Model-checking fair CTL: φΕυψ

Given: Sets V_{φ} and V_{ψ} of vertices fairly satisfying formulae φ or ψ , resp.

Algorithm: Incremental marking by

- 1. Mark all vertices belonging to $V_{\psi} \cap Fair$.
- 2. Repeat if there is a state in V_{φ} that has some successor state marked then mark it also until no new state is found.

Model-checking fair CTL: EGφ

Given: Set V_{Φ} of vertices fairly satisfying formula Φ .

Algorithm: Incremental marking by

1. Strip Kripke structure to V_{ϕ} -states:

$$(V, E) \rightsquigarrow (V_{\Phi}, E \cap (V_{\Phi} \times V_{\Phi})).$$

2. Mark all states that can reach a *fair* SCC in the *reduced* graph.

(Same algorithm as for finding the set *Fair*, yet applied to the reduced graph.)