Self-supervised Learning for Video Correspondence Flow

Zihang Lai, Weidi Xie

Contributions

Two main contributions of this work are:

- Simple information bottleneck (frame reconstruction by pixelwise matching) that forces the model to learn robust features for correspondence matching.
- The model is trained recursively on videos over long temporal windows to alleviate the tracker drifting effects with scheduled sampling and cycle consistency.

Figure 2: An overview of the proposed self-supervised learning for correspondence flow. A recursive model is used to compute the dense correspondence matching over a long temporal window with forward-backward cycle consistency.

Method

Feature Embedding: Used ResNet as a feature encoder. Zero out 0, 1 or 2 channels in each RGB frame and apply data augmentation (brightness, contrast, saturation). Data augmentation prevents models from co-adaptation of low-level colors or illumination changes. **Restricted Attention** It helps decrease in computation and memory consumption compared to full attention. Maximum disparity of M pixels is imposed in reference frame t to search for locally in square patch size (2M+1)x(2M+1) centered at target pixel.

$$A^{ijkl} = \frac{\exp\left\langle f_t^{(i+k-M)(j+l-M)}, f_{t+1}^{ij} \right\rangle}{\sum_p \sum_q \exp\left\langle f_t^{(i+q)(j+p)}, f_{t+1}^{ij} \right\rangle}$$
(1)

Figure 3: Restricted attention and colour dropout. See text for details.

where (i,j,k,l) is the entry of tensor denotes similarity between (i,j) of target frame, and pixel (i+k-M, j+l-M) of the reference frame

$$\hat{I}_{t+1} = \psi \left(A_{(t,t+1)}, I_t \right) = \sum_{p} \sum_{q} A^{ij(p+M)(q+M)} I_t \tag{2}$$

Long-Term Correspondence Flow Sampling training frames is difficult. Too close will result in no change and farther apart will result in way too much complex change.

• Scheduled Sampling: Replace Ground-truth tokens by model's prediction. Shared embedding network is used to get feature embeddings $(f_i = \Phi(g(I_i); \theta))$ where i = 1, ..., n. The reconstruction is a recursive process where nth frame (\tilde{I}_n) may have access to previous frame's ground truth (I_{n-1}) or model prediction (\tilde{I}_{n-1}) .

$$\hat{I}_n = \begin{cases} \psi(A_{(n-1,n)}, I_{n-1}) \\ \psi(A_{(n-1,n)}, \hat{I}_{n-1}) \end{cases}$$
 (3)

• Cycle-Consistency: It is used as a regularizer. Apply n frames forward and backward in future.

The final objective function is defined as:

$$L = \alpha_1 \cdot \sum_{i=1}^{n} \mathcal{L}_1 \left(I_i, \hat{I}_i \right) + \alpha_2 \cdot \sum_{j=n}^{1} \mathcal{L}_2 \left(I_j, \hat{I}_j \right)$$
 (4)

where $\mathcal{L}_1, \mathcal{L}_2$ are pixelwise cross entropy loss between groundtruth and reconstructed frames in the forward and backward path.

Results

of tracker drifting. The proposed model with \mathcal{J} : region overlapping, \mathcal{F} : contour accucycle consistency has shown to be most ro- racy respectively. bust as masks propagate.

Method	$\mathcal{J}(Mean) \mathcal{F}(Mean)$			
Ours (Full Model)	47.7	51.3		
Ours w/o Colour Dropout	40.5	39.5		
Ours w/o Restricted Attention	40.8	39.7		
Ours w/o Scheduled Sampling	40.2	39.2		
Ours w/o Cycle Consistency	41.0	40.4		

Figure 4: Model comparison on the problem Table 1: Ablation Studies on DAVIS-2017.

Method	Supervised	Dataset	$\mathcal{J}\&\mathcal{F}(Mean)$	$\mathcal{J}(Mean)$	$\mathcal{J}(\text{Recall})$	$\mathcal{F}(Mean)$	$\mathcal{F}(\text{Recall})$
Identity	Х	-	22.9	22.1	15.9	23.6	11.7
Optical Flow (FlowNet2) [×	-	26.0	26.7	-	25.2	-
SIFT Flow [ZZ]	×	-	34.0	33.0	-	35.0	-
Transitive Inv. [22]	×	-	29.4	32.0	-	26.8	-
DeepCluster [☐ ☐	×	YFCC100M	35.4	37.5	-	33.2	-
Video Colorization [III]	×	Kinetics	34.0	34.6	34.1	32.7	26.8
CycleTime (ResNet-50) [×	VLOG	40.7	41.9	40.9	39.4	33.6
Ours (Full Model ResNet-18)) X	Kinetics [23]	49.5	47.7	53.2	51.3	56.5
Ours (Full Model ResNet-18)) X	OxUvA [59]	50.3	48.4	53.2	52.2	56.0
ImageNet (ResNet-50) [✓	ImageNet	49.7	50.3	-	49.0	-
SiamMask [111]	1	YouTube-VOS	53.1	51.1	60.5	55.0	64.3
OSVOS[6]	✓	DAVIS	60.3	56.6	63.8	63.9	73.8

Table 2: Video segmentation results on DAVIS-2017 dataset. Higher values are better.

(a) DAVIS 2017 Video Segmentation

(b) Keypoint Tracking

Method	Supervised	Dataset	PCK_i	PCK _{instance}		ζ_{max}
			@.1	@.2	@.1	@.2
SIFT Flow[☎]	Х	-	49.0	68.6	-	-
Video Colorization [111]	X	Kinetics	45.2	69.6	-	-
CycleTime (ResNet-50) [X	VLOG	57.7	78.5	-	-
Ours (Full Model ResNet-18)	×	Kinetics	58.5	78.8	71.9	88.3
ImageNet (ResNet-50) [L]	✓	ImageNet	58.4	78.4	_	_
Fully Supervised [53]	✓	JHMDB	-	-	68.7	81.6

Table 4: Keypoint tracking on JHMDB dataset (validation split 1). Higher values are better.