UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD III

CIRCUITOS COMBINACIONALES DE MEDIANA ESCALA DE INTEGRACIÓN - MSI

SISTEMAS DIGITALES I SDU115

Ejemplos de Análisis de Circuitos

Objetivos de Unidad

Implementar sistemas digitales combinacionales, de mediana complejidad utilizando bloques lógicos funcionales de mediana escala de integración (MSI).

Agenda

• Analizar sistemas digitales que contengan circuitos integrados MSI.

OBJETIVO

Analizar sistemas digitales construidos con circuitos MSI, presentando su tabla de verdad, y después obteniendo, por cualquiera de los métodos, la expresión lógica simplificada.

$$F = m0 + m1 + m4 + m6 + m7$$

$$F = \sum m (0,1,4,6,7)$$

$$F = \bar{Q}\bar{X}\bar{P} + \bar{Q}\bar{X}P + Q\bar{X}\bar{P} + QX\bar{P} + QXP$$

$$F = \bar{X}\bar{P} + \bar{Q}\bar{X} + QX$$

	Q	Χ	Р	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

$$F = \overline{M0} \cdot \overline{M1} \cdot \overline{M4} \cdot \overline{M6} \cdot \overline{M7}$$

$$F = \overline{M0} + \overline{M1} + \overline{M4} + \overline{M6} + \overline{M7}$$

$$F = m0 + m1 + m4 + m6 + m7$$

$$F = \overline{Q}\overline{X}\overline{P} + \overline{Q}\overline{X}P + Q\overline{X}\overline{P} + QX\overline{P} + QXP$$

$$F = \overline{X}\overline{P} + \overline{Q}\overline{X} + QX$$

	Q	Χ	Р	F
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

$$F = \sum m (0,1,4,6,7)$$

$$M = \overline{m}$$
; $m = \overline{M}$

$$F = \sum_{m} m(0,5,10,15)$$

	a	b	С	d	f	
0	0	0	0	0	1	D0
1	0	0	0	1	0	D1
2	0	0	1	0	0	D2
3	0	0	1	1	0	D3
4	0	1	0	0	0	D0
5	0	1	0	1	1	D1
6	0	1	1	0	0	D2
7	0	1	1	1	0	D3
8	1	0	0	0	0	D0
9	1	0	0	1	0	D1
10	1	0	1	0	1	D2
11	1	0	1	1	0	D3
12	1	1	0	0	0	D0
13	1	1	0	1	0	D1
14	1	1	1	0	0	D2
15	1	1	1	1	1	D3

		Α	В	С	D	F
	0	0	0	0	0	0
	1	0	0	0	1	1
0	2	0	0	1	0	0
	3	0	0	1	1	1
	4	0	1	0	0	1
1	5	0	1	0	1	0
1	6	0	1	1	0	0
	7	0	1	1	1	0
	8	1	0	0	0	0
2	9	1	0	0	1	0
	10	1	0	1	0	0
	11	1	0	1	1	1
3	12	1	1	0	0	1
	13	1	1	0	1	1
	14	1	1	1	0	1
	15	1	1	1	1	1

$$F = \sum m (1, 3, 4, 11 - 15)$$

$$F = AB + B\bar{C}\bar{D} + \bar{A}\bar{B}D + ACD$$

$$IC2$$
 $IC3$ $S = A \oplus B \oplus C$ $S = (AB) \oplus C$ $C = (A \oplus B)C$ $C = ABC$

Circuito convertidor de 8421 a binario

HASTA LA PROXIMA