

ELEC-E8103 Modelling, Estimation and Dynamic Systems

Analysis of Dynamic Systems

Houari Bettahar,
Department of Electrical Engineering and Automation
Aalto University, School of Electrical Engineering
Email: houari.bettahar@aalto.fi

Overview

Arrangement of lectures

- This week
 - Direct analysis of dynamic systems (today)
 - System identification (tomorrow)
- Next week
 - System identification toolbox

Learning goals

Course Learning Outcomes

- Select proper modeling approach for specific practical problems,
- Formulate mathematical models of physical systems,
- Construct models of systems using modeling tools such as MATLAB and Simulink,
- Estimate the parameters of linear and nonlinear static systems from measurement data,
- Identify the models of linear dynamic systems from measurement data

- Transient analysis
- Review the basics of stochastic process and correlation
- Correlation analysis
- Frequency analysis
- Spectral analysis

Transient analysis

Transient analysis

- Goal
 - To understand the relationship between variables and their time relationship
- Methods
 - Step response
 - Impulse response
- We get important information for modelling and simulation
 - The time delay and constants of the system
 - Rise time
 - Overdamped: 10%-90%,
 - Critically damped:5%- 95%,
 - Under damped:0%-100%
 - Settling time (to 5% or 2% of the final value)
 - Time constant (for 1st ordered system, 36.8% for decaying or 63.2% for rising signals)
 - The characteristics of the response
 - Oscillatory, under damped, over damped, ...
 - Static gain, natural frequency, damping ratio

First order linear dynamic system

static gain

$$K = \frac{\Delta y}{\Delta u} = 2$$

$$G(s) = \frac{K}{\tau s + 1} = \frac{2}{3s + 1}$$

$$\tau \dot{y} + y = Ku$$

2nd order linear dynamic system

$$au_{s}^{2}rac{d^{2}y}{dt^{2}}+2\zeta au_{s}rac{dy}{dt}+y=K_{p}\,u\left(t- heta_{p}
ight)$$

 K_p : Gain, ζ : damping coefficient, τ_s : 2nd order time constant = 1/ ω_n , θ_p : delay

Mathematical definition of input signals

Step signal

$$u(t) = \begin{cases} a, t > 0 \\ 0, t \le 0 \end{cases}$$

Impulse signal

$$u(t) = \delta(t)$$

Dirac delta function, for continuous time system

$$u(t) = \begin{cases} +\infty, t = 0 \\ 0, t \neq 0 \end{cases}$$

Kronecker delta function, for discrete time system

$$u(t) = \begin{cases} 1, t = 0 \\ 0, t \neq 0 \end{cases}$$

Impulse response

 It describes the output of a LTI system when it is subjected to an impulse signal:

for both continues or discrete cases.

Transient analysis

- **Goal**: using step/impulse response to estimate the transfer function of a system
- The response of a system

$$y(t) = \int_{\tau = -\infty}^{\infty} g(\tau)u(t - \tau)d\tau + v(t) \qquad \text{We can also use a step input}$$

where $g(\tau)$ is the system and v(t)is noise or disturbance.

In discrete form

$$y(t) = \sum_{k=-\infty}^{+\infty} g(k)u(t-k) + v(t)$$

Using impulse input

$$u(t) = \begin{cases} \alpha, & t = 0 \\ 0, & t \neq 0 \end{cases}$$

- We have the response $y(t) = \alpha g(t) + v(t)$
- So the estimated transfer function is

$$\widehat{g}(t) = \frac{y(t)}{\alpha}$$

$$u(t) = \begin{cases} \alpha, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

$$y(t) = \alpha \sum_{k=0}^{\infty} \frac{u(t-k) = 0 \text{ if } t < k}{g(k) + v(t)}$$

So the estimated transfer function is

$$\hat{g}(t) = \frac{y(t) - y(t-1)}{\alpha}$$

The estimation is subject to large error, but good for estimate system properties

Example: Tank dynamics

- System
 - Mixing tanks to smooth the concentration of a solution
- Goal
 - Investigate the dynamics of the system
- Method
 - Impulse response
 - Bucket of water with 2070 g of radioactive lithium at point A
 - Measure the radioactivity at point B for 5 hours
- Other constant of the system
 - Flow rate: 8300 liters/minute
 - Tank volume: $600 m^3$

Analysis

(b)

- $u(t) = u_0 \delta(t)$
- $-u_0 = 2070 \frac{grams}{min} = \left(\frac{2070}{8300}\right) * 10^3 \Rightarrow 250 \ mg/L$
- Model based on physical insight

$$G(s) = \left(\frac{1}{s\tau + 1}\right)^3$$

- 3 identical tank,
- Everything poured in should leave, so the static gain =
 1.

Summary

- Quick and easy insight
 - Order of the system
 - Time constant
 - Static gain
 - Time delay
 - Rise time,
 - natural frequency
 - Damping coefficient
- Widely used in industrial practices
- Information somehow limited
- Not sufficient for quantitative modeling

Math background: Stochastic process and correlation

Random variable and PDF

- Random variable
 - The value varies and cannot be exactly predicted
 - e.g. static noise, the face of a throwed coin
- A random variable can be described by a probability density function (PDF) p(x)

$$\int_{-\infty}^{\infty} p(x)dx = 1$$

$$P(a \le x \le b) = \int_{a}^{b} p(x)dx$$

For normal distribution

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- $-\mu$ is the mean or expectation of the distribution (also median and mode)
- $-\sigma$ is the standard deviation with variance of σ^2
- For uniform distribution

$$p(x) = \begin{cases} \frac{1}{2\sigma\sqrt{3}} & \text{for } -\sigma\sqrt{3} \le x - \mu \le \sigma\sqrt{3} \\ 0 & \text{otherwise} \end{cases}$$

Examples of PDF

Stochastic process

 Stochastic process is a collection of random variables varying with time. Example:

$$\{x(t)\} = \begin{cases} t & P = 0.5 \\ -t & P = 0.5 \end{cases}$$

- Realization of stochastic process
 - Each realization can be a different sequence
- Stationary stochastic process
 - mean and variance do not change with time
- Ergodic stochastic process
 - time average of one sequence of events is the same as the ensemble average

Mean and Variance

- Random variable
 - Mean or expectation

$$\mu_x = E[x] = \int_{-\infty}^{\infty} x \, p(x) dx$$

Variance

$$\sigma_x^2 = var(x) = E[(x - E[x])^2]$$
$$= \int_{-\infty}^{\infty} (x - E[x])^2 p(x) dx$$

$$= \int_{-\infty}^{\infty} x^{2} p(x) dx - \int_{-\infty}^{\infty} 2E[x] x p(x) dx$$

$$+ \int_{-\infty}^{\infty} E[x]^{2} p(x) dx$$

$$= E[x^{2}] - 2E[x]^{2} + E[x]^{2}$$

$$= E[x^{2}] - E[x]^{2}$$

- Stochastic process
 - Mean or expectation

$$\mu_x = E[x(k)] = \int_{-\infty}^{\infty} x(k) \, p(x, k) dx$$

Variance

$$\sigma_x^2(k) = var(x(k))$$

= $E[(x(k) - E[x(k)])^2]$
= $E[x(k)^2] - E[x(k)]^2$

Stationary ergodic stochastic process

$$\mu_{x} = \bar{x} \approx \frac{1}{N} \sum_{k=1}^{N} x(k)$$

Estimation of variance

We can estimate the variance with measured data

$$E[(x - \mu_x)^2] \approx \frac{1}{N} \sum_{k=1}^{N} (x(k) - \mu_x)^2$$

 When the expectation is unknown, we should calculate the mean first, so:

$$E[(x - \mu_x)^2] \approx \frac{1}{N} \sum_{k=1}^{N} (x(k) - \bar{x})^2$$

Covariance and correlation of random process

- Covariance measures of how much two random variables change together $\sigma_{xy} = cov(x, y) = E[(x E[x])(y E[y])]$ = E[xy xE[y] yE[x] + E[x]E[y]] = E[xy] E[x]E[y] E[x]E[y] + E[x]E[y] = E[xy] E[x]E[y]
- The variance is a special case

$$\sigma_{\chi}^2 = \sigma_{\chi\chi}$$

• If x and y are independent, i.e., uncorrelated, then $\sigma_{xy} = 0$ E[xy] = E[x]E[y]

Pearson correlation coefficient

$$\rho_{xy} = corr(x, y) = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$

- $\rho_{xy} \in [-1,1]$
 - 1: total positive correlation
 - -1: total negative correlation
 - 0: not correlated
- Correlation without subtracting mean and scaled by variance

$$\rho_{xy} = corr(x, y) = E(xy)$$

Covariance and correlation of stochastic process

 Cross covariance is a function that gives the covariance of the one process with the other at pairs of time points

$$\sigma_{xy}(t_1, t_2) = cov(x(t_1), y(t_2)) = E\left[\left(x(t_1) - E(x(t_1)) \right) \left(y(t_2) - E(y(t_2)) \right) \right]$$

The cross correlation is:

$$\rho_{xy}(t_1, t_2) = corr(x(t_1), y(t_2)) = E[x(t_1)y(t_2)]$$

• For stationary stochastic process, we introduce a variable $au=t_1-t_2$

$$\sigma_{xy}(\tau) = cov(x(t), y(t-\tau)) = E\left[\left(x(t) - E(x(t))\right)\left(y(t-\tau) - E(y(t-\tau))\right)\right]$$
$$= E\left[x(t)y(t-\tau)\right] - E\left(x(t)\right)E\left(y(t-\tau)\right)$$

$$\rho_{xy}(\tau) = corr(x(t), y(t-\tau)) = E[x(t)y(t-\tau)]$$

Estimation of correlation and covariance

From previous slide

$$\rho_{xy}(\tau) = corr(x(t), y(t-\tau)) = E[x(t)y(t-\tau)]$$

$$\sigma_{xy}(\tau) = cov(x(t), y(t-\tau)) = E[(x(t) - E(x(t)))(y(t-\tau) - E(y(t-\tau)))]$$

For stationary ergodic random process

$$\rho_{xy}(\kappa) = corr(x(k), y(k+\kappa)) \approx \frac{1}{N} \sum_{k=1}^{N} x(k)y(k+\kappa)$$

$$\sigma_{xy}(\kappa) = cov(x(k), y(k+\kappa)) \approx \frac{1}{N} \sum_{k=1}^{N} (x(k) - \bar{x}) (y(k+\kappa) - \bar{y})$$

$$\hat{\rho}_{xy}(\kappa) = \frac{1}{N} \sum_{k=1}^{N} x(k) y(k+\kappa)$$

$$\hat{\sigma}_{xy}(\kappa) = \frac{1}{N} \sum_{k=1}^{N} (x(k) - \bar{x}) (y(k+\kappa) - \bar{y})$$

Autocorrelation

$$\rho_{xx}(\kappa) = corr(x(k), x(k+\kappa)) = E[x(k)x(k+\kappa)]$$

For white noise

$$\rho_{xx}(\kappa) = \begin{cases} \lambda, & \kappa = 0 \\ 0, & \kappa \neq 0 \end{cases}$$

Correlation analysis

Correlation analysis

Goal: estimate the model g_k from measurement y(t) by correlation

$$y(t) = \sum_{k=0}^{\infty} g_k u(t-k) + v(t)$$

Let $\{u(t)\}$ be a realization of stochastic process with zero mean, and assuming $\{u(t)\}$ and $\{v(t)\}$ are uncorrelated

How to calculate the model g_{τ} ? {u(t)} has zero mean, so this term=0

of input u

The cross-covariance function between \sqrt{u} and u is

$$\sigma_{yu}(\tau) = cov_{yu}(\tau)$$

$$= E[y(t)u(t-\tau)] - E(y(t))E(u(t-\tau))$$

$$= E\left[\sum_{k=0}^{\infty} g_k u(t-k)u(t-\tau)\right]$$

$$= \sum_{k=0}^{\infty} g_k E[u(t-k)u(t-\tau)]$$

$$\tau' = t1 - t2 = t - k - t + \tau = \tau - k$$

$$= \sum_{k=0}^{\infty} g_k \sigma_{uu}(\tau - k)$$
Autocorrelation

$$\sigma_{xy}(\tau) = E[x(t)y(t-\tau)] - E(x(t))E(y(t-\tau))$$

$$\rho_{xy}(\tau) = E[x(t)y(t-\tau)]$$

$$\rho_{xx}(\tau) = E[x(k)x(k+\tau)]$$

If the input is white noise

$$\sigma_{uu}(\tau) = \begin{cases} \lambda, & \tau = 0 \\ 0, & \tau \neq 0 \end{cases}$$

We have

$$\sigma_{yu}(\tau) = \lambda g_{\tau}$$

We can estimate the system model g_{τ} from measured y(t) data and u(t)!

$$\hat{\sigma}_{yu}(\tau) = \hat{\rho}_{yu}(\tau) = \frac{1}{N} \sum_{t=1}^{N} y(t)u(t-\tau)$$

Note: $\{y(t)\}\{u(t)\}$ have zero mean

And the impulse response of the system can be calculated by

$$\hat{g}_{\tau} = \frac{1}{\lambda} \hat{\sigma}_{yu}(\tau)$$

Correlation analysis

- Assuming the input is uncorrelated with disturbances
- Correlation analysis gives a quick insight into time constants and time delays

cra

Estimate impulse response using prewhitened-based correlation analysis

collapse all in page

Syntax

```
ir=cra(data)
[ir,R,cl] = cra(data,M,na,plot)
```

Description

ir=cra(data) estimates the impulse response for the time-domain data, data.

[ir,R,cl] = cra(data,M,na,plot) estimates correlation/covariance information, R, and the 99% confidence level for the impulse response. cl.

Input Arguments

data	Input-output data. Specify data as an iddata object containing time-domain data only. data should contain data for a single-input, single-output experiment. For the multivariate case, apply cra to two signals at a time, or use impulse.
М	Number of lags for which the covariance/correlation functions are computed. M specifies the number of lags for which the covariance/correlation functions are computed. These are from -M to M, so that the length of R is 2M+1. The impulse response is computed from 0 to M. Default: 20
na	Order of the AR model to which the input is fitted. For the prewhitening, the input is fitted to an AR model of order na. Use $na=\theta$ to obtain the covariance and correlation functions of the original data sequences. Default: 10
plot	Plot display control. Specify plot as one of the following integers: 0 — No plots are displayed. 1 — Plots the estimated impulse response with a 99% confidence region. 2 — Plots all the covariance functions.
	POINGIN I

Output Arguments

ir	Estimated impulse response.
	The first entry of ir corresponds to lag zero. (Negative lags are excluded in ir.)
R	Covariance/correlation information.
	The first column of R contains the lag indices.
	The second column contains the covariance function of the (possibly filtered) output.
	The third column contains the covariance function of the (possibly prewhitened) input.
	The fourth column contains the correlation function. The plots can be redisplayed by cra(R).
cl	99 % significance level for the impulse response.

Frequency analysis

Frequency analysis

• For an unknown linear system with transfer function G(s), we can excite it with input

$$u(t) = u_0 \cos \omega t$$

The output after possible transient fading away will be

$$y(t) = y_0 \cos(\omega t + \varphi) + v(t)$$

where

$$y_0 = u_0 |G(i\omega)|$$

 $\varphi = \arg G(i\omega)$

- If the system is driven by certain u_0 and $\omega=\omega_i$, and we measure the y_0 and φ , we can determine $G(i\omega)$ for certain $\omega=\omega_i$
- By driving the system respectively with different frequency, we can estimate the transfer function $G(i\omega)$

Example

- Goal: Test the reaction time of pupil
- Method:
 - Using a small light beam
 - Intensity varies as a sinusoid
 - Measure the area of the pupil
 - Using a wide infrared light beam
 - Multiple tests with different frequency
- The results is fit to a transfer function

$$G(s) = e^{-0.28s} \frac{0.19}{(1 + 0.09s)^3}$$

Empirical transfer function estimate (ETFE)

Goal:

- Expending frequency analysis to multi frequency input
- For a linear system can be described by a transfer function, if the input has finite energy, we have:

$$Y(\omega) = G(i\omega)U(\omega)$$

• The transfer function $G(i\omega)$ can be estimated by the **empirical transfer function estimate** (ETFE):

$$\widehat{\widehat{G}}_N(i\omega) = \frac{Y_N(\omega)}{U_N(\omega)}$$

• Where $Y_N(\omega)$ and $U_N(\omega)$ are calculated for different frequency intervals

etfe

Estimate empirical transfer functions and periodograms

Syntax

g = etfe(data)

g = etfe(data,M)

g = etfe(data,M,N)

Description

g = etfe(data) estimates a transfer function of the form:

$$y(t) = G(q)u(t) + v(t)$$

Spectral analysis

Signal Spectra

- Spectrum
 - Frequency content of a signal
 - The spectrum of a signal w(t) is defined as

$$\Phi_W(\omega) = |W(\omega)|^2$$

- Where $W(\omega)$ is the Fourier transform of w(t)

$$W(\omega) = \int_{-\infty}^{\infty} w(t)e^{-i\omega t}dt$$

- And the energy of w(t) should be finite

$$\int_{-\infty}^{\infty} |w(t)| dt < \infty$$

Spectral density

- Measures the signal's energy (power) between frequency ω_1 and ω_2

$$P = \int_{\omega_1}^{\omega_2} \Phi_w(\omega) d\omega$$

Cross spectra

 The cross spectrum of two stationary process with zero mean is

$$\widehat{\Phi}_{yu}(\omega) = \sum_{k=-\gamma}^{\gamma} \widehat{\sigma}_{yu}(k) e^{-i\omega k}$$

Where

$$\hat{\sigma}_{yu}(k) = E[y(t+k)u(t)] = \frac{1}{N} \sum_{t=1}^{N} y(t+k)u(t)$$

If y and u has the relationship

$$y(t) = G(t)u(t)$$

Then

$$\widehat{\Phi}_{vu}(\omega) = G(i\omega)\widehat{\Phi}_{u}(\omega)$$

Spectral Analysis

- Estimate the model using spectral analysis of input and output
- Very common methods for analysis of signals and systems, if the system is linear
- Requires no specific input signal
- Does not work with feedback system

spa

Estimate frequency response with fixed frequency resolution using spectral analysis

Syntax

- G = spa(data)
- G = spa(data,winSize,freq)
- G = spa(data,winSize,freq,MaxSize)

Summary

- Transient analysis
 - Impulse response
 - Step response
- Basics of stochastic process and correlation
 - PDF
 - Stochastic process
 - Mean and variance
 - Covariance
 - Correlation
- Correlation analysis
- Frequency analysis
- Spectral analysis

Readings

- Ch8.1-8.2, Ch 3.8, Ch 8.3-8.7, Ljung, Modeling of Dynamic Systems, 1994
- Wikipedia

