Interfacing Temperature Sensor

Introduction

- A thermistor responds to temperature change by changing resistance, but its response is not linear
- The complexity associated with writing software for such nonlinear devices has led many manufacturers to market the linear temperature sensor

Temperature (C)	Tf (K ohms)
0	29.490
25	10.000
50	3.893
75	1.700
100	0.817

From William Kleitz, digital Electronics

LM34 and LM35 Temperature Sensors

- The sensors of the LM34/LM35 series are precision integrated-circuit temperature sensors whose output voltage is linearly proportional to the Fahrenheit/Celsius temperature
 - The LM34/LM35 requires no external calibration since it is inherently calibrated
 - It outputs 10 mV for each degree of Fahrenheit/Celsius temperature

- Signal conditioning is a widely used term in the world of data acquisition
 - It is the conversion of the signals (voltage, current, charge, capacitance, and resistance) produced by transducers to voltage, which is sent to the input of an A-to- D converter
- Signal conditioning can be a current-to voltage conversion or a signal amplification
 - The thermistor changes resistance with temperature, while the change of resistance must be translated into voltage in order to be of any use to an ADC

Example:

Look at the case of connecting an LM35 to an ADC804. Since the ADC804 has 8-bit resolution with a maximum of 256 steps and the LM35 (or LM34) produces 10 mV for every degree of temperature change, we can condition Vin of the ADC804 to produce a Vout of 2560 mV full-scale output. Therefore, in order to produce the full-scale Vout of 2.56 V for the ADC804, We need to set Vref/2 = 1.28. This makes Vout of the ADC804 correspond directly to the temperature as monitored by the LM35.

Temperature vs. Vout of the ADC804

Temp. (C)	Vin (mV)	Vout (D7 – D0)
0	0	0000 0000
1	10	0000 0001
2	20	0000 0010
3	30	0000 0011
10	100	0000 1010
30	300	0001 1110

