Nombre:	Código:
Nombre:	Código:

INSTRUCCIONES:	Usen el frente de la hoja exclusivamente para consigar sus respuestas.
	Para borrador y para escribir el procedimiento seguido en cada punto
	pueden usar el reverso de la hoja y páginas adicionales.
	No es indispensable escribir soluciones formales, pero sus borradores
	deben estar organizados punto por punto, mostrando las principales
	operaciones para llegar al resultado y con comentarios sintetizados
	junto a los resultados principales.

- 1. Considere la función z = f(x, y), con $f(x, y) = \sqrt{xy}$.
 - a) Escriba la forma general del vector gradiente $\nabla(z)$ para esta función
 - b) Calcule el gradiente en el punto (1, 1).
 - c) Calcule la derivada direccional en la dirección del vector unitario que forma 30° negativo, con respecto al semieje x positivo.
 - d) Halle un vector unitario en la dirección en la cual la función z crece lo más rápidamente posible.
 - e) Halle un vector unitario en la dirección en la cual la función z disminuye lo más rápido posible.
- 2. Ahora vamos a examinar los valores extremos de la función $f(x,y)=2x^2-x+y^2$ en la región R determinada por $\{R: x^2+y^2 \leq 1\}$.
 - a) Determine los puntos críticos de la función en R (si los hay).
 - b) Diga si hay máximos o mínimos locales de la función en R, y cuáles son.
 - c) Considerando solamente los valores en la frontera, ¿dónde está el mínimo de z?
 - d) ¿Dónde se halla el máximo valor de z en la frontera?
 - e) ¿Cuál son los mínimos y máximos absolutos en la región R?