Семинар №6 по дисциплине «Электроника»

Тема: Фрагменты схем на МОП-транзисторах

1.1.1. Теоретическое введение	1
Общий подход к решению	1
Модель МОП-транзистора	1
Использование МОП-транзистора в программе SPICE	4
1.1.2. Задание для работы	6
1.1.3. Варианты задания	7

1.1.1. Теоретическое введение

Общий подход к решению

Общий подход к решению задач, где анализируется схема из нескольких элементов:

1) составить необходимые уравнения по правилам Кирхгофа (не нужна полная система) и закону Ома;

внимание: при составлении уравнений не забывать напряжения на транзисторе ($V_{\text{БЭ}}$, $V_{\text{БК}}$, $V_{\text{КЭ}}$) с правильным знаком;

- 2) уменьшать количество неизвестных за счёт:
 - а. дополнительных уравнений связи между токами и напряжениями в самом транзисторе;
 - b. исключить заведомо малые величины, примеры:
 - * пренебречь 10-омным сопротивлением транзистора по сравнению с килоомным резистором,
 - * пренебречь напряжением открытого p-n-перехода по сравнению с 20-вольтовым источником напряжения,
 - * принять коэффициент $\alpha=1; \beta\to\infty; I \delta=0$ в случае, если ток базы не нужен,
 - * принять токи утечки равными нулю, если не требуется настолько большая точность, и. т. п.

Модель МОП-транзистора

МОП-транзистор (МОПТ) является одним из важнейших типов транзисторов в современных электронных схемах.

Обозначение. Варианты обозначения n- и p-канального $MO\Pi$ -транзистора показаны на рис. 1.

Рис. 1. Варианты обозначения n- и p-канального МОП-транзистора. Здесь S (Source) – исток, G (gate) – затвор, D (Drain) – сток

Условие открытия. При подаче достаточно большого напряжения на затвор n-канального МОП-транзистора в подзатворной области образуется плотный слой подвижных электронов – «канал». При напряжении $V_{\rm 3H} > V_{\rm nop}$ электронный канал считается сформировавшимся, а n-МОП-транзистор — открытым. Соответствующее условие для p-канального МОПТ: $V_{\rm 3H} < V_{\rm nop}$ (учитывая, что обычно $V_{\rm 3H}$ и $V_{\rm nop}$ меньше нуля).

Мнемоническое правило (см. рис. 2) для запоминания:

- для n-MOПТ пороговое напряжение положительное, напряжение затвор исток открытого транзистора должно быть ещё более положительным;
- для р-МОПТ пороговое напряжение отрицательное, напряжение затвористок открытого транзистора должно быть ещё более отрицательным.

Рис. 2. К условию открытия МОП-транзистора

Модель для большого сигнала. В зависимости от напряжения стока $V_{\rm CU}$ МОПТ работает в различных режимах (крутой и пологой областях) и описывается различными уравнениями. Условной границей между режимами работы называется напряжение насыщения $V_{\rm CU, hac} = V_{\rm 3U} - V_{\rm nop}$. В усилительных каскадах телекоммуникационной аппаратуры и в элементах вычилительной техники МОП-транзисторы чаще всего находятся в пентодной области.

n-МОПТ находится в пентодной области (или пологой области, режиме насыщения), если $V_{\text{CM}} > V_{\text{3M}} - V_{\text{пор}}$, и в триодной области (или крутой области), если $V_{\text{CM}} < V_{\text{3M}} - V_{\text{пор}}$. Для p-МОПТ в соотвествующих условиях знаки меняются на противоложные.

Мнемоническое правило (см. рис. 3) для запоминания:

- для n-MOПТ напряжение насыщения открытого транзистора положительное, напряжение сток—исток должно быть ещё более положительным;
- для р-МОПТ напряжение насыщения открытого транзистора отрицательное, напряжение сток—исток должно быть ещё более отрицательным.

Рис. 3. К определению режимов МОП-транзистора

B триодной области модель МОПТ включает в себя управляемый источник тока с квадратической зависимостью от приложенного напряжения стока $V_{\rm CH}$:

$$I_{\rm C} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2 \left(V_{3\rm M} - V_{\rm nop} \right) V_{\rm CM} - V_{\rm CM}^2 \right] \qquad (n)$$

$$I_{\rm C} = -\frac{1}{2} \mu_p C_{ox} \frac{W}{L} \left[2 \left(V_{3\rm M} - V_{\rm nop} \right) V_{\rm CM} - V_{\rm CM}^2 \right] \qquad (p)$$

<u>В пентодной области</u> модель МОПТ включает в себя управляемый источник тока с почти линейной зависимостью от приложенного напряжения стока $V_{\rm CH}$ (почти постоянного тока для транзисторов с большой длиной канала):

$$I_{\rm C} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{\rm 3M} - V_{\rm nop})^2 (1 + \lambda V_{\rm CM}) \qquad (n)$$

$$I_{\rm C} = -\frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{\rm 3M} - V_{\rm nop})^2 (1 - \lambda V_{\rm CM}) \qquad (p)$$

Вольт-амперные характеристики МОПТ, построенные на основе описанных уравнений, проиллюстрированы на рис.4.

Рис. 4.К измерению ВАХ МОП-транзистора

Использование МОП-транзистора в программе SPICE

Рис. 5. Размещение экземпляра МОПТ на рабочем поле, подключение модели

Табл. 1. Сокращённый набор параметров модели МОПТ в программе SPICE

Физ.	Название	Описание параметра	ед.	Значение	Пример	
обозн.	парам.	Описание нараметра	изм.	по умолч.	пример	
$V_{ m nop}$	VTO	Threshold voltage /	В	0	0,3	
•		Пороговое напряжение				
μ	UO	Zero-field mobility /	$cm^2/(B \cdot c)$	0	100	
		Подвижность носителей при малом поле	- / (-)	_		
t_{ox}	TOX	Gate oxide thickness /	M	0	2,5 ·10-9	
		Толщина подзатворного оксида	141	O		
λ	LAMBDA	Channel modulation coef. /	V-1	0	0,25	
		Коэф. модуляции длины канала	v ·	U	0,20	

Тип модели: <u>nmos</u> или <u>pmos</u>.

Пример описания модели диода (скобки не обязательны):

.model a123 nmos (uo=360 tox=0.3e-9 vt0=0.3 lambda=0.01)

Формула пересчёта: $C_{ox} = \varepsilon \varepsilon_0 / t_{ox}$

При моделировании семейств вольт-амперных характеристик (ВАХ) МОПТ: сток-затворных $I_{\rm C}(V_{\rm 3H})@V_{\rm CH}=$ const и выходных $I_{\rm C}(V_{\rm CH})@V_{\rm 3H}=$ const используется команда (директива) . DC, содержащая 2 секции: для двух задействованных источников напряжения $V_{\rm CH}$ и $V_{\rm 3H}$, например, для семейства сток-затворных характеристик:

Для вывода на график тока стока МОП-транзистора используется выражение id(M1), где M1 – название экземпляра транзистора.

1.1.2. Задание для работы

Задание 1. МОП-транзистор включён по схеме с ОЗ, заданы потенциалы выводов (по варианту). Определите режим работы транзистора.

Задание 2.

- ручной расчёт:

а) В другом МОП-транзисторе, включённом по схеме с общим истоком и находящемся в режиме насыщения, известен ток стока I_{C1} и напряжение стока V_{CU1} . Определите значение тока стока при напряжении V_{CU2} . Примечание: ширина затвора транзистора не задана; все остальные параметры транзистора не меняются.

- проверка в **SPICE**:

- **б)** сформируйте модель транзистора с использованием параметров по варианту, длины и ширины канала (с учётом W/L = 50); задайте название модели свою фамилию; подключите модель к экземпляру транзистора;
- в) постройте линию $cmo\kappa$ -затворной BAX МОПТ при напряжении стока $V_{\text{СИ1}}$; подберите $V_{\text{3И}}$, при котором $I_{\text{C}} = I_{\text{C1}}$; Примечание: стройте сток-затворную BAX в диапазоне напряжения затвора от 0 до $+2 \cdot V_{\text{пор}}$ В (для n-МОПТ) и до $-2 \cdot V_{\text{пор}}$ В (для p-МОПТ).
- **г)** постройте линию *выходной ВАХ* при напряжении $V_{3\text{И}}$, найденном в п. в); проверьте, что новое значение тока совпадает с результатом, полченным вручную.
 - Примечание: стройте выходную BAX в диапазоне напряжения стока от 0 до +5 В (для n-МОПТ) и до -5 В (для p-МОПТ)

1.1.3. Варианты задания

для БИТ-203

			общие параметры			
Nº	ФИО	<i>V</i> пит, В	<i>L</i> , мкм	µ _n , см ² / (В·с)	<i>tox</i> , нм	
1	2	3	4	5	6	
1	Абзяппарова Лэйла	2.5	0.25	188	5	
2	Баймухаметова Диля	2.5	0.25	208	5	
3	Ботов Михаил	1.8	0.18	194	3.6	
4	Ведерникова Анастасия	2.5	0.25	204	5	
5	Волошин Андрей	2.5	0.25	381	5	
6	Ефремов Виктор	1.8	0.18	353	3.6	
7	Карапетян Андрей	2.5	0.25	370	5	
8	Клюев Никита	2.5	0.25	344	5	
9	Масляков Александр	2.5	0.25	378	10	
10	Мушаилов Эрсель	1.8	0.18	317	7.2	
11	Пискун Артём	1.8	0.18	323	7.2	
12	Посмитный Семен	1.8	0.18	264	3.6	
13	Руснак Владислава	1.8	0.18	177	7.2	
14	Старилова Елизавета	2.5	0.25	213	5	
15	Старкова Элина	2.5	0.25	201	10	
16	Хобов Артем	2.5	0.25	307	10	
17	Червякова Элина	1.8	0.18	179	7.2	
18	Чураков Артём	1.8	0.18	237	7.2	
19	Шин Владимир	2.5	0.25	383	5	
20		2.5	0.25	335	5	
21		2.5	0.25	380	10	
22		1.8	0.18	337	7.2	
23		2.5	0.25	219	5	
24		2.5	0.25	283	10	
25		2.5	0.25	237	10	
26		2.5	0.25	157	5	
27		2.5	0.25	394	5	
28		1.8	0.18	370	7.2	
29		2.5	0.25	296	10	
30		2.5	0.25	361	10	

для задачи 1						
тип МОПТ	V _{пор} , В	λ, Β ⁻¹		<i>V</i> з, В	<i>V</i> с, В	<i>V</i> и, В
7	8	9		10	11	12
р	-0.40	0.1		-0.03	0.10	0.90
p	-0.48	0.2		-1.9	-2.25	-0.50
n	0.31	0.2		-0.79	-0.8	-1.70
p	-0.40	0.1		-0.86	-0.63	0.40
р	-0.38	0.25		0.35	1.21	1.70
р	-0.36	0.2		-0.07	0.17	0.70
n	0.38	0.1		0.85	0.64	0.30
р	-0.48	0.2		0.18	0.64	0.70
n	0.40	0.25		0.93	0.7	-0.30
n	0.32	0.2		-0.41	-0.68	-0.80
р	-0.31	0.1		0.24	0.51	0.60
n	0.32	0.15		-0.03	0.01	-0.80
р	-0.27	0.25		0.57	0.66	1.30
n	0.40	0.25		-1	-1.41	-1.50
n	0.43	0.2		2.56	2.08	1.90
p	-0.45	0.05		0.67	1.05	1.30
p	-0.27	0.3		-0.54	-0.65	0.20
p	-0.32	0.15		0.37	0.32	1.10
n	0.48	0.25		2	1.83	1.00
p	-0.40	0.2		-0.31	-0.32	0.60
p	-0.40	0.3		0.38	0.31	1.30
n	0.36	0.3		-0.58	-1.13	-1.90
р	-0.38	0.1		-2.48	-2.91	-1.20
n	0.48	0.05		-0.08	-0.6	-1.00
р	-0.48	0.25		-2.38	-2.26	-1.30
p	-0.38	0.3		1.12	1.38	1.70
n	0.40	0.15		1.51	1.11	1.10
р	-0.31	0.2		-0.78	-0.76	0.10
n	0.43	0.2		-0.69	-1.09	-1.40
р	-0.50	0.2		-2.61	-2.19	-1.70

для задачи 2							
тип МОПТ	$V_{ m nop}$, B	λ, Β ⁻¹	<i>I</i> с, мА	<i>I</i> с, <i>V</i> си1,			
13	14	15	16	17	18		
n	0.50	0.15	1.67	1.1	2		
n	0.38	0.2	1.25	1.3	2.1		
р	-0.31	0.05	-1.20	-0.9	-2.1		
n	0.45	0.1	1.25	0.9	2.1		
n	0.45	0.05	1.67	1.2	2.1		
n	0.34	0.05	1.20	0.9	2		
p	-0.50	0.15	-1.67	-1.1	-2.1		
n	0.38	0.15	1.25	1	2		
p	-0.43	0.15	-1.25	-1.1	-2		
p	-0.34	0.05	-0.90	-1.2	-1.9		
n	0.27	0.2	0.90	0.9	2.2		
p	-0.29	0.3	-1.20	-0.9	-2.2		
n	0.34	0.05	0.90	0.9	1.9		
р	-0.50	0.25	-1.25	-1.1	-2.2		
р	-0.38	0.1	-1.67	-1.3	-2.3		
n	0.40	0.25	1.67	1.2	2.2		
n	0.36	0.2	0.90	1.3	2.1		
n	0.32	0.05	0.90	0.9	2.2		
p	-0.48	0.3	-1.25	-1.1	-2.2		
n	0.38	0.2	1.25	1.3	2		
n	0.50	0.05	1.67	1.1	1.9		
p	-0.32	0.25	-1.20	-1	-2		
n	0.50	0.25	1.25	1.2	2.2		
p	-0.45	0.15	-1.67	-1	-2.1		
n	0.50	0.25	1.25	1.3	2.1		
n	0.38	0.1	1.25	1.2	1.9		
p	-0.50	0.2	-1.25	-0.9	-2.1		
n	0.36	0.3	1.20	0.9	1.9		
p	-0.43	0.1	-1.67	-1	-2.1		
n	0.45	0.2	1.25	0.9	2		