Tópicos de Matemática

Exame de recurso (23 de janeiro de 2017) — duração: 2h30 _____

1. Considere as fórmulas $\varphi:(p\to q)\to r$ e $\psi:p\wedge (\neg q\vee r)$. Diga, justificando, se a afirmação seguinte é ou não verdadeira: A variável proposicional r tem valor lógico verdadeiro sempre que a fórmula $\varphi\wedge\psi$ tem valor lógico verdadeiro.

Diga se o argumento

$$\begin{array}{c}
(p \to q) \to r \\
p \land (\neg q \lor r) \\
\hline
\vdots r$$

é válido. Justifique a sua resposta.

2. Considerando que A é um subconjunto de $\mathbb Z$ e que p representa a proposição

$$\exists_{x \in A} \, \forall_{y \in A} (x \neq y \to (\exists_{z \in A} \, (z \neq x) \land (x + z \leq y))$$

- (a) Dê exemplo de um conjunto A com pelo menos dois elementos e onde a proposição p é verdadeira. Justifique a sua resposta.
- (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. Considere os conjuntos

$$A = \{\{1\}, 3, 4, \{2, 9\}, (2, 12)\}, B = \{1, 2\}, C = \{3n \mid n \in \mathbb{N} \land n \in A\} \in D = \{\{1\}, 2, 9\}.$$

Determine:

- (a) $(B \times C) \cap A$.
- (b) $A \setminus \mathcal{P}(D)$.
- 4. (a) Diga, justificando, se a afirmação que se segue é ou não verdadeira: Para quaisquer conjuntos A, B e C, $A \cup (B \setminus C) = (A \cup B) \setminus (A \cup C)$.
 - (b) Sejam A, B e C conjuntos. Mostre que se $A \cap B = A \setminus (B \cap C)$, então $A \cap B \cap C = \emptyset$. Qual foi o método de prova que usou?
- 5. Prove, por indução nos naturais, que $3+3^2+3^3+\ldots+3^n=\frac{3^{n+1}-3}{2}$, para qualquer $n\in\mathbb{N}$.
- 6. Considere a função $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definida por

$$f(m,n) = \left\{ \begin{array}{ll} n+1 & \text{se} & m=1 \\ 2n & \text{se} & m \neq 1 \end{array} \right.$$

- (a) Determine $f(\{(1,5),(2,3)\})$, $\mathbb{Z} \setminus f(\{(1,n) \mid n \in \mathbb{Z}\})$ e $f^{\leftarrow}(\{1,4\})$.
- (b) Diga, justificando, se a função f é injetiva e se é sobrejetiva.
- (c) Diga se existe alguma função $h: \mathbb{Z} \to \mathbb{Z}$ tal que $h \circ f$ é injetiva. Justifique a sua resposta.
- 7. Sejam $A = \{a, b, c, d, e\}$ e R a relação binária em A definida por

$$R = \{(a,c), (b,d), (c,a), (c,c), (d,c), (d,e)\}.$$

- (a) Dê exemplo de, ou justifique que não existe, uma relação binária S em A tal que $R\cap S$ é simétrica e antissimétrica.
- (b) Diga, justificando, se a relação $R \circ R^{-1}$ é reflexiva.
- 8. Seja R a relação de equivalência definida em $\mathcal{P}(\{1,2,3\})$ por

$$X R Y$$
 se e só se $X \cap \{1,3\} = Y \cap \{1,3\}.$

Determine $[\{3\}]_R$ e $\mathcal{P}(\{1,2,3\})/R$.

9. Considere o c.p.o. (P,\leq) representado pelo seguinte diagrama de Hasse:

- (a) Indique, sem justificar:
 - i. os elementos maximais e os elemento minimais de $\{a,f,g,h,j\}$;
 - ii. o conjunto dos majorantes de $\{b,c,d\}$ e o supremo de $\{b,c,d\};$
- (b) Diga se o c.p.o. (P, \leq) é bem ordenado. Justifique a sua resposta.
- 10. Diga, justificando, se são verdadeiras ou falsas as afirmações seguintes:
 - (a) Para quaisquer conjuntos A, B, C e D, se $A \sim B$ e $C \sim D$, então $A \cup C \sim B \cup D$.
 - (b) Se A e B são conjuntos tais que A não é contável e $B \sim \mathbb{N}$, então $A \setminus B$ não é contável.