Астрофизика

1 Задачи для всех

1.1 <i>Mocrop 2012-cmapuue</i>
Зная, что средний размер белого карлика равен примерно диаметру Земли, а температура составляет 13000К. Оцените, какова светимость белого карлика в светимостях Солнца? С какого расстояния мы не сможем увидеть такой белый карлик без телескопа?
1.2 <i>Mocrop 2011-cmapuue</i>
Угловой размер звезды блеском 4,7 составляет 0,004 угл. сек. Спектроскопические наблюдения этой звезды показывают, что линия натрия с длиной волны 5890 Å имеет две компоненты: яркую и слабую. Длина волны слабой компоненты меняется синусоидально с амплитудой 0,6 Å и периодом 30 лет, причем один раз за этот период слабая линия исчезает на 230 дней. Оцените расстояние до звезды, ее массу и температуру поверхности. К какому типу звезд она относится?
1.3 Bcepocc 2006-11
Звезда с массой 4 массы Солнца и с таким же химическим составом (имеет абсолютную звездную величину на 5^m меньше, чем Солнце, и находится на главной последовательности. Какова продолжительность жизни этой звезды на главной последовательности, если она сходит с нее после того, как около $10~\%$ водорода, входящего в ее состав, превратится в гелий? Учесть, что одно ядро гелия имеет массу, на $4.7 \cdot 10^{-29}$ кг меньшую, чем четыре ядра водорода. Массу протонов и нейтронов считать одинаковой и равной $1.6 \cdot 10^{-27}$ кг.
1.4 Питер 2017-11
При вспышке сверхновой SN1987A выделилась энергия 10^{46} Дж. Оцените массу звезды, которая излучит столько же энергии за всю свою жизнь на стадии Главной последовательности.
1.5
Комсический аппарат массой 7 т вылетел с Марса и открыл солнечный парус площадью 7500 м 2 . Через полоборота парус сворачивается. Определите параметры полученной орбиты. Орбиту Марса считать круговой
1.6 Питер 2015-11
Как известно, черные дыры должны «испаряться» со временем, причем испускаемое ими

излучение является чернотельным, а длина волны, соответствующая максимуму интенсивности

..... Страница 1

в спектре излучения, равна гравитационному радиусу черной дыры. Оцените время, пройдет между моментом, когда светимость черной дыры окажется равной светимости и моментом, когда черная дыра полностью «испарится». В каком спектральном диапазо тромагнитного излучения будет в основном излучать дыра в тот момент, когда ее све равна солнечной?	Солнца, эне элек-
1.7	cmapuue
Наблюдаются два звёздных скопления находящихся в разных направлениях от нас. В лении первого скопления межзвёздное поглощение равно $0.0010 \mathrm{m/nk}$, в направлении $0.0020 \mathrm{m/nk}$. Определите какое из скоплений ближе и во сколько раз, если в первом нется цефеида типа δ Сер с периодом 3 суток и видимой звёздной величиной 12^m , во также наблюдается цефеида типа δ Сер, но с периодом 25 суток и видимой звёздной вели 10^m . Для цефеид типа δ Сер характерна зависимость между абсолютной звёздной вели периодом $M_v = -1.01 + 2.87*\log P$	второго аблюда- втором личиной
1.8 Mocrop 2015-0	cmapuue
Определите, во сколько раз гравитационное красное смещение для излучения Бете больше или меньше, чем для Солнца? Масса Бетельгейзе равна 17 масс Солнца, ради радиусов Солнца	
2 Задачи для мазохистов	
2.1 Взрыв кометы Питер	2018-11
При рентгеновских наблюдениях нейтронной звезды с массой, равной $1.4M_{\odot}$, и радикм была найдена эмиссионная линия с энергией квантов 400 кэВ. В результате какого пота линия образовалась? На какой высоте над поверхностью звезды этот процесс происк	троцесса
2.2	кая шиза
Оцените абсолютную звездную величину звезд Вольфа-Райе, если в среднем их масса ляет $35~M_{\odot}$ и за свою жизнь они теряют порядка $10~M_{\odot}$, а её поверхностная яркость сос -9^m на квадратную секунду дуги	
2.3 Остывающй карлик Всеросс	c 2014-11
Белый карлик имеет массу, равную массе Солнца, и радиус, равный радиусу Земл пература его поверхности равна 10 000 кельвин, температура недр – 10 млн кельвин. С время, которое этот объект будет выглядеть как белый карлик, т.е. излучать энергию мом диапазоне, до превращения в черный карлик. Считать для простоты, что тепло вещества белого карлика соответствует теплоемкости идеального газа.	Оцените в види-

...... Страница 2