CSD1100

Signed Binary Numbers

Vadim Surov

Signed Binary Number

 When counting, positive numbers can grow indefinitely towards +∞. In a similar way negative numbers can grow indefinitely towards -∞.

$$-\infty$$
, ..., -2 , -1 , 0 , $+1$, $+2$, ..., $+\infty$

- The '-' symbol is used to indicate negative numbers
- The '+' symbol is used to indicate positive numbers. In many cases the '+' symbol is omitted.
- Signed numbers has a single '0' (zero); having no sign.

Signed Binary Number

- The '+' symbol could be eliminated as it could be assumed, but the '-' symbol must still be represented somehow.
- Since computers do not understand anything but numbers, the '-' and the '+' symbols must be represented using two specific coded numbers.
- These codes could be represented using any two numbers as long as we understand them as the '-' and '+' signs when they occur at the beginning of any number.
- This means that the two above codes must be eliminated from the list of all possible numbers!

Signed Binary Number

- Over time many schemes to represent negative and positive numbers in computers were proposed.
- Some schemes seem to have been more successful than others.
- In all schemes a fixed number of bits is adopted when representing numbers.
- There are several commonly known negative number representations: Signed Magnitude, Ones'
 Complement, Two's Complement.
- Since the start of computer development in the early 1950's these methods have been adopted and used at various times.

- This early representation is intuitive since the sign and magnitude (absolute value) of a number are represented separately.
- A 4 bit binary system could represent 16 (16 = 2⁴) different numbers ranging from 0 (0000₂) to 15 (1111₂):

	Bits	3	2	1	0
0	=	0	0	0	0
		•	•	6	
15	=	1	1	1	1

- Bit 3 is called the sign bit:
 - \circ If bit 3 = 0 => number is positive.
 - If bit 3 = 1 => number is negative.
- Since the MSB is reserved for the sign, 3 bits (bits 0 to 2) are left to represent the number.
- The range of binary numbers represented in sign magnitude is: -2ⁿ⁻¹ - 1 to + 2ⁿ⁻¹ - 1. For example, for 4 bits, the range is: -7 to + 7

The above table would become:

	Bits	Sign bit	2	1	0
+ 7	=	0	1	1	1
+ 2	=	0	0	1	0
+ 1	=	0	0	0	1
+ 0	=	0	0	0	0
- 0	=	1	0	0	0
- 1	=	1	0	0	1
- 2	=	1	0	1	0
- 7	=	1	1	1	1

Addition/subtraction With Signed Magnitude Representation

- Addition and subtraction in signed binary numbers is not straight forward, why?
- Check the sign
- if (Signs are Equal)
 - Add magnitudes
 - Append the sign to the result
- else //Signs are different
 - Compare the results
 - Subtract the smaller from the larger
 - Append sign of the greater to result

Addition/subtraction With Signed Magnitude Representation

Example 1:

$$(-3 - 2 = -5)$$
 or $1011 + 1010$
 $(010 + 011 = 101)$
append sign $(1) = 1101$

Example 2:

$$(2-5=-3)$$
 or $0010+1101$
 $(101-010=011)$
append sign $(1)=1011$

Advantages:

 The method is simple and intuitive for humans to represent as many negative numbers as positive numbers

Disadvantages:

- The method requires several tests and decisions (such as switching the order of operands) when performing arithmetic.
 - It is harder to implement in computers, costing additional circuitry and execution time.
- It has 2 representations for zero: +0 and -0!
 - Adding +1 to -1 leads to either 1000 or 0000 both representing 0.
- Consequently it could be a poor choice for a computer system.

Complement Representation

Complement Representation

- In order to simplify computer arithmetic circuits it would be nice if subtraction is handled the same way as addition without the need to deal with borrowing.
 - \circ 5-3 = 5 + (-3)
 - (-3) should be represented in a certain format.

Complement Representation

- In mathematics, the "method of complements" is a technique used to subtract one number from another using only addition of positive numbers.
- In brief, the number to be subtracted is first converted into its "complement", and then added to the other number.
- The complement of a number M is a value that together with M makes the whole number.
- The whole number is determined by the base (number of digits) N.
- Diminished radix complement or (N-1)'s complement also can be used.

- It's the diminished radix complement for binary numbers (radix 2).
- The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary representation of the number (swapping 0s for 1s and vice versa).
- Positive numbers are still represented as in the sign magnitude method.
- The range of numbers represented when using n bits is –
 (2ⁿ⁻¹ 1) to (2ⁿ⁻¹ 1) for 8 bits: -127 to +127

Bits	Unsig. value	Ones' compl.
0111 1111	127	127
• • •	• • •	• • •
0000 0011	3	3
0000 0010	2	2
0000 0001	1	1
0000 0000	0	0
1111 1111	255	-0
1111 1110	254	-1
1111 1101	253	-2
1111 1100	252	-3
• • •	• • •	• • •
1000 0000	128	-127

- Disadvantages:
 - It has 2 representations for zero: +0 and -0! Even though they are the same algebraically. This causes problems when doing tests on arithmetic results.
 - Result of addition of 2 negative numbers must be incremented to get the correct result
- Not a good choice to represent negative numbers.

- In 1964 a supercomputer (the CDC 6600) built by Semour Cray was based on ones' complement representation.
- Other computers such as the PDP-1 and UNIVAC 1100/2200 series also used the ones' complement representation for doing arithmetic.
- Nowadays, ones' complement representation is not used in modern computer systems.
- Most computers now use a variation of ones' complement (called two's complement) that eliminates the above problems

- Positive numbers are still represented as in the sign magnitude method.
- Negative numbers are represented as Ones' complement plus 1.
- The range of numbers represented when using n bits is
 - -2^{n-1} to 2^{n-1} –1 for 8 bits: -128 to +127

	Bits	Sign bit	2	1	0
+ 7	=	0	1	1	1
+ 1	=	0	0	0	1
+ 0	=	0	0	0	0
- 1	=	1	1	1	1
- 8	=	1	0	0	0

Two's Complement Representation. Eliminating the borrowing

- Ex Dec: 778 89 = 779 + 999 89 +1 1000 = 689
- Ex Bin:

Advantages:

- It has a single representation of the zero: 0
- Each positive number has a corresponding negative number that starts with a 1, except smallest negative (-8 for 4 bit) which has no corresponding positive number.
- Simplifies the logic required for addition and subtraction, since can use the addition to add and subtract both negative and positive numbers the same way.
- Nowadays, almost all computer systems are based on the two's complement representation.

Binary Sequence	2's Complement	1's Complement	Sign Magnitude
0111	7	7	7
0110	6	6	6
0101	5	5	5
0100	4	4	4
0011	3	3	3
0010	2	2	2
0001	1	1	1
0000	0	0	0
1111	-1	-0	-7
1110	-2	-1	-6
1101	-3	-2	-5
1100	-4	-3	-4
1011	-5	-4	-3
1010	-6	-5	-2
1001	-7	-6	-1
1000	-8	-7	-0

References

- https://en.wikipedia.org/wiki/Method of complements
- https://en.wikipedia.org/wiki/Ones%27 complement