Teaching goals: After completing, the student

- understands the relationship between propositions/theories up to [T-] equivalence and sets of models (the so-called algebra of propositions), can apply in concrete examples
- can encode a given problem as an instance of SAT
- has gained practical experience with using a SAT solver
- understands the algorithm for solving 2-SAT using the implication graph (including finding all models), and can apply it to an example
- understands the algorithm for solving Horn-SAT using unit propagation, and can apply it to an example
- understands the DPLL algorithm and can apply it to an example

IN-CLASS PROBLEMS

Problem 1. Let $|\mathbb{P}| = n$ and let $\varphi \in VF_{\mathbb{P}}$ be a proposition such that $|M(\varphi)| = k$. Determine (up to equivalence):

- (a) the number of propositions ψ such that $\varphi \models \psi$ or $\psi \models \varphi$,
- (b) the number of theories over \mathbb{P} in which φ is valid,
- (c) the number of complete theories over \mathbb{P} in which φ is valid,
- (d) the number of theories T over \mathbb{P} such that $T \cup \{\varphi\}$ is consistent.

Now, consider a contradictory theory $\{\varphi,\psi\}$ where $|M(\psi)|=p$. Compute (up to equivalence):

- (e) the number of propositions χ such that $\varphi \vee \psi \models \chi$,
- (f) the number of theories in which $\varphi \vee \psi$ is valid.
- **Solution.** (a) The condition can be expressed in terms of sets of models: $M(\varphi) \subseteq M(\psi)$ or $M(\psi) \subseteq M(\varphi)$. There are 2^n total models, and $|M(\varphi)| = k$. We want to count possible sets $M(\psi)$. The condition $M(\varphi) \subseteq M(\psi)$ holds for 2^{2^n-k} sets (i.e. the number of supersets of the given k-element set inside a 2^n -element universe), and the condition $M(\psi) \subseteq M(\varphi)$ holds for 2^k sets. We must subtract one to avoid double-counting the case $M(\psi) = M(\varphi)$. Altogether there are $2^{2^n-k} + 2^k 1$ possible model sets, hence that many propositions ψ up to equivalence.
- (b) $T \models \varphi \text{ iff } M(T) \subseteq M(\varphi); \text{ the number of such model sets } M(T) \text{ is } 2^k.$
- (c) Additionally we require |M(T)| = 1; the number of 1-element subsets of the k-element set is k.
- (d) In terms of models the condition says $M(T \cup \{\varphi\}) \neq \emptyset$. Since $M(T \cup \{\varphi\}) = M(T) \cap M(\varphi)$, we count how many possible sets M(T) have a nonempty intersection with the k-element set $M(\varphi)$. One way to express this is $(2^k 1) \cdot 2^{2^n k}$, where $2^k 1$ counts the nonempty possible intersections $M(T) \cap M(\varphi)$ and $2^{2^n k}$ counts arbitrary choices for membership of models outside $M(\varphi)$.
- (e) Since $\{\varphi, \psi\}$ is contradictory we have $\emptyset = M(\varphi, \psi) = M(\varphi) \cap M(\psi)$. We count sets $M(\chi)$ with $M(\varphi \vee \psi) \subseteq M(\chi)$. By the Lindenbaum-Tarski algebra $M(\varphi \vee \psi) = M(\varphi) \cup M(\psi)$. Disjointness gives $|M(\varphi) \cup M(\psi)| = k + p$, so the number of choices for $M(\chi)$ is $2^{2^n (k+p)}$.
- (f) M(T) must be a subset of the (k+p)-element set M($\varphi \lor \psi$), hence there are 2^{k+p} possibilities.

Problem 2. Build the implication graph of the given 2-CNF formula. Is it satisfiable? If yes, find some solution: (a) the proposition φ below, (b) $\varphi \wedge \neg p_1$, (c) $\varphi \wedge \neg p_1 \wedge (p_1 \vee p_2)$.

$$\varphi = (p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee \neg p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee \neg p_1)$$

Solution. (a) Construct the implication graph. One finds two strongly connected components: $C = \{p_1, p_2, \neg p_3, p_4, \neg p_5\}$ and $\overline{C} = \{\neg p_1, \neg p_2, p_3, \neg p_4, p_5\}$, and there are no edges between them. After contracting the components we obtain a two-vertex graph \mathcal{G}^* with no edges; it has two topological orders (C, \overline{C}) and (\overline{C}, C) , which correspond to the models (0, 0, 1, 0, 1) and (1, 1, 0, 1, 0) respectively.

- (b) The components are the same, but adding $\neg p_1$ forces an edge $C \to \overline{C}$ in \mathcal{G}^* , so the only topological order is (C, \overline{C}) , yielding the model (0, 0, 1, 0, 1).
- (c) With the extra clause the implication graph becomes strongly connected; its single component contains complementary literals, so the formula is unsatisfiable.

Problem 3. Use unit propagation to decide whether the following Horn formula is satisfiable. If yes, find a satisfying assignment.

$$(\neg p_1 \lor p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2) \land p_1 \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (p_1 \lor \neg p_2 \lor \neg p_4) \land (\neg p_2 \lor \neg p_3 \lor \neg p_4) \land (p_4 \lor \neg p_5 \lor \neg p_6)$$

Solution. Perform unit propagation step by step starting over the literals $p_1, p_2, p_3, \neg p_4$ (in order); the remaining clause will be $\neg p_5 \lor \neg p_6$. It suffices to assign $p_5 = 0$ or $p_6 = 0$ to make the whole formula true. The models are $\{(1, 1, 1, 0, 0, 1), (1, 1, 1, 0, 1, 0), (1, 1, 1, 0, 1, 1)\}$.

Problem 4. Use the DPLL algorithm to decide if the following CNF formula is satisfiable:

$$(\neg p_1 \lor \neg p_2) \land (\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3) \land (p_1 \lor p_3)$$

Solution. The formula has no unit clauses and no pure literals, so we must branch, say on p_1 :

- For $\varphi \wedge p_1$: unit propagation yields $\neg p_2 \wedge p_2 \wedge (p_2 \vee \neg p_3)$. Propagating $\neg p_2$ produces $\square \wedge \neg p_3$, which containts the empty clause \square , so this branch is unsatisfiable.
- For $\varphi \wedge \neg p_1$: unit propagation yields $\neg p_2 \wedge (p_2 \vee \neg p_3) \wedge p_3$. Propagating $\neg p_2$ gives $\neg p_3 \wedge p_3$, after unit propagation over $\neg p_3$ we get the empty clause \square , so this branch is again unsatisfiable.

In both (all) branches we proved a contradiction, therefore the formula is unsatisfiable.

Problem 5. Given a directed graph, we want to determine whether it is acyclic and, if so, find a topological ordering. Encode this problem as SAT.

Solution. Sketch of a solution. Use the language $\mathbb{P} = \{p_{uv} \mid u, v \in V\}$ where p_{uv} means "vertex u appears strictly before v in the ordering". Enforce that this is a strict (irreflexive, antisymmetric, transitive) order by axioms:

- $\neg p_{vv}$ for all $v \in V$,
- $p_{uv} \rightarrow \neg p_{vu} \text{ for all } u, v \in V$,
- $(p_{uv} \wedge p_{vw}) \rightarrow p_{uw} \text{ for all } u, v, w \in V.$

It remains to enforce that all graph edges go forward in the topological order:

• p_{uv} for each edge $(u, v) \in E$.

Finally, convert the above axioms to CNF. In set notation we get:

$$S = \{ \{\neg p_{vv}\}, \{\neg p_{uv}, \neg p_{vu}\}, \{\neg p_{uv}, \neg p_{vw}, p_{uw}\} \mid u, v, w \in V \} \cup \{\{p_{uv}\} \mid (u, v) \in E \}.$$

EXTRA PRACTICE

Problem 6. Consider the following propositions φ and ψ over $\mathbb{P} = \{p, q, r, s\}$:

$$\varphi = (\neg p \lor q) \to (p \land r)$$

$$\psi = s \to q$$

- (a) Determine the number (up to equivalence) of propositions χ over \mathbb{P} such that $\varphi \wedge \psi \models \chi$.
- (b) Determine the number (up to equivalence) of complete theories T over \mathbb{P} such that $T \models \varphi \wedge \psi$.
- (c) Find an axiomatization for each (up to equivalence) complete theory T over \mathbb{P} such that $T \models \varphi \wedge \psi$.

Problem 7. Using the unit propagation algorithm, find all models of:

$$(\neg a \lor \neg b \lor c \lor \neg d) \land (\neg b \lor c) \land d \land (\neg a \lor \neg c \lor e) \land (\neg c \lor \neg d) \land (\neg a \lor \neg d \lor \neg e) \land (a \lor \neg b \lor \neg e)$$

Problem 8. Solve using the implication graph as in Example ??, and also using the DPLL algorithm as in Example ??:

- (a) $(p_1 \vee \neg p_2) \wedge (p_2 \vee p_3) \wedge (\neg p_3 \vee p_1) \wedge (\neg p_3 \vee \neg p_4) \wedge (p_4 \vee p_5) \wedge (\neg p_5 \vee p_1)$
- (b) $(p_0 \lor p_2) \land (p_0 \lor \neg p_3) \land (p_1 \lor \neg p_3) \land (p_1 \lor \neg p_4) \land (p_2 \lor \neg p_4) \land (p_0 \lor \neg p_5) \land (p_1 \lor \neg p_5) \land (p_2 \lor \neg p_5) \land (\neg p_1 \lor \neg p_6) \land (p_4 \lor p_6) \land (p_5 \lor p_6) \land p_1 \land \neg p_7$

Problem 9. Can the numbers 1 to n be colored with two colors so that there is no monochromatic solution of the equation a+b=c for any $1 \le a < b < c \le n$? Construct a propositional CNF formula φ_n that is satisfiable iff such a coloring exists. Try n=8 first.

Try at home: Write a script that generates φ_n in DIMACS CNF format. Use a SAT solver to find the smallest n for which such a coloring does not exist (i.e., every 2-coloring contains a monochromatic triple a < b < c with a + b = c).

Problem 10. The four-color theorem implies that the following maps can be colored with four colors so that no two adjacent regions share the same color. Find such a coloring using a SAT solver.

FOR FURTHER THOUGHT

Problem 11. For a given proposition φ in CNF, find a 3-CNF formula φ' such that φ' is satisfiable if and only if φ is satisfiable. Describe an efficient algorithm for constructing φ' given φ (i.e., a *reduction* from the SAT problem to the 3-SAT problem).

Problem 12. Encode the problem of sorting a given *n*-tuple of integers into SAT.

Problem 13. Encode into SAT the well-known riddle about a farmer who needs to transport a wolf, a goat, and a cabbage across a river.