"Commuting graph associated with algebraic structure"

Special Project (MATH F491)

Presented by-

<u>Vishesh Garg - 2016B4A70611P</u>

Aditya Tulsyan - 2017B4A70740P

Supervised by: Dr Jitender Kumar

ABOUT THE PROJECT

PRE-MID-SEMESTER WORK

Commutative property: Two elements (x and y) of any group G are said to **commute** iff $x \circ y = y \circ x$ where "o" is the binary operation associated with the group.

Commuting Graph: Given a finite group G and a subset X of G, the commuting graph of G on X, denoted by C(G,X) is the graph that has X as its vertex set with x, $y \in X$ joined by an edge whenever $x \neq y$ and x o y = y o x (i.e. elements commute w.r.t. the binary operation o)

V_{8n} group

The group V_{8n} is defined as:

$$V_{8n} = \langle a, b | a^{2n} = b^4 = e, ba = a^{-1} b^{-1}, b^{-1} a = a^{-1} b \rangle$$

Note that $|V_{8n}| = 8n$.

Elements of
$$V_8 = \{ e, a, b, b^2, b^3, ab, ab^2, ab^3 \}$$

(for n = 1)

Since, ba = $a^{-1}b^{-1}$ and $b^{-1}a = a^{-1}b$, one can observe that:

- $b^2a^i = a^ib^2$
- baⁱ = $a^{2n-i}b$; if i is even $a^{2n-i}b^3$; if i is odd
- $b^3a^i = a^{2n-i}b^3$; if i is even $a^{2n-i}b$; if i is odd

Thus, every element of $V_{8n} \ <a>$ is of the form $a^i b^j$ for some i, j, where $1 \le i \le 2n$ and $1 \le j \le 3$

Center of a group: The center of a group is the set of elements which commute with every element of the group. It is equal to the intersection of the centralizers of the group elements.

Examples:

- The center of an abelian group, G, is all of G.
- The center of a nonabelian simple group is trivial.

Center of group V_{gn}

Case1: if n is odd

$$Z_{8n} = \{ e, b^2 \}$$

(Where e is the identity element)

K₂: Complete graph with two nodes

Case2: if n is even

$$Z_{8n} = \{ e, b^2, a^n, a^nb^2 \}$$
(Where e is the identity element)

K₄: Complete graph with four nodes

POST-MID SEMESTER

The neighbourhood of a vertex: The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. (N[x])

$$N[e] = V_{8n}$$
 (for both n even and odd)

(Where e is the identity element)

Case 1: n is ODD

Center of V_{gn} for n odd: $Z_{gn} = \{e, b^2\}$

- $N[e] = V_{8n}$
- $N[b] = \{e, b, b^2, b^3\}$
- $N[b^2] = V_{8n}$ (Since, $b^2 \in Z_{8n}$)
- $N[b^3] = \{e, b, b^2, b^3\}$
- $N[a^ib] = \{ e, b^2 \} U \{a^jb\} U \{a^jb^3\}$
- $N[a^ib^2] = \{ e, b^2 \} U \{a^j\} U \{a^jb^2\}$
- $N[a^ib^3] = \{ e, b^2 \} U \{a^ib^3\} U \{a^ib\}$
- $N[a^i] = \{ e, b^2 \} \cup \{ a^i \} \cup \{ a^i b^2 \}$

Case 2: n is EVEN

Center of V_{gn} for n even: $Z_{gn} = \{ e, b^2, a^n, a^nb^2 \}$

- N[e] = V_{8n}
- N[b] = {e, b, b^2 , b^3 , a^nb , a^nb^2 , a^nb^3 , a^n }
- $N[b^2] = V_{gn}$ (Since, $b^2 \subseteq Z_{gn}$)
- $N[b^3] = \{e, b, b^2, b^3, a^nb, a^nb^2, a^nb^3, a^n\}$
- $N[a^ib] = \{ e, b^2, a^n, a^nb^2 \} \cup \{a^jb\} \cup \{a^jb^3\}$
- $N[a^{i}b^{2}] = V_{8n}$; for i = n= $\{e, b^{2}\} \cup \{a^{j}\} \cup \{a^{j}b^{2}\}$; otherwise
- $N[a^ib^3] = \{ e, b^2, a^n, a^nb^2 \} \cup \{a^jb\} \cup \{a^jb^3\}$
- $N[a^{i}] = V_{8n}$; for i = n= { e, b², aⁿ, aⁿb³ } U { a^jb² } U { a^j }; otherwise

PROPERTIES OF V_{8n}

Edge connectivity:

Edge connectivity: The minimum number of edges whose detention from a graph disconnects the graph.

Case 1: n even Edge connectivity = 4

Case 2: n odd Edge connectivity = 3

PROPERTIES of V_{8n}

Vertex connectivity

Vertex connectivity: The minimum number of vertices whose deletion from a graph disconnects the graph. Also referred to as point connectivity.

Case 1: n even

<u>Vertex connectivity = 4</u>

Case 2: n odd

<u>Vertex connectivity = 2</u>

PROPERTIES of V_{8n}

Clique Number

Clique number: The size of the largest complete subgraph(clique) in the given graph.

Clique number = 4n (for both odd and even)

Independence Number

Independent set: A set of vertices of the graph, no two of which are adjacent.

Independence number: The cardinality of the largest independent vertex set.

Case 1: n even

<u>Independence number = 2n -1</u>

Case 2: n odd

Independence number = 2n+1

PROPERTIES of V_{8n}

Vertex covering number

Vertex covering number: The size of the minimum vertex cover (A vertex cover is a set of vertices such that each edge of the graph is incident to at least one vertex of the set)

<u>Vertex cover number = 6n (for both odd and even)</u>

Matching Number

Matching number: The size of maximum vertex cover (A vertex cover is a set of vertices such that each edge of the graph is incident to at least one vertex of the set)

Case 1: n even

Matching number = 4n-2

Case 2: n odd: 4n-1

Matching number = 4n-1

Properties of Vgn

Edge cover number

Edge covering number: The size of the minimum edge cover (An edge cover of a graph is a set of edges such that every vertex of the graph is incident to at least one edge of the set)

Edge cover number = 4n (for both n even and odd)

Eulerian Graph

Eulerian graph: An Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once. Similarly, a Eulerian circuit or Eulerian cycle is a Eulerian trail that starts and ends on the same vertex. A Eulerian graph is a graph that contains a Eulerian cycle.

References

- Panda, Ramesh & Dalal, Sandeep & Kumar, Jitender. (2020). On the enhanced power graph of a group.
- A. Iranmanesh and A. Jafarzadeh (2008). On the commuting graph associated with the symmetric and alternating groups.
- Vahidi, Javad & Talebi Rostami, Ali. (2010). The commuting graphs on groups and. Journal of Mathematics and Computer Science. 11. 123-127.
- Torktaz, M. & Ashrafi, Ali. (2018). Spectral properties of the commuting graphs of certain groups.
 AKCE International Journal of Graphs and Combinatorics. 16. 10.1016/j.akcej.2018.09.006.

THANK YOU