Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

4.1. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek se společným počátkem. První z těchto polopřímek nazýváme **počátečním ramenem orientovaného úhlu** a druhou nazýváme **koncovým ramenem orientovaného úhlu**. Společný počátek obou ramen se nazývá **vrchol orientovaného úhlu**. Orientovaný úhel s počátečním ramenem VA a koncovým ramenem VB označíme \widehat{AVB} ; podle definice je tedy $\widehat{AVB} \neq \widehat{BVA}$. **Nulový orientovaný úhel** je orientovaný úhel \widehat{AVB} , kde polopřímky VA, VB jsou identické.

Budiž dán orientovaný úhel \widehat{AVB} . Polopřímky VA, VB dělí rovinu na dva neorientované úhly. Označíme-li jejich velikosti α , β , platí $\alpha+\beta=360^\circ$ (v míře stupňové), resp. $\alpha+\beta=2\pi$ radiánů (v míře obloukové). Radián (značíme rad) je velikost středového úhlu, který přísluší oblouku kružnice, jehož délka je rovna poloměru kružnice. Platí 1 rad $\doteq 57^\circ17'45''$. **Velikostí orientovaného úhlu** \widehat{AVB} nazýváme každé reálné číslo tvaru $\alpha+2k\pi$ (v míře obloukové), resp. každé reálné číslo tvaru $\alpha+k\cdot360^\circ$ (v míře stupňové), kde $k\in\mathbf{Z}$ a

- $\alpha = 0$, resp. $\alpha = 0^{\circ}$, jsou-li polopřímky VA, VB identické,
- α je velikost neorientovaného úhlu, který vznikne otočením počátečního ramene VA do polohy koncového ramene VB v kladném smyslu (tj. proti směru pohybu hodinových ručiček), nejsou-li polopřímky VA, VB identické.

Je tedy $0 \le \alpha < 2\pi$, resp. $0^{\circ} \le \alpha < 360^{\circ}$; číslo α se nazývá **základní velikost orientovaného úhlu**.

4.2. Goniometrické funkce obecného úhlu. Zvolme v rovině kladně orientovanou kartézskou soustavu souřadnic s počátkem O, osami x, y a stejnou délkovou jednotkou na obou osách; předpoklad, že soustava je kladně orientovaná, znamená, že orientovaný úhel, jehož počátečním ramenem je kladná poloosa x a koncovým ramenem je kladná poloosa y, má základní velikost $\frac{\pi}{2}$ (v obloukové míře). Na kladné poloose x zvolme bod A = [1,0] a kolem počátku opišme kružnici o poloměru jedna, tzv. jednotkovou kružnici. Každému reálnému číslu x nyní můžeme přiřadit právě jeden orientovaný úhel, jehož počátečním ramenem je polopřímka OA; je to tzv. **orientovaný úhel velikosti** x **v základní poloze**. Průsečík koncového ramene tohoto orientovaného úhlu s jednotkovou kružnicí označme $M = [x_M, y_M]$. Goniometrické funkce sinus, kosinus, tangens a kotangens jsou nyní definovány takto (viz obr. 4.1):

Obr. 4.1

$$\sin x = y_M, \quad x \in \mathbf{R}; \qquad \operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{y_M}{x_M}, \quad x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$$
$$\cos x = x_M, \quad x \in \mathbf{R}; \quad \cot x = \frac{\cos x}{\sin x} = \frac{x_M}{y_M}, \quad x \neq k\pi, k \in \mathbb{Z}$$

Z definice je zřejmé, že **goniometrické funkce jsou periodické**: základní perioda T funkcí sinus a kosinus je rovna 2π a základní perioda funkcí tangens a kotangens je rovna π . To znamená, že platí:

$$\sin(x + 2k\pi) = \sin x, \quad x \in \mathbf{R}, \ k \in \mathbf{Z},$$

$$\cos(x + 2k\pi) = \cos x, \quad x \in \mathbf{R}, \ k \in \mathbf{Z},$$

$$\tan(x + k\pi) = \tan x, \quad x \neq (2k + 1)\frac{\pi}{2}, \ k \in \mathbf{Z},$$

$$\cot(x + k\pi) = \cot x, \quad x \neq k\pi, \ k \in \mathbf{Z}.$$

Funkce sinus, kosinus jsou kromě toho antiperiodické se základní antiperiodou π , tj. pro každé $x \in \mathbf{R}$ platí vztahy:

$$\sin x = -\sin(x+\pi)$$
, $\cos x = -\cos(x+\pi)$

Funkce sinus, tangens a kotangens jsou liché, zatímco funkce kosinus je sudá. To znamená, že platí

$$\sin(-x) = -\sin x$$
, $\operatorname{tg}(-x) = -\operatorname{tg} x$, $\operatorname{cotg}(-x) = -\operatorname{cotg} x$, $\operatorname{cos}(-x) = \cos x$, kdykoliv má jedna strana rovnice smysl

Z definice goniometrických funkcí plynou ještě tyto jejich vlastnosti:

$$\sin x = \cos\left(\frac{\pi}{2} - x\right) = -\cos\left(\frac{\pi}{2} + x\right)$$

$$\cos x = \sin\left(\frac{\pi}{2} - x\right) = \sin\left(\frac{\pi}{2} + x\right)$$

$$\operatorname{tg} x = \operatorname{cotg}\left(\frac{\pi}{2} - x\right) = -\operatorname{cotg}\left(\frac{\pi}{2} + x\right)$$

$$\operatorname{cotg} x = \operatorname{tg}\left(\frac{\pi}{2} - x\right) = -\operatorname{tg}\left(\frac{\pi}{2} + x\right)$$

4.3. Monotónie a znaménka goniometrických funkcí v jednotlivých kvadrantech.

	Kvadrant							
	I	II	III	IV				
$\sin x$	roste +	klesá +	klesá –	roste –				
$\cos x$	klesá +	klesá –	roste –	roste +				
$\operatorname{tg} x$	roste +	roste	roste +	roste				
$\cot x$	klesá +	klesá –	klesá +	klesá –				
	$(0,\frac{\pi}{2})$	$(\frac{\pi}{2},\pi)$	$(\pi, \frac{3}{2}\pi)$	$(\frac{3}{2}\pi, 2\pi)$				
	Interval							

Goniometrické funkce jsou ve skutečnosti monotónní na větších intervalech. Pro každé celé číslo $\,k\,$ totiž platí:

- Funkce sinus roste od -1 do +1 na intervalu $\left\langle -\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi \right\rangle$ a klesá od +1 do -1 na intervalu $\left\langle \frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi \right\rangle$.
- Funkce kosinus klesá od +1 do -1 na intervalu $\langle 2k\pi,\pi+2k\pi\rangle$ a roste od -1 do +1 na intervalu $\langle -\pi+2k\pi,2k\pi\rangle$.
- Funkce tangens roste od $-\infty$ do $+\infty$ na intervalu $\left(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi\right)$.
- Funkce kotangens klesá od $+\infty$ do $-\infty$ na intervalu $(k\pi, \pi + k\pi)$.

4.4. Funkční hodnoty goniometrických funkcí pro některá $\,x \in {\bf R}\,.$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\operatorname{tg} x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	*	0	*	0
$\cot x$	*	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	*	0	*

Znak "*" v některých polích tabulky značí, že funkce uvedená v prvním poli řádku není pro hodnotu x uvedenou v prvním poli sloupce definována. Většina hodnot goniometrických funkcí v této tabulce je důsledkem vztahů mezi stranami a úhlopříčkou ve čtverci a vztahů mezi stranami a výškou v rovnostranném trojúhelníku (viz obr. 4.2).

$4.5.\ {\rm Grafy}$ goniometrických funkcí.

Obr. 4.3: $y = \sin x$, $x \in \mathbf{R}$, $y \in \langle -1, 1 \rangle$, $T = 2\pi$

Obr. 4.4: $y = \cos x$, $x \in \mathbf{R}$, $y \in \langle -1, 1 \rangle$, $T = 2\pi$

Obr. 4.5: $y = \operatorname{tg} x$, $x \in \mathbf{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbf{Z} \right\}$, $y \in \mathbf{R}$, $T = \pi$

Obr. 4.6: $y = \cot x$, $x \in \mathbf{R} \setminus \{k\pi; k \in \mathbf{Z}\}$, $y \in \mathbf{R}$, $T = \pi$

- 4.6. Vztahy mezi goniometrickými funkcemi.
 - Základní vztah

$$\sin^2 x + \cos^2 x = 1 \tag{4.1}$$

• Součtové vzorce

$$\sin(x \pm y) = \sin x \cos y \pm \sin y \cos x$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$
(4.2)

$$tg(x \pm y) = \frac{tg x \pm tg y}{1 \mp tg x tg y}$$

$$cotg(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}$$
(4.2')

• Vzorce pro sinus a kosinus dvojnásobného a polovičního úhlu

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\left|\sin \frac{x}{2}\right| = \sqrt{\frac{1 - \cos x}{2}}$$

$$\left|\cos \frac{x}{2}\right| = \sqrt{\frac{1 + \cos x}{2}}$$

$$(4.3) - (4.6)$$

• Součty a rozdíly sinů a kosinů

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$(4.7)$$

Z těchto vzorců plynou vztahy

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x + y) + \sin(x - y)]$$
(4.8)

4.7. Užití goniometrických funkcí v geometrii. Základem aplikací goniometrických funkcí v geometrii jsou jednak jejich definice, jednak následující dvě důležité věty platné pro každý trojúhelník se stranami a, b, c a úhly α , β , γ . Přitom, jak je obvyklé, úhel α je protilehlý straně a, úhel β je protilehlý straně b a úhel γ je protilehlý straně c.

• Věta sinová

$$a:b:c=\sin\alpha:\sin\beta:\sin\gamma$$
(4.9)

Věta kosinová

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$
 (4.10)

Přímo z definice sinu plyne, že obsah P obecného trojúhelníka je dán vzorcem

$$P = \frac{1}{2}ab\sin\gamma \tag{4.11}$$

4.8. Harmonické kmity. V technické praxi se setkáváme s harmonickými kmity (harmonickými veličinami), tj. s kmity (veličinami), jejichž matematickým vyjádřením je funkce tvaru

$$y = A\sin(\omega x + \varphi)$$
, kde $A, \varphi, \omega \in \mathbf{R}$ (konstanty), $x \in \mathbf{R}$ (proměnná).

Konstanty A, φ , ω mají svoje názvy: A je tzv. **amplituda**, ω je tzv. **úhlový kmitočet** nebo též **kruhová frekvence** a φ je tzv. **počáteční fáze** nebo **fázový úhel** nebo též **fázový posun**.

Harmonický kmit je periodická funkce se základní periodou $T=\frac{2\pi}{\omega}$. Příkladem harmonické veličiny je okamžitá hodnota střídavého napětí nebo okamžitá hodnota střídavého proudu.

- **4.9. Sestrojení grafu funkce** $y = A \sin(\omega x + \varphi)$.
 - a) Graf funkce $y=A\sin x$, kde A>0, získáme z grafu funkce $y=\sin x$ dilatací ve směru osy y s koeficientem A. To znamená, že všechny úsečky rovnoběžné s osou y A-násobně prodloužíme v případě A>1 a $\frac{1}{A}$ -násobně zkrátíme v případě A<1. Pro A<0 dostaneme graf souměrný ke grafu funkce $y=-A\sin x$, kde -A>0 podle osy x.
 - b) Graf funkce $y=\sin\omega x$, kde $\omega>0$, dostaneme z grafu funkce $y=\sin x$ dilatací ve směru osy x s koeficientem $\frac{1}{\omega}$. Je-li $\omega<0$, pak $\sin\omega x=-\sin|\omega|x$. Graf funkce $y=\sin\omega x$, kde $\omega<0$, je souměrný ke grafu funkce $y=\sin\omega x$, kde $\omega>0$ podle osy x.
 - c) Graf funkce $y = \sin(x + \varphi)$ dostaneme z grafu funkce $y = \sin x$ posunutím ve směru osy x, a to posunutím doleva, je-li $\varphi > 0$, a posunutím doprava, je-li $\varphi < 0$.

Máme-li sestrojit graf funkce $y = A\sin(\omega x + \varphi)$, použijeme a), b) a c). Jejich pořadí je podrobeno jedné podmínce: b) vždy musí předcházet c). Podobně sestrojíme grafy funkcí $y = A\cos(\omega x + \varphi)$, $y = A\tan(\omega x + \varphi)$, $y = A\cot(\omega x + \varphi)$.

4.10. Řešené příklady.

1. Vypočtěte $\sin^2 \frac{5}{3}\pi + \operatorname{tg} \frac{\pi}{3} \cos \frac{5}{6}\pi + \operatorname{cotg} \frac{17}{4}\pi$.

Řešení:

$$\sin^2 \frac{5}{3}\pi + \operatorname{tg} \frac{\pi}{3} \cos \frac{5}{6}\pi + \operatorname{cotg} \frac{17}{4}\pi = \sin^2 \left(\frac{2}{3}\pi + \pi\right) + \sqrt{3}\left(-\cos \frac{\pi}{6}\right) + \operatorname{cotg}\left(\frac{\pi}{4} + 4\pi\right) = \\ = \sin^2 \frac{\pi}{3} - \frac{3}{2} + 1 = \frac{1}{4}.$$

2. Zjednodušte $\cos(45^{\circ} + x) - \cos(45^{\circ} - x)$.

Řešení: Užitím jednoho ze vzorců (4.7) dostaneme

$$\cos(45^{\circ} + x) - \cos(45^{\circ} - x) = -2\sin 45^{\circ} \sin x = -\sqrt{2}\sin x.$$

3. Dokažte vztahy:

a)
$$\cos x + \sin x = \sqrt{2} \cos \left(\frac{\pi}{4} - x\right)$$
,

b)
$$\cos x - \sin x = \sqrt{2} \sin \left(\frac{\pi}{4} - x\right)$$
.

Řešení: V obou případech použijeme součtové vzorce (4.2):

a)

$$\sqrt{2}\cos\left(\frac{\pi}{4} - x\right) = \sqrt{2}\cos\frac{\pi}{4}\cos x + \sqrt{2}\sin\frac{\pi}{4}\sin x =$$

$$= \sqrt{2}\frac{\sqrt{2}}{2}\cos x + \sqrt{2}\frac{\sqrt{2}}{2}\sin x = \cos x + \sin x.$$

b)

$$\sqrt{2}\sin\left(\frac{\pi}{4} - x\right) = \sqrt{2}\sin\frac{\pi}{4}\cos x - \sqrt{2}\cos\frac{\pi}{4}\sin x = = \sqrt{2}\frac{\sqrt{2}}{2}\cos x - \sqrt{2}\frac{\sqrt{2}}{2}\sin x = \cos x - \sin x.$$

4. Vyjádřete $\sin x$, $\cos x$, znáte-li tg $\frac{x}{2}$.

Řešení: Ze vzorců (4.5) a (4.6) plyne $\operatorname{tg}^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$. Odtud vypočteme $\cos x$:

$$(1 + \cos x) \operatorname{tg}^2 \frac{x}{2} = 1 - \cos x$$
, $\cos x \left(\operatorname{tg}^2 \frac{x}{2} + 1 \right) = 1 - \operatorname{tg}^2 \frac{x}{2}$,

$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}.$$

K vyjádření $\sin x$ nyní použijeme základní vztah (4.1):

$$\sin^2 x = 1 - \left(\frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}\right)^2$$

$$= \frac{1 + 2\lg^2 \frac{x}{2} + \lg^4 \frac{x}{2} - 1 + 2\lg^2 \frac{x}{2} - \lg^4 \frac{x}{2}}{\left(1 + \lg^2 \frac{x}{2}\right)^2} = \frac{4\lg^2 \frac{x}{2}}{\left(1 + \lg^2 \frac{x}{2}\right)^2},$$

$$\sin x = \frac{2\lg \frac{x}{2}}{1 + \lg^2 \frac{x}{2}}.$$

5. Vyjádřete $a\sin x + b\cos x$, kde x je proměnná, a,b>0, ve tvaru $A\sin(x+\varphi)$, kde A>0, $\varphi\in\langle 0,2\pi\rangle$.

Řešení: Předpokládejme, že je takové vyjádření možné, tj. že existují A a φ s požadovanými vlastnostmi tak, že pro všechna x platí rovnost

$$A\sin(x+\varphi) = a\sin x + b\cos x.$$

Levou stranu upravíme s pomocí součtového vzorce, viz (4.2), a dostaneme vztah

$$A \sin x \cos \varphi + A \cos x \sin \varphi = a \sin x + b \cos x$$
.

Protože tento vztah podle předpokladu platí pro všechna $x \in \mathbf{R}$, platí speciálně pro x=0 a pro $x=\frac{\pi}{2}$. Postupným dosazením těchto dvou hodnot proměnné x však dostaneme rovnice

$$A\sin\varphi = b$$
, $A\cos\varphi = a$,

z nichž plyne (protože A, a, b > 0):

$$A^2 = a^2 + b^2$$
, $A = \sqrt{a^2 + b^2}$; $\operatorname{tg} \varphi = \frac{b}{a}$.

Jelikož náš postup je zřejmě možno obrátit, hledané vyjádření má tvar

$$a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \varphi).$$

6. Vyjádřete $\sin x \cos 5x$ ve tvaru součtu či rozdílu goniometrických funkcí.

Řešení: Z posledního ze vzorců (4.8) plyne

$$\sin x \cos 5x = \frac{1}{2} \left[\sin \left(x + 5x \right) + \sin \left(x - 5x \right) \right] = \frac{1}{2} \left[\sin 6x + \sin \left(-4x \right) \right] = \frac{1}{2} \sin \left(6x \right) - \frac{1}{2} \sin \left(4x \right).$$

7. Nakreslete graf funkce $f(x) = -\frac{1}{3}\cos\left(2x - \frac{\pi}{5}\right)$.

Řešení: Funkční vztah upravíme na ekvivalentní tvar

$$f(x) = -\frac{1}{3}\cos 2\left(x - \frac{\pi}{10}\right)$$

a postupně sestrojíme grafy funkcí (viz obr. 4.7)

$$g_1(x) = \cos x$$
, $g_2(x) = \cos 2x$, $g_3(x) = g_2(x - \frac{\pi}{10})$,
 $f(x) = -\frac{1}{3}g_3(x)$.

Obr. 4.7

4.11. Neřešené příklady.

Nakreslete grafy goniometrických funkcí:

1.
$$y = \sin x$$
; $y = \sin \frac{x}{2}$; $y = \sin 2x$; $y = 2\sin x$; $y = \sin \left(x + \frac{\pi}{6}\right)$ [Do jednoho obrázku]

$$2. \quad y = 3\cos\left(\frac{x}{2} + \frac{2}{3}\pi\right)$$

$$3. \quad y = \frac{1}{3}\sin\left(2x - \frac{\pi}{3}\right)$$

$$4. \ \ y = \operatorname{tg}\left(x + \frac{\pi}{3}\right)$$

5.
$$y = \cot\left(2x + \frac{\pi}{2}\right)$$

Použití gonimetrických funkcí v Matematice 1

Vypočtěte limity:

1.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$

$$2. \lim_{x \to \pi} \frac{\sin 5x - \sin 3x}{\sin x}$$
 [2]

3.
$$\lim_{x\to 0} \frac{1-\cos^2 x}{x}$$
 [0]

4.
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\sin x}{\cos^2 x} - \operatorname{tg}^2 x \right)$$
 $\left[\frac{1}{2} \right]$

5.
$$\lim_{x \to \frac{\pi}{6}} \frac{\sin\left(x - \frac{\pi}{6}\right)}{\frac{\sqrt{3}}{2} - \cos x}$$
 [2]

6.
$$\lim_{x \to \frac{\pi}{4}} \operatorname{tg} 2x \cdot \operatorname{tg} \left(\frac{\pi}{4} - x \right)$$
 $\left[\frac{1}{2} \right]$

Vypočtěte integrály:

$$1. \int \sin^2 x \, dx \qquad \left[\frac{1}{2} x - \frac{1}{4} \sin 2x + c \right]$$

2.
$$\int \sin x \sin 5x \, dx \qquad \left[-\frac{1}{12} \sin 6x + \frac{1}{8} \sin 4x + c \right]$$

3.
$$\int \frac{dx}{1 + \cos x}$$

$$4. \int_0^{\frac{\pi}{2}} \sqrt{1 + \cos x} \, dx$$
 [2]