Registration number:

EEE102 Power Networks Mid Term Test – March 2010

Constants required: $\mu_0 = 4\pi x 10^{-7} \text{ Hm}^{-1}$

	Question	Answer	Marks
1	i) Convert the impedance 0.6 + j1.9Ω into a magnitude and phase representation:	i)	[1]
	ii) Convert the impedance 9.6 ∠60° Ω into a cartesian complex representation	ii)	[1]
2	A 350 turn coil is wound onto the circular iron core shown below. The iron core has a fixed relative permeability of 300 and includes a small airgap as shown. The total length of the flux path within the iron core is 210mm. When a current of 9.5A flows in the coil, the flux density in the core is 1.4T. Calculate the length of the airgap which results in these conditions and hence calculate the inductance of the coil Total path length in iron of 210mm	Include any intermediate calculations in this box and state answer at bottom of box	
	Airgap of unknown length	Airgap length:	[6]
	Cross-sectional area = 100mm ²	Inductance:	[2]

