

SMPS MOSFET

IRFP90N20D

HEXFET® Power MOSFET

Applications

• High frequency DC-DC converters

V _{DSS}	R _{DS(on)} max	I _D	
200V	0.023Ω	94A [®]	

Benefits

- Low Gate-to-Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	94⑥	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	66	A
I _{DM}	Pulsed Drain Current ①	380	
P _D @T _C = 25°C	Power Dissipation	580	W
	Linear Derating Factor	3.8	W/°C
V_{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	6.7	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torqe, 6-32 or M3 screw	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.26	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.24		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.023	Ω	V _{GS} = 10V, I _D = 56A ④
V _{GS(th)}	Gate Threshold Voltage	3.0		5.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	$V_{DS} = 200V, V_{GS} = 0V$
'DSS				250	μΛ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA -	$V_{GS} = 30V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100	'''	$V_{GS} = -30V$

Dynamic @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9 _{fs}	Forward Transconductance	39			S	$V_{DS} = 50V, I_{D} = 56A$
Qg	Total Gate Charge		180	270		I _D = 56A
Q _{gs}	Gate-to-Source Charge		45	67	nC	$V_{DS} = 160V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		87	130	Ī	V _{GS} = 10V, ⊕
t _{d(on)}	Turn-On Delay Time		23			V _{DD} = 100V
t _r	Rise Time		160		ns	$I_D = 56A$
t _{d(off)}	Turn-Off Delay Time		43			$R_G = 1.2\Omega$
t _f	Fall Time		79			V _{GS} = 10V ④
C _{iss}	Input Capacitance		6040			$V_{GS} = 0V$
Coss	Output Capacitance		1070			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		170		pF	f = 1.0MHz
Coss	Output Capacitance		8350			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		420			$V_{GS} = 0V, V_{DS} = 160V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		870			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 160V $

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		1010	mJ
I _{AR}	Avalanche Current①		56	Α
E _{AR}	Repetitive Avalanche Energy①		58	mJ

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			04@		MOSFET symbol
	(Body Diode)			94⑥	A	showing the
I _{SM}	Pulsed Source Current			380		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C$, $I_S = 56A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		230	340	ns	$T_J = 25$ °C, $I_F = 56A$
Q _{rr}	Reverse RecoveryCharge		1.9	2.8	μC	di/dt = 100A/μs ④
t _{on} Forward Turn-On Time			insic tu	ırn-on ti	me is ne	egligible (turn-on is dominated by L _S +L _D)

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFET® Power MOSFETs

International

TOR Rectifier

TO - 247 Package Outline

Dimensions are shown in millimeters (inches)

Notes:

8

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.64mH $R_G = 25\Omega$, $I_{AS} = 56$ A.
- $\label{eq:loss_state} \begin{tabular}{ll} $I_{SD} \le 56A, \ di/dt \le 470A/\mu s, \ V_{DD} \le V_{(BR)DSS}, \\ $T_J \le 175^{\circ}C$ \end{tabular}$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 90A.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.09/01

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/