Lecture 2: Linear classifier

Dmitry Yashunin IntelliVision

Recall from last time: Challenges of recognition

Illumination

Deformation

Occlusion

Background Clutter

Intraclass variations

Recall from last time: data-driven approach, kNN

CIFAR10

Cross-validation

fold 1	fold 2	fold 3	fold 4	test
fold 1	fold 2	fold 3	fold 4	test

Neural Network practitioner

Linear classifiers

Recall: CIFAR10

10 classes50,000 training images10,000 testing images

width height channels (rgb)

Parametric Approach

Image

Parametric Approach: Linear Classifier

Image

Array of **32x32x3** numbers (3072 numbers total)

$$f(x,W) = Wx$$

10 numbers giving class scores

parameters or weights

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Toy example

Image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

What is this thing doing?

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

Interpreting a Linear Classifier

$$f(x,W) = Wx + b$$

Array of **32x32x3** numbers (3072 numbers total)

How to define level of unhappiness with the scores?

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Toy example

Consider: 3 training examples, 3 classes.

With the scores

cat **3.2**

car

5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

A **loss function** tells how good our classifier

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

cat car frog Loss

3.2 5.1 -1.7 2.9 1.3

4.9

2.0

2.2

2.5

-3.1

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$

 $+\max(0, -1.7 - 3.2 + 1)$

 $= \max(0, 2.9) + \max(0, -3.9)$

= 2.9 + 0

= 2.9

cat **3.2** car 5.1 frog -1.7 Loss 2.9

1.3 4.9 2.0 0 2.2 2.5 -**3.1**

Multiclass SVM (hinge) loss:

 x_i - image y_i - label, element of a set $\{0, 1, ...\}$ scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

= max(0, 1.3 - 4.9 + 1)+max(0, 2.0 - 4.9 + 1)= max(0, -2.6) + max(0, -1.9)= 0 + 0= 0

cat	3.2	1.3
car	5.1	4.9
frog	-1.7	2.0
Loss	2.9	0

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 2.2 - (-3.1) + 1)$

 $+\max(0, 2.5 - (-3.1) + 1)$

= max(0, 6.3) + max(0, 6.6)

= 6.3 + 6.6

= 12.9

 cat
 3.2
 1.3
 2.2

 car
 5.1
 4.9
 2.5

 frog
 -1.7
 2.0
 -3.1

 Loss
 2.9
 0
 12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over the dataset $\; L = rac{1}{N} \sum_{i=1}^{N} L_i \;$

$$L = (2.9 + 0 + 12.9)/3$$

= **5.27**

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car scores change a bit?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q2: what is the min/max possible loss?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q3: At initialization W is small so all $s \approx 0$. What is the loss?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q4: What if the sum was over all classes? (including $j = y_i$)

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q5: What if we used mean instead of sum?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Multiclass SVM (hinge) loss:

 x_i - image

 y_i - label, element of a set $\{0, 1, ...\}$

scores vector

$$s = f(x_i, W) = [s_0, ... s_{y_i}, ...]$$

 s_{y_i} element corresponds to ground truth label y_i

SVM loss

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q6: What if we used

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = **0!**

cat **3.2** car 5.1 frog -1.7 Loss 2.9

1.3 4.9 2.0 0

2.22.5-3.1

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

```
= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0
```

With 2W:

```
= max(0, 2.6 - 9.8 + 1)
+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
```

Regularization

λ - regularization strength (hyperparameter)

Regularization

$$L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$$

L2 regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

Data loss

L1 regularization

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2)
$$R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$$

Dropout (will see later)

Batch normalization (will see later)

L2 regularization: motivation

$$x = [1, 1, 1, 1]$$

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

Simpler model is better

$$w_1^T x = w_2^T x = 1$$

scores = unnormalized log probabilities of the classes.

$$s = f(x_i, W)$$

$$P(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
 probability of x_i image has y_i label

cat **3.2** car 5.1 frog -1.7

scores = unnormalized log probabilities of the classes.

$$s = f(x_i, W)$$

$$P(Y = y_i | X = x_i) = \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$
 probability of x_i image has y_i label

Softmax function

cat **3.2** car 5.1 frog -1.7

3.2

5.1

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$s = f(x_i, W)$$

$$P(Y = y_i | X = x_i) = \frac{e^{sy_i}}{\sum_j e^{s_j}}$$
 probability of x_i image has y_i label

Want to maximize the likelihood $\prod_{i} P(Y = y_i | X = x_i)$

$$\prod_{i} P(Y = y_i | X = x_i)$$

or log likelihood

$$\sum_{i} \log P(Y = y_i | X = x_i)$$

or to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y = y_i | X = x_i)$$

scores = unnormalized log probabilities of the classes.

$$s = f(x_i, W)$$

$$P(Y = y_i | X = x_i) = \frac{e^{Sy_i}}{\sum_j e^{S_j}}$$
 probability of x_i image has y_i label

Want to minimize the negative log likelihood of the correct class:

$$L_{i} = -\log P(Y = y_{i}|X = x_{i})$$
or
$$L_{i} = -\log \frac{e^{s_{y_{i}}}}{\sum_{i} e^{s_{j}}}$$

cat **3.2** car 5.1 frog -1.7

$$y_i = 0$$

cat car frog 3.2

5.1

-1.7

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

unnormalized probabilities

unnormalized log probabilities

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

unnormalized probabilities

unnormalized log probabilities

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

unnormalized probabilities

$$y_i = 0$$

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

unnormalized probabilities

$$y_i = 0$$

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

Q: What is the possible min/max loss L_i ?

unnormalized probabilities

$$y_i = 0$$

$$L_i = -\log(0.13) = 0.89$$

unnormalized log probabilities

Q2: Usually at initialization W is small so all $s \approx 0$.

What is the loss?

$$y_i = 0$$

$$L_i = -\log(0.13) = 0.89$$

unnormalized probabilities

Kullback–Leibler divergence – **nonsymmetrical** distance between two probability distribution *P* and *Q*

$$D_{KL}(P||Q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} = \sum_{x} p(x) \log p(x) - \sum_{x} p(x) \log q(x) = H(P) + H(P,Q)$$

H(P) entropy of P H(P, Q) cross-entropy of P and Q

Image classification:

$$P(Y = y_i | X = x_i)$$
 – "true" distribution of class probabilities $Q(Y = \widehat{y_i} | X = x_i)$ – estimated class probabilities, softmax output of classifier

Want to minimize Kullback-Leibler divergence

$$D_{KL}(P||Q) = \sum_{i} P(y_i|x_i) \log P(y_i|x_i) - \sum_{i} P(y_i|x_i) \log Q(\widehat{y_i}|x_i)$$

$$\text{constant} \qquad \qquad \textbf{\textit{H(P, Q)} cross-entropy of P and Q}$$

minimizing Kullback–Leibler divergence is equivalent to minimizing cross-entropy of *P* and *Q*

Want to minimize cross entropy loss for an image x_i

$$L_i = -P(y_i|x_i)\log Q(\widehat{y}_i|x_i)$$

If image labeled with single class y_i then

one-hot label encoding

$$P(y_i|x_i) = [0, ... 1, ... 0]$$

single 1 at y_i -th position

softmax of classifier scores

$$Q(\widehat{y}_i|x_i) = \frac{e^{s_i}}{\sum_j e^{s_j}}$$

Want to minimize cross entropy loss for an image x_i

$$L_i = -P(y_i|x_i)\log Q(\widehat{y}_i|x_i)$$

one-hot label encoding

Softmax vs SVM

Softmax

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

VS

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs SVM

Softmax

$$L_i = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

VS

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

and
$$y_i = 0$$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Recap

- We have some dataset of (x_i, y_i)
- We have a **score function**: $s = f(x_i, W)$
- We have a loss function:

$$L_{i} = -\log \frac{e^{Sy_{i}}}{\sum_{j} e^{Sj}}$$
SVM
$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

$$L_{i} = \sum_{j \neq y_{i}}^{N} \max(0, s_{j} - s_{y_{i}} + 1)$$
Full loss
$$L = \frac{1}{N} \sum_{j \neq y_{i}}^{N} L_{i} + R(W)$$

Recap

How do we find the best W?

- We have some dataset of (x_i, y_i)
- We have a **score function**: $s = f(x_i, W)$
- We have a loss function:

$$L_i = -\log rac{e^{Sy_i}}{\sum_j e^{S_j}}$$
 Softmax
 $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$
 $L_i = \frac{1}{\sum_j \sum_{j \neq y_i}^{N}} \sum_{j \neq y_i}^{N} \sum$

Next time

Optimization

Introduction to neural networks

Backpropagation