Стратегия т-reset (Базовая)

Цель

Динамически перераспределять ликвидность в диапазоне $[P(1-\Delta),P(1+\Delta)]$ каждые τ времени, минимизируя IL и максимизируя комиссионные сборы.

Параметры

- τ : интервал перераспределения.
- Δ : ширина диапазона.
- γ : комиссия пула.
- W_0 : начальный капитал в токене B.

Формальный алгоритм

Инициализация

- 1. В момент t_0 :
 - ullet Текущая цена: P_0
 - Установить границы: $P_{\mathrm{lower}}^{(0)} = P_0(1-\Delta), \quad P_{\mathrm{upper}}^{(0)} = P_0(1+\Delta)$
 - ullet Рассчитать ликвидность L_0 для W_0 : $L_0 = \frac{W_0}{\sqrt{P_{ ext{upper}}^{(0)} \sqrt{P_{ ext{lower}}^{(0)}}}}$
 - Внести ликвидность в пул.

Шаг перераспределения (каждые τ)

- 1. В момент t_k :
 - \bullet Изъять текущую ликвидность $L_{k-1},$ получить токены A и B.
 - ullet Текущая цена: P_k .

 - Пересчитать ликвидность L_k для капитала W_k = Стоимость(A,B): $L_k = \frac{W_k(1-\gamma)}{\sqrt{P_{\text{loper}}^{(k)}}-\sqrt{P_{\text{lower}}^{(k)}}}$
 - \bullet Внести L_k в новый диапазон.

Псевдокод

```
1 Initialization::
       2 t_0 \leftarrow \text{initial time};
    з P_0 \leftarrow \text{current price};
      4 P_{\mathrm{lower}}^{(0)} \leftarrow P_0(1-\Delta);
  \begin{array}{l} {}^{\text{1 lower}} \\ {}^{\text{1 lower}} \\ {}^{\text{2 lower}} \\ {}^{\text{3 lower}} \\ {}^{\text{4 lower}} \\ {}^{\text{3 lower}} \\ {}^{\text{3 lower}} \\ {}^{\text{4 lower}} \\ {}^{\text
    7 Add liquidity L_0 to [P_{\text{lower}}^{(0)}, P_{\text{upper}}^{(0)}];
      s while strategy is active do
                                                      Wait \tau;
                                                      t_k \leftarrow \text{current time};
 10
                                                      Withdraw liquidity L_{k-1};
11
                                                      P_k \leftarrow \text{current price};
 12
                                                      P_{\text{lower}}^{(k)} \leftarrow P_k(1 - \Delta);
13
                                                      P_{\text{upper}}^{(k)} \leftarrow P_k(1+\Delta);
                                                   W_k \leftarrow \text{Value}(A, B) \times (1 - \gamma);
 15
                                             L_k \leftarrow \frac{W_k}{\sqrt{P_{\text{upper}}^{(k)}} - \sqrt{P_{\text{lower}}^{(k)}}};
                                                     Add liquidity L_k to [P_{\text{lower}}^{(k)}, P_{\text{upper}}^{(k)}];
```

- Строка 4-5: Инициализация начального диапазона на основе стартовой цены.
- Строка 12: Перерасчет капитала с учетом комиссий γ .
- Строка 14: Динамическое обновление ликвидности для компенсации IL.

Volume-Adjusted τ-Reset Liquidity Strategy

Данная стратегия является модификацией классической τ -reset стратегии управления ликвидностью в Uniswap V3.

Цель

Адаптировать диапазон ликвидности под рыночную активность, снижая частоту выхода за границы диапазона при высокой активности и концентрируя ликвидность при низкой.

Параметры

Symbol	Название	Тип	Описание
$\overline{ au}$	reset interval	int (в часах)	Интервал ребалансировки
δ_0	base delta	float	Базовая ширина диапазона
\vec{k}	volume sensitivity	float	Коэффициент чувствительности диапазона к объёму
γ	fee	float	Комиссия пула Uniswap V3 (в долях)
W_0	initial capital	float	Начальный капитал в стейблкоине (например, USDC)
h	volume window	int	Длина окна (в часах) для усреднения объёма

Формальный алгоритм

Инициализация

ullet В начальный момент времени $t_0,$ определяем цену пула:

$$P_0 = \operatorname{price}(t_0)$$

• Устанавливаем начальный диапазон:

$$P_{\mathrm{lower}}^{(0)} = P_0 \cdot (1-\delta_0), \quad P_{\mathrm{upper}}^{(0)} = P_0 \cdot (1+\delta_0) \label{eq:plower}$$

• Рассчитываем ликвидность, которая может быть внесена:

$$L_0 = \frac{W_0}{\sqrt{P_{\mathrm{upper}}^{(0)} - \sqrt{P_{\mathrm{lower}}^{(0)}}}}$$

Ребалансировка (каждые τ часов)

В момент времени t, если $t-t_{\mathrm{last\ reset}} \geq \tau,$ происходит следующее:

(1) Адаптация ширины диапазона

• Объём в текущем observation:

$$V_t = \text{volume}(t)$$

 \bullet Средний объём за последние h часов:

$$\bar{V}_t = \frac{1}{h} \sum_{i=t-h+1}^{t} \text{volume}(i)$$

• Относительное отклонение объёма:

$$R_t = \frac{V_t}{\bar{V}_t}$$

• Обновлённая ширина диапазона:

$$\delta_t = \min\left(0.2, \max\left(0.01, \delta_0 + k \cdot (R_t - 1)\right)\right)$$

(2) Обновление диапазона

$$P_{\text{lower}}^{(t)} = P_t \cdot (1 - \delta_t), \quad P_{\text{upper}}^{(t)} = P_t \cdot (1 + \delta_t)$$

(3) Имперманентные потери (IL) Если цена изменилась с предыдущей ребалансировки $(P_{\text{prev}} \to P_t)$, то применяются имперманентные потери:

$$\mathrm{IL}(P_{\mathrm{prev}}, P_t) = \left(\frac{2\sqrt{P_t/P_{\mathrm{prev}}}}{1 + P_t/P_{\mathrm{prev}}} - 1\right)$$

(4) Обновление капитала

$$W_t = W_{t-1} \cdot (1 + \mathrm{IL}) \cdot (1 - \gamma)$$

(5) Расчёт ликвидности для нового диапазона

$$L_t = \frac{W_t}{\sqrt{P_{\mathrm{upper}}^{(t)} - \sqrt{P_{\mathrm{lower}}^{(t)}}}}$$

Отличие от классической τ -reset strategy

Компонент	VolumeAdjusted τ-reset	TauResetStrategy из fractal-defi
Δ (ширина диапазона)	динамическая : зависит от объёма	фиксированная
Основание для	ооъема Скользящий средний объём	Нет адаптации
адаптации IL (имперманентные	Учитываются явно через	Учитываются косвенно
потери)	формулу	в пирижения косрение
Реакция на рынок	Гибкая, учитывает активность	Жёстко фиксированная

Ограничения

- Ликвидность считается пропорционально капиталу, упрощая реальные расчёты токенов А и В.
- Все средства всегда реинвестируются при ребалансировке.
- Цена пула извлекается как агрегированная (напр., из Binance или TWAP Uniswap).
- Объём измеряется в USD-эквиваленте и сравнивается по rolling window.
- Нет исполнения частичных выводов или дельта-хеджирования.