

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ

Το όριο αυτό λέγεται παράγωγος της f στο x_0 και συμβολίζεται με $f'(x_0)$.

Αν θέσουμε όπου x-x₀=h τότε
$$f'(x_0) = \lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

Αν το x_0 είναι εσωτερικό σημείο ενός διαστήματος του πεδίου ορίσμού της f, τότε η f είναι παραγωγίσιμη στο x_0 , αν και μόνο αν υπάρχουν στο R τα όρια: $\lim_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0},\lim_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}$

και είναι ίσα.

ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

- 1. Αν μια συνάρτηση είναι παραγωγίσιμη στο \mathbf{x}_0 τότε ορίζουμε ως $\mathbf{εφαπτομένη}$ της γραφικής παράστασης της \mathbf{f} στο σημείο $\mathbf{A}(\mathbf{x}_0,\mathbf{f}(\mathbf{x}_0))$ την ευθεία που διέρχεται από το \mathbf{A} και έχει κλίση την παράγωγο της \mathbf{f} στο \mathbf{x}_0 , δηλ, την: $\mathbf{\psi} \mathbf{f}(\mathbf{x}_0) = \mathbf{f}'(\mathbf{x}_0) \cdot (\mathbf{x} \mathbf{x}_0)$
- 2. Αν μια συνάρτηση f είναι συνεχής στο σημείο x_0 και ισχύει: $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = +\infty$ ή $-\infty$
- τότε ορίζουμε ως $\underline{\pmb{\varepsilon \phi a \pi \tau o \mu \dot{\varepsilon} v n}}$ $\underline{\pmb{\tau \eta \varsigma}}$ $\underline{\pmb{C}_f}$ στο σημείο $\mathbf{A}(\mathbf{x_0},\mathbf{f}(\mathbf{x_0}))$ την κατακόρυφη ευθεία: $\mathbf{x} = \mathbf{x_0}$
- 3. Av μια συνάρτηση f είναι συνεχής στο σημείο $x_{_0}$ και τα παρακάτω όρια $\lim_{x\to x_{_0}^-}\frac{f(x)-f(x_{_0})}{x-x_{_0}},\lim_{x\to x_{_0}^+}\frac{f(x)-f(x_{_0})}{x-x_{_0}}$
- είναι διαφορετικά και ανήκουν στό , τότε το σημείο $A(x_0,f(x_0))$ λέγεται γωνιακό σημείο της f.
- <u>ΘΕΩΡΗΜΑ</u>: Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x_0 , τότε είναι και συνεχής στο σημείο αυτό.

Αν μια συνάρτηση f δεν είναι συνεχής σε ένα σημείο x_0 , τότε σύμφωνα με τη προηγούμενη πρόταση δεν μπορεί να είναι παραγωγίσιμη στο x_0 .

ΘΕΩΡΗΜΑ: Αν η συνάρτηση f είναι παραγωγίσιμη στο x και η g είναι παραγωγίσιμη στο u=f(x), τότε η συνάρτηση gof είναι παραγωγίσιμη στο x και $g(f(x)) = g'(f(x)) \cdot f'(x)$

Θέτοντας: u=f(x) και y=g(u) έχουμε:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΕΩΣ

$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

$$(f(x) \cdot g(x))' = f'(x)g(x) + f(x)g'(x), \quad (c \cdot f(x))' = c \cdot f'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

$$(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$$

ΠΑΡΑΓΩΓΟΙ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

$$(c)' = 0$$

$$(x)' = 1$$

$$(x^{\ddagger})' = \ddagger \cdot x^{\ddagger - 1}, \ddagger \neq 1$$

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(\eta \mu x)' = \sigma \nu \nu \chi$$

$$(\sigma \nu \chi)' = -\eta \mu x$$

$$(\epsilon \varphi x)' = \frac{1}{\sigma \nu \nu^2 x}, x \neq \kappa \pi + \frac{\pi}{2}, \kappa \in \mathbb{Z}$$

$$(\sigma \varphi \chi)' = -\frac{1}{\eta \mu^2 x}, x \neq \kappa \pi, \mu \epsilon \kappa \in \mathbb{Z}$$

$$(\ln|x|)' = \frac{1}{x}$$

$$(e^x)' = e^x$$

$$(\alpha^x)' = \alpha^x \ln \alpha$$

ΠΑΡΑΓΩΓΟΙ ΣΥΝΘΕΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

$$\begin{split} \left(\left[f(x)\right]'\right)' &= \nu \left[f(x)\right]^{\nu-1} \cdot f'(x) \\ \left(\sqrt{f(x)}\right)' &= \frac{f'(x)}{2\sqrt{f(x)}}, f(x) > 0 \\ \left(\sqrt{f(x)}\right)' &= \frac{f'(x)}{2\sqrt{f(x)}}, f(x) > 0 \\ \left(\eta \mu \ f(x)\right)' &= \sigma \upsilon \nu \quad f(x) \cdot f'(x) \\ \left(\sigma \upsilon \nu \ f(x)\right)' &= -\eta \mu \ f(x) \cdot f'(x) \\ \left(\ln f(x)\right)' &= \frac{1}{f(x)} \cdot f'(x), f(x) > 0 \\ \left(\ln f(x)\right)' &= \frac{1}{f(x)} \cdot f'(x) \\ \left(\ln f(x)\right)' &= \frac{1}{f(x)} \cdot f'(x) \\ \end{split}$$

$$(\epsilon \varphi f(x))' = \frac{1}{\sigma \upsilon \upsilon^{-2} f(x)} \cdot f'(x)$$

$$(\sigma \varphi f(x))' = \frac{-1}{\eta \mu^2 f(x)} \cdot f'(x)$$

$$(e^{f(x)})' = e^{f(x)} \cdot f'(x)$$

$$\left(\alpha^{f(x)}\right)^{\vee} = \alpha^{f(x)} \cdot \ln \alpha \cdot f^{\vee}(x)$$

$$([f(x)]^{\tau})^{\prime} = \tau \cdot [f(x)]^{\tau-1} \cdot f^{\prime}(x)$$

ΘEΩPHMA ROLLE

Αν μια συνάρτηση f είναι:

α) συνεχής στο διάστημα [α,β]

β) παραγωγίσιμη στο (α,β) και ισχύει:

$$\gamma$$
) $f(\alpha)=f(\beta)$

τότε υπάρχει τουλάχιστον ένα ξ (α,β) τέτοιο ώστε:

$$f'(\xi) = 0$$

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ

Αν μια συνάρτηση f είναι:

α) συνεχής στο διάστημα [α,β]

β) παραγωγίσιμη στο (α,β)

τότε υπάρχει τουλάχιστον ένα ξ (α , β) τέτοιο ώστε: $f'(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}$

Δηλ. υπάρχει τουλάχιστον ένα ξ (α,β) τέτοιο ώστε η γραφική παράσταση της f στο $M(\xi,f(\xi))$ να είναι παράλληλη της ευθείας AB, όπου A(a,f(a)) και $B(\beta,f(\beta))$.

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

1. Αν μια συνάρτηση f είναι:

α) συνεχής σε ένα διάστημα Δ

β) ισχύει $f^{-}(x)=0$ για κάθε εσωτερικό σημείο του Δ.

τότε η f είναι σταθερή σε όλο το διάστημα Δ.

2. Αν δύο συναρτήσεις f και g,

🔰 α) είναι συνεχείς σε ένα διάστημα Δ και

β) f'(x)=g'(x) για κάθε εσωτερικό σημείο x του Δ,

τότε υπάρχει σταθερά c τέτοια ώστε για κάθε x Δ να ισχύει:

f(x)=g(x)+c

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ.

- α) Αν f'(x) > 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα (αύξουσα) σε όλο το Δ.
- β) Αν f'(x) < 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα (φθίνουσα) σε όλο το Δ.

ΧΡΗΣΙΜΗ ΠΡΟΤΑΣΗ

Έστω $f: A \to \Re$. $Av f'(x) \ge 0$ για κάθε $x \in A$ και η ισότητα f'(x) = 0 ισχύει για πεπερασμένο πλήθος τιμών του x, τότε η f είναι γνησίως αύξουσα στο A και όχι απλώς αύξουσα.

Απόδειξη: Έστω για κάθε . Τότε σύμφωνα με γνωστό προηγούμενο θεώρημα η f είναι αύξουσα στο Α δηλ. για κάθε:

$$x_1, x_2 \in A \mu \varepsilon \ x_1 < x_2 \Rightarrow f(x_1) \le f(x_2)$$

Θα δείξουμε τώρα ότι η ισότητα δέν ισχύει ποτέ. Έστω ότι \mathbf{u} πάρχουν $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{A}$

με
$$x_1 < x_2$$
 κκαι $f(x_1) = f(x_2) = \kappa$. Όμως η $f(x_1) \le f(x_2) \Rightarrow \kappa \le f(x) \le \kappa$ σστο $f(x_1, x_2) = \kappa$ σστο

 $f'(x) = 0 \ \text{ γγια κάθε} \qquad x \in [x_1, x_2] \ \text{ττοπο γατ} \qquad \eta \ \text{ισότητα} \qquad f'(x) = 0 \ \text{ιισχ.υει} \qquad \text{όνο για}$ $\pi\pi\epsilon\pi\epsilon\rho\alpha\sigma \qquad \epsilon \ \text{νο πλήθ ος} \qquad \text{τιμών του} \qquad \alpha\pi\text{ό υπόθεσ} \qquad \eta \ .$

ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

- 1. Αν μια συνάρτηση f είναι:
 - α) συνεχής σε ένα διάστημα
 - β) f'(x) = 0 για κάθε εσωτερικό σημείο του Δ.

τότε η f είναι σταθερή σε όλο το διάστημα Δ.

- 2. Αν δυο συναρτήσεις f και g
 - α) είναι συνεχείς σε ένα διάστημα Δ και
 - β) f'(x) = g'(x) για κάθε εσωτερικό σημείο x του Δ ,

τότε υπάρχει σταθερά ε τέτοια ώστε για κάθε x Δ να ισχύει:

$$f(x) = g(x) + c$$

ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ

Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ.

- α) Αν f'(x) > 0 $(f'(x) \ge 0)$ για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα (αύξουσα) σε όλο το Δ.
- β) Αν f'(x) < 0 $(f'(x) \le 0)$ για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως φθίνουσα (φθίνουσα) σε όλο το Δ.

ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

1) Μια συνάρτηση f με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο x_0 A **τοπικό μέγιστο**, όταν υπάρχει δ >0, τέτοιο ώστε:

$$f(x) \le f(x_0)$$
 gia ká $\theta \epsilon$ $x \in A \cap (x_0 - \delta, x_0 + \delta)$

Το $\mathbf{x}_{_0}$ λέγεται $\underline{\boldsymbol{\theta}\dot{\boldsymbol{\varepsilon}}\boldsymbol{\sigma}\boldsymbol{\eta}}$ ή $\underline{\boldsymbol{\sigma}\boldsymbol{\eta}\boldsymbol{\mu}\boldsymbol{\varepsilon}\boldsymbol{i}\boldsymbol{o}}$ τοπικού $\underline{\boldsymbol{\mu}\boldsymbol{\varepsilon}\boldsymbol{\gamma}\boldsymbol{i}\boldsymbol{\sigma}\boldsymbol{\tau}\boldsymbol{o}\boldsymbol{u}}$, ενώ το $\mathbf{f}(\mathbf{x}_{_0})$ $\underline{\boldsymbol{\tau}\boldsymbol{\sigma}\boldsymbol{n}\boldsymbol{i}\boldsymbol{\kappa}\dot{\boldsymbol{o}}}$ $\underline{\boldsymbol{\mu}\dot{\boldsymbol{\varepsilon}}\boldsymbol{\gamma}\boldsymbol{i}\boldsymbol{\sigma}\boldsymbol{\tau}\boldsymbol{o}}$ της $\underline{\boldsymbol{f}}$.

2) Μια συνάρτηση f με πεδίο ορισμού A θα λεμε ότι παρουσιάζει στο x_0 A **τοπικό ελάχιστο**, όταν υπάρχει δ>0, τέτοιο ώστε:

$$f(x) \ge f(x_0)$$
για κάθεχ $\in A \cap (x_0 - \delta, x_0 + \delta)$

Το \mathbf{x}_0 λέγεται $\mathbf{\theta}$ έση ή σημείο τοπικού ελαχίστου, ενώ το $\mathbf{f}(\mathbf{x}_0)$ τοπικό ελάχιστο της \mathbf{f} .

ΘΕΩΡΗΜΑ FERMAT

Αν μια συνάρτηση $f: \Delta \to \Re$ παρουσιάζει στο εσωτερικό σημείο x_0 του διαστήματος Δ τοπικό ακρότατο και είναι παραγωγίσιμη στο x_0 τότε: $f'(x_0) = 0$

ΠΑΡΑΤΗΡΗΣΗ: Οι πιθανές θέσεις (κρίσιμα σημεία) των τοπικών ακροτάτων μιας συνάρτησης f σε ένα διάστημα Δ είναι:

- a) Τα εσωτερικά σημεία του Δ στα οποία η παράγωγος της **f μηδεν**ίζεται.
- β) Τα εσωτερικά σημεία του Δ στα οποία η f δεν παραγωγίζεται.
- γ) Τα άκρα του Δ (αν υπάρχουν στο πεδίο ορισμού της).

ΘΕΩΡΗΜΑ (195 παραγώγου): Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα (α,β) και x_0 (α,β) ένα κρίσιμο σημείο της f, στο οποίο αυτή είναι συνεχής.

- α) Αν f'(x) > 0 στο (a,x_0) και f'(x) < 0 στο (x_0,β) τότε το $f(x_0)$ είναι τοπικό μέγιστο της f.
- β) Av f'(x) < 0 στο (a,x_0) και f'(x) > 0 στο (x_0,β) τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f.
- γ) Αν η f'(x) διατηρεί πρόσημο στα (a,x_0) και (x_0,β) , τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (a,β)

ΘΕΩΡΗΜΑ (2^{n_s} παραγώγου): Έστω μια συνάρτηση f παραγωγίσιμη σε ένα διάστημα Δ και x_0 ένα εσωτερικό σημείο του διαστήματος αυτού ώστε $f^{-/}(x_0)=0$ και να υπάρχει η $f^{-//}(x_0)$ τότε:

- 1) Av f //(x₀) \sim 0, το f(x₀) είναι τοπικό μέγιστο.
- 2) Av f "(\mathbf{x}_0) ο, το $\mathbf{f}(\mathbf{x}_0)$ είναι τοπικό ελάχιστο.

ΚΥΡΤΟΤΗΤΑ ΣΥΝΑΡΤΗΣΗΣ

ΟΡΙΣΜΟΣ: Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και παραγωγίσιμη στο ε-σωτερικό του Δ. Θα λέμε ότι:

- α) η συνάρτηση στρέφει τα κοίλα προς τα άνω ή είναι κυρτή στο Δ, αν η f / είναι γνησίως αύξουσα στο εσωτερικό του Δ.
- β) η συνάρτηση στρέφει τα *κοίλα προς τα κάτω* ή είναι *κοίλη* στο Δ, αν η f / είναι γνη-<u>σίως φθί</u>νουσ<mark>α στ</mark>ο εσωτερικό του Δ.

ΘΕΩΡΗΜΑ: Έστω μια συνάρτηση f συνεχής σε ένα διάστημα Δ και δύο φορές παραγωγίσημη.

α) Αν $f^{\prime\prime}(x)$ ο γία κάθε εσωτερικό σημείο x του Δ , τότε η f στρέφει τα κοίλα προς τα άνω στο Δ .

β) Αν f''(x) < 0 για κάθε εσωτερικό σημείο x του Δ , τότε η f στρέφει τα κοίλα προς τα κάτω στο Δ .

ΣΗΜΕΙΟ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Ένα σημείο $A(x_0,f(x_0))$ ονομάζεται σημείο καμπής της γραφικής παράστασης της f όταν ισχύουν:

- α) f συνεχής στο x₀
- β) η $C_{_{\rm f}}$ έχει εφαπτομένη στο σημείο $A(x_{_{\rm O}}f(x_{_{\rm O}}))$,
- γ) η f στρέφει τα κοίλα άνω αριστερά του x_0 και κάτω δεξιά του x_0 ή αντίστροφα.

ΘΕΩΡΗΜΑ: Αν το $A(x_0, f(x_0))$ είναι σημείο καμπής της γραφικής παράστασης της f τότε $f''(x_0)$ = 0 ή δεν υπάρχει η $f''(x_0)$.

<u>ΠΑΡΑΤΗΡΗΣΕΙΣ:</u>

- a) Οι πιθανές θέσεις σημείων καμπής μιας συνάρτησης f σε ένα διόστημα Δ είναι:
 - a) Τα εσωτερικά σημεία του Δ στα οποία η f // μηδενίζεται
 - β) Τα εσωτερικά σημεία του Δ στα οποία δεν υπάρχει η τ
- β) Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα (α,β) και x₀ (α,β) είναι μια πιθανή θέση σημείου καμπής. Αν:
 - a) η \mathbf{f} " αλλάζει πρόσημο εκατέρωθεν του $\mathbf{x}_{_{\!0}}$ και
 - β) ορίζεται η εφαπτομένη της C_f στο $A(x_0, f(x_0))$, τότε το $A(x_0, f(x_0))$ είναι σημείο καμπής.

ΑΣΥΜΠΤΩΤΕΣ

- 1) Αν ένα τουλάχιστο από τα όρια $\lim_{x\to x_0^+} f(x)$, $\lim_{x\to x_0} f(x)$ είναι $+\infty$ ή $-\infty$ τότε η ευθεία $x=x_0$ λέγεται $\frac{\mathbf{κατακόρυφη}}{\mathbf{ασύμπτωτη}}$ της γραφικής παράστασης της \mathbf{f} .
- 2) Αν $\lim_{x\to +\infty} f(x) = \beta$ ή $\lim_{x\to -\infty} f(x) = \beta$, τότε η ευθεία ψ= β λέγεται **οριζόντια ασύμπτωτη** της γραφικής παράστασης της f στο $+\infty$ (αντιστοίχως στο $-\infty$).
- 3) Η ευθεία ψ=λx+β λέγεται ασύμπτωτη της γραφικής παράστασης της f στο $+\infty$ ή στο $-\infty$, αν $\lim_{x\to +\infty} [f(x)-(`x+\%)]=0$ ή $\lim_{x\to -\infty} [f(x)-(`x+\%)]=0$
- 4) Η ασύμπτωτη ψ=λx+β είναι *οριζόντια* αν λ=0, ενώ αν λ διάφορο του 0 λέγεται *πλάγια* ασύμπτωτη.
- 5) Η ευθεία ψ=λx+β είναι ασύμπτωτη της γραφικής παράστασης της f στο $+\infty$ ή στο $-\infty$, αν και μόνο αν

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lambda \in \Re \quad \text{kai} \quad \lim_{x \to +\infty} [f(x) - \lambda \chi] = \beta \in \Re$$

$$\hat{\eta} \quad \lim_{x \to -\infty} \frac{f(x)}{x} = \lambda \in \Re \quad \text{kai} \quad \lim_{x \to -\infty} [f(x) - \lambda \chi] = \beta \in \Re$$

Παρατηρήσεις.

Δίνεται η ρητή συνάρτηση: $f(x) = \frac{g(x)}{h(x)}, h(x) \neq 0$

- 1. Αν ο βαθμός του αριθμητή g(x) είναι μικρότερος από το βαθμό του παρανομαστή h(x), τότε η ευθεία ψ =0 δηλ. ο άξονας xx είναι οριζόντια ασύμπτωτη.
- 2. Αν ο βαθμός του αριθμητή g(x) είναι ίσος από το βαθμό του παρανομαστή h(x), τότε η ευθεία ψ=α είναι οριζόντια ασύμπτωτη, όπου α ο λόγος του συντελεστή του μεγιστοβάθμιου όρου του αριθμητή προς το συντελεστή του μεγιστοβάθμιου όρου του παρανομαστή.
- 3. Αν ο βαθμός του αριθμητή g(x) είναι κατά μια μονάδα μεγαλύτερος από το βαθμό του παρανομαστή h(x), τότε η ευθεία ψ=ax+β είναι πλάγια ασύμπτωτη, όπου ax+β το πηλίκο της διαίρεσης g(x): h(x)
- 4. Αν ο βαθμός του αριθμητή g(x) είναι κατά δυο ή περισσότερες μονάδες μεγαλύτερος από το βαθμότου παρανομαστή, τότε δεν υπάρχει ούτε πλάγια ούτε οριζόντια ασύμπτωτη.

KANONEΣ DE L' HOSPITAL

 $\text{Av } \lim_{x \to x_0} f(x) = 0 \text{ ($\acute{\eta}$} \pm \infty), \lim_{x \to x_0} g(x) = 0 \text{ ($\acute{\eta}$} \pm \infty), x_0 \in \overline{\mathfrak{R}} \text{ και υπάρχει το } \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \text{ πεπερασμένο $\acute{\eta}$ άπειρο τότε}$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

- α) Βρίσκουμε το πεδίο ορισμού της f.
- β) Εξετάζουμε αν η f είναι άρτια, περιττή ή περιοδική.
- γ) Εξετάζουμε τη συνέχεια της f στο πεδίο ορισμού της.
- δ) Βρίσκουμε τις παραγώγους f και f και κατασκευάζουμε τους πίνακες προσήμων τους. Με τη βοήθεια του προσήμου της f προσδιορίζουμε τα διαστήματα μονοτονίας και τα τοπικά ακρότατα της f, ενώ με τη βοήθεια του προσήμου της f καθορίζουμε τα διαστήματα στα οποία η f στρέφει τα κοίλα άνω ή κάτω και τα σημεία καμπής.
- ε) Μελετούμε τη συμπεριφορά της συνάρτησης στα άκρα των διαστημάτων του πεδίου ορισμού της (ορισκές τιμές, ασύμπτωτες).
- στ) Βρίσκουμε τα σημεία τομής της γραφικής παράστασης της f με τους άξονες.
- ζ) Συγκεντρώνουμε τα παραπάνω συμπεράσματα σε ένα συνοπτικό πίνακα που λέγεται πίνακας μεταβολών της f (που εμπεριέχει και τον πίνακα τιμών της f) και με τη βοήθεια του σχεδιάζουμε τη γραφική παράσταση της f.

