2018-03-29 HW #2 and Exam #2 Review

Thursday, March 29, 2018 8:58 AM

CS 211 Homework #2

• make sure to practice your knowledge using an online tool such as Visualization homepage: http://www.cs.usfca.edu/~galles/visualization/Algorithms.html

1. [3] Remove 5 from the following AVL tree; draw the results:

2. [3] Insert the value "8" into the following AVL tree. Draw the result:

3. [3] Add 45 to the following AVL tree.

4. Binary Heaps Starting with an empty binary min heap, show the following. Be sure to clearly label each diagram

A. [3] The final state of the heap, <u>in tree form</u>, after adding in the values: 5, 4, 3, 6, 7, 8, 10, 2, 9, 1

B. [2] The state of the heap, in tree form, after two Dequeue() operations

C. [1] The final, array-based version of the heap

3	5	4	6	7	8	6	9		
0	1	2	3	4	5	6	7	8	9

5. [3] Merge the following two $\underline{\text{binomial heaps}}$

7. [3] The item "B" hashes to array index 3. Insert B into the following hopscotch hashtable whose max distance is 4.

	/ >									
А	С	Е	G	D	Н	ı'	8			
1100	0100	0010	1000	0000	1100	0000				
0	1	2	3	4	5	6	7	8	9	

RESULT	:		B						
A		E	6	D	H	B	I		
1100	0100	0010	100)	0000	WO	000	000	•	
0	1	2	3	4	5	6	7	8	9

Exam Review

- More algorithm analysis questions
 - o How many times will the loop execute, give efficiency (see exam #1)
 - o Conceptual AA question related to improving performance
 - E.g. What causes this to run slow? How this be improved? What is the likelihood of this happening?
- Draw a binary tree given pre/in/post traversals
- AVL rotation questions (see HW #2)
- Priority queue questions (min heap; see HW #2)
 - o Binary heap
 - o Binomial heap
 - Skew heap
- Hash table questions (see HW #2, additional examples below)
 - o Where will this number be placed in the HT (open addressing hash table)

- Conceptual hash table questions
 - What affects HT performance
 - o How do hand deletes
 - o Explain what happens on a resize
 - Etc.
- More programming questions
 - o Related to recursive tree programming
 - o Questions that appear difficult unless you use a specific data structure
 - Might be trees, HTs, priority queues, etc.
 - o Example: Determine if two BSTs are exactly the same

Draw A tree

Binomial Heap

