Exercices d'algèbre

Martin Andrieux, Nathan Maillet

Groupes et ordres

Soient G et H deux groupes finis; le produit $G \times H$ est muni de sa structure de groupe produit. Soient $x \in G$ et $y \in H$, d'ordres respectifs n et m. Montrer que (x,y) est d'ordre $n \vee m$. En déduire une condition nécessaire et suffisante pour que $G \times H$ soit cyclique.

Groupe abélien

Soit G un groupe tel que pour tout g dans G, $g^2=1$. Montrer que G est abélien.

Utilisation du théorème de Lagrange -

On admettra le théorème de Lagrange : si H est un sous-groupe d'un groupe fini G, le cardinal de H est un diviseur de celui de G.

Soit G un groupe abélien fini. Pour tout x de G, nous noterons o(x) l'ordre de x dans G, i.e le plus petit entier $n \ge 1$ tel que $x^n = 1$. On appelle exposant de G le P.P.C.M. des ordres des éléments de G. C'est doc l'entier r défini par $r = \bigvee_{x \in G} o(x) = \min\{n \in \mathbb{N}^*, \forall x \in G, x^n = 1\}$.

- Montrer que si a et b sont deux éléments de G tels que $o(a) \land o(b) = 1$, ab est d'ordre o(a)o(b).
- Soit $r = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$ la décomposition de r en produit de facteurs premiers. Montrer que pour tout i compris entre 1 et k, il existe $a_i \in G$ tel que $o(a_i) = p_i^{\alpha_i}$. En déduire qu'il existe un élément de G dont l'ordre est l'exposant de G.
- Soit K un corps commutatif et G un sous-groupe $(K^*, .)$. Montrer que G est cyclique (et en particulier, K^* est cyclique si K est fini).

Système -

Résoudre dans \mathbb{R} le système suivant :

$$\begin{cases} x + y + z = 1 \\ xy + yz + zx = -5 \\ x^3 + y^3 + z^3 = -2 \end{cases}$$

Polynômes

Soit $P \in \mathbb{R}\left[X\right]$ tel que $P(x) \geqslant 0$ pour tout $x \in \mathbb{R}$. On pose $Q = \sum_{k \geqslant 0} P^{(k)}$. Montrer que $\forall x \in \mathbb{R}, \ Q(x) \geqslant 0$.

Algèbre sur les entiers relatifs -

Résoudre dans Z:

$$2^{2n}+2^n+1\equiv 0\,(\mathrm{mod}\,21)$$

Égalité avec une congruence -

Soit $\mathfrak p$ un nombre premier. Montrer :

$$(\mathfrak{p}-1)! \equiv (-1)^{\mathfrak{p}} \ [\mathfrak{p}]$$

.