Bonus: 0.39) 4 pts.

0.22) a)
$$f(n)=n^2$$
, $g(n)=n \log n$.

On remarque:
$$\frac{\partial}{\partial n} \log_b n = \frac{1}{n \ln b}$$
 (In b est const.)

Par le test de la limite:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{n \log n} = \lim_{n \to \infty} \frac{n}{\log n} = \lim_{n \to \infty} \frac{1}{n \ln b}$$

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+d}{n-d} = \lim_{n\to\infty} \frac{1+o}{1-o} = \lim_{n\to\infty} 1 = 1.$$

Alors
$$f(n) \in O(g(n))$$
 (A puisqu'an a authi $g(n) \in O(f(n))$, on a $f(n) \in \Theta(g(n))$.)

0.22) b) (fuite):

Une autre façon de faire:

$$\lim_{n\to\infty} \frac{n+d}{n-d} = \lim_{n\to\infty} \frac{n-d+2d}{n-d} = \lim_{n\to\infty} \frac{n-d}{n-d} + \frac{2d}{n-d}$$

$$= \lim_{n\to\infty} 1 + \frac{2d}{n-d}$$

$$= 1+0$$

On remarque que $\frac{2d}{n-d}$ va vers zérs, car authi grand qu'on rhoisitte d, il deviendra éventnetlement petit lorsque n ira à l'infini.

C)
$$f(n) = \log n$$
, $g(n) = \sqrt{n}$

Lei, on a que $\frac{\partial}{\partial n} \sqrt{n} = \frac{\partial}{\partial n} n^{\frac{1}{2}} = \frac{1}{2\sqrt{n}} = \frac{1}{2\sqrt{n}}$.

Alors:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\log n}{\sqrt{n}} = \lim_{n \to \infty} \frac{\frac{1}{n} \ln b}{\frac{1}{2\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{n} \cdot \frac{2\sqrt{n}}{n}$$

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{n}$$

$$= \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n}} = 0$$

At $\lim_{n \to \infty} f(n) \in O(g(n))$.

0.22) d) $f(n) = 2^n$ of g(n) = n!Lei, on me s'en sostira pas avec la sigle de l'Hôpstel (les désirées de 2^n et de n! ne sont pas ties gentilles.)

Remarquems plutét:

$$2^{h} = 2 \cdot 2 \cdot 2 \cdot \dots \cdot 2$$
 $n \text{ fois}$
 $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (n-1) \cdot n$

= 0.

Inc an e o(n!)

e)
$$f(n) = e^{h}$$
, $g(n) = 2^{h}$.

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{2^{n}} = \lim_{n \to \infty} \left(\frac{e}{2}\right)^{n} = \infty$$
,
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{2^{n}} = \lim_{n \to \infty} \left(\frac{e}{2}\right)^{n} = \infty$$
of $\lim_{n \to \infty} \frac{e^{n}}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{g(n)} = \infty$
of $\lim_{n \to \infty} \frac{e^{n}}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{g(n)} = \lim_{n \to \infty} \frac{e^{n}}{g(n)} = \infty$

0.24) Montrez que cfin) EO (fini).

Par la difinition, $\chi(n) \in O(g(n))$ 1si il existe une constante d t.g. $\chi(n) < dg(n)$, pour nz, no.

et donc, existe-t-i7 d, t-q:

c $f(n) \leq d f(n)$?

Ohi! Il suffit de poter d=c, et m satisfast la définshim.

0.26) Montrez que ti $f(n) \in O(g(n))$, A $g(n) \in O(h(n))$, on a $f(n) \in O(h(n))$.

Si $f(n) \in O(g(n))$, alors il existe c $b.g., f(n) \times cg(n)$, $n \ge n_0$, $f(n) \in O(h(n))$, alors il existe d+q. $g(n) \times dh(n)$, $n \ge n_0$; at lone, pour $n \ge n_2 = \max(n_0, n_0)$,

 $f(n) \leq c g(n)$ $g(n) \leq dh(n)$ $f(n) \leq c g(n) \leq c dh(n)$,

soit donc: f(n) = cd h(n), on a notre constante.

0.26) (Susta)

en posant e=cd, on a f(n) < eh(n), et donc $f(n) \in O(h(n))$.

« Ordre den est donc transitif.

0.29) Triez:
$$n-\log n$$
 \sqrt{n} $\log n$ n^n $\frac{n!}{n^n}$ $n^{\log n}$ $n^{\log n}$ $n^{\log n}$ $n^{\log n}$.

Si on y ra naivement, on ferait 8° = 64 comparaisons. (bon, en fait seulement 28 car on me comparera par une fonction ance che-mime, et comparer f(n) et g(n), s'est semparer g(n) of f(n)...).

Si on s'aide de la fig. p. 27 A de la chaîne p.29, On pourre places raps'dement au mosins quoliques fond trons! Voyons:

- → n-log n est plus petit que n;
- -> n" ut le plus grand,
- -> n" est plus grand que n logn, puisque n > logn,

0.29) (Suite)

-> n 109 n est plus grand que n 315

→ Vn = n 12 est plus petit que n 3/5

 \rightarrow Vn est plus petit que $\frac{n}{\log n}$, puisque $\sqrt{n} = \sqrt{\frac{n}{n}}$, et $\sqrt{n} > \log n$.

 $\rightarrow \frac{n!}{n^n} \rightarrow 0$, fruisque lin $\frac{n!}{n^n} = \lim_{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-1) \cdot n}{n \cdot n \cdot n \cdot n \cdot n} = 0$ c'est donc le plus petit

→ n log log n est plus grand que n, mois plus petit que n log n.

Enfin:

 $\frac{n!}{h^n} < \sqrt{n} < \frac{n}{\log n} < n - \log n < n \log \log n < n^{\frac{2}{15}} < n^{\log n} < n^n.$

Bonus 0.39) Montrez fini+gini e 0 (max (fini, gini)).

[If failt d'abord remment max et + interagishent; on a: $a+b \le 2 \max (a,b)$, puisque: $-ni \ a \ge b$, $a+b \le a+a = 2a = 2 \max (a,b)$; $-si \ b \ge a$, $a+b \le b+b = 2b = 2 \max (a,b)$.

Donc: $f(n) + g(n) \leq 2 \max (f(n), g(n)), re qui nous$ Donne 2 comme constante pour la définition, et donc on a leven $f(n) + g(n) \in O(\max (f(n), g(n))).$