CLAIMS

What is claimed is:

1	1.	A process comprising:
2	••	• •
ے ع		in a substrate, forming a first isolation structure spaced-apart from a
.	secono	d isolation structure;
4	,	forming an emitter stack between the first and second isolation
5	structi	ires;
6	•	in the substrate, forming a self-aligned recess between the emitter
7	stack a	and the first isolation structure; and
8		forming a bipolar junction transistor between the first and second
9	isolati	on structures.
1	2.	The process according to claim 1, further including:
2		implanting a self-aligned collector tap in the self-aligned recess.
1	3.	The process according to claim 1, wherein forming a self-aligned
2	recess further	includes:
3		patterning a mask that exposes a portion of the first isolation
4	structi	are, a portion of the emitter stack, and a portion of the substrate located
5	betwe	en the first isolation structure and the emitter stack; and
6		etching the self-aligned recess with an etch recipe that is more
7	selecti	ve to the first isolation structure and the emitter stack than to the
8	substr	ate.
1	4.	The process according to claim 1, wherein forming a self-aligned
2	recess further	·
3		patterning a mask that exposes a portion of the first isolation
	atoniati	
4 <		are, a portion of the emitter stack, and a portion of the substrate located
•	DUTTO A	an tha tirct icalatian cimianira and tha amilitar clack, ላውጣ

6	anisotropically etching the self-aligned recess with an etch recipe that		
7	is more selective to the first isolation structure and the emitter stack than to		
8	the substrate.		
1	5. The process according to claim 1, wherein implanting a self-aligned		
2	collector tap in the self-aligned recess includes:		
3	patterning a mask that exposes at least a portion of the first isolation		
4	structure and the emitter stack; and		
5	implanting a dopant into the substrate that is exposed by the self-		
6	aligned recess.		
1	6. The process according to claim 1, wherein implanting a self-aligned		
2	collector tap in the self-aligned recess includes:		
3	patterning a mask that exposes at least a portion of the first isolation		
4	structure and the emitter stack; and		
5	implanting a dopant into the substrate that is exposed by the recess,		
6	wherein implanting results in a P collector tap, a P- collector tap, a P		
7	collector tap, a P+ collector tap, a P++ collector tap, an N collector tap, an		
8	N- collector tap, an N collector tap, an N+ collector tap, and an N++		
9	collector tap.		
1	7. The process according to claim 1, wherein forming the bipolar		
2	junction transistor between the first and second isolation structures includes:		
3	in the substrate, forming an epitaxial layer;		
4	forming a polysilicon film above the epitaxial layer; and		
5	patterning the polysilicon film into emitter polysilicon.		
1	8. The process according to claim 1, wherein forming the bipolar		
2	junction transistor between the first and second isolation structures includes:		
3	in the substrate, forming an epitaxial layer;		
4	forming a polysilicon film above the epitaxial layer;		

5	_	patterning the polysilicon film into emitter polysilicon; and
6		forming a spacer on the emitter stack.
1	9.	The process according to claim 1, wherein forming the bipolar
2	junction transis	stor between the first and second isolation structures includes:
3	*	in the substrate, implanting a collector structure;
4 -		in the substrate, forming an epitaxial layer;
5	•	forming a polysilicon film over the epitaxial layer; and
6	1	patterning the polysilicon film into emitter polysilicon, wherein the
7	emitter	polysilicon is disposed above the collector structure.
1	10.	The process according to claim 1, wherein forming an emitter stack
2	includes:	
3		in the substrate, forming an epitaxial layer;
4		forming a polysilicon film above the epitaxial layer;
5	j	patterning the polysilicon film into emitter polysilicon, wherein
6	patterni	ng the polysilicon film into emitter polysilicon further includes:
7		patterning a hard mask above the polysilicon film.
1	11.	The process according to claim 1, wherein forming an emitter stack
2	includes:	
3		in the substrate, forming an epitaxial layer;
4		forming a dielectric layer above the epitaxial layer;
5		forming an emitter cut in the dielectric layer;
6		forming a polysilicon film above the epitaxial layer; and
7		patterning the polysilicon film into emitter polysilicon.
1	12.	The process according to claim 1, further including:
2		in the substrate, forming a buried layer

i	13. A bipolar junction transistor comprising:			
2	in a substrate, a first isolation structure spaced apart from a second			
3	isolation structure;			
4	an emitter stack disposed above the substrate and between the first			
5	isolation structure and the second isolation structure;			
5	a recess disposed adjacent and between the emitter stack and the first			
7	isolation structure, wherein the recess exposes a collector tap.			
	•			
1	14. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure.			
1	15. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure, and wherein the spacer is selected from an oxide, a			
6	nitride, an oxide first layer and a nitride second layer, a nitride first layer and			
7	an oxide second layer, an oxide first layer and an oxide second layer, and a			
8	nitride first layer and a nitride second layer.			
1	16. The bipolar junction transistor according to claim 13, further			
2	including:			
3	a spacer disposed on the emitter stack, wherein the spacer extends on			
4	one side thereof into the recess between the emitter stack and the first			
5	isolation structure, and wherein the spacer is further disposed on the first			
6	isolation structure and extends into the recess.			

ı	17.	the dipolar junction transistor according to claim 13, further
2	including:	
3		a buried layer disposed in the substrate between the first isolation
4	structu	re and the second isolation structure.
1	18.	The bipolar junction transistor according to claim 13, further
2	including:	
3	•	in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6	and	
7		an intrinsic base structure disposed between the emitter stack and the
8	collect	for structure.
		·
1	19.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6		a dielectric layer disposed above the substrate and below the emitter
7	stack,	wherein the dielectric layer includes an emitter cut disposed above the
8	collect	for structure; and
9		an intrinsic base structure disposed between the emitter cut and the
0	collect	for structure.
1	20.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, a collector tap disposed in the recess, wherein the
4	collect	tor tap is selected from a P collector tap, a P- collector tap, a P
5	collect	tor tan a P+ collector tan a P++ collector tan an N collector tan an

6	N- collector tap, an N collector tap, an N+ collector tap, and an N++
7	collector tap.

- 1 21. The bipolar junction transistor according to claim 13, wherein the substrate includes a bipolar-complementary metal oxide semiconductor (BiCMOS) structure.
- 1 22. The bipolar junction transistor according to claim 13, wherein the 2 BJT is selected from a monojunction BJT device and a heterojunction BJT device.
- 23. A bipolar junction transistor (BJT) layout comprising:
 an epitaxial base layer perimeter;
 an emitter stack perimeter disposed above the base layer perimeter;
 and
 a collector tap perimeter, wherein the emitter stack perimeter and the
 collector tap perimeter share a co-linear first boundary.
- 1 24. The BJT layout according to claim 23, wherein the emitter stack 2 perimeter and the epitaxial base layer perimeter intersect.
- 1 25. The BJT layout according to claim 23, wherein the collector tap 2 perimeter shares a co-linear second boundary and a co-linear third boundary with 3 the epitaxial base layer perimeter.
- 1 26. The BJT layout according to claim 23, further including:
 2 a base tap perimeter, wherein the base tap perimeter is enclosed by
 3 the epitaxial base layer perimeter.