WHAT IS CLAIMED IS:

1	1. A method for synthesizing a circuit representation into a new		
2	circuit representation having greater unateness, the method comprising:		
3	(i) partitioning the circuit representation to obtain a representation of		
4	at least one sub-circuit;		
5	(ii) recursively decomposing the representation of the at least one sub-		
6	circuit into a sum-of-products or product-of-sums representation having greater		
7	unateness than the representation of the at least one sub-circuit; and		
8	(iii) merging the sum-of-products or product-of-sums representation		
9	into the circuit representation to form a new circuit representation.		
1	The method of claim 1 additionally comprising repeating steps		
1	2. The method of claim 1 additionally comprising repeating steps		
2	(i), (ii) and (iii) until a desired level of unateness for the new circuit representation		
3	has been achieved.		
1	3. The method of claim 1 wherein the sum-of-products or		
2	product-of-sums representation selected for each decomposition is the representation		
3	having fewer binate variables.		
1	4. The method of claim 1 additionally comprising merging		
2	common expressions of the sum-of-products or product-of-sums representations.		
1	5. The method of claim 4 wherein algebraic division is		
2	implemented to merge common unate expressions of the sum-of-products or		
3	product-of-sums representation.		
1	6. The method of claim 1 wherein the circuit is a digital circuit.		
1	o. The memod of claim I wherein the chroat is a digital on		
1	7. The method of claim 1 wherein the representation of the at		
2	least one sub-circuit is highly unate.		

1	8. The method of claim 1 wherein a binary decision diagram is			
2	employed to recursively decompose the representation of the at least one sub-circuit			
3	into the sum-of-products or product-of-sums representation.			
1	9. The method of claim 8 wherein the binary decision diagram			
1				
2	is a zero-suppressed binary decision diagram.			
1	10. A system for synthesizing a circuit representation into a new			
2	circuit representation having greater unateness, the system comprising a computing			
3	device configured to:			
4	(i) receive input defining the circuit representation;			
5	(ii) partition the circuit representation to obtain a representation of			
6	at least one sub-circuit;			
7	(iii) recursively decompose the representation of the at least one sub			
8	circuit into a sum-of-products or product-of-sums representation having greater			
9	unateness than the representation of the at least one sub-circuit;			
10	(iv) merge the sum-of-products or product-of-sums representation into			
11	the circuit representation to form the new circuit representation; and			
12	(v) output the new circuit representation.			
1	11. The system of claim 10 wherein the computing device is			
2	additionally configured to:			
3	receive input defining a desired level of unateness for the new circuit			
4	representation; and			
5	representation; and repeat steps (ii), (iii) and (iv) until the desired level of unateness			
6	achieved.			
1	12. The system of claim 10 wherein the computing device is			
2	additionally configured to, for each decomposition, select the sum-of-products o			
3	product-of-sums representation having fewer binate variables.			

1	13. The system of claim 10 wherein the computing device is			
2	additionally configured to merge common expressions of the sum-of-products or			
3	product-of-sums representations.			
1	14. The system of claim 13 wherein the computing device is			
2	additionally configured to implement algebraic division to merge common			
3	expressions.			
1	15. The system of claim 10 wherein the circuit is a digital circuit.			
1	16. The system of claim 10 wherein the representation of the at			
2	least one sub-circuit is highly unate.			
1	17. The system of claim 10 wherein the computing device is			
2	additionally configured to employ a binary decision diagram to recursively			
3	decompose the representation of the at least one sub-circuit into the sum-of-products			
4	or product-of-sums representation.			
1	18. The system of claim 17 wherein the binary decision diagram			
2	is a zero-suppressed binary decision diagram.			
1	19. The system of claim 10 wherein the circuit representation and			
2	the new circuit representation are input and output in a hardware description			
3	language.			
3	language.			
1	20. A system for synthesizing a circuit representation into a new			
2	circuit representation having greater unateness, the system comprising:			
3	(i) a means for receiving input defining the circuit representation;			
4	(ii) a means for partitioning the circuit representation to obtain a			
5	representation of at least one sub-circuit;			
6	(iii) a means for recursively decomposing the representation of the			
7	at least one sub-circuit into a sum-of-products or product-of-sums representation			
8	having greater unateness than the representation of the at least one sub-circuit;			

9	(iv) a means for merging the sum-of-products or product-of-sums			
10	representation into the circuit representation to form the new circuit representation;			
11	and			
12	(v) a means for outputting the new circuit representation.			
1	21. The system of claim 20 additionally comprising:			
2	a means for receiving input defining a desired level of unateness for			
3	the new circuit representation; and			
4	a means for repeating steps (ii), (iii) and (iv) until the desired level			
5	of unateness is achieved.			
1	22. The system of claim 20 additionally comprising a means for			
2	selecting, for each decomposition, the sum-of-products or product-of-sums			
3	representation having fewer binate variables.			
1	23. The system of claim 20 additionally comprising a means for			
2	merging common expressions of the sum-of-products or product-of-sum			
3	representations.			
1	24. The system of claim 20 additionally comprising a means for			
2	implementing algebraic division to merge common expressions.			
1	25. The system of claim 20 additionally comprising a means for			
2	partitioning the circuit representation such that the representation of the at least one			
3	sub-circuit is highly unate.			
1	26. The system of claim 20 additionally comprising a means for			
2	employing a binary decision diagram to recursively decompose the representation of the at least one sub-circuit into the sum-of-products or product-of-sun			
3				
4	representation.			
1	27. The system of claim 26 wherein the binary decision diagran			
2	is a zero-suppressed binary decision diagram.			

1	28. The system of claim 20 wherein the circuit representation and			
2	the new circuit representation are input and output in a hardware description			
3	language.			
1	29. A computer-readable storage medium containing computer			
2	executable code for instructing one or more computers to:			
3	(i) receive input defining a circuit representation;			
4	(ii) partition the circuit representation to obtain a representation of			
5	at least one sub-circuit;			
6	(iii) recursively decompose the representation of the at least one sub-			
7	circuit into a sum-of-products or product-of-sums representation having greater			
8	unateness than the representation of the at least one sub-circuit;			
9	(iv) merge the sum-of-products or product-of-sums representation into			
10	the circuit representation to form a new circuit representation; and			
11	(v) output the new circuit representation.			
1	30. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to:			
3	receive input defining a desired level of unateness for the new circuit			
4	representation; and			
5	repeat steps (ii), (iii) and (iv) until the desired level of unateness is			
6	achieved.			
1	31. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to, for each			
3	decomposition, select the sum-of-products or product-of-sums representation having			
4	fewer binate variables.			
1	32. The computer-readable storage medium of claim 29 wherein			
2	the computer executable code additionally instructs the computer(s) to merge			
3	common expressions of the sum-of-products or product-of-sums representations.			

1

2

1

3

1	33.	The computer-readable storage medium of claim 32 wherein
2	the computer executa	ble code additionally instructs the computer(s) to implement
3	algebraic division to	merge common expressions.

- The computer-readable storage medium of claim 29 wherein 34. 1 the circuit is a digital circuit. 2
- The computer-readable storage medium of claim 29 wherein 35. 1 the representation of the at least one sub-circuit is highly unate. 2
- The computer-readable storage medium of claim 29 wherein 36. 1 the computer executable code additionally instructs the computer(s) to employ a 2 binary decision diagram to recursively decompose the representation of the at least 3 one sub-circuit into the sum-of-products or product-of-sums representation. 4
 - The computer-readable storage medium of claim 36 wherein 37. the binary decision diagram is a zero-suppressed binary decision diagram.
- The computer-readable storage medium of claim 29 wherein 38. the circuit representation and the new circuit representation are input and output in 2 a hardware description language.