

GEOMETRÍA Capítulo 15

SEGMENTOS PROPORCIONALES

1. PROPORCIÓN ÁUREA

También llamada
sección áurea, se
halla presente en la
naturaleza, el arte y
la arquitectura.

Los griegos la
conocieron en el
estudio del cuerpo
humano y la
utilizaron, en la
escultura y la
arquitectura y la
definieron como una
característica
fundamental en su
estética.

HELICO | THEOR SEGMENTOS PROPORCIONALES

RAZÓN GEOMÉTRICA DE DOS SEGMENTOS .-

Es el cociente que se obtiene al dividir las longitudes de dos segmentos que tienen la misma unidad de medida.

SEGMENTOS PROPORCIONALES

Es la igualdad de dos o más razones geométricas de

$$\frac{AB}{CD} = \frac{MN}{PQ}$$

Son proporcionales

HELICO | THEORY

Teorema de Tales

Si:
$$L_1//L_2//L_3$$

$$\frac{a}{b} = \frac{m}{n}$$

Corolario de Tales

Teorema de la bisectriz

$$\frac{a}{b} = \frac{m}{n}$$

Teorema de Menelao

$$a \cdot b \cdot c = x \cdot y \cdot z$$

1. Se tiene las rectas paralelas L_1 , L_2 y L_3 . DE = 2, EF = 3, AB = x y BC = x + 3, halle el valor de x.

Resolución

2. En un triángulo ABC se traza la bisectriz interior \overline{BD} , $D \in \overline{AC}$. Si AB = 6m, BC = 9m y AC = 10m, halle AD.

<u>Resolución</u>

Resolución

$$\frac{7}{4} = \frac{9 + x}{x}$$

$$7x = 36 + 4x$$

$$3x = 36$$

$$x = 4$$

4. Se tiene un triángulo ABC en donde se traza la bisectriz interior \overline{BD} , $D \in \overline{AC}$. Si I es el incentro del triángulo ABC, AB = 6, BC = 9 y AC = 5, calcule $\frac{BI}{ID}$.

Resolución Piden
$$\frac{BI}{ID} = \frac{m}{n}$$

5. Halle el valor de x.

Resolución

$$(x)(6)(a) = (4)(3)(a)$$

 $6x = 12$

6. Se tiene las rectas paralelas y coplanares L₁, L₂ y L₃. Si AB = 8m, BC = 16m, DE = 3m y EF = 2x, halle el valor de x. **0**1

Resolución

- Prolongamos DE hasta H
- EFH :Notable de 30° y 60°

Por el teorema de Tales:

$$x = 3 \times 2$$

7. Halle el valor de x.

Resolución

$$(2)(a)(2n) = (2)(6)(n)$$

 $a = 3$

▲ EFH : Notable de 37° y 53°

 $x = 53^{\circ}$

8. José apoya una escalera sobre una pared en donde los peldaños están colocados paralelamente. Determine RS.

Resolución

Por el teorema de Tales

$$\rightarrow$$
 $x = 25 \times 2$

$$x = 5 cm$$