P1. a.
$$P_r\{X=x\} = \frac{1}{5}$$
 for $x=1,...,5$, since each number is equally likely.
b. $P_r\{Y=5 \mid X=x\} = \frac{1}{6-x}$, since $Y=x,x+1,...,5$ are equally likely.
C: $P_r\{Y=5\} = \frac{5}{5}$ $P_r\{Y=5 \mid X=x\}$ $P_r\{X=x\}$ (law of total probability)

c.
$$P_r\{Y=5\} = \sum_{x=1}^{5} P_r\{Y=5 | X=x\} P_r\{X=x\}$$
 (law of total probability)
= $\sum_{x=1}^{5} \frac{1}{6-x} \cdot \frac{1}{5} = \frac{1}{5} \left(\frac{1}{5} + \frac{1}{4} + \frac{1}{3} + \frac{1}{2} + 1\right) \approx 0.457$.

P2. a.
$$Pr\{N=n\} = \frac{1}{6}$$
 for $n=1,...,6$

b. If
$$n=1$$
, $P_r\{z=2|N=n\}=0$.
If $n\ge 2$, $P_r\{z=2|N=n\}=\binom{n}{2}(\frac{1}{2})^2(\frac{1}{2})^{n-2}=\binom{n}{2}(\frac{1}{2})^n$
c. $P_r\{z=2\}=\sum_{i=1}^6 P_r\{z=2|N=n\} P_r\{N=n\}$ (law of total probability)

 $= 0 + \sum_{N=2}^{6} {n \choose 2} (\frac{1}{2})^{n} (\frac{1}{6}) = \frac{1}{6} \left(1 (\frac{1}{2})^{2} + 3 (\frac{1}{2})^{3} + 6 (\frac{1}{2})^{4} + 10 (\frac{1}{2})^{6} + 15 (\frac{1}{2})^{6} \right)$ ≈ 0.258

$$\frac{P3}{\text{all}_{j}} = \sum_{\text{all}_{j}} \left[g(x) \mid Y = y_{j} \right] p_{Y}(y_{j}) = \sum_{\text{all}_{j}} \sum_{\text{all}_{i}} g(x_{i}) p_{X}|_{Y = y_{j}} \left(x_{i} \right) p_{Y}(y_{j})$$

$$= \sum_{\text{all}_{j}} \sum_{\text{all}_{i}} g(x_{i}) P_{r} \left\{ X = x_{i} \mid Y = y_{j} \right\} P_{r} \left\{ Y = y_{j} \right\} = \sum_{\text{all}_{i}} g(x_{i}) \sum_{\text{all}_{i}} P_{r} \left\{ X = x_{i} \mid Y = y_{j} \right\} P_{r} \left\{ Y = y_{j} \right\}$$

$$= \sum_{\text{all}_{i}} g(x_{i}) P_{r} \left\{ X = x_{i} \mid Y = y_{j} \right\} P_{r} \left\{ Y = y_{j} \right\} P_$$

 $\frac{P4}{Pr\{M=m\}} = \begin{cases} 0.2 & \text{if } m=1 \\ 0.3 & \text{if } m=2 \\ 0.5 & \text{if } m=3 \end{cases}$ $Pr\{D=1 \mid M=1\} = 0.01$ $Pr\{D=1 \mid M=2\} = 0.02$ $Pr\{D=1 \mid M=3\} = 0.03$

c.
$$P_r\{D=1\} = \sum_{m=1}^{3} P_r\{D=1 \mid M=m\} P_r\{M=m\}$$

= $0.01(0.2) + 0.02(0.3) + 0.03(0.5)$
= 0.023 .