

CSCI 4621/5621 Intro to CyberSecurity

02: OS SECURITY & ACCESS CONTROL

Vassil Roussev

vassil@cs.uno.edu

READING: Oorschot [ch5]

ONE-SLIDE HISTORY

- 1950s: batch-processing systems → one task/user at a time
 - » simple but inconvenient for users/programmers;
- 1960s: first multi-user time-sharing systems
 - » bring up the need for mechanisms for isolating users from each other
 - » ... and the OS kernel
- In the early days,

protection == control to memory access

- » it is still a fundamental part of access control
- Most modern ideas go back to 1965-75
 - » especially, **Multics** and **Unix**

MEMORY PROTECTION

ISOLATION: NEED & IMPLEMENTATION

Multiple concurrent tasks

- » need to be isolated from each other to avoid interference
 - both malicious and unintended
- » need to be isolated from the kernel
 - to prevent whole system failures
- also, need to provide legal means for inter-process communication (IPC)
 - mediated by the supervisor (OS kernel)
- Early implementation
 - » descriptor register <base, bound> + privileged bit + supervisor

[CREDIT: Oorschot]

ISOLATION (2)

- Problem: descriptor register approach allows only all-or-nothing access
- Solution: segment addressing (Multics)
 - » address space split into segments
 - per-process segment descriptor table
 - » allows finer grain memory access control
 - per-segment
 Read / Write / eXecute / Mode / Fault access
 - » allows for sharing of segments b/w processes

REFERENCE MONITOR

REFERENCE MONITOR

Concept

- » all references **by** any program **to** any program, data or device
- » are validated against a list of
- » authorized types of reference based on user and/or program function

Access matrix

- » subject (principal)
- » object
- » access attributes (permission)

REFERENCE MONITOR IMPLEMENTATION REQUIREMENTS

- Tamper-proof
- Always invoked
 - » complete mediation/cannot be circumvented
- Verifiable
 - » must be small enough to be (formally) verifiable
- Known as a security kernel
- Very difficult in practice to accomplish
 - » but quite influential as a design

REFERENCE MONITOR IMPLEMENTATION [1]

Dependencies

- » authentication system
- » correct hardware
- » trustworthy software
- » physical system security
- » user I/O security
- **>>** ...

Access matrix is conceptual

- » (it would be huge, sparse and impractical)
- » actual implementations must take efficiency into account
 - e.g., Unix FS: rwx rwx rwx model (often insufficiently expressive)

REFERENCE MONITOR IMPLEMENTATION [2]

- Capability- vs. ID-based systems
- Capabilities
 - » access token (bearer token)
 - correct token provides access regardless of identity
- ID
 - » identity check performed before access
 - authorization list maintained on a per-object basis
- Audit trails
 - » complete mediation provides for detailed logs
 - must be secured/archives
 - there is a performance cost for very detailed logs

OBJECT PERMISSION & FILE-BASED AC

UNIX: EVERYTHING IS A FILE

- Special files represent various system resources
 - » processes, network connections, printers, etc.
- Conceptually, ACLs are very expressive
 - » but can present efficiency problems
- Unix model

owner:group:others

→ **R**ead, **W**rite, e**X**ecute bit for each

- Superuser → UID=0
- root → byconvention, UID=0
- umask → default permissions

UNIX FILE PERMISSIONS

[CREDIT: Oorschot]

Binary (12 bits)	Octal	Symbolic	Meaning
000 100 000 000	0400	- r	user (owner) has R
000 010 000 000	0200	M	user (owner) has W
000 001 000 000	0100	X	user (owner) has X
000 000 110 000	0060	rw	group has R, W
000 000 101 000	0050	r-x	group has R, X
000 000 011 000	0030	d wx	group has W, X; file is a directory file
000 000 000 111	0007	rwx	other has R, W, X
000 110 100 100	0644	- rw- r r	user has R, W; group and other have R

SETUID BIT & EUID

Setuid

- » can be set for any binary executable by the owner
- » effect: any invoking process runs on behalf of the owner
 - potentially granting additional access, not normally available

OS tracks

- » $rUID \rightarrow process owner$
- \rightarrow eUID \rightarrow effective UID
- \rightarrow suld \rightarrow saved UID
- » to facilitate switching privilege levels
- rGID, eGID, sGID → for groups
- Inherited userid → fork()

DIRECTORY PERMISSIONS

- Tree structure, "/" is the root
- Permission
 - » $R \rightarrow$ allows listing of content (filenames & attributes)
 - » $W \rightarrow$ allows file creation, renaming/deleting files (X req)
 - » $X \rightarrow$ allows traversal; absence denies file content access
 - » setuid → no meaning
 - » setgid \rightarrow files created inherit GID of directory creator (not invoking process)
 - » t bit \rightarrow text, or sticky bit \rightarrow prevents modification of files created by other users
 - e.g., /tmp

LINKS (TURN FS TREE INTO A DAG)

Symbolic link

- » a text file containing the name of the linked-to file
- » deletion does not affect the original file

Hard link

- » creates a file entry, which points to the same metadata structure
- » deletion (unlink) reduces reference count
 - if count==0 then file content is deleted

[CREDIT: Oorschot]

MANDATORY AC & RBAC

- Mandatory vs. discretionary
 - » discretionary (D-AC) \rightarrow resource owner decides permissions
 - e.g., Unix
 - » mandatory (M-AC) \rightarrow access defined by policy
 - e.g., MLS model (DoD)
- Role based AC (RBAC)
 - » users are assigned roles on a per session basis
 - » each role has policy determined permissions
 - » it usually maps well to organizational structure