Domanda 1

Risposta salvata

Punteggio max.: 1,00

p-

Contrassegna domanda Per lo Standard IEEE, la rappresentazione in singola precisione è:

Scegli un'alternativa:

- O a. Nessuna delle precedenti.
- \bullet b. $\mathcal{F}(2,24,-128,127)$.
- \odot c. $\mathcal{F}(2, 32, -128, 127)$.

Domanda **2**Risposta salvata
Punteggio max.:
1,00

Contrassegna domanda Usando la notazione scientifica normalizzata con base eta=10, se x=282.94, allora:

Scegli un'alternativa:

- ullet a. La mantissa di x è 0.28294 e la parte esponenziale è 10^3 .
- \odot b. La mantissa di x è 2.8294 e la parte esponenziale è 10^2 .
- O c. Nessuna delle precedenti.

Domanda **3**Risposta salvata
Punteggio max.:
1,00

Contrassegna domanda Il sistema Floating Point $\mathcal{F}(2,3,-2,1)$ contiene:

Scegli un'alternativa:

- o a. 33 numeri.
- O b. Nessuna delle precedenti.
- O c. 17 numeri.

Domanda **4**Risposta salvata

Punteggio max.: 1,00

P Contrassegna domanda

Se A è una matrice $n \times n$ allora:

Scegli un'alternativa:

a. Nessuna delle precedenti.

$$\bigcirc \text{ b. } \left|\left|A\right|\right|_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}.$$

$$\bigcirc$$
 c. $||A||_2 =
ho(A^TA)$.

Domanda **5**Risposta salvata
Punteggio max.:
1,00

Contrassegna domanda Se

$$A = egin{bmatrix} 4 & 2 \ 1 & 3 \end{bmatrix}$$

Allora:

Scegli un'alternativa:

- ullet a. $\lambda=5$ è l'autovalore associato all'autovettore $x=(2,1)^T$.
- \bigcirc b. $\lambda=2$ è l'autovalore associato all'autovettore $x=(1,2)^T$.
- \odot c. $\lambda=2$ è l'autovalore associato all'autovettore $x=(2,1)^T$.

Domanda **6**Risposta salvata

Punteggio max.: 1,00

Contrassegna domanda Se A è una matrice quadrata $n \times n$, allora:

Scegli un'alternativa:

$$\bigcirc$$
 a. $||A||_2 = \sqrt{\max_{\lambda \in A} \lambda}$

O b. Nessuna delle precedenti.

$$leftondown$$
 c. $\left|\left|A
ight|
ight|_{2}=\sqrt{\max_{\lambda\in A^{T}A}\lambda}$

Domanda **7**Risposta salvata
Punteggio max.:
1,00

Contrassegna domanda Il costo computazionale per la risoluzione di un sistema triangolare è di:

Scegli un'alternativa:

- \bigcirc a. $O\left(\frac{n^3}{2}\right)$
- Ob. $O(\frac{n}{2})$
- \odot C. $O\left(\frac{n^2}{2}\right)$

Domanda **8**Risposta salvata
Punteggio max.:
1,00

domanda

P Contrassegna

Sia $A\ n imes n$ non singolare, con A=LR fattorizzazione di Gauss, allora la soluzione del sistema Ax=b si ottiene risolvendo:

Scegli un'alternativa:

$$\bigcirc \ \, \text{a.} \quad \left\{ \begin{aligned} Lx &= y \\ Rx &= y \end{aligned} \right.$$

$$\bigcirc$$
 b. $\left\{ egin{aligned} Ly = Pb \ Rx = y \end{aligned}
ight.$

$$lacktriangledown$$
 c. $\left\{ egin{aligned} Ly=b \ Rx=y \end{aligned}
ight.$

Domanda 9

Risposta salvata Punteggio max.:

Contrassegna domanda Sia $A=LL^T$ la fattorizzazione di Cholesky, allora la soluzione del sistema Ax=b si ottiene risolvendo:

Scegli un'alternativa:

$$lacksquare$$
 a. $\left\{egin{array}{ll} Ly=b \ L^Tx=y \end{array}
ight.$

$$\bigcirc$$
 b. $\left\{egin{aligned} L^Ty = b \ Lx = y \end{aligned}
ight.$

$$\bigcirc$$
 C. $\left\{egin{aligned} L^Tx = y \ Ly = b \end{aligned}
ight.$

Domanda 10 Risposta salvata Punteggio max.: 1,00

Contrassegna domanda Un problema lineare ai minimi quadrati $min||Ax-b||_2^2$, con A matrice $m imes n \pmod {m>n}$:

Scegli un'alternativa:

- a. Ha almeno una soluzione.
- O b. Non sempre ha una soluzione.
- O c. Ha infinite solizioni.

Domanda 11 Risposta salvata Punteggio max.: 1,00

Contrassegna domanda Sia A matrice m imes n con (m>n) e rg(A)=k < n, Sia $A=U\Sigma V^T$ la decomposizione SVD di A con:

$$U=(u_1,u_2,\ldots,u_m) \quad V=(v_1,v_2,\ldots,v_n) \quad \Sigma=(\sigma_1,\sigma_2,\ldots,\sigma_m)$$

Allora una soluzione del problema ai minimi quadrati $min ||Ax-b||_2^2$:

Scegli un'alternativa:

- ullet a. $\dot{\mathbf{e}}$ il vettore $x^* = \sum_{i=1}^k rac{u_i^T b}{\sigma_i} v_i$.
- \bigcirc b. è soluzione del sistema $A^TAx=A^Tb$.
- \bigcirc C. è il vettore $x^* = \sum_{i=1}^k rac{v_i^T v_i}{\sigma_i} b$.

Domanda **12** Risposta salvata

Punteggio max.: 1,00

P Contrassegna domanda Il problema lineare ai minimi quadrati $\min \lvert \lvert Ax - b \rvert \rvert_2^2$ ha equazioni normali:

Scegli un'alternativa:

$$\bigcirc$$
 a. $Ax=A^Tb$

$$\bigcirc$$
 b. $Ax=b$

$$lacktriangle$$
 c. $A^TAx = A^Tb$

Domanda 13

Risposta salvata

Punteggio max.: 1,00

P

Contrassegna domanda Sia $F(x)=x^2-2$ con $x_0=0.5$. Applicando il Metodo di Newton per risolvere F(x)=0 si ha

Scegli un'alternativa:

- $leftar{}$ a. $x_1 = 2.25$
- O b. $x_1=1.375$
- \odot c. $x_1=-1.25$

Domanda 14 Risposta salvata Punteggio max.: 1,00

P Contrassegna domanda Una direzione p_k è di discesa per $f(x_k)$ se:

Scegli un'alternativa:

$$\bigcirc$$
 a. $p_k
abla f(x_k) < 0$

$$lacksquare$$
 b. $p_k^T
abla f(x_k) < 0$

$$\bigcirc$$
 c. $p_k^T
abla f(x_k) = 0$

Domanda 15 Risposta salvata

Punteggio max.: 1,00

P Contrassegna domanda

Un metodo di discesa garantisce:

Scegli un'alternativa:

a. Nessuna delle precedenti.

$$\bigcirc$$
 b. $f(x_k) = f(x_{k+1}) \ \ orall \ k$

$$\bigcirc$$
 c. $f(x_k) < f(x_{k+1}) \ \ orall \ k$