

Projeto Integrador II

Prof^o Anderson Santos

anderson.dossantos@rj.senac.br

anderson.dossantos@senacrio.com.br

MINI CURRÍCULO DO PROFESSOR

Senac

ANDERSON SANTOS

ANDERSON.DOSSANTOS@RJ.SENAC.BR

Formação:

Engenharia da Computação (1997) Doutorado em Modelagem Computacional (2009) Pós-doutor em Modelagem Computacional (2022)

Atuação:

Instituto Militar de Engenharia - Professor de Graduação e Pós-graduação - Desde 2007 UniCarioca - Professor de Graduação e Pós-graduação - desde 2009 SENAC/RJ - Professor de Graduação - desde 2019

- Ajuda a detalhar um caso de uso;
- Pode ser usado na modelagem de um processo de negócio;
- O diagrama é formado por símbolos com significados pré-determinados.

Símbolo	Nome	Usar	
	Início/ Nódulo Inicial	Usado para representar o ponto de partida ou o estado inicial de uma atividade	
Activity	Atividade / Estado de Ação	Usado para representar as atividades do processo	
Action	Ação	Utilizado para representar as sub-áreas executáveis de uma actividade	
	Fluxo de controle / Borda	Usado para representar o fluxo de controle de uma ação para a outra	
	Fluxo de objetos / Borda de controle	Usado para representar o caminho dos objetos que se movem através da atividade	
•	Atividade final Node	Usado para marcar o fim de todos os fluxos de controle dentro da atividade	
\otimes	Fluxo final Nó	Usado para marcar o fim de um único fluxo de controle	

	Símbolo	Nome	Usar	
	\Diamond	Nó de Decisão	Utilizado para representar um ponto de ramificação condicional com uma entrada e múltiplas saídas	
/	\Diamond	Nó de mesclagem	Usado para representar a fusão de fluxos. Possui várias entradas, mas uma saída.	
	$\longrightarrow \hspace{-0.1cm} \longrightarrow \hspace{-0.1cm} \longrightarrow$	Garfo	Usado para representar um fluxo que pode ramificar- se em dois ou mais fluxos paralelos	
	$\overset{\longrightarrow}{\longrightarrow} \longrightarrow$	Fundir	Usado para representar duas entradas que se fundem em uma saída	
	Signal Sending	Envio de sinal	Usado para representar a ação de enviar um sinal para uma atividade de aceitação	
	Signal Receipt	Recibo de Sinal	Usado para representar que o sinal é recebido	120
		Nota/ Comentário	Usado para adicionar comentários relevantes aos elementos	

- Há diversos diagramas da UML que descrevem os aspectos dinâmicos de um sistema.
 - diagramas de estados, diagramas de seqüência e de comunicação e diagrama de atividade
- O diagrama de atividade é um tipo especial de diagrama de estados, onde são representados os estados de uma atividade.
- Um diagrama de atividade exibe passos de uma computação.
 - Cada atividade é um passo da computação.
 - É orientado a fluxos de controle (ao contrário dos DTEs que são orientados a eventos).
- São um tipo de fluxograma estendido..., pois permitem representar ações concorrentes e sua sincronização.

- Elementos podem ser divididos em dois grupos: controle sequencial e controle paralelo.
- Elementos utilizados em fluxos seqüenciais:
 - □ Estado ação
 - Estado atividade
 - Estados inicial e final, e condição de guarda
 - □ Transição de término
 - □ Pontos de ramificação e de união
- Elementos utilizados em fluxos paralelos:
 - □ Barras de sincronização
 - Barra de bifurcação (fork)
 - Barra de junção (join)

DIAGRAMA DE ATIVIDADES - FLUXO DE CONTROLE SEQUENCIAL

- Um estado em um diagrama de atividade pode ser:
 - um estado atividade leva um certo tempo para ser finalizado.
 - um estado ação: realizado instantaneamente.
- Deve haver um estado inicial e pode haver vários estados finais e guardas associadas a transições.
 - pode não ter estado final, o que significa que o processo ou procedimento é cíclico.
- Uma transição de término significa o término de um passo e o consequente início do outro.
 - Em vez de ser disparada pela ocorrência de um evento, é disparada pelo término de um passo.

DIAGRAMA DE ATIVIDADES: FLUXO DE CONTROLE SEQUENCIAL

- Um ponto de ramificação possui uma única transição de entrada e várias transições de saída.
 - Para cada transição de saída, há uma condição de guarda associada.
 - Quando o fluxo de controle chega a um ponto de ramificação, uma e somente uma das condições de guarda deve ser verdadeira.
 - □ Pode haver uma transição com [else].
- Um ponto de união reúne diversas transições que, direta ou indiretamente, têm um ponto de ramificação em comum.

DIAGRAMA DE ATIVIDADES: FLUXOS DE CONTROLE PARALELO

- Fluxos de controle paralelos: dois ou mais fluxos sendo executados simultaneamente.
- Uma barra de bifurcação recebe uma transição de entrada, e cria dois ou mais fluxos de controle paralelos.
 - cada fluxo é executado independentemente e em paralelo com os demais.
- Uma barra de junção recebe duas ou mais transições de entrada e une os fluxos de controle em um único fluxo.
 - Objetivo: sincronizar fluxos paralelos.
 - A transição de saída da barra de junção somente é disparada quando <u>todas</u> as transições de entrada tiverem sido disparadas.

DIAGRAMA DE ATIVIDADES: FLUXO DE CONTROLE PARALELO

- Algumas vezes, as atividades de um processo podem ser distribuídas por vários agentes que o executarão.
 - processos de negócio de uma organização.
- Isso pode ser representado através de raias de natação (swim lanes).
- As raias de natação dividem o diagrama de atividade em compartimentos.
- Cada compartimento contém atividades que são realizadas por uma entidade.

DIAGRAMA DE ATIVIDADES: SWIMLANES

DIAGRAMA DE ATIVIDADES: USO DO DIAGRAMA DE ATIVIDADES

- Não são freqüentemente utilizados na prática...
- Importante: na orientação a objetos o sistema é dividido em objetos, e não em módulos funcionais como na Análise Estruturada (Diagrama de Fluxos de Dados).

DIAGRAMA DE ATIVIDADES: COMO FAZER?

Passo 1: Descubra as etapas de ação a partir de caso de uso

Aqui você precisa identificar as várias atividades e ações das quais seu processo ou sistema de negócios é composto.

DIAGRAMA DE ATIVIDADES: COMO FAZER?

Passo 2: Identificar os atores que estão envolvidos

Se você já descobriu quem são os atores, então é mais fácil discernir cada ação pela qual eles são responsáveis.

DIAGRAMA DE ATIVIDADES: COMO FAZER?

Passo 3: Encontre um fluxo entre as atividades

Figura a ordem em que as ações são processadas. Anote as condições que devem ser cumpridas para realizar determinados processos, quais ações ocorrem ao mesmo tempo e se você precisa adicionar alguma ramificação no diagrama. E você tem que completar algumas ações antes de poder prosseguir para outras?

DIAGRAMA DE ATIVIDADES: COMO FAZER?

Passo 4: Adicionar swimlanes

Você já descobriu quem é responsável por cada ação. Agora é hora de atribuir a eles uma swimlane e agrupar cada ação pela qual eles são responsáveis.

DIAGRAMA DE ATIVIDADES: COMO FAZER?

Passo 4: Adicionar swimlanes

Você já descobriu quem é responsável por cada ação. Agora é hora de atribuir a eles uma swimlane e agrupar cada ação pela qual eles são responsáveis.

DIAGRAMA DE ATIVIDADES: FERRAMENTA

https://app.diagrams.net

DIAGRAMA DE ATIVIDADES: FERRAMENTA

