The invention claimed is:

1. A solenoid, comprising:

a housing;

a coil disposed in the housing for generating a magnetic field when an electric current passes through the coil;

a center pole disposed within the coil, wherein the center pole is made of a ferromagnetic material;

a rod assembly movably disposed in the housing for movement between a rest position and an energized position, the rod assembly having a portion thereof disposed in the center pole, and including a magnet having a polarity causing the magnet to be repelled from the center pole when an electric current passes through the coil; and wherein:

the magnet is encapsulated by an elastomeric material that contacts a stop surface when in the rest position to reduce noise resulting from shifting of the rod assembly from the energized position to the rest position.

2. The solenoid of claim 1, wherein:

the rod assembly has an elongated body portion comprising a polymer material.

3. The solenoid of claim 2, wherein:

the polymer material has a reflow temperature that is greater than the injection molding temperature of the elastomeric material.

4. The solenoid of claim 3, wherein:

the magnet is generally disk-shaped with generally parallel side surfaces and an opening extending between the side surfaces, and wherein the body portion extends along the side surfaces to retain the magnet.

5. The solenoid of claim 4, wherein:

the body portion includes a pair of outwardly extending flanges forming an annular groove therebetween having a base surface and parallel sidewall surfaces, the base surface and the sidewall surfaces contacting the magnet.

6. The solenoid of claim 2, wherein:

the magnet is positioned adjacent a first end of the rod assembly; and wherein:

the rod assembly includes a pawl member made of a non-ferromagnetic material at a second end of the rod assembly, the pawl member being made of material that is substantially harder than the polymer material of the body portion.

7. The solenoid of claim 6, wherein:

at least a portion of the pawl member extends outside of the housing when the rod assembly is in the rest position.

8. The solenoid of claim 7, wherein:

the pawl member is made of a stainless steel material, and the body portion is made of a fiber reinforced polymer material.

9. The solenoid of claim 8, wherein:

the rod assembly defines an axis and the pawl member includes a connector portion having a first portion extending in the direction of the axis, and a second portion extending transverse to the axis, the connector portion being encapsulated by the body portion.

10. A rod assembly for an electrically powered linear actuator, comprising:

an elongated body made of a first material having a first melting temperature;

a magnet connected to the elongated body; and

a second material encapsulating at least a portion of the magnet, the second material having a second melting temperature that is less than the first melting temperature.

11. The rod assembly of claim 10, wherein:

the second material has a hardness between about thirty-five to ninety Shore A durometer to form a damper.

12. The rod assembly of claim 10, wherein:

the first material comprises a polymer material.

13. The rod assembly of claim 12, wherein:

the polymer material is reinforced with fibers.

14. The rod assembly of claim 10, wherein:

the magnet is generally disk-shaped with generally parallel side surfaces and an opening extending between the side surfaces, and wherein the body portion extends along the side surfaces to retain the magnet.

15. The rod assembly of claim 14, wherein:

the body portion includes a pair of outwardly extending flanges forming an annular groove therebetween having a base surface and parallel sidewall surfaces, the base surface and the sidewall surfaces contacting the magnet.

16. The rod assembly of claim 15, wherein:

the magnet is positioned adjacent a first end of the rod assembly; and wherein:

the rod assembly includes a pawl member made of a non-ferromagnetic material at a second end of the rod assembly, the pawl member being made of material that is substantially harder than the polymer material of the body portion.

17. A method of making a rod assembly for an electrically powered linear actuator, comprising:

molding a body portion of a first material having a first melting temperature; providing a magnet; and

overmolding the magnet with a second material having an injection molding temperature that is less than the reflow temperature of the first to thereby form a damper.

18. The method of claim 17, wherein:

the magnet is generally disk-shaped with opposite side surfaces and an opening extending between the opposite side surfaces; and

the body portion includes retaining portions that are molded around portions of the opposite side surfaces of the magnet.

19. The method of claim 18, wherein:

a peripheral outer edge of the magnet is exposed after the body portion is molded around opposite side surfaces of the magnet, and the retaining portions comprise a pair of outwardly extending parallel flanges defining inner surfaces contacting the magnet and opposed outer surfaces; and including:

overmolding the second material around the peripheral outer edge of the magnet and around the opposed outer surfaces of the flanges.

20. The method of claim 19, wherein:

the second material has a Shore A hardness of about thirty-five to ninety durometer.

21. The method of claim 20, including:

providing a pawl member made of a non-ferromagnetic material and having a first end forming connecting structure; and

molding the body portion around the connecting structure.