Exercise Sheet 2

Robin Schmidt Probabilistic Inference & Learning

November 4, 2018

Gaussian Distributions

1 Structured Gaussian Models

(a) i.

The joint distribution for \mathcal{H}_1 is given in the lecture slides as:

$$p(x_1, x_2, x_3) = p(x_2) \cdot p(x_1 | x_2) \cdot p(x_3 | x_2)$$

$$x_2 = \nu_2$$

$$x_1 = w_1 x_2 + \nu_1$$

$$x_3 = w_3 x_2 + \nu_3$$

$$p(\nu_2) = \mathcal{N}(\nu_2; \mu_2, \sigma_2^2)$$

$$p(\nu_1) = \mathcal{N}(\nu_1; \mu_1, \sigma_1^2)$$

$$p(\nu_3) = \mathcal{N}(\nu_3; \mu_3, \sigma_3^2)$$

This leads to the covariance matrix Σ :

$$\Sigma = \begin{bmatrix} w_1 \sigma_2^2 + \sigma_1^2 & w_1 \sigma_2^2 & w_1 w_3 \sigma_2^2 \\ & \sigma_2^2 & w_3 \sigma_2^2 \\ & & w_3^2 \sigma_2^2 + \sigma_3^2 \end{bmatrix}$$

Because there are no zeroes, matrix A and matrix B can be possible covariance matrices of \mathcal{H}_1 .

(a) ii.

The joint distribution for \mathcal{H}_2 is given in the lecture slides as:

$$p(x_1, x_2, x_3) = p(x_1) \cdot p(x_3) \cdot p(x_2 | x_1, x_3)$$

$$x_1 = \nu_1$$

$$x_3 = \nu_3$$

$$x_2 = w_1 x_1 + w_3 x_3 + \nu_2$$

$$p(\nu_1) = \mathcal{N}(\nu_1; \mu_1, \sigma_1^2)$$

$$p(\nu_2) = \mathcal{N}(\nu_2; \mu_2, \sigma_2^2)$$

This leads to the covariance matrix Σ :

$$\Sigma = \begin{bmatrix} \sigma_1^2 & w_1 \sigma_1^2 & 0\\ & \sigma_2^2 + w_1^2 \sigma_1^2 + w_3^2 \sigma_3^2 & w_3 \sigma_3^2\\ & & \sigma_3^2 \end{bmatrix}$$

Because there are zeroes at $\Sigma_{1,3}$ and $\Sigma_{3,1}$, matrix C and matrix D can be possible covariance matrices of \mathcal{H}_2 .

(b) i.

Using the joint probabilities stated before leads us to the following expressions according to the slides:

$$p(x_1, x_2, x_3) = \frac{1}{Z_1 Z_2 Z_3} exp\left(-\frac{1}{2} \left(\frac{x_2^2}{\sigma_2^2} + \frac{(x_1 - w_1 x_2)^2}{\sigma_1^2} + \frac{(x_3 - w_3 x_2)^2}{\sigma_3^2}\right)\right)$$

$$p(x_1, x_2, x_3) = \frac{1}{Z_1 Z_2 Z_3} exp\left(-\frac{1}{2} [x_1 \ x_2 \ x_3] \begin{bmatrix} \frac{1}{\sigma_1^2} & -\frac{w_1}{\sigma_1^2} & 0\\ -\frac{w_1}{\sigma_1^2} & (\frac{1}{\sigma_2^2} + \frac{w_1^2}{\sigma_1^2} + \frac{w_3}{\sigma_3^2}) & -\frac{w_3}{\sigma_3^2} \\ 0 & -\frac{w_3}{\sigma_3^2} & \frac{1}{\sigma_3^2} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}\right)$$

The zeroes in the inverse covariance matrix Σ^{-1} at $\Sigma_{1,3}^{-1}$ and $\Sigma_{3,1}^{-1}$ imply the conditional independence of x_1 and x_3 given x_2 ($x_1 \perp x_3 \mid x_2$). Comparing this knowledge with the four possible matrices, matrix C and matrix D seem to fulfill this condition as inverse covariance matrix Σ^{-1} for \mathcal{H}_1 due to the zeroes and number domains of Σ_{ij}^{-1} .

(b) ii.

Using the joint probabilities stated before leads us to the following expressions according to the slides:

$$\begin{split} p(x_1,x_2,x_3) &= \frac{1}{Z_1 Z_2 Z_3} \ exp \bigg(-\frac{1}{2} \bigg(\frac{x_1}{\sigma_1^2} + \frac{x_3}{\sigma_3^2} + \frac{x_2 - w_1 x_1 - w_3 x_3}{\sigma_2^2} \bigg) \bigg) \\ p(x_1,x_2,x_3) &= \frac{1}{Z_1 Z_2 Z_3} \ exp \bigg(-\frac{1}{2} [x_1 \ x_2 \ x_3] \ \begin{bmatrix} \left(\frac{1}{2\sigma_1^2} + \frac{w_1^2}{\sigma_2^2} \right) & -\frac{w_2}{\sigma_2^2} & \frac{w_1 w_3}{\sigma_2^2} \\ -\frac{w_2}{\sigma_2^2} & \frac{1}{\sigma_2^2} & -\frac{w_3}{\sigma_2^2} \\ \frac{w_1 w_3}{\sigma_3^2} & -\frac{w_3}{\sigma_2^2} & \left(\frac{1}{2\sigma_2^2} + \frac{w_3^2}{\sigma_2^2} \right) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \bigg) \end{split}$$

Because there are no zeroes matrix A and matrix B could be the inverse covariance matrix Σ^{-1} for \mathcal{H}_2 .

2 Python Exercise

(a)

Figure 1: Plot of MaunaLoa.csv data

(b)

Figure 2: Posterior Gaussian prediction