Analysis I - Vorlesungs-Script

Prof. Dr. Camillo De Lellis Basisjahr 10 Semester II

> Mitschrift: Simon Hafner

1	Die	reellen Zahlen	1
	1.1	Körperstrukturen	1
	1.2	Die Anordnung von \mathbb{R}	1
		Die Vollständigkeit der reellen Zahlen	

Beispiel 1. \mathbb{R} ist nicht genug

Satz 1. Es gibt kein $q \in \mathbb{Q}$ so dass $q^2 = 2$

Beweis 1. Falls $q^2 = 2$, $dann(-q)^2 = 2$ OBdA $q \ge 0$ Deswegen q > 0. Sei q > 0 und $q \in \mathbb{Q}$ so dass $q^2 = 2$. $q = \frac{m}{n}$ mit m > 0, > 0. GGT(m, n) = 1 (d.h. falls $r \in \mathbb{N}$ m und n dividient, dann r = 1!).

$$m^2 = 2n^2 \implies m \text{ ist gerade} \qquad \implies m = 2k \text{ für } k \in \mathbb{N}$$
 $\{0\}$
 $4k^2 = 2n^2 \implies n \text{ ist gerade} \qquad \implies 2|n(2 \text{ dividiert } n)|$

 \implies Widerspruch! Weil 2 dividiert m und n! (d.h. es gibt <u>keine</u> Zahl $q \in \mathbb{Q}$ mit $q^2 = 2$

Beispiel 2.

$$\sqrt{2} = 1,414\cdots$$

Intuitiv:

$1,4^2 <$	2 <	$1,5^{2}$	1, 4 <	$\sqrt{2}$ <	1,5
$1,41^2 <$	2 <	$1,42^2 \implies$	1,41 <	$\sqrt{2}$	1,42
$1,414^2 <$	2 <	$1,415^{2}$	1,414 <	$\sqrt{2}$	1,415

Intuitiv

- $\mathbb Q$ hat "Lücke"
- $\mathbb{R} = \{ \text{ die reellen Zahlen } \} \text{ haben "kein Loch"}.$

Konstruktion Die reellen Zahlen kann man "konstruieren". (Dedekindsche Schritte, Cantor "Vervollständigung"). Google knows more. Wir werden "operativ" sein, d.h. wir beschreiben einfach die wichtigsten Eigenschaften von \mathbb{R}

1.1 Körperstrukturen

K1 Kommutativgesetz

$$a+b = b+a$$

$$a \cdot b = b \cdot a$$

K2

$$(a+b)+c = a+(b+c)$$

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

К3

$$a+x=$$
 b $a\cdot x=$ falls $a\neq 0$

K4

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

1.2 Die Anordnung von \mathbb{R}

A1 $\forall a \in \mathbb{R}$ gilt genau eine der drei Relationen:

$$-a < 0$$

 $-a = 0$

$$-a > 0$$

A2 Falls a > 0, b > 0, dann a + b > 0, $a \cdot b > 0$

A3 Archimedisches Axiom: $\forall a \in \mathbb{R} \exists n \in \mathbb{N} \text{ mit } n > a$

Übung 1. Beweisen Sie dass $a \cdot b > 0$ falls a < 0, b < 0

 $\{0,1\}$ gut $(1+x)^n > (1+nx)$

Beweis 2.

$$(1+x)^2 = 1 + 2x + \underbrace{x^2}_{>0} > 1 + 2x$$

weil $x \neq 0$.

Nehmen wir an dass

$$\underbrace{(1+x)^n}_{a} > \underbrace{(1+x)^n}_{c} > \underbrace{(1+nx)(1+x)(weil(1+x)>0)}_{d}$$

$$c > d \iff c - d > 0 \stackrel{A2}{\Longrightarrow} a(c - d) > 0 \stackrel{K4}{\Longrightarrow} ac - ad > 0 \stackrel{A2}{\Longrightarrow} ac > ad$$

$$(1 + x)^{n+1} > (1 + nx)(1 + x) = 1 + nx + x + nx^{2} =$$

$$1 + (n+1)x + \underbrace{nx^{2}}_{>0} > 1 + (n+1)x$$

$$\implies (1 + x)^{n+1} > 1 + (n+1)x$$

Vollständige Induktion.

Definition 1. Für $a \in \mathbb{R}$ setzt man

$$|a| = \begin{cases} a & \text{falls} a \ge 0 \\ -a & \text{falls} a < 0 \end{cases}$$

Satz 3. Es gilt (Dreiecksungleichung):

$$|ab| = |a||b|$$

 $|a+b| \le |a| + |b|$
 $||a| - |b|| \le |a-b|$

Beweis 3. • |ab| = |a||b| trivial

a + b < |a| + |b|

 $(a>0 \ und \ b>0 \implies a+b=|a|+|b| \ sonst \ a+b<|a|+|b| \ weil \ x\leq |x| \ \forall x\in \mathbb{R} \ und \ die \ Gleichung \ gilt).$

 $-(a+b) = -a - b \leq |-a| + |-b| = |a| + |b|$

Aber

$$|a+b| = \max\{a+b, -(a+b)\} \le |a| + |b|$$

 $||a| - |b|| \le |a - b|$

Zuerst:

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

$$\implies |a| - |b| \le |a - b|$$

$$|b| = |a + (b - a)| \le |a| + |b - a|$$

$$\implies |b| - |a| \le |b - a| = |a - b|$$

$$\implies (|a| - |b|) \le |a - b|$$

$$||a| - |b|| = max\{|a| - |b|, -(|a| - |b|)\} \le |a - b|$$

Bemerkung 1.

$$|x| = \max\{-x, x\}$$

Für $a < b, a \in \mathbb{R}$, heisst:

[a,b] =	$\{x \in \mathbb{R} : a \le x \le b\}$ abgeschlossenes Intervall
]a,b[=	$\{x \in \mathbb{R} : a < x < b\}$ offenes Intervall
[a, b[=	$\{x \in \mathbb{R} : a \le x < b\}$ (nach rechts) halboffenes Intervall
[a, b] =	$\{x \in \mathbb{R} : a < x \le b\}$ (nach links) halboffenes Intervall

Sei I = [a, b] (bzw.]a, b[...). Dann a, b sind die Randpunkte von I. Die Zahl |I| = b - a ist die Länge von I. (b - a > 0)

Definition 2. Eine Intervallschachtelung ist eine Folge I_1, I_2, \cdots geschlossener Intervalle (kurz $(I_n)_{n \in \mathbb{N}}$ oder (I_n)) mit diesen Eigenschaften:

I1 $I_{n+1} \subset I_n$

I2 Zu jedem $\epsilon > 0$ gibt es ein Intervall I_n so dass $|I_n| < \epsilon$

Beispiel 3. $\sqrt{2}$

$$1, 4^2 < 2 < 1, 5^2$$
 $I_1 = [1, 4/1, 5]|I_1| = 0.1$
 $1, 41^2 < 2 < 1, 42^2 \Longrightarrow I_2 = [1, 41/1, 42]|I_2| = 0.01$
 $1, 414^2 < 2 < 1, 415^2$ $I_3 = [1, 414, 1, 415]|I_2| = 0.001$

Beweis 4. I1 und I2 sind beide erfüllt.

Axiom 1. Zu jeder Intervallschachtelung $\exists x \in dR$ die allen ihren Intervallen angehört.

Satz 4. Die Zahl ist eindeutig.

Beweis 5. Sei (I_n) eine Intervallschachtelung. Nehmen wir an dass $\exists \alpha < \beta$ so dass $\alpha, \beta \in I_n \forall n$. Dann $|I_n| \ge |\beta - \alpha| > a$. Widerspruch!

Satz 5. $\forall a \geq 0, a \in dR \ und \ \forall x \in dN$

 $\{0\}$, \exists eine einziges $x \geq 0$, $x \in dR$ s.d. $x^k = a$. Wir nennen $x = \sqrt[k]{a} = a^{\frac{1}{k}}$. Sei $m, n \in dN$, $a^{m+n} = a^m a^n$ und deswegen $a^{-m} = \frac{1}{a^m}$ für $m \in dN$ (so dass die Regel $a^{m-m} = a^0 = 1$. $n, m \in dN$ $\{0\}$ n Mal.

$$(a^m)^n = \underbrace{a^m \cdot a^m \cdots a^m}_{n \ Mal} = a^{n \ Mal} = a^{nm}$$

Und mit $a^{-m} = \frac{1}{a^m}$ stimmt die Regel $(a^m)^n = a^{mn}$ auch $\forall m, n \in dZ!$

Bemerkung 2.
$$x^k = \left(a^{\frac{1}{k}}\right)^k = a\left(=a^{\frac{1}{k}k} = a^1\right)$$

Definition 3. $\forall q = \frac{m}{n} \in dQ, \forall a > 0 \text{ mit definiertem } a^q = (\sqrt[n]{a})^m$

Beweis 6. Mit dieser Definition gilt $a^{q+q_2} = a^q a_2^q \ \forall a > 0 \ und \ \forall q, q_2 \in dQ$.