Entrainement pour les EC n° 3 Probabilités, fonctions trinômes et homographies 2^{de} jeudi 16 avril 2015

ProfesseurÉtablissementNOM : GARNIERNOM : Lycée Adolphe-Chérioux

Eléve	
NOM:	Prénom :

BON COURAGE!

Exercice 1 (10 pts)

On considère un jeu de 52 cartes tel que :

- la répartition se fait équitablement parmi 4 familles (cœur, carreau, pique et trèfle)
- les figures sont les As, les Rois (King en anglais), les Dames (Queen en anglais) et les Valets (Jack en anglais)
- les cartes pour chaque famille sont l'As, le 2, le 3, le 4, le 5, le 6, le 7, le 8, le 9, le 10, le Valet, la Dame et le Roi

Voici un exemple de jeu de 52 cartes :

FIGURE 1 – Exemple de jeu de 52 cartes

L'expérience aléatoire consiste à tirer une carte au hasard (les cartes sont toutes indiscernables au toucher).

Soient les événements :

A: «obtenir une figure»

B: «obtenir un cœur»

Pour cet exercice on utilisera le tableau suivant que l'on remplira avec les effectifs correspondants. **Barême indicatif** :(1 pt)

	A	\overline{A}	Total
В			
\overline{B}			
Total			

Calculez les probabilités suivantes :

1. p(A) et $p(\overline{A})$

Remarque : on pensera à rappeler la formule de cours nécessaire pour le calcul de $p(\overline{A})$. Barême indicatif :(0.5 + 1 = 1.5 pts)

2. p(B) et $p(\overline{B})$

Remarque : on pensera à rappeler la formule de cours nécessaire pour le calcul de $p(\overline{B})$. Barême indicatif :(0.5 + 1 = 1.5 pts)

3. $p(A \cap B)$ et $p(\overline{A \cap B})$

Remarque : on pensera à rappeler la formule de cours nécessaire pour le calcul de $p(\overline{A \cap B})$. Barême indicatif :(0.5 + 1 = 1.5 pts)

4. $p(A \cup B)$ et $p(\overline{A \cup B})$

Remarque: on pensera à rappeler les formules de cours nécessaire pour les calculs de $p(A \cup B)$ et $p(\overline{A \cup B})$.

Barême indicatif : (1 + 0.5 = 1.5 pts)

5. (a) $p(\overline{A} \cap \overline{B})$

Barême indicatif:(0.5 pts)

(b) $p(\overline{A} \cup \overline{B})$

Remarque : on pensera à rappeler la formule de cours nécessaire pour le calcul de $p(\overline{A} \cup \overline{B})$. Barême indicatif :(0.5 pts)

6. Quelles sont les deux égalités que l'on peut déduire à l'issue des deux derniers calculs effectués ? **Barême indicatif** :(1 + 1 = 2 pts)

Pour la culture : il s'agit de ce qu'on appelle les lois de De Morgan (très utilisées en logique (électronique et informatique)).

Exercice 2 (10 pts)

Pour cet exercice on se réfèrera à la figure page 6.

On considère les trois fonctions polynômes de degré 2 suivantes :

1.
$$f_1(x) = 2x^2 + 2x + 2$$

2.
$$f_2(x) = -0.2(x-4)^2$$

3.
$$f_3(x) = 0.5(x+4)(x-2)$$

I) ÉTUDE DE LA FONCTION f_1

Question 0: associer la parabole correspondante à f_1 .

Attention : On justfiera par un calcul ou en utilisant une propriété de cours.

Barême indicatif :(0.5 pts)

Question 1: résoudre l'équation $f_1(x) = 2$.

On notera x_1 la solution la plus petite et x_2 la solution la plus grande.

Barême indicatif : (0.5 + 0.5 = 1 pt)

Question 2 : placer le point H de coordonnées (-1; 2).

Barême indicatif :(0.25 pts)

Question 3 : quelle est l'équation de la médiatrice du segment [HB] ?

Indication : que peut-on dire de B et H par rapport à cet axe ?

Barême indicatif :(0.25 pts)

II) ÉTUDE DE LA FONCTION f_2

Question 0: associer la parabole correspondante à f_2 .

Attention : On justfiera par un calcul ou en utilisant une propriété de cours.

Barême indicatif:(0.5 pts)

Question 1 : Dressez le tableau de variation de f_2 . On précisera la présence éventuelle d'un extremum (maximum ou minimum) en la justifiant.

Barême indicatif : (1 + 0.5 + 0.5 = 2 pts).

Question 2 : donner l'équation de l'axe de symétrie de la parabole représentant f_2 .

Barême indicatif:(0.25 pts)

Question 3 : donner les coordonnées du sommet S_2 de la parabole représentant f_2 .

Barême indicatif : (0.25 + 0.5 = 0.75 pts)

Question 4: résoudre l'équation $f_2(x) = 0$.

Barême indicatif:(0.5 pts)

III) ÉTUDE DE LA FONCTION f_3 .

Question 0: associer la parabole correspondante à f_3 .

Attention: On justfiera par un calcul ou en utilisant une propriété de cours.

Barême indicatif:(0.5 pts)

Question 1: résoudre l'équation $f_3(x) = 0$

Barême indicatif : (0.5 + 0.5 = 1 pt)

Question 2: donner l'équation de l'axe de symétrie de la parabole \mathcal{P}_3 .

Barême indicatif:(0.5 pts)

Question 3 : donner les coordonnées du sommet S_3 de la parabole représentant f_3 .

Barême indicatif : (0.25 + 0.5 = 0.75 pts)

IV) Voici un petit algorithme.

Entrées :	saisir les réels $a \neq 0$, b et c
Traitement :	lpha prend la valeur $-b/(2a)$
	eta prend la valeur $(4ac-b^2)/(4a)$
Sorties :	afficher α , β

Que fait cet algorithme?

Barême indicatif : (0.5 + 0.75 = 1.25 pts)

Exercice 3 (10 pts)

L'objectif de cet exercice est d'étudier 2 algorithmes.

I) UN PREMIER ALGORITHME

Entrées :	saisir les réels α , β , γ
Variables :	a,b,c,d
Traitement :	a prend la valeur α
	b prend la valeur $\beta - \alpha imes \gamma$
	c prend la valeur 1
	d prend la valeur $-\gamma$
Sorties :	afficher a,b,c,d

- 1) Tester cet algorithme avec $(\alpha, \beta, \gamma) = (1, 2, 3)$. Autrement dit $\alpha = 1$, $\beta = 2$ et $\gamma = 3$. Barême indicatif :(1 pt)
- 2) Soit la fonction définie par

$$f_1(x) = 1 + \frac{2}{x - 3}$$

a) Peut-on calculer l'image de 3 par cette fonction?

Barême indicatif:(0.5 pts)

b) Montrer que cette fonction est une homographie. Pour cela vous devez déterminer 4 réels a,b,c et d tels que

$$f_1(x) = \frac{ax+b}{cx+d}$$

Barême indicatif:(1 pt)

On admettra que la fonction f_1 est une homographie définie pour tout réel de l'ensemble

$$D_{f_1} =]-\infty; 3[\cup]3; +\infty[$$

- 3) Tester cet algorithme avec $(\alpha, \beta, \gamma) = (-1, -2, -3)$. Autrement dit $\alpha = -1$, $\beta = -2$ et $\gamma = -3$. Barême indicatif :(1 pt)
- 4) Soit la fonction définie par

$$f_2(x) = -1 + \frac{-2}{x+3}$$

a) Peut-on calculer l'image de -3 par cette fonction?

Barême indicatif:(0.5 pts)

b) Montrer que cette fonction est une homographie. Pour cela vous devez déterminer 4 réels a,b,c et d tels que

$$f_2(x) = \frac{ax+b}{cx+d}$$

Barême indicatif: (1 pt)

On admettra que la fonction f_2 est une homographie définie pour tout réel de l'ensemble

4

$$D_{f_2} =]-\infty; -3[\cup]-3; +\infty[$$

II) UN SECOND ALGORITHME

Entrées :	saisir les réels $a, b, c \neq 0, d$
Variables :	$lpha,eta,\gamma$
	lpha prend la valeur a/c
Traitement :	β prend la valeur $(b\times c - a\times d)/c^2$
	γ prend la valeur $-d/c$
Sorties:	afficher α, β, γ

1) Tester cet algorithme avec (a,b,c,d)=(2,1,-1,-2). Autrement dit $a=2,\,b=1,\,c=-1$ et d=-2.

Barême indicatif: (1 pt)

2) Soit la fonction définie par

$$g_1(x) = \frac{2x+1}{-x-2}$$

a) Peut-on calculer l'image de -2 par cette fonction?

Barême indicatif:(0.5 pts)

b) Montrer que

$$g_1(x) = -2 + \frac{3}{x+2}$$

Barême indicatif: (1 pt)

On admettra que la fonction g_1 est une homographie définie pour tout réel de l'ensemble

$$D_{g_1} =]-\infty; -2[\cup]-2; +\infty[$$

3) Tester cet algorithme avec (a,b,c,d)=(3,-1,1,-3). Autrement dit $a=3,\,b=-1,\,c=1$ et d=-3.

Barême indicatif :(1 pt)

4) Soit la fonction définie par

$$g_2(x) = \frac{3x - 1}{x - 3}$$

a) Peut-on calculer l'image de 3 par cette fonction?

Barême indicatif:(0.5 pts)

b) Montrer que

$$g_2(x) = 3 + \frac{8}{x - 3}$$

Barême indicatif:(1 pt)

On admettra que la fonction g_2 est une homographie définie pour tout réel de l'ensemble

5

$$D_{g_2} =]-\infty; 3[\cup]3; +\infty[$$

Figure 2 – Trois types de paraboles