

"NOT (YET) ANOTHER COAL STORY" -

POWER SECTOR LOCK-INS IN INDIA - PERSPECTIVES FROM NATIONAL AND GLOBAL MODELS

Authors - Aman MALIK, Christoph BERTRAM

PIK RD III Sustainable Solutions

Electricity demand projected to grow strongly for decades to come.

Scenario name	Definition
Early action	Currently implemented policies till 2020 followed by a carbon budget constraint till 2050.
Delayed action	Currently implemented policies and NDC till 2030 followed by carbon budget constraint till 2050

- * The budgets for national models were chosen by the respective teams, representing the maximum mitigation effort, till 2050, possible through their models.
- * The budgets for India for global models were the outcome of the global carbon budget which was the same across models (2011-1000 of 1000 GtCO2)

With the current NDC, power sector emissions continue to rise till 2030, in spite of relative decarbonisation.

Year

Absolute low-carbon electricity until 2030 is substantial in most models.

- Both national and global models see large increase in expansion of low-carbon electricity compared to current (2017) levels.
- Most of the expansion takes place in wind and solar, although a few models are very optimistic about nuclear.
- Although India has a large nuclear target, (see NDC and Nuclear_2023 : current + under construction), nuclear plants have long construction times (~5 y) and historically nuclear addition has been slow.

Very strong role of gas as bridge-fuel foreseen in some models.

- Some models are very optimistic about the potential for gas.
- As seen above, India has currently very little gas-based generation, because of its scarcity and no long distance gas infrastructure from gas-rich countries.
- Current stranded gas capacity of 14 GW because of high gas prices^
- Thus, the optimistic projections seem questionable, especially in global models, which in most cases do not explicitly represent bilateral trade or gas infrastructure.

^ NITI Aayog, *Energising India*, 2017

National models show greater path-dependency of coal than global models.

- National and global models agree that coal generation increases until 2030 under NDC policies, compared to 2017 value (horizontal line in background)
- With strengthening beyond NDCs after 2020, most global models foresee strong reduction, while national models project similar values.

Very high carbon lock-in if all coal plants being constructed or planned go online, as foreseen in most NDC scenarios.

- Most models project additional >100 GW of coal plants w/o CCS go online until 2030, under NDC targets. These new coal plants would make ambitious budgets very difficult to achieve.
- The relatively low budgets achieved in global delay scenarios are only possible through large-scale premature retirement, implying huge stranded assets and raising the question of political feasibility.

