Lecture 2.6 – Grammar of Graphics

Learning Objectives:

3.3 Learn the basics of ggplot2.

The Plotting Systems of R

- Base graphics and grid

```
plot(x = mtcars$mpg, y = mtcars$hp,
      col = "black", bg = "red",
      pch = 21)
```

Benefits:

- simple and quick
- handles a variety of data types
- not many background calculations

- The Trellis system in lattice

Benefits:

- quick
- many specialized stats plots
- not too many background calculations

Density Plot

The Plotting Systems of R

- Grammar of Graphics ggplot2

```
ggplot(mtcars, aes(x=mpg,y=hp,fill=cyl)) +
  geom_point(pch=21, size=2) +
  xlab("Miles per gallon") + ylab("Horsepower")
```

Benefits:

- beautiful visualizations
- many specialized plots
- consistent syntax
- have full control over aesthetics

Drawbacks:

- lots of background calculations
- slow
- only uses data frames in long format

Grammar of Graphics: terminology

<u>Scales</u>

Other stuff:

+ xlim(0, 40)

Guides

+ labs(color="Cylinders")

Check Your Understanding

Use the Orange data set to create a scatterplot with ggplot2 of circumference versus tree age.

- To reap many of the benefits of the ggplot package, you may need to reshape your data set.

Wide: Columns represent different measurements

Seed	Year 3	Year 5	Year 10	Year 15	Year 20	Year 25
301	4.51	10.89	28.72	41.75	52.70	60.92
303	4.55	10.92	29.07	42.83	53.88	63.39
305	4.79	11.37	30.21	44.40	52.82	64.10
307	4.81	11.20	28.66	41.66	53.31	63.05

Long: Each row is a unique observation

Seed	Age	Height
301	3	4.51
301	5	10.89
301	10	28.72
301	15	41.74
301	20	52.70
301	25	60.92
303	3	4.55
303	5	10.92
303	10	29.07
303	15	42.38
303	20	53.88
303	25	63.39

Dataset: Loblolly Package: tidyr

Wide: Columns represent different measurements

Seed	Year 3	Year 5	Year 10	Year 15	Year 20	Year 25
301	4.51	10.89	28.72	41.75	52.70	60.92
303	4.55	10.92	29.07	42.83	53.88	63.39
305	4.79	11.37	30.21	44.40	52.82	64.10
307	4.81	11.20	28.66	41.66	53.31	63.05

Long: Each row is a unique observation

Seed	Age	Height
301	3	4.51
301	5	10.89
301	10	28.72
301	15	41.74
301	20	52.70
301	25	60.92
303	3	4.55
303	5	10.92
303	10	29.07
303	15	42.38
303	20	53.88
303	25	63.39

- The pivot_wider() function: long to wide

- The new columns are named based on names_from
- The cell values are filled from values_from

- The pivot_longer() function: wide to long

- Pick the columns that should be data values (cols). The column names will become variables in long format. The variable column will be named by names_to.
- Pick the name of that new column where the values will be stored (values_to).

Plotting: wide format

 Plotting in the wide format limits your options. You are forced to choose which columns to map, which limits you to the ways in which you can plot!

column options for Loblolly.wide:

*	Seed [‡]	3	5	10 🗘	15 💠	20 ‡	25
1	329	3.93	9.34	26.08	37.79	48.31	56.43
2	327	4.12	9.92	26.54	37.82	48.43	56.81

Plotting: long format

- The long format doesn't suffer from this same issue. You have appropriate options for plotting and mapping aesthetics.

column options for Loblolly.long:

*	Seed [‡]	Age [‡]	Height [‡]
1	329	3	3.93
2	327	3	4.12
-	225	2	4 3 0

Plotting: long format

- You can push many calculations for plot types into ggplot so as not to worry about doing them yourself!

```
ggplot (Loblolly.long,
        aes(x = factor(age),
            y = Height)) +
     geom_boxplot()
```

```
ggplot (Loblolly.long,
        aes(x = factor(age),
            y = Height) +
     geom violin()
```


Check Your Understanding

1. Reshape the fish_encounters data set (in the tidyr package) into a wide format.

2. Reshape the relig_income data set (in the tidyr package) into a long format.

Changing Basic Plot Attributes

- Changing basic attributes:

```
Base plot: p \leftarrow ggplot(mtcars, aes(x = mpg, y = hp)) + geom_point()
```

Plot labels and titles:

```
X-axis label: p + xlab("Miles per Gallon")
Y-axis label: p + ylab("Horsepower")
Plot title: p + ggtitle("Horsepower vs MPG from MtCARS")
```

Axis scales:

```
Change x limits: p + xlims(min, max)
Change y limits: p + ylims(min, max)
Change color limits: p + lims(color = c(newlimits))
```

Formatting of plot area and text:

There are lots of arguments here!

Most items: p + theme()

Minimal theme: p + theme minimal()

Changing Aesthetic Attributes

- Changing aesthetic attributes:

```
If independent of mapping, you will change them in the geom!
```

ggplot(mtcars, aes(x = mpg, y = hp)) + geom point()

Point size, shape, color, and fill:

Check Your Understanding

Add to the plot in your last check your understanding by:

- 1. Adding axis labels and a title.
- 2. Changing the color, shape, or size of the points.
- 3. Rotating the x-axis labels by 45 degrees.

Grouping and Aesthetic Values

- It's easy to change group characteristics using aes(), include the specific characteristic you want (color, fill, shape) or use group and define those later.

Assign colors based on cyl:

Assign fill based on cy1:

Assign shape based on cyl:

Note: using factor(cyl) will help out these plots!

Mapping aesthetics based on data

- Mapping aesthetics that change with data must be done with aes ()

- Changing non-mapped aesthetics can be done anywhere

Adding data from other sets to existing plots

- Adding data manually from other sets is very clunky and should be avoided whenever possible.

Add another column from Loblolly. wide to the graph as red dots:

- the data set must be specified in the geom using data=
- mapping must be specified in the geom using mapping= and aes()
- other attributes have to be set independently in the geom
- · it is ugly and won't give you a correct legend

Check Your Understanding

Add to the plot in your last check your understanding by:

- 1. Coloring the plot points by Tree
- 2. Adding lines in the link data from the individual trees together

Geometric objects

Density plot - geom density()

Scatter plot - geom point() Plot a map - geom sf() Line plot - geom line() Rectangles - geom raster() geom tile() Box plot - geom boxplot() **Quantile-quantile** plot - geom qq line() Violin plot - geom violin() Stacked dot plot - geom dotplot() Bar plot - geom bar() Contour plot - geom contour() Histogram - geom histogram()

Choose the correct plot

for your data!

Skill Check 2.1 – Present Graph Types

```
Group 1: Continuous x and y data geom_point(), geom_line(), geom_qq_line()

Group 2: Continuous y and Categorical x data
```

Group 3: Data that form distributions
geom_histogram(), geom_density(), geom_dotplot()

geom bar(), geom boxplot(), geom violin()

Group 4: Data on maps
map_data(), geom_polygon(), coord_map()

Group 5: Data in matrices
geom_raster(), geom_tile(), geom_contour()

Group 6: "Other"

Pick one from https://exts.ggplot2.tidyverse.org/gallery/

Excellent Resources for ggplot2

Tidyverse Reference Guide – https://ggplot2.tidyverse.org/reference/

Data Visualization with R – https://rkabacoff.github.io/datavis/

The R Graphics Cookbook – https://r-graphics.org/

Additional Resources

https://www.stat.auckland.ac.nz/~ihaka/787/lectures-trellis.pdf – The Trellis system in lattice (PDF lecture slides)

http://www.cookbook-r.com/Manipulating_data/
Converting_data_between_wide_and_long_format/ Converting between long and wide format with reshape2, tidyr, and base R

Action Items

1. Read Assigned Chang Chapter for next time

2. Prepare SK 2.1 in your group