Model Description and Assumptions Sketches and FBDs Kinetic and Potential Energies Apply Convervation of Energy Standard Form of FOM

Module 4 - Energy Methods

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 3 - Example: Swinging Pendulum

Topic 3 - Example: Swinging Pendulum

- Model Description and Assumptions
- Sketches and FBDs
- Kinetic and Potential Energies
- Apply Convervation of Energy
- Standard Form of EOM

Model Description and Assumptions

Model:

A Swinging Pendulum

Description:

A mass is suspended by a rigid link from a pin.

Assumptions:

- the mass is treated as a point mass
- the link is rigid aand mass-less
- the pin is frictionless
- the air drag is negligable

Kinetic and Potential Energies Apply Convervation of Energy Standard Form of EOM

Sketches and FBDs

First separate the bodies of interest to draw a **free** body diagram.

Also, choose a zero-pontential reference.

Model Description and Assumptions Sketches and FBDs Kinetic and Potential Energies Apply Convervation of Energy Standard Form of EOM

Kinetic and Potential Energies

Now, identify all kinetic and potential energies present.

Kinetic Energy

Potential Energy

Apply Convervation of Energy

Apply the conservation of energy.

$$\frac{d}{dt}(KE + PE) = \frac{d}{dt}(Constant) = 0$$

Model Description and Assumptions Sketches and FBDs Kinetic and Potential Energies Apply Convervation of Energy Standard Form of EOM

Standard Form of EOM

Finally Re-arrange the resulting equation to get the equations of motion in a standard form.