Diode Application

Dr Mohammad Abdur Rashid

Readings

Electronic Devices and Circuit Theory

- Boylestad, Nashelsky

Chapter 2: Diode Applications

Diode

Current versus voltage characteristics

LED residential and commercial lighting

Dr Rashid, 2020

Diode symbol

Load-line analysis

Series diode configuration: (a) circuit; (b) characteristics.

Note

In general, a diode is in the "on" state if the current established by the applied sources is such that its direction matches that of the arrow in the diode symbol, and $V_D \geq 0.7$ V for silicon, $V_D \geq 0.3$ V for germanium, and $V_D \geq 1.2$ V for gallium arsenide.

Applying Kirchhoff's voltage law

$$E = V_D + I_D R$$

$$I_D = \frac{E}{R} \Big|_{V_D = 0 \text{ V}}$$

$$V_D = E|_{I_D=0\,\mathrm{A}}$$

Load line and point of operation

$$I_D = \frac{E}{R} \Big|_{V_D = 0 \text{ V}}$$

$$V_D = E|_{I_D=0\,\mathrm{A}}$$

The point of operation is usually called the quiescent point (abbreviated " *Q*-point") to reflect its "still, unmoving" qualities as defined by a dc network.

Determine: a. V_{D_Q} and I_{D_Q} . b. V_R .

(a) Circuit; (b) characteristics.

Using the Q-point values, the dc resistance

$$R_D = \frac{V_{D_Q}}{I_{D_O}} = \frac{0.78 \text{ V}}{18.5 \text{ mA}} = 42.16 \Omega$$

$$I_D = \frac{E}{R_D + R} = \frac{10 \text{ V}}{42.16 \Omega + 500 \Omega} = \frac{10 \text{ V}}{542.16 \Omega} \cong 18.5 \text{ mA}$$

$$V_R = \frac{RE}{R_D + R} = \frac{(500 \Omega)(10 \text{ V})}{42.16 \Omega + 500 \Omega} = 9.22 \text{ V}$$

Half-wave rectifier

electricala2z.com

Half-wave rectifier

Half-wave rectifier

Half-wave rectified signal

Half-wave rectified signal

$$V_{\rm dc} \cong 0.318(V_m - V_K)$$

Electronic Devices and Circuit
Theory – Boylestad, Nashelsky

$$V_{\rm dc} = 0.636 V_m$$

full-wave

$$V_{\rm dc} \cong 0.636(V_m - 2V_K)$$

Center-tapped transformer full-wave rectifier

Network conditions for the positive region of input voltage

Network conditions for the negative region of input voltage

