Równanie falowe dla struny lab. MOFiT 1 2019/2020

Aleksandra Pestka 23.04.2020

1 Cel projektu

Projekt miał na celu wykorzystanie prędkościowego schematu Verleta do wyliczenia wychylenia struny.

2 Sztywne i luźne warunki brzegowe.

Strunę zdyskretyzowano do N = 101 punktów, gdzie każdy fragment struny ma długość $\Delta x = 0.01$. Za krok czasowy przyjęto $\Delta t = 0.005$. Prędkość rozchodzenia się drgań: c = 1.

Pierwszy etap projektu polegał na rozwiązaniu poniższego równania:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \tag{1}$$

dla warunków początkowych $u_0(x) = \exp(-100(x-0.5)^2)$ oraz $v_0(x) = 0$. Przedział czasowy wynosił $t \in (0,5)$.

Poniżej zamieszczono wykresy wychylenia struny w punkcie x w chwili t dla sztywnych i luźnych warunków brzegowych.

2.1 Sztywne warunki brzegowe.

Przyjęto sztywne warunki brzegowe, tj. u(0,t) = u(1,t) = 0

Figure 1: u(x,t) dla sztywnych warunków brzegowych.

2.2 Luźne warunki brzegowe.

Przyjęto luźne warunki brzegowe: $\frac{\partial u}{\partial x}(0,t)=\frac{\partial u}{\partial x}(1,t)=0.$

Figure 2: u(x,t) dla luźnych warunków brzegowych.

3 Drgania tłumione.

Wprowadzono tłumienie drgań proporcjonalne do prędkości struny. Współczynnik tłumienia oznaczono jako β . Przyjęto sztywne warunki brzegowe.

Narysowano przebieg drgań u(x,t) dla $\beta=0.5,2,4.$

• $\beta = 0.5$

Figure 3: u(x,t) dla sztywnych warunków brzegowych z tłumieniem $\beta=0.5$

 $\bullet \ \beta = 2$

Figure 4: u(x,t)dla sztywnych warunków brzegowych z tłumieniem $\beta=2$

 $\bullet \ \beta = 4$

Figure 5: u(x,t) dla sztywnych warunków brzegowych z tłumieniem $\beta=4$

4 Drgania wymuszone.

Dodano siłę wymuszającą nadającą dodatkowe przyspieszenie strunie:

$$a_F(x,t) = \begin{cases} \cos(wt)dlax = x_0\\ 0dlax \neq x_0 \end{cases}$$
 (2)

Siłę przyłożono punktowo w $x_0=0.5$. W chwili t=0 struna spoczywa w równowadze, tj. v(x,t)=0 oraz u(x,t)=0. Za współczynnik tłumienia przyjęto $\beta=1$, a częstość wymuszenia wyniosła $\omega=\pi/2$.

Poniżej narysowano wykres u(x,t) dla $t \in (0,10)$

Figure 6: u(x,t) dla sztywnych warunków brzegowych z tłumieniem $\beta=1$ i wymuszeniem o częstości $\omega=\pi/2$

Po pewnym czasie drgania osiągają stan ustalony. W stanie tym ruch jest periodyczny z okresem drgań definiowanym jako $T=\frac{2\pi}{\omega}$, więc podstawiając częstość wymuszenia $\omega=\pi/2$ otrzymujemy T=4.

5 Rezonanse

Wyliczono średnią energię stanu ustalonego struny w $t \in (16, 20)$ Następnie narysowano < E > w funkcji $\omega \in (0, 10\pi)$.

5.1 siła przyłożona punktowo w $x_0 = 0.5$

Figure 7: $E(\omega)$ dla sztywnych warunków brzegowych z tłumieniem $\beta=1$

Dla przyjętego $\beta=1$ częstość własnych drgań tłumionych wynosi $w_n=n\pi$. Rezonanse są dostrzegalne tylko dla nieparzystych n.

5.2 siła przyłożona punktowo w $x_0 = 0.4$

Figure 8: $E(\omega)$ dla sztywnych warunków brzegowych z tłumieniem $\beta=1$

Przesuwając punkt przyłożenia siły wymuszającej poza środek struny udało się wywołać rezonanse dla parzystych n.

6 Podsumowanie

Dla wychylenia struny rozważano sztywne, jak i luźne warunki brzegowe. Zaobserwowano wpływ tłumienia i siły wymuszającej na przebieg drgań. Zbadano także zależność średniej energii stanu ustalonego od częstości własnych drgań tłumionych.