Digital Image Processing (CSE 478) Lecture 23: Chamfer matching

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Template shape

Query Image

Template shape

Query Image

Template shape

Query Image

Template shape

Query Image

Distance Transform

How to efficiently compute DT?

Distance Transform – 1D case

- Two pass O(n) algorithm
 - Initialize
 - Forward pass (1 to n-1) D[j] ← min(D[j],D[j-1]+1)
 - Backward pass (n-2 to 0) $D[j] \leftarrow min(D[j],D[j+1]+1)$

Distance Transform – 2D

- 2D case similar to 1D
 - Initialize
 - Forward Pass (left and top)
 - Backward Pass (right and below)

œ	8	8	8
œ	0	8	8
8	0	8	8
8	8	8	8

o o	8	8	8
œ	0	1	8
oo	0	8	8
- o	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

Distance Transform – 2D

- Similar extension to 8 neighbours (Chessboard distance)
 - Initialize
 - Forward Pass (left, top, top-left)
 - Backward Pass (right, below, right-below)

œ	8	8	8
œ	0	8	8
8	0	8	8
œ	8	8	8

_∞	8	8	8
œ	0	1	8
oo	0	8	8
- o	8	8	8

8	8	8	8
8	0	1	2
8	0	1	2
8	1	1	2

1	1	1	2
1	0	1	2
1	0	1	2
1	1	1	2

What about Euclidian Distance??

Chamfer Matching Overview

- Detect edges in query image
- Slide template over query image edge map
- Find closest edge pixel in image for each shifted template pixel
- At each location, compute average distance from each pixel in template to closest edge in image
- Lowest cost is the best match

Limitations

Possible improvement

