Analyzing Complex Survey Data Using Python

Introduction to the samplics Package

PYDATA, CAMBRIDGE MEETUP
28 APRIL 2021

About me

Statistician at UNICEF

Previously worked at Westat and Statistics Canada

Hold Ph.D. in Statistics

Social media handle

Twitter / GitHub / LinkedIn: @MamadouSDiallo

Plan of the Presentation

- Introduction
- ► A short tour of samplics
 - ► Sample size calculation
 - ▶ Sample selection
 - ► Sample weighting
 - ▶ Population parameter estimation
 - T-test

Why samplics?

- ▶ Python is missing a comprehensive survey sampling package
- ▶ Allow Python users to stay in the Python ecosystem when analysing survey data
- ▶ Help reduce the gap between official statistics and machine learning / data science

Disclaimer: current version of samplics is a beta stage and the APIs are not stable yet. While the code base has extensive testing, users should expect bugs and improvements that may break their code. Many features are being developed and may influence the design of existing APIs.

Samplics documentation: https://samplics.readthedocs.io/en/latest/index.html

What is Survey Sampling?

- ▶ Random selection of a subset from a finite population
- ► Known probabilities of selection
- ► The sampling strategy or sampling design is often complex for operational, cost, or efficiency reasons
 - ▶ Stratification
 - ► Clustering, Stage selection
 - ▶ Phase selection
 - ▶ Calibration
 - Etc.

Survey sampling techniques are the set of statistical methods for estimating population parameters (e.g., mean, total, regression coefficients, etc.) under the sampling design.

Research questions

- ▶ what is the household poverty rate in the USA?
- is poverty rate the same between households headed by women vs men?

To answer the research questions, let's consider a **subset** of the ACS 2019 as **our target population**.

Note

- American Community Survey (ACS) 2019 from IPUMS (https://usa.ipums.org/usa).
- Only a subset of the ACS 2019 data was used. Hence, the numbers do not represent the full ACS2019.
- ▶ All the analysis in this presentation are just for illustration purpose, not a proper statistical analysis of the 2019 ACS.

As mentioned before, we use a subset of the ACS 2019 as our universe / frame / census

We cluster the households in the frame into 2,351 primary sampling units (PSUs)

Each cluster is a geographic area composed of a few hundred of households

hhid	region	psu	sex	race	education	family_income	poverty
612101	Midwest	1116	Female	White	College	42000	0
1022602	South	1877	Female	White	No college	61400	0
715033	Northeast	1304	Male	White	College	108000	0
1207701	South	2229	Female	White	No college	22300	0
912305	Midwest	1683	Male	White	College	20110	0
356101	South	656	Male	White	College	42000	0
1193372	South	2204	Female	White	No college	43300	0
1090718	South	1999	Male	White	College	227000	0
1014851	South	1865	Female	White	College	171100	0
378475	West	701	Male	White	No college	47300	0
294309	South	543	Female	Black	College	27000	0
326362	South	603	Female	Black	No college	87500	0
788672	Northeast	1452	Female	Black	College	47200	0
245608	South	463	Female	White	No college	14300	1
645861	South	1181	Female	Black	College	59800	0

Sample Size

```
from samplics.sampling import SampleSize
# Expected poverty poverty rate
expected_pov_rate = {
    "Midwest": 0.11,
    "Northeast": 0.09,
    "South": 0.15,
    "West": 0.13,
# Declare the sample size calculation parameters
pov_rate_sample = SampleSize(
    parameter="proportion", method="wald", stratification=True
# calculate the sample size
pov_rate_sample.calculate(target=expected_pov_rate, half_ci=0.06)
# show the calculated sample size
pov_rate_sample.samp_size
{'Midwest': 105, 'Northeast': 88, 'South': 137, 'West': 121}
```

```
# Convert sample sizes to a pandas dataframe
pov_rate_sample.to_dataframe()

_stratum _target _half_ci _samp_size
```

	_stratum	_target	_half_ci	_samp_size
0	Midwest	0.11	0.06	105.0
1	Northeast	0.09	0.06	88.0
2	South	0.15	0.06	137.0
3	West	0.13	0.06	121.0

Determine the number of clusters needed Total: 32 PSUs

The selection module in samplics provides

- ► Simple random selection (SRS)
- ► Systematic selection
- ▶ Probability proportional to size (PPS)
 - ➤ Systematic (method="pps-sys") with and without replacement
 - ► Brewer (method= "pps-brewer")
 - ► Hanurav-Vijayan (method= "pps-hv")
 - ► Murphy (method= "pps-murphy")
 - ► Rao-Sampford (method= "pps-sampford")

Two step selection

Step 1: select the PSUs (clusters of households)

Step 2: Select the households from the selected PSUs

Note

- ▶ For this presentation, we artificially constructed the PSUs.
- ▶ Often, data collection is needed after step 1 to create the sampling frame for the stage 2 selection.

```
from samplics.sampling import SampleSelection
stage1_design = SampleSelection(
    method="pps-sys", stratification=True, with_replacement=False
np.random.seed(12345)
    psu_frame["psu_sample"],
    psu_frame["psu_hits"],
    psu_frame["psu_probs"],
) = stage1_design.select(
    samp_unit=psu_frame["psu"],
    samp_size=psu_sample_size,
    stratum=psu_frame["region"],
    mos=psu_frame["number_households"],
    to_dataframe=False,
    sample_only=False,
psu_frame.sample(10)
```

select() returns a tuple of three numpy arrays

- Sample indicator
- Number of hits
- Selection probabilities

to_dataframe flag will return a pandas data frame when set to True

	region	state	psu	number_households	psu_sample	psu_hits	psu_probs
1377	South	North Carolina	1564	519			0.01064
1612	South	Texas	2033	197			0.004039
1430	South	Oklahoma	1715	485			0.009944
414	Midwest	Ohio	1663	448			0.01114
838	Northeast	Pennsylvania	1784	615			0.016539
2238	West	Oregon	1730	710			0.02246
131	Midwest	Indiana	836	562			0.01398
302	Midwest	Missouri	1202	927			0.023062
1585	South	Texas	2006	453			0.009288
1815	West	Arizona	46	500			0.015818

19,303 households listed in the 32 selected PSUs

In each PSU, we will select 15 households using SRS

Select 15 households from each PSU in the sample

We use simple random selection (srs)

All households have the same probability of selection within a stratum

The output is of type a pandas dataframe because to_dataframe=True.

```
np.random.seed(12345)
stage2_design = SampleSelection(
    method="srs", stratification=True, with_replacement=False
household_sample = stage2_design.select(
    samp_unit=household_frame["hhid"],
    samp_size=15,
    stratum=household_frame["psu"],
    to_dataframe=True,
    sample_only=True,
household_sample.sample(5)
    _samp_unit _stratum _mos _sample _hits
                                            _probs
424
       1119553
                  2057
                         1.0
                                        1 0.030928
383
       985675
                                        1 0.014822
                   1811
                         1.0
301
       784390
                  1444
                         1.0
                                        1 0.036058
341
       843148
                                        1 0.039164
                  1557
                         1.0
                                        1 0.029126
277
       702266
                  1279
```

Overall inclusion probabilities are the product of the probabilities of selection of each stage

Design weights are the inverse of the inclusion probabilities

```
# Probability of inclusion
household_sample["inclusion_probs"] = (
    household_sample["psu_probs"] * household_sample["hh_probs"]
)

# Base & Design weights
household_sample["design_weight"] = 1 / household_sample["inclusion_probs"]
```

The weighing module in samplics provides

- Non-response adjustment
- ► Calibration including post-stratification
- ► Normalization
- ► Replicate weights
 - ▶ Balanced Repeated Replication (BRR)
 - **▶**Bootstrap
 - **▶** Jackknife

Non-response weight adjustment consists of distributing the weight of non-respondents to respondents

Samplics uses a pre-codified scheme to distinguish the response status

- "in" for ineligible
- "rr" for respondent
- ► "nr" for non-respondent
- "uk" for unknown

If the response variable is not codified in the default scheme. (i.e., "in", "rr", "nr", "uk"), then the user must provide a mapping between the default codes and the user-defined codes.

```
from samplics.weighting import SampleWeight
response_status_mapping = {
    "in": "ineligible",
    "rr": "respondent",
    "nr": "non-respondent",
    "uk": "unknown",
household_sample["nr_weight"] = SampleWeight().adjust(
    samp_weight=household_sample["design_weight"],
    adjust_class=household_sample[["region", "race"]],
    resp_status=household_sample["response_status"],
    resp_dict=response_status_mapping,
    unknown_to_inelig=False,
```

406 1068887 South White respondent 3251.640000 3895.8 277 703166 Northeast Black respondent 2478.966667 2478.8 87 165715 West White respondent 2107.318519 2622.4 455 1219025 West White respondent 3251.640000 3895.8 338 841053 South White respondent 2679.761905 3573. 201 457655 Midwest Asian respondent 3251.640000 3895.8 122 260577 South White respondent 3251.640000 3895.8	
277 703166 Northeast Black respondent 2478.966667 2478.3 87 165715 West White respondent 2107.318519 2622.4 455 1219025 West White respondent 2107.318519 2622.4 338 841053 South White respondent 3251.640000 3895.8 201 457655 Midwest Asian respondent 2679.761905 3573. 122 260577 South White respondent 3251.640000 3895.8	weight
87 165715 West White respondent 2107.318519 2622.4 455 1219025 West White respondent 2107.318519 2622.4 338 841053 South White respondent 3251.640000 3895.8 201 457655 Midwest Asian respondent 2679.761905 3573. 122 260577 South White respondent 3251.640000 3895.8	32830
455 1219025 West White respondent 2107.318519 2622.4 338 841053 South White respondent 3251.640000 3895.8 201 457655 Midwest Asian respondent 2679.761905 3573. 122 260577 South White respondent 3251.640000 3895.8	966667
338 841053 South White respondent 3251.640000 3895.8 201 457655 Midwest Asian respondent 2679.761905 3573. 122 260577 South White respondent 3251.640000 3895.8	40823
201 457655 Midwest Asian respondent 2679.761905 3573. 122 260577 South White respondent 3251.640000 3895.8	140823
122 260577 South White respondent 3251.640000 3895.8	32830
	015873
354 905582 Midwest White pop-respondent 2679.761905 07	32830
304 300002 White Hon-respondent 2079.761900 U.	00000
372 939112 West White respondent 2107.318519 2622.4	40823
251 631203 Midwest White respondent 2679.761905 3366.8	80342
325 822536 Northeast Other respondent 2478.966667 3305.2	88889
447 1179796 South White respondent 3251.640000 3895.	32830
292 740282 Northeast White respondent 2478.966667 2784.	070256
439 1179552 South White respondent 3251.640000 3895.	32830
164 358293 South White non-respondent 3251.640000 0.0	00000

Samplics implements the generalized regression (GREG) class for calibration

It requires known auxiliary variables control values at the population level

After the calibration adjustment, the weighted estimates of the auxiliary variables sum to the control values

```
totals_by_domain = {
    "Midwest": {"poverty": 31414, "nb_children": 138952},
    "Northeast": {"poverty": 23280, "nb_children": 102614},
    "South": {"poverty": 64056, "nb_children": 239165},
    "West": {"poverty": 32131, "nb_children": 154986},
household_sample["calib_weight"] = SampleWeight().calibrate(
    samp_weight=household_sample["nr_weight"],
    aux_vars=household_sample[["poverty", "nb_children"]],
    control=totals_by_domain,
    domain=household_sample["region"],
test_calib = household_sample[["region"]]
test_calib["poverty_weighted"] = (
    household_sample["poverty"] * household_sample["calib_weight"]
test_calib["nb_children_weighted"] = (
    household_sample["nb_children"] * household_sample["calib_weight"]
test_calib[["region", "poverty_weighted", "nb_children_weighted"]].groupby(
    "region"
).sum().reset_index()
    region poverty_weighted nb_children_weighted
                  31414.0
  Midwest
                                   138952.0
                  23280.0
                                   102614.0
 Northeast
                  64056.0
                                   239165.0
                  32131.0
                                   154986.0
```

Estimation

The estimation module in samplics provides

- ► Taylor-based estimates (class TaylorEstimator)
- ▶ Replicate-based estimates (class ReplicateEstimator)

Estimation

TaylorEstimator can estimate

- Proportions
- Means
- Totals
- Ratios
- Quantiles (under development)

For domain estimation, use function arguments domain.

Finite population correction (fpc) also possible

The APIs for **ReplicateEstimator** is similar with the use of rep_weight instead of samp_weight

```
from samplics.estimation import TaylorEstimator
poverty_rate = TaylorEstimator(parameter="proportion")
poverty_rate.estimate(
    y=resp_sample["poverty"],
    samp_weight=resp_sample["calib_weight"],
    stratum=resp_sample["region"],
    psu=resp_sample["psu"],
print(poverty_rate)
SAMPLICS - Estimation of Proportion
Number of strata: 4
Number of psus: 32
Degree of freedom: 28
                                 LCI
                                          UCI
                                                    CV
LEVELS PROPORTION
           0.881327 0.02047 0.832597 0.917281 0.023227
           0.118673 0.02047 0.082719 0.167403 0.172492
```

Tabulation and T-test

samplics provide APIs to produce survey-based tabulations and t-tests.

Tabulation() and **CrossTabulation()** classes are the main interfaces for producing one-way and two-way tables.

Rao-Scott adjustment implemented for both Pearson and Likelihood ration tests

Ttest() class is the main interface for comparison of group means.

```
from samplics.categorical import Ttest
poverty_by_sex = Ttest(samp_type="one-sample")
poverty_by_sex.compare(
    y=resp_sample["poverty"],
    group=resp sample["sex"],
    samp_weight=resp_sample["calib_weight"],
    stratum=resp_sample["region"],
    psu=resp_sample["psu"],
print(poverty_by_sex)
Design-based One-Sample T-test
 Null hypothesis (Ho): mean(Female) = mean(Male)
 Equal variance assumption:
 t statictics: 0.6148
 Degrees of freedom: 391.00
  Alternative hypothesis (Ha):
  Prob(T < t) = 0.7305
  Prob(|T| > |t|) = 0.5390
  Prob(T > t) = 0.2695
 Unequal variance assumption:
  t statictics: 0.6076
 Degrees of freedom: 332.94
  Alternative hypothesis (Ha):
  Prob(T < t) = 0.7281
   Prob(|T| > |t|) = 0.5438
  Prob(T > t) = 0.2719
 Group Nb. Obs
                    Mean Std. Error Std. Dev. Lower CI Upper CI
Female
            203 0.128885
            190 0.107717
 Male
                            0.028981
                                      0.399481 0.048351 0.167082
```

Next steps

Develop more examples and training material

Add more features

- Expansion of the sample size module
- ► Addition of estimation for quantiles
- Next modules to be added
 - ➤ Survey-based regression modelling
 - ▶ Imputation methods

Thank you

@MamadouSDiallo msdiallo@sampling.org