Week 5

Mathematics and Computational Methods for Complex Systems, 2023

Probability

Experiments

A process with measured, uncertain outcomes

Data scientist

Measure population's credit card scores

Climate scientist

Measure tomorrow's weather

and they all need...

Experiments

Mathematical framework to deal with characterising and quantifying uncertain events

= Lecture part 1

Terminology we will learn about:

1. Probability spaces

Mathematical setting for experiments

2. Random variables

Quantities within an experiment that depend on uncertain events

Terminology we will learn about:

Necessary to properly understand random variables and their properties

Necessary in basically any quantitative subject

1. Probability spaces

Mathematical setting for experiments

2. Random variables

Quantities within an experiment that depend on uncertain events

Lecture theatre next week

Lecture theatre next week

Formal terminology

Each seating combination is an outcome

Combinations of outcomes are events

Events are sets of outcomes

The set of events is the power set of outcomes

Power set of S

The set of subsets of S

$$S = \{1,2,4\}$$

 $\mathcal{P}(S) = \{\emptyset, \{1,2\}, \{2,4\}, \{4\}, \{1\}, \dots \{1,2,4\}\}$

...since any combination of outcomes is an event

The set of events is the power set of outcomes

Power set of S

The set of subsets of S

$$S = \{1,2,4\}$$

$$\mathcal{P}(S) = \{\emptyset, \{1,2\}, \{2,3\}, \{3,4\}, \{1\}, \dots \{1,2,3,4\}\}$$

Homework

Cardinality of the power set of a set with n elements?

---- Induction is your friend!

Events have an algebra

Algebra

Rules for elements to interact with each other

...and make babies!

Events have an algebra

Algebra

Rules for elements to interact with each other

...and make babies!

Recap: algebra of vector spaces

Closure under addition

$$x + y \in V \quad \forall x, y \in V$$

"plus, minus, times"

Events have an algebra

Algebra

Rules for elements to interact with each other

...and make babies!

Events

$$X \cup Y = Z$$
 Union (or)

$$X \cap Y = Z$$
 Intersection (and)

$$X \setminus Y = Z$$
 Complement (not/without)

Questions for the audience

Event X: the back row is completely filled

Event Y1: the front row is completely filled

Event Y2: the back row is partially filled

Express as grammatically correct sentences:

$$X \cap Y_1$$
 $X \cap Y_2$
 $X \cup Y_1$ $X \cup Y_2$
 $X \setminus Y_1$ $X \setminus Y_2$

- can any of these be simplified?

Questions for the audience

Event X: the back row is completely filled

Event Y1: the front row is completely filled

Event Y2: the back row is partially filled

Express as grammatically correct sentences:

$$X \cap Y_1$$
 $X \cap Y_2 = X$

$$X \cup Y_1$$
 $X \cup Y_2 = X$

$$X \setminus Y_1$$
 $X \setminus Y_2 = \emptyset$

The empty set. Learn this notation!

Each event has a probability

Event: the back row is completely filled

Probability 0.3

Probability function

 $\mathbb{P}: events \rightarrow [0,1]$

$$0 \le \mathbb{P}(x) \le 1$$

What does it mean to have a probability?

Probability is a way of expressing partial knowledge of an event

With enough knowledge and insight, could I predict tomorrow's weather without uncertainty?

Correct probability

Best probability given my knowledge of the world

is three things:

Probability function:

Assigns a probability to every single event

Event space:

the set containing all possible events (combinations of outcomes)

for next week's lecture seating:

Probability function:

Assigns a probability to every single event

Event space:

Sets of seating combinations

Example set:

All seating combinations where the back row is filled

for next week's lecture seating:

...depends upon what I'm modelling

$$(\Omega, \mathcal{F}, \mathbb{P})$$

Homework

Sample/event space if I was also interested in who is sitting where?

Generating a random colour

$$\Omega = \{\omega: \omega_1, \omega_2, \omega_3 \in [0,1]\}$$

$$R G B$$

Example events

can be drawn

"Red is saturated"

"Blue > 0.5"

Generating a random colour

$$\Omega = \{\omega: \omega_1, \omega_2, \omega_3 \in [0,1]\}$$

$$R G B$$

Example events

can be drawn

"Red is saturated"

"Blue > 0.5"

Events have a 'volume'!!!

Volumes and probabilities are both measures

also lengths, areas, etc ...

How "big" is an event? \iff How probable is an event?

(According to some notion of volume)

What makes a measure?

Optional material

(Practise reading maths)

Total measure = sum of individual measures

$$\mathbb{P}[\emptyset] = 0$$

Non-negativity

$$\mathbb{P}[f] \ge 0 \ \forall f \in \mathcal{F}$$

Countable additivity for disjoint sets

$$\mathbb{P}\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{i=1}^{N} \mathbb{P}[A_{i}]$$

$$A_{i} \cap A_{j} \quad \forall i, j \in \{1, \dots, n\}$$

What makes a measure?

Optional material

(Practise reading maths)

Probability measures also require:

Normalised:

$$\mathbb{P}[\Omega] = 1$$

 $\mathbb{P}: \mathscr{F} \to \mathbb{R}$ is a measure on \mathscr{F} if:

$$\mathbb{P}[\emptyset] = 0$$

Non-negativity

$$\mathbb{P}[f] \ge 0 \ \forall f \in \mathcal{F}$$

Countable additivity for disjoint sets

$$\mathbb{P}\left[\bigcup_{i=1}^{n} A_{i}\right] = \sum_{i=1}^{N} \mathbb{P}[A_{i}]$$

$$A_{i} \cap A_{j} \quad \forall i, j \in \{1, \dots, n\}$$

Measuring sets

$$\Omega = \{\omega : \omega_1, \omega_2 \in [-1,1]\}$$

Area of A? Easy!

Measuring sets

$$\Omega = \{\omega : \omega_1, \omega_2 \in [-1,1]\}$$

$$A = \mathbb{Q}^2 \cap \Omega$$
 (Set of rationals in the square)

$$\mathbb{P}[A]$$
?

....i.e. area of A?

$$\Omega$$

Measuring sets

$$\Omega = \{\omega : \omega_1, \omega_2 \in [-1,1]\}$$

$$A = \{\omega: \omega_1, \omega_2 \in \mathbb{Q}\} \cap \Omega$$
 (Set of rationals in the square)

$$\mathbb{P}[A] = 0$$

(but not obvious or logical)

Infinite irrationals
$$\in \mathbb{R} \cap \mathbb{Q}^c$$

$$\downarrow$$

$$\downarrow$$

$$q_1 \in \mathbb{Q}$$

$$q_2 \in \mathbb{Q}$$

Banach Tarski paradox

...you can't measure everything!

Some events can't have a probability

What's the probability our heights satisfy the following property:

 $V = \{v : \forall r \in \mathbb{R}, \exists ! v \in V : v - r \in \mathbb{Q}\}$ (Vitali set, don't worry if uninterested)

Some events can't have a probability

What's the probability our heights satisfy the following property:

$$V = \{v : \forall r \in \mathbb{R}, \exists ! v \in V : v - r \in \mathbb{Q}\}$$
 (Vitali set, don't worry if uninterested)

No answer to this question!!!

How do we know what events we can measure the probability of?

Events form a σ -algebra

(i.e. a space of safe-to-measure things)

Any set (e.g. outcomes)

Any set of sets (e.g. events)

 ${\mathcal F}$ is a $\sigma-$ algebra on Ω if:

$$\Omega \in \mathscr{F}$$

Closure under complements

$$S \in \mathcal{F} \Rightarrow S^c \in \mathcal{F}$$

Closure under countable unions

$$\{A\}_{i=1}^{n\in\mathbb{N}}\in\mathcal{F}\Rightarrow\bigcup_{i=1}A_i\in\mathcal{F}$$

 σ —algebras are optional topic

is three things:

Probability function:

Assigns a probability to every single event

Event space:

the set σ —algebra containing all possible events (combinations of outcomes)

Random variables

are quantitative questions about the experiment

Random variables

are quantitative questions about the experiment

are functions that map from outcomes to numbers

(or to any "measurable space")

Random variables example

What was the number of unfilled seats? $X(\omega)$

87

(Or any integer between 0 and *number of seats*)

Random variables example

Probability of four unfilled seats?

Correct expression

$$\mathbb{P}[\{\omega \in \Omega : X(\omega) = 4\}]$$

Shorthand

$$\mathbb{P}[X=4]$$

Random variable taking value is an event

Eg { outcomes where number of unfilled seats = 5 }

Random variable taking value is an event

Random variable taking value is an event

Y is whether back row is filled

Set of plausible values a random variable can take

Set of plausible values a random variable can take

Smallest set S such that

$$\mathbb{P}[X \in S] = 1$$

Set of plausible values a random variable can take

Smallest set S such that

$$\mathbb{P}[X \in S] = 1$$

Long form:

$$\mathbb{P}[\{\omega \in \Omega : X(\omega) \in S\}] = 1$$

"Set of outcomes where X takes a value inside S"

X is the number of unfilled seats

Smallest set S such that $\mathbb{P}[X \in S] = 1$

With probability one:

 $0 \le X \le \text{number of seats}$ $X \in \mathbb{Z}$

 $supp(X) = \{0,1,...number of seats\}$

Y is whether the back row is filled

What's the support of Y?

Y is whether the back row is filled

What's the support of Y?

$$supp(Y) = \{0,1\}$$

Z is height of 2nd person in 3rd row

What's the support of Z?

Z is height of 2nd person in 3rd row

What's the support of Z?

$$supp(Z) = (l, h)$$

l: height of shortest person on course

h: height of tallest person on course

Two flavours of random variables

Support is finite set

Discrete random variables

X is the number of unfilled seats $\sup (X) = \{0,1,2,...200\}$

Y is whether the back row is filled $\sup(Y) = \{0,1\}$

Continuous random variables

Z is height of 2nd person in 3rd row supp(Z) = (l, u)

Probability mass function

...discrete random variables only!

$$f_X: \mathbb{R} \to [0,1]$$

Probability mass function

...discrete random variables only!

X is the number of unfilled seats

Probability mass function

...discrete random variables only!

 f_X : Value v — Event: X = v Probability of event

Graph of probability mass function f_X

NB: could have mathematically identical PMF for completely different experiment

Properties of Probability mass functions

Sum of red line lengths adds to one

Probability of X taking some value = 1

Random variables with particular PMFs pop up quite often...

We give then names

Bernoulli random variable

Random variables are quantitative questions about the experiment

Bernoulli random variables are binary questions (yes/no)

Y is whether the back row is filled f_Y ?

Bernoulli random variable

numpy.random.binomial(1,p)

$$Y \sim \text{Bern}(p)$$

Y is distributed as a Bernoulli random variable, with probability p

$$f_Y = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

Uniform random variables

numpy random rand

Probability of every outcome in support is equal

(Probably means we know very little about experiment)

Uniform random variables

Probability of every outcome in support is equal

(Probably means we know very little about experiment)

 \boldsymbol{X} is uniformly distributed on the set \boldsymbol{S}

X is a discrete random variable

 $|S| < \infty$

NB: S is support

Example of a Uniform random variable

(For some fixed $k \in \mathbb{N}$)

More outcomes means less probability per outcome

What happens as $k \to \infty$?

Random variable with continuous support

Every possible (single) outcome is impossible

Only reasonable quantity: ranges of outcomes

Uniform random variable with continuous support

$$\mathbb{P}[X \in \{a \cup b\}] = 0$$

Probability X equals a or b

$$\mathbb{P}[X \in [a, b] = b - a$$

Probability X between a and b

Uniform random variable with continuous support

$$\mathbb{P}[x \in (a,b)] = \int_a^b f_X(x) \ dx$$

Probability density function of continuous random variable

$$\mathbb{P}[x \in (a,b)] = \int_a^b f_X(x) \ dx$$

Summary

What's left

