# GearBox\_32\_24 使用说明

## 前言

GearBox变速箱,这里指的是RTL里非整数的位宽转换模块。本模块将32bit的信号(带使能)转换到24bit(带使能)。因为是高位宽转低位宽,必须要加快时钟域才能完成转换,理论输入输出时钟比例为3:4。一般来讲输出多高一些保证正常运行,如果想要输出也是连续的流,可以在后面加一个异步fifo或RAM整流。

### 数据传输结构

数据的输入输出关系如下图所示,和GearBox\_24\_32不一样的地方在于本模块需要先加快时钟,再进行 pipeline转换。数据的输入输出延迟也相对高上不少。

data\_in[31:0]

| B0 | C1 | D2 | F0 | G1 | H2 |
|----|----|----|----|----|----|
| A2 | C0 | D1 | E2 | G0 | H1 |
| A1 | B2 | D0 | E1 | F2 | H0 |
| A0 | B1 | C2 | E0 | F1 | G2 |

data temp[31:0]

| В0 | C1 | D2 | F0 | G1 | H2 |
|----|----|----|----|----|----|
| A2 | C0 | D1 | E2 | G0 | H1 |
| A1 | B2 | D0 | E1 | F2 | H0 |
| A0 | B1 | C2 | E0 | F1 | G2 |

data\_temp\_dly[31:0]

| В0 | C1 | D2 | F0 | G1 | H2 |
|----|----|----|----|----|----|
| A2 | C0 | D1 | E2 | G0 | H1 |
| A1 | B2 | D0 | E1 | F2 | Н0 |
| A0 | B1 | C2 | EO | F1 | G2 |

data\_out[23:0]

| A2 | B2 | C0 | D2 | E2 | F2 | G2 | H2 |
|----|----|----|----|----|----|----|----|
| A1 | B1 | C1 | D1 | E1 | F1 | G1 | H1 |
| A0 | В0 | C0 | D0 | E0 | F0 | G0 | Н0 |

# 输入连续时序图

随着数据输入的信号有data\_en和data\_in\_last。data\_en代表当前clock数据有效,data\_in\_last为行结束信号,代表一行的数据传输结束,并且会重置内部计数器,内部计数器的作用为判断当前data\_in为输入的哪一个相位。输入和输出延迟大约8-9个输入时钟,主要为时钟转换fifo的延迟,示意图没有画那么久。



正常来讲,每3个输入就会有4个输出,当然data\_in\_last允许出现在数据比例异常的情况。也就是说最后一组数据只有1/2个输入,输出会有2/3个。具体的输入输出关系可以参考下面的时序图。示意图输入时钟与输出时钟恰好是3: 4,所以输出没有断续,当输出时钟更快的时候会出现data\_out\_en断续的情况。

下图为data in last出现在第1相位:



#### 下图为data in last出现在第2相位:



#### 输入断续的时序图

当然,更进一步的是本模块可以支持输入使能断续的转换。

下图为输入断续下data\_in\_last出现在第1相位:

