Advertising case

sale: Total number of sold items.

normalsale: A proxy of the normal sale in the same week.

store: The id-number of the store.

ad: Advertising (0 = no advertising, 1 = advertising).

discount: Discount in percent.

discountSEK: Discount in Swedish kroner.

week: Week number (2, 4, 5, 7, 8, 9).

Objective: Predict sale for the individual store based on the normal sale and information about the advertising campaign.

Sale distributions

Discount distributions

Scatter plot matrix

Week and advertising cross tabulation

	0	T
2	25	0
4	1	164
5	0	44
7	344	0
8	317	0
9	0	171

Advertising case

A log-linear model with a Poisson response and

$$E(Y \mid N, X) = Ne^{X^{T}\beta} = e^{\log(N) + X^{T}\beta}$$
 (1)

with N the normal sale and X the other predictors is suggested.

Advertising case

	Estimate	Std. Error	z value	Pr(> z)
ad1	0.32	0.03	9.90	4.3e-23
discount	-0.08	0.02	-4.43	9.4e - 06
${\sf discountSEK}$	0.42	0.06	7.01	$2.4e{-12}$

Question: Why does discount have the "wrong" sign? Why is it significant?

Diagnostic plot

Quasi Poisson

	Estimate	Std. Error	t value	$\Pr(> t)$
ad1	0.32	0.11	2.89	0.004
discount	-0.08	0.06	-1.29	0.2
${\sf discountSEK}$	0.42	0.21	2.04	0.041

Gamma log-linear model

Diagnostic plot – Gamma model

Reporting the model

Standard combinants

For the parameter $\gamma = a^T \beta$ (for fixed a), the standard combinants are

$$Z_{a} = \frac{\hat{\gamma} - \gamma}{\hat{\sigma} \sqrt{a^{T} (\mathbf{X}^{T} \mathbf{W} \mathbf{X})^{-1} a}}.$$

or

$$Z_a^2 = \frac{(\hat{\gamma} - \gamma)^2}{\hat{\sigma}^2 a^T (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} a}$$

which both give confidence intervals of the form

$$\hat{\gamma} \pm z \hat{\sigma} \sqrt{a^T (\mathbf{X}^T \mathbf{W} \mathbf{X})^{-1} a}$$

for z a suitable quantile in the (approximate) distribution of Z_a .

The profile log-likelihood

Define $\ell_{\mathsf{max}} = \mathsf{sup}_{\beta} \, \ell(\beta)$ and

$$\ell(\gamma) = \sup_{\beta: \gamma(\beta) = \gamma} \ell(\beta)$$

as the profile log-likelihood for the parameter of interest $\gamma(\beta) \in \mathbb{R}$.

The distribution of the combinant

$$R(\mathbf{Y}, \gamma) = 2(\ell_{\mathsf{max}} - \ell(\gamma))$$

can be approximated by the χ^2 -distribution with 1 degrees of freedom if the model is true.

The 95%-quantile is 3.841 yielding the profile likelihood interval

$$\{\gamma \mid \ell(\gamma) \geq \ell_{\mathsf{max}} - 1.96\}$$

with approximate coverage 95%.

Quadratic approximations

$$\ell(\beta) \simeq \ell_{\mathsf{max}} - \frac{1}{2} (\hat{\beta} - \beta)^{\mathsf{T}} \mathcal{J}^{\mathsf{obs}} (\hat{\beta} - \beta).$$

With $\mathcal{J}^{\text{obs}} = -D^2\ell(\hat{\beta})$ the positive (semi)definite observed Fisher information.

From this

$$2(\ell_{\mathsf{max}} - \ell(\beta)) \simeq (\hat{\beta} - \beta)^{\mathsf{T}} \mathcal{J}^{\mathsf{obs}}(\hat{\beta} - \beta)$$

and approximate profile log-likelihood intervals can be computed by profiling the quadratic approximation.

This gives the same intervals as using a squared Z-score with

$$\hat{\mathsf{se}} = \sqrt{((\mathcal{J}^{\mathsf{obs}})^{-1})_{pp}}$$

for a standard confidence interval construction.

