Math 8230 Homework 2

p.54

#1 Find the image of $\{z: Rez < 0, |Imz| < \pi\}$ under the exponential function.

#4 Discuss the mapping properties of z^n and $z^{1/n}$ for $n \ge 2$. (Hint: use polar coordinates) We have that $z = re^{i\theta}$, then $z^n = r^n e^{in\theta}$.

We have that $z = re^{i\theta}$, then $z^{1/n} = e^{\log(z^{1/n})} = e^{\frac{1}{n}\log|z| + \frac{1}{n}iArg(z) + \frac{1}{n}i2\pi k} = |z|^{1/n} e^{\frac{i}{n}(Arg(z) + 2\pi k)} = |z|^{1/n} e^{\frac{i}{n}Arg(z)} \zeta_n$, where $\zeta_n = e^{\frac{i2\pi k}{n}}$.

#6(d) Evaluate the following cross ratios: $(i-1, \infty, 1+i, 0)$. We have that $\frac{(i-1)-(1+i)}{(i-1)-0}/\frac{\infty-(1+i)}{\infty-0} = \frac{(i-1)-(1+i)}{(i-1)-0} = \frac{-2}{i-1} = \frac{-2(i+1)}{-1-1} = i+1$ by p.48.

#7 If $Tz = \frac{az+b}{cz+d}$ find z_2, z_3, z_4 (in terms of a, b, c, d) such that $Tz = (z, z_2, z_3, z_4)$.

We have by definition that $T(z_2)=1, T(z_3)=0$ and $T(z_4)=\infty$. Therefore $\frac{az_2+b}{cz_2+d}=1, \frac{az_3+b}{cz_3+d}=0$ and $\frac{az_4+b}{cz_4+d}=\infty$. Therefore we have that $z_2=\frac{d-b}{a-c}, az_3+b=0$ or $z_3=-\frac{b}{a}$, and $cz_4+d=0$ or $z_4=-\frac{d}{c}$.

#9 If $Tz=\frac{az+b}{cz+d}$, find necessary and sufficient conditions that $T(\Gamma)=\Gamma$ where Γ is the unit circle $\{z:|z|=1\}$.

We have that if $z \in \Gamma$ and $T(z) \in \Gamma$ then |z| = 1 and |T(z)| = 1.

$$1 = |T(z)|^{2}$$

$$= \left|\frac{az+b}{cz+d}\right|^{2}$$

$$= \frac{|az+b|^{2}}{|cz+d|^{2}}$$

Thus

$$\begin{split} |az+b|^2 &= |cz+d|^2 \\ (az+b)\overline{(az+b)} &= (cz+d)\overline{(cz+d)} \\ a\bar{a}z\bar{z} + a\bar{b}z + \bar{a}b\bar{z} + b\bar{b} &= c\bar{c}z\bar{z} + c\bar{d}z + \bar{c}d\bar{z} + d\bar{d} \\ z\bar{z}(a\bar{a} - c\bar{c}) + b\bar{b} - d\bar{d} + z(a\bar{b} - c\bar{d}) + \bar{z}(\bar{a}b - \bar{c}d) &= 0 \\ |z|^2 (|a|^2 - |c|^2) + |b|^2 - |d|^2 + z(a\bar{b} - c\bar{d}) + \bar{z}(\bar{a}b - \bar{c}d) &= 0 \end{split}$$

Thus if z = 1 and z = -1, we may add the equations and get $|a|^2 + |b|^2 = |c|^2 + |d|^2$. Then we have that $a\bar{b} - c\bar{d} = 0$ and $\bar{a}b - \bar{c}d = 0$ which are equivalent under complex conjugation. Thus these are sufficient conditions.

We have $T(z) = e^{i\theta}z$ and T(z) = 1/z both take the unit circle to the unit circle. Thus (a, b, c, d) is $(e^{i\theta},0,0,1)$ and (0,1,1,0). We let $a=e\bar{d}$. Thus we have $e\bar{d}\bar{b}=c\bar{d}$. Therefore $e\bar{b}=c$. Therefore we have that

$$|a|^{2} + |b|^{2} = |e\bar{d}|^{2} + \left|\frac{\bar{c}}{\bar{e}}\right|^{2}$$
$$= |e|^{2} |d|^{2} + |c|^{2} / |e|^{2}$$
$$= |d|^{2} + |c|^{2}$$

Therefore $|e|^2 = 1$ Hence $\bar{e}e = 1$ or $e = e^{i\theta}$. Therefore we have that

$$T(z) = \frac{az+b}{cz+d}$$

$$= \frac{az+b}{e\bar{b}z+\bar{a}/\bar{e}}$$

$$= \frac{az+b}{e(\bar{b}z+\bar{a}/(e\bar{e}))}$$

$$= \frac{az+b}{e(\bar{b}z+\bar{a})}$$

$$= e^{-i\theta} \frac{az+b}{\bar{b}z+\bar{a}}$$

#10 Let $D = \{z : |z| < 1\}$ and find all Mobius transformations T such that T(D) = D.

We have that $T(0) \in D$. Then $T(0) = \omega \in D$. But since 0 and ∞ are symmetric with respect to the unit circle then so to must their images. Therefore $T(\infty) = \omega * = 1/\bar{\omega}$. This is true since $\omega \notin \partial D$. Therefore $T(z) = C \frac{z+\omega}{\bar{\omega}z+1}$. Now since the interior maps to the interior and the outside maps to the outside by the symmetric property then the boundary must map to the boundary. Therefore $T(e^{i\theta}) \in \partial D$. Therefore $|T(e^{i\theta})| = 1$.

$$1^{2} = \left| T(e^{i\theta}) \right|^{2}$$

$$= \left| C \frac{e^{i\theta} + \omega}{\bar{\omega}e^{i\theta} + 1} \right|^{2}$$

$$= |C|^{2} \frac{\left| e^{i\theta} + \omega \right|^{2}}{\left| \bar{\omega}e^{i\theta} + 1 \right|^{2}}$$

$$= |C|^{2} \frac{\left| e^{i\theta} + \omega \right|^{2}}{\left| e^{i\theta} \right|^{2} \left| \bar{\omega} + e^{-i\theta} \right|^{2}}$$

$$= |C|^{2} \frac{(e^{i\theta} + \omega)(e^{-i\theta} + \bar{\omega})}{(\bar{\omega} + e^{-i\theta})(\omega + e^{i\theta})}$$

$$= |C|^{2}$$

Therefore we have $C=e^{i\theta}$ and $T(z)=e^{i\theta}\frac{z+\omega}{\bar{\omega}z+1}$ for $\theta\in(-\pi,\pi]$ and $\omega\in D$.

#14 Suppose that one circle is contained inside another and that they are tangent at the point a. Let G be the region between the two circles and map G conformally onto the open unit disk. (Hint: first try $(z-a)^{-1}$.)

We may take T(z)=z-a then the two circles are tangent at the origin. Let L be the line through the centers and the origin. Then we may take $R(z)=e^{i\theta}z$ such that L is along the imaginary axis. Then I(z)=1/z takes the region to between two parallel lines. Now after another shift and rescaling S we can get the region between $\{0 < Imz < \pi\}$. Then the exponential map takes to the upper half plane and the Cayley transformation, $C(z)=\frac{z-i}{z+i}$ takes it to the unit disk.

Thus we have $C(e^{(S(I(R(T(G)))))}) = \{z : |z| < 1\}$

#15 Can you map the open unit disk conformally onto $\{z: 0 < |z| < 1\}$?

We have that $T(z)=(z,-i,-1,1)=i\frac{z+1}{-z+1}$ maps the open unit disk to the upper half plane. Let $D=\{z:|z|<1\}$ then $T(D)=\{z:Imz>0\}=H$. Then e^z maps the left half plane onto the open punctured disk $D-\{0\}$ by part 1. Hence S(z)=iz rotates the upper half plane to the left half plane. Thus the composition of their maps is $f(z)=e^{i^2\frac{z+1}{-z+1}}=e^{\frac{z+1}{z-1}}$.

Now we check conformal. Clearly the function is analytic as it is a composition of the exponential and two Mobius transformations. The derivative is $f'(z) = e^{\frac{z+1}{z-1}} \frac{-2}{(z-1)^2}$ and $f'(z) \neq 0$ for $z \in D$. Hence by Theorem 3.4.

#16 Map $G = \mathbf{C} - \{z : -1 \le z \le 1\}$ onto the open unit disk by an analytic function f. Can f be one-one?

We have $T(z)=(z,0,-1,1)=\frac{1+z}{1-z}$. Then $T(G)=\mathbf{C}-[0,\infty)$. Then we may take $R(z)=e^{i\pi}z$ such that $R(T(G))=\mathbf{C}-(-\infty,0]$. Then $S(z)=z^2$. Hence we have $S(R(T(G)))=\{z:Re(z)>0\}$. Then using $P(z)=\frac{z-1}{z+1}$ we map the open right half plane the the open unit disk. Thus we have a composition of functions that are analytic. The function is then $\frac{2z}{1+z^2}$. This is not one-one as $(-2\pm\sqrt{5})$ maps to i/2.

We have that f cannot be one to one as not simply connected maps to not simply connected for f analytic.

#17 Let G be a region and suppose that $f: G \to \mathbf{C}$ is analytic such that f(G) is a subset of a circle. Show that f is constant.

First assume that Γ is a circle centered at the origin and $f(G) = \Gamma$. Then |f(z)| = r for all $z \in G$. Then $f(z)\overline{f(z)} = r^2$. Then since f is analytic we have that $f'(z)\overline{f(z)} + f(z)\overline{f'(z)} = 0$. Hence $f'(z)\overline{f(z)} = -f'(z)\overline{f(z)}$. Thus the only number that is the negative of its conjugate is 0. Therefore $f'(z)\overline{f(z)} = 0$. Since |f(z)| = r then $f(z) \neq 0$ for all $z \in G$. Hence f'(z) = 0 for all $z \in G$ and f is then a constant function.

#18 Let $-\infty < a < b < \infty$ and put $M(z) = \frac{z-ia}{z-ib}$. Define the lines $L_1 = \{z : Imz = b\}, L_2 = \{z : Imz = a\}$ and $L_3 = \{z : Rez = 0\}$. Determine which of the regions A, B, C, D, E, F in Figure 1, are mapped by M onto the regions U, V, W, X, Y, Z in Figure 2.

#28 Discuss the mapping properties of $(1-z)^i$.

We have that $(1-z)^i = \exp\{i\log(z)\} = \exp\{i\log(z) - 2\pi k\} = \exp\{i\log(z)\}e^{-2\pi k}$ for $k \in \mathbf{Z}$

#30 For |z| < 1 define f(z) by

$$f(z) = \exp\{-i\log[i\left(\frac{1+z}{1-z}\right)]^{1/2}\}.$$

(a) Show that f maps $D=\{z:|z|<1\}$ conformally onto an annulus G.

Clearly f is a composition of analytic functions. Furthermore

$$f'(z) = \exp\{-\frac{i}{2}\log[i\left(\frac{1+z}{1-z}\right)]\}\frac{-i}{2i\frac{1+z}{1-z}}\frac{2i}{(1-z)^2}$$
$$= \exp\{-\frac{i}{2}\log[i\left(\frac{1+z}{1-z}\right)]\}\frac{-i}{(1+z)}\frac{1}{(1-z)}$$
$$= \exp\{-\frac{i}{2}\log[i\left(\frac{1+z}{1-z}\right)]\}\frac{-i}{(1-z^2)}$$

Hence $f'(z) \neq 0$ as long as $1 - z^2 \neq 0$ or $z \neq \pm 1$ which is true for $z \in D$. Thus f is conformal by Theorem 3.4.

(b) Find all Mobius transformations S(z) that map D onto D and such that f(S(z)) = f(z) when |z| < 1.

From 10, we have $S(z) = e^{i\theta} \frac{z-w}{\bar{w}z-1}$. Furthermore if f(S(z)) = f(z), then

$$\begin{split} \exp\{-\frac{i}{2}\log[i\left(\frac{1+S(z)}{1-S(z)}\right)]\} &= \exp\{-\frac{i}{2}\log[i\left(\frac{1+z}{1-z}\right)]\}\\ &= \exp\{-\frac{i}{2}[\operatorname{Log}[i\left(\frac{1+S(z)}{1-S(z)}\right)] + i2\pi k]\} = \exp\{-\frac{i}{2}[\operatorname{Log}[i\left(\frac{1+z}{1-z}\right)]]\}\\ &= \exp\{-\frac{i}{2}[\log\left|i\left(\frac{1+S(z)}{1-S(z)}\right)\right| + i\arg(i\left(\frac{1+S(z)}{1-S(z)}\right)) + i2\pi k]\} =\\ &= \exp\{-\frac{i}{2}[\log\left|i\left(\frac{1+z}{1-z}\right)\right| + i\arg(i\left(\frac{1+z}{1-z}\right))]\} \end{split}$$

Therefore
$$\log \left|i\frac{1+z}{1-z}\right| = \log \left|i\frac{1+S(z)}{1-S(z)}\right| + 2\pi j$$
 or $\left|\frac{1+z}{1-z}\right| = \left|\frac{1+S(z)}{1-S(z)}\right| e^{2\pi j}$

Hence we may take $e^{2\pi j} = \left| \frac{1+z}{1-z} \frac{1-S(z)}{1+S(z)} \right|$. Let z=0 and $S(0)=e^{i\theta}w$. Then $e^{2\pi j}=\left| \frac{1-e^{i\theta}w}{1+e^{i\theta}w} \right|$. With this we can solve for θ and w.