Stastical Connectomics: Homework 6

Michelle Chyn

April 19, 2015

Introduction In a graph of 3 nodes, P1, P2, and S, is $P(P2 - S|P1 - S \cap P1 - P2)$ equal or not to P(P2 - S|P1 - S) (where the subtraction sign denotes connected to)?

Method I was trying to think of a method using SBMs or some type of clustering to show that one block was independent of the other blocks, but since we have connection P2 - S is conditioned on P1 - S always, it was difficult to come up with a way to partition the SBM.

So instead, I came up with a more specific way to model edge probabilities:

- Edge parameter 1: Assume all connections are independent except for between P2 and S: $p_1 = P(P1 S), p_2 = P(P1 P2), p_3 = (P2 S), p_3'(p_3|p_1)$
- We can estimate \hat{p}_1 , \hat{p}_2 , \hat{p}_3 from data, and guess several paramers for $P(p_3|p_1)$, and $P(p_3|p_1 \cap p_2)$ based on \hat{p}_3 .
- Edge parameter 2: Then we assume p_1 , p_2 , and p_3 are the same again, and set $p_3' = (P2 S|p_1 \cap p_2)$.

Now, if we model two sets of graphs, one using the edge parameter 1 and the other using edge parameter 2, we'll have $n \times p \times 2$ graphs (let's say run the code 100 times so n=100 and p is the number of parameters). We can average the graphs over n, so we're left with $p \times 2$ graphs, and compute two sampled t-tests between each of the models' adjacency matrices and the data from the Fino study by comparing rows of the A matrices and determine which model fits best.