1.1 AND 1.2 - PROPOSITIONAL LOGIC (WITH APPLICATIONS)

Definition: A *proposition* is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Example 1: Which of the following are propositions?

- (a) $5 + 7 \le 19$
- (b) How many eggs are there in a dozen?
- (c) The line "Play it again, Sam" occurs in the movie "Casablanca."
- (*d*) x + 3 = 7
- (e) If it is raining outside, then the lawn is wet.
- (f) If I am elected, then I will lower taxes on the middle class.
- (g) This sentence is false.
- (h) Every even integer greater than 2 is the sum of two prime numbers.

Example 2: There are three false statements in this example. Can you identify them?

- (a) 2+2=4
- **(***b***)** 3.6 = 17
- (c) 8/4=2
- (*d*) 13 6 = 5
- (e) 5+4=9

The *truth value* of a proposition is **T** if the proposition is true, and **F** if the proposition is false.

COMPOUND PROPOSITIONS: Let p and q be propositions.

Name	Negation	Conjunction	Disjunction (inclusive or)	Exclusive or
Symbol	$\neg p$	$p {\wedge} q$	$p \lor q$	$p{\oplus}q$
Pronounced	"not <i>p</i> "	" p and q "	"p or q, or both"	"p or q, but not both"
Is true when	p is false	both <i>p</i> and <i>q</i> are true	at least one of p and q is true	one of <i>p</i> and <i>q</i> is true and the other is false
Is false when	p is true	at least one of p and q is false	both <i>p</i> and <i>q</i> are false	both p and q are true or both p and q are false

A *truth table* displays the relationships between the truth values of propositions.

A statement of the form "If ..., then ..." is called an *implication*.

Example 3: Suppose you make the following statement: "If I go home this weekend, then I will take my parents out to dinner."

Let p and q be propositions.

Name	Implication	
Symbol	$p{ ightarrow}q$	
Pronounced	"p implies q"	
Is true when	p is false or both p	
is true when	and q are true	
Is false when	p is true and q is false	

The implication $p \rightarrow q$ can also be expressed as any of the following:

```
"if p, then q"

"if p, q"

"if p"

"if p, q"

"if p"

"if p"
```

Definition: Given the implication $p \rightarrow q$, then

- $q \rightarrow p$ is called the *converse* of $p \rightarrow q$,
- $\neg q \rightarrow \neg p$ is called the *contrapositive* of $p \rightarrow q$, and
- $\neg p \rightarrow \neg q$ is called the *inverse* of $p \rightarrow q$.

Example 4: Given the proposition

"If it is raining, then the lawn is wet."

What is the truth value of the proposition, its converse, its contrapositive and its inverse?

Example 5: Construct the truth table for the compound proposition $p \rightarrow \neg (p \land q)$.

Example 6: Construct the truth table for

$$[(p \lor q) \land r] \rightarrow (p \land \neg q).$$

Let p and q be propositions.

Name	<i>Implication</i>	Biconditional
Symbol	$p{ ightarrow}q$	$p \longleftrightarrow q$
Pronounced	"p implies q"	" p if and only if q "
Is true when	p is false or both p and q are true	both p and q are true or both p and q are false
Is false when	p is true and q is false	one of p and q is true and the other is false

The biconditional $p \leftrightarrow q$ can also be expressed as any of the following:

PRECEDENCE OF LOGICAL OPERATORS

Question: What does $\neg p \rightarrow q$ mean?

Is it
$$(\neg p) \rightarrow q$$
 or $\neg (p \rightarrow q)$?

These have different truth values, so the answer is important.

[&]quot;p if and only if q"

[&]quot;*p* iff *q*"

[&]quot;p is necessary and sufficient for q"

TRANSLATING ENGLISH SENTENCES

Example 7: Consider the following propositions:

- p: You heard the "Flying Pigs" rock concert.
- q: You heard the "Y2K" rock concert.
- r: You have sore eardrums.

Translate each of the following English sentences into compound propositions.

- (a) You heard the "Flying Pigs" rock concert, and you have sore eardrums.
- (b) You have sore eardrums only if you heard the "Flying Pigs" rock concert but not the "Y2K" rock concert.

LOGIC AND BIT OPERATORS

A **bit** is a *b*inary dig*it*, *i.e.* 0 or 1. To do logical analysis using bits, let T (true) be represented by a 1 and F (false) represented by a 0.

Logical Operations	^	V	\oplus
Bit Operations	bitwise AND	bitwise OR	bitwise XOR

A **bit string** is a sequence of zero or more bits. The **length** of this string is the number of bits in the string.

Example 8: Apply the bit operations to the bit strings 1100 and 0101.

- **Example 9:** In 1978, Raymond Smullyan authored the book <u>What</u> is the Name of This Book? in which he wrote about an island that had only two types of inhabitants: knights and knaves. Knights only said statements that were true and knaves only said statements that were false. An explorer encounters two inhabitants A and B.
 - (a) A says "I am a knave and B is a knight." What type of inhabitants are A and B?
 - (b) If instead, suppose A says "Either I am a knave or B is a knight." Now can you say what A and B are?

SECTION 1.1 AND 1.2 – PROPOSITIONAL LOGIC (WITH APPLICATIONS)

PROPOSITIONS

A *proposition* is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Example 1: Which of the following are propositions?

- (a) $5 + 7 \le 19$
- (b) How many eggs are there in a dozen?
- (c) The line "Play it again, Sam" occurs in the movie "Casablanca."
- (d) x + 3 = 7
- (e) If it is raining outside, then the lawn is wet.
- (f) If I am elected, then I will lower taxes on the middle class.
- (g) This sentence is false.
- (h) Every even integer greater than 2 is the sum of two prime numbers.
 - (A prime number is a positive integer whose only divisors are 1 and itself 1 is not considered a prime number.)

Example 2: There are three false statements in this example. Can you identify them?

- (a) 2+2=4
- **(b)** 3.6 = 17
- (c) 8/4=2
- (*d*) 13 6 = 5
- (e) 5+4=9

The *truth value* of a proposition is **T** if the proposition is true, and **F** if the proposition is false.

Let p and q be propositions.

Name	Symbol	Pronounced	Is true when	Is false when
Negation	$\neg p$	"not p"	p is false	p is true
Conjunction	$p \land q$	" p and q "	both p and q are true	at least one of p and q is false
Disjunction (inclusive or)	$p \lor q$	" p or q , or both"	at least one of p and q is true	both p and q are false
Exclusive or	$p{\oplus}q$	"p or q, but not both"	one of <i>p</i> and <i>q</i> is true and the other is false	both <i>p</i> and <i>q</i> are true or both <i>p</i> and <i>q</i> are false

A truth table displays the relationships between the truth values of propositions.

IMPLICATIONS

A statement of the form "If ..., then ..." is called an *implication*.

Example 3:

Suppose you make the following statement: "If I go home this weekend, then I will take my parents out to dinner."

Name	Symbol	Pronounced	Is true when	Is false when
Implication	$p{ ightarrow}q$	"p implies q"	p is false or both p and q are true	p is true and q is false

The implication $p \rightarrow q$ can also be expressed as any of the following:

"if p , then q "	"q if p"
"if <i>p</i> , <i>q</i> "	"q when p"
"p implies q"	"q whenever p"
" p only if q "	"q follows from p"
" p is sufficient for q "	"q is necessary for p"
"a necessary condition for p is q "	"a sufficient condition for q is p"

Given the implication $p \rightarrow q$, then

- $q \rightarrow p$ is called the *converse* of $p \rightarrow q$,
- $\neg q \rightarrow \neg p$ is called the *contrapositive* of $p \rightarrow q$, and
- $\neg p \rightarrow \neg q$ is called the *inverse* of $p \rightarrow q$.

Example 4: Given the proposition "If it is raining, then the lawn is wet." What is the truth value of the proposition, its converse, its contrapositive and its inverse?

Class Notes for Discrete Math I (Rosen)

Example 5: Construct the truth table for the compound proposition $p \rightarrow \neg (p \land q)$.

Example 6: Construct the truth table for $[(p \lor q) \land r] \rightarrow (p \land \neg q)$.

To summarize, let p and q be propositions.

Name	Symbol	Pronounced	Is true when	Is false when
Implication	$p{ ightarrow}q$	"p implies q"	p is false or both p and q are true	p is true and q is false
Biconditional	$p \leftrightarrow q$	"p if and only if q"	both p and q are true or both p and q are false	one of <i>p</i> and <i>q</i> is true and the other is false

The biconditional $p \leftrightarrow q$ can also be expressed as any of the following:

[&]quot;p if and only if q"
"p iff q"

[&]quot;p is necessary and sufficient for q"

PRECEDENCE OF LOGICAL OPERATORS

Question: What does $\neg p \rightarrow q$ mean? Is it $(\neg p) \rightarrow q$ or $\neg (p \rightarrow q)$? These have different truth values, so the answer is important.

TRANSLATING ENGLISH SENTENCES

Example 7: Consider the following propositions:

- p: You heard the "Flying Pigs" rock concert.
- q: You heard the "Y2K" rock concert.
- *r*: You have sore eardrums.

Translate each of the following English sentences into compound propositions.

- (a) You heard the "Flying Pigs" rock concert, and you have sore eardrums.
- (b) You have sore eardrums only if you heard the "Flying Pigs" rock concert but not the "Y2K" rock concert.

LOGIC AND BIT OPERATORS

A **bit** is a *b*inary digit, *i.e.* 0 or 1. To do logical analysis using bits, let T (true) be represented by a 1 and F (false) represented by a 0.

Logical Operations	٨	V	\oplus
Bit Operations	bitwise AND	bitwise OR	bitwise XOR

A **bit string** is a sequence of zero or more bits. The **length** of this string is the number of bits in the string.

Example 8: Apply the bit operations to the bit strings 1100 and 0101.

Class Notes for Discrete Math I (Rosen)

LOGIC PUZZLES

Example 9: In 1978, Raymond Smullyan authored the book *What is the Name of This Book?* in which he wrote about an island that had only two types of inhabitants: knights and knaves. Knights only said statements that were true and knaves only said statements that were false. An explorer encounters two inhabitants *A* and *B*.

- (a) A says "I am a knave and B is a knight." What type of inhabitants are A and B?
- (b) If instead, suppose A says "Either I am a knave or B is a knight." Now can you say what A and B are?