

Numerisches Programmieren

Übung #11

Iterative Verfahren

Fixpunktverfahren

- Bisher direkte Berechnung der Lösung eines Problems
- Manchmal iterative Annäherung daran durch ein Iterationsverfahren $\phi(x)$ schneller:

$$x_{k+1} = \phi(x_k)$$

- Anfang mit Startwert x_0 (zufällig/sorgfältig gewählt)
- Es gibt Fixpunkte x_* wofür gilt:

$$\phi(x_*) = x_*$$

Ansatz: Iterationsverfahren $\phi(x)$ so konstruieren, sodass dessen Fixpunkt(e) der gesuchten Lösung entsprechen

Fixpunkte

<u>Definition</u>: Punkt x einer Funktion f, der auf sich selbst abbildet $\rightarrow f(x) = x$

Konvergiert eine Folge zu einem Fixpunkt?

a.
$$|\phi'(x_*)| < 1$$

→ Anziehender Fixpunkt

b.
$$|\phi'(x_*)| > 1$$

→ Abstoßender Fixpunkt

c.
$$|\phi'(x_*)| = 1$$

→ Indifferent

→ Iterationsverfahren gut gdw. die Lösung ein anziehender Fixpunkt ist

imgflip.com/s/meme/Who-Killed-Hannibal.jpg

Splitting Verfahren

Iterationsverfahren zum Lösen von LGS:

$$\phi(x) \coloneqq x + M^{-1}(b - Ax)$$

- Residuum $r^{(k)} = b Ax^{(k)} = Ax Ax^{(k)} = A(x x^{(k)}) = A\epsilon$
 - → Zur Abschätzung, um welchen Faktor sich Fehler verringert
- Matrix *M* auswählen, die *A* gut approximiert:
 - Tradeoff: Ähnlichkeit zu $A \leftrightarrow$ Schnelle Invertierbarkeit
- \rightarrow Wir werden kennenlernen, welche unterschiedlichen Verfahren sich aus der Wahl von M ergeben

Aufgabe 1)

1) Iterative Verfahren für lineare Gleichungssyteme

Für große lineare Gleichungssyteme kann es unter Effizienzgesichtspunkten interessant sein, anstelle der direkten Gauss-Elimination, ein iteratives Verfahren zur Lösung des Gleichungssystems zu verwenden. Die vielleicht einfachsten Varianten iterativer Löser werden u.a. als **Splitting-Verfahren** bezeichnet.

a) Seien $n \in \mathbb{N}$, $A, M \in \mathbb{R}^{n,n}$ und $b \in \mathbb{R}^n$. Zeigen Sie, dass der Fixpunkt $x_* \in \mathbb{R}^n$, der den Splitting-Verfahren zugrundeliegenden Iterationsfunktion

$$\Phi(x) := x + M^{-1} (b - Ax) , \qquad (1)$$

auch die Lösung des Gleichungssystems Ax = b ist!

Aufgabe 1)

- b) Durch Festlegung der Matrix M in Formel (1) erhält man unterschiedliche Splitting-Verfahren. Bei der Auswahl von M sollten folgende Kriterien berücksichtigt werden:
 - (i) M sollte möglichst schnell invertierbar sein und
 - (ii) M sollte die Matrix A möglichst gut approximieren!
 - Ordnen Sie die Vorschläge $M_1 = I_n$, $M_2 = A$ und $M_3 = \text{diag}(A)$ nach dem Grad der Erfüllung der beiden obigen Kriterien.
- c) Entwickeln Sie einen Pseudo-Code für die Durchführung einer Iteration nach Formel (1) unter Verwendung von $M_3 = \text{diag}(A)!$
- d) Das in Teilaufgabe c) entwickelte Verfahren wird Jacobi-Verfahren genannt. Es lässt sich hinsichtlich Konvergenzgeschwindigkeit und Speicherbedarf noch deutlich verbessern. Machen Sie einen Vorschlag zur Verbesserung des Verfahrens! Wie ändert sich dadurch die Iterationsvorschrift in Matrixnotation?

Jacobi Verfahren

$$M \coloneqq diag(A)$$

→ Iterationsvorschrift:

$$\phi(x) \coloneqq x + diag(A)^{-1}(b - Ax)$$

- Inverse einer Diagonalmatrix:
- \rightarrow Diagonaleinträge umkehren: $a_{ii} \rightarrow \frac{1}{a_{ii}}$

Algorithmus: (pro Iterationsschritt *k*)

1. Berechne:

$$r^{(k)} = b - Ax^{(k)}$$

2. Berechne (für jede Zeile!):

$$y_i^{(k)} = \frac{1}{a_{ii}} \cdot r_i^{(k)}$$

3. Berechne:

$$x^{(k+1)} = y^{(k)} + x^{(k)}$$

Gauss-Seidel Verfahren

$$M \coloneqq L(A)$$

- $\rightarrow M$ links-untere Diagonalmatrix
- In-place Prinzip: Informationen wiederverwenden, die erst im <u>selben</u> Iterationsschritt berechnet wurden

Algorithmus: (für jede Zeile!)

1. Residuum mithilfe von Einträgen vom alten Vektor $x^{(k)}$ als auch vom neuen Vektor $x^{(k+1)}$ berechnen:

$$r_i^{(k)} = b_i - \sum_{m=1}^{i-1} a_{im} \cdot x_m^{(k+1)} - \sum_{m=i}^{n} a_{im} \cdot x_m^{(k)}$$

- 2. Berechne $y_i^{(k)} = \frac{1}{a_{ii}} \cdot r_i^{(k)}$
- 3. Berechne $x_i^{(k+1)} = y_i^{(k)} + x_i^{(k)}$

Gauss-Seidel Verfahren

Beispiel: (\hat{x} enthält je die relevanten Einträge vom alten/neuen x)

$$A = \begin{pmatrix} \mathbf{1} & \mathbf{3} \\ 2 & 2 \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad x^{(0)} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \qquad x^{(1)} = \begin{pmatrix} ? \\ ? \end{pmatrix}$$

Zeile 1:

1.
$$r_1^{(0)} = b_1 - A_1 \cdot \hat{x} = 2 - (1 \cdot 0 + 3 \cdot 0) = 2$$

2.
$$y_1^{(0)} = \frac{1}{a_{11}} \cdot r_1^{(0)} = \frac{1}{1} \cdot 2 = 2$$

3.
$$x_1^{(1)} = x_1^{(0)} + y_1^{(0)} = 0 + 2 = 2$$

Gauss-Seidel Verfahren

Beispiel:

$$A = \begin{pmatrix} 1 & 3 \\ \mathbf{2} & \mathbf{2} \end{pmatrix} \qquad b = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad x^{(0)} = \begin{pmatrix} 0 \\ \mathbf{0} \end{pmatrix} \qquad x^{(1)} = \begin{pmatrix} \mathbf{2} \\ ? \end{pmatrix}$$

Zeile 2:

1.
$$r_2^{(0)} = b_2 - A_2 \cdot \hat{x} = 2 - (2 \cdot 2 + 2 \cdot 0) = -2$$

2.
$$y_2^{(0)} = \frac{1}{a_{22}} \cdot r_2^{(0)} = \frac{1}{2} \cdot (-2) = -1$$

3.
$$x_2^{(1)} = x_2^{(0)} + y_2^{(0)} = 0 - 1 = -1$$
 $\Rightarrow x^{(1)} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$

Aufgabe 2)

2) Jacobi- und Gauß-Seidel-Verfahren

Gegeben sei das lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & -2 \end{pmatrix}, \ b = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}.$$

- a) Bestimmen Sie die exakte Lösung des linearen Gleichungssystems mittels Gauß-Elimination.
- b) Führen Sie drei Schritte des Jacobi-Verfahrens durch um eine näherungsweise Lösung des linearen Gleichungssystems Ax = b zu erhalten. Verwenden Sie als Startwert $x^{(0)}$ den Nullvektor $x^{(0)} = (0, 0, 0)^T$.

Vergleichen Sie ihr Endergebnis $x^{(3)}$ mit der exakten Lösung aus Teilaufgabe a).

c) Führen Sie zwei Schritte des Gauß-Seidel-Verfahrens durch um eine näherungsweise Lösung des linearen Gleichungssystems Ax = b zu erhalten. Verwenden Sie als Startwert $x^{(0)}$ wieder den Nullvektor.

Vergleichen Sie abschließend ihr Endergebnis $x^{(2)}$ mit der exakten Lösung aus Teilaufgabe a) und mit dem Ergebnis aus Teilaufgabe b).

Verfahren des steilsten Abstiegs

kicker.de/bundesliga/tabelle/2020-21 (und sry an alle Schalke-Fans draußen...)

- Weiteres Verfahren um LGS iterativ zu lösen
- Matrix A muss symmetrisch und positiv definit (alle Eigenwerte > 0) sein!!

Algorithmus:

I. Residuum (Schritteinrichtung):

$$r^{(k)} = b - Ax^{(k)}$$

2. Optimale Schrittweite:

$$\alpha^{(k)} = \frac{r^{(k)^T} \cdot r^{(k)}}{r^{(k)^T} \cdot Ar^{(k)}}$$

3. Aktuelles Zwischenergebnis:

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)} \cdot r^{(k)}$$

Aufgabe 3)

3) Verfahren des steilsten Abstiegs

Führen Sie zwei Schritte des Verfahrens des steilsten Abstiegs (steepest descent) aus, um eine iterative Lösung für das Lineare Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 2 & -2 \\ -2 & 6 \end{pmatrix}, \quad b = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$$

zu bestimmen. Gesucht ist also $x^{(2)}$. Verwenden Sie als Startwert $x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Jede Iteration des *Verfahrens des steilsten Abstiegs* entspricht dabei den folgenden drei Schritten:

- 1) Berechnung des aktuellen Residuums $r^{(i)} = b Ax^{(i)}$
- 2) Berechnung der optimalen Schrittweite $\alpha^{(i)} = \frac{r^{(i)^T} r^{(i)}}{r^{(i)^T} A r^{(i)}}$
- 3) Berechnung des aktuellen Zwischenergebnisses $x^{(i+1)} = x^{(i)} + \alpha^{(i)} r^{(i)}$

Spezielles Newton Verfahren

Approximation der Nullstellen einer Funktion f

$$\phi(x) \coloneqq x_k - \frac{f(x_k)}{f'(x_k)}$$

→ Nullstellen als Fixpunkte der Iterationsvorschrift

Intuitiv:

- Tangente an f bei x_k gelegt und davon die Nullstelle bestimmt
- Diese dient als Startwert x_{k+1} für nächste Iteration
- Ist x_k eine Nullstelle, so befindet sich die Nullstelle der Tangente auch bei $x_k \to \text{Fixpunkt}$

Aufgabe 4)

4) Spezielle Newton-Verfahren

- a) Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch f(x) = mx + b.
 - (i) Bestimmen Sie die Nullstelle von f auf direktem Weg!
 - (ii) Formulieren Sie für die Funktion f das Newton-Verfahren! Nach wievielen Iterationen hat das Verfahren die Nullstelle gefunden?
- b) (i) Formulieren Sie das Newton-Verfahren für die Funktion $f(x) = x^2 2x 3$ (alternativ: $f(x) = x^2 8x + 15$)!
 - (ii) Berechnen Sie die ersten 4 Iterierten sowohl für den Startwert $x_0 = 2$ als auch für den Startwert $\tilde{x}_0 = -2$ (alternativ: $x_0 = 2$ und $\tilde{x}_0 = 6$)! Gegen welche Werte konvergieren die beiden Folgen der Iterierten?

Danke fürs Kommen! Bis nächste Woche!

