Making Better PCBs

A start-to-finish guide for getting started designing quality boards

Meta: About this talk

- Kinda wordy! (Sorry)
- Breadth over depth
- Laid out for later reference.

The General PCB Design Process

- What does it need to do?
- Initial Part Selection
- Draw schematic
- Lay out pcb
- Redo everything
- Prep for fab

The Process: Design Decisions

- Inputs?
- Output?
- Sensor Data
- Microcontroller? Analog?
- One-off or product?
- Where will the board be used?
- What parts simplify all your work?

Your first board:

- Will probably be wrong.
 - Make it cheap
 - Make it useful
- What you'll mess up
 - Part spacing + orientation
 - Footprints
 - Via/header size
 - Bad part choices
 - Assembly

THAT'S OK!

Board one: How to learn from it

- Build 2 copies
 - 1 to fix at all costs
 - 1 to verify corrections or failures
 - If possible, save 1 as a "control" layout.
- Make notes on spacing/sizes
- Avoid adding microcontrollers
- Make notes of other difficulties

Picking your design tool

- Cost to you
- Features + Upgrade path
- Ease of Use + Learning Curve
- Community + Documentation
- Existing parts
- Cost to others
- Every tool sucks

Picking Your Design Tools

Clearly biased suggestions:

- KiCAD
 - Free, open source
 - Great community
 - No design restrictions
 - !! Quirks, bugs, version-specific issues
 - Rapidly improving

Picking Your Design Tool

- Eagle
 - Easy to get started with
 - Great community
 - Well developed community libraries
 - de-facto standard in the Arduino community
 - !! VERY stagnant development.
 - !! Lots of restrictions on free versions

If in doubt, try KiCAD first.

Schematic layout!

Glossary: Schematic

- Component
 - A part, such as a resistor or integrated circuit (IC)
- Net
 - A name for a particular signal
 - Can connect many wires, ICs, or board layers.
- Schematic
 - The symbolic connections between parts.
 - Connects Net, not "traces".

Schematic

- Datasheets:A dummies guide
- Provide suggested components
- Details connection interfaces and options

Figure 10: Typical Application Using SPI 4-Wire Mode and INT/ Output

Schematic: Name nets

- Defaults are stupid: n\$7
- Human-readable means human-checkable
- Can be checked during PCB Routing too
- Allows meaningful labels

Schematic: Conventions

- Power flow goes top to bottom
- Signal flow goes left to right
- Most parts follow this (not all)

Schematic: Conventions

- Active low nets: Prefix name with "n"
 - eg: nEnabled, nDisabled, nActive,nFloating
- Avoid long lines to power/ground
 - Use labels or Power/Ground symbols

- Use descriptive names to avoid confusion
 - PWM_RED_LED
 - I2C1_SDA
 - UART1_TX_OUTPUT

Schematic: Don't worry about lines

- Use net names and labels
- Reduced clutter = better checking

Schematic:Create Functional Blocks

- Group related parts
- Label nets between blocks

Schematic: Tips for Beginners

- Add Extra status LEDs
 - Add one per power net
 - One for microcontroller to blink/toggle
- Add test points
 - Give you a place to test voltages
 - Makes cutting/rerouting traces easier
 - Add in schematic so you don't forget
- Make UART signals easy to fix
 - Add jumpers or test points to swap pins

Libraries

- Broken into 3 parts

Symbol

- Schematic-side
- Connects internal and external nets

Footprint

- Layout Side
- Connects pads to traces

Device / Component

- Connect Symbol to Footprint
- (or, connects nets to pads)
- Often has multiple footprint options for identical symbols

Libraries

Community libraries:

- Trust, but verify
- All libraries have an error
- Won't have every part
- Can get you started quickly

Libraries

Make your own!

- You'll need to
- You'll get the hang of it
- Can save you work
- Can (usually) be trusted

Design Decisions: Providing power

- Off board power
 - Such as USB, 5V wall wart, or Arduino
 - Cheap + easy, but tethers your project to outlet
 - Ideal for many projects
- Batteries
 - Lipo? NiCAD? NiMH? Alkaline?
 - Large voltage ranges
 - Charging?
 - Forces low-power designs

Design Decisions: Regulating power

- Linear Regulator
 - Pro: Cheap and simple
 - Con: Watch the voltage drops
 - Con: Can be hot and inefficient
- Switching Regulator
 - Con: More parts, and much more complex
 - Con: Often needs more PCB area
 - Pro: Can provide large voltage drops efficiently
 - Pro: Can increase voltage source provides

Design Decisions: Regulating power

- Unregulated battery power
 - HERE BE DRAGONS. May cause unexpected issues. Sometimes serious.
 - Voltage range will drive component selection
 - Can be good for simple blinky or analog circuits

Design Decisions: Regulating power

- Input Power Protection
 - Good idea when moving past prototype stage
 - Can be very simple:
 - Reverse Polarity can be 1 part ——
 - Overcurrent or overvoltage can be 1 IC, or a few parts
 - Some ICs do everything for you

PCB Routing: Physical Connections

AKA Board Layout

- DRC: Design Rule Check
 - Uses specifications to verify manufacturing requirements
- DFM: Design For Manufacturing
 - Guidelines and suggestions for preventing errors
 - Usually not enforced by design tool
 - Covers wide selection of design and layout areas
 - Critical as volumes and complexity increases

- Stop Mask: Indicates a section of the board that should be exposed
- Pad: A small exposed section of copper.
 - Typically refers to where you'll be attaching a part
- Footprint: A set of pads that match a component's pin arrangement

- Package: Physical size and shape of a component
 - Most parts have multiple packages
- Pinout
 - How the nets from an IC connect to the pads
 - Parts with the same footprint can have different pinouts.

PCB Layout: Design Rules

- Critical specs:
 - Minimum Drill size
 - Annular Ring
 - Trace Spacing
 - Trace Width
- Less Critical specs
 - Board-edge clearance
 - Mask expansion/retraction
 - Minimum mask web

PCB Layout:

Datasheets: A dummies guide

- If routing matters, ICs often have examples and notes.
 - High Current
 - RF
 - Low-power
 - Analog

10.1 Layout Guidelines

The VM and VCC terminals should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of $0.1\,\mu\text{F}$ rated for VM and VCC. These capacitors should be placed as close to the VM and VCC pins as possible with a thick trace or ground plane connection to the device GND pin.

Figure 11. Simplified Layout Example

PCB Layout: The general process

- Separate parts into blocks you made earlier
 - Organize parts
 - Route power and ground
 - Route Signals
- Combine blocks on desired board shape
 - Route power and ground
 - Route Signals
- Make corrections

PCB Layout: Forming Blocks

- Sort components out
 - Just like the schematic!

Design Decisions!

Components on one or both sides?

- Both: Can Ease Routing
- Both: MUCH harder to assemble
- 2 or 4 layer board?
 - 2 layer is less expensive
 - 4 layer makes routing much easier
 - 4 layer may not be an option

PCB Layout: Routing Blocks

Untangle Airwires

- Minimize crossover
- Minimize routing length

PCB Layout: Routing Blocks

- Power and ground first
- Bypass caps second
- Important Signals
 - Analog
 - communication
 - high-power
- Everything else

PCB Layout: Bypass caps

- Magic sprinkles of electronics
- Every IC should have one
- Requires intentional routing
 - Minimize "loop area" between
 IC Power, IC Ground, and cap pads
 - Avoid vias (generally)
 - Should be physically close to IC

PCB Layout: Connecting Blocks

- Arrange blocks
 - Minimize airwire distance
- Plan for mechanical
 - Odd PCB shape?
 - Offboard connections?
 - Mounting?
- Connect!
 - Power, then signals

PCB Layout: Routing Strategies

- Short + Long
 - Put Parts + short traces on top
 - Long connections on bottom
 - Ground pour on bottom
- Up/Down + Left/Right
 - Put up/down traces on top
 - left/right traces on bottom
- Varies by design!

PCB Layout: Design Decisions

- Ground/Power Planes?
 - Route first! (for now)
- 4 layer Routing Strategy:
 - Top: Parts + short connections
 - Ground plane
 - Positive power plane
 - Bottom: Longer connections

PCB Layout: Design Decisions

Surface Mount Parts

- Lots of advantages
- Need to use them eventually
- Beginner Friendly
 - Passives: 1206, 0805
 - IC: Leadless packages, MSOP-*, SOT-*
- Less friendly
 - 0402: Really tiny and hard to place
 - BGA, pitches 0.5mm and lower

PCB Layout: Design Decisions

- Via Tenting?
- Thermals?
- Assembly consideration
 - Space for rework
 - Leave room for silk
- Heatsinks?
 - Voltage Regulators
 - Motor drivers

PCB Layout: Routing Busses

- Bus: A group of signals performing the same function
 - Common for chip-to-chip communication
- Should be routed at the same time
 - Try to keep together
 - Length differences may matter
- Consult routing guides for the protocol
 - More/less picky, voltages, pull ups, oh my.

Routing: Notable Signal types

Signal type	General Analog	Precision Analog (<10mv precision)	High Speed Signals (>1Mhz)	High current (>500mA)	High Voltage (AC, or >48VDC)
trace width (beyond fab spec)		Υ	Υ	Υ	Υ
trace spacing (beyond fab spec)		Υ			Υ
Trace length	Y	Υ	Υ	Υ	
via size		Υ	Υ	Υ	Υ
multiple vias		Υ	Υ	Υ	
trace placement / adjacent signals	Υ	Υ	Υ		
parasitic capacitance + inductance		Υ	Υ		
heat		Υ		Υ	Υ
Solid ground connections (ground loop path)	Υ	Υ	Y	Υ	Υ

General analog:

- Typical hobby-level stuff, with voltage swings of 100+mV causing no issues.
- Greater than/less than voltage comparisions usually fall in here

Precision Analog:

- Usually for fine logging or measurements.

High Speed:

Common for clock signals,
 Wireless radios, some serial busses, video signals

DFM: Design for Manufacturing

Or, How to minimize fabrication problems

- Fab specs are minimums
 - Opt for larger traces, and larger spacing
 - Increase ground plane isolation
- Avoid placing parts needlessly close
- Doubly important for open designs
 - Can't always plan for specific fab specs/QC

DFM: Ground Plane Isolation

- Set above fab min spec
- Touches lots of traces
- Hard to find and troubleshoot

- Example Short:

Fabrication: Getting prepped

- Run DRC
- Double check pinouts
- Verify availability of components
- Put date, version, and name on board
- Mechanical Concerns
 - Mounting holes?
 - Enclosures?
 - Part sizes?

Fabrication: Getting prepped

- Clean up silkscreen
 - Component names
 - Label off-board connections
 - List power input voltage ranges
 - Mark polarity of components
 - Make silk readable size (>0.035")

Fabrication: Getting prepped

- 1:1 Scale Printout

Fabrication: Ordering Boards

- Run the CAM processor
 - (usually)
 - Generates gerbers and drill files
 - Verify expected drill format for your fab
 - Drill formats are stupid.
 - Verify board shape / outline gerber
 - Dimension layer on Eagle
 - Edge_Cuts on KiCAD
 - Mechanical 1 on most other tools

Fabrication: PCB Layers / Gerbers

- Simple files corresponding to a single part of the fabrication process
 - Copper Placement
 - Hole placement
 - Solder resist placement
 - Silkscreen printing

_

Fabrication: PCB Layers / Gerbers

- Complexities come from format ambiguity
 - Plated drills?
 - How is the edge defined?
 - How is the drill format handled?
 - Positive or negative internal layers?
- If in doubt, ask your fab!
 - Folks get paid to help you. Take advantage!

Assembly: What you'll need

- A decent iron
- Solder
- Desoldering braid
- For SMD work:
 - Fine point stainless steel tweezers (Walgreens)
 - Solder paste (Chipquik is best. cheap Ebay/Amazon paste works, but not suggested)
 - Stencil?

Assembly: SMD Placement

- Expect to bump them a bit
 - Usually pretty forgiving
- Start with hard-to-reach parts
 - Stuff in center, tight fit, etc
- Go to "easy" parts
- End with large or finicky footprints
 - BGA, TQFP, etc

Assembly: Planning BOM

- Giant printout
 - Include values, names, notes
- Parts list

Assembly: Reflow Procedure

- Minimum required items:
 - Old pan
 - IR Thermometer
- My home procedure
 - Medium til around 250F-300F (flux melts into matte pools)
 - High until solder flows (~250F)
 - Nudge parts if needed (careful!)
 - Remove pan from burner

Assembly: Through-Hole

- Lots of good video tutorials
- Mostly practice
- Lots of flux
- Pro tips:
 - Poster Tack is your friend.
 - Holds board firmly to table
 - Blob around loose parts
 - Sparkfun Locking headers = <3
 https://www.sparkfun.com/tutorials/114

Questions!

