EKG Review

NURS 380

Objectives

At the conclusion of the presentation and learning activities, learners will be able to:

- 1. Identify defining characteristics of atrial and ventricular rhythms/arrhythmias
- 2. Describe signs and symptoms that accompany atrial and ventricular arrhythmias
- 3. List causes for atrial and ventricular arrhythmias
- 4. Describe the treatments for atrial and ventricular arrhythmias
- 5. Apply knowledge of etiology, signs, symptoms when creating a plan of care for a patient with atrial/ventricular arrhythmias
- 6. List the roles in which a nurse may participate during a code blue or emergency
- 7. Identify commonly used medications utilized in code blue settings
- 8. Describe the differences in dosing adult and pediatric code blue medications

application of the properties of the state o

Sinus Tachycardia Identifying Features

Rhythm	Regular
Rate	100 - 160 beats/minute
P waves	Normal in size, shape, direction with one P wave before each QRS complex
PR interval	Normal (0.12 - 0.20 second)
QRS complex	Normal (0.06 - 0.10 second)

Premature Atrial Contraction (PAC) Identifying Features

Rhythm	Not a rhythm, but a single beat
Rate	That of underlying rhythm
P waves	Premature, abnormal in size, shape, direction
PR interval	n/a; identify underlying rhythm
QRS complex	Premature; normal duration (0.06 - 0.10 second)

Atrial Flutter Identifying Features

Rhythm	Regular or irregular (depends on AV conduction ratios)
Rate	Atrial rate: 250-400 beats per minute; ventricular rate will be less
P waves	Sawtooth waves ("flutter waves"/F waves) on baseline
PR interval	Not measurable
QRS complex	Normal (0.06 - 0.10 second)

Ventricular Tachycardia Identifying Features

Rhythm	Regular or slightly irregular
Rate	140-250 beats/minute
P waves	None
PR interval	Not measurable
QRS complex	Wide (> 0.12 second)

Atrial Fibrillation Identifying Features

Rhythm	Irregular - always
Rate	Atrial rate 400 beats/minute or more; ventricular rate varies but less than atrial rate
P waves	Irregular wave deflections ("fibrillatory waves") on baseline
PR interval	Not measurable
QRS complex	Normal (0.06 - 0.10 second)

Ventricular Fibrillation Identifying Features

Rhythm	Irregular - always
Rate	Not measurable
P waves	Absent; wavy, irregular deflections seen that vary in size, shape, and height. If small, then fine VF, if large, coarse VF
PR interval	Not measurable
QRS complex	Absent

Sinus Bradycardia Identifying Features

Rhythm	Regular
Rate	<60 beats per minute (typically 40-60)
P waves	Normal
PR interval	Normal (0.12-0.20 second)
QRS complex	Normal (0.06-0.10 second)

Asystole Identifying Features

Rhythm	If P waves are present, will have atrial rhythm
Rate	None
P waves	Will either have a P wave with no associated QRS complex or a straight line
PR interval	Not measurable
QRS complex	Absent

Sinus Rhythm Identifying Features

Rhythm	Regular
Rate	60-100 beats per minute
P waves	Normal; one P wave precedes each QRS
PR interval	Normal (0.12-0.20 second)
QRS complex	Normal (0.06-0.10 second)

Premature Ventricular Contraction (PVC) Identifying Features

Rhythm	Not a rhythm, but a single beat. Underlying rhythm usually regular
Rate	That of underlying rhythm
P waves	None associated with PVC
PR interval	n/a; identify underlying rhythm
QRS complex	Premature; wide (0.12 second or greater)

Paroxysmal Atrial Tachycardia (PAT)/Supraventricular Tachycardia (SVT) Identifying Features

Rhythm	Regular
Rate	140-250 beats/minute
P waves	Abnormal (usually pointed); can be hidden in preceding T wave
PR interval	Usually not measurable
QRS complex	Normal (0.06-0.10 second)

Advanced Cardiac Rhythms

Bundle Branch Block

Bundle Branch Block (BBB)

Bundle Branch Block Identifying Features

Rhythm	Regular
Rate	Rate of underlying rhythm
P waves	Sinus
PR interval	Normal
QRS complex	Wide (greater than 0.12 second)

Idioventricular Rhythm (IVR)

Idioventricular Rhythm Identifying Features

Rhythm	Regular
Rate	IVR slow (30-40 beats per minute); AIVR greater than 50 beats per minute
P waves	Absent
PR interval	Not measurable
QRS complex	Wide (greater than 0.12 second)

Junctional Rhythm

Junctional Rhythm

Junctional Rhythm Identifying Features

Rhythm	Regular
Rate	40-60 beats per minute; accelerated 60-100 beats per minute
P waves	Inverted before QRS, immediately after QRS, or hidden within QRS
PR interval	Short (0.10 second) or not measurable
QRS complex	Normal

AV Heart Blocks

- Classification based on type and location of heart block
- PR interval is **key** for type
- QRS width is key for location
- Look for P wave. Is there one or more than one before each QRS?
- 2. Measure regularity
- 3. Measure PR interval
- 4. Look at the QRS complex

First Degree AV Block

- 1. Look for P wave. Is there one or more than one before each QRS?
- 2. Measure regularity
- 3. Measure PR interval
- 4. Look at the QRS complex

First Degree AV Block Identifying Features

Rhythm	Regular
Rate	Rate of underlying rhythm
P waves	Sinus; one P wave to each QRS complex
PR interval	Consistent, prolonged (> 0.20 second)
QRS complex	Normal

Second Degree AV Block, Type I

AKA: Mobitz I or Wenckebach

- 1. Look for P wave. Is there one or more than one before each QRS?
- 2. Measure regularity
- 3. Measure PR interval
- 4. Look at the QRS complex

Mobitz I Identifying Features

Rhythm	Regular atrial rhythm, irregular ventricular rhythm		
Rate	Atrial: rate of underlying rhythm, ventricular: depends (will be less than atrial rate)		
P waves	Sinus		
PR interval	Varies, progressively lengthens until a P wave isn't conducted		
QRS complex	Normal - so where is location of this block?		

Second Degree AV Block, Type II

AKA: Mobitz II

- 1. Look for P wave. Is there one or more than one before each QRS?
- 2. Measure regularity
- 3. Measure PR interval
- 4. Look at the QRS complex

Mobitz II Identifying Features

Rhythm	Regular atrial rhythm, ventricular rhythm can be regular or irregular	
Rate	Atrial: rate of underlying rhythm, ventricular: depends (will be less than atrial rate)	
P waves	Sinus; 2-3 (or more!) before each QRS complex	
PR interval	Consistent; can be normal or prolonged	
QRS complex	Normal or wide - if wide, where is the location of the block?	

Third Degree AV Block

AKA: Complete heart block

- 1. Look for P wave. Is there one or more than one before each QRS?
- 2. Measure regularity
- 3. Measure PR interval
- 4. Look at the QRS complex

Third Degree AV Block Identifying Features

Rhythm	Regular (atria and ventricles)	
Rate	Atrial: rate of underlying rhythm, ventricular: SLOW and always less than atrial rate	
P waves	Sinus with no constant relationship to QRS complex	
PR interval	Not consistent/variable	
QRS complex	Normal or wide - if wide, where is the location of the block?	

"THE HEART BLOCK POEM"

If the R is far from P, then you have a FIRST DEGREE.

Longer, longer, longer, drop! Then you have a WENCKEBACH.

If some Ps don't get through, then you have MOBITZ II.

If Ps and Qs don't agree, then you have a THIRD DEGREE.

12 Lead EKG

Speed: 25 mm/sec LCC 00000-0000 Chest: 10 mm/aV

I Lateral	aVR	V1 Septal	V4 Anterior
II Inferior	aVL Lateral	V2 Septal	V5 Lateral
III Inferior	aVF Inferior	V3 Anterior	V6 Lateral

Code Blue

Roles in a code blue

- Compression team
- Recorder
- Medication RN
- Respiratory therapist/airway manager
- Defibrillator operator
- Physician/APP
- Family liaison

Basic Steps

- 1. Identify arrest and call code blue
- 2. Begin compressions
- Code cart and defibrillator pulled into room
- 4. Backboard under patient
- Attach electrodes and defibrillator pads on patient
- 6. Ensure IV access if none, start PIV, central line, or intraosseous access

Adult Basic Life Support Algorithm for Healthcare Providers

@ 2020 American Heart Association

Advanced Steps

Adult Cardiac Arrest Algorithm (VF/pVT/Asystole/PEA)

Adult Cardiac Arrest Circular Algorithm

CPR Quality

- Push hard (at least 2 inches [5 cm]) and fast (100-120/min) and allow complete chest recoil.
- · Minimize interruptions in compressions.
- · Avoid excessive ventilation.
- . Change compressor every 2 minutes, or sooner if fatigued.
- If no advanced airway, 30:2 compression-ventilation ratio.
- Quantitative waveform capnography
- If PETCO, is low or decreasing, reassess CPR quality.

Shock Energy for Defibrillation

- Biphasic: Manufacturer recommendation (eg., initial dose of 120-200 J); if unknown, use maximum available. Second and subsequent doses should be equivalent, and higher doses may be considered.
- · Monophasic: 360 J

Drug Therapy

- . Epinephrine IV/IO dose: 1 mg every 3-5 minutes
- Amiodarone IV/IO dose: First dose: 300 mg bolus. Second dose: 150 mg.
- Lidocaine IV/IO dose: First dose: 1-1.5 mg/kg. Second dose: 0.5-0.75 mg/kg.

Advanced Airway

- Endotracheal intubation or supraglottic advanced airway
- Waveform capnography or capnometry to confirm and monitor ET tube placement
- Once advanced airway in place, give 1 breath every 6 seconds (10 breaths/min) with continuous chest compressions

Return of Spontaneous Circulation (ROSC)

- · Pulse and blood pressure
- Abrupt sustained increase in PETCO₂ (typically ≥40 mm Hg)
- Spontaneous arterial pressure waves with intra-arterial monitoring

Reversible Causes

- · Hypovolemia
- Hypoxia
- · Hydrogen ion (acidosis)
- Hypo-/hyperkalemia
 - emia Ti
- Hypothermia

- Tension pneumothorax
- Tamponade, cardiac
- Toxins
 Thrombosis, pulmonary
- Thrombosis, coronary

Advanced Steps

Pediatric Basic Life Support Algorithm for Healthcare Providers—2 or More Rescuers

© 2020 American Heart Association

Pediatric Cardiac Arrest Algorithm

Advanced Steps

Commonly Used Medications in Code Blue

Epinephrine

- 1 mg for adults
- 0.1 mg/kg for children (max dose is 1mg)
- 0.01 0.03 mg/kg for neonates (to prevent dosing errors, usually given via ETT (0.05-0.1 mg/kg))

Atropine

- 1 mg for adults (max is 3mg)
- 0.02 mg/kg for children (max single dose is 0.5 mg)
- 0.1 mg for neonates (not commonly used)

Amiodarone

- o 300 mg then 150 mg for adults
- 5 mg/kg (x3 doses if refractory) for children
- Not typically used in neonates

Commonly Used Medications in Code Blue

Sodium bicarbonate

- Typical dose is 50mEq dose (pre-filled syringe) for adults
- 1 mEq/kg of 8.4% solution for children
- 1 mEq/kg of 4.2% solution for neonates

Naloxone

- 0.04 mg 2mg for adults
- 0.1 mg/kg IV for children < 20kg
- 2 mg/kg IV for children >5 years and >20 kg

Adenosine

- o 6 mg, then 12 mg x2 doses for adults
- 0.1 mg/kg, then 0.2 mg/kg, then 0.3 mg/kg for children < 50kg

Shock Energy for Defibrillation

- 150 200 joules initially; can increase to max of 360J
- 2J/kg then 4J/kg in children

Post Code Blue Care

Patient & Family

- Depends on outcome
- Family liaison
- Family debrief
- Clarifying goals of therapy/plan of care

- Post mortem care
- Notifications
 - LifeBanc, family

Nurse/Healthcare Team

- Debrief
- Acknowledge patient if poor outcome
- Take a moment
- Feel your feelings
- Strategies for preventing compassion fatigue

Advice/Alleviating Worries

- Know your patient's code status
- Know the signs of a code blue
- Know the H's and T's
 - Hypovolemia
 - Hypoxia
 - Hydrogen Ion (Acidosis)
 - Hyper/Hypokalemia
 - Hypothermia
 - Toxins
 - Tamponade
 - Tension Pneumothorax
 - Thrombosis
- Know where the supplies are:
 - Suction
 - Oxygen/ambu bag
 - Code cart
 - CPR lever on bed
 - Code blue button
- Nursing care
 - Bolus
 - Blood bank runner
 - o Get an EKG
 - Get labs
- Get out of the way
- Get experience

