```
logistic regression
 used for classification
 training data : \{(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)\}
           □ feature vector x & Rd how many features
           - label y e {0,1}
     logistic regression, we learn from the data a probablistic model for
          Pr(Y=y|\vec{x}) for Y=0 and Y=1.
     given a data pt. w./ feature vector x, what is the probability that its label is y=1?
the logistic model: a linear model for the log odds
                     \frac{(Y=1|\vec{x})}{\text{that } Y=1 \text{ given } \vec{x}} \xrightarrow{\text{intercept}} \frac{\mathbf{E} \in \mathbb{R}^d}{\mathbf{E} \otimes \mathbf{E} \otimes \mathbf{E}^d}
\Pr(Y=1|\vec{x}) = \frac{\mathbf{e}}{1+\mathbf{e}^{B_0+\vec{B}^T\vec{x}}} \in (0,1)
              odds that Y=1 given x
          Pr(Y=0|x)=1-Pr(Y=1|x)
 how to learn Bo, B from data?
     under this probablistic model, write the <u>likelihood</u>, the probability of seeing the data given the
           probabalistic model : its parameters, then choose the parameters that maximize the likelihood.
    (B., B) = TPr(Y=yilx)= TPr(Y=11x)31[1-Pr(Y=11x)]151
likelihood
                                                                        maximizing load gives same Bo, B as maximizing l.
   \log L = \sum_{i=1}^{\infty} y_i \log \left[ \Pr(Y=1|\vec{x}) \right] + (1-y_i) \log \left[ 1-\Pr(Y=1|\vec{x}) \right]
= \sum_{i=1}^{\infty} y_i \log \left[ \frac{e^{y_i \vec{b}^T \vec{x}_i}}{1 + e^{y_i \vec{b}^T \vec{x}_i}} \right] + (1-y_i) \log \left[ \frac{1}{1 + e^{y_i \vec{b}^T \vec{x}_i}} \right]
                                                                                   loge is monotonic ...
             2 4; (Bo+ BTxi)- log(|+e Bo+BTxi)
               Vi log & = O
                                        to find B that fits the data ("learn", "train")
                  يِّ الله ( المنابع)) = 0
```

one option to solve for B: the Newton-Raphson algorithm.

... non-linear in B

confusion matrix
once a cutoff P(Y=1 x) is decided upon for a decision boundary,
the confusion matrix summarizes classification performance.
TRUTH
y=\ y=O
PREDICTION y=1 TP FP y=0 FN TN
TREDICTION y=0 FN TN
TP: true positive
data whose true and predicted label is y=1
TN: true negative
data whose true and predicted label is y=0
FP: false positive
data whose predicted label is y=1, but true label is y=0
FN: false negative
data whose predicted label is y=0, but true label is y=1
receiver operator characteristic (ROC) curve
LR gives us Pr (Y=1 x) & (0,1).
to classify (map x to O or 1), we must choose a threshold p" for the classification rule:
$y(\vec{x}) = \begin{cases} O & \text{if } P_r(r=1 \vec{x}) \leq p^* \\ 1 & \text{if } P_r(r=1 \vec{x}) \leq p^* \end{cases}$
choice of p should reflect the costs of FP/FN's
p* - 0 => fewer FN, more FP) in the limit, all data is labeled by model as y=1
□ p* - 1 => fewer FP, more FN
the ROC curve scans all possible thresholds, pt, and plots TPR vs. FPR
The third mate = multiple thinks
TP TP+FN "fraction of two +'s predicted to be +'s"
P TP+FN TP+FN
total # that are truly positive
FPR: false positive rate = fall out = 1- selectivity
N TN+FP "fraction of true -'s predicted to be +'s" commonly used to evaluate LR model w./o
total # that are truly negative imposing a p*)
TPR large TPR 1 prismall area under Roc curve (AUC):
perfect 2 random ly salect a negative instance X
3 AUC = Pr [Pr (Y=1 x+) > Pr (Y=1 x-)]
small FPR i.e. AUC is probability LR properly
p [#] large ranks the two instances.