Contents

_ •																												_
Basic																												-
vimrc																												3
Debug Macro	•	•	•	•		•					•		•			•			•	•					•			3
Increase Stack			•																									3
Pragma Optimization																												4
IO Optimization																												4
SVG Writer																												4
Data Structure																												4
Dark Magic																												_
Link-Cut Tree																												_
LiChao Segment Tree																												_
Treap																												
Linear Basis																												,
Binary Search On Segtree																												
Billary Search on Seguree	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	•	•	•	•	•		•	•	•	•	`
Matching & Flow																												
HopcroftKarp																												•
Kuhn Munkres																												
Flow Models	-	-	-	-	-	-	-	-			-	-	-	-		-	-	-	-	-	-				-	-	-	٠
Dinic																												(
HLPP																												6
Global Min-Cut	•	•	•			•		•			•		•			•	•		•		•				•	•	•	6
GomoryHu Tree																												6
Minimum Cost Max Flow .																								, .				7
Dijkstra Cost Flow																												7
Minimum Cost Circulation																												-
Capacity Scaling																												-
General Graph Matching .																												-
Weighted Matching																												-
weighted hatening	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	
Graph																												8
2-SAT (SCC)				_		_												_	_	_	_	_			_			5
BCC																												,
Round Square Tree																												9
Edge TCC																												
DMST																												5
Dominator Tree	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	
Edge Coloring																												,
Centroid Decomposition .																												ç
Lowbit Decomposition																												ç
Virtual Tree																												ç
Tree Hashing																												ç
Mo's Algorithm on Tree .																								, .				10
Count Cycles																												10
MaximalĆlique																												10
Maximum Clique (Dyn)																												10
Minimum Mean Cycle																												10
······································	·	•	•	•	·	•	•	•			•	·	•	•		•	·	•		•	•	•			·	•	•	
Math																												10
Common bounds																												10
Stirling Number																												1:
Extended Euler																												1:
Extended Floor Sum																												1.
Integer Division																												1.
Floor Sum																												
ModMin								•		•	•	•	•	•	• •	•	•	•	•	•	•	•		•	•	•	•	11

	ax + by = gcd \dots		
	Chinese Remainder	•	12
	DiscreteLog	•	12
	Quadratic Residue		12
	FWT		12
	Packed FFT		13
	CRT for arbitrary mod		13
	NTT		13
	FPS		13
	Partition Number		13
	Pi Count		13
	Miller Rabin		14
	Pollard Rho	•	14
	Berlekamp Massey	•	14
	Gauss Elimination		14
	Charateristic Polynomial		14
	Simplex / Simplex Construction		
	Adaptive Simpson		15
		•	IJ
G۵	ometry		15
JE			15
	Basic Geometry	•	
	2D Convex Hull		15
	2D Farthest Pair		15
	MinMax Enclosing Rect		15
	Minkowski Sum		16
	Segment Intersection		16
	Half Plane Intersection		16
	SegmentDist		16
	Rotating Sweep Line		16
	Polygon Cut		16
	Point in Simple Polygon	•	17
	Point in Hull (Fast)		17
	Tangent of Points To Hull		17
	Circle Class & Intersection		17
	Circle Common Tangent		17
	Line-Circle Intersection	•	17
	Poly-Circle Intersection		18
	Minimum Covering Circle		18
	Circle Union		18
	Polygon Union		18
	3D Point		18
	3D projection		
			18
	3D Convex Hull		19
	Delaunay		19
	kd Tree (Nearest Point)		19
	kd Closest Pair (3D ver.)		19
	Simulated Annealing	•	19
	Triangle Centers		20
St	ringology		20
	Hash		20
	Description		20
	Test Status		20
	Suffix Array		20
	Ex SAM		20
	KMP		20
	Z value		20
	Manacher		21
	Lyndon Factorization		21

	Main Lorentz	21
	BWT	21
	Palindromic Tree	21
Μi	isc	22
	Theorems	22
	Weight Matroid Intersection	22
	Stable Marriage	
	Bitset LCS	22
	Prefix Substring LCS	22
	Convex 1D/1D DP	22
	ConvexHull Optimization	23
	De-Bruijn	23
	Josephus Problem	23
	N Queens Problem	23
	Manhattan MST	23
	Tree Knapsack	23
	Binary Search On Fraction	24
	Barret Reduction	
	Montgomery Multiplication	24

Basic

vimrc

Description

vimrc.

- 1. Be careful of the version (currently gnu++20 for WF)
- 2. setxkbmap command should be executed in terminal or smt.

Test Status

No test needed

Debug Macro

Description

Debug code for dumping information.

Test Status

No test needed.

Increase Stack

Description

Increase the stack size

Test Status

Not even used

Pragma Optimization

Description

Magic Pragmas. It depends to choose Ofast or O3. For target related stuff, adding arch=skylake should work (no need for others). Also, a way to avoid denormal numbers. 0x8000 for FTZ and 0x0040 for DAZ. Intel Compiler Docs. Only works for SSE/AVX stuff.

Test Status

Rarely used, no test

IO Optimization

Description

I/O bounded program needs this sweet optimization.

Test Status

Rarely used, no test.

SVG Writer

Description

A helper to generate SVG. Support Line, Circle, and Text. Should adjust sizes properly.

Test Status

No Test

Data Structure

Dark Magic

Description

PBDS classes/functions. ordered set and mergable heap are the useful ones.

Test Status

No test.

Link-Cut Tree

Description

 $O(Q\log N)$ operations on path query. Supports link or cut edge.

Subtree queries are tricky.

Test Status

CF 603E. Passed dynamic_tree_vertex_set_path_composite and dynamic_tree_vertex_add_subtree_sum.

LiChao Segment Tree

Description

Maintain the upper envelope of lines.

TODO: is extended version needed?

Used in some contest.

Treap

Description

treap. For persistent, should not use pri.

Test Status

Rarely used. Need test?

Linear Basis

Description

Given a set of integers: - query_kth to find the k-th integer in the (sorted) set of XOR combination of the integers with v. - The second field is for range XOR basis query or smt, greedily maintained in insert function.

Test Status

- ABC223 H
- kth problem 1st Hunger Games S
- maybe need a combined problem?

Binary Search On Segtree

Description

Binary search on ZKW segtree. sz should be power of 2 (be careful of other parts!).

Test Status

Passed Quick Sort

Matching & Flow

HopcroftKarp

Description

An $O(|E|\sqrt{|V|})$ bipartite matching algorithm. Basically a low constant Dinic's algorithm.

Number of matching saved in ans, and the corresponding matching saved in 1 and r. Not sure about what a and p does. a and p are auxiliary array when doing BFS.

Test Status

Tested on Library Checker

Kuhn Munkres

Description

KM algo.

Passed UOJ 80 and Library Checker.

Flow Models

Description

Some models. Need check.

Test Status

TODO

Dinic

Description

Dinic with capacity scaling. See this and this. $O(VE \log U)$ and $\Theta(acceptable)$ in practice.

Test Status

Passed luogu P3376.

HLPP

Description

HLPP algo with gap heuristics.

Theoritical complexity is $O(V^2\sqrt{E})$. But heuristic is powerful!

Note: Lowest Label Push Relabel is $O(\sqrt{V}E)$ on bipartie matching graph.

Test Status

LOJ 127 and library checker bipartite matching. Passed Matching on Bipartite Graph.

Global Min-Cut

Description

Stoer-Wagner algorithm solves the minimum cut problem in undirected weighted graphs with non-negative weights. Our code looks like an ${\cal O}(N^3)$ implementation.

Test Status

Passed luogu Didn't find a $O(VE + V^2 \log V)$ version.

GomoryHu Tree

Description

For a given non-negative weighted tree, this algorithm returns a weighted tree (Gomory-Hu Tree). For any s, t, the minimum s-t cut in the original graph is equal to the minimum values among the path between s and t in the Gomory-Hu Tree.

Runs in $(|V|-1) \times O(\text{maflow})$.

Need to adapt current Dinic's algorithm.

Something I don't understand: In the Gomory-Hu tree, for any pair of vertices not just the size of the minimum cut between them is equal to the size of the minimum cut in the

original graph (as Wikipedia claims), but also the minimum cut itself (as a partition of the vertex set into two). (Petr's blog)

Fun Fact: Gomory-Hu Tree can be computed in almost linear time. (see this)

Test Status

Passed CF 343E.

Minimum Cost Max Flow

Description

Successive Shortest Path Algorithm using SPFA (Bellman-Ford algorithm).

Test Status

Passed LibreOJ 102. Testdata in LOJ is not strong in general.

Dijkstra Cost Flow

Description

Successive Shortest Path Algorithm using Dijkstra's algorithm.

Test Status

Tested on ARC122 F and LibreOJ 102

Minimum Cost Circulation

Description

Network simplex method. Exponential time complexity, but it runs not too slow in practice.

Test Status

Tested on UOJ #487, UOJ #680, and LibreOJ 102. min_cost_b_flow. Cannot pass QOJ 7185

Capacity Scaling

Description

Test Status

min_cost_b_flow

General Graph Matching

Description

Matching in $O(|V|^3)$. ref-slide

Test Status

Tested on Library Checker.

Weighted Matching

Description

Weighted matching in $O(|V|^3)$. ref-slide

Tested on Library Checker

Graph

2-SAT (SCC)

Description

Kosaraju and 2-SAT construction. Don't forget we can do bitset optimization.

To use 2-SAT, 2i and 2i+1 represents x and $\neg x$. $x \lor x$ or $\neg x \lor \neg x$ is OK.

Test Status

Passed CSES Giant Pizza and CF Radio Stations. Passed library checker.

BCC

Description

Gives AP and bridge and bcc_id. bcc_id[edge_id] is the bcc of the edge.

Test Status

Passed Two-Edge-Connected-Components and Biconnected Components. is_ap function is not tested.

Round Square Tree

Description

Or block-cut-tree. Useful tree for "simple path" queries. There will be at most 2N vertices in the new tree.

Test Status

Passed 2020 Shanghai K Passed Biconnected Components

Edge TCC

Description

Edge triconnected component.

Test Status

Passed yosupo library checker.

DMST

Description

Directed Minimum Spanning Tree in $O(E\log^2 E)$. Use mergable heap instead of small-to-big for better complexity?

Test Status

Passed yosupo library checker CF 100307 D

Dominator Tree

Description

Dominator tree in $O(E\log V)$. The ancestor relation on the tree is the "must-pass-from-source" relation in original graph.

Test Status

Passed yosupo library checker.

Edge Coloring

Description

Misra & Gries edge coloring algorithm. Runs in O(NM)

Test Status

Passed NCPC 2018 G.

Centroid Decomposition

Description

Mark a vertex or query the sum of distance from a vertex to all marked vertices.

Test Status

Need rewrite or smt.

Lowbit Decomposition

Description

Some chain decomposition of tree.

Test Status

TODO

Virtual Tree

Description

Dependency: lca. Gives the critital nodes of given subset. Always include the original root. The edges are given in rooted tree format.

Test Status

Used in contest. TODO.

Tree Hashing

Description

Some PRNG random hash.

Test Status

Passed UOJ 763 and library checker.

Mo's Algorithm on Tree

Description

Pseudo code of mo's algo on tree. push means XOR the contribution.

Test Status

TODO

Count Cycles

Description

Count 3-cycle and 4-cycle in $O(M\sqrt{M})$.

Test Status

Passed CCPC Guangzhou.

MaximalClique

Description

Enumerate maximal clique. Time complexity $O(n3^{n/3})$ or O(nC) where C is the number of such cliques.

Test Status

Can run on n=80 on TIOJ.

Maximum Clique (Dyn)

Description

Get maximum clique with ?? time complexity.

Test Status

kactl says it can run on n=155. For n=100 on POJ, runs in 32ms. Passed library checker.

Minimum Mean Cycle

Description

O(V(V+E)) find min mean cycle. Too rare to use so needs shorten.

Test Status

Passed a UVa problem with n=50.

Math

Common bounds

Description

Partition function, divisor function and catalan number.

Test Status

No test.

Stirling Number

Description

Stirling number formula. Do we need this?

Test Status

No test.

Extended Euler

Description

A formula.

Test Status

No test.

Extended Floor Sum

Description

A recursion formula.

Test Status

No test.

Integer Division

Description

C++ integer division to normal integer division.

Test Status

Copied from 8BQube

Floor Sum

Description

Calculate $\sum_{i=0}^{n-1} \lfloor \frac{ai+b}{m} \rfloor$.

Test Status

Passed yosupo judge (negative coefficient not tested).

ModMin

Description

Return the minimum $x \geq 0$ such that $l \leq ax \mod m \leq r$.

Test Status

Tested on SEERC'20 G

Floor Monoid Product

Description

萬能歐幾里得 ref1 ref2

Test Status

https://judge.yosupo.jp/submission/185615 https://www.luogu.com.cn/record/144016921 https://loj.ac/s/1986411

ax + by = gcd

Description

exgcd algorithm.

Test Status

See CRT section.

Chinese Remainder

Description

Solves $x \equiv r_1 \pmod{m_1}$ and $x \equiv r_2 \pmod{m_2}$. If no solution, returns false

Test Status

Passed luogu P4777.

DiscreteLog

Description

BSGS algorithm.

Test Status

Passed yosupo judge

Quadratic Residue

Description

Square root under modulo prime.

Test Status

Passed yosupo judge

FWT

Description

Bitwise XOR/AND/OR convolution.

Test Status

Passed yosupo judge, XOR and AND version.

Packed FFT

Description

Make FFT precision better. reference: - 淺談 FFT - 題解 P4245

Test Status

Passed convolution mod with long double. For N=524288, - normal NTT (998244353): ~230ms - three-mod-NTT: ~430ms - convolution_mod ~1000ms with long double (AC), 400ms with double (WA) - convolution: ~800ms with long double (WA)

CRT for arbitrary mod

Description

CRT for three-mod-NTT.

Test Status

Passed yosupo judge.

NTT

Description

NTT. Can be modified to FFT easily.

Test Status

Passed yosupo judge. See also "CRT for arbitrary mod".

FPS

Description

Common Formal Power Series operations. Exp and Pow are relatively slow at yosupo library checker.

Do we need Consecutive Terms of Linear Recurrent Sequence?

Test Status

Inv Ln Exp Pow Sqrt Eval DivMod LinearRecursionKth

Partition Number

Description

Calculate first N partition number in $O(N\sqrt{N})$.

Test Status

Passed yosupo judge N=500000 in 557ms.

Pi Count

Description

Count prime in sublinear time. The code is copied from 8BQube and simplified.

Passed yosupo judge

Miller Rabin

Description

Prime detect. Be careful about mpow and mmul.

Test Status

Passed yosupo judge in 1632ms (10^5 tests). w/ Montgomery Multiplication runs in 219ms.

Pollard Rho

Description

Factorization. Be careful about mpow and mmul.

Test Status

Passed yosupo judge in 313ms (100 tests). w/ Montgomery Multiplication runs in 72ms.

Berlekamp Massey

Description

BM algo.

Test Status

Passed yosupo judge.

Gauss Elimination

Description

Make RREF and solve system of linear equations.

Test status

library checker.

Charateristic Polynomial

Description

Calculate the charateristic polynomial of matrix in $O(N^3)$.

Test Status

Passed 2021 PTZ Korea and library checker.

Simplex / Simplex Construction

Description

Linear programming.

Passed Red and Black Tree. long double runs 3 times slower.

Adaptive Simpson

Description

Simpson integration method. Unknown time complexity.

Test Status

Passed Two Cylinders

Geometry

Basic Geometry

Description

- sgn cross dot ori
- quad argCmp all-integer angle compare.
- area be careful of type.
- rot90 multiply by i (or left turn 90 degree)
- project projection onto a vector

Test Status

No test. Used extensively in other template. TODO Center of polygon needs test.

2D Convex Hull

Description

Returns strict convex hull of given points. The result is counter-clockwise and the first point is the lex-min point. Be carefule about edge case (0/1/2/3 points on CV)

Test Status

Used in some contest.

2D Farthest Pair

Description

Rotating caliper algorithm. Requires the input hull be strictly convex.

Test Status

Passed AOJ CGL.

MinMax Enclosing Rect

Description

Rotating caliper, but with more pointers.

Test Status

Passed UVA 819

Minkowski Sum

Description

Minkowski sum of two convex hulls.

Test Status

Used in some contest. TODO.

Segment Intersection

Description

Check whether the segment intersects. Touching at the ends counts. Be careful about edge case like parallel, does touching at ends count, ... Can be modified to Ray class or Line class.

To get the intersection point, check next part (HPI)

Test Status

Used in many contest. Passed AOJ CGL.

Half Plane Intersection

Description

Calculate the area of half-plane-intersection. The result lines will be in ${\tt q}$ (this is why we need the reference). Result lines maybe wrong if the intersection area doesn't have positive area.

Test Status

Passed 2020 Nordic NCPC Big brother. Used in many contest.

SegmentDist

Description

Distance from point to segment and segment to segment. Can be used in checking sausage intersection.

Test Status

Passed QOJ 2444 and PTZ 19 summer D3.

Rotating Sweep Line

Description

A skeleton of rotating sweep line. Support colinear cases.

Test Status

Passed NAIPC 2016 G

Polygon Cut

Description

Cut simple polygon by a line.

Copied from kactl. TODO.

Point in Simple Polygon

Description

Testing PIP.

Test Status

Used in some contest. TODO.

Point in Hull (Fast)

Description

Testing PIH in $O(\log N)$.

Test Status

Enclosure Used in some contest.

Tangent of Points To Hull

Description

Tangent of point to hull in $O(\log N)$. Requires the hull to be strictly convex. Can be modified to find extreme point on hull.

Test Status

Enclosure

Circle Class & Intersection

Description

Definition of Cir and some intersection function.

Test Status

Passed AOJ CGL.

Circle Common Tangent

Description

Common tangent point of circle.

Test Status

Passed AOJ CGL and CF 128E.

Line-Circle Intersection

Description

The point of intersection of line and circle.

TODO.

Poly-Circle Intersection

Description

The intersection area of a circle and a simple polygon.

Test Status

Passed AOJ CGL_7_H. Copied from 8BQube and they say it passed HDU2892.

Minimum Covering Circle

Description

Get minimum covering circle in $\mathcal{O}(N)$ expected time. Also gives the circumcenter formula.

Test Status

Passed TIOJ 1093, luogu P1742

Circle Union

Description

Calculate the area that covered by at least k circle for each k. Time complexity $O(N^2 \log N)$.

Test Status

Passed SPOJ.

Polygon Union

Description

Union area of simple polygon.

Test Status

TODO.

3D Point

Description

Basic 3d point. - cross - triple product - rotate around an axis

Test Status

rotate_around is copied from NaCl. Others are tested by 3d hull.

3D projection

Description

Get the 2d coordinate of the projection of a point p onto plane $q^Tx=0$.

Passed stars in a can.

3D Convex Hull

Description

Return the face of 3d convex hull of N points. There will be O(N) faces and time complexity is $O(N^2)$. Be careful of degenerate cases.

Test Status

Passed SPOJ and stars in a can. Passed HDU 3662. (need to combine coplanar triangles to one face).

Delaunay

Description

Delaunay triangulation.

Usage TODO.

Test Status

Passed Brazil subregional.

kd Tree (Nearest Point)

Description

KD Tree nearest point query.

Test Status

TODO

kd Closest Pair (3D ver.)

Description

3d closest pair

Test Status

Correct, but might be too slow. Can pass TIOJ using fast hash table. Need more test.

Simulated Annealing

Description

A skeleton of simulated annealing

Test Status

TODO.

Triangle Centers

Description

Triangle centers formula.

Test Status

No test.

Stringology

Hash

Description

Rolling-hash algorithm

Test Status

Used in some contests. Passed Z-algo.

Suffix Array

Description

SA-IS algorithm. Complexity: O(N+C)

Test Status

Tested on Suffix Array and Number of Substrings.

Ex SAM

Description

Don't know how to use.

Test Status

Copied from 8bq

KMP

Description

Knuth-Morris-Pratt algo

Test Status

https://tioj.ck.tp.edu.tw/submissions/368896

Z value

Description

Z algorithm

Test Status

Tested on Library Checker

Manacher

Description

Find maximal palindrome for each index.

Test Status

Tested on Library Checker

Lyndon Factorization

Description

A string is called simple (or a Lyndon word), if it is strictly smaller than any of its own nontrivial suffixes. The Lyndon factorization of the string s is a factorization $s=w_1w_2\dots w_k$, where all strings w_i are simple, and they are in non-increasing order $w_1\geq w_2\geq \dots \geq w_k$.

Duval algorithm: O(N).

Test Status

Tested @ luogu 6114, 1368 & UVA 719. Passed Library Checker

Main Lorentz

Description

A repetition is two occurrences of a string in a row. The challenge is to find all repetitions in a given string s.

The algorithm described here was published in 1982 by Main and Lorentz.

Time complexity: $O(N \log N)$

Every [l,r] in rep[i] satisfies that if $p \in [l,r]$ then s[p,p+i) = s[p+i,p+2i).

Test Status

Passed CF 104508J. This problem is prepared with this code, but some SA solutions also passes.

BWT

Description

Burrows-Wheeler transform is done by sorting all the circular shifts of a text in lexicographic order and by extracting the last column and the index of the original string in the set of sorted permutations of S.

Good for run-length encoding?

Test Status

Passed UVa 632 and UVa 741

Palindromic Tree

Description

Check OI Wiki

Don't know how to use.

TO_DO

Misc

Theorems

Description

Theorems.

Test Status

No test.

Weight Matroid Intersection

Description

Almost an implementation.

Test Status

Copied from NaCl

Stable Marriage

Description

Stable Marriage algo.

Test Status

No test needed.

Bitset LCS

Description

 $O(n^2/w)$. need hand-written bitset (needs subtraction) TODO: Find a way to recove the answer. Prob

Test Status

Passed LibreOJ #6564

Prefix Substring LCS

Description

Calculate the LCS of a prefix of S and a substring of T in $O((|S||T|+Q)\log|T|)$

Test Status

Passed yosupo library checker. Copied from 8BQube.

Convex 1D/1D DP

Description

1D/1D optimization.

TIOJ 烏龜疊疊樂

ConvexHull Optimization

Description

Maintain upper envelope of lines.

Test Status

Passed yosupo library checker.

De-Bruijn

Description

De-Bruijn sequence construction

Test Status

Passed CSES, regional prob and local test.

Josephus Problem

Description

Josephus problem O(N) and faster algo $(O(M \log N))$.

Test Status

Passed 2018 Asia Nanjing.

N Queens Problem

Description

N Queens Problem construction

Test Status

Not even used or tested.

Manhattan MST

Description

Minimum Spanning Tree of manhattan distance.

Test Status

Passed yosupo library checker.

Tree Knapsack

Description

TODO don't know its usage

Not even used or tested.

Binary Search On Fraction

Description

Binary search on stern-borcot tree, binary search over p/q such that $0 \le p, q \le N$.

Test Status

TODO. Copied from NaCl.

Barret Reduction

Description

Fast modulo operation of non-constexpr constant. Only able to handle int-size modulo.

Test Status

Copied from kactl. Guess it's ok to have no test.

Montgomery Multiplication

Description

Fast modulo operation of non-constexpr constant. Only able to handle odd modulo.

Test Status

Tested with MillerRabin and PollardRho.