Beautiful Arrays Problem Code: ICPC16B

An array **a** is called *beautiful* if for every pair of numbers a_i , a_j , $(i \neq j)$, there exists an a_k such that $a_k = a_i * a_j$. Note that **k** can be equal to **i** or **j** too.

Find out whether the given array **a** is *beautiful* or not!

Input

First line of the input contains an integer **T** denoting the number of test cases. **T** test cases follow.

First line of each test case contains an integer **n** denoting number of elements in **a**.

Next line contains **n** space separated integers denoting the array **a**.

Output

For each test case, output a single line containing "yes" or "no" (without quotes) corresponding to the answer of the problem.

Constraints

- $\bullet \qquad 1 \le T \le 10^6$
- $\bullet \qquad 1 \le n \le 10^5$
- Sum of n over all the test cases ≤ 10⁶
- $-10^9 \le a_i \le 10^9$

Example

Input

3

2

0 1

2

1 2

2

5 6

Output:

yes
yes

no

Explanation

Test case 1. If you multiply 0 with 1, you get 0, we see that $a_0 = 0$. So, the array is *beautiful*.

Test case 3. If you multiply 5 with 6, you get 30, there does not exist an \mathbf{k} such that $\mathbf{a_k} = \mathbf{30}$. So, the array is not *beautiful*.