Équivalences de catégories en géometrie algébrique

Table des matières

	0.1	L'équivalence de catégorie avec les variétés abstraites affines .	3
	0.2	L'équivalence de catégorie avec schémas affines	4
		0.2.1 L'équivalence	4
1	Tra	ductions variétés vers k-algèbres	5
	1.1	L'équivalence de catégorie de base	5

0.1 L'équivalence de catégorie avec les variétés abstraites affines

Essentiellement, d'un côté on a une flèche topologique continue

$$|f|\colon X\to Y$$

et une flèche de faisceau localement annelée

$$f^{\sharp} \colon \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$$

on a pas forcément une flèche polynomiale encore de $\mathbb{A}^n \to \mathbb{A}^m$. On sait quand même que $\mathcal{O}_Y(Y) \to \mathcal{O}_X(X)$ correspond à $f_* \colon A(Y) \to A(X)$, faut juste relever en $A(\mathbb{A}^m) \to A(X)$ et obtenir $X \to \mathbb{A}^m$ comme une restriction $\mathbb{A}^n \to \mathbb{A}^m$! À l'inverse, si on a $f \colon X \to Y$ polynomiale, on obtient $A(Y) \to A(X)$. Faut juste obtenir $\mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}U)$, mais c'est clair que le pullback de fonctions marche! Parce que si on a

$$g \in \mathcal{O}_Y(U)$$

alors $g \circ f \in \mathcal{O}_X(f^{-1}U)$ est régulière, car localement les fractions sont données f_*P/f_*Q .

0.2 L'équivalence de catégorie avec schémas affines

0.2.1 L'équivalence

On regarde Spec: $Ring \to Aff$, c'est essentiellement surjectif par définition et $\Gamma \circ Spec = id$. Ducoup faut montrer que c'est pleinement fidèle. En reprenant les définitions, de

$$(f, f^{\sharp}) \colon \operatorname{Spec}(B) \to \operatorname{Spec}(A)$$

un morphisme de schémas affines faut montrer que si $\varphi := \Gamma(f)$ alors $\operatorname{Spec}(\varphi)$, la flèche de pullback, est égale à f. On peut montrer que $\operatorname{Spec}(\varphi) = f$ et $\varphi_x = f_x^{\sharp}$ pour tout x. Dire que $f^{\sharp}(\mathfrak{p}_x) = \varphi^{-1}(\mathfrak{p}_x)$ on peut le déduire de l'existence de

$$\begin{array}{ccc} A & \xrightarrow{\varphi} & B \\ \downarrow^{i_x} & & \downarrow^{j_x} \\ A_{\mathfrak{p}_{f(x)}} & \xrightarrow{f_x^{\sharp}} & B_{\mathfrak{p}_x} \\ \downarrow & & \downarrow \\ \kappa(f(x)) & \longrightarrow & \kappa(x) \end{array}$$

non trivial, on peut voir ça en regardant le carré du haut, on a

1.
$$j_x^{-1}(\mathfrak{p}_x B_{\mathfrak{p}_x}) = \mathfrak{p}_x$$
.

2.
$$i_{f(x)}^{-1}(\mathfrak{p}_{f(x)}A_{\mathfrak{p}_{f(x)}}) = \mathfrak{p}_{f(x)}$$

et $(f_x^{\sharp})^{-1}(\mathfrak{p}_x) \subset \mathfrak{p}_{f(x)}$, comme $j_x \circ \varphi = f_x^{\sharp} \circ i_x$. On obtient

$$\varphi^{-1}(\mathfrak{p}_x)\subset\mathfrak{p}_{f(x)}$$

l'inclusion inverse est conséquence directe du fait que c'est localement annelé. Faut quand même montrer que $\operatorname{Spec}(\varphi)^{\sharp}$ donné par les flèches induites par φ est égale à f^{\sharp} . Mais ça c'est clair sur les fibres par unicité donc partout.

Chapitre 1

Traductions variétés vers k-algèbres

1.1 L'équivalence de catégorie de base

Quand on a $\varphi \colon k[Y] \to k[X]; \ (\overline{Y_i})_i \mapsto (g_i(\overline{X_j},j)_i)$. Les Y_i vérifient les équations de Y donc par définition les $g_i(\overline{X_j},j)$ aussi! D'où, la flèche $\varphi^a \colon X \to Y$ telle que

$$(x_j)_{j=1,\dots,n} \mapsto (g_i(x_j,j))_{j=1,\dots,m}$$

est bien définie et régulière! Maintenant, si on regarde $\ker(\varphi)$, c'est un idéal qui contient I(Y) et dont les g_i vérifient les équations! D'où l'image de φ^a est contenue dans

$$Z(\ker(\varphi)) \subset Y$$

en particulier, φ^a est dominante si et seulement si φ est injective!

À l'inverse, si φ est surjective on obtient un isomorphisme et donc une injection

$$k[Y]/\ker(\varphi) \simeq k[X]$$

mais $k[Y] \to k[Y]/\ker(\varphi)$ est par définition l'injection $Z(\ker(\varphi)) \subset Y$. En particulier, X s'injecte dans Y.

1.2 Parler des fibres

En fait la fibre $f^{-1}(y)$ vérifie des équations $f^*\mathfrak{m}_y$ et f(x)=y veut dire que $f^*\mathfrak{m}_y\subset\mathfrak{m}_x$. On peut obtenir des conditions de surjectivité.