Workshop Testing and Formal Methods, Week 4: Answers

This workshop is about working with sets and relations. Sets and lists are treated in chapter 4 of "The Haskell Road". Ordered sets of pairs (HR, 4.5) are the basic ingredients of relations. Relations are treated in chapter 5 of "The Haskell Road".

If the following exercises are difficult for you, you should study the relevant material (again).

Question 1 Consider the following relations on the natural numbers. Check their properties. The *successor* relation on \mathbb{N} is the relation given by $\{(n,m) \mid n+1=m\}$. The divisor relation on \mathbb{N} is $\{(n,m) \mid n \text{ divides } m\}$. The *coprime* relation C on \mathbb{N} is given by $nCm :\equiv GCD(n,m) = 1$, i.e., the only factor of n that divides m is 1, and vice versa.

	<	\leq	successor	divisor	coprime
irreflexive					
reflexive					
asymmetric					
antisymmetric					
symmetric					
transitive					
linear					

Answer:

	<	\leq	successor	divisor	coprime
irreflexive					
reflexive					
asymmetric			$\sqrt{}$		
antisymmetric					
symmetric					
transitive					
linear					

Note that the *coprime* relation is not irreflexive, for 1 and 1 are coprime.

Question 2 Consider the relation

$$R = \{(0,2), (0,3), (1,0), (1,3), (2,0), (2,3)\}$$

on the set $A = \{0, 1, 2, 3, 4\}$.

- 1. Determine R^2 , R^3 and R^4 .
- 2. Give a relation S on A such that $R \cup (S \circ R) = S$.

Answer: $R^2 = \{(0,0), (0,3), (1,2), (1,3), (2,2), (2,3)\},$ $R^3 = \{(0,2), (0,3), (1,0), (1,3), (2,0), (2,3)\}$ and $R^4 = \{(0,0), (0,3), (1,2), (1,3), (2,2), (2,3)\}.$

From these results we see that $R \cup R^2$ is a good candidate for S. And indeed, if we put

$$S = \{(0,0), (0,2), (0,3), (1,0), (1,2), (1,3), (2,0), (2,2), (2,3)\},\$$

we get that $R \cup (S \circ R) = S$.

Question 3 The transitive closure of a relation R is by definition the smallest transitive relation S such that $R \subseteq S$. Notation: R^+

Consider again the relation

$$R = \{(0,2), (0,3), (1,0), (1,3), (2,0), (2,3)\}$$

on the set $A = \{0, 1, 2, 3, 4\}$. What is the transitive closure of R?

Answer:

$$\{(0,0),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0),(2,2),(2,3)\}.$$

Same as the S we found in the previous exercise.

Question 4 A binary relation R is transitive iff $R \circ R \subseteq R$. You should check this! Give an example of a transitive relation R for which $R \circ R = R$ is false.

Answer: What the requirement $R \circ R \subseteq R$ expresses is that if you can get from x to y in two R-steps, then also in one. This is precisely what the transitivity requirement says.

An example of a transitive relation R for which $R \circ R \neq R$ is < on \mathbb{N} . We have that 0 < 1, but $\neg 0 (< \circ <) 1$.

Question 5 The reflexive transitive closure of a relation R is by definition the smallest transitive and reflexive relation S such that $R \subseteq S$. Notation: R^* .

Give the reflexive transitive closure of the following relation:

$$R = \{(n, n+1) \mid n \in \mathbb{N}\}.$$

Answer:

$$\{(n, n+1) \mid n \in \mathbb{N}\}^* = \leq .$$

Question 6 The inverse of a relation R is the relation $\{(y,x) \mid (x,y) \in R\}$. Notation R^{-1} or R^{*} .

- 1. if S is the successor relation on the natural numbers, what is S?
- 2. if S is the successor relation on the natural numbers, what is $S \cup S$?
- 3. if S is the successor relation on the natural numbers, what is $(S \cup S^{\tilde{}})^*$?

Answer:

- 1. If S is the successor relation on \mathbb{N} , then S^* is the predecessor relation on \mathbb{N} .
- 2. If S is the successor relation on \mathbb{N} , then $S \cup S$? is the relation that links 0 to 1, and every number n+1 to both n and n+2. In a picture:

$$0 - 1 - 2 - 3 - 4 - 5 \cdots$$

3. If S is the successor relation on \mathbb{N} , $(S \cup S^{\check{}})^*$ is the total relation on \mathbb{N} .

Question 7 Suppose a relation R satisfies $R \subseteq R$.

- 1. Does it follow from this that R is reflexive?
- 2. Does it follow from this that R is symmetric?
- 3. Does it follow from this that R is transitive?

Answer: If R satisfies $R \subseteq R$, then

- 1. it does not follow that R is reflexive (counterexample: $R = \{(0,1), (1,0)\}\)$;
- 2. it does follow that R is symmetric;
- 3. it does not follow that R is transitive (counterexample: $\{R = \{(0,1), (1,0)\}\}$).

Question 8

- 1. Is $R \cup R$ symmetric for all relations R? Give a counterexample if your answer is negative.
- 2. Is $R^* \cup R^{**}$ symmetric for all relations R? Give a counterexample if your answer is negative.
- 3. Is $R^* \cup R^{**}$ transitive for all relations R? Give a counterexample if your answer is negative.
- 4. Is $(R \cup R)^*$ an equivalence relation (reflexive, transitive and symmetric) for all relations R?

Answer:

- 1. Is $R \cup R^*$ symmetric for all relations R? Yes.
- 2. Is $R^* \cup R^{**}$ symmetric for all relations R? Yes.
- 3. Is $R^* \cup R^{**}$ transitive for all relations R? No. Counterexample: $R = \{(0,1), (0,2)\}$. This gives

$$R^* = \{(0,1), (0,2), (0,0), (1,1), (2,2)\},$$

$$R^{\check{}} = \{(1,0), (2,0)\},$$

$$R^{\check{}} = \{(1,0), (2,0), (0,0), (1,1), (2,2)\},$$

and finally,

$$R^* \cup R^{**} = \{(0,1), (0,2), (1,0), (1,2), (0,0), (1,1), (2,2)\},\$$

which is not a transitive relation, because (1,2) and (2,1) are lacking.

4. Is $(R \cup R)^*$ an equivalence relation (reflexive, transitive and symmetric) for all relations R? Yes.