Nondeterministic Finite Automata (NFA)

- It has the ability to be in several states at once.
- Transitions from a state on an input symbol can be to any set of states.
- Starts in one state
- Accept if any sequence of choices leads to a final state

Figure 2.9: An NFA accepting all strings that end in 01

Figure 2.10: The states an NFA is in during the processing of input sequence 00101

Chessboard b 2 3 1 5 2,4 4,6 2,6 2,8 2,4,6,8 2,8 2 3 4 5 6 1,3,5 5 6 4 1,5,7 1,3,7,9 9 8 7 b b r 8 5,7,9 6,8 3 7 ← Accept, since final state reached

Formal Definition of NFA:

- A finite set of states Q
- An input alphabet Σ
- A transition function δ
- A start state in Q, typically q₀
- A set of final state $F \subseteq Q$

Transition Function of an NFA

- $\delta(q, a)$ is a set of states
- Extended to strings as follows
 - Basis: $\delta(q, \epsilon) = \{q\}$
 - Induction: $\delta(q, wa)$ = the union over all states p in $\delta(q, w)$ of $\delta(p, a)$

Language of the NFA

- A string w is accepted by an NFA if $\delta(q0, w)$ contains at least one final state
- The language of the NFA is the set of strings it accepts

Example:

- **1.** Design an NFA with $\sum \{0, 1\}$ accepts all string ending with 01
- **2.** Design an NFA with $\sum \{0, 1\}$ in which double '1' is followed by double '0'
- **3.** Design an NFA with $\sum \{0, 1\}$ in which all the string contains a substring 1110
- **4.** Design an NFA with \sum {0, 1} accepts all string in which the third symbol from the right end is always 0

ϵ - NFA (NFA with ϵ):

- We can allow state-to-state transitions on ϵ input
- These transitions are done spontaneously, without looking at the input string

Closure of States:

- Closure of a set of states = Union of the closure of each state
- CL(q) = set of states you can reach from state q following only arcs labeled ϵ
- CL(A) = {A}; CL(E) = {B, C, D, E}

Extended Delta:

- $\hat{\delta}(A, \epsilon) = CL(A) = \{A\}$
- $\hat{\delta}(A, 0) = CL(\{E\}) = \{B, C, D, E\}$
- $\hat{\delta}(A, O1) = CL(\{C, D\}) = \{C, D\}$

Regular Expression (RE) to ϵ - NFA:

Automata constructed for $(\mathbf{0} + \mathbf{1})^* \mathbf{1} (\mathbf{0} + \mathbf{1})$

Converting ϵ - NFA to NFA:

Converting NFA to DFA:

Given a NFA with state Q, input Σ , transition function δ_N , start state q_0 , and and final states F, the equivalent DFA is:

- State 2^Q (Set of subset of Q)
- Input Σ
- Start state {q₀}
- Final states = all those with a member of F

Subset Construction:

	r	b
\rightarrow 1	2, 4	5
2	4, 6	1, 3, 5
3	2, 6	5
4	2, 8	1, 5, 7
5	2, 4, 6, 8	1, 3, 7, 9
6	2, 8	3, 5, 9
7	4, 8	5
8	4, 6	5, 7, 9
* 9	6, 8	5

	r	b
\rightarrow {1}	{2, 4}	{5}
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7}
{5 }	{2, 4, 6, 8}	{1, 3, 7, 9}
{2, 4, 6, 8}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
{1, 3, 5, 7}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}
* {1, 3, 7, 9}	{2, 4, 6, 8}	{5 }
* {1, 3, 5, 7, 9}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}

	r	b		r	b
→ {1}	{2, 4}	{5}	→1	2	3
{2, 4}	{2, 4, 6, 8}	{1, 3, 5, 7}	2	4	5
{5}	{2, 4, 6, 8}	{1, 3, 7, 9}	3	4	6
{2, 4, 6, 8}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}	4	4	7
{1, 3, 5, 7}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}	5	4	7
* {1, 3, 7, 9}	{2, 4, 6, 8}	{5 }	* 6	4	3
* {1, 3, 5, 7, 9}	{2, 4, 6, 8}	{1, 3, 5, 7, 9}	* 7	4	7

	r	b
→1	2	3
2	4	5
3	4	6
4	4	7
5	4	7
* 6	4	3
* 7	4	7

