Weak Constraints (1 of 3)

A weak constraint has the form

:~ F. [Weight @ Level]

where F is a conjunction of literals (atoms and their negations)

Weight is an integer and Level is a nonnegative integer

 When F is satisfied, we say the weak constraint is violated, and we apply a penalty of Weight at this Level — the higher level it is, the higher priority we consider

Weak Constraints (2 of 3)

Let Π be a program $\Pi_1 \cup \Pi_2$, where Π_1 is a usual ASP program and Π_2 is a set of weak constraints.

We call I a stable model of Π if it is a stable model of Π_1 .

For every stable model I of Π and any nonnegative integer l, the penalty of I at level L, denoted by $Penalty_{\Pi}(I,L)$, is defined as

$$\sum_{:\sim F[w@l]\in\Pi_2,\\ I\models F}w.$$
 ex:
$$\{p;\ q\}.$$

$$:\sim p.\quad \texttt{[10@0]}$$

$$:\sim q.\quad \texttt{[5@1]}$$

Weak Constraints (3 of 3)

For any two stable models I and I' of Π , we say I is dominated by I' if

- there is some level L such that $Penalty_{\Pi}(I',L) < Penalty_{\Pi}(I,L)$ and
- for all integers K > L, $Penalty_{\Pi}(I', K) = Penalty_{\Pi}(I, K)$

A stable model of Π is called optimal if it is not dominated by another stable model of Π

In clingo

```
% test
{p;q}.
:~ p. [10@0]
:~ q. [5@1]
```

```
Answer: 1
Optimization: 0 0
OPTIMUM FOUND

Models : 1
Optimum : yes
Optimization: 0 0
```

```
$ clingo test --opt-mode=enum 0
Solving...
Answer: 1
Optimization: 0 0
Answer: 2
Optimization: 5 0
Answer: 3
Optimization: 0 10
Answer: 4
Optimization: 5 10
OPTIMUM FOUND
Models
```