CS4104 Applied Machine Learning Decision Tree Classifier

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Example of a Decision Tree

Decision Tree

Tid	Refund	Marital	Taxable	01
		Status	Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Attributes Refund Yes No NO **MarSt** Single, Divorced Marr **TaxInc** NO > 80K < 80K YES NO

Training Data

Model: Decision Tree

zeshan.khan@nu.edu.pk

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Apply Model to Test Data

Start from the root of tree.

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Apply Model to Test Data

Exercise

Refund	Marita I Status	Taxable Income	Cheat
No	Single	80K	?
Yes	Single	100K	?
Yes	Married	1K	?
Yes	Divorced	50K	?

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

Decision Tree Based Classification: Advantages

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification
- techniques for many simple data sets

DECISION TREE

An internal node is a test on an attribute

A branch represents an outcome of the test, e.g., Color=red

A leaf node represents a class label or class label distribution

At each node, one attribute is chosen to split training examples into distinct classes as much as possible

A new case is classified by following a matching path to a leaf node

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild	high	true	No

Note:
Outlook is the
Forecast,
no relation to
Microsoft
email program

Example Tree for "Play?"

Building Decision Tree

- Top-down tree construction
 - At start, all training examples are at the root
 - Partition the examples recursively by choosing one attribute each time
- Bottom-up tree pruning
 - Remove subtrees or branches, in a bottom-up manner, to improve the estimated accuracy on new cases

Choosing the Splitting Attribute

- At each node, available attributes are evaluated on the basis of separating the classes of the training examples. A Goodness function is used for this purpose
- Typical goodness functions:
 - information gain (ID3/C4.5)
 - accuracy
 - gini index
 - others (information gain ratio)

Which attribute to select?

A criterion for attribute selection

- Which is the best attribute?
 - The one which will result in the smallest tree
 - Heuristic: choose the attribute that produces the
 - "purest" nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets that an attribute produces
- Strategy: choose attribute that results in greatest information gain

Computing information

- Information is measured in bits
 - Given a probability distribution, the info required to
 - predict an event is the distribution's entropy
 - Entropy gives the information required in bits (this can involve fractions of bits!)
- Formula for computing the entropy:
- $entropy(p_1, p_2, ..., p_n) = -\sum_{i=1}^{n} p_i log p_i$
- $entropy(p_1, p_2, ..., p_n) = -p_1 log p_1 p_2 log p_2 ... p_n log p_n$

Example: attribute "Outlook"

□ "Outlook" = "Sunny":

$$info([2,3]) = entropy(2/5,3/5) = -2 / 5log(2 / 5) - 3 / 5log(3 / 5) = 0.971$$
 bits

bits
• "Outlook" = "Overcast":

$$info([4,0]) = entropy(1,0) = -1log(1) - 0 log(0) = 0$$

bits

Note: log(0) is not defined, but we evaluate 0*log(0) as zero

$$\inf_{\mathbf{0}} ([3,2]) = -3 / 5\log(3/5) - 2 / 5\log(2/5) = 0.97$$
 bits

Expected information for attribute:

info([2,3],[4,0],[3,2]) =
$$(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$$

23

Computing the information gain

 Information gain: (information before split) – (information after split)

```
gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
= 0.247 bits
```

Information gain for attributes from weather data:

```
gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029
bits gain("Humidity") = 0.152
bits gain("Windy") = 0.048
```

zeshan.khan@nu<mark>.edu.</mark>pk

Continuing to split

gain("Humidity") = 0.971 bits

gain("Temperature") = 0.571 bits

The final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 - ⇒ Splitting stops when data can't be split any further

CART Splitting Criteria: Gini Index

- index, gini(T) is defined as
- $gini(T) = 1 \sum_{j=1}^{n} p_j^2$
- where p_j is the relative frequency of class j in T. gini(T) is minimized if the classes in T are skewed.

Measure of Impurity: GINI

Gini Index for a given node t :

•
$$gini(T) = 1 - \sum_{j=1}^{n} (p(j|t))^2$$

- (NOTE: p(j | t) is the relative frequency of class j at node t).
- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class,
- implying most interesting information

C1	0	
C2	6	
Gini=0.000		

C1	1	
C2	5	
Gini=0.278		

C1	2	
C2	4	
Gini=0.444		

C1	3	
C2	3	
Gini=0.500		

Examples for computing GINI

GINI
$$(t) = 1 - \sum_{j=1}^{\infty} [p(j \mid t)]^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

C1	1
C2	5

$$P(C1) = 1/6 \quad P(C2) = 5/6$$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6 \quad P(C2) = 4/6$$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

•
$$GINI_{Split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

- where,
- n_i = number of records at child i
- n = number of records at node p

Binary Attributes: Computing GINI Index

- □ Splits into two partitions
- ☐ Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent				
C1	6				
C2	6				
Gini = 0.500					

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.408

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.32

	N1	N2
C1	5	1
C2	2	4

Gini(Children)

= 7/12 * 0.408 +

5/12 * 0.32

= 0.371

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

		CarType						
	Family	Luxury						
C1	1	2	1					
C2	4 1 1							
Gini	0.393							

Two-way split (find best partition of values)

	CarType						
	{Sports, Luxury}	{Family}					
C1	3	1					
C2	2	4					
Gini	0.400						

	CarType						
	{Sports}	{Fami	_				
	,	Luxu	ry}				
C1	2	2					
C2	1	5					
Gini	0.419						

Community Companies. Companies Com

Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting valuesNumber of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A< v and A ≥ v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient!
 Repetition

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sorted Values
Split Positions

Chea	t	١	No		No		N	0	Ye	s	Ye	S	Ye	s	N	0	N	o	N	o		No	
			Taxable Income																				
—		(60	Т	70		7	5	85	5	9()	9	5	10	00	12	20	12	25		220	
		5	5	6	5	7	2	8	0	8	7	g	2	9	7	11	0	12	22	17	'2	23	0
	<	(=	^	\=	>	\=	>	\=	>	<=	>	"	>	<=	>	=	>	"	>	"	>	<=	>
Yes	•	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No		0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	(0.4	20	0.4	00	0.3	75	0.3	43	0.4	17	0.4	100	<u>0.3</u>	<u>300</u>	0.3	43	0.3	3 7 5	0.4	00	0.4	20

Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid$$

C1	
C2	6

$$P(C1) = 0/6 = 0 P(C2) = 6/6 = 1$$

Error = 1 - max (0, 1) = 1 - 1 = 0

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Misclassification Error vs Gini

	Parent				
C1	7				
C2	3				
Gini = 0.42					

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

$$= 1 - (4/7)^2 - (3/7)^2$$

= 1 — ((4/7)	² — ((3/
= 0.48	9		

	N1	N2					
C1	3	4					
C2	0	3					
Gini=0.361							

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.489

= 0.342

Gini improves!!

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

Issues

- Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
- Determine when to stop splitting

Stopping Criteria for Tree Induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination