

Vận chuyển khóa dựa trên mã hóa đối xứng Một số giao thức:			
Cập nhật khóa điểm- tới-điểm	Không có	Tùy chọn	1-3
Giao thức không dùng khóa của Shamir	Không có	Không	3
Chia sẻ khóa Needham-Schroeder	KDC	Không	5

Cập nhật khóa điểm – điểm dựa trên mã hóa đối xứng

■Một số ký hiệu:

 $\Box r_{A}$, t_A và n_A , tương ứng là ký hiệu một số ngẫu nhiên, tem thời gian và số tuần tự được sinh bởi A

□ E là một thuật toán mã hóa khóa đối xứng

☐Giao thức này sử dụng một khóa đối xứng dài hạn K được chia sẻ giữa A và B.

7

Cập nhật khóa điểm – điểm dựa trên mã hóa đối xứng

□Vận chuyển khóa một lần chuyển:

$$A \rightarrow B \colon E_K(r_A, t_A^*, B^*) \tag{1}$$

☐ Phần có dấu * là tùy chọn

8

Cập nhật khóa điểm - điểm dựa trên mã hóa đối xứng

□Vận chuyển khóa với quá trình hỏi đáp:

$$A \leftarrow B : n_B$$
 (1)

$$A \to B : E_{\mathcal{K}}(r_{A}, n_{B}, B^*) \tag{2}$$

□Phần có dấu * là tùy chọn

Cập nhật khóa sử dụng hàm KDF và hàm một chiều

□Giao thức trao đổi khóa có xác thực số 2:

☐ Cho phép thiết lập khóa phiên và xác thực lẫn nhau giữa 2 bên, xác thực khóa

1

Cập nhật khóa sử dụng hàm KDF và hàm một chiều

□Thiết lập

□A và B chia sẻ các khóa đối xứng thời hạn dài là K, K'.

□h, là một mã xác thực thông điệp MAC

□h'_k là hàm một chiều

Cập nhật khóa sử dụng hàm KDF và hàm một chiều

□Hoạt động của giao thức

$$A \rightarrow B : r_A$$
 (1)

$$A \leftarrow B: T, h_k(T)$$
 (2)

$$A \rightarrow B$$
: $(A, r_B), h_k(A, r_B)$ (3)

A và B tính khóa chung: $W = h'_{\kappa'}(r_B)$

trong (2) $T=(B, A, r_A, r_B)$.

Cập nhật khóa sử dụng hàm KDF và hàm một chiều

□Các hoạt động của giao thức

- 1. A chọn và gửi cho B một số ngẫu nhiên r_A . 2. B chọn một số ngẫu nhiên r_B và gửi cho A các giá trị (B, A, r_A, r_B) , cùng với một MAC trên những đại lượng này được sinh ra nhờ h với khóa K.
- 3. Khi nhận được thông báo (2), A kiểm tra rằng các định danh là đúng, r_A đã nhận được trùng với r_A ở trong (1) và kiểm tra MAC.
- 4. A gửi tới B các giá trị (A, r_B) , cùng với MAC trên nó *h_k(A, r_B*).
- 5. Khi nhận được (3), B kiểm tra rằng MAC là đúng, và rằng giá trị đã nhận được r_B trùng với giá trị mà đã được gửi đi trước đó.
- 6. Cả A và B tính khóa phiên như là $W = h'_{K'}(r_B)$

Giao thức không dùng khóa của Shamir

□Thiết lập tham số hệ thống

- 1. Chon một số nguyên tố lớn p.
- 2. A và B chọn ngẫu nhiên $a, b \in [1, p-2]$ nguyên tố cùng nhau với p-1 và giữ bí **mât**. A và B tính a^{-1} và b^{-1} mod p - 1.

Giao thức không dùng khóa của Shamir

□Hoạt động của giao thức

$$A \to B : \beta_A = K^a \mod p \tag{1}$$

$$A \leftarrow B : \beta_B = (\beta_A)^b \bmod p \tag{2}$$

$$A \rightarrow B$$
: $\beta = (\beta_B)^{a^{-1}} \mod p$ (3)

 $B t inh (\beta)^{b^{-1}} mod p$ để nhân được khóa chung là K.

Điều kiên:

- Alice và Trung tâm chia sẻ khóa K_{ΔT};
- Bob và Trung tâm chia sẻ K_{RT};

Yêu cầu:

Alice và Bob thiết lập khóa chia sẻ K

Giao thức thiết lập khóa Needham-Schroeder

Thực hiện:

- 1. A \rightarrow T: Alice, Bob, N_A;
- 2. T \rightarrow A: {N_A, K, Bob, {K, Alice}K_{RT}}K_{AT};
- 3. A \rightarrow B: {K, Alice}K_{BT};
- 4. B \rightarrow A: $\{N_R\}K$;
- 5. A \rightarrow B: {N_B 1}K.