Large European Array for Pulsars

Cees Bassa¹

Ben Stappers¹, Gemma Janssen¹, Michael Kramer², Ramesh Karuppusamy², KJ Lee², Roy Smits³, Kuo Liu⁴. Delphine Perrodin⁵. Mark Purver¹

¹Jodrell Bank, Manchester, UK, ²MPIfR, Bonn, Germany, ³ASTRON, The Netherlands, ⁴CNRS, Orléans, France, ⁵INAF, Cagliari, Italy

June 29th. 2012

http://www.epta.eu.org

http://www.leap.eu.org

Large European Array for Pulsars

EPTA telescopes:

Germany | 100 m Effelsberg Telescope *MPIfR*, *Bonn*

United Kingdom | 76 m Lovell Telescope *Jodrell Bank, Manchester*

Netherlands | 14 × 25 m Westerbork Synthesis Radio Telescope (94 m equivalent diameter) ASTRON, Dwingeloo

France | 94 m Nançay Radio Telescope CNRS, Orléans

Italy | 64 m Sardinia Radio Telescope INAF, Cagliari

LEAP Project: Coherently combine pulsar observations from the EPTA telescopes into a *tied array telescope*. Comparable in aperture to the illuminated Arecibo dish, but able to cover $-30^{\circ} < \delta < 90^{\circ}$

Tied array telescope

In a *tied array telescope* signals from different telescopes are corrected for differences in time delay, then added in phase.

Time delays due to

- differences in geometry
- observatory clocks
- instruments (cable lengths)
- atmospheric conditions

Total time delay needs to be known to a fraction of a wavelength (21 cm = 0.7 ns)

→ observe phase calibrators

Advantages:

- Larger aperture will improve TOA accuracy
- Ability to time weaker pulsars
- Calibration of instrumental delays between telescopes

LEAP Plan

Observations:

- monthly 24 h sessions
- 20-30 millisecond pulsars
- simultaneously with all 5 EPTA telescopes
- observe pulsars and phase calibrators
- 128 MHz of bandwidth @ 1400 MHz, 8 bit sampling
- baseband data (raw voltages) recorded on disk

Processing:

- data transferred to Jodrell Bank
- correlate calibrator (pulsar) data to obtain time/phase offsets
- apply time/phase offsets to pulsar data and add coherently
- generate TOAs using standard software (dspsr, psrchive)

Status: pulsar backends

Upgraded existing backends at EPTA telescopes and developed new digital backends

- Storage capacity of PuMa II at WSRT upgraded to 80 TB to accommodate monthly 48 hours of EPTA timing and 24 hours of LEAP baseband data (8 × 20 MHz subbands for LEAP)
- ROACH based backends developed for Effelsberg and Jodrell Bank. Can observe 512 MHz of BW, 100 TB of storage (8 × 16 MHz subbands for LEAP) (see poster by Ramesh Karuppusamy)
- Presently upgrading disks of BON512 at Nançay (will use 8 × 16 MHz subbands)
- Intend to use APSR mode on Sardinia DFB. May acquire a ROACH as well.

Status: storage and processing

Storage/processing hardware:

- 24 hour session @ 128 MHz BW → 40 TB of data per telescope
- Storage servers at each telescope with 100 TB of storage (in place for Westerbork/Effelsberg/Jodrell Bank)
- Jodrell Bank gets another 4 storage servers to match remote observatories
- Data transfer by shipping disks between storage servers or copy over internet (presently @ 80 MB s⁻¹ for Eff-JB, WSRT-JB)
- 400 CPU HPC cluster is in place at Jodrell Bank for processing

Correlation/tied array software:

- Developed from scratch (see poster by Roy Smits)
- Fringe fitting of closure phase (after Schwab & Cotton 1983)
- Uses CALC model for geometric delays (also used by VLBI)
- Ability for pulsar binning (necessary to calibrate phases on pulsars)

Status: Observing

Observations:

Monthly observations since June 2011

June/July 2011 6h with WSRT/Eff @ 5 × 20 MHz

Aug-Dec 2011 12 h with WSRT/Eff @ $5 \times 20 \,\text{MHz}$

Jan-Feb 2012 12 h with WSRT/Eff(JB) @ 8 × 16 MHz

March-July 2012 24 h with WSRT/Eff/JB @ 8×16 MHz

Constraints on scheduling:

- Telescope specific slew speeds, elevation constraints, cable wraps
- Minimum slew/integration times
- Phase calibrators in between pulsars (cal+psr+cal+psr+cal)
- Atmosphere coherence time limits integration times

8 / 15

Preliminary results

Dataset:

- 600 s of baseband data on PSR B1937+21
- Simultaneous with Effelsberg, Jodrell Bank and Westerbork
- 128 MHz of BW (1332 MHz to 1460 MHz)

Processing:

- Phases calibrated on the pulsar
- All data dedispersed and folded using same ephemeris/software

Issues:

- Preliminary scaling of telescopes before adding (not optimal)
- Bad RFI and packet loss in some bands of Jodrell Bank
- Not yet flux and polarization calibrated (signal losses in cross terms)

Preliminary results: Phase calibrating on pulsars

Preliminary results: Phase calibrating on pulsars

Preliminary results: Phase calibrating on pulsars

Preliminary results: Profiles

Preliminary results: Profiles

Preliminary results: TOAs

Preliminary results: TOAs

Summary

Realizing LEAP will:

- increase TOA accuracy
- provide high signal-to-noise data (studies of noise characteristics)
- help understanding of timing systematics between telescopes
- calibrate instrumental delays between EPTA telescopes
- allow observations of fainter pulsars

Thank you!

Summary

Realizing LEAP will:

- increase TOA accuracy
- provide high signal-to-noise data (studies of noise characteristics)
- help understanding of timing systematics between telescopes
- calibrate instrumental delays between EPTA telescopes
- allow observations of fainter pulsars

Thank you!

15 / 15