

Polar[™] HiPerFET[™] Power MOSFET

IXFR140N30P

(Electrically Isolated Back Surface)

N-Channel Enhancement Mode Avalanche Rated

$V_{\scriptscriptstyle DSS}$	=	300V
D ₂₅	=	70A
R _{DS(on)}	≤	$28m\Omega$
t _{rr}	≤	200ns

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$		300	V
V _{DGR}	$T_J = 25$ °C to 150°C, $R_{GS} = 1M\Omega$		300	V
V _{GSS}	Continuous		±20	V
V _{GSM}	Transient		±30	V
I _{D25}	T _c = 25°C		70	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by	T_{JM}	300	Α
I _A	T _c = 25°C		70	A
E _{as}	$T_c = 25^{\circ}C$		5	J
dV/dt	$I_{_{\mathrm{S}}} \le I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \le V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \le 150^{\circ}\mathrm{C}$		20	V/ns
P_{D}	T _c = 25°C		300	W
T _J			-55 +150	°C
T _{JM}			150	°C
T _{stg}			-55 +150	°C
T _L	Maximum Lead Temperature for Sc	oldering	300	°C
T _{SOLD}	1.6 mm (0.062in.) from Case for 10	S	260	°C
V _{ISOL}	50/60 Hz, RMS t :	= 1min	2500	V~
	$I_{ISOL} \le 1 mA$ t :	= 1s	3000	V~
M _d	Mounting Force	20120 / 4.527 N/		
Weight			5	g

		Chara Min.	acteristic Values Typ.		
BV _{DSS}	$V_{gs} = 0V, I_{D} = 3mA$	300			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	3.0		5.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nΑ
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$				μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 70A, \text{ Note 1}$		20	28	mΩ

G = Gate D = Drain S = Source

Features

- Silicon Chip on Direct-Copper-Bond Substrate
- High Power Dissipation
- Isolated Mounting Surface
- 2500V Electrical Isolation
- Unclamped Inductive Switching (UIS)
 Rated
- Low package inductance
- Easy to Drive and to Protect
- Fast Intrinsic Diode

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Symbol Test Conditions Character (T ₁ = 25°C, Unless Otherwise Specified) Min.		cteristic Typ.	Values Max.		
g _{fs}		$V_{DS} = 20V, I_{D} = 70A, \text{ Note 1}$	50	90	S
C _{iss})			14.8	nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1830	pF
\mathbf{C}_{rss}	J			55	pF
t _{d(on)})	Resistive Switching Times		30	ns
t,		•		30	ns
t _{d(off)}	($V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 70A$		100	ns
t,)	$R_{g} = 1\Omega$ (External)		20	ns
$\mathbf{Q}_{g(on)}$)			185	nC
Q _{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 70A$		72	nC
\mathbf{Q}_{gd}	J			60	nC
R _{thJC}					0.42 °C/W
$\mathbf{R}_{\mathrm{thCS}}$				0.15	°C/W

Source-Drain Diode

Symbol Test Conditions Chara		acteristic Values			
$(T_J = 25^{\circ}C)$	C, Unless Otherwise Specified)	Min.	Тур.	Max.	
I _s	$V_{GS} = 0V$			140	Α
SM	Repetitive, pulse width limited by $\boldsymbol{T}_{_{\boldsymbol{J}\boldsymbol{M}}}$			560	_A
V _{SD}	$I_{\rm F} = 70 {\rm A}, \ {\rm V}_{\rm GS} = 0 {\rm V}, \ \ {\rm Note} \ 1$			1.3	V
$egin{pmatrix} \mathbf{t}_{rr} & & \\ \mathbf{Q}_{RM} & & \\ \mathbf{I}_{RM} & & \end{pmatrix}$	$I_F = 25A$, $-di/dt = 100A/\mu s$ $V_R = 100V$, $V_{GS} = 0V$		0.6 6.0	200	ns μC Α

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

ISOPLUS247 (IXFR) Outline

SYM	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.190	.205	4.83	5.21	
A1	.090	.100	2.29	2.54	
A2	.075	.085	1.91	2.16	
b	.045	.055	1.14	1.40	
b1	.075	.084	1.91	2.13	
b2	.115	.123	2.92	3.12	
С	.024	.031	0.61	0.80	
D	.819	.840	20.80	21.34	
E	.620	.635	15.75	16.13	
е	.215 BSC		5.45 BSC		
L	.780	.800	19.81	20.32	
L1	.150	.170	3.81	4.32	
Q	.220	.244	5.59	6.20	
R	.170	.190	4.32	4.83	
S	.520	.540	13.21	13.72	
T	.620	.640	15.75	16.26	
U	.065	.080	1.65	2.03	

1 - Gate2 - Drain3 - Source4 - Isolated

NOTE: This drawing will meet all dimensions requirement of JEDEC outline TO-247AD except screw hole.

V_{DS} - Volts

© 2017 IXYS CORPORATION, All rights reserved

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Impedance

