Problemes de teoria de la probabilitat

ALEIX TORRES I CAMPS

Anna de Mier (anna.de.mier@upc.edu), Guillem Perearnau i Sonia Perez

1 Espais de probabilitat

Problema 1. Siguin A, B dues σ -àlgebra sobre Ω .

- a Proveu que són tancades per interseccions numerables.
- b Proveu que $A \cap B$ és una σ -àlgebra.
- c Vegeu que $A \bigcup B$ no té perquè ser una σ -àlgebra.

Solució.

- 1. Suposem $A_i \in \mathcal{A}$, per $i \geq 1$, volem veure que $\bigcap_{i \geq 1} A_i \in \mathcal{A}$, però com que els complementaris sí pertanyen a \mathcal{A} i les unions numerables també, per les lleis de Morgan sabem que $(\bigcap_{i \geq 1} A_i)^c = \bigcup_{i \geq 1} A_i^c \in \mathcal{A}$.
- 2. A la intersecció hi ha el conjunt buit perquè els dos el contenen. Si tenim un element a la intersecció segur que hi ha el seu complementari perquè aquest element ha de pertanyer tant a \mathcal{A} com a \mathcal{B} i, com que son σ -àlgebres les dues contenen el seu complementari i, per tant, està a la intersecció.
- 3. Per exemple, siguin $\mathcal{A} = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}\$ i $\mathcal{B} = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}\$ dues σ -àlgebra del conjunt $\Omega = \{a, b, c\}$. (Està clar que són σ -àlgebres). Tot i així, la unió de les σ -àlgebres és el conjunt $\mathcal{A} \bigcup \mathcal{B} = \{\emptyset, \{a\}, \{c\}, \{b, c\}, \{a, b\}, \{a, b, c\}\}\$ que no és una σ -àlgebra perquè conté $\{a\}$ i $\{c\}$ però no conté $\{a, c\}$.

Problema 2. Siqui $A = \{X \subseteq \mathbb{R} : X \text{ o } \mathbb{R} \setminus X \text{ és finit}\}$. La família A, és una àlgebra? i és una σ -àlgebra?

Solució. Anem a veure que és una àlgebra.

 $\emptyset \in \mathcal{A}$ perquè \emptyset és finit.

Suposem que $X \in \mathcal{A}$, aleshores, X és finit o complementari d'un finit. Per tant, X^c és el complementari d'un finit o finit, respectivament. Així que, $X^c \in \mathcal{A}$.

Suposem que $A_i \in \mathcal{A}$ per $1 \leq i \leq n$. Ara, recordem que $(\bigcup A_i)^c = \bigcap A_i^c$, llavors si totes les A_i són finites, aleshores, la unió d'ells és finita i pertany a \mathcal{A} . Per altre banda, si hi ha algun A_i que no sigui finit, el seu complementari ho ha de ser, per tant, a la intersecció com a molt, hi ha un nombre finit d'elements i, per tant, pertany a \mathcal{A} .

Ara, veurem un contraexemple per notar que no és una σ -àlgebra. Cada un dels naturals per separat pertanyen a \mathcal{A} però la unió numerable no hi pertany perquè ni els naturals són finits ni el complementari dels naturals en els reals és finit.

Problema 3. Sigui A una σ -àlgebra i $B \in A$. La família $\mathcal{B} = \{A \cap B : A \in A\}$, és una σ -àlgebra?

Solució. Anem a veure que és una σ -àlgebra però del conjunt B.

El buit pertany a \mathcal{B} perquè $\emptyset \in \mathcal{A}$ i $\emptyset \cap B = \emptyset$.

L'oposat d'un element $A \cap B$ respecte B s'aconseguix amb $A^c \cap B$.

La unió numerable es compleix amb gràcies a les lleis de Morgan. $\bigcup (A_i \cap B) = (\bigcup A_i) \cap B$.

Problema 4. Si P(A) = 1/2 i P(B) = 2/3, doneu fites superiors i infereios justes de $P(A \cap B)$ i de $P(A \cap B^c)$.

Solució. Utilitzarem que si un conjunt està inclós en una altre, el primer té una probabilitat menor o igual que el segon.

Per propietats de conjunts i de probabilitat tenim $P(A \cap B) = 1 - P(A^c \cup B^c)$. Aleshores busquem el mínim i el màxim de $P(A^c \cup B^c)$, el mínim es troba quan un està inclós en l'altra (prob. del gran 1/2) i el màxim quan són disjunts (prob. 1/2+1/3=5/6). Això correspon al 1 menys el màxim i al mínim de la probabilitat original. Per tant, $1/6 \le P(A \cap B) \le 1/2$.

Pel segon cas, fem el mateix però hem de fitar per sobre per 1. D'aquí: $\frac{1}{2} \leq P(A^c \cup B) \leq 1$. Llavors, com que $P(A \cap B^c) = 1 - P(A^c \cup B)$, tenim $0 \leq P(A \cap B^c) \leq \frac{1}{2}$.

Problema 5. En un curs hi ha quatre assignatures. El 70% dels estudiants aproven l'assignatura A, el 75% aproven l'assignatura B, el 80% aproven l'assignatura C i el 85% aproven l'assignatura D. Quin és el mínim percentatge d'estudiants que aproven les quatre assignatures?

Solució. Farem servir conceptes de probabilitat per calcular el percentatge que ens demanen. Sigui X_A, X_B, X_C i X_D els succesos d'aprovar les assignatures A, B, C i D, respectivament. $P(X_A \cap X_B \cap X_C \cap X_D) = 1 - P((X_A \cap X_B \cap X_C \cap X_D)^C) = 1 - P(X_A^c \cup X_B^c \cap X_C^c \cap X_D^c)$. Ara, sabent que el màxim de la unió és la suma de probabilitats (i el mínim és el màxim de les probabilitats), el mínim de la probabilitat és $\min P(X_A \cap X_B \cap X_C \cap X_D) = 1 - \max P(X_A^c \cup X_B^c \cap X_C^c \cap X_D^c) = 1 - \sum_{i \in \{A,B,C,D\}} P(X_i) = 1 - 0.9 = 0.1$.

Problema 6. (Problema de Chevalier de Méré, formulat a Blaise Pascal). Aquest és un dels problemes que inicià la teoria de la probabilitat. Empíricament, el Chevalier de Méré havia observat que és més probable obternir "almenys un 6" en 4 tirades d'un dau que obtenir "almenys un doble 6" en 24 tirades de dos daus. Comproveu que és efectivalemt així.

Solució. El primer cas, $P(A) = 1 - P(A^c) = 1 - (\frac{5}{6})^4 = 0.5177...$ En el segon, $P(B) = 1 - P(B^c) = 1 - \frac{35}{36}^2 4 = 0.4914...$ Llavors, clarament el primer és més probable que el segon.

Problema 7. (Una pregunta a De Moivre). Es tiren tres daus n vegades. Calculeu la probabilitat f(n) de que en alguna tirada hagin sortit tres sisos. Quin és el valor menor de n pel qual és més probabli que hagin sortit tres sisos alguna de les n tirades que el contrari?

Solució. Com sempre, fem el complementari perquè és més fàci. Que no hagin sortit 3 sisos té probabilitat $\frac{215}{216}$. Llavors, $f(n) = 1 - f(n)^c = 1 - \frac{215}{216}^n$ és la solució.

Problema 8. Es reparteixen les 52 cartes d'una baralla entre quatre jugadors. Quina és la probabilitat que cada jugador tingui un as?

Solució. Ho anem a desgloçar de la següent manera: la forma en que es reparteixin les cartes és indiferent, així que primer repartirem al primer jugador, després al segon, després al tercer i, per últim, al quart. Formalment, sigui A_i , per i=1,2,3,4 el succés que el jugador i tingui exactament un as. Llavors la probabilitat que ens demanen és (per la llei de probabilitats totals):

$$P(A_1 \cap A_2 \cap A_3 \cap A_4) = P(A_1)P(A_2|A_1)P(A_3|A_2, A_1)P(A_4|A_3, A_2, A_1)$$

Així que anem a calcular $P(A_1)$, hi ha 52 cartes en joc, en rep 13 i ha de tenir exactament un as (el 13 és per les maneres que hi ha de rebre l'as, és a dir, en cada una de les posicions):

$$P(A_1) = 13 \cdot \frac{4}{52} \cdot \frac{48}{51} \cdot \frac{47}{50} \cdot \cdots \cdot \frac{38}{41} \cdot \frac{37}{40} =$$

$$=13\frac{4\cdot 39\cdot 38\cdot 37}{52\cdot 51\cdot 50\cdot 49}$$

Ara, anem a calcular $P(A_2|A_1)$, queden 39 cartes en joc, en rep 13 i ha de tenir exactament un as dels 3 que queden:

$$P(A_2|A_1) = 13 \cdot \frac{3}{39} \cdot \frac{36}{38} \cdot \frac{35}{37} \cdot \dots \cdot \frac{30}{28} \cdot \frac{29}{27} =$$

$$= 13 \cdot \frac{3 \cdot 30 \cdot 29}{\cdot 39 \cdot 38 \cdot 37}$$

I, ara, calculem $P(A_3|A_2, A_1)$, quedem 26 cartes en joc, en rep 13 i ha de tenir exactament un as dels 2 que quede:

$$P(A_3|A_2, A_1) = 13 \cdot \frac{2}{26} \frac{24}{25} \frac{23}{24} \cdots \frac{14}{15} \frac{13}{14} =$$
$$= 13 \cdot \frac{2 \cdot 13}{30 \cdot 29}$$

I, per últim, tenim $P(A_4|A_3, A_2, A_1)$ que trivialment és 1, perquè queden 13 cartes amb un as. Llavors si els multpliquem tots ens queda:

$$=\frac{13^4\cdot 24}{52\cdot 51\cdot 50\cdot 49}=0.105...$$

Que és la probabilitat que cada jugador tingui exactament un as.

Problema 9. Proveu que no és possible dos daus de forma que la suma de les seves cares superiors pugui prendre qualsevol valor de 2 a 12 amb iqual probabilitat.

Solució. Sigui X la suma dels dos daus, suposem que totes les sumes tenen igual probabilitat, és a dir, $P(X=2)=P(X=3)=\cdots=P(X=11)=P(X=12)=\frac{1}{11}$. Sigui a_i el succés que en el primer dau sorti i, sigui b_j el succés que en el primer dau sorti j. Aleshores, com a_i i b_j són successos independents, podem deduir que: $a_1b_1=P(X=2)=P(X=12)=a_6b_6=\frac{1}{11}$. Ara, fixem-nos que $P(X=7)=a_1b_6+a_6b_1+\cdots=\frac{1}{11}$. Veiem que per passar de a_1b_1 a a_1b_6 fa falta multiplicar per $\frac{b_6}{b_1}$ i per passar de a_6b_6 a a_6b_1 fa falta multiplicar per l'invers. Aleshores, per algun dels dos es multiplica per un nombre més gran o igual que 1, mentre que l'altra és positiu. Per tant, $a_1b_6+a_6b_1>\frac{1}{11}$, així que $P(X=7)>\frac{1}{11}$ i que contradiu la suposició que totes les sumes tenen igual probabilitat.

Problema 10. Proveu que si es llença dues vegades una moneda que té probabilitat de cara p fins que surten dos resultats diferents, els dos possibles resultats (C+i+C) són equiprobables.

Solució. La probabilitat que a la primera vegada que es llencen els daus surti C+ és p(1-p) i que surti +C és (1-p)p. Altrament, si surt CC i ++, es torna a tirar sense influenciar la següent tirada. Així que P(C+| tirades anteriors)=P(C+) i similarment: P(+C| tirades anteriors)=P(+C). Per tant, els dos possibles resultats diferents són equiprovables.

Problema 11. En un grup de n persones una d'elles s'assabenta d'una xafarderia. Tria una persona a l'atzar i la hi conta, aquesta en tria una a l'atzar diferent de qui li ha contat per explicar-la-hi, i així successivament: l'r-èssima persona en tria una a l'atzar diferent de qui li acaba de contar i la hi explica. Quina és la probabilitat que en r rondes la xafarderia no hagi tornat a la persona que l'ha originada? quina és la probabilitat que en r rondes la xafarderia hagi passat per r+1 persones diferents?

Solució. Sigui A_i el succés "a la ronda i la xafardaria no torna a l'origen". Aleshores, volem saber la probabilitat: $P(A) = P(A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_r) = P(A_1)P(A_2|A_1)\cdots P(A_r|A_1\cdots A_{r-1})$. En aquest cas, els succesos condicionats només ens donen informació que la xafardaria no ha tornat a l'origen i que, per tant, es mou entre els que no son el primer. Així doncs, tant $P(A_1)$ com $P(A_2|A_1)$, al no poder tornar a l'origen de cap manera, tenen probabilitat 1. Mentre que, tots els altres, tenen probabilitat $\frac{n-3}{n-2}$, perquè d'entre les n-2 persones restants que els hi pot explicar, totes menys una són l'origen. Així doncs, $P(A) = (\frac{n-3}{n-2})^{r-2}$.

Sigui B_i el succés "a la ronda i la xafardaria no torna a una persona que ja la sabia". Aleshores, volem saber la probabilitat: $P(B) = P(B_1 \cap B_2 \cap \cdots \cap B_r) = P(B_1)P(B_2|B_1)\cdots P(B_r|B_1\cdots B_{r-1})$. En aquest cas, els successos condicionats ens indiquen quantes persones saben la xafardaria. A més, com que en les dues

primeres rondes no pot tornar a una persona que ja la sabia, les dues primeres probabilitats són 1. Mentre que $P(B_i|B_1\cdots B_{i-1})=\frac{n-i}{n-2}$, per $i\geq 2$, perquè de les n-2 persones a qui li pot explicar, només en queden n-i que no ho sapiguen. Finalement, $P(B)=\frac{(n-3)\cdots(n-r)}{(n-2)^{r-2}}$.