Умножение с фиксированной точкой (прямой код)

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (17 марта 2017 г.)

Содержание

- Процесс умножения в 2СС
 - Умножение «столбиком»
 - Пример умножения
- Основные способы умножения
 - І способ
 - И способ
 - III способ
 - IV способ
- ③ Примеры умножения в прямом коде
 - І способ
 - II способ
 - III способ
 - IV способ

Дробно-нормализованные числа

Для обоснований выкладок мы используем дробное масштабирование

$$x = y \cdot M$$

Для обоснования выкладок будут использоваться y.

y — дробное число, его целая часть y равна нолю.

Рарзядная сетка хранит разряды дробной части y.

Чтобы зафиксировать запятую между k и (k-1) разрядами \emph{n} -разрядной сетки, выбирается масштаб

$$M=2^{(n-k)}.$$

Умножение «столбиком»

Пусть для положительных чисел *А* и *В* имеются дробно-масштабированные представления в двоичной системе счисления. Пусть

$$A\equiv (0,a_1\cdots a_n)_2.$$

Тогда результат произведения $A \times B$ в двоичной системе счисления будет определяться по формуле:

$$A \times B = B \cdot \sum_{i=1}^{n} a_i \cdot 2^{-i} = \sum_{i=1}^{n} (B \cdot 2^{-i}) \cdot a_i = \sum_{i=1}^{n} (B \gg i) \cdot a_i.$$

Пример умножения Операнды

Требуется найти произведение $A \times B$, где A=23 и B=25. Дробные представления (с масштабирующим множителем $M=2^5$) будут:

$$A \equiv 0,10111,$$

 $B \equiv 0,11001.$

Результатоом произведения будет дробное число, но с масштабом

$$M^2 = 2^{10}$$

Пример умножения «столбиком» чисел без знака

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001

Результат: ,10001 11111

 $(,10001\ 11111)_2 \cdot 2^{10} = (10001\ 11111,)_2 = 575 = 23 \cdot 25.$

I способ || способ ||| способ |V способ

І-й способ

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-5	1	.1100 1
		01100 10000

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
	_	
-4	1.	.1100 1
-5	1	110 01
		10010 11000

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-3	1	.1100 1
-4	1.	110 01
-5	1	11 001
		10101 11100

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-2	.0	
-3	1	110 01
-4	1.	11 001
-5	1	1 1001.

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001

Результат: 10001 11111

І способ: аналитически

$$a_{n}B \cdot 2^{-n} + a_{(n-1)}B \cdot 2^{-(n-1)} + \dots + a_{2}B \cdot 2^{-2} + a_{1}B \cdot 2^{-1} \Leftrightarrow$$

$$\left(\left(\dots \left(\left(a_{n} \frac{B}{2} \right) \cdot 2^{-1} + a_{(n-1)} \frac{B}{2} \right) \cdot 2^{-1} + \dots + a_{2} \frac{B}{2} \right) \cdot 2^{-1} + a_{1} \frac{B}{2} \right)$$

В реккурентной форме:

$$S_i = egin{cases} a_n rac{B}{2}, & ext{если } i = n, \ S_{(i+1)} \cdot 2^{-1} + a_i rac{B}{2}, & ext{если } i < n. \end{cases}$$

$$S_1$$
 — результат ($S_n o S_{n-1} o \cdots o S_2 o S_1$)

І способ: реализация

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-5	1	11001
		00000 11001

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-4	1.	1 1001.
-5	1	11001
		00010 01011

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-3	1	11 001
-4	1.	1 1001.
-5	1	11001
		00101 01111

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-2 -3	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001
		00101 01111

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001
	Результат:	10001 11111

II способ: аналитически

$$a_{n} \cdot \frac{B}{2^{n}} + a_{(n-1)} \cdot \frac{B}{2^{(n-1)}} + a_{(n-2)} \cdot \frac{B}{2^{(n-2)}} + \dots + a_{1} \cdot \frac{B}{2^{-1}}$$

$$\Leftrightarrow$$

$$\left(\dots \left(\left(\left(a_{n} \cdot \frac{B}{2^{n}} \right) + a_{(n-1)} \cdot \frac{B}{2^{(n-1)}} \right) + a_{(n-2)} \cdot \frac{B}{2^{(n-2)}} \right) + \dots + a_{1} \cdot \frac{B}{2^{-1}} \right)$$

В реккурентной форме:

$$S_i = egin{cases} a_n \cdot rac{B}{2^n}, & ext{ecли } i = n, \ S_{(i+1)} + a_i \cdot rac{B}{2^i}, & ext{ecли } i < n. \end{cases}$$

$$S_1$$
 — результат $(S_n o S_{n-1} o \cdots o S_2 o S_1)$

II-способ: реализация

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	11001

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	1 1001.
-2	.0	

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	11 001
-2	.0	
-3	1	11 001

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	110 01
-2	.0	
-3	1	11 001.
-4	1.	1 1001

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001
	Результат:	10001 11111

III способ: аналитически

$$a_1B \cdot 2^{-1} + a_2B \cdot 2^{-2} + \dots + a_{(n-1)}B \cdot 2^{-(n-1)} + a_nB \cdot 2^{-n}$$

$$\Leftrightarrow$$

$$\left(\left(\dots \left(\left(a_1\frac{B}{2^n}\right) \cdot 2 + a_2\frac{B}{2^n}\right) \cdot 2 + \dots + a_{(n-1)}\frac{B}{2^n}\right) \cdot 2 + a_n\frac{B}{2^n}\right)$$

В реккурентной форме:

$$S_i = egin{cases} a_1 rac{B}{2^n}, & ext{ec.nu } i = 1, \ S_{(i-1)} \cdot 2 + a_i rac{B}{2^n}, & ext{ec.nu } i > 1. \end{cases}$$

$$S_n$$
 — результат $(S_1 o S_2 o \cdots o S_{n-1} o S_n)$

III-способ: реализация

| способ || способ ||| способ |**V** способ

IV способ

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1

$$A \equiv ,10111, \ B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	

$$A \equiv$$
 ,10111, $B \equiv$,11001.

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.

$$A \equiv ,10111, B \equiv ,11001.$$

i	Разряды <i>а</i> ;	$(B\cdot 2^{-i})\cdot a_i$
-1	1	.1100 1
-2	.0	
-3	1	11 001
-4	1.	1 1001.
-5	1	11001
	Deaves tate	10001 11111

Результат: 10001 11111

IV способ: аналитически

$$a_1B \cdot 2^{-1} + a_2B \cdot 2^{-2} + a_3B \cdot 2^{-3} + \dots + a_{(n)}B \cdot 2^{-n}$$

$$\Leftrightarrow$$

$$(\dots(((a_1B \cdot 2^{-1}) + a_2B \cdot 2^{-2}) + a_3B \cdot 2^{-3}) + \dots + a_nB \cdot 2^{-n})$$

В реккурентной форме:

$$S_i = egin{cases} a_1 B \cdot 2^{-1}, & ext{если } i = 1, \ S_{(i-1)} + a_i B \cdot 2^{-i}, & ext{если } i > 1. \end{cases}$$

$$S_n$$
 — результат $(S_1 o S_2 o \cdots o S_{n-1} o S_n)$

IV-способ: реализация

Резюме:

Умножение в прямом коде

При умножении в прямом коде знак результата и результат умножения модулей формируются независимо.

Знак результата

получается сложением «по модулю два» (XOR) знаков множителя и множимого.

- Модуль (мантисса) результата получается беззнаковым перемножением мантисс операндов.
- Корректируется, если нужно, запрещенная комбинация «минус ноль».

Операнды

Перемножить числа в прямом коде Множитель:

$$-25 = (-11001)_2$$
.

Множимое:

$$-23 = (-10111)_2.$$

Используем дробное масштабирование с множителем 2^5 . Знак получаем отдельно: $1\oplus 1=0$. Результат положителен. Далее показано только получение мантиссы результата разными способами. В таблицах отражаеются состояния основных регистров по тактам.

І-способ

		1
мн-ль $ ightarrow$	СЧП →	прим.
,1100 <u>1</u>	,00000 00000	
	,.1011 1	+мн-е/2; сдвиг
	,01011 10000	
,.110 <u>0</u>	,00101 11000	сдвиг
,11 <u>0</u>	,00010 11100	сдвиг
, 1 <u>1</u>	,00001 01110	L MIL 0 / 21 GERME
	⁺ ,.1011 1	+мн-е/2; сдвиг
	,01100 11110	
, <u>1</u>	,00110 01111	+мн-е/2; Рез-т!
	,.1011 1	TWIN-6/2, 1 63-1:
	,10001 11111	

II-способ

множитель $ ightarrow$	мн-е ←	СЧП	прим.
11001	, 10111	,00000 00000	Тип е, спвиг
,1100 <u>1</u>	, 10111	, 10111	+мн-е; сдвиг
		,00000 10111	
,.110 <u>0</u>	,1 0111.		сдвиг
,11 <u>0</u>	,10 111		сдвиг
, 1 <u>1</u>	,101 11	+ ,00000 10111 ,101 11	 +мн-е; сдвиг
			- тмп-е, сдвит
		,00110 01111	
, <u>1</u>	,.1011 1	,00110 01111	+мн-е; Рез-т!
		<u>,.1011 1</u>	
		,10001 11111	

III-способ

мн-ль ←	СЧП ←	прим.
, <u>1</u> 1001	,00000 00000	LAULO: CERME
	, 10111	+мн-е; сдвиг
	,00000 10111	
, <u>1</u> 001.	,00001 0111.	TWH O' CUBME
	, 10111	+мн-е; сдвиг
	,00010 00101	
<u>,</u> 001	,00100 0101.	сдвиг
_, <u>0</u> 1	,01000 101	сдвиг
, <u>1</u>	,10001 01	+мн-е; Рез-т!
	, 10111	тип-с, гез-1:
	,10001 11111	

IV-способ

мн-ль ←	мн-е $ ightarrow$	СЧП	прим.
, <u>1</u> 1001	,.1011 1	,00000 00000	TWH O' CUBME:
		,.1011 1	+мн-е; сдвиг;
		,01011 10000	
, <u>1</u> 001.	,101 11	,01011 10000	L MALL O' CERDIAE
		,101 11	+мн-е; сдвиг
		,10001 01000	
, <u>0</u> 01	,10 111		сдвиг
<u>,</u> <u>0</u> 1	,1 0111.		сдвиг
, <u>1</u>	, 10111	,10001 01000	+мн-е; Рез-т!
		, 10111	Win-e, 1 es-1:
		,10001 11111	

1)

Какова минимальная разрядность результата перемножения n-разрядных прямых кодов?

2)

Перемножить числа -91 и 114. Самостоятельно выбрать масштаб.

3)

Выявить ситуации получения неправильных прямых кодов.

Обосновать, работает ли схема умножения модулей первым способом:

- Как её модифицировать, если она работает неправильно?
- Где получается результат?

Советы самоучке

Классика жанра: [1, 2].

Рекомендуется почитать разделы, посвященные работе с суммами и рекуррентными соотношениями в книге [3].

Библиография I

Б.Г.Лысиков. Арифметические и логические основы цифровых автоматов / Б.Г.Лысиков. —

2 изд. —

Мн.: Выш. школа, 1980. — 336 с.

А.Я.Савельев. Прикладная теория цифровых автоматов /

А.Я.Савельев. —

М.: Высшая школа, 1987. —

272 с.

Р.Грэхем, Д.Кнут, О.Паташник. —

М.: Мир, 1998. —

703 c.