Mit Kryptographie die Welt retten Cypherpunk in Theorie und Praxis

Sebastian Beschke sebastian@sbeschke.de

Chaostreff Tübingen

01. 10. 2011

Überblick

- 1 Einführung in die Kryptographie
- 2 Privatsphäre unter Beschuss
- 3 Die Anonymisierungssoftware Tor
- 4 Zusammenfassung

Einführung in die Kryptographie Privatsphäre unter Beschuss Die Anonymisierungssoftware Tor Zusammenfassung

Einführung in die Kryptographie

Eine einfache Chiffre

FBSKHUSXQNV ZULWH FRGH

Eine einfache Chiffre

FBSKHUSXQNV ZULWH FRGH cypherpunks write code

Eine einfache Chiffre

FBSKHUSXQNV ZULWH FRGH cypherpunks write code

$$K = 3$$

Schlüssel

Symmetrische und Public-Key-Verschlüsselung

Symmetrisches Verfahren:

$$\Rightarrow \frac{n(n-1)}{2}$$
 Schlüssel

Symmetrische und Public-Key-Verschlüsselung

Symmetrisches Verfahren:

$$\Rightarrow \frac{n(n-1)}{2}$$
 Schlüssel

Public-Key-Verfahren:

 $\Rightarrow 2n$ Schlüssel

Hybride Verfahren

- Public-Key-Kryptographie ist aufwändig zu berechnen
- Daher oft hybrider Ansatz:
 - Austausch eines Schlüssels mittels Public-Key-Kryptographie
 - Anschließend symmetrische Verschlüsselung mit diesem Schlüssel
 - Der Schlüssel ist dann in der Regel kurzlebig

Das RSA-Verfahren

- RSA ist eines der ältesten Public-Key-Verfahren (1978)
- Auch heute noch ein Standard-Verfahren
- Basiert auf der Modulo-Rechnung und dem Satz von Euler
- Deshalb jetzt ein wenig Mathe...

- Modulo-Rechnung ist das Rechnen mit Resten
- $4 \cdot 4 \equiv ? \pmod{5}$

- Modulo-Rechnung ist das Rechnen mit Resten
- $4 \cdot 4 \equiv ? \pmod{5}$
- $4 \cdot 4 = 16$

- Modulo-Rechnung ist das Rechnen mit Resten
- $4 \cdot 4 \equiv ? \pmod{5}$
- $4 \cdot 4 = 16$
- 16:5 = 3 Rest **1**

- Modulo-Rechnung ist das Rechnen mit Resten
- $4 \cdot 4 \equiv ? \pmod{5}$
- $4 \cdot 4 = 16$
- 16:5 = 3 Rest 1
- Also $4 \cdot 4 \equiv 1 \pmod{5}$

Der Satz von Euler

Definition (Die Eulersche φ -Funktion)

 $\varphi(n) = \text{Anzahl der zu } n \text{ teilerfremden Zahlen } \leq n$

Der Satz von Euler

Definition (Die Eulersche φ -Funktion)

 $\varphi(n) = \text{Anzahl der zu } n \text{ teilerfremden Zahlen } \leq n$

- Ist p eine Primzahl, so ist $\varphi(p) = p 1$
- Ist n = pq, p, q prim, so ist $\varphi(n) = (p-1)(q-1)$

Der Satz von Euler

Definition (Die Eulersche φ -Funktion)

 $\varphi(n) = \text{Anzahl der zu } n \text{ teilerfremden Zahlen } \leq n$

- Ist p eine Primzahl, so ist $\varphi(p) = p 1$
- Ist n = pq, p, q prim, so ist $\varphi(n) = (p-1)(q-1)$

Theorem (Der Satz von Euler)

Verschlüsseln mit dem Satz von Euler

Theorem (Der Satz von Euler)

- Sei n das Produkt zweier Primzahlen p, q
- Angenommen, wir haben e, d mit $ed = k \cdot \varphi(n) + 1$

Verschlüsseln mit dem Satz von Euler

Theorem (Der Satz von Euler)

- Sei n das Produkt zweier Primzahlen p, q
- Angenommen, wir haben e, d mit $ed = k \cdot \varphi(n) + 1$
- Sei m eine Nachricht.
- $c \equiv m^e \pmod{n}$ ist dann die verschlüsselte Nachricht.

Verschlüsseln mit dem Satz von Euler

Theorem (Der Satz von Euler)

- Sei n das Produkt zweier Primzahlen p, q
- Angenommen, wir haben e, d mit $ed = k \cdot \varphi(n) + 1$
- Sei m eine Nachricht.
- $c \equiv m^e \pmod{n}$ ist dann die verschlüsselte Nachricht.
- Kennt man d, kann man sie entschlüsseln: $c^d \equiv m^{ed} \equiv m^{k \cdot \varphi(n) + 1} \equiv m \cdot m^{k \cdot \varphi(n)} \equiv m \pmod{n}$

RSA-Verschlüsselung

Sicherheit von RSA

- Ein Angreifer könnte $\log_e m^e$ berechnen.
 - Das ist bei Modulorechnung sehr schwierig.

Sicherheit von RSA

- Ein Angreifer könnte $\log_e m^e$ berechnen.
 - Das ist bei Modulorechnung sehr schwierig.
- Oder er könnte versuchen, d zu bestimmen.
 - Der Knackpunkt: Zur Bestimmung von d braucht man $\varphi(n)$
 - Leicht zu bestimmen, wenn man p, q kennt:

$$\varphi(n)=(p-1)(q-1).$$

- Sonst aber sehr schwer zu bestimmen.
- \Rightarrow d zu bestimmen, ist so schwer, wie die Primfaktorzerlegung von n.

Einführung in die Kryptographie Privatsphäre unter Beschuss Die Anonymisierungssoftware Tor Zusammenfassung

Privatsphäre unter Beschuss

Die Rolle von Kryptographie

- Kryptographie: Metier von Geheimdiensten und Geheimniskrämern?
- Nicht im Informationszeitalter!

Was heißt eigentlich "Privatsphäre"?

- Privatsphäre ist nicht nur Verschlüsselung:
 - Anonymität
 - Abstreitbarkeit
 - Authentifizierung

Was heißt eigentlich "Privatsphäre"?

- Privatsphäre ist nicht nur Verschlüsselung:
 - Anonymität
 - Abstreitbarkeit
 - Authentifizierung
- Privatsphäre ist nicht Geheimnistuerei:
 - Geheime Informationen soll niemand erfahren
 - Private Informationen soll nicht jeder erfahren

"Privacy is the power to selectively reveal oneself to the world."

Eric Hughes, A Cypherpunk's Manifesto

Der Kampf um die Privatsphäre

- Privatsphäre ist ein wiederkehrendes Thema der politischen Debatte in Deutschland:
 - Klarnamenspflicht im Internet
 - Vorratsdatenspeicherung
 - Bundestrojaner
 - Zensur(sula)gesetz
 - Übermittlung von Fluggastdaten
 - usw. usf.

Der Kampf um die Privatsphäre

- Privatsphäre ist ein wiederkehrendes Thema der politischen Debatte in Deutschland:
 - Klarnamenspflicht im Internet
 - Vorratsdatenspeicherung
 - Bundestrojaner
 - Zensur(sula)gesetz
 - Übermittlung von Fluggastdaten
 - usw. usf.
- oder auch kürzlich:

"Eine anonyme Teilhabe am politischen Meinungs- und Willensbildungsprozess ist abzulehnen."
Positionspapier der CDU/CSU-Fraktion im Bundestag zum Thema "Freiheit des Internet"

Diskrepanzen

- In der "realen Welt" ist Privatsphäre oft der Standard.
 - Bargeld, Briefgeheimnis...
- In der digitalen Welt sieht das meistens anders aus:
 - Standardmäßig unverschlüsselte Übertragung von Webseiten, E-Mail, Chatnachrichten...
 - Internet-Verbindungen sind über den Provider zurückverfolgbar

Das Cypherpunk's Manifesto

- Eine offene Gesellschaft braucht Privatsphäre
- Regierungen und Konzerne werden Privatsphäre nicht freiwillig schaffen
- Kryptographie ist das Mittel zur Wahrung der Privatsphäre
- Cypherpunks machen entsprechende Software

"Cypherpunks write code."

Interessante Projekte

- Bitcoin
- Freenet.
- Off-the-Record messaging
- Tor

Einführung in die Kryptographie Privatsphäre unter Beschuss Die Anonymisierungssoftware Tor Zusammenfassung

Die Anonymisierungssoftware Tor

Überblick über Tor

- Das Tor-Projekt...
 - Entstanden als Weiterentwicklung des "Onion Routing"-Projekts des US Naval Research Laboratory
 - Später finanziert durch die Electronic Frontier Foundation
 - Seit 2006 ist das "Tor Project" eine Nonprofit-Organisation in den USA
- Ziele von Tor
 - Verschleiern: Wer kommuniziert mit wem?
 - Umgehen von Zensurschranken
 - Anonymes Bereitstellen von Informationen

Netzwerkstruktur von Tor

Aufbau eines Circuit

Aufbau eines Circuit

Weiterleiten von Daten

Weiterleiten von Daten

Anonymisierung

- Niemand erfährt, mit wem der Sender kommuniziert
 - Der Server denkt, die Anfrage käme vom Exit Node
 - Jeder Knoten im Circuit kennt nur seine Nachbarn
 - Nur der Exit Node kann das Ziel des Datenpakets sehen
- Aber:
 - Der Exit Node sieht den Datenverkehr im Klartext
 - Daher ist Ende-zu-Ende-Verschlüsselung zum Server sinnvoll
 - Trotzdem kann das Datenpaket identifizierende Daten beinhalten

Einführung in die Kryptographie Privatsphäre unter Beschuss Die Anonymisierungssoftware Tor Zusammenfassung

Zusammenfassung

Zusammenfassung

- Der Schutz der Privatsphäre ist wichtig
- Geschickter Einsatz von Kryptographie kann hierbei helfen
- Es ist schwer, ein wasserdichtes Kryptosystem zu bauen
- Selbst ein wasserdichtes System kann durch Fehler auf anderen Ebenen außer Kraft gesetzt werden
- Aber: Die Grundprinzipien sind einfach zu verstehen Jede/r kann mitdenken