The p-Block Elements <u>Multiple Choice Questions (Type-I)</u>

- 1. On addition of conc. H_2SO_4 to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because
 - (i) H₂SO₄ reduces HI to I₂
 - (ii) HI is of violet colour
 - (iii) HI gets oxidised to I2
 - (iv) HI changes to HIO3

Ans. (iii)

Explanation: When iodide salt reacts with H_2SO_4 , HI is formed which is a strong reducing agent. It reduces H_2SO_4 to SO_2 and itself get oxidised to I_2 .

$$H_2SO_4 + 2HI \rightarrow SO_2 + \underbrace{I_2}_{(Violet\ colour)} + 2H_2O$$

- 2. In qualitative analysis when H₂S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO₃, it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives _____.
 - (i) deep blue precipitate of Cu (OH)2
 - (ii) deep blue solution of [Cu (NH₃)₄]²⁺
 - (iii) deep blue solution of Cu(NO₃)₂
 - (iv) deep blue solution of Cu(OH)2.Cu(NO3)2

Ans. (ii)

Explanation: When H₂S is passed through acidified solution of salt with dil. HCl black ppt is formed.

$$CuSO_4 + H_2S \xrightarrow{dil\ HCl} CuS \downarrow + H_2SO_4$$

On boiling CuS with dil. HNO_3 it forms blue coloured solution and the following reaction occur

- 3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present?
 - (i) 3 double bonds; 9 single bonds
 - (ii) 6 double bonds; 6 single bonds
 - (iii) 3 double bonds; 12 single bonds
 - (iv) Zero double bonds; 12 single bonds

Ans. (i)

Explanation: Structure of Cyclotrimetaphosphoric acid

4. Which of the following elements can be involved in $p\pi$ -d π bonding?

- (i) Carbon
- (ii) Nitrogen
- (iii) Phosphorus
- (iv) Boron

Ans. (iii)

Explanation: Among four choices only phosphorous has vacant d-orbital.

5. Which of the following pairs of ions are isoelectronic and isostructural?

- (i) CO_3^{2-} , NO_3^{-}
- (ii) ClO_3^-, CO_3^{2-}
- (iii) SO_3^{2-}, NO_3^{-}
- (iv) ClO_3^-, SO_3^{2-}

Ans. (i)

Explanation: No. of electron in both the molecule is =32 Both has similar structure that is triangular planar.

6. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?

- (i) HF
- (ii) HCl
- (iii) HBr
- (iv) HI

Ans. (i)

Explanation: On moving down the group atomic radii increases and bond dissociation enthalpy increases. So the highest bond dissociation enthalpy is of HF.

7. Bond dissociation enthalpy of E—H (E = element) bonds is given below. Which of the compounds will act as strongest reducing agent?

Compound	NH ₃	PH ₃	AsH ₃	SbH ₃
$\Delta_{diss}(E-H)/kJ \ mol^{-1}$	389	322	297	255

- (i) NH₃
- (ii) PH₃
- (iii) AsH₃

(iv) SbH₃

Ans. (iv)

Explanation: On moving down the group size of the central atom increases i.e. bond length increases and bond dissociation enthalpy decreases.

- 8. On heating with concentrated NaOH solution in an inert atmosphere of CO₂, white phosphorus gives a gas. Which of the following statement is incorrect about the gas?
 - (i) It is highly poisonous and has smell like rotten fish.
 - (ii) It's solution in water decomposes in the presence of light.
 - (iii) It is more basic than NH₃.
 - (iv) It is less basic than NH₃.

Ans. (iii)

Explanation: White phosphorous is poisonous, insoluble in water but soluble in carbon disulphide and glows in dark (chemiluminescence). It dissolves in boiling NaOH solution in an inert atmosphere giving PH₃.

$$P_4 + 3NaOH + 3H_2O \rightarrow PH_3 + 3NaH_2PO_2$$

- 9. Which of the following acids forms three series of salts?
 - (i) H₃PO₂
 - (ii) H₃BO₃
 - (iii) H₃PO₄
 - (iv) H₃PO₃

Ans. (iii)

Explanation: Structure of

 H_3PO_4 has 3-OH groups i.e. has three ionisable H-atoms and hence forms three series of salts i.e., NaH_2PO_4 , Na_2HPO_4 , and Na_3PO_4 .

- 10. Strong reducing behaviour of H₃PO₂ is due to
 - (i) Low oxidation state of phosphorus
 - (ii) Presence of two –OH groups and one P–H bond
 - (iii) Presence of one -OH group and two P-H bonds
 - (iv) High electron gain enthalpy of phosphorus

Ans. (iii)

Explanation: In H₃PO₂, two H atoms are bonded directly to P atom which imparts reducing character to the acid.

11. On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are

Ans.	(i) N ₂ O, PbO (ii) NO ₂ , PbO (iii) NO, PbO (iv) NO, PbO ₂ (ii) Explanation: $2PbNO_3 \rightarrow 2PbO + 4NO_2 + O_2$
12.	Which of the following elements does not show allotropy? (i) Nitrogen (ii) Bismuth (iii) Antimony (iv) Arsenic
Ans.	Explanation: The single N-N bond is weak because of high inter-electronic repulsion of the non-bonding electrons, owing to the small bond length. As a result the catenation tendency is weaker in nitrogen that is why it does not show allotropy.
13.	Maximum covalency of nitrogen is (i) 3 (ii) 5 (iii) 4 (iv) 6
Ans.	(iii) Explanation: The electronic configuration of nitrogen is ns ² np ³ . Nitrogen is restricted to the maximum covalency of 4 since only four (one s and three p) orbitals are available for bonding.
14.	Which of the following statements is wrong? (i) Single N–N bond is stronger than the single P–P bond. (ii) PH ₃ can act as a ligand in the formation of coordination compound with transition elements. (iii) NO ₂ is paramagnetic in nature. (iv) Covalency of nitrogen in N_2O_5 is four.
Ans.	Explanation: N-N bond is weaker than the single P-P bond. because of high interelectronic repulsion of the non-bonding electrons, owing to the small bond length.
15 .	A brown ring is formed in the ring test for NO_3^- ion. It is due to the formation of (i) $[Fe(H_2O)_5(NO)]^{2+}$ (ii) $FeSO_4.NO_2$ (iii) $[Fe(H_2O)_4(NO)_2]^{2+}$ (iv) $FeSO_4.HNO_3$
Ans.	(i) Explanation: When freshly prepared solution of FeSO ₄ is added in a solution containing

 NO_3^- ion, it leads to the formation of brown coloured complex.

$$NO_3^- + 3Fe^{2+} + 4H^+ \rightarrow O + 3Fe^{2+} + 2H_2O$$

 $[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5NO]^{2+} + H_2O$
Brownish

- 16. Elements of group-15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
 - (i) Bi₂O₅
 - (ii) BiF₅
 - (iii) BiCl₅
 - (iv) Bi₂S₅
- Ans. (ii)

Explanation:Stability of +5 state decreases from top to bottom but because of high electronegativity and smaller size of fluorine bismuth can exist in this form.

- 17. On heating ammonium dichromate and barium azide separately we get
 - (i) N₂ in both cases
 - (ii) N₂ with ammonium dichromate and NO with barium azide
 - (iii) N2O with ammonium dichromate and N2 with barium azide
 - (iv) N2O with ammonium dichromate and NO2 with barium azide
- Ans. (iii)

Explanation: On heating ammonium dichromate and barium azide separately we get N₂ gas in both cases.

$$(NH_4)_2 Cr_2 O_7 \xrightarrow{\Delta} N_2 + 4H_2 O + Cr_2 O_3$$

 $Ba(N_3)_2 \rightarrow Ba + 3N_2$

- 18. In the preparation of HNO₃, we get NO gas by catalytic oxidation of ammonia. The moles of NO produced by the oxidation of two moles of NH₃ will be _____.
 - (i) 2
 - (ii) 3
 - (iii) 4
 - (iv) 6
- Ans. (i)

Explanation: $4NH_3 + 5O_2 \xrightarrow{\Delta} 4NO(g) + 6H_2O$

Hence, from above equation. oxidation of 2 moles of ammonia will produce 2 moles of NO.

- 19. The oxidation state of central atom in the anion of compound NaH₂PO₂ will be _____.
 - (i) +3
 - (ii) +5
 - (iii) +1
 - (iv) -3

Ans. (iii)

Explanation: Oxidation state of NaH₂PO₂

$$\stackrel{\scriptscriptstyle{+1}}{Na}\stackrel{\scriptscriptstyle{+1}}{H_2}\stackrel{\scriptscriptstyle{n}}{P}\stackrel{\scriptscriptstyle{-2}}{O_2}$$

$$+1+2\times+1+x+2\times-2=0$$

$$+3+x-4=0$$

$$x-1=0$$

$$x=+1$$

20. Which of the following is not tetrahedral in shape?

- (i) NH_4^+
- (ii) SiCl₄
- (iii) SF₄
- (iv) SO_4^{2-}

Ans. (iii)

Explanation:

It has trigonal bipyramidal geometry having sp³d hydridisation.

21. Which of the following are peroxoacids of sulphur?

- (i) H₂SO₅ and H₂S₂O₈
- (ii) H₂SO₅ and H₂S₂O₇
- (iii) H₂S₂O₇ and H₂S₂O₈
- (iv) H₂S₂O₆ and H₂S₂O₇

Ans. (i)

Explanation: Peroxoacids of sulphur must contain -O-O or peroxy linkage.

22. Hot conc. H₂SO₄ acts as moderately strong oxidising agent. It oxidises both metals and nonmetals. Which of the following element is oxidised by conc. H₂SO₄ into two gaseous products?

- (i) Cu
- (ii) S
- (iii) C
- (iv) Zn

Ans. (iii)

Explanation: Hot concentrated sulphuric acid is a moderately strong oxidising agent. In this respect, it is intermediate between phosphoric and nitric acids. Both metals and nonmetals are oxidised by concentrated sulphuric acid, which is reduced to SO₂. C is oxidised into two gaseous products.

$$C+2H_2SO_4(conc.) \rightarrow CO_2+2SO_2+2H_2O$$

23. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with NH3 an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from _____.

$$(i) - 3 to + 3$$

(ii)
$$-3$$
 to 0

(iii)
$$- 3 \text{ to } +5$$

(iv)
$$0 \text{ to } -3$$

Ans. (i)

Explanation:

Explanation:

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2$$

(Black) greenish yellow ga

$$\overset{\scriptscriptstyle{-3}}{N}H_3 + 3Cl_2 \to \overset{\scriptscriptstyle{+3}}{N}Cl_3 + 3HCl$$

Hence oxidation state of nitrogen changes from -3 to +3.

In the preparation of compounds of Xe, Bartlett had taken $\,O_{\!\scriptscriptstyle 2}^{\scriptscriptstyle +}\, Pt\, F_{\!\scriptscriptstyle 6}^{\scriptscriptstyle -}$ as a base 24. compound. This is because

- (i) both O₂ and Xe have same size.
- (ii) both O₂ and Xe have same electron gain enthalpy.
- (iii) both O₂ and Xe have almost same ionisation enthalpy.
- (iv) both Xe and O₂ are gases.

Ans. (iii)

> **Explanation:** Neil Bartlett, then observed the reaction of a noble gas. First, he prepared a red compound which is formulated as O_2^+ $Pt F_6^-$. He then realised that the first ionisation enthalpy of molecular oxygen (1175 kJ mol-1) was almost identical with that of xenon (1170 kJ mol-1).

25. In solid state PCl₅ is a _____.

- (i) covalent solid
- (ii) octahedral structure
- (iii) ionic solid with [PCl₆]+ octahedral and [PCl₄]- tetrahedra
- (iv) ionic solid with [PCl4]+ tetrahedral and [PCl6]- octahedra

Ans. (iv)

Explanation:

In solid state PCl₅ exist as an ionic solid with [PCl₄]⁺ tetrahedral and [PCl₆]⁻ octahedral.

Reduction potentials of some ions are given below. Arrange them in decreasing **26**. order of oxidising power.

Ion

 $ClO_{\!\scriptscriptstyle \Delta}^{\scriptscriptstyle -}$

 $IO_4^ BrO_4^-$

RductionEV $E^{\Theta} = 1.19V$ $E^{\Theta} = 1.65V$ $E^{\Theta} = 1.74V$

 $PotentialE^{\Theta}/V$

(i) $ClO_{\Delta}^{-} > IO_{\Delta}^{-} > BrO_{\Delta}^{-}$

(ii) $IO_4^- > BrO_4^- > ClO_4^-$

(iii) $BrO_4^- > IO_4^- > ClO_4^-$

(iv) $BrO_4^- > ClO_4^- > IO_4^-$

Ans.

Explanation: Higher the standard reduction potential higher will be the oxidizing power.

27. Which of the following is isoelectronic pair?

(i) ICl₂, ClO₂

(ii) BrO_2^-, BrF_2^+

(iii) ClO₂, BrF

(iv) CN⁻, O₃

Ans. (ii)

Explanation: Isoelectronic species means no. of electron is same.

 BrO_{2}^{-} (no. of electron) = 35+16+1=52

 Brf_{2}^{+} (no. of electron) = 35+17=52

The p-Block Elements **Multiple Choice Questions (Type-II)**

Note: In the following questions two or more options may be correct.

- 28. If chlorine gas is passed through hot NaOH solution, two changes are observed in the oxidation number of chlorine during the reaction. These are _____ and _____
 - (i) 0 to +5
 - (ii) 0 to +3
 - (iii) 0 to -1
 - (iv) 0 to +1
- Ans. (i) and (iii)

Explanation: $6NaOH + 3Cl_2 \rightarrow 5NaCl + NaClO_3 + 3H_2O$

When chlorine gas is passed through hot NaOH solution it produces NaCl and NaClO₃. Thus oxidation state of chlorine changes from 0 to -1 and 0 to +5 respectively.

- 29. Which of the following options are not in accordance with the property mentioned against them?
 - (i) $F_2 > Cl_2 > Br_2 > I_2$ Oxidising power.
 - (ii) MI > MBr > MCl > MF Ionic character of metal halide.
 - (iii) F₂> Cl₂> Br₂> I₂ Bond dissociation enthalpy.
 - (iv) HI < HBr < HCl < HF Hydrogen-halogen bond strength.
- Ans. (ii) and (iii)

Explanation: MI<MBr<MCl<MF this is the correct order of ionic metal halide.

The correct order of bond dissociation enthalpy is $Cl_2 > Br_2 > F_2 > I_2$ Due to electronic repulsion among lone pair in F₂ molecule.

- 30. Which of the following is correct for P4 molecule of white phosphorus?
 - (i) It has 6 lone pairs of electrons.
 - (ii) It has six P-P single bonds.
 - (iii) It has three P–P single bonds.
 - (iv) It has four lone pairs of electrons.
- Ans. (ii) and (iv)
 - **Explanation:**

It has four lone pairs of electrons at each p-atom It has six p-p single bond.

31. Which of the following statements are correct?

- (i) Among halogens, radius ratio between iodine and fluorine is maximum.
- (ii) Leaving F—F bond, all halogens have weaker X—X bond than X—X' bond in interhalogens.
- (iii) Among interhalogen compounds maximum number of atoms are present in iodine fluoride.
- (iv) Interhalogen compounds are more reactive than halogen compounds.

Ans. (i), (ii) and (iv)

Explanation:

- (i) Among group 17 elements radius ratio of iodine and fluorine is maximum because size of iodine is largest and fluorine is smallest in the group.
- (ii) The correct statement is inter halogen compounds are more reactive than halogens (except fluorine). This is because X-X' bond in interhalogens is weaker than X-X bond in halogens except F-F.
- (iii) As the ratio between radii of X and X' increase, the number of atoms per molecule also increases. Thus, iodine (VII) fluoride should have maximum number of atoms as the ratio of radii between I and F should be maximum.
- (iv) Interhalogen compounds are more reactive than halogens (except fluorine). This is because X-X' bond in interhalogens is weaker than X-X' bond in halogens.

32. Which of the following statements are correct for SO₂ gas?

- (i) It acts as bleaching agent in moist conditions.
- (ii) Its molecule has linear geometry.
- (iii) It's dilute solution is used as disinfectant.
- (iv) It can be prepared by the reaction of dilute H₂SO₄ with metal sulphide.

Ans. (i) and (iii)

Explanation: SO_2 is used in bleaching of wool and silk and as an anti-chlor, disinfectant and preservative.

33. Which of the following statements are correct?

- (i) All the three N—O bond lengths in HNO₃ are equal.
- (ii) All P—Cl bond lengths in PCl₅ molecule in gaseous state are equal.
- (iii) P₄ molecule in white phosphorus have angular strain therefore white phosphorus is very reactive.
- (iv) PCl is ionic in solid state in which cation is tetrahedral and anion is octahedral.

Ans. (iii) and (iv)

Explanation:

- (i) All the three N-O bond length in HNO₃ are not equal.
- (ii) In gaseous phase all P-Cl bond lengths in PCl₅ molecule are not equal.
- (iii) White phosphorus is more reactive than the other solid phases under normal conditions because of angular strain in the P₄ molecule.
- (iv) Solid state it exists as an ionic solid, $[PCl_4]^+[PCl_6]^-$ in which the cation, $[PCl_4]^+$ is tetrahedral and the anion, $[PCl_6]^-$ octahedral.

34. Which of the following orders are correct as per the properties mentioned against each?

- (i) $As_2O_3 < SiO_2 < P_2O_3 < SO_2Acid$ strength.
- (ii) AsH₃< PH₃< NH₃ Enthalpy of vapourisation.
- (iii) S < 0 < Cl < F More negative electron gain enthalpy.
- (iv) $H_2O > H_2S > H_2Se > H_2Te$ Thermal stability.

(i) and (iv) Ans.

Explanation:

(i)
$$As_2o_3 < SiO_2 < P_2O_3 < SO_2$$
 Order of acid strength

- (ii) Correct order of enthalpy of vaporization is AsH₃>PH₃>NH₃
- (iii) Correct order of more negative electron gain enthalpy S<O<F<Cl
- (iv) Order of thermal stability --- H₂O>H₂Se>H₂Te

35. Which of the following statements are correct?

- (i) S–S bond is present in $H_2S_2O_6$.
- (ii) In peroxosulphuric acid (H₂SO₅) sulphur is in +6 oxidation state.
- (iii) Iron powder along with Al₂O₃ and K₂O is used as a catalyst in the preparation of NH₃ by Haber's process.
- (iv) Change in enthalpy is positive for the preparation of SO_3 by catalytic oxidation of SO_2 .

Ans. (i) and (ii)

Explanation:

It contains one S-S bond.

(ii)
$$_{-2}^{O}$$
 $_{-1}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$ $_{-2}^{O}$

Oxidation state of S=+6.

- (iii) Iron oxide with K₂O and Al₂O₃ is used to increase the rate of attainment of equilibrium in Haber's process.
- (iv) Change in enthalpy is negative for the preparation of SO₃ by catalytic oxidation of SO₂.

In which of the following reactions conc. H₂SO₄ is used as an oxidising reagent? 36.

(i)
$$CaF_2 + H_2SO_4 \rightarrow CaSO_4 + 2HF$$

(ii)
$$2HI + H_2SO_4 \rightarrow I_2 + SO_2 + 2H_2O$$

(iii)
$$Cu + 2H_2SO_4 \rightarrow CusSO_4 + SO_2 + 2H_2O$$

(iv)
$$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl$$

(ii) and (iii) Ans.

Explanation: Among the above four (ii) and (iii) represent the oxidizing behavior of H_2SO_4 . In (ii) reaction it oxidizes HI and itself reduces to SO_2 oxidation state of central atom Sulphur decreases from +6 to +4. In (iii) it oxidizes copper and itself get reduced to SO_2 .

37. Which of the following statements are true?

- (i) Only type of interactions between particles of noble gases are due to weak dispersion forces.
- (ii) Ionisation enthalpy of molecular oxygen is very close to that of xenon.
- (iii) Hydrolysis of XeF₆ is a redox reaction.
- (iv) Xenon fluorides are not reactive.

Ans. (i) and (ii)

Explanation:

- (i) Attraction in noble gases is due to weak dispersion force.
- (ii) Ionisation enthalpy of molecular oxygen is very close to that of xenon.
- (iii) $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$ hydrolysis of XeF₆ is not a redox reaction.
- (iv) Xenon fluorides are reactive in nature.

The p-Block Elements <u>Matching Type</u>

Note: Match the items of Column I and Column II in the following questions.

59. Match the compounds given in Column I with the hybridisation and shape given in Column II and mark the correct option.

Column	Column		
(A)Xe F ₆	(1) sp ³ d ³ - distorted octahedral		
(B) Xe O ₃	(2) sp ³ d ² - square planar		
(C) Xe OF ₄	(3) sp ³ -pyramidal		
(D) Xe F ₄	(4) sp ³ d ² -square pyramidal		

Ans. $\overline{(i)}$

Explanation:

(c) Square pyramidal

60. Match the formulas of oxides given in Column I with the type of oxide given in Column II and mark the correct option.

Column I	Column II
(A) Pb ₃ O ₄	(1) Neutral oxide
(B) N ₂ O	(2) Acidic oxide
(C) Mn_2O_7	(3) Basic oxide
(D) Bi ₂ O ₃	(4) Mixed oxide

Code:

- (i) A (1) B (2) C (3) D (4)
- (ii) A (4) B (1) C (2) D (3)
- (iii) A (3) B (2) C (4) D (1)
- (iv) A (4) B (3) C (1) D (2)

Ans. (ii)

Explanation:

- A. Pb₃O₄ is a mixed oxide.
- B. N₂O is a neutral oxide.
- C. Mn₂O₇ is a acidic oxide.

61. Match the items of Columns I and II and mark the correct option.

Column I	Column II
(A) H ₂ SO ₄	(1) Highest electron gain enthalpy
(B) CCl ₃ NO ₂	(2) Chalcogen
(C) Cl ₂	(3) Tear gas
(D) Sulphur	(4) Storage batteries

Code:

- (i) A (4) B (3) C (1) D (2)
- (ii) A (3) B (4) C (1) D (2)
- (iii) A (4) B (1) C (2) D (3)
- (iv) A (2) B (1) C (3) D (4)

Ans. (i)

Explanation:

- (A) H₂SO₄ is used in Storage batteries.
- (B) CCl₃NO₂ is known as tear gas.
- (C) Cl₂ has highest electron gain enthalpy.
- (D) Sulphur is also called as chalcogen.

62. Match the species given in Column I with the shape given in Column II and mark the correct option.

Column I	Column II
(A) SF ₄	(1) Tetrahedral
(B) BrF ₃	(2) Pyramidal
(C) BrO_3^-	(3) Sea-saw shaped
(D) NH_4^+	(4) Bent T-shaped

Code:

- (i) A (3) B (2) C (1) D (4)
- (ii) A (3) B (4) C (2) D (1)
- (iii) A (1) B (2) C (3) D (4)
- (iv) A (1) B (4) C (3) D (2)

Ans. (ii)

Explanation:

A. SF₄

(See Saw Shaped

63. Match the items of Columns I and II and mark the correct option.

Column I	Column II
(A) Its partial hydrolysis does not change oxidation state of central atom	(1) He
(B) It is used in modern diving apparatus	(2) XeF ₆
(C) It is used to provide inert atmosphere for filling electrical bulbs	(3) XeF ₄
(D) Its central atom is in sp ³ d ² hybridisation	(4) Ar

Code:

(i) A (1) B (4) C (2) D (3)

(ii) A (1) B (2) C (3) D (4)

(iii) A (2) B (1) C (4) D (3)

(iv) A (1) B (3) C (2) D (4)

Ans. (iii)

Explanation: A \rightarrow Partial hydrolysis of XeF₆ gives oxyfluorides, XeOF₄ and XeO₂F₂.

 $XeF_6+H_2O \rightarrow XeOF_4+2HF$

 $XeF_6+2H_2O \rightarrow XeO_2F_2+4HF$

We can see that oxidation state of central atom Xe remains unchanged.

B. He is used in modern diving apparatus

C. Ar is used to provide inert atmosphere for filling electrical bulbs.

D. XeF₄ has Sp³d² hybridization (4-bond pair and 2-lone pair)

The p-Block Elements Assertion and Reason Type

Note: In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- (i) Both assertion and reason are correct statements, and reason is the correct explanation of the assertion.
- (ii) Both assertion and reason are correct statements, but reason is not the correct explanation of the assertion.
- (iii) Assertion is correct, but reason is wrong statement.
- (iv) Assertion is wrong but reason is correct statement.
- (v) Both assertion and reason are wrong statements.
- **64. Assertion:** N₂ is less reactive than P₄.

Reason: Nitrogen has more electron gain enthalpy than phosphorus.

Ans. (iii) Assertion is correct but reason is wrong statement.

Explanation: N₂ is less reactive than P₄ molecule this is so, because nitrogen has very high bond dissociation enthalpy because of triple bond between two nitrogen atom which is not the case with phosphorus.

65. Assertion: HNO₃ makes iron passive.

Reason: HNO₃ forms a protective layer of ferric nitrate on the surface of iron.

Ans. (iii)

Explanation: HNO₃ makes iron passive. HNO₃ forms a protective layer of oxides on the surface of iron.

- **66. Assertion:** HI cannot be prepared by the reaction of KI with concentrated H₂SO₄ **Reason:** HI has lowest H–X bond strength among halogen acids.
- Ans. (ii)

Explanation: HI cannot be prepared by the reaction of KI with concentrated H₂SO₄ because HI formed is converted to I₂.

- 67. **Assertion:** Both rhombic and monoclinic sulphur exist as S_8 but oxygen exists as O_2 . **Reason:** Oxygen forms $p\pi p\pi$ multiple bond due to small size and small bond length but $p\pi p\pi$ bonding is not possible in sulphur.
- Ans. (i)

Explanation: Both rhombic and monoclinic sulphur exist as S_8 but oxygen exists as O_2 . Oxygen form $p\pi$ - $P\pi$ multiple bond due to small size and small bond length but $p\pi$ - $P\pi$ bonding is not possible in sulphur due to its larger atomic size than oxygen.

68. Assertion: NaCl reacts with concentrated H₂SO₄ to give colourless fumes with pungent smell. But on adding MnO₂ the fumes become greenish yellow.

Reason: MnO₂ oxidises HCl to chlorine gas which is greenish yellow.

Ans. (i)

Explanation: NaCl reacts with concentrated H₂SO₄ to give colourless fumes with pungent

smell. But on adding MnO_2 the fumes become greenish yellow. MnO_2 oxidises HCl to chlorine gas which is greenish yellow.

NaCl+H₂SO₄ → NaHSO₄+HCl (fumes of HCl is colourless)

By heating manganese dioxide with concentrated hydrochloric acid.

 $MnO_2+4HCl \rightarrow MnCl_2+Cl_2+2H_2O$

69. Assertion: SF₆ cannot be hydrolysed but SF₄ can be.

Reason: Six F atoms in SF₆ prevent the attack of H₂O on sulphur atom of SF₆.

Ans. (i)

Explanation: SF₆ do not hydrolysed as it is in its maximum valency of six and it is insoluble in water. SF₄ can be hydrolyse as follows:

 $SF_4+2H_2O \rightarrow SO_2+4HF$

The p-Block Elements Short Answer Type

- 38. In the preparation of H₂SO₄ by Contact Process, why is SO₃ not absorbed directly in water to form H₂SO₄?
- **Ans.** Acid fog is formed, which is difficult to condense.
- 39. Write a balanced chemical equation for the reaction showing catalytic oxidation of NH₃ by atmospheric oxygen.

Ans.
$$4NH_3 + 5O_2 \xrightarrow{Pt/Rh \ gauge \ catalyst} 4NO + 6H_2O$$

- 40. Write the structure of pyrophosphoric acid.
- **Ans.** Structure of Pyrophosphoric acid:

- 41. PH₃ forms bubbles when passed slowly in water but NH₃ dissolves. Explain why?
- **Ans.** NH₃ forms hydrogen bonds with water therefore it is soluble in it but PH₃ cannot form hydrogen bond with water so it escapes as gas.
- 42. In PCl5, phosphorus is in sp³d hybridised state but all its five bonds are not equivalent. Justify your answer with reason.
- **Ans.** In gaseous and liquid phases, it has a trigonal bipyramidal structure as shown. The three equatorial P-Cl bonds are equivalent, while the two axial bonds are longer than equatorial bonds. This is due to the fact that the axial bond pairs suffer more repulsion as compared to equatorial bond pairs.

- 43. Why is nitric oxide paramagnetic in gaseous state but the solid obtained on cooling it is diamagnetic?
- **Ans.** In gaseous state NO₂exists as monomer which has one unpaired electron but in solid state it dimerises to N₂O₄ so no unpaired electron is left hence solid form is diamagnetic.
- 44. Give reason to explain why ClF₃ exists but FCl₃ does not exist.

- **Ans.** Because fluorine is more electronegative as compared to chlorine.
- 45. Out of H₂O and H₂S, which one has higher bond angle and why?
- **Ans.** Bond angle of H₂O is larger, because oxygen is more electronegative than sulphur therefore bond pair electron of O–H bond will be closer to oxygen and there will be more bond-pair bond-pair repulsion between bond pairs of two O–H bonds.
- 46. SF_6 is known but SCl_6 is not. Why?
- **Ans.** Due to small size of fluorine six F⁻ ion can be accommodated around Sulphur whereas chloride ion is comparatively larger in size, therefore, there will be interionic repulsion.
- 47. On reaction with C₁₂, phosphorus forms two types of halides 'A' and 'B'. Halide A is yellowish-white powder but halide 'B' is colourless oily liquid. Identify A and B and write the formulas of their hydrolysis products.
- **Ans.** A is PCl₅(It is yellowish white powder)

$$P_4 + 10Cl_2 \rightarrow 4PCl_5$$

B is PCl₃(It is a colourless oily liquid)

$$P_4 + 6Cl_2 \rightarrow 4PCl_3$$

Hydrolysis products are formed as follows:

$$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$$

$$PCl_5 + 4H_2O \rightarrow H_3PO_4 + 5HCl$$

48. In the ring test of NH_3^- ion, Fe²⁺ion reduces nitrate ion to nitric oxide, which combines with Fe²⁺(aq) ion to form brown complex. Write the reactions involved in the formation of brown ring.

Ans.
$$NO_3^- + 3Fe^{2+} + 4H^+ \rightarrow NO + +3Fe^{3+} + 2H_2O$$

 $8[Fe(H_2O)_6]^{2+} + NO \rightarrow [Fe(H_2O)_5(NO)]^{2+} + H_2O$
Brown ring

- 49. Explain why the stability of oxoacids of chlorine increases in the order given below: HClO < HClO₂< HClO₃< HClO₄
- **Ans.** The more oxygen atom that are bonded with the oxoacids the electrons will be pulled away from the O-H bond, and the more this bond will be weakend. Thus HClO₄ requires the least energy to break the O-H bond and from H⁺. Hence HClO₄ is the strongest acid, and the order of stability is HClO<HClO₂<HClO₃<HClO₄.
- 50. Explain why ozone is thermodynamically less stable than oxygen.
- Ans. Ozone is thermodynamically unstable with respect to oxygen since its decomposition into oxygen results in the liberation of heat (Δ H is negative) and an increase in entropy (Δ S is positive). These two effects reinforce each other, resulting in large negative Gibbs energy change (Δ G) for its conversion into oxygen.
- 51. P_4O_6 reacts with water according to equation $P_4O_6 + 6H_2O \longrightarrow 4H_3PO_3$. Calculate the

volume of 0.1 M NaOH solution required to neutralise the acid formed by dissolving 1.1 g of P_4O_6 in H_2O .

Ans.
$$P_4O_6 + 6H_2O \rightarrow 4H_3PO_3...(i)$$

For neutralisation

$$4 \times H_3PO_3 + 2NaOH \rightarrow Na_2HPO_3 + 2H_2O...(ii)$$

Adding eq. (i) and (ii)

$$P_4O_6 + 8NaOH \rightarrow 4Na_2HPO_3 + 2H_2O$$

$$P_4O_6(mol.mass) = (4 \times 31 + 16 \times 6) = 220$$

Number of moles of

$$P_4O_6 = \frac{Given\,mass}{Molar\,mass} = \frac{1.1}{220}$$

 \therefore Product formed by $\frac{1.1}{220}$ of P₄O₆ will be neutralised by 8 moles of NaOH.

 \therefore Product formed by $\frac{1.1}{220}$ of P₄O₆ will be neutralized by NaOH.

$$P_4O_6 = 8 \times = \frac{1.1}{220} = \frac{8.8}{220} \text{ mol NaOH}$$

Given molarity of NaOH in 1L=0.1M

Molarity =
$$\frac{\text{No. of moles}}{\text{Volume in litres}}$$

$$Volume = \frac{No. \text{ of moles}}{Molarity}$$

$$=\frac{8.8}{220}\times\frac{1}{0.1}=0.4L$$

52. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calculate the mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water.

Ans.
$$P_4 + 6Cl_2 \rightarrow 4PCl_3...(i)$$

$$PCl_3 + 3H_2O \rightarrow H_3PO_3 + 3HCl$$
} \times 4...(ii)

On adding eq. (i) and (ii)

$$P_4 + 6Cl_2 + 12H_2O \rightarrow 4H_3PO_3 + 12HCl$$

 $1\ mol\ of\ white\ phosphorus\ produces\ 12\ mol\ of\ HCl$

62g of white phosphorus has been taken which is equivalent to $\frac{62}{124} = \frac{1}{2}$ mol.

Therefore 6 mol HCl will be formed.

Mass of 6 mol HCl = $6 \times 36.5 = 219.0$ g HCl

53. Name three oxoacids of nitrogen. Write the disproportionation reaction of that

oxoacid of nitrogen in which nitrogen is in +3 oxidation state.

- **Ans.** Three oxoacids of nitrogen are
 - (i) HNO₂, Nitrous acid
 - (ii) HNO₃, Nitric acid
 - (iii) Hyponitrous acid, H₂N₂O₂
 - $3HNO_2 \xrightarrow{Disproportionation} HNO_3 + H_2O + 2NO$
- 54. Nitric acid forms an oxide of nitrogen on reaction with P_4O_{10} . Write the reaction involved. Also write the resonating structures of the oxide of nitrogen formed.
- **Ans.** $4HNO_3 + P_4O_{10} \rightarrow 4HPO_3 + 2N_2O_5$

- 55. Phosphorus has three allotropic forms (i) white phosphorus (ii) red phosphorus and (iii) black phosphorus. Write the difference between white and red phosphorus on the basis of their structure and reactivity.
- Ans.

White phosphorus is more reactive than red phosphorus because white P exists as discrete P_4 molecules. In red P several P_4 tetrahedral molecules are linked to formed polymeric chain.

Black phosphorus is the most stable form of phosphorus it is least reactive among all the allotrophic form of phosphorus.

- 56. Give an example to show the effect of concentration of nitric acid on the formation of oxidation product.
- **Ans.** Dilute and concentrated nitric acid give different oxidation products on reaction with copper metal.

 $3Cu + 8HNO_3(dil.) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$

 $Cu + 4HNO_3(Conc.) \rightarrow 3Cu(NO_3)_2 + 2NO + 2H_2O$

57. PCl₅ reacts with finely divided silver on heating and a white silver salt is obtained, which dissolves on adding excess aqueous NH₃ solution. Write the reactions

involved to explain what happens.

Ans.
$$PCl_2 + 2Ag \rightarrow 2AgCl + PCl_3$$

 $AgCl + 2NH_3(aq) \rightarrow [Ag(NH_3)_2]^+Cl^-$
(soluble complex)

- 58. Phosphorus forms a number of oxoacids. Out of these oxoacids phosphinic acid has strong reducing property. Write its structure and also write a reaction showing its reducing behaviour.
- **Ans.** Structure of phosphinic acid (Hypophosphorous acid) is as follows:

Reducing behaviour of phosphinic acid is observable in the reaction with silver nitrate given below :

$$4AgNO_3 + 2H_2O + H_3PO_2 \rightarrow 4Ag + 4HNO_3 + H_3PO_4$$

The p-Block Elements Long Answer Type

- 70. An amorphous solid "A" burns in air to form a gas "B" which turns lime water milky. The gas is also produced as a by-product during roasting of sulphide ore. This gas decolourises acidified aqueous KMnO₄ solution and reduces Fe³⁺ to Fe²⁺. Identify the solid "A" and the gas "B" and write the reactions involved.
- **Ans.** 'A' is S8 'B' is SO₂ gas $S_8 + 8O_2 \xrightarrow{\Delta} 8SO_2$ $2MnO_4^- + 5SO_2 + 2H_2O \rightarrow 5SO_4^{2-} + 4H^+ + 2Mn^{2+}$ (violet) $2Fe^{3+} + SO_2 + 2H_2O \rightarrow 2Fe^{2+} + SO_4^{2-} + 4H^+$
- 71. On heating lead (II) nitrate gives a brown gas "A". The gas "A" on cooling changes to colourless solid "B". Solid "B" on heating with NO changes to a blue solid 'C'. Identify 'A', 'B' and 'C' and also write reactions involved and draw the structures of 'B' and 'C'.

Ans.
$$Pb(NO_3)_2 \frac{\Delta}{673K} 2PbO + 4NO_2$$

$$(A) \text{(Browncolour)}$$

$$2NO \xleftarrow{oncolling} N_2O_4$$

$$(Colourless solid)$$

$$2NO + N_2O_4 \xrightarrow{\Delta 250k} 2N_2O_3$$

$$(C) \text{(Blue Solid)}$$

$$(Structure of N_2O_4)$$

$$(Structure of N_2O_4)$$

$$(Structure of N_2O_5)$$

- 72. On heating compound (A) gives a gas (B) which is a constituent of air. This gas when treated with 3 mol of hydrogen (H₂) in the presence of a catalyst gives another gas (C) which is basic in nature. Gas C on further oxidation in moist condition gives a compound (D) which is a part of acid rain. Identify compounds (A) to (D) and also give necessary equations of all the steps involved.
- Ans. $A= NH_4NO_2$ $B=N_2$ $C=NH_3$ $D=HNO_3$ (i) $NH_4NO_2 \rightarrow N_2+2H_2O$ (ii) $N_2+3H_2 \rightarrow 2NH_3$ (iii) $4NH_3+5O_2 \rightarrow 4NO+6H_2O$ $4NO+O_2 \rightarrow 2NO_2$ $3NO_2+H_2O \rightarrow 2HNO_3+NO$