3-4	The Euclidean Algorithm
What i.	s the gcd of 82,652 and 178,293? I does not look easy to find.
	is an algorithm that works quite
Theorem	3.11 (The Euclidean Algorithm)
Let $r_0 = a > b > 0$. Successive	a and r=b be integers such that If the division algorithm is vely applied to obtain r=r=q+r; j+1 j+1
with o.	< \(\tilde{\text{I}}_{12} < \tilde{\text{I}}_{11}\) for j=0,12,, n-2 and
	then gcd (a,b) = In, the last nonzero er.
LX: LCT	$324 = 126 \times 2 + 72$
	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$

	r_{2} = $54 \times 1 + 18$ r_{3} r_{3} r_{4}
	$\frac{54}{m} = \frac{18 \times 3}{m} + \frac{0}{m}$ $\frac{18}{13} = \frac{18 \times 3}{m} + \frac{1}{m}$
- 5	gcd (324, 126) = 18
First we s	tate and prove a lemma.
Lemma 3.3:	Let $e,d \in \mathbb{Z}$ s.t. $e = dq + r$. Then, $g(d(e,d)) = g(d(d,r))$.
Proof: Th	is follows from Theorem 3.7.
Now, we pro	ve Theorem 3-11.
	Theorem 3.11:
By Succes	sively applying the division algorithm,
we get	
1	$\hat{r}_0 = r_1 q_1 + r_2 \qquad 0 \leq r_2 \leq r_1$
	$r_1 = r_2 q + r_3 0 \leq r_3 < r_2$
	$r_{n-2} = r_{n-1} 2_{n-1} + r_n 0 \le r_n < r_{n-1}$
	$r_{n-1} = r_n q_n$

