

Abstract Algebra 2024–I

Homework 1

Pablo Rosero & Christian Chávez

September 11, 2023

- 1. For each of the following pairs of integers a and b, determine their greatest common divisor, their least common multiple, and write their greatest common divisor in the form ax + by for some integers x and y.
 - (a) a = 792, b = 275
 - (b) a = 507885, b = 60808

Solution.

- (a) gcd(a, b) = 11, lcm(a, b) = 19800, gcd(a, b) = 8a 23b
- (b) gcd(a, b) = 691, lcm(a, b) = 44693880, gcd(a, b) = -17a + 142b
- **2.** Prove that if n is composite then there are integers a and b such that n divides ab but n does not divide either a or b.

Solution. Let n be composite. By definition we have n=ab for some integers a and b with $a, b \neq \pm 1, \pm n$. Clearly $n \mid ab$. Now suppose by way of contradiction that $n \mid a$. Then we have kn = a for some integer k. Now kba = a, so (kb-1)a = 0, so kb = 1. Thus $b = \pm 1$, a contradiction. Hence, n does not divide a. Similarly, n does not divide a.

- **3.** If p is a prime prove that there do not exist nonzero integers a and b such that $a^2 = pb^2$ (i.e., \sqrt{p} is not a rational number).
- 4. Write down explicitly all the elements in the residue classes of $\mathbb{Z}/18\mathbb{Z}$.

Solution.

5. Prove that if $a=a_n10^n+a_{n-1}10^{n-1}+\cdots+a_110+a_0$ is any positive integer then $a\equiv a_n+a_{n-1}+\cdots+a_1+a_0\pmod{9}$ (note that this is the usual arithmetic rule that the remainder after division by 9 is the same as the sum of the decimal digits mod 9—in particular an integer is divisible by 9 if and only if the sum of its digits is divisible by 9) [note that $10\equiv 1(\bmod{9})$].

6. Compute the remainder when 37^{100} is divided by 29.

Solution. Performing all arithmetic mod 29 , we have $37^{100} = 8^{100}$. Moreover, note that

$$8^{28} = (8^2)^2 \cdot ((8^2)^2)^2 \cdot (((8^2)^2)^2)^2$$

$$= 6^2 \cdot (6^2)^2 \cdot ((6^2)^2)^2$$

$$= 7 \cdot 7^2 \cdot (7^2)^2$$

$$= 7 \cdot 20 \cdot 20^2$$

$$= 140 \cdot 23$$

$$= 24 \cdot 23$$

$$= 552$$

$$= 1.$$

So we have $8^{100} = 8^{28} \cdot 8^{28} \cdot 8^{28} \cdot 8^{16} = 8^{16} = 23$, as computed above.

7. Prove that the squares of the elements in $\mathbb{Z}/4\mathbb{Z}$ are just $\overline{0}$ and $\overline{1}$.

Solution. Modulo 4, we have $\overline{0}^2 = \overline{0}$,

8. Prove for any integers a and b that $a^2 + b^2$ never leaves a remainder of 3 when divided by 4 (use the previous exercise).

Solution.

9. Prove that the equation $a^2 + b^2 = 3c^2$ has no solutions in nonzero integers a, b and c. [Consider the equation mod 4 as in the previous two exercises and show that a, b and c would all have to be divisible by 2. Then each of a^2, b^2 and c^2 has a factor of 4 and by dividing through by 4 show that there would be a smaller set of solutions to the original equation. Iterate to reach a contradiction.]

Solution.

10. Prove that if $\bar{a}, \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, then $\bar{a} \cdot \bar{b} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Solution.

11. Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove if a and n are not relatively prime, there exists an integer b with $1 \le b < n$ such that $ab \equiv 0 \pmod{n}$ and deduce that there cannot be an integer c such that $ac \equiv 1 \pmod{n}$.

12. Let $n \in \mathbb{Z}$, n > 1, and let $a \in \mathbb{Z}$ with $1 \le a \le n$. Prove that if a and n are relatively prime then there is an integer c such that $ac \equiv 1 \pmod{n}$, [use the fact that the g.c.d. of two integers is a \mathbb{Z} -linear combination of the integers].

Solution.

13. Conclude from the previous two exercises that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the set of elements \bar{a} of $\mathbb{Z}/n\mathbb{Z}$ with (a, n) = 1 and hence prove Proposition 4. Verify this directly in the case n = 12.

Solution.

- **14.** (a) Prove that if n is squarefree (i.e., n > 1 and n is not divisible by the square of any prime), then \sqrt{n} is irrational.
 - (b) Prove that $\sqrt[3]{2}$ is irrational.

Solution.

15. If d = (a, b), prove that a/d and b/d are relatively prime.

Solution.

16. Prove that if (r, m) = 1 = (r', m), then (rr', m) = 1.

Solution.

17. Assume that d = sa + tb is a linear combination of integers a and b. Find infinitely many pairs of integers (s_k, t_k) with

$$d = s_k a + t_k b$$

Solution.

18. If a and b are relatively prime and if each divides an integer n, then their product ab also divides n.

Solution.

19. If a > 0, prove that a(b, c) = (ab, ac). [One must assume that a > 0 lest a(b, c) be negative.]

20. A Pythagorean triple is a triple (a, b, c) of positive integers for which

$$a^2 + b^2 = c^2$$

it is called primitive if the gcd(a, b, c) = 1.

(a) Consider a complex number z = q + ip, where q > p are positive integers. Prove that

$$(q^2 - p^2, 2qp, q^2 + p^2)$$

is a Pythagorean triple by showing that $|z^2| = |z|^2$. [One can prove that every primitive Pythagorean triple (a, b, c) is of this type.]

(b) Show that the Pythagorean triple (9, 12, 15) (which is not primitive) is not of the type given in part (i).

Solution.

21. Let $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ be finite sets, where the x_i are distinct and the y_j are distinct. Show that there is a bijection $f: X \to Y$ if and only if |X| = |Y|; that is, m = n.

Solution.

- **22.** (Pigeonhole Principle points) If X and Y are fi nite sets with the same number of elements, show that the following conditions are equivalent for a function $f: X \to Y$.
 - (a) f is injective;
 - (b) f is bijective;
 - (c) f is surjective.

Solution.

23. (a) Let $f: X \to Y$ be a function, and let $\{S_i : i \in I\}$ be a family of subsets of X. Prove that

$$f\left(\bigcup_{i\in I}S_i\right) = \bigcup_{i\in I}f\left(S_i\right)$$

- (b) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is a function, prove that $f(S_1 \cap S_2) \subseteq f(S_1) \cap f(S_2)$. Give an example in which $f(S_1 \cap S_2) \neq f(S_1) \cap f(S_2)$.
- (c) If S_1 and S_2 are subsets of a set X, and if $f: X \to Y$ is an injection, prove that $f(S_1 \cap S_2) = f(S_1) \cap f(S_2)$.

- **24.** Let $f: X \to Y$ be a function.
 - (a) If $B_i \subseteq Y$ is a family of subsets of Y, prove that

$$f^{-1}\left(\bigcup_{i} B_{i}\right) = \bigcup_{i} f^{-1}\left(B_{i}\right) \text{ and } f^{-1}\left(\bigcap_{i} B_{i}\right) = \bigcap_{i} f^{-1}\left(B_{i}\right).$$

(b) If $B \subseteq Y$, prove that $f^{-1}(B') = f^{-1}(B)'$, where B' denotes the complement of B.

Solution.

25. Let $f: X \to Y$ be a function. Define a relation on X by $x \equiv x'$ if f(x) = f(x'). Prove that \equiv is an equivalence relation. If $x \in X$ and f(x) = y, the equivalence class [x] is usually denoted by $f^{-1}(y)$, the inverse image of $\{y\}$.

Solution.