PROJET LEONIDAS À **ALEX CARRERA**

SPOSORISÉ PAR

sommaire

Introduction

- Aspect mécanique
- Propulsion
- Capteurs
- Ordinateur de bord
- Stabilisation et contrôle
- Base

Futures étapes et conclusion

introduction

Atterrissage des boosters du Falcon H.- SpaceX

introduction

Construction mécanique

À

Construction mécanique

750g

Construction mécanique

Point fragile intentionnel

Tube en carbone •

PLA

Â

principe de fonctionnement

propulsion

Turbine électrique 120mm – 8 kW

9.5kg – 94N de poussée

principe de fonctionnement

entrée d'air

À

瓜

Capteurs / électronique

LiDAR- Garmin distance L-S

TR-G2 - position

À

Ordinateur de bord

Teensy 4.1

Connection TR-2S + VN-300

Radio

Connections servos

Connection turbine

Contrôleur/régulateur

Servomoteurs / Turbine / Autres

Paramètre désiré

Données capteurs

Régulateur PID - microcontrollerslab.com

À

Base

Données + Commandes en temps réel - 20Hz

Banc de test

Capteur de force ±0.1 N

> Sonde pitot ± 1m/s*

conclusion

- Atterrisseur à la verticale
- Propulsé électriquement
- Autonome
- Utilisation pâles et capteurs pour se stabiliser
- Utilisation du banc de test
- Réalisations simulations
- Saut en Septembre 2024

conclusion

"We're about 75% done with only 80 to go now" - @BuilderCreator

Merci de votre attention

Contrôleur/régulateur

Servomoteurs / Turbine / Autres

Paramètre désiré

Données capteurs

Régulateur PID - microcontrollerslab.com

À

Futures étapes: Simulations

Ordinateur de bord Code

Code pour stabilisation de l'orientation seulement et altitude hold

+1000 lignes

```
604
605
      void getLidar() {
        //LiDAR.reading(float(myLidarLite.distance() - 5));
607
608
609
610
        if( readDistance()==-1){
            Serial.println("n");
611
612
          return;
613
614
        float distaceNow = (float)myLidarLite.distance()/100.0; // en m
615
        lidarSensorAvg.addValue(distaceNow);
616
        lidarReadings[0] = distaceNow;
617
618
        lidarReadings[1] = lidarSensorAvg.getAverage();
619
        lidarReadings[2] = lidarNormalised();
620
```

Codé « en Arduino »

Banc de tests

Capteur de force ±0.1 N

 $u_{air} = \sqrt{\frac{2P_{diff}}{
ho_{Air}}}$

Sonde pitot ± 1m/s

Capteurs / électronique

LiDAR- Garmin @100Hz - 1cm

TR-G2 - GNSS @100Hz - 3 cm

