Comparison between analyses for semi- and dileptonic channel HH production at HL-LHC

Izaak Neutelings

October 26, 2015

1 Cross section

For our analysis, we have been using the following cross sections for all final states at $\sqrt{s} = 14$ TeV:

Table 1: Cross sections and branching ratios used in our analysis.

process	σ [fb]	branching ratio without taus
HH	40	1
$HH \rightarrow bbWW \rightarrow bbqqlv$	2.8	0.07
$HH \rightarrow bbWW \rightarrow bbl\nu l\nu$	0.4	1
${f t} \overline{f t}$	$984\ 500$	1
$t\bar{t} \rightarrow bbWW \rightarrow bbqql\nu$	$295 \ 350$	0.30
$t\bar{t} \! \to bbWW \to bbl\nu l\nu$	$59\ 070$	0.06

 $\sigma({\rm HH})=40$ fb and $\sigma({\rm t\bar{t}})=984500$ fb. The analysis note for the dileptonic final state by Delaere et al. only list next leading order $\sigma_{\rm LO}$ with k-factor $k_{\rm NNLO}$ (Table 2). We calculate back to the full cross section of HH or ${\rm t\bar{t}}$ production using

$$\sigma_{\text{full}} = \frac{k_{\text{NNLO}}\sigma_{\text{LO}}}{\text{BR}} \tag{1}$$

with the appropriate branching ratios BR.

Table 2: Cross sections used in the analysis note by C. Deleare et al. [1]

process	$\sigma_{ m LO}$ [fb]	$k_{ m NNLO}$	$\sigma_{\rm full}$ [fb]
$\overline{\mathrm{HH} \to \mathrm{bbWW} \to \mathrm{bblvlv}}$	0.163	2.3	37.49
$t\bar{t}$ full leptonic	9030	1.85	$278\ 425$

2 Sample, event selections & clean-up

To reproduce the results by C. Delaere et al. [1], the event selections & clean-up as described in their analysis note are applied to our samples. These cuts and the ones we use for the semileptonic final state are compared in Table 3.

3 Significance & yield

Using the yield

$$N = \sigma L \tag{2}$$

with integrated luminosity $L = 3000 \text{ fb}^{-1}$, the Punzi significance is calculated as:

$$P = \frac{N(\text{HH})}{\sqrt{1 + N(\text{t}\bar{\text{t}})}} \tag{3}$$

Table 3: Event selectiona and clean-up comparison between the dileptonic and semileptonic final state.

dileptonic final state	semileptonic final state			
$\begin{array}{l} \textbf{Gen level cuts on background} \\ \textbf{b-quarks: } p_T > 15 \text{ GeV} \\ \textbf{leptons: } p_T > 15 \text{ GeV, } \eta < 2.5 \\ \Delta R_{\text{ll}} < 2.5 \end{array}$	b-quark: $p_T > 15 \text{ GeV}$ lepton: $p_T > 15 \text{ GeV}$, $ \eta < 2.5$			
Selection two b-jets: $p_T > 30 \text{ GeV}$, $ \eta < 2.5$ two opposite charged leptons with: muons: $p_T > 20 \text{ GeV}$, $ \eta < 2.5$ electrons: $p_T > 25 \text{ GeV}$, $ \eta < 2.5$ MET $> 20 \text{ GeV}$	two b-jets: $p_T > 30 \text{ GeV}$, $ \eta < 2.5$ two non b-jets: $p_T > 30 \text{ GeV}$, $ \eta < 2.5$ one lepton with: muon: $p_T > 20 \text{ GeV}$, $ \eta < 2.5$ electron: $p_T > 25 \text{ GeV}$, $ \eta < 2.5 \text{ MET} > 20 \text{ GeV}$			
$\begin{aligned} \textbf{Clean-Up} \\ 60 \text{ GeV} &< m_{\mathrm{bb}} < 160 \text{ GeV} \\ \Delta R_{\mathrm{bb}} &< 3.1 \text{ GeV} \\ m_{ll} &< 85 \text{ GeV} \\ \Delta R_{\mathrm{ll}} &< 2 \end{aligned}$	$60~{ m GeV} < m_{ m bb} < 160~{ m GeV}$ $\Delta R_{ m bb} < 3.1~{ m GeV}$			

4 Results

Results are summarized in Table 4. To compare the dileptonic to the semileptonic case, the significance is scaled by $\sqrt{7}/5$, since the latter has a 5 (7) times higher branching ratio for signal (background).

Table 4: Comparison of the significance and yields between the semileptonic and dileptonic final state.

	dileptonic final state			semileptonic final state			
	P	N(HH)	$N(t \bar{t})$	Р	$\sqrt{7}/5P$	N(HH)	$N(t ar{t})$
Gen level							
Our results	0.090	1200	$177\ 210\ 000$	0.282	0.090	8400	886 050 000
Gen level cuts on l	backgro	und					
Our results	0.149	1200	$65\ 940\ 000$	0.314	0.100	8400	$713\ 565\ 555$
C. Delaere, et al.	0.16	1200	$50\ 117\ 000$		0.022		
Selection							
Our results	0.028	69	$6\ 574\ 000$	0.067	0.022	669	98 591 205
C. Delaere, et al.	0.043	113	6759579				
Clean-Up							
Our results	0.054	55	$1\ 096\ 000$	0.080	0.025	519	$42\ 335\ 190$
C. Delaere, et al.	0.075	90	$1\ 437\ 144$				
Neural network							
C. Delaere, et al.	0.60	37	3875				

References

- [1] C. Delaere et al. Study of HH production with $H \to bb$, $H \to WW \to l\nu l\nu for$ an upgraded CMS detector at the HL-LHC. CMS draft analysis note 2014/141.
- [2] NNLO+NNLL top-quark-pair cross sections ATLAS-CMS recommended predictions for top-quark-pair cross sections using the Top++v2.0 program (M. Czakon, A. Mitov, 2013). https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO#Top-quark-pair_cross_sections_at