Absolute -> Conditional Independence?

Example: John & Kate going for a run

Conditional independence:

$$\frac{P(John = yes \mid Kate = yes, Meet = no)}{R(J = yes \mid Kate = yes, Meet = no)} = \frac{P(John = yes \mid Meet = no)}{R(J = yes \mid K = yes)} = \frac{P(John = yes \mid Meet = no)}{R(J = yes \mid K = yes)}$$

Some simplifying notation

P(John = yes)
$$\neq$$
 P(J)
P(Kate = yes) \neq P(K)
P(Meet = yes) \neq P(M)
P(Meet = no) \neq P(¬M)

P(John = no) =
$$P(\neg J)$$

P(Kate = no) = $P(\neg K)$
P(Meet = no) = $P(\neg M)$

Absolute → Conditional Independence?

Example: John & Kate going for a run

Conditional independence:

$$\frac{P(John = yes \mid Kate = yes, Meet = no) = P(John = yes \mid Meet = no)}{P(J \mid K, \neg M)} = \frac{P(J)}{P(\neg M \mid J, K) P(J \mid K)} = \frac{P(\neg M \mid J, K) P(J \mid K)}{P(\neg M \mid K, J) P(J \mid K) + P(\neg M \mid K, \neg J) P(\neg J \mid K)} = 42.86\%$$

Absolute → Conditional Independence?

Example: John & Kate going for a run

Conditional independence:

$$P(John = yes | Kate = yes, Meet = no) = P(John = yes | Meet = no)$$

$$P(J | \neg M) = \frac{P(\neg M | J) P(J)}{P(\neg M)} = \frac{P(\neg M | J, K) P(K, J) + P(\neg M | J, \neg K) P(\neg K, J)}{P(\neg M | K, J) P(J, K) + P(\neg M | \neg K, J) P(J, \neg K)} = \frac{56.64\%}{900\%} = \frac{56.6$$

Absolute → Conditional Independence?

Example: John & Kate going for a run

Conditional independence:

P(John = yes | Kate = yes, Meet = no) = P(John = yes | Meet = no)

$$42.86\%$$
 \neq
 56.04%

ALB >> ALTI)C

Exercises:

P(John = yes | Kate = no, Meet = no)

P(John = yes | Meet = yes)

Summary

Key takeaways

JIKIT X JIK

JIK # JIK M