Wireless Communication Ch16

Equalization.

- · ISI can degrade the system significantly.
- · To mitigate ISI, we use equalization (on time domain)
- From freq domain, equalization can be viewed as a compensation on freq selectivity of channel such that the channel after equalizer is flat.
- · For time-domain, we want the overall channel after equalization become a single path channel.
- · We assume quasi-static channel.
- · let s(t) = Zdig(t-iT)

• So, simplest way is to have $Heq(f) = \frac{1}{H(f)}$ —) This is called "zero forcing equalization"

- What we want with ZF ideal is that when there is no noise, we have dk = dk
- · We let f(t) = g(t) * h(t) * gm(t), be the effeitive channel.
- , dk = \(\sigma \) eiy[n-i]

we want dk = dk, so we design e_i , ... e_i , such dk - dk = 0

 \Rightarrow This implies $f[n] \times e[n] = S[n] \longleftrightarrow E(z) = \frac{1}{F(z)}$

Noise enhancement of ZF equalization

. If we have noise. we have,

$$Y(Z) = F(Z) D(Z) + Ng(Z)$$

Jata spectrum

Vo Gm(Z)

- If we adopt ZF, we have

$$\hat{D(z)} = \frac{Y(z)}{F(z)} = D(z) + \frac{Ng(z)}{F(z)}$$

• Power of noise:
$$\frac{N_g(z)}{F(z)} = \frac{N_o |G_m(z)|^2}{|F(z)|^2} = \frac{N_o |G_m(z)|^2}{|G(z)|^2 |H(z)|^2 |G_m(z)|^2} = \frac{N_o}{|G(z)|^2 |H(z)|^2}$$

· Suppose our pulse shaping function is ideal, we can ignore it.

$$\rightarrow$$
 Power of noise = $\frac{N_0}{|H(z)|^2}$

- · If poor SNR, this implies $[H(f)]^2$ is small. Then you have large noise power.
- · Thus, noise is enhanced if SNR is low, -> give poor performance.

Note:

Minimum Mean Square Error (MMSE equalizer)

. Minimum MSE -> min E{ | dk-dk|2]

Implimentation

- (1) We can directly do MMSE
- (2) As the noise is not white, we do the whitening filter first, and them do MMSE.

$$N_g(z) = \sqrt{N_0} G_M(z) \leftarrow color noise.$$

we do whitening:

$$y[n] \longrightarrow Whitening \longrightarrow Equalizer \longrightarrow d\hat{k}$$

$$dk \longrightarrow F(z) \longrightarrow P \longrightarrow E(z) \longrightarrow d\hat{k}$$

$$h(t)$$

$$f(n) = h(n) * g(n)$$

Now,
$$d\hat{n} = \sum_{i=-L}^{L} e_i u[n-i] = e^{T} u$$

$$e = [e_{-i}, e_{-i+1} - e_{0} - e_{i}]$$

 $u = [u_{n+i}] - u_{0} - u_{n-i}]$

$$E[|d_n^2 - d_n|^2] = E[|e^T u|^2 - 2Re\{u^H e^* d_n\} + |d_n|^2] = J$$

Assume | dn |2 = 1 without loss of generality.

$$\nabla e J = 0$$

$$\Rightarrow \nabla e J = 2e^T E[uu^H] - 2E[u^* dn]$$

$$\Rightarrow$$
 eopt = $R^{\dagger}P$, where $R = E[uu^{\dagger}]$, $P = E[u^{*}dn]$

Overall, if we let
$$L \to \infty$$
, them $Heq(Z) = \frac{1}{F(Z) + \frac{N_0}{E[Idn]^2}} = \frac{1}{SNR}$

→ We see this equalizer is a combination of ZF and noise

Decision - feedback equalization (DFE)

- · Ideal is to use feedback from demodulated data to cancel ISI
- · E[Z] can be ZFor MMSE
- · Issue: If error happen on dr, we have even worse performance for the next data symbol
 - -> error happen again and again.
 - → error propagation.

Maximum Likelihood Sequence Estimation (MLSE)

$$\omega[n] = \sum_{i=0}^{L} f_{i} d_{n-i} + n[n]$$

- dn: transmitted symbol
- -fi : channel coefficient
- _ n: white Gaussian noise
- · Assume noise is white with variance Un2
- · For a sequence of received data u[o], u[i]... u[N-1]
- · Joint pof is:

$$pdf(u|d,f) = \frac{1}{(2\pi Un^{2})^{\frac{N}{2}}} exp(-\frac{1}{2Un^{2}}\sum_{n=0}^{N-1}|u(n) - \sum_{i=1}^{L}f_{i}d_{i}-1|^{2})$$

$$u = [u(\circ) \cdots u(N-1)]^T$$

$$d = [do \cdots d_{N-1}]^T$$

$$- f = [f_0 \cdot \cdot \cdot f_L]^T$$

. The ML solution is to find a vector d such that pdf(uld,f) is maximized

• In other word, we want to minimize
$$\sum_{n=0}^{N-1} |u(n) - \sum_{i=0}^{L} i d_{n-i}|^2$$

- · Solution approach
 - (i) You can try every possible sequence of d and then find the best one
 - Cii) Viterbi algorithm -> still give you the optimum solution,

(EX16.3) Viterbi Equalization,

- Suppose a channel tap with $f = [1, -0.5, 0.3]^T$
- Suppose we transmit BPSK and received signal with [-1.1.+1.3-0.1+0.1+1.6]=U
- · What is the transmited signal d?

Capacity and influence of channel ading.

- · Capacity is the limit for maximum possible data rate that

 can be transmitted over wireless channel with negligibly small error rate
- · It require both optimum modulation and coding to achieve the capacity.
- · Ideal data rate = capacity.

Capacity in noisy channel

$$y = X + n$$
.

$$SNR = \frac{P}{N \circ B} = \gamma$$

$$B = bandwidth$$

$$P = transmit power.$$

gerror rate bounded away from 0, if R > Clervor rate be arbitrarilty small, if $R \le C$ $\rightarrow R$: data rate

Capacity in flat fading channel.

$$u \rightarrow [encoder] \longrightarrow \otimes \longrightarrow \bigoplus_{i} \underbrace{f(i)}_{g(i)} \qquad \text{decoder} \longrightarrow \hat{u}$$

X(i) is the transmitted signal at time if g(i) is the channel power gain at time if u(i) is the noise at time if y(i) is the received signal at time if

Case

- 1. Channel State information (CSI) g[i] is known at the receiver.
- 2. CSI is known at both Tx and Rx → CSIT, perfect

received CSI

3. CSIT, but only with statistic at Rx

Capacity with CSIR

- o Tx does NOT know the CSI, So P[i] = P[j], i≠j
 P[i] = P[j] = P, ∀i, j
- · Y(i] = Pg[i] → Y[i] follow some distribution

Ergodic capacity

· Snitable is fast fading

Cerg =
$$\lim_{T\to\infty} \frac{1}{T-1} B\log_2(1+r(i)) = E[B\log_2(1+r)]$$

= $\int_0^\infty B\log_2(1+r) \cdot P_r(r) dr$

where Pr(r) is the distribution of SNR

· With Jensen's inequation, we see

Cerg =
$$E[Blog_2(\gamma)] \leq Blog(I+E[\gamma]) = Blog(I+\overline{\gamma})$$

Tensen's inequation.

-> Fading reduce capacity.

Ex. Flat fading as follow

Capacity with outage prob.

- · Suitable for slow fading.
- · We denote Ymin as the minimum SNR. to have for a transmission.

$$\begin{cases} C(\Upsilon) < C_{\min} \Rightarrow error \ rate \rightarrow 1 \\ C(\Upsilon) > C_{\min} \Rightarrow error \ rate \rightarrow 0 \end{cases}$$

- · You can do rate adaptation such that you can maximized R.
- . If you have CSIT. you can do rate adaptation

Capacity with both CSIR and CSIT.

- · Both Tx and Rx have CSI
- · Suppose we can allocate resource to multiple channel from i=1,2,..., I.
- We want allocate different power on different g[i], Ui, but remain the same average power.

$$\rightarrow C = \sum_{i=1}^{T} C(i) = \sum_{i=1}^{T} Blog_{z} \left(1 + \frac{P(i)g(i)}{NoB}\right)$$

$$\rightarrow$$
 max $C[i]$, s.t. $\frac{1}{T}\sum_{i=1}^{T-1}P[i] \leq \overline{P}$ \longrightarrow We use "water filling alg" $P(i) \geq 0$, $\forall i$ to solve.

$$oJ(P) = \sum_{i=0}^{T-1} Blog_2 \left(1 + \frac{P(i)g(i)}{NoB}\right) - \lambda \left[\frac{1}{T} \sum_{i=0}^{T-1} P(i) - \overline{P}\right]$$

$$\rightarrow \frac{dJ(P)}{dP[i]} = \frac{B}{\ln 2} \frac{1}{1 + \frac{P[i]g[i]}{N_0R}} - \frac{\lambda}{T} = 0$$

$$\rightarrow P[i] = \frac{1}{\lambda} \frac{TB}{\ln 2} - \frac{N \cdot B}{g(i)} , \forall i$$

$$P(i) = \left[\frac{1}{\lambda} \frac{TB}{\ln 2} - \frac{N \cdot B}{g(i)}\right]^{+} : [\alpha]^{+} = \max(\alpha, 0)$$

$$\begin{cases} p^*[i] = \left[\frac{1}{\lambda} \frac{TB}{\ln z} - \frac{N \circ B}{3[i]}\right]^{+}, \forall i \\ \text{such that } \sum_{\bar{i}=0}^{T-1} p^*[\bar{i}] = \overline{p} \end{cases}$$

let
$$\frac{1}{\lambda} \frac{TB}{\ln 2} = \frac{1}{\gamma_0}$$
 and $\frac{N_0B}{g(i)} = \frac{1}{\gamma_i}$

BER with channel coding. (error-correction code)

 Suppose we have (n,k) code, where the input is k bits and the output is n bit, k≤n.

$$k \text{ bit } \longrightarrow \text{encoder} \longrightarrow n \text{ bit.}$$

- code rate = $\frac{k}{n}$
- Spectral efficiency = $R \frac{K}{n}$.

For Example.

最多可更正 2 bit, 超出即為 error.

If we have (7.3) code that can help receiver at most 2 bit then the prob. of having error become:

- , error rate = 1-Pr(no bit error)-Pr(1 bit error) Pr(2 bit error)
- · error rate = [-(|-Pe) 7-7(1-Pe) 6-C2 (1-Pe) 5