Controlli Automatici - T

Progetto Tipologia c - Traccia 2 Controllo di un rotore con deformazione

Descrizione del problema

Si consideri un rotore ad asse orizzontale con posizione angolare $\theta(t)$ e velocità angolare $\omega(t)$ rispetto all'asse del rotore. Si supponga che la dinamica del sistema sia descritta dalla seguente equazioni differenziale

$$(m_i e_i^2 + I_e)\dot{\omega} = -\beta\omega - gm_i e_i \sin(\theta) + \tau, \tag{1}$$

in cui la variabile d'ingresso $\tau(t)$ indica la coppia angolare applicata al rotore, il termine $-\beta\omega$ modella l'attrito dell'aria, con $\beta \in \mathbb{R}$. Il termine $-gm_ie_i\sin(\theta)$, dove $g \in \mathbb{R}$ rappresenta l'accelerazione gravitazionale, modella l'effetto di una deformazione di massa $m_i \in \mathbb{R}$ posta ad una distanza $e_i \in \mathbb{R}$ dall'asse di rotazione. Infine, il parametro $I_e \in \mathbb{R}$ rappresenta momento di inerzia del rotore senza deformazione. Uno schema esplicativo è riportato in Figura 1. Infine, si suppone di poter misurare la posizione angolare $\theta(t)$.

Figura 1: Schema illustrativo della dinamica del rotore.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{2a}$$

$$y = h(x, u). (2b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio θ_e (fornito in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (2) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{3a}$$

$$\delta y = C\delta x + D\delta u,\tag{3b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime $|e_{\infty}| \leq e^* = 0.01$ in risposta a un gradino $w(t) = \pi/6 \cdot 1(t)$ e $d(t) = \pi/6 \cdot 1(t)$
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \ge 45^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'5%: $S\% \leq 5\%$.
- 4) Il tempo di assestamento all' $\epsilon\% = 5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon} = 0.075s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.1], deve essere abbattutto di almeno 50 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[10^3, 10^6]$, deve essere abbattutto di almeno 35 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t) = 20 \cdot 1(t)$, $d(t) = \sum_{k=1}^{4} 0.1 \cdot \sin(0.025kt)$ e $n(t) = \sum_{k=1}^{4} 0.6 \cdot \sin(10^3 kt)$.

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica del rotore.
- Supponendo un riferimento $\theta(t) \equiv \theta_e$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

5
0.1
50
50
9.8
$\pi/6$

Tabella 1: Parametri progetto.