Лабораторна робота №1

Тема: Робота з портами вводу-виводу інформації та створення підпрограм затримки.

Мета:

Познайомитись з середовищем розробки Microchip MPLAB IDE та Proteus. Здобути навички написання програм мовою асемблера для мікроконтролера середнього сімейства PIC16F84(A).

Задача:

За допомогою програмного забезпечення Microchip MPLAB IDE написати на мові асемблера підпрограму, яка по черзі встановлює на виводі порта В високий рівень сигналу та низький. Тривалість високого та низького рівня сигналу повинна однакова, та виконана за допомогою підпрограми затримки.

У ПЗ Proteus перевірити роботи написаної програми.

Використовуючи програматор/відладчик ICD 2 та демонстраційну плату PICDEM 2 PLUS записати hex-файл у пам'ять мікроконтролера, та пересвідчитись у працездатності.

Завдання:

Таблиця 1 – Варіанти завдання

№ варіанту	Тривалість	Номер	№ варіанту	Тривалість	Номер
	затримки,	контакту		затримки,	контакту
	мс	порта В		мс	порта В
1	10	RB0	17	170	RB3
2	20	RB0	18	180	RB3
3	30	RB0	19	190	RB3
4	40	RB0	20	200	RB3
5	50	RB0	21	210	RB0
6	60	RB1	22	220	RB1
7	70	RB1	23	230	RB2
8	80	RB1	24	240	RB3
9	90	RB1	25	250	RB0
10	100	RB1	26	260	RB1
11	110	RB2	27	270	RB2
12	120	RB2	28	280	RB3
13	130	RB2	29	290	RB0
14	140	RB2	30	300	RB1
15	150	RB2	31	310	RB2
16	160	RB3	32	320	RB3

Хід виконання роботи:

- 1. Відкрити MPLAB IDE
- 2. Повинно відкритися вікно аналогічне зображенорго на рисунку 1

Рисунок 1

3. Вибраємо меню Project>> Project Winzard...

Рисунок 2

4. Повинно з'явитися вікно майстра проектів. У якому натискаємо кнопку «Далі».

Рисунок 3

5. Наступним кроком потрібно вибрати необхідний мікроконтролер

Рисунок 4

6. Вибираємо набір інструментів асемблера Microchip MPASM Toolsuite у розділі Active Toolsuite.

Рисунок 5

7. Вибираємо місце для зберігання проекту.

Рисунок 6

8. Якщо потрібно додати файли до проекту то у даному меню є можливість додати. Оскільки це перший проект тому ми не додаємо жодного файлу.

Рисунок 7

9. Перевіряємо, що заданні параметри ми вірно вказали. Натискаємо кнопку «Готово»

Рисунок 8

10. Ми повинні побачити картину, що аналогічна рисунку 9

Рисунок 9

11. Нам потрібно створити файл. Це робиться за допомогою File>>New

Рисунок 10

12.Перед нами з'явиться текстовий редактор.

Рисунок 11

13. Цей файл потрібно зберегти. Виконуємо це за допомогою команди File>>Save As..

Рисунок 12

14. Вказуємо ім'я файлу та розширення .asm, та натискаємо кнопку «Сохранить»

Рисунок 13

15. Додаємо збережений файл до проекту.

Рисунок 14

16. Знаходимо наш файл та відкриваймо його

Рисунок 15

17. У вікні менеджера файлів проекту повинен з'явитися наш файл.

Рисунок 16

18.Після введення коду програми до файлу потрібно натиснути кнопку збудувати весь проект, Project >> Build All

Рисунок 17

19.Якщо помилок не знайдено то у вікні Output з'явиться надпис «BUILD SUCCEDED»

Рисунок 18

20. Результатом роботи буде створений hex-файл

Рисунок 19

21. За допомогою ПЗ Proteus ISIS зібрати схему зображену на рисунку

Рисунок 20

- 22. Натиснути ПКМ на рисунку мікроконтролера та вибрати розділ «Правка свойств» (рис. 21-23)
- 23.У строчці Program File вибрати hex-файл, який було створено за допомогою ПЗ MPLAB IDE. Встановити недохідну частоту роботи мікроконтролера у строчці Processor Clock Freaquency.

Рисунок 21

Рисунок 22

Рисунок 23

24. Запустити симуляцію роботи схеми.

Звіт повинен мати у своєму складі:

- 1. Номер, назву, ціль та задачу лабораторної роботи;
- 2. Теоретичну складову;
- 3. Код программи мовою асемблера, з коментарями;
- 4. Зміст hex-файлу;
- 5. Зображення значення регістрів;
- 6. Розмір зайнятої пам'яті мікропроцесора (у кілобайтах, та відсотках);
- 7. Результати роботи программатор ICD2;
- 8. Рисунки роботи у симуляторі MPSIM та ПЗ Proteus(схему та осцилограму сигналу);
- 9. Порівняння файлу *.asm та файла *.lst
- 10.Вмотивовані висновки.

Примітка:

Звіт повинен бути виконано шрифтом Times New Roman 14.

Дозволяється вихідний код розміщювати у декілька стовбців., а пусті рядки (незначимі) пропускати