Homework 7

Astronomers use several different units to measure brightnesses: fluxes per unit wavelength (F_{λ}) , fluxes per unit frequency (F_{ν}) , and magnitudes, both integrated and per unit wavelength and frequency (m = -2.5logF). Since magnitudes are logarithmic units, differences in magnitude correspond to ratios in fluxes.

A Jansky is a unit used to measure flux density, most often in the radio; one Jansky is 10^{-26} W m⁻² Hz⁻¹ (note that this is an F_{ν} quantity). How bright is Vega at 5500 Å in Janskys, using the fact that the flux density of Vega at 5500 Å is 3.6 $\times 10^{-9}$ erg cm⁻² s⁻¹ Å⁻¹ (note that this is an F_{λ} quantity)?

In cgs units, one Jansky [Jy] is $10^{-23}~{\rm erg}~{\rm s}^{-1}~{\rm cm}^{-2}~{\rm Hz}^{-1}$. The flux of Vega at $5500 \rm{\AA}$ is $3.63 \times 10^{-20}~{\rm erg}~{\rm s}^{-1}~{\rm cm}^{-2}~{\rm Hz}^{-1}$.

$$F_{Jy} = \frac{3.63 \times 10^{-20}}{10^{-23}}$$
$$= 363.0$$

So the flux of Vega is 363 Jy.

2 If a star has a flux density of 3.6×10^{-9} erg cm⁻² s⁻¹ Å⁻¹ at 8500 Å how bright is it in Janskys?

Using the function 'convert_flux' from the 'conversions.py' module from q5, F_{λ} was converted to F_{ν} . Using the same calculation as in question 1, the flux of the star came out to be $\sim 8.676 \times 10^{-6}$ Jy.

3 If a star has a flux density of $7.2 \times 10^{-14}~\rm erg~cm^{-2}~s^{-1}~\AA^{-1}$ at 5500 Å, how much fainter is it than Vega in magnitudes?

$$m_* - m_{Vega} = -2.5 \log \frac{F_*}{F_{Vega}}$$

= $-2.5 \log \frac{7.2 \times 10^{-14}}{3.6 \times 10^{-9}}$
= 11.747

So the difference in magnitude between the star and Vega is over 11 magnitudes, in other words, the star is about 50,000 times fainter than Vega.