	Pumping Lemma for regular languages revisited: Lecture 21
	let L be a reg. language # States vi DFA for L
	let L be a reg. language # states vi DFA for L W > p' WEL
	$\omega = x \cdot y \cdot z$
	Dyg Zio Vizo zyizeL
	(D) 24 5 p =
	y
	$s_0 \xrightarrow{a_0} s_7 \xrightarrow{a_1} s_6 \xrightarrow{a_1} s_7 \rightarrow \cdots$
	1- 59 59 2 1 y 1
	7 (L is regular)
	believer believer
7/	∃p>0 ∀ω (ωει) Λ (ιωΙζρ) ∃χ,γ, z (ω= x.γ. z) ∀n (n20) → xy^zεL)
1	
	Adv · Adv
	4p>0 ∃ω (ωεL) Λ([ω 3p) +xyz (ω= x·y·z) ∃n (n70) λ xynz L
	1. L'is regular # states in DFA for L = N.
	1. L'is regular # states in DFA for L = n. Is L is infinite?
	$\omega \in L^{2}$ $2n$
	$\frac{\omega \in L?}{\text{oracle for}} \xrightarrow{\text{oracle for}} V = \sum_{i=n+1}^{2n} \sum_{i=n+1}^{2n} i$
	feed all words w , $n < w \le 2n$ to oracle.
	If we L for some such w, then L is infinite.
	If w & L for every such w, then (L is finite)?

Angluin's La algorithm for learning DFAs

0'0101111

$$a_{s} \xrightarrow{A_{0} \cdot A_{1} \cdot - -a_{n}} 0$$
 $a_{s} \xrightarrow{A_{0} \cdot A_{1} \cdot - -a_{n}} 0$

 $\Sigma = \{0, 1\}$ $L = (0+1)^* 1$ $\forall \omega_1, \omega_2 \in \Sigma^*$ $\omega_1 \sim_L \omega_2$ iff YXEZ" WiX & W2.X are both in L or both not in L

Pushdown Automata basics: Lecture 25

Class note scribblings for lecture 26 (equivalence of PDA acceptance by final state and empty stack) seems missing