Expectation Maximization

Tao Hu

Department of Computer Science **Peking University** No.5 Yiheyuan Road Haidian District, Beijing, P.R.China taohu@pku.edu.cn

Expectation Maximization Introduction

1.1 EM Induction

$$L(\theta) = \sum_{i=1}^{M} log p(X;\theta) = \sum_{i=1}^{m} log \sum_{z} p(X,Z;\theta)$$

let θ_i be some distribution over z's $(\sum_z \theta_i(z) = 1, \theta_i(z) \ge 0)$

$$\sum_{i} logp(X^{(i)}; \theta)$$

$$= \sum_{i} log \sum_{Z^{(i)}} \theta_{i}(Z^{(i)}) \frac{p(X^{(i)}, Z^{(i)}; \theta)}{\theta_{i}(Z^{(i)})}$$

$$\begin{split} & = \sum_{i} \log \sum_{Z^{(i)}} \theta_{i}(Z^{(i)}) \frac{p(X^{(i)}, Z^{(i)}; \theta)}{\theta_{i}(Z^{(i)})} \\ & \geq \sum_{i} \sum_{Z^{(i)}} \theta_{i}(Z^{i}) \log \frac{P(X^{(i)}, Z^{(i)}; \theta)}{\theta_{i}(Z^{(i)})} (f(x) = \log x \quad is \quad concave.) \end{split}$$

let
$$\frac{P(X^{(i))}, Z^{(i)}; \theta)}{\theta_i(Z^{(i)})} = C$$

the equality can be only reached when $\frac{P(X^{(i)},Z^{(i)};\theta)}{\theta_i(Z^{(i)})}$ is a constant.

we can get:
$$\sum_i \frac{p(X^{(i)},Z^{(i)};\theta)}{C}=1$$
 namely: $\sum_i p(X^{(i)},Z^{(i)};\theta)=C$

further induction:
$$\theta_i(Z^{(i)}) = \frac{p(X^{(i)}, Z^{(i)}; \theta)}{\sum_i p(X^{(i)}, Z^{(i)}; \theta)} = p(Z^{(i)} | X^{(i)}; \theta)$$

so the procedure of EM algorithm is:

Repeat Until Convergence:

- E-step: for each i,get $i(Z^{(i)}) = p(Z^{(i)}|X^{(i)};\theta)$
- M-step: $\theta := argmax_{\theta} \sum_{i} \sum_{Z^i} i(Z^{(i)}) log \frac{p(X^{(i)}, Z^{(i)}), \theta)}{i(Z^{(i)})}$

1.2 EM convergence proof

let
$$l(\theta^{(t)}) = \sum_i \sum_{Z^{(i)}} Q_i^{(t)}(Z^{(i)}) log \frac{p(X^{(i)},Z^{(i)},\theta)}{Q_i^{(t)}(Z^{(i)})}$$

then, we have the following inequality: $l(\theta^{(t+1)})$

$$\begin{split} &\geq \sum_{i} \sum_{Z^{(i)}} Q_{i}^{(t)}(Z^{(i)}) log \frac{p(X^{(i)}, Z^{(i)}, \theta^{(t+1)})}{Q_{i}^{(t)}(Z^{(i)})} \\ &\geq \sum_{i} \sum_{Z^{(i)}} Q_{i}^{(t)}(Z^{(i)}) log \frac{p(X^{(i)}, Z^{(i)}, \theta^{(t)})}{Q_{i}^{(t)}(Z^{(i)})} \end{split}$$

$$\geq \sum_{i} \sum_{Z^{(i)}} Q_i^{(t)}(Z^{(i)}) log \frac{p(X^{(i)}, Z^{(i)}, \theta^{(t)})}{Q_i^{(t)}(Z^{(i)})}$$

$$\geq l(\theta^{(t)})$$

 $> l(\theta^{(t)})$

Author Info: Taohu ,Peking University

the first inequality is because : $l(\theta) \geq \sum_i \sum_{Z^{(i)}} Q_i^{(t)}(Z^{(i)}) log \frac{p(X^{(i)},Z^{(i)},\theta)}{Q_i^{(t)}(Z^{(i)})} \forall \theta, Q_i$

the second inequality is because of the maximum of the M-step.

Hence, EM causes the likelihood to converge monotonically.

1.3 Different Writing Style of EM Algorithm

There are many writing style of EM algorithm. here I just mention the book <Statistics Learning Method> by LiHang who is very famous in China.

EM algorithm from LiHang(Li-version):

Algorithm 1 EM from LIHang

```
Require: observation X,hidden variable Z,joint distribution P(X,Z|\theta),conditional distribution P(Z|Y,\theta) while Not convergence do E-Step: let \theta^{(i)} is the i-th estimate of \theta, Q(\theta,\theta^{(i)}) = E_z[logP(X,Z|\theta)|X,\theta^{(i)}] = \sum_Z logP(X,Z|\theta)P(Z|X,\theta^{(i)}) M-step: \theta^{(i+1)} = argmax_\theta Q(\theta,\theta^{(i)}) end while output model parameter \theta
```

it seems that Li-version is different from the above version. however, they are the same. because:

- the above version just consider every data, so that it include subscript i. however Li-version only consider one data.
- the above version can be transformed to Li-version.

$$\begin{split} &\sum_{Z} Q(Z)log\frac{P(X,Z;\theta)}{Q(Z)} \\ &= \sum_{Z} P(Z|X;\theta^{(t)})log\frac{p(X,Z;\theta)}{p(Z|X;\theta^{(t)})} \\ &= \sum_{Z} P(Z|X;\theta^{t})logP(X,Z;\theta) - \sum_{Z} P(Z|X;\theta^{(t)})logP(Z|X;\theta^{(t)}) \end{split}$$

as the variable is $\theta,$ so $\sum_Z P(Z|X;\theta^{(t)})logP(Z|X;\theta^{(t)})$ can be removed.

• $Q(\theta, \theta^{(i)}) = \sum_{Z} log P(X, Z|\theta) P(Z|X, \theta^{(i)})$ can be also written as $Q(\theta, \theta^{(i)}) = \sum_{Z} log P(X, Z|\theta) P(Z, X, \theta^{(i)})$, because X is a observation.

2 EM applications

2.1 Gaussian Mix Model

GMM can be solved by EM. notice here we use the expectation of EM:

$$\begin{split} &Q(\theta, \theta^{(i)}) \\ &= E_{\gamma}[logP(y, \gamma|\theta)|y, \theta^{(i)}] \\ &= E[\sum_{k=1}^{K}[n_{k}log\alpha_{k} + \sum_{j=1}^{N}\gamma_{jk}[log\frac{1}{\sqrt{2\pi}} - log\sigma_{k} - \frac{1}{2\sigma_{k}^{2}}(y_{j} - \mu_{k})^{2}]]] \\ &= \sum_{k=1}^{K}[(E\gamma_{jk})log\alpha_{k} + \sum_{j=1}^{N}(E\gamma_{jk})[log\frac{1}{\sqrt{2\pi}} - log\sigma_{k} - \frac{1}{2\sigma_{k}^{2}}(y_{j} - \mu_{k})^{2}]] \end{split}$$

here $(E\gamma_{ik})$ can be easily calculated.

 $\hat{\mu_k}, \hat{\sigma_k^2}$ can be acquired by derivation.

 $\hat{\alpha_k}$ can be acquired by the derivation on the Lagrangian($\sum_i^K \alpha_k = 1$).

2.2 Hidden Markov Model

HMM Learning Method is also called Baum-Welch algorithm.the target is learning $\lambda=(A,B,\pi)$. Q function is:

$$\begin{split} Q(\lambda,\bar{\lambda}) &= \sum_{I} log P(O,I|\lambda) P(O,I|\bar{\lambda}) \\ P(O,I,\lambda) &= \pi_{i1} b_{i1}(o_1) a_{i1i2} b_{i2}(o_2) ... a_{i_{T-1}i_T} b_{i_T}(o_T) \end{split}$$

so the Q function can also be written as:

$$\begin{array}{c} Q(\lambda,\bar{\lambda}) = \\ \sum_{I} log \pi_{i1} P(O,I|\bar{\lambda}) + \sum_{I} (\sum_{t=1}^{T-1} log a_{i,i+1}) P(O,I|\bar{\lambda}) + \sum_{I} (\sum_{t=1}^{T} log b_{it}(o_{t})) P(O,I|\bar{\lambda}) \end{array}$$

note here: I is not only one state. it includes state length from 1 to T,which all start from i_1 so we can solve the maximum of Q function by derivation on the Lagrangian polynomial (because exists these limitations: $\sum_{i=1}^{N} \pi_i = 1, \sum_{j=1}^{N} a_{ij} = 1, \sum_{i=1}^{M} b_i = 1$)

2.3 Naive Bayesian

2.4 other papers

We can use softmax to model transition probability, normal distribution to model emission probability. it's a good example in Car that Knows Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models, the AIO-HMM can be more complicated, which can be enriched by the graphic model by M.I Jordon.

Acknowledgments

References