UNIVERSIDADE FEDERAL FLUMINENSE

Programa de Mestrado e Doutorado em Engenharia de Produção

Forecasting

Lesson: MLR

Professor: Valdecy Pereira. D. Sc.

email: valdecy.pereira@gmail.com

- 1. Definition
 - 2. MLR
- 3. Residuals
- 4. Bibliography

The purpose of MLR (Multiple Linear Regression) to analyze the relationship between metric (or binary) independent variables (predictors) and a metric the dependent variable (response variable), with the following formulation:

$$Y = B_0 + B_1 X_1 + \dots + B_i X_i$$

Where:

Y= Dependent Variable;

 X_i = Independent Variable;

 B_0 = Intercept;

 B_i = Slopes.

What is the optimal number of predictors? The suggested rules are:

- Evan rule (conservative): $\frac{n}{k} \ge 10 \to \text{at}$ least 10 observations (n) for predictor (k)
- Doane rule (relaxed): $\frac{n}{k} \ge 5 \rightarrow \text{at least 5 observations } (n) \text{ for predictor } (k)$

Categorical variables can be included as dummy variables (1 = one belongs to category; 0 = it does not belong to category). It is not necessary to encode all categories because the last one is identified when all the others have a zero value. This method prevents the occurrence of collinearity, and allows the design matrix to be invertible. Dummy variables have the same statistical treatment of the independent variables.

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \end{bmatrix} \quad ; \quad X(Design \, Matrix) = \begin{bmatrix} 1 & x_{11} & \dots & x_{1j} \\ 1 & x_{21} & \dots & x_{2j} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{i1} & \dots & x_{ij} \end{bmatrix}$$

Observation	Y	X1	X2
1	9.6	2	52
2	9.95	2	50
3	10.3	1	585
4	11.66	2	360
5	14.38	2	375
6	16.86	4	200
7	17.08	4	412
8	17.89	4	400
9	21.15	5	400
10	21.65	4	205
11	22.13	6	100
12	24.35	9	100
13	24.45	8	110
14	25.02	8	295
15	27.5	8	300
16	31.75	11	120
17	34.93	10	540
18	35	10	550
19	37	11	400
20	41.95	12	500
21	44.88	15	290
22	46.59	15	250
23	54.12	16	510
24	56.63	17	590
25	69	20	600

In order to explain a MLR approach, the following dataset will be used: The simulated dataset of 25 observations and 2 independent Variables X_1 and X_2 .

The *B* matrix can be calculated as:

$$B = (X'X)^{-1}X'Y$$

Where:

```
' = Transposed Matrix
```

 $^{-1}$ = Inverse Matrix

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X'	2	2	1	2	2	4	4	4	5	4	6	9	8	8	8	11	10	10	11	12	15	15	16	17	20
	52	50	585	360	375	200	412	400	400	205	100	100	110	295	300	120	540	550	400	500	290	250	510	590	600

	25	206	8294
X'X	206	2396	77177
	8294	77177	3531848

	0.214652617	-0.007490914	-0.000340389
(X'X)-1	-0.007490914	0.001670763	-1.89178E-05
	-0.000340389	-1.89178E-05	1.49588E-06

$$Y = B_0 + B_1 X_1 + B_2 X_2$$

$$Y = 2.263791434 + 2.744269643X_1 + 0.012527811X_2$$

Observation	Y	X1	X2	ŷ
1	9.6	2	52	8.40
2	9.95	2	50	8.38
3	10.3	1	585	12.34
4	11.66	2	360	12.26
5	14.38	2	375	12.45
6	16.86	4	200	15.75
7	17.08	4	412	18.40
8	17.89	4	400	18.25
9	21.15	5	400	21.00
10	21.65	4	205	15.81
11	22.13	6	100	19.98
12	24.35	9	100	28.21
13	24.45	8	110	25.60
14	25.02	8	295	27.91
15	27.5	8	300	27.98
16	31.75	11	120	33.95
17	34.93	10	540	36.47
18	35	10	550	36.60
19	37	11	400	37.46
20	41.95	12	500	41.46
21	44.88	15	290	47.06
22	46.59	15	250	46.56
23	54.12	16	510	52.56
24	56.63	17	590	56.31
25	69	20	600	64.67

The model standard error is calculated by.

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - (k+1)}; \hat{\sigma}^2 = 5.235$$

$$\hat{\sigma} = 2.288$$

Where:

k = Total number of independent variables;

 \hat{y} = Estimated value of the dependent variable;

Variance-Covariance Matrix (*C*):

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

	B0	B1	B2	SE(Bi)
B0	1.123740429	-0.039216122	-0.001781991	1.060066238
B1	-0.039216122	0.008746709	-9.90378E-05	0.093523844
B2	-0.001781991	-9.90378E-05	7.83115E-06	0.002798419

Variance-Covariance Matrix (*C*):

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

Variance

	B0	B1	B2	SE(Bi)
B0	1.123740429	-0.039216122	-0.001781991	1.060066238
B1	-0.039216122	0.008746709	-9.90378E-05	0.093523844
B2	-0.001781991	-9.90378E-05	7.83115E-06	0.002798419

Variance-Covariance Matrix (*C*):

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

Covariance

	B0	B1	B2
B0	1.123740429	-0.039216122	-0.001781991
B1	-0.039216122	0.008746709	-9.90378E-05
B2	-0.001781991	-9.90378E-05	7.83115E-06

SE(Bi)
1.060066238
0.093523844
0.002798419

Variance-Covariance Matrix (*C*):

$$C = \hat{\sigma}^2 (X'X)^{-1}$$

St. Deviation

	B0	B1	B2
В0	1.123740429	-0.039216122	-0.001781991
B1	-0.039216122	0.008746709	-9.90378E-05
B2	-0.001781991	-9.90378E-05	7.83115E-06

SE(Bi)
1.060066238
0.093523844
0.002798419

The confidence interval $(1 - \alpha)$ of each B_i is calculated as:

$$B_i \pm t_{n-(k+1);\alpha/2} \times SE_{Bi}$$

For a 95% confidence interval:

T-Student Bilateral Table

CI		α		CI.		α		CI.		α	
GL	10%	5%	1%	GL	10%	5%	1%	GL	10%	5%	1%
2	2.920	4.303	9.925	16	1.74588	2.11991	2.92078	30	1.69726	2.04227	2.75
3	2.353	3.182	5.841	17	1.73961	2.10982	2.89823	31	1.69552	2.03951	2.74404
4	2.132	2.776	4.604	18	1.73406	2.10092	2.87844	32	1.69389	2.03693	2.73848
5	2.015	2.571	4.032	19	1.72913	2.09302	2.86093	33	1.69236	2.03452	2.73328
6	1.943	2.447	3.707	20	1.72472	2.08596	2.84534	34	1.69092	2.03224	2.72839
7	1.895	2.365	3.499	21	1.72074	2.07961	2.83136	35	1.68957	2.03011	2.72381
8	1.860	2.306	3.355	22	1.71714	2.07387	2.81876	36	1.6883	2.02809	2.71948
9	1.833	2.262	3.250	23	1.71387	2.06866	2.80734	37	1.68709	2.02619	2.71541
10	1.812	2.228	3.169	24	1.71088	2.0639	2.79694	38	1.68595	2.02439	2.71156
11	1.796	2.201	3.106	25	1.70814	2.05954	2.78744	39	1.68488	2.02269	2.70791
12	1.782	2.179	3.055	26	1.70562	2.05553	2.77871	40	1.68385	2.02108	2.70446
13	1.771	2.160	3.012	27	1.70329	2.05183	2.77068	41	1.68288	2.01954	2.70118
14	1.761	2.145	2.977	28	1.70113	2.04841	2.76326	42	1.68195	2.01808	2.69807
15	1.753	2.131	2.947	29	1.69913	2.04523	2.75639	43	1.68107	2.01669	2.6951

T-Student Bilateral Table

CI	α		CI a			- CT	α				
GL	10%	5%	1%	GL	10%	5%	1%	GL	10%	5%	1%
2	2.920	4.303	9.925	16	1.74588	2.11991	2.92078	30	1.69726	2.04227	2.75
3	2.353	3.182	5.841	17	1.73961	2.10982	2.89823	31	1.69552	2.03951	2.74404
4	2.132	2.776	4.604	18	1.73406	2.10092	2.87844	32	1.69389	2.03693	2.73848
5	2.015	2.571	4.032	19	1.72913	2.09302	2.86093	33	1.69236	2.03452	2.73328
6	1.943	2.447	3.707	20	1.72472	2.08596	2.84534	34	1.69092	2.03224	2.72839
7	1.895	2.365	3.499	21	1.72074		2.83136	35	1.68957	2.03011	2.72381
8	1.860	2.306	3.355	22	1.7171	2.07387	.81876	36	1.6883	2.02809	2.71948
9	1.833	2.262	3.250	23	1.71387		2.80734	37	1.68709	2.02619	2.71541
10	1.812	2.228	3.169	24	1.71088	2.0639	2.79694	38	1.68595	2.02439	2.71156
11	1.796	2.201	3.106	25	1.70814	2.05954	2.78744	39	1.68488	2.02269	2.70791
12	1.782	2.179	3.055	26	1.70562	2.05553	2.77871	40	1.68385	2.02108	2.70446
13	1.771	2.160	3.012	27	1.70329	2.05183	2.77068	41	1.68288	2.01954	2.70118
14	1.761	2.145	2.977	28	1.70113	2.04841	2.76326	42	1.68195	2.01808	2.69807
15	1.753	2.131	2.947	29	1.69913	2.04523	2.75639	43	1.68107	2.01669	2.6951

$$B_0 \pm t_{25-(2+1);2.5\%} \times SE_{B0} = 2.264 \pm 2.07387 \times 1.060 = [0.065; 4.462]$$

$$B_1 \pm t_{25-(2+1);2.5\%} \times SE_{B1} = 2.744 \pm 2.07387 \times 0.0935 = [2.550; 2.938]$$

$$B_2 \pm t_{25-(2+1);2.5\%} \times SE_{B2} = 0.012 \pm 2.07387 \times 0.003 = [0.007; 0.018]$$

Observation	Y	X1	X2	95%L	ŷ	95%U
1	9.6	2	52	5.52	8.40	11.29
2	9.95	2	50	5.50	8.38	11.26
3	10.3	1	585	6.55	12.34	18.12
4	11.66	2	360	7.59	12.26	16.94
5	14.38	2	375	7.69	12.45	17.21
6	16.86	4	200	11.61	15.75	19.88
7	17.08	4	412	13.04	18.40	23.77
8	17.89	4	400	12.96	18.25	23.55
9	21.15	5	400	15.51	21.00	26.49
10	21.65	4	205	11.65	15.81	19.97
11	22.13	6	100	16.04	19.98	23.92
12	24.35	9	100	23.69	28.21	32.74
13	24.45	8	110	21.21	25.60	29.98
14	25.02	8	295	22.45	27.91	33.38
15	27.5	8	300	22.49	27.98	33.47
16	31.75	11	120	28.93	33.95	38.98
17	34.93	10	540	29.20	36.47	43.74
18	35	10	550	29.27	36.60	43.93
19	37	11	400	30.81	37.46	44.12
20	41.95	12	500	34.03	41.46	48.89
21	44.88	15	290	40.27	47.06	53.85
22	46.59	15	250	40.00	46.56	53.12
23	54.12	16	510	44.30	52.56	60.82
24	56.63	17	590	47.39	56.31	65.23
25	69	20	600	55.11	64.67	74.23

The following hypothesis test for B_i can then be done:

 $H_0: B_i = 0$ (There is not a linear relation between $x_i e y$) $H_1: B_i \neq 0$ (There is a linear relation between $x_i e y$)

$$t_{test} = \frac{B_i}{SE_{Bi}}$$

$$t_{critical} = t_{n-(k+1);\alpha/2}$$

Reject the null hypothesis H_0 if $t_{test} > t_{critical}$ or $t_{test} < -t_{critical}$

Therefore:

$$t_{test} = \frac{B_0}{SE_{B_0}} = \frac{2.264}{1.060} = 2.135; \ t_{critical} = t_{n-(k+1);\alpha/2} = 2.07387$$

Reject the null hypothesis.

$$t_{test} = \frac{B_1}{SE_{B_1}} = \frac{2.744}{0.093} = 29.343; \ t_{critical} = t_{n-(k+1);\alpha/2} = 2.07387$$

Reject the null hypothesis.

$$t_{test} = \frac{B_2}{SE_{B_2}} = \frac{0.012}{0.003} = 4.477; \ t_{critical} = t_{n-(k+1);\alpha/2} = 2.07387$$

Reject the null hypothesis.

To evaluate the adequacy of the model with the data, we need to find the total variance sum of squares (SST) that is formed by explained variance or the regression sum of squares (SSR) and unexplained variance or error sum os squares (SSE):

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SST = SSR + SSE$$

6105.944 = 5990.771 + 115.173

- SST = measures the variation of y_i values around their average \overline{y} ;
- SSR = Variation given by the relationship between X and Y;
- SSE = Variation of Y attributed to other factors than X.

The following hypothesis is made to test the model adequacy:

 H_0 : The model is not adequate H_1 : The model is adequate

$$F_{test} = \frac{\left[\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2\right]/(k)}{\left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right]/[n - (k+1)]}$$

Reject the null hypothesis H_0 if $F_{test} > F_{k;n-(k+1);\alpha}$

Snedecor's F Distribution Table

					α=	5,0%				
V2	1	2	3	4	5	V1 6	7	8	9	10
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16
31	4,16	3,30	2,91	2,68	2,52	2,41	2,32	2,25	2,20	2,15
32	4,15	3,29	2,90	2,67	2,51	2,40	2,31	2,24	2,19	2,14
33	4,14	3,28	2,89	2,66	2,50	2,39	2,30	2,23	2,18	2,13
34	4,13	3,28	2,88	2,65	2,49	2,38	2,29	2,23	2,17	2,12
35	4.12	3.27	2.87	2.64	2,49	2.37	2.29	2.22	2.16	2.11

Snedecor's F Distribution Table

						= 6				
	ı				α =	5,0%				
V2						V1				T
	1	2	3	4	5	6	7	8	9	10
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38	19,40
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35
21	4,32		3,07	2,84	2,68	2,57	2,49	2,42	2,37	2,32
22	4	3,44	,05	2,82	2,66	2,55	2,46	2,40	2,34	2,30
23	4,28	- 10	3,03	2,80	2,64	2,53	2,44	2,37	2,32	2,27
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30	2,25
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28	2,24
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27	2,22
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25	2,20
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24	2,19
29	4,18	3,33	2,93	2,70	2,55	2,43	2,35	2,28	2,22	2,18
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21	2,16
31	4,16	3,30	2,91	2,68	2,52	2,41	2,32	2,25	2,20	2,15
32	4,15	3,29	2,90	2,67	2,51	2,40	2,31	2,24	2,19	2,14
33	4,14	3,28	2,89	2,66	2,50	2,39	2,30	2,23	2,18	2,13
34	4,13	3,28	2,88	2,65	2,49	2,38	2,29	2,23	2,17	2,12
35	4.12	3.27	2.87	2.64	2,49	2.37	2.29	2.22	2.16	2.11

Therefore:

$$F_{k;n-(k+1);\alpha} = F_{2;25-(2+1);5\%} = 3.44$$

$$F_{test} = \frac{\left[\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2\right]/(k)}{\left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2\right]/[n - (k+1)]}$$

$$F_{test} = \frac{5990.771/(2)}{115.173/[25 - (2 + 1)]} = \frac{2995.386}{5.235} = 572.167$$

Reject the null hypothesis.

The r^2 (r-squared or coefficient of determination) measures the strength of the relationship, indicating that the model explains a percentage of the variance of the dependent variable. For example, a r^2 equal to 0.80 means that 80% of the variance of the dependent variable comes from its relation with the independent variables. The $(r^2)_a$ - adjusted r^2 - is na indicator that adjusts the r^2 based on the number of k independent variables and it is useful to penalize models that uses too many independent variables.

The covariance (ρ) is a measure of how changes in one variable are associated with changes in a second variable. Specifically, covariance measures the degree to which two variables are linearly associated. The correlation (r) is the standardized measure of covariance ranging between -1 and 1.

The r^2 (r-squared or coefficient of determination) measures the strength of the relationship, indicating that the model explains a percentage of the variance of the dependent variable. For example, a r^2 equal to 0.80 means that 80% of the variance of the dependent variable comes from its relation with the independent variables.

Both indicators can be calculated as:

$$r^2 = 1 - \frac{SSE}{SST} = 1 - \frac{115.173}{6105.944} = 0.981$$

$$r = \sqrt{r^2} = 0.990$$

The $(r^2)_a$ - adjusted r^2 - is na indicator that adjusts the r^2 based on the number of k independent variables:

$$(r^2)_a = 1 - (1 - r^2) \frac{n-1}{n-k-1}$$

$$(r^2)_a = 1 - (1 - 0.981) \frac{25 - 1}{25 - 2 - 1} = 0.979$$

The $(r^2)_a$ is useful to penalize models that uses too many independent variables.

The significance of each correlation can be tested by the following hypothesis:

 H_0 : The correlation is not significant H_1 : The correlation is significant

$$t_{test} = \frac{r}{\sqrt{\frac{1 - (r)^2}{n - 2}}}$$

$$t_{critical} = t_{n-2;\alpha/2}$$

Reject the null hypothesis H_0 if $t_{test} > t_{critical}$ or $t_{test} < -t_{critical}$

Therefore for a 95% confidence interval:

$$t_{test} = \frac{r}{\sqrt{\frac{1 - (r)^2}{n - 2}}} = \frac{0.990}{\sqrt{\frac{1 - (0.990)^2}{25 - 2}}} = 34.588$$

$$t_{critical} = t_{25-2;2.5\%} = 2.06866$$

Reject the null hypothesis.

The collinearity (correlation between two predictors) or multicollinearity (correlation between multiple predictors) can be harmful for the model because:

- Estimates may be unstable;
- Standard errors can be unreliable;
- Confidence intervals can become very large;
- The coefficient of determination can be high, even though the T-tests are insignificant.

To detect this problem is necessary to calculate the VIF (*Variance Inflator Factor*) for each predictor. If its value is > 5 the predictor is highly correlated indicating collinearity:

$$VIF_j = \frac{1}{1 - (r^2)_j}$$

Where:

 $(r^2)_i$ = Coefficient of determination between the j-th predictor and all other predictors.

 $1-(r^2)_j$ = Tolerance between the j-th predictor and all other predictors. The higher the tolerance, the less likely to occur collinearity or multicollinearity.

Therefore, $VIF_{x_1x_2} = VIF_{x_2x_1}$:

$$VIF_{x_1x_2} = \frac{1}{1 - (r^2)_{x_1x_2}} = \frac{1}{1 - 0.143} = 1.167$$

There is no collineartiy between the variables.

Suggest interpretation:

$(r^2)_j$	$VIF_j = \frac{1}{1 - (r^2)_j}$	Interpretation
0.00	$VIF_j = 1.00$	Insignifiant
0.50	$VIF_j = 2.00$	Medium
0.90	$VIF_j = 10.00$	Strong
0.99	$VIF_j = 100.00$	Severe

Misinterpretations of determination and correlation coefficients:

• "A high correlation coefficient indicates that useful predictions can be made".

This is not necessarily correct because if margins of the confidence intervals are large, the model is not very accurate.

• "A high correlation coefficient indicates that the estimated regression equation is well fitted to the data and a coefficient close to zero indicates that the variables are uncorrelated".

This is not necessarily correct because the correlation considers a linear relation and if a non-linear relation occurs, wrong interpretations can be made.

Residuals

Once verified the adequacy of the estimated model, it is also necessary to validate the errors (residuals) of the model. Supposedly, the residuals must be:

- Normally distributed;
- Homoscedastic;
- Independent (uncorrelated within a series of time).

The studentized residuals are most indicated approach to proceed with the evaluation. The studentized residual is the quotient resulting from the division of a residual by an estimate of its standard deviation, usually ranging from -3 to +3.

Normally Distributed

Violation of this assumption is considered mild and can make the confidence intervals unreliable. Large samples, logarithmic transformations in the dependent and independent variables or removal of outliers, can avoid this violation.

Homocedastic

Violation of this assumption is considered severe and can increase the range of confidence intervals and make the model unfeasible. Large samples, logarithmic transformations in the dependent and independent variables or removal of outliers, can avoid this violation. To verify that the errors are homoscedastic (constant variance) the residual graphic, ideally, will have no patterns.

To verify that the errors are homoscedastic (constant variance) the residual graphic, ideally, will have no patterns.

The Breusch-Pagan Test can be done to verify the homoscedasticity. It is performed in three steps:

- 1. Perform multiple linear regression and keep the residuals.
- 2. Perform multiple linear regression using as the dependent variable squared residuals (found in step 1) keeping the same set of independent variables.
- 3. Test the hypothesis that the model is homoscedastic through traditional F test, but with the following hypothesis:

 H_0 : The model is homoscedastic H_1 : The model is not homoscedastic

Observation	Y	X1	X2	ŷ	e	e^2
1	9.6	2	52	8.40	1.196	1.431
2	9.95	2	50	8.38	1.571	2.469
3	10.3	1	585	12.34	-2.037	4.149
4	11.66	2	360	12.26	-0.602	0.363
5	14.38	2	375	12.45	1.930	3.724
6	16.86	4	200	15.75	1.114	1.240
7	17.08	4	412	18.40	-1.322	1.749
8	17.89	4	400	18.25	-0.362	0.131
9	21.15	5	400	21.00	0.154	0.024
10	21.65	4	205	15.81	5.841	34.116
11	22.13	6	100	19.98	2.148	4.613
12	24.35	9	100	28.21	-3.865	14.938
13	24.45	8	110	25.60	-1.146	1.313
14	25.02	8	295	27.91	-2.894	8.373
15	27.5	8	300	27.98	-0.476	0.227
16	31.75	11	120	33.95	-2.204	4.858
17	34.93	10	540	36.47	-1.542	2.376
18	35	10	550	36.60	-1.597	2.550
19	37	11	400	37.46	-0.462	0.213
20	41.95	12	500	41.46	0.491	0.241
21	44.88	15	290	47.06	-2.181	4.756
22	46.59	15	250	46.56	0.030	0.001
23	54.12	16	510	52.56	1.559	2.430
24	56.63	17	590	56.31	0.322	0.104
25	69	20	600	64.67	4.334	18.785

p-value = 0.773

Accept the null hypothesis.

The White Test can be done to verify the homoscedasticity. It is performed in three steps:

- 1. Perform multiple linear regression and keep the residuals.
- Perform multiple linear regression using as the dependent variable squared residuals (found in step 1) use as independent variables the predicted value and the squared predicted value.
- 3. Test the hypothesis that the model is homoscedastic through traditional F test, but with the following hypothesis:

 H_0 : The model is homoscedastic H_1 : The model is not homoscedastic

Observation	Y	X1	X2	ŷ	\widehat{y}^2
1	9.6	2	52	8.40	70.62
2	9.95	2	50	8.38	70.20
3	10.3	1	585	12.34	152.20
4	11.66	2	360	12.26	150.37
5	14.38	2	375	12.45	155.01
6	16.86	4	200	15.75	247.95
7	17.08	4	412	18.40	338.65
8	17.89	4	400	18.25	333.14
9	21.15	5	400	21.00	440.84
10	21.65	4	205	15.81	249.93
11	22.13	6	100	19.98	399.29
12	24.35	9	100	28.21	796.09
13	24.45	8	110	25.60	655.16
14	25.02	8	295	27.91	779.17
15	27.5	8	300	27.98	782.67
16	31.75	11	120	33.95	1152.88
17	34.93	10	540	36.47	1330.17
18	35	10	550	36.60	1339.32
19	37	11	400	37.46	1403.39
20	41.95	12	500	41.46	1718.84
21	44.88	15	290	47.06	2214.73
22	46.59	15	250	46.56	2167.81
23	54.12	16	510	52.56	2762.69
24	56.63	17	590	56.31	3170.57
25	69	20	600	64.67	4181.67

p-value = 0.692

Accept the null hypothesis.

Independency

Violation of this assumption is considered mild and can increase the range of the confidence intervals. This assumption is only considered in time series.

A differentiation of the first order or the removal of outliers, can avoid this violation.

To verify the independency of the errors (not autocorrelated), the Durbin-Watson test (ranging from 0 to 4) can be done:

- $DW < 2 \rightarrow$ Indicates positive autocorrelation (Common)
- $DW \cong 2 \rightarrow \text{No autocorrelation}$
- $DW > 2 \rightarrow$ Indicates negative autocorrelation (Rare)

$$DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} (e_i)^2}$$

Alternativelly the following hypothesis tes can be performe:

 H_0 : The residuals are not independent H_1 : The residuals are independent

$$DW_{test} = DW$$

$$DW_{critical} = (\mathbf{d}_l; \mathbf{d}_u)$$

- Reject the null hypothesis H_0 if $DW_{test} < d_l$ or $DW_{test} > 4 d_l$
- Accept the null hypothesis H_0 if $d_u < DW_{test} < 4 d_u$
- The test is inconclusive if $d_l < DW_{test} < d_u$ or $4 d_l < DW_{test} < 4 d_u$

Tabela Durbin-Watson (99%)

	k	k' =1 k'=2		k'=2		k'=3	k'=4		ŀ	₹'=5	l	c'=6	k'= 7		k'=8		k'=9		k'=10	
n	dL	đU	dL	ďU	dL	dU	dL	đU	dL	dU	dL	dU	dL	dU	dL	đU	dL	dU	dL	dU
6	0.390	1.142																		
7	0.435	1.036	0.294	1.676																
8	0.497	1.003	0.345	1.489	0.229	2.102														
9	0.554	0.998	0.408	1.389	0.279	1.875	0.183	2.433												
10	0.604	1.001	0.466	1.333	0.340	1.733	0.230	2.193	0.150	2.690										
11	0.653	1.010	0.519	1.297	0.396	1.640	0.286	2.030	0.193	2.453	0.124	2.892								
12	0.697	1.023	0.569	1.274	0.449	1.575	0.339	1.913	0.244	2.280	0.164	2.665	0.105	3.053						
13	0.738	1.038	0.616	1.261	0.499	1.526	0.391	1.826	0.294	2.150	0.211	2.490	0.140	2.838	0.090	3.182				
14	0.776	1.054	0.660	1.254	0.547	1.490	0.441	1.757	0.343	2.049	0.257	2.354	0.183	2.667	0.122	2.981	0.078	3.287		
15	0.811	1.070	0.700	1.252	0.591	1.465	0.487	1.705	0.390	1.967	0.303	2.244	0.226	2.530	0.161	2.817	0.107	3.101	0.068	3.374
16	0.844	1.086	0.738	1.253	0.633	1.447	0.532	1.664	0.437	1.901	0.349	2.153	0.269	2.416	0.200	2.681	0.142	2.944	0.094	3.201
17	0.873	1.102	0.773	1.255	0.672	1.432	0.574	1.631	0.481	1.847	0.393	2.078	0.313	2.319	0.241	2.566	0.179	2.811	0.127	3.053
18	0.902	1.118	0.805	1.259	0.708	1.422	0.614	1.604	0.522	1.803	0.435	2.015	0.355	2.238	0.282	2.467	0.216	2.697	0.160	2.925
19	0.928	1.133	0.835	1.264	0.742	1.416	0.650	1.583	0.561	1.767	0.476	1.963	0.396	2.169	0.322	2.381	0.255	2.597	0.196	2.813
20	0.952	1.147	0.862	1.270	0.774	1.410	0.684	1.567	0.598	1.736	0.515	1.918	0.436	2.110	0.362	2.308	0.294	2.510	0.232	2.174
21	0.975	1.161	0.889	1.276	0.803	1.408	0.718	1.554	0.634	1.712	0.552	1.881	0.474	2.059	0.400	2.244	0.331	2.434	0.268	2.625
22	0.997	1.174	0.915	1.284	0.832	1.407	0.748	1.543	0.666	1.691	0.587	1.849	0.510	2.015	0.437	2.188	0.368	2.367	0.304	2.548
23	1.017	1.186	0.938	1.290	0.858	1.407	0.777	1.535	0.699	1.674	0.620	1.821	0.545	1.977	0.473	2.140	0.404	2.308	0.340	2.479
24	1.037	1.199	0.959	1.298	0.881	1.407	0.805	1.527	0.728	1.659	0.652	1.797	0.578	1.944	0.507	2.097	0.439	2.255	0.375	2.417
25	1.055	1.210	0.981	1.305	0.906	1.408	0.832	1.521	0.756	1.645	0.682	1.776	0.610	1.915	0.540	2.059	0.473	2.209	0.409	2.362

Therefore considering a 99% confidence interval:

$$DW_{test} = DW = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} (e_i)^2} = \frac{165.457}{115.173} = 1.436$$

Tabela Durbin-Watson (99%)

	K' =1		k' =1 k'=2		k'=3		k'=4		k'=5		k'=6		k'= 7		k'=8		k'=9		k'=10	
n	dL	dU	(III		dL	dU	dL	dU	dL	dU	dL	dU	dL	dU	dL	dU	dL	dU	dL	dU
6	0.390	1.142																		
7	0.435	1.036	0.294	1.676																
8	0.497	1.003	0.345	1.489	0.229	2.102														
9	0.554	0.998	0.408	1.389	0.279	1.875	0.183	2.433												
10	0.604	1.001	0.466	1.333	0.340	1.733	0.230	2.193	0.150	2.690										
11	0.653	1.010	0.519	1.297	0.396	1.640	0.286	2.030	0.193	2.453	0.124	2.892								
12	0.697	1.023	0.569	1.274	0.449	1.575	0.339	1.913	0.244	2.280	0.164	2.665	0.105	3.053						
13	0.738	1.038	0.616	1.261	0.499	1.526	0.391	1.826	0.294	2.150	0.211	2.490	0.140	2.838	0.090	3.182				
14	0.776	1.054	0.660	1.254	0.547	1.490	0.441	1.757	0.343	2.049	0.257	2.354	0.183	2.667	0.122	2.981	0.078	3.287		
15	0.811	1.070	0.700	1.252	0.591	1.465	0.487	1.705	0.390	1.967	0.303	2.244	0.226	2.530	0.161	2.817	0.107	3.101	0.068	3.374
16	0.844	1.086	0.738	1.253	0.633	1.447	0.532	1.664	0.437	1.901	0.349	2.153	0.269	2.416	0.200	2.681	0.142	2.944	0.094	3.201
17	0.873	1.102	0.773	1.255	0.672	1.432	0.574	1.631	0.481	1.847	0.393	2.078	0.313	2.319	0.241	2.566	0.179	2.811	0.127	3.053
18	0.902	1.118	0.805	1.259	0.708	1.422	0.614	1.604	0.522	1.803	0.435	2.015	0.355	2.238	0.282	2.467	0.216	2.697	0.160	2.925
19	0.928	1.133	0.835	1.264	0.742	1.416	0.650	1.583	0.561	1.767	0.476	1.963	0.396	2.169	0.322	2.381	0.255	2.597	0.196	2.813
20	0.952	1.147	0.862	1.270	0.774	1.410	0.684	1.567	0.598	1.736	0.515	1.918	0.436	2.110	0.362	2.308	0.294	2.510	0.232	2.174
21	0.975	1.161	0.889	1.276	0.803	1.408	0.718	1.554	0.634	1.712	0.552	1.881	0.474	2.059	0.400	2.244	0.331	2.434	0.268	2.625
22	0.997	1.174	0.915	1.284	0.832	1.407	0.748	1.543	0.666	1.691	0.587	1.849	0.510	2.015	0.437	2.188	0.368	2.367	0.304	2.548
23	1.017	1.186	0.938	1.290	0.858	1.407	0.777	1.535	0.699	1.674	0.620	1.821	0.545	1.977	0.473	2.140	0.404	2.308	0.340	2.479
24	1.037	1.199			0.881	1.407	0.805	1.527	0.728	1.659	0.652	1.797	0.578	1.944	0.507	2.097	0.439	2.255	0.375	2.417
25	1.055	1.210	0.981	1.305	0.906	1.408	0.832	1.521	0.756	1.645	0.682	1.776	0.610	1.915	0.540	2.059	0.473	2.209	0.409	2.362

Bibliography

- CORRAR, L.J.; PAULO, E.; DIAS FILHO, J. M. **Análise Multivariada para Cursos de Administração,** Ciências Contábeis e Economia. ATLAS, 2009.
- FÁVERO, L. P.; BELFIORE, P.; SILVA, F. L.; CHAN, B. **Análise de Dados: Modelagem Multivariada** para **Tomada de Decisões**. CAMPUS, 2009.
- HAIR, J. F.; BLACK, W. C.; BABIN, B. J.; ANDERSON, R. E.; TATHAM, R. L. **Análise Multivariada de Dados**. BOOKMAN, 2009.
- LATTIN, J.; CARROLL, J. D.; GREEN, P. E. **Análise de Dados Multivariados**. CENGAGE Learning, 2011.
- LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L. **Estatística Teoria e Aplicações Usando Microsoft Excel**. LTC, 2012.