Programare logică și funcțională - examen scris -

Notă

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP (DEFUN F(N) (COND ((= N 0) 0) (> (F (- N 1)) 1) (- N 2)) (T (+ (F (- N 1)) 1)) )
```

Rescrieți această definiție pentru a evita dublul apel recursiv (F (- N 1)). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	De exemplu, pentru următoa	pereche posibilă de sublis arele 2 subliste [1,2, [4,2	ste (o sublistă din prima	a listă și una din a doua),	I-Prolog care returnează o listă produsul elementelor maxime. rezultatul va fi (nu neapărat în
	această ordine): [24, 48, 32,	, 18, 36, 24].			•

C. Să se scrie un program PROLOG care generează lista submulțimilor cu valori din intervalul [**a**, **b**], având număr par de elemente pare și număr impar de elemente impare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru $\mathbf{a}=2$ și $\mathbf{b}=4 \Rightarrow [[2,3,4]]$

D. Se dă o listă neliniară și se cere înlocuirea valorilor numerice impare situate pe un nivel par, cu numărul natural succesor. Nivelul superficial se consideră 1. **Se va folosi o funcție MAP.**

Exemplu pentru lista (1 s 4 (3 f (7))) va rezulta (1 s 4 (4 f (7))).