TESIS CARRERA DE DOCTORADO EN CIENCIAS DE LA INGENIERÍA

SIMULACIÓN NUMÉRICA DEL FENÓMENO DE EBULLICIÓN EMPLEANDO EL MÉTODO DE LATTICE BOLTZMANN

Ezequiel O. Fogliatto Doctorando

Dr. Federico E. Teruel

Dr. Alejandro Clausse

Director

Co-director

Miembros del Jurado

Dr. J. J. Jurado (Instituto Balseiro) Dr. Segundo Jurado (Universidad Nacional de Cuyo) Dr. J. Otro Jurado (Univ. Nac. de LaCalle) Dr. J. López Jurado (Univ. Nac. de Mar del Plata)

Dr. U. Amigo (Instituto Balseiro, Centro Atómico Bariloche)

12 de Agosto de 2020

Departamento de Mecánica Computacional – Centro Atómico Bariloche

Instituto Balseiro
Universidad Nacional de Cuyo
Comisión Nacional de Energía Atómica
Argentina

A mi familia

Índice de símbolos

Índice de contenidos

In	dice	de sím	abolos	V
Ín	dice	de cor	m tenidos	vii
Ín	dice	de figu	ıras	ix
Ín	dice	de tab	olas	xi
1.	Intr	oducci	ión	1
2.	Fun	damen	ntos de lattice Boltzmann	3
	2.1.	Natura	aleza cinética del método	3
		2.1.1.	Función de distribución de equilibrio	4
		2.1.2.	La ecuación de Boltzmann	4
		2.1.3.	Ecuaciones de conservación macroscópicas	5
	2.2.	Discre	tización del espacio de velocidades	7
		2.2.1.	Adimensionalización	7
			Expansión en series de Hermite	8
Bi	bliog	grafía		11

Índice de figuras

Índice de tablas

Capítulo 1

Introducción

Prueba de citas: [1]

Capítulo 2

Fundamentos de lattice Boltzmann

En este capítulo se describirán los fundamentos necesarios y la sarasa obligatoria para más o menos entender el detalle de un modelo de lattice Boltzmann. Poner acá la idea de mostrar este camino para llegar a lo que nos interesa de LB

2.1. Naturaleza cinética del método

La descripción matemática de la dinámica de fluidos se basa en la hipótesis de un medio continuo, con escalas temporales y espaciales suficientemente mayores que las asociadas a la naturaleza atomística subyacente. En este contexto, suelen encontrarse referencias a descripciones microscópicas, mesoscópicas o macroscópicas. La descripción microscópica, por un lado, hace referencia a una descripción molecular, mientras que la macroscópica involucra una visión continua completa, con cantidades tangibles como densidad o velocidad del fluido. Por otro lado, entre ambas aproximaciones se encuentra la teoría cinética mesoscópica, la cuál no describe el movimiento de partículas individuales, sino de distribuciones o colecciones representativas de dichas partículas.

La variable fundamental de la teoría cinética se conoce como función de distribución de partículas (particle distribution function, o pdf por sus siglas en inglés), que puede verse como una generalización de la densidad ρ y que a su vez tiene en cuenta la velocidad microscópica de las partículas $\boldsymbol{\xi}$. Por lo tanto, mientras que $\rho(\boldsymbol{x},t)$ representa la densidad de masa en el espacio físico, la función de distribución $f(\boldsymbol{x},\boldsymbol{\xi},t)$ corresponde a la densidad de masa tanto en el espacio físico como en el espacio de velocidades.

La función de distribución f se relaciona con variables macroscópicas como densidad ρ y velocidad \boldsymbol{u} a través de momentos, es decir, integrales de f con funciones de peso dependientes de $\boldsymbol{\xi}$ sobre todo el espacio de velocidades. En particular, la densidad de masa macroscópica puede obtenerse como el momento

$$\rho(\boldsymbol{x},t) = \int f(\boldsymbol{x},\boldsymbol{\xi},t) d^3\xi, \qquad (2.1)$$

en el cual se considera la contribución de partículas con todas las velocidades posibles en la posición \boldsymbol{x} a tiempo t. Por otro lado, puede determinarse la densidad de impulso mediante

$$\rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) = \int \boldsymbol{\xi} f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.2)

De forma similar, la densidad de energía total corresponde al momento

$$\rho(\boldsymbol{x},t)E(\boldsymbol{x},t) = \frac{1}{2} \int |\boldsymbol{\xi}|^2 f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.3)

2.1.1. Función de distribución de equilibrio

En el análisis original realizado para gases iluidos y monoatómicos, Maxwell menciona que cuando un gas permanece sin perturbaciones por un período de tiempo suficientemente largo, la función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ alcanza una distribución de equilibrio $f^{eq}(\boldsymbol{x}, \boldsymbol{\xi}, t)$ que es isotrópica en el espacio de velocidades en torno a $\boldsymbol{\xi} = \boldsymbol{u}$. De esta manera, si te toma un marco de referencia que se desplaza con velocidad \boldsymbol{u} , entonces dicha distribución de equilibrio puede expresarse como $f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t)$. Por otro lado, si se supone que la distribución de equilibrio puede expresarse de forma separable, es decir

$$f^{eq}(|\boldsymbol{v}|^2) = f^{eq}(v_x^2 + v_y^2 + v_z^2) = f_{1D}^{eq}(v_x^2) f_{1D}^{eq}(v_y^2) f_{1D}^{eq}(v_z^2), \tag{2.4}$$

entonces puede demostrarse que dicha distribución queda definida como

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|^2, t) = e^{3a} e^{b|\boldsymbol{v}|^2}.$$
 (2.5)

Por otro lado, considerando que las colisiones monoaómicas conservan masa, momento y energía, y usando además la relación de gases ideales:

$$\rho e = \frac{3}{2}RT = \frac{3}{2}p,\tag{2.6}$$

finalmente puede encontrarse una expresión explícita para la distribución de equilibrio

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t) = \rho \left(\frac{3}{4\pi e}\right)^{3/2} e^{-3|\boldsymbol{v}|^2/(4e)} = \rho \left(\frac{1}{2\pi RT}\right)^{3/2} e^{-|\boldsymbol{v}|^2/(2RT)}$$
(2.7)

2.1.2. La ecuación de Boltzmann

La función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ establece propiedades tangibles de un fluido a través de sus diferentes momentos. Asimismo, es posible determinar una ecuación que permita modelar su evolución en el espacio físico, de velocidades, y el tiempo. En el análisis siguiente, se omitirá la dependencia de f con $(\boldsymbol{x}, \boldsymbol{\xi}, t)$ por claridad.

Como f es una función de la posición \boldsymbol{x} , de la velocidad de las partículas $\boldsymbol{\xi}$, y del tiempo t, la derivada total respecto al tiempo resulta

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right) \frac{dt}{dt} + \left(\frac{\partial f}{\partial x_{\beta}}\right) \frac{dx_{\beta}}{dt} + \left(\frac{\partial f}{\partial \xi_{\beta}}\right) \frac{d\xi_{\beta}}{dt}.$$
 (2.8)

En este caso dt/dt = 1, la velocidad de las partículas se obtiene como $dx_{\beta}/dt = \xi_{\beta}$, y la fuerza volumétrica \mathbf{F} queda determinada por la segunda ley de Newton $d\xi_{\beta}/dt = F_{\beta}/\rho$. Utilizando la notación tradicional $\Omega(f) = df/dt$ para el diferencial total respecto al tiempo, se obtiene la ecuación de Boltzmann para describir la evolución de f:

$$\frac{\partial f}{\partial t} + \xi_{\beta} \frac{\partial f}{\partial x_{\beta}} + \frac{F_{\beta}}{\rho} \frac{\partial f}{\partial \xi_{\beta}} = \Omega(f). \tag{2.9}$$

La Ec. (2.9) puede verse como una ecuación de advección para f, donde los dos primeros términos del miembro izquierdo corresponden a la advección de f con la velocidad de partículas ξ , mientras que el tercero representa el efecto de las fuerzas externas. Por otro lado, el miembro derecho contiene un término de fuente conocido como operador de colisión, que representa la redistribución local de f debido a colisiones entre las propias partículas. Estas colisiones conservan masa, momento y energía, lo que se traduce en restricciones para los momentos de Ω :

$$\int \Omega(f) d^3 \xi = 0 \tag{2.10a}$$

$$\int \boldsymbol{\xi} \,\Omega(f) \,d^3 \xi = \mathbf{0} \tag{2.10b}$$

$$\int |\boldsymbol{\xi}|^2 \Omega(f) d^3 \xi = 0 \tag{2.10c}$$

2.1.3. Ecuaciones de conservación macroscópicas

Las ecuaciones de conservación macroscópicas pueden obtenerse como momentos de la ecuación de Boltzmann, es decir, multiplicando la Ec. (2.9) por funciones de ξ e integrando sobre todo el espacio de velocidades. Para ello, es necesario introducir una notación general para los momentos de f

$$\Pi_0 = \int f \, d^3 \xi = \rho \tag{2.11a}$$

$$\Pi_{\alpha} = \int \xi_{\alpha} f \, d^3 \xi = \rho u_{\alpha} \tag{2.11b}$$

$$\Pi_{\alpha\beta} = \int \xi_{\alpha} \xi_{\beta} f \, d^3 \xi \tag{2.11c}$$

$$\Pi_{\alpha\beta\gamma} = \int \xi_{\alpha}\xi_{\beta}\xi_{\gamma}f \,d^{3}\xi \tag{2.11d}$$

La ecuación más simple de obtener corresponde a la de conservación de masa. Integrando la Ec. (2.9) en el espacio de velocidades, y usando las Ecs. (2.10) y (2.11), se obtiene:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_{\beta})}{\partial x_{\beta}} = 0. \tag{2.12}$$

De manera similar, multiplicando la Ec. (2.9) por ξ_{α} e integrando en el espacio de velocidades se obtiene la ecuación de conservación de momento:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial \Pi_{\alpha\beta}}{\partial x_{\beta}} = F_{\alpha}. \tag{2.13}$$

donde $\Pi_{\alpha\beta}$ se define como el tensor de flujo de impulso. Si se descompone la velocidad de las partículas como $x\mathbf{i} = \mathbf{u} + \mathbf{v}$, entonces la Ec. (2.13) puede reescribirse como

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = \frac{\partial \sigma_{\alpha\beta}}{\partial x_{\beta}} + F_{\alpha}. \tag{2.14}$$

con $\sigma_{\alpha\beta}$ representando el tensor de tensiones:

$$\sigma_{\alpha\beta} = -\int v_{\alpha}v_{\beta}f \, d^3\xi \tag{2.15}$$

Finalmente, puede seguirse un procedimiento similar para encontrar una ecuación macroscópica de conservación de energía. Multiplicando la Ec. (2.9) por $\xi_{\alpha}\xi_{\beta}$ e integrando en el espacio de velocidades se obtiene:

$$\frac{\partial \rho E}{\partial t} + \frac{1}{2} \frac{\Pi_{\alpha \alpha \beta}}{\partial x_{\beta}} = F_{\beta} u_{\beta}. \tag{2.16}$$

Descomponiendo el momento como en la ecuación de conservación de impulso y usando la Ec. (2.14) multiplicada por u_{α} , la Ec. (2.16) puede reescribirse como:

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = \sigma_{\alpha\beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} - \frac{\partial q_{\beta}}{\partial x_{\beta}}, \tag{2.17}$$

donde el flujo de calor q está definido por el momento

$$q_{\beta} = \frac{1}{2} \int v_{\alpha} v_{\alpha} v_{\beta} f \, d^3 \xi \tag{2.18}$$

En este punto es interesante destacar que si bien la convervación de masa queda definida exactamente, las ecuaciones de impulso y energía dependen de la forma de f, que todavía no es conocida. En el caso particular en que $f \simeq f^{eq}$, se obtienen las

ecuaciones de Euler para impulso y energía:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = -\frac{\partial p}{\partial x_{\alpha}} + F_{\alpha}$$
 (2.19a)

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = -p \frac{\partial u_{\beta}}{\partial x_{\beta}}$$
 (2.19b)

Este hecho muestra que los procesos macroscópicos de disipación viscosa y difusión de calor se encuentran directamente vinculados a la desviación de f respecto de su valor de equilibrio.

2.2. Discretización del espacio de velocidades

El desarrollo mostrado en la Sección. (2.1) evidencia la posibilidad de representar adecuadamente el comportamiento de un fluido usando una función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$. Sin embargo, dicha distribución se encuentra definida en un espacio con 7 dimensiones, es decir, 3 coordenadas espaciales, 3 para el espacio de velocidades, y una para el tiempo, de modo que la resolución de ecuaciones en este espacio multidimensional involucra un esfuerzo computacional considerable. Por otro lado, es necesario considerar que este enfoque no es siempre justificable, dado que en definitiva son los momentos de la ecuación de Boltzmann (integrales en el espacio de velocidades) los que conducen a ecuaciones macroscópicas de conservación de masa, impulso y energía.

Estas características originaron la búsqueda de versiones simplificadas de la ecuación de Boltzmann que no sacrifiquen el comportamiento macroscópico, es decir, de sus momentos. Entre estas alternativas podemos encontrar las expansiones en base al número de Mach [2] o en series de Hermite [3]. Si bien ambas conducen a la misma representación de Navier-Stokes, la representación en series de Hermite presenta una base matemática más sólida, y es la que se utilizará a continuación.

La idea fundamental de la espansión usando polinomios de Hermite consiste en simplificar la función de distribución de equilibrio f^{eq} y discretizar el espacio de velocidades, pero manteniendo las leyes de conservación macroscópicas. En particular, como f^{eq} tiene una forma exponencial conocida, puede ser expresada a través de la función generatriz de dichos polinomios. Por otro lado, los momentos de masa e impulso son representados como integrales discretas de f^{eq} usando los polinomios de Hermite.

2.2.1. Adimensionalización

Antes de proceder con la discretización de f y f^{eq} en series de Hermite, es conveniente reescribir las ecuaciones governantes de forma adimensional, con el objetivo de simplificar los pasos siguientes.

La función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ representa la densidad de masa en el espacio físico tridimensional y en el espacio de velocidades, también tridimensional. Por lo tanto, las unidades de f en el SI son:

$$[f] = \text{kg} \times \frac{1}{\text{m}^3} \times \frac{1}{(\text{m/s})^3} = \frac{\text{kg s}^3}{\text{m}^6}.$$
 (2.20)

Las propiedades de un fluido pueden analizarse en términos de una longitud característica l, velocidad característica V y densidad característica ρ_0 . Si se denota con * a las cantidades adimensionales, entonces podemos escribir los operadores diferenciales adimensionales como:

$$\frac{\partial}{\partial t^*} = \frac{l}{V} \frac{\partial}{\partial t}, \qquad \frac{\partial}{\partial x^*} = l \frac{\partial}{\partial x}, \qquad \frac{\partial}{\partial \xi^*} = V \frac{\partial}{\partial \xi}. \tag{2.21}$$

Esto lleva a escribir a la forma adimensional de la ecuación de Boltzmann:

$$\frac{\partial f^*}{\partial t^*} + \xi_{\alpha}^* \frac{\partial f^*}{\partial x_{\alpha}^*} + \frac{F_{\alpha}^*}{\rho^*} \frac{\partial f^*}{\partial \xi_{\alpha}^*} = \Omega^*(f^*), \tag{2.22}$$

donde $f^* = fV^d/\rho_0$, $\mathbf{F}^* = \mathbf{F}l/(\rho_0 V^2)$, $\rho^2 = \rho/\rho_0$ y $\Omega^* = \Omega l V^2/\rho_0$. Siguiendo el mismo procedimiento, la función de equilibrio adimensional resulta:

$$f^{eq*} = \left(\frac{\rho^*}{2\pi\theta^*}\right)^{d/2} e^{-(\xi^* - u^*)^2/(2\theta^*)}$$
 (2.23)

En este caso, θ^* corresponde a la temperatura adimensional $\theta^* = RT/V^2$. En las secciones siguientes se trabajará exclusivamente con cantidades adimensionales, omitiendo el superíndice * por claridad.

2.2.2. Expansión en series de Hermite

Las bases de la teoría cinética muestran que el operador de colisión preserva ciertos momentos de la función de distribución, lo que a su vez implica que los momentos de f^{eq} y f deben coincidir:

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t) d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi}) d^{3}\xi = \rho(\boldsymbol{x},t) \quad (2.24a)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\boldsymbol{x}\boldsymbol{i} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\boldsymbol{x}\boldsymbol{i} d^{3}\xi = \rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) \quad (2.24b)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\frac{|\boldsymbol{\xi}|^{2}}{2} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\frac{|\boldsymbol{\xi}|^{2}}{2} d^{3}\xi = \rho(\boldsymbol{x},t)E(\boldsymbol{x},t) \quad (2.24c)$$

$$\int f(\boldsymbol{x},\boldsymbol{\xi},t)\frac{|\boldsymbol{\xi}-\boldsymbol{u}|^{2}}{2} d^{3}\xi = \int f^{eq}(\rho,\boldsymbol{u},\theta,\boldsymbol{\xi})\frac{|\boldsymbol{\xi}-\boldsymbol{u}|^{2}}{2} d^{3}\xi = \rho(\boldsymbol{x},t)e(\boldsymbol{x},t) \quad (2.24d)$$

Las cantidades conservadas de la Ec. (2.24) pueden obtenerse como integrales de f o f^{eq} en el espacio de velocidades. Por lo tanto, la expansión en series de Hermite contribuye a transformar esas integrales continuas en sumas discretas evaluadas en puntos específicos del espacio de velocidades.

Los polinomios de Hermite se definen en un espacio d-dimensional como: [3, 4]

$$\boldsymbol{H}^{(n)}(\boldsymbol{x}) = (-1)^n \frac{1}{\omega(\boldsymbol{x})} \boldsymbol{\nabla}^{(n)} \omega(\boldsymbol{x}), \qquad (2.25)$$

donde $\omega(x)$ es una función generatriz:

$$\omega(\boldsymbol{x}) = \frac{1}{(2\pi)^{d/2}} e^{-\boldsymbol{x}^2/2}$$
(2.26)

Tanto $\mathbf{H}^{(n)}$ como $\mathbf{\nabla}^{(n)}$ son tensores de rango n, de modo que sus d^n componentes pueden expresarse como $H_{\alpha_1...\alpha_n}^{(n)}$ y $\nabla_{\alpha_1...\alpha_n}^{(n)}$, donde $\{\alpha_1...\alpha_n\}$ son índices comprendidos entre 1 y d. Para el caso particular de una dimensión, los polinomios se reducen a

$$H^{(n)}(x) = (-1)^{(n)} \frac{1}{\omega(x)} \frac{d^n}{dx^n} \omega(x), \qquad \omega(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
 (2.27)

Los polinomios de Hermite son ortogonales respecto a la función de peso $\omega(\mathbf{x})$ y constituyen una base completa en \Re^n [5], de modo que es posible representar cualquier función $f(\mathbf{x})$ suficientemente suave mediante:

$$f(\boldsymbol{x}) = \omega(\boldsymbol{x}) \sum_{n=0}^{\infty} \frac{1}{n!} \boldsymbol{a}^{(n)} \cdot \boldsymbol{H}^{(n)}(\boldsymbol{x}), \qquad \boldsymbol{a}^{(n)} = \int f(\boldsymbol{x}) \boldsymbol{H}^{(n)}(\boldsymbol{x}) d^n x$$
 (2.28)

Esta propiedad permite aplicar la expansión en series de Hermite a la función de distribución de equilibrio en el espacio de velocidades

$$f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) = \omega(\boldsymbol{\xi}) \sum_{n=0}^{\infty} \frac{1}{n!} \boldsymbol{a}^{(n)eq}(\rho, \boldsymbol{u}, \theta) \cdot \boldsymbol{H}^{(n)}(\boldsymbol{\xi})$$
(2.29a)

$$\boldsymbol{a}^{(n)eq}(\rho, \boldsymbol{u}, \theta) = \int f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) \boldsymbol{H}^{(n)}(\boldsymbol{\xi}) d^{d} \boldsymbol{\xi}$$
(2.29b)

En particular, puede verse que la función de distribución de equilibrio tiene la misma forma funcional que la función generatriz $\omega(\boldsymbol{x})$

$$f^{eq}(\rho, \boldsymbol{u}, \theta, \boldsymbol{\xi}) = \frac{\rho}{\theta^{d/2}} \omega \left(\frac{\boldsymbol{\xi} - \boldsymbol{u}}{\sqrt{\theta}} \right),$$
 (2.30)

de modo que el cálculo de los coeficientes $\boldsymbol{a}^{(n)}$ puede simplificarse mediante:

$$\boldsymbol{a}^{(n)eq} = \rho \int \omega(\boldsymbol{\eta}) \boldsymbol{H}^{(n)}(\sqrt{\theta}\boldsymbol{\eta} - \boldsymbol{u}) d^d \eta, \qquad (2.31)$$

donde $\eta = (\xi - u)/\sqrt{\theta}$. El cálculo de estas integrales puede realizarse directamente, de modo que los primeros coeficientes resultan:

$$a^{(0),eq} = \rho \tag{2.32a}$$

$$a_{\alpha}^{(1),eq} = \rho u_{\alpha} \tag{2.32b}$$

$$a_{\alpha\beta}^{(2),eq} = \rho \left[u_{\alpha} u_{\beta} + (\theta - 1) \delta_{\alpha\beta} \right]$$
 (2.32c)

$$a_{\alpha\beta\gamma}^{(3),eq} = \rho \left[u_{\alpha} u_{\beta} u_{\gamma} + (\theta - 1)(\delta_{\alpha\beta} u_{\gamma} + \delta_{\beta\gamma} u_{\alpha} + \delta_{\gamma\alpha} u_{\beta}) \right]$$
 (2.32d)

Bibliografía

- [1] Fogliatto, E. O., Clausse, A., Teruel, F. E. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 29 (9), 3095–3109, 2019. URL https://www.emerald.com/insight/content/doi/10.1108/HFF-11-2018-0682/full/html. 1
- [2] He, X., Luo, L.-S. Lattice Boltzmann model for the incompressible Navier–Stokes equation. *Journal of statistical Physics*, 88 (3-4), 927–944, 1997. 7
- [3] Shan, X., Yuan, X.-F., Chen, H. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. *Journal of Fluid Mechanics*, **550**, 413, 2006. 7, 9
- [4] Grad, H. On the kinetic theory of rarefied gases. Communications on Pure and Applied Mathematics, 2 (4), 331–407, 1949. 9
- [5] Wiener, N. The Fourier integral and certain of its applications. Cambridge University Press, 1989. 9