Chapter 20

The First Law of Thermodynamics

Thermodynamics – Historical Background

- Thermodynamics and mechanics were considered to be distinct branches of physics
 - Until about 1850
 - Experiments by James Joule and others showed a connection between them
- A connection was found between the transfer of energy by heat in thermal processes and the transfer of energy by work in mechanical processes
- The concept of energy was generalized to include internal energy
- The Law of Conservation of Energy emerged as a universal law of nature

Internal Energy

- Internal energy is all the energy of a system that is associated with its microscopic components
 - These components are its atoms and molecules
 - The system is viewed from a reference frame at rest with respect to the center of mass of the system

Internal Energy and Other Energies

- The kinetic energy due to its motion through space is not included
- Internal energy does include kinetic energies due to:
 - Random translational motion
 - Rotational motion
 - Vibrational motion
- Internal energy also includes potential energy between molecules

Heat

- Heat is defined as the transfer of energy across the boundary of a system due to a temperature difference between the system and its surroundings
- The term heat will also be used to represent the amount of energy transferred by this method

Changing Internal Energy

- Both heat and work can change the internal energy of a system
- The internal energy can be changed even when no energy is transferred by heat, but just by work
 - Example, compressing gas with a piston
 - Energy is transferred by work

Units of Heat

- Historically, the calorie was the unit used for heat
 - One calorie is the amount of energy transfer necessary to raise the temperature of 1 g of water from 14.5°C to 15.5°C
 - The "Calorie" used for food is actually 1 kilocalorie
- In the US Customary system, the unit is a BTU (British Thermal Unit)
 - One BTU is the amount of energy transfer necessary to raise the temperature of 1 lb of water from 63°F to 64°F
- The standard in the text is to use Joules

James Prescott Joule

- 1818 1889
- British physicist
- Largely self-educated
 - Some formal education from John Dalton
- Research led to establishment of the principle of Conservation of Energy
- Determined the amount of work needed to produce one unit of energy

- Joule established the equivalence between mechanical energy and internal energy
- His experimental setup is shown at right
- The loss in potential energy associated with the blocks equals the work done by the paddle wheel on the water

© 2007 Thomson Higher Education

Mechanical Equivalent of Heat, cont

- Joule found that it took approximately 4.18 J of mechanical energy to raise the water 1°C
- Later, more precise, measurements determined the amount of mechanical energy needed to raise the temperature of water from 14.5°C to 15.5°C
- 1 cal = 4.186 J
 - This is known as the mechanical equivalent of heat

Heat Capacity

- The heat capacity, C, of a particular sample is defined as the amount of energy needed to raise the temperature of that sample by 1°C
- If energy Q produces a change of temperature of ΔT, then

$$Q = C \Delta T$$

- Specific heat, c, is the heat capacity per unit mass
- If energy Q transfers to a sample of a substance of mass m and the temperature changes by ΔT , then the specific heat is

$$c \equiv \frac{Q}{m \Delta T}$$

Specific Heat, cont

- The specific heat is essentially a measure of how thermally insensitive a substance is to the addition of energy
 - The greater the substance's specific heat, the more energy that must be added to cause a particular temperature change
- The equation is often written in terms of Q :

$$Q = m c \Delta T$$

	Sp	ecific	Heat	C
--	----	--------	------	---

	1		
Substance	J/kg·°C	cal/g · °C	
Elemental solids	- N		
Aluminum	900	0.215	
Beryllium	1 830	0.436	
Cadmium	230	0.055	
Copper	387	$0.092\ 4$	
Germanium	322	0.077	
Gold	129	0.0308	
Iron	448	0.107	
Lead	128	0.0305	
Silicon	703	0.168	
Silver	234	0.056	

	Specific Heat c		
Substance	J/kg · °C	cal/g · °C	
Other solids			
Brass	380	0.092	
Glass	837	0.200	
Ice (-5°C)	2 090	0.50	
Marble	860	0.21	
Wood	1 700	0.41	
Liquids			
Alcohol (ethyl)	2 400	0.58	
Mercury	140	0.033	
Water (15°C)	4 186	1.00	
Gas			
Steam (100°C)	2 010	0.48	

Sign Conventions

- If the temperature increases:
 - Q and ΔT are positive
 - Energy transfers into the system
- If the temperature decreases:
 - Q and ΔT are negative
 - Energy transfers out of the system

Specific Heat Varies With Temperature

- Technically, the specific heat varies with temperature
- The corrected equation is $Q = m \int_{t}^{t} c \, dT$
- However, if the temperature intervals are not too large, the variation can be ignored and c can be treated as a constant
 - For example, for water there is only about a 1% variation between 0° and 100°C
 - These variations will be neglected unless otherwise stated

Specific Heat of Water

- Water has the highest specific heat of common materials
- This is in part responsible for many weather phenomena
 - Moderate temperatures near large bodies of water
 - Global wind systems
 - Land and sea breezes

Calorimetry

- One technique for measuring specific heat involves heating a material, adding it to a sample of water, and recording the final temperature
- This technique is known as calorimetry
 - A calorimeter is a device in which this energy transfer takes place

Calorimetry, cont

- The system of the sample and the water is isolated
- Conservation of energy requires that the amount of energy that leaves the sample equals the amount of energy that enters the water
 - Conservation of Energy gives a mathematical expression of this:

$$Q_{cold} = -Q_{hot}$$

- The negative sign in the equation is critical for consistency with the established sign convention
- Since each Q = $mc\Delta T$, c_{sample} can be found by:

$$c_s = \frac{m_w c_w (T_f - T_w)}{m_s (T_s - T_f)}$$

 Technically, the mass of the container should be included, but if m_w >>m_{container} it can be neglected

 An ingot of metal is heated and then dropped into a beaker of water. The equilibrium temperature is measured

$$c_s = \frac{m_w c_w (T_f - T_w)}{m_s (T_s - T_f)}$$

$$= \frac{(0.400 \text{kg})(4186 \text{ J/kg} \cdot ^{\circ}\text{C})(22.4 ^{\circ}\text{C} - 20.0 ^{\circ}\text{C})}{(0.0500 \text{kg})(200.0 ^{\circ}\text{C} - 22.4 ^{\circ}\text{C})}$$

$$= 453 \text{ J/kg} \cdot ^{\circ}\text{C}$$

Phase Changes

- A phase change is when a substance changes from one form to another
 - Two common phase changes are
 - Solid to liquid (melting)
 - Liquid to gas (boiling)
- During a phase change, there is no change in temperature of the substance
 - For example, in boiling the increase in internal energy is represented by the breaking of the bonds between molecules, giving the molecules of the gas a higher intermolecular potential energy

Latent Heat

- Different substances react differently to the energy added or removed during a phase change
 - Due to their different internal molecular arrangements
- The amount of energy also depends on the mass of the sample
- If an amount of energy Q is required to change the phase of a sample of mass m,

$$L \equiv Q/m$$

Latent Heat, cont

- The quantity L is called the latent heat of the material
 - Latent means "hidden"
 - The value of L depends on the substance as well as the actual phase change
- The energy required to change the phase is $Q = \pm mL$

Latent Heat, final

- The latent heat of fusion is used when the phase change is from solid to liquid
- The latent heat of vaporization is used when the phase change is from liquid to gas
- The positive sign is used when the energy is transferred into the system
 - This will result in melting or boiling
- The negative sign is used when energy is transferred out of the system
 - This will result in freezing or condensation

Sample Latent Heat Values

TABLE 20.2

Latent Heats of Fusion and Vaporization

Substance	Melting Point (°C)	Latent Heat of Fusion (J/kg)	Boiling Point (°C)	Latent Heat of Vaporization (J/kg)
Helium	-269.65	5.23×10^{3}	-268.93	2.09×10^{4}
Nitrogen	-209.97	2.55×10^{4}	-195.81	2.01×10^{5}
Oxygen	-218.79	1.38×10^{4}	-182.97	2.13×10^{5}
Ethyl alcohol	-114	1.04×10^{5}	78	8.54×10^{5}
Water	0.00	3.33×10^{5}	100.00	2.26×10^{6}
Sulfur	119	3.81×10^{4}	444.60	3.26×10^{5}
Lead	327.3	2.45×10^{4}	1 750	8.70×10^{5}
Aluminum	660	3.97×10^{5}	2450	1.14×10^{7}
Silver	960.80	8.82×10^{4}	2 193	2.33×10^{6}
Gold	1 063.00	6.44×10^{4}	2 660	1.58×10^{6}
Copper	1 083	1.34×10^{5}	1 187	5.06×10^{6}

Graph of Ice to Steam

Warming Ice, Graph Part A

- Start with one gram of ice at –30.0°C
- During phase A, the temperature of the ice changes from –30.0°C to 0°C
- Use $Q = m_i c_i \Delta T$
 - In this case, 62.7 J of energy are added

Melting Ice, Graph Part B

- Once at 0°C, the phase change (melting) starts
- The temperature stays the same although energy is still being added
- Use $Q = m_i L_f$
 - The energy required is 333 J
 - On the graph, the values move from 62.7 J to 396 J

Warming Water, Graph Part C

- Between 0°C and 100°C, the material is liquid and no phase changes take place
- Energy added increases the temperature
- Use $Q = m_w c_w \Delta T$
 - 419 J are added
 - The total is now 815 J

- At 100°C, a phase change occurs (boiling)
- Temperature does not change
- Use $Q = m_w L_v$
 - This requires 2260 J
 - The total is now 3070 J

Heating Steam

- After all the water is converted to steam, the steam will heat up
- No phase change occurs
- The added energy goes to increasing the temperature
- Use $Q = m_s c_s \Delta T$
 - In this case, 40.2 J are needed
 - The temperature is going to 120

 C
 - The total is now 3110 J

Supercooling

- If liquid water is held perfectly still in a very clean container, it is possible for the temperature to drop below 0° C without freezing
- This phenomena is called supercooling
- It arises because the water requires a disturbance of some sort for the molecules to move apart and start forming the open ice crystal structures
 - This structure makes the density of ice less than that of water
- If the supercooled water is disturbed, it immediately freezes and the energy released returns the temperature to 0° C

Superheating

- This phenomena is called superheating
- The formation of a bubble of steam in the water requires nucleation site
 - This could be a scratch in the container or an impurity in the water
- When disturbed the superheated water can become explosive
 - The bubbles will immediately form and hot water is forced upward and out of the container

State Variables

- State variables describe the state of a system
- In the macroscopic approach to thermodynamics, variables are used to describe the state of the system
 - Pressure, temperature, volume, internal energy
 - These are examples of state variables
- The macroscopic state of an isolated system can be specified only if the system is in thermal equilibrium internally
 - For a gas in a container, this means every part of the gas must be at the same pressure and temperature

Transfer Variables

- Transfer variables are zero unless a process occurs in which energy is transferred across the boundary of a system
- Transfer variables are not associated with any given state of the system, only with changes in the state
 - Heat and work are transfer variables

Work in Thermodynamics

- Work can be done on a deformable system, such as a gas
- Consider a cylinder with a moveable piston
- A force is applied to slowly compress the gas
 - The compression is slow enough for all the system to remain essentially in thermal equilibrium
 - This is said to occur quasi-statically

Work, 2

 The piston is pushed downward by a force through a displacement of:

$$dW = \mathbf{\Phi} \cdot d\mathbf{\hat{\rho}} = -\mathbf{\hat{F}}\mathbf{\hat{\phi}} \cdot d\mathbf{\hat{y}}\mathbf{\hat{\phi}} = -\mathbf{F}d\mathbf{y} = -\mathbf{P}A \ d\mathbf{y}$$

- A dy is the change in volume of the gas, dV
- Therefore, the work done on the gas is dW = -P dV

Work, 3

- Interpreting dW = P dV
 - If the gas is compressed, dV is negative and the work done on the gas is positive
 - If the gas expands, dV is positive and the work done on the gas is negative
 - If the volume remains constant, the work done is zero
- The total work done is:

$$W = -\int_{i}^{V_f} P \, dV$$

PV Diagrams

- Used when the pressure and volume are known at each step of the process
- The state of the gas at each step can be plotted on a graph called a PV diagram
 - This allows us to visualize the process through which the gas is progressing
- The curve is called the path
- Use the active figure to compress the piston and observe the resulting path

PV Diagrams, cont

- The work done on a gas in a quasi-static process that takes the gas from an initial state to a final state is the negative of the area under the curve on the PV diagram, evaluated between the initial and final states
 - This is true whether or not the pressure stays constant
 - The work done does depend on the path taken

Work Done By Various Paths

- Each of these processes has the same initial and final states
- The work done differs in each process
- The work done depends on the path

Work From a *PV* Diagram, Example 1

- The volume of the gas is first reduced from V_i to V_f at constant pressure P_i
- Next, the pressure increases from P_i to P_f by heating at constant volume V_f
- $W = -P_i(V_f V_i)$
- Use the active figure to observe the piston and the movement of the point on the PV diagram

Work From a *PV* Diagram, Example 2

- The pressure of the gas is increased from P_i to P_f at a constant volume
- The volume is decreased from V_i to V_f
- $W = -P_f(V_f V_i)$
- Use the active figure to observe the piston and the movement of the point on the PV diagram

Work From a *PV* Diagram, Example 3

- The pressure and the volume continually change
- The work is some intermediate value between -P_f(V_f - V_i) and -P_i(V_f - V_i)
- To evaluate the actual amount of work, the function P(V) must be known
- Use the active figure to observe the piston and the movement of the point on the PV diagram

© 2007 Thomson Higher Education

- The energy transfer, Q, into or out of a system also depends on the process
- The energy reservoir is a source of energy that is considered to be so great that a finite transfer of energy does not change its temperature
- The piston is pushed upward, the gas is doing work on the piston

- This gas has the same initial volume, temperature and pressure as the previous example
- The final states are also identical
- No energy is transferred by heat through the insulating wall
- No work is done by the gas expanding into the vacuum

(b)

Energy Transfer, Summary

- Energy transfers by heat, like the work done, depend on the initial, final, and intermediate states of the system
- Both work and heat depend on the path taken
- Neither can be determined solely by the end points of a thermodynamic process

The First Law of Thermodynamics

- The First Law of Thermodynamics is a special case of the Law of Conservation of Energy
 - It takes into account changes in internal energy and energy transfers by heat and work
- The First Law of Thermodynamics states that

$$\Box \Delta E_{int} = Q + W$$

 All quantities must have the same units of measure of energy

The First Law of Thermodynamics, cont

- One consequence of the first law is that there must exist some quantity known as internal energy which is determined by the state of the system
- For infinitesimal changes in a system dE_{int} = dQ + dW
- The first law is an energy conservation statement specifying that the only type of energy that changes in a system is internal energy and the energy transfers are by heat and work

Isolated Systems

- An isolated system is one that does not interact with its surroundings
 - No energy transfer by heat takes place
 - The work done on the system is zero
 - Q = W = 0, so $\Delta E_{int} = 0$
- The internal energy of an isolated system remains constant

Cyclic Processes

- A cyclic process is one that starts and ends in the same state
 - This process would not be isolated
 - On a PV diagram, a cyclic process appears as a closed curve
- The internal energy must be zero since it is a state variable
- If $\Delta E_{\text{int}} = 0$, Q = -W
- In a cyclic process, the net work done on the system per cycle equals the area enclosed by the path representing the process on a PV diagram

Adiabatic Process

- An adiabatic process is one during which no energy enters or leaves the system by heat
 - $\mathbf{Q} = \mathbf{0}$
 - This is achieved by:
 - Thermally insulating the walls of the system
 - Having the process proceed so quickly that no heat can be exchanged

Adiabatic Process, cont

- Since Q = 0, $\Delta E_{int} = W$
- If the gas is compressed adiabatically, W is positive so ΔE_{int} is positive and the temperature of the gas increases
- If the gas expands adiabatically, the temperature of the gas decreases

Adiabatic Processes, Examples

- Some important examples of adiabatic processes related to engineering are:
 - The expansion of hot gases in an internal combustion engine
 - The liquefaction of gases in a cooling system
 - The compression stroke in a diesel engine

- This is an example of adiabatic free expansion
- The process is adiabatic because it takes place in an insulated container
- Because the gas expands into a vacuum, it does not apply a force on a piston and W = 0
- Since Q = 0 and W = 0, $\Delta E_{int} = 0$ and the initial and final states are the same
 - No change in temperature is expected

(b)

Isobaric Processes

- An isobaric process is one that occurs at a constant pressure
- The values of the heat and the work are generally both nonzero
- The work done is $W = -P(V_f V_i)$ where P is the constant pressure

Isovolumetric Processes

- An isovolumetric process is one in which there is no change in the volume
- Since the volume does not change, W = 0
- From the first law, $\Delta E_{int} = Q$
- If energy is added by heat to a system kept at constant volume, all of the transferred energy remains in the system as an increase in its internal energy

Isothermal Process

- An isothermal process is one that occurs at a constant temperature
- Since there is no change in temperature, ΔE_{int} = 0
- Therefore, Q = W
- Any energy that enters the system by heat must leave the system by work

Isothermal Process, cont

- At right is a PV diagram of an isothermal expansion
- The curve is a hyperbola
- The curve is called an isotherm

- The curve of the PV diagram indicates PV = constant
 - The equation of a hyperbola
- Because it is an ideal gas and the process is quasi-static, PV = nRT and

$$W = -\int_{V_i}^{V_f} P \, dV = -\int_{V_i}^{V_f} \frac{nRT}{V} \, dV = -nRT \int_{V_i}^{V_f} \frac{dV}{V}$$
$$W = nRT \ln\left(\frac{V_i}{V_f}\right)$$

Isothermal Expansion, final

- Numerically, the work equals the area under the PV curve
 - The shaded area in the diagram
- If the gas expands, $V_f > V_i$ and the work done on the gas is negative
- If the gas is compressed, $V_f < V_i$ and the work done on the gas is positive

Special Processes, Summary

- Adiabatic
 - No heat exchanged
 - Q = 0 and $\Delta E_{int} = W$
- Isobaric
 - Constant pressure
 - W = P ($V_f V_i$) and $\Delta E_{int} = Q + W$
- Isothermal
 - Constant temperature
 - $\Delta E_{int} = 0$ and Q = -W

Mechanisms of Energy Transfer by Heat

- We want to know the rate at which energy is transferred
- There are various mechanisms responsible for the transfer:
 - Conduction
 - Convection
 - Radiation

Conduction

- The transfer can be viewed on an atomic scale
 - It is an exchange of kinetic energy between microscopic particles by collisions
 - The microscopic particles can be atoms, molecules or free electrons
 - Less energetic particles gain energy during collisions with more energetic particles
- Rate of conduction depends upon the characteristics of the substance

Conduction, cont.

- In general, metals are good thermal conductors
 - They contain large numbers of electrons that are relatively free to move through the metal
 - They can transport energy from one region to another
- Poor conductors include asbestos, paper, and gases
- Conduction can occur only if there is a difference in temperature between two parts of the conducting medium

Conduction, equation

- The slab at right allows energy to transfer from the region of higher temperature to the region of lower temperature
- The rate of transfer is given by:

$$\wp = \frac{Q}{\Delta t} = kA \left| \frac{dT}{dx} \right|$$

Conduction, equation explanation

- A is the cross-sectional area
- Δx is the thickness of the slab
 - Or the length of a rod
- is in Watts when Q is in Joules and t is in seconds
- k is the thermal conductivity of the material
 - Good conductors have high k values and good insulators have low k values

- The quantity |dT / dx| is called the temperature gradient of the material
 - It measures the rate at which temperature varies with position
- For a rod, the temperature gradient can be expressed as:

$$\left| \frac{dT}{dx} \right| = \frac{T_h - T_c}{L}$$

Rate of Energy Transfer in a Rod

 Using the temperature gradient for the rod, the rate of energy transfer becomes:

$$\wp = kA \left(\frac{T_h - T_c}{L} \right)$$

• For a compound slab containing several materials of various thicknesses $(L_1, L_2, ...)$ and various thermal conductivities $(k_1, k_2, ...)$ the rate of energy transfer depends on the materials and the temperatures at the outer edges:

$$\wp = \frac{A(T_h - T_c)}{\sum_i (L_i/k_i)}$$

Some Thermal Conductivities

TABLE 20.3

Thermal Conductivities	
Substance	Thermal Conductivity (W/m·°C)
Metals (at 25°C)	
Aluminum	238
Copper	397
Gold	314
Iron	79.5
Lead	34.7
Silver	427

© 2007 Thomson Higher Education

Nonmetals (approximate values)

Asbestos 0.08

Concrete 0.8

Diamond 2 300

Glass 0.8

Ice 2

Rubber 0.2

Water 0.6

Wood 0.08

Gases (at 20°C)

Air 0.023 4

Helium 0.138

Hydrogen 0.172

Nitrogen 0.023 4

Oxygen 0.023 8

Home Insulation

- Substances are rated by their R values
 - R = L / k and the rate becomes

$$\wp = \frac{A(T_h - T_c)}{\sum_i R_i}$$

- For multiple layers, the total R value is the sum of the R values of each layer
- Wind increases the energy loss by conduction in a home

Convection

- Energy transferred by the movement of a substance
 - When the movement results from differences in density, it is called natural convection
 - When the movement is forced by a fan or a pump, it is called forced convection

Convection example

- Air directly above the radiator is warmed and expands
- The density of the air decreases, and it rises
- A continuous air current is established

Radiation

- Radiation does not require physical contact
- All objects radiate energy continuously in the form of electromagnetic waves due to thermal vibrations of their molecules
- Rate of radiation is given by Stefan's law

Stefan's Law

- $P = \sigma AeT_4$
 - P is the rate of energy transfer, in Watts
 - $\sigma = 5.6696 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
 - A is the surface area of the object
 - e is a constant called the emissivity
 - e varies from 0 to 1
 - The emissivity is also equal to the absorptivity
 - T is the temperature in Kelvins

Energy Absorption and Emission by Radiation

- With its surroundings, the rate at which the object at temperature T with surroundings at T_{\circ} radiates is
 - $P_{\text{net}} = \sigma Ae (T_4 T_0^4)$
 - When an object is in equilibrium with its surroundings, it radiates and absorbs at the same rate
 - Its temperature will not change

Ideal Absorbers

- An ideal absorber is defined as an object that absorbs all of the energy incident on it
 - e = 1
- This type of object is called a black body
- An ideal absorber is also an ideal radiator of energy

Ideal Reflector

- An ideal reflector absorbs none of the energy incident on it
 - e = 0

The Dewar Flask

- A Dewar flask is a container designed to minimize the energy losses by conduction, convection, and radiation
 - Invented by Sir James Dewar (1842 1923)
- It is used to store either cold or hot liquids for long periods of time
 - A Thermos bottle is a common household equivalent of a Dewar flask

Dewar Flask, Details

- The space between the walls is a vacuum to minimize energy transfer by conduction and convection
- The silvered surface minimizes energy transfers by radiation
 - Silver is a good reflector
- The size of the neck is reduced to further minimize energy losses

