哈尔滨工业大学

硕士学位论文中期报告

题 目:分数阶比例延迟方程的几种数值方法的研究

院	()	系)	数学学院	
学		科	基础数学	
导		师	雷强	
研	究	生	李云鹏	
学		号	22S012004	
中期报告日期			2024年6月28日	

研究生院制

目 录

1	课题主要研究内容及进度情况	1
2	目前已完成的研究工作及结果	1
	2.1 准确解部分	1
	2.2 数值解部分	7
3	后期拟完成的研究工作及进度安排	10
4	存在的困难与问题	10
5	如期完成全部论文工作的可能性	10

1 课题主要研究内容及进度情况

$$\begin{cases} {}^{C}D_{0+}^{\alpha}x(t) = f(t, x(t), x(qt)), & t \geqslant 0, \\ x(0) = x_{0} \text{ is given.} \end{cases}$$
 (1)

2 目前已完成的研究工作及结果

2.1 准确解部分

对方程 xx 证明了 Peano 存在性定理和 Picard 存在唯一性定理,如下所示。

定理 1 Eq. (1) always has a mild solution on a small interval [0, h].

证明 记 $M < \infty$ 是集合 $\{\|f(t,u,v)\| : t \in [0,1], u,v \in B_{2\|x_0\|}(0)\}$ 的一个上界,并取 $0 < h \leq 1$ 充分小,使得 $\Gamma(\alpha+1)^{-1}h^{\alpha}M \leq \|x_0\|$. 对于正整数 m,作 $t_n^m := nh/m, n = 0, 1, 2, \ldots, m$,然后按下式构造 $(x_n^m)_{n=0}^m \subset \mathbb{R}^d$,

$$x_n^m = x_0 + \Gamma(\alpha)^{-1} \sum_{k=1}^n \int_{t_{k-1}}^{t_k} (t_n - s)^{\alpha - 1} f(s, x_{k-1}^m, x_{q_{k-1}^m}^m) ds, n = 1, 2, \dots, m, \quad (2)$$

其中 $q_k^m := [qt_k^m]$. 利用这些有限长的序列,分段线性插值地构造连续函数 $(x^m)_{m-1}^\infty: [0,h] \to \mathbb{R}^d$,即

$$x^{m}(t) := \frac{t_{n}^{m} - t}{t_{n}^{m} - t_{n-1}^{m}} x_{n-1}^{m} + \frac{t - t_{n-1}^{m}}{t_{n}^{m} - t_{n-1}^{m}} x_{n}^{m}, \ t_{n-1}^{m} \leqslant t \leqslant t_{n}^{m}.$$

另外,为方便起见,对于 $\delta > 0$,记 $D(\delta) := \{(s,t) \in [0,h] \times [0,h] : 0 \leq t-s < \delta\}$.

现在证明 $||x^m(t_n)|| \le 2||x_0||$, $0 \le t \le h, n = 0, 1, 2, \ldots, m, m \in \mathbb{N}_+$. 施归纳于 n. n = 0 时显然。假设对于 $0 \le k < n$ 成立 $||x^m(t_k)|| \le 2||x_0||$, 根据 M 和 h 的定义,

$$||x^{m}(t_{n})|| \leq ||x_{0}|| + \Gamma(\alpha)^{-1} \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} ||f(s, x_{k-1}^{m}, x_{q_{k-1}^{m}}^{m})|| ds$$

$$\leq ||x_{0}|| + \Gamma(\alpha)^{-1} \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} M ds$$

$$= ||x_{0}|| + \Gamma(\alpha)^{-1} M \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} ds$$

$$= ||x_{0}|| + \Gamma(\alpha + 1)^{-1} M t_{n}^{\alpha}$$

$$\leq ||x_{0}|| + \Gamma(\alpha + 1)^{-1} M h^{\alpha} \leq 2||x_{0}||,$$

这样就完成了归纳。于是对任何 $t \in [0,h], t$ 必然落在某个区间 $\left[t_{n-1}^m, t_n^m\right]$ 中,从而

$$||x^m(t)|| \leqslant \frac{t_n^m - t}{t_n^m - t_{n-1}^m} ||x_{n-1}^m|| + \frac{t - t_{n-1}^m}{t_n^m - t_{n-1}^m} ||x_n^m|| \leqslant 2||x_0||.$$

因此对每个 $t \in [0, h]$ 都有 $(x^m(t))_{m=1}^{\infty}$ 在 \mathbb{R}^d 中相对紧.

然后讨论连续函数列 $(x^m)_{m-1}^{\infty}$ 的等度连续性。首先,对于 $0 \le k \le n \le m$,有

$$\Gamma(\alpha) \|x_n^m - x_k^m\|$$

$$\leq \sum_{j=1}^k \int_{t_{j-1}^m}^{t_j^m} \left((t_k^m - s)^{\alpha - 1} - (t_n^m - s)^{\alpha - 1} \right) M \, \mathrm{d}s + \sum_{j=k+1}^n \int_{t_{j-1}^m}^{t_j^m} (t_n^m - s)^{\alpha - 1} M \, \mathrm{d}s$$

$$= M \cdot \left(\int_0^{t_k^m} \left((t_k^m - s)^{\alpha - 1} - (t_n^m - s)^{\alpha - 1} \right) \mathrm{d}s + \int_{t_m}^{t_m^m} (t_n^m - s)^{\alpha - 1} \, \mathrm{d}s \right)$$

$$= M\alpha^{-1} \cdot \left(\left(t_k^m \right)^\alpha - \left(t_n^m \right)^\alpha + 2 \left(t_n^m - t_k^m \right)^\alpha \right) \leqslant 2M\alpha^{-1} \left(t_n^m - t_k^m \right)^\alpha.$$

而至于 $0 \le s \le t \le h$, 不妨设 $s \in [t_{k-1}^m, t_k^m], t \in [t_{n-1}^m, t_n^m].$ 如果 k < n, 那么

$$||x^{m}(t) - x^{m}(s)||$$

$$\leq ||x^{m}(t) - x^{m}(t_{n-1})|| + ||x_{n-1}^{m} - x_{k}^{m}|| + ||x^{m}(t_{k}) - x^{m}(s)||$$

$$\leq ||x_{n}^{m} - x_{n-1}^{m}|| + ||x_{n-1}^{m} - x_{k}^{m}|| + ||x_{k}^{m} - x_{k-1}^{m}||$$

$$\leq 2M\Gamma(\alpha + 1)^{-1} \left(\left(t_{n}^{m} - t_{n-1}^{m} \right)^{\alpha} + \left(t_{n-1}^{m} - t_{k}^{m} \right)^{\alpha} + \left(t_{k}^{m} - t_{k-1}^{m} \right)^{\alpha} \right)$$

$$\leq 2M\Gamma(\alpha + 1)^{-1} \left(2(h/m)^{\alpha} + (t - s)^{\alpha} \right),$$

而若是 k = n, 则有

$$||x^m(t) - x^m(s)|| \le ||x_n^m - x_{n-1}^m||$$

$$\le 2M\Gamma(\alpha + 1)^{-1} \left(t_n^m - t_{n-1}^m\right)^{\alpha}$$

$$\le 2M\Gamma(\alpha + 1)^{-1} (h/m)^{\alpha},$$

总之

$$||x^m(t) - x^m(s)|| \le 2M\Gamma(\alpha + 1)^{-1} \left(2(h/m)^\alpha + (t - s)^\alpha\right).$$
 (3)

任给 $\varepsilon > 0$,取 $N = N(\varepsilon) \in \mathbb{N}_+$ 和 $\delta_0 = \delta_0(\varepsilon) > 0$ 分别满足 $2M\Gamma(\alpha + 1)^{-1}\delta_0^{\alpha} < \varepsilon/2$ 和 $4M\Gamma(\alpha + 1)^{-1}(h/N)^{\alpha} < \varepsilon/2$. 由式(3)可知, $\|x^m(t) - x^m(s)\| < \varepsilon$ 对任何 m > N 及 $(s,t) \in D(\delta_0)$ 成立。至于 $1 \le m \le N$,由于每个 x^m 都是 [0,h] 上的一致连续函数,故存在有限个只依赖于 ε 的正数 $(\delta_m)_{m=1}^N$,使得对于 $(s,t) \in D(\delta_m)$ 成立 $\|x^m(t) - x^m(s)\| < \varepsilon$. 现在取 $\delta = \delta(\varepsilon) := \min_{0 \le m \le N} \delta_m > 0$,那么当 $0 \le s \le t \le h$ 且 $t - s < \delta$ 时, $\|x^m(t) - x^m(s)\| < \varepsilon$ 对于任何 $m \in \mathbb{N}_+$ 成立。这说明 $(x^m)_{m=1}^\infty$ 是 C[0,h] 中的一致等度连续函数列。

使用 Arzelà-Ascoli 定理,我们得到 $\{x^m\colon m\in\mathbb{N}_+\}$ 在 $C\left([0,h],\mathbb{R}^d\right)$ 中相对紧,故有一致收敛子列,这个子列仍记为 $(x^m)_{m=1}^\infty$,并设其极限函数为 $x\in C\left([0,h],\mathbb{R}^d\right)$. 任给 $\varepsilon>0$,由于 f 在紧集 $[0,h]\times\overline{B_{2\|x_0\|}(0)}\times\overline{B_{2\|x_0\|}(0)}\subset[0,h]\times\mathbb{R}^d\times\mathbb{R}^d$ 上一致连

续,故存在 $\delta_1 = \delta_1(\varepsilon) > 0$ 使得 $||f(t, u, v) - f(t, x, y)|| < \varepsilon \alpha \Gamma(\alpha) h^{-\alpha}/4$ 对 $t \in [0, h]$ 以及满足 $||u - x|| + ||v - y|| < \delta_1$ 的 $u, v, x, y \in B_{2||x_0||}(0)$ 成立。取 $N_1 = N_1(\delta_1) \in \mathbb{N}_+$,使得当 $m > N_1$ 且 $t \in [0, h]$ 时成立 $||x^m(t) - x(t)|| < \delta_1/2$,从而

$$\left\| \int_0^t (t-s)^{\alpha-1} f(s, x^m(s), x^m(qs)) \, \mathrm{d}s - \int_0^t (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$\leq \int_0^t (t-s)^{\alpha-1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} \, \mathrm{d}s = \varepsilon \Gamma(\alpha) h^{-\alpha} t^{\alpha} / 4 \leq \varepsilon \Gamma(\alpha) / 4.$$
(4)

由 $(x^m)_{m=1}^{\infty}$ 的等度连续性,存在 $\delta_2 = \delta_2(\varepsilon) > 0$ 使得 $\|x^m(t) - x^m(s)\| < \min(\delta_1/2, \varepsilon/4)$ 对任何 $m \in \mathbb{N}_+$ 及 $(s,t) \in D$ (δ_2) 成立。取 $N_2 = N_2(\delta_2) \in \mathbb{N}_+$ 使得 $h/N_2 < \delta_2$. 一方面,注意到 $m > N_2$ 时总有 $t_n - t_{n-1} < \delta_2 < \delta_1/2, \ n = 0, 1, 2, \ldots, m$, 于是 $\left\|f\left(t, x_{n-1}^m, x_{q_{n-1}^m}^m\right) - f\left(t, x^m(t), x^m(qt)\right)\right\| < \varepsilon \alpha \Gamma(\alpha) h^{-\alpha}/4, \ t \in \left[t_{n-1}^m, t_n^m\right]$,从而

$$\Gamma(\alpha) \left\| x^{m}(t_{n}) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) ds \right\|$$

$$\leq \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} \left\| f(s, x_{k-1}^{m}, x_{q_{k-1}^{m}}^{m}) - f(s, x^{m}(s), x^{m}(qs)) \right\| ds$$

$$\leq \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} (t_{n} - s)^{\alpha - 1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} ds$$

$$= \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} \frac{\varepsilon \alpha \Gamma(\alpha) h^{-\alpha}}{4} ds \leq \varepsilon \Gamma(\alpha) / 4.$$
(5)

另一方面,任意 $t \in [0,h]$, 设 $t \in [t_{n-1},t_n]$, 则对任何 $m \in \mathbb{N}_+$ 成立

$$||x^m(t) - x^m(t_n)|| < \varepsilon/4.$$
(6)

根据^[1] Proposition 3.2, $x, f \in C([0,h], \mathbb{R}^d)$ 蕴涵 $t \mapsto \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s,x(s),x(qs)) \, \mathrm{d}s \in C([0,h], \mathbb{R}^d)$, 因此可取 $N_3 = N_3(\varepsilon) \in \mathbb{N}_+$ 充分大 (从而 $h/N_3 > 0$ 足够小),使得 $m > N_3$ 且 $(s,t) \in D(h/N_3)$ 时, $\Gamma(\alpha)^{-1} \|\int_0^t (t-\tau)^{\alpha-1} f(\tau,x(\tau),x(q\tau)) \, \mathrm{d}\tau - \int_0^s (s-\tau)^{\alpha-1} f(\tau,x(\tau),x(q\tau)) \, \mathrm{d}\tau \| < \varepsilon/4$. 于是 当 $t \in [0,h]$ 时,设 $t \in [t_{n-1},t_n]$,有

$$\Gamma(\alpha)^{-1} \left\| \int_0^{t_n} (t_n - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s - \int_0^t (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\| < \varepsilon/4.$$

$$(7)$$

现在取 $N = N(\varepsilon) := \max\{N_1, N_2, N_3\}$, 根据 Eqs. (4) to (7) 以及三角不等式,

当 $m > N, t \in [0, h]$ 时,设 $t \in [t_{n-1}, t_n]$,那么可以估计

$$\left\| x^{m}(t) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$\leq \|x^{m}(t) - x^{m}(t_{n})\|$$

$$+ \left\| x^{m}(t_{n}) - x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) \, \mathrm{d}s \right\|$$

$$+ \left\| x_{0} + \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x^{m}(s), x^{m}(qs)) \, \mathrm{d}s \right\|$$

$$- x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$+ \left\| x_{0} + \Gamma(\alpha)^{-1} \int_{0}^{t_{n}} (t_{n} - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\|$$

$$- x_{0} - \Gamma(\alpha)^{-1} \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x(s), x(qs)) \, \mathrm{d}s \right\| < \varepsilon,$$

即 $\lim_{m\to\infty} x^m(t) = x_0 + \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s,x(s),x(qs)) \,\mathrm{d}s, \, 0 \leqslant t \leqslant h.$ 而极限的唯一性导致

$$x(t) = \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, ds, \ 0 \le t \le h,$$

从而 $x \in C([0,h],\mathbb{R}^d)$ 是方程(1)在 [0,h] 上的一个弱解。

定理 2 如果 $f(t,\cdot,\cdot)$ 对 $t\in[0,\infty)$ 一致地局部 Lipschitz, 即对任何 r>0, 存在不依赖于 t 的 $L=L(r)\geqslant 0$, 使得

$$||f(t, x, y) - f(t, u, v)|| \le L \cdot (||x - u|| + ||y - v||)$$
(8)

对任何 $t \in [0,\infty)$ 以及 $x,y,u,v \in B_r(0)$ 成立,那么方程(1)的弱解局部存在,并在存在区间上唯一。

证明(存在性)构造 Picard 序列 $(x_n)_{n=0}^{\infty}:[0,\infty)\to\mathbb{R}^d$ 满足

$$\begin{cases} x^{n+1}(t) := x_0 + \Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} f(s, x_n(s), x_n(qs)) \, \mathrm{d}s, & n \in \mathbb{N}, \\ x^0(t) := x_0. \end{cases}$$

记 $M < \infty$ 是集合 $\{ \|f(t,u,v)\| : t \in [0,1], u,v \in B_{2\|x_0\|}(0) \}$ 的一个上界,并取 $0 < h \le 1$ 充分小,使得 $\Gamma(\alpha+1)^{-1}h^{\alpha}M \le \|x_0\|$. 可以归纳地证明 $\|x^n(t)\| \le 2\|x_0\|$, $t \in \mathbb{R}$

 $[0,h], n \in \mathbb{N}. \ \mathbb{R} \ L := L(2||x_0||), \ \mathbb{R} \ \Delta \ \mathbb{T} \ t \in [0,h], \ n \in \mathbb{N}_+,$

$$||x^{n+1}(t) - x_n(t)|| \le L\Gamma(\alpha)^{-1} \int_0^t (t-s)^{\alpha-1} (||x_n(s) - x^{n-1}(s)|| + ||x_n(qs) - x^{n-1}(qs)||) ds.$$
(9)

现在归纳地说明

$$\left\|x^{n+1}(t) - x_n(t)\right\| \leqslant \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} t^{(n+1)\alpha} \prod_{k=1}^n \left(1 + q^{k\alpha}\right) \mathcal{B}(\alpha, k\alpha + 1), \ t \in [0, h], n \in \mathbb{N}.$$
(10)

当 n=0 时,

$$||x^{1}(t) - x^{0}(t)|| = ||x^{1}(t) - x_{0}||$$

$$= \frac{1}{\Gamma(\alpha)} \left\| \int_{0}^{t} (t - s)^{\alpha - 1} f(s, x_{0}, x_{0}) ds \right\|$$

$$\leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} M ds$$

$$= \Gamma(\alpha)^{-1} \alpha^{-1} t^{\alpha} M.$$

假定式(10)在n取n-1时成立,然后

$$\|x^{n+1}(t) - x_n(t)\|$$

$$\leq \frac{L}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (\|x_n(s) - x^{n-1}(s)\| + \|x_n(qs) - x^{n-1}(qs)\|) ds$$

$$\leq \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} (\prod_{k=1}^{n-1} (1+q^{k\alpha}) B(\alpha, k\alpha+1)) \int_0^t (t-s)^{\alpha-1} (s^{n\alpha} + (qs)^{n\alpha}) ds$$

$$= \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} (\prod_{k=1}^{n-1} (1+q^{k\alpha}) B(\alpha, k\alpha+1)) (1+q^{n\alpha}) \int_0^t (t-s)^{\alpha-1} s^{n\alpha} ds$$

$$= \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} (\prod_{k=1}^{n-1} (1+q^{k\alpha}) B(\alpha, k\alpha+1)) (1+q^{n\alpha}) t^{n\alpha+\alpha} B(\alpha, n\alpha+1)$$

$$= \frac{L^n M}{\Gamma(\alpha)^{n+1} \alpha} t^{(n+1)\alpha} \prod_{k=1}^n (1+q^{k\alpha}) B(\alpha, k\alpha+1).$$

由归纳原理,式(10)成立。注意到

$$\prod_{k=1}^{n} \left(1 + q^{k\alpha} \right) \leqslant \prod_{k=1}^{n} \exp \left(q^{k\alpha} \right) = \exp \sum_{k=1}^{n} \left(q^{\alpha} \right)^{k} \leqslant \exp \frac{q^{\alpha}}{1 - q^{\alpha}}$$

和

$$\prod_{k=1}^{n} B(\alpha, k\alpha + 1) = \prod_{k=1}^{n} \frac{\Gamma(\alpha)\Gamma(k\alpha + 1)}{\Gamma((k+1)\alpha + 1)} = \Gamma(\alpha)^{n} \frac{\Gamma(\alpha + 1)}{\Gamma((n+1)\alpha + 1)},$$

我们有

$$||x^{n+1}(t) - x_n(t)|| \le \frac{L^n M t^{(n+1)\alpha}}{\Gamma((n+1)\alpha + 1)} \exp \frac{q^{\alpha}}{1 - q^{\alpha}}, t \in [0, h].$$
 (11)

由 Cauchy-Hadamard 公式和 Stirling 公式易知 Mittag-Leffler 函数 $E_{\alpha}(z) = \sum_{n=0}^{\infty} \Gamma(\alpha n+1)^{-1} z^n$ 对于任何 $z \in \mathbb{C}$ 收敛,然后根据 Weierstrass M 判别法就得到函数项级数 $\sum_{n=0}^{\infty} (x^{n+1} - x_n)$ 在 [0,h] 上绝对一致收敛,于是函数列 $(x_n)_{n=0}^{\infty}$ 在 [0,h] 上存在一致极限 x. 这说明任取 $\varepsilon > 0$,存在 $N = N(\varepsilon) \in \mathbb{N}$,使得 $||x_n(t) - x(t)|| < \varepsilon$ 对于 n > N 和 $t \in [0,h]$ 成立。这样一来,当 $t \in [0,h]$ 时,

$$\left\| \int_{0}^{t} (t-s)^{\alpha-1} f(s, x_{n}(s), x_{n}(qs)) \, ds - \int_{0}^{t} (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, ds \right\|$$

$$\leq \int_{0}^{t} (t-s)^{\alpha-1} L \cdot (\|x_{n}(s) - x(s)\| + \|x_{n}(qs) - x(qs)\|) \, ds$$

$$\leq 2\varepsilon L \int_{0}^{t} (t-s)^{\alpha-1} \, ds = 2\varepsilon L\alpha^{-1} t^{\alpha},$$

因此

$$\lim_{n \to \infty} \int_0^t (t-s)^{\alpha-1} f(s, x_n(s), x_n(qs)) \, \mathrm{d}s = \int_0^t (t-s)^{\alpha-1} f(s, x(s), x(qs)) \, \mathrm{d}s.$$

现在在式(2)中命 $n \to \infty$ 就得到

$$x(t) = x_0 + \Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1} f(s, x(s), x(qs)) ds, \ 0 \le t \le h.$$

另一方面,利用文献 [1] 中的性质 3.2, 容易归纳地得到 $(x_n)_{n=0}^{\infty} \subseteq C^{0,\alpha} \cap AC[0,h] \subseteq C[0,h]$, 于是其一致极限 $x \in C[0,h]$. 这样 x 就是方程(1)在 [0,h] 上的一个弱解。

(唯一性) 设 0 < T < ∞ , $x,y \in C[0,T]$ 都是方程(1)的弱解。记 $L := L(\max(\max_{0 \le t \le T} \|x(t)\|, \max_{0 \le t \le T} \|y(t)\|))$,并作 $S := \{t \in [0,T]: x(t) \ne y(t)\}, t_* := \inf S$,下证 $t_* = \infty$. 反证,假设 $0 \le t_* \le T$,分三种情况讨论。

如果 $t_* = T$. 那么在 [0,T) 上有 x = y, 而 x,y 都是连续的,因此必在闭区间 [0,T] 上处处相等,此时 $S = \emptyset, t_* = \infty$, 矛盾。

如果 $0 < t_* < T$. 那么在 $[0, t_*)$ 上有 x = y. 选取 $\delta > 0$ 充分小,使得 $t_* + \delta \leqslant T$ 且 $q \cdot (t_* + \delta) < t_*$, 然后就有 x(qt) = y(qt), $0 \leqslant t \leqslant t_* + \delta$. 于是当 $t \in [0, t_* + \delta]$

时,

$$||x(t) - y(t)|| \le L\Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1}$$

$$(||x(s) - y(s)|| + ||x(qs) - y(qs)||) ds$$

$$= L\Gamma(\alpha)^{-1} \int_0^t (t - s)^{\alpha - 1} ||x(s) - y(s)|| ds.$$

此时利用分数阶的 Gronwall 不等式**??**就得到在 $[0, t_* + \delta]$ 上都有 x = y, 故 $t_* \ge t_* + \delta$, 而这是不可能的。

如果 $t_* = 0$. 选取 $\delta \in (0, T]$ 充分小,使得 $2L\Gamma(\alpha + 1)^{-1}\delta^{\alpha} < 1$. 当 $t \in [0, \delta]$ 时,

$$\begin{aligned} & \|x(t) - y(t)\| \\ & \leq \frac{L}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} (\|x(s) - y(s)\| + \|x(qs) - y(qs)\|) \, \mathrm{d}s \\ & \leq \frac{2L}{\Gamma(\alpha)} (\max_{0 \leq s \leq t} \|x(s) - y(s)\|) \int_0^t (t - s)^{\alpha - 1} \, \mathrm{d}s \\ & = 2L\Gamma(\alpha + 1)^{-1} t^{\alpha} \max_{0 \leq s \leq t} \|x(s) - y(s)\|. \end{aligned}$$

上式两边对 $t \in [0, \delta]$ 取最大值,得到

$$\max_{0\leqslant t\leqslant \delta}\|x(t)-y(t)\|\leqslant 2L\Gamma(\alpha+1)^{-1}\delta^{\alpha}\max_{0\leqslant t\leqslant \delta}\|x(t)-y(t)\|,$$

结合 δ 的选取知道只可能有 $\max_{0 \le s \le \delta} \|x(s) - y(s)\| = 0$, 即等式 x = y 至少在 $[0, \delta]$ 上成立, 故 $t_* \ge \delta$, 矛盾.

综合以上各种情况知 $t_* \notin [0,T]$,只可能是 $t_* = \infty$,此时必有 $S = \emptyset$,故而 x 和 y 在整个 [0,T] 上相等。而如若 x,y 是 $[0,\infty)$ 上方程(1)的弱解,上述结果则表明它们在任何有限区间 [0,T] 上相等,因而在 $[0,\infty)$ 上相等。唯一性证毕。

2.2 数值解部分

取严格递增趋于正无穷的序列 $(t_n)_{n=0}^{\infty}$ 作为时间节点,其中 $t_0=0$,利用在每个小区间上线性插值的办法来近似导数和延迟,就得到针对方程(1)的 L1 数值格式

$$x_n = (t_n - t_{n-1})^{\alpha} \left(\Gamma(2 - \alpha) f(t_n, x_n, \overline{x}^n) + \sum_{k=0}^{n-1} (a_{n,k+1} - a_{n,k}) x_k \right),$$
 (12)

其中 $a_{n,k}:=\frac{(t_n-t_{k-1})^{1-\alpha}-(t_n-t_k)^{1-\alpha}}{t_k-t_{k-1}}(1\leqslant k\leqslant n), a_{n,0}:=0,\overline{x}_n$ 是对 $x(qt_n)$ 的近似。

下面这个定理所描述的数值解的长时间行为与 [2] 中得到的准确解的长时间 行为一致。 **定理** 3 如果存在常数 $a > 0, a_u > a_v > 0$, 使得

$$\langle u, f(t, u, v) \rangle \leqslant a - a_u ||u||^2 + a_v ||v||^2,$$

那么

$$||x_n||^2 \leqslant (a_u - a_v)^{-1} a + ||x_0||^2.$$
(13)

证明 式(12)两边与 x_n 作内积并结合 Cauchy-Schwarz 不等式得到

$$||x_{n}||^{2} \leq (t_{n} - t_{n-1})^{\alpha} \left(\Gamma(2 - \alpha) \left(a - a_{u} ||x_{n}||^{2} + a_{v} ||\overline{x}_{n}||^{2} \right) + \sum_{k=0}^{n-1} \left(a_{n,k+1} - a_{n,k} \right) \frac{||x_{k}||^{2} + ||x_{n}||^{2}}{2} \right).$$

$$(14)$$

注意到 $\sum_{k=0}^{n-1} (a_{n,k+1} - a_{n,k}) = a_{n,n} = (t_n - t_{n-1})^{-\alpha}$, 有

$$(t_n - t_{n-1})^{\alpha} \sum_{k=0}^{n-1} (a_{n,k+1} - a_{n,k}) \frac{\|x_k\|^2 + \|x_n\|^2}{2} \leqslant \frac{1}{2} \left(\max_{0 \leqslant k < n} \|x_k\|^2 + \|x_n\|^2 \right).$$
 (15)

将(15)代入式(14)得到

$$||x_n||^2 \leqslant a_n \left(a - a_u ||x_n||^2 + a_v ||\overline{x}_n||^2 \right) + \max_{0 \leqslant k < n} ||x_k||^2$$

$$\leqslant a_n \left(a - a_u ||x_n||^2 + a_v \max_{0 \leqslant k \leqslant n} ||x_k||^2 \right) + \max_{0 \leqslant k < n} ||x_k||^2,$$

其中 $a_n := 2(t_n - t_{n-1})^{\alpha} \Gamma(2 - \alpha)$. 如果 $||x_n|| = \max_{0 \le k \le n}$, 那么

$$||x_n||^2 \leqslant a_n \left(a - a_u ||x_n||^2 + a_v ||x_n||^2 \right) + ||x_n||^2, \tag{16}$$

否则

$$||x_n||^2 \leqslant a_n \left(a - a_u ||x_n||^2 + a_v \max_{0 \le k < n} ||x_k||^2 \right) + \max_{0 \le k < n} ||x_k||^2, \tag{17}$$

两种情形分别导致

$$||x_n||^2 \leqslant \frac{a}{a_n - a_n}$$
 $||x_n||^2 \leqslant \frac{a_n a + (a_n a_n + 1) \max_{0 \leqslant k < n} ||x_k||^2}{1 + a_n a_n}$

因此,无论如何总有

$$||x_n||^2 \le \max\left(\frac{a}{a_u - a_v}, \frac{a_n a + (a_n a_v + 1) \max_{0 \le k < n} ||x_k||^2}{1 + a_n a_u}\right).$$

现在归纳地证明式(13)。n=0时平凡。假定 $0 \le n < N$ 时成立,然后有

$$||x_N||^2 \leqslant \max\left(\frac{a}{a_u - a_v}, \frac{a_N a + (a_N a_v + 1)\left(\frac{a}{a_u - a_v} + ||x_0||^2\right)}{1 + a_N a_u}\right)$$

$$= \max\left(\frac{a}{a_u - a_v}, \frac{a}{a_u - a_v} + \frac{1 + a_N a_v}{1 + a_N a_u}||x_0||^2\right)$$

$$\leqslant (a_u - a_v)^{-1} a + ||x_0||^2.$$

这就完成了证明。

接下来讨论数值解的稳定性。为此,把方程(1)的初值条件改为 $x(0) = y_0$,用同样的数值算法(包括步长)产生数值解 $(y_n)_{n=0}^{\infty}$ 和对"延迟"的近似 $(\overline{y}_n)_{n=0}^{\infty}$,并记 $e_n := y_n - x_n$, $\overline{e}_n := \overline{y}_n - \overline{x}_n$.

定理 4 如果存在常数 $b_u > b_v > 0$, 使得

$$\begin{cases} \langle u - x, f(t, u, v) - f(t, x, v) \rangle \leqslant -b_u ||u - x||^2, \\ ||f(t, u, v) - f(t, u, y)|| \leqslant b_v ||v - y||, \end{cases}$$

那么

$$||e_n|| \leqslant ||e_0||.$$

证明 写出 $(e_n)_{n=0}^{\infty}$ 满足的等式:

$$e_{n} = (t_{n} - t_{n-1})^{\alpha} \left(\sum_{k=0}^{n-1} (a_{n,k+1} - a_{n,k}) e_{k} + \Gamma(2 - \alpha) \left(f(t_{n}, y_{n}, \overline{y}_{n}) - f(t_{n}, x_{n}, \overline{x}_{n}) \right) \right).$$

上式两边同 e_n 取内积,得

$$||e_{n}||^{2} \leq (t_{n} - t_{n-1})^{\alpha} \left(\sum_{k=0}^{n-1} (a_{n,k+1} - a_{n,k}) \frac{||e_{k}||^{2} + ||e_{n}||^{2}}{2} + \Gamma(2 - \alpha) \right)$$

$$(||f(t_{n}, y_{n}, \overline{y}_{n}) - f(t_{n}, x_{n}, \overline{y}_{n})|| + ||f(t_{n}, x_{n}, \overline{y}_{n}) - f(t_{n}, x_{n}, \overline{x}_{n})||)$$

$$\leq 2^{-1} \left(\max_{0 \leq k < n} ||e_{k}||^{2} + ||e_{n}||^{2} \right) + 2^{-1} a_{n} \left(-b_{u} ||e_{n}||^{2} + b_{v} ||\overline{e}_{n}||^{2} \right),$$

其中 $a_n := 2(t_n - t_{n-1})^{\alpha} \Gamma(2 - \alpha)$. 注意到 $\|\overline{e}_n\| \leqslant \max_{0 \leqslant k \leqslant n} \|e_k\|$, 我们有

$$||e_n||^2 \le \max_{0 \le k < n} ||e_k||^2 + a_n \left(-b_u ||e_n||^2 + b_v \max_{0 \le k \le n} ||e_k||^2 \right).$$

一种情况是 $\|e_n\| = \max_{0 \le k \le n} \|e_k\|$, 此时 $\max_{0 \le k < n} \|e_k\|^2 \ge \|e_n\|^2 (1 + a_n(b_u - b_v)) \ge \|e_n\|^2 = \max_{0 \le k \le n} \|e_k\|^2 \ge \max_{0 \le k < n} \|e_k\|^2$, 而上式最左端和最右端一样,因此其中的不等号全取等,特别地, $\|e^n\| = \max_{0 \le k < n} \|e_k\|$. 而另一种情况是 $\|e_n\| < a_n$

 $\max_{0 \le k \le n} \|e_k\|$, 此时显然有 $\|e_n\| < \max_{0 \le k < n} \|e_k\|$. 总之,

$$||e_n|| \leqslant \max_{0 \leqslant k < n} ||e_k||, n \in \mathbb{N}_+.$$

最后归纳即得结论。

- 3 后期拟完成的研究工作及进度安排
- 4 存在的困难与问题
- 5 如期完成全部论文工作的可能性

参考文献

- [1] Webb J R L. INITIAL VALUE PROBLEMS FOR CAPUTO FRACTIONAL EQUATIONS WITH SINGULAR NONLINEARITIES[C/OL] //. 2020. https://api. semanticscholar.org/CorpusID:221088567.
- [2] Wang D. Dissipativity and stability analysis for fractional functional differential equations.[J]. Fractional Calculus and Applied Analysis, 2015, 18: 1399-1422.