squid

```
In [1]:
                                                                                                      H
     import pandas as pd
 2
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from IPython import get_ipython
    import warnings
    warnings.filterwarnings("ignore")
In [2]:
                                                                                                      M
    data1 = pd.read_csv('zoo2.csv')
    data2 = pd.read_csv('zoo3.csv')
                                                                                                      H
In [3]:
    data1.head()
Out[3]:
                     feathers
                                    milk airborne aquatic predator toothed backbone bre
   animal_name hair
                              eggs
0
           turtle
                   0
                            0
                                  1
                                       0
                                                0
                                                        1
                                                                 0
                                                                         0
                                                                                    1
1
     chameleon
                   0
                            0
                                  1
                                       0
                                                0
                                                        0
                                                                 0
                                                                         1
                                                                                    1
2
                            0
                                                0
                                                        0
                                                                 1
         iguana
                   0
                                  1
                                       0
                                                                         1
                                                                                    1
3
                            0
                                  1
                                       0
                                                0
                                                        0
                                                                 1
          lizard
                   0
                                                                         1
                                                                                    1
          gecko
                            0
                                  1
                                       0
                                                0
                                                                 0
In [4]:
                                                                                                      M
    data1.tail()
Out[4]:
    animal_name
                      feathers
                               eggs
                                      milk airborne aquatic predator toothed backbone
                                                 0
                                                                                    0
38
                    0
                             0
                                   1
                                        0
                                                         0
                                                                  1
                                                                          1
           spider
39
            snail
                    0
                             0
                                   1
                                        0
                                                 0
                                                         0
                                                                  0
                                                                          0
                                                                                    0
        silkworm
                    0
                             0
                                   1
                                        0
                                                 0
                                                         0
                                                                  0
                                                                                    0
40
                                                                          0
41
         jellyfish
                    0
                             0
                                   1
                                        0
                                                 0
                                                         1
                                                                  0
                                                                          0
                                                                                    0
```

In [5]:

1 data2.head()

Out[5]:

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	bre
0	anta	1	0	0	1	0	0	0	1	1	
1	ariranha	1	0	0	1	0	1	1	1	1	
2	boto-cor-de- rosa	0	0	0	1	0	1	1	1	1	
3	bugio	1	0	0	1	0	0	0	1	1	
4	cachorro- vinagre	1	0	0	1	0	0	1	1	1	
4											•

In [6]: ▶

1 data2.tail()

Out[6]:

	animal_name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	br
65	vespa	0	0	1	0	1	0	1	0	0	
66	bicho-pau	0	0	1	0	0	0	0	0	0	
67	caracol-da- mata- atlantica	0	0	1	0	0	0	0	0	0	
68	caranguejeira	1	0	1	0	0	0	1	0	0	
69	sauva-limao	1	0	1	0	0	0	1	0	0	
4											•

In [7]:

1 data1.shape

Out[7]:

(43, 18)

In [8]:

1 data2.shape

Out[8]:

(70, 18)

```
In [9]:
                                                                           M
 1 data1.columns
Out[9]:
Index(['animal_name', 'hair', 'feathers', 'eggs', 'milk', 'airborne',
      'aquatic', 'predator', 'toothed', 'backbone', 'breathes', 'venomou
s',
      'fins', 'legs', 'tail', 'domestic', 'catsize', 'class_type'],
     dtype='object')
In [10]:
                                                                           H
 1 data2.columns
Out[10]:
s',
      'fins', 'legs', 'tail', 'domestic', 'catsize', 'class_type'],
     dtype='object')
In [11]:
                                                                           H
 1 data1.duplicated().sum()
Out[11]:
                                                                           H
In [12]:
 1 data2.duplicated().sum()
Out[12]:
```

venomous

domestic

class_type
dtype: int64

catsize

fins

legs tail 0

0 0

0

0

0 0

```
H
In [13]:
 1 data1.isnull().sum()
Out[13]:
animal_name
                0
hair
                0
feathers
                0
                0
eggs
                0
milk
airborne
                0
aquatic
                0
predator
                0
toothed
                0
backbone
                0
breathes
                0
venomous
                0
fins
                0
                0
legs
tail
                0
                0
domestic
catsize
                0
class_type
                0
dtype: int64
In [14]:
                                                                                             H
   data2.isnull().sum()
Out[14]:
                0
animal_name
hair
                0
feathers
                0
eggs
                0
milk
                0
airborne
                0
                0
aquatic
predator
                0
toothed
                0
                0
backbone
breathes
                0
```

```
In [15]: ▶
```

1 data1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 43 entries, 0 to 42
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	animal_name	43 non-null	object
1	hair	43 non-null	int64
2	feathers	43 non-null	int64
3	eggs	43 non-null	int64
4	milk	43 non-null	int64
5	airborne	43 non-null	int64
6	aquatic	43 non-null	int64
7	predator	43 non-null	int64
8	toothed	43 non-null	int64
9	backbone	43 non-null	int64
10	breathes	43 non-null	int64
11	venomous	43 non-null	int64
12	fins	43 non-null	int64
13	legs	43 non-null	int64
14	tail	43 non-null	int64
15	domestic	43 non-null	int64
16	catsize	43 non-null	int64
17	class_type	43 non-null	int64

dtypes: int64(17), object(1)

memory usage: 6.2+ KB

In [16]: ▶

data1.describe()

Out[16]:

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone
count	43.000000	43.0	43.0	43.0	43.000000	43.000000	43.000000	43.000000	43.000000
mean	0.023256	0.0	1.0	0.0	0.162791	0.465116	0.302326	0.441860	0.581395
std	0.152499	0.0	0.0	0.0	0.373544	0.504685	0.464701	0.502486	0.499169
min	0.000000	0.0	1.0	0.0	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.0	1.0	0.0	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.0	1.0	0.0	0.000000	0.000000	0.000000	0.000000	1.000000
75%	0.000000	0.0	1.0	0.0	0.000000	1.000000	1.000000	1.000000	1.000000
max	1.000000	0.0	1.0	0.0	1.000000	1.000000	1.000000	1.000000	1.000000
4									•

In [17]: ▶

1 data2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 70 entries, 0 to 69
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	animal_name	70 non-null	object
1	hair	70 non-null	int64
2	feathers	70 non-null	int64
3	eggs	70 non-null	int64
4	milk	70 non-null	int64
5	airborne	70 non-null	int64
6	aquatic	70 non-null	int64
7	predator	70 non-null	int64
8	toothed	70 non-null	int64
9	backbone	70 non-null	int64
10	breathes	70 non-null	int64
11	venomous	70 non-null	int64
12	fins	70 non-null	int64
13	legs	70 non-null	int64
14	tail	70 non-null	int64
15	domestic	70 non-null	int64
16	catsize	70 non-null	int64
17	class_type	70 non-null	int64

dtypes: int64(17), object(1)

memory usage: 10.0+ KB

In [18]:

1 data2.describe()

Out[18]:

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothe
count	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000	70.000000
mean	0.314286	0.285714	0.728571	0.271429	0.314286	0.328571	0.442857	0.485714
std	0.467583	0.455016	0.447907	0.447907	0.467583	0.473085	0.500310	0.50340
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
4								•

```
H
In [19]:
 1 data1.nunique()
Out[19]:
                 43
animal_name
hair
                  2
                  1
feathers
eggs
                  1
milk
                 2
airborne
                  2
aquatic
predator
                  2
                  2
toothed
backbone
                  2
                  2
breathes
venomous
                  2
fins
                  2
                  5
legs
tail
                  2
                  2
domestic
                  2
catsize
                  5
class_type
dtype: int64
In [20]:
                                                                                                    M
    data2.nunique()
Out[20]:
                 70
animal_name
hair
                  2
                  2
feathers
                  2
eggs
milk
                  2
                  2
airborne
                  2
aquatic
                  2
predator
                  2
toothed
backbone
                  2
                  2
breathes
                  2
venomous
fins
                  2
                  5
legs
                  2
tail
                  2
domestic
                  2
catsize
                  7
class_type
dtype: int64
In [21]:
                                                                                                    H
    data11 = data1[['hair', 'feathers', 'eggs', 'milk', 'airborne',
 1
             'aquatic', 'predator', 'toothed', 'backbone', 'breathes', 'venomous', 'fins', 'legs', 'tail', 'domestic', 'catsize', 'class_type']]
 2
  3
```

```
In [22]: ▶
```

```
In [23]:
```



```
H
In [24]:
    for i in data22.columns:
 1
 2
        plt.figure(figsize=(15,6))
 3
        sns.countplot(data22[i], data = data22,
 4
                       palette='hls')
        plt.xticks(rotation = 90)
 5
 6
        plt.show()
 20
 10
                                      aquatic
In [25]:
 1 import plotly.express as px
```

In [26]: ▶

```
fig1 = px.histogram(data1, x = 'class_type', color = 'class_type')
fig1.show()
```



```
In [27]: ▶
```

```
fig2 = px.histogram(data2, x = 'class_type', color = 'class_type')
fig1.show()
```



```
In [28]:

1 data1 = data1.drop(columns = ['animal_name','class_type'])

In [29]:

1 data1.head()
```

Out[29]:

	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomo
0	0	0	1	0	0	1	0	0	1	1	
1	0	0	1	0	0	0	0	1	1	1	
2	0	0	1	0	0	0	1	1	1	1	
3	0	0	1	0	0	0	1	1	1	1	
4	0	0	1	0	0	0	0	1	1	1	
4											>

In [30]: ▶

```
1    X = data1.iloc[:,:]
2    print(X)
```

	hair	feathe	rs	eggs	milk	airbor	ne	agu	atic	predato	or	toothed	\
0	0		0	1	0	0.2.00.	0	S. 9 S.	1	p. 00.0.0	0	0	`
1	0		0	1	0		0		0		0	1	
2	0		0	1	0		0		0		1	1	
3	0		0	1	0		0		0		1	1	
4	0		0	1	0		0		0		0	1	
5	0		0	1	0		0		0		1	1	
6	0		0	1	0		0		0		1	1	
7	0		0	1	0		0		0		1	1	
8	0		0	1	0		0		1		1	1	
9	0		0	1	0		0		1		1	1	
10	0		0	1	0		0		1		1	1	
11	0		0	1	0		0		0		0	1	
12	0		0	1	0		0		1		0	0	
13	0		0	1	0		0		1		0	0	
14	0		0	1	0		0		1		0	0	
15	0		0	1	0		0		1		0	0	
16	0		0	1	0		0		1		1	1	
17	0		0	1	0		0		1		0	0	
18	0		0	1	0		0		1		0	0	
19	0		0	1	0		0		1		0	1	
20	0		0	1	0		0		1		0	1	
21	0		0	1	0		0		1		0	1	
22	0		0	1	0		0		1		0	1	
23	0		0	1	0		0		1		0	1	
24	0		0	1	0		0		1		0	1	
25	0		0	1	0		1		0		0	0	
26	0		0	1	0		1		0		1	0	
27	0		0	1	0		0		0		0	0	
28	0		0	1	0		0		0		0	0	
29	1		0	1	0		1		0		0	0	
30	0		0	1	0		1		0		1	0	
31	0		0	1	0		0		0		0	0	
32	0		0	1	0		0		0		1	0	
33	0		0	1	0		1		0		0	0	
34	0		0	1	0		0		0		0	0	
35	0		0	1	0		1		0		0	0	
36	0		0	1	0		1		0		0	0	
37	0		0	1	0		0		1		0	0	
38	0		0	1	0		0		0		1	1	
39 40	0		0 0	1	0		0		0 0		0 0	0	
40	0 0		0	1 1	0 0		0 0		1		0	0 0	
41	0		0	1	0		0		1		0	0	
42	Ø		О		0		О				О	0	
	backbo	one br	eath	nes v	enomou	s fins	: 1	egs	tail	domes	tic	catsize	<u> </u>
0		1		1		0 e		4	1		1	1	
1		1		1		0 6		4	1		1	0	
2		1		1		0 0)	4	1		1	1	
3		1		1		0 0)	4	1		0	6)
4		1		1		0 6)	4	1		1	6	
5		1		1		1 6		0	1		0	1	
6		1		1		0 0		0	1		0	1	
7		1		1		1 6		0	1		0	1	
8		1		1		0 6)	4	1		0	1	•

6/20/22, 10:27 PM			Zoo Anim	nals Cluste	ring Analys	sis using Mad	chine Learning - Jup	oyter Notebook
9	1	1	0	0	4	1	0	1
10	1	1	0	0	4	1	0	1
11	1	1	0	0	4	1	0	0
12	1	0	0	1	0	1	0	0
13	1	0	0	1	0	1	0	1
14	1	0	0	1	0	1	0	1
15	1	0	0	1	0	1	0	1
16	1	0	0	1	0	1	0	1
17	1	0	0	1	0	1	0	1
18	1	0	0	1	0	1	0	1
19	1	1	0	0	4	1	1	0
20	1	1	0	0	2	1	0	0
21	1	1	0	0	4	0	0	0
22	1	1	0	0	4	0	0	0
23	1	1	0	0	4	0	0	0
24	1	1	0	0	4	0	0	0
25	0	1	0	0	6	0	0	0
26	0	1	1	0	6	0	0	0
27	0	1	0	0	6	0	0	0
28	0	1	0	0	6	0	0	0
29	0	1	0	0	6	0	0	0
30	0	1	0	0	6	0	0	0
31	0	1	0	0	6	0	0	0
32	0	1	0	0	6	0	0	0
33	0	1	0	0	6	0	0	0
34	0	1	0	0	6	0	0	0
35	0	1	0	0	6	0	0	0
36	0	1	0	0	6	0	0	0
37	0	0	0	0	0	0	0	0
38	0	1	1	0	8	0	0	0
39	0	1	0	0	0	0	0	0
40	0	1	0	0	0	0	0	0
41	0	0	1	0	0	0	0	1
42	0	0	0	0	0	0	0	1

In [34]:

1 **from** sklearn.cluster **import** KMeans

2 from yellowbrick.cluster import KElbowVisualizer

In [33]:

```
wcss = []
 1
 2
   for i in range(1, 11):
       kmeans = KMeans(n_clusters = i, init = 'k-means++',
 3
                        random_state = 42)
 4
 5
       kmeans.fit(X)
 6
       wcss.append(kmeans.inertia_)
   plt.plot(range(1, 11), wcss)
 7
   plt.title('The Elbow Method')
   plt.xlabel('Number of clusters')
10 plt.ylabel('WCSS')
11 plt.show()
```


In [35]:

```
# Quick examination of elbow method to find numbers of clusters to make.
print('Elbow Method to determine the number of clusters to be formed:')
Elbow_M = KElbowVisualizer(KMeans(), k=10)
Elbow_M.fit(X)
Elbow_M.show()
```

Elbow Method to determine the number of clusters to be formed:

Out[35]:

<AxesSubplot:title={'center':'Distortion Score Elbow for KMeans Clusterin
g'}, xlabel='k', ylabel='distortion score'>

In [36]:

```
import scipy.cluster.hierarchy as sch
dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
plt.title('Dendrogram')
plt.xlabel('Customers')
plt.ylabel('Euclidean distances')
plt.show()
```



```
In [38]: ▶
```

```
1
  kmeans = KMeans(
2
           n_clusters=2, init="k-means++",
3
           n_init=10,
4
           tol=1e-04, random_state=42
5
       )
6
  kmeans.fit(X)
7
  clusters=pd.DataFrame(X,columns=data1.columns)
8
  clusters['label']=kmeans.labels_
  polar=clusters.groupby("label").mean().reset_index()
9
  polar=pd.melt(polar,id_vars=["label"])
```

In [45]:


```
In [40]:
```

```
kmeans = KMeans(
 1
 2
            n_clusters=5, init="k-means++",
 3
            n_init=10,
 4
            tol=1e-04, random_state=42
 5
        )
 6
   kmeans.fit(X)
 7
   clusters=pd.DataFrame(X,columns=data1.columns)
   clusters['label']=kmeans.labels_
 8
   polar=clusters.groupby("label").mean().reset_index()
 9
10
   polar=pd.melt(polar,id_vars=["label"])
```

In [46]:


```
In [42]: ▶
```

```
kmeans = KMeans(
 1
            n_clusters=7, init="k-means++",
 2
 3
            n_init=10,
 4
            tol=1e-04, random_state=42
 5
        )
 6
   kmeans.fit(X)
 7
   clusters=pd.DataFrame(X,columns=data1.columns)
   clusters['label']=kmeans.labels_
 8
   polar=clusters.groupby("label").mean().reset_index()
 9
10
   polar=pd.melt(polar,id_vars=["label"])
```

In [47]: ▶

