Национальный исследовательский ядерный университет «МИФИ»

Институт интеллектуальных кибернетических систем КАФЕДРА КИБЕРНЕТИКИ

БДЗ

по курсу "Математическая статистика" студента группы Б22-514 Юдиной Дианы Сергеевны Вариант № 13

Оценка:	
Подпись:	

2024 г.

ОТЧЕТ № 1

по теме «Проверка статистических гипотез»

Вариант №_13_

ФИО студента Юдина Диана Сергеевна	группа <u>Б22-514</u>	
Опошея	Поппист	

Результаты статистических тестов:

№ задания	Проверяемая гипотеза H_0	Критерий	Статистическое решение (α = 0.1)	Вывод
4.1	$F(x) \sim N$	Хи-квадрат	Отклоняем Н0	Распределение не является нормальным
4.2	$F(x)\sim N$	Харке-Бера	Отклоняем Н0	Распределение не является нормальным
5.1	$F_1(x) = F_2(x)$	знаков	Отклоняем Н0	Выборки не являются однородными
5.2	$F_1(x) = F_2(x)$	Хи-квадрат	Отклоняем Н0	Выборки не являются однородными

В

Выводы:
В результате проведённого в п.4 статистического анализа обнаружено, что средняя
заработная плата всех должностей не является нормально распределенной случайной
величиной.
В результате проведённого в п.5 статистического анализа обнаружено, что выборки
средних заработных плат всех профессоров и средних заработных плат всех должностей
не являются однородными.

		ОТЧЕТ	№ 2	
	по теме «Ана.	лиз статисти	ческих взаимосвязейх	•
	I	Вариант №	13	
РИО студ	ента <u>Юдина Диана Се</u>	<u>ргеевна</u> груг	ппа <u>Б22-514</u>	
Эценка: _			Подпись:	
Результат	ы статистических тест	ов:		
№ задания	Проверяемая гипотеза H_0	Критерий	Статистическое решение $(\alpha = 0.1)$	Вывод
6	$F_Y(y$ при $X = No) = F_Y(y$ при $X = Yes)$	Хи- квадрат	Отклоняем Н0	Присутствует стат. связь
7	$m_1 = \cdots = m_k$	ANOVA	Отклоняем Н0	Присутствует стат. связь
«Средняя компенса	тате проведённого в п.б зарплата для всех катег ция для всех категорий неская связь.	орий > средн	яя зарплата по колледж	су» и «Средняя
	сате проведённого в п.7			
зараоотна	ия плата всех должносте	и зависит от т	гипа учеоного заведени	я.

Вариант	№ <u>13</u>
ФИО студента <u>Юдина Диана Сергеевна</u>	группа <u>Б22-514</u>
)пенка.	Полпись

Сводная таблица свойств различных регрессионных моделей:

Свойство	Простейшая линейная модель	Линейная модель с квадратичным членом	Множественная линейная модель
Точность	32,7%	41,7%	91,5%
Значимость	да	да	да
Адекватность	неадекватная	неадекватная	адекватная
Степень тесноты связи	заметная	заметная	сильная

Выволы:

Julio de la companya del companya de la companya de la companya del companya de la companya de l
В результате проведённого в п.8 статистического анализа обнаружено, что между
средней заработной платой всех должностей и средней заработной платой всех
профессоров есть зависимость, также присутствует статистическая связь между
средними заработными платами всех профессоров, всех должностей и всех доцентов.
В результате проведённого в п.9 статистического анализа обнаружено, что количество
профессоров заметно влияет на среднюю компенсацию для всех должностей. Однако
количество профессоров в учебном заведении и средняя заработная плата всех
профессоров сильно влияет на среднюю компенсацию для всех должностей.

1. Описательные статистики

1.1. Выборочные характеристики

Анализируемый признак 1 – А5

Анализируемый признак 2 – Аб

Анализируемый признак 3 – А8

а) Привести формулы расчёта выборочных характеристик

Выборочная хар-ка	Формула расчета
Объём выборки	$n = \sum_{i=1}^{k} n_i$
Среднее	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Выборочная дисперсия	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $d_X^* = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$
Выборочное среднеквадратическое отклонение	$\sigma_X^* = \sqrt{d_X^*}$
Выборочный коэффициент асимметрии	$\gamma_X^* = \frac{\frac{1}{n} \sum_{i=1}^n (x - \overline{x})^3}{\left(\sqrt{\frac{1}{n} \sum_{i=1}^n (x - \overline{x})^2}\right)^3}$
Выборочный эксцесс	$\varepsilon_X^* = \frac{\frac{1}{n} \sum_{i=1}^n (x - \overline{x})^4}{\left(\frac{1}{n} \sum_{i=1}^n (x - \overline{x})^2\right)^2}$

б) Рассчитать выборочные характеристики

Выборочная хар-ка	Признак 1	Признак 2	Признак 3
Среднее	526.48	420.04	428.03
Выборочная дисперсия	13868.86	4957.76	8217.62
Выборочное	117.77	70.41	90.65
среднеквадратическое			
отклонение			
Выборочный коэффициент	0.679	0.348	0.819
асимметрии			
Выборочный эксцесс	0.530	0.176	0.976

1.2. Группировка и гистограммы частот

Анализируемый признак –A8 Объём выборки –1073

а) Выбрать число групп

Число групп	Обоснование выбора числа групп		Ширина интервалов
11	Формула Стерджесса $k \approx [1 + \log_2]$	n]	57.64

б) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Накопл.	Относит.
интервала	граница	граница		частота	частота	накопл.
						частота
1	232.00	289.63	30	0.027	30	0.027
2	289.63	347.27	172	0.16	202	0.1883
3	347.27	404.91	290	0.27	492	0.4585
4	404.91	462.55	255	0.24	747	0.6963
5	462.55	520.18	145	0.14	892	0.8313
6	520.18	577.82	118	0.11	1010	0.9413
7	577.82	635.45	40	0.037	1050	0.9786
8	635.45	693.09	13	0.012	1063	0.9907
9	693.09	750.73	6	0.0056	1069	0.9963
10	750.73	808.36	2	0.0019	1071	0.9981
11	808.36	866.00	2	0.0018	1073	1.00

в) Построить гистограммы частот и полигоны частот

г) Построить график эмпирической функции распределения

Эмпирическая функция распределения		

2. Интервальные оценки

2.1. Доверительные интервалы для мат. ожидания

Анализируемый признак – А8

Объём выборки – 1073

Оцениваемый параметр – т

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\overline{X} - \frac{S}{\sqrt{n}} t_{1-\frac{\alpha}{2}}(n-1)$
Верхняя граница	$\overline{X} + \frac{S}{\sqrt{n}} t_{1 - \frac{\alpha}{2}}(n - 1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	420.90425	422.60860	423.48064
Верхняя граница	435.16099	433.45664	432.58460

2.2. Доверительные интервалы для дисперсии

Анализируемый признак -А8

Объём выборки – 1073

Оцениваемый параметр – σ^2

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$(n-1)S^2$
	$\chi^2_{1-\frac{\alpha}{2}}(n-1)$
Верхняя граница	$(n-1)S^2$
	$\chi^2_{\frac{\alpha}{2}}(n-1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	7371.6480	7564.0110	7665.0364
Верхняя граница	9210.0315	8960.2160	8835.8714

2.3. Доверительные интервалы для разности мат. ожиданий

Анализируемый признак 1 – А5

Анализируемый признак 2 - А8

Объёмы выборок –1073

Оцениваемый параметр – $(m_1 - m_2)$

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$(\overline{x_1} - \overline{x_2}) - t_{\frac{\alpha}{2}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Верхняя граница	$(\overline{x_1} - \overline{x_2}) + t_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	86.7647	89.5588	90.9885
Верхняя граница	110.1375	107.3433	105.9137

2.4. Доверительные интервалы для отношения дисперсий

Анализируемый признак 1 – А5

Анализируемый признак 2 – А8

Объёмы выборок –1073

Оцениваемый параметр – $\frac{\sigma_1^2}{\sigma_2^2}$

а) Привести формулы расчёта доверительных интервалов

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\frac{S_1^2}{S_2^2} \cdot f_{\frac{\alpha}{2}}(n_2 - 1, n_1 - 1)$
Верхняя граница	$\frac{S_1^2}{S_2^2} \cdot f_{1-\frac{\alpha}{2}}(n_2 - 1, n_1 - 1)$

б) Рассчитать доверительные интервалы

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	1.4418	1.4972	1.5263
Верхняя граница	1.9755	1.9025	1.8662

3. Проверка статистических гипотез о математических ожиданиях и дисперсиях

3.1. Проверка статистических гипотез о математических ожиданиях

Анализируемый признак – А8

Объём выборки –1073

Статистическая гипотеза —
$$\dfrac{H_0: m=m_0}{H': m
eq m_0}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = \frac{\overline{x} - m_0}{\frac{S}{\sqrt{n}}}$
Закон распределения статистики критерия при условии истинности основной гипотезы	T(n-1)
Формулы расчета критических точек	$+t_{1-\frac{\alpha}{2}}(n-1) \\ -t_{1-\frac{\alpha}{2}}(n-1)$
Формула расчета <i>p-value</i>	$2*\min(F_Z(z), 1 - F_Z(z))$ (в условиях истинности H0)

$\overline{6}$) Выбрать произвольные значения m_0 и проверить статистические гипотезы

m_0	Уровень значимости	Выборочное значение статистики критерия	p-value	Статистическое решение	Вывод
500	0.1	-26.005	0.0	Отклоняем Н0	Отсутствует ошибка принятия стат. решения $m \neq 500$
428	0.1	0.012	0.99	Принимаем Н0	Отсутствует ошибка принятия стат. решения $m = 428$
400	0.1	10.13	0.0	Отклоняем Н0	Отсутствует ошибка принятия стат. решения $m \neq 400$

3.2. Проверка статистических гипотез о дисперсиях

Анализируемый признак – А8

Объём выборки –1073

Статистическая гипотеза –
$$\frac{H_0:\sigma=\sigma_0}{H':\sigma\neq\sigma_0}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = \frac{(n-1)S^2}{\sigma_0^2}$
Закон распределения статистики критерия при условии истинности основной гипотезы	$\chi^2(n-1)$
Формулы расчета критических точек	$\chi_{\frac{\alpha}{2}}^{2}(n-1), \chi_{1-\frac{\alpha}{2}}^{2}(n-1)$
Формула расчета <i>p-value</i>	$2*\min(F_Z(z), 1 - F_Z(z))$ (в условиях истинности H0)

δ) Выбрать произвольные значения σ_0 и проверить статистические гипотезы

σ_0	Уровень	Выборочное	p-value	Статистическое	Вывод
	значимости	значение		решение	
		статистики			
		критерия			
100	0.1	880.93	0.99	Принимаем Н0	Ошибка 2 рода
90	0.1	1087.57	0.364	Принимаем Н0	Отсутствует ошибка
					принятия стат.
					решения
					$\sigma = 90$
70	0.1	1797.81	0.0	Отклоняем Н0	Отсутствует ошибка
					принятия стат.
					решения
					$\sigma \neq 70$

3.3. Проверка статистических гипотез о равенстве математических ожиданий

Анализируемый признак 1 – А5

Анализируемый признак 2 – А8

Объёмы выборок –1073

Статистическая гипотеза —
$$\frac{H_0: m_1 = m_2}{H': m_1 \neq m_2}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = \frac{\overline{X_1} - \overline{X_2}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
Закон распределения статистики	T(2012), число степеней свободы 1/k, k=
критерия при условии истинности	
основной гипотезы	

	$\frac{\left(\frac{\frac{s_1^2}{n1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right)^2}{\frac{s_1^2}{n_1 - 1}} + \frac{\left(\frac{\frac{s_2^2}{n_2}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}\right)^2}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Формулы расчета критических точек	$+t_{1-\frac{\alpha}{2}}(2012), -t_{1-\frac{\alpha}{2}}(2012)$
Формула расчета <i>p-value</i>	$2*\min(F_Z(z), 1 - F_Z(z))$ (в условиях истинности H0)

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	21.6999	0.0	Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$m_1 \neq m_2$
0.05			Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$m_1 \neq m_2$
0.1			Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$m_1 \neq m_2$

3.4. Проверка статистических гипотез о равенстве дисперсий

Анализируемый признак 1 – А5

Анализируемый признак 2 – А8

Объёмы выборок – 1073

Статистическая гипотеза —
$$\frac{H_0: \sigma_1 = \sigma_2}{H': \sigma_1 \neq \sigma_2}$$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение
Формула расчета статистики критерия	$Z = \frac{S_1^2}{S_2^2}$
Закон распределения статистики	$F(n_1-1, n_2-1)$
критерия при условии истинности	
основной гипотезы	
Формулы расчета критических точек	$f_{\frac{\alpha}{2}}(n_1-1, n_2-1), f_{1-\frac{\alpha}{2}}(n_1-1, n_2-1)$
Формула расчета <i>p-value</i>	$2*\min(F_Z(z), 1 - F_Z(z))$
	(в условиях истинности Н0)

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	1.688	0.0	Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$\sigma_1 \neq \sigma_2$
0.05			Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$\sigma_1 \neq \sigma_2$
0.1			Отклоняем Н0	Отсутствует ошибка
				принятия стат. решения
				$\sigma_1 \neq \sigma_2$

4. Критерии согласия

Анализируемый признак -A8 Объём выборки -1073

4.1. Критерий хи-квадрат

Теоретическое распределение – нормальное.

Статистическая гипотеза — H_0 : $F(x) \square N$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики	$\sum_{k=1}^{k} (n_k - nn_k)^2$	n_i – число элементов в
критерия	$Z = \sum_{i=1}^{n} \frac{(n_i - np_i)^2}{np_i}$	і-ом интервале, п-
	$\sum_{i=0}$ np_i	объем выборки, p_i -
		вероятность
		попадания в і-ый
		интервал, k - число
		интервалов
Закон распределения статистики	$Z \sim \chi^2(k-r-1)$	r – число неизвестных
критерия при условии истинности		параметров
основной гипотезы		распределения, k -
		количество
		интервалов
Формула расчета критической	$\chi_{1-\alpha}^2(k-r-1)$	α - уровень значимости
точки		
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$	
	(в условиях истинности Н0)	

б) Выбрать число групп

Число групп	Обоснование выбора числа групп		Ширина интервалов
11	Формула Стерджесса $k \approx [1 + \log_2]$	n]	57.64

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Относит.	Вероятность
интервала	граница	граница		частота	попадания в интервал
					при условии
					истинности основной
					гипотезы
1	232.00	289.64	30	0.027	0.048
2	289.64	347.27	172	0.16	0.123
3	347.27	404.91	290	0.27	0.212
4	404.91	462.55	255	0.24	0.249
5	462.55	520.18	145	0.14	0.197
6	520.18	577.82	118	0.11	0.105
7	577.82	635.45	40	0.037	0.038
8	635.45	693.09	13	0.012	0.009
9	693.09	750.73	6	0.0056	0.002
10	750.73	808.36	2	0.0019	0.000172
11	808.36	866.00	2	0.0018	0.000013

г) Построить гистограмму относительных частот и функцию плотности теоретического распределения на одном графике

д) Проверить статистические гипотезы

Уровень значимости	Выборочное значение статистики критерия	p-value	Статистическое решение	Вывод
0.01	373.83	0.0	Отклоняем Н0	Распределение не является нормальным

0.05	373.83	0.0	Отклоняем Н0	Распределение не является нормальным
0.1	373.83	0.0	Отклоняем Н0	Распределение не
				является нормальным

4.2. Проверка гипотезы о нормальности на основе коэффициента асимметрии и эксцесса (критерий Харке-Бера)

Статистическая гипотеза — H_0 : $F(x) \square N$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики	$n \left(\varepsilon^* \right)^2 $	п- объем выборки
критерия	$Z = \frac{n}{6} \left((\gamma^*)^2 + \frac{(\varepsilon^*)^2}{4} \right)$	γ^* - выборочный коэф.
		ассиметрии
		$arepsilon^*$ - выборочный
		эксцесс
Закон распределения	$\chi^2(2)$	
статистики критерия при		
условии истинности основной		
гипотезы		
Формула расчета критической	$\chi^2_{1-\alpha}(2)$	α - уровень
точки		значимости
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$	
	(в условиях истинности Н0)	

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	162.561	0.0	Отклоняем Н0	Распределение не
				является нормальным
0.05			Отклоняем Н0	Распределение не
				является нормальным
0.1			Отклоняем Н0	Распределение не
				является нормальным

Вывод (в терминах предметной области)

В результате проведённого в п.4 статистического анализа обнаружено, что средняя
заработная плата всех должностей не является нормально распределенной случайной
величиной.

5. Проверка однородности выборок

Анализируемый признак 1 – А5

Анализируемый признак 2 – А8

Объёмы выборок – 1073

5.1 Критерий знаков

Статистическая гипотеза — $H_0: F_1(x) = F_2(x)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$Z = \frac{(k_+) - \frac{n}{2}}{\frac{\sqrt{n}}{2}}$	k_+ - число знаков '+' n - объем выборки
Закон распределения статистики критерия при условии истинности основной гипотезы	$Z \sim N(0,1)$	N(0,1) - стандартное нормальное распределение
Формула расчета критической точки	$U_{1-\frac{\alpha}{2}}, U_{\frac{\alpha}{2}}$	α - уровень значимости
Формула расчета p-value	$2\min(F_Z(z), 1 - F_Z(z))$ (в условиях истинности H0)	

б) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	0.0	0.0	Отклоняем Н0	Выборки неоднородные
0.05			Отклоняем Н0	Выборки неоднородные
0.1			Отклоняем Н0	Выборки неоднородные

5.2. Критерий хи-квадрат

Статистическая гипотеза — $H_0: F_1(x) = F_2(x)$

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$Z = n_X n_Y \sum_{i=1}^k \frac{1}{n_i + m_i} \left(\frac{n_i}{n_X} - \frac{m_i}{n_Y} \right)^2$	n_i количество наблюдений в i-ом интервале первой выборки, m_i - количество наблюдений в i-ом интервале второй выборки, n_X , n_Y - общее количество наблюдений в 1 или 2 выборке, k - число интервалов
Закон	$Z \sim \chi^2(k-1)$	
распределения		
статистики		
критерия при		
условии		
истинности основной гипотезы		
Формула расчета критической точки	$\chi^2_{1-\alpha}(k-1)$	α - уровень значимости
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$ (в условиях истинности H0)	

б) Выбрать число групп

Число групп	Обоснование выбора числа групп	Ширина интервалов	
11	Формула Стерджесса $k ≈ [1 + log_2]$	n]	70,63

в) Построить таблицу частот

Номер	Нижняя	Верхняя	Частота	Частота	Относит.	Относит.
интервала	граница	граница	признака 1	признака 2	частота	частота
					признака 1	признака 2
1	232.00	302.63	6	52	0.006	0.049
2	302.63	373.27	78	275	0.072	0.257
3	373.27	443.91	186	345	0.173	0.322
4	443.91	514.55	288	205	0.268	0.191
5	514.55	585.18	207	138	0.193	0.129
6	585.18	655.82	143	41	0.133	0.038
7	655.82	726.45	102	9	0.095	0.008
8	726.45	797.09	41	5	0.038	0.005
9	797.09	867.73	11	2	0.010	0.002

10	867.73	938.36	7	0	0.007	0
11	938.36	1009.00	4	0	0.004	0

г) Построить гистограммы относительных частот на одном графике

д) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	153.688	0.0	Отклоняем Н0	Выборки неоднородные
0.05			Отклоняем Н0	Выборки неоднородные
0.1			Отклоняем Н0	Выборки неоднородные

Вывод (в терминах предметной области)

В результате проведённого в п.5 статистического анализа обнаружено, что выборки средних заработных плат всех профессоров и средних заработных плат всех должностей не являются однородными.

6. Таблицы сопряжённости

Факторный признак *x* – А9

Результативный признак у – А14

Объёмы выборок – 1073

Статистическая гипотеза – H0: $F_Y(y$ при X=No) = $F_Y(y$ при X=Yes)

а) Указать формулы расчёта показателей, используемых при проверке статистических гипотез

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$Z = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(n_{ij} - m_{ij})^2}{m_{ij}}$	m_{ij} теоретические частоты, n_{ij} - наблюдаемые частоты
Закон распределения статистики критерия при условии истинности основной гипотезы	$Z\sim\chi^2\big((k-1)(l-1)\big)$	k-число вариантов факторного признака, 1 - число вариантов результативного признака
Формула расчета критической точки	$\chi_{1-\alpha}^2\big((k-1)(l-1)\big)$	α - уровень значимости
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$ (в условиях истинности H0)	

б) Построить эмпирическую таблицу сопряжённости

x y	N	Y	Σ
N	570	31	601
Y	22	450	472
Σ	592	481	1073

в) Построить теоретическую таблицу сопряжённости

x y	N	Y	Σ
N	331.586	269.414	601
Y	260.414	211.586	472
Σ	592	481	1073

г) Проверить статистические гипотезы

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение		решение	
	статистики			
	критерия			

0.01	869.3	0.0	Отклоняем Н0	Есть статистическая связь
				между случайными
				величинами
0.05			Отклоняем Н0	Есть статистическая связь
				между случайными
				величинами
0.1			Отклоняем Н0	Есть статистическая связь
				между случайными
				величинами

Вывод (в терминах предметной области)

В результате проведённого в п.6 статистического анализа обнаружено, что между
«Средняя зарплата для всех категорий > средняя зарплата по колледжу» и «Средняя
компенсация для всех категорий > средняя компенсация по колледжу» есть
статистическая связь.

7. Дисперсионный анализ

Факторный признак x - A4

Результативный признак у – А8

Число вариантов факторного признака – 3

Объёмы выборок – 1073

Статистическая гипотеза – $m_1 = \cdots = m_k$

а) Рассчитать групповые выборочные характеристики

No	Вариант факторного	Объём	Групповые	Групповые
п/п	признака	выборки	средние	дисперсии
1	Ι	180	533.67	7652.25
2	IIA	359	440.82	4684.10
3	IIB	534	383.83	4975.63

б) Привести формулы расчёта показателей вариации, используемых в дисперсионном анализе

Источник	Показатель вариации	Число	Несмещенная
вариации		степеней	оценка
		свободы	
Факторный признак	$D_{\text{межгр}}^* = \frac{1}{n} \sum_{k=1}^{K} n_k (\overline{x_k} - \overline{x})^2$	K-1	$rac{n}{K-1}D_{ ext{ ext{Mexrp}}}^*$
признак	$D_{\text{межгр}} - \frac{1}{n} \sum_{k=1}^{n} n_k (x_k - x)$		K-1
Остаточные	$1\sum_{k=1}^{K}$	n-K	$\frac{n}{n-K}D_{\text{внутригр}}^*$
признаки	$D_{ ext{внутригр}}^* = rac{1}{n} \sum_{k=1} n_k \sigma_k^{*2}$		n-K
	κ-1		
Bce	$1\sum_{k=1}^{K}\sum_{k=1}^{n_k}(n_k)$	n-1	$rac{n}{n-1}D_{ m o 6 m}^*$
признаки	$D_{\text{общ}}^* = \frac{1}{n} \sum_{k=1} \sum_{i=1} \left(x_i^{(k)} - \overline{x} \right)^2$		$n-1$ $\frac{1}{2}$

в) Рассчитать показатели вариации, используемые в дисперсионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	2898.993	2	1555309.5673
признак			
Остаточные	5310.970	1070	5325.8605
признаки			
Все признаки	8209.963	1072	8217.6211
_			

г) Проверить правило сложения дисперсий

Показатель	$D_{\mathit{межгp}}$	$D_{\mathit{внутригр}}$	Dобщ	$D_{\mathit{межгp}} + D_{\mathit{внутригp}}$
Значение	2898.993	5310.970	8209.963	8209.963

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Эмпирический коэффициент детерминации	$\eta^2 = rac{D^*_{ ext{межгр}}}{D^*_{ ext{oбщ}}}$	0.353
Эмпирическое корреляционное отношение	$\eta = \sqrt{rac{D_{ ext{Meжrp}}^*}{D_{ ext{ofiu}}^*}}$	0.594

е) Охарактеризовать тип связи между факторным и результативным признаками

По шкале Чеддока: степень тесноты статистической связи между факторным и результативным признаками - заметная

ж) Указать формулы расчёта показателей, используемых при проверке статистической гипотезы дисперсионного анализа

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	$D_{ exttt{Meжrp}}^*$ $D_{ exttt{Bhyrpurp}}^*$	n- объем выборки, k -
	$Z = \frac{D_{\text{межгр}}^*}{(k-1)} : \frac{D_{\text{внутригр}}^*}{(n-k)}$	число групп, $D_{\text{межгр}}^*$
		межгрупповая
		дисперсия, $D^*_{\text{внутригр}}$ -
		внутригрупповая
		дисперсия
Закон распределения статистики	F(k-1, n-k)	
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки	$f_{1-\alpha}(k-1,n-k)$	α - уровень значимости
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$	
	(в условиях истинности	
	H0)	

з) Проверить статистическую гипотезу дисперсионного анализа

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	292.0297	0.0	Отклоняем Н0	Присутствует
				статистическая связь
0.05			Отклоняем Н0	Присутствует
				статистическая связь
0.1			Отклоняем Н0	Присутствует
				статистическая связь

Вывод (в терминах предметной области)

В результате проведённого в п.7 статистического анализа обнаружено, что средняя				
заработная плата всех должностей зависит от типа учебного заведения.				

8. Корреляционный анализ

8.1. Расчёт парных коэффициентов корреляции

Анализируемый признак 1 – А5

Анализируемый признак 2 – А8

Объёмы выборок – 1073

а) Рассчитать точечные оценки коэффициентов корреляции

	Формула расчета	Значение
Линейный	$\overline{k_{vv}}$	0.968
коэффициент	$\overline{ ho_{XY}} = rac{\overline{k_{XY}}}{\overline{\sigma_X} \cdot \overline{\sigma_Y}}$	
корреляции	$o_X \cdot o_Y$	
Ранговый	$\left(\frac{1}{2}\sum_{i=1}^{n}(r_{i}-\overline{r})(s_{i}-\overline{s})\right)$	0.964
коэффициент	$\overline{\rho_{XY}} = \frac{\left(\frac{1}{n}\sum_{i=1}^{n}(r_i - \overline{r})(s_i - \overline{s})\right)}{\overline{\sigma_R} \cdot \overline{\sigma_S}}$	
корреляции по	$\overline{\sigma_R} \cdot \overline{\sigma_S}$	
Спирмену		
Ранговый	$\overline{\tau_{XY}} = \frac{4R}{n(n-1)} - 1$, $R = \sum_{i=1}^{n-1} R_i$, $R_i = \sum_{j=i+1}^{n} [s_j > s_i]$	0.841
коэффициент	$n(n-1) \qquad \qquad 2i-1 \qquad 2j-i+1[-j] \qquad 2ij$	
корреляции по		
Кендаллу		

б) Привести формулы расчёта доверительного интервала для линейного коэффициента корреляции

Граница доверительного	Формула расчета
интервала	
Нижняя граница	$\overline{\rho_{XY}} + \frac{\overline{\rho}_{XY} \left(1 - \overline{\rho}_{XY}^2\right)}{2n} - U_{1 - \frac{\alpha}{2}} \cdot \frac{\left(1 - \overline{\rho_{XY}}^2\right)}{\sqrt{n}}$
Верхняя граница	$\overline{\rho}_{XY} + \frac{\overline{\rho_{XY}}(1 - \overline{\rho}_{XY}^2)}{2n} + U_{1 - \frac{\alpha}{2}} \cdot \frac{\left(1 - \overline{\rho_{XY}}^2\right)}{\sqrt{n}}$

в) Рассчитать доверительные интервалы для линейного коэффициента корреляции

Граница доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
интервала			
Нижняя граница	0.9627	0.9639	0.9645
Верхняя граница	0.9727	0.9714	0.9709

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициентов корреляции

Статистическая	Формула расчета статистики	Закон распределения статистики
гипотеза	критерия	критерия при условии
		истинности основной гипотезы
$H_0: \rho = 0$	$Z = \frac{\overline{\rho_{XY}}}{} \cdot \sqrt{n-2}$	T(n-2)
$H': \rho \neq 0$	$L = \frac{1}{\sqrt{1 - (\overline{\rho_{XY}})^2}} \sqrt{n} $	

$H_0: r^{(cn)} = 0$ $H': r^{(cn)} \neq 0$	$Z = \frac{\overline{\rho_{XY}}^{(sp)}}{\sqrt{1 - \left(\overline{\rho_{XY}}^{(sp)}\right)^2}} \cdot \sqrt{n - 2}$	T(n-2)
$H_0: r^{(\kappa e \mu)} = 0$ $H': r^{(\kappa e \mu)} \neq 0$	$Z = \overline{\tau_{XY}} \cdot \sqrt{\frac{9n(n+1)}{2(2n+5)}}$	N(0,1)

д) Проверить значимость коэффициентов корреляции

Статистическая	Уровень	Выборочно	p-value	Статистическое	Вывод
гипотеза	значимости	е значение		решение	
		статистики			
		критерия			
$H_0: \rho = 0$	0.1	125.516	0.0	Отклоняем Н0	$\rho \neq 0$
$H': \rho \neq 0$					Статистическая
					СВЯЗЬ
					присутствует
$H_0: r^{(cn)} = 0$	0.1	119.027	0.0	Отклоняем Н0	$ \rho^{(sp)} \neq 0 $
$H': r^{(cn)} \neq 0$					Статистическая
					СВЯЗЬ
					присутствует
$H_0: r^{(\kappa e H)} = 0$	0.1	41.271	0.0	Отклоняем Н0	$\tau \neq 0$
$H': r^{(\kappa e H)} \neq 0$					Статистическая
11 .7 +0					СВЯЗЬ
					присутствует

8.2. Расчёт множественных коэффициентов корреляции

Анализируемый признак 1 – А5

Анализируемый признак 2 – Аб

Анализируемый признак 3 – А8

Объёмы выборок – 1073

а) Рассчитать матрицу ранговых коэффициентов корреляции по Кендаллу

Признак	A5	A6	A8
Признак			
A5	1	0.821	0.841
A6	0.821	1	0.813
A8	0.841	0.813	1

б) Рассчитать матрицу значений p-value для ранговых коэффициентов корреляции по

Кендаллу (статистическая гипотеза $H_0: r^{(\kappa e \mu)} = 0, \ H': r^{(\kappa e \mu)} \neq 0$)

Признак	A5	A6	A8
Признак			
A5	_	0.0	0.0
A6	0.0	_	0.0
A8	0.0	0.0	_

в) Рассчитать точечную оценку коэффициента конкордации

	Формула расчета	Значение
Коэффициент конкордации	$W = \frac{12}{k^2(n^3-n)} \sum_{i=1}^n \left(\sum_{j=1}^k R_{ij} - \frac{k(n+1)}{2} \right)^2$ Где $R_{ij} \in \{1,\dots,n\}$ - ранг i-ого элемента в X_i выборке	0.971

г) Указать формулы расчёта показателей, используемых при проверке значимости коэффициента конкордации

	Выражение	Пояснение
		использованных
		обозначений
Формула расчета статистики критерия	Z = n(k-1)W	n-размер выборки, W -
		коэффициент
		конкордации, к-число
		выборок
Закон распределения статистики	$\chi^{2}(n-1)$	
критерия при условии истинности		
основной гипотезы		
Формула расчета критической точки	$\chi^2_{1-\alpha}(n-1)$	α - уровень
		значимости
Формула расчета <i>p-value</i>	$p = 1 - F_Z(z)$	
	(в условиях истинности	
	H0)	

д) Проверить значимость коэффициента конкордации

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	3121.937	0.0	Отклоняем Н0	Статистическая связь
				присутствует
0.05			Отклоняем Н0	Статистическая связь
				присутствует
0.1			Отклоняем Н0	Статистическая связь
				присутствует

Вывод (в терминах предметной области)

В результате проведённого в п.8 статистического анализа обнаружено, что между средней заработной платой всех должностей и средней заработной платой всех профессоров есть зависимость, также присутствует статистическая связь между средними заработными платами всех профессоров, всех должностей и всех доцентов.

9. Регрессионный анализ

9.1 Простейшая линейная регрессионная модель

Факторный признак x - A15

Результативный признак у – А13

Уравнение регрессии – $f(x) = \beta_0 + \beta_1 x$

9.1.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
βο	$eta_0^* = m_Y^* - ho_{XY}^* \cdot rac{\sigma_Y^*}{\sigma_X^*} m_X^*$	488.993
β_1	$eta_1^* = ho_{XY}^* \cdot rac{\sigma_Y^*}{\sigma_X^*}$	0.465

б) Записать точечную оценку уравнения регрессии

$$f(x) = 488.993 + 0.465 * x$$

в) Привести формулы расчёта показателей вариации, используемых в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная
вариации		степеней	оценка
		свободы	
Факторный	$1\sum_{n=1}^{n}$	k-1	$n \longrightarrow D^*$
признак	$D_{\text{perp}}^* = \frac{1}{n} \sum_{i=1}^{n} (f(x_i, \beta_0, \beta_1) - \overline{y})^2$		$\frac{n}{k-1}D_{\mathrm{perp}}^*$
Остаточные	$1\sum_{n=1}^{n}$	n-k	$\frac{n}{n-k}D_{\text{oct}}^*$
признаки	$D_{\text{oct}}^* = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, \beta_0, \beta_1))^2$		$\overline{n-k}^{D_{\mathrm{OCT}}}$
Bce	$1\sum_{n=1}^{n}$	n-1	n D^*
признаки	$D_{\text{общ}}^* = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$		$\frac{n}{n-1}D_{\text{общ}}^*$

г) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	4589.956	1	4925022.788
признак			
Остаточные	9440.535	1071	9458.164
признаки			
Все признаки	14030.492	1072	14043.580

д) Проверить правило сложения дисперсий

Показатель	D_{perp}	D_{ocm}	$D_{oби \psi}$	$D_{perp} + D_{ocm}$
Значение	4589.956	9440.535	14030.492	14030.492

е) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Коэффициент детерминации		0.327
	$D_{ m perp}^*$	
	$\overline{D_{ m o 6 m}^*}$	
Корреляционное отношение		0.572
	$\sqrt{rac{D_{ m perp}^*}{D_{ m oбщ}^*}}$	

ж) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Между факторным и результативным признаками присутствует заметная связь.

9.1.2. Интервальные оценки линейной регрессионной модели

а) Привести формулы расчёта доверительных интервалов для параметров линейной регрессионной модели

Параметр	Гранинг	Формуна расцета
Парамстр	Границы	Формула расчета
	доверительного	
	интервала	
β_0	Нижняя граница	
		$eta_0^* - t_{1-rac{lpha}{2}}(n-2)\sqrt{D_{ ext{oct}}^*} \cdot \sqrt{rac{(\sum_{i=1}^n x_i^2)}{n^2 D_{ ext{ofiul}}^*}}$
	Верхняя граница	
		$eta_0^* + t_{1-rac{lpha}{2}}(n-2)\sqrt{D_{ ext{oct}}^*} \cdot \sqrt{rac{(\sum_{i=1}^n x_i^2)}{n^2 D_{ ext{ofit}}^*}}$
β_1	Нижняя граница	
·		$eta_1^* - t_{1-rac{lpha}{2}}(n-2)\sqrt{D_{ ext{oct}}^*} \cdot \sqrt{rac{1}{n^2 D_{ ext{ofiu}}^*}}$
	Верхняя граница	
		$eta_1^* + t_{1-rac{lpha}{2}}(n-2)\sqrt{D_{ ext{oct}}^*} \cdot \sqrt{rac{1}{n^2 D_{ ext{ofit}}^*}}$

б) Рассчитать доверительные интервалы для параметров линейной регрессионной модели

1	Параметр	Границы доверительного	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
		интервала			
ſ	B_0	Нижняя	479.629	481.873	483.019
		граница			

	Верхняя	498.357	496.114	494.967
	граница			
β_1	Нижняя	0.463	0.463	0.464
	граница			
	Верхняя	0.466	0.466	0.466
	граница			

в) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы доверительного	Формула расчета
интервала	
Нижняя граница $f_{low}(x)$	
	$f^*(x) - t_{1-\frac{\alpha}{2}}(n-2)\sqrt{D_{\text{oct}}^*} \cdot \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{n^2 D_{\text{obij}}^*}}$
Верхняя граница $f_{high}(x)$	·
	$f^*(x) + t_{1-\frac{\alpha}{2}}(n-2)\sqrt{D_{\text{oct}}^*} \cdot \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{n^2 D_{\text{obij}}^*}}$

г) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha=0.1$

д) Построить график остатков $\varepsilon(x) = y - f(x)$

9.1.3. Проверка значимости линейной регрессионной модели

Статистическая гипотеза —
$$\frac{H_0: \beta_1 = 0}{H': \beta_1 \neq 0}$$

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

	Выражение	Пояснение использованных обозначений
Формула расчета статистики критерия	$Z = \frac{R_{Y X}^{2*}}{\left(1 - R_{Y X}^{2*}\right)/(n-2)}$	n – объем выборки
Закон распределения статистики критерия при условии истинности основной гипотезы	F(1, n-2)	
Формула расчета критической точки	$f_{1-\alpha}(1, n-2)$	α - уровень значимости
Формула расчета p-value	$p = 1 - F_Z(z)$ (в условиях истинности H0)	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	520.716	0.0	Отклоняем Н0	Модель значимая

0.05		Отклоняем Н0	Модель значимая
0.1		Отклоняем Н0	Модель значимая

9.2 Линейная регрессионная модель общего вида

Факторный признак x - A15

Результативный признак у – А13

Уравнение регрессии — квадратичное по x: $f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

9.2.1. Точечные оценки линейной регрессионной модели

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
β_0	$\beta^* = (F^T F)^{-1} F^T \gamma$	460.118
β_1	$\beta = (F \cdot F) \cdot F \cdot y$	1.022
β_2		-0.001

б) Записать точечную оценку уравнения регрессии

$$f(x) = 460.118 + 1.022 \times x - 0.001 \times x^2$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник	Показатель вариации	Число	Несмещенная оценка
вариации		степеней	
		свободы	
Факторный	5844.452	2	3135548.498
признак			
Остаточные	8186.039	1070	8208.991
признаки			
Все признаки	14030.491	1072	14043.579

г) Проверить правило сложения дисперсий

Показатель	D_{perp}	D_{ocm}	$D_{o ar{o} u \mu}$	$D_{perp} + D_{ocm}$
Значение	5844.452	8186.039	14030.491	14030.491

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
	1 7 1	

Коэффициент детерминации	$rac{D^*_{ m perp}}{D^*_{ m o 6 m}}$	0.417
Корреляционное отношение	$\sqrt{rac{D_{ m perp}^*}{D_{ m o 6 m}^*}}$	0.645

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Между факторным и результативным признаками присутствует заметная связь.

9.2.2. Интервальные оценки линейной регрессионной модели

а) Привести формулы расчёта доверительного интервала для значений регрессии f(x)

Границы доверительного	Формула расчета
интервала	
Нижняя граница $f_{low}(x)$	$\left(\tilde{f}(x) - t_{1-\alpha/2}(n-k)\sqrt{\tilde{D}_{resY}}\sqrt{\varphi^T(x)(F^TF)^{-1}\varphi(x)}\right);$
Верхняя граница $f_{high}(x)$	$\tilde{f}(x) + t_{1-\alpha/2}(n-k)\sqrt{\tilde{D}_{resY}}\sqrt{\varphi^T(x)(F^TF)^{-1}\varphi(x)}$

б) Построить диаграмму рассеяния признаков x и y. Нанести на диаграмму функцию регрессии f(x), а также нижние и верхние границы линии регрессии $f_{low}(x)$ и $f_{high}(x)$ на уровне значимости $\alpha = 0.1$

в) Построить график остатков $\varepsilon(x) = y - f(x)$

9.2.3. Проверка значимости линейной регрессионной модели

Статистическая гипотеза —
$$\dfrac{H_0: \beta_1 = \beta_2 = 0}{H': \textit{he } H_0}$$

а) Указать формулы расчёта показателей, используемых при проверке значимости линейной регрессионной модели

	Выражение	Пояснение использованных
		обозначений
Формула расчета статистики критерия	$Z = \frac{R_{Y X}^{2*}/(k-1)}{\left(1 - R_{Y X}^{2*}\right)/(n-k)}$	п-объем выборки
Закон распределения статистики критерия при условии истинности основной гипотезы	F(k-1, n-k)	
Формула расчета критической точки	$f_{1-\alpha}(k-1, n-k)$	α - уровень значимости
Формула расчета <i>p-value</i>		
	(в условиях истинности	
	$p = 1 - F_Z(z)$	

б) Проверить значимость линейной регрессионной модели

Уровень	Выборочное	p-value	Статистическое	Вывод
значимости	значение статистики		решение	
	критерия			
0.01	981.965	0.0	Отклоняем Н0	Модель значимая
0.05			Отклоняем Н0	Модель значимая
0.1			Отклоняем Н0	Модель значимая

9.3 Множественная линейная регрессионная модель

Факторный признак 1 x_1 – A15

Факторный признак 2 x_2 – A5

Результативный признак у –А13

Уравнение регрессии – $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

а) Рассчитать точечные оценки параметров линейной регрессионной модели

Параметр	Формула расчета	Значение
β_0	$\beta^* = (F^T F)^{-1} F^T y$	40.180
β_1	$p = (F \ F) \ F \ y$	0.037
β_2		0.936
'		

б) Записать точечную оценку уравнения регрессии

$$f(x) = 40.180 + 0.037x + 0.936x^2$$

в) Рассчитать показатели вариации, используемые в регрессионном анализе

Источник вариации	Показатель вариации	Число степеней свободы	Несмещенная оценка
Факторный признак	12834.70	2	6885816.550
Остаточные признаки	1195.79	1070	1199.142
Все признаки	14030.492	1072	14043.578

г) Проверить правило сложения дисперсий

Показатель	D_{perp}	D_{ocm}	$D_{o \delta u q}$	$D_{perp} + D_{ocm}$
Значение	12834.70	1195.79	14030.49	14030.49

д) Рассчитать показатели тесноты связи между факторным и результативным признаками

Показатель	Формула расчета	Значение
Множественный коэффициент детерминации	$\frac{D_{\mathrm{perp}}^*}{D_{\mathrm{o}6\mathrm{iii}}^*}$	0.915
Множественное корреляционное отношение	$\sqrt{rac{D_{ ext{perp}}^*}{D_{ ext{o}6 ext{III}}^*}}$	0.956

е) Охарактеризовать тип связи между факторным и результативным признаками, определяемой рассчитанной линейной регрессией

Между факторным и результативным признаками присутствует сильная связь.

9.4. Выводы

а) Сводная таблица показателей вариации для различных регрессионных моделей

Источник	Простейшая	Линейная модель	Множественная
вариации	линейная	с квадратичным	линейная модель
	модель	членом	
Факторный	4589.956	5844.452	12834.70
признак			
Остаточные	9440.535	8186.039	1195.79
признаки			
Все признаки	14030.492	14030.491	14030.492
-			

б) Сводная таблица свойств различных регрессионных моделей

Свойство	Простейшая линейная модель	Линейная модель с квадратичным членом	Множественная линейная модель
Точность	32,7%	41,7%	91,5%
Значимость	да	да	да
Адекватность	неадекватная	неадекватная	адекватная
Степень тесноты связи	заметная	заметная	сильная

Вывод (в терминах предметной области)

В результате проведённого в п.9 статистического анализа обнаружено, что количество профессоров заметно влияет на среднюю компенсацию для всех должностей. Однако количество профессоров в учебном заведении и средняя заработная плата всех профессоров сильно влияет на среднюю компенсацию для всех должностей.