Introduction

Machine Learning Fundamentals

Hubel & Wiesel, 1959

Machine Learning

Field of study that gives computers the ability to learn without being explicitly programmed.

By: Arthur Samuel (1959)

Applications

- Database mining:
 - Web click data, medical records, biology, engineering etc.
- Application that can't be programmed by hand
 - Autonomous helicopter, handwriting recognition, NLP, computer vision
- Self Customizing Programs Recommendation
 - Amazon, Netflix
- Understanding human learning
 - Brain, real AI

Learning Problem

• Well-posed learning problem:

A computer program is said to *learn* from *experience* E with respect to some *task* T and some *performance measure* P, if its performance on T, as measured by P, improves with *experience* E.

• By Tome Mitchell (1998)

Example

Your Email program watches which emails you do or do not mark as a spam and based on that learns how to better filter spam.

• Task (T): Classifying the emails as spam or not

• Experience (E): Watching you label emails as spam or not spam

• Performance (P): The number of emails correctly classified as spam / not spam

Machine Learning Algorithms

- Supervised Learning
- Un-supervised Learning
- Others: Reinforcement learning, recommender system

• Where to apply which algorithms

Housing price prediction.

Supervised Learning:
Right answer given

Regression: Predict continuous valued output

Un-supervised Learning

IPL 2015: We Played one of our Most Perfect Games, says Mumbai Indians All-rounder Kieron Pollard

Kieron Pollard Behaves that Herbhapen Steph's third over changed the game for Mumbes Indiana. Shawn Tay / IPL / SPORT2010S

14

CS 590 Lecture 2

Application of Clustering Algorithms

- Organizing computer clusters
- Social network analysis
- Market segmentation
- Astronomical image/data analysis
- Speaker recognition and many more...

- Given the right answer for each example of the data
 - Classification: discrete no. of outputs
 - Regression: Predict real valued data

Training set of	Size in feet ² (x)	Price (\$) in 1000's (y)
housing prices	2104	460
	1416	232
	1534	315
	852	178

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

$$(x,y)$$
 \rightarrow one training example $x^{(i)} = 2104$ $(x^{(i)},y^{(i)})$ \rightarrow ith training example $y^{(i)} = 460$

How do we represent h

$$h_{\theta}(x) = h(x) = \theta_0 + \theta_1 x$$

Univariate linear regression: linear regression with one variable

Training Set	Size in feet ² (x)	Price (\$) in 1000's (y)
	2104	460
	1416	232
	1534	315
	852	178

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i 's \rightarrow Parameters

How to choose θ_i 's

Hypothesis Function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Squared error function

Goal:
$$\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

m = No. of training samples

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $J(\theta_0, \theta_1)$ = value of the height of the surface

Contour Plots / Figures

11/6/2020

Let some function

$$J(\theta_0, \theta_1)$$

We have to find

$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

- Start with some (θ_0, θ_1) (let say $\theta_0=0, \theta_1=0$)
- Keep changing θ_0 , θ_1 to reduce $I(\theta_0, \theta_1)$ until we hopefully end up at a minimum


```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad (\text{for } j = 0 \text{ and } j = 1) } \alpha = \text{learning rate} \qquad \text{Oj} = \text{Oj} - \propto \frac{\partial}{\partial \text{Oj}} J(\theta_0, \theta_1) \quad \text{jecoll}
```

Implication of α = it controls how bigger steps we are taking over gradient descent

Correct: Simultaneous update X Incorrect:

$$\begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) & \theta_0 := \operatorname{temp0} \\ \theta_0 := \operatorname{temp0} & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} & \theta_1 := \operatorname{temp1} \end{array}$$

Let take a single variable

• we have to minimize $\stackrel{min}{\theta_1} J(\theta_1)$ where $\theta_1 \in R$

So the GD algorithm becomes

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Multivariate Linear Regression

Univariate Hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multivariate Hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$\mathbf{X} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \Theta = \begin{bmatrix} \Theta_0 \\ \Theta_1 \\ \Theta_2 \\ \vdots \\ \Theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \begin{array}{c} \Theta^T x = [\Theta_0 \quad \Theta_1 \quad \dots \quad \Theta_n] \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

where $x_0 = 1$

$$h_{\Theta}(\mathbf{x}) = \Theta^T \mathbf{x}$$

Multivariate Gradient Descent

Hypothesis:
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$ Θ : n+1 dimensional vector Cost function:
$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J(\Theta)$$

Gradient descent:

```
Repeat \{ \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \dots, \theta_n)  \} (simultaneously update for every j=0,\dots,n) J(\Theta)
```

Multivariate Gradient Descent

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{\infty} (h_{\theta}(x_{i}) - y_{i})^{2}$$

Gradient Descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\underbrace{\frac{\partial}{\partial \theta_0} J(\theta)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

Repeat
$$\{$$
 New algorithm $(n \ge 1)$: $\frac{\partial}{\partial \theta_j} J(\theta)$ Repeat $\{$ $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} \}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\}$ $\{$ (simultaneously update θ_j for $j = 0, \dots, n \}$ $\{$ (simul

... to continue

★ Feature Scaling

Feature Scaling

Idea: Make sure features are on a similar scale. $x_1 = \frac{\text{size (feet}^2)}{2000}$

E.g.
$$x_1$$
 = size (0-2000 feet²)

$$x_2$$
 = number of bedrooms (1-5)

$$x_1 = \frac{322 (1007)}{2000}$$

 $x_2 = \frac{\text{number of bedrooms}}{\epsilon}$

$$0 \le x_1 \le 1$$

$$0 \le x_2 \le 1$$

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Logistic Regression: Classification

Threshold classifier output $h_{\theta}(x)$ at 0.5:

If
$$h_{\theta}(x) \geq 0.5$$
, predict "y = 1"

If
$$h_{\theta}(x) < 0.5$$
, predict "y = 0"

Logistic Regression

Linear regression for classification problem is not always good

Classification: y = 0 or 1

 $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Logistic Regression Model

Logistic Regression: $0 \le h_{\theta}(x) \le 1$

Linear Regression: $h_{\theta}(x) = \theta^{T}x$

Logistic Regression:

$$h_{\Theta}(x) = \mathbf{g}(\Theta^T x)$$

$$h_{\Theta}(x) = g(\Theta^T x) \qquad h_{\Theta}(x) = \frac{1}{1 + e^{-\Theta^T x}}$$

Sigmoid Function or Logistic function

Hypothesis Representation

 $h_{\Theta}(x) = \text{estimated probability that y=1 on input x}$

Example: if
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ Object\ Size \end{bmatrix}$$

$$h_{\Theta}(x) = 0.7$$

There is 70% chance that the object is salient

$$h_{\Theta}(x) = p(y=1|x, \Theta)$$

i.e. "probability that y=1, given x, parameterized by Θ"

$$p(y=0|x; \Theta) + p(y=1|x; \Theta) = 1$$

$$p(y=0|x; \Theta) = 1 - p(y=1|x; \Theta)$$

Decision Boundary

Logistic regression

$$h_{\theta}(x) = g(\theta^T x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$

i.e.
$$\Theta^T x \geq 0$$
 predict " $y = 0$ " if $h_{\theta}(x) < 0.5$

$$h_{\Theta}(x) = g(\Theta^T x)$$

i.e. $\Theta^T x < 0$

Suppose predict "
$$y=1$$
" if $h_{\theta}(x) \geq 0.5$ $g(z) \geq 0.5$ when $z \geq 0$

$$h_{\Theta}(x) = g(\Theta^T x) \ge 0.5$$

whenever $\theta^T x \ge 0$

Decision Boundary

Decision boundary is a property of hypothesis function NOT of a data set

Non-Linear Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 \\ + \theta_3 x_1^2 + \theta_4 x_2^2)$$
Let $\theta^T = [-1 \ 0 \ 0 \ 1 \ 1]$

$$Predict "y = 1" if $-1 + x_1^2 + x_2^2 \ge 0$

$$x_1^2 + x_2^2 \ge 1$$

$$x_1^2 + x_2^2 = 1$$
Decision Boundary$$

Again, decision boundary is a property of hypothesis function NOT of a data set

Cost Function

Optimization objective of the cost function

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

m examples
$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 $x_0 = 1, y \in \{0, 1\}$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Cost Function

Cost function

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Let,
$$\operatorname{Cost}(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

So,
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

where, for logistic regression

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function

$$\text{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost = 0 if
$$y = 1, h_{\theta}(x) = 1$$

But as $h_{\theta}(x) \to 0$
 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

It can be shown that the overall cost function is convex function and local optimum free. But details of such convexity analysis is beyond of the scope of this course.

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\text{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\text{Note: } y = 0 \text{ or } 1 \text{ always}$$

$$\text{Cost}(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

$$\text{If } y = 1 : \text{Cost}(h_{\theta}(x), y) = -\log(h_{\theta}(x))$$

$$\text{If } y = 0 : \text{Cost}(h_{\theta}(x), y) = -\log(1 - h_{\theta}(x))$$

Logistic regression cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$\longrightarrow J(\theta) = -\frac{1}{m} [\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))]$$

Principle of Maximum Likelihood Estimation

To fit parameters θ : To make a prediction given new x:

Obtain $\min_{\theta} J(\theta)$

and get Θ

Output:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

For
$$p(y=1|x; \Theta)$$

Cost Function and Gradient Descent

Gradient Descent

$$J(\theta) = -\frac{1}{m} [\sum_{i=1}^m y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)}) \log (1-h_\theta(x^{(i)}))]$$
 Want $\min_\theta J(\theta)$: Repeat $\{$
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 $\}$ (simultaneously update all θ_j)
$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Cost Function and Gradient Descent

Gradient Descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Algorithm looks identical to linear regression!

Gradient descent optimization

- Problems:
 - Choosing step size
 - too small → convergence is slow and inefficient
 - too large → may not converge
 - Can get stuck on "flat" areas of function

Stochastic gradient descent

Stochastic (definition):

- 1. involving a random variable
- 2. involving chance or probability; probabilistic

Stochastic gradient descent

- Application to training a machine learning model:
 - 1. Choose one sample from training set
 - 2. Calculate loss function for that single sample
 - 3. Calculate gradient from loss function
 - 4. Update model parameters a single step based on gradient and learning rate
 - 5. Repeat from 1) until stopping criterion is satisfied
- Typically entire training set is processed multiple times before stopping.
- Order in which samples are processed can be fixed or random.

Multi Class Classification

One vs. All (One vs. Rest)

One vs. All (One vs. Rest)

- Train a logistic regression classifier $h_{\theta}^{(i)}(x)$ for each class i to predict the probability that y=i.
- \star On a new input x, to make a prediction, pick the class i that maximizes

$$\max_{i} h_{\theta}^{(i)}(x)$$

Overfitting

- A hypothesis function h is said to overfit the training data if there is another hypothesis h' such that h' has more error than h on training data but h' has less error than h on testing data.
- Learning a classifier that classifies a training data perfectly may not lead to the classifier with best generalization performance
 - There may be noise in training data
 - Training data set is too small
- Simplistically, overfitting occurs when model is too complex whether underfitting occurs when model is too simple.
- Note: Training error is not a good predictor for the testing error.

Example: Linear regression (housing prices)

Low voience

→ Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Under fit or High bias

Over fit or High variance

- Let's consider D, the entire distribution of data, and T, the training set.
- Hypothesis h ∈ H overfits D if

```
\exists h' \neq h \in H \text{ such that }
```

- (1) $error_{T}(h) < error_{T}(h')$ [i.e. doing well on training set] but
- (2) $error_{D}(h) > error_{D}(h')$
- •What do we care about most (1) or (2)?
- •Estimate error on full distribution by using test data set. Error on test data: Generalization error (want it low!!)
- •Generalization to unseen examples/data is what we care about.

 Data overfitting is the arguably the most common pitfall in machine learning.

Why?

- Temptation to use as much data as possible to train on. ("Ignore test till end." Test set too small.) Data "peeking" not noticed.
- Temptation to fit very complex hypothesis (e.g. large decision tree). In general, the larger the tree, the better the fit to the training data.
- It's hard to think of a better fit to the training data as a "worse" result. Often difficult to fit training data well, so it seems that "a good fit to the training data means a good result."

68

Key figure in machine learning

Note: with larger and larger trees, we just do better and better on the training set!

But note the performance on the validation set degrades!

Note: Similar curves can happen when training too long in complex hypothesis space with lots of parameters to set.

Solutions for Overfitting

- K- fold Cross Validation
- Regularization
- Early stopping
- Drop-out
- Pre or post pruning for decision tree
- Minimum description length (MDL) principle

K- fold Cross Validation

Training Set		Testing Set
Training Set	Validation Set	Testing Set

S1	S2	S3	•••	Sk
51	52	53	•••	SK

Training Set = S

- Trade-off:
- Complex hypothesis fit the data well → may tend to overfitting
- Simple hypothesis may generalize better → may tend to underfitting
- As the training data samples increase, generalization error decreases.

Regularization

Options:

- Reduce number of features.
 - Manually select which features to keep.
 - Model selection algorithm

- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters θ_j .
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Intuition

Suppose we penalize and make θ_3 , θ_4 really small.

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + 1000 \, \theta_{3}^{2} + 1000 \, \theta_{4}^{2}$$

$$\theta_{3} \cong 0 \qquad \theta_{4} \cong 0$$

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n$

- "Simpler" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, \ldots, x_{100}$
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{i=1}^{n} \Theta_j^2$$

Regularization.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$

$$\min_{\theta} J(\theta) \qquad \text{Regularization parameter}$$

- Fitting the data points well
- Keeping the no. of parameters (Os) small

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda = 10^{10}$)?

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Regularized Linear Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

$$\min_{\theta} J(\theta)$$

Gradient descent

Repeat
$$\{$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \underbrace{\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j}_{(j=0,1,2,3,\ldots,n)}$$
 $\{$

11/6/2020

Regularized Linear Regression

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \theta_{j} \right]$$

$$(j = 0, 1, 2, 3, \dots, n)$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$(1 - \alpha \frac{\lambda}{m}) < 1 \qquad \text{Shrinkage} \qquad (1 - \frac{\alpha \lambda}{m})$$

Regularized Logistic Regression

Cost function:

$$J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))\right] + \frac{\lambda}{2m} \sum_{i=1}^{n} \Theta_{j}^{2}$$

Regularized Logistic Regression

$$\theta_j := \theta_j - \alpha \left[\underbrace{\frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \theta_j}_{(j = 0, 1, 2, 3, \dots, n)} \right]$$

For Logistic Regression:

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$\frac{\partial}{\partial \Theta_i} J(\Theta)$$

Support Vector Machine

Optimization objective

Alternative view of logistic regression

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

If
$$y=1$$
, we want $h_{\theta}(x)\approx 1$, $\theta^Tx\gg 0$

If
$$y = 0$$
, we want $h_{\theta}(x) \approx 0$, $\theta^T x \ll 0$

11/6/2020 CS 590 Lecture 3

SVM

Alternative view of logistic regression

Cost of example:
$$-(y \log h_{\theta}(x) + (1-y) \log(1-h_{\theta}(x)))$$

$$= -y \log \frac{1}{1 + e^{-\theta^T x}} - (1 - y) \log(1 - \frac{1}{1 + e^{-\theta^T x}})$$

If y = 1 (want $\theta^T x \gg 0$):

If y = 0 (want $\theta^T x \ll 0$):

SVM

$$\min_{\Theta} \frac{1}{m} \sum_{1}^{m} y^{(i)} Cost_{1}(\Theta^{T} x^{(i)}) + (1 - y^{(i)}) Cost_{0}(\Theta^{T} x^{(i)}) + \frac{\lambda}{2m} \sum_{i=1}^{n} \Theta_{j}^{2}$$

$$A + \lambda B = C A + B$$
 where $C = 1/\lambda$

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

SVM

SVM hypothesis

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Hypothesis:

$$h_{\Theta}(x) = \begin{cases} 1 & if \ \Theta^T x \ge 0 \\ 0 & otherwise \end{cases}$$

SVM: As Large Margin Classifier

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

If y = 1, we want $\theta^T x \ge 1$ (not just ≥ 0)

If y = 0, we want $\theta^T x \le -1$ (not just < 0)

SVM Decision Boundary

$$\min_{\theta} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$

Whenever $y^{(i)} = 1$:

$$\Theta^T x^{(i)} \geq 1$$

Whenever $y^{(i)} = 0$:

$$\Theta^T x^{(i)} \leq -1$$

SVM Decision Boundary

$$\min_{\boldsymbol{\theta}} C \sum_{i=1}^{m} \left[y^{(i)} cost_1(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) + (1 - y^{(i)}) cost_0(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)}) \right] + \frac{1}{2} \sum_{i=1}^{n} \theta_j^2$$
 = $\mathbf{0}$ as C is very big number

Whenever
$$y^{(i)} = 1$$
:

$$\Theta^T x^{(i)} \geq 1$$

Whenever
$$y^{(i)} = 1$$
:
$$\theta^T x^{(i)} \ge 1$$

$$\min_{\theta} C \times 0 + \frac{1}{2} \sum_{i=1}^n \theta_j^2 \text{ i.e. } \min_{\theta} \frac{1}{2} \sum_{i=1}^n \theta_j^2$$

Whenever
$$y^{(i)} = 0$$
:

$$\Theta^T x^{(i)} \leq -1$$

s.t.
$$\Theta^T x^{(i)}$$
 $\begin{cases} \geq 1 & if \ y^{(i)} = 1 \\ \leq -1 & if \ y^{(i)} = 0 \end{cases}$

SVM Decision Boundary

Linearly separable case

Large Margin Classifier

In case of Outliers

C is very large

Sensitive to outliers

Thanks

... to continue