

1 2 3 4 5 6 7 8	Θρ + - + × + ×	Crit Path 2 4 4 3 3 2 1 1	Dep 2,3 4,5 1,6 3	2 3 4 5 1 6 7 8	+ - + × × + × ×	44332211	- V - V 2,3 V - V 4,5 V 1,6 V 3 V
--------------------------------------	--	---	-------------------	--------------------------------------	-----------------	----------	---

target clk = 12 m6 => Critical path 1 Adder [tpadder ttp = + tset + tmux = 5 + 2 +1 + 4 = 12 ms!]

Minimizar a area:

- Primeiramente ver o essencial, no caso os 2 adders e o Mul, destes não nos livramos
- Depois ver area de cada um dos componentes não essenciais ie Mux e Reg
 - o Mux 2:1 = 16
 - o Mux 4:1 = 32
 - o Reg = 10
- A ideia agora é minimizar o numero de componentes dando prioridade ao uso de Reg's, visto que tem área menor que os Mux2:1. Dai usarmos um Reg aux e não um multiplexer para colocar o valor num registo já existente.

Area = 2 x Add + Mul + 4xMux2:1+7x Reg = 2x 16+ 120 +4x 16+7x 10 = 286

$$t_{c|K} = Max \begin{cases} t_{p_{FF}} + t_{p_{MUI}} + t_{p_{MUX}} + t_{SET} = 2 + 1 + 3 + 14 = 20 \text{ ms} \\ t_{p_{FF}} + 2t_{p_{MUX}} + 2t_{p_{Add}} + t_{SET} = 2 + 1 + 2 \times 3 + 2 \times 5 = 14 \text{ ms} \end{cases}$$

Latincy = 20 ms x 3 = 60ms

3.
$$\sigma = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

2.

N = 2048 IX => 18 bit

d) Temos metade das linhas, imas o dobro dosbits mas linhas

b)
$$(x_{1}-\mu): Q_{18.0} \circ Q_{18.11} \Rightarrow Q_{14.11}$$

$$(x_{1}-\mu)^{2}: Q_{14.11} \Rightarrow Q_{38.22}$$

$$\sum_{i=1}^{N}: Q_{38.22} \Rightarrow Q_{38} + \log_{2}(N).22 = Q_{44.22}$$

$$\frac{1}{N}: Q_{44.22} \Rightarrow \text{Basta mover o ponto!!} \quad 11 \text{ bits para a supposition} = Q_{38.33}$$

Permite ler 4 2 por ciclo => 4 MAC's

Critical Path:
$$t_{P_{HUI}} + t_{P_{FF}} + t_{SET} = 12 + 2 + 1 = 15 \text{ ms}$$

Latincy = $5 + \frac{2018}{4} = 517 \times t_{CIK} \approx 7.755 \mu s$

```
ال library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
```

entity addm is

Port (x : in std_logic_vector (15 downto 0);
 y : in std_logic_vector (15 downto 0);
 c : in std_logic_vector (17 downto 0);
 mi : out std_logic_vector (17 downto 0);
 mf : out std_logic_vector (26 downto 0));

end addm;

architecture behavioral of addm is
Signal auxX, auxY : std_logic_vector(25 downto 0);
signal Z1 : signed (26 downto 0);

begin

auxX <= x & "0000000000"; auxY <= (25 to 16 => y(15)) & y; Z1 <= Sig(auxX) + Sig(auxY);

signal Z2: signed (44 downto 0);

Z2 <= Z1 * Sig(c);

mi <= std_logic_vector(Z2(44 downto 27)); mf <= std_logic_vector(Z2(26 downto 0));

end behavioral;

WNS=25-23=2ms

b) Sims, colocar um registo à soida du L2 & iv busco ro estado à souda du L1 & maio de Registate
Ou jodernous forzer output bused sitate assignment
$$t_{CIK} = t_{PRej} + t_{PNU} + t_{SEt} = 17 \text{ mS}$$

c) Como n queremos saber da relação de fase entre o relógio input e output a realimentação pode ser interna ao MMCM, ou seja podemos só ligar o CLKFBOUT ao CLKFBIN diretamente sem buffer.

O relógio externo entre em CLKIN1 e o relógio interno sai no CLKOUTO

$$F_{VCO} = F_{CIK_{im}} \times \frac{M}{D} \qquad \begin{array}{c} M = 8 \\ D = 1 \end{array} \Rightarrow F_{VCO} = 800 \text{ MHz}$$

$$F_{CIK_{out}} = F_{CIK_{im}} \times \frac{M}{D \times G_0} \qquad \begin{array}{c} G_0 = 20 \\ \end{array} \Rightarrow F_{CIK_{out}} = 40 \text{ MHz}$$