$3 \ \blacksquare$ xy 平面上に 3 つの円 A , B , C があって , それぞれ

$$A: x^2 + y^2 = 9$$
, $B: (x-4)^2 + (y-3)^2 = 4$, $C: (x-5)^2 + (y+3)^2 = 1$

で表わされる.この平面上の点 P から円 A , B , C に接線がひけるとき , P からそれらの接点までの距離をそれぞれ $\alpha(P)$, $\beta(P)$, $\gamma(P)$ とする.このとき $\alpha(P)^2+\beta(P)^2+\gamma(P)^2=99$ となる点 P の全体が作る曲線を図示し,その長さを求めよ.