

Mateo Salazar Serrano - 2200135

Jose Miguel Pardo Díaz - 2202004

Juan Camilo Robayo Giraldo - 2214005

La motivación inicial surge de la curiosidad e interés por recrear el sistema utilizado actualmente en centros comerciales como Cacique y Caracolí.

Además, lugares como el centro recreacional Catay (el club recreativo de los profesores de la UIS) aún registran el ingreso de vehículos de forma manual en un cuaderno, lo que puede resultar poco eficiente.

Implementar este sistema les permitiría llevar un control más preciso y agilizar la consulta de registros en el futuro.

¡Empecemos!

EDUE SE ESPERFI DESERROLLAR

Objetivo

Un sistema digital para el registro y control de ingreso de vehículos en establecimientos como centros comerciales y espacios recreativos utilizando técnicas de IA y Visión por computadora.

DRIGET.

TRAIN

VAL

TEST

1526 images

169 images

386 images

MÉTODOS PROPUESTOS

YOLOv8 es la octava versión de la familia YOLO (You Only Look Once), una serie de modelos de detección de objetos en tiempo real. Fue desarrollada por Ultralytics y destaca por ser más precisa, rápida y flexible que versiones anteriores.

Backbone: Extrae características de la imagen.
Neck: Fusiona esas características.
Head: Predice objetos directamente con
bounding boxes.

YOLO-v8n

Más pequeño
Más rápido
Menor Precisión
Muy bajo uso de recursos
Tiempo de entrenamiento corto

3.2 Millones de parámetros

YOLO-v8s

Más grande Más lento Mayor Precisión Uso moderado de recursos Tiempo de entrenamiento largo

11 Millones de parámetros

MÉTODOS PROPUESTOS

YOLO-v8

MÉTODOS PROPUESTOS

YOLO-v5

YOLOv5 es conocida por su gran equilibrio entre precisión, velocidad y facilidad de uso, y fue una de las primeras versiones en ser completamente escrita en PyTorch, lo que facilitó mucho su adopción en la comunidad.

21.2 Millones de parametros

RENDIMIENTO DE MÉTODOS PROPUESTOS

YOLO-v5, - YOLO-v8n - YOLO-v8s

RESULTABLE BREUTHRES

TEST YOLOV8s

RESULTAIDS PRELIMINACES

TEST YOLOV5

Test 1

Test 2

Test 3

X 🗆 _

En imagenes con multiples objetos a identificar, en este caso, placas, el modelo presenta un buen rendimiento identificandolas, con un alto nivel de confianza y señalando correctamente el lugar donde se encuentra cada una, aun cuando una esta diagonal, el modelo lo encierra correctamente

METRICES.

Recall

mAP50/50-95

$$\text{mAP@0.50} = \frac{1}{N} \sum_{i=1}^{N} \text{AP}_{i}^{\text{loU}=0.50}$$

$$mAP_{50:95} = \frac{1}{10} \left(AP_{0.50} + AP_{0.55} + \dots + AP_{0.95} \right)$$

REMINIEMENTO DEL MODELO

PREDICCIÓN DE TEXTO EN PLACAS CON TESSERACT

WCL - 599

eEvY26L

66be6b583048fa	placa_1	0
4c04b488ddc482	placa_1	а
bca2064066;	placa_1	OS
54ebca2064066	placa_2	So
4df1448703257f	placa_1	ae
4df1448703257f	placa_2	ee
621837d55c229	placa_1	а
52bf6b555e578a	placa_1	TB-07-¢
6a0ef049e5ec4b	placa_1	
488722909dd9cl	placa 1	ae

PREDICCIÓN DE TEXTO EN PLACAS CON EASYOCR

EasyOCR es una librería de código abierto para Reconocimiento Óptico de Caracteres (OCR), desarrollada por Jaided AI. Permite extraer texto directamente desde imágenes o documentos escaneados de forma sencilla, rápida y con soporte para múltiples idiomas.

Placa 2: WWWdragon-boat com www.dragon-boat.com

PREDICCIÓN DE TEXTO EN PLACAS CON EASYDCR

SMU002_SMV098.jpg Detectado: SKU00Z, SVV096 Esperado: SMU002, SMV098

imagen	n_placa	texto
EGX799_DUV340.jp	placa_1	EGX799
EGX799_DUV340.jp	placa_2	DUV340
AGD21G.jpg	placa_1	AGD21G
GLT182.jpg	placa_1	GLT182
JNU540.jpg	placa_1	JNU540
SMU002_SMV098.jp	placa_1	SKU00Z
SMU002_SMV098.jp	placa_2	SVV096

Probar con un dataset
de placas colombianas
más alto

<u>Hacer pruebas con</u> <u>otros modelos de OCR</u>

Integrar un flujo continuo
de captura de video con
procesamiento en vivo
mediante YOLOv5

