BI

optical isomer I with which said biological material is reacted is present in a mixture with optical isomer II.

\$2

4. (twice amended) The method according to Claim 10, 11 or 12, wherein said biological material is a whole cell.

63

9. (amended) The method according to Claim 13, 14 or 15, wherein said optical isomer I is a D-form and said optical isomer II is a L-form.

Please add the following new claims.

(10) (new) A method for producing from an optical isomer I of an amino acid represented by Formula (I):

R-CH(NH₂)-COOH

(1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, an optical isomer II, said method comprising reacting a biological material which has an ability of converting said optical isomer I to said optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D alanine, β -chloro-L-alanine or gabaculine, with said optical isomer I, wherein said biological material is one-obtained from a microorganism belonging to the genus *Arthrobacter*, *Klebsiella*, *Nocardia*, *Rhizobium*, *Saccharopolyspora* or *Streptomyces*.

B4

(11). (new) A method for producing from an optical isomer I of an amino acid represented by Formula (I):

R-CH(NH₂)-COOH

(1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, an optical isomer II, said method comprising reacting a biological material which has an ability of converting said optical isomer I to said optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β-chloro-D-alanine, β-chloro-L-alanine or gabaculine, with said optical isomer I, wherein said biological material is one obtained from a microorganism classified to Arthrobacter pascens, Flavimonas oryzihabitans, Klebsiella planticola, Nocardia diaphanozonaria, Pseudomonas chlororaphis, Pseudomonas oleovorans, Pseudomonas oxalaticus, Pseudomonas taetrolens, Rhizobium meliloti, Saccharopolyspora hirsuta or Streptomyces roseus.

(12). (new) A method for producing from an optical isomer I of an amino acid represented by Formula (I):

 $R-CH(NH_2)$ -COOH (1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, an optical isomer II, said method comprising reacting a biological material which has an ability of converting said optical isomer I to said optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with said optical isomer I, wherein said biological material is one obtained from

B4 cm

Arthrobacter pascens strain IFO12139, Flavimonas oryzihabitans strain JCM2952, Klebsiella planticola strain JCM7251, Nocardia diaphanozonaria strain JCM3208, Pseudomonas chlororaphis strain IFO3521, Pseudomonas oleovorans strain IFO13583, Pseudomonas oxalaticus strain IFO13593, Pseudomonas taetrolens strain IFO3460, Rhizobium meliloti strain IFO14782, Saccharopolyspora hirsuta subsp.kobensis strain JCM9109 or Streptomyces roseus strain IFO12818.

(13). (new) A method for improving the optical purity of an amino acid represented by Formula (I):

R-CH(NH₂)-COOH

(1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with said amino acid represented by Formula (I), wherein said biological material is one obtained from a microorganism belonging to the genus *Arthrobacter*, *Klebsiella*, *Nocardia*, *Rhizobium*, *Saccharopolyspora* or *Streptomyces*.

(new) A method for improving the optical purity of an amino acid represented by Formula (I):

R-CH(NH₂)-COON

(1)

wherein R is an optionally substituted C_{\parallel} -C12 alkyl group, an optionally

BH Cont

substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β-chloro-D-alanine, β-chloro-L-alanine or gabaculine, with said amino acid represented by Formula (I), wherein said biological material is one obtained from a microorganism classified to *Arthrobacter pascens*, *Flavimonas oryzihabitans*, *Klebsiella planticola*, *Nocardia diaphanozonaria*, *Pseudomonas chlororaphis*, *Pseudomonas oleovorans*, *Pseudomonas oxalaticus*, *Pseudomonas taetrolens*, *Rhizobium meliloti*, *Saccharopolyspora hirsuta* or *Streptomyces roseus*.

(15). (new) A method for improving the optical purity of an amino acid represented by Formula (I):

 $R-CH(NH_{\chi})-COOH$ (1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with said amino acid represented by Formula (I), wherein said biological material is one obtained from *Arthrobacter pascens* strain IFO12139 *Flavimonas oryzihabitans* strain

Land Canal

Bry Cry

JCM2952, Klebsiella planticola strain JCM7251, Nocardia diaphanozonaria strain JCM3208, Pseudomonas chlororaphis strain IFO3521, Pseudomonas oleovorans strain IFO13583, Pseudomonas oxalaticus strain IFO13593, Pseudomonas taetrolens strain IFO3460, Rhizobium meliloti strain IFO14782, Saccharopolyspora hirsuta subsp.kobensis strain JCM9109 or Streptomyces roseus strain IFO12818.

(f). (new) A method for producing from an optical isomer I of an amino acid represented by Formula (I):

R-CH(NH₂)-COOH

lmt I

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with a racemic mixture of said optical isomers I and II.

(new) A method for producing from an optical isomer I of an amino acid represented by Formula (I):

 $R-CH(NH_2)$ COOH (1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical active isomer II, the

Comment of the Commen

of the second

isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with said optical isomer I.

(new) A method for producing an optically active amino acid having increased optical purity with respect to an optical isomer II of an amino acid represented by Formula (I):

R-CH(NH₂)-COOH

(1)

wherein R is an optionally substituted C1-C12 alkyl group, an optionally substituted C4-C8 cycloalkyl group or an optionally substituted C6-C14 aryl group, said method comprising reacting a biological material which has an ability of converting an optical isomer I of said amino acid to an optical isomer II, the isomerism being on the basis of an asymmetric carbon atom to which both of an amino group and a carboxyl group are bound and said ability being not inhibited seriously by an amino acid transferase inhibitor β -chloro-D-alanine, β -chloro-L-alanine or gabaculine, with a racemic mixture of said optical isomers I and II, wherein the mixture is not a racemic mixture.

19. (new) The method according to Claim 16, 17 or 18, wherein said optical isomer I is a D-form and said optical isomer II is a L-form.

20. (new) The method according to claim 16, 17 or 18, wherein said biological material is one obtained from a microorganism belonging to the genus *Arthrobacter*, *Klebsiella*, *Nocardia*, *Rhizobium*, *Saccharopolyspora* or *Streptomyces*.

21. (new) The method according to claim 16, 17 or 18, wherein said biological

material is one obtained from a microorganism classified to Arthrobacter pascens, Flavimonas oryzihabitans, Klebsiella planticola, Nocardia diaphanozonaria, Pseudomonas chlororaphis, Pseudomonas oleovorans, Pseudomonas oxalaticus, Pseudomonas taetrolens, Rhizobium meliloti, Saccharopolyspora hirsuta or Streptomyces roseus.

22. (new) The method according to claim 16, 17 or 18, wherein said biological material is one obtained from *Arthrobacter pascens* strain IFO12139, *Flavimonas* oryzihabitans strain JCM2952, *Klebsiella planticola* strain JCM7251, *Nocardia* diaphanozonaria strain JCM3208, *Pseudomonas chlororaphis* strain IFO3521, *Pseudomonas oleovorans* strain IFO13583, *Pseudomonas oxalaticus* strain IFO13593, *Pseudomonas taetrolens* strain IFO3460, *Rhizobium meliloti* strain IFO14782, *Saccharopolyspora hirsuta subsp.kobensis* strain JCM9109 or *Streptomyces roseus* strain IFO12818.

BY