PyTorch官方教程中文版

教程介绍

PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由 Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络,这 一点是现在很多主流框架如TensorFlow都不支持的。 PyTorch提供了两个高级功能: 1.具有强大的GPU加速的张量计算(如Numpy) 2.包含自动求导系统的深度神经网络 除了Facebook之外, Twitter、GMU和Salesforce等机构都采用了PyTorch。

官方教程包含了 PyTorch 介绍,安装教程;60分钟快速入门教程,可以迅速从小白阶段完成一个分类器模型;计算机视觉常用模型,方便基于自己的数据进行调整,不再需要从头开始写;自然语言处理模型,聊天机器人,文本生成等生动有趣的项目。

总而言之:

- ·如果你想了解一下 PyTorch,可以看介绍部分。
- ·如果你想快速入门 PyTorch,可以看60分钟快速入门。
- •如果你想解决计算机视觉问题,可以看计算机视觉部分。
- ・如果你想解决自然语言处理问题,可以看NLP 部分。

作者:

磐创 News and PytorchChina

PyTorch 教程目录

PyTorch 之简介与下载

PyTorch 简介

PyTorch 环境搭建

PyTorch 之 60min 入门教程

PyTorch 入门

PyTorch 自动微分

PyTorch 神经网络

PyTorch 图像分类器

PyTorch 数据并行处理

PyTorch 之入门强化教程

数据加载和处理

PyTorch 小试牛刀

迁移学习

混合前端的 seq2seq 模型部署

混合前端

预备环境

保存和加载模型

PyTorch 之图像篇

微调基于 torchvision 0.3 的目标检测模型

微调 TorchVision 模型

空间变换器网络

使用 PyTorch 进行 Neural-Transfer

生成对抗示例

使用 ONNX 将模型转移至 Caffe2 和移动端

PyTorch 之文本篇

聊天机器人教程

使用字符级 RNN 生成名字

使用字符级 RNN 进行名字分类

在深度学习和 NLP 中使用 Pytorch

使用 Sequence2Sequence 网络和注意力进行翻译

PyTorch 之生成对抗网络

生成对抗网络

PyTorch 之强化学习

强化学习

生产环境部署 PyTorch 模型

使用Flask来部署PyTorch模型

TorchScript的简介

在C++中加载TorchScript模型

PyTorch123 配套录制视频教程

网易云课堂,第一节数据处理与加载免费观看

https://study.163.com/course/introduction/1209674804.htm

另外,提供官方教程的一个精简版配套学习资料,书名《Deep Learning with PyTorch》。

下载地址:http://pytorchchina.com/2019/12/02/deep-learning-with-pytorch-pdf/

PyTorch 快速访问地址

镜像网站,快速访问

PyTorch 微信群

PytorchChina

GitHub

https://github.com/fendouai/PyTorchDocs

磐创AI 微信公众号

在公众号后台回复 tensorflow,keras,pytorch 可以获得更多电子书。

PyTorch简介

要介绍PyTorch之前,不得不说一下Torch。Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库,其特点是特别灵活,但因其采用了小众的编程语言是Lua,所以流行度不高,这也就有了PyTorch的出现。所以其实Torch是 PyTorch的前身,它们的底层语言相同,只是使用了不同的上层包装语言。

PYTORCH

PyTorch是一个基于Torch的Python开源机器学习库,用于自然语言处理等应用程序。它主要由 Facebookd的人工智能小组开发,不仅能够 实现强大的GPU加速,同时还支持动态神经网络,这 一点是现在很多主流框架如TensorFlow都不支持的。 PyTorch提供了两个高级功能:* 具有强大的GPU加速的张量计算(如Numpy)* 包含自动求导系统的深度神经网络

除了Facebook之外,Twitter、GMU和Salesforce等机构都采用了PyTorch。

TensorFlow和Caffe都是命令式的编程语言,而且是静态的,首先必须构建一个神经网络,然后一次又一次使用相同的结构,如果想要改变网络的结构,就必须从头开始。但是对于PyTorch,通过反向求导技术,可以让你零延迟地任意改变神经网络的行为,而且其实现速度 快。正是这一灵活性是PyTorch对比TensorFlow的最大优势。

另外,PyTorch的代码对比TensorFlow而言,更加简洁直观,底层代码也更容易看懂,这对于使用它的人来说理解底层肯定是一件令人激动的事。

所以,总结一下PyTorch的优点:*支持GPU*灵活,支持动态神经网络*底层代码易于理解*命令式体验*自定义扩展

当然,现今任何一个深度学习框架都有其缺点,PyTorch也不例外,对比TensorFlow,其全面性处于劣势,目前PyTorch还不支持快速傅里叶、沿维翻转张量和检查无穷与非数值张量;针对移动端、嵌入式部署以及高性能服务器端的部署其性能表现有待提升;其次因为这个框架较新,使得他的社区没有那么强大,在文档方面其C库大多数没有文档。

1. 安装Anaconda 3.5

Anaconda是一个用于科学计算的Python发行版,支持Linux、Mac和Window系统,提供了包管理 与环境管理的功能,可以很方便地解决Python并存、切换,以及各种第三方包安装的问题。

1.1 下载:

可以直接从 Anaconda官网下载,但因为Anaconda的服务器在国外,所以下载速度会很慢,这里 推荐使用清华的镜像来下载。选择合适你的版本下载,我这里选择Anaconda3-5.1.0-Windowsx86_64.exe

1.2 安装

下载之后,点击安装即可,步骤依次如下:

1.2 安装

安装完成后,进行Anaconda的环境变量配置,打开控制面板->高级系统设置->环境变量->系统变量 找到Path,点击编辑,加入三个文件夹的存储路径(注意三个路径之间需用分号隔开),步骤如

编辑系统变量	х
变量名(M):	Path
变量值(V):	:\MATLAB\bin;E:\software\Anaconda3.5
	确定 取消

下:

编辑系统变量	X
变量名(M):	Path
变量值(V):	E:\software\Anaconda3.5\Library\bin
	确定 取消