Assignment - 3

Q-1) Answer the Following

- 1) Define: Disjunction
- 2) Define: Implication
- 3) Ina Boolean Algebra prove that x + x = x
- 4) Using De' Morgan's Law, write the negation of 4 + 2 = 6 and $4 \cdot 2 = 8$
- 5) Simplify the Boolean Expression: $x + x' \cdot (x + y) + y \cdot z$
- 6) Check the validity of the following argument: Hypothesis $S_1: p \to q, S_2: p \to r$ Conclusion $S: p \to (q \land r)$
- 7) Show that S and T are equivalent where S: \sim [p \vee {(\sim p) \wedge (\sim q)}] and T: \sim p \wedge q
- 8) Using truth table, prove that $(p \lor q) \lor r = p \lor (q \lor r)$
- 9) Express $f(a, b) = (a \cdot b) + (a' \cdot b) + (a \cdot b')$ as a product of sum canonical form

nohamec

10) Show that $(D_8, +, \cdot, ', 1, 8)$ is a Boolean Algebra $\forall x, y \in D_8$

$$x + y = LCM \text{ of } x, y$$

 $x \cdot y = GCD \text{ of } x, y$
 $x' = 8/x$