ECE408/CS483/CSE408 Fall 2022

Applied Parallel Programming

Lecture 4: CUDA Memory Model

Course Reminders

- Lab 1 submission deadline is coming up
 - Submission functionality (--submit) is still being worked on...
 - Be sure to submit AND do the MP1 quiz on Canvas
- Lab 2 will be out soon, it is due next Friday

Objective

- To learn the basic features of the memories accessible by CUDA threads
- To prepare for MP-2 basic matrix multiplication
- To learn to evaluate the performance implications of global memory accesses

Executing Thread Blocks

- Threads run concurrently
 - SM maintains thread/block id #s
 - SM manages/schedules thread execution

Thread Scheduling (1/2)

- Each block is executed as 32-thread warps
 - An implementation decision, not part of the CUDA programming model
 - Warps are divided based on their linearized thread index
 - Threads 0-31: warp 0
 - Threads 32-63: warp 1, etc.
 - X-dimension first, then Y, then Z
 - Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many warps are there in an SM?
 - Each block is divided into 256/32 = 8 warps
 - 8 warps/blk * 3 blks = 24 warps

Thread Scheduling (2/2)

- SM implements zero-overhead warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Eligible warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

Example execution timing of an SM

Control (branch) Divergence

- Main performance concern with branching is divergence
 - Threads within a single warp take different paths
 - Different execution paths are serialized in current GPUs
- A common case: divergence when a branch condition is a function of thread ID
 - if (threadIdx.x % 2) { }
 - This creates two different control paths for threads in a warp
 - Has divergence (50% of threads do nothing)
 - if ((threadIdx.x / WARP SIZE) % 2) { }
 - Also creates two different control paths, but...
 - Branch granularity is a whole multiple of warp size;
 - All threads in any given warp follow the same path
 - No divergence

Block Granularity Considerations

- For RGBToGrayscale, should one use 8X8, 16X16 or 32X32 blocks? Assume that in the GPU used, each SM can take up to 1536 threads and up to 8 blocks.
 - For 8X8, we have 64 threads per block. Each SM can take up to 1536 threads, which is 24 blocks. But each SM can only take up to 8 Blocks, only 512 threads (16 warps) will go into each SM!
 - For 16X16, we have 256 threads per block. Since each SM can take up to 1536 threads (48 warps), which is 6 blocks (within the 8 block limit). Thus we use the full thread capacity of an SM.
 - For 32X32, we would have 1024 threads per Block. Only one block can fit into an SM, using only 2/3 of the thread capacity of an SM.

Programmer View of CUDA Memories

Each thread can:

- Read/write per-thread registers (~1 cycle)
- Read/write per-block shared memory (~5 cycles)
- Read/write per-grid global memory (~500 cycles)
- Read/only per-grid constant memory (~5 cycles with caching)

CUDA Variable Type Qualifiers

	Memory	Scope	Lifetime		
		<pre>int LocalVar;</pre>	register	thread	thread
device	shared	int SharedVar;	shared	block	block
device		int GlobalVar;	global	арр.	application
device	constant_	int ConstantVar;	constant	арр.	application

- device
 - optional with <u>shared</u> or <u>constant</u>
 - not allowed by itself within functions
- Automatic variables with no qualifiers
 - in registers for primitive types and structures
 - in global memory for per-thread arrays

Next Application: Matrix Multiplication

- Given two square matrices, M and N, dimensions Width × Width
 - we can multiply M by N
 - to compute a third Width × Width matrix, P:
 - P = MN

In terms of the elements of P, matrix multiplication implies computing...

$$P_{ij} = \sum_{k=1}^{Width} M_{ik} N_{kj}$$

Matrix Multiplication -- Simple CPU Version

```
// Matrix multiplication on the (CPU) host in single precision
void MatrixMul(float *M, float *N, float *P, int Width)
   for (int i = 0; i < Width; ++i)
        for (int j = 0; j < Width; ++j) {
            float sum = 0;
            for (int k = 0; k < Width; ++k) {
               float a = M[i * Width + k];
               float b = N[k * Width + j];
               sum += a * b;
           P[i * Width + j] = sum;
```

Kernel Function - A Small Example

- Have each 2D thread block to compute a (BLOCK_WIDTH)² sub-matrix of the result matrix
 - Each block has (BLOCK_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks
- This concept is called tiling. Each block represents a tile.

A Slightly Bigger Example (BLOCK_WIDTH =2)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}	P _{3,4}	P _{3,5}	P _{3,6}	P _{3,7}
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{5,0}	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}
P _{6,0}	P _{6,1}	P _{6,2}	P _{6,3}	P _{6,4}	P _{6,5}	P _{6,6}	P _{6,7}
P _{7,0}	P _{7,1}	P _{7,2}	P _{7,3}	P _{7,4}	P _{7,5}	P _{7,6}	P _{7,7}

WIDTH = 8; BLOCK_WIDTH = 2 Each block has 2*2 = 4 threads

WIDTH/BLOCK_WIDTH = 4 Use 4* 4 = 16 blocks

A Slightly Bigger Example (cont.) (BLOCK_WIDTH = 4)

P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}	P _{0,4}	P _{0,5}	P _{0,6}	P _{0,7}
P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}	P _{1,4}	P _{1,5}	P _{1,6}	P _{1,7}
P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}	P _{2,4}	P _{2,5}	P _{2,6}	P _{2,7}
P _{3,0}							
P _{4,0}	P _{4,1}	P _{4,2}	P _{4,3}	P _{4,4}	P _{4,5}	P _{4,6}	P _{4,7}
P _{4,0}							
	P _{5,1}	P _{5,2}	P _{5,3}	P _{5,4}	P _{5,5}	P _{5,6}	P _{5,7}

WIDTH = 8; BLOCK_WIDTH = 4 Each block has 4*4 = 16 threads

WIDTH/BLOCK_WIDTH = 2 Use 2* 2 = 4 blocks

Kernel Invocation (Host-side Code)

Kernel Function

```
// Matrix multiplication kernel - per thread code
__global__
void MatrixMulKernel(float *d_M, float *d_N, float *d_P, int Width)
{
    // Pvalue is used to store the element of the matrix
    // that is computed by the thread
    float Pvalue = 0;
```

Work for Block (0,0) for TILE_WIDTH = 2

Work for Block (0,1)

Row = 0Row = 1

Moo	M _{0,1}	Moja	M0,3	$P_{0,0}$	$P_{0,1}$	P ₁	P _{(,3}
M _{1,0}	M _{1,1}	M _{1,2}	M _{1,2}	P _{0,1}	$P_{1,1}$	P _{1,2}	P _{1,3}
M _{2,0}	M _{2,1}	M _{2,2}	M _{2,3}	P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}
M _{3,0}	M _{3,1}	M _{3,2}	M _{3,3}	P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}

N _{0,0}	N _{0,1}	N	J _{,,2}	M),3
N _{1,0}	N _{1,1}	N	J _{.,2}	N	.,3
N _{2,0}	N _{2,1}	N	J _{1,2}	N	2,3
N _{3,0}	N _{3,1}	N	J _{2,3}	N	3,3

A Simple Matrix Multiplication Kernel

```
global
void MatrixMulKernel(float *d_M, float *d_N, float *d_P, int Width)
   // Calculate the column index of d P and d N
   int Col = blockIdx.x * blockDim.x + threadIdx.x;
   // Calculate the row index of d P and d M
   int Row = blockIdx.y * blockDim.y + threadIdx.y;
   if ((Row < Width) && (Col < Width)) {
      float Pvalue = 0;
      // each thread computes one element of d P
      for (int k = 0; k < Width; ++k)
          Pvalue += d M[Row*Width+k] * d N[k*Width+Col];
      d P[Row*Width+Col] = Pvalue;
```

How about performance on a device with 150 GB/s memory bandwidth?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add (2 fp ops)
 - 4B of memory for each FLOP
 - 150 GB/s limits the code at 37.5 GFLOPS
- The actual code runs at about 25 GFLOPS
- Need to drastically cut down memory accesses to get closer to the peak of more than 1,000 GFLOPS

ANY MORE QUESTIONS? READ CHAPTER 4!