Announcements

Supervised learning

- This lecture is based on:
- Murphy's book: Chapters 8, 14

- Ullman's book: Chapter 12

Machine Learning and Data Mining

Logistic Regression

(COMP 5318)

Nguyen Hoang Tran

ullet Learn a mapping function f from ${f x}$ to y

$$y = f(\mathbf{x})$$

- If $y \in \{1, 2, \dots, C\}$ the problem is called c<u>lassification</u>
- If $y \in \mathbb{R}$ the problem is called <u>regression</u>

Quick Review

Nearest Neighbour Classifiers

- Requires three things
- The set of stored records
- Distance Metric to compute distance between records
- The value of k, the number of nearest neighbours to retrieve
- To classify an unknown record:
- Compute distance to other training records
- Identify k nearest neighbours
- Use class labels of nearest neighbours to determine the class label of unknown record (e.g., by taking majority vote)

COMP5318 - Nguyen Hoang Tran

Illustrating Classification Task

COMP5318 - Nguyen Hoang Tran

Test Set

Bayesian Classifiers

- Approach:
- compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ for all values of C using the Bayes' theorem

$$P(C \mid A_1 A_2 ... A_n) = \frac{P(A_1 A_2 ... A_n \mid C) P(C)}{P(A_1 A_2 ... A_n)}$$

- Choose value of C that maximises $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximises $P(A_1,A_2,...,A_n \mid C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Definition of Nearest Neighbour

- (a) 1-nearest neighbor (b)
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbours of a record x are data points that have the k smallest distance to x

COMP5318 - Nguyen Hoang Tran

How to Estimate Probabilities from Data?

#	Refund	Status	Salary	Class	
_	Yes	Single	125K	O	
2	N _o	Married	100K	o	
ω	N _o	Single	70K	O	
4	Yes	Married	120K	o	
σ	N _o	Divorced	95K	Yes	
6	N 0	Married	60K	N _o	
7	Yes	Divorced	220K	O	
œ	N 0	Single	85K	Yes	
9	Z 0	Married	75K	O	
10	No	Single	90K	Yes	
	10 8 7 6 5 4 3 2 1 #		Refund Yes No Yes No No	Refund Status Yes Single No Married No Single Yes Married No Divorced No Married No Single No Single No Single	RefundStatusSalaryYesSingle125KNoMarried100KNoSingle70KYesMarried120KNoDivorced95KNoMarried60KYesDivorced220KNoSingle85KNoMarried75KNoSingle90K

- Class: $P(C) = N_c/N$
- e.g., P(No) = 7/10, P(Yes) = 3/10
- For discrete attributes:

$$P(A_i \mid C_k) = |A_{ik}| / N_{c^k}$$

- where $|A_{ik}|$ is number of and belongs to class C_k instances having attribute A_i
- Examples:

P(Status = Married|No) = 4/7P(Refund=Yes|Yes)=0

-

Naïve Bayes Classifier

- ullet Assume independence among attributes A_i when class is given:
- $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
- Can estimate $P(A_i | C_j)$ for all A_i and C_j
- New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
- Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

CLASS	ACTUAL CLASS					
Class=No	Class=Yes		PRE			
С	Ø	Class=Yes	PREDICTED CLASS			
۵	Ъ	Class=No	ASS			

b: FN (false negative) d: TN (true negative) c: FP (false positive) a: TP (true positive)

Example of Naïve Bayes Classifier

penguin porcupine eel pigeon olatypus jila monster omodo alamander ave Legs non-mammals non-mammals mammals non-mammals non-mammals on-mammals on-mammals nammals on-mammals Class

> A: attributes SYDNEY

 $P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$

N: non-mammals

M: mammals

 $P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$ $P(A|M)P(M) = 0.06 \times \frac{1}{20} = 0.021$

 $P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$

Give Birth Can Fly Live in Water Have Legs Class

P(A|M)P(M) > P(A|N)P(N)=> Mammals

ROC Curve

- SYDNEY of classes (positive and negative)
- any points located at x > t is classified as positive

Cost-Sensitive Measures

SYDNEY

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

$$\operatorname{are}(F) = \frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

d: TN (true negative) c: FP (false positive) b: FN (false negative) a: TP (true positive)

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- Precision is biased towards C(Yes | Yes) & C(Yes | No)
- Recall is biased towards C(Yes | Yes) & C(No | Yes)
- F-measure is biased towards all except C(No | No)

Weighted Accuracy =
$$\frac{w_i a + w_i d}{w_i a + w_i b + w_i c + w_i d}$$

Using ROC for Model Comparison

SYDNEY

- No model consistently outperform the other
- M_I is better for small FPR
- Area Under the ROC
- curve
- Ideal:
- Area = I
- Random guess: • Area = 0.5

ROC Curve

- (0,0): declare everything to be negative class
- (I,I): declare everything to be positive class
- Diagonal line:
- Random guessing
- –Below diagonal line:
- prediction is opposite of the 0

How to construct a ROC curve

ROC Curve: TPR 0.5

18

How to construct a ROC curve

SYDNEY

Instance P(+ A) True Class 1 0.95 + 2 0.93 + 3 0.87 - 4 0.85 - 5 0.85 - 6 0.85 + 7 0.76 - 8 0.53 + 9 0.43 - 10 0.25 +											
	10	9	8	7	6	5	4	3	2	1	Instance
True Class + + + + + + + + + + + + + + + + + +	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	P(+ A)
	+	-	+	1	+	1	1	1	+	+	True Class

- Use classifier that produces posterior probability for each test instance $P(+\mid A)$
- $P(+ \mid A)$ in decreasing order Apply threshold at each unique value of $P(+ \mid A)$
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

Loss functions

Squared error, 0-1 Loss

$$L(y, \hat{y}) = (y - \hat{y})^2$$
$$L(y, \hat{y}) = I(y \neq \hat{y})$$

Minimise risk, (expected risk, empirical risk)

$$R(\hat{f}) = E_{\mathbf{x},y} L(f(\mathbf{x}), \hat{f}(\mathbf{x}))$$

$$\hat{R}(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, \hat{f}(\mathbf{x}_i))$$

COMP5318 - Nguyen Hoang Tran

20

Classification II

Estimation vs Inference

- Learning \tilde{a} s optimisation (frequentist): Given D, choose f to approximate f as closely as possible, so as to minimise (future) expected risk
- Usually compute parameter estimate $\,\hat{ heta}\,$
- Learning as inference (Bayesian): Given D, compute posterior over functions $\ p(f|D)$
- Or posterior over parameters

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Decision theory demonstrates that one of the best ways to minimise frequentist risk is to be Bayesian.

COMP5318 - Nguyen Hoang Tran

22

Loss for density estimation

- Suppose output is $\hat{p}(y|\mathbf{x})$, truth is $p(y|\mathbf{x})$
- Use KL (Kullback-Leibler) divergence

$$L(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = KL(p(y|\mathbf{x}), \hat{p}(y|\mathbf{x})) = \sum_{y} p(y|\mathbf{x}) \log \frac{p(y|\mathbf{x})}{\hat{p}(y|\mathbf{x})}$$

Risk is expected negative log likelihood

$$R(\hat{p}) = -E_{\mathbf{x}} \sum_{y} p(y|\mathbf{x}) \log \hat{p}(y|\mathbf{x}) = -E_{\mathbf{x},y} \log \hat{p}(y|\mathbf{x})$$

Naive Bayes Classifier

Generative model:

$$p(\mathbf{x}, C_k) = p(C_k)p(\mathbf{x}_n|C_k) = \pi \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \Sigma_k)$$

COMP5318 - Nguyen Hoang Tran

Generative vs Discriminative

- $\mathsf{Model} \quad p(y,\mathbf{x}) = p(\mathbf{x}|y)p(y)$

Generative approach

- Use Bayes' theorem $p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(y)}$
- Discriminative approach:
- Model $p(y|\mathbf{x})$ directly

2

Logistic Regression

Discriminative model for binary classification

$$p(y|\mathbf{x}, \mathbf{w}) = \operatorname{Ber}(y|\sigma(\eta)) = \sigma(\eta)^y (1 - \sigma(\eta))^{1-y}$$

$$\eta = \mathbf{w}^T \mathbf{x}$$

$$\sigma(\eta) \stackrel{\text{def}}{=} \frac{1}{1 + \exp(-\eta)} = \frac{e^{\eta}}{e^{\eta} + 1}$$

COMP5318 - Nguyen Hoang Tran

26

THE UNIVERSITY OF

Logistic Regression

Logistic Regression

• Assumes a parametric form for directly estimating $P(Y \mid X)$. For binary concepts, this is:

$$P(Y = 0|X) = \frac{1}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

$$P(Y = 1|X) = 1 - P(Y = 0|X)$$

$$= \frac{\exp(w_0 + \sum_{i=1}^{n} w_i X_i)}{1 + \exp(w_0 + \sum_{i=1}^{n} w_i X_i)}$$

- Equivalent to a one-layer backpropagation neural net.
- Logistic regression is the source of the sigmoid function used in backpropagation.
- Objective function for training is somewhat different.

COMP5318 - Nguyen Hoang Tran

ý

Decision boundary

Logistic Regression in 2D

$$p(y=1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{x})$$

COMP5318 - Nguyen Hoang Tran

Logistic Regression Training

Weights are set during training to maximise the conditional data likelihood:

$$W \leftarrow \underset{W}{\operatorname{argmax}} \prod_{d \in D} P(Y^d \mid X^d, W)$$

example d. where D is the set of training examples and Y^d and X^d denote, respectively, the values of Y and X for

• Equivalently viewed as maximising the conditional log likelihood (CLL)

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W)$$

COMP5318 - Nguyen Hoang Tran

30

SYDNEY

Logistic Regression as a Log-Linear Model

Logistic regression is basically a linear model, which is demonstrated by taking logs.

Assign label
$$Y = 0$$
 iff $1 < \frac{P(Y = 0 \mid X)}{P(Y = 1 \mid X)}$
 $1 > \exp(w_0 + \sum_{i=1}^n w_i X_i)$
 $0 > w_0 + \sum_{i=1}^n w_i X_i$

Also called a maximum entropy model (MaxEnt) is consistent with the training data regression gives the distribution with maximum entropy that because it can be shown that standard training for logistic

Logistic Regression Iraining

Figure 1: Cost vs. performance of six logistic regression algorithms. The dataset had 300 points in 100 dimensions. "CG" is conjugate gradient (section 4), "Coord" is coordinate-wise Newton, "FixedH" is Fixed-Hessian, and "MIS" is modified iterative scaling. CG also has the lowest actual time in Matlab

32

Logistic Regression Training

- Like neural-nets, can use standard gradient descent to objective function. find the parameters (weights) that optimise the CLL
- Many other more advanced training methods are possible to speed up convergence
- Conjugate gradient
- Generalised Iterative Scaling (GIS)
- Modified Iterative Scaling (MIS)
- Limited-memory quasi-Newton (L-BFGS)
- Stochastic gradient descent

29

Multinomial Logistic Regression

- Logistic regression can be generalised to multi-class problems (where Y has a multinomial distribution).
- Effectively constructs a linear classifier for each category.

COMP5318 - Nguyen Hoang Tran

34

Preventing Overfitting in Logistic Regression

(a.k.a. smoothing) by penalising large weights by changing the training objective: To prevent overfitting, one can use regularisation

$$W \leftarrow \underset{W}{\operatorname{argmax}} \sum_{d \in D} \ln P(Y^d \mid X^d, W) - \frac{\lambda}{2} ||W||^2$$

Where λ is a constant that determines the amount of smoothing

This can be shown to be equivalent to assuming a related to $1/\lambda$. Gaussian prior for W with zero mean and a variance

Relation Between NB and Logistic Regression (continued)

- When conditional independence is violated, logistic regression gives better generalisation if it is given sufficient training data.
- GNB converges to accurate parameter estimates faster Regression (O(n) examples). $(O(\log n)$ examples for n features) compared to Logistic
- Experimentally, GNB is better when training data is scarce, logistic regression is better when it is plentiful.

COMP5318 - Nguyen Hoang Tran

Relation Between NB and Logistic

- Regression Naïve Bayes with Gaussian distributions for features (GNB), can be shown to give the same functional form for the
- But converse is not true, so Logistic Regression makes a weaker assumption.

conditional distribution P(Y | X).

Logistic regression is a discriminative rather than data for predicting Y from X. Does not specify a full joint distribution $P(Y \mid X)$ and directly attempts to fit the training generative model, since it models the conditional

33

Summary

- Logistic Regression
- Binary Classification