TASK-1 : TITANIC SURVIVAL PREDICTION ANALYSIS

Author : VISHRUT VERMA Batch : JULY Batch 4 Domain : Data Science

Aim : To Build a Model that predicts whether the Titanic is survived or not.

import numpy as np import pandas as pd import seaborn as sns

import matplotlib.pyplot as plt

df= pd.read_csv("/content/archive.zip") df.head(10)

₹	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	
	0 1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	th
	1 2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	
	2 3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	
	3 4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
	4 5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	
	5 6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q	
	6 7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S	
	7 8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S	
	8 9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S	

Next steps: Generate code with df

View recommended plots

df.shape

→ (891, 12)

df.describe()

3		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fi
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2042
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6934
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9104
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4542
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0000
4	mav •	801 NNNNNN	1 000000	3 000000	80 000000	8 000000	6 000000	512 3201

df['Survived'].value_counts()

→ Survived 0 549 342

Name: count, dtype: int64

#Let visualize the count of Survivals wrt Pclass sns.countplot(x='Survived', hue='Pclass', data=df) → <Axes: xlabel='Survived', ylabel='count'>

df["Sex"]

Name: Sex, Length: 891, dtype: object

 $\label{prop:prop:prop:sum} \begin{tabular}{lll} \#Let's \ Visualize the count of Survivals wrt Gender \\ sns.countplot(x='Survived', hue='Sex', data=df) \end{tabular}$

Look at Survival rate by Sex
df.groupby('Sex')[['Survived']].mean()

df['Sex'].unique()

```
⇒ array(['male', 'female'], dtype=object)
```

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['Sex'] = le.fit_transform(df['Sex'])

df.head()

_ →		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	0	38.0	1	0	PC 17599	71.2833
	4				Ì						>

Next steps: Generate code with df View recommended plots

```
df['Sex'], df['Survived']
```

```
\overline{\mathbf{T}}
    (0
      1
              0
      2
              0
      3
             0
      4
             1
      886
             0
      887
      888
      889
      890
      Name: Sex, Length: 891, dtype: int64,
      1
             1
      3
             1
      4
             0
      886
      887
      888
      Name: Survived, Length: 891, dtype: int64)
```

sns.countplot(x='Survived', hue='Sex', data=df)

→ <Axes: xlabel='Survived', ylabel='count'>

df.isna().sum()

$\overline{\sim}$	PassengerId	a
<u>``</u>	Survived	9
	Survived	0
	Pclass	0
	Name	0
	Sex	0

```
Age
                 177
    SibSp
                   0
    Parch
                   0
    Ticket
                   0
                   0
                 687
    Cabin
    Embarked
                   2
    dtype: int64
# After Dropping non required column
df.drop(['Cabin'], axis=1, inplace=True)
df.final = df
df.head()
₹
       PassengerId Survived Pclass
                                      Name Sex Age SibSp Parch
                                                                  Ticket
                                                                            Fare
                                    Braund,
                         0
                                   Mr. Owen
                                             1 22.0
                                                              0 A/5 21171 7.2500
                                     Harris
                                   Cumings,
                                   Mrs. John
                                    Bradley
     1
                2
                                             0 38 0
                                                              0 PC 17599 71 2833
                         1
                                   (Florence
    {}^{\blacktriangleleft}
            Generate code with df
                                 View recommended plots
 Next steps:
X = df[['Pclass','Sex']]
Y = df['Survived']
from sklearn.model selection import train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0)
from \ sklearn.linear\_model \ import \ LogisticRegression
log = LogisticRegression(random_state=0)
log.fit(X_train, Y_train)
            LogisticRegression
    LogisticRegression(random_state=0)
pred = print(log.predict(X_test))
\rightarrow [0 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 0
     1001101010110011000000001001001001
print(Y_test)
\overline{2}
   495
    648
    278
          0
    31
          1
    255
          1
    780
          1
    837
          0
    215
    833
          0
    Name: Survived, Length: 179, dtype: int64
print(X_test)
\overline{\mathbf{T}}
        Pclass
               Sex
    495
                 1
             3
    648
             3
                 1
    278
             3
    31
             1
                 0
    255
             3
                 0
    780
             3
                 0
    837
             3
                 1
    215
                 0
             1
```

3

1

1

833

372

```
Suggested code may be subject to a license | cdkushan/AD-SALE-PREDICT | import warnings warnings.filterwarnings('ignore')

res= log.predict([[2,0]])

if (res == 1):
    print("Survived")
else:
```

[179 rows x 2 columns]

→ Survived

print("Not Survived")