Оглавление

1	Kon	ибинаторика	2
	1.1	Основные определения	2
	1.2	Множества	3
	1.3	Разбиения	4

Глава 1

Комбинаторика

Лекция 1: Введение

27.09.2023

1.1 Основные определения

Определение 1. Перестановкой называется упорядоченный набор неповторяющихся элементов длины n, состоящий из элементов от 1 до n. Число перестановок: $P_n = n!$

Определение 2. Размещением называется упорядоченный набор неповторяющихся элементов длины k, состоящий из элементов от 1 до n. Число размещений: $A_n^k = n(n-1)(n-2)\cdot\ldots\cdot(n-k+1) = \frac{n(n-1)(n-2)\cdot\ldots\cdot(n-k+1)(n-k)!}{(n-k)!} = \frac{n!}{(n-k)!}$

Определение 3. Сочетанием называется набор неповторяющихся элементов длины k, состоящий из элементов от 1 до n.

Число сочетаний: $C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$

Определение 4. Перестановки с повторениями: $\overline{P_n} = \frac{n!}{n_1! \cdot n_2! \cdot ... \cdot n_k!}$

Определение 5. Размещения с повторениями: $\overline{A_n^k}=n^k$

Определение 6. Сочетания с повторениями: $\overline{C_n^k} = C_{n+k-1}^k$

Пример. (Толкование к сочетаниям с повторениями) Сколькими способами можно разложить пять одинаковых шаров по трём различным ящикам? На число шаров в ящике ограничений нет.

Решение

Представим себе, что ящики стоят вплотную друг к другу. Три та-

ких ящика — это фактически две перегородки между ними. Обозначим шар нулём, а перегородку — единицей. Тогда любому способу раскладывания пяти шаров по трём ящикам однозначно соответствует последовательность из пяти нулей и двух единиц; и наоборот, каждая такая последовательность однозначно определяет некоторый способ раскладывания. Например, 0010010 означает, что в первом ящике лежат два шара, во втором — два шара, в третьем — один шар; последовательность 0000011 соответствует случаю, когда все пять шаров лежат в первом ящике.

Теперь ясно, что способов разложить пять шаров по трём ящикам существует ровно столько же, сколько имеется последовательностей из пяти нулей и двух единиц. А число таких последовательностей равно \mathbb{C}^2_7

1.2 Множества

Теорема 1. (Формула включений-исключений)

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |\bigcup_{i=1}^n A_i| =$$

$$= \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n|$$

Доказательство. (докажем по индукции)

- 1. База индукции: $n=2:|A_1\cup A_2|=|A_1|+|A_2|-|A_1\cap A_2|$
- 2. Переход индукции: $n \to n+1$:

$$|A_1 \cup A_2 \cup \ldots \cup A_{n+1}| = |A_1 \cup A_2 \cup \ldots \cup A_n| + |A_{n+1}| - |(A_1 \cup A_2 \cup \ldots \cup A_n) \cap A_{n+1}| =$$

$$= \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - C$$

$$-\ldots + (-1)^{n-1}|A_1 \cap A_2 \cap \ldots \cap A_n| + |A_{n+1}| - |(A_1 \cap A_{n+1}) \cup (A_2 \cap A_{n+1}) \ldots \cup (A_n \cap A_{n+1})| =$$

$$= \sum_{i=1}^{n} |A_i| - \sum_{1 \le i < j \le n} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| -$$

$$-\ldots + (-1)^{n-1}|A_1 \cap A_2 \cap \ldots \cap A_n| - (\sum_{i=1}^n |A_i \cap A_{n+1}| -$$

$$-\sum_{1 \le i < j \le n} |A_i \cap A_j \cap A_{n+1}| + \dots + (-1)^{n-1} |A_1 \cap A_2 \cap \dots \cap A_{n+1}|) =$$

$$= \sum_{i=1}^{n+1} |A_i| - \sum_{1 \le i < j \le n+1} |A_i \cap A_j| + \sum_{1 \le i < j < k \le n+1} |A_i \cap A_j \cap A_k| - \dots + (-1)^n |A_1 \cap A_2 \cap \dots \cap A_{n+1}|$$

1.3 Разбиения

Определение 7. Пусть A — множество. Имеется A_1, A_2, \dots, A_n . Совокупность этих множеств — разбиение, если: $A = \bigcup_{i=1}^n A_i; A_i \cap A_j = \varnothing$

Определение 8. Пусть у A есть разбиения \mathcal{A} и \mathcal{B} Тогда \mathcal{B} — измельчение \mathcal{A} , если $\forall B_i \in \mathcal{B} \; \exists ! A_j \in \mathcal{A} : B_i \subset A_j$

Определение 9. Произведение разбиений — разбиение, которое является измельчением \mathcal{A} и \mathcal{B} и является самым крупным измельчением.