Lab 5& 6 - Routing Protocols implementation on Packet Tracer

TASKS 1

Application of RIP (routing information protocol) version 1 and version 2

Main Commands

Router(config)# router rip	Enables RIP as a routing protocol.
Router(config-router)# notwork w.x.y.z	w.x.y.z is the network number of the <i>directly connected</i> network you want to advertise.

R1

In order to apply protocol RIP, we will write the following set of commands.

Router(config)#int fa0/0

Router(config-if)#no shutdown

Router(config-if)#ip address 192.168.1.1 255.255.255.0

Router(config-if)#exit

Router(config)#int serial2/0

Router(config-if)#no shutdown

Router(config-if)#clock rate 64000

Router(config-if)#ip address 192.168.2.1 255.255.255.0

Router(config-if)#exit

Router(config)# router rip

Router(config-router)# network 192.168.1.0

Router(config-router)# network 192.168.2.0

Router(config-router)#exit

R2:

In order to apply protocol RIP, we will write the following set of commands on R2 as well.

Router(config)#int fa0/0

Router(config-if)#no shutdown

Router(config-if)#ip address 192.168.2.1 255.255.255.0

Router(config-if)#exit

Router(config)#int serial2/0

Router(config-if)#no shutdown

Router(config-if)#clock rate 64000

Router(config-if)#ip address 192.168.1.2 255.255.255.0

Router(config-if)#exit

Router(config)# router rip

Router(config-router)# network 192.168.1.0

Router(config-router)# network 192.168.2.0

Router(config-router)#exit

RIP V2

There is no big difference between RIP version 1 and version 2 when we are applying them in packet tracer.

Router(config)# router rip

Router(config-router)# version 2

TASKS 2

Application of EIGRP on Packet Tracer

Router(config)# router eigrp 100	Turns on the EIGRP process. 100 is the autonomous system number, which can be a number between 1 and 65,535.
	All routers in the same autonomous system must use the same autonomous system number.
Router(config-router)#metwork 10.0.0.0	Specifies which network to advertise in EIGRP.
Router(config-if)# bandwidth x	Sets the bandwidth of this interface to x kilobits to allow EIGRP to make a better metric calculation.
	TIP: The bandwidth command is used for metric calculations only. It does not change interface performance.
Router(config-router)# no network 10.0.0.0	Removes the network from the EIGRP process.

Just look at some more commands.

Router#show ip eigrp neighbors	Displays the neighbor table.
Router#show ip eigrp neighbors detail	Displays a detailed neighbor table.
	TIP: The show ip eigrp neighbors defail command verifies whether a neighbor is configured as a stub router.
Router#show ip eigrp interfaces	Shows information for each interface.
Router#show ip eigrp interfaces sorial e/e	Shows information for a specific interface.
Router#show ip eigrp interfaces 100	Shows information for interfaces running process 100.
Router#show ip eigrp topology	Displays the topology table.
	TIP: The show ip eigrp topology command shows you where your feasible successors are.
Router#show ip eigrp traffic	Shows the number and type of packets sent and received.
Router#show ip route eigrp	Shows a routing table with only EIGRP entries.

R3:

Router#conf t

Router(config)#router eigrp 10
Router(config-router)#network 192.168.1.0
Router(config-router)#network 192.168.2.0
Router(config-router)#exit

Note:

router eigrp 10

This number '10' is the process ID.

TASKS 3

OSPF application on Packet Tracer

ROUTER 0:

Router(config)#int fa0/0

Router(config-if)#no shutdown

Router(config-if)#ip address 192.168.1.3 255.255.255.0

Router(config-if)#exit

Router(config)#int serial2/0

Router(config-if)#no shutdown

Router(config-if)#clock rate 64000

Router(config-if)#ip address 192.168.2.1 255.255.255.0

Router(config-if)#exit

ROUTER 1:

Router(config)#int fa0/0

Router(config-if)#no shutdown

Router(config-if)#ip address 192.168.3.1 255.255.255.0

Router(config-if)#exit

Router(config)#int serial2/0

Router(config-if)#no shutdown

Router(config-if)#clock rate 64000

Router(config-if)#ip address 192.168.2.2 255.255.255.0

Router(config-if)#exit

Assigning the IP addresses to PCs as follows statically.

Now, as we can see, interfaces are up but the communication is not enabled because we have not applied the protocol yet.

Lets do it.

ROUTER 0 & ROUTER 1:

Router#conf t

Router(config)#router ospf 1

Router(config-router)#network 192.168.1.0 255.255.255.0 area 0 Router(config-router)#network 192.168.2.0 255.255.255.0 area 0

Router(config-router)#network 192.168.3.0 255.255.255.0 area 0 Router(config-router)#exit

After applying protocol successfully, the traffic is flowing.

