Homework 5 Solutions

Ch 14: 10, 22, 42, 48, 51, 55, 60, 62, 67, 73, 78, 80

- **10.** In $\mathbb{Z}[x]$ show that (2x,3) = (x,3). Clearly, $2x \in (x,3)$ so $(2x,3) \subseteq (x,3)$. Conversely, $3x \in (2x,3)$ so $x = 3x 2x \in (2x,3)$.
- **22.** Let R be a finite commutative ring and I be prime. Then R/I is a finite integral domain and hence a field. We have shown before that any finite integral domain is a field, the reason is simple, let a be a non-zero element of a finite integral domain, then $ab = ac \iff a(b-c) = 0 \iff b-c=0 \iff b=c$, so the map $c\mapsto ac$ is 1-1 and hence onto. So ac=1 for some c.
- **42.** Show that $\mathbb{R}[x]/(x^2+1)$ is a field. Consider $\phi: \mathbb{R}[x] \to \mathbb{C}$ given by $x \mapsto i$ (or $x \mapsto -i$) and extended uniquely to $\mathbb{R}[x]$. Clearly, ϕ is a homomorphism and $p(x) \in \ker(\phi) \iff p(i) = 0 \iff (x-i) \mid p(x)$. Since $p(x) \in \mathbb{R}[x] i$ must also be a root, namely, z is a root of p(x) iff \bar{z} is a root of $\bar{p}(z)$, so $(x-i)(x+i) = x^2+1 \mid p(x)$. So $(x^2+1) = \ker(\phi)$.
- **48.** Let $I = \{a + bi \mid a, b \in 2\mathbb{Z}\} = (2, 2i)$. So I is clearly an ideal. There will be four classes, I, 1 + I, i + I, (1 + i) + I and $\mathbb{Z}[i]/I$ will be isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note $\mathbb{Z}[i] = \mathbb{Z} + \mathbb{Z}i$ as an inner direct product and $I = 2\mathbb{Z} + 2\mathbb{Z}i$ and $(\mathbb{Z} + \mathbb{Z}i)/(2z + 2\mathbb{Z}i) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2 \times \mathbb{Z}_2$. This can't be a field, but is an integral domain. (Integral domains are closed under products, fields are not.)
- **51.** In $\mathbb{Z}[x]$ show that $I = \{f(x) \mid f(0) \text{ is even }\} = (x, 2)$. It is clear that $f(x) \in I \iff f(x) = p(x) \cdot x + a$ for $a \in 2\mathbb{Z}$. This has just two elements, I and 1 + I, and $\mathbb{Z}[x]/I$ is isomorphic to \mathbb{Z}_2 . This is a field, so I is maximal, hence prime.
- **55.** In $\mathbb{Z}_5[x]$ let $I = (x^2 + x + 2)$ find a multiplicative inverse to (2x + 3) + I. We are looking for p(x) so that $(2x + 3)p(x) = r(x)(x^2 + x + 2) + 1$. Solved by "guessing" $(2x + 3)(3x + 1) = 6x^2 + 11x + 3 = (x^2 + x + 2) + 1$.
- **60.** In a principal ideal domain, show that every prime ideal is maximal. Let (p) be prime, if (p) were not maximal, then, there is J so that $(p) \subset J \subset R$. But J = (q) since we are in a principal ideal domain and hence $q \mid p$, and so $p = q \cdot r$. But then $p \mid q$ or $p \mid r$. Suppose $p \mid r$, then $r = p \cdot d$ and we have $p = q \cdot r = q \cdot p \cdot d$ so $p \cdot (1 q \cdot d) = 0$ and thus $q \cdot d = 1$ and so q is a unit. This is a contradiction since $(q) \neq R$. A similar argument works if $p \mid q$. In this case, we get r as a unit, so that (p) = (q), again a contradiction.
- **62.** Showing that N(A) is an ideal is straightforward. Suppose $r, s \in N(A)$ so that $r^n, s^m \in A$; let $k = \max\{m, n\}$, then $(r+s)^k = \sum_{i=0}^k \binom{k}{i} r^i s^{k-i}$. In every term either r^i or s^{k-i} will be in A since $i \geq n$ or $k-i \geq m$ for all i. So $(r+s)^k \in A$. That $r \cdot s \in N(A)$ for all $r \in R$ and $s \in N(A)$ is simpler.

Here is even more!

$$N(A) = \bigcap \{J \supset A \mid J \text{ is prime}\}\$$

First notice that for any $r \in R$ with $r^n \in A$, if $A \subset J$ and J is prime, then $r^n \in J$ and hence $r \in J$ (as J is prime). So we have containment $N(A) \subseteq \bigcap \{J \supset A \mid J \text{ is prime}\}$.

Now suppose $r \notin N(A)$, then we want to find a prime ideal J with $A \subset J$ and $r \notin J$. Look at \mathcal{I} being the set of all ideals of R such that $r^n \notin I$ for any n. We can find a maximal such ideal J, we just need to show that J is prime. Suppose $a \cdot b \in J$ and $a, b \notin J$. By maximality, this means that $r^n \in (a) + J$ and $r^m \in (b) + J$ so $r^n = at + s$ and $r^m = bt' + s'$ for $t, t' \in R$ and $s, s' \in J$. This means $r^{n+m} = abtt' + ats' + bt's + ss' \in J$ which is a contradiction, so $a \in J$ or $b \in J$.

- **67.** First notice that by the polynomial division algorithm $p(x) = ax + b \mod x^2 + x + 1$ for all $p(x) \in \mathbb{Z}_2[x]$. So the elements of the field are 0, 1, x, and 1 + x here $x(1+x) + (x^2 + x + 1) = 1 + (x^2 + x + 1)$ so $x^{-1} = 1 + x$ and we see that $\mathbb{Z}_2[x]$ is a field.
- **73.** Show that if R is a PID, then R/I is a PID for all ideals $I \subset R$. Let $J \subset R/I$ be an ideal, then J = J'/I for $J' = \{r \in R \mid r+I \in J\}$. We know J' = (p) in R and so J = (p)/I = (p/I). So R/I is a PID.
- **78.** Show that the characteristic of $R = \mathbb{Z}[i]/(a+bi)$ divides $a^2 + b^2$.

Just for fun here is a 3Blue1Brown video discussing Gaussian numbers and Gaussian primes.

To begin with we have Fact $\mathbb{Z}[i]/(a+bi) \simeq \mathbb{Z}_{a^2+b^2} = \mathbb{Z}/(a^2+b^2) = \mathbb{Z}/(a^2+b^2)\mathbb{Z}$.

For this see here.

So consider the general case where $gcd(a, b) \neq 1$. Notice that in this case there are 0-divisors in R.

First, why is $\mathbb{Z}[i]/(a+bi)$ finite? It turns out that $\mathbb{Z}[i]$ is Euclidean, and hence a PID with the function witnessing that $\mathbb{Z}[i]$ is Euclidean being the mutiplicative norm $n(z) = z \cdot \bar{z}$. (See notes where $\mathbb{Z}[\sqrt{-5}]$ is discussed. $\mathbb{Z}[\sqrt{-5}]$ is definitely not a PID since is irreducible and not prime.) For a proof of this see here.

Claim: $\mathbb{Z}[i]/I$ is finite for every (non-trivial) ideal I.

This is because $\mathbb{Z}[i]/I = \mathbb{Z}[i]/(z)$ for some z and the classes are w + (z) where n(w) < n(z). So if z = a + bi, then w = c + di where $c^2 + d^2 < a^2 + b^2$ and there are only finitely many such integers (c, d). (Integer lattice points in a circle of radius $\sqrt{a^2 + b^2}$.

Now we might just ask what $\mathbb{Z}[i]/(a+bi)$ is and this is an interesting topic. (See here and here.)

Back down to Earth and the problem at hand: Let n be the characteristic of $\mathbb{Z}[i]/(a+bi)$ so we know $n \in (a+bi)$ and so n = (a+bi)(c+di). $\gcd(c,d) = 1$ else we could factor out a common factor and get n' = (a+bi)(a'+d'i) where n' < n contradicting the definition of n. So there is α and β in \mathbb{Z} satisfying $\alpha c + \beta d = 1$. We also have ad + bc = 0 and so we get

$$a\alpha c + a\beta d = a$$
 $b\alpha c + b\beta d = b$
 $\alpha ac - \beta bc = a$ $-\alpha ad + \beta bd = b$

So

$$n = ((\alpha a - \beta b)c - (\alpha a - \beta b)di)(c + di) = (\alpha a - \beta b)(c^2 + d^2)$$

On the other hand we know that

$$n^{2} = n\bar{n} = (a+ib)(a-bi)(c+di)(c-di) = (a^{2}+b^{2})(c^{2}+d^{2})$$

So

$$n = \frac{a^2 + b^2}{\alpha a - \beta b}$$

80. Let $R = \mathbb{Z}[\sqrt{-5}]$ and $I = \{a + b\sqrt{-5} \mid a - b \text{ is even}\}$. Show that I is maximal.

Consider the map

$$\phi(a+b\sqrt{-5}) = \begin{cases} 1 & a-b \text{ is odd} \\ 0 & a-b \text{ is even} \end{cases}$$

Check that $\phi: \mathbb{Z}[\sqrt{-5}] \to \mathbb{Z}_2$ is a surjective homomorphism. The main thing is multiplication where we have

$$\phi((a+b\sqrt{-5})(c+d\sqrt{-5})) = \begin{cases} 1 & (ac-5bd) - (ad+bc) \text{ is odd} \\ 0 & (ac-5bd) - (ad+bc) \text{ is even} \end{cases}$$

We have

$$(ac-5bd) - (ad+bc) = (ac+bd) - (ad+bc) - 6bd = a(c-d) + b(d-c) - 6bd = (a-b)(c-d) - 6bd$$

So (ac - 5bd) - (ad + bc) is odd only when (a - b) and (c - d) are odd. This is what we need here.

Since \mathbb{Z}_2 is a field, I is maximal.

Ch 15: 12, 14, 26, 31, 34, 38, 40, 44, 46, 50, 65, 67