

A dataset

Measures of amphorae from Baetica https://github.comMcotsar LearningBaetica/blob/master/Data/dataDressel.csv

A dataset

We select only the Dressel A from Delicias, the four variates are exterior diameter, interior diameter, rim height, and rim width.

$$X = \begin{pmatrix} 150 & 120 & 44 & 24 \\ 140 & 102 & 46 & 30 \\ 150 & 110 & 45 & 25 \\ 130 & 86 & 44 & 27 \\ 150 & 88 & 30 & 32 \\ 150 & 110 & 44 & 23 \\ 165 & 100 & 41 & 27 \\ 150 & 100 & 53 & 21 \\ 140 & 105 & 56 & 25 \end{pmatrix}$$

Descriptive statistics

The mean vector is:

$$\bar{x} = (147.2, 102.3, 44.8, 26)^{\top}$$

With matrix notations:

$$\bar{x} = X^{\top} \mathbf{1}_n / n$$

This corresponds to the mean of the observed population.

Sample covariance matrix

The covariance matrix is the matrix with elements:

$$s_{jj} = s_j^2 = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$

$$s_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k) = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)$$

That is exactly the definitions in 1D for all pairs of variates. With Matrix Notation:

$$S_u = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})^\top = \frac{1}{n-1} \left(\sum_{i=1}^n x_i x_i^\top - n\bar{x}\bar{x}^\top \right)$$

Sample covariance matrix

► The first term is the raw sums of squares and products (SSP):

$$\sum_{i} x_i x_i^{\top} = X^{\top} X = \left[\sum_{i} x_{ir} x_{is} \right]_{r,s}.$$

For the second term:

$$\bar{x} = X^{\top} \mathbf{1}_n / n,$$

so that we can write:

$$n\bar{x}\bar{x}^{\top} = n(X^{\top}\mathbf{1}_n/n)(X^{\top}\mathbf{1}_n/n)^{\top} = X^{\top}\mathbf{1}_n\mathbf{1}_n^{\top}X$$

Sample covariance matrix

$$S_u = \frac{1}{n-1} (X^{\top} X - X^{\top} (\mathbf{1}_n \mathbf{1}_n^{\top}) X) = \frac{1}{n-1} X^{\top} (I_n - \mathbf{1}_n \mathbf{1}_n^{\top} / n) X$$

Which allows us to define the *corrected SSP* matrix:

$$A = X^{\top} H X,$$

where H is the centering matrix: $H = (I_n - \mathbf{1}_n \mathbf{1}_n^{\top}/n)$

Mean Squares and Products

The mean squares and products is then:

$$S = A/n$$
.

The sample covariance matrix was:

$$S_u = \frac{A}{n-1}$$

so that we have:

$$S_u = \frac{nS}{n-1}$$

Link with dimension 1?

Descriptive?

What can be said of these quantities? What do they represent?

S represents how the data is spread. An interesting quantity: |S| represents the "volume" of the data (c.f. Jacobian).

g

Amphorae Dataset

What code to use in R?

$$S_u = \begin{pmatrix} 94.4 & 33.5 & -20.7 & -4.38 \\ 33.5 & 115 & 28.2 & -20.4 \\ -20.7 & 28.2 & 53.7 & -17.1 \\ -4.38 & -20.4 & -17.1 & 11.8 \end{pmatrix}$$

We can then compute the determinant of this matrix, plot ellipsoid based on it, etc.

Correlation matrix

Reminder: the correlation between two variables X and Y is

$$r_{XY} = \frac{s_{XY}}{\sqrt{s_{XX}s_{YY}}}.$$

This is for a random variable. In our case, we want to compute the correlation between two *samples*.

$$R = \begin{pmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{pmatrix}.$$

That is with a matrix notation:

$$R = D_s^{-1/2} S_u D_s^{-1/2}$$

Amphorae dataset

$$R = \begin{pmatrix} 1 & 0.32 & -0.29 & -0.13 \\ 0.32 & 1 & 0.36 & -0.55 \\ -0.29 & 0.36 & 1 & -0.68 \\ -0.13 & -0.55 & -0.68 & 1 \end{pmatrix}.$$

What can you say about this matrix?

What are these quantities?

Covariance, mean, correlation?

Under which condition on the dataset these statistics have meaning?

What can you say if the dataset comes from a discrete distribution? From a normal distribution? From a distribution that has no mean?

Estimation in Multivariate normal models

- Estimation is more complex: In dimension $p, m \in \mathbb{R}^p$, p variances to estimate, $\binom{p}{2}$ covariances.
 - \Rightarrow without assumptions of independence it becomes quickly computationally infeasible.
- ▶ testing is more complex:
 - ▶ We can use p tests (one per dimension) but in this case it inflates Type 1 error, and reject if at least one should be rejected.
 - ▶ a Mutlivariate test is more adapted (fits the geometry of the problem)

Multivariate Gaussian Model

$$\mathcal{M}_{p,n}(\mathbb{R}) \ni X \sim \mathcal{N}(\mu, \Sigma)^{\otimes n}$$

where $X = [x_i]_i, x_i \in \mathcal{M}_{p,1}(\mathbb{R}).$

i.e. iid observations of a p dimensional Gaussian.

The model writes:

$$\{\mathcal{N}(\mu,\Sigma)^{\otimes n} \mid \mu \in \mathbb{R}^p, \Sigma \in \mathcal{M}_p(\mathbb{R})\}$$

How to estimate the value of the true parameters? Several approaches:

- ▶ Moment method (link with descriptive statistics);
- maximum likelihood;
- ▶ Bayesian methods [not studied here, but very simple in this case].

In our case, both Moment method and ML give the same result.

Maximum likelihood estimation

Observations x_i are independent:

$$\mathcal{L}(x_1, \dots, x_n; \mu, \Sigma)$$

$$= \prod_i f(x_i; \mu, \Sigma)$$

$$= \prod_i \frac{1}{(\sqrt{2\pi})^2 |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x_i - \mu)^\top \Sigma^{-1}(x_i - \mu)\right)$$

$$= \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp\left(-\frac{1}{2} \sum_i (x_i - \mu)^\top \Sigma^{-1}(x_i - \mu)\right).$$

We write
$$A = \sum_{i} (x_i - \bar{x})(x_i - \bar{x})^{\top}$$

Indication: $A \in \mathcal{M}_n(\mathbb{R}), \ \frac{\partial}{\partial A} \log |A| = (A^{-1})^{\top}$.
Clue: $x = Tr(x), \ x \in \mathbb{R}$.

Maximum likelihood estimation

Maximising this likelihood leads to:

$$\begin{cases} \hat{\mu} = \bar{x} \\ \hat{\Sigma} = \frac{1}{n} \sum_{i} (x_i - \bar{x})(x_i - \bar{x})^{\top} = S. \end{cases}$$

 \Rightarrow A needs to be positive definite, it is possible to have degenerate cases in which the data lies in a subspace of measure 0.

Dykstra's Theorem

If $x_1, \ldots, x_n \sim \mathcal{N}(\mu, \Sigma), \ \Sigma > 0$, then:

A is positive definite $\Leftrightarrow n > p$

▶ The covariance estimator is biased. There exists an unbiased version of the estimator $S_u = \frac{n}{n-1}S$.

Invariance principle of MLE

Zehna's Theorem

Let x_1, \ldots, x_n be a random sample from a distribution $F(x; \theta_1, \ldots, \theta_n)$, and $\hat{\theta}_1, \ldots, \hat{\theta}_n$ the corresponding MLE. Then for ϕ any bijective function (bijection, one-to-one), the MLE for $\phi(\theta_1, \ldots, \theta_n)$ is $\phi(\hat{\theta}_1, \ldots, \hat{\theta}_n)$.

A one page article [Zehna, 1966], you can have a look.

Distributions of empirical mean and covar

As seen previously: $\bar{x} = (1/n, \dots, 1/n) \cdot x$ thus:

$$\bar{X} \sim \mathcal{N}(\mu, \Sigma/n)$$

(Strong) Law of Large Numbers If the x_i are independent,

$$\bar{x} \Rightarrow_{n \to \infty}^{a.s.} \mathbb{E}[X].$$

If the x_i are non-correlated,

$$\bar{x} \Rightarrow_{n \to \infty}^{\mathbb{P}} \mathbb{E}[X].$$

Multivariate Central Limit Theorem

Let $(x_i)_i$ be an iid sample from $\mathcal{N}(\mu, \Sigma)$, then:

$$\sqrt{n}(\bar{x}-\mu) \Rightarrow_{n\to\infty}^{\mathcal{L}} \mathcal{N}(0,\Sigma).$$

This is exactly the same as in 1-D, with matrices and vectors instead of reals.

 21

Question

You use Monte Carlo methods to estimate a complex integral:

$$z = \int_{[0,1]^d} f(x) \mathrm{d}x,$$

where $= f : \mathbb{R}^d \to \mathbb{R}$.

- 1. How do you proceed?
- 2. what is the convergence speed of the estimator you got?
- 3. any ideas on how to improve the convergence of the method?
- 4. how to do if you integrate over $A \subset \mathbb{R}^d$?
- 5. how does the convergence change when d increase?

Multivariate Fisher's Theorem

Theorem

Let (x_i) be an iid sample from $\mathcal{N}(\mu, \Sigma)$. Then:

The distribution of \bar{x} and A (the SSP matrix) are independent and,

$$A \sim \sum_{i=1}^{n-1} z_i z_i^{\top},$$

where (z_i) are iid $\mathcal{N}_p(0_p, \Sigma)$.

Wishart's distribution

What is the distribution of $\sum_{i=1}^{n-1} z_i z_i^{\top}$? Let $Z = [z_i]_i$ then $Z^{\top}Z = \sum_{i=1}^{n-1} z_i z_i^{\top}$, is said to follow the Wishart distribution $\mathcal{W}_p(n,\Sigma)$ or $\mathcal{W}_p(\Sigma,n)$, with n degrees of freedom and parameters p and Σ .

- ► There are several results on this distribution that appears on plenty of problems.
- ▶ It is analogous to the χ^2 distribution in dimension 1: for p = 1, $W_1(n, 1) = \chi^2(n)$.

Wishart's distribution

▶ For $(x_i)_{i=1}^n$ sample from $\mathcal{N}(\mu, \Sigma)$:

$$nS = A = X^{\top}HX \sim \mathcal{W}_p(n-1,\Sigma);$$

- if $A \sim W_p(n, \Sigma)$, then $\mathbb{E}[A] = n\Sigma$;
- ▶ if $A_1, ..., A_k$ independent with distribution $W_p(n_1, \Sigma), ..., W_p(n_k, \Sigma)$, then:

$$A_1 + \cdots + A_k \sim W_p(n_1, \ldots, n_k, \Sigma);$$

▶ if $A \sim W_p(n, \Sigma)$ and $C \in \mathcal{M}_{p \times q}(\mathbb{R})$, then:

$$C^{\top}AC \sim \mathcal{W}_q(n, C^{\top}\Sigma C).$$

Special case if $C = (1, ..., 1)^{\top}$:

$$C^{\top}AC \sim \mathcal{W}_1(n, C^{\top}\Sigma C) = C^{\top}\Sigma C\chi_n^2$$

Hotelling's T^2 distribution

Analogous to Student's t-distribution.

Reminder: in 1-D, $\frac{\bar{x}-\mu}{s/\sqrt{n}} \sim \mathcal{T}(k)$

If $z \sim \mathcal{N}_p(0, I)$, and $\mathcal{M}_{p \times p} \ni A \sim \mathcal{W}_p(n, I)$ are independent, then,

$$t^2 = nz^{\top} A^{-1} z$$

follows Hotelling's T^2 distribution with parameters p and n: $T_{n,n}^2$.

Note, the same result holds if $z \sim \mathcal{N}_p(0, \Sigma)$ and $A \sim \mathcal{W}_p(n, \Sigma)$.

Generalised Multivariate Normal Results

Theorem 1

If $z \sim \mathcal{N}_p(\mu, \Sigma)$ is independent from $A \sim \mathcal{W}_p(n, \Sigma)$, then:

$$t^2 = n(x - \mu)^{\top} A^{-1}(x - \mu) \sim T_{p,n}^2.$$

Corollary 2

If \bar{x} is the estimated mean, and S the estimated covariance, then:

$$t^2 = (n-1)(\bar{x} - \mu)^{\top} S^{-1}(\bar{x} - \mu) \sim T_{p,n-1}^2.$$

With $S_u = nS/(n-1)$, we have:

$$t^2 = n(\bar{x} - \mu)^{\top} S_u^{-1}(\bar{x} - \mu) \sim T_{p,n-1}^2.$$

Hotelling's T^2 and F-distribution

Hotelling's T^2 is not a standard distribution, but it is linked with the F-distribution:

$$\frac{n-p+1}{np}t^2 \sim F_{p,n-p+1}.$$

Equivalently

$$T_{p,n}^2 = \frac{np}{n-p+1} F_{p,n-p+1}.$$

Example 3

In dimension 1 (p = 1):

$$\left(\frac{\bar{x}-\mu}{\sqrt{S_u}/\sqrt{n}}\right)^2 \sim T_{1,n-1}^2 = F_{1,n-1} = t_{n-1}^2.$$

Linear transformations

Corollary 4

Let $x \sim \mathcal{N}_p(\mu, \Sigma)$, and y = Cx, where C is $q \times p$, with $q \leq p$. If \bar{x} and S_x are the estimated mean and covariance, then:

$$\bar{y} = C\bar{x} = \mathcal{N}_q(C\mu, C\Sigma C^\top/n)$$

$$nS_y = nCS_x C^\top \sim \mathcal{W}_q(n-1, C\Sigma C^\top)$$

$$(n-1)(C\bar{x} - C\mu)^\top (CS_x C^\top)^{-1}(C\bar{x} - C\mu) \sim T_{q,n-1}^2.$$

Example of use: test

Let x_i be an iid sample from $\mathcal{N}_p(\mu, \Sigma)$. We write \bar{x} and S_u the sample mean and covariance.

▶ Hypotheses, for a μ_0 fixed and specified:

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

▶ we compute the test statistic:

$$t^{2} = n(\bar{x} - \mu)^{\top} S_{u}^{-1}(\bar{x} - \mu) \sim T_{p,n-1}^{2},$$
$$F = \frac{n-p}{(n-1)p} t^{2} \sim F_{p,n-p}.$$

Example of use: test

▶ For a specified α (typically 0.05), we define a region of μ_0 in which under H_0 the data observed would be generated with a probability $1 - \alpha$. It has the form:

$$n(\bar{x} - \mu)^{\top} S_u^{-1}(\bar{x} - \mu) \le \frac{(n-1)p}{n-p} F_{p,n-p;\alpha}.$$

This defines an ellipsoid in the space of μ 's centered on \bar{x} .

ightharpoonup outside of this region, the probability of observing the data is deemed too small and H_0 is rejected.

Similar formulae can be written for S the biased estimator of the covariance.

Example of one sided test

Ex. 3 of the Problem Sheet:

Let $x \sim \mathcal{N}_p(\mu, \Sigma)$, with μ and Σ unknown, let's assume that:

$$\bar{x} = \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}, S = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, n = 6.$$

Solve the test problem: $H_0: \mu = (2, 2/3)^{\top}$ vs $H_1: \mu \neq (2, 2/3)^{\top}$ for $\alpha = 0.05$.

The test statistic writes:

$$\frac{n-p}{p}(\bar{x}-\mu_0)^{\top} S^{-1}(\bar{x}-\mu_0)$$

$$= 2(-1,-1/6) \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} -1 \\ -1/6 \end{pmatrix}$$

$$= 43/27 \simeq 1.6$$

Example of one sided test

We have to compare this value with $F_{n,n-p;\alpha} = 6.944$ (check function qf in R).

As our statistic is smaller than this value:

We cannot reject H_0 we cannot reject H_0 .

Note that we cannot show that H_0 is true under this setting. Note also that exchanging H_0 and H_1 will not help.

In this case, we have two independent samples:

$$x_1, \dots, x_n \sim^{iid} \mathcal{N}_p(\mu_1, \Sigma),$$

 $y_1, \dots, y_m \sim^{iid} \mathcal{N}_p(\mu_2, \Sigma).$

These samples have the same covariance but a different mean (a priori). The estimated means and covariance are \bar{x} and \bar{y} , the estimated covariances are S_x and S_y .

We want to test $H_0: \mu_1 = \mu_2$.

We define $\delta = \mu_1 - \mu_2$, the test hypothesis is then $\delta = 0$.

 34

▶ Distribution of the difference:

$$(\bar{x} - \bar{y}) \sim \mathcal{N}_p(\delta, (n+m)\Sigma/(nm)).$$

▶ We know that:

$$nS_x + mS_y \sim \mathcal{W}_p(n+m-2,\Sigma).$$

▶ We define $S = (nS_x + mS_y)/(n+m)$. Because S_x (resp. S_y) is independent of \bar{x} (resp. \bar{y}), we have that S is independent of $\bar{x} - \bar{y}$.

 \blacktriangleright We compute t^2 :

$$t^{2} = \frac{nm(n+m-2)}{(n+m)^{2}} ((\bar{x}-\bar{y})-\delta)^{\top} S^{-1} ((\bar{x}-\bar{y})-\delta) \sim T_{p,n+m-2}^{2}.$$

▶ Which leads to the test statistic:

$$F = \frac{nm(n+m-p-1)}{p(n+m)^2} ((\bar{x}-\bar{y})-\delta)^{\top} S^{-1} ((\bar{x}-\bar{y})-\delta)$$

 $\sim F_{p,n+m-p-1}.$

▶ A confidence region of order $1 - \alpha$ is then:

$$\left\{ \delta \left| ((\bar{x} - \bar{y}) - \delta)^{\top} S^{-1} ((\bar{x} - \bar{y}) - \delta) \le \frac{p(n+m)^2}{nm(n+m-p-1)} F_{p,n+m-p-1;\alpha} \right\}.$$

Similarly for a rejection region (> instead of \le).

$$\left\{ \delta \left| ((\bar{x} - \bar{y}) - \delta)^{\top} S^{-1} ((\bar{x} - \bar{y}) - \delta) > \frac{p(n+m)^2}{nm(n+m-p-1)} F_{p,n+m-p-1;\alpha} \right\}.$$

Now it is enough to check if $\delta = 0$ is in the rejection region.

Example of Multidimensional normal regression and tests

Measures of amphorae from Baetica

https://github.comMcotsar

LearningBaetica/blob/master/Data/dataDressel.csv

Dataset

number Min. : 1.00 1st Qu.: 24.00 Median : 47.50	excavation Length:470 Class :charact Mode :charact		cter Class:ch	70´ Min. naracter 1st Q	:120.0 Min. u.:160.0 1st Qu	le_diam : 70.00 u.: 90.00 u.: 90.00
Mean : 50.55				Mean	:166.9 Mean	: 94.47
3rd Qu.: 74.00				3rd Q	u.:175.0 3rd Qu	.:100.00
Max. :128.00				Max.	:210.0 Max.	:140.00
rim_h	rim_w	shape_w	rim_inside_h	rim_w_2	protruding_rim	site
Min. :25.00	Min. :15.00	Min. : 5.000	Min. :18.00	Min. : 7.00	Min. : 5.00	Length:470
1st Qu.:34.00	1st Qu.:34.00	1st Qu.: 9.000	1st Qu.:26.00	1st Qu.:28.00	1st Qu.:14.00	Class :character
Median :35.00	Median :37.00	Median :10.000	Median :28.00	Median :31.00	Median :18.00	Mode :character
Mean :35.39	Mean :36.29	Mean : 9.513	Mean :28.38	Mean :30.35	Mean :18.89	
3rd Qu.:37.00	3rd Qu.:40.00	3rd Qu.:10.000	3rd Qu.:30.00	3rd Qu.:34.00	3rd Qu.:23.00	
Max. :56.00	Max. :48.00	Max. :14.000	Max. :45.00	Max. :44.00	Max. :42.00	
>						

We reduce our study to the Dressel D from Delicias and Malpica.

The measures are in cm without uncertainty, I added a Gaussian noise with sd 1 independent to each observation to ease analysis.

Estimators

> colMeans(Deli										
exterior_diam			m_h	rim_w	shape_w				protruding	
170.843955		34.348	870 3	7.990818	8.774759	27.4037	27 31.	878133	15.16	66147
> colMeans(Malp										
exterior_diam	inside_diam	ı ri	m_h	rim_w	shape_w	rim_inside	_h r	im_w_2	protruding	g_rim
165.014347	95.203953	35.638	047 3	6.902172	9.389259	28.3673	57 29.	679128	22.44	41306
> cov(Malpica)										
	exterior_diam	inside_diam	rim_h	rim_w	shape_w r	rim_inside_h	rim_w_2	protrud	ing_rim	
exterior_diam	102.3574656	65.9881182	0.9216169	9.3842732	1.7286023	2.753100	7.9076654	-17.	1853208	
inside_diam	65.9881182	95.8744146	-0.7890684	5.5033154	0.3140279	4.865154	6.7865203	-2.4	4544259	
rim_h	0.9216169	-0.7890684	8.6323077	3.1542544	0.7135214	3.934514	1.3098974	7.	6117989	
rim_w	9.3842732	5.5033154	3.1542544	11.8317916	1.5733241	3.152703	5.2554679	-0.	3993738	
shape_w	1.7286023	0.3140279	0.7135214	1.5733241	2.9069854	1.896117	-0.1021811	1.	6085155	
rim_inside_h	2.7530996	4.8651541	3.9345144	3.1527035	1.8961167	10.939538	2.6628437	8.	8650598	
rim_w_2	7.9076654	6.7865203	1.3098974	5.2554679	-0.1021811	2.662844	11.2686268	-2.	6118438	
protruding_rim	-17.1853208	-2.4544259	7.6117989	-0.3993738	1.6085155	8.865060	-2.6118438	48.	6039097	
> cov(Delicias))									
	exterior_diam	inside_diam	rim_	h rim_v	/ shape_w	rim_inside_h	rim_w_2	protru	ding_rim	
exterior_diam	51.155588	-5.998031	-10.105717	2 9.9225463	1.6136606	-5.5584878	10.4480883	-21	. 6959500	
inside_diam	-5.998031	73.139637	4.229727	4 -3.2584924	-3.8087616	3.1318831	-6.4447282	13	. 5464299	
rim_h	-10.105717	4.229727	8.941287	5 -0.9358570	-0.6890488	3.2393062	-1.7956373	4.	. 2332126	
rim_w	9.922546	-3.258492	-0.935857	0 12.5092371	0.8515161	-3.0604697	9.2884143	-9	.0185737	
shape_w	1.613661	-3.808762	-0.689048	8 0.8515161	2.5173116	-0.3358484	0.9532381	0	.2561426	
rim_inside_h	-5.558488	3.131883	3.239306	2 -3.0604697	-0.3358484	11.8165644	-0.5243239	3	.4597304	
rim_w_2	10.448088	-6.444728	-1.795637	3 9.2884143	0.9532381	-0.5243239	15.8358794	-9	. 6494098	
protruding rim	-21.695950	13.546430	4.233212	6 -9.0185737	0.2561426	3.4597304	-9.6494098	36	. 8424190	

Tests

We want to know if there are significant differences between the amphorae from both sites. We follow the previous strategy with $\delta = 0$.

```
> S = (58*cov(Delicias) + 52*cov(Walpica))/(110)
> F=(52*58*(01))/(8*(110)*110) * (colMeans(Delicias)-colMeans(Malpica))%*%solve(5)%*%(colMeans(Delicias)-colMeans(Malpica))
> print(F)
[.1]
[1,] 5.276236
> print(qF(0,95,8,101))
[1] 2.03138
```

We conclude that the sites provide significantly different Dressel D amphorae.

 41