图到文本生成中的结构信息保持

本论文由腾讯 AI Lab 主导,和厦门大学、西湖大学合作完成。作者提出基于"多视角重建"的损失函数提升文本生成的质量和忠实度,与此同时并没有增加任何模型参数。

Structural Information Preserving for Graph-to-Text Generation

图到文本生成(graph-to-text generation)任务有着广泛的潜在应用,并且已经被应用在机器翻译等任务中。下图显示了两种图结构(语义图和知识图谱),分别表示 "The boy wants the beautiful girl to eat lunch with him." 和 "Above the Veil is an Australian novel and the sequel to Aenir. It was followed by Into the Battle."

现有的该领域工作不断的提出更强大的模型来表示图信息,但模型依然是通过拟合到目标文本的基于语言模型(language modeling loss)的损失函数进行训练的,作为结果,模型会产生流畅的输出,但会丢失许多输入的重要信息。

本文提出了一种通用的基于"多视角重建"的损失函数来辅助模型训练。总的来说,我们提出了多种方法把输入的图投射到目标句子端,让解码器不仅学习输出目标句子,还要输出投射的图结构,这样能够迫使模型在做生成的时候更好的记住输入内容。

上图展示了我们的模型,其中"Encoder-Decoder"代表一种"structural-aware transformer" 的模型,它在多个图到文本生成任务重取得了最好的性能,它用右侧的基于语言模型的损失函数来训练。我们提出两种"多视角重建"的损失函数,它们都是从解码器端进行计算,这样能够强化整个模型的训练(而不是只有编码器)。其中第一种视角(View 1)展现了图投射在目标语言上的形态,它类似于依存树,我们用额外的 Deep Baffine 模型对它进行建模;另外第二种视角(View 2)展示了线性化后的图,我们用一个标准的饿Transformer Decoder 对它进行建模,最后对三部分损失加权得到最终的损失:

$$l_{final} = l_{base} + \alpha l_{auto1} + \beta l_{auto2}$$

为了验证作者在三个图到文本的标准数据集(LDC2015E86, LDC2017T10, WebNLG)上进行验证,分别取得了 2.4+ BLEU score 的提升,分别见表 1、2、3,更多分析结果请参考原文

Model	BLEU	Time
LSTM (Konstas et al., 2017)	22.00	_
GRN (Song et al., 2018)	23.28	_
DCGCN (Guo et al., 2019)	25.70	_
RA-Trans-SA (Zhu et al., 2019)	29.66	_
RA-Trans-F-ours	29.11	0.25
+ Loss 1 (triple relations)	30.47	0.38
+ Loss 2 (linearized graph)	31.13	0.52
+ Both	31.41	0.61

表 1: LDC2015E86 上的结果

Model	BLEU	Meteor
DCGCN	27.60	_
RA-Trans-CNN	31.82	36.38
RA-Trans-F-ours	31.77	37.2
+ Loss 1	33.98	37.5
+ Loss 2	34.13	37.8
+ Both	34.21	38.0

表 2: LDC2017T10 上的结果

Model	BLEU	Meteor
ADAPT	60.59	44.0
GCN_{EC}	55.90	39.0
RA-Trans-F-ours	60.51	42.2
+ Loss 1	61.78	43.6
+ Loss 2	62.29	43.5
+ Both	62.89	44.2

表 3: WebNLG 上的结果