Machine Learning System Design

最新提交作业的评分

80%

1. You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

1/1分

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's accuracy (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.095

The classifier correctly predicted the true positives and the true negatives = 85 + 10, so the accuracy is 95/1000 = 0.095

2. Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

0/1分

Which are the two?

We train a learning algorithm with a small number of parameters (that is thus unlikely to overfit).

✓ We train a model that does not use regularization.

This should not be selected

Even with a very large dataset, some regularization is still likely to help the algorithm's performance, so you should use cross-validation to select the appropriate regularization parameter.

The features x contain sufficient

information to predict y accurately. (For example, one

way to verify this is if a human expert on the domain

can confidently predict y when given only x).

We train a learning algorithm with a

large number of parameters (that is able to

learn/represent fairly complex functions).

Correct

You should use a "low bias" algorithm with many parameters, as it will be able to make use of the large dataset provided. If the model has too few parameters, it will underfit the large training set.

3. Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$.

1/1分

Currently, you predict 1 if $h_{\theta}(x) \geq \text{threshold}$, and predict 0 if $h_{\theta}(x) < \text{threshold}$, where currently the threshold is set to 0.5.

Suppose you increase the threshold to 0.9. Which of the following are true? Check all that apply.

The classifier is likely to now have lower precision

	The classifier is likely to now have lower precision.	
	✓ The classifier is likely to now have lower recall.	
	✓ Correct	
	Increasing the threshold means more $y = 0$ predictions. This will increase the decrease of true positives and increase the number of false negatives, so recall will decrease.	
	The classifier is likely to have unchanged precision and recall, but	
	lower accuracy.	
	☐ The classifier is likely to have unchanged precision and recall, but	
	higher accuracy.	
4.	Suppose you are working on a spam classifier, where spam	1/1分
	emails are positive examples ($y=1$) and non-spam emails are	
	negative examples ($y=0$). You have a training set of emails	
	in which 99% of the emails are non-spam and the other 1% is	
	spam. Which of the following statements are true? Check all	
	that apply.	
	✓ If you always predict non-spam (output	
	y=0), your classifier will have an accuracy of	
	99%.	
	✓ Correct	
	Since 99% of the examples are y = 0, always predicting 0 gives an accuracy of 99%. Note, however, that this is not a good spam system, as you will never catch any spam.	
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
	your classifier will have a recall of 0% and precision	
	of 99%.	
	ightharpoonup If you always predict spam (output $y=1$),	
	your classifier will have a recall of 100% and precision	
	of 1%.	
	✓ Correct	
	Since every prediction is y = 1, there are no false negatives, so recall is 100%. Furthermore, the precision will be the fraction of examples with are positive, which is 1%.	
	✓ If you always predict non-spam (output	
	y=0), your classifier will have a recall of	
	0%.	
	✓ Correct	
	Since every prediction is $y = 0$, there will be no true positives, so recall is 0%.	
5.	Which of the following statements are true? Check all that apply.	1/1 分
	On skewed datasets (e.g., when there are	
	more positive examples than negative examples), accuracy	
	is not a good measure of performance and you should	
	instead use F_1 score based on the	
	precision and recall.	
	\checkmark Correct You can always achieve high accuracy on skewed datasets by predicting the most the same output (the most common one) for every input. Thus the F_1 score is a better way to measure	
	performance.	
	☐ If your model is underfitting the	
	training set, then obtaining more data is likely to	
	help.	
	✓ Using a very large training set	
	makes it unlikely for model to overfit the training	
	data.	

A sufficiently large training set will no examples without doing poorly on the	t be overfit, as the model cannot overfit some of the others.
After training a logistic regression	
classifier, you must use 0.5 as your thres	nold
for predicting whether an example is pos	tive or
negative.	
It is a good idea to spend a lot of time	
collecting a large amount of data before	ouilding
your first version of a learning algorithm.	

✓ Correct