

Pressure Measurements

Experimental Methods for Engineers

Sebastiano Lazzi Gazzini, LEC,

lazzi@lec.mavt.ethz.ch

Overview

- Total and static pressure
 - Boundary layer
- Static Pressure Tappings
- Pressure measurement techniques
 - Pitot tube
 - Pneumatic Probe
 - Fast Response Aerodynamic Probe (FRAP)
- Example

P_{tot} measurement required for efficiency

- P_{tot} is constant in a flow without work transfer (no friction, no heating)
- P_{tot} is a direct measure of efficiency → Need to know P_{tot} to calculate machine's efficiency:

$$\eta_{Compressor} = \frac{\left(P_{tot,ex}\right)^{\frac{\gamma-1}{\gamma}} - 1}{\frac{\overline{T}_{tot,ex}}{T_{tot,in}} - 1}$$

$$P_{tot,ex} > P_{tot,in}$$

 $T_{tot,ex} > T_{tot,in}$

$$\eta_{turbine} = \frac{\frac{T_{tot,ex}}{T_{tot,in}} - 1}{\left(P_{tot,ex} \atop P_{tot,in}\right)^{\frac{\gamma - 1}{\gamma}} - 1}$$

$$\begin{aligned} &\mathsf{P}_{\mathsf{tot},\mathsf{ex}} < \mathsf{P}_{\mathsf{tot},\mathsf{in}} \\ &\mathsf{T}_{\mathsf{tot},\mathsf{ex}} < \mathsf{T}_{\mathsf{tot},\mathsf{in}} \end{aligned}$$

$$P_{tot} = P_S + P_{dyn}$$

Total pressure = static pressure + dynamic pressure

$$P_{tot} = P_S + \frac{1}{2} \cdot \rho \cdot V^2$$
 $\rho = \text{fluid density}$
V = fluid velocity

- Static pressure is equal to total pressure, if V = 0m/s.
- Different names for the same thing:
 - stagnation pressure = total pressure
 - $P_{tot} = P_0$
 - Dynamic head = dynamic pressure

P_{tot} and P_s in Boundary Layer

- Static pressure travels through a shear layer such as Boundary Layer
- A perpendicular hole on a surface wall measures P equal to the centre of the field

Static Pressure Tappings

Static pressure taping parallel to the flow

- Tappings on solid wall
- Local velocity zero
- Any pressure measurement on the wall is static

- Tapping inclination affects accuracy
- Ideally perpendicular to wall surface

Static Pressure Tapping manufacturing

- Drill from both sides
- Connect tube (one side)
- Small hole (other side)

Whistling hole

- Accuracy in location
- Avoid unsteady effect / interactions
- Improve stability

Pressure measurement

Liquids used: • Water

- Alcohol
- Quicksilver (Historic!)

Pressure can be calculated using Pascal's law:

$$\Delta P = \rho \cdot g \cdot \Delta z$$

Challenges:

- 1 bar corresponds to ~10m of H₂O
 → Limited range
- Poor dynamic response

→ Today, commercial products are used to measure the pressure (Keller, Scanivalve, etc.)

Total pressure measurement: Pitot tube

Total pressure is more difficult to be measured:

- Need to reduce the flow velocity to zero: V=0m/s
- Use stagnation point

$$V = \sqrt{\frac{2(P_{tot} - P_S)}{\rho}}$$

Pitot Tube: Where to put the static pressure holes?

5-Hole Probe

$$P_{ave} = \frac{P_2 + P_3 + P_4 + P_5}{4}$$

$$\Delta P = P_2 - P_3 \rightarrow \alpha$$

$$\Delta P = P_4 - P_5 \rightarrow \beta$$

 $P_1 = P_0$ when probe is aligned with flow

P_{ave} ≠static pressure, but an approximation

5 Hole Probe Calibration

$$\frac{P_2 - P_3}{P_1 - P_{ave}} \to \beta$$

$$\frac{P_2 - P_3}{P_1 - P_{ave}} \to \beta \qquad \frac{P_4 - P_5}{P_1 - P_{ave}} \to \alpha$$

$$\frac{P_{tot} - P_1}{P_1 - P_{ove}} \to \mathbf{K}_{tot}$$

$$\frac{P_{tot} - P_1}{P_1 - P_{ave}} \to \mathbf{K}_{tot} \qquad \frac{P_{tot} - P_S}{P_1 - P_{ave}} \to \mathbf{K}_{static}$$

Non dimensionalizing using any Δ_p

4 Hole Probe

- 4 Hole Probe has a different tip shape
- Reduced pitch sensitivity (no P5)
- Other pneumatic probes:
 - 7HP
 - Multihole

Time resolved measurements: FRAP

- FRAP = Fast Response Aerodynamic Probe
- Probe has two holes:
 1 yaw hole (for yaw angle sensitivity) and
 1 pitch hole (for pitch angle sensitivity)
- Piezo resistors on membranes directly at the holes
- Deformation of membranes ~ pressure signal
- Enables time resolved measurements
- Calibration analogue to pneumatic probes

Unsteady measurement example

Stator pitch [-]

0.5

- Stator Relative total pressure measurement at the exit of turbine rotor
- Measured with FRAP
- Blade passing frequency= 2430Hz

0.76

→ Pressure measurements at the exit of an axial compressor using 5HP

Stator

Conventional
Way of Plotting
Velocity
Triangles

(1)

Rotor

(2)

Stator

(3)

(3)

→ Velocity Triangles

- Post Process the data with MATLAB and present the following flow parameters:
 - P_{tot}, P_{stat}
 - Mach number
 - Yaw angle, Pitch angle
 - Velocities V_x, V_r, V_⊙

- 2D plots over the pitch
- mass averaged plots over the span
- Produce Velocity Triangles

