Project Report: Stock Price Prediction Using LSTM

Intern Name: Pyata Nandini

Internship Title: Tech Internship at Cloudcredits Internship Duration: April 4, 2025 – June 4, 2025 Project Title: Stock Price Prediction Using LSTM

Submission Date: [June 4,2025]

Acknowledgment

I would like to express my sincere gratitude to Cloudcredits for providing this internship opportunity and supporting my learning experience. I am also thankful to my mentors and peers for their continuous guidance throughout the internship period.

Table of Contents

- 1. Introduction
- 2. Objective
- 3. Technology Stack
- 4. Methodology
- 5. Implementation Details
- 6. Results and Evaluation
- 7. Conclusion
- 8. References
- 9. Appendix

1. Introduction

Stock price prediction is a significant challenge in the finance domain. Traditional statistical methods often fail to capture the complex patterns in stock market data. In this project, we implement a Long Short-Term Memory (LSTM) neural network to predict stock prices using historical data. The model is trained and tested on real stock data fetched using the yfinance library.

2. Objective

To build and evaluate an LSTM-based deep learning model that can predict the future closing price of a stock using historical closing prices.

3. Technology Stack

- **Programming Language:** Python
- Environment: Jupyter Notebook / Google Colab
- Libraries Used:
 - o numpy
 - o pandas
 - o matplotlib
 - o scikit-learn
 - o keras
 - o tensorflow
 - o yfinance

4. Methodology

1. Data Collection:

- o Data was retrieved from Yahoo Finance using yfinance.
- o The stock symbol was used to fetch historical closing prices.

2. Data Preprocessing:

- o Normalization using MinMaxScaler
- o Creating training sequences of past 60 time steps
- Splitting data into training and testing sets

3. Model Building:

- Constructed an LSTM model using Keras
- Added Dense layers for output
- o Used mean squared error as the loss function

4. Training and Evaluation:

- Trained the model on training data
- o Plotted predictions against actual values for evaluation

5. Implementation Details

- LSTM model architecture:
 - o Input layer with 60 time steps
 - o LSTM layer with 50 units
 - o Dense output layer
- Optimizer: Adam
- Loss: Mean Squared Error

Visualization using matplotlib to compare predicted vs actual prices

Code Snippet:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import LSTM, Dense
import yfinance as yf
# Load stock data
data = yf.download('AAPL', start='2010-01-01', end='2020-01-01')
closing prices = data['Close'].values.reshape(-1, 1)
# Normalize the data
scaler = MinMaxScaler(feature range=(0, 1))
scaled data = scaler.fit transform(closing prices)
# Prepare training data
x train, y train = [], []
for i in range(60, len(scaled data)):
    x train.append(scaled data[i-60:i, 0])
    y train.append(scaled data[i, 0])
x train, y train = np.array(x train), np.array(y train)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
# Build LSTM model
model = Sequential()
model.add(LSTM(units=50, return sequences=False,
input shape=(x train.shape[1], 1)))
model.add(Dense(units=1))
# Compile and train
model.compile(optimizer='adam', loss='mean squared error')
model.fit(x train, y train, epochs=10, batch size=32)
```

• LSTM Model Summary:

6. Results and Evaluation

- The model was trained successfully and provided good predictions visually aligned with actual trends.
- RMSE was used to evaluate model performance.
- The results showed the model could effectively learn from past data to predict future values within a reasonable error range.

Graphs:

• Training vs Validation Loss Curve:

These visualizations helped in understanding the learning progress of the model and how close the predicted values were to the actual values.

7. Conclusion

This project demonstrated how LSTM models can be used to predict stock prices. The accuracy of the model was sufficient for short-term trend analysis. Future improvements could involve adding more features like volume, open/high/low prices, and tuning hyperparameters.

8. References

- https://github.com/034adarsh/Stock-Price-Prediction-Using-LSTM
- https://keras.io/
- https://www.tensorflow.org/
- https://pandas.pydata.org/
- https://finance.yahoo.com/

9. Appendix

Complete code for the model is provided in the attached Jupyter Notebook file named LSTM model.ipynb. All steps from data loading to prediction are documented and reproducible.

GitHub Link: https://github.com/Pyatanandini/Cloudcredits.git

End of Report