F.E. Semester-II (Revised Course 2007-08) EXAMINATION MARCH 2021 **Applied Mathematics-II**

[Duration	: Two Hours]	Total Marks: 60]
Instruction	Answer THREE FULL QUESTIONS with ONE QUI ANY THREE MODULES. 2) Assume suitable data if necessary Module -I	ESTION from
Q.1	Assuming the validity of differentiation under integral prove that $\int_{o}^{\infty} \frac{\log(1+\alpha x^{2})}{x^{2}} dx$	dx = 7
1	Find the length of the cardiode $r = a(1 + \cos \theta)$ lying outside $r = a$	7
C	Find the surface area of the surface generated by the revolution of $x = \frac{y^3}{3}$; $0 \le y \le 1$ about the y-axis	6
Q.2	Show that $\bar{r}(t) = Ae^{2t}\bar{\iota} + Be^{-3t}\bar{\jmath}$ satisfies $\frac{d\bar{r}^2}{dt^2} + \frac{d\bar{r}}{dt} - 6\bar{r} = 0$	6
ŀ	b) State and prove serret – Fernet formula	7
C	Find the principal normal N and binormal B of $\bar{r}(t) = sint\hat{\imath} + (t+1)\hat{\jmath} + cost\hat{k} \text{ at } t = \frac{\pi}{2}$	7
	Module –II	
	 Evaluate ∫∫_R(x² - y²)dxdy where R is the triangle whose vertices are (0,0) (1, (0,1) Write the following as one double integral and evaluate 	0) and 6
0)	$\int_{-1}^{0} \int_{0}^{x+1} 2y + 3 dx dy + \int_{0}^{1} \int_{0}^{1} 2y + 3 dx dy$	
(Evaluate $\iint_R r \sin\theta + 3dr do$ over the region $\{1 \le r \le 2\cos\theta; \ 0 \le \theta \le \frac{\pi}{3}\}$	6
Q.4 a	Find the area bounded by $y = x^2$ and $y = 2x + 3$	6
	Evaluate $\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^1 3r^3 \cos^2 \theta dr d\theta d\phi$	7
	Use triple integration to find the volume of the 3-D region bounded by $x^2 + y^2 = 0$	= g Z $=$ 7

5X4=20

5X4=20

0 and Z = 2

Module -III

- Q.5 a) Find the directional derivative of $f(x, y, Z) = xy^2 + xZ^3$ at (2, -1, 1) in the direction of $\hat{i} + 2\hat{j} + 2\hat{k}$
 - b) Find the unit normal to the surface $x^2 + y^2 + Z^2 = 25$ at the point (4,3,0)
 - c) Define divergence of a vector field show that $\nabla \cdot (\nabla f) = \nabla^2 f$
 - d) Show that $\overline{F} = (x^2 y^2 + x)\hat{\imath} (2xy + y)\hat{\jmath}$ is irrotational and hence find its scalar potential. Also find the line integral of \overline{F} from (1,2) to (2,1)
- Q.6 a) Verify greens theorem in the plane for $\oint_c (xy+1)dx + (4x^2)dy$ where C is the boundary of the region bounded by y=0, x=1 and y=x
 - b) Verify stokes theorem for $\overline{F} = xy \hat{\imath} 2yZ\hat{\jmath} Z\hat{k}$ where S is the open surface bounded by x=0, x=1, y=0, y=2 and Z=3 excluding the XY plane

Module -IV

Q.7 a) Solve the following differential equations

a)
$$e^{y}(1+x^{2})\frac{dy}{dx}-2x(1+e^{y})=0$$

b)
$$\frac{dy}{dx} + \frac{y}{x} = x^3 y^4$$

c)
$$\frac{dy}{dx} = \frac{x+2y+1}{2x+4y+3}$$

d)
$$(1 + xy)ydx + (1 - xy)xdy = 0$$

Q.8 Solve the following differential equations

a)
$$(D^2 + 2D + 1)y = e^{3x} + 5$$

b)
$$(D^2 + 3D - 4)y = e^{-2x}Sin 3x$$

c)
$$(D^2 - D - 6)y = 3x^2 - 5x + 2$$

$$d) (D^2 + 1)y = tanx$$