31. Определен интеграл. Дефиниция и свойства. Интегруемост на непрекъснатите функции. Теорема на Нютон-Лайбниц

Деф:

Разбиване на интервала [a,b] наричаме всяко множество от точки $\tau\coloneqq\{x_0,x_1,\dots,x_n\}$, т.ч. $a=x_0< x_1<\dots< x_n=b$. Пишем още $\tau\colon a=x_0< x_1<\dots< x_n=b$ Точките x_0,x_1,\dots,x_n се наричат **делящи**. Диаметър на разбиването наричаме $d(\tau)\coloneqq\max_{i=1,\dots,n}(x_i-x_{i-1})$

Точките c_1, c_2, \dots, c_n наричаме **междинни за разбиването** τ : $a = x_0 < x_1 < \dots < x_n = b$, ако $c_i \in [x_{i-1}, x_i], \qquad i = 1, 2, \dots, n$

Деф:

Нека $f\colon [a,b] \to \mathbb{R}, \; \tau\colon \; a=x_0 < x_1 < \dots < x_n=b$ е разбиване на [a,b] и c_1,c_2,\dots,c_n са междинни точки за τ . Риманова сума на f(x) по разбиването τ и междинните точки c_1,c_2,\dots,c_n наричаме сумата

$$R_{\tau} \coloneqq R_{\tau}(f) \coloneqq \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

Деф: Риманов интеграл. Интегруемост по Риман

Нека $f:[a,b] \to \mathbb{R}$. Казваме, че римановите суми на f(x) клонят към $I \in \mathbb{R}$ (или имат граница I) при диаметър на разбиването клонящ към 0 ($d(\tau) \to 0$), ако

 $\forall \varepsilon > 0 \quad \exists \delta > 0: \quad |R_{\tau}(f) - I| < \varepsilon$

За всяко разбиване au с $d(au) < \delta$ и всеки междинни точки. Пишем

$$\lim_{d(\tau)\to 0} R_{\tau}(f) = I$$

Числото I се нарича **риманов определен интеграл** на f(x) върху интерв. [a,b] и се означава с

$$\int_{a}^{b} f(x) dx := I = \lim_{d(\tau) \to 0} R_{\tau}(f)$$

Ако f(x) има риманов определен интеграл върху [a,b], казваме, че f(x) е **интегруема** (в смисъл на Риман) върху [a,b]

Деф: суми на Дарбу

Нека $f\colon [a,b] o \mathbb{R}$ е ограничена. За разбиване $\tau\colon \ a=x_0 < x_1 < \dots < x_n = b$ на [a,b] дефинираме съответно малка и голяма сума на Дарбу на f(x) чрез

$$s_{\tau} \coloneqq s_{\tau}(f) \coloneqq \sum_{\substack{i=1 \ n}}^{n} m_i (x_i - x_{i-1}), \qquad m_i \coloneqq \inf_{x \in [x_{i-1}, x_i]} f(x),$$

$$S_{\tau} \coloneqq S_{\tau}(f) \coloneqq \sum_{i=1}^{i=1} M_i(x_i - x_{i-1}), \qquad m_i \coloneqq \sup_{x \in [x_{i-1}, x_i]} f(x),$$

Твърдение:

При добавяне на нови делящи точки, малките суми на Дарбу не намаляват, а големите - не нарастват.

Доказателство:

Достатъчно е да докажем твърдението за една деляща точка, общият случай ще следва след повторение на тази стъпка.

Ще разгледаме малките суми на Дарбу. Твърдението за големите се доказва аналогично или използвайки $S_{\tau}(f) = -s_{\tau}(-f)$.

Нека au_1 : $a=x_0 < x_1 < \cdots < x_n = b$ е разбиване на [a,b] и au_2 е разбиването на [a,b], което се получава от au_1 с добавяне на деляща точка x'. Нека $x' \in (x_{j-1},x_j)$. Тогава

$$s_{\tau_2} - s_{\tau_1} = m'_j (x' - x_{j-1}) + m''_j (x_j - x') - m_j (x_j - x_{j-1}),$$

$$s_{ au_2} - s_{ au_1} = m_j' \left(x' - x_{j-1} \right) + m_j'' \left(x_j - x' \right) - m_j \left(x_j - x_{j-1} \right),$$
 където $m_j \coloneqq \inf_{x \in \left[x_{j-1}, x_j \right]} f(x)$, $m_j' \coloneqq \inf_{x \in \left[x_{j-1}, x' \right]} f(x)$, $m_j'' \coloneqq \inf_{x \in \left[x', x_j \right]} f(x)$ Имаме m_j' , $m_j'' \ge m_j$. Следователно $s_{ au_2} - s_{ au_1} = m_j' \left(x' - x_{j-1} \right) + m_j'' \left(x_j - x' \right) - m_j \left(x_j - x_{j-1} \right)$

имаме
$$m_j, m_j \ge m_j$$
. Следователно
$$s_{\tau_2} - s_{\tau_1} = \underbrace{m_j'}_{\ge m_j} \left(x' - x_{j-1} \right) + \underbrace{m_j''}_{\ge m_j} \left(x_j - x' \right) - m_j \left(x_j - x_{j-1} \right)$$
$$s_{\tau_2} - s_{\tau_1} \ge m_j \left(x' - x_{j-1} + x_j - x' - x_j + x_{j-1} \right) = 0$$

$$s_{\tau_2} - s_{\tau_1} \ge m_j (x' - x_{j-1} + x_j - x' - x_j + x_{j-1}) = 0$$

Деф: Горен и долен интервал на Дарбу

Нека $f \colon [a,b] o \mathbb{R}$ е ограничена. Горен интеграл на Дарбу наричаме $\bar{I} = \inf_{\tau} S_{\tau} - \mathsf{долна}$ граница на големите суми

Долен интеграл на Дарбу наричаме

$$\underline{I} = \sup_{\tau} s_{\tau} - \operatorname{горна}$$
граница на малките суми

Ако $\underline{I} = \overline{I}$, казваме, че f(x) е интегруема върху [a,b] и общата стойност на \underline{I} и \overline{I} наричаме **определн интеграл** на f(x) върху [a,b]

Твърдение:

Функцията f е интегруема по Риман в [a,b] т.с.т.к. $\forall \varepsilon>0\;\;\exists \tau$ - разбиване на [a,b], т.ч $S_{ au}-S_{ au}<arepsilon$

Доказателство:

Нека f(x) е интегруема, тогава $I = \underline{I} = \overline{I}$, т.е.

$$I := \sup_{\tau} s_{\tau} = \inf_{\tau} S_{\tau}$$

Нека $\varepsilon>0$ е произволно. Числото $I-\frac{\varepsilon}{2}$ не е горна граница на множеството от малките суми на Дарбу, следователно съществува $s_{ au_1}$, т.ч.

$$s_{\tau_1} > I - \frac{\varepsilon}{2}$$

Аналогично, $I+\frac{\varepsilon}{2}$ не е долна граница на множеството от големите суми на Дарбу, следователно съществува $S_{ au_2}$, т.ч.

$$S_{\tau_2} < I + \frac{\varepsilon}{2}$$

Получихме, че
$$S_{ au_2} - s_{ au_1} < I + rac{arepsilon}{2} - \left(I - rac{arepsilon}{2}
ight) = arepsilon$$

Образуваме разбиването $au \coloneqq au_1 \cup au_2$. От предното твърдение следва че

$$S_{\tau} - s_{\tau} \le S_{\tau_2} - s_{\tau_1} < \varepsilon$$

Обратно, нека $\varepsilon>0$ е произволно. Тогава съществува разбиване τ , т.ч. $S_{\tau}-s_{\tau}<\varepsilon$. Следователно $ar{\mathbf{I}}$ - $\underline{\mathbf{I}} \leq S_{ au} - s_{ au} < arepsilon$. Така установихме, че $\ 0 \leq ar{\mathbf{I}}$ - $\underline{\mathbf{I}} < arepsilon \quad \forall arepsilon > 0$.

Следователно $\underline{I} = \overline{I}$ и f(x) е интегруема върху [a,b]

Твърдение:

Всяка непрекъсната функция в краен и затворен интервал е интегруема по Риман

Доказателство:

Нека $f:[a,b]\to\mathbb{R}$ е непрекъсната. Нека $\varepsilon>0$ е произволно. От теоремата на Кантор имаме, че f(x) е равномерно непрекъсната в [a,b]. Т.е.

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \colon \quad \left| f(x_1) - f(x_2) \right| < \epsilon \quad \forall x_1, x_2 \in [a, b], \text{ t.ч. } \left| x_1 - x_2 \right| < \delta$$

Избираме разбиване τ , т.ч. $d(\tau) < \delta$. Нека образуваме S_{τ} и S_{τ} с подходящ избор на $M_i, m_i, i \in \{1, ..., n\}$ Тогава

$$S_{\tau} - S_{\tau} = \sum_{i=1}^{n} (M_i - m_i)(x_i - x_{i-1})$$

Имаме, че $M_i-m_i<rac{arepsilon}{b-a}$ за $i\in\{1,...,n\}$, защото $d(au)<\delta$ и

$$S_{\tau} - s_{\tau} < \frac{\varepsilon}{b - a} \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon$$

Следователно f е интегруема върху [a, b].

Свойства на римановия интеграл:

1. Линейност

Нека $f,g:[a,b] \to \mathbb{R}$ са интегруеми и $\lambda,\mu \in \mathbb{R}$. Тогава:

$$\int_{a}^{b} \left(\lambda . f(x) + \mu . g(x) \right) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

2. Монотонност

Нека f,g:[a,b] → \mathbb{R} са интегруеми.

а. Ако $f(x) \ge 0$ в [a, b], то (**неотрицателност**)

$$\int_{a}^{b} f(x) \, dx \ge 0$$

b. Ako $f(x) \le g(x)$ b [a,b], to (монотонност)

$$\int_{0}^{b} f(x) \, dx \le \int_{0}^{b} g(x) \, dx$$

с. Ако $f:[a,b] \to \mathbb{R}$ е интегруема, то интегруема е и функцията |f(x)|, при това

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$

3. Адитивност

Нека $f:[a,b] \to \mathbb{R}$ е интегруема и $c \in (a,b)$.

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

4. Switch sign tweak

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Твърдение: Теорема за средните стойности

Нека f: [a,b] → \mathbb{R} е непрекъсната. Тогава съществува $c \in [a,b]$, т.ч.

$$\int_{a}^{b} f(x) dx = f(x)(b-a)$$

Доказателство:

От теоремата на Вайерщрас, щом $f \colon [a,b] \to \mathbb{R}$ е непрекъсната, то тя има НМ и НГ стойност. Да ги означим съответно с m и M. Тогава

$$\min_{x \in [a,b]} f(x) = m \le f(x) \le M = \max_{x \in [a,b]} f(x), \qquad x \in [a,b]$$

След като интегрираме тези неравенства и вземем предвид колко е стойността на определен интеграл от константа, получаваме

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a) \Rightarrow m \le \frac{1}{b-a} \int_{a}^{b} f(x)dx \le M$$

Числата m и M са стойности от непрекъснатата функция f(x).

Знаем, че всяка непрекъсната функция в [a, b] приема всички стойности между максимума и минимума си, следователно съществува $c \in [a, b]$, т.ч.

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Твърдение: Теорема на Нютон-Лайбниц

Нека f: [a, b] → \mathbb{R} е непрекъсната, то $\forall x \in [a, b]$ е изпълнено

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Доказателство:

f е непрекъсната в [a,b], следователно тя е непрекъсната и в $[a,x]\subseteq [a,b]$ и от предната теорема е интегруема в [a,x]. Нека

$$F(x) = \int_{a}^{x} f(t)dt$$

И образуваме диференчното й частно

Нека $x_0 \in [a, b]$ е произволно фиксирано и $h \neq 0$ е т.ч. $x_0 + h \in [a, b]$. За диференчното частно на F(x) в т. x_0 имаме

$$\frac{F(x_0+h)-F(x_0)}{h} = \frac{1}{h} \left(\int_{a}^{x_0+h} f(t)dt - \int_{a}^{x_0} f(t)dt \right) = \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt = = \frac{1}{h} f(c_h) [(x_0+h)-x_0]$$

$$= f(c_h)$$

Където c_h е между x_0 и x_0+h . Щом c_h е между x_0 и x_0+h , то $c_h\to x_0$ при $h\to 0$. Ако x_0 съвпада с край на интервала, то h клони към 0 само от едната страна, така че $x_0+h\in [a,b]$.

Функцията f(x) е непрекъсната в т. x_0 . Следователно

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0)$$

Следователно F(x) е диференциуема в т. x_0 и $F'(x_0) = f(x_0)$