Let $\{X_t\}_{t\geq 0}$ denote the number of failed components up till time t. Then $\{X_t\}_{t\geq 0}$ is a Paisson process with rate $\lambda=2$ per year.

We seek the minimum number of (K) components such that

P(X, 2K) < 0.02.

This is equivalent to finding the minimum k such that

P(WK < 1) < 0.02.

Here $W_{k} \sim \chi(k,2)$ (Camma(k,2)). Thus: $P(W_{k} \leq 1) = 1 - \sum_{i=0}^{k-1} \frac{(2\cdot 1)^{i}e^{-2\cdot 1}}{i!}$.

The results are as follows

In conclusion, the submarine should bring at least six components, i.e. 5 spares + 1 original, to comply with the criteria.