

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : A61K 48/00		A2	(11) International Publication Number: WO 00/25827 (43) International Publication Date: 11 May 2000 (11.05.00)
<p>(21) International Application Number: PCT/EP99/07874</p> <p>(22) International Filing Date: 18 October 1999 (18.10.99)</p> <p>(30) Priority Data: MI98A002330 30 October 1998 (30.10.98) IT</p> <p>(71) Applicant (for all designated States except US): MENARINI RICERCHE S.P.A. [IT/IT]; Via Tito Speri, 10, I-00040 Pomezia (IT).</p> <p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (for US only): PARENTE, Dino [IT/IT]; (IT). DI MASSIMO, Anna, Maria [IT/IT]; (IT). DE SANTIS, Rita [IT/IT]; Via Rismundo, I-50131 Firenze (IT).</p> <p>(74) Agent: MINOJA, Fabrizio; Bianchetti Bracco Minoja Srl, Via Rossini, 8, I-20122 Milano (IT).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published Without international search report and to be republished upon receipt of that report.</p>	
<p>(54) Title: PHARMACEUTICAL COMPOSITION, CONTAINING FRAGMENTS OF AN ANTIGENIC PROTEIN ENCODING DNA ENDOWED WITH ANTI-TUMOR EFFECT</p> <p>(57) Abstract</p> <p>Provided herein is a pharmaceutical composition containing one or more DNA molecules encoding fragments of a protein overexpressed in tumor cells, in order to induce an anti-tumor Ag-specific immune response, in association with suitable excipients and adjuvants.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LJ	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

PHARMACEUTICAL COMPOSITION, CONTAINING FRAGMENTS OF AN ANTIGENIC PROTEIN ENCODING DNA ENDOWED WITH ANTI-TUMOR EFFECT.

Field of the invention

5 The invention relates to a pool of DNA plasmid constructs containing the sequences of human MUC-1 encoding fragments and to a pool of DNA plasmids in which the fragments themselves are preceded by the sequence encoding a protein consisting of human ubiquitin fused to a bacterial LacI fragment. The invention
10 further relates to their use in the preparation of pharmaceutical compositions for use as DNA anti-tumor vaccines.

Background art

The invention provides an anti-tumor therapy based on the induction or activation of the immune response able to bring about tumor rejection. The validity of such an idea is demonstrated from the first clinical results; for example, patients treated with a viral vaccine containing the Carcinoembryonic Antigen (CEA) encoding sequences demonstrated immune system activation against this antigen (Tsang KY et al. J. Natl. Cancer. Inst. 87: 982, 1995).

The activation of an immune anti-tumor response is achievable through four different approaches:

a) Ex vivo engineering of patient tumor cells in order to make them more immunogenic and suitable as a vaccine;

b) Ex vivo engineering of patient immune cells in order to pre-activate an in vitro immune response.

c) Inoculation of naked or liposome capsulated, or viral particle integrated (retrovirus, vaccinia virus, adenovirus, etc.) DNA encoding tumor associated antigens;

d) Treatment with recombinant or synthetic soluble tumor antigens conjugated or mixed with adjuvants.

The first two approaches consist of the engineering of every single patient cell and are limited in that they are necessarily patient-specific, while the latter two are aimed to

obtain products comparable to a traditional drug.

The new vaccination methods reflect the development of new technologies. The recent indications coming from the experimentation on DNA naked vaccines that induce either a persistent antibody or a cell immune response, make the traditional protein subunit vaccines constituted of certain specific peptides, inducing a lymphocyte population, obsolete. Intramuscularly or intradermically injected proteins, encoded by naked DNA, induce a cytotoxic-specific response as well as a helper response. This powerful combination is extremely effective but the underling mechanism is not completely clarified yet. Muscle cells express class I MHC antigens at low levels only, and do not apparently express class II antigens or co-stimulatory molecules. Consequently, transfected muscle cells are unlikely to play an important role in the onset of the immune response per se. Recent data show that Antigen Presenting Cells (APC), such as macrophages or dendritic cells, play a fundamental role in capturing the myocyte released antigen and in the subsequent processing and presenting of the respective peptides in the context of the class I and II molecules, thus inducing a CD8+ cell activation with cytotoxic activity as well as activation of the CD4+ cells co-operating with B lymphocytes in eliciting the antibody response (*Corr M et al J. Exp. Med. 184:1555, 1996*) (*Tighe, H. et al. Immunology Today 19:89, 1998*).

Furthermore, the use of cytokines is known to improve the therapeutic effect deriving from immunization with DNA. Cytokines can be administered in the form of exogenous proteins as reported in *Irvine et al., J. Immunol. 156: 238, 1996*. An alternative approach is represented by the contemporaneous inoculation of both the tumor antigen or the desired cytokine encoding plasmids, thus allowing the cytokine to be produced *in situ* (*Kim JJ et al. Immunol 158: 816, 1997*).

The active immunization approach of the present invention is based on the use of DNA vectors as vaccines against the MUC-1

human antigen or Polymorphic Epithelial Mucin (PEM), overexpressed in tumor cells. MUC-1 is an epithelial luminal surface glycoprotein (Patton S. et al. *BBA* 1241:407, 1995). In the cell transformation process this glycoprotein loses the apical localization and its expression level rises dramatically. The protein function consists of protecting the luminal surfaces, for example in the mammal gland, ovary, endometrium, colon, stomach, pancreas, bladder, kidney, etc. A glycosylation defect is reported that makes tumor cell associated MUC-1 antigenically different from normal cell associated MUC-1. This phenomenon causes tumor MUC-1 to expose the antigen epitopes that are normally masked by the sugar moieties in the normal cell expressed MUC-1. This characteristic makes tumor MUC-1 particularly interesting in an induction of a tumor specific antibody response (Apostolopoulos V. et al. *Crit. Rev. Immunol.* 14:293, 1994).

As an objective, the vaccination is aimed at inducing immune responses against tumor cells expressing MUC1 at high levels, preserving at the same time the low expressing normal epithelia. The DNA vaccination relies upon the entrance of a gene or portions thereof inside the body cells followed by transcription and translation of the inserted sequence and thus the intracellular synthesis of the corresponding polypeptide. An important advantage of this system is that the neo-synthesized protein is naturally processed inside the cell and the produced peptides are associated with the Major Histocompatibility Complex class I molecules (MHC-I). The MHC/peptide complexes are therefore naturally exported to the cell surface where they can be recognized by the immune system CD8+ cytotoxic cells. Only the polypeptides synthesized inside the cell are then processed and presented in association with the MHC class I molecules, thus making it the only mechanism to stimulate, a specific cytotoxic response. Vaccination systems based on protein or peptide administration are usually more effective in stimulating

the antibody immune response which, to date, has been shown to be ineffective in rejecting tumor cells. Current gene therapy techniques rely upon DNA packaging in recombinant viral vectors (retrovirus and adenovirus). The naked DNA administration is much more advantageous in terms of effectiveness and safety compared to viral vector therapies (*Kumar V and Sercarz E. Nature Med. 2: 857, 1996; McDonnel WM et al., New England J. of Med. 334: 42, 1996*). In fact naked DNA is unable either to duplicate or integrate in the host tissue DNA and does not induce the immune response to viral proteins.

The use of the ubiquitin to enhance the neo-synthesized protein processing and thus cytotoxic lymphocyte induction was recently reported (*Rodriguez F. et al., J. Virology 71: 8497, 1997*). The use of ubiquitin in order to generate proteins with an N-terminal amino acid, making them unstable and thus prone to enhanced degradation, had been previously reported (*Bechmair A. et al., SCIENCE 234: 179, 1986*). The higher instability of these proteins was subsequently related to enhanced intracellular processing and presentation of model proteins by MHC-1 (*Grant E P et al., J. Immunol. 155: 3750, 1995*) (*Wu Y and Kipps T.J., J. Immunol. 159: 6037, 1997*).

The use of single constructs containing partial antigen encoding DNA fragments (influenza virus nucleoprotein), having a higher antigenic presentation efficiency compared to the analogues with the whole antigenic sequence, in DNA vaccination was reported (*Anton L. C. et al., J. Immunol. 158: 2535, 1997*). Furthermore the processing of intracellular proteins and presentation of the respective peptides by MHC class I proteins in physiologic conditions, underlie the mechanism of immunological surveillance. For a given protein and a specific MHC context, there are peptide fragments termed dominants (i. e. prevailing on subdominants or cryptics), which are unable to generate any immune response because they are recognized as "self". It has now been outlined, according to an aspect of the

present invention, that an approach aimed at supporting the non-dominant epitope presentation by the administration of a mix of antigen protein fragments is able to elicit a surprising cytotoxic immune response.

5 Description of the invention

It has now been found that DNA molecules, encoding fragments of a protein overexpressed in tumor cells, can be conveniently used to induce an antigen-specific anti-tumor immune response.

10 The invention relates particularly to a pharmaceutical composition containing one or more DNA encoding Mucin (MUC-1) protein fragments.

The DNA used in the present invention can be plasmid or viral DNA, preferably plasmid DNA obtained employing the pMRS30 expression vector described in fig. 13.

15 The compositions according to the invention contain preferably at least two DNA fragments of the Mucin (MUC-1) or of another protein overexpressed in tumor cells.

The compositions according to the invention contain 20 preferably at least four fragments, each ranging from 200 to about 700 nucleotides, each sequence being juxtaposed and possibly partially overlapping, from about 50 to about 150 nucleotides, at the 3' and/or 5' end of the adjacent one.

25 The DNA fragments according to the invention can be possibly preceded at the 5' end by a ubiquitin encoding DNA sequence and possibly also by a LacI portion of Escherichia coli.

30 The invention relates also to new DNA fragments and to the use of Mucin-1 fragments defined above in the medicine and anti-tumor vaccine preparation.

Description of the figures

Fig. 1

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS166 expression

vector. This DNA includes the sequence corresponding to nucleotides 136-339 of the EMBL sequence J05581, preceded by the translation start codon, ATG and followed by the two translation stop codons, TGA and TAA. The encoded polypeptide thus includes 5 a Metionin followed by the amino acids encoded by the 136-339 fragment of the EMBL sequence J05581.

Fig. 2

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression 10 vector to give the pMRS169 expression vector. This DNA includes the sequence corresponding to nucleotides 205-720 of the EMBL sequence J05581, preceded by the translation start codon, ATG and followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes a Metionin followed by the 15 amino acids encoded by the 205-720 fragment of the EMBL sequence J05581.

Fig. 3

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression 20 vector to give the pMRS168 expression vector. This DNA includes the sequence corresponding to nucleotides 631-1275 of the EMBL sequence J05581, preceded by the translation start codon, ATG and followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes a Metionin followed by the 25 amino acids encoded by the 631-1275 fragment of the EMBL sequence J05581.

Fig. 4

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression 30 vector to give the pMRS167 expression vector. This DNA includes the sequence corresponding to nucleotides 1222-1497 of the EMBL sequence J05581, preceded by the translation start codon, ATG and followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes a Metionin followed by the

amino acids encoded by the 1222-1497 fragment of the EMBL sequence J05581.

Fig. 5

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression vector to give the pMRS175 expression vector. This DNA includes the sequence corresponding to nucleotides 136-1497 of the EMBL sequence J05581, preceded by the translation start codon, ATG and followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes a Metionin followed by the amino acids encoded by the 136-1497 fragment of the EMBL sequence J05581.

Fig. 6

Nucleotide DNA sequence (with the respective amino acid sequence) termed UBILacI. The encoded polypeptide includes the Ubiquitin sequence fused to a partial sequence of the bacterial protein beta-galactosidase, as described in Chau V. et al. *Science* 243: 1576, 1989.

Fig. 7

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the expression vector pMRS30 to give the pMRS171 expression vector. This DNA includes the sequence termed UBILacI (see fig. 6) fused to the sequence corresponding to nucleotides 136-339 of the EMBL sequence J05581 followed by two translation stop codons, TGA and TAA. The coded polypeptide thus includes the amino acid sequence reported in Fig. 6, fused to the sequence including the amino acids encoded by the fragment 136-339 of the EMBL sequence J05581.

Fig. 8

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression vector to give the pMRS174 expression vector. This DNA includes the sequence termed UBILacI (see fig. 6) fused to the sequence partially corresponding to nucleotides 205-720 of the EMBL

sequence J05581 followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes the amino acid sequence reported in Fig. 6, fused to the sequence including the amino acids encoded by the fragment 205-720 of the EMBL sequence 5 J05581.

Fig. 9

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression vector to give the pMRS173 expression vector. This DNA includes 10 the sequence termed UBILacI (see fig. 6) fused to the sequence partially corresponding to nucleotides 631-1275 of the EMBL sequence J05581 followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes the amino acid sequence reported in Fig. 6, fused to the sequence including the 15 amino acids encoded by the fragment 631-1275 of the EMBL sequence J05581.

Fig. 10

Nucleotide DNA sequence (with the respective amino acid sequence) inserted at the XbaI site of the pMRS30 expression 20 vector to give the pMRS172 expression vector. This DNA includes the sequence termed UBILacI (see fig. 6) fused to the sequence partially corresponding to nucleotides 1222-1497 of the EMBL sequence J05581 followed by two translation stop codons, TGA and TAA. The encoded polypeptide thus includes the amino acid 25 sequence reported in Fig. 6, fused to the sequence including the amino acids encoded by the fragment 1222-1497 of the EMBL sequence J05581.

Fig. 11

Nucleotide DNA sequence (with the respective amino acid 30 sequence) inserted at the XbaI site of the pMRS30 expression vector to give the pMRS176 expression vector. This DNA includes the sequence named UBILacI (see fig. 6) fused to the sequence partially corresponding to nucleotides 136-1497 of the EMBL sequence J05581 followed by two translation stop codons, TGA and

TAA. The encoded polypeptide thus includes the amino acid sequence reported in Fig. 6, fused to the sequence including the amino acids encoded by the fragment 136-1497 of the EMBL sequence J05581.

5

Fig. 12

Electrophoretic analysis on 1% agarose gel in 1X TBE. mRNA extracted from CHO, CD34+ dendritic cells and dendritic cells from PBMC, respectively, transfected with pMRS169, and subjected to RT-PCR reaction either with (lanes 4, 8, 12) or without 10 (lanes 5, 9, 13) Reverse Transcriptase. Molecular weight DNA marker (lane 1); internal negative controls (lanes 2, 6); internal positive controls (lanes 3, 7, 10, 11); positive control from Promega kit (lane 14).

15

Fig. 13

Nucleotide sequence of the pMRS30 expression vector. The 1-2862 region corresponds to the AccI (location 504) - BamHI (location 3369) region of the pSV2CAT vector (EMBL M77788); the 2863-3721 region includes the human cytomegalovirus promoter (human cytomegalovirus major immediate-early gene enhancer); the 3722-4905 region includes several cloning sites, including XbaI (location 3727), and the processing signal of the rabbit beta-globin gene.

20

Detailed description of the invention

25

A DNA plasmid pool encoding, in eukaryotic cells, fragments of the MUC-1 human protein antigen was prepared. Constructs are based on the mammalian expression vector termed pMRS30, described in figure 13 and previously claimed in the Patent Application WO95/11982, and contain partial sequences of the MUC-1 cDNAs reported in the EMBL database with accession number J05581. MUC-1 encoding DNA was fragmented so that each fragment represents a discrete portion, partially overlapping to the adjacent ones. Administration of a mix of such plasmids can cause different plasmids to transfect different APC cells at the administration site. Therefore such cells produce and process

30

discrete portions of the MUC-1 protein giving the related peptides. In those conditions, the occurring subdominant and cryptic peptides can also be presented in association with class I MHC molecules thus generating a cytotoxic immune response.

5 The present invention thus relates to the use of a group of four constructs (Figures 1 to 4) containing MUC-1 cDNA partial fragments in admixture containing at least two of them and a group of four constructs (Figures 7 to 10) containing MUC-1 cDNA partial fragment preceded by the DNA encoding a protein sequence 10 containing Ubiquitin and an Escherichia coli Lac I portion (Figure 6) used separately or in admixture containing at least two of them.

The present invention relates also to the use of the construct (Figure 5) containing the almost complete sequence of 15 the MUC-1 cDNA and the construct (Figure 11) containing the almost complete sequence of the MUC-1 cDNA preceded by the DNA encoding a protein sequence containing Ubiquitin and an Escherichia coli Lac I portion.

The mixture of the four constructs containing the partial 20 fragments of the MUC-1 cDNA and the mixture of the four constructs containing the partial fragments of the MUC-1 cDNA preceded by the DNA encoding a protein sequence, containing Ubiquitin and an Escherichia coli Lac I portion, represents a preferred embodiment of the present invention.

25 Constructs according to the present invention can be used in the anti-tumor therapy of patient affected with tumors characterized by high MUC-1 expression.

Constructs described in the present invention were obtained as follows.

30 In the case of the first series of constructs, the fragments of the MUC-1 DNA were obtained by RT-PCR from BT20 cell line or by DNA partial chemical synthesis. Such fragments were then cloned into the pMRS30 expression vector and verified by sequencing.

In the case of the second series of constructs, the fragments were obtained from the first series of constructs by a PCR re-amplification. These fragments were then fused to the DNA encoding the Ubiquitin (obtained by RT-PCR from MCF7 cell line mRNA) and a partial lacI sequence (obtained by PCR from the commercial vector pGEX). DNA sequences thus obtained were then cloned in the pMRS30 expression vector and verified by sequencing. For the intended therapeutic or prophylactic uses, fragments or constructs according to the invention are suitably formulated, using carriers and methods previously employed in naked DNA vaccines, as described for example in The Immunologist, 1994, 2:1; WO 90/11092, Proc. Natl. Acad. Sci. U.S.A., 1986, 83, 9551; US 5580859; Immunology today 19 (1998), 89-97); Proc. Natl. Acad. Sci. U.S.A. 90 (1993), 11478-11482; Nat. Med. 3 (1997), 526-532; Vaccine 12 (1994), 1495-1498; DNA Cell. Biol. 12 (1993), 777-783. The dosages will be determined on the basis of clinical and pharmacological-toxicological trials. Generally speaking, they will be comprised between 0.005 µg/kg and 5 µg/kg of the fragment mix. The composition of the invention can also contain a cytokine or a cytokine encoding plasmid.

The invention will be further illustrated by means of the following examples.

Example 1. Plasmid pMRS166 construction.

BT20 tumor cells (ATCC HTB-19) were cultured in Eagles MEM supplemented with 10% fetal calf serum. Ten million cells were trypsinized, washed with PBS, and mRNA extracted.

An aliquot of this RNA was subjected to RT-PCR (reverse transcriptase-polymerase chain reaction) reaction in the presence of the following synthetic oligonucleotides:

V11 (5 GATCTCTAGAATGACAGGTTCTGGTCATGCAAGC 3)

V4 (5 GATCTCTAGAAAGCTTATCAACCTGAAGCTGGTTCCGTGGC 3)

The produced DNA fragment, purified and digested with the restriction enzyme XbaI, was cloned into the pMRS30 expression

vector, containing the human cytomegalovirus promoter and the beta-globin polyadenylation signal as claimed in the Patent WO9511982. The resulting pMRS166 vector contains a DNA fragment including the ATG codon, the sequence corresponding to the 5 nucleotides 136-339 of the EMBL sequence J05581, and two stop codons, TGA and TAA.

This fragment is reported in fig. 1.

Example 2. Plasmid pMRS169 construction.

An aliquot of the RNA obtained as reported in example 1 was 10 amplified by RT-PCR in the presence of the following synthetic oligonucleotides:

V12 (5' GATCTCTAGAATGGTGCCAGCTCTACTGAGAAGAATGC 3')

V15 (5' GGCGGTGGAGCCGGGGCTGGCTTGT 3')

The produced DNA fragment, purified and digested with the 15 restriction enzymes SmaI and XbaI, was fused, by the SmaI restriction site, to a DNA fragment entirely synthetically constructed, and including a sequence partially corresponding to the nucleotides 457-720 of the EMBL sequence J05581 and two stop codons, TGA and TAA. The whole fragment was thus cloned in the 20 XbaI site of the pMRS30 expression vector. The resulting pMRS169 vector contains a DNA fragment including the ATG codon, the sequence partially corresponding to the nucleotides 205-720 of the EMBL sequence J05581, and two stop codons, TGA and TAA.

This fragment is reported in fig. 2.

Example 3. Plasmid pMRS168 construction.

An aliquot of the RNA obtained as reported in example 1 was 25 amplified by RT-PCR in the presence of the following synthetic oligonucleotides:

V13 (5' GATCTCTAGAATGGGCTCAGCTTCTACTCTGGTCACAAACGGC 3')

V8 (5' GATCTCTAGAAAGCTTATCACAAAGGCAATGAGATAGACAATGGCC 3')

The produced DNA fragment, purified and digested with the restriction enzyme XbaI was cloned in the pMRS30 expression vector. The resulting pMRS168 vector contains a DNA fragment including the ATG codon, the sequence corresponding to the

nucleotides 631-1275 of the EMBL sequence J05581, and two stop codons, TGA and TAA.

This fragment is reported in fig. 3.

Example 4. Plasmid pMRS167 construction.

An aliquot of the RNA obtained as reported in example 1 was subjected to RT-PCR reaction in the presence of the following synthetic oligonucleotides:

V14 (5' GATCTCTAGAATGCTGGTCTGGTCTGTGTTGGTTCGC 3')

V10 (5' GATCTCTAGAAAGCTTATCACAAAGTTGGCAGAAGTGGCTGC 3')

The produced DNA fragment, purified and digested with the restriction enzyme XbaI was cloned in the pMRS30 expression vector. The resulting pMRS167 vector contains a DNA fragment including the ATG codon, the sequence corresponding to the nucleotides 1222-1497 of the EMBL sequence J05581, and two stop codons, TGA and TAA.

This fragment is reported in fig. 4.

Example 5. Plasmid pMRS175 construction.

pMRS166, 169, 168, 167 plasmids were subjected to PCR reaction in the presence of the following nucleotide pairs:

V11 (see example 1)

V18 (5' AACCTGAAGCTGGTTCGGC 3') for pMRS166

V19 (5' GTGCCAGCTCTACTGAGAAGAATGC 3')

V20 (5' GCTGGAAATTGAGAATGGAGTGCTCTGC 3') for pMRS169

V21 (5' GGCTCAGCTTCTACTCTGGTGCACAACGGC 3')

V22 (5' CAAGGCAATGAGATAGACAATGGCC 3') for pMRS168

V23 (5' CTGGTGCCTGGTCTGTGTTCTGGTTCGC 3')

V10 (see example 4) for pMRS167

The four DNA fragments obtained in the respective PCR reactions were mixed in equimolar amounts and PCR reacted in the presence of the V11 and V10 oligonucleotides.

The produced DNA fragment, purified and digested with the XbaI restriction enzyme, was cloned in the pMRS30 expression vector. The resulting pMRS175 vector contains a DNA fragment including the ATG codon, the sequence partially corresponding to

the nucleotides 136-1497 of the EMBL sequence J05581 and two stop codons TGA and TAA.

This fragment is reported in fig. 5.

Example 6. Plasmid pMRS171 construction.

5 MCF7 tumor cells (ATCC HTB-22) were cultured in Eagles MEM supplemented with 10% fetal calf serum. Ten million cells were trypsinized, washed with PBS, and mRNA extracted.

An aliquot of this RNA was subjected to RT-PCR in the presence of the following synthetic oligonucleotides:

10 UBIup (5GATCTCTAGAATGCAGATCTTCGTGAAGACCCTGACTGGT 3)

UBIdown

(5TCACCAGCGAGACGGGCAACAGCCATGCACCACTACCGTGCCTCCCACCTCTGAGACGGAGC
ACCAGG 3)

The reaction produces a DNA fragment termed fragment 1.

15 DNA from pGEX11T (Pharmacia) was subjected to PCR reaction in the presence of the following synthetic oligonucleotides:

Laciup (5CCTCCGTCTCAGAGGTGGGAGGCACGGTAGTGGTGCATGGCTGTTGCC
GTCTCGCTGGTAAAAAG 3)

LacIdown (5GATCGGATCCTCGGGAAACCTGTCGTGCCAGCTGC 3)

20 This reaction gives a DNA fragment termed fragment 2.

The 1 and 2 DNA fragments, obtained in the respective PCR reactions, were mixed in equimolar amounts and subjected to PCR reaction in presence of the UBIup and LacIdown oligonucleotides.

25 The produced DNA fragment, purified and digested with the restriction enzymes XbaI and BamHI, was cloned into the pUC18 commercial plasmid. The resulting pMRS156 vector contains a DNA fragment including the sequence encoding the ubiquitin fused to the sequence encoding a bacterial beta-galactosidase portion. This fragment, termed UBILaci, is reported in fig. 6.

30 Plasmid pMRS166 DNA was subjected to a PCR reaction in presence of the following synthetic oligonucleotides:

V3 (5GATCGGATCCACAGGTTCTGGTCATGCAAGC 3)

V4 (see Example 1)

The produced DNA fragment, purified and digested with the

restriction enzymes XbaI and BamHI, was fused, by ligation into the two BamHI sites, to the UBILacI fragment deriving from the pMRS156 plasmid. The resulting fragment was cloned into the pMRS30 expression vector. The resulting pMRS171 vector contains 5 a DNA fragment including the UBILacI sequence, the sequence corresponding to the 136-339 nucleotides of the EMBL sequence J05581 and two stop codons, TGA and TAA. This fragment is reported in fig. 7.

Example 7. Plasmid pMRS174 construction.

10 Plasmid pMRS169 DNA was subjected to PCR reaction in the presence of the following synthetic oligonucleotides:

V5 (5GATCGGATCCGTGCCAGCTACTGAGAAGAACG 3)

V6 (5GATCTCTAGAAAGCTTATCAGCTGGATTGAGATGGAGTGCTCTTGC 3)

15 The produced DNA fragment, purified and digested with the restriction enzymes XbaI and BamHI, was fused, by ligation into the two BamHI sites, to the UBILacI fragment deriving from the pMRS156 plasmid. The resulting fragment was cloned into the pMRS30 expression vector. The resulting pMRS174 vector contains 20 a DNA fragment including the UBILacI sequence, the sequence corresponding to the 205-720 nucleotides of the EMBL sequence J05581, and two stop codons, TGA and TAA. This fragment is reported in fig. 8.

Example 8. Plasmid pMRS173 construction.

25 Plasmid pMRS168 DNA was subjected to PCR reaction in the presence of the following synthetic oligonucleotides:

V7 (5GATCGGATCCGGCTCAGCTTACTCTGGTGCACAAACGGC 3)

V8 (see example 3)

30 The produced DNA fragment, purified and digested with the restriction enzymes XbaI and BamHI, was fused, by ligation into the two BamHI sites, to the UBILacI fragment deriving from the pMRS156 plasmid. The resulting fragment was cloned into the pMRS30 expression vector. The resulting pMRS173 vector contains a DNA fragment including the UBILacI sequence, the sequence corresponding to the 631-1275 nucleotides of the EMBL sequence

J05581, and two stop codons, TGA and TAA. This fragment is reported in fig. 9.

Example 9. Plasmid pMRS172 construction.

Plasmid pMRS167 DNA was subjected to PCR reaction in the presence of the following synthetic oligonucleotides:

V9 (5' GATCGGATCCCTGGTGCTGGTCTGTGTTCTGGTTGC 3')

V10 (see example 4)

The produced DNA fragment, purified and digested with the restriction enzymes XbaI and BamHI, was fused, by ligation into the two BamHI sites, to the UBILacI fragment deriving from pMRS156 plasmid. The resulting fragment was cloned into the pMRS30 expression vector. The resulting pMRS172 vector contains a DNA fragment including the UBILacI sequence, the sequence corresponding to the 1222-1497 nucleotides of the EMBL sequence J05581, and two stop codons, TGA and TAA. This fragment is reported in fig. 10.

Example 10. Plasmid pMRS176 construction.

Plasmid pMRS167 DNA was subjected PCR reaction in the presence of the following synthetic oligonucleotides:

V3 (see example 6)

V10 (see example 4)

The produced DNA fragment, purified and digested with the restriction enzymes XbaI and BamHI, was fused, by ligation into the two BamHI sites, to the UBILacI fragment deriving from pMRS156 plasmid. The resulting fragment was cloned into the pMRS30 expression vector. The resulting pMRS176 vector contains a DNA fragment including the UBILacI sequence, the sequence corresponding to the 136-1497 nucleotides of the EMBL sequence J05581, and two stop codons, TGA and TAA. This fragment is reported in fig. 11.

Example 11. Eukaryotic cell transfection and testing for transcription.

CHO (Chinese Hamster Ovary) cells were cultured in alpha MEM supplemented with ribonucleotides and deoxyribonucleotides

at transfection time.

Dendritic cells were obtained from CD34+ hemopoietic precursors cultured in IMDM without serum, supplemented with GM-CSF, IL4, SCF, Flt3 and TNFalpha. After 7 days the obtained cell population was transfected.

Dendritic cells were obtained from monocytes isolated from PBMC (peripheral blood mononuclear cells), cultured in RPMI supplemented with FCS, GM-CSF, and IL-4. After 7 days the obtained cell population was transfected.

In each case, about one million cells were transfected with one of the plasmids reported in examples 1 to 10. Transfection was carried out using 3 µg of plasmid DNA and 4 µl of DMRIE (Gibco) by lipofection.

After 24 hours cells were harvested, washed with PBS and lysed in order to extract the mRNA.

A mRNA aliquot was subjected to RT-PCR reaction in the presence of the oligonucleotide pair specific for the transfected DNA plasmid.

This experiment was carried out for each plasmid reported in the examples 1 to 10, using the following oligonucleotide pairs: V11/V4 for pMRS166, V12/V6 for pMRS169, V13/V8 for pMRS168, V4/V10 for pMRS167, V4/V10 for pMRS175, UBIup/V4 for pMRS171, UBIup/V6 for pMRS174, UBIup/V8 for pMRS173, UBIup/V10 for pMRS172, V14/V10 for pMRS176.

As a representative example, figure 12 reports the electrophoretic analysis of the DNA fragments obtained by RT-PCR from the mRNA of the three cell populations, transfected with the pMRS169 plasmid. In this case the oligonucleotide pair V12/V6 was used.

Example 12. *In vivo* study results.

In the *in vivo* studies, the mixtures of the four fragments and the pMRS30 plasmid (vector without insert and thus used as a negative control) were used. In order to test the occurred immunization, an ELISA test was used to show the human mucin

specific antigens.

The *in vivo* studies were conducted using human MUC1 transgenic C57BL mice. As a consequence in these animals the MUC1 protein represents a self-protein. The employed vaccination schedule consists of 3 intradermic (dorsal portion, 50 micrograms DNA for each side) administrations (at days 0, 14, 28) of 100 micrograms plasmid DNA. At day 14 after the last administration, the animals were sacrificed and sera were tested for anti-human mucin antibodies.

10 The assayed fragment mixes, object of the present invention, stimulated a good immune response in the treated animals.

15 On the other hand, vaccination experiments with a 60-aminoacid peptide corresponding to the 20 aminoacids reported in fig. 2, from location 86 to location 105, repeated three times (this peptide is termed 3XTR), were also carried out.

20 The two vaccinations differ in the type of the elicited antibody response. The antibody titer results much more higher in the vaccination with 3XTR. Furthermore the noticed IgG subtypes are in favor of an essentially humoral (antibody) response in the case of vaccination with 3XTR, and of a cellular response (cytotoxic) in the case of vaccination with DNA. For anti-tumor therapy, a principally cytotoxic immune response is preferable. Because the experiments were carried out on 25 transgenic mice, in whom the human mucin is "self", we can foresee a similar response in humans. This response could justify the use, as DNA vaccines, of the compounds of the present invention in the treatment of MUC1 overexpressing human tumors.

CLAIMS

1. Pharmaceutical composition containing one or more DNA molecules, encoding fragments of a protein overexpressed in tumor cells in order to induce an antitumor Ag-specific immune response, in combination with suitable excipients and adjuvants.
- 5 2. Pharmaceutical composition according to claim 1 wherein the overexpressed protein is MUC-1.
- 10 3. Pharmaceutical composition according to claim 1 or 2 containing at least two DNA molecules each containing a cDNA sequence encoding a Mucin fragment (MUC-1).
4. Composition according to claim 3 containing at least three DNA molecules each containing a cDNA sequence encoding a Mucin fragment (MUC-1).
- 15 5. Composition according to claim 4 containing at least four DNA molecules each containing a cDNA sequence encoding a Mucin fragment (MUC-1).
6. Composition according to claims 3, 4 or 5 wherein the DNA sequences comprise about 200 to about 700 nucleotides, each sequence being contiguous and possibly partially overlapping, from about 50 to about 150 nucleotides at the 3' and/or 5' end, to the adjacent one.
- 20 7. Pharmaceutical composition according to any claim from 2 to 6 wherein the used mixture consists of, at least, two plasmid DNA molecules, each containing a DNA fragment selected from those whose sequences are described in figures 1, 2, 3, and 4.
- 25 8. Pharmaceutical composition according to claim 7 wherein the used mixture consists of the pool of plasmid DNA molecules, where each molecule contains a DNA fragment selected from those whose sequences are described in figures 1, 2, 3, and 4.
- 30 9. Pharmaceutical composition according to claim 1 or 2 wherein a plasmid DNA molecule containing the sequence described in figure 5 is used.
10. Pharmaceutical composition according to claims 7, 8, or 9

wherein the used plasmid DNA molecules derive from the fusion of the pMRS30 expression vector in Fig. 13 to each sequence described in figures 1, 2, 3, 4, 5.

11. Pharmaceutical composition according to claims 2 to 6 wherein the used sequences, corresponding to single fragments of the protein, are preceded in the 5' termini by the sequence described in Fig. 6 encoding the ubiquitin and a LacI portion from Escherichia Coli.

12. Pharmaceutical composition according to claim 11 wherein the mixture consists of one or more sequences deriving from joining the pMRS30 expression vector, described in Fig. 13, to a DNA sequence selected from those described in figures 7, 8, 9, and 10.

13. Pharmaceutical composition according to claim 11 wherein the mixture consists of the totality of the sequences deriving from joining the pMRS30 expression vector to a DNA sequence selected from those described in figures 7, 8, 9, and 10.

14. Pharmaceutical composition according to claim 11 wherein the mixture consists of a sequence deriving from joining the pMRS30 expression vector to the sequence described in figure 11.

15. Pharmaceutical composition according to any preceding claims, further containing a cytokine or a cytokine encoding plasmid.

16. A plasmid DNA molecule consisting of the pMRS30 expression vector joined to a DNA sequence, encoding a MUC-1 protein fragment and whose sequence is selected from the group of those described in figures 1, 2, 3, 4, and 5.

17. A DNA molecule encoding a protein MUC-1 fragment preceded in its 5' terminus by the sequence described in Fig. 6.

18. A DNA molecule according to claim 17 selected from those described in figures 7, 8, 9, 10, and 11.

19. A plasmid DNA molecule obtained by joining the pMRS expression vector to a DNA molecule selected from those of claim 17 or 18.

20. Use of DNA molecules of claims 16-19 in the preparation of a composition with anti-tumor effect.

1/19

Figure 1

1 ATGACAGGTCTGGTCATGCAAGCTCTACCCAGGTGGAGAAAAG
1► Met Thr Gl y Ser Gl y His Al a Ser Ser Thr Pro Gl y Gl y Gl u Lys
46 GAGACTTCGGCTACCCAGAGAAGTTCACTGCCAGCTCTACTGAG
16► Gl u Thr Ser Al a Thr Gl n Arg Ser Ser Val Pro Ser Ser Thr Gl u
91 AAGAATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGGCCACAGC
31► Lys Asn Al a Val Ser Met Thr Ser Ser Val Leu Ser Ser His Ser
136 CCCGGTTCAAGGCTCCCTCCACCACTCAGGGACAGGGATGTCACTCTG
46► Pro Gl y Ser Gl y Ser Ser Thr Thr Gl n Gl y Gl n Asp Val Thr Leu
181 GCCCCGGCCACCGAACCTCAGGTGATAAA
61► Al a Pro Al a Thr Gl u Pro Al a Ser Gl y * * * * *

2/19

Figure 2

1 ATGGTGCCCAGCTCTACTGAGAAGAATGCTGTGAGTATGACCAGC
1►Met Val Pro Ser Ser Thr Gl u Lys Asn Al a Val Ser Met Thr Ser
46 AGCGTACTCTCCAGCCACAGCCCCGGTTCAAGGCTCCTCCACCACT
16►Ser Val Leu Ser Ser His Ser Pro Gl y Ser Gl y Ser Ser Thr Thr
91 CAGGGACAGGATGTCACTCTGGCCCCGGCCACCGAACCCAGCTTCA
31►Gl n Gl y Gl n Asp Val Thr Leu Al a Pro Al a Thr Gl u Pro Al a Ser
136 GGTTCAGCTGCCACCTGGGGACAGGAATGTCACCTCGGTCCCAGTC
46►Gl y Ser Al a Al a Thr Trp Gl y Gl n Asp Val Thr Ser Val Pro Val
181 ACCAGGCCAGCCCTGGGCTCCACCACCCCGCCAGCCCACGATGTC
61►Thr Arg Pro Al a Leu Gl y Ser Thr Thr Pro Pro Al a His Asp Val
226 ACCTCAGCCCCGGACAACAAGCCAGCCCCGGGAAGTACTGCTCCA
76►Thr Ser Al a Pro Asp Asn Lys Pro Al a Pro Gl y Ser Thr Al a Pro
271 CCAGCACACGGTGTACCTCGGCTCCGGATACCAGGCCGGCCCA
91►Pro Al a His Gl y Val Thr Ser Al a Pro Asp Thr Arg Pro Al a Pro
316 GGTAGTACCGCCCTCCTGCCCATGGTGTACATCTGCCCGGAC
106►Gl y Ser Thr Al a Pro Pro Al a His Gl y Val Thr Ser Al a Pro Asp
361 AACAGGCCTGCATTGGGTAGTACAGCACCAGCCAGTACACAACGTT
121►Asn Arg Pro Al a Leu Gl y Ser Thr Al a Pro Pro Val His Asn Val
406 ACTAGTGCCTCAGGCTCTGCTAGCGGCTCAGCTTCTACTCTGGTG
136►Thr Ser Al a Ser Gl y Ser Al a Ser Gl y Ser Al a Ser Thr Leu Val
451 CACAACGGCACCTCTGCGCGCGACCACAACCCAGCGAGCAAG
151►His Asn Gl y Thr Ser Al a Arg Al a Thr Thr Pro Al a Ser Lys
496 AGCACTCCATTCTCAATTCCCAGCTGATAA
166►Ser Thr Pro Phe Ser Ile Pro Ser •••••

3/19

Figure 3

1 ATGGGCTCAGCTTCACTCTGGTGCACAACGGCACCTCTGCCAGG
1►Met Gl ySer Al aSer Thr LeuVal Hi sAsnGl yThr Ser Al aArg
46 GCTACCACAACCCCAGCCAGCAAGAGCACTCCATTCTCAATTCCC
16►Al aThr Thr Thr ProAl aSer LysSer Thr ProPheSer IlePro
91 AGCCACCACACTGATACTCCTACCACCCCTGCCAGCCATAGCACC
31►Ser Hi sHi sSer AspThr ProThr Thr LeuAl aSer Hi sSer Thr
136 AAGACTGATGCCAGTAGCACTACCACATAGCACGGTACCTCCTCTC
46►LysThrAspAl aSer Ser Thr Hi sHi sSer Thr Val ProProLeu
181 ACCTCCTCCAATCACAGCACTCTCCCCAGTTGTCTACTGGGTC
61►Thr Ser Ser AsnHi sSer Thr Ser ProGl nLeuSer Thr Gl yVal
226 TCTTTCTTTTCCTGTCTTACATTCAAACCTCCAGTTAAT
76►Ser PhePhePheLeuSer PheHi sIleSer AsnLeuGl nPheAsn
271 TCCTCTCTGGAAAGATCCCAGCACCGACTACTACCAAGAGCTGCAG
91►Ser Ser LeuGl uAspProSer ThrAspTyrTyrGl nGl uLeuGl n
316 AGAGACATTCTGAAATGTTTGAGATTATAAACAAAGGGGT
106►ArgAspIleSer Gl uMetPheLeuGl nIleTyrLysGl nGl yGl y
361 TTTCTGGGCCTCTCCAATATTAAGTTCAGGCCAGGATCTGTGGTG
121►PheLeuGl yLeuSerAsnIleLysPheArgProGl ySer Val Val
406 GTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCAC
136►Val Gl nLeuThr LeuAl aPheArgGl uGl yThr IleAsnVal His
451 GACGTGGAGACACAGTTCAATCAGTATAAACGGAAGCAGCCTCT
151►AspVal Gl uThr Gl nPheAsnGl nTyrLysThr Gl uAl aAl aSer
496 CGATATAACCTGACGATCTCAGACGTCAGCGTGAGTGATGTGCCA
166►ArgTyrAsnLeuThr IleSerAspVal Ser Val SerAspVal Pro
541 TTTCTTTCTCTGCCAGTCTGGGGCTGGGTGCCAGGCTGGGC
181►PheProPheSer Al aGl nSer Gl yAl aGl yVal ProGl yTrpGl y
586 ATCGCGCTGCTGGTCTGGTCTGTGTTCTGGTTCGCTGCCATT
196►IleAl aLeuLeuVal LeuVal CysVal LeuVal Al aLeuAl aIle
631 GTCTATCTCATTGCCCTGTGATAA
211►Val TyrLeuIleAl aLeu*****

4/19

Figure 4

1 ATGCTGGTGTGGTCTGTGTTGGCTGGCCATTGTCTAT
1►Met Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile Val Tyr
46 CTCATTGCCTTGGCTGTCTGTCACTGCCGCCGAAAGAACTACGGG
16►Leu Ile Ala Leu Ala Val Cys Gl nCys Arg Arg Lys Asn Tyr Gl y
91 CAGCTGGACATCTTCCAGCCCCGGATACCTACCACCTATGAGC
31►Gl nLeu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro Met Ser
136 GAGTACCCCACCTACCACACCCATGGGCCTATGTGCCCTAGC
46►Gl uTyr Pro Thr Tyr His Thr His Gl y Arg Tyr Val Pro Pro Ser
181 AGTACCGATCGTAGCCCTATGAGAAGGTTCTGCAGGTAATGGT
61►Ser Thr Asp Arg Ser Pro Tyr Gl uLys Val Ser Ala Gl y Asn Gl y
226 GGCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCCACTTCT
76►Gl y Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala Thr Ser
271 GCCAACTTGTGATAA
91►Ala Asn Leu • • • •

Figure 5

1 ATGACAGGTTCTGGTCATGCAAGCTCTACCCAGGTGGAGAAAAG
 1►Met Thr Gl ySer Gl yHi sAl aSer Ser Thr ProGl yGl yGl uLys
 46 GAGACTTCGGCTACCCAGAGAAGTTCACTGCCAGCTCTACTGAG
 16►Gl uThr Ser Al aThr Gl nArgSer Ser Val ProSer Ser Thr Gl u
 91 AAGAATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGCCACAGC
 31►LysAsnAl aVal Ser Met Thr Ser Ser Val LeuSer Ser Hi sSer
 136 CCCGGTTCAAGGCTCTCCACCACTCAGGGACAGGATGTCACTCTG
 46►ProGl ySer Gl ySer Ser Thr Thr Gl nGl yGl nAspVal Thr Leu
 181 GCCCCCAGGCACCGAACCGAGTCAGGTTCACTGCCACCTGGGGA
 61►Al aProAl aThr Gl uProAl aSer Gl ySer Al aAl aThr TrpGl y
 226 CAGGATGTCACCTCGGTCCCAGTCACCAGGCCAGCCCTGGGCTCC
 76►Gl nAspVal Thr Ser Val ProVal Thr ArgProAl aLeuGl ySer
 271 ACCACCCCCGCCAGCCCACGATGTCACCTCAGCCCCGGACAACAAG
 91►Thr Thr ProProAl aHi sAspVal Thr Ser Al aProAspAsnLys
 316 CCAGCCCCGGGAAGTACCGCTCCACCAGCACACGGTGTACCTCG
 106►ProAl aProGl ySer Thr Al aProProAl aHi sGl yVal Thr Ser
 361 GCTCCGGATAACCAGGCCGGCCCCAGGTAGTACCGCCCTCTGCC
 121►Al aProAspThr ArgProAl aProGl ySer Thr Al aProProAl a
 406 CATGGTGTCACTCTGCCCGACAACAGGCCCTGCATTGGTAGT
 136►Hi sGl yVal Thr Ser Al aProAspAsnArgProAl aLeuGl ySer
 451 ACAGCACCGCCAGTACACAACGTTACTAGTGCTCAGGCTCTGCT
 151►Thr Al aProProVal Hi sAsnVal Thr Ser Al aSer Gl ySer Al a
 496 AGCGGCTCAGCTTCACTCTGGTGCACAACGGCACCTCTGCGCGC
 166►Ser Gl ySer Al aSer Thr LeuVal Hi sAsnGl yThr Ser Al aArg
 541 GCGACCACAACCCCAGCGAGCAAGAGCACTCCATTCTCAATTCCC
 181►Al aThr Thr ProAl aSer LysSer Thr ProPheSer IlePro
 586 AGCCACCACTCTGATACTCCTACCACCCCTGCCAGCCATAGCACC
 196►Ser Hi sHi sSer AspThr ProThr Thr LeuAl aSer Hi sSer Thr
 631 AAGACTGATGCCAGTAGCACTCACCATAAGCACGGTACCTCCTCTC
 211►LysThrAspAl aSer Ser Thr Hi sHi sSer Thr Val ProProLeu
 676 ACCTCCTCCAATCACAGCACTCTCCCCAGTTGTCTACTGGGGTC
 226►Thr Ser Ser AsnHi sSer Thr Ser ProGl nLeuSer Thr Gl yVal
 721 TCTTTCTTTCTGTCTTACATTTCAAACCTCCAGTTAAAT
 241►Ser PhePhePheLeuSer PheHi sIleSer AsnLeuGl nPheAsn
 766 TCCTCTCTGGAAGATCCCAGCACCGACTACTACCAAGAGCTGCAG
 256►Ser Ser LeuGl uAspProSer Thr AspTyrTyrGl nGl uLeuGl n
 811 AGAGACATTCTGAAATGTTTTGCAGATTATAAACAAAGGGGGT
 271►ArgAspIleSer Gl uMet PheLeuGl nIleTyrLysGl nGl yGl y
 856 TTTCTGGGCCTCTCCAATATTAAGTTCAAGGCCAGGATCTGTGGTG
 286►PheLeuGl yLeuSer AsnIleLysPheArgProGl ySer Val Val

(Continued)

6/19

Figure 5 (continued)

901 GTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCAC
301► Val Glu Leu Thr Leu Ala Phe Arg Glu Glu Thr Ile Asn Val His
946 GACGTGGAGACACAGTTCAATCAGTATAAAACCGAAGCAGCCTCT
316► Asp Val Glu Thr Glu Phe Asn Glu Tyr Lys Thr Glu Ala Ala Ser
991 CGATATAACCTGACGATCTCAGACGTAGCGTGAGTGATGTGCCA
331► Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp Val Pro
1036 TTTCTTCTCTGCCAGTCTGGGCTGGGTGCCAGGCTGGGC
346► Phe Pro Phe Ser Ala Glu Ser Glu Ala Glu Val Pro Glu Trp Glu
1081 ATCGCGCTGCTGGTCTGGTCTGTCTGGTTCGGCTGGCCATT
361► Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu Ala Ile
1126 GTCTATCTCATTGCCCTGGCTGTCTGTCAGTGCCGCCGAAAGAAC
376► Val Tyr Leu Ile Ala Leu Ala Val Cys Glu Cys Arg Arg Lys Asn
1171 TACGGGCAGCTGGACATCTTCCAGCCCCGGATACCTACCATCCT
391► Tyr Glu Glu Leu Asp Ile Phe Pro Ala Arg Asp Thr Tyr His Pro
1216 ATGAGCGAGTACCCCACCTACCACACCCATGGCGCTATGTGCC
406► Met Ser Glu Tyr Pro Thr Tyr His Thr His Glu Arg Tyr Val Pro
1261 CCTAGCAGTACCGATCGTAGCCCTATGAGAAGGTTCTGCAGGT
421► Pro Ser Ser Thr Asp Arg Ser Pro Tyr Glu Lys Val Ser Ala Glu
1306 AATGGTGGCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCC
436► Asn Glu Glu Ser Ser Leu Ser Tyr Thr Asn Pro Ala Val Ala Ala
1351 ACTTCTGCCAACCTGTGATAA
451► Thr Ser Ala Asn Leu •••••

7/19

Figure 6

1 ATGCAGATCTCGTGAAGACCCCTGACTGGTAAGACCATCACTCTC
1►Met Gl n IlePheVal LysThr LeuThr Gl yLysThr IleThr Leu
46 GAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATC
16►Gl uVal Gl uProSerAspThr IleGl uAsnVal LysAlaLysIle
91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTT
31►Gl nAspLysGl uGl y IleProProAspGl nGl nArgLeuIlePhe
136 GCAGGCAAGCAGCTGGAAGATGCCGCACTCTTCTGACTACAAC
46►AlaGl yLysGl nLeuGl uAspGl yArgThr LeuSerAspTyrAsn
181 ATCCAGAAAGAGTCCACCCCTGCACCTGGTGCCTCGTCTCAGAGGT
61►IleGl nLysGl uSer Thr LeuHisLeuValLeuArgLeuArgGl y
226 GGGAGGCACGGTAGTGGTGCATGGCTGTTGCCGTCTCGCTGGTG
76►Gl yArgHisGl ySer Gl yAlaTrpLeuLeuProVal Ser LeuVal
271 AAAAGAAAAACCACCCCTGGGCCCAATACGCAAACCGCCTCTCCC
91►LysArgLysThr Thr LeuAlaProAsnThr Gl nThr AlaSer Pro
316 CGCGCGTTGGCCGATTCAATTAGCAGCTGGCACGACAGGTTCC
106►ArgAlaLeuAlaAspSer LeuMet Gl nLeuAlaArgGl nVal Ser
361 CGAGGATCC
121►ArgGl ySer

8/19

Figure 7

1 ATGCAGATCTCGTGAAGACCCCTGACTGGTAAGACCATCACTCTC
1► Met Gl n l e Phe Val Lys Thr Leu Thr Gl y Lys Thr l l e Thr Leu
46 GAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATC
16► Gl u Va l Gl u Pro Ser Asp Thr l l e Gl u Asn Val l Lys Al a Lys l l e
91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTTT
31► Gl n Asp Lys Gl u Gl y l l e Pro Pro Asp Gl n Gl n Arg Leu l l e Phe
136 GCAGGCAAGCAGCTGGAAGATGGCCGACTCTTCTGACTACAAC
46► Al a Gl y Lys Gl n Leu Gl u Asp Gl y A rg Thr Leu Ser Asp Tyr Asn
181 ATCCAGAAAGAGTCCACCCCTGCACCTGGTGCTCCGTCTCAGAGGT
61► l l e Gl n Lys Gl u Ser Thr Leu Hi s Leu Val Leu Arg Leu Arg Gl y
226 GGGAGGCACGGTAGTGGTGATGGCTGTTGCCCGTCTCGCTGGTG
76► Gl y A rg Hi s Gl y Ser Gl y Al a Trp Leu Leu Pro Val Ser Leu Val l
271 AAAAGAAAAACCACCCCTGGCGCCCAATACGCAAACCGCCTCTCCC
91► Lys Arg Lys Thr Thr Leu Al a Pro Asn Thr Gl n Thr Al a Ser Pro
316 CGCGCGTTGGCCGATTCAATTAAATGCAGCTGGCACGACAGGTTCC
106► A rg Al a Leu Al a Asp Ser Leu Met Gl n Leu Al a Arg Gl n Val l Ser
361 CGAGGATCCACAGGTTCTGGTCATGCAAGCTCTACCCAGGTGGA
121► A rg Gl y Ser Thr Gl y Ser Gl y Hi s Al a Ser Ser Thr Pro Gl y Gl y
406 GAAAAGGAGACTTCGGCTACCCAGAGAAGTTCA GTGCCAGCTCT
136► Gl u Lys Gl u Thr Ser Al a Thr Gl n Arg Ser Ser Val l Pro Ser Ser
451 ACTGAGAAGAATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGC
151► Thr Gl u Lys Asn Al a Val Ser Met Thr Ser Ser Val Leu Ser Ser
496 CACAGCCCCGGTTCA GGCT CCTCC ACCACTCAGGGACAGGATGTC
166► Hi s Ser Pro Gl y Ser Gl y Ser Ser Thr Thr Gl n Gl y Gl n Asp Val l
541 ACTCTGGCCCCGGCCACGGAACCAGCTTCAGGTTGATAA
181► Thr Leu Al a Pro Al a Thr Gl u Pro Al a Ser Gl y * * * *

Figure 8

1 ATGCAGATCTCGTGAAGACCCTGACTGGTAAGACCACCACTCTC
 1► Met Gl n I I e Phe Val Lys Thr Leu Thr Gl y Lys Thr I I e Thr Leu
 46 GAAGTGGAGCCGAGTGACACCATTGAGAAATGTCAAGGCAAAGATC
 16► Gl u Val Gl u Pro Ser Asp Thr I I e Gl u Asn Val Lys Al a Lys I I e
 91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTT
 31► Gl n Asp Lys Gl u Gl y I I e Pro Pro Asp Gl n Gl n Arg Leu I I e Phe
 136 GCAGGCAAGCAGCTGGAAGATGCCGCACTCTTCTGACTACAAC
 46► Al a Gl y Lys Gl n Leu Gl u Asp Gl y A rg Thr Leu Ser Asp Tyr Asn
 181 ATCCAGAAAAGAGTCCACCCCTGCACCTGGTGCCTCGTCTCAGAGGT
 61► I I e Gl n Lys Gl u Ser Thr Leu Hi s Leu Val Leu Arg Leu Arg Gl y
 226 GGGAGGCACGGTAGTGGTCATGGCTGTTGCCGTCTCGCTGGTG
 76► Gl y A rg Hi s Gl y Ser Gl y Al a Trp Leu Leu Pro Val Ser Leu Val
 271 AAAAGAAAAACCACCCCTGGCGCCAATACGCAAACCGCCCTCTCCC
 91► Lys Arg Lys Thr Thr Leu Al a Pro Asn Thr Gl n Thr Al a Ser Pro
 316 CGCGCGTTGGCCGATTTCATTAATGCAGCTGGCACGACAGGTTCC
 106► A rg Al a Leu Al a Asp Ser Leu Met Gl n Leu Al a Arg Gl n Val Ser
 361 CGAGGATCCGTGCCAGCTCTACTGAGAAGAATGCTGTGAGTATG
 121► A rg Gl y Ser Val Pro Ser Ser Thr Gl u Lys Asn Al a Val Ser Met
 406 ACCAGCAGCGTACTCTCCAGCCACAGCCCCGGTCAGGCTCCTCC
 136► Thr Ser Ser Val Leu Ser Ser Hi s Ser Pro Gl y Ser Gl y Ser Ser
 451 ACCACTCAGGGACAGGATGTCACTCTGGCCCCGGCCACGGAACCA
 151► Thr Thr Gl n Gl y Gl n Asp Val Thr Leu Al a Pro Al a Thr Gl u Pro
 496 GCTTCAGGTTCAGCTGCCACCTGGGGACAGGATGTCACCTCGGTC
 166► Al a Ser Gl y Ser Al a Al a Thr Trp Gl y Gl n Asp Val Thr Ser Val
 541 CCAGTCACCAGGCCAGCCCTGGCTCCACCACCCGCCAGCCAC
 181► Pro Val Thr A rg Pro Al a Leu Gl y Ser Thr Thr Pro Pro Al a His
 586 GATGTCACCTCAGCCCCGGACAACAAGCCAGCCCCGGGAAGTACT
 196► Asp Val Thr Ser Al a Pro Asp Asn Lys Pro Al a Pro Gl y Ser Thr
 631 GCTCCACCAGCACACGGTGTACCTCGGCTCCGGATACCAGGCCG
 211► Al a Pro Pro Al a His Gl y Val Thr Ser Al a Pro Asp Thr A rg Pro
 676 GCCCCAGGTAGTACCGCCCTCCTGCCCATGGTGTACATCTGCC
 226► Al a Pro Gl y Ser Thr Al a Pro Pro Al a His Gl y Val Thr Ser Al a
 721 CCGGACAACAGGCCTGCATTGGTAGTACAGCACCGCCAGTACAC
 241► Pro Asp Asn Arg Pro Al a Leu Gl y Ser Thr Al a Pro Pro Val His
 766 AACGTTACTAGTGCCTCAGGCTCTGCTAGCGGCTCAGCTTCTACT
 256► Asn Val Thr Ser Al a Ser Gl y Ser Al a Ser Gl y Ser Al a Ser Thr
 811 CTGGTGCACAACGGCACCTCTGCGCGCGACCACAACCCAGCG
 271► Leu Val His Asn Gl y Thr Ser Al a Arg Al a Thr Thr Pro Al a
 856 AGCAAGAGCACTCCATTCTCAATTCCCAGCTGATAA
 286► Ser Lys Ser Thr Pro Phe Ser I I e Pro Ser •••••

Figure 9

1 ATGCAGATCTCGTGAAGACCCGTACTGGTAAGACCACACTCTC
 1► Met Gl n IlePheVal Lys Thr Leu Thr Gl y Lys Thr Ile Thr Leu
 46 GAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATC
 16► Gl u Val Gl u Pro Ser Asp Thr Ile Gl u Asn Val Lys Ala Lys Ile
 91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTT
 31► Gl n Asp Lys Gl u Gl y Ile Pro Pro Asp Gl n Gl n Arg Leu Ile Phe
 136 GCAGGCAAGCAGCTGGAAGATGGCCGCACCTCTCTGACTACAAC
 46► Ala Gl y Lys Gl n Leu Gl u Asp Gl y Arg Thr Leu Ser Asp Tyr Asn
 181 ATCCAGAAAGAGTCACCCCTGCACCTGGTGCTCCGTCTCAGAGGT
 61► Ile Gl n Lys Gl u Ser Thr Leu His Leu Val Leu Arg Leu Arg Gl y
 226 GGGAGGCACCGTAGTGGTGCATGGCTGTTGCCGTCTCGCTGGTG
 76► Gl y Arg His Gl y Ser Gl y Ala Trp Leu Leu Pro Val Ser Leu Val
 271 AAAAGAAAAACCACCCCTGGCGGCCAATACGCACCGCCTCTCCC
 91► Lys Arg Lys Thr Thr Leu Ala Pro Asn Thr Gl n Thr Ala Ser Pro
 316 CGCGCGTTGGCCGATTCAATTAGCAGCTGGCACGACAGGTTCC
 106► Arg Ala Leu Ala Asp Ser Leu Met Gl n Leu Ala Arg Gl n Val Ser
 361 CGAGGATCCGGCTCAGCTTCACTCTGGTGCACAACGGCACCTCT
 121► Arg Gl y Ser Gl y Ser Ala Ser Thr Leu Val His Asn Gl y Thr Ser
 406 GCCAGGGCTACCACAACCCCAGCCAGCAAGAGCACTCCATTCTCA
 136► Ala Arg Ala Thr Thr Pro Ala Ser Lys Ser Thr Pro Phe Ser
 451 ATTCCCAGCCACCACTCTGATACTCCTACCACCCCTGCCAGCCAT
 151► Ile Pro Ser His His Ser Asp Thr Pro Thr Thr Leu Ala Ser His
 496 AGCACCAAGACTGATGCCAGTAGCACTACCATAAGCACGGTACCT
 166► Ser Thr Lys Thr Asp Ala Ser Ser Thr His His Ser Thr Val Pro
 541 CCTCTCACCTCCTCCAATCACAGCACTCTCCCCAGTTGTCTACT
 181► Pro Leu Thr Ser Ser Asn His Ser Thr Ser Pro Gl n Leu Ser Thr
 586 GGGGTCTCTTCTTTCTGTCTTACATTTCAAACCTCCAG
 196► Gl y Val Ser Phe Phe Phe Leu Ser Phe His Ile Ser Asn Leu Gl n
 631 TTTAATTCCCTCTCTGGAAGATCCCAGCACCAGACTACTACCAAGAG
 211► Phe Asn Ser Ser Leu Gl u Asp Pro Ser Thr Asp Tyr Tyr Gl n Gl u
 676 CTGCAGAGAGACATTCTGAAATGTTTGAGATTATAAACAA
 226► Leu Gl n Arg Asp Ile Ser Gl u Met Phe Leu Gl n Ile Tyr Lys Gl n
 721 GGGGGTTTCTGGGCCTCTCCAATATTAGTTCAAGGCCAGGATCT
 241► Gl y Gl y Phe Leu Gl y Leu Ser Asn Ile Lys Phe Arg Pro Gl y Ser
 766 GTGGTGGTACAATTGACTCTGGCCTCCGAGAAGGTACCATCAAT
 256► Val Val Val Gl n Leu Thr Leu Ala Phe Arg Gl u Gl y Thr Ile Asn
 811 GTCCACGACGTGGAGACACAGTTCAATCAGTATAAAACGGAAAGCA
 271► Val His Asp Val Gl u Thr Gl n Phe Asn Gl n Tyr Lys Thr Gl u Ala
 856 GCCTCTCGATATAACCTGACGATCTCAGACGTCAAGCGTCAAGTGTGAT
 286► Ala Ser Arg Tyr Asn Leu Thr Ile Ser Asp Val Ser Val Ser Asp
 901 GTGCCATTCTCTGCCCCAGTCTGGGGCTGGGTGCCAGGC
 301► Val Pro Phe Pro Phe Ser Ala Gl n Ser Gl y Ala Gl y Val Pro Gl y
 946 TGGGGCATCGCGCTGGTCTGGTCTGTGTTCTGGTTGCCGCTG
 316► Trp Gl y Ile Ala Leu Leu Val Leu Val Cys Val Leu Val Ala Leu
 991 GCCATTGTCTATCTCATTGCCTTGTGATAA
 331► Ala Ile Val Tyr Leu Ile Ala Leu • • • •

11/19

Figure 10

1 ATGCAGATCTCGTGAAGACCCGTGACTGGTAAGACCACACTCTC
1►Met Gl n Ile Phe Val Lys Thr Leu Thr Gl y Lys Thr Ile Thr Leu
46 GAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATC
16►Gl u Val Gl u Pro Ser Asp Thr Ile Gl u Asn Val Lys Al a Lys Ile
91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTT
31►Gl n Asp Lys Gl u Gl y Ile Pro Pro Asp Gl n Gl n Arg Leu Ile Phe
136 GCAGGCAGCAGCTGGAAGATGGCCGCACTCTTCTGACTACAAC
46►Al a Gl y Lys Gl n Leu Gl u Asp Gl y A rg Thr Leu Ser Asp Tyr Asn
181 ATCCAGAAAGAGTCCACCCTGCCACCTGGTGCTCCGTCTCAGAGGT
61►Ile Gl n Lys Gl u Ser Thr Leu Hi s Leu Val Leu Arg Leu Arg Gl y
226 GGGAGGCACGGTAGTGGTGCATGGCTGTTGCCGTCTCGCTGGTG
76►Gl y A rg Hi s Gl y Ser Gl y Al a Trp Leu Leu Pro Val Ser Leu Val
271 AAAAGAAAAACCACCCCTGGCGCCCAATACGCAAACCGCCCTCTCCC
91►Lys Arg Lys Thr Thr Leu Al a Pro Asn Thr Gl n Thr Al a Ser Pro
316 CGCGCGTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTCC
106►A rg Al a Leu Al a Asp Ser Leu Met Gl n Leu Al a Arg Gl n Val Ser
361 CGAGGATCCCTGGTGTGGCTGTGTTGCGCTGGCCATT
121►A rg Gl y Ser Leu Val Leu Val Cys Val Leu Val Al a Leu Al a Ile
406 GTCTATCTCATTGCCCTGGCTGTCTGTCAGTGGCGAAAGAAC
136►Val Tyr Leu Ile Al a Leu Al a Val Cys Gl n Cys Arg Arg Lys Asn
451 TACGGGCAGCTGGACATCTTCCAGCCGGATACCTACCATCCT
151►Tyr Gl y Gl n Leu Asp Ile Phe Pro Al a Arg Asp Thr Tyr Hi s Pro
496 ATGAGCGAGTACCCACCTACCACACCCATGGCGCTATGTGCC
166►Met Ser Gl u Tyr Pro Thr Tyr Hi s Thr Hi s Gl y A rg Tyr Val Pro
541 CCTAGCAGTACCGATCGTAGCCCCATGAGAAGGTTCTGCAGGT
181►Pro Ser Ser Thr Asp Arg Ser Pro Tyr Gl u Lys Val Ser Al a Gl y
586 AATGGTGGCAGCAGCCTCTCTTACACAAACCCAGCAGTGGCAGCC
196►Asn Gl y Gl y Ser Ser Leu Ser Tyr Thr Asn Pro Al a Val Al a Al a
631 ACTCTGCCAACTTGTGATAA
211►Thr Ser Al a Asn Leu •••••

12/19

Figure 11

1 ATGCAGATCTCGTGAAGACCCGTGACTGGTAAGACCACACTCTC
 1► Met Gl n Ile Phe Val Lys Thr Leu Thr Gl y Lys Thr Ile Thr Leu
 46 GAAGTGGAGCCGAGTGACACCATTGAGAATGTCAAGGCAAAGATC
 16► Gl u Va l Gl u Pro Ser Asp Thr I I e Gl u Asn Val Lys Al a Lys I I e
 91 CAAGACAAGGAAGGCATCCCTCCTGACCAGCAGAGGCTCATCTT
 31► Gl n Asp Lys Gl u Gl y I I e Pro Pro Asp Gl n Gl n Arg Leu I I e Phe
 136 GCAGGCAAGCAGCTGGAAGATGCCGC ACTCTTCTGACTACAAC
 46► Al a Gl y Lys Gl n Leu Gl u Asp Gl y A rg Thr Leu Ser Asp Tyr Asn
 181 ATCCAGAAAGAGTCCACCCCTGCACCTGGT GCTCCGTCTCAGAGGT
 61► I I e Gl n Lys Gl u Ser Thr Leu His Leu Val Leu Arg Leu Arg Gl y
 226 GGGAGGCACGGTAGTGGTGCATGGCTGTTGCCGTCTCGCTGGTG
 76► Gl y A rg His Gl y Ser Gl y Al a Trp Leu Leu Pro Val Ser Leu Val
 271 AAAAGAAAAACCACCCCTGGCGCCAATACGCAAACCGCCCTCCCC
 91► Lys Arg Lys Thr Thr Leu Al a Pro Asn Thr Gl n Thr Al a Ser Pro
 316 CGCGCGTTGGCCGATTCA TTAA TGCAGCTGGCACGACAGGTTCC
 106► A rg Al a Leu Al a Asp Ser Leu Met Gl n Leu Al a Arg Gl n Val Ser
 361 CGAGGATCCACAGGTTCTGGTCATGCAAGCTCTACCCCAGGTGGA
 121► A rg Gl y Ser Thr Gl y Ser Gl y His Al a Ser Ser Thr Pro Gl y Gl y
 406 GAAAAGGAGACTTCGGCTACCCAGAGAAGTTCA GTGCCAGCTCT
 136► Gl u Lys Gl u Thr Ser Al a Thr Gl n Arg Ser Ser Val Pro Ser Ser
 451 ACTGAGAAGAATGCTGTGAGTATGACCAGCAGCGTACTCTCCAGC
 151► Thr Gl u Lys Asn Al a Val Ser Met Thr Ser Ser Val Leu Ser Ser
 496 CACAGCCCCGGTTCA GGCTCCTCCACCAC TGAGGACAGGATGTC
 166► His Ser Pro Gl y Ser Gl y Ser Ser Thr Thr Gl n Gl y Gl n Asp Val
 541 ACTCTGGCCCCGGCCACGGAACCCAGCTCAGGTTCA GCTGCCACC
 181► Thr Leu Al a Pro Al a Thr Gl u Pro Al a Ser Gl y Ser Al a Al a Thr
 586 TGGGGACAGGATGTCACCTCGGTCCCAGTCACCAGGCCAGCCCTG
 196► Trp Gl y Gl n Asp Val Thr Ser Val Pro Val Thr Arg Pro Al a Leu
 631 GGCTCCACCACCCCGCCAGCCCACGATGTCACCTCAGCCCCGGAC
 211► Gl y Ser Thr Thr Pro Pro Al a His Asp Val Thr Ser Al a Pro Asp
 676 AACAAAGCCAGCCCCGGGAAGTACCGCTCCACCACGACACGGTGTT
 226► Asn Lys Pro Al a Pro Gl y Ser Thr Al a Pro Pro Al a His Gl y Val
 721 ACCTCGGCTCCGGATA CCAGGCCGGCCCCAGGTAGTACCGCCCT
 241► Thr Ser Al a Pro Asp Thr Arg Pro Al a Pro Gl y Ser Thr Al a Pro
 766 CCTGCCCATGGTGTACATCTGCCCGGACAACAGGCCTGCATTG
 256► Pro Al a His Gl y Val Thr Ser Al a Pro Asp Asn Arg Pro Al a Leu
 811 GGTAGTACAGCACC GCCAGTACACAACGTTACTAGTGCCTCAGGC
 271► Gl y Ser Thr Al a Pro Pro Val His Asn Val Thr Ser Al a Ser Gl y
 856 TCTGCTAGCGGCTCAGCTTCA CTGACTCTGGTGCACAACGGCACCTCT
 286► Ser Al a Ser Gl y Ser Al a Ser Thr Leu Val His Asn Gl y Thr Ser

(Continued)

13/19

Figure 11 (continued)

901 GCGCGCGCAGCACAAACCCAGCGAGCAAGAGCACTCCATTCTCA
 301►AlaArgAlaThrThrThrProAlaSerLysSerThrProPheSer
 946 ATTCCCAGCCACCACACTCTGATACTCCTACCACCCTGCCAGCCAT
 316►IleProSerHisHisSerAspThrProThrThrLeuAlaSerHis
 991 AGCACCAAGACTGATGCCAGTAGCACTCACCATAGCACGGTACCT
 331►SerThrLysThrAspAlaSerSerThrHisHisSerThrValPro
 1036 CCTCTCACCTCCTCCAATCACAGCACTCTCCCCAGTTGTCTACT
 346►ProLeuThrSerSerAsnHisSerThrSerProGlnLeuSerThr
 1081 GGGGTCTCTTCTTTCTGTCTTCACATTCAAACCTCCAG
 361►GlyValSerPhePhePheLeuSerPheHisIleSerAsnLeuGln
 1126 TTTAATTCCCTCTGGAAAGATCCCAGCACCGACTACTACCAAGAG
 376►PheAsnSerSerLeuGluAspProSerThrAspTyrTyrGlnGlu
 1171 CTGCAGAGAGACATTCTGAAATGTTTGAGATTATAAACAA
 391►LeuGlnArgAspIleSerGluMetPheLeuGlnIleTyrLysGln
 1216 GGGGGTTCTGGCCTCTCCAATATAAGTTCAAGGCCAGGATCT
 406►GlyGlyPheLeuGlyLeuSerAsnIleLysPheArgProGlySer
 1261 GTGGTGGTACAATTGACTCTGGCTTCCGAGAAGGTACCATCAAT
 421►ValValValGlnLeuThrLeuAlaPheArgGlyThrIleAsn
 1306 GTCCACGACGTGGAGACACAGTCATCAGTATAAACCGGAAGCA
 436►ValHisAspValGluThrGlynPheAsnGlyntyrsThrGlyAla
 1351 GCCTCTCGATATAACCTGACGATCTCAGACGTCAGCGTGAGTGAT
 451►AlaSerArgTyrAsnLeuThrIleSerAspValSerValSerAsp
 1396 GTGCCATTCTCTCTGCCAGTCAGCTGGGCTGGGTGCCAGGC
 466►ValProPheProPheSerAlaGlnSerGlyAlaGlyValProGly
 1441 TGGGGCATCGCGCTGCTGGTCTGTGTCTGGTGCCTG
 481►TrpGlyIleAlaLeuLeuValLeuValCysValLeuValAlaLeu
 1486 GCCATTGTCTATCTCATTGCCATTGGCTGTCTGTCAGTGCCGCCGA
 496►AlaIleValTyrLeuIleAlaLeuAlaValCysGlyncysArgArg
 1531 AAGAACTACGGGAGCTGGACATCTTCCAGCCCCGGATACCTAC
 511►LysAsnTyrGlyGlyLeuAspIlePheProAlaArgAspThrTyr
 1576 CATCCTATGAGCGAGTACCCACCTACCACACCCATGGCGCTAT
 526►HisProMetSerGlyTyrProThrTyrHisThrHisGlyArgTyr
 1621 GTGCCCCCTAGCAGTACCGATCGTAGCCCTATGAGAAGGTTCT
 541►ValProProSerSerThrAspArgSerProTyrGlyLysValSer
 1666 GCAGGTAATGGTGGCAGCAGCCTCTTACACAAACCCAGCAGTG
 556►AlaGlyAsnGlyGlySerSerLeuSerTyrThrAsnProAlaVal
 1711 GCAGCCACTCTGCCAATTGTGATAA
 571►AlaAlaThrSerAlaAsnLeu•••••

14/19

1 2 3 4 5 6 7 8 9 10 11 12 13 14

15/19

Figure 13

1 CCAGGAAGCTCCTCTGTGTCTCATAAACCTAACCTCCTACTTGAGA
51 GGACATTCCAATCATAGGCTGCCCATCCACCCCTGTGTCCCTGTTAA
101 TTAGGTCACTAACAAAAAGGAAATTGGTAGGGTTTACAGACCGC
151 TTTCTAAGGGTAATTTAAAATATCTGGGAAGTCCTTCCACTGCTGTGT
201 TCCAGAAGTGTGGTAAACAGCCCACAAATGTCAACAGCAGAACATACA
251 AGCTGTCAGCTTGCACAAGGGCCAACACCCCTGCTCATCAAGAAGCACT
301 GTGGTTGCTGTGTTAGTAATGTCAAAACAGGAGGCACATTTCCCCACC
351 TGTGTAGGTTCCAAAATATCTAGTGTTCATTTTACTGGATCAGGAA
401 CCCAGCAGTCCACTGGATAAGCATTATCCTTATCCAAAACAGCCTTGTGG
451 TCAGTGTTCATCTGCTGACTGTCAACTGTAGCATTGGGGTTACAGT
501 TTGAGCAGGATATTGGTCCTGTAGTTGCTAACACACCCCTGCAGCTCCA
551 AAGGTTCCCCACCAACAGCAAAAAATGAAAATTGACCCCTGAATGGGT
601 TTTCCAGCACCATTTCATGAGTTTGTGTCCCTGAATGCAAGTTAA
651 CATAGCAGTTACCCAATAACCTCAGTTAACAGAACAGCTTCCCACA
701 TCAAAATATTCCACAGGTTAAGTCCTCATTTAAATTAGGCAAAGGAATT
751 CTTGAAGACGAAAGGGCTCGTGATACGCCATTGGGGTTAGGTTAATGTC
801 ATGATAATAATGGTTCTTAGACGTCAGGTGGCACTTTCGGGGAAATGT
851 GCGCGGAACCCCTATTGTTATTTCTAAATACATTCAAATATGTATC
901 CGCTCATGAGACAATAACCTGATAATGCTCAATAATATTGAAAAGG
951 AAGAGTATGAGTATTCAACATTCCGTGTCGCCCTATTCCCTTTTGC
1001 GGCATTTGCCTCCTGTTGCTACCCAGAAACGCTGGTAAAGTAA

Figure 13

2151 TAGTTAGGCCACCACCTCAAGAACTCTGTAGCACCGCCTACATAACCTCGC
2201 TCTGCTAATCCTGTTACCACTGGCTGCTGCCAGTGGGATAAGTCGTGTC
2251 TTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGCG
2301 GGCTGAACGGGGTTCGTGCACACAGCCCAGCTTGAGCGAACGACCTA
2351 CACCGAACTGAGATACTACAGCGTGAGCTATGAGAAAGCGCCACGCTTC
2401 CGGAAGGGAGAAAGGCGGACAGGTATCCGTAAGCGGCAGGGTCGGAACA
2451 GGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCGGTATCTTATAG
2501 TCCTGTCGGGTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATGCT
2551 CGTCAGGGGGCGGAGCCTATGGAAAACGCCAGCAACGCCGGCTTTTA
2601 CGGTTCCCTGGCTTTGCTGGCTTTGCTCACATGTTCTTCCTGCGTT
2651 ATCCCCCTGATTCTGTGGATAACCGTATTACCGCCTTGAGTGAGCTGATA
2701 CCGCTCGCCGCAGCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAA
2751 GCGGAAGAGCGCCTGATGCGGTATTTCTCCTTACGCATCTGTGCGGTAT
2801 TTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCAT
2851 AGTTAAGCCAGTACAATCAATATTGCCATTAGCCATTATTATTGATTG
2901 GTTATATAGCATAATCAATATTGGCTATTGCCATTGCATACGTTGTAT
2951 CCATATCATAATATGTACATTATATTGGCTCATGTCACATTACCGCC
3001 ATGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGT
3051 CATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTACGGTA
3101 AATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCATTGACGTCAAT
3151 AATGACGTATGTTCCATAGTAACGCCAATAGGGACTTCCATTGACGTC
3201 AATGGGTGGAGTATTACGGTAAACTGCCACTTGGCAGTACATCAAGTG
3251 TATCATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGCC

(Continued)

Figure 13 (Continued)

3301 CGCCTGGCATTATGCCCAAGTACATGACCTTATGGGACTTTCTACTTGGC

3351 AGTACATCTACGTATTAGTCATCGCTATTACCATGGTGTGCGGTTTGG

3401 CAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGATTCCAAG

3451 TCTCCACCCCATTGACGTCAATGGGAGTTGTTTGGCACCAAATCAAC

3501 GGGACTTTCCAAAATGTCGTAACAACCTCCGCCCCATTGACGCAAATGGC

3551 GGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTAGTGAA

3601 CCGTCAGATCGCCTGGAGACGCCATCCACGCTGTTGACCTCCATAGAA

3651 GACACCGGGACCAGATCCAGCCTCCGCGCCGGAACGGTGCATTGGAACG

3701 CGGATTCCCCGTGCCAAGAAAGCTTGTCTAGAACCCGGGAGAGCTCCTGA

3751 GAACCTCAGGGTGAGTTGGGGACCCTTGATTGTTCTTCTTCGCTA

3801 TTGTAAAATTCACTGTTATATGGAGGGGCAAAGTTTCAGGGTGTGTT

3851 AGAATGGGAAGATGTCCCTTGTATCACCAGGACCTCATGATAATTTCG

3901 TTTCTTCACTTCTACTCTGTTGACAACCATTGTCCTCTTATTTCT

3951 TTTCATTTCTGTAACTTTCGTTAAACTTTAGCTTGCATTGTAACGA

4001 ATTTTAAATTCACTTTGTTATTGTCAGATTGTAAGTACTTCTCTA

4051 ATCACTTTTTCAAGGCAATCAGGGTATATTATATTGTACTTCAGCAC

4101 AGTTTAGAGAACAAATTGTTATAATTAAATGATAAGGTAGAATATTCTG

4151 CATATAAAATTCTGGCTGGCGTGGAAATATTCTTATTGGTAGAAACAACTA

4201 CATCCTGGTCATCATCCTGCCTTCTCTTATGGTACAATGATATACAC

4251 TGTTGAGATGAGGATAAAATACTCTGAGTCCAAACCGGGCCCTCTGCT

4301 AACCATGTTCATGCCTCTTCTTCTACAGCTCCTGGCAACGTGCT

4351 GGTTGTTGTGCTCTCATCTTGGCAAAGAATTCACTCCTCAGGTGC

4401 AGGCTGCCTATCAGAAGGTGGTGGCTGGTGTGGCAATGCCCTGGCTCAC

(Continued)

Figure 13 (Continued)

1051 AAGATGCTGAAGATCAGTTGGGTGCACGAGTGGTTACATCGAACTGGAT
1101 CTCAACAGCGTAAGATCCTTGAGAGTTTCGCCCGAAGAACGTTCC
1151 AATGATGAGCACTTTAAAGTTCTGCTATGTGGCGCGTATTATCCCGTG
1201 TTGACGCCGGCAAGAGCAACTCGTCGCCGCATAACACTATTCTCAGAAT
1251 GACTTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTTACGGATGGCAT
1301 GACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTG
1351 CGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCT
1401 TTTTGACAAACATGGGGATCATGTAACTCGCCTTGATCGTTGGAACCC
1451 GGAGCTGAATGAAGCCATACCAAACGACGAGCGTACACCAACGATGCCCTG
1501 CAGCAATGGCAACAAACGTTGCGCAAACATTAACTGGGAACACTTACT
1551 CTAGCTCCCGCAACAATTAAAGACTGGATGGAGGCGGATAAAGTTGC
1601 AGGACCACCTCTGCGCTGGCCCTTCGGCTGGCTGGTTATTGCTGATA
1651 AATCTGGAGCCGGTGAGCGTGGGTCTCGCGTATCATTGCAGCACTGGGG
1701 CCAGATGGTAAGCCCTCCGTATCGTAGTTACACGACGGGAGTCA
1751 GGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCCTCAC
1801 TGATTAAGCATTGTAACTGTCAGACCAAGTTACTCATATATACTTTAG
1851 ATTGATTTAAACTTCATTTAATTAAAGGATCTAGGTGAAGATCCT
1901 TTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTTCCACT
1951 GAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTT
2001 TTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAACCACCGCTACCAGC
2051 GGTGGTTTGGTTGCCGGATCAAGAGCTACCAACTCTTICGAAGGTAA
2101 CTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTCTAGTGTAGCCG

(Continued)

19/19

Figure 13 (Continued)

4451 AAATACCACTGAGATCTTTCCCTCTGCCAAAAATTATGGGACATCAT
4501 GAAGCCCCTTGAGCATCTGACTTCTGGCTAATAAAGGAAATTATTTCA
4551 TTGCAATAGTGTGTTGAATTTTGTGTCTCTCACTCGGAAGGACATAT
4601 GGGAGGGCAAATCATTAAAACATCAGAATGAGTATTGGTTAGAGTT
4651 GGCAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGA
4701 GGTCACTAGTATATGAAACAGCCCCCTGCTGTCCATTCTTATTCCATAG
4751 AAAAGCCTTGACTTGAGGTTAGATTTTTATATTTGTTTGTTAT
4801 TTTTTCTTTAACATCCCTAAATTTCTTACATGTTTACTAGCCAGA
4851 TTTTCCTCCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTCTG
4901 GATCC

SEQUENCE LISTING

<110> MENARINI RICERCHE S.p.A.

<120> PHARMACEUTICAL COMPOSITION, CONTAINING FRAGMENTS OF AN
ANTIGENIC PROTEIN ENCODING DNA ENDOWED WITH ANTI-TUMOR
EFFECT

<130> 5653MEUR

<140>

<141>

<150> MI98A002330

<151> 1998-10-30

<160> 35

<170> PatentIn Ver. 2.1

<210> 1

<211> 213

<212> DNA

<213> human

<400> 1

atgacaggtt ctggtcatgc aagctctacc ccaggtggag aaaaggagac ttccggctacc 60
cagagaagtt cagtggccag ctctactgag aagaatgctg tgagtatgac cagcagcgta 120
ctctccagcc acagccccgg ttcaggctcc tccaccactc agggacagga tgtcactctg 180
gccccggcca cggaaccagc ttcaggttga taa 213

<210> 2

<211> 525

<212> DNA

<213> human

<400> 2

atgggtccca gctctactga gaagaatgct gtgagttatga ccagcagegt actctccagc 60
cacagccccg gttcaggctc ctcccaccact cagggacagg atgtcactct ggccccggcc 120
acggAACCCAG CTTCAGGTTC AGCTGCCACC TGGGGACAGG ATGTCACTCTC GGTCCCAGTC 180
accaggccag CCCTGGGCTC CACCACCCCG CCAGCCCCACG ATGTCACTCTC AGCCCCGGAC 240
aacaagccag CCCCCGGGAAG TAATGCTCCA CCAGCACACG GTGTTACCTC GGCTCCGGAT 300
accaggcccg CCCCCAGGTAG TACCGCCCTC CCTGCCCATG GTGTCACTATC TGCCCCGGAC 360
aacaggcctg CATTGGGTAG TACAGCACCG CCAGTACACA ACGTTACTAG TGCCTCAGGC 420
tctgttagcg GCTCAGCTTC TACTCTGGTG CACAACGGCA CCTCTGCGCG CGCGACCCACA 480
accccgagcga GCAAGAGCAC TCCATTCTCA ATTCCAGCT GATAA 525

<210> 3
<211> 654
<212> DNA
<213> human

<400> 3
atgggctcag cttctactct ggtgcacaac ggcacctctg ccagggctac cacaacccca 60
gccagcaaga gcactccatt ctcaattccc agccaccact ctgatactcc taccaccctt 120
gccagccata gcaccaagac tgatgccagt agcactcacc atagcacggt acctcctctc 180
acctcctcca atcacagcac ttctccccag ttgtctactg gggctctttt cttttcttg 240
tttttcaca tttcaaacctt ccagtttaat tcctctctgg aagatcccag caccgactac 300
taccaaagac tgcagagaga catttctgaa atgttttgc agatttataa acaagggggt 360
tttctgggcc tctccaatat taagttcagg ccaggatctg tggtggtaca attgactctg 420
gccttcccgag aaggtaaccat caatgtccac gacgtggaga cacagttcaa tcagtataaa 480
acggaagcag cctctcgata taacctgacg atctcagacg tcagcgttag tgatgtgcca 540
tttcccttct ctgcccagtc tggggctggg gtggcaggct ggggcattcgc gctgctggtg 600
ctggtctgtg ttctgggtgc gctggccatt gtctatctca ttgccttgtg ataa 654

<210> 4
<211> 285
<212> DNA
<213> human

<400> 4
atgtgggtgc tggtctgtgt tctgggtgcg ctggccatttgc tctatctcat tgccttggct 60
gtctgtcagt gccggcggaaa gaactacggg cagctggaca tctttccagc ccgggatacc 120
taccatccca tgagcgagta ccccacccatc cacaccatg ggcgtatgt gcccccttagc 180
agtaccgatc gttagcccta tgagaagggt tctgcaggta atgggtggcag cagccctctct 240
tacacaaacc cagcagtggc agccacttctt gccaacttgtt gataa 285

<210> 5
<211> 1371
<212> DNA
<213> human

<400> 5
atgacagggtt ctggtcattgc aagctctacc ccaggtggag aaaaggagac ttccggctacc 60
cagagaagtt cagtgcccgag ctctacttgag aagaatgttg tgagtatgac cagcagcgta 120
ctctccagcc acagccccgg ttcaggctcc tccaccactc agggacagga tgcactctg 180
gccccggcca cggaaccagc ttcaggttca gctgccaccc ggggacagga tgcacccctg 240
gtcccgatca ccagggccagc cttgggttcc accaccctcg cagccacca tgcacccatca 300
gccccggaca acaagccagc cccgggaaagt accgctccac cagcacaacgg tggtaacctcg 360
gctccggata ccagggccggc cccaggttagt accgcctctc ctgcccattgg tgcacatct 420
gccccggaca acagggctgc attgggttagt acagcaccgc cagttacacaa cgttacttagt 480
gcctcaggct ctgctagcgg ctcaagttctt actctgggtgc acaacggcac ctctgcgcgc 540

ggcaccacaa ccccagcgag caagagcact ccattctcaa ttccccgcca ccactctgat 600
 actccctacca cccttgcag ccatagcacc aagactgatg ccagtagcac tcaccatagc 660
 acggtaacctc ctctcaccc tcacaatcac agcacttctc cccagttgtc tactgggtc 720
 tctttctttt tcctgtcttt tcacatitca aacctccagt ttaattccctc tctggaagat 780
 cccagcacccg actactacca agagctgcag agagacatTTT ctgaaatgtt tttgcagatt 840
 tataaacaag ggggttttctt gggctctcc aatattaagt tcaggccagg atotgtggtg 900
 gtacaattga ctctggcctt ccgagaagg accatcaatg tccacgcacgt ggagacacag 960
 ttcaatcaagt ataaaaacgga agcagccctc cgatataacc tgacgatctc agacgtcagc 1020
 gtgagtgtatg tgccatttcc tttctctgcc cagtcgtggg ctgggggtgcc aggctgggc 1080
 atcgcgtgc tggtgctggt ctgtgttctg gttgcgtcg coattgtcta ttcatttgc 1140
 ttggctgtct gtcagtgcgg ccgaaagaac tacgggcagc tggacatottt tccagcccg 1200
 gatacctacc atccttatgag cgagtacccc acctaccaca cccatggcgctatgtgc 1260
 cctagcagta ccgatcgttag cccctatgag aaggtttctg caggtaatgg tggcagcagc 1320
 ctcttttaca caaacccagc agtggcagcc acttctgcca acttgtgata a 1371

<210> 6
 <211> 369
 <212> DNA
 <213> human

<400> 6
 atgcagatct tcgtgaagac cctgactggt aagaccatca ctctcgaagt ggagccgagt 60
 gacaccatttga aatgtcaaa ggcaaaagatc caagacaagg aaggcatccc tcctgaccag 120
 cagaggctca tctttgcagg caagcagctg gaagatggcc goactcttc tgactacaac 180
 atccagaaaag agtccaccctt gcacctgggt ctccgtctca gaggtggag gcacggtagt 240
 ggtgcatttgc tggccctgtt ctgcgtgggtt aaaaaaaaaa ccaccctggc gccaataacg 300
 caaaccgcctt ctcccccgcgc gttggccgat tcattaatgc agtggcacg acaggttcc 360
 cgaggatcc 369

<210> 7
 <211> 579
 <212> DNA
 <213> human

<400> 7
 atgcagatct tcgtgaagac cctgactggt aagaccatca ctctcgaagt ggagccgagt 60
 gacaccatttga aatgtcaaa ggcaaaagatc caagacaagg aaggcatccc tcctgaccag 120
 cagaggctca tctttgcagg caagcagctg gaagatggcc goactcttc tgactacaac 180
 atccagaaaag agtccaccctt gcacctgggt ctccgtctca gaggtggag gcacggtagt 240
 ggtgcatttgc tggccctgtt ctgcgtgggtt aaaaaaaaaa ccaccctggc gccaataacg 300
 caaaccgcctt ctcccccgcgc gttggccgat tcattaatgc agtggcacg acaggttcc 360
 cgaggatcc 369
 caggttctgg tcatgcaagc tctaccccgat gtggagaaaa ggagacttcg 420
 gctacccaga gaagttcagt gcccacgttct actgagaaga atgtgtgag tatgaccagc 480
 agcgtactt ccagccacag ccccggttca ggctctccca coactcaggg acaggatgtc 540
 actctggccc cggccacggc accagttca ggttgataa 579

<210> 8
<211> 891
<212> DNA
<213> human

<400> 8
atgcagatct tcgtgaagac cctgacttgt aagaccatca ctctcgaagt ggagccgagt 60
gacaccattt agaatgtcaa ggc当地ggc当地 caagacaagg aaggcatccc tccgtaccag 120
cagaggctca tctttgcagg caagc当地ctg gaagatggcc gcactcttc tgactacaac 180
atccagaaag agtccaccct gcacctggtg ctccgtctca gaggtgggag gcacggtagt 240
ggtgc当地ggc tggccggcgt ct当地ctggtg aaaagaaaaa ccaccctggc gccaatacg 300
caaaccggct ct当地ccggc当地 gttggccgat tc当地atgc agctggc当地 acagggttcc 360
cgaggatccg tgc当地ggc当地 tactgagaag aatgctgtga gt当地gaccag cagc当地tactc 420
tccagccaca gccc当地ggg当地 aggctctcc accactcagg gacaggatgt cactctggc 480
ccggccacgg aaccaggctt aggttccagct gccacctggg gacaggatgt cacctcggtc 540
ccagtc当地cca ggc当地ggccct gggctccacc accccggccag cccacgtgt cacctc当地ggcc 600
ccggac当地aca agccagcccc ggg当地gtact gctccaccag caca当地gggtt tacctcggt 660
ccggat当地cca ggc当地ggccctt aggttagtacc gccc当地cttccg cccatgggtt cacatctgcc 720
ccggac当地aca ggc当地gtc当地t ggg当地gttaca gc当地ccggccag tacacaacgt tactgtgcc 780
tc当地ggctctg ct当地ggccctc agcttctact ct当地ggc当地aca acggccaccctc tgc当地ggccg 840
accacaaccc cagc当地gagcaa gagcactcca ttctcaattt ccagctgata a 891

<210> 9
<211> 1020
<212> DNA
<213> human

<400> 9
atgcagatct tcgtgaagac cctgacttgt aagaccatca ctctcgaagt ggagccgagt 60
gacaccattt agaatgtcaa ggc当地ggc当地 caagacaagg aaggcatccc tccgtaccag 120
cagaggctca tctttgcagg caagc当地ctg gaagatggcc gcactcttc tgactacaac 180
atccagaaag agtccaccct gcacctggtg ctccgtctca gaggtgggag gcacggtagt 240
ggtgc当地ggc tggccggcgt ct当地ctggtg aaaagaaaaa ccaccctggc gccaatacg 300
caaaccggct ct当地ccggc当地 gttggccgat tc当地atgc agctggc当地 acagggttcc 360
cgaggatccg gtc当地ggc当地 tactctggtg cacaacggca cctctggccag ggctaccaca 420
acccggccca gcaagagccac tccatttctca attccggcc accactctga tactcttacc 480
acccttggccca gcoatagccac caagactgat gccagtagca ctcaccatag cacggtagct 540
cctctccatctt cctccaaatca cagcacttctt ccccaaggatgtt ctactggggctt ctctttctt 600
ttctctgttctt ttccatatttca aaaccctccag tttaatttctt ctctggaaaga tcccaggccacc 660
gactactacc aagagctgca gagagacatt tctgaaatgt ttttgc当地at ttataaacaa 720
ggggggttttc tggccctctc caatattaag ttccaggccag gatctgtggg ggtacaattt 780
actctggccct tccgagaagg taccatcaat gtccacgacg tggagacaca gttcaatcag 840
tataaaacgg aaggccctc tc当地gatataac ctgacgatct cagacgtc当地 cgtagtgtat 900
gtgccc当地atcc ct当地tctctc ccagctggg gctggggtgc caggctgggg catc当地cgctg 960
ctgggtgotgg tctgtgttctt gggtgc当地ctg gccattgtct atctcatttgc cttgtgataa 1020

<210> 10
<211> 651
<212> DNA
<213> human

<400> 10
atgcagatct tcgtgaagac cctgactggt aagaccatca ctctcgaagt ggagccgagt 60
gacaccattg agaatgtcaa ggcaaagatc caagacaagg aaggcatccc tcctgaccag 120
cagaggctca tctttgcagg caagcagctg gaagatggcc gcactcttc tgactacaac 180
atccagaaaag agtccaccct gcacctggtg ctccgtctca gaggtgggag gcacggtagt 240
ggtgcatggc tggcccgat ctcgtggtg aaaagaaaaa ccaccctggc gcccaatacg 300
caaaccgcct ctccccgcgc gttggccgat tcattaatgc agctggcaeg acaggttcc 360
cgaggatccc tggctgtggt ctgtgtctg gttgcgtctgg ccattgtcta tctcattgcc 420
ttggctgtct gtcaagtgeog cggaaagaac tacgggcagc tggacatctt tccagcccg 480
gatacctacc atccttatgag cgagtacccc acctaccaca cccatgggog ctatgtgcc 540
cctagcagta ccgatcgttag cccctatgag aaggttctg caggtaatgg tggcagcagc 600
ctctttaca caaaccgcgc agtggcagcc acttctgc aacttgtata a 651

<210> 11
<211> 1737
<212> DNA
<213> human

<400> 11
atgcagatct tcgtgaagac cctgactggt aagaccatca ctctcgaagt ggagccgagt 60
gacaccattg agaatgtcaa ggcaaagatc caagacaagg aaggcatccc tcctgaccag 120
cagaggctca tctttgcagg caagcagctg gaagatggcc gcactcttc tgactacaac 180
atccagaaaag agtccaccct gcacctggtg ctccgtctca gaggtgggag gcacggtagt 240
ggtgcatggc tggcccgat ctcgtggtg aaaagaaaaa ccaccctggc gcccaatacg 300
caaaccgcct ctccccgcgc gttggccgat tcattaatgc agctggcaeg acaggttcc 360
cgaggatcca caggttctgg tcatgcaagc tctacccag gtggagaaaa ggagacttcg 420
gctacccaga gaagttcaagt gcccagctt actgagaaga atgtgttag tatgaccagc 480
agcgtactt ccagccacag ccccggttca ggctcttcca ccactcaggg acaggatgtc 540
actctggccc cggccacggc accagttca ggttcaagctt ccacctgggg acaggatgtc 600
acctcggtcc cagtcaccag gccagccctg ggctccacca ccccgccagc ccacgtgtc 660
acctcagccc cggacaacaa gccagcccg ggaagtacccg ctccaccagc acacgggttt 720
acctcggtcc cggataccag gccggcccca ggttagtacccg cccctcttc ccattgggttc 780
acatctggccc cggacaacag gcctgcattt ggttagtacag cacccgcagc acacaacgtt 840
actagtgcct caggtcttc tagcggctca gtttctactt tggtagccaa cggcacctt 900
gcgcgcgcga ccacaacccc agcgagcaag agcactccat tctcaattcc cagccaccac 960
tctgtactt ctaccaccct tgccagccat agcacaaga ctgatgccag tagcactcac 1020
catagcacgg tacctcttc cacctctcc aatcacagca cttctccca gttgtctact 1080
ggggtctttt tctttttctt gtcttttac atttoaaacc tccagttaa ttcctctctg 1140
gaagatccca gcaccgacta ctaccaagag ctgcagagag acatttctga aatgttttg 1200
cagatttata aacaaggggg ttttctggc ctctccaata ttaagttcag gccaggatct 1260
gtgggtgtac aattgtactt ggcctccga gaaggtacca tcaatgtcca cgacgtggag 1320

acacagtgtca atcagtataa aacggaaagca gcctctcgat ataacacctgac gatctcagac 1380
gtcagcgtga gtgtatgtcc atttccttgc tctgcccagt ctggggctgg ggtgccaggc 1440
tggggcatcg cgctgtgtggt gctggtctgt gttctggttg cgctggccat tgtctatctc 1500
attgccttgg ctgtctgtca gtgcgcgcga aagaactacg ggcagctgga catcttcca 1560
gccccggata cctaccatcc tatgagcggag taccacccacctt accacacccca tgggcgttat 1620
gtgcccccta gcagtacccga tctgttagcccc tatgagaagg tttctgcagg taatggtgcc 1680
agcagccctctt acacacaaaa cccagcaggc gcagccactt ctgccaactt gtgataaa 1737

<210> 12
<211> 4905
<212> DNA
<213> human

gatcttcctt agatcccttt tttctgcgcg taatctgctg cttgcaaaaca aaaaaaccac 2040
cgctaccagc ggtggtttgt ttgccggatc aagagctacc aactctttt ccgaaggtaa 2100
ctgggttcag cagagcgcag ataccaaata ctgtccctct agtgttagccg tagtttagcc 2160
accacttcaa gaactctgtt gcacccgccta cataccctgc tctgctaattt ctgttaccag 2220
tggctgtgc cagtgccat aagtctgttc ttacccgggtt ggactcaaga cgatagttac 2280
cgagataaggc gcagccgtcg ggctgaacgg ggggttctgt cacacagccc agcttggago 2340
gaacgaccta caccgaactg agatacctac agcgtgagct atgagaaaagc gccacggttc 2400
ccgaagggag aaaggccgac aggtatccgg taagccgcg ggtcggaaaca ggagagcgc 2460
cgagggagat tccaggggaa aacgcctgtt atctttatag tcctgtcggtt ttcgcacc 2520
tctgacttga gcgtcgat tttgtatgtct cgtcagggggg gcggagccata tggaaaaacg 2580
ccagcaacgc ggcctttta cgggtcctgg ccttttctgt gccttttgc tcatgttct 2640
ttctgtcgat atccccgtat tctgtggata acggattttac cgcctttgag tgagctgata 2700
ccgctcgccg cagccgaacg acggagcgc a cgcgtcagt gagcggagaa gcggaaagagc 2760
gcctgtatgcg gtatcccctc cttacgcattc tgtgcggat ttcacaccgc atatggtgc 2820
ctctcgtac aatctgtctt gatgccgcgat agttaagcca gtatacaatc aatattggcc 2880
attagccata ttattcattt gttatatacg ataaatcaat attggctatt ggccatttgc 2940
tacgttgcgtt ccatatacata atatgttacat ttatattggc tcatgtccaa cattacccgc 3000
atgttgcacat tgattatttga ctatgttattt atagtaatca attacgggtt cattagttca 3060
tagccatata tggaggttcc gcgttacata acttacggta aatggccgc ctggctgacc 3120
gccccacgc ccccgcccat tgacgtcaat aatgacgtat gttcccatag taacgcataat 3180
agggactttc cattgacgtc aatgggtgg a gtatttacgg taaactgc c acttggcagt 3240
acatcaagtg tatcatatgc caagtacgc cccatttttgc gtcaatgcg gtaaatggcc 3300
cgcttggcat tatccccagt acatgacccctt atgggactttt cctacttggc agtacatcta 3360
cgtatttagtc atcgcttattt ccatgggtat ggggttttgg cagttacatca atgggctgtgg 3420
atagccgtt gactcacggg gatttccaat ttcacccatccatttgc atggagttt 3480
gttttggcac caaaatcaac gggactttcc aaaatgtcgta aacaactccg ccccatggac 3540
gcaaatgggc ggttaggcgtg tacgggtggg ggtctatata agcagagctc gtttagtga 3600
ccgtcagatc gcctggagac gcatccacg ctgttttgc ctccatagaa gacacccggg 3660
ccgatccagc ctccggggcc gggaaacgggtg cattggaaacg cggattcccc gttccaaagaa 3720
agcttgcata gaacccgggaa gagcttgcata gaacttcagg gtgagtttgg ggacccttga 3780
tttgttttc ttgttgcata ttgtaaaattt catgttataat ggagggggca aagttttcag 3840
ggtgttgcgtt agaatggaa gatgtccctt gtatcaccat ggaccctcat gataattttg 3900
tttcttcac ttctactctt gttgacaacc attgtctcctt cttatatttctt tttcattttc 3960
tgtaactttt tcgttaaact ttagcttgc tttgtaacga atttttaaat tcactttgt 4020
ttatgtca gattgttaatc actttctctt atcactttt ttcacaggca atcagggtat 4080
attatattgt acttcagcac agtttttagag aacaatttgcata ataaatttttataat gataaggtag 4140
aatatttctt catataaattt ctggctggcg tggaaatattt cttatttgcata gaaacaacta 4200
catccctggc atcatcttc ctttcttctt atgggtacaa tgatatacac tgggttggat 4260
gaggataaaaa tactctgtt cccatccggg cccctctgtt aaccatgttc atgccttctt 4320
cttttcttca cagcttgcgtt gcaacgtgtt ggttgggttgc ctgtctcatc attttggccaa 4380
agaatttactt cctcagggtgc aggctgcata tcagaagggtt gttggctgggtt gggccatgc 4440
cctggctcac aaataccact gagatctttt tccctctgttcc aaaaattatg gggacatcat 4500
gaagccctt gggatcttca ttttgcata ataaaggaaa ttatatttca ttgtcaatagt 4560
gtgttggat tttttgtgtc ttttgcata aaggacatcat gggagggccaa atcattttaaa 4620
acatcagaat gaggatatttgg ttttagatgtt ggcaacatcat gccatcatgtt ggttgcgtt 4680
aacaagggtt gctataaaga ggtcatcgtt atatgaaaca gccccctgtt gttccattttc 4740
tattccatag aaaaggcccttgc acttgcgtt agattttttt tatattttgtt tttgttttgc 4800
tttttctt aacatcccttca aatatttccctt tacatgtttt actagccaga tttttcccttcc 4860

tctcctgact actcccagtc atagctgtcc ctcttctctg gatcc 4905

<210> 13
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 13
gatcgatcc acaggttatg gtcatgcaag c 31

<210> 14
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 14
gatctctaga aagcttatca acctgaagct ggttccgtgg c 41

<210> 15
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 15
gatcgatcc gtgcccgact ctactgagaa gaatgc 36

<210> 16
<211> 49
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 16

gatctctaga aagcttatca gctggaaatt gagaatggag tgctttgc

49

<210> 17

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 17

gatcggatcc ggctcagctt ctactctggt gcacaacggc

40

<210> 18

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 18

gatctctaga aagcttatca caaggcaatg agatagacaa tggcc

45

<210> 19

<211> 38

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 19

gatcggatcc ctgggtgtgg tctgtgttct ggttgcgc

38

<210> 20

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 20

gatctctaga aagcttatca caagttggca gaagtggctg c

41

<210> 21

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 21

gatctctaga atgacaggtt ctggtcatgc aagc

34

<210> 22

<211> 39

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 22

gatctctaga atggtgccca gctctactga gaagaatgc

39

<210> 23

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 23

gatctctaga atgggctcag cttctactct ggtgcacaac ggc

43

<210> 24
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 24
gatctctaga atgctggtgc tggctgtgt tctggttgcg c

41

<210> 25
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 25
ggcggtggag cccggggctg gcttgt

26

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 26
aacctgaagg tggttccgtg gc

22

<210> 27
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: synthetic

oligonucleotide

<400> 27

gtgcccagct ctactgagaa gaatgc

26

<210> 28

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 28

gctgggaatt gagaatggag tgctttgc

29

<210> 29

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 29

ggctcagctt ctactctggc gcacaacggc

30

<210> 30

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 30

caaggcaatg agatagacaa tggcc

25

<210> 31

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 31

ctggtgctgg tctgtgttctt ggttgcgt

27

<210> 32

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 32

gatctctaga atgcagatct tcgtgaagac cctgactgg

40

<210> 33

<211> 68

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 33

tcaccaggcga gacgggcaac agccatgcac cactaccgtg cctcccacct ctgagacgga 60
gcaccagg

68

<210> 34

<211> 66

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 34

cctccgtctc agaggtggaa ggcacggtag tggtgcattt ctgttgcccc 60
tctcgctgg

gaaaaag

66

<210> 35

<211> 35

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide

<400> 35

gatcggtatcc tcgggaaacc tgtcgtgcac gctgc

35