Dynamic mesh network implemented in micropython on top of ESP-NOW protocol

Bc. Jindřich Šesták

Brno University of Technology, Faculty of Information Technology Božetěchova 1/2. 612 66 Brno - Královo Pole xsesta05@stud.fit.vutbr.cz

Mesh Network requirements

- Self-organizing
 - mesh will form a tree topology for better space range
 - need a root node to form a tree
- Relaying of message combination of routing and flooding
 - send packets unicast hop by hop (routing)
 - if dst MAC address is not known, broadcast packet to mesh (flooding)
- StandAlone vs. Connected to external network mode
- Root election
 - decide on the strongest RSSI of nodes (F() function)
 - (set root manually in StandAlone)

ESP-NOW protocol

- ESP-NOW is a connectionless Wi-Fi communication protocol
- Application data is encapsulated in a vendor-specific action frame and then transmitted from one Wi-Fi device to another without connection

				Vendor Specific Content	
24 bytes	1 byte	3 bytes	4 bytes	7~255 bytes	4 bytes

Figure: Vendor specific action frame

Mesh Network requirements

- ESP-NOW protocol
 - management and control commands use ESP-NOW
 - WI-FI is used to transfer tree topology and application data
- Self-healing
 - after disconnnection of node re-organize tree
 - after adding new node to mesh, add him to the tree

Main functions of mesh

There are three main functions:

- Connecting to mesh add new node to mesh network
- Forming a tree topology of tree in structured format (i.e. JSON)
- Mesh Functioning message relaying and self-healing

Connecting to mesh

- Node connects to mesh by pushing button (similar to WPS)
- All nodes advertise themself and their neighbors
- Every node should have an information of all the nodes:
 MAC address, F(RSSI * neighbors), access point RSSI

Forming a tree

- Root election using F(RSSI*neighbors) values
- Forming of a tree topology, adding nodes to tree and updating topology

Message Relaying

- Root propagates topology to all nodes
- Nodes form routing table

Self-healing

- Adding a new node to mesh and updating topology
- Removing dead node from mesh and reforming topology

Schedule

- November/December write semestral project
- January present SP in front of comitee
- February/March implement project, write thesis
- April testing, revision of implementation
- May revision and edit diploma thesis text

Thank You For Your Attention!