TAUTOLOGY INNOVATION SCHOOL

MADE BY TAUTOLOGY THAILAND

DO NOT PUBLISH WITHOUT PERMISSION

facebook/tautologyai www.tautology.live

Model Evaluation for Classification

		Actual Value	
		Positive	Negative
Predict Value	Positive	True Positive	False Positive
Pred Val	Negative	False Negative	True Negative

True Negative

ผลลัพธ์ของการพยากรณ์

- True = พยากรณ์ถูก
- False = พยากรณ์ผิด

ค่าที่พยากรณ์ออกมา

- Positive (ค่าที่เราพิจาณา)
- Negative (ค่าที่เราไม่ได้พิจาณา)

		Actual Value	
		Positive	Negative
d Value	Positive	True Positive (TP)	False Positive (FP)
Predicted Value	Negative	False Negative (FN)	True Negative (TN)

precision	Ξ	<u>2</u> 3
iecall =	2	•

Actual	Predicted
	Horse
	Horse
	Dog
	Dog
	Dog

positive = Horse

negative = Dog

Actual

		Horse	Pog
100-10	Horse	1 TP	1
predicteo	Pog	FN	2 TN

$$precision = \frac{1}{2}$$

$$recz | l = \frac{1}{2}$$

Actual	Predicted		
	Banana		
(Neg)	Apple (Ne	9)	
(N eg)	Apple (Neg		Predict
(reg)	Grape (Meg)		
	Mape B2	2n5	

Model Evaluation for Classification

Accuracy Score

- What is Accuracy Score?
- Formula
- Step to Calculate Accuracy Score
- Example
- Code
- 👤 ข้อควรระวัง

What is Accuracy Score?

Accuracy Score คือ สัดส่วนของข้อมูลที่พยากรณ์ได้ถูกต้อง ต่อข้อมูลทั้งหมด

Actual	Predicted
	Apple
Š	Banana
Š	Apple
\checkmark	Banana
12-6 X	Apple

What is Accuracy Score?

		Actual Value	
		Positive	Negative
Predict Value	Positive	TP	FP
	Negative	FN	TN

$$accuracy = \frac{\mathring{\text{-} outunder}}{\mathring{\text{-} outunder}}$$

Formula

$$accuracy = \frac{TP + TN}{n}$$

โดยที่ • TP คือ ค่า True Positive

- ◆ TN คือ ค่า True Negative
- ♦ n คือจำนวน sample ทั้งหมด

Formula

ตัวอย่าง

$$accuracy = rac{$$
จำนวนที่พยากรณ์ถูก $}{$ จำนวนข้อมูลทั้งหมด

$$=\frac{TP+TN}{$$
 จำนวนข้อมูลทั้งหมด

$$= \frac{2+1}{2+0+1+2} - \frac{3}{5}$$

$$= 0.6 \quad (90.60\%)$$

Step to Calculate Accuracy Score

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. หาค่า TP และ TN ของ model
- 3. วัดประสิทธิภาพของ model ตามสูตรของ accuracy

1. เก็บค่า y_i และ \widehat{y}_i

	${y_i}$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 1 ไม่เป็นโรค = 0**

2. คำนวณค่า TP และ TN

	y_i	$\widehat{\mathbf{y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

			Actual	
			1 (เป็นโรค)	o (ไม่เป็น โรค)
	lict	1 (เป็นโรค)	1 TP	FP 1
19 Mg 19 224 19 22 23 19 24 25 19 24 24 19 24 24	Predict	o (ไม่เป็น โรค)	2 FN	3
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

3. วัดประสิทธิภาพของ model ตามสูตรของ accuracy

	y_i	$\widehat{\mathbf{y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

$$accuracy = \frac{TP + TN}{n}$$

$$= \frac{1+3}{7}$$

$$= \frac{4}{7}$$

$$= 0.5714$$

Code

	Actual_Fat	Predicted_Fat
0	1.0	0.0
1	0.0	0.0
2	0.0	1.0
3	0.0	0.0
4	0.0	0.0
5	1.0	0.0
6	1.0	1.0

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 1 ไม่เป็นโรค = 0**

Code

1 accuracy_score(y_true, y_pred)

0.5714285714285714

ข้อควรระวัง

"เมื่อข้อมูลอยู่ในสถานะ imbalanced class จะใช้ accuracy อธิบายได้ไม่ดี"

ตัวอย่าง ให้หมอปลอมตรวจโรคคนไข้จำนวน 100 คน หมอปลอมตรวจพบว่าคนไข้ไม่ เป็นโรคเกือบทั้งหมด

		Actual	
		เป็นโรค	ไม่เป็นโรค
lict	เป็นโรค	1 TP	OFP
Predict	ไม่เป็นโรค	7 FN	92 TN

ข้อควรระวัง

แต่ค่า accuracy ที่คำนวณออกมาได้สูงถึง 0.93

		Actual	
		เป็นโรค	ไม่เป็นโรค
Hict	เป็นโรค	1 TP	OFP
Predict	ไม่เป็นโรค	7 FN	92 ^{TN}

$$accuracy = \frac{TP + TN}{n}$$
$$= \frac{92 + 1}{100}$$
$$= \frac{93}{100} = 0.93$$

<mark>นั่นหมายความว่า</mark> แม้หมอปลอมจะไม่สามารถตรวจโรคได้จริง แต่การวัดประสิทธิภาพ ผ่าน accuracy สูงถึง 0.93

Model Evaluation for Classification

Precision Score

- What is Precision Score?
- Formula
- Step to Calculate Precision Score
- Example
- Code

What is Precision Score?

Precision Score คือ สัดส่วนของข้อมูลที่พยากรณ์ว่าเป็น positive ได้อย่างถูกต้อง ต่อข้อมูลที่พยากรณ์เป็น positive ทั้งหมด

Actual	Predicted
\checkmark	Apple
Š	Banana
Š	Apple
	Banana
	Apple

What is Precision Score?

		Actual Value	
		Positive	Negative
Predict Value	Positive	TP	FP
Pred Val	Negative	FN	TN

precision

จำนวนที่พยากรณ์ถูกว่าเป็น positive

จำนวนที่พยากรณ์ว่าเป็น postive ทั้งหมด

Formula

$$precision = \frac{TP}{TP + FP}$$

โดยที่ ◆ TP คือ ค่า True Positive

♦ FP คือ ค่า False Positive

Formula

ตัวอย่าง

$$precision = rac{ }{ }$$
 จำนวนที่พยากรณ์ถูกว่าเป็น $apple$ จำนวนที่พยากรณ์ว่าเป็น $apple$ ทั้งหมด

Step to Calculate Precision Score

- 1. เก็บค่า y_i และ \hat{y}_i
- 2. หาค่า TP และ FP ของ model
- 3. วัดประสิทธิภาพของ model ตามสูตรของ precision

1. เก็บค่า y_i และ \hat{y}_i

	${y_i}$	$\widehat{\boldsymbol{y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 1 ไม่เป็นโรค = 0**

2. คำนวณค่า TP และ FP

	y_i	$\widehat{\mathbf{y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

		Actual	
		1 (เป็นโรค)	o (ไม่เป็น โรค)
dict	1 (เป็นโรค)	1 TP	FP 1
Predict	o (ไม่เป็น โรค)	2 FN	3 TN
THE RES	11111		

3. วัดประสิทธิภาพของ model ตามสูตรของ precision

	y_i	$\widehat{\mathcal{Y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

$$precision = \frac{TP}{TP + FP}$$

$$= \frac{1}{1+1}$$

$$= 0.5$$

Code

	Actual_Fat	Predicted_Fat
0	1.0	0.0
1	0.0	0.0
2	0.0	1.0
3	0.0	0.0
4	0.0	0.0
5	1.0	0.0
6	1.0	1.0

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 0 ไม่เป็นโรค = 1

Code

1 precision_score(y_true, y_pred)

0.5

Model Evaluation for Classification

Recall Score

- What is Recall Score?
- Formula
- Step to Calculate Recall Score
- Example
- Code
- Precision vs Recall

What is Recall Score?

Recall Score คือ สัดส่วนของข้อมูลที่พยากรณ์ว่าเป็น positive ได้อย่างถูกต้อง ต่อ ข้อมูลที่ actual เป็น positive ทั้งหมด

Actual	Predicted
\checkmark	Apple
Š	Banana
	Apple
	Banana
	Apple

What is Recall Score?

		Actual Value	
		Positive	Negative
Predict Value	Positive	TP	FP
Pred Val	Negative	FN	TN

Recall

จำนวนที่พยากรณ์ถูกว่าเป็น positive

จำนวนที่ค่าจริงเป็น *positive* ทั้งหมด

Formula

$$recall = \frac{TP}{TP + FN}$$

โดยที่ • TP คือ ค่า True Positive

◆ FN คือ ค่า False Negative

Formula

ตัวอย่าง

$$Recall = rac{ ext{
m e}^{\circ}$$
านวนที่พยากรณ์ถูกว่าเป็น $apple$ $ext{
m e}^{\circ}$ านวนที่ค่าจริงเป็น $apple$ ทั้งหมด

$$= \frac{TP}{TP + FN}$$

$$= \frac{2}{2+1} = \frac{2}{1000} = \frac{2}{1000$$

Step to Calculate Recall Score

- 1. เก็บค่า y_i และ \widehat{y}_i
- **2**. หาค่า *TP* และ *FN*
- 3. วัดประสิทธิภาพของ model ตามสูตรของ recall

1. เก็บค่า y_i และ \hat{y}_i

	y_i	$\widehat{\boldsymbol{\mathcal{y}}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 1 ไม่เป็นโรค = 0**

2. คำนวณค่า TP และ FN

	y_i	$\widehat{\mathbf{y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

3. วัดประสิทธิภาพของ model ตามสูตรของ recall

	y_i	$\widehat{\mathcal{Y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

$$recall = \frac{TP}{TP + FN}$$
$$= \frac{1}{1+2}$$
$$= 0.33$$

Code

	Actual_Fat	Predicted_Fat
0	1.0	0.0
1	0.0	0.0
2	0.0	1.0
3	0.0	0.0
4	0.0	0.0
5	1.0	0.0
6	1.0	1.0

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 0 ไม่เป็นโรค = 1

Code

1 recall_score(y_true, y_pred)

0.333333333333333

Precision

>> จากการพยากรณ์ว่าเป็น positive ทั้งหมด มีจำนวนที่ พยากรณ์ถูกเท่าไร

$$\Rightarrow$$
 precision = $\frac{TP}{TP+FP}$

>> จากข้อมูลจริงที่เป็น positive ทั้งหมด มีจำนวนที่พยากรณ์ถูกเท่าไร

$$>> recall = \frac{TP}{TP + FN}$$

Precision และ Recall ควรใช้เมื่อไหร่ ?

Precision

ตัวอย่าง ในการพิจารณาคดี จำเป็นที่จะต้องคำนึงว่า <mark>ผู้ที่ไม่ได้กระทำความผิด ไม่ควร</mark> ได้รับโทษ

กำหนดให้

- การกระทำความผิด => positive
- ไม่ได้กระทำความผิด => negative

Precision

		Actual	
		ทำผิด	ไม่ได้ทำผิด
lict	ทำผิด	TP	FP
Predict	ไม่ได้ทำผิด	FN	TN

$$precision = \frac{TP}{TP + FP}$$

"ในกรณีนี้ เราจำเป็นต้องพิจารณ<mark>า precision ให้มีค่าสูง ๆ</mark> เพราะ False Positive (คนที่ไม่ได้ทำผิดแต่ถูกพยากรณ์ว่า ทำผิด) จะมีค่าน้อย ๆ "

Recall

ตัวอย่าง ในการตรวจโรคมะเร็งเพื่อเข้ารับการรักษา จำเป็นที่จะต้องคำนึงว่า ผู้ป่วยเป็น มะเร็งทุกคนนั้นจะต้องได้รับการรักษา

กำหนดให้

- เป็นโรคมะเร็ง => positive
- ไม่เป็นโรคมะเร็ง => negative

Recall

		Actual	
		เป็นโรค	ไม่เป็นโรค
dict	เป็นโรค	TP	FP
Predict	ไม่เป็นโรค	FN	TN

$$recall = \frac{TP}{TP + FN}$$

"ในกรณีนี้ เราจำเป็นต้องพิจารณา recall ให้มีค่าสูง ๆ เพราะ False Negative (คนที่เป็นโรคแต่ถูกพยากรณ์ว่าไม่ เป็นโรค) จะมีค่าน้อย ๆ"

Model Evaluation for Classification

F1 Score

- What is F1 Score?
- Formula
- Step to Calculate F1 Score
- Example
- Code
- F1 Score with Imbalanced Class

F1 Score คือ ค่าเฉลี่ยแบบ harmonic mean ระหว่าง precision และ recall

Harmonic mean เป็นการหาค่าเฉลี่ยประเภทหนึ่ง โดยการหาค่าเฉลี่ยวิธีนี้จะ

- ให้น้ำหนักน้อยกับข้อมูลที่มีค่าเยอะ
- ให้น้ำหนักเยอะกับข้อมูลที่มีค่าน้อย

ให้**น้ำหนักเยอะ**กับข้อมูลที่มี**ค่าน้อย**

```
mean of: [37, 35, 40, 35, 29, 51, 31, 33, 34, 30, 29, 33, 37, 36, 0.01
```

- ◆Harmonic Mean = 0.14939025281869237
- ◆ Arithmetic Mean = 32.667333333333333

Harmonic mean สามารถเขียนให้อยู่ในรูปดังต่อไปนี้

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

- โดยที่ *n* คือจำนวนข้อมูลทั้งหมด
 - $\bullet x_i$ คือข้อมูลที่ i

ตัวอย่าง กำหนดให้ $\mathbf{x} = \{10, 100\}$

$$X = \begin{cases} 100 \\ 100 \end{cases} = \frac{2}{100} = \frac{2}{100}$$

$$H = \frac{n}{2 \times 1} = \frac{2}{100} = \frac{2}{100}$$

Harmonic mean จะสามารถคำนวณได้ดังต่อไปนี้

รามารถคำนวณได้ดังต่อไปนี้ =
$$2 \div \frac{2}{100} = 2 \times \frac{100}{100}$$

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{2}{\frac{1}{10} + \frac{1}{100}} = \frac{2}{0.11} = 18.18$$

F1 Score จะพิจารณาค่าระหว่าง precision และ recall ผ่าน harmonic mean ซึ่ง สามารถจัดรูปได้ดังนี้

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = 2 \times \frac{precision \times recall}{precision + recall}$$

โดย F1 score จะสามารถตีความได้ดังต่อไปนี้

- ถ้าค่า F1 score มาก หมายความว่า ค่า precision และ recall มีค่ามากทั้งคู่
- ถ้าค่า F1 score <mark>น้อย</mark> หมายความว่า ค่า precision และ recall มีค่าน้อยทั้งคู่ หรือมี ค่าใดค่าหนึ่งน้อย

Formula

$$F1 = 2 \times \frac{precision * recall}{precision + recall}$$

โดยที่ •
$$precision = \frac{TP}{TP + FP}$$

•
$$recall = \frac{TP}{TP + FN}$$

Step to calculate F1 Score

- 1. เก็บค่า y_i และ \widehat{y}_i
- 2. หาค่า *TP,FP* และ*FN* ของ model
- 3. หาค่า *precision* ของ model
- 4. หาค่า recall ของ model
- 5. วัดประสิทธิภาพของ model ตามสูตรของ F1

1. เก็บค่า y_i และ \hat{y}_i

	${\bf y}_i$	$\widehat{oldsymbol{y}}_{oldsymbol{i}}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 1 ไม่เป็นโรค = 0**

คำนวณค่า TP, FP และ FN

	y_i	$\widehat{\mathcal{Y}}_{i}$
0	1	0
1	0	0
2	0	1
3	0	0
4	0	0
5	1	0
6	1	1

3. หาค่า precision

$$precision = \frac{TP}{TP + FP}$$

$$=\frac{1}{1+1}$$

$$=\frac{1}{2}$$

4. หาค่า recall

$$recall = \frac{TP}{TP + FN}$$

$$=\frac{1}{1+2}$$

$$=\frac{1}{3}$$

5. วัดประสิทธิภาพของ model ตามสูตรของ F1

$$F1 = 2 \times \frac{precision \times recall}{precision + recall}$$

$$= 2 \times \frac{\frac{1}{2} \times \frac{1}{3}}{\frac{1}{2} + \frac{1}{3}}$$

$$=\frac{2}{5}$$
$$=0.4$$

Code

	Actual_Fat	Predicted_Fat
0	1.0	0.0
1	0.0	0.0
2	0.0	1.0
3	0.0	0.0
4	0.0	0.0
5	1.0	0.0
6	1.0	1.0

ตารางแสดงข้อมูลของคนที่เป็นโรคอ้วนจากข้อมูลจริง และการพยากรณ์ที่ได้จากโมเดล โดยใช้ feature ที่ใช้คือค่า BMI และ Cholesterol **เป็นโรคอ้วน = 0 ไม่เป็นโรค = 1

Code

1 f1_score(y_true, y_pred)

0.4

F1 Score with Imbalanced Class

F1 Score สามารถใช้วัดประสิทธิภาพของ model ที่เป็น imbalanced class ได้ดี **ตัวอย่าง** ให้หมอปลอมตรวจโรคคนไข้จำนวน 100 คน <u>หมอปลอมตรวจพบว่าคนไข้ไม่</u> เป็นโรคเกือบทั้งหมด

		Actual	
		เป็นโรค	ไม่เป็นโรค
Predict	เป็นโรค	1 TP	OFP
	ไม่เป็นโรค	7 FN	92 TN

F1 Score with Imbalanced Class

• คำนวณผ่าน accuracy จะได้ค่าสูงถึง 0.93

		Actual	
		เป็นโรค	ไม่เป็นโรค
Predict	เป็นโรค	1 TP	OFP
	ไม่เป็นโรค	7 FN	92 ^{TN}

$$accuracy = \frac{TP + TN}{n}$$
$$= \frac{92 + 1}{100}$$
$$= \frac{93}{100} = 0.93$$

F1 Score with Imbalanced Class

• คำนวณผ่าน **F1 score** จะได้ค่าออกมาเพียง **0.22**

$$P(ecision = \frac{1}{9})$$

		Actual	
		เป็นโรค	ไม่เป็นโรค
Predict	เป็นโรค	1 TP	O
	ไม่เป็นโรค	7 FN	92 ^{TN}

$$F1 = 2 \times \frac{precision \times recall}{precision + recall}$$
$$= 2 \times \frac{1 \times \frac{1}{8}}{1 + \frac{1}{8}}$$

$$= 0.22$$

Model Evaluation for Classification

Conclusion

Name	Formula	How to use	
Accuracy	$accuracy = \frac{TP + TN}{n}$	• ใช้กับการวัด model ที่ไม่เป็น imbalanced class	
Precision	$precision = \frac{TP}{TP + FP}$	• ใช้วัด model ที่ต้องการให้การเกิด False Positive น้อยๆ	
Recall	$recall = \frac{TP}{TP + FN}$	• ใช้วัด model ที่ต้องการให้เกิด False Negative น้อยๆ	
F1	$F1 = 2 \times \frac{precision \times recall}{precision + recall}$	 ใช้วัด model ที่เป็น imbalanced class ได้ ต้องการพิจารณาทั้ง precision และ recall พร้อมกัน 	

Model Evaluation for Classification

