Algoritmo basado en colonias de hormigas

Raul Torrijos y Lukas Häring

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

I. Introducción

- i. Historia
- ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

Introducción

• Algoritmo **inspirado en la naturaleza**. Encontramos *algoritmos genéticos* (GA), *redes neuronales artificiales* (ANN) o *enjambre de partículas* (PSO).

• Basado en Inteligencia de enjambre (comportamientos colectivos). Capaces de comunicarse entre ellos de forma indirecta y local.

 Se investigó intensivamente entre los años 1959 y 2002.

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

Historia

• *Pierre-Paul Grassé* ofreció una teoría que explicaba en 1959, el **comportamiento de las termitas**.

 Goss, Aron, Deneubourg y Pasteels (1989) dieron la idea general de los futuros ACOs.

• *Marco Dorigo*, en 1991 **aplicó** esta técnica para resolver **problemas de computación**, basándose en la teoría.

Pierre-Paul Grassé

Marco Dorigo

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

Naturaleza

Las <u>colonias</u> de hormigas son capaces de comunicarse entre ellas mediante la deposición de feromonas (Comunicación indirecta), utilizado principalmente para indicar el camino a las hormigas de su alrededor (Propiedad de localidad). Cuanto mayor la cantidad depositada, más probable son de coger ese camino.

Los <u>bancos de peces y las bandadas de pájaros</u> son organismos más complejos. Aunque en el aire o en el agua no existen muchos obstáculos, aplican las mismas reglas. Su comunicación es visual (Comunicación indirecta), observando a los individuos de su alrededor (Propiedad de localidad).

- I. Introducción
 - i. Historia
 - ii. Naturaleza

II. "Experimento del puente"

- i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

"Experimento del doble puente"

"Experimento del doble puente"

"Experimento del doble puente"

Nota 1

• Notación previa:

Notación	Descripción
Н	Lista de todas las hormigas
$P = [p_1, \dots, p_n] : p_j \in \mathbb{N} \land j \in \{0 \dots n\}$	Lista de todos los puentes y la cantidad de feromonas
$H_j \to P_i : P_i \in P \land H_j \in H$	La hormiga j toma el puente i (incrementado 1 el nivel de feromonas)
Ev(P)	En todos los puentes se han evaporado una unidad de feromonas

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

Iteración	Ecuación
1	$H_1 \to P_1 \wedge H_2 \to P_2$
>2	$H_1 \to P_1 \wedge H_2 \to P_2$
3	$H_1 \to P_1 \wedge H_2 \to P_2$
4	$H_1 \to P_1 \wedge H_2 \to P_2 \wedge Ev(P)$
5	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$

Iteración	Ecuación
1	$P_1 \to H_1 \land P_2 \to H_2$
2	$P_1 \to H_1 \land P_2 \to H_2$
>3	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2$
4	$H_1 \to P_1 \land H_2 \to P_2 \land Ev(P)$
5	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$

Iteración	Ecuación
1	$P_1 \to H_1 \land P_2 \to H_2$
2	$P_1 \to H_1 \land P_2 \to H_2$
3	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2$
>4	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$
5	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$

Iteración	Ecuación
1	$P_1 \to H_1 \land P_2 \to H_2$
2	$P_1 \to H_1 \land P_2 \to H_2$
3	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2$
4	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$
>5	$H_1 \rightarrow P_1 \wedge H_2 \rightarrow P_2 \wedge Ev(P)$

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas

III. Algoritmo Computacional (Ant System)

- i. Introducción Matemática
- ii. Algoritmo

Algoritmo Computacional

- Recibe el nombre de Ant System (AS).
- Algoritmo basado en el problema del viajante (TSP).
- Está basado en un modelo matemático basado en grafos pero en la implementación, matrices.
- Matriz de distancia entre ciudades.
- Matriz de feromonas de ciudades.

$$\forall i, j \ d_{i,j} = d_{j,i}$$

$$\begin{pmatrix} 0 & \cdots & d_{i,0} \\ \vdots & \ddots & \vdots \\ d_{j,0} & \cdots & 0 \end{pmatrix}$$

- I. Introducción
 - i. Historia
 - ii. Naturaleza
- II. "Experimento del puente"
 - i. Evaporación de feromonas
- III. Algoritmo Computacional (Ant System)
 - i. Introducción Matemática
 - ii. Algoritmo

Introducción Matemática

Nivel de feromonas en el nodo (i,j):

$$\tau_{i,j} = (1 - \rho)\tau_{i,j} + \sum_{k=1}^{m} \Delta \tau_{i,j}^{k} \quad \rho \in [0,1]$$

Cantidad de feromonas en el nodo (i, j) por la hormiga k:

$$\Delta \tau_{i,j}^{k} = \begin{cases} \frac{1}{L_{k}} & \text{Si la hormiga k ha visitado el nodo (i, j)} \\ 0 & \text{En caso contrario} \end{cases}$$

Símbolo	Definición
ρ	Ratio de evaporación de feromonas.
L_k	Total del recorrido realizado por la hormiga k.
m	Total de hormigas

Probabilidad

Probabilidad de tomar el camino de la ciudad i hacia la ciudad j por una hormiga k:

$$p_{i,j}^k = \begin{cases} \frac{\tau_{i,j}^\alpha \cdot \delta_{i,j}^\beta}{\sum_{c \in C_i^k} \tau_c^\alpha \cdot \delta_c^\beta} & \text{Si el camino hacia (i, j) no ha sido visitado} \\ 0 & \text{Ha sido visitado} \end{cases}; \quad \delta_{i,j} = \frac{1}{d_{i,j}}$$

Símbolo	Definición
$C_i^k = \{(i, j_0^k), \dots, (i, j_n^k)\}$	Caminos (pares de índices) no visitado por la hormiga k desde la ciudad i.
$d_{i,j}$	Distancia desde la ciudad i hasta la ciudad j.
α	Control de la importancia de las feromonas.
β	Control de la importancia de las distancias.