

LEARNING FROM SIMULATED DATA

BACKGROUND

• Because of the size of many image datasets...

• ... and the availability of better modern graphics hardware,

- Researchers at Apple have proposed a simulated and unsupervised training of images using adversarial networks[1].
- The goal of this process is to avoid the need for expensive and timeconsuming annotation.

MOTIVATION

- Large labeled datasets are increasingly needed because of the rise of deep neural networks.
- Labeling such datasets is expensive and time consuming.
- Annotation can be automated by creating simulated datasets.

THE PROBLEM

 Often, training with simulated data does not achieve desired performance standards because there is generally a large gap between the distributions found in simulated image data, and those found in real image data.

ADDITIONALLY

GAN'S IN GENERAL OFTEN
CREATE ARTIFACTS.....

RELATED[2]

Target Description

Source Image

Results

A **yellow** bird with **grey wings**.

This beautiful flower has many red ruffled petals.

THE METHOD

 Data can be both simulated and annotated using graphically powerful game engines such as UNITY.
 Specifically in this study, the UNITY Eyes application.

LET ME EXPLAIN....

- The simulator (UNITY) creates the simulated image.
- The image is sent to the Refiner (R) and treated with a set of weighted losses to more closely match real images.
- Small batches of the refined images are sent 1. to a buffer and 2. to the discriminator.

- The Descriminator (D) gets a partial batch from the buffer and a second partial batch from the currently refined images.
- This process is used to avoid spiking of the gradients between steps.

$$\tilde{\mathbf{x}} := R_{\boldsymbol{\theta}}(\mathbf{x})$$

THE MATH PART 1 THE REFINER

- The key is for the refined image to look like a real one.
- In the first (Ireal) part ~x
 corresponds to the refined
 image, while x is the raw
 simulated image. Theta is learned
 by minimizing the combination of
 losses.

$$\mathcal{L}_{R}(oldsymbol{ heta}) = \sum_{i} \ell_{ ext{real}}(oldsymbol{ heta}; ilde{\mathbf{x}}_{i}, \mathcal{Y}) + \lambda \ell_{ ext{reg}}(oldsymbol{ heta}; ilde{\mathbf{x}}_{i}, \mathbf{x}_{i}),$$

$$\tilde{\mathbf{x}} := R_{\boldsymbol{\theta}}(\mathbf{x})$$

THE REFINER CONTINUED

- In the second part preserves the annotation information by minimizing the differences between simulated and refined images.
- $\mathcal{L}_{R}(\boldsymbol{\theta}) = \sum_{i} \ell_{\mathrm{real}}(\boldsymbol{\theta}; \tilde{\mathbf{x}}_{i}, \mathcal{Y}) + \lambda \ell_{\mathrm{reg}}(\boldsymbol{\theta}; \tilde{\mathbf{x}}_{i}, \mathbf{x}_{i}),$
- Lambda value is added here is to avoid unwanted artifacts.
- (Those can be scary)

THE MATH PART 2: THE DISCRIMINATOR

- Basically cross-entropy for a twoclass classification problem.
- D is the probability of an image being simulated. And 1-D, that of being a real one.
- Phi is updated with SGD for the batch.

$$\mathcal{L}_D(\boldsymbol{\phi}) = -\sum_i \log(D_{\boldsymbol{\phi}}(\tilde{\mathbf{x}}_i)) - \sum_i \log(1 - D_{\boldsymbol{\phi}}(\mathbf{y}_j)).$$

THE MATH PART 3: REALISM LOSS UPDATED (DISCRIMINATOR FOOLED)

$$\ell_{\text{real}}(\boldsymbol{\theta}; \tilde{\mathbf{x}}_i, \mathcal{Y}) = -\sum_i \log(1 - D_{\boldsymbol{\phi}}(R_{\boldsymbol{\theta}}(\mathbf{x}_i)))$$

• By minimizing the real loss function (from part 1), the Discriminator is fooled into classifying a simulated image as real.

AS A SIDE NOTE:

- Images are discriminated in sections, basically in groups of pixels in a method like patchGAN.
- Each section of the image is classified as either simulated or real.

THE RESULTING ALGORITHM

```
Algorithm 1: Adversarial training of refiner net-
work R_{\theta}
 Input: Sets of synthetic images \mathbf{x}_i \in \mathcal{X}, and real
           images y_i \in \mathcal{Y}, max number of steps (T),
           number of discriminator network updates
           per step (K_d), number of generative
          network updates per step (K_q).
 Output: ConvNet model R_{\theta}.
 for t = 1, \ldots, T do
      for k = 1, \ldots, K_q do
           1. Sample a mini-batch of synthetic images
           2. Update \theta by taking a SGD step on
           mini-batch loss \mathcal{L}_R(\boldsymbol{\theta}) in (4).
      end
      for k = 1, \ldots, K_d do
           1. Sample a mini-batch of synthetic images
           \mathbf{x}_i, and real images \mathbf{y}_i.
           2. Compute \tilde{\mathbf{x}}_i = R_{\boldsymbol{\theta}}(\mathbf{x}_i) with current \boldsymbol{\theta}.
           3. Update \phi by taking a SGD step on
           mini-batch loss \mathcal{L}_D(\phi) in (2).
      end
```

SIDE NOTE 2

- A Visual Touring Test was given to evaluate the quality of the images from a human perspective.
- Without labels could you tell?

MY REPLICATION (WITH THE HELP OF KAGGLE)

https://www.kaggle.com/soundpoet/simgan-implementation-using-tensorflow-keras

Loss Functions

#Refiner

```
In [28]: M def refiner model (width = 55, height = 35, channels = 1):
                The refiner network, R0, is a residual network (ResNet). It modifies the synthetic image on a pixel level
                than holistically modifying the image content, preserving the global structure and annotations.
                :param input image tensor: Input tensor that corresponds to a synthetic image.
                :return: Output tensor that corresponds to a refined synthetic image.
                def resnet block(input features, nb features=64, kernel size=3):
                    A ResNet block with two 'kernel size' x 'kernel size' convolutional layers,
                    each with 'nb features' feature maps.
                    See Figure 6 in https://arxiv.org/pdf/1612.07828v1.pdf.
                    :param input features: Input tensor to ResNet block.
                    :return: Output tensor from ResNet block.
                    y = Conv2D(nb features, kernel size=kernel size, padding='same')(input features)
                    y = Activation('relu')(y)
                    y = Conv2D(nb features, kernel size=kernel size, padding='same')(y)
                    y = Add()([y, input features])
                    y = Activation('relu')(y)
                    return y
                input layer = Input(shape=(height, width, channels))
                # an input image of size w * h is convolved with 3 * 3 filters that output 64 feature maps
                x = Conv2D(64, kernel size=3, padding='same', activation='relu')(input layer)
                for in range(4):
                    x = resnet block(x)
                output layer = Conv2D(channels, kernel size=1, padding='same', activation='tanh')(x)
                return Model(input layer, output layer, name='refiner')
```

Discriminator

```
In [29]: M
def discriminator_model(width = 55, height = 35, channels = 1):
    input_layer = Input(shape=(height, width, channels))

x = Conv2D(96, kernel_size=3, strides=2, padding='same', activation='relu')(input_layer)
x = Conv2D(64, kernel_size=3, strides=2, padding='same', activation='relu')(x)
x = MaxPooling2D(pool_size=3, strides=1, padding='same')(x)
x = Conv2D(32, kernel_size=3, strides=1, padding='same', activation='relu')(x)
x = Conv2D(32, kernel_size=1, strides=1, padding='same', activation='relu')(x)
x = Conv2D(2, kernel_size=1, strides=1, padding='same', activation='relu')(x)
output_layer = Reshape(target_shape=(-1, 2))(x)

return Model(input_layer, output_layer, name='discriminator')
```

```
class ImageHistoryBuffer():
   def __init__(self, shape, max_size, batch_size):
        :param shape: Shape of the data to be stored in the image history buffer
                      (i.e. (0, img height, img width, img channels)).
        :param max size: Maximum number of images that can be stored in the image history buffer.
        :param batch size: Batch size used to train GAN.
       self.image history_buffer = np.zeros(shape=shape)
       self.max size = max size
       self.batch size = batch size
   def add to history img buffer(self, images, nb to add=0):
       if not nb to add:
           nb to add = self.batch_size // 2
       if len(self.image history buffer) < self.max size:
            np.append(self.image history buffer, images[:nb to add], axis=0)
       elif len(self.image history buffer) == self.max size:
            self.image history buffer[:nb to add] = images[:nb to add]
       else:
           assert False
       np.random.shuffle(self.image history buffer)
   def get_from_image_history_buffer(self, nb_to_get=None):
       Get a random sample of images from the history buffer.
       :param nb to get: Number of images to get from the image history buffer (batch size / 2 by default).
        :return: A random sample of `nb to get` images from the image history buffer, or an empty np array if
                history buffer is empty.
        mmm
       if not nb to get:
           nb to get = self.batch size // 2
       try:
            return self.image history buffer[:nb to get]
       except IndexError:
            return np.zeros(shape=0)
```

Data Generators

```
In [63]: 🔰 datagen = image.ImageDataGenerator(preprocessing_function=applications.xception.preprocess_input, data_format
In [64]: M syn_gen = datagen.flow(x=syn_img_stack, batch_size=batch_size)
            real_gen = datagen.flow(x=real_img_stack, batch_size=batch_size)
In [65]: | def get_image_batch(generator):
                """keras generators may generate an incomplete batch for the last batch"""
                img batch = generator.next()
                if len(img batch) != batch size:
                    img batch = generator.next()
                assert len(img_batch) == batch_size
                return img_batch
In [66]: M disc_output_shape = disc.output_shape
In [67]: M y_real = np.array([[[1.0, 0.0]] * disc_output_shape[1]] * batch_size)
            y_refined = np.array([[[0.0, 1.0]] * disc_output_shape[1]] * batch_size)
            assert y_real.shape == (batch_size, disc_output_shape[1], 2)
            assert y_refined.shape == (batch_size, disc_output_shape[1], 2)
            batch_out = get_image_batch(syn_gen)
            assert batch_out.shape — (batch_size, img_height, img_width, channels), "Image dimension do not match, {} !=
                .format(batch_out.shape, (batch_size, img_height, img_width, img_channels))
```

PRETRAINING (MY RESULTS)

References

Shrivastava, A. P. (2016). Learning from Simulated and Unsupervised Images using Adversarial Networks . *ARXIV*.

Yu, S., Dong, H., Liang, F., Mo, Y., Wu, C., & Guo, Y. (2019). SimGAN: Photo-Realistic Semantic Image Manipulation Using Generative Adversarial Networks. *ICIP*.