Лабораторная работа 17

Имитационное моделирование

Королёв Иван Андрееич

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра	6 9 12
4	Выводы	20

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт модели работы вычислительного центра	8
3.3	Модель работы аэропорта	10
3.4	Отчёт по модели работы аэропорта	11
3.5	Модель работы морского порта	12
3.6	Отчет по модели работы морского порта	13
3.7	Модель работы морского порта с оптимальным количеством при-	
	чалов	14
3.8	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	15
3.9	Модель работы морского порта	16
3.10	Отчет по модели работы морского порта	17
3.11	Модель работы морского порта с оптимальным количеством при-	
	чалов	18
3.12	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	19

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

Построение модели работы вычислительного центра. Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. (рис. 3.1).

```
ram STORAGE 2
;класс А
GENERATE 20,5
QUEUE class A
ENTER ram, 1
DEPART class A
ADVANCE 20,5
LEAVE ram, 1
TERMINATE 0
;класс В
GENERATE 20,10
QUEUE class B
ENTER ram, 1
DEPART class B
ADVANCE 21,3
LEAVE ram, 1
TERMINATE 0
;класс С
GENERATE 28,5
QUEUE class C
ENTER ram, 2
DEPART class C
ADVANCE 28,5
LEAVE ram, 2
TERMINATE 0
; таймер
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 3.1: Модель работы вычислительного центра

GPSS World Simulation Report - Untitled Model 1.1.1											
Saturday, May 31, 2025 16:26:28											
START TIME END TIME BLOCKS FACILITIES STORAGES											
0	.000	4800.0	000 23	0	1						
NAM	E		VALUE								
CLASS_A			10001.000								
CLASS_E			10002.000								
CLASS_C RAM			10003.000								
KAM			10000.000								
LABEL				OUNT CURRENT CO							
		ENERATE	240		-						
		ueue Nter	240 236		0						
		EPART	236		-						
		DVANCE	236	_	0						
	6 I	EAVE	235	0	0						
		ERMINATE	235		0						
		ENERATE	236		_						
		UEUE NTER	236 231		0						
		EPART	231		0						
		DVANCE	231								
	13 I	EAVE	230	0	0						
		ERMINATE	230		-						
		ENERATE	172		0						
		ueue Nter	172								
		EPART	0	0	o o						
		DVANCE	0	_	0						
	20 I	EAVE	0	0	0						
		ERMINATE	0	_	_						
		ENERATE	1		0						
	23 T	ERMINATE	1	0	0						
QUEUE	MAX CON	T. ENTRY EN			E AVE.(-0) RETRY						
CLASS_A		4 240		.288 65.76							
CLASS_B		5 236		.280 66.70	3 66.987 0 3 2294.038 0						
CLASS_C	1/2 1/	2 1/2	0 05.	.700 2394.03	2294.030 0						
					JTIL. RETRY DELAY						
RAM	2	0 0 2	467	1 1.988 (0.994 0 181						
FEC XN PRI				EXT PARAMETER	VALUE						
650 0	4803.51		0 1								
626 0 651 0	4805.70 4807.86	4 636 9 651	5 6 0 15								
637 0			12 13								
652 0	4813.50		0 8								
653 0		0 653	0 22								

Рис. 3.2: Отчёт модели работы вычислительного центра

Загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Построение модели работы аэропорта. Если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась – переход в блок обработки, если нет – самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. (рис. 3.3).

```
GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway, wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0
;ождиание
wait TEST L pl,5,goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0
;взлет
GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0
;таймер
GENERATE 1440
TERMINATE 1
START 1
```

Рис. 3.3: Модель работы аэропорта

Отчет (рис. 3.4

Saturday, May 31, 2025 16:34:47 END TIME BLOCKS FACILITIES STORAGES START TIME 1440.000 26 1 NAME VALUE ARRIVAL 10002.000 COAWAY 14,000 LANDING 4.000 RESERVE UNSPECIFIED RUNWAY 10001.000 TAKEOFF 10000.000 10,000 WAIT ENTRY COUNT CURRENT COUNT RETRY 146 0 0 LABEL LOC BLOCK TYPE CENERATE 146 ASSIGN 0 QUEUE 146 0 LANDING GATE 184 5 SEIZE 146 0 0 DEPART 146 0 6 0 ADVANCE 146 0 RELEASE TERMINATE 0 WATT 10 TEST 38 0 0 ADVANCE 0 0 11 38 12 ASSIGN 0 38 13 TRANSFER COAWAY 14 SEIZE 0 0 15 DEPART 0 0 0 RELEASE 0 16 0 0 TERMINATE 18 CENERATE 142 0 19 QUEUE 142 0 0 SEIZE 0 0 20 142 21 DEPART 142 0 0 ADVANCE 23 RELEASE 142 0 0 24 TERMINATE 142 0 0 CENERATE 25 0 TERMINATE 26 AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY 2.000 1 0 0 0 0 0 ENTRIES UTIL. 288 0.400 FACILITY RUNWAY MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME QUEUE AVE. (-0) RETRY TAKEOFF 0 142 114 0.017 0.1730.880 0 114 146 0.132 5,937 ARRIVAL 1.301 FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE 1440.749 1 290 290 0 18 291 1445.367 291 0

GPSS World Simulation Report - Untitled Model 1.4.1

Рис. 3.4: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. Коэффициент загрузки полосы равняется 0.4.

3.3 Моделирование работы морского порта

Первый вариант модели

Построение модели (рис. 3.5).

```
pier STORAGE 10

GENERATE 20,5

;моделирование занятости причала

QUEUE arrive

ENTER pier,3

DEPART arrive

ADVANCE 10,3

LEAVE pier,3

TERMINATE 0

GENERATE 24

TERMINATE 1

START 180
```

Рис. 3.5: Модель работы морского порта

Отчет (рис. 3.6).

Saturday, May 31, 2025 16:40:28

		IME 000						ACILITIES 0			
	NAME ARRIVE PIER				100		00				
LABEL		1 2 3 4 5 6 7 8	GENER QUEUE ENTER DEPAR ADVAN LEAVE TERMI GENER	RATE R R R R T ICE INATE		2: 2: 2: 2: 2: 2: 2:	15 15 15 15 15 14 14	CURRENT	COUNT 0 0 0 0 1 0 0 0		
QUEUE ARRIVE								0.0			
STORAGE PIER								. AVE.C			
396	0	BDT 4324.: 4335.: 4344.	260 233	395 396	5	;)	6	PARAMETI	ER '	VALUE	

Рис. 3.6: Отчет по модели работы морского порта

Наименьшее возможное число причалов – 3, получаем оптимальный результат, что видно на отчете

Модель с оптимальным количество причалов (рис. 3.7)

```
pier STORAGE 3
GENERATE 20,5

;моделирование занятости причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.7: Модель работы морского порта с оптимальным количеством причалов

Отчет модели с оптимальным количеством причалов (рис. 3.8).

GPSS World Simulation Report - Untitled Model 1.6.1

Saturday, May 31, 2025 16:41:48

		IME 000						ACILITIES 0		RAGES 1	
	NAME ARRIVE PIER				100	VALUE 01.00 00.00	0				
LABEL		1 2 3 4 5 6 7 8	GENE QUEU ENTE DEPA ADVA LEAV TERM GENE	RATE E R		NTRY 21 21 21 21 21 21 21 21 21 18	5 5 5 5 5 4 4 0		COUNT 0 0 0 0 1 0 0	RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE					,					AVE.(-0) 0.000	
STORAGE PIER										. RETRY 1	
FEC XN 395 396 397	0	4324. 4335.	260 233	395 396	1 CURR 5 0		NEXT 6 1 8	PARAMETE	ER .	VALUE	

Рис. 3.8: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построение модели (рис. 3.9).

```
pier STORAGE 6
GENERATE 30,10

;моделирование занятости причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

GENERATE 24
TERMINATE 1
```

Рис. 3.9: Модель работы морского порта

Отчет (рис. 3.10).

START 180

Saturday	. Mav	31.	2025	16:42:	55

		IME 000		ME BLOCKS	FACILITIES 0	STORAGES	
	NAME ARRIVE PIER		1	VALUE .0001.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA 7 TER 8 GEN	ERATE	ENTRY COU 143 143 143 143 143 142 142 180 180	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE						ME AVE.(-0)	
STORAGE PIER						UTIL. RETRY D	
322	0		322 324	5 6 0 1	T PARAMETER	R VALUE	

Рис. 3.10: Отчет по модели работы морского порта

Наименьшее возможное число причалов – 2, получаем оптимальный результат, что видно из отчета.

Модель с оптимальным количество причалов (рис. 3.11)

```
pier STORAGE 2
GENERATE 30,10
;моделирование занятости причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта с оптимальным количеством причалов

Отчет модели с оптимальным количеством причалов (рис. 3.12)

GPSS World Simulation Report - Untitled Model 1.8.1

Saturday, May 31, 2025 16:43:28

	START T		END TIME 4320.000		FACILITIES 0	STORAGES 1	
	NAME ARRIVE PIER		100	VALUE 01.000 00.000			
LABEL		LOC BLOCK 1 GENERS 2 QUEUE 3 ENTER 4 DEPARS 5 ADVANC 6 LEAVE 7 TERMIN 8 GENERS 9 TERMIN	ATE C CE NATE	NTRY COUN 143 143 143 143 143 143 142 142 180 180	T CURRENT C 0 0 0 0 1 0 0 0 0 0	0 0 0 0 0 0	
QUEUE ARRIVE		MAX CONT. EN				E AVE.(-0)	
STORAGE PIER		CAP. REM. MI 2 0 (UTIL. RETRY	
FEC XN 322 324 325	0	BDT 4325.892 4336.699 4344.000	322 5 324 0	6	PARAMETER	VALUE	

Рис. 3.12: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

Реализованы модели:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.