Multi-phase experiments: from design to analysis Session 2: Non-orthogonality

R. A. Bailey

University of St Andrews

Australasian Region of the International Biometric Society, November 2015

An experiment in incomplete blocks

9 Detergents

12 People 3 Laundry-loads in P

1 2	4 5	7 8	1 4	2 5	3 6	1 5 9	6	3 4	1 6	2 4	3 5	
3	6	9	7	8	9	9	7	8	8	9	7	

This block design

▶ is binary.

because no treatment occurs more than once in any block;

- has the property that treatment contrasts are not orthogonal to the blocks subspace so we say that the design is not orthogonal;
- ▶ is balanced, which means that every pair of distinct treatments occur together in the same number of blocks.

A geometric interpretation of balance

Subspaces Projectors

 W_0 W_P W_{LP} \mathbf{Q}_0 \mathbf{Q}_P \mathbf{Q}_{LP}

Experimental units

Treatments U_0 U_D \mathbf{R}_D \mathbf{R}_0

Every vector in the treatments subspace U_D makes the same angle θ with stratum W_{LP} .

Equivalently, $\mathbf{R}_D \mathbf{Q}_{LP} \mathbf{R}_D = (\cos^2 \theta) \mathbf{R}_D$.

 $\cos^2 \theta$ is called the canonical efficiency factor for U_D in W_{LP} .

A statistical interpretation of balance

In a balanced incomplete-block design with v treatments in blocks of size k,

canonical efficiency factor for within-blocks stratum = $\frac{v}{v-1}\frac{k-1}{k}$.

If a treatment contrast is estimated using only within-blocks information, then its variance is inflated by a factor of 1/c.e.f. compared to an unblocked design of the same size with the same stratum variance.

$$\mathbf{R}_{D}\mathbf{Q}_{0} = \mathbf{0}$$
 so $\mathbf{R}_{D}\mathbf{Q}_{P}\mathbf{R}_{D} = \mathbf{R}_{D} - \mathbf{R}_{D}\mathbf{Q}_{LP}\mathbf{R}_{D} = (1 - \cos^{2}\theta)\mathbf{R}_{D}$

so the canonical efficiency factor for between-blocks stratum = 1 - canonical efficiency factor for within-blocks stratum.

Show this information in the skeleton anova table

plots Ω			treatments Γ	
source	df	cef	source	df
Mean	1	1	Mean	1
People	11	1/4	Detergents	8
			Residual	3
Laundry[People]	24	3/4	Detergents	8
			Residual	16

This table summarizes the properties of the design. If the difference between two treatments is estimated using only information in W_{LP} then its variance is

$$\frac{2}{\text{replication}} \times \frac{1}{\text{cef}} \times \text{stratum variance} = \frac{2}{4} \times \frac{4}{3} \times \eta_{LP}.$$

Using only information in W_P , the variance is

$$\frac{2}{4} \times \frac{4}{1} \times \eta_P$$
.

Strategies for estimation of treatment differences

plots Ω			treatments Γ	
source	df	cef	source	df
Mean	1	1	Mean	1
People	11	1/4	Detergents	8
			Residual	3
Laundry[People]	24	3/4	Detergents	8
			Residual	16

- 1. Use only information in W_{LP} .
- 2. Use only information in W_P .
- 3. Do both the above, estimate η_{LP} and η_P from the residual mean squares, and calculate the minimum-variance unbiased linear combination.
- 4. Iterate the above, estimating η_{LP} and η_P from the actual residuals at the previous step.
- 5. Use REML.

A square lattice design

16 Treatments

- 3 Fields
- 4 Blocks in F 4 Plots in B, F
- ΓΑ

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Α	В	С	D
В	Α	D	С
С	D	Α	В
D	С	В	A

Field 1										
1	5	9	13							
2	6	10	14							
3	7	11	15							
4	8	12	16							

	Field
1	2
5	6
9	10
13	14

ld 2 Field 3							
3	4	1	2	3			
7	8	6	5	8			
11	12	11	12	9			
15	16	16	15	14			
15	16	16	15				

7

10

13

Canonical efficiency factors

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

ſ	Α	В	С	D
ſ	В	Α	D	C
ſ	С	D	Α	В
ſ	D	С	В	A

Field 1				Field 2				Field 3				
1	5	9	13	1	2	3	4		1	2	3	4
2	6	10	14	5	6	7	8		6	5	8	7
3	7	11	15	9	10	11	12		11	12	9	10
4	8	12	16	13	14	15	16		16	15	14	13

Treatment contrasts between rows of the first array are estimated in Plots[Blocks[Fields]] in only 2 out of 3 fields, so have cef 2/3. Ditto treatment contrasts between columns; treatment contrasts between letters.

Treatment contrasts orthogonal to these have cef 1.

Treatment subspaces

The space of treatment contrasts splits into two orthogonal parts.

plots Ω		tı	reatments Γ	
source	df	cef	source	df
Mean	1	1	Mean	1
Fields	2			
Blocks[Fields]	9	1/3	T_1	9
Plots[Blocks[Fields]]	36	2/3	T_1	9
		1	T_2	6
			Residual	21

Silly randomization

We choose a design, then randomize it by applying a suitable permutation to the set of plots.

Suppose that the 16 treatments are a 4^2 factorial. Should we randomize the actual treatments to the labels $1, \ldots, 16$?

- No. Decide whether you want the more precisely estimated contrasts to be both main effects or part of the interaction, and stick with that.
- 2. No. If the subspaces T_1 and T_2 are not compatible with the breakdown into main effects and interaction, some software may produce strange results.

General block designs

In general, we need to find the eigenspaces of

 $R_{\text{treatment} contrasts} Q_{\text{Plots}[\text{Blocks}]} R_{\text{treatment} contrasts}.$

The corresponding eigenvalues are the canonical efficiency factors.

These subspaces are not always easy to explain in terms of factors.

A rectangular lattice design

20 Treatments

 19
 14
 9
 4

 5
 20
 15
 10

 6
 1
 16
 11

 12
 7
 2
 17

 18
 13
 8
 3

3 Fields 5 Blocks in F 4 Plots in B, F

_				
Α	С	Е	В	D
Е	В	D	Α	С
D	Α	С	Е	В
С	Е	В	D	Α
В	D	Α	С	Е

Field 1 Field 2 Field 3 3 1 2 7 7 9 7 10 8 6 8 6 9 | 10 8 10 6 15 | 11 | 12 13 12 13 | 14 | 15 11 15 | 11 | 12 | 13 | 14 17 | 18 | 19 | 20 | 16 10 | 16 | 17 | 18 18 | 19 | 20 | 16 | 17 |

/19

Less obvious treatment subspaces

Now it is less easy to describe the three treatment eigenspaces.

plots Ω	treatments Γ			
source	df	cef	source	df
Mean	1	1	Mean	1
Fields	2			
Blocks[Fields]	12	1/6	T_2	4
		5/12	T_3	8
Plots[Blocks[Fields]]	45	1	T_1	7
		5/6	T_2	4
		7/12	T_3	8
			Residual	26

Optimality criteria

In an incomplete-block design with canonical efficiency factors $\lambda_1,\ldots,\lambda_{v-1}$ put

 $A = \text{harmonic mean of } \lambda_1, \dots, \lambda_{v-1}$ $E = \text{minimum of } \lambda_1, \dots, \lambda_{v-1}.$

Average variance of estimator of treatment difference =

$$\frac{2}{\text{replication}} \times \frac{1}{A} \times \eta_{PB}.$$

Maximum variance of estimator of normalized treatment contrast =

$$\frac{1}{E} \times \eta_{PB}$$
.

Both are bounded above by the value for a balanced incomplete-block design with the same parameters.

How good are our designs?

Square lattice design for 16 treatments in 12 blocks of size 4:

A = 0.769 E = 0.669BIBD bound = 0.800

This is known to be A-optimal, even over non-resolved designs.

Rectangular lattice design for 20 treatments in 15 blocks of size 4:

A = 0.745 E = 0.583BIBD bound = 0.789

You can do a little better by using non-resolved designs.

How does this generalize to more strata? I

Given the treatment subspaces U_i , with their orthogonal projectors \mathbf{R}_i , and the strata W_j , with their orthogonal projectors \mathbf{Q}_j , what can happen?

If the strata can be labelled such that

$$\mathbf{R}_i\mathbf{Q}_i=\mathbf{0}$$

for all i and for all $j \ge 3$,

then only strata W_1 and W_2 have any information about treatment contrasts,

and the situation is similar to that for incomplete-block designs.

How does this generalize to more strata? II

- 1. If every treatment subspace U_i is contained in a single stratum W_i then the design is orthogonal.
- If R_i commutes with Q_j for all i and j, then the treatment subspaces U_i can be decomposed into subspaces U_i ∩ W_j, and this makes the design orthogonal.
 It may be possible to do this by using pseudofactors.
- 3. If $\mathbf{R}_i \mathbf{Q}_j \mathbf{R}_i = \lambda_{ij} \mathbf{R}_i$ and $\mathbf{R}_i \mathbf{Q}_j \mathbf{R}_k = 0$ for all i, j, k with $k \neq j$ then we have structure balance, and the approach for incomplete-block designs generalizes.
- 4. If $\mathbf{R}_i \mathbf{Q}_j \mathbf{R}_i$ commutes with $\mathbf{R}_i \mathbf{Q}_m \mathbf{R}_i$ for all i, j and m and $\mathbf{R}_i \mathbf{Q}_j \mathbf{R}_k = \mathbf{0}$ for all i, j, k with $k \neq j$ then each U_i can be decomposed into the common eigenspaces of the $\mathbf{R}_i \mathbf{Q}_j \mathbf{R}_i$, and this makes the design structure-balanced.
- 5. If $(\sum_i \mathbf{R}_i) \mathbf{Q}_j (\sum_i \mathbf{R}_i)$ commutes with $(\sum_i \mathbf{R}_i) \mathbf{Q}_m (\sum_i \mathbf{R}_i)$ for all j and m, then V_Γ can be decomposed into their common eigenspaces, which may not be compatible with the U_i .
- 6. Otherwise, this approach does not work.

An example with three effective strata

49 Varieties

4 Fields 7 Rows in F 7 Columns in F

Write the 49 varieties in a 7×7 square array; write out a complete set of six mutually orthogonal 7×7 Latin squares.

Field	Field rows	Field columns
1	array rows	array columns
2	letters of LS 1	letters of LS 2
3	letters of LS 3	letters of LS 4
2	letters of LS 5	letters of LS 6

18/19

Skeleton anova with three effective strata

 Subspace
 T1
 T2

 dimension
 24
 24

 cef in R#C[F]
 3/4
 3/4

 cef in R[F]
 1/4
 0

 cef in C[F]
 0
 1/4

 cef in F
 0
 0

plots Ω	treatments Γ			
source	df	cef	source	df
Mean	1	1	Mean	1
Fields	3			
Rows[Fields]	24	1/4	T_1	24
Columns[Fields]	24	1/4	T_2	24
R#C[Fields]	144	3/4	T_1	24
		3/4	T_2	24
			Residual	96

19/1