=

Self-training with Noisy Student improves ImageNet classification

Введение

- Задача классификации на ImageNet
- Semi-supervised learning
- Цель улучшить имеющиеся результаты с точки зрения качества

Методология

- 1. Обучить учителя на размеченных данных.
- 2. Сгенерировать с его помощью новые (псевдо-) маркировки.
- 3. Обучить ученика на скомбинированных данных.
- 4. Рассмотреть ученика, как учителя. Вернуться ко 2 пункту.

1: Learn teacher model θ_*^t which minimizes the cross entropy loss on labeled images

$$\frac{1}{n}\sum_{i=1}^n \ell(y_i, f^{noised}(x_i, \theta^t))$$

2: Use a normal (i.e., not noised) teacher model to generate soft or hard pseudo labels for clean (i.e., not distorted) unlabeled images

$$\tilde{y}_i = f(\tilde{x}_i, \theta_*^t), \forall i = 1, \cdots, m$$

3: Learn an **equal-or-larger** student model θ_*^s which minimizes the cross entropy loss on labeled images and unlabeled images with **noise** added to the student model

$$\frac{1}{n}\sum_{i=1}^{n}\ell(y_i, f^{noised}(x_i, \theta^s)) + \frac{1}{m}\sum_{i=1}^{m}\ell(\tilde{y}_i, f^{noised}(\tilde{x}_i, \theta^s))$$

4: Iterative training: Use the student as a teacher and go back to step 2.

Почему это работает?

 Модель ученика всегда НЕ меньше модели учителя

Такой подход позволяет ученикам "разбираться" в данных лучше, чем их учителя.

• Модификация данных

Аугментации, фильтация

• Шум модели ученика

dropout, stochastic depth

Шум модели

Dropout

С вероятность р отбрасываем нейроны слоя

Stochastic depth

С вероятностью р отбрасываем не нейроны, а целые слои сети

На примере ResNet:

RandAugment

RandAugment

```
=
```

```
transforms = [
'Identity', 'AutoContrast', 'Equalize',
'Rotate', 'Solarize', 'Color', 'Posterize',
'Contrast', 'Brightness', 'Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY']
def randaugment(N, M):
"""Generate a set of distortions.
  Args:
   N: Number of augmentation transformations to
        apply sequentially.
   M: Magnitude for all the transformations.
11 11 11
 sampled_ops = np.random.choice(transforms, N)
 return [(op, M) for op in sampled_ops]
```


RandAugment

augmentation	mAP	search space
Baseline	38.8	0
AutoAugment	40.4	10^{34}
RandAugment	40.1	10^{2}
Baseline	39.9	0
AutoAugment	42.1	10^{34}
RandAugment	41.9	10^{2}
	Baseline AutoAugment RandAugment Baseline AutoAugment	Baseline 38.8 AutoAugment 40.4 RandAugment 40.1 Baseline 39.9 AutoAugment 42.1

Data filtering & balancing

Еще одна важная отличительная деталь:

Неразмеченные данные могут быть вне класса ImageNet, поэтому снимки, к которым учитель имеет наименьшую степень доверия, отфильтровываются.

Далее количество изображений для каждого класса надо сбалансировать. Где не хватает - дублируем, где слишком много - выбираем изображения с максимальной уверенностью.

EfficientNet

=

Цель создателей - упростить архитектуру нейросетей для работы с изображениями и уменьшить время работы.

Идея - взять простую, но хорошо работающую сеть и оптимально ее масштабировать.

Базовая EfficientNet-B0 имеет параметры: aplha=1.2, beta=1.1, gamma=1.15; другие сети семейства получились масштабированием количества ресурсов.

Teacher	Teacher Acc.	Student	Student Acc.
В0	77.3%	B0	77.9%
DU	11.5%	B1	79.5%
D2	90.00	B2	80.7%
B2	80.0%	В3	82.0%
D4	83.2%	B4	84.0%
B4	83.2%	B5	84.7%
D7	96 00	B7	86.9%
В7	86.9%	L2	87.2%

Model	# Params	Top-1 Acc.	Top-5 Acc
EfficientNet-B0		77.3%	93.4%
Noisy Student Training (B0)	5.3M	78.1%	94.2%
Noisy Student Training (B0, L2)		78.8%	94.5%
EfficientNet-B1		79.2%	94.4%
Noisy Student Training (B1)	7.8M	80.2%	95.2%
Noisy Student Training (B1, L2)		81.5%	95.8%
EfficientNet-B2		80.0%	94.9%
Noisy Student Training (B2)	9.2M	81.1%	95.5%
Noisy Student Training (B2, L2)		82.4%	96.3%
EfficientNet-B3		81.7%	95.7%
Noisy Student Training (B3)	12M	82.5%	96.4%
Noisy Student Training (B3, L2)		84.1%	96.9%
EfficientNet-B4		83.2%	96.4%
Noisy Student Training (B4)	19M	84.4%	97.0%
Noisy Student Training (B4, L2)		85.3%	97.5%
EfficientNet-B5		84.0%	96.8%
Noisy Student Training (B5)	30M	85.1%	97.3%
Noisy Student Training (B5, L2)		86.1%	97.8%
EfficientNet-B6		84.5%	97.0%
Noisy Student Training (B6)	43M	85.9%	97.6%
Noisy Student Training (B6, L2)		86.4%	97.9%
EfficientNet-B7		85.0%	97.2%
Noisy Student Training (B7)	66M	86.4%	97.9%
Noisy Student Training (B7, L2)		86.9%	98.1%

Data	1/128	1/64	1/32	1/16	1/4	1
Top-1 Acc.	83.4%	83.3%	83.7%	83.9%	83.8%	84.0%

Model	B0	B1	B2	В3
Supervised Learning	77.3%	79.2%	80.0%	81.7%
Noisy Student Training w/o Data Balancing	77.9 % 77.6%	79.9% 79.6%	80.7 % 80.6%	82.1% 82.1%

Warm-start	Initia	No Init			
Epoch	35	70	140	280	350
Top-1 Acc.	77.4%	77.5%	77.7%	77.8%	77.9%

93.8% 94.3 %

Model	Dataset	Top-1 Acc.	Top-5 Acc.
EfficientNet-B0	-	77.3%	93.4%
Noisy Student Training (B0)	YFCC	79.9%	95.0%
Noisy Student Training (B0)	JFT	78.1%	94.2%
EfficientNet-B1	-	79.2%	94.4%
Noisy Student Training (B1)	YFCC	79.9%	95.0%
Noisy Student Training (B1)	JFT	80.2%	95.2%
EfficientNet-B2		80.0%	94.9%
Noisy Student Training (B2)	YFCC	81.0%	95.6%
Noisy Student Training (B2)	JFT	81.1%	95.5%
EfficientNet-B3	_	81.7%	95.7%
Noisy Student Training (B3)	YFCC	82.3%	96.2%
Noisy Student Training (B3)	JFT	82.5%	96.4%
EfficientNet-B4	-	83.2%	96.4%
Noisy Student Training (B4)	YFCC	84.2%	96.9%
Noisy Student Training (B4)	JFT	84.4%	97.0%
EfficientNet-B5	-	84.0%	96.8%
Noisy Student Training (B5)	YFCC	85.0%	97.2%
Noisy Student Training (B5)	JFT	85.1%	97.3%
EfficientNet-B6	_	84.5%	97.0%
Noisy Student Training (B6)	YFCC	85.4%	97.5%
Noisy Student Training (B6)	JFT	85.6%	97.6%
EfficientNet-B7	-	85.0%	97.2%
Noisy Student Training (B7)	YFCC	86.2%	97.9%
Noisy Student Training (B7)	JFT	86.4%	97.9%

Условия экспериментов

Размеченный датасет - ImageNet 2012 ILSVRC.

Неразмеченный датасет - JFT.

Для каждого класса имеется 130.000 немаркированных изображений.

Batch size = 2048 (но различий между 512, 1024 и 2048 не наблюдалось).

Обучение длится 350 эпох для меньших моделей, 700 - для больших.

Learning Rate устанавливается равным 0,128, а затем умножается на 0,97.

Для EfficientNet-L2 первые 350 эпох обучение на меньшем разрешении (224х224), затем модель переучивается под большее (299х299).

Stochastic depth: p=0,2 для последнего слоя. Линейно возрастает к первому слою.

Dropout : p = 0.5 для последнего слоя.

Параметры аугментации: N = 2; M = 27.

Лучшая модель:

- 3 итерации алгоритма
- Учитель EfficientNet-B7, остальные EfficientNet-L2

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50 [30]	26M	-	76.0%	93.0%
ResNet-152 [30]	60M	-	77.8%	93.8%
DenseNet-264 [36]	34M	-	77.9%	93.9%
Inception-v3 [81]	24M	-	78.8%	94.4%
Xception [15]	23M	-	79.0%	94.5%
Inception-v4 [79]	48M	₩.	80.0%	95.0%
Inception-resnet-v2 [79]	56M	-	80.1%	95.1%
ResNeXt-101 [92]	84M	-	80.9%	95.6%
PolyNet [100]	92M	-	81.3%	95.8%
SENet [35]	146M	-	82.7%	96.2%
NASNet-A [104]	89M	*	82.7%	96.2%
AmoebaNet-A [65]	87M	-	82.8%	96.1%
PNASNet [50]	86M	. - .	82.9%	96.2%
AmoebaNet-C [17]	155M	-	83.5%	96.5%
GPipe [38]	557M	-	84.3%	97.0%
EfficientNet-B7 [83]	66M	×	85.0%	97.2%
EfficientNet-L2 [83]	480M	-	85.5%	97.5%
ResNet-50 Billion-scale [93]	26M		81.2%	96.0%
ResNeXt-101 Billion-scale [93]	193M	2.5D in	84.8%	-
ResNeXt-101 WSL [55]	829M	3.5B images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL [86]	829M		86.4%	98.0%
Big Transfer (BiT-L) [43] [†]	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Устойчивость

Method	Top-1 Acc.	Top-5 Acc.	
ResNet-101 [32]	4.7%	-	
ResNeXt-101 [32] (32x4d)	5.9%	-	
ResNet-152 [32]	6.1%	-	
ResNeXt-101 [32] (64x4d)	7.3%	-	
DPN-98 [32]	9.4%	-	
ResNeXt-101+SE [32] (32x4d)	14.2%	-	
ResNeXt-101 WSL [55, 59]	61.0%	-	
EfficientNet-L2	49.6%	78.6%	
Noisy Student Training (L2)	83.7%	95.2%	

Table 3: Robustness results on ImageNet-A.

Method	Res.	Top-1 Acc.	mCE
ResNet-50 [31]	224	39.0%	76.7
SIN [23]	224	45.2%	69.3
Patch Gaussian [51]	299	52.3%	60.4
ResNeXt-101 WSL [55, 59]	224	-:	45.7
EfficientNet-L2	224	62.6%	47.5
Noisy Student Training (L2)	224	76.5%	30.0
EfficientNet-L2	299	66.6%	42.5
Noisy Student Training (L2)	299	77.8%	28.3

Table 4: Robustness results on ImageNet-C. mCE is the weighted average of error rate on different corruptions, with AlexNet's error rate as a baseline (lower is better).

Method	Res.	Top-1 Acc.	mFR
ResNet-50 [31]	224	-	58.0
Low Pass Filter Pooling [99]	224	-	51.2
ResNeXt-101 WSL [55, 59]	224	-	27.8
EfficientNet-L2	224	80.4%	27.2
Noisy Student Training (L2)	224	85.2%	14.2
EfficientNet-L2	299	81.6%	23.7
Noisy Student Training (L2)	299	86.4%	12.2

Table 5: Robustness results on ImageNet-P, where images are generated with a sequence of perturbations. mFR measures the model's probability of flipping predictions under perturbations with AlexNet as a baseline (lower is better).

Устойчивость

FGSM-атаки: в данные добавляется шум, рассчитываемый из эпсилон, умноженного на знак градиента функции потерь входа

Для PGD-атак улучшение составило с 1,1% до 4,4%

Спасибо за внимание!

Ссылки

https://arxiv.org/pdf/1911.04252.pdf - статья Noisy Student

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e9 24a68c45b-Paper.pdf -

https://www.youtube.com/watch?v=q7PjrmGNx5A - обзор статьи Noisy Student

 $\frac{https://towardsdatascience.com/review-stochastic-depth-image-classification}{-a4e225807f4a} - stochastic depth$

https://arxiv.org/pdf/1909.13719.pdf - статья RandAugmentation

 $\frac{\text{https://towardsdatascience.com/simple-image-data-augmentation-technics-to-mitigate-overfitting-in-computer-vision-2a6966f51af4}{\text{- статья про аугментации}}$

https://www.youtube.com/watch?v=Zzt9i3gDueE - урок по RandAugment

https://proglib.io/p/issleduem-arhitektury-svertochnyh-neyronnyh-setey-s-po moshchyu-fast-ai-2020-12-28 - разбор статьи efficient Net https://arxiv.org/pdf/1905.11946.pdf - статья про EfficientNet

<u>https://www.youtube.com/watch?v=zbp9eqDwwRc</u> - видеоурок про efficientNet