(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 4. August 2005 (04.08.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/070322 A1

- (51) Internationale Patentklassifikation⁷: A61C 13/00, A61K 6/027, A61C 13/083, C04B 38/00, 41/45, 41/49, 41/50, 35/48, 35/488
- (21) Internationales Aktenzeichen: PCT/EP2005/050444
- (22) Internationales Anmeldedatum:

27. Januar 2005 (27.01.2005)

27. Januar 2004 (27.01.2004)

(25) Einreichungssprache:

10 2004 004 059.1

Deutsch

(26) Veröffentlichungssprache:

Deutsch

DE

- (30) Angaben zur Priorität:
- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): IVOCLAR VIVADENT AG [LI/LI]; Bendererstr. 2, CH-9494 Schaan (LI).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): ROTHBRUST, Frank; Mönchwaldstr. 10, A-6820 Frastanz (AT). VAN T'HOEN, Christian [DE/AT]; Vorstadt 17a, A-6800 Feldkirch (AT). HÖLAND, Wolfram [DE/LI]; Im Aescherle 25, CH-9494 Schaan (LI). RHEINBERGER, Volker [LI/LI]; Mareestrasse 34, CH-9490 Vaduz (LI).
- (74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).

- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der f\u00fcr \u00e4nden der Anspr\u00fcche geltenden
 Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen
 eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: INORGANIC-INORGANIC COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME

(54) Bezeichnung: ANORGANISCH-ANORGANISCHER COMPOSITWERKSTOFF UND VERFAHREN ZU DESSEN HERSTELLUNG

(57) Abstract: The invention relates to a method for producing an inorganic-inorganic composite material. According to said method, an open-pored, crystalline oxide-ceramic moulded part is produced from an oxide-ceramic powder or a powdered oxide-ceramic mixture by shaping and pre-sintering, an infiltration substance is then applied to said part in a vacuum at ambient temperature and the oxide-ceramic is subsequently compacted by sintering in an ambient atmosphere and at ambient pressure to form an inorganic-inorganic composite material.

(57) Zusammenfassung: Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes, bei welchem aus einem Oxidkeramikpulver oder einem Pulver einer Oxidkeramikmischung nach formgebender Verarbeitung und Vorsintern ein offenporiges, kristallines Oxidkeramik-Formteil hergestellt wird, auf diese ein Infiltrationsstoff unter Vakuum und bei Raumtemperatur aufgebracht wird und bei Luftatmosphäre und Umgebungsdruck die Oxidkeramik zu einem anorganisch-anorganischen Compositwerkstoff verdichtend gesintert wird.

05/

Anorganisch-anorganischer Compositwerkstoff und Verfahren zu dessen Herstellung

Die vorliegende Erfindung betrifft einen anorganisch-anorganischen
Compositwerkstoff, ein Verfahren zu dessen Herstellung sowie dessen
Verwendung.

Die Verwendung von Oxidkeramiken im Dentalbereich ist seit langem bekannt. Beispielsweise ist aus der WO 95/35070 ein Verfahren bekannt, bei dem die Keramik infiltriert wird. Die Herstellung einer derartigen Oxidkeramik ist jedoch relativ aufwendig; allein der Schritt der Infiltration, die bei dieser Lösung vorgenommen wird, benötigt beispielsweise vier Stunden.

- Ferner ist aus der EP-A1-834 366 ein keramisches Werkstück bekannt, 15 das durch Infiltration eines geschmolzenen Matrixmaterials in die Hohlräume eines Rohlings erzeugt wird. Es ist eine besondere Größenstufen die Teilchengröße mit zwei verschiedenen für Infiltrationssubstanz vorgesehen. Bei dieser Lösung wird ein 20 Umhüllungsmaterial verwendet, das mit einem wasserlöslichen Salz versehen wird und nach Infiltration und Verfestigung entfernt werden muss. Nachteilig bei dieser Lösung ist die hohe Prozesstemperatur bei der Formgebung und die komplizierte gerätetechnische Herstellung.
- 25 Aus der Veröffentlichung WO 88/02742 ist die Herstellung eines oberflächengehärteten Keramikteils bekannt. Ein poröser Al₂O₃-Rohling wird mit einem Zirkonoxid-Infiltrationsstoff infiltriert, so daß das fertige Keramik-Werkstück ein Volumenanteil von 1 bis 15 % Zirkonoxid enthält und hierdurch die so gebildete Aluminiumoxidkeramik verfestigt wird.

 30 Dieses Verfahren erfordert mehrere Infiltrationsschritte und ist geeignet,

wenn eine Keramik wie Aluminiumoxid an der Oberfläche verstärkt werden soll, während es sich versteht, daß eine Zirkonoxid-Keramik mit hohem kritischem Spannungsintensitätsfaktor durch Hinzufügen von Zirkonoxid nicht weiter verstärkt werden kann. Eine derartige Aluminiumoxid-Keramik zeigt nur oberflächlich eine Verstärkung, und zur Realisierung dieser Lösung müssten die Verfahrensschritte häufig hintereinander angewendet werden.

Ferner ist aus der DE-A1-I98 52 740 die Ausbildung eines Käppchens oder von anderen Zahnersatzteilen aus Aluminiumoxid-Keramik bekannt. Das vorgesinterte Formstück wird im heißen Zustand mit einem Glas infiltriert, das durch Einbringen in den Sinterofen schmilzt. Die Infiltrierung benötigt bei dieser Lösung einen Zeitraum von ca. vier Stunden und eine hohe Prozeßtemperatur. Zudem ist der Prozess nicht ausreichend steuerbar und die mechanischen Eigenschaften des Zahnersatzteils sind verhältnismäßig schlecht.

Außerdem ist aus der DE-A1 100 61 630 die Herstellung eines vollkeramischen Zahnersatzes aus einer Dentalkeramik aus Zirkonoxid und Aluminiumoxid bekannt, wobei eine Infiltration mit Glas in einem Volumenbereich von 0 - 40 % vorgenommen wird. Diese Lösung erfordert bei Verwendung als Zahnersatz die zusätzliche Realisierung einer Verblendkeramik. Nachteilig ist die geringe Festigkeit der durch die Glasphase verfestigten Keramik, sowie die geringe Transluzenz.

25

30

. . 5

10

15

20

Ferner ist aus der EP-A1-1 025 829 die Herstellung einer Kappe aus einem mit einem Glas infiltrierten Keramikmaterial bekannt. Für die Bereitstellung der erwünschten Transluzenz sind zwei zusätzliche Schichten vorgesehen, die auf die Kappe aufgebracht werden. Bei der Bereitstellung von Dentalrestaurationsteilen ist es nämlich aus

ästhetischen Gründen wesentlich, den natürlichen Zahnschmelz nachzubilden, der eine erhöhte Transluzenz hat, während Dentin eine geringere Transluzenz hat. Hierzu dienen die Schichten 7 und 6 gemäß der vorstehend genannten Lösung. Bei einem derartigen Verfahren ist die umständliche Weiterverarbeitung durch Aufmahlen des infiltrierten Festkörpers zu einem Pulver nachteilig, aber auch die geringe Festigkeit der durch die Glasphase verfestigten Keramik.

Aus der DE-A1 101 07 451 ist ein Verfahren zur Herstellung eines Oxidkeramik-Formteils bekannt, bei dem aus einer Zirkon- oder Aluminiumoxidkeramik nach dem Vorsintern über ein großes CAD/CAM-System gefräst wird. Anschließend wird der gefräste Rohling bei 1200 bis 1650 °C drucklos gesintert. Die so hergestellte Oxidkeramikphase weist eine geringere Transluzenz als eine heißisostatisch gepresste Keramik auf, die mechanischen Eigenschaften sind schlechter als bei heißisostatisch gepressten Keramiken, und diese Keramiken sind sehr schlecht ätzbar.

10

15

20

25

Aus der CH-A5 675 120 sind Zirkonoxid-Mischkeramiken bekannt, die 7 bis 12 Gewichtsprozent TiO₂ und andere kornwachstumshemmende und zur Stabilisierung geeignete Zusätze enthalten. Es können auch 0 bis 30 Gewichtsprozent Al₂O₃ enthalten sein. Die Pulvergemische werden bei 1100 bis 1300 °C gesintert. Der Nachteil dieser Keramiken ist, daß die erzielbare Dichte nur bei 98 % der theoretischen Dichte (TD) liegt und damit geringer als bei heißisostatisch gepressten Keramiken ist. Die Erzeugung eines retentiven Musters auf der Oberfläche ist bei dieser Keramik nur sehr schwer möglich.

In der WO 03/057065 wird beschrieben, wie ein Oxidkeramikformteil aus Aluminiumoxid hergestellt wird, bei dem die mittlere Korngröße nicht

größer als 1µm ist und der Transluszenzgrad 70 % von T*nm, integriert über den Wellenlängenbereich von 475-650 nm beträgt. Bei diesem Patent wird zur Erreichung dieser Eigenschaften der Prozeßschritt des heißisostatischen Pressens angewendet, wobei zuerst aus einem pulvrigen Rohstoff ein Körper einer gewünschten Form erhalten wird, der in einem thermischen Prozeß gesintert wird, so daß der Körper nur noch Zur geschlossene Porosität erhält. Erreichung der endgültigen Eigenschaften wie Transluszenz, Enddichte und Endfestigkeit wird der Formkörper heißisostatisch nachverdichtet, vollständige Verdichtung zu erreichen. Dieser Prozeßschritt ist sehr aufwendig: Bei 100 bis 219 MPa und einer Temperatur von 1200°C bis 1300°C wird der Körper verdichtet.

--- - 5

10

15

20

25

Schließlich ist aus der Publikation "Heißisostatisches Pressen" von B.W. Hofer (Heißisostatisches Pressen, in: Technische Keramische Werkstoffe, Fachverlag Deutscher Wirtschaftsdienst, Hrsg. Kriegesmann J./ Kap. 3.6.3.0, pp, 1-15, Januar 1993) bekannt, daß durch heißisostatisches Pressen Werkstoffe erzeugt werden, die im Gefüge kaum noch Fehlstellen aufweisen und Dichten erreichen, die fast den theoretisch möglichen Wert erreichen. Um diese Eigenschaften zu erreichen, sind jedoch bei den Sintertemperaturen von oberhalb 1000 °C Drücke von 30 bis 200 MPa erforderlich. Ferner muss dieser Prozess in inerter Gasatmosphäre erfolgen. Dementsprechend aufwendig ist die Verfahrenstechnik und die daraus resultierende gerätetechnische Realisierung. Nachteilig ist somit der kostenaufwendige Prozess, die komplizierte Verfahrenstechnik und die damit verbundenen hohen Investitions- und Energiekosten, so daß es beispielsweise für kleinere Unternehmen wie Dentallabors nicht möglich ist, diesen Prozess selbst durchzuführen.

Demgegenüber liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes zu schaffen, der für den Dentalbereich geeignet ist und eine kostenoptimierte Herstellung bei gleichzeitig verbesserter ästhetischer Wirkung erlaubt, ohne die Gebrauchseigenschaften zu verschlechtern, insbesondere die Möglichkeit zur Erzeugung eines retentiven Musters zu bieten und die Befestigung auf dem natürlichen Zahn zu gewährleisten.

- - 5

15

Diese Aufgabe wird durch ein Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes gelöst, bei welchem - nach formgebender Verarbeitung und Vorsintern eines Oxidkeramik enthaltenden Pulvers ein offenporiges, kristallines Oxidkeramik-Formteil hergestellt wird,

- auf dieses ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht wird und
- bei Luftatmosphäre und Umgebungsdruck das Oxidkeramik-Formteil zu dem anorganisch-anorganischen Compositwerkstoff verdichtend gesintert wird.
- Bei der Herstellung wird hierbei von einem offenporigen kristallinen 20 Oxidkeramik-Formteil ausgegangen, dessen Poren bei Raumtemperatur unter Vakuum vorzugsweise im Bereich von 2 bis 90 % der Dicke der offenporigen Oxidkeramik mit einem Infiltrationsstoff mit oder ohne Lösungsmittel, mit oder ohne färbende Zusätze, gefüllt werden. Die gesamte beschichtete Oxidkeramik wird vorzugsweise bei hohen 25 Temperaturen einem Dichtsinterprozeß unterworfen. Hierdurch entsteht ein mehrschichtiger Compositwerkstoff, der im Inneren einen transluzenten Bereich bzw. Kern aufweist.

Im äußeren Bereich ist der Compositwerkstoff weiß, farblos oder farbig. Erfindungsgemäß kann demgemäß ein transluzent-farbiges Produkt hergestellt werden.

- Gegenstand der Erfindung ist ferner ein anorganisch-anorganischer Compositwerkstoff, welcher Komponenten von Oxidkeramiken und von Infiltrationsstoffen enthält und dessen hauptsächliche Verwendung im Dentalbereich liegt.
 - Bei der Realisierung des erfindungsgemäßen Verfahrens wird als Ausgangsmaterial ein Pulver oder eine Pulvermischung bereitgestellt, die aus entsprechender Oxidkeramik oder einer Mischkeramik aufgebaut sind. Das Pulver liegt bevorzugt als Granulat vor, es wird vorzugsweise mit einem Bindemittel versetzt. Bevorzugt werden hierfür die Metalloxide teilweise oder vollständig mit mindestens einer Monolage eines organischen Polymers belegt.

Die erfindungsgemäß eingesetzten Bindemittel bzw. Polymere sind vorzugsweise wasserlöslich.

20

25

Zu den erfindungsgemäß bevorzugten Bindemitteln bzw. Polymeren zählen synthetische Polymere oder Biopolymere. Zu erfindungsgemäß einsetzbaren Polymeren gehören z. B. Polyvinylalkohol, Polvethylenimin. Polyacrylamid. Polyethylenoxid, Polyethylenglycol, Homo- und Copolymere (Meth)acrylsäure, Maleinsäure, Vinylsulfonsäureund Vinylphosphonsäure, Polyvinylpyrrolidon, als Biopolymere sind insbesondere Stärke, Alginate, Gelatine, Celluloseether, beispielweise Carboxymethylcellulose einsetzbar.

Bei der Realisierung des erfindungsgemäßen Verfahrens wird während oder nach der formgebenden Verarbeitung, z. B. durch uniaxiales oder kaltisostatisches Pressen des pulverförmigen Ausgangsmaterials ein Vorsintern auf vorzugsweise 50 % der theoretischen Dichte in Umgebungsluftatmosphäre drucklos vorgenommen.

Bei der Herstellung des kristallinen offenporigen Oxidkeramik-Formteils bei hohen Temperaturen werden die Bindemittel bzw. organischen Polymere rückstandslos entfernt, wodurch die kristalline, offenporige Oxidkeramik eine Dichte von 10 bis 90 % der theoretischen Dichte enthält.

Die Vorsintertemperatur beträgt deutlich weniger als die Sintertemperatur und kann beispielsweise zwischen 600 und 1300 °C, bevorzugt zwischen 800 und 1200 °C liegen.

15

20

25

10

.... 5·

Das durch das Vorsintern erhaltene offenporige, kristalline Oxidkeramik-Formteil enthält im wesentlichen Oxide oder Oxidgemische der Elemente Zirkonium oder Aluminium oder Gemische dieser Elemente. Diese Metalloxide oder Metalloxidgemische können im Gemisch mit weiteren Metalloxiden vorliegen. Hierfür kommen insbesondere die Elemente der Gruppen IIIa, IIIb und IVb in Betracht, wobei a die Hauptgruppenelemente des Periodensystems und b die Nebengruppenelemente des Periodensystems bezeichnen.

Erfindungsgemäß kommen als weitere Metalloxide insbesondere Oxide der Metalle Hf, Y, Al, Ce, Sc, Er und/oder Ti in Betracht.

In einer Variante der Erfindung enthält das kristalline, offenporige Oxidkeramik-Formteil im wesentlichen Zirkonoxid mit Zusätzen von Yttriumoxid, vorzugsweise im Bereich von 0,1 bis 10 mol-%.

WO 2005/070322 PCT/EP2005/050444 8

In einer erfindungsgemäß besonders bevorzugten Form enthält das Zirkonoxid Zusätze von 2 bis 4 mol-% Yttriumoxid, 2,5 bis 15 mol-% Ceroxid, 2,5 bis 5 mol-% Erbiumoxid, 2,5 bis 5 mol-% Scandiumoxid oder 0,1 bis 15 mol-% Titanoxid oder Gemische der genannten Oxide in den genannten Bereichen.

5

10

15

20

Das Zirkoniumoxid kann insbesondere in Form eines tetragonalen Oxides vorliegen.

Zur Erreichung der erfindungsgemäßen Lösung ist es günstig, das teilweise gesinterte, offenporige Oxidkeramik-Formteil zu evakuieren. Dabei sind erfindungsgemäß weniger als 100 mbar, vorzugsweise weniger als 50 mbar, z.B. ca. 20 mbar, bevorzugt. Der Unterdruck wird beispielsweise 1 Min. bis 4 h angelegt, damit ein Druckausgleich im Sinne der Ausbildung des Vakuums im Inneren der teilweise gesinterten, offenporigen Oxidkeramik erfolgt. Bei dem Evakuieren werden die Gase aus der porösen teilweise gesinterten Oxidkeramik entfernt. Während dieser Zeit wird das erfindungsgemäße Sol für die Bereitstellung des auszubringenden weiteren Materials angerührt. In an sich bekannter Weise wird das Aufbringen dieses weiteren Materials im Anschluss an das Evakuieren in der Unterdruck-Atmosphäre vorgenommen. Auf das in der beschriebenen Weise hergestellte kristalline, offenporige Oxidkeramik-Formteil wird ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht.

Für das anschließende Dichtsintern beträgt die Dicke der Infiltrationsstoffschicht bevorzugt 2 bis 30 %, vorzugsweise 5 bis 20 % und besonders bevorzugt etwa 10 bis 15 %, jeweils bezogen auf den größten Durchmesser des Oxidkeramik-Formteils. Für die Einfärbung kann eine wesentlich größere Dicke der Infiltrationsschicht erforderlich sein als für das Dichtsintern:

5-90 %, vorzugsweise 10-90 %, besonders bevorzugt 30-85 % der Dicke des Formteils.

Der Infiltrationsstoff kann in Gegenwart eines Lösungsmittels aufgebracht werden. Als Lösungsmittel kommen sowohl polare als auch unpolare Lösungsmittel in Betracht. Beispiele sind Wasser oder Alkohol.

Der Infiltrationsstoff kann entweder die Vorstufe einer nichtmetallischanorganischen-Phase, einer amorphen Glasphase, einer hydrolisierbaren Verbindung eines Metalls oder eines Alkoholats eines Metalls sein.

Die Vorstufe der nichtmetallisch-anorganischen-Phase kann ionogene oder kovalente Verbindungen der Elemente der folgenden Haupt- (bezeichnet mit a) und Nebengruppen (bezeichnet mit b) aufweisen: Ia, IIa, IIIa, IVa, IIIb, IVb, Vb, VIb, VIIb und VIIIb. Ebenso kommen Gemische der genannten Elemente in Betracht.

- 20 Bevorzugt sind erfindungsgemäß kovalente Verbindungen des Siliziums oder des Zirkons. Ebenso können bekannte färbende ionogene Verbindungen der Elemente Cer, Mangan, Vanadium, Eisen und andere zum Einsatz kommen.
- Der den inneren Bereich zumindest teilweise abdeckende Infiltrationsstoff aus nichtmetallisch-anorganischer Phase ist chemisch gegenüber Säuren wesentlich weniger beständiger als die reine kristalline Oxidkeramik im Kern bzw. inneren Bereich. Die Schicht kann leicht angeätzt werden. Die chemische Beständigkeit ist jedoch nicht wesentlich geringer als im Kern

bzw. inneren Bereich, wenn die abdeckende Schicht nur mikrokristallines Zirkoniumoxid aufweist.

Durch die geringere chemische Beständigkeit des den inneren Bereich zumindest teilweise abdeckenden Infiltrationsstoffs kann dort ein retentives Muster durch Ätzen erreicht werden. Die Tiefe dieses Musters lässt sich durch das Ätzmittel, dessen Konzentration und der Zeiteinwirkung im Ätzvorgang bestimmen. Sie entspricht erfindungsgemäß höchstens der Dicke der abdeckenden Schicht, da der Kern bzw. innere Bereich gegenüber dem chemischen Angriff wesentlich beständiger ist.

5

10

25

30

Die amorphe Glasphase kann ein silikatisches Glas sein. Bevorzugt sind unter anderem alkalifreie Silikatgläser.

15 Als hydrolysierbare Verbindung kann unter anderem Tetraethylorthosilikat Verwendung finden. Ebenso kommen hydrolysierbare Silane zum Einsatz.

Bevorzugt sind ferner Alkoholatverbindungen. Das heißt, es kommen Alkoholate von Metallen, ausgewählt aus der Gruppe der Elemente Aluminium, Titan, Zirkonium oder Silicium zum Einsatz.

Besonders bevorzugt sind Alkoholate des Siliciums oder Aluminiums. Erfindungsgemäß können auch Gemische der erwähnten Alkoholate verwendet werden.

Erfindungsgemäß besonders günstig ist es, wenn die Infiltrationsstoffe solförmig vorliegen und zu einem Gel weiterreagieren. Sie sind bevorzugt Vorläufer-Produkte eines glasigen oder keramischen Materials. Das Sol wird in eine Unterdruckkammer, z.B. einen Exsikkator, eingebracht. Dabei

muss der Infiltrationsstoff den Formkörper vollständig bedecken. Durch das bestehende Vakuum unterstützt, erfolgt die Penetration des Oxidkeramik-Formkörper über eine Infiltrationsstoffes in den erfindungsgemäß recht kurze Zeit von etwa einer bis wenigen Minuten. Durch den Unterdruck wird das angerührte Sol in die Unterdruckkammer eingesaugt und es erfolgt eine Penetration über eine erfindungsgemäß recht kurze Zeit wie beispielsweise bevorzugt 1 Minute. Hierdurch entsteht eine Infiltrationsstoffschicht mit der erwünschten Schichtstärke, die sich über die Infiltrationsdauer, die Viskosität des Sols, die Porosität des teilweise gesinterten Keramik-Formteils aber auch die Größe des Unterdrucks einstellen lässt.

5

10

15

20

25

Um die geforderte Ästhetik der modernen Zahnheilkunde erreichen zu können, müssen die Formteile unterschiedliche Farben aufweisen. Deshalb können dem Infiltrationsstoff selbst die färbenden Komponenten zugesetzt werden oder aber die Einfärbung wird in einem gesonderten Verfahrensschritt erfolgen.

Überraschend lässt sich die Ausbildung der Schicht des Infiltrationsstoffes auf einfache Weise in recht gleichmäßiger Dicke realisieren. Durch die kurze Infiltrationszeit hat der Infiltrationsstoff lediglich Zeit, die Oberfläche des Formlings zu bedecken. Beim Belüften der Unterdruckkammer wird der Infiltrationsstoff durch das Vakuum im Formkörper praktisch in diesen hineingesaugt. Es versteht sich, daß die Viskosität des bevorzugt gelförmigen Infiltrationsstoffs die Eindringtiefe maßgeblich beeinflusst. Eine geringe Viskosität erzeugt aufgrund der Kapillarwirkung der Poren des offenporigen Oxidkeramik-Formteils eine große Schichtstärke der Infiltrationsstoffschicht, während eine hohe Viskosität die Eindringtiefe reduziert.

Verfestigen Unterdruckkammer und des Nach Belüftung der aufgebrachten Sols zu einem Gel wird das Brennen bei der vorgewählten Sintertemperatur in Luftumgebungsatmosphäre vorgenommen. Sintertemperatur beträgt beispielsweise 1000 bis 1600 °C, und das Sintern Umgebungsdruck in Luftatmosphäre. Durch erfolat unter erfindungsgemäße Verfahren werden die Sintereigenschaften der reinen kristallinen Oxidkeramik derart verbessert, dass ein nahezu vollkommenes Dichtsintern der Keramik erreicht wird.

- Erfindungsgemäß ergibt sich durch das Sintern bei beispielsweise 1480°C eine theoretischen Dichte des Compositwerkstoffes von 99,9 %, wobei es günstig ist, daß während des Sinterns in Umgebungsluft gearbeitet werden kann.
- Das offenporige Oxidkeramik-Formteil kann in der erwünschten Form 15 vorgepresst hergestellt werden. Es ist möglich, ein Fräsen oder eine andere Art der spanabhebenden Bearbeitung entweder nach dem Vorsintern oder nach dem Dichtsintern vorzunehmen. Im ersten Fall besteht der Vorteil, daß die Formgebung aus dem offenporigen Oxidkeramik-Formteil relativ leicht möglich ist, da die Endhärte noch nicht 20 erreicht ist. Demgegenüber müssen im zweiten Fall für die Bearbeitung Compositwerkstoffes sehr anorganisch-anorganischen des Werkzeuge wie Diamantschleifscheiben verwendet werden, wobei allerdings die Geometrie nicht durch einen weiteren Schrumpfprozess beeinflusst wird. 25

Das erfindungsgemäße Verfahren erlaubt die Herstellung eines anorganisch-anorganischen Compositwerkstoffs aus Zirkonoxid mit einem überwiegend tetragonalen Phasenanteil und nur sehr geringem kubischen Phasenanteil, vorausgesetzt, die Sintertemperatur von 1500 °C wird nicht

überschritten. Erfindungsgemäß lässt sich in überraschend einfacher Weise eine Transluzenz erzeugen, die mit dem heißisostatischen Pressvorgang vergleichbar ist. Zusätzlich ergibt sich gegenüber den heißisostatischen Presskeramiken der Vorteil, daß eine Adhäsion durch Ätzen an der Infiltrationsstoffschicht ohne weiteres möglich ist.

Die Erfindung läßt sich besonders günstig in Verbindung mit Zirkonoxidkeramik oder Mischkeramiken mit hohem Zirkonoxidanteil einsetzen, wobei auch geeignete Dotierungen - wie mit Yttrium - und Beimischungen günstig sein können. Bei diesen hochfesten Keramiken ist die Biegefestigkeit im Kern bzw. inneren Bereich hoch, die Bruchzähigkeit hingegen ist besonders hoch in der Infiltrationsstoffschicht, die aus der offenporigen, kristallinen Oxidkeramik und dem die offenporige, kristalline Oxidkeramik durchdringenden bzw. in die Poren der Oxidkeramik eindringenden Infiltrationsstoff besteht.

10

15

20

25

30

Der so hergestellte erfindungsgemäße Compositwerkstoff enthält damit im reinen kristallinen Oxidkeramikkern optische und mechanische Eigenschaften, die sogar die selben Werte wie heißisostatisch gepresste Materialien aufweisen. Die Eigenschaften der reinen kristallinen Oxidkeramik werden offenbar aufgrund der Dichtheit des Gefüges realisiert.

Die erfindungsgemäße Lösung erlaubt es in überraschend einfacher Weise, die nach dem bisher bekannten Stand der Technik mit dem heißisostatischen Pressen erreichbaren Festigkeitseigenschaften zu erreichen, wobei das zeitaufwendige heißisostatische Pressverfahren vermieden werden kann. Die Festigkeit liegt bei einem erfindungsgemäß erhaltenen anorganisch-anorganischen Compositwerkstoff bei nicht weniger als 800 MPa in der Biaxialfestigkeit. Die bruchmechanischen Eigenschaften der reinen kristallinen Oxidkeramik ergaben mit dem

Indenterverfahren und der Berechnung nach Evans & Charles kritische Spannungsintensitätsfaktoren K_{IC} von beispielsweise 6,95 MPa*m^{1/2} und lagen vergleichsweise sogar höher als bei entsprechenden heißisostatisch gepressten Keramiken. Überraschend ist dabei, daß die Eigenschaften von heißisostatisch gepressten Materialien sogar bei überwiegend tetragonalem Zirkoniumoxid als kristalliner Oxidkeramik nachgestellt worden sind. Überraschend läßt sich mit Hilfe der Infiltrationsstoffschicht im Vakuum und dem anschließenden thermischen Behandeln eine Festigkeitserhöhung des inneren Bereichs der Oxidkeramik erreichen. Insbesondere stabilisiert die Umhüllung oder mindestens teilweise Abdeckung der offenporigen Oxidkeramik mit dem Infiltrationsstoff dieses so weit, daß sich eine deutlich verbesserte Bruchzähigkeit von größer als 6,5 MPa m^{1/2} erreichen lässt.

10

25

Bei einer Ausführungsform erfolgt im Anschluss an das Fertigsintern eine materialabtragende Bearbeitung, die bevorzugt durch CAD/CAM-Technik erfolgt. Dabei wird die abdeckende Schicht vollständig oder teilweise abgetragen und der transluzente Kern kommt an die Oberfläche. Hierdurch kann die endgültige Formgebung des auszubildenden Compositwerkstoffs erfolgen. Bleibt abschnittsweise noch abdeckende Schicht an der Oberfläche erhalten, wird diese hieran anschließend angeätzt.

Ein retentives Muster kann in den Bereichen erhalten werden, wo die äußere Schicht besteben bleibt. Gleichzeitig tritt an den Stellen, wo die Schicht abgetragen wurde, ein dichtes, transluzentes Gefüge an die Oberfläche. Dadurch wird überraschend einfach eine ästhetische Wirkung erzeugt, die der von heißisostatisch gepressten vergleichbaren Werkstoffen entspricht. Durch die hohe Dichtheit des Gefüges wird eine

höhere Lichtdurchlässigkeit (Transluzenz) erreicht, die der heißisostatisch gepresster Keramik entspricht.

Die so hergestellten Compositwerkstoffe können insbesondere im Dentalbereich Verwendung finden. Hierzu zählen insbesondere der Einsatz als dentale Restauration, Implantat, Implantatbestandteil oder orthodeontisches Produkt. Bei der dentalen Restauration kommen insbesondere dentale Gerüste, Kronen, Teilkronen, Brücken, Kappen, Schalen, Verblendungen, Abutment oder Stiftaufbauten in Betracht.

10

...5

Der Compositwerkstoff kann hierbei als monolithischer Block oder als Zylinder vorliegen. Diese können adhäsiv zum Beispiel auf einem Halter befestigt sein. Der monolithische Block und Zylinder sind so ausgestaltet, daß sie maschinell bearbeitbar, das heißt spanabhebend bearbeitbar sind.

15

20

25

Überraschenderweise führt die erfindungsgemäße Lösung auch dazu, daß die ästhetische Wirkung eines Dentalrestaurationsteils, wenn das erfindungsgemäße Oxidkeramikteil als Dentalrestaurationsteil verwendet wird, deutlich verbessert ist. Der innere Bereich der kristallinen Oxidkeramik ist transluzent.

Die erfindungsgemäße Lösung ermöglicht den Wegfall einer zusätzlichen Verblendkeramik, womit auch die hiermit verbundenen Probleme entfallen, wie die längere Verfahrensdauer, die Haftungsprobleme und die erforderliche Schichtstärke der Verblendkeramik. Demgegenüber ist die erfindungsgemäße Lösung auch besonders für die Realisierung von feingliedrigen, aber dennoch ästhetisch sehr ansprechenden die Dentalerzeugnissen Insbesondere geeignet. wenn Infiltrationsstoffschicht eine silikatische Phase aufweist, kann sie

beispielsweise mit HF weggeätzt werden und eine adhäsive Verbindung mit anderen Werkstoffen realisiert werden.

Zur Ausbildung eines Dentalrestaurationsteil kann jedoch auch eine einschichtige Verblendung aufgebracht werden, um eine noch bessere ästhetische Wirkung zu erzeugen. In den Bereichen, in deren ein retentives Muster erzeugt wurde, ist die Anwendung beliebiger Klebe- und Bevorzugt ist die Zementierungswerkstoffe möglich. adhäsiver Systeme. Erfindungsgemäß ist eine adhäsive Befestigung überraschend einfach möglich, was bei vergleichbaren heißisostatisch gepressten Werkstoffen nicht möglich ist. Bei den Klebehilfsmitten sind Mittel oder dualhärtende bevorzugt. chemisch lichthärtende beispielsweise Zinkphosphate. Zementierungswerkstoffe sind erfindungsgemäße Compositwerkstoff bietet somit auf einfache Weise eine bessere adhäsive Befestigungsmöglichkeit bei gleicher ästhetischer Wirkung wie heißisostatisch gepresste vergleichbare Materialien. Außerdem ist der Sintervorgang wesentlich einfacher und ist dadurch. im heißisostatischen Pressvorgang erheblich Gegensatz zum kostengünstiger.

20

25

10

15

Auch ist grundsätzlich möglich, die Vorteile des erfindungsgemäßen Verfahrens bei anderweitig verwendeten Keramikformteilen auszunutzen, beispielsweise auch bei der Bereitstellung der Teile künstlicher Gelenke, wobei die oberflächliche Infiltrationsstoffschicht günstige Eigenschaften hinsichtlich der geringen Abrasion bei gleichzeitig guter Härte aufweist und eine glasharte Oberfläche bietet, aber auch bei chirurgischen Implantaten oder Teilen dieser. Auch endodontische Teile wie Wurzelstifte lassen sich mit dem erfindungsgemäßen Verfahren herstellen, wobei sich auch die gute Adhäsion an anderen Formteilen ausnutzten lässt.

Die Dauer der Herstellung eines erfindungsgemäßen anorganischanorganischen Compositwerkstoff hängt stark von der Zeitdauer ab, die
für die Exsikkation, also die Herstellung des Unterdrucks, erforderlich ist.
Zwar benötigt die Bereitstellung des Infiltrationsstoffs bei einem günstigen
Ausführungsbeispiel der Erfindung eine nicht unbeachtliche Rührzeit und
Standzeit. Bei zeitlicher Abstimmung kann jedoch das Anrühren des
Infiltrationsstoffs bereits vorab begonnen werden, also beispielsweise
während der Rohling gepresst wird oder spätestens während des
Vorsinterns, so daß diese Zeit nicht in die Zykluszeit für die Bereitstellung
eines fertigen Oxidkeramik-Formteils einfließt.

10

15

20

Die reine Infiltrationszeit kann beispielsweise 1 oder 2 Minuten betragen und dauert jedenfalls regelmäßig weniger als 10 Minuten, während sich das Fertigsintern bei maximaler Temperatur in beispielsweise 30 Minuten realisieren läßt. Der gesamte Sinterprozeß für das Fertigsintern erfolgt in 5 bis 9 Stunden.

Weitere Vorteile, Einzelheiten und Merkmale ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele anhand der Zeichnungen. Es zeigen:

- Fig. 1 die Realisierung der erfindungsgemäßen Infiltration zur Bereitstellung der Infiltrationsschicht an dem Oxidkeramikteil in einer Ausführungsform der Erfindung;
- 25 Fig. 2 die Infiltrationsschichtstärke, aufgetragen über die Infiltrationszeit;
 - Fig. 3 eine schematische Darstellung eines Sinterofens für das infiltrierte Oxidkeramikteil;

Fig. 4 eine schematische Ansicht eines ersten erfindungsgemäßen Verfahrens in einer Ausführungsform; und

Fig. 5 eine schematische Ansicht eines erfindungsgemäßen Verfahrens in einer zweiten Ausführungsform.

Aus Fig. 1 ist schematisch ersichtlich, in welcher Weise eine erfindungsgemäße Oxidkeramik infiltriert werden kann. Der Rohling 10 ist vorgesintert und liegt in einem Becherglas 12. Das Becherglas 12 steht in einem Exsikkator 14, an dessen Deckel ein Tropftrichter 16 montiert ist.

Ferner weist der Exsikkator in an sich bekannter Weise einen Unterdruck-Anschlussschlauch 18 auf, der mit einer Unterdruckpumpe verbunden ist. In an sich bekannter Weise schließt der Exsikkator durch Unterdruck an seinem geschliffenen Dichtungsrand 20 und lässt sich nach dem Belüften öffnen. Der Tropftrichter hat keinen Druckausgleich, jedoch ist ein Stellhahn 22 vorgesehen, der feinfühlig die Einstellung der Tropfrate ermöglicht.

- Die Infiltration erfolgt dem Grunde nach so, daß ein vorbereitetes Sol 23 als Infiltrationsstoff in den Tropftrichter 16 eingebracht wird, nachdem der Exsikkator 14 auf einen Unterdruck von beispielsweise 20 mbar gebracht worden ist.
- Sobald der gewünschte Druck erreicht ist, wird der Stellhahn 22 in der gewünschten Weise geöffnet. Der Becher 12 füllt sich bis zur Füllhöhe 24 mit Infiltratsstoff, das später in den Rohling 10 eintritt. Der Infiltrationsstoff kann abhängig von der Ausgestaltung der Auflagefläche in dem Becher im wesentlichen auf allen Seiten gleichmäßig in das Formteil eindringen.

5

10

Auch wenn in Fig. 1 ein zylindrischer Rohling 10 dargestellt ist, versteht es sich, daß in der Praxis vorgegebene Formkörper realisiert werden, die auf den Boden des Bechers 12 aufgestellt sind und mit Infiltrationsstoff benetzt werden. Nach einer Infiltrationszeit von 1 Min. hat sich bereits eine Infiltrationsschicht in einer Stärke von 0,3 bis 0,6 mm herausgebildet.

Aus Fig. 2 ist die Infiltrationstiefe aufgetragen über die Infiltrationszeit ersichtlich. Erfindungsgemäß ist es günstig, daß die Schichtstärke in weiten Bereichen an die Erfordernisse anpassbar ist. So kann bei sehr feingliedrigen und dünnen Oxidkeramikteilen auch mit einer recht geringen Infiltrationsschichtstärke gearbeitet werden, die dennoch eine gute Festigkeit des inneren Bereichs ermöglicht.

10

15

20

25

In Fig. 3 ist ein Sinterofen 26 schematisch dargestellt. Er weist eine Vielzahl von Heizelementen 36 auf, die einen Tiegel 30, in dem der Rohling 10 nach Infiltration eingebracht ist, aufgenommen ist. Bevorzugt ist in an sich bekannter Weise der Tiegel mit einem Pulverbett ausgerüstet, und es erfolgt ein Fertigsintern des Rohlings 10 zu dem Compositwerkstoff innerhalb von weniger als einer Stunde. Die äußeren Abmessungen der Rohlinge können mit zylindrischer Form mit einem Durchmesser von ca. 5 bis ca. 20 mm und einer Länge bis ca. 100 mm betragen, die quaderförmigen Rohlinge haben bevorzugte Abmessungen (L*B*H) von ca. 10mm*10mm*5mm bis zu ca. 150mm*150mm*25mm. Das daraus hergestellte Dentalformteil besitzt durch die Anwendung materialabtragender Verfahren dann konsequenterweise kleinere Abmessungen.

Im Folgenden werden Ausführungsbeispiele im Einzelnen beschrieben.

Ausführungsbeispiel 1

Als Rohstoff für den Rohling 10 wird ein Trockenpressgranulat aus ZrO₂-Pulver verwendet. Es ist mit Yttrium dotiert und weist auch andere Komponenten wie Al₂O₃ auf. Es können beispielsweise Trockenpressgranulate der Firma TOSOH mit den Bezeichnungen TZ-3YB und TZ-8YB eingesetzt werden, die eine Primärkristallitgröße von 280 - 400 nm und eine Granulatgröße von 50 μm haben, aber auch das Granulat TZ-3Y20AB, das sich durch 20 % Al₂O₃ zusätzlich auszeichnet und im übrigen den anderen Granulaten entspricht.

10 Gemäß der nachstehenden Tabelle wurden den Zirkonoxidkeramiken pulvrige, oxidische Rohstoffe in bestimmten mol-Anteilen zugesetzt.

Rohstoff Oxid	TZ3Y	TZ3YB					TZ8YB	
CeO ₂ / mol-%	25	5	8	10	15	-	li .	
Er ₂ O ₃	25	5	-	 -	-	-	-	
CeO ₂ + Er ₂ O ₃ / mol-%	3+3	-	-	-	-	-	-	
Sc ₂ O ₃ / mol-%	3	-	-	-	-	-	-	
TiO ₂ / mol-%	10	15	-	"	'	10	15	

Für die erfindungsgemäßen Versuche wurden zylindrische Pressformen mit Innendurchmessern von 12 und 16 mm verwendet. Das Pressen des Rohlings 10 erfolgt in an sich bekannter Weise mit Drücken von 500, 600 bis 1100 bar, wobei der Pressdruck in 5 Sekunden erreicht wurde, dann 15 Sekunden der Maximaldruck gehalten wurde und dann innerhalb von weiteren 5 Sekunden der Druck wieder abgebaut wurde.

15

Anschließend hieran erfolgte die Vorverfestigung, die zugleich die Entbinderung einschloss, gemäß der nachstehenden Tabelle, bei der die aufeinander folgenden Zeitabschnitte des Vorsintern mit Rampe bezeichnet sind:

5

... ..

10

15

20

Rampe	მRn /° ^c	ϑRn+1	Aufheizrate		Zeit	Zeit	
			/K min-1	Kh ⁻¹	/min	/h	
1	0	320	2.5	150	128	2:08	
2	320	470	1	60	150	2:30	
3	470	1100	2.5	150	252	4:12	
4	1100	1100	0	0	20	0:30	
		-1	•		560	9:20	

Das Pulver enthielt Bindemittel als Presshilfsmittel und durch das Trockenpressen und das anschließende Entbindern wird das eingesetzte Bindemittel ausgebrannt und der Rohling porös. Hieran schließt sich das Vorsintern an. Nach dem Vorsintern entsteht ein Formteil mit ca. 50 %TD.

Das Evakuieren des Rohlings 10 erfolgte in dem Glas-Exsikkator 14 auf ein Enddruck von etwa 20 mbar. Durch die vergleichsweise lange Evakuierungszeit, die jedenfalls mehr als 1 Stunde betrug, wurden die in dem porösen Rohling eingeschlossenen Gase weitestgehend entfernt.

Als Infiltrationsstoffe wurden solche auf der Basis von Tetraethylorthosilikat (TEOS) verwendet. TEOS wurde zusammen mit Wasser mit einem Katalysator aus Aluminiumnitratnonahydrat (Al (NO₃)₃) x 9 H₂O) zusammen zu einem Sol verrührt. In Abhängigkeit von der Rührzeit und der anschließenden Standzeit reagiert das Sol langsam zu

einem Gel und kondensiert in einer glasähnlichen Struktur. Es wurde auch Cernitrathexahydrat dem eigentlichen Katalysator hinzugegeben.

Es wurde versucht, das Infiltrat so bereitzustellen, daß sich nach der Infiltration in der Infiltrationsschicht schnell ein festes Gel ausbildet, das sich nach dem Sintern zu einer silikatischen Glasphase umsetzt. Die Infiltrationsschicht besteht erfindungsgemäß aus überwiegend tetragonaler kristalliner Zirkonoxidphase sowie amorpher Glasphase, im wesentlichen aus kondensierten TEOS, während der Kern des erfindungsgemäßen Oxidkeramikteils im wesentlichen aus Zirkonoxid mit der vorstehend genannten Dotierung besteht, ebenfalls überwiegend in tetragonaler Phase.

5

10

25

Die Untersuchung verschiedener Mischungsverhältnisse aus TEOS, Al (NO₃)₃ x 9H₂O sowie Ce(NO₃)₃ x 6H₂O ergab die Tendenz, daß bei längerer Rührzeit die Verfestigungszeit, also die Standzeit bis zur Verfestigung abnimmt. Die Summe der Zeiten betrug in der Regel 6 bis 7 Stunden, wobei bei Verzicht auf Cernitrathexahydrat sich bei bestimmten Mischungsverhältnissen bereits nach einer Rührzeit von 3 Stunden eine Verfestigung einstellte.

Der vorbereitete Infiltrationsstoff wurde dann in den Tropftrichter eingeführt und der Stellhahn 22 geöffnet, und zwar soweit, daß der Rohling nach dem Einlassen des Sols jedenfalls vollständig bedeckt wurde, aber nicht zuviel Infiltrationsstoff in dem Tropftrichter die Belüftung verzögerte.

Die Belüftung erfolgte durch vollständiges Öffnen des Stellhahns, nachdem der Tropftrichter 16 leer war.

5

10

15

Das in den Exsikkator eindringende und hierdurch. unter Unterdruck gesetzte Infiltrationsstoff schäumte zunächst auf, wobei der Unterdruck aufrecht erhalten wurde.

Wie aus Fig. 2 ersichtlich ist, hängt die Infiltrationstiefe nicht nur von der Viskosität des eingesetzten Infiltrationsstoffs (vgl. den Unterschied zwischen ZIO15 und ZIO16b) ab, sondern insbesondere auch von der Rührzeit und der Standzeit des Infiltrationsstoffs.

Es ist beabsichtigt, die zeitliche Abstimmung so zu wählen, daß die Verfestigung des Infiltrats nach der oder während der Infiltration einsetzt. Es ist unkritisch, wenn der Infiltrationsstoff bereits verfestigt ist, wobei auch bei flüssigem Infiltrationsstoff noch eine Abdichtung der Schicht gegeben ist, nachdem auch ein flüssiges Infiltrationsstoff die Poren des Rohlings 10 verschließt.

Infiltratstoffreste auf dem Keramikrohling wurden dann kurzerhand mit einem Tuch beseitigt und es erfolgt eine Lufttrocknung, wobei bei dem erfindungsgemäß durchgeführten Versuchen die Lufttrocknung über 1 bis 2 Stunden erfolgt.

Das Fertigsintern erfolgte in dem gleichen Sinterofen, der für das Vorsintern eingesetzt wurde, und die Brennkurve wurde gemäß der nachstehenden Tabelle in 3 Zeitabschnitten realisiert.

10

5

		Aufheizra	LO	Zeit		
		/K min ⁻¹	Kh ⁻¹	/min	/h	
10	000	5	300	200	3:20	
00 14	180	2,5	150	192	3:12	
80 14	180	0	0	30	0:30	
				422	7:02	
	00 14	1000 00 1480	1000 5 00 1480 2,5	1000 5 300 00 1480 2,5 150 80 1480 0 0	1000 5 300 200 00 1480 2,5 150 192	

Hierbei wurden die Rohlinge in einem Quarzfritte- oder Al₂O₃-Pulverbett in einem Aluminiumoxid-Tiegel gekapselt.

Im Ergebnis erwiesen die probeweise gesinterten Rohlinge eine Infiltrationsstoffschichtstärke auf, die in Abhängigkeit von der Infiltrationszeit verschieden dick war.

20

15

Es ergab sich eine gute Transluzenz des Oxidkeramik-Formteils, und im Innern der Rohlinge lag eine tetragonale Phase mit durchschnittlicher Kristallitgröße von 0,4 bis 0,5 Mikrometern vor.

WO 2005/070322 PCT/EP2005/050444 25

Die geringste erreichte Infiltrationstiefe betrug bei der vorstehend genannten Basis der Infiltrate aus TEOS zirka 180 Mikrometern.

Ausführungsbeispiel 2

..5

10

In einem modifizierten Ausführungsbeispiel wurde anstelle von TEOS ein Zirkonium(IV)-propylat verwendet. Es wurde unter atmosphärischem Druck mit Wasser in den Poren des Rohlings zu Zirkoniumoxidpartikeln ausgefällt. Auch hierdurch konnten die Poren geschlossen werden, wobei sich kristalline Partikel in den Poren abscheiden, die dem eigentlichen Grundmaterial entsprechen. Die so erreichte minimale Schichtstärke der Infiltrationsstoffschicht betrug etwa 50 Mikrometer.

Ausführungsbeispiel 3

Insgesamt ergab sich durch das erfindungsgemäße Verfahren ein anorganisch-anorganischer Compositwerkstoff mit hoher Bruchzähigkeit, wobei die Transluzenz-Eigenschaften denen von Zirkoniumkeramiken (TZP) entsprachen, die unter Verwendung des heißisostatischen Pressens hergestellt wurden.

Probe	Ptr	t Inf.	V _{Br}	Dichte	Trans-	HV 10	K _{IC} -
				(im	luzenz		(Evans&
					(Vergleich)	,	Charles)
	/bar	/min	/°c	/g crn ⁻³	%	/MPa	/MPa
							m ^{1/2}
AI 238	1000	1	1480	6,08	70,5		
AI 237	1000	5	1480	6,10	75,0		
AI 240	1000	2	1480			13220	6,95
AI 245	900	1	1480			13055	6,55
AI 246	900	1	1480	6,08	72,2		
Metoxit Bio-HIP ZrO ₂	nicht be- kannt	nicht be- kannt	nicht be- kannt	6,07	70,3	12850	6,65
(Vergleich messung)							
Denzir 00 HIP- ZrO ₂ (Veraleich messuna)	nicht be- kannt	nicht be- kannt	nicht be- kannt	6,10	76,4	12830	6,70
AI 253	900	nicht infil- triert	1480	5,88	56,4		
AI 254	900	nicht infil- triert	1480	-~-	 .	12900	6,17

Aus dem Vorstehenden wird deutlich, daß die herkömmlich gesinterten und nicht nach dem erfindungsgemäßen Beispiel hergestellten Proben wesentlich schlechtere Eigenschaften in Bezug auf die Lichtdurchlässigkeit und die Bruchzähigkeit aufweisen.

5

Ausführungsbeispiel 4

Außerdem wurden einige Proben im Anschluss an das erfindungsgemäße Verfahren mit HF geätzt und es ergab sich ein Ätzmuster, das der Dauer des Ätzens entsprach. Es wurden auch Ätzversuche durchgeführt, bei denen die äußere Schicht komplett weggeätzt wurde und nur der innere Oxidkeramikkern verblieb. Durch Abdecken der Infiltrationsstoffschicht mit Wachsen oder einer Polymerschicht können auch gezielt Stellen unangeätzt bleiben.

15

20

25

30

10

Ausführungsbeispiel 5

Entsprechend der oben angeführten Art und Weise wurden ein zylindrischer Formkörper mit einem Durchmesser von 12 mm und einer Höhe von 25 mm durch Pressen eines Granulates der Firma Tosoh (TZ 3YB) hergestellt und anschließend bei 1100 °C erfindungsgemäß vorgesintert. Zur formgebenden Bearbeitung wurde im Anschluss auf einer Fräsmaschine Cerec® Inlab der Firma Sirona eine Krone mit Übermaß hergestellt. Das Übermaß musste dabei so eingestellt werden, daß nach dem Schrumpf beim Sintern und dem teilweise Wegätzen der abdeckenden Schicht eine optimale Passgenauigkeit auf dem Modellgerüst erzeugt wurde. Erfindungsgemäß wurde das so erhaltene teilweise gesinterte und gefräste Oxidkeramik-Formteil mit einer abdeckenden Schicht in Vakuum versehen, wobei das aufgebrachte Material etwas in die Oberfläche des porösen teilweise gesinterten

Formteils eingedrungen ist. Beim anschließenden Sintervorgang in Luftatmosphäre und Umgebungsluftdruck wurde dann eine fertig gesinterte Krone erzeugt, die nach dem teilweisen Wegätzen der abdeckenden Schicht einerseits ein retentives Muster aufwies und andererseits eine gute Passgenauigkeit auf dem Modellgerüst zeigte.

Ausführungsbeispiel 6:

In einem weiteren Versuch wurde eine Lösung bestehend aus 2,03 Ma.-% FeCl₃, 1,08 Ma.-% MnCl₂ * 4H2O, 7,0 Ma.-% PEG20000 und dem Lösungsmittel Wasser 2 min lang gemäß der Erfindung infiltriert und anschließend getrocknet.

Nach dem Dichtsintern ergab sich eine gelb-braune Färbung des Materials nach LAB-Werten wie folgt:

15

5

C = 17.46

20

Dagegen zeigte die ungefärbte, drucklos gesinterte ZrO₂-Keramik des Typs (TZ3YB von Tosoh) folgende LAB-Werte:

Die Messung der L, a, b- Werte erfolgt nach dem British Standard BS 5612 (1978).

Fig. 4 und 5 zeigen je Darstellung der Abfolge der Verfahrensschritte in verschiedenen Ausführungsformen des erfindungsgemäßen Verfahrens. Unterschiedlich ist die spanabhebende Bearbeitung vor der Infiltration bei dem als Technologie II bezeichneten Verfahren, während bei dem Verfahren gemäß Technologie I (Fig. 4) die spanabhebende Bearbeitung nach dem Fertigsintern erfolgt. Das Verfahren gemäß Fig. 4 erfordert einen höheren Werkzeugaufwand im Hinblick auf die hohe Festigkeit des fest fertiggesinterten Dentalersatzteils, bietet jedoch eine etwas größere Präzision.

Insgesamt ergaben sich durch die erfindungsgemäßen Versuche Oxidkeramiken hoher Bruchzähigkeit von mindestens 6,5 Mpa*m^{1/2}, wobei die Transluzenzen denen von Oxidkeramiken entsprachen, die unter Verwendung des heißisostatischen Pressens hergestellt wurden.

Patentansprüche

- Verfahren zur Herstellung eines anorganisch-anorganischen Compositwerkstoffes, bei welchem
 - nach formgebender Verarbeitung und Vorsintern eines
 Oxidkeramik enthaltenes Pulvers ein offenporiges,
 kristallines Oxidkeram ik-Formteil hergestellt,
 - auf dieses ein Infiltrationsstoff vorzugsweise unter Vakuum und bei Raumtemperatur aufgebracht und
- bei Luftatmosphäre und Umgebungsdruck die Oxidkeramik
 zu dem anorganisch-anorganischen Compositwerkstoff
 verdichtend gesintert wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das
 Vorsintern bei einer Temperatur von 600 bis 1.300 °C erfolgt.
 - 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei wen iger als 40 mbar, vorzugsweise 10 bis 30 mbar, evakuiert wird.

20

⁻ 5

4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwecks formgebender Verarbeitung das Oxidkeramik enthaltende Pulver mit einem organischen Bindemittel versehen und gepreßt wird.

25

30

5. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das organische Bindemittel ein ethylenisches Wachsmittel, in sbesondere ein ethylenisches Wachs, ein Polyvinylharz, ein Polyvinylpyrrolidon, Polyvinylacetat, ein Polyvinylbutyral und/oder Cellulose, ist.

- 6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff in einer Schichtdicke von 2 bis 90 % der Dicke der offenporigen kristallinen Oxidkeramik aufgebracht wird.
 - 7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichtdicke des Infiltrationsstoffs 2 bis 30 %, vorzugsweise 5 20 % der Dicke des dichtgesinterten anorganisch-anorganischen Compositwerkstoffs beträgt.

10

15

25

- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff für das Einfärben und Dichtsintern in einer Schichtdicke von 5 90%, vorzugsweise 10 90% der Dicke des vorgesinterten Oxidkeramik-Formteils aufgetragen wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff aus einer Vorstufe einer nichtmetallisch-anorganischen Phase, oder einer amorphen Glasphase und einem Lösungsmittel, oder aus einer hydrolysierbaren Verbindung eines Metalls besteht, oder ein Alkoholat eines Metalls, oder einen Vorläufer eines silikatischen Glases, insbesondere ein hydrolysierbares Silan, enthält.

 Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff in Gegenwart eines Lösungsmittels aufgebracht wird. WO 2005/070322 PCT/EP2005/050444 32

- 11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß ein polares oder unpolares Lösungsmittel eingesetzt wird.
- 12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß als Lösungsmittel Wasser oder Alkohol eingesetzt werden.
 - 13. Verfahren nach einem der vorhergehienden Ansprüche, dadurch gekennzeichnet, daß vor der Infiltration eine weitere äußere Formgebung des Compositwerkstoffs durch materialabtragende Bearbeitung und/oder Ätzen erfolgt.
 - 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach der Infiltration der Compositwerkstoff bei einer Temperatur von 1000°C bis 1600 °C auf eine theoretische Dichte von mindestens 99,5 % fertig gesintert wird.
 - 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach der Infiltration oder nach dem insbesondere unter Umgebungsdruck erfolgenden Fertigsintern die äußere Formgebung des Compositwerkstoffs durch materialabtragende Bearbeitung und/oder Ätzen erfolgt.
- Verfahren nach einem der vorhergehenden Ansprüche,
 dadurch gekennzeichnet, daß auf der Oberfläche des
 Compositwerkstoffs wenigstens abschnittsweise eine mindestens
 einschichtige Beschichtung aus einem Verblendmaterial aufgetragen
 wird, die insbesondere nach dem Auftragen einer weiteren
 thermischen Behandlung unterzogen wird.

10

15

17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß auf der Oberfläche des Compositwerkstoffs wenigstens abschnittsweise ein Adhäsiv aufgetragen und ein weiterer Werkstoff befestigt wird.

15

10

- 18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß anschließend an das teilweise Sintern des Compositwerkstoffs eine materialabtragende Bearbeitung zur Formgebung erfolgt, insbesondere mit einem Übermaß von 10 bis 50 % und bevorzugt mit einem Übermaß von 15 bis 30 %.
- 19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Oxidkeramik enthaltende Pulver zu einem offenporigen Oxidkeramik-Formteil in der Form eines monolithischen Blocks oder Zylinders verarbeitet wird.
- 20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, daß der monolithische Block oder Zylinder spanabhebend bearbeitet wird.
- 20 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß nach dem spanabhebenden Bearbeiten der Infiltrationsstoff unter Vakuum aufgebracht wird.
- 22. Anorganisch-anorganischer Compositwerkstoff, dadurch gekennzeichnet, daß er einen transluzenten inneren Bereich aus einer kristallinen Oxidkeramik und eine den inneren Bereich zumindest teilweise umgebenden oder abdeckenden Schicht eines Infiltrationsstoffes aufweist.

23. Compositwerkstoff nach Anspruch 22, dadurch gekennzeichnet, daß Dichtsintern aus durch einer offenporigen, kristallinen er Oxidkeramik, die Oxide oder Oxidgemische der Elemente Zirkonium, Aluminium oder Titan oder Mischungen der genannten Oxide oder Oxidgemische mit Oxiden der Elemente der Gruppen IIIa, IIIb, IVb des Periodensystems der Elemente, vorzugsweise mit Oxiden der Metalle Hf, Y, Al, Ce, Sc, Er oder Ti oder mit Gemischen dieser Oxide wobei a die Hauptgruppenelemente und Nebengruppenelemente des Periodensystems bezeichnet, erhältlich ist.

5.

10

15

20

- 24. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die offenporige, kristalline Oxidkeramik Zirkonoxid und Zusätze von Yttriumoxid enthält.
- 25. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Zirkonoxid Zusätze von 2 bis 4 mol-%, insbesondere im Bereich 2 bis 10 mol-% Yttriumoxid oder von 2.5 bis 15 mol-% Ceroxid oder 2.5 bis 5 mol-% Erbiumoxid oder 2.5 bis 5 mol-% Scandiumoxid oder von 0.1 bis 15 mol-% Titandioxid oder Gemische von zwei oder mehreren der vorgenannten Oxide in den genannten Mengen enthält.
- 26. Compositwerkstoff nach Anspruch 22, dadurch gekennzeichnet, daß
 das Zirkonoxid Zusätze von 2 bis 4 mol-% Yttriumoxid enthält.
 - 27. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die offenporige, kristalline Oxidkeramik Aluminiumoxid und Mischungen von weiteren Metalloxiden und/oder Zirkoniumoxid, vorzugsweise tetragonales Zirkoniumoxid enthält.

- 28. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Infiltrationsstoff die Vorstufe eine nichtmetallisch-anorganischen Phase oder einer amorphen Glasphase oder eine hydrolysierbare Verbindung eines Metalls oder eines Alkoholats eines Metalls ausgewählt aus der Gruppe der Elemente Al, Ti, Zr oder Si oder ein hydrolysierbares Silan enthält.
- 29. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß die Vorphase der nichtmetallisch-anorganischen Phase ionogene oder kovalente Verbindungen der Elemente der Gruppen Ia, IIa, IIIa, IVa, IIIb, IVb, Vb, VIb, VIIb, VIIIb enthält, wobei a die Hauptgruppen und b die Nebengruppen des Periodensystems der Elemente bezeichnen.

15

30

.. 2

- 30. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff kovalente Bindungen von Si und/oder Zr enthält.
- Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß
 der Infiltrationsstoff ionogene Verbindungen enthält, welche färbend wirken, vorzugsweise Ce, Mn, V, Fe oder Gemische der genannten Elemente.
- 32. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß
 25 die amorphe Glasphase silikatisches Glas, vorzugsweise ein alkalifreies Silikatglas ist.
 - 33. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff als hydrolysierbare Verbindung Tetraethylorthosilikat enthält.

- 34. Compositwerkstoff nach Anspruch 28, dadurch gekennzeichnet, daß der Infiltrationsstoff Alkoholate des Siliziums oder Aluminiums enthält.
- 5 35. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich transluzent und die Infiltrationsstoffschicht weißtrüb ist.
- 36. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich eine theoretische Dichte von >99,5% und eine Biaxialfestigkeit von nicht weniger als 800 MPA und eine Bruchzähigkeit von mehr als 6,5 MPa m^{1/2}, gemessen nach dem Indenterverfahren, aufweist.
- 15 37. Compositwerkstoff nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der innere Bereich eine Transluzenz aufweist, die der von heißisostatisch gepreßten Sinterkeramiken entspricht.
- 20 38. Verwendung der kristallinen, offenporigen Oxidkeramik und des daraus hergestellten anorganisch-anorganischen Compositwerkstoffes nach einem der Ansprüche 20 bis 36 im Dentalbereich, vorzugsweise als dentale Restauration, Implantat, Implantatbestandteil oder orthodontisches Produkt.

25

30

39. Verwendung nach Anspruch 38, dadurch gekennzeichnet, daß die dentale Restauration ein dentales Gerüst, eine Krone, eine Teilkrone, eine Brücke, eine Kappe, eine Schale, eine Verblendung, ein Abutment oder ein Stiftaufbau ist.

1/4

Fig. 1

Fig. 2

Fig. 3

3/4

Fig. 4

Technologie I

4/4

Fig. 5

Technologie II

ERNATIONAL SEARCH REPORT

ational Application No PCT/EP2005/050444

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61C13/00 A61K6/027

C04B41/49

C04B41/50

A61C13/083 C04B35/48

C04B38/00 C04B35/488 CO4B41/45

Relevant to claim No.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Category °

 $\begin{array}{ll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 7} & \mbox{A61C} & \mbox{A61K} & \mbox{C04B} \\ \end{array}$

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Citation of document, with indication, where appropriate, of the relevant passages

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

X	US 4 626 392 A (KONDO ET AL) 2 December 1986 (1986—12-02) examples 1-4		1-4, 6-12, 15-17, 19, 22-29, 31,35,37
P,X	W0 2004/032986 A1 (MATHYS ORTHOPA GMBH) 22 April 2004 (2004-04-22) paragraph '0026!	AEDIE	1,2, 6-12,19, 22,23, 27-31, 35,37
° Special ca "A" docume consid "E" earlier of filling d "L" docume which citation "O" docume other r "P" docume later th	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"T" later document published after the Inte or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an indocument is combined with one or moments, such combined with one or moments, such combination being obvior in the art. "&" document member of the same patent Date of mailing of the international sea	rnational filing date the application but acry underlying the claimed invention be considered to cument is taken alone claimed invention ventive step when the ore other such docu— us to a person skilled
	5 June 2005 mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Raming, T	

IMPERNATIONAL SEARCH REPORT

In Ational Application No
PCT/EP2005/050444

	1/EP2005/050444
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
US 5 447 967 A (TYSZBLAT ET AL) 5 September 1995 (1995-09-05)	22,23, 27-32, 35,37-39
US 2002/162482 A1 (GIORDANO RUSSELL A) 7 November 2002 (2002-11-07)	22,23, 27-32, 35,37-39
WO 99/52467 A (LEONHARDT, DIRK) 21 October 1999 (1999-10-21)	1,2,4, 6-9,13, 15-20, 22,23, 27-32, 35,37-39 14,36
FOUNDATION) 21 April 1988 (1988-04-21) page 6, lines 1-34; examples 1,2,6	1-13, 15-23, 27-31,35
US 4 925 492 A (KELKAR ET AL) 15 May 1990 (1990-05-15)	1-12,16, 17,19, 22,23, 27-32, 34,35,37
KABUSHIKI KAISHA) 16 August 1989 (1989-08-16)	1,2, 4-12,16, 17,19, 22-25, 27-31, 35,37
page 4, lines 30-45 page 5, lines 22-36; examples 1-3	
INWANG I B ET AL: "ZIRCONIA INFILTRATION TOUGHENING OF NA-BETA-ALUMINA" JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 36, no. 7, 1 April 2001 (2001-04-01), pages 1823-1832, XP001048276 ISSN: 0022-2461 page 1824 - page 1825	1-4, 6-12,16, 17,19, 22,23, 27-31, 35,37
-/	
	US 5 447 967 A (TYSZBLAT ET AL) 5 September 1995 (1995-09-05) example 4 US 2002/162482 A1 (GIORDANO RUSSELL A) 7 November 2002 (2002-11-07) paragraphs '0027! - '0039! W0 99/52467 A (LEONHARDT, DIRK) 21 October 1999 (1999-10-21) page 6, lines 9-17 W0 88/02742 A (WASHINGTON RESEARCH FOUNDATION) 21 April 1988 (1988-04-21) page 6, lines 1-34; examples 1,2,6 US 4 925 492 A (KELKAR ET AL) 15 May 1990 (1990-05-15) claims 4-6; examples 1,2 EP 0 328 316 A (SHINAGAWA SHIRORENGA KABUSHIKI KAISHA) 16 August 1989 (1989-08-16) page 4, lines 30-45 page 5, lines 22-36; examples 1-3 INWANG I B ET AL: "ZIRCONIA INFILTRATION TOUGHENING OF NA-BETA-ALUMINA" JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, vol. 36, no. 7, 1 April 2001 (2001-04-01), pages 1823-1832, XP001048276 ISSN: 0022-2461 page 1824 - page 1825

PCT/EP2005/050444				
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	YUNG-JEN LIN ET AL: "Cyclic infiltration of porous zirconia preforms with a liquid solution of mullite precursor" JOURNAL OF THE AMERICAN CERAMIC SOCIETY AMERICAN CERAMIC SOC USA, vol. 84, no. 1, January 2001 (2001-01), pages 71-78, XP002331268 ISSN: 0002-7820 page 71 - page 72	1,2, 4-12,16, 17,19, 22-31, 33-35,37		
X	ZHAO R ET AL: "Support and CoPcTS effects on the catalytic activity and properties of molybdenum sulfide catalysts" PETROL SCI TECHNOL; PETROLEUM SCIENCE AND TECHNOLOGY JUNE/JULY 2001, vol. 19, no. 5-6, June 2001 (2001-06), pages 495-502, XP008048279 page 162	1,2, 6-12,16, 17,19, 22,23, 27-31, 33-35,37		
Y	DURAN P ET AL: "Nanostructured and near defect-free ceramics by low-temperature pressureless sintering of nanosized Y-TZP powders" JOURNAL OF MATERIALS SCIENCE CHAPMAN & HALL UK, vol. 32, no. 17, 1 September 1997 (1997-09-01), pages 4507-4512, XP002331269 ISSN: 0022-2461 the whole document	14,36		

INTERNATIONAL SEARCH REPORT

Information on patent family members

In ational Application No
PCT/EP2005/050444

					2005/050444
Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 4626392	Α	02-12-1986	JP JP JP JP JP	1036381 B 1551729 C 60203262 A 1036382 B 1551730 C 60203263 A	31-07-1989 23-03-1990 14-10-1985 31-07-1989 23-03-1990 14-10-1985
WO 2004032986	A1	22-04-2004	DE AU	10244439 A1 2003253340 A1	25-03-2004 04-05-2004
US 5447967	А	05-09-1995	FR AT AU CA DE DE EP WO JP	2682297 A1 130508 T 2947492 A 2098388 A1 69206256 D1 69206256 T2 0563372 A1 9307846 A1 6503501 T	16-04-1993 15-12-1995 21-05-1993 16-04-1993 04-01-1996 25-07-1996 06-10-1993 29-04-1993 21-04-1994
US 2002162482	A1	07-11-2002	US US EP JP US AT DE DK EP ES JP PT	6159417 A 5843348 A 1006095 A2 2000185058 A 6271282 B1 228815 T 69529037 D1 69529037 T2 701808 T3 0701808 A2 2188630 T3 9098990 A 2004255201 A 701808 T	12-12-2000 01-12-1998 07-06-2000 04-07-2000 07-08-2001 15-12-2002 16-01-2003 28-08-2003 24-03-2003 20-03-1996 01-07-2003 15-04-1997 16-09-2004 30-04-2003
WO 9952467	Α	21-10-1999	WO AU	9952467 A1 6393598 A	21-10-1999 01-11-1999
WO 8802742	Α	21-04-1988	WO	8802742 A1	21-04-1988
US 4925492	Α	15-05-1990	CA	1328033 C	29-03-1994
EP 0328316	A	16-08-1989	JP JP JP JP JP JP DE EP KR US	1292781 A 1796124 C 5003119 B 1812860 C 2038371 A 5018775 B 1301561 A 1785385 C 4076339 B 68906042 D1 68906042 T2 0328316 A2 126294 B1 5073689 A 5154785 A	27-11-1989 28-10-1993 14-01-1993 27-12-1993 07-02-1990 12-03-1993 05-12-1989 31-08-1993 03-12-1992 27-05-1993 29-07-1993 16-08-1989 26-12-1997 17-12-1991 13-10-1992

INTERNATION ER RECHERCHENBERICHT

tionales Aktenzeichen PCT/EP2005/050444

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 A61C13/00 A61K6/027

CO4B41/49

C04B41/50

A61C13/083 C04B35/48

CO4B38/00 CO4B35/488 C04B41/45

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) $IPK \ 7 \quad A61C \quad A61K \quad C04B$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, INSPEC, COMPENDEX

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Х	US 4 626 392 A (KONDO ET AL) 2. Dezember 1986 (1986-12-02)	1-4, 6-12, 15-17, 19, 22-29, 31,35,37
	Beispiele 1-4	
Ρ,Χ	WO 2004/032986 A1 (MATHYS ORTHOPAEDIE GMBH) 22. April 2004 (2004-04-22)	1,2, 6-12,19, 22,23, 27-31,
	Absatz '0026! 	35,37

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Anhang Patentfamilie
aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-	 "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche 15. Juni 2005	Absendedatum des internationalen Recherchenberichts 22/06/2005
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Bevollmächtigter Bediensteter Raming, T

INTERNATION ER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2005/050444

	PCT/	EP2005/050444
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie°	Bezelchnung der Veröffentlichung, sowelt erforderlich unter Angabe der in Betracht kommenden Tei	le Betr. Anspruch Nr.
Х	US 5 447 967 A (TYSZBLAT ET AL) 5. September 1995 (1995-09-05)	22,23, 27-32, 35,37-39
	Beispiel 4	
X	US 2002/162482 A1 (GIORDANO RUSSELL A) 7. November 2002 (2002-11-07)	22,23, 27-32, 35,37-39
	Absätze '0027! – '0039!	
X	WO 99/52467 A (LEONHARDT, DIRK) 21. Oktober 1999 (1999-10-21)	1,2,4, 6-9,13, 15-20, 22,23, 27-32, 35,37-39
Υ	Seite 6, Zeilen 9-17	14,36
X	WO 88/02742 A (WASHINGTON RESEARCH FOUNDATION) 21. April 1988 (1988-04-21)	1-13, 15-23, 27-31,35
	Seite 6, Zeilen 1-34; Beispiele 1,2,6	
X	US 4 925 492 A (KELKAR ET AL) 15. Mai 1990 (1990-05-15)	1-12,16, 17,19, 22,23, 27-32,
	Ansprüche 4-6; Beispiele 1,2	34,35,37
X	EP 0 328 316 A (SHINAGAWA SHIRORENGA KABUSHIKI KAISHA) 16. August 1989 (1989-08-16)	1,2, 4-12,16, 17,19, 22-25, 27-31, 35,37
	Seite 4, Zeilen 30-45 Seite 5, Zeilen 22-36; Beispiele 1-3	33,37
X	INWANG I B ET AL: "ZIRCONIA INFILTRATION TOUGHENING OF NA-BETA-ALUMINA" JOURNAL OF MATERIALS SCIENCE, CHAPMAN AND HALL LTD. LONDON, GB, Bd. 36, Nr. 7, 1. April 2001 (2001-04-01), Seiten 1823-1832, XP001048276 ISSN: 0022-2461 Seite 1824 - Seite 1825	1-4, 6-12,16, 17,19, 22,23, 27-31, 35,37
	_/	

INTERNATION ER RECHERCHENBERICHT

In ationales Aktenzeichen
PCT/EP2005/050444

		PCI/EPZU	05/050444
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	enden Teile	Betr. Anspruch Nr.
Х	YUNG-JEN LIN ET AL: "Cyclic infiltration of porous zirconia preforms with a liquid solution of mullite precursor" JOURNAL OF THE AMERICAN CERAMIC SOCIETY AMERICAN CERAMIC SOC USA, Bd. 84, Nr. 1, Januar 2001 (2001-01), Seiten 71-78, XP002331268 ISSN: 0002-7820 Seite 71 - Seite 72		1,2, 4-12,16, 17,19, 22-31, 33-35,37
X	ZHAO R ET AL: "Support and CoPcTS effects on the catalytic activity and properties of molybdenum sulfide catalysts" PETROL SCI TECHNOL; PETROLEUM SCIENCE AND TECHNOLOGY JUNE/JULY 2001, Bd. 19, Nr. 5-6, Juni 2001 (2001-06), Seiten 495-502, XP008048279 Seite 162		1,2, 6-12,16, 17,19, 22,23, 27-31, 33-35,37
Y	DURAN P ET AL: "Nanostructured and near defect—free ceramics by low—temperature pressureless sintering of nanosized Y—TZP powders" JOURNAL OF MATERIALS SCIENCE CHAPMAN & HALL UK, Bd. 32, Nr. 17, 1. September 1997 (1997—09—01), Seiten 4507—4512, XP002331269 ISSN: 0022—2461 das ganze Dokument		14,36

INTERNATIONA R RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen PCT/EP2005/050444

Im Recherchenbericht geführtes Patentdokumen	ıt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 4626392	A	02-12-1986	JP JP JP JP JP	1036381 B 1551729 C 60203262 A 1036382 B 1551730 C 60203263 A	31-07-1989 23-03-1990 14-10-1985 31-07-1989 23-03-1990 14-10-1985
WO 2004032986	A1	22-04-2004	DE AU	10244439 A1 2003253340 A1	25-03-2004 04-05-2004
US 5447967	A	05-09-1995	FR AT AU CA DE DE EP WO JP	2682297 A1 130508 T 2947492 A 2098388 A1 69206256 D1 69206256 T2 0563372 A1 9307846 A1 6503501 T	16-04-1993 15-12-1995 21-05-1993 16-04-1993 04-01-1996 25-07-1996 06-10-1993 29-04-1993 21-04-1994
US 2002162482	A1	07-11-2002	US US EP US AT DE DE DK EP ES JP PT	6159417 A 5843348 A 1006095 A2 2000185058 A 6271282 B1 228815 T 69529037 D1 69529037 T2 701808 T3 0701808 A2 2188630 T3 9098990 A 2004255201 A 701808 T	12-12-2000 01-12-1998 07-06-2000 04-07-2000 07-08-2001 15-12-2002 16-01-2003 28-08-2003 24-03-2003 20-03-1996 01-07-2003 15-04-1997 16-09-2004 30-04-2003
WO 9952467	Α	21-10-1999	W 0 A U	9952467 A1 6393598 A	21-10-1999 01-11-1999
WO 8802742	 А	21-04-1988	WO	8802742 A1	21-04-1988
US 4925492	A	15-05-1990	CA	1328033 C	29-03-1994
EP 0328316	A	16-08-1989	JP JP JP JP JP JP DE EP KRS US	1292781 A 1796124 C 5003119 B 1812860 C 2038371 A 5018775 B 1301561 A 1785385 C 4076339 B 68906042 D1 68906042 T2 0328316 A2 126294 B1 5073689 A 5154785 A	27-11-1989 28-10-1993 14-01-1993 27-12-1993 07-02-1990 12-03-1993 05-12-1989 31-08-1993 03-12-1992 27-05-1993 29-07-1993 16-08-1989 26-12-1997 17-12-1991 13-10-1992