Ομολογική Άλγεβρα και Κατηγορίες

2η Ομάδα Ασκήσεων

- 1. Έστω $F,G:R\text{-Mod}\longrightarrow S\text{-Mod}$ δύο προσθετικοί συναρτητές και $\eta:F\longrightarrow G$ ένας φυσικός μετασχηματισμός. Υποθέτουμε ότι η συνιστώσα $\eta_M:FM\longrightarrow GM$ είναι ένας ισομορφισμός S-προτύπων για κάθε R-πρότυπο M. Να δείξετε ότι ο Fείναι αχριβής (αντίστ. αριστερά αχριβής) αν και μόνο αν ο G είναι αχριβής (αντίστ. αριστερά αχριβής).
- 2. Έστω X ένα R-πρότυπο και $x_0 \in X$. Για κάθε R-πρότυπο M θεωρούμε την απεικόνιση $\eta_M: \operatorname{Hom}_R(X,M) \longrightarrow M$ με $f \mapsto f(x_0) \in M$, $f \in \operatorname{Hom}_R(X,M)$. Να δείξετε ότι η οικογένεια $(\eta_M)_M$ ορίζει ένα φυσικό μετασχηματισμό $\eta: \operatorname{Hom}(X, \bot) \longrightarrow U$. $Εδώ, U: R-Mod \longrightarrow Ab$ είναι ο επιλήσμων συναρτητής, που ορίζεται θέτοντας U(M)=M για κάθε R-πρότυπο M και Uf=f για κάθε R-γραμμική απεικόνιση f .
- 3. Έστω $M={\bf Z^N}$ και $M_0,A,B\subseteq M$ οι υποομάδες που ορίζονται θέτοντας $M_0={\bf Z^{(N)}},$ $A = \{(a_n)_n \in M : 2^n | a_n$ για κάθε $n\}$ και $B = \{(a_n)_n \in M : 3^n | a_n$ για κάθε $n\}$. (α) Να δείξετε ότι M = A + B. Υπόδειξη: Είναι $μκδ(2^n, 3^n) = 1$ για κάθε $n \ge 0$.

 - (β) Να δείξετε ότι για κάθε $n \ge 0$ είναι $A \subseteq M_0 + 2^n M$ και $B \subseteq M_0 + 3^n M$.
 - (γ) Έστω $f: M \longrightarrow {\bf Z}$ μια προσθετική απεικόνιση, που είναι τέτοια ώστε ο περιορισμός $f|_{M_0}:M_0\longrightarrow \mathbf{Z}$ είναι η μηδενική απεικόνιση. Να δείξετε ότι f=0. Υπόδειξη: Χρησιμοποιήστε τα (α) και (β).
 - (δ) Να συμπεράνετε ότι η ομάδα $\text{Hom}_{\mathbf{Z}}(M/M_0, \mathbf{Z})$ είναι τετριμμένη.
- 4. (α) Έστω I ένα υπεραριθμήσιμο σύνολο, $M=\mathbf{Z}^{(I)}$ και $M_0\subseteq M$ μια αριθμήσιμη υποομάδα. Να δείξετε ότι υπάρχει μη-μηδενική προσθετική απεικόνιση $f: M \longrightarrow \mathbf{Z}$, τέτοια ώστε ο περιορισμός $f|_{M_0}:M_0\longrightarrow {f Z}$ είναι η μηδενική απεικόνιση.
 - (β) Να δείξετε ότι η ομάδα $\mathbf{Z}^{\mathbf{N}}$ δεν είναι προβολική ως \mathbf{Z} -πρότυπο. Υπόδειξη: Χρησιμοποιήστε την προηγούμενη άσκηση και το (α) παραπάνω.
- 5. Για κάθε ακέραιο αριθμό n θεωρούμε την πολλαπλότητα v(n) του 2 στην παραγοντοποίηση του |n| σε γινόμενο πρώτων αριθμών. (Για παράδειγμα, είναι v(40)=3 και v(45)=0.) Επίσης θέτουμε $v(0)=\infty$. Έστω $M={\bf Z}^{\bf N}$ και $M_0,N\subseteq M$ οι υποομάδες που ορίζονται θέτοντας $M_0 = \mathbf{Z}^{(\mathbf{N})}$ και $N = \{(a_n)_n \in M : \lim_n v(a_n) = \infty\}.$
 - (α) Να δείξετε ότι η ομάδα Ν είναι υπεραριθμήσιμη.
 - Υπόδειξη: Βρείτε ένα μονομορφισμό $M \longrightarrow N$.
 - (β) Να δείξετε ότι $N = M_0 + 2N$.
 - (γ) Να δείξετε ότι η ομάδα πηλίκο N/2N είναι αριθμήσιμη. Υ πόδειξη: Χρησιμοποιήστε το (β) και το 2ο θεώρημα των ισομορφισμών.
- 6. (α) Έστω I ένα σύνολο και $N=\mathbf{Z}^{(I)}$. Αν η ομάδα πηλίκο N/2N είναι αριθμήσιμη, να δείξετε ότι η ομάδα Ν είναι επίσης αριθμήσιμη.
 - Υπόδειξη: Από το 1ο θεώρημα των ισομορφισμών, έπεται ότι $N/2N=(\mathbf{Z}/2\mathbf{Z})^{(I)}$.
 - (β) Να δείξετε ότι η ομάδα $\mathbf{Z}^{\mathbf{N}}$ δεν είναι προβολιχή ως \mathbf{Z} -πρότυπο. Υ πόδ ϵ ιξη: Θεωρήστε την υποομάδα $N\subseteq {f Z^N}$ που ορίστηκε στην προηγούμενη άσκηση και εφαρμόστε το (α) παραπάνω.

- 7. Έστω F: R-Mod $\longrightarrow S$ -Mod ένας προσθετικός συναρτητής. Ο πυρήνας k_F του F ορίζεται ως η κλάση που αποτελείται από τα R-πρότυπα M που είναι τέτοια ώστε FM=0 (ως S-πρότυπα).
 - (α) Να δείξετε ότι ο πυρήνας k_F περιέχει το μηδενικό R-πρότυπο και είναι κλειστός ως προς πεπερασμένα ευθέα αθροίσματα και ευθείς παράγοντες (δηλαδή ότι, για κάθε δύο R-πρότυπα M,N είναι $M,N\in k_F$ αν και μόνο αν $M\oplus N\in k_F$).
 - (β) Αν ο F είναι αριστερά αχριβής, να δείξετε ότι ο πυρήνας k_F είναι κλειστός ως προς πυρήνες ομομορφισμών (δηλαδή ότι, για κάθε $M,N\in k_F$ και κάθε R-γραμμική απεικόνιση $f:M\longrightarrow N$ είναι $\ker f\in k_F$).
 - (γ) Αν ο F είναι αχριβής, να δείξετε ότι ο πυρήνας k_F είναι κλειστός και ως προς συν-πυρήνες ομομορφισμών (δηλαδή ότι, για κάθε $M,N\in k_F$ και κάθε R-γραμμική απεικόνιση $f:M\longrightarrow N$ είναι $\operatorname{coker} f\in k_F$). Να δείξετε επίσης ότι ο πυρήνας k_F είναι κλειστός ως προς επεκτάσεις, δηλαδή ότι για κάθε βραχεία ακριβή ακολουθία R-προτύπων $0\longrightarrow A\longrightarrow B\longrightarrow C\longrightarrow 0$ με $A,C\in k_F$, είναι $B\in k_F$.
- 8. Έστω R ένας δαχτύλιος, M ένα R-πρότυπο και $r_0 \in R$. Για κάθε αβελιανή ομάδα A θεωρούμε την απεικόνιση ζ_A : $\operatorname{Hom}_R(M,\operatorname{Hom}_{\mathbf Z}(R,A)) \longrightarrow \operatorname{Hom}_{\mathbf Z}(UM,A)$, η οποία ορίζεται θέτοντας $\zeta_A(f)(x) = [f(x)](r_0) \in A$ για κάθε $f \in \operatorname{Hom}_R(M,\operatorname{Hom}_{\mathbf Z}(R,A))$ και $x \in M$. Εδώ, θεωρούμε την ομάδα $\operatorname{Hom}_{\mathbf Z}(R,A)$ των προσθετικών απεικονίσεων $(R,+) \longrightarrow A$ ως R-πρότυπο, όπου ορίζουμε για κάθε $r \in R$ και $f \in \operatorname{Hom}_{\mathbf Z}(R,A)$ την απεικόνιση $r \cdot f$ ως την απεικόνιση $r' \mapsto f(r'r) \in A$, $r' \in R$, ενώ UM είναι η προσθετική ομάδα (M,+). Να δείξετε ότι η οικογένεια $(\zeta_A)_A$ ορίζει ένα φυσικό μετασχηματισμό προσθετικών συναρτητών $\zeta : \operatorname{Hom}_R(M,\operatorname{Hom}_{\mathbf Z}(R,-)) \longrightarrow \operatorname{Hom}_{\mathbf Z}(UM,-)$.
- 9. Έστω F ένα σώμα και $R = \mathbf{M}_2(F)$ ο δακτύλιος των 2×2 πινάκων με εγγραφές από το F. Καθώς ο υποδακτύλιος $\{aI_2 : a \in F\} \subseteq R$ είναι ισόμορφος με το F, μπορούμε να θεωρήσουμε ότι ο F είναι ένας υποδακτύλιος του R (και άρα ότι ο R είναι ένας F-διανυσματικός χώρος).
 - (α) Να εξηγήσετε γιατί ο επιλήσμων συναρτητής $U:R\text{-Mod}\longrightarrow F\text{-Mod}$, ο οποίος ορίζεται θέτοντας UM=M για κάθε $R\text{-πρότυπο}\ M$ και Uf=f για κάθε R-γραμμική απεικόνιση f, είναι ακριβής.
 - (β) Για κάθε F-διανυσματικό χώρο V ορίζουμε στην αβελιανή ομάδα $\operatorname{Hom}_F(R,V)$ τη δομή ενός R-προτύπου, ως εξής: Αν $r\in R$ και $f\in \operatorname{Hom}_F(R,V)$, τότε η απεικόνιση $r\cdot f\in \operatorname{Hom}_F(R,V)$ είναι η απεικόνιση $r'\mapsto f(r'r)\in V,\ r'\in R$. Να δείξετε ότι το R-πρότυπο $\operatorname{Hom}_F(R,V)$ είναι εμφυτευτικό.
 - Υπόδειξη: Συγκρίνετε τους συναρτητές $\operatorname{Hom}_R(-,\operatorname{Hom}_F(R,V))$ και $\operatorname{Hom}_F(U_-,V)$.