

1.3 - Princípios de Digitalização

- Duas transformações:
 - Eletrônica: conversão de ondas mecânicas em sinais elétricos.
 - Digital: conversão de sinais elétricos em bits.
- Transformação eletrônica
 - Sinal de áudio.
 - Analógico.

1.3 - Princípios de Digitalização

- Conversão analógico-digital.
 - Voltagem e tempo.
- Amostragem: realiza uma leituras periódicas e instantâneas da voltagem em espaços de tempo uniformes.
- Quantização: converte os valores analógicos amostrados em valores digitais.

11

1.4 - Amostragem

- O quanto deve ser amostrado?
 - Reconstruir exatamente o sinal = infinitas amostras.
 - Poucas amostras = sinal distorcido.

13

1.4 - Amostragem

- O quanto deve ser amostrado?
 - Teorema de Nyquist: "Para obter uma representação precisa de um sinal analógico, sua amplitude deve ser amostrada a uma taxa mínima igual ou superior ao dobro da componente de mais alta freqüência presente no sinal". (taxa de Nyquist).

14

1.4 - Amostragem

- Filtros anti-aliasing.
 - Removem componentes de alta frequência.
- Em sistemas multimídia:
 - A largura de banda do canal é normalmente menor que a largura de banda do sinal.
 - A taxa de amostragem é determinada pelo largura de banda do canal.
 - A taxa de Nyquist será baseada na freqüência mais alta suportada pelo canal.

16

1.5 - Quantização

- Processo pelo qual os valores analógicos das amostras tomadas da amplitude do sinal são convertidos em valores digitais.
- Para reconstruir exatamente o sinal:
 - Necessidade de um número infinitos de bits.
 - Usando um número finito de bits:
 - Representa-se cada amostra através de um número correspondente de níveis discretos.

17

1.5 - Quantização

- Amostragem e Quantização
 - Número de amostras x número de níveis.
 - Compromisso.
 - Quantização resulta em distorções.
 - Como descobrir o número ótimo de bits por amostra?

19

1.6 - Digitalização

- Taxas comuns de amostragem:
 - 8.000Hz, 11.025Hz, 22.050Hz e 44.100Hz (CD).
- Quantidades comuns de bits por amostra:
 - 4, 8, 16 e 24.
- Canais de som:
 - 1 (mono), 2 (estéreo), 3, 5, 7, ...
- Exemplo: Qualidade de CD:
 - Amostras a 44.100Hz (4,1 KHz), 16 bits por amostra e 2 canais de som (estéreo).

20

1.6 - Digitalização

- Circuito que realiza amostragem e quantização:
 - Conversor analógico-digital (analog to digital converter – ADC)
 - Caminho inverso: DAC. Usado na reprodução de áudio digital.
- Normalmente implementado em hardware.

1.6 - Digitalização

- Após a captura
 - os dados amostrados e quantizados devem ser "guardados" em algum formato – mídia de representação.
 - WAV e MP3, por exemplo.

22

1.7 – Compressão de Áudio

- (Tema de Seminário)
- PCM, ADPCM Voz
- Codificação Perceptiva Voz e Música
 - Modelo Psicoacústico.

2. Imagens Digitais

23

2.2 - Representação de

- **Imagens**
 - Imagens
 - Adquiridas por scanners ou câmeras.
 - Imagens de tom contínuo.
 - Monocromáticas: 8 bits por pixel.
 - Coloridas: de 8, 16, 24 ou 32 bits por pixel.
 - Conteúdo do frame-buffer em um arquivo.
 - Normalmente aplica-se compressão.
 - Diversos formatos
 - GIF, PNG, JPEG, ...

2.3 - O quê é compressão de imagens?

- "O termo compressão de imagens refere-se ao processo de reduzir a quantidade de dados necessários para representar uma imagem com uma qualidade subjetiva aceitável."
- Dados x informação

2.4 - Redundâncias em

- Imagens
- Dados de imagem são altamente redundantes.
 - Remover redundâncias ajuda a alcançar compressão.
 - Redundâncias são matematicamente quantificáveis.
- Redundâncias em imagens:
 - Redundância Estatística.
 - Também conhecida como redundância de codificação.
 - Redundância Espacial.
 - Também conhecida como redundância interpixel.
 - Redundância Psicovisual.
 - Utiliza conceitos do HVS.

2.4 - Redundâncias em **Imagens**

- Redundância Estatística.
 - Função de Densidade de Probabilidade (pdf).
 - Valores dos pixels em uma imagem tem pdf não uniforme.
 - Métodos de codificação estatística podem ser usados para compressão.

2.4 - Redundâncias em **Imagens**

- Redundância Estatística.
 - Codificação estatística.
 - Variable Lenght Coding.
 - Códigos menores para símbolos (valores) mais frequentes.
 - Lossless.
 - Huffman, codificação aritmética.

2.4 - Redundâncias em **Imagens**

- Redundância Espacial
 - Se refere à correlação entre pixels vizinhos em uma imagem.
 - Relação geométrica ou estrutural entre os objetos em uma imagem.

2.4 - Redundâncias em

Imagens

- Redundância Espacial
 - O valor de um pixel pode ser razoavelmente "adivinhado" por meio dos valores de seus vizinhos.
 - Para remover redundância espacial:
 - Codificação por diferença, codificação runlength.

2.4 - Redundâncias em **Imagens**

- Redundância Psicovisual
 - Percepção de brilho.
 - Olho não responde com igual sensibilidade a toda informação visual.
 - Algumas informações tem mais importância relativa que outras.
 - Informação psicovisual redundante.
 - Diferente das outras redundâncias.
 - Está associada com informação visual de fato.
 - Então como é possível eliminá-la?

2.4 - Redundâncias em **Imagens**

Redundância Psicovisual

- Sua eliminação implica em perda de informação visual quantitativa (real).
 - Daí o nome quantização.
- É uma operação irreversível.

- Redundância Psicovisual
 - Propriedades do sistema visual humano (HSV).
 - Maior sensibilidade a distorções em áreas suaves (com baixa freqüência espacial).
 - Maior sensibilidade distorções em áreas escuras de imagens.
 - Em imagens coloridas, maior sensibilidade a mudanças na luminância do que na crominância.

2.4 - Redundâncias em Imagens

- Técnicas podem ser combinadas!
 - Estatísticas + Espaciais + propriedades do HSV
 - Vantagem?

2.5 - O Padrão JPEG

- Joint Photographic Experts Group.
 - ISO, CCITT e IEC.
 - Padrão para codificação de imagens estáticas de tons contínuos.
 - Possui 4 modos de operação:
 - Sequencial (baseline mode).
 - Progressivo.
 - Sem perdas.
 - Hierárquico.

2.5 - O Padrão JPEG

- Modo seqüencial
 - É um método de compressão com perdas.
 - Possui 5 etapas principais:
 - Preparação da imagem/bloco.
 - DCT.
 - Quantização.
 - Codificação.
 - · Construção do quadro.

Transformada DCT

- Transformada Discreta de Cossenos (DCT).
- Transformadas:
 - Transformam a informação de um formato (domínio) para outro.
- Transformada DCT aplicada a imagens:
 - Transforma matriz (imagem) em matriz de freqüências espaciais.
 - Não produz perdas.

- Olho humano é menos sensível a distorções em regiões com alta freqüência espacial.
- Se a amplitude, nas altas freqüências, está abaixo de um limite, o olho não detecta a informação.

 Matriz transformada ajuda a detectar tais informações
- (redundância psicovisual).

Transformada DCT

- Transformada Discreta de Cossenos (DCT)
 - Todos os blocos, um a um, são submetidos à

$$F[i,j] = \frac{1}{4}C(i)C(j)\sum_{x=0}^{7}\sum_{y=0}^{7}P[x,y]\cos\frac{(2x+1)i\pi}{16}\cos\frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0= 1 para todos os outros valores de i e j. $x, y, i \in j$ todos variam de 0 a 7.

Transformada DCT

 Transformada Discreta dos Cossenos Inversa (IDCT)

$$P[x,y] = \frac{1}{4} \sum_{i=0}^{7} \sum_{j=0}^{7} C(i)C(j)F[i,j] \cos \frac{(2x+1)i\pi}{16} \cos \frac{(2y+1)j\pi}{16}$$

onde C(i) e $C(j) = 1/\sqrt{2}$ para i,j=0= 1 para todos os outros valores de i e j. $x, y, i \in j$ todos variam de 0 a 7.

Transformada DCT

- Após DCT:
 - As regiões da imagem que possuem uma única cor geram matrizes com coeficientes DC idênticos (ou próximos) e poucos coeficientes AC diferentes.
 - As regiões da imagem que possuem transições de cores geram matrizes com coeficientes DC distintos e muitos coeficientes AC diferentes.
- Tamanho do bloco na imagem.
- Implicações para compressão.

Transformada DCT

- DCT (2-D) é computacionalmente intensiva.
 - 1 bloco: 64 mult * 64 adic = 4096 operações.
- DCT é:
 - Separável: DCT 1-D.
 - Simétrica: repetição de cálculos.

Transformada DCT

Algoritmos rápidos (1-D)

$$F_x = \frac{C(x)}{2} \sum_{i=0}^{7} f_i \cos \left(\frac{(2i+1)x\pi}{16} \right) \qquad f_i = \sum_{x=0}^{7} \frac{C(x)}{2} F_x \cos \left(\frac{(2i+1)x\pi}{16} \right)$$

- DCT 1-D aplicada às linhas e colunas.
 - Separável.

Transformada DCT

Table 7.2 Comparison of 1-D DCT algorithms (8-point DCT)

Source	Multiplications	Additions
Direct*	64	64
Chen ³	16	26
.ec4	12	29
.ee ⁴ .ocffler ⁵	11	29
Arai ⁶	5	28

Quantização

- Quantização
 - Olho humano:
 - Boa resposta para coeficientes DC.
 - Baixa reposta para coeficientes AC.
 - Busca reduzir a quantidade de dados.
 - Limite da amplitude para freqüências: divide os valores da matriz transformada pelos valores correspondentes em uma tabela pré-definida.
 - Isso diminui os valores dos coeficientes proporcionalmente à posição dos mesmos na matriz.
 - Ocorre perda. No caso ideal, não perceptível.

Quantização

- Tabelas de quantização:
 - JPEG define duas tabelas default
 - Uma para luminância.
 - Uma para crominância.
 - JPEG permite a utilização de tabelas personalizadas.

Codificação por Entropia

- Envolve quatro passos:
 - Vetorização.
 - Codificação por diferença.
 - Codificação por carreira (run-length).
 - Codificação Estatística (método de Huffman).

Codificação por Entropia

- Codificação por diferença
 - Codificação dos coeficientes DC.
 - DCs possuem alto grau de correlação (redundância espacial).
 - São blocos adjacentes na imagem.

Codificação por Entropia

- Codificação estatística
 - JPEG usa Huffman.
 - A codificação estatística é aplicada no resultado das codificações dos DCs e ACs.
 - Vetor possui cadeias de bits apropriado para codificação estatística.
 - Quantas tabelas usar?

Considerações Sobre JPEG

- JPEG:
 - Padrão abrangente.
 - Alcança boas taxas de compressão para imagens de tons contínuos. (até 20:1).
 - Desempenho diminui em imagens com muita transição de cores.
 - Baseado em particularidades do sistema visual humano.

JPEG2000

- Uma das maiores limitações do JPEG:
 - Desempenho degrada em baixas taxas de dados (bitrate).
- Emprega transformada Wavelet.
- Melhorias:
 - Codificação estática/dinâmica de alta qualidade de uma região específica.
 - Recuperação de erros.
 - Desempenho: até 50:1 (níveis de cinza), 100:1 (cor).

3. Vídeo Digital

3.1 - Princípios

- Codificação de vídeo.
 - Processo de compressão e descompressão de sinais digitais de vídeo.

3.1 - Princípios

- Captura
 - Cada amostra espaço-temporal é representada como um conjunto de números que descreve o brilho e a cor da
 - Responsável por obter a amostra: CCD.
 - Sensor fotossensível de câmeras.

3.1 - Princípios

- Amostragem espacial
 - Saída do CCD = sinal analógico de vídeo.
 - Amostragem = obter valores do sinal em um ponto no tempo.
 - Formato mais comum de amostragem =

3.1 - Princípios

- Amostragem temporal
 - Vídeo é capturado tomando amostras retangulares do sinal em intervalos regulares.
 - O 'play back' da série de amostras produz a sensação de movimento.
 - Quanto maior a taxa de amostragem, mais suave o movimento parece. Contudo, mais amostras são capturadas e armazenadas.
 - Taxas:
 - < 10 fps very low bit rate. Movimentos não naturais.
 Ente 10 e 20 não 'capta' corretamente movimentos
 - rápidos.

 Entre 25 e 30 padrão de TV.

 - Entre 50 e 60 qualidade muito boa. Muitas amostras.

3.1 - Princípios

Quadros e campos

- Amostragem progressiva produz quadros completos.
- Amostragem entrelaçada produz uma série de campos entrelaçados.
 - Dois campos: linhas pares e linhas ímpares.

3.1 - Princípios

- Quadros e campos
 - Dois campos = 1 quadro. Cada campo contém metade da informação do quadro.
 - Vantagem: é possível enviar o dobro de campos por segundo que quadros por segundo, com a mesma taxa de dados, produzindo movimentos suaves.
 - Desvantagens: ruído.

3.1 - Princípios

- Espaços de cores
 - Espaço de cor refere-se ao método escolhido para representar luminância e cor em cada amostra espacial de vídeo.
 - Os mais comuns para vídeo colorido:
 - RGB
 - YCbCr

3.1 - Princípios

- RGB
 - Necessita de três valores para indicar a proporção relativa das cores primárias.
 - Bom para captura e exibição de imagens.

3.1 - Princípios

- Subamostragem de crominância
 - Motivação.
 - Como fazer?

3.1 - Princípios YCbCr

- YCbCr: MPEG e JPEG; YIQ: NTSC; YUV: PAL.
 - É um modo mais eficiente de se representar cor.
 - Baseado no HVS (Human Visual System).
 - Luminância (Y) e Crominância (Cb, Cg e Cr).
 - $Y = {}_{Kr}R + {}_{Kq}G + {}_{Kb}B$

Cr, Cg and Cb components

3.3 – Tipos de Quadros

- Quadros I.
 - São codificados sem nenhuma referência a outros quadros.
 - Cada quadro é tratado como uma imagem independente sendo Y, Cb e Cr codificados usando o algoritmo JPEG.
 - Aparecem no stream de saída em intervalos regulares.
 - N = GOP (group of pictures) span: número de quadros (3 a 12) entre dois quadros I sucessivos.

3.3 – Tipos de Quadros

- Quadros P
 - São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior.
 - Usam combinação de estimativa e compensação de movimento - alcançam maiores taxas de compressão do que quadros I.
 - Propagam erros número de quadros P entre quadros I é limitado.
 - M = prediction span número de quadros entre um quadro P e o quadro I ou P imediatamente anterior.
 - Desempenho: taxe de compressão ente 20:1 e 30:1.

3.3 – Tipos de Quadros

Ouadros F

- São codificados em relação ao conteúdo de um quadro I ou de um quadro P anterior e de um posterior.
- Envolve o processamento de 3 quadros: o quadro I ou P anterior, o quadro atual e o quadro I ou P posterior. Todos não codificados.
- Aumento no tempo (*delay*) para codificação e decodificação. É o tempo de esperar o próximo quadro I ou P.
- Provêem alta taxa de compressão: entre 30:1 e 50:1.
- Não propagam erros.

3.4 Estimativa e Compensação de Movimento

- Estimativa sub-pixel.
- Escolha dos quadros de referência.

3.6 - Outras Mídias de Representação

- Mais comuns:
 - AVI (microsoft)
 - MOV (apple)
- Servem como "pacotes" de dados.
- Usam codificadores diversos para comprimir vídeo.
 - Indeo, Cinepack, DivX, ADPCM

3.7 – Qualidade de Vídeo

- Testes Objetivos
 - Ainda sem padrão.
 - Aproximação amplamente utilizada: PSNR
 - Peak Signal-to-Noise Ratio

$$PSNR_{dB} = 10 \log_{10} \frac{(2^{n} - 1)^{2}}{MSE}$$

