R: $\{\langle x,y \rangle \text{ for } \langle x,y \rangle \in A^2 \text{ if } xRy\}$ $T \cdot R$: $\{\langle a,c \rangle \mid \exists b \in B \ (\langle a,b \rangle \in T \land \langle b,c \rangle \in R)\}$

 R^2 : $aR^2c \Leftrightarrow \{\langle a,c \rangle \mid \exists b \in A (\langle a,b \rangle \in R \land \langle b,c \rangle \in R)\}$

An ordered pair $(a,c) \in \mathbb{R}^2$ means there's a "middle" b \in B that satisfies $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$

Examples

- $(a=-b)^2 = I_{\mathbb{R}}$
- $\langle a,b \rangle \in \mathbb{R}^2 \iff \langle a,c \rangle, \langle c,b \rangle \in \mathbb{R}$

Empty ØA

 $R := rel(A \times B) = \emptyset$ No pair in $A \times B$ satisfies $\langle a, b \rangle \in R$

Properties

- $S \cdot \emptyset_A = \emptyset$
- anti-symmetric
- symmetric ?

Examples

• $\{\langle x,y\rangle \in \mathbb{N}^2 \mid x+y < x\}$

Identity I_A

Properties

 $\bullet \quad R \cdot I_A = R$

Reflexivity

R:=rel(A) is reflexive if $\forall a \in A(\langle a,a \rangle \in R)$

R is reflexive if every a in A satisfies $\langle a,a \rangle \in R$. In other words:

$$I_A \subseteq R$$

 $A = \{ -1, 0, 1 \}$. Is : contained in R?

 $R = \text{lambda a,b: } a \odot b; all(R(x,x) for x in A)?$

Properties

- \Leftrightarrow R^{-1} is reflexive
- $\rightarrow R \subseteq R^2$ (and R^2 is reflexive)
- $\rightarrow R \subseteq R^2$
- if $S \subseteq R$ then S is reflexive
- if S is reflexive then both $R \cup S$ and $R \cap S$ are reflexive

Examples

- U_A : $\forall a \in A(\langle a,a \rangle \in A \times A = UA)$
- I_A : $\forall a \in A(\langle a,a \rangle \in \{\langle -1, -1 \rangle, \langle 0, 0 \rangle, \langle 1, 1 \rangle\})$
- ≤, ≥ both contain ∵

Counter Examples

- \neq (which is $U_{\Delta} I_{\Delta}$)
- <, >, Ø_Δ
- a=-b :

Antireflexivity

R:=rel(A) is antireflexive iff $\neg\exists a \in A(\langle a,a \rangle \in R)$

R is antireflexive if every a in A satisfies $\langle a,a \rangle \notin R$. In other words:

 $I_A \cap R = \emptyset$ just $I_A \nsubseteq R$ isn't enough; $I_A = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} \nsubseteq R = \{\langle 1,1 \rangle, \langle 1,2 \rangle\}$ but $\langle 1,1 \rangle \in R$ so isn't antireflexive

Examples

- < never: n < n
- \neq , \rangle , \emptyset_{Δ}

Counter Examples

• U_A , I_A , $a=-b : , \le , \ge$

Symmetry

```
R:=\operatorname{rel}(A) is symmetric iff R=R^{-1}

R is symmetric if every \langle x,y\rangle in R satisfies \langle y,x\rangle\in R

\forall x\forall y(\langle x,y\rangle\in R \rightarrow \langle y,x\rangle\in R)

R=\operatorname{lambda} a,b: a\odot b; all(\operatorname{rel}(y,x)) \text{ for } x,y \text{ in } R)?
```

Properties

- if S is symmetric then both $R \cup S$ and $R \cap S$ are reflexive
- if S is symmetric then RS is symmetric

Examples

- \emptyset_{Δ} can't point at (x,y) and say (y,x) is not in \emptyset^{-1}
- *U*_A, *I*_A, a=-b ∴, ≠

Counter Examples

 \bullet \leq , \geq , <, >

Antisymmetry

```
R:=\operatorname{rel}(A) is antisymmetric iff R\cap R^{-1}=\emptyset R\cap R^{-1}=\emptyset means there can't be a \langle x,x\rangle R is antisymmetric if every \langle x,y\rangle in R satisfies \langle y,x\rangle\notin R \forall x\forall y((x,y)\in R\to (y,x)\notin R)
```

Properties

- → R is antireflexive
- $\rightarrow R^{-1}$ is antisymmetric
- if $S \subseteq R$ then S is antisymmetric
- if $S \cup T$ is antisymmetric then both S and T are antisymmetric
- $\rightarrow R \cap S$ is antisymmetric
- if R is antireflexive and transitive then it's asymmetric and antisymmetric
- No set is a ⊂ of itself, so ⊂ is antisymmetric lesson 7 00:27:40

Examples

- <, >, Ø_A
- $b > a^2$

Counter Examples

• \neq , \leq , \geq , U_{Δ} , I_{Δ} , $\alpha=-b$ \therefore , \neq

• $b < a^2$ (3,4) and (4,3) are symmetric

Weak Antisymmetry

$$R \cap R^{-1} \subseteq I_A$$
 $\forall x \forall y (\langle x, y \rangle \in R \land \langle y, x \rangle \in R \Rightarrow x = y)$ if both $\langle x, y \rangle \in R$ and $\langle y, x \rangle \in R$ it's only because they're equal for $x, y \in A$: if $x \neq y$ and $\langle x, y \rangle \in R$ then must $\langle y, x \rangle \notin R$

 A_S vs WA_S : A_S requires every pair's opposite to not be in \emph{R} , whereas WA_S requires the same only for pairs that x=y

Examples

• I_A

Transitivity

$$R^2\subseteq R$$
 $\forall x\forall y\forall z((R(x,y)\land R(y,z))\Rightarrow R(x,z))$ Every $(x,y,z)\in A$ that satisfy $(x,y)\in R$ and $(y,z)\in R$ also satisfy $(x,z)\in R$ If you see an x that leads to y that leads to z, then expect x to lead to z this is why $R^2\subseteq R$

Properties

ullet if $\emph{\emph{T}}$ is symmetric and antisymmetric then it's also transitive

Examples

• A={1,2,3};
$$R = \{\langle 1,2 \rangle, \langle 2,3 \rangle, \langle 1,3 \rangle\} \implies R^2 = \{\langle 1,3 \rangle\} \subseteq R$$

• A={1,2,3};
$$T = {\langle 1,2 \rangle} \implies T^2 = \emptyset \subseteq T$$

•
$$W = \{\langle 1, 1 \rangle\} \Rightarrow W^2 = \{\langle 1, 1 \rangle\} \subseteq W$$

- I_A
- Ø_A
- U_{Δ} if $\langle a,b \rangle \in A^2$ and $\langle b,a \rangle \in A^2$ then $\langle a,c \rangle \in A^2$
- if |A| > 1 then \neq is trans
- < over \mathbb{N} $l \le m \land m \le n \implies l \le n$
- ≤

•
$$T = (\langle 2, 1 \rangle, \langle 2, 3 \rangle) \Rightarrow T^2 = \emptyset \subseteq T$$

Counter Examples

- $P = \{\langle 1,2 \rangle, \langle 2,1 \rangle\} \Rightarrow P^2 = \{\langle 1,1 \rangle, \langle 2,2 \rangle\} \not\subseteq P$ iow: 1 leads to 2 leads to 1, but $\langle 1,1 \rangle \not\subseteq P$
- $\exists x \exists y \exists z (R(x,y) \land R(y,z) \land \neg R(x,z))$

Equivalance

 $m{R}$ over A is equivalence iff $m{R}$ is reflexive, symmetric and transitive

Examples

- U_A , I_A , equality
- "Has the same absolute value" on the set of real numbers
- ullet if $A=\emptyset$ then \emptyset_A is symmetric, transitive and reflexive

Counter Examples

- ≥ reflexive and transitive but not symmetric
- if $A \neq \emptyset$ then \emptyset_A is symmetric and transitive, but not reflexive

Connexivity

lesson 7 00:06:00

R over A is connexive iff $\forall (x,y) \in A \ (x \neq y \rightarrow \langle x,y \rangle \in R \ \lor \ \langle y,x \rangle \in R)$

Examples

ullet Any two numbers $\mathbb N$

Order (יחסי סדר)

lesson 7 00:00:00

Partial Order (יחס סדר חלקי)

R over A (\leq) is a partial order iff it's <u>antireflexive</u> and <u>transitive</u>

Properties

- Antisymmetric because antireflexive and transitive
- set A with partial order is a קבוצה סדורה חלקית

Examples

```
• ⊂ over P(N) A∈P(N) is antisym because A⊄A, and trans because A⊂B⊂C ⇒ A⊂C
???
for all a, b, and c:
- a ≤ a reflex
- if a ≤ b and b ≤ a, then a = b antisymm
- if a ≤ b and b ≤ c, then a ≤ c trans
```

Examples

• equality
???

Total Order (יחס סדר מלא)

```
Partial order and <u>connexive</u> (aka "linearly ordered") \forall (x,y) \in A \ (x \neq y \Rightarrow \langle x,y \rangle \in R \ \veebar \ \langle y,x \rangle \in R) \quad \text{note the xor. verify}
```

Properties

• set A with total order is a קבוצה סדורה לינארית

Examples

- < over N also over R?
- ullet < over every subgroup of ${\mathbb R}$

Counter Examples

• if $A \neq \emptyset$ then I_{Δ} isn't total order because for all $a \in A$: a = a

יחס משווה, או תכונת ההשוואה Yahas Mashve

```
lesson 8 00:00:50 / p97
```

Each $\langle a,b\rangle\in A$ safisfies exactly one of:

- a**R**b
- \bullet bRa
- *a=b*

Properties

• If we can't find $a\mathbf{R}b$ nor $b\mathbf{R}a$, then a=b

Examples

• < over N

Element: Minimal/Maximal, Least/Greatest

Minimal Element (איבר מינימלי)

Element a in partially ordered set $\langle A, \prec \rangle$ is a minimal element if there's no other element $x \in A$ that $x \prec a$

Maximal Element (איבר מקסימלי)

Element a in partially ordered set $\langle A, \prec \rangle$ is a maximal element if there's no other element $x \in A$ that $a \prec x$

Properties

- a partially ordered, **finite** set must have a min element and a max element (or more) p. 110
- a partially ordered, infinite set may have min / max elements

Examples

A =
$$\{1,2,3,4\}$$

 (R, \leq) = $\{(3,4), (1,4), (2,1), (2,4)\}$
4 max and greatest
trans.
3 1 trans.
2 isn't least because not below 3

A =
$$\{1, 2, 3, 4\}$$
 1 is not greatest because not above 3 1 max* 3 max 3 isn't greatest because not above 1 and not above 4 in T, no x \in A that $\langle x, 4 \rangle$ and no x \in A that 2 min $\langle 4, x \rangle$ so 4 is both min and max

Least Element (איבר ראשון)

Element a in partially ordered set $\langle A, \prec \rangle$ is the least element if for all $x \in A$: $a \prec x \lor a = x$ $(P, \leq) \text{ is partially ordered set} \implies \{ y \in P \mid \forall x \in P, y \leq x \} \Rightarrow y \text{ is}$

least element \times is all the elements in P

Properties

• The least element is necessarily a minimal element the only min el? 01:10:50

Greatest Element (איבר אחרון)

```
Element a in partially ordered set \langle A, \prec \rangle is the greatest element if for all x\inA: x\preca V x=a  (P, \leq) \text{ is partially ordered set} \Rightarrow \{y \in P \mid \forall x \in P, x \leq y\} \Rightarrow y \text{ is greatest element}
```

Properties

• The greatest element is necessarily a maximal element the only max el? 01:10:50

Partitions

Partition of A is a set of non-empty, non-overlapping subsets of A whose union = A

Properties

- every a∈A is in exactly one block
- no block contains Ø
- union of blocks = A
- \intersection of any two blocks = Ø
- \rightarrow A is finite \Rightarrow rank of P is |X| |P|?

Examples

- {A} is partition of A trivial
- Ø's only partition is Ø
- {1,2,3} has five partitions: {{1},{2},{3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1},{2, 3}}, {{1, 2, 3}}

Counter Examples

- not partitions of {1,2,3}:
- {{}, {1,3}, {2}} contains Ø
- {{1, 2}, {2, 3}} 2 exists in more than one block
- {{1}, {2}} no block contains 3

Equivalence Class: $\{x \in S \mid x = a\}$ where $a \in S$

```
Given R is an equivalence relation on S, the equivalence class of an element a in S is the set \{x \in S \mid \langle x,a \rangle \in R\}
[a] = \{b \mid aRb\} = \{b \mid \langle a,b \rangle \in R\}
all elements in S that when paired with a, exist in R

In other words: going over R, the elements in [a] are all the elements that a is paired with
```

Properties

- U of all equivalence classes = S ?
- a ∈ [a] every element exists in its equivalence class
- ullet the items in each equivalence class of $oldsymbol{S}$ exist only in their equivalence class ?
- every possible pair of eq. classes is zar ?

Examples

- X = all cars; relation \equiv_X = "has the same color as"; one particular equivlance class consists of all green cars
- Relation $\equiv_{\mathbb{Z}}$ is $(a,b) \in \equiv_{\mathbb{Z}} \iff (a-b)\%2 == 0 \implies$ two equivalence classes: even numbers and odd numbers
- $S = \{1,2,3,4,5\}$
- $\equiv_S = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle, \langle 2, 1 \rangle, \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 1 \rangle\}$
- [1] = {1, 2, 3} everything that 1 is related to
- [2] = {2, 1, 3}
- $[3] = \{3, 2, 1\}$ note that $[1] \equiv [2] \equiv [3]$
- $[4] = \{4\}$
- $[5] = \{5\}$