

ADVISORY GROUP FOR AEROSPACE RESEARCH & DEVELOPMENT.

7 RUE ANCELLÉ 92200 NEUILLY SUR SEINE FRÂNCE

AGARDograph No. 223

A Critical Compilation of Compressible Turbulent Boundary Layer Data

by

H. H. Fernholz and P. J. Finley

DISTRIBUTION STAYEMENT A

Approved for public releases
Distribution Unlimited

NORTH ATLANTIC TREATY ORGANIZATION

NORTH ATLANTIC TREATY ORGANIZATION

ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT

(ORGANISATION DU TRAITE DE L'ATLANTIQUE NORD)

Hermann Föttinger institut für Thermo-und-Fluiddynamik Technische Universität Berlin D-1000 Berlin 12 Strasse des 17. Juni 135

and

BRD Germany

Department of Aeronautics Imperial College of Science and Technology Prince Consort Road London SW7 2BY Great Britain

DISTRIBUTION STATEMENT A

Approved for public releases Distribution Unlimited

This AGARDograph was prepared at the request of the Fluid Dynamics Panel of AGARD.

400043

THE MISSION OF AGARD

The mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Exchanging of scientific and technical information;
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Providing scientific and technical advice and assistance to the North Atlantic Military Committee in the field of aerospace research and development;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations
 in connection with research and development problems in the aerospace field;
- rroviding assistance to member nations for the purpose of increasing their scientific and technical potential;
- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Program and the Aerospace Applications Studies Program. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.

The content of this publication has been reproduced directly from material supplied by AGARD or the authors.

Published June 1977

Copyright © AGARD 1977 All Rights Reserved

ISBN 92-835-1245-6

E

Printed by Technical Editing and Reproduction Ltd Harford House, 7-9 Charlotte St, London, W1P 1HD

CONTENTS

		Page
1	GENERAL PREFACE	iv
ii	ACKNOWLEDGEMENTS	iv
111	FOREWORD	V
iv	LIST OF ABBREVIATIONS	vi
٧	LIST OF SYMBOLS	vii
vi	GUIDANCE FOR USERS OF THE CATALOGUE	1x
vii	PROFILE DATA ON MICROFICHE	X
1.	INTRODUCTION	1
	1.1 Aims and objectives1.2 General principles guiding the form and content of the compilation	
2.	EVALUATION OF DATA	4
	2.1 Experiments considered 2.2 Principles of selection 2.3 Scope of the catalogue	
3.	STRUCTURE AND CONTENT OF A CATALOGUE ENTRY	9
4.	GENERAL POINTS IN THE "EDITORS' COMMENTS"	18
	4.1 Remarks relating to the 'quality' of the data 4.2 Reliability of integral values 4.3 Temperature values near the wall 4.4 Wall data deduced from profile data 4.5 The boundary layer edge 4.6 Normal pressure gradients	
5.	DATA PROCESSING	22
	5.1 Properties of the working gas, recovery factors 5.2 "Kopfdaten" - Boundary conditions and other evaluated data 5.3 Profile data 5.4 The D-state and consistency 5.5 The integration procedures 5.5 Integral values using a pressure-based reference flow	
6.	NATURE AND CLASSIFICATION OF DATA	28
	6.1 General considerations 6.2 Classification by pressure gradient Figures 6.1 - 6.3 showing the experimental range of zero-pressure-gradient data	
7.	CLASSIFIED LISTS OF ENTRIES	33
	7.1 List of entries classified by local pressure gradient 7.2 Flows with significant heat transfer 7.3 Alphabetical list 7.4 Numerical list	
8.	THE ENTRIES	
	The entries are arranged in the sequence given in table 7.4	·
	Each entry consists of:	
	Section A: Description of the experiment	
	Section B: Complete tables of boundary conditions and evaluated data for the profiles	
	Section C: Data for a selection of the profiles	
	Section D: Additional data.	
	The associated microfiche gives the tables of section B complete, and data for all the profiles listed in section B, from which section C is a selection.	
	The pages of each section of each entry are numbered individually.	
	DEFENERACE	0

1. GENERAL PREFACE

At the 1971 EUROVISC meeting in London the late Dietrich Küchemann suggested to the first author that the data collection which he had started for his own research purposes would be generally useful if it could be extended and made accessible in standardised form. Thus this project was launched under the auspices of EUROVISC, and it has remained so through the assistance and advice of an informal advisory group, consisting of L.C. Squire (Cambridge), J.L. Stollery (Cranfield) and K.G. Winter (RAE Bedford). The data collection and handling have throughout been funded by the German Research Council (DFG) and the Technical University Berlin. By 1973 the computational framework was established by H.J. Küster and the actual work had been started. At the beginning of 1974 the team was joined by Miss C. Mohr, who has since handled all the computational work, and by the second author, on leave from Imperial College. During that year we were able to lay the foundations and complete most of the structure of the catalogue. Our work was encouraged by the agreement of the Fluid Dynamics Panel of AGARD to support and arrange publication, with Professor Fannelop (Trondheim) as AGARD editor. Since that time we have been engaged, principally, on the physical labour of handling all the data and the minutae of presentation, above all in the inevitably unsuccessful pursuit of consistency. Had we been fully aware of the force of Dr. Johnson's comment that "making dictionaries is dull work" it is doubtful that we would have had the temerity to start. As it is, the final product is the result of the labour of so many hands in addition to our own that the attempt at proper acknowledgement below must needs be hopelessly incomplete.

We hope to follow this volume, which is a compilation of fact, and as little coloured by opinion as we could contrive, with a volume of commentary on the general nature of compressible boundary layer data, and some of the problems of interpretation which arise.

11. ACKNOWLEDGEMENTS

Firstly we must thank all the authors whose experiments are presented in the entries. The compilation describes their work, and ours is only the secondary occupation of ordering it. We have tested the authors' patience with often lengthy and repeated questionnaires, and must thank specially those who suffered our first attempts, when we were learning our trade. In addition to all those who answered our many questions, and who are mentioned in the entries, we thank J.C. Westkaemper, of the University of Texas in Austin, for assistance in obtaining many DRL reports and then checking our experimental accounts. We also thank K.G. Winter and the RAE for arranging a literature search on our behalf, D.M. Bushnell, lately of NASA Langley, for helping us to obtain a quantity of apparently inaccessible data, and P. Bradshaw of Imperial College for much helpful general advice and detailed criticism.

We could not have hoped to produce the catalogue without the able and uncomplaining assistance of our co-workers. H.J. Küster and Miss C. Mohr have been mentioned above. Unfortunately only direct experience could make real the sheer quantity of tiresome detail work done by C.M. - let alone the physical effort of continually moving around massive collections of computer printout. We must also thank T. Podtschaske who performed the greater part of the interpolation work which continually proved necessary.

Mrs. H. Geib, who prepared the text, earns the special thanks of the second author for coping with endless revisions in his notoriously illegible handwriting, and we thank Mrs. I. Gereke for making all our drawings.

Amongst official bodies, our debt to the DFG and TUB for funding the research work is pre-eminent, while for nearly a whole year out of the last three the second author has been a grateful quest of the Hermann-Föttinger-Institut in Berlin. The publication is funded by AGARD, and we would thank the Fluid Dynamics Panel and its successive executives, J. Lawford and M. Fischer, for their help and encouragement.

Finally we must thank Cornelie and Sophia for their support and for not complaining too much at those frequent periods during which they have been "Catalogue widows".

iii. FOREWORD

The principal objective of this compilation is to provide ready access to a large body of boundary layer data. The printed volume contains a great part of this, but it has not proved possible to print the complete collection. However, all the data processed was reduced to a standard form and stored on magnetic tape. The original complete processed data tabulation was transcribed onto paper, and accompanies this volume as a microfiche. The precision of the data is an order, or orders, higher than its accuracy and we cannot state too forcefully that there are very few individual data presented here for which it would be possible to claim an accuracy of 1%. The much higher level of precision in the tables, usually at five significant figures, occurs purely as a result of our desire to standardise the presentation in a format which is convenient for the computer, and to eliminate any possibility of editor-induced rounding errors.

Ready access implies that the user should not have to undertake any substantial reprocessing of data, and especially should not be compelled to transcribe the information back into computer-digestible form. To this end, arrangements have been made with the following organizations in NATO countries to hold master copies of the data tape. These organizations will prepare copies on request; enquiries as to terms should be directed to the organization concerned. The tape will probably be an exact transcription of the data in the microfiche tabulation accompanying this publication, but may be modified slightly to make it easier for users to enter the information into their own programme.

FRANCE

O.N.E.R.A. (Direction)
29 Avenue de la Division Leclerc
92 Chatillon sous Bagneux

GERMANY

ZLDI DFYLR
Postfach 860880 AVA
D-8 München 86 3400 Gött

3400 Göttingen Bunsenstrasse 10

NETHERLANDS

Netherlands Delegation to AGARD National Aerospace Laboratory, NLR P.O. Box 126 Delft

UNITED KINGDOM

Defence Research Information Centre Station Square House St Mary Cray Orpington, Kent BR5 3RE

UNITED STATES

COSMIC (Computer Software Management and Information Centre, University of Georgia) Suite 112 Barrow Hall Athens Georgia 30602

TAPE: GENERAL SPECIFICATION

Seven-track, half inch tape, recorded at 800 BP1 Coded: BCD, even parity Block length - 1280 characters maximum Overall length 720 m

iv. LIST OF ABBREVIATIONS

APG	-	adverse pressure gradient
AH	-	adiabatic wall
CC	-	constant current
CCP	-	cone cylinder static pressure probe
CPP	-	circular Pitot probe
CT	-	constant temperature
D	-	D-state is the nominal boundary layer edge state
E	•	estimated by editors
ECP	-	equilibrium cone probe
FEB	-	floating element balance
FPG	-	favourable pressure gradient
FPP	-	flattened Pitot probe
FWP	-	fine wire probe
Н	-	height of the test section
HT	-	heat transfer
HWP	-	hot wire probe
MHT	-	moderate heat transfer
NA	-	not available
NC	-	not computed
NM	-	not measured
NPG	-	normal pressure gradient
NX	-	number of X-stations
PC	-	private communication
RUN	-	full 8-digit identification of the profile
RW	-	reflected wave
SH	-	severe heat transfer
SPP	-	static pressure probe
STP	-	static temperature probe
SW	-	simple wave
TPP	-	total pressure probe
TTP	-	total temperature probe
VPG	-	variable pressure gradient
W	-	width of the test wall
ZPG	-	zero pressure gradient

PROBE DIMENSIONS

d ₁	-	outside diameter
d ₂	-	inside diameter
h ₁	-	overall height of face
h ₂	-	height of opening
b1	-	overall width
b2	•	width of opening
1	-	length of slender portion
_	_	coma caminancia

v. LIST OF SYMBOLS

Sy	mbol		
Computer	Conventional	Meaning	Definition
-	a	velocity of sound	(YRT) ^{1/2}
CF	c _f	skin friction coefficient	2τ ω /ρδ ^U δ
CQ	cq	heat transfer coefficient	q/(مځ ^ا هٔ د _p T _{oهٔ})
	c _p	specific heat at constant pressure	
D	δ	boundary layer thickness or boundary layer edge-point selected	
D1	٥ ₁	displacement thickness	eqn. (3.7.1)
D2	⁶ 2	momentum defect thickness	eqn. (3.7.2)
D3	δ ₃	kinetic energy defect thickness	eqn. (3.7.3)
D4	δ4	total enthalpy defect thickness	eqn. (3.7.4)
DIK	^δ 1κ	displacement thickness $(\rho/\rho_{\delta}=1)$	
D2K	^δ 2K	momentum defect thickness (ρ/ρ_{δ} = 1)	
D3K	⁸ зк	kinetic energy defect thickness $(\rho/\rho_{\delta}=1)$	
DIP	⁸ 1p	-	eqn. (3,7.6)
D2P	⁶ 2p	-	eqn. (3.7.7)
D3P	⁶ 3p	-	eqn. (3,7.8)
D4P	⁶ 4p	-	eqn. (3.7.9)
D STAR	ŏ *	"true" displacement-thickness	eqn. (3.7.5)
	Y	ratio of specific heats	c _p /c _v
H12	H ₁₂	shape factor	δ ₁ /δ ₂
H32	H ₃₂	shape factor	⁶ 3 ^{/6} 2
H42	H ₄₂	shape factor	δ ₄ /δ ₂
H12K	H _{12K}	shape factor	⁸ 1K ^{/8} 2K
H32K	H _{32K}	shape factor	δ _{3K} /δ _{2K}
1	~	Y-station identity	-
KAP	κ, γ	ratio of specific heats	c _p /c _y
-	λ	heat conduction coefficient	
M	Ħ	Mach number	u/a
MD	M ₆	Mach number at 8	u _ō /a _ō
M/MD	-	Mach number ratio	m/m ₈
MUE	μ	dynamic viscosity	eqns. (5.1), (5.2)
MUED	μ _ξ	dynamic viscosity at 6	-
MUEW	\mathbf{u}_{W}	dynamic viscosity at w	•
P	р	static pressure	•
PD	ρ _δ	static pressure at 8	-
P/PD	-	static pressure ratio	p/p ₆
PI2	π_2	pressure gradient parameter	(δ ₂ dp/dx)/τ _₩
PO	P _o	stagnation pressure	

:	Symbol	
Computer	Conventional	Meaning Definition
POD	Pos	stagnation pressure at 6
PT2	Pt2	pitot pressure
PW	p _₩	static pressure at w
PWD	p _w /p _δ	- p_{W}/p_{δ}
R	r	recovery factor
RE	-	Reynolds number/m $ ho_{\delta}^{} U_{\delta}^{}/\mu_{\delta}^{}$
RED2D	Re ₀	Reynolds number based on δ_2 $\rho_\delta U_\delta \delta_2/\mu_\delta$
RED2W	Re ₆₂	Reynolds number based on δ_2 $\rho_\delta U_\delta \delta_2 / \mu_w$
RGAS	R	gas constant
RO	р	density
ROD	Pδ	density at 6
ROW	PW	density at w
RO/ROD	-	ratio of densities ρ/ρ_{δ}
RZ	R _z	transverse radius of curvature
SW	·	number indicating the relative eqn. (5.5) importance of longitudinal curvature in a pressure gradient
T	T	temperature
TD	Т	temperature at 6
T/TD	•	temperature ratio T/T_{δ}
то	T _o	stagnation temperature
TOD	Tos	stagnation temperature at δ
TR	Tr	recovery temperature eqn. (5.3)
TRD	T _{pr} /T ₆	recovery temperature ratio
TW	T _w	temperature at w
TWD	 Т _ш /Т _а	wall temperature ratio
TWR	 Τ <u></u> /Τμ	wall-recovery temperature ratio
U	u ·	velocity component in x-direction
UD	u _{&}	velocity component in x-direction at &
U/UD	-	velocity ratio u/u _{&}
X	×	streamwise or axial coordinate
Y	У	coordinate normal to wall

vi. GUIDANCE FOR USERS OF THE CATALOGUE

This volume and the associated microfiche collection provide descriptions of, and the data obtained from, 59 experimental studies of two-dimensional compressible turbulent boundary layers.

Each study is described at the start of the appropriate numbered ENTRY, to be found in § 8 below. The boundary conditions and evaluated data for <u>all</u> the profiles processed are also given, as section B of the entry. Each entry also contains, as section C, a <u>selection</u> of the profile data. The entire collection of data, boundary conditions, evaluated data and complete, detailed, profile data are provided in the microfiche version of the compilation which accompanies this printed volume. The microfiche does not, however, include the additional data which are printed where appropriate as section D of each entry.

The data collected and printed on the microfiche are also recorded in approximately the same form on a magnetic tape, copies of which can be obtained by following the procedure indicated in the Foreword (iii). The way in which an ENTRY is constructed is outlined in § 3, and we recommend, strongly, that readers should not attempt to use the compilation without assessing our own approach as we have there stated it. In particular, subsection § 15 of each entry constitutes our comment on the experiment in question, and is inevitably coloured by our own obsessions. We would therefore recommend that the editors' comments should always be interpreted in conjunction with the associated comment of § 4.

The computational framework is described in § 5, but we feel that, initially, this aspect should not particularly concern the user as the potential for heresy in numerical operations is small. Where, however, numerical procedures are likely to cause crucial differences - as for example in the evaluation of integral quantities, critical readers should ensure that any comparison they make is based on a foundation which is either the same as that which we have used, or which can easily be compared to ours, and so should study our assumptions (§§ 5.2, 5.5, 5.6, 3.6, 3.7).

Finally, and perhaps most important: the reader will wish to know how to find the entry most appropriate to his needs. To this end we have constructed the classified lists of \S 7. The principal classification of \S 7.1 is based on the considerations outlined in \S 6, but our approach should be assessed in connection with the less quantifiable factors discussed in \S 2, and especially in \S 2.3.

REQUEST FOR FURTHER DATA

The editors hope to be able to issue a supplement to the data presented in this volume, and so would be grateful for an account of any suitable experiment which is not included. The greatest need is for functionally complete measurements in boundary layers on longitudinally curved surfaces, but high quality data of any kind would be appreciated. Cases including information on the turbulence structure are very rare, and it is possible that some information may now be available from "non-intrusive" techniques.

Authors may gain an impression of the information we would require from the present volume. We would especially appreciate the supply of data in some computer digestible form.

Fixed to the inside back cover of this volume are three pockets containing 28 microfiche. These provide a complete listing of the profile data as processed by the computer when preparing the catalogue. They consist of continuous strip photographs of the raw output, before cutting and selection for the printed form of the catalogue. The method of production requires the tables to run 'across' the microfiche when viewed in the normal sense, and in consequence a non-standard square format has been adopted. This allows the microfiche to be placed in the carrier of the older and cheaper forms of viewer with the columns in the right orientation for the reader.

A typical microfiche is headed

AG 223 No. 4 of 28 Profile 60010301-64010803

thus indicating that this is the fourth microfiche, and that it contains all profiles from 60010301 to 64010803. The distribution of profile data is given below:

Microfiche Profiles	Microfiche Profiles
1: 53010101-58020101	15: 70070111-71010401
2: 58020102-58050401	16: 71010501-71030404
3: 58050402-60010207	17: 71030405-72020104
4: 60010301-64010803	18: 72020105-72021005
5: 64010804-65020202	19: 72021101-72060705
6: 65020203-65030803	20: 72070101-73010901
7: 65030804-65051101	21: 73010902-73030304
8: 65051102-67010104	22: 73030305-73040702
9: 67010105-68010803	23: 73040703-73050203
10: 68010901-69020311	24: 73050204-74010307
11: 69020312-70020304	25: 74010308-74021302
12: 70020401-70031202	26: 74021303-76010203
13: 70040101-70040503	27: 76010204-76010409
14: 70040504-70070110	28: Section 8 - 'Reference flow values'

All computed data - sections B and C - are included. The 'additional data' of section D is given only in printed form, with the entries.

1. INTRODUCTION

1.1 Aims and objectives

Anyone undertaking to prepare a catalogue of boundary layer data must start by paying homage to Coles & Hirst (1968), who prepared the first such compilation. The Stanford Catalogue stemmed from the need to provide sets of boundary layer data which could serve as a basis of comparison for a wide variety of calculation methods. The present data collection can be considered as an extension of the Stanford Catalogue to Mach numbers beyond one, and to flows with heat transfer at the wall. The experimental data are presented as consistently as possible and in a form which has been chosen to suit both the user who wishes to plot or recalculate the data and for entry into a computer if theory and experiment are to be compared. The purpose of the present catalogue is to facilitate the interpretation of experimental data rather than to suggest or to support a particular theoretical analysis of compressible turbulent boundary layers. To that end we have attempted to confine our rôle as editors strictly to describing the general conditions of the experimental arrangement, the initial— and boundary-conditions of the experiment and the experimental data as given by the experimenters themselves. Information and opinion have been separated from each other as distinctly as possible, opinion, we hope, being confined to the introductory chapters and the "editors' comments" at the end of our description of each experiment.

One of our more obvious objectives has been to ensure, so far as it lay in our power, that any data processed by us should be available in a readily re-usable form. It is a sobering thought that every experiment forming the subject of an entry has already been published in some form, usually with numerical information. Nevertheless, with a few exceptions, we have had to arrange for the data to be transcribed once more to punched cards, so that it might be processed. For any modern experiment, this work is essentially unnecessary, since it would have been a simple matter for the originating institutions to have kept the information in some computer-digestible form. We have probably invested one or more person-years in routine number punching, and hope that the existence of the magnetic data tape which forms part of this enterprise will make any repetition of such drudgery needless.

The data compilation contains about 1400 profiles, and the ready availability of so large a data-bank in standard form contains its own dangers. We feel that we must issue a warning against any possible tendency amongst research workers to use only the data we have provided - because it is there and does not require further transcription. Disregarding any more subtle criteria which might be applied in selecting experiments for inclusion, there was no possibility of our preparing an entry unless we had access to the data in reasonably precise form. Data could be inaccessible for many reasons. The experiment could be so old that no full record remained, or so new that the clearance procedures required by authority could not be completed in time. Detailed experimental records often seem to be discarded with alarming rapidity and in some particularly regrettable cases the data were lost or scrapped before official permission to use it could be obtained. The experiments, however, remain valid, and for many purposes numerical values may be obtained with sufficient accuracy from graphical presentations in the published accounts. In the proposed commentary volume, associated with this data compilation, we hope to include a classified list of the experiments known to us, indicating the extent of the available information for each one.

A further simple objective is an indication of the experimental range covered. Only too often an investigation is performed largely because it is possible with the available experimental facility. A glance at figures 6.1 and 6.2 will show that the coverage of adiabatic zero-pressure gradient flows at moderate Mach and Reynolds numbers is almost excessive. There is no object in making more mean flow measurements in this range unless perhaps for the calibration of a new type of instrument. On the other hand, fluctuation measurements are so rare that almost any study of turbulence structure has great potential value. For more complex mean flows the coverage is much less complete. Section II of the classified list § 7.1 shows that experimental descriptions of curved-wall flows are particularly needed. (We have made provision in the list, as nil entries, for some types of flow for which we knew of the existence of appropriate experiments but did not have the necessary data.)

We hope that a thorough indication of the range already covered will help prevent expenditure on unnecessar; repeat experiments.

A final scientific application of the data bank is the provision of test cases for theoreticians developing calculation methods. It is perhaps too early to consider the possibility of a Stanford-type tournament for compressible boundary layers, but we do feel that amongst the 59 experiments described here there is enough variety in the basic flows to allow theoretical workers to extract any mean-flow based ical constants they require. There are also several interesting test cases!

1.2 General principles guiding the form and content of the compilation

2

Since the fundamental purpose of the compilation is to transmit data, we consulted many potential users, and especially the members of the EUROVISC advisory group. The results of these discussion may be summarised as:

- (a) The value of such a collection increases much more rapidly than its size, as extra entries are included.
- (b) Every effort should be made to make a complete presentation of the data for each entry.
- (c) It should be possible for a user to obtain complete tabular data without recourse to a computer.
- (d) Preparation of the data in computer-digestible form would greatly increase the value of the collection.

Considerations (a) and (b) are clearly the principal factors affecting the overall size of the catalogue, without taking any account of the actual method of presentation to be used. In further discussion we have found it convenient to attach specific meanings to certain words, indicating the hierarchy of information. Thus below:

A REFERENCE is any paper consulted in connection with the project.

A SOURCE is the principal reference specifically describing an experiment in which compressible boundary layer data were obtained.

AN ENTRY

is the text we have prepared from a source selected for inclusion in the data compilation. We refer to entries as CAT 7201 etc. where 7201 is the entry serial number in the compilation of § 8.

There are 59 entries selected from about 300 sources. Some indication of the principles guiding selection is given in § 2 below, so that (a) will not be discussed further here.

We have accepted point (b) almost without qualification, and often therefore pestered the authors of potential entries for much subsidiary information which did not appear in the source papers. There are however some sources which contain so many data that there was no possibility of our including them all (e. g. CAT 6503). Where we have rejected data, we have tried to ensure that we retained a fully representative selection, or that there were real grounds for believing that the data rejected were in some respect of inferior quality.

The remaining points concern matters of presentation. There is little difficulty in dealing with the publication of the boundary and initial conditions of an experiment, and these are given as "Section B" in the entries forming § 8 below (see also § 3). There are formidable problems, however, in making available the profile data, i. e. velocity—, temperature—, static pressure and fluctuating quantity profiles. For the 59 entries alone, these profiles number about 1400 in all and to print these in full in legible form would require 600 AGARO pages. We therefore had to look for a cheaper and more effective form of publication and the profiles have been made available in the following forms:

- A magnetic tape of the complete data. Copies of this will be deposited at suitable centres in Europe and America and users will be able to obtain copies of all or part of the data from these on supplying their own blank tapes. (A fee may be charged - see the Foreword)
- A microfiche copy has been made of the complete profile tables in a format similar to that used for the master tape. This has been issued with the printed collection.

 A selection of the profiles edited from the complete tabular print-out of form 2 is presented in the printed collection as section C of each entry.

We feel that this will answer the needs of users whilst reducing the size of the printed collection to manageable proportions. The magnetic tape (form 1) allows a user to enter the data directly in his own computer programme, or should he so desire, to prepare his own full-size print-out of all the data, or any section in which he has an interest. The microfiche (form 2) allows a user to read the tabular print-out directly, or to obtain full-size tables of any data in which he has an interest through normal library channels.

The printed selection of form 3 is intended to satisfy the needs of a user who wishes to obtain a general view of the nature of profile data in the type of flow in question and in the relevant experimental range. If he wishes to obtain more detailed information, the complete tabulation of boundary conditions in section B of the entry will allow him to choose the data he wishes to call up from forms 1 or 2. He may assess the likely reliability of the data from the method by which they were obtained (entry-section A) and the internal evidence of scatter and consistency shown by plotting out some of the printed sample profiles of section C (form 3).

2.1 Experiments considered

With very few exceptions the experiments considered for inclusion had been published previously. Since it was from the open literature that we obtained all our general information, publication was almost a necessary condition, though in a few cases an enquiry about a published source paper led us to unpublished information or material being prepared for publication. In many cases the amount of information finally made available by our correspondents greatly exceeded that in the original source.

The total number of reported compressible boundary layer experiments is very large. We have here restricted ourselves to the study of nominally two-dimensional turbulent boundary layers (some of them transitional) formed on rigid impermeable walls, and have excluded cases in which it would be necessary to take account of chemical reactions or ionization. In fact we have assumed throughout that the test gas was a perfect gas, with constant specific heats, although in a few cases the temperature range is such that the relationship between reservoir conditions and test station conditions is detectably falsified as a result of vibrational excitation. Boundary layers with suction or injection through the wall were excluded, as the data known to us are relatively well documented. The data have been collected by another group and could, in principle, be edited without too great an effort, if need be. Although a number of correspondents have urged us to include these more complex flows, and also shock/boundary layer interactions or three dimensional flows, we have firmly resisted these suggestions, knowing the limits of the financial means available and not wishing to impose too great a load on our patience and perseverance, let alone that of our co-workers. In some cases regretfully, we have excluded any experiment for which we did not have access to tabulated data. In part as a consequence of the limited assistance available to us, but principally because of the lack of precision inherent in the procedure, we have not generally incorporated information scaled from graphs published in the source papers. In a few cases, auxiliary information has been so obtained, and for several entries we found it necessary to prepare our own graphs for interpolation. When this has been done, it is remarked in the text of the entry.

2.2 Principles of selection

In attempting to evaluate an experimental account, we looked to see how far the following conditions were satisfied:

- The data should be given in uncorrected form. If corrections were applied by the author, the magnitude and method of correction should be stated, so that the data could be recalculated in their original form if need be.
- ii) A certain minimum of information about the experimental arrangements, test conditions and boundary conditions should be available.
- iii) The information about the boundary layer at a test station should be functionally complete.
- iv) There should be a sequence of profiles, for successive streamwise measurement stations.
- v) The upstream history of the layer should be known.

These are obvious statements of an ideal, and equally obviously there are very few experiments reported which begin to satisfy them all. If therefore we were to insist on a "full set" of measurements, there would be remarkably few entries in the catalogue. We now study the implications of each condition.

In dealing with i) there is an obvious difficulty in distinguishing between "calibration" and "correction". Whenever readings are altered to take account of phenomena not considered in the fundamental calibration procedure, as for instance wall proximity or shear corrections for a Pitot tube, it is clear that we are dealing with a correction. If however the Pitot tube is used in a very severe environment, as in the low density regions near the wall of CAT 7105, it is a moot point whether the adjustment made to the pressure recorded is a correction or a calibration. A possible criterion is to recognise adjustments as a calibration when made as the result of a subsidiary experiment covering the same range of relevant dimensionless groups as for the main tests, whether the calibration were performed by the same authors or no. On this basis we may suggest generally that adjustments to Pitot readings for wall proximity,

shear and perhaps low density are "corrections", that total temperature probes are usually "calibrated" and otherwise uncorrected, but that static pressure probes are usually used with "corrections" — for viscous interaction, low density and thermal effects — which in hypersonic flows are often more than a little speculative. If only because of the "grey area" of indecision, we have usually found that i) therefore did not as a general rule particularly affect our decision as to inclusion in the catalogue, though we may have expressed reservations in the accounts of particular entries.

Condition ii) has also not proved, generally, to be crucial. We have often had difficulty in dealing with source papers, but have usually received assistance from the authors which has made reasonably clear, for us, the nature and extent of their experiments. In one or two cases we could not decide what the author had done, but did not request that he re-write his report as we thought that, on the evidence of the first version, we were unlikely to receive much enlightenment from a revision. Such an experiment was obviously automatically excluded.

For the measurements at a station to be functionally complete, as required by iii), we would need a complete mean flow profile description, wall shear stress and heat flux values, profiles of fluctuation quantities, and a substantial amount of detail describing the free stream flow and the test station geometry. Thus for the mean flow profile description it must be possible to obtain or infer at least three independent property profiles, of which one, or a group, must specify the dynamic state. The usual experimental grouping obtained from measurements is the set (p_{+2}, p, T_0) but other groups are possible if density is measured optically or by electron beam, or if velocity is determined, directly by Laser-doppler-velocimeter or indirectly with a hot wire. Whatever the original grouping, there are many possible sets which may be presented in the tables available to us. Wall shear stress and heat flux values should be measured by instruments on or in the wall (floating element balances, Preston tubes, heat flux meters, steady or unsteady conduction techniques) rather than inferred from the profile measurements. It is possible in simple flow cases to make satisfactory determinations from the profiles, but in the more difficult flows, it usually becomes necessary to differentiate profile data, and it is not usually possible to do so with any precision. Without considering the need for fluctuation measurements, it can be seen already that under iii), alone, the requirements so far are so severe as to eliminate all except about 8 of our entries. If we insist on substantial fluctuation measurements we are left with one.

We have in general given preference to measurements satisfying condition iv), but it proved necessary to include a large number of single-station measurements in order to cover a wide enough range of Mach number, Reynolds number and heat transfer parameter. Some single station tests are also included as comparison cases for other experiments.

Finally we were forcad to recognise firstly that many unexplained effects in the experimental region were the consequence of the varied natures of the regions in which the test layer was formed, and secondly that it is rare for the upstream history – as a minimum, wall pressure and temperature – to be recorded. Thus condition v) is not usually observed. The obvious exceptions are the "flat plate type" flows (Category IA in the classified list of § 7.1) which in a sense have no history.

We hope that the discussion above will show that we have thought carefully about the information which is desirable - but have to recognise that we have demonstrated that it is virtually impossible for an experimental worker to satisfy our list of requirements. There is one case, CAT 7205, which does in practice fulfil our specification - but inevitably, as a consequence of the very close detail required of the study, the investigation covers a restricted range.

Our final selection has been guided by a desire to fulfil the conditions listed above. The number of experiments which on a crude marking scheme score 80 % or more is exceedingly small, so that we have drawn a majority of the entries from less "satisfactory" experiments. (We cannot overemphasise that this implies no judgement of the quality of the experiment - we refer simply to the extent to which the criteria of coverage (i) to (v), above are satisfied). We must confess that in the final result, we could not go through the list of entries and defend every one on an absolute basis.

We started by being very selective, only to find that our coverage of Mach and Reynolds number etc. was certainly inadequate if we were to show the extent of the generally successful experimental work. We were encouraged to make the scope of the catalogue as large as possible (see § 1.2 above), and partly in consequence the standards applied for entries which came late to our notice were probably less severe than those applied initially. We have also tended to give slight preference to source-papers which we believed to be difficult to obtain, or to describe experiments which were, quantitatively, unpublished. Our only certainty is that there will be just as many critics who say "why isn't X in" as there are those who say "why on earth did you include ?".

2.3 Scope of the catalogue

The general restrictions which we have observed are listed in § 2.1. Other restrictions are that this volume, with one exception, considers only experiments for which profile tabulations were available. A further limitation is that we have, in general, made no attempt either to "correct" the data, or to "uncorrect" it. We had hoped to be able to do the latter, but it proved impractical. By "correction" here we mean the adjustment of data to account for various secondary effects as discussed in connection with condition i) of § 2.2 above. We have on several occasions incorporated gross or minor textual corrections observed either by ourselves, or, after correspondence, by the authors.

The coverage in terms of the easily quantifiable variables such as Mach number, Reynolds number and heat transfer parameter (T_w/T_R) is effectively summarised in the tables of § 7 and for zero-pressure-gradient flows, in figures 6.1-3. We consider here the extent to which less quantifiable factors are covered, and concentrate firstly on the "history effects". A convenient division here is between cases in which there is "no" history in the sense that the boundary layer is formed under zero-pressure-gradient and constant wall temperature conditions, though it is still necessary to be aware of possible disturbances introduced by tripping devices, and cases in which there is a varied pressure and/or temperature history which has imprinted certain characteristics on the test layer. For a few experiments this history is either reasonably fully described or varied in a controlled manner.

The importance of the first group lies in the fact that, for the zero-pressure-gradient cases, the influence of Mach number, Reynolds number and heat transfer parameter can in some measure be studied in a "pure" form. If it is thought that these influences are reasonably well described, it is then possible to consider the effects of change of pressure gradient or wall temperature ratio in the test zone, in isolation in so far as the input layer is fully described and related to the full corpus of appropriate experimental data for zero pressure gradient layers.

Experiments of this type are listed in table 2.1. We have not limited this list to experiments described in the catalogue, as the really complex cases are so few that we feel that the free availability of numerical data is almost a secondary consideration.

Table 2.1 PRINCIPAL EXPERIMENTS WITH ZERO-PRESSURE-GRADIENT, CONSTANT TEMPERATURE UPSTREAM HISTORY
(A SELECTION)

1.	Zero	pressure	gradient	1n	test	zone

Source	MD	R THETA X 10 ⁻³	TW/TR
Coles (CAT 5301)	2-4.5	2-10	1.0
Young (CAT 6506) (uniform roughness)	5	5-13	0.6-1.0
Hastings & Sawyer (CAT 7006)	4	2-25	1.0
Peake et al. (CAT 7102)	4	10-60	1.0
Lewis et al. (CAT 7201)	4	4-13	1.0
Horstman & Owen (CAT 7205)	7.2	6-13	0.5
Watson et al. (CAT 7305)	10	1-12	1.0
Mabey et al. (CAT 7402)	2.5-4.5	5-30	1.0
Gran et al. (1974) (Temp. discontinuity)	4	?	0.5

	Source	ŀ	4D		R THETA X 10-3	TW/TR
2.	Favourable pressure gradient in test zone NONE					
з.	Adverse pressure gradient in test zone					
	Peake et al. (CAT 7102)	4	to	2	10-60	1.0
	Lewis et al. (CAT 7201)	4	to	2.4	10	1.0
	Gran et al. (1974)	4	to	2.4	?	0.5

Experiments of the second group, for which the history is in part or fully described, often constitute succeeding portions of the first. There are however a number of cases in which a boundary layer was developed on a tunnel wall under, at least partially, described conditions before reaching the test zone of interest (see CAT 7101 as an example of a case in which an unknown history leads to an experimentally described zero pressure gradient region before entering the adverse pressure gradient region which is the point of the experiment).

Table 2.2 PRINCIPAL EXPERIMENTS WITH DESCRIBED UPSTREAM HISTORY

1. Zero pressure gradient in the test zone

	Source	MD	R THETA X 10-3	TW/TR
	Gates (CAT 7301 - temperature history)	4 & 5	8 ~ 31	0.9 - 1.0
	Feller (1973 - temperature history)	6	35 - 50	0.7 - 0.8
	Hastings & Sawyer (CAT 7006 - transitio	n) 4	2 - 25	1.0
	Fischer & Maddalon (CAT 7103 - transiti	on) 6.5	0.5 - 6	1.0
	Voisinet & Lee (CAT 7202 - transition, temperature history)	5	7 - 58	0.25 - 1.0
	Watson et al. (CAT 7305 - transition)	10	1 - 13	1.0
	Moore (CAT 5805 - Step)	2 - 4	6 - 14	1.0
	Clutter & Kaups (CAT 6401 - blunt increase)	2 - 4	10 - 40	1.0
	Peake et al. (CAT 7102 - ring)	4	12 - 30	1.0
	Stone & Cary (CAT 7209 - trip)	8	6 - 10	0.8
2.	Favourable pressure gradient in the tes	t zone		
	Boldman 45 al. (CAT 6901)	0 to 4.1	3 - 12	0.6 - 0.9
	Lewis et a (CAT 7201)	2.4 to 3.7	10	1.0
	Back et al. (CAT 7207)	0 to 3.6	10	0.5, 1.1
	Voisinet & Lee (CAT 7304)	3.8 to 4.6	6 - 60	0.25 - 1.0
3.	Adverse pressure gradient in test zone			
	Stroud & Miller (CAT 6503)	5 - 8	2 - 50	0.4 - 1.0
	Zwarts (CAT 7007)	4 to 3	35 - 70	1.0
	Sturek & Danberg (CAT 7101)	3.5 to 2.8	20 - 40	1.0
	Peake et al. (CAT 7102)	4 to 2	10 - 60	1.0
	Lewis et al. (CAT 7201)	4 to 2.4	10	1.0
	Zakkay & Wang (CAT 7208)	6 to 4.6	100	0.7

Of the experiments listed in table 2.2, those performed by Boldman et al. (CAT 6901), Feller (1973), Gates (CAT 7301) and Sturek (1973 - included in CAT 7101) were specifically performed in part to investigate, and hopefully quantify, the effect of changes in the upstream wall-temperature history. All those experiments which study the "relaxation" of a constant pressure layer after a disturbance - whether a pressure gradient region, a heated or cooled wall region, or a brutal disturbance such as a step - are potentially useful "varied history" cases if measurements on an undisturbed layer with the

same free stream conditions are provided for comparison. Examples are Moore (Step - CAT 5805) Peak et al. (Ring - CAT 7102) Stone & Cary (trips - CAT 7209) and Gran et al. (1974). Some of the "described history" experiments conclude with a constant pressure relaxation region, but do not provide comparison data - e. g. Clutter & Kaups (after a blunt increase in section - CAT 6401) Zwarts (CAT 7007) and Peake et al. (CAT 7102)- both after an adverse pressure gradient region.

The final factor not covered by the lists of § 7 is the existence of fluctuation measurements. Hot-wire measurements are reported by Kistler (CAT 5803), Horstman & Owen (CAT 7205) and Laderman & Demetriades (CAT 7403). In each of these cases, the fluctuation measurements were perhaps the principal objective of the experiment. Further measurements using wedges with a hot wire leading edge, and in the same facility as CAT 7205 are reported by Mikulla & Horstman (1975), who provide a first attempt at determining the shear stress. A valuable comparison between fluctuations in zero-pressure-gradient flow and a simple-wave compression region is provided by Sturek & Danberg in CAT 7101, and very limited observations in ZPG and reflected-wave APG conditions are provided by Waltrup & Schetz (CAT 7104). In some other cases (e.g. CAT 7001/7206) hot wire measurements were made but the problems of interpretation in the hypersonic region are extremely severe, and the authors, understandably, have only reported the results in very general terms.

Approximately over the same period that the catalogue was being prepared, the "non-intrusive" fluctuation measuring instruments such as laser-doppler velocimeters and electron beams have begun to give successful results in supersonic flows. We have not yet obtained tabular information for any of these experiments but hope that both mean flow and fluctuation data obtained using these new measuring techniques may be described in a later supplement to this catalogue.

3. STRUCTURE AND CONTENT OF A CATALOGUE ENTRY

3.1 Large scale structure

An entry is composed of three or sometimes four principal sections. These are:

- SECTION A. Description of the experiment and outline of data reduction procedures. This is concluded by the final subsection "Editors' comments" which is enlarged upon in § 4 below.
- SECTION 8. Tables of profile boundary conditions and evaluated data. We list here the controlling parameters, and such calculated quantities as integral thicknesses, for all the profiles we have processed.
- SECTION C. Tables of profile data. In the printed form of the catalogue, we present detailed tables for <u>selected profiles</u>. The total number is such that it is not practical to print the profiles in full. A <u>full tabulation</u> is however given in the attached microfiche, and the complete data are also available on magnetic tape (see the Foreword).
- SECTION D. Tables of additional data which for one reason or another do not fit into the computer processing scheme. These are, in general, printed at the end of the entry, but will sometimes appear at the end of section A, for space-saving reasons.

3.2 List of marginal indexing marks for Section A

We have attempted to standardise our descriptions, so that in general the sequence of points discussed is common to all entries. Inevitably we have found it impossible to be completely consistent in this, but the intention is to present the features of the experiment in the order below. The subsections may, however, appear in any order, or the topic in question may crop up in several places. Accordingly, we have arranged that index marks should be printed in the left hand margin opposite that section of the text concerned with the headings as listed. We suggest that the reader should use a photocopy of the list as a key when reading the entries. The normal sequence is:

- 1. Description of test section
- 2. Flow quality
- 3. Observations of transition and tripping devices (trips)
- 4. Upstream history of the test boundary layer
- 5. Measures taken to test for, or ensure, two-dimensional flow
- 6. Measurements at the test-surface (wall measurements)
- 7. Probes used for boundary-layer traverses
- 8. Relative positions of measurement stations
- 9. Authors' interpolation procedures and assumptions
- 10. Corrections to the profile data
- 11. Viscosity law assumed by the authors
- 12. Editors' assumptions and interpolation procedures. Selection of data.
- 13. Profiles presented
- 14. Wall data presented
- § Data summary
- 15. Editors' comments.

The subheadings are discussed individually in § 3.4 below, where they are indicated by their index marks in the same way as in the entries.

3.3 Recognition panel

Section A, the description, is headed by a standardised "recognition panel" laid out in semi-tabular form. An example is given here:

Panel (a) in the top right hand corner contains the entry identification. Each individual profile is specified by an 8-digit number such as 72 01 01 02. This is composed as follows:

72	01	01	02
Year of publication	Serial no. Within year	Serial no. of sequence	Serial no. of profile

An entry is specified by the first four digits alone as in this case

"72 01" The first source processed which was published in 1972.

The third pair of digits specify the sequence of profiles in question, which usually consists of a set of profiles for successive streamwise values of X and broadly the same tunnel reservoir conditions. This is not always the case, as we have sometimes followed other schemes, whether for our own convenience or because there is some other rational method of grouping the profiles (e.g. CAT 5804).

The fourth pair of digits gives the position of the profile in the sequence.

The panel just below, (b), contains a number of abbreviations indicating the general nature of the test e.g. Z (A, F, V) PG - AW - MHT - SHT.

i.e. Zero (adverse, favourable, varied) pressure gradient - adiabatic wall - moderate heat transfer - severe heat transfer.

Brackets round the abbreviation imply that the appropriate comment should be given relatively less weight. Thus in CAT 7201, the main ZPG - APG - FPG sequence is supported by some additional ZPG data.

Panel (c) in the top left hand corner shows a sketch of the geometry of the test section. We have made no attempt to represent the proportions of the test area - the sketch is intended only to give an instant impression of the nature of the experiment. The actual test stations are indicated by asterisks, arrows, or if there are several stations, by a line parallel to the test surface.

The central panel at the top, (d), outlines the principal dimensionless parameters of the test. The values are only approximate, the precise data being given as a table in section B. The Reynolds number selected for this rapid assessment panel is that based on free-stream properties and momentum thickness, as it was felt that this, whilst not necessarily the most important, would be that most readily interpreted by the greatest number of users.

The panel below, (e), gives an indication of the type of tunnel and the test conditions. Where the tests were made on one of the tunnel walls, the "width" W refers to the test wall, regardless of the vertical orientation of the test section. Again, numerical values are approximate and the user should refer to subheading 1 below and the tabulated data of section 8.

The bottom panel (f) gives, in full, a reference to what was, for us, the principal source. This is usually a source with full data tabulation, but in many cases we received the data as a private communication. Supporting references are given only by author / year, and are given in full in the reference list. We have used many of these to fill out the description, and frequently users will find some of these supporting sources more readily accessible, though possibly lacking some tabulated data. We have tried to adopt the convention that the use of the word and - underlined - implies that that source was essential for the completion of the entry, while if we write also, the sources in question are alternatives, or contain comment or an extension of the experiment under consideration.

3.4 Description of the experiment

The index marks to the left of the text in this section are those listed in § 3.2 above, and used throughout the entries. We here discuss the content of each subsection, and define the abbreviations used. Throughout, the mark (E) implies that the figure given or statement made represents an estimate by the editors.

- Description of test section: A general description of the means by which the test flow was produced and observed. The geometry and dimensions of the section are specified where possible, frequently with the aid of the authors' tabulations, and include a statement of the zero for the longitudinal coordinate X. The start of the actual test-measurement area is specified and the way in which probes and other instruments were inserted in the flow. An author's description of a flow region as, for example, "uniform flow" had to be accepted. The wall roughness and waviness are given when known.
- 2 Flow quality: The authors' statement of the uniformity of the test flow in the free stream.
- 3 <u>Transition:</u> Description of the means, if any, used to force transition, and of any tests made by the authors to confirm the fully turbulent nature of the boundary layer.
- 4 <u>Upstream history:</u> Description of the mean-pressure history and wall-temperature history of the flow upstream of the test area, supported or replaced by authors' tables where possible. Also any other upstream information such as a selection of incomplete upstream profile data.
- 5 Tests for two-dimensionality of the boundary layer: Authors' statement, or description of any tests made to check the uniformity of the boundary layer in the crossflow (Z) direction:
- 6 Wall measurements: Nature of and means used to determine quantities at measuring stations fixed in the wall. The sequence and abbreviations used are:
 - PW Wall static-pressure holes with dimensions if possible.
 - TW Wall temperature sensors.
 - TAUW Skin-friction measuring devices such as floating element balances (FEB), Preston tubes, or other surface Pitot tubes such as Stanton tubes.
 - Q Wall heat-flux sensors.
- Probes employed: A description of the sensing devices used for boundary-layer profiles. Where the probes are of the more usual patterns the principal dimensions may be given in a table. In other cases they will usually be described in the sequence below, which is here used to define the geometry and dimensions of the "normal" types.

TTP - Total temperature probes

<u>STP</u> - Stagnation temperature probe of the vented Pitot family. A thermocouple is placed in a vented cavity sensing the air temperature at low velocity after a nominally adiabatic compression. Symbols used for the dimensions are d_1 = outside diameter, d_2 = inside diameter of opening, l = longth of parallel or near-parallel section.

ECP (equilibrum cone probe) - equilibrum temperature probe in which the tip of the probe is thermally isolated from the support. A thermocouple records the equilibrum temperature of the isolated tip.

Symbols used for the dimensions are:

- α cone semi-included angle
- d₁ base diameter of cone
- do diameter of support
- 1 length of cone support

- <u>FWP</u> fine wire probe in which a thermocouple junction at the centre of a fine wire, set normal to the mean flow, records the equilibrum temperature of the wire. The dimensions given are d the wire diameter, b the length of the fine wire, and 1 the length of the slender supports for the wire. Where possible the thermocouple materials are stated.
- TPP Total pressure (Pitot) probes
- $\overline{ ext{CPP}}$ circular Pitot probe. The symbols used are $ext{d}_1$ the outside diameter, $ext{d}_2$ the inside diameter
- and 1 the length of the parallel or slender section of the probe.
- $\overline{\text{FPP}}$ flattened Pitot probe. The symbols used are h_1 the overall height, h_2 the height of the opening and 1 the length of the slender portion of the probe.
- SPP Static pressure probes
- CCP cone-cylinder probe. The symbols used are α cone semi-angle, d cylinder diameter, l_1 distance from cone tip to static holes, θ the angle between static holes, and l the length of the cylinder.
- HWP Hot wire probes, CC constant current or CT constant temperature.
- 8 Relative position of measuring stations: The number and longitudinal position of the profile measurements is given first. The X value is to an arbitrary local co-ordinate zero, usually on the centre line and at the X value of the tip of the Pitot probe used. A tabular presentation of the X and Z values, relative to this local zero, may follow for the measuring stations of, in order, PO_P TAU, Q, PW, TW, TO, P. The last two entries refer to total temperature and static pressure profiles, and an additional entry Δ Y may be given indicating the relative position of the probes normal to the wall.
- 9 <u>Interpolation procedures and assumptions used by the authors.</u> Notes on the means used by the authors to reduce measured data obtained from a number of neighbouring stations to equivalent, presented, data for a single X Z station. Authors' assumptions in data reduction.
- 10 Corrections applied to profile data: Corrections for low local Reynolds number, rarefied gas, shear-displacement and wall-proximity effects may be applied to measured probe data. A general description of these is given, with, where possible, an indication of the order of magnitude involved.
- 11 <u>Viscosity law assumed:</u> The viscosity law used by the authors. The most commonly used expression is "Sutherland's law", but at the low temperatures which are found in the free stream of hypersonic test flows, this may be substantially in error. In comparing published R THETA values with those given in section B, readers should bear in mind that we have evaluated viscosity as described in subsection 5.1.
- Selection of data and assumptions used by the editors: A source will often present redundant data. The profile data selected for computation are listed in the computer printout, but any special difficulties or procedures are remarked here, as are any assumptions introduced by the editors in processing the data.
- Profiles presented: For the simpler cases, a general description of the sets of profiles which are tabulated. Where it is more convenient, a table may be used to show which governing variables have been changed. The accent is on the gross differences between sequences, as all relevant variables are tabulated in Section B. In describing a sequence, the abbreviation NX refers to the number of successive X-stations.
- 14 <u>Wall data presented:</u> An account of the wall data in the tables and a note of any procedure used by the editors to relate the profiles to such information.
- 5 DATA: The description will finish with a straightforward listing of the terminal profile numbers of the data sets, and an abbreviated description of their nature. We list here only measured data wall data deduced from the profiles do not qualify.
- 15 Editors' comments: In § 1 14 we have tried to avoid making any statements which we could not support by appeal to the source, or correspondence with the author. Here we remove that restriction and comment on the experiment, incorporating our own prejudices. Some of the recurrent themes are discussed in § 4 below.

3.5 Section B - Tables of profile boundary conditions and evaluated data.

The heading of a page in this section is arranged so:

RUN	MD *	TW/TR	RED2W	CF *	H12	H12K	PW	PD
χ *	POD *	PW/PD *	RED2D	CQ *	H32	H32K	TW *	TD
RZ *	TOD *	SW *	D2	PI2	H42	D2K	UD	TR

An asterisk against a quantity in the heading indicates that it was one of the input values.

The symbols are defined in the list of symbols (v) and/or in the list of abbreviations (iv) so that only the less usual quantities are remarked here.

RUN. - is the full 8-digit identification of the profile.

The "D" state is the arbitrary boundary layer edge state.

- SW the nominal value of $(\partial\theta/\partial x)/(\partial\nu/\partial x)$, where θ is the flow inclination and ν the Prandtl-Meyer angle, is a number indicating the relative importance of simple waves (curvature) and reflected waves in a pressure gradient.
- CQ is a heat transfer coefficient. We give heat transfer data as the coefficient $\mathring{q}_{W}/(\rho_{\delta} \ c_{p} \ U_{\delta} \ T_{O\delta})$. We have preferred this form to the rather commonly met Stanton number as the value of the latter depends on the value of the recovery temperature assumed. Except in ideal conditions it is not possible to evaluate the recovery temperature with any certainty. Users may form their own heat transfer coefficient as they wish from the value of CQ.
- PI2 is the pressure gradient parameter $(\delta_2/\tau_{\rm W})$ ($\partial p/\partial x$), where δ_2 is the momentum defect thickness. This has usually been obtained by manual interpolation and/or differentation and so is not to be regarded as being a precise value.

H42 - is the ratio of the total enthalpy defect thickness to δ_2 .

K - indicates an "incompressible" or "kinematic" integral quantity

RZ - INFINITE - implies a nominally planar flow.

HM - means "not measured" or "not available".

NC - means "not calculated", though the necessary information is available.

3.6 Evaluated data using a pressure-based reference flow.

In § 4.6 we give a brief account of the causes of normal pressure gradients in high-speed boundary-layers. The effect results in the main from streamline curvature, but whatever the cause, the normal definitions of boundary-layer integral thicknesses break down in the presence of a significant pressure gradient. The difficulty is best illustrated by an example, and we derive here a "true" value of the displacement thickness for a flow with streamline curvature.

We suppose that we have a known supersonic flow outside an axisymmetric boundary layer. We define the transverse curvature of the wall, RZ, written as R below, as positive for an external flow and negative for internal flows such as nozzles. Then an inviscid flow field can be calculated by the method of characteristics which in principle is determinate and fills the whole space occupied by the boundary layer, though possibly the wall may not be a stream surface of this flow. We will see below that it is only the outer part of this region which is important. We will call this flow the reference flow, and denote its local density and velocity values by p' and U'.

We then define the displacement surface as a stream surface of this reference flow, such that the mass flow between any surface in the free stream and the displacement surface is equal to the mass flow in the real viscous flow contained by the chosen free stream surface and the wall. This is in essence the normal definition, and gives the equation:

$$\int_0^h \rho U (R + y \cos \alpha) dy = \int_{8\pi}^h \rho' U' (R + y \cos \alpha) dy$$
 (3.6.1)

where h is a value of y greater than the boundary layer thickness, α is the inclination of the wall

surface to the axis and δ^* is the distance of the displacement surface from the wall. From this it can be seen that values of ρ' and U' for $y < \delta^*$ do not affect the result. The equation can be rearranged as

$$\int_{0}^{4\pi} \rho' \ U' \ (1 + \frac{y \cos \alpha}{R}) \ dy = \int_{0}^{h} \ (\rho' \ U' - \rho \ U) \ (1 + \frac{y \cos \alpha}{R}) \ dy$$
 (3.6.2)

If there is no normal pressure gradient, $\rho'U'$ are constant at the free stream value and the equation reduces to

$$\delta^{*} + \frac{\delta^{*} 2 \cos \alpha}{2 R} = \int_{0}^{h} (1 - \frac{p}{\rho} \frac{U}{U^{*}}) (1 + \frac{y \cos \alpha}{R}) dy$$
 (3.6.3)

which corresponds to the normal definition but taking full account of transverse curvature. [In a hypersonic nozzle flow, δ^N may be of order 0.5 R so that the second term becomes significant. The only catalogue entry for which the authors took full account of transverse curvature is CAT 7206 - Kemp & Owen. They solve the quadratic (3.6.3) for δ^P , but the resulting defining equation appears very unfamiliar (see eqn. 5.13) when compared with the usual planar definition. We have therefore left eqn. (3.6.3) as it stands. Kemp & Owen, however, have not taken account of the strong normal pressure gradient effects in their experiment, as a result of which ρ^* would vary by as much as a factor of two, so that a proper calculation would require the use of eqn. (3.6.2).]

When ρ' , U' are not constant, it becomes necessary to solve for δ^* as a limit in the original form of equations (3.6.1/2). The values of ρ' , U' for $y < \delta^*$ do not affect the answer, but we do not know the value of δ^* until we have completed the calculation.

Once the δ^* -surface has been found, it is possible to define rational defect-thicknesses for momentum, kinetic energy and total enthalpy by finding the difference between the flux of the quantity in question in the reference flow, as bounded by the δ^* -surface, and the actual flow as bounded by the wall. We have not done this here as we are still working on the interpretation of data in this form.

In all the foregoing, it has been assumed that the property values of the reference flow, ρ' , l', l' etc. were known. This is usually not the case, and it becomes necessary to deduce, so far as possible, the property values from the experimental results in the boundary layer. We have adopted the device of assuming that the reference flow is adequately represented by an isentropic flow which expands from the free stream reservoir pressure to the local static pressure in the boundary layer. This amounts to the assumption that the isobars in the boundary layer represent an extension of the isobars of the free stream as they would be extended in an inviscid flow. The simple wave data we have inspected in detail so far (CAT 7101, Sturek & Danberg, CAT 7105, Beckwith et al., CAT 7001, Fischer et al.) suggest that the free stream pressure distribution can be extended in to the δ^{M} -surface without introducing too great error. Within that surface, the differences between a pressure based reference flow and an extended characteristics calculation will become large, but in principle this does not matter if proper integral thickness definitions are used. There is a detailed examination of the influence of the boundary layer on the wave structure associated with pressure gradients in the papers by Myring (1968) and Myring & Young (1968). Their analysis suggests that the isobars in the boundary layer will, in a simple wave, lie close to the local Mach lines, and this leads to broadly the same conclusions.

We have therefore presented, where appropriate, a value of $6^{\rm M}$, D STAR, calculated from eqn. (3.6.2) using the pressure based reference flow as an approximation to ρ^+ U' (eqn. 3.7.5). Properties and quantities so derived are marked by a subscript ρ^- as ρ^-_p Up. Because of a remaining uncertainty as to the proper scaling variables to use for definitions of the defect thicknesses, we have not here presented equivalent calculations for momentum thickness, etc. We have however calculated improperly defined quantities which are, ostensibly, in some measure equivalent. The main justification for this is that these integral quantities are in use (see the source papers of CAT 6401/6503/7001/7101/7304 and McLafferty & Barber (1959, 1962), Kepler & O'Brien (1962), Hoydysh & Zakkay (1969) for various approaches to the problem). Their principal virtue is that the values of the integrals in question are insensitive to the choice of the boundary layer edge point, but since the reference flow in all cases extends to the wall rather than the displacement surface, they tend to overestimate the defect of momentum or energy flux.

The integral quantities in question are listed in an addition to the tables of Section B, the table heading appearing so:

RUN D2PD H12PD H32PD H42PD RED2PDD RED2PDW D STAR D2PW H12PW H32PW H42PW RED2PWD RED2PWW

The defining integrals are listed in § 3.7, and the manner of forming the Reynolds numbers is indicated by the last letter, as for the two forms of RED2 in the main tables. We have introduced a $\delta_n^{\ 2}/2R$ term on the left hand side of the defining equations (3.7.6-9) in an attempt to allow for the axisymmetric correction represented by the $\delta^{4\ 2}/2R$ term in equation (3.6.3), for the constant pressure case. Further work is needed, however, before it is safe to conclude that this is a reasonable procedure in the normal pressure-gradient case.

A comparison of the value of D STAR with the value of D1 from the main tabulation will give an estimate of the significance of normal pressure gradient effects.

3.7 Defining equations for integral thicknesses

i) Thicknesses appearing in, or implicit in, the main tables of Section B.

The defining equations take full account of axisymmetry, but it is assumed that the inclination of the test surface, α , to the axis is small enough for $\cos \alpha$ to be taken as 1 without introducing significant error.

The reference flow properties are assumed constant and set equal to the properties at the D-state point, indicated by subscript δ .

Displacement thickness D1 or δ_1 , or (δ^{N})

$$\delta_1 + \frac{\delta_1^2}{2R_z} = \int_0^\delta (1 - \frac{p}{\rho_\delta U_\delta}) (1 + \frac{y}{R_z}) dy$$
 (3.7.1)

Momentum defect thickness D2 or δ_2 or (0)

$$\delta_2 + \frac{\delta_2^2}{2 R_z} = \int_0^{\delta} \frac{\rho}{\rho_{\delta} U_{\delta}} \frac{U}{(1 - \frac{U}{U_{\delta}})} (1 + \frac{y}{R_z}) dy$$
 (3.7.2)

Kinetic energy defect thickness D3 or δ_3 or (ϵ)

$$\delta_3 + \frac{\delta_3^2}{2R_z} - \int_0^6 \frac{\rho}{\rho_\delta U_\delta} \left(1 - \frac{U^2}{U_\delta^2}\right) \left(1 + \frac{y}{R_z}\right) dy$$
 (3.7.3)

Total enthalpy defect thickness D4 or δ_4 or (δ_H)

$$\delta_4 + \frac{\delta_4^2}{2R_2} = \int_0^5 \frac{\rho U}{\rho_5 U_5} \left(1 - \frac{T_0}{T_{05}}\right) \left(1 + \frac{y}{R_2}\right) dy$$
 (3.7.4)

(Here as elsewhere in the catalogue, the fluid is assumed to be a perfect gas, so that the total enthalpy is $c_{\rm p} T_{\rm o}$)

The transverse body radius RZ is defined as positive for external, negative for internal, flows. The "Kinetic" integral thicknesses D1K ~ D3K are defined by the above equations but with the density ratio $\rho/\rho_{\rm g}$ set equal to one throughout.

The values of D1, D3, D4, D1K, D3K are not printed explicitly, but are given by the shape factors H12 (= D1/D2), H12K (= D1K/D2K) etc.

(11) The "true" displacement thickness D STAR as defined in § 3.6. Here full account is taken of axisymmetry except that $\cos \alpha$ is again taken as one.

The reference flow, p'U' etc., is calculated on the assumption, discussed in § 3.6, that the pressure-based reference flow adequately represents an extension of the free stream flow for $y > \delta^2$. The property

values are calculated assuming that the reference flow has expanded isentropically from the free stream reservoir state, assumed constant, to the local measured static pressure. Values so calculated are written $\rho_{\rm D}$, $U_{\rm D}$ etc.

The displacement thickness D STAR or δ^* is then found by interpolation between the experimental steps in y from the equation:

$$\int_{0}^{\delta^{+}} \rho_{p} U_{p} \left(1 + \frac{y}{Rz}\right) dy = \int_{0}^{\delta} \left(\rho_{p} U_{p} - \rho U\right) \left(1 + \frac{y}{Rz}\right) dy$$
 (3.7.5)

(iii) Other integral quantities calculated using the pressure-based reference flow.

These are integral thicknesses used by various authors on the grounds that in the absence of a normal pressure gradient they reduce to the constant reference flow expressions (3.7.1 - 3.7.4). They are so formulated that it is not necessary to specify a D-state, so long as the D point is at sufficiently large y.

We have included the transverse curvature correction term in the integrals, and introduced a $\delta_n^2/2R_z$ term on the left hand side as an approximation corresponding to the correct term which appears for the constant pressure case in equations (3.7.1-4). Equation (3.7.5) reduces to (3.7.1) if ρ_p , U_p are constant, but the quantities listed here do not retain their supposed physical significance, and we have not felt therefore that it was worthwile to refine the definitions further until we have fully analysed their meanings.

The definitions require scaling quantities, which may be evaluated at the wall or at the edge point. These are properties of the pressure-based reference flow, and are indicated by double subscripts. Thus U_{pw} and $U_{p\phi}$ are the velocities of the reference flow at the wall and at the boundary layer edge.

DIP has certain likenesses to the displacement thickness

$$(\rho U)_{pN}(D1PW + \frac{(D1PW)^2}{2R_z}) = (\rho U)_{p\delta} (D1PD + \frac{(D1PD)^2}{2R_z}) = \int_{0}^{\infty} (\rho_p U_p - \rho U) (1 + \frac{y}{R_z}) dy$$
 (3.7.6)

D2P is related to the momentum defect thickness

$$(\rho U)_{pW}^{2}(D2PW + \frac{(D2PW)^{2}}{2R_{z}}) = (\rho U^{2})_{p\delta}(D2PD + \frac{(D2PD)^{2}}{2R_{z}}) = \int_{0}^{\delta} \rho U(U_{p} - U)(1 + \frac{y}{R_{z}}) dy$$
 (3.7.7)

D3P is related to the kinetic energy defect thickness

$$(\rho U^3)_{pW}(D3PW + \frac{(D3PW)^2}{2R_z}) = (\rho U^3)_{p\delta}(D3PD + \frac{(D3PD)^2}{2R_z}) = \int_0^{\delta} \rho U (U_p^2 - U^2) (1 + \frac{V}{R_z}) dy$$
 (3.7.8)

D4P is related to the total enthalpy defect thickness

$$(\rho U T_0)_{pw} (04PW + \frac{(04PW)^2}{2R_z}) = (\rho U T_0)_{po} (04PD + \frac{(04PD)^2}{2R_z}) = \int_0^{\delta} \rho U (T_{op} - T_o) (1 + \frac{Y}{R_z}) dy$$
 (3.7.9)

(Note - $T_{op} = T_{o\delta}$ and is constant, so that D4PD = D4)

3.8 Section C. Tables of Profile Data

The printed tables associated with the entries provide only a sample of the total data collection, the full tables being given in the accompanying microfiche, and also recorded on magnetic tape. For access to the removed data bank, please follow the instructions given in the Foreword (iii).

Each profile is headed by the full 8-digit profile identity, and the data tabulated are:

I. Y, PT2/P. P/PD, T0/T0D, M/MD, U/UD, T/TD,(R0/R0D) (U/U0)

I is the Y-station identity.

The next four columns represent the quantities most likely to be obtained fairly directly from experimental work, while the last five, with P/PD, are generally the most useful for analysis.

At the foot of each profile table there is a short statement listing the variables used as input to the programme and the assumptions made in completing the table. The remark "van Driest" means that the temperature distribution T/TD was determined according to a temperature-velocity relationship, given in subsection 5.3. If there is a remark "trapezoidal rule" the characteristic boundary layer thicknesses were calculated according to this integration procedure.

Instructions for handling the data as recorded on magnetic tape will accompany any copy that is made.

3.9 Section D. Supplementary data

A source often provides additional data which cannot be presented as part of sections B and C. Typically, this might be skin friction or heat transfer data for X-values other than those of the profiles, additional temperature probe data, or tables of fluctuation quantities. It will frequently be presented as a facsimile of the tables in the source when it will bear a label:

FACSIMILE FROM SOURCE PAPER - NB - AUTHORS' SYMBOLS AND UNITS.

The symbols and units will be defined, where appropriate, either on a heading page, or by superposed notes on the facsimile. The tables of this section will usually appear last, but occasionally, for printing reasons, will be attached to section A.

3.10 Closing remarks

We have tried to produce a standardised method of description which is nevertheless sufficiently flexible to cover most boundary layer investigations. We cannot claim that our format is a complete answer to the problem, but would implore any reader of these notes to make sure that any report he publishes should at least provide answers to the questions implied by 1 - 11 of Section A (§ 3.4). Ideally we would like writers to follow our own system, at least in indexing the material points as we have. Since the key numbers do not have to appear in sequence, any number may be added!

We also feel that marely to have provided data for sixty experiments in the same form allows us to make a general appeal to experimenters who are processing data. We beg any worker in the field to keep permanently, or to ensure that some agency keeps, a functionally complete record of his data, preferably in computer-digestible form, and preferably in a form consistent with that used here.

4. GENERAL POINTS IN THE "EDITORS' COMMENTS"

The description of the experiment which forms section A of each entry is concluded by § 15 - the "Editors' comments". Any user reading through these in rapid succession will soon realise that not only is there a large measure of repetition in these comments, but that we have tended to emphasise some features which interest us particularly, or which have caused us trouble in the overall presentation of the data. A reader will also note that we have introduced a certain amount of our own jargon, and that this is used not only in § 15 but appears frequently in the main body of Section A. The remarks made here are intended to enlarge upon, and explain, our preoccupations.

4.1 Remarks relating to the "quality" of the data

We obviously feel that we should, where appropriate, make general observations on the "quality" of the data. In a field for which experimental methods so often require the use of (sometimes complex) calibration procedures, it would be a brave man who commented too severely on any possible systematic errors. We would merely remark that the likely accuracy of any measurement, other than Pitot and wall static measurements in not-too-severe conditions, is very much less than the attainable precision or repeatability. We have not therefore made any assessment of quality on the basis of our appreciation of the likely error margin of the instrumentation used, but rather have inspected the evidence available to us in the form of automatically printed graphs of the velocity profiles in transformed coordinates. Regardless of the geometry, thermal state, and history of the test layer, these were prepared using a slightly modified Van Driest (1951) transformation, according to Fernholz (1969) and compared to the law of the wall, with the constants after Coles (1956) and the outer region correlation of Fernholz (1969). Where no CF value was given, we used an empirical correlation based on that reported in Fernholz (1971). On the evidence of these graphs we have felt free to comment on the degree of scatter visible in the profiles, and also, when the governing conditions were appropriate, on the extent to which the data matched our expectations in such features as the extent and slope of the log-law and the size of the "wake component" in the outer region.

The amount of data for each profile also contributes to the "quality". In general we feel that a profile should be described by at least 20-30 points, and have commented if the data fall "short" of this. But even this comment may not be sufficient for the reader since it does not say whether the data is spread evenly across the boundary layer or - as is often the case - is obtained mostly in the outer layer. If the data show very little scatter, the number of points is of less importance, but an even distribution is important.

4.2 Reliability of fitegral values

We have regularly commented on the relation of the innermost data point to the "momentum deficit peak". The integrands of D2, D3 and D4 all display a maximum, which may occur very close to the wall. If the data points do not describe this maximum, or "peak", it is not possible to evaluate the integral with much confidence, and the user should not place too great emphasis on the numerical values given in the tables of section B.

It is, in fact, very common for data to be defective in this particular. When considering older sources for which the evaluation of data was made by hand, this difficulty was probably overcome by a reasoned filling-in of the data near the wall. Later data, evaluated by computer, may or may not have had an inner region interpolated. In some cases we have found noticeable differences between the authors' D2 values and our own, which we have provisionally assigned to this cause, but since in general the source papers do not describe the integration procedure used, we cannot be certain. We have not performed any such inner region patching ourselves, as we feel that the way in which it is done must depend strongly on the preconceptions of the person doing it. Some further remarks about integration procedures and the experience we have had with them will be found in chapter 5.

4.3 Temperature values near the wall

In most experiments where total temperature measurements are made, the temperature probe is physically

much larger than the Pitot probe, so that Pitot data are available in a region next to the wall for which there are no temperature measurements. In general, the experimental worker reduces data in this region with an inter-/extrapolated temperature value, but does not necessarily report the method used. If the total temperature distribution is extended to meet the wall temperature, the resultant error is unlikely to be serious unless the wall is very strongly cooled. Interpolations based on static temperature, and extrapolations made with no matching to the wall temperature are likely to be much less reliable.

We are aware that we have not checked every entry to see whether interpolation has taken place, and would recommend that any user intending to refine arguments on the details of the temperature distribution close to the wall should compare the lower values of y with the radius or half-height of the temperature probe used.

A commonly presented temperature-velocity correlation, in which (TO-TW)/(TOD-TW) is plotted against U/UD, is particularly sensitive to small variations of temperature near the wall, so that caution should be exercised in drawing conclusions as to the significance of apparently widely different temperature-velocity relationships, particularly for experiments in which heat-transfer was not severe.

4.4 Wall data deduced from profile data

We have on a number of occasions presented values of CF and/or CQ as deduced by the authors from the profile data. We would like to emphasise here, as we have intermittently in § 15, that we do not regard such values as data. In the absence of measured values, we feel that there is a justification for giving such deduced wall coefficients, as they are often required for theoretical developments. If the value presented is derived from a profile gradient very close to the wall, it is inherently exceedingly unreliable. If it is deduced by matching the whole profile to, for instance, a transformed version of the Coles' wall and wake law, the degree of fit can be stated statistically, but the reliability of the numerical value is only as good as the assumption that the wall- and wake-law description applies, and applies with the "universal" log-law constants in the particular circumstances of the experiment.

4.5 The boundary layer edge

The selection of a "D-state" point, which is then treated as the boundary layer edge state, will be discussed in the forthcoming commentary volume. A preliminary discussion may be found in Fernholz & Finley (1976). The variation of flow properties near the boundary layer edge may result from either the (asymptotically vanishing) influence of the boundary layer itself, or from variations of the free-stream flow, most obviously manifest as normal pressure gradients. In general the point selected is arbitrary, and the criteria used to guide selection are so various as to permit of variations in the Y-position of the D-point of 60 % or more. Where we feel this might have a real significance, as for instance for the experiments including fluctuation measurements (CAT 5803/7205/7403) we have commented on it in § 15. For the entries as a whole, we have followed no particular rules. If the author appears to have made a self-consistent D-point-selection, we have usually accepted it. If we have taken special measures (c.f. CAT 5901) we have remarked on them in § 12. We have throughout been guided in our action by a calculation of the local value of the total pressure, and would recommend, for future use, that the D-point be set at the Y-value for which (PO-P) = 0.99 (POE-P). For low speeds, this is the U_{995} point, while at hypersonic speeds it reduces, effectively, to the point where PO = 0.99 POE.

4.6 Normal pressure gradients

In § 6 below, we describe how the entries have been classified on the basis of the local pressure gradient. We place particular emphasis on the existence, or otherwise, of a gradient normal to the wall. If such a gradient is at all marked, then it becomes very difficult to make any rational calculation of the integral thicknesses or to decide where the boundary layer edge is. (See the discussion of D STAR in § 3.6 above, and the initial treatment of the problem in Fernholz & Finley, 1976.) We therefore distinguish between the types of pressure gradient which are observed on the basis of their origin and mode of propagation.

Normal pressure gradient effects may result from:

i) <u>Wall curvature</u>, so that the mean flow streamlines are curved and a normal pressure gradient is required to provide the centripetal acceleration. Typical cases are the two-dimensional ramp flow of Sturek & Danberg (CAT 7101) or the various contoured nozzle experiments (CAT 7001/7105/7206). The strength of the normal component is given approximately by

$$(\partial p/\partial y) \approx \frac{1}{2} (M^2 - 1)^{1/2} (\partial p/\partial x)$$
 (4.1)

and in an ideal flow the effect propagates as a <u>simple wave</u>. The isobars are the local Mach lines (Prandtl-Meyer fan, focussed compression etc.).

ii) Streamline divergence, so that a line normal to the wall does not intersect straight streamlines away from the wall at right angles. The isobar, on the other hand, is everywhere normal to the streamlines and so curves away from the profile normal. Such a flow would be observed in a pure conical expansion when the strength of the normal pressure component in inviscid flow is given approximately by

$$(1/p) (\partial n/\partial y) \alpha - (i\gamma y/R^2) M^2 (M^2 - 1)^{-1}$$
 (4.2)

where R is the radius from the source of the conical flow, y is the distance normal to the solid surface and i is 1 for planar and 2 for axisymmetric flow. The effect corresponds to a <u>reflected</u> wave in which the isobars run through successive equally stepped right and left running characteristics.

This effect is much weaker than that caused by a simple wave, and can usually be neglected. In practical cases where the ideal flow is not purely conical, there may be a superimposed simple wave element which swamps the reflected wave pressure gradient.

iii) Normal components of the <u>Reynolds stresses</u> may become large at high Mach numbers when compared to the static pressure. The mean flow field momentum changes are then the results of a normal stress made up of comparable contributions from the static pressure and the Reynolds stress. There is little evidence which can be used to quantify the effect, but a preliminary analysis based on the results of Fischer et al. (CAT 7001) and Beckwith et al. (CAT 7105) suggests that a pressure dip may be observed in the most intensely turbulent part of the layer, of order given by

$$\Delta p/p_W \simeq 3\gamma M_{\infty}^2 c_f$$
 (4.3)

This topic will be developed further in the commentary volume.

iv) Changes in longitudinal pressure gradient can give rise to substantial normal pressure gradient effects, even on a straight wall. This is, in effect, because the pressure gradient in a reflected wave region is generated elsewhere in the flow, so that there may be substantial regions away from the straight wall in which the incident and reflected waves are simple in character. Figure 4.1 shows an ideal flow field in which expansion is reflected at a straight wall. On the wail, from a to b, there is no pressure gradient, but an expansion fan generated on the other side of the experimental channel is being propagated towards the wall, and causes a negative pressure gradient at the wall from b to c. The region bcd is a "reflected wave region" in that the normal components of the incident and reflected simple waves oppose, while their longitudinal components reinforce. Along the wall abo no normal pressure gradients would be observed in a boundary layer of infinitesimal thickness. However, a traverse made over a finite range of y at AA would be made in an exclusively simple wave region, and traverses just upstream or downstream of AA would inevitably experience simple wave effects sufficiently far from the wall. The dashed arrows show the pressure gradient vectors involved, and taking due account of the reinforcement of the lengitudinal pressure gradient in the region bed it is apparent, from equation (4.1), that the normal pressure gradient on the line AA is given by

$$(\partial p/\partial y) = 1/2 (M^2 - 1)^{1/2} (\partial p/\partial x \text{ along bc})$$
 (4.4)

Figure 4.1 Normal pressure gradient effects near a change in longitudinal pressure gradient.

5. DATA PROCESSING

Figure 5.1 shows a flow diagram of the computer programme used to handle the data. We do not claim that it is elegant, or even efficient. It has grown naturally over the years, and we have never found the time to redesign it from scratch. The first version was provided by H.J. Küster and it has been adapted to the specific needs of the various entries, improved and run by Miss C. Mohr. We have not provided here a full listing as the programme is not inherently interesting and the details should not affect users in any significant way. The editors will provide a more detailed description on request.

Fig. 5.1 Flow diagram of computer program

The purpose of the programme is to handle published data, as reduced by the original authors, and present it in standard form. In the discussion below we therefore lay most emphasis on the data input, the input of transport properties for the working gas and calculation procedures where we did anything unusual or experienced difficulties.

We use throughout this chapter the word "Kopfdaten" to describe all those quantities which in principle appear at the head of a profile table. The word is not elegant but has no short easily understood equivalent.

5.1 Properties of the working gas, recovery factors

There were only three gases used in the experiments described in the catalogue - air, nitrogen and helium. In some facilities the reservoir temperatures were high enough for the vibrational modes of the diatomic gases to become significantly excited. Very occasionally pressures were high enough for the compressibility factor (pv/RT) to depart detectably from one. In data processing we have ignored these real-gas effects and treated the working fluid as a perfect gas with constant specific heats. This may result in some falsification of the relationship between the free stream static state and the reservoir state, but will not introduce significant error in the inter-relationships between static properties and velocities etc. in the test region if the data input is selected from these variables.

The perfect gas properties assumed are:

Gas:	air	nitrogen	helium	
Gas constant R in m ² /s ² K:	287.1387	296.50	2078.739	
Specific heat ratio y:	1.40	1.40	1.667	

The transport properties were calculated after Keyes (1952) for the diatomic gases (minor constituents of air being ignored) and Neubert (1974) for helium.

For the diatomic gases the expression

$$\mu = \frac{10^{-6} a_0 T^{1/2}}{1 + a T^{-1} 10^{-a} I^{/T}} NS/m^2$$
 (5.1)

was used, where the constants and the range of validity are given as

	^A o	ā	a 1	range of validity
air:	1.488	122.1	5	79< T/K <1845
ni trogen:	1,418	116.4	5	81< T/K <1695

These relations were used also at lower temperatures down to 50 K for lack of better information. For helium the expression

$$\mu = \left[\frac{50.23 \text{ T}^{-0.647}}{2^{-1} + \text{T}^{-0.5} (\text{T}^{-0.3}) \text{ e}^{-\text{T}} \text{ }^{-\text{T}} (\text{T}^{-0.3})} + \text{e}^{-\text{T}} (61.2730\text{T}^{3} - 199.1754\text{T}^{2}) + 179.1353\text{T}^{-59.05466} \right] \times 10^{-8} \text{ NS/m}^{2}$$
(5.2)

was used, and the range of validity is 0.4 < T/K < 400.

At present it is not possible to state a recovery factor with enough confidence to take account of upstream history effects, boundary conditions or other flow parameters. We have therefore chosen to use for all experiments a recovery factor r of 0.896, though this does not imply that we necessarily believe that there will be no heat transfer at a wall which is at the recovery temperature calculated using this. The numerical value represents the cube root of the Prandtl number for eir, though a true recovery factor, if it could be defined, would of necessity be in some way a function of the shear stress distribution across the boundary layer, i. e. of the turbulence structure.

5.2 "Kopfdaten" - Boundary conditions and other evaluated data

The data quantities which we call "Kopfdaten" appear in printed tables as section 8 of each entry. They fall into three distinct groups. These are:

- a) Boundary conditions given by the authors, or calculated by us from other data given by the authors, and used by us as input for the data processing. Such quantities are marked by an asterisk in the tables.
- b) Calculated but redundant boundary values at the wall and the boundary layer edge.
- c) Characteristic boundary layer thicknesses, shape factors and Reynolds numbers RED2.

A typical input set of group (a) might consist of:

Position X, transverse radius RZ, Mach number MD, longitudinal curvature parameter SW, heat flux at the wall, which in a dimensionless form will give the coefficient CQ, static pressure at the wall PW and the boundary layer edge PD, temperature at the wall TW and at the boundary layer edge TD.

The programme then completes the calculation for the array of boundary conditions by calculating the redundant group (b) from the input values. In this case group (b) consists of:

Total pressure and temperature at the boundary layer edge POD and TOD, the recovery temperature TR, the velocity at the boundary layer edge UD and the ratios PW/PD, TW/TD.

Apart from the obvious gas-dynamic relationships, the following relations and definitions are used: Recovery temperature TR (T_{μ})

$$T_r = T_{\delta} (1 + r \frac{Y-1}{2} M_{\delta}^2)$$
 (5.3)

Heat transfer coefficient CQ (C_q)

$$C_{q} = \dot{q}_{w}/\rho_{\delta}U_{\delta}c_{p}T_{\sigma\delta} \tag{5.4}$$

Longitudinal pressure gradient parameter SW indicating the relative importance of streamline curvature - nominal value of

$$SW = (\partial Q/\partial x) / (\partial W/\partial x)$$
 (5.5)

where 0 is the inclination of the flow and v the Prandtl-Meyer angle, in principle at the boundary layer edge. In practice we have inserted nominal values of SW to indicate the importance of the simple-wave element of the pressure gradient. Thus SW = 1 for the curved wall studies, which in the test region were all either generating or cancelling a simple wave. SW was set to 0 for straight wall studies, except in one case where the pressure gradients were so severe that there was probably strong streamline curvature even within the boundary layer. For this case (CAT 7208) SW was set at 0.5.

Group (c) of the "Kopfdaten" involves the boundary layer thicknesses, and so is calculated at the end of the programme after the normalised profile data have been assembled. For cases in which transverse curvature is small $(\delta/R_z$ of order 10^{-2} or less) the definitions used are

Displacement thickness

$$\delta_1 = \int_0^{\delta} (1 - \frac{\rho U}{\rho_{\delta} U_{\delta}}) (1 + \frac{y}{R_z}) dy$$
 (5.6)

Momentum defect thickness

$$\delta_2 = \int_0^{\delta} \frac{\rho U}{\rho_{\delta} U_{\delta}} \left(1 - \frac{U}{U_{\delta}}\right) \left(1 + \frac{V}{R_z}\right) dy$$
 (5.7)

Kinetic energy defect thickness

$$\hat{c}_{3} = \int_{0}^{\delta} \frac{\rho U}{\rho_{\delta} U_{\delta}} \left[1 - \left(\frac{U}{U_{\delta}} \right)^{2} \right] \left(1 + \frac{V}{R_{Z}} \right) dy$$
 (5.8)

Enthalpy defect thickness

$$\delta_4 = \int_{-\rho_6 U_8}^{\delta} \left(1 - \frac{T_0}{T_{06}}\right) \left(1 + \frac{y}{R_z}\right) dy$$
 (5.9)

The "kinematic" integral thicknesses for which the density variation is ignored correspond to the "incompressible" definitions

$$\delta_{1K} = \int_{0}^{\delta} (1 - \frac{U}{U_{\delta}}) (1 + \frac{V}{R_{z}}) dy$$
 (5.10)

$$\delta_{2K} = \int_{0}^{\delta} \frac{U}{U_{\delta}} \left(1 - \frac{U}{U_{\delta}}\right) \left(1 + \frac{Y}{R_{z}}\right) dy$$
 (5.11)

$$\delta_{3K} = \int_{0}^{6} \frac{U}{U_{\delta}} \ \zeta^{-1} - (\frac{U}{U_{\delta}})^{2} - 7 \ (1 + \frac{\gamma}{R_{z}}) \ dy$$
 (5.12)

where, in (5.6) to (5.12) R_z is defined as positive for flow on the exterior of an axisymmetric body and as negative in an internal flow. The inclination of the surface to the axis is assumed to have negligible effect. These equations reduce to those normally used on plane walls as R_z tends to infinity.

The above definitions hold for conditions in which the assumption of a constant reference flow is appropriate, and under those conditions (see §§ 3.6, 3.7) an exact allowance can be made for the effects of transverse curvature, even when δ is of the same order as R_2 . The δ_n values calculated from equations (5.6) to (5.12) are replaced by corrected values δ_4 using the relation (cited by Kemp & Owen CAT 7206)

$$\delta_1 = -R_z \left(1 + \frac{\delta_n}{2R_z}\right)^{1/2}$$
 (5.13)

This is essentially the appropriate solution of a quadratic of the type found in equation(3.6.3) above.

It is then possible to calculate the longitudinal pressure gradient parameter PI2 (π_2)

$$\pi_2 = (\delta_2/\tau_{\omega}) \quad (dp_{\omega}/dx) \tag{5.14}$$

Although provision was made in the programme for numerical differentiation of p_{w} (x) so as to calculate π_{2} , we have found that in nearly every case a human intelligence is needed to extract sensible values. Thus we have, so far as time allowed, obtained dp_{w}/dx by plotting p (x) and estimating the gradient. Such values are therefore essentially imprecise, but more accurate than the machine-derived values.

The shape factors are then calculated as ratios of δ_1 , δ_2 etc.

$$H_{12} = \delta_1/\delta_2$$
, $H_{32} = \delta_3/\delta_2$, $H_{42} = \delta_4/\delta_2$ (5.15)

$$H_{12K} = \delta_{1K}/\delta_{2K}$$
 $H_{32K} = \delta_{3K}/\delta_{2K}$ (5.16)

and the Reynolds numbers as

$$Re_{\delta_2} = \rho_{\delta}U_{\delta} + \delta_2/\mu_W + Re_{O} = \rho_{\delta}U_{\delta} + \delta_2/\mu_{\delta}$$
 (5.17)

5.3 Profile data

Profile data reached us in many forms. The programme was designed to cope with five standard types of input, and other variations allowed for by subroutines special to each entry, or in extreme cases by conversion into a standard form using compressible flow tables and hand calculation. Most of the difficulties occured when authors had not measured a variable and stated their auxiliary assumptions verbally or in analytic form. In particular, the static pressure variation was often fictitious and for many experiments, especially the earlier ones, total temperature was not measured.

When no total temperature profile was supplied, we assumed that the velocity and temperature were related by the expression

$$\frac{T}{T_{\delta}} = \frac{T_{W}}{T_{\delta}} + \frac{T_{r} - T_{W}}{T_{\delta}} \left(\frac{U}{U_{\delta}}\right) - r \cdot \frac{Y-1}{2} M^{2}_{\delta} \left(\frac{U}{U_{\delta}}\right)^{2}$$
(5.18)

This is a modification by Walz (1966) of van Driest's (1951) expression. When used, whether introduced by ourselves or the original author, a note appears at the foot of the profile tabulation as "VAN DRIEST".

The standard forms of input were:

- 1. U/U_{δ} , T/T_{δ} , $p/p_{\delta} = 1$. Calculate M/M_{δ} and p/p_{δ} .
- 2. U/U_{δ} , $p/p_{\delta}=1$. Calculate T/T_{δ} (Van Driest) according to (5.18), M/M_{δ} and p/p_{δ} . Standard provision was made to deal with an author's set of U/U_{δ} values which had been calculated assuming that TO was constant (isoenergetic), and convert them to "Van Driest" values.
- 3. U/U_{δ} , T/T_{δ} , p/p_{δ} . Calculate M/M_{δ} and p/p_{δ} .
- 4. U/U_{g} , p/p_{g} , p/p_{g} = 1. Calculate M/M_g, T/TD.
- 5. M/M_{δ} , $p/p_{\delta} = 1$. Calculate U/U_{δ} , p/p_{δ} and T/T_{δ} (Van Driest) according to (5.18).

Profile data were normalised with the boundary layer edge or D-state values. In many cases an author's set of figures was not consistently normalised, or was normalised on an exterior flow condition which was not in fact observed. In these circumstances we required that all normalised values should be 1.0 at the D-state point.

5.4 The D-state and consistency

The boundary layer edge point is a point within the boundary layer, selected arbitrarily or by the application of an arbitrary criterion. Consequently the reservoir state of the tunnel, p_{or} , T_{or} is not the same as the total state at the D-point. In fact we recommend (§ 4.5) as an ideal definition of the D-point, that it be set where PO/POR is 0.99. In practice this will be found to lie at a much greater Y-value than, for instance, the U_{995} point, and there are other advantages which will be developed in the commentary volume.

In most cases one is not presented with data enough to compare the values of p_0 and p_{or} , but where it is possible to determine the two independently, a conflict can arise. When this happens, we have calculated p_0 from the <u>profile data</u> for the selected D-point, and readers should not expect p_{ob} to match the tunnel reservoir pressure, which as such does not appear in our tables. In most cases, however, p_{ob} has been set arbitrarily equal to p_{or} , because no other information was available.

5.5 The integration procedures

The characteristic boundary layer thicknesses δ_n were determined by one of two integration procedures: INTVAR or a trapezoidal rule. If the latter was used \sim which is the case for a relatively small number of profiles only – this is noted in the output at the end of the profile in question.

The standard integration procedure "INTVAR" consists of a Simpson type formula using a second order parabola and allowing a variable step size (Haase et al. (1973)). The accuracy of INTVAR is of the order $(h_1+h_2)^3$ (h_1-h_2) and better than that of the trapezoidal rule. The integration procedure is started at the outer edge of the boundary layer with a linear interpolation curve as the first step. This allows a better approximation for the near wall region of the integral, avoiding the disadvantages of a straight line interpolation in this region, aspecially for the many cases where the measurements do not extend within or as far in as the maximum of the integrands of δ_2 and δ_3 .

INTVAR has, however, been found to be oversensitive to two special distributions of measured data points.

Its answers cannot then be trusted and we have therefore used the trapezoidal rule in these cases. One of these is when measuring stations lie extremely close together or when data are rather erratic over adjacent small intervals. In the first case averaging of the data in question cured the problem, but in the second case the reason for the deviation from the hand calculated result could not be found. The second case for which the trapezoidal rule is superior occurs when there are large gaps between measured data points. Here again INTVAR failed. Since these error sources could not be eliminated in the short time available before the catalogue deadline, all boundary layer thicknesses were checked either against the authors' values, against those obtained by the trapezoidal rule or, in a few cases, against hand calculated data.

5.6 Integral values using a pressure-based reference flow.

In § 3.6 we have briefly outlined some of the questions which arise when it is desired to calculate integral thicknesses for boundary layers experiencing significant normal pressure gradients. The quantities which we finally chose to calculate are defined in § 3.7 by equations (3.7.5) to (3.7.9).

In order to evaluate the integrals it is necessary to calculate the properties of the pressure-based reference flow from the tunnel reservoir state and the local static pressure. When the reservoir state was stated, it was read into the programme as an extra input. More generally the data available did not distinguish between the boundary layer edge state and the reservoir state, so that \mathbf{p}_{0r} was not equal to $\mathbf{p}_{0\delta}$. The pressure based integral values were then calculated using stored profile data from the main programme.

The solution of equation(3.7.5) for D STAR was performed using a weighted interpolation between values of the integral

$$\int_{0}^{y_{p}} \rho_{p} U_{p} \left(1 + \frac{y}{R_{z}}\right) dy$$

for the four experimental values of \boldsymbol{y}_n which lay two above and two below δ^\star .

6. NATURE AND CLASSIFICATION OF DATA

6.1 General Considerations

All the data we present were obtained in wind-tunnel studies. Inevitably, therefore, the data do not fully represent the free flight situation. Some of the defects of representation are unavoidable, and result from the essential nature of tunnel tests. For instance, it seems very probable that nearly all hypersonic data are affected in some degree by a fluctuating free stream disturbance level together with a noise level, which have no analogue in free flight. In other cases, the representation is not complete for reasons which are in principle avoidable, though an attempt at proper reproduction of the intended flow would be inherently more expensive, or less convenient, than the course actually followed. A common example is the way in which constant-pressure high Reynolds number data are almost invariably obtained on tunnel side walls. The results are then presumed to describe a two-dimensional "flat-plate" boundary layer, when they must inevitably be influenced to an unknown extent by flow convergence or divergence, and by history effects inherited from the upstream region. The most obvious history effects stem from pressure gradients or wall temperature effects. It may well be valid to use the data as though these effects were negligible, but, if this be the case, some justification is desirable.

Our intention is to provide a data pool of general utility, so that the geometries described here are all, in some degree, simplifications of any "flight" or "application" situation. In selecting the data and classifying them, we need to bear this ir mind. However the data were obtained, how are they likely to be <u>used</u>?

There are two principal modes of use. On the one hand we have the application of data to design purposes, where the highest degree of accuracy, and the finast detail of description, are irrelevant, since the situation-match between the data-store and the proposed application is inevitably only approximate. On the other hand, we have the provision of precise and detailed data for clearly defined test-cases, not necessarily of any direct applicability, which display particular phenomena sufficiently clearly to allow of the development of calculation methods. In an ideal world, any given experiment serves both purposes, but experimental technique and turbulence theory are not sufficiently developed to allow of this counsel of perfection.

In general, data obtained in ad-hoc situations on complex geometries are not published, as the results are usually not scientificially sufficiently detailed to allow us to make useful comparisons, and the data are in any case likely to be restricted by the need for commercial or military secrecy. Most of the available data them are not only laboratory data, but are for very simple geometries, and this factor, together with the complications of handling and presenting three-dimensional data, provided a strong incentive to restrict the catalogue to nominally two-dimensional cases.

There are numerous, and inter-related, factors which affect the local characteristics of a two-dimensional boundary layer. We cannot say that one factor is more "important" than another, since in general importance must relate not only to the numerically observed influence of the factor, but to its likely range of variation. The following list therefore is in no particular order of importance, but does perhaps reflect the order in which we think of the factors.

The principal controlling parameters are:

- (i) The Reynolds number
- (11) The heat transfer condition
- (111) The Mach number
- (1v) The pressure gradient
- (v) The pressure and temperature history.

Of these, the first times are expressed by numerical values, which cover an essentially continuous range. It is not possible to make a distinction of type between high and low values of the quantity in question - there is a continuous gradation. We have chosen, instead, to make our classification of data on the basis, firstly, of the features of the local pressure gradient, and secondly, where, for the "zero pressure gradient" case, there is a large pool of data, on the history of the experimental boundary layer.

The classified lists of § 7 include a table giving nominal numerical values of Reynolds number, Mach number and wall temperature ratio TW/TR. The implications of classification by pressure gradient are examined below.

6.2 Classification by pressure gradient

More than half the available data describe tests made in nominally constant pressure layers (Group I) which we have subdivided firstly into cases in which the boundary layer has grown from a well-defined origin under constant pressure conditions throughout (IA). The second group (IB) contains those cases in which the layer is formed on a tunnel wall and passes through the nozzle expansion upstream of the test zone. In two cases (CAT 7202, 7301) this history is in some measure described and in one (7302) the development is so long and gradual that the boundary layer is probably fully "relaxed" so as to have the same characteristics as a flat plate layer. The experimental ranges covered by these two groups are summarised by figures 6.1 to 6.3. Cases with substantial heat transfer are relatively few, and are shown in figure 6.3. There is, in addition, a small group (IC) of cases describing the recovery of a severely disturbed layer, under local zero-pressure-gradient conditions.

The zero-pressure-gradient data form the main body of information for both the modes of use suggested in § 6.1. There is quite a wide range of available data, and it includes a few cases which have been studied in close detail - for instance CAT 7205, where the measurements fully describe the mean flow, and are supported by fluctuation measurements. Regrettably, the cases of practical interest do not generally give rise to any considerable regions of constant-pressure flow.

The pressure gradient cases have been divided on the basis of the manner in which the pressure gradient is produced. The first group (IIA) covers those flows in which a wave structure is generated somewhere else in the flow and imposed on a boundary layer flowing along a straight wall. The test layer thus passes through a "reflected wave", without significant streamline curvature. The second group (IIB) comprises those tests in which the pressure gradient is the result of streamline curvature. This is associated with a "simple wave" which may either be generated in the test-zone itself, and propagate downstream, or may be generated elsewhere and be propagated downstream so as to strike the test-zone. The wall curvature here is such as to cause the wave to be cancelled without reflection, as, for example, in the "bell" of a well designed contoured nozzle.

There is a vital physical distinction between the two cases as the curved mean flow of the simple wave cases is associated with normal pressure gradients, which at high Mach numbers become very large. There is very little available information on what effect this may have on the turbulent structure (CAT 7101 contains the only measurements of fluctuating quantities), but the effects are unlikely to be negligible. There are relatively few available accounts of simple wave flows, and this is especially unfortunate as the boundary layers on a hypervelocity vehicle will always experience locally-generated simple wave structures. The typical cases are the flow over the convex forward surface of a vehicle - a favourable pressure gradient giving rise to a generated simple wave - and the flow approaching an inlet where a concave surface gives rise to a generated simple compression wave. It seems improbable that data from reflected-wave pressure-gradient experiments can be applied very directly to these cases. Unfortunately, the reflected-wave experiments are much easier to perform.

There is a final class (IIC) intended to include cases with no longitudinal pressure gradient but a significant normal pressure gradient. Such a flow may be realised by causing an incident wave to strike a surface so contoured as to give rise, in isolation, to a generated wave of equal and opposite sign. Such an experiment has been performed (CAT 6800) and is the only case we have included in the catalogue for which no profile data is available. It is offered as a challenge to those developing calculation methods.

This classification in itself shows clearly where the caps in our experimental knowledge lie. Foundary layers with larger longitudinal pressure gradients, with varying wall temperature, along curved rells and these recovering from a strong perturbation still await exploration. In particular, it would be desirable to perform more experiments like Thomann's (CAT 6800) but on a larger scale and including profile and turbulance measurements.

Zero pressure gradient boundary layers formed under constant Nominal experimental range for group IA (adiabatic cases) pressure conditions Fig. 6.1

Zero pressure gradient boundary layers formed on windtunnel nozzle walls Nominal experimental range for group 1B (adiabatic cases) Fig. 6.2

31

Fig. 6.3 Nominal experimental range for zero pressure gradient boundary Both groups IA and IB - varied histories layers with substantial heat transfer

7. CLASSIFIED LISTS OF ENTRIES

As outlined in § 5.2 above, the principal basis of the classification is the type of pressure gradient experienced by the boundary layer in the test region. For the large class of zero- or near-zero pressure gradient flows, we have made further division between those cases in which the whole development of the boundary layer has been under zero pressure gradient conditions, and those with varied upstream histories. The pressure gradient cases are divided into reflected wave flows and simple wave flows. There are further subdivisions based on the geometry of the test zone.

The tabular information consists of nominal values of

Mach number range. For pressure gradient cases, this may be either a local value, or the free stream value.

R THETA X 10^{-3} - Reynolds number based on momentum defect thickness and boundary layer edge properties.

TW/TR - The ratio of wall temperature to a nominal adiabatic wall or recovery temperature.

TO - If total temperature profiles were obtained, the entry is marked P.

CF - Determination of wall shear stress by:

F - Floating element balance (FEB)

P - Preston tube

S - Stanton tube or surface fence

V - Deduction from the velocity profile

NX - Number of successive stations,

Measurement of heat flux (Table 7.2).

PG - Classification as in Table 7.1 (Tables 7.2, 7.3, 7.4).

Brackets round an entry imply that the information is of small quantity or questionable quality.

The tables are, in order:

- 7.1 Classification by local pressure gradient
- 7.2 Experiments with significant heat transfer
- 7.3 Listing in alphabetical order
- 7.4 Listing in numerical order

Readers wishing to selectzero pressure-gradient cases for study will find the experimental ranges of Mach number and Reynolds number displayed, approximately, in figures 6.1-3.

- Figure 6.1 Nominal experimental range for group I A (Adiabatic cases). Zero pressure-gradient boundary layers formed under constant pressure conditions
- Figure 6.2 Nominal experimental range for group I B (adiabatic cases). Zero pressure-gradient boundary layers formed on wind tunnel nozzle walls.
- Figure 6.3 Nominal experimental range for zero pressure-gradient boundary layers with significant heat-transfer. (Groups I A & I B together).

TABLE 7.1. LIST OF ENTRIES CLASSIFIED BY LOCAL PRESSURE GRADIENT

I ZERO AND NEAR ZERO PRESSURE-GRADIENT CASES

Flows for which, in principle, the pressure is constant in the test zone.

I (A) Flows with a defined leading edge or origin, developed under ZPG conditions.

		M	R THETA	TW/TR	TO	CF	NX
Type	I A 1 FLAT PLATES:		x 10 ⁻³				
5301	COLES	2-4.5	2-10	1.0	-	F	1 (2)
5501	SHUTTS et al.	1.7-2.5	6-21	1.0	-	F	3-5
5902	WINKLER & CHA	5.2	1-4.5	0.6-1.0	P	(V)	4
6201	MOORE	5	3-7	0.5-1.0	-	-	(1)
6502	MOORE & HARKNESS	2.7	60	1.0	-	F	1 (2)
6702	DANBERG	6.5	1.3-6	0.5-0.9	P	(V)	4
7006	HASTINGS & SAWYER	4	2-25	1.0	P	F/P	7
7103	FISCHER & MADDALON	6.5	0.5-6	1.0	-	•	7
7204	KEENER & HOPKINS	6.3	2-7	0.3-0.5	P	F	1
7301	GATES	4	8-31	0.9-1.0	P	-	2-3
7305	WATSON et al.	10	1-12	1.0	(P)	F	4
7402	MABEY et al.	2.5-4.5	5-30	1.0	P	F	5
I A 1	R FLAT PLATES WITH ROU	GHNESS:					
5502	SHUTTS & FENTER	2	11-40	1.0	-	F	5
5804	FENTER & LYONS	2.2/2.7	8-28	1.0	-	-	7/2
6506	YOUNG	4.9	5-13	0.6-1.0	•	F	1
I A 2	CYLINDRICAL: (e-exterio	or - i-interio	ır)				
6001e	MICHEL	1.8-2.7	2-4	1.0	-	**	7
6501e	ADCOCK et al.	6	2-15	1.0	(P)	-	7
6701e	SAMUELS et al.	6	2-15	0.4-0.5	P	-	5
71021	PEAKE et al.	4	10-60	1.0	-	p	6
72011	LEWIS et al.	4	4-13	1.0	•	V/(S)	9+
7205€	HORSTMAN & OWEN	7.2	6-13	0.5	P	F	3

(Some nose effects are possible for 7205 and probable for 6001)

I A 3 CONICAL (Divergence)

None

I (B) Flows with an uncertain origin

1	В	1	FLAT	WALLS	FACING	CONTOURED	HALF-NOZZLES
---	---	---	------	-------	--------	-----------	--------------

5803	KISTLER	1.7-4.8	30	1.0	P	٧	1
6602	JEROMIN	2.5-3.5	14-20	1.0	P	٧	10
7003	METER	1.7-3.0	4-10	0.9-1.0	P	٧	6
7202	VOISINET & LEE	4.9	7-58	0.25-1.0	P	F	5
7301	GATES	4.4-9	8-31	0.9 -1.0	P	-	25

TABLE_7.1 cont.	M	R THETA	TW/TR	TO	CF	NX
I B 2 FLAT TUNNEL WALL AFTER CUI	RVED NOZZLE SUF	RFACE				
5802 STALMACH	1.7-3.7	2-12	1.0	_	F /P	1
5805 MOORE	2-3.5	6-14	1.0	_	F	4-6
6502 MOORE & HARKNESS	2.7	180-700	1.0	_	F	3
6903 THOMKE	2~5	85~350	1.0	_	P	2
7403 LADERMAN & DEMETRIADES	9.4	40	0.4	P	٧	1
7601 VAS et al.	2.9	20-4 00	1.0	-	P	9
I B 3 CYLINDRICAL TUNNEL WALLS	AFTER NOZZLE					
7002 JONES & FELLER	5.9	8-80	0.7-0.8	Р	-	4
7203 HOPKINS & KEENER	7.2	15-55	0.3-0.5	(۶)	F	1
1 B 4 PLANE TUNNEL SIDE WALLS (NORMAL TO CURV	ED NOZZLE WA	ALLS)		•	
6505 JACKSON et al.	1.6-2.2	10-120	1.0	-	F	2
6601 HOPKINS & KEENER	2.5-3.5	50-60	1.0	-	F/P/S	1
7302 WINTER & GAUDET	0.2-2.8	10-160	1.0	P	F	1
7303 ALLEN	2-4.6	10-80	1.0		F/P	1
I (C) Flows recovering from a s	evere perturba	tion.				
5805 MOORE (STEP)	2-3.5	6-14	1.0	_	F	4-5
64D1 CLUTTER & KAUPS (BLUNT INCREASE)	2-4	10-40	1.0	P	-	5
7102 PEAKE et al. (RING)	4	10-60	1.0	-	P	6
7209 STONE & CARY (TRIPS)	7.7	6-10	0.8	P	-	2
II CLASSIFIED PRESSURE GRADIENT II (A) Reflected wave - straigh In principle, normal pressure g	t wall radients shoul		except near 1	arge chi	inges in t	he pressur
gradient, where a simple wave e	lament may be	observed.				
II A 1 PLANAR - FPG				_		4
5503 LOBB et al.	5-8	5-12	0.5-1.0	Р	(V)	1
5801 NALEID	2	10	1.0	-	F/P	(1)
6504 PASIUK et al.	1.5 to 3	2-10	0.8-1.0	P	-	9 12
6902 MICHEL	1.4 to 3	4-2	1.0		- F	5
7304 VOISINET & LEE	3.8 to 4.6		0.25-1.0 1.05	P	r S	15-18
7401 THOMAS	2.5 to 3.0	14-24	1.05	F	3	10-19
II A 2 PLANAR - APG						
5801 NALEID	2	10	1.0	-	F/P	1
7007 ZWARTS	4 to 3	35-70	1.0	-	P	20
7104 WALTRUP & SCHETZ	2.4 to 1.9		1.0	P	F	4
7401 THOMAS	2.5 to 2.2	! 14-20	1.0	P	S	15
II A 3 CYLINDRICAL - FPG						
72011 LEWIS et al.						
	2.4 to 3.7	10	1.0	-	V/S	7
II A 4 CYLINDRICAL - APG	2.4 to 3.7	10		-	·	
II A 4 CYLINDRICAL - APG 71021 PEAKE et al.	4 to 2	10-60	1.0		P	6
		10-60 10		- - P	·	

TABLE 7.1 cont.	M	R THETA	TW/TR	TO	CF	NX
11 A 5 CONICAL - FPG - DIVERGENC	E (all nozz	le walls - in	ternal)			
5901 HILL	8-10	1.5-3.5	0.5	P	٧	1-2
6801 PERRY & EAST	8-11.5	6-35	0.3-0.4	P	٧	3
6901 BOLDMAN et al.	0- 4.1	3-12	0.6-0.9	P	-	4
7207 BACK et al.	0- 3.6	10	0.5, 1.1	P		6

II A 6 CONICAL - APG - DIVERGENCE

None

II (B) Simple wave - curved walls

In these flows the curved streamlines require, in principle, normal pressure gradients, the significance of which increases with Mach number.

II B 1 PLANAR - FPG

None

II B 2 PLANAR - APG 7101 STUREK & DANBERG	3.5 to 2.8	20-40	1.0	P	P	8
II B 3 AXISYMMETRIC - FPG - (A11	external, a	11 generated	i)			
6401 CLUTTER & KAUPS	2-4	10-40	0.7-1.0	P	-	5
7005 ALLEN	3	1.4-10	1.0	•	P	7
II B 4 AXISYMMETRIC - APG - (A11	external, a	ll generated	1)			
6401 CLUTTER & KAUPS	2-4	10-40	1.0	P	-	4
6503 STROUD & MILLER	5-8	2-50	0.4-1.0	Р	•	7
7004 WINTER et al.	0.6-2.8	8-40	1.0	-	S	6
II B 5 AXISYMMETRIC - FPG - (A11	internal, a	ll cancelled	1)			
7001 FISCHER et al.	19-22	4-6	1.0	(P)	•	5
7105 BECKWITH et al.	19.5	2-4	0.2	P	-	1
7206 KEMP & OWEN	19-45	1-8	0.35-0.85	P	F	4

II (C) Normal pressure-gradient cases

If suitable incident waves and generated waves are superimposed, it is possible to generate a region in which there are no streamwise pressure gradients, but nevertheless large transverse gradients. No case is reported in which profiles were measured, but a wide range of heat-transfer measurements were made by THOMANN (6800) in flows with carefully combined gradients giving fields of types A, B and C with a measure of commonality in other features. These results have been included in the catalogue.

TABLE 7.2 FLOWS WITH SIGNIFICANT HEAT TRANSFER

PG - Classification by local pressure-gradient as in Table 7.1 and \S 6.2.

Q - Determination of wall heat flux

W - measurement at the wall

P - estimated from temperature profile.

		PG	M	TW/TP	TO	Q
5503	LOBB et al.	11 A	5-8	0.5-1.0	P	W
5901	HILL	II A	8-10	0.5	P	Р
5902	WINKLER & CHA	1 A	5.2	0.6-1.0	P	W
6201	MOORE	I A	5	0.5-1.0	•	-
6401	CLUTTER & KAUPS	II B	1.6-4.5	0.7	P	(W)
6503	STROUD & MILLER	II B	5-8	0.4-1.0	P	W
6504	PASIUK et al.	II A	1-3	0.8-1.0	P	(W)
6506	YOUNG	IAR	5	0.6-1.0	~	W
6701	SAMUELS et al.	I A	● 6	0.4-0.5	P	(W)
6702	DANBERG	I A	6.5	0.5-0.9	Þ	P (W)
6800	THOMANN	II C	2.5	0.8	•	W
6801	PERRY & EAST	II A	8-12	0.3-0.4	P	W
6901	BOLDMAN et al.	II A	0-4	0.6-0.9	Þ	W
7002	JONES & FELLER	ΙB	6	0.7-0.8	P	-
7105	BECKWITH et al.	II B	20	0.2	P	W
7202	VOISINET & LEE	I B	4.9	0.25-1.0	P	W
7203	HOPKINS & KEENER	ΙB	7.4	0.3-0.5	(P)	•
7204	KEENER & HOPKINS	IA	6.5	0.3-0.5	(P)	-
7205	HORSTMAN & OWEN	IA	7.2	0.5	P	W
7206	KEMP & OWEN	II B	20-40	0.3-0.9	Þ	W
7207	BACK et al.	II A	0-3.6	0.5, 1.1	P	W
7208	ZAKKAY & WANG	II A	6	0.7	P	W
7209	STONE & CARY	I C	7.6	0.8	þ	(W)
7301	GATES	I A/B	4,5	0.85~1.0	. р	W
7304	VOISINET & LEE	II A	4	0.25-1.0	Þ	W
7403	LADERMAN & DEMETRIADES	1 B	9.4	0.4	þ	-

TABLE 7.3 ALPHABETICAL LIST

PG - Classification by local pressure-gradient as in Table 7.1 and §	6.2.
--	------

PG - Classification by I	ocai pres	ssure-gradien PG	t as in Table 7.1 and § 6.2.		PG
Adcock et al.	6501	IA	Shutts et al.	5501	ΙA
Allen	7005	IIB	Stalmach	5802	IB
Allen	7303	IB	Stone & Cary	7209	IC
Back et al.	7207	IIA	Stroud & Milier	6503	118
Bockwith et al.	7105	IIB	Sturek & Danberg	7101	IIB
	, 220		3	,	
Boldman et al.	6901	IIA	Thomann	6800	110
Clutter & Kaups	6401	118	Thomas	7401	IIA
Coles	5301	IA	Thomke	6903	IB
Danberg	6702	IA	Voisinet & Lee (ZPG)	7202	IB
Fenter & Lyons (R)	5804	IA	Voisinet & Lee (FPG)	7403	IIA
			, ,		
Fischer et al.	7001	IIB	Waltrup & Schetz	7104	IIA
Fischer & Maddalon	7103	IA	Watson et al.	7305	IA
Gates	7301	IA/B	Winkler & Cha	5902	IA
Hastings & Sawyer	7006	IA	Winter & Gaudet	7302	18
H111	5901	IIA	Winter et al.	7004	IIB
Hopkins & Keener	6601	IB	Vas et al.	7601	IB
Hopkins & Keener	7203	IB	Young (R)	6506	IA
Horstman & Owen	7205	1A	Zakkay & Wang	7208	IIA
Jackson et al.	6505	18	Zwarts	7007	IIA
Jeromin	6602	18			
Jones & Feller	7002	IB			
Keener & Hopkins	7204	18			
Kemp & Owen	7206	IIB			
Kistler	5803	IB			
Laderman & Demetriades	7403	18			
Lewis et al.	7201	IIA			
Lobb et al.	5503	IIA			
Mabey et al.	7402	IA			
Meter	7003	18			
Michel	6001	IV			
Michel et al.	6902	IIA			
Moore (Step)	5805	IC			
Moore	6201	IA			
Moore & Harkness	6502	1B			
Naleid	5801	IIA			
Pasiuk et al.	6504	IIA			
Peake et al.	7102	TIA			
Perry & East	6801	IIA			
Samuels et al.	6701	IA			
Shutts & Fenter (R)	5502	IA			
ANNARA M. LAURAGE (11)	990E	471			

*

TABLE 7.4 NUMERICAL LIST

PG - C	lassif	ication by local pressure-gradient	as in Table 7	.1 and §	6.2
	PG			PG	
5301	Ib	Coles	7105	IIB	Beckwith et al.
5501	1 4	Shutts et al.	7201	ΪΙΑ	lewis et al.
5502	IA	Shutts & Fenter (R)	7202	IB	Voisinet & Lee (ZPG)
5503	IIA	Lobh et al.	7203	IB	Hopkins & Keener
5801	IIA	Naleid	7204	IA	Keener & Hopkins
5802	18	Stalmach	7205	11	Horstman & Owen
5803	18	Kistler	7206	118	Kemp & Owen
5804	18	Fenter & Lyons (P)	7207	IIA	Back et al.
5805	10	Moore (Step)	7208	IIA	Zakkay & Wang
5901	IIA	H111	7209	IC	Stone et al.
5902	IA	Winkler & Cha	7301	IA/B	Gates
6001	IA	Michel	7302	IB	Winter & Gaudet
6201	IA	Moore	7303	18	Allen
6401	IIB	Clutter & Kaups	7304	11A	Voisinet & Lee (FPG)
6501	IA	Adcock et al.	7305	1A	Watson et al.
6502	IB	Moore & Harkness	7401	IIA	Thomas
6503	118	Stroud & Miller	7402	IA	Mabey et al.
6504	IIA	Pasiuk et al.	7403	18	Laderman & Demetriades
6505	IB	Jackson et al.	7601	IB	Vas et al.
6506	IA	Young (R)			
6601	IB	Hopkins & Keener			
6602	IB	Jeromin			
6701	1A	Samuels et al.			
6702	IA	Danberg			
6800	110	Thomann			
6801	IIA	Perry & East			
6901	AII	Boldman et al.			
6902	AII	Michel et al.			
6903	IB	Thomke			
7001	IIB	Fischer et al.			
7002	18	Jones & Feller			
7003	18	Meier			
7004	IIB	Winter et al.			
7005	IIB	Allen			
7006	IA	Hastings & Sawyer			
7007	IIA	Zwarts			
7101	118	Sturek & Danberg			
7102	IIA	Peake et al.			
7103	IA	Fischer & Maddalon			
7104	IIA	Waltrup & Schetz			

SECTION 8

THE ENTRIES

The entries are arranged in the sequence given in Table 7.4.

Note: Boundary conditions and evaluated data are given for all profiles as section B of each entry. This data is also printed on the microfiche, which gives complete data for all profiles. The tables of section C of each entry provide only a selection of the profile data. Section D, additional data, is not printed on the microfiche.

M: 2.0, 2.6, 3.7, 4.5. R THETA X 10^{-3} : 2 - 10. TW/TR: 1.0. 5301

ZPG - AW

Continuous wind tunnel with symmetrical flexible nozzle. W = H = 0.46 m. $0.067 < P0 < 1.01 \text{ MN/m}^2$ TO: 310 K. Air. $3 < \text{RE/m} \times 10^{-6} < 16$.

COLES D., 1953. Measurements in the boundary layer on a smooth flat plate in supersonic flow:

I. The problem of the turbulent boundary layer, II. Instrumentation and experimental techniques at the Jet-Propulsion Laboratory, and III. Measurements in a flat-plate boundary layer at the Jet-Propulsion Laboratory. JPL. CALTECH. Rep. nos. 20-69, 20-70 and 20-71. (Ph. D thesis, Cal. Inst. Tech., Pasadena, California 1953)

Also: Coles, D. (1954).

- 1 The test boundary layer was formed on the lower surface of a flat plate mounted 13 mm below the tunnel centre-line, completely spanning the tunnel. The leading edge (X = 0) was formed as a 15° wedge with a nose radius estimated as less than 0.013 mm. The overall length was 0.84 m and the width 0.46 m. Measurements were made 'in the central zone' of the plate which was not cooled. Up to 15 minutes was allowed for
- 2 temporatures to settle. 'Particular attention was paid to the working-surface finish'. The calibration of the empty tunnel showed static pressure variations of order 1%. With the plate inserted, the pressure field produced by the plate and boundary layer caused static pressure variations of order 5%. These correspond to 1% in M at M = 3.7, for which the data on flow-uniformity are presented and which have
- 3 been presumed typical. The profile measurements were mainly made with a fence trip constructed of wires 0.34 mm in diameter spaced at 6.4 mm spanwise intervals and projecting about 2.5 mm normal to the surface of the plate at the leading edge. For some tests this was replaced by a sand strip extending from X = 20 to 30 mm, and for others by a set of airjets issuing from holes 6.4 mm apart at X = 19 mm. The holes were distributed over the central 405 mm width of the plate and connected to a common manifold. The transition region was determined from the boundary layer induced static pressure field and the wall shear-stress
- 5 measurements. The nozzle plates were adjusted to give constant pressure on the tunnel centre-line when empty, so allowing for the four tunnel wall boundary layers. Empty tunnel tests at M = 2.5 showed slight flow convergence in plan view and divergence in elevation. The static pressure on the plate at Z = 70 mm differed from that at Z = 0 by about 1.5%.
- 6 Twenty seven static pressure holes were provided on the line Z=70 mm. Additionally each balance incorporated three, one of which was the balance gap. The copper-constantan thermocouples buried in the plate measured TW at X=245, 425 and 514 mm, Z=30 mm. TAUW was measured by three JPL-design floating element balances mounted on the centre-line at X=140, 330 and 610 mm. The element was rectangular, extending 6.4 mm in the X direction and 38.1 mm wide. The balances and their calibration procedure are described in
- 7 JPL Rep. 20-70. A variety of FPP probes were used to measure Pitot pressure, the original intention being to use the tubes as mass-flux probes so as to allow the determination of TO. A typical example is quoted
- 8 as having $h_2 = 0.23$ mm, $b_2 = 1.35$ mm. The Pitot pressure profiles presented were measured between X = 542
- 10 and 545 mm, with one exception for which X = 253 mm. No corrections were applied.
- 9 The author's interpolation of CF values for the profile boundary conditions has been accepted. The source
- 11 data were reduced assuming an iso-energetic boundary layer and Sutherland's viscosity law. The tables here
- 12 are calculated assuming a Crocco/Van Driest temperature-velocity relation and constant static pressure.
- 13 TW data were not presented and the editors' recovery temperature has been used. Fourteen individual profiles are presented, the sets for each Mach number being over a range of different total pressures. Most (0101-1101) were taken at X = 546 mm with the fence boundary-layer trip. The exceptions are 1201 (Sand trip, X = 542 mm) 1301 (Air-jet trip X = 263 mm) 1302 (Air-jet trip X = 542 mm).
- § DATA: 5301 0101-1302, PT2 Profiles. NX = 1 except for the pair 1301-2. CF obtained separately with floating element balances.

15 Editors' comments

This investigation was a pioneer attempt at a reasonably complete survey of a ZPG-AW boundary layer. Other early investigations also without TC profiles are those of Shutts et al. - CAT 5501, in which there were up to five successive stations, and of Stalmach - CAT 5802. Later, full, studies are those of Hastings & Sawyer - CAT 7006 and Mabey et al. - CAT 7402. Axisymmetric cases which overlap in Mach number and Reynolds number are the ZPG series of Lewis et al. - CAT 7201 and Peake et al. - CAT 7102. An examination of our wall-law plots suggested that the CF values may be slightly high, though any likely discrepancy lies within the indeterminacy of a single observation. The different types of tripping devices may have influenced the boundary layer at the measuring station.

CAT 5301	COLES		HOUNDARY CON	OITIONS AND E	VALUATED .	DATA. SI UNTI	S.	
RUN	MD ★	TW/TRA	REDZW	CF +	н12	412K	PW	PD
X •	PUDA	PW/PD*	de03B	CO	н32	1132K	ĭw	ŤĎ
RZ	TUDA	SW +	DŠ	P12*	H42	DSK	บ้อ	ŤŘ
53010101	1.9660	1.0000	1,9971*+03	2.7200"-03	3.0784	1.4632	3.5927*+03	3.5927*+03
5.4559*-01	2.6664*+04	1.0000	3.0805*+03	NM	1.7814	1.7704	2.9170"+02	1.7234*+02
INFIBITE	3.0556"+02	0.0000	9.6327"-04	0.0000*+00	0.0808	1.2144*-03	5.1746"+32	2.9170*+02
		4.0400		0.000 TO	0.0600	1.2144 -01	3.1140 FVE	E.71/W"TUE
53010201	1.9780	1.0000	4.3574*+03	2.1800*=93	7-1052	1.4704	8.8160*+03	8.8150*+03
5.4559"~01	6.6661"+04	1.0000	6.7594*+05	NM	1.7873	1.7765	2.87894+02	1.6924*+02
INFINITE	3.0167"+02	0.0000	P.3509#+04	0.00004+00	0.0816	1.0533"=03	5.1592"+02	2.6789#+02
53010301	1.9820	1.0000	5.7051*+03	2.0200"-03	3.0982	1.4665	1.2441*+34	1.2441"+04
5.4559*-01	9.4659*+04	1.0000	8.9041*+03	NM	1.7943	1.7856	50+"5986.5	1,6956"+02
INFINITE	3.0278"+02	0.0000	7,8099"=04	0.000*+00	0.0821	9.8475**04	5.17464+12	20+424405
53010401	2.5400	1.0000	1.2170*+03	2.4200*-03	3.2269	1.5229	1,40654+03	1.9065#+03
5.45594-01	3.4664"+04	1.0000	2.3359*+03	NM	1.7651	1.7610	2.85184+02	1.3365"+02
INFIRITE	3.0411*+92	0.0000	7.4744"-01	0.0000*.00	0.1046	1.06174-03	5.8876"+02	2.86144+02
53010501	2.5680	1.9000	3.5017*+03	1.8100*-03	4.2135	1.4698	52657*+03	5.2657*+03
5.4559*-01	0.4991*+14	1,0000	0.7021*+03	NM	1.7910	1.7741	5.9005.405	1.3320*+02
INFINITE	3.0009"102	0,0000	7.7343*-04	0.0000#+00	0,1059	1.1035"-03	5.9424*+02	2.9062"+02
for the fire	340007 102	040000	747343 404	9.0000 700	0,1034	1.1023.403	3.7464 706	2.4005.40%
53010601	2.5780	1.0000	5,4630"+03	1.6000"=03	4.2558	1.4641	9.0560"+03	7.0560"+03
5.4559*-01	1.7465*+05	1.0000	1.0390"+04	NM	1.7903	1.7728	50+"1809.5	1.3546*+02
INFINITE	3.15564+02	0.0000	7.1645*-04	0.0000*+00	0.1363	1.0252*-03	6.01024+05	2.9683*+02
53010701	3.6900	1.9000	7.5974*+02	2.11004-03	7.0550	1.4845	7.8984*+02	7.8984*+02
5.4559"-01	7.8060 +04	1.0000	2.2015"+03	NM	1.8165	1.7636	A.8334*+02	8.2356 + 41
INFIBITE	3,0667*+02	0.0000	6.0025*-04	U.0070™+U0	0.1343	1.0585*=03	0.7144*+02	2.8334*+02
53010801	3.7010	1.0000	1.4842#+03	1.6200"-03	7.1536	1.4803	1.3580*+03	1.3580*+03
5.45594-01	1.3732*+05	1.0000	4.4608*+03	NM	1.7980	1.7657	2.8792"+42	8.3345"+01
INFINITE	3.1167"+02	0.0000	6.92614-04	0.0000*+00	0.1370	1.2821*-03	6.7744"+32	2.8792 4402
					•		•	
53010901	3.6970	1.0000	2.7295*+03	1.3400 -03	7.1461	1.4754	2,8372"+03	2.8372*+01
5.4559"-01	2.8531"+05	1.0000	8.1884"+03	NM	1.7966	1.7639	5.8845"+02	8.3626"+01
INFINITE	3.1822*+02	0.0000	6.1225*-04	0.0000*+00	0.1368	1.1394"-03	6,7764"+92	2,88454+02
53011001	4.5120	1.0000	8.8021*+02	1,4800 -03	10.0077	1.5506	6,7100*+02	6,71664+42
5.4559"-01	1.9732"+05	1.0000	3.5747"+03	NM	1.6101	1.7692	2.8106*+02	6.0467*+01
INFINITE	3.0467"+02	0.9000	5.6944"404	0.0000*+07	0.1511	1.2502***13	7.0346*+02	2.8106#+02
55011101	4.5540	1,0000	1.6027"+03	1.2200"-03	10.0634	1.5002	1.2578*+03	1,2578"+03
5.4559*=01	3.8930"+05	1,000	6.6012*+03	NM	1.8067	1.7632	2.8140"+02	5.9788"+U1
INFINITE	3.0778"+02	0.0000	5,4696 -04	0,0000*+00	0.1514	1.2210##03	7.0601*++2	2.8199#+02
53011201	4,5450	1.0000	1.2863"+03	1.3100*-03	9,8558	1.4542	1.3111"+03	1.3111*+03
5.42294-08	4. 130"+05	1,0000	5.2739"+03	NM	1.6232	1.7820	2.8557*+02	6.0737*+01
INFINTTE	3.1167"+02	0.0000	4.3013"-04	0.0000*+00	0.1527	9.1890"-44	7.10187+02	2.8557#+02
53011301	4.5040	1.0000	7.7640*+02	1.5500"-03	9.8867	1.5498	1.3797#+03	1.3797*+03
2.6289"-01	4.0130*+05	1.0000	3.1290*+03	NM	1.8259	1.7826	2.0719*+02	6,1958*+01
INFINITE	3.1333"+02	0.0000	2.5216*-04	0.0000*+00	0.1523	5.78674-04	7,10817402	2.6719*+02
		4 1 20 0 0 0			0.1323	341001404	4 1 1 0 d I . 4 0 S	C. DITALANG
53011302	4.5440	1.0000	1.3530"+03	1.2600"-03	9.8612	1.4468	1.3171*+03	1.3171"+03
5,4229"-01	4.0263*+05	1.0000	5.5323"+03	NM	1.8186	1.7795	5.86597+02	6.0975"+01
INFINITE	3,1278"+02	0.0000	4.514004	0.0000*+40	0.1523	9.7836*=04	7.11424+02	2,8659"+02

530104	oi cours	•	PROFILE	TABULATION	25	POINTS, JEL	IA AT PUT	FT 22
I	Y	PT 2/P	PZPD	TUZTOD	17.10	uZUn	TZTO	пихи∗слячусня
1	G. 3030"+09	1.0000*+00	[481	0.94141	0.00000	v. 0000	2.15013	0.00000
2	6.0706"-04	2.1417"+00	MH	8 PC3P.6	0.43442	0.57795	1.76504	0.32654
3	6.8530*-04	2.34937+00	N _W	0.96522	0.46447	0.61916	1.72571	0.35557
4	7.5946"-04	2.4834*+00	MIN	0.96457	J.48257	0.62897	1.69876	0.37025
5	B.5314"-04	2.6732"+90	(d) (4)	0.76643	0.50685	0.65545	1.66247	0.30303
b	9.6520"-04	2.8365"+40	1461	0.95794	0.52662	U.67289	1.63265	0.41215
7	1.1024"=03	3.0020"+00	(4P)	0.95940	0.54587	0.69124	1.60372	0.43102
B	1.2598"-03	3.1644"+90	1,te	0.97077	0.56397	v.7n810	1.57644	0.44918
q	1.4529"-03	3.3313"+00	1111	0.97215	0.58194	0.72439	1.54947	0.46751
10	1.6840"-03	3.5102"+00	IĮM	0.97356	0.60055	0.74081	1.52165	0.4X582
11	1.9710"-03	3.7050"-00	(114	0.97504	15059.0	0.75769	1.49205	0.50768
iz	2,3063"-03	3.9229"+00	1.11	0.97662	0.64176	0.77520	1.46136	0.53046
13	2.7127"-03	4.1770*+00	1189	0.97833	0.66501	0.77431	1.42669	0.5567\$
14	3.2004"=03	4.5012"+00	11M	0.98050	9.69407	0.81678	1,36485	0.58 JAO
15	3.7897"-03	4.9180"+00	tit*	0.98304	0.72765	0.8/1274	1.33464	0.63158
16	4.4856*-03	5.3868"+00	1114	J.98569	0.76764	0.06731	1.282##	0.07786
í ř	5.3391"-03	5.9839"+00	(IM	0.98877	0.81333	0.89913	1.22168	0.73590
18	6.3678"=03	6.7234"+00	1.81	0.47217	0.86665	0.93099	1.15406	0.30671
19	1.5641"-03	7.5303"+00	RM	0.99552	0.72116	0.36101	1.09840	o • ዓላ ፡> ዋይ
žó	4.0576"-03	8.2928"+00	146	0.99833	0.76984	0.98567	1.03291	J.95427
ži	1.0813"-02	6.7058*+00	HIM	0.99974	0.99521	0.99777	1.00516	11.99265
0 55	1.2974"-02	8.7851*+00	1465	1.00000	1.00000	1.00000	1.00000	1.000.00

INPUT VARIABLES Y, U/UD (ISCENERGETIC)
ASSURE PMPD, TWMTR, VAN DRIEST

530106	oi cours	COLES		MOITAJLBATION	21 POINTS, DELTA AT POINT 21				
I	Y	PTSVP	6 \ bu	TUZTOD	4N:40	GLVD	11\1	RHO/PHOD+U/UD	
i	0.0000*+00	1.0000*+00 2.3774*+00	HW TAN	0.94065 0.76274	0.00000	0.00000 0.61003	2.1909A	0.00000 0.34904	
3	6.0706"-04 6.0580"-04	2.5070"+00	DAI DM	0.76405	0.47952	0.62785	1.72151	0.36471	
5	7.5946"=04 8.5344"=04	2.6078*+00 2.7351*+00	1384	0.76023	0.50685	0.65653	1.67768	0.39132	
7	9.6520°-04 1.1024°-03	2.8542"+00 2.9943"+00	11w 13m	0.96732 0.96856	0.53693	0.07371	1.6309R 1.60376	0.43763	
8	1.2546"=03	3.1534"+00 3.3175"+00	1981 1385	0.76991 0.77126 0.77260	0.57173	0.71816 0.73360	1.57673	0.45547	
10	1.6840"+03 1.9710"+03	3.4864"+00 3.6907"+00	6M 6M 8M	0.97415 0.97578	0.00760	0.75127 0.75127	1.51879	0.49465 0.51778	
13	2.3063"=03	3.9161"+76 4.1814"+00	1114	0.97762	0.65561	0.78722	1,44915	0.54461	
14 15	3.2004"-03 3.7697"-03	4,5076"+00 5,0088"+00	14h 14h	0.95275	0.72030	0.84251	1.34560	0.68612	
16	4.4856"-03 5.3391"-03	5.4501"+00 6.1291"+00	iim KM	0.98523	0.81197	0.89953	1.22730	0.73293	
18	6.3678"~U\ 7.5641"=U\	7.0077"+00 8.0149"+00	46 46	0.99261 0.99654	0.93835	0.73567	1.06947	0.90757	
0 51 50	9.0576"=03 1.0813"=02	A.A152"+00 7.0349"+00	UM NW	1.00000	0.98711 1.00000	1.00000 0.00467	1.01412	0.98021 1.00000	

TRPUT VARIABLES Y.U/ND (ISOCNERGETIC)
ASSUME PEPO: TWETH, VAN DRIEST

530111	oi coles)	PROFILE	HOLTAJUBAT	22	POINTS, DEL	TA AT POT	NT 22
I	Y	PT2/P	P790	COTVOT	HVHD	UZUN	T/10	RMO/RHI)D*U/U0
1	0.0500*+00	1.0000*+00	1144	0.91620	0.00000	0.00000	4.71641	0.00000
Ž	6.0706"=04	2.7046"+00	Νw	0.9408M	0.28512	0.54264	3.02210	0.14981
3	6.8580"-04	3.0661"+00	Иh	0.94399	0.30848	0.57581	3,48423	0.16526
4	7.5946"-04	3.15A1"+00	HW.	0.74633	0.32616	0.50061	3.38011	0.17740
5	8.5344"-04	3.7037"+00	8485	0.94892	0.34581	0.62488	3.2652/	0.19137
Ú	9.6520"-04	4.0511"+00	ИW	0.95134	0.36441	0.64758	3.15744	0.20501
Ÿ	1.1724"-03	4.3925"+00	ħΜ	0.95157	0.38175	0.00774	3.04934	0.21420
ä	1.2578"-03	4.7274"+00	IĮΝ	0.95561	0.39801	0.68577	2.96846	0.23100
8	1.4529"-03	5.0855"+00	MIN	0.45766	0.41460	0.70341	2.87751	0.24445
10	1.6540"=03	5.4170"+00	lin.	0.95946	U.4295J	0.71845	2.79810	0.25676
ii	1.9710"-03	5.6115"+00	NM	0.36140	0.14645	0.73457	2.74942	0.27123
12	2.3063"-03	6.2439"+00	UM	0.46351	0.46433	0.75135	2.01841	0.28675
13	2.7127"-03	6.7743"+00	Иж	0.96584	0.48534	0.76966	2.514*#	0.30604
14	3.2004"-03	7.4601"+00	faM:	0.96860	0.51120	0.790/1	2.39265	0.33049
15	3.7897"-03	8.4107"+00	HM	0.97200	0.54501	0.81601	2.24175	0.36401
10	4.4836"-03	9.58324+00	UM	0.97585	0.54347	0.84225	2.08005	0.44492
17	5.3391"-03	1.1261401	ROM.	0.98003	0.63559	0.87277	1.88555	0.46287
10	6.3678"=03	1.3570"+01	(JM	0.98489	0.70063	0.90537	1.66494	U.54217
19	7.5341"=03	1.6033"+01	ИM	0.78782	0.77303	0.93731	1.45136	0.64532
Žά	9.0576***03	2.0828"+01	1411	0.99481	0.87321	0.96853	1.23023	0.78727
ži	50-"ELAO.1	a.5168"+01	HH	0.99859	0.76141	0.99152	1.06274	0.43299
D 22	1.2974"-02	2.7160"+01	NM	1.00000	1,10000	1.00000	1.00000	1.0000

INPUT VARIABLES Y,U/IID (ISOENERGETIC)
ASSUME PEPD, TWETR, VAN DRIEST

530112	O1 COLES	3	PROFILE	TABULATION	19	POINTS, DEL	TA AT POI	NT 19
ı	Y	PT2/P	P/PD	TU/10D	MZMD	UVUD	1/10	RHG/RHGD*U/UD
1	0.0000*+00	1.0000"+00	ИМ	0.91627	0.00000	0.00000	4.70174	0.0000
2	4.4704"-04	2.8424"+00	NM	0.94214	0.29470	0.55587	3.55792	0.15624
3	5.1054"-04	3.1426 +00	rin.	0.94468	0.31384	0.58255	3.44552	0.16907
4	0.0706"-04	1.5724"+00	1481	0.94803	0.33916	0.61589	3.29760	0.18677
5	7.2644"-04	4.0962"+00	NM.	0.95171	0.36748	0.65063	5.13471	0.20756
Ġ	8.7884"-04	4.6691"+00	(iM	0.95533	9.39602	0.68303	2.97476	10055.0
7	1.0541"-03	5.2658"+00	NW	0.95872	0.42362	0.71202	2.82505	0.25204
à	1.2700 = 03	5.8846"+40	HM	0.96188	0.45041	0.73807	2.68521	0.27487
ğ	1.5240*=03	6.4873"+00	Mij	0.96467	0.47503	0.76032	2.56184	0.29679
10	1.8440 -03	7.0740"+00	NM	0.96715	0.49779	0.77953	2.45230	0.31788
ii	2.2276"=03	7.7459*+00	HM	0.96981	0.52335	0.79966	2.33464	0.34252
iż	3.2715"=03	9.8461 +00	NM	0.97646	0.59354	0.84767	2.04060	0.41550
13	3.9675"-03	1.1445*+01	HM	0.98053	0.64220	0.87604	1.86082	0.47078
14	4.7955"-03	1.3545*+01	NM	0.98490	0.70111	0.90534	1.66752	0.54294
15	5.7861""33	1.6216"+01	NM	0.98930	0.76944	0.93390	1.47318	0.63394
16	7.0383"-03	2.0065"+01	HM	0.99409	0.85838	0.96405	1.26136	0.76430
17	8.5217"-03	2.4478"+01	ИM	0.99813	0.95017	0.98875	1.08285	0.91309
18	1.0358"=02	2.6954"+01	NM	0.99993	0.99795	0.99956	1.00324	0.99633
D 19	1.2593"-02	2.7063"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD (ISOENERGETIC)
ASSUME P=PD, TW=TR, VAN DRIEST

536113	ol coles	į.	PROFILE	TABULATION	17	POINTS, DEL	TA AT POI	NT 17
I	Y	9/5/9	P/P0	T0/T00	HZHD	מטעט	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	0.91556	0.00000	0.00000	4.63525	0.00000
2	4.4196"-04	3.4425"+00	HM	0.94736	0.33475	0.60751	3,29359	0.18445
3	5.2070*-04	3.9682"+00	1181	0.95116	0.36406	0.64390	3.12897	0.20585
4	6.1722*-04	4.5716"+00	†IM	0.95505	0.39488	0.67718	2.95835	0.22958
5	7.3660"-04	5.2670"+00	(IM	0.95904	0.42753	0.71346	2.78482	0.25620
ő	8.8930"-04	6.0906"+00	NM	0.96318	0.46316		2.60435	0.28700
7	1.0643 -03	6.9934"+00	MIN	0.96714	0.49923	0.77853	2.43190	0.32013
8	1.2802"-03	7.9683"+00	NM	0.97086	0.53544	0.80667	2.26971	0.35541
ģ	1.5342"-03	8.9426"+00	IAM	0.97411	0.56928	0.83047	2.12812	0.39024
10	1.8542"-03	9.9814"+00	NM	0.97715	0.60326	0.85210	1.99541	0.42706
11	2.2377"-03	1.1345*+01	NM	0.98062	0.64515	0.87619	1.84445	0.47504
12	2.7076"-03	1.3193*+01	NW	0.98455	0.69789	0.90269	1.67305	0.53955
13	3.2817"-03	1.5642"+01	NM	0.98876	0.76216	0.93022	1.48964	0.62446
14	3.9776"-03	1.8987"+01	NM	0.99321	0.84202	0.95847	1.29570	0.73975
15	4.8057"-03	2.2968"+01	NM	0.99720	0.92817	0.98310	1.12166	0.87631
16	5.7963"-03	2.5811"+01	NM	0.99945	0.98507	0.39672	1.02379	0.97356
D 17	7.0485*-03	2.6585"+01	NW	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD (ISOENERGETIC)
ASSUME P=PD, TW=TR, VAN DRIEST

530113	102 COLES	3	PROFILE	TABULATION	05	POINTS, DE	LTA AT POI	NT 20
1	Y	PT2/P	P/PD	TO/TOD	(4ZHD	UVUD	1/10	RH0/RH00*U/UU
1	0.0000*+00	1.0000*+00	βM	0.91627	0.00000	0.00000	4.70011	0.00000
2	4.2415 -04	2.6565"+00	ИM	0.94047	0.28215	0.53761	3,43069	0.14607
3	5.02924-04	2.9936"+00	1114	0.94345	0,30458	0.56973	3.49907	0.16242
4	5.9944"-04	3.4143*+00	NM	0.94684	0.33017	0.60423	3.34921	0.18041
5	7.18827-04	3.8956"+00	NM	0.95036	0.35700	0.63801	3,19395	0.19975
6	8.7122"-04	4.4317"+00	MM	0.95387	0.38455	0.67025	3.03709	68055.0
7	1.0465"-03	4.9900"+00	UM	0.95720	0.41119	0.69918	2.89128	0.24183
8	1.2624~-03	5.5668*+00	NM	0.96031	0.43696	0.72518	2.75425	0.26330
4	1.5164"-03	6-1128"+00	Им	0.46298	0.45999	0.74686	2,63618	0.28331
10	1.6364"-03	6.6433"+00	ИМ	0.96545	0.48208	0.76635	2.52709	0.30325
11	2.2200*-03	7.2861"+00	NW	0.96800	0.50588	0.78601	2.41413	0.32559
12	2.6899"-03	6.1085*+00	(1)M	9.97104	0.53567	0.50879	2.27971	0.39478
13	3.2639"-03	9.2170*+00	NM	0.97464	0.57336	0.83495	2.12064	0.39372
14	3.9599"-03	1.0685"+01	NM	0.97870	0.61972	0.06347	1.94136	0.44478
15	4.7879"-03	1.2663"+01	ИМ	0.98317	0.07717	0.89397	1.74288	0.51294
16	5.7705"-03	1.5270"+01	1414	0.98787	0.74613	0.92473	1,53004	0.60202
17	7.0307"-03	1.6989"+01	N M	0,99290	0.83466	0.95667	1.31373	0.72621
18	8.5141"-03	2.3620"+01	HM.	0.99744	0.93322	0.75460	1-11312	0.88453
19	1.0350 -02	2.6942"+01	NM	0.99993	0.99795	0.99950	1.00324	0.99633
D 20	1.2586"=02	2.7051*+01	NW	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD (150ENERGETIC)
AGSUME PAPD, THATR, VAN DRIEST

M: 1.7 - 2.5

R THETA X 10⁻³: 6 - 21

TW / TR: 1.0

ZPG - AW

Continuous wind tunnel with fixed symmetrical interchangeable nozzles. W = 0.48, H \approx 0.7, L = 1.0 m. 0.18 < PO < 0.3 MN/m². TO : 340 K. Air. RE/m X 10⁻⁶ : 25.

SHUTTS W.H., HARTWIG W.H. and WEILER J.E., 1955. Final report on turbulent boundary layer and skin friction measurements on a smooth, thermally insulated flat plate at supersonic speeds. DRL 364.

- 1 The test boundary layer was formed on the upper surface of a flat plate model 0.482 m wide (spanning the tunnel) and 0.914 m long. The sharp leading edge (X = 0) was chamfered at 6.7° on the underside. Provision was made for eight instrument stations (d = 33.4 mm) in which balances, traverse gear, or blanking plugs could be placed. These were at 101.6 mm intervals along the centre line, the first being centred at X = 147 mm. The surface was machined and polished so that irregularities were less than $2.5 \,\mu\text{m}$. The surface
- 2 was not actively cooled, and was allowed to reach an equilibrium temperature during tests. Mach number variation over the test region of the plate was up to 4 % in some cases, due to irregularity of the nozzle
- 3 walls or reflection of leading edge disturbances. For most tests a boundary layer trip consisting of a 2.54 mm wide band of No 100 Aloxite grit was bonded to the plate transverse to the flow direction 23 mm behind the leading edge. For profile 0401 there was no trip, while for series 02 a second trip, identical to the first, was mounted 124 mm from the leading edge. Transition occurred ahead of the first measuring station "even for the smooth plate".
- 5 Static pressure was measured at 50.8 mm intervals on the centre line of the plate starting at X = 70.6 mm. The static pressure was measured in separate runs, with no traverse gear mounted. Wall shear stress was measured, also in separate runs, using balances developed by Weiler & Hartwig (1952). The halance elements 7 were 25.4 mm in diameter. Pitot profiles were obtained with a CPP the tip of which consisted of tubing for which $d_1 = 0.508$, $d_2 = 0.254$ mm. Over the first 0.508 mm, the outer surface was ground down to meet the inner diameter, providing a sharp lip. After about 15 [E] diameters, the fine tube was cranked up and held
- 8 profile normal was 55.3 mm ahead of the centre of the measuring station.
- 9 The authors have interpolated the static pressure readings to the positions of the profile measurements and assumed that static pressure did not vary through the boundary layer. They reduced the profiles assuming

in progressively larger sleeving tubes which were attached to a movable double wedge traverse strut. The

- 10 constant total temperature. No probe corrections were applied and viscosity was found from the Sutherland
- 11 formula.
- 12 The flat plate could be mounted at small angles of positive and negative incidence, so as to provide a further small range of Mach number variation. The editors have presented only those measurements made at zero incidence, half the total. When the plate was mounted at incidence, the leading edge disturbance was relatively strong, and at M = 1.73 impinged on the plate about 2/3 of the way back from the leading edge, giving rise to sharp variations in local Mach number etc. The editors have interpolated the CF values to the X values of the profiles. The author's assumption of isoenergetic flow has been replaced by the
- 13 Crocco / Van Driest temperature velocity correlation. The profiles presented were measured at a near constant unit Reynolds' number. The series are distinguished by Mach number and tripping arrangements. Those profiles indicated by a star were obtained with extra screens in the settling chamber. The series are:

M = 2.5 - series 06 - one trip $0602^+/3^+$ with extra screens.

- 14 An interpolated CF value is given for each profile, but the values for $0602^{+}/3^{+}$ were measured without the extra screens.
- § DATA: 5501 0101-0604. Pitot profiles. NX = 3-5. CF measured by an FEB separately.

15 Editors' comments

The entry describes an early, and much quoted, set of systematic flat plate measurements. The authors made a careful investigation of the inaccuracies arising from misalignment of the floating elements, and compared several balances with each other. The authors state that the measured CF values are, on average, 6-9% less than the "theoretical" prodiction of Fenter (1955). Our log-law plots show that the CF values are low, as compared to Van Driest values, for about half the measured profiles.

The profiles contain relatively few data-points, and in only one case do measurements extend within the momentum-deficit peak. Profiles 0401/0502/0602/0604 show marked disturbances in the inner region, while the outer region of 0301 seems irregular.

The tests should be compared with the roughly contemporary work of Coles - CAT 5301 and the later work of Mabey et al. - CAT 7402 and Hastings & Sawyer - CAT 7006.

CAT 5501	SHUTTS ZH ZE	ı	BOUNDARY CON	UITIONS AND E	VALUATED :	DATA. SI UNIT	15.	
RUG X * RZ	40 # POD# TUD#	TH/TR* PW/PD* SW *	05 05 05 05 05	CF * CQ PI2*	H12 H32 H42	32K H32K D≳K	EM EM	PO TD TH
55010101	1.7240	1.0000	4.2224"+03	2,2400*=03	2.6775	1.4546	3.6608*+04	3.6608"+04
1.9303"~01	1.8737*+05	1.0000	5.9278"+03	:#4	1.8109	1.8042	3.2541*+02	2.1232"+02
INFINITE	3.3853*+02	0.000	2.7512"+04	0,0000*+00	0.0702	3.2397"-04	5.0367*+02	3.2541"+02
55010102	1.8020	1.0000	8.7071"+03	1.9600*=03	2.6812	1.3614	3.3074"+04	3.3074"+04
3.9624*=01	1.9062*+05		1.2554"+04	HM	1.8068	1.7987	3.2467"+92	2.0524"+02
INFIBITE	3.3853*+02		5.8963"=04	0.0000*+00	0.0740	7.0584"-04	5.1760"+92	3.2467"+02
55010103	1.7260	1.0000	1,4276*+04	1.7800"-03	2.5051	1.3096	3.7229*+94	3.7229*+04
8.0263"-01	1.9113"+05		2,0055*+04	NM	1.8180	1.6113	3.2539*+02	2.1214*+02
INFINITE	3.3853"+02		9,1313*=04	0.0000"+00	0.0706	1.0700***03	5.0403*+02	3.2539*+02
55010201	2.0230	1.0000	3.8713"+03	1.9400"-03	3.1433	1.4598	2.9013"+04	2.9013"+04
1.9303"=01	2.3529"+05	1.0000	6.0357"+03	NM	1.8128	1.8046	3.2269"+02	1.8616"+02
Infinite	3.3653"+02	0.0000	2.5236"=04	0.0000"+00	0.0849	3.1356*-04	5.5341"+02	3.2269"+02
55010202	2.0360	1.0000	1.0407*+04	1.7400"=03	2.9929	1.3294	2.8730*+04	2,8730"+04
5.9945"-01	2.3776"+05	1.0000	1.6302*+04	NM	1.8234	1.8145	3.2257*+02	1,8509"+02
Infinite	3.3853"+02	0.0000	6.7857*=04	0.0000"+00	0.0860	8.3631*-04	5.5536*+02	3,2257"+02
55010203	2,0200	1.0000	1.3607*+04	1.5600"=03	2.4129	1.2899	2.9447*+04	2.9447#+04
8.0263#=01	2,3769"+05		2.1192*+04	NM	1.8322	1.8251	3.2271*+02	1.8641#+02
INFINITE	3,3853"+92		8.7589*=04	0.3000"+00	0.0656	1.0683"-03	5.5296*+02	3.2271#+02
55010301	2.0170	1.0000	3.8671"+03	2.0300*=03	3.1431	1.4683	2.9412*+04	2.9412*+04
1.9303"-01	2.3030*+05	1.0000	6.0159"+03	NM	1.8125	1.8033	3.2274*+02	1.8666*+02
INFIGITE	3.3853*+02	0.0000	2.4976"=04	U.0900*+00	0.0846	3.0989*-04	5.5251*+02	3,2274*+02
55010302	1.9960	1.0000	7.1117#+03	1.7900=-03	2.9777	1.3685	3.0507*+04	3.0507*+04
3.9624*-01	2.3722"+05	1.0000	1.0980#+04	:3M	1.8230	1.6156	3.2292*+02	1.8841*+02
INFINITE	3.3853"+02	0.0000	4.4979#=04	0.0000=+00	0.0841	3.5093*-04	5.4931*+02	3.2292*+02
55010303	2,0000	1.0000	1.2138"+04	1.6400"=03	2.9280	1,3219	3.0071*+04	3.0071*+04
8.0263"-01	2,3529*+05	1.0000	1.8767"+04	UM	1.8206	1,8123	3.2289*+02	1.8807*+02
INFINITE	3,3853*+02	0.0000	7.7649"=04	0.0000"+00	0.0842	9,5332"-04	5.4993*+02	3.2289*+02
55010401	2.0050	1.0000	5.1812"+03	1.8200"=03	2.9418	1.3356	2.9760*+04	2.9760*+04
3.9624"-01	2.3468*+05	1.0000	1.2672"+04	NM	1.8338	1.8255	3.2284*+02	1.8766*+02
Infinite	3.3853*+02	0.0000	5.2687"=04	0.0000"+00	0.0850	0.3937"-04	5.5069*+02	3.2284*+02
55010501	2.2490	1.0000	3.5727*+03	1.9600"-03	3.5022	1,4319	2.2292*+04	2.2292*+04
1.9303#=01	2.5737"+05		6.0529*+03	M	1.6174	1,8105	3.2003*+02	20+*6286.1
Infinite	3.3853"+02		2.5810*-04	0.0000"+00	0.0951	3,3434"-04	5.8496*+02	3.2083*+02
55010502	2.2420	1.0000	4.8797".+03	1.7800*-03	3.4355	1.3936	2.2345*+04	2.2345*+04
2,9465"=01	2.5510"+95		8.2457"+03	NM	1.8187	1.8094	3.2088*+02	1.6#82*+02
INFINITE	3.3853"+02		3.5338"=04	0.0000*+00	0.0948	4.3577*-04	5.8406*+02	3.2088*+02
55010503	2,2360	1.0000	6,4676*+03	1.6500*+03	3.3771	1.3583	2.2511"+04	2.2511"+04
3.9024#=01	2,5466*+05	1.0000	1,0904*+04	NM	1.8194	1.8091	3.2093"+02	1.6927"+02
Infinite	3,3853*+02	0.0000	4,6685*=04	0.0000*+00	0.0946	6.0043"-04	5.8328"+02	3.2093"+02
55010504	2.2440	1.0000	1,2299*+04	1.6230"-03	3.3542	1.3268	2.2142*+04	2.2142*+04
8.0263"=01	2.5364*+05	1.0000	2,0797*+04	HM	1.8139	1.8014	3.2087*+02	1.6867*+02
INFINITE	3.3853*+02	U.0000	8,9756*=04	0.0000"+00	0.0947	1.1618*-03	5.8432*+02	3.2087*+02
55010601	2.5020	1.0000	3,2766"+03	1.4050"-03	4.1376	1.5177	1.6638#+04	1.6838#+04
1.9303"-01	2.8859*+05		6,1082"+03	NW	1.7868	1.7629	5.1696#+02	1.5033#+02
INFIDITE	3.3853*+02		2,6505"=04	0.0000"+00	0.1033	3.7256"=04	6.1505#+02	3.1896#+02
55010602	2.5330	1.0000	4,9439*+03	1.6100==03	3.9048	1.3366	1.5999*+04	1.5999*+04
3.9624*-01	2.57744+05	1.0000	9,3263*+03	NM	1.6328	1.8227	3.1675*+02	1.4827*+02
Infinite	3.38539+02	0.0000	4,1269*+04	0.0000=+00	0.1071	5.5469*=04	6.1840*+02	3.1875*+02
55010602*	2.5150	1.0000	4.8131*+03	1.6100*+03	3.9010	1.3552	1.5616"+04	1.5616*+04
3.9624*+01	2.7311*+05	1.0000	9.0174*+03	NM	1.8256	1.8144	3.1887"+02	1.4946*+02
INFINITE	3.3053*+92	0.0000	4.1635*=04	0.0000*+00	0.1060	5.6277*=04	6.1647"+02	3.1887*+02
55010603*	2.4160	1.0000	6.8864*+03	1.5600**03	3.6614	1.3176	1.8360#+04	1.8360*+04
5.9945*=01	2.7521*+05		1.6033*+04	NM	1.8199	1.8690	3.1957#+02	1.5619*+02
Infinite	3.3853*+02		6.9694*=04	0.0000*+00	0.1019	9.2982*-04	6.0539#+02	3.1957*+02
55010604	2.4510	1.0000	1.0348*+04	1.5600#=03	3.6873	1.2963	1.8165*+04	1.8165*+04
8.0263"=01	2.6757"+05		1.8920*+04	NM	1.8310	1.8176	3.1932*+02	1.5378*+02
Infinite	3.3653"+02		8.0179*=04	0.0000#+00	0.1039	1.06154-03	6.0939*+02	3.1932*+02

550109	501 SHUT	13 /H /H	PROFILE	TABULATION	17	POINTS, DEL	TA AT POI	NT 17
1	Y	PT2/P	P/PD	TO/TOD	M/MD	U/UD	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	1984	0.94770	0.00000	0.0000	1.90639	0.00000
2	2.28604-04	2.4574"+00	; } M	0.97077	0.34113	0.06419	1.50654	0.44087
3	2.7940"=04	2.5021"+00	Hw	0-97122	0.54780	U_67063	1.49874	0.44746
4	3.3274"-04	2.6816*400	HM	0.97297	0.57359	0.69508	1.46848	0.47333
S	4.3180"=04	2.7719 459	314	0.97381	0.58604	0.70661	1.45383	0.48604
6	5.3574*-04	3.073	नुष	0.97650	0.62561	0.74213	1.40719	0.52739
7	6.8326*-04	3.249	1441	0.97798	0.64740	0.76095	1.36155	0.55079
Ü	8.3820"=04	3.466	P) M	0.97973	0.67319	0.78256	1.35132	0.57910
ě	9.8805"-04	3.7163000	1179	0.98164	0.70165	0.80558	1.31819	0.61112
10	1.2446"-03	4.1336*+99	ryla:	0.98462	0.74655	0.84018	1.26050	0.66336
ii	1.0256"=03	4.3989*+00	HM	0.98639	0.77368	0.86010	1.23567	0.69594
iż	2.0066"-03	5.3183"+00	11M	0.99190	0.86083	0.91928	1.14042	0.80609
13	2.3851 -03	6.0051 +00	No	0.99548	0.92041	0.95579	1.07837	0.88633
14	2.7661"-33	6.5040"+00	NM	0.99784	0.96132	0-97914	1.03742	0.94382
15	3.4061*-03	6.9730"+00	ŊМ	0.99990	0.99822	0.99907	1.00169	0.99738
15	4.0386"-03	6,9961"+00	HM	1.00000	1.00000	1.00000	1.00000	1.00000
9 i7	4.6761 "-03	6.4961*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, M ASSUME PEPD AND VAN DRIEST

550105	TTUHE 502	SHUTTS /H /W		MOLTAJUBAT	16	16 POINTS, DELTA AT POINT 16			
I	¥	PTS/P	P/PO	001101	MAMD	U/UD	1/10	90/U+G0HP\0HR	
i	0.0000=+00	1.0000*+00	NH	0.94786	0.00000	0.00000	1.90076	0.00000	
2	2.2850"=04	2.5384"+00	ŊΜ	0.97175	0.55486	0.67686	1.48809	J.45485	
3	1.0226"-04	2.6816"+90	(IM	0.77313	0.57535	55466.0	1.46414	0.47551	
4	3.8100"-04	2.8145*+00	H9	0.97437	0.59367	0.71308	1.44274	0.49425	
Ś	5.3848" +04	2.9729*+00	IIM	0.97579	0.61463	0.73195	1.41818	0.51612	
6	7.3600"+04	3.1340*+70	(4M	0.97719	0.63515	0.74995	1.39416	0.53792	
ž	9.9314"=04	3.4665"+00	IIΜ	0.97990	0.67529	0.78384	1.34733	0.58177	
à	1.2421"=03	3.7045 +00	111A	U.98172	0.70250	0.80583	1.31583	0.61241	
ğ	1.6281"=03	4465*+00	114	0.95488	0.75022	0.84256	1.26131	0.66801	
10	2.1361"=03	4.6101"+00	NM	0.98791	0.79706	0.87638	1.20844	0.72491	
ii	2.7737"403	5.3629"+00	iin.	0.99231	0.86753	0.92334	1.13281	0.81509	
iż	3.4036"-03	6.0636*+00	NM	0.79594	0.92819	0.96023	1.07023	0.89722	
13	4.0437*-03	6.6209#+00	NM	0.99654	0.47368	0.98587	1.02523	0.96163	
14	5.3111 -03	6.9442"+00	1444	0.99945	0.99911	0.99953	1.00085	0.99869	
15	6.5786"-03	6.95574+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000	
Dio	7.8486"-03	6.9557*+00	им	1.07000	1.00000	1.00000	1.00000	1.00000	

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

550105	OB SHUTT	3 /H /H	PROFILE	TABULATION	16	POINTS, DEL	YA AT PUI	NT 16
1	Y	PT2/P	P/PD	10/100	M/IID	UZUD	OFLE	RHO/RHOD#U/UD
i.	0.0000*+00	1.0000*+00	NM	0.94800	0.00000	0.00000	1.89595	0.00000
2	2.2860"-04	2.3671"+00	NM	0.97015	0.53041	0.65270	1.51426	0.43104
3	2.7940"-04	2.4463*+00	ŅМ	0.97099	0.54293	0.66492	1.49983	0.44333
4	3.8354"-04	2.6217"+00	ŊМ	0.97270	0.56843	0.68925	1.47031	0.46878
5	5.3086"-04	2.7491"+00	NM	0.97391	0.58631	0.70590	1.44951	0.48699
6	7.8740"-04	3.0246*100	IIM	0.97639	0.62299	0.73891	1.40677	0.52525
7	1.0414"-03	3.2570"+00	ŊМ	0.97836	0.65206	0.76403	1.37294	0.55649
Á	1.4199"-03	3.5473"+00	HМ	0.98067	0.68647	0.79262	1.33307	0.59458
ğ	1.8009"-03	3.8497*+00	1134	0.98293	0.7204B	0.61961	1.29409	0.63335
10	2.4409"-03	4.3945*+00	Nea	0.98667	0.77773	0.86240	1.22960	0.70137
11	3.0759"-03	4.9118"+00	MAN	0.98989	0.82826	0.89752	1.17422	0.76435
12	4.3409"-03	5.9628"+00	[]M	0.99557	0.92218	0.95661	1.07606	0.88899
iä	5.6134 -03	6.7334"+00	ji.	0.99919	0.98524	0.99213	1.01404	0.97840
14	8.1559"-03	6-9041 +00	NIA	0.99993	0.99866	0.99929	1.00127	0.99803
15	1.0698"-02	6.9098*+00	NM	0.99995	0.99911	0.79953	1.00085	0.99868
0 16	1.3233"-02	6.9213*+00	1161	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y.M ASSUME PEPO AND VAN DRIEST

550105	04 SilUT	rs /H ///	PROFILE	TABULATION	25	POINTS, DEL	TA AT PUI	N1 24
I	Y	915/6	6. NBD	TOITOO	(17-10)	u /uĐ	T/TP	RH0/8400+U/UD
1	0.0000"+00	1.^000*+00	nn	0.94782	0.00000	0.00000	1.90237	0.0000
2	2.2860"-04	.º 1174*+00	ИM	0.96724	0.48752	0.61017	1.56641	0.38953
3	2.7940"=04	2.1200*+00	NW	0.96727	0.48797	0.61062	1.56591	0.38995
4	1.2766"-04	2.1123"+00	1214	0.96717	0.48663	0.60925	1.56743	0.38869
S	4.3190*=04	2.1123"+00	1434	0.96719	0.48663	0.60925	1.56743	0.38869
6	5.3594"-04	2.1123"+90	1114	0.96719	0.48663	0.60925	1.56743	0.38869
ž	6.8326"=04	2.3077"+00	1174	0.96934	0.51916	0.64221	1.53020	0.41969
à	8.3820"-04	2.5263"+00	1497	0.97158	0.55258	0.67484	1.49142	0.45248
9	1.0439"=03	2.8778"+00	1414	0.97490	0.60160	U.72043	1.43403	0.50238
10	1.2421"=03	2.8344*+00	ΙΨ	0.97451	0.59581	0.71518	1.44083	0.49637
11	1.4986"=03	3.0597"+00	ķjΜ	0.97650	0.62522	0.74144	1.40631	0.52722
15	1.7526"-03	3.2937*+00	1411	0.97847	0.65419	0.76637	1.37238	0.55843
13	2.1361"-03	3.4205"+00	1114	0.97949	0.66934	0.77906	1.35470	0.57508
14	2,51464-03	3.5589"+00	hΨ	0.98057	0.68538	0.79221	1.33604	0.59296
15	3.1496"-03	3.6293"+00	NM	0.96257	0.71569	0.81633	1.30103	0.62745
10	3.7846"-03	4.0911"+00	1111	0.98445	0.74376	0.83783	1.26895	0.55026
17	4.4176"=03	4.3680"+00	1114	0.98631	0.77228	0.85845	1.23676	0.59444
18	5.6871"-(3	4.8740"+00	1111	0.98947	0.82175	0.89343	1.14208	0.75581
19	6.7621"-03	5.3928"+00	HW	0.99243	0.36743	0.92460	1.13094	0.81755
ŽÓ	8.2296" -03	5.8996"+00	NW	0.99508	0.91355	0.95165	1.08515	0.87697
ži	1.0767"=02	6.72214.00	NP	0.99894	0.98984	0.98979	1.01833	0.97197
25	1.3310"-02	6.9327"+00	1481	0.99985	0.99733	0.99859	1.00254	0.99606
23	1.5852"-02	6.9500"+00	Birr	0.99993	0.99866	0.99930	1.00127	0.99803
D 24	1.8390"-02	6.9672"+00	ŇN	1.00000	1.00000	1.00000	1.00000	1.00000
25	2.0932*=02	6.9615"+00	ИM	0.99998	0,99955	0.99977	1.00042	0.99934

INPUT VARIABLES Y.M ASSUME PEPD AND VAN DRIEST

550106	502 SiUT	13 NH NI	PROFILE	TABULATION	24	POINTS, DE	LTA AT PUI	NT 24
I	Y	9/579	P/PD	TOTTOD	HZHD	U/U0	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	NH	0.94155	0.00000	0.00000	2.14976	0.00000
4	2.2800"-04	2.7948"+00	Mn	0.96770	0.52310	0.66893	1,63529	0.40906
3	2.5400"-04	2.8245"+00	134	0.96797	0.52665	0.67237	1.62997	0.41251
4	3.0480*=04	2.9798*+00	[ge4	0.96936	0.54481	0.68973	1.60278	0.43033
5	4.0386"-04	3,2680"+00	F*V1	0.77179	0.57679	0.71924	1,55498	0.46254
Ú	5.0800"-04	3.4588"+00	Иh	0.97331	0.59692	0.73714	1.52500	0.48337
7	6.0706"-04	3.5745"+00	NM	0.97420	0.60876	0.74743	1.50745	0.495#2
Ü	7.6200"-04	3.6371"+00	HM	0.97468	0.61508	0.75284	1.49811	0.50253
9	9.1440*-04	3.8620*+00	N _M	0.97633	0.63719	0.77139	1.46560	0.52635
10	1,0668"-03	4.0488*+00	HM.	0.97765	0.65495	U.78586	1.43969	0.54585
11	1.3208"-03	4.2152*+00	1444	0.97878	0.67035	0.79807	1.41742	0.56306
12	1.5748*-03	4.5692*+00	Иw	0.98107	0.70193	0.82229	1.37233	0.59919
13	1.8263"-03	4.6131 +00	/IM	0.98257	0.72286	0.83769	1.34295	0.62377
14	2.2123*-03	5.2149"+00	H ^A	0.98459	0.75602	0.86105	1.29725	0.66378
15	2,5883"=03	5.5690"+00	Иh	0.98681	0.78405	0.87993	1.25953	54690.0
16	2.9718"-03	6.0903*+00	N/A	0.98943	0.82353	U.90507	1.20789	0.74932
17	3.4798"-03	6.5595"+00	1/4	0.99162	0.85748	0.92550	1-16494	0.79446
18	3.9878*-03	7.05974+00	IIM	0.49378	55568.0	0.94526	1.12243	0.84216
19	4.4933"-03	7.6646"+00	NA	0.99619	0.93249	0.96683	1.07501	0.89937
20	5.1308"-03	8.1643"+00	N _{rt}	0.99803	0.96447	0.98299	1.03878	0.74630
äi	5.7658"=03	8.5712*+00	IIM	0.99944	0.98974	0.99519	1.01104	0.98432
35	6.4033"-01	8.7200*+00	HM	0.99994	0.99882	0.99945	1.00127	0.99818
23	7.1028 -03	8.7330"+00	144	0.99995	0.99961	0.49982	1.00042	0.99939
0 24	7.9.73*-03	8.7395"+00	No.	1.00000	1.00000	1.00000	1.00000	
0 64	141.13 -03	G + 7.3 73 YUU	11.7	1.0000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

rough	M : 2 P THETA X 10 ⁻³ : 11 - 40	5502
	TH / TR : 1.0	ZPG (ROUGH) AW
Continuous wind tunnel with fixed symmet 0.18 < PO < 0.3 MN/m^2 . TO : 340 K. Air	rical nozzles. W = 0.48, H = 0.70, L : . RE/m X 10 ⁻⁶ : 25.	- 1.0 m.
SHUTTS W.H. and FENTER F.W., 1955. Turbi artificially roughened, thermally insula		

- 1- The experimental arrangements are as for the previous entry. Shutts, Hartwig and Weiler, CAT 5501, in every to respect save that the surface of the plate and the floating elements of the shear stress balance was given
- -11 a coating of grinding compound grit. Small wires were inserted in the static holes during the coating so as to keep them clear. The balance annuli were cleared, and kept clear, with a thin-walled steel tube. The tests reported here used Aloxite grit of 120 and 180 grain. The corresponding mean particle diameters are 162 and 109 µm respectively (the particles are in fact very irregular in shape). The coating was made by spraying the grit into a bonding layer until no more would adhere. The plate was then cured at about 320 K for three hours. "This procedure gave excellent results both from the standpoint of bonding and uniformity".
- 8 The coordinate Y is measured from the mean top of the roughness, a slip gauge being rested on the surface
- 9 and contact with the probe found electrically. The static pressure through the boundary layer was assumed
- 11 constant, and Sutherland's viscosity law was used. The authors' assumption of isoenergetic flow has been
- 12 replaced by the Crocco / Van Driest temperature-velocity correlation. Additional tests were made at boundary layer edge Mach numbers of 1.62, 1.66, 1.73, 2.10, 2.18 and 2.33 with roughnesses of mean diameter 54 and 141 μm, but since no balance readings were taken in conjunction with these tests, they are not presented here. For the M π 2 series, the editors have interpolated the reported CF values to X-stations corresponding
- 13 to the velocity profiles. The profiles consist of two sets at a common unit Reynolds number, one for each of the roughness sizes. Series 01 describes the boundary layer with mean roughness diameter of 109 μ m, while series 02 describes the 162 μ m diameter case. There are, additionally, two profiles, 0301 and 0401, for the
- 14 $162 \mu m$ roughness in which the unit Reynolds number has been perturbed by changing the reservoir conditions. CF values are given only for the series 01 and 02.
- § DATA: 5502 0101-0401. Pitot profiles. NX = 5. CF measured with an FEB separately. Roughened surface.

15 Editors' comments

The entry describes one of the very few available experiments in which a boundary layer has developed over a uniformly rough surface. Other relevant tests, also made at the DRL, are those of Fenter & Lyons - CAT 5804 and Young - CAT 5506. A general description of the programme to 1959 is given by Fenter (1960).

The profiles are described in moderate detail, and in most cases measurements extended within the momentum deficit peak. The authors comment that "considerable scatter exists in the skin friction data for rough surfaces. This scatter may be attributed to experimental difficulties; for example, there was a tendency for loosened roughness particles to foul the narrow gaps which surround the floating discs of the skin friction balances." The original paper contains a further 75 profiles without associated CF values.

CAT 5502	SHUTTS /FENT	ER	BOUNDARY CONDITIONS AND EVALUATED DATA. SI UNITS.							
RUN	MD +	TW/TR#	REDZW	CF +	H12	H12K	PW	PO		
X *	P0D*	PM/PD★	REDZD	CO	H32	1132K	TW	TD		
RZ	TUOA	314 *	0.5	P124	H42	OSK	UD	TR		
55020101	2.0220	1.0000	1.0533*+04	3.2100"-03	3.1490	1.4397	2.9192"+04	2.9192"+04		
2.9474"-01	2.3637*+05	1.0000	1.6416"+04	:114	1.7589	1.7542	3.2270"+02	1.8624"+02		
INFINITE	3.38534+02	0.0000	6.8207"-04	0.0000*+00	0.0628	8.7791"-04	5.5326"+02	3.2270"+02		
55020102	1,9960	1.0000	1.3719"+04	3.0100*-03	3.0788	1.4181	3.0311"+04	3.0311"+04		
3.9624"-01	2.3569*+05	1.0000	2.1182"+04	NM	1.7696	1.7568	3.2292"+02	1.8841"+02		
INFINITE	3,3853"+02	0.0000	8,7226"-04	0.0000*+00	0.0816	1.1166"-03	5.4931"+02	3.2292"+02		
55020103	2,0130	1.0000	1.6891"+04	2.0700*-03	3.1190	1.4284	2.9816"+04	2.9816"+04		
4.9774*=01	2,3806"+05	1.0000	2.6239"+04	Им	1.7678	1.7529	3.2277*+02	1.8699"+02		
INFINITE	3,3853"+02	0.0000	1.0780*-03	0.0000*+00	2580.0	1.3851"-03	5.5190"+02	3.2277*+02		
55020104	2.0290	1,0000	1.9144"+04	2.7800"-03	3.1174	1.4076	2,9703"+04	2,9703*+04		
5.9954"-01	2.4314*+05	1.0000	2.9911"+64	;łM	1.7716	1.7573	3,2263"+02	1.6566"+02		
INFINITE	3,3853*+02	0.0000	1-515103	0.0000*+00	0.0832	1.5589"-03	5.5431*+02	3.2263"+02		
55020105	2.0110	1.0000	2.2104"+34	2.7000"-03	3,0657	1.3924	3.0505"+04	3.0505"+04		
7.0104*-01	2,4280*+05	1.0000	3.4312"+04	14h	1.7748	1.7612	3.2279"+02	1.8716"+02		
INFINITE	3,3853"+02	0.0000	1.3810"-03	0.0000*+00	0.0825	1.7650"-03	5.5160*+02	3.2279"+02		
55020201	2.0110	1.0000	8.7365"+03	4,1600"-03	3.2068	1.4890	2.9611"+04	2.9611"+04		
1.9294"-"	2,3549"+05	1.0000	1.3562*+04	NM	1.7551	1.7412	3.2279"+02	1.8716"+02		
INFINITE	3.3853"+02	0.0000	5.6226"-04	0.0000*+00	0.0816	7.3067"-04	5.5160"+02	3.2279*+02		
55020202	2.0020	1.0000	1.4924"+04	3.4200"-03	3.0644	1.4034	3.0115"+04	3.0115"+04		
3.9624"-01	2.3637"+05	1.0000	2,3092"+04	HM	1.7765	1.7436	3,2207"+02	1.8791"+02		
INFINITE	3.3853*+02	0.0000	9.5075"-04	0,0000*+00	0.0822	1.2117"-03	5,5023"+02	3.2287*+02		
55020203	2.0260	1,0000	2.0457"+04	3.0000~-03	3.0532	1.3675	2,9011*+04	2.9011"+04		
5.9954"-01	2.3637"+05	1.0000	3,1929"+04	16M	1.7846	1.7725	3,2266"+05	1.8591"+02		
INFINITE	3.3853*+02	0.0000	1.3291"-03	0.0000"+00	0.0837	1.6916"-03	5,5386"+02	3,2266*+02		
55020204	2.0150	1.0000	2.6225*+04	2.6700"-03	3.0320	1.3646	2.9512"+04	2,9512*+04		
8.0254"-01	2.3637*+05	1.0000	4,0768"+04	NP	1.7632	1.7710	3.22/6"+02	1.8682*+02		
INFINITE	3,3853"+02	0.0000	1.6885"-03	0.0000*+00	0.0831	2.1463"-03	5,5221*+02	3,2276"+02		
\$5020301	2.0200	1.0000	9.1715"+03	NM	3.1774	1.4623	3.1759"+04	3.1759"+04		
1.9294"-01	2.5635"+05	1.0000	1.4356"+04	I§M	1.7692	1.7568	3.0682"+02	1.7723"+02		
INFINITE	3.2187"+02	0.0000	5.1297"-04	0.0000*+00	0.0827	6.6082"-04	5.3916"+02	3,0682"+02		
55020401	2.0270	1.0000	6.9095*+03	NM	3.1688	1.4508	2.7306*+04	2.7306*+04		
1.9294"-01	2.22024+05	1.0000	1.0741"+04	lin.	1.7759	1.7438	3,3695"+02	1.9406"+02		
INFINITE	3.5353*+02	0.0000	5.0322"=04	0.0000*+00	0.0433	6.USS7"-04	5.66154+02	1.1694F+02		

55020	101 SHUT	TS /FENTER	PROFILE	TABULATION	55	POINTS, DEL	TA AT PUI	NT 22
I	Y	PT 2/P	P/PD	G07107	117/4D	CUND	T/TD	RH0/RH00+U/UD
1	0.0000*+00	1.0000*+00	NM	0.95322	0.00000	0.00000	1.73266	0.0000
2	2.2860"-04	1.5615"+00	NM	0.96522	0.40752	0.50649	1.54471	0.32759
3	2.7432"-04	1.6055"+00	NM	0.96592	0.42387	0.52120	1.53363	0.33985
4	3.2512"-04	1.6950*+00	12M	0.96729	0.44609	0.54856	1.51218	0.36276
5	5.8862"-04	1.8037"+00	Νħ	0.96884	0.47379	0.57793	1.48794	0.38841
6	4.8006"-04	1.8776"+00	NW	0.96983	0.49110	0.59592	1.47247	0.40471
6 7	5.7912"-04	1.9656"+00	£124	0.97095	0.51039	0.61564	1.45497	0.42313
3	7.0612"=04	2.0373"+00	ИM	0.97182	0.52522	0.63056	1.44135	0.43748
9	7.9248"-04	2.0794"+00	HM	0.97231	0.53363	0.63892	1.43357	0.44569
10	9.3472"-04	2.1510"+00	ÑЧ	0.97314	0.54748	0.65255	1.42068	0.45932
11	1.0439"-03	2.2716"+00	įįΜ	0.97447	0.56973	0.67406	1.39977	0.48155
12	1.1633"-03	2.3557"+00	žįM	0.97537	0.58457	0.68814	1.38572	0.49659
13	1.4402"-03	2.4931"+00	NM	0.97678	0.60781	0.70976	1.36358	0.52051
14	1.6739"-03	2.6374"+00	1111	0.97821	0.63106	0.73086	1.34130	0.54489
15	2,1895"-03	2.9183"+00	ИМ	0.78082	0.67359	0.76812	1.30038	0.59069
16	2.6975"-03	3.2205"+00	ĮĮМ	0.98343	0.71612	0.80367	1.25945	0.63811
17	3.2131"-03	3.5356"+00	йM	0.98597	0.75767	0.83676	1.21968	0.68605
is	5.7175"-03	5.07874+00	NM	0.99631	0.93323	0.95979	1.05773	0.90741
19	6.9926"-03	5.5792"+00	NW	0.99909	0.98318	0.99019	1.01430	0.97623
žó	8.2677"-03	5.7175"+00	ИМ	0.99981	0.99654	0.99800	1.00293	0.99508
Ži	9.5377"-03	5.7330"+00	(IM	0.99989	0.99802	0.99886	1.00167	0.99719
0 25	1.0615*-02	5.7537"+00	ИM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PMPD AND VAN DRIEST

550201	03 311071	13 /FENTER	PROFILE	TABULATION	55	POINTS, DEL	TA AT POI	NT 22
I	Y	PT2/P	P/P0	C01\07	M/MD	U/UD	1/10	MH0/RH0D*U/UD
1	0.0000*+00	1.0000"+00	11th	0.95344	0.00000	0.00000	1,72615	0.00000
2	2.2860"=04	1.4267*+00	MM	0.96312	0.36314	0.45578	1.57530	0.28933
3	2.8194"-04	1.4523"+00	1414	0.96355	0.37258	0.46655	1.56809	0.29753
4	3.4036"-04	1.4732"+00	(4M	0.96395	0.35003	0.47501	1.56231	0.30404
5	3.8354"-04	1.5153*+00	ИM	0.96463	0.39444	0.49122	1.55093	0.31672
6	4.9022"=04	1.6241"+00	(414	0.96645	0.42822	0.52852	1.52331	0.34695
7	5.6642"-04	1.7042"+00	NM	0.96766	0.45057	0.55264	1.50438	0.36735
8	7.0104*+04	1.8160"+00	NM	0.,96924	0.47889	0.58254	1.47973	0.39368
9	7.9756"=04	1.8798*+00	NM	0.97009	0.49379	0.59798	1.46650	0.40776
10	1.0312"-03	2.0011"+00	MII	0.97162	0.52012	0.62474	1.44274	0.43302
ii	1.2929"-03	2.1484"+00	NM	0.97534	0.54943	0.65375	1.41540	0.46175
įž	1.6027"-03	2.2854*+00	}{M	0.97486	0.57476	0.67817	1.39210	0.48713
i3	1.7958"-03	2.3614 +00	PIM	0.97566	0.58818	0.69035	1.37958	0.50077
14	4.3358"-03	3.2937"+00	NM	0.98428	0.72926	0.81377	1.24526	0.05351
15	5.5956"-03	3.7605"+00	MIT	0.98792	0.78937	0.86053	1.18843	0.72409
io	6.8656"-03	4.2066 +00	1114	0.99109	0.84252	0.89919	1.13903	0.78945
17	8.1356"-03	4.6879"+00	NM.	0.99421	0.89617	0.93576	1.09030	0.85826
15	9.4005"=03	5.1224*+00	ii.	0.99680	0.94188	0.96507	1.04985	0.91925
19	1.0676"-02	9.4529"+00	ЙM	0.99865	0.97516	0.98538	1.02107	0.96505
20	1.1946"-32	5.6149"+00	NM	0.99952	0.79106	0.99479	1.00755	0.98734
Ξĭ	1.3216"-02	5.6763"+00	NM	0.39984	0.99702	0.99827	1.00251	0.99577
D 55	1.4481 -02	5.7072"+00	ИN	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y.M ASSUME PMPD AND VAN DRIEST

550201	TUHE CO	S /FENTER	PROFILE	TABULATION	28	POINTS, DEL	TA AT POI	NT 28
1	1	9 \579	P/P0	10/100	MVND	U/UD	1/10	RHO/RHCO+U/UD
1	0.3000#+00	1.0000*+00	Him	0.95350	0.00000	0.00000	1.72471	0.00000
2	2.2550" +04	1.4564*+00	NM	0.96370	0.37444	0.45852	1.56563	0.29925
3	2.6670"-04	1.5034*+00	ŊM	0.96453	0.39083	0.44704	1.55280	0.31366
4	3.1750"-04	1,5521*+00	NM	0.96535	0.40676	0.50479	1.54004	0.32177
5	4.1910"-04	1.5988"+00	NM	0.96610	0.42118	0.52067	1.52824	0.34070
6	40.00000	1.64484+00	ИW	58469.0	0.43461	0.53530	1.51704	0.35286
7	5.8420"-04	1.6931"+00	HIM	0.96755	0.44804	0.54977	1.50567	0.36513
Á	0.7310"-04	1.7518"+00	MIT	0.96840	0.46345	0.56417	1.49240	r.3773/
4	7.4/56 -04	1.8390"+00	NM	0.96961	0.48483	0.58856	1.47366	0.39939
10	9.9758"-04	1.91644+00	NM	0.97066	0.50323	0.60749	1.45726	0.41687
11	1.1811"-03	2.0083"+00	NM	0.97175	0.52213	0.62659	1.44017	0.43508
ià	1.4529"-03	7.1226"+00	HM	0.97310	0.54500	0.64726	1.41921	0.45748
1.5	1.70184-03	2.2064*+00	ΗN	0.97405	U.56071	0.66474	1.40447	0.47330
14	1.9031"-03	2.2716"+00	NM	0.97476	0.57285	0.67619	1.39335	0.48530
15	4.7178"-03	2.5202"+00	NM.	0.97734	0.61561	0.71610	1.35308	0.52923
16	3,,30%2"-03	7.7361"+00	NM	0.97943	0.64793	0.74484	1.32048	0.56558
17	4.7549" - 03	3.3679"+00	NM	0.48260	0.70164	0.79108	1.27118	0.02232
16	6.0401"-43	3.4360"+00	IIM.	0.98548	0.74888	0.82930	1.22630	0.67626
19	7.2898"-03	3.78074400	IIM	51884.0	0.79264	0.86289	1.18511	0.72811
30	8.6030"-03	4.1507*+00	ИМ	0.99076	0.83690	0.89514	1.14402	0.78245
21	4.82444.03	4.5105*+00	ΝM	0.99315	0.87767	0.92336	1.10685	0.83424
22	1,1100"-02	4.8505"+00	NM	0.99526	0.91447	0.94765	1.07384	0.88245
2.5	1.3102"-02	5.1661 400	N/4	0.99711	0.94729	0.96840	1.04507	0.92664
24	1.3647"-03	#. } ~ 74"+00	HH	0.99840	0.97066	0.98267	1.02490	0.95880
25	1.4940"-02	5.54A7"+0U	18FA	0.99922	0.98558	0.99150	1.01218	0.47963
20	1 6183"-12	5.6456"+G0	1964	0.99973	0.49503	0.99711	1.00419	0.99295
ďŤ	7455"-02	4.6918"+00	HM	0.99997	0.99950	0.99971	1.00042	().99929
0 26	1.8727**02	\$,4969*+00	MH	1.00000	1.00000	1.00000	1.00000	1.00000

THOUT VARIABLES Y,M ASSUME POPD AND VAN DRIEST

?-C-2								
550204	501 3 HU	TTS /FENTER	PROFILE	TABULATION	22	POINTS, DE	LTA AT POI	NT 22
1	Y	P12/P	P/PD	TOTTOD	MZND	U/UD	T/TD	RH0/RH00+U/U0
1	0.0000*+00	1.0000*+00	ин	0.95350	0.00003	0.00000	1.72471	0.00000
2	2.2860"-04	1.6241"+00	NM	0.96650	0.42864	0.52882	1.52204	0.34744
3	3.6830"-04	1.7211*+00	NM	0.76795	0.45549	0.55773	1.49928	0.37200
4	5.2070"-04	1.5603"+00	NM	0.96989	0.48781	0.59371	1.46926	0.40409
5	6.1762"-04	1.9633"+00	MM	0.97120	0.51268	0.61709	1.44875	0.42594
6	7.7470"-04	2.0325"+00	1114	0.97205	0.52710		1.43564	0.43992
7	9.0678"-04	2.1098"+00	ΝN	0.97295	0.54252	0.64682	1.42150	0.45503
5	1.0236"-03	2.2145"+00	IIM	0.97413	0.56241	0.06618	1.40308	0.47480
9	1.1552"-03	2.3415*+00	NM:	0.97551	0.58528	0.68797	1,36170	0.49792
10	1.4122"=03	2.4961*+00	116	0.97710	0.61164		1.35685	0.52508
ii	1.6637"-03	2.6912"+00	794	0.47901	0.54296		1.32711	0.55013
iż	2.2987"-33		HM	0.98339	0.71457		1.25887	0.63687
13	2.9312"-03	3.6648*+00	1184	0.98723	0.77822		1.19863	0.71082
14	3.5687"-03	4.1550"+00	38	0.99077	0.83739		1.14356	0.78307
iš	4.1986"-03	4.6741"+00	NY	0.99418	0.89557	0.93532	1.09072	0.05752
16	4.8387"=03	5.1661"+00	14.94	0.99711	0.74729			
17	5.4712"-03	5.5032"+00	NM NM	0.99897	0.98110	0.96840	1.04507	0.92664
iś	6.1037"-03	5.6251"+00				0.98891	1.01598	0.97336
19	6.7437"-03		Ηn	0.99962	0.99304	0.99595	1.00586	0.99014
50		5.6661 490	ΠÞ	0.99984	0.99702	0.99827	1.00251	0.99577
	7.3787"-03	5.6712"+90	Иw	0.99987	0.99751	0.99856	1.00209	0.99647
51	8.0137"-03	5.6918*+00	ПM	0.99997	0.99750	U.99971	1.00042	U.99929
0 55	9.0297"403	5.6969" >10	иM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y, 4 ASSUME	P=PD AND V	AN DRIEST				
5502 0,	50 3 3 HU.	TT3 /FEMTER	PROFILE	TABULATION	24	POINTS, DE	LTA AT POS	NT 24
1	Y	PT2/P	P/P0	TQ/T09	H/MD	UZUD	1/10	#H0/#H0D*U/UD
į.	0.0000"+00	1.0000*+00	ИM	0.95311	0.00000	0.00000	1.73556	0.00000
ş	2.2560"-04	1.4553"+00	N ¹⁴	0.76659	0.43435	0.53622	1.57406	0.35184
3	5.6068"=04	1.7079"+00	11w	0.96738	0.44867	0.55165	1.51172	0.36491
4	4.67367-34	1.7970*+10	ЦM	0.96863	0.47137	0.57572	1.49175	0.38594
3	6.1214"-04	1.4689*+00	NM	10000	0.46815	0.59321	1.47672	0.40171
6	7,2340"-04	1.9333"+00	Им	0.77044	0.50247	0.60791	1.46373	0.41532
7	8.6614"-04	1.9777"+00	AM	0.97102	0.51234	0.61794	1.45469	0.42479
А	1 0011****	3 47634446	k. M	A 49167	53173	0 43117	1 ///46//	A // T T A

220505	103 SHUT	TO PERTER	PROFILE	TABULATION	24	POINTS, D	ELTA AT POI	NT 24
1	Y	PTS/P	PZPO	10/100	H/MD	U/UD	1/10	#HO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	н	0.95311	0.0000	U_00000	1.73556	0.00000
5	2.2560"-04	1.5553*+00	NA	0.76659	0.43435	0.53622	1.52406	0.35184
3	5.6068"=04	1.7079"+00	1114	0.96738	0.44867	0.55165	1.51172	0.36491
4	4.6736"-34	1,7970*+90	({#M	0.76863	0.47137	0.57572		0.38594
ኔ	6.1214*-04	1.4689*+00	NM	0.96961	0.46815	0.59321	1.47672	0.40171
6	7.2340"-04	1.9333"+00	NM	0.77044	0.50247	0.60791	1.46373	0.41532
7	8.6614"-04	1.9777*+00	AB	0.97102	0.51234	0.61794		0.42479
8	1.0033"-03	2.0252*+00	NM	0.97157	0.52172	0.62737	1.44604	0.43386
9	1.1227"-03	2.0895"+00	NP	0.97233	0.53455	0.64015	1.43413	0.44637
10	1.2446"-03	2.1432*+00	NIA	0.97294	0.54492	0.65036	1.42444	0.45057
11	1.3614"-03	2.1958"+00	NM	0.97354	0.55479	0.65998	1.41517	0.46636
12	1.4961"-03	2.2361"+00	NM	0.97398	0.56219	0,66714	1.40818	0.47376
13	2.1514"-03	2.4426*+00	NM	0.77617	0.59822	0.70120	1.37390	0.51037
14	2.7711"-01	2.6240"+00	[414	0.97798	0.62784	0.72825	1.34545	0.54127
15	3.4036"-03	2,8014-+00	MM	0.97965	0.65499	0.75231	1.31926	0.57025
16	4.0386*-03	2.9833"+00	NW	0.98127	0.68164	0.77524	1.29349	0.59934
17	5.3086"-03	3,3457"+00	1414	0.95436	0.73149	0.81632	1.24539	0.65547
18	7.64044-03	4.0826"+04	HW	0.78989	0.82260	0.08565	1.15860	0.76441
19	1.0384*-02	4.8131"+00	NM	0.79463	0.70375	0.94103	1.05420	0.86795
20	1.2929"-02	5.4375"+00	7474	0.94822	0.96742	0.98054	1.02792	0.95419
51	1.5469"=02	5.6918*+00	NM	0.99757	0.99210	0.99543	1.00671	0.98879
55	1.8011"-02	5.7433"+00	ЦM	0.99984	0.99704	0.99829	1.00251	0.94579
23	2.0547"-02	5.7537*+00	NW	0.99989	0.79803	0.99866	1.00167	0.99719
D 24	2.3099#-02	5.7744*+00	'IM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PMPD AND VAN DRIEST

550202	04 SHUT	TS JFUNTER	PROFILE	TABULATION	24	POINTS, DEL	TA AT POI	NT 24
I	4	9 1879	P/Pt)	10/100	M/MD	0700	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000"+00	HW	0.95339	0.00000	0.0000	1.72759	0.0000
2	2.2860"-04	1.5857"+00	(944	0.96579	0.41638	0.51572	1.53406	0.33617
3	4.0040 - 74	1.6571"+00	110	0.76691	0.43722	0.53845	1.51665	0.35502
4	4.2164"-04	1.6678"+00	Nh	0.96707	0.44020	0.54166	1.51412	0.35774
5	5.5372"-04	1.7495"+00	1144	0.96827	0.46203	0.56499	1.49533	0.37784
b	5.6134"-04	1.7596"+00	1984	0.96841	0.46452	0.56762	1.49317	0.38014
7	0.5526"-04	1.8078"+00	1494	0.96911	0.47092	0.58065	1.46228	0.39173
3	4.8580"-04	1.8160*+00	NM	0.96917	0.47841	0.56220	1.46097	0.39312
9	4.3980"#04	1,9018"+00	FIM	0.97032	0.49826	0.60273	1.46527	0.41190
10	1.1057"-03	2.0083"+00	(414	4.97165	0.52109	V.62587	1.44258	0.43385
11	1.4656"-03	2.0744*+00	им	0.97244	0.53449	0.63922	1.43029	0.44692
12	2.0980"-03	2.2716"+00	Им	0.97465	0.57171	0.67541	1.39568	0.48393
13	2.7280"-03	2.4221"+00	HM	0.97624	0.59801	0.70018	1.37088	0.51075
14	1.9954"-03	2.7200"+00	ИM	0.97418	0.64615	0.74380	1.32506	0.56133
15	5.2634"-03	2.9867"+00	NM	0.96161	0.64586	0.77810	1.28708	0.60495
16	6.5329"-03	3.2027"+90	1464	0.98413	0.72705	0.81212	1.24772	0.65089
17	7.8029*-03	3.5628"+40	HM	0.98637	0.76377	0.84113	1.21202	0.69353
10	1.0348"-02	4.1422*+00	1434	0.99059	0.83424	0.89340	1.14685	0.77900
19	1.2880"-02	9.7202"+00	MM	0.99436	0.89876	0.93751	1.08809	0.85161
žό	1.5420*-02	5.2247*+00	NM	0.99733	0.95136	0.97097	1.04163	0.93216
ŽĬ	1.7960"-02	5.5335*+00	NM	0.99903	0.97213	0.98954	1.01514	
42	2.0500"-02	5.6558"+00	HM	0.77768				0.97478
äŝ	2.3040*-02	5.4949*+00			0.99404	0.99654	1.00503	0,99156
0 24	2.4369"-02	5.7175"+00	1114	0.99969	10899.0	V.99885	1.00167	0.99718
~ ~ ~	414304.448	3*1113.400	ПM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES YAM ASSUME PEPD AND VAN DEEST

M : 5 - B.2 R THETA X 10⁻³ : 5 - 13

TW/TR : 0.5 - 1.0

5503

FPG-MHT/SHT

Continuous tunnel with two-dimensional adjustable wedge nozzle. W = H = 0.12 m. 0.3 < P0 < 3.2 MN/ m^2 . 320 < T0 < 660 K Air: 7 < RE/m X 10^{-6} < 18.

LOBB R.K., WINKLER E.M. and PERSH J., 1955. NOL Hypersonic tunnel No. 4 results VII: Experimental investigation of turbulent boundary layers in hypersonic flow. NOL NAVORD Rep. 3880.

- 1 The test boundary layer was formed on one of the straight diverging walls of the tunnel nozzle. The test station was in the centre of the wall approximately 0.5 m downstream of the throat [E]. The wall was
- 4 actively, cooled and remained close to room temperature everywhere except at the throat, where it approached
- 3 recovery temperature. Surface probe tests indicated that transition took place just downstream of the throat.
- 6 Static pressure was measured at a tapping of 0.64 mm diameter, and the wall temperature was measured by four thermocouples embedded at various distances from the surface. After 10-20 minutes of tunnel operation these recorded a linear variation, giving the local heat-flux and the surface temperature. Previous investigations had shown that lateral temperature variations were negligible.
- 8 Probes were mounted on a sting about 0.3 m long [E] which swung about a pivot mounted in the diffuser about 0.2 m downstream of the nozzle exit plane. The path of the probe tips was thus slightly curved. The
- 7 Pitot profile was measured with a FPP ($h_1 = 0.25$, $h_2 = 0.25$, $h_3 = 0.25$). Total temperatures were recorded with a STP (Winkler, 1954) of the single shield vented type. The probe used near the wall was flattened ($h_1 = 0.96$ mm) while elsewhere a circular probe was used (E) of about 6 mm [E] diameter. A CCP ($h_1 = 0.96$ mm [E], $h_2 = 0.96$ mm [E]) was used, but since the static pressure outside the boundary layer was within
- 9 1% of the wall value, it was assumed that the normal pressure gradient was negligible. The temperature gradient in the wall gave a heat flux value which was used to compute the wall temperature gradient in the flow, and the measured TO profile was faired in to meet this. The authors have interpolated the TO readings to the Y-values of the PT2 readings.
- 12 The aditors have presented all the measured profiles, incorporating the author's assumptions and procedurer.

 The CF value given is that estimated by the authors from the limiting slope of the velocity profile. The
- 13 profiles fall into five Mach number groups. Within the groups for M = 5, 6 and 7 there is a range of heat
- 14 transfer conditions. CQ and CF are also given.
- § DATA: 55030101 1301, Pitot and TO profiles obtained separately. NX = 1. CO from temperature profile in wall.

15 Editory' comments

The experiment was a very early attempt at obtaining hypersonic cooled-wall data, and in consequence it is not surprising that it is not ideally arranged. The pressure gradient at the test station is not large, but as in all nozzle tests there has been a continuous FPG history. If radial flow is assumed, the high Mach number approximation gives (1/p) $(dp/dx) \sim \gamma/x$. The authors state that "the Mach number rise is about 3% per tunnel caliber at M = 5 and decreases with increasing Mach number." The tests were made on a straight wall so that no pronounced normal pressure gradient effects are expected, and the authors quote a 1% variation across the layer.

The skin friction data are dubious since they were obtained from the velocity gradient. On a log-law plot, the profiles suggested that in most cases CF was underestimated. It seems probable that they still display some transitional characteristics. The profiles include data close to the wall in a range for which the

TO data was interpolated. No description is given of any tests to check for cross-flow effects.

A flow of generally the same type is described by Pasiuk et al. - CAT 6504. Other planar straight wall flows are described by Michel - CAT 6902 and Voisinet & Lee - CAT 7304. More strictly comparable are the axisymmetric straight wall nozzle tests of Hill - CAT 5901 and Perry & East - CAT 6801.

CAT 5503	LOBB		BOUNDARY CON	DITIONS AND E	VALUATED I	DATA. SI UNIT	8.	
RUN	MD *	TW/TR	RED2W	CF *	HIZ	H12K	PW	PD
X	90D*	PW/PD+	RED20	CB #	H35	H32K	TN+	TD
RZ	TODA	3W *	DZ	P12	H42	DSK	ÜĎ	ŤŘ
55030101	4.9300	1.0117	1.0238*+03	1.0900"-03	11.4317	1.4166	6.4028*+02	6.4028*+02
NM	3.1208"+05	1.0000	4.7764"+03	NM	1,8418	1.7922	3.0081"+02	5.5520"+01
INFINITE	3.2540"+02	0.0000	6.4228*-04	ЙМ	0.1126	1.4230"-03	7.3651"+02	2.9733"+02
55030102	5.0100	0.7800	1.7043*+03	1.0900"-03	8.7442	1.3658	9.4833"+02	9.4833*+02
NM	5.0764"+05	1.0000	6.3683"+03	1.3280**04	1.6255	1.7852	2.8400"+02	6.6229*+01
INFINITE	3.9870"+02	0.0000	7.4202*=04	NM	0.5266	1.4726"-03	8.1747*+02	3.6412*+02
55030103	5.0300	0.6302	2.5697"+03	9.4300"-04	6.9886	1.4002	1.4517*+03	1.4517*+03
NM	7.9540*+05	1.0000	7.7559"+03	2.0420"-04	1.8186	1.7812	2.9524"+02	8.4651"+01
INFINITE	5.1300*+02	0.0000	5.4816"-04	MM	0.7817	1.5288"-03	4.2786*+02	4.6845"+02
55030104	7.0600	0.5831	2.6601*+03	9.1800"-04	6.6740	1.3998	1.5325*+03	1.5325"+03
NM	8.6937*+05	1.0000	7.4927"+03	NM	1.8180	1.7801	2.9921"+02	9.1819"+01
INFINITE	5.6200*+02	0,0000	8.7003"-04	ИN	0.8309	1.5243**03	9.7214"+02	5.1310"+02
55030105	5.7500	0.8943	2.0509*+03	8.2000*-04	12.5747	1.3991	1.1155"+03	1.1155*+03
NM	1.3578"+06	1.0000	1.0733"+04	4.8800"-05	1.8243	1.7786	3.2621"+02	5.2477*+01
INFINITE	4.0100*+02	0.0000	6.5611 -04	NM	0.3860	1.6179"-03	6,3673*+02	3.6477*+02
444 444 16	4,0100 108	*****	01,011 -04	141.	7,3050		013013 706	314477 702
55030106	5.7900	0.0146	2.6750"+03	7.2500*-04	10,5036	1.3942	1.3368"+03	1.3368*+03
NM	1.6972"+06	1.0000	1.2049"+04	9.6700"-05	1.8261	1.7832	3.3117"+02	5.8014"+01
INFINITE	4.4700*+02	0.0000	7.5295"-04	NM	0.6256	1.6636"-03	8.8422"+02	4.0655*+02
55030107	5.8200	0.4240	2.8554"+03	7.1000=-04	8.4694	1.3847	1.3108*+03	1.3108*+03
NM	1.7175"+06	1.0000	1.0739"+04	1.4760"-04	1,6236	1.7793	3.1267"+02	7.0873*+01
INFINITE	5.5100*+02	0.0000	8.62654-04	NM	0.8611	1.7503"-03	9,8237"+02	5.0107"+02
55030108	6.8300	0.4779	1.3530*+03	4.8300*-04	13.9318	1.4996	4.3761*+02	4.3761*+02
NM	1.5503*+06	1.0000	7.4810"+03	1.2110*****	1.8264	1.7629	2.8720*+02	4.5267"+01
INFINITE	4.6760*+02	0.0000	7.8097"-04	NH	0.6944	2.1165"-03	4,2135"+02	4.2368*+02
55030109	67800	0.5652	1.6403"+03	6.6600*-04	11.7847	1.4583	6.3218*+02	6.3218*+02
NM	2.1380*+06	1.0000	8.2759"+03	1.6400"-04	1.0191	1.7680	3.0015"+02	5.7487*+01
INFINITE	5.8600*+02	0.0000	6.6375"-04	NM	0.8363	2.1240 -03	1.0307"+03	5.3103"+02
55030110	6.6300	0.5596	2.5703"+03	5.9300*-04	10.4067	1.4302	6.1516*+02	8.1516*+02
NM	2.8678*+06	1.0000	1.1623"+04	1.4390"-04	1.6200	1.7705	2.9711"+02	5.6729*+01
IMPINITE	5.8600"+02	0.0000	9.1536"-04	NM	0.9591	2.1335"-03	1.0314*+03	5.3096"+02
55030111	6.7800	9.5023	1.0876*+03	6.9400*-Q4	. 7.5165	1.4624	6.4117"+02	6.4117*+02
NM	2.1684"+06	1.0000	7.5924*+03	1.8730"-04	8107	1.7650	2.9093"+02	6.2706*+01
INFINITE	50+"056.0	0.0000	8.9057**04	NM	9320	2.0524"-03	1.0764"+03	5.7924"+02
	4.3764 706				*** 7.76			****** ***
22030115	7.6700	0.5144	1.4426*+03	5.98004-04	12.3029	1.5342	3,2989"+02	3.3989"+02
NM	2.4521"+06	1.0000	7.3864*+03	NM	1.8116	1.7511	2.49974+02	5.0524"+01
INFINITE	6.4500*+02	0.0000	1.0749*-03	NM	1.0240	2.8446"-03	1.0931*+03	5,6317*+02
55030113	6.1500	0.5076	1.5215*+03	5.3000"-04	11.3397	1.5065	2.8558*+02	2.8558"+02
NM	3.2221*+04	1.0000	8.4555*+03	1.3710"-04	1.8160	1.7653	3.0030*+02	4.5542*+01
INFINITE	6.3500"+02	0.0000	1.1667"-03	NM	1.1591	2.8711"-03	1.1048*+0.	5.7162"+02

1 0.0000*+00 1.0000*+00 IM 0.33369 0.60000 0.30000 3.26720 0.30000 2.28000 0.13201 3.0000*+00 2.5014+00 IM 0.62890 0.22777 0.40000 3.03000 0.13201 3.41000*-04 3.4894*+00 IM 0.67243 0.30037 0.50400 2.81500 0.17904 4.47000*-04 3.4894*+00 IM 0.70705 0.31984 0.53900 2.8000 0.18979 5.3100**-04 4.4300*+00 IM 0.71703 0.314830 0.57000 2.77506 0.20917 6.6000*-04 5.3218*+00 IM 0.72627 0.38275 0.01000 2.57506 0.24916 7.7.600**-04 5.3218*+00 IM 0.73537 0.40524 0.33500 2.44000 0.25943 8.7.9000**-04 5.922**-00 IM 0.73537 0.40524 0.33500 2.44000 0.25943 8.7.9000**-04 5.9363*+00 IM 0.73597 0.40524 0.33500 2.44000 0.25943 8.7.9000**-04 6.5300*+00 IM 0.73597 0.40524 0.35500 2.44000 0.25943 8.7.9000**-04 6.5300*+00 IM 0.73599 0.4052 0.63500 2.34700 0.27954 10.10400**-03 6.5320*+00 IM 0.73595 0.40227 0.67500 2.23700 0.27954 11 1.1700**-03 7.2774*+00 IM 0.75560 0.45400 0.65600 2.34700 0.27954 11 1.1700**-03 7.2774*+00 IM 0.75560 0.45400 0.60100 2.25000 0.27954 11 1.1700**-03 7.7739**+00 IM 0.75601 0.46524 0.69600 2.20000 0.31522 11 1.4200**-03 7.7398**+00 IM 0.76601 0.46634 0.69600 2.20000 0.31636 14 1.6500**-03 8.0563**-00 IM 0.77353 0.47939 0.70700 2.17500 0.32506 15 2.0300**-03 8.0563**-00 IM 0.77353 0.47939 0.70700 2.17500 0.32506 15 2.0300**-03 8.0563**-00 IM 0.77353 0.47939 0.70700 2.17500 0.32506 15 2.0300**-03 8.0563**-00 IM 0.77353 0.47939 0.70700 2.17500 0.32506 15 2.0300**-03 8.0563**-00 IM 0.78490 0.49725 0.77400 2.12000 0.31636 16 2.5700**-03 8.0563**-00 IM 0.83979 0.59931 1.075000 1.29500 0.71615 17 4.79400**-03 3.28494*+01 IM 0.83979 0.59931 0.50000 1.29500 0.71615 19 1.4100**-02 3.3819*+01 IM 0.83979 0.59931 1.00000									
1 0.0000**00 1.0000**00 1.0000**00 1.40000 1.40000 0.000000				-			POINTS, DE	נסק זג גד.	(NT 2)
2 2,0000 - 00 2,1010 + 00	I	Y	PT2/P	P/PI)	43/102	M\MD	UZUD	TVID	RHO/RHOD*U/
\$ 4,1000"-04 \$,4893"+00 \$PPD	1	0.0000"+01	1.0000*+00	1414	0.53369	0.00000	0.00000	3.26780	0.30000
4 4,7000"-04 3,8799"+00 NM 0,70705 0,31940 U.53000 2.84000 0,18970 0 5.5100"-04 5,1218"+00 NM 0,70820 0,38575 U.61000 2,57000 0,24916 0 6.6900"-04 5,04016 NM 0,73590 0,38575 U.61000 2,54000 0,24916 0 7.76.000"-04 5,0922"+00 NM 0,73599 0,40552 U.63500 2,44000 0.25943 8 7,9000"-03 5,9363"+00 NM 0,73599 0,40552 U.63500 2,44000 0.25943 8 7,9000"-03 5,9363"+00 NM 0,73599 0,40552 U.63500 2,44000 0.25943 10 1.0400"-03 6,9320"+00 NM 0,73599 0,40552 U.63500 2,44000 0.25943 11 1.7701"-03 7,774"+00 NM 0,73590 0,40552 U.63500 2,44000 0.25951 11 1.7701"-03 7,774"+00 NM 0,73590 0,40562 U.63500 2,24700 0,26025 11 1.7701"-03 7,774"+00 NM 0,75550 0,45400 0,61100 2,25000 0,30267 12 1,4000"-03 7,7136"+00 NM 0,75550 0,65400 0,61100 2,26000 0,31522 13 1,4200"-03 7,7738"+00 NM 0,76471 0,46024 0,6600 2,2000 0,31526 13 1,4200"-03 7,7738"+00 NM 0,76471 0,46024 0,6600 2,2000 0,31526 13 1,4200"-03 7,7738"+00 NM 0,76471 0,46024 0,6600 2,2000 0,31526 13 1,4200"-03 8,0563"+00 NM 0,76471 0,46024 0,6600 2,2000 0,31526 13 1,4200"-03 8,0563"+00 NM 0,76471 0,66024 0,67070 2,17500 0,32506 0,77131 15 2,3000"-33 8,0563"+00 NM 0,76472 0,74726 0,77200 2,17500 0,32506 0,77131 15 2,000"-33 8,0563"+01 NM 0,96737 0,74726 0,77200 2,17500 0,32506 0,77131 15 2,000"-33 8,0563"+01 NM 0,96737 0,98910 0,75200 2,02300 0,31526 13 9,2200"-33 8,2240"+01 NM 0,98737 0,98910 0,77200 2,02300 0,77131 15 19 1,4100"-02 1,02910 1,0000 1,0000 1,0									
5 5.3000~004 4.3007~30									
6									
7									
8 7,000"-34 5,9363**00 NN 0,73599 0,4052 0,3500 2,44000 0,26025 0,9300 1.0000"-04 6,5300**00 NP 0,73505 0,40227 0,67000 2,28500 0,27951									
9 9,100"=94 6,530"+00 HM 9,74546 U,42620 U,67000 2,34700 0,27951 10 1.000"=03 6,932"+00 HM 0,75560 U,42627 U,67000 2,29500 0,20294 11 1.7700"=03 7.7774"+00 HM 0,75600 U,48639 U,69600 2,20000 0,31526 11 1.2200"=03 7.7736"+00 HM 0,76601 U,48639 U,69600 2,20000 U,31656 U,69600 U,6		7.6300"-04							
10 1.0900"-03 6.9320"+00									
11 1,170"=03 7.2774"+00									
12 1,4009-03 7,7136**00			6.9320"+00						
1									
1									
15 2,3300"-03 5,2296"+C0 IN 0.78490 0.49725 0.77400 2.12000 0.34151 16 2,5700"-03 1.2118"+O1 NM 0.83979 0.59813 0.80400 1.83000 0.43934 18 9.020"-03 2.2484"+O1 NM 0.83979 0.59813 0.80400 1.83000 0.43934 18 9.020"-03 2.2484"+O1 NM 0.93517 0.31724 0.93000 1.25000 0.71815 19 1.4100"-02 3.8819"+O1 INM 0.93517 0.95956 0.94700 1.05800 0.93289 20 1.9180"-02 3.3297"+O1 NM 1.00065 0.99801 1.09000 1.00400 0.99802 21 2.1729"-02 3.3431"+O1 NM 1.00065 0.99801 1.09000 1.00400 0.99802 21 2.1729"-02 3.3431"+O1 NM 1.00000 1.00000 1.00000 1.00000 NPUT VARIABLES									
16 2.6730"-03 9.6917"+00									
17									
18 9.0200"-03 2.24AQ*+01 NM 0.93517 0.31724 0.33000 1.29500 0.71815 19 1.4100"-02 3.0819*01 NM 1.00065 0.93269 0.98700 1.05800 0.93269 20 1.9180*-02 3.3297*+01 NM 1.00065 0.93260 0.98700 1.00000 0.93269 21 2.1720"-02 3.3451*+01 NM 1.00003 1.00000 1.00000 1.00000 1.00000 1.00000 NPUT VAFIABLES Y, U/UD, T/TD ASSUME P*PD Y									
1.4100"-02 3.3819"+01 IM									
20 1.9180*-02 3.3451*+01 NM 1.00000 1.			2 " C 4 D 4 . A / 1						
### PROFILE TABULATION ### POINTS, DELTA AT POINT 28 Variables			3.0019.401						
NPUT VAPIABLES									
Y	- •	211120 -02	212421 441	140	1.00000	1100000	1.0000	1.00000	1.00000
I Y PT2/P P/PD T0/T0D M/MD U/UD T/TD RH0/RH0D*U. 1 0.3000"+00 1.0000"+00 IM 0.81261 0.00000 0.00000 6.18600 0.00000 2 2.8000"-04 1.7748"+00 IM 0.79082 0.16412 0.37100 5.11000 0.07260 3 5.5000"-04 2.4657"+00 IM 0.81968 0.21202 0.46500 4.81000 0.09667 4 4.1000"-04 2.4657"+00 IM 0.81968 0.21202 0.46500 4.81000 0.09667 5 5.5000"-04 3.2261"+00 IM 0.83041 0.25219 0.53200 4.85000 0.11955 6 6.1000"-04 3.2261"+00 IM 0.83396 0.27229 0.56200 4.26000 0.13192 7 6.0000"-04 3.9256"+00 IM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000"-04 4.5026"+00 IM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000"-04 3.2261"+00 IM 0.85642 0.33315 0.64600 3.76000 0.17181 10 1.1700"-03 5.7964"+100 IM 0.86562 0.33315 0.64600 3.76000 0.17181 10 1.1700"-03 5.7964"+100 IM 0.86562 0.33315 0.64600 3.76000 0.176635 11 1.5500"-03 6.4120"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4120"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4767"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4767"+00 IM 0.86785 0.37850 0.69200 3.44000 0.2016 14 2.1800"-03 6.7767"+00 IM 0.87391 0.58752 0.70800 3.35800 0.21210 14 2.1800"-03 6.7767"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 7.2708"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 8.2128"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 8.2128"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 16 5.46400"-03 9.4163"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 16 7.2700"-03 1.36571"+01 IM 0.97975 0.56134 0.85500 2.39000 0.31546 22 1.700"-03 1.758"+01 IM 0.97975 0.7288 0.97500 1.85500 0.65588 22 1.1050"-02 2.6241"+01 IM 0.97975 0.7288 0.97500 1.85500 0.55888 22 1.1050"-02 2.6241"+01 IM 0.97975 0.7288 0.97500 1.35000 0.97458 23 1.2320"-02 2.6271"+01 IM 0.97679 0.96546 0.99500 1.35000 0.97458 24 1.4480"-02 4.1827"+01 IM 0.99789 0.99651 0.99000 1.00000 0.97458 25 1.6100"-02 4.2737"+01 IM 0.99789 0.99651 0.99000 1.00000 0.97458 27 1.0400"-02 4.2737"+01 IM 0.99789 0.99651 0.99000 1.00000 0.99403	NPUT V	EJJERITA	Y,U/UD,T/Th	ASSUME P#	PD				
I Y PT2/P P/PD T0/T0D M/MD U/UD T/TD RH0/RH0D*U. 1 0.3000"+00 1.0000"+00 IM 0.81261 0.00000 0.00000 6.18600 0.00000 2 2.8000"-04 1.7748"+00 IM 0.79082 0.16412 0.37100 5.11000 0.07260 3 5.5000"-04 2.4657"+00 IM 0.81968 0.21202 0.46500 4.81000 0.09667 4 4.1000"-04 2.4657"+00 IM 0.81968 0.21202 0.46500 4.81000 0.09667 5 5.5000"-04 3.2261"+00 IM 0.83041 0.25219 0.53200 4.85000 0.11955 6 6.1000"-04 3.2261"+00 IM 0.83396 0.27229 0.56200 4.26000 0.13192 7 6.0000"-04 3.9256"+00 IM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000"-04 4.5026"+00 IM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000"-04 3.2261"+00 IM 0.85642 0.33315 0.64600 3.76000 0.17181 10 1.1700"-03 5.7964"+100 IM 0.86562 0.33315 0.64600 3.76000 0.17181 10 1.1700"-03 5.7964"+100 IM 0.86562 0.33315 0.64600 3.76000 0.176635 11 1.5500"-03 6.4120"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4120"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4767"+00 IM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6900"-03 6.4767"+00 IM 0.86785 0.37850 0.69200 3.44000 0.2016 14 2.1800"-03 6.7767"+00 IM 0.87391 0.58752 0.70800 3.35800 0.21210 14 2.1800"-03 6.7767"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 7.2708"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 8.2128"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 15 2.8200"-03 8.2128"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 16 5.46400"-03 9.4163"+00 IM 0.87960 0.39782 0.72100 3.26000 0.22117 16 7.2700"-03 1.36571"+01 IM 0.97975 0.56134 0.85500 2.39000 0.31546 22 1.700"-03 1.758"+01 IM 0.97975 0.7288 0.97500 1.85500 0.65588 22 1.1050"-02 2.6241"+01 IM 0.97975 0.7288 0.97500 1.85500 0.55888 22 1.1050"-02 2.6241"+01 IM 0.97975 0.7288 0.97500 1.35000 0.97458 23 1.2320"-02 2.6271"+01 IM 0.97679 0.96546 0.99500 1.35000 0.97458 24 1.4480"-02 4.1827"+01 IM 0.99789 0.99651 0.99000 1.00000 0.97458 25 1.6100"-02 4.2737"+01 IM 0.99789 0.99651 0.99000 1.00000 0.97458 27 1.0400"-02 4.2737"+01 IM 0.99789 0.99651 0.99000 1.00000 0.99403									
1 0,3000"+00 1,0000"+00 14" 0.81261 0.00003 0.00009 6.18600 0.00000 2 2,8000"+04 1.7748"+00 14M 0.77982 0.16412 0.37100 5.11000 0.07260 3.5,000"+04 2.0766"+00 14M 0.81267 0.18746 0.42000 5.02000 0.08367 4 4.1000"+04 2.4657"+00 14M 0.81267 0.18746 0.42000 5.02000 0.08367 5.55.000"+04 3.2211"+00 14M 0.81968 0.21202 0.46500 4.81000 0.09667 5.55.000"+04 3.2211"+00 14M 0.83346 0.27229 0.56200 4.26000 0.11955 6.6.1000"+04 3.0667*+100 14M 0.83346 0.27229 0.56200 4.26000 0.13192 7.6.0000"+04 3.7226*+100 14M 0.83567 0.28339 0.57800 4.16000 0.13194 8.7.000"+04 4.5026*+100 14M 0.83567 0.28339 0.57800 4.16000 0.13194 8.7.000"+04 4.5026*+100 14M 0.85542 0.33315 0.64600 3.76000 0.175390 9.9000"+04 5.2179"+00 14M 0.85642 0.33315 0.64600 3.76000 0.175390 9.9000"+04 5.2179"+00 14M 0.85785 0.37310 0.69200 3.44000 0.16535 11.5500"+03 6.4120"+00 14M 0.86785 0.37310 0.69200 3.44000 0.20116 12 1.6930"+03 6.4120"+00 14M 0.86785 0.37310 0.69200 3.44000 0.20116 12 1.6930"+03 6.7575"+00 14M 0.8036 0.55308 0.66900 3.40000 0.20116 12 1.6930"+03 6.7575"+00 14M 0.8036 0.55308 0.66900 3.40000 0.20116 12 1.6930"+03 6.7575"+00 14M 0.8036 0.55308 0.66900 3.40000 0.20117 15 1.8100"+03 6.7575"+00 14M 0.87391 0.58752 0.77800 3.38900 0.21210 1.4500"+03 7.2708"+00 14M 0.87391 0.58752 0.77800 3.38900 0.21210 1.5500"+03 7.2708"+00 14M 0.87391 0.58752 0.77800 3.08000 0.22117 15 2.8200"+03 8.2128"+00 14M 0.87391 0.58752 0.77800 3.08000 0.22117 15 2.8200"+03 8.2128"+00 14M 0.87391 0.58752 0.77800 3.08000 0.22117 15 2.8200"+03 8.2128"+00 14M 0.87391 0.58752 0.77800 3.08000 0.221210 1.7700"+03 8.2128"+00 14M 0.87391 0.58752 0.77800 3.08000 0.221210 1.7700"+03 8.2128"+00 14M 0.89330 0.45252 0.77700 3.28500 0.31546 1.7700"+03 1.4459"+01 14M 0.99330 0.45225 0.77700 2.87500 0.31546 1.7700"+03 1.4459"+01 14M 0.99595 0.61502 0.88700 2.00000 0.42624 1.7700"+03 1.6551"+01 14M 0.99595 0.77512 0.99500 1.35300 0.65200 0.45222 1.1050"+02 2.6241"+01 14M 0.99595 0.77512 0.99500 1.35300 0.95303 1.53300 0.97458 1.2320"+02 2.925"+01 14M 0.99595 0.99500 1.35300 0.99400 1.05	503010	5 LOBE	j.	PROFILE	TABULATION	28	POINTS, DE	TA AT POI	NT 28
2 2.8000*-64 1.7748*+00 MM 0.79062 0.16412 0.37100 5.11000 0.07260 3 3.5000*-04 2.0766*+00 MM 0.81267 0.10746 0.42000 5.02000 0.08367 4 4.1000**-04 2.4657*+00 MM 0.81968 0.21202 0.46500 4.81000 0.09667 5 5.5000**-04 3.2261*+00 MM 0.83941 0.25219 0.55200 4.45000 0.11955 6 6.1000**-04 3.6674*+00 MM 0.8396 0.27229 0.56200 4.26000 0.11955 7 6.6000**-04 3.9256*+00 MM 0.83967 0.27229 0.56200 4.26000 0.13192 8 7.9000**-04 4.5026*+00 MM 0.83967 0.27229 0.56200 4.26000 0.13192 9 9.9000**-04 4.5026*+00 MM 0.83667 0.26339 0.57800 4.16000 0.15390 11 1.700**-03 5.7964*+00 MM 0.85642 0.33315 0.64600 3.76000 0.17181 10 1.1700**-03 5.7964*+00 MM 0.85642 0.33315 0.64600 3.76000 0.17181 11 1.5500**-03 6.4120**+00 MM 0.85642 0.33315 0.64600 3.76000 0.17635 11 1.8100**-03 6.5851*+00 MM 0.86785 0.37310 0.69200 3.44000 0.20516 12 1.6900**-03 6.5851*+00 MM 0.86785 0.37310 0.69200 3.44000 0.20516 13 1.8100**-03 6.5851*+00 MM 0.86785 0.37854 0.69000 3.40000 0.20529 13 1.8100**-03 6.7676**+00 MM 0.87980 0.37854 0.69000 3.40000 0.20529 14 2.1800**-03 7.2705**+00 MM 0.89980 0.42821 0.70800 3.38000 0.22110 15 2.8200**-03 8.2128*+00 MM 0.89980 0.42821 0.70800 3.38000 0.22110 17 4.7300**-03 1.4459**+01 MM 0.99780 0.56134 0.85500 2.32000 0.36853 19 7.2700**-03 1.6571**+01 MM 0.99330 0.50502 0.88700 0.35653 19 7.2700**-03 1.6571**+01 MM 0.99585 0.50502 0.88700 0.35653 19 7.2700**-03 1.6571**+01 MM 0.99585 0.50502 0.88700 0.35653 19 7.2700**-03 1.6571**+01 MM 0.99585 0.50502 0.88700 0.35663 22 1.1050**-02 2.6241**+01 MM 0.99585 0.05108 0.91400 1.85500 0.63553 23 1.2320**-02 2.6241**+01 MM 0.99585 0.05799 0.98800 1.33300 0.67202 24 1.4860**-02 3.7140**+01 MM 0.99780 0.99800 1.33300 0.67202 25 1.000**-02 4.0143**+01 MM 0.99782 0.99850 0.99800 1.33300 0.97458 27 1.0400**-02 4.0277**+01 MM 0.99782 0.99851 0.99900 1.00500 0.99403	I	Y	PT2/P	P/PU	TUITOD	MZMD	UVUD	T/TD	RHO/RHOD*U/
\$ 5,5000 -04 2.0766 +00 NM 0.81267 0.18746 0.42000 5.02000 0.08367 4.1000 -04 2.4657 +00 NM 0.81968 0.21202 0.46500 4.81000 0.09667 5.5006 -04 3.2261 +00 NM 0.83966 0.27229 0.56200 4.26000 0.11955 6 6.1000 -04 3.6674 +00 NM 0.83966 0.27229 0.56200 4.26000 0.13192 7 6.6000 -04 3.9256 +00 NM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000 -04 4.5026 +00 NM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000 -04 4.5026 +00 NM 0.83562 0.35315 0.64600 3.76000 0.17181 10 1.1700 -03 5.7764 +00 NM 0.85642 0.35315 0.64600 3.76000 0.17181 11 1.5500 -03 6.4120 +00 NM 0.86562 0.35315 0.64600 3.76000 0.17635 11 1.5500 -03 6.4120 +00 NM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6800 -03 6.8767 +00 NM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6800 -03 6.8767 +00 NM 0.96785 0.37854 0.69800 3.40000 0.20529 13 1.8100 -03 6.8767 +00 NM 0.96785 0.37854 0.69800 3.40000 0.20529 14 1.8100 -03 7.7768 +00 NM 0.87980 0.37854 0.78800 3.38000 0.21210 14 2.1800 -03 7.2768 +00 NM 0.87980 0.42621 0.74800 3.08000 0.22117 15 2.8200 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22117 15 2.8200 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.0000 -03 1.35000 0.35888 14 2.3000 -03 1.4578 +00 NM 0.90200 0.45625 0.77800 0.35888 14 2.3000 -03 1.4578 +00 NM 0.90200 0.90200 0.90200 0.35888 14 2.3000 -03 2.7114 +00 NM 0.90200 0.90200 0.90200 0.90200 0.90200 0.902	1		1.00107+00	H ₂		0.00003	0.01000	6,18600	0.00000
\$ 5,5000 -04 2.0766 +00 NM 0.81267 0.18746 0.42000 5.02000 0.08367 4.1000 -04 2.4657 +00 NM 0.81968 0.21202 0.46500 4.81000 0.09667 5.5006 -04 3.2261 +00 NM 0.83966 0.27229 0.56200 4.26000 0.11955 6 6.1000 -04 3.6674 +00 NM 0.83966 0.27229 0.56200 4.26000 0.13192 7 6.6000 -04 3.9256 +00 NM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000 -04 4.5026 +00 NM 0.83567 0.28339 0.57800 4.16000 0.13894 8 7.9000 -04 4.5026 +00 NM 0.83562 0.35315 0.64600 3.76000 0.17181 10 1.1700 -03 5.7764 +00 NM 0.85642 0.35315 0.64600 3.76000 0.17181 11 1.5500 -03 6.4120 +00 NM 0.86562 0.35315 0.64600 3.76000 0.17635 11 1.5500 -03 6.4120 +00 NM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6800 -03 6.8767 +00 NM 0.86785 0.37310 0.69200 3.44000 0.2016 12 1.6800 -03 6.8767 +00 NM 0.96785 0.37854 0.69800 3.40000 0.20529 13 1.8100 -03 6.8767 +00 NM 0.96785 0.37854 0.69800 3.40000 0.20529 14 1.8100 -03 7.7768 +00 NM 0.87980 0.37854 0.78800 3.38000 0.21210 14 2.1800 -03 7.2768 +00 NM 0.87980 0.42621 0.74800 3.08000 0.22117 15 2.8200 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22117 15 2.8200 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.89960 0.42621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.74800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45621 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.1800 -03 7.2768 +00 NM 0.90200 0.45625 0.77800 3.08000 0.22110 14 2.0000 -03 1.35000 0.35888 14 2.3000 -03 1.4578 +00 NM 0.90200 0.45625 0.77800 0.35888 14 2.3000 -03 1.4578 +00 NM 0.90200 0.90200 0.90200 0.35888 14 2.3000 -03 2.7114 +00 NM 0.90200 0.90200 0.90200 0.90200 0.90200 0.902	2		1.7748*+00		0.79082	0.16412	0.37100	5.11000	0.07260
5 5.5000°=04 3.2281*+00 NM 0.83396 0.27279 0.55200 4.45000 0.11955 6 6.1000°=04 3.6674*+00 NM 0.83396 0.27229 0.56200 4.26000 0.13192 7.66000*********************************								5.02000	0.08367
6 6.1000**-04 3.667***+00 NM 0.83876 0.27229 0.56200 4.26000 0.13192 7 6.6000**-04 3.9256**+00 NM 0.83667 0.28339 0.57800 4.16000 0.13894 8 7.9000**-04 4.5026**+00 NM 0.83667 0.28339 0.57800 4.16000 0.13894 8 7.9000**-04 4.5026**+00 NM 0.83642 0.33315 0.64600 3.76000 0.17181 10 1.1700**-03 5.7764**+00 NM 0.85642 0.33315 0.64600 3.76000 0.17181 10 1.1700**-03 6.4120**+00 NM 0.86785 0.37310 0.69200 3.44000 0.20116 11 1.5500**-03 6.4120**+00 NM 0.86785 0.37310 0.69200 3.44000 0.20116 12 1.6820**-03 6.4767**+00 NM 0.86785 0.37310 0.69200 3.44000 0.20116 12 1.6820**-03 6.8767**+00 NM 0.86785 0.37310 0.69200 3.44000 0.20529 13 1.8100**-03 6.8767**+00 NM 0.87391 0.38752 0.78800 3.38800 0.21210 14 2.1800**-03 7.2708**+00 NM 0.87391 0.38752 0.78800 3.38800 0.21210 14 2.1800**-03 7.2708**+00 NM 0.89060 0.42621 0.74800 3.08000 0.22117 15 2.8200**-03 8.2128**+00 NM 0.89060 0.42621 0.74800 3.08000 0.22117 15 2.8200**-03 8.2128**+00 NM 0.89060 0.42621 0.74800 3.08000 0.22116 14 2.1800**-03 1.4459**+01 NM 0.90202 0.45025 0.77700 2.87500 0.27026 17 4.7300**-03 1.4459**+01 NM 0.90202 0.45025 0.77700 2.87500 0.27026 18 6.0000**-03 1.3865**+01 NM 0.90202 0.45025 0.77700 2.87500 0.31546 0.0000**-03 1.6571**+01 NM 0.93976 0.567108 0.91400 1.85500 0.42644 0.6560**-02 3.7140**+01 NM 0.98933 0.657108 0.91400 1.85500 0.45828 2.1 1.050**-02 2.6241**+01 NM 0.98935 0.67108 0.91400 1.85500 0.45828 2.1 1.050**-02 2.6241**+01 NM 0.98955 0.77288 0.93500 1.35300 0.63533 2.2 1.2320**-02 2.9225**+01 NM 0.99749 0.96546 0.99400 1.35400 0.71492 2.4 1.4860**-02 3.7140**+01 NM 0.99749 0.96540 0.99400 1.06000 0.93774 2.1 1.0400**-02 4.1827**+01 NM 0.99782 0.99550 0.99400 1.06000 0.93774 2.1 1.0400**-02 4.1827**+01 NM 0.99782 0.99550 0.99400 1.06000 0.997458 2.1 1.0400**-02 4.1827**+01 NM 0.99782 0.99550 0.99400 1.06000 0.997458 2.1 1.0400**-02 4.1827**+01 NM 0.99832 0.99550 0.99400 1.06000 0.997458 2.1 1.0400**-02 4.1827**+01 NM 0.99892 0.99550 0.99400 1.06000 0.997458 2.1 1.0400**-02 4.1827**+01 NM 0.99892 0.99551 0.99900 1.00500 0.99400 2.00500 0.99						0.21202	0.46300		0.09667
7 6.6000**-04 3.0256**+00 NM 0.83667 0.28339 0.57800 4.16000 0.13894 8 7.9000**-04 4.5026**+00 NM 0.84579 0.30665 0.61100 3.97000 0.15390 9.9000**-04 5.2179**+00 NM 0.84579 0.30665 0.61100 3.97000 0.15390 1.1700**-03 5.7964**+00 NM 0.85642 0.33315 0.64600 3.76000 0.17181 10 1.1700**-03 5.7964**+00 NM 0.86785 0.37310 0.69200 3.40000 0.20116 11 1.5500**-03 6.4120**+00 NM 0.86785 0.37310 0.69200 3.40000 0.20116 11 1.5500**-03 6.5853**+00 NM 0.86785 0.37310 0.69200 3.40000 0.20529 13 1.8100**-03 6.767**+00 NM 0.87391 0.37854 0.69800 3.40000 0.20529 13 1.8100**-03 7.2708**+00 NM 0.87391 0.37854 0.77100 3.38000 0.21210 14 2.1800**-03 7.2708**+00 NM 0.87980 0.3932 0.72100 3.26000 0.22117 15 2.8200**-03 7.2708**+00 NM 0.87980 0.3932 0.72100 3.26000 0.22117 15 2.8200**-03 7.2708**+00 NM 0.89080 0.42621 0.74800 3.08000 0.221210 14 2.1800**-03 9.4163**+00 NM 0.89080 0.42621 0.74800 3.08000 0.221210 15 2.8200**-03 9.4163**+00 NM 0.99285 0.50799 0.81800 2.59300 0.31546 18 6.0000**-03 1.385**+01 NM 0.99285 0.50799 0.81800 2.59300 0.31546 18 6.0000**-03 1.385**+01 NM 0.93766 0.56134 0.85500 2.32000 0.36653 19 7.2700**-03 1.6571**+01 NM 0.93766 0.56134 0.85500 2.32000 0.36653 19 7.2700**-03 1.6571**+01 NM 0.93855 0.61502 0.88700 2.00000 0.42644 20 8.5400**-03 1.9639**+01 NM 0.93976 0.56134 0.93500 1.85500 0.4222 21 9.7900**-03 2.6271**+01 NM 0.93976 0.56134 0.93500 1.85500 0.4222 21 9.7900**-03 2.6271**+01 NM 0.93976 0.72888 0.93500 1.85500 0.4222 21 9.7900**-03 2.6271**+01 NM 0.93976 0.72888 0.93500 1.50000 0.426333 23 1.2320**-02 2.6221**+01 NM 0.93976 0.72888 0.93500 1.35000 0.93774 24 1.4860**-02 3.7140**+01 NM 0.99782 0.98500 0.98800 1.33300 0.87202 25 1.6100**-02 4.1827**+01 NM 0.99782 0.99850 0.99800 1.3300 0.997458 21 1.0400**-02 4.1827**+01 NM 0.99782 0.99850 0.99800 1.30300 0.997458 21 1.0400**-02 4.1827**+01 NM 0.99782 0.99850 0.99800 1.00500 0.997458 21 1.0400**-02 4.1827**+01 NM 0.99782 0.99850 0.99900 1.00500 0.997458 21 1.0400**-02 4.1827**+01 NM 0.99892 0.99850 0.99900 1.00500 0.99900 20 0.99900 20 0.99900 20 0			3,2281"+00		0.83041	0.25219	0.53200	4.45000	0.11955
8 7.9000°-04 4.5026°+00 MM 0.84579 0.30665 0.61100 3.97000 0.15390 9.9000°-04 5.2179°+00 MM 0.85642 0.33315 0.64600 3.76100 0.17181 10 1.1700°-03 5.7960°+00 MM 0.8036 0.35315 0.64600 3.76100 0.17181 11.5500°-03 6.4120°+00 MM 0.80785 0.37310 0.69200 3.44000 0.2016 12 1.6930°-03 6.5953°+00 MM 0.80785 0.37854 0.69800 3.44000 0.2016 12 1.6930°-03 6.5953°+00 MM 0.80787 0.37854 0.69800 3.40000 0.20529 13 1.8100°-03 6.5757°+00 MM 0.80781 0.37854 0.69800 3.40000 0.20529 13 1.8100°-03 7.2708°+00 MM 0.80781 0.37854 0.69800 3.40000 0.20529 13 1.8100°-03 7.2708°+00 MM 0.80780 0.37854 0.77100 3.28000 0.22110 14 2.1800°-03 7.2708°+00 MM 0.80960 0.42621 0.74800 3.38000 0.22120 15 2.8200°-03 7.2708°+00 MM 0.80960 0.42621 0.74800 3.08000 0.22120 15 2.8200°-03 9.4163°+00 MM 0.80960 0.42621 0.74800 3.08000 0.22120 15 3.4690°-03 9.4163°+00 MM 0.90209 0.45825 0.77700 2.87500 0.27026 17 4.7300°-03 1.4459°+01 MM 0.92185 0.50799 0.81800 2.59300 0.31546 18 6.0000°-03 1.3808°+01 MM 0.92185 0.50799 0.81800 2.59300 0.31546 18 6.0000°-03 1.3808°+01 MM 0.92185 0.50799 0.81800 2.59300 0.31546 18 6.0000°-03 1.3808°+01 MM 0.93976 0.56134 0.85500 2.32000 0.36853 19 7.2700°-03 1.6571°+01 MM 0.95955 0.50502 0.80700 2.00000 0.49272 21 9.7900°-03 2.2711°+01 MM 0.96933 0.57108 0.91400 1.85500 0.55888 22 1.1050°-02 2.6241°+01 MM 0.98595 0.77812 0.93500 1.53000 0.63533 23 1.2320°-02 2.6241°+01 MM 0.98595 0.77812 0.93500 1.53000 0.63533 23 1.2320°-02 2.6241°+01 MM 0.99595 0.77812 0.93500 1.35400 0.71492 24 1.4860°-02 3.7140°+01 MM 0.99789 0.98500 0.98800 1.33300 0.67202 25 1.000°-02 4.0143°+01 MM 0.99789 0.99510 0.99900 1.00500 0.997458 27 1.0400°-02 4.0277°+01 MM 0.99789 0.99510 0.99900 1.00500 0.997458 27 1.0400°-02 4.0277°+01 MM 0.99789 0.99510 0.99900 1.00500 0.997458 27 1.0400°-02 4.0277°+01 MM 0.99789 0.99510 0.99900 1.00500 0.997458 27 1.0400°-02 4.0277°+01 MM 0.99789 0.99510 0.99900 1.00500 0.997458 27 1.0400°-02 4.0277°+01 MM 0.99892 0.995510 0.99900 1.00500 0.99900 20 0.99900 20 0.99900 20 0.99900 20 0.99900 20 0.99900 20 0.99900 20 0.99900 2	6								
9 9.0000**-04 5.2179**+00 N/M 0.85642 0.33315 0.64400 3.76000 0.1718] 10 1.1700**-03 5.7964*+00 N/M 0.86036 0.35318 0.66900 3.59000 0.18635 11 1.5500**-03 6.4120**+00 N/M 0.86785 0.37310 0.66200 3.44000 0.2016 12 1.6909**-03 6.5853**+00 N/M 0.86785 0.37310 0.66200 3.44000 0.2016 13 1.8100**-03 6.777**+00 N/M 0.89984 0.37854 0.69800 3.40000 0.20529 13 1.8100**-03 7.2705**+00 N/M 0.87980 0.37854 0.69800 3.40000 0.20529 14 2.1800**-03 7.2705**+00 N/M 0.87980 0.37932 0.72100 3.26000 0.22110 15 2.8200**-03 7.2705**+00 N/M 0.89060 0.42621 0.74800 3.08000 0.22117 15 2.8200**-03 8.2128**+00 N/M 0.89060 0.42621 0.74800 3.08000 0.22117 15 2.8200**-03 9.4163**+00 N/M 0.89060 0.42621 0.77800 3.28500 0.27026 17 4.7300**-03 1.4459**+01 N/M 0.92185 0.57799 0.81800 2.59300 0.31546 18 6.0000**-03 1.3855**+01 N/M 0.93976 0.56134 0.85500 2.32000 0.36853 19 7.2700**-03 1.6571**+01 N/M 0.93976 0.56108 0.91400 1.85500 0.42644 20 6.5400**-03 1.9679**+01 N/M 0.95933 0.67108 0.91400 1.85500 0.42644 21 9.7900**-03 2.2711**+01 N/M 0.95933 0.67108 0.91400 1.85500 0.55888 22 1.1050**-02 2.6241**+01 N/M 0.98595 0.72288 0.93500 1.33300 0.55888 22 1.2320**-02 2.6241**+01 N/M 0.98595 0.77812 0.95300 1.35300 0.67202 24 1.4860**-02 3.7140**+01 N/M 0.99575 0.72288 0.99500 1.33300 0.67202 25 1.600**-02 4.0143**+01 N/M 0.99782 0.99500 1.05300 0.97458 27 1.0400**-02 4.0277**+01 N/M 0.99782 0.99570 0.99900 1.00500 0.997458								4.16000	
10 1.1700***-03 5.7664**+00 HM 0.86036 0.35308 0.66900 3.59000 0.16635 11 1.5500**-03 6.4120**+00 HM 0.86785 0.37310 0.66900 3.40000 0.20516 12 1.680***-03 6.5853**+00 HM 0.96984 0.37354 0.69800 3.40000 0.20529 13 1.8100**-03 6.767**+00 HM 0.97391 0.38752 0.77800 3.33800 0.21210 14 2.1800**-03 7.2708**+00 HM 0.87980 0.39932 0.72100 3.26000 0.22117 15 2.8200**-03 7.2708**+00 HM 0.89960 0.42621 0.74800 3.26000 0.22117 15 2.8200**-03 8.2128**+00 HM 0.89960 0.42621 0.74800 3.26000 0.22117 15 2.8200**-03 9.4163**+00 HM 0.99265 0.45825 0.77700 2.87560 0.27026 17 4.7300**-03 1.1459**+01 HM 0.92183 0.50799 0.81800 2.59300 0.31546 18 6.0000**-03 1.3858**+01 HM 0.93976 0.56134 0.85500 2.32000 0.36553 19 7.2700**-03 1.6571**+01 HM 0.93976 0.56134 0.85500 2.32000 0.36553 20 1.2320**-03 1.9639**+01 HM 0.99565 0.61502 0.86700 2.08000 0.42644 20 8.5400**-03 1.9639**+01 HM 0.99565 0.61502 0.86700 2.08000 0.42644 20 8.5400**-03 1.9639**+01 HM 0.99565 0.61502 0.98500 1.85500 0.42644 21 9.7900**-03 2.2711**+01 HM 0.99595 0.772812 0.95300 1.55000 0.55588 22 1.1050**-02 2.6241**+01 HM 0.99595 0.772812 0.95300 1.50000 0.63533 23 1.2320**-02 2.6241**+01 HM 0.99595 0.772812 0.99500 1.35400 0.71492 24 1.4860**-02 3.7140**+01 HM 0.99749 0.96546 0.99400 1.0500 0.997458 24 1.4860**-02 3.7140**+01 HM 0.99789 0.99593 0.99900 1.00500 0.997458 27 1.8400**-02 4.8277**+01 HM 0.99789 0.99593 0.99900 1.00500 0.997458									
11 1.5500 - 03 6.4120 + 00									
12 1.6970**-03 6.5953**+00 NM 0.96981 0.37854 0.69800 3.40000 0.20529 13 1.8100**-03 6.8757**+00 NM 0.97391 0.38752 0.77880 3.3800 0.21210 14 2.1800**-03 7.2708**+00 NM 0.87980 0.39932 0.72100 3.26000 0.22117 15 2.8200**-03 8.2128**+00 NM 0.89960 0.42621 0.74800 3.08000 0.22160 10 3.4690**-03 9.4163**+00 NM 0.90209 0.45825 0.77700 2.87500 0.27026 17 4.7300**-03 1.449**+01 NM 0.92185 0.57799 0.81800 2.59300 0.31546 18 6.0000**-03 1.3865**+01 NM 0.93976 0.55799 0.81800 2.59300 0.31546 18 6.0000**-03 1.5571**+01 NM 0.93976 0.56134 0.85500 2.32000 0.36853 19 7.2700**-03 1.6571**+01 NM 0.95935 0.61502 0.88700 2.00000 0.42644 20 6.5400**-03 1.963**+01 NM 0.95935 0.65108 0.91400 1.85500 0.42644 21 9.7900**-03 2.2711**+01 NM 0.95933 0.67108 0.91400 1.85500 0.55888 22 1.1050**-02 2.6241**+01 NM 0.98595 0.77288 0.93500 1.57300 0.55888 22 1.2320**-02 2.6241**+01 NM 0.98595 0.77282 0.98800 1.35400 0.71492 24 1.4860**-02 3.7140**+01 NM 0.99575 0.72880 0.99600 1.35400 0.71492 24 1.4860**-02 3.7140**+01 NM 0.99749 0.96546 0.99400 1.06000 0.93774 25 1.600**-02 4.0143**+01 NM 0.99782 0.98500 1.06300 0.97458 27 1.0400**-02 4.1827**+01 NM 0.99782 0.98573 0.99700 1.06300 0.97458 27 1.0400**-02 4.1827**+01 NM 0.99782 0.99573 0.99700 1.06300 0.97458									
13 1.8100~03 6.8747*+00 HM 0.87391 0.38752 0.70800 3.33800 0.21210 14 2.1800~03 7.2708*+00 HM 0.87380 0.3932 0.72100 3.26000 0.22117 15 2.8204****03 8.2128***+00 HM 0.89960 0.3932 0.72100 3.26000 0.22117 15 2.8204****03 8.2128***+00 HM 0.89960 0.44521 0.74800 3.08000 0.221217 15 3.4690***03 9.4163**+00 HM 0.90209 0.45025 0.77700 2.87500 0.27026 17 4.7300***03 1.449**+01 HM 0.92185 0.50799 0.81800 2.59300 0.31546 18 6.0000***03 1.3865**+01 HM 0.9376 0.56134 0.85500 2.32000 0.31546 19 7.2700***03 1.657:**+01 HM 0.9565 0.61502 0.86700 2.08000 0.42644 20 8.5400***03 1.9639**+01 HM 0.96933 0.67108 0.91400 1.85500 0.42644 20 8.5400***03 2.2711**+01 HM 0.96933 0.67108 0.91400 1.85500 0.49272 21 9.7900***03 2.2711**+01 HM 0.99395 0.777812 0.95300 1.57300 0.55888 22 1.1050***02 2.6241**+01 HM 0.99595 0.777812 0.95300 1.5700 0.63533 23 1.2320***02 2.9925**+01 HM 0.99180 0.03189 0.96800 1.35400 0.71492 24 1.4860***-02 3.7140**+01 HM 0.99475 0.92820 0.98800 1.33300 0.67202 25 1.6100***-02 4.0143**+01 HM 0.99782 0.98500 0.99400 1.0000 0.93774 24 1.4860**-02 4.0143**+01 HM 0.99782 0.96546 0.99400 1.0000 0.977458 27 1.0400**-02 4.2737**+01 HM 0.99892 0.99651 0.99900 1.00500 0.99403									
14 2.1830°-03 7.2708°+00 NM 0.89960 0.48621 0.7800 3.26000 0.22117 15 2.820°-03 7.2708°+00 NM 0.89960 0.48621 0.7800 3.08000 0.24286 10 3.4640°-03 9.4465°+00 NM 0.90209 0.48621 0.77700 2.87560 0.27026 17 4.7300°-03 1.1459°+01 NM 0.92183 0.50799 0.81800 2.59300 0.31546 18 6.0000°-03 1.3858°+01 NM 0.93976 0.56134 0.85500 2.32000 0.36653 19 7.2700°-03 1.6571°+01 NM 0.93565 0.61502 0.86700 2.08000 0.42644 20 6.5400°-03 1.9639°+01 NM 0.9565 0.61502 0.86700 2.08000 0.42644 20 6.5400°-03 2.2711°+01 NM 0.9565 0.61502 0.91400 1.85500 0.42272 21 9.7900°-03 2.2711°+01 NM 0.99595 0.7288 0.93500 1.67300 0.55888 22 1.1050°-02 2.6241°+01 NM 0.99595 0.77812 0.93500 1.50000 0.63533 23 1.2320°-02 2.925°+01 NM 0.99595 0.77812 0.98800 1.33500 0.63533 24 1.4860°-02 3.7140°+01 NM 0.99595 0.77812 0.98800 1.33500 0.67202 25 1.6100°-02 4.0143°+01 NM 0.99782 0.98800 1.33300 0.87202 25 1.6100°-02 4.1827°+01 NM 0.99782 0.98573 0.99900 1.00500 0.99745 27 1.8400°-02 4.1827°+01 NM 0.99892 0.99873 0.99900 1.00500 0.99745									
15									
10 3.4640**-03 9.4163**+00 NM 0.4020\$ 0.4582\$ 0.77700 2.87500 0.27026 17 4.7300**-03 1.1459**+01 NM 0.92185 0.50799 0.81800 2.59300 0.31546 18 6.0000**-03 1.3885**+01 NM 0.93976 0.56134 0.65500 2.32000 0.36853 19 7.2700**-03 1.6571**+01 NM 0.95865 0.61502 0.88700 2.0000 0.42644 20 8.5400**-03 1.9639**+01 NM 0.96933 0.67108 0.91400 1.85500 0.48242 21 9.7900**-03 2.6241**+01 NM 0.96595 0.777812 0.95300 1.5300 0.55888 22 1.1050**-02 2.6241**+01 NM 0.99895 0.777812 0.95300 1.53000 0.63533 23 1.2320**-02 2.6221**+01 NM 0.99180 0.91800 1.33400 0.71492 24 1.4860**-02 3.7140*+01 NM 0.99475			7.2708*+00						
17 4,7300°-03 1.1499°+01 MM 0.92185 0.50799 0.81800 2.59300 0.31546 0.0000°-03 1.3885°+01 MM 0.93976 0.56134 0.85500 2.32000 0.36853 19 7.2700°-03 1.6571°+01 MM 0.95665 0.61502 0.88700 2.08000 0.42644 20 8.5400°-03 1.9639°+01 MM 0.96933 0.67108 0.91400 1.85500 0.42644 21 9.7900°-03 2.2711°+01 MM 0.97915 0.72888 0.93500 1.67300 0.55888 22 1.1050°-02 2.6241°+01 MM 0.99595 0.77512 0.95300 1.57300 0.63533 23 1.2320°-02 2.6241°+01 MM 0.99180 0.03189 0.96800 1.35400 0.71492 24 1.4860°-02 3.7140°+01 MM 0.99595 0.02820 0.98800 1.33300 0.67202 25 1.6100°-02 4.0143°+01 MM 0.99475 0.92820 0.98800 1.33300 0.67202 25 1.6100°-02 4.0143°+01 MM 0.99782 0.96546 0.99400 1.0000 0.93774 25 1.7400°-02 4.1827°+01 MM 0.99782 0.9651 0.99900 1.00500 0.997458 27 1.0400°-02 4.2737°+01 MM 0.99892 0.9951 0.99900 1.00500 0.99403			4.5158.+00						
18			9,4163~+00						
19 7.2700**-03 1.6571**+01 11M 0.95565 0.61502 0.88700 2.08000 0.42644 20 8.5400**-03 1.9639**+01 11M 0.9633 0.67108 0.91400 1.85500 0.42272 21 9.7900**-03 2.2711**+01 11M 0.97915 0.72288 0.93500 1.67300 0.55888 22 1.1050**-02 2.6241**+11 NN 0.98595 0.77812 0.95500 1.53000 0.63533 23 1.2320**-02 2.9925**+01 11M 0.99180 0.03189 0.96800 1.35400 0.71492 24 1.4860**-02 3.7140**+01 11M 0.99180 0.92820 0.98800 1.35300 0.87202 25 1.6100**-02 4.0143**+01 11M 0.99749 0.96546 0.99400 1.0000 0.93774 20 1.7400**-02 4.0143**+01 NM 0.99782 0.98573 0.99700 1.02300 0.97458 27 1.0400**-02 4.2737**+01 NM 0.99892 0.99651 0.99900 1.00500 0.99403									
20 8.5400 m = 0.3 1.9639 m + 0.1									
21 9.7900 = 03 2.2711 = 01 NM 0.97915 0.72288 0.93500 1.67300 0.55888 22 1.1030 = 02 2.6241 = 01 NM 0.97915 0.77812 0.93500 1.5000 0.63533 23 1.2320 = 02 2.9925 = 01 NM 0.97180 0.03189 0.9680 1.35400 0.71492 24 1.4860 = 02 3.7140 = 01 NM 0.97180 0.92820 0.98800 1.3330 0.67202 25 1.6100 = 02 4.0143 = 01 NM 0.9749 0.96546 0.99400 1.0600 0.93774 20 1.7400 = 02 4.1827 = 01 NM 0.9782 0.96573 0.99700 1.02300 0.97458 27 1.0400 = 02 4.2737 = 01 NM 0.9782 0.96573 0.99700 1.02300 0.97458									
22 1.1050**-02 2.6241**+01 NM 0.98595 0.77512 0.95300 1.50000 0.63533 23 1.2320**-02 2.9925**+01 MM 0.99180 0.03189 0.98600 1.35400 0.71492 24 1.4860**-02 3.7140*+01 MM 0.99780 0.92820 0.98600 1.35500 0.97202 25 1.0100**-02 4.0143**+01 MM 0.99749 0.96546 0.99400 1.06000 0.93774 20 1.7400**-02 4.1827**+01 MM 0.99782 0.98573 0.99700 1.02300 0.97458 27 1.0400**-02 4.2737**+01 MM 0.99892 0.99651 0.99900 1.00500 0.99403									
23 1.2320 -02 2.9925 +01									
24 1.4860*-02 3.7140*+01 HM 0.99575 0.92820 0.98800 1.13300 0.87202 25 1.6100*-02 4.0143*+01 HM 0.99749 0.96546 0.99400 1.0600 0.93774 25 1.7400*-02 4.1827*+01 HM 0.99782 0.98573 0.99700 1.02300 0.97458 27 1.84400*-02 4.2737*+01 HM 0.99892 0.9953 0.99900 1.00500 0.99403	CC 31								
25 1.0100 = 02 4.0143 + 01 NM 0.99749 0.96546 0.99400 1.06060 0.93774 20 1.7400 = 02 4.1827 + 01 NM 0.99782 0.98573 0.99700 1.02300 0.97458 27 1.0400 = 02 4.2737 + 01 NM 0.99892 0.99651 0.99900 1.00500 0.99403									
26 1.7400*-02 4.1827*+01 NM 0.79782 0.98573 0.99700 1.02300 0.97458 27 1.8400*-02 4.2737*+01 NM 0.99892 0.99651 0.99900 1.00500 0.99403		\$ 4000 - 40C							
27 1.8400°+02 4.2737°+01 NP 0.99892 0.99651 0.99900 1.00500 0.99403			ብ • በተፈርስት በ ተህተሐፍርክት በ						
			4.105/"701						
FA 111100 -DE 402633 AUT IN. 15 A0000 100000 100000 1500000									
		02	443433 401	1460	110000	*******	******		140000

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

F

1

ŕ

į).

55030	111 LOB	8	PROFILE	TABULATION	23	POINTS, DEL	TA AT POI	NT 23
1	Y	9/514	P/PD	T0/T00	MZHD	U/UD	7/10	RIIO/RHOD*U/UD
1	0.0000"+00	1_0000#+00	AIF)	0.45929	0.00000	0.00000	4.64110	0.00000
ż	3.0000"-04		14M	0.52365	0.10342	0.22800	4.86000	0.04691
3	3.3000"-04		ЖW	0.53036	0.11170	0.24600	4.85000	0.05072
4 5	4.1000"-04		UM (IM	0.54921 0.56005	0.13842	0.10200 0.31600	4.76000	0.06345 0.06596
ō	5.1000-04	2.7914"+00	115-	0.57352	0.17097	0.36700	4.60800	0.07964
7	6.1000"-04		184*	0.59936	0.20675	0.43300	4,38600	0.09872
8 9	7.1000*-04 7.6000*-04		liw liv	0.62377 0.63372	0.23751	0.48600 0.59900	4.18700 4.07800	0.11607 0.12482
ie	9.6000"-04		NM	0.68105	0.29560	0.58000	3.85000	0.15065
11	1.22004-03	6.9632"+00	Им	0.71569	0.33087	0.63100	3,63700	0.17349
12	1.4500"-03		M++ 11**	0.73129	0.35303	0.65800	3.47400	0.18941
14	1.7000"-03		Clya	0.73736 0.76844	0.36514	0.67100 0.72100	3.37740 3.05400	0.14870
15	5.5100*-03	1.5729*+01	Им	0.81664	0.50776	0.79800	2,47000	0.32306
16	8.0500"=03		MM MM	0.06127	0.59888	0.85600	2.04300	0.41899
is	1.3130"=02		lin N.	0.90065 0.93851	0.69160	0.90200 0.94100	1.70100	0.53028 0.65989
19	1.5676*-02	4.6487"+01	МM	0.97129	0.88182	0.97200	1.21500	0.80000
50	1.0510,-15		HH1	0.98972	0.96254	0.99100	1.06000	0.93491
55 51	1.8650"-02		NM NM	0.98926 0.99277	0.97414	0.99200 0.99500	1.03700	0.95661 0.97741
0 23	2.0120"-02	5.9649"+01	ИM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,U/UD,T/TD	ABSUME PR	ም ስ				
		,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		. •				
55030	112 LOB	В	PROF1LE	MOZTAJUBAT	25	POINTS, DEL	.TA AT POI	NT 25
I	Y	PT2/P	P/PD	TO/TOD	M/MD	U/U0	T/TD	RHO/RHODAU/UD
	0.00004+00	1 0000#400	им	0 //4576	0.00000	0.0000	5,94060	0.00000
1	0.0000*+00 4.6000*-04		I/M	0.46535 0.51990	0.07154	0.17900	6.26000	0.02859
3	6.8000"-04	1.6171"+00	NM	0.52751	0.11185	0.27100	5.87000	0.04617
4	7.70007-04		NM NM	0.55125 0.58266	0-13001	0.31500	5.87000	0.05366 0.07170
5 4	9.6000"-04		HM	0.50200	0.16914	0.39900 0.47500	5,56500 5,30000	0.09135
Ť	1.4700"-03	4.9593"+00	Nw	0.64649	0.24359	0.53700	4.86001	0.11049
8	1.7300 -03	5.7911"+00	IIM ****	0.67709	0.26457	0.57600	4.74000	0.15125
9 10	1.8500"-03 2.4900"-03		AM UM	0.69141 0.73265	0.27472	0.59400 0.65500	4.67500 4.30500	0.12706 0.15215
ii	3.7600*-03	1.0144"+01	iia	0.75449	0.35726	0.70100	3.85000	0.18208
12	5.03004-03		liπ	0.77147	0.39462	0.73600	3.47500	0.21150
13	6.3000"-03 7.5700"-03		NM NM	0.79209 0.80319	0.4276/	0.76600 0.78800	3.20800 2.94700	0.23878 0.26739
iŝ	8.8400"-03		1114	0.81833	0.49283	0.81100	2.70800	7.29948
10	1.0110"-02		2424	0.83694	0.52474	0.33300	2,52000	0.33056
17	1.1380"-02		*114 *15	0.84529 0.86106	0.56800 0.59867	0.85200 0.86900	2.25000	0.37567 0.41243
19	1.3920*-02	3.1866"+01	NM	0.88170	0.64384	0.89100	1,91500	0.46527
50	1.6460*-02		NM	0.90804	0.73119	0.92200	1.59000	0.57987
55 12	1.9000*=02 2.1540*=02		Nw Nw	0.9375B 0.94085	0.82524	0.95100 0.97300	1.32000	0.71611 0.66335
23	2.4080"-02	7.4147"+01	HM	0.98832	0.98564	0,99300	1.01500	0.97833
24	2,6620"-02		Het	1.00000	1.00000	1.00000	1.00000	1.00000
0 25	2,9160"-02	7.6208*+01	IIM	1,00000	1.00000	1.00000	1.00000	1.00000
INPUT	RIJUGAIRAV	4,11/00,1/10	ASSUME PE	PD .				
550301				TABULATION		POINTS, DEL	_	•
ī	Y	913/6	P/PD	46/100	M/MD	UVUD	1/10	RHO/RHOD#U/UD
Ş	0.0000#+00 1.0000#=v3	1.0000"+00 2.4225"+00	(4M	0.45843 0.52095	0.00000	0.00000 0.35500	6,59340 5.80600	0.00000
į	1.3000"-03		NM	0.56830	0.19575	0,45500	5.40300	0.08421
4 5	1.4500*-03	5.1370*+00	Mil	0.58066	0.232!5	0.51400	4.90200	0.10486
6	1.6500"-03		∰ ₩	0.61998 0.65873	0.25603	0.55800 0.62300	4.75000 4.28000	0.11747 0.14556
ÿ	2.5000"-03		IIM	0.66958	0.11883	0.64400	4.08000	0.15784
8	3.7300*=03	1.2208"+01	/im	0.72228	0.36907	0.70800	3.68000	0.19239
10	4.9500*-03 6.2200*-03		NM IM	0.74824	0.40501	0.74500 0.77300	3.33400	0.22345 0.25453
1.1	8.8000"-03	2.2765"+01	иM	0.80039	0.50874	0.81700	2,57900	0.31679
15	1.1300"-02	2.4020*+01	NM IIM	0.83157	0.57577	0.85400	2.20000	0.38618
13 14	1.5400"=02		11M 11M	0.86106	0.64035	0,8860U 0.91/00	1.67900	0.47153 0.57286
15	1.5900"-02	5,6676"+01	NM	0.92023	0.40776	0.94200	1.36000	0.64265
16	2.15007-02	6.8593"+O1	SM	0.95032	0.08428	0.96600	1.18000	0.61864
17 18	20-"000#.S 20-"0088.S	6.0451"+01 6.0240"+01	MM Mis	0.77542 0.90799	0.98612	0.98500 0.99300	1.04500	0.94258 6.97929
D 19	2.6500"-02	8.6015"+01	MI	1.00000	1.00000	1.00000	1.00000	1.00000
IMPUT	8216AIRAV	Y,U/UD,T/TO	ASSUME PRE	•0				

M : 1.9 P THETA X 10 ⁻³ : 11 - 12	5801
TW / TR : Approx. 1	(F) APG AW

Continuon: flow tunnel with symmetrical flexible nozzle. W = H = 50.8 mm. PO : 0.27 MN/m^2 TO :300 K. Air. PE/m X 10^{-6} : 30.

NALEID J.F. 1958. Experimental investigation of the impact pressure probe method of measuring local skin friction at supersonic speeds in presence of an adverse pressure gradient. DRL 432.

- 1 The test boundary layer was formed on the floor of the wind tunnel. The roof of the tunnel was replaced by a flexible plate which could be deflected to cause a range of pressure gradients on the test wall.
 Measurements were made at a single station. The pressure history upstream of the test section was not
- 4 given. The pressure was approximately constant for the first 50.8 mm of the flat floor, the imposed pressure gradients spreading over the following 76.2 mm. The pressure gradients (one favourable and seven adverse) ranged from ~ 41 to + 191 KN/m²/m and were found to be repeatable within the limits + 2%, 1%. The test
- 6 section floor had 11 static pressure tappings along the centre-line at 12.7 mm intervals. The survey station
- 8 was midway between the 8th and 9th of these. Wall shear stress was measured with an FEB which had a circular
- 6 element 6.35 mm in diameter, the maximum gap being 0.153 mm (designed by Moore CAT 5805). The wall temperature was not reported but the "tunnel was operated for a sufficient length of time to permit all components of the balance to assume the operating temperature".
- 7 Only Pitot profiles were measured, with a CPP ($d_1 = 0.508$, $d_2 = 0.254$, l = 13 mm) at the same station.
- 8 The tip of the probe was brought into contact with the wall for the lowest Y-reading. No corrections were
- 10 applied to the profile data, and the Pitot probe was also treated as a Preston tube.
- 9 The author interpolated the PW values to give a local value for dp/dx at the survey station. This has been
- 12 read into the data tabulation below to give a PI2 value. The author's assumption of an isoenergetic boundary layer has been replaced by the Crocco / van Driest velocity temperature relation, and the static pressure in the boundary layer has been assumed constant. The edge reservoir state has been arbitrarily set at the reported tunnel reservoir state.
- 13 The eight profiles presented were measured in eight different pressure gradients with approximately the same
- 14 edge state. The CF values associated with them are those directly measured with the FEB.
- § DATA: 58010101-0801. Pitox profiles. NX = 1. CF from an FEB measured separately.

15 Editors' comments

The experiment represents an early attempt to determine the influence of pressure gradients on skin friction, and on the Preston tube calibration. The range of pressure gradients is small, and although arranged to occur with a near constant edge state, may be slightly confused by the varied upstream histories, which are not presented. The consequent CF variation is correspondingly small.

At this low Mach number, the absence of a TO determination is not important since the wall is near-adiabatic. The size of the Pitot probe is such that none of the profiles include measurements within the momentum-deficit peak, so that integral values must be treated with reserve. The profiles are so smooth that it seems probable that some smoothing or interpolation was employed which is not reported. The pressure gradient has little effect either in the log-law region or in the outer region.

The most nearby comparable measurements are those of Thomas - CAT 7401.

CAT 5801	HALEID	BOUNDARY CONDITIONS AND EVALUATED DATA. SI UNITS.								
RU:I	MJ 4	TW/TR*	REDZM	C# *	H12	DSK	®W	PD		
X	Podr	PW/PD*	REDZD	CQ	H32	H35K	TW	TD		
RZ	Tuda	SW *	DZ	P12*	H42	D15K	UD	TR		
58010101	1.9470	1.0000	7.5881*+03	1.8760*=03	2.7955	1.4459	1.7420"+04	3.7420*+04		
HM	2.6960*+05	1.0000	1.1633*+04	NM	1.8200	1.8121	2.8957"+02	1.7243*+02		
INFINITE	3.0317*+02	0.0000	3.5293*-04	-5.2662*=02	0.0816	4.2939*-04	5.1261"+02	2.8957*+02		
54010201	1.997u	1.0000	7.1509*+03	1,8480"=U3	3.0664	1.4415	3.4025"+04	3.4625"+04		
NM	2.6966"+05		1.1165*+04	NM	1.6245	1.8165	2.8917"+02	1.6864"+02		
Infirite	3.0316"+02		3.4620*-04	2.0531"=U2	0.0842	4.2336"-04	5.1996"+02	2.8917"+02		
58010301 NM INFINITE	1.9360 2.6949*+05 3.0400*+02	1.0000 1.0000 0.0000	7.7816"+03 1.1879"+04 3.6028"=04	1.9160"-03 NW 2.8967"-02	1.8166 1.8166	1.4477 1.8086 4.3876*-04	3.8040*+04 2.9045*+02 5.1166*+02	3,8040"+04 1,7375"+02 2,9045"+02		
SBOLOGOL	1.9200	1.0000	7.9377*+03	1,9006#+03	2.9643	1.4511	3.5994*+04	3.8994"+04		
NM	2.6949*+05	1.0000	1.2040*+04	NM	1.8137	1.8057	2.9085*+02	1.7515"+02		
INFINITE	3.0428*+02	0.0050	3.6333*=04	9,3128#+02	0.0801	4.4223"-04	5.0946*+02	2.9085"+02		
58010501	1.9180	1.0000	8.0191*+03	1.8800*-03	2.9719	1.4572	3.9046"+04	3.9066"+04		
NM	2.6915"+85		1.2171*+04	NM	1.8100	1.8019	2.6821"+02	1.7370"+02		
Infinite	3.0150"+82		3.6267*=04	1.1534*-01	0.0798	4.4267*+04	5.683"+02	2.8621"+02		
SAO10601	1.89M¥	1.0000	8.1680*+03	1.8810*#03	2.9469	1.4610	4.0323*+04	4.0323"+04		
NM	2.6935"+05		1.23067+04	NM	1.8077	1.7996	2.8663*+02	1.7540"+02		
INFINITE	3.0178"+02		3.6385*=04	1.6059*=01	0.0787	4.4328"-04	5.0399*+02	2.8863"+02		
58010701	1.8830	1.0000	6.1778*+03	1.8770*-03	2.9262	1.4638	4.1210"+04	4.1210*+04		
NM	2.6898"+05		1.2288*+04	NM	1.8082	1.8000	2.6780"+02	1.7598*+02		
INFINITE	3.0078"+02		3.5994*=04	2.3228*-01	0.0780	4.3702"-04	5.0083"+02	2.8780*+02		
58010801	1.6730	1.0000	8.2361*+03	1.9160"-03	2.9189	1.4679	4,1934*+04	4.1934*+04		
NM	2.6752*+03		1.2288*+04	N4	1.8045	1.7964	2,9123*+02	1.7882*+02		
Infinite	3.0428*+02		3.6346*-04	3.8648"-01	0.0774	4.4183**04	5,0217*+02	2.9123*+02		

58010	101 NALE	NALETO		TABULATION	22 POINTS, DELTA AT POINT 21			
1	Y	4787B	P/PD	C01107	DMNM	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	ИN	0.95515	0.00000	0.00000	1,67931	0.00000
2	2.5500"-04	2.1719*+00	MII	0.97535	0.37268	0.67112	1.37335	0、45867
3	5.1000"-04	2.4871"+00	NM.	0.97571	0.63020	0.72473	1.32251	0.54800
4	7.6500"-04	2.7751"+00	NM	0.96150	0.67745	0.76651	1.28019	0.59874
5	1.0200"-03	3.0005*+00	ИМ	0.98354	0.71186	0.74565	1.24926	0.63590
6	1.2750~-03	3.2000*+00	ЦM	0.98531	0.74165	0.62003	1.22251	0.67077
7	1.5300"-03	3.40959+00	NM	0.98698	0.76990	0.84241	1.19723	0.70363
8	1.7550"-03	3.6135*+00	HM	0.48858	0.79712	0.86333	1.17300	0.73600
9	2.0400"-03	3.8171"+00	NM	0.99011	0.82332	0.88285	1.14984	0.76780
10	2.2950"-03	4-0152"+90	NM	0.79154	0.84797	0.90070	1.12822	0.79833
11	2.5500"-03	4.2195*+00	ИM	0.99295	0.87262	0.91804	1.10679	0.82946
12	2.8050"-03	4.4078*+00	ИM	0.99420	0.89471	0.93315	1.08778	0.85785
13	3.0600*-03	4.6055*+00	HM	0.99548	0.91731	0.94822	1.06853	0.88741
14	3.3150"-03	4.5178*+00	ИW	0.99679	0.94093	0.96354	1.04863	0.91886
15	3.5700"-03	4.9165*+00	ΝH	0.99738	0.95172	0.97039	1.03963	0.93341
16	1.8250"-03	5.6741"+00	NM	0.99631	0.96867	0.98095	1.02559	0.95651
17	4.0800*-03	5-1758*+00	üм	0.99590	0.97946	0.98761	1.01673	0.97137
18	4.3350"-03	5.2591"+00	MU	0.49937	0.98819	0.99291	1.00959	0.98348
19	4.5900*-03	5.3183"+00	IIM.	0.99970	0.99435	0.99662	1.00458	0.99208
žó	4.8450"-03	5.3480*+00	NM	0.99986	0.99743	0.99847	1.00208	0.99640
0 21	5.1000"-03	5.3729"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
, 55	5.3550"-03	5.3530"+00	NM	0.99989	0.99795	0.99878	1.00166	0.99712

INPUT VARIABLES Y. A ASSUME PEPD AND VAN DRIEST

580102	PO1 NALE	to	PROFILE	HOITAJUBAT	22	POINTS, DE	LTA AY POI	SS TH
I	Y	P12/P	P/PN	COTVOT	MAMD	UVUD	TITO	RHO/PHOD*U/UD
1	0.0000*+00	1.0000*+00	ИМ	0,95385	0.00000	0.00000	1.71465	0.00000
ž.	2.5500"-04	5.2606*+00	ИW	0.97501	0.57456	0.67704	1.38/07	0.48811
\$ 4	5.1000"=04 7.6500"=04	2.6217"+00	HW 1	0.97871	0.63645	0./3392	1.32972	0.55194
5	1.0200"-03	2.8980"+00 3,1412"+00	NW NW	0.98129 0.98342	0.67702	0.77113	1.28969	0.59791
ú	1.2750"-03	3.3532"+00	lin ide	0.98518	0.71407	0.80050 0.82397	1.25671	0.63698 0.67019
7	1.5300"-03	3.5706"+00	NM	0.98690	0.77166	0.04630	1.20201	0.70360
8	1.7850"-03	3.7880"+00	ИM	0.98855	0.79920	0.86715	1.17727	0.73657
9	2.0400"-03	3.4901";80	ИM	0.99001	0.82374	0.68517	1.15471	0.76657
10	2.2950".03	4.2359*+00	MM	0.99154	0.84977	0.90372	1.13099	0.79905
11	2.5500"=03 2.8050"=03	4.6146"+00	IIM IAM	0.99288 0.99415	0.87281	0.91965 0.93482	1.11022	0.82835
13	3.0600"-03	4.8131"+00	NM	0.99541	0.91688	0.73472	1.09013	0.85753 0.88591
14	3.3150"-03	4.9925"+00	ИW	0.99648	0.93590	0.96109	1.05454	0.91138
15	3.5700"-03	5.1612"+00	ИW	0.99746	0.95343	0.97204	1.03941	0.93518
16	3.8250 -03	5.2886"+00	If₩	0.99817	0.96645	0.98002	1.02828	0.95307
17 18	4.0800"=03 4.3350"=03	5.4228*400	MW Itm	0.99891	0.97997	0.98817	1.01681	0.97184
19	4.5900"-03	5.5083"+00 5.5538"+00	lih.	0.99938 0.99962	0.98848	0.99323	1.00964	0.78375 0.99009
ŽÓ	4.8450"-03	5.5945*+00	11H	0.99984	0.99700	0.99824	1.00251	0.99575
21	5.1000"-03	5.61497+00	Nn	0.99995	0.99900	0.99942	1.00084	0.99658
0.55	5.3550"-03	5.6251"+00	114	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	Y BELCALAN	JMUEEA II.	PEPD AND	VAN DRIEST				
580105	OL NALE	10	PROFILE	TABULATION	23	POINTS, DE	LTA AT POI	NT 22
1	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/ID	RHO/PHOD+U/UD
1	0.0000"+00	1.0040*+00	NM	0.95592	0.00000	0.00000	1,65923	0.0000
2	2.5500"-04	2.0945*+00	M\$	0.97525	0.56569	0.66217	1.37018	0.48327
3	5.1000 -04	2.3330"+00	(144	0.47789	0.61210	0.70606	1.33059	0.53064
4 5	7.6500"-04 1.0200"-03	2.6030"+00 2.8344"+00	(ih (ih	0.95064	0.65954	0.74894	1.28946	0.58081
6	1.2750"-03	3.0492"+00	lim teu	0.98284 0.98476	0.69708	0.78144 0.80885	1.25667	0.62183 0.65871
7	1.5300 -03	3.2680*+00	цм	0.98662	0.76173	0.83449	1.20016	0.69532
8	1.7850"-03	3.4665"+00	(4M	0.98822	0.78936	0.85606	1.17612	0.72787
9	2.0400-03	3.6048*+00	Mp,	0.98976	0.81595	0.87620	1.15312	0.75985
10	2.2950"-03	3.8743*+00	1114	0.99132	0.84307	0.89613	1.12984	0.74315
11	2.5500"~03 2.8050"~03	4.0711*+00	NM NM	0.99286	0.87018	0.91545	1.10476	0.82714
15	3.0600"-03	4.2977*+00 4.4880*+00	Nw Nw	0.99427 0.99552	0.89520	0.93276 0.94785	1.08567	0.85916 0.86836
14	3.3150"-03	4.6879*+00	IAN IA	0.99679	0.94056	0.96288	1.04803	0.91876
is	3.5700 -03	4.8224*+00	ЦM	0.99762	0.95568	0.97257	1.03566	0.93905
16	3.8250"-03	4.9640*+00	ИM	0.99846	0.97132	0.98242	1.02298	0.96035
17	4.0800"-03	5.0644*+00	NV.	0.99905	0.98227	0.98920	1.01416	0.97539
18 19	4.3350"+\3 4.5900"+\3	5.1369"+00 5.1758"+00	NN Nn	0.99947	0.99009	0,99399	1.00789	0.98621
50	4.8430"=03	5.2149"+00	11h 14b	0.99969 0.99992	0.99844	0.99653 0.99906	1.00456	0.99200 0.99782
ãi	5.1000 -03	5.2198"+90	N.M	0.79994	0.99896	0.99937	1.00083	0.99554
0 55	5.3550"-03	5.2296*+00	ЦМ	1.00000	1.00000	1.00000	1.00000	1.00000
5.2	5.6100"-03	5.2247"+00	His	0.79997	0.99940	0.90769	1.00041	0.99927
INPUT	VARIABLES Y	, M ASSUME	PMPO AND	VAN DRIEST				
580108				TABULATION		POINTS, DE		NT 20
	Y	PT2/P	P/PD	T0/T0D	47/10	U/UD	T/TD	RHU/RHOD*U/UD
2	0.0000*+00 2.5500*+04	1.00000 +00	NΜ	0.95712	0.00000	0.00000	1.62866	0.00000
ŝ	5.1000"-04	1.9892"+00 2.2551"+00	NH NA	0.97521 0.97828	0.61185	0.64959 0.70253	1.36338	0.47645 0.53288
4	7.6500"=04	2.5021 +00	им	0.98087	0.65777	0.74430	1.28040	0.58130
4 5	1.0200"=03	2,7329"+00	NM	0.98312	0.69728	0.77877	1.24739	0.62432
6	1.2750"-03	2.9489*+00	NM	0.98511	0.73198	0.80793	1.21830	0.66317
7	1,5300*-03	3.1519"+00	NH NH	0.98668	0.76295	0.83309	1,19234	0.69871
J	1.7850"+03 2.0400"+03	3.3532"+00 3.5667"+00	NM IIM	0,98855 0.99025	0.79231	0.85621	1.16779	0.73318
10	2.2950"-03	3.7485*+00	1114	0.99164	0.82221	0.87901 0.89719	1.14292	0.76908 0.79919
11	2.5500"-03	3.9568"+00	NW	0.99316	0.87400	0.91678	1.10028	0.83322
12	2.8050"-03	4.9657"+00	NM	0.99393	0.88788	0.92654	1.08897	0.85084
1.3	5.0000"-03	4.35034+00	MM	0.99587	0.92312	0.95064	1.06053	0.89639
14 15	3.3150*-03	4.5285"+00	NP	0.99703	0.94447	0.96479	1.04349	0.92458
16	3.5700"-03 3.8250"-03	4.69?5*+00 4.8084*+00	MM MM	0.99807 0.99878	0.96369	0.97723	1.02830	0.95034
17	4.0800"-03	4.9023"+00	liw Mu	0.99935	0.97704	0.98572 0.99241	1.01783	0.96845 0.98306
18	4.3350"-03	4.9497*+00	NM	0.99963	0.79306	0.99572	1.00537	0.99040
19	4.5900"-03	4,9925"+00	NM	0.99989	0.99786	0.99869	1.00165	0.99704
0 20	4.84504-03	5.0117*+00	Им	1.00000	1.00000	1.00000	1,00000	1.00000
IMPUT	VARIABLES Y	H ASSUME	Pepb AND	VAN DRIEST				

Continuous tunnel with symmetrical flexible nozzle W = H = 50.8 mm. $0.1 < PO < 0.8 MN/m^2$. TO : 300 K. Air. $8 < PE/m \times 10^{-6} < 40$.

STALMACH C.J., 1958. Experimental investigation of the surface impact pressure probe method of measuring local skin friction at supersonic speeds. DRL 410.

And Fenter and Stalmach (1957)

- 1 The test boundary layer was formed on a test block constructed as an extension of the lower half of the contoured nozzle. This was attached to the flexible nozzle plate, and moved slightly in the axial direction
- 4 as the Mach number was varied. The boundary layer surveyed, therefore, had passed through a predominately
- 5 simple-wave expansion. Transition was forced by a grit-type trip. No calibration of the tunnel is reported, but the author examined the characteristics of a larger geometrically and mechanically similar tunnel running in the same Reynolds number and Mach number range, and concluded that the flow would be effectively two dimensional over a central strip wider than 50 % of the test block width, and so wider than the balance element.
- 6 Wall static pressure was measured at tappings 0.406 mm in diameter on either side of the probe tip. The test block temperature was monitored by a thermocouple which indicated that slight heat transfer occured during the runs. Preston tube readings were taken with tube diameters of 0.305, 0.508, 0.890 and 1.65 mm. Direct wall stress measurements were made using FEB of the type used for CAT 5501 and described by Weiler and Hartwig (1952). The balance element was 25.4 mm in diameter, and the annular gap was 0.127 mm.
- 7 Pitot profiles were measured with a CPP for which d₁ = 0.508, 1 = 10.2 mm, with a square cut end so that
- B it could also be used as a Preston tube. The profile normal coincided with the axis of the balance. The
- 9 author found agreement between measured wall static pressure and free stream static pressure calculated from Pitot measurements, and assumed, therefore, constant static pressure through the boundary layer, using
- 10 the Pitot-derived value. The profiles were reduced assuming constant total temperature. No probe corrections
- 11 were applied, and viscosity was calculated from a 0.768 power law.
- 12 The editors have presented 16 of the profiles obtained, out of a total of 42, with associated CF values from the FEB interpolated on the basis of R THETA values. The author's assumption of isoenergetic flow has been replaced by the Crocco / Yan Driest temperature-valueity correlation. The boundary layer edge state is as
- 13 selected by the author. The Preston tube data is not presented as it is not available in raw form. The
- 14 profiles presented form three groups, each covering a range of Reynolds number at Mach numbers of about 1.7, 2.7 and 3.7. The CF value is an interpolated value from the balance measurements, by the editors.
- § DATA, 5802 0101-0306. Pitot profiles. NX = 1. CF values from an FEB measured separately.

15 Editors' comments

The interest of this entry lies in the coverage of the post-transitional turbulent layer. Hany of the profiles show exceptionally small "wake components", though as R THETA rises, the profiles may become "normal" (e.g. series 03. 0301-03 show tran itional behaviour in the log-law region, while 0304/5 appear to be fully developed).

The experiment was performed in a very small tunnel, and suffers from the small physical scale. In nearly all cases measurements do not extend within the momentum-deficit peak, so that integral values should be treated with caution.

The Mach number and Reynolds number range closely matches the flat plate tests of Coles - CAT 5301.

Other comparisons are with Shutts et al. - CAT 5501 who used the same type of balance in a flat plate, and Moore - CAT 5805 whose flat wall tests provide a repeat experiment in the same facility.

CAT 5802	STALMACH		BOUNDARY COND	ITTONS AND E	VALUATED I	ATA. SI UNIT	s.	
RUN	MD *	TW/YR+	RED2W	CF *	н12	H12K	PW	PD
X	POD*	PW/PD#	RED20	CO	H35	1132K	TW	TU
RZ	TOD*	* K6	05	PI2*	H42	DSK	FID	TR
58020101	1.7390	1.0000	2.5818*+03	2.5400"-03	2.7507	1.4975	1.9681 +04	1.9681"+04
NM	1.0305*+05	1.0000	3.6804*+03	(IH	1.8060	1.7972	2.8576*+02	1,8533"+02
INFINITE	2.9742*+02	0.0000	2,6230"-04	0.0000*+00	0.0708	3,1038"-04	4.7466*+02	2.8576*+02
58020102	1.7440	1.0000	5.9748"+03	2.1300*-03	2.7044	1.4496	3,4231"+04	3.4231*+04
NM	1.8060*+05	1.0000	8.5308*+03	NW 511300 -03	1.8026	1.7943	2.8626*+02	1.6527"+02
INFINITE	2.9798*+02	0.0000	3.4841 04	0.0000*+00	0.0709	4.1386"-04	4.75954+02	2.8626#+02
EAA96163	1 7700	1 0000	# #E00# . AT		2 4775		5.5181"+04	£ £ 4 8 4 8 1 0 0
58020103 NM	1.7390 2.8893*+05	1.0000	8.8590"+03 1.2610"+04	1.9900"=03	2.6735	1.4343 1.8068	2.9110"+02	5.5181*+04 1.8879*+02
INFINITE	3.0298"+02	0,0000	3.2869"-04	0.0000*+00	0.0711	3.8746"-04	4.7907"+02	2.9110#+02
20050	2.7350 1.0420*+05	1.0000	9.5940"+02 1.9966"+03	2.5550" 0 <i>5</i>	4.5594 1.8235	1.4984 1.8011	4.2411*+03	4,2411*+03 1,1857*+02
INFINITE	2.9597*+02	0.0000	2.2483"-04	0.0000*+00	0.1137	3.1736"-04	5.9712*+02	2,7752*+02
								-
58020202	2.7290	1.0000	1.5036*+03	2,2350"-03	4.5174	1.4623	5,34734+03	5.3473"+03
NM Infinite	1.3017"+05	1.0000	3.1238"+03 2.7888"=04	NM -	1.8134	1.7943	2.7631"+02 5.9526"+02	2.7631"+02
THE THEFT	E 27404 T7E	0.000	E . 7 0 0 0 - 0 4	0.0000 400	4.1.1.0	367779 -04		
58020203	2.7310	1.0000	1.8327"+03	2.1150"-03	4.4729	1.4389	6.22264+03	6.2826#+03
IIM The sustain	1.5195"+05	1,0000	3.8077*+03	NM	1.8220	1.8042	2.7760*+02	1-1881"+02
INFINITE	3.4607.+05	0.0000	2.9351*-04	0.0000*+00	0.1135	4.1551*-04	5.9684"+02	2.7760*+02
58020204	2.7280	1.0000	2.9665"+03	1.8400*-03	4.4519	1:4215	9.0308"+03	9.0308"+03
NM	2,1951"+05	1.0000	6.1542"+03	NW	1.8179	1.8012	2.7821*+02	1-1922"+02
INFINITE	2.96664+02	0.0000	3.2085*-04	0.0000*+00	0.1131	4.6906*-04	5.9721"+02	2.78214+02
58020205	2.7240	1.0000	3.1394"+03	1.8150*-03	4.4825	1.4462	1.0594*+04	1.0694"+04
HM	2.5835*+05	1.0000	6,4832"+03	ilin	1.8136	1.7944	2.8380"+02	1.2182"+02
INFINITE	3.0261*+02	0.0000	3.0218*-04	0.0000*+00	0.1127	4.3275*-04	6.0280*+02	2.8380"+02
56020206	2.7550	1.0000	4.4169*+03	1.6400"~03	4.5562	1.4477	1.4399*+04	1.4399*+04
NM	3.6478*+05	1.0000	9.2577"+03	AM .	1.8126	1.7938	2.7877"+02	1.1812"+02
INFINITE	2.9742"+02	0.0000	3.0315"-04	0.00004+00	0.1137	4.3776"-04	6.0033"+02	2.7877*+02
58020207	2.7390	1.0000	5.8533"+03	1.5150*-03	4.5506	1.4642	2.1221"+04	2.1221"+04
NM	5.2459"+05	1,0000	1.2154*+04	ИM	1.6092	1.7906	2.84464+02	1.2134"+02
INFINITE	3.0339*+02	0.0000	2.8231"-04	0.0000*+00	0.1129	4.0845"-04	6.0492"+02	2.8446"+02
58020301	3.6840	1.0000	7.0193"+02	2.0000*+03	6.8681	1.4197	1.7100"+03	1.7188*+03
NM	1.6976*+05	1.0000	2,1153*+03	NN 5:0000.m02	1.8409	1.6139	2.7533*+02	8.0223"+01
INFINITE	2.97984+02	0.0000	2.4632"-04	0.0000*+00	0.1399	4.1452"-04	6.6157*+02	2,7533"+02
58020102	3.6720	4 60 60	7.1329*+02	1 50000	6.7973	4 11 11 11 11	1.7387*+03	4 77474.07
NW	1.6888*+05	1.0000	2.1385*+03	1.9900***03	1.8452	1.4038	2.7614*+02	1.7387*+03
INFINITE	2.9881"+02	0.0000	2.4977"-04	0.0000*+00	0.1400	4.1614"-04	6.6192"+02	2.7614"+02
F4020404				4 1158444		. 46.44		. 7446# 67
58020303 NM	3.6630 4.2032*+05	1.0000	1.7026"+03 5.0735"+03	1.4850"-03 NM	6.7481 1.8494	1.3948	4.3819*+03	4.3819*+03 8.2252*+01
INFINITE	3.0298"+02	0.0000	2.4186*-04	0.0000*+00	0.1401	3.7909"=04	6.6607"+02	2.8002*+02
58020304 Nm	3.6670	1.0000	2.7139*+03 6.1349*+03	1.3060"-03	7.0169	1.4658	5.4238*+03 2.7385*+02	5.4238*+03 8.0315*+01
INFINITE	5.2316"+05 2.9631"+02	0.0000	3.0210*-04	0.0000*+00	1.8010	1.7698 5.5175*=04	6.5690"+02	2.7385*+02
58020305	3.6810	1.0000	3.4799*+03	1.2400*-03	6.8839	1.4016	7.76554+03	7.7655*+03
nm Infinite	7.6377"+05 3.0242"+02	1.0000	1.0444*+04 2.7588*-04	0.0000"+90	1.8270 0.1388	1.8075 4.8180*=04	2.7945*+02	8.1516*+01
4 ML 1141 I G	3.4646.448	0.0000	# + 1 300 = #UM	9.VVUU" 7VU	0.1300	4.0100.404		E . 1442 475
50020306	3.6510	1.0000	3.4727*+03	1.2200"-03	6.9605	1.4281	7.6736"+03	7.6736"+03
NM	7.5472*+05	1.0000	1-0484*+04	NM O DOMESTICA	1.6149	1.7908	2.7919*+02	6.1442*+01
Infinite	3.0214"+02	0.0000	2.7988"-04	0.00007+00	0.1379	5.0045*-04	6.6604*+02	2.7919*+02

580202	O1 STAL	ACH	PROFILE	TABULATION	5.3	POINTS, DEL	IUS TA AT.	NT 23
I	Y	912/P	PZPD	007167	47/10	מטעט	1/10	QUVU*COHB/OHB
1	0.0000*+00	1.0000*+00	HP*	0.93767	0.0000	0.00000	2.34046	0.00000
2	2.5400"-04	3.0562"+00	116.	0.96662	0.51261	0.67440	1.73086	0.38964
š	3.0480"-04	3.6371"+00	7481	0.97066	0.56965	0.72751	1.63100	0.44605
4	3.5560"-04	3.8784"+00	NM.	0.97242	0.39159	0.74669	1.59309	0.46871
5	4,0640,-04	4.1123"+00	Й₩	0,97405	0.61207	0.76399	1.55805	0.49035
b	5.3340*-04	4.5420*+90	147	0.97686	0.64790	0.79230	1.49771	0.52941
7	6.6040"-04	4.8178"+00	Νw	0.97854	0.66784	0.80977	1.46147	0.55408
8	1.8740"-04	5.0500"+00	ĦΜ	U.47990	0.68775	0.82310	1.43231	0.57466
9	1.0414"-03	5.6302"+00	Иw	0.98305	0.73053	0.85332	1.36441	0.82541
10	1.2954"-03	6.1224"+00	144	0.98550	0.76490	0.87604	1.31172	0.66786
11	1.5494*-03	6.6827"+10	44	0.98807	0.80219	0.89923	1.25655	0.71563
12	1.8034"-03	7.2465"+00	실색	0.99044	0.83803	0.72014	1.20556	0.76324
13	2.0574"-03	7.8784*+90	Mr.	0.99288	0.87642	0.94114	1.15315	0.81614
1.4	2.3114"-03	8.3982"+00	HM	0.99473	0.90476	0.95678	1.11336	0.85936
15	2.5654"-03	6.7851"+00	им	0.99602	0.92870	0.96759	1.08549	0.89138
16	2.5194"-03	9.0681"+00	14.4	0.99693	0.94442	0.97508	1.06597	0.91473
17	3.0734"-03	9.4235*+00	Им	0.99803	0.96380	0.98404	1.04244	0.94398
18	3.3274"-03	7.5322"+00	NM	0.99835	0.96965	0.98669	1.03545	0.95291
19	3.8354"-03	9.8971"+00	(I.b.	0.79941	0.98903	0.99527	1.01265	0.98283
50	4.3434*-03	9.9947*+00	1174	0.99969	0.99415	0.99747	1.00673	58099.0
51	4.8514"-03	1.0072"+01	IJΜ	0.99990	0.99817	0.99922	1.00210	0.99713
22	5.3594"-03	1.0093"+01	lin	0.99946	0.99927	0.79969	1.00084	0.99885
D 23	5.8674*-03	1.0107"+01	lin.	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y.M ASSUME PHPD

580202	03 STALM	ACH	PROFILE	TABULATION	24	POINTS, D	ELTA AT POI	NT 24
I	Y	P12/P	P/P0	TO/TUD	M/MD	u/ub	T/TD	BH0/8400+0/00
1	0.00004+00	1.0000"+00	ŊH	0.93774	0.00000	0.00000	2.33654	0,00000
2	2.5400"-04	2.7104"+00	MM	0.96301	0.47565	0.63710	1.79405	0.35512
3	3,0480"-04	3.9653"+00	Им	0.96615	0.51410	0.67553		0.39124
4	3.5500"-04	3,2680"+00	Им	0.96785	0.53497	0.69547	1.69007	0.41151
ć	4.0640"-04	3.3254"+00	il.	0.96830	0.54046	0.79062	1.68048	0.41692
6	5.3340"-04	3.6332"+00	NM	0.97070	0.57012	0.72764	1.62890	0.44670
7	0.6040"-04	3,8989"+00	NM	0.97264	0.59429	0.74873	1.58728	0.47170
8	7.8740"-04	4.3371"+00	11M	0.97562	0.63200	0.78003	1.52132	0.51206
9	1.3414"-03	4.7898"+00	HМ	0.97845	59899.0	0.80862		0.55286
10	1.2954 -03	9.1321"+00	NM	0.98044	0.69498	0.82814	1.41991	0.58324
ii	1.5494"-03	5.6507*+00	1415	0.98324	0.73306	0.85485		0.62863
12	1.8034"-03	6,1063"+00	NM	0.98550	0.76492	0.87589		0.66801
13	2.0574"=03	6.5930"+00	им	0.98775	0.79751	0.87625		0.70965
14	2.3114"=03	6.9672"+00	ИW	0.98937	0.82168	0.91063		0.74142
15	2.5654#=03	7.5198"+00	NM	0.99160	0.85610	0.93007		0.78799
lo	2.8194"-03	8.0145"+00	ИW	0.99345	0.88576	0.94596		0,82939
17	3.0754*=03	6.3537"+00	iib	0.99465	0.90553	0.95609		0.85764
iá	3.32744-03	8.7460 +00	ijΜ	0.79597	0.92787	0,96713		0.89020
19	3.5814*-03	9.0416"+00	iin	0.99693	0.94434	0.97500	1.06599	0.91465
žó	4.0874 - 23	9.5869"+00	NM.	0.99859	0.97400	0,98862		0.95960
51	4.5974*-03	9.9041 +00	NM	0.99951	0.99085	0.99605		0.98567
žž	5.1054*-03	1.00097+01	NA	0.99980	0.99634	0.99843		0.99425
23	5.6134"-03	1.0037"+01	46	0.99988	0.99780	0.99906		0.99655
D 24	6.1214"=03	1.0079"+01	NA	1.00000	1.00000	1.00000		1.00000

INPUT VARIABLES Y.M ASSUME PMPD AND VAN DRIEST

580202	07 STAL	*ACh	PROFILE	POITALUBAT	21	POINTS, DE	LTA AT POI	NT 21
I	¥	BIS/B	P/P0	10/100	47MD	U/UD	7/10	0U\U#00HF\0HR
1	0.0000#+00	1.0000"+00	NM	0.93749	0.00000	0.00000	2.34438	0.00000
2	2.5400"-04	2.7073"+00	1144	0.96283	0.47391	0,63594	1.80068	0,35317
3	3.0480"-04	3.0141"+00	If ₁ y	0.96558	0.50746	0.66967	1.74148	0.38454
4	3.5560"-04	3.2101"+00	Им	0.96723	0.52761	0.68912	1.70595	0.40395
5	4.0640"-04	3.4024"+00	MM	0.96878	0.54657	0.70690	1.67258	0.42264
ú	5.3340"-04	3,7480"+00	1114	0.97140	0.57900	0.73604	1.61605	0.45546
7	<pre>6.6040"=04</pre>	4.0024"+00	ПW	0.77322	0.60170	0.75558	1.57688	0-47916
3	7.8740*=04	4.2176*+00	UM	0.97470	0.62031	0.77100	1.54511	0.49903
9	9.1440"=04	4,4384"+00	(IM	0.97612	0.43851	0.78575	1.51436	0.51896
10	1.1684"=03	4.7165"+70	Nta	0.97905	0.67653	0.81503	1.45135	0.56156
11	1.4224"-03	5.3785*+00	HIA	0.98165	0.71126	0.84018	1.39537	0.00212
12	1.6764"-03	5.8574"+00	1444	0.98413	0.74550	0.86357	1.34181	1.64358
13	1.9304"-03	6.3434"+00	HM.	0.98647	0.77869	0.88495	1.29155	0.68519
14	2.18444+03	6.9486"+00	12+4	0.98871	0.81172	0.90505	1.24318	0.72801
15	2.4384"-03	7.3394"+00	1314	0.99074	0.84254	0.92280	1.19957	0.76927
16	2.6924"-01	7.8364"+00	HM	0.97265	0.87264	0.93923	1.15844	0.81077
17	2.9464"-03	8.3269"+00	*11A	0.99440	0.90134	0.93412	1.12053	0.85149
18	3.4544"-03	9.3272"+00	βİΜ	0.99766	0.95719	0.98105	1.05047	0.93391
19	3.9624"-03	9.8010"+00	IIM	0.99906	0.98253	0.99243	1.02027	0.97272
20	4.4794*+03	1.0087"+01	ЦM	0.99987	0.99751	0.99893	1.00287	0.99608
D 21	4.9784"-03	1.0135"+01	IIΜ	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES - YOU'D (ISDENERGETIC) - ASSUME PERD AND VAN DRIEST

58020	301 STA	LMACH	PROFILE	TABULATION	. 13	POILTS, JE	LTA AT PU	INT 18
ī	Y	015/b	P/P0	10/100	MZ''ID	JZIIN	TZTD	QUVC+300HB
1	0.0000*+00	1.0000*+00	Q14	3.92400	0.00000	0.0000	3.43208	0.0000
2	2.5400"-04	3.7646"+00	ju	0.95744	0,43160	0.66331	2.36200	0.280A3
3	2.9718"-04	4.1679*+00	11M	0.96022	0.45793	0.69038	2.27296	0.30374
4	3.4796"-04	4,4433"+00	ПW	0.96200	0.47503	0.70713	2.21596	0.31911
S	5.9878"=04	4.8084**09	ħΜ	0.96422	0.49574	0.72750	2.14488	0.33918
U	4.4958"-04	5,1515"+00	Aa	3.96018	0.51627	0.74500	45580.5	0.35779
7	5.7658"-04	5.6558"+00	1161	3.96886	0.54370	0.76826	1.99661	0.36478
Ŋ	7,0358"-04	6.0264"+00	:¦w	3.97068	0.56298	0.78375	1.93812	0.40439
ų	8.3058"-04	6.4046"+00	ИM	9.97244	0.56198	0.79817	1.04189	0.42424
10	1.0846"-03	7.1120*+00	1314	0.97547	0.61591	0.82291	1.78514	0.46098
1.1	1.3386"-03	7.8477*+00	ИW	0.97829	0.64929	0.84523	1.59458	0.49578
12	1.9736"-03	9,9947*+00	ци	0.94512	0.73806	0.89675	1.47624	0.60744
13	2.6086"-03	1.1884"+01	1991	18986.0	0.89809	0.73055	1.32607	0.70174
14	3.2436"-03	1,3904"+01	144	0.99387	0.87676	0.95885	1,19602	0.80170
15	5.8786"-03	1.5547"+01	14.7	0.99664	0.92888	0.97761	1.10768	0.88258
16 17	4.5136"=05 5.1486"=03	1.6897"+01	UM.	0.79862	0.96960	0.49085	1.04431	0.94880
0 18	5.7836"-03	1,7943"+01	the the	0.99955	0.98996	0.99704	1.01437	0.98292
0 10	3.1030 -03	1,7943 401	14-	1.00000	1.00000	1.00000	1.00000	1.00000
THEUT	VARIABLES	Y, U/UD (130ENE	PRETICY	ASSUME PAP	ALV HUA DE	. NOTEST		
THE O	*********	TOYOU (TOUCHE	'WAE LIE!	#330 -C P#F	D MINO AND	A DATEST		
58020	304 STA	LMACH	PROFILE	TABULATION	1 53	POINTS, DE	LTA AT PO	INT 23
	U		5 455					
I	Y	4751d	P/PO	10/107	44AHD	מיאעט	TZTD	RH0/9H00*U/UD
1	0.0030"+00	1.0000*+00	344	0.92417	0.00000		1 2004	
į	2.5400*-04	2.8977"+00	his	0.95077	0.00000 0.36976	0.00000	3.40968 2.56471	0.00000
3	3.0480"=04	3.4096*+00	40	0.95498	0.40877	0.63735	2.43063	0.23089 0.26220
4	3.5560"=04	3.5821*+90	20	0.95630	0.42104	0.65080	2.34910	0.27240
5	4.0640"-04	3.7484 +00	ijn	0.95752	0.43250	0.66305	2.35030	0.28211
6	5.3340"-04	4.1213"+00	цм	0.96011	0.45708	0.68835	2.26793	0.30351
7	6.6940"-04	4.4076"+00	NH	0.96197	0.47504	0.70598	2.20867	0.31964
8	1.8740"-04	4.7078*+00	UM	0,96552	0.49313	0.72306	2.14988	0.33632
9	1,0414"=03	5.3149*+00	HM	0.96727	0,52777	0.75385	2.04027	0.36949
10	1.2954"-03	3.6894"+00	ИM	0.97022	0.55852	0.77923	1.94652	0.40032
11	1.5474"-03	6.4774"+00	Иh	0.97297	0.58827	0.80213	1.85925	0.43143
15	1.8034-03	7.2542*+00	ЯM	0.97624	0.62539	0.82858	1.75534	0.47203
13	2.0574"-03	7.8286*+00	ЙM	0.97843	0.45146	0.84583	1.68574	0.50175
14	5.3114,-02	8.6812 +00	Им	0.98137	0.58831	0.86850	1.59209	0.54551
15	2.5694"-03	9.3437"+00	Hπ	0.98344	0.71562	0.88409	1.52624	0.57926
16 17	2.8174"-03	1.0019*+01	1114	0.98539	0.74243	0.89846	1.46450	0.61344
ió	3.0734"-03 3.3274"-03	1.0786"+01 1.1810"+01	tşM SJM	0.98741	0.77174	0.91320	1.40018	0.65220
19	3.8354"-03	1.3571*+01	HW Han	0.93985 0.99350	0.87049	0.93064	1.32268	0.70360
èó	4.3434"-05	1.5376*+01	N3*	0.99657	0.92786	0.95618	1.20657	0.79248
ટો	4.8514"-03	1.6865 +01	ЦМ	0.99878	0.97314	0.99189	1.03892	0.88108 0.95474
äž	5.3574"-03	1.7643 +01	Wes	0.99782	0.99596	0.99881	1.00573	0.99312
0 53	5.8674"-03	1.7752*+01	ijε	1.00000	1.00000	1.00000	1.00000	1.00000
		******	••					7.44.000
INPUT	VARIABLES	YAUYUD (ISOLNE	PRETTO	ASSUME PER	D AND VAN	N DRIEST		
580203	06 STAL	MACH	PROFILE	TABULATION	18 F	OINTS, DEL	TA AT POSI	NT 15
			*					
I	Y	P12/P	P/PO	TO/TOD	MAND	0/00	1/10	RHO/PHOD*U/UD
1	0.0000"+00	1.0000"+00	NM	0.92403	0.00000	0.00000	3,42812	0.00000
ž	2.5400"-04	3.1092"+00	IIM	0.95241	0.38495	0.41122	~ - ~	
3	2.9718"-04	3,3569*+00	NM	0.95441	0.40342	0.63237	2.52101	0.24245
4	3.4798"-04	3.6414"+00	NM	0.95658	0.42355	0.65451	2.38796	0.27409
5	3,9878"-04	3.9771*+00	NM	0.95897	0.44604	0.67814	2.31148	0.29338
b	4-442804	4.2233"+00	NH	0.96062	0.46180	0.69402	2.25859	0.30728
7	5.0038"-04	4.2447"+00	ИW	0.96076	0.46314	0,69534	2.25412	0.30848
	6.2738"=04	4.6349"+00	NM	0.96334	0.48313	0.71934	2.17168	0.33124
9	7.5438"-04	4.8600*+00	NM	0.96456	0.50014	0.73040	2.13274	0.34247
10	8.5138"-04	5.1517*+00	IIM	0.96622	0.51672	0.74518	2.07978	0.35830
11	1.1354*-03	5.7691 +00	Niv	0.96946	0.55012	0.77331	1.97606	0.39134
12	1.30944-03	6,5154"+00	NM	0.97297	0,58790	0.80263	1.86389	0.43062
13 14	1.6434"-03	7.1483"+00	11M	0.97565	0.61810	0.82425	1.77838	0.46350
15	2.9134*-03	9_0762"+00 1_1222"+01	MW MM	0.98246	0.70204	0.87701	1.56055	0.56199
16	3.5484*-03	1.3540"+01	11W	0.98831 0.99324	0.78490	0.91955	1.37350	0.66973
17	4.5154"-03	1.7409"+01	IIW	0.99934	0.86550 0.98540	0.95446 0.99567	1.21613	0.78483
D ia	6.0684"-03	1.7915"+01	NM	1.00000	1.00000	1.00000	1.00000	0.97523 1.00000
						*******		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
T 41 86 1 1 7 1								

INPUT VARIABLES Y.U/UD (ISOENERGETIC) ASSUME PEPD AND VAN DRIEST

	M : 1.7, 3.6 and 4.8 R THETA X 10 ⁻³ : 26 - 35	5803
	TW / TR : 1	ZPG - AW
ontinuous tunnel with asymmetric flexib .2 < PO < 0.64 MN/m ² . TO : 300 K. Air		30.
	, dewpoint 245 K. $20 < RE/m \times 10^{-6} < 3$ ments in supersonic turbulent boundary	layers. BRL Rep 10

1 The measurements were made at a single station on the flat wall opposite the flexible nozzle plate. The test surface was allowed to settle to an equilibrium temperature which was within a few degrees of the adiabatic recovery temperature. The surface was polished to a mirror finish. The free stream Mach number

- 2 was constant within ± 0.02 after the termination of the nuzzle expansion, at least 0.5 m upstream of the
- 3 test station. Boundary layer profile and hot-wire surveys made to check transition showed that this took
- 5 place near the tunnel throat. Three dimensional effects were small in the central region of the tunnel.

 Mean velocity profiles taken at 25.4 mm intervals in the Z-direction were identical within experimental accuracy, and oil and lampblack on the floor did not disclose any secondary flow.
- 6 Static pressure holes (d = 1.02 mm) were distributed at 25.4 mm intervals along the centre-line of the floor. The wall temperature was monitored by a thermocouple at the measuring station, but buried some
- 7 distance from the surface. The total temperature profile was obtained with an FWP consisting of a 0.5 mm Pt wire used as a resistance thermometer. TO was found from the recovery temperature using the data of Laufer and McClellan (1956). The FPP used (h₂ = 0.127, b = 1.27 mm) was formed by flattening a hypodermic needle. The hot-wire probe was operated in the constant current mode. The equipment used was basically that described by Kovasznay (1953) with modifications to increase the frequency response and improve matching with the 1.27 µm Pt-Rh wires employed. The length / diameter ratio was about 200. The compensated frequency response of the wires was flat to approximately 90 KHz.
- 9 The author has interpolated the TO data to the y-stations of the Pitot measurements. The hot-wires wore operated in ten states, of which seven are in principle redundant, so as to allow separation of the fluctuation modes by fitting the data to a response characteristic based on the hypothesis of small pressure fluctuation levels. The question is discussed in Kistler and Chen (1963). The friction velocity used for scaling the fluctuation results was obtained from a correlation of published data and checked by comparing the resulting transformed velocity profile with the profiles obtained by Coles (1963). The
- 12 static pressure was assumed constant through the boundary layer. The editors present the data incorporating all the author's assumptions and data-reduction procedures.
- 13. Three mean flow profiles are presented, each for a different Mach number but at approximately the same
- 14 value of R THETA. The associated fluctuation data is given in section D. The CF value is the author's estimate, determined according to Coles (1963).
- \S DATA 5803 0101-0301. Pitot, TO and fluctuation profiles taken separately. NX = 1.

15 Editors' comments

These are the first available systematic hot-wire measurements at supersonic speeds. Even now there are few comparisons, and the interpretation of the measurements remains controversial. Substantial contributions, in each case at a single Mach number, have been made by Horstman. & Owen - CAT 7206 and Laderman & Demetriades - CAT 7403. Supporting tabular data are also given in association with Sturek & Danberg - CAT 7101 and Waltrup & Schetz - CAT 7104.

The author's "delta" value is obtained by extrapolation of the semi-logarithmic part of the profile to meet the free-stream velocity, and consequently corresponds to a value of Y which is large when compared to that obtained as a result of the definitions used by most authors. Arguments based on the y/ô positions of turbulence features should take account of this.

The magnificants do not extend very close to the wall, including only the outer part of the log-law region. There are no values measured inside the momentum deficit peak. The profiles display an unusually large wake component.

CAT BB03	KISTLER		BOUNDARY CON	DITIONS AND E	EVALUATED	DATA. SI UNIT	5.	
RUN	ND *	TH/TR	REDZW	CF *	H12	H12K	PW	PD
X	PODA	PW/PD+	RED2D	CO	H 32	H32K	TWA	TD
RZ	TOD#	\$14 ×	0.5	PIZ	H42	DSK	UD	TR
58030101	1.7200	1.0057	2.4681"+04	1.5600"-03	2.8441	1.4907	3.9310*+04	3.9310*+04
NM	1.9998*+05	1.0000	3.5072*+04	NM	1.8367	1.8314	2.91004+02	1.8911"+02
INFINITE	3.0100"+02	0,0000	1.30047-03	ИМ	-0,0060	1.5247"-03	4.7424"+02	2.8936"+02
58030201	3.5600	1.0305	1.1697*+04	9.4200*+04	7.1477	1.4270	4.6170"+03	4.8170"+03
££M.	3.9997*+05	1.0000	5.4317*+04	NM	1.8176	1.7916	2.8800*+02	8.5438*+01
INFIWITE	3.0200*+02	0.0000	1.6208 == 03	MM	0.0033	2.8974"-03	6.5976*+42	2.7946*+02
\$8030301	4.6700	1.0451	5.7460*+03	7.8600*+04	11.3413	1.4725	1.7929"+03	1.7929"+03
HM	6.5995"+05	1.0000	2.5649"+04	NM	1.8184	1.7806	2.8700"+02	5.5952"+01
INFINITE	3.0000*+02	0.0000	1.3155 -03	NM	0.0013	3.0526"-03	7.0038*+02	2.7462*+02

								5002
580301	101 ×13	TLER	PROFILE	TABULATION	16	POINTS, DE	LTA AT POI	NT 16
1	Y	P12/P	P/PO	COILDI	HVHD	U/UD	T/TD	PHO/RHOU*U/UD
1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y 0.0000*+00 1.2677*-03 2.5248*-03 5.8047*-03 5.3297*-03 6.3297*-03 1.0122*-02 1.1397*-02 1.3957*-02 1.3957*-02 1.7730*-02 1.7730*-02 1.3936*-02	PT2/P 1.0000"+00 2.1328"+00 2.3872"+00 2.7961"+00 2.7961"+00 3.1463"+00 3.4626"+00 3.5277"+00 3.6620"+00 4.0110"+00 4.1463"+00 4.3021"+00 4.3021"+00 4.3021"+00	P	0.00000 0.99700 0.99700 0.99700 0.99700 1.00100 1.00100 1.00200 1.00200 1.00200 1.00200 1.00100 1.00100 1.00100	0.00000 0.63953 0.69360 0.73721 0.77093 0.80174 0.83923 0.87965 0.88953 0.91395 0.91395 0.91395 0.91884 1.00000	0.0000 0.72290 0.77120 0.83639 0.86132 0.91961 0.92712 0.94740 0.94689 0.97433 0.96689 0.97433	1,7TD 1,53880 1,27770 1,23652 1,2078 1,17699 1,15427 1,13172 1,09290 1,04856 1,04856 1,04856 1,0198 1,0198 1,01098 1,00000	0.00000 0.56578 0.62375 0.67276 0.71061 0.74025 0.78042 0.84143 0.85348 0.86421 0.91638 0.94451 0.946945 0.94815 0.99816 1.00000
INPUT	VARIABLES	Y/DELTA,M,TO/TO	D ASSU	ME P#PD				
580302	201 KIS	TLER	PROFILE	TABULATION	17	POINTS, DEL	TA AT POI	NT 17
1	Y	PT2/P	P/P0	T0/T05	H/HD	UVUD	1/10	RHO/RHOO*U/UD
1	0.0000*+00	1.0000"+00	ИМ	0.00000	0.00000	0.00000	3.37086	0.00000
3	1.0135*=03 3.5471*=03	2.7459*+00 4.2672*+00	NM NM	0.97500 0.98500	0.36798	0.58942 0.71195	2.56574	0.22973 0.32407
4 5	6.0808*-03 8.6144*-03	5.2866*+00 6.3627*+00	NM	0.99100	0.54213	0.76812	2.00747	0.38264
	1.1148*-02	7.5920"+00	MW MW	0.99400	0.660112	0.81404	1.67960	0.44390 0.50935
6	1.3628"-02	6.9161*+00	ИM	1.00300	0.71910	0.89073	1.53429	0.58054
8	1.6269#=02	1.0355*+01	NM	1.00300	0.77809	0.92025	1.39878	0.65789
10	1.8749**02	1.1228*+01	11 8 146	1.00400	0.81180	0.93584 0.96744	1.32895	0.70420 0.82477
ii	2.3736"-02	1.4662*+01	HM	1.00250	0.93258	0.98068	1.10561	0.88684
13	2.6403"-02	1.5530"+01	Иw	1.00200	0.96067	0.98938	1.06064	0.93281
13	2.8804"=02	1.5973*+01	UW	1.00000	0.97472	0.49265	1.03713	0.95711
14 15	3.1471*=02 5.3871*=02	1.6332"+01	NW NW	1.00000	0.98596	0.99597 0.99759	1.02041	0.97604 0.98559
16	3.6271"-02	1.6577"+01	NM M	1.00000	0.99354	0.99816	1.00932	0.98894
D 17	3.8938"-02	1.6787"+01	NW	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y/DELTA,M,TO/TO	D ASSUL	AE PAPO				
589303	101 KIS	ILER	PROFILE	TABULATION	51	POINTS, DEL	TA AT POI	NT 21
1	Y	PT2/P	P/PD	TO/TOD	MZND	0/00	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NW	0.00000	0.00000	0.00000	5.12944	0.00000
<u>2</u> د	1.6065"=03 2.6143"=03	3.4971*+00 4.1038*+00	NM NM	0.96500	0.32591	0.61284	3,53593	0.17332
4	1.9433"-03	4.1038 +00	MW Mw	0.97000 0.97300	0.35803	0.65391 0.64491	3,33582	0.19603 0.22339
4 5	5,2578"=03	5.4881 400	ИM	0.97800	0.42164	0.72482	2.95230	0.24551
6	6.2801 03	6.0585"+00	NM	0.98000	0.44540	0.74755	2.81703	0.26537
7 8	7.5946*=03 8.6169*=03	6.8298*+00	NM NM	0.98500	0.47537	0.77527 0.79301	2.65972	0.29149
ÿ	1.0282"-02	7.4242*+00 00+*6464	NM NM	0.98600	0.49722	0.82543	2.54372 2.34172	0.31175 0.35249
10	1.1976"-02	1.0002"+01	[IM	0.99400	0.58244	0.85309	2.14931	0.39728
11	1.3583"-02	1.1452"+01	ИW	0.99900	0.62527	0.87983	1.97999	0.44436
12 13	1.6942"=02	1.4920"+01	NW NA	1.00300	0.71734	0.92355	1.65753	0.55718 0.62011
14	2.0389"-02	1.8894"+01	VIW 14™	1.00500	0.76381	0.94051 0.95684	1.51716	0.68580
15	2.3719"-02	2.2269"+01	HM	1.00500	0.88114	0.97662	1.22841	0.79503
16	2.7105"-02	2.4774"+01	ИМ	1.00500	0.93041	0.98830	1,12831	0.87591
17 18	2.8626"=UZ 3.2715"=02	2.5620 [#] +01	M#	1.00000	0.94647	0.98933	1.09262	0.90546
19	3.5636"-02	2.6852"+01 2.7592"+01	N n Nw	1.00000	0.96938	0.99407 0.99674	1.05159	0.9453U 0.96919
20	3.9141 -02	2.8186*+01	NM	1.00000	0.99358	0.99879	1.01053	0,98839
0 57	4.2647"=02	2.8545"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA, M, TO/TOD ASSUME P=PD

ji. .

TABLES OF REDUCED TIME-MEAN FLUCTUATION QUANTITIES

Velocity Fluctuation Levels			tic Temperature		ature-Velocity ion Coefficient
y /8	$\frac{\sqrt{\sqrt{u^2}}}{v_{\tau}}$	y /δ	$\frac{\sqrt{\sqrt{\sqrt{1}}}}{2T} \frac{T_0 + T_{\infty}}{T_0 - T_{\infty}}$	y/5	VATE VAUE
58030101	M ₆ = 1.72	u _T =	16.66 m/s	δ =	17.78 mm
0.153	1.33	.122	0.042	0.161	- 0.566
0.159	1.44	.170	0.054	0,161	- 0.66
0.290	1.31	.255	0.053	0,270	- 0.71
0.353	1.27	.285	0.061	0.306	- 0.70
0.418	1.22	.346	0.065	0.45	- 0.76
0.619	0.92	.418	0.067	0.516	- 0.78
1.016	0.14	.479	0.067	0.75	- 0.76
1.016	0.19	.618	0.066	0.94	- 0.67
		. 891	0.040	1.08	- 0.62
		1.018	0.016		
58030201	M ₆ = 3.56	u _t =	26.76 m/s	δ 💌	26.67 mm
0.135	1.06	0.139	0.051	. 139	- 0.71
. 135	1.11	.139	0.066	.139	- 0.74
. 182	1.07	. 28	0.064	.27	- 0.69
.540	0.91	.2ક	0.066	.41	- 0.70
. 681	0.59	.406	0.678	.59	- 0.67
.816	0.32	,545	0.079	.68	- 0.66
. 816	0.35	.685	0.072	.82	- 0.51
. 960	0.13	.75	0.058	. 95	- 0.47
1.096	0.07	.83	0.042		
		.96	0.020		
		1,09	0.008		
58030301	M ₆ = 4.67	u _t =	32.07 m/s	δ ■	29.21 mm
0.071	0.99	0,066	0.047	0.067	- 0.58
0.130	0.99	, 138	0.047	0.134	- 0.52
0.416	0.88	, 186	0.058	0.306	- 0.54
. 535	0.67	.308	0.064	0.428	- 0.68
.652	0.40	.412	0.084	0.58	- 0.69
.660	0.50	0.577	0.084	0.65	- 0.58
.825	0.22	0.657	0.080	0.83	- 0.52
.092	0.08	.836	0.049	1,00	- 0.47
		1.00	0.018	1.08	- 0.47

The reference velocity and length (u_{τ} and δ) have the values given by the author in accord with his definitions.

Au etc. are more usually written u' etc.

rough	M : 2.2 and 2.7 R THETA X 10 ⁻³ : 8 - 50	5804			
	TW / TR : 1	ZPG (ROUGH) AW			

Continuous wind tunnel with fixed symmetrical interchangeable nozzles. W = 0.48, H = 0.7, L = 1.0 m. $0.18 < P0 < 0.3 MN/m^2$. TO: 340 K. Air. RE/m X 10^{-6} : 25.

FENTER F.W. and LYONS W.C., 1958. An experimental investigation of the effects of several types of surface roughness on turbulent boundary layer characteristics at supersonic speeds. DRL 411.

The experimental arrangements were as for CAT 5501 and 5502 except that no balance measurements were made,

and that the surface of the plate was further modified. In the initial tests (series 01) the entire plate

surface was coated with spherical beads of 0.105 mm diameter, and seven successive profiles were measured

on the centre-line from X = 194 mm to X = 804 mm, in increments of 103 mm (see section B). For the remaining tests, the basic plate was modified to carry 16 different insert plates.

- 1 The roughness of the various inserts is described in Table 1 and the associated figure, with reference to the normal zero plane of the insert, which was carefully adjusted to the plane of the basic plate. The insert extended from X = 230 mm to X = 340 mm, and was 301 mm wide, as compared to the overall plate width of 483 mm. When modified to carry the inserts, the plate had a knurled transition trip extending transversly across the whole width from X = 19 to 25 mm. This was formed by a standard 1/4 inch knurling tool. The peaks of the knurled region where about 0.13 mm high. Otherwise the surface of the basic plate was flat, as was the first 72.2 mm of the insert. The first insert was completely flat, so that the model became a conventional smooth flat plate.
- 8 Profiles could be measured on the normal at X = 296 mm, just upstream of the start of the roughness on the insert at X = 302 mm, and also on the normal at X = 804 mm, just before the end of the roughness at X = 840 mm.
- 9 The static pressure through the boundary layer was assumed to be constant.
- 12 The editors have presented all the profiles for which tabulated data is available except one pair for insert 1 at a slightly lower unit Reynolds number. The author's assumption of isoenergetic flow has been replaced
- 13 by the Crocco / Van Driest temperature velocity correlation. The profiles consist of the consecutive set of seven (series 01) on a close-packed spherically rough surface, and upstream and downstream profiles for the varied roughnesses listed in table 1. These have been grouped as "series" 02, the upstream profiles, and "series" 03, the downstream profiles. The profile identification number in each case is the number of the relevant insert. All the profiles presented were obtained at the same unit Reynolds number, so that in
- 14 principle the profiles of series 02 should be identical. No wall data is presented.
- § DATA 5804 0101-0316. Pitot profiles. NX = 7 (Series 01), otherwise 2. Roughened surface.

15 Editors' comments

The entry describes a further systematic DRL attempt to describe the effects of roughness. For a complete view of the programme to 1959, see Fenter (1960). In the tests with varied roughness inserts the boundary layer was formed on a smooth "flat plate" leading edge with a trip, before encountering a step increase in roughness. A recent series of tests of similar type, but made on a tunnel wall, is described by Reda (1974) who was also able to measure the drag force on the second half of his insert. The absence of any shear stress measurement in the tests described here unfortunately reduces the value of the data greatly. The uniform roughness results (series 01) may be compared with those of Shutts & Fenter - CAT 5502 and Young - CAT 6506.

For about half the profiles described, measurements do not extend within the momentum-deficit peak, so that integral values should be treated with caution.

INSERT NO

Type

DIMENSIONS OF SURFACE ROUGHNESS FOR PLATE INSERTS (Refer to figure 1)

w (mm)

h (mm)

d (mm)

TYPE D

1	smooth		-		-		•				
5	Uniform grain	(No	120	Aloxite,	mean	d i ame	eter	0.185 m			
3	h	(No	220	А	ıt	n		0.15 mm			
4	41	(No	400	IF	**	и		0.024 m	-		
5	н	(No	303	Optical	grit,	mean	diameter	0.013 N	m)		
6	A		0.51	(forw	ard fi	cing	step)		0		
7	В		0.12	7	4.	.78	19.1				
8	В		0.12	7 -	4.	.78	9.5		•		
9	С		0.12	7	0.	254	10.2		0		
10	C		0.12	27	0.	2.54	2.5	1	0		
11	С		0.12	:7	0.	. 254	1.2	7	e		
12	С		0.12	!7	0	. 254	0.5	l	0		
13 ·	Ç		0.12	! 7	0.	.254	0.2	5	0		
14	С		0.12	17	n.	. 254	0.2	5	20		
15	С		0.12	27	0	.254	0.2	5	40		
16	D		2.6	מווניי	8	.0	40		-		
B	direction of	f flow	<u> </u>	-	0000			TYPE	B		in 1
	direction	oi llo		* *	000		000000 000000 000000 000000 000000 00000	<i>\</i> "		Ĭ,	h

FIG. 1 TYPES OF MACHINED ROUGHNESS TESTED

TYPE C

27 PROFILES

CAT 5604	FENTER		BOUNDARY CON	A DITIONS AND E	VALUATED	DATA. SI UNI	18.	
สบผ	MD *	TW/TR*	RED2W	CF	H12	H12K	PW	PD
X *	POD*	PW/PD*	RED2D	CQ	н32	H32K	T W	TÜ
RZ	TCD*	5W *	02	P12*	H42	SK	UD	TR
58040101	2,6990	1.0000	4.0675"+03	NM	4.5245	1.4715	1.4121 + 204	1.4121*+04
1.9446 -01	3.2828"+05	1.0000	8.2436":03	NΜ	1.7789	1.7615	3.0150*+02	1.3078#+02
INFINITE	3.2131*+02	0.0000	3.2496*-04	0.0000*+00	0.1097	4.8635"-04	6,1884"+02	3.01504+02
56040102	2.7020	1.0000	6.3176#+03	NM	4.5304	1.4620	1.4001*+04	1.4301"+04
2.9596 -01	3,2699*+05	1.0000	1.2812"+04	NM	1.7680	1.7479	3.0252"+02	1.3104*+02
INFINITE	3.2242*+02	0.0000	5.1033 -04	0.00004+00	0.1091	7.7405*-04	6,2019"+02	3.0252*+02
58040103	2,7020	1.0000	7.9627"+03	14M	4.4111	1.4002	1.3876*+04	1.3876*+04
3.9746"=01	3.2400"+05	1.0000	1.6147"+04	NM	1.7865	1.7677	3.0252*+02	1.3106"+02
INFINITE	3.2242*+02	0.0000	6.4899"-04	0.0000*+00	0.1103	9.6118*=04	6.2019"+02	3.0252*+02
58040104	2.6990	1.0000	9.8243"+03	NM	4.3527	1.3753	1.40534+04	1.4053*+04
4.9926"-01	3,2668"+05	1.0000	1.9920"+04	NM	1.7962	1.7773	3.0045*+02	1.3033"+02
INFINITE	3.2020*+02	0.0000	7.8517"-04	0.0000*+00	0.1108	1.1464*=03	6.1777*+02	3.0045#+02
56040105	2.6660	1.0000	1.1367"+04	ММ	4.3054	1.3608	1.4249#+04	1.4249*+04
6.0076"-01	3.2467*+05	1.0000	2.2906*+04	NM	1.7960	1.7786	3.02624+02	1.3198#+02
INFINITE	3.2242"+02	0.0000	9.1103"-04	0.0000*+00	0.1103	1.3278"-03	6.18494+02	3.0262#+02
58040106	2,6570	1.0000	1.3872*+04	ИW	4.3063	1.3977	1.4905"+04	1,4905*+04
7.0226*-01	3.2479"+05	1.0000	2.7643"+04	NW.	1,7859	1.7662	3.0279"+03	1.3368*+02
INFINITE	3.2242*402	0.0000	1.0819"-03	0.0000*+00	0.1087	1.5845"-03	6.1593" >02	3.0279*+02
58040107	2.6350	1.0000	1.4655"+04	N₩	4.2551	1.5969	1.5347"+04	1.53474+04
8.0406"-01	3,2326"+05	1.0000	2.9321"+04	NM	1.7873	1.7676	3.0502*+02	1.3591"+02
INFINITE	3.2064*+02	0.0000	1,1504"-03	0.0000*+00	0.1081	1.6728"=03	6.1591*+02	3.0502*+02
58040201	2.2430	1.0000	5.5257*+03	iłw.	3.4373	1.3968	2,3163"+04	2.3163*+04
2.9596*-01	2.6492"+05	1.0000	9.3371"+03	//w	1.8178	1.8041	3.2193"+02	1.6930*+02
INFINITE	3.3964"+02	0.0000	3.8736*-04	0.0000*+00	0.0948	4.9876*-04	5.8514"+07	3.2193*+08
58040201A	2.2470	1.0000	5.3640"+03	NM	3.4587	1.4019	2.2671"+04	2.2671"+04
2.9596"-01	2.6092"+05	1.0000	9.0791*+03	NM	1.8124	1.7998	3.2137"+02	1.6672*+02
INFINITE	3.3907"+02	0.0000	3.8234"-04	0.0000*+00	0.0947	4-9605"-04	5.8518"+42	3,2137*+02
58040204	2.2390	1.0000	5.6371"+03	ИМ	3.4271	1.3965	2.3225"+04	2.3225"+04
2.9596"=01	2.6397*+05	1.0000	9.5044*+03	NM	1.8196	1.8052	3.2249"+02	1.6988"+02
INFINITE	3.4020"+02	0.0000	3.9602"-04	0.0000*+00	0.0947	5.0829"-04	5.8510"+02	3.2249"+02

CAT 5804	FERITER		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNII	rs.	
RUN X *	MD * POD*	TW/TR*	RED2W OSDBR	CF CO	H12	H12K H32K	PW TW	PD TD
RZ	T 0 D *	SW *	0.2	*514	H42	25K	UD	TR
58040301	2.2420	1.0000	1.1845"+04	NM	3.3263	1.3153	2.3288*+04	2.3286*+04
8.0406"-01	2.6593"+05	1.0000	2.0011"+04	NM	1.8235	1.8116	3.2141"+02	1.6910"+02
INCINITE	3.3909"+02	0.0000	6.2475"-04	0.0000*+00	0.0951	1.0558"-03	5.8454*+02	3.2141*+02
58040301A	2.2430	1,0000	1.1988*+04	NM	3.3114	1.3023	2.3065*+04	2.3065*+04
8.0406*-01	2.6380"+05	1.0000	2.0264*+04	NM	1.8257	1.8154	3.2088*+02	1.6874"+02
INFINITE	3.3853"+02	0.0000	8.4045"-04	0.0000"+00	0.0952	1.0747"-03	5.8419"+02	3.2088*+02
F 5 4 4 5 7 4 5				•••			5 T1005	
58040302 8.0406#-01	2.2310 2.6600"+05	1.0000	1.8797"+04 3.1621"+04	NM NW	3.4997 1.7664	1.4231	2.3599"+04 3.2202"+02	2.3699*+04 1.7021*+02
INFINITE	3.3964"+02	0.0000	1.2986"=03	0.0000*+00	0.0916	1.7559"-03	5.8358*+02	3.2202*+02
				******			· -	
58040303	2,2350	1,0000	1.7965"+04	Ям	3.5299	1.4403	2.31584+04	2.3158"+04
8.0406"-01 Infinite	2.6156*+05 3.4020*+02	1.0000	3.0261"+04 1.2692"-03	NM 0.0000"+00	1.7648	1.7462	3.2252*+02 5.8458*+02	1.7018*+02
AMPANAIC	3.4020 402	740000	1.2072.403	0.0000···+00	0.0917	1.1103 403	3,0430 702	3.6635406
58040304	2.2350	1,0000	1.5079*+04	ИM	3.4457	1.3890	2.3050*+04	2,3050*+04
8.040601	2.6035"+05	1.0000	2.5399"+04	Им	1.7838	1.7680	3.2252"+02	1.7018*+02
INFINITE	3,4020"+02	0,0000	1.0703"-03	0.0000*+00	0.0927	1.4247*-03	5.8458*+02	3,2252*+02
56040305	2.2410	1.0000	1.2809"+04	ŊМ	3.3631	1.3353	2.2760*+04	2.2760*+04
8.0406"-0:	2.5950"+05	1,0000	2.1628"+04	NM	1.8102	1.7974	3.2194*+02	1.6945*+02
INFINITE	3.3964*+02	0.0000	9.1509"=04	0.0000*+00	0.0943	1.1883*-03	5.8488*+02	3.21944+02
58040306	2.2400	1.0000	1.2257*+04	MK.	3.3164	1.3122	2.3162*+04	2.3162"+04
8.0406"-01	2.6366*+05	1,0000	2.0695"+04	ЦM	1.8241	1.0122	3.2090*+02	1.6897*+02
INFINITE	3.3853"+02	0.0000	8.5748"-04	0.0000*+00	0.0950	1.0967"-03	5.8380*+02	3.2090*+02
F. 5. 5. 5. 7. 5.								
58040307 5.0406"-01	2.2330 2.6255*+05	1.0000	1.2081"+04	Им ИМ	3.2503 1.8421	1.2620	2.3318"+04 3.2253"+02	2,3318*+04 1,7033*+02
INFINITE	3.4020*402	0.0000	5.4863"-04	0.0000*+00	0.0957	1.0622"-03	5.8432*+02	3.2253*+02
58040308	2.2440	1.0000	1.1549*+04	им	3.2667	1.2706	2.2618"+04	2,26184+04
8.0406"-01 Infinite	2.5909*+05 3.4020*+02	0.0000	2.0025"+04 8.5178"-04	0.0000#+00 NM	1.8405	1.8315	3.2245*+02 5.8575*+02	1.6950*+02
AMETHATIE	3.4050 405	0.0000	0.3170 -04	0.0000 700	0.0760	1-0/14 -03	3,03/3 +VE	3,2243 702
58040309	2.2440	1.0000	1.18994+04	Им	3.3147	1.3046	2.3242*+04	2.3242"+04
8.0406*-01	2.6024"+05	1.0000	2.0114"+0	WA	1.8265	1.8157	3.2192"+02	1.6922"+02
INFINITE	3,3964"+02	0.0000	8.3075*-04	0.0000"+00	0.0953	1.0612"-03	5.8527"+02	3.2192*+02
56040310	2.2560	1.0000	1.1591"+04	NM	3.3529	1.3158	2.2331"+04	2.2331"+04
8.0406"-01	2,6065"+05	1.0000	2.0191"+04	ИM	1.8227	1.8104	3,2183"+02	1.6832*+02
INFINITE	3,3964"+02	0.0000	8.5699"-04	0.0000*+00	0.0956	1.1011*-03	5.8683"+02	3.2183*+02
56040311	2.2410	1.0000	1.2158*+04	NM	3.3314	1.3186	2.2677*+04	2,2677"+04
8.0406"-01	2,5855*+05	1,0000	2,0529"+04	NP	1.6207	1.8084	3.2194*+02	1.6945*+02
INFINITE	3.3964*+02	0,0000	8.71764-04	0.0000*+00	0.0949	1.1192"-03	5.8488*+02	3.2194*+02
58040312	2.2390	1.0000	1.6266*+04	aw.	3.4342	1.3763	2.2712"+04	2.2712"+04
8.0406"-01	2,5814"+05	1.0000	2.7445*+04	119	1.7868	1.7717	3.2196"+02	1.69604+02
INFINITE	3.3964"+02	0.0000	1.1661"-03	0.0000#+00	0.0930	1.5498"-03	5.84624+02	3.2196*+02
58040313	2 2104			****	* ***			
8.0405"-01	2.2390 2.5787*+05	1.0000	1,5202"+04	NW NW	3.4415 1.7851	1.7698	2.2689*+04 3.2196*+02	2,2689"+04 1,6960"+02
INFINITE	3.3964"+02	0.0000	1.0910*=03	0.0000"+00	0.0429	1.4524"=03	5.8462"+02	3.21964+02
			- '	· •				•
58040314 8.0406****	2.2390	1,00	1.4370*+04	NM NM	3.4024	1.3587	2.2864*+04	2.28647+04
INFINITE	2,5987"+05 3.3853"+02	0.0000	2.4256*+04 1.0191*-03	0.0000*+00	1.7965	1.7823	3.2091*+02	1.6904*+02
	#1343# 40 6	=	-	3,4444 140				•
50040315	5.5380	1.0000	1.4289"+04	NM	3,3864	1.3496	2.3005"+04	2,30054+04
8.0406"-01	2.6196*+05	1.0000	2.4104*+04	NM O OOOOH+OO	1.7995	1.7861	3.2144*+02	1.6940*+02
INFINITE	3,3909"+02	0.0000	1.0100*-03	0.0000"+00	0.0937	1.3255*-03	5,8402"+02	3.2144*+02
5604031/	2.2260	1.0000	2.9359*+04	NM	1.4369	1.3763	2.3486*+04	2.3486"+04
8.0406"-01	2.6156"+05	1.0000	4.9305"+04	NM	1.7649	1.7537	3.2154"+02	1.7031"+02
INFINITE	1.3909*+02	0.0000	2.0495"-03	0.0000*+00	0.0914	2.7841"-03	5.8244"+02	3.2154*+12

580402	01 FENTE	ER	PROFILE	TARULATION	55	POINTS, DE	LTA AT PUI	SS TN
I	Y	PT2/P	P/PD	C01\01	14/HD	U/U 0	1/10	##0/##################################
1	0.0100#+00	1.0000"+00	NM	0.94784	0.00000	0.00000	1.90156	0.00000
2	2.2050#-04	2.2011"+00	Nrc	0,96921	0.50201	0.62489	1.54951	0.40328
3	2.8702"-04	2.3843"+00	NW.	0.97017	0.53143	0.65425	1,51565	0.43167
4	3.4290"-04	2.5324"+00	Min	0.97166	0.55372	0.67585	1.48975	0.45366
5	4.6970"-04	2.6810"+00	ЦM	0.77311	0.57512	0.69606	1.46476	0.47520
6	5.9690"-04	2.5778*+00	NM	0.97492	0.60187	0.72060	1.43342	0.50271
7	7.2390"-04	3.0492"+00	NΜ	0.97644	0.62416	0.74044	1.40728	0.52615
8 9	9.7790"-04	3.3420"+00	NM	0.97888	0.66028	0.77143	1.36504	0.56514
9	1.2319"-03	3.6018"+00	ИM	0.98092	0.69059	0.79637	1.32979	0.59887
10	1.4910"-03	3.8989"+00	NM	0.98312	0.72358	0.82240	1.29179	0.63664
11	1.7379"-03	4.1721"+00	Νħ	0.98503	0.75256	0.54435	1.25881	0.67075
12	2,2479"-03	4.7202"+00	NM	0.98856	0.80740	0.88360	1.19767	0.73777
13	2.7559"-03	5.2787"+00	Им	0.99182	0.85956	0.91829	1.14131	0.80459
14	3.2639"-03	5.8473"+00	NM	0.99484	0.90950	0.94921	1.08925	0.87144
15	3.7719"-03	6.2085"+00	NM	0.99661	0.93981	0.96696	1.05860	0.91343
16	4.7904"-03	6.8412"+00	H	0.99948	0.99064	0.99504	1.00892	0.98625
17	5.8039*-03	6.9098"+00	ΝM	0.99978	0.99599	0.99788	1.00381	0.99409
18	6.8199"-03	6.9155*000	ЙW	0.99950	0.99643	0.99812	1.00339	0.99475
19	9.3599"-03	6.8976"+00	NM	0.99971	0.99465	0.99718	1.00509	0.99213
20	1.1902"-02	6.9385"+00	NM	0.99990	0.99822	0.99906	1.00169	0.99737
51	1.4442"-02	6.9500"+00	NM	0.99995	0.99911	0.99953	1.00085	0.99869
0 55	2,3564"-02	6.9615"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

580402	104 FENT	ER	PROFILE	TABULATION	50	POINTS, DEL	TA AT POI	NT 20
1	Y	PT2/P	P/PD	TO/TOD	MZMD	U/Ub	1/10	RHOZPHODAUZUD
1	0,0000"+00	1.0000*+00	11m	0.94793	0.00000	0.00000	1.89835	0.00000
2	2,2860"=04	2.1931"+00	ИN	0.96821	0.50156	0.62412	1.54842	0.40307
3	3,0480"-04	2.3901"+00	NW	0.97032	0.53327	0.65574	1.51206	0.43368
4	4.3180*=04	2.6280"+00	1411	0.97269	0.56856	0.68961	1.47114	0.46976
5	5.6642"-04	2.8344"+00	IIM.	0.97463	0.59714	0.71602	1.43778	0.49800
6	6.8834"-04	3.0040*+00	1111	0.97614	0.61947	0.73602	1.41169	0.52138
7	9.3930"-04	3.2790*+00	NA	0.97846	0.65386	0.76576	1.37156	0.55831
8	1.1949"-03	3.5783"+00	NM	0.98084	0.68915	0.79495	1.33064	0.59742
Ý	1.4478"-03	3.8171"+00	NΜ	0.98262	0.71594	0.81625	1.29982	0.62797
10	1.7018"-03	4.0869"+00	Им	0.98454	0.74498	0.83848	1.26677	0.66190
11	2.2123"-03	4.6466"+00	им	0.98821	0.80170	0.87949	1.20348	0.73079
12	2.7203*-03	5.2394*+00	(IM	0.99170	0.85753	0.91646	1.14317	0.80203
13	3.2258*-03	5.7275"+00	ŊМ	0.99432	0.90085	0.94393	1,09792	0.85974
14	3.7363"-03	6.2572"+00	Nm	(1.99694	0.94551	0.97016	1.05282	0.92149
15	4.49584-03	6.7560"+00	ИW	0.99921	0.98571	0.99239	1.01361	0.97907
16	5.2663"-03	6.8526"+00	MM	0,99963	0.79330	0.99645	1.00636	0.99016
17	6.5303"-03	6.8640"+00	MILE	0.99968	0.99419	0.99693	1.00551	0.99147
18	7.2923 -03	6.8926"+00	NM	0.99980	0.99643	0.99811	1.00339	0.99474
19	9.6698"-03	6.8869"+00	Ņч	0.99978	0.99598	0.99788	1.00381	0.99409
0 20	2.43104-02	6.9385"+00	Ŋм	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

580403	01 FENTE	ER .	PROFILE	TABULATION	24	POINTS,	DELTA AT POI	NT 24
I	Y	915/P	P/PD	TOTTOD	M/ND	0/00	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	taM.	0.94786	0.00000	0.0000		0.0000
2	2.2860"-04	2.0669*+00	ţ M	0.96671	0.47904	0.6012	2 1,57517	0.38169
3	2.7178"-04	2.2415"+00	ИМ	0.96867	0.50892	0.6318		0.40994
4	3.2258"-04	2.3217"+00	μM	0.96953	0.52186	0.6447	3 1.52634	0.42240
5	4.5212"-04	2.4603"+00	[]M	0.97097	0.54326	0.6657	1 1.50157	0.44334
6 7	5.7150"-04	2.5968"+00	HM	0.97232	0.56334	0.6849	1 1.47821	0.46534
r	6.3312"-04	2.8377"+00	Иh	0.97458	0.59679	0.7159	2 1.43908	0.49748
8	1.0871"-03	3.0355"+00	1144	0.97634	0.62266	0.7390	4 1.40878	0.52460
9	1.3437"-03	3,1951"+00	MIS	0.97770	0.64273	0.7564	1.38529	0.54608
10	1.8466"-03	3.4550*+00	ИM	0.97981	0.67395	0.7827	4 1.34688	0.58029
11	2.3546"=03	3.6840"+00	HW	0.98157	0.70027	0.8040	5 1.31841	0.60987
12	2.6626"-03	3.9030*+00	1124	0.98317	0.72455	0.6229	1.29074	0.63758
1.5	3.3757*-03	4.1166"+00	(iM	0.98467	0.74710	0.8402		0.66430
14	3.8786"-03	4.3240"+00	NM	0.96607	0.76851	0.8560	1.24071	0.68995
15	4.8946"-03	4.7387*+00	(JM	0.95870	0.80955	0.8850		0.74049
16	5.9157"-03	5.1807*+00	ЦМ	0.49130	0.85103	0.9127		0.79347
17	6.9266 -03	5.5894"+00	Им	0.99353	0.38760	0.7359	1.11178	0.84180
18	7.9426"-03	5.9945*+00	M	0.99560	0.92239	0.9568		0.88919
19	8.9586"-03	6.3662"+00	ЦM	0.99738	0.95317	0.9745		0.95228
₹0	1.0483"-02	4.7560"+00	NM	0.99914	0.98439	0.9917		0.97714
21	1.2007"-02	6.9155*+00	NM	0,99983	0.99688	0.9983		0.99540
55	1.3531"-02	6.9442"+00	(IM	0.99995	0.99911	0.9995		0.99869
žī	1.6071"-02	6.9500"+00	NM	0.99998	0.99955	0.9997		0.99934
D 24	2.3685"-02	6.9557"+00	NM	1.00000	1.00000	1.0000		1.00000

INPUT VARIABLES Y,M ASSUME PMPD AND VAN DRIEST

580403	04 FENTE	ER	PROFILE	TABULATION	29	POINTS, DEL	IDA TA AT.	NT 29
I	Y	PT2/P	P/PD	T0/T0D	MZMD	U/UD	1/10	RHQ/RHOD*U/UD
1	0.0000#+33	1.0000"+00	NM	0.94802	0.00000	0.00000	1.89514	0.00000
2	2.2860"-04	1.5631"+00	NM	0.95999	0.36913	0.47974	1.68913	0.28402
3	2.8194"-04	1.6072"+00	Им	0.96069	0.38121	0.49366	1.67700	0.29437
4	3.3020"-04	1.6553"+00	Им	9.96143	0.39374	0.50793	1.66420	0.30521
5	4.5720*-04	1,8160"+00	NM	0.96373	0.43132	0.54976	1.62460	0.33840
6	5.5674"-04	1.9471"+00	NM	0,96543	0.45817	0.57870	1.59537	0.36274
7	7.1374"-04	2.0570"+00	1144	0.96676	0.47875	0.60035	1.57252	0.38178
8	9.6266"-04	2,2469"+00	NM	0,96890	0.51141	0,63374	1,53563	0.41269
9	1,2192"-03	2.4221"+00	Им	0.97075	0.53915	0.66117	1.50384	0.43965
10	1.4634"-03	2.5721"+00	NM	0.97225	0.56152	0.68266	1.47799	0.46188
11	1.7272"-03	2.7008"+00	NM	0.97348	0.57987	0.69986	1,45670	0.48044
12	2.2352"-03	2.9319"+00	ИM	0.97560	0.61119	0.72837	1.42024	0.51285
13	2.7559"-03	3.1453"+00	UM	0.97747	0.63893	0.75273	1,38796	0.54233
14	3,25377-03	3.3308"+00	NM	0.97898	0.66130	0.77176	1.36198	0.56664
15	3.7592"-03	3.5511"+00	NM	0.98072	0.68725	0.79317	1.33200	0.59547
16	4.2672"-03	3.7565"+00	NM	0.98227	0.71051	0.81176	1.30529	0.62190
17	5.0317*-03	4.0657"+00	ИM	0.98449	0.74407	0.83759	1.26716	0.66100
18	5.7963"-03	4.3856"+00	NM	0.98664	0.77718	0.86196	1.23007	0.70074
19	6,5583"~03	4.6925"+00	NM	0.98859	0.80761	0.88342	1.19655	0.73830
20	7.3203"-03	5.0212"+00	NM	0.99056	0.83893	0.90459	1.16267	0.77803
21	8.0772"-03	5.3381"+00	ИW	0.99235	0.86801	0.92344	1.13181	0.81590
22	8.8392"-03	5.6609"+00	NM	0.99406	0.89664	0.94128	1.10204	0.85413
23	1.0112"-02	6.1708"+00	Им	0.99662	0.94004	0.96698	1.05813	0.91386
24	1.1382"-02	6.6265"+00	NM	0.99874	0.97718	0.98776	1.02177	0.95671
25	1.2649"+02	6.7787"+00	NH	0.99941	0.98926	0.99429	1.01019	0.98426
26	1.3919*-02	6.8563"+00	NΜ	0.99975	0.99553	0.99763	1.00424	0.99342
27	1.5189"-02	6.8812"+00	Ŋ₩	0.99985	0.99732	0.99858	1.00254	0.99605
25	1.7729"-02	6.8983 +00	N4	0.99993	0.99866	0.99929	1.00127	0.99802
D 29	2.0269*-02	6.9155*+00	łim	1.00000	1.00000	1-00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

580403	OB FENTI	ER	PROFILE	TABULATION	29	POINTS, DEL	TA AT POI	NT 29
1	Y	PT2/P	P/PD	TO/TOD	M/HD	U/UD	T/TD	RHO/RHOD#U/UD
1	0.0000*+00	1.0000*+00	ИW	0.94782	0.00000	0.00000	1.90237	0.00000
2	2.2860"-04	2.1693"+00	NM	0.96783	0.49643	0.61931	1.55627	0.39794
3	2.7178"-04	2.2716"+00	NM	0.96895	0.51337	0.63643	1.53687	0.41411
4	3.2512"-04	2.4017"+00	Иh	0.97032	0.53387	0.65672	1.51319	0.43400
5	4.5212"-04	2.6658"+00	NM	0.97294	0.57264	0.69381	1.46799	0.47263
<u>6</u> 7	5.7656"-04	2.8477"+00	MI	0.97463	0.59759	0.71680	1.43873	0.49821
	7.0866"=04	2.4558"+00	NM	0.97560	0.61185	0.72962	1.42200	0.51310
8	9.5504"-04	3,2314"+00	NM	0.97795	0.64661	0.75994	1.38124	0.55019
9	1.2217"-03	3.3794"+00	NH	0.97916	0.66444	0.77495	1.36041	0.56966
10	1.4757"-03	3.5356"+00	₹ ₩	0.98039	0.68271	0.79004	1.33914	0.58996
11	1.9787"-03	3.7204"+00	NM	0.98179	0.70365	0.80687	1.31489	0.41364
12	2.4841"-03	3.9113"+00	HM	0.98318	0.72460	0.82324	1.29061	0.63777
13	2.9870*-03	4.0278"+00	MH	0.98401	0.73708	0.83278	1.27655	0.65237
14	3.4976"-03	4.1550"+00	NM	0.98489	0.75045	0.84283	1.26136	0.66819
15	4.0081"-03	4.3459*+00	NM	0.98616	0.77005	0.85724	1.23926	0.69174
16	4.7701**03	4.6879"+00	NM	0.98834	9.80392	0.88124	1.20160	0.73339
17	5.5296"-03	5.0069*+00	NM	0.99025	0.83422	0.90179	1.16854	0.77172
18	6.2992*-03	5.0934"+00	ИМ	0.99075	0.84225	0.90709	1.15990	0.78204
19	7.0561"-03	5.4830"+00	NH	0.97292	0.87745	0.92964	1.12251	91858.0
50	7.8232"-03	5.7433"+00	NM	0.99428	0.90018	0.94363	1.09887	0.85873
51	8.5776"-03	5.9945*+00	NM	0.99555	0.92157	0.95639	1.07699	0.88802
55	9.3396"-03	4.2735*+ 00	NM	0.99689	0.94474	0.96978	1.05371	0.92035
25	1.0610*-02	6.7221*+00	NM	0.99894	0.98084	0.98979	1.01833	0.97197
24	1.1550"-02	4.8583"+00	NM	0.99953	0.99153	0.99552	1.00806	0.98756
25	1.4420"-02	6.9557"+00	19M	0.99995	0,99911	0.99951	1.00085	0.99569
56	1.5692""02	4.8185"+00	ИM	0.99936	0.98841	0.99386	1.01105	0.98300
27	1.6965"-02	6.8755*+00	NM	0.99961	0.99287	0.99623	1.00679	0.98952
59	1.9502"-02	6.9615"+00	ИМ	0,99998	0.99955	0.99977	1.00042	0.99934
D 39	2.2090"-02	6.9672"+00	141	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

58040312 FENTER		ER	PROFILE	TABULATION	53	POINTS, DEL	IO4 TA AT	NT 29
I	Y	P12/P	P/PD	10/100	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
i	0.0000"+00	1.0000*+00	NW	0.94793	0.00000	0.0000	1,89835	0.00000
2	2.2560"-04	1.6022"+00	ИМ	0.96052	0.37919	0.49166	1,68120	0.29245
3	2.9210"-04	1.6876"+00	ИW	0.96182	0.40107	0.51657	1.65866	0.31142
4	4.1656"-04	1.8285*+00	HM	0.96381	0.43323	0.55217	1.62445	0.33791
5	5.4864*-04	1.9311"+00	ИМ	0.96514	0.45422	0.57482	1.60152	0.35892
6	6.7310"-04	2.0179"+00	Иh	0.96620	0.47075	0.59231	1.58318	0.37413
7	9.2710"-04	2.2333"+00	NM	0.96866	0.50826	0.63090	1.54078	0.40947
8	1.1760 -03	2.3756"+00	ИМ	0.97020	0.53149	0.65399	1.51412	0.43193
9	1.4554 -03	2.5172"+00	ИМ	0.77161	0.55248	0,67435	1,48983	0.45263
10	1.9431 -03	2.7556"+00	NM	0.97390	0.58642	0.70622	1.45030	0,48695
11	2.4409"-03	2.9624*+00	Им	0.97578	0.61411	0.73127	1.41795	0.51572
12	2.9616"-03	3.1627"+00	N₩	0.97750	0.63957	0.75356	1.38822	0.54282
13	3.4696"-03	3.3606"+00	ИM	0.97913	0.66369	0.77403	1,36013	0.56908
14	5.9903"-03	3.5473"+00	HW	0.98060	0.68557	0.79206	1,33477	0.59341
15	4.7371"-03	3.5009"+00	Иw	0,98250	0.71416	0.81485	1.30186	0.62591
16	5.4915"-03	4.0869*+00	ИW	0.93454	0,74498	0.83848	1,26677	0.66190
17	6.2738"-03	4.3945*+00	И₩	0.98660	0.77669	0.86179	1.23116	0.69998
18	7.0282"-03	4.6695"+00	им	0.98835	0.80393	0.88104	1.20103	0.73357
19	7.8003"-03	4.9572"+00	NM	0.99010	0.83162	0.89988	1,17089	0.76854
20	8.5471"-03	5.1030*+00	ИW	0.99093	0.84502	0.90874	1.15649	0.78577
21	9.3091 -03	5.5538"+00	NH	0,99341	0,88566	0.93462	1,11362	0,63927
55	1.0577"-02	6.0317"+00	NM	0.99565	0,92675	0.95934	1.07157	0.89527
23	1.1849"-02	6.4432"+00	ИW	0,94781	0.96070	0.97871	1.03785	0.94302
24	1.3119"-02	6.71654+00	Им	0.99904	0.98258	0.99071	1.01061	0.97452
25	1.4389"-02	6.5640"+00	ИМ	0,99968	0,99419	0.99693	1.00551	0.99147
50	1.5659"-02	6.9098"+00	ИH	0.99988	0.99777	0.99882	51500.1	0.99671
27	1.8199"-02	6.9270"+00	ИW	0.99945	0,99911	0.99953	1.00085	0,99868
85	2.0739"-02	6.9327"+00	N۳	0.99998	0,99955	0.99976	1.00042	0.99934
0 54	2.4173"-02	6.9385"+00	MM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

580403	16 FENT	ER	PROFILE	TABULATION	29	POINTS, DEL	TA AT POI	NT 29
r	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/10	RHO/RHOD+U/UD
1	0.00004+00	1.0000*+00	NM	0.94823	0.00000	0.00000	1.88795	0.00000
2	2.2850"-04	1.6518"+00	NM	0.96159	0.39443	0.50800	1.65880	0.30625
3	2.8194"-04	1.7024"+00	NM	0.96235	0.40701	0.52215	1.64585	0.31725
4	4.0894*-04	1.5119*+00	∦M:	0.96389	0.43217	0.54995	1.61939	0.33961
5	5.3340"-04	1.9333*+00	NW	0.96547	0.45732	0.57707	1.59225	0.36242
6	6.6294"-04	2.0107*+00	NM	0.96642	0.47215	0.59273	1.57599	0.37610
7	9.1694"-04	2.0845"+00	NM	0.96729	0.48562	0.40675	1.56106	0.38868
8	1.1684*-03	2.1772"+00	NM	0.96835	0.50180	0.62331	1.54296	0.40397
9	1.6789"-03	2.3133"+00	NM	0.96983	0.52426	0.64584	1.51758	0.42557
10	2.1844"-03	2.4367"+00	NM	0.97111	0.54353	0.66476	1.49556	0.44449
11	2.6924"-03	2.5445*+00	ИM	0.97219	0.55975	0.68028	1.47703	0.46057
12	3.4544*-03	2.6689*+00	NM	0.97340	0.57772	0.69719	1.45635	0.47872
13	4.2164"-03	2.7849"+00	NM	0.97448	0.59389	0.71210	1.43769	0.49531
14	4.9835"~03	3.0213"+00	HM	0.97660	0.62534	0.74027	1.40136	0.52825
15	5.7429"-03	2.9558"+00	ИW	0.97603	0.61680	0.73273	1.41122	0.51922
16	6.5075"-03	3.0457"+00	NM	0.97681	0.62848	0.74302	1.39772	0.53160
17	7.7749"-03	3.2168"+00	NM	0.97826	0.65004	0.76165	1.37284	0.55480
18	9.0424"-03	3.4398 ⁴ +00	И₩	0.98007	0.67700	0.78422	1.34105	0.58443
19	1.0310"-02	3.7244"+00	NM	0.98225	0.70979	0.81066	1.30441	0.62148
20	1.1582"-02	4.0953"+00	Им	0.98491	0.75022	0.84173	1.25863	0.66866
21	1.2850"-02	4.5285"+00	ИW	0.98778	0.79470	0.87403	1.20962	0.72257
22	1,4127*-02	4.9973"+00	Νм	0.74064	0.84007	0.90503	1,16064	0.77977
53	1.5392"-02	5.4328"+00	NM	0.99308	0.88005	0.93080	1.11864	0.83208
24	1.6662"-02	5.8056"+00	NM	0.99504	0.91285	0.95089	1.08508	0.87633
25	1.7940"-02	6.1278"+00	NW	0.99664	0.94025	0.96698	1.05767	0.91426
26	1.9213"-02	6.4046"+00	NM	0.99795	0.96316	0.97997	1.03521	0.94664
27	2.0483"-02	6.6209"+00	NM	0.99893	0.98068	0.98963	1.01832	0.97182
28	2.1745"-02	6.7900*+00	NM	0.99940	0.99416	0.99689	1.00551	0.99143
0 29	2.3012*-02	6.8640"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PMPD AND VAN DRIEST

- 1 The test boundary layer was formed on one of the flexible nozzle plates and one of two extension plates. One of these continued the nozzle contour as a flat plate (L = 0.185 m). The other had a vertical step (X = 0 for both plates) 2,032 mm high approximately 25 mm downstream of the nozzle exit plane. Provision
- 8 was made for 10 survey stations on the centre line at 12.7 mm intervals starting at X = 6.8 mm. The surface was not actively cooled. The tunnel was run for a time sufficient to ensure that all temperatures were constant and the test surface was near-adiabatic. No checks are reported on uniformity of flow, transition,
- 2-6 or two dimensionality. The tunnel was that used by Naleid (CAT 5801) and Stalmach (CAT 5802).
 - 6 Static pressure tappings were located just upstream of the first survey station, and half way between succeeding stations. Wall shear stress was measured with a minaturized FEB, following earlier DRL designs,
 - 7 with a circular element of 6.35 mm diameter. Pitot profiles were measured with a CPP for which $d_1 = 0.508$ mm. This was cranked up and mounted in a streamwise tube for which d = 1.65 mm before being led through the wall in a 22° wedge fairing. The traverse gear was so mounted that the profile normal passed through the centre
 - 8 line of the next station upstream. Thus profile and CF were determined at common values of X.
 - 9 The profile data were reduced assuming constant static pressure through the layer, and this value was obtained from an interpolation of the wall static values. Constant total temperature was also assumed.
- 11 No profile corrections were applied, and the viscosity was calculated from Sutherland's law.
- 12 The editors have presented all the measured profiles and the associated CF values. The assumption of constant total temperature has been replaced by the Crocco / Van Driest temperature correlation with an adiabatic wall.
- 13 The unit Reynolds number for all the profiles was the same. For each of the four Mach numbers a set of profiles were taken on both the flat plate and the stepped plate. For the flat plate there were six in each set, at stations 1 (X = 6.77 mm), 2, 3, 4, 6 and 9 (X = 108.4 mm). For the stepped plate, profiles were taken at stations 2, 3, 4, 6 and 9. For the M = 2.0 stepped case (series 05) there is no profile for station 9.
- 14 CF is presented for each profile.
- § DATA 5805 0101 ~ 0405 (flat plate), 0501 0805 (step). PT2 profiles. NX = 4-6. CF from an FEB measured separately.

15 Editors' comments

The two test configurations allow of a direct comparison between a "normal" tunnel wall boundary layer, and the same layer subjected to an abrupt disturbance. Unfortunately, no attempt was made to check on cross-flow effects, which are likely to be marked in the region of the step, and the data throughout do not appear to be very accurate. The only comparisons are the "Ring" measurements of Peake et al. - CAT 7202, series 3 - which should be free of cross-flow effects, and the profiles measured downstream of violent trips by Stone & Cary - CAT 7209.

There are very few profiles for which measurements extend into the momentum-deficit-peak. The integral values should therefore be treated with reserve. The author remarks that data for station 9 (the last profiles) were "extremely erratic" and may have been affected by the tunnel diffuser.

CAT 5805	MOORE		BOUNDARY COND	DITIONS AND E	VALUATED E	DATA. SI UNII	s.	
RUN	MD #	TW/TR*	REDZW	CF *	H12	H12K	PW	PD
X +	P0D#	PW/PD*	REDZD	CQ	H32	H32K	TW	TD
RZ	T0D#	SW *	DZ	PI2*	H42	D2K	UD	TR
58050101	1,9930	1.0000	5.84234+03	2.2700"-03	3.1155	1.4768	3.3034"+04	3.3034*+04
6.8072*-03	2,5567*+05	1.0000	9.11844+03	NM	1.8109	1.8018	2.6603"+02	1.6709*+02
INFINITE	2,9983*+02	0.0000	2.9319#=04	0.0000"+00	0.0834	3.6263*=04	5.1653"+02	2.8603*+02
58050102	1,9750	1.0000	6.0736"+03	2.2690"-03	3.0702	1.4595	3.4146"+04	3.4146"+04
1.9507*-02	2.5699*+05		9.4156"+03	NM	1.8094	1.7996	2.8670"+02	1.6875"+02
Infinite	3.0039*+02		2.9956"=04	0.0000"+00	0.0803	3.6982"-04	5.1439"+02	2.8670"+02
58050103	1,9980	1.0000	6.0240*+03	2.2460"-03	3.1288	1.4756	3.2856"+04	3.2856"+04
3.2207*=02	2,5628*+05	1.0000	9.4191*+03	NM	1.8027	1.7923	2.8610"+02	1.6678"+02
Infinite	2,9994*+02	0.0000	3.0296*-04	0.0000"+00	0.0832	3.7760*-04	5.1735"+02	2.8610"+02
58050104	2,0000	1.0000	6.1978"+03	2.2520"-03	3.0787	1.4424	3.2590"+04	3.2590*+04
4.4907*-02	2,5500*+05		9.6913"+03	NM	1.8166	1.8073	2.8809"+02	1.6781*+02
Infinite	3,0206*+02		3.1661"=04	0.0000"+00	0.0840	3.8996#=04	5.1945"+02	2.8809*+02
58050105	1.9510	1.0000	7.0967"+03	2.2180"-03	3.0049	1.4380	3.4606*+04	3.4606*+04
5.7607*+02	2.5093"+05		1.0910"+04	NM	1.8945	1.7955	2.8636*+02	1.7024*+02
Infinite	2.9963"+02		3.5094"-04	0.0000"+00	0.0811	4.3296*-04	5.1038*+02	2.6636*+02
58050106	1.9690	1.0000	8.1130*+03	2.0920*=03	2.9951	1.4106	3.3453"+04	3.3453*+04
1.0841"-01	2.4944"+05		1.2540*+04	NM	1.6070	1.7980	2.8887"+02	1.7045*+02
Infinite	3.0261"+02		4.1418*=04	0.0000*+00	0.0521	5.1169*-04	5.1541"+02	2.8867*+02
58050201	2.5350	1.0000	4.5381"+03	1.9160*=03	4.0695	1.4448	1.7832*+04	1.7832*+04
6.8072"-03	3.2171"+05	1.0000	8.7142"+03	NM	1.8192	1.8051	2.8203*+02	1.3108*+02
INFINITE	2.9956"+02	0.0000	2.9056"=04	0.0000*+00	0.1064	3.9714"=04	5.8192*+02	2.8203*+02
58050202	2.5310	1.0000	4.6535*+03	1.9480*=03	4.0652	1.4462	1.8041*+04	1.8041*+04
1.9507"-02	3.2347"+05	1.0000	8.9296*+03	NM	1.8152	1.8002	2.8023*+02	1.3046*+02
Infinite	2.9761"+02	0.0000	2.9280*=04	0.0000*+00	0.1060	4.0176*-04	5.7962*+02	2.6023*+02
58050203	2.4850	1,0000	5.1447*+03	1.8150"-03	3.9716	1.4427	1.9409*+04	1.9469*+04
3,2207#=02	3.2348*+05		9.6774*+03	NM	1.8134	1.7988	2.8459*+02	1.3510*+02
Infinite	3.0194*+02		3.1565*-04	0.0000"+00	0.1042	4.2990"-04	5.7910*+02	2.8459*+02
58050204	2.4170	1.0000	5.4514"+03	1.9140"=03	3.8565	1.4495	2.1297*+04	2.1297"+04
4.4907*-02	3.1974*+05		9.9908"+03	NM	1.8047	1.7909	2.8408*+02	1.3879"+02
Infinite	3.0094*+02		3.1719"=04	0.0000"+00	0.1011	4.3046"-04	5.7090*+02	2.8408"+02
58050205	2.4570	1.0000	5.8032*+03	2.0320"-03	3.8813	1.4191	2.0548*+04	2.0546*+04
5.7607*-02	3.2834*+05		1.0796*+04	NM	1.8153	1.8017	2.6514*+02	1.3697*+02
Infinite	3.0233*+02		3.4301*-04	0.0000"+00	0.1033	4.6345*-04	5.7653*+02	2.6514*+02
58050206	2.4340	1.0000	6.7602"+03	1.6340"-03	3.8365	1.4088	2.1089*+04	2.1089*+04
1.0841*-01	3.2513"+05	1.0000	1.2466"+04	NM	1.8052	1.7929	2.8502*+02	1.3825*+02
Infinite	3.0206"+02	0.0000	3.9470"=04	0.0000"+00	0.1018	5.3793"-04	5.7380*+02	2.8502*+02
58050301	2.9550	1.0000	4.1293*+03	1.7050"-03	4,9542	1.4144	1.2513"+04	1.2513*+04
6.8072*-03	4.2956*+05		9.3465*+03	NM	1,8256	1.8092	2.8104"+02	1.0958*+02
Infinite	3.0094*+02		2.9473*=04	0,0000"+00	0.1207	4.3707"-04	6.2019"+02	2.8104*+02
58050302	3.0660	1.0000	3,5443*+03	1.8250"-03	5.2050	1.4118	1.0584*+04	1.0584*+04
1.9597*-02	4.2909*+05		5,4465*+03	NM	1.6329	1.8154	2.7741*+02	1.0333*+02
Infinite	2.9761*+02		2,7865*-04	U.0000"+00	0.1244	4.1792*-04	6.2489*+02	2.7741*+02
58050303	3.0460	1.0000	3.7268*+03	1.7980"-03	5.1265	1.4018	1.0565*+04	1.0885"+04
3.22074-02	4.2834*+05		8.7397*+03	NM	1.0395	1.8225	2.8164*+02	1.0578"+02
Infinite	3.0206*+02		2.9193*-04	0.0000"+00	0.1243	4.3068*-04	6.2811*+02	2.8164"+02
58050304	3.0630	1.0000	3.9787*+03	1.6430*=03	5.1724	1.3954	1.0532"+04	1.0532"+04
4.4907*-02	4.2509"+05		9.4137*+03	NM	1.8326	1.6149	2.7804"+02	1.0370"+02
Infinite	2. 9828 "+02		3.1399*=04	0.0000*+00	0.1243	4.7050*=04	6.2538"+02	2.7804"+02
58050305	3.0030	1.0000	4.4865*+03	1.7120"-03	5.0459	1.3906	1.1612"+04	1.1612"+04
5.7607*=02	4.2848*+05	1.0000	1.0342*+04	NM	1.8214	1.8063	2.8236"+02	1.0794"+02
Infinite	3.0261*+02	0.0000	3.3022*+04	0.0000"+00	0.1219	5.1132*-04	6.2553"+02	2:8236"+02
58050306	2.9620	1.0000	5.3342*+03	1.1930*-03	4.9712	1.4011	1.2202*+04	1.2202"+04
1.0841"+91	4.2333"+05		1.2117*+04	NM	1.8139	1.7950	2.7997*+02	1.0864"+02
Infinite	2.9963"+02		3.6704*+04	0.0000*+00	0.1202	5.8547"-04	6.1958*+02	2.7997"+02
58050401	3.5280	1.0000	3.1514"+03	1.5280"-03	6.4686	1.4127	7.0120*+03	7.0120*+03
6.8072*-03	5.5649"+05		8.9337"+03	NM	1.8208	1.7987	2.7759*+02	8.5928*+01
Infinite	2.9983"+02		2.9484"=04	0.0000"+00	0.1351	5.0245"-04	6.5570*+02	2.7759*+02
56050402	3.4830	1.0000	3.3340*+03	1.4010*-03	6.3740	1.4272	7.4413*+03	7.4413"+03
1.9507*-02	5.5401*+05		9.3252*+03	NM	1.8166	1.7930	2.7209*+02	8.5727"+01
Infinite	2.9372*+02		2.9274*-04	0.0000*+00	0.1338	4.9737*-04	6.4658*+02	2.7209"+02
\$8050403	3.5410	1.0000	3.1389*+03	£0-"0 8 4€.1	6.4977	1.4124	6.8550*+03	6.8550*+03
3.2207"-02	5.5411"+05	1.0000	8.9348*+03	MM	1.6233	1.8006	2.7883*+02	8.5674*+01
Infinite	3.0122"+02	0.0000	3.0025*-04	00+"0000.0	0.1356	5.1034*-04	6.5791*+02	2.7883*+02
58050404	3.5150	1.0000	3.3645"+03	1.5280"-03	4,4531	1.4202	7.1054*+03	7.1054*+03
4.4907=-02	5.5361"+05	1.0000	9.5274"+03	NM	1,0165	1.7924	2.7414*+02	8.5293*+01
Infinite	5.606"+02	0.0000	3.0805"-04	0.0000"+00	0,1345	5.2738"-04	6.5087*+02	2.7414*+02

CAT 5805	NOORE		BOUNDARY CON	OITIONS AND E	VALUATED	INU JE .ATAD	īs.	
RUN	M) *	TW/TR*	RED2W	CF *	H12	H12K	PW	PD
X *	P0D*	PW/PD*	RED2D	CQ	H32	H32K	Th	TO
RZ	T0D*	SW *	D2	PI2*	H42	D2K	UD	TR
58050405	3.5240	1.0000	3,4146"+03	1.3540*=03	6,4327	1.4049	7.0141*+03	7.0141"+03
5.7607*-02	5.5351"+05		9.6516"+03	HM	1.8234	1.7989	2.7956*+02	8.6673"+01
Infinite	3.0194"+02		3,2290"-04	0.0000*+00	0.1352	5.4583*+04	6.5779*+02	2.7956"+02
58050406	3.3150	1.0000	4.8115"+03	8,6040"-04	5.9558	1.4254	9.3613"+03	9.3613"+03
1.0841#=01	5.4744"+05	1.0000	1.2583"+04	NM	1.8003	1.7776	2.7531"+02	9.2719"+01
Infinite	2.9650"+02	0.0000	3.7036"-04	0,0000"+00	0.1260	6.2408*-04	6.4000"+02	2.7531"+02
58050501	1,9780	1.0000	7.0136*+03	2,1770*=03	3.0502	1.4380	3.4082#+04	3.4082"+04
1.9507*=02	2,5770"+05	1.0000	1.0856*+04	NM	1.8048	1.7973	2.8614#+02	1.6821"+02
Infinite	2,9983"+02	0.0000	3.4500*+04	0.0000*+00	0.0824	4.2822#=04	5.1435#+02	2.8614"+02
58050502	1.9950	1.0000	6.8671*+05	2.1240#=03	3.0657	1.4340	3.3154*+04	3.3154"+04
3.2207*402	2.5740*+05	1.0000	1.0739*+04	NM	1.8131	1.8057	2.8257*+02	1.6493"+02
INFINITE	2.9622*+02	0.0000	3.3759*-04	0.0000#+00	0.0836	4.1730*+04	5.1370*+02	2.8257"+02
58050503	1.9640	1,0000	6.7339*+03	2.1900"-03	2.9937	1.4228	3.4822*+04	3.4822*+04
4.4907*-02	2.5764"+05	1,0000	1.0412*+04	NM	1.8223	1.8156	2.8254*+02	1.6706*+02
Infinite	2.9594"+02	0,0000	3.2219*#04	0.0000"+00	0.0825	3.9268*=04	5.0897*+02	2.8254*+02
58050504	1.9580	1.0000	7.9245"+03	2.1150"=03	2.9821	1.4158	3.5120*+04	3.5120#+04
5.7607*-02	2.5743*+05	1.0000	1.2223"+04	NM	1.8114	1.8019	2.8312*+02	1.6782#+02
Infinite	2.9650*+02	0.0000	3.7855"=04	0.0000"+00	0.0818	4.6462"=04	5.0857*+02	2.8312#+02
58050601	2.4630	1.0000	6.0244*+03	1.8470"=03	3.9637	1.4424	2.0201*+04	2.0201#+04
1.9507*=02	3.2584"+05	1.0000	1.1251*+04	NM	1.7961	1.7835	2.8169*+02	1.3497#+02
INFIHI1E	2.9872"+02	0.0000	3.5528*=04	0.0000"+00	0.0988	4.9342**04	5.7371*+02	2.8169#+02
\$8050602	2.4370	1.0000	6.7165"+03	1,6180*+03	3.9011	1.4407	2.0945"+04	2.0945#+04
3.2207*-02	3.2442*+05	1.0000	1.2425"+04	NM	1.7930	1.7796	2.8054"+02	1.3591#+02
Infinite	2.9733*+02	0.0000	3.8621"=04	0.0000*+00	0.1012	5.3423"-04	5.6962"+02	2.8054#+02
\$8050603	2,4050	1.0000	7,0103*+03	1.5040"=03	3.8324	1.4406	2.2105"+04	2.2105"+04
4.4907##32	3,2570*+05	1.0000	1,2816*+04	NM	1.7954	1.7812	2.7944"+02	1.3721"+02
Infinite	2,9544*+02	0.0000	3,8769*=04	0.0000"+00	0.1001	5.3058*-04	5.6484"+02	2.7944"+02
\$8050604	2.4830	1.0000	6.2635*+03	1.8550"=03	3,9268	1.4109	1.9635#+04	1.9635"+04
5.7607*=02	3.2672*+05	1.0000	1.1784*+04	NM	1.8121	1.7981	2.8261#+02	1.3427"+02
Infinite	2.9983*+02	0.0000	3.7696*=04	0.0000"+00	0.1041	5.1423*=04	5.7687#+02	2.8261"+02
58050605	2.4330	1.0000	8_5625*+03	1.7480"=03	3.8059	1.3920	2.1072*+04	2.1072"+04
1.0841 = 01	3.2435*+05		1.5810*+04	NM	1.8071	1.7923	2.8136*+02	1.3653"+02
Infinite	2.9817*+02		4_9244*-04	0.0000"+00	0.1019	6.6823*=04	5.6999*+02	2.8136"+02
58050701	3.0190	1.0000	4.4922*+03	1.7630"=03	5.0960	1.3993	1.1341"+04	1.1341*+04
1.9507*-02	4.2862*+05	1.0000	1.0451*+04	NM	1.8219	1.8061	2.7736"+02	1.0533*+02
Infinite	2.9733*+02	0.0000	3.3600*-04	0.0000"+00	0.1224	5.0916"=0#	6.2123"+02	2.7736*+02
58050702	3.0090	1.0000	4,6435*+03	L.5410"≃03	5.0783	1.4014	1.1609"+04	1.1609*+04
3.2207*=02	4.3224*+05		1,0757*+04	NM	1.8199	1.8040	2.7793"+02	1.0598*+02
Infinite	2.9789*+02		3,4200*+04	9.0000"+00	0.1219	5.1871"-04	6.2107"+02	2.7793*+02
58050703	2.9810	1.0000	4.9694*+03	1.7320°-03	5.0086	1.4001	1.2041*+04	1.2041"+04
4.4907#-02	4.2987*+05	1.0000	1.1373*+04	NM	1.8199	1.8020	2.7988*+02	1.0796"+02
Infinite	2.9983*+02	0.0000	3.6148*-04	0.0000°+00	0.1211	5.4534"-04	6.2102*+02	2.7988"+02
58050704 5.7607*-02 Infinite	3,0030 4,2851*+05 2,9983*+02	1.0000 1.0000 0.0000	4_4898"+03 1.0365"+04 3.3446"=04	1.7470"=03 NM 0.0000"+00	4.8015 1.8155 0.2061	1.4206 1.7986 4.9560*~04	1,1613"+04 6,2265"+02	1.1613"+04 1.0695"+02 2.7977"+02
58050705	2.0770	1.0000	6.4752*+03	1.6530"-03	4.7863	1.3833	1.3626*+04	1.3626"+04
1.0841#=01	4.2855*+05	1.0000	1.4356*+04	NM	1.8156	1.7986	2.7796*+02	1.1101"+02
Infinite	2.9733*+02	0.0000	4.3197*+04	U.0000"+00	0.1183	6.4261*=04	6.1197*+02	2.7796"+02
58050801	3.4970	1.0000	3.8569*+03	1.2810*-03	6.4367	1.4195	7.2991"+03	7.2991"+03
1.9507*=02	5.5435*+05	1.0000	1.0835*+04	NM	1.8035	1.7810	2.7348"+02	8.5692"+01
Infinite	2.9528*+02	0.0000	3.4518*=04	0.0000*+00	0.1331	6.0460*=04	6.4905"+02	2.7346"+02
58050802	3,5250	1.0000	3.8172"+03	1.1630*-03	6.4619	1.4073	7,0162"+03	7.0162"+03
3_2207*-02	5,5445*+05	1.0000	1.0840"+04	NM	1.6096	1.7871	2,7346"+02	8.4757"+01
Infinite	2,9539*+02	0.0000	3.5065"-04	0.0000*+00	0.1342	6.1109***04	6,5066"+02	2.7348"+02
58050803	3,4640	1.0000	3.8948*+03	1.3110"-03	6.2581	1.3896	7,6488*+03	7,6488*+03
4.4907#-02	5,5425*+05	1.0000	1.0786*+04	NM	1.8186	1.7994	2,7576*+02	8,7536*+01
Infinite	2,9761*+02	0.0000	3.4163*-04	0.0000"+00	0.1335	5.7718"-04	6,4980*+02	2,7576*+02
\$8050804	3.5250	1.0000	3.7571"+03	1.3250"-03	6.4443	1.3993	6,9875"+03	6.9875"+03
5.7607*-02	5.5216*+05	1.0000	1.0644"+04	NM	1.6161	1.7958	2.7683"+02	8.5793"+01
Infinite	2.9900*+02	0.0000	3.5201"-04	0.0000"+00	0.1348	6.0273"-04	6,5463"+02	2.7663"+02
58050805	3.2600	1.0000	5.3817*+03	9,5350"-04	5.7704	1.4164	1.0321"+04	1.0321"+04
1.0841#=01	5."713"+05	1.0000	1.3746*+04	HM	1.8046	1.7821	2.7863"+02	9.5931"+01
Infinite	2.9983"+02	0.0000	3.9230**04	0,0000"+00	0.1276	6.4632*-04	6.4019"+02	2.7863"+02

580504	IOS MOORE	E	PROFILE	TABULATION	53	POINTS, DEL	TA AT POT	NT 23
ĭ	Y	P12/P	P/P0	T0/T0D	M/MD	UZUD	T/ID	RHO/RHOD*U/UD
1	0.4000*+00	1.0000"+00	Им	0,92585	0.00000	0.00000	3.22541	0.0000
2	2.540004	3.1649"+00	ИM	0.95479	0.40692	0.62472	2.35690	0.26506
3	3.0480**04	3.4665"+00	NM	0.95714	0.42963	0.64961	2.28629	0.28413
4	3.5560"-04	3.6925*+00	ЦM	0.95884	0.44608	0.66696	2.23540	0.29835
S	4.8250"-00	4.1679"+00	NM	0.96215	0.47872	0.69965	2.13604	0.32755
6	7.3660"-04	4.7971"+00	NM	0.96610	0.51873	0.73677	2.01738	0.36521
7	9.9060"-04	5.3460"+00	NM	0.96919	0.55108	0.76452	1.92467	0.39722
8	1.2446"-03	5.8891 +00	ИW	0.97197	0.58116	0.78862	1.64139	0.42827
9	1.4986"-03	6.4929"+00	NM	0.97479	0.61294	0.81239	1.75669	0.46246
10	1.7526"-03	7.0713*+00	MM	0.97726	0.64188	0.53262	1 6586.1	0.49484
11	2.0066"-03	7.6283*+00	NM	0.97944	0.06856	0.65013	1.61700	0.52576
12	2.2606"-03	8.2713"+00	NM	0.98176	0.69807	0.66835	1.54737	0.56118
13	2.5146"-03	8.8439"+00	NM	0.98367	0.72333	0.88301	1.49025	0.59252
14	2.7686"-03	9.5800"+00	NM	0.98591	0.75454	0.90001	1.42277	0.63258
15	3.0226"-03	1.0283*+01	NM M	0.98788	0.75320	0.91463	1.36377	0.67066
16	3.2766"-03	1.0903"+01	11M	0.98948	0.80760	0.92636	1.31570	0.70408
17	3.5306"-03	1.1580 +01	NM	0.99111	0.83343	0.93810	1.26657	0.74043
18	4.0386"-03	1.3038"+01	NM	0.99422	0.88649	0.96026	1.17335	0.81839
19	4.5466"-03	1.4306"+01	NM	0.99659	0.93019	0.97670	1.10249	0.88590
ŽÓ	5.3086"-03	1.5777*+01	NM	0.99899	0.97843	0.99316	1.03033	59296.0
21	6.3246"-03	1.6260"+01	NM	0.99971	0.99376	0.99805	1.00866	7,98948
žž	7.5946*-03	1.6332*+01	NM	58999.0	0.99603	0.99876	1.00550	0.99330
0 53	8.8646"-03	1.6459"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PMPD AND VAN DRIEST

580508	01 MOORE	:	PROFILE	TABULATION	2.2	POINTS, DEL	TA AT POI	NT 22
1	Y	PT2/P	P/PD	T0/T0D	A/MD	0/00	1/10	RHO/RHOU*U/UD
<u>L</u>	0.0000*+00	1.0000"+00	ИM	0.92615	0.00000	0.00000	3.19144	0.0000
Ž	2.5400*-04	3.1021"+00	NM	0.95457	0.40463	0.62012	2.34872	0.26403
3	3.0480"-04	3.3982"+00	ИM	0.95695	0.42760	0.64566	2.27789	0,28345
4	3.5560"-44	3.6293"+00	NM	0.95871	0.44495	0.66382	2.22576	0.29825
5	4.8260"-04	3.9610"+00	NM	0.96109	0.46840	0.65764	2.15521	0.31906
6	7.3660"-04	4.3459"+00	NM	0.96365	0.49414	0.71248	2.07899	0.34271
7	9.90604-04	4.6603"+00	Им	0.96562	0.51415	0.73089	2.02077	0.36169
8	1.2446"-03	5,0069"+00	NM	0.96765	0.53532	0.74951	1.96036	0.38233
9	1.4986"-03	5,4328"+00	NM.	0.96999	0.56019	0.77034	1.89098	0.40738
10	1.7526"-03	5.9417"+00	ЙW	0.97257	0.58850	0.79271	1.81437	0.43690
1.1	2.0066"-03	6.4156"+00	NM	0.97479	0.61367	0.81145	1.74847	0.46409
12	2.2606"-03	7.1236"+00	NM	0.97742	0.64941	0.83635	1.65857	0.50426
13	2.5146*-03	7.6170"+00	NM	0.98049	0.68259	0.85775	1.57911	0.54319
14	2.7686"-03	8.5712"+00	NM	0.98313	0.71690	0.87830	1.50095	0.58516
15	3.0226"=03	9.2953"+00	NM	0.98542	0.74836	0.89580	1.43208	0.62518
16	1.2766"-03	1.0093"+01	NM	0.98771	0.78153	0.91300	1.36474	0.66399
17	3.5306"-03	1.0838"+01	NM	0.98967	0.81127	0.92738	1.30673	0.70969
16	3.7846"-03	1.1640*+01	NM	0.99160	0.84215	0.94136	1.24948	0.75340
io	4.2926*-03	1.3142*+01	NM	0.99478	0.89705	0.96402	1.15487	0.83474
19 20	5.0546"-03	1.5084"+01	NM	0.99825	0.96340	0.95809	1.05191	0.93935
ΞĬ	6.3246*-03	1.6152*+01	NM					
0 22	7.5946*-03	1 4 216 4 4 4 4		0.99991	0.99800	0.99937	1.00275	0.99663
V 26	/ 3 T 4 G = V 3	1,62154+01	Им	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

560500	002 MUORI	E	PROFILE	TABULATION	55	POINTS, DEL	TA AT POI	NT 22
1	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0,0000*+00	1.0000*+00	NM	0.92584	0.00000	0.0000	3.22667	0.00000
2	2.5400"-0#	3.0950"+00	NM	0.95416	0.40085	0.61794	2.37642	0.26003
3	3.0480*-04	3.3271"+00	(IM	0.95604	0.41901	0.63818	2.31979	0.27510
4	4.5720"-04	3.9278*+00	ЙW	0.96050	0.46241	0.68367	2.18592	0.31276
5	7.1120"-04	4.4523"+00	ЙM	0.96398	0.49702	0.71710	2.08165	0.34449
į.	9.6520"-04	4.8084*+00	NM	0.96615	0.51915	0.73721	2.01652	0.36559
7	1.2192"-03	5.1856"+00	NH	0.96830	0.54156	0.75662	1.95194	0.36763
à	1.4732"-03	5.5538"+00	NM	0.97026	0.56255	0.77397	1.89285	0.40889
ğ	1.7272"-03	6.0690"+00	NM	0.97282	0.59064	0.79594	1.61602	0.43629
10	1.9812"-03	6.5373"+00	NM	0.97497	0.41504	0.81395	1.75146	0.46473
ii	2.2352"=03	7.1411 +00	NM	0.97753	0.64511	0.83485	1.67475	0.49849
12	2.4892"-03	7.7864*+00	NM	0.98002	0.67574	0.85474	1.59992	0.33424
13	2.7432*-03	8.4557 100	NM	0.98238	0.70610	0.87314	1.52911	0.57101
14	2.9472*-03	9.1613*+00	NM	0.98465	0.73674	0.59050	1.46096	0.60953
is	3.2512"-03	9.8832"+00	NM	0.98677	0.76681	0.90641	1.34727	
16	3.5052*-03	1.0663"+01	NW M					0.64870
17	3.7992"-03		NM	0.98886	0.79801	0.92185	1.33444	0.69081
iś		1.14524+01		0.99079	0.82837	0.93588	1,27641	0.73321
	4.0132"-03	1-2266*+01	NM	0.99266	0.85929	0.94924	1.22031	0.77787
19	4.5212"-03	1.3788"+01	ИM	0.99564	0.91234	0.97018	1.13082	0.85795
50	5.2832-03	1.5477"+01	NM	0.99851	0.96551	0.98991	1.04469	0.94757
57	6.5532"-03	1.6278"+01	NM	0.99972	0.59404	0.99514	1.00827	0.98946
0 55	7.8232"-03	1.6468*+01	NM	1.00000	1.00000	1.00000	1.00066	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

580508	103 400	₹E	PROFILE	TABULATION	21	POINTS, DEL	TA AT POI	NT 21
r	¥	P12/P	P/PD	T0/T0D	M/MD	U/UD	1/10	RHO/RHOD*U/UD
1	0.0000#+00	1.0000"+00	Nм	0.92659	0.00000	0.00000	3.15027	0.00000
2	2.5400"=04 3.0480"=04	3,3644*+00 3,5550*+00	MW MW	0.95711 0.95858	0.42927	0.64480 0.66011	2.25625	0.28578 0.29825
4	4.3180"-04	4.0278*+00	NM	0.96197	0.47748	0.69423	2.11394	0.32841
5	6.8580"-04	4.6010*+00	ИМ	0,96568	0.51530	0.72971	2.00530	0.36389
6 7	9,3090"=04	5.0021"+00 5.2978"+00	Ин Им	0.96805 0.97023	0.54013	0.75151 0.7710[1.93587	0.38820 0.41186
8	1.4475"-03	5.8056"+00	NM	0.97233	0.58661	0.78932	1.81058	0.43595
10	1.7018"=03	6,2735*+00	NM	0.97457	0.61201	0.80844	1.74492	0.46331
11	2.2098*-03	6.7844*+00 7.3469*+00	NM NM	0.97684 0.97914	0.63857	0.82731 0.84606	1.67852	0.49288 0.52516
12	2,4638"-03	7.91547+00	NM	0.98128	0.59371	0.86316	1.54822	0.55752
13 14	2.7178"-03	8.5390 +00	ŊM	0.98345	0.72229	0.85010	1,48472	0.59277
15	3.2258"=03	9.1947"+00	NW NW	0.98555 0.98739	0.75115	0.89616 0.91007	1.42337	0.62961
16	3.4798"-03	1.0569"+01	ИW	0.98942	0.80831	0.92513	1.30992	0.70625
17 18	3.7338"=03	1.1235"+01	NM	0.99108	0.83458	0.93728	1.26125	0.74314
19	4.2418*-03 4.7498*-03	1.2758"+01	NM NM	0.99445 0.95726	0.89174	0.96147 0.98116	1.08024	0.82707 0.90824
20	5.2578"-03	1.5276"+01	NM	0.99900	0.97893	0.99316	1,02930	0.96489
D 51	6.5278"-03	1,5919*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,M ASSUME	P#PD AND V	AN DRIEST				
580508	104 MOO!	₹E	PROFILE	TABULATION	22	POINTS, DEL	.TW AT POI	NT 22
I	Y	PT2/P	P/PD	T0/T0D	M/MD	מטעט	T/T0	RHO/RHOD*U/UD
i	0.0000*+00	1,0000*+00	NM	0.92584	0.00000	0.00000	3.22647	0.00000
2 3	2.5400*-94	3.1305*+00	Им	0.95445	0.40369	0.62115	2.36756	0.26236
3	3.3020"-04 5.8420"-04	3.5356"+00 4.2977"+00	NM NM	0.95766 0.96299	0.43461	0.65500 0.70776	2.27137	0.28837 0.3352:
4 5	8.3820"-04	4_8318*+00	NM	0.96628	0.52057	0.73847	2.01239	0.36696
6 7	1.0925"-03	5,2935*+00	NM	0.96889	0.54790	0.76186	1.03423	0.39388
á	1.5462"-03	5.7537"+00 6.2139"+00	MW Hw	0.97128 0.97351	0.57362	0.78279 0.80170	1.77553	0.42034 0.44650
9	1.8542"-03	6.7165"+00	NM	0.97576	0.62411	14020.0	1.72796	0.47478
10	2.1082"-03	7.2172"+00	NM	0.97783	0.64879	0.53731	1.66557	v.50272
11 12	2.3622"-03	7.7742"+00 8.3346"+00	NM NM	0.97097 0.98107	0.70071	₩.55438 ₩.66996	1.50128	0.53356 0.56438
: 3	2.8702 -03	8.9096"+00	ИM	0.98386	0.72596	0.88452	1.19456	0.59582
14	3.1242"-03	9,5254"+00	NM	0.98570	0.75204	0.09874	1.42612	0.62931
15 16	3.3782"-03 5.6322"-03	1.0184*+01 1.0823*+01	NM NM	0.98760 0.98927	0.7790: 0.80426	0.41257	1.37232	0.46495 0.49942
17	3.8862*-03	1,1535"+01	NM	0.99099	0.83149	0.93727	1.27061	0.73765
16 19	4.1402"-03	1.2270*+01	NM MM	0.99262	0.85872	0.94990	1,22172	0.77703
20	4.150503	3755"+01 1.5058"+01	NM	0.99558 0.99784	0.91121	0.96976 0.98534	1,13564	0.85619 0.92535
21	5.9182"-03	1.6018"+01	ММ	0.99934	0.98582	0.)9554	1.01982	0.97619
0 55	7.1882"-03	1.6468"+01	МW	1.00000	1.00000	1.00000	1,00000	1.00000
INPUT	VARIABLES	YAN GUSUME	PBPD AND V	AN DRIEST				
580506	105		PROFILE	TABULATION	2.2	POINTS, DEL	.TA AT POI	NT 22
1	v	PT2/P	P/PD	TO/TOD	147110	ยวแก	1/15	REZERHOD+UZUD
1	0.0000*+00	1.0000*+00	NM	0.92927	0.06962	0,00000	2.90447	0.00000
Ş	2.5400"-04	2.7158 -00	NM	0.95438	0.39908	0.59576	2,22852	0.26733
3	3,3480*=03 3,8100*=04	2.9936"+00 3.2387"+00	NM NM	0,95684 0.95688	0.42454	0.62427 0.64700	2.16227	0.28871
Š	6.3500"-04	3.8212"+00	NM	0.96331	0.49202	0.44373	2.10724	0.30704 0.34897
•	8.8900"-04	4.2932*+00	ŊM	C.96653	0.52638	0.72580	1.90122	0.38175
7	1.1430"-03	4.6877"+00 5.0982"+00	NM NM	0.94901	0.55337	0.74952	1.81456	0.40856
ĕ	1.6517"-03	5.5234"+00	NM	0.97370	0.60644	0.77176 0.79258	1.77015	0.43598 0.46402
10	1.9050"-03	5.4364"+00	ИW	0.97579	0.63098	9.81098	1.65192	C.49093
15	2.4130"-03	6,3444"+00 6.7757"+00	NM N4	0.97772 0.97960	0.65427	0.82762 0.84369	1.59999	0.51727
iš	2.6670 -03	7.2760*+00	NM	0,98169	0.70460	0.86092	1,54820	0.54508 0.57667
14	2.9210"-03	7.76814400	ИМ	0.96359	0.72975	0 27631	1.44399	0.60771
15 16	3.1750°-03 3.4290°-03	0,2903"+00 8.8112"+00	NM NM	0.98516 0.98120	0.75552	0_39127	1.39163	0.64045
17	3.6830 -03	9.3357*+06	NM NH	0.98083	0.50460	0.90496	1.34480	0.67293 0.70548
10	3.9370"-03	4.8465"+00	NM	0.99033	0.82761	0.42913	1.26035	0.73715
19 20	4.4450"~03 4.9530"~03	1.1026*+01	11M 11M	0.99345 0.99624	0.87822	0.95255 0.97308	1.17044	0.60469 0.60468
21	5.7150"-03	1.1556"+01	NM	0.99707	0.98560	0.99355	1.02450	0.96979
D 25	4,9850*-01	1.4155 +01	NM	1.04000	1.00000	1.0000	1.00000	1.00000
1110111	UABYABIES	U.M. AGGISMA	BERT ALIR U	AM ABTERT				

INPUT VANIABLES Y, M ASSUME PUPP AND VAN DRIEST

F .

axisymmetric	M : 8 - 10 R THETA X 10 ⁻³ : 1 - 3	5901
	TW/TR : 0.5	FPG - SHT

Conical nozzle. C**ontinu**ous running. D = 50 mm. 3.4 < PO < 6.2 MM/m². TO : 756 K. "Superdry" Nitrogen. 5 < RE/m X 10⁻⁶ < 10.

HILL F.K., 1959. Turbulent boundary layer measurements at Mach numbers from 8 to 10. Physics Fluids, 2, 778-680.

And Hill (1956) and private communications.

- 1 The test boundary layer was formed on the wall of a conical nozzle (semi-apex angle 6°) with an outlet diameter of 50.8 mm. The surface was of electroformed nickel with a roughness less than 0.13 μ m. An insert could be placed in the throat so as to increase the expansion ratio. The nozzle wall was cooled by the
- 2 surrounding room air, and ran until temperatures had reached equilibrium. The flow was "uniform and stable".
- 3 No measurement of transition is reported, but it is stated to be "consistent". The boundary layer had passed
- 4 through the very strong expansion at the throat, but pressure and Mach number gradients in the test area
- were small, the flow in the free stream being very close to a spherical source flow. There was no evidence of cross-flow or separation in the boundary layer, and the nozzle was mounted so that it could be rotated about its own axis, the probes remaining stationary, providing a check on the axial symmetry of the flow. No circumferential variations were found within experimental accuracy.
- 6 Wall pressure was measured using a small static hole at the axial location of the profile normal. The wall temperature was recorded by a thermocouple mounted in an open port, flush with the wall surface, and sealed with cement.
- Pitot measurements were made with a rake carrying four probes at y intervals of 13(E) mm. The two central probes were CPP ($d_1 = 1.07$, $d_2 = 0.71$, l = 25 mm) while the two outer probes were FPP ($h_1 = 0.20$, $h_2 = 0.13$, $h_1 = 1.6$ [E] , l = 25 mm) formed by flattening the tube used for the inner probes. The rake could be traversed right across the nozzle so that the outer FPP could enter the boundary layer on either side and approach the wall. Four identical total temperature probes were mounted in a similar manner. These were STP consisting of a ceramic tubing shank (d = 2.5 mm) carrying an iron-constantan thermocouple with a vented shield which reduced in diameter towards the tip, so that the tip face had $d_1 = 1.27$, $d_2 = 0.51$ mm. The overall slender length of the probes was 51 mm. A static pressure survey showed negligible normal
- 8 pressure gradients. Measurements were made at two stations, 50.8 mm apart, and at distances X from the throat of approximately 190 [E] and 240 [E] mm. Pitot and total temperature traverses were made on the same normal using the same traverse gear, perpendicular to the axis of the nozzle.
- The profiles were obtained in a very large number of runs, for which there were slight variations of total temperature and pressure from the selected nominal values. Spot profile values were cross plotted and normalised to the nominal total state. (For all runs one at least of the probes was in the free stream). The total temperature values were interpolated to the y-values of Pitot measurements. In general the wall temperature was obtained by extrapolating the TO profile to the wall. The value so deduced agreed with that recorded by the thermocouple to "within a few degrees". The author also presents skin friction and heat transfer values obtained from the gradients of the velocity and total temperature profiles close to the wall. The author's recovery factor was 0.85.
- No corrections were applied to the profile data, the possible viscous and rarefied flow effects having been calculated to give errors less than 1 %, and any profile measurements near the wall being rejected when
- 11 interference effects were observed (approximately when Y was less than h₁). Viscosity values for data
- reduction were taken from "Tables of thermal properties of gases" (Hilsenrath, 1955). The editors have presented all those data supplied by the author. Some of the boundary values, especially wall temperature, are revised, correct, values which differ from the published papers. The Y-value for the D-state has been

arbitrarily set well outside the boundary layer, and the D state stagnation values to the nominal tunnel stagnation values. Our standard integration procedures proved unable to handle the scatter in the data sensibly, so that for this entry the integral values have been obtained using a trapezoidal integration rule.

- 13 The profiles consist of three sets. The first two which have been combined in series 01-04 consist of profiles measured at two stations on the nozzle, one about 50 mm upstream of the exit (author's station R) and the other very close to the exit (author's station A). The third set consists of four individual profiles
- 14 taken at the nozzle exit with the throat insert in place, so giving a higher Mach number. The wall shear stress and heat transfer figures are the author's values obtained from the wall profile gradients.
- 5 DATA: 5901 0101-0801. Pitot and TO profiles obtained separately and normalised to nominal reservoir conditions. NX = 1 or 2.

15 Editors' comments

The geometrical arrangement here is similar to that of Perry & East - CAT 6801 and the Mach numbers are similar. The Reynolds numbers are, however, low by comparison and in no case has the inner region become fully turbulent. The outer region conforms very well to the transformed velocity profile expected of a fully developed ZPG boundary layer (Fernholz 1969). There are large differences between the measured temperature profiles and the values given by the Van Driest temperature velocity correlation.

Each profile is described by a great number of data points, which, however, display considerable scatter. The measurements extend within the momentum-deficit peak, but in some cases (0102, 0201, 0301) there remains a significant total pressure gradient in the outer part of the profile, so that the author's D-state position is not sufficiently far out.

CAY 5901	HILL		BOUNDARY CON	CITIONS AND E	VALUATED	DATA. SI UNIT	5.	
RUN X ★	MD * P00*	TW/TR PW/PD*	REDZW REDZD	CF *	H12 H32	H12K H32K	PW TW*	PD TD
Âz ∓	TOD*	3W *	DS	PIZ	H42	DSK	טָט "	TR
59010101	8.2540	0.5308	3.3245*+02	9.1000*-04	11.3585	1.9687	2.8812*+02	2.8812"+02
1.9000*=01	3-4474*+06	1.0000	1.88184+03	1.5310*-04	1.7636	1.6829	3.6222*+02	5.1659"+01
-2.0069"-02	7.5556*+02	0.0000	3.0094*-04	ИМ	1.2480	7.5778*=04	1.2087*+03	6.8235"+02
59010102	9.0400	0.5160	2.5026*+02	9-1300*-04	13.8518	2.1738	1.5865*+02	1.5865"+02
2.4000"-01 -2.5240*-02	3.4474"+06 7.5556"+02	1.0000	1.6434*+03 3.3757*-04	1.6520"-04 NM	1.7960	1.6905 9.3649"-04	3.5167"+02 1.2156"+03	4.3562*+01 6.8151*+02
		A #E##	# 104#H.03	B #A#A#-A#				•
5901020t 1.9000"-01	6.2740 4.1368"+06	0.5537	4.1967"+02	8.4000*-04 1.3620*-04	10.0068	1.8914	3.4033"+02	3.4033"+02 5.1427"+01
-2.0069"-02	7.5556*+02	0.0000	3.3004"-04	NM	1.3186	7.7347*-04	1.2089*+03	6.8233"+02
59010202	9.0700	0.5274	2.8031#+02	8.7000*-04	13.9600	2,0820	1.8626"+02	1.8626*+02
2.4000"-01	4.1368*+06	1.0000	1.8821"+03	1.3750"+04	1.8043	1.7038	3.5944*+02	4.3291"+01
-2.5240"-02	7.5556"+02	0.0000	3.2515"-04	NM	1.2834	9.0486"-04	1.2159"+03	6.8148"+02
59010301	6.2860	0.5537	4.4535*+02	7.9600"-04	10.5651	1.8833	3.7927*+02	3.7927*+02
1.9000"=01	4.6540"+06	1.0000	2.6178*+03	1.2790"-04	1.7907	1,7102	3.7778"+02	5.1268"+01
-2.0069*-02	7.5556*+02	0.0000	3.1340"-04	ИW	1.2941	7.448004	1.2090"+03	6.8231*+02
59010401	8.2940	0.5423	4.7076*+02	7.3400*-04	11.0830	1.8771	4.1877*+02	4.1877#+02
1,9000"=01	5.1711 +06	1.0000	2.7307"+03	1.1780"-04	1.7946	1.7139	3.7000*+02	5.1196"+01
-2.0069*-02	7.5556*+02	0.0000	2,9500"-04	Им	1.2711	7.1514"-04	1.2091*+03	6.8230*+02
59010402	9.1000	0,5462	3.1666"+02	8.0500*-04	14.2930	2.0420	2.2781"+02	2.2761"+02
2.4000*=01	5-1711"+06	1.0000	2.1944*+03	1.2890"-04	1.8052	1.7159	3.7222"+02	4.3022"+01
-2.5240*-02	7.55564+02	0.0000	3.0609*-04	NM	1.2646	8.5754"-04	1.2161*+03	6.8145*+02
59010501	10.0300	0,5157	1.3598*+02	8.4100"-04	21,4974	2.4460	9.5549*+01	9,5549"+01
2,4000"-01	4.1368*+06	1,0000	1.0592"+03	1.7960"-04	1.7659	1.6406	3.0333"+02	3.9062"+01
-2.5240"-02	8.2500*+02	0.0000	2.7675*-04	ИМ	1.2076	1.0391"-03	1.2772*+03	7.4326*+02
59010601	10.0400	0.4918	1.5184*+02	7.6100"-04	27.7155	2.4604	1.1074*+02	1.10744+02
2.4000"-01	4.8263"+06	1.0000	1.1450"+03	1.6340"-04	1.7874	1.6518	3.6556"+02	3.8988"+01
-2.5240*-02	4.2500"+02	0,0000	2.5716*-04	NM	1.1724	9.84987-04	1.2773*+03	7,4325*+02
59010701	10.0500	0.4694	1.87674+02	6.9600"-04	21.0748	2.4556	1.2572"+02	1.2572"+02
2.4000"-01	5.5158"+06	1.0000	1.3701"+03	1.5890"-04	1.8029	1.6723	3.4884"+02	3.3914"+01
-2.5240"-02	8.2500*+02	0,0000	2.7000"=04	HM	1.2139	9.4490"-04	1.2773*+03	7.4325*+02
59010801	10.0600	0.4724	1.9043"+02	•.7300"-04	22.7848	2.4658	1.4050"+92	1.40504+02
2.4000"-01	6.2033"+06	1.0000	1.3995"+03	1.6060"-04	1.8012	1.6676	3.5111"+02	3.6840"+01
-2.5240"-02	8.2500*+02	0.0000	2,4583"-04	ЯМ	1.1642	9.1763"-04	1.2774*+03	7.4324*+02

TRAPEZOIDAL RULE FOR ALL INTEGRATIONS

								590
5901010	1 HILL		PROFILE	TABULATION	85	POINTS, DEL	TA AT POI	NT 28
I	Y	P72/P	P/PD	#0/T0D	MZMD	מטעט	T/TD	RH0/RH0D*U*U0
1	0.0000"+00	1.0000"+00	1,00000	0.47941	0.00000	0.00000	7.01173	0.0000
	3.1750"-04	1.79717+00	1.00000	0.51757	0.11568	0.29270	6.40250	0.04572
	3.8106"-04	1.8870"+00	1.00000	0.52234	0.12083	0.30500	6.37202	0.04787
	6.7310"-04 ".0170"-04	2.6478"+00	1.00000	0.54065	0.15499	0.37830	5.95740	0.06350
6	9.3230"-04	3.2573"+00 3.3696"+00	1.00000	0.55503 0.55896	0.17665	0.42160 0.42920	5.69581 5.66512	0.07402 0.07576
	9., 0=-04	7.1879*+00	1.00000	0.57267	0.27.47	0.56000	4.10274	0.13649
	1.6510"-03	1.1500"+01	1.00000	0.62132	0.35454	0.64890	3.34979	0.19371
	1.6891"-03	1.5722"+01	1.00000	0.63424	0.41699	0.69190	2.75324	0.25130
	1.9558"-03	1.9835*+01	1.00000	0.65914	0.46988	0.72870	2.40510	0.30298
	2.5273"~03	2.7052"+01	1.00000	0.70477	0.55053	0.78040	2.00941	0.38837
	2.5908"=03 3.0861"=03	2.9839"+01 3.0990"+01	1.00000	0.71732 0.74216	0.57868	0.79470	1.88597	0.42138
	3.2512*=03	3.3239*+01	1,00000	0.75552	0.61126	0.81110 0.82330	1.89052	0.42904 0.45382
	3.27667-03	3.7642"+01	1.00000	0.76679	0.65102	0.83760	1.65534	0.50600
16	3.7592"-03	3.8629"+01	1.00000	0.79072	0.65961	0.65220	1.66921	0.51054
	3.7973"-03	4.3128*+01	1.00000	0.80485	0.69741	0.86640	1.54335	0.56138
	4.0513"-03	4.2680"+01	1.00000	0.81530	0.69374	0.87140	1.57778	0.55230
	4.1146"-03	4.5924"+01	1.00000	0.82502	0.71990	0.88075	1.49679	0.58842
	4.2291"=03 5.1306"=03	4.8964"+01	1.00000	0.86554 0.91024	0.74358	0,91605	1.51769	0.60358
	5.5499*+03	6.3578"+01 6.8639"+01	1.00000	0.93634	0.84824	0.94160 0.95830	1.23223	0.76414 0.81103
	6.1722"-03	7.9740"+01	1.00000	0.98684	0,95067	0.98980	1.08402	0.91308
	6.8961 -03	8.4004*+01	1.00000	1.00101	0.97590	0.99880	1.04748	0.95353
	7.5565"-03	8.6135"+01	1.00000	1.00444	0.98827	1.00140	1.02676	0.97530
56	8.0645"-03	0.6031"+01	1.00000	1.00252	0.98767	1.00040	1.02595	0.97510
	8.2423"-03	8.7060"+01	1.00000	1.00449	0,99359	1.00180	1.01659	0.98545
0 58	1.5240"-02	5.8181"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
	ARIABLES Y ARTIFICIAL	,M,U/UD Y≈0.6 IN	AT I=4,10	11,12,19,2),25 DATA	WERE AVERA	GED	
5901010	S HILL		PROFILE	TABULATION	38	POINTS, DEL	IDG TA AT.	8E TN
1	Y	PT2/P	P/PD	T0/T00	HVHD	UVUD	T/TD	RHO/RHOD*U/UD
	0.0000"+00	1.0000*+00	1.00000	0.46544	0.00000	0.00000	8.07276	0,00000
2	6.4770"-04	1.7306"+00	1.00000	0.41324	0.10188	0.25220	6.12784	0.04116
3	7.2390"=04	1.8776 +00	1.00000	0-40478	0.10985	0.26600	5.86410	0.04536
	7.4930"-04 9.0170"-04	1.7754*+00	1.00000	0.53189 0.54409	0.10442	0.29220 0.29260	7.82485 8.03752	0.0371; 0.03640
6	9.5250"-04	2,2854*+00	1.00000	0.35570	0.12799	0.35290	7.60260	0.04642
	1.0795"-03	2,7751"+00	1.00000	0.56125	0.14591	0.39210	7.22173	0.05429
8	1.1557*-03	2.3245*+00	1.00000	0.56524	0.12954	0.35930	7.69374	0.04670
9	1.1938"-03	2,9285"+00	1.00000	0.57048	0.15100	0.40540	7.20840	0.05624
10	1.2065"-03	3,2643"+00	1.00000	0.57161	0.16150	0.42580	6.95092	0.06126
11	1.2627"=03 1.5113"=03	3.8579"+00 4.5492"+00	1.00000	0.57805 0.55005	0.17843	0.45820	6.59445 5.84486	0.06948
	1.5621 -03	5.6712"+00	1.00000	0.64158	0.22190	0.47550 0.55100	6.16564	0.08135 0.08937
	1.9685"-03	1.0362*+01	1.00000	0.63137	0.30653	0.63700	4.31860	0.14750
	2.1209"-03	1,0692"+01	1.00000	0.65240	0.31162	0.65170	4.37380	0.14900
	2.1463"-03	1,1671"+01	1.00000	0.65612	0.32655	0.66490	4.15432	0.16005
17	2.3495"=03	1.6477 +01	1.00000	0.67928	0.39004	0.71700	3.37917	0.21216
	2.6543*-03 2.9185*-03	1.9424"+01 2.5212"+01	1.00000	0.69952 0.72321	0.42445 0.48496	0.74440	3.07586	0.24201
	2.9337"=03	2,7983*+01	1.00000	0.72791	0.51139	0.78040 0.79120	2.58959 2.39366	0.30136 0.33054
	3.0353"-03	2.5620"+01	1.00000	0.73062	0.48894	0.78570	2.56229	0.30426
	3.4290"-03	3,0211"+01	1.00000	0.76000	0.53169	0.81425	2.34528	0.34719
	3.4544*-03	2.9053"+01	1.00000	0.77122	0.52124	0.81730	2.45861	0.33242
	3.7719*-03	3.4521"+01	1.00000	0.77786	0.56892	0,83320	2.14488	0.30846
	3.9497*-03	3.6713"+01	1.00000	0.78506	0.58695	0.84110	2.05351	0.40959
	4.2418"-03 5.7023"-03	3.9666"+01 5.7848"+01	1.00000	0.80275 0.87248	0.61040	0.85540	1.96387	0.43557
	5.9182"-03	5,9075*+01	1.00000	0.87248 0.88098	0.73850	0.91240 0.91780	1.52642	0.59774 0.60693
29	6.2484*-03	6.5094*+01	1.00000	0.89641	0.78374	0.93010	1.40637	0.66041
	7.1628"-03	8.2003*+01	1.00000	0.94133	0.88031	0.96220	1.19470	0.80539
31	7.4549*-03	8.6006"+01	1.00000	0.95417	0.90156	0.97040	1.15829	0.83779
	7.6581 -03	8.6542"+01	1.00000	0.95149	0.90448	0.96925	1.14835	0.84404
	7.7851**03	8.8777*+01	1.00000	0.95423	0.91615	0.97150	1.12448	0.86395
14 (15 (5.6467*-03 5.6741*-03	1.0026"+02	1.00000	0.98476	0.97369	0,99080	1.03502	0.95728
	9.0678"-03	1.0694"+02	1.00000	0.98570 0.99652	0.97434	0.99130 0.94860	1.03512	0.95766 1.01340
	9.1059"-03	1.0346"+02	1.00000	0.98330	0.98938	0.99100	1.00328	0.98776
	1.5240"-02	1.0568"+02	1.00000	1.00000	1.00000	1.03000	1.00000	1.00000
VAIBLE U	4 15 1 4 G ; 17 G . U							

INPUT VARIABLES Y,M,U/UD D-STATE ARTIFICIAL Y=0.6 IN

AT I=22,32 DATA WERE AVERAGED

590104	401 HILL		PROFILE	TABULATION	1 59	PUINTS, DE	LTA AT POI	NT 29
I	Y	PT2/P	P/P0	T0/T0D	MVIAD	U/UD	T/TD	RHO/RHOD*U/UD
ı	0.0000*+00	1.0000*+00	1.00000	0.48971	0.00000	0.00000	7.22712	0.00000
2	3.1750"-04	2.0283*+00	1.00000	0,52915	0.12760	0.32230	6.38015	0.05052
3	3.8100"-04	2,3091,400	1,00000	0.53516	0.14052	0.35020	6.21063	0.05639
5	6.7310"=04 9.0170"=04	2.9934"+00 4.0873"+00	1,00000	0.55742 0.58138	0.16686	0,40695 0,47220	5.94798 5.51234	0.06842 0.08566
ั้ง	9,5250"-04	4.7442"+00	1.00000	0.58704	0.21898	0.50030	5.21989	0.09584
7	9.7790"-04	1.2320"+01	1,00000	0.60425	0.36582	0.64810	3,13872	0.20649
8	1.6510*=03	1.5199*+01	1.00000	0.65890	0.40779	0.70130	2,95758	0.23712
9	1.659103	1.9305.+01	1.00000	0.69670	0.46211	0.74670	2,61102	0.28598
10	1.9558"=03	2.2525"+01	1.00000	0.69296	0.49904	0.75855	2.31044	0.32831
11	2.\$273"=03 2.\$998"=03	2.8671"+01 3.1898"+01	1.00000	0.73933 0.80339	0.56431 0.59573	0.80355 0.84575	2.02763	0.39630 0.41962
13	3.0861 -03	3.2701"+01	1,00000	0.77605	0.60329	0.83300	1.90649	0.43693
14	3.2512"-03	3.4948*+01	1.00000	0.79085	0.62397	0.84550	1.53612	0.46048
15	3.2766"-03	3.9948"+01	1.00000	0.80190	0.66768	0.86000	1.65908	0.51836
16	3.3401*-03	4,2578"+01	1.00000	0.80862	0.68956	0.86740	1.58233	0.54818
17 18	3.7592"-03 3.7973"-03	4.1490"+01 4.5497"+01	1.00000	0.82726 0.81242	0.68059	0.87580 0.87320	1.65593	0.52889 0.58230
19	4.0513"-03	4.4714*+01	1.00000	0.84472	0.70682	0.88940	1,56333	0.56173
ŠÓ	4.1148"-03	4.8899"+01	1.00000	0.85719	0.73950	0.90090	1.48415	0.60701
21	4.2271*-03	5.1487"+01	1.00000	0.92490	0.75900	0.93860	1.52924	0.61377
55	5.1300 -03	6.7489*+01	1.00000	0.92702	0.86992	0.95250	1.19887	0.79450
23	5.5499"-03	7.3944"+01	1.00000	0.95183	0,91084	0.96890	1.13155	0.85626
24 25	6.1722"-03 6.8961"-03	8.3474"+01 8.6575"+01	1.00000	0.98157 0.99553	0.96811	0.98850 0.99680	1.04257	0.94814 0.97537
5.5	7.5565"-03	8.6665"+01	1.00000	0.99606	0.98654	0.99710	1.02153	0.97609
27	8.0645*-03	6.6073*+01	1.00000	0.99252	0.98329	0.99510	1.02417	0.97162
28	8.2423"-03	8.6655"+01	1.00000	0.99347	0.98648	0.99580	1.01898	0.97726
D 53	1.5240*-02	0.9033"+01	1.00000	1.00000	1.00000	1.00000	1,00000	1.00000
	VARIABLES Y	Y,M,U/UD Y≌0.6 IN	AT 174,10	1.12.20,2	1,26 DAT	WERE AVER	AGED	
590104	405 HILL		PROFILE	TABULATION	38	POINTS, DE	LTA AT POI	NT 38
1	Y	912/9	P/PD	T0/10D	M/MD	UVUD	7/10	RHO/RHOD+U/UD
1	0.00004+00	1.0000*+00	1.00000	0.49265	0.00000	0.00000	8.65187	0.0000
1 2	0.00001+00 6.4770*-04	1.0000*+00	1.00000	0.49265 0.55678	0.00000	0.00000	8.65187 8.05027	0.00000
1 2 3	0.0000*+00 6.4770*-04 7.4930*-04	1.0000"+00 1.9749*+00 2.2091"+00	1.00000	0.49265 0.55678 0.56383	0.00000 0.11384 0.12407	0.00000 0.32300 0.34650	8.65187 8.05027 7.89043	0.0000 0.04012 0.04417
1 2 3 4	0.0000*+00 6.4770*-04 7.4930*-04 9.0170*-04	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00	1.00000 1.00000 1.00000	0.49265 0.55678 0.56363 0.57688	0.00000 0.11384 0.12407 0.14462	0.00000 0.32300 0.34850 0.39670	8.65187 6.05027 7.89043 7.52461	0.00000 0.04012 0.04417 0.05272
1 2 3 4 5	0.0000"+00 6.4770"-04 7.4930"-04 9.0170"-04 9.5250"-04 1.0795"-03	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00	1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56363 0.57688 0.58121	0.0000 0.11384 0.12407 0.14462 0.15890	0.00000 0.32300 0.34850 0.39670 0.42630	8.65187 6.05027 7.89043 7.52481 7.19742	0.00000 0.04012 0.04417 0.05272 0.05923
1 2 3 4 5 6 7	0.0000*+00 6.4770*=04 7.4930*=04 9.0170*=04 9.5250*=04 1.0795*=03 1.1557*=03	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 3.5661"+00	1.00000 1.00000 1.00000	0.49265 0.55678 0.56363 0.57688	0.0000 0.11384 0.12407 0.14462 0.15890 0.19868	0.00000 0.32309 0.34650 0.19670 0.44990 0.44670	8.65187 6.05027 7.89043 7.52461	0.00000 0.04012 0.04417 0.05272
1 2 3 4 5 6 7 8	0.0000*+00 6.470*-04 7.4930*-04 9.0170*-04 1.0795*-03 1.1557*-03	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00 3.2132*+00 4.7063*+00 3.5661*+00 4.4433*+00	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.58121 0.59615 0.58235 0.60612	0.00000 0.11384 0.12407 0.14462 0.15890 0.16978 0.16978	0.0000 0.32309 0.34850 0.39670 0.42670 0.49990 0.49670	5.65187 6.05027 7.89043 7.52461 7.19242 6.33071 6.9242 6.60141	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.06453 0.07485
1 2 3 4 5 6 7 8 9	0.0000*+00 6.4770*-04 7.4930*-04 9.0170*-04 9.5250*-03 1.1557*-03 1.2055*-03	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00 3.2132*+00 4.7063*+00 4.64646*+00	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.56363 0.57688 0.57688 0.58121 0.59615 0.58235 0.60612 0.60067	0.0000 0.11384 0.12407 0.14462 0.15690 0.19667 0.19231 0.19725	0.0000 0.32300 0.34850 0.34850 0.42630 0.42630 0.44990 0.44410	8.65187 6.059043 7.82481 7.19742 6.33242 6.6141603	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.06453 0.07465 0.07768
1 2 3 4 5 6 7 8 9 10	0.0000"+00 6.4770"-04 7.4930"-04 9.0170"-04 9.5250"-04 1.1557"-03 1.1557"-03 1.2627"-03	1.0000°+00 1.9749*+00 2.2091°+00 3.7653*+00 4.7663*+00 3.5661°+00 4.4453*+00 6.7447*+00	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.58121 0.59615 0.58235 0.60612 0.6067 0.61475	0.0000 0.11384 0.12407 0.15890 0.19868 0.16978 0.19231	0.0000 0.32309 0.34650 0.34670 0.42690 0.44670 0.49410 0.4960	8.65187 6.050243 7.050481 7.19742 6.33071 6.92242 6.601503 5.47367	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.06453 0.07785 0.07786
1 2 3 4 5 6 7 8 9 10 11	0.0000°+00 6.4770°=04 7.4930°=04 9.0170°=04 1.0795°=03 1.1738°=03 1.2627°=03 1.2627°=03	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00 3.2132*+00 4.7663*+00 4.4433*+00 4.6466*+00 6.7447*+00	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55578 0.56383 0.57688 0.58121 0.59615 0.59235 0.60612 0.60067 0.61475 0.63856	0.0000 0.11304 0.12407 0.15690 0.19668 0.16978 0.19231 0.19231	0.0000 0.32300 0.324850 0.324870 0.42630 0.42640 0.44410 0.44410 0.44640	8.65187 7.529043 7.52481 7.19742 6.32241 6.41503 5.41607	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07788 0.10357
123456789111213	0.0000"+00 6.4770"-04 7.4930"-04 9.0170"-04 9.5250"-04 1.1557"-03 1.1557"-03 1.2627"-03	1.0000°+00 1.9749°+00 2.2091°+00 3.2132°+00 4.7063°+00 4.35861°+00 4.6466°+00 6.7447°+00 8.0331°+00 8.9030°+00 1.9030°+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.58121 0.59615 0.58235 0.60612 0.60067 0.63856 0.44220 0.66392	0.0000 0.11384 0.12407 0.14462 0.15890 0.16978 0.19725 0.24231 0.24615 0.26115 0.40363	0.0000 0.32309 0.34650 0.34670 0.42690 0.44670 0.49410 0.4960	8.65187 6.050243 7.050481 7.19742 6.33071 6.92242 6.601503 5.47367	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.06453 0.07785 0.07786
123456789011234	0-0000*+00 6-4770*-04 7-4930*-04 9-0170*-04 1-0795*-03 1-1938*-03 1-2055*-03 1-2627*-03 1-5621*-03 1-5621*-03 1-8415*-03 2-1209*-03	1.0000*+00 1.9749*+00 2.2001*+00 2.7653*+00 3.2132*+00 4.7063*+00 4.4453*+00 4.4453*+00 6.7447*+00 6.7351*+00 6.9020*+00 1.7639*+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55683 0.57688 0.57682 0.58121 0.59615 0.60612 0.60612 0.60475 0.63856 0.64220 0.68392 0.69419	0.0000 0.11384 0.12407 0.14462 0.15890 0.16978 0.19723 0.19725 0.26615 0.28110 0.40363 0.39363	0.0000 0.34850 0.34850 0.34850 0.49990 0.49990 0.49940 0.56460 0.56460 0.62130 0.72780	8.051077 7.051043 77.524643 77.52464 6.332071 6.6244 6.41503 5.16025 4.08522 3.24786	0.0000 0.04012 0.04417 0.05272 0.05923 0.07596 0.07485 0.07766 0.10357 0.1716 0.12716 0.12716
1234567890112345	0.0000*+00 6.4770*-04 7.4930*-04 9.0170*-04 9.5250*-03 1.1557*-03 1.2827*-03 1.2827*-03 1.5621*-03 1.8415*-03 2.1203*-03	1.0000°+00 1.9749*+00 2.2091°+00 2.7653*+00 3.2132*+00 4.7063*+00 4.4453*+00 4.4453*+00 6.7447*+00 6.0531°+00 6.7639*+01 1.7689*+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.57688 0.58121 0.59615 0.58235 0.60612 0.60067 0.61475 0.63876 0.64820 0.69419	0.0000 0.11384 0.12407 0.14469 0.19868 0.19725 0.24231 0.24231 0.248110 0.40363 0.40363	0.0000 0.34850 0.34850 0.348670 0.449670 0.449670 0.44960 0.562140 0.562140 0.727850	5.05027 7.52461 7.52461 7.524742 6.33071 6.62141 6.641503 5.47302 5.47302 3.24770 3.24770	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07788 0.10357 0.11716 0.12718 0.22307
12345678901123456	0.000"+00 0.4770"-04 7.4930"-04 9.0170"-04 9.5259"-03 1.1936"-03 1.2627"-03 1.2627"-03 1.5621"-03 1.5621"-03 2.1202"-03 2.1202"-03 2.1204"-03 2.1204"-03	1.0000°+00 1.9749°+00 2.2091°+00 3.2132°+00 4.7653°+00 4.7653°+00 4.4433°+00 4.6466°+00 6.7447°+00 6.0331°+00 1.7839°+01 1.7962°+01 2.6100°+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.58121 0.59615 0.60612 0.60067 0.61475 0.63856 0.64220 0.64392 0.69419 0.6779	0.0000 0.11304 0.12407 0.14462 0.19568 0.19723 0.19723 0.24615 0.28130 0.49363 0.49363	0.3000 0.3000 0.32850 0.32850 0.32950 0.49970 0.449410 0.49960 0.5621780 0.72780 0.772780	5.05187 5.05027 7.52481 7.52481 7.33071 6.90242 6.41503 5.47367 5.168522 4.88522 4.84779 3.42779 3.42779 3.42779	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07786 0.07786 0.11716 0.12718 0.22397 0.21289
1234567890112345	0.000°+00 4770°+04 7.4930°+04 9.0170°+04 1.0795°+03 1.1938°+03 1.2055°+03 1.2055°+03 1.2051°+03 1.5621°+03 1.5621°+03 1.5621°+03 1.5621°+03 1.5621°+03 1.5621°+03 1.5621°+03 1.64492°+03	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00 3.2132*+00 4.7663*+00 4.4433*+00 4.4433*+00 6.7447*+00 6.7447*+00 6.9030*+00 1.7639*+01 1.6689*+01 1.7962*+01 2.66100*+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.56483 0.57688 0.58121 0.59615 0.60612 0.60067 0.61475 0.63856 0.64220 0.69790 0.69790 0.74038	0.0000 0.11384 9.12407 0.14462 0.19868 0.19923 0.19725 0.246231 0.24610 0.28110 0.40363 0.40505 0.40103	0.3000 0.32850 0.32850 0.32950 0.44990 0.449460 0.449460 0.562140 0.562140 0.773550 0.772550	8.05027 7.872481 7.52481 7.52481 7.52481 6.33071 6.6241 6.41503 5.16022 4.88576 4.87367 4.88576 4.87367 4.8736	0.0000 0.04012 0.04417 0.05272 0.05923 0.07596 0.07485 0.07766 0.10357 0.1716 0.12718 0.22397 0.22397 0.22397 0.22307
12345678901123456789	0-000°+00 4070°+04 7-4930°+04 9-0170°+04 1-0795°+03 1-1938°+03 1-2055°+03 1-25113°+03 1-25123°+03 1-25123°+03 1-25123°+03 2-1205°+03 2-120	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 4.5661"+00 4.6466"+00 6.7447"+00 6.7447"+00 6.7331"+00 6.7331"+00 1.7689"+01 1.7962"+01 2.6215"+01 2.6215"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.56383 0.57688 0.58121 0.59615 0.60612 0.60067 0.61475 0.63856 0.648392 0.69419 0.6779	0.0000 0.11304 0.12407 0.14462 0.19568 0.19723 0.19723 0.24615 0.28130 0.49363 0.49363	0.3000 0.3000 0.32850 0.32850 0.32950 0.49970 0.449410 0.49960 0.5621780 0.72780 0.772780	5.05187 5.05027 7.52481 7.52481 7.33071 6.90242 6.41503 5.47367 5.168522 4.88522 4.84779 3.42779 3.42779 3.42779	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07786 0.07786 0.11716 0.12718 0.22397 0.21289
12345678901234567890	0.000°+00 44770°+04 7.4930°+04 9.0170°+04 1.0795°+03 1.1938°+03 1.2055°+03 1.2627°+03 1.5621°+	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7653"+00 4.3435"+00 4.4435"+00 6.7447"+00 6.7447"+00 6.9030"+00 1.7839"+01 1.7962"+01 2.6215"+01 2.9259"+01 2.9259"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.56383 0.57688 0.5762121 0.59615 0.60612 0.60612 0.606419 0.63856 0.64220 0.69790 0.71179 0.71179 0.75742 0.75742	0.01384 0.124467 0.124467 0.14469 0.19868 0.19725 0.246110 0.248110 0.403163 0.403163 0.403163 0.403163 0.403163 0.51261	0.3000 0.32850 0.32850 0.32850 0.32960 0.42990 0.449960 0.449960 0.467277550 0.77350 0.77350 0.77350 0.77350 0.77350	5.05027 7.52461 7.52461 7.52461 7.52461 6.41707 6.641703 5.14706 4.8657 4.8657 4.8657 4.8706	0.00000 0.04012 0.04417 0.05272 0.05923 0.07596 0.07485 0.07768 0.10357 0.1716 0.12718 0.22397 0.22397 0.22397 0.30954 0.30473 0.33932 0.33932
123456789012345678901	0.000"-04 7.4930"-04 9.01750"-04 9.01750"-03 1.1938"-03 1.2827"-03 1.2827"-03 1.5621"-03 1.5621"-03 1.5621"-03 1.6415"-03 2.1203"-03 2.120492"-03 2.9135"-03 2.9135"-03 3.9357"-03 3.9357"-03 3.9357"-03 3.9357"-03	1.0000°+00 1.9749°+00 2.2091°+00 2.7653°+00 3.2132°+00 4.7063°+00 4.4438°+00 4.4438°+00 6.7447°+00 6.0531°+00 1.7639°+01 1.6989°+01 2.6215°+01 2.9259°+01 2.9259°+01 2.9259°+01 2.9259°+01 2.9259°+01 2.9259°+01 2.9259°+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.57688 0.57688 0.59615 0.59612 0.60612 0.60475 0.61475 0.63820 0.69419 0.74179 0.774038 0.75742 0.75742 0.758426	0.01384 0.112467 0.12467 0.14469 0.19668 0.19725 0.24610 0.28110 0.340533 0.340533 0.440533 0.51951 0.51951 0.51967	0.32850 0.32850 0.32850 0.32850 0.32850 0.32850 0.328670 0.449460 0.449460 0.4627480 0.4627480 0.7725570 0.77910280 0.81380 0.81380	5.05043 7.52461 7.52461 7.52461 7.533071 6.64153 5.44736 5.447	0.00000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07788 0.10357 0.11716 0.12718 0.22397 0.21289 0.21289 0.30454 0.30473 0.33332 0.33332
1234567890123456789012	0-400 -4770*-04 7-4930*-04 9-0170*-04 1-0775*-03 1-1738*-03 1-2055*-03 1-25123*-03 1-251	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 4.4433"+00 4.4453"+00 4.4453"+00 6.7447"+00 6.7447"+00 6.7331"+00 6.7439"+01 1.7689"+01 1.7689"+01 2.6215"+01 2.9259"+01 2.9259"+01 2.9259"+01 3.3274"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.556181 0.556121 0.59615 0.60667 0.618280 0.60879 0.63856 0.64820 0.69419 0.697179 0.75742 0.75742 0.76420 0.75742	0.124462 0.124462 0.124462 0.124668 0.19668 0.1972315 0.1972315 0.2483163 0.4491916 0.4491916 0.512967 0.512967 0.556475	0.300 0.300 0.32850 0.32850 0.32850 0.32850 0.449960 0.449960 0.449960 0.50217850 0.772780 0.772780 0.772780 0.772780 0.772780 0.772780 0.81280 0.81280 0.81280 0.81280	5.051077 7.5124412 7.5124413 7.130712 6.41130712 6.41130712 6.411307 1.41307 1.41307 1.41307 1.41307 1.41307 1.41307 1.413030 1.41300 1.413030 1.41	0.0000 0.04012 0.04417 0.05272 0.05923 0.07695 0.07785 0.07785 0.107786 0.12716 0.12716 0.12716 0.12718 0.22397 0.22397 0.22397 0.33332 0.333932 0.333932
12345678901234567890123	0-000°+00 0-470°+04 7-4930°+04 9-0170°+04 1-0795°+03 1-1936°+03 1-2827°+03 1-2827°+03 1-2827°+03 1-2827°+03 1-2827°+03 1-2827°+03 1-28415°+03 2-4495°+03 2-4495°+03 2-4495°+03 2-4495°+03 2-4496°	1.0000*+00 1.9749*+00 2.2001*+00 2.7653*+00 3.2132*+00 4.7653*+00 4.4453*+00 4.6466*+00 6.7447*+00 6.7447*+00 1.7639*+01 1.5689*+01 1.7962*+01 2.6215*+01 2.9259*+01 2.9259*+01 3.3274*+01 3.3274*+01 3.4494*+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.57683 0.57682 0.59615 0.60612 0.60612 0.606419 0.608396 0.608419 0.608419 0.757420 0.757420 0.759420 0.759420 0.75132	0.124467 0.124467 0.124467 0.124467 0.124467 0.12467 0.12467 0.127 0.127 0.127 0.127 0.248 1107 0.248 1107 0.39 0.49 0.49 0.55 127 127 127 127 127 127 127 127 127 127	0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.3000 0.4490 0.4900 0.4000 0.4000 0.4000 0.4000 0.4000 0.	5.05024 5.05024 7.5244 7.5244 7.5244 7.5244 6.4150 6.41736	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07768 0.10357 0.12718 0.12718 0.22397 0.22397 0.32389 0.33932 0.33932 0.33932 0.33932 0.36897 0.40277
1234567890123456789012	0-400 -4770*-04 7-4930*-04 9-0170*-04 1-0775*-03 1-1738*-03 1-2055*-03 1-25123*-03 1-251	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 4.4433"+00 4.4453"+00 4.4453"+00 6.7447"+00 6.7447"+00 6.7331"+00 6.7439"+01 1.7689"+01 1.7689"+01 2.6215"+01 2.9259"+01 2.9259"+01 2.9259"+01 3.3274"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.556181 0.556121 0.59615 0.60667 0.618280 0.60879 0.63856 0.64820 0.69419 0.697179 0.75742 0.75742 0.76420 0.75742	0.0144672 0.11244672 0.11244672 0.1124698 0.198688 0.1987235 0.1987235 0.226110 0.228110 0.349505 0.49136 0.555445 0.55545 0.55545 0.55545 0.55545 0.55545 0.55545 0.55545	0.3000 0.32850 0.32850 0.32850 0.32850 0.32850 0.32850 0.32850 0.449650 0.46227480 0.46227480 0.7725570 0.77910280 0.813450 0.813450 0.85100 0.85100 0.85100 0.85100 0.85100	5.05043 7.52461 7.52461 7.52461 7.52461 6.4150 5.4160 5.4160 5.41760 5	0.0000 0.04012 0.04417 0.05272 0.05923 0.07695 0.07785 0.07785 0.107786 0.12716 0.12716 0.12716 0.12718 0.22397 0.22397 0.22397 0.33332 0.333932 0.333932
12345678901234567890123456	0-400 0-470 0-470 0-4730 0	1.0000*+00 1.9749*+00 2.2091*+00 2.7653*+00 3.2152*+00 4.7653*+00 4.4435*+00 4.4435*+00 6.7447*+00 6.7447*+00 6.9030*+00 1.7839*+01 1.7962*+01 2.6215*+01 2.9259*+01 2.9259*+01 3.3274*+01 3.3274*+01 3.3274*+01 3.4494*+01 4.686*+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.55683 0.57682 0.57682 0.58612 0.60647 0.6047 0.6047 0.60419 0.60419 0.71179 0.74748 0.759420 0.759420 0.759420 0.759420 0.759420 0.759420 0.759420	0.04407 0.124407 0.124407 0.124407 0.124407 0.124407 0.12407 0.1972315 0.2403305 0.490343 0.490343 0.59247 0.5564795 0.556547 0.556547 0.56853 0.6230 0.75853	0.300000000000000000000000000000000000	5.0510431 5.0510431 7.5124432 7.5124433 7.5124433 7.5124433 7.5124433 7.5124433 7.5124433 7.5124433 7.512443 7.5124	0.0000 0.04012 0.04417 0.05923 0.075926 0.07485 0.07485 0.07768 0.10357 0.12718 0.22397 0.22397 0.22397 0.32333 0.33932 0.33932 0.33932 0.33932 0.3473 0.3473 0.3473 0.3473
123456789012345678901234567	0-404 0-4070*-04 10770*-04 10770*-04 10770*-04 10770*-04 10770*-03 107	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 3.5561"+00 4.4433"+00 4.4433"+00 6.7447"+00 6.7437"+00 6.7437"+00 6.7439"+01 1.7952"+01 2.9259"+01 2.9259"+01 2.9259"+01 2.9259"+01 2.9259"+01 3.3274"+01 3.3274"+01 3.8609"+01 4.1886"+01 6.4276"+01 6.4276"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.57688 0.57688 0.576812 0.59615 0.60407 0.61478 0.60407 0.61478 0.69419 0.71178 0.759420 0.759420 0.759420 0.759420 0.759420 0.759420 0.759420 0.759420 0.5823271 0.682323 0.69249	0.0144072 0.11244072 0.11244072 0.1144698 0.19668 0.1997235 0.197235 0.2461103 0.4991305 0.4991305 0.4991305 0.5554533 0.5554533 0.558453 0.558453 0.558453 0.558453 0.558453 0.5787	0.3000 0.3000 0.2485730 0.2485730 0.339269770 0.449690 0.449690 0.466227736250 0.478570 0.77376250 0.8513450 0.8513450 0.8513450 0.8513450 0.8513450 0.8513450 0.8513450 0.8513450 0.8513450	5.051077 5.0510431 7.5244612 7.5244612 7.52441330712 6.64133075 6.6413037 5.4130022 5.4130022 5.4130022 5.4130022 5.4130022 5.413002 6.41303 6	0.00000 0.04012 0.04417 0.05923 0.07896 0.07485 0.07788 0.107788 0.107788 0.12718 0.22307 0.22307 0.22307 0.33332 0.33932 0.33932 0.33932 0.36897 0.40277 0.44701 0.44701 0.44701 0.64378 0.64378
1234567890123456789012345678	0-404 7-4030*-04 7-4030*-04 9-0170*-04 1-0770*-04 1-0770*-04 1-0770*-03 1-1736*-03	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2132"+00 4.7063"+00 4.4433"+00 4.4433"+00 4.4433"+00 6.7447"+00 8.9930"+00 1.7639"+01 1.7689"+01 1.7689"+01 2.9259"+01 2.9259"+01 2.9259"+01 3.3274"+01 3.4494"+01 3.4494"+01 3.4494"+01 4.2030"+01 6.2030"+01 6.2030"+01 6.4205"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.556181 0.55615 0.55615 0.56615 0.60067 0.61475 0.64220 0.64220 0.64220 0.64220 0.64220 0.64220 0.64220 0.75742 0.75742 0.75420 0.75742 0.75420 0.754	0.124462 0.124462 0.124462 0.124668 0.19668 0.197235 0.197235 0.2466163 0.2466163 0.44995034 0.44995034 0.556451 0.556451 0.556451 0.556451 0.5753 0.7753 0.7753 0.7753 0.7753 0.7753	0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3350 0.3550 0.	5.051077 7.512441 7.512441 7.512441 7.512441 7.5125 6.417307 6.417307 4.41871	0.0000 0.04012 0.04417 0.05272 0.05923 0.07895 0.07785 0.07785 0.17716 0.12717 0.12717 0.12718 0.22397 0.22397 0.22397 0.22397 0.333185 0.333185 0.36897 0.40277 0.41741 0.447701 0.64106 0.64706
1234567890123456789	0-47-404 7-49-30*-04 9-0170*-04 9-0170*-04 1-079-9-03 1-1738*	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2152"+00 4.7063"+00 4.4435"+00 4.4435"+00 6.7447"+00 6.9050"+00 1.7859"+01 1.7962"+01 2.6215"+01 2.9259"+01 2.9259"+01 3.3274"+01 3.3274"+01 3.8609"+01 4.1886"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.56383 0.57682 0.59615 0.606475 0.606475 0.604820 0.757420 0.757420 0.759420 0.758132 0.60493 0.60493 0.90493 0.90493 0.90783	0.1440- 0.1440- 0.12440- 0.12440- 0.12440- 0.12440- 0.12440- 0.1240- 0.1972- 0.1972- 0.1972- 0.2481- 0.2481- 0.3950- 0.4991- 0.51240- 0.5556- 0.5565- 0.5565- 0.5656- 0.5773- 0.5733- 0.7771- 0.7771- 0.911-	00000000000000000000000000000000000000	5.0520451 5.0524461 7.0524403 7.0524403 7.0524403 7.05240150 6.41730	0.0000 0.04012 0.04417 0.05923 0.075926 0.07485 0.07485 0.07768 0.10357 0.12718 0.12718 0.22397 0.22397 0.32337 0.33932 0.33932 0.33932 0.33932 0.33932 0.3474 0.44741 0.44741 0.44741 0.44770 0.64106 0.64706 0.64706 0.66427
1234567890123456789012345678	0-404 7-4030*-04 7-4030*-04 9-0170*-04 1-0770*-04 1-0770*-04 1-0770*-03 1-1736*-03	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2152"+00 4.7663"+00 4.3465"+00 4.4447"+00 6.7447"+00 6.7447"+00 6.765"+01 1.7662"+01 1.7662"+01 2.962"+01 2.962"+01 2.962"+01 3.3444"+01 3.1001"+01 3.404"+01 3.404"+01 4.2030"+01 6.4276"+01 6.9954"+01 6.9954"+01 6.9954"+01 6.9954"+01 6.9954"+01 6.9954"+01 6.9954"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.49265 0.55678 0.55678 0.556181 0.55615 0.55615 0.56615 0.60067 0.61475 0.64220 0.64220 0.64220 0.64220 0.64220 0.64220 0.64220 0.75742 0.75742 0.75420 0.75742 0.75420 0.754	0.44720 0.1244692325150 0.1244692325150 0.1244692325150 0.1244692325150 0.124683253347 0.124683253347 0.22683353347 0.449950344947950 0.4512514747950 0.55248333693 0.5623347 0.57273161791 0.91791 0.91791	00000000000000000000000000000000000000	5.051077 7.512441 7.512441 7.512441 7.512441 7.5125 6.417307 6.417307 4.41871	0.0000 0.04012 0.04417 0.05272 0.05923 0.07895 0.07785 0.07785 0.17716 0.12717 0.12717 0.12718 0.22397 0.22397 0.22397 0.22397 0.333185 0.333185 0.36897 0.40277 0.41741 0.447701 0.64106 0.64706
12345678901233456789012	0-47-700"-04 7-49-700"-04 9-01-700"-04 9-01-700"-04 9-01-700"-04 1-07-70"-03 1-17-70"-03 1-17-70"-03 1-17-70"-03 1-17-70"-03 1-17-70"-03 1-17-70"-03 1-17-70"-03 1-17-17-17-17-17-17-17-17-17-17-17-17-17	1.0000"+00 1.9749"+00 2.2091"+00 2.7653"+00 3.2652"+00 4.7653"+00 4.7653"+00 4.4443"+00 6.7447"+00 6.9030"+00 1.7639"+01 1.7962"+01 2.6615"+01 2.9659"+01 3.3444"+01 3.3474"+01 3.3474"+01 3.3474"+01 3.3474"+01 4.1656"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01 6.2030"+01	1.00000 1.00000	0.49265 0.55678 0.55678 0.56383 0.57682 0.576821 0.59015 0.60647 0.6047 0.60439 0.60439 0.60439 0.60439 0.60439 0.60439 0.71179 0.7457420 0.759440 0.759460 0.759460 0	0.144672 0.144672 0.1244672 0.1244672 0.1244672 0.1244672 0.124672 0.1972315 0.1972315 0.2481313 0.3973314 0.449147 0.5554533 0.5554533 0.55237 0.55237 0.577731 0.77731 0.91679 0.917935	00000000000000000000000000000000000000	5.050481 5.050481 5.050481 7.524482 7.524403 7.5224403 7.5224403 4.15022 4.1502 4.1502 4.15022 4.1502 4.1502 4.1502 4.1502	0.0000 0.04012 0.04417 0.05923 0.075926 0.07485 0.07485 0.07485 0.07485 0.1716 0.12718 0.12718 0.22397 0.32347 0.33952 0.33952 0.33952 0.33952 0.3477 0.44741 0.4277 0.44771
123456789012345678901234567890123	0-4-04 0-4-04 0-4-04 0-7-0804 1-7-0804 1-7-0803 1-12-08 -	1.0000"+00 1.9749"+00 2.7653"+00 3.2091"+00 3.2081"+00 4.7063"+00 4.7063"+00 4.4433"+00 4.4433"+00 4.4433"+00 1.7389"+01 1.6989"+01 1.7982"+01 2.9259"+01 2.9259"+01 2.9259"+01 3.3244"+01 3.3244"+01 3.860"+01 4.425"+01 4.836"+01 6.4276"+01 7.0607"+01 8.9954"+01 9.0298"+01 9.0298"+01	1.00000 1.00000	0.49265 0.55678 0.55678 0.557682 0.557682 0.5586155 0.560067 0.603820 0.603820 0.604830 0.604779 0.74488 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757442 0.757443 0.7574443 0.7574443 0.7574443 0.757444444 0.757444444 0.75744444 0.757444444 0.757444444 0.757444444 0.75744444444444 0.7574444444444444444	0.11244600 0.11244600 0.11244600 0.11248000 0.11248000 0.112400 0.112400 0.112400 0.12200 0.12	00000000000000000000000000000000000000	5.051077 7.51277 7.51274612 6.0512413 7.127712 6.417367 6.417367 7.1622 847814	0.0000 0.04012 0.04417 0.05272 0.05923 0.07896 0.07485 0.07485 0.07786 0.11716 0.12
1234567690123456769012345676901234	0-4-04 	1.0000"+00 1.9749"+00 2.2091"+00 2.2091"+00 2.7653"+00 3.2632"+00 4.7663"+00 4.4435"+00 4.4435"+00 4.4447"+00 8.9030"+00 1.7639"+01 1.7642"+01 2.9259"+01 2.9259"+01 3.3244"+01 3.7001"+01 3.8659"+01 4.2030"+01 6.4276"+01 6.9254"+01 6.9254"+01 9.0476"+01 9.0476"+01 9.0476"+01 9.0476"+01 9.0484"+01 1.0536"+01 1.0536"+01 1.0536"+01 1.0536"+01	1.00000 1.00000	0.492678 0.55483 0.554821 0.554821 0.554821 0.554821 0.56482 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.664832 0.66483 0.66483 0.7457 0.75442 0.76483 0	0.44720 0.1244692325 0.1244692325 0.1244692325 0.1244692325 0.124692325 0.124692325 0.124692325 0.124693 0.124693 0.	00000000000000000000000000000000000000	5.050481 5.050481 7.524481 7.524481 7.524403 7.524403 7.605040 6.417347 6.417347 4.84774 4.8	0.0000 0.04012 0.04417 0.05272 0.05923 0.07685 0.07786 0.107786 0.10357 0.12716 0.22397 0.22397 0.22397 0.32332 0.33335 0.33335 0.33335 0.33335 0.3472 0.368994 0.40277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.641706 0.641706 0.641706 0.64177 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187
12345678901234567890123456789012345	0-4730"-04 9-01730"-04 9-01730"-04 9-01730"-03 1-1736"-03 1-1	1.0000"+00 1.9749"+00 2.2091"+00 2.2091"+00 3.2632"+00 4.7063"+00 4.3483"+00 4.4483"+00 6.7447"+00 6.9020"+00 1.7639"+01 1.7962"+01 2.6615"+01 2.9259"+01 2.9259"+01 3.3274"+01 3.3274"+01 3.3274"+01 3.3274"+01 3.3274"+01 3.4044"+01 3.6009"+01 4.1886"+01 4.2030"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01 6.4276"+01	1.000000 1.0000000 1.000000	0.49265 0.55678 0.55678 0.55683 0.576821 0.596155 0.606475 0.606475 0.606479 0.6048392 0.6048394 0.604790 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.71178 0.711788 0.711788 0.711	0.1446 0.1446 0.12446 0.12446 0.12446 0.12446 0.1246 0.1246 0.126 0.127	00000000000000000000000000000000000000	5.050431 5.050441 5.050441 7.52440 7.52441 7.5241 7.52241 7	0.0000 0.04012 0.04417 0.05923 0.075926 0.075926 0.07485 0.07485 0.07485 0.07485 0.1716 0.12718 0.12718 0.22397 0.22397 0.32333 0.33932 0.33932 0.33932 0.33932 0.3473 0.3473 0.34741 0.44741 0.44770 0.447
1234567690123456769012345676901234	0-4-04 	1.0000"+00 1.9749"+00 2.2091"+00 2.2091"+00 2.7653"+00 3.2632"+00 4.7663"+00 4.4435"+00 4.4435"+00 4.4447"+00 8.9030"+00 1.7639"+01 1.7642"+01 2.9259"+01 2.9259"+01 3.3244"+01 3.7001"+01 3.8659"+01 4.2030"+01 6.4276"+01 6.9254"+01 6.9254"+01 9.0476"+01 9.0476"+01 9.0476"+01 9.0476"+01 9.0484"+01 1.0536"+01 1.0536"+01 1.0536"+01 1.0536"+01	1.00000 1.00000	0.492678 0.556783 0.556783 0.5576821 0.5576821 0.5606675 0.600675 0.600675 0.60067799 0.6007799 0.77544682 0.7754682 0.7754682 0.7754682 0.7754682	0.44720 0.1244692325 0.1244692325 0.1244692325 0.1244692325 0.124692325 0.124692325 0.124692325 0.124693 0.124693 0.	00000000000000000000000000000000000000	5.05104812 5.05104812 7.5124413 7.5124413 7.5124413 7.512413	0.0000 0.04012 0.04417 0.05272 0.05923 0.07685 0.07786 0.107786 0.10357 0.12716 0.22397 0.22397 0.22397 0.32332 0.33335 0.33335 0.33335 0.33335 0.3472 0.368994 0.40277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.40701 0.64277 0.641706 0.641706 0.641706 0.64177 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187 0.864187
123456789012345678901234567890123456	0-4-04 0-4-04 0-4-04 0-7-0804 0-7-0803 0-7-0803 1-193803 1-193803 1-193803 1-193803 1-193803 1-193803 1-2512103 1-2512103 1-3542503 1-3542503 1-342803 1-3	1.0000"+00 1.9749"+00 2.7653"+00 3.2031"+00 4.7653"+00 4.7653"+00 4.7653"+00 4.4433"+00 4.4433"+00 4.4433"+00 1.7659"+01 1.7659"+01 2.9259"+01	1.000000 1.000000	0.49265 0.55678 0.556783 0.5576821 0.5576821 0.5586155 0.5586155 0.5600457 0.6038202 0.6048302 0.6047779 0.74478742 0.757442 0.757442 0.757442 0.757443	0.44720 0.1244690 0.1244690 0.1244690 0.1244690 0.12480 0.12480 0.129722315 0.129722315 0.22803930 0.22803930 0.349915 0.34995034 0.355658330 0.355658330 0.355658330 0.355658330 0.355658330 0.355658330 0.355658330 0.355658330 0.356688 0.3	00000000000000000000000000000000000000	5.05027 7.5244612 7.5244612 7.5244612 7.5244612 6.3224413 6.417367 6.	0.0000 0.04012 0.04417 0.05272 0.053923 0.07396 0.07485 0.07485 0.17716 0.12357 0.12716 0.12397 0.22397 0.22397 0.22397 0.33332 0.33332 0.33332 0.33332 0.33432 0.33332 0.33432 0.3447 0.44771

INPUT VARIABLES Y,M,U/UD D-STATE ARTIFICIAL Y=0.6 IN

AT 1=2,31 DATA WERE AVERAGED

M: 5

R THETA X 10⁻³: 1 - 4.5

TW/TR: 0.65 - 0.95

ZPG-MHT

Continuous tunnel with fixed contoured nozzle, W = H = 0.12 m (E).

0.5 < PO < 0.75 MN/m². 340 < TO < 500 K. Air. 8 < RE/m X 10⁻⁶ < 16.

WINKLER E.M. and CHA M.H., 1959. Investigation of flat plate hypersonic turbulent boundary layers with heat transfer at a Mach number of 5.2. NOL NAVORD Rep 6631.
Also Winkler (1961)

- 1 The test boundary layer was formed on a smooth stainless steel flat plate 0.604 m long mounted with the test surface on the tunnel centre-line and spanning the tunnel. The leading edge (X = 0) was chamfered on the underside, and except for the first 40 mm (E) the whole length of the test surface could be actively
- B cooled. Measurements were made at stations for which X = 0.216, 0.2925, 0.3685 and 0.445 m. The static
- 2 pressure along the plate was constant to within 1.3 % and the plate surface was practically isothermal
- 4 for leading edge distances > 0.14 m. For X < 0.14 m the surface temperature deviated from the isothermal value by amounts dependant on the test conditions; for the lowest TW/TR reported here the deviation was
- 3 about 10 %. The test free stream conditions were selected to cause transition near X = 170 mm.
- 6 Static pressure tappings (d = 0.63 mm) were drilled at X = 70 mm and at subsequent intervals of 76.2 mm, alternatuly 9 mm to either side of the plate centre line. Thermocouple plugs, of the same material as the plate, were placed 4.75 mm to either side of the centre-line (E) at the same stations. Each plug contained five thermocouple junctions at known distances from the plate surface.
- 7 Boundary layer surveys were made with FPP and STP. The probes used had "nearly rectangular entrance openings of half heights between 0.1 and 0.13 mm" ($h_1 = 0.2 0.26$ mm). The STP was of the type described by Winkler (1954).
- 9 The authors have interpolated the TO readings to the Y-values of the Pitot readings. The TO profile was extrapolated to match the wall temperature gradient calculated from the wall heat transfer rate. This was deduced from the temperature gradient in the wall, and the authors present CF values deduced from the slope of the velocity profile near the wall, and from Reynolds analogy (Colburn's formula). Static pressure
- 12 was assumed constant across the boundary layer. The editors have presented all the reported profiles, incorporating the authors assumptions and procedures. The D-state is the authors', at the outermost point.
- 13 The CF value is that deduced from the velocity gradient. The profiles form three groups marked by differing heat transfer conditions. Within each group there are some repeats, and some slight variation of unit
- 14 Reynolds number. There are four successive profiles in each group. Heat transfer values are given for nearly all the profiles, and the authors' CF value referred to above.
- § DATA: 59020101-0306. Pitot and TO profiles obtained separately. NX = 4. Wall heat flux from temperature gradient in wall.

15 Editors' comments

The Reynolds number range of the test is low, and the test layer displays marked transitional characteristics. The experimental range overlaps, in some degree, the tests made by Danberg - CAT 6702 and Samuels et al. - CAT 6701.

The profiles include data taken very close to the plate surface, but it seems probable that the temperature values used in the wall region were interpolated. The CF values quoted should be treated with considerable reserve since they are obtained from the velocity gradient which must inevitably be somewhat ill-defined.

The entry has been prepared from a rather limited published account.

18

590201	03 WINKL	.ER	PROFILE	TABULATION	26	POINTS, DEL	TA AT POI	NT 26
I	Y	PT2/P	P/PD	T0/T0D	44/:1D	U/U0	T/TD	RH0/RH0D*U/UD
i	C.0000*+00	1.0000*+00	Иw	0.83864	0.00000	0.00000	5.37400	0.00000
2	1.9200"-04	2.0837*+00	ИM	0.91864	0.20783	0.45400	4.77200	0.09514
3	2.1800"-04	2.2663"+00	ДM	0.72176	0.22117	0.47800	4.67100	0.10233
4	2.4300"-04	2.4982"+00	NW	0.92575	0.23667	0.50500	4.55300	0.11092
5	2.6930"=04	3.0165"+00	ΜM	0.93208	0.26743	0.55500	4.30700	0.12886
6	2.9400"-04	3.0799*+00	Ν×	0.93148	0.27091	0.56000	4.27300	0.13106
7	3.1900"-04	3.6491*+00	ИW	0.93670	0.30015	0.60300	4.03600	0.14941
8	3.4500"-04	3.8468*+00	NM	0.93775	0.30967	0.61600	3.95700	0.15567
9	3.9600"=04	4.5838*+00	NM	0.94124	0.34254	0.65800	3.69000	0.17832
10	4.4600"-04	5.1962*+00	NM	0.94357	0.36753	0.68700	3.49400	0.19662
11	4.9700*-04	5.7953"+00	ΝM	0.94427	0.39039	0.71100	3.31700	0.21435
12	5.7399"-04	6.6529"+00	NM	0.94451	0.42090	0.74000	3.09100	0.23940
13	7.0000"-04	7.9037"+90	NM	0.94650	0.46175	0.77500	2.81700	0.27512
14	8.2700"-04	9.0510"+00	NIA	0.94571	0.49623	0.80000	2.59900	0.30781
15	9.5400"-04	1.0078"+01	ИЬ	0.94561	0.52517	0.81900	2.43200	0.33676
16	1.0810"=03	1.1012"+01	ИW	0.94563	0.55016	0.83400	2.29800	0.36292
17	1.2080*-03	1.1751"+01	41),	0.94434	0.56915	0.84400	2.19900	0.38381
18	1.4620"=03	1.2923"+01	MIS	0.94690	0.59803	0.86000	2.06800	0.41586
19	1.7160"-03	1.3667"+01	1111	0.95042	0.01564	0.87000	1.99700	0.43565
20	2.2240"-03	1.5632"+01	Ukt	0.95661	0.65793	0.89200	1.82700	0.48523
51	2.7320"-03	1.8285*+01	1114	0.96188	0.71537	0.91500	1.63600	0.55929
22	3.2400"-03	2.0979"+01	ИМ	0.97143	0.76757	0.93600	1,48700	0.62946
23	3.7480"=03	2,3969"+01	ИN	0.98053	0.82163	0.95500	1.35100	0.70688
24	5.0150"-03	3.0740"+01	N,	0.99495	0.93252	0.98600	1.11800	0.88193
22	6,2880"-03	3.4359*+01	IIM	0.99822	0.98669	0.99700	1.02100	0.97649
D 56	8.8280"-03	3.5290"+01	Nw	1.00000	1.00000	1.00000	1,00000	1.00000

INPUT VARIABLES Y,U/UO,T/TD ASSUME P#PD

590201	05 ATUKI	.er	PROFILE	TABULATION	53	POINTS, DEL	"TA AT POI	NT 23
I	Y	PT2/P	P/P0	T0/T0D	H/MD	U/UD	T/TD	RHO/RHOD=U/UD
Ĭ	0.0000"+00	1.0000*+00	NM	0.84344	0.00000	0.00000	5,56400	0.0000
2	1.9100"=04	1.6563"+00	NM	0.85862	0.16646	0.37500	5.07500	0.07389
3	2.2600"-04	1.8710"+00	NM	0.89117	0.18719	0.41500	4.91500	0.08444
4	2.6700"=04	2.2675*+00	NM	0.89533	0.21749	0.47000	4.67000	0.10064
5	3,1700"-04	2,5868*+00	ΙξΜ	0.59806	0.23814	0.50500	4.49700	0.11230
6	3.9400"-04	3.1187"+00	NM	0.90310	0.26837	0.55300	4.24600	0.13024
7	4.4400"-04	3.4163"+00	Nh	0.90633	0.28371	0.57600	4.12200	0.13974
8	5.2100*-04	4.2295"+00	NW	0.91261	0.32161	0.62800	3.81300	0.16470
9	7.7500"-04	5.7392"+00	NM	0.92026	0.38170	0.69500	3.34400	0.20873
10	1.2830*-03	8.0860"+00	NM	0.93120	0.45945	0.77100	2.81600	0.27379
ii	1.7910*=03	9.7219"+00	ЙM	0.93726	0.50656	0.80700	2.53800	0.31797
iż	2.4260"-03	1.1446*+01	NM	0.94535	0.55184	0.83800	2.30600	0.36340
13	3.0610"-03	1.3412*+01	NM	0.95502	0.59929	0.86700	2.09300	0.41424
14	3.5940*-03	1.5608"+01	ŇM	0.96428	0.64819	0.89300	1.89800	0.47050
15	4.3310"-03	1.8209"+01	Им	0.97868	0.70170	0.92000	1.71900	0.53519
16	4.9660"-03	2.0536"+01	ŇM	0.98803	0.74632	0.93900	1.58300	0.59318
17	5.6010 -03	2.3399"+01	NM	1.00140	0.79779	0.96000	1.44800	0.66298
18	6.2360"-03	2.6205*+01	NM	1.00618	0.54520	0.97400	1.32800	0.73343
19	6.8710"-03	2.9250"+01	NM	1.00520	0.89381	0.98400	1.21200	0.81188
έó	7.5060"-03	3.1678 +01	NM	1.00802	0.93372	0.99300	1.13100	0.87798
ži	8.1410"-03	3.3053"+01	NM NM	1.00998	0.96263	0.99900	1.07700	0.92758
25	9.4110"-03	3,5823"+01	nm Mil	1.00288	0.99063	1.00000	1.01900	0.98135
D 23								
U 23	1.0681 -05	3.6495"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VAPIABLES Y, U/UD, T/TD ASSUME P*PD

59020	305 MIN	KLER	PROFILE	TABULATION	53	POINTS, DE	LTA AT POI	NT 23
I	Y	PT2/P	P/PD	T0/10D	M/MD	U/UD	T/TD	RHO/RHOO*U/UD
1	0.0000*+00	1.0000*+00	ИМ	0.58560	0.00000	0.00000	3.70400	0.00000
5	1.5200"-04	1.7387*+00	N₩	0.88047	0.17931	0.39100	4.75500	0.08223
3	2.2900"-04	1.7801 +00	ИM	0.88232	0.18340	0.39900	4.73300	0.08430
4	2.5400"-04	1.9248"+00	ŊM	0.88699	0.19656	0.42400	4.65300	0.09112
5	2.7930"-04	2.1129*+00	NM	0.89294	0.21167	0.45200	4.56000	0.09912
6	3.3000"-04	2.5803"+00	NM	0.90405	0.24374	0.50800	4.34400	0.11694
7	3.8100"-04	3-1587*+00	NM	0.90228	0.27731	0.55800	4.04900	0.13781
8	4.3200"=04	4.1024*+00	ЙM	0.91437	0.32396	0.62400	3.71000	0.16819
9	4.8300"-04	5.0069"+00	ŊМ	0.92263	0.36279	0.67200	3.43100	0.19556
10	5.3300"-04	5.9063*+00	ПM	0.92874	0.39752	0.71000	3.19000	0.22257
11	5.8400*-04	6.8971*+00	NM	0.93384	0.43251	0.74400	2.95900	0.25144
12	7.1100"-04	9.1929*+00	NM	0.94151	0.50421	0,80200	2.53000	0.31700
13	8.3800"-04	1.1000"+01	NM	0.94149	0.55410	0.83300	2.26000	0.36858
14	1.3460*-03	1.4346*+01	11M	0.95230	0.63619	0.87900	1.90900	0.46045
13	1.6000"=03	1.6019"+01	NM	0.95573	0.57347	0.89600	1.77000	0.50621
10	1.8540"-03	1.6824"+01	NM	0.95884	0.69070	0.90400	1.71300	0.52773
17	2.3620"-03	1.9507*+01	NM	0.96602	0.74522	0.92600	1.54400	0.59974
18	2.8700"-03	2.2554"+01	NM	0.97303	0.80268	0.94600	1.38900	0.66107
19	3.3780"-03	2.5551"+01	NM	0.98316	0.85541	0.96400	1.27000	0.75996
20	3.8860"-03	2.8491*+01	ИM	0.99024	0.90416	0.97800	1.17000	0.83590
51	4.6480"-03		NM	0.99725	0.95447	0.99100	1.07800	0.91929
22	5,9180"-03	3.4272"+01	NM	1.00021	0.99306	0.99900	1.01200	0.98715
0 53	7.1880*-03		NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

590203	06 WINKL	LER	PROFILE	TABULATION	31	POINTS, DE	LTA AT POI	NT 31
I	Y	PT2/P	P/PD	T0/T0D	DEILE	UZUD	T/TO	RHO/RHOD*U/UD
1	0.0000*+00	1.0000#+00	ИM	0.60245	0.00000	0.00000	3.76100	0.0000
2	5.9 700"-04	4.1368*+00	NM	0.92988	0.32807	0.63200	3.71100	0.17030
3	6.2200"-04	4.3588"+00	ИM	0.93245	0.33807	0.64500	3.64000	0.17720
4	6.4800°-04	4.3984*+00	NM	0.93222	0.33982	0.64700	3,62500	0.17848
4 5	4.7300"-04	4.5832"+00	Ι₩	0.93388	0.34787	0.65700	3.56700	0.18419
6 7	4.0000"-04	5.8411*+00	NM	0.94048	0.39821	0.71300	3.20600	0.22240
	9.2700*-04	6.8832"+00	NM	0.94512	0.43542	0.74900	2.95900	0.25313
8	1.0540"-03	7.7811"+00	NM	0.94924	0.46507	0.77500	2.77700	0.27908
9	1.1810"-03	9.9165"+00	ИM	0.89050	0.52886	0.79400	2.25400	0.35226
10	1.3080"-03	9,2425"+00	NM	0.95099	0.50960	0.50500	2.51400	0.32140
11	1.4350"-03	9,7098"+00	(IM	0.95141	0.52303	0.81700	2.44000	0.33484
12	1.5620*-03	1.0209*+01	ИM	0.95198	0.53700	0.82600	2.36600	0.34911
13	1.6890"-03	1.0647*+01	N₩	0.95384	0.54897	0.83400	2.30500	0.36135
14	1.8160"-03	1.0936"+01	NM	0.95494	0.55674	0.83900	2.27100	0.36944
15	2,0700*-03	1.1360"+01	NM	0.95652	0.56793	0.84600	2.21900	0.38125
l 6	2.3240"-03	1.1832"+01	NM	0.95737	0.58012	0.65300	2.16200	0.39454
17	2.5780"-03	1.2605"+01	NM	0.95737	0.59954	0.86300	2.07200	0.41651
18	2.6320"-03	1.3323"+01	NM	0.95847	0.61706	0.87200	1.99700	0.43665
19	3.0860"-03	1.4232"+01	NM	0.95894	0,63853	0.88200	1,90800	0.46226
20	3.3400"-03	1.5081"+01	NM	0.96049	0.65793	0.89100	1.83400	0.48582
₹1	3,5940*-03	1.5795"+01	NM	0.96172	0.67384	0.89800	1.77600	0.50563
22	1.8460"-03	1.6607"+01	NM	0.96222	0.69146	0.90500	1.71300	0.52631
53	4.1020"-03	1.7714"+01	NM	0.96348	0.71460	0.91400	1.63500	0.55902
24	4.3560"-03	1.6352"+01	NM	0.96461	0.72790	0.91900	1.59400	0.57654
25	4.9910"-03	2.0836"+01	NM	0.97245	0.77683	0.93800	1.45800	0.64335
56	5.6260"-03	2.3384"+01	NM	0.98315	0.82402	0.95600	1,34600	0.71025
27	6.2610"-03	2.5860*+01	ΝM	0.98846	0.86739	0.96900	1.24800	0.77644
59	4.8960"-03	2.8281"+01	NM	0.99121	0.90781	0.97900	1,16300	0.84179
29	8.1660"-03	3.2380"+01	NM	0.99915	0.97241	0.99500	1.04700	0.95033
30	9.4360"-03	3.3816"+01	NM	0.99992	0.99404	0.99900	1.01000	0.98911
D 31	1.0706"-02	3.4217"+01	ŅМ	1.00000	1,00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD,T/TD ASSUME P#PD

axisymmetric

M : 1.85, 2.10, 2.57

R THETA X 10-3 : 2 - 4

TW/TR : About 1

6001

ZPG - AW

Continuous running tunnel with interchangeable fixed nozzles. W = H = 0.30 m $0.05 < PO < 0.1 \text{ MN/m}^2$. TO : 313 K. Air. 3 < RE/m X $10^{-6} < 6$.

MICHEL R., 1960. Résultats sur la couche limite turbulente aux grandes vitesses. X^{me} Congrès de Mécanique Applique Stresa 1960. Publication ONERA no 102.

And Michel R., private communications.

- 1 The tests were made on the outer surface of a circular cylinder (diameter 39.25 mm) aligned with the axis of the 300 mm square tunnel test section. The cylinder had an ogival nose which was continued upstream as
- 3 a long thin rod, on which transition took place. The seven test stations were between X = 150 and 350 mm
- 2 from the point of the ogival nose (X = 0). The free stream Mach number did not vary more than 1 % in this region.
- 6 Static pressure was measured at intervals along the model surface, as was the wall temperature. The static
- 7 tappings (d = 0.3 mm) were drilled at 10 mm intervals. Pitot profiles were obtained with an FPP (h_1 = 0.12 h_2 = 0.07, b_1 = 6 mm) at X values of 150, 183, 216, 249, 282, 315 and 348 mm.
- 9 The data were reduced using a linear Crocco temperature relationship with a recovery factor of 0.88, determined from the equilibrium temperature of the model. The static pressure was assumed constant through the boundary layer.
- 12 The editors' have replaced the author's temperature-velocity correlation by the normal Crocco Van Driest relationship, assuming a recovery factor of 0.896 and using the author's TW value. We thus presume that there
- 13 is slight heat transfer. We present all the data in our possession, consisting of three sequences of profiles each for a different Mach number. The author also reports measurements at M = 2.97 and a further set at M = 2.57 with moderate heat transfer.
- § DATA: 6001 0101 0306. Pitot profiles. NX = 6 or 7.

15 Editors' comments

The entry describes an early experiment in an axisymmetric configuration for which δ/RZ is up to 40 % so that transverse curvature effects may well be considerable. Upstream history effects should be weak, if not negligible. Comparisons should be made with other low Reynolds number tests made on flat plates. (Coles - CAT 5301, Shutts et al. - CAT 5501).

Despite the small physical scale of the experiment, measurements extend within the momentum deficit peak. The computed total pressure gradient in the outer part of the layer is large enough to suggest that measurements should have continued to rather greater values of y.

0001-0-1								
CAT 6001	MICHEL		BOUNDARY CON	DITIONS AND E	VALUATED !	DATA. SI UNII	18.	
RU[] X	MD # P0D# T0D#	TWYTR *OPYES SW *	REDZW PEDZD DZ	CF CG PI2*	H12 H32 H42	H13K H13K D2K	PW TW* UD	PD TD TR
60010101	1.8500	0.9930	1.4495"+03	0.0000#+00	2.7262	1.3617	8.6884"+03	8.6884"+03
1.5000*=01	5.3900*+04	1.0000	2.1269"+03	Nm	1.7932	1.7767	2.9957"+02	1.8700"+02
1.9625*=02	3.1500*+02	0.0000	3.2671"-04	Nm	0.0836	3.9255*-04	5.0723"+02	3.0169"+02
60010102	1.8500	0.9930	1.6391"+03	0.0000#+00	2.7425	1.3944	8.8012"+03	8.8012"+03
1.8300*=31	5.4600"+04	1.0000	2.4032"+03	#W	1.7827	1.7669	3.0243"+02	1.8878"+02
1.9625*~02	3.1800"+02	0.0000	3.6913"-04	MM	0.0833	4.4640"=04	5.0964"+02	3.0456"+02
60010103	1.8500	0.9930	1.7799"+03	0*0000#+00	2.7283	1.3851	8.7529*+03	8.7529"+03
1.9900*=01	5.4300*+04	1.0000	2.6116"+03	!!w	1.7829	1.7674	2.9957*+02	1.8700"+02
1.9625*=02	3.1500*+02	0.0000	3.9821"-04	!!h	0.0834	4.8116"-04	5.0723*+02	3.0169"+02
60010104	1.8500	0.9930	1.9170"+03	0.0000#+00	2.7221	1.3816	9.0914"+03	9.0914"+03
2.1000*-01	5.6400"+04	1.0000	2.8105"+03	NM	1.7625	1.7669	3.0243"+02	1.8876"+02
1.7625*+02	3.1800"+02	0.0000	4.1793"-04	NM	0.0835	5.0482"-04	5.0964"+02	3.0456"+02
60010105	1.8500	0.9930	2.1665*+03	0-00004+00	2.6995	1.3684	8.8335*+03	8.8335*+03
2.4900"-01	5.4800*+04	1.0000	3.1769*+03	NM	1.7523	1.7666	2.4957*+02	1.8700*+02
1.9625"-02	3.1500*+02	0.0000	4.6028*-04	NA	0.0637	5.7909 -04	5.0723*+02	3.0169*+02
60010106	1.8500	0.9930	2.3434*+03	0.0000 "+00	2.6866	1.3613	6.6335"+03	8.8335"+03
2.8100*-01	5.4800"+04	1.0000	3.4384*+03		1.7825	1.7666	2.9957"+02	1.8700"+02
1.9625*-02	3.1500"+02	0.0000	5.1951*=04		0.0838	6.2547*-04	5.0723"+02	-3.0169"+02
60010201 1.5000*=01 1.9625*=02	2.1000 3.5400*+04 3.1300**02	0.9908 1.0000 0.0000	1.2809*+03 2.0561*+03 3.3792*=04	NM 0.0000*+00	3.0920 1.8025 0.0980	1.3608 1.7626 4.2323"-04	6.0582*+03 2.9499*+02 5.4299*+02	6.0582"+03 1.6631"+02 2.9774"+02
60010202	2.1000	0.9909	1.4559*+03	0.0000#+00	3.0725	1.3683	6.1019*+03	6.1019*+03
1.8300"-01	5.5800*+04	1.0000	2.3358*+03	NM	1.5000	1.7609	2.9693*+02	1.6738*+02
1.9625"-02	3.1500*+02	0.0000	3.8677*+04	NH	0.0979	4.6211"-04	5.4472*+02	2.9965*+02
60010203	2.1000	0.7913	1.6371"+03	0.0000#+00	3.0651	1.3637	6.1347*+03	6.1347*+03
2.1700"-01	5.6100"+04	1.0000	2.6264"+03	IM	1.7950	1.7760	2.9798*+02	1.6791*+02
1.9625"-02	3.1600"+02	0.0000	4.3445"-04	UM	0.0975	5.4347*-04	5.4559*+02	3.0060*+02
60010704	2.1000	0.9909	1.8677"+03	0.0000#+00	3.0502	1.3565	6.2769*+03	6.2769"+03
2.4800*=01	5.7400"+04	1.0000	2.9764"+03	IIM	1.7928	1.7739	2.9693*+02	1.6738"+02
1.9625*=02	3.1500"+02	0.0000	4.8232"-04	VM	0.0979	6.0357*-04	5.4472*+02	2.9965"+02
60010205 2.6200"-01 1.9625"-02	2.1000 5.7400*+04 3.1600*+02	0.9913 1.0000 0.0000	1.4934*+03 3.1980*+03 5.1703*=04	NM V.0000*+00	3.0477 1.7895 0.0975	1.3558 1.7704 6.4834"=04	6.2769*+03 2.9798*+02 5.4559*+02	6.2769#+03 1.6791#+02 3.0060#+02
60010206	2.1000	0.9909	2.1142"+03	0,0000"+00	3.0452	1.3569	6.1894*+03	6.1894"+03
3.1500"-01	5.6000*+04	1.0000	3.3918"+03	NM	1.7863	1.7668	2.9693*+02	1.6736"+02
1.9625"-02	3.1500*+02	0.0000	5.5370"-04	NM	0.0979	4.9545"-04	5.4472*+02	2.9965"+02
60010207 3.4600"-01 1.9625"-02	2.1000 5.7300"+04 3.1500"+02	0.9909 1.0000 0.0000	2.2844*+03 3.6650*+03 5.9098*-04	NM 0.0000*+00	3.0415 1.7840 0.0979	1.3572 1.7641 7.4273"-04	6.2659*+03 2.9693*+02 5.4472*+02	6.2659*+03 1.6738*+02 2.9965*+02
60010301 1.5000"-01 1.9625"-02	2.5700 8.7700*+04 3.1700*+02	0.9903 1.0000 0.0000	1.1190"+03 2.1448"+03 2.6960"-04	NM 0.0000*+00	4.0322 1.6052 0.1174	1.4545 1.7753 3.9415"-04	4.6042*+03 2.9533*+02 6.0219*+02	4.6042*+03 1.3658*+02 2.9824*+02
60010302	2.5700	0.9904	1.3070"+03	0.0000*+60	3.9941	1.4316	4.6409*+03	4.6409*+03
1.9300"-01	8.5400*+04	1.0000	2.5075"+03	NM	1.6032	1.7742	2.9351*+02	1.3572*+02
1.9625"-02	3.1500*+02	0.0000	3.3290"-04	NM	0.1173	4.5377*-04	6.0029*+02	2.9635*+02
60010303 2.1600"-01 1.9525"-02	2.5700 8.9100"+04 3.1500"+02	0.9904 1.0000 0.0000	1.5187*+03 2.9139*+03 3.8381*-04	0.0000#+00 NM	3.9778 1.7986 0.1173	1.4252 1.7699 5.2516*-04	4.6777"+03 2.9351"+02 6.0029"+02	4.6777*+03 1.3572*+02 2.9635*+02
60010304	2.5700	0.9901	1.7375*+03	NM	3,9509	1.4131	4.7406*+03	4.7406"+03
2.4900"-01	9.0300*+04	1.0000	3.3313*+03	NM	1,7964	1.7684	2.9436*+02	1.3615"+02
1.9625"-02	3.1600*+02	0.0000	4.3491*-04	0.0000*+00	0,1177	5.9571*-04	6.0124*+02	2.9730"+02
60010304	2.5700	0.9901	2.0714"+03	NM	3.9029	1.3970	2.9436*+02	4.7249*+03
3.1500#-01	9.0000*+04	1.0000	3.9716"+03	NM	1.7979	1.7690		1.3615*+02
1.9625#-02	3.1600*+02	0.0000	5.2023"-04	0.0000*+00	0.1182	7.0754"-04		2.9730*+02
60010306 3.4800*=01 1.9625*=02	2.5700 9.0400*+04 3.1600*+02	0.9901 1.9900 0.0000	2.1542*+03 4.1303*+03 5.3862*-04	NM 0.0000*+00	3.9108 1.7928 0.1179	1.4008 1.7645 7.3740"-04	4.7459"+03 2.9436"+02 6.0124"+02	4.7459"+03 1.3615"+02 2.9730"+02
	· · · · -			-	_		·	

60010101	MICHEL	PROFILE T	TABULATION .	18 POINTS,	DELTA AT POINT	18
I	Y PT2/P	P/PD	T0/T0D	M/MD U/UD	T/TD R	H0/RH00*U/UD
2 9.99 3 1.99 4 4.00 5 5.98 6 8.01	00"+00 1.0000"+00 00"-05 1.5177"+00 80"-04 1.7748"+00 55"-04 2.1839"+00 50"-04 2.4701"+00	ИМ ИМ ИМ ИМ	0.96577 0 0.97031 0 0.97602 0 0.97942 0	.00000 0.0000 .43007 0.5168 .51010 0.6008 .60515 0.6938 .66015 0.7441 .70514 0.7834	0 1.44402 3 1.36736 3 1.31459 7 1.27076 4 1.23441	0.00000 0.35789 0.43307 0.52780 0.56561
8 1.25 9 1.49 10 1.75 11 1.99	00"=04 2.9747"+00 10"=03 3.2032"+00 85"=03 3.4435"+00 05"=03 3.6566"+00 80"=03 3.6443"+00 00"=03 4.0748"+00	NW NW NW NW	0.98658 0 0.98903 0 0.99087 0 0.99238 0	.74514	1 1.17352 9 1.14520 0 1.12106 1 1.10108	0.67966 0.72015 0.76169 0.79817 0.82919 0.86718
13 2.50 14 2.74 15 3.00 16 3.50 17 4.00	20"-03 4.2330"+00 95"-03 4.3949"+00 10"-03 4.5157"+00 05"-03 4.6155"+00	NM NM NM NM	0.99537 0.99654 0.99742 0.99863 0.99943	.92006 0.9479 .94005 0.9614 .95504 0.9713 .97602 0.9848 .99001 0.9937	7 1.06158 2 1.04598 1 1.03436 8 1.01824 5 1.00757	0.89298 0.91916 0.93904 0.96724 0.98628
D 18 4.50 INPUT VARIA	00*=03 4.9023*+00 BLES Y/L,U/UD,T/T	NM ASSUME P	IJOOOOO 1 RPD AND VAN	.00000 1.0000 DRIEST	0 1,00000	1.00000
6001310	6 MICHEL	PPAF	ILE TABULATI	מוחש כב אח	TS, DELTA AT P	UINT 22
1	A BISNE				UZUD 1710	
2 3	0.0000"+00 1.0000" 1.3795" 1.7946"=04 1.5753"	1+00 HM	0.95100 0.96287 0.96687	0.37505 0. 0.45005 0.	00000 1.6019 45619 1.4795 53828 1.4303	1 0.30834 7 0.37632
5 6	3.9999"=04 1.9201' 5.9965"=04 2.1595' 2.3622'	'+00 NM '+00 NM	0.97250 0.97572 0.97818	0.60015 0.	63794 1.3596 68913 1.3185 72616 1.2868	2 0.52265 0 0.56432
8	9.9630"-04 2.5366' 1.2529"-03 2.7103' 1.5006"-03 2.6604'	'+00 NM	0.98017 0.98203 0.98375	0.70214 0.	75481 1.2611 78088 1.2368 80452 1.2141	5 0.63135
10 11	1.7487"-03 3.0582' 2.0033"-03 3.2166' 2.2512"-03 3.3667'	+00 IIM	0.98552 0.98700 0.98836	0.75813 0. 0.76213 0.	82751 1.1913 84669 1.1719 86385 1.1540	8 0.69458 0 0.72249
13 14	2.4991"-\3 3.5000' 2.7470"-\3 3.6294'	+00 NM	0.98953	0.82311 0. 0.84111 0.	57636 1.1387 59184 1.1242	5 0.77134 7 0.79326
15 16 17	3.0016"-03	+00 NM	0.99196 0.79406 0.99596	0.89808 0. 0.93006 0.	90796 1.1066 93282 1.0768 95473 1.0537	7 0.86463
19	4.5114' 4.9982"-03 4.6445' 5.5007"-03 4.7467'	+00 NM	0.97736 0.99828 0.99897	0.97003 0.	97065 1.0351 96103 1.0228 98870 1.0136	3 0.95914
21	6.0032"-03 4.5155' 6.7000"-03 4.9023'	'+00 N4	1.0000	0.99001 0.	99375 1.0075 00000 1.0000	7 0.98628
IMPUT V	ARIAGLES Y/L,U/UD	T/TD ASSUM	ME PEPD AND	VAN DRIEST		
6001020	1 MICHEL	PROFI	ILE TABULATI	ON 20 POIN	TS, DELTA AT P	0[NT 20
I	Y PT2/I	P/PC	70/100	HZMD	סדיד מטיע	RH0/RH0D±U/UĐ
ş	0.0000"+00 1.0000' 9.9900"-05 1.4322'	+00 NM	0.94247	0.00000 0.	00000 1.7737 44609 1.6238	
4	1.9980"-04 1.9594' 4.0014"-04 2.5243'	,+00 NM	0.96530 0.97237	0.59017 0.	69828 1.3999	5 0.49879
6	5.9940"-04 2.8871' 7.9920"-04 3.1949'	+00 NM	0.97624 0.97 92 4	0.68617 0.	74708 1.3450 78300 1.3021	7 0.60131
	9.9900"-04 3,4842' 1.2474"-03 3.7901'		0.98185 0.98444		81322 1.2645 84211 1.2272	
9 10	1.5012"-03 4.1034' 1.7496"-03 4.3762'	+00 NM	0.98691	0.79614 0.	86898 1.1913 89047 1.1618	
11	1.99d0"=03 4.6500' 2.2518"=03 4.6445'	,+00 NW	0.99088	0.85511 0.	91048 1.1336 92385 1.1145	6 0.60312
13	2.5002"-03 5.0336' 2.7456"-03 5.2475'	,+00 NW	0.99355	0.89609 0.	93753 1.0946 94958 1.0768	2 0.85648
15	3.0024"-03 5.4139	+60 NM	0.99578	0.93106 0.	95951 1.0620	3 0,90346
17	4.0014"-03 5.8978"	'+00 NM	0.99737 0.99856	0.97602 0.	97520 1.0383	3 0.90582
19	4.4982"-03 6.0196" 5.0004"-03 6.1091	+00 IIM	0.99922	0.99501 0.	99265 1.0114 99719 1.0043	0.99283
	5.4000"-03 6.1654		1.00000		00000 1.0000	0 1.00000
INPUT V	ARIADLES Y/L,U/UD	T/TD ASSUM	ME PHPO AND	VAN DRIEST		

60010	206 MIC	HFI	PROFILE	TABULATION	23	POINTS, DE	I TA AT POT	NT 23
1	γ	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000"+00	1.0000"+00	NM	0.94262	0.00000	0.00000	1.77401	0.0000
ż	1.0010"-04	1.3390"+00	NM	0.95405	0.31405	0.40363	1,65183	0.24435
3	2.0020"-04	1.6408*+00	NM	0.96029	0.41509	0.51992	1,56884	0.33140
4	3.9970"-04	2.1953"+00	NM	0,96851	0.53516	0.64556	1,45516	0.44364
5	5.4990"-04 7.9800"-04	2.4864*+00	NW NW	0.97199 0.97435	0.58417	0.69270 0.72306	1.40608	0.49264 0.52678
6 7	1.0010 -03	2.7010"+00 2.6730"+00	NM	0.97614	0.61717	0.74534	1.34711	0.55328
8	1.2530*-03	3,0849"+00	NM	0.97827	0.67217	0.77124	1.31649	0.58583
ğ	1.4980"-03	3.3024*+00	NM	0.98026	0.70017	0.79461	1,28796	0.61695
10	1.7500*-03	3,4923"+00	ИM	0,98195	0.72416	0.81403	1.26358	0.64422
11	2.0020*-03	3.6724"+00	NM	0.98349	0.74616	0.83134	1.24135	0.66970
12	2.2470"-03 2.4990"-03	3.8412"+00 4.0236"+00	NM	0.98488	0.76615	0.84668	1.22126	0.69328
13 14	2.7510"-03	4.2113*+00	NM NM	0.98632 0.98775	0.78715	0.86238	1.20030	0.71847 0.74410
iš	3.0030*-03	4.3855"+00	NM	0.98903	0.82713	0.89118	1.16087	0 76743
16	3.5000"-03	4,6982"+00	ИM	0.99122	0.86011	0.91386	1.12050	0.80952
17	3.9970"-03	5.0035"+00	NM	0.99324	0.89109	0.93431	1.09935	1.84987
1.5	4.5010*-03		NM	0.99503	0.91907	0.95209	1.07313	0.88720
19 20	4.9980*-03	5.5407*+00	MM MM	0.99653	0.94305	0.96682	1.05104	0.91987
21	5.5020"-03 5.9990"-03	5.7774"+00 5.9641"+00	NM	0.99789 0.99892	0.96503	0.97992	1.03109	0.95037 0.97431
žž	6.5030°-03	6.0979"+00	NM	0.99964	0.99401	0.99662	1.00527	0.99140
D 23	7.0000"-03		ŇM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y/L,U/UD,T/TD	ASSUME	P=PD AND VA	N DRIEST			
600101	-			TABULATION		POINTS, DE	LTA AT POI	NT 17
I	Y	P12/P	P/P0	T0/T0D	4/110	סטעט	1/10	RHO/RHOD±U/UD
<u>i</u>	0.0000"+00	1.0000"+00	ИW	0.73164	0.00000	0.00000	2,16231	0.0000
ş	1.0185"=04	1.2423*+00	NM	0.94041	0.22003	0.31515	2.05146	0.15362
3	1,9835"=04 3.9770"=04	2.1272"+00 3.1905"+00	N.₩ N.₩	0.95619 0.96760	0.42716	0.57123	1.78826	0.31943
5	6.0140"-04	3.5117"+00	N.A.	0.97293	0.52321	0.70585	1.58762	0.44460 0.51014
6	8.0025"-04	4.2654*+00	NM	0.97637	0.66521	0.79553	1.43019	0.55624
7	9.9910"-04	4.7928"+00	NM	0.97945	0.70320	0.82460	1,37506	0.39968
8	1.2513"-03	5.1655"+00	NM	0.98242	0.74120	0.85197	1.32130	0.64451
9	1.4986"-03	5.6007*+00	NM	0.98500	0.77518	0.07513	1.27448	0.64665
10	1.7508"-03	6.0150"+00	NM NM	0.98728	0.80617	0.89510	1.23295	0.72603
12	2.4977"-03	6.3693"+00 7.1156"+00	NM NM	0.98921 0.99265	0.83315	0.91180	1.19770	0.76129 0.82901
13	2.7973"-03	7.7901*+00	NM	0.99553	0.92708	0.96437	1.08207	0.89123
14	3.4968"-03	5.3177"+00	NM	0,99760	0.96003	0.98100	1.04414	0.93954
15	4.0012"-03	5.6963"+00	MM	0.99897	0.98302	0.99203	1.01651	0.97405
D 17	4.4957*-03	8.8806*+00	P) ht	0.99965	0.99401	0.99723	1.00649	0.99080
D 17	4.8500"-03	6.9620*+00	HW	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y/L,U/U0,T/TD	ASSUME I	P#PD AND VA	N DRIEST			
60010	306 410	HEL	PROFILE	TABULATION	22	POINTS, DE	LTA AT POI	NT 22
1	Y	PT2/P	P/PD	C01107	MZMD	U/U0	T/TD	RH0/RH00+U/U0
i	0.0000*+30	1.1000"+00	ŊM	0.93153	0.0000	0.00000	2.16206	0.00000
į	9.6200"-05	1.1235*+00	NM	0.93687	0.16001	0.23206	3.10332	0.11033
3	1.7980*-04	1.5158*+00	NM	0,94657	0.30908	0.43170	1,95078	0.22129
4	3,7960"=04	2.5631"+00	NM	0.96128	0.48719	0.63494	1.69356	0.37381
5	5.9940*-04	3.0264*+00	₩'n	0.96603	0.54220	0.68903	1.61496	0.42666
7	7.9920"-04	3.3414"+00 3.6160"+00	NM NM	0.96894	0.57621	0.72043	1.56326	0.46085 0.48993
á	1.2506"-03	3.9381"+00	Nh uw	0.97131 0.97390	0.63521	0.7/1515	1.52093	0.52311
Ÿ.	1.5022*+03	4.2097"+00	MM	0.97596	15046.0	0.79154	1.43750	0.55065
10	1.7464"-03	4.4579"+90	NM	0.97775	1.68221	0.80874	1.40534	0.57547
11	1.9980"=03	4,6910"+00	ИМ	0.97935	0.70220	0.82365	1.37647	0.59852
12	2.5012***	5.1655"+00	NM III	0.98240	0.74120	0.85198	1.32127	0.64482
13	2.9970"-03 3.5002"-03	5.6928"+00 6.2075"+00	NM UM	0.98550	0.78218	0.87973	1.26499	0.69545
15	3.9960*-03	6.7036*+00	MM Mm	0.98827 0.99074	0.82016	0.90387 U.92483	1,21455	0.74420 0.79070
16	4.4992"-03	7.1155*+00	ИM	0.99265	0.88312	0.94076	1.13460	0.82901
17	4.9950"-03	7.58734+00	lin.	0.99469	0.91409	0.95757	1.09739	0.87259
18	5,4982"-03	7,9957"+00	MM	0.99035	0.94007	0.97103	1.06696	0.91009
19	6.0014"-03	8.3502*+00	И₩	0.99772	0.96204	0.98198	1.04168	0.94251
51 50	6.4972"=03 7.0004"=03	6.6464"+00 6.8806"+90	NM NM	0.99881 0.99945	0.98002	0.79066	1.02181	0.96951 0.99080
D 25	7.4000"-03	4.9820"+00	NW	1.00000	1.00000	1.00000	1.00000	1.00000
	VARIABLES	Y/L,U/UD:1/TD	ASSUME (PEPD AND VA				

M : 5 R THETA X 10 ⁻³ : 3 - 7	6201	
TW/TR: 0.55, 0.65, 1.0	ZPG AW/SHT	

Blow-down tunnel with fixed nozzle block. Running time 45-90 secs. W = 0.15, H = 0.18, L = 0.5 m. PD: $1.7 \, \text{MN/m}^2$. 330 < TO < 660 K. Air. 15 < RE/m X 10^{-6} < 45.

MOORE D.R., 1962. Velocity similarity in the compressible turbulent boundary layer with heat transfer, DRL 480.

- The test boundary layer was formed on a flat plate model mounted with the test surface facing downwards near the centre line of the tunnel. Two models were used, and "there was essentially no difference between the constant temperature characteristics of the two plates". The second and principal model, which is described, was fabricated from pure copper with a stainless steel leading edge (X = 0) chamfered at 15° on the upper side (L = 0.425, W = 0.152 m). The plate was actively cooled by two separate circuits which were manually controlled to maintain a constant wall temperature. Near the leading edge a 12.7 mm strip of No 80 grit cloth was bonded to the surface to act as a transition trip.
- 6 The plate temperature was monitored by seven thermocouples mounted at roughly 40 mm intervals back from X = about 80 mm. The first two were on the centre line and the remainder about 20 mm to one side. Static
- 7 tappings were placed at X = 135, 240, 310 mm about 25 mm to the same side as the 5 thermocouples. Pitot traverses were made with a double CPP. The two tubes $(d_1 = 0.914 \text{ mm})$ were separated by 3.81 mm in the Y-direction and after (E) about 20 mm they were successively sleeved into larger diameter tubing. The
- 8 traverse gear was driven from the floor of the tunnel to give a profile normal at X = 254 mm,
- 9 The author has reduced the data assuming that static pressure is constant at the wall value through the layer and that the temperature and velocity are related by $T/TN = 1 (1 TD/TW) (U/UD)^2$ (the Crocco
- 10 temperature velocity relation). No probe corrections were applied.
- 12 The editors have presented the four complete profiles tabulated by the author. We have used the Crocco / Van Driest temperature-velocity correlation with recovery factor 0.896 in place of that used by the author. We found it necessary to replace our usual integration procedure with a trapezoidal integration rule. There are in addition some measurements made with the outer Pitot tube removed which do not, however, extend as far as the boundary layer edge. The authors' final measured point has been set as the D-state.
- 5 DATA: 6201 0101-0401. PT2 profiles.

15 Editors' comments

This entry is presented primarily as a comparison for the rough surface experiment of Young - CAT 6506. The tunnel is the same, and the model formed the basis for that used by Young. The paper is mainly concerned with fitting SHT data to the law of the wall and includes a description of some attempts to use special forms of Preston tube. An analysis of the results is to be found in Rochelle (1963).

The profile data is sparse, rough, and in two cases (0101, 0201) displays large gaps.

CAT 6201	HOORE		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	S.	
RUN	MD #	TW/TR	REDZW	CF	H12	H12K	PW	PD
X *	POD#	PW/PD#	REDZD	CQ	H32	H32K	TW*	TD
RZ	10D#	SW #	DZ	PI2*	H42	D2K	UD	TR
62010101	4.9180	0.9859	3.0234"+00	0.0000#+00	11.9516	1.8171	7.3987*+00	7.3987*+00
2.5400*~01	3.5556*+03	1.0000	1.3661"+01	NM	1.8438	1.8319	3.0337*+02	5.7684*+01
Infinite	3.3672*+02	0.0000	1.6882"-04	NM	0.1718	3.7489"-04	7.4890*+02	3.0770*+02
62010201	4.7790	0.9917	3,2714"+00	0.0000"+00	11.3113	1.8298	6.7097*+00	8.7097"+00
2.5400=-01	3.5472*+03	1.0000	1,4193"+01	Nh	1.8606	1.8505	3.0322*+02	6.0038"+01
INFINITE	3.3426*+02	0.0000	1,6265"-04	Nh	0.1663	3.3271*-04	7.4244*+02	3.0576"+02
62010301 2.5400~~01 Infinite	4.8900 3.5654"+03 5.5417"+02	0.6467 1.0000 0.0000	3.1336"+00 9.0736"+00 2.3202"+04	NM 0.0000"+00	9.3618 1.8458 0.4817	1.7503 1.8233 4.4003*+04	7.6687*+00 3.2757*+02 9.5981*+02	7.6687*+00 9.5836*+01 5.0650*+02
62010401 2.5400=-01 Infinite	4.7900 3.5084*+03 6.4817*+02	0.5473 1.0000 0.0000	3.1890"+00 7.6431"+00 2.3746"-04	NM 0.0000*+00	8.4349 1.8409 0.5712	1.7583 1.8241 4.2946*+04	8.5014*+00 3.2446*+02 1.0343*+03	6,5014"+00 1,1598"+02 5,9282"+02

TRAPEZOIDAL RULE FOR ALL INTEGRATIONS

6201030	1 MOORE		PROFILE	TABULATION	51	POINTS, DE	LTA AT POI	NT 21
1	Y	PT2/P	P/PD	T0/T00	M/MD	U/UD	T/10	RHO/RHOD*U/UD
i	0.0000"+00	1.0000*+00	NM	0.59110	0.00000	0.00000	3.41798	0.0000
Ž	4.5720"-04	5.5386"+00	NM	0.84631	0.40491	0.67061	2.74300	0.24448
	4.8260"=04	5.7433"+00	NM	0.85030	0.41309	0.67970	2.70737	0.25105
T T	5.3340"-04	6.1654 +00	NM	0.85807	0.42945	0.69729	2.63640	0.26449
- 3	7.8740"-04	8.3982"+00	NM	0.89114	0.50716	0.77092	2.31065	0.33364
7	9.1440*-04	8.7200*+00	NM	0.89504	0.51738	0.77948	2.26978	0.34342
ï	1.1684"-03	1-0213"+01	NM					
<u>′</u>				0.91108	0.56237	0.81433	2.09681	0.38837
•	1.4224"-03	1.1080*+01	NM	0.91908	0.58691	0.83156	2.00746	0.41424
9	1.6764"-03	1.2138"+01	NW	0.92780	0.61554	0.85022	1.90786	0.44564
10	1.9304"-03	1.3410"+01	NM	0.93701	0.64826	0.86978	1.80020	0.48316
	2.1844"-03	1.4748*+01	NM	0.94548	0.68098	0.88764	1.69904	0.52244
	2.4384"-03	1.6062"+01	NM	0.95279	0.71166	0.90298	1.60797	0.56087
13	2.6924"-03	1.7482"+01	NM	0.95978	0.74335	0.91754	1.52357	0.60223
14	4.2672"-03	2.6771"+01	NM	0.99060	0.92434	0.98094	1.12622	0.87100
15	4.7244"-03	2.7592"+01	NM	0.99251	0.93865	0.98482	1.10079	0.89465
16	4.9784"-03	2.8786 +01	NM	0.99512	0.95910	0.99013	1.06575	0.92904
17	5.2324"-03	3.0316"+01	NM	0.99822	0.98466	0.99641	1.02400	0.97305
iá	5.4864*-03	3.0876"+01	NM NM	0.99430	0.99387	0.99858		
							1,00951	0.98917
19	5.7404"-03	3.1190"+01	NM	0.99988	0.99898	0.99976	1.00158	0,99819
50	5.9944"-03	3,1329"+01	NM	1.00014	1,00123	1.00028	0.99811	1.00217
0.21	6.5024"-03	3.1253"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ABBUME PUPD AND VAN DRIEST

620104	O1 MOORE		PROFILE	TABULATION	17	POINTS, DE	LTA AT POI	NT 17
1	4	PT2/P	P/PD	TO/TOD	H/MD	U/UD	T/TD	RHO/RHOD*U/UD
1 2 3 4 5 6 7 8 9	0.0000"+00 4.5720"=04 4.8260"=04 5.0800"=04 6.0850"=04 6.850"=04 6.1280"=04 1.0468"=03 1.3208"=03 1.5748"=03	1.0000"+00 6.03280"+00 6.3280"+00 7.1762"+00 8.2683"+00 9.3629"+00 1.1006"+01 1.2061"+01 1.2061"+01	NM NM NM NM NM NM NM NM NM NM	0.50058 0.82130 0.82540 0.83531 0.84532 0.86309 0.86304 0.90021 0.91121 0.91714 0.92491	0.0000 0.43215 0.44468 0.45720 0.51148 0.54906 0.59708 0.62630 0.646597	0.0000 0.679280 0.69282 0.70575 0.72442 0.75888 0.68489 0.68489	2.79765 2.47181 2.42731 2.30279 2.31622 2.19202 2.09438 1.90868 1.81878 1.70306	0.0000 0.27487 0.28542 0.29619 0.31276 0.34547 0.38215 0.43218 0.46440 0.48343 0.51032
12 13 14 15 16 D 17	4.2926"-03 4.4958"-03 4.6228"-03 4.5766"-03 5.1308"-03 5.3848"-03	2.5734"+01 2.7121"+01 2.7474"+01 2.6425"+01 2.9271"+01 3.0007"+01	NM NM NM NM NM	0.98788 0.99215 0.99319 0.99586 0.99812 1.00000	0.92484 0.94990 0.93616 0.97286 0.98747 1.00000	0.97922 0.98656 0.98833 0.99292 0.99679 1.00000	1.12104 1.07868 1.06842 1.04166 1.01845 1.00000	0.87349 0.91459 0.92504 0.95321 0.97825 1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

Three configurations tested

See diagrams below

¢.

M: 1.6 - 4.5 (Free stream)

R THETA X 10-3 : 8 - 45

TW/TR : 1.0 and 0.7

6401

FPG/APG/Recovery
AW/MHT

Continuous tunnel W = H = 0.56 m, L = 1.0 m.

 $0.16 < PO < 0.5 \text{ MN/m}^2$. 300 < TO < 340 K. Air. $14 < \text{RE/m} \times 10^{-6} < 30$.

CLUTTER D.C. and KAUPS K., 1964. Wind tunnel investigation of turbulent boundary layers on axially-symmetric bodies at supersonic speeds. Douglas Aircraft Company Rep. No. LB 31425.

And Kaups K., private communication.

The tests were performed on the surface of a series of axisymmetric models mounted on the tunnel centre line. The boundary layer was formed on a nose piece, which finished as a parallel cylinder of 69.85 mm diameter. The length of the nose-piece used varied with Mach number as below:

Mach number: 1.61 2.50 3.30 4.50 Length of nose piece: 2.108 2.108 1.397 0.864 m

At low Mach numbers (M < 2.50) the nose extended upstream through the throat into the settling chamber. The coordinates of the nose fairing are given in table 1 together with those of the three centre bodies used. Each of these had an initial section 127 mm long, the same diameter as the nose piece, followed by a circular arc profile (X = 0 at the end of the parallel section) leading to a new parallel section of diameter 139.7 mm. For the blunt model (a) this started at X = 60.5 mm, while for the more gradual concave (b) and convex (c) models it started at X = 304.8 mm. The radii of curvature of the profiles were 69.85 mm for model (a) and 1.3475 m for the gradual models (b) and (c). Coordinates for the model surfaces are given in table 1. The centre bodies were made of electroformed nickel 2.54 mm thick, and the convex model (c) could be actively cooled with liquid nitrogen. The model surface was highly polished.

- The boundary layer was formed, in each case, under essentially constant pressure conditions on the nose extension. The test zone extended, with one exception, downstream of the nose / centre body junction at X = 0. For model (a) all the profiles were measured on the parallel section downstream of the increase in diameter, where the layer was relaxing after traversing a strong shock-induced separation ahead of the junction, and reattaching to the shoulder of the centre-body. The region of study was limited by the downstream reflection of the centre-body bow shock. All the profiles from model (b) were measured on the concave section of the centre body in a region of, nominally, steadily increasing pressure. The sharp change in slope at X = 0 for model C caused a bow shock, which was not however strong enough to make the boundary layer separate. For one case (M = 1.61) profiles were measured on both sides of the shock. For all other cases measurements commenced at least 0.15 m downstream, and extended beyond the end of the curved portion to include a relaxation region on the parallel section of the body. In this region there is some evidence of a pressure rise after over-expansion. The nose piece was not cooled so that for the heat-transfer runs the wall temperature also changed abruptly near X = 0. The cooling system provided uniformly exisymmetric cooling, but could not maintain uniform cooling in the X direction. The wall temperature therefore varied in the X direction.
- 5 Static tappings (D = 1.23 mm) were provided at 25.4 mm intervals in the range = 0.102 < X < 0.559 m and copper-constantan thermocouples were mounted at 50.8 mm intervals in the same range. An FEB was mounted at X = 0.356 m in the wall of the blunt model (a) but did not provide usable results. Heat transfer rates

were determined for the convex model (c) by cutting off the liquid nitrogen cooling and observing the wall temperature as a function of time, using the thin wall transient technique.

- Profiles were measured using a traversing rake mechanism carrying six FPP (flattened 1 mm tube h_1 = 0.20, h_2 = 0.05, h_1 = 0.46, h_2 = 0.30, 1 = 12.7 mm) and six ECP (α = 5° , d_1 = d_2 = 1.6, 1 = 12.7 mm) of the type designed by Danberg (1961). The lengths given are to the first part of the bracing structure. The rakes continued as a slender bundle of tubes to a distance 114 mm back from their tips, where they were connected to a miniature traverse gear so constructed as to present a mean width to the flow of about 20 mm (E). The whole could be mounted on wedges and strapped to the model so that the probe tips moved normal to the local model surface. A pitot-tube, or a further TTP, could be attached to the top of the traverse gear to monitor the free stream state. A CCP (dimensions not given) could be mounted on the side of the rake, but could not be used simultaneously as it caused disturbances affecting the TPP and TTP. A separate rake carrying six CCP was therefore used for static pressure traverses, on separate occasions.
- 8 The profile normal always intersected the body surface at X-values for which there were both static holes and thermocouples. The normal for the TPP was on the centre line, with the TTP about 8 mm (E) to one side. The static probe, when mounted, was about 12 mm (E) off to the other side. The six TPP and TTP were mounted at vertical intervals of 5.08 mm.
- 9 Traverses were made so that the range covered by each probe in the rake overlapped that of its neighbour. Only very small differences were observed between readings from adjacent probes. Data for reduction were taken from a curve faired through the experimental points. The TTP did not approach the surface as closely as the TPP, being mounted to one side, and being larger in size. A fourth order polynomial was fitted to the wall temperature and the innermost few measured data points, to provide TO data in this inner region. The static pressures recorded did not, when extrapolated, match the wall pressures. This discrepancy was attributed to uncertainties of calibration. The normal pressure gradient recorded was however very close, in the outer part of the boundary layer, to that predicted by an inviscid characteristic solution for the flow. The pressure distribution used in the data reduction was therefore taken as the measured distribution shifted so as to match the wall pressure. The shift ranged up to 10 %. No probe
- shear or displacement corrections were applied and the Sutherland viscosity relation was used. The editors
- 12 have presented all the profiles published by the authors. The D-state has been set arbitrarily at the
- outermost point presented. The profile series presented for each centre-body are distinguished by free stream Mach number. All are for a near adiabatic wall excepting series 12-15 for which there was substantial heat transfer. The original heat transfer data is presented graphically and is not reproduced here.
- § DATA: 6401 0101-1503. PT2 and TO profiles simultaneously, P profiles separately. NX up to 7.

15 Editors' comments

This series of tests includes some very interesting flows. Series 01-04 describe the recovery of a boundary layer which has undergone separation ahead of and reattachment to the blunt centre-body, followed by a rapid simple-wave expansion before entering the test-zone. Series 08-15 describe a boundary layer which has passed through a shock, without separation, before undergoing a relatively gentle simple wave expansion in the test-zone. There are no comparable results. Series 05-07, undergoing a simple wave compression, should be compared with Sturek & Danberg - CAT 7101.

The profiles contain a large number of data points and, on the evidence of our calculated PO values, extend well out into the free stream. The entropy gradients resulting from the shock systems of series O1-04 and O8-15 are, on the same evidence, not very severe. The shifting of the static pressure profile so as to match the well pressure could have been checked, with advantage, by a Pitot derived value in the free stream, at least for series O5-07. In the light of the analysis of Myring (1968) and Myring & Young (1968), it would seem that the necessary shift is perhaps greater than that actually used. Any influence on the reduced data is, however, not likely to be very great, a 10 % shift in P resulting in about a 5 % change in local Mach number and changes of order 10 % in the Reynolds numbers.

The profile measurements do not extend within the momentum deficit peak in about half the cases, so that integral values should be treated with reserve. There is considerable scatter in the adge states within a

given series (e.g. series 11) and some unexplained relatively large inconsistencies - as the edge Mach number variation for series 0.7, where it seems probable that there is a gross error for either 0701 or 0702. The author comments that in some cases it may not have been possible to arrange for the probes to be made parallel to the body surface, and that some unusual interference effects could result.

Values of δ/RZ can be as great as 40 %. The effects of transverse curvature, therefore, may well be significant.

Table 1

COORDINATES OF MODEL SURFACE

NOSEPIECE		MOD	EL A	MOI	DEL B	MODEL C		
X = 0 a	at nose	X = 0 at "	Station O"	X = 0 at	"Station O"	X = 0 at	"Station O"	
x	Y	X	Y	x	Y	X	Y	
0	0	0	34.93	0	34.93	0	34.93	
25.40	4.83	25.40 50.80	60.38 69.16	25.40	35.17	25.40	40.56	
50.80	9,32	60.49	69.85	50.80	35.89	50.80	45.69	
76.20	13.41		constant	76.20	37.08	76.20	50.32	
101.60	17,20	1	1	101.60	38.76	101.60	54.44	
127.00	20.55	[ſ	127.00	40.93	127.00	58.06	
152.40	23.57	ĺ	1	152.40	43.59	152.40	61.21	
203.20	28.52	1	ł	177.80	46.71	177.80	63.85	
254.00	32.08	I	1	203.20	60.34	203.20	66.01	
304.80	34.19			228.60	54.46	228.60	67.69	
355.60	34.93			254.00	59.08	254.00	68.89	
1	constant	[[279.40	64.21	279,40	69.61	
"Station O'	* 34.93			304.80	69.85	304.80	69.85	
		•	constant	1	constant	1	constant	
		558.80	69.85	558.80	69.85	558.80	69.85	

Nominal dimensions in mm.

Actual model coordinates were "within a few 0.001 inch - 0.0254 mm - of these".

The three models have circular profile sections, for which the radii of curvature are A : 69.85 mm B & C : 1.3475 m

CAT 6401	CLUTTER		SOUNDARY CON	DITIONS AND	EVALUATED D	DATA. SI UNIT	3.	
RUN	40 A	TW/TR	REDZW	CF	H12	H12K	PW	PD*
X *	POD	PW/PD	REDZD	CQ	H32	H32K	TWA	TD*
RZ +	T 0 0	3w +	05	b15	H42	02K	UD	TR
64010101	1.7380	0.9713	1.5637*+04	NM	2.2106	1.1769	3.3054"+04	3.3054*+04
1.0160"-01	1.7281*+05	1.0000	2.1731"+04	Ям	1.8790	1.8741	5.8626"+02	1.9122 +02
6.9850*=02	3.0675*+02	1,0000	9.6268"-04	ИМ	6.1300	1.05667-03	4.8187*+02	2.9473"+02
0.4030 402	3,0073 402	1,0000	V.0600 -V4	14.0	0.1300	1.0300 -03	4.0107 702	£ 1413 TVE
64010102	1.6760	0.9771	1.8292"+04	ИW	2.1375	1.1892	3.6271"+04	3.6271"+04
1.5240"-01	1.7268"+05	1.0000	2.4995*+04	HM.	1.8674	1.8621	2.8956"+02	1.9711"+02
6.9850"-02	3.0785*+02	1.0000	1.0901"-03	NM	0.1321	1.1934*-03	4.7178"+02	2.9633"+02
64010201	2.6310	0.9534	1.9178*+04	11m	3.4739	1.1697	1.4280"+04	1.4280"+04
1.5240"-01	2.9894*+05	1.0000	3.6572"+04	I/M	1.8710	1.8593	2.8255"+02	1.3228"+02
6.9850"-02	3.1541*+02	1,0000	1.4863"-03	HW	0.2069	1.8208"-03	6.06704+02	2.9636"+02
64010202	2.6250	0.9540	1.8668"+04	Nw	3.4902	1.1839	1.4395*+04	1.4395*+04
2.0320*-01	2.9856*+05	1.0000	3.5579"+04	NM	1.8642	1.8521	2.8012"+02	1.3139"+02
6.9650*-02	3.1246*+02	1.0000	1.4240"-03	NM	0.2006	1.7474"-03	6.0326"+02	2.9363"+02
4.7030 -02	3.1240 402	1.0000	1,4240 -03	14111	0.2400	11/4/4 -03	0.0320 702	217303 102
64010203	2.6340	0.9651	2.1396"+04	MM	3.5230	1.1923	1.6191"+04	1.6191"+04
3.0480 01	3.4052*+05	1.0000	4.1290*+04	NM	1.8574	1.8437	2.8349"+02	1.3094"+02
6.9650"=02	3.1264*+02	1.0000	1.4572 03	HW	0.2050	1.8242"-03	6.0432"+02	2.9375"+02
		-						
64010204	2.6150	0.9549	2.1966*+04	NM	3,4953	1.2051	1.6674*+04	1.6674"+04
3.5560*-01	3.4105*+05	1.0000	4.1728"+04	NM	1.0553	1.8394	2.8158"+02	1.3244*+02
6.9850"-02	3.1372*+02	1.0000	1.4633"-03	ŊM	0.2075	1.8264"-03	6.0362"+02	2.9487*+02
64010301	3.2770	0.9824	9.0838"+03	NM	4.7834	1.1937	6.2441 4+03	6.2441"+03
2.5400"-01	3.4551*+05	1.0000	2.2851"+04	NM	1.8711	1.5512	2.8586"+02	9.9500*+01
6.9850*-02	3.1320"+02	1.0000	1.1313"=03	ЙM	0.2418	1.5452"-03	6,5539"+02	2,9098"+02
64010302	3.3090	0.9902	1.0343*+04	NM	4.5948	1.1882	6.5297*+03	6.3829*+03
3.0480 01	3.7003*+65	1.0230	2.6496*+04	NM	1.8675	1.8490	2.8657*+02	9.8389"+01
6.9850*=02	3.1385*+02	1.0000	1,2502"-03	NM	0.2414	1.6978*-03	6.5808"+02	2.9144*+02
0,7030 -02	311303 1112		1,4502 05		*****	110770 -02	0.3000 .00	
64010303	3.3110	0.9819	9.9382"+03	ЯM	4.6078	1.1884	6.1748*+03	6.0477*+03
3,5560"-01	3.5162*+05	1.0210	2.5310"+04	No	1.8659	1.8482	2.8641"+02	9.8389*+01
6.9850"-02	3.1411"+02	1.0000	1.2596"-03	ll n	0.2490	1.7128"-03	6.5643"+02	2,9168*+02
64010304	3.2060	1.0043	1.0099"+04	NM	4.6320	1.1923	6.5127*+03	6.5127*+03
4.0640*-01	3.2482*+05	1.0000	2.5112"+04	NM	1.8640	1.8450	2.9412"+02	1.0306#+02
6.9850"-02	3.1491*+02	1.0000	1.2824"-03	NM	0.2357	1.7523*-03	6.5254"+02	2.9287"+02
			•			_	_	
64010401	4.2430	0.9680	4.0313"+03	Ям	7.5304	1.2127	1.3564"+03	1.4168"+03
2.5400"-01	2.9591"+05	0.9574	1.4446"+04	иw	1.8610	1.8300	2.7728"+02	6,7778"+01
6.9850"-02	3.1182"+02	1.0000	1.3773"=03	ИМ	0.3417	2.3076"-03	7.0037"+02	2.8644"+02
64010402	4.3230	0.9745	4.3254"+03	NM	7.6528	1.2065	1,4382"+03	1,4785"+03
3.0480"-01	3.4222"+05	0.9727	1.4024"+04	Nw	1.8636	1.8320	2.7994"+02	6.6056"+01
6.9850"-02	3.1295*+02	1.0000	1.3824"-03	HM	0.3105	2.3213"-03	7.0445*+02	2.8727*+02
64010403	4.0720	0.9840	4.5567"+03	lih	7.3363	1.2174	1.6086"+03	1.6883*+03
3.5560*-01	2.6204"+05	0.9528	1.5529"+04	UM.	1.8569	1.8265	2.8311*+02	7.2444*+01
6.9850*-02	3.1269"+02	1.0000	1.4305"-03	NM	0.3112	2.3782 = 03	6.9490*+02	2.8770*+02
41703V 345	J. 1697 THE		194303 -03	ili m	V. 3115	# # 21 DE 203		E. 0770 TUE
64010404	4.4880	0.9880	5.0548"+03	Им	7.1534	1.2192	1.6477"+03	1.5753"+03
4.0640"-01	4.4912"+05	1.0460	2.0033"+04	HM	1.8515	1.8190	2.8589"+02	6,2778"+01
6.9850"-02	3.1567"+02	1.0000	1.44747-03	i∳₩	0.3110	2.4411*=03	7.1296*+02	2.8937"+02

given series (e.g. series 11) and some unexplained relatively large inconsistencies - as the edge Mach number variation for series 0.7, where it seems probable that there is a gross error for either 0701 or 0702. The author comments that in some cases it may not have been possible to arrange for the probes to be made parallel to the body surface, and that some unusual interference effects could result.

Values of δ/RZ can be as great as 40 %. The effects of transverse curvature, therefore, may well be significant.

Table 1
COORDINATES OF MODEL SURFACE

NOSE	PIECE	MOD	EL A	MO	DEL B	MO	DEL C
X = 0	at nose	X = 0 at H	Station 0"		"Station 0"		"Station 0"
X	Y	X	Y	X	Y	x	Y
0	0	0	34.93	0	34,93	0	34.93
25.40	4.83	25.40 50.80	60.38 69.16	25.40	35.17	25.40	40.56
50.80	9.32	60,49	69.85	50.80	35.89	50,80	45.69
76.20	13.41		constant	76.20	37.08	76.20	50.32
101.60	17.20	1	1	101,60	38.76	101.60	54.44
127.00	20.55	ļ	}	127.00	40.93	127.00	58.06
152.40	23.57			152,40	43.59	152.40	61.21
203.20	28.52	ŀ		177.80	46.71	177.80	63.85
254.00	32.08			203,20	50.34	203.20	66.01
304.80	34.19	ł	I	228.60	54.46	228.60	67.69
355.60	34.93	ſ	ĺ	254.00	59.08	254.00	68.89
1	constant			279.40	64.21	279.40	69.61
"Station O	* 34.93	ĺ		304.80	69.85	304.80	69.85
		•	cons tant		constant	1	constant
		558.80	69 , 85	558.80	69.85	558.80	69.85

Nominal dimensions in mm.

Actual model coordinates were "within a few 0.001 inch - 0.0254 $\mbox{\sc hm}$ - of these".

The three models have circular profile sections, for which the radii of curvature are $A: 69.85\ mm$ $B \ alpha \ C: 1.3475\ m$

CAT 6401	CLUTTER		BOUNDARY CON	DITIONS AND	EVALUATED S	DATA. SI UNIT	5.	
RUN	★ CM	TW/TR	RED2W	CF	H12	H12K	PW	PD:
X *	P 00	PW/PD	RED2D	CG	H32	H32K	TW*	TD#
RZ +	TOD	SW 4	05	P12	H42	02K	UD	TR
64010501	1.6010	0.7820	2.8986*+04	Ям	2.1212	1.2327	4.2793"+04	4.2793"+04
ŊM	1.8216"+05	1.0000	3.8795"+04	ИМ	1.8099	1.8010	2.8651"+02	2.0133"+02
3.4925"-02	3.0454*+02	1.0000	1.5447*-03	Им	0.1078	1.7256"-03	4.5547"+02	2.9381"+02
64010502	1.5890	0.9797	3.3262*+04	NH	1.8547	1.2533	4.6273"+04	4.4408 + + 04
5.0800"-02	1.8570*+05	1.0420	4.4260*+04	HM	1,7929	1.7851	2.8824"+02	2.0256"+02
3.5888"-02	3.0484"+02	1.0000	1.7250*+03	HM	0.1119	1.8834"-03	4.5343*+02	2.9421*+02
64010503	1.4920	0.9829	2.9919*+04	ur	1.7970	1.2574	5.2967*+04	5.1028*+04
1.5240*-01	1.8517"+05	1.0380	3.6672"+04	ИW	1.6013	1.7954	2.8951"+02	2.1056"+02
4.3586"-02	3,0430"+02	1.0000	1.4713"=03	Им	0.1014	1.5922*-03	4.3407*+02	2.9455"+02
64010504	1,4780	0.9860	2.5432*+04	ЯМ	1.9280	1.2453	5.4377"+04	5.1640*+04
2.0320*-01	1.8364*+05	1.0530	3.2607"+04	MM	1.8163	1.5106	2.9041"+02	2.1167"+02
5.0338"-02	3.0414"+02	1,0000	1.2539"=03	NM	0.0907	1.3725"=03	4.3113"+02	2.9453"+02
						• %# ##	E 44048404	E EALLE-04
64010505 2.5400*=01	1.4310	0.9854 1.0270	2.5164"+04 3.1960"+04	ИW Им	1.8026 1.8150	1.2544	5.6496"+04 2.9170"+02	5.5011*+04 2.1656*+02
5.9083"-02	3.0525"+02	1.0000	1.2209"-03	NW NW	0.0929	1.3188"-03	4.2222"+02	2.9602"+02
								4 3-004.07
64010601	3.4000 4.4364*+05	1.0000	1.2734"+04 3.3500"+04	MW MM	4.8533 1.8222	1.2283	6.7099*+03 2.8714*+02	6.7099*+03 9. 5333*+01
NM 3.4925"-02	3.1574"+02	1.0000	1.3972"-03	NM	0.2746	2.0554*-03	6.6560*+02	2.9282*+02
•••••								•
64010602	3.2690	0.9794	1.3419"+04	NM	2.0840	1.2526	9.0723"+03	6.7856*+03
5.0800"=02 3.5868"=02	3.7112*+05 3.1397*+02	1.3370	3.3516*+04 1.5563*+03	NM NM	1.8119	1.7911 1.8467"=03	2.8756"+02 6.5779"+02	1.0072*+02 2.9360*+02
313000 -42	261277 706	140000	1,1103 -03	14	******			
64010603	3.1970	0.9765	1.2484"+04	'Ak	2.7100	1.2322	1.0454*+04	8,5198*+03
1.5240"-01 4.3566"-02	4.1934*+05 3.1592*+02	1.2270	3.0253"+04 1.1964"=03	NM NM	1.8294 0.2495	1.8145	2.8695*+02 6.5299*+02	1.0378*+02
4.330045	3.1376 706	110000	1.1704 -03	141.	4,6475	114041 -02	-	
64010604	3.0670	0.9726	1.0234"+04	Им	3.0572	1.2456	1.1548*+04	1.0033"+04
2.0320"-01	4.0738*+05	1.1510	2.3512"+04	NM NM	1.8386	1.8234 1.1091"=03	2.8543"+02 6.4262"+02	1.0928*+02
5.0338*-02	3.1486*+02	1.0000	8.8714"-04	igr.	0.2455	1.1071 -03	0,4202 102	E . 1340 18E
64010605	3.0100	0.9678		14th	3.0686	1.2287	1.2415"+04	1.1045"+04
2.5400*-01	4.1184*+09	1.1240	2.0377"+04	ИK	1.6557	1.8437	2,8719*+02	1.1311"+02
5.9083*-02	3.1807*+02	1.0000	7.4804"-04	Mm	0.2651	9.1366"-04	6.4184*+02	2,70/5-708
64010701	4.0590	0.9817	3,2279"+03	ИМ	6.2267	1.3440	1.8041"+03	1.8041*+03
NW	2,9626"+05	1.0000	1.0903"+04	ИW	1.7962	1.7553	2.8540"+02	7.3556"+01
3.4925*-02	3.1593"+02	1.0000	9.6459*-04	NM	0.3932	1.6454*-03	6.9797"+02	2.9672"+02
64010702	4.4850	0,9827	3.2849*+03	NM	4.9558	1.3013	2,0231"+03	1.4714"+03
5.0800"-02	4.1793"+05	1,3750	1.2959"+04	ИW	1.8073	1.7724	2.8357*+02	6.2667"+01
3.5865"-02	3.1478*+02	1.0000	1.0004"-03	ИW	0.2633	1.5650"-01	7.1185"+02	2.8856"+02
64010703	4.1660	0.9742	3.2864"+03	NM	5.1343	1.3382	2.6972"+03	2.1560*+03
1.5240" -01	4,0749"+05	1,2510		NM	1.8147	1.7824	2.6161*+02	7.0333"+01
4.3434*-02	3.1447*+02	1,0000	7.7530*=04	N•	0.2660	1.21044-03	7.0050"+02	2,8908*+02
64010704	3.9600	0,9742	2.9782"+03	NM	4.6085	1.2027	3.2287"+03	2.6684*+03
2.0320*-01	3.8406"+03	1.2100	9,6389"+03	NM	1.8419	1.8158	2.8376"+02	7.6444*+01
5.0338*+02	3.1620*+02	1.0000	6,2596*-04	NM	0.2408	9.1196*-04	6.9419*+02	2.9126"+02
64010705	3.7350	0.9626	2.9865*+03	NM	4,1631	1.2526	3.9018*+03	3,3899"+03
2.5400*-01	3.5929"+05	1.1510		NM	1.8592	1.8398	2.8019"+02	8,3167"+01
5,9063"-02	3,1521*+02	1.0000	5,4102"-04	NM	0.2769	7.3922"-04	6.8293"+02	2.9107"+02

 $\mathbf{f}_{i}^{(n)}$

CAT 6401	CLUTTER		BOUNDARY CON	endition s	AND EVALUATED	DATA. SI UNIT	s.	
RU.4	MD #	TW/TR	RED2W	CF	H12	02K	PW	PD*
X = 4	POD	PW/PD	RED2D	CD	H32	H32K	Tw≄	TD*
RZ =	TOD	SW #	D2	PI2	H42	H12K	UD	TR
64010501	1.5930	1.0249	2.4584*+04	Им	2.1223	1.2559	4.1039"+04	4,1039"+04
*5.0800**=02	1.7263*+05		3.3931*+04	Им	1.8010	1.7922	3.0011"+02	2,0128"+02
3.4925**=02	3.0343*+02		1.4153*=03	Ив	0.1202	1.5663"=03	4.5313"+02	2,9281"+02
64010802	1.4090	1.0208	2.7668#+04	Им	2.0000	1.2964	5,4082*+04	5.4082"+04
5.0800*-02	1.7430"+05	1.0000	3.5881#+04	Ле	1.7795	1.7728	3,0017*+02	2.1689"+02
4.5692*=02	3.0301"+02	1.0000	1.4188#=03	Ии	0.0975	1.57621=03	4,1604*+02	2.7405"+02
64010803	1.4670	1.0176	2.2260"+04	ИМ	2.0203	1.2593	5.0546*+04	5.0546"+04
1.0160*=01	1.7693"+05		2.9334"+04	ИМ	1.8161	1.8099	2.9751*+02	2.1100"+02
5.4437*=02	3.0182"+02		1.1491"=03	ИМ	0.1010	1.2692"-03	4.2725*+02	2.9237"+02
64010804	1,5050	1.0136	1.7810"+04	11m	2.1764	1.2425	4.6260*+04	4.7041*+04
1.5240**01	1,7395*+05	0.9834	2.3663"+04	Na	1.8371	1.8305	3.0036*+02	2.1076*+02
6.1214**02	3,0626*+02	1.0000	9.6952"+04	Mn	0.1045	1.0790"-03	4.3809*+02	2.9633*+02
64010805	1.5700	1.0064	1.5397*+04	ИМ	2.2711	1.1990	4.2236"+04	4.3288*+04
2.0320**+01	1.7602"+05		2.0786*+04	Им	1.8651	1.8601	2.9665"+02	2.0444*+02
6.6012**-02	3.0523"+02		8.5171*-04	Им	0.1071	9.4704"=04	4.5009"+02	2.9475*+02
64010806	1.6260	1.0124	1.4501*+04	И н	2.4315	1.1914	3.6874"+04	4.0147*+04
2.5400*-01	1.7736"+05	0.9683	2.0046*+04	Им	1.8735	1.8682	2.9616"+02	1.9850*+02
6.8887*-02	3.0346"+02	1.0000	8.2186*=04	Им	0.1143	9.1956*-04	4.5932"+02	2.9255*+02
64010807	1.6530	1.0157	1.3982*+04	Им	2.2400	1.1904	3.7673"+04	3.8422"+04
3.0480*-01	1.7672"+05	0.9805	1.9551*+04	Им	1.8747	1.8709	2.9739"+02	1.9656"+02
6.9850*-02	3.0397"+02	1.0000	8.1308*=04	Им	0.1711	8.9015"-04	4.6465"+02	2.9280"+02
64010901	2.3510	0.9721	1.7314*+04	ИМ	4.0366	1.1793	2.0267*+04	2.2252"+04
1.5240*=01	3.0135*+05	0.9108	3.0135*+04	Им	1.8745	1.8624	2.8595*+02	1.4778"+02
6.1214*-02	3.1114*+02	1.0000	1.0261*-03	Им	0.2103	1.2907"-03	5.7302*+02	2.9415"+02
64010902 2.0320*-01 6.6012*-02	2.5090 3.3436*+05 3.1087*+02	0.9802 0.9198 1.0000	1.7625"+04 3.2818"+04 1.0945"-03	ИМ ИМ	4.1380 1.8684 0.2424	1.1947 1.8534 1.3967"=03	1.7750"+04 2.8706"+02 5.9012"+02	1.9297"+04 1.3761"+02 2.9285"+02
64010903 2.5400=-01 6.5867=-02	2.5120 3.1767*+05 3.1126*+02	0.9776 0.8831 1.0000	1.4502*+04 2.6974*+04 9.5016*-04	NM NM	5.0302 1.8807 0.1054		1.6115"+04 2.6664"+02 5.9082"+02	1.8249"+04 1.3761"+02 2.9322"+02
64010904	2.5530	0.9816		ИМ	4.6563	1.1976	1.4758"+04	1.6824*+04
3.0480*-01	3.1213*+05	0.8772		ИМ	1.8676	1.5498	2.8704"+02	1.3469*+02
6.9850*-02	3.1072*+02	1.0000		ИМ	0.2568	1.5718"-03	5.9450"+02	2.924#+02
64010905	2.6110	0.9830	2.9447*+04	ИМ	4.1949	1.1913	1.4603*+04	1.4960"+04
3.5560*-01	3.0364"+05	0.9761		ИМ	1.8695	1.8539	2.8732*+02	1.3156"+02
6.9850*-02	3.1093"+02	1.0000		ИМ	0.1223	1.4647*-03	6.0044*+02	2.9227"+02
64010906 4.5720*-01 6.9850*-02	2.6350 3.2109"+05 3.1238"+02	0.9856 1.0000 1.0000		ИМ ИМ	3.4668 1.8495 0.2336	1.2127 1.8324 1.9496**03	1.5244"+04 2.8928"+02 6.0417"+02	1.5244"+04 1.3076"+02 2.9349"+02
6-6012"-02 6-6012"-02	3.2760 4.6906*+05 3.2164*+02	0.9763 0.8999 1.0000	2.2482*+04	ИМ :ИМ :ИМ	5.6932 9528.1 2685.0	1.2171 1.8366 1.2857"-03	7.6394"+03 2.9174"+02 6.6409"+02	8.4892*+03 1.0222*+03
64011002 2.5400**01 6.8867**02	3.2940 4.2217"+05 3.1749"+02	0.9850 0.6614 1.0000	1.8798*+04	NW NW NW	4.0795 1.8719 0.3168		2.9044"+02	7.3889*+03 9.9944*+01 2.9487*+02
64011003 3-0480*-01 6-9850*-02	3.4770 4.3342*+05 3.2052*+02	0.9815 0.9329 1.0000	9.9787"+03	Н Ин Пи	8,5066 1,9012 -0,2969	1.8866	5.4776"+03 2.9146"+02 6.7509"+02	
64011004 3.5560*-01 6.9850*-02	3.5030 4.4043"+05 3.2162"+02	0.9791 0.9914 1.0000	1.3914*+04	Им Им Им	5,3519 1,8895 0,3008			5.7499*+03 9.3111*+01 2.9766*+02
64011005 4.5720"-01 6.9850"-02	3.4020 3.5022"+05 3.1821"+02	0.9837 1.0000 1.0000	1.4640*+04	им Ми	4.9219 1.8697 0.3043	1.2224 1.8482 1.0759*-03	5.2817"+03 2.9030"+02 6.6831"+02	
64011101 3.0460**01 6.9850**-02	4.4040 4.7427"+05 3.2202"+02	0.9775 0.8544 1.0000	1.1843*+04	HM HM	10.3645 1.8728 0.3407			2.9539*+02
64011102 3.5560"-01 6.4650"-02	4.2950 3.6676"+05 3.1653"+02	0.9808 0.9277 1.0000	1.2206"+04 9.8516"-04	NM NM	6.1600 1.6537 0.4166	1.2605 1.8180 1.7163*-03	1.5244"+03 2.6505"+02 7.0750"+02	1.6432*+03 6.7500*+01 2.9064*+02
4.5720"-01 4.5720"-02	3.9470 2.6936"+05 3.2332"+02	0.9763 1.0250 1.0000	1.1537"+04	ИМ ИМ	5.9911 1.8251 0.3090	1.2931 1.7913 1.6730*-03		2.0459*+03 7.8556*+01 2.9786*+02
44011104	4.2440	0.9820	1.0717"+04	4M	7.3A19	1.2965	1.5941"+03	1.6432"+03
5.5880*+01	3.4588"+05	0.9713		4M	1.8517	1.8150	2.9044"+02	6.9633"+01
4.9850*-02	3.2144"+05	1.0000		4M	0.3552	1.5546*=03	7.1191"+02	2.9376"+02

CAT 6401	CLUTTER		BOUNDARY CON	DITIONS A	AND EVALUATED D	ATA. SI UNIT	s.	
RUN	MD ★ CM	TW/TR	REDZW	CF	H12	H12K	PW	PD*
χ .	POD	PW/PD	RED20	ÇQ	H32	H35K	TWA	TD*
RZ *	TOD	5W *	02	PIZ	H42	DSK	סט	TR
64011201	1.5070	0.6743	2.5165*+04	ЙW	2.0351	1.2271	4.7375"+04	4.8243"+04
1.5240"-01	1.7891"+05	0.9820	2.4074"+04	NM	1.8400	1.8381	1.9796"+02	2.0867"+02
6.1214"-02	3.0345*+02	1.0000	9,4768*-04	ИW	0.1868	1.0267*-03	4.3647"+02	2.9359"+02
64011202	1.5700	0.6068	2.2468*+04	I#M	2.0574	1.2123	4.1589"+04	4.26244+04
2.0320"-01	1.7332*+05	0.9757	2,0048"+04	NM	1.8565	1.8555	1.7882"+02	2.0439"+02
6.6012"-02	3.0515"+02	1.0900	6.3392"-04	NM	0.2341	8.9690"-04	4.5003*+02	2.9467*+02
64011203	1.6330	0.6652	2.0676"+04	Им	2.2285	1.2206	3.7921*+04	3.9114"+04
2.5400=-01	1.7461"+05	0.9695	2.0379"+04	NM	1.8530	1.8503	1.9394*+02	1.9728"+02
6.8887"-02	3.0249*+02	1.0900	0.4685"-04	ИM	0.2274	9.2652"-64	4.5987"+02	2.9155"+02
64011204	1.6620	0.7773	1.7901"+04	NM	2.3097	1.2142	3.7203"+04	3.7943"+04
3.0480"-01	1.7689"+05	0,9805	2.0290"+04	ИМ	1.8601	1.6548	2.2756"+02	1.9583"+02
6.9850*-02	3.0402"+02	1.0000	8.4562*-04	NM	0.1500	9.3404"-04	4.6632"+02	2.9277"+02
64011301	2.3630	0.6203	2.6842*+04	NM	3.4882	1.2171	2.0418*+04	2.2196*+04
1.5240"-01	3.9628"+05	0.7199	3.2541"+04	NM	1.8469	1.8367	1.8057"+02	1.4550*+02
6.1214"-02	3.0799*+02	1.0000	1.0636"-03	ИW	0.3584	1.3370*-03	5.7149*+02	2.9109*+02
64011302	2.5180	0.5735	3.2052*+04	ŊM	2.9578	1.2626	1.8075"+04	1.8661 404
2.0320"-01	3.2790*+05	0,9686	3,8430"+04	NM	1.6137	1.8063	1.6837"+02	1.3744"+02
6.601205	3.1173*+02	1,0000	1.3164*-03	ИМ	0.5971	1.5757"-03	5.9187"+02	2.9361*+02
64011303	2.5290	0.6551	2.2207"+04	NW	4.3376	1.2205	1.5791"+04	1.7825*+04
2.5400*-01	3.1861"+05	0.8859	2.9992"+04	NM	1.8458	1.8342	1,9317"+02	1.3739"+02
6.8887*-02	3.1313*+02	1.0000	1.0718*-03	ИМ	0.3251	1.4117"-03	5,9434*+02	2.9486*+02
64011304	2.6350	0,6252	2.3996"+04	NM	3,5369	1.2344	1.4894*+04	1.5093"+04
3,5560"-01	3.1791"+05	0.9868	3.2441"+04	NM	1.8368	1.0239	1.8387"+02	1.3106"+02
6.9850"-02	3.1305*+02	1.0000	1.2292*-03	ИМ	0.3115	1.5450"-03	6.0481*+02	2.9412*+02
64011401	3.2190	0.6388	9.3986"+03	HM	5.0338	1.2686	6.9809"+03	8.0175*+03
2.5400"-01	4.0758*+05	0.8707	1.6222*+04	NM	1.8386	1.8247	1.8960*+02	1.0389*+02
6.8887*-02	3,1919*+02	1.0000	6.7615"-04	Им	0.5925	9.3428"-04	6.5763"+02	2,9680*+02
64011405	3.4020	0.6132	9.1805"+03	NM	4.7794	1.2460	6.1605*+03	6.5572"+03
3.0480**01	4.3479*+05	0.9395	1.6452"+04	NM	1.8510	1.5365	1.7603"+02	9.4444*+01
6.9850*-02	3.1306*+02	1.0000	6.9218"-04	NM	0.5421	9.3818"-04	6.6288*+02	2.9032*+02
64011403	3.4560	0.6060	9.8737"+03	ΝM	3.9248	1.2802	5.4502*+03	5.4876*+03
3.5560*-01	3.9313*+05	0.9932	1.7862"+04	NM	1,8246	1.6117	1,7772"+02	9.3389"+01
6.9850*-02	3.1648"+02	1.0000	8.6944"-04	NM	0.6388	1.1250"-03	6.6962"+02	2,9327"+02
64011501	4.0840	0.7228	4.0569"+03	HW	5,4010	1.2906	2.0624*+03	2.1900"+03
2.5400*-01	3.7171*+05	0.9417	1.0807*+04	NM	1.8232	1.8028	2.0934"+02	7.2611*+01
6.8887"-02	3.1483*+02	1.0000	7.6783"-04	Иħ	0.7668	1.1530"-03	6.9775"+02	2.8964"+02
64011502	4.4110	0.6762	3.7773"+03	ИМ	8.1749	1.2754	1.5452"+03	1.7366*+03
3.0480*-01	4.4948"+05	0.8898	1.07117+04	NM	1.8365	1.8107	1.9468"+02	6.4167*+01
6.9850*-02	3.1386"+02	1.0000	7.3813"-04	NP	0.6403	1.2595*-03	7.08444+02	2.8790*+02
64011503	4.3270	0.7710	3.6804"+03	ИМ	5.9722	1.2965	1.5248*+03	1.5542"+03
3.5560"-01	3.6198*+05	0.9811	1.1284*+04	NM	1.8237	1.7984	2.2461"+02	6.6889*+01
6.9850*-02	3.1736*+02	1.0000	9.4280*-04	NM	0.6536	1.4516*-03	7.0953*+02	2.9131*+02

EVALUATED	DATA - PRESSU	RE BASED	REFEREN	CE FLOW			
RUN	บ 2 คือ บ 2 คพ	H12PD H12PW	H32PD	H42PD H42PW	RED2PND RED2PND	RED2POW WK4SU3A	DSTAR
64010301	1.1312"-03 1.1312"-03	4.7839 4.7839	1.6711	0.2419	2.2876*+04 2.2876*+04	9.0935"+03 9.0936"+03	5.4091 H=03
64010302	1.2351"=03 1.2190"-03	4.8130	1.8663	0.2443 0.2439	2.6208"+04 2.6250"+04	1.0231"+04	5,4684"=03
4401030 3	1.2469"-03 1.2320"-03	4.7932	1.8648	0.2515 0.2512	2.5084"+04 2.5121"+04	9.8496"+03 9.8641"+03	5.9055"-03
64010304	1.2827"-03 1.2926"-03	4.6319	1.8640	0.2357 0.2357	2,5145"+04 2,5145"+04	1.0112"+04	5.9387*-03
64010601	1.3970"=03	4.8540 4.8539	1.8222	0.2746 0.2746	3.3535"+04 3.3535"+04	1.2747"+04	6.7767*-03
64010002	1,3269"-03	4.4435	1.7917	0.2600 0.2541	2.8576"+04 2.9252"+04	1.1440"+04	5.0362"-03
64010603	1.0741"-03 9.5745"-04	4.3415	1.8154	0.2780 0.2736	2.7190"+04 2.7636"+04	1.1221*+04	4.1652**03
64010004	8.1940"-04 7.3710"-04	4.2274	1.8279	0.2662 0.2632	2.1714"+04 2.1966"+04	9.4516"+03 9.5621"+03	3,1986*=03
64010605	6.9712"-04 6.5375"-04	4.0546 4.0215	1,3471	0.2845 0.2817	1.90134+04	8.5091*+03 8.5931*+03	2.6460**03
64011001	8.5569"-04 9.4479"-04	4.5366 4.5637	1.8582	0.2716 0.2735	2.3313"+04 2.3313"+04	9.4295"+03 9.3610"+03	4.5479**03
64011002	5.3777"-04 9.1395"-04	4.7903 4.8851	1.8789	0.2992	2.0052*+04 1.9652*+04	7.906A"+U3 7.8278"+O3	4.3481*-03
4011003	4.5063"=04 5.0093"=04	7.1994 7.2217	1.9061	-0.2823	1.0577"+04	3.9113"+03 3.8750"+03	3.5980*-03
44011 U04	5.4120"=04 6.4450"=04	5.1624 5.1644	1.8904	0.2978 0.2979	1.4068++04	5,1644"+01 5,1617"+03	3,3261"=03
64011005	7,8321"-04 7,8321"-04	4.9222	1.8697	0.3043	1.4657*+04	5.5516"+03 5.5616"+03	3,4531"-03

640103	01 CLUT1	TER	PROFILE	TABULATION	49	POINTS, DE	.TA AT POI	NT 49
I	Y	9/5/9	P/PD	T0/T0D	MZMD	U/UD	1/10	RHO/RHOD*U/UD
i	0.0000*+00	1.0000*+00	1.00000	0.91272	0.00000	0.00000	2.87300	0.00000
ž	1.2700"=04	2.2778*+00	1.00000	0.93624	0.35222	0.53730	2.32700	0.23090
Ī	2.5400"-04	3.0674"+00	1.00000	0.93814	0.42880	0.62390	2.11700	0.29471
4	3.8100"-04	3,7008*+00	1.00000	0.94073	0.48034	0.67590	1.98000	0.34136
S	5.0800"-04	4.0828"+00	1.00000	0.94256	0.50871	0.70250	1.90700	0.36838
ō	6.3500 -04	4.4457"+00	1.00000	0.74434	0.53419	0.72520	1.84300	0.39349
7	7.6200"-04	4.7554"+00	1.00000	0.44586	0.55496	0.74290	1.79200	0.41456
à	8.8900"-04	5.0209"+00	1.00000	0.94737	0.57215	0.75710	1.75100	0.43238
ğ	1.0160 -03	5.2537*+00	1.00000	0.94886	0.58679	0.76890	1,71700	0.44782
10	1.1430"-03	5.4676"+00	1.00000	0.95021	0.59992	0.77920	1.68700	0.46189
ii	1.2700"-03	5.6674"+00	1.00000	0.95147	0.61192	0.78840	1.66000	0.47494
ίź	1.9050*-03	6.4072"+00	1.00000	0.95690	0.65440	0.81970	1.56900	0.52243
13	2.5400"-03	6.9687*+00	1.00000	0.96166	0.65465	0.84100	1.50800	0.55769
14	3.1750"-03	7.4344*+00	1.00000	0.96538	0.70910	0.85710	1.46100	0.58665
15	3.8100"-03	7.8660"+00	1.00000	0.96863	0.73084	0.87090	1.42000	0.61331
16	4.4450"-03	8.2837"+00	1.00000	0.97128	0.75129	0.88320	1.38200	0.03907
17	5.0800"-03	8,5523"+00	1.00000	0.97317	0.76414	0.89080	1.35900	0.65548
18	5,7150"-03	8.8258"+00	1.00000	0.97477	0.77700	0.89810	1.33600	0.67223
19	6.3500*=03	9.0592"+00	1.00000	0.97611	0.78781	0.90410	1.31700	0.68648
žó	6.9850"-03	9.2752"+00	1.00000	0.97740	0.79768	0.90950	1.30000	0.69962
ŽĬ	7.6200*=03	9.5124"+00	1.00000	0.97890	0.80839	0.91530	1.28200	0.71396
žž	8.2550"-03	9.7695"+00	1.00000	0.98038	0.81976	0.92130	1.26300	0.72945
ŽŠ	8.8900*=03	9.9328"+00	1.00000	0.98123	0.82701	0.92500	1.25100	0.73941
24	9.5250"-03	1.0129*+01	1.00000	0.98222	0.83555	0.92930	1.23700	0.75125
ŽŠ	1,0160"=02	1.0319*+01	1.00000	0.98343	0.84377	0.93350	1.22400	0.76266
žő	1.0795"-02	1.0550"+01	1.00000	0.98435	0.85361	0.93820	1.20800	0.77666
27	1.1430*=02	1.0870*+01	1.00000	0.98603	0.86710	0.94470	1.18700	0.79587
28	1.2065"-02	1.1092 +01	1.00000	0.98727	0.87632	0.94910	1.17300	0.80912
žš	1.2700"-02	1.1360*+01	1.00000	0.98823	0.88730	0.95400	1.15600	0.82526
30	1.3335*-02	1.1576*+01	1.00000	0.98945	0.89616	0.95810	1.14300	0.83623
31	1,3970*-02	1.1844*+01	1.00000	0.99040	0.90684	0.96270	1.12700	0.85421
32	1.4405"-02	1.2069"+01	1.00000	0.99140	0.91581	0.96660	1.11400	0.66768
33	1.5240"-02	1.2324*+01	1.00000	0.99277	0.92581	0.97100	1.10000	0.68273
34	1.5075 -02	1.2615"+01	1.00000	0.49393	0.93713	0.97570	1.08400	0.90009
35	1.6510"=02	1.2875*+01	1.00000	0.99482	0.94711	0.97970	1.07000	0.91561
36	1.7145*-02	1.3130"+01	1.00000	0.99605	0.95681	0.98370	1.05700	0.93065
37	1.7780*-02	1.3326"+01	1.00000	0.99677	0.96420	0.98660	1.04700	0.94231
38	1.8415*-02	1.3462*+01	1.00000	0.99710	0.96930	0.98850	1.04000	0.95048
39	1.9050*-02	1.3606"+01	1.00000	0.99772	0.97465	0.99060	1.03300	0.95895
40	1.9485"-02	1.3749"+01	1.00000	0.99820	0.97994	0.99260	1.02600	0.96745
41	2.0320"-02	1.3851"+01	1.00000	0.99851	0.98372	0.99400	1.02100	0.97356
42	2.0955"-02	1.3915*+01	1.00000	0.99878	0.98606	0.99490	1.01800	0.97731
43	2.1590"-02	1.3979*+01	1.00000	0,99905	0.98841	0.99580	1.01500	0.98108
44	2.2225"-02	1.4068*+01	1.00000	0.99954	0.99166	0.99710	1.01100	0.98625
45	2.2840"-02	1.4171*+01	1.00000	0.99972	0.99542	0.99840	1.00600	0.99245
46	2.3495*-02	1.4196*+01	1.00000	0.99995	0.99631	0.99880	1.00500	0.99383
47	2.4130"-02	1.4234"+01	1.00000	0.99986	0.99770	0.99920	1.00300	0.99621
48	2.4765"-02	1.4262"+01	1.00000	1.00023	0.99870	0.99970	1.00200	0.99770
0 49	2,5400"-02	1.4298"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
	•	•	• • • • • • • • • • • • • • • • • • • •				_	

INPUT VARIABLES Y,DELTA,U/UD,T/TD,P/PD

640103	02 CLUT1	TER	PROFILE	TABULATION	50	POINTS, DEL	TA AT POI	NT 50
1	Y	PT2/P	P/PD	10/100	M/MD	ロノいり	T/TD	RHO/RHOU+U/UD
1	0.0000*+00 1.2757*-04	1,0000"+00	1.02300	0.91947	0.00000	0.00000 0.57790	2.93300	0.00000
3 4	2.5%14"=04 3.8011"=04	3.6253*+00 3.9947*+00	1.02300	0.93530 0.93727	0.46993	0.66640 0.69270	2.01100	0.33900 0.36546
5 6	5.0766*-04 6.3525*-04	4.2893"+00 4.5203"+00	1.02200	0.93907 0.94066	0.51831	0.71180 0.72580	1.88600	0.38572 0.40161
7	7.6283"-04 8.8779"-04	4.7450"+00 4.9517"+00	1.02200	0.94234 0.94376	0.54892	0.73870 0.74990	1.81100	0.41687 0.43080
10	1.0154"-03 1.1429"-03	5.1418"+00 5.3111"+00	1.02200	0.94524	0.57419	0.75980 0.76830	1.75100	0.44347 0.45466
11	1.27054-03	5.4609*+00	1.02200	0.94821	0.59371	0.77570 0.80510	1.70700	0.46442 0.50554
13 14	2:5410**05 3:1763**=03	6.6426"+00 7.1341"+00	1.02100	0.95925	26484.0	0.82650 0.84430	1.56400	0.53955 0.56994
15 16	3.8089"-03 4.4442"-03	7.5370*+00 7.9150*+00	1.02000	0.96586 0.96867	0.70742	0.85770 0.86960	1.47000	0.59514 0.61794
17 18	5.0794"-03 5.7147"-03	0.2975"+00 6.6160"+00	1.01800	0.97117 0.97307	0.74468	0.88080 0.88960	1.39900	0.64093 0.66055
50 16	6.3479"-03 6.9852"-03	8.8694"+00 9.1236"+00	1.01700	0.97454 0.97617	0.77150	0.89640 0.90280	1.35000	0.67529 0.690%6
55 51	7.6204"-03 8.2557"-03	9.3277*+00	1.01600	0.97749 0.97835	0.79233	0.90790 0.91210	1.31300	0.70253
23 24	8.4910"-03	9.6940"+00	1.01500	0.97961	0.80859	0.91660	1.26500	0.72401 0.73952
25 26	1.0159"-02	1.0184"+01	1.01400	0.98200	0.82982	0.92740	1.24900	0.75291 0.76517
27 28	1.1429"-02	1.0633*+01	1.01300	0.98431 0.98598	0.84883	0.93680	1.21800	0.77913
30	1.2700"-02	1.1150"+01	1.01200	0.98671	0.87022	0.94690	1.18400	0.80934 0.82193
31 32 33	1.3970"-02 1.4606"-02 1.5241"-02	1.1667"+91 1.1900"+01 1.2159"+01	1.01100	0.98904 0.98997 D.99108	0.89107 0.90029 0.91043	0.95640 0.96040 0.96480	1.15200 1.13800 1.12300	0.83934 0.85238 0.86686
34 35	1.5876*-02	1.2411"+01	1.00900	0.99240	0.92024	0.96910	1.10900	0.88171
36 37	1.7144 -02	1.2869"+01	1.00800	0.99418	0.93771	0.97630	1.06400	0.90785
18 19	1.8415*-02	1.4269*+01	1.00700	0.99566	0.95275	0.98230 0.98540	1.05300	0.93055 0.94231
40	1.9685"-02	1.3702"+01	1.00600	0.99702	0.96874	0.98840	1.04100	0.95517 0.96160
42 43	2.0956*-02	1.3969"+01	1.00400	0.79797	0.97850	0.99210	1.02200	0.96594 0.97639
44	2.2856"-02 2.2859"-02	1.4241"+01	1.00300	0.99881	0.98832	0.79570 0.99670	1.01200	0.98393 0.98784
47	2.3494*-02	1.4351"+01	1.00200	0.99930	0.99225	0.99720	1.01000	0.98930 0.99176
48	2.4764"-02	1.4462*+01	1.00100	0.99978	0.99621	0.99870	1.00500	0.99473 0.99860
D 50	2.6035"-02	1.45694+08	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, DELTA, U/UD, T/TD, P/PD

640103	03 CLUT1	TER	PROFILE	TABULATION	47	POINTS, JEL	TA AY POI	NT 47
I	Y	PT2/P	P/PD	TO/TOD	M/IID	מטעט	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	1.02100	0.91181	0.00000	0.00000	2.91100	0.00000
ä	1.2789"-04	2.6670"+00	1.02100	0.91515	0.38822	0.57530	2.19600	0.26748
3	2.5336"=04	3.6857"+00	1.02100	0.91762	0.47426	0.66430	1.96200	0.34569
4	3.8125"-04	4.2412"+00	1.07160	0.92045	0.51465	0.70170	1.85900	0.38539
3	5.0914"-04	4.6021"+00	1.02100	0.92321	0.53919	0.72340	1.80000	0.41033
6	6.3462"-04	4.8116"+00	1.02100	0.92603	0.55291	0.73560	1.77000	0.42432
7	7.6251"-04	4.9708"+00	1.02100	0.92871	0.56310	0.74470	1.74900	0.43473
8	8.8798"-04	5.1099*+00	1.02100	0.93151	0.57186	0.75260	1.73200	0.44365
9	1.0159*-03	3.2505"+00	1.02100	0.93418	0.58057	0.76030	1.71500	0.45263
10	1.1438*=03	5.3742"+00	1.02000	0.93703	0.58824	0.76720	1.70100	0.46005
11	1,2692"-03	5.5036"+00	1.02000	0.93985	0,59591	0.77400	1.68700	0.46798
12	1.9039"-03	6,0888*+00	1.02000	0.95419	0.62993	0.80400	1.62900	0.50343
13	2.5409"-03	6.6009"+00	1.01900	0.95832	0.65823	0.82450	1.56900	0.53548
14	3.1755"-03	7.0529"+00	1.01900	0.96196	0.68222	0.84110	1.52000	0.56367
15	3.8101"-03	7.4633"+00	1.01800	0.96500	0.70328	0.85500	1.47600	0.58890
16	4.4447"-03	7.8370"+00	1.01700	0.96780	0.72192	0.86690	1.44200	0.61140
17	5.0794"-03	8.1953*+00	1.01700	0.97028	0.73933	0.87760	1.40900	0.63344
18	5.7140 -03	8,5150"+00	1.01600	0.97253	0.75454	0.88670	1.38100	0.65234
19	6.3510"-03	8.7917*+00	1.01600	0.97394	0.76745	0.89400	1.35700	0.66935
20	6.9856"-03	9.0387"+00	1.01500	0.97569	0.77879	0.90050	1.33700	0.68363
21	7.6203"-03	9.2738*+00	1.01500	0.97694	0.78943	0.90630	1.31800	0.69795
22	8.2549"-03	9.4820*+00	1.01400	0.97829	0.79874	0.91140	1.30200	0.70980
23	8.8895"-03	4.6788*+00	1.01400	0.97937	0.80743	0.91600	1.28700	0.72170
24	9.5241"~03	9.9443"+00	1.01300	0.98055	0.81902	0.92190	1.26700	0.73708
25	1.0161"-02	1.0139"+01	1.01200	0.98162	0.82743	0.92620	1.25300	0.74806
56	1.0796"=02	1.0397"+01	1.01200	0.98300	0.83838	0.93170	1.23500	0.76347
27	1.1430"-02	1.0660"+01	1.01100	0.98429	0.84946	0.93710	1.21700	0.77848
28	1.2065"-02	1.0919"+0'	1 01100	0.98568	0.86020	0.94230	1.20000	0.79389
29	1,2700"-02	1.1150"+0	1 71000	0.98669	0.86967	0.94670	1.18500	0.80689
30	1.3334"-02	1.1352"+0:	1.01000	0.98744	0.87790	0.95040	1.17200	0.81903
31	1.3969"-02	1.1581*+01	00900	0,98855	0.88709	0.95460	1.15800	0.83177
32	1.4606"-02	1.1780"+01	1.00800	0.98939	0.59499	0.95810	1.14600	0.84273
33	1.5241"-02	1.2005"+01	1.00800	0.99059	0.90387	0.96210	1.13300	0.85595
34	1.5875"-02	1.2300*+01	1.00700	0.99176	0.91537	0.96700	1.11600	0.87255
35	1.6510"-02	1.2602"+01	1.00700	0.99282	0.92700	0.97180	1.09900	0.89045
36	1.7144"-02	1.2862"+01	1.00600	0.99392	0.93689	0.97590	1.08500	0.90484
37	1.7779"-02	1.3068*+01	1.00600	0.99464	0.94467	0.97900	1.07400	0.91701
38	1.8416"-02	1.3262"+01	1.00500	0.99541	0,95191	0.98190	1.06400	0.92745
39	1.9051 02	1.3459"+01	1.00500	0.99620	U.95924	0.98480	1.05400	0.93902
40	1.9685"-02	1.3635*+01	1.00400	0.99663	0.96571	0.98720	1.04500	0.94847
41	5.025005	1.3025"+01	1.00300	0.99761	0.97265	0.99000	1.03600	0.95847
42	2.0954"-02	1.4031*+01	1.00300	0.99829	0.98014	0.99280	1.02690	0.97054
43	5.1589"-05	1.4201 +01	1.00200	0.99892	0,98626	0.99510	1.01800	0.97946
44	2.2226"-02	1.4305"+01	1.00200	0.99914	0,98999	0.99640	1,01300	0.98558
45	5.2061 -02	1.4412"+01	1.00100	0.99949	0.99383	0.99780	1.00800	0.99087
46	2.3495"-02	1.4521 "+01	1.00100	0.79984	0.99770	0.99920	1.00300	0.99721
D 47	2.4130*-02	1.4586"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, DELTA, U/UD, T/TD, P/PD

640103	104 CLUT	TER	PROFILE	TABULATION	48	POINTS, DEL	TA AT POI	NT 48
I	Y	P12/P	P/PD	T0/T0D	MZ/AD	U/UD	T/ID	RHO/RHOO+U/UD
1	0.0000*+00	1.0000*+00	1.00000	0.93400	0.00000	0.00000	2.85400 2.16100	0.0000 0.26955
3	2.5508"-04	3.2910*+00	1.00000	0.93914	0.45766	0.64820	2.00600	0.32313
4	3.8138"-04	3.6995*+00	1.00000	0.93908	0.49088	0.65000	1.91900	0.35435
5	5.0768"-04	4.0459*+00	1.00000	0.94044	0,51725	0.70430	1.85400	0.37968
6	6.3398"-04	4.3100"+00	1.00000	0.94221	0.53643	0.72150	1.00900	0.39884
7	7.6276"-04	4.5140"+00	1.00000	0.94365	0.55078	0.73400	1.77600	0.41329 0.42592
8	6.8906"-04	4.6940*+00 4.8604*+0v	1.00000	0.94494 0.94613	0.56311	0.74450 0.75380	1.72300	0.43749
10	1.0154"-03	4.98887+00	1.00000	0.94747	0.58273	0.76090	1.70500	0.44628
iĭ	1.2704*-03	5.1212"+00	1.00000	0.94835	0.59132	0.76780	1.68600	0.45540
iż	1.9044*-03	5.6820"+00	1.00000	0.95359	0.62636	0.79550	1.61300	0.49318
i 3	2.5409"-03	6.1878"+00	1.00000	0.95827	0.65632	0.81790	1.55300	0.52666
14	3.1749"-03	6.7246"+00	1.00000	0,95960	0.68666	0.83790	1.48900	0.56273
15	3.80897-03	7.0101"+00	1.00000	0.96482	0.70226	0.84970	1.46400	0.58040
16	4.4453*-03	7.3668"+00	1.00000	0.96776	0.72126	0.86280	1.42900	0.60336
17	5.0793"-03	7.7262*+00	1.00000	0.97030	0.73990	0.87390	1.39500	0.62645
18	5.7158"-03	8.0672"+00	1.00000	0.97246	0.75717	0.88430	1.36400	0.64831 0.66597
19 20	6.3497"=03 6.9862"=03	8.3445"+00 8.5888"+00	1.00000	0.97428 0.97618	0.77092	0.89240 0.89940	1.34000	0.68136
21	7.4202"-03	8.8307"+00	1.00000	0.97740	0.79444	0.90580	1.30000	0.69677
25	8,2542*-03	9.1094*+00	1.00000	0.97901	0.80762	0.91300	1.27800	0.71440
23	8.8904"-03	9.3221"+00	1.00000	0.98043	0.81753	0.91840	1.26200	0.72773
24	9,5246"-03	9.5390*+00	1.00000	0.98176	0.82751	0.92370	1.24400	0.74133
25	1.0161"-02	4.7561"+00	1.00000	0.98276	0.63738	0.92870	1.23000	0.75504
56	1.0795"-02	9.9717"+00	1.00000	0.98411	0.84707	0.93370	1.21500	0.76848
27	1.1429"-02	1.0128"+01	1.00000	0.98479	0.55403	0.93710	1.20400	0.77632
28	1.206605	1.0317"+01	1.00000	0.98559	0.86234	0.94110	1.19100	0.79018
29 29	1.2699"-02	1.0499*+01	1.00000	0.98661 0.98753	0.87031	0.94500 0.94880	1.17900	0.80153 0.81302
31	1.3970*-02	1.0684"+01	1.00000	0.98845	0.88761	0.95310	1.15300	0.82663
32	1.4604"-02	1.1115"+01	1.00000	0.98972	0.89669	0.95740	1.14000	0.83982
33	1.5240*-02	1.1297*+01	1.00000	0.99064	0.90434	0.96090	1.12900	0.85111
34	1.5874"-02	1.1514"+01	1.00000	0.49156	0,91338	0.96490	1.11600	0.86461
35	1.6511"-02	1.1735*+01	1.00000	0.99238	0.92246	0.96890	1.10300	0.87833
36	1,7145"-02	1.1948"+01	1.00000	0.99342	0.93115	0.97260	1.09100	0.89148
37	1.7779"-02	1.2163*+01	1.00000	0.99434	0.93988	0.97630	1.07400	0.90482
30	1.6415"-02	1.2382.+01	1.00000	0.99515	0.94864	0.97990	1.06700	0.91837
39 40	1.90491-02	1,2592*+01	1.00000	0.99618 0.99675	0.95697	0.98340 0.98630	1.05600	0.93125 0.94293
41	1.9686"-02 2.0320"-02	1.2780"+01	1.00000	0.99733	0.97186	0.98920	1.03600	0.95483
42	2.0956"-02	1.3143*+01	1.00000	0.99812	0.97887	0.99200	1.02700	0.96592
43	2.1590 -02	1.3276"+01	1.00000	0.99869	0.98363	0.99390	1.02100	0.97346
44	2.2224"-02	1.3373*+01	1.00000	0.99879	0.98733	0.99520	1.01600	0.97953
45	2.20-1"-02	1,3460"+01	1,00000	0.99936	0.99067	0.99660	1.01200	0.98478
46	2.3495"-02	1,3558"+01	1,00000	0.99947	0.99443	0.99790	1.00700	0.99096
47	2.4131"-02	1.3647"+01	1.00000	1.00004	0.99780	0.99930	1.00300	0.99631
D 48	2.4765"-02	1.3705"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, DELTA, U/UD, T/TO, P/PD

640176	01 CLUT	TER	PROFILE	TABULATION	42	POINTS, DE	TA AT POI	NT 42
I	Y	PT2/P	PZPD	10/100	MZMD	U/u0	7/1D	RH0/RH00*U/U0
1	0.0000"+00	1.0000*+00	1.00000	0.90969	0.00000	0.00000	3.01290	0.00000
2	1.2783"-04	2.4207"+00	1.00000	0.91026	0.35427	0.54155	2.33670	0.23176
3	2.5356"-04	2.9948"+00	1.00000	0.91077	0.40716	0.60126	2.18065	0.27572
ā	3.8138"-04	3.4474"+00	1.00000	0.91167	0.44382	0.03926	2.07462	0.30814
5	5.0711"=04	3.7848"+00	1.00000	0.91230	51691.0	0.06387	2.00260	0.33150
6	6.3474"-04	4.0273"+00	1.00000	0.91300	0.48644	0.68007	1.95459	0.34793
7	7.6276"=04	4.2330"+00	1.00000	0.91399	0.50063	0.69307	1.91657	0.36162
à	8.8849"-04	4.4060"+00	1.00000	0.91517	0.51224	0.70357	1.88657	0.37294
ĕ	1.0163*-03	1.5 188"+00	1.00000	0.71662	56152.0	0.71207	1.96356	0.38210
10	1.1420"=07	4.6861"+00	1.00000	0.71828	0.53048	0.72007	1.84255	0.39080
ii	1.2679"-03	4.8078"+00	1.00000	0.92133	0.53820	0.72757	1.82755	0.39811
15	1.7048"-03			0.93306				0.42834
		5.3166"+00	1.00000		0.56931	0.75668	1.76653	
13	2.5397"-03	5.7140"+00	1.00000	0.94081	0.59268	0.77718	1.71952	0.45197
14	3.1747"-03	6.0920"+00	1.00000	0.94629	0.61362	0.79428	1.67550	0.47405
15	3.0096"-03	6.4171"+00	1.00000	0.94991	0.63125	0.80775	1.63749	0.49330
16	4.4446"=03	6.7506 +00	1.00000	0.95298	0.64883	0.02053	1.59948	0.51303
17	5.0795"-03	7.0719"+00	1.00000	0.75580	0.66533	0.83213	1.56447	0.53193
18	5.71 44"-03	7.4091"+00	1.00000	0.95868	0.68220	0.84368	1.52946	0.55162
19	6.3494"-03	7.7300"+00	1.00000	0.96122	0.69787	0.85399	1.49745	0.57029
50	6.9843*-03	8.0601"+00	1.00000	0.76343	0.71363	0.86389	1.46544	0.58951
51	7.6192"=03	8.3871"+00	1.00000	0.96577	0.72890	0.87329	1.43543	0.60838
55	8.2542"-03	8.7759"+00	1.00000	0.76051	0.74664	0.84369	1.40142	0.63071
5.7	8.0891"-03	9.2335*+00	1.00000	0.97156	0.76700	0.89559	1.36341	0.65688
24	9.5240"-03	9.5762*+00	1.00000	0.97384	0.78189	0.90389	1.33640	0.67636
25	1.0139"-02	1.0036"+01	1.00000	0.97647	0.80146	0.91429	1.30139	0.70255
26	1.0796"=02	1.0439"+01	1.00000	0.97874	0.81817	64556.0	1.27230	0.72533
27	1.1431"-02	1.0842"+01	1.00000	0.98077	0.83459	0.93099	1.24437	0.74816
āà	1.2006"-02	1.1299"+01	1.00000	0.78320	0.85282	0.93979	1.21436	0.77390
ē š	1.2701"-02	1.1699"+01	1.00000	0.98526	0.86844	0.94709	1.10936	0.79631
30	1.3336"-02	1.2097"+01	1.00000	0.98717	0.88373	0.95400	1.16535	0.81863
31	1.3971"-02	1.2441*+01	1.00000	0.95875	0.89674	0.95970	1.14534	0.83791
32	1.4606"-02	1.2794"+01	1.00000	0.99010	0.90986	0.96520	1.12534	0.85770
i i	1.5241 -02	1.3074*+01	1.00000	0.99151	0.92016	0.96960	1.11033	0.87325
34	1.5876"-02	1.3301*+01	1.00000	0.99250	0.92842	0.97300	1.09833	0.88589
35	1.6510"-02	1.3531*+01	1.00000	0.99337	0.93670	0.97630	1.08633	0.89872
36	1.7145"-02	1.3763"+01		0.99411	0.94501	0.97950	1.07432	0.91174
37			1.00000	0.99492	0.95215			
	1.7780"-02	1.3965"+01	1.00000			0.98230	1.06432	0.92294
30	1.8415"-02	1.4192"+01	1.00000	0.99586	0.96014	0.98540	1.05332	0.93552
39	1.9050"-02	1.4509*+01	1.00000	0.99712	0.97117	0.98960	1.03631	0.95308
40	1.9685"-02	1.4830*+01	1.00000	0.99813	0.98222	0.99360	1.07331	0.97097
41	2.0320"-02	1.5167"+01	1.00000	0.99944	0.99368	0.99780	1.00830	0.98958
0 42	2.0955"-02	1.5354*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000

INPUT VARIABLES Y/DELTA,U/UD.T/TD,P/PD

6401060	2 CLUT1	TER	PROFILE	TABULATION	46	POINTS, DEL	TA AT POI	NT 46
r	Y	PT2/P	P/PD	T0/T0D	DENH	מטעט	T/TD	RHO/RHOD*U/UD
ı	0.0000*+00	1.0000"+00	1.33700	0.91003	0.00000	0.00000	2,85500	0,00000
2	1.2687*-04	1.8985*+00	1.33500	0.91455	0.30667	0.47400	2,38900	0.26488
3	2.5375"-04	2.4007*+00	1.33300	0.91841	0.36636	0.54820	2,23900	0.32637
4	3.8062"-04	2.8387"+00	1.33100	0.92559	0.40939	0.59860	2,13800	0.37266
5	5.0749"-04	3.1396*+00	1.32900	0.92440	0.43608	0.62620	2,06200	0.40360
6	6.3436"-04	3.4286*+00	1.32700	0.92685	0.46010	0.65100	2.00200	0.43151
7	7.6124*=04	3.6305"+00	1.32500	0.92928	0.47609	0.66720	1,96400	0.45012
8	8.8811 -04	3.8132"+00	1.32300	0.43144	0.49007	0.68100	1,93100	0.46658
9	1,0150"-03	3.9745*+00	1.32100	0.93337	0.50207	0.69260	1,90300	0.48078
10	1.1419"-03	4.1211"+00	1.31900	0.93593	0,51272	U.70300	1.88000	0.49322
11	1.2711"=03	4.2576*+00	1.31700	0.93769	0.52242	0.71210	1.85800	0.50476
12	1.9054"-03	4.8434"+00	1.30500	0.94462	0.56207	0.74760	1.76900	0.55278
13	2.5398*-03	5.3438"+00	1.29900	0.94967	0.59381	0.77400	1.69900	0.59178
14	3.1742"-03	5.8051"+00	1.29000	0.95440	0.62157	0.79600	1.64000	0.62612
15	3.8109"=03	6.2365"+00	1.26100	0.75823	0.64643	0.81460	1,58800	0.65712
16	4.4453"-03	6.6257*+00	1.27200	0.96157	0.06805	0.83010	1.54400	0.64346
17	5.07964-03	7.0167"+00	1.26300	0.96462	0.68707	0.84450	1.50200	0.71012
18	5.7140"-03	7.4024"+00	1.25400	0.96761	0.70719	0.85780	1.46300	0.73526
19	6.3507"-03	7.7960"+00	1.24400	0.97033	0.72914	0.87040	1.42500	0.75984
20	6.9851"-03	8.2036"+00	1.23500	0.97323	0.74924	0.88270	1.38800	0.78540
21	7.6174"-03	8.6083"+00	1.22600	0.97587	0.76867	0.89410	1.35300	0.81017
	8.25014-03	9.0234"+00	1.21700	0.97851	0.78807	0.70510	1.31900	0.53511
5.7	8.8905"-03	9.4681"+00	1.20800	0.98088	0.80838	0.91400	1.28400	0.86178
	9.5249"-03	9.0724 +00	1.14900	0.98311	0.82638	0.92540	1.25400	0.88481
25	1.0159"-02	1.0282"+01	1.19000	0.98527	0.84424	0.91440	1.22500	0.90770
20	1.0776"-02	1.0724"+01	1.18100	0.98735	0.86309	0.94350	1.19500	0.93245
27	1.143002	1.1069"+01	1.17200	0.98924	0.87752	0.95040	1.17300	0.94959
28	1.2065"-02	1.1452*+11	1.16300	0.99082	0.89326	0.95750	1.14900	0.96917
59	1.2679"-07	1.1816"+01	1.15400	0.99218	0.90797	0.96390	1.12700	0.98699
30	1.3136"-02	1.2130*+01	1.14500	0.99356	0.92043	0.96930	1.10900	1.00077
31	1.3970"-02	1.2472"+01	1.13600	0.99505	0.93388	0.97500	1.09000	1.01615
32	1.4604"-02	1.2793"+01	1.12700	0.99602	0.94588	0.97980	1.07300	1.02911
33	1.5239"-02	1.3011"+01	1.11800	0.99685	0.95462	0.98330	1.06100	1.03613
34	1.5676"-02	1.3222*+01	1.10900	0.99753	0.96263	0.98640	1.05000	1.04183
35	1.6510"-02	1.3382"+01	1.10000	0.99821	0.96867	0.98880	1.04200	1.04384
36	1.7144"-02	1.3470"+01	1.09100	0.99833	0.97085	0.98960	1.03900	1.03913
37	1.7781"-02	1.3440"+01	1.08200	0.99833	0.97065	0.98960	1.03900	1.03056
38	1.8415"-02	1.3347*+01	1.07300	0.99803	0.96923	0.94090	1.04100	1.01930
39	1.9050"-02	1.3450"+01	1.06300	0.99785	0.97122	0.98950	1.03800	1.01333
40	1.9684"-02	1.3529"+01	1.05400	0.99809	0.97418	0.99060	1.03400	1.00976
	2.0321"-02	1.3612"+01	1.04500	0.99844	0.97725	0.99180	1.03000	1.00624
42	2,0935"-02	1.3731*+01	1.03600	0.99869	0.98169	0.99340	1.02400	1.00504
	2.1570"-02	1.3855*+01	1.02700	0.99908	0.98626	0.99510	1.01800	1.00390
	2.2224"-02	1.3978"+01	1.01800	0.99934	0,99077	0.99670	1.01200	1.00241
45	2.2561"-02	1.4104"+01	1.00900	0.99973	0.99542	0.99840	1.00400	1.00138
D 46	2.3475"-02	1.4230"+01	1.00000	1,00000	1,00000	1.00000	1.00000	1.00000
							••••	

INPUT VARIABLES Y/DELTA,U/UD,T/TD,P/PD

64010603 CLUTTER		TER	PROFILE	TABULATION	39	POINTS, DEL	TA AT P(I)	NT 39
1	Y	P12/P	P/PD	T0/T0D	M/MD	U/UD	TATO	RHO/RHO0+U/UD
1 123 45 67 8 9 10 112 123	Y 0.0000"+00 1.2704"-04 2.5336"-04 3.8100"-04 5.0804"-04 6.3436"-04 7.6200"-04 1.0154"-03 1.14306"-03 1.2706"-03 1.2706"-03	PT 2 / P 1.00 0 0 " + 0 0 2.56 30 " + 0 0 3.53 79 " + 0 0 4.18 16 " + 0 0 4.34 22 " + 0 0 4.40 2" + 0 0 4.51 20 " + 0 0 4.51 20 " + 0 0 4.51 30 " + 0 0 4.51 30 " + 0 0 4.51 30 " + 0 0 5.51 30 " + 0	1.22700 1.22500 1.22500 1.22300 1.22000 1.21700 1.21700 1.21600 1.21400 1.21400 1.21300 1.21100 1.24400	TO/TOD 0.90839 0.91953 0.91213 0.91247 0.91581 0.91724 0.92114 0.92299 0.92450 0.92656	M/MO 0.00000 0.39163 0.47938 0.51029 0.52869 0.54024 0.54097 0.55473 0.57508 0.58220 0.61441	0.00000 0.56890 0.65890 0.6770 0.71450 0.77320 0.73120 0.73120 0.75150 0.77520 0.75150	2.76528 2.11021 1.88919 1.81618 1.77418 1.72917 1.72917 1.71117 1.69517 1.66617 1.566616	RHO/RHOD-U/UD 0.00000 0.33025 0.46255 0.46271 0.48424 0.50899 0.51961 0.52881 0.52882 0.54620 0.56316
14 15 14 17 18 19 21 22 23	3.1756"-03 3.8100"-03 5.0806"-03 5.7150"-03 6.3494"-03 7.6200"-03 8.2544"-03 9.5250"-03	6.3298"+00 6.7426"+00 7.1384"+00 7.5048"+00 7.5048"+00 8.2574"+00 9.0055":00 9.4166"+00 9.8429"+00 1.0310"+01	1.18900 1.18100 1.17400 1.16400 1.15900 1.15100 1.13600 1.12800 1.12800 1.11300	0.95639 0.96146 0.96550 0.96925 0.97157 0.97464 0.97905 0.98170 0.98397	0.66636 0.68959 0.71115 0.730529 0.76844 0.78699 0.50499 0.52486 0.86449	0.82320 0.840190 0.86780 0.86780 0.89090 0.91150 0.92190 0.93190 0.94230	1.52615 1.46415 1.44514 1.41114 1.37714 1.31213 1.26213 1.25113 1.25113	0.64134 0.66850 0.49450 0.71705 0.74002 0.76289 0.78521 0.80761 0.83117 0.85619 0.88272
2078901223456789 3323456789 33333456789	1.0139"-02 1.01430"-02 1.2064"-02 1.2064"-02 1.3335"-02 1.3369"-02 1.5240"-02 1.5240"-02 1.5240"-02 1.5440"-02 1.5440"-02 1.5440"-02	1.0780"+01 1.1270"+01 1.1277"+01 1.2050"+01 1.2361"+01 1.2655"+01 1.3655"+01 1.3148"+01 1.3148"+01 1.3344"+01 1.33474"+01 1.33474"+01 1.33474"+01 1.33474"+01 1.33474"+01	1.10400 1.09400 1.09400 1.08300 1.07500 1.06400 1.05300 1.034500 1.034500 1.034500 1.034500 1.034500 1.034500 1.034500 1.034500	0.98895 0.99115 0.99301 0.99473 0.99787 0.99787 0.99852 0.99882 0.99920 0.79936 0.9984 0.9984	0.88520 0.90570 0.93270 0.93270 0.95285 0.96232 0.97691 0.98523 0.98523 0.99338 0.99386 1.00000	0.95220 0.96160 0.965730 0.965850 0.968850 0.968850 0.99380 0.99380 0.99580 0.99580 0.99580	1.15712 1.12711 1.0311 1.06211 1.04910 1.03910 1.03910 1.02410 1.01510 1.01110 1.00810 1.00810 1.00000	0.93676 0.93646 0.97650 0.99135 1.00345 1.00368 1.01354 1.01347 1.01304 1.01031 1.00853 1.00473 1.00078

INPUT VARIABLES Y/DELTA, U/UD, T/TO, P/PD

640106	04 CLUTT	TER	PROFILE	TABULATION	32	POINTS, DEL	TA AT POI	NT 32
1	Y	PTZ/P	P/PD	T0/10D	47/40	0/00	T/TD	RH0/RH00+U/U0
1	0.0000"+00	1.0000*+00	1.15100	0.90654	0.00000	0.00000	2.61200	0.00000
2	1.2706"-04	2.2256*+00	1.15000	0.91142	0.37011	0.53481	2.06800	0.29455
3	2.5413"-04	3.0713"+00	1.14900	0.91588	0.45852	0.63053	1.89100	0.36312
4	3.8119"-04	3.7312"+00	1.14700	0.91959	0.51571	0.49534	1.76600	0.44512
5	5.0825"-04	4,2283*+00	1.14600	0.92323	0.55462	0.71994	1.68500	0.48965
6	6.3532"-04	4.5180"+00	1.14500	0.92618	0.57003	0.73835	1.64300	0.51455
7	7.0238"-04	4.7071"+00	1.14300	0.92932	0.58956	0.75015	1.61900	0.52960
8	8.8944"-04	4.8642"+00	1.14200	0.93209	0.60056	0.75765	1.60000	0.54220
9	1.0165"-03	5.0013"+00	1.14100	0.93517	0.60999	0.76795	1.58500	0.55253
10	1.1436"-03	5.1249"+00	1.14000	0.93746	0.61336	0.77506	1.57100	0.56242
11	1.2706"-03	5.2383"+00	1.13800	0.93991	0.62595	0.78156	1.55900	0.57050
12	1.9045"~03	5.7581*+00	1.13200	0.94917	0.65955	0.80886	1.50400	0.60550
13	2.5398"-03	6.2268"+00	1.12500	0.95653	0.68842	0.83097	1.45700	0.64162
14	3.1751"+33	6.6816"+00	1.11300	0.96381	0.71529	0.85087	1.41500	0.67228
15	3.8104"-03	7.1145"+00	1.11200	0.96878	0.73995	0.86767	1.37500	0.70171
16	4.4443"-03	7.5162"+00	1.10500	0.97251	0.76211	0.85188	1.33900	0.72776
17	5.0796"-03	7.8954*+00	1.09900	0.97533	0.78244	0.89418	1,30600	0.75245
18	5.7149"-03	8.3968*+00	1.09200	0.97323	0.80392	0.90668	1.27200	0.77838
19	a.3503"-03	8.7855"+00	1.08600	0.98114	0.82836	0.92018	1.23400	0.80982
20	0.9856*-03	9.2146*+00	1.07700	0.95417	0.84936	0.93157	1.20300	0.83556
21	7.6194"-03	9.7423"+00	1.07200	0.98713	0.87468	0.94449	1.16600	0.84835
55	8.2547"-03	1.0226"+01	1.06600	0.98768	0.89720	0.95547	1.13400	0.89820
5.3	8.8901"-03	1.0072"+01	1.05900	0.49187	0.91759	0.96497	1.10600	0.92399
24	9.5254"-03	1.1090"+01	1.05300	0.99393	0.93622	0.97337	1.08100	0.94818
25	1.0161"-02	1.1439*+01	1.04600	0.99544	0.95150	0.95010	1.06100	0.96624
56	1.0795" - 02	1.17497+01	1.09300	0.49645	0.96490	0.98590	1.04400	1.03217
27	1.1430"-02	1.1973"+01	1.03300	0.99795	0.97443	0.98990	1.03200	0.99086
28	1.2065"=02	1.2142*+01	1.02600	0.99861	0.98157	0.99280	1,02300	0.99571
29	1.2701"-02	1.2277"+01	1.02000	0.99917	0.98723	0.79510	1.01670	0.99902
30	1.3334"-02	1.2414"+01	1.01300	0.99973	0.99294	0.99740	1.00900	1.00135
31	1.3970"-02	1.2523"+01	1.00700	0.99974	0.99750	0.99900	1.00300	1.00298
0 35	1.4605"-02	1.2584"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD,T/TO,P/PD

640106	05 CLUT	ren	PROFILE	TABULATION	30	POINTS, DEL	TA AT POI	NT 30
I	Y	P12/P	P/PD	T0/T05	:47MD	UZUD	T/ID	RHO/RHOD+U/UD
1	0.0000*+00	1.0000"+00	1,12400	0.90300	0.00000	0.0000	2.53925	0.0000
2	1.2608"-04	2.6042*+00	1.12200	0.90481	0.42039	0.58360	1.92719	0.33977
3	2.5336"-04	3.4135*+00	1.12100	0.90061	0.49836	0.66080	1.75418	0.42132
4	3,8134"-04	4.4110"+00	1.12000	0.90897	0.57898	0.73010	1.59016	0.51423
5	5.0806"-04	4.9365"+00	1.11900	0.91172	0.61702	0.76000	1.51715	0.56055
6 7	6.3475"-04	5.1596"+00	1.11800	0.91462	0.63245	0.77230	1.49115	0.57904
	7.6143"-04	5.2977"+00	1.11700	0.71800	0.64180	0.78010	1.47815	0.58965
8	8.8944"-04	5.4275*+00	1.11500	0.92177	0.65043	0.74790	1.46715	0,59879
9	1,0101"=03	5.5484*+00	1.11400	0.92591	0.05845	0.79510	1.45815	0.60744
10	1.1428"-03	5.6571"+00	1.11300	0.93344	0.06553	0.80310	1.45015	0.61385
11	1.2675"-03	5.7637"+00	1.11200	0.93883	0.67240	0.81000	1.45115	0.62070
12	1.9056"-03	6.2700"+00	1.10000	0.95627	0.70536	0.83350	1.41414	0.65603
13	2.5403"-03	6.7498*+00	1.10000	0.96563	0.73233	0.85940	1.37714	0.68645
14	3.1751"-03	7.1757"+00	1.09400	0.97080	0.75762	0.87640	1.33813	0.71651
15	3.8098"-03	7.5739"+00	1.08800	0.97395	0.77973	0.89010	1.30313	0.74316
10	4.4446"-03	8.0163*+00	1.08200	0.97732	0.80375	0.90440	1.26613	0.77288
17	5.0896"-01	8.41724+00	1.07700	0.98302	0.32491	0.91640	1.23412	0.79973
16	5.7154"-01	8.8405"+00	1.07100	0.98279	0.84667	0.92830	1.20212	0.82705
19	6.3501"-33	9.2768*+00	1.06500	0.98572	0.86842	0.93990	1.17112	0.85473
20	6.9649"=03	9.6883"+00	1.05700	0.98519	0.68864	0.75010	1. 4311	0.88019
51	7.0170"-03	1.0099*+01	1.05300	0.99051	0.90781	0.95950	1. 1711	0.30443
22	0.2514*-03	1.0477"+01	1.04700	0.79266	0.72595	0.96810	1. 9311	0.92726
23	8.8904"-03	1.0857"+01	1.04100	0.99437	0.94347	0.97400	1.07011	0.94945
24	9.5252"-03	1.1189*+01	1.03500	0.99594	0.95842	0.74260	1.05111	0.96754
25	1.0100"-02	1.1460"+01	1.02900	0.99757	0.97073	0.98810	1.03610	0.98133
26	1.0795"-12	1.1655#+01	1.02400	0.99843	0.98036	0.99210	1.02410	0.99200
ž7	1.1429"-02	1.1430"+01	1.01800	0.79877	0.98669	0.99460	1.01610	0.99646
ŽŠ	1.2060-02	1.1946*+01	1.01200	0.99735	0.99170	0.99670	1.01010	0.99857
29	1.2700"-02	1.2043"+01	1.00000	0.99991	0.99676	0.99BA	1.00410	1.00069
0 30	1.3335"-02	1.2138"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD,T/TD,P/PD

64011001 C		TTER	PROFILE	TABULATION	35	POINTS, DE	LTA AT PUI	NT 35
1	Y	PT2/P	PZPO	10/100	MZMO	U/U0	1/10	RH0/RH00+U/UD
1	0.0000*+00	1.0000"+00	0.89990	U.90706	0.20003	0.00000	2.85400	0.00000
2	1.2713"-04	3.0792"+00	0.90070	0.35101	0.42976	0.39530	1.91700	0,27970
3	2.5425"-04	3.8998"+00	0.90150	0.86577	0.49548	0.66180	1.75400	0.33442
4	3.8138"-04	4.4583"+00	0.90220	0.87968	0.53521	0.71070	1.71400	0.36883
5	5.0851"-04	4.8770"+00	0.90300	0.89201	0.56311	0.72770	1.67000	0.39348
•	6.3563"-04	5.1633"+70	0.90380	0.90424	U.58133	0.74650	1.64900	0.40915
7	7.6276*-04	5.3689"+00	0.99460	0.91272	0.59408	0.75940	1.63400	0.42041
8	6.0824"-04	5.5437"+00	0.90530	0.91955	0.60473	0.76990	1.62100	0.42998
9	1.0194"=03	5.7092"+00	0.90610	0.924A2	0.61459	0.77910	1.60700	0.43929
10	1.1425"-03	5,8589~+00	0,90690	0.92977	0.62339	0.78730	1.59500	0.44765
11	1.2696"-03	5.9941*+00	0.90760	0.93457	0.63123	0.79470	1.58500	0.45506
12	1.9053"-03	6.5185"+00	0.9 .50	0.94934	0.66075	0.82050	1.54200	0.48501
13	2.5392"-03	6.9282"+00	0.91530	0.45649	19580.0	0.83750	1.50400	0.50968
14	3.1749"-03	7.2682*+00	0,91920	0.96094	0.70076	0.85020	1.47200	0.53091
15	3.8105*-03	7.5478*+00	0.92300	0.96399	0.71510	0.85990	1.44600	0.54388
16	4.4445*-03	7,4023"+00	0,92690	0.96591	0.72790	0.86800	1.42200	0.56579
17	5.0601*+03	8.0634"+00	0.93070	0.96768	0.74080	0.87590	1.39800	0.58312
18	5.7158*-03	8.3385*+00	0.93460	0.96978	0.75415	0.88400	1.37470	0.60130
19	6.3477"-03	5.6477"+00	0.93840	0.97206	0.76888	0.89270	1.34800	0.62145
20	6.9554"-03	6,9893"+00	0.94230	0.97413	0.78483	0.90170	1.32000	0.64369
21	7.6194"-03	9.3743"+00	0.94610	0.97664	0.80244	0.91140	1.29000	0.66843
55	8.2550"-03	9.8057*+00	0.95000	0.97922	0.82168	0.92160	1.25840	0.69596
53	8.8906*-03	1.0331"+01	0.95380	0.98214	0.84453	0.93320	1.22100	0.72898
24	9.5246*-03	1.087**+01	0.95770	0.98518	0.86765	0.94450	1.18500	0.76333
25	1.0150*-02	1.1404*+01	0.96150	0.98777	0.88940	0.95460	1.15200	0.79674
26	1.0794"-02	1.1948"+01	0.96540	0.99043	0.91127	0.96440	1.12000	0.83128
27	1.1430~-02	1.2500"+01	0.96920	0.99274	0.93297	0.97360	1.08900	0.86650
28	1.2066"-02	1.2970*+01	0.97310	0.99466	0.95104	0.9%100	1.06400	0.89719
29	1.2699"-02	1.3391"+01	0.97690	0.99672	0.96693	0.98750	1.04300	0.92492
30	1.3335"-02	1.3733"+01	0.98080	0.99780	0.97965	0.99230	1.02600	0.94858
31	1.3971"-02	1.4035"+01	0.98460	0,99732	0.99077	0.99670	1.01200	0.96971
32	1.4605"-02	1.4182"+01	0,98850	0.79968	0.79611	0.99860	1.00500	0.98221
3.3	1.524002	1.4248"+01	0.99230	0.99995	0.99550	0.99950	1.00200	0.98982
34	1.5874"-02	1.4289"+01	0.99620	1.30000	1.00000	1.00000	1.00000	U.9962U
D 35	1.6510"-02	1.4289*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1,00000
INPUT	VARIABLES	YZDEL TAZUZUDA	T/TD.P/PD					

640110	02 CLUTI	TER	PROFILE	TABULATION	35	POINTS, DEL	TA AT POI	NT 35
I	Y	P12/P	P/PD	TO/TOD	DNAM	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000-+00	1.0000"+00	0.86140	0.91479	0.00000	0.00000	2.90600	0.00000
5	1.2713"-04	3.1007"+00	0.86250	0.86173	0.42880	0.59950	1.95500	0.26451
3	2.5425"-04	4.4025"+00	0.86350	0.87102	0.55433	0.71377	1.65800	0.37174
4	3.8138"-04	5.3018"+00	0.86460	0.87969	0.58951	0.74357	1.59100	0.40408
5	5.0851"-04	5.6649"+00	0.86570	0.88809	0.60767	0.75998	1.56400	0.42066
Ü	6.3563"-04	5.8795"+00	0.86670	0.89397	0.62139	0.77188	1.54300	0.43356
7	1.0276"-04	6.0784"+00	0.86780	0.90401	0.63164	0.78308	1.53700	0.44213
8	6.8824"-04	6.2239"+00	0.86890	0.91243	0.64018	0.79233	1.53200	0.44941
9	1.0154"-03	6.3850*+00	0.86990	0.92053	0.64881	0.80148	1.52600	0.45689
10	1.1425"-03	6.5106"+00	0.87100	0.92690	0.65571	9.80868	1,52100	0.46309
11	1.2696"-03	6.6436*+90	0.87210	0.93314	0.66294	0.81598	1.51500	0.46971
12	1.9053"-03	7.2170"+90	0.87740	0.95196	0.69323	0.54278	1.47800	0.50031
13	2,5392"-03	7,6732"+00	0.88270	0.95904	0.71640	0.85939	1.43900	0.52716
14	3.1749"-03	8.0531"+00	0.88810	0.96325	0.73514	0.87169	1.40600	0.55060
15	3.8105"=03	8.3534"+00	0.89340	0.96575	0.74961	0.88059	1.38000	0.57009
16	4.4445*-03	8.6346"+00	0.89870	0.96765	0.76291	0.84839	1.35600	0.58879
17	5.0801"-03	8.9192"+00	0.90410	0.96982	0.77613	0.89609	1.33300	0.60777
18	5.7158*-03	9.1863"+00	0.90940	0.97172	0.76834	0.90297	1.31200	0.62590
19	6.3497"=03	9.4612"+00	0.91470	0.97356	0.80072	0.90979	1.29100	0.64461
20	6.9854**03	9.7370"+00	0.92000	0.97565	0.81293	0.91649	1.27100	0.66339
āi	7.6194"-03	1.0016"+01	0.92540	0.97742	0.82513	0.92249	1.25100	0.68269
žž	8.2550"-03	1.0330"+01	0.93070	0.77913	0.83862	0.92969	1.22900	0.70494
23	8.8976"-03	1.0738*+01	0.43600	0.98163	0.85583	0.93829	1.20200	0.73065
24	9.5246"=03	1.1197*+01	0.94140	0.98426	0.87475	0.94739	1.17300	0.76034
25	1.0160"+02	1.1613"+01	0.94670	0.98670	0.89159	0.55530	1.14800	0.78779
26	1.0774"-02	1.2145"+01	0.95200	0.98917	0.91268	0.96460	1.11700	0.82211
27	1.1430*=02	1.2585*+01	0.95740	0.99144	9.92973	0.97200	1.09300	0.85141
28	1.2066"-02	1.3038"+01	0.96270	0.99338	0.94697	0.97910	1.06400	0.88174
29	1.2679"-02	1.3435"+01	0.96500	0.99516	0.96182	0.93510	1.04900	0.90703
30	1.3335*-02	1.3740*+01	0.97330	0.99639	0.97309	0.78950	1.03400	0.93141
ši	1.3971 -02	1.4015"+01	0.97870	0.99759	0.98313	0.99340	1.02100	0.95224
íż	1.4605*-02	1.4153"+01	0.98400	0.99857	0.98812	0.97550	1.01500	0.96510
33	1.5240"-02	1.4259"+01	0.98930	0.49891	0.99195	0.99690	1.01000	0.97647
34	1,5874"-02	1.4372"+01	0.99470	0.99952	0.99601	0.99850	1.00500	0.98827
0 35	1.6510"=02	1.4484"+01	1.00000	1,00000	1.00000	1.00000	1.00000	1,00000
U 33	110310. 405	1040404.401	1.0000	1100000	1.00000	1.03000	1.000000	1,44440

INPUT VARIABLES Y/DELTA,U/UD,T/TD,P/PD

640110	OS CLUT	TER	PROFILE	TABULATION	35	POINTS, DEL	TA AT POI	NT 35
1	Y	PT2/P	P/PD	TO/TOD	M/MD	U/UD	T/TU	RHO/RHOD+U/UD
1	0.0000*+00	1.0000"+00	0.93290	0.90942	0.00000	0.0000	3.10831	0.00000
2	1.2713"-04	3.7850"+00	0.93340	0.92273	0.45874	U.46323	2.09021	0.29617
3	2.5425*-04	5.4096*+00	0.93380	0.93471	0.56208	0.75645	1.01118	0.39001
4	3.8138"-04	6.0630"+00	0.93430	0.94566	0.59847	0.78766	1.73217	0.42485
5	5.0851"-04	6.4620"+00	0,93480	0.95525	0.61962	0.80626	1.69317	0.44514
6	6.3303*=04	6.7793"+00	0.93530	0.96182	0.63592	0.819A6	1.66217	0.46134
7	7.6276"-04	7.0796"+00	0.93570	0.96801	0.65097	0.83217	1.63416	0.47649
8	8.8824"-04	7.3496*+00	0.93620	0.97302	0.66421	0.84257	1.60916	0.49020
9	1.0154"-03	7.5841*+00	0.93670	0.97730	0.67549	0.85127	1.58816	0.50208
10	1.1425"-03	7.8163"+00	0.93720	0.98096	0.68648	0.85937	1.56716	0.51393
11	1.2696"-03	8.0258"+00	0.93760	0.98449	0.69624	0.86657	1.54915	0.52448
12	1.9053"-03	8.8999*+00	0.94000	0.49735	0.73556	0.89398	1.47715	0.56889
13	2.5392*-03	9.5693"+00	0.94240	1.00517	0.76429	0.91208	1.42414	0.60355
14	3.1749"-03	1.0081*+01	0.94470	1.01138	0.78554	0.92519	1.38714	0.63009
15	3.8105"-03	1.0486"+01	0.94710	1.01526	0.80195	0.93459	1.35814	0.65174
16	4.4445"-03	1.0841"+01	0.94940	1,01886	0.81406	0.94259	1.33413	0.67077
17	5.0801"-03	1-1164"+01	0.95180	1.02056	0.32869	0.94887	1.31113	0.68884
18	5.7158"-03	1.1492"+01	0.95420	1.02108	0.84132	0.95449	1.28713	0.70760
19	6.3497"-03	1.1808*+01	0.95650	1.02:03	0.85332	0.95979	1.26513	0.72565
20	6.9854"-03	1.2130"+01	0,95890	1.02066	0.86539	0.96409	1-24112	0.74486
21	7.6194"-03	1.2465"+01	0.96120	1.01783	0.67777	0.96759	1.21512	0.76540
22	8.2530*-03	1.2893"+01	0.96360	1.01092	0.89293	0.97289	1.18712	0.78971
23	8.8906"-03	1.3235"+01	0.96600	1.01584	0.90551	0.97700	1.16412	0.41072
24	9.5246"-03	1.3606*+01	0.96830	1.01592	0.91859	0.94170	1.14211	0.83230
25	1.0160"-02	1.3962"+01	0.97070	1,01449	0.93097	0.94530	1.12011	0.85357
50	1.0794"-02	1.4339"+01	0.97310	1.01356	0.94358	0.98910	1.09811	0.87650
27	1.1430*-02	1.4612"+01	0.97540	1.01305	0.95314	0.99150	1.08211	0.89373
28	1.2066"-02	1.4935*+01	0.97890	1.01085	0,96398	0.97440	1.06411	0.71477
29	1.2699"-02	1.5242"+01	0.98120	1.01026	0.47414	0.99730	1.04810	0.93364
30	1.3335*-02	1.5492"+01	0.98360	1.00856	0.98239	0.99900	1.03410	0.95021
31	1.3971"-02	1.5684*+01	0.98590	1.00676	0,98865	1.00000	1.02310	0.96364
35	1.4605"-02	1.5810"+01	0.98870	1.00470	0.99273	1.00020	1.01510	0.97419
33	1.5240"-02	1.5898*+01	0.99300	1.00280	0.99558	1.00010	1.00910	0.98414
34	1.5874"-02	1.5978"+01	0.99570	1.00148	0.99816	1.00020	1,00410	0.99183
D 35	1.6510"-02	1.6036"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD.T/TD,P/PD

640110	04 ÇLUTI	TER	PROFILE	YABULATION	35	POINTS, DEL	TA AT PUI	NT 35
I	Y	PT2/P	P/PD	TO/TOD	M/110	UNUD	1/10	RHO/RHOD#U/UD
1	0.0000"+00	1.0000*+00	0.99140	0.90081	0.00000	0.00000	3.13231	0.00000
2	1.2713"-04	3.2517"+00	0.99140	0.90106	0.41580	0.01460	2,18522	0.27886
	2.5425"-04	4./262*+00	0.99140	0.90715	0.51736	0.71147	1.89119	0.37297
4	3.8138"-04	5.5153"+00	0.99140	0.91242	0.56391	0.75028	1.77018	0.42020
5	5.0851"-04	6.0396"+00	0.99140	0.91774	0.59278	0.77338	1.70217	0.45044
6	6.3563"-04	6.3776"+00	0.99140	0.92323	0.61064	0.78798	1.66517	0.46914
7	7.6276"-04	6.6679*+00	0.99140	0.72660	0.62557	0.80015	1.03016	0.48485
5	8.8824"-04	6.9310"+00	0.79140	0.93297	0.63880	0.81058	1.61016	0.45909
9	1.0154"-03	7.1894*+00	0.99140	0.93697	0.65152	0.82023	1.58516	0.51303
10	1.1425"-03	7.4392"+00	0.99140	0.94098	0.66358	0.82938	1.56216	0.52636
11	1.2696"-03	7.4722*+00	0.99140	0.94514	0.47463	0.83778	1.54215	0.53858
12	1.7053"-03	8.6833"+00	0.99140	0.95750	0.72062	0.86899	1.45415	0.59245
13	2.5372"-03	9.5266"+00	0.99140	0.96679	0.75083	J.89167	1.38814	0.63684
14	3.1740"-03	1.0198"+01	0.99140	0.97319	0.78447	0.90779	1.33913	0.67206
15	3.8105"-03	1.0702"+01	0.99140	0.97734	0.80456	0.91879	1.30413	0.69847
16	4.4445"-03	1.1157"+01	0.99140	0.98017	0.82227	0.92779	1.27313	0.72248
17	5.0801*-03	1,1535"+01	0.99140	0.98220	0.43673	0.93479	1.24012	0.74252
16	5.7158"-03	1.1873"+01	0.99140	0.98355	0.84945	0.94059	1.22612	0.76053
19	6.3497*-03	1.2193"+01	0.99140	0.98487	0.86129	0.74587	1,20612	0.77750
20	6.9854*-03	1.2512"+01	0.99160	0.98638	0.87292	0.95110	1.18712	0.79429
ži	7.6194"-03	1.2823"+01	0.99140	0.95781	0.88415	0.95600	1.16912	0.81068
22	6.2550"-03	1,3194"+01	0.99140	0.98922	0.89734	0.96150	1.14811	0.83025
23	8.8906"-03	1.3523"+01	0.99140	0.99045	0.90888	0.96620	1.13011	0.84760
24	9.5246"-03	1.3921"+01	0.99140	0.99194	0.92266	0.97170	1.10911	0.86857
25	1.0160"-02	1.4158"+01	0.99140	0.49259	0.93075	0.97490	1,09711	0.88096
26	1.0794 -02	1.4416"+01	0.99140	0.99371	0.93949	0.97820	1.08411	0.89455
27	1.1430"-02	1.4730"+01	0.99140	0.99508	0.95002	0.98230	1.06911	0.91090
20	1.2066"-02	1,5110"+01	0.99140	U.99630	19296	0.98690	1.05111	0.93084
29	1.2499"-02	1.5434"+01	0.99140	0.99716	0.97319	0.99060		0.94766
30	1.3335"-02	1.3641"+01	0.99280	0.99807	0.97991		1.03610	
31	1.3971"-02	1.5840"+01	0.99400			0.99310	1.02710	0.95943
32	1.4605*-02	1.5981"+01		0.59844	0.98631	0.99520	1.01610	0.97164
35	1.5240*-02	4 5 7 7 7 7 7 7 1	0.99520	3.94896	24099.0	0.99680	1.01210	0.98015
33 34		1.0348"+01	0.99640	0.99936	0.99457	0.99810	1.00710	0.98749
D 35	1.5474"-02	1.4217"+01	9,44620	0.94976	0.99835	0.99940	1.00210	0.99551
A 33	1.6510"-02	1,62694+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD.T/TO.P/PD

64011005 CLUTTER		ER	PROFILE	TABULATION	43 1	POINTS, DEL	TA AT POI	NT 43
1	Y	PTZ/P	P/PD	T0/10D	MVMD	UZUD	1/10	RHO/RHOD*U/UD
1 (.0000*+00	1.0000"+00	1.00000	0.91229	0.00000	0.00000	3.02400	0.00000
2 1	.2738"-04	2.5503"+00	1.00000	0.86764	0.36681	0.54320	2.19300	0.24770
3 8	.5476"-04	3.4743"+00	1.00000	0.87676	0.44363	0.62840	1.99100	0.31582
	.7998"-04	4.1701*+00	1.00000	0.88593	0.49604	0.67850	1.87100	0.36264
	.0736"-04	4.6021"+00	1.00000	0.89411	0.52477	0.70600	1.81000	0.39006
	.3475"-04	4.9793"+00	1.00000	0.90278	0.54850	0.72850	1.76400	0.41298
	.6213"-04	5.2971*+00	1.00000	0.90984	0.56782	0.74620	1.72700	0.43208
	.8951*-04	5.5999*+00	1.00000	0.91612	0.58556	0.76190	1.69300	0.45003
	.0169"-03	5.8736*+90	1.00000	0.92134	0.60113	0.77520	1.66300	0.46615
	.1421"-03	6.1165"+00	1.00000	0.92623	0.61461	0.78660	1.63800	0.48022
	.2695"-03	6.3445 +00	1.00000	0.93057	0.62699	0.79680	1.61500	0.49337
	49042*-03	7.2946*+00	1.00000	0.94565	0.67412	0.83440	1.52300	0.54787
	.5390"-03	8.0742"+00	1.00000	0.95675	0.71387	0.86110	1.45500	0.50162
	1759"-03	8.7514*+00	1.00000	0.96443	0.74510	0.86130	1.39900	0.62995
	8106"-03	9.3422"+00	1.00000	0.97098	0.77130	0.89750	1.35400	0.66285
	1.4454*-03	9.8422*+00	1.00000	0.96869	0.79279	0.90670	1.30000	0.69320
	.0801*-03	1.0292"+01	1,00000	0.97803	0.81164	0.91970	1.28400	0.71628
	7149*-03	1.0707"+01	1.00000	0.98038	0.82864	0.92530	1.25500	
	.3496"-03	1.1077"+01		0.98221				0.73968
			1.00000		0.84351	0.93550	1.23000	0.76057
	.9844"-03	1.1399"+01	1.00000	0.98374	0.85626	0.94150	1.20900	0.77874
	.6191"-03	1.1708"+01	1.00000	0.98552	0.86830	0.94720	1.19000	0.79597
	.2560"=03	1,2033"+01	1.00000	0.98679	0.88077	0.95270	1.17000	0.81427
	.6906"-03	1.2307"+01	1.00000	0.98810	0.89114	0.95730	1.15400	0.82955
24 9	.5255"-03	1.2573"+01	1.00000	0.98947	0.90111	0.96170	1.13900	0.84434
	.0160"-02	1.2892"+01	1.00000	0.99064	0.91294	0.96660	1.12100	0.86227
	.0795"=02	1.3264"+01	1.00000	0.99218	0.92654	0.97220	1.10100	0.88302
	.1430"-02	1.3634"+01	1.00000	0.99380	0.93983	0.97760	1.08200	0.90351
	.2064"-02	1.3913*+01	1.00000	0.99492	0.94774	0.98150	1.06800	0.41901
29 1	20-"9945.	1.4154*+01	1.00000	0.99569	0.95823	0.98470	1.05600	0.93248
	.3334"-02	1.4360"+01	1.00000	0.99639	0.96544	0.95740	1.04600	0.94398 .
	.3971"-02	1.4552"+01	1.00000	0.99713	0.97208	0.98990	1.03700	0.95458
	.4606"-02	1.4702"+01	1.00000	0.99765	0.97725	0.99180	1.03000	0.96291
33 1	.5240"-02	1.4814*+01	1.00000	0.99822	0.98111	0.99330	1.02500	0.96907
	.5875*-02	1.49657+01	1.00000	0.99860	0.98626	0.99510	1.01800	0.97750
	.6510"-02	1.5076*+01	1.00000	0.99904	0.99009	0.99650	1.01300	0.98371
	.7145"-02	1.5145"+01	1.00000	0.99925	0.99235	0.99730	1.01000	0.98743
	.7779"-02	1.5171*+01	1.00000	0.99951	0.99324	0.99770	1.00900	.0.98880
	.8414"-02	1.5212"+01	1.00000	0.99946	0.99462	0.99810	1.00700	0.99116
	.9051*-02	1.52387+01	1.00000	0.99972	0.99552	0.99850	1.00600	0.99254
	.9686"-02	1.5280"+01	1.00000	0.99967	0.99691	0.99890	1.00400	0.99492
	20-"1520.	1.5309*+01	1.00000	1.00007	0,99790	0.99940	1.00300	0.99641
	.0955"-02	1.5351"+01	1.00000	1.00002	0.99930	0.99980	1.00100	0.99880
D 43	1.1590*=02	1.5372"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD,T/TD,P/PD

axisymmetric	M : 6 R THETA X 10 ⁻³ : 2 - 15	6501
	TW/TR : 1	ZPG - AW
	<u> </u>	<u> </u>

Windtunnel: blow-down but effectively continuous, running time up to 45 minutes with 10 minutes settling time. W = 0.51, H = 0.52 m. PO: 3.6 MN/m^2 TO: 480 K. Air, Dew point 186 K. RE/m X 10^{-6} : 33.

ADCOCK J.B., PETERSON J.B. and McREE D.I. 1965. Experimental investigation of a turbulent boundary layer at Mach 6, high Reynolds' numbers, and zero heat transfer. NASA TN D-2907.
And Peterson J.B. private communication. Also: Samuels, Peterson and Adcock (1967) CAT 6701.

- The test boundary layer was formed on the exterior of a hollow cylindrical model. The leading edge (X = 0) was chamfered at 15° from the outer, test surface (D = 152.4 mm) to the hollow interior (D = 127 mm). From X = 0 to X = 1.07 m the diameter was constant. The model than flared out at 20° to a diameter of 203 mm which remained constant to the end of the model at X = 1.22 m. The model was supported on the tunnel floor by two pairs of sloping supports at approximately X = 0.8 and 1.15 m. Measurements were made on the top generator. The model surface roughness was less than 0.8 µm. For this experiment the model was
- 2 not actively cooled. There was a slight increase in Mach number along the test surface (see section B)
- 3 but departures from the mean gradient were no greater than 0.33 %. A boundary layer trip could be placed at X = 29 mm. This consisted of 1.9 mm diameter rods 0.64 mm high spaced round the periphery at intervals of about 6.4 mm. Schlieren photographs were taken in order to show the boundary layer development for both
- 5 natural and forced transition. After final alignment, the incidence determined from the static pressure distribution around the circumference was less than -0.05° and the angle of yaw less than 0.10° .
- 6 Static pressure holes (d = 1.02 mm) were located circumferentially at intervals of 90° for X values
- 8 457, 660 and 864 mm, with an additional tapping on the top generator only at X = 254 mm. Five swaged copper-constantan thermocouples were welded to the inner side of the outer surface of the model at
- 7 X = 152, 356, 762 and 965 mm. The Pitot tube was a FPP ($h_1 = 0.178$, $h_2 = 0.076$, $h_1 = 0.69$, $h_2 = 12.7$ mm)
- 8 and was carried by a traverse gear attached to the tunnel wall. Surveys were made at X=127, 152, 203, 279, 838, 940 and 1016 mm. At X=838 mm a total temperature survey was made using a STP ($d_1=approximately 0.51$, l=9.5 mm) containing a chromel-alumel thermocouple. This was directly calibrated over the greater part of the test range, with an interpolation between the calibration and the free stream reading for the upper unit Reynolds numbers.
- 9 Wall temperature is implicitly interpolated to the boundary layer traverse stations by the authors. The authors have taken the total temperature distribution, scaled on δ, to be the same for all values of X. The value of δ is defined by extrapolation to the free stream value of a near linear PT2 variation in the outer part of the layer. The scaled T0 variation has then been interpolated to the appropriate Y values of the Pitot profiles. The static pressure has been assumed constant through the layer.
- 12 The editors have accepted the authors' intorpolations and prepared the tables using the given U/UD and M/MO data, with the assumption of zero normal pressure gradient. The authors have calculated mean and local wall shear stress values from a longitudinal momentum balance. These have not been presented here.
- 13 The profiles presented were all obtained with forced transition except for one (0201) at X = 279 mm for which transition was natural. There is one duplicate (0107 A). Except for 0105 the total temperature data is assumed. The well temperatures have been determined by the editors from the original data used to prepare the authors' graphical presentation of an "adiabatic recovery factor".
- § DATA: 6501 0101-0201. Pitot profiles. One TO profile used for all test cases. NX = 7.

15 Editors' comments

The entry describes the AW results obtained on the model also used, with a cooled wall, for Samuels et al. --CAT 6701. The experimental range overlaps the results of Danberg - CAT 6702 and Fischer & Maddalon - CAT 7103. The profiles are given in moderately close detail. Some substantial corrections appear necessary close to the wall for profiles 0106 and 0107. It must be emphasised that the TO profile is assumed for all profiles except 0105. This measured profile appears to agree closely with the Crocco / Van Driest temperature-velocity correlation.

CAT 6501	ADCOCK		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	18.	
RUN	MD +	TW/TR	RED2W	CF	H12	H12K	PW	PD
X *	POD*	PW/PD*	RED2D	CO	H32	H32K	THA	TD
RZ 4	TOD*	9H *	DZ	PIZ*	H42	DZK	ÜÖ	ŤŘ
65010101	5.9500	0.9875	3.6382"+02	NM	18.5546	1.4050	2.4043"+03	2.4043"+03
1.2700"-01	3.6060"+06	1.0000	2.05827+03	NM	1.8851	1.4359	4.3778"+02	6.0365"+01
7.6200"-02	4.8778*+02	0.0000	6.4280"-05	0.0000"+00	-0.2333	1.7070"-04	9,2687"+02	4.4333"+02
65010102	5.9500	0.9865	5.1944"+02	NM	17.2683	1.3501	2.4043*+03	2.4043"+03
1.5240"-01	3.6060*+06	1.0000	2.9425"+03	NM	1.8456	1.8163	4.3433"+02	5.9952*+01
7.6200*=02	4.8444*+02	0.0000	9.8025"-05	0.0000*+00	-0.0923	2.5275"-04	9.2370"+02	4.4030*+02
65010103	5.9500	0.9865	6.5242*+02	NM	17.6594	1.3324	2.3859*+03	2.3659"+03
2.0320"-01	3.57844+06	1,0000	3.6970*+03	NM	1.8660	1,8178	4.3383"+02	5.9884"+01
7.6200*~02	4.8389*+02	0.0000	1.2340*-04	0.0000*+00	-0.1489	3,2243"-04	9.2317*+02	4.3979"+02
65010104	5.9600	0.9856	6.9252"+02	NM	16.6246	1.3007	2.3796*+03	2.3796*+03
2.7940"=01	3,6040"+06	1.0000	5.0677*+03	NM	1.8603	1.8205	4.3394"+02	5.9776"+01
7.6200**02	4.8444*+05	0.0000	1.6953"-04	0.0000"+00	-0,0335	4.4368"-04	9.2389*+02	4.4028*+02
65010105	6,0200	0.9807	2.1444*+03	NM	15.9150	1.2545	2.2376*+03	2.2376*+03
8.3820"-01	3.6060"+06	1.0000	1.2351*+04	NM	1.8495	1.6121	4.3117"+02	5.8667"+01
7.6200*+02	4.8389*+02	0.0000	4.2294"-04	0.0000"+00	0.0348	1,1458"-03	4.54444+05	4.3967"+02
65010106	6.0200	0.9796	2.1756*+03	NM	16.1528	1.2546	2.2376"+03	2.2376*+03
9.3980"-01	3.6060*+06	1.0000	1.2539"+04	NM	1.8511	1.8120	4.2872"+02	5.8397*+01
7.6200*=02	4.8167"+02	0.0000	4.2641"-04	0.0000"+00	0.0037	1.1537"-03	9.2237"+02	4.3765*+02
65010107	6.0200	0.4798	2.3177*+03	NM	15.9600	1.2397	2.2414*+03	2.2419*+03
1.0100*+00	3.6128"+06	1.0000	1.3341"+04	NM	1.8532	1.8164	4.3076*+02	5.8667*+01
7.6200"-02	4.8369*+02	0.0000	4.5594"-04	0.0000*+00	0.0167	1.2213"-03	9.2449"+02	4.3967*+02
65010107A	6.0200	0.9797	2.2583*+03	NM	16.5266	1.2479	2.2376*+03	2.2376*+03
1.0160*+00	3.6040*+06	1.0000	1.3042"+04	ΝM	1.8542	1.8177	4.2578*+02	5.7493"+01
7.6200"-02	4.7633*+02	0.0000	4.38694-04	0.0000*+00	-0.0464	1,1912"-03	9,1917*+02	4.3462*+02
65010201	5.9600	0.9855	7.8539*+02	NM	17.3812	1.2859	2.3842*+03	2.3842*+03
2.7440"-01	3.6128*+06	1.0000	4.4426*+03	ŇM	1.8665	1.8284	4.3939*+02	6.0530"+01
7.6200"-02	4.9056*+02	0.0000	1.5117*-04	0.0000*+00	-0.1271	3.9440"-04	9.2970"+02	4.4583"+02

650101	IO1 ADC	оск	PROFILE	MOITABULATION	17	POINTS, DE	_TA AT POI	NT 17
I	Y	9/S14	P/PD	10/100	M/MD	UVUD	1/10	AHO\KHOD*U\UD
1	0.0000"+30	1.0000"+00	NM	0.92821	0.00000	0.00000	7,50037	0.0000
? 5	8.8930"-05	3.9969"+00	ММ	0.95108	0.27674	0.61776	4.98306	0.12397
	2.3066"=04	5.9585"+00	NM	0.96584	0.34642	0.71158	4.21932	0.16665
4	2.3876"-04	8.0770*+00	NM	0.97592	0.40824	0.77645	3.61731	0.21465
5	3.0734"-04	1.0132"+01	NW	0.98766	0.46026	0.82236	3.19243	0.25760
6	4.1148"-04	1.1981"+01	NM	0,99492	0.50245	0.85329	2.88407	0.29586
7	5.5372"-04	1.5035"+01	Им	1.00586	0.56526	0.89222	2.49140	0.35912
8	7.3152*-04	1.6357"+01	NM	1.00995	0.59961	0.90968	2.30167	0.39523
. 9	9.4488*-04	1.8449"+01	NM	1.03505	0.62807	0.93263	2.20502	0.45596
10	1.3208*-03	2.3224"+01	ИМ	1.01794	0.70658	0.95160	1.81380	0.52464
11	1.6967"-03	2.87717+01	NM	1.01626	0.78503	0.97206	1.52160	0.63884
15	2.0142*=03	3.2057*+01	NM	1.01300	0.84298	0.98204	1.35712	0.72362
13	2.4496"-03	3.9335"+01	ИM	1.00512	0.92345	0.99202	1,15400	0.85963
14	2.9769"=03	4.4012"+01	NM	1.00077	0.97743	0.99750	1.04150	0.95776
15	3.5230"-03	4.5511"+01	NM	0.99947	0.99411	0.99900	1.00986	0.98925
16	4.1580"-03	4.5867"+01	NM	0.99949	0.99804	0.99950	1.00294	0.99658
D 17	5.0749"-03	4.6046*+01	ИМ	1.00000	1.00000	1.00000	1.00000	1.00000
	VARIABLES Poata were	Y,U/UD;M/MD AVERAGED	ASSUME P=	•0				
65010	104 ADC	оск	PROFILE	TABULATION	ið	POINTS, DE	TA AT POI	NT 18
1	Y	P15/P	P/PD	TO/TOD	M/MD	U/UD	T/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	0.88593	0.00000	0.0000	7.17983	0.0000
	8.8900"-05	4.0064*+00	NM	0.92697	0.27666	0.61031	4.56633	0.12541
2 3	1.7272"-04	4.2883"+00	ŇM	0.92853	0.28773	12656.0	4.73831	0.13216
4	2.8448"-04	4.9154"+00	NM	0.93330	0.31087	0.65833	4,48479	0.14679
4 5	3.9370"-04	6.7194"+00	NM "	0.94655	0.36922	0.72884	3.89703	0.18703
6	5.9944*-04	8.2609"+00	NM	0.95564	0.41247	0.77239	3.50650	0.22027
7	1.0287*-03	1.0787*+01	NM	0.97243	0.47485	0.82641	3.02889	0.27284
8	1.2678"-03	1.1561"+01	NM	0.97958	0.49899	0.84492	2.86710	0.29470
9	1.5646"-03	1.3230*+01	NM	0.98556	0.52817	0.86443	2.67865	0.32271
10	2.2073"-03	1.6857"+01	MM	0.99770	0.59859	0.90395	2.28050	0.39638
11	2.8524"-03	2.1309"+01	Иh	1,00730	0.67505	0.93697	1.92654	0.48635
12	3.48747-03	2.6504*+01	Ин	1.01284	0.75453	0.96248	1.62718	0.59150
13	4.1783"-03	3.2431"+01	NM	1.01246	0.83602	0.48049	1,37549	0.71283
14	4.8412**03	3.7875*+01	ИW	1.00700	0.90443	0.98999	1.19817	0.52625
15	5,5829"-03	4.2326"+01	NM	1.00333	0.95674	0.99600	1.08375	0.91903
16	6.0579*-03	4.4558*+01	NM	1.00158	0.98189	0.99850	1.03411	0.96556
17	6.8504"-03	4.6107"+01	MM	0,99925	0.99899	0.99950	1.00101	0.99849
0 18	7.4498"-03	4.6199*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
	VARIABLES 2 DATA WERE	Y,U/UD,M/MD Averaged	ASSUME PO	•0				
450101	07 ADC	ick	PROFILE	TABULATION	57	POINTS, DEL	TA AT POI	NT 23
	u	A 7 3 / H	n /8n	24 /VAD	4446	11.4115	* /**	DUO (BUDDALI (III)
1	¥	P12/P	P/PO	TO/TOD	MZMD	U/UD	1/10	RHO/AHOD AU/UD
1	0.0000*+00	1.0000*+00	NM	0,88668	0.00000	0.00000	7.31344	0.0000
ż	8.8900"-05	4.0735*+00	NM	0.92287	0.27655	0.61200	4.89718	0.12497
3	9.3980"-05	4.0735*+00	ŇH	0.92287	0.27655	0.01200	4,89718	0.12497
ŭ.	1.0764"-04	4,2283*+00	NM	0.92150	0.28257	0.62000	4.81445	0.17878
5	2.4638"-04	4.4942"+00	ŇM	0.92395	0.29259	0.63450	4.70282	0.13492
6	4.1402"-04	5.4702"+00	ŊΜ	0.93174	0.32665	0.68000	4.33355	0.15692
7	5.6134"-04	6.2259"+00	ИМ	0.93726	0,35070	0.70900	4.08712	0.17347
8	7.3152"-04	6.8287"+00	ŊM	0.94347	0.36874	0.73000	3.91932	0.18626
9	1.0973"-03	7.4983*+00	ИМ	0.94784	0.38778	0.75000	3.74078	0.20049
10	1.4300"-03	8.0136"+00	NM	0.95002	0.40180	0.76350	1.61069	0.21146
11	1.7374"-03	8.4314*+00	NM	0,95263	0.41283	0.77400	3.51519	0.22019
15	2.4079"-03	9.4645*+00	NM	0.95923	0.43888	0.79750	3.30198	0.24152
13	3.0175"-03	1.05614+01	ИW	0.96802	0.46493	0.020.0	3.11066	0.26361
14	3.6525"-03	1,1630"+01	NM	0.97552	0.48898	0.83900	2.94405	0.25498
15	4.6838"-03	1.3681"+01	NM	0.98475	0.53206	0.86800	2.66141	0.32614
16	5.6642"-03	1.6013"+01	NM	0.99323	0.57715	0.89400	2.39934	0.37260
17	6.8758"-03	1.9240*+01	NM NM	1.00212	0.63427	0.92150	2.11079	0.43657
10	6.2042*-03	2.3161401	NM NM	1.00950	0.69739	0.94600	1.84003	0.51412
19	9.8144"-03	2.8968"+01 3.5680"+01	NM NM	1.01253	0.78156	0.96950	1.53875	0.63006
20 21	1.3033"-02	4.2656"+01	NM NM	1.00274	0.95090	0.98500 0.99500	1.28597	0.76620 0.90876
25	1.4635"-02	4.64724+01	NM NM	0.99972	0.99299	0.99900	1.01215	0.98701
0 23	1.3278"-02	4.7125*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
	4 0 5 10 1 10 10 10 10 10 10 10 10 10 10 10 1	TOTAL TYE	141.1					

INPUT VARIABLES Y,U/UD,M/MD

M: 2.8

R THETA X 10⁻³ : a) 180-700

TW / TR : About 1.0

6502

ZPG - AW

Blow-down tunnel, running time 10-00 s. W * H * 1.22 m $0.34 \le PO \le 1.04 \text{ MN/m}^2$. TO: 285 - 320 K. Air. 30 < RE/m X $10^{-6} \le 90$.

MOORE D.R. and HARKNESS J. 1965. Experimental investigations of the compressible turbulent boundary layer at very high Reynolds numbers. AIAA J. 3. 631-638.

And Harkness J., Private communication.

- 1a The test boundary layer was formed on a continuation of the floor of the 1.22 x 1.22 m tunnel, surveys
- being made at 9.14, 11.89 and 14.63 m from the throat (X = 0). The test surface was constructed of rolled
- 1b aluminium finished to 0.63 µm. For comparison, tests were also made on a flat plate model (L = 3.05, W = 1.22 m) mounted, on separate occasions, at the centre of the working section. The leading edge (X = 0)
- 3 was 0.05 0.10 mm thick and the surface finish was 0.25 mm. For the tests described here, transition was
- 2 natural. Static pressure variations on the test surface were as much as 10 20 % on the tunnel floor and 5 - 10 % on the flat plate. The mean pressure variation on the tunnel floor extension showed a slight adverse pressure gradient.
- 6 Static pressure was measured at 32 34 stations for each test series, at intervals of about 85 mm on the plate and 305 mm on the floor. A FEB (element diameter 50.8 mm) could be mounted at the three floor stations and at two stations on the plate, data from the downstream station (X = 2.74 m) being presented here. No wall temperatures were measured, the temperature of the massive structure remaining at room temperature, about 290 K.
- 7 Pitot pressure profiles were measured with CPP. On the floor, four CPP were mounted as a rake, on a single traverse gear at vertical intervals of 38.1 mm. For the outer three, $d_1 = 1.62$ mm, and for the inner, $d_1 = 1.07$ mm. For the flat plate tests, a single CPP $(d_1 = 1.07$ mm) was used.
- 9 The wall shear stress and the profile for a given station were measured on separate occasions. The CF value has been interpolated to the profile boundary conditions on the basis of a common unit Reynolds number.
- Sutherland's viscosity law was used.
- 12 The authors assumed that the boundary layer was isoenergetic. The editors have replaced this with the Crocco / Van Driest temperature / velocity correlation and the assumption TW = 290 K. The static pressure has also been assumed constant through the layer. The number of data points for each profile was exceptionally large. We have replaced our usual integration scheme with the trapezoidal rule so as to improve the handling of the scatter of the data.
- 13 The available profiles consist of two sets for the three successive floor stations at an approximately constant (10 %) unit Reynolds number. There are also two individual profiles for the first station. Two
- 14 individual profiles for the flat plate are also given. (0501, 0601). The authors' interpolated wall shear stress measurements are also presented.
- § DATA: 6502 0101-0601. Pitot profiles. NX = 1-3 (a), I (b). CF from FEB.

15 Editors' comments

The general experimental conditions for this entry would appear to have been fairly rough and ready. Nevertheless, the data are of value as the profiles were obtained at exceptionally high Reynolds number, and are supported by direct measurements of wall shear stress. At this moderate Mach number, the absence of TO profiles is not important for a near-adiabatic boundary layer. Since, for the tunnel wall tests, the X-dimension was as much as 10 times the width, it is probable that some three dimensional effects are present. Despite the large physical scale, the measurements do not generally extend within the momentum deficit peak. The source paper gives a greater range of CF and R THETA values than that presented here. The only comparable experiment is that of Thomke - CAT 6903 with very similar general conditions.

CAT 6502	MOORE/HARKNE	MOORE/HARKNESS		DITIONS AND E	EVALUATED DATA. SI UNITS.			
RUN	MD a	TW/TR	REDZW	CF +	H12	H12K	PW	PD
X	PODA	PW/PD#	PED2D	Ča	HŠŽ	H32K	T₩≠	TD
RZ	TODA	5W *	05	P12	H42	DSK	UD	TŘ
65020101	2.6310	1.0405	1.9039"+05	9.0000"-04	4.4017	1.2235	3.6350"+04	3.6350*+04
NM	1.0342*+06	1.0000	4.2407"+05	(IM	1.8634	1.8521	2,9000*+02	1.1440*+02
INFINITE	2.9778*+02	0,0000	5.1125"-03	ХM	0.0978	6.9749"-03	6,0711"+02	2.7871*+02
65020102	2.7670	0.9611	2.5535*+05	8.4900"-04	4.1466	1.2156	3.7793*+04	3.7793"+04
ИМ	1.0055*+06	1.0000	5.2916*+05	₩.	1.8629	1,8514	2.9000*+02	1.2358"+02
INFINITE	3.1556*+02	0.0000	6,9627"-03	Им	0.1457	9.3064"-03	6.2118"+02	2.9559"+02
65020103	2,6690	1.0146	3,5931"+05	8,6200*+0#	4.0274	1.2176	4.6159*+04	4.6159*+04
NM	1.0246*+06	1.0000	7.3368"+05	Ям	1.8582	1.8472	3.9000"+02	1.2556"+02
INFINITE	3.0444*+05	0.0000	8,4432*-03	ΜM	0.0999	1.1248*-02	5.9963#+02	2,0584"+02
65020201	2.8430	1.0626	1.5905*+05	9.5300*+04	4.4477	1.2257	2.8714"+04	2.8719*+04
NM	8.3216*+05	1.0000	3,6305*+05	NM	1.8609	1.8494	2.4000*+02	1.1147"+02
INFINITE	2.9167*+02	0.0000	5.3135*=03	NM	0.0941	7.3076*-03	6.0182"+02	2.7293"+02
65050505	2.8090	0,9781	2.0577*+05	5.7400"-04	4,1890	1.2171	2.9688"+04	2.9688"+04
NM	8.1684"+05	1.0000	4.2884"+05	Им	1.8613	1.8501	2,9000"+02	1.2283"+02
INFINITE	3.16674+02	0.0000	7.0451*-03	ЯM	0.1493	9.5012"-03	6,2418"+02	2.9651"+02
65020203	2.6930	1,0262	2.8725"+05	8.9100"=04	4.1034	1.2157	3.5920*+04	3.5920"+04
NM	8.2737*+05	1.0000	5.9944"+05	ļ1m	1.8572	1.8460	2,9000*+02	1.2265*+02
INFINITE	3.0056*+02	0,0000	6.4946*-03	(4M	0.0928	1.1413*-02	5.9798"+02	2.8205"+02
1020204	2.8650	1.0510	9.8145"+04	9.8700"-04	4.5674	1.2260	1.6140"+04	1.6140*+04
Ин	4.8359"+05	1.0000	2,2365"+05	NM	1.8598	1.8476	2.9000*+02	1.1167"+02
INFINITE	2.45004+02	0,0000	5.7945*-03	IIM	0.0725	8.0619*-03	6.07034+02	2.7593"+02
65020401	2.8970	1.0738	7.0161*+04	1.0200"-03	4.6959	1.2286	1.0961*+04	1.0961"+04
NM	3.4474*+05	1,0000	1.6524*+05	Им	1,8583	1.8454	2.9000"+02	1.0785"+02
INFINITE	2.8889"+02	0.0000	5.92824-03	Им	0.0580	8.3569"-03	6.0322*+02	2.7006"+02
65020501	2.9080	1.0518	2.1687*+04	1.2300"-03	4.6277	1.3396	1.0739*+04	1.0739"+04
NM	3.43427+05	1.0000	5.02484+04	(§M	1.6509	1.8374	5.4000,+05	1.0961 +02
INFINITE	2.9500"+02	0.0000	1.8784*-03	WM	0.0784	2.6756"-03	6.1043"+02	2.7572"+02
10405064	2.9100	1,0192	2.1657*+04	1.2400 = -03	4.7646	1.3487	1.0776"+04	1.0776*+04
NM	3.4563"+05	1.0000	4,8742*+04	(1M	1.8514	1.8385	2.9000*+02	1.1302*+02
INFINITE	3.0444"+02	0.0000	1.8970"=03	ИW	0.1031	2.6819"-03	6.2026#+02	2.8454*+02

TRAPEZDIDAL RULE FOR ALL INTEGRATIONS

650201	.01 MOOF	REZHARKNESS	PROFILE	TABULATION	72	POINTS, DEL	TA AT POI	NT 70
I	Y	P12/P	P/PD	TO/TOD	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000#+00	1.0000*+00	им	0.96489	0.00000	0.00000	2.51152	0.0000
2	5.3340*-04	2.5558"+00	И М ИМ	0.96915 0.97203	0.44143	0.61202	1.92221	0.31839 0.36444
3	9.9314"-04	3.0245"+00 3.3777"+00	NM NM	0.97407	0.52651	0.66429 0.69758	1.75541	0.39739
Š	2.3800"-03	3.6790"+00	NM	0.97573	0.55408	0.72288	1.70213	0.42469
6	3.2106"-03	3.8891*+00	ИW	0.97685	0.57245	0.73911	1.66701	0.44337
7	4.0716"-03	4.0707"+00	Иж	0.97778	0.58784	0.75231	1.63787	0.45932
8	4.9860"-03	4.1727"+00 4.3240"+00	NM NM	0.97830 0.979 04	0.59630	0.75943 0.76961	1.62197	0.46822 0.48131
10	7.1577*=03	4.5972"+00	NM	0.98035	0.03023	0.78694	1.55914	0.50472
ii	6.3083"-03	4.7159*+00	ŊM	0.98090	0.63936	0.79408	1.54247	0.51481
15	9.6190"-03	4.9103"+00	NM	0.98179	0.65407	0.80532	1.51595	0.53123
13 14	1.0993"-02	4.9835"+00 5.0958"+00	NM NM	0.98211	0.65952	0.80941 0.81555	1.50621	0.53738 0.54680
is	1.4067"-02	5.3103"+00	NW	0.98353	0.68329	0.82682	1.46424	0.56468
16	1.5646*-02	5.5365*+00	ЙM	0.98447	0.69925	0.83811	1.43657	0.58341
17	1.7313"-02	5.6651 +00	ИW	0.98499	0.70817	0.84427	1.42131	0.59401
18	1.9149"-02	3.6870"+00	NW	0.98508	0.70967	0.84529	1.41876	0.59580
19 20	2.1036"=02	5.7530"+00 6.0513"+00	MM UM	0.98534 U.98650	0.71419	0.84838 0.86175	1.41107	0.60123 0.62562
Ži	2.5108"-02	6.3448*+00	NM	0.98760	0.75347	0.87412	1.34587	0.64948
5.2	2.7264"-02	6.2946"+00	И'n	0.98741	0.75022	0.87206	1.35116	0.64541
23	2.9588"-02	6.6846"+00	ИW	0,98881	0.77511	0.88754	1,31113	0.67692
24	3.16804-02	6.8217"+00	NW NW	0.98928 0.98928	0.78367	0.89270	1.29762	0.68795
56 55	3.4604*-02	6.8217*+00 7.0783*+00	NW IOM	0.99015	0.78367	0.89270 0.90201	1.29762	0.68795 0.70853
žž	3.6465"-02	7.1076*+00	NM	0.99024	0.80122	0.90305	1.27034	0.71087
59	3.8976"-02	7.3482*+00	ИM	0.99105	0.61569	0.91134	1.24827	0.73008
59	3.9436"-02	7.4413"+00	NM	0.99132	55159.0	0.91445	1.23994	0.73749
30 31	4.0104"-02	7.5042"+00 7.5679"+00	Nw Mn	0.99142 0.99172	0.82494	0.91652	1.23437	0.74250 0.74757
32	4.1653"-02	7.6976*+00	Ηм	0.99211	0.83625	0.92275	1.21757	0.75786
33	4.2515"-02	7.6976*+00	Им	0.99211	0.83625	0.92275	1.21757	0.75786
34	4.3429"-02	7.6324"+00	NM	0.99191	0.83245	0.92067	1.22318	0.75269
35 36	4.4498"=02	7.7968*+00 8.0354*+00	NW NW	0.99242 0.99312	0.84200	0.92586 0.93314	1.20912	0.76573 0.78462
37	4.6751"-02	8.0007"+00	NM	0.99302	0.85369	0.93210	1.19213	0.78187
38	4.8062"-02	6.2122"+00	NM	0.99364	0.86564	0.93034	1.17502	0.79857
39	4.4436"-02	8.0354*+00	NM	0.99312	0.85566	0.93314	1.18929	0.78462
40 41	5.0945*-02	6.2122"+00 6.3208"+00	NM NM	0.99364 0.99395	0.86564	0.93834	1.17502	0.79857 0.60714
42	5.4049"-02	8.5824"+00	พพ	0.99467	0.88617	0.94875	1.14622	0.82772
43	5.5756"-02	8.7764"+00	ИM	0.99520	0.89674	0,95396	1.13169	0.64295
44	5.7592"-02	8.8958"+00	Иw	0.97551	0.90318	0.95709	1.15593	0.85231
43 46	5.9479"=02 6.1488"=02	8.8558"+00 9.1001"+00	NM NM	0.99541 0.99604	0.90103	0.95605	1.12586	0.84917 0.86830
47	6.3951"-02	9.4412"+00	NM	0.99690	0.93204	0.97067	1.08460	0.89495
48	6.3707*-02	9.3975"+00	NM	0.99680	0.92976	0.96962	1.08757	0.89155
49	6.8031 -02	4.6638"+00	NM	0.99745	0.94356	0.97589	1.06970	0.91231
21 20	7.0322"-02	9.8475*+00 9.8011*+00	Mw Mn	0.99788 0.99777	0.95297	0.98008	1.09771	0.92540 0.92549
šž	7.4646"-02	1.0036"+01	NM	0.99832	12596.0	0.98427	1.04567	0.94125
53	7.4927"-02	9.9412"+00	NM	3,99810	0.95773	0.98217	1.05170	0.93389
54	7.7076*-02	9.9412"+00	Им	0.99810	0,95773	0.98217	1.05170	0.93389
55 56	7.7536"=02	9.9412"+00 1.0036"+01	Nw Nw	0.99810 0.99832	0.95773	0.98217	1.05170	0.93389 0.94128
5 7	7.8923"-02	9.4942"+00	NM NM	0.99799	0.95534	0.98113	1.05471	0.93023
58	7.9753"=02	1.0230"+01	ЮM	0.99877	0.97227	0.98846	1.03357	0.95635
59	8.0615"-02	1.0181"+01	ИA	0.99866	0,96982	0.98741	1.03660	0.95255
60	8.1529"-02	1.0280*+01	NW	0.99888	0.97474	0.98951	1.03054	0.96019
65	8.2598"-02 8.3701"-02	1.0380"+01	NW NW	0.99910	0.97970	0.99161	1.02444	0.96793 0.97578
63	0.4851"-02	1.0430"+01	NM	0.99921	0.98219	0.99265	1.02141	0.97184
64	5.6162"-02	1.0584*+01	Ν'n	0.99955	0.98975	0.99580	1.01226	0_98374
65	8.7536" -02	1.0350"+01	ИW	0.79910	0.97970	0.99161	1.02446	0.96793
66 67	8,9045"-02	1.0584"+01 1.0430"+01	Nh Hw	0.99955	0.98975	0.99580 0.992 6 5	1.01226	0.98374 0.97184
68	50="9815.9	1.0584*+01	PIM Mid	0.99955	0.98975	0.99580	1.01226	0.98374
69	9.3656"-02	1.0636*+01	NM	0.99946	0.99230	0.99485	1.00920	0.98776
D 70	9.5692"-02	1.0794"+01	MM	1.00000	1.00000	1.00000	1.00000	1.00000
71 72	9.7579"-02	1.0741"+01 1.0658"+01	NM NM	0.99987 0.99977	0.99742	0.99895 0.99790	1.00307	0.99589 0.94181
_		Y.U/UD (180ENE		ASSUME PER			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

INPUT VARIABLES - Y,U/UD (ISOENERGETIC) - ASSUME PMPD AND VAN DRIEST

•

INPUT VARIABLES Y, U/UD (ISGENERGETIC) ASSUME PEPD AND VAN DRIEST

650205	os Moore	E/HARKNESS	PROFILE	TABULATION	73	POINTS, DEL	TA AT POI	NT 73
I	Y	PT2/P	P/PD	T0/T0D	MZMD	U/UD	1/10	RHO/RHOD*U/UD
1 2	0.0000"+00 7.0358"=04	1.0000*+00	NM NM	0.97982	0.00000	0.00000	2.63699	0.00000 0.32172
ī	9.3218"-04	3,0176"+00	ИW	0.97775	0.47831	0.65884	1.89727	0.34725
4	1.1455 -03	3.3390"+00	Им	0.97907	0.50901	0.68898	1.83213	0.37605
5	1.3665"-03	3.5642"+00	Им	0.97998	0.52936	0.70811	1.78937	0.39573
6	1.6205"-03	3.7161*+00	Им	0.98058 0.98135	0.54261	0.72021	1.76175	0.40880 0.42571
7 8	1.8821"-03	3.9171*+00 4.0442*+00	Иh Им	0.98184	0.57011	0.73535 0.74445	1.70509	0.43660
9	2.4282"-03	4.1913"+00	NM	0.98238	0.58200	0.75457	1.68091	0.44890
10	2.6772"-03	4.2064"+00	NW	0.98244	0.58321	0.75558	1.67848	0.45016
ii	2.9616"-03	4.3138"+00	ИW	0.98283	0.59171	0.76267	1.66133	0.45907
12	3.2385"-03	4.3767"+00	ИW	0.98306	0.59663	0.76672	1.65147	0.46427
13	3.5306"-03	4.5725"+00	NW	0.98376	0.61167	0.77889 0.78498	1.62153	0.48034
14 15	3.8430"-03 4.1326"-03	4.6744*+00 4.7265*+00	NM NM	0.98412 0.98430	0.61935	0.78803	1.60639	0.48666 0.49290
10	4.4983"-03	4.8870*+00	NM	0.98485	0.63506	0.79718	1 57572	0.50591
17	4.8133"-03	4.9792*+00	NM	0.98516	0.64175	0.80226	1.56280	0.51335
18	5.1003"-03	5.0736*+00	NM	0.98548	0.64852	0.80735	1.54980	0.52094
19	5.4483"-03	5,1899"+00	NM	0.98586	0.05677	0.81346	1.53408	0.53026
20	5.8268"-03	5.2693"+00	ИW	0.98612	0.66234	0.81754	1.52353	0.53661
21	6.1951 -03	5.3503"+00 5.4329"+00	NM NM	0.98638 0.98664	0.66797	0.82161 0.82569	1.51293	0.54306 0.54963
53 55	6.5354"=03 6.9367" = 03	5.5815"+00	NW NW	0.98711	0.68378	0.83284	1.48348	0.56141
24	7.3889"-03	5.6249*+00	NM	0.98724	0.68671	0.83488	1.47809	0.56484
25	7.8410"-03	5.7130*+00	NM	0.98751	0.69262	0.83897	1.46725	0.57180
26	8.2652"-03	5.8486"+00	NM	0.98792	0.70160	0.84510	1.45069	0.5A247
27	8.7198"-03	5.9885"+00	NM	0.98834	0.71075	0.85124	1.43440	0.59344
28 29	9.1059"-03 9.6012"-03	6.1084"+00 6.2066"+00	NM NM	0.98869 0.98897	0.71849	0.85635 0.86045	1.42056	0.60253 0.61049
30	1.0097"-02	6,2816"+00	NM	0.98919	0.72954	0.86352	1.40105	0.61634
31	1.0554"-02	6.4354*+00	NM	0.98962	0.73920	0.86967	1.38418	0.62829
32	1.0978"-02	6.5673"+00	ИM	0.98999	0.74739	0.87480	1.37003	0.63853
37	1.1438"-02	6.7030*+00	11M	0.99035	0.75571	0.87993	1.3579	0.64902
34	1.1968"-02	6.7861*+00 6.8707*+00	NM NM	0.99058 0.99080	0.76077	0.88302 0.88610	1.34720	0.65544 0.66197
35 36	1.2992"-02	6.9857*+00	NM	0.99110	0,77277	0.89021	1.32704	0.67082
37	1.3498"-02	7.1632 +00	NM	0.99156	0.78328	0.89638	1.30962	0.68446
38	1.4044"-02	7.3159"+00	ИM	0.99194	0.79221	0.90153	1.29501	0.69616
39	1.4549"-02	7.4412"+00	Им	0.99225	0.79747	0.90565	1.26325	0.70574
40	1.5014"-02	7.5696 ⁴ +00 7.6349 ⁴ +00	NM NM	0.99257 0.99272	0.80683	0.90977 0.91183	1.27144	0.71554 0.72052
41	1.6116"-02	7.9734"+00	IIM I	0.99352	0.62957	0.92215	1.23565	0.74628
43	1.6713"-02	7.9734"+00	ЙM	0.99352	0.82957	0.92215	1,23565	0.74628
44	1.7214"-02	8.0791"+00	NA	0.99376	0.83341	0.97525	1.22065	0.75430
45	1.7869*-02	A.3707"+00	NM	0.99441	0.85133	0.93351	1.50539	0.77638
46 47	1.84234-02	8.4838*+00 8.5220*+00	NM NM	0.99466 0.99474	0.85743	0.93662 0.93765	1.19324	0.78494 0.78782
48	1.4926"-02	8.6381"+00	14.64	0.99469	0.85948	0.94076	1.18099	0.79658
49	2.0140"-02	8.8367"+00	NM	0.79541	0.87617	0.94593	1.16540	0.81154
50	2.0701"-02	8.4771*+00	t1M	0.99550	0.87829	0.94697	1.16251	0.81459
51	5.158305	9.2109*+00	ŅM	0,99618	0.09560	0.95526	1.13766	0.83967
52 53	2.1864"-02	9.3845*+00 9.5630*+00	NM NM	0.99652 0.99686	0,90448	0.95941 0.96356	1.12514	0.85270 0.86607
54	2.3091"-02	9.2971"+00	NM	0.94635	0,90003	0.95734	1.13141	0.84615
55	2.3708"-02	9.4287*+00	ЙM	0.99650	0,90675	0.96045	1.12200	0.85601
56	2.4404"-02	9.7464*+00	NM	0.99721	0.92271	0.96772	1.09993	0.87979
57	2.4983"-02	9.9351"+00	ИM	0.99756	0.93207	0.97167	1.06724	0.89389
58 59	2.55654-02	1.0178*+01	//W //W	0.99801 0.99818	0.94400	0.97707 0.97916	1.07129	0.91205 0.91949
60	2.6901"-02	1.0300"+01	NM	0.99836	0,95375	0.98124	1.05847	0.92704
ěi	2.7470"-02	1.0534*+01	₹ ₹M	0.99863	0.96118	0.98436	1.04881	0.93855
6.5	2.8158"-02	1.06924+01	NM	0.99892	0,96872	0.98749	1.03911	0.95032
63	2.8738"-02	1.0854*+01	NM AM	0.99917	0.97637	0.99061	1.02939	0.96233
64 65	2.9390"=02 2.99 69 "=02	1.0909*+01 1.0964*+01	Nw Nw	0.99927 0.99936	0.97894	0.99165 0.99270	1.02614	0.96640 0.97049
66	3.0420"-02	1.1076*+01	NW N-	0.99954	0.98674	0.99478	1.01636	0.97877
67	3.1199"-62	1.1169"+01	ИM	0.99972	0.99201	0.99687	1.00983	0.98717
68	3.1811"-02	1.1169"+01	NM	0.99972	0,99201	0.99687	1.00983	0.98717
69	3.2426"-02	1.124="+01	11M	0.99982	0,99466	0.99791	1.00656	0.99141
70 71	3.3040*-U2 3.3518*-02	1.1304"+01	NW NW	0.99991	1.00000	0.99896 1.00000	1.00328	0.99569 1.00000
72	3.3917"-02	1.1362"+01	N _M	1.00000	1.00000	1.00000	1.00000	1.00000
0 73	3.4318"-02	1.1362"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD (ISOENERGETIC) ASSUME P=PD AND VAN DRIEST

The second secon

axisymmetric _____

M : 5, 6 and B falling to 3, 3.5, 4.

R THETA X 10-3 : 2-72

TW/TR : 0.4 - 1.0

6503

ZPG - APG AW - MHT - SHT

Tunnel A (M = 5,6) : Continuous flow, variable nozzle. W = H = 1 m. 0.28 < P0 < 1.4 MN/m^2 . 350 < T0 < 400 K. Air. 6 < RE/m X 10^{-6} < 23. Tunnel B (M = 8) : Axisymmetric continuous flow, fixed nozzle. D = 1.3 m. 2.3 < P0 < 5.5 MN/m^2 . T0 : 750 K. Air. 5 < RE/m X 10^{-6} < 12.

STROUD J.F. and MILLER L.D., 1965. An experimental and analytical investigation of hypersonic inlet boundary layers. Technical report AFFDL-TR-65-123 Vol. 1 and Vol. 2 (AD d21343/4)

And Stroud and Miller (1966), Stroud J.F., private communication.

- 1 The tests described here were made on the outer surface of a hollow axisymmetric model mounted on the centre-line of the tunnels. Of the four models used by the authors we here describe only that one which they designate the "Heat transfer Mach 8" model. The stainless steel model consisted of a nose-section, a generating cylinder and the flared model proper. The sharp lipped nose section was 0.248 m long with an initial (and internal) diameter of 48.3 mm. This front section expanded as a cone to a diameter of 76.2 mm and carried two sets of vortex-generators. Each consisted of 16 triangular fins mounted normal to the surface and set alternately at $^{\pm}$ 18 $^{\circ}$ (E) to the flow direction. The first ring was about 90 mm back from the lip and the fins were 15 mm (E) long at the base and 3.3 mm high at their trailing edge which was normal to the surface. The second set were about 200 mm back from the lip, about 30 mm long at the base and 6.6 mm high. The nose section was followed by one of two cylindrical generating surfaces 76.2 mm in diameter and 0.314 or 0.628 m long, finishing at the start of the model proper (X = 0). The short cylinder was used for tests at M = 5, 6 and the long for M = 8. The curved surface of the model was designed to be a streamline of a focused Prandtl-Meyer compression fan, followed by a short conical section intended to avoid any upstream influence from the expansion at the trailing edge of the model. The length of the compression surface was 0.933 m and the coordinates are given in table 1. The model surface was highly polished and gold-plated. It was actively cooled with air which had been pre-cooled to less than 100 K. The generating cylinder was also cooled, but not the nose piece. The test section flow, in the absence of a model, was uniform to within 0.3 % in Mach number.
- 5 Static tappings (d = 0.75 1.0 mm) were distributed at up to 18 stations along the top generator, with additional tappings at 90°, 180° and 270° at X = 0 and 0.838 m to provide a check on exi-symmetry. Chromelalumel thermocouples were distributed in the same manner, the majority being arranged to read the absolute temperature of the model wall. At the profile stations, at X = 95 and, when using the long generating cylinder at = 413 mm, junctions were arranged on either side of a removeable plug, so as to provide values of local heat transfer rate.
- Pitot, P and TO profiles were obtained simultaneously, the three probes being mounted as a three-pronged fork. They were carried on an independent traverse mechanism which could move parallel and normal to the tunnel axis. This could also rotate the probes in pitch so as to traverse normal to the model surface. The Pitot probe was a FPP ($h_1 = 0.25$, $h_2 = 0.20$, $b_1 = 0.6$ (E), l = 15 mm) and the TPP a STP ($d_1 = 1.02$, $d_2 = 0.63$, l = 15 mm) with a chromel-alumel thermocouple junction opposite the 0.25 mm vents a distance 0.76 mm behind the sharp probe lip, which was chamfored internally. The SPP was a CCP ($\alpha = 10^{\circ}$, d = 0.76, $l_1 = 7.6$, $l_2 = 20$ mm) with 4 static holes (d = 0.15 mm) round the circumference on axes at 45° to the profile normal. Additional tests were made with two similar static probes mounted at $+ 2^{\circ}$ and $+ 4^{\circ}$ incidence as a check on the sensitivity of the SPP to flow direction. Static pressure errors were below 5 % for incidence up to 8° . The SPP was kept parallel to the model surface during a traverse while the TTP and TPP were mounted at 3° negative incidence. The supporting structure for the three probes remained slender for about 63 mm back from the profile normal.

- 8 The TPP formed the centre prong of the fork and traversed on the profile normal through the model axis.

 The TTP and the SPP were mounted 7.6 mm to either side. The tips of the TPP and the TTP and the static holes of the SPP lay on a single line which was perpendicular to the flow and the profile normal. Profiles were measured at seven stations with full wall instrumentation, the X values being given in Section B.
- 9 The TO and P data from the offset probes was interpolated to the Y-values of the central Pitot probe. The static pressure values were additionally fitted to Pitot-derived values at the boundary layer edge and to
- 10 the measured wall static pressure. No probe corrections were applied, and Sutherland's viscosity law was
- 11 used.
- The authors present 42 series of profiles, half of which were obtained on three smaller models which are not described here. The editors have chosen to present a selection of the data from the larger model, which was the only one with active cooling and heat transfer instrumentation. We present, for each Mach number and heat transfer condition, the profile series obtained at the higher of two Raynolds numbers measured by the authors. The authors have specified the boundary layer edge state as the Y value for which PO is 95 % of the highest value observed. In the original tabulation, an interpolated profile point is given corresponding to this. The editors have set the D-state at the next measured point outwards. We have interpolated the differential thermocouple readings (temperature difference across the plugs), on the basis of the TM value, to give values which are appropriate to the wall temperatures of the profile tests. These data have then been reduced to the heat flux data given as CQ in section B, using conductivity values supplied by the authors. We found it necessary to use a trapezoidal integration rule.
- 13 The ten profile sets correspond to free stream Mach numbers of 5, 6 and 8. For Mach 5 and 6, there are
- 14 three heat transfer conditions, and for Mach 8, four. Heat transfer values are given for all the profiles, excepting a few cases of instrument-failure.
- 6 DATA: 6503 0101-1007. Pitot, TO and P-profiles obtained simultaneously, NX = 6 or 7. Steady state heat flux values from local conduction measurements.

15 Editors' comments

The experiment was made under extreme conditions, and understandably, some of the data appear somewhat erratic. The initial profiles are covered by a relatively large number of data points, but as the layer becomes thinner on the curved portion of the model, the number reduces. For the same reason, there is a tendency for measurements in the later profiles not to extend within the momentum deficit peak. The arrangements for tripping the boundary layer seem to be remarkably severe, and possibly explain why we did not get good agreement with ZPG profiles in transformed coordinates even under the nominally ZPG conditions on the generator cylinder. The effects of transverse curvature are likely to be large, as 6/RZ is of order 0.5. The plots of CQ data which we made for the purposes of interpolation suggest that Q data for X = 0.914 m are unreliable.

We have presented data for the largest model only, partly because of the massive quantity in the original report, but also because it appears to be of better quality. In particular the fotal temperature readings, for the small models, showed unlikely variations in the free stream. The authors suggest that this may be in part due to the fact that the STP can be at quite large incidence relative to the free 3tream while still parallel to the model surface at the profile station. In selection we took the authors' advice that the most representative series of profile data should be the high Reynolds number data on the large model. They also remark that the best heat transfer data should be that at M = 8. We would remind readers of the difficulties which can be experienced with instrumentation at recovery temperatures of the order of 700 K.

There are no comparable data, the most nearly akin being series 02 of Clutter & Kaups - CAT 6401. In principle, comparisons can also be drawn with the Sturek & Danberg - CAT 7101 tests, but both these studies were made at relatively low Mach number and without significant heat transfer.

Model coordinates

Facsimile from Source paper

NB - Authors' symbols and units

Mach 8 Design

xc	Уc	×c	Уc	×c	Ус
.0045	1500	27.8505	3.4590	33.5085	4.6935
2,0265	1.5090	28.1880	3.5160	33.6000	4.7220
3.9285	1.5345	28.5105	3.5715	33.6900	4.7490
5.7090	1.5750	28.8165	3.6270	33.7755	4.7760
7.3725	1.6245	29,1090	3.6795	33.8565	4.8015
8.9280	1.6830	29.3880	3.7320	33.9360	4.8270
10.3815	1.7475	29.6535	3.7815	34.0125	4.8510
11.7390	1.8165	29,9070	3.8310	34.0860	4.8750
13.0080	1.8900	30.1485	3.8805	34.1580	4.2990
14.1960	1.9665	30.3810	3.9270	34.2255	4.9230
15.3075	2.0430	30,6015	3.9735	34.2915	4.9455
14.3500	2.1225	30.8130	4.0170	34.3560	4.9645
17.3265	2.2005	31.0155	4.0620	34.4175	4.9890
18.2430		31.2090	4.1040	34.4760	5.0100
19,1055	2.3595	31.3935	4.1460	34.5885	5.0505
19.9154	2.4375	31.5705	4.1865	34.6920	5.0895
20.6775	2.5140	31.7415	4.2270	34.7895	5.1270
21.3%0	2.5905	31.9440	4.2660	34.8810	5.1630
22.0725		32.0595	4.3035	34.9650	5.1960
22,7115		32.2095	4.3395	35.0820	5.2455
23.3160		32.3520	4 3770	35.1.885	5.2905
23.8860	2.8830	32.4900	4.4115	35.3130	5.3460
24.4260		32.6220	4.4460	35.4495	5.4105
24.9375		32.7495	4.4790	35.5650	5.4675
25.4205		32.8710	4.5120	35.6820	5.5290
25.8795		32,9880	4.5450	35.8095	5,5005
26,3160		33.1005	4.5765	35.9190	5.6670
26.7300 27.1215		33.2085	4.6065	36.0045	5.7240
27.4950	1	33,3120		36.0510	5.7570 5.7675
41.6770	ショウババリン	33.4125	44.0030	36.0645	2.70/2
				Coni	cal

36.750 5.158

All dimensions in inches.

CAT 6503	STROUD	1	BOUNDARY COND	TTTONS AND E	YALUATED I	TINU 18 .ATAC	s.	
RUN X * RZ *	MD PUD TOD	TH/TR PH/PD SH *	REDZW REDZD DZ	CF CO + PI2	H12 H32 H42	H12K H12K	P## TW# UD#	PD* TD* TR
65030101	4.6300	0.7463	2.4304"+03	HW LIE	11.6022	1.4115	1.9253"+03	1.9253*+03
-1.9050"-01 2.5400"-02	8.3348*+05 3.5417*+02	1.0000	8.4648"+03 4.6200"-04	Ям Ли	1.8298	1.7718 9.9452*-04	2.4167*+02 7.6566*+02	6.2511"+01 ;3.23844+02
65030102 0.0000*+00 2.5400*+02	4.8554 8.6233*+05 3.5462*+02	0.7454 1.9000 1.0000	3.6133"+03 1.2679"+04 6.7820"-04	Им Им	10.6301 1.7978 -u.0196	1.3950 1.7370 1.5601"=03	1.9324"+03 2.4167"+02 7.6685"+02	1.9324"+03 6.2050"+01 3.2419"+U2
65030103	4.5512	0.7424	4.5578*+03	NM NM	10,4321	1.2685	2.8728"+03	2.8671"+03
4.7625*-01 5.9098*-02	6.8426*+05 3.5447*+02	1.0020	1.4366"+04 6.4715"=04	1.2944"→06 NM	1,8597	1.8325 1.2588"-03	2.4111"+02 7.5758"+02	6.8928*+01 3.2477*+02
65030104 7.3660*-01 9.2961*-02	4.2458 8.6566"+05 3.5364"+02	0.7251 1.1629 1.0000	5.6268"+03 1.5629"+04 6.1578"=04	시 시 시 네 시	6.4309 1.8990 -0.2541	1.2313 1.8793 8.7648*-04	4.5024"+03 2.3556"+02 7.4597"+02	4,1297*+03 7.6789*+01 3,2485*+02
65030105 8.3820*=01 1.1553*=01	3.9707 8.7795*+05 3.5556*+02	0.7125 1.2738 1.0000	4.3712"+03 1.0823"+04 3.6807"=04	NM 1.92177-04 NM	3.3178 1.8919 -0.2371	1.3459 1.8619 4.7720*-04	7.6599"+03 2.3333"+02 7.3661"+02	6.0133"+03 6.5611"+01 3.2749"+02
65030106 8.7630"-01 1.2747"-01	3.7872 8.7906*+05 3.5507*+02	0.7036 1.4076 1.0000	5.7548*+03 1.3163*+04 4.0579*-04	%w 5"6434±=01 Ww	1.6152 1.8833 -0.1660	1.3601 1.8564 4.8096*-04	1.0866"+04 2.3056"+02 7.2747"+02	7,7192*+03 9,1763*+01 3,2769*+02
05030107 9.1440*-01 1.4531*-01	3.0325 8.7786*+05 3.5013*+02	0.7018 1.4225 1.0000	7.0527*+03 1.21\$3*+04 2.4326*+04	34 4.8333*=04 8#	1.3753 1.8979 -0.2166	1.4636 1.8950 2.5173*=04	3.2378"+04 2.2917"+02 6.7519"+02	2.2762*+04 1.2332*+02 3.2654*+02
65030201 -1.9050*-01 2.5400*-02	4.8303 8.3315*+05 3.5352*+02	0.8490 1.0000 1.0000	2,4146"+03 7,3264"+03 5,0767"-04	HM HM NM	11.1193 1.8245 -0.0693	1.4415 1.7558 1.1248*-03	1.9238*+03 2.744#+02 7.6496*+02	1.9236"+03 10+"6825.6 20+"4225.6
65030202 0.0000*+00 2.5400*-02	4.8619 8.6341"+05 3.5352"+02	0.8526 1.0000 1.0000	3.2761"+03 1.2632"+04 6.8446"=04	Им .Ам Им	11.1468 1.7911 -0.0743	1.4722 1.7153 1.6522*-03	1.9200*+03 2.7556*+02 7.6564*+02	1.9200"+03 1.92700 1.9271.6 1.2316"+02
65030203 4.7625"-01 5.9098"-02	5.0437 1.2981"+06 3.5465"+02	0.8458 1.0000	3.5289#+03 1.4581#+04 5.6582#=04	NM 1.1647*-04	12.9317 1.8660 -0.2218	1.2743 1.8299 1.2293"-03	2.3318"+03 2.7389"+02 7.7185"+02	2.3315*+03 5.8256*+01 3.2383*+02
65030204 7.3660*-01 9.2961*-02	4.2303 6.5100*+05 3.5320*+02	0.8475 1.2078 1.0000	5.6349°.03 1.7637"+04 7.0003"-04	ИМ ЧМ ИМ	6.7486 1.8824 -0.2687	1.247% 1.8611 1.0506"-03	5.0030*+03 2.7500*+02 7.4490*+02	4.1421"+03 7.7133"+01 3.2449"+02
65030205 6.3820*-01	3.9938 8.8342"+05	0.8450 1.3245	7.8365"+03 2.2457"+04	a⊬ 1.7906*-04	5.0727 1.6627	1.2395	7.7705*+03 2.7500*+02	5.8668"+03 8.4350"+01
1.1553*-01	3.5343*+02	1.0000	7.6133"-04 1.0070"+04	NM NM	-0.2739 2.9248	1.0384*-03	1.0997"+04	3,2545"+02 7,0930"+03
A.7630*-01 1.2747*-01	8.7819*+05 3.5353*+02	1.5504	2.7442*+04 8.6780*=04	2.3293"=04 NM	1.8763	1.8677	2.7667*+02 7.2887*+02	3.2605"+01
65030207 9.1440*-01 1.4531*-01	3.5737 8.9394*+05 3.5278*+02	0.8493 3.1251 1.0000	2.266*+04 5.5653*+04 1.4937*=03	1.9680*=03	-0.8112 1.8144 -0.1157	1.3059 1.8196 1.0820*-03	3.3044+02 7.1364+02	1.0561*+04 9.9256*+01 3.2641*+02
65030301 -1.90507-01 2.5400*-J2	4.6274 6.3029*+05 3.4949*+02	1.0083 1.0000 1.0000	2.5300"+03 1.1179"+04 5.9959"=04	ИМ ИМ ИМ	10.1505 1.6312 0.0686	1.3646 1.7664 1.2894*=03	1.9238*+03 3.2222*+02 7.6051*+02	1.9238"+03 6.1739"+01 3.1956"+02
65010302 0.0000*+00 2.5#00*=02	4.8644 8.6380*+05 3.5411*+02	0.9920 1.0000 1.0000	2.9704"+03 1.3083"+04 7.0009"-04	24 84 84	11.3654 1.7915 -0.1236	1.4409 1.7167 1.7368"=03	1.9152"+03 3.2111"+02 7.6654"+02	1.9152"+03 6.1772"+01 3.2370"+02
65030303 4.7625"-01 3.9098"-02	5.2006 1.4668*+06 3.5511*+02	0.9810 1.0000 1.0000	3.1128"+03 1.5177"+04 5.6116"~04	NM 5.2797*-05 NM	14.0108 1.8622 -0.2743	1.2741 1.5261 1.3134"=03	2.2006*+03 3.1776*+02 7.7614*+02	2.2004*+03 5.5406*+01 3.2394*+02
65030304 7,3660"-01 9.2961"-02	4.2644 5.8100*+05 3.5375*+02	0.9747 1.2034 1.0000	5.4585"+03 1.9264"+04 7.5318"=04	ИМ ММ	7.2728 1.8732 -0.2882	1.2537 1.8495 1.1930*-03	4.9379*+03 3.1667*+02 7.4679*+02	4.1033"+03 7.6289"+01 3.2490"+02
65030305 8.3620"-01 1.1553"-01	4.0030 8.8279"+05 3.5463"+02	0.9681 1.3477 1.0000	7.8205*+03 2.4965*+04 8.5529*=04	NM 6.0286#=05	5.1248 1.8659 -0.3179	1.2433	7.8050*+03 3.1611*+02 7.3707*+02	5.7911*+03 8.4339*+01 3.2652*+02
65030306 8.7630"-01 1.2747"-01	3.8847 8.6977"+05 3.5429"+02	7.9695 1.6598 1.0000	1.0706*+04 3.2765*+04 1.0697*-03	NM 5.5509"=05 NM	3.3078 1.8536 -0.3995	1.2390	1.1101*+04 3.1667*+02 7.3137*+02	6.6879"+03 8.8172"+01 3.2662"+02
65030307 9.1440"-01 1.4531"-01	3.5952 8.6018*+05 3.5454*+02	0.9724 3.3763 1.0000	2.6338"+04 7.2496"+04 2.0535"-03	NM 7.8762"-04 NM	-0.4290 1.7786 -0.0037	1.3244	3,3308"+04 3,1869"+02 7,1463"+02	9.8595*+03 9.8894*+01 3.2795*+02

CAT 6503	STROUD		BOUNDARY COM	DITIONS AND	EVALUATED	DATA. SI UNI	T3.	
RUN X # RZ #	40 P0D T0D	TW/TR PW/PD SW *	REDZW REDZD DZ	00 * P15	H12 H32 H42	132K 132K 132K	PW# TWR UD#	PD# TO# TR
65030401	5.9223	0.6043	1.0957"+03	Им	16.1613	1.4619	8.6520*+02	8.6520*+02
-1.9050*-01	1.2610*+06	1.0000	4.4253"+03	Им	1.8340	1.7528	2.2083*+02	5.0161*+01
2.5400*-02	4.0203*+02	1.0000	3.1455"=04	Им	-0.0935	8.4417"-04	8.4097*+02	3.6543*+02
65030402	5.9464	0.6063	1.1202*+03	ИМ	16.2063	1.3094	8.6663"+02	8.6663"+02
0.0000*+00	1.2950"+06	1.0000	4.5708*+03	ИМ	1.8666	1.8207	2.2083"+02	4.9650"+01
2.5400*=02	4.007/"+02	1.0000	3.1609*+04	Им	-0.1512	7.8046"-04	8.4009"+02	3.6426"+02
65030403	5.2970	0.6057	1.0953"+03	NM	13.3395	1.4661	1.6231"+03	1.5159*+03
4.7625*-01	1.1266*+06	1.0708	3.4564"+03	2.7049"-04	1.8508	1.8030	2.2306"+02	6.1094*+01
5.9098*-02	4.0394*+02	1.0000	2.2327"-04	NM	-0.3107	4.5903*-04	8.3012"+02	3.6828*+02
65030404	4,5700	0.6503	1.6685"+03	NM	6,4315	1.4785	4.7052*+03	3.8721"+03
8.3820*-01	1.2223*+06	1.2152	4.6452"+03	2.8613#=04	1,0736	1.8487	2.3972*+02	7.7733"+01
1.1553*-01	4.0242*+02	1.0000	1.8469"-04	RM	-0,3656	2.8378"-04	8.0784*+02	3.6865"+02
65030405	4.2193	0.6569	2.3095*+03	NM	5.5998	1.4896	7.2189*+03	5.8074*+03
6.7630*+01	1.1763*+06	1.2431	5.7333*+03	3.9597*=04	1.8587	1.8358	2.4333*+02	6.8406*+01
1.2747*-01	4.0317*+02	1.0000	1.9924*+04	NM	-0.1926	2.9761"-04	7.9541*+02	3.7044*+02
63030406	3.3931	0.6534	3.6747*+03	NH	3.1407	1.6216	2.3166"+04	1.7966"+04
9-1440*~01	1.1761*+06	1.2895	6.7110*+03	8.2411*+04	1.8701	1.6595	2.4633"+02	1.2408"+02
1-4331*-01	4.0978*+02	1.0000	1.5346*-04	NH	0.0129	1.8369*-04	7.5779"+02	3.8007"+02
65030501	6.0432	0.7506	A.1483*+02	%м	17.0164	1.5217	8.4520"+02	6.6520*+02
-1.9050*-01	1.4277*+06	1.0000	4.0621*+03	Им	1.8637	1.7800	2.7361"+02	4.8317*+01
2.5400*-02	4.0123*+02	1.0000	2.6742*+04	Чж	-0.0984	6.8504*+04	8.4222"+02	3.6452*+02
65030502	5.9024	0.7523	9.7664*+02	ЧМ	16.5718	1.2665	8.9967*+02	8.9967"+02
0.0000*+00	1.2645*+06	1.0000	4.6538*+03	Им	1.8773	1.8332	2.7361*+02	5.0211"+01
2.5400*-02	4.0006*+02	1.0000	3.2173*=04	Ям	-0.2299	7.7095*+04	6.3857*+02	3.6368"+02
65030503	5.7855	0.7491	7.4420*+02	(IM	19.6500	1.4662	1.2770"+03	1.2770"+03
4.7625"+01	1.6136"+06	1.0000	3.4272*+03	1.7498=-04	1.8601	1.8079	2.7556"+02	5.2561"+01
5.9096"+02	4.0443"+02	1.0000	1.8130*-04	.8M	-0.5391	4.4391*=04	8.4097"+02	3.6783"+02
65030504	4.7883	0.7523	7.2218*+02	14M	15.7146	1.5559	2.7756"+03	2.7756*+03
7.3660"-01	1.1434*+06	1.0000	2.4297*+03	시제	1.9049	1.8935	2.7833"+02	7.2411*+01
9.2961"-02	4.0449*+02	1.0000	1.1569*-04	리M	-0.7889	2.0169**04	6.1699"+02	3.6995*+02
65030505	4.8082	0.7631	3.0816"+03	NM	-1.2339	1.2913	4.8603"+03	2.9451*+03
6.3820*+01	1.2422"+06	1.6503	1.0562"+04	2.6161"-04	1.9165	1.8951	2.8111"+02	7.1633*+01
1.1553*+01	4.0264"+02	1.0000	4.6444"-04	NM	-0.1684	5.0332**04	8.1592"+02	3.6840*+02
65030506	4.2694	0.7658	2.3615*+03	ИМ	2.9983	1.4081	7.3707"+03	5.2922"+03
8.7630"-01	1.1436*+06	1.3927	6.7492*+03	2.9931=-04	1.9048	1.8862	2.8194"+02	5.6289"+01
1.2747"-01	4.0086*+02	1.0000	2.4540*-04	ИМ	-0.3125	3.0311*-04	7.9516"+02	3.6515"+02
65030507	4,3899	0.7679	1.0183*+04	NM	-6.0477	1.2875	2.42079+04	5.0111"+03
9.1440*-01	1,2628*+06	4.8307	3.0403*+04	1.0823*-03	1.8875	1.8417	2.6333*+02	8.2850"+01
1.4531*-01	4,0217*+02	1.0000	1.0690*-03	NM	-0.0380	5.1356"-04	6.0114*+02	3.6896"+02
65030601	5.9710	0.9933	6.8475*+02	NM	16,6523	1.4281	8.6520"+02	8.6520"+02
-1.90507-01	1.3259"+06	1.0000	4.1339*+03	NM	1.8638	1.7826	3.6389"+02	4.9572"+01
2.54007-02	4.0305"+02	1.0000	2.8630*-04	NM	-0,1254	7.3969"-04	8.4289"+02	3.6626"+02
65030602	5.8082	0.9897	8.3897"+02	1914	15.9494	1,3912	9.0206"+02	9.0206*+02
0.0000*+00	1.1074"+06	1.0000	4.8149"+03	1914	1.8583	1.7864	3.6222"+02	5.1950*+01
2.5400*+02	4.0246"+02	1.0000	3.5287"-04	1914	-0.1790	8.9901"-04	50+"36"6.8	3.6601*+02
65030603	5.6517	0.9689	5.9483"+02	NM	21.8168	1.5089	1.3143*+03	1.3143*+03
4.7625*-01	1.4412*+06	1.0000	3.2008"+03	1.5322*≃05	1.8610	1.7922	3.5694*+02	5.4783*+01
5.4098*-02	4.0479*+02	1.0000	1.7925"-04	UM	-0.9252	4.4750*-04	8.3875*+02	3.6839*+02
65030604	4.9112	0.9633	9.5553"+02	14M	12.3911	1.4087	2.6621"+03	2.4223"+03
7.3660*-01	1.1548*+06	1.0990	4.0466"+03	14M	1.9016	1.8693	3.5500"+02	6.9244"+01
9.2961"-02	4.0328*+02	1.0000	2.0133"-04	14M	-0.8508	3.5418"=04	5.1939"+02	3.6654"+02
65030605	4.6604	0.9643	2,1849"+03	NM	4.5687	1.3283	4,6808"+03	3.3234"+03
6.3820*-01	1.1723*+06	1.4064	8,5166"+03	2.1636*≃06	1.9038	1.8764	3,5500"+02	7.5256"+01
1.1553*-01	4.0215*+92	1.0000	3,6562"-04	NM	-0.4053	5.0214"-04	8,1059"+02	3.6815"+02
45030606	4.4140	0.9668	1,4707"+03	IIM	2.3036	1.5587	7.0877*+03	4.5151"+03
8.7630**01	1.1731*+06	1.5698	5,2800"+03	1.6055#=05	1.7745	1.7861	3.5556*+02	6.1876"+01
1.2747**01	4.0093*+02	1.0000	2,0135"-04	NM	-1.9513	2.6893"~04	8.0080*+02	3.6775"+02
65030607	3.5133	0.9690	4.2477*+03	nm	-0.0257	1.4230	2.2994"+04	1.1704*+04
9.1440*-01	1.3813"+06	1.9647	1.2339*+04	1.9854#+03	1.6923	1.8476	3.5611"+02	1.0192*+02
1.4531*-01	3.9834"+02	1.0000	2.4009*+04	nm	-0.1860	2.6827"=04	7.7186"+02	3.6751*+02

CAT 6503	CUCRTE		BOUNDARY CON	GNA ENDITIC	EVALUATED	DATA. SI UNI	TS.	
RU:i	MΩ	Td/TR	REP2W	C.F	H12	H12K	Pa*	PD*
X *	PUD	PHIPD	REDZD	CO +	H32	432K	TWA	TD+
RZ *	TOD	5// *	02	PIZ	H42	⊃5K	UD*	ŤŘ
65030701	7.8105	0.4093	6.5243"+02	ŊM	30.2895	1.3820	5.2572"+02	5.2572"+02
-1.9050*-01	4.3939"+06	1.0000	2.7809*+03	NM	1.8566	1.7956	2.8278"+02	5.7906"+01
2.5400"-02	7.6439"+02	1.0000	3.0630"-04	iji.	-0.6330	9.9082"-04	1.19164+03	6.9092"+02
65030732	7.6275	0.4059	9.0140*+02	4M	23.6304	1.3624	5.2477"+02	5.2477*+02
0.0000"+00	3.7634"+06	1.0000	3.4557"+03	NM	1.8464	1.7709	2.6000"+02	6.0372*+01
2.5400"-02	7.6285"+02	1.0000	4.3986"-04	ИM	-0.1672	1.4087"-03	1.1883"+03	6.6960*+02
65030703	7.0137	0.4083	9.9829*+02	HM	22.6164	1.4168	1.0337*+03	9.3031*+02
4.7625*-01	3.8995"+06	1.1112	3.4973 +03	3.5288*=04	1.6353	1.7913	2.6000"+02	6.9861 ++01
5.9098"-02	7.5718*+02	1.0000	3.2146"-04	NW	-0.5202	9.2952"=04	1.1754*+03	6.8570*+02
65030704	6.2351	0.4176	1.8491*+03	ίξω	11.4023	1.3377	2.2710*+03	1.6467*+03
7.3660"-01	3,7007*+06	1.2284	5.3605"+03	5.4356*-04	1.8736	1.8430	2.8672"+02	8.6183*+01
9,2961"-02	7.5629"+02	1.0000	3.6137*-04	IIM.	0.0346	7.1066"=04	1.1606*+03	6,86607+02
65030705	5.7688	0.4433	2.4435"+03	MM	2.9563	1.3257	4.3767"+03	3.0375*+03
8.3820*=01	3.7714"+06	1.4409	6.5523"+03	7.2876*-04	1.8877	1.6787	2.9419*+02	9.5306*+01
1.1553*-01	7.2965"+02	1.0000	3.5565*-04	NM	0.4543	4.1797"-04	1.1292"+03	6.6368*+02
65030706	5.2998	0.4432	2.8434*+03	ам	2.4924	1.3742	7_1772"+03	4.9235*+03
6.7630=-01	3.6703"+06	1.4577	6.6254"+03	8.4558"-04	1.8851	1.8783	2.9941"+02	1.1196*+02
1.2747"-01	7.4090*+02	1.0000	3.0535"-04	NM	0.5823	3.4965"-04	1.1243"+03	6.7549*+02
65030707	4.2992	0.4547	4.3544*+03	NM	-0.6477	. 1.8166	2.9116"+04	1.5868*+04
9.1440*-01	3.5620"+06	1.8349	7.5934*+03	1.2011"-03	1.8038	1.6332	3.0987"+02	1.5805"+02
1.4531*-01	7.4229*+02	1.0000	2.1818"-04	HM	0.7740	1.4544"-04	1.08374+03	6.81534+02
65030801	7.8454	0.4632	7.6149*+02	NM	25.9710	1.4709	5.2572*+02	5.2572"+02
-1.9050"-01	4.5228"+06	1.0000	3.6075"+03	NM	1.8466	1.7549	3.1722*+02	5.6933"+01
2.5400**02	7.5779*+02	1.0000	3.8560*-04	ЙM	-0.2341	1.2474"-03	1.1869"+03	6.8491*+02
65030802	7.7098	0.4590	1.1572"+03	NM	18.1712	1.4317	5.2477*+02	5.2477*+02
0.0000*+00	4.0331"+06	1.0000	5.2569"+03	NM	1.8137	1.7270	3.1820"+02	5.9494*+01
2.5400*+02	7.66784+02	1.0000	6.1211"-04	ИM	0.3548	1.9353*-03	1.1923*+03	6.9322*+02
65030803	7.0626	0.4693	1.1860*+03	NM	17.3681	1.4046	1.0546*+03	9.0589*+02
4.7625"-01	3.9687"+06	1.1644	4.6832"+03	3.6168*-04	1.8344	1.7928	3,2190"+02	6.9011*+01
5,4098"-02	7,5747"+02	1.0000	4.3104"-04	NM	-0.0705	1.1382"-03	1.1763*+03	6.8587*+02
65030804	6.3789	0.4660	2.2775"+03	NM	6.9862	1.3239	2.3437*+03	1.7251*+03
7.3660"-01	3.9794"+06	1.3586	7.4375*+03	3.3803"-04	1.8724	1.8395	3.2634"+02	8.4461-+01
9,29614-02	7.7182*+02	1.0000	5.3793"-04	MW	0.4224	8.5207"-04	1.1754*+03	7.0033"+02
65030805	5.9765	0.4803	2.2229*+03	NM	4.2310	1.3375	4,5338*+03	2.5798*+03
8.3820*-01	3.9762"+06	1.7574	6.6643"+03	8.4229"-04	1.8860	1.8609	3.3550.+05	9.3463"+01
1.1553"-01	7.4130"+02	1.0000	3,9962"-04	NM	-0.1613	5.2283"-04	1.1586*+03	6.9185"+02
65030806	5.6557	0.4844	3.1277*+03	NM	2.2028	1.3532	7,5086*+03	3.4039*+03
8.7630 -01	3.9680*+06	2.0834	8.6184"+03	1.0971"-03	1.0731	1.8582	3.3446*+02	1.0257"+02
1.2747"-01	7.5674"+02	1.0000	4.4774"-04	MW	-0.2119	5.1451"-04	1.1484*+03	6.9049#+02
45030807	4.8959	0.4899	6.3889*+03	NM	-0.6233	1.4614	3.1158"+04	8.4121"+03
9.1440*-01	3.4385*+06	3.7039	1.4175"+04	1.7499"-03	1.7993	1.7988	3.3744*+02	1.3007"+02
1.4531"-01	7.5364"+02	1.0000	5.1312"-04	MW	0.0461	3.9476"-04	1.1195*+03	6.8879"+02

CAT 6503	STROUD		COUNDARY CO	GNA ENDITION	EVALUATED	DATA. SI UNI	75.	
Ruil	U	THETR	RED2W	CF	H12	H12K	P#*	PD#
χ •	PUD	PHIPD	REDZO	Ca ∗	H32	432K	TWA	TD*
RZ *	TOD	5 y +	05	PIZ	H42	⊅ŞK	UD.	TR
65030901	7.7309	0.7523	3.2796"+02	NM	44.7305	1.4841	5.2572"+02	5.2572"+02
-1.9050*-01	4.1126"+06	1.0000	2,1616*+03	NM	1.8169	1.7434	5.0333"+02	5.7133"+01
2.5400"-02	7.4008*+02	1.0000	2.3571*-04	NM	-1.9692	1.0536*-03	1.1716"+03	6.6905"+02
2.340002	7.4000 702	1,0000	24337104	1 Miles	-1.7072	11033803	1.1/10 +03	304.5449
65030902	7.6059	0.7483	3.6066*+02	NM	45.4186	1.7223	5.2477*+02	5,2477"+02
0.0000*+00	3.6953*+06	1.0000	2.2940"+03	lin.	1.7279	1.7014	5.0363"+02	5,9211"+01
2.5400"-02	7.4429*+02	1.0000	2.6882*-04	Ин	-2.1197	1,4596*-03	1.1734*+03	6.7304*+02
65030903	6.9890	0.7386	6.7346*+02	NM	25.4372	1.7821	1.0108"+03	8.5706"+02
4.7625"-01	3.5129"+06	1.1793	3.6295*+03	1.1434*-04	1.7570	1.6968	5.0213"+02	6.9700*+01
5.9098*-02	7.5062*+02	1.0000	3.6216*-04	NM	-0.8870	1.2480 -03	1.1699"+03	6.7980"+02
567474			2,0210 - 04		-	110400 -00		41 1700 102
45 030904	6.3081	0.7173	7.5093*+02	Им	18.6247	1.4899	2.1560*+03	1.7007"+03
7.3660*-01	3.6598"+06	1.2677	3.3095"+03	3.2032*-05	1.8337	1.8007	4.6871"+02	8.3789"+01
9.2961"-02	7.5062"+02	1.0000	2.4263"-04	ИН	-1.4017	5.3120*=04	1.1577"+03	6.8127"+02
65030905	5.7454	0.6795	9.3353*+02	IJM	7.7043	1.4551	4.1512*+03	3.0428*+03
8.3820"-01	3.68564+06	1.3643	3.3607"+03	4.3797*+04	1.8855	1.8368	4.7527*+02	1.0115"+02
1.1553*-01	7.6893"+02	1,0000	1.9948"-04	NM	-0.4117	3.3037**04	1.1585*+03	6.9948"+02
******	110013 102	.,,,,,,	******	14	-4.4.17	3,303, 404	111303 703	917749 TVE
65030906	5.3917	0.6631	1.1397"+03	HM	4.1378	1.4977	6.6022"+03	4.4629"+03
8.7630"-01	3.4860*+06	1.4793	3.6292"+03	5.4780"-04	1.8979	1.8685	4.7005"+02	1.1416"+02
1.2747**01	7.7787*+02	1.0000	1.8653"-04	IIM	-0.2036	2.4792"-04	1.1550"+03	7.0884*+02
65030907	4.5538	0.6627	3.1649*+03	NM	0.0930	1.6217	2.5504*+04	1.2755*+04
9.1440*-01	3.9470*+06	1.9995	7.8459*+03	8.6320*-04	1.0233	1.8200	4.6259"+02	1.4800"+02
1.4531"-01	7.61824+02	1.0000	2.4161"-04	11W	0.2702	2,1562"-04	1.1108*+03	6.9794"+02
114191 -01	110105 445	1,0000		dia	V.E/VE	51130504	111100.403	D. 7/77"TVE
65031001	7.6682	0.9378	4.3773*+02	NM	29.7280	1.6010	5.2572"+02	5.2572*+02
-1.9050*-01	3.9019"+06	1.0000	3,2599"+03	NM	1.8038	1.7144	6.4722"+02	5.9822"+01
2.5400"-02	7.6335"+02	1.0000	3.8412"-04	NM	-0.4066	1.6431 03	1,1891"+03	6.9018*+02
65031002	7.6148	0.9297	5.6213"+02	NM	23.4690	1.3949	K 2/178.42	F 3//44.03
0.0000*+00	3.7232*+06	1.0000	4.1162"+03	NM	1.8242	1.7402	5,2477"+02	5.2477*+02
2.5400"-02	7.5989"+02	1.0000	4.9547*-04	NH	-0.1606	1.7904"-03	6.3884"+02	6.0322"+01
	·· ·	.,,,,,,	767271 -07	(A)-	-0.1000	1.7404-403	1.1856*+03	6.8713*+02
65031003	7,0969	0.8962	7.1750"+02	NM	14.0007	1.3024	9.5952*+02	8.7717"+02
4.7425"-01	3.9631"+06	1.0939	4525*+03	3.7581"-05	1.8818	1.8382	6.4032"+02	7.1267*+01
5.9098*-02	7.8915*+02	1.0000	4.4198*-04	NM	0.4096	9.4388"-04	1.2012"+03	7.1449*+02
65031004	6.2408	0.9028	6.2515*+02	NM	13.8654	1.3814	2.1125"+03	
7.3660*-01	3.7340"+06	1.1389	3.1173"+03	2.7597*=05	1.9019	1.8805	6.4106*+02	1.8549"+03
9.2961*-02	7.8221*+02	1,0000	2.3156"-04	III	~0.2265	4.0290"-04	1.1604*+03	6.8994*+01 7.1011*+02
		-	*	141	-0.8203	4.0840.404	1.1004.403	7.1011-702
65031004	5.7736	0.9563	8.7173*+02	NM	5,1246	1,3858	4,1933"+03	2.9102"+03
8.3820"-01	3.6313"+06	1.4409	4.0333"+03	7.73387-06	1,9158	1.9026	6.4106"+02	9.6128"+01
1.1553*-01	7.3699*+02	1.0000	2.3121"-04	(IM	-0.6857	3,0527*-04	1.1350"+03	6.7034*+02
65031006	5.4349	0.9430	1.2645*+03	NM	3.0532	1.3904	6.6822"+03	4.3035*+03
8.7630"-01	3.7278"+06	1.5327	5.2348"+03	6.7542 -06	1.9112	1.8987	6.4032"+02	1.0789"+02
1.2747"-01	7.4529"+02	1.0000	2.5512"-04	NM	0.1304	3.0309"-04	1.1319*+03	6.7900"+02
						• .		
65031007	4.3418	0.9179	1.3390"+03	ſ∮M	0.4062	1.0255	2.6448"+04	1.5258*+04
9.1440*-01	3.6172*+06	1.7334	3.8724"+03	1.9327"-06	1.9268	1.9285	6.4032"+02	1.5934"+02
1.4531*-01	7.4010"+92	1.0000	1.15884-04	Nn.	-0.0041	1.0564"-04	1.0969"+03	6,9762"+02

EVALUATED	DATA - PRESSU	RE BASED	REFERENCE FLO	M		
RUN	D2P0 02P4	H12PD	H32PD H42P H32PW H42P		REDZPOW REDZPWW	DSTAR
65050101	4.6171*+04 4.6192*+04	11.6043	1.5298 -0.16 1.6298 -0.18		2.4329"+:3 2.4329"+03	5,3488=-03
650301 02	6.7517"-04 6.7517"-04	10.6305	1.7978 -0.01 1.7978 -0.01		3.6173*+03 3.6173*+03	7.1991"-03
65030 103	0.4656*=04 0.4563*=04	10.4710	1.8596 -0.15 1.8597 -0.15	36 1.4370"+04 36 1.4371"+04	4.5591"+03 4.5594"+03	6.7564"-03
4503 0104	5.5564"-04 5.0517"-04	9.5756 9.5392	1.8898 -0.28 1.9018 -0.27	16 1.4120*+04 98 1.4211*+04	5.0833"+03 5.1161"+03	4,6296*-03
65 030105	2.9057*-04 2.5017*-04	6.8940 6.7953	1.8666 -0.30		3.4551"+03 3.4956"+03	2.2142"-03
6505 0100	2.9656*-04 2.4078*-04	7.8802 7.7503	1.8469 -0.22		4.2109*+03 4.2693*+03	1,4798"-03
45030107	1.7077"-04 1.4089"-04	6.041 5 5.8686	1.8652 -0.30 1.9215 -0.29	84 8.5408**+03 94 8.7987**+03	4.9634*+u3 5.1133*+03	8.3027*-04
65 030301	5.9956*-04 5.9956*-04	10.1510	1.6312 0.06	67 1.1192*+04 67 1.1192*+04	2.5329"+03 2.5329"+03	6.0632=-03
5020202	7.0016"-04 7.0016"-04	11.3641	1.7915 -0.12		2.9742#+03 2.4742#+03	7.4433*-03
65030303	5.6119"-04 5.6116"-04	14.0103	1.8622 -0.27 1.8622 -0.27		3.1167*+03 3.1167*+03	7.5539**03
65030304	7.0038*=04 6,2317*=04	9.8511 9.8130	1.8650 -0.30	99 1.7935"+04 74 1.6076"+04	5.04167+03	6.1-0403
65030305	7,50944-04 6,24454-04	8.9344 8.8467	1.8703 -0.36 1.8772 -0.35	21 2.1946*+04 67 2.2269*+04	6.8747#+03 6.9760#+03	5.5973"-03
65030106	5.7173"-04 6.4962"-04	8.5042 8.5042	1.8275 -0.49 1.8777 -0.47		6.7356"+03 6.9784"+03	5.5597*-03
45 030307	1.3615"-03	3.2596 4.6695	1.7082 =0.00 1.8672 =0.00	55 4.6123"+04 51 5.2656"+04	1.7483"+04	3.3901*-03
43070# 01	3.8539"-04 3.8540"-04	25.9850 25,9850	1.8465 -0.23 1.8466 -0.23	42 3.6094"+03 42 3.6099"+03	7.6194"+02	9,9563"-03
\$0\$0£02	6.1236"-04 6.1237"-74	18.1637	1.8136 0.35	96 5.2655*+03 96 5.2654*+03	1.1591"+03	1.1102"-02
650308 01	4.1987*=04 3.7481"=04	21.2541	1.8240 -0.07 1.8335 -0.07		1.1456"+03	8.0538*+03
45030404	3.0972"-04 4.1438"-04	10.9134	1.8661 0.65	30 7.0995"+03	2.1606*+03 2.1740*+03	4.6003*-03
65 030 8 05	3.2621"-04 2.2364"-04	15.5592 15.4664	1.8635 -0.19	77 5.4464"+03 51 5.5173"+03	1.6168"+03	3,5355"-03
65030806	3.3031"-04 2.1932"-04	13.9043	1.8432 -0.27 1.8785 -0.26		2.4498*+03 2.4970*+03	3.4636**03
65030407	3.7915"-04 1.6446"-04	8.2466	1.7434 0.06	24 1.0460"+U4 94 1.1029"+U4	4.7264"+05 4.9706"+03	1,3962"-03
4501 1001	3.8473"-04 3.8469"-04	29.6928	1.8040 -0.40		4.3894*+02	1.1392*-02
45031 402	4.9542"-04 4.9542"-04	23.4711 23.4709	1.6242 -0.14	07 4.1207"+03 07 4.1207"+03	5.6275"+02 5.6275"+02	1,1601**02
650 31003	4.3145"=04 4.0576"=04	16.1650	1.8793 0.41	96 4.3516"+03 90 4.3561"+03	7.0133"+0# 7.0238"+0#	6,6324*+03
45 031404	2.1572"-04 1.9757"-04	10.7523	1.9000 -0.24	24 2,41504+03	5.8309"+02 5.8457"+02	3.7198*-03
65 051005	1.7125-04	20.4746 20.3680	1.6876 -0.92	57 2.9919"+03 77 3.016+"+03	+.4646*+02	2.7519**-03
650 3100 6	2.0942"-04 1.5649"-04	11,3985	1.8944 0.17		1.0404*+05	1.7864*-03
4503 1 407	4.0924"-05 5.7225"-05	3:1551 3:4521	1.7034 -0.00 1.7440 -0.00	73 2.7077*+u3 72 2.7713*+03	9.1627"+02 9.5826"+02	5,1959"-04

650303	DI STROL	ar ar	PROFILE	TABULATION	25	POINTS, D	ELTA AT POI	NT 19
1	Y	PT2/P	P/PD	TO/TOD	M/MD	מטעט	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	1.00000	0.92198	0.00000	0.0000	5.21911	0.00000
2	2.5400*-04	1.6804"+00	1.00000	0.94869	0.18520	0.39850	4,63016	0.08607
3	4.5720"-04	2.2245"+00	1.00000	0.96185	0.23506	0.48912	4.32979	0.11297
4	6.8580 -04	3.5840"+00	1.00000	0.97415	0.31993	0.61817	3.73338	0.16558
5	8.6360"-04	4.0349"+00	1,00000	0.98210	0.34307	0.65003	3.59003	0.18107
6	1.2954*-03	5.3170"+00	1.00000	0.98533	0.40099	0.71600		0.22457
7	1.7272"-03	6.0447"+00	1.00000	0.98667	0.43035	0.74510	2.99775	0.24855
8	2.1590"-03	6.9114"+00	1.00000	0.98799	0.46283	0.77428	2.79861	0.27666
9	2.6162"-03	7.8564"+00	1.00000	0.98917	0.49580	0.80093	2,60965	0.30691
10	3.0450 03	8.5840"+00	1.00000	0.98996	0.51974	0.81860		0.32999
1 i	3.4290"=03	9.5891"+00	1.00000	0.99083	0.55109	0.83977		0.36165
15	4.3180"-03	1.1499*+01	1.00000	0.99222	0.60619	0.87227		0.42127
13	5.5880"403	1.3386"+01	1.00000	1.00776	0.65605	0.90377		0.47623
14	6.8326"-03	1.6854"+01	1.00000	0.99426	0.73897	0.93110		0.58649
15	8.1250"-03	1.9500"+01	1.00000	0.99513	0.79644	0.95034		0.66746
16	9.3980"-03	2.1800"+01	1.00000	0.99621	0.84320	0.96409		0.73747
17	1.1506"-02	2,6953*+01	1.00000	0.99713	0.93956	0.98705		0.69434
18	1.3665*-02	3.0084*+01	1.00000	0.99877	0.99355	0.99824		0.98839
D 19	1.4732"-02	3,0470"+01	1.00000	1.00000	1.00000	1.00000		1.00000
20	1.5024"-02	3.0481 +01	1.00000	1.00138	1.00018	1.00072		0.99964
Žį	1.7932"-02	3.0521"+01	1.00000	1.00427	1.00084	1.00228		0.99941
25	2.0066"-02	3.0758"+01	1.00000	1.00763	1.00478	1.00455		1.00492
23	2.2149"-02	3.0800"+01	1.00000	1.01132	1.00548	1.00661		1.00435
24	2.4333"-02	3.0797"+01	1.00000	1.01553	1.00545	1.00870		1,00220
25	2.6441"-02	3.0639*+01	1.00000	1.02005	1.00614	1.01106		1.00124

INPUT VARIABLES Y,U,T,P

6503030	2 STROL	טנ	PROFILE	TABULATION	29	POINTS, C	DELTA AT POI	NT 25
1	٧	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
12345678901123456	0.0000"+00 2.5400"-04 4.3434"-04 5.4436"-04 7.4436"-04 9.8552"-04 1.4224"-03 1.4224"-03 1.4224"-03 2.7076"-03 2.7076"-03 3.1267"-03 3.1267"-03 4.3917"-03 4.3917"-03 5.9004"-03 5.9004"-03 7.3762"-03	1.382750"+000 3.382750"+000 3.382750"+000 3.382750"+000 3.45349"+000 3.45145"+000 4.45145"+000 4.53475"+000 4.53475"+000 7.54675"+000 9.84675"+001	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.9275 9.94233 0.94233 0.942643 0.945644 0.945647 0.96456 0.976487 0.976487 0.976487 1.016167 1.02871 1.02871 1.02871 1.02875	0.0000 0.14385 0.13347 0.22849 0.229036 0.31902 0.36011 0.36011 0.36011 0.46535 0.46535 0.46535 0.46535 0.46535	0.0165 0.2965 0.2965 0.47749 0.6220 0.6221 0.6221 0.7240 0.77671 0.7871 0.8877 0.8877 0.8877	5.19831 4.84225 5.4.93704 4.93704 4.621109 7.3.92059 7.71007 9.3.845110 7.3.32476 4.3.06619 9.2.86150 9.2.86150 9.2.86150 1.2.65950 1.2.85950 2.96732 2.08494	0.0000 0.00537 0.00537 0.005790 0.10791 0.14645 0.14645 0.16824 0.16824 0.16824 0.16824 0.22878 0.22878 0.22878 0.22878 0.2287910 0.228878
21 22 23 24 0 25 26 27	9.0856"-03 9.9263"-03 1.1476"-02 1.2951"-02 1.3060"-02 1.7181"-02 1.9398"-02 2.3604"-02 2.5730"-02	1.6494"+01 1.6553"+01 2.2816"+01 2.6155"+01 2.9777"+01 3.093"+01 3.1131"+01 3.1269"+01 3.1269"+01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.01543 1.01558 1.01051 1.00366 1.00008 1.00000 0.94945 0.94945 0.94946	0.72523 0.77045 0.85633 0.91826 0.98080 1.000827 1.00451 1.00585	0.9344 0.9344 0.9745 0.9859 0.9966 1.0005 1.0007 1.0009	1.52837 1.29517 1.15289 2.1.03238 1.00000 5.0.99254 9.0.99254	0.56149 0.62320 0.75245 0.65521 0.96536 1.00000 1.00599 1.01072

INPUT VARIABLES Y,U,T,P

650303	03 STRO	סני	PROFILE	TABULATION	27	POINTS, D	ELTA AT POS	NT 25
I	¥	PT2/P	P/P0	T0/10D	14/140	סטעט	7/10	RHO/RHOD 4U/UD
1	0.0000*+00	1.0000*+00	1.00000	0.89487	0.00000	0.00000	5.73549	0.00000
2	2.5400"-04	2.6333*+90	1.00000	0.92774	0.24511	0.51924	4.48772	0.11570
3	4.8250*-04	3.9490"+00	1.00000	0.94907	0.31441	0.62594	3,96350	0.15793
4	6.6040"-04	5.1263"+00	1.00000	0.96272	0.36473	0.69090	3,58829	0.19254
5	8.8646"-04	6,1313"+00	1.00000	0.97486	0.40258	0.73457		0.22063
6	1.1049"-03	6,7922*+00	1,00000	0.98402	0.42560			0.23845
7	1.3233"-03	7,5531"+00	1.00000	0.99443	0.45063	0.78534		0.25857
8	1.5799"-03	8.0725"+00	1.00000	1.00048	0.46693	0.80093	2.94234	0.27221
9	1.6942"-03	8.8685"+00	1.00000	1.00287	0.49065	0.81998	2.79043	0.29383
10	2.1717"-03	9,5635"+00	1.00000	1.01515	0.51082	0.83907	2.69808	0.31099
11	2.5857"-03	9.8393"+00	1.00000	1.01970	0.51853	0.84614		0.31775
12	2.9972"-03	1.0737"+01	1.00000	1.02320	0.54286	0.86317	2,52803	0.34143
13	3.4823"-03	1.0947"+01	1,00000	1.02512	0.54838	0.86730		0.34673
14	3.7287*-03	1.1468"+01	1.00000	1.02547	0.56187	0.87539		0.36064
15	4.1504"-03	1.1468*+01	1.00000	1.02547	0.56187	0.87539	2.42735	0.36064
16	4.5745"-03	1.2090"+01	1.00000	1.02408	0.57759	0.88360	2.34032	0.37756
17	5.4204"-03	1.2924"+01	1.00000	1.02339	0.39797	0.89405	2.23544	0.39994
18	6.7005"-03	1.2992"+01	1.00000	1.02140	0.59960	0.89401	2.22310	0.40214
19	8.0035"-03	1.4551"+01	1,00000	1.02343	0,63588	0.91223	2.05806	0.44325
20	9.2558"=03	1.6769*+01	1.00000	1.02692	0.68415	0.93395	1.86353	0.50117
21	1.0579"-02	1.9608"+01	1.00000	1.02921	0.74137	0.95527	1.66028	0.57537
22	1.1674"-02	2.3213"+01	1.00000	1.02462	0.80821	0,97275	1.44861	0.67150
23	1.3076"-02	2.7784*+01	1.00000	1.01342	0.88571	0,98578	1.23874	0.79579
24	1.5006"-02	3.3692"+01	1.00000	1.00315	0,97681	0.99784	1,04352	0.95623
0 25	1.7120*-02	3,5288"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
56	1.9271"-02	3,5195"+01	1.00000	0.99885	0.99866	0.99921	1.00110	0.99811
27	2.1389"-02	3,5011"+01	1.00000	0.99527	0.99601	0.99851	1.00501	0.99353

INPUT VARIABLES Y,U,T,P

650303	04 STRUI	UB	PROFILE	TABULATION	26	POINTS, DEL	TA AT POT	NT 26
ı	4	PT2/P	P/PD	TO/TOD	M/MD	U/UD	TAID	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	1.20338	0.89516	0.00000	0.0000	4.15089	0.00000
ž	2.5400"-04	2.9183"+00	1.20338	0.94148	0.31939	0.56994	3.18424	0.21539
3	4.5466"-04	3.4586"+00	1.20338	0.95976	0.35455	0.61961	3.05411	0.24414
4	6.8326"-04	4.7567"+00	1.20338	0.96622	0.42653	0.70038	2.69633	0.31258
5	8.9408"-04	5.0789"+00	1.20338	0.97448	0.44250	0.71887	2.63916	0.52778
Ū	1.1100"-03	6.4104*+00	1.20280	0.98268	0.50301	0.77487	2.37300	0.39276
7	1.3183"-03	7.2951"+00	1.20222	0.99237	0.53941	0.80654	2.23573	0.43370
ò	1.5215"-03	7.9348"+00	1.20140	1.00660	0.56424	0.82984	2.16305	0.46091
9	1.7018"-03	8.2704"+00	1.19977	1.01273	0.57683	0.84082	2.12475	0.47478
10	2.1387"-03	4.4461"+00	1.19802	1.01951	0.61892	0.86988	1.97539	0.52756
11	2.6035"-03	1.0004"+01	1.19615	1.02548	0.63790	0.88331	1.91742	0.55104
12	3.0251*-03	1.0622*+01	1,19323	1.02761	0.65830	0.89531	1.84969	0.57756
13	3.4163" "03	1.0898"+01	1.19020	1.02742	0.66723	0.89988	1.51576	0.38882
14	3.8151"-03	1.1169"+01	1.18775	1.02756	0.67585	0.90433	1.79042	0.59993
15	4.7117"-03	1.1392"+01	1.17935	1.02530	0.68285	0.90682	1.76355	0.60642
16	5.5677"=03	1.1453"+01	1.14976	1.02326	0.68478	0.90686	1.75379	0.60488
17	6.4643"=03	1.1628"+01	1.16009	1.02171	0.69023	0.90882	1.73369	0.40813
is	7.2263*-03	1.1920"+01	1.15041	1.02138	0.69920	0.91294	1.70485	0.61604
19	8.0950"-03	1.2340"+01	1.13839	1.02175	0.71191	0.91898	1.66633	0.62782
50	8.9306"-03	1.3032"+01	1.12637	1.02206	0.73240	0.92817	1.60603	0.65096
ži	1.0290**02	1.4719"+01	1.10712	1.02435	0.78009	0.94845	1.47823	0.71034
52	1.1521"-02	1.5992"+01	1.08915	1.02395	0.81422	0.96061	1.39193	0.75165
žŝ	1.3150"-02	1.9292"+01	1.06558	1.01673	0.89662	0.98282	1.20150	0.87163
24	1.4729"-02	2,1405"+01	1.04316	1.01008	0.94564	0.99245	1.10144	0.94173
25	1.6807"-02	2.3175"+01	1.02112	1.00374	0.98482	0.99853	1.02804	0.99181
D 26	1.8976"-02	2.3881 +01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
27	2.0937"-02	2.4177"+01	0.98016	0.99853	1.00631	1.00061	0.98871	0.99196
28	2.3020*-02	2.42544+01	0.95916	0.99841	1.00793	1.00090	0.98609	0.97356

INPUT VARIABLES Y,U,T,P

6503030	S STROU	D	PROFILE	TABULATION	24	POINTS, DE	LTA AT POI	NT 22
I	Y	PT2/P	P/PD	T0/10D	MZMD	UVUD	T/TD	RH0/RH00*U/U0
1 2 3 4 5 6 6 7 7 8 9 10 11 12 11 14 15 16 7 18 19 22 23 24 1 NPUT V	0.0000*+00 2.5400*-04 4.3688*-04 6.4262*-04 3.6614*-03 1.7743*-03 1.7743*-03 2.7870*-03 2.7870*-03 2.7870*-03 3.4392*-03 4.2901*-03 5.1105*-03 6.0173*-03 6.0173*-03 6.0173*-03 7.853*-02 1.3635*-02 1.3635*-02 1.7460*-02 1.7460*-02 1.7460*-02 1.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02 4.7460*-02	1,0000*+00 3,3561*+00 4,5252*+00 6,5348*+00 6,5348*+00 8,2190*+00 8,4766*+00 8,4766*+00 8,4962*+00 9,4524*+00 9,4524*+00 1,0108*+01 1,1585*+01 1,1585*+01 1,1585*+01 1,1585*+01 1,15823*+01	1.34775 1.34534 1.34570 1.34163 1.34579 1.331549 1.33559 1.33154 1.32749 1.32749 1.326445 1.26445 1.26445 1.2645 1.10376 1.05000 0.95642 0.91377	0.841090 0.9441940 0.961473 0.961473 1.0126045 1.0126045 1.02364 1.0236	0.00000 0.37092 0.448730 0.51945 0.560285 0.60285 0.61247 0.63397 0.63762 0.643762 0.653762 0.653762 0.67368 0.773588 0.773694 0.93548 0.93548 0.93548	0.0000 0.61550 0.61550 0.61539 0.77844 0.85220 0.861216 0.87267 0.87467 0.8626 0.89747 0.86864 0.89747 0.92332 0.97779 0.92332 0.97779 0.990457 1.00026	3.74811 2.75351 2.51564 2.51564 2.99835 1.97694 1.91694 1.888881 1.861641 1.72518 1.52518 1.58287 1.52518 1.58287 1.58287 1.91694 1.9164 1.9164 1.9164 1.9164	0.00000 0.30095 0.37894 0.46493 0.52488 0.52488 0.52488 0.60738 0.60738 0.61090 0.6149 0.62769 0.63725 0.65389 0.61589 0.71415 0.79332 0.97519 1.00129 1.00000 0.97336
65030 3 0	6 STROU	U	PROFILE	TABULATION	26	POINTS, DE	LTA AT POI	NT 23
I	Y	P12/P	P/PO	T0/T05	(4/140	U/U0	1/10	RHO/RHOD*U/UD
1 2 3 4 5 6 7 7 8 9 10 11 12 11 14 11 5 11 6 11 7 11 8 2 1 2 2 2 3 2 4 2 5 6 2 1 NPU V	0.0000*+00 2.5400*=04 4.2672*=04 6.3754*=04 6.3756*=03 1.3056*=03 2.3576*=03 2.3576*=03 2.5576*=03 3.3960*=03 4.9914*=03 5.5321*=03 4.9914*=03 5.7920*=03 7.665*=03 1.0241*=02 1.355**=02 1.355**=02 1.355**=02 1.3524*=02 2.355**=02 2.355**=02 1.3524*=02 2.355**	1,0000*+00 3,4813*+00 4,7370*+00 5,9416*+00 5,9416*+00 7,3606*+00 7,4606*+00 7,7605*+00 7,7205*+00 4,1334*+00 4,1334*+00 4,1334*+00 4,1334*+00 1,0604*+01 1,7502*+01 1,7502*+01 1,7502*+01 1,7502*+01 1,7502*+01 1,7502*+01	1.65979 1.65650 1.65149 1.643183 1.643183 1.643183 1.643183 1.641999 1.611999 1.611999 1.555294 1.55535 1.655	0.89379 0.96221 1.002526 1.0025522 1.0025572 1.0025572 1.0025572 1.0025572 1.0025572 1.0025572 1.0025572 1.0025572 1.002572	0.00000 0.39073 0.48362 0.58674 0.56837 0.50498 0.60616 0.60483 0.61038 0.61740 0.63345 0.61740 0.79950 0.72201 0.79950 0.779950 0.77950 0.77950 0.97732 1.00000 1.01388	0.05768 0.05768 0.05768 0.05768 0.05769 0.051119 0.05119 0.05119 0.05119 0.051119 0.	3.59146 2.64747 2.51362 2.32494 2.092018 1.99687 1.95577 1.95377 1.95377 1.95377 1.84506 4.73669 1.54968 1.219588 1.21958 1.21958 1.21958 1.21958 1.21958 1.21958 1.21958 1.21	0.00000 0.39779 0.39779 0.51775 0.54553 0.64553 0.67390 0.685395 0.70195 0.70195 0.70197 0.71597 0.71597 0.71597 0.71638 0.71638 0.71638 0.985287 1.003019 1.003019 1.003019 1.003019
65 03030	7 STROU	υ	PROFILE	TABULATION	19	POINTS, DE	LTA AT POI	NT 16
I	γ	PT2/P	P/PD	TO/TOD	M/MD	U/UD	1/10	RH0/RH00+U/U0
14 13 0 16 17 18	0.000*+00 2.5400*-04 4.1910*-04 6.3246*-04 1.2751*-03 2.620*-03 2.1260*-03 2.9603*-03 3.4011*-03 5.5174**-03 1.522*-02 1.1935*-02 1.2337*-02	1.0000*+00 3.1717*+00 4.3985*+00 4.3985*+00 4.5997*+00 4.7004*+00 4.7006*+00 4.8249*+00 4.118*+00 6.1082*+00 6.1082*+00 1.118*+01 1.7111*+01 1.8301*+01 2.0712*+01	3.37830 3.36210 3.35463 3.35463 3.34623 3.24723 3.21753 3.21753 3.16530 2.16210 2.16210 1.64537 1.04000 1.04000 0.42635	0.87843 1.00512 1.00512 1.004494 1.04494 1.045276 0.87277 1.01621 1.01621 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190 1.00190	0.0000 0.3490i 0.44546 0.46396 0.50278 0.50278 0.50256 0.51524 0.57703 0.7774 0.91778 1.00000 1.05778	0.02920 0.62920 0.73295 0.735347 0.75547 0.775547 0.775535 0.877135 0.87014 0.93470 1.0205 1.0205	3.22454 2.48576 2.38000 2.29280 2.29280 2.242577 1.64561 2.160570 1.65172 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578 1.65578	0.00000 0.85284 1.97096 1.97096 1.1059 1.10624 1.46616 1.08237 1.08712 1.0805 1.13895 1.13895 1.13084 1.00000 0.90306 0.74296

INPUT VARIABLES Y,U,T,P

INPUT VARIABLES Y,U,T,P

1

650308	01 STR	oup	PROFILE	TABULATION	18	POINTS, DE	LTA AT POI	NT 16
I	Y	PT2/P	P/PD	TO/TOD	MIND	U/UD	TZTD	RHU/RHOD+U/U
1 2 3 4 5 7 8	0,0000*+00 2,5400*-04 7,0104*-04 1,1100*-03 1,5596*-03 1,9761*-03 3,3731*-03 4,9952*-03 6,5557*-03	1.0000*+00 1.8119*+00 2.3373*+00 4.7575*+00 9.7440*+00 1.2948*+01 1.7762*+01 2.1866**01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.41861 0.57766 0.76751 0.89540 0.89445 0.90642 0.93877 0.98669	0.00000 0.12262 0.14961 0.23186 0.34205 0.39677 0.46713 0.51963	0.0000 0.31233 0.42339 0.62093 0.75552 0.80403 0.86004 0.69638	5.57182 6.48790 8.00898 7.17174 4.87851 4.10046 3.38973 2.61866	0.0000 0.04814 0.05287 0.16658 0.15487 0.19580 0.25372 0.30123 0.35387
10 11 12 13 14 15 0 16 17 18	0.0843*-U3 1.0818*-U2 1.2949*-02 1.5083*-02 1.721*-02 1.728*-02 2.1481*-02 2.3480*-02 2.5781*-02	3.2968**01 4.0531**01 5.0573**01 6.3039**01 7.2242**01 7.7629**01 7.9712**01 7.9717**01 7.9335**01	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	1.01876 1.03366 1.03156 1.01698 1.00162 0.99863 1.00000 1.00015 0.99949	0.44042 0.71104 0.79518 0.88860 0.995170 0.98677 1.00000 1.00003 0.99762	0.958A6 0.9417 0.99451 0.99451 0.99492 0.9951 1.00008 0.9956	2.24171 1.90457 1.56319 1.26269 1.02352 1.00000 1.00010	0.42774 0.51522 0.53601 0.70678 0.90853 0.97517 1.00000 0.99568
650308	-			TABULATION		POINTS, DE		-
1	Y	PT2/P	P/PD	TO/TOD	MAND	U/UD	1/10	RHO/RHOD+U/UD
12345678990112314561701991NPUT	0.0000*+00 2.5400*-04 8.9716*-04 1.5723*-03 2.1860*-03 5.4510*-03 5.4510*-03 7.726*-03 1.0270*-02 1.1600*-02 1.2450*-02 1.5450*-02 1.7531*-02 2.1779*-02 2.1779*-02 2.1779*-02	1.0000*+00 2.1076*+00 2.3598*+00 9.1755*+00 1.2240*+01 1.9142*+01 2.452*+01 2.452*+01 2.452*+01 2.452*+01 2.452*+01 2.450*+01 3.1505*+01 4.290**+01 5.590*+01 5.590*+01 7.4904**01 7.7067*+01 Y,U,T,P	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.41498 0.5294899 0.53529 0.6566019 0.676619 0.912409 0.94469 0.94467 0.94667 0.94667 0.9627 1.01657 1.01657 1.01657	0.00000 0.14140 0.15350 0.27788 0.33712 0.34212 0.44877 0.44346 0.5841 0.69234 0.74192 0.80434 0.84877 0.94351 1.00000 1.00047	0.0000 0.33212 0.45337 0.53337 0.73795 0.854102 0.864102 0.96410 0.94504 0.94504 0.94504 0.94504 0.96500 1.00500	5.34840 5.51723 7.50761 4.73237 4.03601 3.03847 2.72182 2.4064 1.862792 1.67719 1.35634 1.04060 0.99132	0.0000 0.06020 0.06020 0.11724 0.115497 0.19513 0.28338 0.32487 0.37652 0.37728 0.57728 0.57728 0.57289 0.57289 0.57289 0.72880 0.72880 0.72880 0.74880
650308	103 STR	OUD	PROFILE	TABULATION	17	POINTS, DE	LTA AY PDI	NT 16
ı	٧	PTZ/P	F/PD	T0/10D	MZHO	מטעני	T/TD	9H0/9H0D*U/UB
12345678910 112313450 117	0.0000*+00 2.5400*-04 6.7310*-04 1.0922*-03 1.9402*-03 2.3740*-03 6.6751*-03 6.7752*-03 1.3052*-03 1.5174*-02 1.7432*-02 1.7432*-02 1.7432*-02 1.7432*-02	1.0000"+00 1.7142"+00 6.0950"+00 1.139"+01 1.2099"+01 1.36247"+01 2.4027"+01 3.1527"+01 3.1527"+01 5.0932"+01 5.7721"+01 6.4396"+01 6.4560"+01	1.16438 1.16438 1.16226 1.17551 1.17551 1.17528 1.17528 1.17548 1.12515 1.11049 1.07011 1.05708 1.07011 1.05708 1.01647 1.02467 1.00000 0.946882	0.42497 0.63797 0.82666 0.85666 0.9537 0.9137 0.97156 0.97071 0.99286 1.02159 1.02159 1.00135 1.00000 0.9980	0.00000 0.12918 0.29548 0.30632 0.40750 0.42547 0.52614 0.60568 0.49548 0.49548 0.49548 0.4974421 0.497720 0.49774	0.0000 0.31657 0.451427 0.50407 0.876419 0.876287 0.915824 1.00218 1.00218 1.00378 1.00378	4.66447 6.00306 4.86103 4.16133 3.57261 3.57261 3.477363 2.28651 1.87087 1.8331 1.80007 1.13331 1.00547 1.00000 0.98744	0.0000 0.06139 0.15577 0.2005 0.24454 0.25972 0.35967 0.44988 0.56488 0.56488 0.64312 0.84315 0.98462 1.01658 1.00000

650308	04 STRO	טט	PROFILE	TABULATION	15	POINTS, DEL	TA AT POI	NT 12
I	4	PT2/P	P/PD	T0/T00	11/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	1.35859	0.42252	0.00000	0.00000	3.86378	0.0000
2	2.5400"-04	3.5585"+00	1.35720	0.71436	0.24109	0.50753	4.43163	0.15543
Ī	6.3246"-04	1.0022"+01	1.35554	0.63640	0.42685	0.74893	3.07847	0.32977
4	1.0160"-03	1.3454"+01	1.35054	0.87215	0.49778	0.80712	2.64204	0.41360
5	1.4097"-03	1.5672 +01	1.34499	0.88866	0.53866	0.83725	2.41590	0.46612
6	1.8542"-03	1.7408 +01	1.33805	0.70198	0.56561	0.85668	2.26988	0.50499
7	2.2682"-03	1.9082*+01	1.33139	0.91057	0.59606	0.87161	2.13033	0.54269
À	4.3790*=03	2.4612"+01	1.20762	0.93611	0.67888	0.91098	1.80063	0.65153
ā	6.5126"=03	3.0384"+01	1.22537	0.96129	0.75569	0.94248	1.55548	0.74246
10	8.6665"=03	3.7371"+01	1.15348	0.98841	0.03931	0.97212	1.34151	0.63587
ii	1.0785"-02	4.6044"+01	1.03662	1.00474	0.93274	0.99427	1.13629	0.92456
0 12	1.2936"-02	5.2854"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
13	1.5143"-02	4.2089*+01	0.93478	0.99304	0.89135	0.98270	1.21548	0.75576
14	1.7181"-02	4.2840"+01	0.88454	0.98864	0.89934	0.98169	1.19148	0.72880
15	1.9225*-02	4.1766*+01	0.85734	0.98675	0.88789	0.97907	1.21594	0.69033

1	NPUT	MIRAV	ALES:	Y.U.T.	•

6503080	S STROI	פו	PROFILE	TABULATION	20	POINTS: DE	LTA AT POI	NT 19
I	Ψ.,	PT2/P	P/PO	TO/TOD	11/110	U/U0	T/TD	RHO/RHO0+U/U0
1 2 3 4	0.0000*+00 2.5400*=04 4.7752*=04 6.7310*=04 9.1948*=04 1.1450*=03 1.3009*=03 2.1462*=03	1.0000*+00 5.160*+00 7.8570*+00 1.1603*+01 1.419*+01 1.5207*+01 1.6435*+01 1.5439*+01	1.75742 1.75575 1.748703 1.73998 1.73460 1.72940 1.71529	0.43644 0.83765 0.89138 0.91828 0.94794 0.95883 0.96187 0.97130	0.00000 0.31863 0.40130 0.49635 0.54635 0.56607 0.58920 0.64634	0.00000 0.0358 0.7373 0.55770 0.55770 0.67219 0.68398 0.90290 0.91257	3.55423 3.95394 3.37567 2.70957 2.46449 2.37404 2.25091 2.08629 1.98477	0.00100 0.26134 0.36195 0.52679 0.60535 0.63727 0.67917 0.77234
10 11 12 13	2.5902"-03 2.9972"-03 4.2418"-03 4.2418"-03 6.4877"-03 7.4625"-03 4.5830"-03 1.0660"-03 1.0660"-02 1.3884"-07	2.0803#+01 2.1495#+01 2.3876#+01 2.9136#+01 3.7285#+01 3.7285#+01 4.5453#+01 4.5453#+01	1.07736 1.65906 1.57352 1.5229 1.436024 1.23719 1.17743 1.06090 C.91221	0.97997 0.98508 1.001348 1.01548 1.02767 1.02098 1.02130 1.02130 1.02000 0.96279	0.66496 0.67620 0.71363 0.74376 0.78957 0.83180 0.89378 0.89378 1.00000 1.01511	0.9213 0.92723 0.94623 0.94617 0.9653 0.99808 1.00033 1.00037 1.00000	1.91900 1.86031 1.75619 1.67005 1.531249 1.24710 1.16592 1.06000 0.95721	0.717564 0.61813 0.85225 0.87601 0.91630 0.95202 0.99015 1.01040 1.01299 1.00000 0.94647

INPUT VARIABLES Y.U.T.P

65030	806 STRO	au	PROFILE	TABULATION	17	POINTS, DE	TA AY POI	NT 16
I	Y	P12/P	7/70	10/100	142MD	U/UD	1/10	RHO/RHOSeU/UD
123 455 67 89 101 112 13	0.0000*+00 2.5400*-04 7.1628*-04 9.4745*-03 1.5157*-03 2.1006*-03 2.5806*-03 2.9806*-03 3.9829*-03 5.0724*-03 6.1747*-03	1 = 0000 * +00 5 5 759 * +00 8 5 182 * +00 1 0967 * +01 1 2620 * +01 1 2620 * +01 1 5152 * +01 1 689 * +01 1 7404 * +01 1 9668 * +01 2 7050 * +01	2.0551447 2.075447 2.075422 2.075422 2.075617 2.0758 2.0758 2.0758 1.054	0.44086 0.72985 0.75863 0.97852 0.97852 0.97852 1.02058 1.02107 1.02107 1.01742 1.01707 1.02344 1.02864	0.00000 0.35139 6.44181 0.54310 0.58147 0.58147 0.63145 0.64125 0.64125 0.74085 0.74085	0-0000 0-61028 0-71457 0-859473 0-859160 0-90575 0-91520 0-92417 0-93848 0-95974	3.26108 3.01636 3.15350 2.73497 2.50751 2.50772 2.30132 2.19722 2.07708 1.68923 1.67820	0.00000 0.42112 0.51596 0.63008 0.70525 0.78304 0.79621 0.83791 0.84790 0.85743 0.90598
14 15 0 16 17	7.2157"-03 8.2704"-03 9.3243"-03 1.1491"-02	3.4243"+01 3.4243"+01 4.1649"+01 4.310"(0)	1.36469 1.17710 1.00000 0.85426	1.02410 1.01178 1.00000 0.98523	0.66573 0.93205 1.00000 1.02932	0.94984 0.99575 1.00000 0.99689	1.30733 1.14137 1.00000 0.93748	1.03329 1.02692 1.00000 0.90791

INPUT VARIABLES Y.U.T.P

450308	07 ETRO	٥٥	PROFILE	YABULATION	14	POINTS, DEL	TA AT POT	NT 13
I	Y	PY2/P	#/PD	10/100	M/MD	U/UD	T/TO	RHO/RHOD#U/UD
123454789	0.9000*+00 2.5400*-04 4.6260*-04 7.0356*-04 V.8276*-08 1.5134*-03 1.7205*-03 1.73673*-03	1.0000°00 4.8673*+00 5.3046*+00 6.5548*+00 0.4689*+00 1.0143*+00 1.1493*+01 1.3014*+01	3.70391 3.69981 3.61865 3.61862 3.79980 3.37031 3.2777 2.92606	0.44775 0.82580 0.96106 0.961069 1.90571 1.00790 1.01160 1.01160 1.01160	0.0000 0.37635 0.37487 0.44365 0.50742 0.55768 0.55768	0.0000 0.6331 0.70481 0.78486 0.82688 0.84849 0.85600 0.87849	2.59424 2.64970 3.16452 2.92355 2.59664 2.38642 2.33951 2.18663	0.00000 0.82484 0.80086 0.92532 1.10638 1.19731 1.18935 1.18928
10 11 12 0 13	2.6473"-03 3.3426"-03 3.6605"-03 4.3691"-03 5.3673"-03	1.7966*+01 2.4623*+01 8.7615*+01 3.1327*+01 3.4374*+01	1.42598 1.42598 1.24094 1.00000	1.01091 1.00947 1.00729 1.00000 0.99040	0.75300 0.88472 0.73791 1.00000 1.04820	0.94509 0.96149 0.99200 1.00000	1.57528 1.23073 1.11865 1.00000 0.91560	1.16640 1.13720 1.10043 1.00000 0.63176

INPUT VARIABLES Y,U,T,P

M : 1.0 Rising to 3.0

R THETA X 10⁻³ : 3-10

TW/TR : 0.80 - 1.0

6504

FPG - MHT

Special purpose extension of continuous running tunnel (see text). N = 0.4 m, H = 0.14 to 0.42 m, PO : 0.13 MN/m². TO : 340 K. Air. 8 < PE/m x 10^{-6} < 17.

PASIUK L., HASTINGS S.M. and CHATHAM R., 1965. Experimental Reynolds' analogy factor for a compressible turbulent boundary layer with a pressure gradient. NOLTR 64-200.

- The test boundary layer was formed on a flat plate model (W = 0.305 m, L = 1.51 m) placed with its upper surface on the centre line of the tunnel. The leading edge (X = 0) was chamfered on the under side at 5° , and placed at the funnel throat. The space between the edge of the plate and the tunnel sidewalls was filled with fibre glass spacers insulating it thermally and electrically from the tunnel walls (the size stated in text is not big enough unless there are two on each side). The nozzle blocks were constructed of wood. On the upper (test) side the contour was chosen to give a predicted constant value of the "Pohlhausen parameter" ($6^2/v_0$) (T_0/T_0) (d_0/d_X) for x > 0.4 m. The block ended at X = 0.935 m when the height above the plate was 0.197 m. The plate extended about 0.61 m beyond the exit-plane of the nozzle. The plate was actively cooled.
- 6 There were three static tappings and three thermocouple plugs, located at X = 0.287, 0.592 and 0.898 m. The thermocouple plugs contained four junctions, the uppermost at the plate surface and the others buried at
- 8 intervals of 3.18 mm. These were mounted on the centre line, with the static tappings 12.7 mm to one side.
- 7 Pitot profiles were measured with a CPP ($d_1 = 0.559$ mm) and temperature profiles with an ECP ($\alpha = 5^{\circ}$, d = 1.2 mm) as constructed by Danberg (1961). The Pitot probe was also used for a longitudinal traverse
- 9 in the free stream just outside the boundary layer. Values of static pressure and Mach number deduced from this were used in reducing the profile data. The static pressure values agreed with those measured at the orifices, and accordingly the pressure was assumed constant through the boundary layer. The wall heat flux was deduced from the temperature profiles in the thermocouple plugs. The recovery factor used
- 10 by the authors was 0.88. No profile corrections are reported.
- 12 The editors have presented all the profiles measured, and have interpolated the author's TO profiles to the Y-values of Pitot measurements. The D-state has been selected by the editors. The wall temperatures
- 13 are our interpolations from the three measured values. The profiles consist of three series of nine profiles, each at a different wall heat flux condition. Series 01 is for a near-adiabatic wall, while
- series 02 and 03 describe flows with increasing heat transfer rates. Where available the experimental heat flux is also given.
- § DATA: 6504 0101-0309. Pitot and TO profiles obtained separately. NX = 9. Some heat flux measurements determined from the temperature gradient in the wall.

15 Editors' comments

The description of the experiment and presentation of the data in the original source is far from completo. The data itself is rough and generally of doubtful quality, but is presented here as the only other case of a relatively strongly accelerated flow with heat transfer results is the channel wall study of Voisinet & Lee - CAT 7304 at higher Mach numbers. Adiabatic studies, also on channel walls, were made by Michel et al. - CAT 6902 and Thomas - CAT 7401.

In no case do the measurements extend in as far as the momentum-deficit peak, so that integral values should be treated with reserve. We have transformed the profiles using CF values as correlated by Fernholz (1971), and the wall-law plots indicate that CF is substantially higher than for a zero-pressure-gradient flow.

This is a straight-wall, reflected wave, flow, and normal pressure gradient effects are expected to be negligible, as reported by the authors.

Ę.

CAT 6504	PASIUK		BOUNDARY CON	DITIONS AND E	EVALUATED I	DATA. SI UNII	18.	
RUN	MD #	TW/TR	RED2W	CF	H12	H12K	Pw	PD
X +	POD#	PW/PD#	RED2D	CQ *	H32	H32K	Tw*	ID
RZ	YOD#	SW #	D2	P12	H42	D≥K	UD	IR
65040101 2.6822#=01 Infinite	1.4010 1.3215"+05 3.3722"+02	0.9601 1.0000 1.0000	3.0242*+03 3.7117*+03 2.2265*+04	ИМ ИМ	2.5947 1.8271 -0.1609	1.5591 1.8239 2.4870*+04	4.1468*+04 3.1429*+02 4.3712*+02	4.1468"+04 2.4216"+02 5.2734"+02
65040102 2.8651*-01 Infinite	1.6895 1.3215*+05 3.3722*+02	0.9665 1.0000 0.0000	2.7166*+03 3.6746*+03 2.3767*=04	ИМ ИМ	2.7370 1.8437 -0.0299	1,5101 1.8396 2.6961"-04	2.7200"+04 3.1362"+02 4.9631"+02	2.7200"+04 2.1467"+02 3.2448"+02
65040103 3.9014*-01 Infinite	1.9740 1.3215*+05 3.3722*+02	0.9660 1.0000 0.0000	3.7204*+03 5.5530*+03 4.0219**04	NM NM	3.0091 1.8366 0.0119	1.3929 1.8292 4.8282"-04	1.7506"+04 3.1092"+02 5.4486"+02	1.7586"+04 1.8952"+02 3.2186"+02
6504010#	2.2510	0.9666	3.9481"+03	NM	3.2689	1.3536	1.1411"+04	1.1411"+04
4.9073"=01	1.3215*+05		6.5257"+03	NM	1.8378	1.8264	3.0890"+02	1.6749"+02
Infinite	3.3722*+02		5.3958"-04	NM	0.1429	6.7181*+04	5.8409"+02	3.1957"+02
65040105	2.4925	0.9678	3.7663*+03	NM	3.7875	1.3332	7.8252"+03	7.8252*+03
5.9131"-01	1.3215"+05	1.0000	6.8264*+03	NM	1.8385	1.8248	3.0755"+02	1.5036*+02
Infinite	3.3722"+02	0.0000	6.4013*=04	NM	0.0760	8.3757*-04	6.1282"+02	3.1779*+02
65040106	2.6790	0.9673	3.7674*+03	ММ	4.2224	1.3229	5.8622"+03	5.8622"+03
6.9494*=01	1.3215*+05	1.0000	7.3324*+03	ИМ	1.8367	1.8204	3.0620"+02	1.3847"+02
Infinite	3.3722*+02	0.0000	7.6053*=04	ИМ	0.0282	1.0382*-03	6.3205"+02	3.1655"+02
65040107	2.8260	0.9648	3.7715"+03	NM	4.5363	1.3196	4,6602"+03	4.6802"+03
1.9553"-01	1.3215*+85	1.0000	7.7597"+03	NM	1.8333	1.8152	3,0465"+02	1.2984"+02
Infinite	3.3722*+82	0.0000	8.7245"-04	NM	0.0316	1.2323"-03	6,4563"+02	3.1565"+02
65040108	2.9560	0.9659	3.9697*+03	И м	4.7913	1.3065	3.8436*+03	3.8436*+03
8.9611"-01	1.3215*+03	1.0000	6.5896*+03	Им	1.8340	1.8151	3.0417*+02	1.2273*+02
Infinite	3.3722*+02	0.0000	1.0376*-03	Им	0.0587	1.5058*=03	6.5659*+02	3.1492*+02
63040109	2.9730	9442	4.0557*+03	Им	4.8014	1.3065	3.7465*+03	3.7465"+03
9.2354"-01	1.3215*+05	0000.1	6.6357*+03	Им	1.8303	1.8123	3.0417*+02	1.2164"+02
Infinite	3.3722*+02	0000.0	1.0774*=03	Им	0.0461	1.5838"-03	6.5796*+02	3.1462"+02
65040201	1.6030	0.4164	2.4098*+03	NM	2.5882	1.6241	3.1480*+04	3.1480"+04
2.6822"-01	1.3440"+05	1.0000	3.0401*+03	NM	6.652	1.8499	2.9909*+02	2.2346"+02
Infinite	3.3833"+02	0.0000	1.8689*+04	NM	0.635	2.0871*=04	4.8047*+02	3.2639"+02
65040202	1.7970	0.4145	3.2269*+03	NM	2.5972	1.4756	2.3498*+04	2.3496"+04
2.8651"-01	1.3440*+05	1.0000	4.3363*+03	1.5141"=04	1.8485	1.8445	2.9841*+02	2.0557"+02
Infinite	3.5833*+02	0.0000	2.8940*-04	NM	0.1578	3.2701*~04	5.1658*+02	3.2453"+02
45040203	2.0680	0.9138	3.6506"+03	MM	2.8438	1.4045	1.5450*+04	1.5450*+04
3.90144-01	1.3440*+03	1.0000	5.3795"+03	MM	1.8417	1.3346		1.6236*+02
Infinite	3.3833*+02	0.0000	4.0325"=04	MM	0.2291	4.7603*~04		3.2211*+02
65040204 4.9073"=01 Infinite	2.3240 1.3440*+05 3.3833*+02	0.9091 1.0000 0.9000	3.4117"+03 5.5302"+03 4.6929"-04	NM NM	3.1233 6166.1 6885.0	1.3442 1.8542 5.6481"+04	1.0320*+04 2.9097*+02 5.9449*+02	1.0320"+04 1.6250"+02 3.2005"+02
45040205	2.5360	0.9075	3.4786"+03	NM	1.5691	1.3282	7.2107"+03	7.2107"+03
5.9131"-01	1.3440*+05	1.0000	6.1445"+03	1.6546* ~04	1.6515	1.8406	2.8894"+02	1.4666"+02
Infinite	3.3633*+02	0.9000	5.888"-04	NM	0.2342	7.4613"-04	6.2066"+02	3.1840"+02
65040206	2.7330	0.9043	3.7238*+03	им	3,9588	1.3097		5.4872*+03
6.9494"+01	1.3440"+05	1.0000	7.0216*+03	ИМ	1.8506	1.8365		1.3567*+02
Infinite	3.3833"+02	0.0000	7.4102*=04	ИМ	8.2097	9.7183"-04		3.1726*+02
65040207	2.9120	1.0000	3.7483*+03	NM	4.2385	1.3040	4.1774*+03	4.1774*+03
7.9553*-01	1.3440*+03		7.5920*+03	NM	1.8438	1.8283	2.8488*+02	1.2550*+02
Infinite	3.3833*+02		5.6421*-04	NM	0.2695	1.2051*=03	6.5406*+02	3.1620*+02
65040298	3.0140	1.0000	3.4248"+03	NH	4.4488	1.3082	3.5561*+03	3.5%61"+03
8.9611"-01	1.3440*+03		6.2421"+03	1.2127*-04	1.5354	1.8185	2.6420*02	1.1465"+02
Infinite	3.3833*+02		1.0184"-03	NM	0.2938	1.4315*=03	50+7626.6	3.1561"+02
65040209 9.2354"-01 Infinite	3.0410 1.3440*+05 3.3833*+02	1.0000	4.0101"+03 8.4913"+03 1.0620"=03	NM NM	4.5123 1.6306 0.2975	1.3135 1.6133 1.5126"-03	3.4410"+03 2.6420"+02 6.6437"+02	3.4410*+03 1.1873*+02 3.1540*+02
								•

CAT 6504	PASTUR	ι	BOUNDARY CON	ONA SHOITIGH	LVALUATED	DATA. SI UNI	TS.	
RUN X + RZ	MD * PCD* TGO*	TW/TR PW/PD* SW *	REDZD DZ	CF CQ * PI2	H12 H32 H42	H12K H32K D2K	PW IWA UD	PD TD TR
65040301 2.6822#-01 Infinite	1,5780 1,3071"+05 3,3744"+02		2.4818*+03 3.0205*+03 1.9352*-04	ИН ИМ ИМ	2,5070 1.6274 0.1555	1.8261	3.0844*+04 2.8717*+02 4.8026*+02	3.0844*+08 2.2469*+02 3.2751*+02
65040302 2.8651"~01 Infinite	1.7510 1.3071*+05 3.3944*+02		3.8480"+03 4.9269"+03 3.3219"+04	NM 2.4576"-0 NM	2.5017 4 1.6223 0.1674	1.8191	2.4514*+04 2.8581*+02 5.0926*+02	2.4514*+04 2.1042*+02 3.2603*+02
65040303 3.9014#=01 Infinite	1.9830 1.3071"+05 3.3944"+02		4.4524*+03 6.1329*+03 4.5492*=04	Им Им Им	2.6770 1.8244 0.2230	1.8195	1.7153*+04 2.8106*+02 5.4805*+02	1.7153*+04 1.9001*+02 3.2390*+02
65040304 4.9073"=01 Infinite	2.2490 1.3071*+05 3.3944*+02		4.4497*+03 6.7147*+03 5.6583*-04	Им Им Им	3.0739 1.8393 0,1928	1.8295	1.1322*+04 2.7699*+02 5.8575*+02	1.1322"+04 1.6874"+02 3.2169"+02
65040305 5.9131"-01 Infinite	2.4400 1.3071*+05 3.3944*+02	0.8501 1.0000 0.0000	4.3937*+03 7.0525*+03 6.5616*-04	74 2.3641*=0 74	3.2648 4 1.8299 0.2863	1.8212	8.3997*+03 2.7223*+02 6.0896*+02	8.3997"+03 1.5495"+02 3.2026"+02
65040306 6.9494*-01 Infinite	2.6600 1.3071"+03 3.3944"+02		4.5334"+03 7.9004"+03 8.2752"-04	NM NM	3.5599 1.8453 0.3059	1.8326	5.9708"+03 2.0884"+02 6.3228"+02	5.9706"+03 1.4055"+02 3.1876"+02
65040307 7.9553**01 Infinite	2.8290 1.3071*+05 3.3944*+02	1.0000	4.4880"+03 8.2654"+03 9.4990"=04	11 m 11 m 11m	3.6516 1.8417 0.3278	1.8284	4.6082*+03 2.6612*+02 6.4802*+02	4.6082*+03 1\3052*+02 3.1772*+02
65040308 8.9611"-01 Infinite	2.9360 1.3071*+05 3.3944*+02	1.0000	4.8792*+03 9.2844*+03 1.1319*=03	NM 2.3483**04 NM	4.0922 1.81 8 9 0. 338 0	1.8045	3.9182"+03 2.6273"+02 6.5712"+02	3.9182#+03 1.2461#+02 3.1710#+02
65040309 9.2354=-01 Infinite	2.9360 1.3071"+05 3.3944"+02	1.0000	5.1839*+03 9.8439*+03 1.7001*=03	ИМ ИМ ИМ	4.1219 1.8133 0.3295	1.7962	3.9182*+03 2.6205*+02 6.5712*+02	3.9182"+03 1.2461"+02 3.1710"+02
65040101	PASIUK		PROFILE	TABULATION	li P	OINTS, DELTA	AT POINT 11	
1	Ψ	P12/P	P/PD	TU/100	M/MD	מטעט	T/10 HHO/RH	סט∕ט∗ט∧ס
2 2	.7940 Fe04	1.0000"+00 1.7976"+00	NM.	0.93200	0.00uno 0.65146	0.73080 1.	29787 0.000 16007 0.629	
4 5	.3340 -04	1.95637+00 2.01557+00	(fw	0.99500	0.73376 0.75161		14384 0.6801 14208 0.695	
		2.1798"+00 2.2937"+00		1.00700	0.79800 0.82798	0.83586 1.	12186 0.7450 10495 0.7790	07
	.2954"=03	2.4338*+00 2.6500*+00	ИМ	1.00700	0.88296	0.89117 1.	08510 0.821	30
9 2	.4210"-03	3.0213"+00	ИM	1.01500	0.71363	0.99514 1.	05726 0.882 01868 0.976	89
		3.0527*+00 3.0527*+00		1.00100	1.00000		00100 0.9990 00000 1.000	
INPUT VA	RIABLES Y,	4,70/130	ASSUMEP=PD					•
65040105	PASIUK		PROFILE	TABULATION	13 PO	IINTS, DELTA A	T POINT 13	
1	٧	918/8	P/PO	70/100	M/MD	U/UD T	ZTD RHDZRHO	D+U/UD
		.0010#400	NM		0.00000		4562 0.0000	0
		1.4476*+00 1.3652*+00	NM NM		0.48696 0.50261		2843 0.3843 1654 0.3970	
4 5	,3340"-04 2	.8005"+10	MM	0.95211	0.53229	0.67113 1.5	7416 0.4249	ð
6 1.	,0414"=03 <u> </u>	.1581"+00 .5810"+00	NM Nw	0.94709	0.57401 0.61933		3082 0.4640 6872 0.5111	
7 1.	2954"=03 3	1024"+00	NW Viev		0.65624	0.75158 1.4	1713 0.5515	3
9 2.	.92104+03 5	.1984"+00	ЙM	0.98405	0.67063 0.766 9 5	0.864M3 1.2	9980 0.5666 7495 0.6783	
10 5.	6 42"-03	.7989*+00 .8632*+00	MM MM	0.99902	0.85649	0.94141 1.1	3099 0.8523	8
12 1.	1024"-02 8	.3887"+00	NM	1.00100	U.96069 O.99438	0.99729 1.0	4880 0.93 48 0725 0.99 01	1
D 13 1.		14780"+00	Им	1.00000	1.00000		0000 1.0000	

INPUT VARIABLES Y,M, TO/TOD ASSUMEPHPD

ŧ

ŧ

650401	09 PASI	IUK	PROFILE	TABULATION	ST	POINTS, DE	LIA AT POI	NT 20
1	Y	PT2/P	P/PD	13/100	MVMD	UJUD	7/10	RHO/RHOD*U/UD
1 2	0.0000*+00	1.0000"+00	Mr: Mr	0.90110	0.00000	0.00000	2.49401 1.99044	0.00000
3	4.064004	2.7686"+00	HW	0.95403	0.44299	0.61792	1.96047	0.31519
4 5	5.3340"-04	2.8980"+00	Has Mev	0.95904	0.45610	0.63188 3.64591	1.94070	0.32560
i	7.8740*-04	3.0353*+00 3.1591*+00	Mr	0.96104 0.96104	0.46956	0.65793	1,88706	0.33740 0.34865
7	9.1440"-04	3.4095"+00	NM NG	0.96104	0.50420	0.68063	1.03516	0.37088
8 9	1.0414"-03	3.5628*+90 3.6667*+00	Na Ha	0.96104 0.96104	0.51766	0.69350	1.80492	0.38427 0.39345
10	1.2954*-03	3.7767"+00	ИМ	0.96104	0.53562	0.71061	1.76442	0.40274
11	1.4224"-03	3.6825"+00 3.9527"+00	Na Hw	0.96104	0.54457 0.55029	0.71862	1.74508 1.73250	0.41150 0.41777
13	2.9210"-03	4.4365"+00	NM	0.96903	0.61756	0.78089	1,60200	0-48745
14	5.6388"-03	6.5262"+00 7.5019"+00	N _M	0.98701 0.99700	0.72856	0.86116	1.40937	0.61103 0.67901
16	1.0498"-02	7.5254"+00	äм	1.00300	0.89169	0.95282	1.15401	0.82566
17 15	1.3691"=02	1.0584"+01	И л Ин	1.00500	0.94248	0.97612 0.98914	1.08222	0.90196 0.95085
19	1.9025*=02	1.1709*+01	N.a.	1.00300	0.99361	0.99747	1.01123	0.98640
D 30	2.1692"-02	1.1854*+01	NA	1.00000	1.00000	1.00000	1.00000	1.00000
51	2.4364 -05	1.1854*+01	Иh	0.94900	1.00000	1.00000	0.99900	1.00100
INPUT	VARIABLES	Y,K,T0/T0D	ASSUMEP=PD					
6504030	DI PASI	UK	PROFILE	TABULATION	10	POINTS, DE	LTA AT POI	NT 9
1	Y	PT2/P	P/PD	T0/T00	M/MD	U/UD	T/10	RHOZRHOD*UZUD
2	2.7940"-04	1.0000"+00 2.1614"+00	nm Mu	0.84431	0.0000	0.00000 0.74767	1.27552	0.00000 0.65989
2	5.3340*-04	2.4221"+00	NM	0.96806	0.75407	0.80098	1.13335	0.70674
4 5	8.1250"-04 1.3208"-03	2.6531"+00 3.0353"+00	Им Им	0.97904 0.98703	0.80163	0.84248 0.90253	1.11359	0.75655 0.84116
6	1.8288"+03	3,4057*+00	ИМ	0.99800	0.43742	0.95302	1.04056	0.91579
7 8	2.3114"-03	3.9113"+00 3.7807"+00	NM NM	1.00200	1.01752	1.01271 0.99817	0.99016 1.00369	1.02278 0.99450
D 9	4.2672"-03	3.7969"+00	HM	1.00000	1.00000	1.00000	1.00000	1.00000
10	5.66427-03	3.7969*+00	NM	0.99800	1.00000	1.00000	9.99800	1.00200
INPUT \	/ARIABLES	Y,M,T0/T0D	ASSUME PRPD)				
650403	05 PASI	tu k	PROFILE	TABULATION	12	POINTS, DE	LTA AT POI	NT 12
1	Y	PT2/P	P/P0	TO/TOD	MZMD	מטעט	T/10	PHO/RHODau/UD
				· · · · · · · ·			-	
1 2	2.7940"-04	1.0000"+90 2.7247"+00	NM NM	0.80236 0.87421	0.00000	0.00000	1.75774	0.00000 0.45614
2 غ	5.3340"-04	3.1142*+00	NM	0.70019	0.58132	0.70029	1.40622	0.49794
5	7.8740"-04	3.4413"+00 3.8634"+00	NW HW	0.91317 0.92615	0.61778	0.73368	1.37545	0.53341 0.57744
6	1.8034"-03	4.3428*+00	NM	0.93813	0.70791	0.80979	1.28714	0.62714
7 8	2.3114"-03	4.6067*+00 4.7167*+00	HW HW	0.94812 0.95712	0.73208	0.82869 05688.0	1.26793	0.65358 0.64018
9	5.6386"-03	6.7243"+00	иM	0.98604	0.90250	0.94519	1.09660	0.56192
10 11	6.3312"-03	7.7988*+00 8.1330*+00	NM NM	0.99901	0.97706	0.96780 0.99957	1.02426	0.96449 0.9 9 868
D 12	1.3665"-02	8.1455*+00	NH	1.0000	1.00000	1.00000	1.00000	1.00000
INPUT '	VARIABLES	7,4,10/100	ASSUME PEP					
650403	09 PAS	flik	OUAFTI E	TABULATION	14	POINTS. OF		NT 15
620403 I	4	PT2/P		TO/TOD			ELTA AT POI	
			P/PD		M/MD	U/U0	1/10	RHO/RHOD*U/UD
1 2	0.0000"+00 2.7940"-04	1.0000"+00	FIM FIM	0.77223 0.81789	0.00000	0.00000	2.10356 1.76588	0.00000 0.30387
3	5.3340"-04	2.6711*+00	1464	0.84282	0.43824	0.59201	1.72477	0.34324
4 5	7.8740"~04 1.2954"+03	2.4102*+00 3.6112*+00	NM HW	0.85978 0.87767	0.46308 0.52841	0.61892 0.6526	1.70989	0.36197 0.42460
6	1.8034"-03	3.8146"+00	NM	0.68445	0.54576	0.70180	1.59219	0.44078
7 8	2.3114"-03	4.2163"+00	NM NM	0.89359	0.57843	0.73174	1.54372	0.47401 0.51236
ş	5.6642"-03	6.3215"+00	NW Nam	0.90553 0.93936	0.61586	0.84795	1.34225	0.63174
10	6.3312"-03 1.1024"-02	7.7393*+00	NW.	0.96723	0.80980	0.90288	1.23665	0.73010
11	1.3691"-02	9.4324*+00 1.0200*+01	NM NM	0.98812 0.99807	0.89826	0.97090	1.12570	0.84580 0.89654
13	1.6358"-02	1.0835*+91	NM	1.00303	0.96632	0.98509	1.04692	0.94094
0 15	1.9025"-02	1.1572"+01	NM NM	1.00200	1.00000	1.00000	1.00200	0.99801 1.00000
16	2.4384"-02	1.1572"+01	NM	0.99960	1.00000	1.00000	0.99900	1.00100
INPUT	VAPIABLES	Y,M,T0/T0D	ABSUME PER	Þ				

M: 1.6 and 2.2

R THETA X 10⁻³: 9 - 120

TW / TR: 1.0

ZPG - AW

Two-dimensional continuous tunnel with adjustable nozzle. W = H = 1.2 m. 0.02 < P0 < 0.21 MN/m 2 . T0 : 317 K. Air, dew point < 244 K. 0.24 < RE/m X 10 $^{-6}$ < 2.4.

JACKSON M.W., CZARNECKI K.R. and MONTA W.J. 1965. Turbulent skin friction at high Reynolds numbers and low supersonic velocities. NASA TN D-2687.

And Jackson, M.W. Private communication.

- The test boundary layer was formed on the sidewall of the wind tunnel, which was not actively cooled. Measurements were made at five stations "within the constant Mach number area of the tunnel test section". No indication of flow quality or transition position is given. (The tunnel was also used by Allen CAT 7303). The boundary layer had passed through the three dimensional expansion region of the throat (X = 0). No direct checks on cross flows are reported. A momentum balance using the experimental CF values indicated that the layer was not strictly two-dimensional.
- 6 Static pressure was measured at points on the centre line, and wall temperature was measured on both inner and outer surfaces near the skin friction balances. These were on loan from the DRL and were those used by Shutts et al., CAT 5501. During the tests, the balances at various stations were interchanged,
- 9 Discrepancies between individual balance readings were noted, and the data presented are interpolated from a curve faired through all the experimental values.
- 7 Pitot profiles were measured using an FPP made by flattening tube of 1.27 mm diameter to give a face for which, after honing, $h_1 = 0.23$, $h_2 = 0.076$ mm. The slender portion of the probe mount was about 40 mm [E]
- 8 long. The profile normal, nominally, passed through the centre of the balance element at each of the five
- 9 stations at $X \approx 3.36$, 3.94, 4.36, 4.79 and 5.24 m. Static pressure was assumed constant through the layer. The tunnel total temperature was adjusted so that the inner and outer wall temperatures were the same and
- 10 equal to room temperature in the test zone, the flow thus being presumed adiabatic. No corrections were
- 11 applied to the probe data, and Sutherland's viscosity law was used.
- 12 Data are presented here for the X = 3.94 and 5.24 m stations only (corresponding to figure 9 of the source paper), as other tabular data could not be found. The author's assumption of isoenergetic flow has been replaced by the Crocco / Van Driest temperature/velocity correlation. The editors have taken CF values
- 13 from the graphical presentation in the source. The profiles consist of seven sets for each of two Mach
- 14 numbers. Each set represents a different unit Reynolds number for two successive stations. The CF values represent the average of values obtained at the same stations using a number of different balances in separate tests.
- § DATA 6605 0101 1402. Pitot profiles. NX = 2. CF values obtained separately with a number of FEB.

15 Editors' comments

The experiment provides data at modest Mach number for moderate to high Reynolds numbers. Comparable studies are those of Hopkins & Keener - CAT 6601, Winter & Gaudet - CAT 7302, and Allen - CAT 7303, which were obtained in a similar geometric situation. The range overlaps that of the study by Shutts et al. - CAT 5501, using the same balances.

The range of Y values in wall coordinates is very large (10 < y $^+$ < 3 x 10^4), but in about half the profiles it seems that the results at small Y need correction for probe effects. Series 01-07 show velocity profiles with unusually small wake strength. Three dimensional effects may well be considerable as the length/width ratio is up to 4.5.

CAT 6505	JACKSON		BOUNDARY CON	DITIONS AND E	VALUATED !	DATA. SI UNIT	· S .	
RUN	MD +	TW/TR#	RED2W	CF *	412	H12x	PW	PD
X +	Pon	PW/PD#	RED2D	02	H32	H32K	TW	TD
RZ	T 0D*	9W *	DS	P12+	H42	DSK	UĎ	ŤŘ
65050101	1.6100	1.0000	8.9015*+03	2.1200"-03	2.3297	1.2904	4.8352"+03	4.8352*+03
3.9411*+00	2.0357"+04	1.0000		NM 5.1500 -03		1.7995	2.9996"+62	2.0482*+02
			1.2102"+04		1.8082			
INFINITE	3,1100"+02	0.0000	4.3397"-03	0.0000*+00	0.0642	5.0102*-03	4_6198"+02	2.9996*+02
65050102	1.6100	1.0000	1.1848*+04	2,0000*=03	2.3688	1.3204	4.8352"+03	4.63524+03
5.2365*+00	2.0859*+04	1.0000	1.6109*+04	NM	1.7938	1.7846	5.4996*+05	2.04827+02
INFINITE	3-1100*+05	0.0000	5.7763"-03	0.0000*+00	0.0049	6.7253"-03	4.6198"+02	2,99967+02
65050201	1.6100	1.0000	1.3604*+04	1.9500*=03	2.2879	1.2594	8.0208"+03	8.02084+03
3.94114+00	3.4001"+04	1.0000	1.8495*+04	NM	1.8231	1.8154	2.9996"+02	2.0482*+02
INFINITE	3.1190*+02	0.000	3.9981 -03	0.0000*+00	0.0647	4.5741"-03	4.6198"+02	2.99964+02
65050202	1.6100	1.0000	1.4936"+04	1.8100=-03	2.2973	1.2659	8.0208*+03	8.0206*+03
5.2365*+00	3.4601*+04	1.0000	2.7104"+04	NM	1.8185	1.8106	2.9996"+02	2.0482*+02
INFINITE	3.1100*+02	0.0000	5.8591 -03	0_0000*+00	0.0646	6.7233"-03	4.6198*+02	2.9996*+02
AMPANATE	3.1100 402		3,6371 -43	V. 0700 TOO		0.1833 -03	4.0170 702	£.7470 ¥VE
65050301	1.6100	1.0000	2.6856"+04	1.7700"-03	2.2580	1.2374	1.5871"+04	1.5871"+04
3.9411"+00	6.8466"+04	1.0000	3.6513"+04	NM	1.8342	1.8273	2.99964+02	2.0482"+02
INFINITE	3.1100*+02	0.1000	3.9889"-03	0.0000*+00	0.0651	4.5326"-03	4.6198*+02	2.9996#+02
65050302	1.6100	1.0000	3.8518*+04	1.5400*=03	2.2621	1.2391	1.5871"+04	1.5871*+04
5.2365*+00	6.8466*+04	1.0000	5.2368*+04	NM		1.8238	2.9996*+02	
INFINITE	3.1100*+02	0.0000	5.7211"-03	0.0000*+00	1.8304	4.5188"-03		2.9462*+02
THETHE	3,1100.445	0.0000	3.721103	0.0000-400	0.0650	0.3160 -03	4.6198*+02	2.7770"702
65050401	1.6100	1,0000	3.9487*+04	1.0500"=03	2.2436	1.2265	2.3778*+04	2.3778"+04
3.9411"+00	1.0256"+05	1.0000	5.3666*+04	NM	1.8393	1.8326	2.9996"+02	2.0482"+02
INFINITE	3.1100"+02	0.0000	3.9147*-03	0.0000*+00	0.0653	4.4342*-03	4.6196*+02	2.9996*+02
65050402	1.6100	1.0000	5.4503"+04	1.5100*-03	2.2549	1.2335	2.3778"+04	2,3778"+04
5.2365*+00	1.0258*+05	1.0000	7.4101"+04	NM	1.6329	1.8265	2.9996"+02	2.0482*+02
INFINITE	3.1100*+02	0.0000	5.4033"-03	0.0000*+00	0.0651	0.14804-03	4.6198"+02	2,9996"+02
65050501	1.6100	1.0000	5,3089*+04	1.5900"-03	2,2313	1.2176	3.2709"+04	3,2709"+04
3.9411*+00		1.0000	7.2178*+04	NM		1.8383		
	1.4110"+05				1.8446		2.9996*+02	2.04824+02
INFINITE	3.1100*+02	0.0000	3.6261*-03	0.0000*+00	0,0655	4.3184"-03	4.6198"+02	2.9996*+02
65050502	1.6100	1.0000	7.1098*+04	1.4600 -03	2,2477	1.2284	3,2709"+04	3.2709*+04
5.2365*+00	1.4110"+05	1.0000	9.60634+04	NM	1.8359	1.8297	2.9996"+02	2.0482"+02
INFINITE	3.1100"+02	0.0000	5.1240*-03	0.0000*+00	0.0652	5.8189"-03	4,61984+02	2.9996*+02
65050601	1.6100	1.0000	5.9675*+04	1.5600"-03	2.2318	1.2169	3.9137*+04	3.9137*+04
3.9411*+00	1.6883"+05	1.0000	8.1132*+04	NM	1.8456	1.8388	2.9996"+02	2.0402*+02
INFINITE	3,1100*+02	0.0000	3.5943*-03	0.0000*+00	0.0695	4.0533"-03	4.6198*+02	2,9996"+02
65050602	1.6100	1.0000	8.1624"+04	1.4300*=03	2 2400	1 2274	3.9137"+04	1 D. 178 . An
					2.2408	1.2236		3,9137"+04
5.2365"+00	1.6853"+05	1.0000	1.1097"+05	NM A AAAAF JAA	1,8390	1.8329	2.9996"+02	2.0482*+02
INFINITE	3.1100*+02	0.0000	4.9164*-03	0.0000*+00	0,0653	5.5714"-03	4.6195*+02	2.9996"+02
65050701	1.6100	1.0000	7.1070"+04	1.5400"-03	2,2286	1.2156	4.5963"+04	4,5963"+04
3.94117+00	1.9828"+05	1.0000	9.6625"+04	NH	1.8455	1.8392	2.9996"+02	2.04624+02
INFINITE	3.1100"+02	0.0000	3.645003	0.0000*+00	0.0655	4.1120"-03	4.6198*+02	2.9996#+02
65050702	1.6100	1.0000	9.4051"+04	1.4000*-03	2.2353	1.2192	4.5963"+04	4.5963"+04
5.2365*+00	1.9828*+05	1.0000	1.2767*+05	HM	1.8498	1.8350	2.9996*+02	2.0482"+02
INFINITE	3.1100*+02	0.0000	4.8236*-03	0.0000"+00	0.0654	5.4604*-03	4.6196"+02	2.9996*+02
		~ 0 ~ 0 ~ 0	,		~ . ~ ~ ~ ~		~ . ~ . · V	# # * * * # * * * * * * * * * * * * * *

CAT 6505	JACKSON		BOUNDARY CON	TIONS AND E	VALUATED	DATA. SI UNIT	5.	
RUN	MD *	TW/TR*	REDZW	CF *	H12	H12K	PW	PD
X +	POD	PW/PD*	RED2D	CO	H32	H35K	TW	TD
RZ	TODA	SW A	DS	PI2*	H42	DSK	UD	TR
65050001	2.2000	1.0000	5.8517"+03	1.7100*-03	3.3091	1.3385	1.9581"+03	1.9581*+03
3.9411*+00	2.0938*+04	1.0000	9.8292"+03	NM	1.7909	1.7759	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	4.4715"-03	0.0000*+00	0.0916	5.8659"-03	5.5450*+02	2.9504*+02
65050802	2.2006	1.0000	6.0753"+03	1.5500"-03	3.3443	1.3569	1.9581*+03	1.9581"+03
5.2365*+00	2.09389+04	1.0000	1.3564*+04	NM	1.7793	1.7645	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	6.1707*-03	0.0000*+00	0.0910	8.1904"-03	5.5450"+02	2.9509*+02
65050901	2.2000	1.0000	6.5674"+03	1.6400"-03	3.2556	1.3049	3.2733"+03	3.2733*+03
3.9411*+00	3.5001"+04	1.0000	1.4391*+04	NM	1.8037	1.7905	2.9509*+02	1.5803"+02
INFINITE	3.1100"+02	0.0000	3.9163"-03	0.0000*+00	0.0923	5.0758"-03	5.5450*+02	2,9509*+02
65050902	2.2000	1.0000	1.3109*+04	1.4900"-03	3.2723	1.3139	3.2733"403	3.2733*+03
5.2365*+00	3.5001"+04	1.0000	2.2020*+04	NM	1.7978	1.7044	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	5.9926"-03	0.0000*+00	0.0920	7.01324-03	5.5450*+02	2.9509"+02
65051001	2.2000	1.0000	1.5602"+04	1.5100*-03	3.2015	1.2722	6.4589*+03	6.4589"+03
3.9411"+00	6.9064"+04	1.0000	2.6207"+04	Nt'	1.8179	1.8062	2.9509*+02	1.5803"+02
INFINITE	3.1100"+02	0.0000	3,6145"-03	0.0000*+00	0.0933	4.6180×-03	5.5450"+02	2.9509"+02
65051002	2.2000	1.0000	2,3685"+04	1.3800"-03	3.2363	1.2909	6.4589"+03	6.4589"+03
5.2365"+00	6.9064"+04	1.0000	3.9788*+04	NM	1.8063	1.7942	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	5.4876"-03	0.0000*+00	0.0924	7.0977"-03	5.5450"+02	2.9509"+02
65051101	2.2000	1.0000	2.1935"+04	1.4600*~03	3.1816	1.2604	9.70307+03	9.7030*+03
3.9411*+00	1.0375*+05	1.0000	3,6844*+04	ИМ	1.8245	1.8132	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	9.0000	3.3625"-03	U_0000*+00	0.0933	4.2914*-03	5.5450*+02	2.9509"+02
65051102	2.2000	1.0000	3.0755"+04	1.3200*=03	3.1838	1.2599	9.7030*+03	9.7030*+03
5.2365*+00	1.0375"+05	1.0000	5.1660*+04	NM	1.8218	1.8110	2.9509*+02	1.5003"+02
INFINITE	3.1100*+02	0.000	4.7427*-03	0.0000*+00	0.0932	6.0366"-03	5.5450*+02	2.9509"+02
65051201	2.2000	1.0000	2.7686"+04	1.4200"-03	3.1647	1.2495	1.2859*+04	1.2859*+04
3.9411*+00	1.3750"+05	1.0000	4.6505*+04	NM	1.8292	1.8167	2.9509*+02	1.5803*+02
INFINITE	3.1100*+02	0.0000	3.2215"-03	0.0000*+00	0.0936	4.06794-03	5.5450*+02	2.9509*+02
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****			414720			
45051202	2.2000	1.0000	3.9880"+04	1.2700"-03	3,1640	1.2503	1.2859"+04	1.2859*+04
5.2365*+00	1.3750"+05	1.0000	6.6988"+04	ΝM	1.8294	1.8177	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	4.6404*-03	0.0000"+00	0.0936	5.8541"-03	5.5450*+02	2.9509"+02
65051301	2.2000	1.0000	3,2804*+04	1.4000*-03	3,1537	1.2438	1.5782"+04	1.5782"+04
3.9411*+00	1.6875*+05	1.0000	5.5101"+04	NM	1.0332	1.8228	2.9509"+02	1.5803"+02
INFINITE	3,1100*+02	0.0000	3.1102 -03	0.0000*+00	0.0938	3.9103"-03	5.5450*+02	2.9509*+02
65051302	2.2000	1.0000	4.5954*+04	1.2700*=03	3.1552	1.2433	1.5782*+04	1.5782"+04
5.2365*+00	1.6875*+05	1.0000	7.7190*+04	NM O DOOR LOO	1.8308	1.8205	2.9509*+02	1.5803"+02
INFINITE	3.1100*+02	0.0000	4,3569*-03	0.0000*+00	0.0937	5.4922"-03	5.5450*+02	2,9509*+02
65051401	0.2000	1,0000	3.7604"+04	1.3900"-03	3.1432	1.2375	1.8556*+04	1.85564+04
3.9411*+00	1.9544*+05	1.0000	6.3164*+04	NM	1.8364	1.8264	2.9509"+02	1.5003"+02
INFINITE	3.1100"+02	0.0000	3.0319*-03	0.0000*+00	0.0939	3.7987*-03	5.5450*+02	2.9509"+02
65051402	2.2000	1.0000	5,3072"+04	1.2500*-03	3.1642	1.2464	1.8558*+04	1.8558*+04
5.2365*+00	1.9844*+05	1.0000	6.9145"+04	NM	1.8264	1.8172	2.9509*+02	1.5803"+02
INFINITE	3.1100"+02	0.0000	4.2790"-03	0.0000*+00	0.0934	5.4247"-03	5.5450"+02	2.9509*+02

PD, POD CALCULATED FROM RE (AUTHOR), OF INTERPOLATED

650501	02 JACKS	SON	PROFILE	TABULATION	44	POINTS, DEL	TA AT POI	NT 44
I	A	PT2/P	P/PD	T0/T0D	M/M0	מטיע	T/TD	RHU/RHOD*U/UO
1	0.0060*+00	1.0000"+00	NM.	0.96384	0.00000	0.00000	1.44342	0.0000
2	7.6200"-05	1.1315"+00	Mili	0,96740	0.26326	0.31349	1.41797	0.22108
3	1.0160 -04	1.1149*+00	NM	0.96697	0.24670	0.29432	1.42336	0.20678
4	1.2700"=04	1.1226"+00	SIM	0.96717	0.25454	0.30341	1.42085	0.21354
5	1.5240"-04	1.1471"+00	NM	0.96778	0.27778	0.33019	1.41298	0.23368
6	1.7780"-04	1.17464+00	NM	3.76845	0.30124	0.35700	1.40444	0.25419
Ť	2.0320"-04	1.1893"+00	NW	0.96880	0.31293	0.37027	1.34997	0.26448
à	2.2860"-04	1.2047"+00	NM	0.96916	0.32469	0.38354	1.39533	0.27487
ě	2.5400"-04	1.2293"+00	NM	0.96973	0.34236	0.40336	1.36610	0.29059
10	3,0480*-04	1.2497"+00	NM	0.97018	0.35616	0.41874	1.38224	0.30294
ii	3.8100"-04	1.2837"+00	NM	0.97092	0.37773	0.44257	1.37273	0.32240
iż	5.3340*-04	1.3225"+00	NH	0.97174	0.40048	0.46742	1.36225	0.34312
13	6.6040"-04	1.3496 +00	NM	0.97230	0.41537	0.46354	1.35514	0.35662
14	7.8740"-04	1.3406"+00	NH	0.97252	0.42120	0.46981	1.35231	0.36220
iš	9.1440"-04	1.3956"+00	NM	0.77320	0.43900	0.50884	1.34350	0.37874
16	1.0414 -03	1.4098"+00	NM	0.97348	0.44595	0.51622	1.34000	0.38524
17	1.1684*-03	1.4369"+00	NM	0.97399	0.45879	0.52977	1.33342	0.39731
ió	1.4224"-03	1.4765"+00	NM	0.97475	0.47750	0.54936	1.32363	0.41504
1.9	1.6764"-03	1.5159"+00	NM	0.97542	0.49343	0.54586	1.31510	0.43027
			NM NM				1.31130	
50	1.9304"-03	1.5330"+00		0.97572	0.50044	0.57306		0.43702
51	2.1844"-03	1.5711"+00	NM	0.97636	0.51553	0.56846	1.30300	0.45163
5.5	2.4364"-03	1.6104"+00	NM	0.97701	0.53039	0.60351	1.29469	0.46614
5.7	2.6924"-03	1.6292"+00	NM	0.97732	0.53728	0.61043	1.29080	0.47291
24	3.3274"-03	1.6861 +00	NM	0.97821	0.55723	0.63030	1.27937	0.49266
52	3.9624"-03	1.7437*+00	ŊМ	0.97907	0.57628	0.64899	1.26629	0.51171
3.6	4.3974"-03	1.7922 +00	NM	0.97977	0.59152	0.66379	1.25929	0.52711
27	5.2324"-03	1.8240"+00	Им	0.98022	0.60114	0.67305	1.25354	0.53692
28	6.5024"-03	1.9007"+00	NM	0.98126	0.65356	0.69412	1.24014	0.55969
29	7.7724*-03	1.9902"+00	NM	0.95242	0.64748	0.71675	1.22540	0.58491
30	9.0424*-03	2.0644*+00	NM	0.98336	0.66694	0.73465	1.21335	0.60547
31	1.1585"-05	2.1736"+00	NM	0.98463	0.69294	0.75815	1.19709	0.63333
32	1.7932*-02	2.4445"+00	HM	0.98761	0.75320	0.51080	1.15880	0.69969
33	2.4282"-02	2.6930"+00	NM	0.99014	0.80345	0.85274	1.12644	0.75701
34	1.0632*-02	2.9184"+00	HM	0.99228	0.84597	0.88685	1.09596	0.80699
35	3.6982*-02	3.1371"+00	NM	0.99425	0.88501	0.91705	1.07371	0.85409
36	4.3332"-02	3.3459*+00	NM	0.99604	0.92054	0.94362	1.05079	0.89801
37	4.9682"-02	3.5267*+00	NM	0.99752	0.95012	0.96510	1.03179	0.93537
38	4.9708"-02	3.5336*+00	NM	0.99757	0.95113	0.96582	1.03114	0.93666
19	5.4762 -02	3,6411"+00	NM	0.99843	0.96833	0.97803	1.02014	0.95872
40	5.9842"-02	3.7397"+00	NM	0.99919	0.98374	0.98880	1.01032	0.97870
41	6.4722 -02	3.0030*+00	NM	0.99948	0.99349	0.99554	1.00413	0.99145
42	6.7462"-02	3.6236"+00	NM	0.99984	0.99667	0.99772	1.00211	0.99561
43	7.0002"-02	3.8347"+00	NM	0.99993	0.99843	0.99907	1.00087	0.99820
0 44	7.2542"-02	3.8456*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD (ISOENERGETIC) ASSUME POPD AND VAN DRIEST AT 1033 DATA WERE AVERAGED

65050	BOL JACK	SON	PROFILE	TABULATION	34	POINTS, DE	LTA AT POI	NT 34
1	Y	PT2/P	P/PO	T0/T0D	M/MD	UVUD	1/10	RH0/RH00+U/U0
1	0.0000"+00	1.0003"+00	ИW	0.94885	0.00000	0.00000	1.86733	0.0000
5	1.2700"-04	1.2256*+00	MW	0.95445	0.24863	0.33099	1.77231	0.18676
3	3.8100"-04	1.4331"+00	HW	0.95859	0.33447	0.43637	1.70217	0.25636
4	9.6520"-04	1.7768*+00	NM	0.96403	0.42940	0.54483	1.60987	0.33843
5	1.5748"-03	1.9357"+00	Им	0.96613	0.46321	0.58120	1.57435	0.36917
6	2.4638"-03	2.1162"+00	Иw	0.96828	0.49705	0.61639	1.53760	0.40082
7	3.7084"-03	2.2913"+00	ИМ	0.97022	0.52687	0.64635	1.50498	0.42948
8	5.0038"-03	2.4689"+00	ИM	0.97206	0.55495	0.67369	1.47369	0.45714
9	6.2738"-03	2.6098"+00	ИM	0.97346	0.57600	0.69361	1,45006	0.47833
10	9,9568"-03	2,9873"+00	Им	0.97693	0.62826	0.74100	1.39109	0.53268
11	1.1989"-02	3.1886"+00	Им	0.97866	0.65419	0.76342	1.36184	0.56058
12	1.5694"-02	3,3669"+00	NM	0.98012	0.67621	0.78191	1.33706	0.58480
13	1.5799"-02	3.5433"+00	Ям	0.98151	0.69726	0.79911	1.31347	0.60839
14	1.7704"-02	3.7300"+00	ИM	0.98293	0.71881	0.81624	1.28947	0.63301
15	1,9609"-02	3,8995*+00	HM	0.98417	0.73779	0.83094	1.26847	0.65508
16	2.1768"-02	4.1160"+00	NM	0.98569	0.76131	0.84866	1.24266	0.68294
17	2.3546"-02	4.2488"+00	ИM	0.98659	0.77535	0.65898	1.22737	0.69986
18	2.5451"-02	4.4681 +00	ИМ	0.98803	0.79798	0.87521	1.20295	0.72755
19	2.7356"-02	4.4362"+00	Na	0.98909	0.81488	0.88702	1.13491	0.74860
50	2.9261"-02	4.8410"+00	ИW	0.99035	0.83495	0.90072	1.16367	0.77404
51	3.1140"-02	5.0371"+00	HM	0.99150	0.85378	0.91320	1.14404	0.79822
55	3.3071"-02	5.1943"+00	Им	0.99240	0.86854	0.92278	1.12879	0.81749
5.7	3.7160"-02	5.6372"+00	NW	0.99481	0.90880	0.94793	1.08797	0.87128
24	4.0691"-02	5.4191"+00	HM	0.99625	0.93350	0.96269	1.06351	0.90520
25	4.2723"-02	6.0831"+00	ИМ	0.99706	0.94757	0.97087	1.04979	0.92482
50	4.4755"-02	4.2067"+00	Им	0.99766	0.95803	0.97685	1.03968	0.93957
27	4.7269"-02	6.3179"+00	ИM	0.99819	0.96734	0.98211	1.03076	0.95280
58	5.0851"-02	6.5108"+00	ИM	0.99900	0.98328	0.99094	1.01564	0.97568
54	5.3391"-02	6.5602"+00	ИM	0.99930	0.98733	0.99315	1.01184	0.98154
30	5.7175*-02	6.6221"+00	NM	0.99958	0.99237	0.99589	1.00711	0.98886
31	6.1773"-02	6.6679"+00	NM	0.99978	0.99608	0.99789	1.00365	0.99426
32	6.6853"-02	6.6679"+00	ИM	0.99978	0.99608	0.99789	1.00365	0.99426
33	7.1933"-02	6.6848"+00	Им	0.99986	0.99745	0.99863	1.00237	0.99626
D 34	7.6225"-02	6.7165"+00	им	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD (ISOENERGETIC) ASSUME PMPD AND VAN DRIEST

450508	OZ JACK	BON	PROFILE	TABULATION	37	POINTS, DEL	TA AT POI	NT 37
1	¥	P72/P	P/PD	T0/T00	M/HD	U/UO	1/10	RHO/RHOU*U/UD
<u>1</u>	0.0000*+30	1.0000*+00	ИW	0.94885	0.00000	0.00000	1.86733	0.00000
2	7.6200"-05	1.2056"+00	HW	0.95401	0.23809	0.31763	1,779#2	0.17846
3	1.2700"-04	1.2001"+00	NM	0.95385	0.23508	0.31380	1.75192	0.17610
4	1.7780"-04	1.2001 +00	ИW	0.95388	0.23508	0.31380	1.78192	0.17610
5	2.2866"-04	1.1995"+00	NM	0.95388	0.23500	0.31371	1.76197	0.17604
6	2.7940"-04	1.2378"+00	NM	0.95472	0.25479	0.33876	1.76780	0.19163
7	3.3020*=04	1.2376"+00	NM	0.95471	0,25471	0.33866	1.76785	0.19157
Ü	3.8100"-04	1.2725"+00	ИM	0.95546	0.27136	U.35952	1.75522	0.20483
9	4.572004	1.3082*+00	ИM	0.95619	0.28711	0.37902	1,74273	0.21748
10	5.8420*-04	1.3417"+00	NM	0.95686	0.30086	0.39587	1.73140	0.22864
11	7.1120"-04	1.4833"+00	ИM	0.95948	0.35097	0.45587	1.68708	0.27021
12	B.3820"-04	1.5513"+00	New	0.96062	0.37160	0.47986	1.56761	0.28776
13	1.0922"-03	1.6565"+00	ИW	0.96228	0.40030	0.51255	1.63947	0.31263
14	1.3462"=03	1.7282*+00	NM	0.96334	0.41807	0.53237	1.62152	0.32831
15	1.9812"=33	1.6364"+00	NM	0.96484	0.44263	0.55920	1.59611	0.35035
	2.6162"-03	1.9472*+00	ИM	0.46627	0.46548	0.58360	1.57192	0.37127
17	3.8862"-03	2.1217"+00	ΙĮΜ	0.96834	0.49804	0.61739	1.53673	0.40176
18	5.1562"-03	2.2678"+00	ΙŧΜ	0.96996	0.52301	0.64253	1.50926	0.42572
19	7.6962"-03	2.4422"+00	ИW	0.97179	0.55085	0.66975	1.47828	0.45306
50	1.0236"-02	2.6846"+00	M	0.97417	0.58679	0.70363	1.43791	0.48934
21	1.5316"-02	2.4777"+00	Им	0.97685	0.62699	0.73988	1.39253	0.53132
3.5	2.0396"-02	3.3842"+00	įзм	0.98026	0.67831	0.78365	1.33470	0.54714
23	2.4841"-02	3.4842"+00	HΜ	0.98259	0.71359	0.01213	1.29527	0.62700
24	3.0556"-02	4.0824"+00	NM	0.98546	0.75770	0.84598	1.24660	0.07863
25	1.7541"-02	4.6077"+00	ИM	0.98892	0.01203	0.86505	1.18793	0.74504
50	4.3256"-02	4.9004*+00	iiм	0.99070	0.84072	0.90457	1.15765	0.78138
ŽŽ	5.0241"-02	5.4514"+00	ii.	0.99382	0.89214	0.93769	1.10472	0.84581
20	5.5956"-02	5.6495"+00	NM	0.99590	0.92747	0.95913	1.06945	0.89685
žõ	5.8496"-02	6.1024"+00	ЙM	0.99716	0.94921	0.97182	1.04820	0.92713
30	6.1036"=02	6.2332"+00	NM	0.99779	0.96025	0.97812	1.03755	0.94272
ši	6.2941"-02	6.3044"+0U	HM	0.99812	0.96622	0.98148	1.03163	0.95120
ĨŹ	6.6116"-02	4.4665"+00	NM	0.99888	0.97964	0.98894	1.01907	0.97043
33	6.8454"-02	6.5319*+00	NM	0.99917	0.98501	0.99189	1.01401	0.97818
34	7.1196-02	4.5956*+00	NM	0.99946	0.99023	0.99473	1.00911	0.98575
35	7.3736"=02	6.6751"+00	1199	0.99982	0.99666	0.99821	1.00310	0.99512
36	7.5641"-02	6.6751"+00	NM	0.99982	0.99666	0.94821	1.00310	0.99512
D 37	7.8816"-02	4.7165"+00	ИМ	1.00000	1.00000	1.00000	1.00000	1.00000
	., ,.					* * * * * * * *		

IMPUT VARIABLES Y, U/UD (ISOENERWETIC) ASSUME POPD AND VAN ORIEST

650514	O1 JACK	BON	PROFILE	TABULATION	39	POINTS, DEL	TA AT PUI	NT 39
I	Y	PTS/P	P/PD	T0/10D	MVHD	מטעט	T/TD	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	NM	0,94885	0,00000	0.0000	1.86733	0.0000
2	1.2700"-04	1.7586"+00	NW	0.96378	0.42522	0.54024	1.61419	0.33468
3	1.5240"-04	1.7897"+00	Им	0,96421	0.43233	0.54802	1.60685	0.34105
4	1.7780"-04	1.8253"+00	ИW	0.96469	0.44023	0.55661	1.59862	0.34618
5	2.2860"-04	1.6767"+00	Иw	0,96537	0.45118	0.56840	1.58712	0.35813
6	2.7940"-04	1.9206"+00	Им	0.96594	0.46018	0.57800	1.57757	0.36638
7	3.5560"-04	1.9924"+00	NN	0.96682	0.47425	0.59281	1.56252	0.37940
8	4.3180*-04	2.0509"+00	ųи	0.96752	0,46524	0.60424	1.55066	0.38967
9	5.5880"-04	2.1464"+00	MM	50800.0	0.50238	0.62151	1.53196	0.40589
10	6.8580"~04	2.2332"+00	NM	0.96957	0.51725	0.63679	1.51562	0.42015
1.1	6.1260"-04	2.3126"+00	NM	0.97044	0.53034	0.64978	1.50113	0.43286
12	9.3950"-04	2.4328"+00	NM	0.97169	0.54938	0.66834	1.47992	0.45160
13	1.1936"-03	2.4918"+00	HM.	0.97229	0.55844	0.67702	1.46976	0.46063
1.4	1.4478"-03	2.5644"+00	ŅМ	0.97301	0.56931	0.66733	1.45758	0.47156
15	1.7918"-03	2.6457"+00	ИM	0.97380	0.59121	0.69847	1.44420	0.48364
10	4.0828"-03	2.7597*+00	NM	0.97465	0.59739	0.71337	1.42595	0.50027
17	2.7638"-03	2.8317"+00	ИM	0.97554	0.60736	0.72240	1.41470	0.51064
15	3.0948"-03	2.9507*+00	Им	0.97661	0.62342	0.73673	1.39657	0.52753
19	4.3688"-03	3.1499*+00	ЙM	0.97833	0.64929	0.75924	1,36736	0.55520
ŽO	5.3848"-03	3.2866"+00	NM	0.97947	0.66639	0.77373	1.34809	0.57395
51	6.5278*=03	3.5389"+00	NM	0.98148	0.69675	0.79870	1.31404	0.60782
52	8.0264"-03	3.6525"+00	NM	0.98235	0.70996	0.80926	1.29931	0.62284
žŠ	9.9568"-03	3.8439"+00	Им	0.98376	0.73163	0.82621	1.27527	0.64787
24	1.1989"-02	4.0516"+00	NM	0.98524	0.75439	0.84351	1.25022	0.67469
25	1.3874*-02	4.2719"+00	IJM	0.98674	0.77776	0.86074	1.22475	0.70279
26	1.5779"-02	4.4523*+00	HM	0.98793	0.79637	0.87408	1.20468	0.72557
27	1.7704"402	4.6559"+00	NM	0.98922	0.01603	0.88837	1.18283	0.75106
5.6	1.9583"-02	4.6537"+00	Им	0.99042	0.83622	0.90155	1,16237	0.77562
29	2.2149"-02	5.1286*+00	NM	0.99203	0.86240	0.91882	1.13511	0.80945
30	2.4689"-02	5.3998"+00	ЙM	0.99354	0.88746	0.93477	1.10946	0.84254
31	2.7356"-02	5.6702"+00	(IM	0.99498	0.91173	0.94971	1.08504	0.87527
ŠŽ	3.0531"-02	5.9481"+00	NM	0.99640	0.93601	0.96416	1.06106	0.90868
3.3	3.3452"-02	6.2398"+00	NM	0.99782	0.96081	0.97843	1.03701	0.94351
34	3.6627"-02	6.4042"+00	ΝM	0,99859	0.97451	0.98610	1.02394	0.96305
35	3,9421 -02	6.4827*+00	NM	0.99895	0.98098	0.98968	1.01761	0.97236
36	4.5231"-02	6.5865"+00	NM	0.99942	0.98946	0.99431	1.00984	0.98462
37	4.8311"-02	6.6534"+00	NM	0.99972	0.99490	0.99724	1.00475	0.99255
38	5.5931 -02	6.6970"+00	NM	0.9999	0.99843	0.99916	1.00146	0.99770
0 39	6.3551"-02	6.7165"+00	NM	1.00000	1.00000	1.00000	1,00000	1.00000

INPUT VARIABLES Y,U/UD (ISOENERGETIC) ASSUME PEPO AND VAN DRIEST AT I=12 DATA HERE AVERAGED

650514	DZ JACKS	BON	PROFILE	TABULATION	35	POINTS, DE	LTA AT POI	NT 15
1	Y	4/574	P/FN	T0/T0D	HVHD	UZUD	T/TD	RHO/RHOD#U/UD
į	0.0000*+00	1.0000"+00	(IM	0.94885	0.00000	0.00000	1.86733	0.00000
š	7.6200"-05	1.5764"+00	HM	0.96103	0.37876	0.48810	1.66069	0.29592
3	1.0160"-04	1.6053"+00	HM	0.96147	0.38076	0.49724	1.65244	0.30083
4	1.5240"-04	1,6704"+00	HΜ	0.96249	0.40385	0.51653	1.63592	0.31574
5	2.0320"-04	1.6931"+00	HM	0.96283	0.40955	0.52290	1.63018	0.32076
<u> </u>	3.3020"-04	1,4142"+00	ПM	0.96460	U.43866	0.55491	1.60056	0.34676
7	4.5720"-04	1.9081"+00	Hys	0.96578	0.45764	0.57530	1.58027	0.36405
6	5.8420"-04	1.4444"+00	И М	0.96091	0.47569	0.59432	1.56098	0.38073
9	7.1120*-04	2.0530"+00	ПW	0.96755	0.48562	0.60464	1.55024	0.39003
10	8.3820"-04	2.1262"+00	ИW	0,96839	0.49882	0.61819	1.53587	0.40250
11	9.6520"-04	2.1761"+00	Nu	0.96896	0.50754	0.02704	1.52632	0.41082
12	1.0922"-03	2.2225"+00	HW	0,96947	0.51544	0.63498	1.51762	0.41840
13	1.2192"-03	2.2770*+00	ИА	0.97006	0.52455	0.64401	1.50757	0.42720
14	1.3462"-03	2.3202"+00	ИW	0.97052	0.53157	0.55077	1.49977	0.43406
15	1.0002"-03	2.4019"+00	llh	0.97138	0.54453	0,66369	1,48528	0.44685
16	1.8542"-03	2.5514"+00	Им	0.97288	0.56738	V.u8551	1.45975	0.46961
17	2.1082"-03	2.5335"+00	ИM	0.97271	0.56471	0.64298	1.46275	0.46692
16	2.3622"-03	2.5936"+00	(1) tA	0.97330	0.57362	0.07138	1.45274	0.47591
19	2.6162"-03	2.6420*+00	ИM	0.97377	0.58066	0.69790	1.44481	0.48308
20	3.2512"-03	2.8276"+00	NM	0.97550	0.60060	0.72149	1.41534	0.51005
51	7.3862"-05	2.8640*+00	HI.	0.97583	0.61177	0.72630	1.40973	0.51525
22	5.1562"-03	1.0209*+00	(1M	0.97731	0.63384	0.74587	1.38479	0.53863
5.7	6.4262*-03	3.1518"+90	₩.	0.97835	0.64952	0.75944	1.36709	0.55552
24	7.6962"-05	3.2718" + 00	1174	0.97935	0.06457	0.77220	1.35015	0.57194
25	8.9662"-03	1.3893*+00	ЙW	0.48030	0.67893	0.75416	1.33400	0.58783
26	1.0236"-02	3.4854"+00	[444	0.95106	0.69043	0.79358	1.32112	0.60069
27	1.4300"-02	3.8201"+00	11M	0.98359	0.72897	0.82415	1.27821	0.64477
2.6	1.7856"-02	4.1147*+00	1464	0.78568	0.76117	0.84856	1.24281	0.68277
29	2.2733"-02	4.3574"+00	typa .	0.98731	0.78664	0.86715	1.21515	0.71361
30	2.3476"-02	4.6465*+00	NM	0.98916	0.81593	0.8A773	1.18379	0.74992
31	2.9286"-02	4.9215"+00	NM	0.99083	0.84275	0.90592	1.15553	0.78399
35	3.3096"-02	5.2364"+00	NM	0.99264	0.87245	0.92528	1.12478	0.82243
33	5.6406"=02	5.4093"+00	Η	0.99413	0.89737	0.74093	1.09944	0.85582
34	4.0716"-02	5.7689*+00	1184	0.99549	0.92043	0.95494	1.07640	0.88716
D 35	5.5956"-02	6.7165"+00	(1 _{kv}	1.30000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES - Y,U/UD (ISOLNERGETIC) - ASSUME PEPD AND VAN DRIEST

rough

M: 4.95

R THETA X 10⁻³: 4 - 12

TW / TR: 0.6 - 1.0

ZPG (ROUGH)

AW-MHT-SHT

Blow-down tunnel with fixed nozzle block. Running time 45-90 s. W = 0.15, H = 0.18, L = 0.50 m. PO : 17.5 MN/m^2 . 340 < TO < 610 K. Air. 16 < RE/m X 10^{-6} < 50.

YOUNG F.L., 1965. Experimental investigation of the effects of surface roughness on compressible turbulent boundary layer skin friction and heat transfer. DRL 532.

- The test boundary layer was formed on a flat plate machined from solid copper (W = 0.152, L = 0.371 m) with a sharp leading edge (X = 0) chamfered at 15°. Various fairings and covers brought the overall length up to 0.487 m. The test surface was mounted facing downwards a little above [E] the tunnel centre line. The test stations were near X = 0.3 m. The plate was actively cooled by two separate circuits and maintained at a temperature close to 310 K throughout the tests. Four plate surfaces were employed. For the first series, 01, the basic upper plate was machined and ground to give an effectively smooth and flat surface. For the tests with a rough surface (series 02-04) the basic plate was covered with a layer of tin-lead solder approximately, after machining, 0.76 mm thick. The roughness was then formed in this solder layer under pressure by specially machined rollers. Both the plate surface and the balance and calorimeter elements had surfaces formed in this manner, and were held in suitable jigs so as to prevent distortion during the process. The roughness pattern had a regular 90° saw tooth (V-groove) section aligned across the plate, with wavelength of 0.127, 0.254 or 0.762 mm, and, correspondingly, peak to trough heights of one half the wavelength. This roughness started about 12.7 mm behind a boundary layer trip consisting of a strip of "number 80 grit-cloth" running from X = 12 to 25 mm.
- The plate contained buried iron-constantan thermocouples on the centre line at X = 50, 140, 185, 270 and 315 mm, used to record TW and to allow adjustment of the cooling system. Static tappings (d = 1.6 mm) were placed at X = 115, 240 and 370 mm. The FEB and isolated mass calorimeter were mounted at X = 317.5 mm and 25.4 mm to either side of the centre line. The FEB had an element of 25.4 mm diameter, with a nominal annular clearance of 0.05 mm. The balance was calibrated in a wide range of thermal conditions, and it was found that errors resulting from thermal strains in the flexures outweighed any other source of error. By trial and error selection and mounting of flexures, it is claimed that it was possible to obtain a repeatable calibration. The insulated mass calorimeter consisted of a small section of the surface, 26.4 mm in diameter and 3.8 mm thick, which was separated from the mass of the plate by a small teflor insulating ring and not cooled by the plate cooling system. Heat transfer determinations were made by cooling the insulated mass to a temperature below that of the plate, by means of an external supply tube delivering water directly on to the surface of the calorimeter during a tunnel run. The external supply was then removed, and an observation of the rate of change of temperature of the isolated mass as it passed through the temperature of the plate used to calculate the local heat flux.
- 7 The Pitot probes used for profile measurements were CPP for which d₁ ranged from 0.5 to 0.9 mm. The tubes were kept as short and as large as possible to minimise the effects of time lags, and to provide sufficient strength at the high temperatures used. The small tubes were rapidly faired, telescopically, to 2.5 mm diameter. The elbow of the probe was stiffened by a web (details in the photograph are obscure), after which it was soldered into a double wedge drive shaft. "The length of the unstiffened probe tip was then only" 12.7 mm. The traverse gear was driven from the floor of the tunnel.
- 8 The balance and calorimeter were centred (text) on X = 317.5 mm and 25.4 mm to either side of the centre line. The profiles were measured in a range from X = 286 to 297 mm (tables in source paper).
- 9 No significant difference was found between the pressures recorded at the three static tappings when

ķ.

running with the smooth surface, and the average of the three was used for the wall measurement runs. For profile measurements the static pressure was taken as constant at an average value determined from the reservoir pressure and the free stream PT2 value, and assumed constant through the layer. Total temperature

- 10 was assumed to be given by the Crocco / Van Driest correlation. No probe corrections were applied, and
- 11 viscosity was determined from power laws matched over a range to the Sutherland formula.
- The editors have presented all the author's profile data, incorporating the author's assumptions and procedures. The CF and CQ data have been interpolated on the basis of both Reynolds number and TW/TR values. These variables are strongly correlated, as unit Reynolds number was changed by ranging the tunnel reservoir temperature while changes in model temperature were relatively small. The values given are an average of the two interpolations. The differences between the two showed no systematic variation. The scatter of the
- results, which became apparent during interpolation, is about \$\frac{1}{2}\$ 10 %. The profiles consist of four sets, one for each roughness, each describing five different TM/TR states.
- § DATA 6506 0101-0405. Pitot profiles. NX = 1. CF measured with an FEB, CQ with an isolated mass calorimeter, separately. Roughened surface.

15 Editors' comments

This difficult experiment is very fully described in the source paper, and seems to have been performed very carefully. There are no comparable experiments, though the smooth-wall adiabatic tests are supplemented by the earlier work of Moore - CAT 6201 with the same apparatus. The smooth-wall experimental range overlaps that of Voisinet & Lee - CAT 7202 who studied a tunnel-wall boundary layer.

For the majority of the profiles, measurements did not extend within the momentum-deficit peak, and it should be noted that, unfortunately, there are no measured TO data.

CAT 6506	YOUNG	во	UNDARY COND	ITIONS AND EV	VALUATED D	ATA. SI UNIT	5.	
RUN X # RZ	ND * POD* TOD*		EDSD EDSM	CF + CO + PIZ+	H12 H32 H42	D5K H35K H15K	PW TW# UD	PD TD TR
65060101	4.8855	1.0000 8	.0046*+03	1.0300*=03	10.9815	1.5343	3.6015"+03	3.8015"v03
2.9169***01	1.7580"+06		.8595*+03	NM	1.8386	1.7990	2.9964"+02	5.8407"+01
INFINITE	3.3722"+02		.1857*=04	0.0000*+00	0.1969	4.7606"-04	7.4661"+02	3.0823"+02
69060102	4.9149	1.0000 6	.9037*+03	1.2700*=03	9.3021	1.4394	3,6716"+03	3.6716"+03
2.8743*-01	1.7580*+06		.2204*+03	7.1000*=04	1.8396	1.8147	2,9726"+02	7.8523"+01
Infinite	4.5789*+02		.4620*-04	0.0000*+00	0.4208	4.9064"-04	8.7322"+02	4.1843"+02
65060103	4.9051	1.0000 5	.9255*+03	1.3300*-03	8.9661	1.4459	3.7143"+03	3.7143*+03
2.6743=+01	1.7580"+06		.8127*+03	7.7000*+04	1.8349	1.8078	2.9892"+02	8.5465*+01
INFINITE	4.9672"+02		.5841*+04	0.0000*+00	0.4658	5.0821*-04	9.0918"+02	4.5395*+02
65060104	4.8953	1.0000 5	.9142"+03	1.4100"-03	8,4156	1.4336	3.7576"+03	3.7576"+03
2.6743"-01	1.7580"+06		.2137"+03	5.6000"-04	1.8384	1.8142	3.0059"+02	9.5406"+01
Infinite	5.5267"+02		.6999"=04	0.0000"+00	0.5345	5.0655"=04	9.5869"+02	5.0511"+02
65060105	4.8609	1.0000 4	.9460"+03	1.4600"-03	7.7394	1.4275	3.9141"+03	3.9141"+03
2.8743"-01	1.7580"+06		.6194"+03	9.2000"-04	1.8386	1.6157	3.0494"+02	1.1143"+02
Infinite	6.3500"+02		.8997"-04	0.0000"+00	0.6135	5.2066"=04	1.0288"+03	5.8324"+02
65060201	4.9698	1.0000 7	.8173*+03	1.0500*=03	11.0895	1.4619	3.4421"+03	3.4421*+03
2.9688"-01	1.7580"+06		.9657*+03	NM	1.8569	1.8354	3.0845"+02	6.0206*+01
Infinite	3.5761"+02		.2334*=04	0.0000*+00	0.1982	4.7265"-04	7.7316"+02	3.2665*+02
65060202	4.9500	1.0000 b	.8554*+03	1.2300"-03	9.7284	1.4784	3.5230"+03	3.5230"+03
2.9688"-01	1.7580"+06		.3955*+03	6,7000"-04	1.8468	1.8195	3.0697"+02	7.6660"+01
Infinite	4.5233"+02		.5273*=04	0.0000"+00	0.3854	5.0467**=04	8.6896"+02	4.1326"+02
63060203	4.9500	1.0000 5	.8100"+03	1.3100"-03	9.2588	1.4657	3.5230*+03	3.5230"+03
2.9688"-01	1.7580*+06		.6465"+03	7.6000"-04	1.6412	1.8135	3.1156*+02	6.5379"+01
Infinite	5.0378*+02		.6187"=04	0.0000"+00	0.4542	5.1392"=04	9.1704*+02	4.6026"+02
65060204	4.9500	1.0000 4	.7606"+03	1.3900"-03	8.6453	1.4473	3.5230"+03	3.5230"+03
2.9688"-01	1.7580*+06		.4528"+03	8.5000"-04	1.8584	1.8396	3.1446"+02	9.7045"+01
Infinite	5.7261*+02		!.7347"=04	0.0000"+00	0.5250	4.9802"-04	9.7769"+02	5.2315"+02
65060205	4.8708	1.0000 4	.7094"+03	1.4700*-03	8.0136	1.5017	3.8683"+03	3,8683"+03
2.96864-01	1.7580"+06		.2791"+03	9.3000*-04	1.8411	1.8169	3.1609"+02	1,0845"+02
Infinite	6.2306"+02		.6082"=04	0.0000*+00	0.5968	4.7006"-04	1.0170"+03	5,6954"+02
65060301	4.9400	1.0000 9	0.1468*+03	1.1500"-03	11.1202	1.4578	3.5646*+03	3.5646*+03
2.96887-01	1.7580*+06		0.1468*+03	NM	1.8292	1.7939	3.0279*+02	5.6572*+01
Infinite	3.4444*+02		0.3901*=04	0.0000"+00	0.1925	5.4508**-04	7.5802*+02	3,1471*+02
65060302	4.9894	1.0000 6	.9364"+03	1.3500*-03	9.9333	1.4416	3.3641*+03	3.3641"+03
2.9047"-01	1.7580"+06		.7252"+03	8.0000*-04	1.8290	1.7996	2.9899*+02	7.4169"+01
Infinite	4.4344"+02		!.6282"=04	0.0000*+00	0.3744	5.5881"-04	8.6153*+02	4.0504"+02
65060303	4.9400	1.0000 5	.6727"+03	1.4400"-03	9.1666	1.4558	3.5646*403	3.5646*+03
2.9200~=01	1.7580*+06		5.7865"+03	5.6000"-04	1.6259	1.7973	3.0395*+02	8.4523*+01
Infinite	4.9706*+02		2.6193"=04	0.0000"+00	0.4598	5.3240"-04	9.1059*+02	4.5#15*+02
65060304	4.9400	1.0000 9	.6491"+03	1.5500"-03	8.6680	1.4492	3.5646"+03	3.5646*+03
2.89567-01	1.7580"+06		1.1155"+03	9.3000"-04	1.8267	1.6001	3.0366"+02	9.4697*+01
Infinite	5.5689"+02		2.7371"=04	9.0000"+00	0.5257	3.3710*=04	9.6364"+02	5.0882*+02
65060305	4.8412	1.0000 4	1.8453"+03	1.7000"-03	7.7099	1.4455	4.0069*+03	4.0069*+03
2.9047"=01	1.7580*+06		1.4843"+03	1.0200"-03	1.8345	1.5118	3.1061*+02	1.1020*+02
Infinite	6.2674*+02		2.7202"=04	0.0000"+00	0.6151	4.9096"~0#	1.0190*+03	5.7305*+02
65060401	4.9748	1.0000 1	!.5355"+03	1.4900"=03	11.6718	1.4965	3.4220*+03	3.4220*+03
2.6560"~01	1.7580*+06		.1497"+04	NM	1.7928	1.7504	2.9790*+02	5.6688*+01
Infinite	3.3728*+02		!.9580"=04	0.0000"+00	0.1722	7.555804	7.5096*+02	3.0810*+02
65060402	4.9300	1.0000	1.4775"+03	1.7700"-03	9.5421	1.4777	3.5230*+03	3.5230"+03
2.8560"=01	1.7560*+06		1.0002"+03	9.0000"-04	1.7693	1.7563	3.0220*+02	8.0492"+01
Infinite	4.7494*+02		3.3995"-04	0.0000"+00	0.4319	7.6428*=04	6.9041*+02	4.3392"+02
69060407	4.9498	1.0000 7	2,4529"+03	1.8200"-03	9.4091	1.4696	3.0221"+03	3.4421"+03
2.8560"=01	1.7580*+06		7.5049"+03	9.3000"-04	1.7855	1.7504	3.0221"+02	8.5029"+01
Infinite	5.0506*+02		3.5266"=04	0.0000"+00	0.4612	7.8795*-04	9.1883"+02	4.6137"+02
65060404	4.9599	1.0000 4	2.4679"+03	1.9000"-03	8.9464	1.5016	3.4823"+03	3,4823"+03
2.8560*~01	1.7580*+06		6.6468"+03	1.0200"-03	1.7747	1.7445	3.0332"+02	9,4283"+01
Infinite	5.5817*+02		5.7111"=04	0.0000"+00	0.5200	8.0774"-04	9.6560"+02	5,0992"+02
65060405	4,9253	1.0000 5	2.1676*+03	2.0300"-03	8.3595	1.7503	3.6265*+03	3.6268"+03
2.8560"-01	1,7580"+04		5.4138*+03	1.0000"-03	1.7839	1.7503	3.0780*+02	1.0642"+02
Infinite	6,2272"+02		5.3861*=04	0.0000"+00	0.5829	6.9783"=04	1.0187*+03	5.6903"+02

PEAK-TO-PEAK ROUGHNESS SPACING SERIES 020 0.127MM, SERIES 030 0.254MM, SERIES 040 0.762MM

650601	101 YOUNG	3	PROFILE	TABULATION	16	POINTS, DEL	TA AT POI	NT 16
1	•	PT2/P	P/PO	TO/TOD	M/MD	מטינט	7/10	QU/U*QQHR\QHR
1	0.0000"+00	1.0000*+00	ИW	0.85138	0.00000	0.0000	5.08874	0.0000
2	4.5720"-04	4.8512"+00	Им	0.94147	0.37688	0.67832	3.23927	0.20940
3	5.0800"-04	5.3355"+00	ŊM	0.94488	0.39698	0.70046	3.11324	0.22499
4	6.3500"-04	6.1735*+00	NM	0.95025	0.43015	0.73417	2.91322	0.25202
5	7.6200"-04	6.7949"+00	ИM	0.95484	0.46030	0.76204	2.74079	0.27804
6	8.8900*-04	7.6928"+00	NM	0.95832	0.48442	0.78255	2.60964	0.29987
7	1.2700*-03	9.3618"+00	NM	0.96537	0.53769	0.62262	2.34179	0.35136
8	1.9050*-03	1.2061*+01	NM	0.97407	0.61407	0.87027	2.00850	0.43329
ě	2.5400*-03	1.5121"+01	NM	0.98129	0.69045	0.90804	1.72959	0.52500
10	3.1750"-03	1.8634"+01	NM	0.98742	0.76884	0.93903	1.49171	0.62950
11	3.8100"-03	2.2474"+01	NM	0.99242	0.84623	0.96367	1.29661	0.74311
12	4.4450"-03	2.6171"+01	IJM	0.99613	0.91457	0.98158	1.15190	0.85214
13	5.0800"=03	2.9073"+01	NM	0.79450	0.96482	0.99288	1.05901	0.93756
14	5.7150*=03	3.0502"+01	NM	0.99958	0.98995	0.99803	1.01639	0.98194
15	6.3500"-03	3.1073"+01	NM	0.99992	0.99799	0.99961	1.00325	0.99637
0 16	6.9650*-03	3.1196*+01	NM	1.00000	1.00000	1.00000	1.00000	1,00000

INPUT VARIABLES Y, M/MD ASSUME PAPD AND VAN DRIEST

650601	es Young	}	PROFILE	TABULATION	18	POINTS, DEL	TA AT POI	NT 18
1	4	PT2/P	P/PD	T0/T0D	M/HD	U/U 0	1/10	RHO/RHOD*U/UD
12345 6789 101123 1134 115	0.000*+00 4.0440*-04 5.0800*-04 6.3500*-04 1.2700*-03 2.5400*-03 3.1750*-03 4.4450*-03 5.7150*-03	1.0000"+00 5.4333"+00 5.7330"+00 6.7702"+00 6.3641"+00 6.93441"+00 1.2631"+01 1.2631"+01 1.2631"+01 2.2317"+01 2.2317"+01 2.2451"+01 2.2451"+01 2.2451"+01	7	0.47084 0.78666 0.79649 0.83097 0.83097 0.85077 0.86007 0.93152 0.93152 0.9711 0.96194	0.00000 0.40303 0.41515 0.45455 0.48687 0.50909 0.52727 0.71010 0.77879 0.78777 0.90606 0.97778	0.0000 0.64417 0.55817 0.73283 0.75331 0.76925 0.85057 0.85057 0.89259 0.92553 0.97320 0.987320	2.69585 2.55465 2.51337 2.37738 2.12656 2.12816 1.968567 1.78062 1.78062 1.42488 1.15369 1.07384	0.0000 0.25216 0.25187 0.29480 0.32346 0.34405 0.36449 0.40084 0.47762 0.56492 0.65531 0.75353 0.84355 0.91907
16 17 0 18	4.3500*-03 6.9850*-03 7.6200**03	3.0155"+01 3.0866"+01 3.0868"+01	NW MM MN	0.99803 1.00000 1.00000	0.98788 1.00000 1.00000	0.99687 1.00000 1.00000	1.01828	0.47497 1.00000 1.00000

INPUT VARIABLES Y, M/MD ASSUME PEPD AND VAN DRIEST

650602	05 YOUNG	1	PROFILE	TABULATION	16	POINTS, DEL	TA AT POI	NT 18
1	Y	PT2/P	P/PD	TOTTOD	M/MD	U/U0	T/TD	RHO/RHOU+U/UD
1	0.0000*+00	1.00004+00	NM	0.49517	0,00000	0.00000	2.84473	0.00000
3	4.5720"-04	6.1856"+00 6.6207"+00	MW MM	0.61503 0.62449	0.43191	0.69793	2,48377 2,42511	0.27406 0.28779
4	4.3500"-04 7.6200"-04	7.8711~+00	NM NM	0.84816	0.49187	0.74083	2.26848	0.32658 0.35431
•	8,8900"-04	9.5067"+00	NM	0.87340	0.54370	0.78571	2,08839	0.37623
, , , , , , , , , , , , , , , , , , ,	1.2700"-03	1.1051"+01	NM HM	0.89283 0.91830	0.58841	0.81974	1.73612	0.42237 0.49748
9 10	2.3400"-03 3.1750"-03	1.6598*+01	IIM I	0.94111	0.72663	0.90243 0.93541	1.54244	0.58507 0.68384
ii	3.8100"-03 4.4450"-03	2.3745"+01	IIM NM	0.97728	0.87297	0.96276	1.21629	0.79155
13	5.0800"-03	2.9540"+01	ИM	0.99613	0.97561	0.99370	1.03742	0.95785
14 15	5.7130"=03 6.3500"=03	3.0456"+01 3.0764"+01	NM MM	0.99857 0.99937	0.99085	0.99768 0.99897	1.01382	0.96408 0.99291
16 17	4.9850"-03 7.6200"-03	3.1012"+01 3.1012"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
0 16	8.2550"-03	3.1012*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, M/MD ASSUME P=PD AND VAN DRIEST

65060	305 YOU	4G	PROFILE	TABULATION	18	POINTS, DE	LTA AT POI	NT 16
I	Y	PTZ/P	P/PD	T0/T00	MZMD	U/U0	1/10	RHOZRHOD*UZUD
1	0.0000*+00	1.0000"+00	ИW	0.45084	0.00000	0.00000	2,73475	0.00000
3	3,5560"-04 4,0640"-04	5.2962"+00 5.5684"+00	им Им	0.78564 0.79286	0.39898	0.63823 0.65130	2.55891 2.52097	0.24942 0.25835
4	5.0800"-04 6.3500"-04	6.5410*+00 7.3349*+00	NW NW	0.01602	0.44796	0.49275 0.72162	2.39154	0.28967 0.31468
6	7.6200"-04	7.4326"+00 8.5556"+00	NH HM	0.84347	0.49694	0.74100 0.75937	2.22344	0.33327 0.35246
É	1.2700"-03	1.1044"+01	NM	0.85879	0.59184	0.81866	1.91339	0.42786
10	1.9050"-03 2.5400"-03	1.3142"+01	NM NM	0.91119	0.54796	0.85620 0.89712	1.74606	0.49036 0.57850
11	3.1750"-03 3.8100"-03	1.9535*+01 2.2902*+01	NM NM	0.95733 0.97363	0.79490	0.93154 0.95809	1.37430	0.67806 0.77599
13 14	4.4450*-03 5.0800*-03	2.6600"+01	NM NM	0.98775	0.93061	0.98061	1.11034	0.88316
15	5.7150"-03 6.3500"-03	3.0457"+01	NM NM	0.99950	0.99694	0.99921	1.00456	0.99467
17	6.9850"-03	3.0642*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
18	7.6200"-03	3.0642"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	YAM/MD A58UM	E PEPD AN	D VAN DRIES	r			

650604	O1 YOUNG	;	PROFILE	TABULATION	19	POINTS, DEI	TA AT POI	NT 18
1	Y	PT2/P	P/PD	T0/T0D	M/MD	UVUD	T/TD	RHO/RHOD#U/UD
i	0.0000"+00	1.0000*+00	NM	0.89043	0.00000	0.00000	5,29783	0.00000
3	3.5560"-04 4.0640"-04	3.1753"+00 3.2291"+00	NM NM	0.93380 0.93432	0.28856	0.5723 <i>6</i> 0.57669	3.93474	0.14548 0.14739
4	5.0800"-04 6.3500"-04	1.3755"+00 3.7010"+00	N M NM	0.93572	0.29950	0.58808	3.85545	0.15253 0.16374
6	7.6200*=04	3.9629"+00	NM	0.94085	0.32935	0.62856	3.64222	0.17258
8	8.8900"-04 1.2700"-03	4.2575"+00 5.3402"+00	NM NM	0.94317 0.95062	0.34328	0.64627	3.54427 3.27633	0.1M234 0.21715
10	1.9050"-03 2.5400"-03	7.0723"+00 8.9759"+00	₩ 14	0.95988 0.96757	0.45473	0.76394 0.81347	2.62237	0.27067 0.32784
11	3.1750"-03 3.8100"-03	1.1755*+01	IIM NM	0.97584	0.59502	0.86429	2.10938	0.40969
13	4.4450"-03	1.8787*+01	MM	0.98856	0.75821	0.93767	1.52948	0.61308
14 15	5.0800"=03 5.7150"=03	2.2887*+01 2.6995*\01	NM NM	0.99314 0.99660	0.83881	0.96305 0.98184	1.31019	0.73059 0.84794
16 17	6.3500*-03 6.9650*-03	3.0518"+01 3.1825"+01	MM NM	0.99896 0.99972	0.97114	0.99443	1.04857	0.94838
D 18	7.6200"=03 8.2550"=03	3.2330"+01 3.2330"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00003
17	0.5370.=03	3.6330.401	14 (4)	1.00000	1.00006	1.00000	1,00000	1.00000

INPUT VARIABLES Y, M/MD ASSUME PRPD AND VAN DRIEST

650604	S YOUNG		PROFILE	TABULATION	18	POINTS, DEL	TA AT POS	NT 17
1	Y	PT2/P	P/PD	TU/TOD	M/MD	ひといり	T/TD	AHO/AHOD#U/UD
į	0.0000+00	1.0000"+00	NM	0.49055	0.00000	0.00000	2.87055	0.00000
3	4.0640"-04	3.8406"+00 4.0458"+00	Им Им	0.75050 0.75769	0.32663	0.55564	2.84057	0.19907
5	5.0800*+04 6.3500*+04	4.4316"+00 4.6155"+00	lin Um	0.77032 0.78187	0.35477	0.59351 0.51534	2.79867	C.21207 0.22472
6 7	7.6200"-04 1,2700"-03	5.2912*+00 7.0436*+00	/\π Hπ	0.79497 0.83447	0.39196	0 1272	2.66529 2.41756	0,24009 0,2469
8	1.9050"-03	9.2394"+00 1.1869"+01	NM NM	0.87078 0.90246	0.52943	6, 3809 69288	2.15819	0.36053 0.43747
10	3.1750"=03 3.8100"=03	1.5016"+01	HM HM	0.93002 0.95289	0.68241	0.58179	1.66971	0.52811 0.63019
12	4.4450*=03	2.2253*+01 2.6134*+01	NM NM	0.97037	0.83518	0.95048 C.97439	1,29519	0.74366 0.64340
14 15	5.7150"-03 6.3900"-03	2.9723"+01 3.1137"+01	NM NM	0.97508	0.96784	0.99183 0.99776	1.01374	0.94443
16	6.9850"-03 7.6200"-03	3.1636"+01	ŊM	0.99985	0.99899	0.94975	1.00152	0.99824
D 17	6.2530"-03	3.1699"+01 3.1699"+01	И м И м	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, M/MD ASSUME PMPD AND VAN DRIEST

Continuous wind tunnel with flexible nozzle. W = 2.44 H = 2.13 m L = 10 m. $0.09 < P0 < 0.15 \text{ MH/m}^2$. 310 < TO < 330 K. Air, absolute humidity < 4 x 10^{-4} . RE/m x 10^{-6} : 8.

HOPKINS E.J. and KEENER E.R. 1966. Study of surface Pitots for measuring skin friction at supersonic Mach numbers - adiabatic well. NASA TN D 3478.

And Hopkins and Keener - private communications. Also Keener and Hopkins (1971)

- 1 The test-boundary layer was formed on the side-wall of the tunnel (W = 2.44 m) which in the nozzle region is flexible. Observations were made on a single vertical in a central region about 1 m wide.
- 4 The layer was thus formed in a largely simple wave favourable pressure gradient but without strong
- 1 three-dimensional effects, reaching a near-zero-pressure-gradient in the test-zone. The wall had a
- 2 hand-rubbed painted surface, finished to 0.8 µm, and was not actively cooled. A free-stream Pitot
- 3 survey showed that the flow was "quice uniform for M < 3 but less uniform at M > 3". There was free transition, the position of which is not known.
- The static pressure was measured at a tapping 0.81 mm in diameter on the test vertical, 241 mm off the centre line, and at three points 152 mm upstream, one ahead of the traverse vertical and the other two ahead of a Pitot rake and a Stanton tube used in the calibration exercise which was the main concern of the gource paper. A thermocouple measured the wall temperature. A skin friction balance (developed by NASA Ames Instrument Division) with a floating element 50.8 mm diameter was mounted on the centre line. This was calibrated directly over a range of working temperature. A buoyancy force correction was applied following the techniques of Smith and Walker (1959). Two forms of Stanton tube and six sizes of Preston tube were mounted at varying distances from the centre line.
- 7 The velocity profile was measured by Pitot tubes at two stations. At one, 175 mm off the centra line, a traversing FPP ($h_1 = 0.33$, $h_2 = 0.23$, $b_1 = 2.0$, $h_2 = 0.23$, $h_3 = 0.23$, $h_4 = 0.23$, $h_5 = 0.23$, $h_6 = 0.23$, $h_6 = 0.23$, $h_7 = 0.23$, $h_8 = 0.23$, $h_8 = 0.23$, $h_9 =$
- 12 The authors reduced the profile data assuming constant total temperature. The editors have replaced this with the Crocco / van Driest temperature velocity correlation for an adiabatic wall and the assumed constant static pressure. The source paper provides a wide range of Preston and Stanton tube calibration data not presented here. The profiles obtained with the rake are presented graphically in Keener & Hopkins (1971), and compared with those given here.
- 13 The three profiles presented (Hopkins & Keener, PC) are for three Mach numbers at a near common momentum thickness Reynolds number.
- 14 The CF values are the author's values measured with the balance.
- § DATA 6601 0101 0301. PT2 profiles. NX = 1. CF from FEB.

15 Editors' comments

The special value of this investigation lies in the comparisons, made in the source paper, between the three different methods used to measure wall shear stress. The only comparable exercise with this geometry is that of Fenter & Stalmach (1957), based on the profiles measured by Stalmach (CAT 5802), at lower Reynolds numbers than hare. With a slightly different geometry, similar Mach number and Reynolds number ranges are covered by Winter & Gaudet (CAT 7302) and Allen (CAT 7303).

The profiles presented include data as far in as the momentum deficit peak.

CAT 6601	6601 HOPKINS		BOUNDARY CONDITIONS AND EVALUATED DATA.				5.				
RUN	MD #	TH/TR	REDZW	CF *	H12	DSK	₽₩	PD#			
X	P00	PW/PD#	REDZD	CG	H32	H35k	TW#	TD#			
RZ	T00	Sh #	DZ	PIZ*	H42	H15k	UD	TR			
66010101	2.4450	0.9955	3.4192"+04	1.2600"-03	3.5699	1.2349	5.6930"+03	5.6930*003			
NM	8.9285*+04	1.0000	6.2756"+04	NM	1.8424	1.8307	2.9556"+02	1.4333*+02			
Infinite	3.1470*+02	0.0000	7.7104"-03	0.0000"+00	0.1086	1.0024"-02	5.8690"+02	2.9660*+02			
66010201	2.9610	0.9678	2.6906*+04	1.1100"-03	4.5693	1.2334	3.4665*+03	3.4665*+03			
NM	1.2009*+05	1.0000	5.8747*+04	NM	1.8460	1.8312	2.9444*+02	1.1833*+02			
Infinite	3.2563*+02	0.0000	7.4542**03	0.0000"+00	0.1524	1.0587*-02	6.4581*+02	3.0425*+02			
66010301	3.4430	0.9712	2,1745"+04	9.1000"-04	5.7658	1.2356	2.1738*+03	2.1738*+03			
NM	1.5286"+05	0.000	5,7316"+04	NM	1.8491	1.8300	2.9500*+02	9.7282*+01			
Infinite	3.2772"+02	0.000	7,4999"=03	0.0000"+00	0.1620	1.1702"-02	6.8066*+02	3.0375*+02			

660101	.01 HOPK	t n s	PROFILE	TABULATION	58	POINTS, DEL	TA AT POI	NT 22
I	Y	PT3/P	F/PD	TO/TOD	M/MD	U/UD	7/10	RHO/RHOD*U/UD
1234567690112	0.0000"+004 4.0640"-04 6.6040"-04 1.1684"-03 1.224"-03 1.9304"-03 2.4384"-03 7.5134"-03 1.058"-03	1.0000"+00 1.9014"+00 2.0298"+00 2.1494"+00 2.2870"+00 2.2870"+00 2.4973"+00 2.5933"+00 3.3495"+00 3.3495"+00 3.3475"+00	F/PD NM NM NM NM NM NM NM NM NM NM NM NM	TO/TOD 0.93916 0.958164 0.951530 0.962530 0.962509 0.966187 0.970417 0.97182 0.976559	0.00000 0.41357 0.43310 0.45254 0.46864 0.50193 0.50193 0.51610 0.57135 0.66755	0.504323 0.50423 0.50423 0.50423 0.601133 0.64054 0.73782 0.73782	7/TO 2.04202 1.75087 1.72137 1.69550 1.67381 1.66731 1.62844 1.632860 1.48398 1.4545 1.42456 1.31360	0.0000 0.31026 0.33010 0.346243 0.36566 0.39335 0.40151 0.49791 0.52059
1956789012345678 0	2.5298"-02 3.7998"-02 4.3396"-02 8.8798"-02 1.1420"-01 1.1420"-01 1.3920"-01 1.5920"-01 1.0500"-01 1.7770"-01 1.9040"-01 2.4120"-01	4.4707"+00 5.1332"+00 5.672"+00 6.3120"+00 7.3331"+00 7.9751"+00 8.1769"+00 8.1769"+00 8.1769"+00 8.1769"+00 8.1769"+00 8.1769"+00		0.98581 0.98581 0.99453 0.99453 0.99538 0.99538 1.00000 1.00012 1.00000 1.00000 1.00000	0.71825 0.77637 0.82057 0.86997 0.90342 0.94342 0.97210 0.98697 0.99569 1.00220 1.00220 1.00220 1.00000 1.00000	0.82426 0.870792 0.93030 0.93239 0.97139 0.9621 0.99363 0.99788 1.00000 1.00000 1.00000 1.00000	1.25786 1.20276 1.14349 1.09014 1.04016 1.01355 1.00455 1.00455 1.00000 0.99773 1.00000 1.00000	0.6221 0.69223 0.69223 0.81356 0.86646 0.91820 0.99333 1.00000 1.000334 1.00334 1.00334 1.00000

INPUT VARIABLES Y, U/UD (ISOENERGETIC)
ASSUME P#PD AND VAN DRIEST

Continuous wind tunnel with flexible nozzle. W = 2.44 H = 2.13 m L = 10 m. $0.09 < P0 < 0.15 \text{ MN/m}^2$. 310 < T0 < 330 K. Air, absolute humidity < 4 x 10^{-4} . RE/m x 10^{-6} : 8.

HOPKINS E.J. and KEENER E.R. 1966. Study of surface Pitots for measuring skin friction at supersonic Mach numbers - adiabatic wall. NASA TN D 3478.

And Hopkins and Keener - private communications. Also Keener and Hopkins (1971)

- 1 The test-boundary layer was formed on the side-wall of the tunnel (W = 2.44 m) which in the nozzle region is flexible. Observations were made on a single vertical in a central region about 1 m wide.
- 4. The layer was thus formed in a largely simple wave favourable pressure gradient but without strong
- 1 three-dimensional effects, reaching a near-zero-pressure-gradient in the test-zone. The wall had a
- 2 hand-rubbed painted surface, finished to 0.8 µm, and was not actively cooled. A free-stream Pitot
- 3 survey showed that the flow was "quite uniform for M < 3 but less uniform at M > 3". There was free transition, the position of which is not known.
- The static pressure was measured at a tapping 0.81 mm in diameter on the test vertical, 241 mm off the centre line, and at three points 152 mm upstream, one ahead of the traverse vertical and the other two ahead of a Pitot rake and a Stanton tube used in the calibration exercise which was the main concern of the source paper. A thermocouple measured the wall temperature. A skin friction balance (developed by NASA Ames Instrument Division) with a floating element 50.8 mm diameter was mounted on the centre line. This was calibrated directly over a range of working temperature. A buoyancy force correction was applied following the techniques of Smith and Walker (1959). Two forms of Stanton tube and six sizes of Preston tube were mounted at varying distances from the centre line.
- 7 The velocity profile was measured by Pitot tubes at two stations. At one, 175 mm off the centre line, a traversing FPP ($h_1 = 0.33$, $h_2 = 0.23$, $b_1 = 2.0$, l = 6.35 mm) was employed, while at the other, 356 mm off, a rake was employed with 12 CPP ($d_1 = 1.07$, l = 10.4 mm) at vertical intervals increasing from 2.5 to 38 mm. Values from the traversing FPP are presented here.
- 12 The authors reduced the profile data assuming constant total temperature. The editors have replaced this with the Crecco / van Driest temperature velocity correlation for an adiabatic wall and the assumed constant static pressure. The source paper provides a wide range of Preston and Stanton tube calibration data not presented have. The profiles obtained with the rake are presented graphically in Keener & Hopkins (1971), and compared with those given here.
- 13 The three profiles presented (Hopkins & Keener, PC) are for three Mach numbers at a near common momentum thickness Reynolds number.
- 14 The CF values are the author's values measured with the balance.
- § DATA 6601 0101 0301. PT2 profiles. NX = 1. CF from FEB.

15 Editors' communits

The special value of this investigation lies in the comparisons, made in the source paper, between the three different methods used to measure wall shear stress. The only comparable exercise with this geometry is that of Fenter & Stalmach (1957), based on the profiles measured by Stalmach (CAT 5802), at lower Reynolds numbers than here. With a slightly different geometry, similar Mach number and Reynolds number ranges are covered by Winter & Gaudet (CAT 7302) and Allen (CAT 7303).

The profiles presented include data as far in as the momentum deficit peak.

CAT 6601	HOPKINS		BOUNDARY CON	DITIONS AND E	VALUATED !	DATA. SI UNIT	3.	
RUN	MD *	TW/TR	REDZD	CF *	H12	DSK	PW	PD*
X	POD	PW/PD*	REDZD	C0	H12	H35k	TW*	TD*
RZ	TOD	SW *	D2	PI2*	H42	H15k	UD	TR
66010101	2.4450	0.9955	3.4192"+04	1.2600"-03	3.5699	1.2349	5.6930*+03	5.6930"+03
NM	8.9285*+04	1.0000	6.2758"+04	NM	1.8424	1.8307	2.9556*+02	1.4333"+02
Infinite	3.1470*+02	0.0000	7.7104"=03	0.0000"+00	0.1086	1.0024~-02	5.8690*+02	2.9688"+02
66010201	2.9610	0.9678	2.6906*+04	1.1100*=03	4.5693	1.2334	3.4665"+03	3.4665*+03
NM	1.2009*+05	1.0000	5.8747*+04	NM	1.6460	1.6312	2.9444"+02	1.1833*+02
Infinite	3.2583*+02	0.0000	7.4542*+03	0.0000*+00	0.1524	1.0587#-02	6.4581"+02	3.0425*+02
66010301	3.4430	0.9712	2.1745*+04	9.1000"-04	5.7658	1.2356	2.1738*+03	2.1736"+03
NM	1.5266"+05	1.0000	5.7316*+04	NM	1.8491	1.8300	2.9500*+02	9.7222"+01
Infinite	3.2772"+02	0.0000	7.4999*=03	0.0000"+00	0.1620	1.1702"-02	6.8066*+02	3.0375"+02

660101	01 HQPK	INS	PROFILE	TABULATION	28	POINTS, DE	LTA AT POI	NT 22
1	Y	PT2/P	P/PD	TO/TOD	M/MD	U/Ub	T/TD	RHO/RHOD#U/UD
12345678910	0.0000*+00 4.0640*-04 6.6040*-04 9.1440*-03 1.4624*-03 1.4224*-03 2.4384*-03 4.9784*-03 7.5164*-03	1.0000"+00 1.9014"+00 2.0298"+00 2.1496"+00 2.2547"+00 2.25470"+00 2.5733"+00 3.0368"+00 3.3495"+00 3.3495"+00	IM NM IM IM IM NM NM NM NM	0.93916 0.95816 0.95884 0.96130 0.96253 0.96290 0.96509 0.96618 0.97047 0.97319	0.00000 0.41057 0.43310 0.45254 0.46864 0.47345 0.50193 0.51610 0.57135 0.60655	0.000 0.54323 0.56520 0.56631 0.61133 0.64152 0.670732 0.70732 0.73689	2.06267 1.752137 1.752137 1.697381 1.667841 1.66847 1.53280 1.4848467	0.00000 0.31028 0.33010 0.330754 0.36223 0.36666 0.39333 0.40667 0.46151 0.49791 0.52059
123 134 155 167 189 222 232 245 256 278	1.2598*-02 2.5298*-02 5.2698*-02 6.3398*-02 1.0150*-01 1.1420*-01 1.2690*-01 1.5500*-01 1.5500*-01 1.770*-01 1.770*-01 2.1580*-01 2.1580*-01	3.7608"+00 4.4707"+00 5.1327"+00 6.3120"+00 6.3120"+00 6.3331"+00 7.7546"+00 8.1769"+00 8.1769"+00 8.1769"+00 8.1769"+00 8.1769"+00 6.1769"+00 6.1769"+00		0.97650 0.98576 0.98576 0.98601 0.99209 0.99460 0.99825 0.99925 1.00000 1.00012 1.00012 1.00012 1.00000 1.00000	0.64993 0.71825 0.77637 0.85997 0.90842 0.97210 0.98697 0.99562 1.00220 1.00220 1.00220 1.00200 1.00000	0.77572 0.82926 0.82920 0.93030 0.93139 0.97139 0.98623 0.99368 1.00000 1.00100 1.00100 1.00000 1.00000	1.42456 1.33300 1.25786 1.20276 1.14549 1.09914 1.06016 1.01252 1.01355 1.00000 0.99773 1.00000 1.00000 1.00000 1.00000	0.54453 0.62213 0.69223 0.74821 0.81356 0.91626 0.91626 0.9388 1.00000 1.00334 1.00000 1.00000 1.00000 1.00000

INPUT VARIABLES Y,U/UD (ISOENERGETIC)
ASSUME P=PD AND VAN DRIEST

660102	O1 HOPK	INS	PROFILE	NOITALUBAT	28	POINTS, DEL	LTA AT POI	NT 22
1	Y	PT2/P	P/PD	TOUTOD	14/110	UVUO	T/TD	RH0/RH00+U/UD
1	0.0000#+00	1.0000"+00	Им	0.90367	0.00000	0.00000	2.48826	0.00000
ē	4.00404-04	2.1772#+00	Им	0.93952	0.37724	0.54280	2.07034	0.26218
3	0.6400"-04	2,3292"+00	NM	0.94180	0.39604	0.56481	2.03386	0.27779
4	9.1440"-04	2.5044"+00	MH	0.94426	0.41633	0.58790	1.94397	0,29484
5	1.1684"-03	2.5944"+00	Им	0.94546	0.42629	0.59897	1.97424	0.30339
6	1.4224"=03	2.6799"+00	Им	0.94657	0.43548	0.60905	1.95594	0.31138
7	1.9304"-03	2.8810"+00	Им	0.94907	0.45625	0.63128	1.91446	0.32974
8	2.4384"-03	3,0391"+00	NM	0.95093	0.47184	0.64750	1.88321	0.34383
9	4.9784"-03	3.6836"+00	Им	0.95776	0.53014	0.70463	1.70658	0.39887
10	7.5184"=03	4.0830"+00	Им	0.96150	0.56302	0.73444	1.70165	0.43160
11	1.0058"-02	4.4059*+00	Им	0.96430	0.58817	0.75613	1.65266	0.45752
15	1.2578"=02	4.6561"+00	NM	0.96634	0.60672	0.77167	1.61663	0.47733
1.5	2.5278"-02	5.6757"+00	ИM	0.97371	0.67777	0.82592	1.48496	0.55619
14	3.7998"-02	6.5565"+00	NM	0.97909	0.73335	0.86383	1.38748	0.62259
15	5.0695"-02	7.4350*400	N۳	0.98376	0.78487	0.89564	1.30218	0.68780
16	6.3398*-02	8.2609"+00	NM	0.98761	0.83024	0.92124	1.23122	0.74823
17	7.6098"-02	9.0503"+00	NM	0.99090	0.87143	0.94268	1.17020	0.60557
18	8.8798*-02	9,9050*+00	NM	0.99410	0.91392	0.96315	1.11062	0.86722
19	1.0130"-01	1.0720"+01	ИW	0.99685	0.95265	0.98045	1.05921	0.92565
20	1.1420*-01	1.1223"+01	NM	0.99842	0.97579	0.99021	1.02979	0.96157
21	1.2690"-01	1.1639"+01	NM	0.99965	0.99452	0.99752	1.00665	0,99123
D 22	1.3960*-01	1.1762"+01	ИM	1.00000	1.00000	1.00000	1.00000	1.00000
53	1.523?"-01	1.1762"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
24	1.6500"-01	1.1824"+01	NM	1.00018	1.00276	1.00109	0.99667	1.00444
25	1.7770"-01	1.1824"+01	NM	1.00018	1.00276	1.00109	0.99667	1.00444
56	1.9040"-01	1.1824"+01	MM	1.00018	1.00276	1.00109	0.99667	1.00444
27	2.1550"-01	1.1824"+01	MI	1.00018	1.00276	1.00109	0.99667	1.00444
28	2.4120 01	1.1762"+01	ÑМ	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD (ISOENERGETIC)
ASSUME P=PD AND VAN DRIEST

660103	301 HOPK	INS	PROFILE	TABULATION	28	POINTS, DE	TA AT POI	NT 24
I	Y	PT2/P	P/P0	T0/T0D	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
į	0.0000*+00 4.4640*-04	1.0000*+00	NM NM	0.90015 0.93370	0.00000	0.00003 0.51889	3.03429	0.00000
3	6.6040"=04 9.1440"=04	2.4903"+00 2.6556"+00	NM NM	0.93759 0.93967	0.35669	0.55580 0.57483	2.42809	0.22890 0.24111
5	1.1684"-03	2.7962"+00	ŃМ	0.94136	0.38496	0.58990	2.34815	0.25122
?	1.9304"-03	2.8451*+00 3.1508*+00	NM NM	0.94193	0.38926	0.59493 0.62420	2.33594	0.25469 0.27586
•	2.4384"-03 4.9784"-03	3.3010*+00 3.9664*+00	NM NM	0.94689 0.95318	0.42694	0.63737 0.68830	2.22868	0.28598
10	7.5184"-03	4.5144"+00	NM NM	0.95772 0.96035	0.51289	0.72321 0.74282	1.98830	0.36373 0.38508
12	2.5298"-02 2.5298"-02	6.6551 <u>"</u> +00	NM NM	0.96275 0.97138	0.55544 0.63410	0.76043 0.82099	1.67435	0.40570 0.48975
14 15	3,7998"=02 5,0 698 "=02	7.5636"+00 8.7855"+00	MM MW	0.97609 0.48132	0.68117	0.85262 9.86660	1.56674	0.54420 0.61388
16 17	6.3398"-02 7.6098"-02	9.8452"+00 1.0810"+01	NM IIM	0.98521 0.98633	0.78348	0.91119	1.35258	0.67367 0.72773
16 19	8.3798"-02 1.0150"-01	1.1792"+01 1.3065"+01	NM NM	0.99117 0.99442	0.86115	0.94779	1.21134	0.78243 0.85317
21 20	1.1420"-01 1.2490"-01	1.4128"+01	NM NM	0.99681 0.99868	0.94593	0.98143	1.07648	0.91170
53 55	1.3960*-01	1.5529"+01	NW NW	0.99962	0.99331	0.99741 0.99891	1.00909	0.98882
D 24 25	1.6500"-01	1.5733"+01	NM MM	1.00000	1.00000	1.00000	1.00000	1.00000
26 27	1.7040"-01	1.5836"+01	NM NM	1.00019	1.00338	1.00109	0.99544	1.00566
26	2.4120"-01	1.5733"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD (ISGENERGETIC)
ASSUME P=PD AND VAN DRIEST

M : 2.5, 3.5 R THETA X 10 ⁻³ : 14 - 20	6602
TW/TR : 1.0	ZPG - AW

Blow-down wind tunnel with half block nozzle. Running time 50 seconds. W = 0.114, H = 0.083 m. PO = 0.52, 0.81 MN/m^2 . TO : 295 K. Air. RE/m X 10^{-5} : 50.

JEROMIN L.O.F., 1966. Compressible turbulent boundary layer with fluid injection. Ph.D. thesis Cambridge. And Jeromin (1968)

- 1 The test boundary layer was formed on a solid straight wall opposing a block half-nozzle. The test zone extended from X = 0.33 to 0.45 m where X = 0 at the throat. The ten measuring stations were at intervals
- 2 of 12.7 mm on the centre line. The surface was polished and was not actively cooled. The free stream Mach
- 3 number varied by 1 1/2 % over the test zone. From earlier investigations it was known that the boundary
- 4 layer was fully turbulent at the start of the test zone. No specific checks on the two-dimensionality of the layer are reported, but a correction for three-dimensional effects caused a 20 % change in the value of CF derived from a momentum analysis at the higher Mach number.
- Static pressure holes (D = 0.25 mm) were drilled in the surface of the plate, and the wall temperature was measured by a thermocouple. The Pitot probe used was a FPP made from 1.068 mm diameter tubing flattened so that $h_1 = 0.204$ mm. This small diameter tubing, cranked up from the surface, continued inside a long slender support structure of 6.25 mm diameter which was further stiffened by three slender fins. The TTP was an ECP ($\alpha = 5^{\circ}$, $d_1 = 1.53$, $d_2 = 1.58$, 1 = 25.4 mm) mounted on a support similar to that of the TPP. An additional, cranked, TPP was constructed to make possible measurements 25.4 mm off the centre line.
- The experimental Pitot and TO readings were recorded continuously on an X Y plotter, and the tabulated values measured from the trace. In data reduction a Crocco Van Driest temperature-velocity relationship was used, with recovery factor 0.89, as this was indistinguishable from the experimental temperature data. The static pressure was set equal to that determined from the Pitot probe outside the boundary layer, as that was considered a more accurate measurement than a value obtained from the static tappings. No profile
- 11 corrections were applied and Sutherland's viscosity law was used.
- 12 The editors have accepted all the authors assumptions and reduction procedures. Only the two sets of
- 13 profiles measured on a solid plate are presented here. The author also gives data for three distributed mass injection rates.
- 6 DATA: 6602 0101-0210. Pitot and TO profiles. NX = 10.

15 Editors' comments

This entry is included principally as a reference case for the pressure gradient experiments of Thomas - CAT 7401 who used the same facility and similar instrumentation. No CF measurements were made, but the author gives some values deduced from a momentum balance. These do not give a good fit to the wall law in transformed coordinates. Two other CF values are tabulated, but these are obtained from various correlation schemes, and do not represent data. The profile data do transform reasonably well using CF values from the correlation of Fernholz (1971). The CF value is however slightly high. The profiles 0101-0107 show no or very little log-law region.

The profiles are given in fine detail, with stations at close intervals so that the layer development may be followed in detail.

CAT 6602	JEROMIN		BOUNDARY COND	ITIONS AND E	VALUATED 1	TINU IE .ATAC	3.	
RUN	MD *	TW/TR	RE02W	CF	H12	H12K	PW	PD
X *	PODA	PW/PD*	REDZD	CQ	H32	H32K	TWA	TD
HZ	TUD#	3# *	02	*514	H42	DSK	UD	TR
66020101	2.5516	1.0283	7.6517"+03	ИM	4.1720	1.4197	2.7589*+04	2.7589*+04
3.3400"-01	5.1073"+05	1.0000	1.5147"+04	NIA	1.7909	1.7707	2.8550*+02	1.2814"+02
INFINITE	2.9500*+02	0.0000	3.1404"-04	0.0000*+00	0.0822	4.48887-04	5.7912*+02	2.7765*+02
66020102	2.5414	1.0350	6.1041*+03	NIN	4.1613	1,4116	2,8029*+04	2.8029*+04
3.4650 -01	5.1073"+05	1.0000	1.6083"+04	Nw	1.7907	1.7706	2.8450*+02	1.2741*+02
INFINITE	2.9200*+02	0.0000	3.2687"-04	0.0000*+00	0.0744	4.6748"-04	5.7516"+02	2.7486"+02
66020103	2.5503	1.0280	8,2762*+03	NM	4.1599	1.4115	2.7645"+04	2.7645*+04
3.5950"-01	5.1073"+05	1.0000	1,6388*+04	NH	1.7925	1.7726	2.63504+92	1.2735"+02
INFINITE	2.9300"+02	0.0000	3.3626*-04	0.0000"+00	0.0808	4.7980"-04	5.7703"+02	2.7577"+02
				4114				
66020101 3.7200"-01	2.5520 5.1083"+05	1.0195	6.4726*+03 1.6651*+64	Им Им	4.1228	1.4012	2.7577"+04 2.8450"+02	2.7577*+04
INFINITE	2.9650*+02	0.0000	3.4773"-04	0.0000*+00	0.0894	4.9465"-04	5.6063"+02	2.7906"+02
66020105	2,5537 5_1085*+05	1.0336	8.5647"+03 1.7046"+04	NM	4.1574	1.3968	2.7505*+04	2.7505"+04
3.8450"-01 1nfinite	2.9400"+02	1.0000	3.5202"-04	NM 0.0000"+00	1.7954	1.7767 5.0198*-04	2.8600*+02 5.7834*+02	2.7669"+02
		.,			-			
66020106	2.5571	1.0247	8.9385"+03	NM	4.1446	1.3985	2.7365"+04	2.7345"+04
3.9750"=01 Infinite	5,17934+05	1.0000	1.7689"+04	0.0000"+00	1.7950	1.7759	2.8400*+02 5.7917*+02	1.2761"+02
		******	210017 -07	444	0,0040		311717 - 442	##//## TVE
66021	2.5608	1.0231	9,1631*+03	11M	4.1273	1.3892	2.7204"+04	2.7208"+04
1030*=01	5.1093"+05 2.9500"+02	1.0000	1.8133"+04	0.0000≖+00 NM	1.7967	1.7797 5.3515*-04	2.8400*+02	1.2762"+02
INFINITE	E.7300"TIE	0.0000	3.7763"-04	9.0000-400	0.0867	3,3313	5.8002"+02	247734"402
66020108	2.5644	1,0215	9.0477*+03	NM	4.1098	1.3617	2.7057"+04	2.7057"+04
4.2200*-01	5.1093*+05	1.0000	1.7899"+04	NM	1.8028	1.7647	2.8450*+02	1.2785"+02
INFINITE	2.9600"+02	0.0000	3.7529"-04	0.0000*+00	0.0904	5.2914"-04	5.8136*+02	2.7851"+02
66020109	2.5754	1.0358	9.3494"+03	NH	4.1914	1.3862	2.6600*+04	2.6600"+04
4.35007-01	5.1093"+05	1.0000	1.8811"+04	NM	1.7987	1.7797	2,6500*+02	1.2572*+02
INFINITE	2.9250"+02	0.0000	3.9004"-04	0.0000*+00	0.0747	5.5687*-04	5.7895*+02	2.7516*+02
66020110	2.5619	1.0320	9.5666*+03	NM	4.1345	1.3753	2.7162*+04	2.7162"+04
4.4850*-01	5.1093"+05	1.0000	1.9081"+04	NM	1.8022	1.7842	2.6550"+02	1.2713"+02
INFINITE	2.9400"+02	0.0000	3.9570"-04	0.0000*+00	0.0773	5.6036"-04	5.7915*+02	2.7665"+02
66020201	3.6058	1.0485	4.3211"+03	NM	7.0109	1.4462	9.17384+03	9.1738*+03
3.3400 -01	8.1238*+05	1.0000	1.3122"+04	NM	1.7920	1.7577	2.8800*+02	8.2492"+01
INFINITE	2.9700*+02	0.0000	3.0485*=04	0.0000#+00	0.0930	5.6623"-04	6.5662"+02	2.7469*+02
66020202	3.6007	1.0501	4.5140*+03	NM	6,9470	1.4207	9.2397"+03	9.2397*+03
3.4680"-01	8.1238*+05	1.0000	1.3708*+04	NM	1.7949	1.7632	2.8750"+02	8.2382*+01
INFINITE	2.9600"+02	0.0000	3.1603"-04	0.0000*+00	0.0926	5.8405"-04	6.5526*+02	2.7376*+02
66020203	3.5882	1.0428	4.7823"+03	NM ·	6.9132	1.4320	9.4021"+03	4.4021"+03
3.5900*-01	6.1225"+05	1.0000	1.4364*+04	NM	1.7910	1.7592	2.8650"+02	8.3076"+01
INFINITE	2.9700*+02	0.0000	3.3066"=04	0.0900*+00	0.0980	6.1229"-04	6.5573*+02	2.7475*+02
66020204	3.5916	1.0627	4.8374"+03	NM	6.9700	1.4133	9.3562*+03	9,3562"+03
3.7200*+01	6.1219"+05	1.0000	1.4790"+04.	NM	1.7942	1.7631	2.8950*+02	6.2264"+01
INFINITE	2.9450*+02	0.0000	3.3687"-04	0.0000*+00	0.0793	6,2568"-04	6.5314"+02	2.7243"+02
66020205		1 05.5		ш	4 874 .	. // 20	0 #74444	B E7448.05
3.8450*-01	3.5780 8.1219*+05	1.0515	5.0527"+03 1.5241"+04	NM NM	6.8731 1.7949	1.4129 1.7654	2.8450#+03 2.8450#+03	9.5366*+03 6.2715*+01
INFINITE	2.9450*+02	0.0000	3.4466"-04	0,0000*+00	0.0909	6.3443"-04	6.5244"+02	2.7247"+02

66020206 3.9700**01	3.5768 8.1209*+05	1.0461	5.1485"+03 1.5450"+04	NM NM	6.8481 1.7931	1.4096	9.5518"+03 2.8600"+02	9.5518"+03 8.3036"+01
INFINITE	2.9550*+02	0.0000	3,5096"-04	0,0000*+00	0.0952	6.47107-04	6.5349*+02	2.7340"+02
66020207 4.1000*+01	3.5721 8.1209*+05	1.0424	5.2877*+03 1.57 9 1*+04	NM NM	6.8207 1.7948	1.4122	9.6152"+03 2.8550"+02	9.6152*+03 8.3334*+01
INFINITE	2.9600"+02	0,0000	3.5670"-04	0.0000*+00	0.0978	6.5733**04	6.5360*+02	2.7368*+02
							-	
66020248 4.2300"-01	3.5527	1.0405	5.5273"+03	NM NA	6.7751	1.4222	9.8817"+03	9.8617*+03
INFINITE	8.1209"+05 2.9700"+02	1.0000	1.6348"+04 3.6939"=04	NM 0.0000*+00	1.7929	1.7623 6.7506*-04	6.5390"+02 50+"0926.6	8.4271*+01
66020209	3.5504	1.0369	5.7608*+03	NM	6.7557	1.4194	9.9139*+03	9,9139*+03
4.3500"-01 Infinite	8.1209*+05 2.9750*+02	1.0000	1.7031"+04	NM 0.0000*+00	1.7912	1.7612 7.0578*-04	2.6550"+02 4.5432"+02	8.4491*+01 2.7535*+02
	ABTION TOE			•	~ : · V # 2			
64050510	3,5529	1.0405	5.7557"+03	NM	4.7511	1.4094	9.8789"+03	9.8789"+03
4.4800"-01 Infinite	8.1209*+05	1.0000	1.7020*+04 3.6556*=04	NM 0.0005*+00	1.7941	1.7647 7.0380*-04	2,8650*+02	8,4406*+01 2,7534*+02
FALTATIE	2.4750"+02	0.0000	3 6 9 3 3 9 1 4 1 4	A * AMAD 4 AA	0.0995	1.44390444	6.5446"+02	E+1734"TVE

66020	106 JEROI	MIN	PROFILE	TABULATION	42	POINTS, DEL	TA AT POI	NT 42
1	Y	PT2/P	P/PD	T0/T00	M/MD	U/U0	7/10	RHO/RHOD*U/UD
1	0.0000*400	1.0000*+00	NM	0.96464	0.00000	0.00000	2,22614	0.0000
2	1.1400"-04	1.6524"+00	NW	0.96635	0.54350	0.47745	1.93198	0.24713
3	1.6500"=04	1.8676"+00	NM	0.96815	0.38654	0.52845	1.86906	0.28273
4	2.0200"-04	2.0070"+00	NM	0.96921	0.41041	0.55564	1.83295	0.30314
5	2.7400"-04	2.3237"+00	NM	0.97155	0.45783	0.60734	1.75973	0.34513
6	3.4700"-04	2.6146"+00	NM	0.97357	0.49516	0.64684	1.69961	0.38058
7	4.2000"-04	2.8672"+00	NM	0.97514	0.52671	0.67683	1.65130	0.40988
8	4.9300"-04	3.0195"+00	NM	0.97615	0.54416	0.69343	1.62389	0.42702
9	5.6600"=04	3.1337"+00	NM	0.97688	0.55684	0.70523	1.60398	0.43967
10	0.3800"-04	3.2730"+00	HM	0.97770	0.57188	0.71893	1.58037	0.45491
11	7.8400"-04	3.5002*+00	NM	0.97894	0.59552	0.73983	1.54336	0.47936
12	9.2900*-04	3.7032"+00	NM	0.98013	0.61580	0.75722	1.51205	0.50079
iā	1.0750"-03	3.8933"+00	NM	0.98121	0.63417	0.77252	1.48395	0.52059
14	1.2210*=03	4.0443"+00	NM	0.98195	0.64836	0.78402	1.46224	0.53618
15	1.3660"-03	4.2346"+00	NM	5.98292	0.66579	0.79782	1.43593	0.55561
16	1.5120"-03	4.4372"+00	NM	0.98394	0.68383	0.81172	1.40902	0.57609
17	1.6570*-05	4.6149*+00	NM	0.96485	0.69926	0.82332	1.38632	0.59389
ió	1.8030"-03	4.8040*+00	NA	0.98565	0.71528	0.83502	1.36281	0.61272
19	1.9480"-03	5.0191"+00	NM	0.98667	0.73308	0.84772	1.33720	0.63395
Şŏ	2.0940"-03	5.1969*+00	NM	0.98749	0.74745	0.85771	1.31680	
51	2.2390"-03	5.4116"+00	NM NM	0.98438	0.76444			0.65137
55	2.3850"-03	5.5768"+00	NM NM	0.98912		0.86921	1.29289	0.67230
53					0.77726	0.87771	1.27518	0.08830
24	2.5310"-03	5.8037"+00	NM	0.98996	0.79451	0.88881	1.25148	0.71021
	2.6760*-03	6.0194"+00	NM	0.99083	0.81056	0.89891	1,22987	0.73090
ŞŞ	2.8220"-03	6.2343"+00	ŅM	0.99164	0.62624	0.90851	1.20906	0.75142
36	2.9670"-03	6.4375*+00	NM	0.99241	0.64078	0.91721	1.19006	0.77073
27	3.1130"-03	6.6645*+00	NM	0.99319	0.65676	0.92651	1,16945	0.79226
50	3.2580"-05	6.8678"+00	NM	0.99396	0.87077	0.93451	1.15175	0.81138
29	3.4040*-03	7.0829*+00	(IM	0.79464	0.88538	0.94261	1.13344	0.83163
30	3.5500"-03	7.3116"+00	βM	0.99544	0.90064	0.95090	1.11473	0.85303
31	3.6950"-03	7.5250"+00	NM	0.99608	0.91465	0.95830	1.09773	0.87299
25	3.8410"-03	7.7157"+00	NM	0.99668	0.92699	0.96470	1.08302	0.89075
33	3.9860"-03	7.9312"+00	ИМ	0.99738	0.74074	0.97170	1.06692	0.91076
34	4.1320"-03	8.1210*+00	ИМ	0.99787	0.95267	0.97760	1.05302	0.92838
35	4.2770*-03	6.3356"+00	ИM	0.99851	0.96601	0,98410	1.03781	0.94525
36	4.4230"-03	8.5130*+00	NM	0.99904	0.97687	0.98930	1.02561	0.96460
37	4.5680"-03	8.6268*+00	NM	0.99925	0.98378	0.99250	1.01781	0.97514
30	4.7140"-03	8.7294*+00	NM	0.99957	0.98797	0.99540	1.01100	0.98457
39	4.8600"-03	8.8077"+00	NM	0.99984	0.94467	0.99760	1.00590	0.99175
40	5.0050"-03	8.8594*+00	Nw	0,99995	0.99775	0.99900	1.00250	0.99651
41	5.1510*-03	8.8853*+00	NM	1.00001	0.99930	0.99970	1.00080	0.99890
D 42	5.2960*-03	6.8971"+00	ИМ	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD,T/TD ASSUME P=PD

46020	205 JERON	AIN	PROFILE	TABULATION	43	POINTS, DEL	TA AT POI	NT 43
I	Y	PT2/P	P/P0	10/100	MVMD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	0.97284	0.00000	0.00000	3.46370	0.00000
ž	1.1400"-04	1.6992"+00	NM	0.96541	0.25274	0.43440	2.95410	0.14705
3	2.0200"=0#	2.3135"+00	NM	0.96789	0.32619	0.53680	2.70830	0.19821
4	2.7400"-04	2.7477 +00	NM	0.96979	0.36629	0.55720	2.57000	0.22848
5	3.4700"-04	3.0368"+00	NM	0.97098	0.39028	0.61550	2.48710	0.24748
4	4.9300"-04	3.5785"+00	NM	0.97314	0.43126	0.66670	2.34710	0.28150
7	6.3800"-04	3.9405"+00	NM	0.97461	0.45642	0.68660	2.26300	0.30340
8	7.8400"-04	4.2655*+00	NM	0.97577	0.47781	0.70750	2.19250	0.32269
ğ	9.2900"-04	4.3015"+00	NM	0.95620	0.48012	0.70250	2.14090	0.32613
10	1.0750"-03	4.8072"+00	NM	0.97767	0.51139	0.73840	2.08490	0.35417
ii	1.2210"-03	5.0602"+00	ЙM	0.97651	0.52630	0.75140	2.03830	0.36864
12	1.3660"-03	5.3142"+00	NM	0.97942	0.54086	0.76370	1.99380	0.38304
13	1.5120*-03	5,5308"+00	NM	0.98011	0.55295	0.77360	1.95730	0.39524
14	1.6570*=03	5.8204"+00	NM	0.98101	0.56871	0.78610	1.91060	0.41144
15	1.8030*-03	6.1453"+00	ЙM	0.98196	0.58588	0.79920	1.86080	0.42949
16	1.9480*=03	6.4699"+00	NM	0.98281	0.60253	0.81140	1.81350	0.44742
17	2.0940"-03	6.7599"+00	NM	0.98367	0.61702	0.82170	1.77350	0.46332
18	2.2390"-03	7.1213*+00	NM	0.98458	0.63460	0.83370	1.72590	0.48305
19	2,3850"-03	7.4822"+00	ЙM	0.98547	0.65168	0.84490	1.68090	0.50265
žó	2.6030"-03	7.9528"+00	NM	0.98665	0.67330	0.85850	1.62580	0.52805
51	2.0220"-03	8.4948*+00	ИM	0.98780	0.69735	0.87280	1.56650	0.55717
žž	3.0400"-03	9.1097"+00	ЙM	0.98909	0.72366	0.88760	1.50440	0.59000
52	3.2580"-03	9.6880"+00	ИМ	0.99025	0.74756	0.90030	1.45040	0.62073
24	3.4040*-03	1.0157"+01	NM	0.99108	0.76638	0.90980	1.40930	0.64557
25	3.5500"-03	1.0592"+01	NM	0.99188	0.78344	0.91810	1.37330	0.66854
56	3.6950"-03	1.1026"+01	ЙM	0.99264	0.80009	0.92590	1.33920	0.69138
27	3.8410*=03	1.1423"+01	NH	0.99323	0.81500	0.93260	1.30940	0.71223
28	3.9860"-03	1.1638*+01	NM	0.99352	0.82301	0.93610	1.29370	0.72358
29	4.1320"-03	1.2470*+01	ИM	0.99473	0.85315	0.94880	1.23680	0.76714
30	4.2770"-03	1.2975"+01	NM	0.99544	0.87095	0.95590	1.20460	0.79354
31	4.4230*-03	1.3481"+01	ИM	0.99609	0.88841	0.96260	1.17400	0.81993
32	4.5480"-03	1.3990*+01	NW	0.99680	0.90561	0.96900	1.14493	0.84636
33	4.7140*-03	1.4421"+01	NM	0.99727	0.91995	0.97410	1.12120	0,86880
34	4.8600"-03	1.4930"+01	NH	0.99795	0.93660	0.97990	1.09460	0.89521
35	5.0050*-03	1.5398"+01	NH	0.99842	0.95165	0.98490	1.07110	0.91952
36	5.1510"-03	1.5833*+01	ИM	0.99896	0.96542	0.98940	1.05030	0.94202
37	5.2960"-03	1.6159"+01	NW	0.99925	0.97563	0.99260	1.03510	0.95894
38	5.4420"-03	1.6411"+01	NM	0.99948	0,98341	0.99500	1.02370	0.97196
39	5.5870"-03	1.6626"+01	NM	0.99965	0.99004	0.99700	1.01410	0.98314
40	5.7330"-03	1.6773"+01	ŊM	0.99989	0.99453	0.99840	1.00780	0.99047
41	5.8790"-03	1.6679"+01	NM	0.99986	0.99775	0.99930	1.00310	15000.0
42	6.0240"-03	1.4918"+01	NM	0.99999	0.99895	0.99770	1.00150	0.99820
D 43	6.1700"-03	1.6952"+01	Им	1.00000	1,00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,U/UD. 1/10	ASSUM	PMPD				

1 I	M : 6 R THETA X 10 ⁻³ : 3 - 14	6701
	TW/TR : 0.4 - 0.5	ZPG - SHT

Windtunnel: blow-down but effectively continuous, running time up to 45 minutes with 10 minutes settling time. W = 0.51, H = 0.52 m. PO : 3.6 MN/m². TO : 480, 550 K. Air, dewpoint 186 K. RE/m x 10^{-6} : 33, 29

SAMUELS R.D., PETERSON J.B. and ADCOCK J.B. 1967. Experimental investigation of the turbulent boundary layer at a Mach number of 6 with heat transfer at high Reynolds' numbers. NASA TN D-385B.

<u>And Adcock, Peterson and McCree (1965) - CAT 6501., Peterson J.B. private communication.</u>

The test arrangements were generally those for Adcock et al. CAT 6501 and only the differences will be described here.

- 1 The model was actively cooled by passing cold Freon in the gap between the inner (t = 2.39 mm) and outer (t = 3.05 mm) skins. The variation in TW/TR was obtained mainly as a result of changing the reservoir TO. The wall temperature was effectively independent of X for the TW/TR = 0.44 case, but varied by about 8 % (E)
- 3 for the TW/TR = 0.5 case. Transition was forced.
- 6 Provision was made to measure the heat-flux at X = 305, 610 and 914 mm, using a differential thermocouple
- heat-flow meter of the type described by Beckwith & Gallagher (1957). The total temperature in the boundary layer was measured with a STP for which $d_1 = 0.61$, $d_2 = 0.36$ and 1 = 9.5 mm. The tip was chamfered towards the outside surface at 45° , and contained a chromel-alumel thermocouple 1.1 mm back from the entry. There
- 8 were two vent-holes 0.18 mm in diameter 1.27 mm back. The probe was calibrated as in CAT 6501. Pitot profiles were taken at X = 203, 279, 838, 940 and 1016 mm. TO profiles were taken for all these stations when TW/TR = 0.44, but only for the last three for TW/TR = 0.50.
- The authors have interpolated the TO data to the Y-values of the Pitot data. For those cases (0201,2) for which no TO profile was measured an assumed profile was used based on that observed downstream at the same station for TW/TR = 0.44. The authors found an unexpectedly large "overshoot" in the TO profiles, and in the calculation of their integral data, replaced the measured distribution in the outer part of the layer with an exponential variation without overshoot. Wall data necessary for the reduction of the profiles was adjusted to the appropriate X-value. No TW data is explicitly presented in the source paper, the measurements being absorbed in global average values of TW/TR.
- 12 The editors have presented the profiles using the measured temperature data, with overshoot. They have accepted the notional TO profiles for 0201,2. It has been assumed that there is no normal pressure gradient.
- 13 Sets of profiles, each for 5 successive X values, are given for each of two TW/TR values. The heat transfer
- 16 data in Section D :3 a global average of up to 12 readings for each X and TM/TR value, prepared from the authors' original duta. No attempt has been made to interpolate it to the X values of the profiles.
- § DATA: 6701 0101-0204. Pitot and TO profiles, obtained separately. NX ≈ 5. Some heat flux data.

15 Editors' comments

The results should be taken in conjunction with the earlier AN case reported by Adcock et al. - CAT 6501. There remains little comparable data, the closest omparisons being Danberg - CAT 6702 and Keener & Hopkins - CAT 7204.

The overshoot of the measured temperature profiles is large enough to cause an apparent associated over-shoot in the velocity profiles. This seems improbable, but we have presented the measured values as users are free to insert their own assumptions if they so wish. Leaving aside the overshoot question, there are substantial differences between the measured TO values and the Van Driest correlation. The temperature measurements must clearly be treated with reserve. The innermost TO values (sometimes up to 5) are interpolations.

CAT 6701	SAMUELS		BOUNDARY CON	DITIONS AND E	VALUATED !	DATA. SI UNIT	3,	
AUN	MD #	TW/TR	RED2W	C#	H12	DSK	PW	PD
X +	#0D#	PW/PD*	RED2D	CG	H32	H35K	TW#	TD
RZ +	T0D#	SW *	D2	Pi2*	H42	H15K	UD	TR
67010101	5.9200	0.4867	9.6556"+02	0.0000"+00	16.4048	1.4250	2.4759*+03	2.4759"+03
2.0300*-01	3.6000*+06	1.0000	3.1481"+03	NM	1.8265	1.7665	2.1500*+02	6.0680"+01
7.6200*-02	4.8600*+02	0.0000	1.0424"-04	NM	-0.0440	2.4948*-04	9.2460*+02	4.4177"+02
67010102	5.9400	0.4867	1.7517"+03	NM	14.8045	1.3130	2.4319*+03	2.4319*+03
2,7900"-01	3.6100*+06	1.0000	5.7452"+03	NM	1.6437	1.8156	2.1500*+02	6.0322*+01
7,6200"-02	4.8600*+02	0.0000	1.9130"=04	0.0000*+00	0.1225	4.3928*-04	9.2499*+02	4.4173*+02
67010103	5.9800	0.4848	3.2404*+03	NM	14.4950	1.2994	2.3338*+03	2.3338*+03
8.3800"-01	3.6100*+06	1.0000	1.0710*+04	NM	1.8214	1.7998	2.1500*+02	5.9062*+01
7.6200"-02	4.8800*+02	0.0000	3.6489*-04	0.0000*+00	0.0908	8.8912*-04	9.2766*+02	4.4347*+02
67010104	5.9800	0.4898	3.2520*+03	NM	15.3237	1.3565	2.3330"+03	2.3338"+03
9.4000"-01	3.6100*+06	1.0000	1.0863*+04	NM	1.8263	1.7919	2.1500"+02	5.9249"+01
7.6200"-02	4.8300*+02	0.0000	3.6442*-04	0.0000*+00	0.0729	6.9571*-04	9.2289"+02	4.3893"+02
67010105	5.9700	0.4888	3.5480*+03	NM	14.8384	1.3019	2.3579*+03	2.3579"+03
1,0160*+00	3.6100*+06	1.0000	1.1790*+04	NM	1.8264	1.5000	2.1500*+02	5.9546"+01
7.6200*=02	4.8400*+02	0.0000	3.9507*+04	0.0000*+00	0.1021	9.5084*-04	9.2366*+02	4.3986"+02
67010201	5.9900	0.4272	9.1304*+02	NM	15.0323	1.4448	2.3100*+03	2.3100*+03
2.0300"-01	3.6100*+06	1.0000	2.6759*+03	NM	1.8186	1.7882	2.1000*+02	6.6169*+01
7.620"-02	5.4100*+02	0.0000	1.0691*=04	0.0800*+00	0.1361	2.3900*+04	9.7693*+02	4.9162*+02
67010202	5.9800	0.4248	1.3737*+03	0.0000*+00	13.9348	1.3664	2.3274"+03	2.3274*+03
2.7900"-01	3.6000*+06	1.0000	3.9918*+03	NM	1.8232	1.7971	2.1000"+02	6.6731*+01
7.6200"-02	5.4400*+02	0.0000	1.6059*-04	NM	0.2476	3.5719*=04	9.7944"+02	4.9436*+02
67010203	6.0800	0.4345	3.1343"+03	NM	13.9278	1.3246	2.1016*+03	2.1016*+03
8.3800"-01	3.6000*+06	1.0000	9.5907"+03	NM	1.8332	1.7979	2.1000*+02	6.3384*+01
7.6200"-02	5.3200*+02	0.0000	3.6846"-04	D.0000*+00	0.2774	9.1382*=04	9.7052*+02	4.8326*+02
67010204	6.0400	0.4257	3.4933*+03	NM	13.7921	1.3053	2.1949*+03	2.1949#+03
9.4000"-01	3.6100*+06	1.0000	1.0351*+04	NM	1.8241	1.7473	2.1000*+02	6.5451#+01
7.6200"-02	5.4300*+02	0.0000	4.2462*+04	0.0000*+00	0.2617	1.0057*+03	9.7972*+02	4.4333#+02

670101	OL SAMU	ELS	PROFILE	TABULATION	18	POINTS, DE	LTA AT POS	NT 18
1	Y	PTS/P	P/PD	107100	8 ¹ 71fb	ANGE	1210	AHO/PHOD*U/UD
1	0.0000*+00	1.0000*+00	HM	0.44239	0.00000	0.0000	3.54320	0.00000
2	4.9000"-05	3.5866"+00	Им	0,62392	0.26100	0.45000	2.23555	0.14192
3	1.0400"-04	3.8225*+00	NW	0.63097	0.27100	0.49500	3.33635	0.14837
4	2.7200"=04	7.1369"+00	ИW	0.82216	0.35400	0.67100	3.23813	0.21340
5	3.2000"-04	9.3726"+00	HM	0.85079	0.44400	0.75100	2.86097	0.26250
6	4.7800"-04	1.2768"+01	NM	0.90532	0.52200	0.82400	2.49160	0.33068
7	8:3388==84	1:4337=181	NH	8:33393	8:37488	0.85100	3:47975	8:37931
٥	9:0200"-04	1:5337"+01	Им	0.95578	0.57400	8:87188	2:31315	0.37741
9	1.0690"-03	1.6660"+01	NP	0.96584	0.59900	0.89000	2.20763	0.40315
10	1.3310*-03	1.9474"+01	ИM	0.98301	0.64900	0.91600	1.99206	0.45983
ii	1.6990"-03	2.2767"+01	ии	1.00288	0.70300	0.74300	1.79934	0.52408
iż	1.9810"-03	2.5713"+01	NM	1.01008	0.74800	0.95900	1.64374	0.58542
13	2.6160"-03	3.2153*+01	IIM	1.02159	0.63800	0.96500	1.36161	0.71294
14	3.3120"-03	3.9240"+01	NM	1.02657	0.92700	1.00300	1.17069	0.85676
iš	4.0130*-03	4.3272"+01	NM	1.01079	0.97400	1.00200	1.05832	0.94678
16	5.0290"-03	4.4958"+01	NM	0.99976	0.99300	0.99900	1.01312	0.98704
17	6.0710"-03		NM					
		4.5497"+01		1.00025	0.79900	1.00000	1.00200	0.99800
0 18	7.1860"-03	4.5587"+01	ИM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD,M/MD ASSUME P=PD

1	Y	PTZ/P	P/P0	T0/T00	MZMD	11 (118		000 10000 1000
•	,	FIETT	PARO	10/100	m/mu	UZUD	7/10	PHO/RHOD*U/U
	0.0000*+00	1.0000"+00	NM	0.44510	0.00000	0.00000	3.61786	0.00000
	8,9000"-05	2.9671"+00	NM	0.53547	0.23054	0.40959	3.15654	0.12976
3	1.3000"-04	3.4640"+00	Nw	0.58165	0.25349	0.45554	3.24364	0.14075
	2.3900"-04	4.4243"+00	NM	0.69152	0.29242	0.54645	3.49226	0.15648
5 4	4.4500*-04	7,2575*+00	NM	0.80092	0.38423	0.68432	3.17195	0.21574
6 /	4.9000"-04	7,9405"+00	MM	0.81040	0.40319	0.70450	3.05129	0.23082
	7.7500*-04	8.8119"+00	NM	0.83579	0.42615	0.73327	2.96076	0.24766
	9.8800"-04	9.1264"+00	HH	0.84735	0.43413	0.74426	2.93901	0.25323
	1.3110"-03	9.8555"+00	Ne	0.86376	0.45210	0.76424	2.85755	0.26744
	1.5240"-03	1.0443"+01	MIN	0.87414	0.46607	0.77822	2.78810	0.27912
	1.8420"-03	1.1181"+01	NM	0.88799	0.48303	0.79320	2.71021	0.29341
	2.1590*-03	1,1991*+01	NW	0.89961	0.50100	0.81117	2.62163	0.30942
	2.5300"-03	1.2784*+01	ЩМ	0.91159	0.51796	0.82617	2.54416	0.32473
	2.7150"-03	1.3652"+01	NM	0.92577	0.53593	0.84216	2.46930	0.34105
	4.1480"-03	1.6759*+01	NM	0.75856	0.595A1	0.88511	2.20692	0.40106
	5.7050"-03	2.0924"+01	NM	3.98879	0.66766	0.92607	1.92386	0.48136
	7.3510"-03	2.6313"+01	1M	1.01171	0.75050	0.96104	1.63977	0.58608
	8.9690"=03	3.2256"+01	NW NW	1.02319				
	1.0627"-02	3.8962*+01			0.83234	0.98501	1.40052	0.70332
			NM	1.02559	0.91617	1.00100	1.19376	0.83853
	1.2159"-02	4.3913*+01	HM	1.01497	0.97305	1.00400	1.06461	0.94307
	1.3848"-02	4.5714"+01	NM	1.00374	0.99301	1.00100	1.01615	0.98509
33 1								
55 1	1.5433*-02	4.6353"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
		4.6353"+U1 U/UD,H/HD	ASSUME P		1.00000	1.00000	1.00000	1.00000
	APIABLES Y	U/UD,H/MD	ASSUME P	=PD				.,
/010501	APIABLES YA	U/UD,H/MD	ASSUME P	#PD TABULATION	16	POINTS, DEL	TA AT POI	NT 16
I 010201	APIABLES YA Bumar	.U/UD,H/MD :L8 PT2/P	PROFILE	TABULATION TO/TOD		POINTS, DEL	TA AT PQI	NT 16
1 0201	A TABLES YA I SAMUE Y 0.0000*+00	.U/UD,H/MD ELS PT2/P 1.0000"+00	PROFILE P/PD NM	TABULATION TO/TOD 0.38895	16 :4/ND 0.00000	POINTS, DEL U/UD 0.00000	109 TA AT PQ1 T/TD 3.18003	NT 16 RHO/RHOD*U/U 0.000n0
010201 I 1 2	APIABLES Y A 1 SAMUE V 0.0000**+00 8.9000**=05	PY2/P 1.0000"+00 3.3569"+00	PROFILE P/PD NM	TABULATION TO/TOD 0.38895 0.62517	16 :4/NO 0.00000 0.24800	POINTS, DEL U/UD 0.00000 0.46703	IDG TA AT. GTNT EDOBLE SEGNELE	NT 16 RHO/RHOD*U/U 0.00000 0.13170
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A4IABLES Y, 1	PT2/P 1.0000"+00 3.3569"+00 4.0611"+00	PROFILE P/PD NM NM	TABULATION TO/TOD 0.38895 0.62517 0.64532	16 :4/ND 0.00000 0.24800 0.27745	POINTS, DEL U/UD 0.00000 0.46703 0.51149	TA AT POI T/TD 3.18003 3.54632 3.39674	NT 16 RHO/RHOD*U/U 0.000N0 0.13170 0.15049
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A A A A A A A A A A A A A A A A A A A	PT2/P 1.0000"+00 3.3589"+00 4.0611"+00 6.3181"+00	PROFILE P/PD NM NM NM	TABULATION TO/TOD 0.38895 0.62517 0.64532 0.68351	16 :4/ND 0.00000 0.24800 0.27745 0.35529	U/UD 0.00000 0.46703 0.51149 0.60839	TA AT PQI T/TD 3.18003 3.54632 3.39674	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748
1 (020)	AMIABLES YA 1 SAMUE 0.0000**+00 8.9000**-05 1.0200**-04 2.5100**-04	PT2/P 1.0000*+00 3.3569*+00 4.0611*+00 6.3161*+00 9.7115**	PROFILE P/PD NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.64532 0.68351 0.75784	16 :4/MO 0.00000 0.24800 0.27745 0.35529 0.44711	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.60839 0.71329	TA AT POI T/TD 3.18003 3.54632 3.39874 2.93226 2.54512	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.2026
1 010201 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A A A B L E S Y A M U E 1	PT2/P 1.0000*+00 3.3569*+00 6.3161*+00 9.7115*+00 1.3968*+01	PROFILE P/PD NM NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.64532 0.68351 0.75784 0.86949	16 :4/MO 0.00000 0.24800 0.27745 0.35529 0.44711 0.54092	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.60839 0.71329 0.81718	T/TD T/TD 3.18003 3.54632 3.54674 2.93226 2.54512 2.54512 2.94512	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.28026 0.35718
1 010201 1 2 6 3 1 4 1 5 6 7 6 7 7	A TABLES Y, A TABLES Y, 0.0000"+00 8.9000"-05 1.0200"-04 1.4500"-04 2.5100"-04 5.7600"-04	1.0000"+00 3.3589"+00 4.0611"+00 6.3181"+00 9.7115"+00 1.3968"+01 1.6216"+01	PROFILE P/PD NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.62519 0.68351 0.75784 0.66949 0.90212	16 :4/MO 0.00000 0.24800 0.27745 0.35529 0.44711	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.60839 0.71329	TA AT POI T/TD 3.18003 3.54632 3.39874 2.93226 2.54512	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.2026
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A TABLES YA A TABLES YA 0.0000	PT2/P 1.0000"+00 3.3569"+00 4.0611"+00 6.3161"+00 9.7115"+00 1.3988"+01 1.6216"+01 1.6467"+01	PROFILE P/PD NM NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.64532 0.68351 0.75784 0.86949	16 :4/MO 0.00000 0.24800 0.27745 0.35529 0.44711 0.54092	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.60839 0.71329 0.81718	T/TD T/TD 3.18003 3.54632 3.54674 2.93226 2.54512 2.54512 2.94512	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.28026 0.35718
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3AMUE 0.0000"+00 8.9000"-04 1.0200"-04 1.4500"-04 5.2600"-04 6.7600"-04 6.7600"-04 6.2070"-03	PT2/P 1.0000*+00 3.3509*+00 4.3511*+00 9.7115*+00 1.3968*+01 1.6216*+01 1.6467*+01	PROFILE P/PD NM NM NM NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.62519 0.68351 0.75784 0.66949 0.90212	16 :4/MD 0.00000 0.24800 0.27745 0.35529 0.44711 0.54092	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.50839 0.71329 U.81718 0.85415	T/TD 3.18003 3.54634 2.93226 2.54512 2.29349 2.14036	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.20748 0.35718 0.39907
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A TABLES YA A TABLES YA 0.0000	PT2/P 1.0000"+00 3.3569"+00 4.0611"+00 6.3161"+00 9.7115"+00 1.3988"+01 1.6216"+01 1.6467"+01	PROFILE P/PD NM NM NM NM NM NM	TABULATION TO/TOD 0.38895 0.62519 0.68351 0.75784 0.86949 0.90212 0.92295	16 :4/MD 0.00000 0.24800 0.35529 0.44711 0.54092 0.58383	POINTS, DEL U/UD 0.00000 0.46703 0.51439 0.50839 0.71329 0.81918 0.85415	T/TD 3.18003 3.54632 3.39474 2.93226 2.54512 2.29349 2.15453 1.96218	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.26026 0.35718 0.39907 0.40076
1 (01020) 1 1 2 3 1 1 1 5 5 6 7 6 6 9 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0	1 3AMUE 0.0000"+00 8.9000"-04 1.0200"-04 1.4500"-04 5.2600"-04 6.7600"-04 6.7600"-04 6.2070"-03	PT2/P 1.0000*+00 3.3509*+00 4.3511*+00 9.7115*+00 1.3968*+01 1.6216*+01 1.6467*+01	PROFILE P/PD NM	TABULATION TO/TOD 0.38895 0.62519 0.64532 0.68351 0.75784 0.86949 0.90212 0.95582	16 3/MO 0.00000 0.24800 0.27745 0.35529 0.554303 0.58882 0.58882 0.58882	U/UD 0.00000 0.46703 0.51149 0.60839 0.71329 0.81218 0.85413 0.85413	7/TD 3.18(03) 3.54632 3.54632 3.54632 2.93226 2.5451349 2.14036 2.14036 2.14036	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.28026 0.35718 0.39907 0.40076 0.46025 0.52661
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A TABLES Y, 1	1.0000"+00 3.3569"+00 4.0611"+00 6.3161"+00 9.7115"+00 1.3968"+01 1.6467"+01 1.9670"+01 2.3142"+01	PROFILE P/PD MM HM	TABULATION TO/TOD 0.38895 0.62517 0.64532 0.683518 0.75784 0.86949 0.90212 0.95582 0.97897 1.00281	16 3/MO 0.00000 0.27745 0.35529 0.44711 0.54092 0.54882 0.64471 0.75848	POINTS, DEL U/UD 0.0000 0.46703 0.51149 0.60839 0.71918 0.81918 0.81918 0.81918 0.81918 0.81918 0.9310 0.93207 0.95904	7/10 3.18(03) 3.54632 3.54632 3.54632 2.54512 2.54512 2.29349 2.11036 2.15873 1.96210 1.76876	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.28026 0.35718 0.39907 0.40076 0.46025 0.52961
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000"+00 0.0000"+00 1.0200"-04 1.0200"-04 1.4500"-04 2.5100"-04 5.2600"-04 6.7600"-04 6.7600"-04 1.2070"-03 1.9280"-03 1.9280"-03	TLS PT2/P 1.0000*+00 3.3559*+00 4.3559*+00 1.3965*+01 1.6216*+01 1.6467*+01 1.9670*+01 2.3142*+01 2.7043*+01 3.4180*+01	PROFILE P/PD MM HM	TABULATION TO/TOD 0.38895 0.62519 0.64532 0.68351 0.75784 0.86949 0.96212 0.95582 0.97897 1.00281 1.02037	16 3/MO 0.00000 0.24800 0.27745 0.35529 0.4471 0.54092 0.58482 0.64471 0.75848 0.75848	POINTS, DEL U/UD 0.00000 0.46703 0.51149 0.60839 0.71329 0.81218 0.85415 0.85415 0.95207 0.95207 0.95801	7/TO 3.18003 3.54632 3.54632 3.54632 2.54532 2.54532 2.54534 2.14036 2.14036 2.14036 2.156218 1.76218 1.76218 1.76218 1.76218	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.26026 0.35718 0.39907 0.40076 0.40075 0.40075 0.52661 0.52867
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A TABLES YA A TABLES YA 0.0000"+00 8.9000"-05 1.0200"-04 2.5100"-04 2.5100"-04 6.0800"-04 1.2070"-03 1.3320"-03 1.3320"-03	1.0000"+00 3.3569"+00 4.0611"+00 6.3161"+00 9.7115"+00 1.3966"+01 1.46467"+01 2.7043"+01 2.7043"+01 2.7043"+01 2.4160"+01	PROFILE P/PD NM	TABULATION TO/TOD 0.38895 0.62519 0.62519 0.68351 0.75784 0.86212 0.9582 0.9582 0.9582 0.9582 1.00277	16 :4/MD 0.00000 0.24800 0.27745 0.35529 0.44711 0.54092 0.5488 0.64471 0.75648 0.05429	POINTS, DEL U/UD 0.00000 0.46703 0.5149 0.50839 0.71329 U.81918 0.85415 0.85415 0.85415 0.85415 0.85415 0.93207 0.93207	7/TD 3.18(03) 3.54632 3.59674 2.93226 2.54512 2.14036 2.14036 2.15873 1.96218 1.76903 1.59876 1.33756 1.34720	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.20748 0.28026 0.35718 0.39907 0.40076 0.46025 0.52661 0.59987 0.73867 0.88229
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000"+00 8.9000"-05 1.0200"-04 1.0200"-04 2.5100"-04 2.5100"-04 6.0800"-04 6.0800"-04 6.0800"-03 1.2070"-03 1.2070"-03 1.9260"-03 2.4270"-03	1.0000"+00 3.358"+00 4.0611"+00 6.3181"+00 9.7115"+00 1.3988"+01 1.648"+01 1.9670"+01 2.3142"+01 2.3142"+01 2.3142"+01 3.4180"+01 4.5167"+01	PROFILE P/PD IM	TABULATION TO/TOD 0.38895 0.62517 0.64532 0.653784 0.86949 0.902495 0.95582 0.97897 1.00281 1.02037 1.02770 1.01835	16 3/MO 0.00000 0.24800 0.27745 0.35529 0.44711 0.58882 0.58882 0.64471 0.75848 0.85429 0.94212 0.98303	POINTS, DEL U/UD 0.406703 0.406703 0.51149 0.608329 U.81918 0.8354153 0.90310 0.93507 0.93801 0.93801 1.00599	7/10 3.18(03) 3.54632 3.54632 3.54632 2.54512 2.9349 2.14036 1.76218 1.76218 1.76218 1.76218 1.33756 1.14023 1.0434	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.26026 0.35718 0.39907 0.40076 0.46025 0.52967 0.73867 0.48229 0.95964
1	A TABLES Y, 1	1.0000"+00 3.3569"+00 4.0611"+00 6.3161"+00 9.7115"+00 1.3966"+01 1.46467"+01 2.7043"+01 2.7043"+01 2.7043"+01 2.4160"+01	PROFILE P/PD NM	TABULATION TO/TOD 0.38895 0.62519 0.62519 0.68351 0.75784 0.86212 0.9582 0.9582 0.9582 0.9582 1.00277	16 :4/MD 0.00000 0.24800 0.27745 0.35529 0.44711 0.54092 0.5488 0.64471 0.75648 0.05429	POINTS, DEL U/UD 0.00000 0.46703 0.5149 0.50839 0.71329 U.81918 0.85415 0.85415 0.85415 0.85415 0.85415 0.93207 0.93207	7/TD 3.18(03) 3.54632 3.59674 2.93226 2.54512 2.14036 2.14036 2.15873 1.96218 1.76903 1.59876 1.33756 1.34720	NT 16 RHO/RHOD*U/U 0.00000 0.13170 0.15049 0.26024 0.35718 0.39907 0.40076 0.46025 0.52661 0.59987 0.73867 0.88229

67010	204 9AMI	JELS	PROFILE	TABULATION	51	POINTS, DE	TA AT POI	NT 20
1	Y	PT2/P	P/P0	C01/01	HI/HD	U/UD	T/TD	RH0/RH00+U/U
1	0.0000*+00	1.0000"+00	NH	0.38674	0.00000	0.00000	3.20852	0.00000
5	8.9000*-05	2.8630*+00	NM	0.48557	0.22278	0.38312	2.95747	0.12954
3	1.6300"-04	3.7765"+00	NM	0.59072	0.26374	0.47552	3.25092	0.14627
4	2.6900"-04	5.6572"+00	ЙM	0.72153	0.33167	0.60440	3.32074	0.18201
5	3.0700*-04	4.5608*+00	٧N	0.74510	0.35964	0.64136	3.18028	0.20167
b	4.8300*-04	7.6847*+00	NM	0.79133	0.39161	0.68931	3.09832	0.22248
7	6.9900"-04	8.7477"+00	MIT	0.81549	0.41958	0.72228	2.96332	0.24374
8	1.0190*-03	9.22604+00	MI	0.83431	0.43157	0.73926	2.93424	0.25194
9	1,3410"-03	9.8011"+00	NM	0.84797	0.44555	0.75524	2.87325	0.26285
10	1.6050 -03	1.0451"+01	NM	0.85744	0.46154	0.77023	2.78500	0.27656
11	2.3550"-03	1.2093"+01	NH	0.88813	0.49750	0.80619	2.62596	0.30701
12	3.0000"-03	1.3739"+01	ЙM	0.90455	0.53147	0.83217	2.45170	0.33943
13	3.7010"-03	1.5435"+01	NM	0.92842	0.56444	0.85914	2.31686	0.37082
14	5.0930"-03	1.4311"+01	NM	0.96447	0.63337	0.90410	2.03760	0.44371
15	6.3830*-03	2.3371*+01	NM	0.98930	0.69830	0.93706	1.80074	0.52038
16	7.6680"-03	2.7820"+01	NM	1.00755	0.76324	0.96304	1.59209	0.60489
17	9.2130"-03	3.4016"+01	NM	1.02116	0.64515	0.98701	1.36387	0.72369
19	1.0932"-02	4.1183"+01	ŅΜ	1.01051	0.93107	1.00000	1.19355	0.86689
19	1.2467*-02	4.5946*+01	NM	1.00796	0.98402	00500.1	1.03686	0.96636
0 20	1.4094"-02	4.7435*+01	NH	1.00000	1.00000	1.00000	1.00000	1.00000
āi	1.6121**02	4.7154"+01	NM	0.99873	0.99700	0.99960	1.00401	0.99501
				*******	V , , , V V	******		4177301
	VARIABLES Y	/,U/UD,M/MD	ABBUHE PI	₽ D				
AT IN	2 DATA HERE A	VERAGEO						

6701 SECTION D: ADDITIONAL DATA: HEAT TRANSFER MEASUREMENTS

The data are presented for mean values of the wall temperature in each case. The number of readings given is steadily reduced by eliminating the least characteristic point.

TW/TR (nominal)	X (m)	Number of Readings	CO mean X 10	Standard deviation %
0.5	0.305	9	3.77	3,2
(series	н	8	3,80	2,8
01)	0.610	9	3,73	2.3
		8	3.76	0.5
.,	0.914	3	3.03	-
0.44	0.305	12	4,32	5.1
(series		11	4.36	3,7
02)	w	10	4,39	3.3
	0.610	12	4.53	5.0
	H	11	4.48	3.8
	*	10	4.45	3.2
	0.914	8	3,81	7.8
		7	3.90	3.2

M : 6.5
R THETA X 10⁻³ : 1.3 - 6
TW/TR : 0.5 - 0.9

ZPG
MHT / SHT

Continuous tunnel with symmetrical nozzle. W = H = 0.25 m. 1.5 < PO < 4 MP/m². TO : 550 K. Air, dew point 215 K. 8 < RE/m X 10^{-6} < 20.

DANBERG J.E., 1967. Characteristics of the turbulent boundary layer with heat and mass transfer: Data tabulation NOLTR 67-6.

And Danberg (1964); Danberg J.E., private communications.

- The test boundary layer was formed on a flat plate model 0.59 m long spanning the tunnel and aligned with the plane of symmetry of the nozzle. The leading edge (X = 0), chamfered at 10° , had a radius of approximately 0.015 mm and was located approximately in the nozzle exit plane. Tunnel wall boundary layers were compensated for by increasing the working section and the plate widths from 0.254 to 0.272 m over their length. The plate was designed for tests with mass addition, and for X > 50.8 mm, the surface was composed of a sintered steel insert 10.67 mm thick. The roughness was less than 1.8 μ m and the surface was flat within $\frac{1}{2}$ 0.127 mm. The insert was actively cooled by passing a coolant through 15 passages aligned with
- 2 the long axis of the plate, buried in the under surface of the sintered portion. Static pressure variation
- 3 along the surface of the plate was about ± 4%. No boundary layer trip was used, a local wall temperature maximum indicating that natural transition occurred at or before X = 0.33 m for all runs. This local temperature rise could not be controlled by the coaling system, and reached its greatest value of about 25 K in the highest unit Reynolds number runs. The detail variation is given graphically in Danberg (1964)
- figure 9. Some off-centre boundary layer surveys were made and these indicated that the flow was symmetrical with nearly constant properties across the region studied.
- 6 Static pressure and wall temperature were measured at 9 successive stations, starting at X = 123.8 mm and then at intervals of 50.8 mm, the static holes (d = 0.635 mm) alternating with temperature stations 5.56 mm on each side of the centre line. Four thermocouples were mounted at each temperature station, one at approximately 1.27 mm below the surface, and three others at intervals of about 2.29 mm, so allowing a determination of the heat transfer rate from the temperature gradient.
- 7 Total temperature profiles were measured with an ECP (Danberg 1951) for which $\alpha = 5^{\circ}$, $d_1 = 1.14$ mm, 1 = 25 mm. Pitot profiles were mostly made with a CPP ($d_1 = 0.559$, $d_2 = 0.254$ mm with a 10° bevelled lip) though some data were obtained with an FPP. Static pressure surveys were made using a 1.14 mm probe with the orifices 76.2 mm behind the sharp tip. This probe was affected by aerodynamic loading, and profiles were only presented graphically for their qualitative value. The pressure at the boundary layer edge is close to the wall value though both are higher than the free stream value. The difference was explained as due to the
- 8 displacement effect of the boundary layer itself. Profiles were obtained at four stations for which X = 0.378, 0.49, 0.479 and 0.530 m, thus coinciding with wall static pressure and temperature measurements.
- 9 The author has interpolated the Pitot profile data to the Y-values of the TO data. The static pressure was set constant and equal to the wall static pressure. Heat transfer values were obtained from the limiting gradient of the TO profiles extrapolated to the wall temperature. This agreed with the values obtained from temperature measurements within the plate to within 20 %, which were considered the less reliable in view of the experimental and constructional difficulties. A skin friction value was estimated from the
- 10 limiting slope of the Mach number profile. No corrections were applied to the profile data and viscosity
- 11 values were taken from Hilsenrath (1955).
- 12 The editors have incorporated the author's calibration and interpolation procedures. The heat transfer data is derived from the Stanton number presented by the author, based on a adiabatic wall recovery factor of
- 13 the one-third power of the wall-state Prandtl number (0.896). The profiles presented, all with zero mass addition, are three series for three different wall temperatures at a single unit Reynolds number and

one for a higher unit RE. There are also six supplementary individual profiles. The wall data consists of heat transfer and shear stress as determined by the author from profile measurements.

§ DATA: 6702 0101-1001. Pitot and TO profiles. NX = 4. Additional single station runs.

15 Editors' comments

The experiment provides data on a transitional boundary layer. The outer part of the layer is perhaps fully turbulent for the highest Reynolds number runs, but despite the relatively high R THETA values, the high Mach number and wall cooling influences are such that the inner regions are not characteristic of fully developed turbulence. The few possible comparison cases of a high Mach number layer developed under constant pressure conditions are Keener & Hopkins - CAT 7204, Samuels et al. - CAT 6701 and the earlier studies of Winkler & Cha - CAT 5902.

The author reports a difference between wall and free stream static pressure of up to 10 % at low values of x, which decreases downstream (Danberg 1964, figure 10). It is difficult to conceive of a mechanism which would cause this, other than a convex curvature of the displacement surface. The necessary radius of curvature is of order 500 δ , and so feasible. Static pressure measurement at high Mach numbers is very difficult (for an extreme case see Beckwith et al. - CAT 7105) so that we have followed the author here in setting the static pressure at the wall value, which is at least accurately measurable.

The wall data, Deing derived from the limiting gradients of the profiles, should be treated with reserve. The CF value especially should only be regarded as an approximation. The profiles themselves are presented in fair detail. The inner values of TO are interpolations.

CAT 6702	DANBERG		BOUNDARY CON	S DIA BROITIC	VALUATED (DATA, SI UNIT	8.	
RUN	MD *	TW/TR	RED2W	CF *	H12	DSK	PW	PD
X #	P0D*	PW/PD#	RED2D	CQ *	H32	H35K	Tw*	TD*
RZ	T0D	SW #	D2	PI2#	H42	H15K	UD	TR
67020101	6.6000	0.5082	4.7225*+02	1,4580*-03	13.3435	1.5610	5.3878"+02	5.3878"+02
3.7780#=01	1.5381*+06	1.0000	1.8892*+03	2,2163*-04	1.8119	1.7629	2.5234"+02	5.6400"+01
INFINITE	5.4776*+02	0.0000	2.3093*-04	0,0000*+00	0.6145	5.2166"=04	9.9379"+02	4.9666"+02
67020102	6.5500	0.5156	6.0653*+02	1.3850"-03	12.2585	1.5010	5.6399"+02	5.6399"+#2
4.2860"=01	1.5351"+06	1.0000	2.4215*+03	2.1830"-04	1.8292	1.7819	50+"6562.5	5.7200"+#1
Infinite	5.4800"+02	0.0000	2.9103*+04	0.0000"+00	0.6926	6.2026***04	9.9323"+02	4.9696"+02
67020103	6.5400	0.5169	6.4516"+n2	1.4460*#03	12.9536	1.5287	5,6942*+02	5.6942"+02
4,7940*=01	1.5351*+06	1.0000	2.5743"+03	2,3088*=04	1.8313	1.7818	2,5665*+02	5.7300"+01
Infinite	5.4746*+02	0.0000	3.0772"-04	0.0000*+00	0.6347	6.7488*=04	9,9258*+02	4.9649"+02
67020104	6.4900	0.5253	8.2427"+02	1.3360"-03	12,5506	1.4°92	5.9942*+02	5.7900"+02
5.3020*-01	1.5401*+06	1.0000	3.2882"+03	1.8472"-04	1.9345	1.7881	2.5997*+02	5.7900"+01
Infinite	5.4565*+02	0.0000	3.8222"-04	0.0000"+00	0.6492	8.2499#=04	9.9013*+02	4.9492"+02
67020201	6,6300	0.4870	7.7406*+02	1.1560*-03	14.6362	1.4585	5,5971#+02	6.5971"+02
4.7940*-01	2,0316"+06	1.0000	3.0541*+03	2.5647*-04	1.8435	1.7983	2,4315#402	5.5500"+01
Infinite	5,5081"+02	0.0000	2.9401*-04	0.0000*+00	0.5274	6.8907"-04	9,9778#+02	4.9930"+02
67020301	6.4100	0.4922	1.2175"+03	9.4600"-04	13.4013	1.4709	1.0632*+03	1.0632"+03
4.7940"=01	2.5281*+06	1.0000	4.4961"+03	2.4420"-04	1.8359	1.7892	2.4696*+02	6.0000"+01
Infinite	5.5306*+02	0.0000	3.1492"-04	0.0000"+00	0.5472	7.1912"=04	9.9551*+02	5.0176"+02
67020401	6.4600	0.6428	3,7946*+02	1.5600*=03	15.5648	1.6212	6,1786*+02	6.1786*+02
3.7780*-01	1.5422"+06	1.0000	1,7544*+03	2.1937*=04	1.6125	1.7390	3,1991*+02	5.8700*+01
Infinite	5.4863"+02	0.0000	2,0292*=04	0.0000*+00	0.4009	5.2369*-04	9,9234*+02	4.9768*+02
67020402 4.2860"-01 Infinite	6.4600 1.5452"+06 5.4956"+02	0.6034 1.0000 0.0000	4.7416"+02 2.0879"+03 2.4164"=04	1.1550"=03 2.3095"=04 0.0000"+00	14.4813 1.8287 0.5224	1.7110 1.7414 5.7923"-04	50+#5001.6 50+#5600.6	6.1908"+02 5.8800"+01 4.9852"+02
67020403	6.6200	0.6463	4.7353"+02	1.4740"~03	16.7567	1.5758	5,2515"+02	5.2515"+02
4.7940*+01	1.5280"+06	1.0000	2.2765"+03	2.1454"=04	1.8391	1.7740	3,2043"+02	5.6000"+01
Infinite	5.4663"+02	0.0000	2.8431"-04	0.0000"+00	0.3428	7.1886"-04	9,9326"+02	4.9579"+02
67020404	6.4500	0,6419	6.3590"+02	1.2100"-03	14.6140	1.5112	6.1977"+02	6.1977"+02
5.3020*=01	1.5320"+06	1.0000	2.9318"+03	1.6829"-04	1.8363	1.7838	5.1902"+02	5.5600"+01
Infinite	5.4618"+02	0.0000	3.3771"=04	0.0000"+00	0.4598	8.0905*=04	9.8996"+02	4.9547"+02
67020501	6.5300	0.6460	3.3223*+02	1.6620"=03	18.3046	1.8598	5,7111*+02	5.7111"+02
3.7780"+01	1.5249*+06	1.0000	1.5736*+03	2.3213"=04	1.8171	1.7316	3,1985*+02	5.7300"+01
Infinite	5.4596*+02	0.0000	1.6784*-04	0.0000"+00	0.2307	5.0555*=04	9,9106*+02	4.9514"+02
67020601	6.3100	0.9360	2.7519"+02	1.9540*-03	21.0877	1.6757	7,1063"+02	7,1063*+02
3.7780"-01	1.5320*+06	1.0000	1.6036"+03	1.6451*-04	1.6433	1.7547	4,6674"+02	6,1300*+01
Infinite	5.4945*+02	0.0000	1.7624"=04	0.0000*+00	=0.1588	5.2440*-04	9,9053"+02	4,9868*+02
67020602	6.4500	0.9201	2.9733"+02	1.7700"-03	22.2656	1.7344	6.1690"+02	5.94°0°402
4.2860"=01	1.5249*+06		1.7778"+03	2.1297"-04	1.8520	1.7617	4.6058"+02	5.94°0°401
Infinite	5.5177*+02		2.0892"=04	0.0000"+00	-0.1929	6.1177*-04	9.9502"+02	5.0055°402
67020603	6.6100	0.9151	3.1817"+02	1.57%0"-03	22.4341	1.6337	5.3157"+02	5.3157"+02
4.7940*-01	1.5320*+06		1.9828"+03	1.7936"-04	1.8509	1.7649	4.5571"+02	5.6400"+01
Infinite	5.4925*+02		2.4528"+04	0.0000"+00	-0.1438	7.2966"-04	9.9529"+02	4.9799"+02
67020604	6,6200	0.9056	3.9779"+02	1.4500*-03	21.1812	1.5576	5.2515"+02	5.2515*+02
5.3020"-01	1,5280*+06	1.0000	2.4663"+03	1.7624*-04	1.6620	1.7782	4.5061"+02	5.6200"+01
Infinite	5,4879*+02	0.0000	3.0696"=04	0.0000*+00	-0.0468	8.6774"-04	9.9503"+02	4.9756*+02
67020701 4.7940"-01 Infinite	6.4300 2.0275"+06 5.4760"+02	0.9282	5.3154*+02 3.1871*+03 2.76#3*+04	1.4540"-03 1.3037"=04 0.0000"+00	18.5322 0.666.1 0.1021	1.5036 1.7893 7.5047"=04	8.3628*+02 4.6126*+02 9.9109*+02	
67020801 5.3020"-01 Infinite	6.3400 3.8574"+06 3.3139"+02	0,8607 1,0000 0,0000	1.0724"+03 5.9341"+03 2.6356"-04	9.9200*-04 1.0496*-04 0.0000*+00	17.2894 1.8475 0.1568	1.4243 1.7878 7.1559"=04	1.7372*+03 4.3066*+02 9.9281*+02	6.1000*+01 5.0039*+02
67020901	6.5000	0.5443	9,5628*+02	6.2600*=04	15.1900	1.3402	1.4869*+03	1.4869*+03
4.2860"-01	3.8574"+06	1.0000	3,9293*+03	1.90%6*=04	1.6717	1.8463	2.7104*+02	5.8100*+01
Infinite	5.4904"+02	0.0000	1,6480*=04	0.0000*+00	0.4163	4.5617"-04	9.9337*+02	4.9799*+02
67020902	6.4900	0.5539	5.2164"+03	6.9700"=04	13,8729	1.5022	1.5013"+03	1.5013*+03
4.7940"-01	3.6574"+06	1.0000		1.8086"=04	1.8365	1.7902	2.7747"+02	5.8600*+01
Infinite	5.5225"+02	0.0000		0.0000"+00	0.5487	5.8639"-04	9.9610"+02	5.0091*+02
67020903 5.3020"-01 Infinite			1.0583*+03 7,6203*+03 3.4061**04	6.8100"-04 1.3672"-04 0.0000"+00	13,4771 1.8432 0.5386		9,9094"+02 2,8294"+02 1,6842"+02	1.6842"+03 6.0200"+01 4.9794"+02
67021001	6.3400	0.5266	1.6695"+03	7.7300"=04	14.7078	1.4798	1.5976"+03	1.5976"+03
5.3020#=01	3.5474"+06	1.0000	6.3945"+03	1.9934"=04	1.6279	1.7812	50+"5556.5	6.0700"+01
Infinite	5.4667"+02	0.0000	3.0654"=04	0.0000"+00	0.3987	7.4919"-04	9.9036"+03	4.9793"+02

679206	01 DANE	BERG	PROFILE	TABULATION	21	POINTS, DE	LTA AT POI	NT 17
I	y	9\\$7 9	P/PD	TO/TOD	M/MD	U/UD	T/ID	RHO/RHOD*U/UD
1 2 3 4 5 6 7 8 9 11	0.0000"+00 2.7900"-04 4.8300"-04 6.1000"-04 7.3700"-04 9.9100"-04 1.2450"-03 1.8800"-03 2.5150"-03	1.0000*+00 1.5651*+00 2.7712*+00 3.7873*+00 5.0996*+00 1.0480*+01 1.2424*+01 1.4732*+01 1.7744*+01 2.5516*/01) M M M M M M M M M M M M M M M M M M M	0.84947 0.88024 0.91407 0.93534 0.95059 0.97852 0.99619 1.00766 1.00766 1.00788	0.00000 0.13094 0.20884 0.25287 0.29973 0.36373 0.44177 0.48284 0.52744 0.56050	0.0000 0.34500 0.51500 0.59600 0.66800 0.77100 0.82600 0.85600 0.85600 0.90900	7-61400 6-94200 6-08100 5-55500 4-96700 3-49600 3-14300 2-80900 1-84700	0.00000 0.04970 0.08469 0.10729 0.13449 0.19098 0.23627 0.27235 0.31470 0.37072
12 13 14 15 16 0 17 18 19 20	4,4200"-03 5.0550"-03 6.3250"-03 8.8650"-03 1.0140"-02 1.3940"-02 1.3940"-02 2,4100"-02	3.0426*+01 3.4925*+01 4.2907*+01 4.7873*+01 5.0674*+01 5.1728*+01 5.1728*+01 5.1728*+01 5.1728*+01	UM UM UM UM UM UM UM UM	1.00927 1.00853 1.00894 1.00894 1.00234 1.00000 1.00000	0.76448 0.81985 0.90990 0.96166 0.98966 1.00000 1.00000 1.00000 1.00000	0.94700 0.97800 0.97800 0.99800 1.00000 1.00000 1.00000 1.00000	1.60000 1.42300 1.19100 1.07700 1.02100 1.00000 1.00000 1.00000	0.00437 0.66728 0.63375 0.92665 0.97943 1.00000 1.00000 1.00000
INPUT \	VARIABLES	Y,U/UD,T/TD	ASSUME PER	o D				
670206	D2 DANE	DERG	PROFILE	TABULATION	27	POINTS, DE	LTA AT POI	NT 27
1	Y	PT2/P	P/PD	10/100	MYHD	U/UD	T/TD	RHO/RHOD*U/UD
12345678901234567 111111111111111111111111111111111111	0.0000"+00 2.7900"-04 4.4500"-04 5.7200"-04 6.7200"-04 7.5300"-04 7.5300"-04 7.5300"-03 1.4610"-03 2.0960"-03 4.0010"-03 4.0010"-03 5.2710"-03 5.2710"-03 5.2710"-03 5.2710"-03 5.2710"-03 5.2710"-03 1.260"-02 1.2670"-02 1.2670"-02	1.0000*+00 1.4060*+00 1.4072*+00 3.1272*+00 3.1302*+00 4.272**+00 1.1525*+00 1.1525*+01 1.7205*+01 2.005*+01 2.005*+01 2.005*+01 3.3094*+01 3.3094*+01 4.3773*+01 4.6723*+01 4.6723*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01 5.1046*+01	20M	0.87182 0.871833 0.871733 0.907973 0.904040 0.904040 0.904040 0.904040 0.909183 1.009183 1.0011314 1.0011314 1.0011314 1.0011314 1.0011314 1.0011314 1.0011314 1.0011314 1.0004568 1.00050	0.00000 0.11782 0.1486 0.26498 0.25498 0.35286 0.41155 0.51519 0.55902 .60439 0.64707 0.68848 0.82382 0.86388 0.89919 0.92729 0.92729 0.92729 0.92729 0.92729 0.93764 0.98731 0.98764	0.0000 0.31800 0.47500 0.47500 0.474000 0.54900 0.58300 0.98300 0.98300 0.99300 0.994700 0.981800 0.981800 0.994700 0.981800 0.99700 0.99700 0.99700 0.99700 0.90000 0.90000	7.285000 000000 7.85000 0.285000 0.405000 0.4050000 0.40500000 0.40500000 0.405000000 1.505000000 1.10000000 1.100000000000000000	0.00000 0.00365 0.07351 0.08979 0.11343 0.21090 0.21090 0.21090 0.34722 0.3
110.0		1,0700,7710	AUGUNE PAR	-0				
670266				TABULATION		POINTS, DE	-	
1 12345678901234678901200000000000000000000000000000000000	Y 0.J000*+00 2.7900*-04 4.8300*-04 4.8300*-04 6.1000*-04 1.1180*-03 1.3720*-03 1.6260*-03 2.2610*-03 4.1660*-03 4.1660*-03 4.1790*-02 1.1790*-02 1.4730*-02 1.4740*-02 1.4740*-02 1.94410*-02	PTZ/C 1.000*+00 1.4852*+00 1.4852*+00 2.10/0*+00 2.10/0*+00 4.058*+00 7.7650*+00 1.1468*+01 1.4408*+01 1.4408*+01 2.1732*+01 2.1732*+01 4.0075*+01 4.0075*+01 5.3455*+01 5.6719*+01 5.6719*+01 5.6719*+01	P P P P P P P P P P P P P P P P P P P	TU/TOD 0.82970 0.869247 0.89247 0.892410 0.992537 0.93446 0.961122 0.97327 0.99167 0.99157 0.99157 0.1210 1.01210	M/MD 0.10000 0.11712 0.14771 0.20540 0.25134 0.26911 0.35976 0.49962 0.44205 0.494205 0.494205 0.69462	UVD 0.0000 0.321800 0.321800 0.52700 0.64300 0.75300 0.849100 0.849100 0.94800	T / O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RHO/RHOD*U/UD 0.0000 0.04273 0.05447 0.06222 0.08241 0.10459 0.12607 0.17168 0.20895 0.23458 0.23458 0.23510 0.32757 0.41043 0.50345 0.71480 0.69276 0.94162 0.94162 0.94000 1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P#PD

67020604 DANB		0604 DANBERG PROFI		TABULATION	22	POINTS, DEL	TA AT POI	NT 22	
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	TZTD	RHO/RHOD*U/UD	
1	0.0000#+00	1.0000*+00	Им	0.82111	0.00000	0.00000	8.01800	0.00000	
2	2.7900"-04	1.4690*+00	NM	0.85589	0.11511	0.31500	7.48800	0.04207	
3	4.0600"-04	1.8398"+00	NW.	0.87166	0.14734	0.39400	7.15100	0.05510	
4	5.3300"-04	2.1092"+00	Им	0.88769	0.16477	0.43600	7.00200	0.06227	
5	6.6000"+04	3.2587"+00	ИM	0.90315	0.22031	0.54800	6.18700	0.08857	
6	7.8700"-04	4.2715"+00	ŊМ	0.91932	0.25846	0.61500	5.66200	0.10862	
7	1.0410"-03	6.74427+00	ИM	0.94649	0.33307	0.72100	4.68600	0.15386	
8	1.6760"-03	1.0924"+01	NM	0.97538	0.43033	0.82000	3.63100	0.22583	
9	2.3110"-03	1.3594"+01	₩	0.97578	0.48225	0.85400	3,13600	0.27232	
10	2.9460"-03	1.5631"+01	Им	0.97679	0.51835	0.87400	2.84300	0.30742	
11	3.5810"-03	1.7803*+01	NM	0.97942	0.55426	0.89200	2.59000	0.34440	
12	4.2160"-03	2.0105"+01	NM	0.98264	0.58993	0.90800	2.36900	0.38328	
13	4.8510"-03	10+"5955.5	ΝМ	0.98626	0.62150	0.92100	2.19600	0.41940	
14	6.1210"-03	2.7057"+01	NM	0.99353	0.68648	0.94400	1.89100	0.49921	
15	7.3910*-03	3.2435*+01	NM	1.00626	0.75271	0.96600	1.64700	0.58652	
16	8.6610"-03	3.7863"+01	NM	1.01044	0.61413	0.98000	1.44900	0.67633	
17	9.9310"-03	4.2984"+01	NM	1.01088	0.86808	0.98900	1.29800	0.76194	
18	1.1200"-02	4.7368*+01	NM	1.01061	0.91173	0.99500	1.19100	0.83543	
19	1.2470"-02	5.0486"+01	NM	1.00502	0.94155	0.99600	1.11900	0.89008	
20	1.3740"-02	5.2646"+01	ЙM	1.00430	0.96166	0.99800	1.07700	0.92665	
Ži	1.7550"-02	5.5456"+01	NM	1.00066	0.98722	0.99900	1.02400	0.97559	
0 22	2.3900"-02	5.6889"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000	

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

670209	01 DANBI	DANBERG		TABULATION	26	POINTS, D	ELTA AT POI	NT 26
1	Y	PT2/P	P/PD	TO/TOD	M/MD	מטעט	T/TD	RH0/RH00*U/U0
1	0.0000#+00	1.0000"+00	ИМ	0.49365	0.0000	0.00000		0.0000
2	3.0400"-04	4.3723"+00	MM	0.69950	0.26677	0.54200		0.13130
3	4.0600"-04	4.33547+00	ИМ	0.73260	0.26548	0.55300		0.12745
4 5	4.3100"-04	4.8888"+00	NM	0.76481	0.28417	0.58900		0.13710
5	4.6200"-04	5.9181"+00	NM	0.78807	0.31592	0.63500		0.15718
6	6.0900*=04	8.6824"+00	NM	0.84114	0.38834	0.72600	3.49500	0.20773
7	7.3600"-04	1.0711"+01	NM	0.86582	0.43379	0.77100	3,15900	0.24406
8	8.6300"-04	1.1642"+01	Им	0.88643	0.45311	0.79300	3.06300	0.25890
9	1.1170"=03	1.3164*+01	Им	0.90401	0.48302	0.81900	2.87500	0.28487
10	1.3710"-03	1.4694"+01	NM	0.91868	0.51134	0.84100	2.70500	0.31091
11	1.6250"-03	1.6242*+01	NM	0.92694	0.53846	0.85800		0.33793
12	1.8790"-03	1.7990"+01	NM	0.93614	0.56754	9.87500		0.36811
13	2.1330"-03	1.9912"+01	NM	0.94490	0.59787	0.89100		0.40117
14	2.6310"-03	2.4139"+01	NM	0.96265	0.65967	0.92000		0.47301
15	3.1490"-03	2.9065*+01	NM	0.97620	0.72508	0.94400		0.55693
10	3.7840"-03	3.5354"+01	ИМ	0.99452	0.80085	0.96900		0.66159
17	4.4190"-03	4.1659"+01	NM	0.99906	0.87022	0.98300		0.77038
18	5.0540"-03	4.5892"+01	NM	1.00260	0.91384	0.99190		0.84269
19	5.6890"-03	5.0001"+01	NM	0.99830	0.95427	0.99400	1.08500	0.91613
20	6.3240"-03	5.2153*+01	NM	0.99752	0.97479	0.99600	1.04400	0.95402
21	6.9590"-03	5.3582"+01	NM	0.99854	0.98817	0.99800	1.02000	0.97843
52	7.5840"-03	5.4269"+01	NM	0.99916	0.99453	0.99900	1.00900	0.99009
23	8.2290"-03	5.4591"+01	NM	1.00053	0.99751	1.00000	1.00500	0.99502
24	8.8640*-03	3.4645"+01	NM	1.00042	0.99801	1.00000	1.00400	0.99602
25	9.4990"-03	5.4753"+01	NM	1.00021	0.99900	1.00000	1.00200	0.99800
0 26	1.0770*-02	5.4662*+01	Mm	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

670209	02 DANBE	ERG	PROFILE	TABULATION	32	POINTS, DE	TA AT POI	NT 31
I	Y	PT2/P	P/P0	T0/10D	M/MD	U/UD	7/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NM	0.50244	0.00000	0.00000	4.73500	0.00000
2	3.7900*-04	4.3219*+00	ИW	0.71555	0.26541	0.54600	4.23200	0.12902
3	4.3000*-04	5.1394"+00	(IM	0.73743	0.29265	0.58800	4_03700	0.14565
4	5.0600"-04	6.7903"+00	μM	0.76794	0.34099	0.65200	3.65600	0.17834
5	5.3200"-04	7.2815"+00	ΝM	0.77889	0.35407	0.66900	3.57000	0.18739
6	5.5700"-04	7.6965"+00	NM	0.78674	0.36475	0.68200	3.49600	0.19508
7	7.6000"-04	1.0103"+01	NM	0.84576	0.42133	0.75300	3.19400	0.23575
8	1.0140"-03	1.1497*+01	NM	0.57697	0.45086	0.78700	3.04700	0.25829
9	1.2680"-03	1.2727"+01	NM	0.88796	0.47536	0.50700	2.88200	0.28001
10	1.5520"-03	1.4041"+01	NM	0.89270	0.50021	0.82300	2.70700	0.30403
11	1.7760"-03	1.7550"+01	NM	0.89974	0.56121	0.85500	2.32100	0.36838
12	2.0300*-03	1.6995"+01	NH	0.90802	0.55202	0.85500	2.39900	0.35640
13	2.2840"-03	1.8689"+01	Mii	0.91774	0.57964	0.87100	2.25800	0.38574
14	2.6650"-03	2.1146"+01	NM	0.93057	0.61750	0.89100	2.08200	0.42795
15	2.9190"-03	2.25134+01	NM	0.93756	0.63758	0.90100	1.99700	0.45118
16	3.3000*-03	2.5090"+01	IAM	0.95024	0.67364	0.91800	1.85600	0.49461
17	3.5540"-03	2.6790"+01	NM	0.96013	0.69671	0.92900	1.77800	0.52250
18	1.9330"-03	2.9907"+01	NM	0.96870	0.73681	0.94300	1.63800	0.57570
19	4.5700"-03	3.5007"+01	NM	0.98755	0.79809	0.96500	1.46200	0.66005
50	5.2050*=03	4.0233"+01	NH	0.99543	0.85634	0.97900	1.30700	0.74904
21	5.8400"-03	4.4705"+01	NM	1.00156	0.90321	0.98900	1.19900	0.82465
22	6.4750"-03	4.8135"+01	NM	1.00246	0.93757	0.99400	1.12400	0.85434
53	7.1100"-03	5.0796"+01	NM	1.00218	0.96339	0.99700	1.07100	0.93091
24	7.7450"-03	5.2405"+01	МИ	1.00267	0.97866	0.99900	1.04200	0.95873
25	8.3800"-03	5.3269"+01	ИМ	1.00287	0.98677	1.00000	1.02700	0.97371
26	9.6500"-03	5.3999"+01	NM	1.00138	0.99356	1.00000	1.01300	0.98717
27	1.0920"-02	5.4317*+01	NM	0.99874	0.99651	0.99900	1.00500	0.99403
28	1.3460*-02	5.4478"+01	ЙM	0.99843	0.99800	0.99900	1.00200	0.99701
29	1.6000"=02	5.4478"+01	NM	0.99843	0.99800	0.99900	1.00200	0.99701
30	1.85404-02	5.4533"+01	NM	1.00032	0.99850	1.00000	1.00300	0.99701
0 31	2.1080"-02	5.4695"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
32	2.3620"-02	5.4695"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
			• •					

INPUT VARIAGLES Y,U/UD,T/TD ASSUME P#PD

670209	03 DANBI	ERG	PROFILE	TABULATION	23	POINTS, DEL	LTA AT POI	NT 23
1	Y	PT2/P	P/PD	TO/TOD	HZHD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000#+00	1.0000#+00	NM	0.51561	0.00000	0.0000	4.70000	0.0000
2	3.3600"-04	3.2260"+00	(I)M	0.70486	0.22755	0.48400	4.52400	0.10698
3	4.6300"-04	5.1569"+00	NM	0.74779	0.29876	0,59400	3.95300	0.15027
4	5,9000"-04	6.7885*+00	MM	0.78385	0.34737	0.66000	3.61000	0.18283
5	8.4400"=04	8.6120*+00	NM	0.82685	0.39456	0.72000	3.33000	0.21622
6	1,0980"-03	9.5193"+00	NM	0.85048	0.41603	0.74700	3.22400	0.23170
7	1.3520"-03	1.0519"+01	MM	0.86394	0.43846	0.76900	3.07600	0.25000
8	1.9870"-03	1.3065"+01	NM	0.88274	0.49095	0.81000	2.72200	0.29758
9	2.6220*-03	1.5674"+01	NM	0.90059	0.53945	0.84300	2.44200	0.34521
10	3.2570"-03	1.8909*+01	ИM	0.92169	0.59412	0.87600	2.17400	0.40294
11	3.8920*-03	2.2254"+01	ИM	0.93638	0.64577	0.90200	1.95100	0.46233
15	5.1620*-03	2.9339"+01	NM	0.96821	0.74342	0.94300	1.60900	0.58608
i3	6.4320"-03	3.7157"+01	NM	0.99075	0.83805	0.97300	1.34800	0.72181
14	7.7020"-03	4.4080*+01	NH	1.00137	0.91369	0.99000	1.17400	0.84327
15	8.9720"-03	4.8511"+01	MM	1.00555	0.95899	0.99800	1.08300	0.92151
16	1.0240*-02	5,0056,+01	NM	1.00392	0.97400	0.99900	1.05200	0.94962
17	1.1510*-02	5.0594"+01	NM	1.00061				
					0.97956	0.99800	1.03800	0.96146
16	1,4050=-02	5.1429"+01	NM	0.99875	0.98768	0.99800	1.02100	0.97747
19	1.6590"-02	5.1579"+01	ИW	0.99842	0.98914	0.99800	1.01800	0.98035
20	1.9130*~02	5.1882"+01	ИM	0.99776	0.99207	0.99800	1.01200	0_98617
21	2.1670"-02	5.2190"+01	NM	0.99910	0.99503	0.99900	1.00800	0.99107
22	2.4210"-02	5.2499"+01	NM	0.99844	0.99800	0.99900	1.00200	0.99701
D 23	2.6750*-02	5.2706"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

67020	604 DANB	ERG	PROFILE	TABULATION	22	POINTS, DE	LTA AT POI	NT 22
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	7/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NM	0.82111	0.00000	0.00000	8,01800	0.00000
2	2.7900"-04	1.4690*+00	И₩	0.85589	0.11511	0.31500	7.48800	0.04207
3	4.0600*=04	1.8398"+00	ИW	0.87166	0.14734	0.39400	7.15100	0.05510
4	5.3300"-04	2.1092"+00	ИM	0.88769	0.16477	0.43600	7.00200	0.06227
5	6.6000"-04	3.2587"+00	NW.	0.90315	0.22031	0.54800	6.18700	0.08857
6	7.8700"-04	4.2715"+00	NM	0.91932	0.25346	0.61500	5.66200	0.10862
7	1.0410"-03	6.7442"+00	NM	0.94649	0.33307	0.72100	4.68600	0.15386
à	1.6760"-03	1.0924"+01	NM	0.97538	0.43033	0.82000	3.63100	0.22583
9	2.3110"-03	1.3594"+01	IIM	0.97578	0.48225	0.85400	3.13600	0.27232
10	2.9460"-03	1.5631*+01	NM	0.97679	0.51835	0.87400	2.84300	0.30742
ii	3.5010*+03	1.7803"+01	ЙW	0.97942	0.55426	0.89200	2.59000	0.34440
iż	4.2160"-03	2.0105"+01	ЙW	0.98264	0.58993	0.90800	2.36900	0.38328
13	4.8510"-03	2.2242*+01	ЙW	0.98626	0.62150	0.92100	2.19600	0.41940
14	6.1210"-03	2.7057*+01	NM	0.99353	0.68648	0.94400	1.89100	0.49921
15	7.3910*-03	3.2435*+01	ŅМ	1.00626	0.75271	0.96600	1.64700	0.58652
16	8.6610"-03	3.7863"+01	ЙM	1.01044	0.81413	0.98000	1.44900	0.67633
17	9.9310"-03	4.2984*+01	NM	1.01088	0.86808	0.98900	1.29800	0.76194
18	1.1200"-02	4.7368"+01	NM	1.01061	0.91173	0.99500	1.19100	0.83543
19	1.2470"-02	5.0486"+01	NM	1.00502	0.94155	0.99600	1.11900	0.89008
žó	1.3740"-02	5.26467+01	NM	1.00430	0.96166	0.99800	1.07700	0.92665
Ži	1.7550"-02	5.5456"+01	NM	1.00066	0.98722	0.99900	1.02400	0.97559
D 55	2.3900"-02	5.6889*+01	N M	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD,T/TD ASSUME P=PD

67020901	L DANBE	DANBERG		TABULATION	26	POINTS, DE	LTA AT POI	NT 26
1	Y	PT2/P	P/PD	T0/T0D	M/MD	מטעט	7/10	RHO/RHOD*U/UD
2 3	0.0000*+00 3.0400*-04	1.0000*+00	NM NM	0.49365 0.69950	0.00000	0.00000	4.66500 4.12800	0.00000
4 4	4.0600"=04 4.3100"=04 4.8200"=04	4.3354*+00 4.6868*+00 5.9181*+00	MI) 1411 1411	0.73260 0.76481 0.78807	0.26548 0.28417 0.31592	0.55300 0.58900 0.63500	4.33900 4.29600 4.04000	0.12745 0.13710 0.15718
7 7	5.0900"=04 7.3600"=04 8.6300"=04	8.6824"+00 1.0711"+01 1.1642"+01	NM NM MM	0.84114 0.86582 0.88643	0.38834 0.43379 0.45311	0.72600 0.77100 0.79300	3.49500 3.15900 3.06300	0.20773 0.24406 0.25890
9 1 10 1	1.1170"-03 1.3710"-03 1.6250"-03	1.3164"+01 1.4694"+01 1.6242"+01	NM NM NK	0.90401 0.91868 0.92694	0.48302 0.91134 0.53846	0.81900 0.84100 0.85800	2.87500 2.70500 2.53900	0.28487 0.31091 0.33793
12	1.8790"-03 2.1330"-03 2.6310"-03	1.7990*+01 1.9912*+01 2.4139*+01	NM NM	0.93614 0.94490 0.96265	0.56754	0.87500 0.89100	2.37700 2.22100	0.36511
15 1 16 3	3.1490*=03 3.7840*=03	2.9065"+01 3.5354"+01	NM NM	0.97620 0.99452	0.65967 0.72508 0.80065	0.92000 0.94400 0.96900	1.74500 1.69500 1.46400	0.47301 0.55693 0.66159
18 9	4.4190"-03 5.0540"-03 5.6690"-03	4.1659"+01 4.5892"+01 5.0001"+01	NM NM NM	0.99906 1.00260 0.79830	0.87022 0.91384 0.95427	0.98300 0.99100 0.99400	1.27600 1.17600 1.08500	0.77038 0.84269 0.91613
21 6	6.3240"-03 6.9590"-03 7.5840"-03	5.2153"+01 5.3562"+01 5.4269"+01	NM NM NM	0.99752 0.99654 0.99916	0.97479 0.98817 0.99453	0.99600 0.99800 0.99900	1.04400 1.02000 1.00900	0.95402 0.97843 0.99009
25	8.2290"-03 8.8640"-03 9.4970"-03 1.0770"-02	5.4591"+01 5.4645"+01 5.4753"+01 5.4862"+01	NM NM NM	1.00043 1.00042 1.00021 1.00000	0.99751 0.99801 0.99900 1.00000	1.00000 1.00000 1.00000	1.00500 1.00400 1.00200 1.00000	0.99502 0.99602 0.99800 1.00000

INPUT VARIABLES Y, U/UD, T/TO ASSUME PEPD

2-(-3								
67020	902 DAN	BERG	PROFILE	TABULATION	32	POINTS, DEL	LTA AT POI	NT 31
1	Y	PT2/P	P/PD	TOTTOD	M/MD	מטעט	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	ИМ	0.50244	0.00000	0.00000	4.73500	0.00000
2	3.7900*-04	4.3219"+00	NM	0.71555	0.26541	0.54600	4.23200	0.12902
3	4.3000"-04	5.1384"+00	MW	0.73743	0.29265	0.58800	4.03700	0.14565
4	5.0600"-04	6.7903"+00	ΝМ	0.76794	0.34099	0.65200	3.65600	0.17834
5	5.3200*-04	7.2815"+00	NM	0.77889	0.35407	0.66900	3.57000	0.18739
6 7	5.5700"-04	7.6965"+00	NM	0.78674	0.36475	0.68200	3,49600	0.19508
7	7.6000"-04	1.0103"+01	NМ	0.84576	0.42133	0.75300	3.19400	0.23575
8	1.0140"-03	1-1497"+01	NM	0.87697	0.45086	0.78700	3.04700	0.25829
9	1.2680"-03	1.2727*+01	NM	0.88796	0.47536	0.80700	2.85200	0.28001
10	1.5520"-03	1.4041"+01	NM	0.89270	0.50021	0.82300	2.70700	0.30403
11	1.7760"-03	1.7550"+01	NM	0.89974	0.56121	0.85500	2.32100	0.36838
iż	2.0300"-03		NM	0.90802	0.55202	0.85500	2.39900	0.35640
13	2.2840*-03		NM	0.91774	0.57964	0.87100	2.25800	0.38574
14	2.6650"-03		NM	0.93057	0.61750	0.89100	2.08200	0.42795
15	2.9190*-03		ŃН	0.93736	0.63758	0.90100	1.99700	0.45118
16	3.3000"=03		ИM	0.95024	0.67384	0.91800	1.85600	0.49461
17	3.5540"-03		ЙM	0.96013	0.69671	0.92900	1.77800	0.52250
īà	3.9330"=03		ŊΜ	0.96870	0.73681	0.94300	1.63800	0.57570
19	4.5700*=03		RM	0.98755	0.79809	0.96500	1.46200	0.66005
žó	5.2050*=03		MM	0.49543	0.85634	0.97900	1.30700	0.74904
Žĺ	5.8400"-03		йM	1.00156	0.90321	0.98900	1.19900	0.82485
žž	6.4750"-03		NM	1.00246	0.93757	0.99400	1.12400	0.88434
23	7.1100 -03		NM	1.00216	0.96339	0.99700	1.07100	0.93091
24	7.7450"-03		NM	1.00267	0.97866	0.99900	1.04200	0.95873
25	8.3800"-03		NM	1.00287	0.98677	1.00000	1.02700	0.97371
20	9.6500"=03	5.3999*+01	NM	1.00138	0.99356	1.00000	1.01300	0.98717
27	1.0920"-02		NM	0.99874	0.99651	0.99900	1.00500	0.99403
Žέ	1.3460"-02		NM	0.99843	0.99800	0.99900	1.00200	2.99701
29	1.6000"-02		NM	0.99843	0.99800	0.99900	1.00200	0.99701
30	1.8540"-02		NM	1.00032	0.99850	1.00000	1.00300	0.99701
D 31	2.1080*-02		NM	1.00000	1.00000	1.00000	1.00000	1.00000
38	5.3650"-05		NM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,U/UD,T/TD	ASSUME PE	PD				
67020	903 DAN	BERG	PROFILE	TABULATION	23	POINTS, DEL	TA AT POI	NT 23
1	Y	PT2/P	P/PD	TU/TOD	MZHD	מטעט	1/10	RH0/RH0D*U/UD
i	0.0000"+00		NM	0.51561	0.00000	0.00000	4.70000	0.00000
3	3.3600"=04	3.2260*+00	HM	0.70486	0.22755	0.48400	4.52400	0.10648
4	4.6300"-04		NM	0.74779	0.29876	0.59400	3.95300	0.15027
5	5.9000"-04		NW	0.78385	0.34737	0.66000	3.61000	0.18283
	8.4400"-04		NM	0.82685	0.39456	0.72000	3.33000	0.21622
ģ	1.0980"-03		NM	0.85048	0.41603	0.74700	3.22400	0.23170
7	1.3520"-03	1.0514*+01	ИW	0.86394	0.43846	0.76960	3.07600	0.25000

670209	03 DANBI	DANBERG		TABULATION	53	POINTS, C	ELTA AT POS	NT 23	
1	Y	PT2/P	P/PD	TU/TOD	MZHD	UZUN	7/10	RHO/RHOD#U/UD	
i	0.0000"+00	1.0000*+00	NM	0.51561	0.00000	0.0000	4,70000	0.00000	
2	3.3600"-04	3.2260*+00	MM	0.70486	0.22755	0.48400	4.52400	0.10648	
3	4.6300"-04	5.1569"+00	NM	0.74779	0.29876	0.59400	3,95300	0.15027	
4	5.9000"-04	6.7885"+00	MW	0.78385	0.34737	0.66000	3.61000	0.18283	
5	8.4400*-04	8.6120*+00	NM	0.82685	0.39456	0.72000	3.33000	0.21622	
ė	1.0980"-03	9.5193"+00	NM	0.85048	0.41603	0.7470	3.22400	0.23170	
7	1.3520"-03	1.0514"+01	ИM	0.86394	0.43846	0.76900	3.07600	0.25000	
8	1.9870"-03	1.3065"+01	NM	0.88274	0.49095	0.81000	2.72200	0.29758	
9	2.6220"-03	1.5674"+01	NM	0.90059	0.53945	0.84300	2.44200	0.34521	
10	3.2570"-03	1.8909"+01	NW	0.92169	0.59412	0.87600	2.17400	0.40294	
11	3.8920"-03	2.2254"+01	NM	0.93838	0.64577	0.90200	1.95100	0.46233	
12	5.1420*-03	2.9339"+01	NM	0.96821	0.74342	0.94300	1.60900	0.38608	
13	6.4320"-03	3.7157"+01	NM	0.99075	0.83805	0.97300	1.34000	0.72181	
14	7.7020*-03	4.4080*+01	NM	1.00137	0.91369	0.99000		0.84327	
15	0.9720"-03	4.8511"+01	HM	1.00555	0.95899	0.99800		0.92151	
16	1.0240"-02	5.00264+08	NM	1.00392	0.97400	0.9990		0.94962	
17	1.1510"-02	5.0594"+01	NM	1,00061	0.97956	0.9980		0.96146	
18	1.4050"-02	5.1429*+01	NM	0.99675	0.98758	0.99800	1.02100	0.97747	
19	1.6570"-02	5.1579"+01	ИW	0.99842	0.98914	0.99800		0.98035	
20	1.9130"-02	5.1882"+01	NM	0.99776	0.99207	0.99800		0.98617	
21	2.1470"-02	5.2190"+01	NM	0.99910	0.94503	0.99900		0.99107	
22	2.4210"-02	5.2499"+01	ЙM	0.99844	0.99800	0.99900		0.99701	
D 23	2.6750"-02	5.2708"+01	NM	1.00000	1.00000	1.00000		1.00000	

INPUT VARIABLES Y, U/UD, T/TO ASSUME PMPD

For model arrangements see figure 1, on following pages.

M: ZPG, NPG, 2.5 APG, 2.5 to 1.6 FPG, 2.5 to 3.25 R THETA X 10⁻³: 7 TW/TR: 0.8 6800

ZPG. APG. FPG. NORMAL PG. MHT

Blow-down wind-tunnel, effectively continuous running. W = 0.234, H = 0.334 m. PO: 0.1 NN/m^2 TO: 290 K. Air. specific humidity 1-3 X 10⁻⁴. RE/m: 14 X 10⁶ at M = 2.5

THOMANN H. 1968. Effect of streamwise wall curvature on heat-transfer in a turbulent boundary layer. J. Fluid Mech. 33, 283-292.

And Drougge, G. Private communications.

Also Thomann H. (1967).

- The test surfaceswere two flexible stainless steel sheets, one with pressure taps and the other with thermocouples attached. In all cases these were mounted so that the first 317.5 mm (= L) from the leading edge (X = 0) formed a flat plate on which the test boundary layer was grown under identical conditions.
- The Mach number in this region was 2.48 with a small high velocity region (M = 2.51) around X = 100 mm. A boundary layer trip of carborundum grains either 0.22 or 0.35 mm in diameter extended 3.5 mm downstream from X = 25 mm. The larger trip was used for all tests except the flat plate case. Heat transfer data indicate that transition took place near X = 100 mm.
- The supporting structure after X = 317.5 mm could be changed so as to give either a straight continuation of the flat surface, or provide a bond in either direction with radii of curvature of either 150 or 300 mm. The curvature ceased when the deflection was 20°, with a further straight section downstream. With no further addition this provided for ZPG = flat plate tests and APG, FPG = SW (simple wave) generated expansions and compressions of two strengths. Additionally various ramps could be mounted over the test surfaces. One of these was shaped to give, if mounted above the test surface when arranged as a continuous flat plate, an APG-RW (reflected wave) compression with the same longitudinal pressure history as the more gentle (RZ = 300 mm) simple wave APG case. Other bodies were shaped and mounted as to produce on the curved surfaces incident waves of equal and opposite strength to those produced by the curved surfaces themselves. The results were flows with zero longitudinal pressure gradients but strong normal pressure gradients the NPG cases. The NPG is negative on a concave surface, which without the body would cause an APG, and vice versa. In all cases the imposed pressure gradient started at X = 317.5 mm. The various
- The stainless steel sheet used for pressure plotting had tappings (d = 0.8 mm) on the centre-line at X = 47.5 mm and thereafter at intervals of 30 mm until X = 317.5 mm. On the rear part of the sheet the

arrangements are shown in figure 1. Great care was taken to ensure that the flow was two-dimensional.

- tappings were placed at longitudinal and lateral intervals of 10 mm in the locations shown in figure 2 and listed in the table below. The placing of the 0.25 mm iron constantan thermocouples on the heat transfer plate was the same. Heat transfer was measured by a transient technique. The model was covered by a layer of crushed solid Carbon Dioxide, to precool the thin stainless steel sheet. The $\rm CO_2$ was blown away when the tunnel started and the subsequent time history allowed the heat transfer rate to be determined. The large number of thermocouples on the rear portion (X > 317.5 mm) allowed the longitudinal conduction correction to be determined for those points, 7 in all, surrounded by 4 other thermocouples.
- 9 Some interpolation or adjustment is implicit in the use of curve fitting to obtain the temperature differentials needed for the heat transfer determination. The author's values have been accepted.
- 14 The wall data is presented in the tables below. These consist of tabulated wall pressure values and uncorrected Stanton numbers for each of the ten two dimensional configurations tested. Conduction corrections, when applied, were in general less than 5 %. The larger corrections are indicated by arrows in figures 4 to 7 of the source paper.
- § DATA: 6800. No profiles. Heat transfer by the transient technique, wall pressures.

15 Editors' comments

This, the only entry which is not profile-based, and for which there are in fact no profiles, is included because of the complete coverage of the possible types of pressure gradient which is provided. We feel that, in spite of the high quality of this experiment, a repeat on a larger scale, incorporating profile measurements, would be invaluable. The lack of profile information at the start of the pressure gradients may be easily overcome by correlating known flat plate data. The differences in succeeding wall heat transfer provide a very good test for any advanced turbulence calculation method. There is a 30 - 40 % range in the local heat transfer coefficients for different values of the normal pressure gradient, and while some part of this for the concave configurations 06 and 07 may result from longitudinal vortex structures, the differences of up to 20 % for the convex configurations 08 and 09 is unlikely to have any such cause.

The Mach numbers presented are based on the wall pressure measurements, and because of the normal component of the pressure gradients, the Mach number at the boundary layer edge will be significantly different for all cases except configurations 1 and 10.

Figure 1 - ARRANGEMENT OF MODELS (FACSIMILE)

FIGURE 2: LOCATION OF HEASURING STATIONS (FACSIMILE)

The mominal position of each measuring station is given by X-distance from the leading edge, x-distance from the start of the pressure gradient, 2-distance from the centre line. All dimensions are in mm, and the actual placing of instrumentation was within 0.1 = of its nominal position.

The Stanton numbers given represent the mean of a large number of determinations taken as the model temperature rose. They are normalised to conditions for which 10 = 230 K, 14 = 212.5 K.

5 (= 150	3 C	2.50 2.51 2.51 2.51 2.50 2.50	2.50 2.49 2.49 2.48 2.56	2.68 2.88 2.88 2.98 3.80	3.24.11.26	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	3.3.36 3.13.36 3.13.36 3.13.36	3.13 3.13 3.09	3.93
Configuration (od/d	0.0596 0.0584 0.0576 0.0582 0.0580	0.0586 0.0594 0.0596 0.0602 0.0535	0.0460 0.0458 0.0462 0.0371	0.0290 0.0290 0.0231 0.0192	0.6192 0.0164 0.0149 0.0139	0.0139 0.0160 0.0176 0.0225 0.0223	0.0223 0.0222 0.0231 0.0237	0.0237
Confi	StX10 ³		- - 1.48616 1.38876	1.38376 1.34630 1.31365 1.20676 0.97301	1.13582 1.08955 1.02755 0.82899 0.98040	1.03477 0.95242 0.99621 0.91605 0.79991	1.06147 0.86099 0.83968 0.68973 0.55933	1.03981 0.50468 1.19532	0.18604
	x	2,55 2,55 2,55 2,55 5,55 5,55 5,55 5,55	2.50 2.49 2.48 2.52	2.57 2.57 2.62 2.62 2.63	2.67 2.67 2.74 2.78 2.78	2.82 3.17 3.17 4.15	3.14 3.27 3.35 3.35	3.5. 3.5. 3.5. 5.5. 5.5. 5.5. 5.5. 5.5.	3.33
Configuration Sur RX	8/2	0.0600 0.0565 0.0578 0.0588 0.0586	0.0588 0.0598 0.0602 0.0604 0.0658	0.0524 0.0520 0.0524 0.0485 0.0485	0.0451 0.0445 0.0401 0.0345 0.0343	0.0345 0.0293 0.0255 0.0217	0.0221 0.0193 0.0163 0.0163	0.0179 0.0173 0.0167 0.0155	0.0167 0.0165 0.0181
Conf	Stx10 ³	0.44175 1.91033 1.73723 1.70132 1.54843	1.47186 1.42264 1.39985 1.39158 1.44049	1.46428 1.40345 1.48215 1.41505 1.47939	1.36330 1.30901 1.34088 1.35882 1.33279	1.27841 1.26095 1.13116 1.09584 0.93265	1.13845 1.06278 1.10255 1.18705 0.99820	1.13260 0.95900 1.26004	
3 150	=	2.49 2.50 2.51 2.49 2.49	2.49 2.49 2.37 2.37	2.30 2.30 2.18 2.18	2.03 2.03 1.92 1.85	1.85 1.81 1.75 1.75 1.72	11.13 13.33	1.72	1.74
Configuration APG SH RX	8/4	0.0596 0.0584 0.0580 0.0590 0.0590	0.0590 0.0594 0.0590 0.0590 0.0606	0.0801 0.0797 0.0803 0.0965 0.1226	0.1216 0.1216 0.1457 0.1457 0.1596	0.1600 0.1724 0.1890 0.1951 0.1975	0.2003 0.1880 0.2003 0.2003	0.1949 0.1964 0.2003 0.1937	0.1894 0.1947 0.2003
Conff	s ta 10³	3.56489 1.95582 1.77047 1.74729 1.54925	1.49733 1.43502 1.39841 1.38066 1.43841	1.450 <i>67</i> 1.47193 1.46855 1.45229 1.44195	1.46737 1.45407 1.53909 1.62906 1.62748	1.63907 1.68707 1.67458 1.66661 1.65027	1.64295 1.63668 1.59156 1.62908 1.58847	1.52346 1.52581 1.62788	1.58186
2 # 300	=	2.55 2.55 2.55 2.50 2.50 2.50	2522 252 252 253 253 253 253 253 253 253	2.33 2.33 2.33 2.23	2.2 2.2 2.2 2.13 2.13	2.12 2.05 1.96 1.90	1.89 1.78 1.73 1.73	1.74	1.74
Configuration APG SM RX	0d/d	0.0591 0.0577 0.0573 0.0587	6.0591 0.0595 0.0593 0.0664	0.0710 0.0702 0.0710 0.0763 0.0837	0.0833 0.0833 0.0934 0.1050	0.1062 0.1187 0.1349 0.1496 0.1484	0.1510 0.1652 0.1799 0.1927 0.1925	0.1918 0.1916 0.1892 0.1914	0.1918 0.1927 0.1991
Confi	Sexto	3.28328 1.67911 1.73625 1.70850 1.53036	1.4462 1.40718 1.36394 1.36887 1.36430	1.3523 1.36270 1.3628 1.36361 1.37511	1.38342 1.39108 1.42403 1.4456 1.44466	1,4486 1,4902 1,51676 1,57405 1,57325	1.54682 1.58002 1.56793 1.57685 1.54752	1.45007 1.54435 1.71354	1.55546
H	=	2.25 2.25 2.25 2.25 2.25 2.25	2.2.2.2.2 \$ \$ \$ \$ \$ \$	2:43	2.2.4 2.2.4 2.88 2.88 3.88	7.2.2.2.5 7.8.7.8.8.8	55.55 55.55	22,22,2 22,22,2 23,23,23,2 23,23,2 23,23,2 23,23,2 23,2 23,2 23,2 23,2 23,2 23,2 23,2 23,2 23,2 24,2 24	2.45 2.46 2.46
iguration 1 ZPG	0d/d	0.0596 0.0580 0.0584 0.0596 0.0598	0.0596 0.0603 0.0601 0.0600 0.0605	0.0603 0.0603 0.0611 0.0609	0.06.1 0.0611 0.0609 0.0607 0.0605	0.0615 0.0603 0.0613 0.0607 0.0607	0.0615 0.0609 0.0617 0.0623 0.0619	0.0619 0.0621 0.0623 0.0623 0.0633	0.0629 0.0623 0.0619
T.	secto ³	1.28051 2.00516 1.76443 1.71658 1.57595	1.51350 1.4361 1.37567 1.39556 1.39166	1.38115 1.37134 1.36530 1.33040 1.28976	1.31751 1.3088 1.3000 1.29974 1.30954	1,29532 1,31400 1,30312 1,28805 1,2779	1.20711 1.2309 1.2309 1.2501 1.20306	1.21238	1.26720
	~ 1	00000	99000	08800	22002	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	82802	8222	888
Location of measuring station	н 🖩	222399	22888°	22222	គគ្គនុន ស	88288	88833	22222	921
Loc	×I	47.5 17.5 167.5 187.5 187.5	201.5 201.5 201.5 201.5 31.5	200.5 200.5 200.5 200.5 200.5	347.5 347.5 367.5 367.5	367.5 377.5 387.5 397.5	397.5 407.5 477.5 477.5	60:5 60:5 60:5 60:5 60:5	427.5 427.5 437.5

The nominal position of each measuring station is given by X-distance from the leading edge, x-distance from the start of the pressure gradient, 2-distance from the centre line. All dimensions are in um, and the actual placing of instrumentation was within D.i mm of its nominal position.

The Stanton numbers given represent the mean of a large number of determinations taken as the model temperature rose. They are normalised to conditions for which T0 = 299 K, T4 = 212.5 K.

6	×	2.2.2.2.2 822288	2.2.2.5 2.45 2.45 8.85 8.85 8.85 8.85 8.85 8.85 8.85 8	2.51 2.51 2.51 2.46 2.35	2.33 2.25 2.19 2.19	2.12 2.01 1.94 1.94	1.87	1.72	1.72
Configuration 10	PC 824	0.0579 0.0579 0.0575 0.0585 0.0583	0.0587 0.0595 0.0591 0.0607 0.0607	0.0573 0.0567 0.0575 0.0625	0.0756 0.0760 0.0866 0.0948 0.0954	0.0950 0.1059 0.1261 0.1400 0.1394	0.1412 0.1560 0.1891 0.1967 0.1967	0.1967 0.1967 0.1963 0.1963	0.1967 0.1967 0.1779
Config	Stx10 ³	2.55807 1.98614 1.74977 1.73848 1.54758	1.50282 1.44709 1.40577 1.38444 1.41086	1.37853 1.43096 1.41745 1.40813 1.36306	1.35861 1.34764 1.31449 1.33039 1.33145	1.33953 1.33068 1.34520 1.34520	1.33317 1.32193 1.33217 1.37007 1.31420	1.30890 1.30933 1.43090	1.30645
	RX = 150	2.51 2.51 2.51 2.51 2.51	2.50 2.50 2.49 2.53 2.53	2.62 2.62 2.65 2.66 2.56	2.55 2.55 2.55 2.55 2.55 3.55	2.52 2.52 2.53 2.53 2.53	2.55 2.55 2.55 2.55	2.55 2.54 2.52 2.38	2.18 2.24 2.50
Configuration 9	+ve RX p/po	0.0587 0.0573 0.0567 0.0577 0.0577	0.0579 0.0587 0.0593 0.0605 0.0573	0.0486 0.0490 0.0505 0.0505	0.053 0.053 0.053 0.055 0.056	0.0557 0.0579 0.0561 0.0561	0.0573 0.0541 0.0533 0.0543	9.0545 0.0553 0.0569 0.0705	0.6962 6.9876 0.0587
Conf	NPG Stx10 ³	1.23486 1.99142 1.79312 1.76199 1.61005	1.52650 1.47112 1.40830 1.55177 1.45738	1.36682 1.41799 1.41145 1.30053 1.25722	1.27124 1.24492 1.23244 1.17595 1.19860	1.19976 1.17597 1.14720 1.12711 1.10660	1.21923 1.15585 1.23214 1.20676 1.18767	1.21949 1.23647 1.49688	1.26375
60	300	2.2.2.2. 2.2.5.5.5.5.5.5.5.5.5.5.5.5.5.5	2.52 2.53 2.53 2.51	2.55 2.55 2.55 2.55 3.55 3.55 3.55 3.55	2.5.57 2.5.57 2.5.53 2.553 2.5	2.53 2.53 2.53 2.53	2.2.5 2.2.5 2.2.5 2.5.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	2.55 2.55 2.58 2.59	2.5 2.5 2.5 2.5 3
Configuration 8	p/90	0.0585 0.0585 0.0575 0.0587 0.0585	0.0589 0.0601 0.0601 0.0603	0.0523 0.0523 0.0523 0.0513	0.0537 6.0527 0.0555 0.0539 6.0543	0.0541 0.0625 0.0535 0.0535 0.0555	0.0571 0.0577 0.0615 0.0609	0.0597 0.0585 0.0607 0.0593	0.0575 0.0571 0.0597
Š	sexto ³	0.49306 1.88348 1.70887 1.67757	1.47519 1.40816 1.37282 1.37179 1.38487	1.36517 1.36639 1.37955 1.35045 1.36888	1.31769 1.25482 1.30373 1.34566 1.30617	1.28337 1.27626 1.18953 1.13210 1.01688	1.12578 1.11362 1.09024 1.05568 1.03323	1.10038 1.04596 1.17167	1.10879
	RX = 150	2.2.5 2.2.5 2.2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	%4%44 %4%44	22.22.2 22.22.23.23.23.23.23.23.23.23.23.23.23.2	2.2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.2.2.2.2	22222	2.04 1.89 1.75 1.75	1.74 1.75 1.75 1.75	1.75
Configuration 7	-ve RX	0.0594 0.0578 0.0576 0.0586	0.0586 0.0590 0.0586 0.0604 0.0667	0.0562 0.0562 0.0562 0.0588 0.0588	0.0551 0.0541 0.0537 0.0503 0.0513	0.0497 0.0476 0.0564 0.1196 0.1181	0.1210 0.1521 0.1740 0.1872 0.1862	0.1895 0.1895 0.1872 0.1901	0.1911 0.1886 0.1988
Confi	MPG StX10 ³	2.91960 1.95175 1.74957 1.72764 1.58836	1,51237 1,45344 1,41949 1,38057 1,43052	1.38086 1.45011 1.46410 1.36580 1.42723	1.40141 1.40956 1.41411 1.48472 1.48028	1.48719 1.60907 1.93023 1.57025 1.6235,	1.54022 1.57329 1.46403 1.44818 1.40190	1.40393 1.19492 1.65839	1.40623
٠	300 = 300	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	22222 2424 2444 2444	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2.55 2.55 2.55 5.55 5.55	2.2.2.2.2 2.2.2.2.2 2.2.2.2.2	2.51 2.52 2.52 2.52 2.52 2.52	2.52	2.53 2.53 2.51
Configuration 6	# 66 # 62	0.0595 0.0581 0.0591 0.0591	0.0593 0.0597 0.0609 0.0609	0.0575 0.0567 0.0575 0.0546 0.0546	0.0540 0.0536 0.0536 0.0536 0.0546	0.0543 0.0573 0.0556 0.0573	0.0573 0.0573 0.0567 0.0567 0.0563	0.0565 0.0567 0.0561 0.0561	0.0571 0.0565 0.0579
Š	stx10 ³	1.51364 1.96826 1.75473 1.72734 1.54416	1.46863 1.41629 1.36747 1.36544 1.35880	1.31156 1.35643 1.37266 1.36237 1.42363	1.41745 1.36524 1.41615 1.43610 1.42795	1.4824 1.42134 1.48656 1.46188 1.48159	1.50144 1.45267 1.50014 1.50031 1.38757	1.77479 1.43805 1.75001	1.74096
<u>ا</u> پيد	5 ~ 1	00000	00000	0 0 0 0 0	20000	- 10 - 10 - 10 - 10	89809	28228	848
LOCATION OF	2 ×	052 - 051	2888°	22288	목본국장장	88588	888333	22222	998
3	× •	47.5 100.5 100.5 100.5 100.5	197.5 222.5 250.5 200.5 317.5	25.00 25.00	247.55 24.75	367.5 377.5 387.5 387.5	397.5 417.5 417.5 417.5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	427.5 427.5 437.5

Axisymmetric gun-tunnel. Running time 10 - 20 ms. D = 0.1 m PO : 12 - 32 M/m^2 . TO : 823 - 1120 K. Nitrogen. RE/m X 10^{-6} : 9 - 47.

PERRY J.H. and EAST R.A. 1968. Experimental measurements of cold wall turbulent hypersonic boundary layers. AGARD CP no 30.

And Perry J.H., PhD Thesis, University of Southampton 1968, East R.A., private communications.

- 1 The test boundary layer was formed on the wall of a 7.5° included angle conical nozzle. Two different throat blocks were used, the throat (X = 0) diameters being 4.80 and 2.44 mm. Measurements were made at three instrumentation ports in the downstream half of the nozzle. The diameter at the middle port was
- 87.7 mm. The test surface was finished to within 1.3 μ m, and was not actively cooled. The throat Raynolds numbers were in the range 9.7 27 \times 10⁶ and "should have been sufficiently high to ensure transition of the boundary layer at the throat".
- 6 Wall static pressure was measured with piezo-electric (Kistler 7013) transducers mounted in cavities immediately behind the static tappings (d = 0.4 mm) while it was assumed that, during the very short run, the wall temperature did not vary significantly from room temperature, approximately 290 K, except perhaps at the throat. The wall heat transfer rate was measured using platinum thin-film gauges mounted flush with the surface on a Pyrex substrate.
- Pitot profiles were measured by a rapidly traversed FPP ($h_1 = 1.12$, $h_2 = 0.56$, $b_1 = 1.78$, $b_2 = 1.22$, l = 51 mm) the observed pressures being compared to values obtained with an identical fixed FPP. Agreement outside the inner 15 % of the boundary layer was good, but only values from the fixed probe were used in the inner region. For some of the low Mach number runs a fixed FPP with $h_1 = 0.56$ mm was used. Total temperature profiles were measured with a special STP (East and Perry 1967). This had a heating circuit built into the outer shield so that the probe could be pre-heated to temperatures near those expected in the run. The procedure used required two readings, with the probe body temperature slightly above and below that recorded by the thermocouple bead. For the front face $d_1 = 1.78$, $d_2 = 0.79$ mm, while a conical fairing ran back to the main probe body for which $d_1 = 2.79$ mm.
- 8 The three measuring stations were at 101.6 mm axial intervals, the first at X = 549 mm with the large throat and at 565 mm with the small throat. The design of the probes was such that TO profiles were taken 17.8 mm downstream of the equivalent PT2 profiles, with additional values 33 mm upstream of the last station. The
- 9 authors have interpolated the TO data to the X and Y stations of the PT2 data. The data presented is calculated from curves faired through the original data points of the Mach number and TO profiles. The
- 12 editors have accepted this. In association with the profiles the editors have quoted the Stanton number and the CF value as obtained from the velocity gradient at the wall by the authors. Static pressure was assumed
- 10 constant through the boundary layer and no corrections were applied to the profile data.
- 13 The profiles presented consist of four sets of three obtained at Mach numbers near 9 with the large throat and four sets of three and one individual profile at Mach numbers near 10.5 with the small throat. The wall
- 14 data consists of the measured heat flux and CF deduced from the wall velocity gradient.
- § DATA: 6801 0101-0903. Pitot and TO profiles obtained piecemeal separately in a great number of runs. Nx \simeq 3. Heat transfer measurements.

15 Editors' comments

It is probably impossible at present to interpret these measurements in terms of correlations drawn directly from flat plate experience. Despite the apparently high Reynolds numbers, the majority of the profiles

display marked transitional characteristics in both the inner and outer regions. There are no available direct comparisons, the geometrically similar study by Hill - CAT 5901 being made at much lower Reynolds number. The profiles form a self-consistent set differing markedly from both ZPG results and FPG results measured in contoured nozzles.

The profiles are presented in fine detail, which is notable in view of the great amount of work required (each TO measurement required two runs) and the difficulty of normalising the data in a facility of this type, for which free stream conditions are never entirely repeatable. The TTP was larger than the TPP so that some TO data near the wall are interpolated.

The layer is growing on a straight (conical) wall so that the assumption of zero normal pressure gradient is reasonable (Hill reports no detectable difference across the layer in CAT 5901).

CAT 6801	PERRY	BOUNDARY CONDITIONS AND EVALUATED DATA. SI UNITS.								
RUN	MD ·	TW/TR	REDZW	CF *	H12	H15k	PW	PD		
X *	₽ 0D★	PW/PD*	RED2D	CG *	H32	H32K	TW*	TD		
RZ *	TOD*	5W *	0.5	PIZ	H42	DSK	UD	ŤŘ		
68010101	8.0000	0.3900	3.2655*+03	5.2300*-04	8.8645	1.4765	1.3771"+03	1.3771"+03		
5.4864"-01	1.3445"+07	1,0000	1.3558*+04	2.1791"-04	1.8235	1.7858	2.9000*+02	5.9638"+01		
-3.6820*-02	8.2300*+02	0.0000	5.6050"-04	NM	1.3029	1.2233*-03	1.2587"+03	7.4361*+02		
68010102	8,5000	0.3903	2.6483"+03	5.4600*-04	10.8667	1.4945	8.9894*+02	8.9894*+02		
6.5024"-01	1.3031"+07	1.0000	1.2309"+04	2.9653"-04	1.8210	1.7816	2.9000*+02	5.3269*+01		
-4.3830*-02	8.2300"+02	0.0000	6.4150"-04	NM	1.2629	1.4846*-03	1.2640"+03	7.4295"+02		
68010103	8.8700	0.3906	2.9693"+03	5.9400*-04	9.7352	1.4905	6.6162*+02	6.6162"+02		
7.5184"=01	1.2686"+07	1.0000	1.4949*+04	3.7092"-0"	1.8217	1.7824	2.9000"+02	4.9177"+01		
-5.0610*-02	8.2300"+02	0.0000	8.99814-04	NM	1.3657	2.0364*-03	1.2673*+03	7.4252*+02		
68010201	8.0300	0.3504	3.1118"+03	5.4800"-04	7.8731	1.5142	1.2956*+03	1.2956*+03		
5.4864"-01	1.2962*+07	1.0000	1.1694"+04	2.1804"-04	1.8161	1.7743	2.9000*+02	6.5917*+01		
-3.6420*=02	9.1600"+02	0.0000	6.1575"-04	NM	1.3582	1.2305"-03	1.3283"+03	8.2759"+02		
68010202	8.6100	0.3508	2.6141*+03	5.7900*-04	9.2609	1.5167	8.2631"+02	8.2631"+02		
6.5024"-01	1.3031"+07	1.0000	1.1183*+04	2.9861"-04	1.8130	1.7733	2.9000*+02	5.7878"+01		
-4.3830*-02	9.1600*+02	0.0000	7.0889*-04	NH	1.3490	1.5356"-03	1.3346*+03	8.2676*+02		
68010203	5.7000	0.3508	3.2876"+03	5.3900"-04	9.1055	1.5085	7.6772"+02	7.6772*+02		
7.5184"-01	1.2962"+07	1.0000	1.4341*+04	3.1494"=04	1.8066	1.7745	2.9000*+02	5.6760"+01		
-5.0810*-02	9.1600*+02	0.0000	9.4044"-04	Им	1.3546	2.0220*+03	1.3354*+03	8.2664"+02		
68010301	8.0500	0.3452	7.0854*+03	2.7500*-04	6.1211	1.4588	2.8756*+03	2.8756"+03		
5.4864"-01	2.9234"+07	1.0000	2,6350"+04	9.7150"-05	1.8421	1.7942	2.9000"+02	6.6617"+01		
-3.6820"-02	9.3000*+02	0.0000	6.3355"-04	Ин	1.4684	1.1300"-03	1.3386*+03	8.4021*+02		
6010302	8.5000	0.3454	6.5750*+03	3.2000*-04	8.3153	1.4524	2.1070"+03	2.1070*+03		
6.5024*-01	3.0544"+07	1.0000	2.7047"+04	1.1932"-04	1.8238	1.7908	2.9000*+02	6.0194*+01		
-4.3630*-02	9.3000"+02	0,000	7.2232"-04	ИM	1.3793	1.45504-03	1.3436*+03	8.3954*+02		
68010303	9.0500	0.3457	6.7155*+03	2.9600"-04	8.2652	1.4891	1.4175*+03	1.4175*+03		
7.5184*-01	3.1026*+07	1.0000	3.1073*+04	1.5682"-04	1.8173	1.7806	2.40000+02	5.3508*+01		
-5.0810*-02	9.3000*+02	0.0000	9.7113"=04	NM	1.4355	2.0066"-03	1.3486*+03	6.3664*+02		

CAT 6891	PERRY		BOUNDARY CON	DITIONS AND E	VALUATED (DATA. SI UNII	rs.	
RUH	MU #	TW/TR	PED2W	CF *	H12	H12K	PW	PD
X +	POD#	PW/PD#	RED2D	CO *	H32	H32K	TW#	TD
RZ +	TOD#	SW #	D2	PI2	H42	D2K	UD	TR
68010401	8.0600	0.3176	7.3012"+03	2.8000"#04	5.6353	1.4472	2.83237+03	2.8323"+03
5.4864*-01	2.9027*+07	1.0000	2.5081"+04	9.4267"-05	1.8376	1.8009	2.9000#+(2	7.2180"+01
-3.6820*-02	1.0100*+03	0.0000	6.8909"-04	NM	1.4852	1.1530"-03	1.3952*+03	9.1247"+02
66010402	8.5000	0.3181	6.8165*+03	2.9400"-04	7.3676	1.4555	2.0928#+03	2.0928"+03
6.5024"-01	3.0337"+07	1.0000	2.5829*+04	1.1502"-04	1.8250	1.7927	2.9000#+02	6.5372"+01
-4.3830"-02	1.0100"+03	0.0000	7.8572*-04	NM	1.4249	1.4808*=03	1.4002*+03	9.1176"+02
68010403	9.0000	0.3183	6.7473"+03	2.9200*=04	8.0184	1.4959	1.4539"+03	1.4539*+03
7.5164*-01	3.0682"+07	1.0000	2.4451"+04	1.4822*=04	1.8130	1.7773	2.9000"+02	5.8721*+01
-5.0810*-02	1.0100"+03	0.0000	1.0021"=03	NM	1.4411	2.0531"=03	1.4051"+03	9.1107*+02
68010501	9.9500	0.3537	1.1876"+03	5.7700*=04	14.8158	1.6158	3.3092*+02	3.3092*+02
5.6368*-01	1.3583*+07	1.0000	6.7200"+03	5.6637*=04	1.8365	1.7780	2.9000*+02	4.3749*+01
-3.6820*-02	9.1000*+02	0.0000	6.0511"-04	HM	1.3195	1.6906"-03	1.3409*+03	5.1991*+02
68010502	10.6000	0.3539	6.8535"+02	5,9700"-04	17.7132	1.6403	2.1900*+02	2.1900"+02
6.6545*-01	1.3721"+07	1.0000	5.6457"+03	7,5385"-04	1.8364	1.7726	2.9000*+02	3.8770"+01
-4.3830*-02	9.1000"+02	0.0000	6.0222"=04	NM	1.2962	1.8902"-03	1.3447*+03	8.1939"+02
68010503	11.2700	0.3541	7.5485*+02	5.9700"=04	18.3505	1.6612	1.4435*+02	1.4435*+02
7.6708"-01	1.3652*+07	1.0000	5.4009*+03	1.0143"=03	1.8434	1.7755	2.9000*+02	3.4466*+01
-5.0810"-02	9.1000*+02	0.0000	6.9081*=04	NM	1.3480	2.1934"=03	1.3460*+03	8.1694*+02
65010601	9.9000	0.3155	1.0479"+03	5.63004-04	14.6900	1.6227	3.1799"+02	3.1790*+02
5.6368*-01	1.2617"+07	1.0000	5.3401"+03	5.6292*-04	1.6378	1.7793	2.9000"+02	4.9510*+01
-3.6820*-02	1.0200"+03	0.0000	6.0547"=04	NM	1.3184	1.6659"-03	1.4192"+03	9.1907*+02
65010602	10.4800	0.3157	8.8818"+02	6.2100"-04	16,7123	1.6178	2.2567*+02	2.2567*+02
6.6548*-01	1.3100"+07	1.0000	4.9500"+03	7.0748"-04	1.8383	1.7773	2.9000*+02	4.4413*+01
-4.3630*-02	1.0200"+03	0.0000	6.3472"-04	NM	1.3107	1.8963*=03	1.4230*+03	9.1654*+02
68010603	11.2000	0.3159	7.3121"+02	5.8700"=04	18.6365	1.6640	1.4445"+02	1.4445*+02
7.6708*=01	1.3100*+07	1.0000	4.6241"+03	9.7037"=04	1.8438	1.7775	2.9000"+02	3.9098*+01
-5.0810*=02	1.0200*+03	0.0000	7.1668"+04	NM	1.3334	2.2300*=03	1.4268"+03	9.1799*+02
68010701	11,4300	0.3223	1.1853"+03	5.4500"=04	15.5523	1.6149	2.0818"+02	2.0818*+02
7.6708"-01	2,1650*+07	1.0000	7.9429"+03	5.5313"=04	1.6360	1.7714	2.9000"+02	3.6861*+01
-5.0810"-02	1,0000*+03	0.0000	7.6699"=04	NM	1.4282	2.2597"=03	1.4139"+03	8.9983*+02
68010801	10,2500	0.3157	2.2164*+03	4.3800*=04	12.9600	1.5176	5,9795*+02	5.9795"+02
5.6308*-01	2,9923*+07	1.0000	1.1641*+04	2.7878*=04	1.8414	1.7965	2,9000*+02	4.6337"+01
-3.6820*-02	1.0200*+03	0.0000	6.2427*-04	NM	1.3908	1.5746"=03	1,4216*+03	9.1874"+02
68010802	10.8700	0.3158	1.7622*+03	5.7500"-04	15.7326	1.5190	4.1926*+02	4.1426*+02
6.6548"-01	3.1095*+07	1.0000	1.0529*+04	3.5384"-04	1.8346	1.7023	2.9000*+02	4.1411*+01
-4.3830"-02	1.0200*+03	0.0000	6.3104*-04	NM	1.3597	1.8597*+03	1.4252*+03	9.1823*+02
66010803	11.5000	0.3160	1.4563*+03	5.53004-04	12.7106	1.5399	2,9267*+02	2.9267*+02
7.6708*-01	3.1716"+07	1.0000	1.3007*+04	4.54517-04	1.8355	1.7833	2,9000*+02	3.7158*+01
-5.0810*-02	1.0200"+03	0.0000	8.9856*-04	NM	1.4916	2.3769*-03	1,4282*+03	9.1778*+02
10901086	10.2000	0.2879	2.3086*+03	4.2400#=04	12.0183	1.5461	6.1069"+02	6.1069*+02
10-40586.5-	2.9578*+07	1.0000	1.1130*+04	2.6396#=04	1.8290	1.7891	2.9000"+02	5.1357*+01
10-40586.5-	1.1200*+03	0.0000	6.7362*=04	NM	1.4097	1.6344"-03	1.4893"+03	1.0064*+03
66010902	10.6500	0.2376	2.1376"+03	5.4900"-04	12.9819	1.5337	4.7452*+02	4.7452*+02
6.6548"-01	3.0682"+07	1.0000	1.1191"+04	3.1116"-04	1.8259	1.7794	2.9000*+02	4.7288*+01
-4.3830"-02	1.1200"+03	0.0000	7.3765"=04	NM	1.4151	1.9409*=03	1.4921*+03	1.0084*+03
68010903	11.6000	0.2878	1.9350"+03	5.4100"-04	11.5067	1.5537	2.7006"+02	2.7006*+02
7.6708"=01	3.1026*+07	1.0000	1.1927"+04	4.6270"-04	1.8330	1.7817	2.9000"+02	4.0126*+01
-5.0810"-02	1.1200*+03	0.0000	9.9224"-04	NM	1.5259	2.4718*~03	1.4971"+03	1.0077*+03

CF AUTHOR (DU/DY)W

680103	501	PERRY		PROFILE	TABULATION	51	POINTS, D	ELTA AI	POIN	T 51
I	Y		P12/P	P/PD	10/100	MZHD	U/UD	7 /	10	KHUZRHQD*UZUD
1	0.0000*	+00	1.0000"+00	NM	0.31183	0.00000	0.00000	4.39	330	0.00000
ž	2.7940"		3.8463"+00	NI	0.46237	20002	0.41240	4.25		0.09701
3	5.5880"		7.6522"+00	N₩	0.53548	0.29316	0.55130	3.5		0.15589
4	8.3820"		1,1006"+01	NM	0.58601	0.35528	0.62590	3.10		0.20166
Ś	1.1176"		1.3903"+01	14M	0.02684	0.40122	0.67560	2.83		0.23827
6	1.3970"		1.6334"+01	ĦМ	0.64738	0.43605	0.70430	2.60		0.26997
ž	1.6764"		1.8383"+01	NM	0.66863	0.46337	0.72800	2.46		0.29493
8	1.9558"		2.08604+01	HM	0.68500	0.49444	0.74890	2.29		0.32645
ģ	2,2352"		2.32864+01	NM	0.70535	0.52297	0.76980	2.16		0.35529
10	2.5146"	-03	2.5617"+01	NM	0.72145	0.54904	0.78660	2.09		0.38322
ii	2.7940"	-03	2.8184"+01	ИM	0.73435	0.57637	0.80120	1.93		0.41464
iż	3.0734"	-03	2.9763"+01	N₩	0.74735	0.59257	0.81240	1.67		0.43222
13	3,3526"	-03	3.2139*+01	Им	0.75588	0.61613	0.82260	1.78		0.46149
14	3.6322"		3.4220"+01	Им	0.76778	0.03605	0.83340	1.71		0.46544
15	3.9116"	-03	3.7043"+01	ИM	0.78065	0.66212	0.84560	1.63		0.51845
16	4.1910"		3.0988"+01	Mh	0.78708	0.67950	0.85230	1.57		0.54173
17	4.4704"	-03	4.1132" >01	NM	0.79679	0.09816	0.86080	1.52		0.56624
18	4.7478"	-03	4.3336"+01	ИM	0.80653	0.71682	0.86710	1.47		0.59122
19	5.0292*	-03	4.6044 +01	PåM.	0.81396	0.73912	0.87650	1.40		0.62327
20	5.3086"	-03	4.8374"+01	NM	0.82259	0.75777	0.88380	1.36		0.64971
21	5.5880"		5.0918"+01	NM	0.82900	0.77763	0.88990	1.30		0.67952
55	5.8674"	-03	5.2704"+01	MM	0.83865	0.79128	0.89680	1.26		0.69817
23	6.1408"	-03	5.5194"+01	MI	0.84511	0.80991	0.90250	1.24		0.72683
24	6.4262"	-03	5.7570"+01	MM	0.85376	0.82731	0.90910	1.20		0.75288
25	6.7056"	-03	5.9473"+01	ΝM	0.86017	0.84098	0.91400	1.18	120	0.77379
26	6.9850*		6.6022"+01	NM	0.91577	0.88042	0.94930	1.14		0.82771
27	7.2644	-03	6.3916"+01	NW.	0.87207	0.87208	0.92350	1.12		0.82352
28	7.5438"		6.5914"+01	NM	0.88060	0.88569	0.92930	1.10		0.84413
29	7.8232*	-03	6.8321*+01	ИW	0.88594	0.90183	0.93360	1.07	170	0.87114
30	8.1026"	-03	6.9263"+01	NM	0.89249	0.90807	0.93760	1.06		0.87947
31	8.3820*	-03	7.0784"+01	ИM	0.89788	0.91805	0.94130	1.05	130	U.89537
35	8.6614"	-03	7.2316"+01	NM	0.90544	0.92800	0.94610	1.03	940	0.91024
33	8,9408*	-03	7.4054"+01	Иĸ	0.91076	0.93915	0.94980	1.02	280	0.92863
34	9,2202"		7.6000"+01	NM	0.91713	0.95149	0.95410	1.00	550	0.94888
35	9,4996*		7,6796*+01	NM	0,92465	0.95649	0.95840	1.00	400	0.95458
36	9.7790		7.7995"+01	NM	0.93010	0.96397	0.96180	0.99		0.96615
37	1.0058"	-05	7,9392"+01	NM	0.93542	0.97262	0.96520	0.98	460	0.98010
38	1.0338"	-02	8.0216"+01	NM	0.94090	0.47768	0.96840	0.98	110	0.98706
39	1.0617*		8.1230"+01	NM	0.94624	0.98388	0.97160	0.97		0,99631
40	1,0897"		8.2039"+01	NM	0.95159	0.98879	0.97470	0.97	170	1.00309
41	1.1176"		8.2653"+01	NH4	0.95478	0.99251	0.97660	0.96		1,00868
42	1.1455"	-02	8.3082"+01	NM	0.96030	0,49509	0.97960	0.96		1.01083
43	1.1735"		8.3698"+01	NM	0.96783	0,99680	0.98370	0.97		1.01412
44	1.2014"		8.3900"+01	NM	0.97101	1.00001	0.98540	0.97		1.01483
45	1.2274"		8.3993"+91	NM	0.97535	1.00003	0.98760	0.97		1.01261
46	1.2573"		8.3907*+01	NM	0.98067	1.00005	0.99030	0.98		1.00989
47	1.2852"	-05	8.3896*+01	NM	0.98387	0,99998	0.99190	0.98		1.00813
48	1.3132"	-02	8.3894"+01	NM	0.98705	0.99997	0.99350	0.98		1.00648
49	1.3411"		3.3908"+01	NM	0.99360	1.00006	0.99680	0.99		1.00332
50	1,3691"		8.3907"+01	NM	0.99899	1.00005	0.99950	0.99		1.00060
0 51	1.3970"	-42	8.3899"+01	NH	1.00000	1.00000	1.00000	1.00	000	1.00000

INPUT VARIABLES Y,U/UD,T/TO ASSUME PMPD

680104	OI PERRY		PROFILE	TABULATION	51	POINTS, DEL	TA AT POT	NT 50
I	Y	PT2/P	P/P0	TU/TOD	HVIID	מטעש	חדעד	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	им	0.28770	0.00000	0.00000	4.02575	0.00000
ž	2.7940"-04	3.4874 +00	NM	0.42167	0.20102	0.39540	3.86904	0.10219
3	5.5880"-04	1.1830"+01	NM	0.49103	0.36848	0.58098	2,48597	0.23370
4	8.3820"=04	1.4662"+01	NM	0.55952	0.41190	0.64384	2.44329	0.26352
Ś	1.1176"-03	1.7809"+01	NM	0.60513	0.45531	0.68937	2.29248	0.30072
ũ	1.3970"-03	2.0251"+01	NA:	0.03590	0.48034	0.71882	2.18457	0.32904
7	1.6764"=03	2.1692"+01	NM	0.66276	0.50374	0.74004	2.15822	0.34289
8	1.9558"-03	2.4052"+01	NM	0.68354	0.53101	0.76046	2.05090	0.37079
š	2.2352"-03	2.5846"+01	NM	0.69839	0.550A5	0.77457	1.97725	0.39174
10	2.5146"-03	2.7945"+01	MIS	0.71126	0.57317	0.78779	1.8890#	0.41702
ii	2.7940*=03	3.0010"+01	NM	0.72429	0.59433	0.80030	1.81323	0.44137
iż	3.0734"-03	3.1762"+01	NW M	0.73618	0.61170	0.81091	1.75741	0.46142
13	3.3528**03	3.3563*+01	NM	0.74709	0.62906	0.82072	1.70220	0.48215
14	3.6322"=03	3.5141"+01	MW Mu	0.74086	0.64388	0.83173	1.06703	0.49849
15			Mn Mn	0.77184	0,66501	0.84147	1.60100	0.52557
	3.9116"=03	3.7455"+01		0.77780	0.66238	0.84765	1.54379	0.54920
10	4.1910*=03	3.9412*+01	NM LM	0.78668	0.70096	0.85546	1.49078	0.57410
17	4.4704"-03	4.1562"+01	NM				1.46253	0.58991
18	4.749803	4.3035"+01	N.	0.79568	0.71341	0.86276		
19	5.0292"-03	4.5293"+01	ΝM	0.80275	0.73209	0.86947	1.41052	0.61642
20	5.3086"-03	4.7435"+01	ílw	0.81052	0.74938	0.87618	1.36703	0.64093
51	5.5880"-03	4.9160"+01	Nhr	0.81946	0.76301	0.88288	1.33888	0.65942
22	5.8674"-03	5.1246"+01	NW	0.82946	0.77918	0.89037	1.30581	0.68187
Š2	6.1408 -03	5.3198"+01	И₩	0.83532	0.79402	0.89540	1.27164	0.70412
24	6.4262"-03	5.5369"+01	1184	0.84236	0.81020	0.90110	1.23697	0.72847
25	6.7056"-03	5.7579"+01	NM	0.85125	0.82635	0.907/1	1.20661	0.75228
50	0.9850"-03	5.9123"+01	Mw.	0.56010	0.83744	0.91361	1.19018	0.76763
27	7.2644"-03	6.0705"+01	HW	0.86615	0.84866	0.91802	1.17014	0.78454
28	7.5438"-03	6.3012"+01	₩	0.87402	0.86475	0.92382	1.14128	0.80946
29	7.8232"=03	6.4821"+01	N₩	0.87797	0.87718	0.92713	1.11713	0.82992
30	8.1026"-03	0.6530,+01	٧W	0.88397	0.88713	0.93123	1.10100	0.84511
31	0.3620"-03	6.8325"+01	NM	0.09282	0.90073	0.93714	1.08246	0.86574
32	8.6614*-03	6.9836"+01	HH	0.90087	0.91071	V.9422/	1.07044	0.88024
33	8.9408"=03	7.1158"+01	IIM	0.90576	0.91934	0.94555	1.05782	0.89347
34	9.2202"-03	7.2898"+01	MM	0.911#1	0.93059	0.94965	1.04138	0.91191
35	9.4796"-03	7.4447*+01	Hr.	0.91871	0.94047	0.95405	1.05409	0.92711
36	9.7790"=u3	7.5620"+01	MI	0.92567	0.94791	0.94826	1.02194	0.93768
37	1.0058"-02	7.7192"+01	٧w	0.93249	0.75778	0.96256	1.01002	0.95301
38	1.0338"-02	7.8199*+01	1414	0.93655	0.96 404	0.96617	1.00441	0.96191
19	1.0617"-02	7.9402"+01	NM	0.4446	0.97147	0.96977	0.99649	0.97318
40	1.0897"-02	B.0413"+01	NM	0.94843	0.97768	0.97227	0.98848	0.98311
41	1.1176"-02	0.1433"+01	11m	0.95438	0.98389	0.97578	0.98357	0.99208
45	1.1455**02	9.2247"+01	lin.	0.95937	0.98884	0.97868	0.97956	0.99910
43	1.1735*-02	8.2669"+01	HM	0.96729	0.99258	0.98298	0.98076	1.00227
44	1.2014"-02	8.3492*+01	NM	0.97328	0.99632	0.98629	0.97996	1.00646
45	1.2294"-02	8.3906"+01	ΗM	0.97728	0.99880	0.98849	0.97946	1.00922
46	1.2573"-02	8.4098#+01	NM	0.98207	0.99995	0.99097	0.98216	1.00899
47	1.2852"-02	8.4094*+01	ĦЧ	0.98604	0.99993	0.99299	0.95617	1.00692
48	1.3132"=02	8.4101"+01	NM	9,99002	0.99997	0.99499	0.99008	1.00496
49	1.3411"-02	6.4099"+71	Nº:	0.99501	0.00006	0.99750	0.99509	1.00242
D 50	1.3671"=02	8.4106"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
51	1.3970"-02	8.4106"+01	NM	1.00200	1.00000	1.00100	1.00200	0.99900

INPUT VARIABLES Y, U/UD, T/TD ASSUME PHPD

6801050) 1 PERRY	,	PROFILE	TABULATION	51	POINTS, DEL	TA AT POI	NT 49
I	Y	PT2/P	P/PD	T0/T0D	MZMD	U/UD	7/10	RH0/RH00+U/UD
1	0.0000"+00	1.0000*+00	NW	0.31868	0.00000	0.00000	6.62870	0.00000
ā	4.5720"-04	1.8281"+00	NM	0.40987	0.09747	0.26110	7.17560	0.03639
3	9.1440*-04	4.5322"+00	NM	0.49227	0.17787	0.44630	6.29560	0.07089
4	1.3716"-03	9.5856*+00	MIN	0.56479	0.26732	0.58960	4.86470	0.12120
5	1.8285"-03	1.1678"+01	NM	0.62415	0.29647	0.64530	4.73750	0.13621
6	2.2860"-03	1.3737"+01	Им	0.66479	0.32260	0.68570	4.51800	0.15177
ž	2.7432"-03	1.6064"+01	NM	0.69894	0.34977	0.72090	4.24810	0.16970
à	3.2004 -03	1.7810"+01	NM	0.71866	0.36883	0.74200	4.04710	0.18334
ā	3.6576"=03	1.9753"+01	ЙM	0.74072	0.38897	0.76360	3.85600	0.19808
10	4.1148"-03	2.2008*+01	NM	0.75610	0.41108	0.78200	3.61680	0.21609
ii	4.5720"-03	2.4493*+01	NM	0.76919	0.43415	0.79830	3.38100	0.23611
iż	5.0292"-03	2.6890"+01	NM	0.78248	0.45530	0.81300	3.18650	0.25498
i 3	5.4864"-03	2.9269*+01	ŊМ	0.79444	0.47535	0.82590	3.01870	0.27359
14	5.9436"-03	3.2012"+01	ŊМ	0.80547	0.49748	0.83830	2.83950	0.29523
15	6.4008*-03	3,4219"+01	HW.	0.81432	0.51459	0.84760	2.71310	0.31241
16	6.8580"-03	3.7317"+01	NM	0.82089	0.53769	0.85680	2.53920	0.33743
17	7.3152"=03	3.9976"+01	Nw.	0.82849	0.55675	0.86510	2.41440	0.35831
18		4.2735"+01	NH In	0.83292	0.57586	0.87140	2.28980	0.38056
19	7.7724"-03							
	6.2296"-03	4.5743"+01	ΝM	0.84179	0.59600	0.87990	2.17960	0.40370
20	8.6868"-03	4.8843"+01	Иw	0.84612	0.61607	0.88570	2.06690	0.42852
51	9.1440*-03	5.2223"+01	NM	0.85391	0.63722	0.89320	1.96480	0.45460
55	9.6012 -03	5.5528"+01	βĮΜ	0.85929	0.65726	0.89900	1.87090	0.48052
23	1.0058"-02	5.8775"+01	Им	0.86477	0,67636	0.90450	1.78840	0.50576
24	1.0516"-02	6.2842"+01	NM	0.87041	0.69954	0.91040	1.69370	0.53752
25	1.0973"-02	6.6277*+01	ММ	0.87685	0.71855	0.91600	1.62510	0.56366
56	1.1430"-02	7.0023*+01	ПW	0.88468	0.73872	0.92230	1.55850	0.59167
27	1.1887"-02	7.3856"+01	NM	0.88900	0.75879	0.92660	1,49120	0.62138
59	1.2344*-02	7.7200"+01	NW	0.89450	0.77589	0.93110	1.44010	0.64655
29	1-5005,-05	8.1440*+01	NM	0.90009	0.79704	0.93590	1.37800	0.67878
30	1.3259"-02	8.5572"+01	Им	0.90667	0.81712	0.94100	1.32620	0.70955
31	1.3716"-02	8.8529"+01	NM	0.91436	0.63119	0.94610	1.29560	0.73024
32	1.4173"-02	9.2614*+01	ИM	0.91758	0.85025	0.94920	1.24630	0.76161
33	1.4630"-02	9.6358"+01	ИW	0.92530	0.86735	0.95440	1.21080	0,78824
34	1.5088"-02	9.9495"+01	Иw	0.93082	0.88142	0.95820	1.18180	0.51050
35	1.5545"-02	1.0314"+02	NM	0.93405	0.89749	0.96090	1.14630	0.83826
36	1.6002"-02	1.0638"+02	NW	0.93956	0.91154	0.76460	1.11980	0.86140
37	1.6459"-02	1.0967"+02	NM	0.94612	0.92561	0.96880	1.09550	0.88435
38	1.6916"-02	1.1255"+02	NW.	0.95063	0.93772	0.97140	1.07400	0.90484
39	1.7374"-02	1.1545"+02	NM	0.95500	0.94976	0.97470	1.05320	0.92547
40	1.7631"-02	1.1764*+02	NM	0.95934	0.95879	0.97740	1.03920	0.94053
41	1.5285*-02	1.1962*+02	NM	0.96480	0.96682	0.98060	1.02870	0.95324
42	1.8745"-02	1.2086"+02	NM	0.96922	0.97184	0.98310	1.02330	0.96072
43	1.9152"-02	1.2260*+02	NM	0.97246	0.97886	0.98510	1.01280	0.97265
44	1.9600"-02	1.2411"+02	NM	0.97799	0.98491	0.98820	1.00670	0.98162
45	2.0117"-02	1.2488"+02	ЙM	0.98245	0.98794	0.99060	1.00540	0.98528
46	2.0574"-02	1.2614*+02	ÑМ	0.98792	0.99295	0.99360	1.00130	0.99231
47	2.1031"~02	1.2693"+02	NM	0.99240	0.99605	0.97600	0.99990	0.99610
46	2.1488*-02	1.2769"+02	NM	1.00009	0.99905	1.00000	1.00190	0.99810
D 49	2.1946*-02	1.2793*+02	NM	1.00000	1.00000	1.00000	1.00000	1.00000
50	2.2403"-02	1.2793"+02	1114	1.00000	1.00000	1.00000	1.00000	1.00000
5ĭ	2.2860"-02	1.2793"+02	NM	1.00000	1.00000	1.00000	1.00000	1.00000
			•••	- 4 7 4				

INPUT VARIABLES Y,U/UD,T/TD ASSUME P#PD

68010401 PERRY		PROFILE	TABULATION	N 51 POINTS, DELTA AT POINT 50				
I	Y	PT2/P	P/PD	T0/10D	MZND	u/un	חדעד	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	Mr.	0.28770	0.00000	0.00000	4.02575	0.00000
ž	2.7940"-04	3.A874"+00	NM	0.42167	0.20102	0.39540	3.86904	0.10219
3	5.5880"-04	1.1830"+01	1414	0.49109	0.36848	0.58098	2.48597	0.23370
4	8.3820*=04	1.4662*+01	NM	0.55952	0.41190	0.64384	2.44329	0.26352
5	1.1176"-03	1.7809"+01	Иw	0.60513	0.45531	0.68937	2.29248	0.30072
6	1.3970"-03	2.0251"+01	MM.	0.63590	0.48034	0.71882	2.18457	0.32904
7	1.67644-03	2.1692"+01	NH	0.65276	0.50374	0.74004	2.15822	0.34289
8	1.9558#-03	2.4052"+01	Ν×	0.68354	0.53101	0.76046	2.05090	0.37079
9	2.2352"-03	2.5846"+01	NM	0.69839	0.550A5	0.77457	1.97725	0.39174
10	2.5146"-03	2.7945"+01	M	0.71126	0.57317	0.78779	1.88900	0.41702
11	2.7940"-03	3.0010"+01	NM	0.72427	0.59433	0.80030	1.61323	0.44137
12	3.0734"-03	3.1762"+01	ИW	0.73618	0.61170	0.81091	1.75741	0.46142
13	3.3528"-03	3.3563"+01	NM	0.74709	0.62906	0.82072	1.70220	0.48215
14	3.6322"-03	3.5141"+01	NM	0.76086	0.64388	0.83133	1.66703	0.49869
15	3.9116"-03	3.7455"+01	٧w	0.77184	0.66501	0.84144	1.60100	0.52557
10	4.1910"=03	3.9412"+01	NM	0.77780	0.68238	0.84785	1.54379	0.54920
17	4.4704"-03	4.1562"+01	NM	0.78668	0.70096	0.85586	1.49074	0.57810
18	4.7498"-03	4.3035*+01	NM	0.79558	0.71341	0.86275	1.46253	0.58991
19	5.0292"-03	4.5293"+01	ÑМ	0.80275	0.73209	0.86947	1.41052	0.61642
žó	5.3086"-03	4.7435"+01	NM	0.81052	0.74938	0.87618	1.36703	0.64093
51	5.5880"-03	4.9160"+01	NM	0.81946	0.76391	0.88283	1.33888	0.65942
55	5.8674"-03	5.1246"+61	NA	0.82946	0.77918	0.89039	1.30561	0.68187
23	6.1468"=03	5.3198"+01	Mh	0.83532	0.79402	0.89540	1.27164	0.70412
24	6.4262"-03	5.5369"+01	NH.	0.84236	0.81020	0.90110	1.23697	
25	6.7056"-03	5.7579"+01	Nh	0.85128	0.82635	0.90771	1.20661	0.72847
50	0.9850*-03	5.9123"+01	Иw	0.86010	U.83744	0.91361		0.75228
27	7.2644*=03	6.0705"+01	[4W	0.84615	0.84866		1.19018	0.76763
28	7.5438**03	6.3012"+01	VIW I4™	0.87402		0.91802	1.17014	0.78454
29	7.8232"=03	6,4821*+01	Mw.	0.87797	0.86475	0.92382 0.92713	1.14128	0.80946
30	8,1026"-03	6.6270"+01	4W					0.82992
31	8.3820"-03			0.88397	0.88713	0.93123	1.10191	0.84511
35	8.6614"-03	6.8325"+01	MM	0.89282	0.90073	0.93714	1.08246	0.86574
33	8.9408*-03	6.9836"+01 7.1158"+01	lin lin	0.90087 0.90576	0.91071	0.94224	1.07044	0.88024
34	9.2202"-03	7.2898"+01	Mn In		0.91934	0.94555	1.05782	0.89347
35	9.4996"-03	7.4447*+01	NN.	0.91181 0.91871	0.93059	0.94965	1.04138	0.91191
36	9.7790"-03		NW		0.94049	0.95405	1.02906	0.92711
37	1.0058*-02	7.5620"+01	Nin Iau	0.92567	0.94791	0.95826	1.02194	0.93768
38	1.0038 -02	7.7192"+01		0.73249	0.75778	0.96256	1.01902	0.95301
39		7.8199"+01	N₩	0.93855	0.96404	0.96617	1.00441	0.96195
40	1.0617"-02	7,9402"+01	44	0.94446	0.97147	0.96977	0.99649	0.97318
	1.0897*-02	8.0413"+01	N _M	0.94843	0.97768	0.97227	0.98798	0.98311
41	1.1176"-02	8.1433"+01	(4)	0.95438	0.98389	0.97578	0.98357	80599.0
42 43	1.1455"-02	5.2249"+01	ΝM	0.95937	0.98884	0.97868	0.97956	0.99910
	1.1735"-02	8.2869"+01	18M	0.96729	0.99258	0.98298	0.98076	1.00227
44	1.2014"~02	8.3492"+01	ĺλγ	0.97328	0.99632	0.98529	0.97996	1.00646
45	1.22944-02	8.3906*+01	ИW	0.97728	0.99880	0.98849	0.97946	1.00922
46	1.2573"-02	8.4098"+01	Ν'n	0.98207	0.79995	0.99099	0.98216	1.00899
47	1.2852"=02	8.4094*+01	NM	0.98604	0.99993	0.99299	0.98617	1.00692
48	1.3132"-02	8.4101"+01	NM	0.99002	0.79997	0.99497	0.99008	1.00496
49	1.3411"-02	8.4099"+01	NΜ	0.99501	0.99996	0.99750	0.49509	1.00242
D 50	1.3691"=02	8.4106"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
51	1.3970"-02	8.4106"+01	Иw	1.00200	1.00000	1.00100	1-00200	0.99900

INPUT VARIABLES Y,U/UD,T/TD ASSUME P=PO

68010502 PERRY		PROFILE	TABULATION	51 POINTS, DELTA AT POINT 49				
I	Y	P12/P	P/PD	T0/100	11.X11D	U/U0	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000"+00	MM	0.31868	U.00000	0.00000	7.45010	0.00000
ē	5.0000"-04	1.5875"+00	Falt.	0.41980	0.07926	0.23290	8.63460	0.02697
3	1.0160"=03	4.1376"+00	NM	0.50328	0.15848	0.43550	7.55100	0.05767
4	1.5240"-03	8.3989"+00	IJM.	0.57365	0.23397	0.57490	6.03750	0.09522
5	2.0320"-03	1.1831"+01	14M	0.62639	0.28017	0.64620	5.31880	0.12149
6	2.5400"-03	1.3328"+01	ИŅ	0.66810	0.29810	0.68190	5.23250	0.13032
7	3.0480"-03	1.5354"+01	HM	0.69781	0.32076	0.71330	4.94530	0.14424
8	3.5560"-03	1.7158"+01	NP	0.72533	0.33964	0.73940	4,73930	0.15601
9	4.0640"-03	1.9254"+01	NM	0.73939	0.36036	0.75790	4.42340	0.17134
10	4.3720"-03	2.1793"+01	ΠM	0.75598	0.38394	0.77880	4.11450	0.18928
11	5.0800*-03	2.3512"+01	NM.	0.77029	0.39999	0.79340	3.93450	0.20165
12	5.5880"-03	2.6396"+01	NM	0.78348	0.42263	0.80940	3.66780	0.22068
13	6.0960 03	2.8303"+01	NM	0.79224	0.43866	0.81980	3.49270	0.23472
14	0.6040"-03	3.1130"+01	NΜ	0.80225	0.46040	0.83220	3.26730	0.25471
15	7.1120*-03	3.4348"+01	NM	0.81098	0.48396	0.84370	3.03920	0.27761
10	7.6200"+03	3.6632"+01	NM	0.81868	0.50000	0.85200	2.90360	0.29343
17	8.1240*-03	4.0120"+01	NM	0.82630	0.52356	0.86170	2.70880	0.31811
18	8.4360"-03	4.3476*+01	ИМ	0.83292	0.54527	0.86990	2.54520	0.34178
19	9.440*=03	4.6811"+01	NM	0.84170	0.56601	0.87860	2.40950	0.36464
20	9.6520"-03	5.0279"+01	NM	0.84619	0.58681	0.88470	2.27300	0.38922
Ži	1.0160 -02	5.3207"+01	NM	0.85283	0.60381	0.89100	2.17750	0.40918
25	1.0008"-02	5.6551"+01	ЙM	0.86047	0.62266	0.89790	2.07950	0.43179
53	1.1176"-02	6.0698"+01	NM	0.86698	0.64527	0.90450	1.96490	0.46033
24	1.1684"-02	6.4822"+01	ИМ	0.87366	0.66699	0.91080	1.86470	0.48844
25	1.2192"-02	6.8507"+01	NM	0.88123	0.68582	0.91700	1.78780	0.51292
26	1.2700"-02	7.2305"+01	ИМ	0.88080	0.70470	0.92200	1.71180	0.53861
Ž7	1.3208 -02	7,7195"+01	ИМ	0.59117	0.72829	0.92670	1.61910	0.57236
Žà	1.3716"-02	8.1426*+01	UM	0.89774	0.74809	0.93200	1.55210	0.60048
29	1.42241-02	8.5565"+01	NM	0.90222	0.76698	0.93600	1.48930	0.62848
30	1.4732"-02	9.0241*+01	NM	0.91106	0.78777	0.94230	1.43080	0.65658
31	1.5240"-02	7.6352*+01	NM	0.91644	0.81414	0.94710	1.35330	0.69984
32	1.5748"-02	1.0107"+02	NA.	0.92302	0.83394	0.95190	1.30290	0.73060
33	1.6256"-02	1.0522*+02	ЙМ	0.92974	0.85097	0.95650	1.26340	0.75708
34	1.4764*-02	1.0944*+02	ММ	0.93407	0.86793	0.94980	1.22240	0.78486
35	1.7272"-02	1.1422*+02	ЙM	0.93947	0.88674	0.96370	1.18110	0.81593
36	1.7780*-02	1.1917"+02	NM	0.94536	0.90583	0,96780	1.14150	0.84783
37	1.8288"-02	1.2286"+02	ИN	0.95270	0.91981	0.97230	1.11740	0.87014
38	1.8796"-02	1.3110"+02	NM	0.99496	0.95027	0.99520	1.09600	0.90737
39	1.9304"-03	1.2870"+02	NM	0.95935	0.94150	0.97680	1.07640	0.90747
40	1.9812*-02	1.1206"+02	NM	0.46486	0.95377	0.98020	1.05620	0.92804
41	2.0320*-02	1.3441"+02	ЙM	0.96919	0.96224	0.98280	1.04320	0.94210
42	2.0828"-02	1.3705"+02	NM	0.97465	0.97168	U.98600	1.02970	0.95756
43	2.1336"-02	1.3946"+02	N₩	0.97804	0.98019	0.98810	1.01620	0.97235
44	2.1844*-02	1.4080*+02	NM	0.98238	0.98490	0.99050	1.01140	0.97934
45	2.2152*-02	1.4240*+02	NM	0.98785	0.99053	0.99350	1.00600	0.98757
46	2.2860"-02	1.4323"+02	NM	0.98899	0.99341	0.99420	1.00160	0.99261
47	2.3368"-02	1.4403"+02	NM	0.99334	0.99620	0.99650	1.00060	0.99590
48	2.3876*-02	1.4487"+02	NM	0.99788	0.99910	0.99890	0.99960	0.99930
D 49	2.4384"-02	1.4513"+02	ЙM	1.00000	1.00000	1.00000	1.00000	1.00000
50	2.4892"002	1,4513"+92	ИМ	1.00000	1.00000	1.00000	1.00000	1.00000
51	2.5400"-02	1.4513*+02	NM	1.00000	1.00000	1.00000	1.00000	1.00000
-				=				

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

680105	03 PERRY		PROFILE	TABULATION	51	POINTS, DE	LTA AT POI	NT 48
1	Y	91579	P/PU	T0/T0D	HVHD	UZUD	すノサロ	RHO/RHOO+U/UD
1	0.3000"+00	1.0000"+00	NM	0.31349	0.00000	0.0000	8.40895	0.00000
Ž	5.8420"-04	1-4133"+00	NM	0.42510	0.06395	0.20392	10,16750	0.02006
3	1.16844-03	3.3434"+00	MI	0.51647	0.13144	0.40464	9,47671	0.04270
4	1.7526"-03	7.4834"+00	NΜ	0.58587	0.20691	0.56324	7.40975	0.07601
5	2.3368"-03	1.2081"+01	N۳	84050.0	0.26642	0.64729	5.90286	0.10960
6	2.9210"-03	1.4947*+01	Им	0.66149	0.29752	0.69011	5.38017	9.12827
7	3.5032**03	1.7843"+01	NM	0.68954	0.32595	0.72313	4.92195	0.14692
8	4.0694"-03	1.9783"+01	ИM	0.71035	0.34367	0.74415	4.68439	0.15872
9	4.6736"=03	2.2149"+01	NM	0.72692	0.36412	0.76326	4.39396	0.17371
10	5.2578"-03	2.4765*+01	Им	0.74133	0.38546	0.78047	4.09964	0.19037
11	5.8420"-03	2.7055"+01	Им	0.75565	0.40322	0.79518	3.88897	0.20447
15	6.4262"-03	2.9321*+01	1144	0.76654	0,42006	0.80709	3.69168	0.21862
13	7.0104"-03	3.2201"+01	l1m	0.77549	0.44053	0.81857	3.45293	0.23707
14	7.5946"-03	3.4673"+01	Иw	0.78640	0.45736	0.82740	3.28853	0.25221
15	8.1788"-03	3.8493"+01	Nm	0.79740	0.48223	0.84191	3.04897	0.27621
16	8.7630"-03	4.1636*+01	Mrs	0.80290	0.50176	U.84951	2.96648	0.29636
17	9.3472"-03	4.4906"+01	HH	0.81394	0.52131	0.85762	2.71907	0.31614
18	9.9314"-03	4.7990"+01	NM	0.81952	0.53907	0.86612	2.58125	0.33554
19	1.0516"-05	5.1986"+01	ИW	0.82834	0.56130	0.87482	2.42914	0.36014
20	1-1100,-05	5.5127"+01	ИМ	0.83382	0.57816	0.68053	2,31951	0.37962
ΞĬ	1.1684"-02	5.8881"+01	NM	0.84368	0.59768	0.88873	2.21107	0.40195
55	1.2264"-02	6.2942"+01	И₩	0.04808	0.61811	0.89394	2,09165	0.42738
23	1.2852*-02	6.6549"+01	им	0.85584	0.63589	0.90034	2.00470	0.44912
24	1.3437*-02	7.0526"+01	ИW	0.86354	0.65454	0.90664	1.91865	0,47254
25	1.4021*-02	7.4568*+01	11W	0.87119	0.67316	0.91275	1.83850	0.49546
26 27	1.4605"-02	7.9546"+01	NW NM	0.87786	0.69540	0.91855	1.74475	0.52646
59	1.5169"=02	8.3627"+01 8.7411"+01	/1h	0.89551 0.89002	0.71312	0.72425	1.67979	0.55022
29	1.6358*-02	9.1910*+01	Mw Ma		0.72917	0.92800	1,61993	0.57290
30	1.6942"-02	9.6310"+01	MW Man	0.89987 0.90543	0.74779	0.93476 0.93906	1.56256	0.59822 0.62413
31	1.7526"-02	1.0171"+02	NM	0.91300	0.76663	0.94457	1.44114	0.65543
32	1.8110"-02	1.0565*+02	N₩ M-	0.41753	0.80199	0.94797	1.39716	0.67850
33	1.8694"-02	1.1011"+02	NM	0,72404	0.81882	0.95247	1.35309	0.70392
34	1.9279"-02	1.1589"+02	NM	0.92851	0.84914	0.95607	1.29502	0.73827
35	1.9863"-02	1.2032"+02	HW	0.93505	0.85610	0.96038	1.25844	0.76315
36	2.0447"-02	1.2011"+02	Nw	0.93948	0.87653	0.96378	1.20897	0.79719
37	2.1051"-02	1.3537"+02	NM	0.98377	0.90828	0.98789	1.18299	0.83508
38	2.1615"-02	1,3493"+02	Į M	0.95170	0.90679	0.97158	1.14801	0.84632
39	2.2200"-02	1.3891"+02	NM	0.95830	0.92011	0.97559	1.12423	0.86778
40	2.2784"-02	1.44314+02	NM	0.96378	0.93787	0.97919	1.09005	0.89830
41	2.3368"-02	1,4731"+02	ИW	0.96806	0.94760	0.98179	1.07346	0.91461
42	2.3952"-02	1,5117*+02	NM	0.97353	0.95999	0.98509	1.05297	0.93554
43	2.4536"-02	1.5428"+02	ИW	0.97589	0.96983	0.98669	1.03508	0.95325
44	2.51214-02	1.5739"+02	MM	0.97907	0.97958	0.98869	1,01669	0.97055
45	2.5705"-02	1.5966"+02	ИМ	0.98567	0.98664	0.99230	1.01149	0.98102
46	2.6289"-02	1.6167"+02	ÜW	0.99116	0.99257	0.99530	1.00490	0.99045
47	2.6873"-02	1.6313"+02	NM	0.99560	0.99735	0.99770	1.00070	0.99700
0 48	2.7457*-02	1.6400"+02	Nh	1.00000	1.00000	1.00000	1.00000	1.00000
49	2.8042"-02	1.6429"+02	HM	1.00113	1.00090	1.00060	0.99940	1.00120
50	2.6626"-02	1.6429"+02	HM	1.00113	1.00090	1.00060	0.99940	1.00150
51	2.9210"-02	1.6429"+02	NM	1.00113	1.00090	1.00060	0.99940	1.00120

INPUT VARIABLES Y, U/UD, T/TO ASSUME P#PD

68010	901 PERR	٧	PROFILE	TABULATION	51	POINTS, DEL	YA AT POI	NT 50
I	Y	9/579	P/PO	TO/TOD	M/ND	מטעט	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	NM	0.26033	0.00000	0.00000	5,67736	0.0000
ż	4.0640"=04	2.4963"+00	NM	0.34562	0.12059	0.29008	5.78635	0.05013
3	8.1280"-04	1.0498"+0.	NM	0.43540	0.27354	0.52712	3.71355	0.14195
ű.	1.2192"-03	1.3985"+01	ЙM	0.52511	0.31763	0.61055	3.69495	0.16524
5	1.6256"-03	1.6697"+01	NM	0.57995	0.34805	0.65968	3.59230	0.18364
6	2.0320"-03	1.8768"+01	NM	0.61402	0.36960	0.68996	3.48482	0.19799
7	2.4384"-03	2.1069*+01	NM	0.64278	0.39217	0.71643	3.33742	0.21467
á	2.8448"-03	2.3503"+01	NM	0.67413	0.41469	0.74311	3.21114	0.23142
ğ	3.2512"=03	2.5965"+01	NM	0.59399	0.43630	0.76206	3.05077	0.24979
10	3.6576*-03	2.7707"+01	NM	0.71181	0.45095	0.77680	2.96722	0.26179
11	4.0640*-03	3.0130*+01	NM	0.72532	0.47058	0.79033	2.82063	0.28020
12	4.4704"-03	3.2015"+01	NM	0.73795	0.48531	0.80146	2.72733	0.29386
			NM					0.21387
13	4.8768"-03	3.4479"+01		0.75223	0.50391	0.81420	2.61070	
14	5.2832"-03	3.6907"+01	NM	0.76307	0.52158	0.82443	2.49839	0.32998
15	5.6696"-03	3.9131*001	ИW	0.77295	0.53727	0.83335	2.40589	0.34638
16	6.0460*-03	4.1709*+01	ti₩	0.78367	0.55489	0.84288	2.30736	0.36530
17	0.5024"-03	4.4228"+01	NM	0.79450	0.57158	0.85200	2.22190	0.38346
18	6.9088"-03	4.6354"+01	NI4	0.80435	0.58530	0.85982	2,15805	0.39842
19	7.3152"-03	4.9313"+01	NM	0.81144	0.60388	0.86684	2.06053	0.42069
50	7.7216"-03	5.1891"+01	NM	0.81869	0.61961	0.87326	1.98633	0.43963
21	B.1280"-03	5.4528"+01	ИM	0.62589	0.63529	0.87947	1.91645	0.45891
55	6.5344"-03	5.7738"+01	NM	0.93298	0.65389	0.88589	1.83551	0.48264
23	8.9408"-03	5.9993"+01	NM	0.84016	0.66663	0.89141	1.70906	0.49853
24	9.3472"-03	6,3191"+01	MIA	0.84920	0.68431	0 89843	1.72371	0.52122
25	9.7536"-03	6.6285"+01	NM	0.85551	0.70098	0.90374	1.66218	0.54371
26	1.0150*-02	6.9075"+01	Им	0.86361	0.71568	0.90966	1-61552	0.56307
27	1.0556"-02	7.1931"+01	NM	0.86902	0.73042	0.91407	1.56606	0.58367
56	1.0973"-02	7.5030"+01	Νn	0.87441	0.74609	0.91848	1.51548	0.60606
29	1.1379"-02	7.8204"+01	NM	0.88342	0.76181	0.92470	1.47336	0.62761
30	1.1786*-02	8.1426"+01	NM	0.89050	0.77743	0.92981	1.43042	0.65002
31	1.2192"-02	8.4733"+01	ИM	0.89502	0.79315	0.93352	1.38528	0.67389
32	1.2598"-02	8.7881"+01	NM	0.90216	0.80783	0.93843	1.34949	0.69540
33	1.3005"-02	9.1089"+01	Nh	0.90574	0.82252	0.94144	1.31007	0.71862
34	1.3411*-02	9.4798*+01	NM	0.91380	0.83918	0.94686	1.27307	0.74376
35	1.3818"-02	9.8370"+01	NM	0.92019	0.85492	0.95127	1.23809	0.76834
36	1.4224"-02	1.0130"+02	NM	0,92552	0.86763	0.95488	1.21124	0.78635
37	1.4630"-02	1.0429"+02	NM	0.93092	0.88038	0.95849	1.18530	0.80865
38	1.5037"-02	1.0778"+02	NM	0.93890	0.69507	0.96350	1.15876	0.83150
39	1.54/13"-02	1.1231"+02	NM	0.94319	0.91378	0.96681	1.11945	0.86365
40	1.5850"=02	1.1471"+02	NM	0.94975	0.92351	0.97072	1.10487	0.87859
41	1.6256"-02	1.1741"+02	NM	0.95428	0.93434	0.97363	1.08586	0.89664
42	1.6662"=02	1.2062"+02	NM NM	0.96062	0.94708		1.06535	0.91757
43	1.0006 406	1.2236"+02	NM			0.97754		
	1.7069"-02			0.96504	0.95394	0.94015	1.05570	0.92843
44	1.7475*-02	1.2538"+02	NW	0.97039	0.96566	0.98346	1.03720	0.94518
45	1.7682"-02	1.2742"+02	ИM	0.97577	0.47353	0.98656	1.02645	0.96068
46	1.8288"-02	1.2923"+02	НM	0.98126	0.98045	0.98967	1.01890	0.97131
47	1.8694"-02	1.3128"+02	NM	0.98650	0.96822	0.99268	1.00905	0.98378
48	1.7101"-02	1.3285"+02	NM	0.98934	0.99413	0.99438	1.00050	0.99389
49	1.9507"-02	1.3358"+02	NM	0.99458	0.79800	0.99719	0.99839	0.99880
D 50	1.9914"-02	1.3442"+02	NM	1.00000	1.00000	1.00000	1,00000	1.00000
51	2.0320"-02	1.3442"+02	NM	1.00542	1.00000	1.00271	1.00543	0.99729
110117	MARTANI PR	V 11/115 T/TS	4.00UUF 04	n n				

INPUT VARIABLES Y,U/UD,T/TD ASSUME P6PD

M : Subsonic to 4.4 R THETA X 10⁻³ : 0.6 - 7.0

TW/TR : 0.85 to 0.65

6901

FPG SHT (TEMP. HISTORY)

Special purpose rig. Continuous running. D = (inlet) 0.165 m, (throat) 37.85 mm. PO: 2.1 MN/m². TO: 540 K. Air: RE/m \times 10⁻⁶ of order 50.

EOLDMAN D.R., SCHMIDT J.F. and EHLERS R.C. 1969. Experimental and theoretical turbulent boundary layer development in a Mach 4.4 water-cooled conical nozzle. NASA TN D-5377.

And Boldman, Schmidt and Fortini (1966), Boldman, Schmidt and Gallagher (1968), Boldman and Graham (1972) and extensive supporting bibliography (see references), Boldman D.R., private communications.

- The test boundary layer was formed in a conical convergent-divergent nozzle and one of two cylindrical inlet-passages leading to it. The inlets were 0.165 m diameter and met the conical convergence with no fairing. The 30° semiangle convergence was faired into the throat (X = 0, D = 37.85 mm) by a part of the wall having a constant radius in longitudinal direction of 37.85 mm. This circular contour was carried through the throat until the tangent point (X = 10.16 mm) with the 15° semi angle divergent section, which ran from this point to X = 0.280 m where the diameter was 0.186 m. Provision was made for boundary layer traverses in the cylindrical inlet, the convergence, and at three stations in the divergence. The test surfaces were machine-turned to a finish of 1.6 µm rms, and both the nozzle and one of the inlet cylinders could be
- 3 actively cooled. The earlier tests (1966, 1968) showed that the boundary layer became turbulent after
- 4 natural transition very near the start of the inlet sections. Of these one (series 01) was uncooled, and ran from X = -0.552 to X = -0.120 m the start of the convergent portion. The other (series 02) was 0.955 m long (X = -1.075 to = 0.120 m) and actively cooled by water passages from X = -0.734 m. The upstream edges of the inlets were machined to give a leading edge radius of 0.76 mm and a boundary layer bleed bypass outside the inlets ensured that the experimental boundary layer started at this leading edge. The wall temperature and pressure history for the nozzle itself is presented in section D.
- 6 Static pressure was measured by tappings of 0.79 mm diameter at the points indicated in the wall data table of section D. The wall temperature and heat flux rate were measured with a plug type heat flux meter. A conducting rod of constant cross section is placed in a cavity in the wall so shaped that it is in thermal contact with the wall at the test surface and insulated elsewhere by the cavity. The temperature gradient in the plug then gives the heat flux, and can be extrapolated to give the test surface temperature (Boldman et al. 1967). Uncertainty in correction procedures to allow for the local distortion of the heat flux pattern is believed to give a residual uncertainty of 10% in heat flux.
- Boundary layer profiles were measured with TPP and TTP. The FPP were constructed from tubing $(d_1=0.711, d_2=0.355 \, \text{mm})$ flattened to give a rectangular opening $(h_2=0.051, b_2=0.76 \, \text{mm})$ and ground down so as to have a sharp lip. The overall probe lengths were 19 and 15.2 mm for the subsonic and supersonic profiles respectively. About the last 5 mm (E) of the tube was unsupported. The TTP for the subsonic profiles consisted of an unshielded Chromel-Alumel thermocouple bead 0.13 mm in diameter mounted at the end of a short cylindrical support $(d=0.35, 1=2.5 \, \text{mm})$. This in turn was mounted in a conical (15^0) housing. For the supersonic profiles, the bead size was reduced to 0.08 mm and the diameter of the support to
- 8 0.2 mm. The overall lengths were as for the TPP. The profiles were obtained normal to the conical surfaces of the nozzle at the X-stations indicated in section B. At any given value of X the Pitot and TO profiles were obtained on opposite sides of the nozzle.
- 9 The calibration procedure for the TTP is described in an appendix to the source paper. The authors have interpolated the TO data to the Y values of the Pitot data, and PW and TW values to the profile position.
- The editors have accepted the authors' calibration and interpolation procedures. For one of the profiles (0101) the data was received in raw form and interpolated by the editors. In data reduction for this profile the input values of T/TD were assumed, for computing reasons, equal to the measured value of T0/T0D.

į.

Resulting error is less than 0.13 %. The wall data is presented in normalised form from the tables in Boldman & Graham (1972), so that the profile wall temperatures do not agree with the values in Section D. These differences are caused by seasonal variations in the temperature of the cooling water supply. The

- 13 two sets of profile data are differentiated by their upstream thermal history. For series 01 the inlet duct was not cooled, and the flow in this region was near adiabatic. For series 02 a cooled inlet duct was used. All measurements are taken in the nozzle itself, which is actively cooled. In each series one
- 14 profile is in the subsonic, convergent, part of the nozzle and three are in the divergent part. The wall data with the profiles are scaled to the wall temperature of the profile. Full normalised data is given in section D.
- 6 DATA: 6901 0101-0204. Pitot and TO profiles. NX = 4. Heat flux from conduction measurements in the nozzle wall.

15 Editors' comments

This entry is included principally as a challenge for calculation methods. The state of the boundary layer in the contraction is described, and there is very complete wall temperature and pressure information for the flow through to the three measuring stations in the conical expansion. Series 02 is very similar to the CW case of Back et al. (7207 series 01), and series 01 provides an interesting difference in the upstream history.

The experiments form part of a continuing study into which many other effects are introduced - wall mughness atc. There is a large number of reports concerned with the tests, and the normalisation procedures vary from one to the next. We believe that the data given with the profiles is appropriate to the test conditions in each case, but repeat that the extended wall data tables are differently normalised.

Note added in proof. We remain uncertain of the proper free stream conditions at the first station. For profile 0101 the Mach number corresponds to the wall data given in section D, while for profile 0201 the free stream velocity was taken as stated in figure 7a of NASA TN D-478B. The Mach numbers in the two cases should be in close agreement, and we have not yet reconciled the conflict. The dimensionless profile data is not affected by this discrepancy.

CAT 6901	BOLDMAN		BOUNDARY COND	TIONS AND E	VALUATED (SATA. SI UNIT	5.	
RUN	MD #	TW/TR	RED2W	CF	H12	D5K	PW	PD
X *	POD#	PW/PD*	RED2D	CQ *	H32	H35K	TW*	TD
RZ *	TuD#	SW *	D2	PI2	H42	H15K	UD	TR
69010101 -6.3800*-02 -4.9960*-02	0.0789 2.0684"+06 5.3709"+02	0.7463 1.0000 0.0000	1.2920"+03 1.0537"+03 6.0592"-05	NC NC	0.0306 1.9442 1.1721	1.2851 1.9485 5.6663*-05	2.0594"+06 4.0080"+02 3.6657"+01	2.0594*+06 5.3642*+02 5.3702*+02
69010102	2.1000	0.8507	4.5960"+03	NM	1.4683	1.4852	2.2619"+05	2.2619"+05
3.1010"-02	2.0684*+06	1.0000	6.2829"+03	1.4197*-04	1.8548	1.8400	4.3778"+02	2.8746"+02
-2.5935"-02	5.4100*+02	0.0000	5.7545"-05	NC	0.9550	6.3224*-05	7.1387"+02	5.1463"+02
69010103	3.7000	0.7107	2.9339"+03	NM	4.7431	1.3426	2.0483"+04	2.0483"+04
1.3889***01	2.0684"+06	1.0000	6.1393"+03	2.49854=04	1.0371	1.5160	3.5389"+02	1.4419"+02
=5.4890**=02	5.3900"+02	0.0000	1.3970"-04	NC	0.6058	2.0432*-04	6.9081"+02	4.9794"+02
69010104	4.4000	0.6404	3.1127*+03	NM	5.9197	1.3753	8.1033*+03	8.1033*+03
2.4179"-01	2.0684*+06	1.0000	7.6571*+03	2.6476"=04	1.8280	1.7942	3.1667*+02	1.1063*+02
-8.260"+02	5.3900*+02	0.0000	2.5384*+04	NC	0.7138	4.2262"=04	9.2790*+02	4.9445*+02
69010201	0.0307	0.6205	3.7287"+03	NM	0.8665	1.1891	2.0671*+06	2.0671*+06
-6.3800*-02	2.0684"+06	1.0000	2.6535"+03	NC	1.8670	1.8707	3.3510*+02	5.3995*+02
-4.9960*-02	5.4005"+02	0.0000	3.9401"-04	NC	0.2657	3.7568*=04	1.4300*+01	5.4004*+02
69010202	2.1000	0.6338	7.9357"+03	NP	0.5650	1.3556	2.2619"+05	2.2619*+05
3.1010"-02	2.0684"+06	1.0000	1.0692"+04	1.1293"-04	148859	1.6695	4.2833"+02	2.8693*+02
-2.5935"-02	5.4000"+02	0.0000	9.7700"-05	NC	1.3364	1.0231"=04	7.1321"+02	5.1368*+02
69010203	3.6000	0.7028	6.1900"+03	NM	1.8924	1.2574	2.3548*+04	2.3546*+04
1.3869#=01	2.0684"+06	1.0000	1.2397"+04	2.0291"-04	1.8923	1.8620	3.5167*+02	1.5061*+02
=5.4890#=02	5.4100"+02	0.0000	2.6804"-04	NC	1.2653	3.2784"~04	6.6581*+02	5.0040*+02
69010204	4.5000	0.6432	4.3092*+03	NM	3.8684	1.3012	7.1469*+03	7.1469*+03
2.4179*-01	2.0684*+06	1.0000	1.0997*+04	2.4071*-04	1.8718	1.8265	3.1778*+02	1.0673*+02
-8.2500*-02	5.3900*+02	0.0000	3.6367*-04	NC	1.1207	5.7179"=04	9.3212*+02	4.9404*+02

TRAPEZOIDAL RULE FOR ALL INTEGRATIONS - FOR 0201 UD FROM NASA IN D-4788 FIG.7A

690	1010	I BOLD	MAN	PROFILE	MOITALUBAT	22	POINTS, [DELTA AT POS	SE TN
	I	Y	PT2/P	P/PD	10/100	M/MD	۵U\Ų	T/TD	RH9/RH0D+U/UD
	ı	0.0000*+00	1.0000*+00	NM	0.74531	0.00000	0.0000	0.74624	0.0000
		2.5400"-05	1.0032*+00	NM	0.80589	0.85537	0.76800	0.86615	0.95267
	3	3.5560"-05	1.0036"+00	ИМ	0.81631	0.90194	0.81500		0.99816
	4	5.0800°-05	1.0038*+00	NM	0.83188	0.93187	0.85000	0.83201	1.02162
	5	6.3500"-05	1.0040"+00	NM	0.84920	0.95454	0.87500		1.04131
	6	7.6200"-05	1.0042*+00	NM	0.84748	0.97761	0.90000	0.84753	1.06191
	7	9.1440*-05	1.0042*+00	NM	0.85990	0.97915	0.50800		1.05588
	8	1.0160"-04	1.0042*+00	NM	0.86611	0.98209	0.91400		1.05525
	9	1.5240"-04	1.0042*+00	NM	0.89405	0.98566	0.93200		1.04242
1	0	1.7780"-04	1.0042*+00	NM	0.90749	0.98568	9.93900		1.03468
1	1	2.2860"-04	1.0043"+00	MM	0.92923	0.99380	0.9580		1.03094
1	ā	3.0480"-04	1.0042"+00	NM	0.95404	0.98488	0.96200		1.00831
	3	3.5560"-04	1.0043"+00	NM	0.96438	0.98672	0.96900		1.00475
i		4.0640*-04	1.0042"+00	NM	0.97058	0.98457	0.47000		0.99936
i		5.8420"-04	1.0043"+00	NM	0.97785	0.99406	0.98300		1.00525
		8.3820"-04	1.0043"+00	NM	0.98404	59989.0	0.98200		0.99790
ī		1.0414"-03	1.0043"+00	NM	0.98714	0.98836	0.98200		0.99476
ĩ		1.1176*=03	1.0043"+00	NM	0.98715	0.99037	0.9840		0.49679
i		1.2954*-03	1.0043"+00	им	0.98818	0.98845	0.98300		0.99473
ż		1.5748 -03	1.00434+00	NM	0.98922	0.99135	0.98600		0.99672
ž		1.0542 -03	1.0044*+00	NM	0.99131	0.99835	0.99400		
0 2		5.0800*-03	1.0044*+00	NM	1.00000	1.00000	1.00000		1.00271
J -	~	3,4003 -03	1100-4 700	101-1	*****	1.44000	1.0000	1.00000	1.00000

INPUT VARIABLES Y, U/UE, TO ASSUME T/TD = TO/TOD AND PEPO

690101	05 9010,	мды	PROFILE	TABULATION	25	POINTS, DE	LTA AT POI	NT 25
I	Y	4 / 579	P/PD	TO/TOD	M/HD	ひといり	מז/ד	RHO/RHOD#U/UD
1	0.0000*+00	1.0000*+00	NM	0.80921	0.00000	0.00000	1.52242	0.00000
5	3,2000"-05	2.1328"+00	NM	0.67431	0.52381	0.60291	1.32484	0.45508
3	6.2000"-05	2.4075*+00	NM	0.86355	0.57143	0.64928	1.29102	0.50292
4	8.8000"-05	3.0492"+00	ИM	0.89094	0.66657	0.73168	1.20456	0.60743
5	1.1300"-04	3.4133"+00	NM	0.89834	0.71429	0.77129	1.16598	0.66150
6	1.6400"-04	4.2238*+00	NM	0.91312	0.80952	0.84479	1.08904	0.77573
7	2.1500"~0"	5.1416"+00	NM	0.92606	0.90476	0.91022	1.01211	0.89933
8	2.2700"-04	5.1418"+00	NM	0.92976	0.90476	0.91204	1.01615	0.89754
9	2.4000"-04	5.1418"+00	NM	0.93346	0.90476	0.91385	1.02019	0.89576
10	2.5300"-04	5.4404*+00	NM	0.93715	0.95238	0.94273	0.97985	0.96213
11	2.6500"-04	5.1418*+00	NM	0.94085	0.90476	0.91746	1.02827	0.89224
12	2.7500"-04	5.1418*+00	NM	0.94455	0.90476	0.91926	1.03231	0.89049
13	2.9100"-04	5.141A"+00	NM	0.94824	0.90476	0.92106	1.03635	0.88875
14	3.0400 -04	5.1418"+00	NM	0.95009	0.90476	0.92196	1.03837	0.68789
15	3.1600"-04	5.1418"+00	NM	0.95194	0.90476	0.92285	1.04039	0.88703
16	3.42004-04	5.4404"+00	NM	0.95564	0.95238	0.95199	0.99917	0.95278
17	3.6700 -04	5.6404"+00	NM	0.95933	0.95238	0.95383	1.00304	0.95094
18	3.9200"-04	5.6404"+00	NM	0.96118	0.95238	0.95474	1.00497	0.95002
19	4.1800"-04	5.6404"+00	NM	0.96488	0.95238	0.95658	1.00884	0.94820
ŽÓ	4.6400 -04	6.16547+00	NM	0.97227	1.00000	0.98604	0.97227	1.01416
ēί	5.1900"+04	6.16544+00	NM	0.97782	1.00000	0.98885	0.97762	1.01126
22	5.3200"-04	6.1554"+00	NM	0.97967	1.00000	0.98978	0.97967	1.01032
žš	1.0270"-03	6.1654"+00	ŇM	0.99076	1.00000	0.99537	0.99076	1.00465
24	4.8200"-03	6.1654"+00	NH	0.99815	1.00000	0.94408	0.99815	1.00093
0 35	8.6300"-03	6.1654"+00	NM	1.00000	1,00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, TO, M ASSUME F=PD

69010103 BULDMAN		PROFILE	TABULATION	31	POINTS,	DELTA AT POI	NT 31	
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/TD	RHQ/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NM	0.65657	0.00000	0.0000	0 2.45425	0.00000
2	3.2000*-05	2.4075"+00	И'n	0.76252	0.32432	0.4824	7 2.21297	0.21802
3	4.4000*-05	2.7130*+00	MM	0.77365	0.35135	0.5105	4 2.16138	0.23899
4	5.7000 -05	3.0492"+06	N _t	0.78479	0.37838	0.5492	9 2.10742	0.26065
5	7.0000"-05	3.4133"+00	ИМ	C.79406	0.40541	0.5800	3 2.04764	0.28335
6	8.3006"-05	3.8050*+00	MM	0.80519	0.43243	0.6101	2 1.99062	0.30650
7	9.5000*-05	4.2238"+00	NM	0.81633	0.45946	0.6389	2 1.93373	0.33041
8	1.0800"-04	4.2238"+00	NM	0.82746	0.45946	0.6432	6 1.96010	0.32818
9	1.2100"-04	4.60957+00	Иw	0.83488	0.48649	0.6694	6 1.89368	0.35352
10	1.3300"-04	4.6695"+00	NM	0.64230	0.48649	0.6724	3 1.91051	0.35196
11	1.5900*-03	5,6404"+00	ИW	0.85158	0.54054	0.7188		0.40647
12	1.8400"-04	5.6404"+00	ИW	0.85714	0.54054	0.7211		0.40515
13	1.9700"-04	6.1654"+00	NM	0.85900	0.56757	0.7413		0.43452
14	2.1000"-04	6.1654"+00	NM	0.86085	0.56757	0.7421		0.43405
15	2.8600"=04	6.7165"+00	ИM	0.87570	0.59459	0.7868		0.46104
16	3.3700"-04	7.2937"+00	NM	0.88312	0.62162	0.7872		0.49082
17	4.3800"-04	7.8969"+00	NM	0.89610	0.64865	0.8092		0.51991
18	7.5600"-04	9.8624"+00	NW	0.92393	0.72973	0.8647		0.61562
19	1.0730"-03	1.2061"+01	NM	0.94620	0.81061	0.9112		0.72142
50	1.4030"-03	1.3650"+01	ИW	0.96475	0.86456	0.9407		0.79511
51	1.7080"-03	1.5354"+01	ИW	0.97774	0.91892	0.9653		0.67477
55	2.0380"-03	1.7156"+01	NM	0.98887	0.97247	0.9870		0.95914
53	2.3560"-03	1.8095"+01	NM	0.99258	1.00000	0.9962		1.00373
24	2.6730"-03	1.0095"+01	NM	0.99629	1.00000	0.9981		1.00186
25	3.0040"-03	1.8095"+01	ИW	0.99629	1.00000	0.9981		1.00186
56	3.3080"-03	1.8095"+01	NM	0.99814	1.00000	0.9990		1.00093
27	3.6370"-03	1.8095"+01	Им	0.94814	1.00000	0.9990		1.00093
59	3.9560"-03	1.8095"+01	NM	0.99814	1.00000	0.9990		1.00093
59	4,2740"-03	1.8095"+01	NM	0.99814	1.00000	0.9990		1.00093
30	4.9090"-03	1.8095"+01	NM	1.00000	1.00000	1.0000		1.00000
D 31	6.3060*=03	1.8075"+01	Им	1.00000	1.00000	1.0000	0 1,00000	1.00000

INPUT VARIABLES Y, TO, M ASSUME PEPD

690101	04 8010	BULDMAN		TABULATION	25	POINTS, DI	ELTA AT POI	NT 25	
I	¥	PT2/P	P/PD	TOPTOD	M/MD	U/UD	1/10	RHU/RHOD*U/UD	
1	0.0000#+00	1.0000 #+00	NM	0.58751	0.00000	0.00000	2.86237	0.0000	
Š	3.2000"-05	1.2755"+00	NM	0.71429	0.13636	0.24569	3.24627	0.07568	
3	7.6000"-05	1.5929"+00	NM	0.74212	0.22727	0.39450	3.01299	0.13093	
4	8.3000"-05	2.7136"+00	ИW	0.74383	0.29545	0.48689	2.71574	0.17929	
5	1.3300"-04	3.4133*+00	NM	0.77551	0.34091	0.55030	2.60571	0.21119	
6	1.8400"-04	4.2233"+00	NM	0.79777	0.38636	0.60637	2.46309	0.24618	
7	2.3500"-04	5.1418*+00	NM	0.80391	0.43182	0.65326	2.28861	0.28544	
8	3.3700"-04	5.6494"+00	NM	0.82189	0.45455	0.67796	2.22459	0.30476	
7	4.3600"=04	6.7165*+00	NM	0.83302	0.50000	0.71803	2.06224	0.34818	
10	5.9100"-04	7.2937"+00	NM	0.84787	0.52273	0.74058	2.00719	0.36896	
11	7.1800"=04	7.8969"+00	NM	0.85714	0.54545	0.75983	1.94052	0.39156	
12	1.0480*-03	9.8624"+00	NM	0.87941	0.61364	0.81016	1.74307	0.46479	
13	1.6570"-03	1.2846"+01	NM	0.91280	0.70455	0.86918	1.52196	0.57109	
14	2.1910"-03	1.5354"+01	NH	0.93878	0.77273	0.90806	1.38095	0.65756	
15	2.6230"-03	1.8095"+01	NM	0.95547	0.84091	0.93841	1.24534	0.75354	
16	3.0800"=03	2.0051"+01	ИМ	0.96846	0.88636	0.95765	1.16733	0.82038	
17	3.6000"-03	2.3179"+01	NM	0.98145	0.95455	0.98091	1.05601	0.92889	
18	3.8040"=03	2.3179"+01	NM	0.98516	0.95455	0.98277	1.06000	0.92714	
19	4.0450"-03	2.4273"+01	HH	0.98887	0.97727	0.98965	1.02549	0.96505	
20	4.2480"-03	2.4273*+01	ŅM	0.99072	0.97727	0.99058	1.02742	0.96415	
51	4.4010 -03	2.5393"+01	NM	0.99256	1.00000	0.99628	0.99258	1.00373	
22	4.5200"=03	2.5393"+01	NM	0.49258	1.00000	0.99628	0.99258	1.00373	
23	4.6550*=03	2.5393*+01	NM	0.99258	1.00000	0.49628	0.99258	1.00373	
24	5.0100"-03	2.5393"+01	NM	0.99443	1.00000	0.99721	0.99443	1.00279	
0 25	1.2275"-02	2.5393*+01	NN	1.00000	1.00000	1.00000	1.00000	1.00000	

INPUT VARIABLES Y, TO, M ASSUME PHPD

69010	Sof Borbi	MAN	PROFILE	TABULATION	55	POINTS, DE	LTA AT POI	NT 22
1	Y	PT2/P	P/PD	T0/T00	117!10	U/UD	T/TD	PHO/RHGD*U/UD
1	0.0000"+00	1.0000*+00	NM	0.62035	0.00000	0.00000	0.62050	0.00000
ž	1.4000"05	1.0003*+00	NM	0.74038	0.69264	0.59601	0.74045	0.80493
3	11.6000"-05	1.0003"+00	NМ	0.88639	0.72809	0.48551	0.88647	0.77331
4	7.8000"-05	1.0004"+00	NM	0.89100	0.75916	0.71662	0.89108	0.80422
5	1.4200*-04	1.0004"+00	NM	0.89876	0.77104	0.73099	0.89883	0.81327
6	2.0600"-04	1,0004"+00	NM	0.90595	0.78802	0.75008	0.90602	0.82788
ĩ	3.6600"-04	1.0004"+00	NM	0.92228	0.81331	0.78109	0.92233	0.84686
à	5.2600"=04	1.0005 +00	NM	0.93433	0.83504	0.80718	0.93438	0.86387
ğ	8.4600"-04	1.0015"+00	NM	0.95137	0.86528	0.84400	0.95142	0.88709
10	1.1660 -03	1.0005"+00	NM	0.96314	0.88778	0.87129	0.76318	0.90459
ii	1.4860"-03	1.0005"+00	ŊМ	0.97247	0.90430	0.89178	0.97250	0.91699
12	1.8060 -03	1.0006"+00	NM	0.97973	0.91967	0.91031	0.97976	0.92912
13	2.1260*-03	1.0006"+00	NM	0.98491	0.93145	0.924/11	0.98493	0.93855
14	2.4460 -03	1.0006"+00	NM	0.98857	0.94226	0.93687	0.98859	0.94768
15	2.7660"=03	1.0000"+00	NM	0.99138	0.95158	0.94748	0.99139	0.95570
16	3.4060"-03	1.0006"+00	NM	0.99539	0.96539	0.96317	0.99541	0.96762
17	4.0460~-03	1.0000"+00	NM	0.99758	0.97582	0.97465	0.99759	0.97700
18	4.6860"-03	1.0006"+00	NM	0.99869	0.98324	0.98261	0.99870	0.98388
19	5.3260"-03	1.0006"+00	NM	0,99900	0.98956	0.98907	0.99900	0.99006
žó	5.9660"-03	1.0006*+00	MM	0.99936	0.99244	0.99213	0.99936	0.99276
ěi	7.2460*-03	1.0007"+00	NM	1.00000	0.99766	0.99760	1.00000	0.99766
0 55	8.5260*-03	1.0007*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UE, TO ASSUME T/TD = TO/TOD AND PEPD

690102	02 80LD	BOLDMAN		TABULATION	37	POINTS, DEL	TA AT POI	NT 37	
I	¥	P12/P	P/PD	T0/T0L	147110	U/UD	1/10	RHO/RHOD*U/UD	
1	0.0000*+00	1.0000*+00	NM	079320	0.00000	0.00000	1.49281	0.00000	
2	3.2000"-05	1.8929*+00	NM	0.87037	0.47619	0.55635	1.36503	0.40758	
3	1.0300"-04	3.0492"+00	M#1	0.87593	0.56657	0.72549	1.18426	0.61261	
4	1.1600*=04	3.0492"+00	ИW	0.87778	0.66667	0.72026	1.18677	0.61196	
4 5 6 7	1.4100 04	3.4133"+00	ИW	0.88148	0.71429	0.76402	1.14410	0.66779	
6	1.5400"-04	3.8050"+00	NW	0.88333	0.76190	0.79891	1.09949	0.72662	
	2.0400"-04	4.2238"+00	:#W	0.89074	0.80952	0.83438	1.06234	0.78541	
8	2,2700"-04	4,6695"+00	Mm	0.89630	0.85714	0.86713	1.02356	3.84722	
9	2.5500"-04	5.1418 +00	Пh	0.90370	0.70476	0.89917	0.98767	0.91039	
10	2.6500"-04	5.1418"+00	ИW	0.70556	0.90476	0.90009	0.98970	0.90946	
11	2.8100"-04	5.6404"+00	MIT	0.91111	0.95238	0.92954	0.95262	0.97578	
12	3.1100 -04	5.6404"+00	NM	0.91852	J.95238	0.93331	0.96036	0.97184	
17	3.1600"-04	5.6404"+00	ИW	0.92037	0.95238	0.73426	0.96230	0.97080	
14	3.2100 -04	5.64047+00	14M	0.42222	0.95238	0.93519	0.96423	0.96988	
15	3.2600"-04	5.6404"+00	ΝM	0.92407	0.95248	0.93613	0.96617	0.96891	
16	3.3700"-04	5,6404"+00	14%	0.92593	0.95238	0.93707	0.96811	0.96794	
17	3.4400*-04	5.6404"+00	llм	0.92778	0.95238	0.93801	0.97004	0.96697	
18	3.4900"-04	5.6404"+00	14M	0.92778	0.95238	0.93801	0.97004	0.96697	
19	3.5200"-04	5.6494*+00	14M	0.92778	0.95238	0.93501	0.97004	0.96697	
50	3.5700"-04	5.6404"+00	MW.	0.72763	0.95238	0.93894	0.97198	0.96601	
21	3.6700*-04	5.6404"+00	MM	0.93148	0.95238	0.93985	0.97392	0.96505	
55	3.7200"-04	5.6404"+00	Им	0.93148	0.95238	0.95988	0.97392	0.96505	
23	3.9500"-04	5.6404"+00	ИM	0.93704	0.95238	0.94268	0,97972	0.96219	
24	4.3300"-04	5.6404"+00	ИM	0.94074	0.95238	0.94454	0.98360	0.96029	
22	4.5600"-04	6.1654"+00	ИM	0.94259	1.00000	0.97087	0,94259	1.03000	
24	4.8400"~04	6.16547+00	Им	0.94444	1.00000	0.97103	0.94444	1.02899	
27	5.0900"-04	6.1654"+00	NM	0.94630	1.00000	0.97278	0.94630	1.02798	
28	5.3500"~04	6.1654"+00	Им	0.94815	1.00000	0.97373	0.94815	1.02698	
29	5.0500"-04	6.1654"+00	NM	0.95000	1.00000	0.97468	0.95000	1.02598	
30	7.1200"-04	6.1654"+00	٧w	0.95370	1.00000	0.97658	0.95370	1.02378	
31	8.3900"-04	6.1654"+00	Ин	0.95741	1.00000	0.97847	0.95741	1.02200	
35	2.1090 -03	6.1654"+00	Ne	0.97407	1.00000	0.98695	0.97407	1.01355	
33	3.3790"-03	6.1654 +00	Им	0.98519	1.00000	0.99256	0.98519	1,00749	
34	4.6490 4-03	6.1654"+00	ИМ	0.99444	1.00000	0.99722	0.99444	1.00279	
35	5.9190"-03	6.1654"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000	
36	7.1890"-03	6.1654"+00	ΝM	1.00000	1.00000	1.00000	1.00000	1.00000	
D 37	7.8240"-03	6.1654"+00	Им	1.00000	1.00000	1.00000	1.00000	1.00000	

INPUT VARIABLES Y, TO, P ASSUME PEPD

69010	203 80LD	MAN	PROFILE	TABULATION	32	POINTS, DE	LTA AT POI	NT 32
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	1/10	RH0/RH0D*U/U
1	0.0000*+00	1,0000#+00	ИM	0.65004	0.00000	0.00000	2.33493	0.0000
2	3.2000"-05	2.1328"+00	NM	0.78189	0.30556	0.45948	2.26130	0.20319
3	1.0800"-04	3.4133"+00	NM	0.81146	0.41567	0.59075	2.01018	0,29388
4	1.5300"-04	4.2238*+00	NM	0.82070	0.47222	0.64544	1.86816	0.34549
5	1.5700 -04	4.6695"+00	٧w	U.82625	0.50000	0.67099	1.80090	0.37258
6	2.1000 -04	5,6404"+00	NM	0.83734	0.55556	0.71814	1.67096	0.42978
7	2.6000"-04	6.1654"+00	Hm	0.84659	0.56333	0.74150	1.61579	0.45891
8	3.1100"-04	6.7165"+00	ИW	0.85582	0.61111	0.76378	1.56205	0.48896
9	4.1300"-04	7.2937"+00	[4M	0.86691	0.63889	0.78588	1.51310	0.51939
10	4.5400"-04	7.2937*+00	MM	0.87246	0.63889	0.78839	1.52277	0.51773
11	5.4000*-04	7.8969*+00	NM	0.87616	0.06667	0.80621	1.46243	0.55128
12	6.6700"-04	9.1813"+00	ИW	0.88540	0.72222	U.839M3	1.35219	0.62109
13	7.9400"-04	9.5624"+00	NM	0.89464	0.75000	0.85756	1.30738	0.65593
14	1.0480"-03	1.1302"+01	NM	0.90943	0.80556	0.88903	1.21799	0.72992
15	1.1750"-03	1.2061"+01	NM	0.91867	0.83333	0.90466	1.17852	0.76763
16	1.3020"-03	1.2846"+01	NM	0.92421	0.86111	0.91785	1.13613	0.80788
17	1.3780"-03	1.3656*+01	NM.	0.92791	0.88889	0.92953	1.09352	0.85003
18	1.5560"-03	1.4492"+01	NM	0.93715	0.91667	0.94343	1.05924	0.89067
19	1.7840"-03	1.5354"+01	NM	0.94640	0.94444	0.95683	1.02640	0.93222
20	1.9370"-03	1.6242"+01	NM	0.95009	0.97222	0.96696	0.98920	0.97752
21	2.0640"-03	1.6242"+01	NM	0.95194	0.97222	0.96790	0.99112	0.97657
22	2.2160"-03	1.7156"+01	MM	0.95379	1.00000	0.97662	0.95379	1.02394
23	2.3180 -03	1.7156"+01	NM	0.95564	1.00000	0.97757	0.95564	1.02295
24	2.4190"-03	1.7150"+01	NM	0.95564	1.00000	0.97757	0.95564	1.02295
25	2.4560"-03	1.7156"+01	NM	0.95749	1.00000	0.97851	0.95749	1.02196
56	2.5720"-03	1.71564+01	NM	0.95749	1.00000	0.97851	0.95749	1.02190
27	2.82607-03	1.71564+01	NM	0.95933	1.00000	0.97746	0.95933	1.02097
Žė	3.5880 -03	1.7156"+01	NM	0.96303	1.00000	0.98134	0.96303	1.01901
29	4.3500"-03	1.7156"+01	ЙM	0.96673	1.00000	0.98322	0.96673	1.01706
30	6.3820*-03	1.7156"+01	NM	0.97597	1.00000	0.98791	0.97597	1.01224
31	1.1970*=02	1.7156"+01	NM	0.99630	1.00000	0.99815	0.99630	1.00185
0 32	1.6796"-02	1.7156"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, TO, M ASSUME PEPD

690102	104 BOLD!	BOLDMAN		TABULATION	N 31 POINTS, DELTA AT POINT 31				
1	Y	9/579	F/PD	10/100	MINN	U/UD	T/TD	RHO/RHOD*J/UD	
1	0.0000#+00	1.0000*+00	NM	0.58957	0.00000	0.00000	2.97735	0.0000	
2	3,2000"-05	1.6913"+00	NM	0.74212	0.20000	0.35918	3.22520	0.11137	
3	1,0800*-04	3.0492*+00	Nie	0.77180	0.31111	0.52059	2.79999	0.18592	
4	2.6000*=04	4.6695"+00	ИM	0.81262	0.40000	0.63120	2.49012	0.25348	
5	3.6200"-04	5.6404"+00	NM	0.82560	0.44444	0.67641	2.31627	0.29203	
6	5.1400 -04	6,7165"+00	NM	0.83859	0.48889	0.71716	2.15187	0.33327	
7	9.2100"-04	8.5261*+00	ИM	0.86271	0.55556	0.77306	1.93630	0.39925	
8	1.5810"-03	1.2061"+01	NM	0.89239	0.66667	0.84577	1.60950	0.52549	
9	2.1400"-03	1.5354"+01	NM	0.91466	0.75556	0.89227	1.39463	0.63979	
10	2.6480"-03	1.8095"+01	ŇM	0.93135	0.82222	0.92230	1.25825	0.73300	
11	3.1560"-03	2.1068*+01	NM	0.94620	0.88889	0.94811	1.13769	0.83337	
12	3.3590"-03	2.2111"+01	ИM	0.94991	0.91111	0.95547	1.09973	0.86882	
13	3.6130"-03	2.3179"+01	Nw	0.95547	0.93333	0.96347	1.06562	0.90414	
14	3.8670*-03	2.4273*+01	ЙW	0.95918	0.95556	0.97028	1.03105	0.94106	
15	4.0700 -03	2.5393"+01	ЙM	0.96104	0.97778	0.97589	0.99615	0.97967	
16	4.3240"-03	2.5393"+01	NM	0.96289	0.97778	0.97684	0.99807	0.97872	
17	4.4770"-03	2.5393"+01	ЙM	0.96473	0.97778	0.97778	1.00000	0.97778	
18	4.6800"-03	2.6539"+01	NM	0.96475	1.00000	0.98222	0.96475	1.01811	
19	4.9340"-03	2,6539"+01	ЙM	0.96475	1.00000	0.98222	0.96475	1.01811	
20	5.0360"-03	2.6539*+01	NM	0.96475	1.00000	55586.0	0.96475	1.01811	
21	5.1880*-03	2.6539"+01	NM	0.96660	1.00000	0.98316	0.76660	1.01713	
22	5.6960"-03	2.6539"+01	NM	0.96660	1.00000	0.98316	0.96660	1.01713	
23	6.2040*-03	2.6539*+01	NM	0.96846	1.00000	0.98410	0.96846	1.01615	
24	6,4580"-03	2.6539"+01	NM	0.97032	1.00000	0.98505	0.97032	1.01515	
25	7.9820"-03	2.6539"+01	NH	0.97403	1.00000	0.98693	0.97403	1.01325	
26	9.5060"-03	2.6539"+01	NМ	0.97774	1.00000	0.98881	0.97774	1.01132	
27	1.0116"-02	2.6539"+01	MI	0.97959	1.00000	0.98974	0.97959	1.01036	
Žà	1.2300*=02	2.6539"+01	NM	0.98701	1.00000	0.99349	0.98701	1.00656	
29	1.6110"-02	2.6539"+01	NM	0.99443	1.00000	0.99721	0.99443	1.00279	
30	1.8650"-02	2.6539"+01	ŇM	0.99814	1.00000	0.99907	0.99814	1.00093	
D 31	2.1952"-02	2.6539"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000	

INPUT VARIABLES Y,TO,M ASSUME PEPD

SECTION D: ADDITIONAL DATA - WALL PRESSURE, TEMPERATURE AND HEAT TRANSFER. From Boldman & Graham (1972).

STAT	'IONS	X	Diameter	PW/POD	MD	Se	ries 01	Ser	ies 02
PROFILE CAT 6901	AUTHOR'S Number	mm (AXIAL)	Men	EXPERI	MENTAL	TW K	h: kg/m²s	TW K	h _i kg/m ² s
	2	- 114.68	158.75	0.99946	0.02778	406.6	0.717	376.2	0.448
	3	- 89.28	129.34	0.99847	0.04667	415.7	0. B2 3	389.3	0.598
XXQ1		- 63.80	99.92	0.99565	0.07894	446.6	1.294	419.6	0.970
	5	- 54.81	89.61	0.99325	0.09841	449.4	1.455	423.8	1.097
	6	- 46.02	79.45	0.98887	0.12655	448.1	1.638	427.7	1.174
	7	- 37.08	ĕ9.14	0.9804	0.16840	454.8	1.891	434.6	1.336
	8	- 28.19	58.83	0.9624	0.23463	463.9	2.390	444.4	1.715
	9	- 15.57	44.70	0.8399	0.50553	479.5	3.122	456.9	2.088
	10	- 4.55	38.35	0.5733	0.92813	481.0	3,382	457.3	2.348
THROAT	11	0	37.90	0.4600	1.11446	478.8	3.347	457.7	2.299
	12	3.30	38.15	0.3733	1.27507	468.9	2,587	445.9	1.828
	13	6.48	39.12	0.2785	1.48469	459.8	2.383	441.3	1.701
	14	9.96	40.74	0.2084	1.68125	451.7	2,229	436.7	1.708
	15	16.10	43.99	0.1820	1.77070	452.5	2.299	434.5	1.610
XXO2	16	31.01	51.87	0.1125	2.08183	444.2	1.955	424.8	1.399
	17	69.49	72.59	0.0375	2.78852	411.0	0.970	397.8	0.893
XXO3	18	138.89	109.78	0.0094	3.73770	365.8	0.412	350.5	0.356
	19	208.31	147.12	0.0038	4.42415	330.0	0.214	321.6	0.193
XXO4	19.	241.79	165.19	0.0027	4.70038	-	-	-	-
	20	280.21	185.93	0.0024	4.7980	321.6	0.174	316.7	0.141

NOTES:

a) All data have been normalised to the reservoir conditions:

$$PO = 2.068 \text{ MN/m}^2$$
 TO = 539 K.

- b) The wall temperatures given here were taken over a period of time, and do not necessarily match the values given with the profiles. The shape of the distribution and the variation and values of the enthalpy heat transfer coefficient should, however, be representative.
- c) The heat transfer coefficient \mathbf{h}_{i} is defined as

$$h_1 = q / \left(l_{ad} - l_w \right)$$

where q = heat flux rate / unit area

1 - enthalpy of fluid

ad = at recovery temperature

w = at wall temperature

š :

M : Approximately 1.4 rising to 3

R THETA X 10-3 : 4 - 2

TH/TR : 1

6902

FPG - AU

Continuous running tunnel with a single block half-nozzle. W = 80 mm. PO: 0.1 MN/ m^2 . TO: 300 K. Air. RE/m X 10⁻⁶: 10 - 15.

MICHEL R., QUEMARD C. and ELENA M-P., 1969. Distributions de vitasses des couches limites turbulentes en ácoulement compressible, uniform ou accéléré. La Recherche Aérospatiale no 128, 33-47. And Michel R., private communication.

- The test boundary layer was formed on a straight wall (W = 80 mm) opposite a rigid nozzle block. Three tests were made. For series 01 the throat height was 35 mm and the flow expanded to the nozzle design Mach number of 1.4. The nominally uniform flow is then accelerated by expansion waves originating from a convex circular arc continuation (radius 182 mm) of the upper surface of the nozzle. For the second test the circular arc was replaced by a sharp corner turning the flow through 21°. For the third, the sharp corner was retained but the flat surface was closer to the nozzle block so that the throat height was reduced to 20 mm giving a nominal (one-dimensional) Mach number of 1.55 just before the expansion. The test area on the flat wall extended from X = -19 to X = 120 mm, in all cases including an initial constant
- 4 pressure region before entering (X = 0) the reflected wave expansion. The tests were complete upstream of any second reflection of the expansion.
- 6 Static pressure (tapping diameter 0.5 mm) could be measured at 10 mm intervals along the flat test surface.
- 7 The wall "was adiabatic" but no measurements of temperature were made. Pitot profiles were obtained with
- 9 an FPP $(h_1 = 0.18, h_2 = 0.08, b_1 = 2 mm)$ and the data was reduced assuming no normal pressure gradient and a modified Crocco relationship (Michel, 1963) for the total temperature, with a recovery factor of 0.9. For each case at least two profiles out of a total of 12 were taken in the flow upstream of the
- 12 expansion. The editors have assumed that the flow was adiabatic and applied the usual Crocco-Van Driest temperature velocity relationship with a recovery factor of 0.896.
- 6 DATA: 6902 0101-0313. Pitot profiles. NX = 12. 23.

15 Editors' comments

These tests were performed at relatively low Reynolds number, and the profiles downstream of the fourth station almost certainly display marked re-laminarisation characteristics. Comparisons are not possible, the most nearly matched available data (Pasiuk et al. - CAT 6504, Thomas - CAT 7401) being at much higher Reynolds number.

The expansion was applied as a reflected wave so that normal pressure gradient effects should be small except at the start, near X = 0. The author writes that "results from regions where a normal pressure gradient could be noticed have not been retained".

The physical scale of the equipment is small, and measurements do not extend within the momentum deficit peak, so that integral values should be treated with reserve.

INFINITE

1.

NM

CAT 6902	MICHEL		BOUNDARY CON	DITIONS	AND EVALUATED D	ATA. SI UNIT	5.	
RUN	MD ₽	TW/TR#	RED2W	CF	H12	H12K	PW	PD
X	PODA	PH/PD*	REDED	ČQ	н32	H32K	TW	TD
ÂZ "	TODA	Si *	05	PIZ	H42	DSK	ÜD	ŤŘ
69020201	1.3800	1.0000	2,6033"+03	ИM	2.2186	1.4297	3,2725"+04	3.2725"+04
-1.9000"-02	1.0:26*+05	1.0000	3.5492"+03	UM	1.7900	1.7841	2.8945"+02	2.1580"+02
INFINITE	2.9800*+02	0.0000	2.3524*=04	14m	0.0510	2.6444"-04	4.0646*+02	2.8945"+02
69020202	1.3800	1.0000	2.8960"+03	Им	2,2095	1.4214	3.2359*+04	3.2359*+04
-6.0000*-03	1.0012"+05	1.0000	3.6650"+03	NM	1.7874	1.7809	2.9178*+02	2.1754"+02
INFINITE	3.0040"+02	0.0000	2.4830"-04	NH	0.0509	2.7932"-04	4.0809*+02	2.9178*+02
\$107 \$10 \$ 14.	3,0040 102	•••••			*****			
69020203	1.4200	1.0000	2.9352*+03	Иn	2,2013	1.3758	3.0587"+04	3.0587"+04
6.5000"-03	1.0012"+05	1.0000	3.7577*+03	MM	1.7965	1.7904	2.9608"+02	2749*+02
INFINITE	3,0520"+02	0.0000	2.6166"-04	HM	0.0533	2.7510"-04	4.1987"+02	2.9608"+02
	1 4 300		2.3391"+03	(IM	2.3461	1.3082	2.2639*+04	2.2639++04
69020204	1.6200	1.0000						
2.0000*+02	9.9125"+04	1.0000	3.2027"+03	NM	1.8460	1.8402	5.84444+05	1.9346"+02
INFINITE	2.9500*+02	0.0000	2.2576"-04	Им	0.0661	2.5506"-04	4.5177"+02	2.8444*+02
69020205	1.7500	1.0000	1.8969"+03	ИN	2,5126	1.3100	1.8781"+04	1.8781*+04
2.7500*-02	9.9992*+04	1.0000	2.7079"+03	NM	1.8572	1.8493	2.9449*+02	1.9014"+02
INFINITE	3.0660*+02	0.0000	2.0808*-04	IIM	0.0734	2.3720"-04	4.8382*+02	2.9449*+02
							-	
9020206	1.8500	1.0000	1.7341"+03	NP	2.6456	1.3074	1.6075"+04	1.6075"+04
3.4000"-02	9.9725"+04	1.0000	2.5651*+03	NM	1.8632	1.8527	2.9269"+02	1.8142"+02
INFINITE	3.0560*+02	0.0000	2.0437*-04	HM	0.0783	2.3481"-04	4.9960"+02	2.9269#+0?
69020207	1.8900	1.0000	1.7830*+03	1114	2.6843	1.2932	1.5054"+04	1.5034*+04
3.7000*-02	9.9192"+04	1.0000	2.6849*+03	1114	1.8695	1.8602	2.8126"+02	1.7149"+02
	2.9400*+02	0.0000	2.0730*-04	MIN.	0.0806	2.3833"=04	4.9623"+02	2.8126*+02
INFINITE	2.4400"402	0.01100	2.0/304	(4m	0,000	6.3033 -04	4,70E2 TUP	2.0120 402
69020208	2.0500	1.0000	1.6457*+03	Mm	2.9041	1.2809	1.1885"+04	1.1885*+04
4.8000"-02	1.0052*+05	1.0000	2.6175"+03	MI	1.8795	1.8672	2,9166"+92	1.6637"+02
INFINITE	3.0620"+02	0.0000	5-5004-04	ИM	0.0890	2.6267"=04	5,3015"+02	2.9166"+02
69020209	2.1800	1.0000	1.5353*+03	чи	3.1290	1.2912	9.6873"+03	9.6873"+03
5.6000*-02	1.0039"+05	1.0000	2.5646*+03	NM	1.8759	1.8589	2.9011*+02	1.5668*+02
	3.0560*+02	0.0000	2.35187-04	MIN	0.0948	2.7882"=04	5.4711"+02	2.9011"+02
INFINITE	341300 408	0.0000	E+3310 V4	1000	0.0740	E1100E -114	3,4111 102	£47011 TUE
69020210	0005.5	1.0000	1.4445*+03	NM	3.2955	1.2761	8.1227"+93	8.1227"+03
6.7000*-02	9.9992"+04	1.0000	2.5173*+03	ИM	1.8814	1.8638	2.8810"+02	1.4852*+02
INFINITE	3.0430"+02	0.0000	2.4326*-04	NW	0.0998	2.9105"-04	5,5956"+02	2.8810*+02
69020211	2.3800	1.0000	1.4313"+03	[]M	3.4493	1.2740	7.0469*+03	7.04694+03
				(IM		1.8685	2.8985*+02	1.4384*+02
7.6500*-02	9.9858 +04	1.0000	2.5795"+03		1.8864			
INFINITE	3.0680*+02	0.0000	2.6433*-04	ИМ	0.1038	3.1819"-04	5.7231"+02	2.8985*+02
69020212	2.5600	1.0000	1.3537*+03	NM	3.8321	1.2951	5.3208"+03	5.3208"+03
9.9000"=02	9.9792*+04	1.0000	2.6160"+03	1110	1.8735	1.8500	2.6889"+02	1.3256"+02
INFINITE	3.0700"+02	0.0000	2.9508*-04	ПM	0.1101	3.7101 -04	5.9162*+02	2.6889"+02

CAT 6902	MICHEL		BOUNDARY CON	DITIONS A	NO EVALUATED	DATA. SI UNIT	5.	
RUN X *	MD R POD*	TW/TR# PW/PD#	RED2W RED2D	CF CQ	H12 H32	H12K H32K	PW Tw	PD TD
RZ	TUDA	34 *	05	PIZ	H42	DZK	UĎ	ŤŘ
69020301	1.5400	1.0000	2.2327*+03	NM	2.3915	1.4121	2.5844*+04	2.5844#+04
-1.3000*-02 INFINITE	1.0056*+05 2.9960*+02	1.0000 0.0000	2.9735*+03 2.0637*=04	И н :4ь	1.7879	1.7803 2.3846"-04	2.895#"+U2 4.4015"+U2	2.0321"+02 2.8958"+02
69050305	1.5450	1.0000	2.2929"+03	IIM	2.3532	1.3774	2,5308"+04	2.5308"+04
-3.0000*-03 INFINITE	9.9200"+04 2.9510"+02	0.0000	3.0617*+03 2.1134*-04	'fh Hh	1.8005	1.7944 2.4289"-04	2.8518"+02 4.3780"+02	1.9974"+02 2.8518"+02
69020303	1.7450	1.0000	1.7612"+03	HW	2.5625	1.3473	1.9043*+04	1.9043*+04
1.1000"-02 INFINITE	1.0062"+05	1.0000	2.5115"+03 1.8924"=04	Nn Nn	1.8343 0.0722	1.8251 2.1934*-04	2.9203*+02 4.8091*+02	1.8894"+02 2.9203"+U2
69020304	1.9300	1.0000	1.6487"+03	NK 	2.7565	1.2992	1.4083"+04	1.4083*+04
1.9000*-02	9.8850*+04	1.0000	2.5180*+03	NM NM	1.8611	1.8513	2.8228"+02	1.6929*+02
INFINITE	2.9540"+02	0.0000	1.9965"-04	ЯM	0.0826	2.3269*-04	5.0347*+02	2.8228*+02
69020305	2,1150	1.0000	1.3688"+03	1484	3.0572	1.3126	1.05617+04	1,0561*+04
2.7500"-02	9.8870*+04	1.0000	2.2389"+03	NW	1.8655	1.8504	2,8146*+02	1.5623"+02
INFINITE	2.9600*+02	0.0000	1.9333*-04	MM	0.0916	2.3001"-04	5.3003*+02	2.6146"+02
69020306	2.2350	1.0000	1.3097"+03	HW	3.2808	1.3331	8.8607"+03	8.8607"+03
3.4000"=02 INFINITE	1.0008"+05	1.0000	2.2445*+03 2.0037*-04	(fw Mw	1.8650 0.0969	1.8442 2.4219"-04	2.7815*+02 5.4286*+02	1.4677"+02
		-		-				
69020307 4.0000"-02	2.3500 9.9950"+04	1.0000	1.2140"+03 2.1717"+03	Niv Hw	3.4714 1.8680	1.3234 1.8459	7.3920"+03	7.3920"+03 1.4108"+02
INFINITE	50+"090".5	0.0000	2.0908"-04	N₩ N	0.1020	2.5637"-04	5.5964*+02	2.8069*+02
69020306	2.4600	1.0000	1.0846*+03	HM	3,6778	1.3329	6.2388*+03	6.2388"+03
4.6000"-02	1.0016*+05	1.0000	2.0247"+03	NM	1.8761	1.6525	2.6028"+02	1.3446*+02
INFINITE	2.9720"+02	0.000	2.0617*-04	MW	0.1068	2.5418*-04	5.7193*+02	2.4028*+02
69020309	2,5450	1.0000	1.0235*+03	NM	3.7990	1.3030	5.4902"+03	5.4902"+03
5.1000"-02 Infinite	1.0060*+05	0.0000	1.9736"+03 2.1102"-04	NM NM	1.8816 0.k104	1.8581 2.6157*-04	2.8145*+02 5.8238*+02	1.3026"+02 2.8145"+02
		480000				5,013/ -44	3,0230 +42	E.0143 +0E
69020310	2.6300	1.0000	9.5665"+02	NM 	4.0270	1.3500	4.6054"+03	4.8054"+03
5.6000"-02 Infinite	1.0044*+05	1.0000	1.9017"+03	NN UM	1.8774 0.1133	1.8469 2.7600"=04	2.8659*+02 5.9651*+02	1,2797*+02
•								
69020311 6.2500*-02	2.7250 1.0068*+05	1.0000	9.1127*+02 1.8818*+03	NM NM	4.1678 1.8813	1.3062 1.8539	4.1613"+03 2.8464"+02	4.1613"+03 1.2213"+02
INFINITE	3.0350"+02	0.0000	2.2614"-04	Him	0.1169	2.8814"-04	6.0378"+02	2.8464"+02
69020312	2.6000	1.0000	8.8394*+02	NH	4.3207	1.3062	3.6996*+03	3.0996*+03
6.6000"-02	1.0040*+05	1.0000	1.6800*+03	NM	1.6843	1.8547	2.8423"+02	1.1619#+02
INFINITE	3.0350"+02	0.0000	2.3595*-04	HM	0.1197	3.0226#-04	6.1031*+02	2.0423"+42
69020313	2.9050	1.0000	9.0619"+02	NM	4.6022	1.3455	3.0964*+03	3.0964*+03
7.8500"=02	9.8570*+04	1.0000	2.0082*+03	ЯM	1.8797	1.8422	2.8415"+02	1.1310*+02
INFINITE	3.0400"+02	0.0000	2.7245*=04	Им	0.1228	3.5632"-04	6.1943*+02	2.8415*+02

69020	305 WIC	HEL	PROFILE	TABULATION	27	POINTS, DE	LTA AT POI	NT 27
1	Y	PTZZP	P/P0	T0/T00	илир	UVUD	1/10	RHO/RHO∆∗U/UD
1	0,3000*+00	1.0000*+00	им	0.96639	0.00000	0.0000	1.42775	0.00000
5	9.0000"-05	1.5591"+00	NW.	0.97852	0.53232	0.60070	1.27340	0.47173
3	1.0000"-04	1.5069"+00	Иw	0.97865	0.53550	0.60390	1.27175	0.47486
4	1.20007-34	1,6029*+00	NM	0.97924	0.54980	0.01820	1.26428	0.48897
د'	1.4000"-04	1.63684+00	Им	0.97977	0.56271	0.63100	1.25744	0.50181
6	1.6000"-04	1.6791"+00	MM	0.98043	0.57818	0.64620	1.24914	0.51732
7	1.8000"-04	1.7163"+00	NM	0.98098	0.59122	0.65890	1.24205	0.53050
벍	2.0000"-04	1.7622*+00	ŊM	0.98165	0.60667	0.67380	1.23355	0.54623
9	2.5000"-04	1.8483"+00	NP4	0.98285	0.63391	0.69970	1.21633	0.57431
10	3.0000"-04	1.9095"+00	Νм	0.98366	0.65208	0.71670	1.20803	0.59328
11	3.5000"=04	1.9592"+00	(11)	0.98442	0.66895	0.73230	1.19837	0.61108
12	4.0000"-04	2.0230"+00	ИM	0.98509	0.68372	0.74580	1.18983	0.42051
13	4.5000"-04	2.0732"+00	MI	0.98568	0.69677	0.75760	1.10224	0.64082
14	5.0000"-04	2.1245*+00	1100	0.98631	0.71039	0.76980	1.17427	0.65556
15	6.0000"-04	2.2266"+00	NM	0.98745	0.73496	0.79150	1.15978	0.68246
16	7.0000"-04	2,3204*+00	ИW	0.98848	0.75698	0.81060	1.14669	0.70690
17	8.3000"-04	2.4095*+00	NM	0.98942	0.77714	0.82780	1.13463	0.72957
18	1,0000"=03	2.5921"+00	NM	0.99128	0.81650	0.86040	1.11095	0.77465
19	1.2000"-03	2.7868"+00	MIS	0.99316	0.85603	0.89250	1.08702	0.82105
50	1.4000"-03	2.9615*+00	NM	0.99477	0.88976	0.91570	1.06657	0.86155
21	1.6000"=03	3.1547*+00	MIT	0.99647	0.92543	0.94600	1.04495	0.90531
55	1.8000"-03	3.2968"+00	Им	0.99767	0.95070	0.96470	1.02967	0.93691
53	2.0000*=03	3.4203*+00	MM	0.99868	0.97208	0.78020	1.01677	0.96403
24	2.2000"-03	3.5122"+00	NM	0.99942	0.98765	0.99130	1.00741	0.98401
25	2.4000*-03	3.5545"+00	NM	0,99975	0.99473	0.99630	1.00316	0.99310
26	2.6000"-03	3.5784"+00	I/M	0.99994	0.99872	0.99910	1.00077	0.99333
D 27	2.8000"-03	3.5861"+00	NM	1.00000	1.00000	1.00000	1,00000	1.00000
INPUT	VARIABLES	Y,U/UD,T/TD	ASSUME PE	PO				
69020	305 MICI	IEL	PROFILE	TABULATION	37	POINTS, JE	LTA AT POI	NT 37
I	Y	PT2/P	P/PD	TO/TOD	M/ND	מטעני	1/10	RHO/RHODAU/UD
i	0.0000*+00 9.0000*+05	1.0000"+00 2.0005"+00	IIM NM	0.95089	0.00000	0.00000	1.50160	0.00000

690203	ios Michi	EL	PROFILE	TABULATION	37	POINTS, 3	ELTA AT POI	NT 37
I	Y	PT2/P	P/PD	TO/TOD	M/ND	מט/ט	1/10	RHO/RHODAU/UD
1	0.0000*+00	1.0000#+00	MIT	0.95089	0.00000	0.00000	1,50160	0.00000
2	9.0000*-05	2.0008*+00	NM	0.96901	0.49497	0.60740	1.50586	0.40336
3	1.0000*-04	2.0712*+00	MM	0.96985	0.50862	0.62130	1.49217	0.41637
4	1.2000"-04	2.1950*+00	NM	0.97126	0.53132	0.64400	1.46915	0.43835
5	1.4000"-04	2.3693"+00	NH.	0.97313	0.56112	0.67300	1.43853	0.46784
6	1.6000"-04	2.5162"+00	ИМ	0.97463	0.58470	0.69530	1.41407	0.49170
7	1.8000"-04	2.6776"+00	N₩	0.97621	0.60936	0.71800	1,38836	0.51716
8	2.0000"-04	2.8176"+00	ЦM	0.97752	0.62975	0.73630	1.36702	0.53862
9	2.5000"-04	3.1121"+00	NM	0.98012	0.67037	0.77150	1.32448	0.58249
10	3.0000"-04	3.3826"+00	NM	0.98236	0.70537	0.80050	1.25794	0.62154
11	3.5000"-04	3.6607"+00	NM	0.98453	0.73947	0.82760	1,25257	0.66072
12	4.0000"-04	3.9240"+00	I ₈ M	0.98446	0.77025	0.85110	1.22094	0.69708
13	4.5000*-04	4.1384"+00	NM	0.98797	0.79439	0.86890	1.19640	0.72626
14	5.0000"-04	4.2967"+00	NM	0.98905	0.81193	0.88150	1.17872	0.74784
15	6.0000"- 04	4.4842"+00	Иw	0.99026	0.83174	0.89540	1,15892	0.77261
16	7.0000*-04	4.5925"+00	NM	0.99095	0.84309	0.90320		0.78698
17	8.0000"-04	4.6435"+00	NM	0.99127	0.84838	0,90650		0.79373
18	9.0000"=04	4.7069"+00	NM	0.99167	0.85490	0.91150		0.80208
19	1.0000"-03	4.7580"+00	NM	0.99198	0.86013	0.71470		0.80881
20	1.2000"-03	4.8232"+00	ИW	0.99235	0.86675	0.91910		0.81738
51	1.4000"-03	4.9323"+00	NM	0.99303	0.87770	0.92630		0.53166
55	1.6000"-03	5.0714"+00	ИM	0.99384	0.89147	0,93520		0.84978
23	1.8000"-03	5.1875"+00	NM	0.99451	0.90279	0,94240		0.56484
24	2.0000"-03	5.3355"+00	ИW	0.99533	0.91701	0.95130		0.88396
25	2.2000"-03	5.4766"+00	NM	0.99610	0.93036	0.95950		0.90211
5.6	2.4000"-03	5.5881"+00	ИМ	0.99670	0.94078	0.96580		0.91641
27	2.6000"-03	5.7355"+00	ИМ	0.99747	0.95439	0.97390		0.93528
25	2.8000"-03	5.8274"+00	NM	0.99795	0.96292	0.97890		0.94720
29	3.0000"+03	5.9307"+00	NM	0.99844	0.97206	0.98420		0.96007
30	3.2000"-03	6.0106"+00	NM	0.99886	0.97921	0.98830		0.97021
31	3.4000"-03	6.0899"+00	ŅМ	0.99925	0.98623	0.99230		0.98025
35	3.6000"-03	6.1442"+00	NM	0.49951	0.99105	0.99500		0.98711
33	3.8000"-03	4.1869"+00	ŅМ	0.99972	0.99479	0.99710		0.99249
34	4.0000"-03	6.2134"+00	NM	0.99984	0.99712	0.99840		0.99585
35	4.2000"-03	4.2361"+00	NM	0.99995	0.99910	0.99950		0.99870
36	4.4000"-03	6.2402*+00	NM	0.99997	0.99946	0.99970		0.99922
D 37	4.6000"=03	6.2464*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,U/UD,T/TD ASSUME PMPD

INPUT VARIABLES Y, U/UD, T/TD ASSUME PMPD

6405031	3 MICHE	L	PROFILE	TABULATION	41	POINTS, DEL	TA AT POI	NT 41
1	Y	PT2/P	P/P0	TO/TOD	MYHD	U/UD	T/TD	MHD/MHOD*U/UD
i	0.0000*+00	1.0000*+00	NM NM	0.93469	0.00000	0.00000	2.31227	0.00000 0.17979
ž	1.0000 -04	1.5233"+00	ŇM	0.94384	0.27514	0.41310	2.25420	0.16324
4 5	1.2000"-04	1.6524*+00	NW NW	0.94787 0.95294	0.30236	0.44920 0.52860	8.00972	0.25295
7	1.6000*-04	2.2936"+00 2.5720"+00	NW NW	0.95577 0.95057	0.39930	0.56810 0.60470	2.02421	0.28065 0.30863
å	2.5000*-04	2.8311"+00 3.3857"+00	NM NM	0.96099	0.45990	0.63450 0.6850	1.90345	0.33334 0.38348
1 Ó	3,0000"-04 3,5000"-04	3.9605"+00 4.3049"+00	NM NM	0.96425	0.55546	0.72700 0.75860	1.64200	0.42440
12	4,0000"-04	4,7187"+00	NM	0.47484	0.67330	0.78410	1.58251	0.49548 0.52945
13 14	4.5000"-04	5.1455"+00 5.5314"+00	NM NM	0,97942	0.66109	0.82760	1.4/648	0.56052
15 16	6.0000"-04 7.0000"-04	6.2622"+00 6.7798"+00	ИW Им	0.98304 0.98334	0.72704	0.36040	1.39216	0.61777
17 18	8.0000"-04 9.0000"-04	7.0652"+00 7.3370"+00	Nw Ma	0.98656 0.98766	0.77830	0.89120	1.28570	0.6797a 0.700# 8
19 20	1.2000 -03	7.5762*+00 7.8746*+00	liw lin	0.98860 0.98972	0.80805	0.908%0 0.91740	1.24408	0.71 67 0 0.74136
21	1.4000"-03	8.0669*+0U 8.3180*+00	MM MM	0.99041	0.83560	0.92370	1.22197	0.75591 0.77487
23 24	1.8000"=03	8.5196"+00 8.7207"+00	NM NM	0.99146	0.85975	0.93640	1.18624	0.78938 0.80518
25	2.4000"-03	9.0122"+00	NM MM	0.99360	0.88625	0.94970	1.12900	0.82704 0.64712
27	1.2000"-03	4.4713*+00 4.4547*+00	NM NM	0.99501	0.90983	0.96100	1.11566	0.86130
50	4.0000"-03	9.8565"+00	NM	0.99555	0.92914	0.96990	1.06947	0.84004
30 31	4.5000"-03 5.0000"-03	1.0073*+01	MM MM	0.99738	0.93984	0.97410	1.07555	0.92537
13 13	5.5000"-03 6.0000"-03	1.04M0"+01 1.0452"+01	NM NM	0.99764	0.99756 0.96779	0.98330	1.03966	0.93640 0.94416
14 35	6.5000"=03 7.0000"=03	1.7824"+01	HW Hw	0.94874 0.99918	0.97615	0.99030 0.99370	1.02920	0.96221 0.97518
36 37	7.5000"-03	1.1130"+01	NM MM	0.99949	0.99029	0.99610	1.01177	0.98451
38 39	8.5000"-03 9.0000"-03	1.1256"+01	HM HM	0.99960	0.99524	0.99850	1.00453	0.94349
40 0 41	1.0000"-03	1.1301"+01	MW HW	1.00000	0.99624	0.94930	1.00217	0.99717

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

M:2-5

R THETA X 10-3 : 85 - 350

TW/TR : Approximately 1

6903

ZPG - AW

Blow down tunnel with flexible symmetrical nozzle. Running time 10 - 100 s. W = H = 1.22, L = 5.2 m. $0.16 < P0 < 1.6 \text{ MN/m}^2$ TO: 300 K. Air. dewpoint 228 K. $1.3 < \text{RE/m} \times 10^{-6} < 5.6$.

THOMKE G.J., Boundary layer and skin friction characteristics in the supersonic test section of the Mc Donnell-Douglas Aerophysics Laboratory Four-Foot Trisonic Wind Tunnel (Unpublished DAC Report - Private communication)

And Thomke and Roshko (1969), Roshko and Thomke (1970)

- 1 The test boundary layer was formed on the lower nozzle plate. Measurements were made on the floor of the tunnel test section, extending from the nozzle exit plane (X = 0) to X = 1.52 m, and a rectangular plate.
- 8 steel extension continuing to X = 5.18 m. The test stations were X = 1.83, 4.19 and 4.38 m. All joints and seals were filled and faired with a jointing compound, resulting in flow uniformity within 2.5% in
- 2 Mach number with a mean Mach number gradient of 0.013/m and 0.0065/m at H=2 and M=5 respectively.
- 3 Transition was believed to occur naturally upstream of the nozzle. The tost layer had passed through the
- 4 nozzle expansion, growing on one of the curved flexible nozzle plates. Pitot profiles obtained on the
- 5 tunnel centre-line at the last station Lyreod well with those obtained 0.38 m to the side. Preston tubes on the centre line and 102 mm to either side agreed well with the average reading.
- Wall static pressure was found at orifices (d = 1.27 mm). These were placed 25.4 mm shead of Preston tubes and Pitot rakes. An additional three tappings were placed at 25.4 mm intervals ahead of the rakes. A copper constantan thermocouple was buried 1.6 mm below the tunnel finor at X = 3.61 m. Wall shear stress was determined using Preston tubes ($d_1 = 1.6$, $d_2 = 1.1$, l = 51 mm) mounted in accordance with the practice of Hopkins and Keemer (CAT 6601). The data were obtained as the average of readings from the three tubes
- 7 mounted at 102 mm spanwise intervals. Pitot profiles were obtained using rakes mounting 30 CPP ($d_1 = 1.24$ $d_2 = 0.89$ i = 12.4 mm) at the Y values given in the profile tables of section B. The rake mounting body
- had a wadge cross-section with a total included leading edge angle of 7°. Profiles and Preston tube measurements for each station were made at the same value of X. The front rake was 0.38 m to the "right" of the centre line while the rear rake was 0.38 m to the "left". The Preston tubes were no closer than 152 mm (spanwise) to the rakes. Check runs at the downstream station, with and without the upstream rake in position, showed that it had no measurable influence at the downstream station.
- 9 The Mach number profiles obtained from the Pitot measurements were reduced to velocity profiles using
- 10 the Crocco / Van Driest velocity temperature correlation, the measured wall temperature, and a recovery
- 11 factor of 0.89. No corrections were applied to the Pitot data, and Sutherland's viscosity law was used.
- 12 The editors have presented the data incorporating all the assumptions and interpolation procedures of the
- 13 author, but using a recovery factor of 0.896. The sixteen sets of profiles represent measurements at two
- streamwise stations for a range of Mach and Raynolds number. The associated wall shear stress data wore obtained simultaneously for half the profile series.
- 6 DATA: 69030101-1602. PT2 profiles, NX = 2, CF obtained from Preston tubes for half the series.

15 Editors' comments

This experiment provides data at a virtually unmatched Reynolds Number over a range of Mach Number.

Moore & Harkness - CAT 6502 describe a boundary layer at M = 2.7 and even higher Reynolds Number, but their experiment is not fully reported. In both cases the test layer develops over a streamwise distance which is large compared to the width of the test surface, so that the results are not necessarily completely typical of a two-dimensional flow.

Despite the very large scale of the experiment, the measurements do not reach further in than the momentum-deficit peak in 60 % of the cases. There is some evidence, in the velocity profiles, that the points nearest the well are affected by probe interference effects, and that profiles 0502, 0801/2 and 1001 are not completely named in the outer region.

RUIN Mp	CAT 5903	THOMKE		BOUNDARY CON	DITIONS AND E	VALUATED 1	PATA. 51 UNIT	5.	
N	สนก	MD *	TH/TR*	REDAW	CF +	H12	H15K	PW	PO
6030101 1,900 1,00					CO		H32K		
2.133**-00 2.0923**-05 1.0000 1.222**-05 1.44 1.6551 1.0293 2.6122**-02 1.5730**-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-03 2.003	RZ	TOD	8 n •	DS	P15	H42	95K	UD	YR
2.133**-00 2.0923**-05 1.0000 1.222**-05 1.44 1.6551 1.0293 2.6122**-02 1.5730**-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-02 2.0035*-03 2.003	69030101	1.9900	1.0660	8.6475*+04	1.3060"-03	2,9851	1.2566	2.7159*+04	2.7159*+04
APRINITE 2,6189**02 0,000 1,750**05 1,2000**075 2,403**04 2,603**08 2,400**072 2,603**08 2,400**072 2,603**08 2,60							1.8293		1.5730"+02
A. 1964 - 00 2.0737**A5 1.0000 1.8583*05 NH 1.8394 1.8505 2.9500**02 1.8006**02 2.0912*A5 2.0000**02 2.0912*A5 2.0000**02 2.0912*A5 2.0000**02 2.0912*A5		2,6169*+02		5.1458"-03	Им		6.3143"-03		2.6893*+02
A. 1964 - 00 2.0737**A5 1.0000 1.8583*05 NH 1.8394 1.8505 2.9500**02 1.8006**02 2.0912*A5 2.0000**02 2.0912*A5 2.0000**02 2.0912*A5 2.0000**02 2.0912*A5	S0101064	1.9560	1 0590	F. 15205A05	1.2060*=03	2.8764	1.2582	2.86434+04	2.8643=+04
No.			1.0000					2.8500"+02	1.6006*+02
1.856*00					MM		8.0614"-03		2.6912"+02
1.856*00	A90 30201	2 4900	1.0790	5.0135*+04	31M	1.6617	1.2421	1.1125*+04	1.1125#+04
INFINITE 2,6519**n2 0,000 5,2757*-03 NA				1.0104*405					1.2731"+02
1.84 9*+05 1.0000 1.250 *+05 1.0000 1.250 *+05 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.		2.8519"+02		5.2757*-03			7.0290"-03	5.6331*+02	2.4H77#+02
1.84 9*+05 1.0000 1.250 *+05 1.0000 1.250 *+05 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.	48070303	2 4600		A 10479.68	VIII	1 4531	1 247#	1 14514404	1 14514404
A		1 8/11/04/08	1.0700					2 9000*+112	
### ### ### ### ### ### ### ### ### ##		2.8520"+02					8.6390"-03	5.5923"+02	2.6902*+02
2.1356**-00		2 4400		0 40419.00	1 00047-07	1 4610	1 3613	5 ##UA#+6#	3 4846¥454
INFINITE 2,8182"+02 0,0000 4,5984"+03 MM		2,4000					1.6416		
# # # # # # # # # # # # # # # # # # #								4.5497***	2.65464403
1,376 1	144. 1111 LC	£.0102 70E	-	-		0,0272		•	
APPENDITE 2,819 "+02 0,0000 6,0472"-03 MM	69030302	2.4600	1.0720	1,3395*+05					
APPENDITE 2,819 "+02 0,0000 6,0472"-03 MM		4.1611"+05					1.8359		
2.1356*00	INFIBITE	5.81914+05	0.0000	6.0472"-03	HM	0.0099	8.0454"-03	5,5702"+02	5.6284.405
2.1336*+00	69030401	2,9700	1,0880	3,4265*+04	NM	5.0478	1.2377	5.7196*+03	
INFINITE 2,8503"+02 3,0010 5,223"+03 NM 0,0277 7,6843"-03 6,0616"+02 2,2033"+02	2.1336"+00	2.0497"+05		8.4853*+04		1.6511	1.8371	2,69444+02	1.0224*+02
1,1910**00 2,0770**05 1,0000 1,146**05 NM 1,8510 1,346* 2,8889**02 1,0455**09 2,9400 2,7506**05 1,0000 1,092**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,0100**00 2,7506**05 1,0000 1,027**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,041**03 1,027**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,041**03 1,027**05 NM 1,8551 1,8415 2,9000**02 1,0536**02 1,041**03 1,026**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,041**03 NM 0,0284 7,9838**03 2,9000**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0249**02 1,0249**02 1,0249**02 1,0249**03 1,024	INFINITE	2.6505"+02	a.oa)0	5.2297"-03	NM	0.0257	7.6843"-03	6.0614"+02	2,0603*+02
1,1910**00 2,0770**05 1,0000 1,146**05 NM 1,8510 1,346* 2,8889**02 1,0455**09 2,9400 2,7506**05 1,0000 1,092**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,0100**00 2,7506**05 1,0000 1,027**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,041**03 1,027**05 NM 1,8540 1,8407 2,9000**02 1,0355**02 1,041**03 1,027**05 NM 1,8551 1,8415 2,9000**02 1,0536**02 1,041**03 1,026**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,041**03 NM 0,0284 7,9838**03 2,9000**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8551 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0539**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0539**02 1,041**05 NM 1,8578 1,8415 2,9000**02 1,0249**02 1,0249**02 1,0249**02 1,0249**03 1,024	69030407	2.9400	1.1.40	4.7532*+04	I4M	4,9112	1.2389	6,1865"+03	4.1865*+03
### ### ### ### ### ### ### ### ### ##	4.1910*+00	2.0770*+05	1.0000	1.1496*+03	NM	1.8510	1.4369	2,8889"+02	1.0455*+02
2.1336*+00	INFINITE	2.8330"+92	0.0000	6.8008"-03	Им	0.0284	9.7776"-03	6.0274"+02	3.6650#40?
2.1336*+00	69030501	2.9800	1.0860	4.4402*+04	NR	5.0034	1.2330	7.7164*+03	7.7164*+03
INFINITE 2.8507*+02 0.0000 %.0641*-03 MM 0.0275 7.3739**-03 6.0652**+02 2.8703**+02 4.1910*+00 2.7561*+05 1.0000 1.5365*+05 NM 1.8551 1.8415 2.9000**+02 1.0536**+03 1.0536**+03 1.8551 1.8415 2.9000**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0536**+02 1.0564**+03 NM 0.0284 7.900**+02 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+04 1.2276**+02 1.2276**+03 1.2276**+0				1.0922*+05	NM		1.8407	2.9000*+02	1.0305"+02
### 1910 ## + 00	INFINITE	2.86074+05	0.0000	5.0641"-03	ИW	0.0275	7.3739"-03	6.06524+02	2.6703*+02
### 1910 ## + 00	49030502	2.9300	1.0840	6.3820*+04	NM	4.6704	1.2315	8.3306*+03	8.3366*+03
INFINITE 2.8033"+02 0.0000 6.8297"=03 NM 0.0284 9.9458"=03 6.0309"+02 2.6575"+02 1.2678"		2.7561*+05		1.5365*+05	MIN		1.8413	2.40000"+0S	1.0539*+02
2.1356**+00	INFINITE	2.8035*+02	0.0000	6. 4247 4-03	NM	0.0284	9.9454"-03	4.0304*+02	2.4753"+02
2.1356**+00	69030601	2.9800	0.9950	7.0927*+04	9.8500"-04	U.6720	1.2279	1.2678*+04	1.2678*+04
INFINITE 3.1104**02 0.000 5.1167**03 NM 0.1249 7.2061**-03 6.3245**+02 2.9034**+02 4.3764**+02 4.4717**+03 1.000 1.9764**+05 NM 1.8579 1.8861 2.9000**+02 1.1306**							1.8450	2.6889"+02	1.1204*+02
#.3764*+00 #.4717*+03 1.0000 1.4764*+05 NM 1.8579 1.8861 2.400**+02 2.405**+0		3,1104*+02		5.1187*-03	14M	0.1249	7.2061"-03	6.3243"+02	2,4034"+02
#.3764*+00 #.4717*+03 1.0000 1.4764*+05 NM 1.8579 1.8861 2.400**+02 2.405**+0	490 T0402	2.9600	0.9980	8.7752*+04	9.3100*+04	4.4682	1.2260	1.2986*+04	1.2986*+04
INFINITE 3.1119*+02 0.0000 6.2716*=03 NM 0.1100 3.8246*=03 6.3109*+02 2.9958*+02 69030701 2.9800 1.0240 1.1150*+05 9.2900**-04 4.7571 1.2280 2.8744*+02 1.0908*+02 INFINITE 3.0281*+02 0.0000 4.9528**-03 NM 0.0980 6.4333**-03 6.2401**+02 2.8266*+02 69030702 2.9500 1.0250 1.50690*+05 NM 0.0980 6.4333**-03 6.2401**+02 2.8266*+02 4.3764*+00 7.6498*+05 1.0000 3.4671*+05 HM 1.8597 1.5479 2.9000*+02 1.1554*+02 INFINITE 3.0294*+02 0.0000 6.0073**-03 HM 0.0962 8.4467**-03 6.2180**+02 2.8293**+02 69030801 3.4000 1.0890 3.2234**+04 NM 1.8596 1.2243 2.700**+04 2.3097**+04 2.1336*+00 2.8117**+05 1.0000 7.6985*+04 NM 1.8596 1.2325 3.7910**+03 2.750**+03 2.714**+01 INFINITE 2.8303**+02 0.0000 5.6694**-03 NM 0.0197 7.2248***+03 6.3457**+02 2.6222**+02 69030802 3.4200 1.0840 3.8401**+04 NM 6.1300 1.2830 4.0631**+03 4.0951**+03 4.1910**+00 2.7547**+05 1.0000 1.1246**+05 HM 6.1300 1.2830 4.0631**+03 4.0951**+03 4.1910**+00 2.7547**+05 1.0000 1.1246**+05 HM 6.1300 1.2830 4.0631**+03 4.0951**+03 4.1910**+00 2.75447*+05 1.0000 1.1246**+05 HM 6.1300 1.2830 4.0631**+03 4.0951**+03 4.1910**+00 2.75447*+05 1.0000 1.1246**+05 HM 6.1300 1.2830 4.0631**+03 2.6444**+02 8.4756**+01		4.4717*+03		1.9764*+05				2.4000"+02	1.1306*+02
2.1336**+00 7.8730************************************				6.2716"-03	И м	0.1100	3.8246"-03	6.3105"+02	2.4058*+02
2.1336**+00 7.8730************************************	A90 30701	2.9800	1.0240	1.1150"405	9.2900#=84	4.7571	1.2280	2.21454+04	2.2143*+04
TAPTAITE 3.0281*+32 0.000 4.535*=03 NM 0.0980 6.4335*=03 6.2401*+02 2.8266*+02 69030702 2.9500 1.0250 1.5069*+05 8.0500*=04 4.6856 1.2243 2.3097*+04 2.3097*+04 4.3764*+00 7.6690*+05 1.0000 3.4671*+05 HM 1.6557 1.5479 2.4000*+02 1.1054*+02 INFINITE 3.0294*+02 0.0000 6.0073*=03 HM 0.0962 8.4467*=03 6.2180*+02 2.8293*+02 69030801 3.4000 1.0690 3.2234*+04 HM 6.5562 1.2325 3.7930*+03 3.7950*+03 2.1336*+00 2.8117*+05 1.0000 9.6985*+04 NM 1.8583 1.8385 2.855**+02 8.2714*+01 INFINITE 2.6303*+02 0.0000 5.6694*=03 NM -0.0197 7.2248*=03 6.3457*+02 2.6222*+02 69030802 3.4200 1.0840 3.8401*+04 NM 6.1304 1.2430 4.0631*+03 4.0651*+03 4.1910*+00 2.7647*+05 1.0000 1.1246*+05 HM 1.8507 1.8334 2.6444*+02 8.4756*+01		7.4930*+05						2.8944"+02	1.0908*+02
4.37e4"+00			0.0000						2.8266#+02
4.37e4"+00	******	3 4400	1 0280	1.8060*40%	A . 65000=04	4.484	1.534%	2.10974408	2.1097*+04
INFINITE 3.0294*+02 0.0000 6.0073*=03 IM 0.0962 8.4467*=03 6.2180**02 2.8293**02 6.9030801 3.4000 1.0890 3.2234*+04 IM 6.5562 1.2325 3.7910**03 3.7950**03 2.1336**00 2.8117**05 1.0000 7.8985**04 IM 1.8583 1.8385 2.8556**02 8.2714**01 INFINITE 2.8303**02 0.0000 5.6694*=03 IM -0.0197 7.2248**03 6.3457**02 2.6222**02 690308)2 3.4200 1.0840 3.8401**404 IM 6.1304 1.2430 4.0631**03 4.0651**+03 4.1910**00 2.7847**05 1.0000 1.1246**405 IM 1.8507 1.8334 2.6444**02 8.4756**01			1.0000	3.4671*405	1111				1.1054"+02
2.1336*+00 2.8117*+05 1.0000 7.6785*+04 NM 1.8583 1.8385 2.8556*+02 8.2714*+01 INFINITE 2.8303**+02 0.0000 5.6694*=03 NM -0.0197 7.2248*-03 6.3457*+02 2.6222*+02 690308)2 3.4200 1.0840 3.8401*+04 NM 6.1300 4.0631*+03 4.0651*+03 4.1910*+00 2.7647*+05 1.0000 1.1246*+05 NM 1.8507 1.8334 2.6444*+02 8.4756**+01		3.0294*+02		6.0073"-03			8.4467"-03	6.2180#+02	
2.1336*+00 2.8117*+05 1.0000 7.6785*+04 NM 1.8583 1.8385 2.8556*+02 8.2714*+01 INFINITE 2.8303**+02 0.0000 5.6694*=03 NM -0.0197 7.2248*-03 6.3457*+02 2.6222*+02 690308)2 3.4200 1.0840 3.8401*+04 NM 6.1300 4.0631*+03 4.0651*+03 4.1910*+00 2.7647*+05 1.0000 1.1246*+05 NM 1.8507 1.8334 2.6444*+02 8.4756**+01	. 0474404	4.0.4 F		# 99###.A#	P.1 LD	* *FT >	1 3135	1 70 1A# 1AT	1 70 5 6 4 4 6 4
ÎNPÎNÎTE 2,8303"+02 0,000 5,6494"=03 NM +0,0197 7.2248"=03 6,3457"+02 2,6222"+02 69030802 3,4200 1,0840 3,8401"+04 NM 6,1304 1,2430 4,0631"+03 4,0651"+03 4,1910"+00 2,7647"+05 1,000 1,1246"+05 NM 1,8507 1,8334 2,6444"+02 8,4756"+01		3.40UU 3.40UU							
690308)? 3.4200 1.0840 3.8401"+04 NM 6.1300 1.2430 4.0631"+03 4.0451"+03 4.1910"+00 2.7647"+05 1.0000 1.1246"+05 NM 1.8507 1.8334 2.6444"+02 8.4756"+01			0.0000	5.6494"-03			7.2246"-03	4.3457"+02	5.6555.+05
4.1910"+00 2.7647"+05 1.0000 1.1246"+05 NM 1.6507 1.6334 2.6444"+02 8.4756"+01									
				1.1244717444					R.4756F401
	INFINITE	2.6302**02	0.0000				1.0373"-02	4.3128"+02	2.6240"+02

CAT 6903	THOMKE		BOUNDARY CON	COM BROITIC	EVALUATED I	DATA. SI UNII	78.	
RUN	MD *	TH/TR*	REDRW	CF *	HIS	H12K	Piv	PD
X •	POD	PH/PO+	RED2D	Ç0	H32	H32K	TWA	TD
RZ	100	5N 🛊	DZ	PIR	H42	DSK	UD	TR
.0070004	1		C A. 948.A.	****				
69030901	3.4800	1.0910	5.0674"+04	NM	6.6788	1.2216	6,1050"+03	6.1050"+03
2.1336"+00 INFIRITE	4.525)*+05 2.6201*+05	0.0000	1.5260"+05 5.5461 ² =03	NM NM	1.8640	1.8451 5.7969"-03	2.5611"+02 6.3460"+02	6.2723"+01
THE LETTE	5.0300.405	0,0000	2+2401.=03	IA.w	-0.05AS	3,7404 -03	6.3460"+02	2.6225"+02
69030902	3,4300	1,0860	5.40044+04	NM	6.1960	1.2319	6,5010"+03	6.5010"+03
4.1910*+00	4.4874*+05	1.0000	1.7372*+05	MM	1.8573	1.8410	2.8500"+02	8.4430*+01
INFIGITE	2.8309"+02	0,0000	6,1972"-03	NH	0,6351	7.8535"-03	6.31914+02	2.6243"+02
69031001	3,4500	1.0230	0.3135*+04	8.160U*-04	6.1021	1.2174	1.0559"+04	1.05597+04
2.1336"+30	7.5001"+05	1.0000	2.3250"-05	Min	1.8651	1.8484	2.8944"+02	9.0311 +01
INFINITE	3.05307+02	0.0000	5.6081"-03	ИM	0.0471	5.7469"=03	6.5735"+02	2.5294"+02
50011002	3,4300	1.0240	9.6711"+04	7.0500"=04	5.9633	1.2309	1.0817*+04	1.0817*+04
4.3764*+00	7.4662*+05	1.0000	2.6790*+05	(f)r	1.0572	1.6410	2,4000*+02	9.1113"+01
INFINITE	3.0550*+02	0.0000	6.4283"-03	NM	0.0536	1.0041"-02	6.5644"+02	2.8320*+02
			***************************************	***	******			
69031101	3.9900	1.0520	4.2911"+04	NA	7.6877	1.2228	4.5031"+03	4.5031"+03
2.1336"+00	6.7460*+05	1.0000	1.5124*+05	NM	1.8635	1.3441	2.8667"+02	7.0725"+01
INFINITE	2.9592*+92	0.0000	5.1426*-03	ΜM	.4824	8.7400"-03	6.7278"+02	2.72504+02
6903 110# 4.1910#+00	4.0100 6.8830*+0*	1.0490	4.9386*+04 1.1494*+05	ии 1n	7.6907	1.2111	4.47327+03	4.4732"+03 7.0267"+01
INTINTTE	5.06524+05	0.0000	5,9005***	NM NM	0.0862	1.8545 1.0042*=02	2.8611"+J2 6.7396"+J2	2./275*+02
*** ******	FEARES AND	01,7000	344903 -93	1417	414005	110046 -46	047370 TVE	C. IEID TVE
69031201	3,9400	0,9440	6.2496"+04	7.4900"=04	7,0652	1.2303	6.8532"+03	0.3532"+03
2.1336*+00	9.6025*403	1.0000	1.94124+05	HH	6600	1.5436	2.4722"+02	8.0453"+01
INFINITE	1.3024*+02	0.0000	5.3235"-03	HH	0.1827	8.7387"-03	7.0456*+02	3.0426"+02
64031505	3.4300	0.9910	7.5054"+04	6,6200*=04	7.0508	1.224#	7.01477+03	7.0147"+03
4.37644+00	9,6776465	1.9000	2.5559"+05	N M	1.6678	1.0445	5.4444.05	8.0780*+01
INFILITE	3.30314+05	0.0000	6.3124*-03	HM	0.1762	1.0528"-02	7.0420*+02	3.0436*+02
69031301	3.9400	1.0150	9.07A24+04	6,45004-04	7.3203	1.2240	1.08214+04	1.0821"+04
2.13364+00	1.5165"+06	1.0000	3,0247"+05	NM	1.8629	1.8450	2.8944*+02	7.54054+01
INFILITE	3.0451"+02	0.0000	4.7097*-03	им	0.1266	5.1110"-03	5.8597*+02	2.85174+02
64031305	3.9300	1.0170	1.10334+05	6.4700*=04	7,3660	1.2180	1.1022"+04	1.1022*+04
4.3764*+00	1.5238*+06	1.0000	3,6041"+05	ИM	1.0076	1.8500	2.4000,+05	7.5063 +01
inpinite:	7.0441.+05	0.0000	5,7247*-03	NM	0.1051	4.64404-07	6.8549*+02	2.8515*+02
69031401	4.4000	1,0370	3.1809*+04	NM	8.9512	1.2292	2.89474+03	2.89474+03
2.1336H+00	7.3009*+05	1.0000	1.2010"+05	NH	1.6607	1.5391	2.0722 +02	6.1972"+01
INFINITE	1,0193 +02	0,0000	5.0415**03	NW	0.1126	9.5706**03	6.7446"+07	2.7697*+02
						,	•	
69031402	4.4300	1.0120	3.66114104	ИM	8.8593	1.2126	2.8423"+04	2.8413"+03
4.1910"+00	7.5351"+05	1.0000	1.4641"+05	NM	1.8719	1.0524	8.8611"+08	6.1380*+01
infinity	3,0589*+05	0,0000	5,4238"-03	MN	0,1305	1.0475"-02	C.4587*+05	2.7724"+02
69031501	4.4400	0.9750	5.3791*+04	U.5500"+0#	8.7974	1.2235	5,1050"+03	5,1050"+03
2.1336*+00	1.3703*+06	1.0000	\$ 0654,402	MN MN	1,8671	1.8446	2.6944*+02	6.34554+01
INFIRITE	3.2372**02	0.0000	4.95464-03	NM	0.1580	7.1375"-03	7,2044*+07	9667 +02
y 1 m - 1 m 7 h		~,~~~	· * · * · * · * · · · · · · ·					# * * * * * * * * * * * * * * * * * * *
69031507	4,4000	0.9800	6,6532"+04	6.0200"-04	8,6981	1.2257	5.3741"+43	5,3741"+03
4.3764"+00	1.3718"+06	1.0000	2,5254"+05	NM	1.8542	1.3416	5.9111,405	6.6465#+01
inpinite	7.5785.105	0,0000	5,4440"-03	NM	0.1531	1-04244-05	7.1921"+02	2.9705"+02
48011404			3 61698.60	L.IA		1 3365		
69031601 2.1336*+00	4,9200	0.988	2.0393"+04 9.3017'+04	NM	13.8718	1.2355	1.5504*+03	1.5504"+03
INF 11.178	7.4683*+05 3.2675*+02	1.0000	5.2348"-03	NM NM	1.8632 0.1167	1.6355	7.3775 +02	5.9450*+01 2.9450*+02
**** **** I C	STERLS ARE	0.0000	416340 -43		A+110.		1 4 3 7 7 4 4 6	E 1 4030 40%
69931602	4.9200	0.9940	2.23317+04	NM	10,4583	1.2228	1.5542"+03	1.5542">03
4.1910*+00	7.4864*+05	1,0000	1.0230*+05	MP	1.8687	1.8447	20+*3210.5	5.60144-01
INFINITE	3.2722*+02	0.0000	9.7559"+03	r!M	0.1720	1.1425"-02	7,36327+02	2.4902*+03

FO.POD CALCULATED FROM RE/IN.DELTAR (AUTHOR), TOD CALCULATED FROM TH/TR.R (AUTHOR)

69030	101 THOM	KE.	PROFILE	TABULATION	31	POINTS, DEL	TA AT POI	NT 25
1	Y	PT2/P	P/PD	T0/T00	MVMD	U/UD	T/TD	RHO/RHOD#U/UD
1	0.0000*+00	1.0000*+00	N	1.02522	0.00000	0.00000	1.83721	0.0000
ž	5.8420"-04	1.7970*+00	NM	1.00070	0.37977	0.59084	1.51675	0.38941
3	2.0320"-03	2.1691*+00	βM	0.99955	0.55977	0.67032	1.43508	0.46710
4	3.5560"-03	2.3913"+00	NM	0.99919	0,60021	0.70817	1.39308	0.50535
5	5.0546"-03	2.5685*+00	HW	0.99900	0.63007	0.73506	1.36198	0.53970
ь	7.4422"-03	2.8165"+00	NM	0.99884	0.66914	0.76892	1.32135	0.58142
7	9.7790"-03	2.9681"+00	ŊМ	0.99878	0.69176	0.78785	1.29792	0.60701
8	1.2725"-63	3.1653*+00	HM	0.99874	0.71996	0.81076	1.26867	0.63896
ğ	1.5113" -02	3.2931"+00	11M	0.99876	0.73760	0.82470	1.25082	0.65933
10	1.7450"-02	3.3594"+00	HM	0.99877	0.74656	0.83167	1.24169	0.66979
ii	2.0244"=02	3.4967*+00	MIT	0.99579	0.76478	0.84362	1.22322	0.69131
ĺŽ	2.2733"-02	3.6728*+00	NM	0.99884	0.78745	0.86255	1.20041	0.71895
13	2.5324"-02	3.7924"+00	ИW	0.99589	0.80247	0.87351	1.18543	0,73687
14	1.0353"-02	3.9868"+00	IIM	0.94697	0.82623	0.89044	1.16195	0.76635
15	3.5331"-42	4.2311"+00	Nw	0.99910	0.85511	0.91036	1.13379	0.80294
16	4.0411"-02	4.5076"+00	Nit	0.99926	0,88661	0.93127	1.10360	0.84385
17	4.5542"-02	4.6899"+00	19M	0.99938	0.90676	0.94422	1.09460	0.67057
18	5.0521"-02	4.9119"+00	1984	0.99952	0.93066	0.95916	1.06238	0.90284
19	5.6845"-02	5.1470*+00	NW	0.99967	0.95532	0.97410	1.03984	0.93678
20	6.3297"-02	5.3624"+00	NM	0.99984	0.97734	0.98705	1.02004	0.96766
ži	6.9571"-02	5.5007*+00	ИM	0.99994	0.99121	0.99502	1.00774	0.98738
22	7.6022"-02	5.5537*+00	itw	0.99947	0.99647	0.99801	1.00310	0.99492
23	8.2296"-02	5.5537*+00	N₩	0.99997	0.99647	0.94801	1.00310	0.99445
24	6.8671"-02	5.5894"+00	ИM	1.00000	1.00000	1.00000	1.00000	1.00000
0 25	9.5377"-02	5.5894"+00	ИM	1.00000	1.00000	1.00000	1.00000	1.00000
50	1.0132"-01	5.51A3"+00	HM.	0.99995	0.97296	0.99602	1.00619	0.98989
žŸ	1.1151*-01	5.5183*+00	NM	0.99995	0.49296	0.99602	1.00619	0.98989
50	1.2174"-01	5.5183"+00	HW	0.99795	0.99296	0,99602	1.00619	0.98989
ŽŸ	1.3183"=01	5.5143*+00	11m	0.79995	0.94296	0.99602	1.00619	0.98989
30	1.4133"=01	5.51437+00	Νįς	0.99995	0,99296	0.94605	1.00619	0,98789
31	1.5260"-01	5.5359"+00	им	0.99996	0,99471	0.99701	1.00465	0.99240

INPUT VARIABLES Y, U/UD ASSUME PEPD AND VAN UPIEST

690301	02 THOM	Œ	PROFILE	TABULATION	54	POINTS, DEL	TA AT POI	NT 25
1	Y	PTZ/P	P/P0	TO/TOD	M/MD	U/IID	1/10	RH0/RH00*U/U0
1	0.0000"+00	1.0000*+00	NM	1.01142	0.00000	0.00000	1.78061	0.00000
- 2	7.1120-04	1.6839"+00	liw	0.99404	3.45947	0.36490	1.50791	0,37405
3	2.6162"-03	2.0440"+00	NM	0.99392	0,54614	0.45200	1.42626	0.45714
4	3.9116"-03	2.3035"+00	li m	0.99414	0.39668	0.70930	1.37724	0.50923
5	5.588003	2.46367+00	ИW	0.99435	0.42518	0.72600	1.34944	0.53500
6	7.8740"-01	2.6814"+00	ΗM	0.99463	0.66149	0.75000	1.31390	0.57641
7	1.0617"-02	2.8842"+00	NM	0.49503	0.69329	0.78300	1.54544	0.61193
8	1.280505	3.0134"+00	ŊМ	0.99527	0.71247	0.40100	1.26196	0.63372
9	2.0777"-02	1,3305"+00	ΗM	0.99389	0.79791	0.43700	1.55050	0.68595
10	9.751905	3,3968"+00	П₩	0.99602	0.76697	0.04403	1.21149	0.69066
11	2.5857"-02	3.4646"+00	Hite	0.99616	0.77616	0.35100	1.20271	0.70757
12	3.0632"-02	3.7420"+00	ИW	0.99672	0.51250	0.37300	1.16872	0.75147
13	3.4043"-02	3.9075"+00	ММ	0.99706	0.83336	0.04500	1.14803	0.77744
14	4.1097"-02	4.0701"+00	NM	0.99739	0.85115	0.90700	1.13007	0.80260
15	4.6203"=02	4.1180*+00	NM	0.99747	0.65913	0.91100	1.12472	0.60998
16	5.1283"-02	4.3040"+00	lîw.	0.99787	0.88123	0.92600	1.10446	0.63842
17	5.7887"-02	4.5137"+00	ĮĮМ	U.99830	0.90549	0.94200	1.04250	0.67023
18	6.4084"-02	4.6793"+00	ИМ	U.79863	0.92416	0.75400	1.045#1	0.89509
19	7.0637"-02	4.8519"+00	NM	0.99903	0.94650	0.94800	1.04604	0.92535
50	7.6708"-02	5.0020*+00	NM	0.99476	0.45955	0.97603	1.03470	0.94.127
\$1	4.2904"-02	5.2230*+00	NM	0.99969	0.98290	0.99010	1.01455	0.97580
55	8.9103"-02	5.28AL"+00	NM	0.44981	0.98969	0.97400	1.00075	0,98518
57	9.5479"-02	5.3211"+00	1144	U. 999A7	0.49311	0.47603	1.00504	0.90032
24	1.0190*-01	9.3543"+00	NM	0.99944	0.97655	0.99303	1.00545	0.99503
D 25	1.1191 -01	5.3878"+00	NM	1.00000	1.00000	1.00000	1.00000	1,00000
36	1.2197"-01	5.3710"+00	ΙĮΜ	0.49997	0.99827	0.94900	1.00146	0.99754
27	1.3226"-01	5.3710*+00	NM	0.99997	0.49827	0.94900	1.00146	0.97754
ŽÜ	1.4232"-01	9.3876"+00	HM	1.00000	1.00000	1.00000	1.00000	1.00000
24	1.3321"-01	3.3710*+00	üri	0.94947	0.99827	0.99900	1.00146	0.79754

INPUT VARIABLES Y, U/UD ASSUME PEPD AND VAN DPIEST

690307	от тиони	THOMKE		TABULATION	41 POINTS, DELTA AT POINT 29			
1	Y	PT2/P	P/PD	T0/70D	GMVW	טעעט	1/10	8H0/8H00*U/UD
1	0.0000*+00	1.0000*+00	NM	0.95567	0.00000	0.00000	2,65356	0.00000
2	5.8420"-04	2.8342*+00	ИM	0.96354	0.44863	0.63100	1,98070	0.51857
3	2.0320"-03	3.8214"+00	ИM	0.97455	0.53931	0.71900	1,78017	0,40254
4	3.5500"-03	4.0857*+00	ИW	0.97598	0.55700		1.74093	0.42391
5	5.05464-03	4.3409*+00	11.w	0.97730	0.57948	0.75500	1.09949	0.44425
U	7.4422*-03	4.7865"+00	1114	0.47947	0.61252	0.75200	1.63177	0.47924
7	9.7790"-03	5.1959"+00	[224	0.94363	0.63440	0.77900	1.58794	0.50317
8	1.2725"-02	5.5129"+00	[¿M	0.39568	0.66272	0.0700	1.53253	0.53506
ě	1.5113"-02	5.7484"+00	1464	0.98364	3.67813	0.83100	1.50294	0.55292
10	1.7450"-02	6.0291"+00	14M	0.78470	U.69357	0.54300	1.47023	0.57338
11	2.0244"-02	6.7591"+00	NM	0.78560	0.71052	0.85300	1.44262	0.54129
12	2.2733"-02	6.5105"+00	ЯМ	0.98651	0.72390	0.86300	1.41469	0.61003
13	2.5324"-02	6.7297"+00	11M	0.98762	0.74496	0.07500	1.38075	0.43371
14	3.0353"-02	7.3485*+00	ИМ	0.98731	0.77492	0.49300	1.32899	0.67194
15	3.5331"-02	7.8547*+00	NM	0.99084	0.80306	0.90700	1.28211	0.70599
16	4.0411"-02	8.3371"+00	:114	0.99221	U. 42899	0.72300	1.24042	0.74410
17	4.5542"-02	4.10004+00	MM	0.49418	0.86837	0.94300	1.17979	0.79929
10	5.0521"-02	9.6051"+00	NM	0.99519	0.39352	0.95500	1.14280	0.83567
19	5.6845"-02	1.0247*+01	NM	0.99681	0.72445	0.46900	1.09906	0.86166
50	6,3277"-02	1.0571"+01	titt	0.99752	0.94059	0.97600	1.07696	0.90625
ěi	6.9571"-02	1.1058*+01	165"	0.99845	1.1566.0	0.98500	1.04632	0.93960
žž	7.6022"=02	1.1443*+01	1144	0.99917	0.97946	0.99200	1.02576	0.96700
23	8.2276"-02	1.1614"+01	IIM	0.99948	0.98707	0.99500	1.01618	0.97915
24	8.8671"-02	1.1744"+01	NM	0.99979	0.99479	0.99800	1.00648	0.99157
žŚ	4.5377*-02	1.1907"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
26	1.0132"-01	1.1907*+01	liM	1.00000	1.00000	1.00000	1.00000	1.0000
27	1.1151"-01	1.1907*+01	1188	1.00000	1.00000		1.00000	1.00000
ŠĠ	1.2174"-01	1.1907"+01	ЧЙ	1.00000	1.00000		1.00000	1.00000
ρžě	1.3183"-01	1.1907*+01	HМ	1.00000	1.00000		1.00000	1.00000
30	1.4153"-01	1.1730"+01	ijМ	0.99967	0.99221	0.77700	1.00972	0.96740
31	1.5200*=01	1.1499*+01	NW	0.79927	0.98198	0.99300	1.02264	0.97102

INPUT VARIABLES Y,U/UD ASSURE PEPD AND VAN DRIEST

690307	02 THON	(E	PROFILE	TABULATION	31	POINTS, DE	TA AT POI	NT 29
1	Y	#T2/F	P/Ph	TO/TOP	MZBD	UVU	TITO	PH0/HH0D*U/UD
1	U.0000"+U0	1.0000*+00	ИW	0.95730	0.00000	0.0000	2.62348	0.00000
2	7.1120"-04	2.7466"+00	i i i	0.96875	0,44415	0.62400	1.97632	0.31574
3	2.5162"-03	3.6545"+00	NM	0.97433	0.52763	0.70900	1.79416	0.39517
4	3.9116"-03	4.0291"+00	NM	0.97637	0,56078	0.73700	1.72985	0.42620
5	5.3880"-03	4.2941*+00	HM	0.97774	0.50175	0.75500	1.66655	0.44775
b	7.8740"-03	4.6303*+00	HH	0.47938	0.60727	0.77000	1.63473	0.47469
7	1.0417"-02	4.7624"+00	IIM	0.98091	0,63142	0.79500	1.58697	0.50095
8	1.2602"+02	5.1681"+00	NM	0.98142	0.64590	0.80400	1.55880	0.51706
Ÿ	1.3631"-02	5.4454"+00	Им	0.98300	0.46492	0,82000	1.52241	0.53462
10	1.7932"-02	5.4335*+00	liw.	0,98577	0.67751	0.02530	1,49869	0.55315
11	2.0777"-02	9.8973"+00	Mil	0.98481	0.69476	0.84100	1.46667	0.57341
12	2,3216"-02	5.9657"+00	ΝM	0.78507	0.69917	0.84400	1,45859	0.57864
13	2.3457"-03	4.1930"+00	NM	0.94577	0.71109	0.85200	1.43692	0.59294
14	3.0432"-02	6.4485*+UU	NM	0.98685	0.72748	0.86400	1.40474	0.61537
15	3.6043"-02	6.8443*+00	HΜ	0.98621	0.75341	0.87930	1.36231	0.64523
16	4.1097"+02	7.1843*+00	NM	0.98932	0.77335	0.89100	1.32841	0.67072
17	4.6203"-02	7.6098 400	HH	0.99063	0.79761	0.90500	1.28831	U.70247
16	5.1283"-02	8.0360*+00	ИM	0.99186	0.82117	0.91800	1.25052	0.73410
19	5.7887"-02	8.5692"+00	NM	0.79331	0.44973	0.93300	1,20624	0.77347
žο	4,4054"-02	9.1120*+00	НM	0.99468	0.87783	0.94700	1.16432	0.01535
41	7.0637"-07	4.6165"+00	NM	0.99386	0.90316	0,95900	1,12708	0.05027
22	7.4708*+02	1.0048*+01	₹įM	0.99686	0.92523	0.96900	1.09717	0.88318
43	8.2404"-02	1.0491"+01	ИM	0.99767	0.94355	0,47700	1,07236	0.91105
24	8.9103"=02	1.0004*+01	NM	0.99837	0.96012	0.98400	1,05053	0.93667
25	9.5474"-02	1.1170"+01	ИM	0.99898	0.97473	0.99000	1.03167	0.95961
26	1.0140 -01	1.1450*+01	ŊМ	0.99957	0.98975	0.99600	1.01271	0.98350
27	1.1191*-01	10141601	IIM	0.99940	0.99742	0.94900	1,00318	0.99583
ää	1.2197****	1.1678*+01	NM	1.00000	1.00000	1.00000	1,00000	1.00000
0 29	1.3826"-01	1.1678*+01	NM	1.00000	1.00000		1.00000	1.00000
30	1.4732 -01	1.1943"+01	НM	0.99780	0.99485		1.00636	0.94169
ši	1.3321"+01	1.1621401	ŇМ	0,99990	0.99742		1,00316	0.99583

THEUT VARIABLES Y, U/UD ABSUME PERD AND VAN DRIEST

690312	OI THOM	κc	PROFILE	TABULATION	31	POINTS, DEL	TA AT POI	NT 28
1	Y	PT2/P	PZPD	70/100	MZMD	טעט	TZTD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000#+90	ИW	0.87442	0.0000	0.00000	3.58927	0.00000
2	5.8420"-04	2.9535"+00	liγ	0.42966	0.34831	0.57942	2.77192	0.20903
3	2.0320"-03	4.3039^+00	(1M	0.94413	U.43615	3.64032	2.43722	0.27914
4	J.55¢0"=03	4.7431"+00	ИM	0.94832	0,46091	V.70529	2,34556	0.30069
5	5.0546"-03	5.1337*+00	ИM	0.95147	0.48181	0.72527	2,26972	0.31754
6	7.4422*=03	5.7254"+00	19M	0.95586	0.51181	0.75225	2.16378	0.34765
7	9.7790"-03	6.1418"+00	Me	0.95866	0.531A8	0.76423	2,09499	0.36718
8	1.2725"-02	6.7683"+90	Nr.	0.96252	0.56070	0.79221	1.99935	0.39623
9	1.5113"=02	7.0972"+00	NM.	0.96439	0.57524	0.80320	1.95256	0.41136
10	1.7450"-02	7.3496"+00	ИM	0.96576	0.58616	0.81119	1.91810	0.42291
11	2.0244"=02	7.7857"+00	Ιψ	0.96800	0.60454	0.82418	1.86135	0.44278
12	2.2733"-07	8.2950*+00	1114	0.97044	0.62532	0.53816	1.79918	0.46586
13	2.5324"-02	8,7683"+00	ИМ	0.97255	0.64401	0.85015	1.74501	0.48719
14	3.0353"-02	9.3239*+00	NH	0.97486	0.66529	0.86314	1.68543	0.51212
15	3.5331"-02	1.0028"+01	ИМ	0.97754	0.69131	0.87812	1.61550	0.54356
16	4.0411"=02	1.0755*+01	NM	0.98007	0.71719	0.89211	1.54910	0.57589
17	4.5542"-02	1.1391"+01	ИM	0.98207	0.73873	0.90310	1,49615	0.60361
18	5.0521"-02	1.2002*+01	NH	0.98408	0.76146	0.91409	1.44254	0.63367
19	5.6845"-02	1.2947"+01	Им	0.98647	0.79003	0.92707	1.37829	0.67262
50	6.3297"-02	1.3854*+01	HM	0.98868	0.81825	0.93900	1.31816	0.71240
51	6.9571"-02	1.4860"+01	Им	0.99090	0.84850	0.75105	1.25721	0.75647
\$2	7.6022"-02	1.5786*+01	11M	0.99276	0.87544	0.96104	1.20561	0.79701
5.3	4.2276"-02	1.6597*+01	NM	0.79425	0.89828	0.96903	1.16429	0.83230
24	8.8671"-02	1.7589*+01	ИW	0.99592	0.92549	0.97802	1.11714	0.87547
₹5	9.5377"-02	1.8552"+01	NW	0.99741	0.95117	0.98601	1.07486	0.91734
₹6	1.0132"-01	1.9331"+01	ИМ	0.99852	0.97145	0.99201	1.04291	0.95119
27	1.1131"-01	2.0164"+01	HM	0.99963	0.99269	0.99800	1.01076	0.98738
0 58	1.2174"-01	2.0455"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
59	1.3183"-01	2.0164*+01	NM	0.99963	99269	0.99800	1.01076	0.98738
30	1.4133"-01	1.9880"+01	11M	0.99426	0.98550	0.99600	1.02150	0.97504
3 į	1.5260"-01	2.0021"+01	tter	0.99945	0.98908	0.99700	1.01613	0.98117

INPUT VARIABLES YAUZUD ASSUME PEPD AND VAN DRIFST

690312	nont so	(E	PROFILE	TABULATION	30	POINTS, DEL	TA AT POI	NT 30
I	Y	PT2/P	PZPD	TO/TOD	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000"+00	1.0000"+00	ИW	0.85100	0.00000	0.00000	3,60239	0.00000
2	7.1120"-04	3.0593"+00	HH	0.93341	0.35697	0.59041	2.74017	0.21546
3	2.6162"+03	4.4095*+90	MM	0.94758	9.44284	0.0A731	2,41296	0.28484
4	3.9116"-03	4.4862"+00	ЦМ	0.95239	0.47534	0.71728	2.29352	0.31361
5	5.5840"-03	5.1911"+00	(414	0.95392	0.48604	0.72927	2.25503	0.32340
6	7.8740"-03	5.6743*+00	UM	0.95734	0.51058	0.75125	2.16839	0.34645
7	1.0617"-02	6.2671"+00	114	0.96115	0.53914	0.77522	2.07080	0.37436
8	1.2802"-02	4.5931"+00	NP	0.96309	0.55420	0.78721	2.02080	0.38955
9	1.5621"-02	4.9413"+00	NM	0.96504	0.56984	0.79920	1.97000	0.40568
10	1.7932"-02	7.2183"+00	Им	0.96652	0.58198	0.80817	1.93138	0.41845
11	2.0777"-02	7,5769"+00	14M	0.96814	0.59733	0.81918	1.88356	0.43491
1.2	3.3216"-02	8.0321*+00	114	0.97051	0.61624	0.83217	1.82618	0.45569
13	2.5697"=02	8.3307"+00	1414	0.97165	0.62834	0.84016	1.79040	0.46926
14	3.0632"-02	8.8076"+00	NM	0.97387	0.04714	0.85215	1.73606	0.49085
15	3.6943"-02	9.4129*+00	NM	0.97628	0.67034	0.8 .613	1.07165	0.51813
16	4.1097"-02	9,9302"+00	ĮМ	0.97818	0.68950	0.87712	1.62026	0.54134
17	4.6203"-02	1.0128"+01	IAM	0.97887	0.69670	0.88112	1.60143	0.55021
18	5.1283"-02	1.0813"+01	HM	0.96113	0.72101	0.89411	1.53957	0.58075
19	5.7887"-02	1.1505*+01	NM	0.78324	0.74480	0.90609	1.48162	0.61156
50	6.4084"-03	1,7956"+01	11M	0.98713	0.79231	0.92807	1.37331	0.67579
21	7.0637"-02	1.3629"+01	NM	0.98873	0.81342	0.93706	1.32022	0.70550
55	7.6708"-02	1.4347"+01	NM	0.99033	0.83564	0.44605	1.28269	0.73756
57	8.2906"-02	1.4527"+01	NM	0.99069	0.84074	0.94805	1.27251	0.74503
24	8.9103"-02	1.5331"+01	rim .	0.99230	0.86447	0.95704	1.22642	0.78036
25	9.5479"-02	1.6105"+01	Ν	0.99373	0.88672	0.96503	1.18507	0.81433
56	1.0140*-01	1.7163*+01	NM	0.99553	0.91624	0.97502	1.13269	0.86065
27	1.1191"-01	1.6336"+01	NM	0.99732	0.94789	0.98501	1.05015	0.91192
28	1.3226"-01	2.0064"+01	NM	0.99964	94569	0.79800	1.01076	0.98738
29	1.4232"-01	2.0354"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
D 30	1.5321"-01	2,03547+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD ASSUME PMPD AND VAN DRIEST

axisymmetric	M : 19 to 21.6 R THETA X 10 ⁻³ : 8 - 12	7001
	TW/TR : 1.1	FPG / ZPG MHT / AW

Axially symmetric blow-down tunnel. Running time: 50 s. D = 0.56 m.

PO : 13.6 MN/ m^2 . TO : 300 K. Helium. RE/m x 10 $^{-6}$: 45.

FISCHER M.C., MADDALON D.V., WEINSTEIN L.M. and WAGNER R.D. 1970. Boundary layer surveys on a nozzle wall at M \approx 20 including hot-wire fluctuation measurements. AIAA Paper 70-746.

And Fischer M.C. private communications.

Also Fischer, Maddalon, Weinstein & Wagner (1971) and Wagner, Maddalon & Weinstein (1970).

- 1 The test houndary layer was formed on the wall of a contoured axisymmetric nozzle approximately 4 m long.

 The nozzle radius at the measuring stations is given in table 1, with X = 0 at the throat. The nozzle wall had a smooth polished surface and was not actively cooled. Calibration tests reported by Arrington et al.
- 2 (1964) indicate that Mach number variations across the test section at X = 3.531 m are about ± 0.3 so that
- 3 longitudinal variations from the mean expansion may be expected to be of the same order. Prestor tube tests by Wagner et al. (1970) at X = 2.066 indicated that transition at this point occurred when PO was about
- 4 3 MN/m². PO for the test described here is about 14 MN/m². The test boundary layer was formed by expansion in the nozzle, with a very strong simple wave generated expansion in the throat region followed by an extended simple wave cancelled expansion in which the nozzle contour and boundary layer growth give near zero longitudinal pressure gradient conditions at X = 3.53 m. The last test station (3.76 m) may be affected by the upstream influence of the APG flow in the diffuser.
- 6 Wall pressure measurements were made at 17 stations along the wall between X = 1.47 and 3.81 m with holes
- 2.3 mm in diameter. At the X = 3.53 m station the velocity profile was determined from PO, TO and P traverses. The Pitot probe was a CPP (d_1 = 3.2, d_2 = 2.6 mm) while two static probes (CCP α = 42.50,
- 8 d = 3.2, l_1 = 11.7, l_2 = 94 mm) were mounted on a rake, separated vertically by 166 mm so that the outer
- tube was always in the free stream. TO was measured with shielded tungsten resistance thermometers with an oval shield entrance for which $b_1 = 0.76$, $b_2 = 3$ mm. At all other stations a Pitot rake only was used with 18 CPP ($d_1 = 1.5$, $d_2 = 1.0$, l = 25.4 mm) mounted at intervals of 6.4 mm near the wall, increasing to 19 mm in the outer region on the layer. At station X = 3.53 m a hot-wire survey of the layer was also made using the constant current techniques described by Wagner et al. (1970).
- The static pressure profile measured at X = 3.5 m was replaced in data reduction by a series of linear variations (see source figure 14 inset and tables of section C below) and this variation was applied to all the other profiles presented here. The total temperature was within a few percent of tunnel total temperature throughout and the measured values were replaced by the isoenergetic assumption. A wall temperature of 300 K was assumed. The Pitot measurements were corrected for real gas effects (Erickson, 1960) and viscous inter-
- action and rarefaction effects (Beckwith et al., 1971 and Rogers et al., 1966). The maximum correction was a 20 % reduction of PT2, and at the relatively high pressure levels considered in this entry, only the first few data points near the wall received significant adjustments. Uncorrected Pitot data is tabulated
- 11 in the source. The viscosity law assumed was $\mu = 5.0236$ (T/K) 0.647 X 10^{-7} Ns/m².
- 12 The editors have accepted all the assumptions and adjustments made by the authors! In order to do this it proved necessary to reconstitute the assumed static pressure profiles from the authors! description and the wall and free-stream static pressures. This procedure was followed since the tabulated data, although functionally complete, required the use of computed density data which was presented to one significant
- figure. This profile set is the only one tabulated, but a great quantity of reduced integral data is also given in the source paper for a range of tunnel reservoir pressures. For this integral data, the static pressure was assumed constant. The hot wire data are presented graphically in the source and Fischer et al.
- 14 (1971). We present the authors' CF values estimated from the slope of the velocity profile at the wall.
 + We have however calculated viscosity as discussed in the introduction.

§ DATA: 7001 D101-0105. Pitut profiles. TO and P profiles for 0104 only. NX = 5.

15 Editors' comments

The three hypersonic contoured nozzle wall studies, including this entry, Beckwith et al. - CAT 7105 and Kemp & Owen - CAT 7206 provide the highest Mach number data in the catalogue. In all three there are strong normal pressure gradient effects, as although the radii of curvature are large, the dynamic pressure is orders of magnitude greater than the static pressure. The most thorough attack on the problems of measurement which result from this is that of Beckwith et al., whose correction procedures are used here. In addition to normal pressure gradient effects due to streamline curvature, at these Mach numbers, it is necessary to distinguish between the normal stress which must balance the centrifugal effects, and its component parts, the static pressure as such and the normal Reynolds stress due to turbulence, which is of the same order.

The profiles are given in average detail, and the measurements extend within the momentum deficit peak. With the boundary conditions used, replacement of the measured TO profile by the assumption of constant TO will have little effect on the reduced data. The influence of the PT2 corrections can be seen by comparing the tabulated values with the uncorrected values given in the source paper. The Mach number range of the series is not large so that the balance between the components of the static pressure variation should not change much from one station to another, and therefore the static pressure profile used at each station will be valid in so far as it represents the variation at the station at which it was measured.

As is typically the case with very high Mach number measurements, the profiles display marked transitional features.

TABLE 1

HEASURING STATION X: 2.007 2.743 3.302 3.531 3.760 m NOZZLE RADIUS R: 203.2 236.2 273.1 278.1 279.4 mm

CAT 7001	FISCHER		BOUNDARY CON	DITIONS AND	EVALUATED	DATA. SI UNII	15.	
RUN	MD *	THZTR	REDZW	CF *	H12	H12K	PW	PD
X *	PQD*	PW/PD	RE020	ÇQ	H32	H35K	TW×	TD
RZ +	T OD *	\$1; *	DZ	P12	H42	D5K	סט	TR
70010101	19.0000	1.1150	2.4599"+02	2.6000*-04	337.7607	2.0510	1.1881*+02	8.6. 38*+01
2.0066*+00	1.4238"+07	1.3500	8.2764*+03	1274	1.9520	1.7422	3.0000"+02	2.4713"+00
-2.0320"-01	3.0000*+02	1.0000	1.6432*-04	,in	-0.3401	1.7740"-03	1.7583"+03	2.6906*+02
70010102	20.8000	1.1152	2.0476"+02	1.9500*-04	342.0757	2.0033	7.5831"+01	5.6171*+01
2.7432*+30	1.4238*+07	1.3500	8.3710"+03	MW.	1.9277	1.6873	3.0000"+02	2.0649"+00
-5.365501	3.0000*+02	1.0000	1.7894*-04	ИM	-0.0313	2.6614*=03	1.7595"+03	2.6901"+02
70010103	21.6000	1.1152	2.2405*+02	1.8000*=04	324.0265	2.0521	6.2873*+01	4.6573"+01
3.3020*+00	1.42334+07	1.3500	9.8151 +03	NH	1.9396	1.7287	3.0000*+02	1.9157"+00
-2.7305*-01	5.0000*+02	1.0000	2.1904"-04	MM	0.1973	2.8089*-03	1,7599"+03	2.6900"+02
70010104	21.6000	1.1152	2.4039*+02	1.7506*-04	303.6261	1.9064	6.1350*+01	4.5444*+01
3.5306*+00	1.3893"+07	1.3500	1.0531"+04	NM	1.9329	1.7363	3.0000"+02	1.9157"+00
-2.7813"-01	3.00004+02	1.0000	2.4985*-04	Им	0.3212	3.4172"-03	1.7599*+03	2.6900"+02
70010105	21.5000	1.1152	2.7945*+02	ММ	328.4272	2.1372	6.4027*+01	4.7427*+01
3.7592*+00	1.4169*+07	1.3500	1.2144*+04	NM	1.9437	1.7314	3.0000*+02	1.9335*+00
-2.7940*-01	3.0000*+02	1.0000	2.7077"-04	Иw	0.1531	3.2355"-03	1.7599*+03	2.6900#+02

CF ESTIMATED FROM FIG.7

EVALUATED DATA . PRESSURE BASED MEFERENCE FLOW

RUN	02P0	H12MD H12PW	H32P0 H32PW	H42PD H4277	RED2PND	RED2POH RED2PHH	DSTAR
70010101	1.666A"=04 1.3937"-04	341.0896 330.7443	1.4527	-0.3347 -0.3346	5,3955"+03 8,3995"+03	2.4953*+02 2.4965*+02	5.4084*-02
70010102	1.6050"=04 1.5084"=04	355.228(344,8846	1.9283	-0.0310 -0.0310	8.4438"+03 8.4472"+03	2.0654*+02 2.0654*+02	5.9167**02
70010103	2.230ff=04 1.8647=04	333.3162	1.9407	0.1942	4.9965*+03 1.0000*+04	2.2819#+02 2.2827#¢02	6,7306*-02
70010104	2.4554"-04 2.0507"-94	312.5020 303.2406	1.9341	0.3153 0.3152	1.0727"+04	2.4487*+02 2.4495*+02	6.9143*-02
70010105	2.7366"-04 2.2875"-04	350.1207 336.2742	1.9444	0.1513	1.2274"+04	2.6244*+02	8.3128#-02

700101	02 F150	HER	PROFILE	TABULATION	51	POINTS, D	ELTA AT POI	NT 19
I	4	P12/P	PZPD	COTVOT	HZ110	U/U0	1/10	RH0/RH00*U/UD
1 3 4 5 0 7 0 9	0.0000*+00 1.7780*-03 5.0800*-03 7.5692*-02 1.0100*-02 1.3536*-02 2.6111*-02 3.7945*-02	1.0000*+00 1.24°0*+00 2.62°04*+00 4.9404*+00 2.2428*+01 3.73°0*+01 5.37°0*+01 6.1175**+01 1.7609*+02 2.0393*+02	1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.24500 0.91500	1-07875 1-J7107 1-05179 1-03751 1-01123 1-00737 1-00532 1-00377 1-00138 1-00046	0.00000 0.02539 0.05740 0.08377 0.18596 0.24111 0.28973 0.35644 0.44463 0.56583	0.0000 0.30300 0.53400 0.72500 0.92100 0.95200 0.97900 0.97300	156.72600 142.36554 103.60086 74.89536 24.52859 15.5008 11.13916 7.54369 4.92772 3.07983	0.00000 0.00287 0.00761 0.01307 0.05069 0.08244 0.11719 0.16157 0.22133 0.29501
11 12 13 14 15 16 17 10 19 20 21	4.0482**02 5.0242**02 7.1195**02 8.4455**01 1.1054**01 1.46744**01 1.0544**01 1.0544**01	2.36/4"+02 3.1639"+02 3.9663"+02 5.6912"+02 5.6912"+02 5.9860"+02 6.1804"+02 6.2657"+02 6.367"+02	U.8050U U.8430Q U.8420Q U.940Q U.940Q I.000Q I.000Q I.000Q I.000Q I.000Q	0.79940 1.00084 0.79850 0.79856 1.00043 1.00020 1.00010 0.79994	0.61192 0.70728 0.76957 0.89037 0.94593 0.97011 0.98575 1.00000 0.99253	0.9940U 0.9970U 0.9970U 0.9970U 1.0000U 1.0000U 1.0000U	1.98706 1.59763 1.25890 1.11543 1.076257 1.06251 1.00000 1.01510	0.30325 0.42147 0.54972 0.73007 0.85980 0.92607 0.94112 0.97170 1.00000 0.98512 1.00108

THPUT VARIABLES Y, U/UD, T/TD, P/PD

70010	ins Fisch	HER	PPOFILE	TABULATION	5.9	POINTS, DELT	IOS TA AT	NT 18
I	Y	PT2/P	P/PN	COINCE	el / 10	UVUII	1/10	SHUNHUD9*QND
1	0,4000"+00	1.0000"+00	1.35000	1.00805	0.00000	0.00000 15		0.60000
ą	1.7750"-03 5.0800"-03	1.1104"+00	1.35000 1.35000	1.J0764 1.J0479	0.01658	0.20400 19	10.95467	0.00182 0.00805
4	1.5672"=33	1.0130*+01	1.35,00	1.30087	0.11083	0.83200 4	19.02621	0.02291
5	1.01a0"=02 1.3538"=02	2.1570"+01 3.3779"+01	1.35000	1.00082	0.17562		27.92529 18.31250	0.0456: 0.06952
ž	1.9736"402	5.0221*+01	1,35000	0.79883	0.26747	0.76100 1	2.71673	0.10202
<u> </u>	5.61111-05 2.61111-02	6.2145"+01 9.0565"+01	1.35000	0.7995 <i>7</i> 0.99387	0.36261		7.28931	0.12542 0.17 5 59
10	3,9675"-02	1.4469*+02	1.10750	0.79971	0.44256	0.98700	4.97374	0.23166
11 12	5.5242"=92 7.1176"=92	2.7dnu"+92 3.5963"+92	0.82500 0.82500	0.79925	0.71478	0.99599 0.99700	2.43952	0.53649 0.42277
13	8.44554-02	4-1001*+02	0.85500	0.77938	0.30313	0.77500	1.52520	0.55946
14 15	9.7155"-02 1.1062"-01	5.2934"+02 6.1509"+02	0.86250 0.91250	0.79789 0.99873	0.37543	0.97770 0.99900	1.29335	0.68165 0.81911
16	1.2954"-01	6.7103"+02	0.95500	0.79814	0.94957	0.94900	1.01915	0.93612
17 D 18	1.4854*-01 1.6744*-01	6_8U37*+02 6_8586*+92	1.00000	1.00005	1.00000	1.00000	1.00406	0.99200
19	1.8619"-01	6.6053"+02	1.00000	0.97825	0.78135	0.99700	1.03629	0.96402 0.94200

INPUT VARIABLES Y, U/UC, T/TD, P/PD

700101	04 F13C	4CR	PROFILE	TABULATION	21	POINTS, DEL	TA AT PO:	NT 20
I	٧	PT2/P	P/Pn	COINGT	0795	ロトリリ	TAID	00\U*G0H9\0F8
1 1 2 5 4 5 6 7 8 9 0 1 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 2 1	0.0000 - 00 1.7750 - 03 3.5020 - 23 4.0640 - 23 5.3500 - 03 8.1280 - 03 8.1280 - 03 1.2446 - 02 1.7082 - 02 3.7338 - 22 5.1082 - 02	1.0000"+00 1.1247"+00 1.2809"+00 1.7766"+00 2.77423"+00 2.7723"+00 8.0213"+00 1.7514"+01 2.8970"+01 3.8008"+01 7.5006"+02	1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000	1.30.00 0.97798 0.99957 0.99957 0.99964 0.99914 0.99914 0.79968 0.79968	0.00000 0.01757 0.02587 0.04488 0.05585 0.09101 0.15778 0.20400 0.23322 0.37241 0.53423	0.00000 0.21500 0.30500 0.49000 0.71300 0.71300 0.79400 0.94900 0.94900 0.94900	56,59700 49,40200 41,7700 19,19500 04,04200 77,47200 57,00400 32,10300 20,91600 16,72500 3,44800	0.0000 0.00194 0.00295 0.00555 0.00555 0.01542 0.01568 0.03759 0.06021 0.07804 0.17136
13 14 15 16 17 18 19 0 20	6.2738*-02 7.4422*-02 9.2964*-02 1.0414*-01 1.1074*-01 1.2649*-01 1.5649*-01 1.5240*-01	2.7406*+02 3.6932*+02 5.0937*+02 6.2343*+02 6.7305*+02 6.7366*+02 7.0149*+02	0.00500 0.83000 0.87000 0.87550 0.99550 0.94250 0.96500 1.00000	0.99957 0.79946 0.99329 0.79946 0.79864 0.99812 0.79873 1.00000 0.79785	0.63183 0.73360 0.85767 0.90224 0.95330 0.99462 0.99404 1.00000 1.01170	0.99500 0.99703 0.99800 0.99900 0.99900 0.99900 0.90900 1.00000	2.45400 1.35400 1.35400 1.27400 1.01700 1.01700 1.01000	0.32297 0.44803 0.44826 0.72959 0.82376 0.92542 0.95449 1.00000

INPUT VAPIABLES Y.U/UD.T/TD.P/PD

700101	05 F15C	HER	PROFILE	TABULATION	20	POINTS, D	ELTA AT POI	N'7 19
1	Y	PT2/P	P/PD	TO/TOU	M/H0	U/UD	1/10	RHO/RHOD*U/UD
1234567891011213	0.0000*+00 3.1496*-03 6.3500*-03 8.7154*-03 1.0160*-02 2.1107*-02 2.7483*-02 4.1046*-02 5.9614*-02 7.2568*-02	1.0000"+00 1.2169"+00 1.2162"+01 1.2162"+01 1.3152"+01 4.3057"+01 5.8873"+01 5.8873"+01 1.6156"+02 2.638"+02	1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.35000 1.11000 0.93500 0.80500	1.01833 1.01674 1.01089 1.00425 1.00099 1.00018 1.00088 0.99948 0.99948 0.99948	0.00000 0.02302 0.13130 0.16536 0.21326 0.27786 0.37786 0.35786 0.51643 0.51643 0.52614 0.71865	•	158.00407 145.84420 96.63136 42.60163 29.82179 14.20633 12.036807 7.62424 3.6828 2.50916 1.92404	0.0000 0.00257 0.002718 0.02718 0.02718 0.06538 0.04027 0.10812 0.13177 0.17517 0.17517 0.27573 0.37077
14 15 16 17 18 0 19	9.8527"-02 1.1179"-01 1.3091"-01 1.5022"-01 1.6881"-01 1.8737"-01	4.1401"+02 4.8349"+02 5.5971"+02 6.2474"+02 6.4847"+02 6.4940"+02	0.84500 0.87500 0.90750 0.93750 0.96750	0.79861 0.99930 0.79837 0.99831 1.0000	0.84340 0.90750 0.95863 0.97687 1.00000 0.99007	0.94800	1.40020 1.21181 1.08554 1.04582	0.60228 0.72134 0.63515 0.89553 0.96750 0.96112

EMPUT VARIABLES Y, U/UD, T/TD, P/PD

axisymmetric	M : 5.9 R THETA X 10 ⁻³ : 8 - 80	7002
	TW/TR : 0.7 - 0.8	ZFG (FPG HISTORY) MHT

Axisymmetric blow-down tunnel, maximum running time 6 minutes. D = 305 mm. 0.46 < PO < 4.24 MN/m². 460 < TO < 500 K. Air, dew point : 211 K. 4 < RE/m X 10^{-6} < 35.

JONES R.A. and FELLER W.V., 1970. Preliminary surveys of the wall boundary layer in a Mach 6 axisymmetric tunnel. NASA TN D-5620.

And Feller W.V., private communication, Also Feller (1973).

- 1 The test boundary layer was formed on a cylindrical extension (D = 0.305, L = 4.0 m) of a contoured axisymmetric nozzle. The cylinder was constructed in four interchangeable sections (L = 0.457, 0.761, 1.22
- 8 and 1.525 m) of which the longest carried the survey equipment. Four stations (X = 2.388, 3.150, 4.369, 5.461 m) were studied in the test zone stretching up to more than 6 m from the throat (X = 0). The test surface when constructed was finished to better than 1.6 μ m rms with a maximum departure from the prescribed
- ordinates of 0.013 mm. The surface was not actively cooled. Pitot surveys in the "inviscid" core flow showed
- 3 no asymmetry or waves. Natural transition was believed to occur upstream of the throat, and the pressure
- 4 history of the layer is represented by the Mach number distribution in Table 1. The wall temperature history is discussed by Feller (1973) and in the cases discussed here probably corresponds to TW/TR between 0.7 and 0.8 throughout (E).
- 6 Wall measurements generally suffered from undetermined instrumental difficulties, so that the static pressure presented with the profiles is deduced from Pitot measurements in the free stream. The wall temperatures were measured by thermocouples, each held by a screw in contact with the bottom of a drilled hole so as to sense the temperature 2 mm from the test surface.
- A CPP and a circular STP were mounted permanently in the free stream and their readings recorded in conjunction with the traversing probes, which were in general of the same construction. Two probes were mounted on the traverse strut at any one time. The probe dimensions and Y separation are listed in table 2. The Pitot probes were FPP and the TO probes flattened circular STP in which the chromel-alumel thermocouple bead had itself been flattened so as to increase the surface area to volume ratio, with the aim of giving a more rapid response and reducing sensitivity to conduction errors. The TTP were calibrated directly in the free stream over a wide range of Reynolds numbers. The calibration was extrapolated where necessary in the low Reynolds
- 10 number range. No corrections other than this calibration were applied to probe data. An empirical curve
- 11 fitted to a compilation of viscosity data was used.
- Since the PT2 and T0 profiles were taken on separate occasions and at different Y values, the Pitot data were faired and interpolated to the Y values of the TO data. All values were normalized with the simultaneous value recorded by the fixed free stream probes. The wall temperature values presented were obtained from the initial no-flow value with a correction based on a heat transfer calculation. The computed variation of TW was usually less than 22 K in the course of a run. Long period total pressure fluctuations of up to 2.5 % were observed in the middle part of the layer and it is suggested that these fluctuations may account for some of the scatter in the profile data.
- 12 The profile measurements are presented in the tables for all Y values of both the TO probes. Where two Y values coincided, the profile data were averaged. The U/UD and M values have been taken as presented by the authors, and the variations in edge conditions averaged to give reference values representative of the whole profile (The source paper gives TOD and TN values for every profile point). The static pressure has been assumed constant through the boundary layer. Our normal integration procedure proved unable to
- 13 handle the scatter of the data and was replaced by a trapezoidal integration rule. Four successive profiles are presented for each of four total pressure levels. The reservoir pressure variation within each series
- 14 is negligible except for the last series, where there is a fall of 17 % from 0401 to 0404. Measurements

of skin friction in the same facility have been made by Srokowski et al. (1976). The possible use of this data is discussed in § 15 below.

5 DATA: 7002 0101-0404. Pitot and TO profiles obtained separately. NX = 4.

15 Editors' comments

The experiment provides data in a region which is not well covered. In Reynolds number and Mach number range it falls between Voisinet & Lee - CAT 7202 and Hopkins & Keener - CAT 7203. The test area is cylindrical and 6/RZ is of order 0.7, so that the effect of transverse curvature may well be substantial. Although we have described the flow as having a nominally zero pressure gradient, the growth of the boundary layer results in a rise in pressure ratio (P/PO) of 36 - 55 % between stations 1 and 4 (see source, figures 7 and 8). In the tables of reduced data below, this is masked for series 04 by the fall in POD.

The data is fairly rough, and showed much scatter. As remarked above, our spline-fit integration procedure was replaced by a trapezoidal rule. We still found differences of 50 % between the authors' integral values and ours, and so made a check by "counting squares". The trapezoidal rule and quadrature values agreed to 1 %, so that we presume that the authors' integration procedure was also unsuited to the spread of the data.

We give below a table of CF values based on the measurements of Srokowski et al. (1976). These measurements were made between Stations 1 and 2, with two different balances. Six or more years have passed between the two sets of measurements, so that there may well have been significant changes in the facility. We have not therefore entered any of these values in the profile tables. The scatter of the data was about 7 %, and we have interpolated on the basis of the authors' RE (x) values. We have very slightly extrapolated the curve in two cases, and although the Reynolds number range overlaps, values for stations 3 and 4 should only be used for very approximate arguments.

CF FROM SROKOWSKI at al. (1976)

PROFILE:	0103	0104	0202	0203	0204	0301	0302	0303	0401
CFX10 ⁴ :	8.60	8.05	8.30	7.65	7.30	7.40	6.98	6.53	6.60
NOTE:	a.b		ь			-	-		-

- a) Profile station remote from balance station
- b) Extrapolated value.

Table 1.	Design F	lach number	history in	nozzle			
X (m)	0	0.051	0.102	0.152	0.200	0.254	0.381
H	1.0	1.22	1,44	1.66	1.87	2.08	2.65
X (m)	0.584	0.788	0.939	1.270	1.421	1,929	2.260
H	3.54	4.29	4.70	5.32	5.54	5.89	5.99

Table 2. Dimensions of probes (mm)

	Outer TPP	Inner TPP	Outer TTP	Inner TTP	
h ₁	0.46	0.33	1.8	1.1	
h ₂	0.25	0.10	*		
b ₁	1.9	0.79	3.9	4.6	
bg	1.6	0.41	•	•	
1"	47.6	35 (E)	47.6	47.6	
shank dia.	1.52	0.508	3.15	3.15	
Separation in Y	24.1		20.5		

CAT 7002	JOHES		BOUNDARY CON	DITIONS	NO EVALUATED D	ATA. SI UNIT	· s .	
RUN	40 *	THATP	REDZW	CF	H12	H12H	Pv.	PD
χ •	P30*	PH/PD*	HED20	ÇG	H32	H32K	Tire	TO
R2 +	T U D *	Sr. +	05	P12	H42	DSK	Uθ	TR
70020101	5.8600	0.8037	1.5522*+03	dio	12.3030	1.3754	3.293#"+02	3.2938"+02
2.3876"+07	4.5000*+05	1.0000	7.4970"+03	ijv.	1.8490	1.8192	3,3309"+02	5.7936"+01
-1.5240"-01	4.5584"+02	0.0000	1.7580*-03	48	0.5522	4.1650*-03	8.9430"+02	4.14464+02
					15 4 14 2		4	
70020102 3.1496*+00	5.7690 4.5000*+05	0.5115	2.0456*+03 9.7178*+03	HM HM	12.6203	1.3905	3.6583"+02 3.3098"+02	3.6563"+02 5.6702"+01
-1.5240*-01	4.4022*+12	0,000	2.1292"-03	82	0.5107	5.2677"=03	8.8483*+02	4.0771*+02
-			•					
70020103	5.5800	0.4043	3,1905*+03	46	11.4970	1.4011	4.4340*+02	4.4340"+02
4.3688*+00	4.5000*+15 4.6386*+12	1.0000	1.4107"+04	An Ah	1.8251 0.5964	1.8037	5,3966*+U2 50+"1269.8	6.4184*+01
-1.954(4.6370" 772	U = (10 110	3.01110)	11"	0.3704	1.3131 -03	0.7031 708	41E531
70020104	5.4500	0.7748	4.4337*+03	46.	12.1542	1.4306	5.1091"+02	5.1091*+02
3.4610*+30	4.5000*+05	1.0000	1.8344"+04	אן.	1.8052	1.7942	3.2509"+02	6.6358"+01
-1.5240*-01	4.6050*+02	0.0000	3.6577"-03	14m	0.5238	9.366403	8.9013"+02	4.1956"+02
1050501	5.4700	0.8097	2.5419*+03	.414	11.6110	1.3632	5.7226"+02	5.7226"+02
2.3676*+00	7.9000*+93	1.4000	1.2350*+04	ill v	1.8602	1.8275	3.3600"+02	5.78354+01
-1.5240*-01	4.5040*+02	0.0000	1.6637"=03	NΑ	0.6174	3.7770"=03	8.9504*+02	4.1495*+02
					13 044			
70020202 3.1496*+00	5.8300 7.9000*+05	0.7487	3.2924"+03 1.5490"+04	1H 1H	12.0163 1.6445	1.3742	5.9666*+02 3.3097*+02	5.9666"+02 5.9183"+01
-1.5240*-01	4.6147"+72	0.0000	2.0813*-03	(IM	0.5865	4.9649"=03	8.9924*+02	4.1965"+02
	- '							
70020203	5.6700	0.7920	4.3691"+03	'ih	12.5872	1.3751	7.0666"+02	7.06664402
4.368A*+00	7.9000*+05	1.0000	1.9659"+04	ill.	1.8324	1.0127	3.3322"+02	6.2181"+01
-1.524001	4.6149*+05	0.0000	2.4704*-03	11M	0.4417	4.1600 -03	8.9644*+02	4.2041"+02
70020201	5.5400	0.7672	6.2762"+03	(I)M	11.6539	1.3836	8.1291"+32	8.1291*+02
5.4610"+00	7.9600*+05	1.0000	2.6357*+04	, jp	1.8292	1.0133	3.2876"+32	6.5930"+01
-1.5240"-01	4.7063"+02	0.000	3.21M2"-03	:1M	0.5637	7.7343"=03	9.0191"+02	4.2854"+02
70020301	5,9500	0.7068	4.77344+03	46:	12.3317	1.3310	1.4469*+03	1.4464*+03
2.3876*+00	2.1700"+06	1.0000	2.2413"+04	.ip	1.8690	1.8475	3.4306"+02	6.09144+01
-1.5240*-01	4.92224+05	0.0000	1.2709"-03	46.	0.5396	2.8207*-03	9.3108"+02	4.4736*+02
70020303	5.9500	0.7643	7.8025*+03	ЯP	9.7060	1.3176	1.4469*+01	1.4467*+03
3.1496*+00	2.1700*+06	1.0000		NM M	1.8719	1.8441	3.4134"+02	6.0810*+01
-1.5240"-01	4.9130*102	0.0000		NM	0.0341	4.2845*-03	4.3028*+02	4.4660"+02
-			•					
70020301	5.7500	0.7661	1.0345*+04	NN	10.2534	1.3180	1.7828*+03	1.7626"+03
4.3685*+00	2.1700"+06 5.0036"+02	1.0000	4.6425"+04	11M 14M	1.8607	1.8403 5.3635*+03	3.4868*+02 9.3466*+02	6.5729*+01 4.5516*+02
-119140 -01	74.030 100		F (4 (0) - 0 3	•••	V47E74.	3,3031	7,3400 100	
70020304	5,6600	0.7817	1.2465*+04	ur Mi	11.4150	1.3146	1.96194+03	1.9619"+03
5.4610"+00	2.1700"+06	1.0000	5.4772"+04	'NY	1.8552	1.8423	3.4222"+02	6.4944"+01
-1.5240*-01	9.6103*+02	0.0000	2.6513"-03	40	0.5835	3.9767*-03	4.1453*+02	4.3776*+02
70020401	5.9800	0.7773	9.2357*+03	N/A	10.6693	1.3223	2.7411"+03	2.7411"+03
2.3876*+00	4.2400*+06	1.0000	4.3539"+04	30	1.8751	1.8527	3,6122"+02	6.2730"+01
-1.5240*-01	5.1138*+02	0.0000	1.3645"-03	:14	0.7190	2.8301"-03	9,4961*+02	4.6472"+02
70020402	5,6200	0.7887	1,1952*+04	<u> </u>	11.4914	1.3251	3.1497*+03	3.1597*+03
3.1496*+00	4.1400*+06	1.0000	5.4753*+04	:UM	1.6630	1.8421	3.6257"+02	6.5028"+01
-1.5240*-01	5.0556*+02	0.0000		;įM	0.5906	1.5356" = 03	9.4099*+02	4.5975"+02
7003040-	W 7044		4	1.44	10 015	. 1424	7 A04 (HA37	T 08481.53
70020403 4×3685*+90	5.7800 3.8900*+06	1.0000	1.7731"+04	MM MM	10.0131	1.3058 1.8466	3.0964"+03 3.5505"+02	3.0964"+03 6.3625"+01
-1.5240"=01	4.6675"+02	0.0000		JW.	0.7507	5.0029"-03	9,2438*+02	4.4453"+02
•								
70020404	5.6900	0.7673	1.7247"+04	NW	12.0339	1.3142	3.1085*+03	3.1065*+03
5.4410*+00 -1.5240*+01	3.5500"+06 4.9588"+02	1.0000	7.4037"+04 2.3480"-03	MK MK	1.8585	1.8435	3,4621*+92	4.5121"+02
- 7 + 3K 411 . m A I	414300.405	44444	E # 1400 AN	1844	0.5181	3.3411 403	- PEATO ARE	-131E1 70E

TPAPEZOIDAL ROLE FOR ALL INTEGRATIONS

INPUT VARIABLES Y/R,U/UD,H ASSUME FMPD AT 1m2,21,30 DATA WERE AVERAGED

7002040	04 JONES		PROFILE	TABULATION	27	POINTS, D	ELTA AT POI	NT 24
Į	Y	PT2/P	P/PD	T0/100	M/MD	U/UD	1710	QUVU*U0HRVQHR
12345676901233456769	0.0000"+00 0.0960"-04 1.828"-03 3.0400"-03 5.1148"-03 7.9244"-03 1.3259"-02 2.0574"-02 2.0574"-02 2.1703"-02 2.4070"-02 2.503"-02 2.7669"-02 3.7659"-02 3.123"-02 4.100"-02	1.0000°+00 3.2278°+00 3.4378°+00 5.441°+00 7.2388°+00 4.2485°+00 1.1452°+01 1.4155°+01 1.5384°+01 1.5384°+01 1.5604°+01 1.7608°+01 2.0354°+01 2.0354°+01 2.2356°+01		0.61032 0.61032 0.65092 0.65092 0.65092 0.7312 0.7212 0.7214 0.72	0-00000 0-25483 0-38437 0-38437 0-4247 0-45318 0-55185 0-57294 0-56754 0-66708 0-64760 0-64760 0-73274	0.0000 0.32042 0.65613 0.70132 0.77540 0.77540 0.81670 0.85774 0.85774 0.85774 0.85774 0.85774 0.85774 0.8774 0.8774 0.97104 0.97104 0.9250 0.9250	5.244844 5.244844 5.244844 5.244844 5.244844 2.24844 2.24844 2.24844 2.1	0.00000 0.1233b 0.18084 0.20733 0.2235b 0.24352 0.247129 0.36222 0.36222 0.36222 0.36222 0.49751 0.4136 0.42398 0.43953 0.46764 0.42350 0.49764 0.522350 0.562249
20 21 22 23 24 25 26 27	5,0744"-02 5,6083"-02 6,1205"-02 7,6048"-02 7,7114"-02 8,2144"-02 1,0211"-01	3.0791"+01 3.0967"+01 4.2150"+01 4.2150"+01 4.2150"+01 4.2150"+01 4.2150"+01	11M 11M 11M 11M 11M NM NM	0.98030 0.97304 0.97076 1.00172 1.00000 0.99672 1.02972	0.63237 0.91037 0.93606 1.00000 1.00000 1.00000	0.94608 0.97307 0.98917 1.00080 0.99836 1.01475	1.14250 1.07045 1.00172 1.00000 0.99672 1.02972	0.74205 0.82407 0.92407 0.99914 1.00000 1.00164 0.98346 0.98337

INPUT VARIABLES Y/R, B/DD, M ASSUME PEPD AT IR2, 10 DATA WERE AVERAGED

M: 1.75 to 3.00 in steps of 0.25

TW/TR : 0.9 - 1.02

7003

7PG-AW-MHT

Continuous channel with interchangeable nozzle blocks, W = H = 0.10 m, L = 1 m. PO : 0.1 MH/m². 280 < TO < 420 K. Air, dew point 240 K. 5 < RE/M X 10^{-6} < 14.

MEIER H.U., 1970. Experimentable und theoretische Untersuchungen von turbulenten Grenzschichten bei Oberschalfströmung. Mitt. M.P.I. und AVA no. 49.

And Meier H.U. private communications.

Also (Data superseded) Meier (1969) and (1967)

- 1 The test boundary layer was formed on a flat wall facing an interchangeable nozzle block. The throat (X=0) was always at the same position and measurements could be made using six ports spaced at 45 mm intervals.
- 8 from X = 425 to 660 mm. The surface of the plate was polished and it was not actively cooled. Constant wall
- 2 temperature was reached after one hour's running time. A calibration of the tunnel (Fütterer, 1967) showed that the maximum Mach number variation in the test region was 2 % and usually it was less. The nozzle walls
- 3 were polished but disturbances due to joints could not be completely avoided. The location of the unforced
- 4 transition zone was not determined. The test boundary layer had experienced the strong acceleration of the throat region.
- 5 Static pressure and wall temperature were measured at each profile station using an instrumented plug. The static tapping (d = 0.4 0.5 mm) and the thermocouple. (chromel alumel) were 5 mm to either side of the centre line. Measurements were made simultaneously with the profile traverse.
- 7 Total pressure and total temperature profiles were obtained in a single traverse with a combined pitot / total temperature probe. The front face is circular $(d_1=0.48,\ d_2=0.40\ mm)$ and is followed by a conical section $(\alpha=6.5^{\circ}(E),\ i=4.4\ nm)$ leading to a cylindrical support $(d_1=1.5\ mm)$. The overall length is 45 mm and the probe was inclined at 7° to the wall. A thermocouple bead is supported by its own leads 0.4 mm behind the opening. The leads are kept coaxial with the support tube by an insulating spacer so that the 1/d ratio is greater than 100. The supporting spacer is located only by three ridges which allow air to pass through the probe and minimise conduction errors. The probe is used alternately as a CPP and as an STP, when the probe passage is switched to one of a series of calibrated orifices so that the mass flow may be regulated and measured. The effective thermocouple recovery temperature calibration is obtained as a function of the mass flow with the probe in the free stream, and becomes nearly constant when the mass flow is large
- 8 enough. The design and procedure are further discussed by Heier (1957, 1969). In the test zone the wall static tappings and thermocouple beads were located in the plugs at each station on lines at $Z=\pm 5$ mm and at the X-value of the port centre. The traverses were made on the centre-line-normals through the port centres.
- 9 The data were reduced assuming constant static pressure through the layer. The wall shear stress was determined from the velocity profile using a best-fit matching procedure to Rotta's wall law and Coles' wake
- 11 law in transformed coordinates, The author assumed a recovery factor of 0.896 and used Sutherland's viscosity law.
- 12 The editors have presented the data incorporating the authors' assumptions and calibration procedures. The boundary layer edge state (D state) is here calculated from the experimental data at the author's selected
- 13 edge point. The author presents adiabatic wall data for six successive stations at six Mach numbers. This is presented in full (0101-0606). A series of single station tests was made at each Mach number, in which
- 14 TM/TR was varied. These are presented as series 07 to 14. The author's shear stress data, deduced from the profiles, are also presented.
- 6 DATA: 7003 0101-1402. Pitot and TO profiles. NX = 6 or 1.

15 Editors' comments

The special interest of the experiment is the use of a fully developed combined pressure-temperature proba. The thermal conditions, however, are never severe. The experimental range is covered fully and systematically, but the upstream history is not known. Experiments with significantly overlapping ranges are those of Stalmach - CAT 5802 on a tunnel wall, and the flat plate tests of Coles - CAT 5301, Shutts et al. - CAT 5501 and Mabey et al. - CAT 7402.

The profiles are described in fine detail, but in about helf the cases measurements do not extend within the momentum-deficit peak. There is evidence of considerable disturbance in the outer region of profile 0506.

CAT 7093	MEIER		BOUNDARY CUN	DITIONS AND L	.VALUATEU	UATA. SI UNTI	15.	
RUN	MD #	TW/TR	RFD5M	CF +	H15	HIZK	PW	Pħ
X *	POD	PW/PD#	REDED	Čo	H32	H32K	TWA	TD
R2	TODA	SW #	DZ	P12*	H42	ひさん	uti	TR
70030101	1.7170	1 0071	/	1 14 10 9 1	2 4 74 11			
4.2500"-01	9.51707+04	1.0031	4.8122"+03 6.8447"+03	5.34504-03	7.676U	1.3993	1.8792*+v4 2.7581*+v2	1.792"+04
INFINITE	504"0048.5	0.0000	4.9697"-04	0.0000*+00	0.0248	5.8569*=04	4.0176*+02	2.7497**02
70030107	1.6990	1.0031	4.0410*+03	2.2670*-03	5.5881	1.3559	1.8889*+04	1.04894+44
4.7000"-01 INFINITE	2.9620#+04 9.3094#+04	1.0000	7.10237+03 4.54857-04	NP 0.0000*+00	1.8179	1.8124	2.8784*+02	1.8912"+02
WALL THE IL	E	0.0000	2.2.463444	0.0000-700	0.0300	0.4940*-04	4-6446*+05	2,6644=+05
70036103	1.7080	1.0054	4.6311"+03	2,1690*-03	2.6860	1.3945	1.6825*+04	1.6825*+04
5.1500"-01	9.4047"+04	1.0000	7,9051"+03	HM	1.8002	1.7909	2.8771*+07	1.8405*+02
INFINITE	2.9240"+12	0.000	6.0280°=04	U.U0U0"+U0	0.0195	A*141004	4.6535*+02	5781505+05
70030104	1.6810	1.0031	6.4039*+63	2.0870"-03	2.6735	1.4316	1.4000*+04	1 48.08.00
5.4000*-01	9.1139*+04	1.0000	F. 9776*+03	MM -43	1.7613	1.7697	40+" PLEB.5	1.4000*+0#
INFINITE	2.9350*+02	0.0000	6.9664"=04	0.0000*+00	0.02AU	8.32454-04	4.6153*+02	2.8748*+07

70030105	1.7000 9.4926*+04	1,0034	7.1443"+03	2.0570"-03	2.6178	1.3550	1.9231*+04	1.4231*+04
6.0500"-01 INFINITE	2.9010*402	0.000	1.0096"+04 7.4501"-04	U. 0000*+00	0.0210	1.7955	2.7999"+U2 4.6215"+U2	2.79054+02
				444441 141	*****	010,27 -04	410613 706	E1170140E
70030144	1.4970	1.0072	7.0582"+03	2,0230"-03	2,544/	1.3585	1.8697*+04	1.0697*+04
6.5000"-01	9.1874*+04	1,0000	1.0003"+04	NM	1.8026	1.7961	2./6/3"+02	1.6142*+02
INFINITE	2.4540*+05	0.0000	7.4580"-04	0.0000"+40	0.0297	8.8235**04	4.5803"+02	2.74/4*+02
70030201	1.9630	1.0151	3.6830"+03	2.3000"-03	3.0390	1.3818	1.2938*+04	1_2458*+04
4.2500*-01	9.4574"+04	1.0000	5.7635"+03	IIM -U	1.8178	1.0081	5.6463×+45	1.0507*+02
infinit	2.4370"+02	0.0000	4.75%6"-04	0.0000*+00	0.0361	3.040 1 - 04	5.04844+02	2,0041 *+47
70030202	1.047.0							
4.7000*-01	1.9830 9.9256*+04	1.0078	7.9597"+05 4.1978"+05	11h 5-5070=-03	3.1271 1.8242	1.3454	1.2500*+04	1.24004+04
INFILTIF	2.9840"+02	0.0000	5.2904"-04	0.00004+00	-0.0140	6.5518"=UA	5.1384*+02	2.84/4*+02
			••••	***************************************				4,0414 (01
70030203	1.4410	1.0041	4.8637*+01	2.04504-03	3.0677	1.4701	1.5550*+44	1.1450-00
5.1500*=01	7.6814"+04	1.0000	7.4777*+05	HM	1.7660	1.7736	2.0508"+07	1.00444+07
INFINITE	2,9720*+0%	0.0000	6.1537=-04	0.0000*+00	0.0174	/.4757**44	5.4664442	2.6342#+02
70030204	1.4020	0.0495	5.1879"+01	1.9980"-03	2.9622	1.3739	1.2995-+04	1.4945"+04
5.6000"-01	9.5570"+04	1.0000	0.0032"+03	1414	1.7944	1.7905	4.8244+45	1.67524402
INFINITE	2.9650*102	^. 0000	6.6486"=04	u.0000*+un	0.0007	U.2719""U"	5.0914"+02	C.4304#+02
70030205	1.9410	1.0202	5.6131"+03	1.42/0"-03	2.9913	1.3703	1.5428*+04	1.5448*+04
4.0500"-01	4.5870*+04	1,0000	0.7506*+03	HM	1.7960	1.7877	2.84274402	1.6692#+82
INFINITE	2.4270"+02	1.0009	7.0971"-04	0.0000*+00	0.039	8.0440*=04	5.0200"+02	2. /962 -+ 42
444 Tube.	4 5 5 6 11							
70010204 •-5000"-01	1.968U 9.543Y"+04		5.8200"+05	1.9100=01	3.0729	1.3683	1.2819*+04	1.2819#+04
INFINITE	20.020.02	1.0000	8.0453*+03 7.4115*-04	0.0000-00	1.7414	1.7007	2.79/3"+UP 5.0467"+UP	1.0759"+42
		******		******	.,.,.,	7,51,0	200001 101	ESTITE: TOP
70030301	7.1940	1.0169	3.2377*+03	4.170004	3.364/	1.3419	4,1055*+03	4,1055"+03
4,2500"=41	9.64557404	1.2020	*.*.345*+03	MM	1.0433	1.0106	4.6543.+45	1.4474.405
INFIGIT	2.43204402	0.000	4.0%05.4404	0.0000*+00	0.0404	0.3981*=0#	5.1705*+02	4.7824*+02
70030307	7.1490	1.0077	7.4194"+05	2.0450==07	3,4975	1.3944	4.0034*+03	4,4034*+43
4.7000"-01	9.6121"+04	1.0000	5.A052"+03	lin.	1.8025	1.7846	4.8457"+02	1.5129"+07
INFINITE	2.4740*+12	0.0000	5.40Al=+04	U.0000*+U0	0.0184	7.04044-07	5.4730"+47	E. 6258"+U2
70030303	2.2140	1 4030	1.4150*+03	1 00100-03	3.4413	1 3420		
3.1500*-01	9.7815*+04	1.0000	6.4914"+03	7"441062	1.4410	1.3620	£0+"₹445"+03	1.5048#+05 5.4444#+03
INFINTIF	2.4760*+02	0.0000	5.4462"-04	0.0000*+00	0.0445	/.0%.4=-04	5.4417"+02	4.654A*+U>

70030304	2.2390	6.448	1.7562"+05	1.9150*=03	3.4675	1.3603	6.1544****	6.79034+03
5.6000"-U1 INFINITE	4.4244*+04 2.4200*+02	0.0000	7.2962"+03	0-0000=+00 HM	1,7989	1.7845 8.0074*=04	2.7724*+02	1.46314402
gree grebtr.	#1-248 AUE	A 1 4 A A A	-14 3 d ti A . A ti #	9 6 9 W 9 W - 7 V W	0.0060	9.00/464	5.4300*+02	K.77/4"+UP
70030305	3.2140	1,0114	1.4994"+03	1.0750"-03	3,4834	1.3754	8.7651*+03	8. /451 *+43
0.0500*-01	7.6401"+04	1,0000	7.4219"+03	H	1.7965	1.7844	2.74204+02	1.4401"+07
INFIMILE	2.4464.445	1.0000	7.0556"-04	0.0000*+00	0.0481	4.501204	5.14/A*+u2	5.15104+05
70040306	2.17Ru	1.0064	5.0222*+03	1.7450*-03	3.4165	1.3854	4.3500*+03	4.3560*+03
6.5000-01	7.6650*+04	1.0000	8.4789"+03	HP	1.7474	1.7767	2.7595*+02	1.4650.403
Infigite.	2,6880"+02	0.000	7.4565"-04	U.Unun"+00	0.0531	9.8164"-U4	5.3161"+02	2.74184+02

7003-B-2								
CAT 7013	METER		BOUNDARY CON	DITIONS AND E	VALUATFU I	PATA. 51 UNIT	5.	
RUN X = RZ	MD # P00 T00#	TW/TR PW/PD# SW #	REDZD REDZD DZ	CF * CQ P12*	H42 H32 H12	05K H25K H15k	PW TWA UD	PD 1D 1R
70030401 4.2500#=01 INFIGTIF	2,4170 9,7219*+04 2,9950*+02	1,0230	5.6494.407 4.4460.407 5.6444.407	2.06(10=03 NM 0.0000=100	3.7489 1.8077 0.0953	1.3759 1.79/3 0.6733***07	0.4756#+V3 2.6923#+V2 5.6953#+V2	6,4756"+03 1,3812"+02 2,02/2"+03
70030402 4.7000*-01 INFTHTIF	7.41My 9.6/70*+N4 2.9630*+N2	1.0155 1.0000 0.0000	7.9/45*+05 4.9293*+05 *.6/73*+04	^*8080#+80 ^{II} N 1*8486#=93	3.88A2 1.79A/ 0.0543	1.5#30 1.7#59 7.6101*=u#	70+#4274.6 \$0+#4976.5 \$0+##606.6	₹U+#A2/4.0 5U+#B2A2.1 5U+#BUP\.5
70030404 1004-01 1101741	2.4590 9.8246*+04 2.4750*+02	1.7053 1.0000 0.000	%.1298*,n3 %.N1M1*+03 %.9824*=04	1,6410"-03 M 0,0000"+00	3.945/ 1.7974 0.0009	1.3814 1.7857 8.23124-04	2.0448402 2.0448403 6.35354403	/U+*5727.0 20+*4874.1 20+*₽004.5
70030404 3.6000*-01 Infinite	7.4560 9.7737"+04 2.9730"+02	1,0101 1,000 1,000	7.3405*+03 6.7751*+03 6.5374*=04	1_8240*=03 !# 0.0000*+00	3.90%u 1.7907 0.0649	1.4011 1.7749 9.1295*=u4	70+#041.0 70+#5\$78.5 70+#047.c	7u+*0u51.0 5u+*75u2.1 5u+*0Zou15
/0030404 6.0500***01 INFINITE	5'47\01.+45 6'45\01.+45 5'44\0	1.0077	%,4677*+03 %,4423*+03 %,6524*=04	0.0000#+V0 MM 1.802u##03	1.7464 0.0013	1.2643 1.7850 9.2336"=UH	0.1242*+03 2.1738*+02 5.0524*+02	6.1242*+U7 1.3264*+U2 4.7527*+U2
7003440A 6.5040#-41 1NFTLTIF	2,456y 7,748;"+04 2,858U"+02	1.0000	1,8642*+03 7,3565*+03 7,3600*+04	1,7240"=U3 HH U.UOU0"+UO	3,9420 1,7904 0,0551	1,3633 1,7838 1,0259*=07	6.1649#+U3 6.18u3*+u2 5.624##+U2	70+46401.0 50+*1\04.1 50+*405\.5
7003u5u1 4.23u0=-01 Infigite	2.6830 9.7734"+04 2.9310"+02	1,0157	2.2/28"+03 4.6975"+03 5.4083"-04	1.9290*=U3 44 0U+*8U000.0	4.3000 1.8035 0.8675	1.JAIA 1.7890 7.74074+48	4.3000×+03 2.7000×+03 2.7000×+03	4.2089#+U7 1.201##+U7 2.7%11#+U7
70030402 4.7000==01 INF[HI]E	2,6470 9,7661*+94 2,9330*+92	1.0206	2.37774+03 4.95974+03 5.76324+04	1.8470"-U3 11 ¹⁰ 0.0000"+00	4.44%u 1.7405 0.079u	1,4163 1.7714 8,4726****	7.4107*+05 4.2140*+05	4.2140*+U3 1.1448*+U2 2.742*+U2
7003U4U4 5.14U0"-01 Infikite	2,641U 4,6713"+04 2,942U"+02	1,0141 1,0000 0,0000	2.5829*+01 5.3454*+03 6.1523*-04	1.8040*-74 MM UA+40000*+0	4.4131 1.6008 0.0716	1,3654 1,7864 8,4750"-0#	2.78984+U2 4.28984+U3	4.2988"+U\ 1.2017"+U? 2.7610"+U?
7003050/1 5.6000*-01 Infinite	2,7079 9,9890*+04 2,7079	1.0100 1.0000 0.000	4'47U1Q1 \'U5a4.+Q7 \'4045.+Q3	0.0000"+00 NM 0.0000"+00	4.5550 1.7022 0.064	1.4152 1.452 1.454 1.4152	4.27/1*+u1 2.7963*+u2 5.4243*+u2	4.27/1*+03 1.1979*+07 2.7651*+07
70030404 6.0300#=01 1NF Th T F F	3.4140 4.60504+04 5.6140	1.0000	7,9405*+05 4,0485*+05 7,0485*+04	1.6410**U NM OU+*GOOO.	4.3909 1.7904 0.0759	1.5750 1.7774 1.0290*-03	4.2991"+UZ 5.4014"+UZ 5.4741"+UZ	4.2991"+07 4.2991"+07
70030504 6.5000#=81 1NFTUITE	2.6560 9.7142****4 2.6690***	1.0000	7.3741"+03 4.9424"+03 7.6936"-04	1.676n"-03 P -0000"+00	4.4243 1.7784 0.0764	1.420A 1.7604 1.1395"-03	2.74/5=+05 4.4649++03	4.4648*+U7 1.1884*+U7 2.6906*+U7
70030401 4.2500=-01 Infinite	5,4040±+U5 4.47¥9±+U4 5.4510	1,0158 1,000 0,000	1.8720"+05 4.2439"+05 5.5531"-04	1.8720*-U3 ,,,M U.0000*+U0	4.9725 1.7900 0.1125	1.7605 1.7605 8.5423****	6.1284+03 6.0134+03 7.01/44+03	3.04/4*+03 7.0452*+03 2.7696*+02
70030602 4.7000*-u1 Infihite	2.8980 9.8599*+04 2.9670*+02	1.0224	6.2414°-04 6.7414°-04 7.1364°+03	0-0000m+00 Mm 1-1450m-03	0.0446 4.4047	4.2115#=04 1.1404 1.7575	5,1303*+03 6,1303*+03 6,1140*+02	70+"7071.2 50+"5\01.1 50+"Ac77.5
70030603 3.1500=-01 Infinite	2.9030 9.9133*+04 2.9670*+02	1.0000 0.0000	7.7238"403 5.0218"+03 6.5334"+04	0.0000#+00 Mm 1.1070#+03	4.8487 1.7933 0.0425	1.3758 1.7779 1.0042*=03	40+*P141.6 20+*P141.6 20+*P111.6	3.1234"+07 1.104"+02 5.7751"+02
70030604 3.0000***01 Infinite	2.9020 1.0074*+05 2.9570*+02	1.0514	7.4600*+03 7.6037*>05 7.1382*#04	1.6610"-U3 MM 0.90000-U3	4.9320 1.7799 0.0957	1.4005 1.7626 1.1160**03	3.1794*+U3 2.6594*+U2 6.1068*+U2	3.1745*+03 1.1016*+02 2.7640*+02
70030605 6.0300=-01 Infthiff	2.4344"+04 2.4344"+04 2.4344"	1.0144	7.4442*+03 5.4145*+03 7.1858*+04	1.6410#-93 M 0.0000#+90	5.0710 1.7783 0.1042	1,4553 1,7525 1,15214-03	2,4568*+03 2,7746*+02 6,0911*+02	2.4408*+03 2.4414407 4.4800*+02
7007060A 6.5000"-01 Infinite	2.6920*+04 2.6920*+02	1.0276	7.8109"+03 6.3574"+03 8.0846"-04	0.44000+00 1.9450+00 1.9450	5.2417 1.7537 0.0489	1.0123 1.7122 1.2857#=ul	3,1427*+03 2,7788*+02 6,0237*+02	5.1427*+03 1.0867*+02 2.7043*+02

RUN	MD *	TW/TR	BFD5M	LF +	HIS	H12K	PW	PD
X +	P00	PW/PD4	RED2D	CO	HŠÃ	H32K	TWA	10
HZ	TODA	3W #	02	P12*	H42	75K	UD	TŘ
70030701	1.6820	0,9891	6.9721*+03	2.0940"=03	2.6229	1.4370	1.9111"+04	1.9111"+04
0.0500"-01	9.1807"+04	1.0000	9.5940"+03	NM	1.7777	1.7656	3.08004+02	2.0685"+02
INFTHITE	3.2349"+02	0.0000	A.4427"-04	0.0000*+00	0.0580	1.0039"-03	4.6503*+02	5.1172"+02
70030702	1.6980	0.9435	5.3046*+05	2,0990"-43	2.4970	1.4054	1.0754"+04	1.673/1*+0/1
6.0500"-01	4.5144.+04	1.0000	6.9672*+03	MW.	1.7825	1.7733	7.05004+05	2.0741*+02
INFINIIF	4.2161"+02	0.0000	*.6631*-04	0.0000*+00	0.1135	1.0180*-03	5.56/2"+62	4.0557*+02
70030801	1.9640	0.9910	4.4819*+03	2.0410"-03	3,0034	1,4081	1.2354*+94	1.2334*+04
6.0500"-01	9.1255"+04	1.0000	7.4314"+03	NM	1.7888	1.7706	3.0636*+02	1.6260"+02
INFINITE	3.5383.+05	0.0000	7.3449"-04	0.0000"+40	0.0/51	4.19514-04	5.3241*+02	7-04164+05
70030802	1.9840	0.9335	4.3461"+03	2.0560"-03	2.8803	1.3847	1.2382*+04	1.43827+04
6.0500"-01	9.4502"+04	1.0000	6.5557,+07	NM	1.7669	1.7768	3.7717"+02	5.7945.405
INFINITE	4.5347.+05	0.0000	M.5764"-04	0.0000*+40	0.1317	1.0585"-03	6.1228*+u2	4.0404*+02
70030401	2.1950	0.9880	4.1536*+03	1.4780 43	3.3321	1.3713	8./341*+03	6.7341*+03
6.0500"-01	4.2665"+04	1.0000	6.8716*+03	MM	1.7972	1.7857	7.0513.+05	1.6411"+02
INFINITE	3.8582.+05	0.0000	7.4016"-04	∪. ეიყი*+⊍⊓	0,0914	4.0005#=04	5.63/9*+42	3.0581"+02
70030902	2.1640	0.9238	3.4531"+03	1.4450"-03	3.2370	1.4443	9,4558*+03	9.4538*+03
6.0500 01	9.5549*+04	1.0000	5.4247"+03	NM	1.7690	1.7546	3.7136"+02	5.1424.+05
INFINITE	4.2329*+02	0.0000	8.6710**04	0.0000"+40	0.1205	1.1833**03	6.4146*+02	4.0204*+03
70031001	2.4380	0.4688	1,45674+03	1,8620"-03	3.8585	1.4403	6.0514*+03	6.0514"+0T
6.0500"-01	9.3870"+04	1.0000	A. 2731*+03	NM.	1.7766	1.7577	3.01404+05	1.4700*+07
INFINITE	3.5300.+05	0.0000	7.5766"-04	U.00U0"+U0	0.1155	1.0514"-07	5.43464+02	7.0441.+05
70031002	2.4440	0,9187	2.9832"+03	1.9750*-03	3.7450	1.4991	6.2046*+03	6.2046*+03
6.0500"-01	9.71575+04	1.0000	4.9713"+03	WM	1.7639	1.7413	3.6348*+02	1.41104+0%
INFINITE	4.1940*+02	0,0000	8.3363"=OH	0.0000*+00	0.1710	1.10824-03	6.7740*+02	1.9406*+02
70031101	2,6840	0,9896	2.7506*+03	1.7850"-43	4.3232	1.4418	4.1940*+03	4.1949*+03
4.0500"-01	9.5294"+04	1,0000	5,4951"+03	1114	1.7774	1.7500	5.0412.+05	1.3194.+65
INFINIT	3.5500.+05	0.0000	7.4261"-04	0.0000*+00	0.1442	1.0890*=03	0.1816#+05	7.0554.405
70031102	2.7550	0.9105	2.1640"+03	1.9920*=03	4.1461	1.4121	3.8646*+03	1.8646*+03
6.05U0"-01	9,790-4104	1.0000	4.0410"+03	NM	1.7798	1.7628	3.5841*+02	1.6697*+02
INFINITE	4,2042"+02	0,0000	A.0657"=04	0.0000*+06	0.2340	1.16244-03	7.13/5*+02	5.4406*+02
70031201	2.9050	0,4967	2,4697"+03	1.7220"-03	4.7274	1.4055	3.0625*+03	3.0425*+05
4.0500"-01	9.7493"+04	1.0000	5.4216"+03	NM	1.7640	1.7657	2.9537*+07	1.1796"+02
INFINITE	3.1706*+02	0.0000	7.4009"-04	0.0000*+00	0,1614	1.2087"-03	6.3259*+u2	5.4674.+05
70031202	2.6630	0.8960	2.1634"+03	1.4060*-03	4.3233	1.4304	3.2951*+93	3.4951"+03
4.05004-01	9.8420"+04	1.0000	4.1284*+03	MW	1.7777	1.7555	3.5169*+02	1.5899*+07
INFINITE	4.1964"+02	0.0000	8.6495"-04	0.0000*+00	0.2647	1.2745*-03	7.2380*+02	1.4253*+02

POD CALCULATED FROM TOD, RUND (AUTHOR)

7003-C	-1							
70030	401 MEI	ER	PROFTLE	TABULATION	25	POINTS, DEI	TA AT PUI	NT 25
1	Y	P12/P	P/PD	T0/100	и/мь	UVUD	TAID	RHG/RHOU&U/UD
i	0.0000"+00	1.0000"+00	NM	0.95487	0.00000	0.0000	2.07052	0.00000
Ž	2.8000"-04	2.2077*+00	NM	0.96175	0.46693	0.00197	1.66205	0.36218
3	3.0000*-04	2.2184"+00	ИM	0.96286	0.46854	0.00398	1.66164	0.36348
4	3.2000"-04	2.2709"+00	NM	15596.0	0.47652	0.61191	1.64895	0.57109
5	3.5000*-04	2.3440"+00	NW .	0.96300	0.48/45	0.62315	1.63445	0.38126
b	4.0000"-04	2.4291"+00	IVM	0.96307	0.49955	0.63520	1.61688	0.39286
7	5,0000"-04	2.5760"+00	NM	0.96328	0.51984	0.65499	1.58752	0.41256
ė	7.5000"-04	2.8825*+00	NM	0.96371	0.55912	0.09174	1.53061	0.45193
ğ	1,0000"-03	3.1563"+00	NM	0.96653	0.59174	0.72160	1.44731	0.48521
10	1,3000"-03	3.4402*+00	NM	0.97047	0.62355	0.75008	1.44700	0.51836
ii	1.6000==03	3.4094*+00	NM	0.97396	0.66243	0.7A271	1.39613	0.56063
iż	1.9000*-03	4.0300*400	NM	0.97785	0.68454	0.80129	1.37018	U.584Au
13	2.200003	4.3250"+00	NM	0.98123	0.71302	0.82378	1.33481	0.61715
14	2.5000"-03	4.6204*+00	Ne	0.98342	0.74028	0.84400	1.30003	U.64926
15	3.0000"-03	5,1362*+00	NM	0.98889	U.78562	0.87690	1.24586	0.70565
16	3.5000"-03	5.6324*+00	HM.	0.99340	0.82662	0.90481	1.19755	0.75555
17		7.0364 TIV	NM	0.44706	0.86267	0.92770	1.15646	91508.0
	4.0000*-03	6.08537+00		0.99719		0.94745	111774	0.84765
18	4.5000*-03	6.4267*+00	1114		0.89619			
19	5.0000"-03	6.9067"+00	NM	1.00023	0.92406	0.96285	1.08570	0.88684
20	5.5000"-03	7.2274 +00	ИW	1.00159	0.94658	0.97490	1.06072	0.91909
\$1	6.0000"-03	7.496v"+00	ΗM	1.00146	0.96567	0.98444	1.03925	0.94726
55	6.5000"-03	7.6444*+00	NM	1,00143	0.97567	0.95936	1.02784	0.96256
57	7.0000"-03	7.8019#+00	NM	1.00169	0.94657	0.99458	1.01630	0.97865
24	7.5000"-03		Им	1.00088	0.99364	0.99749	1.00777	0.98490
D 25	8.0000"-03	8.0020*+00	HM	1.00000	1.00000	1.00000	1.00000	1.0000
INPUT	VARIABLES	A*II\IIO*!I\UD	ASSUME PE	PD				
70030	402 MCI	LR	PROFILE	TABULATION	28	POINTS, DE	LTA AT PUI	NT ZE
1	Y	P12/P	6/60	T0/100	HZHD	U/UN	1/10	8H0/8H0D*U/UD
1	0.0000*+00	1.0000"+00	NM	0.45624	0.0000	0.0000	2.07442	0.0000
5	2.6000"-04	2,1163"+00	[sM	0.46097	0.45225	0.56659	1.64432	0.34868
3	3.0000"-04	2.1163"+00	NM	0.96097	0.45225	0.58059	1.08632	0.34868
4	1.2000"-04	7.1570*+00	1444	0.96198	0.45680	U.59379	1.67457	0.35459
5	1.5000 04	2.2304*+06	NM	0.96179	0.47019	0.60541	1.65787	0.36517
í	4.0000"-04	2.3030"+00	NM NM	0.96184	0.46111	0.01052	1.64210	0.37544
7	5.0000=-04	2.4177"+00	NM	0.96234	0.50055	0.63694	1-01461	0.34393
6	1.5000*=04		NM	0.96461	0.53402	0.06897	1.56476	0.42630
					0.56398	0.09720	1.52614	0.45672
10	1,0000*=03		NM	0.96646		0.77533	1.48870	U.48/35
	1.3000***03		ИW	0.96464	0.59455			
11	1.6000"-03	3.4524*+00	ИM	0.47539	0.62461	0.75215	1,45008	0.51670
15	1.4000"-03		WM	0.97/12	U.64207	0.77588	1.41578	0.54872
13	2.2000"-03		Win	0.98008	0.67933	0.79830	1.38003	U.5789Y
14	2.5000"-03	4.55.05.+00	liw.	0.48462	0.70358	0.81762	1.35044	0.60544

_						_			
1	0.000n*+00	1.0000"+00	NM	0.45624	0.0000	0.0000	2.07442	0.00000	
ž		5.11630+00	M	0.46097	0.45225	0.56659	1.68232	0.34868	
7	3.0000"-04	2.1163"+00	NM	0.96097	0.45225	0.55059	1,08434	0.34868	
- ŭ	1.2000"-04	7.1570"+00	1444	0.96198	0.45680	U.59379	1.67457	0.35459	
- 3		2.2304*+06	IIM	0.96179	0.47019	0.60541	1.65767	0.36517	
:	4.0000"-04	2.3030"+00	ρM	0.96184	0.46111	0.61652	1.64210	0.37544	
ÿ	5.0000"-04	2.4177"+00	NM	0.96234	0.50055	0.63604	1-01461	0.34393	
					0.53402	0.06897	1.56476	0.42630	
ð		2,685/*+00	NM	0.96461					
9		5.45414+00	NM	0.96646	0.56598	0.09720	1.52614	0.45624	
10		3.18294+00	NM	0.96964	0.59455	0.72535	1.48670	0.48/35	
11		3.4524"+00	NM	0.47539	0.62461	0.75215	1,45008	0.51670	
15		3.7113"+00	ИM	0.97712	0.64207	0.77588	1.41578	0.24805	
13		3.9802"+00	NM	U,98008	U.67933	0.79830	1.30007	U.57894	
14	2.5000"-03	4.2292*+00	li.w	4.48482	0.70358	0.81762	1.35044	U.60544	
15	3.0000"-03	4.6945*+00	NM	0.98854	U.74067	0.35075	1.29872	U.65532	
16		5.1509*+00	NM	0.49235	0.74055	U. 37908	1.24411	U./0370	
17		5.6[704+00	į M	0.99720	0.82523	0,90561	1.20477	0./5199	
18		4.0724"+00	ŅΜ	0.49918	U.66131	0.92403	1.16095	0.79939	
19		6.4765"+00	NM	1.00214	U.89207	0.94665	1-15000	0.84065	
20		6.4701*+00	NM	1.00248	0.92103	0.96236	1.09176	0.88148	
51		7.2223*+00	NM	1.00369	0.94019	U.97588	1.06374	0.91/40	
22			NM	1.00307	V.46352	0.98418	1.04335	0.94530	
23		7.6780*+00	IMM	1.00310	0.97775	0.99109	1.02747	0.96459	
24		7.8229*+00	(dM	1.00238	0.98757	0.49540	1.01590	0.97981	
ãs			NM	1.00167	0.99230	0.49730	1.00493	0.98749	
50		7.9467"+00	N₩	1.00000	U.995A4	0.99850	1.00524	0.49754	
					0.99930			0.99850	
27			MM	1.00085		1.00010	1.00166		
D 28	9.5000*=03	A.AUA3"+OU	11W	1.0000	1.00000	1.00000	1-0000	1.00000	
INPU	Y VARIABLES	Y,070L,.1780	3MUKEA	P#PD					

70030	uos meti	_R	PROFIL	E TABULATION	: د?	POINTS, UFL	TA AT PUT	NT 28
1	Y	P12/P	P/PD	T0/100	NAZE	ս/նր	1/10	RHOZRHOU+UZUĎ
i	U_UOU0*+00	1_000,"+00	HM	U.94775	0.0000	0.00000	4.07534	u. uouou
2	2.80007-04	2.1645*+00	NM	0.95957	0.45052	0.50246	1.04350	0.35191
ż	1.0000*-04	2.1894"+00	Med	U.96046	0.45992	0.50610	1.48679	U.354#1
4	1.2000"-04	2.2323*+00	NM	0.96012	9.46645	0.00278	1.67614	0.36092
5	5.5000*-04	2,2451"+00	NM	0.46021	0.47435	6.610A8	1.65864	U.3683u
6	4.0000"-04	2.1584"+00	ИW	0.96146	0.45504	6.05509	1.64495	U.37818
7	5.0000"-04	2.4655"+00	Net	U.96137	U.50285	0.03969	1.01631	U.3952u
8	7.5000"-04	2.74RU#+00	Uh	0.96439	V.53748	0.073A0	1.57162	0.42873
9	1.0000"-03	2.9705"+00	HW	0.96634	0.56470	0.00941	1.53403	U.455°3
10	1.3000"-33	3,2234"+00	HH	0.96911	0.59402	4.72622	1.40444	0.48586
11	1.6000*-03		1154	0.47262	0.62304	0.75203	1.45693	U.51617
12	1.9000"-03	3.6996"+00	Nμ	0.97628	0.64515	6.77143	1.42474	U.53454
13	4.2000"-03	3,4304"+00	14 sv	0.47904	0.06857	0.70004	1,39466	0.56513
14	2.5000=03	4.1627*+00	HW	0.98157	0.69118	0.80914	1.57045	v.59042
15	5.0000°-03	4.58497+00	[4]4	0.98701	0.73041	U_03985	1,57212	u.u3523
16	3.5000"-03	4.48484100	14w	6.99163	0.76564	0.46590	1.27974	0.07693
17	4.0000"-03	5.428/*+00	1984	0.99527	0.80200	U.49167	1,23346	0.72290
18	4.5000"-03	5.8508*+00	Lī w	0.99481	0.83069	u,91397	1.19376	U.76593
19	5.0000"-03	6.2724#+00	14 M	1.00156	0.86911	0.93400	1.15510	0.80860
20	5.5000"-03	A.6836"+00	1144	1.00357	0.89463	U.95169	1.11455	0.45024
51	6.0000*=03	7.05%2"+00	HW	1.00464	0.92615	0.96639	1.48674	ひ、おおりちゃ
55	6,5000"=03	7.379/5+00	ИW	1.90472	0.44896	U 47794	1.06212	0.42040
23	7.00004-03	7.675/*+00	ИW	1.00745	0.96418	V.9875U	1.03610	りゃみよしらん
24	7.5000"-03	7.9282"+00	MM	1.00327	U.9Mun9	U.4952U	1.01656	U.97797
25	8.0000"-03	A.066v"+00	МM	1.00241	0.49520	0.4440	1.00766	0.99141
26	8.5000"-03	8.0965"+00	N ^A 1	1.00077	0.44/20	4.4991 0	1.00345	0,99530
27	9.0000"-03	A.1170"+00	NM	1.00088	0.99060	U.999AU	1.00447	0.99700
D 58	9.5000"-03	8.1396*+00	Им	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	YATIATIDATIAMD	ASSUME	PEPD				

700304	04 METER	•	PHOFILE	TABULATION	20	POIPTS, UEL	TA AT PUI	NT 46
1	Y	P18/P	6760	TOITHU	MZMD	U/Ub	1/10	RHO/RHOU&U/UD
1	0.0000*+00	1.0000*+00	HM	0.94831	0.00000	0.00000	2.09235	0.0000
2	2.8000"-04	2,0960"+00	HW.	0.95950	0.44215	0.57869	1.71303	0.53782
3	3.0000=-04	2.1513*+00	MM	U.95459	0.45078	U.58751	1.69863	0.34567
4	3.2000"-04	2.1940*+00	NM	u.95457	0.45750	0.594A1	1.09075	0.541WA
5	3.5000"-04	2.2492"+00	Иw	0.95961	0.46575	0.00332	1.07810	0.59952
b	4.0000"-04	2.3250"+00	13W	0.95981	U.47687	0.01474	1.06171	0.36902
7	5.0000"-04	2.4553"+00	MW	0.94913	0.40523	U. 492A4	1.03303	0.38/54
8	7.5000"-04	2.7052"400	NM	0.96092	0.52025	u. w6534	1.58619	0.41945
9	1.0000"-03	5.4557.+00	NM	0.46555	0.55504	0.67453	1.54779	0.44614
10	1.5000"-03	3.1510*+00	NM	0.96461	4.55174	0.71516	1.51131	0.47321
11	1.6000"-03	3.4746*+04	MM	0.96767	0.00702	0.73794	1.47603	0.49930
12	1.9000*-03	3.4961"+00	NM	0.97032	11070.0	0.75811	1.44/56	V.52371
1,3	2.2000 -03	3.A131"+00	MM	0.97580	0.05278	U.17725	1.41981	0.54/42
14	2.5000"-03	4.0310*+00	NM	0.97648	4.07576	0./9495	1.39212	0.57104
15	5.0000*-03	4.400. 400	1494	0.98197	0.70858	0.82309	1.34932	U.610Au
16	1.5000"-01	4.7693"+00	MM	0.44638	0.74170	0.84832	1.30617	0.04847
17	4.0000"-01	5.1501*+00	i4M	U_48448	0.77431	0.07175	1.26751	U.6A776
18	4.5000"-03	5.4415*+00	tape	0.40341	0.00042	0.89377	1.27637	0.72761
15	5.0000*-03	5.9426"+00	MM	0.99720	0.83003	0.91460	1.19107	U.767#8
20	5.5000"-03	6.3345"+00	HM	0.47911	0.86774	0.93262	1.15513	0.80/37
51	6.0000*-03	6.7250*+90	1944	1.00108	U.89044	0.94934	1.17151	0.84648
2%	6.50UN*-U3	7.0844*+00	1407	1.00294	0.47193	0.46360	1.04258	0.88200
23	/.0000*=03	7.4634"+00	Nii	1.00311	0.94812	0.47697	1.06179	0.92012
24	1.5000"=03	7.4004*+00	Mar	1.00333	0.97080	0.98809	1.09545	U_953A1
25	8.0000"-03	8.0177*+00	NM	1.00243	0.98515	0.90439	1.01876	0.97599
26	8.5000*-03	6.1370*+00	Ner	1.00160	0.90248	0.99760	1,00933	U.98836
27	4.000003	A.1809"+00	HM	1.00003	0.99574	0.99850	1.00546	0.94704
0 28	9.5000*-03	M.2461"+0U	ijМ	1.0000	1.00000	1,0000	1.00000	1.0000

INPUT VAPIABLES Y, U/UD, H/HD ASSUML P=PD

1 2	v.0000"+00 ×.8000"+00	P72/P	P/PD	TO/TOD	MAMD		_	
Ž	2.8000"=04	1 000. ***			117FIL'	UNIV	1/1/	BHU/BHUP*A\DD
			NM	0,95057	0.00000	0.00000	2.08800	0.00000
		2.0836"+00	Nw	0.76154	0.44170	0.57810	1.71270	0.33764
3	5.0000"-04	2,1052"+00	[494	0.96152	0.44530	U.SRIRU	1.70/04	U.340A5
4	5,2000"-U4	2.1480"+00	[¿M	0.05233	0.45220	U.58930	1.04674	0.34700
5	4.5000"-04	2,2020"+00	(4M	0.96250	0.46060	U.5931J	1.05010	0.35471
b	4.0000, 4-04	2.3009"+00	MM	0.96257	0.47530	20 د 1 ن ، ن	1.06444	0.36841
7	5.0000"-04	2,394U"+NU	HW	0.96324	0.48940	0.02760	1.64452	0.36163
8	1_5000"-04	2.6600"400	110	0.96514	0.52460	0.66250	1.59483	0.41540
9	1,0000"-03	7.866. +00	MM	U.96696	0.55050	0.uA730	1.55876	0.44093
10	1.1000"-03	3.0945"+00	N۴	0.96901	0.57760	0.71240	1.52172	0.46831
1.1	1.6000"-03	3,359?"+NU	(4M	0.47149	0.60700	U.7387U	1.48101	U.49878
16	1.9000*-03	3,5183*+00	Ям	0-7411	0.62450	U.7543u	1.45889	0.51704
13	2.2000"-03	3.7142"+00	٧÷	4.97675	0.64490	0.77190	1.43264	U.538AU
14	2.5000*-03	3.9319"+00	Nw	0.97925	0.66680	0.79010	1.40402	0.56274
15	5.0000"-03	4,2900"+00	(MM	0.98241	0.70130	0.01760	1.35917	0.60154
16	1.5000*-03	4.6494"+00	ИM	0.98725	0.73410	0.84290	1.31636	u.63934
17	4.0000*-03	5.0.)77"+00	Mm	0.99178	0.76540	0.86020	1.28074	0.07635
15	4.5000"-05	7 . 3996*+00	NM	0.99435	0.19820	0.88860	1.23934	0.71700
19	5.0000"003	5.8025"+00	Nh	0.99791	V.83050	0.91010	1.20048	0.757Au
20	5.5000*-43	6.1008"+00	NM	1.00058	0.85820	U.9276U	1.16827	0.79399
21	h_U000*-03	6.6281"+90	NM	1.00241	U.8730U	4.94790	1.12674	0.84128
52	6.5000"-03	7.0095"+00	NM	1.00313	0.42040	0.96280	1.04450	0.87987
53	7.0000"-03	7.4110"+00	Иw	1.00413	0.94840	0.97750	1.06231	0.9201;
24	1.5000*-03	7.683, +00	Nh	1,00342	0.96690	0.98620	1.04032	0.44798
25	B.00000*=03	7,9332"+00	NM	1.00256	0.98360	0.99370	1.02064	0.97560
56	6.5000"-03	8.0034"+00	NM	1.00175	0.99220	0.99730	1.01031	0.98/13
27	9,0000"-03	R.1509*+00	NW	1.00092	0.49790	0.99950	1.00351	U.9963U
0 24	9.5000*-03	5.1831"+00	ИM	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,UZUD, FIZMO	ASSUME PE	PD				

700304	106 METER	ł	PROFILE	TABULATION	31	POINTS, UTI	YA AT PUI	NT .51
I	Y	PT2/P	P/PD	DOT/OF	MZMD	U/UD	TZID	常日の/常日のシャリノリカ
1	0.0000*+00	1,0000*+00	NM	0.96402	0.00000	0.0000	4.12700	u_0000u
2	2.8000"-04	2,0866"+00	МW	0.95500	0.44050	U.5786U	1.72530	0.33530
5	5.0000 " →04	2.0972"+00	NM	U. 76431	0.44220	u.5402u	1.72154	0.33702
4	5.2000=-04	2.1400"+00	Nw	0.96434	0.44910	0.58750	1.71131	0.34530
5	5000*-04	2.1941"+00	NM	0.96471	0.45740	0.59630	1.49456	0.35085
ŧ	4,0000"-04	2.2699"+00	ΙŧΜ	0.96383	0.46880	U.69780	1.04092	U.36159
7	5.0000"-04	2.3843"+00	M	0.96345	U.4859U	0.62500	1.45450	0.37776
8	7.5000*-04	2.6140"+00	HM.	0.96435	0.51650	0.05530	1.60968	0.40710
9	1.0000*-03	2.7972*+00	MM	0.96550	0.53980	U.6777U	1.57619	0.42996
10	1.3000*-03	3.0019"+00	Им	0.96788	0.56450	0.70110	1.54252	0.45451
11	1.6000"-03	3,2601"+00	NM	0.97030	0.59400	0.72790	1.50166	0.48475
12	1.9000*-03	3.3897"+00	NM	0.97220	0.60820	0.74070	1.48317	0.44940
13	2.2000*-03	3.5730"+00	NM	0.97431	0.62770	0.75770	1.45710	0.52060
14	2.5000**03	3.7660"+00	NM	0.97750	0.64760	0.77500	1.43215	0.54114
15	3.0000"-03	4.0676*+00	NM	0.98078	0.67730	U.79940	1.39105	0.57385
16	3.5000"-03	4.4014"+00	M	0.48490	0.70870	0.82440	1.35317	0.60924
17	4.0000*-03	7.7468*+00	NM	0.98908	0.73970	0.84810	1.31457	0.64516
16	4.5000"-03	5.0798"+00	NM	0.99234	0.76840	0.86890	1.27869	0.67952
19	5.0000*-03	7.4360*+00	NM	0.99543	0.79790	0.88930	1.24222	0.71589
₹0	5.5000"-03	5.7805"+00	HM	0.99861	0.82540	0.90770	1.20936	0.75056
21	0.0000"-03	6.1894"+00	NM	1.00092	0.65690	0.92730	1.17100	0.79184
22	6.5000"-03	6.4905"+00	NM	1.00322	0.87930	0.94100	1.14576	0.85195
23	1.0000"-03	6.8900*+00	NM	1.00463	0.90820	0.95730	1.11145	0.86162
24	7.5000"-03	7.2861"+00	ИM	1.00503	0.93610	0.97190	1.07795	U.90162
25	8.0000"=03	7.6211"+00	NM	1.00555	0.95880	0.98340	1.05197	0.93482
56	8.5000"-03	7.8904"+00	NM	1.00408	0.97680	0.99130	1.02941	0.96251
žĩ	9.0000"-03	8.0521"+00	NM	1.00336	0.98740	U.99590	1.01729	0.97897
ŠŠ	9.5000"-03	8.138u"+0U	[éM	1.00259	0.99300	0.99610	1.01030	0.98743
29	1.0000"-02	8.1920"+00	NM	1.00179	0.99650	0.99930	1.00563	0.99571
30	1.0500"-02	8.2130"+00	NM	1.00091	0.99790	0.99950	1.00371	0.99030
0 31	1.1000"-02	8.2461"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, N/MD ASSUME PMPD

70030	901 METE	,R	PROFILE	TABULATION	39	POINTS, DE	LTA AT PUI	NT 50
1	Y	P12/P	P/P0	COTYOT	MZiMD	uzun	1/10	RH0/PH00+U/UD
1	0_0000*+00	1.0000-+00	NM	0.93756	0.00000	u_0000v	1.84100	0.00002
2	2.8000"=04	1,7288*+00	ИМ	0.95390	0,46287	0.57674	1.55256	u.37148
3	5.0000*=04	1.9243*+00	1134	0.95590	0.46287	4.57674	1.55250	0.37148
4	5.2000"-04	1.9010"+00	Ин	0.95470	U.46925	U.58355	1.54651	0.37735
5	3.5000*-04	2.1598*+00	NM	0.95480	0.48428	88890.0	1.52925	0.59165
6	4.0000*-04	5.1157.400	NH	U.95560	0.49749	0.61230	1.51500	0.46415
7	5.0000*-04	2.23%;"+00	Им	0.95650	0.51845		1.49160	0.42448
8	7.5000"-04	2.47227+00	MM	0.95783	0.5567≥		1.44822	0.46261
9	1.0000"-03	2.6170*+00	MM	0.96150	0.57859		1.42752	0.48426
10	1.3000*=03	2.4270"100	Mh	0.96400	0.60820	U.71847	1.39550	0.51465
11	1.0000"=03	3.0283"+00	[_* M	0.9665 0	0.63508		1.36667	9.54325
12	1.9000*-03	3.1443"+00	M۳	0.96890	0.05057	0.75028	1.35139	v.55963
15	2.2000"-03	3.3234*+00	NM	0.97130	0,67244	0.77504	1.32843	0.58342
14	2.5000"-03	3.4856"+00	٧w	0.97570	0.69203	U.79153	1.30624	0.605/3
15	5.0000 - 03	3.780/*+00	NM	0.97930	0,72620	0.02000	1.27503	0.64312
16	5.5000 -03	4.0446*+00	Nw	0.98260	0.75535	0.84281	1.2449/	0.0769/
17	4.0000"-03	4.2890"+00	NM	U.98660	0.78132	0.86545	1.21977	0.70744
15	4,5000*-03	4.6010*+00	NM	U.9899¢	0.81321	0.88607	1.15722	0.74634
19	5.0000"-03	4.5552"+00	\$1th	0.99310	0.83827	0.98391	1.16274	0.77740
20	5.5000*=03	5.171,1400	HM	0.99630	0.86834		1.13308	U. 01575
51	6.0000"-03	5.4677*+40	ИW	0.99880	0.89567	0.94201	1.10616	0.85161
55	6.5000"-03	5.6009"+00	₩M	0.99460	0.91298		1.08852	U.87508
53	7.0000*-03	5.4101*+00	NM	1.00100	0.93485		1.06700	0.90502
24	7.5000*-03	6.1273*+00	MM	1.00100	U.95353		1.04767	U.93158
25	8.U000"-U 3	6.3V07"+0U	٧ ١	1.00100	0.96511	U_4838u	1,03241	0.95261
26	8.5000"-03	6.4708*+00	19pa	1.00100	0.46557		1.01860	0.97322
27	9.0000"-03	6.54R4#+00	NM	1.00100	0,98861	U.99465	1.01225	0.98261
95	9.5000"-01	6.6042*+00	NM	1.00100	U.99317	0.99700	1.00774	0.98935
29	1.0000*-02	6.6540*+00	ŊМ	1.00000	0.99727	0.99861	1.00249	0.99593
D 30	1.0500"-02	0.6885-+00	[424	1.00000	1.0000	1.00000	1.00000	1.40000
INPUT	VARIABLES	Y.M. TO/10b	ASSUME PEP	o.				

INPUT VARIABLES Y.M. TO/100 ASSIME PEPD

700304	ne METER	•	PROFILE	TABULATION	31	POINTS, DEL	TA AT PUI	nT - 51
1	Y	PT2/P	F/PD	TUITOU	MVHD	0/00	1/10	RHO/PHOU±U/UD
1	u_0000#+00	1.0000*+00	Nw	0.87732	0.00000	0.00000	1.69900	0.0000
2	3.0000"-04	1.6895"+00	144.	0.42620	0.41543	0.51622	1.54406	U.33432
3	1.2000"-04	1.7113*+00	NM	0.42630	0.42089	0.52207	1.57858	0.33932
4	5.5000**0#	1.7333"+00	βM	0.92850	0.42625	0.52827	1.5359/	U.14391
5	4.0000"-04	1,7948"+00	ИM	0.93010	0.44159	0.34497	1.52305	U.357A2
ò	5.0000"-04	1.9511"+00	ИМ	U.93160	0.46446	U.5746U	1.49484	0.28438
7	/.5000"-04	2.1320*+00	NM	0.93560	0.50832	0.61396	1.45883	0.42086
8	1.0000"-03	2.3245*+40	1114	0.93900	0.54115	0.64643	1.42708	0.45298
9	1.3000*-03	2.4842*+00	NM	0.94230	0.56054	0.67107	1.40306	U.47829
10	1.6000"+03	2.8047"+00	NM	0.94710	0.61368	0_71458	1.35589	U.52702
11	1.7000*+03	2.7544"+00	W	0.94960	0.62061	0.72147	1.35146	U.53385
12	2.2000**03	2.49AU*+00	NM	0.95440	0.02064	0.72842	1.35133	U.53904
1.3	2.5000"-03	3.1269"+00	NP	0.95770	0.65712	0.75514	1.32049	U.57182
14	3.0000*+03	3.4095"+00	NM	0.96290	0.69270	U.7A57U	1.28655	0.61070
19	4.5000 -03	3.5979"+00	NH	0.96800	0.71534	0.80528	1.26776	0.63545
16	v.0000=-03	3.8702*+00	NM	0.97260	0.74677	0.83065	1.23724	0.07135
17	4,5000"-03	4.1445"+00	[§M	0.97630	0.77720	0.85497	1.20994	0.70862
1.4	5_0000=-03	4.4740"+00	NM	0.98230	0.81192	0.89053	1.17014	0.74866
19	5.5000*-03	4.7155*+00	NM	0.98560	0.83641	0.09818	1.15314	0.77890
ŽÚ	6.0000"-03	5.0260"+00	MM	0.48950	19468.0	0.91935	1.12464	0.01746
Σĭ	0.5000'-03	5.21/17/+00	HW	0.99270	0.85494	0.93193	1.10903	0.84031
22	/-0000"-03	5.4373"+00	NМ	0.99480	0.40573	0.94537	1.08946	0.86775
23	7.5400*-03	4.7472"+00	NM	0.99680	0.93022	0.96054	1.06625	0.90000
24	6.0000*-03	5.9101"+00	ijМ	0.99820	0.44824	9.97137	1.04937	0.92567
25	1.5000"-03	6.089."+00	HM	0.99900	0.96349	0.98015	1.03488	0.94712
26	9.0000**03	4.19214+10	ĤΝ	0.99970	0.97274	0.98549	1.02640	0.96014
ŽŽ	9.5000*=03	6.3007*+00	NM	0.99920	0.98198	0.99017	1.01676	0.97385
28	1.0000#=02	6.3971"+00	NM	0.99930	0.99030	0.99461	1.00872	0.98600
žě	1.0500 -02	6.4644"+00	NM	0.99990	0.99584	0.99780	1.00303	0.99389
30	1.1000*=02	6.5151*+00	ŘМ	1.00000	1.00000	1.00000	1.00000	1.00000
D 31	1.1500"-02	6.5151"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y.M.TO/TOD ASSIINE PEPD

axisymmetric

M: 1.4 - 2.8 (free stream)

TW/TR : 1.0

R THETA X 10-3 : 8-40

7004

APG (VPG) AM

Continuous wind tunnel with flexible nozzle: W = H = 2.4 m.

 $0.04 < PO < 0.08 \text{ MN/m}^2$. TO: 290 K. Air, dew-point 243 K. $5 < RE/m \times 10^{-6} < 13$.

WINTER K.G., ROTTA J.C. and SMITH K.G., 1970. Studies of the turbulent boundary layer on a weak ted body of revolution in subsonic and supersonic flow. ARC R & M 3633 (replaces RAE TR 68215, 1956) And Winter K.G., private communication.

Also Winter et al. (1965 a & b).

- The test boundary layer was formed on the exterior surface of a pointed body of revolution aligned with the axis of the wind-tunnel. The model was constructed of fibreglass on a steel core. The overall length was 1.524 m and the maximum diameter approximately 0.25 m. The body cometry is specified in figure 1.
- The resultant pressure history is tabulated in section D. The fire stream Much number was uniform to within
- 2 0.006. A transition trip consisting of 0.127 mm ballotini was attached 38 mm from the mose of the model. This size proved inadequate at Mach numbers greater than 1.4, transition occurring downstream of the trip.
- Static holes (d = 0.762 mm) were provided at 29 stations along each of two generators separated by 30° and extra holes were drilled 90° apart at X = 0.152, 0.610, 1.067 and 1.499 m. The pressures recorded at these
- stations provide a check on twodimensionality and are given in section D. Skin friction was measured by the
- razor-blade technique (Smith et al. 1972) the calibration however being based on later measurements taken during the floating element balance tests of CAT 7302. The height of the razor blades was about 0.13 mm. and for some tests alternate blades were removed to check that the results were not affected by the presence
- of the blades. The data are presented in section D. The Pitot surveys were obtained by traversing a rake carrying 5 CPP ($d_1 = 0.50$, $d_2 = 0.25$ mm) mounted at 2.54 mm intervals. The traverse mechanism actually moved the rake along a circular arc of racius 76.2 mm, but the data was reduced using the normal distance from the surface. The tubes could not be aliqued exactly with the local direction of a body generator, but
- the mixelignment was less than 5° except in the body waist at X = 1.067 m, where it was 11° . Assigning the value B = 0 to the generator on which static pressure measurements were made the skin-friction measurements were made by mounting razor blades over the holes at $\beta=30^{\circ}$. The X-positions are given (in the author's units) in Section D. X is measured axially and is O at the non- of the body. The profiles were taken at X = 0.610, 0.724, 0.838, 1.067, 1.269 and 1.498 m (24, 28.5, 33, 42, 50, 59 in).
- The authors have assumed negligible static pressure variation across the boundary layer, calculating the free stream Mach number from the measured wall pressure at subsonic speeds, and from the Pitot tube reading outside the boundary layer of supersonic speeds. They present profile data calculated either with the assumption of isoemergatic flow or using the Crocco / Van Driest relationship with a recovery factor of 0.89.
- The editors have presented the data as calculated by the authors with a recovery factor of 0.89. The boundary layer edge state has been set arbitrarily to agree with the stated Reynolds numbers and mean total temperature at the authors' specified edge point. We have not included the authors' case with subsonic (M = 0.6) free
- 13 stream flow. The profiles presented consist of 6 sets at a single Reynolds number, each for a different Mach
- number. One set at M = 1.4 (02) is for a higher Reynolds number. The wall date of section D cover a wider range of Raynolds numbers.
- DATA: 7004 0101-0606. Pitot profiles. NX = 5 or 5. CF from razor blade surface Pitots,

15 Editors' comments

The entry describes an interesting flow which provides a good test case for calculation methods owing to the simultaneous presence of both longitudinal and transverse curvature. In the profile test zone, for the supersonic cases presented here, the pressure gradient is always positive, but the full pressure and skin friction history is given including values for the forepart of the body in the region of accelerated flow.

The pressure gradient is a simple wave one generated by curvature of the body itself, but the maximum static pressure change likely to occur across the boundary layer is only of the order 10 %. The authors present the results of calculations allowing for static pressure variation (source paper figures 33 and 34). "Though appreciable changes of the profiles result" ... "there is no significant improvement in the relationship with "law of the wall" lines". There is also very little effect on the values of H12K. The effects are more marked than in the only comparable study - Allen, CAT 7005, but still not large.

Comparing the profiles in transformed wall law coordinates, we find that there is considerable scatter in the CF values and that on average the values seem to be low as compared to ZPG values. Series O6, as far as the inner region is concerned, appears to display transitional characteristics. The profiles are given in fine detail, but in about half the cases measurements do not extend within the momentum deficit peak. At stations 3 and 4 it appears that some correction of the innermost values is necessary. This is the zone in which the authors report difficulty in aligning the probes, which might make angles of up to 11° with the local generator of the model.

CAT 7004	WINTER/9/5		BOUNDARY CON	AND ENDITE	VALUATED	DATA. SI UNII	ts.	
RUN	⊬ טיע	TN/TR#	REDah	CF *	+12	H12K	Pw	PD
X 4	PUD	PW/PD*	RED2D	ča "	H35	H32K	TW	TD
ĤZ ★	T00*	5 N *	02	PIZ	H42	DSK	ÜĎ	TR
	• •	,			1146	V 1.15	OU.	100
70040101	1.7060	1.0000	2.5161"+03	2.7200"-03	2.6970	1.4195	7.8386"+03	7.8386*+03
6-0960*-01	4.2762"+04	1.0000	3,6215"+03	ПH	1.7778	1.7678	2.7775"+02	1.7860*+02
1.1070*-01	2.9000"+02	1.0000	6.0676"-04	HC	0.0743	7.3318*-04	4.7319"+02	2.7775"+02
70940102	1.6330	1.0000	4.1507*+03	1.9200*=03	2.6578	1.5310	9.6234"+03	9.6234"+03
1.2390"=01 20="8759.8	4.2760*+04 2.4000*+02	1.0000	5.7165*+03	No.	1.7304	1.7194	2.7890"+02	1.8913"+02
B. 76 0 " - V4	5.4000.445	1.0000	9.1206"-04	HC.	0.0673	1.1013"-03	4.5027"+02	2.7890"+02
70040103	1.4540	1,0000	7.7421*+03	1.4300"-03	2.3801	1.4969	1.2368*+04	1.2368*+04
8.3820"-01	4.2493*+04	1.0000	1.0033*+04	NM	1.7022	1.6929	2.8052"+02	2.0382"+02
7.1071"-02	2.9000*+02	1.0000	1.5474"-03	ilC	0.4588	1.6180*=03	4.1620*+02	2.8052*+02
70040104	1.2860	1.0000	1.7733"+04	8.3000"-04	2.3057	1.5992	1.5759"+04	1.5759"+04
1.9648"+00	4.2960*+04	1.0000	2.1840*+04	:lw	1.6386	1.6290	2.8205"+02	2.1775"+02
6.4649*-02	2.9000*+02	1.0000	3.2593"-03	NC	0.4510	3.7692*-03	3,8107*+02	2.8205"+02
70040105	4 4554							
1.2700"+30	1.2540	1.0000	1.2428"+04	1.7100"-03	1.9680	1.3412	1.6509"+04	1.05094+04
9.1120*-02	4.2991"+04	1.7000	1.5155*+04	NM NA	1.7595	1.7537	2.8237"+02	5.5005.+05
711160	#4400V-40E	1.0000	2.2564*-03	NC	0.0467	2.4988"-03	3.7344*+02	2.8237"+02
70040106	1.2150	1.0000	9.2078"+03	2.1700*-03	1.8108	1.2436	1.72634+04	1.7263*+04
1.4986*+00	4.2092*+04	1.0000	1.1200*+04	ilin	1.8278	1.5239	2.8273"+02	2.2390"+02
9.8153*-02	2.9000*+02	1.0000	1.678303	HC.	0.0468	1.8029*-03	3.6451 +02	2.6273*+02
						.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	******	6,02.5
70040201	1.7770	1.0000	4.4281*+03	2.3100"=03	2.7341	1.4389	1.4917#+04	1.4917"+04
6.0960"-01	8.2752"+04	1.0000	6.3982*+03	Nix	1.7759	1.7652	2.7765*+02	1.7775"+02
1-1070*-01	2.9000*+02	1.0000	5.5618"-04	NC	0.0773	6.7441"-04	4.7500*+02	2.7765*+02
70040202	1.6460	1.0000	6.8532"+03	1 77668 67				
7.2390"=01	8.2057"+04	1,0000	9.5035"+03	1.7300*=03	2.6602 1.7385	1.5291	1.8160"+04	1.8160*+04
8.9275 -02	2.9000"+02	1.0000	7.9118"-04	11C	0.0747	1.7281 9.5331"-04	2.7879"+02	1.8808*+02
01/010	441404 106	******	117110 -04	114	0.07-7	7.5551 -04	4.7660"702	2.7074"102
70040203	1.4700	1.0000	1.3070*+04	1.4000"-03	2.5058	1.5776	2.3700*+04	2.3700*+04
6.3820"-01	8,3318*+04	1.0000	1.7025*+04	NM	1.6872	1.6768	2.8037"+02	2.0249*+02
7.1071*=02	2.9000*+02	1.0000	1.3434"-03	NC	.0.0576	1.5955"-03	4.1940*+02	2.80374+02
							_	
70040204	1.2090	1.0000	3.0131"+04	8.6000*-04	5.5980	1,5622	2,9767"+04	2.9767"+04
1.0668*+00 8.4649*+02	8.1256"+04	1.0000	3.7121"+04	ΗW	1.6594	1.6499	2.82044+02	2.1767"+02
0,4044.472	2.7000-102	1.0000	2.9290"-03	NC	0.0477	3.3701 -03	3,8129*+02	2,8204*+02
70040205	1.2690	1.0000	2.0361*+04	1,6500"-03	1.9382	1.3051	3.0538"+04	3.0538*+04
1.2700*+00	8.11414+04	1.0000	2.4937*+04	ilm	1.7622	1.7774	2.8223*+02	2.1935"+02
9.1120*-02	2.9000*+02	1.0000	1.9683"=03	HC	0.0491	2.1665"=03	3,7663*+02	2.0223"+02
							.,	4,0440
70040206	1.2110	1.0000	1,6042*+04	1.9500"-03	1.7841	1.2237	3,3618"+04	3,3418"+04
1.4986"+00	8.31964+04	1.0000	1.9322"+04	'4W	1.8444	1.8413	2.8277"+02	2.2423"+02
9.8153"-02	2.9000*+02	1.0000	1.4859"-03	ЯС	0.0462	1.5865"-03	3.6358"+02	2,0277"+02
70040301	2.0870	1.0000	2.1389"+03	2.3400"-03	3.2544	1.4720	5.1043*+03	5,1063*+03
6.0960"-01	4.5757"+04	1.0000	3.4612"+03	NM	1.7083	1.7743	2.7515"+02	1,5499"+02
1.1070==01	2.9000*+02	1.0000	6.1995==04	ЯĈ	0.0916	7.9124"-04	5,2093"+02	2.7515"+02
	•				********	*****	2,000	
70040302	1.8150	1.0000	6.3596*+03	1.4700"-03	2.7976	1,4576	7,7785"+03	7.7765*+03
8.3620"-01	4.5732"+04	1.0000	9.3140"+03	¼₩	1.7333	1.7153	2.7733"+02	1.7482*+02
7.107102	2.9000*+02	1.0000	1.4860"-03	NC	0.0786	1.8482"-03	4.8115"+02	2,7733"+02
70040103	1 607a		4 36349.65		- 1445			
70040303 1.0668*+00	1.5970 4.5715*+04	1.0000	1.2576*+04	8.3000"=04	2.6469	1.5665	1.0003"+04	1.0803"+04
8.4649"-02	2.9000*+02	1.0000	1.7078"+04 2.5337"-03	NC NM	1,6662	1.6522 3.1113°-03	2.7922*+02	1.9204*+02
44444 -AP	A . FU VY TUE		- + 3 3 3 7 " = V3	116	0.0651	311113.403	4.4372*+02	2.7922*+02
70040304	1.5290	1.0000	9.5346"+03	1.9300*-03	2.2562	1.3302	1.1727*+04	1.1727"+04
1.2700"+00	4.4904*+04	1.0000	1.2659"+04	NH	1.7730	1.7655	2.7984"+02	1.9741*+02
9.1120*-02	2,9000"+02	1.9000	1.4742"-03	NC	0.0633	2.1646*-03	4.3094"+02	2.7984"+02
							-	
70040305	1.4950	1.0000	7.2441"+03	2.4300"-03	2.0853	1.2301	1.2623"+04	1.2623"+04
1.4986*+00	4-6007*+04	1.0000	4.2153.+03	NM	1.8460	1.6407	2.8015*+02	2.0041"+02
9.8153"-02	2.9000-+02	1.0000	1.3646"-03	110	0.0615	1.5065"-03	4.2434"+02	2.4015"+05

CAT 7004	WINTER/R/S		BOUNDARY CON	DITIONS AND E	VALUATED I	DATA. 51 UNIT	'8.	
nur	MD *	TWZYR*	PED2W	cr +	H12	H12K	PW	₽D
X 4 RZ /	PDD TODA	* PW/PD	REDZD D2	00 818	H32 H42	D2K H32K	TW UD	TD TR
					· -			
70040401 6.0900*=01	2.4140 4.9645*+04	1.0000	1.7019**03	1.5400"-03 NM	3,7697	1.4230	3.3223"+03	3,3223"+03
1.1070*-01	2.9000*+02	1.0000	3.1220*+n3 6.04M7*=04	NC NC	1.7872	1.7667 8.2856"-04	2.7283*+02	2.7283*+02
70040402 7.2370*-01	2.3330 4.9525*+04	1.0000	2.4824*+03 4.4128*+03	1,6900#=9 % NI*	3.6075 1.7618	1.4229	3.7614*+03 2.7337*+02	3.7614"+03 1.3885"+02
8.4278"-02	204 000 0 402	1.0000	8.2234*-04	NC	0.1150	1.1304"-03	5.5119*+02	2.7337"+02
70040443	2.1530	1.0000	4,2232*+03	1.4400*+03	3.5640	1.5639	4.9783*+03	4.9783*+03
10-"0584.8	4.9457*+04	1.0000	7.0066*+03	, jķi	1.6743	1.6574	2.7465"+02	1.5049*+02
7.1071"-02	2.400)4+05	1.0000	1.1768**03	∃IC	0.0878	1.7025"-03	5.2954"+02	2,7465"+02
70040404	1.9180	1.0000	9.2704*+03	B.5000*=04	3.0400	1.3132	7.3772"+03	7.3772*+03
1.0565"+00	5.00264+04	1.0000	1.4091*404	-fin	1.6902	1.6733	2.76484+02	1.6708"+02
8.4649*-02	2.9000*+02	1.0000	2.107903	.10	0.0845	2.7635*=03	4.9707*+02	2.7648"+02
70040405	1.0040	1.0000	7.7474*+03	1.9400*=03	2.6048	1.3275	8.7980*+03	8,7960"+03
1.2700*+00	5.0862"+04 2.9000"+02	1.6900	1.1304"+0/	:IM	1.7822	1.7717	2.7742*+02	1.7566"+02
4.11.60	E. 10110 110	1.0000		:10	0.0617	1.743103	4.7939"+02	2.7742"+02
10040404	1.7510	1.0000	5.9817"+03	2.3700*=03	2.4100	1.2367	9.5548*+03	9.5548*+03
1.4986*+00	5.0948*+04 2.9900*+02	1.0000	8.5643*+03 1.1979*-03	AC #	1.8488	1.3642*+03	2.7787"+02 4.7071"+02	1.7977"+02
					_	112045 -02		
70040501 6.09607-01	2.8810 6.1454"+04	1.0000	4.3769*+02 1.4105*+03	1.5000*=03	5.1984	1.5602	2.0019"+03	2.0019"+03
1.1070"-01	2.4000.405	1.0000	2.6299=-04	ic	1.7576	1.7084 4.4955"=04	2.7009"+02 6.0313"+02	2.7009"+02
	3 4186				-		•	
70040502 8.38204-01	2.6150 6.1134"+04	1.0000	2.0331"+03 4.0354"+03	1.2400*-03	3.9863 1.7823	1.3861	2,9935*+03	2.9935*+03 1.2246*+02
7.1071 02	2.9000*+02	1.0000	7.0543*-04	üc	0.1702	1.0126"-03	5.6026*+02	2.7157"+02
70040503	2.3540	1.0000	4.8947*+03	9.1000"-04	3.5062	1.3393	4.4021#+03	4.4021"+03
1.0666*+00	5.9897"+04	1.0000	0.7720*+03	HW.	1.7720	1.7607	2.7323"+02	1.3755*+02
8.4649"-02	2.4000*+02	1,0000	1.306103	:10	0.1169	1.86984=03	5.5354"+02	2.7325"+02
70040504	2.1450	1.0000	4.9364"+03	1.9000*=03	2.9668	1.2332	6.1228*+03	6.1226"+03
1.2700*+00	6.0071"+04	1.0000	8.1684"+03	NW	1.6542	1.6438	2.7471*+02	1.5103"+02
9.1120=-02	2.9000*+02	1.0000	1.1444*-03	HC	0.1021	1.3720*=03	5.2852*+02	2.7471*+02
70040505	2.0960	1.0000	3.7371"+03	2.1500*-03	2.9143	1.2478	4.5482*+03	6.5482"+03
1.4986"+00 9.8153"=02	5.9872"+04 2.9000"+02	1.0000	4.0679"+03 4.3356"-04	(IM	1.8668	1.8547 9.8034"-04	2.7508"+02	1.5437"+02
7.0131 -06	ELYVVV YIE	1.0000	4.33384	ИС	0.0957	4.603404	5,2213"+02	2.75087+02
70040601	3.3270	1.0000	4.0479*+02	1.1300=-03	4.1246	1.5690	1.2624"+03	1.26244+03
6.0960"-01 1.1070"-01	7.5149*+04	1.0000	1.5844"+03	NM NC	1.8048 0.1326	1.7660 5.4840*-04	5.6803"+02	10+"4650.0
	-,,							
70040602 8.3820*-01	3.0530 7.5189*+04	1.0000	1.5794"+03	1.1300*-03	4.9465	1.3175	1.8909*+03	1.8909*+03
7.1071*-02	2.90004.02	1.0000	4.710504	VC	0.1247	1.0045"-03	6.1594*+02	2.6924"+02
70040603	2.7590	1.0000	2.4485*+03	8.3000*-04		1 3431	2.6670*+03	2.8670"+03
1.0668*+00	7.3078*+04	1.0000	5.1444*+03	11h	4.1883	1.2621	2.7075*+02	1.1497*+02
8.4649"-02	2.9000*+02	1.0000	8.1260"-04	NC	0.1102	1.0900"-03	5.9313"+02	2.7075"+02
70040604	2.4760	1.0000	3.4034*+03	1.6900"-03	3.5304	1.2501	4.4332*+03	4.4332*+03
1.2700"+00	7.2968*+04	1.0000	6.3964"+03	ИМ	1.8533	1-8413	2.7243*+02	1,3027"+02
4.112002	2.4000*+72	1.0000	8.7068*-04	ИС	0.1341	1.1064*+03	5,66614+02	2,7243"+02
70040605	2.4270	1.0000	2.4001*+03	1.8800"-03	3,4733	1.2240	4,8050*+03	4.6050*+03
1.4986*+00	7.3272"+04	1.0000	5.3471*+03	NM	1.8872	1.8756	2.7275"+02	1,3315*+02
440133AK	2.4000*+02	1.0000	7.0664*-04	IIC	0,0946	8.5497*=04	5,6149*+02	2.7275*+02

POD, PO CALCULATED FROM RE (AUTHOR) - TRAPEZOIDAL RULE FOR RUN 0102,0202,0203,0301,0601

700402	oj WINT	ER/R/S	PROFILE	TABULATION	40	POINTS, DE	LTA AT POI	NY 36
1	Y	PT2/P	P/P0	10/100	M/MD	U/UD	T/TD	RHO/RHOD+U/UD
1	0.0000*+00	1.0000"+00	NM	0.95725	0.00000	0.00000	1.56160	0.0000
2	2.5400*-04	1.7126"+00	NM	0.97270	0.51294	0.59838	1,34088	0.43970
3	3.3020"-04	1.7665"+00	NM	0.97346	0.52870	0.61428	1.34994	0.45504
4	4.0640"-04	1.7852"+00	NM	0.97405	0.53399	0.61968	1.34670	0,46015
5	4.3180*-04	1.8291"+00	MM	0.97441	0.54603	0.63157	1.33789	0.47207
6	5.3880"-04	1.4247"+00	Им	0.97599	0.57197	0.65707	1.31971	0,49789
7	7.1120"-04	2.0084*+00	ИM	0.97685	0.54093	0.67526	1.30580	0.51713
8	1.0468*-03	2.2349"+00	MM	0.97944	0.64073	0.72186	1.24927	0,56872
•	1.4732"-03	2.4727*+00	MM	0.98238	0.68777	0.76405	1.23412	0.61910
10	1.8542"-03	2.4997"+00	NM	0.98471	0.72912	0.79964	1.20278	0.66483
ii	2.2352"-03	2.9134"+00	ЙM	0.98679	0.76544	0.82993	1.17499	0.70633
ĺŽ	2.4892"-03	3.1779"+00	NW	0.98920	0.80824	0.84343	1.14255	0.75614
13	2.5400"=03	3.2261"+00	ЙW	0.98979	0.81572	0.86983	1.13705	0.76498
14	2.6162"-03	3.2326"+00	ЙM	0.98988	0.81673	0.87063	1.13632	0.76618
15	2,6670"-03	3.2707"+00	NM	0.98993	0.82259	0.87502	1,13156	0.77329
16	2.7940 -03	3.3522"+00	ЙM	0.99048	0.83497	0.88452	1.12223	0.78818
17	2.9210"-03	3.4104"+00	NM	0.94138	0.84349	0.89122	1.11586	0.79869
iá	3.1242"-03	3.3832"+00	NM	0.99107	0.83944	0.88812	1.11883	0.79360
iÿ	3.3020"-03	3.5921"+00	Nu	0.99.87	0.87030	0.91102	1.09576	0.83141
ģó	3.6576*-03	3.7546*+00	NM	0.99409	0.89337	0.92771	1.07836	0.86030
2ĭ	4.0384"-03	3.4308"+00	NM	0.79544	0.91768	0.94491	1.06023	0.89123
22	4.3942"-03	3.4789*+00	NM	0.99592	0.92421	0.94951	1.05551	0.69956
23	4.4174"-03	4.0941"+00	MW M	0.99675	0.93962	0.96011	1.04408	0.91958
24	4.8260"-03	4.2842*+00	NM	0.99820	0.96449	0.97690	1.02590	0.95224
25	4.9022"-03	4.3047*+00	NM NA	0.79819	0.96765	0.97890	1.02341	0.95652
žú	4.9530"-03	4.3218"+00	ŇM	0.99824	0.96933	0.98000	1.02214	0.93878
27	5.0292"-03	4.3337*+00	NM	0.99852	0.97085	0.98110	1.02123	0.96071
žá	5.1306 -03	4.3715"+00	NM NM	0.99881	0.97549	0.98430	1.01773	0.96716
29	5.2578"-03	4.4287*+00	NM	0.99910	0.98295	0.98900	1.01235	0.97694
30	5.3046"-03	4.3622*+00	NH NH	0.99870	0.97451	0.98350	1.01854	0.96560
31	5.6388"-03	4.4487"+00	NM	0.99934	0.78548	0.99070	1.01062	0.98029
íż	5.9944"-03	4.5339"+00	NM NM	0.99970	0.99617	0.99750	1.00267	0.99485
			NW GE					
13	4.0178"-03	4.4769"+00		0.97934	0.98903	0.99300	1.00805	0,98507
34	6.3754"-03	4.5520*+00	NM	0.99993	0.99842	0.99900	1.00115	0.99785
35	6.57867-03	4.5502 +00	NM	1.00001	0.99820	0.99590	1.00140	0.99750
D 36	6.7564"-03	4.5646*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
37	9.3726"-03	4.5764"+00	ИM	1.00021	1.00146	1.00100	80000	1.00193
36	1.1735"=02	4,5832"+00	NM	1.00017	1.00231	1.00150	0.94839	1,00311
39	1.3462"-02	4.4941"+00	NM	1.00032	1.00366	1.00240	0.99749	1.00492
40	1.5037"-02	4.6343*+00	Ин	1.00054	1.00453	1.00590	0,99348	1.01257

INPUT VARIABLES Y,M,U/UD ASSUME P=PD AT I=31 DATA HERE AVERAGED

7004020	THIN SC	ER/R/S	PROFILE	TABULATION	44	POINTS, DEL	TA AT POI	NT 41
1	Y	PT2/P	P/PD	10/100	M/ND	U/UD	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NH	0.96064	0.00000	0.00000	1.46118	0.00000
ž	2.5400"-04	1.4463*+00	NM	0.97127	0.45367	0.52480	1.34718	0.39104
3	3.3020*-04	1.4797*+00	NM	0.97230	0.46755	0.54130	1.34038	0.40384
4	3.8100"-04	1.5058"+00	NM	0.97236	0.47849	0.55260	1.33378	0.41431
3	4.5720"-04	1,5256"+00	NM	0.97270	0.48663	0.56110	1.32949	0.42204
6	8.3820"-04	1.6545"+00	NM	0.97505	0.53434	0.60970	1.30197	0.46829
Ť	1.2446"-03	1.7785"+00	Им	0.97705	0.57445	0.64940	1.27797	0.50615
8	1.6510"-03	1.9052*+00	NM	0.97886	0.61006	0.68370	1.25597	0.54436
9	2.0574"-03	2.04644+00	Им	0.98099	0.64744	0.71880	1.23258	0.58317
10	2.4304"-03	2.2115"+00	HW	0.98279	0.68646	0.75420	1.20710	0.62460
11	2.6416"-03	2.2.34"+00	NM	0.98316	0.69363	0.76060	1.20242	0.63256
15	2.7178"-03	2.2794"+00	NM	0.98353	0.70165	0.76770	1.19712	0.64129
13	2.7686"-03	2.3055"+00	ИW	0.98412	0.70731	0.77280	1.19377	0.64736
14	2.8448"-03	2.3512"+00	NM	0.95456	0.71715	0.78140	1.18721	0.65818
15	3,2258"-03	2.4540"+00	11M	0.98566	0.73867	0.80000	1.17296	0.68203
16	3.6322"-03	5.6815"+00	NM	0.97834	0.78364	0.83370	1.13185	0.73658
17	4.0132"-03	2.8357*+00	HM	0.98951	0.81251	0.86130	1.12371	0.74648
10	4.2926"-03	2.4808"+00	1114	0.99108	0.83858	0.88210	1.10649	0.79721
14	4.4196"-03	3,0266"+00	NM	0.99133	0.84660	0.88830	1.10093	0.80686
20	4.8260"-03	3.21227+00	NM	0.99307	0.87833	0.91270	1.07980	0.84525
51	4.7530"-03	3.2797"+00	NM	0.99356	0.88872	0.92050	1.07260	0.89804
5.5	5.1562"-03	3.3332"+10	NM	0.99413	0.09832	0.92770	1.04447	0.84988
5.2	5.2070"-03	3,3930*+00	NM	0.99469	0.90817	0,93500	1,05996	0.88211
24	5.2324"-03	3.35337+00	NM	0.99423	0.90160	0.93010	1.06421	0.87398
25	5.2832"-03	3.3866"+00	ИМ	0.99470	0.90732	0.93440	1.06059	0.88105
56	5.3594"+03	3.4184"+00	NM	0.99469	0.91212	0.93790	1.09733	0.88705
27	5,6134"-03	3.5088"+00	NM	0.99566	0.92652	0.94840	1.04778	0.90515
58	5.7404"-03	3,5630"+00	ИM	0.99625	0.93503	0.95460	1.04230	0.91584
29	5.9044"-03	3.6619"+00	NM	0.99702	0.95035	0.96550	1.03214	0.93543
30	4.1466"-03	3.6972"+00	NM	0.99727	0.95576	0.96930	1.02054	0.94240
31	6.2972"-03	3.7306"+00	NM	0.99757	0.96086	0.97290	1.02922	0.94897
35	6.5278"-03	3.8053"+00	NM	0.49809	0.97210	0.95070	1.01776	0.96358
33	6.6548"-03	3.8480*+00	NM	0.99840	0.97849	0.98510	1.01357	0.97192
34	6.9342"-03	3,9133"+00	ľίλ	0.99906	0.98815	0.99180	1.00740	0.98451
35	7.3132"-03	3.9609"+00	NM	0.49932	0,49514	0.99650	1.00274	0.99378
36	7.6200"-03	3.9826"+00	Nw	0.99961	0.99830	0.99870	1.00080	0.99790
37	7.6962"-05	3.4885.400	NM	0.99949	0.99824	0.99840	1.00073	0,99788
33	7.7216"-03	3,9868"+00	ИW	0.99962	0.99891	0.99910	1.00039	0.99671
39	7.7470"-03	7.9918"+00	NM	0.99967	0.99964	0.99960	0.99993	0.99967
40	7.8232"-03	4.9910"+00	ИM	0.99963	0.99951	0.99990	0.49947	0.99953
0 41	7.97567-03	3.9943"+90	NM	1.00000	1.00000	1.00000	1.00000	1.00000
42	1.0465"-02	3.9943"+00	NM	0.99960	1.00000	0.04980	0.99960	1.00020
43	1.2700"-02	4.0065*+00	NM	0.99964	1.00162	1.00100	0.99836	1.00265
44	1.5418"-02	3.4843"+00	ИM	0,99449	0.99854	0,99883	1.00095	0.99828

INPUT VARIABLES Y.M.U/ID ASSUME PMPD AT IM14,16,39 DATA WERE AVERAGED

7004020	OS WINTE	ER/R/S	PROFILE	TABULATION	59	POINTS, DEL	TA AT POI	NT 56
I	Y	PT2/P	P/PD	T0/T0D	MZMD	מטעט	T/TD	RH0/RH0U*U/UD
ş	0.0000"+00 2.5400"-04	1.0000*+00 1.2765*+00	NW NW	0.96635	0.00000 0.40883	0.00000	1.38399	0.0000U 0.35848
3	3.3020"-04	1.2726"+00	Им	0.97386	0.40618	0.46345	1.30191	0.35598
4 5	3.8100"-04 4.5720"-04	1,2817"+00 1.3015"+00	NN HW	0.47392 0.97450	0.41237	0.47005 0.48395	1.29934	0.36176 0.37387
6	5.8420*-04	1.3137"+00	1116	0.97462	0.43312	0.49215	1.29116	0.37387
ž	9.9040"=04	1.3814"+00	NM	0.97595	0.47306	0.53405	1.27447	0.41903
8	1.3716"-03	1.4290"+00	ИW	0.97721	0.49844	0.56034	1.26384	0.44337
9	1.7760"-03	1.4730*+00	(JM	0.77788	0.52034	0.54264	1.25379	0.46471
10 11	2.1590"-03 2.6670"-03	1.5159"+00 1.5955"+00	NW SIM	0,975Re 0.979 9 7	0.54041	0.60294 0.63704	1.24479	0.48437 0.51872
iż	2.7432"-03	1.5994"+00	ije.	0.98022	0.57640	0.63864	1.22756	0.52024
13	2.7656"-03	1,5070"+00	μм	0.98007	0.57130	0.63364	1.23012	0.51510
14	2.7940"-03	1.4045"+00	ИМ	0.98024	0.37845	0.64064	1.22654	0.52229
15	2.8702"-03	1.62027+00	iln	0.98067	0.58483	0.64694	1.55345	0.52671
16 17	2.9972"=03 3.3020"=03	1.6284"+00 1.6945"+00	liw Ww	0.98054 0.98189	0.58811	0.65003 0.67463	1.22169	0.53208 0.5577 6
iá	3.4036"-03	1.7121-400	NH.	0.98189	0.61988	0.68073	1.20597	0.56447
19	3.7846"-03	1.7835"+00	\$\$M	0,98335	0.64492	0.70463	1.19375	0.59027
\$0	4.1910"-03	1,4511"+00	11M	0.98404	0.66717	0.72533	1.18196	0.61367
51	4.5974"-03	1.90607+00	1141	0.98499	0.05445	0.74135	1.17311	0.63193
57 55	5.1816"=J3 5.2574"=D3	2.04^9*+00 2.0899*+00	Nh IIM	0.98669 0.987 2 6	0.72543	0.77662 0.78852	1.15246	0.67388
24	5.3340"-03	2.0979"+00	iji M	0.78754	0.73901	0.79052	1.14426	0.69854 0.69086
25	5.3848"=03	2.1104*+00	įį́Μ	0.48757	0.74235	0.79342	1.14234	0.69456
86	5.4610"-03	2.1343"+00	NM	0,98796	0.74867	0.79902	1.13902	0.70150
27	5.5880"-03	2.15227+00	NM	0.98814	0.75337	0.80312	1.13644	0,70670
50 59	5.7636"-03	2.2044*+00 2.2449*+00	MN	0.98869 0.98919	0.76684	0.01452	1.12346	0.72165 0.73310
30	5.9944"-03	2.2775"+00	NM Na	0.78946	0.74514	0.82362 0.83062	1.11920	0.74215
31	6.3754 -03	2.3871"+00	ķν	0.99000	0.81202	0.04331	1.10431	0.77271
32	4.7818" □03	2.48A5"+00	MES	0.99106	0.83501	0.87241	1.09159	0.79971
33	7.1628"-03	2.5955"+00	ίμ	0.99323	0.65889	0.09201	1.07861	0.82700
14 35	7.7216"-03 7.7724"-03	2.7441"+U0 -2.7306"+00	HH HH	0.79471 U.97453	0.89162	0.91811 0.91521	1.06030	0.86589 0.86147
36	7.7976"-03	2.7516"+00	NM	0.99476	0.89237	0.91871	1.05991	0.86678
37	7.8486"-03	2.7636"+00	ИM	3.79471	0.37488	0.92061	1.05732	0.64988
38	7.9248 -03	2.7954"+00	MM	3,79507	0.90148	0.92581	1.05469	0.07780
39 40	8.0518"-03 8.2804"-03	2.4214*+00 2.4261*+00	UM NM	0.99553	0.92609	0.93011 0.94691	1.05193	0.88419
41	8.3312"-03	2.7234"+00	110	0.99657	0.92793	0.94641	1.04007	0.90985
4Ž	4.3620"-03	2.4041400	ΗЩ	0,49633	0.92407	0.94341	1.04228	0.90513
43	8.4502"-03	2.9547"+00	Niv	0.99670	0.93360	0.94080	1.03675	0.41710
44	6.8372"-03	3.0703"+00	ЯM	0.99773	0.95646	0.96790	1.02404	0.94719
45 46	9.2456"-03 9.6520"-03	3.1415 ² +00 3.2009**+00	lin iin	0.99845	0.97013	0.97810 0.98640	1.01650	0.96223 0.97634
47	9.7282"-03	3.1814"+70	ijΨ	0.99887	0.77766	0.94370	1.01235	0.97170
48	1.0135"-02	3.2740"+00	НM	0.99966	0.99510	0.99640	1.00261	0.44380
49	1.0236"-02	3.2549"+00	IIn	0.99715	0.99238	0.97440	1.00408	0.49036
50	1.0262"-32	3.2735*+00	114	0.99954	0.79490	0.97620	24500	0.99360
51 52	1.0342-05	3.2733"+00 3.2814"+00	Hh Hw	0.99954	0.34440	0.94623	1.00182	0.4936U 0.49349
53	1.0516"-02	3.2093"+00	ijй	0.99967	0.77707	0.99780	1.0014	0.49635
54	1.0795"-02	1.2921"+00	iju	0.99948	0.99837	0.77880	1.00007	0.99793
55	1.0846"-02	3.2767"+00	HM.	0.99794	0,99913	0.77740	1.00041	0.99897
D 56	1.3922"=02	3.3011"+00 3.3004"+00	llia Nr.	1.30000	1.30000	1.07000	1.00000	1.00000
34	1.3300 -02	3.2923"+00	IIM II.	0.79747	0.99986	0.99790 0.99890	1.00007	0.999A3 0.99793
5 9	1.8410"-02	3.2576"+00	ijā	£8999.0	0.74767	0.97830	1.00123	0.99707

INPUT VARIABLES Y,M,U/UD ASSUME PMPD AT 1=6,16,27,39,53 DATA HERE AVERAGED

700402	OA WINTE	ER/R/3	PROFILE	TABULATION	82	POINTS, DEL	TA AT POI	NT 79
1	Y	PT2/P	P/PD	TU/TOD	HVHD	מטעש	1/10	RHO/RHOD*U/UD
į	0.0000*+00	1.0000"+00	NM	0.97304	0.00000	0.00000	1.29638	0.00000
3	2.5400"-04 3.0480"-04	1.1797"+00	MM MM	0.97735 0.97798	0.36141	0.42507 0.43517	1.24208	0.34223 0.35093
4	3.5100"-04 4.3150"-04	1.1922"+00	NM NW	0.97788 0.97816	0.39373	0.43827 0.44817	1.23900	0.35373 0,36246
6 7	5.0800"-J4 6.3500"-04	1.2053"+00	NM NM	0.97821	0.40606	0.45136	1.23557	0.36531 0.37076
8	7.6200"-04	1.2179"+00	IIM	0.97854	0.41168	0.45750 0.46346	1.23413	0.37617
10	8.8900"-04 1.1176"-03	1.2267"+00	HW HW	0.97564 0.97911	0.42529	0.47166 0.48036	1.22779	0,38348 0,39124
11	1.3970"-03	1.2463"+00	NM NM	0.97918	0.44204	0.48925	1.22502	0.39938
13	1.8796"-03	1.2591"+00	HM	0.97973	0.45251	0.49463 0.50025	1.22214	0.40437
14 15	2,2604"-03	1.2717*+00 1.2905*+00	H A Nw	0.97960 0.98327	0.46251	0.51055 0.52554	1.21423	0.41899 0.43282
16 17	2.6162"=03	1.2905"+00	IIM IIM	0.98027 0.98008	0.47693	0.52554 0.52624	1.21423	0.43282
18	2.6920"-03	1.2936*+00	ŅМ	0.97996	0.47926	0.52784	1.21302	0.43515
19	2.7432*=05 2.8194*=05	1.2772"+00	NM NP	0.98034 0.98050	0.48190	0.53064 0.53314	1.21254	0.43763 0.43993
55 51	2.9464*-03 3.0734*-03	1.3034"+00	NM NM	0.98044	0.48647	0.53534	1.21101	0.44206
5.2	3.2004"-03	1.3154"+00	NP	0.98064	0.49515	0.54424	1.20000	0.45050
24 25	3.4544"-03 3.7084"-03	1.3249"+00	UM Uh	0.98118 0.98103	0.50190	0.55123 0.55833	1.20026	0.45698 0.40395
26 27	3.9624"-03 4.2164"-03	1.3477"+00	M// 411	0.98138	0.51748	0.56703	1.20065	0.47227
28	4.5974"-03	1.3731*+00	NM '	10589.0	0.53416	0.5A392	1.19503	0.45863
30 30	4.9530"-03 5.0038"-03	1.3920"+00	iiw Mm	0.98237 0.98236	0.54610	0.59792 0.59792	1.19000	0.50044 0.50245
33	5.1308"-03	1.3952"+00	NW NW	0.98236 2 4 589.0	0.54811	0.59792	1.19000	0.50245
33	\$,2070"-03	1.4018"+00	Им	0.98237	0.55214	0.60192	1.18843	0.50648
34 35	3,3340"-03 3,4610"-03	1.4090*+00	15M 11M	0.98283	0.55594	0.605A2 0.61152	1.18747	0.51017 0.51591
36 37	5.5650"-03 5.6420"-03	1,4230"+00	Na. Nw	40164.0 58289.0	0.56540	0.61522	1.16396	50917.0 02856.0
38 39	6.1214"-03	1.4550"+00	1164	0.46363	0.3A339	0.63301	1.17734	0.53766
40	6.6040"-03	1.4651"+00	NM NM	0.98490 0.98413	0.58705	0.63861 0.64711	1.17534	0.54334 0.54213
41 42	6.9850"-03 7.3660"-03	1.5031"+00	NM NM	0.98459 0.98488	0.60760	0.64870 0.66810	1.16759	0.56416 0.57405
43	7.4422*-03	1.5506"+00	ŃМ	0.98347	0.63347	0.64550	1.15830	0,58496
45	7.5692"-03	1.5339"+00	И М	0.98534	0.63550	0.68369 0.68589	1.15042	0.59070 U.59312
46 47	20-*0080.T	1.4397"+00	NM HM	0.95528 0.4554	0.63837	0.68639 0.68659	1.15613	0.59370 0.59367
4B 49	7.8232"-03	1.57917+00	NM NM	0.98347	0.64775	0.49534	1.15252	0.60337 0.60952
50	8.0772"-03	1.5918"+70	1114	0.98626	0.65380	0.70129	1.15056	0.60952
51 52	8.3312"-03	1.6134*+00	₩ 11₩	0.95642	0.6588	0.71079 0.71898	1,14632	0.62006 0.62913
53 54	8.8372"-03 8.9662"-03	1.6490"+00	NM NM	0.95±89 0.96±70	0.67993	0.72585 0.71639	1.13975	0.636A8 0.62618
55	9.4742*=03	1.6413"+00	NM	0.98720	0.68543	0.73108	1.13764	0,64263
54 57	9.7770"-03	1.5902*+00	MW MW	0.98743	0.69776	0.74256 0.75607	1.13254	0.63365
58 59	9.8298"-03 9.9040"-03	1.7281*+00	NA MW	0.98827 0.98837	0.71350	0.75717 0.75777	1.12617	0.67234 0.67298
• 0 • 1	1.0033"-02	1.7402*+00	liM IIM	0.78546 0.9650	0.71835	0.74167	1.12414	0.67756
65	1.0160"-02	1.7500*+00	ЦM	0.98852	0.72234	0.76407 0.76527	1.12240	0.6040
63 64	1.0267"-02	1.76294+00	NM NM	0.98874 0.98892	0.72746	0.76997 0.77457	1.12030	0.68729 0.69271
65 66	1.0468"-02	1.6096*+00	HH MH	0.98933	0.74203	0.78327 0.74306	1.11422	0.70297
•7	1.1176"-02	1.8455"+00	HH	0.98990	0.75878	0.79836	1.10704	0.72116
6 B	1.1227"-02	1.9290#+00	NW NW	0.9 09 78 0.9 9 025	0.75273	0.79296 0. 8 0 3 56	1.10974	0.71455 0.78738
70 71	1.1811"-02	1.9024*+00	NM NM	0.99079	0.77910 0.78987	0.81656 0.82605	1.09847	0.74336
72	1,3564"-02	2,0700"+00	NM	0.79293	0.03415	0.86464	1.07445	0.80473
73 74	1.5109"-07	2.2474"+00 2.3741"+00	itw Nw	0.99509 0.99696	0.88687	0.90923	1.03520	0.86507 0.90615
75 76	1.7374"-02	2.5107"+00	NM NM	0.99804	0.95797	0.96701	1.01895	0.94902 0.97513
77 78	1.9710*=02	2.6303"+00	ŅМ	0.99959	0.99310	0.99460	1.00303	0.44140
0 79	2.22004-02	2.6785*+00	Mm Mw	1.00000	1.00000	1.00000	1.00104	1.00000
# 0 # 1	2.4364"-02 2.5679"-02	2.6785"+00 2.6753"+00	(in lin	1.00000	0.0000	0.0000	1.00000	1.00000
45	2.8116"-02	8.6793*+00	NM	0.99976	0.99922	0.99930	1.00015	0.99913

INPUT VARIABLES Y,M,U/UD ASSUME PAPD AT I=4,18,24,31,45,39 DATA HERE AVERAGED

7004020	5 WINTER	R/R/S	PROFILE	TABULATION	89	POINTS, DEL	IA AT POT	41 84
I	4	912/8	P/PD	T0/T0p	AV:10	uzun	1/10	MH0/RH00*U/U0
	0.0000"+00	1.0000"+00	пм	0.97305	0.00000	0.00000	1.28644	0.00000
3	2.5400"-04 3.3020"-04	1.4179"+00	Mw Mw	0.78115 0. 8360	0.57073	0.61840 0.62750	1.17402	0.52674 0.53470
	3.8100"-04 4.5720"-04	1.4440"+00 1.4568"+00	NM NM	0.98405 0.98430	0.58657	0.63480	1.17170	0.54201 0.54201
ь	5.0800"-04	1.4662"+00	MH.	0.98431	0.59894	0.60690	1.16655	0.59454 0.56468
B	6.6040"-04 7.8740"-04	1.4968"+00	NM	0.98503	0.41541	0.00340	1.16054	0.57165
10	9.1440"-04	1.5241"+00	11h 71,	0.98556 0.98579	0.63236	0.67940	1.15431	0.58557 0.59366
11	1.3208"-03	1.5526"+00	iih iin	0.98588 0.98640	0.64189	0.67140	1.14945	0.60151 0.61567
13	1.8542"-03	1.5864*+00	Mh	0.98655	0.66152	0.70730	1.14321	0.61870
15	2.0828"-03 2.3368"-03	1.5789*+00 1.6143*+00	UM MK	0.98685 0.98723	0.06751	0.71300 0.71990	1.14095	0.62492
16 17	2.6670"-03 2.7432"-03	1.6362"+00	414 MM	0.98716 0.98735	0.67407	0.72390 0.72930	1.13632	0.63706 0.64310
16	2.8194 - 03	1.6456*+00	HH	0.98753	0.68710	0.73330	1.13239	0.64757
20	2.8702"-03 2.9464"-03	1.6456"+00	13h (1h	0.98753 0.98753	0.68710	0.73330	1.13239	0.64757
55 51	2.9972"-03 3.1496"-03	1.6484*+00	MM	0.98763 0.98778	0.69336	0.73450 0.73710	1.13196	0.64888 0.65176
53	3.2766 -03	1.6607*+00	NM NM	0.98795	0.69588	0.73970	1.12991	0.65465 0.66144
25	3.5306"-03	1.6738"+00	Nw	0.98800	0.70163	0.74500	1.12744	0.66079
26 27	3.8100"-03 4.0640"-03	1.6887*+00 1.7008*+00	1922 1984	0.98823 0.98844	0.70009	0.74100 0.75590	1.12486	0.66764 0. 6 7309
54 50	4.3130"-03	1.7163"+00	NM	0.98579	0.71984	0.76190	1.12029	0.68009 0.68835
30	4.8006"=03	1.7411"+00	NM	0.98913	0.73008	0.77130	1.11610	0.09107
75 11	5.1308"-03 5.2070"-03	1.7627"+00	IIM MM	0.98947 0.98947	0.73883	0.77930 0.78050	1,11756	0.7004u 0.70142
33 34	5.2832"-03 5.3340"-03	1.7754"+00	MS1 MS1	0.98968 0.98968	0.74387	0.78390 0.79390	1,11051	0.70589 0.70589
35	5.4102"-03	1.7784"+00	NM	0.98977	0.74505	0.78500 0.78590	1.11010	0.70714 0.70589
36 37	5.4410"-03 5.6134"-03	1.7754"+00	NM NM	0.98968	0.74387	0.74600	1.11091	0.70849
74 79	5.7404"-03 5.8674"-03	1.036"+00	NM NM	0.99007 0.99017	0.75491	0.79390 0.79400	1.10598	0.71783 0.71789
40	5.9944"-03 4.2738"-03	1.8345"+00	HH MM	0.99014	0.75601	0.79490	1.10553	0.71702 0.72667
42	6.5774"-03	1.8370*+00	MM	0.90091	0.76759	0.80530	1.10066	0.73165
43	6.8072"=03 7.0358"=03	1.8491"+00	NW NM	0.99157	0.77209	0.60940 0.81750	1.09849	0.73649 0.74641
45	7.0200"-03	1.4107"+00	14M 14M	0.99127	0.78674	0.82740	1.09769	0.75263 0.76104
47	7.7724"-03	1.4363"+00	N _M	0.99202	0.80322	0.83700	1.08589	0.77079
46	7.8436"-03	1.4767.400	NM Nn	202PP.0	0.80355	0.83700	1.08589	0.77079 0.77074
50 51	7.9756"-03 8.0264"-03	1.9424"+00	Mh Mh	0.99194 0.99194	0.80534	0.83880 0.83880	1.08481	0.77322 0.77322
92 93	8.1788"-03 8.3058"-03	1.9549*+00	HM NM	0.99227	0.80940	0.84260 0.84450	1.08319	9.77789 9.7888
54	B.4328"-03	1.9726"+00	NM MM	0.99241	0.81559	0.84760	1.06055	0.78460
55 56	6.5398"-03 6.6392"-03	1.9830"+00	lih.	0.99273	0.81906	0.85740	1.07927	0.78840
57 58	9.0932"-03 9.3726"-03	2.0322"+00 2.0375"+00	NW NW	0.99320 0.99343	0.83198	0.86210 0.86640	1.07372	0.802 9 1 0.80849
59 60	4.3980"-03 9.6012"-03	2.0375"+00	NW Mil	0.99343	0.83695	0.86640	1.07162	0.80849
41	4.0532"-03	2.0779"+00	NM	0.94388	0.84979	0.87740	1.06603	0.62305
62 63	1.0211"-02	2.1057"+00 2.1064"+00	NM I+M	0.99423	0.85844	0.86460 0.88490	1.06231	0.83240 0.83327
64 65	1.0287"-02	2.1174 +00	N₩ MM	0.99430 0.99451	0.86059	0.8550 0.6570	1.06073	0.83534 0.83735
••	1.0414"-02	2.1248*+00	Mm Mm	0.99443	0.86437	0.88980	1.05970	0.83967 0.83967
67 68	1.0469"-02	2.1248"+00 2.1559"+00	ЙМ	0.99443	0.86437	0.88980	1.05562	0.05050
69 70	1.0744"-02	2.1502*+00 2.1614*+00	NM NM	0.99467	0.87209	0.89630	1.05425	0.84854 0.85239
71	1.0446"=02	2.1454"+00 2.1940"+00	NM NM	0.99904	0.87674	0.40030	1.05446	0.85380 0.86425
73	1.1532**02	3.3139"+00	NM	0.99537	0.84104	0.91220	1.04795	0.87046
74 75	1.1706"-02	2.2395"+00 2.23 6 5"+00	NM Mti	0.99374	0.89739	0.91750 0.91830	1.04532	0.87772 0.87865
76 77	1.2014"-02	2.2973"+00	NM NM	0.99594	0.90370	0.92270 0.92710	1.04250	0.88508 0.89121
78	1.2624 -02	2.3033"+00	Им	0.99640	0.91686	0.43360	1.03484	0.90041
74	1.5977"-02	2.4370"+00	NM NM	0.44743	0.95090	0.96120	1.02178	0.94072 0.96918
##	1.6340"-02 1.6340"-03	2.5590"+00 2.5940"+00	NM HW	0.99936 0.99964	0.98581	0.98890 0.99570	1.00627	0.98274 0.99343
83 D 84	1.9279"-02	2.4041*+00 2.4155*+00	NM NM	0.74448	1.00000	0.44820	1.00113	0.99707
45	2.2530"-02	2.4155*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
## #7	2,1393"-02 2,5432"-02	2.6186"+00	NM NM	1.00001	1.00079	1.00040	1.00000	1.0004
**	2.9670"-02 3.2263"-02	2.4145"+00 2.4155"+00	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
••			••					

IMPUT VARIABLES Y,M,U/UD ASSUME P=PD AT 1=9,24,38,53,69 DATA HERE AVERAGED

7004020	6 WINTE	R/R/S	PROFILE	TABULATION	98	POINTS, DE	TA AT POI	NT 94
1	Y	PT2/P	P/PD	T0/T0D	MZMD	UVUD	T/TD	RHO/RHOD*U/UD
1	0.0000"+00	1.0000"+00	Nh	0,97453	0,00000	0.00000	1.26036	0.0000
2 .	2.5400"-04	1.4405"+00	NM	0.98529	0.61219	0.65595	1.14808	0.57135
	3.3020*-04	1-4551"+00	NM	0.98584	0.62104	0.66460	1.14542	0.58028
	3.8100"-04	1.4866"+00	N:M	0.98634	0.63948	0.68249	1.13902	0.59919
	4.5720"-04	1.4976"+00	NM	0.98670	0.64577	0.68860	1.13703	0.60561
	5.0800"-04	1.5115"+00	NM	0.98681	0.65354	0.67600	1.13416	0.61367
	5.8420"-04	1.5226"+00	ИМ	0.98716	0.65966	0.70191	1.13219	0.61996
	6.6040"-04	1.5481 +00	NM	0.98746	0.67339	0.71493	1.12717	0.63427
	7.8740"=04	1.5620"+00	NM	0.98774	0.68067	0.72164	1.12462	0.64185
	1.0414"-03	1.6184"+00	NM NM	0.98892	0.70904	0.74857	1.11462	0.67159
	1.1684"-03	1.6414"+00	NM	0.98905	0.72012	0.75879	1.11026	0.68343
	1.2954"-03	1-6579*+00	NM	0.98960	0.72790			
15	1.277403					0.76610	1.10771	0.39160
	1.4478"-03	1.6760"+00	NM	0.98990	0.73625	0.77381	1.10462	0.70052
	1.7014"-03	1.6899"+00	Им	0.99020	0.74254	0.77961	1.10236	0.70722
	1.9558"-03	1.7127"+00	ИW	0.99056	0.75271	0.78893	1.09855	0.71815
	2.2098"-03	1.7414"+00	ИМ	0.99089	0.76320	0.80024	1.09369	0.73169
	2.4892"-03	1.7531"+00	Им	0.99109	0.77016	0.80475	1.09183	0.73706
	2.7432"-03	1.7730"+00	Иh	0.99156	0.77851	0.81236	1.08883	0.74608
	2.8194"-03	1.7676*+00	Им	0.99126	0.77628	0.81025	1.05944	0.74373
	2.8702"=03	1.7762"+00	IIM	0.99163	0.77984	0.81356	1.08835	0.74751
	2.9464"-03	1.7814"+00	NM	0.99163	0.78199	0.81546	1.08744	0.74989
22	2.9972"-03	1,7814"+00	Nh	0.99163	0.78199	0.81546	1.08744	0.74989
23	3.0734*-03	1.7870"+00	ИW	0.99153	0.78430	0.81746	1.08635	0.75249
24	3.1496"-03	1.7898"+00	ИW	0.99172	0.78546	0.01854	1.08607	0.75370
25	3,2766"=03	1.8057*+00	ИW	0.99187	0.79232	0.82467	1.08332	0.76125
26	3.4036"-03	1.6121"+00	Иж	0.99214	0.79445	0.82667	1.09270	0.76353
27	3.5306"=03	1.8125*+00	NM	0.79203	0.79464	0.82677	1.08251	0.76376
88	3.6830"-03	1.8264*+00	NM	0.99311	0.80018	0.83208	1.08132	0.76951
50	3.8100"-03	1.8308*+00	NM	0.99211	0.80192	0.83318	1.07949	0.77183
	3.7370"-03	1.8428*+00	NM	0.99256	0.80663	0.83749	1.07797	0.77691
31	4.2164"-03	1.8567"+00	NM	0.99263	0.51201	0.84219	1.07573	0.78290
	4.4958"-03	1.8679*+00	ИM	0.99280	0.61631	0.84600	1.07407	0.78766
	4.7498*-03	1.4651"+00	ИM	0.99316	0.82284	0.85161	1.07164	0.79486
	5.0038"=03	1.8937"+00	HH	0.99320	0.82607	0.85461	1.07030	0.79848
	5.2324"-03	1.9000*+00	NM	0.99345	0.82838	0.85071	1.06957	0.80099
	5.2832"-03	1.9082"+00	NM	0.99339	0.83144	0.85932	1.06817	0.80448
	5.3086"-03	1,9000*+00	ŊМ	0.99345	0.62636	0.85671	1.06937	0.80099
	5.3574"-03	1.4024"+00	iiM	0.99317	0.82746	0.85751	1.06879	0.80232
	5.4356"-03	1.9031"+00	NM	0.99323	0.82954	0.05761	1.04883	0.80239
40	5.4864"-03	1.4136"+00	N M	0.99361	0.83343	0.06112	1.06755	0.80663
	5.5626"-03	1.9136"+00	NM	0.99361	0.63343	51188.0	1.06755	0.80663
	3.4388"-03	1.9190"+00	NM NM	0.99361	0.83541	0.86262	1.06669	0.80838
43	5.7658"=03	1.4740 +00	NM NM	0.99360	0.83963		1.06484	0.81367
44	201020 -42 201020 -42	1.4388"+00				0.86643		
	5.8928"=03		ΝM	0.99396	0.84261	0.86913	1.06394	0.81690
	6.0178"=03	1.9356*+00	NM	0.99393	0.84145	0.86813	1.06441	0.81560
	6.1722"=03	1.9425"+00	NM NM	0.94340	0.84393	0.87023	1.06329	0.81843
	6.2992"=03	1.4517*+00	ИM	0.99409	0.84724	0.87314	1.06206	0.82212
48	P.45P503	1.9636"+00	NM	0.99413	0.85146	0.87674	1.06026	0.63041
49	6.6802"-03	1.9718"+00	NM NM	0.99424	0.65435	0.87924	1.05911	0.83017

1	7004020)6 HINTE	R/R/8	PROFILE	TABULATION	98	POINTS, DEL	TA AT POI	NT 94
52 7.49307-03 2.0137*00 NM 0.99480 0.8625 0.89466 1.05193 0.85050 53 7.7724*03 2.0226*00 NM 0.99480 0.87230 0.89466 1.05193 0.85050 54 7.8486*03 2.0226*00 NM 0.99490 0.87230 0.89466 1.05193 0.85050 55 7.6974*03 2.0224*00 NM 0.99513 0.87526 0.89476 1.05196 0.85057 55 7.6956*03 2.0324*00 NM 0.99520 0.87429 0.89487 1.05130 0.85266 57 8.0264*03 2.0346*00 NM 0.99520 0.87429 0.89487 1.05130 0.85266 58 8.1026*03 2.0346*00 NM 0.99527 0.87692 0.90037 1.04941 0.85708 59 8.10788*03 2.0486*00 NM 0.99527 0.87692 0.90037 1.04941 0.85708 69 8.10788*03 2.0486*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 60 8.3058*03 2.0486*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 61 8.4328*03 2.035*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 62 8.7122*03 2.0372*00 NM 0.99540 0.88404 0.90508 1.04716 0.86491 62 8.7122*03 2.0372*00 NM 0.99540 0.88493 0.90888 1.04500 0.86941 63 8.4392*03 2.05947*00 NM 0.99584 0.88693 0.90888 1.04500 0.86941 64 8.9602*03 2.05947*00 NM 0.99584 0.88693 0.90888 1.04500 0.86941 65 9.3560*03 2.1009*00 NM 0.99564 0.88693 0.90888 1.04500 0.86941 66 9.3560*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 67 9.4702*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 68 9.3800*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 69 9.3800*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1260*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1260*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 70 1.016*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 71 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 71 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 72 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 7	I	Y	PT2/P	P/20	T0/T0D	M/HD	U/UD	1/10	RHO/RHOD QU/UD
52 7.49307-03 2.0137*00 NM 0.99480 0.8625 0.89466 1.05193 0.85050 53 7.7724*03 2.0226*00 NM 0.99480 0.87230 0.89466 1.05193 0.85050 54 7.8486*03 2.0226*00 NM 0.99490 0.87230 0.89466 1.05193 0.85050 55 7.6974*03 2.0224*00 NM 0.99513 0.87526 0.89476 1.05196 0.85057 55 7.6956*03 2.0324*00 NM 0.99520 0.87429 0.89487 1.05130 0.85266 57 8.0264*03 2.0346*00 NM 0.99520 0.87429 0.89487 1.05130 0.85266 58 8.1026*03 2.0346*00 NM 0.99527 0.87692 0.90037 1.04941 0.85708 59 8.10788*03 2.0486*00 NM 0.99527 0.87692 0.90037 1.04941 0.85708 69 8.10788*03 2.0486*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 60 8.3058*03 2.0486*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 61 8.4328*03 2.035*00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 62 8.7122*03 2.0372*00 NM 0.99540 0.88404 0.90508 1.04716 0.86491 62 8.7122*03 2.0372*00 NM 0.99540 0.88493 0.90888 1.04500 0.86941 63 8.4392*03 2.05947*00 NM 0.99584 0.88693 0.90888 1.04500 0.86941 64 8.9602*03 2.05947*00 NM 0.99584 0.88693 0.90888 1.04500 0.86941 65 9.3560*03 2.1009*00 NM 0.99564 0.88693 0.90888 1.04500 0.86941 66 9.3560*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 67 9.4702*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 68 9.3800*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 69 9.3800*03 2.1009*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1260*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1260*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.91679 1.04065 0.88290 60 9.7262*03 2.1250*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 70 1.016*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 71 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 71 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 72 1.026*00 2.1257*00 NM 0.99650 0.90067 0.90077 1.03640 0.90067 7	51	7.2136"=03	1.9973*+00	HM	0.99460	0.46329	0.88695	1.05558	0.84025
53 7.7724 0.03 2.0236 0.00 NM 0.99899 0.87230 0.8976 1.05193 0.85057 54 7.8466 0.3 2.0234 0.00 NM 0.99513 0.87528 0.89727 1.05193 0.85057 55 7.8974 0.03 2.0234 0.00 NM 0.99513 0.87528 0.89727 1.05193 0.85057 55 7.8974 0.03 2.0234 0.00 NM 0.99520 0.8702 0.89727 1.05183 0.85266 57 8.0264 0.03 2.0314 0.00 NM 0.99520 0.8702 0.89797 1.05130 0.85365 50 8.0264 0.03 2.0314 0.00 NM 0.99520 0.8702 0.89797 1.05130 0.85462 50 8.0264 0.03 2.0314 0.00 NM 0.99520 0.8702 0.89797 1.04911 0.85798 50 8.1728 0.3 2.0314 0.00 NM 0.99523 0.86074 0.90187 1.04911 0.85798 50 8.1728 0.3 2.0314 0.00 NM 0.99523 0.86074 0.90187 1.04911 0.85798 50 8.0358 0.3 2.0486 0.0 NM 0.99523 0.86074 0.90187 1.04917 0.86010 0.00 8.3058 0.3 2.0358 0.0 2.0358 0.0 NM 0.99523 0.86074 0.90187 1.04917 0.86010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				NM					
54 7.8466**-03 2.0236**+00 NM 0.99496 0.8728 0.89472 1.05596 0.85353 55 7.9756**-03 2.0244**+00 NM 0.99513 0.87528 0.89727 1.05536 0.85266 57 8.0244**-03 2.0431**+00 NM 0.99520 0.87602 0.86797 1.05536 0.85266 58 8.1326**-03 2.0431**+00 NM 0.99527 0.87602 0.89797 1.0573 0.85662 59 8.1326**-03 2.0486**+00 NM 0.99527 0.87602 0.99797 1.0677 0.85796 60 8.1026**-03 2.0486**+00 NM 0.99523 0.86074 0.99187 1.04941 0.85796 61 8.4328**-03 2.0486**+00 NM 0.99523 0.86074 0.99187 1.04957 0.86010 61 8.4328**-03 2.0486**+00 NM 0.99523 0.86074 0.99187 1.04957 0.86010 62 8.7122**-03 2.0752**+00 NM 0.99524 0.88640 0.99187 1.04957 0.86010 63 8.8322**-03 2.0752**+00 NM 0.99526 0.88640 0.99187 1.04957 0.86010 64 8.4328**-03 2.0752**+00 NM 0.99526 0.88647 0.90588 1.04540 0.86491 63 8.8322**-03 2.0547**+00 NM 0.99526 0.88647 0.90588 1.04526 0.87179 64 9.2456**-03 2.0907**+00 NM 0.99505 0.88667 0.90588 1.04526 0.87179 65 9.2456**-03 2.1000**+00 NM 0.99505 0.89602 0.91659 1.04178 0.47683 66 9.2356**-03 2.1000**+00 NM 0.99505 0.89602 0.91659 1.04178 0.47683 66 9.2356**-03 2.1000**+00 NM 0.99505 0.89602 0.91659 1.04178 0.47683 67 9.4742**-03 2.1090**+00 NM 0.99510 0.90067 0.91679 1.04065 0.86290 67 9.4742**-03 2.1290**+00 NM 0.99530 0.90067 0.91679 1.04065 0.86290 68 9.7262**-03 2.1361**+00 NM 0.99530 0.90267 0.91679 1.04065 0.86290 69 1.0008**-02 2.1361**+00 NM 0.99530 0.90267 0.91679 1.04066 0.86290 70 1.010**-02 2.1361**+00 NM 0.99530 0.90267 0.91679 1.05560 0.88290 71 1.0216**-02 2.1361**+00 NM 0.99530 0.90267 0.91679 1.03564 0.86830 69 1.0008**-02 2.1361**+00 NM 0.99530 0.9027 0.99261 1.03565 0.89297 71 1.0226**-02 2.1360**+00 NM 0.99530 0.92261 1.03721 0.89297 71 1.0246**-02 2.1360**+00 NM 0.99650 0.91062 0.92991 1.03565 0.89722 71 1.0247**-02 2.1360**+00 NM 0.99650 0.91062 0.92991 1.03565 0.89722 71 1.0248**-02 2.1360**+00 NM 0.99650 0.91062 0.93551 0.03140 0.90162 72 1.0490**-02 2.1555**+00 NM 0.99650 0.91062 0.93551 0.03400 0.90162 73 1.0490**-02 2.1555**+00 NM 0.99650 0.91062 0.93551 0.03400 0.99162 74 1.0490**-02 2.1555**+00 NM									
55 7.8974"-03 2.0324"+00 NM 0.99520 0.67528 0.89727 1.05087 0.85383 56 7.7956"-03 2.0346"+00 NM 0.99520 0.67629 0.96547 1.05130 0.85266 57 8.0264"-03 2.0346"+00 NM 0.99520 0.87692 0.90537 1.04491 0.85708 58 8.1268"-03 2.0486"+00 NM 0.99527 0.87692 0.90537 1.04491 0.85708 59 8.13788"-03 2.0486"+00 NM 0.99527 0.86074 0.90187 1.04857 0.86010 60 8.3058"-03 2.0486"+00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 61 8.4328"-03 2.0397"+00 NM 0.99523 0.86074 0.90187 1.04857 0.86010 62 8.7122"-03 2.03754"+00 NM 0.99524 0.86494 0.99508 1.04716 0.86431 62 8.7122"-03 2.0754"+00 NM 0.99526 0.86493 0.90508 1.04716 0.86431 63 8.4328"-03 2.0754"+00 NM 0.99526 0.86933 0.90508 1.04716 0.86431 64 8.628"-03 2.0047"+00 NM 0.99526 0.86937 0.90508 1.04716 0.87139 65 9.2858"-03 2.1000"+00 NM 0.99506 0.80697 0.90508 1.04716 0.87139 65 9.2858"-03 2.1000"+00 NM 0.99506 0.89627 0.90508 1.04718 0.87139 65 9.2858"-03 2.1000"+00 NM 0.99506 0.89629 0.91659 1.04178 0.37733 66 9.3950"-03 2.1000"+00 NM 0.99506 0.89629 0.91659 1.04178 0.37733 67 9.4772"-03 2.1000"+00 NM 0.99506 0.90067 0.91679 1.04065 0.86240 68 9.7262"-03 2.1361"+00 NM 0.99507 0.90067 0.91679 1.04065 0.86240 69 1.0008"-02 2.1361"+00 NM 0.99650 0.90067 0.91679 1.04065 0.86240 69 1.0008"-02 2.1361"+00 NM 0.99650 0.90067 0.91679 1.05640 0.86330 70 1.616"-02 2.1361"+00 NM 0.99650 0.91002 0.92670 1.03761 0.89363 71 1.0267"-02 2.1361"+00 NM 0.99651 0.91002 0.92670 1.03761 0.89363 72 1.0267"-02 2.1361"+00 NM 0.99651 0.91002 0.92670 1.03761 0.89363 73 1.0267"-02 2.1361"+00 NM 0.99650 0.91002 0.92670 1.03761 0.89363 74 1.0267"-02 2.1361"+00 NM 0.99650 0.9121 0.3131 1.03440 0.90067 75 1.0409"-02 2.1357"+00 NM 0.99660 0.92771 0.93560 0.92921 1.03565 0.89001 76 1.0267"-02 2.1361"+00 NM 0.99660 0.9277 0.93562 1.03561 0.09001 77 1.0268"-02 2.1371"+00 NM 0.99660 0.9277 0.93562 1.03561 0.09001 78 1.0268"-02 2.1371"+00 NM 0.99660 0.9277 0.93562 1.03561 0.09001 79 1.0369"-02 2.1371"+00 NM 0.99680 0.9277 0.93562 1.03561 0.09001 86 1.1161"-02 2.2387"+00 NM 0.99680 0.90001 0.90001 0.03000 0.90007 79 1									
57 8. 7.9°55"-03 2.024"*00 NM 0.99530 0.87020 0.8777 1.05130 0.85266 57 8. 1026"*03 2.0431"*00 NM 0.99530 0.87002 0.9037 1.04941 0.85798 58 8. 1026"*03 2.0486"*00 NM 0.99527 0.87002 0.9037 1.04941 0.85798 59 8. 1026"*03 2.0486"*00 NM 0.99523 0.8074 0.90187 1.04941 0.85798 60 8. 1026"*03 2.0486"*00 NM 0.99523 0.8074 0.90187 1.04957 0.80010 61 8. 4328"*03 2.0398"*00 NM 0.99523 0.8074 0.99187 1.04857 0.80010 61 8. 4328"*03 2.0398"*00 NM 0.99523 0.8074 0.99187 1.04857 0.80010 62 8. 1122"*03 2.0732"*00 NM 0.99524 0.88493 0.9088 1.04540 0.86491 63 8. 8372"*03 2.0754"*00 NM 0.99524 0.88493 0.70888 1.04540 0.86491 64 8. 4328"*03 2.0394"*00 NM 0.99524 0.88693 0.70888 1.04540 0.86491 64 8. 4328"*03 2.090"*00 NM 0.99505 0.88693 0.70888 1.04526 0.87179 65 9.2456"*03 2.1000"*00 NM 0.99505 0.89602 0.91859 1.04178 0.47783 65 9.2456"*03 2.1000"*00 NM 0.99505 0.89602 0.91859 1.04178 0.47783 65 9.2456"*03 2.1000"*00 NM 0.99505 0.89602 0.91859 1.04178 0.47883 66 9.3580"*03 2.1090"*00 NM 0.99510 0.90067 0.91879 1.04065 0.88290 67 9.4742"*03 2.1290"*00 NM 0.99510 0.90067 0.91879 1.04065 0.88290 68 9.7228"*03 2.1351"*00 NM 0.99530 0.902280 1.03864 0.88630 69 1.0008"*02 2.1361"*00 NM 0.99530 0.90240 0.92280 1.03864 0.88630 69 1.0008"*02 2.1361"*00 NM 0.99530 0.92280 1.03864 0.88630 69 1.0008"*02 2.1361"*00 NM 0.99550 0.9044 0.92262 1.03721 0.89415 72 1.0245"*02 2.1361"*00 NM 0.99550 0.91308 0.92921 1.03555 0.89012 73 1.0361"*02 2.1361"*00 NM 0.99650 0.91022 0.9291 1.03555 0.89012 74 1.0490"*02 2.1555"*00 NM 0.99650 0.91308 0.92921 1.03565 0.89722 75 1.0490"*02 2.1555"*00 NM 0.99650 0.91308 0.92921 1.03565 0.89722 76 1.0490"*02 2.1555"*00 NM 0.99650 0.91308 0.92921 1.03565 0.89722 77 1.0490"*02 2.1555"*00 NM 0.99650 0.91308 0.92921 1.03565 0.89722 77 1.0490"*02 2.1555"*00 NM 0.99650 0.91308 0.92921 1.03565 0.89722 77 1.0490"*02 2.1555"*00 NM 0.99660 0.91308 0.92921 1.03565 0.89722 78 1.0490"*02 2.1555"*00 NM 0.99660 0.91308 0.92921 1.03565 0.89722 79 1.0490"*02 2.1555"*00 NM 0.99660 0.91308 0.92921 1.03565 0.89722 79 1.0490"*02 2.1555									
\$7 8.0264"-03 2.0346"*00 NM 0.99527 0.07602 0.89797 1.05733 0.85708		7.9756"-03							
50 8.1328*-03 2.0431**00 NM 0.49527 0.67602 0.40018 1.0491 0.85798 39 41.7868*-03 2.0486**00 NM 0.49523 0.86074 0.79187 1.04857 0.86010 61 8.4328*-03 2.0486**00 NM 0.49523 0.86074 0.79187 1.04857 0.86010 61 8.4328*-03 2.0597*+00 NM 0.49524 0.86466 0.49508 1.04716 0.86431 62 8.7128*-03 2.0732**00 NM 0.49584 0.88466 0.49508 1.04716 0.86431 62 8.7128*-03 2.0754*+00 NM 0.49584 0.88697 0.49058 1.04766 0.86441 63 8.6372*-03 2.05754*+00 NM 0.49584 0.88697 0.49058 1.04768 0.87379 65 9.2456*-03 2.1009**00 NM 0.49584 0.88697 0.49059 1.04178 0.4738 0.47379 65 9.2456*-03 2.1009**00 NM 0.49605 0.69802 0.49165 1.04178 0.47983 66 9.7862*-03 2.1009**00 NM 0.49605 0.69802 0.49165 1.04065 0.88290 67 9.7262*-03 2.1090**00 NM 0.49605 0.49802 0.49167 1.04065 0.88290 68 9.7262*-03 2.1290**00 NM 0.49650 0.49002 0.49280 1.04065 0.88290 69 1.0008*-02 2.1381**00 NM 0.49657 0.49102 0.42280 1.04065 0.88240 69 1.0008*-02 2.1381**00 NM 0.49657 0.49102 0.42280 1.0364 0.86830 69 1.0008*-02 2.1381**00 NM 0.49657 0.49102 0.42280 1.03721 0.86435 72 1.0228**-02 2.1361**00 NM 0.49657 0.49102 0.42280 1.03721 0.86435 72 1.0228**-02 2.1361**00 NM 0.49657 0.49102 0.42280 1.03567 0.68287 71 1.0236**-02 2.1361**00 NM 0.49657 0.49102 0.42280 1.03567 0.68287 71 1.0236**-02 2.1361**00 NM 0.49657 0.49102 0.42280 1.03567 0.68287 71 1.0236**-02 2.1361**00 NM 0.49657 0.49102 0.42280 1.03567 0.68722 0.44287 0.									
\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		8.1026"-03	2.0431*+00	ЙM	0.99527				
60 8_3058*03 2_4986*00 NM 0_99523 0_88474 0_104157 0_86510 0 61 8_4328*03 2_0732*00 NM 0_99546 0_884893 0_90888 1_04756 0_86491 62 8_7122*03 2_0752*00 NM 0_99546 0_88693 0_90888 1_04754 0_8691 63 8_8392*03 2_0847*00 NM 0_99584 0_88693 0_90888 1_047526 0_87019 64 8_962*03 2_847*00 NM 0_99587 0_8829 0_91299 1_04158 0_87379 65 9_2356*03 2_1000*00 NM 0_99605 0_98602 0_91599 1_04178 0_87936 66 9_3980*03 2_1000*00 NM 0_99605 0_90802 0_91679 1_04065 0_88290 67 9_4742*03 2_1230*00 NM 0_99610 0_90067 0_91879 1_04065 0_88290 68 9_7282*03 2_1381*00 NM 0_99610 0_90067 0_91879 1_04065 0_88290 69 1_0008*02 2_1381*00 NM 0_99659 0_91002 0_92601 0_93604 0_8830 69 1_0008*02 2_1381*00 NM 0_99659 0_91002 0_92670 1_03701 0_85363 70 1_0160*02 2_1383*00 NM 0_99659 0_91002 0_92670 1_03701 0_85363 71 1_0236*02 2_1383*00 NM 0_99659 0_91002 0_92670 1_03701 0_85363 72 1_0236*02 2_1394*00 NM 0_99659 0_91002 0_92670 1_03701 0_85363 73 1_036*02 2_1394*00 NM 0_99659 0_91002 0_92670 1_03701 0_85363 74 1_0236*02 2_1394*00 NM 0_99659 0_91002 0_92670 1_03701 0_89365 75 1_036*02 2_1394*00 NM 0_99659 0_91082 0_92621 1_03552 0_89601 75 1_036*02 2_1391*00 NM 0_99659 0_91082 0_92621 1_03552 0_89601 76 1_036*02 2_1387*00 NM 0_99659 0_91362 0_92621 1_03552 0_89601 76 1_036*02 2_1527*00 NM 0_99659 0_91362 0_93051 1_03449 0_89966 77 1_040*02 2_1527*00 NM 0_99659 0_91362 0_93051 1_03449 0_89966 77 1_040*02 2_1527*00 NM 0_99659 0_91362 0_93051 1_03440 0_90102 78 1_040*02 2_1527*00 NM 0_99659 0_91262 0_93151 1_03479 0_90007 78 1_040*02 2_1527*00 NM 0_99659 0_91262 0_93051 1_03400 0_90107 79 1_040*02 2_1527*00 NM 0_99659 0_92548 0_93072 1_03562 1_03251 0_90015 99 1_040*09 0_9008 0_9008 0_9009 0	59			NM					
61 8.4328"-03 2.0597"+00 NM 0.99546 0.88693 1.04716 0.86431 0.3528"-03 2.0754"+00 NM 0.99584 0.88695 0.90888 1.04540 0.86941 0.36898 0.86983 1.04540 0.86941 0.99584 0.88695 0.90858 1.04540 0.86941 0.99584 0.88695 0.90858 1.04526 0.87019 0.99584 0.88695 0.90858 1.04526 0.87019 0.9088 0.9088 0.9088 0.9088 0.9088 0.9087019 0.9088 0.		8.3058*-03							
62 8.7122**03 2.0752**00 NM 0.9956 0.68893 0.90686 1.0840 0.68941 63 8.6392**03 2.0754**00 NM 0.9958 0.68697 0.90958 1.08726 0.67019 64 8.9602**03 2.0447**00 NM 0.99507 0.88273 0.91209 1.04383 0.27379 65 9.2456**03 2.1090**00 NM 0.99605 0.08802 0.91659 1.04178 0.07903 66 9.3950**03 2.1090**00 NM 0.99605 0.90607 0.91679 1.04065 0.68290 67 9.4742**03 2.1090**00 NM 0.99610 0.99067 0.91879 1.04065 0.68290 68 9.7262**03 2.1090**00 NM 0.99610 0.99067 0.91879 1.04065 0.68290 68 9.7262**03 2.1250**00 NM 0.99659 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.91002 0.92670 1.03701 0.69363 0.99363 0.99363 0.99363 1.03701 0.69363 0.99363 0.99363 0.99363 1.03701 0.69363 0.99363 0.99363 1.03701 0.69363 0.99363 0.99363 1.03701 0.69363 0.99363 0.99363 0.99363 1.03701 0.69363 0.99363 0	6.1								
63 6.352****-63 2.095***-800									
64 8.962"=03 2.0847*00 NM 0.99605 0.9802 1.04183 0.27379 65 9.2856"=03 2.1090"+00 NM 0.99605 0.9802 0.91659 1.04178 0.07983 66 9.3960"=03 2.1090"+00 NM 0.99610 0.90067 0.91679 1.04065 0.88290 67 9.4742"=03 2.1364"+00 NM 0.99610 0.90067 0.71679 1.04065 0.88290 68 9.12008"=02 2.1361"+00 NM 0.99637 0.9038 0.92280 1.0364 0.88830 69 1.0008"=02 2.1361"+00 NM 0.99659 0.91002 0.92670 1.03701 0.89363 70 1.6160"=02 2.1364"+00 NM 0.99659 0.91002 0.92670 1.03701 0.89363 71 1.0236"=02 2.1394"+00 NM 0.99659 0.91032 0.92201 1.03521 0.89405 72 1.0236"=02 2.1394"+00 NM 0.99659 0.91380 0.92201 1.0352 0.89405 73 1.0364"=02 2.1352"+00 NM 0.99659 0.91380 0.92201 1.03550 0.89722 74 1.0405"=02 2.1555+00 NM 0.99659 0.91380 0.9221 1.03565 0.89722 75 1.0490"=02 2.1555+00 NM 0.99661 0.91381 1.03449 0.89906 75 1.0490"=02 2.1591"+00 NM 0.99681 0.91381 1.03440 0.90102 77 1.0403"=02 2.1571"+00 NM 0.99681 0.91381 1.03440 0.90102 77 1.0073"=02 2.1581"+00 NM 0.99681 0.91380 0.93201 1.03400 0.90102 77 1.0073"=02 2.1581"+00 NM 0.99680 0.9277 0.93562 1.03551 0.90115 80 1.1102"=02 2.1571"+00 NM 0.99680 0.9277 0.93562 1.03551 0.90115 81 1.1227"=02 2.1721"+00 NM 0.99704 0.92159 0.93521 1.03400 0.90102 82 1.1354"=02 2.1225"+00 NM 0.99704 0.92159 0.93521 1.03400 0.90103 84 1.1827"=02 2.1935"+00 NM 0.99704 0.92159 0.93521 1.03210 0.90115 81 1.1227"=02 2.1935"+00 NM 0.99704 0.92159 0.93522 1.03251 0.90115 84 1.1227"=02 2.1935"+00 NM 0.99704 0.92165 0.93522 1.03251 0.90115 85 1.1913"=02 2.2241"+00 NM 0.99704 0.92165 0.93522 1.03251 0.90115 86 1.1214"=02 2.2357"+00 NM 0.99704 0.92185 0.93522 1.03251 0.90115 87 1.4427"=02 2.1935"+00 NM 0.99704 0.92185 0.93522 1.03251 0.90115 86 1.1214"=02 2.2357"+00 NM 0.99704 0.93505 0.93505 1.00140 0.93505 0.93501 0.93505 0									
## 9									
16		9.2456*-03							
68 9.742**03 2.1000**+00 HM 0.99610 0.90067 0.91879 1.04065 0.88240 68 9.7282**01 2.1281**400 NM 0.99659 0.91002 0.92670 1.03864 0.88330 69 1.0008**02 2.1361**400 NM 0.99659 0.91002 0.92670 1.03701 0.85363 70 1.0161**02 2.1363**400 NM 0.99659 0.91002 0.92670 1.03701 0.85363 71 1.0286**02 2.1363**400 NM 0.99659 0.91002 0.92670 1.03721 0.89463 72 1.0287**02 2.1594**400 NM 0.99659 0.91003 0.92701 1.03552 0.89601 73 1.0367**02 2.157**400 NM 0.99659 0.91308 0.92921 1.03552 0.89601 73 1.0367**02 2.157**400 NM 0.99659 0.91308 0.92921 1.03555 0.89702 74 1.0340**02 2.1555**400 NM 0.99655 0.93131 1.03471 0.90007 75 1.0490**02 2.1555**400 NM 0.99655 0.9165 0.93131 1.03471 0.90007 76 1.056**02 2.1555**400 NM 0.99686 0.91721 0.93271 1.03409 0.90197 77 1.0695**02 2.1571**400 NM 0.99686 0.91721 0.93271 1.03409 0.90197 78 1.0826**02 2.1571**400 NM 0.99686 0.9277 0.93562 1.03551 0.90015 79 1.0975**02 2.1747**400 NM 0.99686 0.9277 0.93562 1.03251 0.90015 81 1.1227**02 2.1935**400 NM 0.99704 0.92159 0.93632 1.05221 0.90710 80 1.1100**02 2.1871**400 NM 0.99704 0.92159 0.93632 1.05221 0.90710 80 1.1100**02 2.1871**400 NM 0.99704 0.92159 0.93632 1.05221 0.90710 81 1.1227**02 2.1935**400 NM 0.99704 0.92159 0.93632 1.05221 0.90710 81 1.1227**02 2.1935**400 NM 0.99704 0.92168 0.93952 1.03057 0.91165 81 1.1227**02 2.1935**400 NM 0.99704 0.92168 0.93262 1.02280 0.9129 0.9139 82 1.1334**02 2.2221**400 NM 0.99704 0.93000 0.94202 1.02280 0.9139 83 1.1633**02 2.2221**400 NM 0.99755 0.94808 0.93264 1.02280 0.92491 84 1.22421**02 2.2327**400 NM 0.99704 0.93000 0.94703 1.02888 0.9327 0.93502 0.93503 1.02600 0.94202 1.02280 0.93201 1.02600 0.94202 1.02280 0.93201 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 1.02600 0.94202 0.9400 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000									
68 9.7282**-03 2.1343*+00 NM 0.99637 0.90338 0.92280 1.03684 0.88330 NM 0.99637 0.90348 0.92280 1.03721 0.87353 NM 0.99639 0.91002 0.92670 1.03721 0.87363 NM 0.99639 0.91002 0.92670 1.03721 0.87363 NM 0.99639 0.91043 0.92670 1.03721 0.87363 NM 0.99639 0.91043 0.92701 1.03721 0.89297 NM 0.99639 0.91363 0.92701 1.03574 0.89297 NM 0.99639 0.91363 0.92701 1.03552 0.89801 NM 0.99639 0.91363 0.92921 1.03552 0.89801 NM 0.99639 0.91363 0.92921 1.03552 0.89801 NM 0.99639 0.91363 0.92921 1.03552 0.89722 NM 0.99659 0.91363 0.92921 1.03552 0.89722 NM 0.99659 0.91363 0.92921 1.03552 0.89722 NM 0.99659 0.91363 0.92921 1.03549 0.89706 NM 0.99659 0.91556 0.93531 1.03419 0.90007 NM 0.99659 0.91556 0.93531 1.03419 0.90007 NM 0.99659 0.91556 0.93531 1.03419 0.90007 NM 0.99659 0.91556 0.93521 1.03440 0.90102 NM 0.99689 0.91556 0.93521 1.03440 0.90102 NM 0.99689 0.91556 0.93521 1.03440 0.90102 NM 0.99688 0.91721 0.93562 1.03251 0.90615 NM 0.99688 0.92077 0.93562 1.03251 0.90615 NM 0.99688 0.92077 0.93562 1.03251 0.90615 NM 0.99784 0.92159 0.93532 1.03221 0.901165 NM 0.99784 0.92169 0.93532 1.03221 0.901165 NM 0.99784 0.92189 0.93532 1.03221 0.901165 NM 0.99784 0.92189 0.93532 1.03221 0.901165 NM 0.99783 0.92888 0.93992 1.03057 0.91165 NM 0.99783 0.92888 0.93992 1.03067 0.91165 NM 0.99783 0.92888 0.93992 1.03067 0.93181 NM 0.99784 0.93888 0.99893 1.02848 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.93891 0.93888 0.									
49 1.0008**-02 2.1361*+00 NM 0.99659 0.91002 0.92670 1.03761 0.86363 70 1.6160**-02 2.1361*+00 NM 0.99651 0.91002 0.92670 1.03761 0.86363 71 1.0236**-02 2.1394*+00 NM 0.99651 0.91003 0.92701 1.03552 0.89801 72 1.0287**-02 2.1500**-00 NM 0.99659 0.91308 0.92921 1.03552 0.89801 73 1.0363**-02 2.1527*+00 NM 0.99659 0.91308 0.92921 1.03555 0.89801 74 1.034**-02 2.1527*+00 NM 0.99659 0.91308 0.92921 1.03555 0.89906 75 1.0490**-02 2.1555**-00 NM 0.99659 0.91556 0.93131 1.03449 0.89906 75 1.0490**-02 2.1551**+00 NM 0.99663 0.91556 0.93131 1.03471 0.90007 76 1.0506**-02 2.1551**+00 NM 0.99686 0.91721 0.93201 1.03440 0.90102 77 1.073**-02 2.1508*+00 NM 0.99686 0.91721 0.93271 1.03400 0.90107 78 1.0820**-02 2.1721**+00 NM 0.99686 0.91721 0.93271 1.03400 0.90107 79 1.0973**-02 2.1747*+00 NM 0.99686 0.92077 0.93562 1.03251 0.90107 80 1.1100**-02 2.1871**+00 NM 0.99704 0.92159 0.93532 1.03221 0.90710 81 1.1227**-02 2.1935**+00 NM 0.99704 0.92159 0.93532 1.03221 0.90710 82 1.1324**-02 2.1935**+00 NM 0.99704 0.92180 0.93203 1.03221 0.91165 81 1.1227**-02 2.12217**+00 NM 0.99723 0.92747 0.94122 1.02989 0.93191 82 1.1324**-02 2.22217**+00 NM 0.99723 0.92747 0.94203 1.02989 0.93190 83 1.1633**-02 2.22217**+00 NM 0.99724 0.93615 0.94203 1.02940 0.93203 84 1.1887**-02 2.22217**+00 NM 0.99764 0.93615 0.94203 1.02940 0.93202 85 1.1213**-02 2.2217**+00 NM 0.99764 0.93615 0.94203 1.02940 0.93202 86 1.2141**-02 2.2387**+00 NM 0.99764 0.93125 0.99264 1.02410 0.93022 87 1.2421**-02 2.2387**+00 NM 0.99764 0.93125 0.99264 1.02410 0.93022 89 1.4427**-02 2.3324**+00 NM 0.99765 0.94574 0.95244 1.02410 0.93022 89 1.4427**-02 2.3324**+00 NM 0.99977 0.96708 0.97367 1.01360 0.96054 90 1.6078**-02 2.3438**+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 93 1.3380**-02 2.4436**+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 94 2.1631**-02 2.4436**+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 95 2.5945**-02 2.4436**+00 NM 0.99978 0.99355 0.99407 1.00071 1.00097 95 2.5945**-02 2.4436**+00 NM 1.00002 1.00003 1.00070 0.99975 1.00095									
70 1.61b/m-02 2.1363*+00 NM 0.99634 0.9044 0.92620 1.03721 0.60297 71 1.0236**-02 2.1364*+00 NM 0.99639 0.91043 0.92701 1.03562 0.69801 73 1.036**-02 2.1477*+00 NM 0.99639 0.91362 0.92921 1.03565 0.69801 73 1.036**-02 2.1477*+00 NM 0.99639 0.91368 0.92921 1.03565 0.69801 74 1.0435**-02 2.1557*+00 NM 0.99639 0.91465 0.93031 1.03449 0.89906 75 1.0490*-02 2.1551*+00 NM 0.99645 0.91556 0.93131 1.03441 0.89006 76 1.0490*-02 2.1551*+00 NM 0.99646 0.91721 0.93271 1.03409 0.90102 77 1.0403**-02 2.1568*+00 NM 0.99688 0.92077 0.93562 1.03249 0.90102 78 1.0820**-02 2.1747*+00 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973**-02 2.1747*+00 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973**-02 2.1747*+00 NM 0.99704 0.92548 0.93972 1.03309 0.90115 80 1.1100**-02 2.1871**+00 NM 0.99704 0.92548 0.93972 1.03057 0.91165 81 1.1227**-02 2.1975**+00 NM 0.99723 0.92747 0.94122 1.02989 0.71391 82 1.1314**-02 2.2217**+00 NM 0.99724 0.92646 0.94202 1.02943 0.91509 83 1.1633**-02 2.2217**+00 NM 0.99724 0.93615 0.94202 1.02943 0.91509 84 1.1887**-02 2.2217**+00 NM 0.99754 0.93615 0.94202 1.02943 0.95603 85 1.1913**-02 2.2217**+00 NM 0.99754 0.93615 0.94202 1.02943 0.95603 85 1.1913**-02 2.2241**+00 NM 0.99754 0.93615 0.94202 1.02943 0.95603 86 1.2141**-02 2.2241**+00 NM 0.99764 0.93615 0.94202 1.02943 0.95603 87 1.2421**-02 2.2329**+00 NM 0.99754 0.93615 0.94503 1.02800 0.92401 86 1.2700**-02 2.2241**+00 NM 0.99755 0.94503 1.02800 0.92401 87 1.2421**-02 2.3232**+00 NM 0.99765 0.94503 1.02800 0.93522 87 1.2421**-02 2.3232**+00 NM 0.99877 0.93603 1.00787 0.97601 90 1.6078**-02 2.3252**+00 NM 0.99877 0.94503 0.94503 1.00170 0.99510 91 1.6943**-02 2.3254**+00 NM 0.99877 0.99505 0.99680 1.00171 0.99510 92 2.5043**-02 2.4428**+00 NM 0.99978 0.99795 0.99680 1.00171 0.99510 93 2.5043**-02 2.4428**+00 NM 0.99978 0.99795 0.99680 1.00171 0.99975 1.00000 93 2.5043**-00 2.4428**+00 NM 1.000025 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0000									
71 1.0236*-02 2.1594*000 NM 0.99679 0.91043 0.02991 1.03552 0.59601 72 1.0287*-02 2.1477*-000 NM 0.99679 0.91308 0.02991 1.03552 0.59601 73 1.036*-02 2.1477*-000 NM 0.99653 0.91465 0.93051 1.03499 0.89906 74 1.043**-02 2.1555*+000 NM 0.99653 0.91465 0.93051 1.03499 0.89906 75 1.0490*-02 2.1555*+000 NM 0.99675 0.91556 0.93131 1.03491 0.90007 76 1.0490*-02 2.1551*+000 NM 0.99686 0.91721 0.93271 1.03409 0.90197 77 1.0493**-02 2.1591*+000 NM 0.99686 0.91721 0.93271 1.03409 0.90197 78 1.0620**-02 2.1571*+000 NM 0.99686 0.91721 0.93271 1.03409 0.90197 79 1.0620**-02 2.1747*+000 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973**-02 2.1747*+000 NM 0.99704 0.92548 0.93952 1.03251 0.90615 81 1.1227**-02 2.1871**-000 NM 0.99704 0.92548 0.93952 1.03251 0.90615 82 1.1354**-02 2.1871**-000 NM 0.99723 0.92747 0.94122 1.02989 0.91195 82 1.1354**-02 2.2271**-000 NM 0.99723 0.92747 0.94423 1.02989 0.91391 84 1.1857**-02 2.2271**-000 NM 0.99724 0.93565 1.02241 0.92403 0.9109 85 1.1633**-02 2.2271**-000 NM 0.99724 0.93565 0.94693 1.02560 0.92403 86 1.1857**-02 2.2271**-000 NM 0.99724 0.93565 0.94693 1.02560 0.92403 86 1.2400**-02 2.2271**-000 NM 0.99724 0.93565 1.02240 0.92403 87 1.2421**-02 2.2387**-000 NM 0.99725 0.93565 1.02240 0.93022 87 1.2421**-02 2.2387**-000 NM 0.99725 0.93565 1.02400 0.92403 89 1.2421**-02 2.2387**-000 NM 0.99725 0.93565 1.00146 0.93022 89 1.2421**-02 2.2387**-000 NM 0.99725 0.93565 1.00146 0.94036 1.00146 0.94036 1.00146 0.94036 1.00146 0.94036 1.00146 0.94036 1.00146 0.94036 1.00146 0.94036 1.0014									
72 1.0287**02 2.1500*+00 MM 0.99679 0.91362 0.9291 1.03552 0.89601 73 1.0364**02 2.1577*+00 MM 0.99659 0.91308 0.92821 1.03565 0.89782 74 1.0434**02 2.1555**+00 MM 0.99675 0.91556 0.93131 1.03471 0.90007 75 1.0490**-02 2.1551**+00 MM 0.99675 0.91556 0.93131 1.03471 0.90007 76 1.0506**-02 2.1551**+00 MM 0.99681 0.91638 0.93201 1.03440 0.90102 77 1.0473**-02 2.1571**+00 MM 0.99688 0.92077 0.93562 1.03240 0.90107 78 1.0820**-02 2.1721**+00 MM 0.99688 0.92077 0.93562 1.03221 0.900157 79 1.0973**-02 2.1871**+00 MM 0.99688 0.92077 0.93562 1.03221 0.900157 79 1.0973**-02 2.1871**+00 MM 0.99704 0.92159 0.93552 1.03221 0.90710 80 1.1100**-02 2.1871**+00 MM 0.99704 0.92189 0.93952 1.03057 0.91165 81 1.1227**-02 2.1871**+00 MM 0.99704 0.92189 0.93952 1.02089 0.91509 83 1.1633**-02 2.2217*+00 MM 0.99704 0.92886 0.94202 1.02983 0.91509 83 1.1633**-02 2.2217*+00 MM 0.99704 0.93615 0.94873 1.02968 0.92403 84 1.1837**-02 2.2217*+00 MM 0.99704 0.93615 0.94873 1.02964 0.92403 85 1.1913**-02 2.2241**+00 MM 0.99704 0.93615 0.94873 1.02960 0.92403 86 1.2141**-02 2.2361**+00 MM 0.99704 0.93615 0.94873 1.02960 0.92403 86 1.2141**-02 2.2361**+00 MM 0.99704 0.93690 0.94903 1.02008 0.92401 88 1.2400**-02 2.2241**+00 MM 0.99704 0.93690 0.94903 1.02008 0.92401 89 1.4427*-02 2.3238**+00 MM 0.99704 0.93555 0.99680 1.02146 0.93621 89 1.4427**-02 2.3248**+00 MM 0.99809 0.94823 0.95835 1.02146 0.93621 89 1.4427**-02 2.3248**+00 MM 0.99809 0.94823 0.95835 1.02146 0.94654 91 1.4427**-02 2.3248**+00 MM 0.99809 0.94823 0.95805 1.00140 0.99711 0.99211 92 1.4442**-02 2.3248**+00 MM 0.99970 0.99705 0.99680 1.00071 0.99510 93 2.5045**-02 2.4456**+00 MM 0.99970 0.99495 0.99680 1.00170 0.99510 94 2.1031**-02 2.4456**+00 MM 1.000025 1.001065 1.00107 0.99975 1.00095 95 2.5045**-02 2.4456**+00 MM 1.00012 1.00003 1.00070 0.99975 1.00095									
73 1.0364**02 2.1477**00 NM 0.99659 0.91308 0.92921 1.03565 0.69722 74 1.034**02 2.1557**00 NM 0.99653 0.91465 0.93051 1.03449 0.89906 75 1.0490**02 2.1555**+00 NM 0.99663 0.91465 0.93151 1.03449 0.89906 76 1.0566**02 2.1551**+00 NM 0.99681 0.91638 0.93201 1.03440 0.90102 7** 1.0473**02 2.1668**+00 NM 0.99686 0.91721 0.93271 1.03409 0.90197 7** 1.0473**02 2.1721**+00 NM 0.99686 0.91721 0.93562 1.03251 0.90615 79 1.0973**02 2.1721**+00 NM 0.99686 0.91721 0.93562 1.03251 0.90615 7** 1.0973**02 2.1721**+00 NM 0.99704 0.92548 0.93552 1.03251 0.90710 80 1.1100**02 2.1951**+00 NM 0.99704 0.92548 0.93552 1.03251 0.90710 81 1.1227***02 2.1955**+00 NM 0.99723 0.92548 0.93552 1.022943 0.91509 82 1.1334**02 2.1957**+00 NM 0.99723 0.92548 0.94202 1.02943 0.91509 83 1.1633***02 2.2217**+00 NM 0.99754 0.93562 0.94202 1.02943 0.91509 83 1.1633***02 2.2217**+00 NM 0.99754 0.93562 0.94403 1.02640 0.92403 85 1.1913**02 2.2221**+00 NM 0.99764 0.93509 0.94403 1.02640 0.92403 85 1.1241***02 2.2221**+00 NM 0.99764 0.93509 0.94403 1.02640 0.92401 86 1.2141**02 2.2231**+00 NM 0.99764 0.93509 0.94403 1.02640 0.92603 85 1.1241**02 2.2231**+00 NM 0.99764 0.93509 0.94503 1.02600 0.92603 85 1.1241**02 2.2321**+00 NM 0.99765 0.94432 0.95224 1.02410 0.93022 87 1.2421***02 2.2321**+00 NM 0.99765 0.94574 0.95224 1.02410 0.93022 87 1.2421***02 2.2532**+00 NM 0.99765 0.94574 0.95224 1.02410 0.93022 87 1.2421***02 2.2532**+00 NM 0.99877 0.96708 0.97557 1.03146 0.96584 0.96584 0.96584 0.99557 1.03146 0.96584 0.96584 0.99557 1.03146 0.96584 0.96584 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.03146 0.99557 0.99557 1.030000 1.00									
74 1.0934**-02 2.1527*+00 NM 0.99663 0.91465 0.93051 1.03449 0.89906 75 1.0490**-02 2.1555**+00 NM 0.99675 0.91556 0.93131 1.03471 0.90007 76 1.0506**-02 2.15608*+00 NM 0.99686 0.91721 0.93221 1.03440 0.90102 77 1.0473**-02 2.1608*+00 NM 0.99686 0.91721 0.93271 1.03400 0.90102 78 1.0820**-02 2.1747*+00 NM 0.99688 0.92077 0.93562 1.03221 0.90615 79 1.0973**-02 2.1747*+00 NM 0.99094 0.92159 0.93632 1.03221 0.90710 80 1.100**-02 2.1871**+00 NM 0.99704 0.92548 0.93592 1.03057 0.91165 81 1.1227**-02 2.1975**+00 NM 0.99723 0.92747 0.94122 1.02989 0.91391 82 1.1334**-02 2.221**+00 NM 0.99723 0.92747 0.94122 1.02989 0.91391 83 1.1633**-02 2.221**+00 NM 0.99723 0.93785 0.9403 1.02641 0.92403 84 1.1887**-02 2.2221**+00 NM 0.99737 0.93785 0.94073 1.02600 0.92403 85 1.1813**-02 2.2221**+00 NM 0.99737 0.93785 0.94073 1.02600 0.92403 86 1.2141**-02 2.2221**+00 NM 0.99764 0.93690 0.94903 1.02600 0.92603 85 1.1813**-02 2.2221**+00 NM 0.99764 0.93690 0.94903 1.02600 0.92403 86 1.2141**-02 2.2327**+00 NM 0.99764 0.93690 0.94503 1.02600 0.92403 87 1.2421**-02 2.2327**+00 NM 0.99764 0.93690 0.94503 1.02600 0.93022 87 1.2421**-02 2.2327**+00 NM 0.99764 0.93690 0.94503 1.02600 0.93622 0.93536 88 1.2700**-02 2.2614**+00 NM 0.99889 0.94823 0.99835 1.02146 0.93621 90 1.4427**-02 2.3232**+00 NM 0.99889 0.94823 0.99803 1.00710 0.99510 91 1.4942**-02 2.3375**+00 NM 0.99977 0.96702 0.98969 1.00542 0.96415 92 1.5491**-02 2.3416**+00 NM 0.99987 0.94823 0.99809 1.00542 0.96415 93 1.9360**-02 2.4458**+00 NM 0.99987 0.99850 0.99680 1.00711 0.99211 93 1.9360**-02 2.4458**+00 NM 0.99987 0.99855 0.99680 1.00711 0.99211 94 2.1031**-02 2.4458**+00 NM 0.99987 0.99855 0.99680 1.00171 0.99510 94 2.1031**-02 2.4458**+00 NM 1.000025 1.00106 1.00000 1.00000 1.00000									
75 1.0490"-02 2.1595"+00 NM 0.99675 0.91536 0.93131 1.03471 0.90007 76 1.0306"-02 2.1511"+00 NM 0.99681 0.91638 0.93201 1.03440 0.90102 77 1.0473"-02 2.1608"+00 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973"-02 2.1721"+00 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973"-02 2.1871"+00 NM 0.99704 0.92159 0.93552 1.05221 0.90710 80 1.1100"-02 2.1871"+00 NM 0.99704 0.92548 0.93952 1.03057 0.91165 81 1.1227"-02 2.1975"+00 NM 0.99704 0.92548 0.93952 1.03057 0.91165 81 1.1227"-02 2.1975"+00 NM 0.99723 0.92848 0.94202 1.02983 0.91509 82 1.1354"-02 2.2211"+00 NM 0.99754 0.93615 0.94803 1.02641 0.92403 83 1.1633"-02 2.2211"+00 NM 0.99754 0.93615 0.94803 1.02641 0.92403 84 1.1837"-02 2.2211"+00 NM 0.99764 0.93615 0.94803 1.02641 0.92403 85 1.1913"-02 2.2231"+00 NM 0.99764 0.93600 0.94973 1.02668 0.92401 86 1.2141"-02 2.2367"+00 NM 0.99764 0.93600 0.94903 1.02608 0.92401 86 1.2141"-02 2.2367"+00 NM 0.99764 0.93600 0.94903 1.02608 0.92401 86 1.2141"-02 2.2367"+00 NM 0.99764 0.93600 0.94903 1.02608 0.92401 87 1.2421"-02 2.2324"+00 NM 0.99764 0.93500 0.94503 1.02608 0.92401 88 1.2700"-02 2.2614"+00 NM 0.99809 0.94823 0.95835 1.02146 0.93621 89 1.4427"-02 2.3249"+60 NM 0.99809 0.94823 0.95805 1.02146 0.93621 90 1.4942"-02 2.3249"+60 NM 0.99877 0.96708 0.97367 1.01366 0.96654 91 1.4942"-02 2.3249"+60 NM 0.99977 0.96708 0.97367 1.01366 0.96654 91 1.4942"-02 2.3248"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99211 91 1.4942"-02 2.4458"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99211 92 1.38491"-02 2.4458"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99211 93 1.9380"-02 2.4458"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99211 93 1.9380"-02 2.4458"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99210									
76 1.0566=02 2.1551=00 NM 0.99681 0.91638 0.93201 1.03440 0.90102 77 1.0173=02 2.1608=00 NM 0.99686 0.91721 0.93201 1.03440 0.90107 78 1.0820=02 2.1721=00 NM 0.99686 0.92077 0.93562 1.03251 0.90615 79 1.0973=02 2.1747=00 NM 0.99694 0.92159 0.93632 1.03251 0.90710 80 1.1100=02 2.1871=00 NM 0.99704 0.92548 0.93552 1.03251 0.90710 81 1.1227=02 2.1955=00 NM 0.99723 0.92548 0.93552 1.03251 0.91165 82 1.1354=02 2.1957=00 NM 0.99723 0.92646 0.94202 1.02943 0.91509 83 1.1633=02 2.2217=00 NM 0.99754 0.93615 0.94843 1.02641 0.92403 84 1.1887=02 2.2211=00 NM 0.99754 0.93562 0.94973 1.02560 0.92603 85 1.1913=02 2.221=00 NM 0.99764 0.93690 0.94973 1.02560 0.92603 85 1.241=02 2.2231=00 NM 0.99764 0.93690 0.94903 1.02600 0.92603 86 1.241=02 2.235=00 NM 0.99766 0.94136 0.92264 1.02410 0.93022 87 1.2421=02 2.233=00 NM 0.99765 0.94574 0.95624 1.02410 0.93022 88 1.2410=02 2.233=00 NM 0.99765 0.94574 0.95624 1.02430 0.93536 89 1.2421=02 2.233=00 NM 0.99785 0.94574 0.95624 1.02430 0.93521 89 1.4427=02 2.3238=00 NM 0.99877 0.96708 0.97567 1.01366 0.96654 90 1.6078=02 2.3218=00 NM 0.99977 0.96708 0.97567 1.01366 0.96654 91 1.6942=02 2.3338=00 NM 0.99978 0.99550 1.00787 0.97739 91 1.6942=02 2.3338=00 NM 0.99978 0.99550 1.00787 0.99510 D 94 2.1031=02 2.4488=00 NM 0.99978 0.99555 0.99680 1.00771 0.99510 D 94 2.1031=02 2.4426=00 NM 0.99978 0.99595 0.99680 1.00771 0.99510 D 94 2.1031=02 2.4426=00 NM 0.99978 0.99595 0.99680 1.00771 0.99510 D 94 2.1031=02 2.4426=00 NM 0.99978 0.99595 0.99680 1.00771 0.99510 D 94 2.1031=02 2.4426=00 NM 0.99978 0.99595 0.99680 1.00770 0.99775 1.00095			2.1555*+00						
7" 1.0473"-02 2.1608"+00 NM 0.99686 0.91721 0.93271 1.03409 0.90197 78 1.0820"-02 2.1721"+00 NM 0.99688 0.92077 0.93562 1.03251 0.90615 79 1.0973"-02 2.1747"+00 NM 0.99704 0.92548 0.93952 1.03251 0.90710 80 1.1100"-02 2.1871"+00 NM 0.99704 0.92548 0.93952 1.03057 0.91165 81 1.1227"-02 2.1955"+00 NM 0.99723 0.92747 0.94122 1.02889 0.91509 83 1.1354"-02 2.1967"+00 NM 0.99723 0.92747 0.94122 1.02889 0.91509 83 1.1633"-02 2.2217"+00 NM 0.99723 0.92846 0.94202 1.02943 0.91509 83 1.1633"-02 2.2217"+00 NM 0.99757 0.93760 0.94973 1.02600 0.92403 84 1.1887"-02 2.221"+00 NM 0.99757 0.93760 0.94973 1.02600 0.92403 85 1.1913"-02 2.2221"+00 NM 0.99764 0.93109 0.94903 1.02600 0.92401 86 1.2141"-02 2.2367"+00 NM 0.99764 0.93109 0.94903 1.02600 0.92401 86 1.2441"-02 2.2357"+00 NM 0.99765 0.94574 0.95224 1.02410 0.93022 87 1.2421"-02 2.2352"+00 NM 0.99765 0.94574 0.95224 1.02410 0.93526 88 1.2700"-02 2.2614"+00 NM 0.99809 0.94823 0.95535 1.02146 0.93621 89 1.4427"-02 2.3249"+60 NM 0.99809 0.94823 0.95535 1.02146 0.93621 90 1.6078"-02 2.3249"+60 NM 0.99877 0.96708 0.97367 1.01366 0.96054 91 1.4427"-02 2.3249"+60 NM 0.99877 0.96708 0.97367 1.01366 0.96054 92 1.6447"-02 2.3249"+60 NM 0.99977 0.96708 0.97567 1.01366 0.96054 93 1.9380"-02 2.4458"+60 NM 0.99978 0.99355 0.99409 1.00271 0.99221 93 1.9380"-02 2.4458"+00 NM 0.99978 0.99355 0.99409 1.00771 0.99221 94 2.1031"-02 2.4458"+00 NM 0.99978 0.99355 0.99409 1.00771 0.99210 94 2.1031"-02 2.4458"+00 NM 1.000025 1.00100 1.00000 1.00000 1.00000									
78	77								
79 1.0973**02 2.1747*+00 NM 0.99704 0.92159 0.93632 1.03221 0.90710 80 1.1100**02 2.1871**+00 NM 0.99704 0.92488 0.93952 1.03057 0.91165 81 1.1227**02 2.1955*+00 NM 0.99723 0.92886 0.94252 1.02983 0.91509 82 1.1334**02 2.1967*+00 NM 0.99723 0.92886 0.94252 1.02943 0.91509 83 1.1633**02 2.2217*+00 NM 0.99764 0.93615 0.94843 1.02641 0.92403 84 1.1887**02 2.221**+00 NM 0.99764 0.93609 0.94973 1.02600 0.92603 85 1.1913**02 2.2221**+00 NM 0.99764 0.93690 0.94903 1.02600 0.92603 85 1.1913**02 2.2231**+00 NM 0.99764 0.93690 0.94903 1.02600 0.92603 86 1.2141**02 2.2357**+00 NM 0.99766 0.94136 0.95224 1.02410 0.93022 87 1.2421**02 2.2532**+00 NM 0.99765 0.94136 0.95224 1.02410 0.93022 88 1.2700**02 2.2514**+00 NM 0.99785 0.94574 0.95224 1.02432 0.93536 88 1.2700**02 2.32614**+00 NM 0.99807 0.94574 0.95224 1.02432 0.93536 89 1.4427**02 2.3249**60 NM 0.99807 0.94708 0.97557 1.03146 0.94054 91 1.6942**02 2.33736**+00 NM 0.99977 0.96708 0.97557 1.03146 0.96054 92 1.6418**02 2.33736**+00 NM 0.99978 0.99550 1.00787 0.967739 91 1.6942**02 2.3398**+00 NM 0.99978 0.99555 0.99407 1.00710 0.99510 92 1.301**02 2.4428**+00 NM 0.99978 0.99555 0.99407 1.0071 0.99510 93 2.5045**02 2.4456**+00 NM 1.00002 1.00000 1.00000 1.00000 1.00000 95 2.5045**02 2.4426**+00 NM 1.00002 1.00003 1.00070 0.99975 1.00095									
80 1.1100 = 0.2 2.1871 + 0.0 NM									
81 1.1227*-U2 2.1955*+00 NM 0.99723 0.92747 0.94122 1.02989 0.71391 82 1.1334*-U2 2.1967*+00 NM 0.99723 0.92886 0.92802 1.02943 0.91509 83 1.1633**-U2 2.2271*+00 NM 0.99737 0.93760 0.94973 1.02641 0.92403 84 1.1887*-U2 2.2271*+00 NM 0.99757 0.93760 0.94973 1.02660 0.92603 85 1.1*13**-U2 2.2271*+00 NM 0.99764 0.93409 0.94903 1.02660 0.92603 85 1.2*141**-U2 2.2307*+00 NM 0.99764 0.93409 0.94903 1.02660 0.92491 85 1.2*141**-U2 2.23572**+00 NM 0.99765 0.94136 0.95264 1.02410 0.93022 87 1.2421**-U2 2.23572**+00 NM 0.99765 0.94574 0.95624 1.02232 0.93536 86 1.2700**-U2 2.2532**+00 NM 0.99809 0.94823 0.95635 1.02146 0.93621 87 1.2421**-U2 2.23572**+00 NM 0.99809 0.94823 0.95635 1.02146 0.93621 87 1.4427*-U2 2.3249**-GO NM 0.99809 0.94823 0.95635 1.00146 0.96054 87 1.4427*-U2 2.3249**-GO NM 0.99877 0.96708 0.97367 1.01366 0.96054 87 1.6442**-U2 2.3249**-GO NM 0.99877 0.96708 0.97367 1.01366 0.96054 87 1.6442**-U2 2.3249**-GO NM 0.99937 0.96123 0.98808 1.00787 0.97739 81 1.6442**-U2 2.34168**-U0 NM 0.99937 0.96702 0.98969 1.00542 0.96435 92 1.34891**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99221 93 1.9360**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99221 93 1.9360**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99221 93 1.9360**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99210 94 2.1031**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99210 94 2.1031**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99210 94 2.1031**-U2 2.4168**-U0 NM 0.99937 0.96355 0.99407 1.00771 0.99210 94 2.1031**-U2 2.4168**-U0 NM 0.99935 0.99405 1.00100 1.00000 1.00000 1.00000 95 2.5095**-U2 2.4426**-U0 NM 1.000025 1.00165 1.00100 0.99975 1.00195									
82 1.1354"-02 2.1967"+00 NM 0.99723 0.92846 0.94202 1.02943 0.91509 83 1.1633"-02 2.2211"+00 NM 0.99751 0.93565 0.94643 1.02841 0.92403 84 1.1887"-02 2.2211"+00 NM 0.99751 0.93500 0.94973 1.02860 0.92403 85 1.1913"-02 2.2241"+00 NM 0.99764 0.93690 0.94903 1.02860 0.92491 86 1.2141"-02 2.2357"+00 NM 0.99766 0.94136 0.9524 1.02410 0.93022 87 1.2421"-02 2.2532"+00 NM 0.99766 0.94136 0.9524 1.02410 0.93022 88 1.2700"-02 2.2544"+00 NM 0.99809 0.94823 0.95835 1.02146 0.93821 89 1.4427"-02 2.3249"+60 NM 0.99809 0.94823 0.95835 1.02146 0.93821 89 1.4927"-02 2.3249"+60 NM 0.99877 0.96708 0.97567 1.01366 0.96054 89 1.4927"-02 2.3238"+00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 89 1.4927"-02 2.3238"+00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 89 1.4942"-02 2.33938"+00 NM 0.99937 0.96308 1.00787 0.96739 89 1.38491"-02 2.4168"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 89 1.38491"-02 2.4253"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 89 2.1031"-02 2.4253"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 89 2.1031"-02 2.4458"+00 NM 0.99987 0.99355 0.99407 1.00271 0.99221 89 2.1031"-02 2.4426"+00 NM 1.000025 1.00165 1.00140 0.99975 1.00095 89 2.5045"-02 2.4426"+00 NM 1.00012 1.00003 1.00070 0.99975 1.00095	āi								
83 1.1635**02 2.2217**00 NM 0.99764 0.93615 0.94673 1.02661 0.9203 84 1.1887**02 2.2211**00 NM 0.99764 0.93160 0.94673 1.02660 0.92603 85 1.1913**02 2.2241**00 NM 0.99764 0.93160 0.94973 1.02660 0.92491 86 1.2141**02 2.2357**00 NM 0.99764 0.9415 0.9524 1.02410 0.93022 87 1.2421**02 2.2357**00 NM 0.99765 0.94574 0.9524 1.02410 0.93022 87 1.2421**02 2.2532**+70 NM 0.99859 0.94574 0.9524 1.02412 0.93536 86 1.2700**02 2.2514**00 NM 0.99859 0.94574 0.9524 1.02412 0.93536 86 1.2700**02 2.3244**00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 90 1.4427**02 2.3244**00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 90 1.6078**02 2.3244**00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 91 1.6942**02 2.3338**00 NM 0.99877 0.96708 0.9666 1.00271 0.96713 91 1.6942**02 2.3338**00 NM 0.99978 0.96708 0.9666 1.00271 0.99211 91 1.6942**02 2.4458**00 NM 0.99978 0.96708 0.99409 1.00271 0.99211 91 1.9350**02 2.4258**00 NM 0.99978 0.99355 0.99469 1.00271 0.99211 91 1.9350**02 2.4258**00 NM 0.99978 0.99355 0.99469 1.00170 0.99510 D94 2.1031**02 2.4456**00 NM 1.00000 1.00000 1.00000 1.00000 1.00000 95 2.5095**02 2.4456**00 NM 1.000075 1.00165 1.00140 0.99975 1.00191 94 2.7635**02 2.4456**00 NM 1.000075 1.00003 1.00070 0.99975 1.00195		1.1354*-02							
84 1.1887"-J2 2.221"+00 NM 0.99751 0.93760 0.94973 1.02560 0.92603 85 1.1°13"-02 2.2241"+00 NM 0.99764 0.93190 0.94903 1.02608 0.92491 85 1.1°13"-02 2.2317"+00 NM 0.99764 0.94136 0.94264 1.02410 0.93022 87 1.2421"-02 2.2357"+00 NM 0.99785 0.94574 0.95624 1.02232 0.93536 87 1.2421"-02 2.2532"+00 NM 0.99809 0.94823 0.95535 1.03146 0.93621 0.93621 0.94700 0.97367 1.01366 0.96054 0.96076 0.97367 1.01366 0.96054 0.97367 1.01366 0.96054 0.97367 1.01366 0.96054 0.97367 1.01366 0.96054 0.97367 1.01366 0.96054 0.9678*-02 2.3249"+00 NM 0.99877 0.96708 0.97567 1.01366 0.96054 0.97739 0.9678*-02 2.33756"+00 NM 0.99877 0.96708 0.97568 1.00787 0.97739 0.97568 1.00787 0.97739 0.96708		1.1633*+02							
85 1.1°13"-02 2.2241"+00 NM 0.99764 0.93490 0.94703 1.02608 0.92491 86 1.2141"-02 2.2367"+00 NM 0.99766 0.9436 0.92264 1.02410 0.93022 87 1.2421"-02 2.23614"+00 NM 0.99785 0.94574 0.95624 1.02410 0.93022 88 1.2700"-02 2.2614"+00 NM 0.99809 0.94823 0.95835 1.02146 0.93621 89 1.4427"-02 2.3249"+60 NM 0.99809 0.94823 0.95835 1.02146 0.96654 90 1.6078"-02 2.3249"+60 NM 0.99877 0.96708 0.97367 1.01366 0.96654 90 1.6078"-02 2.32380"+00 NM 0.99877 0.96708 0.97367 1.01366 0.96654 90 1.6078"-02 2.3736"+00 NM 0.99877 0.96708 0.97508 1.00787 0.97739 91 1.6942"-02 2.3736"+00 NM 0.99937 0.96355 0.99407 1.00271 0.99211 92 1.3491"-02 2.4468"+00 NM 0.99978 0.98355 0.99407 1.00271 0.99221 93 1.9360"-02 2.4253"+00 NM 0.99978 0.98355 0.99407 1.00271 0.99210 93 1.9360"-02 2.4253"+00 NM 0.99978 0.99355 0.9960 1.00170 0.99510 94 2.1031"-02 2.4450"+00 NM 1.000025 1.00165 1.00140 0.99975 1.00195 95 2.5045"-02 2.4426"+00 NM 1.00012 1.00003 1.00070 0.99975 1.00195 97 3.0150"-02 2.4426"+00 NM 1.00012 1.00003 1.00070 0.99975 1.00195		1.1887"-02							
86 1.2141 -02 2.2357 +00 NM 0.99766 0.94136 0.9264 1.02410 0.93022 87 1.2421 -02 2.2532 +00 NM 0.99785 0.94574 0.9524 1.02232 0.93536 88 1.2700 -02 2.2614 +00 NM 0.99809 0.94823 0.95835 1.02146 0.95821 89 1.4427 -02 2.3249 +60 NM 0.99809 0.94823 0.95835 1.02146 0.96834 90 1.4078 -02 2.3249 +60 NM 0.99877 0.945123 0.98508 1.00787 0.947739 91 1.6942 -02 2.3736 +00 NM 0.99937 0.98123 0.98508 1.00787 0.97739 91 1.6942 -02 2.3938 +00 NM 0.99937 0.98508 0.90869 1.0082 0.94415 92 1.8491 -02 2.4168 +00 NM 0.99978 0.94355 0.99407 1.00271 0.99221 93 1.9360 -02 2.4168 +00 NM 0.99978 0.94355 0.99407 1.00271 0.99221 93 1.9360 -02 2.4253 +00 NM 0.99978 0.94555 0.99407 1.00271 0.992510 D 94 2.1031 -02 2.455 +00 NM 1.00000 1.00000 1.00000 1.00000 1.00000 95 2.5095 -02 2.4456 +00 NM 1.00025 1.00165 1.00140 0.99550 1.00191 94 2.7635 -02 2.4426 +00 NM 1.00025 1.00083 1.00070 0.99975 1.00095 97 3.0150 -02 2.4426 +00 NM 1.00012 1.00083 1.00070 0.99975 1.00095	85	1.1913"-02							
87 1.2421***-02 2.2532**+70 NM 0.99785 0.94574 0.95624 1.02232 0.93536 88 1.2700***-02 2.2614**+00 NM 0.99877 0.94823 0.95535 1.03146 0.93621 89 1.4427**-02 2.3249**+60 NM 0.99877 0.96708 0.97367 1.01366 0.96054 90 1.6078**-02 2.3249**+60 NM 0.99877 0.96708 0.97508 1.00787 0.96739 91 1.6942**-02 2.3736**+00 NM 0.99937 0.96702 0.98969 1.00502 0.94435 92 1.6441**-02 2.4468**+00 NM 0.99978 0.998702 0.99899 1.00271 0.99221 93 1.9360**-02 2.4253**+00 NM 0.99978 0.99850 0.99800 1.00271 0.99251 93 1.9360**-02 2.4253**+00 NM 1.00000 1.00000 1.00000 1.00000 1.00000 95 2.5095**-02 2.4456**+00 NM 1.000025 1.00165 1.00140 0.99955 1.00191 94 2.7635**-02 2.4426**+00 NM 1.000025 1.00165 1.00140 0.99975 1.00195 97 3.0150**-02 2.4426**+00 NM 1.00012 1.00083 1.00070 0.99975 1.00195	86	1.2141"-02		NM					
88 1.2700 - 02 2.2614 + 00 NM 0.99809 0.94823 0.95835 1.02146 0.93821 89 1.4427 - 02 2.3249 + 60 NM 0.99877 0.96708 0.97367 1.01366 0.96654 90 1.6078 - 02 2.3238 + 00 NM 0.99877 0.96123 0.98508 1.00787 0.97739 91 1.6942 - 02 2.3736 + 00 NM 0.99878 0.96702 0.98608 1.00787 0.97739 91 1.6491 - 02 2.3938 + 00 NM 0.99978 0.98355 0.99407 1.00271 0.99221 92 1.8491 - 02 2.4168 + 00 NM 0.99978 0.98355 0.99407 1.00271 0.99221 93 1.9380 - 02 2.4168 + 00 NM 0.99978 0.98355 0.99407 1.00271 0.99221 93 1.9380 - 02 2.4183 + 00 NM 0.99870 0.99455 0.9960 1.00170 0.99510 94 2.1031 - 02 2.4457 + 00 NM 1.000025 1.00100 1.00000 1.00000 1.00000 95 2.5045 - 02 2.4426 + 00 NM 1.00025 1.00165 1.00140 0.99450 1.00191 94 2.7635 - 02 2.4426 + 00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 97 3.0150 - 02 2.4426 + 00 NM 1.00012 1.00083 1.00070 0.99975 1.00095									
89 1.4427"-02 2.3249"+00 NM 0.99877 0.96708 0.97367 1.01366 0.96054 90 1.6078"-02 2.3736"+00 NM 0.99877 0.96123 0.98508 1.00787 0.97739 91 1.6942"-02 2.3736"+00 NM 0.79954 0.96702 0.96969 1.00502 0.94455 92 1.8491"-02 2.4168"+00 NM 0.99978 0.99355 0.99467 1.00271 0.99221 93 1.9360"-02 2.4253"+00 NM 0.99978 0.99555 0.99660 1.00170 0.99510 D 94 2.1031"-02 2.4253"+00 NM 1.00000 1.00000 1.00000 1.00000 95 2.5095"-02 2.4456"+00 NM 1.00025 1.00165 1.00140 0.99975 1.00191 96 2.7635"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 97 3.0150"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095									
90 1.6078"-02 2.3736"+00 NM 0.79937 0.98123 0.98508 1.00787 0.97739 91 1.6942"-02 2.3938'+00 NM 0.79954 0.98702 0.98669 1.00542 0.94455 0.98669 1.00542 0.94455 0.99407 1.00271 0.99221 93 1.38491"-02 2.4168"+00 NM 0.99978 0.99355 0.99407 1.00271 0.99221 93 1.9360"-02 2.4253"+00 NM 0.99978 0.99550 0.99680 1.00170 0.99550 D 94 2.1031"-02 2.4397"+00 NM 1.00000 1.00000 1.00000 1.00000 1.00000 95 2.5095"-02 2.4456"+00 NM 1.00025 1.00165 1.00140 0.99550 1.00191 96 2.7635"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 97 3.0150"-02 2.4426"+00 NM 1.00012 1.00083 1.0070 0.99975 1.00095	49								
91 1.5942**-02 2.3938*+00 NM 0.79954 0.96702 0.96969 1.00542 0.96435 02 1.5491**-02 2.4158*+00 NM 0.99978 0.9945 0.99467 1.01271 0.99221 0.9136**-02 2.4158**+00 NM 0.99978 0.9945 0.99460 1.00170 0.99510 0.9945 0.99460 1.00170 0.99510 0.99510 0.9945 0.99460 1.00000 1.00000 0.90510 0.99450 1.00170 0.99510 0.99450 1.00170 0.99510 0.99450 1.00170 0.99510 0.99450 1.00170 0.99510 0.99510 0.99450 1.00170 0.99510 0.99450 1.00170 0.99510 0.995									
42 1.8491 - 02 2.4168 + 00 NM 0.99978 0.99355 0.99407 1.00271 0.9921 93 1.9380 - 02 2.425 + 00 NM 0.9987 0.99845 0.99880 1.00170 0.99510 D 94 2.1031 - 02 2.437 + 00 PM 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 95 2.5095 - 02 2.4456 + 00 PM 1.00025 1.00165 1.00140 0.9955 1.00191 95 2.7635 - 02 2.4426 + 00 PM 1.00025 1.00083 1.00070 0.9975 1.00095 97 3.0150 - 02 2.4426 + 00 PM 1.00012 1.00083 1.0070 0.9975 1.00095	•i								
93 1.9385 02 2.4253 00 NM 0.49987 0.99545 0.99680 1.00170 0.99510 D 94 2.1031 02 2.4477 00 PM 1.00000 1.00000 1.00000 1.00000 1.00000 95 2.5945 02 2.4456 00 NM 1.00025 1.00165 1.00140 0.99450 1.00191 02 2.7635 02 2.4426 00 NM 1.00025 1.00083 1.00070 0.99975 1.00095 07 3.0150 02 2.4426 00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 07 3.0150 02 2.4426 00 NM 1.00012 1.00083 1.00070 0.99975 1.00095									
D 94 2.1031**02 2.4397**00 PM 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000									
95 2.5045**02 2.4456**00 NM 1.00025 1.00165 1.00140 0.99450 1.00191 96 2.7635**02 2.4426**00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 97 3.0150**02 2.4426**00 NM 1.00012 1.00083 1.00070 0.99975 1.00095									
96 2.7635"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095 97 3.0150"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095									
97 3.0150"-02 2.4426"+00 NM 1.00012 1.00083 1.00070 0.99975 1.00095			2-44264-00						
48 3.2214"-02 2.4424"+00 NM 1.00012 1.00010 1.00075 1.00095									
		3.2614*-02	2.4426"+00		1.00012	1.000A3	1.00010	5.09975	1.00095

INOUT VARIABLES Y,M,U/UD ASSUME PEPD AT I=11,18,28,46,53,62,72,80 DATA WERE AVERAGED

SECTION D: ADDITIONAL DATA.

FACSIMILE FROM SOURCE PAPER: NB. AUTHORS' SYMBOLS AND UNITS

PRESSURE DISTRIBUTION AND SKIN FRICTION.

	Re _Z	M ₀ = 0.597 Re ₂ = 9.85 × 10 ⁶		N ₀₀ = 0.801 Reg = 9.98 x 10 ⁵		N ₀₀ = 1.390 Re ₆ = 5.05 × 10 ⁶			N _{co} = 1.398 Re _d = 10.2 × 10 ⁶			
x q in deg		Mg	10 ³ og	G _p	¥ _{&}	10 ³ or	C _p	¥8	10 ³ o _r	¢ _p	Ng	10 ³ o _f
3.0 3.0 3.0 -18 3.0 - 9	0.310	0.493	3.92	0.371 0.369 0.374 0.368	0.631	3,66	0.413 0.407 0.409 0.411	1.050	2.52	0.417 0.406 0.402 0.401	1.053	3.88
6.0 12.0	0,202	0.530 0.666 0.715	3.70 3.59 2.80	0.262 -0.218 -0.458	0.681 0.900 1.012	3.70 3.87 3.37	0.427 0.153 -0.040	1,640 1,251 1,427	1.91 0.68 2.24	0.433 0.151 -0.042	1.042 1.260 1.438	3.79 1.01 3.56
18.0 21.0 21.0 90 21.0 -180 21.0 - 90	-0.313 -0.313 -0.310	0.720	2.37 2.45	-0.499 -0.349 -0.348 -0.346 -0.350	1.032 0.960	2.72	-0.180 -0.281 -0.280 -0.279 -0.279	1.582	1.78 1.69	-0.181 -0.281 -0.284 -0.275 -0.280	1.593	3.17 3.37
24.0 27.0 28.5 30.0	0.145 -0.004 0.037 0.058	0.642 0.598 0.585 0.578	1.83 1.53 1.42 1.35	-0.133 0.027 0.068 0.095	0.861 0.788 0.770 0.758	1.62 1.27 1.25 1.20	-0.273 -0.256 -0.248 -0.204	1.679 1.669 1.611	0.65 0.71 0.74	-0.302 -0.258 -0.208 -0.154	1.759 1.695 1.626 1.561	2.72 2.23 1.92 1.54
33.0 34.5 36.0	0.073 0.084 0.090 0.103 0.115	0.573 0.569 0.567 0.563	1.59 1.47 1.47 1.48 1.31	0.108 0.117 0.123 0.137	0.752 0.748 0.745 0.739	1.48 1.39 1.42 1.44 1.35	-0.116 -0.062 -0.021 0.009	1.508 1.450 1.409 1.379	1.97 2.99 2.90 2.90	-0.109 -0.070 -0.038 -0.010	1.509 1.467 1.434 1.406	1.58 1.43 1.34 1.31
40.0	0.158 0.183 0.181	0.559 0.545 0.537	1.31	0.149 0.197 0.221 0.218 0.222	0.733 0.711 0.700	1.19	0.034 0.091 0.196 0.191 0.198	1.356 1.304 1.215	2.58 2.24 1.73	0.016 0.093 0.166 0.166 0.168	1.381 1.310 1.247	1.16 1.00 0.83
42.0 - 90 44.0 45.5 47.0	0.178 0.168 0.138 0.118	0.542 0.552 0.558	1.40 1.62 1.72	0.219 0.208 0.178 0.150	0.707 0.720 0.733	1.29 1.55 1.74	0.191 0.249 0.228 0.208	1.175 1.182 1.206	1.75 2.02 2.24	0,165 0,200 0,198 0,188	1.219 1.221 1.229	0.91 1.14 1.33
50.0 51.5 53.0	0.103 0.092 0.086 0.074	0.563 0.567 0.569 0.573	1.76 1.85 1.79 2.12	0.133 0.128 0.124 0.116	0.740 0.743 0.745 0.748	1.79 1.84 1.70 2.02	0,191 0,189 0,186 0,197	1.219 1.222 1.223 1.215	2.46 2.50 2.30 2.63	0.178 0.176 0.178 0.188	1.237 1.238 1.237 1.229	1.56 1.71 1.70 1.97
	-0.085	0.578 0.585 0.597 0.623	2.10 2.10 2.27 3.47	0.097 0.077 0.038 -0.047 -0.037 -0.044	0.757 0.766 0.783 0.822	2.06 2.09 2.30 2.54	0.197 0.218 0.229 0.248 0.254 0.246	1.215 1.197 1.189 1.174	2.63 2.44 2.63 2.56	0.190 0.207 0.222 0.236 0.244 0.237	1.227 1.213 1.201 1.189	2.05 2.00 2.09 2.17

SECTION D: ADDITIONAL DATA.

FACSIMILE FROM SOURCE PAPER: NB. AUTHORS' SYMBOLS AND UNITS PRESSURE DISTRIBUTION AND SKIN FRICTION.

		M = 1.404			N = 1.700			M	= 1.99	6	M = 2,000		
		Roe -	19.97		Rec	= 10.08		_	4.98 ×	106	Re _c =	9.96 ×	10 ⁶
in	φ deg	c _p	u _δ	10 ³ of	C _p	M	يه 103	C _p	™ 6	10 ³ og	C _P	¥ _δ	10 ³ og
3.0 3.0 3.0 3.0	90 180 90	0.417 0.403 0.400 0.408	1.057	3.95	0.360 0.354 0.350 0.350	1.319	1.40	0.333 0.334 0.350 0.329	1.553	1.91	0.325 0.327 0.324	1.567	1.27
6.0 12.0 15.0 18.0	0 0	0.437 0.155 -0.040	1.043 1.261 1.442	3.20 0.91	0.368 0.166 0.000	1.311 1.501 1.696	3.93 3.69	0.333 0.166 0.029	1.553 1.737 1.933	1.44 1.42 1.46	0.323 0.336 0.163 0.022	1.556 1.749 1.954	3.63 3.20 2.54
21.0 21.0 21.0 21.0	90 -180 - 90	-0.179 -0.282 -0.284 -0.279	1.598 1.738	2.76 2.99	-0.115 -0.201 -0.199 -0.198	1.870	2.58 2.75	-0.075 -0.141 -0.140 -0.141	2.130 2.298	1.12	-0.080 -0.150 -0.149 -0.149	2.154 2.341	2.10 2.19
24.0 27.0 28.5 30.0	- 90 0 0	-0.277 -0.299 -0.253 -0.206 -0.156	1.763 1.695 1.632	2.31 1.93 1.73	-0.196 -0.223 -0.196 -0.168	2.086 2.025 1.966	2.34 1.96 1.90	-0.140 -0.162 -0.139 -0.138	2,360 2,291	0, 29 0, 36	-0.148 -0.173 -0.160 -0.140	2.416 2.372 2.310	1.88 1.73 1.69
31.5 33.0 34.5 36.0	00000	-0.110 -0.069 -0.038 -0.010	1.570 1.517 1.472 1.441 1.412	1.46 1.59 1.40 1.40	-0.134 -0.104 -0.074 -0.050 -0.029	1.903 1.852 1.803 1.767 1.737	1,60 1,67 1,47 1,38	-0.134 -0.115 -0.083 -0.056	2.149 2.089	0.30	-0.116 -0.094 -0.070 -0.051	2.244 2.187 2.134 2.093	1.50 1.47 1.44 1.34
37.5 40.0 42.0 42.0	90	0.016 0.089 0.174 0.171	1.386 1.318 1.245	1.26 1.13 0.86	-0.007 0.046 0.123 0.122	1.706 1.637 1.547	1.38 1.20 1.07 0.83	0.025 0.001 0.038 0.118	2.029 1.981 1.917 1.799	2.60 2.38 2.49 2.24	-0.033 -0.015 0.024 0.095	2.054 2.021 1.951 1.840	1.33 1.16 1.11 0.85
42.0 42.0 44.0 45.5	-180 - 30	0.174 0.169 0.211 0.205	1.215	0 . 9 0	0.125 0.125 0.122 0.169 0.172	1.498 1.495	0.92 1.18	0.106 0.112 0.108 0.181	1.718	2 ,2 0	0.092 0.100 0.093 0.147	1.770	0.94
47.0 48.5 50.0 51.2	0000	0.191 0.180 0.181 0.182	1,231 1,241 1,239 1,239	1.40 1.54 1.65	0.163 0.156 0.156 0.154	1.504 1.512 1.512 1.513	1.46 1.75 1.93	0.173 0.163 0.157 0.153	1.728 1.740 1.748 1.753	2.51 2.45 2.60 2.64 2.44	0.154 0.150 0.145 0.144 0.142	1.761 1.765 1.772 1.773	1.23 1.53 1.82 1.98
53.0 54.5 56.0 57.5	0000	0.194 0.194 0.210 0.224	1.229 1.229 1.216 1,204	1.83 1.87 1.83 1.90	0.164 0.162 0.178 0.190	1.504 1.505 1.489 1.476	2.23 2.38 2.27 2.36	0.157 0.160 0.174 0.184	1.748 1.744 1.727	2.75 2.69 2.4/,	0.148 0.150 0.165	1.778 1.767 1.766 1.746	1.96 2.26 2.35 2.17
59.0 59.0 59.0 59.0	90 -180 - 90	0.259 0.249 0.240 0.245	1.192	1.95	0.202 0.211 0.204 0.206	1.464	2.43	0. 194 0. 199 0. 191 0. 194	1.715 1.702	2.59 2.58	0.175 0.185 0.188 0.181 0.184	1.734	2. 37 2. 37

SECTION D: ADDITIONAL DATA.

FACSIMILE FROM SOURCE PAPER: NB. AUTHORS' SYMBOLS AND UNITS PRESSURE DISTRIBUTION AND SKIN FRICTION.

<u> </u>		M ₀₀ = 2,002			M = 2,401				2.79		M = 2.799		
		Re _e = 16.85 × 10 ⁶			Re _E = 10,03 × 10 ⁶			Rog = 5.03 × 10 ⁶			Re ₆ 10.05 × 10 ⁶		
x in	deg.	C p	MB	10 ³ o _f	C _p	M&	10 ³ o _f	C _p	M&	10 ³ og	c _p	MB	10 ³ o _f
3.0 3.0 3.0	0 90 -180	0.330 0.331 0.323	1.564	3.50	0.307 0.306 0.304	1.868	1.11	0.300 0.298 0.299 0.294	2.133	1.49	0.291 0.289 0.288 0.286	2,153	1.06
3.0 6.0 12.0 15.0	- 90	0.322 0.337 0.162 0.019	1.557 1.752 1.962	2.99 2.83 2.40	0.302 0.312 0.165 0.038	1.862 2.058 2.292	3.35 2.73 2.05	0.301 0.168 0.056	2.132 2.336 2.580	1.10 1.12 0.85	0.292 0.158 0.040 -0.036	2.151 2.364 2.636 2.908	2.34 2.35 1.83 1.57
18.0 21.0 21.0 21.0	90 -180	-0.081 -0.153 -0.152 -0.150	2.162 2.354	2.01 2.17	-0.050 -0.109 -0.108 -0.110	2.528 2.756	1.73 1.78	-0.028 -0.048 -0.049 -0.046 -0.041	2.859 2.950	0.93 1.06	-0.082 -0.080 -0.080 -0.078	3.162	1.45
21.0 24.0 27.0 28.5	90000	-0.151 -0.176 -0.163 -0.142	2,430 2,385 2,321	1.82 1.60 1.58 1.35	-0.150 -0.150 -0.125 -0.111	2.865 2.826 2.766 2.691	1.50 1.39 1.39 1.31	-0.074 -0.065 -0.068 -0.066	3.050 3.043	0.35 0.45	-0.101 -0.096 -0.089 -0.077	5.301 3.261 3.208 3.131	1.13 1.04 1.09 1.21
30.0 31.5 33.0 34.5	00000	~0.096 -0.095 -0.055 -0.055	2.252 2.196 2.145 2.099 2.061	1.42 1.35 1.27 1.26	-0.080 -0.063 -0.048 -0.036	2.633 2.571 2.522 2.484	1.29 1.24 1.18 1.22	-0.068 -0.066 -0.061 -0.050	3.051 3.039 3.011	0.87 0.41 0.31	-0.066 -0.056 -0.045 -0.031	3.064 3.005 2.954 2.890	1.14 1.13 1.23 1.03
36.0 37.5 40.0 42.0	0 0 90	-0.017 0.022 0.095 0.091	2,026 1,957 1,842	1.11 1.11 0.93	-0.022 0.009 0.066 0.064	2.444 2.361 2.233	1.09 1.04 0.91	-0.037 0.008 0.068 0.066 0.070	2.724 2.547	0.63 1.55	-0.021 0.004 0.053 0.048 0.052	2.844 2.751 2.600	0.95 0.98 0.83
42.0 42.0 44.0 45.5 47.0	-180 - 90 0	0.095 0.090 0.147 0.153 0.148	1.771 1.763 1.769	0.88 1.22 1.55	0.069 0.064 0.119 0.131 0.132	2.134 2.114 2.112	1.00 1.33 1.53	0.069 0.131 0.147 0.145	2.407 2.376 2.378	1.96 2.19 2.06	0.050 0.106 0.122 0.125	2.468 2.435 2.429	0.95 1.21 1.36
48.5 50.0 51.5 53.0	000	0.143 0.143 0.140 0.147	1.776 1.776 1.780 1.771	1.79 1.93 1.87 2.13	0.127 0.128 0.129 0.133	2.120 2.118 2.117 2.110	1.78 1.90 1.77 2.08 2.12	0.137 0.136 0.158 0.140 0.156	2.395 2.397 2.393 2.389 2.397	2.18 2.20 1.75 2.06 2.20	0.120 0.121 0.122 0.126 0.127	2.438 2.437 2.435 2.426 2.424	1.56 1.68 1.51 1.77 1.83
54.5 56.0 57.5 59.0 59.0	0 0 90	0.148 0.162 0.174 0.183 0.186	1.770 1.752 1.737 1.726		0.135 0.148 0.157 0.167 0.170	2.106 2.006 2.070 2.056	1.94 2.09 2.15	0.149 0.152 0.167 0.172	2.372 2.366 2.337	2.01 2.19	0.137 0.144 0.155 0.159	2.404 2.390 2.369	1.72 1.87 1.88
59.0 59.0	-180 - 90	0.176			0.164 0.167			0.168 0.166			0.152 0.156		

Continuous tunnel with asymmetric sliding block variable nozzle. PO : $0.17 \, \mathrm{MN/m^2}$. TO : $340 \, \mathrm{K}$. Dried Air. RE/m X 10^{-6} : 10 (in free stream).

ALLEN J.M., 1970. Experimental Preston tube and law-of-the-wall study of turbulent skin friction on axi-symmetric bodies at supersonic speeds. NASA TN D-5560.

And Allen J.M., private communication.

1 The test boundary layer was formed on a "Haack-Adams body" constructed of aluminium and mounted on the centre line of the test section. The body was not actively conlad, the temperatures being allowed to settle for up to 30 minutes. The form of the body is given by

$$\frac{r}{r_{\text{max}}} = \left\{0.70700 \ (1-z^2)^{-1.5} + 0.16934 \ Z \ [1-z^2]^{0.5} + 0.16934 \ \cos^{-1} - Z\right\}^{-0.5}$$

where $Z = \left(\frac{2x}{1} - 1\right)$, $r_{\text{max}} = 45.72 \ \text{mm}$ and $1 = 914.4 \ \text{mm}$.

- Surveys were made at seven stations on the model surface such that the boundary layer initially accelerated before reaching a maximum edge velocity and then slowed down slightly. The stations and MD values are
- 3 listed in section B. A transition strip of No 60 carborundum grit 3.2 mm wide was placed at X = 12.7 mm,
- 5 where X = 0 at the model nose. At two stations, X = 0.1778 and X = 0.6604 m, static holes at 90° intervals round the model provided a check on axi-symmetry
- 6 Wall static pressure was measured by static tappings (d = 0.9 mm) along a single generator of the model, except for the two stations mentioned above. A circular Preston tube ($d_1 = 0.71$, $d_2 = 0.41$, l = 15 mm) was
- 7 used to determine wall shear stress, and also to obtain a free stream Pitot value. Pitot profiles were
- 9 obtained with a FPP for which $h_1 = 0.28$, $h_2 = 0.13$, $h_1 = 1.6$ [E] , $h_1 = 1.6$ mm. The static pressure was
- 10 assumed constant through the boundary layer and no profile corrections were applied. Viscosity was determined from Sutherlands' law.
- Tile editors present all the profiles measured by the author, replacing the isoenergetic assumption by the Crocco / Van Oriest correlation, assuming that the model was adiabatic. The CF values are those reduced by the author, using the Hopkins and Keener (CAT 6601) calibration. He also presents values reduced using the Fenter & Stalmach (1957) Preston tube calibration, and the Baronti & Libby (1966) velocity profile correlation. The boundary layer edge has been set at the point with the highest velocity, as reported by the author. The POD value is calculated from the reported unit RE value. The author also reports additional Preston tube CF data for M = 2.5, 4 and 4.5, but without associated profile measurements. The
- 13 profiles form a single set at seven successive stations, presented with Preston tube CF values at the
- 14 same positions.
- § DATA 7005 0101-0107. Pitot profiles. NX = 7. Preston tube CF values obtained separately,

15 Editors' comments

These profiles are included as providing a test case in which the edge Mach number varies systematically. The pressure gradient is not very severe, so that the effects of acceleration should not be expected to be very marked. However, there is very little comparable data and the only similar test case is the experiment with a waisted body made by Winter et al. - CAT 7004. In that experiment the pressure gradients are stronger and more varied, but profiles were measured at relatively wide intervals.

The effects of normal pressure yradients here should be small - the simple wave element would give rise to

about 1% change in static pressure across the boundary layer. That there is a detectable effect is demonstrated by the experimentally observed velocity maximum used to specify the boundary layer edge.

There are not many data points for each profile, and it seems likely that the first one or two profiles are still influenced by the transition process. A further experiment of this type, with more detailed measurements, would be valuable.

CAT 7005	M LCII		BOUNDARY CON	DITIONS DE	VALUATED S	DATA. SI UNIT	5.	
HZ *	ND ÷	TH/TRA	SEUSU	CF +	H12	H12K	PVI	PD
	Pod	PH/PDA	BEUSU	CG	H32	H32K	TW	TD
	Tud÷	SH *	BEUSW	P12+	H42	D2K	UD	TR
70090101	2.8520	1.0000	6.4543*+02	247180**#03	4.8783	1.5611	5.739A*+93	5.7398"+03
1.2700#-01	1.63967475	1.0000	1.4526*+03	.87	1.7901	1.7603	3.1726*+92	1.3018"+02
2.4150#-02	5.39007492	1.0000	1.3339*=04	:40	0.1152	2.0025"=04	6.4786*+92	3.1728"+02
70050102	2.9730	1.0000	1.1157*+03	2.1960=-03	4.9835	1.4423	4.8788*+U3	4.8788*+03
2.5400*=01	1.7209*+05	1.0000	2.4733*+03	W	1.8117	1.7629	3.1648*+02	1.2246*+02
3.6300*=02	3.3900*+02	1.0000	2.3521*-04	WC	0.1210	3.5265****	6.5969*+02	3.1648*+02
70050103	3.0380	1.9000	1.5245*+03	1.8910*=03	5.0607	1.4025	4.4449*+03	70+************************************
3.8100"-01	1.7283*+05	1.9000	3.4937*+03	.#*	1.0130	1.7845	3.1613*+02	
4.3080"-02	3.3900*+02	1.9000	3.4019*=04	HC	0.1232	5.1493***04	6.6480*+02	
70050101	3.0500	1.0000	1.9553*+03	1.6820#=03	5.0829	1.4023	4.2067*+03	4.2067*+03
5.0800*-01	1.6053*+05	1.0000	4.5016*+03	;;w	1.8039	1.7724	3.1607*+02	1.1851*+02
4.5670*-02	3.3900*+02	1.0000	4.5794*-04	;;C	0.1230	7.0373***	6.6572*+02	3.1607*+02
70050105	3.0720	1.0000	2.4024"+03	1.5840*=03	5.0810	1.3652	4.0117#+03	4.0117*+03
6.3500*=01	1.6410*+05		9.5784"+03	HP	1.8025	1.7713	3.1595#+02	1.1741*+02
4.4500*=02	3.3900*+02		5.8240"-04	HC	0.1239	3.9914*-04	6.6738#+02	3.1595*+02
70050105	3.0710	1.0000	3.0435"+03	1.4390==03	5.0059	1.3703	3.9147"+03	3.9147*+03
7.6200"-01	1.5990"+05		7.0441"+03	NH	1.7988	1.7662	3.1596"+02	1.1746*+02
4.0030"-02	3.3700"+02		7.5714"+04	NC	0.1242	1.1653"=03	6.6731"+02	3.1496*+02
70050107	2.9350	1.0000	4.0896*+03	1.3100*-03	4.6507	1.3726	4,3756*+03	4.1956*+03
8.8900"=01	1.4642"+05		4.0059*+03	NM	1.7819	1.7484	3,1669*+02	1.2450*+02
3.4010"=02	3.3900"+02		9.7783*=04	HC	0.1201	1.4806*-03	6,5661*+02	3.1604*+02

PD.POD CALCULATED FROM HE (AUTHOR) - CF (HOPKINS/KEENER)

70050	103 ALLEY	V	PROFILE	TABULATION	12	POINTN, DEL	TA AT POI	NT 11
1	¥	PY 2/P	P/FO	TOPYOD	47.30	מטעט	7/10	BHOVERROHANDE
i.	0.3000"+00	1.0010"+00	f ₁ kt	0.93254	0.00000	0.00000	2.65392	0.90900
2	1.2700"-04	1.8856"+00	I#N	0.74893	0.32807	0.49242	2.25289	0.21357
š	5.0000"-04	3.5444"+00	ie.	0.98480	0.50503	U_UA997	1.36655	0.36965
4	8.8900"-04	4.7472*+00	į.	0.97277	0.59804	0.77227	1.60750	0.46312
ذ	1.2700"=31	5.4202*+00	115,	0.97711	0.05054	0.61241	1.56117	0.52056
Ú.	2.1590"-03	7.1343*+00	HM	0.95467	0.74947	0.37903	1.37579	0.03507
7	3.4290"-03	9.7195*+00	än	0.94344	0.88194	0.95317	1.16072	0.81050
8	4.0970"-03	1.1487*+01	1464	0.79052	0.47149	0.98897	1.03424	0.95433
ÿ	5.9670"=03	1.2113"+01	NA.	0.97954	0.79097	0.99057	1.21133	0.94541
10	7.2370*-03	1.2295*+01	iin	0.99987	0.99745	0.94993	1.00319	0.49586
0 11	4.5070"-03	1.2350"+01	MM	1.00000	1.00000	1.00000	1.00000	1.00000
ïiż	9.7790"=03	1.2247"+01	ИW	0.99977	0.79547	95966.0	1.00567	0.99266

INPUT VARIABLES Y, U/UD (ISOLHERGETIG) ASSUME PEPD AND VAN ORIEST

70050	106 ALLLI	4	PROFTLE	TABULATION	13	POINTA, DEC	1A AT POT	NT 13
1	4	PT2/P	PZPO	T0/100	HAMP	מטעט	7/10	RHOVEHODATION
1	0.0000*+00	1.0040*+00	l'n	0.73203	0.00000	0.00000	2,69064	0.0000
Ž	1.2700"-09	1.4659"+00	iji.	0.94210	0.24743	0.JAU32	2.43741	0.15847
3	7.6200*-04	3,1702*+00	gri	0.96117	0.46648	0.05:171	1.96562	0.13308
4	1.3974"-03	3.9768"+00	1184	3.46727	0.53461	0.72002	1.51388	0.19695
5	2.0320*-03	4.5747*+00	1324	5.97114	0.57930	0.75902	1.71638	0.14222
6	2.0670*-03	5.1881"+90	Hai	0.97477	0.62179	0.79311	1.02697	0.46748
7	3.3020 -33	5.4401"+00	ци	0.97821	0.66343	0.02427	1.54179	0.53 162
8	3.7370*+93	6.4334"+00	1174	0.98103	0.69945	0.34903	1.47177	0.576A7
q	6.47711 - 03	4.9688"+00	1114	0.99043	15088.0	0.72852	1.23298	0.75307
10	9.0170**03	1.1463"+01	[JSI	0.99744	0.44132	0.76103	1.06346	0.92250
11	1.1537*=02	1.2463*+01	IJM	0.79968	0.99369	0.79764	1.00797	(1.98975
íž	1.4277**02	1.2543"001	194	U. 44987	0.79741	0.79903	1.00326	0.99579
0 15	1.0637"-02	1.2015"+01	(494	1.00000	1.00000	1.00000	1.00000	1.00000

THPUT VARIABLES Y, 0700 (ISOENERGETIC) ABSUME PEPD AND VAN DRIEST

M : 4
P THETA X 10⁻³ : 2 - 25

7006

ZPG - AW

Continuous tunnel $\approx 26 \text{ G}/\text{Ged}$ symmetrical nozzle, W = 0.91, H = 1.22 m. 0.084 < PO < 0.68 MR/m^2 . To: 313 K. Air, Dew-point 243 K. 3.7 < RE/m × 10^{-6} < 29.

HASTINGS P.C. and SAWYER W.G. 1970. Turbulent boundary layers on a large flat plate at M=4. RAE TR 70040. (Also ARC R & M 3678). Also Mabey et al. CAT 7402.

TW/TR : 1

- The test boundary layer was formed on a mild-steel plate 1.65 m long and 0.89 m wide. A clearance of 12.7 mm was allowed on each side between the plate and the tunnel wall. The plate leading edge was chamfered at 10° to a thickness of 0.25 mm, and ground smooth on the test surface to within 0.64 m. Twenty two instrument ports were placed in alternate staggered rows of three and two in the central 127 mm of the plate. The port diameter was 41.3 mm and the plugs were ground flush with the plate surface to within 13 m. The plate was not actively cooled. Surface temperature varied along the plate but was within +2, -3 % of the adiabatic value for a recovery factor of 0.89. The Mach number along the
- surface varied by about 1 %. Transition was observed by sublimation of a surface coating of azobenzene.

 Transition was complete by approximately X = 0.2 m at the highest unit Reynolds numbers and by about X = 0.6 m for the lowest. The profiles presented are in all cases from stations downstream of transition as indicated not only by the sublimation technique but also by surface Pitot measurements. The sublimation
- 5 patterns also indicated some flow convergence, which was confirmed by an imbalance in the two dimensional momentum integral equation of up to 25 %.
- Two configurations of pressure tapped plugs were used. In one, static holes (d = 1 mm) were drilled 12.7 mm upstream and downstream of the plug centre while in the other, used in conjunction with surface Pitot shear stress sensors, a row of three tappings was drilled 6.35 mm downstream of the centre on the contreline and 10.16 mm to either side. Sections of razor blade were ground down and mounted over two of the static holes on each of two similar plugs. The blades were about 6.35 mm square with the sharp edge mounted over the front of the static hole. It was found that only the blades with the larger value of h (0.566 and 0.323 mm) on each plug gave reliable readings. The smaller blades (h = 0.152 and 0.157 mm) were thought to suffer from interference from the larger ones. The calibration function used was that presented in figure 18 of Hopkins and Keener 1966 (CAT 6601). A floating element balance was also mounted in a plug. The element was circular (d = 7.925 mm) with a mean gap of 0.127 mm.
- Profile measurements were made with two combined Pitot / temperature probe assemblies. These consisted of small ($d_1 = 0.36$ mm) CPP which after an approximately 10 mm length nearly parallel to the flow was bent up nearly normal to the test surface before entering a larger diameter crook-shaped holding tube. This looped round to re-enter the plug to which the traverse gear was attached. The profile normal lay 12.7 mm ahead of the centre of the plug. A thermocouple bead was mounted inside the holding tube near the end of the narrow-bore Pitot. The probe could be connected either to a pressure sensor for Pitot measurements or to a vacuum pump which ensured that the inflow was choked, when the thermocouple was used as a TO sensor.
- 6 For one of the assemblies (No 1) d_2 was 0.28 mm whilst for no 2 it was 0.13 mm. A thermocouple used for measuring wall temperature was fitted to the same plug.
- B The arrangement of the ports was such that there were five longitudinal rows, one on the centre line and two on each side at distances of 31.75 and 63.5 mm. In each row the distance between successive ports was 254 mm. The FEB was used only at stations on the centre line for which X = 0.622, 0.876 and 1.120 m. Pitot traverses were made in the rows 63.5 mm to either side, no 1 being used for traverses on normals at X = 0.659, 0.813 and 1.067 m, and no 2 for traverses at X = 0.406, 0.660, 0.914 and 1.168 m. Razor blade shear stress determinations were made on the centre line and 31.75 mm to one side, as were the associated

static measurements. The X-values are to be found in section D.

- 9 The authors have interpolated static pressure values to the profile stations. By a leap-frog deployment of the two razor-blade sentors it was possible to extend the calibration function to lower readings, and the low-dynamic-head skin friction results were obtained in this manner. The R-THETA values presented with
- 10 the shear stress data are those interpolated by the authors from their own integral value calculations.
- 11 No profile corrections were employed and Sutherland's viscosity law was used.
- 12 The editors have presented all the data available to them using the authors' tabulated values for the measured temperature distribution (values determined from the Crocco / Van Driest temperature relation for recovery factors of 1 and 0.89 were also given). The boundary layer edge reservoir state has been arbitrarily
- set at the nominal tunnel reservoir conditions given by the authors. The CF values given with the profiles have been interpolated by the editors from the data given in section D. The authors' R THETA values were used throughout. The relationship between CF and R THETA was fitted in two separate ranges, with a dis-
- continuity in the value of CF at R THETA = 6800 (see fig. 10 of the source paper). The skin friction data is also presented in its original form in section D. Balance readings are only available for the higher unit Reynolds numbers.
- § DATA: 7006 0101-0407. NX up to 7. Pitot and TO profiles measured with the same probe. CF measured at different stations with FEB and Stanton tubes.

15 Editors' comments

The data cover a 10: 1 Reynolds number range, starting with boundary layers which are still strongly influenced by the transition process. Low Reynolds number effects are evident both in the profiles and in the anomalous CF behaviour which we have attempted to describe by using a two-branch data fit for interpolation. Comparable but fully turbulent data is presented by Coles - CAT 5301, and the development of the transition process is fully described by Watson et al. - CAT 7305, though at high Mach numbers.

Makey et al. used a modification of the same plate to extend the experiment, covering a higher Reynolds number range for Mach numbers from 2.5 to 4.5 - CAT 7402. They observed disturbances caused by the gaps at the sides of the plate which are not remarked here.

The profiles are described in close detail, and measurements extend to within the momentum deficit peak.

CAT 7000	HASTINGS		BOUNDARY CON	DITIONS AND L	VALUATED	DATA, ST UNTI	8.	
RUN	MD +	TWITE	BEDZW	CF +	H15	812K	PW	PD PD
X ·	₽ UD#	PM/PDA	⊕FU50	ĹQ	H32	1132K	THA	10
RZ	1004	3H =	ne	P12*	H42	UPK	un	TR
70060101	3.9130	1.0026	6.9708*+02	NM	7.0514	1.3384	6.2657*+02	6.2657"+02
8.1280*=0!	8.4660*+04	1.0000	2.2714*+05	NM	1.8541	1.5107	2.8921*+02	7.7050"+01
INFINITE	3.13004+08	0.000	6 4340*-04	0.0000*+00	0.2150	1.0803#-03	5.8866"+42	2.8846*+02
70060102	3.9160	1.0070	8.3739*+02	1.6500*-03	7,3623	1.3052	6.2404*+02	6.2404*+02
9.1440*-01	8.466U*+04	1.0000	2.7415"+03	HM	1.6443	1.8117	2.4046*+02	7.6961*+01
INFINITE	3.1300*+02	0.000	7.7760*-04	0,0000*+00	0.1424	1.3601"-03	6.8879"+02	2,8845"+02
70060103	3.8930	1.0002	9.7986*+02	1.5200*-03	7.4449	1.3439	6.4372"+02	6.4372"+02
1-0465"+00	#.4040"+N4	1.0000	3,1349*+03	NM	1.8435	1.8059	2.4859"+02	7.7646"+01
INFINITE	3.1300*+05	0.0000	A.7864"-04	0,0000*+00	0.1219	1.5356"-03	6.87/9*+02	2.8852"+02
700601011	3.8790	0.9949	1.0401"+01	1.4300*-01	7.2253	1.3105	6.3852*+02	6,3852*+02
1.1084.+00	4.4003.+04	1.0000	3.4809"+03	MM	1.8340	1.4031	2.8702*+62	7.7467"+01
INFINIT	3.13004+02	0.000	9.7866*-04	U.0000"+U0	0.1679	1.7364"=03	6.8805*+02	2,4850*+02
70064241	3.9420	1.0000	7.50964.02	NM	7.3744	1.3341	1,2052*+03	1.2052"+03
5.5880"+01	1.6932"+05	1.0000	5.4041.+47	1459	1.8571	1.0214	2.8657"+42	7.6195*+01
INFINITE	3.1300*+02	0.0000	3,5492"-04	u.unu n*+un	0.1625	U. U#37*=0#	6.89914+02	2.8837*+42
70044242	3.9430	0.9997	8.7504"+02	1.4500*****	7.4036	1.3649	1,2035*+07	1.2035"+03
P" PONU 01	1.6935.402	1,0000	2.8776"+03	NM	1.8347	1.6032	2.8027*+02	7.0106"+01
INFINTE	3.1300*+04	9.0000	4.1364*-04	0.0000*+00	0,1627	7.1681 = 04	6.4995"+42	2.8837"+92
70060201	3.9210	1.0016	1.3247*+03	1,27004-03	7.3423	1.3343	1,2397*+03	1.2397"+03
6.1267"-01	1.6932"+05	1.0000	4.3269"+03	NM	1.8387	1.0057	5"R4404+75	7.6813"+41
INFINITE	3.1300*+02	0.9090	6,1524"-04	0.0000*+00	0.1654	1.0493"+03	6,8941"+02	2.8844"+02
70060204	3.9370	1.0126	1.4002"+03	1,2300*-03	7,5541	1.3346	1,2133*+03	1.2133*+07
9.1840*=01	1.6932"+05	1.0000	4.6524"+03	NM	1.8320	1.8000	2.9703"+02	7.6342*+01
INFTHIE "	3.1300*+02	0.0000	6.9569*=04	0.0000*+00	0.1346	1.2657*-03	5.49un*+u2	2.6434"+02
70060209	3.9140	0.9972	1.0202"+03	1,2050*-03	7.3074	1.2986	1.2498*+03	1.2498"+03
1.0668"+00	1.6932*+05	1.0000	5.9119 +01	NM.	1.8552	1.8073	2.6765*+02	7.6490*+01
INFINITE	3.1300"+02	0.000	A.3749"-04	U.0000"+UN	0.1467	1.5085#-03	0,6875"+02	2.8845*+02
70060206	3.915u	0.9972	1.9764"+03	1,4400"-03	7.22AU	1.3113	1.2498*+03	1.2448*+03
1.1684"+00	1.6732"+05	1.0000	6.4259"+03	NM	1.8313	1.8017	2.6705"+02	7.6940*+01
INFINITE	3.1300*+02	0.0000	9.1085"=04	U.00UN*+U0	0,1830	1.6379"-43	6.88/5"+42	2.8845*+02

700604	OI HAST	INGS	PROFILE	TABULATION	3.4	POINTS, UE	TA AT PUI	NT 32
1	Y	9/514	P/P0	10/100	M/HD	0/00	1/10	RHO/RHOU*U/UD
1	U.0000"+U0	1.0000"+00	NM	0.92199	0.00000	9.00000	3.83952	0.60000
2	1,7780"-04	3.1140*+00	ИМ	0.93459	0.35709	0.59424	2.76932	0.21458
3	2,2860"-04	3.4197"+00	MI	0.93748	0.37807	U. 61954	2.68578	0.23072
4	2.7940"-04	3,7362"+00	Им	0.94052	0.39853	U.U4304	2.60349	0.54000
5	5.3020"-04	3,9912"+00	NP	0.94242	0.41421	0.06023	2.54445	0.25987
•	1.6100"-04	4.2375"+00	IIM	0.94498	0.42878	0.67545	2.46504	0.27204
7	4.3160"-04	4.4652"+00	NM	0.94664	0.44182	4.66933	2.43427	0.58718
8	5.540004	4.8900"+00	HP	0.95006	V.46510	U.71243	2.34632	0.50564
9	0.8580"-04	3.2130"+00	HM	0.95248	0.48203	0.72843	2.24163	U.31646
10	8.158004	5.5047"+00	NM	0.95445	U.49680	0.74183	2.27965	0.33271
11	9,3980"-04	5.7803"+00	HW	0.95603	0.51035	0.75362	2.10055	0.34561
12	1.066803	6.0913"+00	NM	0.96374	0.25255	0.76832	2,13945	0.35904
13	1.1938"-03	6.4036"+00	MM	0.96020	0.53973	0.77822	2.07900	Q.3743d
14	1.447803	7.0683"+00	1441	0.46379	U.56436	0.80112	1.97981	0.40465
15	1.0288"-03	9.4400 +00	NM	0.96981	0.03005	0.84032	1.60140	0.46636
16	2.4618"-03	4,4375"+00	NM	0.97409	0.64549	0.57461	1.69231	0.53255
17	2.7178"-03	1.0767"+01	ИW	0.97864	0.11180	0.49041	1.56514	0.56095
18	2.9718"-03	1.1572"+01	ИМ	0.98116	0.73901	0.90441	1.44411	0.60451
19	3.4798"-03	1.3163"+01	NH	0.98596	0.79045	0.92740	1.37170	4.07328
50	3,9676"-03	1.4827"+01	NP	0.98908	U. U406U	0.94831	1.27243	0.74527
21	4.6226"-03	1.7002"+01	NH	0.99371	0.40215	0.97050	1.15727	0.83661
55	5.2570"-03	1.8075"+01	NM	0.99684	0.95108	0.49954	1.07145	9.41475
53	5.0926"-03	5.0010"+01	HM	0.99863	0.96065	U.9446U	1.05958	0.94725
24	6.5278"-03	2.0415"+01	ΠÞ	0.99940	49095	4.99750	1.01327	0.98443
25	7.1626"-03	2.0598"+01	ИW	0.44978	0.99550	0,44640	1.00064	0.44%51
54	7.7978"-03	5.0007.+01	1114		0.94060	0.99910	1.00207	0.99414
27	6.4326"-03	2.0041411	NM	1.00004	0.99785	0.99950	1.00721	0.44450
48	4.0676*-03	2.0734"+01	1114	0.99995	0.44882	0.59970	1.00170	0.4400
24	9.7026"-03	2.0720"+01	M	1.00005	0.99865	0.99970	1.00410	U.9976U
30	1.0340"-02	5.0000,+01	NM	0.99499	0.99795	0.99910	1.00410	0.49690
31	1.140805	2.0748"+01	NM	0.9999	0.99920	0.94980	1.00150	0.49860
D 75	1.2076"-02	2.0781"+01	1461	1.00000	1.00000	1.00000	1.00000	1.00000
33	1.5410"-02	2.0760"+01	ii.	0.99924	0.46640	0.99950	1.00000	0.94441
34	1,7958"-02	\$.07h5"+01	ИH	0.99939	0.44960	0.99540	1.00000	0.94967
		N	4 2 5 1 1 1 1 1					

INPUT VARIAGLES Y, HVUD, HHUNHHOD ADSUME PHPD AT 1919 DATA HERE AVERAGED

7006046	LIZAH LI	ines	PROFILE	TABULATION	17	POINTS, JEL	TA AT PUT	ht 17
1	Y	91279	ት አቴሮ	TUTION	HZHD	UVUN	1/17	#HU\#HUD+U\#
1	0.0000*+00	1.000-+00	lin.	0.92352	0.0000	0.0000	3.81850	0.0000
2	1.7780"-04	2.7461"+00	11m	0.92589	0.33091	0.56075	2.87145	0.19528
3	2.2460*-04	3.04777+00	NW	0.43541	0.35710	4.59360	4.76371	0.21481
4	2.7940*-04	3.3484"+00	NM	0.93/41	0.37454	0.61455	4.64412	0.22627
3	3.3020****	3.5394*400	h A	0.93808	0.54771	86849.0	2.63844	0.23878
b	3.8100*=04	3.7421"+00	1474	0.43495	0.54457	0.64302	2.59478	0.20834
7	4.318004	3.404/*+00	N _{b4}	0.94236	0.41030	0.04520	2.5404/	0.24092
8	5.55804-04	4.7347,+00	(4) 4	0.94017	0.43003	0.67675	2.47654	0.27326
¥	0.8580"-04	4.3001.400	1110	0.44877	0.44754	0.64438	4.41673	0.54027
10	8.1740"-04	4.724 4460	14M	0.42104	0.45784	0.70533	2.37279	4.24726
11	4.738004	4.969/"+00	141.	0.45279	0.47089	0.71787	2.37411	0.30886
12	1.0644-03	4.1740"+00	Wh	0.94504	U.47180	0.72470	2.24565	0.31869
13	1.1-39"-05	5.1474*+00	Им	0.95048	0.44707	0./3844	2.24560	0.32400
14	1.4478"-03	4.073"+00	HM	0.95942	0.51334	0.75670	2.17284	U.146₹5
15	1.9554"-03	h.hl?u"+0U	Иh	0.96297	0.54100	U.78700	4.04000	0.38577
16	2.4614"-01	7.4470*+00	иM	0.96717	U.58578	0.01308	1.98662	0.42203
17	2.9718"+03	##\$#######	HP:	0.47121	10000	U.63724	1.01071	0.46047
18	3.4794*+03	9.1624"+00	44	0.47598	U.65003	44678.0	1.71784	0.50053
19	3.9979"+43	1.0040"+01	1414	0.97982	0.64664	U.8744B	1.62924	0.57950
₹0	4.022603	1-1240*+01	HM	0.98627	0.73041	0.90238	1.57596	0.59124
51	5.2578"-03	1,2404"+01	lat*	0.94105	0.77539	0.92415	1.42040	0.65056
22	5.8928"-03	1.3972*+01	HP	0.4445	0.81701	0.94231	1.72052	0.70837
57	4.5278" - 43	1.5341"+01	NM	0.99441	U.85042	U.44d7u	1.24740	0.76447
24	7.1628"-03	1.6726*+01	MM	0.99994	0.89/52	0.47201	1.17287	U.WPU74
25	7.7978"-03	1.8457"+01	Им	1.00144	0.43350	4.44335	1.10990	û.añaīu
36	8.1788*-03	1.9142"+01	1944	1.00700	0.46140	U. 491A7	1.06317	0.03544
27	9.0678-04	1.9843*+01	[461	1.00399	U,4798J	0,99699	1.01533	0.96297
28	9.70284403	5-0408.+01	Hill	1.00485	0.99043	1.00010	1.01941	0.98102
2.4	1.0338"-02	2.9440*+01	({M	1,00015	0.99483	1.00141	1.01408	U.98789
30	1.0473"=02	2.05314401	[494	1.00000	0,40717	1.00231	1.01032	0.49207
31	1.1608"-02	7.0550"+01	NM	1.00621	0.79757	1.00251	1.00994	0.94260
32	1.2243"-02	2.0572"+01	NM	1.00493	0.49812	1.00201	1.00740	0.99425
33	50-"4185.1	2,0403"+01	ijμ	1.00346	0,49887	1.00171	1.00569	0.94604
34	1.3513**02	2.0602*+01	Mil	1.00316	0.99487	1.00110	1.00486	U.99644
35	1.4148*-02	2.04"+01	Им	1.00240	0.99817	1.00100	1.00569	0.99534
36	1.4468"-02	2,0635"+01	NM	1.00438	0.49967	1.00211	1.00448	0.94724
D 37	1.9828*-02	2.00/10"+01	ИM	1.00000	1.00000	1.00000	1.00000	1.0000

INPUT VARIABLES Y, U/HU, RHD/RHOD ASSUME POPD AT 1=13,21 DATA WERE AVERAGED

7006040)5 HAST1	rugs	PROFILE	TABULATION	18	POINTS, UFL	TA AT PUI	NT 51
1	4	P12/P	P/P0	10/100	HZHD	UZUN	T/10	RHO/PHOU*U/UD
i	0.0000*+ 00	1.0000*+00	HP	0.93640	0.00000	U_U0000	3.84108	0_0000
2	1.7760"-04	2.6872"+00	N۳	0.94714	19025.0	8,55924	2.99174	0.19075
J	2.2860"=04	5.9117"+00	19m	0.94870	0.54588	U.5A145	2.65898	8.202.0
4	2.7940"-04	3.1772"+00	1114	0.95099	0.36510	0.60536	2.77965	U.21779
5	5.3020"-04	3.3705"+NU	ſŧΜ	0.95241	0.37640	0.62127	2.72445	0.22604
b	5.8100"=U4	3.5404"+00	IvM	0.95359	0.36767	0.63438	2.67781	U.2369U
7	4.3180"-04	3.6757"+00	Nw	0.95446	0.59640	0.64429	2.64178	U.243RB
8	5.5480"-04	3,4830"+00	ИW	0.95673	0.41550	0.66540	£.56460	0.25945
9	0.8580"=04	4.2212"+00	NM	0.95820	0.42968	0.65041	2.50751	0.27135
10	9.158004	4.4237"+00	NM	0.55974	0.44130	0.69252	46140	0.26159
11	9.3980"-04	4,6175"+00	Nw	0.46041	U.45224	0.70322	2.41791	0.29084
12	1.0664"-03	+00°د,794 4.79	1484	0.96205	U.46190	0.71293	2.38169	0.29934
13	1.1938"-03	4.9761"+00	NM	0.96288	0.47169	0.72213	2.34374	0.30811
14	1.4478"-03	4.310u*+04	Mh	40668.0	0.48912	0.73834	2.27673	0.32402
15	1,9558"-03	5.997J"+00	NM	0.96659	0.52504	4.76770	2.15464	0.35632
18	2.4634"-03	h.60%3"+00	Nav	0.47108	4.54155	0.79027	2.05520	0.38452
17	2,9718"-03	7,2065"+90	NP	0.97415	0.57779	0.01039	1.96720	0.41195
18	1,4798"-03	7.4420*+00	He.	0.47613	0.00410	0.02870	1.88146	0.44045
19	J,9878"-03	A.4471"+0U	HM	U.97745	0.62499	0.64471	1.40353	0.46836
50	4.0224"-03	0.2044"+00	NF'	0.99051	4.05827	0.06292	1.71845	0.50216
51	5,2578"-03	1.0447.+07	NP	0.98268	0.08939	U. UAUS 3	1.63137	0.53975
55	5.8924"~03	1.0983"+01	iv.M	0.98530	0.72234	0.89794	1.54524	0.78109
57	6.5778"-03	1.1827"+01	NM	0.48640	0./5081	0.41165	1.47471	0.01835
24	7.7976"-03	1.3426*+01	No	0.99111	0.61430	10679.0	1.17090	ひょとのちゅう
25	9.0678"-03	1.5794"+01	t4M	0.99348	0.67229	0.96108	1.41304	0.79170
3.6	1,0110"-02	1.7854"+01	1964	0.99702	11959.0	U. 47989	1.11220	0.0007
27	1.1608"-02	1.9508"+01	1144	0.99862	4.97232	0.44240	1.04171	0.45244
58	1,2476"-02	5.0303*+01	\$4 \$4	1.00079	0.99245	U.49830	1.01182	U. 9Rohu
54	1.4148"-02	2.0537"+01	ИM	1.00025	U.49025	0.44970	1.00240	0.99eA1
30	1.5414"-02	2.0403"+01	[th	1.00325	0.99440	1.00010	1.00040	0.44470
0 31	1.0684"-02	5.0001.401	ŊΜ	1.00000	1.00000	1.0000	1,00000	1_0000
34	1.7958".02	2.0595"+01	NM	0.99495	0.99970	U. 9699U	1.00040	ÜŢĠŦĠŦĠ
3.3	1.4558,-05	2.0591"+01	Им	1.00019	0.49960	1.00000	1.unumo	0.99920
34	5.044405	\$.05M3"+01	Mh	1.00029	U. 4994U	1.0000	1.00150	U. 498AU
15	2.1768"-02	5.05737+01	Ifin	0.49999	0.40450	0.91980	1.00120	0.49840
36	5,3038,405	2.0545"+01	144	1.00055	0.99845	6.4990	1.00240	0.44700
37	2.4305 -07	>.0551*+01	1411	1.00078	U.4986U	U. 4994U	1.00240	0.99/40
38	2.5578"-02	2.0547"+01	Νv	1.00000	J.449 0J	0.99940	1.00160	4.9967

INPUT VANIABLES Y, U/OD, RHO/HHOD ABSUME PEPO AT I=24 DATA WERE AVERAGED

70060	104 HABT	INGS	PHOFILE	TARULATION	35	POINTS, UFL	TA AT PUI	N7 52
1	Y	#T 77 P	P/PN	T0/T00	19/140	מטעט	7/10	まない。本本のですらいだけ
1	0.0000*+00	1.0000*+00	1414	0.88337	0.00000	0_00000	3.61486	0.0000
2	1.7780*-04	7.6514"+00	1001	0.42347	0.32405	0.54702	2.84461	0.19196
3	2.2600"-04	2.7506"+00	New	0.45744	0.37373	U.55944	4.01335	U.19885
4	2.7940"-04	2.9146"+00	He	0.92677	ひ。シラッラは	0.56117	4.74801	V.21140
5	3.3020"-04	3,1448"+00	NM	0.92858	0.36441	0.59410	4.69374	0.45407
6	3.8100"-04	3.3444*+00	[4₩	U.97U82	4.37712	0.01342	2.64574	0.23145
7	4.3160"-04	3.5065"+00	NM	0.93242	U. 3477U	0.02574	2.6047/	0.44055
Ü	5.5RB0"=04	3.4230"+40	HM	0.93568	0.40804	0. u4877	2.57744	0.24449
9	6.8580"-04	4.0540400	HM	0.43618	0.42240	0.04460	2.47340	0.26470
10	8,1280"-04	4.7653"+00	NH	0.93997	0.43474	0.67742	2.42753	0.27406
11	9.3980"-04	4.4573"+90	MIN	0.94153	0.44472	0.08763	2.39071	0.28762
15	1.0448"-03	4.6183"+00	Hm.	0.94272	0.45493	0.09775	2.39245	0.24065
13	1.1934"-03	4.7720*+00	MM	0.94413	46340	U.70010	4.32170	U.30417
14	1.4478"-03	4.0041"+00	1414	0,94664	U.47459	0.77148	2.26503	0.51453
15	1.9558*-03	5,4592"+00	HM	0.95116	0,50944	0.74672	2.35685	U.SAWAd
16	4.4436"-03	h.1354"+0U	Hr	0,95457	0,53260	0.76835	2.08074	74492.0
17	4.971803	4.4474"+00	lih.	4.95402	0.55713	0.787-0	2.00040	0.14141
18	1,4798"-03	7.0771"+00	NM	0.96056	0.57543	0.64500	1.94183	0.41301
19	1,4476*-03	7.4651"+00	NP	0.96283	0.59652	0.81703	1.87542	0.43553
20	4.6226"-03	8.1670*+90	M	0.44609	0.67142	0.03415	1.80185	0.46294
21	5.2570*-03	8.7404"+00	NM	0.74488	0.04502	0.64937	1.73401	U.489A3
22	5.84284-03	7.4141"+00	NM	0.97165	0.67012	U. 8644U	1.06460	0.51934
53	5278*-03	1.0045"+01	1164	U.47414	V. 09418	0.47432	1.00000	4.54864
24	/.7478*=03	1.1444"+01	1464	0.97950	0.74245	U.401AU	1.46515	0.60984
25	9.0674*-03	1.7884"+01	NH	0.98.43	U. 78963	0.92579	1.37460	0.67350
36	1,0338*-02	1.4247*+01	Me	0.98778	0.03339	0.94442	1.28414	0.73542
27	1.1606"-02	1.5935"+01	(4M	0.99172	0.88142	0.96264	1.14241	U.40704
46	1.28784402	1.7509"+01	HH	0.99492	0.42521	0.97757	1.11677	0.47540
29	1.4146*-02	1.8847"+01	NH	0.94715	0.94UA7	0.98878	1.05852	44149
10	1.5418"-02	1.4724"+01	Mm	0.4945}	0.98567	U.99514	1.07150	0.47224
31	1.6486"-02	P.0167"+01	Nw	0.49936	4.99478	0.94640	1.00724	0.44117
0 15	1.7950"-02	5.0374*+01	NH	1.00000	1.00000	1.00000	1.00000	1.0000

INPUT VARIABLES Y, U/UD, HHO/RHOD ABSUME PEPD AT 1-26, 79 DATA WRME AVERAGED

SECTION D: ADDITIONAL DATA

NB. FACSIMILE FROM SOURCE PAPER. AUTHORS SYMBOLS AND UNITS Local Skin-Friction Coefficients.

X in	D	C_f	C _f	Interpo	dation
in from	P. in Hy	Floating	Surface		Table 3
l.e.		element	pitot	Rδ,	M.
			h = 0.0223	2.0.2	
54.75	200		0.00100		
48-75	·			I	
44.75			0.00106	24035	3.934
44.5		0.00103	1	23820	3.934
38.75					
34.75	ŧ.		0.00106	18695	3.953
34.5		0.00108		18590	3.953
28.75			0.00105	16180	3.955
24.75		0.0044.5	0.00112	14125	3.958
24.5		0-00115		13945	3.957
18.75	i			•	
14.75					
54-75	100		0.00115		
48.75					
44.75			0.00116	12455	3.926
44.5	1	0.00114		12360	3.926
38.75					
34.75			0.00120	9480	3.942
34.5		0.00124	0.001.00	9420	3-942
28.75			0.00123	8125	3.940
24.75		0.00127	0-00139	7035	3.942
24.5		0.00137		6930	3.942
18·75 14·75			1		
54-75	50		0.00123		
48:75					ŀ
44.75			0-00120	6504	3.915
38.75					
34.75	1		0-00124	5065	3.932
28.75			0.00132	3910	3.933
24.75			0.00152	3115	3-943
54.75	25		0.00174		
48.75		Ì			1
44.75			0.00145	3455	3.897
38-75				1	

M : 4 falling to 2.95

R THETA X 10⁻³ : 35 - 70

TW/TR : 1

7007

ZPG - APG - ZPG

Continuous tunnel, fixed nozzle. W = H = 0.127 m.

PO: 1.5 MM/m². TO: 295 K. Air, absolute humidity 2×10^{-4} . RE/m : 6.5×10^{7} at M = 4.

ZWARTS F.J. 1970 The compressible turbulent boundary layer in a pressure gradient. PhD Thesis McGill University. Montreal.

And Zwarts F.J., Private communications.

upstream of the static hole.

- 1 The test boundary layer was formed on the filtor of the 0.127 m square wind tunnel. The test section started
- 4 about 0.75 m downstream of the nozzle throat so that the starting boundary layor thickness was about 10 mm. A contoured splitter plate was designed by the method of characteristics to give a Mach number distribution on the tunnel floor such that the initial flow at M = 4 passed through a constant Mach number gradient falling to M = 3 over a distance of 0.15 m, followed by a second region of constant Mach number flow. The
- 3 test surface roughness was less than 0.9 µm, and it was not actively cooled. No boundary layer trip was used as it was presumed that the prevailing high Reynolds number levels would ensure fully turbulent flow a short distance downstream of the nozzle throat. Surfaces flow visualisation tests showed that there was
- 5 considerable flow convergence in the APG region as well as divergence in the ZPG regions. This was attributed to inflow/outflow from the tunnel sidewall driven by the significant pressure differences normal to the test surface. Pitot traverses and Preston tube measurements were made at stations 38.1 mm to either side of the centre line, at streamwise intervals of 50.8 mm. CF differed from the centre line value by up to 10 %. Differences in integral thicknesses were up to 5 %.
- The test wall was provided with 4B static holes of 1.04 mm diameter. "Goose-necked" Pitot tubes could be inserted into the static holes and were also used as Preston tubes. The Pitot probes were CPP for which d₁ was either 0.419 or 0.813 mm. The tubes emerged from the wall normally and then curved over in a series of approximate circular arcs to finish parallel to the surface. The overall upstream extension was 6.35 mm for the smaller tube and 12.7 mm for the larger. The end faces were ground square to the test surface. The profile traverses were taken with the small tube, the larger one being used to supply supplementary Preston tube data. On the centre line the static holes extended at 12.7 mm intervals from the first (X = 0) to X = 228.6 mm. There were then holes at X = 254 and 279.4 mm followed by holes at 50.8 mm intervals until X = 431.8 mm. Holes were also drilled on lines 38.1 mm to either side of the centre line at 50.8 mm intervals from X = 0 to X = 457.2 mm. Pitot traverses were made 1th the small CPP mounted in all these holes excepting those for X = 457.2 mm. The profile traverse were made 20 to x = 457.2 mm. The profile traverse was a sus in each case at an X value 6.35 mm
- 9 The suchor has interpolated the static pressure data to the X-stations of the profiles. Static pressure was assumed constant through the layer, the characteristic solution having shown that the limiting isobars of the ideal flow approached normally. The total temperature was assumed constant. The boundary layer edge was specified by fitting a power law to the outer two thirds of the velocity profile, and the edge stagnation state set equal to the reservoir state. The effects of finite static hole size (d_g) were allowed for by an adjustment in the form

$$\Delta p \ / \ \tau_W = 0.0045 \ (u_{\tau} \ d_{g} \ / \ v)$$
 for $u_{\tau} \ d_{g} \ / \ v \ \leq \ 611$
 $\Delta p \ / \ \tau_W = 2.75$ for $u_{\tau} \ d_{u} \ / \ v \ > \ 611$

The fluid properties were evaluated at an intermediate reference temperature (T+) and Sutherland's viscosity law was used. The correction varied from 1 % to 1.5 %. A Pitot tube displacement and shear correction was applied in the form of an effective centre-position displacement Δy given in terms of the

tube diameter d_n by

$$\Delta y/d_p = 0.15 - 0.04 \left(\frac{d_p}{V} - 0.5\right) \text{ for } \frac{d_p}{2} \le y \le 2 d_p; \quad \Delta y/d_p = 0.15 \text{ for } y > 2 d_p.$$

- 12 The editors have replaced the author's assumption of isoenergetic flow by the assumption of an adiabatic wall and the Crocco/Van Driest temperature relation. The boundary layer edge and edge stagnation state
- 13 have been retained at the authors' values. The profiles presented are those for the centre line in the region covered by the designed pressure distribution. In this region variation of Mach number across the tunnel is small. The author gives further data downstream, where the pressure gradient is rather irregular,
- and, although symmetrical, the flow displays threedimensional variations. The author presents CF values reduced from the Preston tube measurements with the calibration functions of Sigella (1966), Hopkins and Keener (1966 Reference Temperature) and Fenter and Stalmach (1957). The Hopkins and Keener value has been selected for the profile tabulation of section B. The other values are given in Section D.
- § DATA 70070101 0120. PT2 profiles. NX = 20. CF from Preston tubes.

15 Editors' comments

The test layer is described at close intervals as it passes from a constant pressure region into an adverse pressure gradient followed by a region of constant pressure. An inspection of our transformed log-law plots suggests that the outer region has not reached equilibrium at the last station presented here. We have not presented further profiles downstream as the pressure history after profile 20 is rather random. The pressure gradient is imposed as a reflected wave, so that normal pressure gradients should be negligible except at the start and end of the APG (profiles 03, 15, 16).

The wall temperature was not measured, but "should be between room temperature (same as total temperature) and the adiabatic wall temperature". We have arbitrarily choson the latter, but variation in this range should have little effect on the numerical results. The profiles extend in as far as the momentum deficit peak. The power-law velocity profile determination of the boundary layer edge results in a D-state at which there is still a marked total pressure deficit. Three-dimensional effects (see § 5 above) are to be expected as the length to width ratio of the tunnel floor is about 8.

Comparable planar investigations are those of Waltrup & Schetz - CAT 7104 and Thomas - CAT 7401. The closest comparison is with Lewis et al. - CAT 7201 - who, however, used an axisymmetric test arrangement.

7007 ZWARTS. SECTION D. ADDITIONAL DATA.

SKIN FRICTION COEFFICIENT USING DIFFERENT CALIBRATIONS.

A - SIGALLA, B - HOPKINS & KEENER, C - STALMACH, VALUES OF CF X 104

PROFILE		CALIBRAT	TON	PROFILE	64	AL IBRATIO	ON
7007	A	8	c C	7007	Α	В	С
0101	8.92	8.22	8.35	0111	8.44	7.57	7.98
0102	9.11	8.45	8.54	0112	8.52	7.68	8.10
0103	9.32	8.72	8.77	0113	8,23	7.36	7.83
0104	8.73	7.96	8.16	0114	7.95	7.04	7.55
0105	8.09	7.20	7.52	0115	8.16	7.27	7.79
0106	8.16	7.26	7.59	0116	8.80	7.98	8.47
0107	8.15	7.24	7.61	0117	9.30	8.57	9.01
U108	8.52	7.66	8.01	0118	9.80	9.16	9.55
0109	8.25	7.35	7.75	0119	10.17	9.62	9.96
0110	8,23	7.34	7.75	0120	11.52	11.38	11.46

CAT 7007	ZWARTS		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. 31 UNI	rs.	
RUN	MD #	TH/TR4	REDZW	CF +	H12	111 2K	PW	PD
X + RZ	P00* 100*	PWZPD# SW #	DS DS	PIS CO	H45 H35	DSK H3SK	TW UD	TD TR
70070101	4.0203	1.0000	1.0435"+04	8.2200*-04	7.8489	1.3617	9.4452"+03	9.4452*+03
-6.3500"-03 INFINITE	1.4734*+06	1.0000	3.5786"+04 5.6166"=04	NC NM	1.8289	1.8017	2.7106*+02 6.7231*+02	0.9566#+01 3.7106#+02
70070102	4.0206	1.0000	1.06344+04	8.4500*-04	7.8142	1.3492	9.4814"+03	9.4414"+03
6.3500"-03 Infinite	1.4734"+06	1.0000	3.6473"+04 5.7253"-04	ИС Им	1.8332	1.8077 1.0625"-03	2.7106"+02 6.7232"+02	6.9559"+01 2,7106"+02
70070103	4.0156	1.0000	1.07737+04	8.7200=-04	7.8485	1,3626	9.5044"+03	9.5044"+03
1.9050"=02 Infinite	1.4734*+06 2.9444*+02	1.0000	3.6880"+04 5.7744"-04	NC NM	1.8248 0.1449	1.7965 1.0915"-03	2.7107"+02 6.7212"+02	6.9691#+01 2.7107#+02
70070104	3.9342	1.0000	1.1807*+04	7.7600*-04	7.5634	1.3547	1.0598"+04	1.0598*+04
3.1750"-02 Infinite	1.4734*+06 2.9444*+02	1.0000	3.9210"+04 5.8878"=04	NC NW	1.6221	1.7954 1.0994*-03	5.7130"+02 6.6882"+02	7.1693"+01
70070105	3.8250	1.0000	1.2981"+04	7.2000*-04	7.3351	1.3668	1.2287"+04	1.2257#+04
4.4450*-02 Infinite	1.4734*+06 2.9444*+02	1.0000	4.1375"+04 5.8712"-04	NA NC	1.8094	1.7798 1.0971*=03	2.7162° (02 6.6414" + 02	7.4996*+01 2.7162*+02
70070106	3.7270	1.0000	1.4189*+04	7.2600*-04	7.0156	1.3841	1.4036"+04	1.4036*+00
5.7150*-02	1.4713"+06	1.0000	4.3487*+04	MM	1.8132	1.7831	2.7460*+02	7.8699#+01
INFINITE	2.9733"+02	0.0000	5.9569"-04	NC	0.1387	1.0759*-03	6.6291"+02	2.7460"+02
70070107	3,6099	1.0000	1.5731"+04	7.2400"-04	6.7578	1.4159	1.6520"+04	1.6520"+04
6.9850"-02 Infinite	1.4713"+06 2.9767"+02	0.0000	4.6093"+04 5.9451"=04	NM NC	1.7992	1.7664	2.7529"+02 6.5757"+02	8.2541"+01 2.7579"+02
70070108	3.5375	1.0000	1.63044+04	7.6600"-04	6.6259	1.4300	1.8292*+04	1.8292"+04
8.2550*-02 Infinite	1.4713*+06	0.0000	4.6460"+04 5.7618"=04	ar uc	1.7821	1.7557	2.7539*+02	8,4933"+01
70070109	3,4643	1.0000	1.7939"+04	7.3500"-04	6.4277	1.4379	2.0305"+04	2.0305*+04
9.5250*-02	1.4713"+06	1.0000	4.9676*+04	NM	1.7804	1.7525	2.7587"+02	8.7569*+01
INFINITE	2.9772*+02	0.0000	5.9300"-04	NC	0.1307	1.0720"=03	6.4992"+02	2.7587*+02
70070110	3,3956	1.0000	1.9240"+04	7.3400*-04	6.2865	1,4528	2.2395*+04	2.2395"+04
1.0795"-01 Infinite	1.4713"+06	1.0000	5.1877*+04 5.9745*=04	NC NM	1.7699	1.7437	2.7028"+02 6.4525"+02	9.0:05"+01
							-	2.7020.402
70070111 1.2065*-01	3.3412 1.4713*+06	1.0000	2.0116"+04 5.3104"+04	7.5700"=04 NM	6.1407 1.7668	1.4504 1.7437	2,4223"+04	2.4223*+04 9.21!4*+01
INFIUITE	2.9778"+02	0.0000	5.9360"-04	NC	0.1269	1.0666"=03	6.4295*+02	2.7639**02
70070112	3.2661	1.0000	2.2101"+04	7.6800*=04	5,9539	1.4574	2.702#*+04	2.7028*+04
1.3335*-01	1.4720"+06	1.0000	5.6771"+04	ИW	1.7025	1.7398	2.7359*+02	9.3967"+01
INFIGITE	5.9444*+05	0.0000	5.9909"=04	4C	0.1248	1.0624*-03	6.3479*+02	2.7359"+02
70070113	3,1720	1.0000	2.4455*+04	7.3600"=04	5.7799	1.4827	3.0976"+04	3,09784+04
1.46054-01 INFINITE	1.4713*+06	0.0000	6.0555"+04 6.0782"-04	NC NM	1.7471	1.7267 1.0774*=03	2.73/M"+02 6.2683"+02	9.7714"+01
70070114 1.5875"-01	3.0722 1.4713*+00	1.0000	2.7478"+04 6.5202"+04	7.3400*=04 N#	5.5419 1.7427	1.4977	3.5958"+04 2.7919"+02	3.595A"+04 1.0374"+02
INFINITE	2,9956"+02	0.0000	6.3542"=04	HC	0.1185	1.10054503	6.2737*+02	2.79194+02
70070115	2.9867	1,0000	3.0051"+04	7.2700=-04	5.3258	1,4995	4.0863"+04	4.08634+04
1.7145*-01	1.4713"+06	1.0000	7.0325"+04	Иn	1.7410	1.7189	2.7944"+02	1.0754"+02
INFINITE	2.4939*+02	0.0000	0.5364"-94	NC	0.1100	1.1085"-03	6.2098"+02	2.79447+02
70070116	2,9640	1.0000	3.14254+04	7,9800*+04	5.1058	1,4646	4.2282"+04	4.2282"+04
1.8415*-01 Infinite	1.4713*+06	1.0000	7.1455*+04	NC NN	1.7553	1.7349	2.7965*+02 6.1939*+02	1.0863"+02
70070117	2,9635		3.2099*+04	3.5700*=04				
1.9685#-01	1.4713"+06	1.0000	7.2975"+04	3.3700"=04	5.0894 1.7740	1.4271 1.7538	4.2313"+04	4.2313"+04
INFINITE	2.9944*+02	0,0000	6.6995*+04	NC	0.1176	1.07864403	6.1929"+02	2.7960*+02
70070118	2,4578	1.0000	3.15324+04	9.1600"-04	5.0581	1.4162	4.27184+04	4.2718*+04
2.0935#~01	1.4727*+00	1.0000	7.15454+04	NM str	1.7760	1.7585	2.7916"+02	1.0872"+02
INFINITE	2,9894"+02	0.0000	6.5254"-04	NC .	0.1175	1.0478*=03	6.1H74H+C5	2.7916*+02
70070119 2.2225"-01	2.9725	1.0000	3.2157*+04	9.6200*⊶04	5.0156	1.3845	4.1783*+04	4.1763"+04
INFINITE	1.4727"+06	1.9000 U.000U	7.3416"+04 6.7267"=04	NC	1.7920	1.7751 1.0582*=03	6.1871"+02	1.0777#+UZ 2.7842#+UZ
70070120	2.9742		3.1554*+94					
2.47654-01	1.4727"+06	1,0000	7.16434+04	1.1380*-03 NM	4.9061	1,3403	4.1677*+04	4.1677"+04
INFINITE	2,9694"+02	0.0000	6,9331*-04	ИС	0.1208	9.0674"-04	6.1751*+02	2.7721"+02

70070	103 Z.iAI	RT3	PROFILE	MOITABURATION	55	POINTS, DE	LTA AT POT	NT 19
T	Y	P12/P	PVPD	COTYOT	UMD	UZUD	T/10	RHO/RHOE*U/U
1	0.0010#+00	1.0000"+00	Hm	0.92062	0.00000	0.00000	3.84961	0.0000
2	2.00387-04	2.8739#+00	1144	0.94689	0.33540	0.57527	2,93328	0.19612
3	5.8420*-04	3,4103"+00	UN	0.95130	0.37335	C.u2165	2.77250	0.22421
4	9.96/8"-04	4.2809"+00	1923	0.75744	0.42062	0.uA113	2.54902	0.26721
5	1.2243""03	4.7342*+00	űΜ	0.96142	0.46238	0.71696	2,40427	0.50050
7	1.5415"-03	5.4849"+00	1151	0.96443	0.49043	0.74292	2.29473	0.32375
á	2.1768"=03 2.8118"=03	6.4865*+00	Ma	0.96923	0.53761	0.78268	2.11947	0.36928
š	3.4458"-03	7.3563"+00	144 1981	0.77286	0.57540	0.01126	1,98782	0.40812
10	4.0818"-03	3.1837*+00 9.0418*+00	11/24	0.97591	0.00915	0.83456	1.87702	0.44462
iĭ	4.7168"-03	9.7134"+00	}JM	0.97872 0.98128	0.64225	0.85555	1.77451	0.48213
iż	5.3518" -03	1.0824"+01	IJМ	0.94367	0.70602	0.87420 0.89134	1.64128	0.51996 0.55923
i 3	5.9868"=03	1.1831"+01	Ни	0.98607	0.73961	0.90801	1.50719	0.60245
14	6.621h"-03	1.3236"+01	FEFA	0.98899	0.75410	0.92805	1.40087	0.66248
15	7.2568"-03	1.4573"+01	13M	0.99141	0.82416	0.94432	1.31285	0.71929
16	7.8918"-03	1.5732"+01	1444	0.99327	0.85737	0.95660	1.24502	0.76839
17	9.1618"=03	1,7962"+01	NM	0.99636	0.91793	0.97682	1.13242	0.86259
18	1.0432"-02	1.9869*+01	ΙĮΜ	0.99859	0.96067	0.99110	1.05119	0.94284
D 19	1.1420"-02	2.1229*+01	IIM	1.02000	1.00000	1.00000	1.00000	1.00000
SO	1.1702"-02	2.1513"+01	1/164	1.00028	1.00661	1.00174	0.98495	1.01191
31						4 00000		
51	1.1829"-02	2.1693"+01	ИM	1.00045	1.01113	1.00283	0,98365	1.01949
55	1.1956*=02 VARIABLES	2.1693"+01 2.1785"+01 Y,U/UD (ISOENE	Им	1.00045 1.00054 ASSUME PEP	1.01330	1.00337	0,98050	1.02532
SS TUPNI	1.1956#=08 VARIABLES	2.1785*+01 Y,U/UD (ISOENE	NM RGETIC)	1.00054 ASSUME P=P(1.01330 D AND VAN	1.00337 DRIEST	0,98050	1.02532
22 INPUT 700701	1.1956*-02 VARIABLES 105 ZWAR	2.1785*+01 Y,U/UD (ISOENE	NM RGETIC) PROFILE	1.00054 ASSUME PEP! TABULATION	1.01330 DAND VAN 1.85	1.00337 DRIEST POINTS, DEL	0,98050 TA AT POT	1.02532 NT 20
22 INPUT 700701 I	1.1956*-02 VARIABLES 105 ZWAF	2.1785*+01 Y,U/UD (ISOENE RTS PIZ/P	NM RGETIC) PROFILE P/PO	1.00054 ASSUME PEPE TABULATION TO/TOP	1.01330 D AND VAN	1.00337 DRIEST	0,98050	1.02532
22 INPUT 700701 I 1	1.1956*-02 VARIABLES 105 ZWAF 4 0.0000*+00	2.1785*+01 Y,U/UD (ISOENE TS PIS/P 1.0000*+00	NM RGETIC) PROFILE PYPO NW	1.00054 ASSUME P=PE TABULATION TO/TOP 0.78249	1.01330 NAV DAA 1.83 1.83 DAVN 0.0000.0	1.00337 DRTEST POINTS, DEL	0.98050 0.98050 7710 1.62181	1.02532 NT 20 RHO/RHOD4II/U(0.00000
22 INPUT 700701 I 1	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04	2.1785*+01 Y,U/UD (ISOENE RTS PIR/P 1.0000*+00 2.3570*+00	NM RGETIC) PROFILE PYPO NM NM	1.00054 ASSUME P=P(ASSUME P=P	1.01330 MAV DMA C 3.3 I MMMD 0.00000 0.30915	1.00337 DRIEST POINTS, DELUVUD 0.00000	0.98050 704 TA AT_ 21\1 218156.E 218162.5	1.02532 NT 20 PHO/RHODAU/UU 0.00000 0.18166
22 INPUT 70070; I 1 2 3	1.1956*-02 VARIABLES 105 ZWAF V 0.0000*+00 2.4638*-04 3.5608*-04	2.1785"+01 Y,U/UD (ISOENE RTS PT2/P 1.0000"+00 2.3570"+00 2.093"+00	NM RGETIC) PROFILE P/PO NM NM NM	1.00054 ASSUME P=P(TASULATION TU/TOP 0.92249 0.94594 0.94725	1.01330 AND VAN 23 I M/ND 0.00000 0.30915 0.33671	1.00337 DRTEST POINTS, DEL U/UD 0.00000 0.52610 0.58518	0,98050 LTA AT POT T/TD 5,62181 2,89613 2,78434	1.02532 NT 20 PHO/RHODALL/UC 0.00000 0.18166 0.2298
22 INPUT 70070; I 1 2 3	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 3.8608*-04 7.1374*-04	2.1785"+01 Y,U/UD (ISOENE TS PIZ/P 1.0000"+00 2.3370"+00 2.0993"+00 3.5132"+00	NM RGETIC) PROFILE P/PO NM IM IM IM	1.00054 ASSUME P=PE TABULATION TU/TOP 0.92249 0.94549 0.94725 0.95402	1.01330 MAV DNA C DNAM DNAM CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO0000 CO000	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.54518 0.03751	0,98050 TA AT POT T/TC 3,62181 2,89613 2,78434 2,555255	1.02532 NT 20 PHO/RHOD+U/U(0.00000 0.16166 0.20298 0.24961
22 INPUT 700701 I 1 2 3 4 5	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4638*-04 3.8508*-04 7.1374*-04 1.0338*-03	2.1785"+01 Y,U/UD (ISOENE RTS PIZ/P 1.0000"+00 2.3570"+00 2.6993"+00 3.5132"+00 4.1049"+00	NM RGETIC) PROFILE P/PO NM UM UM UM UM UM	1.00054 A35UME P=P0 A35UME P=P0 A35UME P=P0 A35UME P=P0 A35UME A3	1.01330 NAV DAA 1.01330 OAND DAA 1.013300 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.01330 OAND DAA 1.013300 OAND DAA 1.013300 OAND DAA 1.013300 OAND DAA 1.013300 OAND DAA 1.013300 OAND DAA 1.013300	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.54518 0.03751	0.98050 TA AT POT T/TD 3.62181 2.89613 2.78434 2.55525 2.39430	1.02532 NT 20 PHO/RHOD4U/UU 0.00000 0.18166 0.20298 0.20578
22 INPUT 700709 I 1 2 3 4 5 6	1.1956*-02 VARIABLES 105 VARIABLES 0.0000"+00 2.4638*-04 7.1374*-04 1.0338*-03 1.3513*-03	2.1785"+01 Y,U/UD (ISOENE PT2/P 1.0000"+00 2.3570"+00 2.3570"+00 4.1049"+00 4.1049"+00	NM RGETIC) PROFILE P/PO NM UM UM UM UM UM UM	1.00054 ASSUME P=P(TASULATION TU/TOP 0.942594 0.94725 0.95402 0.75873 0.96189	1.01330 AND VAN R31 M/ND 0.0000 0.33071 0.33071 0.39900 0.47129	1.00337 DRIEST POINTS, DEL U/UD 0.0000 0.52610 0.56518 0.67751 0.04425 0.71301	0,98050 T/TD 3,62181 2,89613 2,78434 2,55525 2,34450	0.02532 NT 20 PHO/RHODAII/U(0.00000 0.16166 0.20298 0.24961 0.27578 0.31151
22 INPUT 700709 I 1 2 3 4 5 6 7	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 7.1374*-04 1.3553*-03 1.3513*-03	2.1785"+01 Y,U/UD (ISOENE PI2/P 1.0000"+00 2.5970"+00 3.5132"+00 4.1849"+00 4.6818"+00 5.0766"+00	NM RGETIC) PROFILE P/PO NM IM IM IM IM IM IM IM	1.00054 ASSUME P=P0 TABULATION TU/TOP 0.92249 0.94725 0.94725 0.95402 0.95873 0.96159 0.16430	1.01330 NAV DAA O.0000 0.00000 0.33471 0.34280 0.44280 0.44280 0.44280 0.44280 0.44280	1.00337 DRIEST POINTS, DET U/UD 0.00000 0.52610 0.056518 0.05751 0.07425 0.71301 0.73443	0.98050 T/TD 5.62181 2.89613 2.78414 2.55525 2.39450 2.26591 2.20765	0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.33267
22 INPUT 700709 I 1 2 3 4 5 6	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4638*-04 3.5808*-04 1.0339*-03 1.3513*-03 1.5608*-03 1.9608*-03	2.1785"+01 Y,U/UD (ISOENE TS PI2/P 1.0000"+00 2.3570"+00 2.0993"+00 4.1069"+00 4.1069"+00 5.5186"+00 5.5186"+00	NM RGETIC) PROFILE P/PO NM UM	1.00054 A35UME P=P0 TASULATION TU/TOD 0.72249 0.74574 0.74575 0.75475 0.76157 0.76430	1.01330 NAV VAN 0.0000 0.0000 0.30915 0.33671 0.3990 0.44220 0.44220 0.44220 0.44220	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.52610 0.05781 0.05781 0.05425 0.71301 0.73443 0.75370	0.98050 TA AT POT T/TD 3.62181 2.89613 2.78434 2.55525 2.39430 2.28501 2.20765 2.13222	0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.33267 0.35151
22 INPUT 700701 I 1 2 3 4 5 6 7 8	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 7.1374*-04 1.3553*-03 1.3513*-03	7.1765"+01 Y,U/UD (ISOENE PT2/P 1.0000"+00 2.3570"+00 2.3570"+00 3.5132"+00 4.1049"+00 4.04018"+00 5.0764"+00 5.116"+00 6.3548"+00	NM RGETIC) PROFILE P/PO NM HM	1.00054 ASSUME P=P(TASULATION TU/TOP 0.943544 0.94725 0.95402 0.75879 0.76189 0.76653 0.77063	1.01330 1.01330 VAN VAN 0.0000 0.0000 0.33671 0.34920 0.47129 0.47129 0.47129 0.47129 0.47129 0.47129 0.47129 0.47129 0.51029	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.58518 0.05751 0.04425 0.71301 0.73443 0.75370 0.78606	0,98050 T/TD 3,62181 2,89613 2,78434 2,55525 2,28591 2,20765 2,13222 2,13223	NT 20 PHO/RHODAH/UC 0.0000 0.10166 0.20298 0.24961 0.24961 0.35151 0.33267 0.35151 0.37531
22 INPUT 700701 I 12334 5677 8910	1.1956*-02 VARIABLES VARIABLES 0.0000*+00 2.4658*-03 3.8608*-04 7.1374*-04 1.0358*-03 1.3513*-03 1.6608*-03 1.9603*-03 2.6213*-03 2.6213*-03	7.1785"+01 Y,U/UD (ISOENE TS PIZ/P 1.0000"+00 2.3370"+00 2.3993"+00 4.1069"+00 4.1069"+00 4.5018"+00 5.0766"+00 6.3548"+00 7.0720"+00 4.115"+00	NM RGETIC) PROFILE P/PO NM UM	1.00054 A35UME P=P0 TASULATION TU/TOD 0.72249 0.74574 0.74575 0.75475 0.76157 0.76430	1.01330 NAV VAN R3 I M/MD 0.00000 0.333771 0.333771 0.44220 0.4717.0 0.47429 0.55010	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.57610 0.576518 0.05751 0.07425 0.71301 0.73443 0.77570 0.18606 0.81290	0.98050 T/TD 3.62181 2.89613 2.78414 2.55525 2.39410 2.20765 2.13222 1.99354 1.99354	0.00000 0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.35267 0.35351 0.43026
22 INPUT 700701 I 12334 5677 8910	1.1956*-02 VARIABLES 105 VARIABLES 0.0000"+00 2.4638*-04 7.1374*-04 1.0338*-03 1.3513*-03 1.9608*-03 2.6213*-03	7.1785"+01 Y,U/UD (ISOENE PT2/P 1.0000"+00 2.3570"+00 2.3570"+00 4.1019"+00 4.1019"+00 5.106"+00 5.106"+00 6.3548"+00 7.0720"+00 A.0135"+00	NM RGETIC) PROFILE PYPO NM IM	1.00054 A35UME P=P0 TA5ULATION TU/TOP 0.72249 0.74525 0.75472 0.75479 0.76187 0.76653 0.77063 0.97371 0.77730	1.01330 NAV NA RAVINA RAVIN	1.00337 DRIEST OINTS, DEL U/UD 0.00000 0.52610 0.52610 0.05425 0.71301 0.75370 0.75370 0.18606 0.81290 0.84077	0.98050 TAAT POT T/TC 3.62181 2.89613 2.78434 2.55525 2.39450 2.2851 2.20765 2.13222 1.99354 1.88931 1.76794	1.02332 NT 20 PHD/RHOD+H/U(0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.33267 0.35351 0.35351 0.47563
22 INPUT 700701 1234567891011213	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 3.8608*-03 1.3513*-03 1.3608*-03 1.9863*-03 2.6213*-03 3.2503*-03 3.2513*-03	2.1785"+01 Y,U/UD (ISOENE PI2/P 1.0000"+00 2.5993"+00 3.5132"+00 4.648"+00 5.5106"+00 5.5106"+00 6.3548"+00 7.0720"+00	NM RGETIC) PROFILE P/PO NM IM	1.00054 A55UME P=P0 TABULATION TU/TOP 0.92249 0.94725 0.95402 0.95472 0.96430 0.96430 0.96653 0.97063	1.01330 NAV VAN R3 I M/MD 0.00000 0.333771 0.333771 0.44220 0.4717.0 0.47429 0.55010	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.57610 0.576518 0.05751 0.07425 0.71301 0.73443 0.77570 0.18606 0.81290	0.98050 T/TD 3.62181 2.89613 2.78414 2.55525 2.39410 2.20765 2.13222 1.99354 1.99354	NT 20 PHO/RHOD+H/U(0.00000 0.10166 0.20298 0.24961 0.24961 0.2578 0.31151 0.33267 0.3551 0.43026 0.47563 0.53374
22 INPUT 70070! 123456769 1123134	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 5.8608*-04 7.1374*-04 1.0358*-03 1.9863*-03 2.6613*-03 3.2503*-03 3.2503*-03 3.2503*-03 5.1613*-03 5.7603*-03	7.1785"+01 Y,U/UD (ISOENE TS PIZ/P 1.0000"+00 2.0993"+00 3.5132"+00 4.1049"+00 4.1049"+00 4.5148"+00 5.0766"+00 5.5148"+00 6.3548"+00 6.7720"+00 7.1720"+00 1.0205"+00 1.1145"+01	NM RGETIC) PROFILE P/PO NM IMM IMM IMM IMM IMM IMM IMM IMM IMM	1.00054 A35UME P=PI TABULATION TU/TOD 0.72249 0.745725 0.76189 0.76430 0.76430 0.77063 0.77371 0.7730 0.98131 0.98643	1.01330 AND VAN AND VAN M/ND 0.00000 0.33671 0.33670 0.44220 0.44220 0.57120 0.55141 0.63242 0.65169 0.71869 0.75863	1.00337 DRIEST POINTS, DEL U/UD 0.0000 0.52610 0.52610 0.57518 0.077513 0.77343 0.77343 0.77343 0.77340 0.81290 0.84087	0,98050 T/TC 3,62181 2,78434 2,55255 2,39450 2,20765 2,13222 1,99554 1,86951 1,76794 1,63214	1.02332 NT 20 PHD/RHOD+H/U(0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.33267 0.35351 0.35351 0.47563
22 INPUT 700 701 12345567890112313415	1.1956*-02 VARIABLES 105 2WAF 0.00000*+00 2.4638*-04 1.3508*-03 1.3513*-03 1.9803*-03 1.9803*-03 2.6213*-03 3.2503*-03 3.8913*-03 3.1913*-03 5.1613*-03 5.763*-03 5.4113*-03	7.1785"+01 Y,U/UD (ISOENE PT2/P 1.000"+00 2.3570"+00 2.3570"+00 3.5132"+00 4.0618"+00 5.0766"+00 6.3548"+00 7.0720"+00 4.1049"+00 4.1049"+00 1.0205"+01 1.145"+01	NM RGETIC) PROFILE P/PO NM HM	1.00054 ASSUME P=P(TASULATION TU/TOP 0.94394 0.94725 0.95402 0.95402 0.96453 0.97663 0.977371 0.974731 0.98408 0.98643 0.98643	1.01330 AND VAN R3 1 N/ND 0.00000 0.336711 0.349200 0.47129 0.51249 0.51269 0.591442 0.68189 0.772494	1.00337 DRIEST POINTS, DEL U/UD 0.0000 0.52610 0.52610 0.75313 0.75370 0.75370 0.18606 0.81290 0.840A7 0.87114 0.86142 0.90857	0,98050 T/TC 3,62181 2,78434 2,55525 2,28591 2,20765 2,13,222 1,38254 1,88951 1,76714 1,53845 1,37842	NT 20 PHO/RHOD HI/U(0.00000 0.16166 0.20298 0.24961 0.25778 0.3151 0.33267 0.3551 0.43026 0.47563 0.53374 0.57743 0.57743
22 INPUT 700 701 1234567890112314516	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4638*-04 7.1374*-04 1.3513*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03 1.9608*-03	7.1765"+01 Y,U/UD (ISOENE PIZ/P 1.0000"+00 2.3570"+00 3.5132"+00 4.648"+00 5.0966"+00 6.3548"+00 6.3548"+00 6.3548"+00 1.125"+00 1.125"+01 1.1145"+01 1.3155"+01	NM RGETIC) PROFILE PYPO NM	1.00054 A55UME P=P0 TASULATION TU/TOP 0.92249 0.94725 0.95402 0.75879 0.76433 0.976433 0.97653 0.97371 0.97408 0.98408 0.98643 0.98643 0.98643	1.01330 AND VAN N/ND 0.00000 0.33671 0.39900 0.47129 0.49429 0.51629 0.59141 0.68189 0.71869 0.71869 0.75263 0.82055	1.00337 DRIEST POINTS, DEL U/UD 0.0000 0.52610 0.52610 0.52610 0.73413 0.73370 0.73443 0.73370 0.81290 0.81290 0.840A7 0.81114 0.90857 0.93707	7 / TD 3.62181 2.76434 2.55525 2.30450 2.20765 2.13254 1.53845 1.4	NT 20 PHO /RHOD AII / UC 0 - 000 00 0 - 16166 0 - 20298 U - 24961 U - 25578 0 - 35357 0 - 35351 0 - 39531 0 - 43026 0 - 47563 0 - 53374 0 - 53374 0 - 53344 0 - 66702 0 - 71698
22 INPUT 700701 12345678901112314150117	1.1956*-02 VARIABLES 105 VARIABLES 0.0000*+00 2.4658*-04 3.8608*-04 1.1374*-04 1.0358*-03 1.9608*-03	7.1785"+01 Y,U/UD (ISOENE PIZ/P 1.0000"+00 2.5993"+00 3.5132"+00 4.1049"+00 4.1049"+00 5.5106"+00 5.5106"+00 6.3548"+00 6.3548"+00 1.0255"+01 1.2079"+01 1.3155"+01 1.3269"+01	NM RGETIC) PROFILE PYPO NM IMM IMM IMM IMM IMM IMM IMM IMM IMM	1.00054 A35UME P=PI TABULATION TU/TOP 0.72249 0.743725 0.76437 0.76437 0.76430 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663	1.01330 AND VAN AND VAN M/ND 0.000000 0.339070 0.339700 0.44220 0.53100 0.47120 0.55141 0.65100 0.75200 0.75200 0.75200 0.75200 0.75200 0.75200	1.00337 DRIEST OINTS, DEL U/UD 0.00000 0.56518 0.05761 0.056518 0.07731 0.75370 0.75370 0.1806 0.81290 0.840A7 0.87142 0.90857 0.93707 0.975310	7 AT POT T / TC 3.62181 2.89613 2.78434 2.55525 2.39450 2.20765 2.13222 1.99354 1.76794 1.53845 1.76794 1.53845 1.76794 1.53845 1.30476 7.34476 1.34476 7.34476 1.34476 7.34476 1.34476 7.34476 7.34476 1.34476 7.34476 1.34476 7.3447	NT 20 RHO/RHOD=U/U(0.00000 0.16166 0.20298 0.24961 0.25578 0.31151 0.33267 0.35351 0.47563 0.47563 0.57374 0.57344 0.6702 0.71698 0.76852
22 INPUT 7007 I 1234567690 1112341507110711071107110711071107110711071107	1.1956*-02 VARIABLES 105 2WAF 0.00000*+00 2.4638*-04 7.1374*-04 1.3513*-03 1.9608*-03 1.9608*-03 2.6213*-03 3.2503*-03 3.2503*-03 3.5113*-03 5.7013*-03 7.7013*-03 7.7013*-03	7.1785"+01 Y,U/UD (ISOENE PT2/P 1.0000"+00 2.3570"+00 2.3570"+00 3.5132"+00 4.1049"+00 4.1049"+00 5.5106"+00 6.3548"+00 7.0720"+00 4.1145"+01 1.725"+01 1.725"+01 1.725"+01	NM RGETIC) PROFILE PYPO NM	1.00054 ASSUME P=P(TASULATION TU/TOP 0.94394 0.94394 0.94725 0.95879 0.76439 0.97673 0.97673 0.977371 0.978408 0.978408 0.97871 0.978408 0.97890 0.979710 0.979710	1.01330 AND VAN N/ND 0.00005 0.000005 0.336700 0.336700 0.471229 0.591442 0.591442 0.591442 0.591442 0.591442 0.59169 0.75405	1.00337 DRIEST POINTS, DEL U/UD 0.0000 0.52610 0.52610 0.75210 0.713413 0.75370 0.75370 0.18606 0.81290 0.81114 0.86142 0.90857 0.95370 0.95370 0.95310 0.95370 0.95310	0,98050 T/TC 3,62181 2,78434 2,55525 2,39450 2,20765 2,13,222 1,99354 1,86951 1,76794 1,53244	NT 20 PHO/RHOD +H/U(0.00000 0.10166 0.20298 0.24961 0.25178 0.35267 0.35267 0.35351 0.43026 0.47563 0.57343 0.57343 0.57344 0.57743 0.71698 0.71698 0.769545
22 UT 701 1 12345678901123115617619	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4638*-04 7.1374*-04 1.3518*-03	7.1765"+01 Y,U/UD (ISOENE PIZ/P 1.0300"+00 2.3570"+00 2.3570"+00 3.5132"+00 4.1869"+00 5.5186"+00 5.5186"+00 6.7548"+00 7.0720"+00 A.145"+01 1.7205"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.1469"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01	NM RGETIC) PROFILE PYPO NM	1.00054 A55UME P=P0 TA5ULATION TU/TOP 0.72249 0.743725 0.75873 0.76187 0.76430 0.76430 0.77730 0.77731 0.77731 0.77731 0.77431 0.78408 0.984862 0.99084 0.99290 0.79751	1.01330 AND VAN AND VAN N/ND 0.00003 0.333671 0.39900 0.471229 0.471229 0.471229 0.471249 0.518169 0.5718169 0.7524634 0.68169 0.7524634 0.6855747 0.937470	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.52610 0.52610 0.73413 0.73443 0.73370 0.78370 0.81290 0.8007 0.81114 0.90859 0.92370 0.93707 0.93707 0.93707 0.93707	7 / TC 3.62181 2.78454 2.55525 2.39450 2.20765 2.19354 1.53845 1.4	NT 20 PHO /RHOD AH/U(0 00000 0 16166 0 20298 0 24961 0 25575 0 35357 0 35351 0 43026 0 47563 0 53374 0 57743 0 57743 0 57743 0 57763 0 77652 0 77652 0 89545
22 INPUT 7007 I 1234567890112314567112314671123145671100000000000000000000000000000000000	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4658*-04 3.8608*-04 1.374*-04 1.0358*-03 1.9608*-03 1.9608*-03 2.6623*-03 3.8918*-03 3.2563*-03 3.2563*-03 5.1613*-03 5.7763*-03 5.7763*-03 5.7763*-03 6.4713*-03 6.9713*-03 6.9713*-03	7.1785"+01 Y,U/UD (ISOENE PT2/P 1.0000"+00 2.5993"+00 3.5132"+00 4.1849"+00 5.0766"+00 5.5106"+00 6.3548"+00 6.3548"+00 6.145"+00 1.720"+00 1.720"+01 1.725"+01 1.725"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01	NM RGETIC) PROFILE PYPO NM IMM IMM IMM IMM IMM IMM IMM IMM IMM	1.00054 A35UME P=PI TABULATION TU/TOP 0.72249 0.743725 0.76187 0.76433 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77663 0.77730 0.776131 0.77730 0.776131 0.77730	1.01330 AND VAN M/ND 0.00000000000000000000000000000000000	1.00337 DRIEST U/UD 0.00000 0.57610 0.057618 0.057618 0.057610 0.73443 0.77370 0.18606 0.84087 0.84087 0.8714 0.90857 0.93707 0.95310 0.93707 0.95310 0.9450	7 A AT POT T / TC 3.62181 2.89613 2.78434 2.55525 2.39430 2.20765 2.13222 1.99391 1.76794 1.53845 1.95739 1.38492 1.39496 1.314976 1.314976 1.30496 1.00406	NT 20 RHO /RHOD = U/U(0.00000 0.16166 0.24961 0.28578 0.31151 0.33267 0.35351 0.47563 0.57344 0.67698 0.76852 0.89545 0.98072
22 UT 701 1 12345678901123115617619	1.1956*-02 VARIABLES 105 ZWAF 0.0000*+00 2.4638*-04 7.1374*-04 1.3518*-03	7.1765"+01 Y,U/UD (ISOENE PIZ/P 1.0300"+00 2.3570"+00 2.3570"+00 3.5132"+00 4.1869"+00 5.5186"+00 5.5186"+00 6.7548"+00 7.0720"+00 A.145"+01 1.7205"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.145"+01 1.725"+01 1.1469"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01 1.7025"+01	NM RGETIC) PROFILE PYPO NM	1.00054 A55UME P=P0 TA5ULATION TU/TOP 0.72249 0.743725 0.75873 0.76187 0.76430 0.76430 0.77730 0.77731 0.77731 0.77731 0.77431 0.78408 0.984862 0.99084 0.99290 0.79751	1.01330 AND VAN AND VAN N/ND 0.00003 0.333671 0.39900 0.471229 0.471229 0.471229 0.471249 0.518169 0.5718169 0.7524634 0.68169 0.7524634 0.6855747 0.937470	1.00337 DRIEST POINTS, DEL U/UD 0.00000 0.52610 0.52610 0.52610 0.73413 0.73443 0.73370 0.78370 0.81290 0.8007 0.81114 0.90859 0.92370 0.93707 0.93707 0.93707 0.93707	7 / TC 3.62181 2.78454 2.55525 2.39450 2.20765 2.19354 1.53845 1.4	NT 20 PHO /RHOD AH/U(0 00000 0 16166 0 20298 0 24961 0 25575 0 35357 0 35351 0 43026 0 47563 0 53374 0 57743 0 57743 0 57743 0 57763 0 77652 0 77652 0 89545

REJEATPAY TURNE	Y,UZUO (ISOENERGETIC)	ASSUME PEPD AN	VAN DRIEST

INPUT VARIABLES Y, U/UD (ISOENERGETIC) ASSUME PEPD AND VAN DRIEST

70070	109 2./AR	113	PROFILE	TABULATION	24	POINTS, DEL	TA AT POI	NT 23
1	Y	PT2/P	P/PD	TO/TOD	4/40	U/UD	T/10	RHOZRHODAUZUD
1	0.0000#+00	1.0000*+00	Им	0.92659	0.00000	0.00000	3.15027	0.00000
•	2.4638"-04	2.2279*+00	ИM	0.94679	0.32794	0.52456	2,55860	0.20502
3	3.6608"-04	2.4550"+00	IIΜ	0.94912	0.35110	0.54404	2.49021	0.22249
4	5.2070 -04	2.7161"+00	17.44	0.95161	0.37552	0.55384	2.41731	0.24152
5	6.5024"-04	2,9033"+00	ИW	0.95329	0.39191	0.60310	2.36815	0.25467
6	7.7976*-04	3.0870"+00	NW	0.95486	0.40726	0.62060	2.32210	0.26726
7	1.0338"-03	3.3681"+00	NM	0.95714	0.42956	0.64511	2,25539	0.28603
5	1.3513"-03	3.7278"+00	UM	0.95986	0.45636	0.67317	2.17587	0.30938
9	1.6658*-03	4.0549"+00	NM	0.46216	0.47934	0.69604	2.10852	0.33011
10	1.9863"-03	4,4559"+00	liw.	0.76478	0.50601	0.72125	2.03169	0.35500
1.1	2.3038"-03	4.7071"+00	ИN	0.96680	0.52697	0.74010	1.97247	0.37522
12	2.6213"-03	5,2018*+00	Им	0.96917	0.55206	0.76158	1.90310	0.40018
13	3.2563"-03	6.0591*+00	Им	0.97356	0.60050	9.79991	1.77446	0.45081
14	3.8913"=03	6.7482*+00	N۳	0.77753	0.64683	0.83298	1.65830	0.50231
15	4.5203"-03	7.4724"+00	и́м	0.78149	0.69637	0.864/8	1.54219	0.56075
16	5.16137-03	9.1534"+00	HH	0.98542	0.74731	0.87520	1.42707	0.62730
17	5.7903"-03	1.0277*+01	HM	0.98865	0.79550	0.91944	1.33252	0.69000
ĨĎ	6.4313"-03	1.1427*+01	ŊМ	0.49154	0.84200	0.94059	1.24749	0.75375
19	7.0663"=03	1.2629"+01	NM	0.99417	0.86704	0.95960	1.17024	10054.0
20	7.70134-03	1.3851"+01	ИМ	0.79656	0.73041	0.97632	1-10064	0.88705
ži	8.3343"-03	1.4670"+01	NМ	0.99800	0.95869	0.95631	1.05845	0.93185
25	6.9713"-03	1.5405"+01	NM	0.49921	0.98330	0.99461	.02313	0.97212
D 23	9.0957*-03	1.5919"+01	NM	1.00000	1.00000	1.00000	1.0000	1.00000
24	9.606303	1.5559*+01	NM	0.99945	0.98825	0.99622	1,01521	0.98034

70070	114 ZWAR	? †3	PROFILE	TABULATION	55	POINTS, DEL	TA AT PCI	15 14
I	Y	PT2/P	P/PN	10/107	4/210	מנועט	TZTD	846 78400 + 0700
1	0.0000*+00	1.0000*+00	ИМ	0.93202	0.00000	0.00000	2,69136	0.00000
į	2.4638"-34	1-9747*+00	MIN	0.94946	0.33718	0.50659	2.25730	0.22442
3	3.8608"-04	2.1435"+00	Им	0.95141	0.35937	0.53413	2.20883	0.24182
4	5.2070"=04	2.3430*+00	NM	0.95355	0.35329	0.56275	2.15572	J.20195
Š	6.5024"-34	2 4848"+00	NM	0.95502	0.39957	0.58166	2,11913	0.27448
6	7.7978"-04	2.6013"+00	Им	0.95011	0.41157	0.59529	2.09200	0.28456
7	1.0338"-03	2.7756"+70	NM	0.94791	0.43117	0.01717	2.04709	0.30149
à	1.3513"-03	3.0467 +00	115,	0.96313	0.45565	0.64308	1,99189	0.32285
9	1.6688"-03	3.2531"+00	N _I n	0.96183	0.47 124	0.66219	1,94971	0.33965
10	1.9843"-03	3.4953"+00	IIIM	0.96374	0.49526	0.68307	1.40271	0.35909
ii	2.3038"-01	3.7292"+00	NM	0.96549	0.51 468	0.70157	1.85864	0.37752
íż	2.6213"-03	4.0167"+00	NM	0.96754	0.53767	0.72287	1.80755	6.39992
13	3.2563"-03	4.6471"+00	NW	0.97159	0.5A393	0.76292	1.70690	0.44697
14	3.3913"-03	5.4045"+00	ыw	0.97595	0.63381	0.80385	1.59844	0.30290
iś	4.5263"-03	6.3247*+00	1184	0.98053	0.09330	0.84475	1.48439	0.56709
16	5.1613"-03	7.4010*+00	HH	0.94517	0.75455	0.88354	1.37102	0.64444
17	5.7963"=03	8.6657*+90	HM	0.94963	0.82077	0.92057	1.25796	0.73181
18	6.4313"-03	1.0025*+01	HP	C. 99375	0.88645	0.95291	1.15555	0.87463
19	7.0663"-03	1.1357*+01	MI	0.99718	0.74634	0.97901	1,07024	0.91476
50	7.7013"-03		NM	0.29904	0.98127	0.99292	1.02385	0.96979
o ži	7.5461"-03	1.2625*+01	им	1.00000	1.00000	1.00000	1.00000	1.00000
22	8.3363"-03	1.2545*+01	NW.	0.49985	0.79712	0.97893	1.00363	0.99532
	REJUNTER	YAUZUD CISOENE	RGETICS	ASSUME PEP	O 4 10 VA	N DRIEST		

700701	117 ZWAR	ZWARTS		TABULATION	24	POINTS, DEL	IOS TA AT.	NT 23	
1	4	PT2/P	P/PD	TOZTOD	44/HD	U/UD	T/TD	RHO/RHOD*U/UD	
1	0.6000*+00	1.0000*+00	NM	0.93373	0.00000	0.00000	2,57379	0.0000	
Ž	2.46387-04	2.2225"+00	NM	0.95403	0.38265	0.54342	2.09178	0.26457	
3	3.8608"-04	2.4765"+00	Nw	0.95465	0.41284	0.54812	5.05444	0.28980	
4	5.2070*=04	2.6799"+00	NM	0.95861	0.43511	0.61271	1.98297	0-30899	
5	6.5024"-04	2.8085"+00	H14	0.95977	0.44851	0.02710	1,95489	0.32074	
6	7.7973"-04	2.9175*+00	ИW	0.96078	0.45972	0.03889	1.93140	0.33079	
7	1.0338"-03	3.1446"+00	HW	0.96270	0.48151	0.66121	1.88573	0.35064	
à	1.3513"-03	3.3645"+00	,iv	0.96449	0.50178	0.68127	1.84335	0.36958	
ø	1.6688 -03	3.5598"+00	NM	0.76600	0.51906	0.697A3	1.80742	0.38609	
10	1.9863"-03	3.78254400	Hk	0.96765	0.53802	0.71544	1.76824	0.40460	
11	2.3038"-03	4.0138*+00	NM	0.96929	0.55099	0.73249	1.72940	0.42355	
12	2,6213"=03	4.2643"+00	414	0.97097	0.57680	0.74968	1.68930	0.44378	
13	3.2503"=03	4.8318*+00	HP.	0.17452	0.61920	0.78451	1.60520	0.48873	
14	3.8913"-03	5.5304*+00	HM	0.97881	0.66748	0.82109	1.51276	0.54278	
15	4.3263"-03	6.3116"+00	11M	0.98225	0.71773	0.35571	1.42141	0.60201	
16	5.1613"-03	7.2347"+00	11M	0.98624	0.77273	0.89011	1.32688	0.67083	
17	5.7963"-03	A.2308"+00	NM	0.98997	0.82793	0.92125	1.21812	0.74407	
. 8	6.4313"-03	9.2034*+00	ПM	0.99317	0.57846	0.94705	1.16226	0.81485	
19	7.0663"-03	1.0095"+01	NM	0.99577	0.92231	0.76755	1.10049	0.87919	
50	7.7013"-03	1.0731"+01	HM	0.99746	0.95215	0.98065	1.06031	0.92487	
Ži	8.3363"-03	1.1102"+01	ИW	0.99839	0.76949	0.98781	1.03815	0.95151	
ŠŠ	8.9713"-03	1.1252"+01	Mis	0.99876	0.97629	0.99058	1.02950	0.94220	
D ŽŠ	9.0272"-03	1.1781*+01	Mist	1.00000	1.00000	1.00000	1.00000	1.00000	
24	9.6003"=03	1.1263*+01	NIM	0.99879	0.97682	0.99080	1.02883	0.96303	

INPUT	VARIABLES	Y:U/UD	(ISDENERGETIC)	ASSUME	PEPD	MIO	V A N	DRIEST
INPUT	VARIABLES	Y:U/UD	(ISDENERGETIC)	ASSUME	P#PD	AHO	VAN	DRIEST

70070120 Z HARTS		Z HARTS PROFILE TABULAT		HOLTAJUBAT	26	POINTS, DEL	TA AT POI	POINT 24		
1	Y	BIS/B	P/P0	TUZTOD	M/MD	מטעט	TVIC	RHD/RHOD*U/UD		
1	0.0000*+00	1.0000"+00	ИW	0.93356	0.00000	0.00000	2,58518	0.0000		
Ž	2.4658"-04	2.8331"+00	Им	0.75983	0.44940	0.62883	1.95826	0.32114		
ī	3.6608*-04	3.2711"+00	NM	0.96356	0.49151	0.67201	1.86931	0.34950		
ű	5.2070"-04	3.4037*+00	N _t	0.96508	0.50880	U.688A5	1.83299	0.37581		
Ś	6.5024*-04	1.6090*+00	HM	0.96619	0.52143	0.70084	1,80657	0.38794		
6	7.7978"+04	3.7301"+00	NM	0.96709	0.53171	0.71041	1.74516	0.39796		
ž	1.0336*-03	3.9963"+00	HW	0.96871	0.55036	0.72735	1,74657	0.41644		
à	1.3513"-03	4.1875"+00	(im	0.97029	0.56875	0.74350	1,70890	0.43508		
ğ	1.6655"=03	4.4017*+00	NM	0.97167	0.58524	0.75754	1.67549	0.45213		
10	1.9863"-03	4.6228*+00	NM	0.97307	0.60177	0.77120	1.64239	0.46956		
ii	2.3038*-03	4.8470"+00	HM	0.47442	0.61506	0.78427	1.61016	0.48708		
iż	2.6213"+03	5.0871"+00	NM	0.47541	0.63503	0.79748	1.57705	0.50568		
iï	3.2563"-03	5.6258*+00	MM.	0.97872	0.67149	0.82447	1.50761	0.54688		
14	3.8913"-03	6.1809*+00	NM	0.98146	0.70704	0.84912	1.44226	0.58874		
15	4.5263"-03	6.4569*+00	NM	0.98446	0.74766	0.87532	1.37064	0.63862		
16	5.1613"-03	7.6001*+00	NM	0.98748	0.79058	0.90091	1.29459	0.69376		
17	5.7903"-03	8.4068"+00	NP	0.49040	0.83429	0.92493	1.22907	0.75254		
ié	6.4313"-03	9.1792"+00	ŘМ	0.99291	0.87408	0.94513	1.16916	0.80837		
19	7.0663"-03	9.6980"+00	NM	0.99503	0.90953	0.96190	1.11848	0.86001		
20	7.7013"-03	1.0516"+01	NM	0.99672	0.93894	0.97500	1.07828	0.90422		
51	0.3363"-03	1.0872"+01	ЦM	0.99769	0.95040	0.98246	1.05511	0.93115		
52	8.9713"=03	1,1107"+01	ИM	0.99822	0.96623	0.98652	1.04244	0.94635		
53	9.6063*-03	1.1205"+01	NH	0.99846	0.97066	0.98834	1.03676	0.95330		
D 24	1.0180"-02	1.1863"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000		
25	1.0241"-02	1.1458*+01	ИW	0.99906	0.98204	0.99294	1.02232	0.97126		
59	1.0876"-02	1.1850*+01	ИW	0.97997	0.99972	0.79989	1.00034	0.99955		

INPUT VAPIABLES - Y, U/UD (ISOENERGETIC) - ASSUME PMPD AND VAN URIEST

M: 3.5 falling to 2.8 R THETA X 10^{-3} : 18 - 42 TW/TR: 1.0

7101

ZPG - APG AW

Continuous wind tunnel with asymmetric flexible nozzle. W = H = 0.15 m. 0.26 < P0 < 0.40 Fe/m \times 10 : 307 K. Air: Dewpoint < 245 K. 14 < RE/m \times 10⁻⁶ < 30,

STUREK W.B. and DANBERG J.E., 1971. Supersonic turbulent boundary-layer in an adverse pressure gradient. Data tabulation. Dept. Mech. A Aerosp. Engrg. Univ. Delaware. Tech. Rep. No. 141.

<u>And Denberg J.E., Sturek W.B. Private communications</u>, Sturek 1973.

Also Extensive bibliography referring to same experiment listed under Sturek or Sturek & Danberg 1970-74.

- The tests took place on a ramp forming a continuation of the flat test wall opposite the flexible plate norzle. The test section extended 559 mm downstream from the nozzle exit plane (X = 0). The curved ramp started with a faired step ($\Delta Y = 0.254$ mm) at X = 305 mm with a maximum height and surface inclination of 35.6 mm and 14.65°. The coordinates are given in table 1. The test zone includes a ZPG region before the ramp (from X = 0 to X = 0.279 m) followed by a simple wave isentropic compression. The test surface was allowed an hour to settle to a bulk equilibrium temperature. Thus only small local heat transfer is likely, as a consequence of the variation of recovery temperature. The surface was "polished to a mirror
- 2 finish" and the mean dimensions were held to 0.0254 mm. The Mach number in the ZPG region was constant
- 3 within limits of \pm 0.01. A schlieren photographic study indicated that natural transition occurred in the nozzle region, the transition zone extending from X = 0.6 to X = 0.35 m. The test boundary layer was
- 4 formed in the favourable pressure gradient of the nozzle (throat at X = -1.25 m). The temperature of the
- 5 metal test wall was constant within about \$\frac{1}{2}\$ K. Oil flow visualisation did not show appreciable divergence of the streamlines near the centreline, but streamlines near the side walls diverged considerably. Wall pressure measurements on lines normal to the centre line at the last three stations on the ramp showed that the lateral pressure gradient was very small compared to the streamwise pressure gradient. The values are presented graphically in figure 8 of Sturek & Danberg 1972a.
- 6 Wall static pressure was measured by six static holes of 1.02 mm diameter on the centre line at the measuring stations on the ramp and the test wall. Eight additional measurements were made upstream on the test wall, and, with 11 holes of 0.64 mm diameter on lines normal to the flow at the last three measuring stations. The holes were drilled normal to the local surface. For the test described, the wall temperature was monitored at one station (X = 50.8 mm) in the ZPG region. The wall shear stress was determined using a Preston tube of 3.18 mm diameter.
- The total temperature probe used was a wedge recovery probe formed by placing an iron constantan thermocouple junction (diameter 0.127 mm) at the centre of the leading edge of an insulated wedge. The probe was calibrated in the range 1.5 < M < 3.5, and for lower Mach numbers the calibration was extrapolated using the trend of the data of Spangenberg (1956). The Pitot probe was a FPP for which $h_1 = 0.127$ (E), $h_2 = 0.076$, $b_1 = 1.58$ (E) and $b_2 = 1.52$ mm. Two static pressure probes were used. One, a CCP for which $\alpha = 10^{\circ}$, $\alpha = 1.27$, $\alpha = 10^{\circ}$, $\alpha =$
- Profiles and Preston readings were made at the same nominal X values, X = 152.4, 203.2, 254.0, 433.1, 458.8, 484.6, 510.8 and 536.7 mm all on the centre line (Z = 0). The coordinates and local surface slopes of the measuring stations are given in table 2. The results are presented for Y values corresponding to PO measurements.

- 9 The P and TO values in the tables are interpolated from smoothed curves such as those presented in figure 11 of Sturek & Danberg 1972a. The Preston tube readings were reduced using the calibration of Yanta et al.,
- 10 equation 2b, (1969). No corrections were applied to the profile data (the authors remark upon a 5 K
- 11 discrepancy between the TO probe in the free stream and the tunnel reservoir temperature). Sutherland's viscosity law was used.
- 12 The editors have incorporated the calibrations and interpolations of the authors. The integral data of section B is presented in two forms. In the main tables the reference flow is a single state flow corresponding to a D state taken at pU (max), which was also set as the D state for the profile tables whilst an auxiliary table gives integral values based on a reference flow which has the tunnel reservoir pressure and local static pressure.
- 13 The main portion of the data consists of three sets of eight profiles, each set for a different reservoir pressure. In each case three ZPG stations were followed by five on the curved ramp. To these are added two individual profiles (Sturek, 1973) measured at X = 458.8 mm for which the tunnel total temperature was
- 4 varied so as Pause, in the mozzle region, heat flux from the flow (0401) or to the flow (0501). The Mach
- 9 number distribution was taken to be the same as for the profile of the earlier set (0205) with the same total pressure. The total temperature was measured using a probe consisting of an iron-constantan thermocouple mounted in a truncated cone-cylinder body. The thermocouple consisted of a 0.25 mm diameter wire sheathed in stainlass steel with magnesium dioxide insulation. The thermocouple junction was worked to a sharp tip with a conical epoxy filling to the diameter of the sheath. The probe tip presented a frontal
- 9 area to the flow of 0.08 mm diameter. The probe was calibrated in the free stream and the calibration was assumed to vary through the boundary layer in the same general manner as the probe used earlier.
- 13 The earlier hot wire data (Sturek & Danberg 1972a) was presented graphically, as sufficient data had not been obtained to provide more than a qualitative assessment. Further data (Danberg, PC) is given here for
- 8 profiles taken at X = 203.2 and 458.8 mm. The general conditions correspond to profiles 0202 and 0205.
- 14 The CF values given with the profiles are those evaluated by the authors. The raw Preston tube data is given in section D.
- 5 DATA: 7101 0101-0501. Pitot, TO and P profiles obtained separately, NX = 8. SF from Preston tubes. Some supporting hot wive data.

15 Editors' comments

Sturek and Danberg provide the only fully documented account of a simple wave flow. The experiment is therefore of the first importance to any research worker wishing to consider the effects of streamline curvature. The Mach number is high enough for the static pressure to vary by 50 % across a boundary layer for which the ratio 6/RX is about 0.02, but not so high that the interpretation of static pressure measurements becomes too contentious. The value of the experiment is further increased by the inclusion of wall shear stress measurements in association with each profile, and the fluctuation measurements, however restricted they may be. There is room for differences of opinion as to the precise calibration of the sensors, but the qualitative results and the trends established must stand.

The authors present a full analysis of the original data in Sturek & Danberg (1972b). This is extended by Sturek (1974) to include a determination, from the mean flow data, of shear stress, mixing length and eddy viscosity.

There is a marked fall in the general level of CF as the flow passes on to the ramp, followed by a rising tendency. The shear stress itself, however, rises continuously, so that the change in CF is associated rather with the change in the reference dynamic pressure. Both the numerical value of CF and the trend with X are sensitive to the choice of reference state, there being differences of up to 15 % between values calculated using the arbitrary D-state (at pU mex) and those calculated using the wall-state of the pressure-based reference flow mentioned in § 12 above.

The two additional profiles, 0401, 0501, of Sturek (1973) are both for near adiabatic flow in the test region but correspond to, respectively, heat transfer from and to the flow in the throat region. The

author shows a considerable difference between the two on a "Van Driest" plot of (TO-TW) / (TOD-TW) against U/UD. It should be noted that this choice of axas is very sensitive to TO variations, and the variation noted is 4-8 K, or less than 3 %. We are not completely sure of the extent to which total temperature data near the wall are interpolations. In Sturek 1973, it is stated that measurements can be made to within 0.25 mm of the wall. Another description (Danberg, PC) suggests much larger values, perhaps as much as 5 mm.

The ZPG data from the first three stations can be compared with the results of Mabey et al. - CAT 7402, on a flat plate, and those of Voisinet & Lee - CAT 7202 on a tunnel wall. Comparisons may also be made with the other reported simple wave compression tests, Clutter & Kaups - CAT 6401 and Stroud & Miller - CAT 6503 which do not, however, provide so much detail.

FACSIMILES OF TABLES SUPPLIED BY AUTHORS. DIMENSIONS IN INCHES.

TABLE 1		CONTEC	TED MODEL	COORDINATES			(INCHES)
×	Y		x	Y		x	Y
12.006	.010		15.756	. 224		18,561	.673
12.914	.023		16.000	, 252		18,901	,722
13.1/11	. 030		16.243	282	06	19.141	772
13.368	.038		16.486	. 313		19.380	. 824
13.594	,049		16.729	. 346		19.619	.877
13.821	.061		10.973	.361		19.058	.932
14.048	.074	04	17.213	.418	Q7	20.097	,909
14.292	020.		17.455	. 455		20.368	1,055
14.537	.108		17.697	.496		20,638	1.124
14.781	.120		17.938	.536		20.908	1.194
15.025	, 149	05	18.180	,501	80	21.178	1,266
15.269	.172		18.420	. 627		21.447	1,341
15.513	.197						

	CORREC	TED TABLE 2		
STA	x	Y	¢	CAT 7101
116	16.000	. 252	6.75	•
117	17.019	. 360	9.13	04
110	18.035	.559	9.85	05
119	19.021	.747	13.48	06
120	20.024	. 969	13.24	07
121	21.016	1.215	14.65	08

CAT 7101	STUREK		BOUNDARY CON	A GITIONS AND ET	VALUATED (TINU IS .ATAC	s.	
RUN	M[} *	THITTE	REDZW	CF	H12	H12K	Pw*	PDA
X •	900	PHZPD	PED2D	Čū	H32	н32к	1W*	TD*
RZ	100	31 +	υ5	P12*	H42	D2K	UD .	TŘ
	3.5120	1.0156	9,3955"+03	1.0254*-03	6.5465	1.3398	5.0136"+03	5.0139"+03
71010301		0.9999		NW		1.7796	2.6944*+02	8.8778*401
1.5240=-01	3.8899"+05		2.6654"+04		1.8073			
INFINITE	3.0778*+02	1.0000	1.2969"-03	0.0000*+00	0.0705	2.2581"-03	o.6346*+U2	2.8500*+02
71010302	3,5360	1.0169	9,4905"+03	1.0443"-03	6.7104	1.3463	4.9635*+03	4.9635*+03
2.0320"-01	3.9840"+05	1.0000	2.7206"+04	NM	1.8017	1.7744	5.8944*+02	8.7833"+01
INFINITE	3.0747*+02	1.0000	1.3073*-03	0.0000*+00	0.0525	2.3197*-03	6.6443*+02	2.8463*+02
71010303	3,5050	1.0139	9.7002*+03	1.0300"-03	6.4990	1.3365	5.0262"+03	5,0203*+03
2.54004-01	3.8610"+05	1.0000	2.7401*+04	NM	1.8088	1.7812	2.8944"+02	8.9167*+01
INFINITE	3.0825*+02	1.0000	1.3413*-03	0.0000*+00	0.0745	2.3205*-03	6.6359*+02	2,6546*+02
71010304	3.2300	1.0120	1.4577*+04	9.2243*-04	4.1979	1.4355	9.0125*+03	7,3560"+03
4.3307"-01	3.4003*+05	1,2252	3.6965"+04	NM	1.7537	1.7318	2.8944"+02	9.9667*+01
INFINITE	3.0763*+02	1.0000	1.5600*=03	1.4346=+00	0.0693	2.3761 -03	6.4653*+02	2.8600*+02
71010305	3.1400	1.0135	1.5638*+04	6.9992"=04	4.2659	1.4330	1.0244*+04	8,5240*+03
4.5872*-01	3.6572*+05	1,2018	3.8347*+04	NM	1.7494	1.7290	2.8944*+02	1.0322"+02
INFINITE	3.0677"+02	1.0000	1.5313"-03	1.3739*+00	0.0560	2.3188"-03	6.3963*+02	2.8560#+02
71010305	3.0550	1.0070	1.6567*+04	8.9979*-04	4.3486	1.4419	1.1507*+04	9.8054*+03
4.8463*-01	3.9111"+05	1.1734	3.9063*+04	NM	1.7438	1.7256	2.8944++02	1.0756*+02
INFINITE	3.0832"+02	1.0000	1.4795"-03	1.2832"+00	0.0447	2.2565"-03	6.3524*+02	2.87444+02
					- •			•
71010307	2.9700	1.0119	1.7702"+04	9.17754-04	4.0224	1.4227	1.3032"+04	1.1075"+04
5.1079*-01	3.6889"+05	1.1767	4.0567"+04	MM	1.7484	1.7308	2.8944*+02	1,1083"+02
INFINITE	3.0636*+02	1.0000	1.4614"-03	1.2413"+00	0.0599	2.1594"-03	6.2690"+02	2.8603*+02
71010305	2.9000	1.0001	1.8800"+04	9.7469*-04	4.0561	1.4230	1.4423*+04	1.2643"+04
5.3670"-01	3.9944"+05	1,1408	4.1457"+04	ΝM	1.7555	1.7404	2.8944"+02	1.1544*+02
1.0000*+06	3,0962"+02	1.0000	1.4212*-03	1.1108*+00	0.0869	2.0863"=03	6.2473*+02	2.8943*+02
71010401	3.1742	0.9918	1.4149*+04	Ne	4.0402	1.4845	8.5247"+03	6.9649*+03
4.8463"-01	3.3130"+05	1.2247	3.4491*+04	VIW.	1.7433	1.7223	2.8700*+02	1.0315"+02
INFINITE	3.1100*+02	1.0000	1,6667"-03	0.0000*+00	0.1077	2.4699"-03	6.46364+02	2.8938*+02
71010501	3.1277	1.0272	1.3885*+04	NM	4.2527	1.4926	8.5247*+03	7.1511*+03
4.8463*-01	3.1775*+05	1.1921	3.4400*+04	NM	1.7430	1.7232	2.8600*+02	1.0113"+02
INFINITE	2.9900"+02	1.0000	1.5956"-03	0.0000*+00	0.1030	2.4032"-03	0.3004"+02	2.7642*+02

FREE STREAM DEFINITION ARBITHARY - IMPUT TAUM MOT OF - RUN 0401,0501 TOD INPUT

EVALUATED	DATA + PRESSUR	E BASED	REFERENC	E FLOW			
RUN	02P4 02P0	H12PD H12PD	H32PD	H42PD H42PM	RED2PUD RED2PHU	REDZPOW REDZPWW	DSTAR
71010101	1.3901"-03 1.3722"-03	6.6601 6.6715	1.8075	0.0649	1.9184*+04 1.9152*+04	6.7362"+03 6.7266"+03	9.1541"-03
71010102	1.3677*-03 1.3641*-03	6.7021	1.8003	0.0569	1.9532"+04	6.7506*+03 6.7776*+03	9.2611##03
71010103	1.5415"-03	6.4965 6.7188	1.6031	0.0491	2.1027"+04 2.0958"+04	7.4396*+03 7.4149*+03	1.0119#-02
71010104	1.6335"+03 1.4226"-03	5.9645 5.9054	1.7216 1.7453	0,0000	2,5865"+04 2,6221"+04	1.0087"+04 1.0225"+04	6,4536"-03
71010105	1,6071"=03 1,4265"=01	5.7336 5.6652	1.7229	0.0416	2.7325"+04 2.7654"+04	1.0944"+04	6.1357**03
71010106	1.6572*=03 1.4566*=03	5.1762 5.1539	1.7460 1.7536	0,0413 0,0433	2.9165"+04 2.9291"+04	1.2108"+04	7.5477#-03
71010107	1.5353"-03	5.2167 5.1699	1.7294	0.0527 0.0522	2.86%6"+04 2.9128"+04	1.2483"+04	7.2426*-03
71010108	1.4631"-03 1.3711"-03	5.0345 4.9885	1.7337	0.0631	2.9126"+04 2.9396"+04	1.2979*+04	6.8754*-03
71010201	1.3470"-03	6.6613	1.6043	0.0643	2.4024*+04 2.4980*+04	8.4557*+03 8.4405*+03	9.2148*-03
71010202	1.3226"-03	6.7975	1.800	0.0354	2.3215"+04 2.3215"+04	6.0511"+03 8.0511"+03	8,9909**03
71010203	1.4444*=03	6.6698	1.6076	0.0565 0.0567	2.5625*+04 2.5561*+04	9.0523*+03 9.0298*+03	9,87784-03
71010204	1.5721"+03 1,3643"+03	5.9243 5.8503	1.7332	0.0783	3.0767*+04 3.1156*+04	1.2094*+04	6.0384"-03
71010205	1.5175"-03 1.3492"-03	5.7213 5.6408	1.7270	0.0722 0.0712	3.14284+04 3.23644+04	1.3098*+04	7,6757*-03
71010206	1.4578"-U3 1.3145"-03	5.4657 5.4025	1.7344	0.0669	3.2299#+04 3.2677#+04	1.3555*+04	7.3871*-03
71010207	1.4449*=03 1.3176*=03	5.2332	1.7271 1.7492	5000.0 E200.0	3.392#*+04 3.4362*+04	1.4685*+04	6,8677*=03
71010206	1.3805"=03 1.2842"=03	5.0036 4.9466	1.7403	0.0753 0.0745	3.3831"+04 3.4223"+04	1.5166*+04	6.3955*-03
71010301	1.3424*-03 1.3260*-03	6.5711 6.5839	1.8139	0.0682	2.76224+04 2.75684+04	9.7367*+03 9.7177*+03	8.7302*=03
71010302	1.3064"-03	6.7752	1.6016	0.0526 0.0526	2.7219"+04 2.7221"+04	9.4951"+03 9.4955"+03	0.8264-03
11010301	1.3676"-03	6.5930	1.6152	0.0720 0.0721	2.8386*+04 2.8310*+04	1.0049*+04	9.0284*=03
71010304	1.5141 - 03	5.8868 5.8186	1.7427	0.0725	3.5386"+04 3.5801"+04	1.3953"+04	7.7104*=03
71010305	1.4817*-03 1.3131*-03	5.6107 5.5521	1.7413	0.0579 0.0572	3.7150"+04 3.7544"+04	1.5150*+04	7.3613*+03
71010306	1.4040*-01 1.2701*-01	5.5884 5.5185	1.7305	0.0471	3.7112"+04 3.7502"+04	1,5741"+04	7.0744*=03
71010307	1.4421**-03	5.0473 5.0064	1.7451	0.0607	4.0076*+04 4.0494*+04	1.7485*+04	6,5486*-03
71010308	1.3330 ~ + 03 1.2341 ~ + 03	5.0458 5.0161	1.7400	0.0927	3.8932*+04 3.9473*+04	1.7654"+04	6.2376*-03
71010401	1.5535"-03 1.3549"-03	5.5232 5.4408	1.7253	0.1156 0.1138	3.2141*+04 3.2666*+04	1.3201"+04	7.5978=-03
71010501	1.3648"-03	5.4747 5.4022	1.7284	0.1091 0.1077	3.2922*+04	1.3127"+04	7,4326***03

71010201 STUREK		:ĸ	PROFILE	TABULATION	70	POINTS, DEL	.TA AT POI	NT 69
1	Y	912/9	P/PD	TOPYOD	AVHD	U/Uħ	1/10	RH0/RH00*J/UD
1	0.0000*+00	1.0000"+00	1.00006	0.94300	0.00000	0.00000	3.26650	0.00000
Š	8.8900"-05	1.3862"+00	1.00000	0.34440	0.19922	0.34391	2,97997	0.11541
3 4	1.9050*=04 2.7940*=04	1.7698"+90	1.00000	0.94537 0.94606	0.26684 0.30603	0.44539 0.49938	2.78598	0.15957 0.18755
5	3.8100"-04	2.3029"+00	1.00000	0.93792	0.33142	0.52996	2.55695	v.20726
6	0.5024"-04	2.5616*+00	1.00100	0.93613	0.35961	0.56274	2.46245	0.22853
7	4.499604	2.A0A7"+00	1.00000	0.93761	0.37869	0.58666	2,19987	0.24445
8	1.1989"-03	3.0077"+00	1.30000	0.94000	0.39546	0.60629	2,35044	0.25795
. 9	1.4529"-03	3.2465*+00	1.00000	0.94350	0.41457	0.62818	2,29599	0.27360
10 11	1.7069"-03 2.2149"-03	3.4349*+00 3.6899*+00	1.00000	0.94655 0.95224	0.42098 0.44703	0.64432 9.66460	2.25594	0.24561 0.30069
15	2.7229"-03	3.4755*+00	1.00000	0.95662	0.46766	0.68626	2,15332	0.31870
iŝ	3.2309	4.2749*+00	1.00000	0.96012	0.46768	0.70521	2.09700	0.33677
14	3.7389"-0>	4.50534+00	1.00000	0.46540	0.50252	0.72061	2.05632	v.35043
15	4.2469"-03	4.8297"+00	1.00000	0.96570	0.52267	0.73904	1,99437	0.36964
16 17	4.7519"=03	5.9827*+00	1.00000	0.767A4 0.96970	0.53783 0.55427	0.75247 0.76640	1.95745	0.36441
18	5.2629"=03 5.7709"=03	5.4498"+00	1.00000	0.97208	0.57032	0.77974	1.56421	0.41715
19	0.2789"-03	5.A7A3"+00	1.00000	0.97442	0.54249	U.79009	1.83730	0.43003
20	0.7869"-03	6.2152"+00	1.00000	0.97707	0.60092	0.80420	1.79094	0.44903
51	7.2949"-03	6.5342"+00	1.00000	0.97933	0.61751	0.51666	1.74906	0.46692
55	7.8029"-03	6.4030*+00	1.00000	0.98153	0.63113	0.82673	1.71589	0.48181
23 24	8.3109"-03	7.1724"+00 7.4259"+00	1.00000	0.98391 0.98570	0.64939	U.U1956 U.U1798	1.67146	0.50224
23	6.8189"-03 9.3269"-03	7.7907*+00	1.00000	0.98758	0.67883	0.45020	1.60200	0.53633
26	4.8349"-03	9.1270*+00	1.00000	0.94967	0.09432	0.06913	1.50696	0.55466
27	1.0343"-02	8.4615"+"0	1.00000	0.99141	0.70937	0.87837	1.53317	0.57291
59	1.0551"-02	8.8447*+00	1.00000	0.99751	0.72025	0.84435	1.49025	0.59372
79	1.1359"-02	9.1625"+00	1.00000	0.99514	0.73994	0.89635	1.46746	0.61082
30 31	1.1867"-02	9.56%5*+00 9.9195*+00	1.00000	0.99679 0.99625	0.75656 0.77157	0.99564 0.91351	1.43179	U.63252 U.65164
32	1.2843"-02	1.0277"+01	1.00000	0.99936	U.78607	0.92086	1.37434	0.67102
33	1.3391"=02	1.0678*+01	1.00000	1.00025	0.50201	0.92454	1.34043	0.69272
54	1.3099"-02	1.1003"+01	1.00000	1.00125	0.81470	0.93461	1,31608	0.71018
35	1.4407"-02	1.1426"+01	1.00000	1.00185	0.83093	0.94143	1,28473	0.73310
36 37	1.4915"-02	1.1750*+01 1.2087*+01	1.00000	1.00264	0.84315	0.94724 0.95245	1,24220	0.75048 0.76870
38	1.5931"-02	1.2485*+01	1.00000	1,00339	0.87022	0.95834	1.21277	0.79021
ĵą	1.6439*=02	1.2750*+01	1.00000	1.00360	0.87476	0.96206	1,19547	0.80449
40	1.6947"-02	1.4091"+01	1.00000	1.00376	0.89193	0.96666	1.17459	0.82294
41	1.7455"-02	1.3388*+01	1.00000	1.00422	0.90238	0.97066	1,15707	0.83890
42 45	1.7963"-02	1.3046*+01	1.00000	1.00440	0.91135	U.97393 U.97738	1.14205	0.85279
44	1.8471*-02	1.4176"+01	1.00000	1.00013	0,92167 0,92950	0.97991	1,12453	U.86914 U.88169
45	1.9487"-02	1.4396***	1	1.41.3	0.901	0.94243	1.04950	0.49353
46	1.9995"-02	1.4616"+111	1.00000	1.00387	0.94433	U.98483	1.08761	0.90550
47	2.0503"#02	1.4794"+01	1.00000	1.00380	0.95025	0.98671	1.07622	0.91513
48 49	2.1011"-02	1.4999*+01 1.5143*+01	1.00000	1.00313	0.95703 0.96175	V.98855 V.98993	1,06696	0.92651 0.93438
50	2.2027"-02	1.4294*+01	1.00000	1.00294	0.95671	0.90144	1,05194	0.94254
ŠΪ	2.2535"-02	1.5437"+01	1.00000	1.00246	0.97134	0.44264	1,04443	0.95046
52	2.3043"-02	1.5535*+01	1.00000	1.00225	0.97454	0.99350	1.03942	V.75588
53	2.3551"-02	1.5675"+01	1.00000	1.00209	0,97905	0.79445	1.03254	0.96350
54 55	2,4059"-02	1.4774*+01	1.00000	1.00141	0.9A225	0.99568	1.02/53	0.46900
33 56	2.4567"-02 2.5075"-02	1.5857*+01 1.5935*+01	1.00000	1.00133	0.984A7 0.98759	0.99653	1.02315	0.97368 0.97795
57	2,5503"-02	1.6035"+01	1.00000	1.00000	0.99060	0.59770	1.01439	0.93354
58	2,6091"-02	1.6091"+01	1.00000	1.00095	0.99237	0.99825	1.01189	0.98652
50	599"-02	1.6137"+01	1.00000	1.00055	U.903A3	0.99848	1,00939	0.98920
60	2.7107**02	1.61744+01	1.00000	1.00034	0.99498	0.99871	1.00751	0.99127
e5 e1	2.7615"=02 5.7615"=02	1.6210"+01	1.00000	1.00012	0.99014	0.999 31 0.448 9 4	1,00563	0.99335 U.99557
63	2.8631"-08	1.6275*+01	1.00000	1.00055	0.79821	0.79977	1.00313	U.49665
64	2.9139"-02	1.6298"+01	1.00000	1.00035	0,49892	OAPPP. O	1.00188	U.99799
65	2.9647"-02	1.6314"+01	1.00000	0.99979	0.99741	0.99972	1.00063	0.99910
66	1.0155"-02	1.6326*+01	1.00000	0.99974	0.99982	64666.0	1.00000	U.99982
67 68	3.0663"-02 3.1171"-02	1.6371*+01	1.00000	1.00012	0.79964 1.J0005	0.99 995 1.90005	1.00063	0.99933 1.00005
0 69	3.1479"-02	1.63324+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
70	1.2187"-02	1.6327"+01	1.00000	1.00034	0.99983	00014	1.00063	0.99951
		• • •			•			

THE TOTAL TOTAL

710102	02 STURE	ξK	PROFILE	TABULATION	70	POINTS, DEL	IN AT PUI	%T 70
I	Y	91579	PZPD	TU/10D	4/40	UZUD	1/11	#H0/HH0D+U/UD
1	0.0000*+00	1.0000*+00	1.00003	0,94583	0.00000	0.00000	3,31659	0.0000
2	1.1938"-04	1.5378"+00	1.00000	0.94602	0.22847	0.59130	2.93324	0.13340
3	2.2038"-04	1.9524"+00	1.00000	0.94722	0.28992	0.48020	2.74333	0.17504
4	5.9878"-04	2.4278"+00	1.00000	0.93969	0.34095	0.54461	2.55146	0.21345
5	5.4102**04	2.6250"+00	1.00000	0.43844	0.35933	0.56671	2.48729	0.22754
6 7	B 10367-04	2.7663*+00	1.00000	0.93908	0.37183	0.58146	2.44536	0.23778
á	8.1026"-04 9,2964"-04	2.6992"+00 3.9074"+00	1.00000	0.93940	0.3A315 0.39209	0.59455 0.60480	2.40788	0.24692 0.25419
ě	1.1506"-03	3.1964"+00	1.00000	0.94205	0.40716	0.62198	2.33355	U.26654
10	1.4046"-03	3.3616"+00	1,00000	0.94492	0.41985	0.63645	2.29797	U.27696
ii	1.6586*=03	3.6107"+00	1.00000	0.94679	0.43821	0.65671	2.24587	0.29241
15	2.1666"=03	3.4933*+00	1.00000	0.95445	0.45809	0.67840	2.19314	U.30433
13	2.6746"-05	4.1512"+00	1.00000	0.45829	0.47545	0.69632	2.14485	0.32464
14	3,1826"-03	4.4047*+00	1.00000	0.96258	0.49189	V.71299	2,10102	v.33930
15	3.6906"-03	4.4998"+00	1.00000	0.76518	U.51033	0.73027	2.04765	V.35664
16	4,1986*-03	4.0030*+00	1.00000	0.96767	0.52368	0.74175	3.01398	0.36830
17	4.7046*-03	5.1900*+00	1.00000	0.96992	0.53952	0.75655	1.96033	0.38475
16	5,2146=-03	5.4356*+00	1.00000	0.97161	0.55353	0.76840	1,02694	0.39877
19 20	5.7226"-03 6.2306"-03	5.6775*+00 5.4982*+00	1.00000	0.97407	0.56701	0.77979	1.89136	0.41229
51	6.7386"-03	6.2309"+00	1.00000	0.97621 0.97857	U.54438 U.59712	0.79362 0.80378	1.81194	0.43030 0.44360
žž	7,2466"-03	6,6023"+00	1.00000	0.98093	V. 01572	0.81770	1.76360	0.46364
ž ŝ	7.7546*-03	6.9019*+80	1.00000	0.98345	0.03068	U.82877	1.72041	0.47994
24	0,2626"-03	7.1440*+00	1.40000	0.985A2	0.07251	0.83745	1.49866	0.49295
25	0.7706"=03	7.47A3"+00	1.00000	0.48725	0.65849	0.84811	1.65683	0.51127
26	9.2786"-03	7.7834*+00	1.00000	0,98924	0.07274	0.85762	1.07510	U.52772
27	4.7866"-03	5.1737*+00	1.00000	0.99117	0.67054	0.86885	1.44752	0.54880
58	1,0295"-02	6.52717+00	1.00000	0.49275	0.70626	0.87843	1.54701	0.50783
29	1.0003"-02	A.5220*+00	1.00000	0.99478	0.71914	0.84634	1.51906	0.58348
30	1.1311"-02	9.2477*+00	1.00000	0.99648	0.73726	0.89663	1.47403	0.60657
31	1.1819**02	9.4961 4.00	1.00000	00966	0.74765	0.90260	1.45745	0.61931
32 32	1.28327"-02	9.8595*+00 1.0355*+01	1.00000	0,49935	0.76381	0.71119	1.42513	0.04027
34	1.3313"-02	1.00%5***01	1.00000	1.00075	0.79551	0.92736 0.92736	1.35437	0.66507 U.68241
วีรี	1.3951"-02	1.1130*+01	1.00000	1,00310	0.81265	0.93531	1.32465	0.70608
36	1.4359*+02	1.1436*+01	1.00000	1.00397	0.82427	0.74069	1.30241	0.72220
37	1.4567"-02	1.1837"+01	1.00000	1.00505	0.63920	0.94740	1.27446	0.74337
58	1.5375"=02	1.2197*+01	1.00000	1.00547	0.85242	0.75291	1.24468	0.76252
19	1.5563"-02	1.2560*+01	1.00000	1.00540	0.86554	0.75817	1.22554	0.78185
40	1.0391"-02	1.2040.+01	1.00000	1.00619	0.67973	U.90375	1.20012	0.80304
41	1.6479"-02	1.3208"+01	1.00000	1.00647	0.84940	0.96710	1.18486	0.01021
42	1.7407**02	1.3569*+01	1.00000	1.30674	0.90097	0.97174	1.10758	0.83535
4.5	1.7915"=02	1.3849*+01	1.00000	1.00070	0.91057	0.97510	1.14076	0.85031
44	1.8931 = 02	1.4090"+01	1.00000	1.00650	0,41872	0.77781 0.78148	1.13278	0.86319 0.88026
46	1.9439*-02	1.4015*+01	1.00000	1.00621	0.43627	0.98355	1.10356	0.49126
47	1.9947*=02	1.4858*+01	1.00000	1.0564	0.94431	U.98509	1,09022	0.90440
48	2.0455"-02	1.5100"+01	1.00000	1.00565	15526.0	0.98842	1.07/51	0.41732
49	2.0963"-02	1,5263"+01	1.00000	1.00506	0.74750	0.98980	1.0661	0.92675
50	2.1471"-02	1.4450"+01	1.00000	1.00527	0.46380	0.49147	1,05909	U.43655
51	2.1979"-02	1.5542*+01	1.00000	1.00503	0.96778	0.90297	1,05273	0.94323
52	2.24679-02	1.5745*+01	1.00000	1.00469	0.97299	0.99434	1,0444/	0.75205
53	2.2995"-02	1.5847"+01	1.00000	1.00419	0.47647	0.79531	1.03812	0.95877
54 55	2,3503"-02	1.4948*+01	1.00000	1.00421	0.97943 0.98306	0.99609 0.99701	1.03431	0.96305
56	2.4519"-02	1.6063"+01	1.00000	1.00389 1.00385	0.98561	0.79775	1.02859	U.9693U U.97362
57	2.5027"-02	1,6229*+01	1.00000	1.00337	J. 98830	0.99830	1.02033	U.97A41
Šå	2.5535*=02	1,6303*+01	1.00000	1.00294	0.49061	0.49876	1.01052	0.98253
59	2.6043"-02	1.6350*+01	1.00000	1.00254	0.49208	0,79899	1.01396	0.94572
•0	4.6551"-02	1.6423"+01	1.00000	1.00469	0.99437	0.90972	1.01080	0.98904
61	2.7059"-02	1.6474*+01	1.00000	1.00242	0.00544	2.00005	1.º062e	0.99185
62	2.75674-02	1.6513"+#1	1.00000	1.00227	0.49716	1.00032	1.00635	0.44401
63	2.8075"=02	1.6507*+01	1.00000	1.00201	0.99698	1.00014	1.00635	0.99382
64	2.8583"-02	1.6546*+01	1.00000	1.00186	0.49A20	1.00041	1.00445	U.99598
65 66	2.95091"=02	1.6551"+01	1.00000	1.00204	U.99333	1.00095 1.00092	1.00445	0.99612 0.99638
67	3.0107"-02	1.4593"+01	1,00000	1.00043	0.99941	1.00005	1,00254	U.44878
68	1.0615*-02	1.6585"+01	1.00000	1.00043	0.49341	1.00005	1.00127	U.44878
69	3.1123"-02	1.6596"+01	1.00000	1.00025	0.79973	1.00005	1.00064	0.99941
D 70	5.1631"=02	1.6604"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VAPIABLES Y, U, T, P

71010203 STUREK		PROFILE	TABULATION	70	POINTS, DE	TA AT POI	NT 70	
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000*+00 1.2954*-04	1.0000"+00	1.00007	0.9432 9 0.9446 9	0.00000	0.00000 0.36085	3.25436 2.94015	0.00000 0.12273
Š	1.3970"-04	1.4935"+00	1.00000	0.94476	0.22262	0.37954	2.90648	0.13058
4	2.3876"-04	1.7990"+00	1.00000	0.94421	0.27306	0.45317	2.75436	0.16453
5	5,5118"-04 8.6900"-04	2,5847"+00 2,9491"+00	1.00000	0.93820 0.93789	0.35973	0.56395 0.60072	2.45761	0.22947 0.25545
7	1.1100*-03	3.1197"+00	1.00000	0.93977	0.40571	0.61669	2.31047	0.26691
8	1.3589"-03	3.3035"+00 3.4919"+00	1.00000	U.94230 O.94586	0.42019	0.63298 0.64899	2.23130	0.27893 0.29086
10	2.1209"-03	3.6507*+00	1.00000	0.95083	0.44613	0.66248	2,20511	0.30043
11	2.6289"-03 3.1369"-03	3.8970"+00 4.1623"+00	1.00000	0.95556 0.95933	0.46358	0.69126 0.69966	2,15966	0.31545 0.33154
is	3.6449"-03	4.4080*+00	1.00000	0.96264	0.49773	0.71554	2.06671	0.34622
14	4,1529"-03	4.6511"+00	1.00000	0.94528	0.51314	0.73006	2.02431	0.36066
15 16	4.6609"-03 5.1689"-03	4.9042*+00 5.15 9 8*+00	1.00000	0,96695 0,96935	0.52869	0.74394 0.75737	1.98005	0.37572 0.39062
17	5.6769"-03	5.3290"+00	1.00000	0.97125	0.55376	0.76598	1.91334	0.40034
18 19	6.1849"-03 6.6929"-03	5.5976"+00 5.8535"+00	1.00000	0.97349 0.97598	0.56903	0.77873 0.79037	1.87282	0.41581 0.43033
àó	7.2009"-03	4.1158"+00	1.00000	0.97815	0.59736	0.80156	1.80050	0.44519
31	7.7089"-03	6.3790"+00	1.00000	0.98055	0.61124	0.81232	1.76621	0.45993
52 52	8.2169"-03 8.7249"-03	6.6728"+00 6.9575"+00	1.00000	0.98275 0.98471	0.62635	0.82355 0.83382	1.72880	0.47637 0.49225
24	9.2329"-03	7.2494"+00	1.00000	0.98667	0.65500	0.84380	1.65960	0.50844
25 26	9.7409~~03 1.0249"-02	7.5756"+00 7.5162"+00	1.00000	0.98872 0.99070	0.67065	0.85434 0.86470	1.62282	0.52646 0.54519
27	1.0757"-02	8.2026"+00	1.00000	0.99213	0.69974	0.87289	1.55611	0.56094
28 29	1.1265"-02	8.5524"+00 8.8742"+00	1.00000	0.99389 0.99558	0.71545	0.86242 0.89079	1.52120	0.58008 0.59759
30	1.2281"-02	9.2195*+00	1.00000	0.99707	0.74449	0.89921	1.45045	0.61636
31	1.2789"-02	9.5423*+00	1.00000	0.99873	0.75814	0.90685	1.43060	0.43381
32	1.3297"-02 1.3805"-02	9.8770*+00 1.0243*+01	1.00000	0.99988 1.00117	0.77203	0.91417 0.92181	1.40212	0.65199 0.67178
34	1.4313"-02	1.0574"+01	1.00000	1.00217	0,80018	0.42834	1.34601	0.68970
35 36	1,4821"-02	1.0929"+01	1.00000	1.00286	0.81415	0.9348 8 6.94141	1.31858	0.70901 0.72878
37	1.5837"-02	1.1646*+01	1,00000	1.00447	0.84165	0.94731	1,26683	0.74777
36 39	1.6345"-02 1.6853"-02	1.1972*+01	1.00000	1.00492	0.85382	0.95246 0.95725	1.24439	0.76540 0.78258
40	1.7361"-02	1.2624"+01	1.00000	1.00553	0.87775	0.96208	1.20137	0.80082
41	1.7869"-02	1.3002"+01	1.00000	1.00523	0.89131	0.96700	1.17706	0.82154
42 43	1.6377"-02	1.3246"+01 1.3563"+01	1.00000	1.00520	0.89993	0.97013 0.97391	1.14277	0.83481 0.85223
44	1.9393"-02	1.3811"+01	1.00000	1.00429	0,91966	0.97667	1.12781	0.86599
45 46	1.9901"-02 2.0409"-02	1.4060*+01 1.4276*+01	1.00000	1.00454	0.93562	0.97970 0.96201	1.11409	0.87938 0.89142
47	2.0917"-02	1.4492"+01	1.00000	1.00384	0,94285	0.98426	1.08978	0.90318
48 49	2.1425"-02 2.1933"-02	1.4651"+01	1.00000	1.00357	0.94820	0.98587 0.98771	1.05105	0.91196 0.92217
30	2,2441"-02	1.4962*+01	1.00000	1.00282	0,95852	0,98862	1.06421	0.92915
51	2.2949"-02	1.5116"+01	1.00000	1.00254	0.96362	0,99029	1.05611	0.93768 0.94638
52 53	2.3457"-02 2.3965"-02	1.5275"+01	1.00000	1.00233	0.96883	0.99181 0.94259	1.04302	0.95165
54	2.4473"-02	1,5490"+01	1.00000	1.00224	0.97584	0.97393	1.03741	0.95809
55 56	2.4981"-02 2.5489"-02	1.5587*+01	1.00000	1.00196	0.97901	0.99475 0.99508	1.03242	0.96352 0.96733
57	2.5997"-02	1,5715*+01	1.00000	1.00121	0.95314	0.99563	1.02556	0.97081
56 59	2.6505"-02 2.7013"-02	1.5636"+01 1.5934"+01	1.00000	1.00126	0.98703 0.99018	0.99682 0.99756	1.01945	0.97733 0.98285
60	2.7521"-02	1.5957"+01	1.00000	1.00071	0.99093	0.99770	1.01372	0.98420
61	2.8029"-02	1.6019"+01	1.00000	1.00046	0.99291	0.99616	1,01060	9.98769
43 62	2.8537"-02 2.9045"-02	1.6041"+01	1.00000	1.00023	0.99362	0.99825 0.99857	1.00935	0.98900 0.99177
64	2.9553"-02	1.6117"+01	1.00000	0.99993	0.99601	0.49840	1.00561	0.99323
45 66	3.0061"=02 3.0569"=02	1.6145*+01	1.00000	0.9999 6 0.99953	0.99691	0.9990 8 0.9990 3	1.00436	0.99474 0.99593
47	3.1077"-02	1.6206*+01	1,00000	0.99964	0.99887	0.99949	1.00125	0.99825
60 69	3.1585"-02 3.2093"-02	1.6225*+01	1.00000	0.99485 0.94959	0.99946	0.99977 0.99959	1.00062	0.99915
D 70	3.2601"-02	1.6242"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

710102	04 STURE	:K	PROFILE	TABULATION	66	POINTS, DEL	IUG TA AT.	NT 50
I	Y	918/9	P/PD	10/100	HZMD	UZUD	1710	RH0/RH0D*U/UD
1	0.00007+00	1.0000*+00	1.23334	0.94230	0.00000	0.00000	2.91457	0.00000
ş	1.7272"-04	1.5464*+00	1.23316	0.94196	0.25175	0.40376	2.57231	0.19356
3 4	1,9304*~04	1.6235"+00 1.7914"+00	1.23305	0.94186 0.94058	0.26635	0.42421 0.46181	2.53657	0.20621 0.23121
Š	≥.6416"-04 3.7338"-04	1.9264*+00	1,23305	0.9391	0.29427	0.48161	2.462A7 2.40871	0.24922
i	4.7496"-04	2.0147"+00	1.23271	0.93944	0.32541	0.50186	2,37856	0.26009
ž	5.8674"-04	2.0975*+00	1.23260	0.93997	0.33576	0.51496	2.35232	0.26984
8	7.1628*-04	2.1884"+00	1.23237	0.94135	0.34659	0.52867	2.32663	0.28003
9	8.0772*-04	2.2356*+00	1.23226	0.94233	0.35204	0.53555	2.31435	0.28515
10	1.0312"-03	2.3544"+00	1.23203	0.94562	0.36524	0.55228	2,20643	0.29759
11	1.2624"-03	2.4655"+00	1.23170	0.94816	0.37704	0.56664	2.26019	0.30890
13	2.0041"-03	2.5630"+00 2.7866"+00	1,23102	0.95011 0.95369	0.30703	U.57890 U.60434	2.23730 2.18537	0.31853 0.33999
14	2.5121"-03	2-95404+00	1.22787	0.95630	0.42444	0.62206	2.14796	0.35560
iš	3.020103	3.1451 +00	1.22629	0.95826	0.44114	0.64020	2.10609	0.37276
16	3,5281"-03	3.3105"+00	1.22449	0.96016	0.44519	0.65514	2.07147	0.38727
17	4.0361"-03	3.5243"+00	1.22269	0.96221	0.47266	0.67309	2.02792	0.40582
1.6	4.5441"-03	3.7236*+00	1.22088	0.96395	0.48634	0.68869	1.98883	0.42276
19	5.0521"-03	3.9416"+00	1.21784	0.96615	0.50490	0.70480	1.94863	0.44048
51 50	5.5601"-03 6.0681"-03	4.1615*+#0 4.4386*+00	1.21469	0.96960 0.97119	0.52103	0.72030 0.73807	1.01122	0.45779
25	6,5761 -03	4.6779"+00	1,20782	0.97328	0.55698	0.75249	1.82524	0.47978 0.49794
23	7.08417-03	4.9752*+00	1.20342	0.97598	0.57662	0.74931	1.78001	0.52011
24	7.5421"-03	5.2623"+00	1.19914	0.47840	0.59495	0.78462	1.73425	0.54096
25	8.1001*-03	5.5930*+00	1.19441	0.98098	0.61549	0.80069	1.69235	u.56510
56	8.6081"-03	5.8870"+00	1,18968	0.98338	0.63295	0.81412	1.65438	U.58544
27	9.1161 -03	6.2554*+00	1.18506	0.98574	0.65430	0.82971	1.60804	0.01147
58	9.6241*-03	6.5991"+00	1,17966	0.98793	0.67360	0.84328	1.56728	0.63472
29 30	1.0132"-02	6.9526"+00 7.3257"+00	1,17335	0.99015	0.69288	0.85638	1.52764	0.65777
31	1.1148"-02	7.7016*+00	1,16715	0.99421	0.71265	0.86915 0.88131	1.44947	0.65200 0.70582
ŝż	1.1456"-02	8.1416"+00	1.15431	0.99629	0.75406	0.89445	1.40704	0.73380
33	1.2164"=02	8.5269*+00	1.14778	0.99759	0.77283	0.90501	1.37130	0.75749
34	1.2672"-02	8.8610"+00	1.14125	0.99946	0.78875	0.91401	1.34283	0.77680
35	1,3180"-02	9.3622*+00	1.13460	1.00154	0.81204	0.92640	1.30151	U.8076U
30	1.368805	9.7720"+00	1.12007	1.00234	0.83059	0.93549	1.26657	0.83189
37	1.4196"-02	1.0216"+01	1.11906	1.00302	0.85024	0.94468	1.23451	0.85634
76 29	1.4704"-02	1.0653"+01	1.10993	1.00356	0.86910	0.95312 0.96084	1.20268	0.87962 0.90164
40	1.5720"-02	1.1449*+01	1.09203	1.00436	0.90250	U.96721	1.14652	0.91963
41	50-"8556.1	1.1876"+01	1.08335	1.00477	0.91831	0.77357	1,12395	0.93040
42	1.6736"-02	1.2152"+01	1.07457	1.00431	0.93099	0.97814	1.10345	U.95219
43	1.7244"-02	1.2476*+01	1.06578	1.00369	0.94384	0.98257	1.08375	0.96627
44	1.7752"-02	1.2757"+01	1.05699	1.00323	0.45482	0.98629	1.06700	0.97704
45	1.8240*-02	1.3032*+01	1.04753	1.00253	0,96546	0.98968	1.05081	0.98660
46 47	1.8708*+02	1.3249*+01	1.03795	1.00216	0.97379	u.99237 u.99406	1.03853	0.99290
48	1.9784"-02	1.3632*+01	1.01870	1.00127	0.98828	U.99680	1.01731	0.99816
49	2.0292"-02	1.3787"+01	1.00935	1.00035	0.49410	0.99826	1.00638	0.99922
0 50	2.0800"-02	1.3946"+01	1.00000	1.00000	1.0000	1.00000	1.00000	1.00000
51	2.1308"-02	1,4019"+01	0.79054	0.97976	1.00272	1.00075	0.49669	0.99517
52	2.1616"-02	1.4168"+01	0.98051	0.49877	1.00824	1.00203	0.45772	0.99472
53	2.2324"-02	1.4272"+01	0.96959	0.99825	1.01205	1.00207	0.95213	0,99016
54	2.2832"-02	1,4409"+01	0.95866	0.99813	1.01705	1.00448	0.97545	0.98721
35 56	2.3340*-02	1.4463"+01	0.93670	0.99776	1.01976	1.00514 1.005Au	0.97152	0.98041 0.97422
\$7	2.4356"-02	4678 +01	U.42577	0.99745	1.02084	1.00710	0.96507	0.46450
Šå	2.4864"-02	1.4733*+01	0.91485	0.99776	1.02881	1.00792	0.95980	0.96071
59	2.5372"-02	1.4869"+01	0.90392	0.99733	1.03372	1.00919	0.95310	0.95711
60	2.5880"-02	1.4912*+01	0.89288	0.99706	1.03527	1.00952	0.9508/	0.94796
61	4.6358"-02	1.4985*+01	0.8A196	0.99700	1.03788	1.01027	0.94752	0.94037
62	2.6896"=02	1.5057"+0.	0.87171	0.99689	1.04044	1.01098	0.94417	0.93339
63 64	4.7404*-02 2.7412*-02	1.51264+01	0.66236 0.85287	0.99664 0.99721	1.04292	1.01157	0.940A2 0.93858	0.92723
65	2.8420=-08	1.5265*+01	0.84355	0.49786	1.04786	1.01366	J.93579	0.92010 0.91374
66	2.8920"-02	1.5374"+01	0.83273	0,99759	1.05171	1.01465	0,93076	U.90779
			•	-				•

71010205 STUREK		PROFILE	TABULATION	64	POINTS, DEL	LTA AT PUI	NT 47	
I	Y	P12/P	P/PD	10/100	M/MD	U/UD	T/TD	RH0/RH0D*U/UD
1 2	0.0000"+00 1.2192"-04	1.0000"+00	1.21230	0.94360	0.00000	0.00000	2.82927 2.47751	0.00000 0.20415
Š	1.6256"-04	1.6940"+00	1.21204	0.94229	0.28518	0.44458	2.43035	0.22172
4	2.0320"-04	1.7671"+00	1.21194	0.94183	0.29732	0.46060	2.40000	0.23259
5	3.2512*-04	1.8967"+00	1.21165	0.94045	0.31690	0.48565	2.34851	0.25056
6	4.7752"-04	2,0239*+00	1.21145	0.94153	0.33423	0.50775	2.30786	0.26653
7	5.3848"-04 8.0264"-04	2.0875"+00 2.2451"+00	1.21125	0.94218 0.94505	0.34236	0.51797 0.54173	2.28889 2.24715	0.27410 0.29186
ğ	1.0160 -03	2.3502"+00	1.21037	0.94849	0.37333	0.55680	2.22439	0.30297
ıŏ	1.5240*-03	2.5695"+00	1.20949	0.95338	0.39676	0.58508	2.17453	0.32542
ii	2.0320"-03	2.7459"+00	1.20704	0.95739	0.41443	0.60585	2.13713	0.34218
12	2.5400"-03	2.9187"+00	1.20469	0.95916	0.43092	0.62410	2.09756	0.35844
13	3.0480"-03	3,0958"+00	1.20233	0.96104	0.44708	0.64154	2.05908	0.37461
14 15	3.5560"=03 4.0640"=03	3,2745*+00 3,4570*+00	1.19988	0.96254 0.96444	0.46276	0.65789 0.67367	2.02114 1.98482	0.39057
16	4.5720"-03	3.6394*+00	1,19361	0.96611	0.49306	0.68845	1.94959	0.42149
i 7	5.0800"-03	3.8220*+00	1.19037	0.96790	0.50750	0.70247	1,91599	0.43643
18	5.5680"-03	4.0439"+00	1.18724	0.97037	0.52446	0.71663	1.07751	0.45442
19	6.0960"-03	4.2921"+00	1,18410	0.97271	0.54277	0.73541	1.83577	0.47435
50	6.6040*=03	4.6025"+00	1.15086	0.97474	0.56460	0.75456	1.78482	0.49923
21 22	7.1120"-03 7.6200"-03	4.6987"+00 5.1714"+00	1,17616	0.97742 0.97942	0.58501	0.77177 0.78641	1.74038	0.52157 0.54160
23	6.1280"-03	5.4708"+00	1.16655	0.98291	0.62213	0.60200	1.66179	0.56299
24	8.6360"=03	5.8367"+00	1.16185	0.98515	0,64472	0.81896	1.61355	0.58970
Ž5	9.1440"-03	6.1529"+00	1,15704	0.98726	0.66361	0.63270	1.57453	0.61191
56	4.6520"-03	6.5125"+00	1.15234	0.98979	0.68445	0.84739	1.53279	0.63706
27	1.0160"-02	6.8861 +00	1,14753	0.99218	0.70543	0.86155	1.49160	0.66282
5 9	1.0668*=02	7.3096*+00 7.6862*+00	1.14185	0.99448 0.99637	0.72847	0.87633 0.88855	1.44715	0.69145 0.71610
30	1.1176"-02	8.0631"+00	1.13038	0.99839	0.76774	0.90010	1.37453	0.74022
31	1.2192"-02	8.4461"+00	1.12469	1.00026	0.78694	0.91107	1.34038	0.76447
35	1.2700"-02	8.8924*+00	1.11903	1.00171	0.80873	0.92277	1.30190	0.79314
33	1.3208"-02	9.3417"+00	1.11185	1.00372	0.83009	0.93403	1.26612	0.82022
34	1.3716"-02	9.7817 +00	1.10470	1.00435	0.85048	0.94377	1.23144	0.84664
35 36	1.4224"-02	1.0152"+01	1.09734	1.00491	0.86725	0.95152 0.96046	1,20379	0.86753 0.89454
37	1.5240"-02	1.0992"+01	1.08333	1.00502	0.90417	0.96716	1.14417	0.91572
38	1.5748*=02	1.1379"+01	1.07578	1.00514	0.92070	0.97381	1.11870	0.93645
39	1.6256"-02	1.1681"+01	1.06823	1.00461	0.93337	0.97856	1.09919	0.95100
40	1.6764"-02	1.1967*+01	1.06068	1.00401	0.94523	0.98265	1.00076	0.96440
41	1.7272"-02	1.2235"+01	1.05313	1.00315	0.95616	0.98626 0.98855	1.06396	0.97623 U.98198
45	1-959905	1.2644"+01	1.03804	1.00555	0.97267	0.99173	1,03937	0.99027
44	1.8796"-02	1.2873"+01	1.02853	1.06135	0.98180	0.99449	1.02602	0.99692
45	1.9304"-02	1.3044*+01	1.01902	1.00081	0.96853	0.99653	1.01626	0.99923
46	1.9812"-02	1,3147"+01	1.00951	1.00033	0.99257	0.99767	1.01030	0.99689
0 47	2.0320"-02	1.3337*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
48 49	2,0828"-02 2,0828"-02	1.3440°+01 1.3524°+01	0.99039 68088	0.99934 0.99886	1.00400	1.00100	0.98916	0.99347
30	2.1844*-02	1.3659*+01	0.97138	0.99854	1.01247	1.00337	0.98211	0.99240
51	2,2352"+02	1.3721"+01	0.96187	0.99835	1.01462		0.97886	0.98661
52	2.2840"-02	1.3809*+01	0.95236	0.99836	1.01819	1.00513	0.97453	0.98227
53	4.3366*-02	1.3886*+01	0.94187	0.99781	1.02113		0.97019	6.97644
54 55	2.3876"-02 2.4384"-02	1.3960"+01	0.93138	0.99819	1.02396	1.00689	0.96423	0.96986 0.96218
56	2,4892"-02	1.4083*+01	0.92089	0.99762	1.02598		0.96043	0.95557
57	2.5400"-02	1.4149*+01	0.90001	0.99806	1.03111	1.00908	0.95772	0.94827
58	2.5908"-02	1.4214*+01	0.88952	0.99843	1.03354		0.95501	0.94076
59	2.6416"-02	1.4267"+01	0.87903	0.99823	1.03555		0.95230	0.93280
60	2.6924"-02	1.4310"+01	0.86854	0.99910	1.03751	1.01160	0.95068	0.92420
61	2.7432*-02 2.7940*-02	1.4363*+01 1.4436*+01	0.85805 0.84756	0.99726 0.99739	1.03914		0.946 88 0.94363	0.91631 0.90904
63	2.8448"-02	1.4522*+01	0.83492	0.99817	1.04508		0.94038	0.89979
64	2.8456"-02	1.4627*+01	0.82217	0.99751	1.04899	1.01431	0.93496	0.89195

71010206 STUREK		PROFILE	TABULATION	65	POINTS, DEL	TA AT PUI	NT 44	
I	Y	9\519	P/PD	TO/TOD	MZMD	U/UD	1/10	GU\U#GOHR\OHR
į	0.0000"+00	1,0000*+00 1,6511*+00	1.18416	0.94457 0.94201	0.000no 0.28615	0.00000 0.43884	2.72158	0.00000
5			1.18370	0.94174	0.31058			0,22986
4	2,5400**04 3.7846**04	1.7926*+00	0.32966	0.94252	0.33045	0.47068 0.49599	2.25287	0,24255 0,07258
5	5.4102"-04	2.0322*+00	1.18284	0.94449	0.34558	0.51515	2.22211	0.27422
ĕ	0.7310"-04	2.1310"+00	1.18250	0.94570	0.35842	0.53095	2.19447	0.28611
7	8.7884"-04	2.2407"+00	1.18199	0.94821	0.37193	0.54762	2.16788	0.29858
8	1.1328"-03	2.3725"+00	1.10122	0.95152	0.38732	0.56635	2.13816	0.31288
9	1.6408*-03	2.5621"+00	1.17909	0.95704	0.40813	0.59137	2.09958	0.33210
10	2.1488*-03	2.7526*+00	1.17695	0.96061	0.42780	0.61385	2.05892	0.35090
11	2.6568"-03	2.9118"+00	1.17465	0.96209	0.44345	0.63081	2.02346	0.36619
12	3.1648"-03	3.0713"+00	1.17226	0.96363	0.45852	0.64675	1.98957	0.38107
13	3.6728"-03	3.2419"+00	1.16987	0.96518	0.47404	0.66274	1.95464	v.39666
14	4.1808"-03	3.4273"+00	1.16679	0.96677	0.49028	0.67903	1.91614	v.41305
15	4.6888"-03	3.6242*+00	1.16347	0.96796	0.50692	0.69507	1.88008	0.43013
16	5.1968"-03	3.8336"+00	1.16014	0.96979	0.52398	0.71125	1.84254	0.44783
17	5.7048*-03	4.0449*+00	1.15689	0.97146	0.54061	0.72653	1.80605	0.46539
18	6.2128"-03	4.2801*+00	1.15356	0.97341	0.55851	V.74252	1.76747	0.48462
19	6.7208"-03	4.5605*+00	1.15023	0.97565	0.57910	0.76029	1.72367	0.50735
50 51	7.2288*-03 7.7368*-03	4.7985*+00 5.1263*+00	1.14691	0.97866 0.98109	0.59598	0.774A4 0.79295	1.69030	0.52575 0.55153
55	8.2448"-03	5.4396"+00	1.13922	0.98316	0.03919	0.80894	1.60167	0.57538
23	8.7528"-03	5.7897"+00	1.13470	0.98585	0.66154	0.32570	1.55787	0.50146
24	9.2608"=03	6.1241"+00	1.12924	0.98829	0.6556.0	0.84059	1.51825	0.62521
25	9.7688*-03	6.5085"+00	1.12377	0.99084	0.70519	0.85644	1.4749/	0.65252
56	1.0277*-02	6.8402*+00	1.11822	0.99287	0.72443	0.86917	1.43952	V. 67517
27	1.0785-02	7.2992"+00	1.11266	0.99515	0.74972	0.85507	1.39364	0.70663
28	1.1295 -02	7.7299"+00	1.10713	0.99753	0.77363	0.89952	1.35193	0.73664
29	1.1801*-02	8.1248*+00	1.10166	0.99945	0.79449	0.91158	1.31648	0.76284
30	1.2309*-02	8.6001*+00	1.09612	1.00137	0.81387	0.92493	1.27581	0.79466
51	1.2817"-02	9.0025"+00	1.09057	1.00305	0.83597	U.93555	1,24348	0.82050
32	1.3325"-02	9.4555"+00	1.08485	1.00444	0.46101	u.94654	1,20855	0.84966
33	1.3833"-02	9.8766*+00	1.07862	1.00522	0.88101	0.95591	1.17777	0.67581
34	1.4341"-02	1.0279"+01	1.07247	1.00617	0,89971	0.96446	1.14911	0.90013
35	1.48444-02	1.0615"+01	1.06624	1.00603	0.91501	0.97080	1.12565	0.91956
36	1.5357"-02	1.0954*+01	1.05975	1.00571	0.93020	U.97650	1.10271	U.93875
37	1.5565"-02	1.1308*+01	1.05224	1.00543	0.94581	U.98261	1.07977	0.95775
36	1.6373"-02	1.15577+01	1.04461	1.00489	U.95791	0.98718	1.06204	0.97116
39	1.6881 -02	1.1828*+01	1.03730	1.00424	0.96827	U.99073	1.04692	0.98163
40 41	1.7389"-02	1.2079*+01	1.02988	1.00317	0.97590	0.99409 0.99563	1.03176	0.99274
42	1.8405"-02	1.2203"+01 1.2357"+01	1.02236	1.00169	0.99060	0.99755	1.02346	U.99456 U.9984U
43	1.8913*-02	1.2471"+01	1.00751	1.00115	0.79532	0.99894	1.00730	U.99715
0 44	1.9421**02	1.2554"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
45	1.9929"-02	1.2635"+01	0.99257	1.00016	11200.	1.00082	0.49739	0.99598
46	2.0437"-02	1.2717"+01	0.98472	0.99985	1.00550	1.00163	0.99270	0.99377
47	2.0945*-02	1.2789"+01	0.97559	0.49947	1.00844	1.00264	0.98853	0.98951
48	2.1453"-02	1.3421"+01	0.96645	0.98469	1.03402	1.00365	0.94213	1.02956
49	2.1961 -02	1.2926"+01	0.95732	0.99933	1.01403	1.00447	0.98123	0.97999
50	2.2469*-02	1.2995"+01	0.94819	0.99926	1.01684	1.00538	0.97758	U.97515
51	2.2977"-02	1.3050*+01	0.93897	0.99949	1.01908	1.00624	0.97497	0.96908
52	2.3485*-02	1.3112"+01	0.92749	0.99954	1.02159	1.00711	0.97185	0.96322
53	2.3993"-02	1.3140"+01	0.91993	0.99915	1.02378	1.00764	J.96872	0.95689
54	2.4501"=02	1.3234"+01	0.91037	0.99946	1.02651	1.00869	0.46554	0.95101
55	2.5009"-02	1.3304"+01	18009.0	0.44933	1.02934	1.00956	0.96194	0.94540
50	2.5517"-02	1.3367"+01	0.89117	0.99988	1.03186	1.01000	0,95933	V.93885
57	5.6052,-05	1.3437"+01	0.86116	0.99969	1.03467	1.01148	U.95568	0.93565
58	2.6533"+02	1.3507*+01	0.87119	0.99957	1.03753	1.01234	0.95203	0.92638
59	2.7041"-02	1-3577*+01	0.86112	0.99976	1.04023	1.01330	0.94691	0.91956
60	2,7549"-02	1.3646*+01	0.85113	1.00000	1.04298	1.01431	0.94576	0.91281
61	2.8057"-02	1.3726*+01	0.84114	0.99964	1.04613	1.01513	0.94161	0.90682
62 63	2.8565"=02	1.3792*+01	0.83090	1.00076	1.04873	1.01452	0.93952	0.89900
64	2.9073*-02 2.9581*-02	1.3884*+01 5.3954*+01	0.82015 0.80939	1.00004	1.05236	1.01777	0.93535	0.89241
65	3.0089"=02	1.4033*+01	0.79855	59898.0	1.05818	1.01815	0.93118	V.88499 V.87789
	2,500. 90	. 444.0 . 01	- 61 . 433	2477416			~ . 7 E U ~ 7	¥ = U / (U /

71010	20 <i>1</i> STUR	EK	PPO7 ILE	TABULATION	60	POINTS, DEL	_TA AT PU1	NT 47
I	¥	P12/P	P/PD	10/100	UNAD	UZUD	1/10	#HO/#HOD*U/UD
1	0.0000"+00	1.0000*+00	1.17665	0.94310	0.00000	U.00000	2.63503	0.0000
2	1.2192"=04	1.5310*+00	1.17637	0.94415	0.26858	0.41047	2.33569	0.20674
3	2.6670"-04	1.6742"+00	1.17600	0.94388	0.33103	0.49143	2.20394	0.26255
4	4.1146"-04	1.9664"+00	1.17562	0.94379	0.34468	0.50818	2.17365	0.27485
5	6.0706"-04	2.1462"+00	1.17510	0.94732	0.36900	0.53818	2.12/21	0.29730
6	8.5344"-04	2.3112"+90	1.17450	7.95054	0.38941	0.56267	2.08783	0.31653
7	1.0490"-03	2.4364"+00	1.17390	0.95505	0.40397	0.54038	2.06411	0.33007
8	1.3691"-03	2.5441"+00	1.17240	0.95816	0.41598	0.59450	2.04291	0.34121
10	1.5215"-03	2.5909*+00	1.17165	0.95969	0.42106	0.60050	2.03435	0.345A9
11	1.8923"-03	2.6945*+00 2.7722*+00	1.16864	0.96231 0.96406	0.43207	0.61319	1.99899	0.35615 0.36377
12	2.4003"-03	2.4577*+00	1.16744	0.96556	0.44874	0.02224	1,98183	V.37213
13	2.6543"-03	2.9282*+00	1.16017	0.96066	0.45573	0.53928	1.96769	U_37887
14	2.9083"-03	3.0009"+00	1.16497	0.96717	0.46329	0.64712	1.45103	0.38639
iŝ	3.1623"-03	3.0844"+00	1.16376	0.96764	0.47051	0.65481	1.93438	0.39395
16	3.4163"-03	3.1634*+00	1.16256	0.96794	0.47820	0.66221	1.91772	0.40145
17	3.6703"-03	3.2414"+00	1.16129	0.96677	0.48537	U.66952	1.90257	0.40866
18	4.1783"=03	3.3335"+00	1.16009	0.96991	0.49373	0.67794	1,88541	0.41714
19	4.4323"-03	3.5211"+00	1.15678	0.96986	0.51026	0.69348	1.84705	0.43432
20	4.9403"-03	3.7076"+00	1.15311	0.97207	0.52614	0.70877	1.81474	0.45036
51	5.4483*-03	3.9265"+00	1.14853	0.97322	0.54414	0.72513	1.7758/	U.46897
2.2	5.9563"-03	4.1723"+00	1.14365	0.97513	0.56362	0.74250	1.73549	0.48929
23	6.4543"-03	4.4210"+00	1.13877	0.97704	0.58263	0.75890	1.69662	0.50938
24	6.9723"-03	4.7135"+00	1.13472	0.97860	0.60419	0.77662	1.65220	0.53338
25	7.4603"-03	4.7799*+00	1,13104	0.98091	0.62315	U.79201	1.61535	U.55455
24	7.9853"-03	5.3200"+00	1,12736	0.98355	0.64652	0.81020	1.57042	0.58164
27	8.4963"-03	5.5972"+00	1.12376	0.90539	0.06195	0.82414	1.53609	0.60292
50	9.0043"-03	5.9836"+00	1.11918	0.95861	0.68979	0.84204	1.49016	U.63242
29	9.5123"-03	6.3640"+00	1.11431	0,99095	0.71342	0.85820	1.44725	0.66081
30	1.0020"-02	6.7533"+00	1,10943	0.99346	0.73673	0.87369	1.40030	0.68922
31	1.0526"-02	7.1448*+00	1.10360	0.99554	0.75948	0.85797	1.30099	0.71701
35	1.1036"-02	7.5809*+40 8.0038*+00	1.09794	0.9976#	0.74402	0.90268	1.32559	0.74766 0.77669
33 34	1.1544*+02	6.42AU"+00	1.09201	0.99952 1.00130	0.80711	0.91589	1.24773	0.80535
35	1.2052"-02	5.7664*+0D	1.08616	1.00130	0.82961	0.92823 6.94019	1.25189	0.83454
. 36	1.3068"-02	9.3136"+00	1.07445	1.00435	0.87470	0.95127	1.18274	0.86418
37	1.3576"-02	9.7141"+00	1.06860	1.00521	0.89434	0.96051	1,15346	0.88985
38	1.4084"-02	1.0084*+01	1.06267	1.00601	0.91210	0.96859	1.12771	0.91273
39	1.4592"-02	1.0456"+01	1.05661	1.00634	0.92762	0.97509	1.10247	0.93567
40	1.5100*-02	1-0"63"+01	1.05096	1.00593	0.94343	0.98160	1.08178	0.95369
41	1.5608"-02	1.1044"+01	1.04406	1.00518	0,95663	0.98635	1.06310	0.96868
42	1.6116"-02	1.1288*+01	1.03670	1.00461	0.96763	0.99032	1.04745	0.96016
43	1.6624"-02	1.1495"+01	.02935	1.00350	0.97699	0.99327	1.03382	0.98897
44	1.7132**02	1.1654"+01	1,02199	1.00224	0.98390	0.99526	1.02322	0.99406
45	1.7640*-02	1.1807"+01	1.01464	1.00146	0.99061	0.79734	1.01363	0.99033
46	1.8148"-02	1.1915"+01	1.00736	1.00055	0.99534	0.99860	1.00656	0,99938
D 47	1.8656"-05	1.2022"+01	1.00000	1.0000	1.00000	1.00000	1.00000	1.00000
48	1.9164"-02	1.2071"+01	0.90264	0,99966	1.00210	1.00058	0.99697	0.99624
49	1.9672" .02	1.2139"+01	0.44529	0.99989	1.00505	1.00174	0.99344	0.99343
50	2.0180"-02	1.2177"+01	0.77891	0,999/12	1.00666	1.00208	1,00001	0.98903
51 52	2.064A-02	1.22374+01	0.97013	0.99916 0.99965	1.01924	1.002A5 1.003A2	0,90738	0.98533 0.98005
53	2.1704"-02	1.22A3"+01 1.2334"+01	0.46262 0.95399	1.00039	1.01341	1.00494	0.98334	0.97474
54	2.2212"-02	1.2372"+01	0.94589	1.00042	1.01504	1.00552	0.94132	0.96921
55	2.2720"-02	1.2413"+01	0.93786	1.00008	1.01679	1.00595	0.97480	0.96387
56	2.3228"-02	1.2463*+01	0.92923	0.99968	1.01890	1.00648	0.97577	0.95848
57	2.3736*-02	1.2512*+01	0.92044	1.00027	1.02099	1.00750	0.97375	0.95235
ŠÖ	2.4244*-02	1.2554*+01	0.91159	1.30049	1.02279	1.00823	0.97173	0.94582
59	2.4752"-02	1.2612*+01	0.907/1	1.00047	1.02522	1.00905	0.96670	0.94041
60	2.5260"-02	1.2660*+01	0.89403	1.00045	1.02725	1.00973	0.96618	0.93432

71010208 STUREK		PROFILE	TABULATION	60 1	POINTS, DEL	TA AT PUI	NT 41	
ı	Y	PTZ/P	P/PD	T0/T0D	н/мр	UZUD	קועד	RHO/RHOD*U/UD
į	0.0000*+00 2.6924*-04	1.0000"+00	1.13924	0.94297	0.00000	0.00000	2.53891	0,00000
3	3.3020"-04	2.0610"+00		0.94340	0.35792	0.51731	2.08901	0.28198
ů	5.8928"-04	2.2777"+00	1.13855	0.94485	0.36837	0.52944	2.06566	0.29182
5	6.7310*=04	2.3651"+00	1.13787	0.94622	0.39678 U.40746	0.56235 0.57463	2.00875 1.46881	0.31859 0.32877
ĩ	8.1788"-04	2.4536"+00	1.13756	0.95045	0.41791	0.58734	1.97519	0.33827
ž	1.0744"-03	2,5778"+00	1.13710	0.95492	0.45206	0.60392	1.95379	0.35148
ė	1.3233"-03	2.6584"+00	1.13644	0.95915	0.44093	0.61463	1.94309	0.35947
ŏ	1.5624"-03	2.7579*+00	1.13511	0.96203	0.45160	0.62666	1.92558	0.36941
10	1.7780"-03	2.8394"+00	1.13412	0.96432	0.46012	0.63615	1.91148	0.37744
ii	2,2860"=03	2.9956"+00	1.13154	0.96764	0.47596	0.65317	1.88327	0.39245
íż	2.7940 -03	3.1336"+00	1.12929	0.96937	0.48947	0.66701	1.85700	0.40562
13	3,3020"-03	3.2806"+00	1.12737	0.97005	0.50342	0.600	1,82782	0.41978
14	3.8100"-03	3.4466*+00	1.12545	0.97086	0.51867	0.69513	1.79621	0.43555
15	4.3180"-03	3.6229"+00	1.12267	0.97181	0.53434	0.70970	1.76411	0.45165
16	4.8260"-03	3.8180"+00	1.11989	0.97293	0.55117	0.72496	1.73006	0.46928
17	5.3340" = 03	4.0152*+00	1.11717	0.97415	0.56754	0.73944	1.69747	0.48665
18	5.8420*-03	4.2513"+00	1.11419	0,97500	0.58657	0.75553	1.65905	0.50740
19	6.3500*=03	4.4950"+00	1.11075	0.77693	0.40555	0.77147	1.62305	0.52806
Ž٥	6.8580"-03	4.7432"+00	1.10771	0,97822	0.62426	U.78643	1.56700	0.54890
51	7.3660"-03	5.0470*+00	1.19400	0.98162	0.64640	0.80428	1.54815	0.57354
55	7.8740*-03	5.3474"+00	1.09970	0.98329	0.66754	0.82008	1.50924	0.59754
23	8.3820"~03	5.6590"+00	1.09539	0.98565	0.68877	0.83573	1.47228	0.62179
24	8.8900*=03	5.9917"+00	1.09107	0.98747	0.71071	0.85089	1.43337	0.64770
25	9.3980"-03	6.3695"+00	1.08685	0.99017	0.73482	U.86727	1.39300	0.67667
26	9.9060"-03	6.7365*+00	1.08255	0,99274	0.75749	0.8#209	1.35603	0.70419
21	1.0414"-02	7.0821"+00	1.07795	0.99464	0.77823	0.89495	1.32247	U.7295U
28	1.0922"-02	7.5164*+00	1.07315	0.99651	0.80352	0.90982	1.28210	V.76154
29	1.14307-02	7.9278"+00	1.06832	0.99860	0.82675	0.92307	1.24660	u.79106
30	1.1936"-02	8.3755"+00	1.06355	1.00071	0.85130	0.93647	1.21012	0,82305
31	1.2446"-02	8.7626*+00	1.05845	1.00178	0.87197	0.94694	1-17947	0.84982
32	1.2954"=02	9.1130"+00	1.05309	1.00368	0.89025	U.95643	1.15418	0.87260
33	1.3462"=02	9.5334"+00	1.04773	1.00477	0.91171	0.96660	1.12403	0.90099
34	.3970"-02	9.48734+00	1.04237	1.00553	0.92939	0.97462	1.09971	0.92380
35	1.4478"-02	1.0217*+01	1.03701	1.00515	0.94556	0.98122	1.07685	0.94492
36	1.4986"-02	1.0504"+01	1,03164	1.00501	0.95942	0,98680	1.05768	0.96232
37	1.5494"-02	1.0715*+01	1.02575	1.00408	0.96965	0.90041	1.04329	0.97377
36	1.600505	1.0959"+01	1.01733	1.00337	0.98097	0.99447	1-02772	0.98635
39	1.6510"-02	1.1142"+01	1.01284	1.00222	0.98949	0.99716	1,01556	0.99449
40	1.7018"-02	1.1260*+01	1.00642	1.00142	0.99496	0.99883	1.00778	0.99748
D 41	1.7526"-02	1.1369*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
42 43	1,6034"-02 1,8542"-02	1.1443*+01 1.1493*+01	0.99325 0.98610	0.99985 0.99884	1.00337	1.00117	0.99562	0.99879
44	1.9050*-02	1.1548*+01	9.97895	0.99650	1.00815	1.00152	0.98833	0.99583 0.99274
45	1.7556"-02	1.1586"+01	0.97180	0.49870	1,00988	1.00225	0.98638	0.98816
46	2.0066"-02	1.1618"+01	0.96465	0.99908	1.01137	1.00372	0.48492	4.98306
47	2.0574"-02	1.1645"+01	0.95657	3.49861	1.01257	1.00391	0.98298	0.97495
48	2.1082"-02	1.1691*+01	0.94856	0.99826	1.01467	1.00450	0.98006	0,,97222
49	2.1590"-02	1.1724*+01	0.94055	0.99865	1.01616	1.00523	0.97860	0.96615
50	2.2040"-02	1.1764*+01	0.93248	0.99842	1.01797	1.00577	0.97617	0.96076
51	2.2604"-02	1.1801-41	0.92447	0.99900	1.01963	1,00665	0.97471	0.95476
52	2.3114"-02	1.1844"+01	0.91639	0.99841	1.02155	1.00704	0.97179	0.94963
53	2.3622"-02	1.1901"+01	9.90838	0.99862	1.02414	1.00807	0.96867	0.94513
54	2.4130"-02	1.1918"+01	8.90030	0.99906	1.02469	1.00056	0.96839	0.93765
35	2.4638"-02	1.1978*+01	0.89117	0.99892	1.02759	1.00944	0.96498	0:93223
56	2.5146"-02	1.2040"+01	0.58197	10446.0	1.03033	1.01086	0.96235	0.92623
57	2.5654"-02	1.2161*+01	0.87277	1.00016	1.03305	1.01195	0.95963	0.92038
58	2.6162*-02	1.2160"+01	0.56390	0.49885	1.03566	1.01223	0.95525	0.91542
59	2.6670"-02	1,2219"+01	0.85529	0.99956	1.03829	1.01350	0.95282	0.90976
60	2.7178*-02	1.2266*+01	0.89675	1.00113	1.04037	1.01501	0.95185	0.90294

SECTION D. ADDITIONAL DATA, TABLE 1, RAW PRESTON TUBE DATA FACSIMILE FROM SOURCE PAPER. NB - AUTHORS SYMBOLS AND UNITS.

Run	Tw,oR	$\frac{p_w/p_o}{}$	$\frac{p_s/p_o}{}$	p _o ,psia	r _w ,paf	CAT 7101 RUN SERIAL
06200	523	.01253	.03877	38.674	.64902	0101
06250	522	.01252	.04023	48.342	.78759	0201
06300	521	.01250	.04165	58.011	.92721	0301
08200	523	.01245	.03954	38.674	.66722	0102
08250	522	.01239	.04074	48.342	.80412	0202
08300	521	•01238	.04224	58.011	•94751	0302
10200	523	.01257	.03899	38.674	.65237	0103
10250	522	.01254	.04058	48.342	•79518	020೨
10300	521	.01253	•04191	58.011	.929 82	0303
117203	523	.02253	.05488	38.674	.70073	0104
117253	522	.02253	.05759	48.342	.86879	0204
117303	521	.02247	.05987	58.011	1.03496	0304
118203	523	.02540	.06162	38.674	.75468	0105
118253	522	.02546	.06422	48.342	•92550	0205
118303	521	.02554	.067 08	58.011	1.10573	0305
119203	523	.02847	.06838	38.674	.81120	0106
119253	522	.02856	.07233	48.342	1.00475	0206
119303	521	.02869	.07578	58.011	1.20397	0306
120201	523	.03190	.07755	38.674	.88108	0107
120250	52 2	.03207	.08195	48.342	1.09889	0207
120300	521.	.03228	.08567	58.011	1.31077	0307
121201	523	.03530	.08970	38.674	1.00266	0108
12125 1	522	.03543	.09501	48.342	1.25435	0208
121301	521	.03564	.10044	58.011	1.51514	0308

Preston tube diameter:

3.18 mm.

Preston tube pressure reading: $p_{\rm g}$

Wall shear $\tau_{\rm W}$ from Yanta, Brott and Lee (1969)

NOTE: Reservoir conditions are not identical with those of the profile runs.

SECTION D. ADDITIONAL DATA, TABLE 2. REDUCED HOT-WIRE OBSERVATIONS FACSIMILE FROM TABLES SUPPLIED_BY AUTHORS. NB. AUTHORS SYMBOLS AND UNITS.

TABULATED	FLUCTUATION	ATAC
/1B	torrat tarrat	

		11111	(UNPUBI	'ISHED)	1.0	_		
71	01 0202	•			•			
STA	A 08250		dp/dx = 0)	$A = \frac{1}{2} \frac{T_{re} + T_{e}}{T_{re} - T_{e} + T_{e}}$			
						א סיג		
y/6	<u> </u>	<u>Au</u> u_	<u>Δ(ρυ)</u> (μα)	Tre-T	٨	R _{nut} ,	Rur	
	•	"1	(64)	're''		""t	u.	
.044	.0466	.679	. 0862	.0159	.0367	092	-,923	
, 089	.0520	. 835	. 1023	.0235	.0502	.171	920	
.200	. 0393	. 705	. 0922	.0243	.0543	.002	6"	
. 312	. 0304	. 589	.0891	.0241	.0500	143	871	
. 423	,0231	. 477	.0852	.0214	.0620	343	660	
. 534	. 0204	.441	.0822	. 0212	.0602	326	853	
. 645	.0122	. 274	.0694	.0165	.0563	550	855	
.756	.0092	.213	.0551	.0131	.0457	482	51,0	
. 868	. 0042	.098	.0324	.0077	.0235	823	-,65€	
.979	.0027	.064	.0194	.0049	.0178	-,948	75	
1.090	.0012	.028	.0123	.0035	.0113	895	0.795	
1.201	.0016	.039	.0101	.0030	.0089	492	 C	
6 = 22	.8 mm							
7	101 0206				-			
8	TA 118250				$A = \frac{1}{2} \frac{1}{7}$	re to	\T T	
					dh th	: 1.36		
y/6	<u>Δu</u>	<u>Δu</u> ut	<u>Δ(ρu)</u> (ρu)	or _t	٨	R _{mT} .	Rut	

					dx TW				
y/6	<u>u</u>	<u>Δu</u> ut	<u>Δ(ρu)</u> (ρ u)	re-re	٨	R _{mT}	RuT		
.051	.072	1.234	.114	.0237	.0387	. 05).	662		
.102	.073	1.369	.125	.0255	.0490	.053	- , 806		
.204	.074	1.533	. 140	.0308	.0699	.115	920		
.306	.061	1.389	.133	.0305	.0774	046	- , 914		
.408	.046	2.139	.126	.0356	.0488	315	66'+		
.510	.039	1.039	.119	.0369	.0883	249	643		
.611	.029	.824	.112	.0318	.0913	-,479	860		
.739	.016	.467	.030	.0252	.0694	554	80%		
.841	.008	.243	.048	.0184	.0437	507	⊶.6€ა		
. 943	.002	.059	.019	.0732	.0199	-1.122	15%		
1.045	.002	.060	.010	.0054	.0099	480	303		
1.121	.003	.091	.012	.0043	.0112	237	72)		

č = 19.9 m

Tra = wire recovery temperature at edge of boundary-layer

T = static temperature at edge of boundary-layer

M : 4 (ZPG-Series 01) : 4 falling to 2 (02) - followed by recovery : 4 (03) recovery after

step-induced separation R THETA X 10-3 : 10 - 60

7102

ZPG - APG Recovery AW

Blow-down wind-tunnel with 12 seconds running time. W = H = 1.5 m. PO: 1.16 MN/m². TO: 298 K. Air: absolute humidity 2×10^{-4} . RE/m $\times 10^{-6}$: 50 at M = 4.

PEAKE D.J., BRAKMANN G. and ROMESKIE J.M., 1971. Comparisons between some high Reynolds number turbulent boundary layer experiments at Mach 4 and various recent calculation procedures. AGARD-CP-93-71 paper 11. And Peake D.J., private communications.

TW / TR : 1.0

1 The test boundary layer was formed on the inner surface of a cylinder (D = 0.229, L = 0.838 m) mounted on the centre-line of the wind tuned. The exterior of the leading edge (X = 0) was chamfered at 14^0 (E). A retractable centre body could be placed so as to cause a streamwise pressure gradient. Three cases were studied:

Series O1: Centre-body retracted. ZPG

Series 02: Centrabody forward. APG followed by recovery as tabulated in sections B and D.

Series 03: Centrobody retracted and a ring of rectangular cross section (height 3.8 and length 12.3 mm) mounted at X = 0.254 m, giving a test boundary layer recovering in nearly constant pressure from the disturbance of flowing up and down a step ("RPG").

Traversing probes could be inserted at six X stations such that in the APG case, one was just before the start of the pressure gradient, two during it and three in the constant pressure recovery region which followed. In the RPG case the last survey station was after a second disturbance caused by the shock structure of the ring, transmitted across the duct. The test duct was not actively cooled, but received some preliminary cooling due to "Canadian winter air reaching the model from the exhaustarea". Measurements indicated that the surface temperature resulting was close to the recovery temperature. The surface roughness was close to 0.25 μm rms., with waviness less than 2 \times 10⁻⁴ m/m.

- 2 Mach number variation in the ZPG case was less than 0.02. The authors calculate, on the bacis of acoustic measurements, that turbulent velocity fluctuations are probably less than 0.1%. No trips were used and
- 3 Preston tube readings (Section D) showed that natural transition occured between X = 50 and 165 mm. The Ylow was therefore fully turbulent before being perturbed in the RPG case. Oil dot flow visualisation
- 5 confirmed these conclusions. Incidence and yaw of the model were less than 10' wind off. The maximum eccentricity of the centrebody was within \pm 0.013 mm. Circumferential Mach number variations were less than 0.03 as determined from static pressure surveys at X = 299 and 552 mm. Oil dot streak-lines showed no perceptible convergence and boundary layer yaw measurements at X = 422 and 804 mm showed a maximum yaw very close to the wall of order 1° relative to a generator and 1.5° relative to the free stream.
- 6 Seventy static holes of 1.016 mm diameter were drilled normal to the surface from X = 5.3 to 831.8 mm at 12.7 mm intervals. At two stations (X = 299, 552 mm) three additional holes gave a check on two-dimensionality. An iron-constantan thermocouple bead was attached to a thin plate mounted in the duct surface at x = 426 mm, and this thin plate achieved an equilibrium temperature during the run. Small Preston tubes $(d_1 = 0.406, d_2 = 0.203, 1 = 5.54 mm)$ could be mounted in each static hole and ten Preston tube readings were collected in any one run. Four calibration relationships were used to give the results presented in section D.
- 7 A single combined Pitot, yaw and equilibrium temperature probe was employed. The unshielded thermocouple did not function. The face normal to the flow was 0.305 mm high (h_1) and 0.71 mm (b_1) wide, the opening being 0.127 ($\sim h_2$) by 0.508 mm (b_2) and the lower lip 0.102 mm thick. The two side tubes were chamfered at 45° and a serve-mechanism kept the probe aligned with the local flow direction. In section the top
- 8 surface was inclined at 7.50 to the axis. The six ports for the probe allowed traverses at X = 295, 422,

523, 574, 676 and 803 mm. Static pressure holes were 9.4 mm shead of and 3.3 mm behind each traverse normal. The face of a Preston tube lay 5.5 mm shead of the static hole in which the tube was mounted.

- 9 The authors have interpolated static pressure data to the X values of the Preston tube tips as presented in section D, and to those of the normals for the velocity profiles presented in sections B and C. The Crocco/Van Driest parabolic temperature-velocity distribution was assumed, as was constant static pressure
- through the boundary layer. The Pitot data have been adjusted for the effects of shear and wall proximity by applying an outward displacement Δ of the effective probe centre given by Δ /h = 0.24 0.04 {(h/y) 0.5}, in which h is the overall height of the probe face and y is the height of the geometric centre. Static hole errors were assessed using a curve-fit to the hole size corrections of Franklin & Wallace (1970).
- 11 Sutherland's viscosity law was assumed.
- 12 The CF values presented with the profiles in sections B and C are interpolated from the measured values of section D, the editors having arbitrarily chosen those reduced with the calibration of Hopkins & Keener
- 13 (TR method), 1966. The data are presented with the author's recovery factor of 0.89. The three sequences
- 14 of profiles are distinguished by their different pressure histories. The very full static pressure and Preston tube data obtained by the authors is presented in facsimile in section D.
- § DATA: 7102 0101-0306. PT2 profiles. NX = 6. CF from Preston tubes.

15 Editors' comments

The axi-symmetric configuration eliminates end-effects, and 6 /RZ at \sim 0.05 is small enough for there to be negligible distortion by axi-symmetry. The three sequences presented include the ZPG case, and ZPG regions in which the boundary layer recovers from a strong APG and from the severe disturbance of flowing over a rectangular fence.

The pressure gradient of series 02 is imposed as a reflected wave, so that in most of the test boundary layer there should be very little normal pressure gradient. However, profiles 01 and 03 are taken at stations which coincide with the start and finish of the longitudinal wall-pressure gradient. Consequently they are taken in regions traversed by simple waves, with the associated normal pressure gradients. The authors present data for profiles 02 (where there should be no significant $\delta p/\delta y$) and for 03, assuming a linear static pressure variation through the boundary layer given by

$$\delta p/\delta y = -\cot \mu \delta p/\delta x$$

where μ is the Mach ungle at the boundary layer edge. This assumes a wave structure corresponding to that generated by a curved wall (as for Sturek & Danberg CAT 7101), with the isobars extrapolated into the boundary layer. A more detailed study of the wave structure suggests that the appropriate relationships are, while still assuming that the isobars may be extrapolated.

0201: $\delta p/\delta y = 1/2 \cot \mu$, $\delta p/\delta x$ (at wall, downstream) 0203: $\delta p/\delta y = -1/2 \cot \mu$, $\delta p/\delta x$ (at wall, upstream).

The authors' calculations for 0203 therefore show the effect of a normal pressure gradient of double the probable magnitude, and, for this station, of the correct sign. The most obvious change in the calculated integral values is a 5% increase in the momentum thickness. It seems probable that there is a printer's error in the calculated 90% increase in THETA reported for 0202, since it is not reflected in the associated R THETA and shape factor values. These calculations should be regarded as a numerical experiment suggesting the magnitude of possible normal pressure gradient effects.

The wall temperature is stated to be missured by a thermocouple attached to a thin plate mounted in the model surface. Temperatures measured there are stated to reach equilibrium temperature, as might be expected. The editors feel, however, that this does not guarantee that the bulk temperature of the model had dropped to the recovery temperature.

Direct comparisons for the ZPG and APG data may be made with Lewis et al. - CAT 7201. The most appropriate planar ZPG comparisons are with Hastings & Sawyer - CAT 7006, and Mabey et al. - CAT 7402. Comparable planar APG cases are those of Zwarts - CAT 7007 and Thomas - CAT 7401. There are no strictly comparable recovery cases except possibly Myore - CAT 5805 who studied a planar flow which had mounted a step.

CAT 7102	PEAKE		BOUNDARY COND	ITIONS AND E	VALUATED E	DATA. BI UNIT	3.	
RUN	MD *	TW/TR*	REDZW	CF +	H12	H15K	PW	PO*
X	P00	PH/PD=	REDZD	ÇQ	H32	H32K	TW	1D*
RZ +	TOD	SW *	DS	PIZ	H42	DZK	UD	TR
3.43.40.	* 605/		770#7		4 84			
71020101 2.9515*-01	3.9256 1.1636*+06	1.0000	3.1079"+03 1.0221"+04	1.1482*=03 NM	7.8621 1.8177	1.5237	8.4668*+u3 2.7345"+02	8.4668*+03 7.3056*+01
-1-1445*-01	5.0055.+05	0.0000	1.9721"-04	NC	0.1517	3.6777"-04	6.7273"+02	2.7345"+02
- · -				·-				
71050105	3.9051	1.0000	4.6275"+03	1.0782"-03	7.6641	1.4409	8.6667"+03	
4.2215"-01	1.1586*+06	1.0000	1.5106"+04	NM	1.8188	1.7870	2.7322"+02	7.3556"+01
-1.1445*-01	2.9790*+02	0.000	2,6916"-04	NC	0.1531	5.3849"-04	6.71517+02	2.7322"+02
71020143	3.9006	1.0000	5,6030*+03	1.0400*+03	7.5614	1.3991	8.7563"+03	8.7563*+03
5.2375"-01	1.1635"+06	1.0000	1.8255"+04	NM	1.8300	1.8022	2.7358"+02	7.3778"+01
-1.1445*-01	2.9828*+02	0.0000	3.4782"-04	NC	0.1520	6.3288"=44	6.7174*+02	2.7358"+02
71020104	3.9046	1.0000	6.2526"+03	1.0300*-03	7 5/30		n 70045449	
5.7455"-01	1.1633"+06	1.0000	2.0499*+04	1.0200=02	7.5628 1.8265	1.3776	8.7081"+03 2.7356"+02	8.7001*+03 7.3667*+01
-1,1445 -01	2.9829"+02	0.7600	3.9147"-04	NC	0.1518	7.2135"-04	6.7193"+02	2.7358*+02
		-						
71020105	3.9212	1.0000	7.1874"+03	1.0200*+03	7.6709	1.3985	8.52194+03	8.5219"+03
6.7615*-01	1.1642*+06	1,0000	2.35967+04	Νb	1.0221	1.7902	2.7362"+02	7.3222*+01
-1.1445*-01	2.7039 402	0.0000	4.5438*-04	NC	0.1517	8.45527-04	6.7274*+02	2.7362"+02
71020106	3.9016	1.0000	7,7588*+03	1.0246"-03	7.6187	1.3891	6.7563"+03	8.7563"+03
8.0315*=01	1.1451 -+06	1.0000	2.52864+04	NM	1.8164	1.7859	2.7369"+42	7.37/8"+01
-1.1445*-01	2.9859*+02	0.0000	4.6167"-04	NC	0.1508	9.0556*-04	6.7192*+02	2.7369*+02
71020201	3.9256	1.0000	3.0026*+83	1 1000#=#3	7.9374			
2.9515"-01	1.1664*+06	1.7000	9.8750"+03	1.1000*=03 #M	1.0112	1.5535	8.4874"+03 2.7345"+02	5.4874"+03 7.3056"+01
-1.1445"-01	2.9822"+02	0.0000	1.9007"-04	NC.	0.1511	3.5911"-04	6.7273*+02	2.7345*+02
	·							
71020202	2.9013	1.0000	1.00857+04	1.3764"=03	5.1018	1.5616	3.7032"+04	3.7032"+04
4.2215"-01	1.1723"+06	0.0000	2.2317*+04 2.4759*=04	NM NC	1.7681	1.7585	2.7801*+02	1.1128"+02
-351442 -01	EATOUR THE	0.000	E-4/34 -V4	NC	0.1232	3.8147*-04	6.1363"+02	2.7801"+02
71020203	2.0752	1.0000	2.5701"+04	1.4244*-03	1.2802	1.4928	1.3270"+05	1.3270*+05
5.2375"-01	1.1674"+06	1.0000	4.1285*+04	NM	1.7977	1.7846	2.0314"+02	1.6028"+02
-1.145*-01	2,9832"+02	0.0000	2.9961 4-04	NC	0.0913	3.8053***4	5.2675*+02	2.8314"+02
71020204	2.0002	1.0000	3.5972*+04	1,6214*=03	2.4932	1.3862	1.4917#+05	1.4917*+05
5.7455*-01	1.1675"+06	1.0000	5.6197"+04	NM	1.8344	1.8252	2.8384"+02	1.65/8"+02
-1.1445*-01	2,9843"+02	0.0000	3.9439*-04	NC	0.0894	4.7809"-04	5.1635"+02	2.8384"+02
2442								
71020205 6.7615*-01	1.9862 1.1671*+06	1.0000	3.9146*+04 6.0887*+04	1.5782"-03	2.9666	1.3868	1.51937+05	1.5193"+05
-1.1445*-01	2.9833"+02	0.0000	4.2502*-04	NP IIC	0.0690	1.8267 5.1044*-U4	2.8384"+02 5.1454"+02	1.6651*+02 2.8384*+02
•••				.,,•	V	30.044 04	311131 142	E.0354 10E
71020206	2.0120	1.0000	3.64464+04	1.4364"-03	2.9541	1.3733	1-4636*+05	1.4636"+05
8.0315*-01 -1.1445*-01	1.1065*+06	1.0000	5.7186*+04	Her	1.8456	1.8337	2.8370*+02	1.6489*+02
-11144901	2.9839*+02	0.000	4.0363"-04	NC	0.0905	4.8425*-04	5.1800"+02	2.8370*+02
71020301	3.7884	1.0000	3.9930*+03	1.2024"-03	7.3123	1.4151	7.29464+03	7.2946#+43
2.9515*-01	8.3205"+05	1.0000	1.2471*+04	NW.	1.8099	1.7898	2.7391"+02	7.7056"+01
-1.1445*-01	2.9824"+02	0.0000	3.1338**04	NC	0.1473	5,8382*-44	6.6576*+02	2.7391"+02
71020302	3.6210	1.0000	7,3655*+03	1.0100**03	6.9040	1 4535	9.1976*+03	9.1976#+03
4.22154-01	4.3202*+05	1.0000	2.1981"+04	NH	1./666	1.4646	2.7467*+02	8.2387"+01
-1.14454-01	2.9844"+02	0.0000	4.9707*-04	iic	0.1418	9.2545"-04	0.5698"+02	
7103. 3								
7102v3v4 5.2375*-01	3.6080 8.3170"+05	1.0000	8.5712*+03 2.4991*+04	1.0100*-03	6.7254	1.3804	9.3631*+03	9.3631"+03
-1.1445*-01	2.4827*+02	0.0000	5.7147"-04	NC NC	1.6137	1.7904	2.7459*+02	8.2778*+01 2.7459*+02
					241733			#417.J TVE
71020304	3.6190	1.0000	9.1030*+03	1.0200*=03	6.7221	1.3665	4.2252*+03	9.2252"+03
5.7455"-01 -1.1445"-01	A.3218*+0%	1.0000	2.6652*+04	He	1.4193	1.7904	2.7465*+02	H.2444"+01
	2.9840"+02	7.0000	6.1279"=04	4C	0,1450	1.0760"-03	6.5884"+02	2.7465*+02
71020305	3,6160	1.0000	6.4222*+03	1.0136"-03	6.5371	1.3115	9.2665*+03	9.2605*+03
6.6399"-01	8.3241"+05	1.0000	2.4630*+04	MW	1.8475	1.8286	2.7470*+02	8,2556*+41
-1.1445*-01	2.4845*+02	0.0000	5.6555"-04	NC	0.1472	9.3361*=04	6.5874*+02	2.1470*+02
11020706	3.1983	1.0000	1.2826*+04	1.0808"-03	5.5376	1.3663	1.6871*+04	1,6471*+04
8.0315"-01	H.3199"+05	1.0000	3.1597"+04	1000003	1.8179	1.7985	2.7628*+02	9,7444*+01
-1.144501	2.4832"+02	0.0000	5.8518"-04	HC	0.1337	9.33164-04	b.3465*+02	2,1628"+02

710202	01 PEAKE		PROFILE	TAHULATION	59	POINTS, DEL	TA AT PUI	NT 59
1	Y	P12/P	P/PD	TU/10D	M/MD	UZUP	1/1/	RH078H00+3740
1	ÿ.000p*+00	1,0000*+00	11M	0.91644	0.00000	0.00000	3.74099	0.0000
2	2.2860"=04	2.5910"+00	[1 M	0.94160	0.32130	0.54865	2.415#9	0.14816
3	3.4290"-04	3,3354"+00	MM	0.94839	0.376#2	0.61836	2.69291	0.22963
4	4.2672*-04	4.0648*+00	15.8	0.95404	0.42355	0.67077	2.50774	U.26748
5	4.7498"-02	4.84657+00	Hr.	0.45925	0.46824	0.71577	2.33670	U.30632
6	5.5880"-04	5.3097"+00	14.1	0.96501	0.49273	0./3847	2.24621	U.32876
7	0.42624-04	5,9145"+00	Lite	0.96530	0.52294	0.75469	2.13025	0.35762
8	7.0104"-04	6.1975"+00	1414	0.96674	0.51656	4.77584	2.09095	0.37106
9	7.8232"-04	6.5838"+00	ηw	0.96859	0.55440	0.78998	2.03043	0.38907
10	8.40744-04	6.4324*+00	i in	0.97017	0.57009	G.B01A8	1.97850	0.40530
11	9.2202"-04 9.9314"-04	7.2539*+00	1414	0.97156	0.56418	0.81218	1.93293	0.42010
13		7.5039"+00 7.6126"+00	MM	0.97260	0.59490	0.81978	1.89893	0.43171
14	1.0744"=03 1.1328"=03	7.7444"+00	HM HV	0.97304 0.97356	U.59950	8P558.0 87 6 28.0	1.88452	0.43671
iš	1.2040*-03	0.0322"+00	[4]]	0.97467	0.61694	0.83475	1.83049	0.44276 0.45594
16	1.2652*-03	6.4167*+00	1294	0.97607	0.63249	0.84488	1.78439	0.47344
17	1.3564"-03	8.7767*+00	HP	0.97735	0.64671	0.85379	1.74295	0.48985
iò	1.4021 03	9.0486*+00	HW.	0.97827	0.65725	0.86019	1.71200	U.50219
19	1.4834*-03	9.4796*+00	1114	0.97966	U.67360	0.86979	1.66735	0.52166
20	1.5418"-01	9.9498*+00	ijM	0.98109	0.69099	0.87959	1.62035	0.54284
ži	1.6256*-03	1.0561*+01	ні	0.48284	0.71298	0.82134	1.56307	0.57028
22	1.6942"-03	1.1059*+01	(₄ M	0.98417	0.73039	0.70027	1.51436	V.59255
23	1.7576"-03	1.1547*+01	ßМ	0,98545	0.74773	0.90879	1.47720	0.61521
24	1.8237"-03	1.2038"+01	N	0.98055	0.76344	0.91619	1.44018	0.63616
25	1.0021 -03	1,2657*+01	1164	0.98798	0.78363	0.92529	1.39425	0.66365
56	1.9634"-03	1.3047*+01	UM	0.98892	0.79608	0.93069	1.36677	0.68094
27	2.0345"-03	1.3363"+01	(4)	0.98947	40406.0	0.93489	1.34529	0.69494
28	2.0803"-03	1.3643"+01	[]91	0.99004	0.51476	0.93849	1.32681	0.70735
29	2.1619"-03	1.38515+01	M	0.99045	0.82117	0.94109	1.31341	0.71653
30	5.550003	1.4006"+01	Nh:	0.49075	0.82592	v.94249	1.30360	0.72338
31	2.2784"-03	1.4050 -01	Her	0.99059	0.82819	U.943A9	1.29694	0.72666
is	2.3366"403	1.4154"+01	Nh	0.99104	0.63072	0.94489	1.29376	0.73035
3.3	2.5019=-03	1.4650*+01	116	0.99200	0.64626	0,95090	1.26258	0.75313
34 35	2.6314"-03	1.9264"+01	IIM	0.99302	0.86348	0.95730	1.22911	0.77686
36	2.7711"-03 2.8981"-03	1.5845"+01	lim lin	0.99398	0.88028	0.96330	1.19752	0.80441
37	3.0404*-03	1.6429"+01	(im	0.99490 0.99578	0.89686	U.96900 U.97440	1.16732	0.83010
38	3.1572"-03	1.7588*+01	NW	0.99659	0.92886	0.97940	1.13656	0.85582 0.88093
39	3.2969"-03	1.4093*+01	UM.	0.99726	0.94247	0.99369	1,08918	0.90507
40	3.4364"-03	1.4532"+01	liw i	0.99786	0.95414	U.9A710	1.07627	0.92224
41	3.5535"=03	1.9015"+01	ii»	0.99847	0.96683	0.94040	1.05021	0.94343
42	1.6810"-03	1.9190"+01	ĤΡ	0.99865	0.97137	0.99210	1.04314	0.95107
43	3.8354"-03	1.9561"+01	NM	0.99913	0.98095	0.99480	1.02843	0.96729
44	3.9751"-03	1.97/4"+01	HM	0.94935	0.98564	U.99610	1.02134	0.47529
45	4.1148*-03	1.9886"+01	1114	0.59952	85989.0	0.99710	1.01588	0.98152
46	4.2570"+03	1,4987*+61	5194	0.99463	0.99184	0.99740	1.01205	0.98592
47	4.3840":03	2.00#8"+01	1141	0.99975	0.99442	0.99850	1.00822	0.99036
4.6	4.5237"-03	2.0132"+01	P184	U.99980	0.99553	0.99850	1.00658	0.49228
49	4.0533"~03	5-0195.401	ИM	0.99943	0.99627	0.79700	1.00548	0.99356
50	4.7930"-03	2.0206"+01	NM	0.90988	0.94739	0.99930	1.00384	0.99548
21	4.9225"-03	2.0206"+01	NM	0.49966	0.99739	0,99930	1.00384	0.99548
52	5.0749"-03	2.0235*+01	1194	0,99992	0.99813	0.99950	1-00274	0.99677
53 54	5.2019"-03	2.0235*+01	MIN	0.99992	0.99813	0.99950	1.00274	0.99677
55	5.3543"-03	2.0279"+01	(IM	0.99997	U,49925	0.99980	1.00110	0.99871
56	5.4839*-03 5.6134*-03	2.0279*+01	NM MI	0.47997	0.99925	0.99960	1.00110	0.99871
57	5.7302"-03	2.0279"+01 2.0279"+01	Her Itw	0.99997 0.99997	0.99925	0,99980	1.00110	0.99871
56	5.8572"-03	2.0274*+01	NM:	0.99997	U.99925	0.9 99 80 0.95980	1.00110	0.99571 U.99871
0 59	5.9868*-03	2.0309*+01	PJM.	1.00000	1.00000	1.00000	1.00000	1.00000
			11			110000	* * * 44.440	

INPUT VARIABLES Y, U/UD ASSUME PMPD AND VAN DRIEST

71020202 PEAKE		PROFILE	TABULATION	BULATION 60 POINTS, DELTA A			AT POINT 60	
1	Y	PT2/P	P/PD	T0/T0D	M/MD	U/U0	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	NM	0.93099	0.00000	0.00000	2.49832	0.0000
2	2,2860"=04	2.0679"+00	NM	0.95060	0.37031	0.53310	2.07251	0.25722
3	3,3020"-04	2,8004"+00	NM	0.95844	0.45728	0.63070	1.90232	0.33154
4	4.2672"-04	3.1825*+00	ИM	0.96193	0.49545	0.66960	1.02653	0.36660
5	5.1054"-04	3.5143"+00	NM	0.96476	0.52649	0.69950	1.76519	0.39627
6	5.9436"-04	3.7897"+00	N۳	0.96689	0.55018	0.72130	1.71876	0.41966
7	6.7818"-04	4.0284"+00	HM	0.95868	0.57014	0.73900	1.68006	0.43987
8	7.5946"-0"	4.2344"+00	μtw	0.97015	0.58678	0.75330	1.64808	0.45708
9	6.4074"-04	4.4404"+00	nm Nm	0.97157 0.97284	0.60295	0.76680 0.77870	1,61734	0.47411 0.48982
10	9.2202*-04 1.0058*-03	4.6321"+00 4.7751"+00	NA	0.97375	0.62829	0.78720	1.56984	0.50145
11	1.0871*-03	4.7467"+00	NW Na.	0.97483	0.64057	0.79700	1.54657	0.51533
13	1.1684"-03	5.1222"+00	NM NM	0.97589	0.65349	0.80660	1.52351	0.52944
14	1.2497"-03	5.3151*+00	NM	0.97702	0.66707	0.81670	1.49894	0.54485
15	1.3208*-03	5.4420"+00	NM	0.97774	0.67585	0.62310	1.48322	0.55494
16	1.4249*-03	5.6333"+00	NM	0.97881	0.65556	0.83240	1.46015	0.57008
17	1.5088"-03	5.9666"+00	NM	0.98058	0.71096	0.84770	1.42163	0.59629
ió	1.5773*-03	6.2362"+00	NM	0.98195	0.72833	0.85930	1.39197	0.61733
19	1.6713"=03	6.5190"+00	NM	0.98332	0.74611	0.87080	1.36216	0.63928
ŽÓ	1.7526"-03	6.4159"+00	NM	0.98470	0.76433	0.88220	1.33221	0.66221
ži	1.8364"-03	7.1307"+00	NM	0.98610	0.78317	0.89360	1.30188	0.68639
22	1.9279"-03	7.4289*+00	NМ	0.98736	0.80060	0.90380	1.27441	0.70919
23	2.0117"=03	7.8206*+00	ИM	0.98894	0.82294	0.91640	1.24005	0.73900
24	2.0803"-03	8.1345*+00	NM	0.99015	0.84040	0.92590	1,21362	0.76280
25	2.1742 -03	8.4195*+00	ИW	0.99120	0.85594	0.93410	1.19097	0.78432
26	2.3495"-03	8.9695"+00	ИM	0.99313	0.88516	0.94890	1.14422	0.82569
27	2.5146"-03	9.4403*+00	NM	0.99467	0.90941	0.96060	1.11574	0.86095
28	2.6899"=03	0,8393"+00	Им	0.99589	0.92927	0,96980	1.08913	0.89043
29	2.8651"-03	1.0193"+01	NM	0.99696	0.94691	0.97770	1.06608	0.91710
3.0	3.0277"-03	1.0459*+01	ИW	0.99771	0.95977	0.98330	1.04963	0.93681
31	3.20297-03	1.0571"+01	HM	0.99803	0.96514	0.78560	1.04284	0.94511
32	3.3660"-03	1.0789*+01	NM	0.99863	0.97556	0.99000	1.02982	0.96134
33	3.5077"-03	1.0917*+01	ИМ	0.99897	0.98157	0.99250	1.02239	0.97076
34	3.6830*+03	1.0979"+01	NM	0.99913	0.98448	0.99370	1.01882	0.97534
35 36	3.8354*-03 4.0107*-03	1.1025"+01	NM NM	0.99926 0.99938	0.98667 0.98887	0.99460 0.99550	1.01614	0.97880 0.98228
37	4.1732"-03	1.1088*+01	NM	0.99942	0.98960	0.99580	1.01256	0.98345
38	4.3485*=03	1.1120*+01	NM	0.99950	0.99198	0.99540	1.01077	0.78578
39	4.5136*-03	1.1136"+01	NM	0.99955	0.99142	0.99670	1.00987	V.9869a
40	4.6701"=03	1.1151"+01	NM	0.99959	0.99256	0.99700	1.00898	0.98813
41	4.8514"=03	1.1151"+01	NM	0.99959	0.99256	0.79700	1.00898	0.48813
42	5.0165"=03	1.1151"+01	NM	0.99950	0.99256	0.99700	1.00898	0.98813
43	5.1791"-03	1.1162"+01	ЙM	0.99961	0.99305	0.99720	1.00838	0.98891
44	5.3442"-03	1.1162"+01	И₩	0.99961	0.99305	0.99720	1.00638	0.98891
45	5.5007"-03	1.1178"+01	NM	0.99966	0.99379	0.99750	1-00748	0.99009
46	5.6820*=03	1.1178"+01	14M	0.99966	0.99379	V.99750	1.00746	9.79009
47	5.8471"-03	1.1194"+01	NM	0.99970	U.99453	0.99780	1.00659	0.99127
40	6.0096"-03	1.1:94*+01	Min	0.99970	U.99453	U.997AO	1.00659	U-99127
49	6.1620"-03	1.1210*+01	lin	0.99974	0.99527	0.99510	1.00569	0.99245
50	6.3246~-03	1.1210"+01	Им	0,99474	0.99527	0.99810	1.00569	0.79245
51	6,5126"-03	1.1226"+01	NM	0,99978	0.99602	0.99840	1.00479	0.49364
52	6.6650=-03	1.1226*+01	ИW	0.49978	0.99602	0.99840	1.00479	0.99364
53	6.8402"=03	1.1226*+01	Им	0.99978	0.99602	0.99840	1.00479	0.99364
54	7.0155*-03	1.1242*+01	NM	99982	0.99676	0.79870	1.00389	0.99483
55 56	7.1806*=03	1.1253"+01	NM NM	0.99986 0.99989	0.99751	0.99900 0.99920	1.00300	U.99602 U.99681
57	7.3304"-03 7.4828"-03	1.1269*+01	()M	0.99989	0.99800	0.99950	1.00240	0.95681
58	/.6706"-03	1.1240"+01	NM	0.99992	0.99850	0.99940	1.00740	0.99761
59	7.6232*=63	1.1296*+01	Nt4	0.99996	0.99925	U.99970	1.00090	0.99880
0 60	7.9858"-03	1.1312*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
,			14.					

INPUT VAHIABLES

Y, U/UD

ASSUME PEPD AND VAN DRIEST

710202	03 PEAKE		PROFILE	TABULATION	43	POINTS, DEL	TA AT POI	NT 43
1	Y	P12/P	P/PD	10/100	147HD	0/00	7/10	RHO/RHOD*U/UU
1	0,0000*+00	1,7000"+00	NW	0.94910	0.00000	0.00000	1.76655	0.00000
ž	2.2060 -04	1.8414"+00	UM	0.96611	0.47039	0.57810	1.51037	0.38275
ž	5.1750"-04	2.1245*+00	NW	0.96979	0.52850	0.63750	1.45502	0.43814
4	4.1656"-04	2.4216"+00	taM	0.97319	0.55059	0.68790	1.40381	0.49002
5	5.0038"-04	2.5821"+00	MIT	0.97489	0.60633	0.71180	1.57817	0.51648
6	5.7150"-04	2.7268*+00	MN	0.97636	0.62843	0.73180	1.35604	0.53966
7	6.6548"=04	2.9017*+00	UN	0.97806	0.65396	0.75439	1.33041	0.54697
ē	7.3660"-04	3.0394*+00	NN	0.97935	V.67328	0.77090	1.31100	0.58802
9	8.3056"-04	3.1465*+00	1114	0.98032	0.68758	0.78320	1.29635	U.60416
10	9.2202"-04	3.2609"+00	ИМ	0.94133	0.70309	U.79580	1.28110	D.62119
11	1.0058**03	3.3030"+00	ПW	0.98239	0.71896	0.80870	1.26523	0,63917
12	1.0973"-03	3.4825"+00	f#M	0.94322	0.73159	0.81840	1.25263	v. 65367
13	1.1684"-03	3.5360"+00	11M	0.98567	0.73829	0.82410	1.24595	0.06142
14	1.2497*-03	3.5906"+00	N۳	0.98411	0.74505	0.82940	1.23924	U.66928
15	1.3437"=03	3.7123"+00	NH	0.98509	0.75991	0.84090	1.22451	0.68672
16	1.4249"-03	3.4043"+00	1144	0.98581	0.77094	0.84930	1.21343	J.6998U
17	1.5048"-03	3.8966*+00	1484	0.98653	0.78184	0.85750	1.20290	0.71286
18	1.6002"-03	3.9731*+00	MM	0.98711	0.79073	U_86410	1.19419	J.72359
19	1.6942 -03	4.0813*+00	liw.	0.98791	0.80314	0.87320	1.18207	0.73870
20	1.7653"-03	4.1656"+00	μw	0.98853	0.81248	0.88010	1.17280	U.75043
51	1.8466"-03	4.2042*+00	MW	0.98880	0.81700		1.16561	0.75577
22	1.9406"-03	4.2590"+00	†ĮM	0.95941	0.82643	0.88990	1.15950	U.76748
53	2.0117*=03	4.3890*+00	13rs	0.99011	0.83740	U.39760	1,14895	0.78123
24	2.1031**03	4.4743"+00	NM	0.99070	0.84663	0.90400	1.14011	U.79290
25	2.1869"-03	4.5740"+00	Nw	0.99137	0.85730		1.12995	0.80649
26	2.2682"-03	4.6892"+90	NM	0.99213	0.36945	0.71950	1.11845	0.82212
27	2.3495*+03	4.5064*+00	UA	0.99290	0.88164	0.92760	1.10698	0.83796
59	2.4562*-05	4.8597"+00	11th	0.94324	0.88712		1.10105	0.84513
54	2.6314"-03	5.1546"+00	NW	0.99507	0.91683		1.07430	0.88457
30	2.7940"-03	5.3630"+00	ИM	0.99630	0.93726	0.96300	1.05568	0.91551
31	2.9820"-03	5.5659"+00	ИW	0.99747	0.95672	0.97440	1.03815	U.73898
35	3.1344"-03	5.7218"+00	NM	0.99833	0.97139		1.02509	u_95943
33	3.3096"-03	5.7990"+00	ИW	0.99876	0.97857		1.01874	U.96953
54	3.4722"-03	5.8775*+00	Man	0,99918	0.98582		1.01237	U.97978
35	3.6373*-03	5.9078"+00	ИW	0.99934	0.48860	0.99350	1.00493	0.94373
36	3.8125*-03	5.9401"+00	NP1	0.79951	0.99157		1.00734	0.98795
37	3.9624"-03	5.9631"+00	NM	0.99963	0.99367	0.99640	1.00551	0.99094
38	4.1275*-03	5.4862"+00	ЫW	0.99976	0,99577	0.99760	1.00368	0.99395
39	4.3028-03	5,9939"+00	MA	0.99980	0.79548	0.99800	1.00306	0.49495
46	4.47801-63	6.0094*+00	()M	0.99984	0.99788		1.00184	0.99697
4 1	4.6406"-03	6,0172"+00	N ^M	59999	0.99859		1.00123	0.99798
42	4.7950*=03	6.0250"+00	NM	0.99996	0.94929		1.00061	U. 49849
D 43	4.9809*-03	6.0327"+00	tim	1.00000	1.0000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y, U/U0	ASSUME PE	PD AND VAN	ORIEST			

71020204 PEAKE		PROFILE	TABULATION	60	POINTS, DES	_TA AT PUI	NT 60	
1	Y	PT7/P	P/Pስ	TOTTOP	MAND	טוויט	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000 +00	ЫM	0.95111	0.00000	0.00000	1.71214	0.00000
5	2.2860~-04	1,9159"+00	ИW	0.96918	0.50511	0.60500	1.44889	U.419h3
3	3,4036"-04	2.3419"+00	(IM	0.97435	0.58852	0.64970	1.37339	0.50214
4	4.0132"-04	2.5867*+00	F;M	0.97790	0.62981	0.72770	1.33503	0.54598
5 6	4.9022"=04 5.7912"=04	2.7805"+00 3.0129"+00	M. MM	0.97895 0.98117	0.66026	0.75470 0.78420	1.30653	0.57764 0.61545
ž	6.527A"=04	3.1670"+00	NM	0.98254	0.71653	0.80230	1.25375	0.63992
á	7.4168"-04	3.2058"+00	r _i M	0.98292	0.72191	0.80670	1.24671	0.64603
9	8.1534"-04	3.2706"+00	1114	0.48349	0.73079	0.81390	1.24046	0.65616
10	9.0170=-04	3.3351"+00	MM	0.98405	U.73751	0.82090	1.23275	0.06618
11	4.7536"-04	3.3736"+00	ŊН	0.98438	0.74465	0.82500	1.22744	0.67213
15	1.0643*-03	3.4126"+00	MH	0.78472	0.74983	0.82910	1.55591	0.07814
13	1.1506"-03	3.4637"+00	Py At	0,98515	0.75657	0.83440	1.21633	0.68600
14 15	1.2395"-03	3.5020"+00 3.5278"+00	IIM IIM	0.98547 0.98568	U.76156 U.76490	0.83830 0.84090	1.21169	0.69185 0.69578
16	1.4300*-03	3.5538*+00	lin ita	0.98589	U.76826	V.84350	1.20546	0.64973
17	1.5164"-03	3.5922"+00	NM	0.98621	0.77319	0.84730	1.20008	0.70556
iė	1.5400*-03	3.6445"+00	MM	0.98663	0.77985	0.85240	1.19471	0.71348
19	1.6764*-03	3.6954"+00	NH	0.98704	0.74630	0.85730	1.18074	0.72118
20	1.7653*=03	3.7475*+00	NM	0.98745	0.79280	0.86220	1.18274	0.72898
21	1.8517"-03	3.7733"+00	ИW	0.98766	0.79600	0.86460	1.17979	0.73284
55	1.9253"-03	3. 42/13"+00	NM	0.98805	0.60230	0.86930	1.17399	0.7404/
53	2.0142*-03	3.8762"+00	NM	0.98845	0.80865	0.87400	1.16615	0.74619
24 25	2.1006"-03 2.1742"-03	3.9153"+00 3.9664"+00	Им Им	0.98875 0.98914	0.813# 0.8195/	0.87750 6.88200	1.16379	0.75400 0.76156
59	2.3716"-03	4.0152"+00	NH NH	0.98953	0.82577	0.88650	1.15015	0.76921
27	2.3343"-03	4.1207*+00	им	0.99029	0.83790	0.89520	1.14144	U.78427
Žå	2.4232"-03	4.1859"+00	(!M	0.99076	0.84552	0.90000	1.13454	0.74380
29	2.4968*-03	4.2623"+00	MM	0.99131	0.85435	(. 90640	1.12050	0.80493
30	2.5984"-03	4.3403*+00	UW	0.99186	0.86327	0.91300	1.11852	0.81626
31	2.6848*-03	4.4174"+00	ММ	0.99240	0.87200	0.91900	1.11069	U.82741
35	2.75844-03	4.5082"+00	MM	0.99302	0.68216	0.92590	1.10163	0.84048
33 34	2.6321**03 2.9050**03	4.6231"+00 4.6756"+00	M _M eaga	0.99380 0.99414	0.89454 0.90058	0.93440 0.93820	1.09037 1.0853v	0.85696 0.8644b
33	3.109003	4.8173"+00	NH	0.77514	0.91556	0.94820	1.07147	0.88462
36	3.2715*-03	4.9078*+00	MM	0.99564	0.92548	0.95440	1.06347	0.89744
37	3.44087-03	4.9717*+00	MM	0.99604	0.43222	V.95870	1.05761	0.90648
38	3.6008"=03	5.0230×40U	ЫW	0.49636	0.93759	0.96210	1.05296	0.91371
34	3.7621"-03	5.0489*+00	F114	0.99652	0.94029	0.96340	1.05063	0.91736
40	3.9573**03	5.0573*+00	NH	0.99676	0.94428	0.96630	1.04719	0.92276
41 42	4.1046"=03 4.2799"=03	5.1136"+00	NM	0.99692 0.99739	0.94700	0.96800	1.04475	0.92645
43	4.4399*-03	5.1903"+00 5.2556"+00	MM MW	0.99778	0.95489	0.97290 0.97700	1.03238	0.93722 0.94636
44	4.5872"-03	5.3073"+00	tiw.	80899.0	0.96680	0.98020	1.02792	0.95357
45	4.7625"=03	5.3317"+00	NM	0.99823	0.46926	0.98170	1.02583	U.95698
46	4.9073"-03	5.3976"+00	1911	0.99861	0.97588	0.98570	1.02022	0.96610
47	5.0825*+03	5.4359"+00	IIm	0.99883	0,97971	U.98800	1.01699	0.97150
46	5.2451"-03	5.4611"+00	ИW	0.99898	0.98222	0.98950	1.01488	0.97500
49	5.4051 03	5.4746*+00	HM	0.99906	0.98356	0.99030	1.01375	0.97687
50	5.5651"-03	5.5136*+00	NM	0.99928	0.98743	0.99260	1.01050	0.98229
5 L 5 2	5.7277"-03 5.8577"-03	5.5650"+00 5.5771"+00	MW MW	0.99957 0.39964	0.99250	0.99560 0.99630	1.00525	U.98941 O.99109
53	6.0477"-03	5.5909*+00	MIL	0.99972	0.99505	0.99710	1.00412	0.99300
54	6.1951 -03	5,5909"+00	NH	0.99972	0.99505	0.99710	1.00412	U.99300
55	6.3856"-03	5.6031"+00	11M	0.49979	0.99624	0.99780	1.00313	0.99469
56	6.5606"-03	5.6152*+00	NM	0.99985	0.99744	U.99850	1.00213	0.99637
57	6.7208"-03	5,6152"+00	MM	0,99985	0.99744	0.79850	1.00213	0.99637
58	6.8656"-03	5.6292"+00	MI	0.99993	0.99880	0.99930	1.00100	0.99831
59 D 60	7.0409"-03 7.2034"-03	5.6292"+00 5.6415"+00	MIT	0.49993 1.00000	1.00000	0.99930 1.00000	1.00100	0.99831 1.00000
J 60	1.6034 03	3,0413.400	1411		1.00000	1.00000	1.00000	1.0000

INPUT VARIABLES Y, U/UD ASSUME PEPD AND VAM DRIEST

Ħ

71020205 PEAKE			PROFILE	TABULATION	60	POINTS, DEL	DELTA AT PUINT 60	
I	¥	PT2/P	P/PD	T0/T0D	M/MD	U/UP	1/10	RHO/RHOD*U/UD
1	0.9000"+00	1.0000"+00	NM	0.95143	0.00000	0.00000	1,70362	0.0000
2	2.2860"-04	1.7540"+00	NM	0.96766	0.47696	0.57800	1,46855	U.39358
3	3.2512"-04	2.4349"+00	MM	0.97572	0.60827	0.70720	1.35172	0.52319
4	4.0132"-04	2.7051"+00	NM	0.97854	0.65252	0.74710	1.31089	0.56992
5	5.0546" "04	2.8817"+00	NM	0.98027	0.67958	0.77060	1.28579	0.59932
6	5.9436"-04	1.9902"+00	ИW	0.98130	0.69561	0.78420	1.27092	0.61704
7	6.8326*-04 7.8486*-04	3.0986"+00	IIM NM	0.98230 0.98315	0.71120	0.79720 0.80810	1.25645	0.63449 0.64953
Υ,	8.5652"-04	3.1930"+00 3.2745"+00	NM	0.98387	0.73573	0.81720	1.23373	0.66238
10	9.4742*=04	3.3566"+00	NM	0.98458	0.74686	0.82610	1.22344	0.67523
ii	1.0338*-03	3.3971*+90	BM	0.98492	0.75229	0.83040	1.21843	0.68153
iż	1.1227"-03	3.4452*+00	NM	0.98550	0.76133	0.83750	1.21010	0.69209
13	1.1938*-03	3.5192"+00	ИМ	0.98595	0.76840	0.84300	1.20359	0.70040
14	1.2675"=03	3.5330"+0"	NM	0.98506	0.77021	0.84440	1.20193	0.70254
15	1.3564"-03	3,5470"+00	MM	0.98618	U_77202	0.84560	1.20027	0.70468
16	1.4300*-03	3.5741"+00	MM	0.98640	0.77553	0.84850	1.19705	0.79883
17	1.5316"-03	3,6014"+00	MM	0.98662	0.77904	0.85120	1.19382	0.71301
18	1.63327-03	3.6557"+00	NM	0.98706	0.78599	0.85650	1.10745	0.72129
19	1.7069"-03	3,6963"+00	NM	0.98739	0.79114	0.86040	1.10274	0.72746
50	1.7932"-03	3.7375*+00	NM	0.98771	0.79633	0.86430	1.17001	0.73370
51	1.8974"-03	3.7652*+00	Им	0.98793	0.79980	0.86690	1.17464	0.73769
22	1.9655"-03	3,8062"+00	MM	0.98825	0.80490	0.87070	1.17019	0.74407
23 24	2.05744-03 2.1463*-03	3.8334*+00 3.8874*+00	MM MM	0.98846 0.98888	0.80827	0.87320 0.87810	1.16713	0.74816 0.75627
25	2.2327*=03	3.9424*+00	NM	0.98930	0.82161	0.88300	1.15502	0.76449
56	2.3216"-03	3.9634"+00	NM	0.95961	0.82657	0.88660	1.15053	0.77060
27	2.4079*-03	4.0376*+00	NM	0.99002	0.83308	0.89130	1.14465	0.77866
Žá	2.4968"-03	4.0786"+00	NM	0.99032	0.83796	0.89480	1.14026	0.78474
29	2.5679"-03	4.1475"+00	NM	0.99082	9.84612	0.90060	1,13293	0.79493
30	2.6568"-03	4.2020"+00	ΝM	0.99122	0.85250	0.90510	1.12721	0.80296
31	2.7305"-03	4.2710"+00	NM	0.99171	0.86051	0.91070	1.12006	0.81308
52	2.8169"-03	4.3388****	ŊΜ	0.49219	0.86831	0.91610	1.11312	0.82301
33	2.9058"#03	4.4078*+00	ИM	r.99267	0.87618	0.92150	1,10613	0.83308
34	2.9921"-03	4.43517+00	UW	0.99286	0.87926	0.42360	1.10341	0.83704
35	3.0658"-03	4.4901*+00	NM	0.99124	0.88545	0.92760	1.09794	0.84504
36	3.1674"-03	4.5313*+00	(144	0.99352	0.89006	0.93090	1.09388	0.85101
37	3.2410"-03	4.55A17+00	Им	0.99370	0.80304	0.93290	1.09126	0.85488
38	3.4163"=03	4.5864*+00	Mil	0.99389	0.89619	0.73500	1.08850	0.85898
39 40	3.6068*-03 3.7541*-03	4.6410*+00 4.6953*+00	₩ Vw	0.99426 0.99462	0.90221	0.9390U U.94300	1.00322	0.86686 U.87483
41	3.9294*-03	4.7243"+00	NM	0.49480	0.91132	0.94500	1.07527	0.87885
42	4.1046"-03	4.7652"+00	NM	0.99507	0.91577	0.94790	1.07141	0.88472
43	4.2647"-03	4.8339"+00	NM	0.99551	0.92317	0.95270	1.06499	0.89456
44	4.4120"-03	4.8892"+00	NM	0.99587	0.92909	0.95650	1.05988	0.90246
45	4.5672"-03	4.9586*+00	NM	0.99630	0,93646	0.96120	1.05354	U.91235
46	4.7473"-03	5.0261*+00	ИM	0.99673	0.94358	0,96570	1.04744	0.92196
47	4.8920"-03	5.0667*+00	NM	0.99699	0.94804	0.96850	1.04363	10856.0
48	5.0698"-03	5.1242"+00	NM	0.99733	0.75341	0.77210	1.03671	0.93587
49	5.2578"-03	5.2056"+00	NH	0.99782	0.96222	0.97730	1.03156	0.94738
50	5.4331*-03	5.2465"+00	tiM No.	0.97808	0.96463	0.98000	1.02786	0.95343
51	5,5956"-03	5.2886*+00	ИW	0.99832	0,97072	0.95250	1.02441	0.95909
52 53	5.7556*-03 5.9157*-03	5.3716*+00 5.4145*+00	flm flm	0.99880 0.99905	0.97915	0.48760 0.99020	1.01734	0.97077 U.97680
54	6.0782"-03	5.4562"+00	NM	0.99929	U.9A766	0.99270	1.01024	0.98264
55	6.2382*-03	5.5101*+00	NM	0.99960	0.99305	0.49590	1,0057	0.99020
56	6.3854"-03	5.5254"+00	NM	0.99969	0.99457	0.99680	1.00450	0.99234
57	6.5735*-03	5.5391*+00	M	0.99977	0.99592	0.99760	1.00337	0.99425
58	6.7361"-03	5.5527*+00	ИM	0.99984	0.99728	0.99840	1.00225	0.99616
59	6.8961 -03	5.5665"+00	MIS	0.99992	0.99864	0.99920	1.00113	U.99808
0 60	7.0409*-03	5.5802*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
7 h m . 1 7	VADTANIE	9 (1.41)	4.000MF	86 AND MAN	DD 7 C 8 T			

INPUT VARIABLES Y, U/UD ASSUME P=PD AND VAN DRIEST

71020206 PEAKE		PROFILE TABULATION		61	61 PUINTS, DELTA AT PUINT 61			
1	Y	P12/P	P/PD	TU/TOD	M/MD	U/UD	7/10	RHO/RHOD*U/UD
į	0.0000*+00	1.0000*+00	ИМ	0.95079 0.96947	0.00000	0.00000 0.61620	1.72057	U.00000 U.42586
2	2.2860"-04 3.2912"-04	1.9625*+00	NW Mud	0.97174	0.51226 0.58037	0.64290	1.38453	0.49324
3		2.4977*+00	NW Pro-	0.97573		0.71200	1.35528	v.52535
5	4.0132"=04 4.9022"=04	2.7572"+00	14m	0.77840	0.61160	0.74900	1,31633	0.56901
	5.6388"=04	5.4040,+00	NM NM	0.97987	0.67567	0.76880	1.29467	0.59382
6	6.4008*-04	3.0630*+00	NM	0.98131	0.69778	0.78750	1.27370	0.61828
, 8	7.1374*=04	3.1859"+00	NH	0.95242	0.71494	0.80170	1.25744	0.63756
ğ	7.8486"-04	3.2934*+00	NM	0.98336	0.72958	0.81360	1.24359	0.65423
10	8.8900"=04	3.3700"+00	NP	0.98402	0.73981	0.82140	1.23393	0.66600
iĭ	9.6012"-04	3.4633"+00	NM	0.98481	0.75207	0.83150	1.22237	0.68023
iż	1.0338*-03	3.4938"+00	NM	0.95507	0.75603	0.83460	1.21865	0.68486
iš	1.1074*-03	3.5245"+00	NP4	0.98532	0.76000	0.83770	1.21492	0.68951
14	1.1811"-03	3.5860"+00	NM	0.96563	0.76785	0.94380	1.20753	0.69878
iš	1,2522"-03	3.6178"+00	Им	0.98608	0.77191	0.84690	1.20375	0.70355
i 6	1.3411"-03	3.6791"+00	NM	0.98658	0.77963	0.85280	1.19652	0.71273
17	1.4148"-03	3.7107"+00	Иw	0.98683	0.78358	0.85580	1.19283	0.71745
ia	1.5011"-03	3.7880"+00	NM	0.98744	0.79314	0.46300	1.18391	U.72894
19	1.5746*=03	3.81A5"+00	NM	0.98768	0.79689	0.36580	1.18042	0.73347
\$0	1.6637"-03	3.84947+00	MI	0.95792	0.80066	0.86860	1.17692	0.73803
Žĺ	1.7501 -03	3.86494+00	MI	0.98804	0.80254	0.87000	1.17517	0.74032
22	1.8390 -03	3.4962"+00	NH	0.98028	0.80635	0.87280	1.17165	0.74493
23	1,9101"=03	3.9426"+00	NM	9.95863	0.61191	0.87690	1.16649	0.75175
24	1.9837"-03	3.9746"+00	ИМ	0.98887	0.81575	0.87970	1.16294	0.75644
25	2.0726"-03	4.0058*+00	ИM	0.98911	0.81946	0.88240	1.15951	0.76101
26	2.1463"-03	4.0361*+00	ИМ	0.98933	0.82305	0.84500	1.15620	0.76544
27	2.2327"-03	4.0833"+00	NM.	0.98968	0.82860	0.88900	1.15109	0.77231
28	2.2911"-03	4.1456*+00	ИW	0.99014	0.33588	0.89420	1.14441	0.78137
29	2.3927"-03	4.2090*+00	Им	0.99060	0.84322	0.89940	1.13769	0.79055
30	2.4663"-03	4.2548*+00	Им	0.79092	0.84848	0.90310	1.13288	0.79717
31	2.6264"-03	4.3645 +00	ИM	0.99170	0.86099	0.91180	1.12150	0.81302
35	2.7737"=03	4.4600*+00	HW	0.99236	0.87164	0.71910	1.17187	0.82662
33	2.9337"-03	4.5535"+00	MH	0.99299	0.88197	0.92610	1.10257	0.83995
34	3.0810"-03	4.7122"+00	ИM	0.99405	0.89925	0.93760	1.08712	0.86246
35	3.2258"-03	4.82237+00	NM	0.99476	0.91102	0.94530	1.07667	0.87798
36	5.4163"-03	4.9176*+00	NM	0.94537	0.92109	0.95140	1.06779	0.89137
37	3.5636"-03	4.9805"+00	Иw	0.99576	0.92767	0.95600	1.06202	0.90018
38	3.7236"-03	5.0612"+00	NW	0,99626	0.93604	0.96130	1.05469	0.91145
30	3.8710"-03	5.0612"+00	Иж	0.99626	0.93604	0.96130	1.05469	0.91145
40	4.0157"-03	5.0612"+00	NN	0.99626	0.93604	0.96130	1.05469	0.91145
41 42	4.1758"-03 4.3383"-03	5.0612"+00	NAI	0.44656	0.93604	0.96130 0.96130	1.05469	0.91145 0.91145
43	4.4704*-03	5.0612"+00 5.0612"+00	11W 1914	0.99656	0.93604	0.95130	1.05469	0.91145
44	4.6304*-03	5.0920"+00	116,	0.99645	0.93923	0.76330	1.05192	0.91575
45	4.7752*-03	5.1403"+00	Nw (4)	0.99675	0.94419	0.70337	1.04761	0.92248
46	4.7225"-03	5.1718*+00	NM NM	0.99694	0.94740	0.96840	1.04482	0.92586
47	5.0978*-03	5.2035*+00	HM	0.99713	0.95063	0.97040	1.04203	0.93126
48	5.2451 "-03	5.2515*+00	114	0.99742	0.95550	0.97340	1.03782	0.93792
49	5.4051 -03	5.3000*+00	NAI	0.99770	0.76039	0.97640	1.03361	0.94465
50	5.5499"-03	5.3475"+00	NM	0.79798	0.96516	0.97930	1.02452	0.95122
51	5.5972"=03	5.1955*+00	NIM	0.99826	0.96995	0.44220	1.02542	0.95785
52	5.8725"-03	5.4440*+00	NM	0.99854	0.97477	0.94510	1.02131	U.96454
93	5.9893"-03	5.4931 +00	1411	0.99383	0.97962	0.98800	1.01/19	0.97130
54	6.1366"-03	5.5720"+00	NM	0.99927	0.98737	0.97260	1.01062	0.98216
55	6.296703	5.6050"+00	NH	0.99446	0.99059	0.79450	1.00790	U.98670
56	6.4567"-03	5.4050*+00	NH	0.99946	0.99059	0.99450	1.00790	0.98670
57	6.6192"-03	5.6208"+00	jų m	0.99955	0.99212	0.99540	1.00661	0.98806
58	6.7640 -03	5.6366"+00	L1br	0.99964	0.49366	0.99630	1.00532	0.99103
59	6.9240"-03	5.6542"+0u	Un	0.49973	0.99537	0.99730	1.00389	0.99344
60	7.0714"-03	5.6860"+00	ther	0.46661	0.99845	0.99910	1.00130	0.49781
D 61	7.2187"-03	5.7020*+00	ИW	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD ASSUME PMPD AND VAN DRIEST

SECTION D - SUPPLEMENTARY DATA - CAT 7102

Wall pressure and wall shear stress correlations

FACSIMILE FROM SOURCE PAPER - NB - AUTHORS' SYMBOLS AND UNITS

Table 2: Zero pressure gradient - profiles 0101 - 0106 Table 3: Adverse pressure gradient - profiles 0201 - 0206 Table 4: "Ring" pressure gradient - profiles 0301 - 0306 SYMBOLS (where not as in CAT) Subscripts: 0 - Reservoir stagnation state

E - Boundary layer edge (0) state

- Static pressure hole-size correction APF+H based on wall property values using the deep hole correlation of Franklin + Wallace (1970)

- Reference temperature as specified by Sommer and Short (1955) TI

Cpp - Preston tube pressure coefficient (* $(P_p-P_E)/q_E$ where P_p is the Preston

tube pressure and $\mathbf{q}_{\ E}$ is the free stream dynamic pressure)

RD - Reynolds' number based on Preston tube diameter and local free-stream conditions. - Wall-similarity static hole Reynolds number. (d $_{\rm s}$ - static hole diameter)

Subscripts to CF indicate the Preston tube correlation used as:

F + S- Fenter & Stalmach (1957) - Hopkins & Keener (1966) Equation 9 HKTR

HKT - Hopkins & Keener (1966) Equation 4

SIG - Sigalla (1965)

UNITS - are indicated at the foot of each table.

TABLE 2: SKIN PRICTION CORRELATIONS IN ZERO PRESSURE GRADIENT FLOW

INPUT;		SIG	00000000000000000000000000000000000000
*		Ç,	
਼ ਹੈ: ਜ਼ਿ		KT'n	#44 # #50 6 8 9 111111111111111111111111111111111
TEMPERATURE		F HKT	0.000000000000000000000000000000000000
		υ E	000000000000000000000000000000000000000
Intermediate		TH HKT	0.00227 0.00037 0.00037 0.00037 0.00151 0.00151 0.00153 0.00123
E			• • • • • • • • • • • • • • • • • • • •
INTE		CP FE	0.00143 0.00003 0.00003 0.00003 0.00003 0.000114 0.00119 0.00119 0.00119 0.0003
<u>;;</u> ;;;		ഗി .	
SIGALE R. AND (7	7	00000000000000000000000000000000000000
AND RE, T			\u00e4
ENER, ERATUI ACE		~	00000000000000000000000000000000000000
NS PER TERM		c_{PP}	0.234 0.0334 0.0334 0.0334 0.259 0.2
HOPKIN RECOVER ANKLIN		ŧ	80000000000000000000000000000000000000
STALMACH, TIC WALL VEN BY FR		F.	\$45454545454545454545454545454545454545
R & IABA		g m	0.000000000000000000000000000000000000
(T): A		μ	ĎŎŨĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠĠ
TIONS BY ON WITH FOR HOL	0 % R	ᆲ	2220
CORRELATIC	= 537.	Ξį.	
E E E	SIA; To	HTE AV	00000000000000000000000000000000000000
교육교	8.9 F	, in	
CP CALCU HOPKINS STATIC P	P _C = 16	⊭ ∢	

TABLE 2: (continued)

H CP SIG	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SEC
교	<i>ᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓᲓ</i> <i>ᲓᲓᲓ</i> <i>Დ</i> <i>Დ</i> <i>Დ</i> <i>Დ</i>	FT./SE
CP HKT	0.00103 0.00103 0.00103 0.00102 0.00102 0.00102 0.00102 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103 0.00103	
CP HKTR	0.001116 0.001116 0.001116 0.001116 0.001116 0.001116 0.001116 0.001116 0.001116 0.001116 0.001116	
Cr Pes	20000000000000000000000000000000000000	
SALA	0.193E 03 0.193E 03 0.192E 03 0.192E 03 0.193E 03 0.193E 03 0.133E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03 0.193E 03	
	######################################	
떣	00000000000000000000000000000000000000	
CPP	0 1988 0 1986 0 1987 0 1988 0 1988	
Ė	CONTRACTOR OF THE PROPERTY OF	.
T N	自分のなるないないない。 のののののののののののののののののののののののののののののののののののの	<u>م</u> •
4	0.00080 0.00080 0.00080 0.00080 0.00080 0.00079 0.00079 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078	SLUGS/ CU.PT.
e. E	6.50 C.	e:
'n	22003 22004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2004 2	PT/SEC
m; (1)	######################################	
AP PEW	0.010 0.010 0.010 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	PSIA
oj.	1.265 1.263 1.263 1.234	PSIA
H	22222222222222222222222222222222222222	INS.

TABLE 3: SKIN PRICTION CORRELATIONS IN ADVERSE PRESSURE GRADIENT FLOW

析

CF CALCULATED FROM CORRELATIONS BY PENTER & STALMACH, HOPKINS & KEERER, AND SIGALLA; HOFKINS & KEENER CORRELATION WITH (1): ADLABATIC WALL RECOVERY TEMPERATURE, TR, AND (2): INTERMEDIATE TEMPERATURE, T', AS INPUT;

, 10341		DIS 4	000103 000100 000100 000100 000100 000100 000100 000100 000100 000100 00
, , ,		ָרָ אָּנ [ָ] אַ מּ	88888888888888888888888888888888888888
naka one,		HKT.	0001188 00010174 00010174 00010174 00010174 00010174 00010174 00010174 00010176 0001
11111		HKTR CP	00027 0.00068
11111111111		بر س د	
NET NT		CF PE	0.00103 0.00103 0.00009 0.00103 0.0010
, AUT 4.		Sp. AL	1175 E 03 1175 E
Hy Cauch		۵	93999999999999999999999999999999999999
WALLACE		e e	200 24 20 20 20 20 20 20 20 20 20 20 20 20 20
4		2 P	E-0 - F-8 8 8 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8
PRANKLIN		Ē+ ac	$\begin{array}{llllllllllllllllllllllllllllllllllll$
GIVEN BY		€	71444444444444444444444444444444444444
ERROR GI		o FI	0.00078 0.000788 0.000788 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00
HOLE EN		터	
ED POR	.0 en	ħ	22200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2200 2
CORRECTE	, = 537	≆ . [π]	$\begin{array}{c} \text{ where } \\ \text{ where } $
RESSURES CO	PSIA; T ₀	ΔP.P.E.W	0.035 0.035
ο.	169.2 P	⊅	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATIC	F	×	

(continued)
ë
TABLE

C. SIG	0.00152 0.00153 0.00153 0.00153 0.00153 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164 0.00164	ບ
nru	00000000000000000000000000000000000000	FT/SE
CP HKT'	0.00160 0.00162 0.00163 0.00163 0.00163 0.00159 0.00159 0.00159 0.00159 0.00159 0.00159 0.00159 0.00159	
CP HKTR (0.00125 0.00132 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133 0.00133	
C _F Fes	001554 001556 001556 001556 001556 00156 00156 00156 00156 00156 00156 00156 00156 00156	
S in the second	2028 04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
31	090000000000000000000000000000000000000	
ar Cl	0.609E 0.609E 0.609E 0.609E 0.609E 0.609E 0.609E 0.609E	
CPP	00000000000000000000000000000000000000	
Ħ	**************************************	6
턴	01117777777777777777777777777777777777	e e
គ	0.00608 0.00613 0.00613 0.00613 0.00615 0.00615 0.00617 0.00602 0.00602 0.00603 0.00603 0.00603 0.00603	SLUGS/ CU. PT.
H	86669999999999999999999999999999999999	e4 0
3	16696 16689133 16689133 16689133 1668913 1669013 169913 169913 169814 16	FT/SEC
¥α ľα	2.008 11.9995 11.9995 11.9987	
AP P&Y		PSIA
.3¥ 04	21.25.855.85.85.85.85.85.85.85.85.85.85.85.8	PSIA
H	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	118.

TABLE 4: SKIN PRICTION CORRELATIONS IN RING PRESSURE GRADIENT FLOW

		INTERMEDIATE TEMPERATURE, T', AS INPUT		
- ATTENDED ON THE CONTRACTOR OF THE PROPERTY O	OF CALCULAIND FRUM COMMELATIONS BY PENIER & STALFACOR, NOTALNS & MEENEN, AND STARLING,	eckins & keener correlation with (1): adiabatic wall recovery temperatore, 13, and (2): intermediate temperatore, 1, as insuf	STATIC PRESSURES CORRECTED FOR HOLE ERROR GIVEN BY PRANKLIN & WALLACE	P. = 120.7 PSIA: T. = 437.0 PB

, AS INPUT	TIS & M	¢	8.7 0.00121	3 0	()	C.	0	c	3 0	(2)	0	co ·	OC	י כי	ς,	()	0	O) C	כטינ	Ω	0	() () c	0	C	0 0	20	0	Ç)	COC	20	O	O	3 0	0	SEC
TEMPERATURE, T	TR CF HKT! Ut	0.00121 10	0.00117 9	0.00107	0.00163	0.00101 8	0.50160 8	0600000	0.00101	0.00101 8	o.ccioi g	6.00101	0.00100	0.00101	0.00101 8	0.00101 8	0.00101 8	0.00101 8	20100.0	0.00102	0.00102 8	0.00102	0.00101	10100.0	0.00101 8	0.00101 8	B 10100.0	8 40100.0	0.90107	0.00111 9	0.00116 9	0.00098 7	0.00102 7	0.00105 7	0.00113 8	0.00112 8	FŢ
: INTERMEDIATE	CP FES CF EK	.00106	0.00104 0.00133	0.0000	0 46000	.00093 0	.00092 0	0 26000.		0.00003	.00093 0	00003 0	0.00093	0.0003	0 66000	.00093 0	0 66000	0.60003	70000	0 46000	.00094	0 46000	. 00093	- 66693 C	0 66000.	.00093 0	0 6600C.	0 96000	0 76000.	0 10100	00102	0.0000.	0 26000	0 66000	0 40100.	.00104 0	
E E	L Tada	05 0.167E 0	05 0.175E 03	05 0 1775 0	05 0.177E 0	05 0.177E 0	05 0.179E 0	05 0.181E 0	07 0 1858 0	05 0.186E 0	05 0.187E 0	05 C.188E 0	05 0.188E 0	01.01.0 LO	05 0.189E 0	05 0.189E 0	05 0.189E 0	05 0.189E 0	07 0.1000	05 0.188E C	05 0.187E 0	05 0.187E 0	05 0.185E 0	05 0.185E 0	05 0.186E 0	05 0.186E 0	05 0.187E 0	05 0-103E 0	05 0.196E 0	05 0.202E S	05 0.215E 0	05 0.306E 0	05 0.312E 0	05 0.313E 0	05 0.303E 0	05 0.300E 0	
ERY TEMPERATÜRE, IN & WALLACE	CPP FD	0.224 0.1	0.218 0.181E	104010	0.185 0.1	0.180 0.1	0.179 0.1	0.179 6.1	187 0	0.184 0.1	0.183 0.3	0.183 0.1	0.182.0	0 183 0	0.183 0.1	0.183 0.1	0.183 0.1	0.183	186 0	0.187 0.1	0.186 0.1	0.186 0.1	0.183.0	1.0 284.0	0.184 0.1	0.183 0.1	0.183 0.1	6.192 0.19	0.198 0.1	0.211 0.1	0.225 0.1	0.192 0.2	0.264 0.2	0.213 0.2	0.231 0.2	0.229 0.2	
C WALL RECOVERY N BY PRANKLIN &	F+	493.1 367.	493.5 369	193.0 30y.	493.9 370.	494.0 371.	494.0 371.	494.1 371.	494-6 3/1-	494.2 371.	#94.3 372.	494.3 372.	494.3 372.	494 3 372	494.3 372	494.3 372.	194.3 372.	494.3 372.	494 3 372	494.3 372.	494.2 372.	494.2 372.	494.2 372.	494.2 3/1.	494.2 371.	494.2 372.	494.3 372.	494.3 372.	494.4 372.	494.4 372.	494.7 373.	497.6 385.	497.6 384.	497-5 384.	497.0 382.	497.0 382.	or or
(1): ADIABATIC E ERROR GIVEN	ы ы	ار ن	41.1 0.00067	2 C	45.20	5.90	46.5 0	C) C		18.20	48.6 0	6 6 8	0.0	0 -	19.0	49.0	0 0 6	0 0	9 4	0 H	48.3 C.	88.3	0 c		0 1 84	9.3	ກໍ່ເຂົ້ ບໍ່ແ ບໍ່ດ	200	0 9.64	50.0	ν.α Μ.α	20.00	78.7 0	0 0	90	0	"R SLUGS/ CU.FT.
TICN WITH ED FOR HO!	្ត ក្ន	2188.6 1	745 2180.6 1	2175.1 1	2169.5	2167.6 1	2165.9 1	2163.6 1	2162.012	2161.1 1	2160.1 1	2159.2 1	2158.8	7.8517	2158.8 1	2158.8	2158.8 1	2158.8 1	2160.0	2160.6 1	2160.7 1	2160.7 1	2160.7 1	2161.3 1	2161.3 1	2160.7 1	21500.3	2158.4 1	2157.1	2156.0 1	2049.5	2073.7 1	2074.6 1	2076.7 1	2089.1 1	2090.7	FT/SEC
* KEENER CORRELL PRESSURES CORRECT	44	.044 0.007 3	123 0.008 3	173 0.008 3	240 0.007 3	260 0.007 3	.278 0.007 3	304 0.008 3	275 0 000 2	332 0.008 3	343 0.008 3	.353 0.008 3	358 0.008 3	360 0.009 3	358 0.009 3	358 0.009 3	.358 c.009 3	358 0.009 3	345 0.008 3	338 0.008 3	337 0.008 3	337 0.008 3	337 0.008 3	220 0 000	330 0.008	.337 C.008 3	242 0.000 3	363 0.009	377 0.010 3	.390 c.010 3	548 0 017 3	580 0.023	.565 0.025 3	.529 0.026 3	320 0.025	.296 c.025 3	PSIA FSIA
ECFKINS STATIC PL	, ×		12.93) (r	33.	33	e c	2 C	10	1	33 1	W.	16.	11	2	E 1	m c	26	i m	33	1	70	2 (Y	33	21	77.5	100	17	E C	7 C	າຕ	E.	<u>د</u> ا	າຕ	33	INS.

Axially-symmetric blow-down tunnel, contoured nozzle. Running time 50 s. D = 0.56 m. $3.5 < PO < 21 \text{ MN/m}^2$. TO: 350 K. Helium. $6 < RE/m \times 10^{-6} < 25$.

FISCHER M.C. and MADDALON D.V., 1971. Experimental laminar, transitional and turbulent boundary layer profiles on a wedge at local Mach number 6.5 and comparisons with theory. NASA TN D-6462.

And Fischer M.C., private communication.

- The test boundary layer was formed on the lower surface of a 50 half-angle wedge the test surface being at 100 incidence to the M = 20 free stream. Two wedges (L = 0.406, W = 0.279 m) were used, the leading edges (X = 0) being 51 µm thick. One was fitted with wall static tappings, and had a local surface depression, of maximum depth 0.38 mm, extending from X = 0.305 to X = 0.381 m. The other, used for profile measurements, could be fitted with a rear extension which increased the length to 0.610 m. The last four of the seven survey stations were on the extension surface. Measurements of the model surface "indicated" available surface with model and static tappings.
- 2 excellent surface uniformity". The surface was not actively cooled. A detailed survey of the M = 20 free stream was made by Arrington et al. (1964) and showed transverse Mach number variations of \pm 0.3. Heat
- 3 transfer studies showed that the boundary layer did not become fully turbulent on the basic wedge models,
- 5 and prompted the construction of the extension to X = 0.61 m. Chamfered swept end plates were used to halp maintain two dimensional flow in the test region.
- The pressure instrumented wedge had 12 static holes (d = 1.02 mm) mounted along the centre-line from X = 0.105 to 0.376 m. The model used for profile studies had numerous thermocouples along the centre line at intervals of about 12.5 mm for the same range of X. Thermocouples were also fitted to the extension.
- ? Pitot profiles were obtained with two CPP. For the three upstream stations, $d_1 = 1.02$, $d_2 = 0.51$, l = 20 mm while for the four downstream stations, on the model extension, $d_1 = 2.29$, $d_2 = 1.78$, l = 20 mm. All
- 8 measurements were made on the model centre line, the profiles at X values of 99.1, 180.3, 228.6, 431.8, 482.6, 533.4 and 599.4 mm.
- The authors compared the measured PW values to both the inviscid calculated values and values calculated using a laminar viscous interaction correction following Bertram 1966. The initial values agreed well with the pressure predicted by Bertram, but further downstream departures were noted. Thuse were attributed to the surface depression remarked in § 1 above. The wall pressure values used in data reduction are extrapolations of the initial measured values guided by the trends predicted by Bertram's analysis. Static pressure was assumed constant through the boundary layer. Wall temperatures changed by less than 4 K during a run, and average values were used.
- Viscous interaction and rarefaction effects in the Pitot measurements were assessed following Beckwith et al. (CAT 7105) and ostimated at less than 2 %. Real gas effects were estimated as less than 1 % following Erikson (1960). These possible corrections were therefore ignored. Probe wall-interference effects were assessed by recalculating the integral thicknesses with the low y-valuer replaced by a curve faired in to the wall static value. Changes in D1 and D2 were negligible. The Pitot pressure displayed an "overshoot" in the outer part of the layer for the lowest values of X. This was attributed to the relatively large size of the Pitot (d/D1 up to 0.5). These overshoots were replaced by a faired curve, following Munayhan
- 11 (1955) for the affected profiles (0101, 0201/2, 0301/2, 0401/2). Viscosity values for helium took account of quantum effects, after Maddalon and Jackson (1970).
- 12 The aditors have presented all the data available, incorporating the authors' assumptions and procedures.

 We have however calculated viscosity as discussed in the introduction. The 'D' state is the authors' based
- 13 on the experimental position at which PTZ was either a maximum, or became effectively constant. The data

consists of four sets of six or seven successive profiles, each at a different unit Reynolds number. They range from laminar to fully turbulent.

§ DATA: 7103 0101-0407. Pitot profiles. NX = 6 or 7.

15 Editors' comments

The measurements are made in a Mach number range for which there are no really satisfying data. They overlap the studies by Danberg - CAT 6702 and Adcock et al. - CAT 6501, but have more in common with the measurements, at higher Nach number, of Watson et al. - CAT 7305. Both 7103 and 7305 provide a number of profile sequences spanning the transition region.

This is an adiabatic layer, so that the absence of TO profiles is not crucial, though regrettable at these high much numbers. More of a pity is the lack of CF measurements. In these respects the study is superseded by Watson et al. (CAT 7305).

No.	CAT 7103	FISCHER		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	5.	
Record Property	RUN	MD R	TW/TR+	PED2W	CF	H12	H12K	PW*	PD+
Tigging Company Comp	X *	POD	PW/PD*	PED2D		H32		TW	
	RZ	TOD*	5W #	02	P12*	H42	DSK	UĐ	TR
Time									
1030102									
1.6000	INFINITE	3,4500"+02	0.0000	7.9483~~05	0.0000"+00	0.1740	0.22//~~04	1.0204-103	3.00/2"+02
INFINITE									
71030103									
1.030104	INLINIE	3.4300*402			0.0000*+00	-			
The print									
71030104 4.1807-01 4.48377+05 1.0000 1.12277*03 NM 1.7745 1.6586 3.00637*02 2.5210**01 1NFINITE 3.4507*05 1.0000 1.12277*03 NM 1.7745 1.6586 3.00637*02 2.5210**01 1NFINITE 3.4507*05 1.0000 1.0000 2.79617*02 NM 30.7655 1.9379 6.1800**02 2.18607*02 4.8220**01 1.626**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.006**03 3.000**0								3.00837702	
4.1867-01 1.4287*-05 1.0000 1.1227*-03 NM 1.7745 1.6566 3.0663**02 2.5210**01 INFINITE 3.4500**01 1.0000 2.0964*-04 NM 30.7855 1.9379 1.6260**03 3.0603**02 4.8260**01 1.0000 1.4622**03 0.0000**00 0.2018 1.6957 3.0645**02 2.3766**01 INFINITE 3.4500**02 0.0000 2.4880**04 0.0000**00 0.2018 1.6957 3.0645**02 2.3766**01 INFINITE 3.4500**02 0.0000 1.4622**03 NM 1.6857 3.0645**02 2.3766**01 1.0000 1.4964**03 NM 1.8360**01 1.5327**03 3.0645**02 2.3766**01 1.0000 1.4964**03 NM 1.8360**01 1.5327**03 3.0645**02 2.4472**01 1.0000 1.4964**03 NM 1.8360**02 1.7187 3.0654**02 2.4472**01 1.0000 1.4964**03 NM 1.8360**02 1.7187 3.0654**02 2.4472**01 1.0000**01 0.2018 1.7187 3.0654**02 2.4472**01 1.0000**01 0.2017 1.0000**01 0.2017 1.0000**01 0.2017 1.0000**01 0.2017 1.0000**01 1.0000**01 0.2017 1.0000**01 0.2017 1.0000**01 1.0000**01 0.2017 1.0000	INFINITE	3.4500-402	0.0000	1.3/1304	0.0000-400	0.1010	4,0421.404	1.0200"703	3.0003+02
INFINITE 3,4500*+02 0,0000 2,0964*+03 0,000*+00 0,1974 1,0970*+03 1,8286*+03 3,663*+02 4,8260*+01 5,1674*+05 1,0000 1,4622*+03 MM 30,7855 1,9379 3,0645*+02 3,7665*+01 1,7197 3,4500*+02 0,0000 2,4880*+02 0,0000*+00 0,2018 1,1944*+03 1,8327*+03 3,0645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,05645*+02 3,7665*+01 1,7197 3,0565*+02 3,7665*+01 3,7665*+			1.0000						
71030105									
4.8260*-01	INFINITE	3.45001+02	0.0000	2.0964"-04	0.0000*+00	0.1974	1.0570"-03	1,8286"+03	3.0663"+02
The column The	71030105	6.4000							
71030106 6.3000 1.0000 2.9158**02 NM 28.9406 1.8864 6.1700**02 6.1700**02 5.3340**01 4.7926**05 1.0000 1.4964**03 IMM 1.8362 1.7187 3.0654**02 2.4472**01 1.7187 3.4500**02 0.0000 2.66793**04 0.0000**00 0.2047 1.1045**03 1.8307**43 3.0654**02 2.4472**01 1.7187 3.4500**02 0.0000 2.66793**04 0.0000**00 0.2047 1.1045**03 1.8307**43 3.0654**02 2.3766**01 1.7187**05 1.0000 1.7753**03 NM 1.8496 1.7345 3.0645**02 2.3766**01 1.7187**03 1.0000 1.7753**03 NM 1.8496 1.7345 3.0645**02 2.3766**01 1.7187**11 3.4500**02 0.0000 2.9623**04 0.0000**00 0.2067 1.1821**03 1.8327**03 3.0645**02 1.7109**02 0.0000 0.10000 1.7011**02 NM 37.2507 2.5938 1.0720**03 1.07		5.1674"+05							
5.3340*-01	INFINITE	3,4500"+02	0.0000	2.488004	u.0000*+00	0.2018	1.1944"=03	1.8327*+03	3.0645*+02
THEINTIE 3.4500*+02 0.0000 2.6793**-04 0.0000*+00 0.2047 1.1045**-03 1.8307**+03 3.0654**+02 7.030107 6.4000 1.0000 3.3185**+02 NM 29.235 1.8101 5.1600**+02 6.1600**+02 2.7766**+01 1.8100**+02 0.0000**+02 0.0000 2.9623**-04 0.0000**+00 0.2067 1.1821**-03 1.835**+03 1.0645**+02 2.7766**+01 1.8100**+02 0.0000**+02 0.2067 1.1821**-03 1.835**+03 1.0545**+02 0.0000**+01 0.0000**+01 0.2067 1.1821**-03 1.835**+03 1.0720**+03 1.07	71030106	6.3000	1.0000	2,9158"+02	NM	28.9406	1.8864	6.1700*+02	
71030107 6.4000 1.0000 3.3185*02 NM 29.2235 1.8101 6.1600**02 6.1600**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 2.3766**01 1.7343 3.045**02 3.766**02 1.0720**03 1.0720	5.3340"-01	4.7926*+05	1.0000		§§M				
S.1507*+05	INFINITE	3.4500"+02	0.0000	2.6793"-04	0.0000*+00	0.2047	1.1045"-03	1.8307"+03	3.0654*+02
INFINITE 3.4500*+02 0.0000 2.9623*=04 0.0000*+00 0.2067 1.1821*=U3 1.6327*+U3 3.0645*+02 710302U1 6.3000 1.0000 1.7011*+02 NM 37.2507 2.5938 1.0720*+03 1.0720*+U3 INFINITE 3.5300*+02 0.0000 6.5215*=O5 0.0000*+00 0.1633 4.6016*=U4 1.8518*+U3 3.1364*+U2 2.5040*+U1 1.6302U2 6.4000 1.0000 1.6841*+02 IM 35.2723 2.5428 1.0460*+U3 1.8518*+U3 3.1364*+U2 1.6303*=O1 8.7628**O5 1.0000 8.6063*+O2 NM 1.7366 1.5799 3.1356*+U2 2.4317**+U1 INFINITE 3.5300*+U2 0.0000 9.0717*=O5 0.0000*+U0 0.1940 5.2142**-U4 1.8539*+O3 3.1356*+U2 2.4317**-U1 INFINITE 3.5300*+U2 0.0000 9.0717**-O5 0.0000*+U0 0.1940 5.2142**-U4 1.8539*+O3 3.1356*+U2 2.4317**-U1 INFINITE 3.5300*+U2 0.0000 8.6019**-O2 NM 1.7002 1.5978 3.1356*+U2 2.4317**-U1 INFINITE 3.5300**-U2 0.0000 8.6019**-O2 NM 1.7002 1.5978 3.1364*+U2 2.5040**-U1 INFINITE 3.5300**-U2 0.0000 9.5990**-O5 0.0000**+U0 0.1940 5.9669**-U4 1.8518**-U3 3.1364**-U2 710302U4 6.6000 1.0000 3.1638**-O2 NM 31.4993 1.9097 9.8600**-U2 9.8600**-U2 9.8600**-U2 4.3160**-U1 9.5254*+O5 1.0000 3.1638**-O2 NM 31.4993 1.9097 9.8600**-U2 9.8600**-U2 4.3160**-U1 9.5254*+O5 1.0000 1.7273**-O3 NM 1.8471 1.7342 3.1340**-U2 710302U5 6.7000 1.0000 4.0554**-O2 NM 31.8785 1.9442 9.7900**-U2 9.2690**-U1 INFINITE 3.5300**-U2 0.0000 2.2403**-O3 NM 1.8673 1.7774 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.2403**-O3 NM 1.8673 1.7774 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.3281**-O4 0.0000**-U0 0.2110 8.5509**-U4 1.8555**-U3 3.1332**-U2 710302U6 6.7000 1.0131**-O6 1.0000 2.3281**-O4 0.00000**-U0 0.2110 8.5509**-U4 1.8555**-U3 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.3281**-O4 0.00000**-U0 0.2110 8.5509**-U4 1.8555**-U3 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.28403**-O3 NM 1.8699**-U4 1.8555**-U3 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.3281**-O4 0.00000**-U0 0.2110 8.5509**-U4 1.8555**-U3 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.28403**-O3 NM 1.8699**-U4 1.8555**-U3 3.1332**-U2 2.2322**-U1 INFINITE 3.5300**-U2 0.0000 2.28403**-O1 0.0000**-U0 0.2110 8.550	71030107		1.0000	3.3165"+02	NM	29,2235	1.8101	6.1600"+02	6.1600*+02
71030201 6.3000 1.0000 6.1659*+02 NM 1.6440 1.5213 3.1364*+02 2.5040*+01 1.6159*+02 NM 1.7156 1.5749 1.6518*+03 3.1356*+02 2.4317*+01 1.7156 1.5749 1.5518*+03 3.1356*+02 2.4317*+01 1.7156 1.5749 1.5749 1.6518*+03 3.1356*+02 2.4317*+01 1.7156 1.5749 1.6518*+03 3.1356*+02 2.4317*+01 1.7151*+02 NM 1.7166 1.5749 1.6518*+03 3.1356*+02 2.5040*+01 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1356*+02 1.6418*+02 1.6518*+03 3.1364*+02 1.6618*+03 1									
9,9100**-02	INFINITE	3.4500*+02	0.0000	2.9623*=04	0.0000*+00	0.2067	1,1821"=03	1.8327"+03	3.0645*+02
INFINITE 3.5300"+02 0.0000 6.5215"-05 0.0000"+00 0.1833 4.6010"-04 1.8518"+03 3.1364"+02 1.8030"-01 1.0000 1.6841"+02 1.8030"-01 1.7366 1.5799 3.1356"+02 2.4317"+01 1.81111111111111111111111111111111111	71030201	6.3000	1.0000		NM	37.2507			
71030202 6.4000 1.0000 1.6841*+02 NM 1.7365 1.5799 3.1356*+02 2.4317*+01 1.6030**-01 3.5300**+02 0.0000 9.0717**-05 0.0000*+00 0.1940 5.2142**-04 1.8539*+03 3.1356*+02 2.4317*+01 1.030203 6.3000 1.0000 9.0717**-05 0.0000*+00 0.1940 5.2142**-04 1.8539*+03 3.1356*+02 2.2860**-01 8.0782*+05 1.0000 6.8019**+02 NM 1.7092 1.5978 3.1364*+02 2.5040*+01 1.0410**+03 1.0400*							1.5213		
1,6030%=01 1,6030%=01 1,6030%=02 1,6030%=02 1,6030%=02 1,6030%=03	INFINITE	3.5300"+02	0.0000	6.5215"-05	0.0000*+00	0,1833	4.6016"-04	1.8518*+03	3.1364"+02
INFINITE 3.5300"+02 0.0000 9.0717"-05 0.0000"+00 0.1940 5.2142"-04 1.8539"+03 3.1356"+02 71030203 6.3000 1.0000 1.7151"+02 NM 35.4134 2.5279 1.0400"+03 1.0400"+03 2.2860"-01 8.0782"+05 1.0000 8.8019"+02 NM 1.7092 1.5978 3.1364"+02 2.5040"+01 INFINITE 3.5300"+02 0.0000 9.5990"-05 0.0000"+00 0.1906 5.9669"-04 1.8518"+03 3.1364"+02 71030204 6.6000 1.0000 3.1836"+02 NM 31.4993 1.9097 9.8600"+02 2.2460"+01 INFINITE 3.5300"+02 0.0000 1.7273"+03 NM 1.8471 1.7342 3.1340"+02 2.2460"+01 INFINITE 3.5300"+02 0.0000 1.7170"-04 0.0000"+00 0.2072 7.3129"-04 1.8577"+03 3.1340"+02 71030205 6.7000 1.0000 4.0554"+02 NM 31.8785 1.8442 9.7900"+02 9.7900"+02 4.8260"-01 1.0152"+06 1.0000 2.2403"+03 NM 1.8623 1.7774 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.1392"-04 0.0000"+00 0.2093 8.8181"-04 1.8595"+03 3.1352"+02 71030206 6.7000 1.0000 2.4331"+03 NM 30.9597 1.6970 9.7700"+02 9.7700"+02 5.3340"-01 1.0131"+06 1.0000 2.4331"+03 NM 1.8769 1.7897 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.3281"-04 0.0000"+00 0.2110 8.3509"-04 1.8595"+03 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.3281"-04 0.0000"+00 0.2110 8.3509"-04 1.8595"+03 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.3281"-04 0.0000"+00 0.2110 8.3509"-04 1.8595"+03 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.3281"-04 0.0000"+00 0.2110 8.3509"-04 1.8595"+03 3.1332"+02 2.2322"+01 INFINITE 3.5300"+02 0.0000 2.4331"+03 NM 30.9597 1.6970 9.7700"+02 9.74	71030202	6.4000	1.0000		ημ,				1.0480*+03
71030203 6.3000 1.0000 1.7151*+02 NM 35.4134 2.5279 1.0400*+03 1.0400*+03 2.2860*=01 8.0782**+05 1.0000 6.8019**+02 NM 1.7092 1.5978 3.1564**+02 2.5040**+01 1.030204 6.6000 1.0000 3.1636**+02 NM 1.8471 1.7342 3.1340**+02 2.2960**+01 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 3.1304**+02 1.01518**+03 1.0000 1.7273**+03 NM 1.8471 1.7342 3.1340**+02 2.2960**+01 1.01518**+03 1.0000 1.7170**-04 0.0000**+00 0.2072 7.3129**-04 1.8577**+03 3.1340**+02 1.0152**+06 1.0000 2.2403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0152**+06 1.0000 2.2403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0152**+06 1.0000 2.3403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0152**+06 1.0000 2.3403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0152**+06 1.0000 2.3403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0151**+06 1.0000 2.3403**+03 NM 1.6623 1.7774 3.1332**+02 2.2522**+01 1.0151**+06 1.0000 2.3431**+03 NM 1.8769 1.7697 3.1332**+02 2.2322**+01 1.0151**+06 1.0000 2.3281**+03 NM 1.8769 1.7697 3.1332**+02 2.2322**+01 1.0151**+06 1.0000 2.3281**+03 NM 1.8769 1.7697 3.1332**+02 2.2322**+01 1.0150**+06 1.0000 2.3281**+07 NM 1.8769 1.0000**+07 NM 1.8769 1.0000**+07 NM 1.8769 1.0000**+07 NM 1.8769									
2.2860"-01	INFINITE	3.5300*+02	0.0000	9.0717*~05	0.0000*+00	0,1940	5.2142*-04	1.8539"+03	3.1356*+02
INFINITE 3.5300*+02 0.0000 9.5990*-05 U.0000*+U0 0.1906 5.9669*-U4 1.8518*+U3 3.1304*+U2 710302U4 6.6000 1.0000 3.1838*+02 NM 31.4993 1.9097 9.8600*+02 9.86U0*+U2 4.3180*-01 9.5254*+05 1.0000 1.7273*+U3 NM 1.8471 1.7342 3.1340*+U2 2.2960*+U1 INFINITE 3.5300*+U2 0.0000 1.7170*-04 0.0000*+U0 U.2U72 7.3129*-U4 1.8577*+U3 3.1340*+U2 710302U5 6.7000 1.0000 4.0554*+U2 NM 31.6623 1.7774 3.1332*+U2 2.2322*+U1 INFINITE 3.5300*+U2 0.0000 2.403*+U3 U.0000*+U0 0.2U93 8.8181**-U4 1.8595**+U3 3.1332**U2 710302U6 6.7000 1.0000 4.4044*+U2 NM 30.9994 1.7183 9.7700*+U2 9.7700*+U2 5.3340*-O1 1.0131*+U0 1.0000 2.4331*+U3 NM 1.8769 1.7697 3.1332**U2 2.2322**U1 INFINITE 3.5300**U2 0.0000 2.3281**-U4 0.0000**+U0 0.2U03 8.8181**-U4 1.8595**U3 3.1332**U2 710302U7 6.7000 1.0000 2.3281**-U3 NM 30.9597 1.6970 9.77400**U2 9.7400**U2 710302U7 6.7000 1.0000 2.5987**U3 NM 30.9597 1.6970 9.7400**U2 9.7400**U2 710302U7 6.7000 1.0000 2.5987**U3 NM 30.9597 1.6970 9.7400**U2 9.7400**U2 710302U7 6.7000 1.0000 2.5987**U3 NM 30.9597 1.6970 9.7400**U2 2.2322**U1		6.3000							
71030204 6.6000 1.0000 3.1036*+02 NM 31.4993 1.9097 9.8600*+02 9.8600*+02 4.3160*+02 1.7273*+03 NM 1.6471 1.7342 3.1340*+02 2.4960*+01 1.7170**-04 0.0000*+00 0.2072 7.3129**-04 1.8577*+03 3.1340*+02 7.030205 6.7000 1.0000 4.0554*+02 NM 31.6785 1.9442 9.7900*+02 9.7900*+02 4.8660*-01 1.0152*+06 1.0000 2.2403*+03 NM 1.6623 1.7774 3.1332*+02 2.2322*+01 1.0152*+06 1.0000 2.3403*+03 NM 1.6623 1.7774 3.1332*+02 2.2322*+01 1.0150**-03 1.0000 2.3403*+03 NM 1.6623 1.7774 3.1332*+02 2.2322*+01 1.030206 6.7000 1.0000 2.1392**-04 0.0000*+00 0.2072 6.8181**-04 1.8595**+03 3.1332**+02 7.3340**-01 1.0131*+06 1.0000 2.4331**+03 NM 30.9994 1.7163 9.7700*+02 9.7700*+02 9.7700*+02 7.3340**-01 1.0131*+06 1.0000 2.3281**-04 0.0000**+00 0.2110 8.3500**-04 1.8595**+03 3.1332**+02 7.3320**-04 0.0000**+00 0.2110 8.3500**-04 1.8595**+03 3.1332**+02 7.330207 6.7000 1.0000 2.5281**-04 0.0000**+00 0.2110 8.3500**-04 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 2.2322**+01 1.8595**+03 3.1332**+02 3.2322**+01 1.8595**+03 3		8.0782*+05							
4.3160°-01	INFIBITE	3.5300*+02	0.0000	9.5990"-05	0.0000*+00	0.1409	3.9669"-04	1,8518"+03	3,1364"+02
INFINITE 3.5300*+02 0.0000 1.7170*-04 0.0000*+00 0.2072 7.3124*-04 1.8577*+03 3.1340*+02 71030205 6.7000 1.0000 4.0554*+02 NM 31.8745 1.5442 9.7900*+02 9.7900*+02 4.8260*-01 1.0152*+06 1.0000 2.2403*+03 NM 1.6623 1.7774 3.1332*+02 2.2322*+01 INFINITE 3.5300*+02 0.0000 2.1392*-04 0.0000*+00 0.2093 8.8181**-04 1.8595**+03 3.1332*+02 71030206 6.7000 1.0000 4.4044*+02 NM 30.9994 1.7163 9.7700*+02 9.7700*+02 5.3340*-01 1.0131*+06 1.0000 2.4331*+03 NM 1.8769 1.7897 3.1332*+02 2.2322*+01 INFINITE 3.5300*+02 0.0000 2.3281**-04 0.0000*+00 0.2110 8.8509**-04 1.8595**+03 3.1332*+02 71030207 6.7000 1.0000 4.8853*+02 NM 30.9597 1.6970 9.7400*+02 9.7400*+02 5.9940**-01 1.0100*+06 1.0000 2.5987*+03 NM 1.8737 1.7801 3.1332*+02 2.2322*+01	71030204	6.6000	1,0000		NM				
71030205 6.7000 1.0000 4.0554*+02 NM 31.6765 1.5442 9.7900*+02 9.7900*+02 4.322*+01 INFINITE 3.5300*+02 0.0000 2.1392**04 0.0000*+00 0.2093 8.8181**-04 1.8595*+03 3.1332**+02 71030206 6.7000 1.0000 2.4331*+03 NM 30.9994 1.7183 9.7700*+02 9.7700*+02 5.3340**-01 1.0131**+00 1.0000 2.4331*+03 NM 30.9994 1.7183 9.7700*+02 9.7700*+02 5.3340**-01 1.0131**+00 1.0000 2.4331**+03 NM 1.8769 1.7897 3.1332**+02 2.2322**+01 1.030207 6.7000 1.0000 4.8853**+02 0.0000**+00 0.2110 8.3509**-04 1.8595**+03 3.1332**+02 71030207 6.7000 1.0000 4.8853**+02 NM 30.9597 1.6970 9.7400**+02 9.7400**+02 5.9940**-01 1.0100**+06 1.0000 2.5985**+03 NM 30.9597 1.6970 9.7400**+02 9.7400**+02 2.2322**+01 1.6737 1.7801 3.1332**+02 2.2322**+01	4.3180*-01	9.5254*+05	1.0000	1.7273*+03		1.8471		3.1340"+02	2.2960*+01
4.8260*-01 1.0152*+06 1.0000 2.2403*+03 NM 1.6623 1.7774 3.1332*+02 2.2322*+01 INFINITE 3.5300*+02 0.0000 4.4044*+02 NM 30.9944 1.7163 9.7700*+02 9.7700*+02 5.3340*-01 1.0131*+06 1.0000 2.4331*+03 NM 1.8769 1.7697 3.1332*+02 2.2322*+01 INFINITE 3.5300*+02 0.0000 2.3281*-04 0.0000*+00 0.2110 8.3500**-04 1.8595*+03 3.1332*+02 2.2322*+01 1.8769 1.7697 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 2.2322*+01 1.8595*+03 3.1332*+02 3.132*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.1332*+02 3.	INFINITE	3.5300*+02	0.0000	1.7170"-04	0.0000*+00	0.2072	7.3129*-04	1.85777+03	3.1340*+02
TNPTNITE 3.5500*+02 0.0000 2.1392**04 0.0000*+00 0.2093 6.8181**-04 1.8595**+03 3.1352**+02 71030206 6.7000 1.0000 4.4044*+02 NM 30.9994 1.7183 9.7700*+02 9.7700*+02 5.3340**-01 1.0131**+06 1.0000 2.4351*+03 NM 1.8769 1.7897 3.1332**+02 1NFINITE 3.5300**+02 0.0000 2.3281**-04 0.0000**+00 0.2110 8.8509**-04 1.8595**+03 3.1332**+02 71030207 6.7000 1.0000 4.8853*+02 NM 30.9597 1.6970 9.7400**+02 9.7400**+02 5.9940**-01 1.0100**+06 1.0000 2.6987*+03 NM 1.8737 1.7801 3.1332**+02 2.2322**+01	71030205	6.7000	1.0000	4.0554"+02	NM	31,8785	1.8442	9,7900*+02	9.7900"+02
71030206 6.7000 1.0000 4.4044*+02 NM 30.9944 1.7163 9.7700*+02 9.7700*+02 5.3340*-01 1.0131*+06 1.0000 2.4331*+03 NM 1.8769 1.7897 3.1332*+02 ENFINITE 3.5300*+02 0.0000 2.3281*-04 0.0000*+00 0.2110 8.3509*-04 1.8595*+03 3.1332*+02 71030207 6.7000 1.0000 4.8853*+02 NM 30.9597 1.6970 9.7400*+02 9.7400*+02 5.9940*-01 1.0100*+06 1.0000 2.5987*+03 NM 1.8737 1.7801 3.1332*+02 2.2322*+01	4.8260"-01		1.0000						
5.3340#=01 1.0131#+06 1.0000 2.4331#+03 NM 1.8769 1.7897 5.1332#+02 2.2322#+01 INFINITE 3.5300#+02 0.0000 2.3281#=04 0.0000#+00 0.2110 8.350#=04 1.8595#+03 3.1332#+02 71030207 6.7000 1.0000 4.8853#+02 NM 30.9597 1.6970 4.7400#+02 9.7400#+02 5.9940#=01 1.0100#+06 1.0000 2.6987#+03 NM 1.6737 1.7801 3.1332#+02 2.2322#+01	INFINITE	3.5300"+02	0.0000	2.1392"-04	0.0000#+00	0.2093	5.5151"-04	1.8595*+03	3.1332"+02
THEINITE 3,5300"+02 0,0000 2.3281"-04 0,0000"+00 0,2110 8,3509"-04 1,8595"+03 3,1332"+02 71030207 6,7000 1,0000 4,8853"+02 NM 30,9597 1,6970 4,7400"+02 9,7400"+02 5,9940"-01 1,0100"+06 1,000 2,6987"+03 NM 1,6737 1,7801 3,1332"+02 2,2322"+01	71030206	6.7000							
THEINITE 3,5300"+02 0,0000 2.3281"-04 0,0000"+00 0,2110 8,3509"-04 1,8595"+03 3,1332"+02 71030207 6,7000 1,0000 4,8853"+02 NM 30,9597 1,6970 4,7400"+02 9,7400"+02 5,9940"-01 1,0100"+06 1,000 2,6987"+03 NM 1,6737 1,7801 3,1332"+02 2,2322"+01		1.01314+06	1.0000						
5.9940#=01 1.0100#+06 1.0000 2.6987#+03 NM 1.8737 1.7801 3.1332#+02 2.2322#+01	INFINITE	3,5300"+02	0.0000	2.3281*-04	0.0000*+00	0.2110	8.3509"-04	1.8595"+03	3,1332*+02
5.9940#=01 1.0100#+06 1.0000 2.6987#+03 NM 1.8737 1.7801 3.1332#+02 2.2322#+01	71030207	6.7000	1.0000	4.88534+02	NM	30.9597	1.6970	9.7400"+02	9.7400*+02
INFINITE 3.5300"+02 0.0000 2.5902"-04 0.0000"+00 0.2106 9.9727"-04 1.8595"+03 3.1332"+02		1,0100*+06				1.8737	1,7801	3.1332"+02	2.2322"+01
	INFINITE		0.0000		0.0000*+00	0.2106	9,9727"-04	1.8595*+03	3.1335.+65

CAT 7103	FISCHER		BOUNDARY CON	TIONS AND E	VALUATED (TINU IE .ATAC	5.	
RUN	MD #	TW/TR*	REDZW	CF	H12	HIZK	P₩★	PD*
X *	POD	PW/PD*	PED2D	ČĠ	H32	H32K	TW	TD
RZ	T00*	SW #	05	P12*	H42	DZK	Üΰ	ŤŘ
		•••	••		11.42	•=:-	••	1.0
71030301	6.5000	1.0000	1.6691"+02	NM	40.9361	2.5079	1.4780"+03	1.4780"+03
9.9100"-02	1.2947*+06	1.0000	9.0689"+02	NM.	1.6284	1.5483	3.1420"+02	2.2965"+01
INFIBITE	3.4800*+02	0.0000	6.0899"-05	0.0000"+00	0.1582	4.9257*-04	1.8555*+03	3.1420"+02
				•				
71030302	6,5000	1.0000	1.8175*+02	MM	37.7308	2.5808	1.4200*+03	1.4200"+03
1.8030"-01	1.2439"+06	1.0000	9,8754"+02	NM	1.7527	1.6396	3.1420*+02	2,2965"+01
INFINITE	3.4800*+02	0.0000	6.9023"-05	0.0000*+00	0.1703	4.1463*=04	1.8353*+03	3.1420*+02
71474747	4 # * * * *			****				4 11 - 41 4 44 4 44
71030303	6,5000	1.0000	1.6253"+02	Иh	37.0351	2.4879	1,4050"+03	1,4050"+03
2.2860"-01	1.2307"+06	1.0000	9.9181"+02	NM	1.7465	1.6174	3,1420"+02	2,2965*+01
INFINITE	3.4800*+02	0.0000	7.0061*-05	0.0000*+00	0.1696	4.1922"-04	1.8353"+03	3.1420*+02
71030304	6.8000	1.0000	4.3629*+02	NM	33,5703	1.9109	1.3500*+03	1.3500*+03
4.3180"-01	1.4599*+06	1.0000	2.5028*+03	NM	1.8769	1.7688	3.1400*+02	2.1103*+01
INFINITE	3.4800"+02	0.0000	1.5963"-04	0.0000*+00	0.1834	6.2817"-04	1.8405*+03	3.1400"+02
2111 2111 1	214000 405	W. 4 V V V V	163703 -04	0.0000 700	0.1034	0.5011 -04	110403 403	311400 702
71030305	6.9000	1.0000	5.6175"+02	NM	33,9156	1.6370	1.3380*+03	1.3380*+03
4.8260"-01	1.5494"+06	1.0000	3.2799"+03	NM	1.8943	1.6351	3.1394*+02	2.0532"+01
INFINITE	3.4800*+02	0.0000	2.0156"-04	0.0000*+00	0.1854	7.5100*-04	1.6421*+03	3.1394"+02
71030306	6.8000	1.0000	5.6617"+02	NM	32,3727	1.6112	1.3350"+03	1.3350"+03
5.3340"-01	1,4437"+06	1.0000	3.2480*+03	NM	1.8846	1.8159	3,1400"+02	2.1103"+01
INFINITE	3.4800*+02	0.0000	2.0949*=04	0.0000"+00	0.1841	8.0821*-04	1.8405*+03	3.1400"+02
71030401	6.6000	1.0000	2.1587*+02	NM	44,6265	3.1624	2.5640*+03	2.5640"+03
9.9100"-02	2.4770*+06	1.0000	1.1712*+03	NM	1.6478	1.5090	3.1426"+02	2.3025*+01
INFINITE	3.5400"+02	0.0000	4.4915*-05	0.0000*+00	0.1849	3.3777*-04	1.8603*+03	3,1426*+02
• • • . •		•••			••••	•	•••••	
71030402	6.5000	1.0000	3.1340"+02	NM	33.8068	2.1325	2,4830*+03	2.4830*+03
1.8030"-01	2,2327*+06	1.0000	1.6695"+03	NM	1.7626	1.6548	3.1436"+02	2.3691"+01
INFINITE	3.5400"+02	0.0000	6.9364"-05	0.0000*+00	0.1974	3.9618"-04	1.8584*+03	3.1436*+02
*10****			3 43048.43	1144				
71030403	6.5000	1.0000	2.8206"+02	RM	33.6431	2.7753	2,4750"+03	2,4750"+03
2.2660*-01	2.2255"+06	1.0000	1.5025*+03	NM	1.8702	1.8165	3.1436"+02	2.3691"+01
INFINITE	3.5400*+02	0.0000	6.2630"-05	0.0000*+00	0.2094	2.4139"-04	1.8584"+03	3.1436*+02
71030404	6.6000	1.0000	7.1518*+02	NM	31.0356	1.8315	2.4200*+03	2.4200"+03
4.3180"-01	2.3379"+06	1.0000	3.8801*+03	NM	1.8592	1.7779	3.1428*+02	2.3025*+01
INFINITE	3.5400*+02	0.0000	1.5766"=04	0.0000*+00	0.2486	4.4704"-04	1.8603*+03	3.1426*+02
•	3,5446 144	******		*******	412400	0,4104	110003 143	311450 405
71030405	6.8000	1.0000	9.0475*+02	MEL	32.7169	1,8551	2,4060*+03	2.4060"+03
4.8260"=01	2.67547+06	1.0000	5.0879"+03	HM	1.8696	1.8013	3.1413"+02	2.1772"+01
INFINITE	3.5400"+02	0.0000	1.8928"-04	0.0000"+00	0.2106	7.7661"-04	1.8638*+03	3.1413*+02
71030406	4.7000	1 0000	A #18##.63	Alaa	1. 4100		2 1000#+**	3 100mH
5.3340=-01		1.0000	9,4384"+02	NM	31.4399	1.7125	2.1990*+03	2.39904+03
	2.46764+06		5,2139*+03	NM D DOOD H + OD	1.8609	1.7908	3.1421*+02	2.2386*+01
INFINITE	3.5400"+02	0.0000	2.0384"-04	0.0000*+00	0.2042	8.5472"-04	1.8621"+03	3,1421"+02

TRAPEZOIDAL RULE FOR 0203,0302,0401,0403

710302	01 FISC-	4FB	PROFILE	TABULATION	28	POINTS, DE	LTA AT POI	NT 28
I	Y	977/0	P/PD	τοντορ	M/ith	UZUD	7/10	RH0/RH00*U/UD
1	U.0404*+JO	1.0000*+00	NIST	0.35851	0.00000	0.00000	12,52598	0.00000
ي	5.6430"-74	1.3703"+00	Mea	0.90126	0.10100	0.33813	11.20816	0.03017
3	6.4510"-0"	1.4211"+00	41M	0.90264	0.10700	0.35594	11.06573	0.03217
đ	1.2042"-03	1.5757"+90	NM	0.90650	0.12300	0.40170	10.66607	U.03766
5	1,5903*-03	2.1532"+00	NM	0.91745	0.16500	0.50948	9.53420	U.05344
6	1.7955"-03	3.4456"+00	ŊM	0.93316	U.22500	0.63242	7.91030	0.08000
7	2.0007"-03	0.8764"+90	NM	0.94494	0.27500	0.71142	6.69247	0.10630
8	2,0520"-03	5,7398"+00	МW	0.95040	0.30100	0.74508	6.12737	0.12160
9	2.1789"-03	7.6255"+00	NM	0.45961	0.35100	0.79855	5.17600	0.15428
10	2.3085"⇔03	9 99 44 4 100	NH	0.96748	0.40300	0.84164	4.36153	0.19297
11	2.4624*=03	1.3022"+01	Nn	(1.97498	0.46500	0.88066	3.58684	0.24553
12	2,51379-03	1.5158*+01	NH	0.97673	0.50300	0.89959	3.19852	0.28125
13	2.5650"-03	1.7399"+01	MM	0.98189	0.54000	0.91518	2.87229	U.31862
14	2.6406"-33	2.0819"+01	ЫM	0.48563	U.5926V	0.93333	2.48559	0.37550
15	2.7189"-03	2.3811"+01	MIN	4.98816	0.63400	0.94543	2.22370	0.42516
10	2.7945"-03	2.7165*+01	Mer	0.99044	0.07800	0.45614	1.98878	0.48077
17	2.9241"-03	3.4728*+01	NFI	0.99414	0.76800	0.97335	1.00625	U.60598
18	2.9997"=33	3,7923"+01	Fi#1	0.99530	0.80300	0.47871	1.48552	0.65883
19	3.1023"=03	4.1164"+01	1464	0.99632	0.83700	0.98336	1.38031	0.71242
≥ 0	3.1536*-03	4.5352"+11	ΝМ	0.99744	0.87900	0.78846	1.26456	0.78166
21	3.2319"=03	4.9106"+01	Net	0.99830	0.91500	0.99233	1.17617	0.84370
22	3.3075"-03	5,2349*+01	1447	0.90804	0.94500	0.99525	1.10918	0.89728
23	3.3831"-03	5.4794"+01	NM	0.40930	0.96700	V.79724	1.06352	0.93768
24	3.5370=-03	5.6151"+01	NM	0.49962	0.97900	U.99827	1.03976	0.76010
25	3.7692"=115	5.7295"+01	MM	0.99980	0.98900	0.79911	1.02055	U.97899
26	3.9987"-03	5.7755"+01	NA.	0.99987	0.99300	0.99944	1.01300	U.98661
€7	4.2309"-03	5,8102"+01	NW	0.99993	0.99600	0.99968	1.00740	0.99233
0 28	5.2920"=03	5.9566"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VAGIABLES Y, M/VD ASSURE PEPD AND VARI DRIEST

710302	07 F13C	HER	PROFILE	TABULATION	26	POINTS, DE	LTA AT PUI	NT 26
I	Y	915/P	P/PD	10/100	14/110	UZUD	T/10	RH0/RH00*U/UD
Ī	v.unon#+nn	1.0000*+00	NM	0.85759	0.00000	0.00000	14.03606	U.00000
٤	1.1280"-03	5.6611-400	F\$64	0.92353	0.18000	0.56544	9.86609	0.05/30
3	1.7640"-03	4,0549"+00	Им	0.93775	0.23500	0.66799	8.21921	0.08127
4	2.1440"-03	6.2305"+00	MM	0.95212	0.24600	0.75768	6.55227	0.11564
5	2.4800"-03	A.4233"+00	Иw	0.96169	0.34600	0.81189	5.44304	0.14916
6	2.9440"-03	1.0975"+01	NM	0.96940	0.40000	0.65310	4.54864	0.18755
7	5.376v"-03	1,3181"+01	NM	0.97425	0.44000	0.87815	3.48324	0.22046
8	5.9600"- 03	1.5851"+01	Ŋ₩	0.97877	0.48400	0.90061	3.46247	0.26011
9	4.5520"-03	1.8226"+01	NM	0.98187	0.52000	0.91584	3.10193	0.29525
10	5.3440"-05	2.9497*+01	NM	0.94421	0.55100	0.92711	2.03113	0.32747
11	6.2640"-03	2.3331"+01	NM	0.98677	0.59000	0.93930	2,53457	0.37060
15	7,1120**03	2.6748*+01	NM	0.98917	0.63300	0.95063	2.25537	0.42150
13	1.7200"-03	2.9430"+01	PAM	0.99069	0.66400	0.95767	2.09017	U.46038
14	8.5840"-03	3.2382*+01	NK	0.79212	0.69700	0.96430	1,91409	0.50379
15	8.8720"-03	3.5381"+01	Им	0.47336	0.72900	0.97000	1.77040	0.54768
16	4.4050"-03	3.7719"+01	NM	0.99420	0.75300	U. 973A6	1.67264	0.58223
17	1.0104"-02	4.1161"+01	NM	0.99528	U.7#700	U.97880	1.54682	0.63278
15	1.0736"-02	4.4754"+01	NM	0.99626	0.82100	U.98321	1.43416	0.68555
19	1.1456"-02	4.9177"+01	ŃΜ	0.49727	0.86100	0.98780	1.31622	0.75048
20	1.2168"-02	5.2866*+01	NM	0.99800	0.87300	0.99107	1.23171	0.80463
51	1.3038*-02	5.7178"+01	NM	9 99874	0.92900	0.99439	1.14574	0.86791
22	1.4040*-02	5.9772"+01	MM	0.99914	0.75000	0.99617	1.09957	0.90597
23	1.5344"-02	6.3192"+01	NΜ	5,9996	0.97700	0.99431	1-04409	0.95615
24	1.6696"-02	6.4742*+01	N۳	0.99982	0.98900	0.99920	1.02074	U.9789U
Ž5	1.8312"-02	6.5525*+01	Nw	0.49992	0.99500	0.99964	1.00435	0.99038
D 56	2.0352"-02	6.6151*+01	NAI	1.0000	1.00000	1.00000	1.00000	1.00000

INPUT VAPIABLES Y, M/MD ASSUME PEPD AND VAN DRIEST

710304	FISCH	1ER	PROFILE	TABULATION	25	POINTS, DE	LTA AT PUI	NT 25
1	Y	97579	PVPD	TOTTOD	UNID	0700	1/10	RHO/RHOD*U/UD
1	v_unnn"+nn	1.0000"+00	1010	0.85769	0.00000	0.00000	13.64982	0.00000
2	5.8000"-04	1.2893"+00	Uh.	0,59816	0.08600	0.30384	12.48203	v.02434
3	6.0600"-0 0	1.3040"+00	NA.	0.89861	0.08800	0.31025	12.43198	0.02496
4	9.8200*=04	1.5823*+00	1100	0.40594	0.11800	0.40199	11.60565	0.03464
5	1.1080"-03	1.9587*+00	Ay M.1	0.91352	0.14600	0.47871	10.75091	0.04453
6	1.2600"-33	2.5368*+00	Men	0.92217	0.17700	0.55341	9.77567	0.05661
7	1.3600"-03	3.3984"+00	ЯM	0.93195	0.21300	0.62727	8.67256	v.07233
ø	1.4620"-03	4.9933*+00	MM	0.9449A	0.26600	0.71390	7.20288	0.09911
9	1.5620"-03	6.8377"+0U	NH	0.95538	0.31600	0.77606	6.03131	0.12567
10	1.6880"-03	9.9631"+00	Им	0.96690	0.38600	0.83964	4.73168	0.17745
11	1.7380"-03	1.3776"+01	NH	0.97563	0.45700	0.88474	3.74799	0.23606
12	1.8140"-03	1.60A2#+01	Nº4	0.97934	0.49500	0.90324	3.32961	0.27127
13	1.8640"-03	1.9536"+01	NIA	0.98357	0.54700	U.92387	2.85266	0.32386
14	1.9400"-01	2.3184"+01	N/A	0.98689	U.59700	0.93977	2.47795	0.37925
15	1.7640"-03	2.6057"+01	NM	0.98934	0.64100	0.95129	2.20245	0.43192
16	2.0160"-03	3.0466"+01	N/4	0.99146	0.68600	0.96118	1.96317	0.48960
17	2.0900"=03	3.4907"+01	MM	0.99342	0.73500	0.97021	1.74244	0.55681
15	2.1660"-03	3,7290"+01	NM	0.99427	0.76000	0.97424	1.64326	U.59287
19	2.2160"-03	4.1168*+01	Hiv	0.99553	0.79900	U.97988	1.50400	0.65151
20	2.3420"=03	4.6641*+01	NI:	0.99695	0.85100	0.98634	1.34335	0.73423
51	2.4440"=03	5.3152*+01	Ŋı. 4	0.99830	0.90900	V.79239	1.19188	0.83262
22	2.5440"-03	5.9355*+01	NPI	0.49932	0.96100	0.99694	1.07628	0.92632
23	2.6460 -03	6.1797*+01	N#4	0.99966	0.98000	0.99849	1.03810	0.96185
24	2.6960"-03	6.2712"+01	NA	0.99980	0.98800	0.99911	1.02261	0.97702
0 55	2.97204=03	6.4233"+01	W _N	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, M/MD ASSUME PEPD AND VAN OPIEST

710304	06 FISC	ER	PROFILE	TABULATION	26	POINTS, DEL	TA AT PUI	NT 26
I	Y	PT2/P	P/P0	TU/TOD	H/HD	מטעט	TZTD	RHO/RHOD+U/UU
12345676	0.0000*+00 1.1392*-03 1.8944*-03 2.4512*-03 3.0784*-03 4.0640*-03	1.0000*+00 3.8231*+00 5.2696*+00 7.7539*+00 1.0922*+01 1.3647*+01 1.6494*+01	NH NM NM NH NH NM NM	0.88759 0.93571 0.94656 0.95913 0.96927 0.97515 0.97588	0.00000 0.22500 0.27000 0.33300 0.44800 0.49400 0.53800	0.0000 0.65427 0.72432 0.77777 0.55241 0.68260 0.90210	14.03606 6.45571 7.19677 5.73941 4.56405 3.85689 2.94059	0.00000 0.07738 0.10065 0.13900 0.16477 0.22740 0.22962 0.31374
9 10 11 12 13 14 15 16	5.2544"-03 5.7856"-03 6.2912"-03 7.1744"-03 7.1744"-03 7.5008"-03 7.9296"-03 8.3328"-03 8.7360"-03	2.2163"+01 2.5150"+01 2.8478"+01 3.1382"+01 3.7917"+01 4.1057"+01 4.4109"+01 4.7717"+01 5.1005"+01	24	0.98583 0.98810 0.99017 0.99166 0.99125 0.99427 0.99525 0.9969 0.99765	0.57500 0.61300 0.65300 0.66600 0.72600 0.77600 0.77600 0.78600 0.81500 0.81700	0.73485 0.94561 0.95627 0.95628 0.96949 0.97417 0.97866 0.98637 0.98948	2.64330 2.37958 2.14007 1.96729 1.78326 1.66484 1.55032 1.45318 1.35297 1.27295	0.39367 0.39738 0.44037 0.48909 0.54366 0.55314 0.63126 0.67608 0.77904 0.77731
19 20 21 22 23 24 25 0 26	9.4976"-03 9.9008"-03 1.0355"-02 1.0912"-02 1.1565"-02 1.2454"-02 1.3414"-02	5.3610"+01 5.6448"+01 5.9368"+01 6.1660"+01 6.3650"+01 6.5133"+01 6.5918"+01 6.6181"+01	UM UM UM UM UM UM	0.99817 0.99863 0.99909 0.99941 0.99970 0.99987	0.90100 0.92300 0.94700 0.96500 0.98200 0.99200 0.99800	0.99184 0.99387 0.99593 0.99738 0.99868 0.99942 0.99986	1.21161 1.15945 1.10600 1.06823 1.03427 1.01502 1.00373	0.85719 0.85719 0.90048 0.93367 0.98559 0.98463 0.99615

INPUT VARIABLES Y, M/ND ASSUME PEPD AND VAN DRIEST

M : 2.4 falling to 1.9 R THETA X 10^{-3} : 20 - 40

TW/TR : 1.05

7104

APG - AW

Fixed symmetrical nozzle blow down wind tunnel, running time 15 sec., W = H = 0.229 m. PO: 0.35 MN/m^2 . TO: 289 K. Air. RE/m X 10^{-6} : 4.

WAL(RUP P.J. and SCHETZ J.A., 1971. An experimental investigation of a compressible turbulent boundary layer subjected to a systematic variation of adverse pressure gradients. Virginia Poly. Inst. VPI-E-71-18.

And Waltrup P.J., Schetz J.A., private communications.

Also Waltrup & Schetz (1973).

- 1 The test boundary layer was formed on the bottom nozzle block and test section wall of the wind tunnel. The highly polished instrumental section started at the end of the nozzle block (X = 0) and extended 0.23 m downstream. Pressure gradients could be imposed by three ramps of the full tunnel width. These were mounted in the centre of the tunnel as an extension of a plate running through the nozzle into the settling chamber so as to eliminate leading edge disturbances. The resulting reflected wave pressure histories are listed
- 4 with the wall temperature histories in section D. The test layer had undergone a largely two dimensional
- 2 expansion in the nozzle, and all three imposed pressure gradients commenced at X = 22.2 mm. Weak disturbances were generated by the nozzle / wall junction (X = 0) and several small machining slope-discontinuities on the
- 3 ramps. It was believed that the effect was small, probably less than 1 % in Mach number. Spark schlieren photographs clearly established that the boundary layer was turbulent. Changes of static pressure across
- 5 the test-surface were less than 1 % in the central 100 mm.
- 6 Static pressure was measured at up to 38 tappings of 0.78 mm diameter, and wall temperature by means of 0.25 mm copper-constantan thermocouples press-fitted into the test-surface at up to 15 stations. Wall shear stress could be determined at three stations using a FEB copied from the NOL balance of Bruno, Yanta and Risher (1969). The element was rectangular (ΔX = 12.7, ΔZ = 25.4 mm) set across the centre line.
- 7 The Pitot probe used was a FPP made by flattening 3.2 mm diameter tubing to give a rectangular probe tip for which $h_1 = 0.66$, $h_2 = 0.254$, $b_1 = 3.58$, $b_2 = 3.2$ mm. Total temperature was found with a STP ($d_1 = 1.57$, $d_2 = 0.97$ mm) containing a copper-constantan thermocouple bead 0.13 mm in diameter about 2.5 mm back from the opening. The cone static probe was a 10^0 semi-angle cone with a base diameter of 1.6 mm and four static holes (D = 0.33 mm) drilled in the conical surface about 3/4 of the way back from the tip. This was directly calibrated and its sensitivity to angle of attack found in the wind tunnel. The total temperature probe was calibrated directly for M between 1.95 and 2.36, results for lower Mach numbers being taken from an extrapolation of the data of Hottel & Kalitinsky (1945). The various probes deflected under aerodynamic loading, and a correction, found from photographs to be constant for each particular probe, was applied to allow for
 - and a correction, found from photographs to be constant for each particular probe, was applied to allow for this. Traverses were taken with a DISA type 55 F 31 boundary layer probe and associated commercial hot-wire anemometer electronics at the X = 22.2 and 178 mm stations using ramp 2. The probe wire was of platinum plated tungsten (d = 5 um, 1/d = 250).
- B The detailed disposition of all the wall measurement positions is to be found in figure 2 of Waltrup and Schetz (1973). The four stations are at X = 22.2, 76.2, 127 and 178 mm. At the last three, provision for inserting the FEB was made on the centre line. Profiles could be obtained at all four X-values at points 12.7 mm off the centre line. Rows of 6-7 static pressure tappings and 3-4 thermocouples were arranged at each station. Data from other X-values is presented in section D.
- 9 Pitot, static pressure and total temperature profiles were taken on separate occasions. The authors have interpolated the TO and P data to the Y values of the Pitot measurements. A polynominal approximation and the Rayleigh-Pitot formula (Volluz 1961) were used to allow Mach number determination without iteration. The recovery factor used was 0.89.
- 12 The tables computed by the editors incorporate the varied calibration and data reduction procedures of the

- authors. The profiles presented consist of three sets for four successive X-stations. The first profile in each set is very nearly the same, the X = 22.2 mm station being upstream of the start of the imposed pressure gradient. The three succeeding stations of a set describe the development of the layer under an
- adverse pressure gradient on a straight wall, the pressure history of each set being different. The wall pressure and temperature data is presented in section D, together with the measured shear stress. Also presented are the author's reduced bot-wire measurements.
- § DATA: 7104 0101-0304. Pitot, TO and P profiles measured separately. NX = 4. CF from FEB. Some hot-wire measurements.

15 Editors' comments

The entry describes three APG flows of varied severity. Similar examples of nominally planar straight-wall compressions are Zwarts - CAT 7007 and Thomas - CAT 7401. Axisymmetric examples are Peake et al. - CAT 7102 and Lewis et al. - CAT 7201. As with all nominally planar cases, cross flow effects cannot be eliminated with confidence.

The Mach number is low, and the flow near-adiabatic so that the rather simple approach to TO probe calibrations is probably adequate. All TO profiles show an outer region overshoot. The static pressure profiles show a dip of 10 % in the outer part of the layer. In a straight wall flow at these low Mach numbers, streamline curvature, streamline divergence, and normal turbulent stresses are unlikely to produce a dip of this magnitude. The location of the pressure drop suggests that it may be caused by turbulence effects on the calibration of the static probe used, which is not of a common type for this Mach number range.

The three test cases are intended to be distinguished by -ve, zero and +ve values of $\delta^2 p/\delta x^2$. On a transformed log-law plot we find that the outer regions of the profile do not differ very much from ZPG profiles, but that there are sometimes peculiarities in the inner regions. The calculated PO values for the profiles suggest that the D-state should be taken further out towards the free stream, and that measurements for profiles 0101/3, 0203 should have been continued to higher values of Y. Measurements do not extend within the momentum deficit peak for 0101, 0102 and series 03.

CAT 7104	HALTRUP		BOUNDARY CON	DITIONS AND E	VALUATED I	DATA. SI UNIT	·a.	
RUN	MD ★	TW/TR	RED2W	CF =	H12	H12K	P₩≠	PD*
X *	POD	PW/PD	REDZD	ČQ	H32	H32K	TW#	TD*
RZ	TOD	5W +	DZ	P12	H42	D2K	ÜÐ	ŤŘ
71040101	2.3610	1.0437	1.5030"+04	NM	1.7794	1.4673	2.0717*+04	2.5959#+04
2.2225"-02	3.5709"+05	1.0292	2.8009*+04	Им	1.8006	1.8007	2.8568*+02	1.3693"+02
INFINITE	2.6960*+02	0.0000	7.3280"-04	NC	0.8603	7.4989*-04	5.5394"+02	2.7372*+02
71040102	2.0980	1,0391	1.7391*+04	1.3432"-03	3.5453	1.6069	4.01287+04	3.7618"+04
7.6200"-02	3.4475"+05	1.0611	2.9193"+04	NM	1.7413	1.7244	2,8620"+02	1.5398*+02
INFINITE	2.8953"+02	0.0000	6.9553"-04	NC	-0.0296	9.1750"-04	5.2197"+02	2.7543"+02
71040103	1.9340	1.0367	2.1823"+04	1.3136"-03	3.4991	1.5753	4.82984+04	4.7712"+04
1.2700"-01	3.3696"+05	1.0123	3.4403"+04	Им	1.7414	1.7283	2.8617"+02	1.6527"+02
INFINITE	2.8891"+02	0.6000	7.7742"-04	NC	-0.0165	1.0244*-03	4.9850"+02	2.7605*+02
71040104	1.8820	0.9800	2.6107*+04	1.4036"-03	3.2447	1.5425	5.5469*+04	5.4090"+04
1.7780"-01	3.5230"+05	1.0255	3.8638"+04	Min	1.7359	1.7250	2.7121"+02	1.6929"+02
INFINITE	2,6921">02	0.0000	A.1806=-04	NC	-0.0157	1.0580"=03	4.9096*+02	2.7674"+02
71040201	2.3740	1.0446	1.1845"+04	NM	3.9479	1.4479	2.6959"+04	2.5580"+04
2.2225"-02	3.6022*+05	1.0539	2.2253"+04	NM	1.8076	1.7937	2,8591"+02	1.3607"+02
INFINITE	2.8970"+02	0.0000	, 5.81864-04	MC	-0.0161	7.7572"-04	5.5569"+02	2.7372"+02
71040202	2.2780	1,0453	1.2090*+04	1.4693"=03	4.1336	1.4687	2.8855"+04	2.8510*+04
7.6200"-02	3.4443"+05	1.0121	2.1847"+04	И м	1.7989	1.7527	2.8614*+02	1.4184*+02
INFINITE	2,6406*+02	0,0000	5.6687"-04	NC	-0.0328	7.6978"-04	5.4396"+02	2.7375"+02
71040203	2,1080	1.0400	1.6805"+04	1.3539"-03	3,8223	1.4902	3.7404*+04	3.7163"+04
1.2700"-01	3.4412"+05	1.0065	2.8340*+04	Им	1.7789	1.7637	2.8603*+02	1.5311"+02
INFINITE	2.6919"+02	0.0000	6.7847*-04	NC	-0.0279	9.0883"-04	5.2298*+02	2.7503*+02
71040204	1.9500	1,0365	2.1577" +04	1.3439"-03	3,3490	1.5433	4.4584"+04	4.7609"+04
1.7780"-01	3.4468*+05	1.0268	3.4213"+04	MM	1.7458	1.7321	2.8597"+02	1.6409*+02
INFINITE	2.8888"+02	0.0000	7.6086"-04	NC	-0.0517	9.8796"-04	5.0082*+02	2.7590*+02
71040301	2.3720	1.0496	1.1186*+04	NH	4.4248	1.4652	2.6717"+04	2.6062"+04
2.2225*-02	3.6473"+05	1.0251	2.1036"+04	NM	1.6117	1.7977	2,8620"+02	1.3578"+02
INFINITE	2.4857*+02	0.00;5	5.3915*-04	NC	-0.0636	7.3380*-04	5.5416*+02	2.7268*+02
71040302	2.2970	1.0477	1.2274"-04	1.5686"-03	3.7779	1.4593	2.8613"+04	2.7372"+04
7.6200"-02	3.4047*+05	1.0453	2.2388"+04	ИM	1.8033	1.7880	2.8617"+02	1.4040"+02
INFINITE	2.8856"+02	0.000	5.9148"-04	NC	-0.0284	7.8145"-04	5.4570*+02	2.7315"+02
71040303	2.2200	1.0431	1.4625"+04	1.5069"-03	3.3980	1.4177	3.1716*+04	3.0372*+04
1.2700"=01	3.3508*+05	1.0443	2.5800"+04	NM	1.8023	1.7904	2.8600"+02	1.4560*+02
INFINITE	2.4912"+02	0,000	6.6893"-04	NC	0.0309	8.6306"-04	5.3709*+02	2.7419*+02
71040304	2.1240	1.0412	1.8470*+04	1,4067*=03	3.5375	1.4602	3.7600"+04	3.6784*+04
1.7780*=01 Infinite	3.4923"+05 2.8906"+02	0.0000	3.1366*+04 7.4504*-04	NC NM	1.7769	1.7626 9.8428*-04	2.8612"+02 5.2496"+02	1.5196"+02

INPUT TAUM HOT CF

710401	O1 WALTE	4 UF	PROFILE	TABULATION	27	POINTS, DEL	TA AT PUI	NT 19
1	Y	PT2/P	P/PD	TU/TOD	M/ND	U/ U0	1/10	RHO/RHOU*U/UD
1	0.0000#+00	1.0000"+00	1.02922	0.89681	0.0000	0.00000	1.89062	0.00000
2	4.2672"-04	3.1158*+00	1.02958	0.70363	0.60097	0.61900	1.05091	0.00051
3	6.5852"-04	3.6339"+00	1.02922	0.73982	0.65954	0.67700	1.05364	0.66131
4	1.0541"-03	4.1066*+00	1.02922	0.77228	0.70845	0.72500	1.04727	U.7125U
5	1.4554"-03	4.5553*+00	1.02769	0.80231	0.75178	U.76700	1_04091	0.75741
6	1.6764"-03	4.9646"+00	1.02656	0.82952	0.78913	0.80300	1.03545	0.79610
7	1.9837"=03	5.23A8"+00	1.02390	0.84755	0.81316	0.82600	1.03182	U.81966
8	2.3597"-03	5.4712"+00	1.02125	0.86300	0.83297	0.84500	1.02909	0.63856
9	2.9464"-03	5.7507"+00	1.00797	0.88114	U.85617	U.86700	1.02545	0.85222
10	3.6068"-03	6.0937*+00	0.99203	0.90311	U.66381	U.8930U	1.02091	0.86774
11	4.1910"-03	6.3931"+00	0.94008	0.92236	0.90720	0.91500	1.01727	U.88155
12	4.8768"-03	6.6882"+00	0.97477	0.94113	84626.0	U.93600	1.01364	0.90011
13	5.6388"-03	7.0384*+00	0.96680	0.96297	0.95567	U.96000	1.00909	0.91977
14	6.2484"-03	7.2010*+00	0.96946	0.97331	0.96749	U.97100	1.00727	0.93454
15	6.8834"-03	7.3861"+00	0.97078	0.98436	0.98077	U.9A300	1.00455	0.94996
16	7.5946"-03	7.4908*+00	0.97875	0.99123	0.98820	0.99000	1.00364	U.96545
17	8.3058"=03	7,5459*+00	0.94935	0.99351	U.99210	0.79300	1.00102	0.94067
18	8.9662 -03	7.6235"+00	0.99602	0.99832	0.99755	0.99800	1.00091	0.99312
D 19	9.6774"-03	7.6586"+00	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
20	1.0389"-02	7.6586"+00	1.01726	1.00000	1.00000	1.00000	1.00000	1.01720
21	1.1125"-02	7.5950"+00	1.03586	0.99622	0.99555	0.99600	1.00091	1.03078
22	1.1735 -02	7.5808"+00	1.04117	0.99517	0.99455	0.99500	1.00091	1.03502
23	1.2344"-02	7.5808"+00	1.04648	0.99517	0.99455	0.99500	1.00091	1.04030
24	1.3030"-02	7.5523"+00	1.05445	0.99308	0.99255	0.99300	1.00091	1.04612
25	1.3691 = 02	7.5459*+00	1.05710	0.99351	0.49210	0.99300	1.00182	1.04780
26	1.4300"-02	7.5459*+00	1.06242	0.99351	0.99210	0.99300	1.001#2	1.05307
27	1,4935"-02	7.5808"+00	1.05578	0.99517	0.99455	0.99500	1.00091	1.04954

INPUT VARIABLES Y, U/UD, T/TD, P/PU

710401	OZ WALTE	NUP	PROFILE	TABULATION	27	POINTS, DE	LTA AT PUI	NT 20
1	Y	ዋ ነራ/የ	9750	TU/TOD	MZHD	ロノログ	1/10	RHO/RHOD*U/UD
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Y +004 0.00484"-04 1.8994"-03 1.5252"-0	PT 2 /P 1.00 / 3 ** +00 1.56 / 5 ** +00 1.79 / 2 ** +00 2.70 / 3 ** +00 2.70 / 3 ** +00 2.70 / 3 ** +00 2.70 / 3 ** +00 3.70 / 3 ** +00 4.70 / 3 ** +00 4.70 / 3 ** +00 4.70 / 3 ** +00 5.75 / 3 ** +00 6.15 / 4 ** +00 6.15 / 4 ** +00	P/PD 1.04108 1.04108 1.04108 1.05025 1.05034 1.05552 1.05459 1.04740 1.03737 1.02461 1.00000 0.98097 0.98724 0.99318	TU/TOD U.98753 U.98990 U.99942 U.99156 U.99300 U.99360 U.99360 U.99361 U.0135 1.00135 1.00450 1.00135 1.00450 1.00135 1.00450 1.00135	M/IID U.U0000 U.39117 U.42251 U.45257 U.554854 U.574860 U.764832 U.646658 U.764814 U.86132 U.86132 U.86132 U.86132 U.86132 U.86132 U.86132	U.0000 U.57100 U.57100 U.57200 U.66300 U.66300 U.73300 U.73300 U.75800 U.75800 U.75800 U.75800 U.75800 U.75800 U.88700 U.88700 U.88700 U.88700 U.88700 U.88700 U.88700 U.88700 U.88700 U.88700	1.55487 1.6549342 1.57542 1.57542 1.57555 1.470564 1.330767 1.330767 1.330767 1.345892 1.108892 1.03120000	RHO/RHOD*U/UD 0.00000 0.32407 0.35308 0.38435 0.47703 0.50191 0.54962 0.57773 0.62340 0.64256 0.70184 0.80831 0.80831 0.85130 0.88380 0.87575 0.97068 0.99222
21 22 23 24 25 26 27	9,6012*=U3 1,0008*=02 1,0973*=02 1,1659*=02 1,243*=02 1,2827*=02 1,3411*=02	6.1153"+00 6.1153"+00 6.1153"+00 6.0430"+00 6.0210"+00 6.0210"+00 6.0321"+00	1.00912 1.01185 1.01523 1.02461 1.02917 1.03099	0.99972 0.99945 0.99865 0.99878 0.99878	0.99651 0.99651 0.99303 0.99305 0.98808 0.98759 0.98907	0.99800 0.99800 0.99600 0.99400 0.99300 0.99300 0.99400	1.00300 1.00300 1.00599 1.00999 1.00999	1.00409 1.00681 1.00812 1.01039 1.01186 1.01265

INPUT VAPIABLES Y, U/UD, T/TD, P/PO

710401	05 WALTE	tup.	PHOFILE	TABULATION	27	POINTS, DEL	TA AT PUI	NT 22
1	Y	P12/P	PZPD	TUZION	MZIID	u zub	T/ID	#HD/RHNU*U/UD
1	0.0000*+00	1.0000*+00	1.01228	0.99043	0.00000	0.0000	1.73134	0.00000
2	5.1054"-04	1.5764 +00	1,01228	0.99025	0.43087	0.53120	1.51995	U.35378
3	7.6994"-04	1.6572*+00	1.01228	0,49214	0.45558	0.55820	1.50125	0.37639
4	1,0845"-03	1.7854*+00	1.01228	0.99330	0.49069	0.59520	1.47135	0.411944
5	1.2751 -03	1.9426"+00	1.01228	0.99411	0.52847	U.63360	1.43746	0.44619
6	1.4732"-03	2.9794"+00	1.01220	0.99418	0.55791	0.6240	1.40966	U.47567
7	1.8059"-03	2.2551*+00	1.01228	0.49770	0.59254	6.69640	1.38126	0.51037
8	2.2504"-03	2.4136"+00	1.01156	0.99994	0.62155	0.72380	1.35006	0.53992
9	2.5400*=03	2,6062"+00	1.01012	1.00064	0.65462	0.75340	1.32457	U.57454
10	2.9972"-03	2,77194+00	1.00361	1.00015	0.68150	0.77630	1.29757	0.60045
11	5.6322"-03	3.0597*+00	0.99639	1.00111	0.72544	0.61290	1.25567	0.64504
12	3.987A*-03	3.3053"+00	0.99061	1.00170	0.76067	U.84090	1.22208	0.44161
15	4.2926"-03	3.4898*+00	0.98483	1.00395	0.78598	0.86110	1.20028	0.70653
14	4.5974"-03	3.7126*+00	0.98338	1.00401	0.81342		1.17208	0.74067
15	4.9784"-03	3,9118"+00	0.97977	1.00674	0.84082	0.90210	1.15108	0.76784
16	5.6642"-03	4.2503"+00	0.97543	1.00806	0.88216	0.93100	1.11379	0.81535
17	6.4262"-03	4.5337"+00	0.97616	1.00546	0.91528	0.95140	1.08049	U.85953
18	7.0612"-03	4.8649"+00	0.98121	1.00290	0.95301	0.97570	1.04390	0.91523
19	7.6962"-03	5.0890"+00	0.9A338	1.00300	0.97678	0.98800	1.02310	0.94965
20	8.4328"-03	5.2444"+00	0.98555	1.00173	0.99328	0.99700	1.00750	0.97528
21	9.1186"-03	5.2888*+00	0.99566	1.00035	0.99795	0.99900	1.00210	0.99258
0 22	9.8298*-03	5.3084"+00	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
23	1.0516"-02	5.3055"+00	1.00361	1.00034	0.99970	1.00000	1.00060	1.00301
24	1,1227"-02	5.2988"+00	1.00867	1.00034	0.99900	0.99960	1.00120	1.00706
25	1.1862"-02	5.2941"+00	1.01084	1.00032	0.99850	0.99930	1.00160	1.00852
56	1.2497*-02	5.2594"+00	1.01662	1.00030	0.99487	0.99720	1.00470	1.00903
ã 7	1.3157*-02	5.2698"+00	1,01806	0.99944	0.99596	0.99740	1.00290	1.01248

INPUT VARIABLES Y, U/UD, T/TD, P/PO

≱3.

710401	04 WALTE	NUP.	PROFILE	TABULATION	27	POINTS, D	ELTA AT PUI	NT 21
1	Y	PT2/P	P/P0	TO/TOU	M/MD	ONUD	1/10	RHO/RHOD*U/UD
1 2 3 4 5 6 7 8	U.0000"+00 J.8862"-04 J.9850"-04 J.0109"-03 I.2649"-03 I.57710"-03 Z.6924"-03 J.2512"-03	1.0000"+00 1.5692"+00 1.5692"+00 1.6178"+00 1.7269"+00 2.0314"+00 2.2130"+00 2.4543"+00 2.4543"+00 2.6727"+00	1.02549 1.02486 1.02358 1.02231 1.02103 1.01912 1.01721 1.01402 1.01020	0.93776 0.98383 0.98388 0.98529 0.98628 0.996704 1.00100 1.00132 1.00257	0.00000 0.44006 0.45606 0.48833 0.52466 0.56299 0.60066 0.63670 0.68055 0.71651	0.0000 0.53500 0.55200 0.56200 0.66400 0.73400 0.73400 0.73400	1,60205 1,47800 1,46500 1,44000 1,39100 1,35200 1,32900 1,25900	U.07000 U.37097 U.38568 U.41602 U.45114 U.45648 U.50354 U.505041 U.60482
11 12 13 14 15 16 17 18 20 21 22 23 24	3.6100"-03 4.3038"-03 5.5830"-03 6.2530"-03 6.2530"-03 6.9342"-03 7.4930"-03 8.7630"-03 9.7536"-03 1.00897"-02	2-97-00 3-53-28-+00 3-53-28-+00 3-53-01-+00 4-23-05-+00 4-58-54-+00 4-78-54-+00 4-96-03-+00 4-96-03-+00 4-96-03-+00 4-96-03-+00 4-94-00-00	1.00446 1.00191 0.99873 0.99299 0.985789 0.98789 0.98789 0.98789 1.00000 1.00000 1.0005 1.01083 1.01530	1.00310 1.00435 1.00596 1.00596 1.00592 1.00439 1.00439 1.00439 1.00230 1.00059 1.00059 1.00065 1.00065	0.73220 0.77455 0.861352 0.90473 0.93588 0.94662 0.97782 0.94950 1.00000 0.98758	0.81600 0.85000 0.91500 0.94500 0.94400 0.96400 0.99500 0.99500 0.99300 0.99300	1,20400 1,17000 1,12200 1,04100 1,05100 1,05100 1,01100 1,01100 1,00100 1,00100 1,00100	0.65994 0.75118 0.75118 0.85924 0.89757 0.91203 0.95206 0.97288 0.99391 0.99391 0.99391
25 26 27	1.1455*-02 1.2065*-02 1.2725*-02	4.9125"+00 4.8993"+00 4.8819"+00	1.01721 1.02167 1.02304	1.00076 1.00053 1.00088	0.98413 0.98266 0.98070	0.99100	1.01400	0.99414 0.99651 0.99974

INPUT VARIABLES Y,U/UD,T/TD,P/PO

SECTION D - ADDITIONAL DATA NB FACSIMILE FROM SOURCE PAPER: AUTHORS' SYMBOLS AND UNITS

TABLE B-I

WALL PRESSURE, TEMPERATURE, AND SHEAR FOR RAMP 1

CAT 7104
0101-0104

x(in.)	Station	P _W	$\frac{T_{w}}{T_{o}}$	$\frac{\mathbf{T_{w}} \cdot \mathbf{T_{aw}}}{\mathbf{T_{aw}}}$	τ _ω (16/1π2
0.00					
0.875	1	0.0775	0.9889	0.0495	
1.50	_	0.0759	0.9905		
2.00		0.0896	0.9908		
2.50		0.1078	0.9901		
3.00	2	0.1164	0.9907	0.0434	0.0227
3.50	_	0.1222	0.9909	3,4,5,	
4.00		0.1286	0.9905		
4.50		0.1350	0.9907		
5.00	3	0.1401	0.9906	0.0391	0.0236
5.50	-	0.1443	0.9903	0,0072	717200
6.00		0.1491	0.9897		
6.50		0.1555	0.9900		
7,00	4	0.1609	0.9388	0.0353	0.0273
7.50	•	0.1668	0.9899	0,000	0.0273
8.00		0.1727	0.9901		
8,50		0.1819	0.9890		
9.00		0.1871	0.9908		

TABLE B-V1 CAT 7104
WALL PRESSURE, TEMPERATURE, AND 0201-0204
SHEAR FOR RAMP 2

x (in.)	Station	P _w	T _w T _o	Tw-Taw	(1b/in ²)
0.00	_				
0.875 1.50	1	0.0782 0.0779	0.9897 0.9902	0.0494	
2.00			0.9907		
2.50	•	0.0762	0,9901		
3.00	2	0.0837	0.9905	0.0468	.02207
3.50		0.0945	0.9908		
4.00		0.0983	0.9910		
4.50	-	0.1077	0.9902	0.0415	0.03:40
5.00 5.50	3	0.1085 0.1143	0.9901 0.9898	0.0415	,02270
6.00		0.1216	0.9889		
6.50		0.1331	0.9900		
7.00	4	0.1418	0.9899	0.0393	.0217
7.50		0.1489	0.0904		
8.00		0.1530	0.9895		
8.50		0.1572	0.9901		

SECTION D (CONT.) - ADDITIONAL DATA

NB FACSIMILE FROM SOURCE PAPER: AUTHORS' SYMBOLS AND UNITS

TABLE B-XI
WALL PRESSURE, TEMPERATURE, AND SHEAR FOR RAMP 3 0301-0304

x (in.)	Station	P _w P _o	T _w T _o	Tw-Taw	τ _w (lb./in.²)
0,00	· · · · · · · · · · · · · · · · · · ·			***************************************	
0.875	1	0.0775	0.9907	0.0514	
1.50		0.0763	0.9911		
2.00		0.0773	0.9901		
2.50		0.0803	0.9904		
3.00	2	0.0830	0.9906	0,0492	0.0230
3.50		0.0875	0.9903		•
4.00		0.0898	0.9907		
4.50		0.0908	0.990 6		
5.00	3	0.0920	0.9900	0.0472	0.0229
5.50		0.0945	0.9911		
6.00		0.0988	0,9908		
6.80		0.1053	0.9905		
7.00	4	0.1093	0.9904	0.0413	0.0237
7.50		0.1171	0.9901		
8.00		0.1204	0,9905		
8.50		0.1325	0.9899		
9.00		0.1418	0.9902		

SECTION D - ADDITIONAL DATA NB FACSIMILE FROM SOURCE PAPER: AUTHORS' SYMBOLS AND UNITS

7104 0201	нс	TABLE D. OT WIRE MEAS			7104 0204
RAMP 2,	STATION 1	g prot _{Perso} ngangangangan (1641).	RAMP 2,	STATION 4	e bis to the
У	ρu/ρ _e U _e	√U+2/U	y	նո∖ն [©] Ո [©]	VIII 2/1
.0886	.609	.0524	.0787	.521	,0679
.116	.676	.0495	.111	.601	.0715
.150	.738	,0468	, 3 4 1	,608	.0726
. 189	.801	,0428	.169	.729	,0077
,213	. 841	.0370	. 204	.805	.0585
. 221	, 896	,0312	.218	. 848	.0476
. 276	,933	.0252	. 267	.936	.0370
. 311	. 962	.0150	, 300	.976	.0317
.339	.980	.0103	. 330	,992	.0211
.378	1.000	.00625	, 342	, 997	.0136
,419	1.011	.00445	. 307	1.000	.0088

axisymmetric	M : 19.5 R THETA X 10 ⁻³ : 2 - 4	7105
	TW/TR : 0.2	FPG - SHT
Axially symmetric blow down tunnel. Effect 29 < PO < 55 MN/m ² . TO : 1780 K. Nitrog	tively continuous. $D = 0.406 \text{ m}$. en. $2 < RE/m \times 10^{-6} < 3$.	•
BECKHITH I.E., HARVEY W.D. and CLARK F.L. at Mach number 19.5 with theory and an as And Harvey W.D., private communications,	sessment of probe errors. NASA TN D	

- 1 The test boundary layer was formed on the wall of a contoured axi symmetric nozzle approximately 2.25 m long from throat to exit. Profiles were measured at a single station near the nozzle exit and 2.083 m axially from the throat (X=0) at which the wall was inclined to the axis at 3.5°. The nozzle wall was finished to 0.4 µm and was actively cooled. Some disturbances in the flow originate from the nozzle wall in the neighbourhood of the contour point of inflection. There was a mean axial decrease in Mach number in the vicinity of the survey station of about 1.64 /m, where the radius of curvature in the longitudinal
- 3 direction was about 32 m. Transition occurred naturally, and the boundary layer was believed to be turbulent over the full nozzle length except possibly in the immediate throat region, where calculations indicated
- that laminarisation could have occurred (PC and source, figure 12). The available wall pressure history is given in table 1 below. The wall temperature was kept nearly constant in the cooled part of the nozzle extending from X = 0.145 m downstream of the throat, at about 0.17 TO (330-300 K) but the high heat transfer rates in the throat region caused the wall temperature to reach an estimated value of about 0.8 TO.
- 5 Limited Pitot surveys were made on the opposite side of the nozzle at the 2.083 m station, and the results confirmed the axisymmetric nature of the flow.
- 6 Wall static pressure was measured at the stations listed in table 1 with holes 2.3 mm in diameter. Thermocouples used to monitor TW were placed at 0.305 m intervals along the nozzle, embedded 2.4 mm from the test surface.
- The profile data as presented was all obtained with a single TPP (FPP) and a single TTP (FNP). Other probes were used however in assessing the correction procedures and all are discussed here. The FPP ($h_1 = 0.28$, $h_2 = 0.13$, $b_1 = 3.81$, $b_2 = 3.66$, l = 31.8 mm) was mounted on a rake which also carried 2 CPP ($d_1 = 3.18$, $d_2 = 2.3$, 1 (E) = 45 and 60 mm) separated in the Y-direction by 25.4 mm. The FPP could be replaced by the FMP (d = 0.26, b = 6.35, 1 (E) = 10 mm). The FMP was an unshielded 0.25 mm chromel-alumel thermocouple wire placed perpendicular to the flow and the profile normal. In addition to the central junction, two subsidiary junctions were established at the ends of the crossflow wire to allow a proper conduction and radiation correction procedure (Appendix A, source), which was applied to all observations. Static pressure profiles were obtained with a CCP ($\alpha = 17.5^{\circ}$ semi angle, d = 3.18, $l_1 = 50.8$, 1 (E) = 100 mm) with four static holes (d = 0.78 mm) aligned on the diameters normal to and parallel to the wall.
- 8 All profile measurements were made normal to the wall at an axial distance of 2.083 m from the throat.

 The static holes in the CCP were on the same normal, as was the relevant static hole. The TO and PT2 profiles
- 9 were taken on separate occasions and with a great many data points. All readings were normalized with the instantaneous tunnel reservoir conditions, which varied by up to 9% during a two hour run. The profiles presented are obtained from faired curves through the corrected profile data, at greater Y-intervals than the original readings.
- A major topic of the source paper is probe correction procedures. In the wall region, the viscous and rarefaction effects on the Pitot data involve correction factors of up to 2.14 as assessed by the authors. These completely outweigh the other possible corrections so that no adjustments have been made for wall proximity, shear displacement, thermal diffusion or turbulence effects. The corrections applied exceed 10 % for y/6 less than 0.4 0.5. Corrections to the TO data would be more properly described as a calib-

ration procedure. They may be summarised as amounting to finding a probe recovery factor of about 0.7 to 0.75 when the probe and its support are in a flow region where the total temperature is reasonably uniform. Conduction and radiation corrections were applied to all data however, and close to the wall where the probe was at a markedly lower temperature than the support, these were large and resulted in an effective recovery factor near one. The authors found large differences between the static pressure found at the wall and that calculated from PT2 measurements in the inviscid core. This was investigated with the CCP, the readings being corrected for bluntness and viscous-induced pressure effects after Bertram & Blackstock (1961). The surface temperature of the probe was estimated, assuming a linear variation of probe temperature with distance from 0.2 TO at the wall to 0.6 TO at the boundary layer edge. The resultant profile matches closely the static pressure values outside the boundary layer as predicted by a characteristics solution starting from the axial Mach number distribution. Both however lie about 20 % below the value found from Pitot measurements. A better match was found by using only the first order correction of Behrens (1963) (Source, fig. 7). Because of the very large correction factors involved (greater than 2) these static pressure distributions were not used in the profiles as presented by the authors, who instead assumed that P falls linearly with distance to PD. The authors present Mach number profiles computed on this basis with, for comparison, a profile with an alternative artificial static pressure distribution which represents the data 11 in the well region more exactly (Source figure 8a). The viscosity of Nitrogen was computed from equation 44 of Ahtye and Peng (1962).

- 12 The editors have first presented the profiles in the authors' final, corrected form, with the linear static pressure distribution. The edge stagnation state has been arbitrarily set to the nominal tunnel reservoir conditions. We have also reconstructed the authors' corrected static pressure distribution by scaling the data from figure 7 of the source paper. This, together with the authors' corrected TO data, was interpolated
- to the Y stations of the original Pitot measurements, and the revised profile 0201 is presented as 0201 P. The interpolation procedure introduces no additional uncertainty or error at greater than 2 %, except in those regions where the original data are themselves uncertain. 0201 P therefore reports all the original,
- 14 unsmoothed, Pitot data, in conjunction with smoothed P and TO data. The authors originally determined a CF value from the Mach number gradient at the wall. A later paper (Harvey & Clark 1972) describes shear stress.
- 8 measurements made at X = 2.28 m, that is 0.117 m downstream of the profile station. The balance used was
- 6 an FEB for which the element diameter was 12.7 mm, with a peripheral gap of 0.076 mm, as described by
- Paros (1970). The editors have interpolated these measurements on the basis of the authors' R THETA values so as to give CF data in association with the profiles. For profiles 0201, 0301 the values are similar to the profile-derived values, but there is marked disagreement for profile 0101. The authors remark on the possibility that this arises from the large Pitot tube errors involved (see § 10 above). The CQ value presented with the profiles is that derived by the authors from the limiting slope of the corrected TO profile.
- 5 DATA: 7105 0101-0301, 0201 P. Pitot, TO and P profiles separately. NX = 1. CF from FEB in later experiment.

15 Editors' comments

The measurements presented here, with the addition of the later shear stress measurements, provide the only functionally complete description of the mean flow in a hypersonic boundary layer subject to substantial normal pressure gradients. The extent to which probe measurements required correction is such that a user should not refine too much upon any precise numerical value, but the qualitative picture is probably complete.

Attention is drawn to figure 7 of the source paper in particular. Here the problems of static pressure measurement in hypersonic conditions are graphically displayed. The profile tables for 0201 P assume that the final adjusted static pressure variation is correct, but since the adjustments are so large, with calibration factors of up to 2, the accuracy is not high. A variation of this kind is, however, easily explained by a combination of the effects of streamline curvature and the separate contributions to normal stress of mean static pressure and normal Reynolds stress. A very similar variation is reported by Fischer et al. - CAT 7001 and comparison should be made between 71050201 P and 70010104. Kemp & Owen - CAT 7206 made no static pressure measurements, and also assumed a linear variation of P from PM to PO. Their data should show, even more markedly, a pressure variation like to that of 0201 P as their range extends to even higher Mach numbers.

For many purposes the assumed static pressure variation used by the authors and retained for the data tables of 0101-0301 will not introduce too great a level of inaccuracy. It is unfortunately not possible to make a direct comparison with 0201P, for which the measured static profile was used, as the static pressure values in the free stream differ quite markedly. We have chosen to prepare 0201P assuming that the reported PT2 and P values are correct. As a consequence, the POD value which is calculated from them on the assumption that the D-point is outside the boundary layer is much higher than the measured tunnel reservoir pressure. (The appropriate small difference normal shock equation for very high Mach number is

$$\frac{dp_0}{p_0} = \left(\frac{\gamma}{\gamma - 1}\right) \frac{dp_{t2}}{p_{t2}} - \left(\frac{1}{\gamma - 1}\right) \frac{dp}{p}$$

so that a relatively modest underestimate of the value of PD results in a noticeably high value of PDD).

The profiles 0101-0301 with assumed P(Y) are from smoothed curves, 0201 P has all original data points and will show scatter despite interpolated P and TO values. Using van Driest coordinates no log-law region exists and the profiles show - at least in the inner region - a transitional behaviour.

TABLE 1: WALL AND FREE STREAM STATIC PRESSURE

POR - Reservoir pressure P INF - 'Free stream' static pressure at x = 2.057 m from Pitot measurements.

7	105	0101	0201	0301
x	-RZ	PW	PW	PW
(m)	(mm)	(N/m²)	(N/m²)	(N/m ¹)
0.610	96.9	68.6	91.4	120.0
0.991	133.4	32,4	41.0	55.5
1.219	150.8	22.4	31.0	40.3
1.524	170.1	17.6	23.4	31.4
1.702	179.7	15.5	20.0	27.2
1.969	192.3	13.1	16.9	22.4
2.057	196.0	15.2	17.2	22.1
POR	(MN/m²)	29.65	43.09	55.50
P INF	(N/m ^x)	7.93	10.69	13.45

NB : NORMALISED VALUES

CAT 7105	BECKWITH		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	5.	
RUN	MD *	TW/TR	REDZW	CF +	H12	DSK	PW+	PD*
X *	Pod#	PW/PD	REDZD	CQ +	H32	H 35 K	TW+	TD
RZ *	Tod#	SW #	DZ	PIZ+	H42	H15K	UD	TR
71050101	19.2600	0.1990	2.1370"+02	4.9000"-04	37.9916	2.3995	1.1613"+01	7.9893"+00
2.0830"+00	2.9700*+07	1.4535	2.3444"+03	3.1400"-04	1.8099	1.6327	3.0000"+02	2.2344"+01
-1.9750"-01	1.6800*+03	1.0000	1.7065"-03	-4.6629"+01	1.4420	1.0160"-02	1.8548"+03	1.5076"+03
71050201	19.4200	0.1678	3.5633*+02	4.6000*=04	25.1921	2.320:	1.6766*+01	1.1034"+01
2.0830*+00	4.3100"+07	1.5195	3.7699*+03	2.0600*=04	1.8187	1.6581	3.0000*+02	2.3290"+01
-1.9750*+01	1.7800"+03	1.0000	2.0867*-03	-6.7667*+01	1.5567	9.2971*-03	1.9095*+03	1.5973"+03
71050301	19.6500	0.1822	3.2319*+02	4.6000"-04	31.2003	2.2686	2.1645*+01	1.3098#+01
2.0630**00	5.5500"+07	1.6525	3.3977*+03	1.6700"-04	1.6377	1.6783	3.0000*+02	2.3458#+01
-1.9750**-01	1.8350"+03	1.0000	1.5626*-03	-5.7135"+01	1.4735	7.7165*-03	1.9390*+03	1.6466#+03
71050201P	21.7700	0.1973	2.4621*+02	4.3595"-04	41.0455	2.3512	1.6760*+01	8.7693*+00
2.0830"+00	7.5600*+07	1.9069	3.2713*+03	2.0600"-04	1.8211	1.6621	3.0000*+02	1.7696*+01
-1.9750"-01	1.6950*+03	1.0000	1.4087*-03	-1.1869"+02	1.5436	8.5711"-03	1.6658*+03	1.5206*+03

POD IS INPUT FOR 0101-0301. PD IS INPUT FOR 0201P.

EVALUATED	DATA	_	PRESSHIPE	BARED	REFERENCE	FL	NO.

SAMBAN . E.S.							
RUN	(1290 0298	H12PD H12PW	нзарі. Нзарі	H4 7PD H47PW	REDZPDD REDZPWD	HEDZPOH HEDZPHH	DSTAR
71050101	1.7037**03	51.8254 47.7740	1.8094	1.4461	2.3131"+03	2,0602"+02	6.7573*-02
71050201	2.0813"-03 1.5439"-03	35.1465 32.8767	1.8180	1.5622	3.716##+03 3.7149#+03	3,4332*+02 3,4314*+02	5.5355"-02
71050301	1.5755"-03 1.1007"-03	46.3993 42.9650	1.6369	1.4604	3.3456"+03 3.3448"+03	3.1101*+02	5,2460"-02
710502018	1.4093"-03	51.4188 46.9629	1.8211	1.5410	3.2407"+03 3.2399"+03	2.3613"+02 2.3606"+02	5.7265*-02

71050101 BECKWITH PROFILE TABULATION 24 POINTS, E		POINTS, DEL	LTA AT PUI	NT 24				
1	Y	P12/P	P/PD	TU/TOD	M/MD	UZUD	1/10	RHO/RHOU*U/UD
1	0,0000"+00	1.0000*+00	1.45353	0.17857	0.00000	0.0000	13,42670	0.00000
2	2,0160"-03	1.4113"+00	1.44537	0.22160	0.03734	0.14510	15.10000	0.01389
3	7,1680*=03	1.6274"+00	1.42451	0.32328	0.04486	0.20630	21.15000	U.01389
4	1.2208"-02	2.1771"+00	1.40410	0.40050	0.05799	v.28470	24,10000	0.01659
5	1.7248"+02	3.5931"+00	1.38369	0.48609	0.08031	U.39930	24.72000	0.02235
6	2.2400*-02	6.1420"+00	1.36283	0.59406	0.10881	0.53060	23,78000	0.03041
7	2,7440"-02	1.0175"+01	1.34242	0.70108	0.14250	0.65350	21,03000	0.04172
8	3,2592"-02	1,5994*+01	1.32155	0.77039	0.18029	0.74290	16,98000	0.05752
9	3,7632"-02	2.4722"+01	1.30114	0.82243	0.22536	0.81160	12.97000	U.3A142
10	4.2764"-02	3.5001"+01	1.20028	0.84059	0.27201	0.84890	9,74000	0.11158
11	4.7824"-02	5.2142"+01	1.25987	0.83515	0.32910	0.86760	6,95000	0.15728
12	5.2976**02	7.9411*+01	1.23901	0.82378	0,40657	0.87860	4.67000	0.23310
13	5.8016"-02	1.1391"+02	1.21860	0.82722	0.48737	0.89070	3,34000	U.32497
14	6,3168"-02	1.4876"+02	1.19774	0.84713	0.55723	0.90710	2.45000	0.40999
15	6.8208"-02	1.8802*+02	1.17733	0.86569	0.62666	0.92100	2.16000	0.50200
16	7.3248"-02	2.3105"+02	1.15692	0.88630	0.69483	0.93480	1.81000	U.59751
17	7.8400"-02	2.7418*+02	1.13606	0.89711	0.75703	0.94250	1.55000	0.69080
18	8.3440"-02	3.1371"+02	1.11565	0.91801	0.80985	0.95480	1.39000	0.76635
19	8.8592"-02	3.5687"+02	1.09479	0.93699	0.86384	U.46580	1.25000	0.84588
20	9.3632"-02	3.9792"+02	1.07438	0.95122	0.91223	0.97400	1.14000	0.91793
57	9.8784"-02	4.3928"+02	1.05352	0.96585	U.95853	U.98220	1.05000	0.48549
ZŽ	1.0382"-01	4.6123"+02	1.03311	0.97484	0.98220	0.9A710	1.01000	1.00968
23	1.0886"-01	4,7636"+02	1.01270	U.98649	0.99820	0.99320	0.99000	1.01597
D 24	1.1200*-01	4.7808*+02	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD,T/TD P/PD=PM/PD+(1=PW/PD)+Y

71050	501 BECK	MITH	PROFILE	TABULATION	21	POINTS, DE	LTA AT POI	NT 21
1	Y	PT2/P	P/PD	TO/TOD	M/HD	U/UD	1/10	RHQ/RHQU*U/UD
1	0.0000"+00	1.0000*+00	1.51953	0.16854	U.U0000	0.00000	12.88100	0.00000
2	2.0022"-01	1.1647"+00	1.50847	0.24231	0.02430	0.10230	17.73000	0.00870
3	6.3074"-03	1.5597"+00	1.48467	0.30633	0.04237	0.19240	20.62000	0.01385
4	1.1383"-02	2.7901"+00	1 . 45662	0.41698	0.06816	0.33110	23.60000	0.02044
5	1.6450"-02	5.3733"+00	1.42861	0.55420	0.10026	0.49210	24.09400	0.02918
6	2.1526"-02	9.7238*+00	1.40056	0.65097	0.13500	0.62360	20.42000	0.04277
7	2.6563"-07	2.1220"+01	1.37261	0.69798	0.20673	0.73470	12.63000	0.07985
8	3.1654"-02	3.4221"+01	1.34455	0.73768	0.26366	0.79230	9.03000	0.11797
9	3.6715"-02	5.4790*+01	1.31660	0.74224	0.33448	0.82000	6.01000	0.17964
10	4.1783"-02	8.2507"+01	1.28840	0.75531	0.41105	0.84240	4.20000	0.25846
ii	4.6840"-02	1,1764*+02	1.26065	0.77883	0.49123	0.86490	3.10000	0.35172
iż	5.1888"-02	1.5912*+02	1.23275	0.76840	0.57161	0.86500	2.29000	0.46565
13	5.6983"-02	2.0112"+02	1.20459	0.78285	0.64283	0.87670	1.86000	0.56778
14	6.2040 -02	2.4347 +02	1.17664	0.84668	0.70743	0.91420	1.67400	0.64412
is	6.7116"-02	2.8500"+02	1.14859	0.66933	0.76548	0.92810	1.47000	0.72517
Ĩě	7.2192"-02	3.2927*+02	1.12053	0.91983	0.82288	0.95610	1.35000	0.79359
17	7.7268"-02	3.7720"+02	1.09246	0.94232	0.88082	0.96890	1.21000	0.87479
iė	8.2156*-02	4.2735"+02	1.06546	0.95997	0.93762	0.97890	1.09000	0.99686
iš	8.7420"-02	4.6550"+02	1.03637	0.99658	0.97862	0.99800	1.04000	0.99451
20	9.2496"-02	4.6028"+02	1.00831	0.99816	0.99404	0.99900	1.01000	0.49733
D Ži	4.4000"-02	4.8605*+02	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA,U/UD,T/TD P/PD=PW/PD+(1=PW/PD)+Y

710503	301 BECH	WITH	PROFILE	TABULATION	50	POINTS, DE	LTA AT POI	NT 20	
I	Y	PTZ/P	P/Ph	TU/TOD	M/MD	U/UD	7/10	RHO/RHOD*U/UD	
i	0.0000"+00 2.0241"-03	1.0000*+00	1.65254	0.16349 0.22608	0.00000	0.00000	12.78875	0.00000	
Š	7.1103*-03	1,1625"+00	1.63727	0.38351	0.03386	0.09820 0.24670	16.94000 25.30000	0.00949 0.01559	
4	9.6534"-03	2,9006*+00	1.57972	0.49602	0.06905	0.36770	28.36000	0.02048	
5 4	1.4740"-02	6.1919"+00 1.3836"+01	1.54135 1.50298	0.642A2 0.76208	0.10712	0.55310	26.66090 19.38000	0.03198 0.05598	
7	2.4921"-02	2,5835"+01	1.46454	0.78760	0.22589	0.79770	12.47000	0,09369	
8	3.0007"-02 3.5093"-02	4.2065*+01	1.42618	0.79654	0.28926	0.83590	8.35000	0.14277	
10	4.0179"-02	6.5029*+01 9.5150*+01	1.36761	0.80450 0.52131	0.36038	0.86190 0.88260	5.72000 4.09000	0.20912	
11	4,5265"-02	1.3377"+02	1.31107	0.83250	0.51783	0.89690	3.00000	0.39197	
12	5.0360"-02 5.5446"-02	1.7454"+02 2.1868"+02	1.27263	0.85671 0.87884	0.59173	0.91460	2.39000 1.97000	0.48711	
14	6.0533"-02	2.4581*+02	1.19589	0.90128	0.66253	0.92990 0.94410	1.67000	0.58261 0.67607	
15	6.5628"-02	3.1599"+02	1.15746	0.92703	0.79666	0.95930	1.45000	0.76576	
16	7.0714"-02 7.5800"-02	3.6495"+02 4.1611"+02	1.11909	0.95016 0.97226	0.85624	0.97250 0.98480	1.29000	U.84365 U.91749	
18	8,0886*-02	4.6079"+02	1,04235	0.98249	0.96225	0.99070	1.06000	U.97420	
19	0.5972"-02	4.8542*+02	1.00398	0.99631	0,98817	0,99800	1.02000	0.98233	
0 20	8.6500"-02	4.9762"+02	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	
INPUT VARIABLES Y/DELTA,U/UD,T/TD P/PD=PW/PD+(1=PW/PD)+Y									
				*****				.	
710502		WITH		TABULATION		POINTS, DE			
I	γ	PTR/F	P/PD	10/100	M/MD	U/UD	1/10	RHO/RHOD=U/UD	
Ş	0.0000"+00 2.7430"-03	1.0000"+00	1.90686	0.176 9 9	0.00000	0.00000	16.45338	0.0000U 0.00 4 43	
3	5.2630"-03	1.4150"+00	1.89216	0.30600	0.03316	0.17087	24.54337	U.01218	
4	7.8230"-03	1.7754*+00	1.86275	0.35300	0.04336	0.23229	20.69791	0.01508	
5	1.2903"-02	2.5052"+00 3.3794"+00	1.81373	0.41000 0.47300	0.05448	0.31101 0.36355	30.10422	0.01874 0.02098	
7	1.5443"-02	5.0741*+00	1.60784	0.55000	0.08663	0.45066	30.78336	0.02511	
6	1.7983"-02	7.8109*+00 1.0969*+01	1.43527	0.62200 0.67600	0.10960	0.57849 0.65070	27.85901 24.61851	0.02982 0.03563	
10	2.3063*-02	1.3557*+01	1.27451	0.71100	0.14644	0.69396	22.456A7	0.03938	
11	2.5403"-02	1.9099*+01	1.21569	0.74200	0.17474	0.74651	18.25170	0.04972	
12	3.0663"-02	2.5620*+01 3.4587*+01	1.16176	0.76100 9.77600	0.20303	0.78251	14.85417	U.0612U U.07627	
14	3,3223"-02	4.7280"+01	1.06663	0.78100	0.27699	0.83296	9.04348	0.09843	
15	3.5763"-02	6.2261"+01	1.02941	0.78500	0.31824	0.84761	7.09401	0.12300	
17	\$0-*£0£8.£	7.4577"+01 8.9440"+01	0.9951 <u>0</u> 0.94564	0.78800 0.79200	0.34851	0.85596 0.86392	6.03235 5.11655	0.14120 0.16 29 9	
18	4.3383"-02	1.0701"+02	0.74608	0.80000	0.41767	0.87314	4.36607	0.18920	
50	4.5923"-02	1.3574"+02	0.93137 0.91667	0.80900 0.81400	0.47083	0.88340	3.52033	0.23372	
31	5.1003*-02	2.0423*+02	0.40686	0.81900	0.57786	0.89001 0.89571	2.40264	0.28243 0.33804	
\$\$	5.3543"-02	2.3235"+02	0.90686	0.82400	0.61644	0.90011	5.17508	0.38285	
23 24	5.4623"-02	2.5717"+02 2.5700"+02	0.40146	0.63800 0.85100	0.64860	0.90891	1.77901	0.41746 0.46754	
52	6.1163*-02	3.1020"+02	0.91667	0.87100	0.71245	0.92848	1.69877	0.50107	
50	6.3703"-02	3.4634"+02	0.92157	0.58800	0.75287	0.93860	1.55425	0.55653	
27 28	6.4243"-02 6.6783"-02	3.6820"+02 3.4163"+02	0.93627 0.95098	0.90100	0.77630	0.94596 0.95116	1.484R7 1.41134	0.59647 0.64091	
29	7.1323"-02	4.1465"+02	0.96569	0.42400	0.82407	0.95849	1.35396	0.68391	
30 31	7.3863"-02	4.3922"+02	0.98039 0.99510	0.93600 0.94800	0.84796	0.96550	1.26403	0.73012 0.76515	
32	7.0443"-02	5.0626*+02	1.00000	0.45400	0.91043	0.97568	1.1484#	0.84954	
33	8.1463"-02	5.1169"+02	1.00980	0.96300	0.91548	0.98034	1.14671	0.86329	
34 35	8.4023"-02 8.4543"-02	5.3314*+92 5.6990*+02	1.01471	0.97000 0.97800	0.93431	0.98414	1.10950	0.9000b U.9 62 47	
36	0.7103°-02	9.8352"+02	1.01961	0.98300	0.97749	0.99122	1.02824	48584.0	
37	9.1643"-OR	5,9121"+02	1.01961	0.99000	59669.0	0,99482	1.02237	0.44557	
38 34	4.4183"-02 9.6723"-02	6.0174"+02 6.0508"+02	1.01471	0.99600 1.00000	0.99265	0.99742	1.01065	1.00143	
40	9.9263"-02	6.034["+02	1.00980	1.00000	0.99403	0.97944	1.01192	0.99784	
41	1.0180*-01	6.0508"+92 6.1630"+92	1.00980	1.00000	0.99541	0.99995	1.00915	1.00040	
0 43	1.0942"-01	4.1048"+02	1.00490	1.00000	1.00000	1.00005	1.00000	1.01411	
44	1.1450"-01	6.0443*+02	0.99020	1.00000	0.4445	0,99995	1.01000	0.98027	

INPUT VARIABLES Y, P/POD, M, TO/TOD

M: 4, falling to 2.4 then rising to 3.7 (Series 01). : 4, ZPG (Series 02).

: 4, ZPG (Series 02).

R THETA X 10⁻³ : 4 - 14.

TW / TR : 1.

7201

ZPG - APG - FPG (ZPG) AW

Continuous tunnel with symmetrical flexible nozzle, W = H = 1 m, L = 5 m. PO : $496 \left(\frac{1}{2} 3.5\right) \, \text{KN/m}^2$. TO : $318 \left(\frac{1}{2} 1\right) \, \text{K}$. Air: Dew point 239-247 K. RE/m X 10^{-6} : 20 at M = 4.

LEWIS J.E., GRAN R.L. and KUBOTA T., 1972. An experiment on the adiabatic compressible turbulent boundary layer in adverse and favourable pressure gradients. J. Fluid Mech. 51, 657-672.

<u>And Gran R.L., private communications.</u>

- 1 The tests were performed on the inner surface of a cylinder (D = 0.508, L = 1.3 m) mounted on the centre line of the windtunnel. A pressure gradient could be imposed by a centre-body, itself hollow, causing the streamwise pressure variation tabulated in section B. The leading edge of the cylinder (X = 0) was chamfered on the outside at 11° with a nose radius of 0.05 mm. The profiles were measured in the range 0.29 <X <0.88 m. Maximum deviation from a straight generator was less than 5 x 10^{-4} m/m in the test-area with no local slope exceeding 0.06°. Surface roughness was less than 2.5 μ m. The test-surface was not cooled, the greatest departure of TW from TR being 2.5 % at the pressure maximum (X = 0.47 m). Tunnel
- 2 calibration tests gave the empty-tunnel Mach number as 4.026 (+ 0.022, 0.026).
- 3 The boundary layer was tripped 3 mm back from the leading edge using 0.15 mm thick fibre-glass tape with a serrated upstream edge. Transition is believed to have been complete upstream of X = 0.204 m, the
- 5 upstream limit for measurements. Static pressure and heat-transfer measurements made at three streamwise stations showed the flow to be uniform round the circumference, and good agreement was reached in a streamwise momentum balance.
- 6 Static holes (diameter 0.51 mm) were drilled along one generator from X = 50.8 to 1016 mm at 12.7 mm intervals, with additional holes at 6.35 mm intervals between X = 356 and 635 mm. Additional tappings were also distributed circumferentially at 45° intervals for X = 63.5, 444 and 673 mm. Wall temperature was found from the heat-flux gauges (see below) and checked using four thermocouples. Stanton tubes were mounted on generators 8.6° to either side of the PM generator at nominal 25.4 mm intervals from X = 51 to X = 965 mm. The tubes were formed by placing a 4.8 mm square piece of thin metal, with a sharp leading edge chamfered at 6° on the underside, approximately 0.61 mm shead of the centre-line of a 0.51 mm diameter static hole. The side and back edges of the thin plate were sealed. The Stanton tube heights were within the range 0.12< h< 0.21 mm. Steady state heat-flux meters after Gurdon (1960) were mounted on a generator 6° from the PM generator. Gaugus of 6.35 mm diameter were placed at nominal 25.4 mm intervals from X = 50.8 to 1016 mm except between X = 356 and 661 mm where gauges of 3.18 mm diameter were placed at 12.7 mm intervals.
- 7 Traverses were made with Pitot, TO and P-probes. The transducer attached to the latter failed so that P-traverse measurements were not used. The TTP ($d_1 = 1.52 \text{ mm}$, l = 29 mm) was of STP type, inclined at 10° to the wall. The TPP was an FPP ($h_1 = 0.46 \text{ mm}$, $h_1 = 2.1 \text{ mm}$, l = 15.2 mm) formed by flattening a 1.6 mm
- 8 diameter tube, and inclined at 60 to the wall. All traverses for a given X-value were made simultaneously, with the PO traverse over the PW generator and the TO and P traverses slightly to either side. The X-value
- 9 was the same for all three within 0.5 mm. The TO data points were interpolated to the Y values of the PO measurements. The PN (X) data were fitted to analytic expressions for interpolation where necessary.
- 10 No corrections were applied to the probe-data. Sutherland's viscosity law was used.
- 11 The authors state that within experimental accuracy the data satisfied the relation (TO TW) / (TOD TW)
- 12 m U/UD and this has been used together with the assumption P m PW to construct the tables below. The total conditions at the layer edge have been set arbitrarily equal to the nominal reservoir conditions. The wall temperature has been set constant at 293 K following the authors' statement that (TOD TW) / TOD was nearly constant at 0.08. No heat transfer data is presented, the authors stating that Q was zero within experimental accuracy.

- 13 The data presented consists of two profile sequences. The first, 0101 0119 consists of ZPG (01-05) followed by APG (06-14) and FPG (15-19). Duplicate profiles were obtained for 01 11/12/14/16, but since they had relatively few data points, they are not presented here. The second set, 0201 0209, provides,
- 14 for comparison, ZPG data in the downstream portion (X < 495 mm), obtained with no centrebody. The CF values presented are the authors', obtained by the curve-fitting procedure of Coles & Hirst (1969) applied to equivalent incompressible velocity profiles transformed as suggested by Van Driest (1951). The resultant calibration function for the Stanton tubes was presented (source, figure 3) as evidence of consistency.
- § DATA: 7201 0101 to 0209. PT2 and T0 simultaneously. NX = 19 and 9. CF from profiles (curve fitting). Confirmatory Stanton tube observations.

15 Editors' comments

The axi-symmetric configuration chosen results in a flow free of significant end effects. Axial symmetry corrections were small as 6/RZ < 0.07. The pressure gradient was applied as a reflected wave on a straight surface so that little or no normal pressure gradient is to be expected except at the changes from ZPG to APG and APG to FPG. The authors state that static pressure measurements showed the pressure to be constant within 10 % across the layer. There are very small intervals between successive profiles, so that the layer development can be followed in detail.

The authors give a full discussion of the profiles in relation to the "wall law" and "wake law" in the source paper. The values of CF given here assume that this is a valid and complete description, so that they should be used with caution in the FPG region.

Comparisons should be made with the similar flow observed by Peake et al. - CAT 7102, series 02 - though there is little detail in the compression region and the study is more concerned with the constant-pressure relexation which follows. Nominally planar APG flows of the same type are studied in some detail by Zwarts - CAT 7007, Thomas - CAT 7401 and with fewer stations by Waltrup and Schetz - CAT 7104. The FPG case is covered by Michel - CAT 6902 and Voisinet et al. - CAT 7304. The authors have repeated the investigation with a strongly cooled wall (Gran et al. 1974) but the numerical data is not at present available.

CAT 7201	LENIS		BOUNDARY COM	DITIONS AND E	VALUATED (ATA. SI UNIT	8.	
RUN	MD *	TW/TR	PED2W	CF *	H12	H12K	PW	PD
X +	POD*	PW/PD*	REU2D	CQ	H32	H 32 K	TW*	TD
RZ +	TOD*	SW *	D2	PIZ*	H42	D2K	UD	TR
72010101	3.9800	1.0005	1.4803"+03	1.5154"=03	7.9198	1.4601	3.3551*+03	3.3551*+03
2.9159*-01	4.9600"+05	1.0000	4.9214"+03	NM	1.8339	1.8099	2.4300*+02	7.6294*+01
-2.5400*-01	3.1800"+02	0.0000	2.5217"=04	0.0000"+00	0.1444	4.6448*-04	6.9701*+02	2.9286*+02
72010102	3.9800	1.0005	1.3601*+03	1.6150"-03	7.7991	1.4026	3.3551"+03	3.3551"+03
3.0455*-01	4.9600*+05	1.0000	4.5217*+03	NM	1.8344	1.8054	2.5300"+u2	7.6294"+01
-2.5400*-01	3.1800*+02	0.0000	2.3169*+04	0.0000"+00	0.1445	4.2450"-04	6.9701"+02	2.9286"+02
72010103	3.9800	1.0005	1.5466*+03	1.5501"-03	7.7648	1.3919	3.3551"+03	3.3551*+03
3.1674"=01	4.9600*+05	1.0000	5.1425*+03	NM	1.8416	1.8169	2.9300"+02	7.6294*+01
-2.5400"=01	3.1800*+02	0.0000	2.6350*=04	0.0000"+00	0.1450	4.7561"-04	6.9701"+92	2.9286*+02
72010104	3.9800	1.0005	1.6522*+03	1.4531*-03	7.6327	1.4013	3.3551*+03	3.3551*+03
3.2969*-01	4.9600*+05	1.0000	5.4930*+03	NM	1.6241	1.7917	2,9300*+02	7.6294*+01
-2.5400*+01	3.1800*+02	0.0000	2.8146*-04	0.0000*+00	0.1436	5.2785"-04	6.9701*+02	2.9266*+02
72010105	3,9800	1.0005	1.5143*+03	1.4530*=03	7.8375	1.4032	3.3551*+03	3.3551*+03
3.4265"-01	4_9600*+05	1.0000	5.0346*+03	NM	1.6259	1.7927	2.9300*+02	7.6294*+01
-2.5400"-01	3.1800*+02	0.0000	2.5797*=04	0.0000*+00	0.1436	4.8452"-04	6.9701*+02	2.9286*+02
72010106	-3.8329	0.9989	1.7003"+03	1.4466**03	7.3983	1.4061	4.0919*+03	4.0919*+03
3.5509*=01	#.9600"+05	1.0000	5.3443"+03	NM	1.8156	1.7680	2.9300*+02	6.0747*+01
-2.5400*=01	3.1800"+02	0.0000	2.5369"=04	3.0310**=01	0.1415	4.6959*=04	6.9056*+02	2.9333*+02
72010107	3.5295	0.9952	2.2417*+03	1.3768*=03	6.5496	1.4481	6.2366*+03	6.2366*+03
3.6049*-01	4.9600*+05	1.0000	6.2620*+03	NF	1.7443	1.7674	2.9300*+02	9.1079*+01
-2.5400*-01	3.1600*+02	0.0000	2.5311*=04	3.8798*=01	0.1375	4.5352"-04	6.7536*+02	2.9440*+02
7201010A	3.3775	0.9932	2.8211"+03	1.2666"=03	6.3806	1.5758	7.7487*+03	7.7487*+03
3.9319"-01	4.9600"+05	1.0000	7.4206"+03	NM	1.7926	1.7655	2.9300*+02	9.6907*+01
-2.5400"-01	3.1800"+02	0.0000	2.7635"=04	5.1195"=01	0.1358	4.7740*-04	6.6663*+02	2.9501*+02
72010109	3.2267	0.9910	2.9751"+03	1.2688"=03	5.8675	1.4972	9,6474*+03	9.6474"+03
4.0589*-01	4.9600"+05	1.0000	7.3665"+03	NP	1.7727	1.7483	2,9300*+92	1.0317"+02
-2.5400*-01	3.1800"+02	0.0000	2.5261"=04	5.2098"=01	0.1328	4.3478*-04	6,5712*+02	2.9566"+02
72010110	3.0747	0.9886	3.5624*+03	1.1742==03	5.6828	1.6260	1.2077"+04	1.2077*+U4
4.1859*-01	4.9600*+05	1.0000	8.3002*+03	NM	1.7680	1.7464	2.9300"+02	1.10U1*+02
-2.5400*-01	3.1800*+02	0.0000	2.6205*+04	6.5298"=0!	U.1308	4.36"3"-04	6.4658"+02	2.9637*+U2
72010111	2.9209	0.9860	4.1226*+03	1.2271"-03	5.1226	1.5220	1.5211"+04	1.5211"+04
4.3129*-01	4.9600"+05	1.0000	9.0265*+03	. NM	1.7594	1.7373	2.9300"+02	1.1750"+02
-2.5400*-01	3.1800"+02	0.0000	2.6195*-04	7.0225"-01	0.1283	4.2337*-04	6.3482"+02	2.4715"+02
72010112	2.7713	0.9833	4.4661*+03	1.1809**03	5.0278	1.7057	1.9096*+04	1.9096"+04
4.4400*-01	4.9600"+05	1.0000	9.2038*+03	NM	1.7662	1.7479	2.9300*+02	1.2539"+02
-2.5400*+01	3.1800"+02	0.0000	2.4610*=04	7.7118**01	0.1268	5.7944*-04	6.2220*+02	2.9797"+02
72010113	2.6169	0.9803	5.7028*+03	1.5257*~U3	4.2220	1.4395	2.4216#+04	2.4516#+04
4.5669*-01	4.9600*+05	1.0000	1.1040*+04	NM	1.7956	1.7806	2.9300#+02	1.3450#+05
-2.5400*-01	3.1800*+02	0.0000	2.7150*=04	7.4629*+01	0.1263	3.5797"-04	6.0781#+02	2.4888#+04
72010114	2.4661	0.9772	6.7840*+03	1.7262"-03	3.8493	1.4210	3.0603*+04	2.0603#+04
4.6939*-01	4.9600*+05	1.0000	1.2357*+04	NM	1.6182	1.8086	2.4300*+02	1.4348#+02
-2.5400*-01	3.1800*+02	0.0000	2.8041**04	7.7266"-01	0.1252	3.7717*=04	5.9227*+02	2.9985#+u2
72010115	2.5545	0.9790	6.7071°+03	1.80694-03	3.9027	1.3867	2.6673*+04	2.6673*+04
4.8209*-01	4.9600*+05	1.0000	1.2661*+04	NM	1.8399	1.8298	2.9300*+02	1.3796*+02
-2.5400*-01	3.1800*+02	0.0000	3.0110*=04	-4.68744-01	0.1280	4.0063"-04	6.0157*+02	2.9928*+02
72010116	2.6504	0.9810	6.3462*+03	1.9101"=03	4.0313	1.314°	2.2995*+04	2.2495#+U4
4,7479***01	4.9600*+05	1.0000	1.2453*+04	NP	1.8614	1.851	2.4300*+02	1.3223#+U2
*2.5400***01	3.1800*+02	0.0000	3.1183*+04	-4.0969"=01	0.1308	4.093 "-04	6.1106*402	2.9868#+U2
72010117	2.9977	0.9874	5.4645*+03	1.9004"-03	4.6944	1.2617	1.3550#+04	1.3550#+04
5.4554*-01	4.9600*+05	1.0000	1.2342*+04	NM	1.8886	1.8762	2.9300#+02	1.1365#+02
~2.5400*-01	3.1800*+02	0.0000	3.7357*-04	-3.2206"-01	0.1378	4.9625"-04	6.4084#+02	2.9675#+02
72010114	3.5347	0.9953		1.6705"-03	6.0271	1.2326	6.1909*+03	6.1909*+U3
6.4719*-01	4.9600*+05	1.0000		NM	1.8930	1.8737	2.9300*+02	10+*880.9
-2.5400*+01	3.1800*+02	0.0000		-2.4024"-01	0.1447	7.7625"-04	6.7554*+02	50+*8649.5
72010119	3.6361	0.9966	4.4744"+03	1.6387"-03	6.3213	1.2365	5.3685*+03	5.3685*+03
6.7259"-01	4.9600*+05	1.0900	1.3032"+04	NM	1.8922	1.8710	2.9300*+02	8.7261*+91
-2.5400"-01	3.1600*+02	0.0000	5.5762"-04	-2.0772"-01	0.1457	8.2026"-04	6.8101*+02	2.9400*+02

CAT 7201	LEHIS		BOUNDARY CON	SITIONS AND E	ALUATED D	ATA, SI UNIT	s.	
RUN	4D #	TW/TR	PED2W	CF #	H12	H12K	PW	PD
X •	HOD#	PH/PD+	RE DZD	Ċ9	H32	H32K	TW*	TD
RZ +	TOD*	5W #	12	PI2*	H42	DZK	UD	TR
72010201	3.9800	1.0005	2.2878*+03	1.3574"-03	7.8179	1.3900	3,3551*+03	3.3551"+03
4.9479"-01	4.9600"+05	1.0000	7.6062*+03	(I)M	1.6294	1.8044	2.9300"+02	7.6294*+01
-2.5400"-01	3,1800*+02	0.000	3.8973"-04	0.0000*+00	0.1440	7.2586*-04	6,9701*+02	2.9286*+02
72010202	3.9800	1.0005	2.4727*+03	1.3542*+03	7.8492	1.4161	3.3551"+03	3.3551*+03
5.4559*-01	4.9600*+05	1.0000	8.2209"+03	NM	1.8368	1.8152	2.9300"+02	7.6294"+01
-2,5400"-01			4.2123"-04	0.0000*+00	0.1446	7.7220"-04	6.9701"+02	
72010203	3.4800	1.0005	2.6543"+07	1.3289*-03	7.7639	1.3601	3.3551*+03	3.3551"+03
5.9665*-01	4.4600"+05	1.0000		NM	1.8298	1.8035	2.9300"+02	7.6294*+01
-2.5400"-01	3,1800*+02	0.0000	4.5217*-04	0.0000*+00	0.1440	8,4055*-04	6,9701"+02	2,4286*+02
72010204	3,9800	1.0005	2.6314"+03	1.3531**03	7.7436	1.3574	3,3551*+03	3.3551"+03
5.9690"-01	4.9400"+05	1.0000	6.7482"+03	NM	1.8352	1.8108	2.9300*+02	
-2.5400"-01	3,1800"+02	0.0000	4.4825"-04	0.0000*+00	0.1444	8.2342"-04	6.9701*+02	2.4286*+02
72010205	3,4800	1.0005	2.6840"+03	1.3043"-03	7.7463	1.3475	3.3551"+03	3.3551*+03
6.4719"-01	4.9600*+05	1.0000	4.5883*+03	NM	1.8299	1.8045	2.9300"+02	7.6294"+01
-2.5400"-01	3,1800*+02	0,000	4.4124"-04	0.0000"+00	0.1440	9.1416"-04	6.9701"+02	2,9286*+02
72010206	3.7800	1.0005	2.9769*+03	1.2999"-03	7.7040	1.3285	3.3551*+03	3.3551"+03
6.7259*-01	4.7600*+05	1.0000	9.8971"+03	NM	1.6330	1.8086	2.9300"+02	
-2.5400"-01	3.1800*+02	0.0000	5.0712*-04	0.0000*+00	0.1442	9.3727"-04	6.9701"+02	2.9286*+02
72010207	3.9800	1.0005	3.2951*+03	1.2367"-03	7.6520	1.3950	3.3551*+03	3.3551*+03
7.7368"-01	4.9000*+05	1.0000	1.0955*+04	NM	1.8261	1.7979	2.9300"+02	7.6294"+01
-2.5400"-01	3.1800"+02	0,000	5.6132"-04	0.0000*+00	0.1436	1.0529*-03	6.9701"+02	2.9286*+02
72019248	3.9800	1.0005	3.7273*+03	1.2117*-03	7.7980	1.3690	3.3551"+03	3.3551"+03
8.7478"-01	4.4600*+05	1.0000	1.2392"+04	NM	1.6315	1.8068	2.9300"+02	7.6294"+01
-2.3400"-01				0.0000*+00	0.1440	1,1786"-03		
72010249	3.4400	1.0005	3.6475*+03	1.2263"-03	7.7222	1.3229	3.3551*+03	3.3551"+03
8.7574*-01	4.9600"+05	1,0000	1.2127"+04	NM	1.6295	1.8081	2,9300"+02	
-2.5400"-01	3.1800*+02	0.0000	6.2135"-04	0.0000*+00	0.1439	1.1617"-03	6.9701*+02	2.9286"+02

CAT 7201	LEWIS		BOUNDARY CON	DITIONS AND E	VALUATED (DATA. SI UNIT	18.	
RUN	MD #	TW/TR	PED2H	CF *	H12	DSK	PW	PD
X N	POD#	PW/PD#	PED2D	CQ	H32	H35K	TW#	TD
RZ +	TOD#	SW #	D2	PIZ*	H42	H15K	UD	TR
72010101	3.9800	1.0005	1.4803"403	1.5154"-03	7.9198	1.4601	3.3551*+03	3.3551*+03
2.9159"-01	4.9600*+05		4.9214"+03	NM	1.8339	1.6099	2.9300*+02	7.6294*+01
-2.5400"-01	3.1800*+02		2.5217"=04	0.0000"+00	0.1444	4.6448"-04	6.9701*+02	2.9286*+02
72010102	3.9800	1.0005	1.3601*+03	1.6150"=03	7.7991	1.4026	3.3551"+03	3.3551*+03
3.04557-01	4.9600*+05	1.0000	4.5217*+03	NM	1.8344	1.8054	2.9300"+02	7.6294*+01
-2.54007-01	3.1800*+02	0.0000	2.3169*=04	0.0000"+00	0.1445	4.2450*-04	6.9701"+02	2.9286*+02
72010103	3.9800	1.0005	1.5465"+03	1.5501**03	7.7648	1.3919	3.3551*+03	3.3551*+03
3.1674*-01	4.9600*+05		5.1425"+03	NM	1.8416	1.6169	2.9300*+02	7.6294*+01
-2.5400*-01	3.1800*+02		2.6350"+04	0.0000*+00	0.1450	4.7561"-04	6.9701*+02	2.9286*+02
72010104	3.9800	1.0005	1.6522#+03	1.4531"-03	7.6327	1.4013	3.3551*+03	3.3551"+03
3.2969*-01	4.9600*+05	1.0000	5.4730#+03	NM	1.6241	1.7917	2.9300*+02	7.6294"+01
-2.5400*+01	3.1800*+02	0.0000	2.8146#+04	0.0000"+00	0.1436	5.2785*-04	6.9701*+02	2.9266"+02
72010105	3.9800	1.0005	1.5143"+03	1.4530"-03	7.8375	1.4032	3.3551*+03	3.3551*+03
3.4265"=01	4.9600*+05	1.0000	5.0346"+03	NM	1.8239	1.7927	2.9300*+02	7.0294*+01
-2.5400"=01	3.1800*+02	0.0000	2.5797"=04	0.0000"+00	0.1436	4.8452*-04	6.9701*+02	2.9286*+02
72010106	·3.6329	0.9989	1.7003"+0%	1.4466"-03	7.3983	1.4061	4.0919*+03	4.0919*+03
3.5509"=01	4.9600*+05	1.0000	5.3443"+03	NM	1.8150	1.7880	2.9300*+02	8.0747*+01
-2.5400"=01	3.1800*+02	0.0000	2.4369"-04	3.0310"-01	0.1418	4.6959*-04	6.9056*+02	2.9333*+02
72010107	3.5295	0.4952	2.2417*+03	1.3768"=03	6.5996	1.4451	6.2366*+03	6.2366*+03
3.8049"-01	4.9600"+05	1.0000	6.2620*+03	NM	1.7943	1.7674	2.9300*+02	9.1079*+01
-2.5400"-01	3.1800"+02	0.0000	2.5311*+04	3.6798"=01	0.1375	4.5352"-04	6.7536*+02	2.9440*+02
72010105	3.3775	0.9932	2.8211"+03	1.2666"=03	6.3806	1.5758	7.7487*+03	7.7487"+03
3.9319"-01	4.9600"+05	1.0000	7.4206"+03	NM	1.7926	1.7655	2.9300*+02	9.6907"+01
-2.5400"-01	3.1800"+02	0.0000	2.7635"+04	5.1195"=01	0.1356	4.7740*=04	6.6663*+02	2.9501"+02
72010104	3.2267	0.9910	2.9751*+03	1.2686"-03	5.8675	1.4972	9.6474*+03	9.0474*+03
4.0589"-01	4.9600"+05	1.0000	7.3685*+03	NM	1.7727	1.7453	2.9300*+02	1.0317*+02
-2.5400"-01	3.1800"+02	0.0000	2.5281*=04	5.2098"-01	0.1328	4.3476*-04	6.5712*+02	2.9566*+02
72010110	3.0747	0.986	3.5624*+03	1.1742**03	5.6828	1.6260	1.2077*+04	1.2077*+04
4.1859*-01	4.9600"+05	1.0000	8.3002*+03	NM	1.7680	1.7464	2.9300*+02	1.1001*+02
-2.5400*-01	3.1800"+02	0.0000	2.6205*+04	6.5298*=01	0.1308	4.3643*-04	6.4658*+02	2.9637*+02
72010111	2.9207	0.9860	4.1226*+03	1.2271"=03	5.1226	1.5220	1.5211"+04	1.5211*+04
4.3129"-01	4.9600"+05	1.0000	9.0268*+03	. NM	1.7594	1.7373	2.4300"+02	1.1750*+02
-2.5400"-01	3.1800"+02	0.0000	2.6195*-04	7.0225"=01	0.1263	4.2337*-04	6.3462"+02	2.9715*+02
72010112	2.7713	0.9833	4.4661*+03	1.1809"-03	5.0278	1.7057	1.9096*+04	1.4096"+04
4.4400*-01	4.9600*+05	1.0000	9.2036*+03	NM	1.7642	1.7479	2.9300*+02	1.2939"+02
-2.5400*-01	3.1800*+02	0.0000	2.4610*-04	7.7118"-01	0.1268	3.7944*=04	6.2320*+02	2.9797"+02
72010113	2.6169	0.9803	5.7026"+03	1.5257"-03	4.2220	1.4395	2.4216"+04	2.4216*+04
4.5669"-01	4.9600"+05	1.0000	1.1040"+04	NM	1.7956	1.7808	2.9300"+02	1.3420*+02
-2.5400"-01	3.1800"+02	0.0000	2.7150"-04	7.4629"-01	0.1263	3.8797"-04	6.0781"+02	2.488*+02
72010114	2.4661	0.9772	6.7840*+03	1.7262"+03	3.8493	1.4210	3.0603"+04	3.0603"+04
4.6939*-01	4.9600"+05	1.0000	1.2357*+04	NM	1.8182	1.8086	2.9300"+02	1.4348"+02
-2.5400*-01	3.1800"+02	0.0000	2.8041*=04	7.7286"+01	0.1252	3.7717*~04	5.9227"+02	2.9985"+02
72010115	2.5545		6.7071"+03	1.8069*=03	3.9027	1.3467	2.6673"+04	2.6673"+04
4.8209*-01	4.9600*+05		1.2661"+04	NM	1.8399	1.8298	2.9300"+02	1.3796"+02
-2.5400*-01	3.1800*+02		3.0110"+04	-4.6879*+01	0.1280	4.0063"-04	6.0157"+02	2.9928"+02
72010116	2.6504	0.9810	6.3462*+03	1.9101"=03	4.0313	1.3145	2.2995"+04	2.2995*+04
4.9474*-01	4.9600"+05	1.0000	1.2453*+04	NM	1.8614	1.8514	2.4300"+02	1.3225*+02
-2.5400*-01	3.1600"+02	0.0000	3.1163*+04	-4.0969"-01	0.1308	4.0938"+04	6.1106"+02	2.9868*+02
72010117	2.9977	0.9874	5.4645*+03	1.9004*-03	4.6944	1.2617	1.3550"+04	1.3550*+04
5.43597-01	4.9600"+05	1.0000	1.2342*+04	NM	1.8586	1.8762	2.9300"+02	1.1366*+02
-2.5400*-01	3.1800"+02	0.0000	3.7357*=04	-3.2206*-01	0.1378	4.9625*-04	6.4084"+02	2.9675*+02
72010118	3.5347	0.9953	4.7450*+03	1.6705"-03	6.0271	1.2326	6.1909*+03	6.1909*+03
6.4719*-01	4.96/0"+05	1.0000	1.3282*+04	NM	1.8930	1.8737	2.9300*+02	9.088**+01
-2.5400*-01	3.1506"+02	0.0000	5.3835*-04	-2.4024"+01	0.1447	7.7625*=04	6.7564*+02	2.9438*+02
72010119	3.6361	0.9966	4.4744*+03	1.6387"=03	6.3213	1.2365	5.3685*+03	5.3685*+03
6.7259*-01	4.9630"+05	1.0000	1.3032*+04	NM	1.8922	1.8710	2.9300*+02	8.7261*+01
-2.5400*-01	3.1600"+02	0.0000	5.5762*=04	-2.0772"=01	0.1457	6.2026"+04	6.8101*+02	2.9400*+02

720101	LOI LEM	18	PROFILE	TABULATION	21	POINTS, DE	LTA AT POI	NT 15
I	Y	PT2/P	P/PD	T0/10D	M/MD	ひといか	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	NM	0.92136	0.0000	0.00000	3.54940	0.00000
2	3.5326"-94	3.4595*+00	NM	0.95219	0.37994	0.62700	2.72334	0.23023
3	4.1041"-04	3,4465*+00	NM	0.95209	U.37909	0.62600	2,72689	0.22957
4	6.2341"-04	4.6355*+00	NM	0.96015	0.45039	0.70300	2.43627	0.28856
5	8.6238"-04	6-1482*+00	ΝM	0.96816	0.52684	0.77200	2,14725	0.35953 0.42328
6	1.2780"-03	7.5520*+00	NM	0.97405	0.58878	0.81900 0.85000	1.93490	0.47540
?	1.6988"-03	8.7200*+00	NM NM	0.97813 0.98319	0.63568	0.8A70U	1.60548	0.55248
8	2.2079"-03	1.0470"+01 1.2286"+01	Nw law	0.98746	0.76105	0.91700	1.45180	0.63163
10	2.7170*-03 3.2157*-03		Nw Nw	0.99142	0.82505	0.94400	1.30912	0.72109
11	3.7612"-03		NM	0.99473	0.88560	0.96600	1.18980	0.81190
iż	4.2911"-03	1.8454*+01	NH	0.99734	0.93908	0.98300	1.09572	0.89712
îŝ	4.7431*-03		NM	0,99874	0,97029	0.99200	1.04525	0.94905
14	5.2678"-03	2.0553"+01	NM	84999.0	0.99239	0.99800	1.01135	0.98480
D 15	5.8133"-03	2.0863*+01	NM	1.00000	1.00000	1.00000	1,00000	1.00000
16	6.3224"-03	2.0863*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
17	6.8990"-03	2.0707"+01	NM	0.99984	0.99618	0.99900	1.00568	0,99336
18	7.3926"-03	2.0863*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
19	7.7458"-03	2.0863"+01	NM	1.00000	1.00000	1.00000	1.00000	1,00000
50	8.4160"-03	2.0863"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
51	8.9563"-03	2.0863*+01	NM	1.00000	1.00000	1.00000	******	******
INPUT	VARIABLES	Y/DELTA,U/UD	ASSUME	PEPD AND	VAN DRIES	T		
72010	LOS LEW	15	PROFILE	TARULATION	18	POINTS, DEL	LTA AT PUT	vT 18
Į	Y	PT2/P	P/PD	T0/T0D	MZHD	UZUD	1/10	RHU/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	0.92138	0.00000	0.00000	3.84040	0.00000
2	2.2441"-04	3.5118*+00	MM	0.95257	0.36337	0.63100	2.70904	0.23292
3	3.5577"-04	3.4208*+00	ИM	0.95189	0.37739	0.62400	2.73399	0.22824
4 5	5.1998"-04 7.9365"-04	4.9410*+00 6.3344*+00	NP	0.96194	0.46688	0.71900	2.37166	0.30316
5	1.3052"-03	7.(207*+00	MIS	0.96902 0.97431	0,53547 0,59165	0.77900 0.82100	2.11642	0.36807 0.42636
7	1.7351"=03	8.8458*+00	196.	0.97853	0.54053	0.85300	1.77347	0.48098
ė	2.2879"=03	1.0633"+01	NM	0.98361	0.70574	0.89000	1.59034	0.55943
ğ	2.8079"-03	1.3493"+01	Net	0.98789	0.76769	0.92000	1.43615	0.64060
10	3.2129"-03	1,4268"+01	1414	0.99127	0.82250	0.94300	1.31448	0.71739
11	3.8588"-03	1,6359"+01	[#M	0.99458	0.88266	0.96500	1.19529	0.80734
15	4.4116"-03	1.8076"+01	Me	0.99688	0.92915	0.98000	1.11244	0.88044
13	4.8549"-03	1.9528"+01	1141	0.99859	0.96671	0.99100	1.05088	0.94302
14	5.3749*-03	2.0402*+01	MM.	0,99953	0.98863	0.99700	1.01701	0.98032
15	5,8402"-03	2.0553*+01	Nh,	0.99968	0.99239	0.97800	1.01135	0,98680
16 17	6.8528"=03	2.0553"+01 2.0553"+01	iih iin	0,99468	0.99239	0.99800 0.99800	1.01135	0.98680 (1.9868A
o iá	7.8051*=03	2,0863*+01	11th	1.00000	1.00000	1.00000	1.00000	1.00000
	.,,	210000	.,,	.,,,,,,				
INPUT	VARIABLES	Y/DELTA,U/UD	assume	PEPD AND V	AN DRIEST			
72010	105 LEW	IS	PROFILE	TABULATION	16	POINTS, DEI	LTA AT POI	NT 17
1	Y	PT2/P	P/PD	TU/TOD	M/MD	מטעט	T/TD	RHO/RHOD&U/UD
1	U.0000*+00	1.0000*+00	Ιŧμ	0.92138	0.0000	0.00000	3.84040	0.00000
5	1.5075"-04	2.5754"+00	MM	0.94471	0,31559	0.54500	2,49319	0.10241
3	3.01517-04	3.4725"+00	NM	^.95229	0.38000	0.62500	2.71977	0.23090
4	4.5226"-04	4.2353*+00	HW	0.95764	0.42780	0.68000	2.52661	0 26914
	7.1218*-04	5.5605*+00	ИW	0.96529	0.49857	0.74800 0.78700	2.25085	0.33232
7	1.0189"-63	6,5562"+NO 8,3178"+OO	(JM 1494	0.97000 0.97680	0.54558 0.61904	0.54000	2.08084 1.83597	0.37821 0.45752
á	2.1417"-03	1.0154"+01	lim M	0.98236	0.68687	0.BA100	1.63560	0.53864
ŏ	2.7375"-03	1.2286"+01	ИW	0.98746	0.76105	0.91700	1.45180	0.63163
10	3.3010"-03	1,45284+01	ЦK	0.99172	0.83021	0.94600	1.29839	0.72860
ii	1,6572*-03	1.6901*+01	NM	0.49534	0.89760	0.97000	1.16782	0.83061
15	4.4550*-03	1.8979"+01	ИW	0.99796	0.95268	0.98700	1.07335	U.91955
13	4.9177*-03	2.0252"+01	βM	0,99937	0.98490	0.99600	1.02267	0.97392
14	5-5986"=03	2.0553"+01	NM	0.99966	0.99239	U.99800	1.01135	0.98680
15	6.2224"-03 6.6955"-03	2.0707"+01 2.0707"+01	NM NW	0,99984 0,99984	0.99616 0.99616	0.9990U 0.99900	1,00568	0.99336 0.99336
0 17	7.3089"-03	2.0863"+01	NW Mm	1.00000	1.00000	1.00000	1.00000	1.00000
18	7.8599"-03	2.0863"+01	11M	1.00000	1.06000	1.00000	1.00000	1.00000
								- +

INPUT VARIABLES Y/DELTA, U/UD ASSUME PHPD AND VAN DRIEST

720101	106 LEW	15	PROFILE	TABULATIO	ON 20	PUINTS, DE	LTA AT PUI	NT 15
1	Y	PT2/P	P/P0	TO/TOD	4/MD	U/UD	1/10	RHO/RHOU*U/UD
1	0.0000*+00	1.0000*+00	MIN	0,92138	0.00000	u.00000	3,62862	0.00000
ž	1.5039"-04	2.7897*+00	MIT	0.94754	0.34529	0.57400	2,76354	0.20770
3	2,7652"=04	3.1192"+00	\$46.	0.95040	0.37043	0.60500	2.66744	0.22661
4	4.0750*-04	3,8686*+00	П₩	0,95617	0.42151	0.66300	2.47406	0.20798
5 6	6.5490"=04	5.1396"+00	bite bite	0.96417	0.49559	0.73600	2,20549	0.33371 0.37672
7	9.7508"-04 1.6882"-03	6.0035*+00 8.1502*+00	NP.	0.96866	v.53998 v.63679	0.77400 0.84400	2.05456 1.75669	0.48045
á	2.1588"-03	9.7450"+00	IIM	0.98265	0.70076	0.68200	1.58417	0.55670
9	2.7506"-03	1.2005"+01	NM	0.98829	0.78081	0.92200	1.39436	0.66123
10	3,3230"-03	1.4460*+01	NM	0.99313	0.86060	0.95500	1.23143	0.77552
11	3.9458*-03 4.3854*-03	1.7145"+01 1.8847"+01	N₩ N₩	0.99721	0.93893 0.98570	0.98200	1.09385	0.89775 U.97551
13	5.0452*-03		HW	1.00000	1.00000	1.00000	1.00000	1.00000
14	5.5934"-03	1.9522#+01	NM	1.00016	1.00365	1.00100	0.49474	1.00630
0 15	6.1852"-03	1.9343"+01	IIM	1.00000	1.00000	1.00000	1.00000	1.00000
16	6.7722*-03		NM	0.99984	0.99638	U.99900	1.00526	0.99377
17 18	7.3107"-03 7.6734"-03		11h 11h	1.00000	1.00000	1.00000	1.00000	1.00000
19	8.4604*-03		HM HM	1.00000	1.00000	1.00000	0.99474	1.00000
20	9.0462"-03	1.9561"+01	Nμ	1.00031	1.00732	1.00200	0.98947	1.01267
INPUT	VARIABLES	Y/DELTA,U/UD	ASSUHE	PMPO AND	VAN DRIEST	,		
•		1,000 11,000	1,000	7 6 1175	VIII 0 820 1			
72010	107 LEW	18	PHOFILE	TAMULATIO	NH 19	POINTS, DE	LTA AT PUI	NT 12
1	٧	P12/P	PZPD	T9/T00	HZMb	uzun	7/10	RHD/RH00*U/U0
		·	1,41		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1. AA.BA	1 31.64	
i	1.5377*-04	1.0000*+00 2.3725*+00	140 (31)	0.92136	0. 33656	0.54000	3.21694 2.57433	0.00000 0.20976
3	2.4/75*=04	2.9651"+00	114	0.95121	0.38978	0.60500	2.40919	0.25112
4	3.5017"-04	3.5074"+00	7461	0.95550	0.43198	0.65200	2.27003	0.28621
5	6.8344"-04	4.4131*+00	1,4	0.96524	0.49389	0.71400	2.08492	0.34164
6	9,5255"-04	5.1676*+00	NM	0.9670	0.53982	0.75500	1.95609	0.36597
7	1.507A"~03 2.0886"~03		Mi. IIM	0.97515 0.98259	0.62654	0.8220U 0.87900	1.72125	0.47756 0.58379
9	2.6625"-03	1.1045*+01	1117	0.98952	0.81333	0.92900	1.30465	0.71207
10	3.2720"-03	1.3501"+01	ä	0.99489	0.70131	0.96600	1.14870	0.84043
11	3.8273"=03	1.5713"+01	45pr	0.49878	0.47487	0.99200	1.03545	0.45804
0 15	4.41674-03		1411	1.00000	1.07000	1.00000	1.00000	1.00000
13	4.9655"-03 5.5231"-03		11w 41b	1.00061	1.01307	1.00400	0.98217 0.99555	1.02223
iş	6.0712"=03		HW	1.00000	1.00000	1.00006	1.00000	1.00000
15	6.4436"-03	1.6509*+01	ii.	1.00000	1.00000	1.00000	1.00000	1.00000
17	7.2231 = 03		Nis	1.00000	1.00000	1.00000	1.00000	1.00000
18	7.8083"-03		HP.	1.00000	1.00000	1.00000	1.00000	1.00000
19	8.4234"-03		Hh	0.90985	0.99679	0.99900	1.00445	0.99458
INPUT	ANDIAGE	Y/DELTA, U/IID	ASSUME	P#PD AND	VAN DPIEST			
720101	_			TABULATIO			LTA AT PUI	
1	1	PT2/P	ዮ/ምዕ	10/100	14/110	U/U0	חזעז	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	HA		0.00000			0.0000
2	1.5058"-04		M#4	0.94548	3.35046	0.53400	2.32172	0.23000
3	4.6560"-04		11ts 11ts	U.95272 U.95610	0.41581 0.44813	U.61100 U.64600	2.15921 2.07803	0.28297 0.31087
s s	7.3405"-04	3.9430"+00	1144	0.94209	0.50630	0.70400	1.43343	0.36412
6	1.0616"-03	4.7897"+00	HM	0.46786	0.56457	0.75400	1.79512	0.42161
7	1.5924"-03		MIN	0.97022	0.05541	0.82690	1.56831	0.52905
8	2.1759"-03		N11 11M	0.98541	0.76863	U.84760	1.36190	0.45864
10	3.2751"=03	1.2435"+01	NM	80866.0	0.87210	U.9490U U.98700	1.18414	0.80143 U.94192
o ii	3.8737"-03	1.3877*+01	7114	1.00000	1.00000	1.00000	1.00000	1.00000
12	4.4120"-03	1.4109*+01	tim	1.00045	1.00863	1.00300	0.98687	1.01429
13	4.9973"-03	1.4031*+01	şin.	1.00030	1.00574	1.00200	0.99258	1.00949
14 15	5.5740"-03 6.1512"-03	1.3877"+01 1.3801"+01	1414 NM	1.00000	0.99716	1.00000	1.00000	1.00000
16	6.6414"-03	1.3677"+01	Nm Mi-	1.00000	1.00000	1.00000	1.00370	1.00000
17	7.2957"-03	1.3877*+01	NM	1.00000	1.00000	1.00000	1,00000	1.00000
18	7.8566*-03	1.3677"+01	IIm	1.00000	1.00000	1.00000	1,00000	1.00000
INPUT	VAPIABLES	Y/DELTA, U/IID	à b b l i d	PMPD AND	VAN DHIEST	•		

72010	111 LEW	18	PROFILE	TABULATIO	, 26	POINTS. DE	ELTA AT PUI	NT 15
I	Y	P12/P	P/PD	TUZTOD	HALID	UZUP	1/10	RHO/HHOD*U/UD
1	u.0000*+00	1.0000*+00	ин	0,92139	0.00000	0.00000	2.49357	v.00000
2	1.5257"=04	2.0576*+00	r) M	0.94663	0,36641	0.52900	2.08440	0.25379
3	3.1555"-04 4.3240"-04	2,5551*+00 2,5561*+00	tie. Liev	0.95282 0.95669	0.42810	0.66000 0.64100	1.76436 1.88601	0.30544 0.33951
5	7.0046"-04	3.4491"+00	1444	0.96171	0.51677	0.69100	1.78/96	U.38647
6 7	1.0160"-03	4.9800"+90 4.8792"+90	11M 1111	0.96694 0.97261	0.57050	0.74000	1.66248	0.43983 0.50405
8	1.6540"=03	5.7893*+00	Им	0.97824	0.09460	0.83700	1.45204	0.57043
9 10	1.9466"-03	6.8563"+00 7.8952"+00	11M 11M	0.98377 0.98835	0.76163	0.88100 0.91600	1.33802	u.65844 U.73687
it	2.5036"-03	8.9230*+00	Dr.	0.99227	0.87680	0.94500	1.16161	0.81353
12	2.7567"=03 3.0688"=03	9.7866*+00 1.0724*+01	NM Nm	0.99517 0.99799	0.92063 0.96592	0.96600 0.98600	1.10100	U.87739 U.94624
14	3.3254"-03	1.1135"+01	MM	0.99914	0.98513	0.99400	1.01808	0.97635
D 15	3.6237"=03 3.9253"=03	1,1459"+01 1,1514"+01	44 114	1.00000	1.00000	1.00000	1.00000 0.49648	1.00000
17	4,2305"-03	1.1404*+01	\$1 by	0.99986	0.99749	0.99900	1.00302	0.90599
18 19	4.4906"-03	1.1295"+01 1.1241"+01	6144 6144	0.99957 0.99942	0.99252	0.9970U 0.99600	1.00905	0.988US 0.98413
20	5,0635"-03	1.1295"+01	MM	0,99957	0.99252	0.09700	1,00905	0.98805
22 21	5.7285"-03 6.2764"-03	1.1295"+01 1.1295"+01	41) 41)	0.99957 0.99957	0.99252	0.4970U 0.9970U	1.00905	0.95805 0.95805
23	b.8416"-03	1,1295"+01	ИW	0.99957	0.99252	0.99700	1.00905	0.98805
24 25	7.4311"-03 7.9790"-03		NW ISIv	0.9992A 0.99856	0.98798 0.97544	0.99500 0.99000	1.01507	0.98022 0.110
26	8.5268=-03		NM	0.99814	0.96528	0.98700	1.03963	0.94992
INPUT	VARIABLES	Y/DELTA,U/UD	ASSUME	PEPD AND V	AN DRIES	T		
720101	.13 LEWI	:5	PROFILE	TABULATION	52	POINTS, DE	LTA AT POIN	12
1	٧	PT2/P	P/PD	T0/T0D	M/MD	U/U0	T/10	RHO/RHOD#U/UD
ı	0.0000*+00	1.0000=+00	NM	0.92138	0.00000	0.0000	2.18334	0.0000
2	1,5406"-04	2.3181"+00	M	0.45366	0.44660	0.59500	1.77498	0.33522
3 4	2.9686"-04	. 2.8579"+00 3.2004"+00	NM NM	0.96017 0.96379	0.51360	0.66400	1.67139	0.39727 0.43405
5	8.1106"-04	3,8471"+00	NM	0.96984	0.61537	0.75700	1.51329	0.50023
6 7	1.0146"~03	4,2458"+00 5,3803"+00	iim iim	0.97318 0.98127	0.651A2 0.74458	0.78700 0.85600	1.45777	0.53987 0.64767
8	2.1757"=03	6.6572*+00	NM	0.95864	0.53666	0.91500	1,19603	0.76503
10	2.7393"=03 3.3143"=03	7.9993"+00 8.8810"+00	NM NM	0.99495	0.92344	0.96300 0.96900	1.08751	0.8551 0.96359
11	3.8967"-03	4.2559*+00	NM	0.99986	0.99780	0.99900	1.00241	0.99660
D 12	4.4453"-03 5.0127"-03	9.2946*+00 9.2946*+00	bler bler	1.00000	1.00000	1.00000	1.00000	1.00000
14	5.5914"-03	9.2946"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
15	6.2114"-03 6.7486"-03	9.2946*+02 9.2174*+00	iih Iih	1.00000	1.00000	1.00000	1.00000	1.00000 5.5899.0
17	7.3575*-03	9,1792*+00	M	0.9995A 0.99917	0.99342	0.99700	1.00722	0.98985
18 19	7.8644*~03 6.4585"-03	9.0657"+00 8.9912"+00	NM NW	0.99889	0.98ú91 0.98261	0.99200	1.01442	0.97987 0.97331
50	9.014703	8.8447*+00 8.7369*+00	I/M	0.99834	0.97410	0.98800	1.02875	0.96039 88029.0
55 51	4.5407"-03	8.5268*+00	nm HM	0.99743 0.99711	0.96779 0.95537	U.98500 U.97900	1.035A8 1.05U08	0.93231
INPUT	VAPIABLES	Y/DELTA,U/UD	ABSUME	P=PD AND V	AN DRIEST			
720101	LI4 LEWI	19	PROFILE	TABULATION	sı	POINTS, DE	LTA AT POI	NT 10
1	¥	PT2/P	PZPD	TU/TOD	M/MD	n\nu	1/10	HHO/RHODAU/UD
1	0.0000*+00	1.0000*+00	MIS	0.92138	0.00000	0.00000	2.04204	v.vooov
ş	1.8590 04	2.7872"+00 3.2068"+00	M44 1414	0.96183 0.96648	0.53614 0.58564	0.67400 0.72000	1.57918	0.42680 0.47635
4	7.0458*-04	3.7742*+00	†¿M	0.97243	0,64571	0.77200	1.42742	0.54008
3	1.0225"-03	4.1819"+00 4.4293"+00	NN Hr	0.97560 0.98141	0.68541	0.85400 0.85400	1.37599	0.58431 0.66305
7	2.1167"-03	5.8865*+00	HW	0.98775	0.83026	0.90600	1.19677	U.76085
8	2.6829=-03 3.2448=-03	6.9365"+00 7.7850"+00	Me Me	0.94362 0.99771	0.96777 0.96580	U.95200 U.98300	1.094A2 1.03593	0.86560 0.94891
D 10	5.8532"-03	A.3099"+0U	MIN	1.00000	1.00000	1.00000	1.00000	1.00000
11	4.4574*-03	8.2777*+00 8.2457*+00	ИW ИМ	0.99986	0.99794 U.99588	U_9996U U_9946U	1.00426	0.99±88 0.99377
13	5.5666"-03	B.0841"+00	NM	0,99905	0.98570	0.99300	1,01487	U.97845
14 15	6.1094*-03 6.7009*-03	8.0571"+00 7.9650"+00	144 1114	0.99892 0. 99 851	0.98368	0.98900	1.02332	0.97543 0.96646
16	7.2755"-03	7.8743*+00	NP.	0.99811	0.97171	0.98600	1.05963	0.95762
17 18	7.8386"-03 6.3402"-03	7.5146*+00 7.7650*+00	1114 MK	0.99784	0.96777 U.96580	0.98400 0.98300	1.03383	0.95180 0.94891
19	9.0120"-03	7.7262*+00	f\#1	0.49744	0.96190	U.9810U	1.04011	0.94317
51 51	4.5762"-03	7.6680*+00 7.6104*+00	HM Nn	0.99718 0.99691	0.9580L 0.95416	0.97900 0.97700	1.04429 1.04846	0.93748 0.93184
INPUT	VAPIABLES	Y/DELTA,U/UD	ASSUME	PEPD AND V	AN DRIEST	•		

ě.

ī

1.0.4								
720101	15 I.EN)	15	PHOFILE	TABULATION	4 23	POINTS, DEL	_1A A1 Pu]	NT 14
I	Y	P12/P	PAPD	TUZTOD	AVMD	UNUP	1/10	RHO/RHOD*U/UI
1	0.0000"+00	1.0000*+00	:,0	0.92138	0.00000	v. unnaa	2.12348	0.00000
Ž	1.5417"-04	2.8037*+00	Mix	0,96055	0,51975	0.06500	1.63700	0.40623
3	2.870A"-04	3.0954"+00	7374	0.96374	0.55319	v.69790	1.58749	0.43906
4	4.5061"-04	3.7938*+00	110	0.97050	0.62527	U.76100	1.48124	0.51374
5	7.1769"-04	4.4116"+00	11%	0.97566	U.6A227	v. 80700	1.39904	0.57683
6	9.8350*=04	4.5929*+00	714	0.97704	0.69800	0.81900	1,37677	U.59487
7	1.2918"-03	4.8796*+00	141	0.97915	0.72232	0.83700	1.34273	0.52530
8	1.8394"-03	5.56737+00	1441	0.98373	0.77693	U.87500	1.26838	U.68985
9	2.3923"-03	6.3915"+00	Uh.	0.98861	0.83837	0.91400	1.18857	0.76899
10	2.9452"-03	7,19377+00	\$184	0.99275	U.89372	4.94600	1.12043	0.84432
11	3.5631"-03	M.0709"+00	ИN	0.99673	0.95051	0.97600	1.05436	. 0.92568
12	4.1094"-03	A.5299"+00	Hr.	0.99863	0.97890	0.99000	1.02282	U.96792
13	4.6464"-03	A. # 084*+00	114.	0.99973	0.99572	0.99800	1.00456	0.99345
1.4	5.3003*-03	8.8500"+00	1,14	1.00000	1.00000	1.30000	1.00000	1.00000
15	5.9276"-03	8.8800*+00	1117	1.00000	1.00000	1.00000	1.00000	1.00000
16	6.4433*=03	8.8441"+00	Hk	0.99986	0.99786	0.00900	1.00229	0.99672
17	7.0064-03	6.8441 4 +00	14M	0.49986	0.99786	0.799114	1.00229	0.99672
18	7.5543"-03	A.7729"+0U	N	0.99959	0.99359	0.99790	1.00687	0.99020
19	B.1179"-03	4.7729"+00	1144	0.99959	0.99359	0.99700	1.00687	0.99020
20	8.7186*-03	8.7025*+00	1118	0.99931	0.98936	0.99500	1.01144	0.98375
Žί	9.1705*-03	A. 44A4"+00	ым	0.99890	0.98306	0.79200	1.01827	0.97420
žž	9,8297"=03	8.52997+00	1180	0.99863	4.97890	0.99000	1.02202	0.96792
23	1.0420"-02	8.4286*+00	11M	55699.0	0.97270	0.94700	1.02961	0.95861
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							•••••
TUM	VARIABLES	Y/DELTA,U/UD	ASSUME	PEPD AND	VALI DRIEST			
20101 I	.19 I.EW Y	15 PT2/P	PROFILE P/PD	TABULATION TO/TOD	M\111D	POINTS, DEL	LTA AT PU1 T/TO	NT 23 RHOZRHOD±UZUI
		·						, , , , , ,
1	0.0000*+00	1,7000"+00	H.A.	0.92135	0.0000	0.0000	3.35775	0.00000
2	1.6122 -04	5.9892*+00	Sire	0.95063	0.34028	0.60200	2.50604	0.24022
3	1.0454"-04	3.55547+00	Mr.	0.45532	0.42274	0.65000	2.36421	U.27493
4	4.6576"-04	4.6801"+00	HP	0.96311	0.49567	0.72300	2.12759	0.53982
5	7.7030"-04	6.1649*+00	Mri	0.77122	0.57752	V.79200	1.88071	0.42112
9	1.003503	6.9061"+00	111.	0.97458	0.61422	0.81900	1.77797	U.46064
7	1.7914"-03	8.1989*+00	1314	0.97961	V.67339	0.85800	1.62346	U.5285U
ð	2.7229"-03	9.56447+00	N►	0.98410	0.73045	0.89100	1.48709	0.59916
9	3.5469"-03	1.0822"+01	thi	0.98759	0.77965	0.91600	1.38035	0.66360
10	4.4426"-03	1.1512"+01	PJK:	0.98930	U.80527	0.72800	1,32606	U.69876
1.1	5.3502"-05	1.2269"+01	UP.	0.49103	0.83245	0.94000	1.27504	0.73720
12	6,1445"-03	1.2816"+01	Πħ	0.99219	0.85154	0.94800	1.23940	0.76459
13	7.0581"-03	1.3325*+01	Ub	0.79322	U,85893	0.95599	1.20792	0.79062
14	7.9179*-03	1.3786"+01	11 ^{KC}	0.49411	0.88439	0.96100	1.14075	0.81369
15	6.7420"-03	1.4159*+01	Lib.	0.99485	0.89789	0.96600	1.15/98	J.83421
16	9.6018"-03	1.4697*+01	1450	0.99574	0.91414	0.97200	1.13050	0.85980
17	1.0408"-02	1.5142*+01	11,	0.99650	0.92839	0.97700	1.10747	0.88219
18	1.1304*-02	1.5609"+01	tit,	0.99725	0.94305	0.94200	1.08432	0.90564
19	1.2164"-02	1,5499"+01	118.	0.99786	0.95512	U.9M609	1.06571	0.92520
20	1.3059"-02	1.6404"+01	1461	0.99847	0.96751	0.99000	1.04704	U.94553
51	1.3973"=02	1-6719"+01	119,	0.99893	0.97702	U.7950¢	1.03297	0.96130
55	1.4653*=02	1.7265*+01	14,	0.90960	0.99332	0.39800	1.01944	0.98866
53	1.5531"-02	1.7492*+01	114.	1.00000	1.00000	1.00000	1.0004	1.00000
24	1.6517"-02	1.7723*+01	1182	1.00031	1.00078	1.00200	0.99054	1.01157
25	1.7412"-02	1.4079"+01	tit*	1.00077	1,01712	1.00500	0.47631	1.02939
20	1.8093"-02	1.8323"+01	rit:	1.00108	1.02415	1.00700	0.96674	1.04159
27	1.9186"-02	1.8447*+01	1397	1.00124	1.02779	1.00800	0.96203	1.04778
28	1.9956"-02	1.9221"+01	115"	1.00217	1.04958	1.01409	0.93536	1.08540
29	2.0726*-02	1.4996*+01	1144	1.00295	1,06859	1.01900	0.90933	1.12060
30	2.1658"-02	2.1935*+01	1480	1.00406	1,07653	1.02600	0.87550	1.17191
31	2.2342*-02	2.2045*+01	116-	1.00517	1.12014	1.03300	0.84143	1.22767
35	2.3843"-02	2.2741 *+01	116.	1.00580	1.14346	1.03700	0.62186	1.26178
	NAME AND A A	W.m. 1 0 4 11 11 11 11 11 11 11 11 11 11 11 11 1						**==***

INPUT VARIABLES Y/DELTA, H/UD ASSUME PAPO AND VAIL DRIEST

M: 4.9 R THETA X 10⁻³: 7 - 58. TW/TR: 1.0, 0.8, 0.25. 7202

ZPG AW - MHT - SHT

Boundary-layer channel. Effectively continuous. $V = 0.33 \, \text{H} = 0.272 \, \text{m}$. $0.1 < PO < 1.1 \, \text{MN/m}^2$. 320 < TO < 451 K. Air, dew point 215-233 K. 1.7 < RE/m X 10^{-6} < 25.

VOISINET R.L.P. and LEE R.E., 1972. Measurements of a Mach 4.9 zero-pressure-gradient turbulent boundary layer with heat transfer. Part I-Data compilation. NOL TR 72-232.

And Voisinet R.L.P., private communications, Lee et al (1966).

Also Lee, Yanta and Leonas (1968) (1969), Gates (1973) (CAT 7301)

- The test boundary layer was formed on a flat copper surface opposite the flexible half-nozzle. The plate was 2.69 m long and extended upstream of the nozzle throat (X = 0). The plate increased in width from 305 mm at the throat to 343 mm at the channel exit. The nozzle contours are presented in table 1 of section A and the height of the parallel section, as operated, was 272 mm. The plate could be actively cooled with water or liquid nitrogen, and the specification called for a surface finish with roughness below 0.8 km r.m.s. and waviness less than 5 X 10⁻³ m/m. The zero pressure gradient region started at X = 1.397 m and instrumentation could be attached to or inserted through five removable ports downstream
- of this point. (A full description of the basic facility is given by Lee et al., 1966). Axial Pitot surveys showed the flow to be shock free with less than 1 % variation of Mach number in the test zone. In a central
 - showed the flow to be shock free with less than 1 % variation of Mach number in the test zone. In a centra region along the test plate, about 150 mm wide, the flow did not exhibit any effects due to cross-flow.
- 3 Skin friction coefficients measured at a point 0.254 m downstream of the nozzle throat were very close to turbulent values at high PO. Low pressure tests (PO = 0.05 MN/m 2 PC) gave data which appeared to deviate from turbulent flow prediction. The authors therefore present only data for PO = 0.1 MN/m 2 or
- 4 above, which is believed to represent fully turbulent flow. The test boundary layer passed through the strong reflected-wave expansion of the nozzle, the pressure distribution being given in table 2 of section A. The wall temperature histories are given in table 3 of section A. Substantial heat-transfer from the flow occurred in the nozzle region.
- 6 Measurements were made at the five instrumentation ports centred on X = 1.624, 1.778, 1.981, 2.134, 2.286 m.
 7 Skin friction and heat flux measurements were made at these stations while traverses were made 76.2 mm
- 7 Skin friction and heat flux measurements were made at these stations while traverses were made 76.2 mm upstream. The relative positions of the various measurements, taking a local zero on the centre line at the X-value of the Pitot-probe tip are:

8 PT2 TAUM 0 PW (a) PW (b,c) TH T0 X: 0 + 76.2 + 76.2 0 76.2 0 (E) 0 mm Z: + 12.7 0 0 0
$$\stackrel{+}{_{\sim}}$$
 76.2 - 50.8 (E) - 12.7 mm

The static hole diameter was 0.79 mm, and wall temperature was measured by thermocouples attached to the underside of the copper plate. Temperature differences over the thickness of the plate were less than 1°K. Wall shear stress was measured using two FEB. For the AW and some MHT tests a Kistler balance (model 322 M 107) was used (Paros 1970). For the SHT and some MHT tests, a NOL design intended to operate in strongly cooled-wall and pressure-gradient conditions was employed. This was a modification of the design of Bruno et al. (1969). The floating element cooling system did not function, so that the temperature of the element was higher than that of the surrounding wall. In the SHT case, this difference could be as much as 100°K which, the authors suggest, could result in the balance recording a value as much as 20 % below the true wall stress. The heat-flux was measured with a thermo-pile gauge attached to the centre of each port, using the manufacturers calibration. (RdF Corp. Hudson, New Hampshire, Model 20463-3.)

7 Pitot, TO and P profiles were measured, however only Pitot and TO results, measured simultaneously, are presented (but see § 9 below). Two TTP were used, one an ECP (Danberg 1961) for which $\alpha = 5^{\circ}$, d = 1.27, 1 = 12.7 mm, and the other an FMP (Yanta, 1970) with a chromel / alumel junction, for which d = 0.0254,

b = 3.56 , l = 20 (E) mm. The TPP was an FPP for which $h_1 = 0.127$, $h_2 = 0.076$, $b_1 = 2.54$, l = 20 (E) mm.

- Any small differences in Y between the TTP and the TPP were eliminated by the authors who normalised the TO data to the Y values of the PT2 probe. The values for Y less than 0.635 mm were obtained by extrapolating the profile to meet the wall temperature. The static pressure distribution presented is an interpolation giving zero normal pressure gradient at the wall, agreeing with the measured value of PW, and with the values and trend of the static pressure in the free stream as determined from PT2 and the tunnel reservoir pressure (Voisinet et al. 1971). Substantial pressure variation is only observed at the first station, where the profile normal in the outer part of the boundary layer intercepts the last part of the nozzle expansion.
- 10 here reflected as a simple wave. Corrections were applied to the Pitot data for viscous and molecular effects, and also for probe-wall interference, Both corrections were based on calibration experiments.
- 11 (Source, Appendix A). Sutherland's viscosity relation was used.
- The editors have accepted the interpolations and corrections made by the authors. The edge reservoir state has been calculated from the static pressure and temperature data with the Mach number distribution as presented. The authors present their wall shear stress and heat transfer data as measured on separate occasions at the centre of the ports that is, 76.2 mm downstream of the profiles. The wall temperature histories for these runs were not exactly as for the profile measurements. The CF and CQ values presented with the profiles have been interpolated by the editors on the basis of the author's R THETA values alone. No adjustment has been made for the small X-difference, introducing a systematic error which is, however, very small as compared to the scatter of the data. Following the author's stated preference, the CF values presented for the MHT case are those measured with the NOL balance where possible. For the AW and SHT, data is only available from the Kistler and NOL balances respectively. Where comparison is possible, the Kistler balance appears to read systematically about 3 % higher. (Skin friction values for profiles 0601, 0701, 0801, 0901 and 1001 were measured with a Kistler balance. The authors state that the two balances agreed to within 5 % in comparative measurements.) We present revised data for profile 1201 (private communication).
- 13 The profile sets presented are distinguished by total pressure (Reynolds number), by the heat transfer on
- 14 the experimental wall, and by the TTP used. The data sets are:

7202	HT	NX	TTP	FEB	POD ₂	TOD K	TW K
0101-5	AW	5	ECP	Kistler	0.1	355	300
0201-5	AW	5	ECP	Kistler	0.5	365	295
0301-5	AW	5	ECP	Kistler	1.0	355	295
0401-4	AW	Ă	FWP	Kistler	0.1	355	295
0501-5	AW	5	FWP	Kistler	0,5	350	295
0601-5	MHT	5	ECP	NOL	0.1	415	300
0701-5	MHT	Š	ĔĊP	NÖL	0.5	415	300
0801-5	MHT	5	F.CP	NOL	1,0	415	300
0901-5	MHT	5	FWP	NOL	ō,ĭ	425	295
1001-5	MHT	5	FWP	NOL	0.5	420	295
1101-3	SHT	3	ECP	NOL	ő.i	425	.85
1201-3	SHT	3	ECP	NOL.	0.5	₹ 2 5	90
1301-3	SHT	3	ËČP	NOL	1.0	425	100
1401-2	SHT	ž	FWP	NOL.	0.1	425	85
1501-2	SHT	2	FWP	NOL	0.5	425	90

Data: 7202 0101-1502. Pitot and TO profiles simultaneously. HX = 2 to 5. CF from FEB, CQ from thermopiles, measured separately and with slightly different thermal histories.

15 Editors' comments

This entry describes the ZPG case which forms part of a comprehensive study using the same facility and the same instrumentation. The FPG case is described in CAT 7304, and the APG case in Voisinet et al. 1971. Taken together, the three data-sets cover a very wide range of systematically varied governing parameters. They provide the only fully documented case with a wide range of TM/TR values. These data supersede the earlier comparable tests in the same facility reported by Lee et al. (1968, 1969 - ZPG), Brott et al. (1969, 1970 - FPG). Tabular data for the APG (1971) case are not at present available.

In many cases substantial heat transfer took place in the nozzle region, so that there is a downstream heat-transfer history effect in addition to any downstream effect of the nozzle pressure-gradient. Thus, in the AW case, the zero-heat-transfer wall temperature is the TW value given in section B or table 3, and was determined by adjusting the wall cooling rate so as to have no measurable heat flux at the

measuring ports. This adiabatic wall temperature, TAM, differs noticeably from the "flat plate recovery temperature" TR. Further tests to assess the effect of upstream heat transfer are reported by Gates (CAT 7301). On a transformed wall-law plot many of the profiles show inner region characteristics which could be described as transitional.

Static pressure variations normal to the test surface were generally small, except for the first station, where the profile normal extends into the last, simple wave, part of the nozzle expansion. The reduced data of section 8 have been prepared both with a fixed reference state (the D-state) and also with a varying pressure-based reference state, the tables for which follow the normal section 8.

There are no truly comparable experiments, but the same Mach number and Reynolds number ranges are covered in part for the adiabatic wall case by Gates (CAT 7301), Allen (CAT 7303) and Mabey et al. (CAT 7402), with various geometries.

TABI	LE 1	TABLE 2							
NOZZLE CONTO	UR COORDINATES	NOZZLE	WALL PRESSURE DE	STRIBUTION					
x (m)	y (m)	x (meters)	P _{sw} /P _o Design	x 10 ³ Experiment					
0.0000 0.2794 0.3810 0.5588 0.7366 0.9144 1.0668 1.2446 1.4224 1.6002 1.7780 1.9558 2.1591 2.3368	0.01077 0.02959 0.04598 0.08738 0.12970 0.16475 0.18952 0.21296 0.23107 0.24485 0.25518 0.25518 0.26838 0.27162	0.000 0.127 0.257 0.385 0.559 0.635 0.711 0.787 0.864 0.940 1.067 1.143 1.194 1.270 1.448 1.524 1.702 1.778 1.905	528.30 194.04 70.02 29.24 11.47 8.25 6.22 5.22 3.97 3.32 2.66 2.41 2.31 2.20 2.12 2.12 2.12 2.12	10.68 8.00 6.04 4.68 3.95 3.44 2.67 2.43 2.29 2.10 1.99 1.99 2.04 2.09 2.04 2.02					
		2,134 2,210 2,286	2.12 2.12 2.12	2.05 2.11 2.14					

TABLE 3
MOZZLE WALL TEMPERATURE DISTRIBUTION

	A (meters)																
					0.000	0.279	0.467	0.711	0.864	1,067	1.194	1.448	1.702	1.905	2.057	2.210	
CAT	7202																
SERIES		Code	Po a tm	To OK	Average T _W (^O K)												
03	ZPG-AH	T01	10.	348.	307.	306.	303.	297.	297.	297.	297.	297.	297.	297.	297.	297.	
Ož		102	5.	348.	296.	297.	299.	29B.	298.	298.	298.	298.	298.	298.	298.	298.	
01		703	1.	348.	275.	283.	294.	298.	298.	298,	298.	298.	298.	298.	298.	298.	
OS		704	5.	348.	300 .	294.	294.	296.	296.	296,	296.	296.	296.	296.	296.	296.	
04		105	1.	346.	281.	264.	290.	296.	296.	296.	296.	296.	296.	296.	296.	296.	
08	ZPG-INIT	TUS	10.	423.	338.	J00 .	298.	298.	298.	298,	-	_		300.	299.	299.	
07		TOT	ı.	423.	327.	301.	299.	299.	299.	299.	297.	-	-	302.	301.	301.	
06		TDB	1.	423.	288.	301.	299.	299,	299.	299,	299,	299.	300.	301.	301.	301.	
10		70 9	5.	423.	342.	333.	319.	300.	299.	299.	299.	299.	299.	299.	299.	299.	
09		T010	1.	423.	300.	302.	303.	299,	299.	299,	299.	299.	299.	299.	299.	299.	
13	ZPG-CH	7011	10,	423.	332.	311.	208.	178.	124.	97,		87.	91.	91.	97.		
12,18	i	7012	5.	423.	320.	-	275.	142.	94.	88.	_	86.	86.	87.	89,	•	
11,14		TD13	1.	423.	287.	257.	160.	10.	66.	84.	-	84.	84.	85.	85.	-	

INFINITE

0.0000

1

2.3608"-03

Ř.

*

0.0000*+00

0.4671

CAT 7202	VOISINET		BOUNDARY CONC	TIONS AND E	VALUATED D	ATA. SI UNIT	s.	
RUN	MD *	TH/TR	PED2W	CF *	H12	DSK	Pw#	PD#
X +	POD	PW/PD	RED2D	CQ *	H32	H35K	Tw#	TD#
RZ	TOD	SW 4	D2	P12	H42	H15K	UD	TR
72020461	4.7417	0.9118	1.6627"+03	8.8000"=04	8.7567	1.4401	2.3560"+02	2.6371*+02
1.4480*+00	1.0268*+05	0.8934	6.5685"+03	NM	1.8368	1.7798	2.9500"+02	6.4330*+01
INFIHITE	3.5361*+02	0.0000	2.7921"-03	0.0000"+00	0.7551	5.6349"=03	7.6252"+02	3.2352*+02
72020407	4.7689	0.9092	1.9554"+03	8,2000"~04	7.9236	1.4601	2.4410*+02	2.4735*+02
1.9050#+00	1.01947+05	9889.0	7.8576"+03	NM	1.8172	1.7618	2.9370*+02	6.3222*+01
Infinite	3.5321*+02	0.000	3.4246"-03	9,0000"+00	0.6440	6.8993"-U3	7.6345*+02	3.2305*+02
72020403	4.8253	0.9066	2.1020*+03	8,1000*=04	7.6275	1.4562	2.4450*+02	2.4450"+02
2.0570*+00	1.0526*+05	1.0000	5.5234*+03	NM	1.8143	1.7584	2.9420*+02	6.2741"+01
infinite	3.5491*+02	0.0000	3.6870*-03	0,0000*+00	0.6627	7.4124"-03	7.6632*+02	3.2452"+02
72020404	4.7951	0.9045	2.0581"+03	8,1500*=04	8.1837	1.4656	2.4370*+02	2.4743"+02
2.2100*+00	1.0274"+05	0.9849	8.2597"+03	NM	1.8054	1.7516	2.9140*+02	6.2922"+01
Infinite	3.5228"+02	0.0000	3.5683"=03	0,0000*+00	0.6128	7.4723"-03	7.6262*+02	3.2218"+02
72020501	4.8684	8759.0	5.0612"+03	7.2000#=04	10.2367	1.3462	1.0620"+03	1.1505"+03
1.4480*+00	5.2136"+05	1259.0	2.1289"+04	NM	1.8481	1.7972	2.9550"+02	6.0699"+01
Infihite	3.4843"+02	0000.0	1.8455"-03	0.0000#+00	0.5250	3.6644"-03	7.6046"+02	3.1850"+02
72020502	4.6770	0.9258	5.8531"+03	6.5000*+00	9.4066	1.3896	1.0890"+03	1.1215*+03
1.7020*+00	5.1342*+05	0.9711	2.4681"+04	NM	1.8292	1.7751	2.9330"+02	6.0202*+01
Infinite	3.4659*+02	0.000	2.1641"=03	0.0000*+00	0.4862	4.6129*-03	7.5870"+02	3.1660*+02
7202U503	4.8610	0.4246	5.9597"+03	6.5000*-04	9.2694	1.3945	1.0990"+03	1,1056*+03
1.90507+00	4.9664*+05		2.4912"+04	NM	1.8286	1.7701	2.9590"+02	6,1141*+01
Infinite	3.5009*+02		2.2754"-03	0.0000*+00	0.4312	4.8749"-03	7.6208"+02	3,2004*+02
72020504	4.8902	0.9224	6.4075*+03	0.0000.+00	9.3105	1.3837	1.0910"+03 2.9520"+02 7.6295"+02	1.1110"+03
2.0570*+00	5.1664"+05	0.9820	2.6997*+04	NW	1.8251	1.7723		6.0551"+01
Infinite	3.5016"+02	0.000	2.4039*-03	9.720001	0.4797	5.1613**=03		3.2004"+02
72020505	4.9018	0.9248	6,6369*+03	6.1500#-04	9,1184	1,3666	1.1090*+03	1.1088"+03
2.2100*+00	5.2275"+05	1.0002	2,8122*+04	NM	1.8206	1,7685	2.9630*+02	10+"68E0.3
Infinite	3.5056"+02	0.0000	2,4927*-03	0.0000#+00	0,4512	5,3806"=03	7.6370*+02	3.2038"+02
72020641	4.7747	0.7845		1.0550*-03	6.5257	1.4442	2.3350"+02	2.4746*+02
1.44607+00	1.0027"+05	0.9436		7.0100*-05	1.5247	1.7733	2.97"0"+02	7.4667*+01
Infinite	4.1512"+02	0.0000		0.0000*+00	0.8665	6.5603**=03	8.2722"+02	3.7971*+02
72020602	4.8182	0.7888	1.9743"+03	1.0350*-03	6,3306	1.4471	2.3660"+02	2.3964*+02
1.7020*+00	1.0229"+05	0.9965	6.9301"+03	6.7600*-05	1.8152	1.7628	2.9760"+02	7.3117*+01
Infinite	4.1260"+02	0.0000	3.8539"=03	0.0000*+00	0.8434	6.9861"-03	6.2604"+02	3.7729*+02
72020403	4.8303	0.7939	6.9317"+03	1.0250*=03	6.7650	1.4461	2.3370*+02	2.3696"+U2
1.9050*+00	1.0349"+05	0.9780		6.5800*=05	1.8130	1.7613	3.0300*+02	7.3660"+01
Infinite	4.1738"+02	0.0000		0.0000*+00	0.8410	7.3032**-03	8.3119*+02	3.6164"+02
72020604	4.8128	0.7988	7.2784"+03	1.0100*=03	4.6339	1.4549	2,4130"+02	2.4219"+02
2.0570"+00	1.0272*+05	0.9963		6.3700*=05	1.8038	1.7531	3,4130"+02	7.3840"+01
Infinite	4.1591*+02	0.0000		0.0000*+00	0.8021	7.6801"-43	6,2919"+02	3.8034"+02
72020605	4,8114	0.7965	6.9586*+03	1.0320=-03	7.2503	1.4642	2.3430"+02	2.4490"+02
2.2100"+00	1.0369"+05	0.9730		6.5800=-05	1.7936	1.7462	3.0180"+02	7.3595"+01
Infinite	4.1434"+02	0.0000		0.0000+00	0.7603	7.6203"-03	8,2757"+02	3.7890"+02
72020701	4.6228	0.7890	2.03464+04	8.0500***04	8.9558	1.3463	1.0240*+03	1.1927*+03
1.44607+00	5.1190*+05	0.8584		5.1000***05	1.8421	1.7436	2.9840*+02	7.3184*+01
Infinite	4.1363*+02	0.000		0.0000**00	0.8117	4.5215**03	8.2721*+02	3.7822*+02
72020702	4.8632	0.7905	2.3006"+04	7.1000=-04	7.5705	1.3707	1.0790"+03	1,1221*+03
1.7020*+00	5.0535"+115	0.9616		4.6600=-05	1.8280	1.7786	2.9950"+02	7,2333*+01
Infinite	4.1446"+12	0.0000		0.0000=+00	0.7654	5.0798"-03	8.2926"+02	3,788**+02
72020703 1.9050*+00 Infinite	4.9358 5.1957"+05 4.1813"+02	0.7921 1.0012 0.0000	2.3297"+04	7.1000-04 4.6400-05 0.000-00	7.1484 1.8205 0.7422	1.3973 1.7703 5.2627"-03	1.06004+03 1.06004+03 1.06004+03 1.06004+03	1,0587"+03 7.1202"+01 3.8205"+02
72020704	4.6872	0.7934	2.5604"+04	4.5500"-04	7.3385	1.5674	1.0860"+03	1.1034*+03
2:0570*+00	5.1346"+05	0.9824		4.5500"-05	1.6191	1.7697	3.0020"+02	7.1616*+01
Infinite	4.1400"+02	0.000		0.000"+U0	0.7483	5.6919"-03	6.2957"+02	3.7639*+02
72020705 2.2100*+00 Infinite	4.6704 5.1973"+05 4.1537"+02	0.7919 0.4968 0.0000	2.5296"+04	4.6200"-04 4.6200"-05 0.0000"+00	7.4664 1.8039 0.6690	1.4067 1.7564 5.7761 "+03	1.1100"+03 3.0050"+02 8.3097"+02	1.1173*+03 7.1823*+01 3.7964*+02

INFINITE

9.0000

5.6862*-03

0.0000*+00

CAT 7202	VOISINET		BOUNDARY CON	UITIONS AND E	VALUATED I	DATA. SI UNIT	15.	
RUN	₩D *	TW/TR	PED2W	CF +	H12	H12K	PW#	PD#
X *	POD	PW/PD	REDSD	Ca *	H32	H32K	T 14 *	TD*
RZ	TOD	5W *	02	P15	H42	05K	UD	TR
72021201	4.9151	0.2237	2.3652*+04	1.1550"-03	5.5707	1.3604	1.1050"+05	1.1050"+03
1.9050*+00	5.2921*+05	1.0000	2.8139"+04	NM	1.8011	1.7713	8.6850"+01	7.2842*+01
INFINITE	4,2479"+02	0.0000	3.3081*-03	0.0000*+00	0.9182	5.40654-03	8.41074+02	3.8819"+02
72021202	4.9030	0.2414	2.3004*+04	1.2000"-03	5.4713	1.3577	1.0480*+03	1,0929"+03
2.0570"+00	5.1597"+05	0.9590	2.9354"+04	2.4800"-04	1.8021	1.7719	9.4010*+01	7.33054+01
INFINITE	4.2610"+02	0.0000	3.4354~-03	0.0000*+00	1.0194	5.7217"-03	8.4201"+02	3.8941"+02
72081203	4.8574	0.2279	3.3764"+04	1.1100*=03	3.4594	1.3378	1.1890*+03	1,1494"+03
2.2100*+00	5.1411*+05	1.0344	4.0140*+04	2.5400"-04	1.8231	1.7862	8.7960"+01	7.3811"+01
INFINITE	4.2211"+02	0.0000	4.6820*-03	0.0000*+00	1.0771	6.9945"-03	8.3671*+02	3,8589*+02
72021301	4.8910	0.2365	3.8033*+04	9.9500*=04	5.8639	1.3264	2,2210"+03	2.2210*+03
1.9050"+00	1.0336*+06	1.0000	4.7373"+04	2.2200*-04	1.6145	1.7841	9,2620"+01	7.40844+01
INFINITE	4.2853*+02	0.0000	2.8557"-03	0.0000*+00	0.8657	4.7075"-03	8,4405*+02	3.9167"+02
72021302	4.8578	0.2664	3.3669*+04	1.0350"-03	6.4238	1.3377	2.2040*+03	2.2774*+03
2.0570*+00	1,0191"+06	0.9678	4.6874*+04	2.1400"-04	1.8093	1.7788	1.0430"+02	7.4320*+01
THEINITE	4.2508*+02	0.0000	2.7877*-03	0.0000*+00	0.6572	4.8000"-03	8,3966"+02	3.8860*+02
72021303	4.8903	0.2604	3.6276*+04	9.7000"-04	6.4718	1.3477	2,1910"+03	2,2556*+03
2.2100"+00	1.0491"+06	0.9713	4.9617*+04	2.1500"-04	1.8029	1.7742	9.9740"+01	7.2464"+01
INFINITE	4.1906 +02	0.0000	2.8497"-03	0.0000*+00	0.8437	0.9312"-03	8,14664+02	3.8302*+02
72021401	4.7916	0.2107	6.9631"+03	1.7200"-03	4.2533	1.3808	2.2620*+02	2.4509*+02
1.4480"+00	1.0134"+05	0.9229	7.4976*+03	4.3700"-04	1.7894	1.7658	8.2140*+01	7.6218"+01
INFINITE	4.2620*+02	0.0000	4.36184-03	0.0000*+00	1.2249	6.2735"-03	8.3872*+02	3.6980"+02
72021402	4.8206	0,2208	7.7693*+03	1.7000"-03	3.7397	1.3984	2,25104+02	2.37664+02
1.7020*+00	1.0174"+05	0.9471	5.8442"+03	3.9900*-04	1.7837	1.7581	8,6780*+01	7.6089"+01
INFINITE	4.2973"+02	0.000	5.2607"-03	0.0000*+00	1.5225	7.3688"-03	8.4309*+02	3.9295*+02
72021501	4.9266	0.2242	2.12887+04	1.3000=-03	6.1920	1,3368	9.6710#+02	1.0967#+03
1.4480"+00	5.3365*+05	0.9001	2.5494"+04	2.8300"-04	1.8106	1.7834	8.6050"+01	7.1708*+01
INFINITE	4.2008*+02	0,000	2,9417*-03	0,0000*+00	1.0384	4.7990*~03	8,3679*+42	3.6385"+02
72021502	4.9186	0.2283	2.5476"+04	1.2100"-03	4.6625	1.3727	1.0550*+03	1.0773"+03
1.7020"+00	5.1806"+05	0.9793	3.0948"+04	2.5900"-04	1.7961	1.7660	8.9000"+01	7.3065"+01
INFINITE	4.2659"+02	0.000	3.7463"-03	0.0000*+00	1.0912	5.7415*~03	8.4296"+02	3.8982"+02

EVALUATED	DATA -	PRESSURE	RASED	REFERENCE	FINA

CANEON (E)	DRIN - INCOMU	UC DAVED	NET CHEIR	C FLOR			
RUN	D2PH D2PH	H12PD H12PW	H32PD H32PW	H42PD H42PW	REDZPOD REDZPWO	REDZPDW REDZPWW	DSTAR
72020101	2.7904"-03 2.9603"-03	7.8417 7.8638	1.8365	0.6101 0.6118	6.4383*+03 6.4202*+03	1.6003"+03	2,3230"-02
72020201	1.9545"-03 2.0953"-03	8.3511 8.3766	1.8490	0.5069 0.5104	2.1511"+04 2.1446"+04	5.3439"+03 5.3276"+03	1.7415*-02
72020301	1.8043"-03	8.9484 8.9685	1.8535	0.4030 0.4039	4.0067"+04 3.9997"+04	9.7938"+U3 9.7719"+U3	1.6938**02
72020302	2.1784"=03 2.1784"=03	8.3076 8.3076	1.6423	0.5042 0.5042	4.8768"+04 4.8768"+04	1.1934*+04 1.1934*+04	1.8097#=02
72020303	1.0085"-03 1.9597"-03	8.8951 8.9101	1.8307	0.4601	4.3*01*+04 4.3827*+04	1.0636"+04	1.7451 #=02
72020304	2.1567*-03 2.2471*-03	8.6413	1.0317	0.4853 0.4862	4.6592*+04 4.8499*+04	1.1892"+04 1.1870"+04	1.9453*-02
72020305	2.3606"-03 2.3606"-03	0.5064 8.5064	1.8196	0.4872 0.4872	5.3860'+04 5.3860"+04	1.3267"+04	2,0000**02
72020401	2.8497*-03 3.1204*-03	7.0728 7.0478	1.8429	0.7271 0.7297	6.8507*+03 6.8267*+03	1.7289"+03	2.2120*-02
72020501	1.9107"-03 2.0136"-03	8.4345 8.4551	1.6534	0.5071 0.5083	2.204*+04	5.2464*+03 5.2339*+03	1.7418**02
72020601	3.6530"-03 3.7930"-03	6.1602 6.1714	1.6274	0.8537	6,5224"+03 6,5106"+03	1.8956"+03 1.8924"+03	2.3389"=02
72020701	2.3659"-03 2.6363"-03	6.7776 6.8086	1.8496	0.7736	2.1370*+04 2.1273*+04	4.0810**03 4.0533*+03	1.7697*-02
72020801	2.4232"-03 2.4425"-03	7.2531 7.2559	1.8440	0.6525 -0.6526	4.2732*+04	1.2123*+04 1.2118*+04	1.7723"-02
72020901	3.5363"-03 4.1956"-03	4.7203 4.7406	1.6308	1.0661	6.6470*+03 6.6186*+03	2.0351"+03 2.0264"+03	1.96904402
72021001	2.5738"-03 2.7371"-03	6.0154 6.0299	1.8508	0.9024	2.2161"+04 2.2168"+04	4,2456"+03 4,2805"+03	1.65057-02
72021101	5.3312"-03 5.3311"-03	2.8285 7.8385	1.7845	1.1440	8,9458*+03 8,9458*+03	7,9141"+03 7,9141"+03	2,0462"#02
72021201	3.3083*-03 3.3083*-03	5.5702 5.5703	1.0011	0.9182	2.8175*+04 2.8175*+04	2.3462*+04 2.3462*+04	1.8426*=02
72021301	2.8557*-01 2.8559*-03	5.8634 5.8634	1.8146	0.8656	4.7433*+04 4.7433*+04	3.8081"+04 3.8081"+04	1.6745"-02
72021401	4.4412"-03 4.7010"-03	3.4434	1.7941	1.2006	7,6778"+03 7,6589"+03	7.1305*+03 7.1129*+03	1,6227*=02
72021501	3.2430*+03	5.0047 5.0199	1.8160	1.0074	2.6261"+04 2.6181"+04	2.1928"+04 2.1962"+04	1.6265"=02

720202	01 VOISI	INET	PROFILE	TARULATION	55	POINTS, DEL	TA AT PUI	NT 42
I	Y	PT 2/P	P/PD	TU/TOD	14/110	U/U D	מועד	RHO/RHOD#U/UD
1	0.0000*+00	1.0000"+00	0.90555	0.83686	0.00000	0.00000	4.66170	0.00000
ż	6.3000"-05	1.0176"+00	0.90555	0.83889	0.03307	0.07130	4.64975	0.01384
3	1.4500"-0"	1.0917"+00	0.90555	0.84350	0.07451	0.15750	4.58240	0.03152
4	2.5900"-04	1.2758"+00	0.90555	0.85179	U.12558	0.26420	4.42580	0.05406
5	3.9400"-04	1.5578"+00	0.90555	0.86144	0.17187	0.35340	4,22780	0.07569
6	5 1800 -04	1,9422"+00	0.90555	0.87160	0.21376	v.42840	4.01640	0.09659
7	7.4400* 04	2.6581"+00	0.90555	0.88554	0.26830	0.51690	3.71170	0.12611
å	9.7000"-04	3.1294 +00	0.90555	0.89260	0.29761	0.55090	3.53940	0.14325
9	1.2400*-03	3.5703"+00	0.90555	0.89487	0.37234	0.59260	3.37980	0.15878
10	1.6310"-03	3.9217"+00	0.90555	0.89392	0.34067	0.61450	3.25370	0.17102
11	1.9410*-03	4.1935*+00	0.90555	0.89317	0.35415	U.629AU	3.16250	0.18034
12	2.5980"-03	4.6175*+00	0.40555	0.89254	0.37416	V.65150	3.03190	U.19459
13	3.1340°-03	4.9644"+00	0.90555	0.89403	0.38974	0.66820	2.93950	0.20585
14	3.7310"-03	5.3251"+00	0,90555	0.89627	0.40528	0.68440	2.65180	0.21732
15	4.3540"-03	5.7201"+00	0.90555	0.89919	0.42162	0.70090	2.76360	0.22966
16	4.8030"-03	6.0171"+00	0.90555	0.90125	0.43349	0.71240	2.70080	0.23886
17	5.3470"-03	6.3343"+00	0.90582	0.90354	0.44581	0.72400	2.63740	0.24866
18	6.6220*-03	7.1518"+00	0.90691	0.40972	0.47608	0.75110	2.48910	0.27367
19	7.7240*-03	7.8978"+00	0.90791	0.91484	0.50208	V.77260	2.36790	0.29623
ŽÓ	8.9150"-03	8.7610"+00	0.90899	0.92047	0.53056	0.79450	2.24240	0.32206
ži	9.9310"-03	9.5024*+00	0.90990	0.92479	0.55385	0.81110	2.14470	0.34411
22	1.1153"- 02	1.0446"+01	0.91098	0.92995	0.58213	U. 42990	2.03240	0.37199
23	1.3444"-02	1.2254"+01	0.91298	0.73842	0.63278	0.86000	1.84710	0.42508
24	1.4816"-02	1.3380"+01	0.91424	0.94299	0.66215	0.87570	1.74600	0.45801
25	1.4790"-02	1.3325"+01	0.91424	0.94261	0.66093	0.87490	1.75230	0.45647
56	1.6325*-02	1.4573"+01	0.91624	0.94765	0.69231	U.89050	1.65450	0.49315
27	1.8049*-02	1.6002"+01	0.91877	0.95219	0.72657	0-90580	1.55420	0.53547
Žά	2.0157*-02	1.7595"+01	0.92194	0.95654	0.76294	0.92050	1.45570	U.58298
20	2.3033"-02	1.9622*+01	0.92620	0.46206	0.80684	0.93640	1.34610	0.643.2
30	2.5817"-02	2.1370"+01	0.93027	0.96650	0.84286	0.94900	1.26770	0.69640
31	2.8143"-02	2.2919"+01	0.93580	0.97074	0.67353	0.95890	1.20500	0.74309
32	1.1051*-02	2.4188*+01	0.93860	0.97463	0.89789	0.96660	1.15890	0.7A266
33	3.3262"-02	2.5120*+01	0.94367	0.97755	0.91548	0.97200	1.12730	0.81367
34	3.5994*-02	2.6095"+01	0.94992	0.98118	0.93312	0.97760	1.09760	0.84607
35	3.9754"-02	2.7232"+01	0.95862	0.98451	0.95378	U.98350	1.06330	0.88667
36	4.3574"-02	2.8145*+01	0.96740	0.98818	U.96991	0.94850	1.03876	u.92065
37	4.6533"-02	2.8531"+01	0.97428	0.97881	0.97665	U.99110	1.02480	U.93767
38	4.9301"-02	2.7122"+01	0.98062	0.99358	0.98680	0.99440	1.01530	0.96044
39	5.2545"-02	2.9602"+01	0.48814	0.99637	0.99511	0.79730	1.00440	U.98115
40	5.5126"-02	2.9743"+01	0.99411	0.99806	0.49760	0.99860	1.00200	0.99074
41	5.7800"-02	2.9883"+01	1.00027	1.00004	0.99790	1.00000	1.00020	1.00007
D 42	5.7706"-02	2.9889"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
43	6.0952"-02	3.0287"+01	1.00752	1.00238	1.00679	1.00240	0.99130	1.01880
44	6.3434"-02	1.0223"+01	1.01365	1.00335	1.00567	1.00270	0.99410	1.02263
45	6.6243"=02	3.0226#+01	1.01385	1.00456	1.00572	1.00330	0.99520	1.02211
46	6.8181*-02	3.0130"+01	1.02345	1.00554	1.00410	1.00350	0.49880	1.02827
47	7.0505"-02	3.0033"+01	1.03305	1.00633	1.00245	1.00360	1.00230	1.03439
48	7.2730"-02	3.0000*+01	1.03622	1.00613	1.00190	1.00340	1.00300	1.03664
49	7.5453"-02	3.0033*+01	1.03296	1.00513	1.00245	1.00300	1.00110	1.03492
50	8.0145"-02	2.9874"+01	1.04897	1.00630	0.99776	1.00310	1.00670	1.04324
51	6.3487*=02	2.9810"+01	1.05542	1.00649	0.99867	1.00300	1.00670	1.04946
Śż	8.6733"-02	2.9656"+01	1.07172	1.00644	0.99605	1.00250	1.01300	1.06061
53	8.8834"-02	2.4628"+01	1.07498	1.00642	0.99555	1.00240	1.01380	1.06289
54	8.9886"-02	2.9596*+01	1.07824	1.00642	U.49501	1.00230	1.01470	1.06506
55	4.07444-02	2.9538"+01	1.08476	1.00638	0.99403	1.00210	1.01630	1.06960

IMPUT VARIABLES Y,U/UN,T/TD,P/PW AT I=2 UAYA MERE AVERAGED

7202020	vo15	INET	PROFILE	TABULATION	48	POINT8, DEL	TA AT PUZ	NT 43
I	Y	P12/P	P/PD	10/100	MZMD	0/40	7/10	RHO/AHOD+U/L
1	0.0000*+00	1.0000"+00	0.99711	0.84172	0.00000	0.00000	4,73930	0.0000
2	6.3000"-05	1.0112"+00	0.99711	0.84366	0,02624	0.05710	4.73510	0.01202
3	1.0400"-04	1.0326"+00	0.99711	0.84586	0.04456	0.09680	4.71920	0.02045
4	2.6200"-04	1.1508"+00	0.99711	0.85325	0.09403	0.20200	4.61530	0.04364
5	3.5800"-04	1.3101"+00	0.99711	0.86019	0.13162	0.27870	4.48360	0.06198
6	5.3600"-04	1.8326"+00	0.99711	0.87626	0.20200	0.41150	4.14970	0,09888
7	3.3300"-04	2.4702*+00	0.99711	0.88906	0.25382	0.49840	3.85560	0.12889
á	1.1480"-03	2.9522"+00	0.99711	0.89347	0.20513	0.54510	3.65490	0.14871
9	1.7700*-03	3,4536"+00	0.99711	0.89228	0.31395	0.58310	3.44960	0.16855
10	2.3320"-03	3.7647"+00	0.99711	0.89130	0.33045	0.60330	3.33310	0.18048
11	3.3830"-03	4.2701"+00	0.97711	0.89283	0.35952	0.63310	3.17110	0.19907
iż	4.4550"-03	4.7949"+00	0.99711	0.89669	0.37972	0.66070	3.02750	0.21760
13	5.6390*-03	5.3370*+00	0.99711	0.90076	0.40314	0.68580	2.89390	0.23630
14	6.6960"-03	6.1096"+00	0.99711	0.90666	0.43428	0.71690	2.72510	0.26231
15	8.00607-03	6.7085"+00	0.99711	0.91145	0.45692	0.73610	2.60940	0.28204
16	4.2080*-03	7.3528*+00	0.99711	0.91625	0.48008	0.75840	2.49560	0.30302
17	1.0312"-02	7.9936*+00	0.99711	12054.0	0.50203	0.77640	2.39170	U. 32368
iá	1.1460=-02	8.7335"+00	0.99711	0.92536	0.52623	C.79510	2.28290	0.34728
19	1.2426*-02	9.4725"+00	0,99711	9.92938	0.54433	0.81160	2.18280	0.37074
žó	1.5178"-02	1,1302"+01	0.99711	0.93908	0.60492	0.84740	1.96240	0.43057
žĭ	1.7506"-02	1.3619*+01	0.99711	0.94719	0.66412	0.67930	1,75300	0.50015
žž	1.9901*-02	1.5372*+01	0.99711	0.95285	0.70704	0.89950	1.61850	0.55415
23	2.2299*-02	1.7256"+01	0.97711	0.95800	0.75042	0.91760	1.49520	0.61192
24	2.4407*-02	1.9070*+01	0.99711	0.96199	0.76994	0.93280	1.39260	0.66746
53	2.66174-02	2.0820"+01	0.99721	0.96570	0.62629	0.94450	1.30660	0.72085
26	2.9022"-02	2.2503"+01	0.99741	0.96958	0.85977	0.95520	1.23430	0.77187
27	3.1427 -02	2.3731"+01	0.99761	0.77250	0.88342	0.96240	1.18680	0.80898
28	3.3543*-02	2.4832"+01	0.99771	0.97541	0.90403	0.96860	1.14780	0.84194
29	3.5756"-02	2.5731"+01	0.99791	0.97518	0.92062	0.97360	1.11840	0.86871
30	3.7681"-02	2.6445 +01	0.49801	0.98053	0.93354	0.97750	1.09640	0.88978
ii	3.9959"-02	2.7217"+01	0.99821	0.98291	0.94730	0.98150	1.07350	0.91266
īż	4.2426"-02	2.7862"+01	0.99840	0.98560	0.95867	0.98510	1.05590	0.93146
i i	4.4699"-02	2.8369"+01	0.99860	0.98759	0.96750	0.98780	1.04240	0.94630
34	4.7353*-02	2,9016"+01	0.99880	0.99017	0.97866	0.99120	1.02580	0.96511
33	4.9342*=02	2.9334"+01	0.99890	0.99176	0.98409	0.99300	1.01820	0.97418
36	5.1351 -02	2.9524"+01	0.99910	0.99317	0.98731	0.99430	1.01420	0.97950
37	5.4087"-02	2.9779*+01	0.99930	0.99500	0.99165	0.99600	1.00880	50080.0
36	5.4528"-02	2.4902"+01	0.99950	0.99644	0.99373	0.99710	1.00680	0.98987
39	5.9949"-02	3.0190"+01	0.99980	0.99855	0.99790	0.99890	1.00200	0.99671
0 40	6.2662"-02	3.0275*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
41	4.5965"-02	3,0335"+01	1.00020	1.00085	1.00100	1.00040	0.99920	1.00160
42	4.9195"-02	3.0501"+01	1.00050	1.00199	1.00512	1.00190	0.99360	1.00886
43	7.2060*-02	3.0769*+01	1.00070	1.00289	1.00915	1.00290	0.98940	1.01435
44	7.540002	3.0635"+01	1.01354	1.00287	1.00603	1.00250	0.99300	1.02326
45	7.9411"-02	3.0635"+01	1.01356		1.00602	1.00290	0.99380	
46				1.00368				1.02284
47	6.2659"-02 8.6094"-02	3.0502"+01 3.0376"+01	1.02642	1.00345	1.00381	1.00240	0.99720	1.03178
			1.03729					
48	8.9532"-98	3.0361"+01	1.04028	1.00369	1.00145	1.00210	1,00130	1.04111

INPUT VARIABLES Y,U/UD,T/TD,P/PH

7202020	yois	INET	PROFILE	TARULATION	46	POINTS, DE	TA AT PO1	NT 41
ı	Y	4/514	P/P0	TUZTON	ativi.	UVUO	TZTD	RHO/RHOD*U/UD
1	U.0000"+00	1.0000*+00	1.00817	0.83001	0.00000	0_00000	4.74220	0.00000
	6.3000*-05	1.0172"+00	1.00817	0.83170	0.03224	0.07010	4.72670	0.01495
	1.4200"-04	1.0654"+00	1.00817	0.83607	0.06224	0.13450	4.69120	0.02897
	2.6200"-04	1.2048*+00	1.00817	0.84318	0.10771	0.23020	4.56770	0.05081
	3.5900"-04	1.3925"+00	1.00817	0.84797	0.14509	0.30460	4.40750	0.06967
	6.3500"-04	2.0504"+00	1.00817	0.56387	0.21986	0.44080	4.01980	0.11055
	9.9100=-04	2.7405"+00	1.00817	0.87870	0.26951	0.52120	3.74000	0.14050
	1.2950"-03	3.0942"+00	1.00817	0.55236	0.29102	0.55240	3.60300	0.15457
	1.8190"-03	3.4471"+00	1.00817	0.88024	0.310A2	0.57780	3.45560	0.15857
	2.4100"-03	3.7328"+00	1.00517	0.45020	0.32549	0.59660	3.35130	0.17947
	3.0400*-03	4.0303"+00	1.00817	0.86132	0.34UA3	0.61480	3.25380	0.19049
	4.1170"-03	4.4922"+00	1.00817	0.88498	0.36274	0.64060	3.12080	0.20701
	5.2170*-03	4.9542"+00	1.00817	0.88914	0.38334	0.66410	3.00136	0.22308
	6.2840"-03	5.4149"+00	1.00817	50668.0	0.40280	0.68490	2.89170	0.23883
	7.4090"-03	5.4213*+00	1.00817	0.69719	0.42515	0.70550	2.78000	U.25585
	8.7430"-03	6.55104+00	1.00817	0.90276	0.44709	0.72860	2.65570	0.27659
	9,0120*-03	7.0839"+00	1.00817	0.90665	0.46640	0.74590	2.55770	0.29401
	1.0988"-02	7.7027"+40	1.00817	0,71125	0.48784	0.76420	2.45390	0.31397
	1.2167"-02	8.3778"+00	1.00817	0.91591	0.51020	U.78210	2.54990	0.33554
	1.3000 -02	9.4888*+00	1.00817	0.92266	0.54497	6.80770	2.19660	0.37071
	1.6645"-02	1.1335*+01	1.00817	0.93267	0.59827	0.84250	1.48310	0.42631
	1.9713"-02	1.3519*+01	1.00817	0.94218	0.65574	0.87450	1.77850	U.49572
	2.2655*-02	1.5741"+01	1.00817	0.94982	0.71035	0.90050	1.60630	0.56506
	2.5403"-02	1.8132"+01	1.00817	0,95668	0.76297	0.92190	1.46000	0.63659
	2.8158"-02	2.0324"+01	1.00766	0.96200	0.80894	0.73840	1.34570	0.70268
	3.1333"-07	2.2456*+01	1.00716	0.96698	0.85127	0.95220	1.25120	0.76648
	1.3929"-02	2.3980"+01	1.00675	0.97007	0.88028	0.96080	1.19130	0.81196
	3.7104"-02	2.5383"+01	1.00625	0.97435	0.99617	0.76840	1.14300	0.85289
	3.9977"-02	2.6590"+01	1.00575	0.97770	0.92787	0.97510	1.10440	0.88500
	4.2939"-02	2.7661"+01	1.00524	0.48106	0.94670	0.94060	1.07290	0.91876
	4.5804*-02	2.8475"+01	1.00474	0.98458	0.96076	0.98510	1.05130	0.94147
	4.8666*-02	2.4029"+01	1.00434	0.98739	0.97073	0.98830	1.03760	0.95662
	5.1234"-02	2.9385"+01	1.00383	0,98415	0.97625	0.99030	1.02900	0.96608
	5.4292"-02	2.9736"+01	1.00333	0.99235	0.98216	0.99300	1.02220	0.97467
	5.6982*-02	2.9999*+01	1.00292	0.99538	0.95656	0.99530	1.01780	U.98075
	6.0135*-02	3.0278*+01	1.00242	0.99711	0.99122	0.99700	1.01170	U.98785
	6.2636"-02	3.0424"+01	1.00202	0.99824	0.99364	0.99600	1.00680	0.99129
	6.5532"-02	3.0511*+01	1.00151	0.99873	0.99507	0.99850	1.00690	0.99316
	6.8486*-02	3.0592*+01	1.00101	0.99926	0.99641	0.99910	1.00520	0.99483
	7.1735*-02	3.0727*+01	1.00050	0.49787	0.99865	0.99970	1.00210	0.99811
	7.4669"-02	3.0809"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
	7.7211*-02	3.0836"+01	0.99736	0.99984	1.00045	1.00000	0.99910	U.99828
	8.0434"-02	3.0421*+01	0.99869	1.00213	1.00020	1.00110	1.00150	0.99799
	8.3373"-02	3.9839"+01	0.99808	1.00288	1.00035	1.00150	1.00230	0.99729
	8.6121*-02	3.0803*+01	1.00060	1.00344	0.49990	1.00170	1.00360	0.99871
	8.9248"-02	3.0770*+01	1.00393	1.00343	0.99935	1.00160	1.00450	1.00103
			. 4416.					

INPUT VAMIABLES Y, U/UD, T/TD, P/PW

7202020	4 V0131	MET	PROFILE	TABULATION	49	POINTS, DEL	TA AT PUI	NT 41
1	Y	PT2/P	P/PD	TO/TOD	HIMD	U/UD	1/10	RHO/RHOD*U/UD
1	U_0000"+00	1.0000*+00	0.96956	0.63792	0.00000	0.00000	4.70880	0.0000
2	6.3000"-05	1.0131"+00	0.96956	0.83776	0.02843	V. 06160	4.64540	0.01272
3	1.2200"-04	1.0350"+00	0.96956	u.a3627	0.04623	U.0999U	4.56970	0.02074
4	2.0100"-04	1.0706"+00	0.96956	0.83998	0.06522	U.14040	4.63430	0.02937
5 6	1.2000"-04	1.1935*+00	0.96956	0.84541	0.10566	0.22510	4.52160	0.04827
6	4.3900"-04	1.3811"+00	0.96956	0.55215	0.14454	0.30220	4.37150	0.06703
7	7.9200"-04	2.2231"+00	0,96956	0.87255	U.23584	0.46600	3.90420	0.11572
8	5.7700"-04	1.7135*+00	0.95956	0.86170	0.18963	0.38660	4.15630	0.09018
9	1.1260"-03	2.7804"+00	0.96756	0.88140	0.27460	0.52650	3.67620	0.13886
10	1.7600"-03	3.2498*+00	0.96956	0.88090	0.30276	0.56480	3.46010	U.15735
11	2.2910"-03	1.5295"+00	0.96956	0.88059	0.31623	0.58450	3.37360	u.16798
iż	3.1010"-03	1.8702"+00	0.96956	0.88155	0.33602	0.60650	3.25780	0.18050
13	4.0060"-03	4.2491"+00	0.96956	0.88458	0.35470	0.62910	3.14570	0.19390
14	5.1050**03	4.6935*+00	U.96956	0.88856	0.37537	0.65300	3.02630	0.20921
15	6.2810 -03	5.1461"+00	0,96956	0.89281	0.39535	0.67500	2.91510	0.22450
16	7.4370"-03	5.6264"+00	0.96956	0.89653	0.41530	0.69560	2.40540	0.24040
17	8.57807-03	6.1256"+00	0.46956	0.40057	0.43512	0.71510	2.70090	0.2567.0
16	4.7740"-03	6.60964+00	0.96956	0.90425	0.45335	0.73210	2.60780	0.27219
19	1.1041"-02	7.1727"+00	0.96985	0,90430	0.47397	0.75070	2.50860	0.29023
20	1.2535"-02	7.9113*+00	0.97043	0.91532	0.49953	0.77230	2.39030	0.31354
51	1.4041*-02	8.7754"+00	0.97101	0,92363	0.52784	0.79540	2.27070	0.34013
žž	1.5761"-02	9.A199"+00	0.97169	0.92971	0.56015	0.81820	2.13360	0.37263
23	1.8626"-02	1.1044"+01	0.97276	0,43931	0.61246	0.65130	1.93200	0.42863
24	2.1011"-02	1.3252"+01	0,97392	0.94520	0.65512	0.87480	1.76310	0.47781
29	2.3206*-02	1.5029*+01	0.97537	0.95222	0.69920	0.89610	1.64250	0.93214
26	2.5490*-02	1.6786"+01	0.97702	0.95728	0.74023	0.91370	1.52340	0.58592
27	2.7600"-02	1.8433"+01	0.97828	0.96144	0.77671	0.92750	1.42690	0.63610
28	2.9987*+02	2.0131"+01	0.97993	0.96522	0.81259	0.94040	1.33930	0.68807
29	3.2565*-02	2.1686*+01	0.98158	0.96623	0.84413	0.95050	1.26790	U.73585
30	3.4666"-02	2.2863"+01	0.98303	0.97114	0.86722	0.95780	1.21980	0.77189
ši	3.7722"-02	2.4361*+01	0.98507	0.97582	0.89578	0.96690	1.16510	0.81749
32	4.0109*-02	2.5368*+01	0.98662	0.97828	0.91446	0.97230	1.13050	0.84855
33	4.2019*-02	2.6033"+01	0.98798	0.98047	0.92659	0.97600	1,10950	0.86910
34	4.4310*-02	2.6860"+01	0.98943	0,98355	0.94181	0.98070	1.08430	0.89490
35	4.6698"-02	2.7738*+01	0.99108	0.95627	0.45699	0.98510	1.05960	0.92140
16	4.9182"-02	2.8532"+01	0.99273	0.98873	0.97082	0.98900	1.03780	0.94605
37	5.2428"-02	2.9241"+01	0.99476	0.99163	0.98336	0.99280	1.01930	U.90890
38	5.5293"-02	2.9673"+01	0.99661	0,99337	0,98952	0.99480	1.01070	0.98093
39	5.7678"-02	3.0051 +01	0.99804	0.99336	0.79675	0.99710	1.00070	0.99447
40	b. 0830"=02	3.0244"+01	1.00000	0.99820	1.00000	U.99910	0.99620	1.00090
D 41	6.3693"-02	3.0244"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
42	50-46164.6	3.0274"+01	0.99690	1.00162	1.00050	1.00090	1.00080	0.99700
	6.9571"-02	3.0307*+01	0.99370	1.00223	1.00105	1.00130	1.00050	0.99449
44	7.2507*=02	3.0339"+01	0.94060	1.00303	1.00160	1,00180	1.00040	0.99198
45	7.5352"-02	3.0347*+01	0.98604	1.00395	1.00240	1.00240	1.00000	0.98840
46	7.7426"-02	3.0426"+01	0.98284	1.00472	1.00305		. 0.99970	0.98598
47	8.1265"-02	3,0405*+01	0.98429	1.00585	1.00270	1.00340	1.00140	U.9862e
48	8.4607"-02	3.0441*+01	0.98119	1.00524	1.00330	1.00320	0.99980	0.98453
49	8.9573"-02	3.0625*+01	0.96422	1.00535	1.00637	1.00380	0.99490	0.97285
		· · ·		• • • •	-		•	

INPUT VARIABLES

Y,U/U0,T/T0,P/PW

720202	05 VOIS1	INET	PROFILE	TABULATION	41	POINTS, DEL	TA AT PUI	NT 34
ı	Y	PT2/P	P/PD	T0/100	M/MD	U/UD	TZID	RHO/RHOD*U/UD
1	0.0000*+00	1.0000"+00	1.01317	0.84627	0.00000	0.0000	4,79500	0.00000
2	6.3000"-05	1.0251"+00	1.01317	0.84952	0.03911	0.08540	4.76810	0.01815
3	2.0100"-04	1.1503"+00	1.01317	0.55458	0.09367	0.20180	4.64120	0.04405
4	3.4000"-04	1.3506*+00	1.01317	0.86165	0.13882	0.29350	4.46980	0.06653
5	4.3900"-04	1.5887"+00	1.01317	0.86873	0.17433	0.36160	4.30230	0.08516
6	6.9300"-04	2.1325"+00	1.01317	0.88088	0.22804	0.45660	4.00930	0.11539
7	1.0290"-03	2.7063"+00	1.01317	0.88913	0.26906	0.52170	3.75960	0.14059
8	1.4030"-03	3.1438"+00	1.01317	0.88769	0.29561	0.55860	3.56600	0.15671
9	2.1540"-03	3.4132"+00	1.01317	0.88669	0.31099	0.57820	3.45670	0.16947
10	3.3550"-03	3.8914"+00	1.01317	0.88864	0.33612	0.60990	3.29250	0.18768
ii	4.4580"-03	4.3157*+00	1.01317	0.69165	0.35698	0.63500	3.16410	0.20333
iż	5.5780"-03	4.7386*+00	1.01317	0,89509	0.37631	0.65720	3.05010	0.21831
13	6.7970=-03	5.2005*+00	1.01317	0.89900	0.39643	0.67920	2,73540	0.23443
14	7.8610*-03	5.6591"+00	1.01317	0.90279	0.41542	0.69890	2.85050	0.25017
is	9.0750"-03	6.0796*+00	1.01317	0.90623	0.43208	0.71540	2.74140	0.26440
16	1.0282*-02	4.5938*+00	1.01317	0.91054	0.45160	0.73390	2.64100	0.20155
17	1.1377*-02	7.0568*+00	1.01317	0.91374	0.46547	0.74890	2.55560	0.29690
ià	1.3655 -02	7.9956*+00	1.01317	0.92053	0.50100	0.77620	2.40030	0.32764
i	1.6998"-02	9.7556*+00	1.01317	0.93045	0.55668	0.81700	2.15390	0.38431
šó	1.7576*=02	1.1235"+01	1.01317	0.93840	0.59740	0.84460	1.98550	0.43099
ži	2.2154"-02	1.3021"+01	1.01317	0.94606	0.64728	0.87160	1.51320	0.48703
žž	2.5400=-02	1.5366*+01	1.01317	0.95378	0.70521	0.89950	1.62690	0.56017
23	2.8456"-02	1.7869*+01	1.01317	0.96065	0.76219	0.92300	1.46650	0.63768
24	3.1130*-02			0.76504				
23	3.4282*-02	1.4925"+01	1.01317	0.97094	0.80597	0.93860	1.35620	0.70120
22		2.2127*+01	1.01317		0.85036	0.95360	1.25750	0.76832
	3.7816"-02	2.4380"+01	1.01236	0.97525	0.89352	0.96620	1.16930	0.83652
27	4.0965"-02	2.5874*+01	1.01125	0.97970	0.92102	0.97450	1.11950	0.86027
20 29	4.4496"-02	2.7229*+01	1.01003	0.98445	0.94527	0.99190	1.07900	0.91914
30	4.6222"-02	2.8230*+01	1.00871	0.98875	0.96278	0.98750	1.05200	0.94687
31	5.1852"-02	2.9037"+01	1.00740	80599.0	0.97468	0.99180	1.03120	0.96891
	5.3952"-02	2,9442*+01	1.00669	0.99392	0.98358	0.99400	1.02130	0.97978
34	5.0059*-02	2,9938*+01	1.00517	0.99707	0.99196	0.99710	1.01040	0.99194
33	6.1677"-02	3.0159"+01	1.00223	0.99874	0.99567	0.99860	1.00590	0.99496
D 34	4.4544"-02	3.0418*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
15	6.8049"-02	3.0574"+01	0.99706	1.00188	1.00260	1.00140	0.99760	1.00086
36	7.1463"-02	3.0686"+01	0.99433	1.00243	1.00446	1.00200	0,99510	1.00125
37	7.5443"-02	3,0755"+01	0.98784	1.00342	1.00562	1.00270	0.99420	0.99629
38	7.9065"-02	3.0801"+01	0.98328	1.00396	1.00638	1.00310	0,99350	0.99278
39	8.1836"-02	3.0804"+01	0.98328	1.00434	1,00642	1.00330	0.99380	0.49268
40	8.6228"-02	3,0864"+01	0.97781	1.00560	1.00743	1.00410	0,99340	v.98834
41	9.0429"-02	3.0840*+01	0.98014	1.00594	1.00702	1.00420	0,99440	0.9898U

INPUT VARIABLES Y,U/UD,T/TD,P/PW

720212	01 V015	INET	PROFILE	TABULATION	35	POINTS, DE	LTA AT PUI	NT 30
1	Y	PT2/P	P/PD	T0/100	H/MD	U/UD	T/TD	RHG/EHOD*U/UD
ı	0.0000*+00	1.0000"+00	1.00000	0.20445	0.00000	0.00000	1.19230	0.0000
2	6.3000"-05	1.2759"+00	1.00000	0.31703	0.12214	0.16040	1,72450	0.09301
3	1.4000"-04	1.6579*+00	1.00000	0.38161	0.17934	0.24690	1.92610	0.12922
4	3.9400"-04	3,6232*+00	1.00000	0.54512	0.31626	0.46300	2,14320	0.21605
5	6.4800"-04	4.4390*+00	1.00000	0.59043	0.35585	0.52010	2,13020	0.24347
6	9.0200"-04	4.7084"+90	1.00000	0.60419	0.36794	0.53700	2,13010	0.25210
7	1.130003	4,6437"+00	1.00000	0.61096	0.37385	0.54520	2-12670	0.25636
8	1.1590*-03	4.9632"+00	1.00000	0.61709	0.37901	0.55240	2.12430	0.26004
9	1.6350"-03	5.1292"+00	1.00000	0.62712	0.38604	0.56290	2.12620	0.26474
10	1.9150*-03	5.2696"+00	1.00000	0.63641	0.39188	0.57200	2.13050	0.26848
11	2.1440=-03	5.4150"+00	1.00000	0.64294	0.39785	0.57990	2.12460	0.27295
12	4.9120"-03	6.8356"+00	1.00000	0,49862	0.45199	0.64720	2.05030	U.31566
13	1.4240*-03	8,1355"+00	1.00000	0.74013	0.49611	0.69660	1.97160	0.35332
14	9.9360"-03	9.4924"+00	1.00000	0.77578	0.53837	0.73910	1.85470	0.39216
15	1.2118"-02	1.0711"+01	1.00000	0.80538	0.57366	0.77250	1.61340	U.4260U
16	1.4959"-02	1.2362"+01	1.00000	0.83897	0.61825	0.81050	1.71660	0.47160
17	1.7501"-02	1.3937"+01	1.00000	0.86533	0.65796	0.84060	1.63220	0.51501
18	1.9866"-02	1.5490*+01	1.00000	0.88747	0.69490	0.86590	1.55270	U.55767
10	2.26524-02	1.7426"+01	1.00000	0.90930	0.73834	0.89190	1.45920	0.61123
20	2.4936"-02	1.9015"+01	1.00000	0.92303	0.77218	0.90940	1.36700	0.65566
51	5.0190"-02	2.2436"+01	1.00000	0.94339	0.84041	0.93540	1.24680	0.75265
22	3,5065"-02	2.4868"+01	1.00000	0.95435	0.88573	u.95470	1.16170	0.82174
53	4.0247"-02	2.7333"+01	1.00000	0.96376	0.92938	0.96870	1.08640	0.89166
24	4.5344"+02	2,9276"+01	1.00000	0.97350	0.96245	0.98000	1.03680	0.94522
25	5.0089*-02	2,9841"+01	1.00000	0.98121	0.97180	0.98560	1.02660	U.9582V
56	5.5446"-02	3,0554"+01	1.00000	0.98657	0.48354	0.99040	1.01400	U . 97673
27	6.0546"-02	3,0887"+01	1.00000	0.99025	0,95896	0.99320	1.00866	U.98473
85	6.5674"~02	3.1177"+01	1.00000	0,99479	0.99367	0.99630	1.00539	0.99105
29	7.080002	3,1301"+01	1.00000	0.99849	0.99567	0.79850	1.00570	0.99284
D 30	7.5801"-02	3.1570"+91	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
31	8.0978"-02	3,1514"+01	1.00000	1.00151	0,99910	1.00060	1.00300	0.99761
35	8.5954"-02	3,1128"+01	1.00000	1.00207	0.99287	0.99980	1,01400	0.98600
33	4.105405	3,1397"+01	1.00000	1.00276	0.49722		1.00740	U.94355
34	9.5496"-02	3.1744"+01	1.00000	1.00364	1.00540	1.07230	0.99400	1.00330
35	1.0309"-01	3.1632"+01	1.00000	1.00526	1.00100	1.00280	1.00360	0.99920

INPUT VARIABLES Y,U/UD:T/TD:P/PN

720212	72021202 VOISTHET		PROFILE	TABULATION	34	POINTS, DEL	TA AT PUL	NT 32
1	Y	9/570	P/PD	T0/T0D	HZMD	4740	1/10	RHD/RHOU*U/UD
1	0.0000"+00	1.7000*+00	0.75896	0.55062	0.00000	0.00000	1.28140	0.0000
\$	6.3000"-05	1.2719"+00	0.95096	0.32211	0.12164	0.16075	1.74055	0.08826
3	1.14007-04	1.4317"+00	0.95696	0.35075	0.14986	0.20320	1.43640	0.10598
4	1.6500*-04	1.8166400	0.95696	0.40099	0.19667	0.27560	1.96370	0.13459
5	2.4100*-04	2.3446*+00	0.95896	0.44930	0.24025	0.34340	2.04250	0.16123
6 7	4.1900"-04	3.8482*+00	0.95896	0.54886	0.32850	0.47590	2.09880	0.21744
7	1.2400*=04	4.5497"+00	0.95896	0.58541	0.36176	0.52260	2.08690	0.24014
6	1.1300"-03	4.9233"+00	0.95896	0.60338	0.37825	0.54500	2.07630	0.25171
9	1.53707-03	5.1432"+00	0,94896	0.61332	U.38758	0.54740	2.06630	V.25844
10	1.7650"-03	5.2926"+00	0.95896	9.62044	U,19380	0.56580	2.06430	U.26284
11	2.0140"-03	5.4412*+00	0.99896	0.62727	U.19969	0.57390	2.05960	V.26721
12	2.4000"-03	5.7020"+00	0.95896	0.63734	0.41036	0.55690	2.04550	0.27515
13	4.6030"-03	6.8951"+00	0,95896	0.67723	0.45512	0.638 00	1.97070	U.31054
14	7.4740"-03	4.3317"+00	U.74896	0.71371	0.50368	0.6907)	1.48050	0.35222
15	9.8630"-03	9.6426"+00	0.95896	0.75078	0.54419	0.72990	1.79900	U.38907
16	1.2022*-02	1.0825"+01	0,95896	0.77759	0.57828	U.761UU	1.73180	0.42139
17	1.5067"-02	1.2523"+01	0.95896	0.81143	4.67396	0.79930	1.64100	0.46709
18	1.7456*-02	1.4138"+01	0.95896	u.83830	0.66450	0.82970	1.55900	v.51036
19	2.0119"-02	1.5774"+01	0.95896	U.86153	U.70317	0.85590	1.48160	0.55398
50	2.2609"-02	1.7416"+01	0,75896	0.88237	0.73796	0.87879	1.41080	0.59741
21	2.5197"-02	1.9167"+01	0.95896	0.90200	0.77725	0.90030	1.34170	0.64347
22	7.054405	2.2590"+01	0.96250	0.92871	0.84543	0.93220	1.21580	0.73799
53	3.5377"-02	2.5319"+01	0.96634	0.94400	U.89608	U.95170	1.12500	0.81531
24	4.0455"-02	2.7158"+01	0.97008	0,95661	0.92865	U.96490	1.07960	0.86702
52	4.5583"-02	2.5574"+01	0.97392	0.96441	0.95296	0.97370	1.04400	U,90834
46	5.0609"-02	2.9495"+01	0.97766	0,97292	0.97178	U.94140	1.01940	0.94075
27	5.5687*-02	3.0501"+01	0.96140	0.98045	U.98509	0.95760	1.00510	0.96431
58	6.0510"~02	3,0945"+01	0.98494	0.98629	0.99235	0.97180	U.99690	0.97794
59	6.5814"-02	3.1013"+01	0,98888	0,49148	0.99346	0.99460	1.00230	0.98128
30	7.0976"-02	3.1087"+01	0.99271	0.44465	0.94466	0.99640	1.00350	0.98569
31	7.4225"-02	3.1541"+01	0.99664	0,99871	1.00201	0.99970	U.44540	1.00095
D 32	6.0769"-02	3.1417*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
33	8.5774"-02	3.1370"+01	1.00451	1,00026	0.99925	1.00000	1.00150	1.00300
34	4.136205	3.1309"+01	1.01016	1,00120	95899.0	1.00030	1.00410	1.00634
15	9.5951"-02	3,1312"+01	1.00949	1.00239	0.99831	1.00040	1,00520	1.00518
36	1.0106"-01	3.1315"+01	1.00969	1.00297	0.99836	1.00120	1.00570	1.00517

INPUT VARIABLES Y,U/UD,T/TD,P/PW AT 1=2 DATA HERE AVERAGED

720212	os vots:	LIJET	PHOFILE	TABULATION	34	POINTS, DE	LTA AT PUI	NT 29
I	Y	4/510	PZPD	T0/100	142140	U/UD	1/10	RHO/PHOD*U/UD
ž	u.0000"+00 b.3000"=05	1.0000"+00	1.03445	0.20838	0.00000	0.00000 0.14850	1.19176	0.00000 0.09057
3	1.9100"-04	2.0209*+00	1.03445	0.43535	0.21725	0.31000	2.03620	0.15744
4	5.7200*=04 7.7500*=04	3.9178"+00 4.2236"+00	1.03445	0.57604	0.33507	0.49170	2.15340	0.23620
6	1.0540*=03	4.4072"+00	1.03445	0.59310	0.34997	0.51310 0.52520	2.14950 2.14500	0.24693 0.25328
ž	1.33404-03	4.5338*+00	1.03445	0.60891	0.36443	0.53320	2.14070	0.25766
8	1.5620"-43	4.6826"+00	1.03445	0.61551	0.37115	0.54210	2.13330	0.26287
9	1.7400"-03	4.7513"+00	1.03445	0.62049	0.37422	0.54700	2.13060	0.26487
10	2.1720*-03 4.5570*-03	4.9615"+^0 6.0784"+00	1.03445	0.63310 0.67584	0.34343 0.42899	0.56060 0.61700	2.1376u 2.06860	0.27129 0.30854
iż	7.2240"-03	7.2104"+00	1.03445	0.71493	0.47059	0.66540	1.99430	0.34428
13	9.7610"-03	8,2676*+00	1.03445	0.74849	0.50632	U.70470	1.93710	0.37632
14	1.2301"-02	9.3822"+00	1.03445	0.77934	0.54142	0.74040	1.47010	0.40955
15 16	1.4991"-02	1.0650*+01 1.1903*+01	1.03445	0.80953	0.57875	0.77470	1.79180	0.44725
17	1.9967*=02	1.3323*+01	1.03445	0.83442 0.85917	0.61340	U.80430 U.83290	1.71930	0.48392 0.52539
iá	2.2431"-02	1.4796"+01	1.03445	0.87980	0.68671	V.85770	1.56000	0.56875
19	2.5121"-02	1.6423"+01	1.03445	0.89905	0.72468	0.BA110	1.47830	0.01655
50	7.055205	1.4925*+01	1.03134	0.92810	U.80024	0.91930	1.31970	U.71843
51	1.5123"-02	2.3117"+01	1.02614	0.74611	0.84347	0.94490	1.19750	0.6118.0
52 55	4.0251"-02 4.3380"-02	2.5232"+01 2.7105"+01	1.02483	0.95772 0.96615	0.90299 0.93644	0.95980	1.13000	0.67047
24	5.5458"+02	2.9455"+01	1.07/490	0.98333	0.97686	0.97110 0.98750	1.07540	0.92235 0.98073
25	5.0279*-02	2.4398"+01	1.01831	0.77471	0.95888	U.97950	1.04410	0.95560
26	6.0663"-02	3.0093"+01	1.01148	0.98783	0.98756	0.99170	1.00840	0.99473
27	U.5740"-J2	3.0574"+01	1.00617	0.79397	0.99555	0.99620	1,00130	1.00304
24	7.0469"-02	3.0801"+01	1.00486	0.99745	0.99930	U.79860	0.49860	1.00486
D 50	7.5565"-02	3.0844*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
30	8.1023"-02	3.0811"+01	1.00557	1.00099	0.99945	1.00040	1.00190	1.00408
31	6.5923**02	3.0802"+01	1.00455	1.00225	0,99930	1,00100	1.00340	1.00215
32 33	9.1128"-02 9.6383"-02	3.08264+01	1.00217	1.00331	0.99770	1.00160	1.00380	0.99998
34	1.0276"-01	3.086H*+01 3.1063*+01	0.97683	1.00366	1.00040	1.00190	00000.1	0.99663 0.98094

INPUT VARIABLES Y, U/HD, T/TD, P/PW

72021	501 VOIS	VOISINET		TABULATION	45	PUINTS, DELTA AT PUI		INT 38	
1	Y	PT2/P	P/PD	T0/T0D	M/MD	UVUD	1/10	MHO/RHOD+U/UD	
1	U.0000"+U0	1.0000*+00	0.90009	0.20484	0.00000	0.00000	1.20000	0.0000	
2	0.3000"-05	1.3808"+00	0.90009	0.31846	0.14099	0.18390	1.70130	0.09729	
3	1.1400"-04	1.9298*+00	0.90009	0.38482	0.20624	0.28190	1.86830	0.13581	
4	1.6500"-04	2.2371"+00	0.90009	0.41172	0.23118	0.31990	1.91480	0.15038	
5	1.9100"-04	2.6458"+00	0.90009	0.44321	0.25944	0.36290	1.95660	U.16694	
5 6	2.6700"-04	3.3652"+00	0.90009	0.49255	0.30176	0.42680	2.00050	0.19203	
7	2.9200"-04	3.6417"+00	0.90009	0.50109	0.31635	0.44460	1.97520	0.20260	
6	3.6500*+04	4.1143"+00	0.90009	0.51553	0.33975	0.47260	1.93500	0.21984	
9	3.9400*=04	4.2325"+00	0.90009	0.51978	0.34533	0.47950	1.92600	0.22386	
10	4.7000"-04	4.5826*+00	0.90009	0.53010	0.36135	0.49810	1.99010	U.23595	
11	4.2100"-04	4.6759"+00	0.90009	0.53333	U.36550	0.50310	1.69470	0.23900	
12	5.4600*=04	4.7880"+00	0.90009	0.53634	0.37041	0.50860	1.66530	U.24282	
13	6.4800"-04	5.0260*+00	0.90009	0.54680	0.38063	0.52190	1.88000		
14	8.5100"-04	5.3650*+90	0.90009	0.56338	0.39472	0.54100		0.24987	
15	1.1300*-03	5.5634"+00	9.90009	0.57796	0.40273	0.55420	1.87850	0.25922	
16	1.4100*-03	5.7257*+00	0.90009	0.59044	0.40916	0.56510	1.89370	0.26342	
17	1.4380*-03	5.8940*+00	0.90009	0.59825	0.41572		1.90750	0.26645	
îå	1.9180*-03	6.1194"+00	0.90009	0,60855		0.57380	1.90510	0.27110	
19	2.1970 03	6.3603"+00	0.90009	0.61722	0.42435	0.58500	1.90050	0.27706	
žó	2.4260"-03	6.5665*+90			0.43337	0.59590	1,89070	0.28369	
21	2.7050"-03	6.7664*+00	0.90009	0.62654	0.44095	0.60580	1.88750	0.28889	
ŽŽ	5.1690"-03	6.6246*+00	0.90009	0,63697	0.44817	0.61590	1.88860	0.29353	
23	7.9370"-03		0.90009	0,69524	0.51034	0.68430	1.79790	0.34258	
24	1.0503"-02	1.0582*+01	0.70009	0.74541	0.56845	0.74100	1.69920	0.39252	
25	1.2891"-02	1.2359"+01	0.90036	0.70240	0.61646	0.76230	1.61030	0.43740	
26	1.5431"-07	1.3929*+01	0.90252	0.81374	0.65597	0.81470	1.54250	0.47668	
27	1.7920"-02	1.5656"+01	0.90477	0.84276	0.69663	0.84460	1.46980	0.52004	
28		1.7480*+01	0.90693	0.86863	0.73749	0.87180	1.39740	0.56561	
29	2.0561*-02	1.9481"+01	0.90927	0.89280	0.77965	0.89680	1.32300	0.61635	
30		2.1044*+01	0.91125	0.90635	0.81112	0.91340	1.26810	0.65637	
31	2.5743"=02 3.0721"=02	2.3058*+01	0.91413	0.92681	0.84989	0.93360	1.20670	0.70725	
iż	1.5674"-02	2.5567"+01	0.92142	0.94556	0.89585	0.95260	1.13070	0.77629	
33		2.7105"+01	0.92880	0.95969	0.92291	0.96540	1.09420	0.61947	
ii	4.0881"-02	2.8411"+01	0.93663	0.96996	0.94527	0.97500	1.06390	0.85837	
35	4.6037*-02	2.9492"+01	0.94896	0.97807	0.96337	0.98250	1.04010	0.89641	
	5.1219"-02	3.0556"+01	0.96148	0.48629	0.98087	0.98480	1.01630	0.93457	
36	5.6147"-02	3.0723*+01	0.97399	0.99131	0.98340	0.99280	1.01880	0.94913	
37	6.1074"-02	3.1136*+01	0,98641	0.99675	0.44059	9.99670	1.01300	0.97054	
0 14	6.6434"-02	3.1741"+01	1.00000	1.00000	1.00000	1.00000	1,00000	1.00000	
7.0	7.1156"-02	3.1261"401	1.01197	1.00174	0.99263	0.99960	1.01410	0.99750	
40	1.6543"-02	3,1148"+01	1.02304	1.00104	0.99043	0.9990	1.01880	1.00404	
41	8.1267"-02	3,0700"+01	1.06463	1.00341	0.96452	1-00000	1.03174	1.03191	
42	4.6474"-02	3.05587+01	1.05335	1.00369	0.98091	U .998 60	1.03640	1.04384	
43	9.1661"-02	3.0450*+01	1,09392	1,00504	0.97927	0.44840	1.04050	1.04980	
44	9.6761"-02	3.0256"+01	1.11020	1.00327	0.97597	0.99740	1.04440	1.06597	
45	1.017401	3.0122"+01	1,12980	1.00368	0.97377	0.99780	1.04870	1.07440	

INPUT VARIABLES Y,U/UD,T/TD,P/PW

720215	02 V01 5 1	HET	PROFILE	TABULATION	46	POINTS, DE	LTA AT POI	mT 40
I	۲ ,	4/574	P/P0	TU/TOD	11/110	U/UD	7/10	RH0/PH00+U/UD
1	0.0000*+00	1.0000*+00	0.97934	0.20863	0.00000	0.00000	1.21810	0.0000
į	6.3000"-05	1.4053*+00	0.97934	0.31050	0.14526	0.18630	1.64490	0.11092
š	1.1400*-04	1.6604*+00	0.97934	0.34106	0.17950	0.23560	1.72270	0.13394
4	1.4000"-04	1.9072"+00	0.97934	0.36317	0.20462	0.27170	1.76320	0.15091
5	1.9100"-04	2.1902*+00	0.97934	0.19197	0.22809	0.10920	1.43760	0.16479
6	2.4100"-04	2.6941"+00	0.97934	0.42815	0.26307	0.36000	1.67270	0.18826
7	2.9200"-04	2.9523"+00	0.97934	0.44820	0.27894		1.90110	0.19812
8	3.4300"-04	3.4211"+00	0.97934	0.47507	0.30539	0.42130	1.90320	0.21679
9	4.1400"-04	3.7440*+00	0.97934	0.49122	0.32222	0.44520	1.90900	0.22839
10	4.4400"-04	3.8836*+00	0.97934	0.49676	0.32921	0.45410	1.90260	0.23374
11	5.2100"-04	4.0649*+00	0.97934	0.50605	0.33807	0.46630	1.90250	0.24003
12	5.4600"-04	4.1259"+00	0.97934	0.50955	0.34099	0.47050	1.90390	0.24202
13	8.25004-04	4.5993*+00	0.97934	0.53563	0.36283		1.91040	0.25709
14	1.0800*=03	4.7937*+00	0.97934	0.55209	0.37141	0.51640	1.93510	0.26162
15	1.3080"-03	4.9456"+00	0.97934	0.56331	0.37811	0.52720	1.94410	0.26558
16	1.5880"-03	5.1054*+00	0.47934	0.57346	0.38476	0.53740	1.95080	0.26978
17	1.8160"-03	5.2728"+00	0.97934	0.58234	0.39174	0.54720	1.95120	0.27465
10	2.0960"-03	5.4720"+00	0.97934	0.59092	0.39987	0.55770	1.94520	0.28078
19	2.3490"-03	5.6202"+00	0.97934	0.59603	0.40581	0.56570	1.94320	0.28510
50	2.6800"-03	5.5165*+00	0.97934	0.60656	0.41356	0.57570	1.93780	0.29095
21	5.2450"-03	7.2868"+00	0.97934	0.66102	0.46737	0.64020	1.87630	0.33415
22	7.8870"-03	8.7571*+00	0.97934	0.70585	0.51553	0.69220	1.80580	0.37602
23	1.0401"-02	1.01527+01	0.97934	0.74150	0.55735	0.73300	1.72960	0.41504
24	1.2891"-02	1.1630"+01	0.97934	0.77388	0.59846	0.76950	1.65330	0.45582
25	1.5354"-02	1.3206"+01	0.97934	50208.0	0.63938	0.80270	1.57610	0.49877
36	1.7970"-02	1.4960*+01	0.97934	0.83293	0.69203	0.83420	1,49600	0.54610
27	2.0460*-02	1.4711"+01	0.97934	0.85747	0.72209	0.86080	1.42110	0.59321
26	2.3076"-02	1.6420"+01	0.97934	0.88028	0.76336	0.8855 0	1,34560	0.64447
29	2.5019"-02	2.0643"+01	0,97953	0,90246	0.80480	9.90860	1.27460	0.69826
30	3.0924"-02	2.41057+01	0.98169	0,92654	0.87114	0.93740	1.15790	0.79474
31	3.5776"-02	2.6412"+01	0.98374	0,93999	0.91268	0.95330	1.04100	v.85958
35	4.0831"-02	2.4130"+01	0.98590	0,95348	0.94241	0.96610	1.05090	0.90634
33	4.5657"-02	2.9284"+01	0.98795	0.96221	0.96187	0.97420	1.02580	0.93626
34	5.0635"-02	3.0140"+01	0.99001	0.97115	0.97604	0.98130	1-01060	0.96115
35	5.5994"-02	3.0981"+01	0.99236	0.97922	0.98978	U.98780	0.99600	0.98419
36	· 1024"-02	3.1034*+01	0.99442	0,98188	0.99065	0.99030	0.99930	0.98546
37	6.6154°-02	3.1646"+01	0.99667	0.99085	1.00092	0.99550	0.99000	1.00551
38	7.13877-02	3,1637"+01	0.99736	0.99209	1.00036	0.99610	0.99150	1.00198
39	7.6035"-02	3.1642"+01	0.99667	0,99625	1.00045	0.99820	0.9950	0.99937
0 40	8.1449*-02	3.1614*+01	1.00000	1.00000	1.00000	1.00000	1.0000	1.00000
41	6.6500"-02	3.1564*+01	1.00470	0,99947	0.99920	0.99970	1.00100	1.00340
42	9.1681"-02	3.1398*+01	1.02419	1.00220	0.99652	1.00050	1.00800	1.01657
43	4.38917-02	3.1300*+01	1.03349	1.00375	0.99495		1.01220	1.03206
44	9.6787"-02	3.1294*+01	1.02429	1.00378	0.99465	1.00100	1.01240	1.01275
	9.63617-02	3.1377*+01	1.01743	1.00412	0.99618	1.00140	1.01040	1.00827
46	1.0288"-01	3.1343"+01	1.07869	1.00391	0.99564	1-00150	1.01120	1.01852

INPUT VARIABLES Y, U/UD, T/TD, P/PH

axisymmetric	M : 7.4 R THETA X 10 ⁻³ : 20 - 60	7203
•	TW / TR : 0.32 - 0.47	ZPG (FPG) - SHT
Axi-symmetric contoured nozzle. Running tin $1.2 < PO < 5.7 \text{ MH/m}^2$. $700 < TO < 1050 \text{ K}$.	me 2-3 minutes. D = 1.07, L = 10 m. Air, dewpoint 205 K. 1.5 < RE/m X 10 ⁻⁶ <	14.
HOPKINS E.J. and KEENER E.R. 1972 Pressul boundary layer profiles. AIAA J. 10, 1141- And private communications. Also Keener	1142.	t skin friction and

- The test boundary layer was formed on the wall of an axisymmetric tunnel fed by a contoured nozzle. A selection from the full nozzle contour geometrical data is given in Table 1, from which it may be seen that the test section is slightly divergent. The test station was 10.13 m downstream of the throat,
- 2 which was uncooled. The surface finish was smooth to 0.8 um. The test section flow was surveyed with
- 3 Pitot rakes and 'was not entirely uniform but relatively so for this type of facility'. No observations
- 4 were made to determine position of natural transition. The tests were made under ZPG or near ZPG conditions 2.7 m downstream of the start of the test section, after the nozzle expansion, predominately simple wave, was complete. (The downstream part of the throat was probably actively cooled, keeping the wall temperature in the region of 300 350 K.)
- 6 An instrumentation panel about 0.3 m long carried all the measuring equipment. A row of static holes
- 8 was drilled at 25.4 mm intervals on the centre line and an FEB (Kistler, diameter 12.7 mm) 30.2 mm to one
- 7 side. The panel and balance conformed to the tunnel wall curvature. Profile measurements were made with
- 8 rakes mounted 47.8 mm to either side of the static holes and 54 mm behind the centre of the FEB. The pitot rake had 10 CPP of 1.016 mm diameter in the inner 50 mm and 11 CPP of 3.176 mm diameter between y = 50 and 355 mm. The precise positions appear as the y values in section C. The total temperature rake had 5 triply-shielded STP of 6.35 mm diameter, the innermost at y = 25.4 mm and the outermost at y = 357 mm.
- 9 Temperatures needed for the Y values of the Pitot tubes were interpolated from a free-hand fairing of the measured temperatures. In the region between the innermost STP and the wall, total temperatures were taken from the empirical relation

$$(TO-TW) / (TOD-TW) = (U/UD)^{1.66}$$

- 10 which had been found to fit the data further out. Real gas corrections for a calorically imperfect
- 1). thermally perfect diatomic gas were applied to all calculated values. Keyes' viscosity law was used.
- The editors have accepted the authors U/IID and M/MD data together with the stated values of MD, TD, TW, PD and CF. Some of the MD values represent revised data which differ from the published tabulation. The other values presented in the tables of sections B and C are calculated assuming a diatomic perfect gas. No attempt has been made to allow for rwal gas effects. Resulting error in static properties stated is negligible, but the tabulated TO and PT2 values may be up to 3 % in error. The static pressure has been assumed constant through the boundary layer. The boundary layer thickness is such that integrals cannot be evaluated using the axisymmetric correction as in the source paper. They must be found using a full axisymmetric treatment and this has been done here. (See also Kemp & Owen 1972.)
- 13 The fifteen individual profiles presented cover a range of TW/TR values, obtained by varying TOD, and
- 14 Raynolds numbers, as a result of the TOD variation and four POD levels. The CF values have not been adjusted to allow fur the small difference in X.
- 6 DATA 72030101 72031501, PO and TO (interpolated) profiles. NX = 1. CF from an FEB.

15 Editors comments

Apart from its value as an addition to the data available, this experiment is of interest in that it shows upstream history effects. The next entry, CAT 7204, provides a comparison case performed in the same facility and by the same authors, where there are no history effects. It is unfortunate that the thermal history, especially, is not recorded.

The boundary layer was relatively thick, but even so there were no observations closer to the wall than the momentum deficit peak, so that integral values should be treated with some reserve. The TO profile used is based on measurements at only five points.

The only comparable investigation is that of Jones & Feller (CAT 7002), since other nozzle boundary layer studies such as Fischer et al. (7001) and Beckwith et al. (7105) describe tests which were made in a simple wave cancellation region, where there are normal pressure gradients.

Table 1 Coordinates for the Ames 3.5 Ft. W.T. Nozzle (M_ = 7.4)

x (m)	у (m)	x (m)	y (m)	× (m)	y (m)
0	0.041602	0.801289	0.153375	6,328562	0.520294
0.030480	0.042824	1.001451	0.182392	7.566172	0.533400
0.060960	0.046147	1.219200	0.213970	8,074182	0.541812
0.091440	0,040475	1.524000	0.257343	8,582162	0.547207
0.161209	0.060564	1,905000	0.306294	9,090172	0.552602
0.234361	0.071171	2.539990	0.372862	9.596182	0.557967
0,353233	0.088422	3,301990	0.430621	10.106223	0.563362
0.453817	0.102992	3,810000	0.458175	10,252222	0.568757
0.609265	0.125517	4.825990	0.494721		

^{* -} centre of balance element.

CAT 7203	HOPKINS/KECH	ICA	BRUDUARY CONDITIONS AND EVALUATED DATA. SI UNITS.							
RUN	MD #	TUZTR	REDZN	CF ±	H12	H12K	Pw	PD+		
X •	POD	PH/PD+	PEDZD	čo	HŠŽ	1132K	THA	T1)*		
RZ *	TOD	81. *	u5	P12+	1142	DSK	UD	TP		
72030101	7.4200 1.3993*+06	0.3492	6.3273*+03 2.0578*+04	9.1200*-04	7.034	1.3457	2.3300"+02	2.5300"+02		
1.0130"+01 -5.3500"-01	9.71/1"+02	0.0000	8.8867*=03	()(1 U_DOUD#+00	1.8031	1.5436	3.0700*+02	8.0900"+01 8.7907"+02		
-2.30001	4.7171.4112	0.0000	11.0007 -113	0.0000 +00	1,3034	1.04/3 -02	1,3301+03	H. / 90/ 902		
72030201	7.4400	0.3325	1.0201*+04	8.4300 04	7.8601	1.3377	4.4500"+02	4.4500"+02		
1.0130*+01	2.7191*+06	1.0000	3.1759"+04	111*	1.8721	1.8543	3.1300*+02	6.6200"+01		
-5.3500"-01	1.0405*+03	0.0000	7.8656"-03	0.0000*+40	1.2901	1.4314*-07	1.3#50"+03	9.4125"+02		
*****	7.4600	A 1110	1.4504*+04	8.1300=-04	7.9989	1.3339	6.4700*+02	6.4700#+02		
72030301 1.0150*+01	4.0551*+06	1.0000	4.2759*+04	11M	1.8749	1.5574	3.1000*+02	9.0100*+01		
-5.3500*-01	1,0929*+03	0.000	7.7577*-03	0.5000*+00	1.2844	1.4117"-02	1.4197*+03	9.8865*+02		
p				***************************************		,,,,,,	******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
72036401	7.5500	0.3650		8,5600*=04	10,7005	1.3634	2.0700"+02	2.0700*+02		
1.0130*+01	1.3900*+06	1.0000		MM	1.8547	1.8362	3.0300*+02	7.3900*+01		
-5.3500"-01	9.1640*+02	0.0000	7.0034"=03	0.0000*+00	1.1220	1.505405	1.3013*+03	8.2878*+02		
72030501	7.4000	0.4098	4.7825*+03	8.QAQQ*-U4	12.4602	1.3651	2.4100"+02	2.4100*+02		
1.0130*+01	1.4225"+06	1.0000	1.0131"+04	Nh Nh	1.8579	1.8590	3.0400*+02	6.9500"+01		
-5.3500*-01	A.3066*+02	0.0000	6.0505"-03	0.0000*+00	0.4775	1.5637"-02	1.2349"+03	7.5150*+02		
				-						
72030601	7.5900	0.3829	7.8340"+03	7.H200"-04	12.2072	1.3548	4.1200*+02	4.1200"+02		
1.0140"+01	2.8623"+06	1.0000	2.9014"+04	14M	1.0045	1.8494	3.1000.+05	7.1500*+01		
-5.3500*-01	8.9530"+02	0.000	5.7010"=03	U.000*+U0	1,0299	1.2707"-02	1.2868*+03	8.0962*+02		
72030701	7.4700	0.3550	8.8087*+03	7.9700*=04	9.9050	1.3497	4.3600*+02	4.3600*+02		
1.0130*+01	2.7339"+06	1.0000	2.93634+04	NP	1.8066	1.5499	3.1200"+02	7.9900*+01		
-5.3500"-01	9.7160*+02	0.0000	6.6077"-03	0.0000*+00	1.1560	1.3206"-02	1.3388"+03	8.7846*+42		
7203UAU1	7.4700	0.4283	1.1745"+04	6.7000***04	12,7354	1.3560	P*P100.+05	0.5100#+02		
1.0130*+01	9.1447*+06	1.0000	4.7266"+04	14M	1.8709	1.8337	3.1000*+02	6.5800*+01		
-5.3500*-01	8.0014*+02	0.0000	5.2478"-03	0.0000"+00	0.4643	1.1718*=02	1.2149"+03	7,2377*+02		
72030901	7.4900	0.4323	1.2622"+04	6.8400*-04	12.3232	1.3492	6.7000*+02	6.7000*+02		
1.0130*+01	4.2739*+06	1.0000		NM	1.8748	1.6567	3.4200*+02	6.3200"+01		
-5.3500*-01	7.7231"+02	0.0000		0.0000*+00	1.0002	1.1580"-02	1,1939*+03	6.9854"+02		
35554 004			4							
72031001	7.4700	0.3625	1.5467"+04	7.3300°~04	8.4755	1.3368	50+"0056.0 50+"0090.2	6.5200*+02		
1.0150*+01	4.0883"+06 9.4241"+02	1.0000	3.2744"+04 7.5846"-03	0.0000*+00	1.8731	1.8544 1.4365"=02	1.1165*+03	7.7500*+01 8.5246*+02		
- 213341 - 01			1,5040 -05	******	,,,,,,,		1,1,1,0,0			
72031101	7.4900	0.3899	1.4605"+04	7.120004	11.5854	1.3531	8.5400*+02	8.5400*+02		
1.0130*+01	5.4477*+06	1.0000	4.3472"+04	ИW	1.8746	1.6577	3.16004405	7.3400*+01		
-5.3500*-01	8,9695"+02	0.000	5.3988"-03	U.0000*+UO	1.0473	1.1352"-02	1.2806*+03	8.1130*+02		
72031201	7.3900	0.4635	4.5324*+03	7.1400*-04	15.2925	1 1400	2.4600*+02	2.4600*+02		
1.0130*+01	1.4395"+06	1.0000	1.4486*+04	MM	1.8642	1.3600	\$0+"005u.E	6.0400**01		
-5.3500"-01	7.2011"+02	0.0000	5.1659"-03	0.0000*+00	0.7878	1.2906"-02	1.1515"+03	6,5150*+02		
72031301	7.5400	0.4498	7.3040*+03	7.2600"-04	14.1066	1.3604	4.2900*+02	4.2900*+02		
1.0130*+01	2.8562"+06	1.0000	3.1283*+04	(IM	1.8682	1.8514	3,1500 +02	6.2600*+01		
-5.3500*-01	7.7438*+02	0.0000	4.9189"-03	0.0000*+00	0.4912	1.1614"-02	1.1901*+03	7.0036*+02		
72031401	7.5000	0.4476	1.3135*+04	6.5000*-U4	15.3739	1.3637	5.6800*+02	8.6800*+02		
1.0130*+01	5.5847"+04	1.0000	5.7748"+04	NW.	1.4709	1.8474	\$0+"00BU.Z	6.2100*+01		
-5.3500"-01	7.60727402	0.0000	4.3031"-03	0.0000*+00	0.7458	1.0396"-02	1-1650*+03	6.8807*+02		
			•							
72031501	7.4800	0.4637	1.4077*+04	6.3000**0#	13.5947	1.3500	8./000*+02	6.7000*+02		
1.0130"+01	5.5023*+06 7.5335*+02	1.0000	4.0932"-03	NM U_0000*+00	1.6749	1.0588	3.1600"+U2 1.1790"+U3	6.1800*+01		
~243700"~01	10フォンン アリピ	0.0000	マ・リマング・マリン	0 4 V V V V " T V V	0.9148	***********	4 4 1 7 7 U" TU.	6.8143*+02		

INPUT VARIABLES Y,U/UD,H/MD

720303	OI HOPK	INS/KEEHER	PROFILE	TABULATION	19	POINTS, DEL	TA AT PUI	NT 19
1	Y	PT2/P	P/P0	10/100	M/MD	U/UD	1/10	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	NM	0.28364	0.00000	0.0 0000	3.44062	0.00000
ટ્ર	4.9500"-03	1.1200"+01	ИM	0.65506	0.38700	0.6600	2.97941	0.22421
3	7.6500~-03	1.3720*+01	NW	0.59701	0,43000	0.71500	2.76487	0.25860
4	1.4990"-02	1.6231"+01	NM	0.73472	0.46900	0.75400	2.58462	0.29173
5	2.0070"-02	1,4342*+01	NM	0.76081	0.50000	0.75100	2.43984	0.32010
6 7	2.5400"-02 3.0460"-02	2.0444"+01	NM	0.78428	0.52800	0.80400	2.31870	0.34675
á	3.5560*-02	2.2221"+01 2.4075"+01	NM NM	0.78983 0.80061	0.55100	0.81500 0.82800	2.18782	0.37252 0.39792
ě	4.0640"-02	2.5409*+01	NM	0.80873	0.59000	0.83700	2.01255	0.41589
10	4.5470"-02	2.7941"+01	HM	0.81773	0.57000	0.84700	1.93434	0.43788
ii	5.0550"-02	2.0815"+01	NM	0.82501	0.62900	0.85600	1.85202	U.4622U
15	6.3250"=02	3.3015"+01	MIN	0.84916	0.67400	0.87900	1.70002	U.516A1
13	6.8650"-02	4.2777*+01	NM	0.88522	0.76800	0.91500	1.41945	U.64462
14	1.1405"-01	5.2355*+01	ИW	0.92106	0.85100	0.74500	1.23312	0.76635
15	1.3945"-01	6.0847"+01	NM	0.94948	0.91800	0.96700	1.10960	0.87148
1 6	1.6465"-01	6.5300"+01	MM	0.97077	0.97300	0.98300	1.02040	0.96310
17	1.4025"-01	7.1545"+01	ИW	0.98273	0.99600	0.99100	0,98999	1.00103
18	2.1565"=01	7.1647*+01	ИW	0.49450	0.99700	0.99700	1.00000	0.99700
D 19	2.4105"-01	7.2117*+01	65W	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES Y	,U/UD,M/MD	ASSUME P	PD				
		5.15.11.15.15.15.15.15.15.15.15.15.15.15						
720305	01 HOPK	INS/KEENER	PROFILE	TABULATION	18	POINTS, DEL	TA AT POI	NT 18
1	Y	PTR/P	P/PD	TO/TOD	M/HD	U/UD	T/TO	RHO/RHOD*U/UD
1	0.0000"+00	1.0000*+00	Nw	0.37079	0.00000	U.00000	4.43165	0.0000
ş	4.9500"-03	9.5815"+00	NM	0.69048	0.33900	0.64800	3.65385	0.17735
3	9.6500"-03	1.0710*+01	NM	0.73352	0.38100	0.70100	3.38521	0.20708
4	1,4990"=02	1.2210"+01	NM	0.75823	0.40800	0.73100	3.21007	0.22772
5	2.0070"-02	1.3997"+01 1.5454"+01	NM NM	0.78324	0.43800	0.76100	3.01671	0.25209
ž	3.0480 -02	1.7054"+01	NM NM	0.80111	0.46100	0.78200	2.87746	0.27177
ė	3.5560"-02	1.8449"+01	HM	U.82457	0.30500	0.80100	2.60455	0.29366 0.31291
Ť	4.040"-02	1.9827*+01	NM	0.63713	0.52400	0.82800	2.49666	0.33161
19	4.5470"-02	2.1179*+01	NM	0.84551	0.54200	0.83900	2.39621	0.35014
11	5.0950"-02	2,2736"+01	NM	0.85345	0.56200	0.85100	2.29241	0.37114
15	6.3250"-02	2.6873"+01	NM	0.87654	0.61200	0.87700	2.05351	0.42707
13	W.8450"-02	3.5012*+01	NM	0.91611	0.70000	0.91900	1.72359	0.53319
14	1.140501	4.50257+01	NM	0.95245	0.79500	0.95300	1,43698	0.66320
15	1.3945*-01	3.8082"+01	HM	0.97837	0.90700	0.98000	1.17521	0.03369
16 17	1.4465"-01	6.3693"+01 6.9426"+01	NM NM	0.98954	0.94700	0.99000	1.09287	0.90587
D iá	2.1565 -01	7.0969*+01	NM	0.99387 1.00000	1.00000	0.99600 1.0000U	1.00000	0.98205 1.00000
•	*******	110101 1111	14	.,,,,,,,,	******	** 00000	1.0000	110000
INPUT	VARIABLES Y	• OMVM • QUVU •	ASSUNE PA	IPD .				
720314	DI MUSK	Ins/Keener	*****	TABULATION	* 11	DAIMPA. DEL	14 AT MO-	UT 1A
,					10	POINTS, DEL	TA NI PUL	NT 16
1	Ψ	PT2/P	P/PD	TO/TOD	M/MD	U/UD	1/10	RHO/RHOD+U/UD
1	0.0000*+00	1.0000*+00	NM	0.40488	0.00000	0.00000	4.45974	0.00000
	4.7500"-03	1.0072*+01	NM	0.74546	0.36400	0.69700	3.64459	0.19009
3	9.6500"-03 1.4990"-02	1.2588"+01 1.4941"+01	HM NM	9.74667	9.40900	0.74800	3.34470	0.22364
š	2,0070"-02	1.6879"+01	NM NM	0.81960	0.44700	0.78400 0.80900	3.07022	V.25486
ĭ	2.5400"-02	1.8742*+01	NM	0.85493	0.50300	0.83000	2.48657 2.72283	0.28007 0.30483
Ť	1.0460"-02	2.0582"+01	NM	0.86152	0.52700	0.84300	2.55879	V.32945
•	1.5560"-02	10+"4155,5	IJМ	0.87210	0.54800	0.65600	2.43996	0.35062
. •	4.0440"-02	2.3032"+01	NM	0.88052	0.56800	0.86700	2.32942	0.37212
10	4.5470"-02	2.5506*+01	NM	0.88794	0,58800	0.67700	2,22456	0.39423
!!	\$.0550"-02	2.7503"+01	NM	0.89862	0.61100	0.85900	2.11700	0.41993
12	6.3250"-02 6.8650"-02	2.3098"+01	NH	0.97683	U.35900	0.91000	2.65008	0.34339
14	1.1405"-01	4.3293"+01 5.9660"+01	NM NM	0.95140	0.76900	0.94900	1.53291	0.62314
iš	1.3445 -01	6.6793"+01	NM	0.98085 1.00146	0.87300	0.97800 0.99700	1.25502	U.77927
D iš	1.6465*-01	7.2847"+01	ÑÃ	1.00000	1.00000	1.00000	1.00000	0.91860 1.00000

ASSUME PEPD

M : 6.2 - 6.5

R THETA X 10⁻³ : 2 - 7

TW / TR : 0.32 - 0.51

7204

ZPG - MHT - SHT

Axisymmetric blow down tunnel. Running time 2-3 minutes. D = 1.07 m. 3.8 < P0 < 6.7 MN/m^2 . 680 < T0 < 1100 K. Air, dew point 205 K. 5 < RE/m X 10^{-6} < 14.

KEENER E.R. and HOPKINS E.J. 1972 Turbulent boundary layer velocity profiles on a non-adiabatic flat plate at Mach number 6.5 NASA TN D-6907.

And Hopkins, Keener and Louis (1970), Keener and Hopkins (1969), private communications.

- The test boundary layer was formed on a flat plate (W = 0.457, L = 1.22 m) mounted on a sting at 3° negative incidence in the wind tunnel used for CAT 7203. The leading edge (X = 0) was chamfered at 23° with an average edge thickness of 0.13 mm.

 The surface of the plate was smooth to 0.8 mm. A row of boundary layer trip elements 1.65 mm high could be mounted at 19 mm (typical) intervals on the line X = 100 mm. In plan view these were symmetrical pentagons with a triangular front and rectangular back, 7.1 mm long overall and 6.4 mm wide. The triangular portion was 4.8 mm long. Surveys were made at a single test station with X = 965 to 995 mm. The plate cooling system maintained
- 2 the surface temperature constant to within 30 K in the central region. Surface pressures were "not as uniform as expected for a flat plate", varying by about 10 % which corresponds to 1.5 % in MD at this
- 3 Mach number. The sublimation technique was used to detect transition, which in all cases is complete upstream of the measuring station (figure 5, source). There were noticeable differences between boundary layers with forced and with natural transition.
- 6 Surface pressures were measured at close intervals (20 mm, E) along the centre line, surface temperature
- 8 at a single point, 16 mm off the centre line at X = 989 mm, and surface shear stress, 45.7 mm off at X = 965 mm, by a FEB (Kistler, diameter of element 9.4 mm). A cooling system was provided to keep the
- 7 electrical components of the balance below 370 K. The boundary layer profiles were surveyed simultaneously by a FPP, a flattened STP and a CCP mounted on a single traverse gear giving a profile normal at X = 996 mm.
- The three probes registered at, respectively, 19.6, 24.7 and 29.8 mm off the centre line. The TTP was constructed from platinum tubing (1.02 mm 00 with wall thickness 0.1 mm) flattened to give an opening with $h_2 = 0.15$ mm and ground so that $h_1 = 0.25$ mm. A platinum / platinum-rhodium thermocouple was mounted about 5 mm back from the opening with a 0.25 mm diameter vent hole 5.6 mm back on the top surface. The FPP was formed in the same manner from tube 0.76 mm in diameter, again with $h_1 = 0.25$, $h_2 = 0.15$ mm. The CCP was 1.02 mm in diameter, but was not used. The TTP and TPP were bent down so as to be able to come close to the plate surface.
- 9 Total temperature profiles were taken for three of the cases presented (0101, 0201, 0401). The values fitted the relationship.

$$U/UD = (TO - TW) / (TOD - TW)$$

within the margin of experimental error, and this relationship was used for all profiles in reduction.

- 10 The air was treated as a calorically imperfect, thermally perfect, diatomic gas and Keycs' viscosity law
- 11 was used.
- 12 The editors have reduced the data using the same assumptions and simplifications as for CAT 7203. The
- 13 profiles presented form three pairs, each specified by a TU/IR value. In each pair, one profile (0201,
- 14 0401, 0601) was obtained with the boundary layer trips on, and the other with natural transition. No adjustment has been made for the small X difference of the CF value obtained from the FEB balance.
- 5 DATA. 72040101-0601. PO and (3) TO profiles, NX = 1. CF from balance.

15 Editors' comments

This experiment provides a reference case, with no upstream history, for comparison with the previous entry (CA1 7203). The authors compare the temperature velocity correlations obtained, and find the marked difference displayed by the two equations quoted in § 9 for each case.

The profiles were relatively "short" and the measurements did not extend within the momentum-deficit μ eak, so that it is not advisable to place too great a reliance on values of the integral parameters. (The authors suggest a tolerance of 8 %). Comparisons may be made with the results of Danberg (CAT 6702). Samuels et al. (6701), and with possible small history effects. Horstman & Owen (CAT 7205).

CAT 7204	KEENER/HOPKI	115	BOUNDARY CON	STIONS AND E	VALUATED I	DATA. SI UNIT	9.	
RUN	MD #	TW/TR	HED2W	CF +	H12	H12K	PW	POA
X •	POD	PW/PD+	PCD2D	CQ	H32	H32K	TWA	TD#
MZ	TOD	8W *	05	P12*	H42	DSK	uo	TR
72040101	6.2100	0.3330	1.0662*+03	1.5600"-03	11.6676	1.9071	1.1600*+03	1-1600*+03
9.9600**01	2.2647*+06	1,0000	2.4161"+03	MM	1.9035	1.8892	3.2400*+02	1.2300"+02
INFINITE	1.0717"+03	0.0000	4.6174"-04	0.0000"+00	0.7330	8.1643"-04	1.3809*+03	9.7301"+02
72040201	6.3900	0.3136	2,2811"+03	1.2200"-03	11.6544	1.6167	1.8600*+03	1.8600*+03
9.9600*-01	4.3372"+06	1.0000	5.1160"+03	ИМ	1.6641	1.8423	3.2600*+02	1.2500"+02
INFINITE	1.1458*+03	0.0000	6.0639"-04	0.0000*+00	0.7559	1.2605"-03	1.4324*+03	1.0396*+03
72040301	6.4200	0,4377	1.4209*+03	1.2300"-03	13.4564	1.8011	1,1400*+03	1.1400*+03
9.9600"-41	2.7371"+06	1.9000	4.4565*+03	NW	1.8876	1.8690	3.1200*+02	8.5000"+01
INFINITE	7.8569"+02	0.0000	4.8922-04	0.0000*+00	0.6269	1.0076*-03	1.18674+03	7.1281"+02
72040401	6.4200	0.4194	1.2470*+03	1.2500*-03	12.9200	1.6096	6,9000*+02	6.9000"+02
9.9600"-01	1.6567*+04	1.0000	3,7665*+03	MH	1.8807	1.0593	3.0600*+02	8.7000*+01
INFINITE	8.0417*+02	0,0000	7.0706*-04	0.0000*+00	0.6445	1.4824*=03	1.2006"+03	7.2956*+02
72040501	6.5000	0.5082	1.7931"+03	1.0600*-03	14.1756	1.0019	1.3500*+43	1.33:0"+03
9.9600=01	3.4503*+06	1.0000	6.6526"+03	NM	1.8743	1.8504	3.1800**02	7.3000*+01
INFINITE	6.8965"+02	0.000	4.9145"-04	0.00004+00	0.5016	1.1182"-03	1.1135*+03	6.2570"+02
72040401	6,5000	0.5014	2,3441"+03	1.0000"=03	15.8981	1.4829	1.3300*+03	1,3300"+03
9.9600"-01	3.4503*+06	1.0000	8.5540"+03	NM.	1.8552	1.8258	3.18007+02	7.4000"+01
INFINITE	6.9430*+02	0.0000	6.446##=04	0.0000*+00	0.5689	1.5691"-03	1.1211#+03	6.3427"+42

7204020	O) KEEN	ERZHOPKINS	PROFILE	TABULATION	18	POINTS, DEL	TA AT PUT	NT 18
I	Y	PT2/P	6474	10/100	מויאו	מטעט	7/17	RH0/RH00+4/UD
1	0.0000"+00	1.0000"+00	Her	0.28452	0.00000	0.00000	2.50000	0.00060
2	1.7000"-03	1.1147"+01	11M	0.81739	0.45057	U.75650	2.41900	0.20836
3	2,8000"-03	1.3983"+01	tita	0.85326	0.50695	0.80540	2.52400	0.31910
4	4.0000"-03	1.6251"+01	N _F	0.87581	0.54789	U.83560	2.32000	0.35924
5	4,7000"-03	1.8885"+01	tats	0.89629	U.591A7	0.86340	2.12800	0.40573
6	5.2000"-03	2.0170"+01	11w	0.90498	0.61217	0.87500	2.04300	0.42829
7 8	6.4000"-03 6.8000"-03	2.3503"+01	1180 MH	0.92453 0 .93 050	0.06196	0.90060 0.90850	1.85100 1.7890u	0.48655 0.50783
ğ	7.7000"=03	2.4721":01 2.7314"+01	Nw	0.94200	0.71463	0.92350	1.07000	0.55299
10	9.1000"-03	3.1044"+01	[]*4	0.95537	0.76266	0.94120	1,52300	0.61799
ii	9.4000"-03	3.2359*+01	NM	0.95943	0.77889	0.94660	1.47/00	0.64089
iż	1.0100"-02	3.41/12*+01	[][4	0.96461	0.80036	0.95340	1.41900	0.67158
13	1.0600"-02	3.6105*+01	ЙМ	0.96977	0.82336	0.96020	1.36000	0.70603
14	1.1200*-02	3.A243"+01	MM	0.97484	0.84770	U.76690	1.30100	0.74320
15	1.2500"-02	4.2966*+01	NM	0.95442	0.89913	0.97960	1.18/00	0.82527
16	1.3000"-02	4.4269"+01	t1w	0.98679	0.91281	0.98270	1.15900	U.847A9
17	1.4600"-02	4.8417"+01	ИM	0.99360	0.95505	U.991h0	1.07800	0.91985
0 15	1.7800"-02	5.3036"+01	146*	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VAPIABLES Y	,0/00,7/70	ASSUME P	■PD				
720405	OI KEEN	!ER/HOPKINS	PROFILE	TABULATION	16	POINTS, DE	LTA AT PUI	NT 16
I	Y	PT2/P	P/PD	TO/TOD	WNHD	U/UD	T/TD	RH0/RH00+U/UD
1	0.0000"+00	1.0000*+00	NW	0.46095	0.00000	0.0000	4.35000	0.0000
ž	1.4000"-03	1-0107*+01	MΝ	0.86715	0.42077	0.76240	3.28300	0.23223
3	2.8000"-03	1.3116*+01	NM	0.89612	0.45211	0.81490	2.45700	0.28523
4	4.0000"-03	1.5645"+01	HM	0.91407	0.52816	0.84720	2.57300	0.32927
5	5.5000"-03	2.0507"+01	1194	0.93876	0.60694	0.89140	2.15700	0.41326
6	6.4000"-03	2.3153"+01	ИW	0.74886	0.64621	0.90930	1.98000	U.45924
7	7.6000"=03	2.7214*+01	NM	0.96116	0.70122	0.93080	1.76200	U.52826
8	8.9000"-03	3.2030"+01	Им	0.97199	0.76175	0.95020	1.55600	U.61067
9	1.0200"-02	3.6845"+01	ИM	0.98044	0.81779	0.96520	1.39300	0.69289
10	1.1600"-02	4.2844"+01	Им	0.95562	0.88265	0.97970	1.23200	0.19521
11	1.2500"-02	4,6299*+01	1194	0.99242	0.91792	0.98650	1.15500	0.85411
12	1.4100*-02	5.0186"+01	M	0.99606	0.95605	0.99310	1.07900	0.92039
13	1.5500" 402	5.2465*+01	IIM IVM	0.99806	0.97772	0.99660	1.03900	V.95919
14 15	1.6300"-02	5.3677*+01 5.3982*+01	NM	0.99915 U.99934	0.98905	0.99840	1.01900	0.97978 V.98501
D is	1.9500"-02	5.4862*+01	NM	1.00000	1.00000	1.00000	1.01400	1.00000
J	117700 -01	214005 141	140	1100000	1.0000	1100000	1.0000	110000
INPUT	VAPIABLES Y	/,U/UD,T/TD	ASSUME P	mPD				
720406	OI KEE	(ER/HOPKINS	PROFILE	TABULATION	16	POINTS, DE	LTA AT PUI	NT 16
1	Y	PT 2/P	P/PD	TU/T05	M/HD	U/UD	T/TD	RH0/RH00*U/UD
1	0.0000"+00	1.0000*+00	Mit	0.45471	0.00000	0.00000	4.29700	0.00000
į	1.2000"-03	7.9100*+00	1114	0.83472	0.36950	0.70720	3.66200	0.19312
3	2.5000*=03	1.0030*+01	NM	0.86404	0.41908	0.75980	3.28700	0.23115
4	3.6000"-03	1,1415*+01	MIA	0.87901	0.44848	0.78670	3.07700	0.25567
5	5.1000"=03	1.4839"+01	NM	0.90733	0.51394	0.83710	2.65300	0.31553
9	6.0000"-03	1.6757*+01	Mit	0.91930	0.54718	0.85840	2.46100	0.34880
7	7.4000"-03	1,9621"+01	MM	0.93364	0.59337	0.86410	5.22000	0.39824
8	8,6000"-03	2.2779"+01	NM	0.94658	0.64044	0.90640	2.00300	0.45252
9	9.8000"-03	2.6529"+01	NM	6.95840	0.69217	0.92710	1.79400	0.51678
10	1.1300".02	3.0930"+01	tim tim	0.96932	0.74835	0.94600	1.59800	0.59199
11	1.3700"-02	3.5761"+01 3.9368"+01	IIM IIM	0.97824 0.98379	0.60551	0.96190	1.42600	0.67454
13	1,4900"-02	4.3516"+01	NW NW	0.98920	0.54567	0.97160 0.98100	1.32000	0.73606 0.80674
14	1.7600"-02	5.1077*+01	HM	0.99686	0.96458	0.99450	1.21600	0.93556
iš	2.2500"-02	5.4291"+01	NM	0.99952	0.99473	0.99920	1.00900	0.99029
D 16	2.5200"-02	5.4862"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
			*					******

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

Blow-down axisymmetric wind tunnel. Useful running time 2 minutes. D = 1.07 m. PO: 3.5 MN/m^2 . TO: 667 K. Air, dew point 205 K. RE/m X 10^{-6} : 11.

HORSTMAN C.C. and OWEN F.K. 1972 Turbulent properties of a compressible boundary layer. AIAA Jour. 10. 1418-1424.

And Horstman, C.C., private communications, Owen & Horstman (197. (10/4), Owen et al. (1975).

- 1 The test boundary layer was formed on a 10° semi~apex angle cone-only cylinder 3.30 m long and 200 mm in diameter with a shoulder fairing radius of 810 mm. The model was a contine centre-line of the tunnel used for CAT 7203/7204. All measurements were made on the parallel policy contract of the tangent point at X = 647 mm (X = 0 at the nose). The model surface was finished to 1.1 at actively cooled, the wall temperature in the test zone rising by 10 K during a run, which was a required as so than a minute,
- 2 while the temperature of the nose-cone rose by about 40 K. The wind tunnel Mach no her and total temperature were uniform to within ± 0.05 and ± 3 % respectively over a 0.9 m core, in which the stream angles had a maximum deflection of 0.5°.
- 3 Natural transition was detected by a hot wire close to the model surface, following Owen (1970), starting
- 4 and finishing at X = 370 and 800 mm respectively. The development of the flow over the surface of the model is presented in table 1. The pressure gradient in the test zone (1/p)dp/dx was 4 %/m. Model alignment was
- 5 checked by surface pressure and heat transfer measurements at 90° intervals round the model, and skin friction measurements 180° apart. Circumferential variations were within the accuracy of measurement.
- The surface pressure, wall shear stress and heat transfer were obtained along the cylindrical portion of the model from X = 0.85 to 2.37 m. The wall shear stress was measured directly using a contoured floating-element balance. Direct calibrations using weights hung from the sensing element were performed before and after each test series. These calibrations were repeatable to within 5 %. The heat transfer rate was measured using the thin-wall transfent technique. Lateral and radial conduction errors were computed and found to be
- 7 less than 5 % of the convective heat transfer. Pitot pressure and total temperature profiles were obtained
- 8 at X = 1.15, 1.76 and 2.37 m. To provide reliable mean flow profiles extra care was taken to use flow field instrumentation which required little or no experimental correction. Single probes were traversed through the boundary layer, stopping every few seconds to ensure no time lag in pressure or temperature. Pitot
- 7 pressure was measured with an FPP ($h_1 = 0.75$, $h_2 = 0.65$, $b_1 = 1.9$, $b_2 = 1.8$ mm). Independent calibrations in a free-jet facility, matching Mach number, velocity and density with the present test condition
- 10 indicated that rarefaction effects were less than 0.5 %. The minimum local probe Reynolds number based on conditions behind the normal shock and probe height was 60. The Pitot probe height was less than 4.5 % of the smallest boundary-layer thickness traversed.
- 7 Total temperature profiles were obtained using two types of probes; a single shielded chromel-alumel probe 1.4 mm in diameter was used in the outer 90 % of the boundary layer and an unshielded butt-welded chromelalumel wire 3 mm long by 0.07 mm thick was used close to the wall. Independent calibrations of these probes in a free-jet facility, matching test conditions, indicated a maximum total temperature error of 2 % for
- 10 the shielded probe and 5 % for the unshielded probe. Corrections were only applied to the unshielded probe. For portions of the boundary layer where measurements with both probes were taken the corrected data agreed to within 2 %. The shielded probe diameter was less than 8 % of the smallest boundary-layer thickness traversed. The caloric imperfections of air were taken into account in data reduction.
- 7 The fluctuating properties of the layer were measured with a constant temperature HMP and the results presented in Owen & Hartmann (1972). A comparison between these observations and later surveys made using a constant current HMP is made in Owen & Horstman 1974) and Owen et al. (1975). The CC-HMP data

were taken at slightly differenct free stream conditions. The data was reduced assuming that the signal was not affected by pressure fluctuations. A sample profile is given in section D. The mean turbulent whear flow was analysed in Horstman & Owen 1972. A tabulation of certain of these quantities is given in

- 9 section D. The three total temperature profiles, scaled on 6 (table 1) were indistinguishable and the mean TO profile has been used for all three profiles presented. The static pressure has been assumed constant through the layer. The CF value for X = 1.15 m is an interpolation of values measured at X = 0.85 and 1.46 m. The CF values presented are averaged from the measurements on either side of the model at each X station. The editors have accepted the data as presented by the authors.
- § DATA: 7205 0101-0103. Pitot and TO profiles separately, NX = 3 CF from a number of FEB and CQ by the transient technique separately. Hot wire measurements.

15 Editors' comments

This experiment is very fully and accessibly reported. We suggest that recourse should be had to the original papers, particularly for a treatment of the turbulence quantities which we have not discussed in any detail here.

The experimental range is small, but the coverage of that range is exceptionally complete. This is the only case we have found in which, for one set of conditions, the mean flow profile information is complete, both wall shear stress and heat flux have been measured, and significant information on the fluctuating quantities is provided. Additionally there is a high probability that there are not significant history effects.

The same model and test conditions were used by Mikulla & Horstman (1975) for pioneer Reynolds stress measurements using fine wires mounted on the leading edges of thin ceramic wedges.

Data for boundary layers in broadly the same experimental range may be found in Keener & Hopkins - CAT 7204, Danberg - CAT 6702, and Samuels et al. - CAT 6701.

TABLE 1: BOUNDARY LAYER HISTORY

X (m)	UD/UR	MD/MR	RHOD/RHOR	(RED/m)/ (RER/m)	å (mm)
0.00	0.975	0.795	2,39	1.54	•
0.20	0.975	0.795	2,39	1.54	•
0.40	0.975	0.795	2,39	1.64	
0.60	0.995	0.945	1.12	0.96	•
0.80	1.00	1.017	0.79	0.81	•
1.00	1.00	1.005	0.85	0.85	15.0
1.20	1.00	1.000	0.83	0.825	17.6
1.40	1.00	1.000	0.83	0.815	20.2
1.60	1.00	0.995	0.82	0.805	22.8
1.80	1.00	0.990	0.81	0.80	25.5
2.00	1.00	0.985	0.795	0.78	28.2
2.20	1.00	0.980	0.78	0.76	30.8
2.40	1.00	0.975	0.765	0.74	33.5

REFERENCE VALUES:

MR = 7.2 TOR = 667 K TW = 310 K UR = 1110 m/s RER/m = 10.9

The boundary layer edge, 6, is defined as that point at which PO/POR = 0.99.

CAT 7205	HORSTMAN		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	s.	
RUN	MD *	TW/TR	REDZW	CF *	H12	H12K	P₩	PD#
X *	POD	PH/PD+	REDZD	CG *	H32	H 32K	T₩*	TD#
RZ #	TOD	SW +	DZ	P12*	H42	D 2 K	UD	TR
72050101	7.2000	0.5035	1.3951"+03	9.0000*-04	14.3126	1.5630	4.8142*+u2	6.8192"+02
1.1500*+00	3.3777*+06	1.0000	4.1983"+03	2.2328*-04	1.8191	1.7505	3.0570*+02	5.9000"+01
1.0150*+01	6.7071*+02	0.0000	5.8730"=04	-2.6755*-06	0.7473	1.6545*-03	1.1088*+03	6.0709"+02
72050102	7.2000	0.4984	2.1011"+03	8.5000"-04	14.0416	1.4345	4.8192*+02	6.8192*+02
1.7600"+00	3.3777*+06	1.0000	7.2612"+03	2.0139"-04	1.8282	1.7802	3.0256*+02	5.9000*+01
1.0150"=01	6.7071*+02	0.0000	8.7751"-04	-4.2327"-06	0.7076	2.3232*-03	1.1088*+03	6.0709*+02
72050103	7.2000	0.4764	3.0423*+03	8.0000"-04	12.2693	1.3941	6.8192"+02	6.8192*+02
2.3700*+00	3.3777*+04	1.0000	1.2950*+04	2.1015"-04	1.8303	1.7755	2.4922"+02	5.9000*+01
1.0150*-01	4.7071*+02	0.0000	1.2271*-03	-6.2887"-06	0.8326	3.0195*-03	1.1088"+03	6.0709*+02

TW CHANGED TO BE CONSISTENT WITH RHOM/RHOD

720501	LO1 HUPS	STHAN	PROFILE	TABULATION	16	POINTS, DE	LTA AT POI	NT 16
1	Y	PT2/P	P/PD	T0/T00	M/HD	U/UD	T/TD	RHO/RHOD*U/U
1	0.0000"+00	1.0000*+00	Им	0.45578	0.00000	0.00000	5,18135	0.00090
2	1.2070*-03	5.0023"+00	NM	0.77091	0.25987	0.59000	5.15464	0.11446
3	1.4960"-03	7.7709"+00	NM	0.78484	0.33048	0.67600	4.18410	V.16156
4	2.0910*-03	1,0301*+01	ŊM	0.80226	0.38368	0.72900	3.61011	0.20193
5	3.0940"-03	1.2772*+01	1/4 H	0.82591	0.42927	0.77100	3.22581	0.23901
6	4.7940"-03	1.5847*+0:	581	0.86152	0.47999		2.89017	0.20234
7	5.7800"-03	1.9091*+6		0.88256	0.52822	9.84800	2.57732	0.32902
8	7.4800"-03	2.3887*+0	7	0.91274	0.59236		2.23714	0.39604
9	8,5000*-03	2.8366*+44	1444	0,92544	0.64653		1.97239	0.46036
10	9.8090"~03	3.3770*+01	17.00	0.94941	0.70639		1.74825	0.53425
11	1.1186"-02	4.2986"+01	tiet	0.97384	0.79819		1.45540	0.66158
12	1,2597"-02	5.2025*+01	NM	0.98327	0.87892		1.24069	0.78907
13	1.3906"-02	5.9697"+01	NM	0.99705	0.94204		1.11111	0.89370
14	1.5011"-02	6.4359"+01	MH	0.99591	0.97841	0.99600	1.03627	0.96114
15	1.6324"-02	6.6608"+01	NM	1.00080	0,99549		1.00908	0.99100
16	1.7000*-02	6.7209"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
NPUT	VARIABLES	Y/DELTA,U/UD,R	HO/RHOD	ASSUME PEP	D			
2050:	102 HORS	STMAN	PROFILE	TABULATION	14	POINTS, DE	LTA AT POI	[NT 14
r	Y	NY 3 40	0.485	10,100	M/MD	0.405	1/10	RHO/RHOD*U/U
1	Ţ	PTZ/P	P/PD	מפויטו	מחלה	U/UD	1710	KUO/KUOD#U/U
			AIM	A 48114			E + 945+	

720501	02 HORS1	TMAN	PROFILE	TABULATION	14	POINTS, DEL	TA AT POI	NT 14
1	Y	P72/P	P/PD	10/100	M/MD	U/UD	1/10	RHO/RHOD*U/UD
1234567690	0.0000"+00 1.2000"-03 3.1000"-03 5.8000"-03 6.5000"-03 1.1200"-02 1.3900"-02 1.5200"-02	1.0000"+00 1.0314"+00 1.1241"+01 1.7017"+01 1.9416"+01 2.3541"+01 3.2631"+01 4.1066"+01 5.2311"+01	MM MM MM MM MM MM MM MM MM MM MM MM MM	0.45111 0.75768 0.77887 0.80236 0.84834 0.91812 0.94873 0.97592 0.97592	0.0000 0.27450 0.36154 0.46665 0.53261 0.61293 0.64420 0.765635	0.0000 0.60400 0.70100 0.74200 0.80300 0.85100 0.85100 0.93100	5.12821 4.83092 3.75940 3.41297 2.95858 2.55102 2.13220 1.79856 1.49156	0.00000 0.12503 0.18647 0.21741 0.27141 0.33359 0.41975 0.51764 0.64165 0.78781
10 11 12 13 D 14	2.1925*-02 2.2600*-02 2.4625*-02	6.2422*+01 6.3672*+01 6.6608*+01 6.7209*+01	ИМ ИМ ИМ ИМ	1.00277 1.00492 1.00080 1.00000	0.96347 0.97314 0.99549 1.00000	0.98600 0.99800 1.00000 1.00000	1.07296 1.07597 1.00908	0.78761 0.93014 0.94700 0.99100

INPUT VARIABLES Y/DELTA, U/UD, RHO/RHOD ASSUME PAPD

72630	103 HORE	STHAN	PROFILE	TABULATION	56	POINTS, DE	LTA AT PUI	NT 26
Ţ	Y	PT2/P	P/P0	TU/10D	MZHD	UVUD	T/10	RHO/RHOU+U/UD
1	0.0000*+00	1,0000*+00	NM	0.43121	0.00000	U.0000U	4.90196	0.0000
2	1.0890"-03	4.3474*+00	NM	0.72433	0.24005	0.54500	5.15464	0.10573
3	1.6830"-03	7.8821"+00	NM	0.75640	0.33300	0.66600	4.00000	0.16650
4	2.6070"-03	1.0052"+01	NM	0.77318	0.37677	0.71200	3.5335/	0.20150
5	3,1020"-03	1.0618"+01	NM	0.77992	0.39365	0.72600	3.40136	0.21344
•	4.3890"-03	1,2212"+01	ИW	0.79861	0.41937	U.75200	3.21543	0.23387
7	5.7090"+03	1.3919"+01	MM	0.81842	0.44556	U.77900	3.01205	U.25863
6	6.9966°m03	1,56734+01	i film	0.83295	0.47725	0.80100	2,81690	0.28435
4	8.316003	1,7434"+01	NM	0.84547	U.50415	0.82000	2.64550	0.30996
10	9.5040"-03	1.9083"+01	MM	0.85581	0.52810	0.63500	2.50000	0.33400
11	1.3121"+02	2.1547*+01	1494	0.87646	0.56197	0.85800	5.33100	0.36806
15	1,2408*-02	2.3669"+01	(IM	0.89406	0.55959	0.87600	2.20751	0.39683
13	1.3050,,=05	2.6367*+01	Mig	0.89996	0.62293	0.88900	2.03666	0.41650
14	1.5213*-02	2.9229"+01	HM	0.91618	0.65646	0.90600	1.90476	0.47565
15	1.6303"-05	3.1920"+01	٧w	0.92791	0.68649	0.91900	1.79211	0.51260
10	1.7622"-62	3.4787"+01	11M	0.94081	0.71710	0.93200	1.68919	0.55174
17	1.8909"-02	3.8812"+01	1181	0.45321	0.75798		1.55763	U.60733
10	4.0326"=02	4.2399"+01	FIM	0.46352	0.79264	0.95700	1.45773	0.65650
19	2.141002	4.6213*+01	Mid	0.97284	0.52790	0.96700	1.36426	0.70881
20	2.2935"-02	4.9457"+01	βM	0.98495	0.85676	U.97700	1.30034	U.75131
31	2.4123^-02	5.3630"+01	NM	0.99202	0.59250	0.98500	1.21803	U.80869
2.5	2.4829"-02	6.0442*+01	†1 M	0.99183	0.44795	0.99100	1.04540	U.90 67 6
57	7.4502a-05	4.3966"+01	HH	0.99447	0.97540	0.9950U	1.04058	0.95620
24	3.0723"-02	6.6078"+01	NH	0.99751	0.99149	U.99800	1.01317	0.98503
25	3.1944"-02	6.6942"+01	MIT	1.00035	0.99800	1.00000	1.00402	0.99600
D 26	1.5000*-02	6.7209"+01	NM	1.00000	1,00000	1.00000	1.00000	1.00000
IMPUT	VARIABLES	Y/DELTA,U/UD,R	HOZRHOD	ASSUME PEP	ח			

SECTION D: SUPPLEMENTARY DATA
D 1. CONSTANT CURRENT HOT WIRE DATA (Owen et al., 1975, figures 8-11)

AUTHORS' SYMBOLS AND UNITS

X = 224 cm. $R_{e\theta} = 8500$ $T_0 = 667 \text{ K}$ $T_W = 310 \text{ K}$ $\delta = 3.3 \text{ cm}$ $\theta = 0.134 \text{ cm}$

 $\rho_{\rm e} = 0.0294 \text{ kg/m}^3$ $u_{\rm e} = 1100 \text{ m/s}$ $u_{\rm p}/u_{\rm e} = 0.0416$

y /6	u/u	H/H	p/p.	<u><(04) }></u>	<to'></to'>	R(pu)T _o	<u><01></u>	$\frac{\leq u' \geq}{u_{\tau}} \left(\frac{\rho}{\rho_{w}}\right)^{1/2}$	² <u>≤u'></u> u _y
0	0	0	0.24	-	-	•	•	•	-
0.04	0.64	0.32	0,26	13.0	4.3	0.5	7.0	1.12	1.06
0.04	0.64	0.32	0.26	15.0	4.8	0.75	7.5	1.31	1.25
0.12	0.74	0.41	0.31	14.0	3.0	0.5	9.5	1.04	0.89
0.22	0.81	0.49	0.36	12.0	3.6	0.4	8.2	0.91	0.72
0.23	0.81	0.49	0.37	13.5	4.2	0.5	9,7	1.13	0.90
0.41	0.89	0.62	0.48	11.6	3.3	0.35	9.6	0.88	0.60
0.43	0.90	0.64	0.50	12.0	2.5	0.4	10.0	0.79	0.54
0.56	0.94	0.74	0.62	11.5	2,5	0.5	10.0	0.77	0.46
0.63	0.96	0.80	0.69	10.0	3.3	0.5	8.8	0.89	0.51
0.81	0.99	0.93	0.88	8.0	2.3	0.0	7.8	0.60	0.31
0.96	1.0	0.99	0.99	6,5	2.2	- 0.4	6.7	0.54	0.26
1.1	1.0	1.0	1.0	1.5	1.4	- 0.5	1,9	0.36	0.17
				¥	*		×		

D 2. TURBULENCE QUANTITIES DEDUCED FROM MEAN FLOW MEASUREMENTS

(Horstman & Owen, 1972, figures 6-14)

AUTHORS' SYMBOLS AND UNITS

7205 0101

X = 1.15 m

y/6	4(u/u _e)	4(H/H	Y 1	of10	4_92_30	44	1	Þ	p
374	<u>a(y/s)</u>	d y/6	P u 2	P. U. T.	้ คูน นู	4.61	6	P _r	P _x
0.071	4.0	0.49	3.25	2.69	- 0.80	0.00278	0.0102	0.15	3.82
0.088	2.5	0.49	3.74	2.50	- 2.12	0.00416	0.0158	0.29	1.83
0.123	1.0	0.47	4.07	2.29	- 3.10	0.00976	0.0383	0.83	1.12
0.182	0.62	0.41	4.03	2.18	- 3.47	0.0139	0.0581	1,22	0.86
0.282	0.47	6.34	3.79	1.96	- 3.67	0.0155	0.0704	1.39	0.79
0.340	0.45	0.31	3 , 54	1.81	- 3.64	0.0135	0.0671	1.35	0.83
0.440	0.41	0.29	3.10	1.48	- 3.52	0.0112	0.0642	1.48	0.80
0.500	0.38	0.28	2.77	1.21	- 3.36	0.00955	0.0615	1.67	0.75
0.577	0.34	0.27	2.28	0.82	~ 3,05	0.00777	0.0687	2.22	0.67
0.658	0.27	0.23	1.59	0.31	- 2.46	0.00568	0.0563	4,29	0.58
0.741	0.18	0.14	1.10	- 0.017	- 2.11	0.00502	0.0648	- 4.99	0.52
0.818	0.11	0.07	0.56	- 0.040	- 1.40	0.00375	0.0716	- 0.89	0.47
0.883	0.07	0.04	0.42	- 0.040	- 1.15	0.00409	0.0938	- 0.59	0.45
0.972	0.027	0.015	0.19	- 0.039	- 0.74	0.00466	0.1612	- 0.26	0.32
1.0	0.020	0.01	0.19	- 0.039	- 0.74	0.00616	0.2153	- 0.23	0.34

7205 0102

X = 1.76 m

, 200 0.0.	•								
y/ 6	$\frac{d(u/u_a)}{d(y/b)}$	$\frac{q(\lambda/p)}{q(H/H^{\bullet})}$	7T 104	QT 104	94 m4	<u>u, 61°</u>	1 6	Pr _T	P _{rt}
0.048	6.0	0.50	2.99	2.49	- 0.81	0.00173	0.0063	0.10	3.75
0.076	2.5	0.49	3.70	2.18	- 2.54	0.00400	0.0149	0.33	1.57
0.124	0.68	0.47	3.90	1.98	- 3.29	0.01409	0.0537	1.36	0.78
0.232	0.50	0.37	3.63	1.78	- 3.50	0.0155	0.0656	1.51	0.74
0.340	0.42	0.31	3.24	1.49	- 3.60	0.0141	0.0684	1,60	0.75
0.448	0.37	0.28	2.69	1.12	- 3,26	0.0111	0.0647	1.82	0.72
0.556	0.33	0.28	2.05	0.60	- 2.89	0.00804	0.0582	2.91	0.60
0.661	0,26	0.22	1.31	- 0.05	- 2.34	0.00544	0.0539	-23.48	0.51
0.768	0.16	0.11	0.55	- 6.57	- 1.55	0.00308	0.0517	- 0.66	0.39
0.877	0.08	0.04	0.04	- 0.68	- 0.75	0.00038	0.0256	- 0.03	0.07
0.904	0.06	0.03	- 0.06	- 0.68	- 0.57	-0.00077	-	0.04	- 0.14
0.985	0.02	0.01	- 0.07	- 0.67	- 0.55	-0.00241	-	0.05	- 0.16
1.0	0.02	0.01	- 0.07	- 0.67	- 0.54	-0.00244	•	0.05	- 0.16
7205 01	03			χ =	2.37 m				
0.033	9.0	1.2	2.39	2.70	+ 0.34	0.00104	0.0039	0.12	- 6,60
0.051	4.0	0.50	3.32	2.38	- 1.65	0.00253	0.0091	0.17	2.18
0.079	1.0	0.49	3.69	2.16	- 2.63	0.00994	0.0361	0.84	1.13
0.094	0.82	0.49	3.68	2,13	- 2.75	0.0116	0.0432	1.04	0.97
0.133	0.65	0.47	3.61	2.06	- 2.90	0.0136	0.0524	1.27	0.81
0.173	0.56	0.42	3.50	1.98	- 2.98	0.0143	0.0580	1.33	0.78
0.212	0.50	0.38	3,38	1.89	- 3.03	0.0145	0.0517	1.36	0.78
0.252	0.47	0.36	3,24	1.80	- 3.04	0.0139	0.0623	1.38	0.78
0.288	0.45	0.33	3.11	1.73	- 3,00	0.0132	0.0620	1.32	0.82
0.337	0.43	0.31	2.88	1.54	- 2.96	0.0119	0.0603	1.35	0.82
0.376	0.41	0.30	2.67	1.42	- 2.85	0.0110	0.0592	1.38	0.81
0.413	0.40	U.29	2.49	1.27	- 2.76		0.0563	1.42	0.81
0.461	0.38	0.28	2.23	1.05	- 2.62		0.0542	1.56	0.78
0.494	0.37	0.28	2.00		- 2,44		0.0512	1.68	0.75
0.534	0.34	0.28	1.74	0.71	- 2.24		0.0505	2.02	0,68
0.573	0.31	0.27	1.44	0.48	- 2,00		0.0483	2.61	0.61
0.616	0.27	0.25	1.16	0.17	- 1.85		0.0482	6.32	0.51
0.652	0.24	0.23	0.89	- 0.07	- 1,62		0.0459	-12.51	0.44
0.695	0.20	0.19	0.58	- 0.33	- 1.36		0.0434	- 1.65	0.35
0.731	0.16	0.16	0.31	- 0.53	- 1,08		0.0383	- 0.58	0.23
0.613	0.10	0.08	0.06	- 0.75			0.0265		0.07
0.885	0.06	0.04	- 0.13	- 0.79		- 0.00174	-	0,11	- 0.28
0.931	0.04	0.025	- 0.30			- 0.00573	-	0.24	- 1.51
0.968	0.03	0.015	- 0.42			- 0.0106	-	0.27	-
1.0	0.02	0.01	- 0.48	- 0.76	0	- 0.01 59	-	0.27	

axisymmetric	M : 19 to 45 R THETA X 10 ⁻³ : 1 - 8	7206
	TW/TR : 0.35 - 0.85	FPG - SHT

Blow-down tunnel with axisymmetric contoured nozzle. Test time up to 20 minutes. Open test section: $6.6 < PO < 28 MeV/m^2 315 < TO < 988 K Helium. <math>2 < RE/m \times 10^{-6} < 35$. D = 0.77 m.

KEMP J.H., OMEN F.K. 1972. Experimental study of nozzle wall boundary layers at Mach numbers 20 to 47. NASA TN D-6965.

And Kemp J.H., private communications, Kemp & Sreekanth (1969)

- 1 The tests were conducted on the wall of the axisymmetric contoured nozzle designed to give a Mach number 50 core and equipped with an alternative throat section intended to give a Mach 40 core. The throat sections were furnished with heating coils around the outside to provide a more uniform temperature distribution in the nozzle wall (Kemp, 1970). Radii of the nozzle contour are given in section C for the measuring stations. The nozzle was about 3.60 m long and 0.72 m in diameter at the exit. The profiles were measured in the range 0.50 < X < 3.5 m, (X = 0 at the nozzle throat) where X is measured along the nozzle axis. The nozzle was equipped with an injector at the end but no difference was found, in these tests, between</p>
- 2 data obtained with or without the injector, so long as the boundary layer remained attached. The Mach 40 throat was found to provide an inviscid test core approximately 0.10 m in diameter in which the pitot pressure variation was less than ± 5 % and the Mach number variation was less than ± 1.8 %. A reasonably sized uniform core was obtained for 10 < PO < 14 MN/m² (Kemp 1970). "The uniform Mach core is very much dependent on the reservoir conditions so that care must be exercised in judging the uniform flow conditions."
- 4 The nozzle throat was heated to very nearly the recovery temperature. The temperature dropped off rapidly with distance down the nozzle where the wall temperature was nearly room temperature for all test stations X>1.5 m. Coordinates for the nozzle are given in table 1.
- There were 10 static holes (d = 6.35 mm) along one generator from X = 0.508 to 3.56 m, at the 5 profile measuring stations, and distributed between these stations. No corrections were made for rarefaction effects on the wall pressure measurements. Hall temperature was measured at the 5 profile measuring stations using chromel-alumel thermocouples. Skin friction was measured at the last 4 survey stations using a floating element, magnetically nulling balance (Spangler 1963). At each station the elements were contoured to the local nozzle surlace. The diameter of the floating element was 12.7 mm and the centre line of the floating element was aligned with the profile measuring station. Wall heat transfer was determined from the steady-state heat conduction in thin-skin gauges contoured to the nozzle wall and positioned at the last four survey stations.
- 7 Traverses were made with Pitot and TO-probes at five survey stations and with hot-wire probes at the last two survey stations. TO was measured with a single shielded thermocouple probe $(d_1=1.78 \text{ mm})$ designed to have low conduction losses in very low density flow conditions and calibrated in a free-jet facility in the relevant Mach number range (the calibration curve is given). Pitot pressure was measured with a CPP $(d_1=4.76 \text{ mm})$ at survey stations 1.067 m to 3.56 m and with a CPP $(d_1=1.59 \text{ mm})$ at X = 0.508 m. Fluctuation measurements at X = 3.56 m were obtained with a water-cooled platinum film probe (McCroskey 1966). Mass flow and temperature fluctuation intensities were measured at X = 2.793 m using a HMP (CT) with a "Platinum 10 % Iridium" wire $(d_1=0.0063 \text{ mm}, \tilde{\tau}_1=3.17 \text{ mm})$. A preliminary probe calibration was made in a free-jet facility.
- 8 Pitot and TO profiles were taken at a station corresponding to the centre of the balance.
- 9 The TO and PT2 profiles were obtained on separate occasions, and the TO data were interpolated to the Y-values of the Pitot values. The tunnel reservoir conditions differed for each run and the profiles are presented as having the reservoir pressure of the pressure run and the reservoir temperature of the temperature run. The TO data showed some "hysteresis effects due to variations in support temperature"

and the data were faired giving "velocity values that vary as much as 5 % from the value given by unweighted fairing". The fairing was weighted toward high temperature values in the outer part of the layer, and towards low values in the inner part. The static pressure at the wall differed greatly from that near the boundary layer edge, by a factor of up to three. The authors reduced data assuming a linear static pressure variation from the wall to the free stream. The recovery factor used was 0.8. The temperature and Pitot data were corrected for real gas effects (Erikson, 1963) and raw data are tabulated in the source

- 11 paper. The viscosity law assumed was Akin's (1950).
- 12 The editors have taken values from the authors' final, adjusted profile tabulations, so incorporating all the authors assumptions and calibration procedures. The adda state reservoir values given in section B are calculated from the static properties at the D-state profile point, assuming that helium can be treated as a parfect gas. Ignoring typographical error, random differences between the calculated edge state and the
- 13 tabulated reservoir conditions are found at the 10 % level. With the exception of four profiles, all the data obtained are presented, giving seven sets of runs for different ranges of Mach number, Raynolds
- 14 number and heat transfer. CF data are not available for the first station.
- § DATA: 7206 0101-0705. Pitot and TO profiles obtained separately. NX = 5. CF from FEB,CQ from steady state film gauges. Some hot wire data.

15 Editors' comments

These measurements were made in a Mach number range unmatched by any other reported experiment. The instrumental and conceptual difficulties are such that no great emphasis should be placed on any precise numerical value. Unfortunately, the experiment is not very clearly reported, and it has not proved possible to decide exactly what was done in every particular.

The editors have inadvertently introduced some scatter in the outer region of the profiles by using the authors' T/TD data as an input for the profiles. These are tabulated in rounded form, to one decimal place, so that for the outermost profile points the pressures may be up to 6 % in error from this cause. The effect of the scatter on evaluated data will however be small. Large differences between our Raynolds number values and those of the original arise from our choosing a different viscosity law for helium at low temperatures, as stated in the introduction.

The velocity profiles cannot be related directly to any correlation based on adiabatic flat plate data. There are strong thermal and pressure history effects, and, for the Mach number, the Reynolds number is so low that the profiles should be considered transitional. (In transformed coordinates the maximum value of yu_{τ}/v is of order 40 and the H12K value is appropriate to a laminar layer.) There are also strong, and inadequately described, normal pressure gradient effects which will only very approximately be accounted for by the linear static pressure variation assumed. The probable shape of the static pressure variation can be seen in Beckwith et al. - CAT 7105 P and, approximately, in Fischer et al. - CAT 7001. The normal stress gradient required to turn the flow is provided by a static pressure gradient with a normal Reynolds stress component superimposed on it which is of the same order.

TABLE 1 NOZZLE COORDINATES: AUTHORS UNITS (INCHES)

(Inches)	r (Redius-Inches)	(Inches) (R	r adius-Inches)	X (Inches)	r (Radius-Inches)
- 0.50	0.231	8.000	1.4640	60.000	6.4240
- 0.100	0.1007	10.000	1.7320	64.000	(03) 6.7280
Q	0.0954	15.000	2.3250	68.000	7.0270
0.150	0.1140	20,000 (01)	2.8790	80.000	7.8680
0.350	0.1508	25,000	3,4000	90.000	8.6530
0.600	0.1975	30.000	3.8820	100.000	9,2130
1.000	0.2732	35.000	4.3380	110.000	(04) 9.8360
2.000	0.4700	39.000	4.6950	120.000	10.4240
3.000	0.6620	42,000 (02)	4.9590	130.000	10.9760
4.000	0.8430	45,000	5.2170	140.000	(08) 11.5140
6.000	1.1720	50.000	5.6280	(Figures	from NASA Ames)

CAT 7206	KEMP	BOUNDARY COP	DITIONS AND I	EVALUATED (TINU IS .ATA	١.	
RUN	MD #	TH/TR REDZW	CF +	H12	H12K	₽₩#	PD#
X *	POD	PH/FD REDZD	CQ ₹	H32	H32K	1##	TD#
RZ *	TOD	5W # DZ	PI2	H42	D2K	UO	T#
72060101 5.0800*-01 -7.3127*-02	14.4000 6.7979*+06 4,9847*+02	0.8098 7.5368*+01 1.4122 1.6971*+03 1.0000 1.6328*+04	NG NM	91.0592 1.9071 1.2692	2,3489 1,6268 1,8040*-03	5.3297"+01 3.0200"+02 2.2668"+03	3.7896"+01 3.9400"+00 4.4704"+02
72060102	27.3000	0.7006 5.4270*+01	3.6200==04	154.3718	2.4490	1.4692"+01	00+"#U\$P.0
1.0670*+00	6.7704"+06	2.1182 2.3499*+03	2.1410==05	1.8654	1.5665	3.1500"+02	00+"0010.5
-1.2596*-01	5.0160"+02	1.0000 2.9909*=04	NC	1.2405	5.6321*-03	2.2784"+03	%0+"E#P#.
72060103	30.9000	0.6571 6.7521*+01	2.6400"=04	143,2869	2.5437	7.0725"+00	3.7643"+00
1.6240*+00	6.8441"+06	1.8917 3.3561*+03	1.6190"=05	1,8848	1.5736	3.0100"+02	1.6000"+00
41.708**+01	5.1109"+02	1.0000 5.2217*=04	NC	1,5031	9.6920*-03	2.3000"+03	4.5810"+02
72060201 5.0600"-01 -7.3127"-02	17.2000 6.7855*+06 8.1306*+02	0.5444	NM NM	54,6861 1.8668 1.3258	2.3830 1.6042 2.2278*=03	5.3297*+01 3.9700*+02 2.8448*+03	3.9821"+01 6.5600"+00 7.2918"+02
72060202	26.4000	0.4375 4.8990*+01	3.8000*-04	130.3095	2,6730	1.4492*+01	7.9439*+00
1.06704+00	6.5868*+06	1.8483 1.1037*+03	5.4840*-05	1.8207	1,5027	3.5800*+02	3.9100*+00
-1.25964-01	*.1274*+02	1.0000 3.6797*=04	NC	1.3409	4,3685#=03	3.0730*+03	8.1822*+02
720602U\	30.6000	0.4127 5.7165*+01	3,0000"-04	132,4749	2.7784	7.07254+00	3.8402*+00
1.0260*+00	6.6421*+06	1.6892 1.7579*+03	4,2350"-05	1.6177	1.5442	3.21004+02	2.7700*+00
-1.7067*-01	8.6777*+02	1.0000 6.0103*=04	NC	1.5037	1.0831"-02	2.99604+03	7.7781*+02
72040301	14.8000	0.4581 1.0826*+02	NM	41.1823	2.5443	0.7241*+01	5.5830"+01
\$.0800#=01	1.1082*+07	1.5705 1.4757*+03		1.8491	1.6032	4.0000*+02	7.3400"+00
-7.3127#=02	9.7360*+02	1.0000 2.2767*=04		1.4438	1.9617*-03	3.1465*+03	8.7311"+02
72040302 1.0470*+00 -1.2394*-01	27.4000 1.1323*+07 4.0744*+02	0.4032	5.3300"-05	100.1961	2.6510 1.5529 5.4217"-03	2.0670*+01 3.2800*+02 3.0646*+03	1.1348#+01 3.6100#+00 8.1347#+02
72040303 1.6200*+00 *1.7089**01	32.5000 1.1145"+07 6.7255"+02	0.4053 7.0156*+01 2.2563 2.4476*+03 1.0000 5.2345*-04	4.0420"-05		2.7491 1.5534 9.6592"-03	1.0538*+01 3.1700*+02 3.0068*+03	4.7724"+00 2.4700"+00 7.8206"+02
72040304	37,4000	0.3558 4.4740P+01	3.2100*-09	248.7335	2.8250	2.1572.403	2.2697"+00
2.7930*+00	1,1407"+07	1.7545 2.1464*+03		1.7647	1.5438	20+4000~1	1.9600"+00
-2.4983*-01	4,4088"+02	1.0000 5.7810*=04		1.4393	1.7703"-02	4.0057.400	8.4324"+02
72040401	20.1000	0.7610 1.7867"+02	40	05.6343	2.3555	1,3576"+02	4.7574"+01
5-0600*-01	2.0869"+07	1.3983 4.0995"+03		1.9395	1.7156	3,5200"+02	3.8000"+00
-7-3127*-02	5.1360"+02	1.0000 1.3993"-04		1.2950	1.1509"-03	2,3065"+03	4.6255"+02
72060407 1.0670*+00 -1.2596*-01	29.4000 1.9958"+07 5.3514"+02	0.6650 1.3098*+03 2.2366 6.1453*+03 1.0000 3.1809**04	2.3220*-05		2.9224 1.9869 4.0443"-03	3.1613"+01 3.1700"+02 2.3540"+03	1.4084"+01 1.8500"+00 4.7968"+02
72060403	34.5000	0.6607 1.1424*+03	1.4340==05	157.0778	2.4637	1.4692 + 01	6.6368*+00
1.6260*+00	2.0873"+07	2.2062 6.1540*+03		1.9121	1.5737	3.0400 + 02	1.2900*+00
-1.7069*-01	5.1335"+02	1.0000 4.0612*=04		1.4635	7.0488"=03	2.3067 + 03	4.6010*+02
72060404 2.7930*+00 -2.4983*-01	42.2000 2.1066*+07 4.4378*+02	0.6712 6.2783*+03 2.2790 3.6102*+03 1.0000 3.9022*=04	8,3900"004	329,9712 1,4844 1,3401	2.6176 1.5787 1.3367**-02		2.4521"+00 4.3000"-01 4.4251"+02
72040405 3.5540*+00 -2.9246*+01	43.8000 2.1277"+07 5.3166"+02	0.6231 6.9332*+03 2.5253 3.7368*+03 1.0000 4.6639**	NM	1.8510 1.3475	3.0453 1.5335 1.6451 *-02	5.1068*+00 2.9700*+02 2.3440*+03	2.0564"+00 6.3000"-U1 4.7664"+02

CAT 7206	KEMP	BOUNDARY CON	DITIONS AND	EVALUATED	DATA. SI UNIT	s.	
RUN	MD *	TH/TR PED2H	CF +	H12	H12K	PWA	PD*
X •	POD	PH/PD REDZD	CO	H25	H35K	TWA	TD*
RZ #	TOD	SW * D2	P12	H42	DSK	UD	TR
72060501	20,0000	0.4806 1.9515"+02	Nw	56.0666	2.1539	1.3578*+02	9.6589*+01
5.0600*-01	2.0570*+07	1,3920 2,8071"+03	MW.	1,9230	1.6570	4.0200"+02	6.9490*+00
-7.3127"-02	9.3274*+02	1.0000 2.2306"-04	NC	1.5160	1.5740"=03	3.1015"+03	6.3645"+02
							•
72060502	29.0000	0.4464 1.1353*+02	4.0100=-04		2.0736	3.1613"+01	1.4496"+01
1.0670*+00	1,4549"+07	2.0850 3.2390"+03	4.0890*+05	1.8942	1.5021	3.4800*+02	3.0900"+00
-1,2596"-01	#.6975"+02	1,0000 3,5894"=04	ЯC	1.4660	4.3614"-03	3.0009*+03	7,7962*+02
72060503	34.9000	0.4091 1.1045*+02	2.4500*=04	120.4938	2.5938	1.4692"+01	6,2619"+00
1.0200"+00	2.0859"+07	2.3904 4.53044+03	1.9680"-05	1.0797	1.5033	3.2100*+02	2.1500*+00
-1.70594-01	8.7549*+02	1.0000 5.5029*-04	NC	1.5450	8.0650****	3.0124"+03	7.8467"+02
7334AR63		A 1888 # 88458.A4	1 30001-00	*** ****	7 TAL.	£ .0178.00	
72060504 2.7930*+00	42.1000 2.0990"+07	0.3578 4.9863"+01 2.3358 2.4886"+03	1,7900*-04 2,7180*-05		2.7960 1.5475	5.6033"+00	2.4723*+00 1.5800*+00
-2.4943*-01	9.3552"+02	1.0000 4.2787*-04	UC	1.3063	1.5005=-02	5.1151"+03	8,3839*+02
•••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,,	.,	.,,,,,,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
72060601	20.3000	0.7018 2.9953"+02	NM	72.2043	2.1649	1.8340"+02	1.2970*+02
5.0800 -01	2.9135"+07 5.0528"+02	1.4165 6.7110"+03	MIA	1.9406	1.6800	3.10004+05	3.6500*+00
-7.3127*-02	3.0360.405	1.0000 1.6037=04	NC	1.4026	1.1771"=03	2,2830*+03	4,5311*+02
72060602	29.9000	0.7059 1.4880"+02	2.0300"-04	135.3749	2.6128	3.9111"+01	1.6846*+01
1.0670"+00	2.9047*+07	2.0423 7.4560*+03	1.6430"-05		1.6420	3.1800"+02	1.6800*+00
-1.2394*-01	5.0258*+02	1.0000 2.5254"-04	NC	1,3696	3.0454"-03	2.2814"+03	4.5048*+02
72060603 1.6260*+00	35.8000 2.8434"+07	2.5482 8.0499+03	1.8800*=04		2,5434	1.9049*+01	7.5183"+00 1.2000"+00
-1.706901	5.1411*+02	1,0000 4.3025"=04	NC NC	1.4873	1.6031 6.1451*-03	2.3086"+03	4.6077*+02
	P41711 70P			1,44.0	4,1421 -00	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,0411 148
72060604	44.0000	0.6460 6.1181*+01	1.4400*=04		2,6945	6.4672*+00	2.5433"+00
2.7930"-00	2.8795*+07	2.6344 4.79727+03	1-1170*-05	1.7088	1.5011	\$.4000#+U2	7.8000"=01
-8.4743"-01	5,1022"+02	1.0000 4.4912"-04	ИC	1.4384	1.225505	2.3187*+03	4.6441.+05
72060609	45.9000	0.6452 6.2646*+01	5.6000**05	128.4324	2.9451	6.5355*+00	2.2084*+00
3.5560"+00	2.8866"+07	2.9926 4.9947"+03	NM	1.8629	1.5460	2.9700"+02	7.3000*+01
-2,9246##01	5,1344*+02	1.0000 4.9196=-04	NC	1.3585	1.7568*-02	2,3086"+03	4.6030*+02
	** ***		418-	4			
72040701 5.0800"-01	20,2000	0,4584 2,4250*+02 1,4504 3,4814*+03	NM NM	43,3799 1,9291	2.3482 1.6379	1.8441"+62	1.2767"+02
-7.3127-08	2.7985"+07 6.7732"+02	1.0000 1.405304	NC	1,4740	1.3647*=03	3,0082++03	7.8674*+02
			·• =				
72040702	27,6000	0.4358 1.3589*+02	2.5000"-04		2.7134	3.9010*+01	1.9150*+01
1.0670"+00	2,4070"+07	1.9774 4.0054"+03	4.1800"-05	1.8975	1.6040	3.3900*+02	2.9600"+00
-1.2596*-01	8.67874+02	1.0000 3.1717"-04	NC	1,4435	3.4100"-03	2,9978"+03	7.7792"+02
72060703	35.1000	0.3975 1.3074"+02	2.1700"-04	127.8709	2.6741	1.4948"+01	6.0452*+00
1.6260*+00	2,7573"+07	2.4124 5.3107*+03	3,4570"-05	1,8838	1,5017	3.1400*+02	2.1400*+00
-1.708901	8,8141"+02	1,0000 4,9567*=04	NC	1,5219	7.3716"-03	3.0226"+03	7,4997*+02
77646760	41 6000	A 1485 A 44498-A4	1 18488-4ª		3 69/4	A 44955405	
72060704 2.7930#+00	43.5700	0.3692 4.6167"+01	1.6500**04 3.0970**05		2.8746 1.5310	6.6672*+40 2.9700*+02	2.8472"+00 1.4200"+00
-2.496301	8.97534+02	1.0000 4.4941"=04	NC	1.3615	1.4206*-02	3.0514"+03	8.0434*+02
		•		.,			
72060705	45.1000	0,3762 4,13444+01			3.0527	.5355"+00	2.36044400
3.5560*+00	2.0260"+07	2.8194 4.84999+03	NP	1.0250	1.5427	2.9700"+02	1.2400*+00
-2.9246"-01	4.7635"+02	1,0000 6.8627"-04	NC	1.4844	1,9458"-02	3.0154*+03	7.8535*+02

EVALUATED	DATA - PRESS	URE BASED	REFEREN	CE FLOW			
RUN	02P0 02PN	H12PD H12PW	H32P0	H42PD H42PW	REDZPOD	REDZPOW REDZPWW	DSTAR
72060101	1.6532"-04		1.9075	1.2887	1.7183*+03	7.6312"+01 7.6341"+01	1,5555-02
72060102	2.9560"-04 1.8820"-04	292,5824	1.8638	1.2551	2,3231"+03	5.3637"+01 5.3053"+01	5.0030"-02
72060103	5.1921*-04 3.3609*-04	265.4817	1.8841	1:5116	3.3370*+03 3.3369*+03	4.7136"+01 6.7135"+01	7,9675"-02
72060201	1.5326"-04	101,4366	1.8656	1.3362	9.5577"+02 9.56054+02	6.3926"+01 6.3945"+01	1,6305*-02
72040202	3.6551"-04	211.8333 178,8039	1.8194	1.3700	1.0764"+03	4.8663"+01 4.8670"+01	5.0360*+02
72060203	5.9808"-04 4.1478"-04	266,4124	1.6167	1.5111	1.7492"+03	5.6885"+01 5.6880"+01	8,3741"-02
72060301	2.2500"=04 1.7294"=04	83.7323 60.5531	1,8678	1,4571	1.4623"+03	1.0728"+02	1.4625"-02
72060302	4.1692"-04	159.7140	1.8608	1.5247	2.0961"+03 2.0962"+03	9.0637"+01 9.0641"+01	4.4797**02
72060303	5.1972"-04 3.2330"-04	NOT REAL 227,0764	1.6227	1.4504	2.4302*+03 2.4301*+03	4.9456"+01 6.9654"+01	0,1506**02
72060304	5.7538"-04 4.0752"-04		1.7837	1,4460 1,4454	2.1364"+03 2.1363"+03	4.4756*+01 4.4754*+01	1.5070*-01
72060401	1.3525"-04	105.8360	1.9395	1.3107	4.0501"+03 4.0515"+03	1.7652"+02	1.2709"-02
72040402	3.1362"-04 1.9326"-04	220.3693	1,9182	1,4258	6.0591*+03 6.0603*+03	1.2914"+02	4,1015*=02
72060403	4.0200*=04 2.4970*=04	318.6338	1:4113	1.4706	6.0918"+03 6.0921"+03	1,1308"+02	4.8413"-05
72000404	3.6705"=04 2.3584"=04		1.6834	1,3912	3.5810**03 3.5811**03	6.2274"+01 4.2276"+01	1.365["-01
72040405	4.6311"-04 2.6849"-04	1101 REAL 574.4069	1.8499	1.3570	3.7304*+03 3.7305*+03	6.4873*+01 6.4874*+01	1.8329=-01
72060501	2.2016"-04 1.6347"-04	71.5308 69.8477	1,4552	1,5207	2.7554"+03 2.7661"+03	1.4364*+02	1.3380"-02
72000502	3.5497*-04 2.2711*-04		1,8933	1.4623	3.2032*+03 3.2037*+03	1.1228*+02	4.2722*-02
72060503	5,4438*=04 3,276**=04	NOT REAL 193.4044	1.8788	1.5561	4.4962"+03 4.4975"+03	1.0970*+02 1.0968*+02	7.2309"-02
72060904	4.2565"-04 2.6062"-04	NOT REAL 460,6302	1:7876	1:3130	2.4756*+03 2.4756*+03	4.9602"+01	1.4525*=01
72060601	1.3676"-04 1.2425"-04	91.7923	1.9400	1.4151	6.6522*+03 4.6544*+03	2.96919+02	1.2837*-02
72000002	2.4937**** 1.6106**04	231.0715	1.9397	1.3848	7.3623*+03 7.3640*+03	\$64.1 \$64.1	3,7047*-02
72060603	4.2487*-04 2.4338*-04		1,9240	1.5041	7.9453*+03 7.9494*+03	1.4650.705	6,4505*~02
72060604	4.455**-04 2.5003*-04		1.4060	1.4448	4.7615*+03 4.7612*+03	8.0539*+01 8.0539*+01	1.2653"-01
72060605	4.6751"-04 2.5443"-04		1,0616	1.3641		0.1951#+01 0.1951#+01	1.7564"-01
72060701	1.8695"=04 1.5169"=04		1:4264	1:4863	3.4525*+03 3.4536*+03	2.4049*+02 2.4057*+02	1.2755**02
72060702	3.1394"-0# 2.0501"-04	174.0504	1:4944	1.4565	3.9649"+03	1.3450H+02 1.3452H+02	3,9411,-05
72060703	4.9164"=04		1.6026	1:5344	5.2675*+03 5.2671*+03	1.2968**02	6.9367*= 02
72060704	4.4646**04 2.6507**=04		1.7964	1.3704	3.4026"+03 3.4026"+03	6.5735"+01 6.5733"+01	1.3469*-01
72000705	0.8464"-04 3.7179"-04		1.6248	1.4923	4.6245*+03 4.6236*+03	4.0920"+U1 4.0906"+U1	1.8272"-01

720601	O3 KEMF	•	PROFILE	TABULATION	23	POINTS. D	ELTA AT POI	NT DI
1	¥	P12/P	P/P0	T0/10D	M/MD	UZUD	7/TD	RHOZRHOD*UZUD
1	0.0000**00	1.00005+00	1.69173	0.58636	0.00000		167.20000	0.00000
2 3	1.2700"-02	1.2626"+00	1.84380	0,60353	0.01753	0.23230	175.60000	0.00244 0.00392
4	1.9063"=02	2.3623"+00	1.76358	0.65476	0.03594	0.43750	148,20000	0.00521
5	2.5413"-02 3.1763"-02	3.3280"+00 4.7073"+00	1.72160	0.69082 0.74089	0.05488		134,50000	0.00666 0.00838
7 8	3.8112"-92	6,9270"+00 1,1736"+01	1.63332	0.80859	0.06787	0.69450	104.70006	0.01083
9	5.0625 -02	2.8609*+01	1,59767	0.96283	0.08968	0.8076U 0.91390	81.10000 41.60000	0.01591 0.03409
10 11	5.7175"-02 6.3525"-02	1.1880"+02 2.5142"+02	1.50960	0.96845	0.29049	0.96780	11,10000 5,30000	0.13162 0.27200
12	6.9875*-02	3.8160*+02	1.41400	0,95919	0.52132	0.97530	3,50000	0.39402
13	8.2575"-02	5.1436"+02 5.4"696"+02	1.36396	0.95773 0.95636	0.60529	0.97600	2.60000 00001.5	0.51201 0.62233
15 16	5.6938"-02 9.5288"-03	7.4398"+02 8.9671"+02	1.33470	0.95679 0.96014	0.72806	0.97680 U.97900	1.80000 1.50000	0.72430 0.81570
17	1.0164*=01	1.0405*+03	1.18430	0.96498	0.06110	0.98180	1,30000	0.89442
18	1.1434"-01	1.1336"+03	1.17120	0.97016 0. 9 7752	0,49861	0.95440 0.95550	1.20000	U.96097 L.00639
5.7 50	1.2070"-01	1.25667+03	1.14389	0.98542 0.98728	0.94631	0.99250	1.10000 1.00000	1.03210
22	1,2958"-01	1.3933"+03	1.05430	0.99303	0.99650	0.99650	1,00000	1.02271
0 53	1.3540*=01	1,4031*+03	1.00000	1.00000	1.00000	1.00000	1,00000	1.00000
INPUT	AWIARTER	Y,U/UD,T/TD,RI	10/RHOD					
720604	10 5 KEMI	•	PROFILE	TABULATION	24	POINTS, D	ELTA AT PUI	NT 24
ı	Y	PT2/P	P/PD	TO/TOD	H/MD	U/UD	T/T0	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	2.52547	0,55509	0.0000	0.00000	355.70000	0.00000
3	1.2731*-02	1.0948*+00	2.42692	0.57752	0.00760	0.14350 0.24690	354.40000	U.00098
4 5	3.8164*-02 5.0866*-02	1.4867"+00	2.30112	0.45094	0.01907	0.35080	338.40000	0.00339
•	6.3597"-02	3.2774"+00	2.18892	0.75189	0.03135	0.53920	295,80000	0.00399
7 ●	7.6328"=02 8.9030"=02	4.7890*+00 7.3975*+00	2.11815	0.80714 0.86754	0.03909	0.63220 0.72890	241,50000	0.00512
10	1.0176"-01	1.3427*+01	1.98264	0.92471	0.06785		190.20000	0.01098 U.02911
11	1.2719"-01	1.1484"+02	1.84920	0.96798	0.20147	0.94620	23.00000	0.0776
13	1.3993"-01	2.4167*+02 4.1622*+02	1.78640	0.97462 0.97218	0.29256	0.97910	6.50000	0.15617 0.25954
14	1.7806"-01	4.4459"+02	1.65640	0.97094 0.97123	0.47956	0.46240	4.20000	0.38771 0.51733
16	2.035201	1.1903"+03	1.50719	0.97309	0.64975	0.78540	2.30000	0.64573
18	2.162201	1.7192*+03	1.34976	0.97672	0.76092	0.98780	1.60000	0,83331
20	2.2895"-01	1.8412"+03	1.34695	0.98052 0.98337	0.80617	0.98980	1.30000	0.89013 0.93053
21	2,5434"-01	2.3186"+03 2.5401"+03	1.17012	0.98737	0.90694	0.99350		0.94876 0.99650
52	2.7727"-01	2.5488"+03	1.11078	0.99477	0.95089	0.99730	1.10000	1.00707
D 24	•	2,8188"+03	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
INPUT	VARIABLES	Y,U/UD,T/TD,R	HO/RHOD					
720607	05 KEMP	1	PROFILE	TABULATION	52	POINTS, DE	LTA AT POI	WT 23
1	¥	PT2/P	P/P0	T0/T0D	DM\N	U/UD	T/10	RHO/RHOD*U/UD
1 2	0.0000*+00	1.0000"+00	2.51942	0.34018	0.00000	0.00000	231.10000	0.00000
3	3.5401"-02	1.4853"+00	2.65440	0.37006	0.01590	0.24480	237.00000	0.00170
4	3,8115"-02	2.0049"+00 2.8242"+00	2.48940 2.48940	0.46943	0.02175		236.80000	0.00365 0.00455
* 7	4.3544"-02	4.1245"+00 4.2341"+00	2,42368	0,50153	0.03489	0.51320	112.60000	0.00575 0.00737
	8.8945"-02	7.6919*+00	2,25240	0.73320	0.05559	0.70510	140,40000	0.00987
10	1.0166"-01	1.7540*+01 3.5059*+01	2.16960	0.81164	0.07562	0.80370	47,40000	0.01543 0.02734
11	1.3770-01	9.4390"+01 1.9942"+02	2.00160	0.91347	0.17731	0.93490	27,80000 13,70000	0.04731 0.13359
13	1.5349"-01	3,4442"+02	1.82704	0.9454	0,34997	0.96480	7.60000	0.23144
15	1.7789"-01	4.1470*+02	1.77054	0.75145	0.45208	0.96940	4.60000 3.10000	0.37380 0.51784
16	1.9060"-01	1.2441"+03	1,35366	0.95924	0.64514	0.97840	2.30000 1.80000	0.66101
10	2.2238"-01	1,4438"+63	1.20888	0.97632 0.98875	0.80645	0.98776	1.30000	0.93861 1.00156
ão Ri	2.5337"-01	2.6974"+03 2.7034"+03	1.13358	0,99317	0.95013	0.99450	1.10000	1,02669
22	2.6663"-01	2.7088*+03	1.13863	0.99516	0.95108	0.99750	1.10000	1.02514
D 23	a,7700"-01	2,4006*+03	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD, RHO/RHOD

M : 0.06 to 3.6

R THETA X 10-3 : 6 - 26

TW/TR : About 0.5 and 1.1

7207

FPG-MHT-SHT

Special purpose rig: continuous running, D (inlet) 127 mm, PO : 1 MN/m 2 , TO : 830 and 290 K. Air and a small quantity of the combustion products of Methanol. RE/m X 10⁻⁶ at inlet about 30 and 100.

BACK L.H. and CUFFEL R.F., 1972. Turbulent-boundary-layer measurements along a supersonic nozzle with and without wall cooling. Heat Transfer. Trans. Am. Soc. Mech.Engrg. 94, 242-243. And Back & Cuffel (1971) and private communications.

Also Back, Cuffel and Messier (1970). Many associated papers. See References.

- 1 The test boundary layer was formed on the inside surface of a circular duct finishing in a convergentdivergent nozzle. The air supply is compressed and then heated by the combustion of methanol before entering a large settling chamber containing baffles and screens (Back, Massier & Cuffel, 1967). From this it passes through an area contraction of 11.6:1 and enters the duct which has the dimensions listed in Table 1. These may be summarised as describing a conical convergent-divergent nozzle of closely 10° semi vertex angle fed by a cooled-wall approach duct about 1 m long and 127 mm in diameter. The throat (diameter 40.4 mm) and the junctions of duct and nozzle are faired in section with circular arcs. There are five trayerse stations
- 8 upstream of the throat and one downstream. The first station, in the approach duct, has been selected as the X = 0 point. The surface was finished to 0.8 µm and could be actively cooled by small circumferential coolant
- 3 passages, of which there were 36 in the nozzle and 31 in the approach section. The boundary layer was tripped by a 1.5 mm square step mounted inside the duct at the outlet from the settling chamber contraction (X = - 1.110 m). The velocity profile at the first traverse station was typical of a fully developed turbulent
- 4 layer. The cooled approach duct allowed the thermal layer to form with approximately the same wall temperature as in the nozzle, and from a point just downstream of the boundary layer trip.
- 6 There were some 45 static pressure taps (d = 0.51 mm) in the nozzle and 9 in the cooled approach duct. Thermocouples were fixed in the coolant passages, and the "gas-side" wall temperatures were calculated from these "water-side" measurements and the heat-flux, which was determined calorimetrically. The technique is described by Back, Massier and Cuffel (1967).
- 8 The 6 profile traverse stations were at X (axial) = 0, 90.50, 147.57, 185.67, 223.80 and 528.04 mm (the
- throat is at 313.06 mm see table 1). The Pitot tube was an FPP ($h_1 = 0.127$, $b_1 = 1.65$, l = 12.7 mm) and two types of TTP were used. In the subsonic region an exposed thermocouple 0.1 mm thick in the direction normal to the wall was mounted on a support for which $h_1 = 0.26$, $b_1 = 6.86$, l = 12.7 mm. At the supersonic
- station, an SIP was used for which $h_1 = 0.25$ mm. The Pitot probe was always located 90° circumferentially from the TTP at the same X-station. Only one pair of probes was in use at any one time.
- 9 The authors have interpolated the static pressure measurements to the nominal X-values of the heat-flux measurements. These values are prezented together in section D. The heat flux measurements are the average of at least 5 runs. The authors' CF values, quoted for the profiles, are based on a momentum balance for the four stations in the converging come, on a form of Reynolds analogy in the approach duct, and in the supersonic diverging flow, on the velocity profile in the sublayer. Very close to the wall the TTP gave readings below those indicated by an extrapolation of the TO profile to meet the TW value, and the values
- were adjusted to fit the extrapolation. Transport properties were taken as for air, from Hilsenrath et al.
- 12 The heat flux and pressure values are given separately in section D for the 01 series with strong wall cooling. The authors state that, for the O2 series (heat transfer to the gas but near adiabatic), the temperature differences were too small to allow of meaningful distributed values, and suggest that the wall temperature be taken as constant at 1.10 TOD. The editors have accepted this, and the presumption that the pressure distribution is effectively the same in the two cases. Boundary conditions for the

profiles are thus taken from the authors' interpolations. It has been assumed that P = PD through the boundary layer.

- 13 The two sets of six profiles describe the development of the boundary layer through a nozzle expansion.

 The low velocity history is fully described (profiles 1-5) but there is only one supersonic profile. The
- 14 two cases are firstly (Series 01) a flow with strongly cooled wall in which the wall heat-flux and
- 14 temperature are given in detail. The second series (02) describes a near-adiabatic set, and is without a detailed temperature history. The CF values are as estimated by the authors.
- § DATA: 7207 0101-0206, Pitot and TO profiles measured simultaneously. NX = 6. Heat flux by calorimetry.

15 Editors' comments

This entry is included principally as a challenge for calculation methods. In both series, the state of the boundary layer upstream of the throat is very fully described, and a fully developed calculation scheme should be able to predict the subsequent heat transfer distribution and the final velocity profile from the full wall pressure and temperature data given. The heat transfer case (series 01) is similar to the "cooled inlet" series of Boldman et al. - CAT 6901, series 02 - for which, however, the emphasis in measurement lay on the supersonic side of the throat.

The authors' CF values appear quite reasonable when the profiles are plotted out in comparison with the wall law, though the values for the supersonic profiles, 0106, 0206 are probably too high. In general measurements do not extend within the momentum-deficit peak.

The measurements described here form only part of an extended project described in about ten frequently overlapping papers.

TABLE 1	CE MINT BY	CF	DUCT -	DIMENSIONS	in mm

	X (Axial)	X (Contour)	- RZ
End of contraction (E)	- 1110.00	- 1110.00	63.50
Start of cooled approach	- 1053.85	- 1053.85	63.50
First profile station	0	0	63.60
End of parallel approach	+ 59.95	+ 59.95	63.50
Circular arc fairt	ng with radius 40	0.64	
Start of conical contraction	67.01	•	59.61
Second proffle station	90.50	90.91	58.67
Third profile station	147.57	148.89	48.51
Fourth profile station	185.67	187.55	41.88
Fifth profile station	223.80	226,26	35.16
End of conical contraction	304.29	-	20.96
Circular arc fairi	ng with radius 50	0.47	
Throat	313.06	317.07	20.19
Start of conical expansion	321.84		20.96
Sixth profile station	528.04	535.08	57.76
End of conical expansion	556.87	•	63.06

CAT 7207	BACK/CUFFEL		BOUNDARY COND	ITIONS AND E	VALUATED D	TINU 18 .ATA	s.	
RUN	MD #	TW/TR	RED2W	CF *	H12	HIZK	PW	PD
X *	POD*	PW/PD*	REDZD	CQ *	H32	H32K	TWA	TD
ŘZ *	TODA	SH #	DŽ	P12	H42	02K	UD	TR
ne -	())	•						
72070101	0.0637	0.4627	1.7644"+04	3.2000*-03	0.5627	1.3644	1.0285"+06	1.0285"+06
0.0000 +00	1.0315"+06	1.0000	1.0512"+04	1.0500*=03	1.7922	1.7982	3.8556"+02	8.3266"+02
-6.3500"-02	8.3333*+02	0.0000	2.4572"-03	NC	0.6063	2.1549*-03	3.6854"+01	8.3326*+02
					A 1514	1.2397	1.0311*+06	1.0311"+06
72070102	0.0723	0.4545	1.6106"+04	5.0000"-03	0.3536 1.8461	1.8514	3.80000 +02	8.3524*+02
9.0907*=02	1.0349"+06	1.0000	9.4763*+03	8,9000"=04 NC	0.7208	1.7260*-03	4.1694*+01	8.3602"+02
-5.8674""02	8.3611"+02	0,0000	1.9774*-03	110	01,500	107200 02		
*******	0.1038	0.4759	1.3303*+04	5.2000"-03	-0.0469	1.1548	1.0299"+06	1.0299"+06
72070103	1.0377"+05	1.0000	8.0969*+03	8.9000"-04	1.9041	1.9033	3.9778"+02	8.3431"+02
1.4854"-01	8.3611*+02	0.0000	1.1768"-03	NC	1.0634	1.0327"-03	6.0113"+01	9.3542*+02
-410314.005	0.3011 702	.,.,,,	.,.,		• • • • • •			
72070104	0-1367	0.4910	1.2926"+04	4.8000"-03	-0.3372	1.1576	1.0228"+06	1.0228"+06
1.8755*-01	1.0363"+06	1.0000	8.0337"+03	8.5000"-04	1.9054	1.9110	3.9944"+02	8,1086"+02
-4.1885"-02	8.1369*+02	0.0000	8.6448*-04	NC	1.3511	7.4842"-04	7.8046*+01	8.1357"+02
							1.0046*+06	1.0046*+06
72070105	0.1944	0.4997	1.4951 +04	4.6000"-03	-0.2625	1.1591	4.1611"+02	8.2708*+02
2.2626"-01	1.0315"+06	1.0000	9.45104+03	7.5000*-04	1.2560	1.9144	1.1209"+02	8.3268*+02
-3.5154"-02	6.3333"+02	0.0000	7.4453"-04	HC	1.8000	0.4713 -04	11100, 100	***************************************
	7 7667	0.4613	1.0570"+04	1.7600*-03	-0.3221	1.2399	1.6464"+04	1.6464"+04
72070106	3.3663 1.0370"+06	1.0000	1.3661"+04	3.3000"-04	1.8840	1.8692	3.5667"+02	2.5512"+02
5.3508"-01	8.3333*+02	0.0000	9.2080*=04	NC	1.7620	9.0831 - 04	1.0750"+03	7.7320"+02
-3.1100 02	0,3333 102	0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••••			
72070201	0.0650	1.1087	2.4142"+04	1.7600*=03	1.4542	1.3290	1.0339"+06	1.0339"+06
0.0000*+00	1.0370*+06	1.0000	2.6144"+04	ИW	1.8203	1.8189	3,2333"+02	2.7142*+02
-6.3500"=02	2.9167"+02	0.0000	1.7223"=03	NC	-0.0944	1.7550"-03	2.2248*+01	2.9164"+02
				* ********	. 3.65	1 1785	1.0289*+06	1.0289*+06
72070202	0.0740	1.0246	2.2065*+04	3.3600*~03	1.2195	1.1785 1.8857	3.0278*+02	2.9523"+02
9.0907*-02	1.0358.+06	1,0000	2.2495*+04	M	1.8859	1.33717-03	2.5493"+01	2.9552*+02
-5.6674*-02	2.9556"+02	0.0000	1.3301"-03	NC	-0103(1	1122/1		
73070301	0.1030	1.0245	1.3560 +04	3.5400*~03	1.1911	1.1128	1.0266"+06	1,0266*+06
72070203 1.4684*=01	1.0342*+06	1.0000	1.3836"+04	(IM	1.9425	1.9422	3.0500"+02	2,9715"+02
-4.8514"-02	2.9778"+02	0.0000	5.9383"-04	NC	-0.0674	5.9683"-04	3.5599"+01	2.9771"+02
-410314 -41	E 1 1 1 0 1 0 1							
72070204	0.1380	1.0807	5.7686"+03	3.4400"~03	1.8703	1.1968	1.0253"+06	1.0253"+06
1.8755*-01	1.0390"+06	1.0000	6.1400"+03	ИN	1.9281	1.9267	3,1389"+02	2.8945"+02
-4.1885"-02	2,9056"+02	6.0000	1.9046*-04	NC	-0.6319	1.9467"-04	4.70744+01	2,9044"+02
						4 4834	1.0093#+06	1-0093"+06
72070205	0.1970	1.0940		3.9400"-03	1.4389	1.1621	3.1944*+02	2.8997"+02
2.7626"-01	1.0370*+06	1.0000		NM	1.9453	1.7239****	6.7260*+01	2.9199*+02
-3.5154*-02	2.9222*+02	0.0000	1.6865*-04	HC	-446673	4410044		
73070304	3.6140	1.1682	2.6698*+03	1.3600*-03	8.1010	1.3604	1,1599"+04	1.1599"+04
72070206 5.3500*-01		1.0000		NM NM	1.8362	1.8671	3.1389"+02	8.0437*+01
-5.7760*-02		0.0000		iiC	-0.2268	2.7857"-44	6,4987"+02	2.6870*+02
-301100.405	217474 TVE			-				

TRAPEZOIDAL RULE FOR RUN 0106

72070	101 B	ACK/CUFFEL	PROFILE	TABULATION	31	POINTS, DE	ELTA AT POI	NT 31
1	Y	PT2/P	P/PD	TO/TOD	M/MD	מטעט	1/10	RHO/RHODAU/UD
1	U_COOO"+		MM	0.46163	0.00000	0.0000	0.46200	0.0000
غ	1.7780"-		NM	0.71290	0.54963	0.46420	0.71330	0.65078
3	2,0320"-		414	0.72160	0.56490	0.48000	0.72200	0.66482
4	2.5400"-		NM	0.73611	0.58716	0.50390	0.73650	0.68418
5	3,04804-		1114	0.74522	0.60152	0.51870	0.74360	0.69755
6	J.5560"-	04 1.0011*+00	N₩	0.74952	0.61272	0.53060	0.74990	0.70756
7	4.3180"-		NM	0.75653	0.62655	0.54510	0.75690	0.72017
8	4.7530*-	04 1.0011*+00	NM	0.76173	0.63598	0.55520	0.76210	0.72851
9	5,5880"-	04 1.0012"+00	NM	0.76754	0.64396	0.56430	0.76790	0.73486
10	6.6550"-		ИM	0.77574	0.65637	0.58000	0.77610	0.74733
11	8.1250"-	04 1.0013"+00	NM	0.78256	0.67630	0.59840	0,78290	0.76434
12	9.3980**	04 1.0013"+00	ИМ	0.78896	0.68132	0.60530	0.78930	0.76688
13	1.1938"-	03 1.0014*+00	NM	0.79997	0.69741	0.62390	0.80030	U.77958
14	1.4475"-	03 1.0015*+00	MIA	0.80858	0.71549	0.64350	0.00000	0.79552
15	1.8286*-	03 1,0015"+00	NM	0.81839	0.73208	0.66240	0.81870	0.80909
16	2.2098*-	03 1.0016*+00	ИM	0.82880	0.74812	0.68120	0.82910	0.82161
17	2.7178"-	03 1.0017"+00	NM	0.83852	0.76846	U.703A0	0.83880	0.83906
18	3.3528"-	03 1.0018*+00	ИM	0.85004	0.78819	0.72680	0.85030	V.85476
19	3.9878"-	03 1.0016"+00	MIT	0.85975	0.80314	0.74450	0.86000	0.06605
50	5.2578"-	03 1.0020*+00	NM	0.87638	0.83235	U.77930	0.87660	0.68900
21	6.5278"-	03 1.0021*+00	NM	0.89181	0.85764	0.81000	0.89200	0.40807
55	7.7978**	03 1.0022*+00	NM	0.90603	0.85020	0.83790	0.90620	0.92463
53	9.0673"-	09 1.9023"+00	†¿M	0.91776	0.90129	0.86350	0.91790	0.94073
24	1.0338" -	02 1.0024*+00	NM	0.92908	0.92007	0.88490	0.92920	0.95448
25	1.2878"-	02 1.0026*+00	1114	0.94752	0.94920	0.92400	U.94760	0.97509
95	1.5418"-		(VM	0.96025	0.97056	0.95110	0.96030	0.99042
27	1.7958"-		ЙM	0.97038	U.48458	0.96990	0.97040	0.99948
28	2.0495-		NW	0.97639	0.99318	0.98240	0.97840	1.00409
56	2.5576"-		11M	0.98920	0.99831	0.99290	0.96920	1.00374
30	3.0654"-		NM	0.99540	1.00000	U.9977U	0.99540	1.00231
0 31	3.5738*=		ÜМ	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, UNUD, TYTE ASSUME PHPD

720701	102 BACK	/CUFFEL	PROFILE	TABULATION	24	POINTS, DEL	TA AT PUL	NT 24
1	Y	P12/P	P/PD	TOTTOD	HZMD	UVUD	1/10	RHO/RHOD*U/UD
<u>1</u>	0.0000*+00	1.0000*+00	NM	0.45652	0.00000	0.00000	0,45700	u.00000
€	6.3500"-05	1.0013"+00	TIM	0.67595	0.60066	0.49400	0.67640	0.73034
3	8.3820"-05	1.0016"+00	His	0.68907	0.65682	0.54540	0.6950	0.79101
4	1.0922"-04	1.0015"+00	NM	0.71521	0.64308	0.58630	0.71560	0.81931
3	1.3462"-04	1.0019"+00	NH	0.73252	0.71406	0.61130	0.73290	0.83408
<u>6</u>	1.7272"-04	1.0020"+00	NH	0.74694	4.73572	0.63600	0.74730	V.85106
7	4.235504	1.0021"+00	NM	0.75846	0.75147	0.65460	0.75880	0.86268
6	2.9972"-04	1.0022"+00	M	0.77287	0.76957	U.67670	4.77320	U.B7519
•	4.2672"-64	1,0023"+00	NM	0.78149	0.78716	0.69600	0.78180	0.89025
10	6,8072"+04	1.0024"+00	NM	0.79441	0.80441	0.71710	0.79470	0.90235
11	9.3472"-04	1.0024*+00	MIS	0.80442	0.81411	0.73030	0.80470	0.90754
12	1.4427*-03	1.0025*+00	ИM	0.82003	0.82610	0.74820	0.82030	0.91211
13	1.9507"-03	1.0026* 100	MIA	0.83294	0.03766	0.76480	0.63520	0.91791
14	2.4587"-03	1.0026"+00	HM	0.84295	0.84466	0.77580	0.64320	0.92007
15	3.7287"-03	1.0027*+00	MIS	0.06417	0.56326	0.60260	0.86440	0.92851
16	4.9987"-03	1.0020*+00	tin.	0.88409	0.88114	0.82860	0.88430	0.93701
17	7.5387~-03	1.0011*+00	NM	0.90454	0.91394	0.87170	0.90970	U.95823
18	1.0079"-02	1.0032*+00	(IM	0.93379	0.43938	0.90780	0.93390	0.97205
19	1.2619"-02	1.0034*+00	НM	0.95212	0.95798	0.93480	0.95220	0.98175
20	1.5159*-02	1.0035"+00	HΜ	0.96605	0.97426	0.95760	0.96610	0.99120
āi	1.7699"-02	1.0036"+00	и́м	0.97737	0.98621	0.47500	0.97740	0.99754
žž	2.0239* -02	1.0036"+00	ЦМ	0.95439	0.99610	0.98830	0.98440	1.00396
23	2.5319*-02	1.0037"+00	NM	0.99580	1.00000	U.99790	0.99580	1.00211
0 24	3.0399"-02	1.0037*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT YAPIABLES Y,UVUD, T/TD ASSUME PEPD

72070	103 BACK	/CUFFEL	PROFILE	TABULATION	24	POINTS,	DELTA AT POI	NT 24
1	Y	P12/P	P/PD	TU/100	MZMD	UZUD	7/10	RHO/RHOD+U/UD
1	0.0000*+00	1.0000*+00	NM	0.47597	0.00000	0.0000	0 0.47700	U.00000
ž	6.3570"-05	1.00384+00	NM	0.68816	0.70063	0.5865		0.85136
3	7.62007-05	1.0043"+00	11M	0.69386	0.75801	0.6317	0.69450	0.40958
4	1.0160*-04	1.0047"+00	HW	0.71231	0.78523	0.6630	0 0.71290	0.93000
3	1.2700"-04	1.0048"+00	NM	0.72832	0.79461	0.6784	0 0.72890	0.93072
ė	1.6510"-04	1.0050"+00	ии	0.73357	0.81420	0.6976	0 0.73410	0.95028
7	2.1590"-04	1.0052"+00	ĮįΜ	0.74711	0.83353	0.7207		0.96402
á	2.9210"-04	1.0055"+00	NM	0.76356	0.85577	0.7480	0 0.76400	0.97906
ģ	3.0830"-04	1.0057"+00	HM	0.77360	0.87170			0.99083
10	4.9530"=04	1.0061"+00	IIM	0.78497	0.09621	0.7942		1.01133
11	7.4930"-04	1.0064"+00	4144	0.80274	0.92010			1.02677
12	1.0053"-03	1.0066"+00	įįΜ	0.81817	0.93185	0.8430		1.03006
13	1.5113"-03	1.0067"+00	NM	0.63910	0.94189	0.8629		1.02812
14	2.5273"-03	1.0068*+00	NM	0.86451	0.94721	0.8608		1.01862
15	3.7973"-03	1.0069*+00	NM	0.88213	0.95411	0.8962		1.01575
io	5.0673"-03	1.0070*+00	RM	0.89885	0.95934	0.9096		1.01179
17	6.3373*=03	1.0070"+00	MM	0.91026	0.96390	0.9197		1.01022
10	7.6073"-03	1.0071*+00	40	0.92678	0.96637	0.9323		1.00583
19	1.0147"-02	1.0072"+00	M	0.95011	0.97663	0.4520		1.00189
٥٤	1.2687"-02	1.0073"+00	HM	0.96813	0.98326	U.9675		0.99926
ž.	1,5227"-02	1.0074*+00	IIM	0.97915	0.98803	0.9777		0.99847
ēż	2.0307"-02	1.0075*+00	1441	0.99248	0.99424	0.9905		0.99798
23	2.5367*-02	1.0075*+00	MM	0.99849	0.99785	U.9971		0.99860
D 24	3.0467"-02	1.0076*+00	NM	1.00000	1.00000	1.0000		1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

720701	04 HACK	CUFFEL	PROFILE	TABULATION	27	POINTS, DEL	TA AY POI	NT 27
I	Y	P1 7/P	P/PD	TO/TOD	M/HD	U/UD	7/10	RHO/RHOD&U/UD
1	U.00U0"+00	1.0000"+00	NM	0.48021	0.00000	0.00000	0.48200	U.00000
2	U.3500"-05	1.0065*+00	ИM	0.68022	0.70391	0.58110	0.68150	V.65268
3	8,8900*-05	1,0073*+00	{ M	0.69785	U.74743	0.67490	0.69900	0.89399
4	1,1430*+04	1.0080"+00	NM	0.71226	0.77980	0.65860	0.71330	0.92331
5	1.3970"-04	1.00534+00	NM	0.72082	0.79639	0.67660	0.72180	0.93738
6	1.0510"-04	1.00%6"+00	IIM	0.72657	0.80932	0.69030	0.72750	0.94887
7	2.1590*-04	1.0090*+00	ĮΜ	0.73804	0.82853	0.71220	0.73890	0.96387
8	2.0670"=04	1.0093"+00	NM	0.74670	0.84365	0.72940	0.74750	0.97579
9	3.1750"-04	1-0096*+00	NM	0.75466	0.85740	0.74520	0.75540	0.98650
10	3.9370"-04	1.0102"+00	HM	0.76386	0.88030	0.76970	0.76450	1.00680
ii	5.2070"-04	1.0108*+00	1484	0.77829	0.90845	0.80170	0.77880	1.02940
iż	6.4770"-04	1.0113*+00	I/M	0.79248	0.92616	0.82470	0.79290	1-04011
13	7.7470"=04	1.0117*+00	{¿M	0.80526	0.94201	0.84550	0.80560	1.04953
14	1.0287"-03	1.0121"+00	MII	0.82655	0.95811	0.87120	0.82680	1.05370
15	1.2827"=03	1,0123*+00	(iii)	0.63920	0.46705		0.83940	1.05552
10	1,5367"-03	1.0124*+00	MJ1	0.84913	0.97257		0.84930	1.05534
17	2.0447"-03	1.0125*+00	MM	0.86316	0.97725		0.86330	1.05178
18	2.8067"-03	1.0126*+00	1164	0.67446	0.97861		0.87460	1.04642
19	1.8227*-03	1.0126*+00	Mil	0.88687	0.98003		0.88700	1.04059
20	5.0927"-03	1.0127*+00	7194	0.90228	0.98184		0.90240	1.03358
ži	6.3627"-03	1.0177*+00	NM	0.91669	0.98319		0.91680	1.02683
55	7.6327"=03	1.0128*+00	TIM	0.93041	0.98639		0.93050	1.02257
ڏ ڏ	1.0173"-02	1,6129"+00	1114	0.95684	0.99099		0.95690	1.01306
24	1.2713"-02	1.0130"+00	ŊМ	0.97476	0.99461		0.97480	1.00739
25	1.5253"-02	1.013;"+00	ille	0.98598	0.99690		0.98600	1.00396
26	2.0333*-02	1.0131*+00	NM	0.99440	1.00000		0.99440	1.00282
D 27	2.5413"-02	1.0131*+00	NM	1.0000	1.00000		1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME PRPD

720701	105 BACH	K/CUFFEL	PROFILE	TABULATION	33	POINTS, D	ELTA AT PUI	NT 33
I	Y	PT2/P	P/PD	10/100	UNID	uzun	1/10	RHU/RHUD*U/UD
1	0.0000"+00	1.0000"+00	1414	0.49923	0.0000	0.00000	0.50300	0.00000
2	6.3500"-05	1.0129*+00	ИW	0.68713	0.09593	0.57800	0.68980	0.83792
3	4.1280*-05	1.0150***00	чiн	0.69920	0.75004	0.62820	0.70150	0.89551
4	9.3980"-05	1.0159*+00	1114	0.70046	0.77330	0.65100	0.70870	v.9185d
5	1.:43804	1.0168*+00	NM	0.71990	0.79468	0.67520	0.72190	0.93531
ь	1.3208 -04	1.0170*+00	HM	0.72422	0.79819	0.68020	0.72620	0.93666
7	1.447804	1.0175*+00	IAM	0.72871	0.80983	0.69220	0.73060	0.94744
6	1.7018"-05	1.0179"+00	[fw	0.73087	0.61893	0.70480	0.74070	U.95153
9	1.9558"-04	1.0183*+00	NM	0.74624	0.82799	0.71610	0.74800	u.95735
10	2_4634*=04	1.0192"+00	(IM	0.75800	0.84803	0.73910		0.97301
11	2.9718"-04	1.0202*+00	ram.	0.76840	U.87077	0.76400	0.76980	0.99247
12	3.4798"-04	1.0210*+00	ИW	0.77857	0.88839	0.78450	U.77980	1.00603
13	3.9878*-04	1.0217"+00	ИW	0.78611	0.90268	0.80090		1.01743
14	4.4958"-04	1.0223"+00	NW	0.79142	0.91415	0.81400	0.79290	1.02661
15	5.5118"-04	1.0231*+00	NM	0.30220	0.93137	U.8346U		1.03935
l o	6.7818" - 04	1.0240"+00	NM	0.81168	0.94826	0.85580		1.05071
17	H.0518*=04	1.0246"+00	IIM	0.82551	0.95935	0.87190	0.82600	1.05557
18	9.3218"-04	1.0247"+00	NM	0.63416	0,96556	0.65210	0.83460	1.05691
10	1.0592"-03	1,0252"+00	NM	6.84144	0.97090	0.89080	0.84180	1.02857
50	1.3132"-03	1.02547+00	NM	0.65160	0.97629	0.90110		1.05775
57	1,6212"-03	1.0256"+00	ИW	0.86574	0.95012	0.71220		1.05311
5.5	2.3292"-03	1.0247*+00	ħM	0.67685	0.95055	0.91860		1.04732
5.2	3.0912"-63	1.0257"+00	ИМ	0.88595	0,98122	0.92370		1.04232
24	3,8532~-03	1.0247"+00	Mjf	0.84726	0.98167	0.93000		1.03621
25	5.1232"-".	1.02584+00	MM	0.91476	0.96217	0.93930		1.02701
\$6	6.30 -03	1,7259"+00	NM.	0.93178	0.98405	V.9500U		1.01931
27		1.0259*+00	NM	0,94589	0.985.3	0.95850		1,01311
٠,	6.9332"-03	1.0260*+00	Им	0.96601	0.96653	0.96670		1.00677
29	1.0203"~02	1.0261"+00	NM	0.97:43	0.98823	0.97410		1.00257
30	1.2743"-02	1.02644+00	NH	0,08559	0.49222	0.98510		0.99939
31	1.5283"-02	1.0264*+00	ИМ	0.97412	0.99479	0.99190		0.99769
32	2.0363"-02	1.0267*+00	NM	0.44999	0.99430	0.99930		U.9993U
0 33	2.2903"-02	1.0267*+00	MM	1-00000	1.00000	1.00000	1.00000	1.0000
INPUT	VARIABLES	Y,U/UD,T/TD	ASSUME PM	PD				

# Mail'Y	VARIABLES	Y.UZUD.TZTD	ASSUME	

7207010	BACK	CUFFEL	PROFILE	TABULATION	41	POINTS, DEL	TA AT PUI	NT 41
1	Y	P12/P	P/PD	TU/TOD	M/MD	U/Up	1/10	RHD/RHOD*U/UD
	0.0000"+00	1.0000*+00	NM	0.42616	0.00000	0.0000	1.39200	0.0000
Š	6.3500"-05	1.9728*+00	RM	0.55208	0.30747	0.37470	1.48510	0.25231
	8.3900"-05	2.4442"+00	ИМ	0.58982	0.36020	0.43950	1.48880	0.29520
4	1.143004	3.0130 400	MM	0.61964	0.41280	0.49880	1.46010	0.34162
	1.5970"-04	3.4947"+00	Nii	0.64533	0,45194	0.5/1250	1.44090	0.37650
	1.6510"-04	3.9373"+00	MH	0.65601	0.48469	0.57330	1.39790	0.41012
	2.1570"-04	4.7107"+00	NM	0.67057	0.53737	0.61830	1.32390	0.46703
	2.6670"-04	5.4130"+00	Им	0.67998	0.58077	0.65160	1.25880	U.\$1764
	3.1750"-04	6.0058*+00	NM	0.48600	0.61496	0.67550	1.20660	U.55984
10	3.937004	6,6684"+00	HW	0.69654	0.65100	0.70130	1.16050	U.6043i
	4.6950=-04	7.0873"+00	NH	0.70678	0.67277	0.71520	1.13960	0.63022
	5.7150 -04	7.3434"+00	NM	0.71782	0,68599	0.73070	1.13460	0.64402
	6.9850"-04	7.4971"+00	h/M	0,72843	0.69341	0.73990	1,13860	0.64983
	6.2550"-04	7.7982"+00	NM	0.73792	0.70623	0.75120	1.13140	0.66396
	1.0745"-03	8.56417+00	15W	0.76040	0.74441	0.70110	1.10100	0.70945
16	1.3335"-03	9.2745"+00	Mit	0.77364	0.77651	0.80240	1.06780	U.75145
	1.5975"-03	1.0033"+01	1414	0.78694	0.80932	0.62320	1.03460	V.79567
16	1.8415"-03	1.0674"+01	NM	0.80131	0.63629	0.84150	1.01250	0.83111
19	2.0955"-03	1.1271"+01	IJM	0.81117	U.86024	0.85580	0.98970	U.86471
24	2.6035"-03	1.2345"+01	ИМ	0.82905	0.90207	0.88020	0.95210	0.92446
	3.11157-03	1.3324"+01	ИW	0.84523	0.93854	0.90090	0.92140	U.97775
	¥.6195"-U3	1,4051*+01	1-14	0.85949	0.96473	0.91670	0.90290	1.01528
	4.1275*-03	1.4453"+01	F1!4	0.86739	0.97895	4.92520	0.69320	1.03583
	5.1435 "- 03	1.4905"+01	ИM	0.88577	0.99463	0.93960	0.89240	1.05269
	6.4135"-03	1.5219"+01	tam.	0.89197	1.00542	0.94600	0.88530	1.06850
36	7.6835"-03	1.5416"+01	NM	0.90405	1.01212	0.95430	0.88900	1.07345
	1.0224"-02	1,5614"+01	NM	0.92348	1.01879	0.96640	0.89480	1.67402
26	1.200202	1.4733"+01	NM	0.93703	1.02278	0.97460	0,90800	1.07335
29	1.2764"-02	1.6174"+01	1134	0.94338	1.03748	0.98200	0.89590	1.09610
30	1.3780"-02	1.5013"+01	84 P	0.95178	1.02546	0.98300	0.91890	1.06976
31	1.5304"-02	1.5826"+01	l/h	0.96086	1.02590	0.98780	0.92710	1.06547
32	1.6425"-02	1.5946"+01	MM	0.96701	1,02992	0.99210	0.92790	1.06919
	1.8406"-02	1.5804"+01	L1 _W	0.97572	1.02516	0.99520	0.94240	1.05603
	2.2415"-02	1.5791"+01	HM	0.98383	1.02473	0.99920	0.95080	1.05090
	2,4955*-02	1.5561"+01	,JM	0.99301	1.01702	1.00160	0.96990	1.03268
36	2.6987*-02	1.5645"+01	1144	0.99593	1.01983	1.00390	0.96900	1.03602
37	2.6512"-02	1,5195"+01	NH	0.99601	1.00459	0.99940	0.98970	1.00980
	2.9762*-02	1.5164"+01	NM	0.94686	1.00352	0,99950	0.99200	1.00756
39	3.0797"-02	1.4824"+01	NM	0.99703	0.99184	99600	1.00840	0.98770
40	3,2830"-02	1,4739"+01	NM	0.99847	0.98890	0.99580	1.01400	0.98205
D 41	3.5115"-02	1.5061"+01	MIN	1.00000	1.00000	1.00000	1.00000	1.00000

SECTION D: ADDITIONAL DATA MALL TEMPERATURE, PRESSURE, AND HEAT FLUX AUTHORS UNITS

 X_{\star} RZ - inches. TW - O R Q/A - BTU/in 2 sec. PO = 150.0 ps ia TO = 1500 O R

Hormalised average data, five runs. Brackets mark an interpolated value.

X.	-RZ	TW	PW/PO	MD	Q/A
AXIAL in	1n	o _R	-	•	BTU/1n ² sec.
•••	•••				'in sec.
- 39.97 - 38.95	2.500 2.500	710 70 6	.99740 .99740	.06100 .06098	.1370 .1258
- 38.00	2,500	707	.99740	.06096	.1180
- 37.05	2.500	709	.99740	.06095	.1121
- 36.09	2,500	708	. 99740	.06095	.1179
- 35.11	2,500	705	.99741	,06093	.1199
- 33.85	2.500	705	,99741	.06091	.1167
- 32.33	2,500	704	,99741	.06089	.1070
- 30.85	2.500	703	.99741	.06088	.1021
- 29.39	2.500	702	.99739	.06114	.1004
- 27.93	2.500	701	.99737	.06141	.1009
- 26.47	2,500	705	.99734	.06167	.0965
- 24.99	2.500	706	.99732	.06193	.1027
- 23.50 - 21.73	2.500 2.500	705 696	,99730 ,99727	.06219 .06250	.0985 .0946
- 21./3	2,500	030	,39/2/	100200	,0340
- 19.71	2.500	698	,99724	.06284	, 0888
- 17.73	2.500	699	.99724	.06289	,0888
- 15.76	2.500	697	.99723	.06295	.0879
- 13.80	2.500	697	.99723	.06301	.0898
- 11.83	2.500	699	.99722	.06306	.0897
- 9.86	2.500	698	. 9 9 722	.06312	.0903
- 7.88	2.500	702	.99721	.06318	, 0944
- 5.89	2.500	699	.99720	.06326 .06328	.0927 .0993
- 4.35 - 3.32	2.500 2.500	691 691	.99720 .99720	.06331	.0885
- 3.32	2.500	031	.39/20	.00231	
- 2.36	2.500	691	.99720	.06336	.0903
- 1.41	2.500	692	.99719	.06338	.0844
- 0.46 0.00	2.500 2.500	691 (691)	.99719 .9972	.06344 .06346	.0860 (.0904)
0.564	2.500	692	.9972	.06349	.0946

1.625	2.500	690	.9972	.06335	.0964
2.309	2.497	683	.9973	.06194	.1073
2.612 2.885	2.477 2.429	676 692	.9973 .9971	.06180 .06443	.0762 .0882
3.161	2.380	688	.9969	.06715	.0810
		•	*****	****	
3.436	2.332	690	.9965	.07052	.0894
3.563	2.310	(691)	coro	42663	(.0945)
3. 943 4. 69 2	2.242 2.110	692 698	. 9959 . 9947	.0 769 3 .0 873 1	.0996 ,1129
5.441	1.978	703	.9933	.09823	.1219
0.44.	*1570		17705	102023	
5.810	1.910	(707)	8010	14808	(.1335)
6.189	1.846 1.714	711 718	. 9912 . 9884	.11263 .12917	.1451 .1640
6.937 7.310	1.649	(724)	, 7007	, 1671/	(.1694)
7.681	1.583	730	, 9838	.15290	.1749
					•
8.426 8.811	1.452 1.384	739 (743)	.9773	, 18125	.1928 (.2129)
9.176	1.320	747	.9674	.21818	.2330
9.923	1.188	76ó	.9491	.2741	.2591
10.667	1.056	789	.9215	.3438	.3001

SECTION D (CONT.): ADDITIONAL DATA WALL TEMPERATURE, PRESSURE, AND HEAT FLUX AUTHORS UNITS

X, RZ - inches. TW -

TW - OR

Q/A - BTU/in²sec.

PO = 150.0 psia

TO - 1500°R

Normalised average data, five runs. Brackets mark an interpolated value.

X	- RZ	TH	PW/PO	MD	Q/A
AXIAL in	in	o _R	-	-	BTU/in ² sec.
11,189	0.966	812	.8780	,4351	.3088
11.465	0.916	834	.8403	. 5048	.3309
11.741	0.867	842	.7897	. 5907	. 3459
12.032	0.816	810	.6605	.7931	.3732
12.336	0.795	806	.4807	1.0789	.3353
12,646	0.821	780	. 2984	1.4366	, 2996
12.933	0.872	783	. 2554	1.5442	. 2716
13.450	0.963	776	.1783	1.784	, 2076
14.196	1.095	741	.1161	2,062	.1660
14.931	1,225	730	.0731	2.357	.1217
15.657	1.353	720	.0501	2,600	.0984
16.393	1.483	707	.0364	2.808	.0715
17.130	1.514	693	.0276	2.990	.0642
17.865	1.744	665	.0250	3.057	.0586
18.560	1.856	672	.0211	3.171	.0484
19.015	1.949	666	.0187	3.254	
19.315	2.004	660	.0171	3.315	.0472
19.752	2.084	658	0152	3.395	.0428
20.294	2.184	655	.0144	3,435	.0380
20.789	2.274	(649)			(.0352)
20.830	2.282	649	.0120	3,563	.0352
21.369	2,380	647	,0104	3,662	.0316
			• • • • •	• •	

axisymmetr	ic
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M : 6 falling to 4.6

R THETA X 10⁻³: 96 - 140

TW/TR : 0.7

7208

APG - MHT

Blow-down axisymmetrical tunnel with contoured nozzle. D = 0.3048 m. PO : 13.4 MH/m^2 . TO : 460 K. Air. RE/m X 10^{-6} : 124.

ZAKKAY V. and WANG C.-R., 1972. Turbulent boundary layer in an adverse pressure gradient without effect of wall curvature. NASA CR 11-2247.

- The test boundary layer was formed on an axi-symmetric centre body. This started with a small diameter section passing through the throat and having a streamlined nose. The nose section was faired into a parallel sided section 116.5 mm in diameter. The test region started at 0.1554 m downstream of the throat. (X = 0). A contoured compression sleeve was fitted inside the tunnel test section, and formed a compression.
- 4 which was focused onto the centre body. The static pressure then increased approximately linearly from X = 0 to X = 120 mm, then rather more rapidly before reaching a maximum at about X = 190 mm, and then
- falling. The pressure increased, overall, by a factor of about seven. The cylindrical portion of the model was equipped with pressure taps and thermocouples at approximately 10 mm [E] intervals. Heat transfer was determined using the transient thin-wall technique.
- A combined, triple, probe was used to measure Pitot, TO and static pressure profiles. The FPP was made from flattened 1 mm tube so that at the tip [E] $h_1 = 0.35$, $h_2 = 0.05$ mm. The TTP was an "unshielded" open tip chromel-alumel thermocouple about [E] 1 mm in diameter. The SPP "had a conical tip faired into" a 1 mm diameter tube. The available sketch suggests that [E] the effective slender length of the probes was of
- 8 the order of 10 mm. The SPP was mounted in the centre, with the FPP and the TTP 3.2 mm to either side.
- 9 No details are given of reduction or interpolation procedures. The integral data, presented graphically, 0 uses a pressure-based reference flow. No profile corrections are raported, nor is the viscosity law used.
- The editors present the eight profiles measured. These are given in the source directly as measured by the SPP, the TPP and the TTP. We have reduced the data assuming the test gas to be air. The heat transfer data given has been scaled from the original graphical presentation. We have selected a D-state on the basis of the computed PO values.
- 13 The eight profiles form a sequence, with the first five showing the development from a near-constantpressure region through the compression, and the last three describing a region in which, again, the flow
- 14 is not varying rapidly. Heat transfer values appropriate to the profiles have been interpolated by the editors.
- DATA 7208 0101-0108. Pitot, TO and P profiles obtained simultaneously. NX = 8. Heat transfer data from the transient technique.

15 Editors' comments

11

The experiment describes a very interesting and difficult flow case. Unfortunately the data is not of particularly good quality, and is very badly reported. Much of the description above has required considerable imagination on the part of the editors. New and more careful data of this type would be valuable.

The flow undergoes a very strong reflected-wave compression, and streamline curvature is quite marked at relatively small distances from the straight wall, so that there are large normal pressure gradients. Hence SM has been artitrarily set at 0.5. There will also be a "focusing" of the compression wave as the waves approach the axis, in contrast to the other reflected wave compression experiments (Peake et al. - CAT 7102, Lewis et al. - CAT 7201) in which the compression is radiated out from a centrebody. Effects of transverse curvature are likely to be significant, as d/RZ is of order 0.2.

There are relatively few data points in each profile, and, in half the cases, measurements do not extend within the momentum deficit peak.

CAT 7208	ZAKKAY		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. 51 UNII	15.	
RUII X RL +	MD # POD TOD#	TW/TR PW/PD SH *	REDZW REDZO 02	60 + 615	H12 H32 H42	H12K H32K D2K	P## T## UD	PD4 TD TR
72060101	6.0000	0.7190	1.7962"+04	11M	14.7096	1.4747	9.2000"+03	8.6000*+03
NM	1.3578*+07	1.0698	5.3303"+04	6.8649#-05	1.8608	1.8154	2.9400"+02	5.4878*+01
5.8250#-02	4.5000*+02	0.5000	6.7335"=04	NC	0.1121	1.6047=-03	8.91\7"+02	4.0891*+02
72080102	5.6000	0.7098	2.5829*+04	N#	6.1243	1.5046	1,6500"+04	1.1700"+04
3.6100"-02	1.2133"+07	1.4103	1.0497*+05	9.5661*-05	1.8356	1.7916	2,9400"+02	
5.8250"-02	4.5500"+02	0.5000	8.1425*+04	NC	0.2789	1.6332=-03	8,8813"+02	
72080163	5.3500	0.7152	2.6774*+04	NM	4.9820	1.5606	2.2000"+04	1.5800*+04
6.9800#=02	1.2459*+07	1.3924	1.0146*+05	7,5510**06	1.8088	1.7768	2.9400"+02	4.7068*+01
5.6250#=02	4.5100*+02	0.5000	6.7731*=04	NC	1.2921	1.4522"-03	8.7846"+02	4.1107*+02
72080104	4.9000	0.7008	3.2724"+04	NM	5.2605	1.5712	2.9300*+04	1.7900"+04
1.0160*=01	6.4212"+06	1.6369	1.0523"+05	1.2562"=03	1.8138	1.7717	2.9400*+02	7.9111"+01
5.0250*=02	4.5900"+02	0.5000	8.6646"=04	NC	0.2861	1.4641"-03	8.7382*+02	4.1949"+02
72060105	4.8000	0.7019	3.3365"+04	NM	1.6632	1.5659	3.3800*+04	1.9300"+04
1.3340*-01	5.0009"+06	1.7513	1.0404"+05	1.5401**05	1.6363	1.7987	2.9400*+02	6.1669"+01
5.8850*-02	4.5800"+02	0.5000	6.5037"=04	NC	0.2674	1.2498"-03	8.6972*+02	4.1886"+02
72050106	4.6000	0,4933	3.47617+04	NH	2.4959	1.6375	4.2000*+04	2.6800"+04
1,6260*-01	6.7795"+06	1,5672	1.0013*+05	1.3904*+05	1.8447	1.6215	2.9400*+02	8.8494"+01
5,6250*-02	4.6300"+02	0,5000	6.9260*-04	NC	0.3661	9.8589"-04	6.6761*+12	4.2405"+02
72060107	4.6000	0.7113	4.4774"+04	₩	3.7044	1,6421	5,4100*+04	3,1700"+04
1.9050"-01	1.0385*+07	1.7066	1.3261"+05	1.2588*=05	1.8144	1.7922	2,9400*+02	8,6009"+01
5.8250"-02	4.5000*+02	0.5000	7.4355"-04	NC	0.3009	1.0850"-03	8,5534*+02	4,1214"+02
72080108	4.6000	0.7609	4.3718"+04	NM	0.2292	1.8183	#0+"00#+.\$	2.4800"+04
2.1640"-01	8.7795"+06	1.8022	1.2727"+05	NM	1.4691	1.8548	\$0+"00#+.\$	8.7538"+01
5.8250"-02	4.5800"+02	0.5000	5.6636"-04	NC	0.3645	9.6095"-04	\$0+"19\$6.#	4.1947"+02

TRAFEZOZDAL RULE FOR RUN 0108

EVALUATED	DATA - PRESE	URE BASED	REFERENC	E FLOR			
RUN	0450 0450	H12P0	H32PD H32PM	H42PD H42PH	ONGEDBA CHASCBA	REDZPUM REDZPWVI	DSTAH
72080101	6.6177"=04 6.3523"=04	14.8432	1.8616	0.1110	8.1970*+04 3.2121*+04	1,76/5#404 1,7707#404	9,6#84*=03
72000102	7.0594"-04 5.43 82 "-04	14.3541	1.8931	0.2565	9.1119"+04 9.1776"+04	2.2422*+04 2.2583*+04	4,6387**03
72040103	3.7562*-04 4.5150*-04	13,,9947 14.0832	1.8259	0.2668	8.6352"+04 8.7027"+04	2.2782"+U4 2.2960"+U4	7.8799"=03
72080104	7.9804*-04 4.9369*-04	15.1817	1.8687	0.2056 0.2045	4.7037*+04 9.7691*+09	3.0175*+04 3.0376*+04	1,0558#-02
72080105	8.0536"-04 4.6763"-04	13.5154	1.8986	0.1723	7.8452*+04 9.8774*+04	3,1656*+04 3,1695*+04	9,4067*-03
72080106	3.69 + 7"-04 3.60 67 "-04	13.4655	1.6772	0.2952	8.5392*+04 5.6068*+04	2.9645*+U4 2.9887*+U4	6.9530"=03
72080107	7.0714"-04 4.5879"-04	9.2566	1.6769	0.2062	1.2627"+05	4.2634*+p4 4.2772*+04	6,0946*-03
72080108	6,1007*-04 3,5486*-04	13.8990	1:8910	0.3150	8.9729*+04 9.1243*+04	3.0822*+04 3,1342*+04	7,40224-03

72080	105 SYKK	4 Y	PROFILE	TABULATION	20	POINTS, DEL	ING TA AT	NT 20
I	Y	PT2/P	F/PD	T0/105	HIND	UZUP	1/10	RHC/RHCD*U/UD
L	0.0000"+00	1.0000"+00	1.41026	0.64615	0.00000	0.00000	5,41236	0.0000
2	1.3000"-03	5.0461"+00	1.41026	0.88132	u.33575	0.67406	4,03065	0.23584
3	2.6000"-03	5.2182"+00	1.38/162	0.89890	0.37675	0.72256	3.67736	0.27199
4	3.9000"-03	8.5667"+00	1.29060	0.92308	0.44755	0.79065	3.12686	0.32696
5	5.2000"-03	1.0653"+01	1.05547	0.94066	0.50206	V.83343	2.75566	0.32029
6	6.5000"-03	1.4198"+01	1.05983	0.95165	0.58307	0.87897	2.27248	0.40993
7	7.8000"-03	1.5434"+01	1,23932	0.96484	0.60876	0.89565	2.16461	0.51279
à	9.1000"-03	1.9079"+01	1.23932	0.98022	0.67891	0.92743	1.44612	0.61592
ě	1.0400"-02	2.2509"+01	1.21368	0.98901	0.73884	0.94851	1.64806	0.64850
10	1.1700"-02	2.8110"+01	1.17949	1.00000	0.42743	0.97359	1.38446	0.62944
ii	1.3000"-07	3.4151*+01	1.14530	1.00000	0.91339	0.98835	1.17088	0.96576
iż	1.4100"-02	3.5302*+01	1.17949	1.00000	0.92887	0.99064	1.13743	1.02727
13	1.5600"-02	3.6339*+01	1.14530	1.00000	0.94286		1.10835	
14	1.6900"-02	3.5302"+01	1.17949			0.79263		1.02572
				1.00000	0.92007	0.99064	1.13743	1.02727
15	1.6200"-02	3,5549"+01	1.17949	1.00000	0.93216	0.94111	1.13049	1.03407
16	1.9500"-92	3,5822"+01	1,20513	1.00000	U.93578	0.99165	1.12203	1.06455
17	3.480005	3,6234"+01	1,17949	1.00000	0.94122	0.99,40	1.11172	1.05289
10	5.510005	3.7405"+01	1.08547	1.00000	0.96295	0.99535	1.06643	1.01123
19	2.3400"-02	3.9601"+01	1.02564	1.00000	0.48452	0.99411	1.02780	0.99602
0 20	2.4700"-02	4.0841"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
					••			

INPUT VARIABLES Y, P, TO, H

• 4					TA AT PUI	HT 20
I Y	P12/P P/FD	T0/100	HAND	UZUD	T/10	RHG/RHOD#U/UD
2 1.3000"-03 3.4 2 2.6000"-03 5.4 3 2.6000"-03 6.5 5 2.6000"-03 1.7 7 7.6000"-03 1.7 8 9.1000"-03 1.7 9 1.0000"-02 2.7 11 1.3000"-02 2.7 12 1.4300"-02 2.7 13 1.3600"-02 2.7 14 1.6200"-02 2.7 15 1.8200"-02 2.7 16 1.7500"-02 2.7 17 2.0800"-02 3.7 18 2.3400"-02 3.7	0000*+00 1.63687 0450*+00 1.61453 3200*+00 1.53631 3200*+00 1.42456 1591*+01 1.42456 1591*+01 1.36313 9201*+01 1.36313 3531*+01 1.40762 3540*+01 1.3650 7144*+01 1.32961 7144*+01 1.32961 7144*+01 1.1732 8676*+01 1.1732 8676*+01 1.07621 10307*+01 1.07621 10307*+01 0.98324 11370*+01 0.98324 11370*+01 0.98324	0.647146 0.647146 0.84760 0.94760 0.947781 0.94781 0.947821 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	U.00000 0.12704 0.18557 0.44183 0.59969 0.69269 0.6936 0.6936 0.9536 0.95524 0.95526 0.95526 0.95526 0.95526	0.0000 0.0002 0.71753 0.71757 0.001353 0.001350 0.97653 0.97653 0.9863	4.99167 3.93169 3.99767 2.99767 2.17470 1.78071 1.804425 1.13761 1.13564 1.13564 1.075	U.26492 U.26492 U.335265 U.35565 U.57936 U.57936 U.70509 1.07304 1.13497 1.071582 1.071582 1.09266 U.99660 U.9976734 U.967733 U.97473

INPUT VARIABLES Y,P,TO,H

72080108 ZAKKA	Y	PROFILE	TABULATION	20	POINTS, DEL	LUS YA AT	NT 15
Ι γ	PTS/P	የ/የ ቦ	TO/TOD	HAILD	U /U0	1/10	RHGZRHOLAUZUD
1 0.0030*+00 2 1.3000*-03 3 4.5000*-03 4 3.9000*-03 5 3.2000*-03 7 7.5000**-03 9 1.000*-03 10 1.1700*-02 11 1.300*-02 12 1.4300*-02 14 1.900*-02 15 1.8200*-02 16 1.9300*-02 17 2.0800*-02 18 2.2100*-02 19 2.4700*-02 20 2.4700*-02	1,0000*+00 7,64A5*+00 0,1740*+01 1,4540*+01 1,4540*+01 1,4540*+01 2,2147*+01 2,3427*+01 2,3427*+01 2,523*+01 2,6360*+01 2,7710**01 2,770**01 2,8556*+01 2,8556*+01 2,8556*+01 2,8556*+01 2,856*+01 2,856*+01 2,856*+01 2,856*+01 2,856*+01	1.40224 1.72388 1.76732 1.50621 1.55797 1.54104 1.54186 1.440307 1.33507 1.23507 1.23507 1.23507 0.68284 0.68284 0.68284 0.68288	0.04192 0.91266 0.92576 0.92576 0.93572 0.947782 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0.00000 0.51146 0.53174 0.63674 0.70593 0.70593 0.70393 0.89332 0.92332 0.92332 0.92450 0.97194 1.00000 1.00000 1.01542 1.04130	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	3.42402 2.36771 2.31644 1.65157 1.45158 1.31395 1.20123 1.14075 1.129401 1.04653 1.046	U.000 PU U.57 U60 U.62407 U.75491 U.86080 U.97409 I.23746 I.23746 I.23746 I.23169 I.21027 I.23214 I.U.2577 I.U.2577 I.U.2577 I.U.2577 U.91322 U.91339 U.86624 U.860403 U.73466

INPUT VARIABLES Y,P,TO,M

Blow-down tunnel with axi-symmetric contoured nozzle, D = 0.53 m. Air, PO : 14 MN/m², TO : 840 K, RE/m X 10^{-6} : 20.

STONE D.R. and CARY A.M. 1972. Discrete sonic jets used as boundary-layer trips at Mach number of 6 and 8.5. NASA TN D 6802.

And Morrisette, Stone and Cary, (1968), Stone, (1971), Morrisette E.L., private communication.

- The test boundary layer was formed on the surface of a flat-plate model (L = 0.521, W = 0.279 m) with a leading edge (X = 0) 0.03 mm thick and chamfered at 150 on the underside. From X = 38 mm back the working surface consisted of a removable plate. Two were used, one for heat transfer studies, and the other for the profile studies reported here. At X = 25 mm, a row of 17 jet orifices was drilled. These were spaced symmetrically about the centraline at intervals of 6.4 mm, and converged from a supply pipe diameter of 2.3 mm to a parallel sided outlet 0.8 mm long and 0.4 mm in diameter at the test surface. (A second such row at X = 76 mm could be employed on the heat transfer model.) When employed, the discharge through
 - such row at X = 76 mm could be employed on the heat transfer model.) When employed, the discharge through the jets was at a constant value, 2.5, of a "mass flow parameter" λ where λ = p_{oj} γ_j / p_o M_o^2 γ_o . The boundary layer could also be tripped by spherical balls of 1.5 mm diameter at X = 12.7 mm, or of 3.0 mm diameter at X = 25.4 mm. The balls were distributed symmetrically at intervals of 50.8 and 12.0 mm respectively, and spanned the full width of the plate. The test plates were provided with sharp, swept side plates. Surface oil flow patterns were observed, but two-dimensionality in the region of profile measurements is not reported. An oil pattern published by Morrisette et al. (1968) in a not dissimilar case shows strong three dimensional effects in the immediate vicinity of the trips, but little or no large-scale divergence far downstream.
- The central 19 mm of the heat transfer plate was reduced in thickness from 3.18 mm to 0.8 mm and instrumented with 95 thermocouples to allow heat-flux determination by the thin wall transient technique. These
- 3 measurements showed that the mass flow, at X = 1.0 was sufficient to cause transition as defined by a local peak heat flux, at X = 127 mm. The mass flow was such that any further increase would not cause transition to move further forward. (For these tests, however, TW/TP was about 0.45).
- The pressure plate, also used for profile measurements, had three rows of static holes (d = 2.3 mm) in the central 40 mm of the plate. The total number was 36, the greater number providing a very close grid for X less than 200 mm. The largest interval downstream was less than 50 mm. The plate also had three thermocouples mounted 18 mm off the centra line at X = 168, 280 and 485 mm.
- Pitot and TO profiles were measured at two stations for which $X \approx 0.279$ and 0.455 mm. The Pitot probe was an FPP for which $h_1 = 0.25$, $h_2 = 0.18$, $b_1 = 2.03$, $b_2 = 1.42$ mm. The TO probe was an STP with a constant d_1 of 1.9 mm. The interior of the probe tip was chamfered so as to give a sharp leading edge. The thermocouple was mounted 0.8 mm back from the probe face and there were two vent-holes (d = 0.04 mm) 3.6 mm back. The probe was calibrated over a wide range of Peynolds number at M = 3.6 and 8.5, and found to have a probe recovery factor near to one, which value was assumed for all subsequent work.
- 9 The authors have interpolated TO profile measurements to the Y values of the Pitot profiles, and extrapolated the TO profile at low values of Y so as to match the wall temperature. Static pressure has been assumed 0 constant through the layer. No probe corrections have been applied, and Sutherland's viscosity law was used.
- 12 All profiles tabulated by the authors have been presented, incorporating the authors' procedures. While a
- 13 great deal of heat transfer data was obtained, it is only presented as small scale graphs and is not
- reproduced here. The profiles consist of a single reference profile taken with natural transition, and three pairs for the jet trip (0201/2), the small ball trip (U301/2) and the large ball trip (0401/2).

K.

6 DATA: 7209 0101 0402. Pitot and TO profiles obtained separately. NX = 2.

15 Editors' comments

The interest of this experiment lies in the effect of the relatively brutal tripping devices used. The reference case, 0101, is turbulent but still markedly transitional, while the downstream tripped profiles are relatively well developed and fully turbulent in character. We find less distortion introduced by the trips than is reported by the authors, and in general the interesting result is that the trips, at least at the downstream station of the two, do not seem to leave any special mark on the mean profile characteristics. On a transformed log-law plot, no effect can be seen which could not be accounted for by the general experimental scatter. Tests in the same range with no trip, or modest trips, are described by Danberg - CAT 6702 and Keener & Hopkins - CAT 7204. Abruptly disturbed flows, but in different experimental ranges, are the step flow of Moore - CAT 5805 and the flow over a rectangular cross-section protrusion described by Peake et al. - CAT 7102.

CAT 7209	STONE		BOUNDARY CON	DITIONS AND E	EVALUATED	DATA. SI UNIT	3.	
RUN	MD #	TW/TR	RED2W	CF	H12	DSK	PH	PD
X +	POD#	PW/PD+	RED2D	C0	H32	H35K	1 H+	TD
RZ	Tod#	SH +	D2	P12+	H42	H15K	UD	TR
72090101	7.8200	0.5054	9.6805"+02	0.0000"+U0	14.9431	1.4544	1.6038"+U3	1.6036"+03
4.5500"-01	1.3510"+07	1.0000	6.5609"+03	NM	1.8907	1.8040	6.0642"+U2	6.2961"+01
Infinite	8.3300"+02	0.0000	2.6839"-04	0.0000"+U0	0.6673	6.5647"-04	1.2441"+O3	7.5292"+U2
72090201	7.7400	0.7489	1.1046#+03	NM	14.4141	1.3864	1.7495*+03	1.7495"+03
2.7900"-01	1.3790*+07	1.0000	6.4671#+03	NM	1.6744	1.0068	5.7139*+02	6.5015"+01
Infinite	5.4400*+02	0.0000	2.7702#=04	0.0000"+00	0.6967	7.1863"-04	1.2513*+03	7.6299"+02
72040202	7.7800	0.7666	1.5120*+03	NM	16.5466	1.3593	1.6836"+03	1.6836"+03
4.5500"-01	1.3720"+07	1.0000	9.8229*+03	NM	1.8712	1.8067	5.7727"+02	6.3560"+01
Infinite	8.3300"+02	0.0000	3.4026*-04	0.0000"+00	0.7525	1.0798"-03	1.2436"+03	7.5298"+02
72070301 2.7700"-01 Infinite	7.5500 1.3790"+07 6.3300"+02	0.7740 1.9000 0.9000	1.3079"+03 8.0926"+03 2.9516"-04	NM 0.0000*+00	17.0201 1.8001 0.6801	1.4268 1.7924 8.7867"-U4	2.0537*+03 5.6310*+02 1.2407*+03	2.0537"+03 6.7175"+01 7.5335"+02
72090302	7.8000	0.8076	1.4364"+03	NM	17.9876	1.3860	1.6680"+03	1.6680*+03
4.5500"-01	1.3820*+07	1.0000	9.6973"+03	NM	1.8694	1.6021	6.1028"+02	6.3487*+01
Infinite	8.3600*+02	0.0000	3.6722"=04	0.0000*+00	0.6714	1.1387*-03	1.2461"+03	7.5566*+02
720904u1	7.5400	0.7740	1.4433"+03	NM	21.1472	1.4433	2.0712*+03	2.0712"+03
2.7900"-01	1.3790"+07	1.0000	6.9087"+03	NM	1.8558	1.7872	5.8310*+02	6.7339"+01
Infinite	8.3300"+02	0.0000	3.2377"-04	0.0000*+00	0.3657	1.0250*-03	1.2405*+03	7.5337"+02
72090402 4.5500#-01 Infinite	7.8700 1.3750"+07 8.4000"+02	0.7947 1.0000 0.0000	1.3245*+03 8.9920*+03 3.7233*-04	NM 0.0000=+U0	20.2526 1.8493 0.5865	1.5305 1.7560 1.2641"-03	1.5663"+03 6.0460"+02 1.2499"+03	1.5663*+03 6.2746*+03 7.5917*+02

720901	01 STO!IE		PROFILE	TABULATION	25	POINTS, DEL	TA AT PUI	NT 25
I	Y	4/874	P/PD	TO/TOD	rt7:10	uzun	1/10	RHO/RHQU*U/UD
1	U_U100"+00	1.0000"+00	NM	0.72800	0.00000	0.0000	9.63174	0.0000
Ž	1.8000"-04	2.3747"+00	424	0.81972	U.15200	0.44200	8.45585	0.05227
3	1.9000"=04	2.6578"+40	hM.	0.81797	0.16400	0.46800	8.14337	U.05747
4	2.0000"-04	2.7836"+00	1474	0.8399#	0.16900	0.48500	0,23586	U.058M9
5	3.8000"-04	5.7307"+00	NM	0.85963	0.25800	0.64600	6,26939	0.10304
6	7.7000"-04	1.2757"+01	I1N	0.89491	0.39500	0.77700	4.07120	U.19577
7	1.1200"-03	1.6698"+01	ИM	0.908A5	0.45400	0.83900	3.41517	0.2456/
8	1.5200"-03	1.9142"+01	NM	0.91300	0.40700	0.65700	3.09673	J.27674
9	1.8800*=03	2.1350"+01	NM	0.91539	0.51500	0.87000	2.85380	V.10486
10	2.4000"-03	2.5246"+01	NM	0.92039	0.56100	0.88900	2.51118	U.35402
11	5.0500*-03	2.9190"+01	NM	0.92476	0.60400	0,90400	2.24008	0.40356
12	3.4700"-03	3,2816"+01	NM	0.92796	0.64100	0.71500	2.03763	0.44905
13	4.1000"-03	3.7625"+01	ИM	0.93401	0.65700	0.92800	1.82466	0.50859
14	4.5000"-03	4.0827*+01	i _e M	0.93704	0.71600	0.93500	1.70529	0.54830
15	5.0800*-03	4.5584*+01	NM	0.94531	0.75700	0.94500	1,55837	0.60640
16	5.5600"-03	5.0981"+01	NP4	0.94854	0.80100	0.95400	1.41851	0.67254
17	6.2200"-03	5.7216"+01	tiM.	0.95650	0.84900	0.96400	1.28925	0.74772
18	0.9900*-03	6.4098*+01	ИM	0.96969	0.89900	0.97400	1.17381	0.82976
19	7.5100"=03	6.8416*+01	NM	0.97390	0.42900	0.98100	1,11508	0.87976
20	8.1700"-03	7.2724*+01	NM	0.98276	0.95800	0.98800	1.06361	0.92891
21	8.6700"=03	7.5465*+01	N#4	0.98777	0.97600	0.99200	1.03306	0.96026
22	9.1300"-03	7.6855"+01	NM	0.99432	0.98500	0.99600	1.02246	0.97412
53	9.8900*-03	7.8414"+01	NM	0.99676	0.49500	0.99800	1.00604	10596.0
24	1.0550"-02	7.9042*+01	NM	0.99815	U.9990U	0.99900	1.00000	U.99900
D 25	1.1100"-02	7.7199"+01	MM	1.00000	1.00000	1.00000	1,00000	1.00000

INPUT VARIABLES Y,M/MD,U/UD ASSUME PRPD

720902	oz stone	:	PROFILE	TABULATION	27	POINTS, DEL	TA AT POI	NT 27
I	Y	PT2/P	P/P0	TO/TOD	M/MD	UZUD	1/70	RHO/RHOU&U/UU
1 2	0.0000"+00 1.8000"+04	1.0000*+00	NM NM	0.69300	0.00000	0.00000 0.38000	9.08224	0.00000
. 4	2.8000"-04	2.4247*+00	M14	0.81915	0.15500	0.44700	6.51671	0.05375
S	6.8000"-04 1.0200"-03	5.8387*+00 9.5389*+00	NW NW	0.85726 0.86983	0.26200	V.64900 V.7420V	6.13602 4.7347/	U.10577 U.15671
6	1.5200"-03	1.1846"+01 1.3700"+01	NM NM	0.8A236 0.88546	0.38200	0.75100 0.80300	4.17999	0.18684 0.21139
8	2.5400"-03	1.5353"+01	HM	0.89628	0.43700	0.82300	3,54680	0.23204
10	3,2500"-03 4,0600"-03	2.1703"+01	NM NM	0.90679 0.91950	0.45200 0.52200	0.85100 0.87400	3,11720 2,80338	0.27300 0.31177
11	4.6700"-03 5.2600"-03	2.5159"+01 2.5428"+01	NM NM	0.92857 0.93276	0.56300	0.89300 0.90600	2,51586	U.35495 O.39603
13	5.7700"-03	3.1495*+01	NM	0.93757	0.63100	0.91700	2,11193	0.43420
14	6.5500"-03 7.1400"-03	3.6078*+01 3.9972*+01	NM HM	0.94332 0.94716	0.67600	0.93000 0.93900	1.89266	V.49137 U.53488
16 17	7.5900*-03 8.3800*-03	4.2795*+01 4.8121*+01	NW IIM	0.95033 0.95423	0.73700	0.94500 0.95400	1.64410	0.57478 U.64101
18	9.1700"-03	5.3893"+01	NM	0.95982	0.82800	0.943110	1.35267	0.71193
19 20	9.7800"=03 1.0340"=02	5.8102"+01 6.2471"+01	NM NM	0.96618 0.97323	0.86000	u.97000 u.97700	1.27217	0.76247 0.81440
55 51	1.0800"-02	6.5425"+01 6.7433"+01	NM NM	0.47702 0.98035	0.91500	0.98100 0.98400	1.15451	0.84971 0.87330
5.7	1.1660"-02	7,0059"+01	NM	0.98507	0.94500	0.98800	1.09308	0.90387
24 25	1,2140"-02 1,2500"-02	7.2286*+01 7.3337*+01	NM NM	0.99045 0.99327	0.96000	0.49200 U.99400	1.05778	0.92903 0.94073
26 D 27	1.4930"-02	7.6537*+01 7.6396*+01	NM NM	1.00000	0.98800	0.99900	1.02239	0.97712

INPUT VARIABLES Y, M/MD, U/UD ASSUME PRPD

72090	101 5101	1E	PROFILE	TABULATION	31	POINTS, D	DELTA AT POI	NT 31
I	Y	PT2/P	P/PD	TOTTOD	MZMD	טוועט	1/10	8H0/8H00+U/U0
1	0.0000*+00	1.0000"+00	ju M	0.70000	0.00000	0.0000	8.65922	0.00000
2	1.8000"-04	1.4373"+00	ŀlΜ	0.81250	0.09800	0.29500	9.06133	0.03256
3	4.1000"-04	2.0587*+00	WW	0.85696	0.14200	0.41700		0.04835
4	7.1000"-04	5.1788*+0Q	114	0.89099	0.25300	0.6390		0.10017
S	9.4000"-04	6.8974"+00	(574	0.90249	0.29600	U.70000		0.12517
٥	1.2400"=05	9.0895*+00	Μh	0.91077	0.54300	u.7530		U.15624
7	1.5500"-03	1.0334*+01	HM	0.91492	0.36700	U.77600		0.17357
5	1.9500"-03	1.1550"+01	ИM	0.92099	0.35900	0.79600		0.19010
9	2.2100"=03	1.2185"+01	tite	0,42305	0.40000	0.80500		0.19876
10	2.5400"-03	1.3323"+01	Nw	0.42540	0.41900	0.81900		0.21436
11	2.6900"=03	1.4069*+01	1144	0.92627	0.43100	0.82700		0.22462
15	2.9700"-03	1.4706"+01	₽M	0.93067	0.44100	0.83500		0.23291
1.3	3.3000"-03	1.5891"+01	15m	0,93248	0.45900	0.84600		0.24903
14	3.5800"-03	1.7124"+01	NM	0,93384	0.47700	0.85600		0.26580
15	3.7800"-03	1.8115"+01	ИW	0.93646	0.49100	0.85400	3.09645	U.2790 5
16	4.0400"-03	1.9136"+01	Hn	0.93779	0.50500	0.87100	2.97477	U.2928U
17	4.2900"-03	2.0720"+01	l/h	0.94019	0.52600	0.85100		0.31405
18	4.6500"=03	2.2529"+01	t/M	0,94263	0.54900	0.89100	2.63397	0.33827
19	5.2100"-03	2.5688*+01	ħΜ	0.94706	0.58700	0.90600		0.38032
50	5.4600"-03	2.7614"+01	Mrs	0.94995	0.60900	0.91400	2.25246	0.40578
51	5.72007-03	2.6422"+01	MM	0.95090	0.61800	0.91700	2.20172	0.41649
55	6,2000"-03	3.2544"+01	[444]	0.95658	0.66200	0.93100	1.97780	0.47072
53	6,8600*-03	3.4611"+01	HM	0.97765	0.68300	0.94600	1.91841	0.49312
24	7.3400"-03	3.6743"+01	ИM	0,98912	0,70400	0.95600	1.84404	0.51843
25	7.8700"=03	4.0873"+01	lin.	0,98001	0.74300	0.95900	1.66594	U.57565
26	8.2000"-03	4.2169*+41	ИW	1.00239	0.75500	0,97200	1.65744	0.58645
27	9.7500"-03	4.7077*+01	1414	1.00263	0.79800	0.97900	1.50508	0.65046
28	1.0310"-02	5.2236"+01	NM	1.00269	0.64100	0.98500	1,37177	0.71805
54	1.0790"-02	5.6506*+01	ИN	1.00435	0.87500	0.99000	1.28013	0.77336
30	1.580005	6.9336"+01	NM	0.99705	0.97000	0.9960	1,05433	0.94468
0 31	1.4000"-02	7.3662*+01	HW	1.00000	1.00000	1.0000		1.00000
INPUT	VARIABLES	Y,M/MD,U/UD	ASSUME PE	PD				

720904	ing stoil	E	PROFILE	TABULATION	24	POINTS, DE	LTA AT PUI	NT 24
1	Y	PT2/P	P/P0	TU/T	H/MD	U/U0	7/10	RHO/RHOO+U/UD
į	0.0000#+00	1.0000*+00	NM	0.72000	0.00000	0.00000	9,63691	0.00000
4	1.8000"-04	1.4075*+00	NM	0.75762	0.09100	0.27600	9,19889	0.03000
3	6.8000"-04	2.1375"+00	ИM	0.87169	0.14000	0.42900	9.38985	0.04569
4	8.9000"-04	3.9894"+00	NM	0.69266	0.20900	0.58200	7.75444	0.07505
5	1.7000"-03	9.0572*+00	MM	0.91590	0.32800	0.75200	5,25640	0.14306
•	1.8300"=03	1.0300*+01	Иw	0.91755	0.35100	0.77400	4.86254	0.15917
7	2.3400*-03	1.1215*+01	NM	0.41643	0.36700	0.78800	4.61021	0.17093
8	3.0000*=03	1.3231"+01	ММ	0.99440	0.40000	0.80600	4.06023	0.19851
9	3.3800"-03	1.3877*+01	NM	0.92546	0.41000	0.82200	4.01954	0.20450
10	4.2400*-03	1.8010*+01	NM	0.93117	0.46900	0.85800	3.34679	V.25636
11	4.8000"-03	1.8765*+01	NM	0.93377	0.47900	0.86400	3.25354	0.26556
12	5.4600"-03	2.3292"+01	NM	0.94176	0.53500	4.59100	2.77363	0.32124
13	6.4000"=03	2.6649*+01	NM	0.95045	0.57300	0.90800	2.51109	0.36160
i 4	6.6100*-03	3.1120"+01	NM	0.94971	0.62000	0.92100	2.20666	0.41737
ìs	7.6700"=03	3.3951"+01	NM	0.95826	0.64800	0.93200	2.00863	0.45054
16	8.0500*-03	3.9095*+01	NM	0.95791	0.69600	0.94200	1.03162	0.51424
17	9.3200"-03	5.0992"+01	NM	0.96542	0.79600	0.96200	1.46058	0.65864
iò	1.0390"-02	6.0269"+01	NM	0.97230	0.86600	0.97400	1.26498	
19	1.1630"-02							0.76998
		6.7521*+01	M	0.98194	0.91700	0.98400	1.15147	0.85456
50	1.2880"-02	7.2889"+01	NM	0.99149	0.95300	0.49200	1.08352	0.91553
21	1.4500"-02	7.6427"+01	NM	0.99371	0.97600	0.99500	1.03931	0.95736
55	1,5370"-02	7.7678"+01	NM	0.99445	0.98400	0.99600	1.02454	0.97214
23	1.6760"-02	7.9255"+01	NM	0.99890	0.99400	0.99900	1,01009	0.98903
0 24	1.7940"-02	8,0209"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, M/MD, U/UD ASSUME P=PD

Three confinurations tested

M: a) 4.9 b, c) 4.0
R THETA X 10⁻³: 8 - 30

TW/TR : 0.85 - 1.0

7301

ZPG (HISTORY)
AW - MHT

See diagrams below

Windtunnels: (a) as for CAT 7202 (b, c) effectively continuous, fixed nozzle, ½ = H = 0.4 m. PO : (a) 0.51 (b) 0.21 (c) 0.43 MN/m² TO: (a) 305-375, (b) 350, (c) 330 K.

Dry air, dew point 215-233 K. RE/m x 10^{-6} : a) 10-16 b) 6.5 c) 15

GATES D.F. 1973. Measurements of upstream history effects in compressible turbulent boundary layers. NOLTR 73-152.

And Gates D.F., private communications, Voisinet & Lee CAT 7202.

- 1 The test boundary layers were all formed on flat surfaces, and in the region of study were at constant
 4 pressure. The emphasis of the tests was on a controlled variation of the upstream history of the layers.
 In each case, upstream of the test zone, a part of the flat surface could be made to transfer heat to or from the flow (the sketches in the heading indicate this region with the symbol Q). The pressure history and origin of the boundary layer is different in each case. The combinations are listed in table 1.
- 1a a) Series 01-06. The test layer was formed on the flat wall of the boundary layer channel described in 4a CAT 7202, and experienced the pressure history given in table 2 of that entry. The plate cooling system was arranged so that near the throat (X = 0), from X = -165 to +457 mm, the wall temperature could be

was arranged so that near the throat (X = 0), from X = -165 to +457 mm, the wall temperature could be controlled to give heating, cooling, or near-adiabatic conditions independently of the controlled cooling in the test zone.

- b, c) Series 07-10: The basic structure for these tests consisted of a rectangular cross section channel constructed as an extension of the tunnel nozzle 3.66 m long and closed on the plane of symmetry by the test plate. A long (b, series 07-08) or short (c, series 09-10) leading edge section could be attached, which ran into the normal tunnel test section on the centre plane. The cross section of the channel was W = 411, H = 222 mm at entry, increasing to W = 436, H = 274 mm at exit, to allow for boundary layer growth (there is also a slight divergence in the tunnel proper). The test surface was fitted with removable plugs (D = 47.6 mm) at intervals along the centre-line which could be replaced by instrumented units. Test surface roughness was held to 0.8 µm rms, and all other flow surfaces to 1.6 µm rms.
- 1b b) Series 07-08: The test plate in the channel was extended upstream by a plate of similar construction 1.83 m long on which was mounted a leading edge section 0.23 m long. The leading edge was formed by a half-wedge of 19° included angle and was 153 mm upstream of the throat (X = 0). The leading edge section
- 4b could be cooled by liquid nitrogen giving the temperature histories shown in table II, columns 2 and 3. A limited amount of pressure history is available and is given as a Mach number distribution at the foot of columns 1 and 2.
- 1c c) Series 09-10: The short leading edge section was 0.686 m Yong. The leading edge (X = 0) was formed by a half-wedge of 100 included angle and was thus 1.219 m downstream of the throat and in the constant pressure region. The leading edge section did not contain instrumentation ports and could be cooled by
- 4c liquid mitrogen in passages between X = 76 and 533 mm. Sample temperature distributions are given in table II columns 5 and 6.
- 2 "Pitot pressure profiles, oil streak tests and several sets of schlieren photographs all indicate uniformity of the pressure-velocity field" and the (PC) well pressure distributions in the uniform flow region (not

- 3 presented) show the Mach number constant within limits of $\frac{1}{2}$ 0.04 for (b) and $\frac{1}{2}$ 0.02 for (c). Transition was natural with no information as to the precise location. Flow angularity as shown by oil streak observations
- 5 ranged from immeasurable at the centre line to a few degrees near the corners.
- 6 The instrumentation of the channel is described in CAT 7202. The plates in the windtunnel tests were drilled with up to 26 static tappings of 0.79 mm diameter at intervals of 305 or 153 mm along the centre line.

 Copper-constantan thermocouples were mounted at 305 mm intervals 76.2 mm from the centre line. Additional thermocouples were mounted on the centre line of the cooled leading edge sections, 3 for the long plate (b) and 5 for the short (c) as indicated by table II. Thermopiles (RdF corporation, Hudson, New Hampshire, model
- 7 no 20463-3) could be mounted at the centre of the ports. The probes employed were identical to those used
- 8 for CAT 7202. The results presented were obtained with the FPP and the ECP. The relative positions of measuring stations were the same as in CAT 7202 except that there were no static holes to the sides of each port in the plates. The X values for which measurements were made are given in table I.
- 9 The author has interpolated his TO data to the Y stations of the PT2 values and applied the same probe
- 10 corrections as in CAT 7202. In the region adjacent to the wall (y < 0.6 1.0 mm) temperature values were
- 11 again obtained by extrapolating the profiles to meet the wall temperature. Sutherland's viscosity law was
- 12 assumed. The editors have presented the data as prepared by the author.
- 13 The 26 ZPG profiles presented have varied upstream histories as listed in table I. PO and TO were measured
- 14 simultaneously, A limited amount of wall data is presented, and no attempt has been made to adjust the values to take account of the slight differences in X value.
- 5 DATA, /301 0101-1003 ZPG PT2 and TO simultaneously. NX = 2 to 4. CQ from Thermopiles.

15 Editors' comments

The experiments constitute a systematic attempt to identify the influence of pressure and temperature history effects. Configuration c) (series 09, 10) involves no pressure history, so that any differences observed between the cooled and uncooled leading edge cases can be ascribed to the temperature history alone. Configurations a) and b) both involve a predominately reflected-wave expansion in the nozzle region, with differing initial boundary-layer thicknesses. Tests on configuration a) include both relative heating and cooling in the nozzle region, coupled with differing test-region thermal conditions. Configuration b) provided a stronger throat-region cooling effect, but was associated only with a near-adiabatic test-region wall.

An obvious gross effect of upstream heating is to modify the downstream adiabatic wall temperature. For example, tests on the short flat plate, configuration c), gave an "experimental recovery factor", in the absence of any leading-edge cooling, of about 0.80. The corresponding value with a cool leading edge was 0.78 at the first measuring station (X = 0.914 m) relaxing to 0.86 at the most downstream station (X = 2.743 m). Similar effects are observed in the other cases, and reported at length also by Voisinet & Lee (CAT 7202).

The profiles are specified by a fairly large number of data points and in every case the measurements extend within the momentum deficit maximum. In most cases the measurements extend well out into the free stream, as indicated by the PO deficit. By the same criterion, the D-state should in general be taken at a larger value of Y. It is a pity that in an investigation on this large scale no CF information was obtained.

Comparisons, on the basis of Mach number and Reynolds number in the test-zone, may be made with the adiabatic flat plate studies of Hastings & Sawyer (CAT 7006) and Mahey et al. (CAT 7402). Corresponding cases where the layer was produced on a flat wall facing a contoured half-nozzle are Voisinet & Lee (CAT 7202) and, at lower Mach number, Meier (CAT 7003) and Jeromin (CAT 6602).

TABLE I GROSS THERMAL HISTORY OF TEST BOUNDARY LAYERS

Run. IDENT 7301-	Reservoir TOD K	Throat or leading edge condition	Nominal temperature K		Nominal temperature K	PORT X m	PROFILE X m	
0101	347	COOL	308	ADIAB.	301	1.778	1.702	Boundary Tayer channel
0102	348	n	311		296	2.286	2.210	MD = 4.9
0201	373	II .	328	COOL	270	1.778	1.702	PO = 515 KN/m ²
0202	374	н	332	H	279	2.286	2.210	
0301	338	ADIAB.	325	ADIAB.	304	1.778	1.702	
0302	324	11	319	•	296	2.286	2.210	
0401	333	н	327	COOL	265	1.778	1.702	
0402	333	н	317	н	267	2.286	2.210	
0501	311	нот	323	ADIAB.	294	1.778	1.702	
0502	311	u	332	11	293	2,286	2.210	
0601	311	11	323	COOL	269	1.778	1.702	
0602	311	н	339		262	2.286	2.210	
0701	340	UNCOOLED	304	ISOTHERMAL	298	1.524	1.448	Long flat plate
0702	341	H	306	IN	298	2.134	2.057	MD = 4.0
0703	344	4	308	TEST	297	2,743	2.667	PO = 215 KN/m ²
0704	343	н	301	REGION	294	3.962	3.886	
0801	341	COOLED	249	AND	297	1.524	1.448	
0802	343		256	NEARLY	298	2.134	2.057	
0803	343	11	252	ADIABATIC	298	2.743	2.667	
0804	343	H	257		298	3.962	3.886	
0901	332	UNCOOLED	301	NEARLY	300	0.914	0.838	Short flat plate
0902	327	W	299	ADIABATIC	301	1.524	1.448	MD = 4.0
0903	327	Ħ	301	SLIGHT HEAT	298	2.743	2.667	PO = 430 KN/m ²
1001	333	COOLED	129	TRANSFER TO	2 9 8	0.914	0.838	
1002	331		112	OR FROM THE	296	1.524	1.448	
1003	333		104	PLATE	298	2.743	2.667	

TABLE II TEMPERATURE HISTORY FOR FLAT PLATE TESTS

L	ONG PLATE			SHORT PLATE	
1) X/m from M = 1	2) T/K LE COOLED	3) T/K LE ADIAB	4) X/m from LE	5) T/K LE COOLED	6) T/K LE ADIAB
- 0.076 - 0.015 + 0.061 0.305 0.533 0.838 1.143 1.448 1.763 2.057 2.362 2.667 2.972 3.277 3.581 3.886 4.191 4.496	277 261 262 299 299 298 298 298 298 298 298 298 29	321 306 302 300 298 300 299 299 299 299 300 301 301 302 305	0.000 0.003 0.015 0.030 0.046 0.061 0.091 0.183 0.305 0.427 0.610 0.701 0.701 0.701 0.838 1.143 1.448 1.753 2.067	283 + 269 + 243 + 216 + 190 + 161 + 104 93 92 91 101 132 + 253 + 272 289 296 298	301 300 299 298 298 - 299 299 301 300 299
4.801 X/m 0.305 0.457 0.610 0.762	308 MD 3.22 3.53 3.81 3.96	310 Sample sets values were	. Typical exc	298 299 300 ed from fin Bess ept for column ! - 15 K higher.	

Long plate: X=0 at throat, Cooled leading edge X ==153 to + 76 mm, Leading edge extension X = + 76 mm to 1905 mm. Short plate: Cooled leading edge X = 0 to 686 mm, Cooling passages X = 76 to 533 mm.

CAT 7301	GATES		BOUNDARY CON	DITIONS AND E	VALUATED	DATA, SI UNII	18.	
RUN	MD *	THZTR	RED2W	CF	H12	H12K	PW	PD*
X *	POD	PW/PD*	RED2D	CO *	H32	H32K	TW#	TO*
RZ	TOD	3W *	02	PI2*	H42	DZK	UD	TR
73010101	4.9307	0.9659	5.7592"+03	NM	8.8708	1.3863	1.0459"+03	1.0459*+03
1.7018*+00	5.1022*+05	1.0000	2.5595*+04	G.0000*+00	1.8315	1.7767	3.0356"+02	5.8667"+01
INFINITE	3.4393*+02	0.0000	2.2892"-03	0.0000"400	0,4965	4.7488"-03	7.5721"+02	3.1426"+02
73010102	4.8633	0.9488	6.5279"+03	NM	9.6147	1.3947	1.1487*+03	1.1467*+03
2.2098*+00	5.1740"+05	1.0000	2.8056"+04	0.0000*+00	1.8161	1.7663	2.9461"+02	5.9278"+01
INFINITE	3.3968*+02	0.0000	2.3530"-03	0.0000*+00	0.3587	5.1945*-03	7.5074"+02	3,1052"+02
73010201	4.9343	0.7936	6.4584*+03	NM	8.2150	1.3742	1.0425*+03	1.0425*+03
1.7018*+00	5.1070"+05	1.0000	2.4315*+04	0.0000*+00	1.8307	1.7791	2.7072**02	6.3611"+01
INFINITE	3.7336*+02	0.0000	2.4628"-03	0.0000*+00	0.5834	4.8837"-03	7.8905"+02	3.4115"+02
73010202	4.6539	0.8335	6.9989*+03	NM	8.8172	1.3900	1.1521"+03	1,1521*+03
2,2098*+00	5.1318"+05	1.0000	2.6589"+04	NC	1.8142	1.7662	2.8194*+02	6.47/8"+01
INFINITE	3.7002"+02	0.0000	2.5459"-03	0.0000*+00	0.4661	5.3689"-03	7.8327"+02	3.5827"+02
73010301	4.9651	0.9881	4.6022*+03	NM	11.1257	1.3967	1.0211"+03	1.0211"+03
1.7014#+00	5.1866"+05	1.0000	2.1145"+04	0.0000*+00	1.8241	1.7721	3.0483"+02	5,6944*+01
INFINITE	3.3771"+02	0.0000	1.8392"-03	0.0000*+00	0.1633	4.2396"-03	7.5121*+02	3,0851"+02
73910302	4.8479	1.0022	5,6063*+03	NM	11.3321	1.3455	1,1500*+03	1.1500*+03
2.2098"+00	5.0983"+05	1.0000	2.5241*+04	0.0000*+00	1.6105	1.7638	2.9994"+02	5.7389"+01
INFIBITE	3.2736*+02	0.0000	2.0192"-03	0.0000*+00	0,0908	4.8226"-03	7.3664*+02	2.4924.405
73010401	4.9329	0.8707	4.8841"+03	NM	11.3511	1.3983	1.0170*+03	1.0170*+03
1.7018*+00	4.9738"+05	1.0000	2.0199*+04	U.0000"+U0	1.6172	1.7697	2,6372"+02	5.6500*+01
INFINITE	3.3147"+02	0.0000	1.7548 -03	0.0000*+00	0.1217	4.0426*-03	7,4342"+02	3.0287"+02
73010402	4.8632	0.8848	6.8751 403	NW	9,9055	1.3857	1,1356*+03	1.1356"+03
2.2098"+00	5.1144*+05	1.0000	2.8168*+04	NC	1.8162	1.7703	2.6650"+02	5.7500*+01
INFINITE	3.2948*+02	0.0000	2.2025*-03	4.0000"+00	0.3123	5.0977*-03	7.3938"+02	3.0120"+02
73010501	4.7424	1.0212	3.7895*+03	NM	11.2671	1.4121	1.0142*+03	1.0142*+03
1.7018"+00	3.9525*+05	1.0000	1.6878"+04	0.0000*+00	1.0131	1.7664	2.9167*+02	5.6778*+01
INFINITE	3.1217*+02	0.0000	1.5406"-03	0.0000*+00	0.0387	3.6275"-03	7.1647*+02	2.8561#+02
73010502	4,6687	1.0462	3.6730"+03	NM	17,4113	1.4240	1.1438*+03	1.1436#+03
2.2098"+00	5.1854*+05	1.0000	1.8429*+04	0.0000*+00	1.7772	1.7505	2,9278"+02	5.3328"+01
INFINITE	3.0615"+92	0.9000	1.3218"-03	0,0000*+00	-0.8314	3.9106"-03	7.1285*+02	2.7985*+02
73010601	4.7510	0.9222	4.2406*+03	NM	10.8335	1,3959	1.0128*+03	1.0128*+03
1.7018*+00	3.9883*+05	1.0000	1.7488*+04	0.0000*+00	1.8120	1.7684	2.6311"+02	5.6556*+01
INFINITE	3.1187"+02	0.0000	1.5862"~03	0.0000*+00	0.1001	3.6420"-03	7.1636*+02	2.8532*+02
73010602	4.8856	0.9350	4.21704+03	NM	16,4525	1.4344	1.1107"+03	1.1107#+03
2.2098*+00	5.1373"+05	1.0000	1.8481"+04	NC	1.7686	1.7464	2.6139"+02	5.2972"+01
INFINITE	3.0585*+02	0.000	1.3467"-03	0.0000*+00	-0.7524	3,9106"~03	7.1294*+02	2.7955*+02

CAT 7301	GATES		BOUNDARY CON	TIONS AND E	VALUATED (TINU IS .ATA	5.	
RUN	MD *	TW/TR	RECZW	CF	H12	H12K	PW	PD*
X *	POD	PH/PD+	RED2D	CO *	H32	H32K	TWA	TO*
AZ	TOD	3H *	D2	P12*	H42	DSK	UD	TR
73010701	3,9566	0.9136	2.7655"+03	NM.	7.5927	1.3335	1.2776*+03	1.2776*+03
1.4478*+00	1.8375* 05	1,0000	8.3145"+03	NC	1.8116	1.7845	2.9628*+02	10+"5252.8
INFINITE	3.5205"+02	0.0000	1.3266"-03	0.0000*+00	0.1401	2.4666*-03	7.3233"+02	3.2430*+02
	3,3203 102		113200 -03	•••••	0,14	2.4000 03		312430
73010702	4.0148	0.9215	3.4346"+03	NM	7.8998	1.3334	1.2424"+03	1.2424"+03
2.0574*+00	1.9240"+05	1.0000	1.0603"+04	NC	1.8119	1.7855	3.0078"+02	8.1944"+01
INFINITE	3.5456"+02	0.0000	1.6765*-03	0.0000*+00	0.1155	2.501902	7.3751*+02	3.2641"+02
73010703	3,9557	0.9191	4.6940"+03	NM	7,7931	1,3323	1.3079*+03	1.3079"+03
2.6670*+00	1.6717"+05	1.0000	1.4177"+04	NC	1.8103	1.7851	2.9778"+02	8.5167#+01
INFINITE	3.5170"+02	0.0000	2.2079"-03	0.0000*+00	0.0984	4.1995"-03	7.3193*+02	\$1.2348*+02
73010704	3,9284	0.9364	5.6507"+03	NM	7.8416	1.3141	1.2597"+03	1.2597*+03
3.8862"+00	1.7377"+05	1.0000	1.7211"+04	NC	1.8192	1.7945	2.9756"+42	8.4389"+01
INFINITE	3.4485*+02	0.0000	2.76464-03	0.0000*+00	0.0584	5.1868"-03	7.2355*+02	1.1776*+02
73010801	4.0269	0.9329	3.0578*+03	NM	1,5276	1.3384	1,2597*+03	1.2597"+03
1.4478*+00	1.9823"+05	1.0000	9.6177"+03	NC	1.6112	1.7809	2.9778*+02	8.1722*+01
INFINITE	3.46767+02	0.0000	1.4570"-03	0.0000*+00	0.2050	2.7095*-03	7.2988*+02	3.1920"+02
\$*** X******	21.4070 .02	3.0000	111310 -03	*******	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	241075 -43	112100 102	
73010Au2	4.0506	0.9381	4.0815*+03	NM	7.6374	1,3235	1.1969"+43	1.1969*+03
2.0574*+00	1.9438"+05	1.0000	1.3016"+04	NC	1.8200	1.7905	2.9817*+02	8.0667"+01
INFINITE	3.4537"+02	0.0000	1,9959"-03	0.0000*+00	0.1887	3.7263"-03	7.2942"+02	3.1784"+02
73010803	4.0472	0.9391	5.0559*+03	NM	7.8179	1.5304	1,2417*+03	1.2417"+03
2.66704+00	2.0075"+05	1.0000	1.6120"+04	NC	1.8147	1.7859	2.9833"+02	8.0722"+01
INFINITE	3.4517"+02	0.1000	2,3870"-03	0.0000*+00	0.1539	4.5417"-03	7.2906*+02	3.1766"+02
73010804	3.9879	0.4262	6,3177"+03	NM	7.4346	1,3264	1.2197*+03	1.2197*+03
3.8802"+00	1.8222*+05	1.0000	1.9445*+04	NC	1.8133	1.7672	2.9833*+02	8.3667"+01
INFINITE	3.4978"+02	0.0000	3.1375 -03	9.0000*+00	0.1897	5.8192*-03	7.3136"+02	3.2211*+02
73010901	4.0640	1.0224	2.6492"+03	NM	8.1951	1.3759	2.4621"+03	2.4621"+03
8.3820"-01	4.0699"+05	1.0000	9.1490*+03	0.0000*+00	1.8167	1.7835	3.1239"+02	7.7167"401
INFIBILE	3.3207*+02	0.0000	6.3630"-04	C.0000*+40	0,1086	1.2309"-03	7,1578"+02	3.0556"+02
73010902	4.0851	0.9880	4.4124*+03	NM	8.1445	1.3476	2.4152"+03	2.4152*+03
1.4478*+00	4.1052"+05	1.0000	1.4959"+04	0.0000*+00	1.6141	1.7843	3.0183"+02	7.6556*+01
INFINITE	3,3207*+02	0.0000	1.0427"-03	0,0000*+00	0.1204	E0="P050.5	7.1664"+02	3.0549*+02
73010903	4.1103	0,9814	6.7779"+03	NM	8.3574	1.3275	2.5421*+03	2.3421*+03
2.6670"+00	4.1153"+05	1.0000	2.3121"+04	0.0000*+00	1,8273	1.7972	5.4689"+02	7.5111*+01
INFINITE	3.2891*+02	0.0000	1.6054"-03	0.0000*+00	0.0865	3.0982"-03	7.1423"+02	3.0251*+02
73011001	4.0528	0.9796	2.5653"+03	NM	6.5354	1.4063	2.5014"+03	2.5014"+03
8.3820"-01	4.0741*+05	1.0000	8.5408*+03	NC	1.8120	1.7783	2.4894"+02	7.7389"+01
INFINITE	3.31614405	0.0000	5.8860"-04	0.0000*+00	0.4364	1.0270"-03	7.1463"+02	3.0517*+02
73011002	4.0847	0.9717	4.3409"+03	NM	7.1894	1.3893	2.4401*+03	2.4401"+03
1.44784+00	4.1452*+05	1.0000	1.4537"+04	NC	1.8043	1.7724	2.4594"+02	7.6333*+01
INFINITE	3.3105*+02	0.0000	9.9867"-04	0.0000*+00	0.3235	1.8483 -03	7.1553*+02	3.0456*+02
73011003	4.1069	0.9597	7.1399"+03	ŊM	7,4812	1.3841	2.3325"+03	2,3325*+03
R.6670"+00	4.08007+05	1.0000	2.3820"+04	0.0000*+00	1.4176	1.7811	2.9533"+02	7.6500"+01
INFINITE	3.3456*+02	0.000	1.7082"-03	0.0000*+00	0.2817	3.1863"-03	7.2020*+02	3.0772*+02

730101	01 GATES		PROFILE	TABULATION	48	PUINTS, DEL	TA AT PUI	NT 43
I	Y	8\S14	P/PD	T0/T0D	14/MD	U/UD	T/TD	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	0.88249	0.00000	0.00000	5_17350	0.00000
Ž	6,3500"-05	1.0102*+00	11m	0.00142	0.02441	0.05540	5,15230	0.01075
3	2.1590*-04	1.0507*+00	ИW	0.87245	0.06792	0.15190	5.00240	0.03037
4	3.6530"-04	1.2798*+00	ИW	0.87199	0.12256	0.26750	4.76400	U. 05615
5	5.9690"-04	1.7288*+00	HM	0.38613	0.18660	0.39330	4.44270	0.08853
6	8.5090"-04	2.3185"+00	NM	0.89526	0.23706	0.48130	4.12200	0.11676
7	1.1811"-03	2.8832"+00	ЯМ	0.89280	0.27412	0.53670	3.83330	0.14001
8	1.5621"-03	3.2518"+00	ИW	0.90074	0.29541	0.56860	3.70730	0.15343
9	2.1209"-03	3.6012"+00	ИW	0.90261	0.31412	0.59400	3.57380	0.16612
10	2.6289"-63	3.8915"+00	[964	0.99607	0.32879	0.61350	3.48160	0.17621
11	3.3655"-03	4.2503"+00	Им	0,90150	0.34602	0.63240	3.34030	0.18932
12	4.1783"-03	4.6580"+00	NM	0.89906	0.36455	0.65230	3.20174	0.20374
13	5.1435"-03	5.1341"+00	llμ	0.90379	0.38502	0.67560	3.07900	0.21942
14	6.210303	5,6961"+00	NM	0.91157	0.40782	0.70100	2,95460	0.23726
15	7.2517"-03	0.2268*+00	ЦM	0.91857	0.42821	0.72250	2.84680	0.25379
16	8.2169"-03	6.7634"+00	NM	0.92685	0.44707	0.74250	2.75070	0.27004
17	9.2075"-03	7.2530*+00	(IM	0.92676	0.46507	0.75660	2.64610	0.28579
18	1.0224"-02	7.5756*+00	NK	0.92688	0.48614	0.77300	2,52830	0.30574
19	1.0864*-02	8.2728"+00	NM	0.92549	0.49896	0.78170	2.45440	0.31849
50	1.26147-02	9.4703"+00	NM	0.92958	0.53601	0.80820	2,27350	U.35549
22 15	1.40084-02	1.0262"+01	1144	0.93161	0.55913	0.82320	2.16760	0.37977
23	1.5354"-02	1.1208"+01	NM	0.93870	0.58558	0.84110	2.06310	0.40769
24	1.6472"=02		NM NM	0.94440	0.60992	0.85630	1.97110	0.43443
ร์ร	1.8961"-02	1.3295*+01	Nw Max	0.95123 0.95634	0.64003	0.87380	1.86390	0.46880
26	2.0409"=02	1.4106"+01	Nw	0.95516	0.65999	0.88500 0.89630	1.69330	0.49219 0.52932
27	2.1679*=02	1.6316*+01	N n	0.95656	0.71151	0.90560	1.62000	0.55901
26	2.2847*=02	1.7572"+01	NM	0.95016	0.73917	0.91230	1.52330	0.59890
29	2.4244"=02	1.4335"+0:	NM	0.95768	0.75549	0.92130	1.48710	0.61953
30	2.5514"-02	1.9350"+01	(im	0.96153	0.77667	0.92980	1.43320	U.64876
31	2.7826"-02	2.1139*+01	HM	0.96521	0.81264	0.94200	1.34370	0.70105
32	3.0493"-02	2.2979"+01	NM	0.96992	6.84805	0.95360	1.26440	0.75419
33	3.2855*+02	2.4314*+01	MII	0.97500	0.87283	0.96210	1.21500	0.79185
34	3.5039"-02	2.5313"+01	NM	0.97633	0.89093	0.96690	1.17750	0.82094
35	3.8189"-02	2.6593"+01	NM	0.97832	0.91360	0.97280	1.13380	0.85800
36	4.0780"-02	2.7524"+01	(VM	0.97967	0.92974	0.97680	1,10380	
37	4.3142*-02	2.8263*+01	NM	0.98025	0.94236	0.97960	1.08080	0.90653
38	4.5660"-02	2.4021"+01	NW	0.98275	0.95511	0.98330	1,05990	0.92773
39	4.7917"-02	2.9554"+01	ИM	0.98521	0.96399	0.98620	1.04660	0.94229
40	5.0356"-02	3.0210"+01	NW	0.98826	0.97480	0.98978	1.03080	0.96013
41	5.4242*-02	3.0824"+01	И₩	0.99168	0.98482	0.99320	1.01716	0.97650
42	5.8788*-02	3.1367"+01	NM	0.99521	0.99357	0.99650	1.00590	9.99066
0 43	6.3970"=02	3.1768*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
44	0.8212"-02	3.1646*+01	NM	1.00027	0.99805	0.99980	1.00350	0,99631
45	7.3266"-02	3.1606"+01	NM	1.00109	0.99741	1.00010	1.00540	0.99473
46	7.8346"-02	3.1500 +01	NM	1.00087	0.99573	0.99970	1.00800	0.99177
47	8.4036"-02	3.1375*+01	NM	1.00217	0.99371	1.00000	1.01270	0-98746
48	8.5633"-02	3.1317"+01	NM	1.00229	0.99278	0.99990	1,01440	0.98571

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

730105	01 GATES	i	PROF 1LE	TABULATION	48	POINTS, DE	LTA AT PUI	NT 36
I	Y	P12/P	PZPD	TU/TOD	M/MD	U/ UD	עועד	RHO/RHOD±U/UD
1	U_U000"+00	1.0000*+00	IIM	0.93447	0.00000	U_00000	5.13780	0.00000
à	6.3500"-05	1.0126"+00	Им	0.93520	0.02819	0.06380	5.12350	0.01245
3	1,6510"-04	1.0557"+00	1114	0.93084	0.05889	0.13220	5.03920	0.02623
4	3,6830"=04	1.2631"+00	NM	0.93841	0.12346	0.27210	4.82640	0.05638
5	5.4610"-04	1.6893"+00	Hit	0.94516	0.18954	0.40090	4.47360	0.08961
6	7.7470"-04	2.2525"+00	NM	0.94323	0.24144	0.48940	4.10860	0.11912
7	1.1303**03	2.4512"+00	1161	0.95159	0.24299	0.55500	3.84640	0.14429
8	1.5113"-03	3.2950*+00	ИM	0.96422	0.30762	0.59590	3.70410	0.16088
9	2,0701"-03	3.6347"+00	IIM	0.95503	0.32840	0.61750	3.53570	0.17465
10	2.4765"-03	3.4485"+00	1894	0.95051	0.33964	0.63000	3.44070	0.18310
11	3.3401"-03	4.2763*+00	ŊΜ	0.95289	0.36102	0.65610	3.30280	0.19865
12	4.2037*-03	4.7077"+90	ΙγM	0.96154	0.38130	0.65170	3,19630	0.21328
13	5.0414*-03	5.1301"+00	11M	0.96834	0.40045	0.70439	3.09280	0.22772
14	u.0579"-03	5,6893*+00	NM	0.96699	0.42373	0.72670	2.94120	U.24708
13	/.1755"-03	6.2307"+00	ΝM	0.96715	0.44537	U.74660	2.41020	u.26568
16	0.1153"-03	6.7940*+00	HM.	0.97617	0.46679	U.76850	2.71050	0.28353
17	9.1821"-03	7.4870*+00	NM	0.98852	0.49184	0.79350	2.60280	0.30486
18	1.0274"-02	8.1276*+00	1414	0,95667	0.51390	0.80920	2.47946	0.32637
19	1.1443"-02	8.8032"+00	MM	0.98645	0.53618	0.82460	2.36520	0.34564
50	1.2738 -02	9.6792"+00	(A),	0.98694	0.56374	0.84250	2.23350	0.37721
51	7.398305	1.0467"+01	NM	0.98663	0.58740	0.85640	2.12560	0.40290
22	1.5354*-02	1.1544"+01	1194	0.99652	0.41830	U.87760	2.01460	0.43562
53	1.6396"-02	1.2466"+01	ПW	1.00574	0.64357	0.89440	1.93140	U.46308
24	1.7869"-02	1.3781"+01	stw	1.00585	0.67795	0.91030	1.80290	0.50491
25	1.8961"-02	1.4672"+01	MM	1.00460	0.70031	0.91920	1.72250	0,53355
56	2.0307"-02	1.5749"+01	Mr.	1.00054	0.72640	0.92760	1.63070	0.56884
27	2.1577"-02	1.6837*+01	NM	1.00186	0.75183	0.93750	1.55490	0.60293
58	2.2974"-02	1.8164"+01	ИW	1.00676	0.76171	0.94990	1.47660	0.64330
29	4,4143"-02	1.9349"+01	ПW	1.01001	0.80747	0.95950	1.41200	0.67953
30	2.5336"-02	5.0381*+01	ИN	1.00878	0.82926	0.96530	1.35500	0.71240
31	2.7978"-02	2.2484"+01	IIM	1.00595	0.87197	0.97540	1.25130	0.77951
32 32	3.0620"-02	2,4274"+01	NW	1.00226	0.90674	0.98200	1.17290	0.83724
33	3,2630"-02	2.5587"+01	IIM	1.01021	0.93141	U.98650	1,12160	U.87939
34 35	3.5649"=02 3.8240"=02	2.6975*+01 2.8244*+01	MW NW	0.99616	0.95679	0.98980	1.07020	0.92487
D 36	4.0526"-02		NM.	1.00000	0.97944	0.99460	1.03120	0.96451
37	4.3167"-02	2.9423"+01 3.0325"+01	NM	0.49709	1.00000	1.00000	1.00000	1.00000
38	4.5656"-02	3.0944"+01	NM NM	0.99429	1.01546	1.00130		1.02983
19	4.8450"=02	3.1475*+01	NM	0.99092	1.03484	1.00170	0.95330 0.93660	1.05077
40	5.1016"-02	3.1880"+01	NM	0.98656	1.04157	1.00150	0.92250	1.06929
41	5.4191"-02	3.2198"+01	NM	0.98232	1.04682	0.99910	0.91090	1.09683
42	5.7899*-02	3.2171"+01	NM	0.07991	1.04638	0.99780	0.90930	1.09733
43	6.3792"=02	3.2174"+01	NM	0.97871	1.04644	0.99720	0.90810	1.09812
44	6.8466"=02	3.2086*+01	NM	0.97976	1.04498	0.99750	0.91120	1.09471
45	7.4079*-02	3.1961"+01	NM	0.97944	1.04291	0.99700	0.91390	1.09093
46	7.8727"-02	3.1772"+01	NM	0.98064	1.03977	0.99710	U.91960	1.08428
47	8.3858*-02	3.1538"+01	NM	0.98071	1.03589	0.99650	0.92540	1.07683
48	8.9040*-02	3.1336*+01	MIT	0.98103	1.03252	0.99610	0.93070	1.07027
			••				J	

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

730110	O1 GATES	ł	PROFILE	TABULATION	37	POINTS, DEL	TA AT PUI	NT 23
1	Y	PTS/P	P/PD	TOTTOD	HAMD	טטעט	T/TD	RHO/RHOD*U/UD
1	0,0000"+00	1.0000"+00	(IM	0.90137	0.00000	0.00000	3.86250	0.000n 0
2	6.3500*-05	1.1111"+00	1485	0.87364	0.09644	0.18380	5.6326U	0.05060
3	1.1450"-0#	1.1912"+00	1444	U.86985	0.12491	v.2352v	3.54560	0.00634
4	4.1910*-04	3.3390"+00	Nw	0.87913	0.36523	0.59110	2.61930	0.22567
5	6.2530"-04	4.3553"+00	11 84	0.88771	0.42690	0.65850	2.37940	0.27675
6	8.2550**04	4.9979"+00	1417	0.59427	V.46144	0.69290	2.25460	0.30730
7	1.1557"-03	5.5473"+00	:// M	0.88767	0.48897	0.71370	2.13040	0.33501
8	1.5367"-03	6.1415"+00	NH	0.69078	0.51706	0.73710	2.03220	u.36271
q	1.8161"-03	6.6431"+00	1414	0.89361	U.53961	0.75490	1.95710	v.38572
10	2.2479*-03	7.2369"+00	ЦM	0.89641	U.56513	0.77469	1.87874	U_41231
1.1	2.7305"-03	7.9753"+00	NM	0.90713	0.59543	0.79790	1.79570	0.44434
12	3,1115"+03	8.6906*+00	ИM	0.91109	0.62314	U.81620	1,71560	v.47575
13	3.4163"-05	9.2013"+00	HH	0.91499	0.64227	0.82870	1.66480	0.49778
14	4.6355**03	1.1455*+01	\$4M	0.94257	0.72069	0.88040	1.49270	v.5698u
13	5.4737"-03	1.3068*+01	Vîm	0.95553	0.77174	0.90820	1.38490	0.65579
10	a.6167"=03	1.5548*+01	MIT	0.97651	0.84438	0.94480	1.25200	0.75463
17	7,6581"-03	1.7708*+01	(IM	U.98987	0.90280	U.96960	1.15330	0.84072
15	8.6995"~03	1.9536"+01	иM	0.99412	0.94954	0.98460	1,07520	U.91574
19	9.7155"=03	2.0728"+01	JM.	0.99734	0.97879	0.99360	1.03050	0.96419
20	1.1214"-02	2.1395*+01	ista	0.99805	0.49477	U.99760	1.00610	0.99175
51	1.2230"-02	2.1546*+01	N ^A L	0.99717	0.99835	0.99820	0.99970	0.99850
22	1.3630"-02	2.1567"+01	NM	0.99854	0.49885	0.99900	1.00030	0.99870
0 23	\$0-"5504.1	2.1015"+01	1144	1.00000	1.00000	1.00000	1.00000	1.00000
24	1.6345"=02	2.1620*+01	f a M	0.49895	1.00010	0.99450	0.99880	1.00070
25	1.7158"-02	2.1634"+01	NM	1.00059	1.00045	1.00040	0.99990	1.00050
50	1.8478"-02	2.1620"+01	ИM	1.00235	1.00010	1.00120	05500.1	U.9990U
27	2.0841"-02	2.1582*+01	ŊМ	1.00117	0.99920	1.00040	1.00240	U.9980U
85	2.3152**02	2.1584*+01	Min	1.00235	0.49925	1.00100	1.00350	u.99751
29	2.4016"-02	2.1567"+01	NM	1.00331	U.99891	1.00140	1,00500	J.99642
50	2.6556"-02	2.1563"+01	HM	1.00255	0.99876	1.00100	1.00450	U.99652
31	2.8918"-02	2.1563*+01	M	1.00098	0.99875	1.00020	1.00290	0.49731
32	3.1229"-02	2.1520"+01	NM	0.99526	0.99775	0.99710	0.99876	0.99840
33	3.3947*-02	2.1482"+01	MM	0.98711	U. 99685	0.99200	0.99190	1.00091
34	3.6766"-02	2.1917*+01	NM	0.49094	1.00712	0.99710	0.98020	1.01724
35	3.8951*-02	2.1500*+01	NИ	1.00028	0.99726	U.99950	1.00450	0.99502
3 15	4.1719"-02	2.1169"+01	NM	0.99681	0.98939	0.99590	1.01320	0.98291
37	4.4437"-02	2.0698*+01	NM	0.99466	0.97807	0.99220	1.02910	0.96414

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

	428 000 (00000000000000000000000000000000
I Y PTZ/P P/PO TO/TOD H/MD U/UD T.	/TO RHO/RHOD*U/UD
	5930 0.00000
2 6.3500"-05 1.0757"+00 HM 0.87763 0.07902 0.15320 3.79	5900 U.Q4U76
	U260 0.07611
	3820 0.17398
5 1.4097"-03 3.0657"+00 NM 0.92369 0.34342 0.98360 2.8	10505.0 0498
6 1.9431*-03 3.9630*+00 NM 0.92653 0.39096 0.64780 2.6. 7 2.7305*-03 4.6944*+00 NM 0.92437 0.43961 0.66770 2.44	365U U.2457U
7 2.7305"-03 4.6944"+00 NM 0.92437 0.43961 0.66770 2.40	4720 0.28102
8 5,3655°-03 5,1572*+00 NM 0,92480 0,46341 0,70970 2,30	4540 v.30259
	6980 0.31937
	9700 0.33873
11 5.6515"-03 6.5409"+00 NM 0.43571 0.32805 0.76650 2.10	067U U.36364
12 6.7437"-03 7.9646"+00 NM 0.93978 0.55051 0.76460 2.0	3230 0.38616
	MO10 0.40362
14 8.3185°-03 7.9010°+00 NM 0.95121 0.58454 0.81260 1.9	3250 0.42049
15 9.8425"=03 8.6775"+00 HM 0.46192 0.c1444 0.83580 1.89	503u u.45171
	6580 0.48375
	7160 0.52166
	M480 0.56058
	1960 0.59298
	3850 0.63650
	8560 0,66830
	9576 U.72702
	3260 0.77310
	3430 U.85784
	8070 U.91U15
	3520 v.95780
	7700 0,98868
	080 U.496HU
	0000 1.0000
	01100.1 0407
	9700 1.00271
	8660 1.00902
	0150 1.01283
	7820 1.01421
	7790 1.01392
	7540 1,01579
37 5.8407"-02 2.2323"+01 HM 0.97630 1.00320 0.98690 0.9	
	7300 1.01475
	7810 1.01442

INPUT VARIABLES Y, U/UD, T/TO ABSUME PHPD

	M : 0.2 to 2.8 R THETA X 10 ⁻³ : 10 - 160	7302
	TW/TR : Approx 1	ZPG - AW
Continuous running windtunnel with variable) ⁻⁶ < 18.

WINTER K.G. and GAUDET L., 1973. Turbulent boundary-layer studies at high Reynolds numbers at Mach numbers between 0.2 and 2.8. ARC (London) R & M 3712. (1965).

And Winter K.G. private communications. Also: Winter & Gaudet (1970) (1968) and Winter, Smith & Gaudet

- 1 The tests were performed at a single station approximately 10.7 m downstream of the throat on the centre line of the plane side wall of a closed-circuit wind-tunnel with a flexible roof and floor. The Mach number at the test station was set to nominal values in steps of 0.2, from 0.2 to 0.8 and from 1.4 to 2.8. All the walls in the nozzle and test-section were coated with a thin layer of epoxy resin providing some thermal
- 2 insulation and giving a good surface finish (typically 6-13 μm). Localised disturbances in the test-area
- 3 caused Mach number perturbations less than 0.006 in the supersonic test cases. Transition occured naturally and no experimental observations are available. The design is such that the final Mach number is approached
- 4 asymptotically, and has a value within 1 % of its final value for the last 25 % of the effective run. The pressure history is presented graphically in figure 6 of the source, and the temperature history probably
- 5 corresponds to a very slight heat transfer to the flow. No systematic investigation of possible flow convergence was made, but accidental hydraulic leaks showed approximately parallel streak-patterns.
- The instruments were attached to replaceable plugs inserted just upstream of the main tunnel windows. At subsonic speeds the wall static pressure was measured with tappings 3.2 mm in diameter, and corrected for hole size after Gaudet (1965), whilst at supersonic speeds it was assumed constant through the boundary layer and computed from the tunnel reservoir pressure and the pitot pressure just outside the boundary layer. Some measurements of TW were made on the balance plate and the rake mounting plate, the values being closely adiabatic. The wall shear stress was measured using a floating element balance (diameter 368.3 mm), the force on the plate being found by strain gauge techniques. Corrections to the measurements were made to allow for the effects of temperature differences between the back plate and the floating plate.
- 7 Profile surveys were made using rakes mounted so that the profile normal passed through the X-value of the 8 bylance centre. Thirteen TTP were mounted on a struct. These were STP's with a thermiston head in a vented
- belance centre. Thirteen TTP were mounted on a strut. These were STP's with a thermistor bead in a vented stainless steel tube for which $d_1=2$, $d_2=1.6$ and l=25.4 mm. These were calibrated in the flow near the centre line of the tunnel over a range of Mach number (0.8<M<2.8) and Reynolds number, by comparison with an ECP. On separate runs the same strut carried 49 CPP mounted in five columns, so as to avoid mutual interference in an array of densely packed tubes. For the tubes near the wall, $d_1=0.50$ mm, $d_2=0.25$ mm, while further out $d_1=1.00$ mm and $d_2=0.60$ mm. Static pressure probes were also mounted but not used.
- Profile TO measurements were interpolated to the Y-values of the PO measurements, and correlation of profile measurements and CF measurements on different occasions was made by interpolation of the data on the basis of unit Reynolds number. No corrections were applied to the profile data. Sutherland's viscosity law was used.
- 12 The editors have presented the data using the measured temperature distribution the profiles resulting from a Crocco / Yan Driest-relation with recovery factors of 0.89 and 1.0 (isoenergetic) are also tabulated by the authors. The boundary conditions are calculated from the authors' unit Reynolds number values, NO
- and TOD. TW has been taken as TR with a recovery factor of 0.896. The profiles in the tables below include some of the wide range of measurements made at subsonic Mach numbers. Those whose serial numbers are/
- 14 followed by a star form a set for all of which the unit Raynolds number was close to 7 x 10⁵/m. The CF values presented with the profiles are as interpolated by the authors. The full Mach number range is covered, from 0.2 to 2.8, with a range of Raynolds number covered at M = 0.8, 1.4, 2.2 and 2.8.

5 DATA: 730101 to 1203 Pitot and TO profiles, NX = 1, CF from balance,

15 Editors' comments

The exceptional size of the floating element balance made it possible for the peripheral gap to be fully pressure plotted. Thus aerodynamically induced errors could be eliminated, and the reading of the balance itself is unusually trustworthy. The scale is such however that a substantial variation of CF could occur over the width of the element (Fernholz 1964) so that the recorded value might not be appropriate to the profile recorded at the centre of the plate. The profiles are described in fine detail, but in spite of the large physical scale of the experiment, measurements do not extend within the momentum-deficit peak in about half the cases. Integral values, therefore, should be treated with caution. Log-law plots indicate that substantial probe corrections could reasonably be applied to the data-points closest to the wall. The TO readings in this region are interpolated, but any error introduced in this way will be negligible for an AN case at these relatively low Mach numbers.

The Reynolds number and Mach number ranges are unusually wide and systematically varied and of particular interest since the whole range from M = 0.2 to M = 2.8 was covered with the same instrumentation. Comparisons should be made with the data of Allen - CAT 7303 and Jackson et al. - CAT 6505 with broadly the same geometry and Reynolds number range. Hopkins & Keener - CAT 6601 whose Reynolds number fell in the range of CAT 7302, give measurements made not on the flat side wall, but on the wall which, upstream, was curved to form the nozzle. Similar tests were made at ultra-high Reynolds number by Moore & Harkness - CAT 6502 and Thomke - CAT 6903. Further high Reynolds number experiments at higher Mach numbers and with varied geometries and boundary layer histories are those of Voisinet & Lee - CAT 7202, Gates - CAT 7301, Jones & Feller - CAT 7002 and Hopkins & Keener - CAT 7203.

CAT 7302	WINTER/GAUDE	:T	BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	8.	
RUN	MD *	TH/TR*	REDZM	CF +	HIE	H12K	PW	PD*
X	P00*	PW/PD*	REDZD	CO.	H?5	H32K	Τ₩	TD*
RZ	TOD*	SI4 *	DS.	P12*	H42	DZK	UD*	TA
73020101*	0.2007	1.0000	9.5756"+04	1.7700"-03	1.2609	1.2451	1.4282*+05	1.4282*+05
ИW	1,4688"+05	1.0000	9.6292*+04	NM	1.8201	1.5200	2.8370*+02	2.8168"+02
INFINITE	2.8395"+02	0.0000	1.4240"-02	0.0000"+00	0.0017	1.4272"-02	6.7536*+01	2.8370"+02
73020102*	0.2013	1.0000	9.4304"+04	1.8300"~03	1.2607	1.2446	1,3787"+05	1.3787*+05
HM	1.4182"+05	1.0000	9.4834"+04	NM	1.8233	1.8231	2.0520"+02	2.8316"+02
INFINITE	2.6545*+02	0.0000	1.4582"-02	0,0000*+00	0.0015	1.4615"=02	6,7915"+01	2.8520"+02
73020201*	0.3978	1.0000	8.4937"+04	1.7800*=03	1.2898	1.2364	A 44738 . 64	6.8472"+04
NM	7.6362"+04	1.0000	8.6503 +04	NM	1.8265	1.0261	6.8472"+04 2.8469"+02	2.7689"+02
INFINITE	2.6565#+02	0.0000	1.3214"-02	0.0000*+00	0.0136	1.3317"-02	1.3272"+02	2.8469"+02
73020301*	0.5952		6 110E#. 00	. 74.048				
NM	5.6339"+04	1.0000	8.1145*+04 8.5141*+04	1.7600"-03	1.3896	1.2375 1.8255	4.4336*+04	4.4336"+04 2.6656"+02
INFINITE	2.4545*+02	0.0000	1.2739*-02	0.0000*+00	0.0023	1.2998"-02	1.9484"+02	2.8337*+02
						•••		
73020401* Nm	0.7904	1.0000	7.2951"+04	1.7400*-03	1.5286	1.2371	3,1465*+04	3,1465"+04
INFINITE	4.7510"+04 2.6745"+02	1.0000	7.9288*+04	0.0000#+00	1.8274	1.2362"-02	2.6393"+02	2.5552"+02
		V # 4 0 0 0		019009 700	-0.0130	1.5305 -05	£,5335+05	2.0343-402
73020402	0.7930	1.0000	1.0879*+05	1.6500"-03	1.5227	1.2360	4.7015"+04	4.7015"+04
NM	7.1172*+04	1.0000	1.1831"+05	1114	1.8278	1.8565	2.8293"+02	2.5445"+02
INFINITE	£40043-40K	0.0000	1,1797*-02	0.0000"+00	-0.0096	1.2236"-02	2.5362"+02	2.8293*+42
73020403	0.7933	1.0000	1.4182*+05	1.5800*-03	1.5201	1.2329	6.2479*+04	6.2479*+04
NM	9.4610"+04	1.0000	1.5422*+05	MM	1.8292	1.8277	2.8391"+02	2.5531"+02
INFINITE	2.8745"+02	0.0000	1.1615"-02	0.0000*+00	-0.0102	1.204/ -02	2.5415*+02	2.8391"+02
73020501	1.3943	1.0000	1,3702*+04	1.9700*-03	2,1014	1.2597	3.4812"+03	5.4812"+03
NM	1.0990"+04	1.0000	1.7425*+04	NW	1.8166	1.8116	2.6170*+02	204 48560.2
INFINITE	2.9065*+02	0.0000	1.0315"-02	0.0000*+00	0.0090	1.1526*-02	4.0442*+02	2.8170*+02
73020502	1.3951	1.0000	2.9589*+04	1.7600*-03	2.1556	1.2649	6.3239"+03	8.3239"+03
NM	2.6307*+04	1.0000	3.7634"+04	. NM	1.8157	1.8108	2.8227*+02	2.0964*+02
INFINITE	2.9125"+02	0.0000	9.3327"-03	0.00004+00	-0.0236	1.0447"-02	4.0500"+02	2.8227*+02
73020503#	1.4003	1.0000	4.5655*+04	1.6500*-03	2.1097	1.2477	1 27278	1 73275.00
NM	4.3688*+04	1,0000	5.8160"+04	1,0300	1.0255	1.8207	1.3723*+04	1.3723"+04
INFINITE	2.9175*+02	0,0000	8.7123"-03	0.0000*+00	-0.0029	9.7646"-03	4.0643"+02	2,8272*+02
73020504	1.3949	1,0000	B 21655.60	1 F0405 "5	34.8.5			
NM	8.4393*+04	1.0000	8.7352*+04 1.1134*+05	1.5000*=03 NM	2.0688 1.8292	1.2410	2,6523"+04 2,7903"+02	2.6523"+04 2.0687"+02
INFINITE	2.8795*+02	0.0000	8,4831"-03	0.0000*+00	0.0181	9.4136*-03	4.0370"+02	2.7903"+02
		•	-	-			•	
73020505	1,4003	1.0000	9,6076"+04	1.4800"-03	2.1302	1.2401	3.0134*+04	3.0134"+04
NM Infinite	9,5936*+04 2. 6885 *+02	0.0000	1.2245"+05 8.2420"+03	0.0000*+00	1.8292	1.5245 9.1681"-03	2.7990"+02	2.0748*+02 2.7990*+02
4.01 3.04 1.1	214003 102	7, 1040	D4E4E4 -03	0.0000 +00	-010540	4.1001 -03	4.0441.405	2./440402
73020601*	1.5970	1.0000	4.0241"+04	1.5900"-03	2,3395	1.2456	1.0699*+04	1.0699"+0#
NM	4.5274*+04	1.0000	5.4625"+04	N _M	1.8283	1.6223	5.8041.+05	1.9320*+02
INFIHITE	2.9175*+02	0.000	8.2501"-03	0.0000*+00	0.0113	9.4320"-03	4.4506*+02	2.8091"+02
73020701*	1.8002	1.0000	3.5556*+04	1.5300"-03	2,6196	1.2416	8.5372*+03	8.5372"+03
NM	4.9068*+04	1.0000	5.1780*+04	NM	1.6305	1.8235	2.7894"+02	1.7690"+02
INFINITE	2.9155"+02	0.0000	7.7130*-03	0.0000*+00	0.0202	9.1102*=03	4.8005*+02	2.7894*+02
730208014	2,0002	1.0000	3.1338*+04	1.4600*-03	2,8926	1.2456	6.6819"+03	6.6819"+03
NM	5.2299"+04	1.0000	4.9070"+04	NM	1.6310	1.6223	2.7726*+02	1.6195"+02
INFINITE	2.9135"+02	0.0000	7.4463"-03	0,0000"+00	0.0501	9.0729*-03	5.1019"+02	2.7726"+02

73021203*

INFINITE

2.7996

2.9185"+02

1.0000

1.0000

0.0000

1.7532"+04

5.6242"-03

1.2100*-03

0.0000*+00

4.5447

1.8410

0.0374

1.2446

1.0451

8,2116"-03

2.8184*+03

2.7225"+02

5.9845*+02

2.8184*+03

1.1367"+02

730204	ITAIW SOI	ER/GAUDET	PROFILE	TABULATION	39	POINTS, DEL	TA AT POI	NT 39
I	Y	PTZ/P	P/P0	T0/T0D	M/MD	U/UD	1/10	RHO/RHOD+U/UD
1	0.0000*+00	1.0000*+00	NM	0.98761	0.00000	0.00000	1.11182	0.0000
ż	3.0480*-04	1-1129"+00	NM	0.99206	0.49664	0.51710	1.08326	U.47738
3	3.5560 -04	1.1098"+00	NM	0.99200	0.49003	0.51020	1.08402	U.47066
4	8.3620**04	1.1367"+90	NM	0.99323	0.54458	0.56540	1.07794	0.52452
5	1.1938 03	1.1492"+00	NM	0.99353	0.56762	0.58850	1.07493	0.54748
6	1.4478"-03	1.1590"+00	NM	0.99414	0.50513	0.60610	1.07297	U.56488
7	1.6002"-03	1.1617"+00	NM	0.99427	0.58962	0.61080	1.07239	0.56957
å	2.1844*-03	1.1700"+00	NM	0.99438	0.60402	0.62490	1.07033	0.58384
ģ	2.5400 -03	1.1789*+00	NM	0.99473	0.61879	0.63960	1.06636	0.59866
10	3.0988"-03	1.1911"+00	ÑМ	0.99520	0.63825	0.65890	1.06576	U.61824
ii	3.4544"-03	1.1937*+00	NM	0.99507	0.64226	0.66280	1.06497	0.62237
iż	4.2672 -03	1.2053*+00	NM	0.99550	0.66009	0.65040	1.06248	0.64039
i 3	5.0546"-03	1.2002*+00	NM	0.99534	0.66445	0.68460	1.06158	0.64489
14	6.4770"-03	1.2212 +00	NM	0.99627	0.68352	0.70350	1.05933	0.66410
15	7.4930 = 03	1.2367*+00	NM	0.99669	0.70533	0.72480	1.05597	0.68638
16	6.8900 -03	1.2435*+00	N.M	0.99667	0.71465	0.73380	1.05430	0.69601
iř	1.1252"-08	1.2539*+00	NM	0.99717	0.72869	0.74750	1.05230	0.71035
18	1.2294"-02	1.2616"+00	NM	0.99691	0.73878	0.75710	1.05020	0.72091
19	1.5037"-02	1.2048*+00	NM	0.99748	0.74805	0.76620	1.04910	0.73034
50	1.7501*+02	1.2815*+00	NM	0.99792	0.76411	0.78170	1.04658	0.74691
Ži	2.2606"-02	1.2971"+00	NM	0.99855	0.78320	0.80010	1.04363	0.70665
55	2.5197=-02	1.3000 +00	MM	0.99855	0.79619	0.81240	1.04113	0.75031
23	3.0226"-02	1.3203*+00	NM	0.99864	0.81057	0.82600	1.03843	0.79543
24	1.5560"-02	1.3344*+00	NM	0.99908	0.92656	0.84120	1.03574	0.51218
25	4.0564*-02	1.3452"+00	NM	0.99909	0.83842	0.85230	1.03338	0.82477
26	4.5491 02	1.3571*+00	NM	0.99935	1.85139	0.86450	1.03104	0.63648
27	5.0724"-02	1.3689*+00	NM	0.99966	0.86394	0.87630	1.02661	U.85176
26	5.5677*-02	1.3795*+00	NM	1.00032	0.87497	0.88680	1.02722	0.86330
29	6.1214"-02	1.3919*+00	NM	1.00082	0.88762	0.89870	1.02512	0.87668
30	50-"5010.0	1.4004*+00	NM	1.00072	0.89615	0.90650	1.02323	0.88592
šĭ	7.0764*-02	1.4106"+00	NM	1.00156	0.90620	0.91610	1.02197	U.8964D
32	7.6022"=02	1.4218"+00	NW	1.00126	0.91706	0.92590	1.01937	0.90831
33	8.8722"-02	1.4455"+00	NM	1.00192	0.93947	0.94660	1.01523	0.93240
34	1.0140 -01	1.4686"+00	NM	1.09271	0.96063	0.96610	1.01143	0.95518
35	1.1410"-01	1.4853*+00	NM	1.00261	0.97547	0.97940	1.00807	0.97156
36	1.2677"-01	1.4997"+00	W.	1.00284	0.98797	0.99070	1.00553	0.98525
37	1.3955"-01	1.5040*+00	N _W	1.00191	0.99510	0.99660	1.00301	0.99361
38	1.5217"-01	1.5129"+00	MW (4	1.00073	0.99925	0.99970	1.00090	0.99880
D 39	1.6490"-01	1.5138"+00	NM Mr.	1.20000	1.00000	1.00000	1.00000	1.00000
U 27	4.0470 -01	117170 174	IA	******	1100000	1.00000	.,00000	1.0000
THPUT	VARIABLES Y	.U/UD.RHO/PHDD	ASSUME	PMPD				
	* N - 1 - 1 - 1		2000.10	, -, +				

7302050	S WINTE	R/GAUNET	PROFILE	TABULATION	38	POINTS, DE	LTA AT PUI	8E TM
I	٧	P12/P	P/PD	TO/TOD	M/MD	U/UP	TZTD	RHO/HHOD#U/UD
1	u.0000*+00	1.0000"+00	NM	0.96892	0.00000	0.0000	1,34689	0.0000
2	3.0480"-04	1.3432"+00	NM.	0.97994	0.47357	0.53030	1.25395	0.42290
a S	3.5560"-04	1.3390"+00	11m	0.97951	0.47098	0.52760	1.25489	0.42043
4	6.3820"-04	1.4224"+00	Lf M	0.98196	0.51969	0.57780	1.23012	0.46743
5	1.1938"-03	1.4633"+00	N₩	0.95265	0.54130	0.59960	1.22702	U.48866
6	1.4478"-03	1.5014*+00	NM	0.96386	0.56034	0.61880	1,21454	0.50740
7	1.6002"=03	1.5060*+00	NM	0.98399	0.54254	0.62100	1.21465	4.50958
5	2.1844"-03	1.5620"+00	HM	0.98531	0.54867	0.64690	1.20761	0.53569
9	2.5400*-03	1.5918"+00	Met	0.98600	0.60182	4.65480	1.20195	0.54894
10	5.0988"-03	1.6312"+00	NM	0.98663	0.01656	0.67600	1.19434	V.5660U
11	3.4544*-03	1.6396*+00	MM	0.98725	0.65505	U.67950	1.19334	U.56941
12	4.2672"-03	1.6855*+00	NM	0.98705	0.64044	U.n9680	1.18373	0.58865
13	5.0546"-03	1.7194"+00	NM	0,98424	0.65349	0.70940	1.17843	0.60149
14	6.4770"-03	1.7618"+00	NM	0,98686	0.66924	0.72420	1.17098	0.01846
15	7.4930"-03	1.8206*+00	NM	0.99028	0.65999	0.74370	1.16173	V. 64017
16	6.8900"-03	1.8474"+00	NM	0,99020	0.69919	0.75200	1.15076	0.65009
17	1.0211"-02	1.8723*+00	NM	0.99052	0.70739	U.75950	1.15276	V. 03866
10	1.1252*-02	1.9100*+00	NM	0.99127	0.71960	0.77070	1.14707	U.67189
19	1.2294"-02	1.9361"+00	NM	0.99148	0.72784	0.77810	1.14287	0.08083
20	1.5037*-02	1.9665"+00	NM	0.99251	0.73724	0.78680	1.13897	U.69UBU
Ži	2.2606"-02	2.1132"+00	[46]	0.99467	0.78007	0.82490	1.11790	0.73777
žž	2.5197"-02	2.1547*+00	N	0.99484	0.79211	0.83510	1.11149	0.75133
53	1.0226"-02	2.2240"+00	NM	0.99411	0.81074	0.85130	1.10255	0.77212
24	3.5500"-02	2.3040*+60	NM	0.99701	0.63104	U.86850	1.09214	0.74519
25	4.0564"-02	2.3699"+00	NM	0.99796	0.84766	0.88250	1.08390	0.01419
26	4.5491"-02	2.4386"+00	NM	0.49444	0.86455	0.89660	1.07551	0.83365
27	5.0724"-02	2.5094"+00	NP	0.99972	C.88158	0.91050	1.06667	u.85359
28	5.5677"-02	2.5442"+00	NM	1.00079	0.69557	0.92200	1.05984	0.86990
29	6.1214"-02	2.6373"+00	NM	1.00190	0.91122	0.93470	1.05219	U.88833
10	50-"5916.6	2.6947"+00	NM	1.00214	0.92416	0.94480	1:04516	0.90398
31	7.0764"-02	2.7458*+00	NM	1.00245	0.93550	0.95340	1.03951	0.91755
12	7.6022"-02	2.8032"+00	NM	1.00403	0.94806	0.96380	1.03349	0.93257
33	4.8722"-02	2.91984+00	N⊭	1.00600	0.97297		1.02135	0.96275
34	1.0140"-01	3.0054*+00	NM	1.00713	0.99080		1.01235	0.98474
ŝŝ	1.141001	3.0343"+00	N⊭	1.00594	0.99714		1.00756	U.94334
36	1.2677*-01	3.0451 *+00	MM	1.00392	0.49894		1.00452	U. 99669
<u> </u>	1.3955"-01	3.0481 +40	MM	1.00225	0.99955		1.00251	U.99830
0 38	1.5217"-01	3.0503*+00	NM	1.00000	1.00000		1.00000	1.00000
3				-				•

INPUT VARIABLES Y, U/UD, RHD/RHOD ASSUME P=PD

•

7302-C-2								
73020908	WINT	ER/GAUDET	PROFILE	TABULATION	35	POINTS, DEL	TA AT PUI	NT 35
I	Y	PT2/P	P/PD	10/100	M/MD	U/UD	1/10	RHO/RHOU#U/UU
	00007+00	1.0000*+00	Hiv	0.44586	0.00000	0.00000	1,86246	0.0000
	0480"-04	1.5886"+00	ΝM	0,95287	0.35197	0.49230	1.66113	0.29636
	.6520*=04	1,9025"+00	VW	0.96913	0.45626	0.57495	1,58793	0.36207
	2192"-03	1.9680*+00 2.0310*+00	14h 14h	0.96971 0.97164	0.46930 0.48129	0.58870 0.60160	1.57356 1.56250	0.37412 0.38502
	5748"-03	2.0580*+00	ИW	0.97232	0.48623	0.60690	1.55763	U.38963
	6416"-03	2.2454"+00	NPI	0.97506	0.51900	0.64040	1.52253	0.42061
	0480*-03	2.3448"+00	NM	0.97644	0.53524	0.65660	1,50489	0.43631
	6068"=03	2.4467*+00	ЦM	0.47126	0.55124	0.67210	1.48655	0.45212
	,7244"=03	2.5871"+00	UN.	0.78074	0.57235	0.69270	1.46477	0.47291
	,9530"-03 ,2738"-03	2.5750*+00 2.7490*+00	[]}	0.97958 0.98190	0.57057	u.69090 u.71440	1.46628	U.47119 U.49651
	4168"=03	2.87604+00	IIM IIM	0.98343	0.61306	0.73040	1.41945	U.51457
	8900"-03	2.9835"+00	HP.	0.98469	0.62742	0.74330	1.40351	0.52960
	9314"+03	3.0560*+00	141+	0.98605	0.63690	U.75190	1.39373	0.53949
	50-"5940	3.1175*+00	H	0.98613	0.64481	0.75860	1.38408	0.54804
	2294"-02	3.2104"+00	NW.	0.98671	0.65656	0.76860	1.37043	U.500M5
	4961"-02	3.3798*+00	(IM	0.99483	0.67740	0.78860	1.35593	0.50174
	.7272* - 02 .9634* - 02	1.4905"+00	lilw life:	0.99015	0.69066	0.79750	1.33333	0.59812
	2403"-02	3.5710*+00 3.7265*+00	144	0.99230	0.70246	0.50710 0.81960	1.32013	0.61138 0.62904
	0277"-02	4.0957*+00	HAL	0.49579	0.75871	0.85120	1.25865	0.07628
	5560"-02	4.3276"+00	1463	0.99613	0.78313	0.86950	1.23274	0.70534
	0163"-02	4.5247*+00	tem	0.99989	0.80327	0.88410	1.21139	U.72982
	5618"-02	4.7628"+00	MIN	1.00223	26928.0	0.90090	1.18694	0.75901
	0851*=02	4.9836"+00	1441	1.00343	0.84823	0.91520	1.16414	0.78616
	5626"-02 1062"-02	5.1783*+00 5.4048*+00	1484 1484	1.00450	0.86657	0.92720 0.94120	1.14482	U.80991 U.83673
	6192"-02	5.6095"+00	146	1.00739	U.90584	0.95220	1.10497	U.86174
	0815"-12	5.7898 +00	1141	1.00926	0.92175	0.95250	1.08992	0.88291
	50-88-08	5.9876"+90	Her	1.01094	0.93889	0.97240	1.07354	0.90616
	5773"-02	6.3852"+00	Mar	1.01324	0.97241	0.99270	1.04112	U.95301
	0140"-01	6.6261"+00	1114	1.01514	0.99215	1.00350	1.05305	0.98092
	,1417"-01 ,2687"-01	6.7108"+00 6.7233"+00	7183 1184	1.00302	0.99900	1,00100	1.00402	0.49700 1.00000
INPUT VAR		,U/UD,RHD/RHOD	ASSUME	P=PD	••••		•••	
73020910	win1	TER/GAUDET	PROFILE	TABULATION	35	POINTS, DE	LTA AT PUI	NT 35
73020910: I	• WIN1	TER/GAUNET	PROFILE P/PD	TABULATION TO/TOD	35 M/MD	POINTS, DE	LTA AT PUI	NT 35 RHO/RHOD•U/UD
ı	Y	PT2/P	P/PD	T0/10D	M/MD	UVUb	1/10	RHO/RHOD+U/UD
1	Y ,0000*+00	PTZ/P	P/PD NM	T0/100	M/MD U.U0000	U/UD	T/TD	RH0/RH0D+U/UD
1 1 2 3	Y	PT2/P	P/PD	T0/10D	M/MD	UVUb	1/10	RHO/RHOD+U/UD
1 0. 2 3. 3 9. 4 1.	Y .0000"+00 .0480"-04 .6520"-04	PTZ/P 1.0000*+00 1.6254*+00 1.9394*+00 2.0097*+00	P/PD NH NM NM	T0/T0D U.94579 0.96728 U.97402 0.97511	M/MD U.U0000 U.39160 U.46310 U.47669	U/UD 0.00000 0.50450 u.\$A360 0.54620	T/TD 1.56466 1.65975 1.56419 1.57460	RHO/RHOD=U/UD 0.00000 0.30396 0.36736 0.37986
1 2 3 4 1.	Y .0000"+00 .0480"-04 .6520"=04 .2192"=03 .4478"-03	PT2/P 1.0000*+00 1.6254*+00 1.9394*+00 2.0097*+00	P/PD NM NM NM NM	T0/100 0.94579 0.96728 0.97402 0.97511 0.97596	M/MD U.00000 U.39160 U.46310 U.47669 U.48808	U/UD 0.00000 0.50450 U.5450 0.54620 0.61010	T/TD 1.56466 1.65975 1.56419 1.57480 1.56250	RHO/RHOD *U/UD 0.00000 0.30396 0.30736 0.37986 0.37986
1 0.2 3.3 9.4 1.6 1.6 1.6 1.6	Y .0000"+00 .0480"-04 .6520"-03 .2172"-03 .4478"-03	PT2/P 1.0000**00 1.6259*+00 1.9394*+00 2.0097*+00 2.0086*+00	P/PD NH NM NM NM	T0/10D 0.94579 0.96728 0.97402 0.9751 0.97596	M/MD U.00000 U.39160 U.46310 U.47669 U.48808 U.49464	0.0000 0.50450 0.5450 0.5450 0.5420 0.61010 0.61710	T/TD 1.06466 1.65975 1.55746 1.55746 1.55521	RHO/RHOD*U/UD 0.00000 0.30396 0.36736 0.37986 0.39046 0.39680
1 0.2 3.3 9.4 1.5 1.6 1.6 1.7 2.6	Y .0000"+00 .0480"-04 .6520"-04 .2192"-03 .4478"-03 .5748"-03	PT2/P 1.0000"+0U 1.6259"+0U 1.9394"+0U 2.0097"+0U 2.0713"+0U 2.1085"+0U 2.3122"+0U	P/PD WH WH WH HM HM HM HM HM HM HM	TO/TOD 0.94579 0.96728 0.97402 0.97511 0.97549 0.97649	M/MD 0.00000 0.39160 0.4650 0.4768 0.49484 0.52932	U/UD 0.00000 0.50450 U.5450 U.5480 0.51710 U.55180	T/TD 1.56466 1.65975 1.55919 1.57450 1.5521 1.51630	RHO/RHOD-U/UD 0.00000 0.30396 0.30736 0.37986 0.39046 0.390880 0.49880
1 0.2 3.3 9.4 1.0 5.1	Y .0000"+00 .0480"-04 .6520"-04 .2172"-03 .4478"-03 .5748"-03 .6416"-03	PT2/P 1.0000*+00 1.6259*+00 1.9394*+00 2.0097*+00 2.0713*+00 2.1088*+00 2.122*+00 2.4211*+00	P / P D WY WY WY WY WY WY WY WY WY W	TO/TOD U.94579 0.96728 U.97402 0.97511 0.97596 0.97649 0.97645 0.98043	M/MD U.00000 U.39160 U.47669 U.48808 U.48808 U.48808 U.52932 U.52932 U.52932	U/UD 0.00000 0.50450 U.56360 0.59820 0.61010 U.61710 U.6180 0.6400	T/ID 1.56466 1.65975 1.56919 1.57480 1.56250 1.555630 1.49813	RHO/RHOD = U/UD 0.00000 0.30396 0.35736 0.37986 0.39046 0.39680 0.42986
I 0. 2 3. 4 1. 5 1. 6 1. 7 2. 6 1. 7 2. 6 1. 7 2. 7 2. 7 2. 7 1. 7 1. 7 1. 7 1. 7	Y 0000"+00 0480"-04 5520"-04 2172"-03 5746"-03 6416"-03 0480"-03 7244"-03	PT2/P 1.0000*+00 1.6259*+00 2.0254*+00 2.0097*+00 2.1085*+00 2.122*+00 2.3122*+00 2.4211*+00 2.53194*+00		TO/TOD U.94579 0.96728 U.97402 0.97511 0.97549 0.97649 0.97845 0.98043 0.98127	M/MD U.09000 U.39160 U.44310 U.44868 U.48464 U.52932 U.546345 U.58355 U.58355	U/UD 0.00000 0.50450 0.59820 0.61011 0.65180 0.69900 0.67530 0.70430	T/ID 1.56466 1.65975 1.56919 1.56250 1.56250 1.59521 1.51630 1.49813 1.47929 1.45666	RHO/RHOD+U/UD 0.00000 0.30396 0.37986 0.39086 0.39086 0.42986 0.42986 0.44556 0.46350
1 0.2 3.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4	Y .0000*+00 .0480*-04 .2102*-04 .2102*-03 .4478*-03 .5748*-03 .6480*-03 .7244*-03	PT2/P 1.0009*+00 1.6259*+00 1.9394*+00 2.0097*+00 2.0133*+00 2.1082*+00 2.312*+00 2.4211*+00 2.53194*+00 2.66427*+00		TO/TOD U.94579 0.96728 U.97402 0.97511 0.97596 0.97649 0.97645 0.98043 0.96175 U.98529	M/MD U.0000 U.39160 U.44510 U.44688 U.449454 U.52952 U.546545 U.546545 U.57971	U/UD 0.00000 0.50450 0.59820 0.61010 0.61710 0.65180 0.6900 0.6704 0.70430 0.70420	T/1D i.56466 i.65975 i.55919 i.55926 i.59526 i.59526 i.49813 i.49813 i.49813 i.49866 i.46366	RHO/RHOD = U/UD 0.00000 0.30396 0.36736 0.37986 0.39046 0.39680 0.4986 0.44656 0.446326 0.47927
1 0. 2 3. 4 1. 5 1. 7 2. 8 3. 10 4. 11 4.	Y .0000*+00 .0480*-04 .5520*-04 .2192**-03 .4478*-03 .6416**-03 .0468**-03 .0468*-03 .7244**-03 .7210**-03	PT2/P 1.0002*+00 1.0259*+00 1.7354*+00 2.0097*+00 2.1088*+00 2.1182*+00 2.4211*+00 2.4211*+00 2.4217*+00 2.4247*+00 2.4449*+00		TO/TOD U.94579 0.96728 U.97502 0.97511 0.97596 0.97649 0.97645 0.980175 0.980129 0.98438 0.98512	M/MD U.0000 U.39160 U.44310 U.48808 U.48845 U.524526 U.558375 U.563875 U.568834	U/UD 0.00000 0.50450 U.50360 0.59820 0.61010 U.61710 U.65180 U.65180 U.67010 U.67010 U.67010 U.67010	T/ID 1.06466 1.05975 1.55916 1.559521 1.51630 1.47929 1.45066 1.46305	RHO/RHOD = U/UD 0.0000 0.30396 0.307966 0.37986 0.39086 0.39680 0.42986 0.42986 0.44556 0.46326 0.46327
1 0 2 3 4 1 5 4 1 5 4 1 1 2 6 6 1 1 3 7 4 1 1 2 6 6 1 1 3 7 6 1 3 7 6 1 1 3	Y .0000"+00 .0480"-04 .2192"-03 .4478"-03 .5446"-03 .0480"-03 .7244"-03 .7244"-03 .2738"-03	PT2/P 1.0009*+00 1.6259*+00 2.0297*+00 2.0097*+00 2.1085*+00 2.122*+00 2.4211*+00 2.4211*+00 2.5694*+00 2.6427*+00 2.9424*+00	P 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TO/TOD U.94579 0.94579 0.97511 0.97549 0.97649 0.97845 0.98438 0.98438 0.98512	M / M D O O O O O O O O O O O O O O O O O O	U/UD 0.00000 0.50450 0.59620 0.61710 0.65180 0.66730 0.70430 0.70430 0.77210 0.77210	T/ID 1.56466 1.56975 1.55919 1.559521 1.59522 1.591630 1.47966 1.47966 1.446300 1.41243	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.39086 0.39680 0.42986 0.44836 0.448350 0.47927 0.50897
1 0.2 3.4 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4	Y .0000*+00 .0480*-04 .8520*-04 .2172*-03 .4478*-03 .6416*-03 .6468*-03 .6468*-03 .7244*-03 .7244*-03 .7244*-03	PT 2/P 1.0009*+0U 1.6259*+0U 1.9394*+00 2.916*+0U 2.1086*+0U 2.1122*+00 2.4211*+00 2.5494*+00 2.5494*+00 2.54424*+00 2.5449*+00 2.6427*+00		TO/TOD U.94579 0.96728 U.97511 0.97594 0.97649 0.97845 0.98043 0.98175 0.98127 0.98438 0.98512	M/MD U.00000 U.345160 U.47669 U.48808 U.524658 U.524658 U.55345 U.563345 U.563345 U.563345 U.63833 U.63871	U/UD 0.0000 0.50450 0.59820 0.61010 0.65180 0.65180 0.64900 0.70430 0.70430 0.70430 0.77430 0.774340 0.75430	T/ID i.56466 i.55919 i.57460 i.55521 i.57530 i.4913 i.47506 i.47506 i.42857 i.49470	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.39046 0.39086 0.4986 0.44986 0.44636 0.48359 0.47927 0.50897 0.54083
1 0 0 2 3 4 1 1 6 1 2 7 2 4 1 1 4 1 1 2 7 1 1 4 1 1 2 7 1 1 4 1 1 2 7 1 1 4 1 1 5 9 1 1 5 9 1	Y .0000*+00 .0480*-04 .2102*-04 .2102*-03 .4478*-03 .5748*-03 .0480*-03 .7244*-03 .7248*-03 .7248*-03 .7248*-03	PT2/P 1.0009*+00 1.6259*+00 1.9394*+00 2.0097*+00 2.1088*+00 2.3122*+00 2.3121*+00 2.4211*+00 2.5319*+00 2.6427*+00 2.6424*+00 2.7469*+00 3.0763*+00		TO/TOD U.94579 0.96728 U.97402 0.97511 0.97596 0.97649 0.97845 0.98175 0.98175 0.98175 0.98178	M/MD U.00000 U.39160 U.46369 U.46808 U.49494 U.524658 U.524658 U.523671 U.623671 U.64776	U/UD 0.00000 0.50450 U.5450 U.5450 0.61701 U.61710 U.65730 U.64700 U.67310 U.72710 U.741430 U.75410	T/ID 1.56466 1.56975 1.55919 1.559521 1.59522 1.591630 1.47966 1.47966 1.446300 1.41243	RHO/RHOD = U/UD 0.0000 0.30396 0.36736 0.37986 0.39046 0.39680 0.44856 0.44856 0.46326 0.46327 0.50897 0.55062
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000*+00 .0480*-04 .8520*-04 .2172*-03 .4478*-03 .6416*-03 .6468*-03 .6468*-03 .7244*-03 .7244*-03 .7244*-03	PT 2/P 1.0009*+0U 1.6259*+0U 1.9394*+00 2.916*+0U 2.1086*+0U 2.1122*+00 2.4211*+00 2.5494*+00 2.5494*+00 2.54424*+00 2.5449*+00 2.6427*+00		TO/TOD U.94579 0.96728 U.97511 0.97594 0.97649 0.97845 0.98043 0.98175 0.98127 0.98438 0.98512	M/MD U.00000 U.345160 U.47669 U.48808 U.524658 U.524658 U.55345 U.563345 U.563345 U.563345 U.63833 U.63871	U/UD 0.0000 0.50450 0.59820 0.61010 0.65180 0.65180 0.64900 0.70430 0.70430 0.70430 0.77430 0.774340 0.75430	T/1D i.56466 i.65975 i.56918 i.56929 i.55529 i.59183 i.47929 i.46360 i.42857 i.42857 i.39470	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.39046 0.39086 0.4986 0.44986 0.44636 0.48359 0.47927 0.50897 0.54083
1 0	Y .0000*+00 .0480*-04 .8520*-04 .2102*-03 .4478*-03 .6416*-03 .6468*-03 .7244*-03 .2738*-03 .4508*-03 .2738*-03 .4508*-03	PT2/P 1.0009*+00 1.6259*+00 1.9394*+00 2.9394*+00 2.1082*+00 2.1182*+00 2.122*+00 2.4211*+00 2.53194*+00 2.6427*+00 2.6427*+00 2.6427*+00 3.1473*+00 3.2035*+00 3.31**+00		TO/TOD U.94579 0.96728 U.97511 0.97516 0.97546 0.97645 0.9812 0.96175 U.96176 0.98780 0.98780 0.98780 0.98824 0.98905 0.98150	M/MD U.09000 U.39160 U.46369 U.46868 U.48868 U.524658 U.524658 U.523671 U.623671 U.623671 U.63677	U/UD 0.00000 0.50450 0.50450 0.50450 0.61010 0.65180 0.64900 0.670430 0.70120 0.72110 0.75430 0.76850 0.79610	T/ID i. 56466 i. 65979 i. 55919 i. 55929 i. 55932 i. 49813 i. 49813 i. 47806 i. 42857 i. 42847 i. 38440 i. 33646 i. 33646	RHO/RHOD = U/UD 0.0000 0.30396 0.36736 0.37986 0.39046 0.39046 0.4986 0.44636 0.44636 0.46326 0.47927 0.50897 0.524083 0.55817 0.57827
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000"+U0 .0480"-U4 .520"-04 .2192"-03 .4478"-03 .6416"-03 .0480"-03 .7244"-03 .2198"-03 .2198"-03 .2198"-03 .2198"-03 .2294"-03 .2294"-02 .2294"-02	PT 2/P 1.0009"+000 1.0259"+000 2.0097"+000 2.0097"+000 2.1022"+000 2.1122"+000 2.4211"+000		TO/TOD U.94579 0.96728 U.97402 0.97511 0.97549 0.97645 0.980438 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728	M 0000 0000 0000 0000 0000 0000 0000 00	U/UD 0.0000 0.50450 0.59820 0.61710 0.65180 0.66900 0.70120 0.7710 0.74140 0.754210 0.774210 0.77850 0.77850 0.80730	T/ID 1.06446 1.05975 1.55971 1.559480 1.55521 1.51630 1.479829 1.47866 1.4283 1.4283 1.42840 1.42840 1.36408 1.36240 1.332188	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.37986 0.39086 0.39680 0.42986 0.44986 0.448350 0.47927 0.52491 0.52491 0.55817 0.57142 0.557142 0.61072
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000**00 .0480**04 .2172**=03 .4478**=03 .5446**=03 .0480**=03 .7244**=03 .7244**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03	PT 2/P 1.0009"+000 1.62594"+000 1.7394"+000 2.7185"+000 2.1182"+000 2.1182"+000 2.4211"+000 2.5694"+000 2.5694"+000 2.6427"+000 2.763"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000		TO/TOD U.94579 0.96728 U.97511 0.97599 0.97545 0.980438 0.98175 0.98438 0.98780 0.98824 0.98780 0.98824 0.98780	M 091310 0 091310 0 091310 0 0 445698 44768454 44748454 0 0 554534 0 0 554534 0 0 634746 0 0 64477 0 0 663776 0 0 663776 0 0 663776 0 0 663776 0 0 603776 0 0 771292	U/UD 0.0000 0.50450 0.59620 0.61710 0.64730 0.70120 0.772140 0.774430 0.77650 0.796130 0.796130 0.796130	T/ID 1.56495 1.557480 1.557521 1.57480 1.557521 1.47966 1.42857 1.42857 1.32940 1.332968 1.332968	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.39080 0.42986 0.44986 0.448350 0.447927 0.50897 0.50897 0.550817 0.55081
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y 0000"+00 0480"-04 2172"-03 24178"-03 5446"-03 6416"-03 6416"-03 6718"-03 2718"-03 2718"-03 2718"-03 2724"-03 2724"-03 27272"-02 2403"-03	PT 2/P 1.0009*+0U 1.6259*+0U 1.9394*+0U 2.9394*+0U 2.07188*+0U 2.3122*+0U 2.3122*+0U 2.34211*+0U 2.34211*+0U 2.3424*+0U 2.3429*+0U 2.3425*+0U 2.3425*+0U 3.0743*+0U 3.0743*+0U 3.14752*+0U 3.5494*+0U 3.5494*+0U 3.6494*+0U 3.6494*+0U 3.6494*+0U 3.6494*+0U 3.6494*+0U		TO/TOD U.94579 0.96728 U.97402 0.97511 0.97594 0.97845 0.98137 0.98138 0.981780 0.98824 0.98828 0.98780 0.98824	M 0000 000 000 000 000 000 000 000 000 0	U/UD 0.00000 0.50450 0.50450 0.50450 0.61710 0.65180 0.70120 0.70430 0.70420 0.772110 0.75850 0.70450 0.70450 0.77650 0.77650 0.776570 0.805770	T/ID i. 56466 i. 55919 i. 57480 i. 55521 i. 57552 i. 479813 i. 479666 i. 440806 i. 440807 i. 42084 i. 337640	RHO/RHOD = U/UD 0.00000 0.30396 0.35736 0.35786 0.39046 0.39046 0.4986 0.44526 0.44539 0.47927 0.50897 0.554083 0.55817 0.554083 0.55817 0.554083 0.63981
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000**00 .0480**04 .2172**=03 .4478**=03 .5446**=03 .0480**=03 .7244**=03 .7244**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03 .8500**=03	PT 2/P 1.0009"+000 1.62594"+000 1.7394"+000 2.7185"+000 2.1182"+000 2.1182"+000 2.4211"+000 2.5694"+000 2.5694"+000 2.6427"+000 2.763"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000 3.1011"+000		TO/TOD U.94579 0.96728 U.97511 0.97599 0.97545 0.980438 0.98175 0.98438 0.98780 0.98824 0.98780 0.98824 0.98780	M 091310 M 091310 M 091310 M 191310 M 1913	U/UD 0.0000 0.50450 0.59620 0.61710 0.64730 0.70120 0.772140 0.774430 0.77650 0.796130 0.796130 0.796130	T/ID 1.56495 1.557480 1.557521 1.57480 1.557521 1.47966 1.42857 1.42857 1.32940 1.332968 1.332968	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.39080 0.42986 0.44986 0.448350 0.447927 0.50897 0.50897 0.550817 0.55081
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000**00 .0480**04 .210**04 .210**03 .4478**03 .6416	PT 2/P 1.0009"+000 1.0259"+000 2.0297"+000 2.07188"+000 2.1022"+000 2.1121"+000 2.4211"+000		TO/TOD U.94579 0.94579 0.97511 0.975949 0.97649 0.97645 0.980175 0.98129 0.98512 0.98512 0.98728 0.98728 0.98728 0.98728 0.98728	M 0000 000 000 000 000 000 000 000 000 0	U/UD 0.0000 0.504360 0.59820 0.610710 0.65180 0.66900 0.70120 0.70120 0.74140 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430 0.77430	T/ID 1.06490 1.05975 1.55971 1.57480 1.55521 1.51630 1.47481 1.45066 1.4630 1.4283 1.39408 1.36240 1.32988 1.30976 1.32988	RHG/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.39080 0.42986 0.44956 0.44956 0.44956 0.44956 0.48326 0.48326 0.48326 0.552491 0.52491 0.554082 0.55817 0.57142 0.63981 0.68851 0.68851 0.68851 0.68851 0.68851
1	Y .0000*-04 .0480*-04 .520*-04 .2192*-03 .44178*-03 .6416*-03 .0480*-03 .7244*-03 .7244*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03 .4168*-03	PT 2/P 1.0009"+000 1.0299"+000 2.0299"+000 2.0099"+000 2.0098"+000 2.1022"+000 2.1121"+000 2.13121"+000 2.14211"+000		TO/TOD U.94579 U.97492 U.97549 U.97549 U.97549 U.97549 U.97549 U.975845 U.98729 U.98728	M 0913198 M 0913198	U/UD 0.0000 0.504360 0.59820 0.610710 0.65180 0.66530 0.70420 0.70420 0.774140 0.77430 0.77480 0.77680 0.77680 0.801570 0.801570 0.801570 0.801570 0.80170 0.80170 0.80170	T/ID 1.06400 1.05975 1.55975 1.57480 1.55521 1.51630 1.47480 1.45060 1.4283 1.329400 1.329400 1.329400 1.329400 1.329400 1.32968 1.32968 1.32968 1.32968	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.37986 0.390880 0.42986 0.44856 0.44856 0.44857 0.48350 0.47927 0.52491 0.55817 0.55817 0.55817 0.55817 0.57142 0.62894 0.68851 0.71747 0.77194
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y .0000*+00 .0480*-04 .2172*-03 .4478*-03 .5744*-03 .0480*-03 .7244*-03 .2738*-03 .2738*-03 .2738*-03 .2738*-02 .274*-02 .240*-02 .2407*-02 .2407*-02 .2407*-02 .2407*-02	PT 2/P 1.009"+000 1.62594"+000 2.0097"+000 2.0097"+000 2.1022"+000 2.1022"+000 2.1022"+000 2.4211"+000 2.421"+000		TO/TOD U.94579 0.97511 0.975949 0.97549 0.97549 0.98438 0.98577 0.98438 0.985780 0.985780 0.985780 0.985780 0.985780 0.985780 0.985780 0.98596	M 0913198 M 0913	U/UD 0.0000 0.50450 0.59620 0.59620 0.61710 0.65180 0.64700 0.70120 0.70120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.70120	T/ID 1.564975 1.55919 1.557480 1.559521 1.591633 1.47926 1.45630 1.47926 1.45630 1.47926 1.45630 1.47926 1.45630 1.47926 1.45630 1.47926 1.329376 1.329376 1.329376 1.329376 1.329376 1.329376	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.37986 0.390880 0.42986 0.44526 0.46326 0.47927 0.52491 0.54082 0.55082 0.555817 0.57142 0.55294 0.62294 0.638851 0.612747 0.771247 0.77259
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y 0000"+00 0480"-04 2172"-03 4478"-03 5446"-03 5446"-03 5448"-03 6480"-03 67244"-03 67244"-03 67244"-03 6724"-03 6724"-03 6724"-03 6727"-02 673"-02 673"-02 673"-02 673"-02 673"-02 673"-02 673"-02 673"-02 673"-02	PT 2/P 1.009*+00 1.0254*+00 1.0254*+00 1.9397*+00 2.945*+00 2.1082*+00 2.3421*+00 2.3421*+00 2.3421*+00 2.3421*+00 2.3421*+00 3.421*+00		TO/TOD U.94579 0.96728 U.97511 0.975949 0.97845 0.98127 0.98127 0.98128 0.98780 0.98824 0.98780 0.988949 0.988888888888888888888888888888888888	M 0913198 M 0913	U/UD 0.0000 0.50450 0.59820 0.59820 0.61710 0.66900 0.70120 0.70120 0.77430 0.77430 0.776850 0.76850 0.76850 0.86970 0.86970 0.86970 0.86970 0.86970 0.86970 0.869710 0.869710 0.869710 0.869710 0.869710 0.9710 0.9710 0.9710	T / T D 1.56495 1.55919 1.557480 1.559521 1.59521 1.47966 1.47966 1.42841 1.47966 1.42870 1.389408	RHO/RHOD = U/UD 0.0000 0.30396 0.35736 0.37986 0.39086 0.44986 0.44986 0.44986 0.44986 0.44986 0.44987 0.50897 0.50897 0.554085 0.55817 0.554085 0.55817 0.57428 0.68851 0.68851 0.71747 0.74265 0.771949 0.8859
1 2 3 4 1 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Y .0000"+U0 .0480"-U4 .5520"-04 .2192"-03 .44178"-03 .6416"-03 .0480"-03 .7244"-03 .2738"-03 .4168"-03 .4168"-03 .2748"-02 .2738"-02 .2603"-02	PT 2009"+000 1.62594"+000 2.5394"+000 2.007188"+000 2.007188"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.13121"+000		TO/TOD U.94579 0.94579 0.97511 0.975949 0.97549 0.97549 0.97845 0.98127 0.98127 0.98127 0.98128 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728	M 0913198 M 0913198	U/UD 0.0000 0.504360 0.59820 0.610710 0.64530 0.64530 0.70420 0.70420 0.774140 0.774360	T/ID 1.06400 1.05975 1.55916 1.559521 1.551630 1.49182 1.49080 1.45050 1.42431 1.32400 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980	RHO/RHOD *U/UD 0.00000 0.30396 0.37986 0.37986 0.39086 0.39680 0.42986 0.44856 0.44856 0.44856 0.47927 0.52491 0.55817 0.55817 0.55817 0.55817 0.57145 0.62291 0.68851 0.77294 0.79859 0.884960
1 2 3 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 6 6 6 6	Y .0000**00 .0480**04 .2172**-03 .4478**-03 .5446**-03 .0480**-03 .7244**-03 .7244**-03 .2738**-03	PT 2009"+000 1.62594"+000 1.62594"+000 1.707188"+000 1.707188"+000 2.11***********************************		TO/TOD U.94579 0.97511 0.975949 0.975445 0.98438 0.98175 0.98127 0.98438 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728	M 00131098 M 00131098	U/UD 0.0000 0.50450 0.59450 0.59450 0.59450 0.64530 0.64530 0.70120 0.70120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770120 0.770100 0.90100 0.90100 0.90100 0.90100	T/ID i. 864975 i. 864975 i. 55919 i. 55922 i. 551630 i. 447860 i. 451891 i. 448307 i. 448307 i. 384400 i. 384400 i. 384988 i. 384988 i	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.37986 0.399880 0.42986 0.44326 0.44326 0.44326 0.44326 0.44326 0.44326 0.445326 0.447927 0.52491 0.54082 0.557142 0.557142 0.557142 0.59453 0.61072 0.62294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294
1 2 3 4 4 5 5 4 4 4 5 5 5 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 7	Y .0000"+U0 .0480"-U4 .5520"-04 .2192"-03 .44178"-03 .6416"-03 .0480"-03 .7244"-03 .2738"-03 .4168"-03 .4168"-03 .2748"-02 .2738"-02 .2603"-02	PT 2009"+000 1.62594"+000 2.5394"+000 2.007188"+000 2.007188"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.131211"+000 2.13121"+000		TO/TOD U.94579 0.94579 0.97511 0.975949 0.97549 0.97549 0.97845 0.98127 0.98127 0.98127 0.98128 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728 0.98728	M 0913198 M 0913198	U/UD 0.000 0.50450 0.59450 0.59450 0.61710 0.64900 0.64900 0.70120 0.70120 0.774430 0.774430 0.774630 0.774630 0.774630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630 0.776630	T/ID 1.06400 1.05975 1.55916 1.559521 1.551630 1.49182 1.49080 1.45050 1.42431 1.32400 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980 1.32980	RHO/RHOD *U/UD 0.00000 0.30396 0.37986 0.37986 0.39086 0.39680 0.42986 0.44856 0.44856 0.44856 0.47927 0.52491 0.55817 0.55817 0.55817 0.55817 0.57145 0.62291 0.68851 0.77294 0.79859 0.884960
1 2 3 4 4 5 6 7 8 9 1 1 1 2 2 1 2 3 4 4 5 6 7 1 1 1 1 2 2 1 2 3 3 4 4 5 6 6 7 7 8 9 1 1 1 1 2 2 1 2 2 2 3 5 4 4 5 6 6 7 7 8 9 1 1 1 1 2 2 2 2 3 5 6 6 6 7 7 8 5 6 6 6 6 7 7 8 5 6 6 7 7 8 5 6 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Y 0000"+00 00480"-04 2192"-03 44478"-03 5446"-03 00480"-03 7244"-03 2738"-03 2738"-03 2748"-03 2748"-03 2748"-03 2748"-03 274"-02 2407"-02 2407"-02 25560"-02 2657"-02 2657"-02	PT 009"+000 1.62594"+000		TO/TOD U.94579 0.94728 0.97511 0.975949 0.97845 0.98438 0.98512 0.98780 0.98824 0.98780 0.98824 0.98780 0.98824 0.98780 0.98824 0.98780 0.98824 0.98780 0.98824 0.98780	M 001348842655451431766777227485664357486717742748664357486777423676435645949194746747742367643576657466777227485664357665747677742367643576657657657774236764357665765765777423676435766576577742367643576657657774236764357665777423676435766577742367643576657774236764357665777423676435766577742367643576657774436767774436663576657774436767774436663576576777443676777443676777443676777443676767774436767774436767774436767774436767774436767774436767774436663576657677446777446777446767774436767677744367677744367774436767774436767774436767774436767774436767774436767744677744367744674467467	U/ U0 00 00 00 00 00 00 00 00 00 00 00 00	T / 1 D 1.064975 1.056919 1.056921 1.057480 1.0595221 1.0516819 1.47966 1.47966 1.42827 1.394408 1.364968 1.36	RHO/RHOD+U/UD 0.0000 0.30396 0.37986 0.37986 0.399880 0.42986 0.44526 0.445350 0.445350 0.447927 0.52491 0.554062 0.555817 0.557142 0.557142 0.559451 0.571747 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294 0.638851 0.771294
1 12 3 4 4 6 7 8 9 1 1 1 2 3 3 4 4 5 7 8 9 9 1 1 1 2 3 3 4 4 5 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Y 0000"+00 00480"-04 2172"-03 4478"-03 5446"-03 5446"-03 5546"-03 2734"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2737"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02	PT 00944"+000 1.00594"+000		TO/TOD U.94579 0.96728 U.97511 0.975949 0.975445 0.98438 0.98127 0.98438 0.98728	00000000000000000000000000000000000000	U/ 0000 0.50450 0.50450 0.50450 0.50450 0.60510 0.60510 0.60510 0.60510 0.770110 0.770110 0.7701570 0.7701570 0.7701570 0.85710 0.85710 0.85710 0.85710 0.85710 0.97640 0.97640 0.97640 0.97640 0.97640 0.97640 0.97640 0.97640	T / 1 D 1.06496 1.059719 1.557480 1.557521 1.557530 1.47966 1.47560 1.475640 1.42871 1.387640 1.32986 1.42871 1.33988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.390880 0.42986 0.44956 0.448350 0.447927 0.50497 0.554083 0.555817 0.557142 0.557142 0.557142 0.59457 0.77142 0.59457 0.771949 0.63981 0.68851 0.71747 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.79885
1 12 3 4 1 1 1 2 3 4 4 4 5 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y 0000"+00 0480"-04 2192"-03 44178"-03 4416"-03 0480"-03 0480"-03 0480"-03 0480"-03 0480"-03 0416"-03 0416"-03 0416"-03 0416"-03 0416"-03 0416"-03 0416"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03 0516"-03	PT 009"+000 1.0294"+000 1.0294"+000 2.997"+000 2.997"+000 2.997"+000 2.1022"+000		TO/TOD U.94579 0.94579 0.97511 0.975949 0.97549 0.97549 0.97549 0.98436 0.98529 0.98529 0.98529 0.98529 0.98524 0.98728	D 000098 M 004128559442654778677724148746944504456547786777247783576652478467877247483576652478467877724835766524864506367786777724835766524864506367786777248357665248645063677867772483686786660478646660478660478660478666047866604786660478666047866604786660478660478660478666047866	U/UD 0.0000 0.59820 0.59820 0.59820 0.619180 0.66930 0.70110 0.70120 0.70120 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830	T / I D 1.065975 1.05975 1.559480 1.559521 1.519829 1.4919 1.49000 1.42057 1.42070 1.32988	RHO/RHOD *U/UD 0.00000 0.30396 0.37986 0.37986 0.39080 0.42986 0.448526 0.448526 0.48350 0.47927 0.52491 0.55817 0.55817 0.55817 0.55817 0.57145 0.62291 0.68851 0.772859 0.844460 0.874585 0.84460 0.874585 0.96239 0.96239
1 12 3 4 1 1 1 2 3 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 4 4 4 5 5 5 4 4 4 5	Y 0000"+00 00480"-04 2172"-03 4478"-03 5446"-03 5446"-03 5546"-03 2734"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2736"-03 2737"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02 2603"-02	PT 00944"+000 1.00594"+000		TO/TOD U.94579 0.96728 U.97511 0.975949 0.975445 0.98438 0.98127 0.98438 0.98728	00000000000000000000000000000000000000	U/UD 0.0000 0.59820 0.59820 0.59820 0.619180 0.66930 0.70110 0.70120 0.70120 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.774180 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.7746830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830 0.974830	T / 1 D 1.06496 1.059719 1.557480 1.557521 1.557530 1.47966 1.47560 1.475640 1.42871 1.387640 1.32986 1.42871 1.33988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988 1.32988	RHO/RHOD = U/UD 0.0000 0.30396 0.37986 0.37986 0.390880 0.42986 0.44956 0.448350 0.447927 0.50497 0.554083 0.555817 0.557142 0.557142 0.557142 0.59457 0.77142 0.59457 0.771949 0.63981 0.68851 0.71747 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.774265 0.79885

1.00150 1.00312 1.00404 1.00592 1.00713 1.00738 1.00926 1.01107 1.00970 1.00251 INPUT VARIABLES Y, U/UD, RHQ/RHOD AT I=3 DATA HERE AVERAGED ABSU'4E POPD

730211	1014 WIN'	TERZGAUDET	PROFILE	TAHULATION	38	POINTS, DEL	TA AT PUI	NT 58
1	Y	P12/P	P/PD	T0/10D	илир	uyun	1/10	RHO/RHOU*U/UD
1	0.0900"+00 3.0489"=04	1.0000"+00 1.7269"+00	MM MM	0.93678 0.95445	0.00000	0.00000 0.48970	1.92012	0.00000 0.25504
3	3.5560"-04	1.6864 + 10	1300	0.95271	0.34521	0.47950	1.92938	0.24852
4	8.3820"-04	2.1468#+00	2480	0.96050	0.42526	0.57290	1.81488	V.31567
5	1.1938"=03	5.2652.+00	1:84	0.96244	0.44199	0.59130	1.79051	0.33024
9	1.4478"-03	2.3660"+00	124.	0.97160	0.45613	0.60910	1.78317	0.34158
7 8	1.6002"=03 2.1844"=03	2.3937*+00 2.6192*+00	1974 1944	0.96322 0.96499	0.4598A	0.61030 0.64000	1.76149	0.34647 0.37312
,	2.5400"-03	2.7006*+00	iate.	0.96626	0.49858	0.65020	1.70068	0.30232
10	1.0988"-03	2.8526"+00	1414	0.96675	0.51647	0.66760	1.67084	0.39956
11	3.454/1-03	2,9380"+00	ИM	0.95966	0.52621	0.67430	1.64204	0.41065
12 13	4.2672"-03 5.0546"-03	3.0632*+00 3.2253*+00	UM NM	0.9701 <i>8</i> 0.97133	0.54014 0.55758	0.54090 0.70710	1.63613	0.42228 0.43967
14	6.4770"-03	3.4127*+00	1114	0.97294	0.57702	0.72480	1.57778	U.4593B
15	7.4950"-03	3.5638"+00	fatt.	0.97380	0.59218	0.73810	1.55352	v.47511
16	8.8900 -03	3.6814"+00	Nix	0.97550	0.60370	0.74840	1.53681	0.48698
17	1.0211"-02	3.0471"+00	MW.	0.97683	0.61953	0.76190	1.51240	0.50377
18 19	1.1252"=02	3.9484"+00 4.0220"+00	1164 1164	0.97706 0.97888	0.62900	0.76960 0.77570	1.49701	0.51409 0.52112
20	1.5037"-02	4.2391*+00	11M	0.98010	0.65538	0.79140	1.45815	0.54274
51	1.7501"-02	4.4112****	NW	0.98045	0.67048	0.80310	1.43472	0.55976
55	1.9837"-02	4.5626*+00	11M	0.98309	0.68347	0.81360	1.41703	U.57416
23 24	2.2606"-02	4.7877*+00 4.9329*+00	IIM IIM	0.98442 0.98554	0.70233	0.82770 0.83650	1.38889	0.59594 0.60481
25	3.0226"=02	5.3016"+00	NM	0.98804	0.74352	0.85740	1.32974	0.64476
26	3.5560*=02	5.6657*+00	t ₄ M	28000	0.77141	0.87660	1.29132	0.67884
27	4.0564"-02	5.9838"+00	N.W	0.99227	0.79481	0.89170	1.25865	U.70846
58 59	4.5491"-02 5.0724"-02	6.3147*+00	[c M	0,99398	0.81880	0.90570	1.22624	0.73941
30	5.5677"-02	6.6714*+90 6.9924*+00	UM MM	0.99606 0.99743	0.84330	0.92160 0.93410	1.19432	V.77166 J.80099
31	6.1214"-72	7.3462*+00	NM	0.99858	0,88827	0.94690	1.13636	0.83327
35	6.6172*+02	7.6543"+00	MW	1.00019	0.90805	0.75770	1.11235	U.86097
33 34	7.0764"=02 7.6022"=02	7.9357"+00	ИW	1.00166	0.92574	0.96710	1.09135	U.88615
34	6.8722"-02	5.2414"+00 5.8192"+00	liw Nr	1.00253	0.94458 0.97920	0.97650 0.99320	1.06672	0.91371 0.96539
36	1.1410"-01	9.1610*+00	NM	0.97897	0.99910	0.99910	1.00000	0.99910
37	1.2677"-01	9.1801"+00	MW	1.00023	1.00020	1.00020	1.00000	1.00020
D 38	1.3955"-01	9.1766"+00	Им	1.00000	1.00000	1.00000	f.00na0	1.00000
730212		Y,U/UD,RHO/RHOU TER/GAUDET	PROFILE	P=PD TABULATION	38	POINTS, DEL	.TA AT PUI	NT 38
					38 H/MD	POINTS, DEL	ILA AT PUI divi	NT 38 RHO/RHOD*
730212 1	A 1024 AIU	TER/GAUNET PT2/P	PROFILE P/PD	TABULATION TU/TOD	M/MD	U/U0	1/10	RHO/RHOD*
730212 1 1 2	2034 WIN	TER/GAUDET	PROFILE	TABULATION				
730212 I 1 2 3	2034 WIN Y U_UOUO*+00 3.0480*-04 3.5560*-04	TER/GAUDET PT2/P 1.0000*+00 1.7792*+00 1.7792*+00	PROFILE P/PD NM NM	TABULATION TU/TOD 0.93284 0.95165 0.95176	M/MD 0.00000 0.33786 0.34030	U/UD 0.00000 0.48640 0.48740	T/10 2.39512 2.07254 2.06825	RHO/RHOD* 0.00000 0.23469 0.23662
730212 I 1 2 3	2059 WIN Y U.U0U0"+00 3.05560"-04 3.35560"-04	TER/GAUDET PT2/P 1.0000"+00 1.7792"+00 1.7929"+00 2.2948"+00	PROFILE P/PD NM NM NM	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95176	H/MD 0.00000 0.33786 0.34030 0.41448	U/UD 0.00000 0.48640 0.48740 0.57700	7/10 2.39512 2.07254 2.06825 1.93798	RHO/RHOD* 0.00000 0.23469 0.23662 0.29773
730212 I 1 2 3 4 5	203° WIN Y U.U0U0"+00 3.0480"-04 3.5560"-04 8.3520"-04	TER/GAUNET PT2/P 1.0000"+00 1.7792"+00 1.7929"+00 2.2946"+00 2.4304"+00	PROFILE P/PD NM NM NM NM NM	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96014	M/MD 0.00000 0.33786 0.34030 0.41448 0.43143	U/UD 0.00000 0.46640 0.46740 0.57700 0.59600	T/TD 2.39512 2.07254 2.06825 1.93798 1.90840	RHO/RHOD* 0.00000 0.23469 0.23662 0.29773 0.31230
730212 I 1 2 3	0.0000*+00 3.0480*-04 3.5560*-04 1.1938*-03 1.4478*-03	TER/GAUDET PT2/P 1.0000"+00 1.7792"+00 1.7929"+00 2.2948"+00	PROFILE P/PD NM NM NM	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95176	H/MD 0.00000 0.33786 0.34030 0.41448	U/UD 0.00000 0.48640 0.48740 0.57700	7/10 2.39512 2.07254 2.06825 1.93798	RHO/RHOD* 0.00000 0.23469 0.23662 0.29773
730212 I 1 2 3 4 5 6 7	203° WIN V 0.0000"+00 3.0480"-04 3.5560"-04 8.3520"-04 1.4478"-03 1.4478"-03 2.1844"-03	TER/GAUNET PT2/P 1.0000"+00 1.7792"+00 1.7792"+00 2.2946"+00 2.4940"+00 2.5946"+00 2.5949"+00 2.5929"+00	PROFILE P NP N	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96014 0.96147 0.96302 0.96423	M/MD 0.00000 0.33786 0.341448 0.44531 0.44531 0.45068 0.47784	U/UD 0.0000 0.48640 0.48740 0.57700 0.59600 0.61110 0.61720 0.64520	T/ID 2.39512 2.07254 2.06825 1.93798 1.90840 1.863247 1.82315	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.32409 0.35389
730212 I 1 2 3 4 5 6 7	203° WIN Y 0.0000*+00 3.0480*-04 8.3520*-04 1.1938*-03 1.4478*-03 1.6002*-03 2.1844*-03	TER/GAUDET PT2/P 1.0000"+00 1.7792"+00 1.7929"+00 2.8948"+00 2.4304"+00 2.5929"+00 2.5929"+00 2.6369"+00 2.9268"+00	PROFILE PNEMENTAL NAME NAME NAME NAME NAME NAME NAME NAME	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96014 0.96147 0.96302 0.96423 0.96449	M/MD 0.00000 0.33766 0.34030 0.41448 0.43143 0.44531 0.44531 0.47784 0.48677	U/UD 0.0000 0.48640 0.57700 0.57700 0.61110 0.61720 0.64520 0.65410	T/1D 2.39512 2.07254 2.06825 1.93798 1.90840 1.86324 1.875315 1.80571	RMO/RHOD* 0.0000 0.23469 0.23462 0.29773 0.31230 0.32449 0.32549 0.35389 0.36224
730212 I 1 2 3 4 5 6 7 8	0.000°+00 3.0480°-04 3.5560°-04 3.5560°-04 1.1938°-03 1.4078°-03 2.1844°-03 2.5400°-03	TER/GAUDET P12/P 1.0000"+00 1.7792"+00 2.748"+00 2.4304"+00 2.546"+00 2.5366"+00 2.5369"+00 2.6369"+00 3.0840"+00	PROPERTY AND	TABULATION TU/TOD 0.93284 0.95165 0.95165 0.95806 0.96014 0.96147 0.96502 0.96423 0.96449 0.964149	M/MD 0.00000 0.33786 0.34030 0.41448 0.44531 0.45068 0.47784 0.46077 0.50361	U/UD 0.0000 0.48640 0.57700 0.57110 0.61120 0.64520 0.64520 0.67130	T/ID 2.39512 2.07254 2.06625 1.93764 1.96824 1.85524 1.85547 1.80571 1.77683	RHO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.32904 0.35389 0.36224 0.37781
730212 I 1 2 3 4 5 6 7	203° WIN Y 0.0000*+00 3.0480*-04 8.3520*-04 1.1938*-03 1.4478*-03 1.6002*-03 2.1844*-03	TER/GAUDET PT2/P 1.0000"+00 1.7792"+00 1.7929"+00 2.8948"+00 2.5948"+00 2.5929"+00 2.5929"+00 2.6369"+00 3.0840"+00 3.0840"+00 3.3418"+00	PROFILE PNEMENTAL NAME NAME NAME NAME NAME NAME NAME NAME	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96014 0.96147 0.96302 0.96423 0.96449	M/MD 0.00000 0.33766 0.34030 0.41448 0.43143 0.44531 0.44531 0.47784 0.48677	U/UD 0.0000 0.48640 0.57700 0.57700 0.61110 0.61720 0.64520 0.65410	T/1D 2.39512 2.07254 2.06825 1.93798 1.90840 1.86324 1.875315 1.80571	RMO/RHOD* 0.0000 0.23469 0.23462 0.29773 0.31230 0.32449 0.32549 0.35389 0.36224
730212 I 1 2 3 4 5 6 7 8 9 10 11 11 12	0.000"+00 3.0480"-04 3.5560"-04 8.3550"-04 8.3756"-03 1.4678"-03 2.1844"-03 2.5400"-03 3.42572"-03 4.2672"-03	TER/GAUDET P12/P 1-0000"+00 1.7792"+00 1.7792"+00 2.7948"+00 2.5456"+00 2.5456"+00 2.5369"+00 2.6369"+00 3.2018"+00 3.3118"+00 3.5180"+00	P P NNIBALYARA NASA	TABULATION TU/TOD 0.93284 0.95165 0.95165 0.95160 0.96014 0.96102 0.96423 0.964449 0.967667 0.967967	M/MD 0.0000 0.33786 0.33786 0.41448 0.44531 0.45518 0.47847 0.50361 0.55528 0.54559	U/UD 0.0000 0.48040 0.57700 0.57700 0.61110 0.64510 0.67130 0.68250 0.67130	T/ID 2.39512 2.07254 2.06825 1.93798 1.98824 1.87547 1.82515 1.80571 1.77683 1.75439 1.75436 1.75436	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.32904 0.35389 0.36224 0.37781 0.38902 0.41854
730212 I 1 1234 567 8910 111125 1414	203° WIN y 0.0000"+00 3.0480"-04 3.5560"-04 8.3520"-03 1.4602"-03 2.5400"-03 3.4544"-03 4.2672"-03 5.0486"-03	TER/GAUDET P12/P 1.0000"+00 1.7792"+00 1.7792"+00 2.7948"+00 2.7946"+00 2.5946"+00 2.5946"+00 2.9208"+00 3.2008"+00 3.2008"+00 3.3418"+00 3.5180"+00 3.7674"+00	F P NEW AND	TABULATION TU/TOD 0.93284 0.95165 0.95165 0.95806 0.968014 0.96802 0.96423 0.96423 0.96426 0.96766 0.96857	M/MD 0.0000 0.33786 0.341448 0.44531 0.44531 0.44536 0.47784 0.48057 0.55459 0.55459	U/UD 0.0000 0.48640 0.57700 0.57110 0.61720 0.64110 0.67130 0.67130 0.68250 0.69550 0.73200	T/ID 2.39512 2.07254 2.06625 1.93798 1.96524 1.67547 1.82315 1.80547 1.77683 1.75439 1.76851 1.69924	RHO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.36224 0.37781 0.38902 0.41054 0.44103
730212 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	203° WIN Y 0.0000°+00 3.0480°-04 3.5560°-04 4.35320°-03 1.4478°-03 1.6002°-03 2.1844*-03 2.5400°-03 3.0546*-03 4.2672°-03 5.0546*-03 6.4770°-03	TER/GAUDET P12/P 1.000"+00 1.7792"+00 1.77929"+00 2.8748"+00 2.5446"+00 2.5446"+00 2.5929"+00 2.83298"+00 3.0840"+00 3.2018"+00 3.3180"+00 3.5180"+00 3.7674"+00 3.7674"+00	F P NEURALANANANANANANANANANANANANANANANANANANA	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96147 0.96423 0.964449 0.96716 0.96768 0.96857 0.97366	M/MD 0.000 0.33786 0.34780 0.41448 0.44531 0.45068 0.47784 0.45058 0.51528 0.51528 0.54559 0.58199	U/UD 0.0000 0.46040) 0.57700 0.57700 0.61110 0.61120 0.65410 0.67120 0.68250 0.71120 0.73270	T/ID 2.39512 2.07254 2.06625 1.93198 1.90824 1.67547 1.82315 1.77683 1.77683 1.75439 1.76861 1.69924 1.65975 1.63292	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.35389 0.35389 0.36224 0.37781 0.36902 0.41654 0.44103
730212 I 1 1234 567 8910 111125 1414	203° WIN y 0.0000"+00 3.0480"-04 3.5560"-04 8.3520"-03 1.4602"-03 2.5400"-03 3.4544"-03 4.2672"-03 5.0486"-03	TER/GAUDET P12/P 1.000"+00 1.7792"+00 1.77929"+00 2.8748"+00 2.5446"+00 2.5446"+00 2.5929"+00 2.83298"+00 3.0840"+00 3.2018"+00 3.3180"+00 3.5180"+00 3.7674"+00 3.7674"+00	F P NEW AND	TABULATION TU/TOD 0.93284 0.95165 0.95165 0.95806 0.968014 0.96802 0.96423 0.96423 0.96426 0.96766 0.96857	M/MD 0.0000 0.33786 0.341448 0.44531 0.44531 0.44536 0.47784 0.48057 0.55459 0.55459	U/UD 0.0000 0.48640 0.57700 0.57110 0.61720 0.64110 0.67130 0.67130 0.68250 0.69550 0.73200	T/ID 2.39512 2.07254 2.06625 1.93798 1.96524 1.67547 1.82315 1.80547 1.77683 1.75439 1.76851 1.69924	RHO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.36224 0.37781 0.38902 0.41054 0.44103
730212 1 123345 6778 91011213415141516716	203° WIN y 0.000"+00 3.0480"-04 3.5560"-04 8.36362"-04 8.36382"-03 1.4478"-03 2.5840"-03 3.0958-03 3.4544"-03 3.0958-03 3.4572"-03 5.0576"-03 7.4930"-03 8.8900"-03	TER/GAUDET PT 2/P 1 = 0000"+00 1 = 7792"+00 1 = 7792"+00 2 = 744"+00 2 = 5446"+00 2 = 5929"+00 2 = 5929"+00 2 = 5929"+00 3 = 000"+00 3 = 000"+00 3 = 2000"+00 3 = 2000"+00 3 = 74180"+00 3 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00 4 = 74180"+00	F P NEURONALANAMANAAA NEURONAAA NE	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.95806 0.96147 0.96423 0.964449 0.96716 0.96757 0.97366 0.97366 0.97366	M/MD 0.000 0.337860 0.337860 0.414483 0.44531 0.45088 0.45088 0.45088 0.550899 0.558199 0.558199 0.569448 0.6084	U/UD 0.000 0.46040 0.57700 0.57700 0.51110 0.61120 0.65410 0.671250 0.68250 0.71120 0.74450 0.77450	T/ID 2.39512 2.07254 2.0625 1.93198 1.90829 1.683571 1.77683 1.77683 1.754361 1.69924 1.63292 1.61082 1.58428 1.58488	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.35389 0.35389 0.37781 0.36224 0.37781 0.36902 0.41654 0.41654 0.46839 0.46839 0.478413
730212 1 1 2345 678 101123 14156 17118	2034 WIN y 0.000*+00 3.0480*-04 8.35560*-04 8.35560*-03 1.4672*-03 2.1844*-03 2.5400*-03 3.4544*-03 3.4572*-03 7.4930*-03 1.0211*-02 1.1252*-02	TER/GAUDET P12/P 1-0000"+00 1.7792"+00 1.7792"+00 2.7848"+00 2.44304"+00 2.54269"+00 2.5329"+00 2.6369"+00 3.2018"+00 3.2180"+00 3.7674"+00 3.7674"+00 4.2497"+00 4.3642"+00	LE FP P NEURANANANANANANANANANANANANANANANANANANAN	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.96147 0.961402 0.964423 0.96447667 0.96857 0.97397 0.97397 0.97397	M/MD 0.001337830 0.414483 0.41531 0.47677 0.50368 0.5568199 0.568199 0.568199 0.568199 0.668676	U/UD 0.0000 0.48040) 0.57700 0.57700 0.61110 0.64110 0.67130 0.67130 0.68550 0.713200 0.713200 0.74500 0.75450	T/ID 2.39512 2.07254 2.06625 1.93798 1.96824 1.87547 1.82315 1.87547 1.7683 1.77683 1.77683 1.77683 1.75439 1.65975 1.63292 1.630828 1.58828 1.58828	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.35389 0.36224 0.37781 0.38902 0.49035 0.41054 0.4103 0.45544 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839
730 I 1234456788901123445678901123446901123469000000000000000000000000000000000000	203° WIN y 0.000°*-04 3.0480°-04 8.3520°-04 1.4072*-03 1.4472*-03 2.5400*-03 3.4572*-03 4.2672*-03 5.4770*-03 7.4950*-03 7.4950*-03 1.252*-02 1.2294*-02	TER/GAUDET PT2/P 1.0000"+00 1.7792"+00 1.7792"+00 2.4940"+00 2.5940"+00 2.5920"+00 2.9350"+00 3.080"+00 3.080"+00 3.080"+00 3.5180"+00 3.5180"+00 3.718"+00 4.0712"+00 4.3612"+00 4.3612"+00 4.3612"+00 4.3612"+00 4.7772"+00	LE H D O D LAMBEMBRASHMERA R O REFERENCESERZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	TABULATION TU/TOD 0.93264 0.95165 0.95166 0.95806 0.96147 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.96423 0.97443 0.97468 0.97468 0.97468	M O C C C C C C C C C C C C C C C C C C	U/UD 0.0000 0.48640 0.57700 0.57700 0.61110 0.61120 0.65410 0.67120 0.6850 0.71200 0.77450 0.77450 0.77450 0.779450 0.7797450	T/ID 2.39512 2.07254 2.0625 1.93798 1.90840 1.68524 1.67547 1.82515 1.77685 1.77685 1.75687 1.72861 1.65775 1.63202 1.61082 1.56483 1.556483 1.556483	RMO/RHOD* 0.0000 0.23469 0.23773 0.31230 0.32449 0.32909 0.36224 0.37781 0.36224 0.3781 0.40835 0.44103 0.45544 0.46839 0.46839 0.47381 0.49381 0.50266
730212 1 1 2345 678 101123 14156 17118	203* WIN y 0.000"*00 3.0480"-04 3.5560"-04 3.5560"-04 3.5560"-03 1.4078"-03 2.5844"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.26748"-03 4.770"-03 6.4770"-03 1.7637"-02	TER/GAUDET P12/P 1.0000"+00 1.7792"+00 1.7792"+00 2.7948"+00 2.7948"+00 2.5929"+00 2.9326"+00 3.3218"+00 3.3118"+00 3.5154"+00 3.5154"+00 4.7212"+00 4.7212"+00 4.7272"+00 4.7272"+00 4.7272"+00 4.7272"+00 5.1260"+00	LE FP P NEURANANANANANANANANANANANANANANANANANANAN	TABULATION TU/TOD 0.93284 0.95165 0.95176 0.96147 0.961402 0.964423 0.96447667 0.96857 0.97397 0.97397 0.97397	M/MD 0.001337830 0.414483 0.41531 0.47677 0.50368 0.5568199 0.568199 0.568199 0.568199 0.668676	U/UD 0.0000 0.48040) 0.57700 0.57700 0.61110 0.64110 0.67130 0.67130 0.68550 0.713200 0.713200 0.74500 0.75450	T/ID 2.39512 2.07254 2.06625 1.93798 1.96824 1.87547 1.82315 1.87547 1.7683 1.77683 1.77683 1.77683 1.75439 1.65975 1.63292 1.630828 1.58828 1.58828	RMO/RHOD* 0.0000 0.23469 0.23662 0.29773 0.31230 0.32449 0.35389 0.35389 0.36224 0.37781 0.38902 0.49035 0.41054 0.4103 0.45544 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839
730 I 12345678901123456789000000000000000000000000000000000000	203* WIN y 0.000*+04 3.0480*-04 3.5560*-04 8.3520*-03 1.4072*-03 1.4072*-03 2.5400*-03 3.4544*-03 3.4544*-03 3.45672*-03 4.2672*-03 4.2672*-03 4.2672*-03 1.500*-02 1.7501*-02 1.7507*-02 1.7507*-02 1.7507*-02 1.7507*-02	TER/GAUDET PT2/P 1.0702*+00 1.7792*+00 1.7792*+00 2.4304*+00 2.5420*+00 2.5420*+00 2.5350*+00 3.08008*+00 3.08008*+00 3.08008*+00 3.08008*+00 3.7180*+00 3.7180*+00 4.7212*+00 4.7212*+00 4.7212*+00 4.7212*+00 4.7212*+00 4.7212*+00 4.7212*+00 4.7212*+00 5.3867*+00 5.3867*+00	H D O O O O O O O O O O O O O O O O O O	TABULATION TU/TOD 0.95264 0.95165 0.95165 0.95806 0.96147 0.96423 0.964416 0.96520 0.96766 0.97357 0.97366 0.97726 0.97726 0.97726	M 0 0.33403483 0 0.33403483 0 0.44144368 0 0.4450883 0 0.4450828 0 0.4503528 0 0.5503528 0 0.550354 0 0.550354 0 0.550354 0 0.550354 0 0.560364 0 0.664775 0 0.66477515	U O O O O O O O O O O O O O O O O O O O	T/ID 2.39512 2.07254 2.07254 1.970840 1.960824 1.685315 1.75459 1.72861 1.69524 1.63292 1.61082 1.56085 1.55086 1.56086 1.56086 1.56086	RMO/RHOD* 0.0000 0.23469 0.23773 0.31230 0.32449 0.32909 0.35389 0.36224 0.37781 0.36902 0.40235 0.44103 0.45544 0.46839 0.478413 0.49381 0.55265 0.55265 0.55293 0.55531
730 I 1234567 6 90 11234567 11	2034 WIN 0.000*+00 3.0480*-04 3.5560*-04 1.1938*-03 1.402*-03 2.1844*-03 2.1844*-03 3.42572*-03 4.2572*-03 4.2572*-03 1.0212*-02 1.12294*-02 1.750**-02 2.7680*-03	TER/GAUDET PT 2/P 1.000"+00 1.7792"+00 1.7792"+00 2.7924"+00 2.7924"+00 2.5929"+00 2.5929"+00 2.59269"+00 3.2018"+00 3.7674"+00 3.7674"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 4.20402"+00 5.3867"+00 5.3867"+00	HO O NECESTATE SECURIO E SECU	TABULATION TU/TOD 0.93284 0.95176 0.95176 0.96147 0.961402 0.964429 0.964716 0.968567 0.9773566 0.9773566 0.977028 0.978493 0.978493 0.978493 0.978493 0.978493 0.978493 0.978493	M / M O O O O O O O O O O O O O O O O O	U O O O O O O O O O O O O O O O O O O O	T/ID 2.39512 2.07254 2.07255 1.93198 1.90849 1.82315 1.77683 1.77683 1.77683 1.75461 1.69924 1.63292 1.61082 1.58423 1.55643 1.55643 1.551698 1.48654 1.41583	RMO/RHOD* 0.0000 0.23469 0.23773 0.31230 0.32449 0.35389 0.35389 0.35389 0.37781 0.36224 0.37781 0.36224 0.4781 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.478413 0.46839 0.478413 0.50266 0.52565 0.555531 0.58123 0.58123
730 I 12345678901123456789011234567890122345	203* WIN y 0.000"+00 3.0480"-04 3.5560"-04 3.5560"-04 3.5560"-03 1.4078"-03 2.1844"-03 2.1844"-03 3.4544"-03 4.26748"-03 3.4544"-03 4.26748"-03	TER/GAUDET PT 2/P 1.0000"+00 1.7792"+00 1.7792"+00 2.7948"+00 2.7948"+00 2.5948"+00 2.5948"+00 3.080"+00 3.080"+00 3.080"+00 3.080"+00 3.7674"+00 4.72712"+00 4.7272"+00 4.7272"+00 4.7272"+00 4.7272"+00 5.3867"+00 5.3867"+00 5.3867"+00 5.3867"+00 5.3867"+00 5.3867"+00	HO FOR CHARLES AND THE AND	TABULATION TU/TOD 0.95265 0.95176 0.951876 0.958140 0.968147 0.968140 0.9684416 0.9684416 0.968523 0.977789 0.97789 0.97789 0.97789 0.977840 0.978937 0.977840 0.978937	M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U/UD 0.0000 0.48040) 0.57700 0.57700 0.511120 0.64110 0.67130 0.67130 0.67130 0.67130 0.67130 0.77250 0.774450 0.7767460 0.7767460 0.7767460 0.78150 0.78150 0.78150 0.78150 0.78150 0.78150 0.78150 0.78150 0.88450 0.88450	T/ID 2.39512 2.076825 1.93798 1.068524 1.068524 1.075837 1.77683 1.776837 1.76801 1.05922 1.0108202 1.0108202 1.550403 1.550403 1.550404 1.43575 1.41283 1.436420	RMO/RHOD* U.0000 U.23469 0.23662 U.29773 0.3123U 0.32449 U.36224 U.363244 U.36902 U.40235
730 I 123456789011234567119012234567	203* WIN y *** 0.000**-04 3.0480*-04 3.5560*-04 1.1938*-03 1.4002*-03 2.1844*-03 2.1944*-03 3.442578-03 4.2578-03 1.0211*-02 1.75037*-02 1.75037*-02 1.75037*-02 1.75037*-02 1.75037*-02 1.75037*-02 1.75037*-02 1.75037*-02	TER/GAUDET PT 2/P 1-0792"+00 1-7792"+00 1-7792"+00 2-792"+00 2-792"+00 2-7929"+00 2-7929"+00 2-7929"+00 2-7929"+00 3-79240"+00 3-7671"+00 4-7277"+00 4-7277"+00 4-7277"+00 4-7277"+00 4-7277"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00 6-7471"+00	HO O NECESTE EXECUTE	TABULATION TU/TOD 0.932645 0.951706 0.951706 0.961402 0.961402 0.9644416 0.9644416 0.96652 0.9778563 0.9778216 0.9778070 0.9778216 0.9778216 0.9778216 0.9778216 0.9778216	M / M O O O O O O O O O O O O O O O O O	U O O O O O O O O O O O O O O O O O O O	T/ID 2.39512 2.07254 2.07254 1.93198 1.938194 1.683247 1.683247 1.77683 1.77683 1.77683 1.77683 1.754361 1.69924 1.63202 1.61082 1.554433 1.554433 1.554433 1.554433 1.55473 1.49684 1.48684 1.48684 1.48684	RMO/RHOD* 0.0000 0.23469 0.23773 0.31230 0.32449 0.35389 0.35389 0.35389 0.37781 0.36224 0.37781 0.36224 0.4781 0.46839 0.46839 0.46839 0.46839 0.46839 0.46839 0.478413 0.46839 0.478413 0.50266 0.52565 0.555531 0.58123 0.58123
730 1 1234567890123456789012345678	203* WIN y -000"*-04 3.0480"-04 3.0480"-04 3.5560"-04 3.5560"-03 1.4070"-03 2.5440"-03 3.4544"-03 4.25740"-03 4.26740"-03	TER/GAUDET PT 2/P 1.000"+00 1.7792"+00 1.7792"+00 1.7792"+00 2.440"+00 2.59360"+00 2.9360"+00 3.360"+00 3.3618"+00 3.3618"+00 3.3618"+00 4.4672"+00 4.7212"+00 4.7212"+00 4.7212"+00 4.7212"+00 5.36240"+00 5.36240"+00 5.36240"+00 5.36240"+00 5.36240"+00 5.36240"+00 6.673"+00 6.6743"+00 6.673"+00 6.6743"+00 6.6743"+00 6.6743"+00 6.6743"+00	HO O LEARNANAN AND AND AND AND AND AND AND AND AN	TABULATION TU/TOD 0.95265 0.955176 0.955176 0.955176 0.956147 0.965423 0.96644716 0.96644716 0.9677336937 0.977784037 0.977784037 0.97784128 0.9788128	M 00.334044308 00.33404444308 00.4434368 00.44378515289 00.45515899 00.55614487 00.55614487 00.55614487 00.664785	U O O O O O O O O O O O O O O O O O O O	T/ID 2.39512 2.076825 1.937980 1.068524 1.075837 1.075837 1.75857 1.75857 1.75857 1.75858 1.758481 1.758481 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463 1.558463	RMO/RHOD* U.0000 U.23469 0.23662 U.29773 0.3123U 0.32449 U.352389 U.36224 V.37781 U.38902 U.40235 U.58902 U.58902 U.58902 U.58902 U.68803 U.588133 U.588123 U.589760 U.58123 U.58760 U.58123 U.58760 U.58123 U.59760 U.63412 U.67089 U.70313 U.73781
730 1 12345678901234567890123456789	203* WIN y 0.00**-04 3.0480*-04 3.5560*-04 3.5560*-04 3.5560*-03 1.4002*-03 1.4002*-03 2.1840*-03 2.5940*-03 4.2672*-03 4.272*-03	TER/GAUDET PT 2/P 1.0792*+00 1.7792*+00 1.7792*+00 2.4940*+00 2.5920*+00 2.5920*+00 2.5920*+00 3.360*+00 3.3410*+00 3.5180*+00 3.5180*+00 3.5180*+00 3.7180*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 4.721*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00 6.741*+00	H D O A A A A A A A A A A A A A A A A A A	TABULATION TU/TOD 0.9551766 0.9551766 0.9551766 0.9651766 0.9651766 0.9651766 0.9651766 0.97651766 0.97651766 0.97651766 0.97651766 0.977776 0.977776 0.9777770 0.977770 0.977770 0.977770 0.977770 0.977770 0.97777	M 0 0.840 83 40 40 40 40 40 40 40 40 40 40 40 40 40	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.07254 2.07255 1.93798 1.90804 1.685541 1.685571 1.75483 1.754861 1.69524 1.632924 1.632924 1.632924 1.58483 1.55494 1.44885 1.448854 1.448884	RMO/RHOD* 0.0000 0.23469 0.23773 0.31230 0.32449 0.325369 0.35224 0.37782 0.44103 0.44544 0.46839 0.44544 0.46839 0.455444 0.46839 0.555531 0.57265 0.58523 0.57760 0.63412 0.67089 0.70313 0.77226
730 1 1234567890123456789012345678	203* WIN y -00 3.0480*-04 3.05500*-04 3.5550*-03 3.5550*-03 1.4004*-03 1.4004*-03 2.5944*-03 3.4576*-03 4.2676*-03 4.2676*-03 4.2676*-03 4.2676*-02 2.594**-03 4.2676*-02 2.594**-03 3.0256*-02 2.594**-03 3.0257*-02 2.594*-03 3.0257*-02 2.594*-03 3.0257*-03 3.0257*-03 3.0257*-03 3.0257*-03 3.0257*-03 3.0257*-03 3.0257*-03 3.0257*-03	TER/GAUDET P12/P 1.002*+000 1.7792*+000 1.77929*+000 2.79308*+000 2.59369*+000 2.59369*+000 2.59369*+000 2.59369*+000 3.364*+000 3.51874*+000 4.3642*+000 4.3642*+000 4.3642*+000 4.3667**+000 4.3667**+000 5.3867**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 5.386840**+000 6.8673**+000 6.8673**+000 6.8673**+000 6.8673**+000	HO O LEARNANAN AND AND AND AND AND AND AND AND AN	TABULATION TU/TOD 0.95265 0.955176 0.955176 0.955176 0.956147 0.965423 0.96644716 0.96644716 0.9677336937 0.977784037 0.977784037 0.97784128 0.9788128	M 00.3370348 00.3370348 00.334348 00.41443518 00.445038 00.445038 00.45036 00.45036 00.52455 00.52455 00.558149 00.558149 00.558149 00.558149 00.558149 00.5740	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.072545 1.93198 1.90829 1.683247 1.82317 1.77683 1.77685 1.77686 1.769624 1.63692 1.61082 1.55473 1.55473 1.55473 1.55473 1.516984 1.48654 1.41626 1.318343 1.24069	RMO/RHOD* U.0000 U.23469 0.23662 U.29773 0.3123U 0.32449 U.352389 U.36224 V.37781 U.38902 U.40235 U.58902 U.58902 U.58902 U.58902 U.68803 U.588133 U.588123 U.589760 U.58123 U.58760 U.58123 U.58760 U.58123 U.59760 U.63412 U.67089 U.70313 U.73781
730 1 12345678901234567890123456789012	203* WIN 0 00*+00 3 0480*-04 3 0480*-04 3 1480*-03 1 14002*-03 2 1840*-03 2 1840*-03 3 14002*-03 3 14008*-03 3 14008*-03 3 14008*-03 4 1500*-03 4 1500*-03 4 1500*-03 4 1500*-03 5 1500*-03 4 1500*-03 4 1500*-03 5 1500*-03 4 1500*-03 5 1500*-03 4 1500*-03 5 1500*-03 6 100	TER/GAUNET P12/P 1.00"+00 1.7792"+00 1.7792"+00 2.792"+00 2.4340"+00 2.5320"+00 2.5320"+00 2.5320"+00 3.34180"+0	H D O LIBERTARIAN AND AND AND AND AND AND AND AND AND A	TABULATION TU/TOD 0.9551766 0.95517660147 0.965127660147 0.9654441660147 0.9664441600000000000000000000000000000000	M 00.3343444318368 00.445084747877 00.445036340 00.4450362899 00.55084937640 00.55084937640 00.550849377953821900.550849377953821900.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.55084938219000.550849382190000.550849382190000.550849382190000.550849382190000.55084938219000000000000000000000000000000000000	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.07254 2.07254 1.93084 1.685541 1.685571 1.75485 1.754861 1.652924 1.652924 1.652924 1.652924 1.56463 1.554694 1.44088 1.44088 1.44088 1.41283 1.24048 1.17833 1.14111	RMO/RHOU* 0.0000 0.23469 0.23773 0.31230 0.32449 0.325369 0.35224 0.37781 0.36224 0.37781 0.44633 0.446349 0.446839 0.446839 0.446839 0.455449 0.46839 0.5555323 0.5555323 0.57760 0.63412 0.77726 0.80378 0.80378 0.80378 0.80378
730 I 12345678901234567890123456789012333333333333333333333333333333333333	2034 WIN y	TER/GAUNET P12/P 1-7792*+00 1-7792*+00 1-7792*+00 2-792*+00 2-792*+00 2-792*+00 2-792**+00 2-792**+00 2-592**+00 2-592**+00 2-592**+00 3-518**+00 3-518**+00 3-518**+00 3-518**+00 3-518**+00 4-727**+00 4-727**+00 4-728**+00 5-368***+00 5-368***+00 6-68***+00 5-368***+00 6-68***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88***+00 6-88****+00 6-89*****+00 6-89*****+00 6-89******+00 6-89************************************	HO O NECESTE ENTRE ENTR	TABULATION TUATION TUATION TUATION TUATION TUATION C9511706 C9511706 C9511706 C9614723 C9614723 C9614723 C9614723 C9614723 C9614723 C9614723 C97784 C97784 C97784 C97784 C97784 C97784 C97784 C97784 C97786	M 00.334344413318 00.334344443518 00.44503684776776 00.4450368999 00.450352859999 00.55285189999 00.55285189999 00.5528519999999999999999999999999999999999	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.072545 1.93198 1.908494 1.68547 1.82315 1.77683 1.77683 1.77683 1.754664 1.63208 1.61082 1.61082 1.51698 1.48553 1.556473 1.51698 1.48573 1.36426 1.31833 1.24669 1.24433 1.24669	RMO/RHOD* 0.0000 0.23469 0.23462 0.29773 0.312449 0.352449 0.35389 0.35289 0.37781 0.36224 0.37781 0.4054 0.4103 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45548 0.470313 0.570368 0.60378 0.80378 0.80520
73 1 123456789012345678901234567890123456789012345678901234567890123333345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901234678901200000000000000000000000000000000000	203* WIN y	TER/GAUDET P12/P 1.7792*+000 1.7792*+000 1.7792*+000 1.7792*+000 2.440*+000 2.59360*+000 2.93600*+000 3.320108*+000 3.320108*+000 3.32108*+000 3.3212*+000 4.3212*+000	H O O O O O O O O O O O O O O O O O O O	TABULY 7 0 D TUY 7 2645 O. 955176 O. 9551876 O. 9551876 O. 9551876 O. 9551876 O. 9551876 O. 95614723 O. 96644716 O. 96644716 O. 96644716 O. 97778 O. 97778 O. 97778 O. 97779 O. 9778 O. 9788 O. 9778 O. 9788 O.	M 00.334044518388477 00.3340444508877 00.3340444508877 00.44501528991897 00.45015285194877 00.556149477 00.556149477 00.664477 00.66447 00.664	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.07625 1.931980 1.968524 1.68524 1.68571 1.77687 1.72651 1.56965 1.56865	RMO/RHOD* U.0000 U.23469 0.23662 U.29773 0.3123U 0.32449 U.35284 U.36224 U.36902 U.40235 U.40236 U.
730 I 123456789012345678901234567890123345678901233456789012333333556	203* WIN y ***********************************	TER/GAUNET P1 2/P 1-7792*+000 1-7792*+000 1-7792**+000 1-7792**+000 2-7924**+000 2-7924**+000 2-9240**+000 2-9240**+000 3-3180**+000 3-3180**+000 3-3180**+000 3-3180**+000 3-3180**+000 3-3180**+000 4-3180**+000 4-3180**+000 4-3180**+000 5-38820**+000 6-38830**+000 6-388	HO O NECESTE ENTRE ENTR	TABULATION TUATION TUATION TUATION TUATION TUATION C9511706 C9511706 C9511706 C9614723 C9614723 C9614723 C9614723 C9614723 C9614723 C9614723 C97784 C97784 C97784 C97784 C97784 C97784 C97784 C97784 C97786	M 00.334344413318 00.334344443518 00.44503684776776 00.4450368999 00.450352859999 00.55285189999 00.55285189999 00.5528519999999999999999999999999999999999	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.072545 1.93198 1.908494 1.68547 1.82315 1.77683 1.77683 1.77683 1.754664 1.63208 1.61082 1.61082 1.51698 1.48553 1.556473 1.51698 1.48573 1.36426 1.31833 1.24669 1.24433 1.24669	RMO/RHOD* 0.0000 0.23469 0.23462 0.29773 0.312449 0.352449 0.35389 0.35289 0.37781 0.36224 0.37781 0.4054 0.4103 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45544 0.46539 0.45548 0.470313 0.570368 0.60378 0.80378 0.80520
73	2034 WIN 0 00 4 + 00 3 0480 7 + 04 3 0480 7 + 04 3 0480 7 + 04 3 1400 8 + 03 1 1400 8 + 03 2 1840 8 + 03 2 1840 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1400 8 + 03 3 1500 8 + 03 3 1500 8 + 03 3 1600 8 + 03	TER/GAUDET P12/P 1.7792*+000 1.7792*+000 1.77929*+000 2.79304*+000 2.79304*+000 2.59360*+000 2.92404*+000 2.59360*+000 3.32418*+000 3.32418*+000 3.32418*+000 4.32560*+000 3.32418*+000 4.32560*+000 3.32418*+000 4.32560*+000 4.32560*+000 4.32560*+000 4.32560*+000 4.32560*+000 4.32560*+000 4.32560*+000 4.32560*+000 5.336240*+000 5.336240*+000 6.267**+000		TABULATION TUATION TUATION TUATION TUATION TUATION CO.951706 CO.951706 CO.951706 CO.9614729 CO.9644416 CO.9644716 CO.96471336921 CO.967336931 CO.97789776774 CO.97789776774 CO.9778977677 CO.977897777 CO.97881139	M 00.3343444368 M 00.334344443688 M 00.334344445088 M 00.445088998 M 00.445088998 M 00.45518518998 M 00.45518518998 M 00.45518518998 M 00.45518518998 M 00.45518518998 M 00.5501898 M 00.55	U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	T/ID 2.39512 2.07254 1.93194 1.96824 1.687547 1.88371 1.75483 1.754861 1.652924 1.652924 1.658463 1.556463 1.556463 1.556463 1.556463 1.51288 1.41283 1.41283 1.240684 1.17233 1.140898 1.17233 1.140898 1.17233	RMO/RHOU* 0.0000 0.23469 0.23469 0.29773 0.312449 0.32449 0.325369 0.35224 0.37781 0.44533 0.44103 0.445849 0.446849 0.446849 0.446849 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.455449 0.45545 0.52565 0.52565 0.52565 0.52565 0.52565 0.52760 0.637881 0.777226 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.80378 0.803881 0.923801

INPUT VARIABLES Y, U/UD, RHO/PHOD ASSUME P=PD

Windtunnels a) symmetrical flexible nozzle, b) asymmetric block nozzle. Both: W = H = 1.22 m, continuous, 30 minutes settling time. a) P0 : 0.07 MN/m^2 T0 : 314 K. b) $0.02 < \text{P0} < 0.62 \text{ MN/m}^2$. 339 < T0 < 352 Dried air, dew point 244 K. 2 < RE/m X $10^{-6} < 17$.

ALLEN J.M. 1973a. Evaluation of compressible-flow Preston tube calibrations. NASA TN D-7190. And Allen (1972), and private communications.

- 1 The test boundary layers were formed on the flat side walls of the two wind-tunnels by expansion through two-dimensional nozzles. For a) the test station was "about 5 m from the throat" on the centre line of the test section wall, while for b) it was "midway of the test section" which was 2.13 m long. The test section walls were not cooled and were allowed to reach equilibrium temperature. The surfaces were smooth to 0.8 µm.
- Wall shear stress was measured using a commercial balance (Kistler, d = 9.27 mm) as described by Paros (1970), and a wide range of Preston tubes (d_1 from 1.3 to 48 mm) were used as the principal aim of the investigation was to calibrate these. For case a) the static pressure was measured at orifices on the tunnel sidewall about 1.6 m upstream of the test station.
- 7 Pitot pressure profiles were taken using an asymmetric FPP for which h_1 = 0.26, h_2 = 0.08, b_1 = 0.88 (E) mm.
- 8 The wall thickness next to the tunnel wall was 0.13 mm. The profile normal was "a few cm" upstream of the balance centre, no adjustment to the values being made as it was estimated that the difference would be
- 9 below 0.03 % in CF. The static pressure was assumed to be constant through the layer and equal to the
- 10 value calculated from Pitot measurements at the boundary layer edge. No Pitot corrections were applied
- 11 and Sutherland's viscosity law was assumed. The author tabulates profiles of M and U/UD calculated on the
- basis of iso-energetic flow. The editors have replaced this assumption with the van Driest / Crocco temperature-velocity correlation assuming an adiabatic wall. The edge total state has been arbitrarily set at the tunnel stagnation conditions.
- 13 The profiles presented here are for three different Mach numbers, the sets for M = 2.3 (02) and $M = ^4.6$ (03)
- covering a range of Reynolds number. The CF values associated with the profiles are those measured with the balance. The value for 0301 is the author's extrapolation from other measurements at that Mach number, no balance measurement having been taken. The Preston tube results are not presented here but are fully tabulated in the source. The results are summarized in Allen (1973b).
- § DATA: 7303 0101-0306. Pitot profiles NX = 1. CF from Balance.

15 Editors' comments

This experiment provides, together with Hopkins & Keener - CAT 6601, the principal body of calibration data for Preston tubes at high Reynolds numbers and moderate Mach number. There is no information relating to symmetry or cross flow in the tunnel wall boundary layers - all profiles except 0101 are taken in an asymmetric configuration - and whether from this cause or another, the profile characteristics do not match typical zero-pressure-gradient data in the outer region. In the inner region, transformed wall law plots show that the balance readings vary by at least $\frac{1}{2}$ 15 % from the mean. The balance is very small for an experiment on this scale, and correspondingly very difficult to use (d = 0.3 mm; cf. CAT 6601, d = 50.8 mm; CAT 7302, d = 368.3 mm).

Experiments comparable in range are Jackson et al. - CAT 6505, Hopkins & Keener - CAT 6601 and Winter & Gaudet - CAT 7302. Makey et al. - CAT 7402 provide flat plate data for comparison and contrast.

Note added in proof. The author has recently obtained fresh CF data using two more Kistler balances, giving values about 10% higher.

See also J.M. Allen (1976) NASA TN4D-8291) for tests with a much larger balance.

CAT 7303	ALLEN		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	5.	
RUN	MD +	TW/TH+	REDZW	GF *	H15	H12K	PW	PD
X	POD*	PW/PD4	REDZO	ÇO	H32	1435K	TH	T D
RZ	TOD*	3W *	D5	PI2*	H42	DZK	UD	TR
73030101	1.9830	1.0000	2.6469"+04	1.7600"=03	2,8385	1-2734	9.1747*+03	9-1747"+03
NM	6.9914*+04	1.0000	4.0975*+04	NM	1.8212	1.8110	2.9962"+02	1.7577"+02
INFINITE	3.1400*+02	0.0000	5.1107"-03	0.0000*+00	0.0834	6.2415*-03	5.2711"+02	2.9962*+02
73030201	2,3250	1.0000	9.0391"+03	1.8240"-03	3,3693	1.2412	1,7143"+03	1.7143"+03
NM	2.2292*+04	1.0000	1.5754"+04	NM	1.8305	1.8246	3.2066*+02	1.6289"+02
INFINITE	5.1900*+62	0.0000	8.0781"-03	0.0000*+00	0.0992	1.0351"-02	5.9495"+02	3.2068"+02
73030202	2.3190	1.0000	1.4131 +04	1.7600"-03	3,3437	1.2329	2.8317"+03	2.8317"+03
NM	3.6477"+04	1.0000	2.4574"+04	NM	1.8409	1.8295	3.2073*+02	1.6333"+02
INFINITE	3.3900"+02	0.0000	7.6766"-03	0.0000*+00	0.0992	9.7729*-03	5.9422"+02	3.2073"+02
73030203	2,3160	1.0060	2.6212"+04	1.6260"-03	3.3207	1.2205	5.67234+03	5.6723"+03
NM	7.2954"+04	1.0000	4.5564*+04	NM	1.8473	1,8367	3.2074*+02	1.6340"+02
INFINITE	3.3900"+02	0.0000	7.1132*-03	0.0000"+00	0.0995	5.9874"-03	5.9409"+02	3.2074*+02
73030204	2.3170	1,0000	3.8242*+04	:.5360*-03	3.2998	1,2099	6.6007*+03	8.6007"+03
NM	1,1044"+05	1.0000	6.6430"+04	NM	1.8535	1.8434	3.2075*+02	1.0345"+02
INFINITE	3.3900"+02	0.0009	6.8489*-03	0.0000*+00	0.0998	6.5858*-03	5.9397"+02	3.2075"+02
73030205	2.3210	1.0000	4.8315"+04	1.4690*=03	3.3001	1.2058	1.1370"+04	1.1370*+04
ИМ	1.4692"+05	1.0000	8.4080"+04	NM	1.8556	1.8458	3.2072"+u2	1.6316"+02
INFINITE	3,3900"+02	0.0000	6.5279*-03	0.0000*+00	0.1001	8.1680*-03	5.9446"+02	3.2072"+02
73030301	a 6550	1.0000	2.6742"+03	1,0290*-03	9,5638	1.2453	2.2278"+02	2.2276*+02
И₩	7.4981"+04	1.0000	1.0927*+04	ЙM	1.8586	1.8267	3.2234"+02	6.6761"+41
INFINITE	3.5200"+02	0.0000	5.9457*-03	0.0000*+00	0.1566	1.1691"-02	7.5718"+02	3.2234*+02
73036302	4.6000	1.0000	4.2603"+03	9.8900*-04	9.4688	1.2427	3.8044"+02	3.8044"+02
NM	1.2463*+05	1.0000	1.7276"+04	NM	1.5611	1.5288	3,2239*+02	6.72784+01
INFINITE	3.5200*+02	0.0000	5.5954"-03	0.0000*+00	0.1566	1.0859*-02	7.5649"+02	3.2239*+02
73030303	4.6120	1.0000	7.8086"+03	4.0400*=04	9,4461	1.2225	7.4973*+02	7.4973*+02
NM	2.4926"+05	1.0000	3.1796"+04	MM	1.8687	1.8389	3.2234*+02	6.6995"+01
INFINITE	3.5200"+02	0.0000	5.1793"-03	0.0000*+00	0.1574	9.8431"-03	7.5687*+02	3.2236*+02
73030304	4.6190	1.0000	1.1106*+04	8,8300"-04	9.4259	1.2087	1.1150*+03	1.1150*+03
MW	3.7389"+05	1.0000	4.5332"+04	NM	1.8741	1.8464	3,2234"+02	6.6831"+01
INFINITE	3.5200*+02	0.0000	4.9396"~03	0.0000*+00	0.1579	4.2366*-03	7.5709"+02	3.2234*+02
73030305	4.6220	1.9000	1.4243"+04	8.6100"-04	9.4120	1.2007	1.4812"+03	1.4812"+03
NM	4.9852"+05	1.0000	5.8198*+04	NM	1.0771	1.8508	3.2234"+02	6.6761"+01
INFINITE	3.5200"+02	0.0000	4.7630"-03	0.0000*+00	0.1582	0.031303	7.5718*+02	3.2234*+02
73030306	4.6400	1.0000	1.6996"+04	8.4900"-04	9.4507	1.1932	1.8110"+03	1.8110"+03
NM	6.2315"+05	1.0000	6.9877"+04	NM	1.8803	1.8553	3,2229"+02	6.6341*+01
INFINITE	3.5200*+02	0.0000	4.6[51"-03	0.0000"+00	0.1587	8.4950"-03	7.5774"+02	3.2229*+02

730302	01 ALLEN	ı	PROFILE	TABULATION	21	POINTS, DEL	TA AT PUI	NT 25
1	Y	P12/P	P/PD	10/100	MVND	U/UD	1/10	RH0/RH0D+U/UD
1	u.0000*+00	1.0000"+00	[#M	0.94597	0.00000	0.00000	1.96869	0.00000
2	1.8000"-04	1.7976"+00	Mr.	0.96140	0.41075	0.53432	1.69213	0.31576
3	6.4000"-04	1.7895"+00	N P4	0.96129	0.40903	0.53239	1.69412	0.31426
4	1.1900~-03	2.0645*+00	NW	0.96475	0.46151	U.58957	1.63198	0.36126
5	5.0800"-03	2.7784"+00	Nw	0.97210	0.56774	0.69540	1.50025	0.46352
6	8.8900"-03	3.1448"+00	NM	0.97533	0.61376	0.73712	1.44236	V.51105
7	1.2799"-02	3.4322"+00	NM	0.47767	0.64731	0.76500	1.40031	0.54702
8	1.6510"+02	3.6806*+00	114.	0,97958	0.67484	0.76874	1.36606	0.57739
9	2.0320"-02	3.8784"+00	HM	0.98104	0.69591	0.80559	1.34003	0.60117
10	2.4130"-02	4.0404*+00	MI	0.95218	0.71269	0.81865	1.31948	0.62044
11	3.3020"-02	4.4746"+00	NW	0.98508	0.75570	U.85079	1.26751	0.67123
12	4.0640"-02	4.7991"+00	11M	0.98710	0.78624	0.87245	1.23134	0.70854
13	4,8260*-02	5.0885"+00	ΝΨ	0.98880	0.81247	0.89033	1.20083	0.74143
14	5.5880"-02	5.4624*+00	Myc	0.49088	u.84516	0.91167	1.16357	U.78351
15	0.3500"-02	5.7433*+00	N≯.	0.99235	0.86882	0.92649	1.13718	0.81473
16	7.1120"-02	6.1010*+00	MM	0,99413	0.89506	0.94413	1.10522	U.85425
17	7.8740"=02	6.3389"+00	NA:	0.99526	0.91699	U.95515	1.08495	0.86036
18	8.6360"-02	6.6434"+00	1434	0.99665	0.94065	0.96849	1.06008	0.91360
19	4.3980*-02	6.8526*+00	ИW	0.99757	0.95656	0.97721	1.04365	0.93634
20	1.0160"-01	7.0481"+00	NM	0.99840	0.47118	0.98505	1.02875	U.95751
21	1.0922"-01	7.1586"+00	Mr.	0.99856	0.97935	0.98935	1.02052	0.96946
55	1.1684"=01	7.2465"+00	MM	0.999?2	0.98581	0.99271	1.01406	U.97895
53	1.2446"-01	7.3647"+00	Mrs	0.99967	0.99441	0.99715	1.00552	0.99168
24	1.3208"=01	7.3825*+00	116	0.99976	U.99570	0.99781	1.00424	0.99359
0 25	1.3970"-01	7.44207+00	ИW	1.00000	1.00000	1.00000	1.00000	1.00000
56	1.4732"-01	7.4420*+00	MW	1.00000	1.00000	1.00000	1.00000	1.40000
27	1.5240"-01	7.4420*+90	N۳	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, 11 ASSURE PEPD AND VAN DRIEST

ķ.

730302	05 ALLEM	V	PROFILE	TABULATION	26	POINTS, DEL	TA AT PUI	NT 25
1	Y	PT2/P	P/PD	T0/T0D	M/MD	0700	סועד	RHO/RHOU*U/IID
1	0.0000*+00	1.0000*+00	NM	0.94606	0.00000	U.00000	1.96536	0.0000
Š	1.8000"-04	2.1149"+00	Nh	0.96543	0.47092	U.59916	1.61880	0.37012
3	6.4000"-04	2.1693"+00	NM	0.95604	0.47997	U.60859	1.60780	U.37852
4	1.1900"-03	2.4192*+00	ИW	0.96871	0.51874	0.64793	1.56009	0.41531
5	5.0800"-03	3.2241*+00	NM	0.97608	0.62430	0.74605	1.42805	0.52242
6	8.8900"-03	3.6214"+00	ИW	0.97923	0.66954	0.78417	1.37174	0.57166
7	1.2700"-02	3.8416"+00	NM	0.45086	0.69324	0.80323	1.34252	0.59830
8	1.6510"-02	4.0531"+00	Иw	0.98236	0.71521	0.82036	1.31567	0.62353
9	2.0320"-02	4.2585"+00	N₩	0.98376	0.73589	U.83602	1.29064	U.64775
10	2.4130"-02	4.4836"+00	NM	0.98523	0.75786	0.85216	1.26434	0.67400
11	3.3020"-02	4.9402"+00	NM	0.98803	0.80052	0.88210	1.21421	V.72648
12	4.0640"-02	5,3084*+00	NM	0.99013	0.83326	0.90388	1.17667	V.76816
13	4.8260"-02	5.6047*+00	NM	0.99172	0.85868	0.92008	1.14813	0.80138
14	5.5880"-02	5.9206*+00	NM	0.99334	0.88496	0.93622	1.11921	0.83651
15	6.3500*-02	6.2789"+00	NM	0.99506	0.91383	0.95325	1.08814	0.07604
16	7.1120*-02	6.5651"+00	NM	0.49639	0.93623	U.96598	1.06456	0.90740
17	7.8740*-02	6.8014"+00	ЙW	0.99744	0.95433	0.97590	1.04565	0.93318
18	8.6360"-02	6.9615"+00	NH	0.99813	0.96639	0.98247	1.03355	U.95058
19	9.3980"-02	7.1178*+00	NM	0.99878	0.97803	0.98864	1.02141	0.96753
50	1.0160*-01	7.2465"+00	Na	0.99931	0.98751	U.99350	1.01235	0.98146
ěi	1.0922"-01	7.3173"+00	NM	0.99960	0.49268	0.99625	1.00722	0.98911
22	1.1684"-01	7.3351*+00	NM	0.99967	0.99397	0.99692	1.00594	0.99103
23	.2446"-01	7.3944*+00	NM	0.99991	0.99828	0.99912	1.00169	0.99743
24	1.3206"=01	7.4122*+00	NM	0.99998	0.99957	0.99978	1.00042	0.99936
D ŽŠ	1.3970"-01	7.4182"+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000
5.0	1.4732"=01	7.41824+00	1114	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

7303030	ALLEN	1	PHOFILE	TABULATION	28	POINTS, SEL	TA AT PUI	NT 27
I	Y	PTZ/P	P/PD	10/100	MZMD	U/UD	7/10	RHO/RHOD*U/UD
1	0.0009*+09	1.0000"+00	N30	0,91572	0.00000	0.00000	4,42823	0.00000
2	1.8000 -04	2.1719"+00	ΝM	0.93509	0.24124	0.47936	3.94855	U.12140
3	6.4000 = 04	2.1746*+00	Nw	0.93512	0.24145	0.47971	5.44726	U.12153
4	1.1900"-03	2.3700*+00	11w	0.93715	0.25692	0.50423	3.85491	U.13U8O
5	5.0800*-03	4.8505*+00	NW	0.95583	0.39788	Q.689H7	3.00629	v.22948
6	8.8900"-03	5.7900"+00	N₩	0.96085	0.43899	0.73174	2.77846	0.26336
7	1.2700"-02	6.4542*+00	HM	0.96395	0.46582	0.75649	2.63742	v.28683
8	1.6510"-02	7,1236"+00	MM	0.96678	0.49135	0.77851	2.50920	0.31018
9	2.0320*-02	7.7498*+00	NW	0.96918	0.51406	0.79641	2.40013	0.33182
10	2.4130"-02	8.3728*+00	٧w	0.97137	v.53570	0.81255	2.30069	v.3531 d
11	3.3020"-02	9.8277*+00	NM	0.97583	0.54308	0.84453	2.09763	0.40257
12	4.0640*+02	1.1117*+01	£4m	0.97918	0.62203	0.86770	1.94592	0.44591
13	4,8260"-02	1.2380*+01	ИW	0.98201	0.65794	0.88689	1.81705	U.48809
14	5.5880"-02	1.3590*+01	IAN	0.98440	0.59061	0.90272	1.70860	0.52834
15	6.3500*-02	1.4885"+01	FĮM	0.98566	0.72395	0.91744	1.60605	0.57124
16	7.1120*-02	1.6027"+01	tim	0.98843	0.75206	0.92885	1.52541	0.60891
17	7.8740*-02	1.7276"+01	Lity	0.99018	0.78170	0.93996	1.44591	U.65008
16	8.6360*-02	1.8459*+01	IfW	0.99168	0.80874	0.74935	1.37796	0.68896
19	9.3980"-02	1.9553"+01	NN:	0.99294	0.83297	0.95722	1,32056	0.72486
20	1.0160"-01	2.0863"+01	lin.	0.99455	0.86153	0.96587	1,25688	0.76847
2 !	1.0922"-01	2.2058"+01	14M	4.99548	0.88598	0.97278	1.20555	0.80692
22	1,1684"-01	2.3039*+01	ИM	0.99635	0.90588	0.97811	1.16580	U.8390U
23	1.2446*-01	2.4606"+01	ΙŝΜ	0.99763	0.93682	0.98587	1.10744	0.89022
24	1.320A"-01	2.5586"+01	NM	0.99837	V. 95565	0.99031	1.07385	U.9222U
25	1.3970"-01	2.6492"+01	ММ	0.99902	0.97274	0.99417	1.04454	0.95177
65	1.4732"-01	2.7309"+01	NM	0.99957	0.98788	11.99745	1.01947	0.97841
U 27	1.5494"-01	2.7971"+01	Иh	1.00000	1.00000	1.00000	1.00000	1.00000
85	1.5621"-01	2.7963"+01	Nr.	1,00001	1.00022	1.00004	0.99966	1.00039

INPUT VARIABLES Y.H ASSUME PEPU AND VAN DRIEST

730303	OG ALLEN		PROFILE	NOITABUBAT	28	POINTS, DE	LTA AT PUI	NT 27
1	Y	P12/P	P/PD	TO/TOD	M/MD	UVUD	T/TD	RHO/RHOD*U/UD
1 2	0.0000*+00 1.8000*=04	1.0000"+00	Nh Nh	0.91560	0.00000	0.00000 0.58614	4.85810 3.53263	0.00000 0.16592
3 4	6.4000*-04	3.4436*+00 4.0404*+00	rh NM	0.94637 0.95065	0.32500	0.60380 0.64439	3.45155 3.25606	0.17493 0.19791
5 6	5.0800"-03 8.8900"-03	6.1654*<00 7.2819*+00	Иh Им	0.96251 0.96727	0.45259	0.74555 0.78245	2.71361 2.49605	0.27474
7 8	1.2700"-02	6.2777"+00 9.2751"+00	₩ HW	0.97091	0.53039	0.80954	2,32966	0.34749 0.38121
10	2.0320"-02 2.4130"-02	1.0079"+01	NN NN	0.97639	0.58858 0.61250	0.84869	2.07919	0.40818 0.43473
11 12 13	3.3020*-02 4.0460*-02 4.5260*-02	1.2576"+01 1.3946"+01 1.5325"+01	ИМ ИМ ЯМ	0.98229 0.98492 0.98723	0.66078 0.69720 0.73211	0.88890 0.90624 0.92128	1.80966 1.68956 1.58353	U.49120 U.53638 U.58179
14 15	5.5880"=02	1.6833"+01	NM NM	0.98945	0.76832		1.48226	0.63107 0.67323
16 17	7.1120"-02	1.9543"+01	NM NM	0.99280	0.82953	0.95638 0.96440	1.32423	0.71950 0.75947
16	9.3980"-02	2.1974*+01	NM NM	0.99526	0.88082	0.97153	1.21657	0.79858 0.84688
20 21	1.0160"-01	2.4684"+01 2.5734"+01	NM NM	0.99756 0.99835	0.93470	0.98544	1.11152	0.88657 0.92059
52 55	1.1684"-01	2.6794"+01 2.7462"+01	NM IJM	0.99909 0.99954	0.98485	0.99460	1.04154	0.95494 0.97656
24 25	1.3208"-01	2,7900"+01 2.8055"+01	NM NM	0.99992	0.99483	0.99893	1.00826	0.99074 0.99575
26 D 27 28	1.4732"=01 1.5494"=01 1.5621"=01	2.8150"+01 2.8186"+01 2.8186"+01	M1 M1 M1	0.99998 1.00000 1.00000	0.99935 1.00000 1.00000	0.99987 1.00000 1.00000	1.00103	0.99884 1.00000 1.00000

INPUT VARIABLES Y,M ASSUME PEPD AND VAN DRIEST

M : 3.8 rising to 4.5

R THETA X 10⁻³: 6 - 50

TW/TR : 1.0, 0.8, 0.25

7304

FPG AM-MHT-SHT

Boundary layer channel. Effectively continuous. W = 0.33 H = 0.272 m. $0.1 < PO < 1.1 \text{ MN/m}^2$. TO: 336, 423 K. Air, dew point 215-233 K. 2 < RE/m X 10^{-6} < 40.

VOISINET R.L.P. and LEE R.E., 1973. Measurements of a supersonic favourable pressure-gradient turbulent boundary layer with heat transfer - Part I, Data compilation. NOLTR 73-224.

And Voisinet and Lee (1972) CAT 7202 with associated references, Brott et al. (1969)

- 1- The tests were performed in the purpose-built channel used for CA1 7202 and described in that entry.
- 11 The flexible wall was set to give a monotonically accelerating flow, the coordinates being given in table 1, and the resulting pressure history in table 2. The plate surface temperature history is given in table 3. (Tables 2 and 3 are facsimiles of the authors' tables 283.) The instrumentation employed was also as for CAT 7202.
- 8 The relative positions of profiles and wall measurements at any one station were again as for CAT 7202, but profiles and wall measurements were made at an additional upstream station (X = 1.194 m for profiles, 1.270 m for wall measurements). The positions at which differing measurements were made are given in
- table 4. The heat transfer measurements in the AW condition were made to ensure that the wall temperature had been adjusted to a practical zero heat transfer condition, taking into account the effect of nozzle region heat transfer.
- 12 The editors have accepted the interpolations and corrections made by the authors. In several cases, differing repeated data for a single Y-value have been averaged. The adge state has been calculated from the static pressure and temperature data with the Hach number as presented. The authors interpolated the CF data to agree with the boundary conditions for the measured profiles, and these are the values given here. The editors have interpolated the CQ data in their original form, as Stanton numbers, to match the profiles on the basis of the authors' R THETA values alone. No heat transfer data are presented for the SHT condition, as the only measurements were at a station not associated with a profile.
- 13 The profiles presented and their associated instrumentation are listed in table 5. CF data is given for
- 14 all while CQ is not given for the SHT case since it was not effectively measured.
- 6 DATA: 7304 0101-1503. Pitot and TO profiles measured simultaneously. NX up to 5. CF from FEB, CQ from thermopiles measured separately.

15 Editors' comments

The remarks made in the first three paragraphs of § 15 CAT 7202 apply equally here, except that in this case the measurements were all made in a fully reflected-wave flow-region. Static pressure variation along a normal is therefore found to be small. There are no properly comparable experiments, but similar pressure histories were studied by Michel (CAT 6902) and Thomas (CAT 7401) at lower Mach numbers and without heat-transfer.

Many of the profiles display characteristics which could be interpreted as transitional characteristics were it not for the high Reynolds numbers.

TABLE 1 NOZZLE CONTOUR COORDINATES									
x (meters)	y (meters)	x (meters)	y (meters)	x (meters)	y (meters)				
0.0000	0.01016	0.9144	0.08534	1.8034	0.18263				
0.2794	0.02128	1.0668	0.10312	1.9812	0.19939				
0.3810	0.02784	1.2446	0.12319	2.1591	0.21768				
0.5588	0.04597	1.4224	0.14275	2.3368	0.23952				
0.7366	0.06591	1,6002	0.16154						

Facsimile from source paper

TABLE 2
AVERAGE NOZZLE WALL-PRESSURE AND PRESSURE-GRADIENT DISTRIBUTIONS

	n /n	1 dP _{sw} (1)
× (meters)	P _{sw} /P _o	10
1.016	.9895E-02	1649E-01
1.041	.9488E-02	··•1557£-01
1.067	.9103E-02	1470E-01
1.092 1.118	.8740E-02	1387£-01 - 1308E-01
1.143	.8076E-02	1233E-01
1.168	.7772E-02	1162E-01
1.194	.7485E-02	1095E-01
1.219	.7215E-02	1031E-01
1.245	.6961E-02	9709E-02
1.270	.6722€~02	9142E-02
1.295	.6496E-02	8607E-02 8104E-02
1.321 1.346	.6284E-02	7632E-02
1.372	.5896E-03	7188E-02
1.397	.5719E-02	6773E-02
1.422	.5552E-U2	6385E-02
1.448	.5394E-02	6022£-02
1.473	.5246E-02	5683 <u>E</u> -02
1.499	.5106E-U2	5368E-02
1.524	.4973E-02	5075E-U2
1.549	.4848E-02	4803E-02
1.575 1.600	.4729E-02 .4616E-02	4550E-02 4316E-02
1.626	.4509E-02	4099E-02
1.651	.4408E-02	3898E-02
1.676	.4311E-02	3712E-02
1.702	.4219E-02	3539E-02
1.727	.4131E-02	3379E-02
1.753	.4048E-02	3231E-02
1.778	.3967E-02 .3890E-02	3092E-02 2963E-02
1.803 1.829	•3817E-02	2841E-02
1.854	•3746E-02	2725E-02
1.880	.3678E-02	2615E-02
1.905	.3613E-02	2509E-02
1.930	.3551E-02	2406E-02
1.956	.3491E-02	2305E-02
1.981	.3434E-02	2204E-02
2.007	.3379E-02 .3327E-02	2103E-02 1999E-02
2.032 2.057	.3277E-02	1893E-02
2.083	.3231E-02	1783E-02
2.108	.3187E-02	1667E-02
2.134	.3146E-02	1544E-02
2.159	.3108E-02	1413E-02
2.164	.3074E-02	1274E-02
2,210	.3044E-02	1124E-02
2.235 2.261	.3017E-02	9630E-03 7893E-03
2.286	.2977E-02	60188-03
E + E 00	157115-45	-120100-69

Facsimile from source paper

TABLE 3
NOZZLE WALL-TEMPERATURE DISTRIBUTION

								×	x (meters)	E)					
				0.000	0.279 0.457 0.711 0.864 1.067 1.194 1.448 1.702 1.905 2.057 2.210	0.457	1117.0	9.864	1.067	1.194	1.448	1.702	1.905	2.057	2.210
Flow	Code	Po atm	€1 ⊕ OPT				Aver	ige Wa	11 Tem	Average Wall Temperature •K	e e				
PPG-AW	7014 7015 7016	10 5 1	336. 336. 336.	323. 321. 314.	311. 310. 306.	305. 303. 300.	295. 292. 292.	294. 291. 291.	294. 291. 291.	294. 291. 251.	294. 291. 291.	294. 291. 291.	294. 291. 291.	294. 291. 291.	294. 291. 291.
PPG-NHT	7017 7018 7019	10	423. 423. 423.	355. 341. 301.	352. 341. 306.	342. 332. 306.	304. 298. 293.	300. 296. 293.	302. 296. 293.	299. 285. 293.	299. 295. 293.	298. 295. 293.	298. 295. 293.	298. 295. 293.	298. 295. 293.
PG-CW	TD20 TD21 TD22	10	423. 423. 423.	359. 348. 308.	357. 346. 303.	351. 334. 288.	300. 267. 193.	291. 202. 144.	202. 125. 94.	160. 103. 89.	119. 97. 88.	98. 88.	116. 100. 89.	117. 97. 87.	118. 101. 88.

03 02, 05 01, 04 08 07, 10 06, 09 13 12, 15

7304 SERIES

TABLE 4
LOCATION OF MEASUREMENTS

		Wall condition		
X-Station: m	AW	MHT	SHT	
1.194 (P)	P	Р		
1.270 (W)	KKK	ΚQ	NQ	
1.44B (P)	P	P	₽	
1.524 (W)	KKK, Q	K K, Q		
1.702 (P)	P	P	P	
1.778 (W)	ΚQ	ΚQ	N	
1.905 (P)	P	Р	P	
1.981 (W)	KK,Q	ΚQ	N	
2.057 (P)	P	P	P	
2.134 (W)	ΚQ	ΚQ	N	
2.286 (W)	Q			

KEY: P - profile, W - wall measurement, K - CF using Kistler FEB, N - CF using NOL FEB, Q - CQ using thermopile.

TABLE 5
PROFILE SERIES PRESENTED

CODE 7304	нт	NX	TTP	FEB	POD ₂ MN/m ²	TOD K	TW K
0101-5	WA	5	ECP	Kistler	0.1	336	291
0201-5	AW	5	ECP	Kistler	0.5	336	291
0301-5	AH	5	ECP	Kistler	1.0	336	294
0401-5	AW	5	FWP	Kistler	0.1	336	291
0501-5	AW	5	FWP	Kistler .	0.5	336	291
0601-4	MHT	4	ECP	Kistler	0.1	423	293
0701-4	MHT	4	ECP	Kistler	0.5	423	295
0801-4	MHT	4	ECP	Kistler	1.0	423	299
0901-5	MHT	5	FWP	Kistler	0.1	423	293
1001-5	MHT	3	FWP	Kistler	0.5	423	295
1101-2	SHT	2	ECP	NOL	0.1	423	90
1201-4	SHT	4	ECP	NOL	0.5	423	100
1301-4	SHT	4	ECP	NOL	1.0	423	120
1401-3	SHT	3	FWP	NOL	0.1	423	90
1501-3	SHT	3	FWP	NOL	0.5	423	100
					/41. 1		

(Nominal values)

CAT 7304	VOISINET		BOUNDARY CON	DITIONS AND E	VALUATED (TINU IE . ATAC	5.	
RUN	40 *	TU/TR	PEDZW	CF +	H15	H12K	Pw *	PD*
X *	POD	Pv:/PD	REDSD	CFa *	HSZ	H32K	1##	TD#
RZ	TOD	SIV *	u 5	+214	H42	DSK	υn	TH
73040101	3.8501	0.9371	2.2846"+03	1.2400"-03	6.1913	1.3554	8.4460*+02	6.3379*+02
1.1940*+00	1.0346*+05	1.0130	6.7783"+03	0.0000"+40	1.6277	1.7916	2.9480"+02	8.6043"+01
INFINITE	3.4113"+02	0.0000	1.7274"-03	-1.7879"-01	0.3328	2.9001"-03	7.1604"+02	3.1460*+02
74040103	0843	0.00.40	3 11075 07	1 22008-07	7 5115	. 101.	£ 08408.63	r 005 88
75040102 1.4480*+00	4.0862 1.0206*+05	0.9460 0.9987	2.1197"+03 6.9228*+03	1.2200"-03	7.5115 1.8248	1.3631	5.9880"+02 2.9470"+02	5.9958#+02 7.8031#+01
INFINITE	3.3661*+02	0.0000	1.9993"-03	-1.4544"-01	0.2575	3.6425*-03	7.2371"+02	3,1151"+02
								-
73040103	4.2954	0.9415	2.0112"+03	1.1100"-03	7,9558	1.3720	4.6730"+02	4.6305"+02
1.7020*+00 INFINITE	1.0346"+05	0.0002	7.0463*+03 2.2572*+03	0.0000"+00	1.8269 0.2664	1.7880 4.2474*-03	2.9490*+02 7.3451*+02	7.2739*+01 3.1324*+02
	20 1113 102		230576 42		0,2007	7,24,4 03	7.5451 102	34.564 106
73040104	4.3873	0.9502	2,0073"+03	1,0600"-03	8.6077	1.3863	4.0160"+02	4.06144+02
1.9050*+00 INFINITE	1.0202*+05	0.9888	7.3275*+03 2.4721*+03	0,0000*+00 ~1,1636*~01	1.8265	1.7857 4.8512"-03	2.9580*+02 7.3580*+02	6.9969#+01
THE THILE	343733 446	0.0000	E * 4151 03	-11103001	0.2648	4.0315, -03	304605	3.1131*+02
.73040105	4.4796	0.9521	1,9997*+03	1.0400*-03	8.4224	1.4029	3,6750"+02	3.5589"+02
2.0570"+00	1.0041*+05	1.0326	7.5565"+03	0.0000*+00	1.8206	1.7/93	2.9530"+02	6.7485"+01
INFINITE.	3.3833*+02	0.0000	2.6998"#03	~9,4350"-02	0.2513	5.3114"-03	7.3782"+42	3,1016*+02
73040201	3,8838	0.9299	5,0606"+03	8,6200"+04	6.5726	1.2899	3.9510"+03	3.9297*+03
1.1940"+00	5.1042"+05	1.0054	2.41384+04	0.0000*+00	1.8412	1.8113	2.8560"+02	8.3815"+01
INFINITE	3.3666*+02	0.0000	1.2445" +03	-1,9444"-01	0.2643	2.0817"-03	7.1289*+02	3,1036*+02
73040202	4,1149	0.9495	7.5158"+03	8.3800"-04	7.9016	1.3052	2,7810"+03	2,8502"+03
1.4480*+00	5.0384*+05	0.9757	2.5229*+04	0.000*+00	1.8418	1.8080	2.9440*+02	7.6855*+01
INFINITE	3.3712*+02	0.0000	1.4880*+03	-1.6486"-01	0.2342	5.6939"-03	7.2328*+02	3.1005"+02
73040203	4.3125	0.9423	7.3908*+03	8.1000"-04	8.1481	1.3038	2.2170"+03	2.2064"+03
1.7020*+00	5.03877+05	1.0048	2.6155"+04	0.0000*+00	1.6395	1.5054	2.9080"+02	7.1231*+01
INFINITE	3.3618"+02	0.0000	1.6973"-03	-1.3123*-01	0.2205	3.1439"-03	7,2975*+02	3,0862"+02
73040204	4,4376	0.9454	7.3047*+03	7.7900"-04	8.9909	1.3051	1.8640"+03	1.9074"+03
1.9050*+00	5.1066*+05	0.9772	2.7045*+04	0.0000*+00	1.8423	1,8059	2.9400*+02	6.8661#+01
INFINITE	3.3910*+02	0.0000	1.86717-03	-1.2003"-01	0.2304	3.6173*-03	7.3728*+02	3.1098"+02
73040205	# 2313	A 0545	7,2875*+03	7 7744 44		4 1464	4 74765.65	1 50000
2.0570*+00	4.5237 5.0699*+05	1.0072	2.7957*+04	7.7200"-04 0.0000"+00	0.7977 1.d383	1.3190	1.7130"+03	1.7008"+03 6.6425"+01
INFINITE	3,3829*+02	0.0000	2.0204 -03	-1.0396"-01	0.2339	3.9276"-03	7.3921"+02	3.1001"+02
715557774	* ***	A 61134	4	4 1 Page 8 0 H		4 84.04	# 5550H.05	3 / 4734
73040301 1.1940*+00	3,9022 1,0144*+06	0.9426 1.0180	1.4099*+04 4.2980*+04	6.6500"-04 0.0000"+00	6.4477 1.8526	1.2606 1.8253	7.7550"+03 2.9190"+02	7.6177"+03 8.3049"+01
INFINITE	3.3597"+02	0.0000	1.1224"-03	-2.2854"-01	0.2454	1.6245*-03	7.1299*+02	3.0966*+02
73040302 1.4480*+00	4_099 6 9.9664*+85	0.9434	1.3838"+04 4.5374"+04	6.8500"=04 0.0000"+00	7.7956 1.8522	1.267X 1.8219	5.6200*+03 2.9210*+02	5.7526"+03 7.7179"+01
INFINITE	3.3660"+02	0.0000	1,3392"-03	-1.3267*-01	0.2277	2.3613"-03	7.2211*+02	3.0962*+02
		•						
73040303	4.3062	0,9455	1.3416"+04	6.7500"-04	7.9648	1.2709	4.4570*+03	4.4120*+03
1.7020*+00 INFINITE	9.9949*+05 3.3672*+02	1.0102	4.7481"+04	0.0000"+00 -1.4383"-01	1.8507 V.2136	1.8193 2.7886"=03	2.9230"+U2 7.3011"+02	7.1511"+01
	0150/11				*******			310714 102
73040300 1.9050*+00	4.4370	0.9458	1.3046"+04	6.6500"-04	9.0537	1.2683	3.6950*+03	3.8077"+03
INFINITE	1.0164*+06	0.9704	4.8254"+04 1.6750"-03	0.0000"+00 -1.2634"-01	1.8549 0.2213	1.8211 3.1682"-03	2.9460"+02 7.3787"+02	6.8795*+01 3.1150*+02
			(10.30	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	VILL.3	311000	110101 102	311130 100
73040305	4.5339	0.9460	1.2895*+04	6.5800*-04	9.0376	1.2791	3.3610"+03	3.3731"+03
2.0570*+00 INFINITE	1.0183"+06	0.0000	4.9413"+04	0.0000*+60 -1.0922*-01	1.8509 0.2101	1.8165 3.4234*-03	2.9370*+02 7.4012*+02	6.6289*+01 3.1048*+02
AND AND IT	313006 406	0.0000	1,7411 -03	-110726 01	0.2171	3.463403	7.4012 702	341040445
73040401	3.8630	0.9287	2.0201*+03	1.2400"-03	6.8128	1.3784	8.0850"+02	7.9742"+02
1.1940*+00 INFINITE	1.0070*+05	0.0000	5.9870*+03 1.5660*~03	0.0000"+00 =1.6715"=01	1.0224	1.7884 2.7072"~03	2.9060"+02 7.1477"+02	8.5165"+01 3.1291"+02
**** *** * * * * * * * * * * * * * * *	3,3,34 106	4.4444	113000 03	-110/13 -41	V. Z. 70	E. 101E -73	181711 TVE	3,1E71 TVE
73040402	4.0987	0.9259	1.9422*+03	1.2200"-03	7.6004	1.3855	5.5930"+02	5.6075"+02
1.4480*+00 INFINITE	9.7035*+04 3.3863*+02	0.9974	6.2665*+03 1.9156"→03	0.0000"+00	1.8242	1.7861	2.8840"+02	7.7669*+01 3.1149*+02
AMPARATE	303943.446	0.0000	1.713003	-1.3908*-01	0.2488	3.5000"-03	7.2423*+02	311144405
73040403	4.2588	0.9250	1.9938#+03	1.1100*-03	7.8228	1.3867	4.5460"+02	4.4934"+02
1.7020*+00	9.9549"+04	1.0121	6.8801"+03	0.0000*+00	1.8250	1.7862	2.6860*+02	7.2626"+01
INFINITE	3.3989*+02	0.0000	2.2693"-03	-1.2562"-01	0.2862	4.2409*-03	7.3281*+02	3.1201*+02
73040404	4.4001	0.9327	2.0052"+03	1.0600*=03	8,5580	1.3957	3.9350"+02	3,9803"+02
1.9050*+00	1.0161*+05	0.9886	7.2514*+03	0.0000*+00	1.8259	1.7848	2.8980*+02	6.9518*+01
INFINITE	3.3670*+02	0.0000	2.4651*-03	-1.0920*-01	0.2855	4.8225**03	7.3557*+02	3.1071*+02
73040403	4.4756	0.9251	1.9749*+03	1.0400*-03	8.3438	1.3972	3,5820"+02	3.4907*+02
2.0570*+00	9.7991*+04	1.0262	7.2908*+03	0.0000*+00	1.6195	1,7775	2.8680"+02	6.7549"+01
INFINITE	3.3816"+02	0.000	2.6612"-03	-9.6710*-02	0.2771	5.2069"-03	7,3752*+02	3,1002*+02

ŀ

١

CAT 7304	VOISINET		BOUNDARY CON	DITIONS AND E	VALUATED	DATA. SI UNIT	5.	
RUN	MD #	TW/TR	RED2W	CF *	H12	H12K	PH#	PD*
X *	POD	PW/PD	RED2D	CQ *	H32	H32K	TW#	TD*
RZ	TOD	\$W *	05	PI2*	H42	DSK	UD	TR
73040901	3,8686	0.7404	3,0272"+03	1.4100"-03	3.8273	1,3604	8.2690"+02	8,1165"+02
1,1940"+00	1.0330*+05	1.0185	7.2190"+03	1.1275"-04	1.8181	1.7875	2.9110*+02	1.0678"+02
INFINITE	4,2639"+02	0.0000	2.5808"-03	-2.4286*-01	0.8443	3,6508"-03	8.0150"+02	3.9315"+02
73040902	4.1164	0.7429	2,9291"+03	1.2700"-03	4.6060	1,3691	5.7860"+02	5.8653*+02
1.4480*+00	1.0388"+05	0.9865	7.6622"+03	9.0320"-05	1.6219	1.7875	2.4930"+02	9.6472*+01
INFINITE	4.2341"+02	0.0000	3.0727"-03	-2.2058*-01	0.8589	4.6550*-03	8.1064*+02	3.6941"+02
73040903	4,3173	0.7531	2,8904*+03	1.1700*-03	4.5778	1.3766	4.6170"+02	4.5154"+02
1.7020*+00	1.0376"+05	1.0225	8.2058*+03	8.2210"-05	1.8196	1.7830	2.9200*+02	8.9332"+01
INFINITE	4.2235"+02	0,0000	3.6398"-03	-1.9116*-01	0.8686	5.5671"-03	8.1814"+02	3.8771*+02
73040904	4,4122	0.7519	2.9231*+03	1.1400"-03	4,9297	1,3791	3.9470*+02	3.9900*+02
1.9050*+00	1.0343"+05	0.9892	8.5569*+03	8.2960"-05	1.8222	1.7831	2.9290*+02	8,6788"+01
INFINITE	4.2470"+02	0.0000	4.0273*-03	-1.7132*-01	0.9047	6.3778"-03	8.2413*+02	3.8955*+02
73040905	4.5108	0.7496	2.8738"+03	1.1300*=03	5.0134	1.3652	3.6770*+02	3.5454*+02
2.0570*+00	1.0400"+05	1.0371	8.6932*+03	7.9880"-05	1.8161	1.7779	2,9010"+02	8.3297*+01
INFINITE	4,2227"+02	0.000	4.2383*=03	-1.4368"-01	0.8374	6.7831*-03	8.2543*+02	3.8702"+02
73041001	3,9226	0.7494	9.8746*+03	9.3500"-04	4.5004	1,2892	3.5090*+03	3.7728"+03
1.1940*+00	5.1641"+05	1.0096	2.4267*+04	8.3170"-05	1.8373	1.8099	2.9230*+02	1.0381"+02
INFINITE	4.2327"+02	0.0000	1.7672"-03	-2.5797*-01	0.7293	2.5935*-03	8.0132*+02	3.9005*+02
73041002	4.1721	0.7530	9.4149"+03	9.0000"-04	5.5726	1.2954	2,6920"+03	2.7442*+03
1.4480*+00	5.2279*+05	0.9810	2.5409"+04	7.2930*-05	1.8374	1.8075	2.9160"+02	9.4007"+01
INFINITE	4.2127"+02	0.0000	2.0687"-03	-2.1668"-01	0.6933	3.2837"-03	8.1104*+02	3.6724*+02
73041003	4.3595	0.7527	9.4683"+03	6,5500"-04	5.5849	1.2949	2.1280"+03	2.1333*+03
1.7020*+00	5.1729"+05	0.9975	2.7273"+04	6.7850*-05	1.8408	1.8078	2.9140"+02	8.7872"+01
INFINITE	4.2188*+02	0.0000	2.4748"-03	-1.8478*-01	0.7360	3,9684*-03	8.1935*+02	3.8714"+02
73041004	4.4628	0.7555	9,2389"+03	5.4000"-04	6.2408	1.3025	1.7940"+03	1.8672*+03
1.9050*+00	5.1583*+05	0.9608	2.7651*+04	6.6960*-05	1.8404	1.8056	2.9280"+02	8.4825*+01
INFINITE	4.2271"+02	0.0000	2,6579"=03	-1.6040*-01	0.7667	4.4630"-03	8.2410"+02	3.8757*+02
73041005	4.6027	0.7523	A.8996"+03	8.3000*-04	6.1769	1.3002	1.6350"+03	1.6092"+03
2.0570"+00	5.2891*+05	1.0161	2.7874"+04	6.5490"-05	1.8366	1.6023	50+"0509.5	8.0430*+01
INFINITE	4.2121*+02	0.0000	2.7856"-03	-1.3735*-01	0.6911	4.7057"-03	8.2762"+02	3.8577*+02

/304-0-4								
CAT 7304	VOISINET		BOUNDARY CON	DITIONS AND E	VALUATED I	DAȚA. SI UNIT	5.	
RUN	40 +	THATR	REDZW	CF *	H12	H15K	PWA	PD•
X +	POD	PHIPO	REDZD	CO *	H32	H32K	TMA	TD*
AZ	TUD	SW 4	05	PI2*	H42	DSK	UD	TH
73041101	4.1051	0.2337	3.7632"+03	2,1000"-03	4.0198	1.3376	5.7160"+02	5,9561*+02
1.4480*+00	1.0394"+05	0,9597	8.2470*+03	NM	1.6057	1.7894	9.0910"+01	9.6785*+01
INFINITE	4.2299"+02	0.0000	3.2614"-03	-1.4340"-01	1.0038	4.5104"-03	8.0972"+02	3.8906"+02
73041102	4.3312	0.2376	0.3288*+03	1.8600"-03	3.7073	1.3628	4.6090*+02	4.5039"+02
1.7070*+00	1.0534"+05	1.0233	8.6302"+03	ИМ	1.7957	1.7792	9,2770*+01	8.9443*+01
Ι' Ε	4.2502*+02	0.0000	3.8325*-03	-1.2507*-01	0.9826	5.1986"-03	8.2128"+02	3.9012"+02
73041201	4.1241	0.2330	2.7443*+04	1.4350*-03	5.1203	1.2898	2.6930*+03	2.8282"+03
1.4450"+00	5.0601*+05	0.4522	2.5929"+04	NM	1.827.	1.8051	9.0560*+01	9.6014"+01
INFINITE	4.2262"+02	0.000	2.1375"-03	-2.6020*-01	0.8446	3.1631"-03	8.1022"+02	3.8665*+02
73041202	4.3681	0.2429	2.6339*+04	1.3500*-03	4.3236	1.3165	2.1410"+43	2.0605*+03
1.7020*+00	5.1809*+05	1.0391	2.8414"+04	MM	1.6143	1.7950	9.4240*+01	8.7179*+01
INFINITE	4.2291*+02	0.0000	2.6211"-03	-1.2213*-01	0.8441	3.7649*-03	6,2147*+02	3.8799"+02
73041203	4.5016	0.2321	2.8056"+04	1.3400*-03	5.0707	1.3067	1.8640"+03	1.8560"+03
1,9050*+00	5.3836"+05	1.0043	3.0123"+04	NW.	1.6178	1.7979	8,9650"+01	8.3380"+01
INFINITE	4.2134*+02	0.0000	2.8151"-03	-1.0236"-01	0.8323	4.2343"-03	8.2419"+02	3.8619*+02
73041204	4.6116	0.2326	2.8328"+04	1.3500*=03	5,1300	1.3056	1.6480"+03	1.6309"+03
2.0570"400	5.4194"+05	1.0105	3.1633"+04	NM	1.8198	1.7992	6,9530"+01	8.0009"+01
INFINISE	4.2032*+02	0.0000	3.0890"-03	-8.9960*-02	0.5403	4.6326"-03	8.2705*+02	3.8492"+02
73041301	4.1393	0.3236	3,7462*+04	1.1930*-03	4.9158	1,2592	5.5750"+03	5.5750*+03
1.4460*+00	1.0175*+06	1.0000	4.8658"+04	NW	1.8415	1.8207	1.2630"+02	9,5885"+01
INFINITE	4.2446*+02	0.000	2.0214*=03	-1.5229"-01	0.7335	2.9765"-03	8.1267*+02	3.9029"+02
73041302	4,3617	0.2558	4.4527"+04	1,1220"-03	4,5542	1,2832	4.2360*+03	4.1076*+03
1.70.04+00	1.0245*+06	1.0312	5.0400*+04	NM	1.6301	1.8101	9.6620"+01	8.5075"+01
INFINITE	4.1175"+02	4.0000	2.2526*-03	-1.2734*-01	0.8090	3.2630"-03	8.1032*+02	3.7778*+02
73041343	4,5095	0.2407	4,7571"+04	1.1100*-03	5,5929	1.2779	3.7200"+03	3.7200*+03
1.90504+00	1.0894*+06	1.0000	5.3026"+04	NM	1.6360	1.6143	9.4310"+01	8,4379*+01
INFINITE -	4.2756*+02	0.0000	2.5122"-03	-1.1048#-01	0.7556	3.8424"-03	8.3053"+02	3.9167*+02
73041304	4,5081	0.2586	4.1822*+04	1.1200"-03	5,5874	1.2705	3.2940"+03	3,3586"+03
2.0570"+00	7.5165*+05	0.9808	4.9960"+04	NM	1.8371	1.8152 3.9578"-03	1.0010"+02	8.3375"+01 3.8702"+02
INFINITE	4.2226"+02	0.0000	2,5763*=03	-9.4430*-02	0.8209	3,73/6 -03	0,2336 406	
73041401	4.3171	0,2211	9,7940*+03	1,9600"-03	3,1033	1.3605	4.5870"+02	4.4604*+02
1.7020*+00	1.0246"+05	1.0284	9.4064"+03	NM	1.7967	1.7795	8.6440"+01	9.0089"+01
INFINITE	4.2589"+02	0.0000	4.2769*-03	-1.4624"-01	1.0725	5.4781*-03	8.2156*+02	3.9097*+02
73041402	4.4549	0.2249	9,1819*+03	1.5000*=03	3,4719	1.3617	1.7140*+02	3.7556"+02
1.9050*+00	1.0273*+05	0.9889		Mh	1.7836	1.7679	8,7930"+01	8.5810*+01
INFINITE	4.2641"+02	0.9000	4.5797*-03	-1.2265"-01	1.1194	6,0996*-03	8.2740*+02	3.9099*+02
73041403	4.5527	1815.0	9.7557*+03	1.5100"-03	3.2560	1.3689	3.5530"+02	3.4176"+02
2.0570*+00	1.0561*+05	1.0396	1.0024*+04	NM A AAAAAAAA	1.7859	1.7691	8.5140*+01	8.2821*+01
INFINITE	4.2615"+02	9.0000	4.9605*-03	-1.0937"-01	1.0926	6.5655*-03	8.3071*+02	
73041501	4.3706	0.2286	2.95034+04	1,3500~-03	4.2674	1.3252	2.1520*+03	2.1016"+03
1.7020*+00		1.0240		NM -1 70048-01	1.8077	1.7898 3.9854"+03	9,1430"+01 8,1569"+02	8.6639*+01 3.6324*+02
INFINITE	4.1767*+02	0.0000	2.7976"-03	-1.3084"=01	0.5846	3.403403	0,1307"702	
73041502	4.5118	0.2882		1,3400"-03	5.2479	1,3336	1.6480*+03	1.7690"+03
1.4050*+00		0.9599		NM -1.1347*-01	1.8079	1.7662 4.3160*-03	1,1120"+02 8,2415"+02	8.3004*+01 3.8579*+02
INFINITE	1,2093"+02	0.0000	5.835103	-111341	0.9508	4.310007	016413.465	344314.448

EVALUATED	DATA	•	PRESSURE	BASED	REFERENCE	FLOW

₹UŅ	D2PW	H12PD H1&PW	H32PD H32PW	H42PD H42PW	REDZPOD REDZPWD	RED2PDW RED2PWW	DSTAR
73040301	1.1130"=03 1.1007"+03	6.6935 6.6879	1.8513	0.2474 0.2472	4.2671"+04 4.2707"+04	1.3998"+04 1.4009"+04	7.3629**03
73040302	1.3516"-23 1.3718"-03	7.4733 7.4806	1.6536	0.2256	4.5853*+04 4.5809*+04	1.3984*+04 1.3970*+04	1,02564-02
73040303	1.5461*+03 1.5361*+03	8.1147	1.8502	0.2195 0.2194	4.7351"+04 4.7369"+04	1.3379"+04	1.2461"-02
73040304	1.6926"-03 1.7258"-03	8.6177 8.6271	1.8565	0915.0 2015.0	4.8855*+04 4.8802*+04	1.3200*+04 1.3186*+04	1.4867"-02
73040305	1.7935"=03	6.9811 8.9822	1.8511	0.2098	4.9539*+04 4.9532*+04	1.2928"+U4 1.2926"+U4	1.61464-02
73041301	2.0231"-03	4.9161	1.8415	0.7336 0.7336	4.8710*+94 4.8710*+04	3.7522"+04 3.7522"+04	9,9458*=03
73041302	2.2246*=03 2.1812*=03	4.9342	1.8280	0.8192	4.9829"+04 4.9887"+04	4.4023*+04 4.407#*+04	1.0750"-02
73041303	2.5122"=03 2.5122"=03	5.5925 5.5925	1.8360	0.7556 0.7556	5.3090*+04 5.3090*+04	4.7629*+04 4.7629*+04	1.4050*-02
73041304	2.5998"=03	5.2924	1,8386	0.8135	5.0475"+04	4.2254*+04	1.3942*=02

730403	101 VOIS	INET .	PROFILE	TABULATION	35	POINTS, DEL	TA AT POI	NT 25
I	Y	PTP/P	P/PD	TO/TOD	M/I4D	U/UD	1/10	RH0/RH00+U/U0
1	0.0000*+00	1.0000"+00	1.01802	0.86883	0.00000	0.00000	3.51480	0.00000
2	6.3000*-05	1.3595"+00	1.01802	0.87969	0.17353	0.31330	3.25980	0.09784
3	1.4000*-04	1.8224"+00	1.01802	0.89117	0.24763	0.43190	3.03714	0.14477
4	2.1600"-04	2.41R7"+00	1.01502	0.89926	0.30850	0.51810	2.82040	U.18701
5	2.9200"-04	3.0844"+00	1.01802	0.90989	0.36134	0.58640	2.63370	0.22666
6	5.2100"-04	3.8669"+00	1.01802	0.92109	0.41392	0.64770	2.44860	U.26928
7	6.9800*-04	4.3458*+00	1.01802	0.92562	0.44282	0.67840	2.34700	U.29426
8	4.7800"-04	4.7626*+00	1.01802	0.93062	0.46644	0.70170	2.26440	0.31556
9	1.2070"~03	5.0144*+00	1.01802	0.93382	0.46013	0.71530	2.21950	0.32809
10	1.4630"-03	5.2718"+00	1.01802	0.93797	0.49372	U.72860	2.17780	0.34059
11	1.7170"-03	5.5458"+00	1,01802	0.93977	0.50777	0.74100	2.12960	0.35422
12	1,9960"-03	5.8184"+00	1.01802	0.93974	0.52136	0.75190	2.07990	0.36802
13	2.2760"-03	6.0817"+00	1.01802	0.94411	0.53416	V.76360	2.04360	0.38039
14	2,4260"-03	6.2111"+00	1.01802	0.94120	0.54033	0.76710	2.01550	0.38746
15	5.1230"-03	6.5416"+00	1.01802	0.96055	0.64128	0.84230	1.72520	0.49703
16	7.7420"-03	1.0774"+01	1.01629	0.97273	0.72479	0.89170	1.51360	0.59872
17	1.0030"-02	1.2623"+01	1.01476	0.97924	U.78723	0.92210	1.37200	0.68201
18	1.2624"-02	1.4442"+01	1.01303	0.98559	0.84416	0.94670	1.25770	0.76253
19	1.5420"-02	1.6012*+01	1.01110	0.99160	0.89037	0.96510	1.17490	U.83055
20	1.7988"-02	1.7330"+01	1.00937	0.99498	0.92736	0.97800	1.11220	0.88757
21	2.0480"-02	1.8417*+01	1.00764	0.99640	0.95681	0.98700	1.06410	0.93463
\$2	2.2718"-02	1.4150"+01	1.00529	0.99810	0.97616	0.99300	1.03480	0.96469
5.7	2.3073"-02	1.9236"+01	1.00499	1.00035	0.97840	0.99470	1.03360	U.96717
24	2.5489"-02	1.9792"+01	1.00244	0.99899	0.99280	0.99770	1.00990	0.99033
0 25	2.7854"-02	2.0073"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
26	3.0549"-02	2.0170"+01	0.99715	0.99739	1.00246	0.99930	0.99370	1.00277
27	3.2990"-02	2.0249"+01	0,99460	0.99880	1.00448	1.00050	0.99210	1.00303
58	3.5303*=02	2.0263"+01	0.99277	0.99983	1.00482	1.00110	0.99260	1.00127
29	3.8227"-02	2.0285"+01	0.99033	0.99996	1.00538	1.00130	0.99190	0.49971
30	4.0795"-02	2.0317"+01	0,98615	0.99996	1.00619	1.00150	0.99070	0.99691
31	4.3261"-02	2.0339"+01	0.98319	1.00089	1.00674	1.00210	0.99080	0.99431
35	4.6007"-02	2.0314"+01	0.98615	1.00199	1.00613	1.00250	0.99260	0.99579
33	4.8397"-02	2.0314*+01	0.98636	1.00179	1.00613	1.00240	0.99260	0.99610
34	5.0305"-02	2.0344"+01	0.98208	1.00142	1.00689	1.00240	0.99110	0.99328
39	5.2746"=02	2.0408"+01	0.97414	1.00203	1.00851	1.00310	0.98930	0.98773

INPUT VARIABLES Y,U/UD,T/TD,P/PW

730403	oz vois:	LINET	PROFILE	TABULATION	57	POINTS, DE	LTA AT PUI	NT 42
1	Y	PT2/P	P/PD	T0/T00	MZMD	UZUD	7/10	RH0/RH00*U/UD
1	0.0000*+00	1.0000*+00	0.97694	0.86778	0.00000	0.00000	3.78470	0.0000
2	6,3000"-05	1.2438*+00	0.97694	0.87136	0.13834	0.26140	3.57060	Q.07152
3	1,4000"-04	1.5739"+00	0.97694	0.88083	0.20288	0.37270	3.37470	U.10789
4	2.1600"-04	2.0264*+00	0.97694	0.89146	0.25795	0.45980	3.17730	0-14138
5	3,4300"-04	2.8480*+00	0.97694	0.90582	0.32712	9.55769	2.90550	0.10749
6	4.9500"-04	3.3573"+00	0,97694	0.91373	0.36225	0.60240	2.76530	0.21282
7	5.7200"-04	3.7243"+00	0.97694	0.91570	0.3A564	0.63030	2.67140	0.23050
8	7.4900"-04	4.0775"+00	0.97694	0.92364	0.40633	0.65400	2.59060	0.24663
Ÿ	1.0540"-03	4.51217+00	0.47694	0.92868	0.43062	0.68020	2.49510	U.26633
10	1.2810"-03	4.7673*+00	0.97694	0.93040	U.44423	0.69400	2.44060	0.27750
11	1.5620"-03	5.0072*+00	0.97694	0.93300	0.45665	0.70630	2.39230	0.28843
12	2.0960"-03	5.5090*+00	0.97694	0.93764	0.44155	0.73000	2,29810	0.31033
13	2.6030"-03	5.4303*+00	0.97694	0.94035	0.50147	0.74760	2.22250	0.32862
14	3.0350"-03	6.3095*+00	0.97694	0.94178	0.51874	0.76140	2.15070	0.34508
15	3,6200"-03	6.7531"+00	0.97694	0.94632	0.53822	0.77830	2.09110	0.36362
16	4.1270"-03	7.1258*+00	0.97694	0.94861	0.55405	U.79060	2.03620	0.37932
17	4.6860"-03	7.5397*+00	0.97694	0.95239	0.57110	0.80390	1.98140	U.39637
18	5.0670"-03	7.8393"+00	0.97694	0.95439	0.54314	0.81270	1.94230	0.40877
19	5.70204-03	8,2730"+00	0.97733	0.45649	0.60012	0.82440	1.46710	0.42696
50	6.1340"-03	8.5984"+00	0.47763	0.95788	0,61255	0.63260	1.84750	0.44058
21	6.7180"-03	9.0007"+00	0.97802	0.96028	0.62758	0.84250	1.80220	0.45721
22	7.1760"-03	9.3668"+00	0.97831	0.95964	0.04094	0.84980	1.75790	0.47293
5.3	7.7850*-03	9.7943"+00	0.97870	0.96182	0.65020	0.85910	1.71400	0.49055
24	8.7250"-03	1.0480"+01	0.97929	0.96321	0.67996	0.07450	1.05330	0.51787
25	9.5380*-03	1.1058"+"1	0.97978	0.97082	U. 69935	0.88500	1.60140	0.54147
26	1.0223"-02	1.1553"+01	0.95027	0.97280	0.71556	0.89350	1.55920	0.56174
27	1.1468"-02	1.24094+01	0.98105	0.97705	U.74271	0.94750	1.49300	0.59632
28	1.2891"-02	1.3332"+01	0.98193	0.48059	0.77090	0.92080	1.42670	0.63374
50	1.4033*-02	1.4019*+01	0.98271	0.98314	0.79124	0.92990	1.39120	U.66161
30	1.5431"-02	1.4861 401	0.98359	0.48627	0.81550	0.94030	1.32950	0.69565
31	1.6396"-02	1.5477"+01	0.98417	0.98832	0.83276	0.94730	1.29400	U.72048
32	1.7844"-02	1.6321"+01	0.98515	0.99107	0.65589	0.95650	1.24840	0.75465
33	1.8885~-02	1.6878"+01	0.98583	0.99247	U.H7079	0.76170	1.21970	0.77730
34	2.0460"-02	1.7729"+01	0.98681	0.99461	0.89310	0.96950	1.17840	U.81188
35	2.1425"-02	1.8182*+01	0.98759	0.99463	0.90476	0.97290	1.15650	0.83095
36	2,2847"-02	1.8857*+01	0.98877	0.99484	U.92184	0.97780	1.12510	0.85931
37	2,4346"-02	1.9481"+01	0.99004	0.99730	0.93736	0.98320	1.10020	U.88475
46	2.5540*-02	1.9902"+01	0.99101	0.99830	0.94767	0.98640	1.08340	0.40228
79	2.7927"-02	2.0593"+01	0.99297	0.99963	0.76438	0.99130	1.05660	0.93160
40	3,1260"-02	2.1390*+01	0.99570	1,00001	U.98330	0.99610	1.02020	0.96650
41	3.3922"-02	2.1851"+01	0.99785	1.00033	0.49409	0.99880	1.00950	0.98727
D 42	3.6487"-02	5.21004+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
43	4.0526"-02	2,2305"+01	1.00332	0.99991	1.00457	1.00100	0.99290	1.01151
44	4.3472"-02	2.2340"+01	1.00567	0.99995	1.00538	1.00120	0.99170	1.01530
45	4.5036"-02	2,2377"+01	1.00772	U.49936	1.00625	1.00110	0.98980	1.01922
46	4.7943"-02	2,2401"+01	1.00488	1.00111	1.00679	1.00210	0.99070	1.01645
47	5.0711"-02	5.5361.+01	1.00723	1.00131	1.00634	1.00210	0.97160	1.01789
48	5.2870"-02	2,2335*+01	1.01290	1.00180	1,00527	1.00210	0.99376	1.02146
44	5.5766"-02	2.2313"+01	1.01544	1.00223	1.00477	1.00220	0.99490	1.02289
50	5.7721"-02	2.2304*+01	1.01671	1.00232	1.00456	1.00220	0.99530	1.02375
51	6.1049"-02	2.2322"+01	1.01456	1.00273	1.00497	1.00250	0.99510	1.02210
52	0.3411"-02	2.2335*+01	1.01270	1.00340	1.00527	1.00290	0.94530	1.02043
53	6.6154"-02	2.2278"+01	1.01973	1.00359	1.00396	1.00270	0.99750	1.02505
54	6.8674"-02	2.22A9"+01	1.01876	1.00368	1.00421	1.00280	0.99720	1.02448
55	7.0777"-02	2.2252"+01	1.02325	1.00387	1.00335	1.00270	0.99870	1.02735
56	7.3851*-02	2,2213"+01	1.02614	1.00448	1.00245	1.00280	1.00070	1.03029
57	7.6365"-02	2.2197*+01	1.03048	1,00384	1.00210	1.00240	1.0000	1.03233
							- '	

INPUT VARIABLES Y, U/UD, Y/TD, P/PW

730403	ns vulsi	DET	PROFILE	TABULATION	55	POINTS, DEL	TA AT PUI	NT 57
1	Y	P15/P	P/PD	COTTOT	HVMD	מטעט	T/ID	RHOZRHOD*UZUD
1	0.0000*+00	1.0000*+00	1.01020	0.56809	0.00000	0.00000	4.08750	0.00000
2	6.3000"~05	1.1562*+00	1.01020	0.87089	0.10653	0.21190	3.93420	0.05441
3	1.4000"-04	1.5100"+110	1.01020	U. BM054	9-18356	0.35240	3.08560	0.09659
4	2.1600"=04	2.0700*+00	1.01020	U. H9248	0.24969	0.46130	3.41320	U.13653
5	3.5900"-04	2.9154"+00	1.01020	0.90019	0.31609	0.55770	3.11300	0.18098
6	5.7200"-04	3.5748"+00	1.01020	0.91557	0.35811	0.61210	2.92160	0.21165
7	8.2500"-04	4.0581"+00	1.01020	0.92105	0.34577	0.64520	2.79736	0.23300
8	1.0400"-03	4.3456"+00	1.01020	0.92294	0.40126	0.66190	2.72100	0.24574
9	1.4600"-03	4.7162"+00	1.01020	0.92619	0.42056	0.64230	2.63460	0.26162
10	2,0450"-03	5.2204"+00	1.01020	0.92457	0.44497	0.70690	2.52340	0.28295
11	2.4770*=93	5.5867"+00	1.01020	0.93342	0.46209	0.72370	2.45260	0.24806
12	3.1880*-03	6.1509*+00	1.01020	0.93782	U.46705	0.74650	2.34920	0.32101
13	4.001003	6.7152"+00	1.01020	0,94136	0.51084	U.7667U	2.25260	U.343A3
14	4.4580"-03	7.0357*+00	1.01020	0.74417	0.52387	V.77760	2.20330	U.35653
15	5.0670"-03	7.4391"+00	1.01020	0.94690	0.53980	U.79020	2.14290	0.37252
1 5	6.0580*-03	A.0858"+0U	1.01020	0.95158	0.56441	0.80690	2.115400	0.39784
17	7.0490"-03	8.7997*+00	1.01020	0.95594	0.59033	0.82720	1.96350	0.42559
18	8. 140*-03	9.4782*+00	1.01020	0.96027	0.61401	0.84310	1.88540	0.45174
19	9.1820"-03	1.0280*+91	1.01020	0.96457	0.64042	0.85980	1.80020	0.48244
50	1.0223"-02	1.0978"401	1.01020	0.96819	0.66327	0.87300	1.73240	0.50907
51	1.1417*-02	1.1746*+01	1.04980	0.97225	0.68713	0.88640	1.66410	0.53788
52	1.2789*-02	1.2640"+01	1.00939	0.97580	0.71349	0.90000	1-59070	U.5711U
53	1.3957*-02	1.3351"+01	1.00899	0.97912	0.73446	0.91040	1.53650	U.59784
24	1.5354 -02	1.4221"+01	1.00859	0.98239	0.75889	0.92179	1.47510	0.63020
₹5	1.6294"=02	1.4804*+01	1.00020	0.98399	0.77483	0.92850	1.43600	0.65194
20	1.7691"-02	1.5649"+01	1.00755	0.98626	0.79736	0.93770	1.38300	V.68336
27	1.8783"-02	1.6321*+01	1.00748	U.98736	0.814A1	0.94420	1.34240	U.70841
58	2.0434"-02	1.7329*+01	1.00697	0.99054	0.84034	0.95400	1.28180	0.74538
5.9	2.3025*-02	1.8764*+01	1.00616	0.99380	0.67538	0.96610	1.21800	U.79507
30	2.5413"-02	1.9840*+01	1.00546	0.99612	0.90078	0.97430	1,16440	0.83715
31	2.7927"=02	2.0886*+01	1.00465	0.79777	0.92478	0.98140	1.12620	0.87548
32	3.0391"-02	2.17494+01	1.00394	0.99854	0.94501	0.95680	1.09040	0.90855
33	3.2880"-02	2.2591"+01	1.00313	0.99960	0.96262	0.99150	1.06090	0.93751
34	3.5522*-02	2.3294"+81	1.00232	1.00045	0.97781	0.99540	1.03630	0.96276
35	3.7503"-02	2.3716*+01	1.00172	1.00070	0.98680	0.99750	1.02180	0.97789
36	4.0323"-02	2.4112"+01	1.00081	1.00086	0.99518	0.99940	1.00650	0.99178
0 37	4.2862"-02	2.4342*+01	1.09000	1.00000	1.00000	1.00000	1.00000	1.00000
38	4.5885"-02	2.4590"+01	0.99909	1.00041	1.00518	1.00130	0.79230	1.00815
39	4.8247"-02	2.4633"+01	0.49836	1.00043	1.00607	1.00150	0.49090	1.00906
40	5.0838"-02	2.4685"+01	U.9975A	0.99979	1.00716	1.00140	0.98BAG	1.01049
41	5.3200"-02	2.4704"+01	0.99545	1.00122	1.00755	1.00220	0.95940	1.00635
42	5.5308"-02	2.4711"+01	0.49444	1.00115	1.00771	1.00220	0.78910	1.00761
43	5,8458"-02	2.4731"+01	0.99232	1.00139	1.00811	1.00240	0.98870	1.30607
44	6.0388"-02	2.4746*+01	0.99050	1.00164	1.00847	1.00260	0.48840	1.00473
45	6.3569*-02	2.4703"+01	0,99535	1.00222	1.00755	1.00270	0.99040	1.00771
46	6.6027*-02	2.4704"+01	0.99535	1.00062	1.00736	1.00200	0.94400	1.00844
47	6.8446"-02	2.4674"+01	0.79646	1,00170	1.00735	1.00240	0.49020	1.00874
48	7.0910"-02	2.4703"+01	0.99586	1.00423	1.00754	1.00370	0.99240	1.00720
49	7.3215"-02	2.4675*+01	0.99677	1.00331	1.00734	1.00320	0.99180	1.00822
50	7.7940"-02	2.4611"+01	1.00616	1,00383	1.00962	1.00310	0.49500	1.01435
51	W.2436"-02	2.4546*+01	1.01394	1.00349	1.00426	1.00260	0.99670	1.01994
52	6.6677"-02	2.4543"+01	1.01424	1.00442	1.00421	1.00310	0.99780	1.01963
53	9.2113"-02	2.4519"+01	1.01647	1.00544	1.00370	1.00350	0.99960	1.02043
54	4.6914"-02	2.4404*+01	1.03041	1.00586	1.00130	1.00320	1.00360	1.02979
55	1.0194"-01	2.43%6*+01	1.03596	1.00488	1.00030	1.00250	1.00440	1.03400

INPUT VARIABLES Y.U/UD.T/TD.P/PW

7304030	4 VOIS1	NET	PROFILE	TABULATION	56	POINTS, DE	LTA AT PUI	HT 43
1	Y	PT2/P	P/PD	TO/TOD	CHVW	U/UD	T/TD	RHO/RHOD*U/UD
	0.0000#+00	1.0000"+00	0.97040	0.86732	0.00000	0.00000	4.28230	0.00000
	6.3000"-05	1.1404"+00	0.97040	0.87354	0.09857	0.20090	4.15410	0.04693
3	6.9000 -05	1,2455"+00	0.97040	0.87854	0.12822	0.25840	4.07400	0.06164
4	2,4100"-04	1,9508"+00	0.97040	0,89349	0.23115	0.44130	3.64470	0.11750
5	3.4300"-04	2.5357"+00	0.97040	0.90214	0.28017	U.516A0	3.40260	0.14739
6	4.4400"=04	5.9691,+00	0.97040	0.40835	0.31032	0.55960	3.25190	U.16699
7	5,2100"-04	3.2471"+00	0.97040	0.91327	0.33045	0.58680	3.15340	0.18058
8	6.7300"-04	3.7109"+00	0.97040	0.91841	0.35533	0.61840	3.02880	U_19813
9	8.5100"-04	3.9948"+00	0.97040	0.92241	0.37100	0.63760	2.95360	0.20948
10	1.0030"-03	4.2213"+00	0.47040	0.92252	0.38301	0.65050	2.88720	0.21874
11	1.2570"-03	4.4407"+00	0.97040	0.92212	0.39428	0.66260	2.82420	0.22767
iż	1.6130"-03	4.8039"+00	0.97040	0.92666	0.41222	U.68250	2.74120	V.24161
13	2.0190"-03	5.1467*+00	0.97040	0.93166	0.42845	0.70010	2.67010	0.25444
14	2.4260"-03	5.4533"+00	0.97040	0.93480	0.44244	0.71430	2.60650	0.26593
15	2.6320"-03	5.7362*+00	0.97040	0.93711	0.45495	0.72640	2.54930	0.27651
io	3.3910"-03	6.1525"+00	0.97040	0.94026	0.47275	0.74290	2.46940	0.29194
i7	4.0010*-03	6.5403"+00	0.97040	0.94100	0.49874	0.75660	2.39650	0.30637
ié	4.6860"-03	7.0070*+00	0.97040	0.94137	0.50730	0.77080	2.30860	0.32400
19		7.45734+00	0.97060	0.94592	U.52458	U.78540	2.24160	U.34007
	5.4230"-03		0.97118			0.80290	2.15360	0.36204
50	6.3630"-03	8,0670"+00		0.95031	0.54709			
51	7.414003	8.7131"+00	0.97186	0.95496	0.56997	0.81940	2.06480	U.38512
55	6.3440"-03	9.3311"+00	0.97244	0.95799	0.59101	0.83400	1.99130	0.40728
53	9.3600*-03	1,0000"+01	0.97312	0.96176	0.61297	0.84830	1.91520	0.43102
24	1.0376"-02	1.0621"+01	0.97370	0.96246	0.63268	0.85930	1.84470	0.45357
25	1.1621"-02	1.1435"+01	0.97446	0.96694	0.65759	0.87400	1.76650	0.48214
56	1.2492"-02	1.2243"+01	0.47535	0.97102	0.68143	0.88720	1.69510	0.51049
27	1.4211 "-02	1.2970"+01	0.97613	0.97455	0.70218	0.89810	1.63590	0.53589
58	1.5405"-02	1.36777+01	0.97690	0.97713	0.72180	0.90760	1.58110	0.56077
59	1.6700"-02	1,4428*+01	0.97768	0.98031	0.74205	0.91720	1.52/80	0.58694
30	1.8351"-02	1,5408"+01	0.97875	0.98486	0.76766	0.92900	1.46450	0.62087
31	2.035#"-02	1.6586"+01	0.98001	0.98821	0.79737	0.94100	1.39270	0.66216
35	2.3178"-02	1.8142"+01	0.98176	0.49182	U.835UL	0.95440	1.30750	0.71695
33	2.5768*-02	1.9400"+01	0.98341	0.99411	0.86423	0.96450	1.24550	0.76154
34	2.8232*-02	2.0521"+01	0.98496	0.99571	0.88946	0.97220	1.19470	0.80152
35	3.0518"-02	2.1515"+01	0.98632	0.99583	0.91130	U.97790	1.15150	5.83762
30	3.3105"-02	2.2525"+01	0.98806	0.99690	0,43285	0.98370	1.11200	0.87406
37	3.5877"-02	2,3301*+01	0.99971	0.99892	U.94912	0.98850	1.08470	0.90194
38	3.81894-02	2.3819"+01	0.99117	1.00069	0.95984	0.99180	1.06770	0.92071
39	4.09074-02	2.4414"+01	0.99292	1.00175	0.97199	0.99500	1.04790	U.94279
40	4.3294"-02	2.4968*+01	0.99437	1.00016	0.98317	0.99660	1.02750	0.96447
41	4.6012"-02	2.5534"+01	0.99612	0,99645	0.99447	0.99710	1.00530	0.98799
42	4.8624"-02	2.5733"+01	0.99777	1.00025	0.49840	0.99980	1.00280	0.99476
0 43	5.2261"-02	2.5814*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
44	5.6147*-02	2.5839"+01	1.00243	1.00020	1.00050	1.00020	0.99940	1.00323
45	5.9830"=02	2059185+01	1.00475	1.00017	1.40205	1.00050	0.99690	1.00638
46	6.3665"=02	2.5888*+01	1.00825	1.00061	1.00145	1.00060	0.49830	1.01057
47	6.7475"-02	2.5880"+01	1.00873	1.00127	1.00130	1.00090	0.99420	1.01045
48	7.1484 -02	2.5867"+01	1.01058	1.00178	1.00105	1.00110	1.00010	1.01159
49	7.5298"-02	2.5852"+01	1.01184	1.00250	1.00075	1.00140	1.00130	1.01194
50	7.9032"-02	2.5870"+01		1.00256			1.00000	1.01090
			1.01019		1.00110	1.00150		
51	8.3071"-02	2.5941"+01	1.00243	1.00337	1.00250	1.00220	0.99940	1.00523
52	8.6652"-02	2.5982"+01	0.99767	1.00307	1.00330	1.00220	0.99780	1.00207
53	9.0559*=02	2.5862"+01	1.01077	1.00342	1.00095	1.00190	1.00190	1.01077
54	9.4295"-02	2.5799*+111	1.01776	1.07412	0.99970	1.00200	1,00460	1.01512
35	9.7904"-02	2.5961"+01	0.99981	1.00463	1.00290	1.00290	1.00000	1.00271
56	1.0189"-01	2.4068"+01	0.98845	1.00539	1,00501	1.00370	0.99740	0.99470

INPUT VARIABLES Y, U/HD, T/TD, P/PH

730405	vo151	INET	PROFILE	TABULATION	43	POINTS, DEL	TA AT POI	NT 35
t	4	9/579	P/PD	70/100	M/MD	UZUD	1/10	RHG/RHOD#U/UU
1	u.0000"+00	1.0000*+00	0.99641	0.86683	0.00000	0.00000	4.43060	0.00000
چَ	6.3000"-05	1.0953*+00	0.99641	0.86640	0.05006	0.16630	4.31470	U. U3B4U
3	1.4000*-04	1.3006*+00	0.49641	0.87242	0.13772	0.28010	4.13060	0.06747
4	1.9100"-04	1.5762"+00	0.99641	0.87953	0.18376	0.36510	3.94750	0.09216
5	2.4100"-04	1.7206*+00	0.97641	0.88311	0.20197	0.39710	3.86550	0.10236
6	2.6700"-04	1.9364"+00	0.99641	0.88785	0.22483	0.43540	1.75720	V.11557
7	3.4300"-04	2.4460*+00	0.99641	0.89703	0.26757	0.50360	3.54230	0.14166
8	4.1900"-04	2.6628"+00	0.99641	0.90082	0.28321	0.52700	3.46250	V.15156
9	4.9500*-04	2.9540"+00	0.99641	0.90006	0.30272	0.55520	3.36360	0.16446
10	5.2190"-04	3.1169"+00	0.79641	0.90881	0.31302	0.56960	3.31130	0.17140
11	5.7200"-04	3.2244"+00	0.93641	0.90984	0.31961	0.57840	3.27500	U.17598
12	6.9800"-04	3.5903"+00	0.99641	0.91600	0.34100	0.60690	3.16/60	0.19091
13	8.2500"-04	3.6491"+00	0.99641	0.92022	U.35529	0.62520	3.09050	0.20118
14	1.1050"-03	4.1432*+00	0.99641	0.92370	0.37081	0.64400	3.01620	0.21275
15	1.3080**03	4.3157"+00	0.99641	0.92305	0.37961	0.05340	2.96270	0.21975
16	1.5880"-03	4.5933*+00	0.99641	0.92544	0.39333	0.66880	2.89120	0.23049
17	1.8570 -03	4.6323"+00	0.99641	0.92768	U.40475	U.64130	2.83330	0.23960
16	2.1460"-03	5.0659*+00	0.99641	0.92893	0.41560	0.69250	2.77640	0.24853
19	2.3750*-03	5.2068"+00	0.79641	0.92925	U.42201	0.69880	2.74200	0.25394
. 20	3.9500 03	6.2861*400	0.99641	0.93721	0.46810	U.74310	2.52010	0.29381
51	5.2200"-03	7.0792"+00	0.99641	0.94333	0.49921	0.77040	2.38160	0.32232
55	8.1410"-03	8.8531"+00	0.99641	0.95426	0.56252	U.B1900	2.11980	D.38497
23	1.0223"-02	1.01424+01	0.99641	0.96157	0.60435	0.84710	1.46470	0.42961
24	1.2891"-02	1.1465"+01	0.99661	0.96937	5,05092	0.87500	1.80700	0.48259
32	1.4922"-02	1.2886"+01	0.99681	0.97451	U.68485	0.89320	1.70100	0.52343
36	1.8199"-02	1,4815"+01	0.99701	0.98076	0.73619	0.91740	1.55290	0.58900
27	2.0942"-02	1.6461*+01	0.99731	0.98478	0.77732	0.93430	1.44470	0.64497
85	2.3508"-02	1.7946*+01	0.99751	0.98873	0.51261	0.94760	1.36040	0.09497
59	2.6759*=02	1.9598*+01	0.99771	0.99303	U.85016	0.96110	1.27800	0.75031
30	3.2220"-02	2.2133"+01	0.99821	0.99714	0.90476	0.97750	1.16750	0.83584
31	3.6614"-02	2.3616"+01	0.49451	0.99939	0.93931	0.95690	1.10390	0.89268
12	4.0551"-02	2.4960"+01	0,99850	1.00058	0.76201	0.99250	1.06440	0.93134
33	4.7262"-02	2.6311"+01	0.49940	1.00110	0.98817	0.99820	1.02040	U.9776b
34	5,1446"+02	2.6765"+01	0.49970	1.00045	0.99661	U.99970	1.00580	U.99364
0 35	5.5359*-02	2.6933"+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
36	4.1532"-02	2.7079*+01	1.00050	1.00032	1.00276	1.00070	0.99590	1.00532
37	6.7064"-02	2.7119*+01	U.99631	1.00143	1.00351	1.00440	0.99580	1.00192
36	7.145005	2.7103*+01	0.99791	1.00175	1.00321	1.00150	0.99000	1.00281
34	7.5730"-02	2.7202"+01	0.98725	1.00243	1.00507	1.00220	0.99430	0.99509
40	9.541305	2.7244"+01	0.98336	1.00412	1.00567	1.00320	0.99476	0.99176
41	8.9421 -02	2.7143"+01	0.98834	1.00429	1.00491	1.00310	0.99640	0.99499
42	4.5059"-02	2.7204"+01	0.98725	1.00542	1.00511	1.00370	0.79720	0.99368
43	1.0194"-01	2.7174"+01	0.99004	1.00543	1.00455	1.00360	0.44810	U.99549
		 .	. =					

INPUT VARIABLES Y, U/UD, T/TO, P/PH

730	4130	ı vots:	INET	PROFILE	TAHULATION	3.3	PUINTS, DEL	TA AT PUT	NT 32
	I	Y	P12/P	P/PD	TU/TOD	HIVMD	りという	1/10	8+0/8+00*U/UD
	1	U.00U0"+00	1.0000*+00	1.00000	0.29702	0.00000	0. 00000	1.31483	0.0000
		Ს. 3 000°−05	1.8168"+00	1.00000	0.51498	0.23297	0.32302	1.92214	0.16805
	3	1,4000"-04	2.7647"+00	1.00000	0.60117	0.31788	0.44693	1,97674	.22609
		2.4100"-04	3.6130"+00	1.00000	0.65411	0.37491	0.52491	1.96027	0.26778
	5	3,1700"-04	4,1983*+00	1.00000	0.68713	0.40927	U.56895	1,93252	0.29441
	6	3.9400"-04	4.5521"+00	1.00000	0.70435	0.42563	0.59291	1,41346	0.30986
	7	4.7000"-04	4.6956"+00	1.00000	0.71121	0,43623	0.60220	1.00567	0.51600
		5.7200"-04	4.9381"+00	1.00000	0.72212	J.44876	0.61717	1.49140	U.32631
	9	6.4800"-04	5.0282"+00	1.00000	0.72562	0.45333	0.62237	1.48481	0.33020
i	0	8.2500"-04	5.2426*+00	1.00000	0.73348	0.46400	0.63425	1.86644	0.33945
ı	1	1.1300*-03	5.4615"+00	1.00000	0.75237	0.47465	0.65072	1.87452	v.34622
i	Ž	1.3570"-03	5.7163"+00	1.00000	0.76560	0.48674	0.66570	1.87053	v.35589
1	3	1.6640"=03	5.9896#+00	1.00000	0.77950	0.49938	U.5A118	1.86065	0.16610
1	4	1.8670"-03	6.2213"+00	1.00000	0.78699	0.50784	0.69206	1.84258	0.37554
1	5	2.1720"-03	6.4603"+00	1.00000	0.79604	0.52040	0.70354	1.62771	0.38493
1	6	2.4510"-03	6.6634"+00	1.00000	0.60364	0.52921	0.71303	1.81533	0.39278
1		2.5780"-03	6.7771"+00	1.00000	0.80762	0.53408	0.71812	1.80795	0.39720
1	8	5.5250"-03	8.7539"+00	1.00000	0.85920	0.61247	0.79011	1.66470	0.47477
1	9	7.0120*-03	1.0339*+01	1.00000	0.89144	0.64868	0.83475	1,55839	0.53565
Š	0	1.0401 -02	1.1967"+01	1.00000	0.91533	0.72182	0.87059	1.45466	U.59848
2	1	1.2992"-02	1.3503"+01	1.00000	0.93315	0.76857	0.89825	1.36594	0.65761
2	Ž	1.5558"-02	1.4922"+01	1.00000	0.94671	0.80936	58910,0	1.29148	0.71217
2	3	1.8047"-02	1.6280*+01	1.00000	0.95657	0.84657	U.93709	1.22529	0.76479
2	4	2.0437"-02	1.7611"+01	1.00000	0.96437	0.88152	0.95167	1.16550	0.41653
2	5	2.3050"=02	1.5618"+01	1.00000	0.97000	0.90705	0.96176	1.12428	0.85545
2	6	2.5489"=02	1.9418"+01	1.00000	0.97458	0.92682	0.96955	1.09433	v.88597
2	!7	3.0696"-02	2.0867"+01	1.00000	0.98372	0.96141	0.98283	1.04462	0.94085
2	8	3.5649"-02	2.1776"+01	1.00000	0.95974	0.98280	0.99091	1.01057	U.47476
Ž	9	4.0602"-02	2.2393"+01	1.00000	0.99320	0.49695	0.99591	0.99790	0.99800
3	0	4.5885"-02	2.2723"+01	1.00000	0.99642	1,00443	0.99920	0.98962	1.00968
3	11	5.0965"=02	2.2501"+01	1.00000	0.99728	0.99940	0.49850	0.99624	1.00030
0 3	ĺŽ	5.0175*-02	2.2527"+01	1.00000	1.00000	1,00000	1.00000	1.00000	1-00000
	3	6.1430*-02	2,2616"+01	1.00000	1.00150	1.00200	1.00120	0.99840	1.00280

INPUT VARIABLES Y, U/UD, T/TO, P/PW

730413	02 V0151	NET	PROFILE	TARULATION	53	POINTS, DEL	TA AT PUI	NT 50
1	Y	P12/P	P/PD	TO/TOD	MZTD	מטעט .	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	1.03125	0.23466	0.00000	0.00000	1.13570	U.0000U
ž	6.3000 -05	1.6257"+00	1.03125	0.42525	0.19694	0.26360	1.79150	0.15174
3	8.9000"-05	1.7333"+00	1.03125	0.44064	0.21052	0.28420	1.82250	0.16081
4	1.1400 -04	1.0212"+00	1.03125	0.45150	0.22057	0.29930	1.84120	0.16764
Ś	1.4000*=04	2.2048*+00	1.03125	0.49304	0.25730	0.35490	1.90260	0.19236
5	1.9100*=04	2.6135*+00	1.03125	0.52959	0.28947	0.40310	1.93920	0.21436
ž	2.1600"=04	3.0598*+00	1.03125	0.56320	0.32020	0.44750	1.95580	0.23611
à	2.6700"-04	3.4547"+00	1.03125	0.59213	0.14662	0.48540	1.96110	0.25525
9	3.1700 -04	3.8549*+00	1.03125	0.61424	0.36795	0.51460	1.95000	0,27131
10	3.9400"-04	4.4498*+00	1.03125	0.64712	0.39972	0.55090	1.94110	0.29586
11	4.9500"-04	4.7460"+00	1.03125	0.66624	0.41948	0.58190	1.92430	0.31164
iż	5.2100 04	4.9936*+00	1.03125	0.67276	0.42660	0.57060	1.91070	0.31776
13	a.2200*-04	5.1652"+00	1.03125	0.68060	0.43472	0.60070	1.40940	0.32443
14	b.9800"=04	5.3440*+00	1.03125	0.68829	0.44302	U.61U6U	1.89960	v.33148
15	1.2570*-03	5.4791"+00	1.03125	0.71042	U.46696	0.63850	1.67140	V.35201
16	1.6890"=33	6.3506*+00	1.03125	0.73245	0.48706	0.65540	1.85520	U.16870
17	2.0900"-03	4.7501"+00	1.03125	0.74819	0.50345	0.68200	1.83510	0.38325
16	2.2220"-03	6.8549"+00	1.03125	0.75175	0.50766	0.68050	1.82870	0.38713
19	2.4000"-03	6.9796"+00	1.03125	0.75731	0.51262	0.69240	1.42440	0.39138
20	2.6290"-03	7.1530*+00	1.03125	0.76376	0.51944	0.69990	1.81550	0.39756
21	2.7300"-03	7.26414+00	1.03125	0.76671	0.52392	0.70420	1.80660	U.40197
55	2.9000"-03	7,3780*+00	1.03125	0.77050	0,52816	U.70870	1.40050	0.40591
23	3.1620"-03	7.6042"+00	1.03125	0.77652	0.53678	U.71700	1.78420	0.41442
24	3.4670"-03	7.7947*+00	1.03125	0.78253	0.54397	0.72430	1.77290	0.42131
25	3.7210"-03	7.9773"+00	1.03125	0.78779	0.55073	v.73090	1.76150	v.42790
56	4.0770"-03	8 74517+00	1.03125	0.79457	U.55703	0.73910	1.74800	0.43604
27	4,3310"-03	2*************************************	1.03125	0,79890	0.56656	0.74560	1.73190	0.44396
59	5,6260"-03	**************************************	1.03125	0.82170	0.59667	0.77340	1.68010	0.47471
59	6.7690"-03	* 001: *** • 01	1.03125	0.84167	0.62107	0.77580	1.64180	0.49986
30	8.0390**03	1.045.44.401	1.03125	0.85997	0.64615	0.81800	1.50500	0.52961
31	8.9790 -03	1.1441	1.03125	0.67242	0.66407	0.83240	1.56100	0.54963
35	1.0659"-02	1.2010"+01	1.03125	0.89346	0.70089	0.85790	1.49820	V-59051
33	1-2154"-02	1.3361"+01	1.03125	0.90501	0.72209	0.87220	1.45700	0-61649
34	1.566505	1.3875*+01	1.03125	0.91072	0.73637	0.88060	1,43010	0.63500
35	1.343005	1.4396"+01	1.03125	0.91795	0.75053	0.85750	1.40460	0.65306
79	1.5024"-02	1.5090*+01	1.03125	0.92665	0.76904	0.90050	1.37110	0.67729
37	1.7081"-02	1.6308*+01	1.03001	0,93831	0.80045		1.31240	0.71969
3 ()	1.6634"-02	1-7425"+01	1.02877	0.94754	U. N2621	U.73040	1.56500	0.75845
39	2.0155"-02	1.8272*+01	1.02795	0.95291	9.84864		1.55440	0.78825
40	2.2517*-02	1.9676"+01	1.07630	0.96145	0.85147		1.16610	0.83705
41	2.4430"-02	2.0862"+01	1.02465	0.96750	0.90832		1.12360	0.87744
42	2.6207"-02	2.2172"+01	1.02248	0.97431	0.93703		1.07870	0.92248
4.5	3.1001"-02	2.3064*+01	1.02032	0.95024	0.95610		1.05190	0.95116
44	3.4760"-0Z	2.3899"+01	1.01598	0.96%63	0.97362		1.02810	0.97557 0.98651
45 46	3.7173"=02	2.4311"+01	1.01320	0,98893	0.98214		1.01750	0.99272
47	5.9411"-02	2.45%6*+01	1.01042	0.99132	0.48778		1.01080	0.79733
45	4.1440**02	2,4794"+01	1.00635	0,99653	0.49680		1,00160	1.00114
49	4.4183"=02	2.5028*+01 2.5110*+01	1.00516		0.99843		1,00130	1.00007
0 30	4.6723"=02 4.8654"=02		1.00227	0,99684 1.00000	1.00000		1.00000	1.00000
51	3.1194"-02	2.5186"+01 2.5303"+01	0.49711	1.00243	1.00235		0.49870	1.00011
52	5.3556"=02	2.5325"+01	0.99484	1.00405	1.00280		0.44460	U.99783
33	5.6401"-02	2.5322*+01	0.49577	1.00527	1.00275		1.00090	U.99806
	2404A1 -AE	# # 2368 TVI	4 4 7 7 7 7 7	4 4 4 4 3 5 1	******	1000000	4,000	441444

INPUT VARIABLES Y, U/UD, T/TD, P/PW

730413	os voisi	INET	PROFILE	TABULATION	52	POINTS, DEL	TA AT PUI	NT 44
I	Y	PT2/P	P/PD	T0/10D	H/MD	UZUD	TITO	AHO/HHOD#U/UD
l 2	0.0000"+00 6.1000"-05	1.0000*+00	1.00000	0,22058 0,38614	0.00000	0.00000 0.21460	1.11770	0.00000
ĩ	1.1400"-04	1.5534"+00	1.00000	0.41077	0.18159	0.24600	1.83530	
4	1.9100"-04	2.1567*+00	1.00000	0.48887	0.24596	0.34680		0.13404
3							1.98800	0.17445
	2.4100"=04	2.7638"+00	1.00000	0.54489	0.29173	0.41780	2.05110	0.20370
6	3.1700"-04	3.6426*+00	1.00000	0.60787	0.34580	0.49780	2.07230	0.24022
?	4.1900"-04	4.2679"+00	1.00000	0.64481	0.37923	0.54450	2.06150	0.26413
ð	4.9500"-04	4.6378"+00	1.00000	0.66400	0.39762	0.56900	2.04780	0,27786
9	5.9700*=04	4.5469"+00	1.90000	0.67464	0.40763	0.58220	2.03990	0.25541
10	7.2400"-04	5.1446"+00	1.00000	0.66806	0.42155	0,59970	2.02380	0.29632
11	4.0200*-04	5,3952*+00	1.00000	0.70340	0.43275	0.61580	2.02490	0.30411
12	1.1560"-03	5.5930"+00	1.00000	0.71617	0.44145	0.62810	2.02440	0.31026
13	1.3340"=03	5.4295"+00	1.00000	0.72259	0.45162	0.63890	2.00130	0.31924
14	1.6410"-03	6.13M3"+00	1.00000	0.72949	0.45457	0.65150	1.96850	0.33112
15	1.8690"-03	6.4064"+00	1.00000	0.73537	0.47551	0.66250	1.94110	0.34130
16	2.1490*-03	6.6456*+00	1.00000	0.74101	0.48507	0.67190	1.41870	0.35019
17	2.3770"-03	4.8535"+00	1.00000	0.74629	0.49321	0.69000	1.90090	0.35773
iá	3.4700"-03	7.5925"+00						
19			1.00000	0.77332	0.52114	0.71110	1.46190	0.38192
žŏ	4.6150"-03	8.3649"+00	1.00000	0.79685	0,54879	0.73930	1.81480	0.40737
	5.5600"-03	9.1431"+00	1,00000	0.81742	0.57529	0.76440	1.76540	0.43297
SĪ	7.2850*-03	9,9847"+00	1.00000	0.83944	0.60263	0.78970	1.71720	0.45948
55	8.5290"-03	1.0712"+01	1.00000	0.85629	0.62530	0.80930	1.67510	0.48314
5.7	1.0284*-02	1.1687"+01	1.00000	0.87502	0.65442	0.83220	1.61710	U.51462
24	1.1735"-02	1,2539"+01	1.00000	0.88911	0.67686	0.84990	1.56740	0.54224
25	1.3310"-02	1.3351"+01	1.00000	C.90263	0.70135	0.86590	1.52410	0.560 6
26	1.5065*-02	1,4370"+01	1.00000	0.91484	0.72860	0.88260	1.46740	U.60147
27	1.6360"-02	1.5078*+01	1.00000	0.92423	0.74692	0.89400	1.43260	0.62404
28	1.8141"-02	1.6004*+01	1.00000	0.93435	0.77025	0.90720	1.34720	0.65378
29	1.9997"-02	1.7075*+01	1.00000	0.94293	0.79639	0.92010	1.33460	0.68932
30	2.1293"-02	1.7715"+01	1.00000	0.94885	0.81158	0.92780	1.30490	U.70992
31	2.3200"-07	1.0716"+01	1.00000	0.95515	0.83462	0.93790	1.20220	0.74307
žė	2.5540"-02	1.4936"+01	1.00000	0.96292	0.86229	0.94950	1.21250	0.78309
33	2.7295"-02	2.0614"+01	1.00000	0.96717	0.87718	0.95560	1.14680	0.00519
14	2.9863"-02	2.1585"+01	1.00000	0.97167	0.89809	0.96330	1.15050	U.83729
15	3.2355"-02	2.2390"+01		0.97557		0.96930		0.86383
36	3.4770"-02	2.2966"+01	1.00000	0,97853	0.91504		1.15510	
37	3.7846"-02		1.00000			0.97360	1.10316	0.88260
Šá		2.3616"+01	1.00000	0.98180	0.94033	0.97830	1.08240	U.903A2
	4.0617"-02	2.4300"+01	1.00000	0,98589	0.95408	0.98340	1.06240	0.92564
19	4.2906"-02	2,4496"+01	1.00000	0.98899	0.95749	0.98550	1.03890	0.93097
40	4.4737"-02	2.4875"+01	1.00000	0.99015	0.96552	0.98800	1.04710	0.94356
41	4.7584"-02	3.5306"+01	1.00000	0.99477	0.97401	0.79210	1.03750	0.95624
42	4.9720"-02	2.5441"+01	1.00000	0.99553	0.97744	0.94320	1.03250	0.96194
43	5.2339"-02	2.6404"+01	1.0000	0.79846	0.94532	0.49830	1.00600	0.94235
D 44	5.4735"-02	5.0446*+01	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
45	3.7374"-02	R.4412*+01	1.00000	1.00020	0.99547	0.44450	1.00750	0.99176
46	5.9789*-02	10+"1050.5	1.00000	1.00186	0.99326	0.99960	1.01280	U.98697
47	.24U8"-D2	2.6244"+01	1.00000	1.00230	0.99274	0.99960	1.01490	0.98492
48	.5001"-02	10+"0150.5	1.00000	1.00246	0.99233	0.97970	1.01490	0.98502
49	6.7874"-02	10+"2850.5	1.00000	1.00195	50699.0	0.99960	1.01330	0.98646
50	7.1204*-02	2.6340"+01	1.00000	1.00365	0.99465	1.00000	1.01200	U.98893
Ši	7.4102"-02	2.0352*+01	1.00000	1.00447	0.49431	1.00110	1.01370	0.98737
52	7.64994-02	2.6267"+01	1.00000	1.00312	0.99268	1.00010	1.01500	0.98532
	TEMPTE THE	STABOL LAT	******		V 1 7 7 E U G	1400010	********	A • 40 3 3 K

INPUT VAPIABLES Y, U/UD, T/TD, P/PN

INPUT VARIABLES Y, U/HD, T/TD, P/PW

M: 9 - 10 R THETA X 10⁻³: 1 - 12 TW / TR: 1.0 7305

ZPG - AN

Axially symmetric blow down tunnel. Punning time 5 s. 0 = 1.52 m. 2.8 < PO < 13.8 MN/m². TO : 300 K, Helium. 0.9 < RE/m X 10^{-6} < 5.

MATSON R.D., HARRIS J.E. and ANDERS J.B., 1973. Measurements in a transitional / turbulent Mach 10 boundary layer at high Reynolds numbers. AIAA P 73-165.

And Watson R.D., private communications.

- The test boundary layer was formed on a flat plate (L = 2.36, W = 1.015 m) placed at 5° negative incidence in the working section of the Mach 20 wind tunnel described in Watson and Bushnell (1971). The leading edge (X = 0) was 0.13 mm thick and chamfered so that the under side was at 17° to the free stream flow. It was positioned 0.127 m below the tunnel centre line, 0.425 m downstream of the end of the nozzle. The test zone extended from X = 0.74 to X = 2.11 m. End-plates were mounted on the surface 0.305 m to either side of the centre line. The surface consisted of steel plates 4.76 mm thick finished to 0.8 μm r.m.s. forming interchangeable instrument sections 153 mm (E) wide along the centre line. The surface was not actively cooled. The transition zone was located from heat transfer measurements. In all cases transition commenced
 - at about X = 0.61 m and extended over the first three measuring stations to between X = 1.4 and 2.0 m. The flow was fully turbulent at the last station (X = 2.11 m) though by no means in equilibrium even for
- 5 the highest RE/m case. No trip was used. Preliminary oil-flow tests showed that, with the end-plates fitted, no discernable surface-flow divergence was present over the central 0.15 m wide instrumented strip.
- Wall static pressure was measured at static tappings of diameter 2.29 mm. The wall temperature was obtained by thermocouples. Heat transfer rates were found using the transient technique from the rate of change of wall temperature. Floating element balances (Kistler model 322, serial 121) were installed at each profile
- location to measure the wall shear stress. Profile traverses were made with Pitot, static and total temperature probas. The FPP ($h_1 = 1$ $h_1 = 3.02$ 1 = 50.8 mm) was formed from flattened 1.52 mm tube. The SPP was a CPP ($\alpha = 42.5^{\circ}$, d = 3.2, $h_1 = 12.2$, $h_2 = 12.2$, $h_3 = 12.2$, $h_4 = 12.2$, $h_5 = 12.2$, $h_5 = 12.2$, $h_6 = 12.2$,
- The authors have reduced the profile data on the assumption of no normal pressure gradient and with the linear Crocco total temperature distribution. The static pressure at a profile normal was measured with the probe well clear of the surface. When this was not possible, due to instrument failure or the presence of a skin-friction gauge, the value was determined from the tunnel stagnation pressure and the results of earlier measurements. The heat transfer measurements showed that the model temperature did not change significantly during a run, so that the wall temperature measured at a single station at the start of the run was taken to apply to all stations. The authors found, particularly in the transitional zone, that probe interference effects were evidently large, the wall static pressure rising by as much as 80 % as a
- 10 probe approached the wall. In the absence of a rational correction procedure, no profile corrections
- 11 were applied. Viscosity values were determined from the power law μ = 5.0277 X 10⁻⁷ T ^{0.647} kg/ms.
- The editors have presented the profile data replacing the authors' temperature velocity correlation by the Crocco Van Driest relationship. The edge Mach number has been interpolated on the basis of tunnel reservoir pressure for each station. Adjustments from neighbouring measured points were less than 0.5% except for profile 0502 where it was necessary to extrapolate, the resulting adjustment being 1.5%. The edge point is that selected by the authors, and the edge stagnation pressure (the source paper tabulates tunnel values)

has been calculated using the authors' D2 and RED2D values, with the authors' viscosity law. We have then replaced this with the helium viscosity law used throughout the catalogue. The different viscosity value causes the differences that can be observed between their RED2D values and ours. We have interpolated the CF values for each station, also on the basis of tunnel reservoir pressure. The biggest adjustment was 3 % for run 0504.

- 13 The five sets of four profiles are distinguished by increasing values of unit Reynolds number. Measured
- 14 TO profiles corresponding to runs at station 4 for series 02-05 are given in section D. Interpolated CF values are associated with the profiles. Heat transfer measurements were made, but with the small temperature differences involved the heat flux values are not very accurate. We have therefore regarded the flow as adiabatic.
- § DATA 7305 0101-0504. Pitot profiles. NX = 4. CF from FEB. Some additional TO profiles. CQ measured but not presented (near zero).

15 Editors' comments

The entry gives a very clear description of the development of a layer through the transition region. The development is free of history effects, and transition is unforced. In this respect it can be regarded as an extension of the data of Fischer et al. - CAT 7103 to higher Mach numbers. The value of the measurements is greatly enhanced by the provision for direct wall shear stress measurements.

Measurements extend within the momentum-deficit peak, and the profile is described at close intervals. Values near the wall should not be given too great emphasis as no corrections were applied, and it is far from certain how they should be.

CAT 7305	WATSON	E	OUNDARY CON	STIONS AND E	VALUATED	DATA. SI UNIT	s.	
RUN	MD #	TW/TR*	REDZW	CF *	H12	H12K	PW	PD
X #	POD	PW/PD*	HEDZD	CQ	H32	H32K	TW	TD
RZ	TOD#	SW *	D2	PI2	H42	D2K	UD	TR
73050101	9.5800	1.0000	1.6963"+02	1.9900#-04	74.0466	2.3571	2.0341"+02	2.0341"+02
7.4200"-01	1.1395*+06	1.0000	1.4911"+03	NM	1.7547	1.5983	2.6979"+02	9.4914"+00
Infinite	3.8000*+02	0.0000	1.7811"-04	0.0000#+00	0.1988	2.0118"-03	1.7374"+03	2.6979"+02
73050102	8.9500	1.0000	2.3371"+02	2.2300"-04	65.3323	2.1673	2.2917*+02	2.2917"+02
9.9600"=01	9.2435*+05	1.0000	1.8771"+03	NM	1.7296	1.5838	2.6993*+02	1.0825"+01
Infinite	3.0000*+02	0.0000	2.4876"=04	0.0000"+00	0.1736	2.7477"-03	1.7334*+03	2.6993"+02
73050103	9.7000	1.0000	2,4149*+02	2.6200"-04	65.6644	1.5072	2.0083"+02	2.0083*+02
1.2500#+00	1.1949*+06		2,1562*+03	NM	1.8173	1.7136	2.0976"+02	9.2653*+00
INFINITE	3.0000*+02		2,5031*+04	0.0000"+00	0.1839	2.4239*-03	1.7381"+03	2.0976*+02
73050104	9.2000	1.0000	4.1494*+02	4.3400*-04	64.4725	2.5962	2,5386"+02	2.5386*+02
2.1100*+00	1.1694"+06		3.4534*+03	NM	1.8477	1.6022	2,6987"+02	1.0264*+01
Infinite	3.0000"+02		3.7767*-04	0.0000*+00	0.1842	2.5749"-03	1,7351"+03	2.6987*+02
73050201	9.7900	1.0000	2.2749"+02	1.4500"-04	86.7190	2.1305 -	4.0103*+02	4.0103"+02
7.4200*=01	2.4954*+06		2.0569"+03	NM	1.6044	1.6371	2,6975*+02	9.1008"+00
Infinite	3.0000*+02		1.1595"-04	0.0000"+00	0.1656	2.2174"=03	1.7386*+03	2.6975"+02
730502U2	9.5100	1.0000	3.1272"+02	2.3000*-04	66.4819	1.9147	4.0664*+02	4.0664*+02
9.96U0*=01	2.1986*+06	1.0000	2.7188"+03	NM	1.8097	1.6608	2.6980*+02	9.6272*+00
INFINITE	3.0000*+02	0.0000	1.6645"=04	0.0000*+00	0.1900	1.5492"-03	1.7370*+03	2.6980*+02
73050203	9,6800	1.0000	3.0566"+02	3.4700 == 04	83,8491	7.3594	3.9484"+02	3.9484*+02
1.2500#+00	2,3260#+06	1.0000	2.7217"+03	NM	1,9433	1.9263	2.6977"+02	9.3024*+00
Infinite	3,0000#+02	0.0000	1.6161"=04	0.0000 =+ 00	0,2039	6.5300#=04	1.7380"+03	2.6977*+02
73050204	9.7400	1.0000	6.6240"+02	3.3700*-04	78.7582	4.4223	4.5832"+02	4.5832"+02
2.1100#+00	2.7820*+06	1.0000	5.9475"+03	NM	1.8497	1.2727	2.6976"+02	9.1716"+00
Infinite	3.0000*+02	0.0000	2.9841"=04	D.0000*+00	0.1840	1.7707*=03	1.7383"+03	2.6976"+02
73050301	9.8500	1.0000	3.5236"+02	1,3500" -04	75,9805	2,3869	5.6932*+02	5.6932*+02
7.4200*=01	3.6491*+06	1.0000	3.2125"+03	NM	1.7498	1,6181	2.6974*+02	8.9436*+00
Infinite	3.0000*+02	0.0000	1.2499"=04	0.0000"+00	0.1849	1,2522"=u3	1.7339*+03	2.6974*+02
73050302	9.7300	1.0000	2.7034"+02	2.6500*+00	72.7464	2.1827	5.4453"+U2	5.4453*+02
9.9600"-01	3.2888*+06		2.4239"+03	NM	1.6030	1.6932	2.6976"+U2	9,2100*+00
Infinite	3.0000*+02		1.0272"-04	0.0000*+00	0.2011	1.0526*-J3	1.7382"+O3	2.6976*+02
73050303 1.2500"+00 INFINITE	3.3954"+06 3.3954"+06	1.0000 1.0000 0.0000	4.4400*+02 4.0202*+03 1.6651*-04	3,7500"=04 NM 0.0000"+00	1.9140 0.1937	1.5419 1.8531 9.2138"-04	5,4297"+U2 2,6974"+U2 1,7386"+O3	5.4297*+02 9.0828*+00 2.6974*+02
73050304	9.8300	1.0000	1.0786"+03	3.0400*-04	62,4785	1.4429	6,3469"+02	6.3969*+02
2.1100#+00	4.0599"+06	1.0000	9.8070"+03	NM	1.9222	1.8500	2,6974"+02	9.0291*+00
INFINITE	3.0000"+02	0.0000	3.4188"-04	0.0000*+00	0.2080	1.7636"=03	1,7380"+03	2.6974*+07
73050401	9.9400	1.0000	3.7077*+02	1,2800*=04	77.3138	2.2098	7.0838*+02	7.0838"-02
7.4200*=01	4.7452"+06	1.0000	3.4234*+03	NM	1.7884	1.6145	2.6972*+02	6.8363"+00
Infinite	3.0000"+02	0.0000	1.0382*-04	0,0000*+0)	0.1865	1.1158"-03	1.7394*+03	2.6972"+02
73050402	9.9500	1,0000	3.7546*+02	3.0000"=0;	70.3553	2.0422	7.1593*+02	7.1593**02
9.9600"-01	4.2175*+06		3.3432*+03	NM	1.8260	1.7834	2.6977*+02	9.3024*+00
Infinite	3.0000*+02		1.0962*=04	0.0000"+00	0.1940	1.0508"-03	1.7380*+03	2.6977*+02
73050403 1.2500*+00 INFINITE	3.0000*+02	1.0000	5.4825*+02 5.1191*+03 1.5240*-04	0.0000#+00 NW 3.6000#+00	67.7094 1.9145 0.1960	1.8090 1.8608 8.7302"-04	7.0237"+02 2.0970"+02 1.7398"+03	7.0237*+02 8.6998*+00 2.6970*+02
73050404 2.1100*+00 INFINITE	10.0200 5.5879"+06 3.0000"+02	1.0000 1.0000 0.0000	1.3010"+03 1.2147"+04 3.1656"-04	2,7300*=04 HM 0,0000*+00	1.9150 0.2078	1.5704 1.8594 1.7908"=03	8,0257*+02 2,6970*+02 1,7396*+03	8.0237*+02 8.699A*+00 2.6970*+02
73050501 7.4200"-01 Infinite	10.1600 6.1859*+06 3.0000*+02		4.6204*+02 4.3994*+03 1.0570*=04	1,2200"-04 Ni4 U,0000"+00	77.1491 1.8063 0.1844		8.4036"+02 2.6968"+02 1.7405"+03	
73050502 9.9600*=01 INFINITE	9.8400 5.4435*+06 3.0000*+02	0.0000	5,2642*+02 4,6114*+03 1,2529*=04	3.0900*=04 0.0000*+00	75.6685 1.8702 0.1958	3.1484 1.7034 5.6721"-04	2.6974#+02 1.7388#+03	•
73050503 1.2500#+00 INFINITE	10,3100 6.6939"+06 3.0000"+02		6.7762*+02 6.5889*+03 1.4944*=04	3.2800"-04	69.0221 1.9250 0.2133	1.5806 1.8854 8.0894*-04	8,3678"+02 2,6966"+02 1,7412"+03	8,2305#+00 2,6966#+02
73050504 2.1100*+00 INFINITE	10.3100 7.5576"+06 3.0000"+02	0.0000	1.5502"+03 1.5074"+04 3.0260"-04	2.4000"=04 NM 0.0000"+00	70.2460 1.9045 0.1999	1.5612 1.6184 1.9432*-03	0.44744+02 2.09664+02 1.7412+03	

PD, PDD CALCULATED WITH ANTHOR'S MUE-LAW FROM RED2, DELTA2 (AUTHOR) - TRAPEZOIDAL BULE FOR RUN 0203

7305-C-	7305-C-1										
730501	DL WAT	\$011	PHOFILE	TABULATION	33	POINTS, DE	LYA AT PUI	NT 33			
I	Y	PTS/P	P/PD	10/100	MZMD	U/UD	T/10	RHO/RHOO*U/UD			
1	0.0000*+00	1.00007+00	ITM	0.88673	0.00000	0.00000	20.02710	a.anonu			
2	1.0222"-03	1.0441"+00 1.1981"+00	Mw Mw	0.88451 0.89402	0.02386	0.12536 0.25381	27.60236 26.28598	0.00454 0.00966			
4	3,1327"-03	1.9547"+00	NF:	0.91181	0.10024	0.47062	22.04094	0.02135			
5	4.1685"-03 5.0314"-03	2.1555"+00 2.8062"+00	Hw Uw	0,41505 0,92360	0.10842	0.50003	21.26964 19.22975	0.02351			
ž	6.4005*-03	4.4918"+00	1414	0.93905	0.13010	0.57053 0.67965	15.54267	0.02967 0.04373			
8	7.2342*-03	5.6326"+00	NM.	0.94644	0.19560	0.72607	13.77914	0.05269			
10	7.9131"=03 6.7579"=03	8.2055*+00 1.0305*+01	NP' NP'	0.95816 0.96469	0.23964	0.79415 0.82965	10.98181	0.07231 0.08804			
11	9.4965*=03	1.5338#+01	ЦМ	0.97471	0.33228	0.88131	7,03493	0.12528			
13	1.0104"-02	2.1501"+0) 2.7792"+4;	HM MH	0.98195 0.98607	0.39796	0.91685 0.93649	5.30783 4.32409	0.17273 0.21657			
14	1.1450"-02	3.4727*+01	NII	0.98927	0.50425	0.95146	3.56034	0.26724			
15 16	1,2005"-02	4.2176*+01 5.2471*+01	Max Max	0.99165 0.99391	0.53634	0.96243	2,99262	0.32160			
17	1.2545*-02	5.8893*+01	1464	0.99495	0.62120	0.97276 0.97747	2.45221 2.20399	0.39669 0.44350			
18	1.3033"-02	6.5819"+01	UM	0.99586	0.69634	0.98157	1.98704	0.49399			
19 20	1.3167"=02	7.1705"+01 6.0063"+01	NM NM	0.99651 0.99727	0.72702	U.98446 U.98786	1.83357	0.53691 0.59794			
21	1.4066"-02	8.8003*+01	ИW	0.99786	0.80587	0.99051	1.51072	0.65565			
53 55	1.4670"-02	9.4938"+01 1.0048"+02	HH MM	0.99830 0.99863	0.83718	0.99247 U.99395	1.40541	0.70618 0.74945			
24	1.5950"-02	1.0636"+02	NM	0.99891	0.86308	0.99517	1.26063	0.78942			
25	1.6465*-02	1.1165*+02	4451	0.99916	0.70901	0.99627	1.20122	0.82939			
26 27	1.6992"-02	1.1587"+02	NW MM	0.99932 0.99948	0.92526	0.99702 0.99772	1.16111	0.85867 0.88815			
28	1.8745"-02	1.2347*+02	(IM	0.99961	0.95525	0.99829	1.09216	0.91406			
29 30	2.0051"-02	50+"1885.1 50+"8505.1	18M MM	0.99972 0.99984	0.96736	0.99878 0.99931	1.06601	0.93693 0.96350			
31	2,2049*=02	1.3285*+02	NM	0.99993	0.49100	0.99967	1.01759	0.96239			
27. 25	2,4596"=02 2,4596"=02	1.3458"+02 1.3527"+02	Mit Mit	1.00000	1.00000	0.99991	1,00498	0.99495			
				-		1.00000	1.00000	1.00000			
INPUT	VARIABLES	Y/DELTA,M/MD	ASSUME P	mpo and van	DRIEST						
730501	1AW 501	5011	PROFILE	TABULATION	41	POINTS, DE	LTA AT PUI	NT 41			
I	Y	PT2/P	P/PD	T0/T0D	M/MD	U\U0	T/10	RHO/RHOU*U/UD			
į	0.0000*+00	1.0000*+00	MI	0.89964	0.00000	0.00000	24.93289	0.00000			
2 3	2.9187"-03 4.1413"-03	1.8967"+90 2.1317"+00	NM HM	0.92132 0.92480	0.10453	0.46473 0.50070	19.76409	0.02351 0.02645			
4	5,1901"-03	2.1856*+00	им	0.92553	0.11727	0.50793	18.75850	0.02708			
5	6.000A*-03 6.7542*-03	3,0873"+00 3,6136"+00	iim Mii	0.93557 0.94177	0.14790	0.59632 0.64793	16,36513	0.03656 0.04353			
7	8.1921"-03	5.5986"+00	NW	0.95300	0.20867	0.72914	12,20925	0.05972			
8 9	9.3981"-03	7.0244"+00 8. 96 55"+00	MM tiM	0.95939 0.96589	0.25554	0.77160	10.68389 9.13362	U.07222 U.08896			
10	1.1354"-02	1.0555"+01	ЙM	0.96996	0.29293	0.61250	8.16506	0.10251			
11 12	1.1721"-02	1.2463"+01	tiw.	0.97382	0.31945	0.85973	7.24305	0.11670			
រ៉េ	1.2326"-02	1.4541"+01	MW MM	0.97714 0.97981	0.34601	0.67678 0.69375	6.45052 5.81448	0.13623 0.15372			
14	1.3484"-02	2.6475*+01	ИМ	0.98758	0.47030	0.93608	3.96171	0.23628			
15 16	1.2692"-02	1.8699"+01 2.0945"+01	NM IIM	0.98200 0.98 3 96	0.39380	0.90591 0.91663	5.29201 4.82403	0.17118 0.19001			
17	1.314102	2.3707"+01	7404	0.48595	0.44458	0.72735	4,35099	0.21314			
18 19	1.4057"-02 1.4276"-02	3.0802"+01 3.4251"+01	M4 M4	0.98962 0.99092	0.50789	0.94647 0.95368	3.47564 3.16598	0.27243 0.30123			
20	1.4493"-02	3.8044"+01	MM	0.99210	0.56525	0.95984	2.88348	U.33286			
55 51	1.5211"-02	4.2759"+01 4.8052"+01	NW UM	0.99330 0.99441	0.59929	0.96603 0.97173	2.59838 2.33404	0.37178 0.41633			
23	1.5461"-02	5,3051"+01	NM	0.99526	0.66861	U.97608	2.13118	0.45800			
24	1.5577"-02	5.7009"+01	HM	0.99583	0.69331	0.97901	1.99398	0.49098			
25 24	1.6155"-02	6.0477"+01 6.7020"+01	NW NM	0.94626 0.99700	0.71425	0.98128 0.98495	1.88751	0.51986 0.57440			
27	1.6720"-02	7.2710"+01	NM	0.99753	0.78365	0,98763	1.56634	0.62180			
54 58	1.7089"-02	7.4509"+01 8.1004"+01	NM NM	0.99785 0.99618	0.80399	0.96921 0.49089	1.51363	0.65345 0.69069			
30	1.8155"-02	8.4294"+01	MH	0.94340	0.84413	0.99201	1,38105	0.71830			
31 31	1.8454"-02	4.8778"+01 4.1552"+01	NW NM	0.99868 0.99884	0.86640	0.99340 0.99420	1,31466	0.755 6 4 0.77875			
33 34	1.7339"-02	9.4664"+11	ИМ	0.99901	0.69480	0,99504	1.23460	0.89466			
34 35	1.9829"-02 50-"6660.5	9.7441"+01	NM NM	0.99915	0.90789	0.99575	1.20291	0.82779			
36	2.1502"-02	1.0213"+02	461	0.99937 0.99953	0.94613	0.99766	1.15004	0.84481 0.89727			
37	2.2544"-05	1.0927"+02	MIS	0.99967	0.96168	0.49837	1.07774	U.92634			
38 39	2.4026"=02	1.1209"+02 1.1422"+02	NP NM	0.94978 0.94986	0.97404	0.99892	1.03173	0.94979 0.96749			
40	2.6631*-02	1.1651"+02	NM	0.99994	0.99315	0.99972	1.01328	0.98462			
C 41	2.7940"-02	1.1612"+02	Им	1.00400	1.00000	1.00000	1.00000	1.00000			
INPLIT	VARTARLES	Y/DELTA, M/MD	ARRUMF .	SED AND VAN	DRIEST						

INPUT VARIABLES Y/DELTA, M/MD ASSUME PAPD AND VAN DRIEST

73050	LOS MATS	30.1	PROFILE	TABULATION	56	POINTS, UE	LTA AT PUI	NT 26
I	¥	9/579	P/PD	TO/TOD	M/HD	0700	1/10	RHO/RHOU*U/U
1	0.0000*+00	1.0000"+00	ММ	0.89878	0.00000	0.00000	29,10169	0.00000
2	3.3455"-04	2,1515"+00	Mrs	0.92427	0.10693	0.50182	22.02493	0.02278
3	9,2471"-04	2,2058"+00	l1m	0,92500	0.10895	0.50895	21.82243	0.02332
4	2.2756"-03	3.1173"+00	Mps	0.93508	0.13728	0.59881	19.02530	0.03147
5	3.4293"-03	3.2011"+00	(4) **	0.93585	0.13954	0.60520	18,80908	0.03218
6	5.2243"+03	4.9598*+00	Mrs.	0.94875	0.18003	0.70258	15.23008	0.04613
7	7.8748"=03	8.4980"+00	MIS	0.96352	0.23976	0.79977	11.12681	0.07188
8	9.7017"-03	1.2198"+01	(1M	0.97266	0.29148	0.85433	8.57089	0.09945
9	1.1457"-02	1.8016"+01	NFI	0.98067	0.35648	0.89946	6.36638	0.14128
10	1.2594"-02	2.3179"+01	И₩	0.98495	0.40552	0.92269	5.17715	0.17822
11	1.3516"-02	2.8937"+01	1411	0.98817	0.45400	0.93974	4.28460	0.21933
12	1.4478*-02	3.4497*+01	MIN	v.99037	0.49633	0.95125	3.67319	0.25897
13	1.5131"-02	4.3084*+01	F184	0.99276	0.55541	0.96355	3.00987	0.32014
14	1.5921 -02	5.0870*+01	1167	0.99429	0.60399	0.97136	2.58643	0.37556
15	1.6364"-02	6.1271*+01	NM	0.99576	0.66337	0.97885	2.17722	0.44958
10	1.7005"-02	6.9458*+01	NM	0.99663	0.70660	0.78320	1.93613	0.50762
17	1.7750"-02	7.6623*+01	ИМ	0.99724	0.74238	0.98629	1.76506	0.55879
16	1.8475*+02	0.5638"+01	łiM	0.99794	U.78967	0.98979	1.57104	0.63002
19	1.9192"-02	9.4007*+01	NM	0.99837	0.62274	0.99190	1.45349	0.68242
20	2.00334-02	1.0362*+02	NM	0.99883	0.86397	0.99421	1.32422	0.75079
21	2.1364"-02	1.1368*+02	ŊM	0.99925	0.90540	0.99627	1.20945	0.82373
22	2.2450"-02	1.1965*+02	NM	0.99945	0.92864	0.99727	1.15326	0.86474
23	2.3964"-02	1.2666*+02	NM	0.99967	0.95558	0.79837	1.09156	0.91465
24	2.5665"-02	1.3206*+02	NPA	0.99983	0.97582	0.99914	1.04637	0.95304
25	2.7816"-02	1.3567"+02	ÑМ	0.99993	0.98982	0.99965	1.01994	0.98010
26	2.9963"-02	1.3867"+02	NM	1.00000	1.00000	1.00000	1.00000	1.00000
MPUT	VARIABLES	Y/DELTA, M/MD	ASSUME P	EPD AND VAN	DRIEST			

730501	04 WATSO)N	PROFILE	TABULATION	52	POINTS, DE	LTA AT PUI	NT 52
1	Y	4/574	P/PD	TU/TOD	. M/MD	מטעט	1/10	RHO/RHOD*U/UD
1	U.0009*+U0	1.0000*+00	NM	0.90030	0.00000	0.00000	26.31333	0.00000
2	3.8710"-03	1,3749*+00	NM	0.91203	0.07104	0.34314	23.33283	0.01471
3	5.7331"-03	6.0642"+00	MM	0.95547	0.21208	0.74393	12.30430	0.06046
4	7.13434-03	A.61034+00	ŅМ	0.46496	0.25600	0.80533	9.89623	V.08138
5	8.5717"-03	1,1581"+01	ŊΜ	0.97219	0.29912	0.84918	8.05956	0.10536
6	4.8093*=03	1.3281"+01	NIA	0.47524	0.32118	0.86698	7.28636	0.11899
7	1.1242*-02	1.5827*+01	NM	0.97884	0.35165	0.88759	6.37102	0.13932
8	1.2820"-05	1.8374"+01	NM	0.95164	0.37967	0.90327	5.66014	U.15958
9	1.4962"-02	2.1344"+01	M	0.98421	0.40995	0.91741	5.00850	0.18317
10	1.5038"-02	5.2620"+01	NM	0.98514	U.42227	0.92248	4.77237	0.19330
11	1-6388,-05	2.4743"+01	11 w	0.95651	0.44203	0.92988	4.42542	0.21012
12	1.7072"-02	2.4132"+01	1114	0,98832	0.47186	0.93961	3,96520	0.23696
13	1.8172*-02	3.0252"+01	NM	0.98927	0.48959	0.94468	3.72305	0.25374
14	1.9565"-02	3.5334"+01	Им	0,99115	0.52970	0.95457	3.24758	0.29393
15	2.0141"-02	3.8299"+01	MM	0.99203	0.55175	0.95922	3.02240	0.31737
16	2,0495"-02	3.4303"+01	NM	6,99204	0.55178	0,95923	1.02211	0.31740
17	2.0848"-02	3.4306"+01	HM	0.97204	0.55180	0.95923	3.02190	0.31743
18	2.1394"-02	4,0426"+01	NM	0,99260	0.56704	0.96217	2.87918	0.33418
19	2.1874"-02	4.2122"+01	ИW	0.99301	0.57894	0.96432	2.77437	0.34758
50	2.3161*-02	4.5937"+01	Им	0.99384	0.60466	0.96861	2.56436	0.37772
Şį	2.4201"-02	4.9750"+01	NM	0.99455	0.62971	0.97228	2.38400	0.40784
22	2.5506"-02	5.3562"+01	NM	0.99517	0.65359	0.97545	2.22740	0.43794
52	2.6537"-02	5.8644"+01	NM	0.99587	0.68415	0.97908	2.04602	U.47806
24	2.7031"+02	6.2453*+01	NM	0.99633	0.70619	U.9A143	1.93144	0.50813
25	2.7230"-02	6.2456"+01	MM	0.99633	0.70620	0.58143	1.93136	0.50815
26	2.7485"-02	6.1140"+01	Им	0.99618	0.69895	0.08068	1.96861	0.49816
27	2.7684"-02	6.3306*+01	NM	0.99643	0.71103	0.98192	1.90712	0.51487
28	2.7798"-02	6.6692"101	NM	0.99678	0.72992	0.98374	1.81639	0.54159
50	2.8025"-02	6.7963"+01	NM	0.99691	0.73690	0.98438	1.78450	0.55163
30	2.8252"-02	4.6274"+01	Mw	0.99674	0.72762	0.98353	1.82711	0.53830
31	2.8536"-02	6.7122"+01	HM	0.99683	0.73229	0.98396	1.80547	0.54499
35	2.9748"-02	7.1359"+01	HW	0.99722	0.75520	0.98598	1.70460	0.57843
33	3.1370"-02	7.6864"+01	NM	0.99768	0.78396	0.98829	1.58920	0.62188
34	3.2497*=02	8.1947*+01	NA	0,99805	0.80962	0.99016	1,49573	0.66199
35	3.3446"-02	8.6006*+01	NM	0.99835	0.83243	0.99168	1.41921	0.69876
36	3.4079"=02	8.7458*+01	NM	0.94840	0.83654	0.99195	1.40666	0.70548
37	3.4450"-02	8.9154*+01	NM	0.99850	0.84465	0.99245	1.38058	0.71687
38	3.4673*-02	9.1272"+01	NM	0.49865	0.85468	0.99306	1.35004	0.73558
39	3.5707*-02	9.4665*+01	NM NH	0.99880	0.67049	0.99398	1.30364	0.76235
40	3.4634"=02	9.6055*+91	ИM	0.99897	0.85602	0.99484	1.26075	0.78910
41	5.8400"-02	1.0314"+02	NM	0.99921	0.40878	0.99602	1.20119	0.82919
42	3.9449"-02	1.0737"+02	NM	0.99939	0.92734	0.99692	1.15570	0.86261
43	4.0174*=02	1,1034"+02	NM	0.99950	0.94013	0.99751	1.12581	0.88604
44 45	4.0824"-02	1.1204"+02	IIM IIM	0.99957	0.94736	0.99784	1.10940	0.89944
	4.1846"-02	1.1459"+02	NM	0.99946	0.95811	0.99831	1.00568	0.91952
46 47	4.3963"-02	1.1798"+02	NW	0.99976	0.97223	0.99890	1.05562	0.94627
48	4.5715"-02	1.2052*+02	NH	0.99987	0.98269	0.99933	1.03415	0.96633
	4.6378"=02	1.2306*402	Nev	0.99945	0.99304	0.99973	1.01353	0.98639
49 50	4.6802"-02 4.7684"-02	\$0+"402\$.1 \$0+ "5 2\$.1	NM	0.99995	0.99305	0.99973	1.01350	0.98642
51	4.3598"-02	1.2476*+04	MM MM	0.99997 1.00000	0.99652	0.99987	1.00074	0.99318
D 54	5.0771"-02	1.2479"+02	NM NM		0.99996	1.00000		0.99993
U 7E	3.011108	1.6417.476	1 4 ' V 1	1.00000	1.00000	1.00000	1.00000	1.0000

ASSUME PEPD AND VAN DRIEST

INPUT VARIABLES Y/DELTA, H/MD

73050	501 WATS	BON	PROFILE	TABULATION	37	POINTS, DE	LTA AT POI	NT 37
1	Y	PT2/P	P/PD	TO/TOD	H/MD	U/U0	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	11M	0.89792	0.00000	0.00000	31.60938	0.00000
ž	5.2475"-04	1.1028"+00	NM	0.90155	0.03405	0.18869	30.71239	0.00614
3	1.2774"-03	2.0155"+00	NM	0.92159	0.09697	0.48158	24.66408	0.01953
4	1.9878"-03	2.9187*+00	NM	0.93246	0.12579	0.58169	21.38470	0.02720
5	3.0235"-03	4.7102"+00	NM	0.94662	0.16697	0.69070	17.11133	0.04036
6	3.7590"-03	6,4942"+00	ИM	0.95592	0.19933	0.75382	14.30230	0.05271
7	4.2199"-03	8,8984"+00	ММ	0.96448	0.23588	0.80751	11.71934	0.06890
8	4.7315"-03	1.0550"+01	NM	0.96876	0.25798	0.83307	10.42772	0.07989
9	5.1859"-03	1.4337"+01	NM	0.97573	0.30258	0.87306	8.32547	0.10487
10	5.5890"-03	1.9001"+01	ИW	0.98121	0.34977	0.90331	6.66990	0.13543
11	5.7967"-03	2.5043"+01	MIN	0.98574	0.40272	0.92752	5.30432	v.17486 v.20274
12	5.96547-03	2.9322"+01	Nw	0.98796	0.43637	0.93920	4.00545	0.23717
13	6.2776"=03	3.4612"+01	NA MW	0.99004 0.99175	0.51331	0.94997 U.95876	3.48866	0.27482
15	6.4943"-03 6.7115"-03	4.0402"+01	พพ	0.99305	0.54849	0.96536	3.09769	0.31164
16	6.8860*=03	4.6066"+01 5.0472"+01	NW	0.99387	0.57437	0.96952	2.84432	U.34027
17	7.1473*-03	5.7143"+01	44	0.99469	0.61146	0.97467	2.54083	0.38360
iś	7.2501*-03	6.6197*+01	NM	0.99597	0.65848	0.95008	2.21531	0.44241
19	7.5469"-03	7.5635"+01	NM	0.99684	0.70416	0.98439	1.95433	0.50370
٥٥	7.7538*-03	6.3436*+01	NM	0.99741	0.73978	0.98725	1.78091	0.55435
ξĭ	7.9594*-03	9.1488"+01	MM	0.99791	0.77484	0.98970	1.63148	0.60663
25	8.2605"-03	1.0005*+02	NP	0.99835	0.81044	0.99189	1.49790	0.66218
23	8.3749"-03	1.0671*+02	им	0.99865	0.83711	0.99335	1.40812	0.70545
24	8.7343*-03	1.1326*+02	NM	0.99891	0.86252	0.99463	1.32980	0.74796
25	9.1970*-03	1.1830*+02	ПM	0.99909	0.88159	0.99552	1.27516	U.7807U
20	9.5598"-03	1.2345"+02	NM	0.99927	0.90209	0.99642	1.22009	0.81668
27	1.0370"-02	1.2764"+02	ĦИ	0.99439	0.91586	0.99699	1.18501	0.84134
26	1.1081 -02	1.3169*+02	UM	0.99950	0.93031	0.99757	1.14981	0.86760
27	1.1951"-02	1,3430*+02	tiM	0,99958	0.93972	0.99793	1.12772	0.88490
30	1.2631"-02	1.3740*+02	NM	0,99966	0.95033	0.99832	1.10354	0.90465
31	1.3163"-02	1,4031"+02	NM	0.99973	0.96036	0.99868	1.05139	0.92351
32	1.4099"-02	1.4159"+02	ИW	0.99976	0.96477	U.99883	1.07187	0.93186
33	1.5166"-02	1.4426"+02	N۳	0.99983	0.97385	0.99915	1.05262	0.94920
34	1.5982"-02	1.4592"+02	HΜ	0.99986	0.97945	0.99933	1.04101	0.95997
35	1,6941"-02	1.4696"+02	11h	0.99989	0.98293	0.99945	1.03390	0.96668
36	1.7743*-02	1.4887"+02	HP.	0.99993	0.98932	0.99966	1.02102	0.97908
0 37	2,0239*-02	1.5209*+02	MM	1.00000	1.00000	1.0000	1.00000	1.00000
INPUT	VAPIABLES	Y/DELTA,M/MD	ASSUME P	≡PD AND VAN	DRIEST			
73050	502 WAT	3 014	PROFILE	TABULATION	33	POINTS, DE	LTA A1 PUI	NT 33
1	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	1/10	440/840U+U/UD
1	0.0000*+00	1.0000*+00	ИМ	0.59531	0.00000	0.0000	29.80610	0.00000
ž	1,2051**03	1.0814"+00	NM	0.89830	0.03138	U.16896	28.98371	0.00583
3	1.5689"-03	1.5667*+00	Nw	0.91153	0.07819	U.39361	25.34315	0.01553
4	3.1127"-03	7.0856*+00	NM	0.95736	0.21577	0.76989	12,73164	0.06047
5	3.9869"-03	1.0769*+01	NM	0.96856	U.26925	0.83046	9.65126	0.08667
6	4.7970"-03	1.5065"+01	MIT	0.97627	0.32052	0.87942	7.52016	0.11682
7	5.7470*-03	2.1451"+01	faM	0.98301	0.38425	0.91528	5.67393	0.16131
8	6.1337"-03	2.8827"+01	HM	0.98758	0.44667	0.93881	4.41745	0.21252
. 9	6.5139"-03	3.5834"+01	in	0.99037	0.49878	0.95290	3,64979	0.26108

ı	¥	PT2/P	P/PD	T0/T0D	M/MD	UZUD	1/10	RH0/RH0U*U/UD
1	0.0000*+00	1.0000*+00	NM	0.59531	0.00000	0.00000	29.50610	0.00000
Ž	1.2051**03	1.0814*+00	NM	0.89830	0.03138	0.16896	28,98371	0.00583
3	1.5689"-03	1.5667*+00	N⊷	0.91153	0.07819	U.39361	25.34315	0.01553
4	3.1127"-03	7.0896*+00	NM	0.95736	0.21577	0.76989	12,73164	0.06047
5	3.9869"-03	1.0769"+01	NM	0.96856	V.26925	0.53046	9.65128	0.08667
6	4.7970"-03	1,5065*+01	1111	0.97627	0,32052	0.87942	7,52016	0.11682
7	5.7470*-03	2.1451*+01	IAM	0.98301	0.38425	0.91528	5.67393	0.16131
8	4.1337"-03	2.8827"+01	HM	0.98758	0.44667	0.93881	4.41745	0.21252
9	6.5139"-03	3.5834"+01	Mr.	0.99037	0.49878	0.95290	3,64979	V.26108
10	7.0162"-03	4.3701"+01	NH	0.99254	0.55145	0.96369	3.05396	0.31555
11	7.3961"-03	5.0585"+01	HW	0.99392	0.59372	0.97054	2.67221	0.36320
12	7.8333"-03	5.6730*+01	HW	0.99490	0.62905	0.97533	2.40398	0.40571
13	7.9074" 03	4.1279"+01	ИM	0.99550	0.65398	0.97828	2.23771	0.43718
14	8.2889"-03	6.8657"+01	NM	0.99632	0.69250	0.98228	2.01201	0.48821
15	6.6652"-03	7.4434*+01	Niv	0.99686	0.72123	0.98488	1.86474	0.52816
16	9.0600 -03	8,2795*+01	ИW	0.99751	0.76088	0.94802	1.68614	0.58597
17	9.235503	6.7466*+01	ИМ	0.99782	0.78216	0.98952	1.60050	0.61836
18	9.6057"-03	9.2506"+01	NM	0.99812	0.80450	0.79098	1.51733	0.65311
19	9.9424*-03	9.7300*+01	NM	0.99838	0.82518	0.97223	1.44587	0.68625
50	1.0151"-02	1.0272*+02	NM	0.49862	0.845A7	0.99340	1.37923	0.72025
51	1.0359"-02	1.0677*+02	NH	0.94883	0.66457	0.99438	1.32264	0.75170
55	1.0889"-02	1.1180*+02	Им	0.49903	0.88481	0.99338	1.26554	0.78653
23	1.1287"-02	1.1586"+02	NM	0.99919	0.90078	0.99612	1.22290	0.81456
24	1.1915"-62	1.2041*+02	NM	0.99935	0.91834	U.99690	1-17840	0.84598
25	1.272402	1.2495*+02	HM	0.99950	0.93556	0.99762	1.13706	0.87736
56	1.3164"-08	1.2740*+02	ИW	0.99958	0.94473	0.99799	1.11553	0.59431
27	1.3726""02	1.3035*+02	NM	0.99967	0.95563	0.99841	1.09153	0.91469
28	1.4557"-02	1.3341*+02	ИM	0.94976	0.96684	U.'99883	1.06727	0.93587
29	1.5497"=02	1.3622*+02	ИW	0.99983	0.47701	0.99920	1.04594	0.95532
30	1.6465"=02	1.3806"+02	M	0.99988	0.78358	0.99944		0.967 98 0.97980
71	1.7456"=02	1.3977"+02	NM NM	0.99943	0.98968	0.99965	1.02025	0.97400
35	1.0513"-02	1.4164"+02	MM	0.99998	0.99703	0.99990	1.00576	
0 33	1.9960" +02	1.4269"+02	NM	1.00000	1.00000	1,00000	1.00000	1.00000

INPUT VARIABLES Y/DELTA, M/MU ASSUME PEPD AND VAN DRIEST

730505	05 WAT	SON	PROFILE	TABULATION	30 POINTS, DELTA AT PUINT 30			NT 30
1	Y	91579	P/PU	TU/TOD	מויקוו	UZUD	1/10	#140\# H 00+U\UD
1	U.0000*+00	1.0000*+00	2:85	0.85918	0.00000	0.00000	32.41026	0.0000
ż	1.2882"-03	8.7180*+00	НM	0.96055	0.22995	0.80253	12.18056	0.06589
3	1.6289"-03	9.7912"+00	(JM	0.96378	0.24447	0.82049	11.26460	0.07284
4	2.2590"-03	1.3019"+01	ИW	0.97111	0.28366	0.85983	9.14825	0.09358
Ś	2.7719"-03	1.5047"+01	NM	0.97448	0.30574	0.87732	8.23422	U.10655
6	3.8846*-03	1.9109"+01	IM	0.97947	0.34568	0.90264	6.81849	0.13238
7	5.1852"-03	2.4970"+01	HH	0.98425	0.39628	0.92623	5.46308	0.16954
8	6.1720"-03	3.9471"+01	\$1m	0.98728	0.43849	0.94088	4.00411	0.20436
9	6.7961"-03	3,5950"+01	N _W	0.98949	0.47703	0.95142	3.97/91	0.23917
10	7.64567-03	4.1366*+01	ilw	0.99114	0.51191	0.95920	3.51101	0.27320
11	8.15987-03	4.8077*+01	1484	0.99272	0.55230	0.96660	3.06304	0.31557
12	6.6037*-03 9.0463*-03	5.4430*+01 6.0542*+01	11M	0.993 6 9 0.99479	U.58797 U.62037	0.97202 0.97622	2.73296 2.47624	0.35566 0.39423
14	9.4908"-03	6.7014"+01	HM	0.99558	0.65292	0.97986	2.25221	0.43507
15	4.9245"-03	7.1686"+01	NM	0.49607	0.67544	0.98210	2.11416	0.46454
16	1.0521"-02	7.6355*+01	ЙM	0.99450	0.69723	0.98408	1.99210	0.49399
17	1.0994*-02	8.18667+01	Йv	0.99695	0.72209	0.98613	1.86504	0.52875
18	1.1465*-02	8.6898*+01	ЯW	0.99731	0.74407	0.98779	1.76238	0.56049
19	1.1750"-02	9.3012"+01	NW	0.49770	0.76993	U.98957	1.65191	0.59904
50	1.2530,-05	9.9843*+01	NM	0.99808	0.79783	0.99131	1.54380	0.64212
51	1.2462"-02	1.0824"+02	NM	0.99849	0.83085	0.99315	1.42683	0.69508
ŚŚ	1.3232"-02	1.1507*+02	MM MM	0.99877	0.85676	0.99446	1.34728	0.73812
25 24	1.3562"-02	1.1998*+02	Nh.	0.99896 0.99927	0.87494	0.99531 0.99668	1.29408	0.76912 0.82507
23	1.4930"-02	1.3472*+02	NW Mr.	0.99945	0.92731	0.99750	1.15711	0.86206
56	1.0029 -02	1,0202*+02	HP.	0.99965	0.95219	0.99842	1.09945	0.90810
27	1.7137"-02	1.4824*+02	Niv	0.99981	0.97288	0.99913	1.05469	0.94732
85	1.7781*-02	1.5135"+02	ЙM	0.99988	0.95306	0.99946	1.03366	96692
29	1.0733"-02	1.4421"+02	NM	0.99995	0.99233	0.99976	1.01503	0.98490
0 30	1,9431"-02	1.5660"+02	Иh	1.00000	1.00000	1.00000	1.00000	1.00000
THOUT	VARIABLES	Y/DELTA,M/MD	ASSIME D	MPD AND VAN	OPIEST			
14-01	44444660	170261474740	MODELLE P.		DATEDI			
730509	504 YAT	30N	PROFILE	HOITAJUBAT	39	POINTS, DE	LTA AT PUI	NT 30
1	γ	PTZ/P	P/PD	TO/TOD	HZHD	U/U0	1/10	RHO/RHOD*U/UD
1	0,0000"+00	1.0000*+00	lin	0.89503	0.00000	0.00000	32.62373	0,0000
Ž	2,2212"-03	4.8861"+00	ИM	0.94609	0.16797	0.64744	17.24124	0.04045
3	2.5803"-03	5.4710"+00	Иn	0.95209	0.18765	0.73725	15.43520	U.04776
4	3.2110"-03	7.6012"+00	MM	0.95904	0.21378	0.78086	13.34162	0.05853
5	4.0537"-03	9.8725"+00	ΝM	0.96606	0.24553	0.95500	11.22463	0.07329
6	6,2150*=03	1.3000*+01	14M	0.77275	0.20353	0.86046	9.20984	0.09345
7	7.1909"-03 7.9311"-03	1.4201"+01	MW MW	0.97470 0.97727	0.29671	0.87121	8.62123 7.84679	0.10105 0.11280
š	4.2090*-03	1.8751"+01	NM	0.98031	0.34234	0.90134	6.93207	0.13002
10	1.0130"-02	2.2100*+01	NM	0.98321	0.37236	0.91654	6.05655	0.15128
ii	1.1367"-02	2.5773"+01	NM	0.98565	U.40271	0.92914	5.32313	0.17455
iż	1,2909"-02	2,9878"+01	NM	0.98776	0.43414	0.93990	4.68708	V.20053
13	1.3880"-02	3.2590"+01	NM	0.98890	0,45363	0.94563	4.24547	0.21761
14	1.4500"-02	3,5606"+01	NM	0.98998	0.47451	0.95110	4.01745	0.23674
15	1.5182"-02	3.9279"+01	NM	0.99110	0.49868	0.95668	3.68035	0.25994
16	1.5905*-02	4.3919*+01	ИW	0.99227	0.52764	0.96250	3.32759	0.28925
17	1.7151"-02	4.4125"+01	NM NM	0.99316	0.55257	0.966A6	3.06156	0.31581 0.3438A
18 19	1.0578"-02	5.3951"+01 5.8265"+01	NM NM	0.99417 0.99480	0.58536	0.97183 0.97491	2.75636 2.56684	U.35258 U.37980
40	1.0456 -02	6.1503"+01	NM	0.99522	0.62531	0.97695	2.44093	0.40024
ži	2.0413"-02	6.6147*+01	NH	0.99575	0.64866	0.97955	2.28045	0.42954
ŽŽ	2.1166"-02	7.0034"+01	NM	0.99614	0.66757	0.98146	2.16152	0.4540
22	2.2019"-02	7.6829*+01	NМ	0.99674	0.69940	0.98437	1.98092	0.49693
24	2.3273"-02	8.4593"+01	NM	0.99732	0.73406	0.98714	1.80828	0.54590
32	2.3690"-02	9.1814"+01	NM	0.99777	0.76443	0.98931	1.67270	U.50144
50	2,4833"-02	9.7745"+01	NM	0.99809	6.78937	0.99086	1.57565	0.62885
27	2.5446"-02	1.0368"+02	NM HIL	0.99838	0.81307	0.99223	1.48920	0.66626
26 29	2.5536"-02 2.6366"-02	1.0767"+02	HH MM	0.99 8 55 0.99872	0.82865	0.99308 0.99391	1.43622	0.69145 0.71801
30	2.6894"-02	1.1598"+02	NM	0.99888	0.66018	0.99466	1,33712	0.74388
31	2.7617"-02	1.2008*+02	NM	0.99903	0.87531	0.99535	1.29311	0.76974
īż	2.9020"-02	1.2806*+02	NM	0.99929	0.90402	0.99659	1.21529	0.02004
33	2.9939"-02	1.3475"+02	NM	0.99948	0.92740	0.99752	1,15693	0.86221
34	3.1004"-02	1.3864"+02	MW	0.99958	0.94073	0.99801	1.12550	0.08473
35	3.1894"-02	1.4447*+02	NM	0.99973	0.94038	0.99871	1.06142	0.42352
36	3.3208*-08	1.4836"+02	NM	0.99982	0.97326	0.99915	1.05390	0.94805
37	3.5392"-02	1.5117"+02	HM	0.99988	0.98247	0.99945	1.03466	0.96578
D 78	3.6793"-02	1.5355"+02	NW NW	0.99994 1.00000	1.00000	0.99970 1.00000	1.01928	0.98078 1.0000u
	217673 -VE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	190		.,			

INPUT VARIABLES Y/DELTA, M/MD ASSUME P=PD AND VAN DRIEST

SECTION D. ADDITIONAL DATA, TEMPERATURE PROFILES

	0204	ı	0304	0404	0504
POD TOD TW	P _o = 5.3 T _T = 302 T _M = 283	2K T _T :	= 7.929 MM/m ² = 301 K = 283 K	P _o = 10.76 MN/m ² T _T = 300 K T _u = 283 K	P _o = 13.24 MN/m ² T _T = 302 K T _w = 283 K
ઢ	**		= 40.64 mm	5 = 40.64 mm	5" = 40.64 mm
	Y/8 TO	D/TOD Y/8	TO/10D	Y/6 TO/TOD	y/8 TO/TOD
	0.108 0. 0.129 0. 0.154 0.	.852 0.113 .869 0.143 .883 0.160 .889 0.181	0.887 0.892 0.898	0.184 0.903 0.208 0.905 0.222 0.907 0.252 0.906	0.348 0.910 0.375 0.910 0.406 0.912 0.424 0.912
	0.196 0. 0.213 0. 0.236 0.	.893 0.223 .896 0.236 .899 0.246 .899 0.263	0.905 0.905 0.906	0.281 0.905 0.313 0.903 0.328 0.903 0.342 0.903 0.355 0.902	0.437 0.912 0.451 0.911 0.463 0.912 0.482 0.915 0.509 0.921
		.897 0.286 .896 0.306		0.385 0.902 0.386 0.901	0.518 0.924
	0.341 0. 0.364 0. 0.390 0.	.896 0.33 .895 0.35 .896 0.35 .894 0.37 .895 0.40	0.904 0.904 0.903	0.422 0.898 0.448 0.898 0.466 0.900 0.476 0.901 0.488 0.902	0.543 0.931 0.557 0.934 0.565 0.937 0.577 0.940 0.588 0.945
	0.447 0. 0.465 0. 0.478 0.	.896 0.426 .898 0.445 .900 0.456 .902 0.476 .904 0.486	0.900 0.901 0.902	0.506 0.905 0.515 0.906 0.538 0.913 0.564 0.921 0.582 0.926	0.604
	0.518 0. 0.535 0. 0.548 0. 0.567 0.	.911 0.501 .918 0.514 .913 0.544 .921 0.57 .923 0.89	0.903 6 0.904 2 0.909 0 0.915 4 0.919	0.598 0.930 0.612 0.935 0.622 0.939 0.630 0.943 0.651 0.953 0.671 0.962	0.726 0.995 0.774 0.998 0.805 0.998 0.858 0.999 0.912 0.999 0.945 0.999
	0.592 0. 0.602 0. 0.608 0. 0.625 0.	.932 0.61: .935 0.62: .937 0.83(.942 0.64)	3 0.928 3 0.931 5 0.934 3 0.937	0.6P8 0.969 0.707 0.975 0.727 0.982 0.749 0.987 0.771 0.991	1.025 1.001
	0.679 0. 0.692 0. 0.698 0.	.958 0.68 .963 0.70 .968 0.71 .970 0.73 .973 0,74	6 0.956 5 0.959 0 0.963	0.791 0.995 0.829 0.998 0.836 0.999 0.848 0.999 0.862 0.999	
	0.734 0. 0.757 0. 0.768 J.	.970 0.75 .982 0.75 .987 0.77 .989 0.78 .992 0.81	0.972 0.979 7 0.984	0.891 0.999 0.948 1.000 0.962 1.000 0.978 1.000 1.020 1.000	
	0.808 0. 0.816 0. 0.827 0.	.994 0.64 .996 0.85 .997 0.86 .997 0.87 .997 0.88	5 0.997 3 0.999 7 1.000		
	0.679 0. 0.914 1. 0.938 1.	.998 0.91 .969 0.97 .000 .000	B 1.000		

M : A, 2.56 to 3; B, 2.51 to 2.19; C, 2.57 to 3.24. R THETA X 10⁻³ : 14 - 24. 7401

FPG - APG AW

Blow-down tunnel with fixed half-nozzle. Running time 50 s, W = 0.114, H = 0.083 m. Air: $0.3 < PO < 0.6 \text{ MN/m}^2$. TO : 300 K. 3 < RE/m X $10^{-6} < 6$.

THOMAS G.D., 1974. Compressible turbulent boundary layers with combined air injection and pressure gradient. ARC (London) R & M 3779. And Ph.D. Thesis, Cambridge (1973), Squire, L.C., private communication.

TW/TR : 1.05

The test boundary layer was formed on a flat surface extending upstream into the settling chamber and facing one of a number of contoured nozzle blocks. For the FPG cases these were cast in Araldite to a design calculated by the method of characteristics. The flow was initially accelerated to give a uniform free stream at M = 2.5 - 2.6. A 5° or 10° expansion was then produced by a curved surface and reflected from the test surface, where the design pressure gradients were linear. The stronger of the two expansion fields was not completed within the test zone. For the APG tests, the second half of the contoured nozzle was formed of a flexible metal plate. This was rolled to an approximate design shape, and then adjusted manually to give a linear APG on the test surface.

Two test surfaces were used, one a solid metal plate, and the other a plate with a sintered section for the injection tests which are not reported here. The plates were 0.1 mm wide and tests extended over a streamwise distance of up to 0.2 m, starting 0.44 m from the tunnel throat.

- 2 Other than slight disturbances (about 1 % in M) at the start of the pressure gradients, the favourable gradients were "free from disturbance" until the large changes occurring at their ends. "One or two weak disturbances were evident" in the APG case and "these did affect some of the boundary layer parameters".
- 3 The evidence of earlier tests (Jeromin, 1966, Squire, 1970) was that transition occurred well upstream, and that the velocity profiles were fully developed after experiencing the throat region expansion.
- 6 Static pressure was measured along the test surface centre line at intervals of 12.7 mm using tappings of 0.30 mm diameter. The plate temperature was monitored by 7 thermocouples mounted 25 mm from the centre line at intervals of 50 mm. The wall shear stress was estimated using the razor-blade technique after Smith, Gaudet and Winter (1964). A section of blade 6.35 mm long and 3.8 mm wide was mounted with its leading edge just over the upstream edge of a static hole. The leading edge was 0.14 mm above the plate surface, and the upper side of the blade had been ground down so that the chamfering of the upper side was about 0.03 mm in height. The sensors were calibrated against the Spalding and Chi (1964) CF correlation for ZPG flow.
- 7 Pitot, temperature, and static prossure measurements were made. The CCP used has a 2.5° semi-angle tip, was of 1 mm diamator and the static holes were 20 mm from the tip. No pressure variation through the boundary layer was observed. The TO profile was measured with an ECP for which d = 1.65 mm, 1 = 2.5 mm and the semi-angle α was 5°. The readings had been compared earlier with a long slender ECP, and no difference was found, so that the shorter probe was used as being less fragile. The Pitot probes used were FPP for which, approximately, h₁ = 0.13, h₂ = 0.035, b₁ = 1.5, b₂ = 1.0 mm. (These are representative figures, the source
- 8 paper giving much more detail.) Profiles, static pressure, and razor blade CF determinations were made on the same normal at streamwise intervals of 12.7 mm. For gradient B, series 02, the interval was 6.35 mm.
- 9 The readings were recorded continuously on X-Y-plotters, and the tabulated values obtained from values measured from the trace. The author also extrapolated the TO profile to meet the measured wall temperature. The static pressure was taken as constant on the basis of the static pressure traverses made. The author's
- 10 recovery factor was 0.89. No profile corrections were made and Sutherland's viscosity law was used.
- 12 The editors have presented only those profiles measured on a solid surface. The author also presents profiles for each pressure gradient at two wall mass flux rates. The boundary layer edge state is that

- 13 selected by the author. The profiles form three sets, 01 for the FPG "A" case with 15 successive profiles,
- 14 02 for the APG "B" case with 15 profiles, and 03 for the FPG "C" case with 18 profiles. The CF value is as reduced by the author.
- § DATA 7401 0101-0318. Pitot, TO (and P) profiles measured separately. NX = 15-18. CF from razor blades.

15 Editors' comments

The experiment is one of a series intended to provide comprehensive information on the effects of mass injection. Here we consider only the "solid wall" case, which together with the ZPG experiment of Jeromin - CAT 6602 provides a systematically varied set of pressure gradients observed in a single facility. The principal uncertainty here must be the question of three-dimensionality, as the length/width ratio of the experimental surface is over 5: 1. A momentum balance for the centre line profile sequence of CAT 6502 showed discrepancies at the 20 - 30 % level.

The profiles are given in fine detail, and at close intervals so that the layer development is easily followed. Comparable tests with broadly similar geometry are those of Michel - CAT 6902 for the FPG case and Zwarts - CAT 7007 in an APG. Lewis et al. - CAT 7201 give profiles at close intervals on an axisymmetric model.

The author states that no normal pressure gradients were observed, but the frequency at which static pressure profiles were measured is not stated, and normal pressure variations might occur in those regions where the longitudinal pressure gradient is changing rapidly.

CAT 7401	THOMAS		BOUNDARY CON	SITIONS AND E	VALUATED (SATA. SI UNIT	8.	
RUN	MD *	TW/TR	RED2W	CF +	H12	H12K	Pw	PD
X *	POD#	PH/PD#	REP2D	CQ .	H35	H32K	TWA	ro
RZ	TODA	SW *	02	PIZ	H42	D2K	UD	ŤŘ
74010101	2,5600	1.0543	A.2541"+03	1.5300*-03	4.2081	1.3845	2.1948*+04	2.1968*+04
0.0000*+00	4.1200*+05	1.0000	1.6742"+04	1.3200 -03	1.7913	1.7727	2.8960*+02	1.2632*+02
INFINITE	2.9190"+02	0.0000	4.2574 -04	NC	0.0613	6.1560=-04	5.7689*+02	2.7468*+02
			-				•	
74010102 1.2700**02	2,5600 4,1200*+05	1.0547	A.4568+03	1.5200"=03 NM	4,2257	1.3675	2,1968*+04	2.1968*+04
INFINITE	2.9190"+02	0.0000	1.7157*+04	I4C	1.7959	1.7790 6,2911*-04	2.8970*+U2 5.7689*+02	1.2632*+02
	•				***************************************	-,-,,		
74010103	2,5600	1.0550	0,3664"+03	1.5100"=03	4.4007	1.3564	2.1968+04	2.1968"+04
2.54004-02	4.1200*+05	1.0000	1.6978"+04	Ñħ ,	1.8014	1.7650	2.8980"+02	1.2632*+02
INFINITE	2.9190*+02	0.0000	4.3176"-04	NC	-0.0297	6.2738"-04	5.7689*+02	2.7468*+02
74010104	2.5900	1.0561	9.0630"+03	1.5350"-03	4.2581	1,3474	2.0970*+44	2.0970*+04
3.814002	4.1200*+05	1.0000	1.8625"+04	NM	1.8045	1.7880	50+000402	1.2466*+02
INFINITE	2.9190*+02	0.0000	4.8122*=04	NC	0.0395	6.8914"-04	5.7979*+02	2.7451*+02
74010105	2.6300	1.0573	6.6351*+03	1.5650"-03	4.3749	1.3346	1.9712*+04	1.9712*+04
5.0800*-02	4.1200*+05	1.0000	1.8044*+04	NM	1.8117	1.7955	2.9000*+02	1.2247*+02
INFIHITE	2,9190*+02	0.0000	4.7624"-04	NC	0.0201	6.8377" = 04	5.8356"+02	2.7428*+02
74010104	2.6700	1.0585	R.2509"+03	1.5650"=03	4.4754	1.3423	1.6532"+04	1.8532"+04
6.3500"=02	4.1200"+05	1.0000	1.7532"+04	1.2020	1.8100	1.7928	2.4010*+02	1.2033"+02
INFINITE	2.9190*+02	0.0000	4.7271"-04	NC	0.0148	0.8416*-04	5.6724*+02	2.7406"+02
	-			.,,,			540124 142	##1140B 10E
74010107	2,7100	1.0597	7.0151"+03	1,5550"=03	4.6449	1.3091	1.74257+04	1.7425"+04
7.6200*-02	4.1200"+05	1.0000	1.6886"+04	NM	1.8266	1.8102	2.9020*+02	1.1823*+02
INFINITE	2.4140#+02	0.0000	4.6516"-04	NC	-0.0274	6.7310*=04	5,9081*+02	2.7364*+02
74010108	2.7500	1.0006	8.0148*+03	1.5500*-03	4.5364	1.3040	1.6385*+04	1.6368*+04
8.8900"-02	4.1200*+05	1.0000	1.7605"+04	NM	1.8290	1.8126	2.9020"+02	1.1616"+02
INFINITE	2.9190*+02	0.000	4.9551"-04	NC	0.0386	7.0945*-04	5,9430*+02	2,7363*+02
74010109	2.7900	1.0614	M.0299"+03	1.5500*=03	4.6097	1.2924	1.5415*+04	1.5415*+04
1.0160"=01	4.1200"+05	1.0000	1.7930"+04	IAM	1.8337	1.6171	2.9020*+02	1.1417"+02
INFINITE	2,9190*+02	0.0000	5.1567*-04	NC	0.0403	7.4132 -04	5.97704+02	2.7342*+02
74010110	2.8400	1.0620	7.7609*+03	1.5500"-03	4.7451	1 1018	1.4264"+04	1.4254"+04
1.1430"-01	4.1200*+05	1.0000	1.7685*+04	114 114	1.0311	1.3015 1.6126	2.4010*+02	1.1171****
INFINITE	2.9190*+02	0.0000	5.2254"-04	NC	0.0394	7.6046*-04	6.0162*+02	2.7316*+02
74010111	7.6800	1.0624	7.7504"+03	1.5450"-03	4,7735	1.2694	1.3442"+04	1.3442"+04
1.2700*-01	4-1200*+05	1.0000	1.7949*+04	Им	1.8368	1.8187	2.4000.+25	1.0978"+02
INFINITE	2.91904+05	0.0000	5.4195"-04	NC	0.0551	7.8726*=04	0.05024+02	2.7296*+02
74010112	2.4000	1.0624	7.6718*+03	1.5350"-03	4.9305	1.2880	1,3040*+04	1.3040*+04
1.3470*-01	4.1200*+05	1.0000	1.7909*+04	NP	1,0370	1.0189	SU+"0PP8.5	1.0684*+02
INFIRTTE	5.41404+05	0.0000	5.4663"-04	HC	0.0189	6.0274"-04	SU+"P24U.	2.7286"+02
74010113	2.4300	1.0626	7.6564*+03	1.5250"-0%	5,0128	1,2838	1.2462*+04	1.2462*+04
1.5240 01	4.1200*+05	1.0000	1.8089*+04	Whi	1.8412	1.0216	2.0900*+02	1.0744*+02
INFINITE	2.91909+02	0.000	5.6120"=04	NC	0.0145	8.2663"=04	6.0891*+02	2.7272"+02
74616114	2 6.44	1 0-34	7 00144.45	1 PAMAN				
74010114 1.6510#=01	2.9600 4.1200*+05	1.0000	7.9515"+03 1.9014"+04	1.5150"=03 NM	4,9022	1.2953	2.8970*+02	1.1911"+04
INFINITE	2.9190"+02	7.0000	5.9957*=04	NC	1.6363	1.8156 8.8113"-04	6.1116"+02	2.7257"+02
		71.000	,		V10170		-11110-14E	STED! THE
74010115	3.0000	1.0632	7.3685"+03	1.5050"-03	5,0652	1.2793	1-1810++04	1.1216"+04
1.7740*-01	4.1200*+05	1.0000	1.790.404	MM	1.8430	1.0236	2.84604+02	1.0425*+02
INFINITE	2.4140*+05	0.0000	5.7704"-04	NC	0.0424	8.5230"=04	h,1414"+U2	2.7236"+02

CAT 7401	THOMAS		BUNDARY CON	DITIONS AND E	VALUATED !	DATA. SI UNIT	8.	
RUN	MD A	THITR	PED2W	CF *	H12	H12K	PW	PD
X *	P00*	PW/PD*	RENZD	CQ	H35	H35K	TWA	TD
RZ	TODR	5h *	0.5	PIS	H42	DSK	UD	TR
74010201	2.5200	1,4528	7.4141*+03	1.8850"-03	4.0624	1.3710	1.7475*+04	1.7475"+04
0.0000*+00	3.0890*+05	1.0000	1.4770*+04	IIM.	1.7424	1.7753	2.9160"+02	1,2955*+02
INFINITE	2.9410"+02	0.0000	4.9722"-04	HC	0.0726	7.0708"-04	5.7509"+02	2.7697"+02
74010202	2 #266	1.052A	7.0616"+03	1.5900"-03	4.2791	1 1404	1.7475*+04	1.7475*+04
1.2700"-02	2.5200 3.0800**05	1,0000	1.4067*+04	1034011 =03	1.7960	1,3606 1,7747	2.4160*+02	1,2959"+02
INFINITE	2.9410*+02	0.0000	4.7358*=04	NC.	-0.0134	6.8488*-04	5.7509"+02	2.7699*+02
			4 4 505 45		15 15 to 18 1	4 1240	4 44645.44	
74010203 2.5400*-02	2.5300 3.0800*+05	1.0533	^.6629"+03 1.3331"+04	1.6050*=03 No	4.2456	1.3580 1.7829	1.7265*+04	1.7205*+04
INFINITE	2.4410*+02	0.0000	4.5116**04	iiC	0.0026	4750 -04	5.7609"+02	2.7693*+02
74010204	2,5200	1.0531	6.4112.403	1,6200"=03	4.2324	1.3513	1.7475"+04	1.7475"+04
3.8100"-02	3.0800*+05	1.0000	1.3572*+04	116	1.8005	1.7853	2.9170*+02	1.2955"402
INFINITE	2.9410"+02	0,0000	4.5691"~04	HC	-0.0053	6.5383"-04	5.7509*+02	2.7649"+02
74010245	2.4800	1,0586	7.0614"+03	1.5850"-03	4.2129	1,3052	1,0596"+04	1.8596"+04
3.0800"-08	3.0800"+05	1.0000	1.3846"+04	14M	1.7831	1.7672	2,4180*+42	1.3184"+02
INFINITE	2.4410-+02	0.0000	4.5646*=04	NC	-0.00MO	6.5966"-04	5.7102"+02	2.7723"+02
74010206	2.4500	1,0519	7.4753*+03	1,5500"-03	4.2704	1.3760	1,9486*+04	1.9486*+04
6.3500"-02	3.0400*+05	1.0000	1.4479*+04	NM	1.7846	1.7712	2.4180*+02	1.3365*+02
INFINITE	2.94104+02	0.1000	4.640504	HC	-0.0610	6.8009"-04	5,6789"+42	2.7741*+02
74010207	2.4400	1,0520	7.9844"+03	1.5150"-03	4.0952	1.3037	1.4792*+04	1.9792*+04
7.6200"-02	3.0800*+05	1,0000	1.5407*+04	NM	1.7823	1.7667	2.9190"+02	1.3425"+02
INFINITE	2.9410*+02	9.0000	4.9745*-04	NC	0.0018	7.1077*=04	5,4683"+02	2.7748"+02
74010208	2.4100	1.0510	#.4707*+03	1.4900*-03	4.0123	1,3833	2.0741"+04	2.0741*+04
5000-6-8	3.0800*+05	1.0000	1.6150*+04	NM	1.7819	1.7662	2.4200*+02	1.3646*+02
INFILITE	2.9410*+02	0.0000	7.1342"-04	NC	0.0097	7.2866"=04	5.0302"+02	2.7766*+02
74010209	2.3400	1.0506	B.7173*+03	1.4650"-03	3.9743	1.3638	2.1344*+04	2.1399"+04
1.0160*-01	3.0800*+05	1.0000	1.6481 +04	NA	1.7876	1.7737	2.9190"+02	1,37274402
INFINITE	2.4410*+02	0,0000	5.1857**04	NC	-0.0048	7.3079"=04	5.6144*+02	2.7779*+02
98666318	3 1000	1 6463	9.9865*+03	1,4450*-03	3.9143	1 1054	3 11 100	5 14 165
74010210 1.1430*-01	2.3400 3.0400*+05	1.0000	1.84464+04	NM	1.7759	1,3850	2.3138"+04	2.3138*+04
INFIHITE	2.9410*+02	0.0000	4.6731 -04	NC	-0.0076	7.9982*-04	3.5506*+42	2.7611*+42
			•					
74010211	2.3300	1,0490	4.5620"+03	1.4300*-03	4.0616	1.37.53	2.3507"+04	2.3502*+04
1.2700"-01	3.0800*+05	1.0000	1.7635*+04	IIM M	1.7617	1,7682	2.9180"+02	1.4100"+02
IMPINITE	2.9410"+02	0,0000	5,3826"-04	NC	-0.0655	7.6380*-04	5.5473*+02	2,7818*+02
74010212	2,3000	1.0479	1.0424"+04	1.4200*-03	3.7444	1,3074	2,4632"+04	2.4632"+04
1.3970"-01	3.0800*+05	1.0000	1.4720*+04	Им	1.7742	1.7605	2.9170"+02	1.4291*+02
IMPINITE	2.9410*+02	0.0000	5.9276*-04	NC	0.0240	6.2121"-44	5.5127*+02	2.7838*+02
74010213	2.2600	1.0474	1.1247*+04	1,4100"-03	3.6786	1,3770	2.5415"+04	2.5415*+04
1.5240"-01	3.0400"+05	1.0000	2.0361*+04	HH	1.7779	1.7040	2.9170*+02	1.4414"+02
infinite	2.4410"+02	0.0000	6.0594"-04	HÇ	0.0312	6.3265"-04	5.4642"+02	2,7851*+02
74010214	2.2700	1.0468	1.15304+04	1.4000*-03	3.4738	1.3683	2.5615*+04	2.5819*+04
1.651001	3.0800*+05	1.0000	2.0748*+04	1014	1.7405	1.7679	2.9160*+02	1.44844+02
INFINITE	2.4410*+02	0.0000	6.1439*-04	MC	0,0186	4.4260"-44	5.4774*+02	2.7854*+02
74010215	2.2100	1.0492	1.3467*+04	1.3450"-03	3.0745	1.3960	2.6357*+04	2.8357*+04
1.7700*-01	3.0400*+05	1,0000	2.3654"+04	NM 1,242/1-67	1.7687	1.7546	2.9140*+02	1.4877"+42
*****	3.0000 103	0.0000	A BAA77-04	He.	-4 0111	0 1441F-04	E 46445443	3 74964443

CAT 7401	THOMAS		BUNDABA COND	OTTIONS AMD EN	/ALUATED (ATA. SI UNIT	5.	
RUN X * R2	ND # POD# 199#	TH/TR PW/PD+ SW +	PEP2N PEP2N	CF + CO PI2	H12 H32 H42	H15K H15K	PW TW# UD	PD TO TR
74010301	2,5700	1.0534	7.8294"+03	1.5400"-03	4.2753	1.3585	2.1630"+04	2.1630"+04
0.0000*+00	4,1200"+05	1.0000	1.5946"+04	NM	1.8009	1.7854	2.8760"+02	1.2503"+02
Infinite	2,9020"+02	0.0000	4.0427"-04	NC	0.0230	5.8024"-04	5.7618"+02	2.7302"+02
74010302	2.6100	1.0546	7.4201"+03	1,5400"=03	4.3007	1.3368	2.0330"+04	2.0330"+04
1.2700*-02	4.1200"+05	1.0000	1.5367"+04	NM	1.8106	1.7965	2.8770"+02	1.2284"+02
Infinite	2.9020"+02	0.0000	3.9794"=04	NC	0.0310	5.6773"-04	5.7999"+02	2.7279"+02
74010303	2.5800	1.0543	8.4180*+03	1,5600*=U3	4.2646	1.3393	2.1297"+04	2,1297"+04
2,5400"-02	4.1200*+05	1.0000	1.7225*+04	NM	1.8081	1.7932	2.8780"+02	1,2446"+02
Infinite	2.9020*+02	0.0000	4.3901*-04	NC	0.0240	6.2718*-04	5.7714"+02	2,7297"+02
74010304	2.6100	1.0554	7.7180"+03	1.5900"-03	4.3757	1.3365	2.0330*+04	
3.8100"-02	4.1200*+05	1.0000	1.5993"+04	NM	1.8114	1.7964	2.6790*+02	
Infinite	2.9020*+02	0.0000	4.1414"-04	NC	0.0043	5.9432"-04	5.7999*+02	
74010305 5.0800"-02 Infinite	2.6190 4.1200"+05 2.4020"+02	1.0557	9.0069"+03 1.8668"+04 4.8344"-04	1.6000"-03 NM NC	4.2318 1.8099 0.0533	1.3293 1.7954 6.8809"-04	2.0330*+04 2.8800*+02 5.7999*+02	1.2264"+02
74010306	2.6700	1.0574	7.7906"+03	1,5950*-03	4.4879	1.3057	1.8532"+04	1.8532"+04
6.3500"-02	4.1200*+05	1.0000	1.6555"+04	NM	1.8265	1.5119	2.8810"+02	1.1963"+02
Infinite	2.4020*+02	0.0000	4.4265"=04	NC	-0.0085	6.3159*-04	5.8552"+02	2.7246"+02
74010307	2.7200	1.0588	7.5048"+03	1.5850*=03	4.6149	1.2845	1.71+0"+04	1.7160*+04
7.6200=-02	4.1200*+05		1.6284"+04	NK	1.8365	1.8231	2.8820"+02	1.1703*+02
Infinite	2.7020*+02		4.4722"-04	NC	-0.0256	6.3851=-04	5.8997"+02	2.7219*+02
74010308 8.84004-02 Infinite	2.7700 4.1200*+05 2.9020*+02	1.0602	7.7780"+03 1.7232"+04 4.8617"-04	1.5400**03 NM NC	4.5552 1.6362 0.0367	1.2631 1.6220 6.9360**04	1.5894*+04 2.8830*+02 5.9427*+02	
74010309 1.0160"-01 INFINITE	2.8400 4.1200"+05 2.9020"+02	1.0620	7.2846"+03 1.4615"+04 4.8682"-04	1,5500"-03 NM NC	4.7223 1.8440 0.0273	1.2659 1.8301 6.9792"=04	1.4284"+04 2.8840"+02	1.4284*+04 1.1105*+02 2.7157*+02
74010310	2.4000	1.0635	7.1275*+03	1.5500"-03	4.7929	1.2673	1.3040*+04	1.3040*+04
1.1430**01	4.1200*+05		1.6668*+04	NM	1.8464	1.8315	2.8650*+02	1.0820*+02
INFINITE	2.4020*+02		5.0447*-04	NC	0.0443	7.2426*=34	4.0483*+02	2.7127*+02
74010311	2.9600	1.0450	6.9357"+03	1.5600"-03	4.8672	i.2539	1.1911"+04	1.1911"+04
1.2700*-01	4.1200*+05	1.0000	1.6628"+04	NM	1.8536	i.8387	2.8860"+02	1.0544"+02
INFINITE	2.9020*+02	0.0000	5.1992"-04	NC	0.0647	7.4515"-04	6.940"+02	2.7098"+02
74010312	3.0100	1.0463	6.7756*+03	1.5750"-03	4.9599	1.2510	1.1049*+04	1.1049*+04
1.3970"-01	4.1200=+03		1.6585*+04	NM	1.8560	1.8402	2.8670*+02	1.0320*+02
INFINITE	2.4020=+02		5.3283*-04	NC	0.0735	7.6814*-04	4.1305*+02	2.7075*+02
74010313	3.0500	1.0674	6.5898"+03	1.5650 ⁴ -03	5.1620	1.2440	1.0408*+04	1.0408*+04
1.5240*-01	4.12007+05		1.6401"+04	NM	1.8598	1.8441	2.6880*+02	1.0145*+02
INFINITE	2.9020*+02		3.3847"-04	NC	0.0362	7.8146"-04	6.1394*+02	2.7057*+02
74010314 1.6510*-01 Infinite	3.1000 4.1200"+05 2.4020"+02	1.0086	1.6730"+03 1.6956"+04 5.7149"=04	1.5500"-03 NM NC	5.1780 1.8584 0.0729	1.2469 1.6413 8.3453"-04	9.6609"+03 2.6690"+02 6.1941"+02	
74010315 1.7760*=01 INFINITE	3.1300 4.1200*+05 2.9020*+02	1.0095	6.4931"+03 1.6706"+04 5.7202"-04	1.5350"-03 NM NC	5.5413 1.8576 -0.0149	1,2485 1,8405 8,5200"=04	9.2405"+03 2.8900"+02 6.2144"+02	9.8061*+01
74010316	3.1700	1.0706	6.6873*+03	1.5200*-03	5.0774	1.2436	8.71014+03	8.7101*+03
1.4030"-01	4.1200*+05		1.74 = 3*+04	NM	1.8587	1.6419	2.69104+02	9.6419*+01
INFINITE	2.4020*+02		6.1294*=04	NC	0.1530	6.6640"-04	6.24044+02	2.7005*+02
74010317	3.2200	1.0718	6.4355*+03	1.5100*-03	5.1767	1.2456	0.0927"+03	8.0927"+03
2.0320#=01	4.1200*+09		1.7185*+04	NM	1.6597	1.8413	2.6920"+u2	9.4415"+01
Inpinite	2.9020*+02		6.1864*-04	NC	0.1616	9.0269*-04	6.2731"+02	2.6964"+02
7401u318	3.2400	1.0724	7.5749*+03	1.5000*=03	4.6268	1.2438	7.8990*+03	7.8590"+03
2.1590=-01	4.1200*+05		2.0397*+04	NM	1.8559	1.8378	2.4930*+02	9.3627"+01
Infinite	2.4020*+02		7.4228*+04	NC	0.3354	1.0561"=U3	4.2857*+02	2.6976"+02

740101	O1 THOMA	13	PROFILE	TABULATION	29	POINTS, DEL	TA AT PUI	PS TN
I	Y	#T2/P	P/PO	T0/10D	M/MD	U/UD	1/10	RHO/RHOD+U/UD
1	0.0000"+00	1.0000*+60	NM	0.94212	0.00000	0.0000	2.29251	0.0000
ş	1.0000"-04	1.7555*+00	NM	0.99720	0.36481	0.51100	1-46500	0.26045
3	2.0000"-04	1.9767"+00	ПM	0.99112	0.40497	0.55600	1.88500	0.29496
4	3.0000"-04	2.24517+00	ИM	0.98664	0.44622	0.60000	1.80000	0.33186
5	4.0000"-04	2,5069"+00	viv	0.98332	0.48157	0.63600	1.74200	0.36510
6	5.0000"-04	2.7469*+00	Ηn	0.98135	0.51184	0.66500	1.68800	0.39396
7	6,0000"-04	2.9429"+00	N₩	0.97884	0.53486	0.68600	1.64500	0.4170 ≥
6	8.0000"-04	3.2008*+00	NM	0.97571	U.56351	0.71100	1.59200	0.44661
•	1.0000"-03	3.4392"+00	ИН	0.97855	0.58861	0.73400	1.55500	0.47203
10	1,2000"-03	3,6632"+00	1461	0.48115	0.61117	U.75400	1.52200	0.49540
11	1.4000"-03	3.8895"+00	Nw.	0.98332	0,63223	0.77200	1.44100	0.51777
12	1.6000"-03	4.1276*+00	NM	0.98545	0.65531	0.79100	1.45700	0.54240
13	1.6000"-03	4.3464"+00	Neg	0.98783	0.67508	0.80700	1.42900	0.56473
14	2.0000"-03	4.5997"+00	ИM	0.98971	0.69715	U.#2400	1.39700	0.58484
15	2.2000"-03	4.8319"+00	(IM	0.99218	0.71681	0.53900	1.37000	0.61241
16	2.400003	5.0659"+00	NM	0.99393	0.73606	0.85300	1.34500	0.63515
17	2.6000"-03	5.3453"+00	11M	0.99657	0.75038	0.86900	1.31300	0.66184
16	2.8000"-03	5.5909"+00	IIM	0.99823	0.77746	0.88200	1.28700	0.68531
19	3.0000"-03	5.8176"+00	/IM	0.99661	0.79466	0.59200	1.26000	0.70794
≥0	3,3000"-03	4.2099"+00	NP	0.99813	0.82354	0.91000	1.22100	0.74529
21	1.6000*-01	6.6405"+00	l3™	0.99724	0.85410	0.92700	1.17800	0.78693
55	3.9000*-03	7.0573"+00	HM	0.99626	U. 08265	0.94200	1.13900	0.82704
57	4.2000*-03	7.4927*+00	MM	0.99446	0.71151	0.75600	1.10000	0.86904
24	4,5000"-03	7.9075"+00	NM	0.99634	0.93817	0.97000	1.06400	0.90739
25	4.8000"-03	8.2877*+00	ИM	0.99596	0.96195	0.98100	1.04000	0.94327
36	5,2000"-03	8.5947"+00	MIA	0.99693	0.98073	0.99000	1.01900	0.97154
À7	5.6000"-03	8.7909*+00	IIM	0.49850	0.49253	0.93600	1.00700	0.98908
28	6.0000"-03	8.8909"+00	NIM	0.99930	0.99850	0.99905	1.00100	0.94800
0 29	6.4000*-03	8.9161*+00	Им	1.00000	1.00000	1.00000	1.00000	1.0000

INPUT VARIABLES Y, U/UD, T/TD ASSUME PEPD

740101	.15 THOM	A.S	PROFILE	TABULATION	40	POINTS, DEL	TA AT POI	NT 40
1	Y	PTR/P	P/PD	10/100	HZHD	U/UD	1/10	RHO/RHOD+U/UD
i	0.0000"+00 1.0000"-04	1.0000*+00	MN	0.99212	U.00000 U.33404	0.00000 0.51000	2.77794	0.00000
ĩ	2.0000*=04	2.4882*+00	HM	1.00541	0.40712	0.50100	2.33100	0.21679 0.27850
ű	3.0000=04	2.9141*+00	1114	1.00375	0.45398	0.65000	2.05000	0.31707
Š	4.0000"-04	3,2441*+00	йM	1.00170	0.48519	U. 65100	1.97000	0.34569
6	5,0000"-04	3.4928*+00	μ	0.99876	0.50096	0.70100	1.91600	0.36663
7	6.0000"-04	3,7817"+00	ЩM	0.99711	0.53142	0.72300	1.85100	0.39060
8	8.0000*~04	4.1983*+00	NP	0.49161	0.56469	0.75000	1.76450	0.42517
9	1.0000"-03	4.42%6"+00	NM	0.48336	U.54178	0.76100	1.71100	U.44477
10	1.2000"-03	4.7277*+00	ifΜ	0.98125	0.60421	0.77800	1.65800	0.46924
11	1.4000"-03	4.9734*+00	ИМ	0.48044	0.62146	0.79100	1.61900	0.48657
15	1.6000 -03	5.1840"+00	ИH	0.98099	0.63623	0.80200	1.58470	0.50472
13	1.8000"-03	5.3427"+00	NM	0.98065	0.65033	0.01200	1.55400	0.52085
14	2.0000"=03	5,5980*+00	NM	0.48187	0.66370	0.82200	1.53300	0.53620
15	2.200007	5.8120"+00	ИW	0.98182	0.67775	0.82500	1.50700	0.55209
16	2.4000"-03	6.0090"+00	ИM	0.48253	0.69024	0.84000	1.46100	0.56718
17	2.6000"-03	6.2000*+00	NM	0.98480	0.70264	0.84900	1.46000	0.58151
10	2.6000 -03	6.3827*+00	HH.	0.98533	0.71333	0.85600	1.44000	0.59444
19	3.0000"-03	4.5588"+00	MM	0.98628	0.72396	0.86300	1-42100	0.60732
21	1.3000*=03	6.7408*+00	MM	0.98555	0.73771	0.87100	1.39400	0.62482
25	3.6000"=03 3.9000"=03	7.0580"+00 7.3374"+00	Myl	0.98753	0.75324	0.88100	1.36800	0.64401
23	4.2000*-03	7.5873"+00	βw ₽w	0.94964 0.99027	0.76913	0.89100	1.34200	0.66393
24	4.5000*-03	7.8639*+00	11M	0.99216	0.78307 0.79821	0.89900	1.31800	0.66209
25	4.8000*-03	6.1012"+00	NM	0.99286	0.81097	0.9080U 0.9150U	1.29400	0.70170 0.71 0 77
26	5.2000 03	8.4047*+00	řím	0.99457	0.62711	0.92400	1.24600	0.74038
ž7	5.4000"-03	4.7264"+00	NM	0.79639	0.84366	0.93300	1.22300	0.76288
ži	4.0000 -03	9.0538*+00	ИĤ	0.99866	85028.0	0.94200	1.19900	0.78565
29	6,4000"-03	9.3700"+00	H	1.00018	0.87603	0.95000	1.17000	0.80782
30	6.8000 -03	9.4380*+00	NM	1.00039	0.88916	0.95600	1.15000	0.82444
ši	7.20004-03	1.0025"+01	NM	1.00222	0.40740	0.96500	1.13000	0.65396
žž	7.6000 -03	1.0339*+01	1144	1.00379	0.92258	0.97200	1.11000	0.67566
33	4.0000"-03	1.0586*+01	NM	1.00434	0.43408	0.97700	1.09400	0.89305
34	4.5000"-03	1.1021*+01	NM	1.00443	0.95402	0.98500	1.06000	0.92402
15	9.0000"-03	1.1343"+01	HIM	1.00527	0.96850	0.99100	1.04700	0.94651
36	9.5000"-01	1.1412"+01	NM	1.00430	0.98040	0.99500	1.03000	0.96602
37	1.0000"-02	1.1749*+01	HM	1.00222	0.98863	0.99700	1.01700	0.90033
3.6	1.0500"-02	1.1901*+01	NM	1.00100	0.99305	0.99800	1.01000	0.99612
39	1.1000"-02	1.1980"/01	MM	1.00050	0.99451	0.99900	1.00500	0.99403
D 40	1.1500"-02	1.2061*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TO ASSUME PMPD

74010	208 THO	HAS	PROFILE	TABULATION	32	POINTS, DELTA AT PUINT 32			
I	Y	PT2/P	P/PD	TU/TOD	HAND	U/UD	T/ID	RHO/RHOD*U/UD	
1	0.0000*+00	1.0000*+00	NM	0.99286	0.00000	0.0000	2,14619	U.00000	
5	1.0000"-04	1.7260"+00	NH	0.99864	0.36115	U.5180U	1.04/00	0.28045	
3	2.0000"-04	1.9975"+00	NM	0.99728	0.43382	u.57700	1.76900	0.32617	
4	3,0000"-04	2.1488"+00	ИM	0.99387	0.45898	U.60300	1.72600	0.34936	
5	4.0000"-04	2.2919*+00	N/4	0.99081	0.48105	0.62500	1.68800	0.37026	
6	5.0000"-04	2.4273"+00	ИM	0.98804	0.50075	0.64400	1.45400	0.38936	
7	6,0000" - 04	2.5120*+00	IIM	0.98600	0.51256	0.65500	1,63300	0.40110	
8	8.0000"-04	2.7465"+00	NM	0.98374	0.54365	0.68400	1.58300	0.43209	
9	1.0000"-03	2.9446*+00	NH	0.98167	0.56836	0.70600	1.54100	0.45755	
10	1.2000"-03	3.1112"+00	NM	0.98255	0.58821	0.72400	1.51500	U_47789	
11	1.4000"-03	3.30A1"+00	NW	0.98398	0.61074	0.74400	1.48400	0.50135	
15	1.4000"-03	3.4583"+00	NM	0.98418	0.62733	0.75800	1.46000	0.51918	
13	1,8000"-03	3.6295"+00	NM	0.98671	0.64567	0.77400	1.43700	0.53862	
14	2.0000"-03	3.7930"+00	NM	0.98782	0.66268	0.78800	1.41400	0.55728	
15	2.2000"-03	3.9838"+00	NM	0.99041	0.68194	0.80400	1.39000	0.57842	
16	2.4000"-03	4.1500*+00	MМ	0.99202	0.69827	0.81700	1.36900	0.59679	
17	2.4000"-03	4.3643*+00	NM	0.99190	0.71874	0.83200	1.34000	0.62090	
18	2.8000"-03	4.5345*+00	NM	0.99345	0.73461	0.84400	1.32000	0.63939	
14	3.0000"-03	4.7417"+00	NM	0.99542	0.75339	0.85800	1.29700	0.66153	
50	3.3000"-03	5.0660"+00	NM	0.99762	0.78187	0.87800	1.26100	0.69627	
21	3.4000"-03	5.3504"+00	ИМ	1.00086	0.80601	0.89500	1.23300	0.72587	
22	3.9000"-03	5.6648*+00	NM	1.00303	0.83185	0.91200	1.20200	0.75874	
23	4.2000"-03	5.9997"+00	NM	1.00551	0.85849	0.92900	1.17100	0.79334	
24	4.5000"-03	6.3148*+00	ŅМ	1.00571	0.88281	0.94300	1.14100	0.82647	
25	4.8000*-03	6.5966"+00	NM	1.00639	0.90401	0.95500	1.11600	0.85573	
24	5.2000"-03	7.0228"+00	tim	1.00340	0.93512	0.97000	1.07600	0.90149	
27	5.4000"-03	7.3652"+00	NM	1.00700	0.95937	0.98400	1.05200	0.93536	
28	6.0000"-03	7.6758*+00	1114	1.00604	0.98085	0.99400	1.02700	0.96787	
54	6.4000"=C3	7.8261 +00	NM	1.00233	0.99107	0.99700	1.01200	0.98518	
30	6.8000"=03	7,4047"+00	NM	1.00124	0.99651	0.99900	1.00500	0.99403	
31	7.2000*-03	7.9512"+00	NM	1.00046	0.99950	1.00000	1.00100	0.99900	
0 35	7.6000"=0%	7.4587*+00	NM	1.00000	1.00000	1.00000	1.00000	1.00000	
THRUT	UAMPANI PA	V 114115 TATE							

INPUT VARIABLES Y, U/UD. T/TD ASSUME PHPD

740102	15 THO	MAS	PROFILE	TABULATION	36	POINTS, DE	LTA AT PUI	NT 36
t	¥	P12/P	P/PD	TU/TOD	DMVM	UVUD	T/TD	RH0/8H00+U/UD
1	0.0000*+00		NP	0.49190	0.00000	0.00000	1.96002	9.00000
2	1.0000"-04		NM	1.00369	0.16106	0.47900	1.76000	0.27216
3	2.0000"-04		1144	1.00347	0.41162	0.53700	1.70200	0.31551
4	3.0000"-04		ИW	1.00229	0.44929	0.57800	1.65500	0.34924
3	4.0000"-04		NM	1.00018	0.47347	0.60300	1.65500	0.37176
•	5.0000*-04		NM	0.99842	0.49140	0.62100	1.59700	0.38885
7	6.0000"-04		NM	0.99598	0.5059#	0.63500	1.57500	0.40317
	8.0000"-04		ИM	0,99384	0.52891	0.65700	1.54300	0.42579
•	1.0000"-03		NM	0.99216	0.55238	0.67900	1.51100	0.44937
10	1.2000"-01	2.5630"+00	ИW	0.99137	0,56653	0.69200	1.49200	0.46381
11	1.4000"-01		NH .	0.99004	0.55006	U.70400	1.47300	0.47794
12	1,4000"-03		Nw	0,48925	0.39586	0.71800	1.45200	0.49449
13	1.8000*-01		NM	0.99004	0.60792	0.72400	1.43800	0.50495
14	2.0000"-01		MM	0.99139	0.62223	0.74200	1.42200	0.52160
15	2.2000"-03		Им	0.99041	0.63549	0.75300	1.40400	0.53632
16	2.4000"-03		Иh	0.99152	0.44910	0.76500	1.38400	0.55076
17	2,6000"-01		NM	0.99364	0.66346	0.77800	1.37300	0.56664
18	2.8000"-03		NM	0.79360	0.68003	V.79100	1.35300	0.58463
19	1.0000"-01		NN:	0.99468	0.64534	0.80200	1.33000	0,59940
50	3.3000"-03		NM	6.99585	0.71333	0.81800	1.31500	0.62205
21	3,6000"-01		NM	0.94773	0.73751	0.83700	1.24000	0.64984
\$5	3.9000"+03	4.1409"+00	NM	0.99828	0,76050	0.85400	1.26100	0.67724
23	4.2000"-03		N₩	1.00048	0.76435	0.07200	1.23600	0.70550
24	4.5000"-03	4.5992*+00	Pa M	1,00363	0.80751	0.88900	1.21500	0.73350
25	4.8700"=03	4.6258*+00	NM	1.00428	0.82474	0.90400	1.18700	0.76158
26	5.2000"-01		NM	1,00615	0.85977	0.92400	1.15500	0.80000
27	1.6000"-01	5,4621"+00	Nh	1.00851	0.88907	0.94300	1.12500	0.03022
26	6.0000"-01	5.7459"+00	N۳	1.00894	0,91425	0.958 00	1.09000	0.47250
29	4.4000"-03		NM	1.00767	0,43826	0.97100	1.07100	U.90663
30	a000" = 01	6.3244"+00	MM	1.00607	0.96350	U.98400	1.04300	0.94343
31	7.2000*-01	6.4289*+00	MIA	1,00477	0.47983	0.99200	1.02500	0.96780
32	7.4000"-03	00+**	NM	1.00316	0.98713	0,99500	1,01000	0.97933
33	8.0000*-01		iiΜ	1.00109	0.44304	0.94700	1.00000	0.48904
34	4.5000"-03		ИM	1.00053	0.99750	0,94400	1.00100	0.94601
ĴŚ	9.0000*-01		ЙM	1.00051	0.94450	1,00000	1.00100	0.99900
0 36	9.5000"-03		NM	1.00000	1.00000	1,00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P=PD

740103	06 THOM	13	PROFILE	TABULATION	33	POINTS, DEL	TA AT POT	NT 33
I	Y	PT2/P	P/PU	10/100	HZMD	U/UD	T/TD	RHO/RHOD*U/UD
1	v.0000"+00	1.0000"+00	UM	0.99276	0.00000	0.0000	2,40823	0.0000
5	1.0000*-04	2.0880"+00	ИМ	0.99885	0.40540	0.56800	1.96300	0.28935
3	2.0000"-04	2.6029*+00	N۳	1.00235	0.47377	0.64300	1.84200	0.34908
4	3.0000*=04	2.8434*+00	NM	0.99887	0.50176	0.67000	1.75300	0.37577
5	4.0000"-04	3.1176"+00	NM	0.99706	0.53160	0.69800	1.72400	0.40487
6	5.0000"-04	3.3566"+00	NM	0,99561	0,55615	0.72000	1.67600	0.42959
7	6.0000"-04	3.5469*+00	NM	0.99363	0.57507	0,73600	1.63800	V.44933
8	8.0000"-04	3.8270"+00	NM	0.99021	0.60129	0.75700	1.58500	0.47760
9	1.0000"-03	4.0822*+00	NM	0,48828	0.62431	0.77500	1.54100	0.50292
10	1.2000"-03	4.2767"+00	Ne	0.98745	0.64127	0.78800	1.51000	0.52185
11	1.4000"-03	4.4816"+00	NM	0.98681	0.65864	0.80100	1.47400	0.54158
12	1.6000"-03	4.6733"+00	NM	0.98747	0.67446	0.81300	1.45300	0.55953
13	1.8000"-03	4.8543*+00	NM	0.98858	0.65906	0.82400	1.43000	0.57622
14	2.0000*-03	5,0398"+00	NM	0.99023	0.70370	0.83500	1.40600	0.59304
15	2.2000"-03	5.2397*+00	HM	0.99121	0.71912	0.84600	1.38400	0.61127
16	2.4000"-03	5.4520*+00	NM	0.99191	0.73514	0.85700	1.35900	0.63061
17	2,6000"-03	5.4118"+00	NM	0.99259	0.74697	0.86500	1.34100	0.64504
18	2.80004-03	5.8332"+00	NM	0.99436	0.76304	0.87600	1.31800	0.66464
19	3.0000"-03	6.0181"+00	NM	0.99626	0.77620	6.88500	1.30000	0.68077
20	3.3000*-03	6.3544"+00	NM	0.99839	0.79957	0.90000	1.26700	0.71034
51	3,6000*-03	6.6454"+00	NM	1.00194	0.81924	0.71300	1.24200	0.73510
22	3,9000*-03	6.4669*+00	NM	1.00445	0.84043	0.92600	1.21400	0,76277
23	4.20004-03	7.2661*+00	NM	1.00578	0.85967	0.93700	1.13800	0.78872
24	4.5000*-03	7.4050*+00	NM	1.00560	0.88096	0.94800	1.15800	U.81865
25	4.8000*=03	7.9533*+00	NM	1.00833	0.90229	0.96000	1.13200	0.84806
26	5.2000*-03	8.3540*+00	NM.	1.00722	0.92623	0.97100	1.09900	0.88353
27	5.6000"-03	8.7584*+00	NM	1.00748	0.94975	0.98200	1.06900	0.91862
28	6.0000"-03	4.1203*+00	NM	1.00719	0.97036	0.79100	1.04300	0.95014
29	6.4000*=03	9.3514*+00	NM	1.00403	0.98327	0.99500	1.02400	0.97168
30	4.8000"-03	9.4747*+00	NM	1.00225	0.99009	0.99700	1.01400	0.98325
31	7.2000"-03	9.5735*+00	NM	1.00171	U.99552	0.99900	1.00700	0.99206
ŠĹ	7.6000*-03	9.6371*+00	NM	1.00082	0.99900	1.00000	1.00200	0.99800
0 33	2.0000"-03	9.4554"+00	NM	1.00000	1.00000	1.00000	1,00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME P#PD

74010	317 THOM:	A8	PROFILE	TABULATION	44	POINTS, DE	LTA AT FOI	NT 44
t	Y	PT2/P	P/PD	T0/T0D	M/MD	ロノリウ	1/10	MHO/MHOD#U/UD
1	0.0000"+00	1.0000"+00	NM	0.77655	0.00000	0.00000	3.06309	0.00000
š	1.0000"-04	2,4938"+00	NМ	0.95451	0.38175	U.57300	2.25300	0.23433
3	2.0000"-04	2,8997"+00	NM	0.95781	0.42128	0.61800	2.15200	0.26717
•	3.0000"-04	3.3171"+00	NM	0.96110	0.45786	0.65700	2.05900	0.31909
5	4.0000"=04	3.7315"+00	Nw	0.96311	0.44123	0.64000	1.97300	0.34972
•	5.0000"-04	4.0661"+00	NM	0.96534	0.51663	0.71400	1.91000	0.37382
7	0.0000"-04	4.3306"+00	NM	0,96662	0.53556	0.73100	1.84300	0.39238
	8.0000"-04	4.7413"+00	NH	0.96791	0.56384	0.75500	1.79300	0.42108
. 9	1.0000"-03	5.0841*+00	NM	0,96792	0.58668	0.77300	1.73600	0.44528
10	1.2000*-01	5.4150"+00	NM	0.46917	0.60728	0.78900	1.68800	0.46742
11	1.4000"-03	5.7143"+00	NM	0.97086	0.62570	0.80300	1.64706	0.48755
12	1.4000"-03	5.4722"+00	NM	0.97180	0.64043	0.81400	1.61300	0.50465
13	1.8000"-03	6.1956"+00	NM	0.97231	0.65392	0.82300	1.58400	0.51957
14	2.0000"=03	6.4649"+00	NM	0.97452	0.66924	0.83400	1.55300	0.53703
15	2.2000"-03	6.7099"+00	NM	0.47527	0.68287	0.84300	1.52400	0.55315
16	2.4000"-03	4.9421"+00	NM	0.97563	0.69553	0.85100	1.49700	0.56847
17	2.6000"-01	7.1459*+00	NM	0.97654	0.70647	0.85800	1.47500	0.58169
18	2.8000*-03	7.3316*+00	NM	0.97700	0.71628	0.86400	1.45500	0.59361
19	3.0000"=03	7.4828*+00	NM	0.97797	0.72417	0.86900	1.44000	0.60347
20	3.3000*-01	7.7323*+00	NH	0.97958	0.73700	0.87700	1.41600	
ãi	3.4000"-03	8.0188*+00	NM	0.97966	0.75146	0.84500	1.38700	0.61935
äž	1.9000*-03	8.2670*+00	NM	0.98057	0,76376	0.89200		0.63807
23	4.200003	8.5187*+00	NM	0.98187	0.77604		1.36400	0.65396
24	4.5000*-03	8.8108*+00	NM			0.89900	1.34200	0.66990
äš	4.8000*-03	7.0575*+00	NM	0.98381 0.98434	0.79004	0.90700	1.31600	0.48816
26	5.2000"-01	7.2994"+00	NM NM		0.80168	0.91300	1.29700	0.70393
27	5.6000 -03	9.4394*+00	NM	0.48558	0.61292	0.91900	1.27800	0.71909
26	6.0000*-03	9.9010"+00	NM NM	0.98708	0.82847	0.92700	1.25200	0.74042
žě	6.4000°-03			0.98843	0.44023	0.93300	1.53300	0.75669
30	6.8000 -03	1.0216"+01	NM	0.99012	0.69419	0.94000	1.51100	0.77622
ši	7.2000"-03		NM	0.99027	0.86793	0.94600	1-18800	0.79630
íż	7.6000"-03	1.0833"+01	NM	0.99144	0.88088	0.95200	1.14800	0.81507
33	a.0000"-03	1.10784+01	NM	0.99300	0.49125	0.95700	1.15300	0.83001
34		1.1401*+01	NM	0.99427	0,90471	0.96300	1.13300	0.84996
íi	8.5000"-03	1.1800"+01	NM	0.99559	0.45110	0.97000	1.10900	0.37466
36	9.0000"-03	1.2137"+01	NM	0.49532	0.93474	0.97500	1.08800	0.69614
	9.5000"=03	1.2474"+01	NM	0.99738	0.94837	0.98100	1.07000	0.91482
37	1.0000"-02	1.2809"+01	NM	0.99816	0.96132	0.98600	1.05800	0.93726
36	1.0500"-02	1.3084"+01	NM	0.99461	0,47218	0.99000	1.03700	0.95468
39	1.1000"-02	1.3302"+01	NM	0.99905	0.98034	0.99300	1.02400	0.96784
40	1.1500"-02	1.3493*+01	NH	0.99815	0.96762	0.99500	1.01500	0.98030
41	1.2000"-08	1.3675"+01	NM	0.99758	0,99452	0.99700	1.00500	0.99204
42	1.2500"-08	1.3715"+01	NM	0.99861	0.94601	0.99800	1.00400	0.99402
43	1.3000-08	1.3744"+01	ИM	0.99865	0.99900	0.99900	1.00000	0.99900
D 44	1.3500"-62	1.3621-+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y, U/UD, T/TD ASSUME PMPD

M : 2.5 - 4.5 (6 values)

R THETA X 10⁻³ : 5 - 30

TW/TR : 1

7402

ZPG - AW

Continuous wind tunnel with flexible nozzle. H = 0.91, H = 1.22 m. 0.06 < PO < 0.88 MN/m 2 . TO : 315 K. Air: Dew point 243 K. 6 < RE/m x 10^{-6} < 30,

MABEY D.G., MEIER H.U. and SAWYEP W.G. 1974. Experimental and theoretical studies of the boundary layer on a flat plate at Mach numbers from 2.5 to 4.5, RAE TR 74127.

And Mabey D.G. private communications, Hastings & Sawyer - CAT 7006, Mahey et al. (1971), Mabey & Sawyer (1974).

- 1 The test boundary layer was formed on a flat plate 1.65 m long and 0.889 m wide. It was mounted on the tunnel centre line with a gap of 13 mm on each side between the plate and the tunnel wall. The leading edge (X = 0) was chamfered at 10° with a 0.25 mm nose thickness. Twenty two removable instrument plugs (diameter 41.3 mm) were arranged in five longitudinal rows in the central 127 mm of the plate, which was a modification of that used by Hastings & Sawyer (CAT 7006). An attempt was made to minimize heat transfer by providing layers of heat insulation on the back surface of the plate and between the plate and its support. Surface roughness was within 0.64 µm except for the transition strip from X = 2.54 to 5.08 mm where
- 3 Ballotini (small glass spheres) of 0.28 mm diameter were distributed sparsely. All measurements were made in fully turbulent flow. The transition position was derived from surface hot-film measurements.
- 2 A comprehensive programme of improvements to the tunnel (Mabey & Sawyer 1974) had reduced total temperature fluctuations in the working section to about 0.1 %, and Mach number variations along the plate to about 0.3 %. The spanwise total temperature distribution across the empty tunnel in the plane of the plate was found to
- be steady and uniform within ± 0.5 K. There was evidence of flow convergence towards the centre line. This was very slight but nevertheless its contribution to the momentum equation was up to 14 % at M = 4.
- 6 Twenty one static pressure tappings of 1 mm diameter were distributed over the whole plate surface. Surface temperatures were measured using chromel-alumel surface thermocouples. The results agreed well with those derived from the cold resistance of platinum surface hot films installed to detect the beginning and and of transition. Wall shear stress was found using two Kistler type 322 m 192 balances with an element diameter of 9.75 mm. Of the four FEB available, only two were used for the results presented here. These two gave consistent and repeatable readings to within 1 % at the higher stress levels (Maboy & Gaudet, 1975).
- 7 The profiles were measured with a combined Pitot and TO probe (Meier 1969). The principle on which this operates is described in CAT 7003. For the probe used here, $d_1 = 0.61$, $d_2 = 0.63$, l = 20 mm. The first 13 mm of the proba were inclined downwards towards the surface at 3^022° , and this portion was tapered so that at the back end $d_1 = 1.2$ mm. The probe support was circular (d = 2 mm) and passed through the surface of the instrument plug.
- 8 All the measurements were made on one row of plugs, on the centre line. The profile normals were at X = 0.368, 0.623, 0.876, 1.130 and 1.384 m. The balance centres were 12 mm downstream of the profile normals.
- 9 No correction has been made to the CF values to allow for the small systematic x difference, as the appropriate
- 10 adjustments would have been very much smaller than the likely error of the balance measurements. A probe displacement correction was applied by adding $y = 0.15 d_1$ to all ordinates.
- 12 The data were received as a private communication before the catalogue project came in to existence. The profiles are given in great datail about 80 points each. The experimental scatter was very small, so at that time punched cards were prepared, as a general rule, only for every other data point. To save labour, the editors have chosen to use the existing card-deck, so that only about half the data-points are presented.
- 33 Some profiles/which were not included in the original card-deck have been punched in full. The 72 profiles presented form 18 sets of up to five successive stations. For each of six Mach numbers, three different

 K^{k_0}

values of unit Reynolds number are given. There is additionally (0100) one odd profile at a specially low unit Reynolds number providing a check on low Reynolds number effects. The authors present an additional 19 profiles which were influenced by flow from the gap between the tunnel wall and the side of the plate. This effect was eliminated by the addition of fences on the plate, and only those runs with the fences

- 14 are presented here. The CF value is the authors', obtained by interpolation on the basis of unit Reynolds number.
- § DATA 7402 0100-1805. NX up to 5. PT2 and TO profiles taken with the same probe. CF obtained separately with FEB.

15 Editors' comments

The tests described here provide a very large pool of very carefully observed basic flat plate data.

In the earlier tests by Hastings & Sawyer - CAT 7006, an enthalpy deficit was observed in the boundary layer. In these later tests, special efforts were made to eliminate the possibility of heat-transfer.

Nevertheless, an enthalpy deficit was still observed. This has been ascribed to various possible instrumental effects, but represents a minor departure from the first law of thermodynamics as compared to many other experiments. Some further measurements have been made using an ECP for the TO profile (private communication). The apparent enthalpy deficit is reduced but not eliminated.*

The profiles were originally described in very fina detail (see § 12 above) and conform in most respects to the behaviour expected of a ZPG layer. On a transformed uall-law plot, series 16 appears non-characteristic, showing a "hump" in the innermost part of the log-law region. Some slight disturbance is also visible in 1301/03/05 and 1001.

The comment above is in no way intended to be adverse, and these must be regarded, for the present, as the basic source for adiabatic flat plate data in this range of Mach and Reynolds number.

*Note added in proof: These studies are described, together with the original experiment, by Mabey and Sawyer (1976) ARC RBM 37.84.

CAT 7402	MABEY		BOUNDARY CONI	DITIONS AND E	VALUATED (DATA. SI UNIT	5.	
RUN	MD #	TW/TR	REDZN	CF +	H12	DSK	PW	PD
X *	Pud	PW/PD#	REDZO	CQ	H32	H35K	TW#	TD
R2	Tod#	SW #	DZ	PIZ	H42	H15K	UD	TR
74020100	2.4701	1.0069	3.5146*+03	1.8000"-03	3.8319	1.3819	3.9084*+03	3.4084*+03
8.7600"-01	6.3743*+04		6.5823*+03	NM	1.7915	1.7755	2.9526*+02	1.4007*+02
Infinite	3.1100*+02		1.1285*+03	0.0000"+00	0.1169	1.5564"-03	5.8614*+02	2.9322*+02
74020101	2,4929	1.0133	3.0986*+03	1,8500"-03	3.9413	1.4577	7.6903*+03	7.6903*+03
3.6600*-01	1.2995"+05	1.0000	5.885*+03	NM	1.7925	1.7772	2.9506*+02	1.3777*+02
Infinite	3.0900"+02	G.0000	4.9677*-04	U,0000"+00	0.1268	6.8061*-04	5.8666*+02	2.9119*+02
74020102	2,4920	1.0050	4,6668*+03	1.7200"=03	3.9023	1.3855	7.6339*+03	7.6339"+03
6.2300=-01	1.2882"+05	1.0000	8.8087*+03	NM	1.8025	1.7887	2.9265*+02	1.3782"+02
Infinite	3,0900"+02	0.0000	7.4932*-04	0.0000"+00	0.1059	1.0281"-03	5.8657*+02	2.9120"+02
74020103	2,4816	1.0005	6.0672*+03	1,6000"+03	3.9177	1.3445	7.7526*+03	7.7526"+03
8.7600"-01	1.2872*+05		1.1370*+04	NM	1.8121	1.7907	2.9265*+02	1.4691"+02
Infinite	3,1000*+02		9.6706*=04	0,0000"+00	0.0700	1.3248"-03	5.8642*+02	2.9221"+02
74020201	2.4947	1.0050	3.9386"+03	1.7200"-03	4.0047	1.4437	1.0170"+04	1.0170"+04
3.68J0"-01	1.7234*+05		7.4423"+03	NH	1.8012	1.7860	2.9265"+02	1.3766"+02
Infinite	3.0900*+02		4.7389"=04	0.0000"+00	0.1012	6.5317*-04	5.8685"+02	2.9116"+02
74020202	2.4900	1.0017	5.9449*+03	1.6400"-03	3.4029	1.3944	1.0140*+04	1.0140"+04
6.2300*-01	1.7057*+05	1.0000	1.1179*+04	NM	1.8038	1.7887	2.9265*+02	1.439"+02
INFIHITE	3.1000*+02	0.0000	7.2070*-04	0.0000"+00	0.1072	9.8518*-04	5.6731*+02	2.9215"+02
74020203	2.4939	1.0083	7.8437"+03	1.6200"-03	3.9154	1.3490	1.0195*+04	1.0195"+04
8.7600"-01	1.7255"+05	1.0000	1.4861"+04	NM	1.8149	1.8013	2.9265*+02	1.3726"+02
Infinite	3.0800"+02	0.0000	9.4037"-04	0.0000"+00	0.0830	1.2804***03	5.8582*+02	2.9024"+02
74020301	2,4957	1.0043	4.7735"+03	1.6700"=03	4.0646	1.4430	1.2656"+04	1.2656"+04
3.6600"-01	2,1479*+05		9.0504"+03	NM	1.8036	1.7881	2.9265"+02	1.3715"+02
Infinite	3.0800*+02		4.6052"-04	0.0000"+00	0.0802	6.3763"=04	5.8601"+02	2.9023"+02
74020302	2,4974	1.0019	7.2433*+03	1.6000*=03	3.9122	1.3900	1.2753"+04	1.2753"+04
6.2300"+01	2,1701*+05	1.0000	1.3662*+04	NM	1.8076	1.7926	2.9265"+02	1.3794"+02
Infinite	3,1000*+02	0.0000	6.9498*-04	U.0000*+00	0.1079	9.4994*4	5.8808"+02	2.9211"+02
74020303	2.5001	1.0000	9.0948*+03	1.5600"-03	3.8610	1.3446	1.2589*+04	1.2589*+04
8.7600"-01	2.1515*+05		1.7172*+04	NM	1.8172	1.8044	2.9265*+02	1.37/7*+02
Infinite	3.1000*+02		8.6247*-04	U.0000"+00	0.1039	1.1965***03	5.8637*+02	2.9209*+02
74020401	2.7820	1.0012	3.8751*+03	1.6330*=03	4.5214	1.3989	5.5606*+03	5.5606"+03
6.23 00 *- 01	1.4641"+05		8.1563*+03	NM	1.8019	1.7843	2.9265*+02	1.2245"+02
Infinite	3.1200"+02		7.2124*=04	U.0000*+00	0.1212	1.0523*-03	6.1724*+02	2.9229"+02
74024407	2.7874	0,000	5.0023"+03	1.5400*+03	4.4643	1.3497	5.5076*+03	5.5076"+03
8.7600*-01	1.4666*+05		1.0521"+04	NM	1.8114	1.7959	2.9265*+02	5.47555"+02
Infinite	3.1300*+02		7.3844"-04	U.0000*+0a	0.1118	1.3592*-03	6.1871*+02	2.9319"+02
74026501	2.7933	1.0047	3.2220"+03	1.6600*=03	4.6023	6.6649*-04	7.2603*+03	7.2603#+03
3.6600"-01	1.9556"+05	1.0000	6.8333"+03	NM	1.8039	1.4844	2.9265*+02	1.2146#+02
Infinite	3.1100"+02	0.0000	4.5432"-04	U.0000*+00	0.1295	1.4844	6.1723*+02	2.9129#+02
74020502	2,7884	1.0014	4.9158"+03	1.5300"-U\$	4.5118	1.3957	7.3505"+03	7.3505"+03
6.2300#=01	1,9598*+05		1.0374"+04	NM	1.8058	1.7877	2.9265"+02	1.2211"+02
INFINITE	3,1200*+02		6.8958"-04	U.UOQQ"+OQ	0.1296	1.0053*-03	6.1779"+02	2.9235"+02
74020503	2.7915	0.9982	6.43624+03	1.4800 == 03	4.4999	1.3491	7.3149*+03	7.3149*+03
8.7600*+01	1.9595"+05	1.0000	1.35594+04	NM	1.8121	1.7974	2.9265*+02	1.2234*+02
INFINITE	3.1300"+02	0.0000	9.0707*~04	0.0000 =+ 00	0.1063	1.3096*-03	6.1905*+02	2.9317*+02
74020601	2.7923	1.0079	3.9257*+03	1.5900*=03	4.6837	1.4441	9.1020*+03	0.1020*+03
3.6800#-01	2.4413*+05		8.3474*+03	NM	1.6040	1.7869	2.9265*+02	1.2112*+02
Infinite	3.1000*+02		4.4230*=04	0.0000*+00	0.0950	6.4739"-04	6.1615*+02	2.4464600.5
74020602	2.7898	1.0046	6.0846"+03	1.4800*=03	4.3610	1.3612	4.2160*+03	9.2160*+u3
6.1700"=01	2.4624"+05		1.2686"+04	NM	1.8125	1.7953	2.9265*+02	1.2165*+02
Infinite	3.1100"+02		6.7912"=04	U.0000*+U0	0.1734	9.7532*=04	5.1692*+02	2.9131*+02
74020603	2.7932	0.9983	7.8129*+03	1.4300**U3	4.4375	1.3416	4.0793"+U3	9.0793#+03
8.7600"-01	2.4365*+05	1.0000	1.6470*+04	NM	1.8191	1.0032	2.9265"+U2	1.2225#+02
Infinite	3.1300*+02	0.0000	8.0626*-04	U.0000*+U0	0.1292	1.2748*-03	6.1920"+U2	2.9316#+02

INFINITE

3,1300*+02

0.0000

9.6518*-04

0.0000*+00

0.1867

6.6789"+02 2.8992"+02

CAT 7402	MABEY		BOUNDARY CON	STIONS AND E	VALUATED (DATA. SI UNIT	3.	
RUN	MD *	TW/TR	REDZW	CF +	H12	H12K	PW	PD
X *	PUD	PW/PD*	RED2D	ĊĢ	H32	H32K	TWA	TD
AZ	T0D*	3W 4	02	PIZ	H42	DSK	UD	TR
74021201	3.4888	1.0067	3.2060"+03	1.3500"-03	6,2751	1.4288	5,8184"+03	5.8184*+03
3.6800*-01	4.3677*+05	1.0000	8.4175*+03	NM	1.8147	1.7926	2.4280"+02	9.1429*+01
INFINITE	3.1400*+02	0.0000	3.9308"-04	0.0000*+00	0.1604	0.6248"-04	0.6885"+02	2.9044+05
****			A 91988.A1	1 7EAAB 47		1 7845		6 70378.43
74021202 6.2300*-01	3,4978 4,3360*+05	1.0005	4.7335"+03 1.3238"+04	1,2500"+U3 NM	6.1010 1.8194	1.3860	5.7027*+03 2.4235*+02	5.7027"+03 9.0006"+01
INFINITE	3,1300*+02	0.0000	5.8790*+04	0.00004+00	0.1922	9.8045*-04	6.6828"+02	2.8989*+02
						_		
74021203	3,5029	0,9974	6.2503*+03	1.1900"=03	6.0302	1.3721	5,6621"+03	5.6621*+03
8.7600"-01 1HFIHITE	4.3364"+05 3.1600"+62	1,0000	1.7333"+04 7.8269"-04	0.0000#+U0	1.5188	1.7929 1.3016"=03	2.9190*+02	9,1486*+U1 2,9265*+02
4101 2114 16	361000 102	4.7000	110201 -01	**************************************	0,2040	113010 -03	011110 102	E17202 102
74021204	3,4962	1,0023	7,6069*+03	1.1700"-03	5.9227	1.3350	5.7147*+03	5.7147*+03
1.1300"+00	4.3353*+05	1.0000	2.1153"+04	NH ASSASSAN	1.8260	1.8032	2.9150*+02	9.1155*+01
INFINITE	3.1400*+02	0.000	9.4314*=04	0.0000*+00	0.2094	1.5401"-03	6,6926*+02	2.9082"+02
74021301	3.9973	1.0084	1.6951"+03	1,4000*-03	7.2268	1.4173	2.4426*+03	2.4426*+03
3.6800"-01	3.6954"+05	1.0000	5.7141*+03	NM	1.8267	1.7976	2.9340"+02	7.5316"+01
INFINITE	3,1600"+02	0.0000	3,9279"-04	0.0000*+00	0.2743	7.0393*-04	6,9553"+02	2.9097*+42
74021502	3,9853	1.0036	2,5602*+03	1.2600#=03	7.3378	1.3510	2.48384+03	2.4835*+03
6.2300*-01	3.6980"+05	1.0000	8.5608*+03	NM	1.8284	1.8046	2,9205"+02	7.5661*+01
INFINITE	3.1600*+02	0.0000	5.8442*=04	U.0000*+U0	0.2231	1.0650*-03	6.9504*+02	2.4100*+02
74021303	3.9840	0.9933	3,2960"+03	1.1800*=03	7.2833	1.3582	2.4629*+03	2,4629*+03
8.7600"-01 Infinite	3.6605*+05	1.0000	1.0913"+04 7.5928"=04	NM 0.0000*+00	1.8186	1.7926 1.3914"=03	2.9090*+02 6.9718*+02	7.6178*+01
\$147 \$14 \$ 1 C.	381000 146	11811004	113160 -04	4. 0000	0,6344	.,27,4 -03	4,77,40	
74021304	3.9869	0,9985	4.1841"+03	1.1200"-03	7,2528	1.3451	2.4679*+03	2.4679*+03
1.1300*+00	3.6022"+05	1.0000	1.3954"+04	NM	1.6217	1.7932	2.6965"+02	7.5376*+01
INFINITE	7,1500*+02	0,0000	9.5294"~04	0.0000"+00	0.2418	1.7514*-03	6.9400*+02	2.9008*+02
74021305	3,9688	0,9758	4.8600*+03	1.0700"-03	7.1988	1.3168	2.5158"+03	2.5158*+03
1.3840"+00	3.6638*+05	1.0000	1.5750"+04	NM	1.8290	1.8024	2.8850"+02	7.7344*+01
INFIHITE	3.5100.+05	0.000	1.1015"-03	U.0000*+00	0.2295	1.4988"-03	6,9981*+02	2.9566"+02
74021401	4.0034	1,0116	2,0929"+03	1.3000"-03	7,3910	1.4069	3.0175*+03	3.0175*+03
3.6800"-01	4.6025*+05	1.0000	7.0938"+03	NM	1.6246	1.7995	2.9340*+02	7.4903*+01
INFINITE	3,1500*+02	0.0000	3,9090"-04	0.0000*+00	0.2476	7.1203"-04	6,9469"+02	2.9003*+02

74021402 6.2300*~01	3.9890 4.3947"+05	1.0000	3,1607"+03 1,0584"+04	1.1500"-03 NM	7.3775 1.8239	1.3712	5,0709"+U3 2,9203"+U2	3.0709"+03 7.5554"+01
INFINITE	3,1600"+02	0.0000	5.8262"-04	0.0000*+00	0.2375	1.0905"-03	6.9519#+02	2.9099"+02
	-							
74021403	3.9867	0,9934	4.04087+03	1.1200*-03	7.2649	1.3340	3.0537"+03	3.0537*+03
8.7600"-UI Infinite	4.5672*+05 3.1600*+02	0.0000	1.3403*+04 7.4921*=04	NM V.0000*+U0	1.8253	1.8019 1.3677*=03	4.9090*+U2 6.9737*+U2	7.6041*+01 2.9284*+02
144 TH 1 1 E	3.1000 YOE	741744	7.47E1 -144	9.0000 +00	V.E337	113011 -03	0.7137 TVE	E1780- 10E
74021404	3,9571	0.9954	5.0302*+03	1.0700*+03	7.2093	1.3387	3,0598*+03	3,0548*+03
1.1300*+00	4.5645*+05	1.0000	1.6724*+04	NM	1.6241	1.7967	2.4965"+02	7.5609"+01
INFINITE	3,1600"+02	0.0000	9.2541*-04	0.0000*+00	0.2477	1.6901"-03	6.9511"+02	2.9100"+02
74021405	3.9734	0.9789	5.9837"+03	1.0400*-03	7.2217	1.3284	3.1251"+03	3.1251*+03
1.3840*+00	4.5793*+05	1.0000	1.9485*+04	NM	1.8259	1.7987	2,8850*+02	7.6968*+01
Infinite	3.2000*+02	0.0000	1.0679*-03	0.0000*+00	0.2307	1.9780"-03	6.9892*+02	2,9472*+02
74021501	4.0068	1.0117	2.7857*+03	1.1900*=03	7.5545	1.4417	4.1993*+03	4.1993*+03
3.6800*-01	6.4512"+05	1.0000	9,4613"+03	1.1400-E03	1,0161	1.7859	2.9340"+02	7.4749"+01
INFINITE	3.1500*+02	0.0000	1.7298*-04	0.0000*+00	0.2299	6.9491"-04	6.94914+02	2.9001*+02
	*							
74021502 6.2300"-01	3.9951 6.4089"+05	1.0069	4.0773*+03 1.3726*+04	1.1100*=03	7.4974	1.4001	4.2486*+03	4.2486*+03 7.5140*+01
INFINITE	1.1500*+02	1.0000	5.4091"-04	NM U.0000*+UD	1,8166	1.7864	b.9434"+u2	2.9005"+02
74021503	3,9948	0.9935	5.4533*+03	1.0500"-03	7.2031	1.3441	4.2900*+03	4.2500"+03
8.7600"-01 Infinite	4.4083*+05 3.1800*+02	1.0000	1.8131"+04	NM 0.0000*+00	1.8280	1,8017 1,3137"=03	6.4763*+02	7.5864"+01 2.9262"+u2
THE THY IE	3114044114	4.4400	. 9 E 4 34 A 4	9 1 4 4 4 4 4 T T T	V. 2777	1,3137 43	U\$ 77 W3" TVE	# 1 TE VE "TVE
74021504	3,4424	0.9954	4,5636*+03	1.0300"-03	7.2446	1.3286	4,2624*+03	4.2624*+03
1.1300*+00	6.4109*+05	1.0000	2.1670*+04	NM	1.0304	1.8048	2.8945*+02	7,5442"+01
INFINITE	3,1400*+02	0.0000	8.6459"-04	9.0000*+00	0.2357	1.5567*+03	6,9535"+02	2,9098*+02
74021505	3.9810	0.9820	8.0893"+03	1.0000*-03	7,1309	1.3187	4.3384*+03	4.3384"+03
1.3640*+00	6.4223*+05	1.0000	2.6500"+04	N/4	1.0325	1.8061	2.4650*+02	7.4505*+01
INFINITE	3,1700"+02	0.0000	1,0541*-03	0.0000*+00	0.2475	1.8821 03	6.9815*+02	2.9378"+02

CAT 7402	HABEY		BOUNDARY CON	DITIONS AND E	VALUATED (DATA. SI UNIT	8.	
RUN	MD #	TW/TR	RED2W	CF +	HIS	H12K	PW	PU
X +	PUD	PW/PD#	REDED	Ć0	H35	H32K	TW#	ŢĎ
RZ	TOD*	8W #	02	PIZ	H42	02K	Uft	TR
74021601	4.4967	1.0208	1.0792*+03	1.3700*-03	8.4073	1.4254	1.6036*+03	1.6036*+03
3.6800*-01	4.6220*+05	1.0000	4.4028"+03	NM	1.8447	1.8095	2.9475*+02	6.2450"+01
INFINITE	3,1500*+02	0.0000	3.0942*-04	0.0000*+00	0.3512	5,9010"-04	7.1247*+02	2.6873*+02
74021602	4,4698	1.0127	1.7891"+03	1.2400"-03	0.3617	1.3942	1.6106"+03	1.0106*+03
6.2300F-01 INFINITE	4.6022*+05	1.7000	7.2311*+03 5.1109*-04	0.0000#+00	1.8324	1.7944	2.9335"+02 7.1339"+02	6.2802*+01 2.8967*+02
THETHE	3.1000-402		301104404	0.0000"700	V.3444	4.44010-		·
74021603	4.4851	1.0027	2.3256*+03	1.1500*-03	8.4056	1.3404	1.62294+03	1,6229*+03
8.7600"~01 INFINITE	4.6103"+05	1.0000	0.2966"+03 0-"E806.0	NM 4.0000*+00	1.8352	1.5046	7.1549"+02	6.3306"+01
		•						
74021604	4,4835	1.0088	3.0658*+03	1.0500"-03	0.5012	1.3950	1.6316"+03	1.6316"+03
1.1300*+00 INFINITE	4.6259*+05	1.0000	1.2335"+04	0.000*+u0	1.4285	1.7427 1.7229"-03	2.9130*+02	6.2745*+01 2.8877*+02
	311300 402	0,0000	0.046304	01000000			7.1200 742	E. 0017 TVE
74021605	4.4719	0,9920	3,5518"+03	1.0100"-03	4.5780	1,3409	1.65107+43	1.6510"+03
1.3840*+00	4.6134*+05	1.0000	1.4018"+04	NM D.0000*+00	1.8305	1.7954 1.9748*-03	2.6920*+02	6.3505*+01
INFINITE	3,1800"+02	0.0000	4.041004	0.0000-+00	0.2841	1.774603	1.1301.436	2.9154*+02
74021701	4.5009	1.0209	1.5280*+03	1,3000**03	0.6529	1.3867	1.9955"+03	1.9955"+03
3.6600"-01	5.7819"+05	1.0000	6.2431"+03	NM	1.6416	1.6126	2.9475"+02	6.2356"+41
INFINITE	3,1500"+02	0.0000	3.5146*-04	0.0000*+00	0.2980	6.8239"-04	7.1261*+02	2.8873*+02
74021702	4,4985	1.0210	2.3045"+03	1.1300"-03	5.0799	1.3459	1.9993"+03	1.9993"+03
8.7400"-01	5.7754"+05 3.1500"+02	1.0000	9.4294"+03 5.3062"=04	NM	1 - 6346	1.6064	2.9480*+02	6.24104+01
INFINITE	3.1300-402	0.0000	2.300504	0.0000*+00	0.2822	1.030003	7.1253*+02	2.8873*+02
74021703	4.4956	1.0028	2.9413"+03	1,0400"-03	8.6713	1.3484	2.0139*+03	2.0139"+03
8.7600*-01	5.7967*+05	1,0000	1.1805*+04	NM	1.4295	1.7986	2.4230"+02	6.3069*+01
INFINITE	3,1000"+02	0.0000	6.7064*-04	0.0000"+00	0.2826	1.3431"-03	7.1582*+02	2.9149*+02
74021704	4.4876	1.0024	3.0391"+03	9.9000"-04	8.6390	1.3468	2,0167*+03	2.0167"+03
1.1300*+00		1.0000	1.5372"+04	NM	1.0248	1.7925	5.9130*+02	6,3051"+01
INFINITE	3.1700"+02	0.0000	8.7329*-04	0.0000*+00	0.2854	1.7663"-03	7.1444*+02	2.9059"+02
74021705	4.4793	5500.0	4.3197"+03	9.5000"-04	6.6742	1.3210	2.0517*+03	2.0517*+03
1.3840"+00 INFINITE	5.7863"+05 3.1700"+02	1.0000	1.7146*+04	NM 0.0000*+00	1.8336	1.8039 1.9340"-u3	7.1418*+02	6.3238*+U1 2.9061*+02
AMPANAIL	3.1700-702	0.0000	4.0301		0.8200	117340-403		E 1 4001 - 1 AE
74021801	4.5169	1.0242	2.3098*+03	1.0000"-03	9.3884	1.426	3.1193"+03	3.1193*+03
3.6500*-01	9.2199*+05	1.0000	9.5222*+03	NM D 0000T+U0	1.6263	1.790	2.9475*+02	6.1805"+01
INFINITE	3,1400"102	0.0000	3.3719*-04	0.0000*+00	0.2105	7.094104	7.1147-402	2.8777*+02
74021502	4.5097	1.0161	3.4549"+03	9.8000"-04	8,6125	1.3072	3.1434"+03	3,1634"+03
6.2300"-01	4.2640*+05	1.0000	1.4935*+04	NM	1.6222	1.7907	2.9335"+02	4.2157"+01
INFINITE	3.1500*+02	0.0000	5.2674*-04	0.0000*+00	0.3133	1.0585"-03	7.1289"+02	2.8870*+02
74021003	4.5098	1.0029	4.5851"+03	7.3000"-04	8.4185	1.3249	3.1603"+03	3.1603"+03
8.7600"-01	4.2588"+05	1.0000	1.8496"+04	NM	1.4356	1.8080	5.4520.+05	4.2751"+01
INFINITE	3,1800*+02	0.000	6.6244"-04	0.0000*+00	0.2941	3.3207*-03	7.1627*+02	2.9145*+02
74021804	4,5003	1.0057	5.8311"+03	9.1000"-04	6.4562	1,3236	3,1635*+03	3.1835*+03
1.1300*+00	9.2169*+05	1.0000	2.3524"+04	NM	1.0373	1.8052	2,9130"+02	6.2568"+01
INPINITE	3.1600*+02	0.0000	6.3466*+04	0.0000*+00	0.3204	1.6598"-03	7.1378"+02	2.4964*+02
74021805	4.4926	0,9829	6.8131"+03	6.8000"-04	8.5307	1.2053	3,2319"+03	3,2319"+03
1.3840*+00		1.0000	2.4837*+04	NM A	1.4403	1.8163	2,4920"+02	4.3724"+01
INFINITE	1,2100*+02	0.0000	9.4545*-04	0.0000*+00	0.2620	1,8947"-03	7,1910"+02	2.9424*+02

PO, POD CALCULATED WITH AUTHOR'S MUE-LAW FROM REDE, DE (AUTHOR)

7402180	DI MABEY		PROFILE	TABULATION	41	POINTS, DEL	TA AT POI	NT 41
1	Y	PT2/P	P/PD	T0/T0D	M/MD	U/UD	1/10	RHO/RHOD*U/UD
ı	0.0000"+00	1.0000"+00	ИМ	0.94043	0.00000	0.00000	4.77763	0.00000
2	3.6300"-04	3.4114"+00	NM	0.94112	0.33196	0.60290	3.29815	U.18280
3	3.8900"-04	3.5898"+00	ИМ	0.94086	0.34225	0.61550	3.23415	0.19031
4	4.1400=-04	3.7605"+00	Им	0.93951	0,35179	0.62650	3.17158	0.19754
5	4.3900=-04	3.9211"+00	NH	0.93866	0.36051	0.63640	3.11624	0.20422
6	4.6500"-04	4.0785*+00	NM	0.93780	0.36884	0.64560	3.06375	0.21072
7	4.9000*-04	4.2196"+00	NM	0.93741	0.37615	0.65360	3.01932	0.21647
8	5.1600"-04	4.3462*+00	NM	0.93763	0.38258	0.66070	2.98240	0.22153
9	5.4100"-04	4.4815 +00	ИW	0.93505	0.38932	0.66700	2.93513	0.22725
10	5.6600"-04	4.5999"+00	NM	0.93617	0.39513	0.67350	2.90529	0.23182
ii	5.9200"+04	4.71334+00	NM	0.93574	0.40061	0.67900	2.87274	0.23636
iż	6.1700"-04	4.8227*+00	NM	0.93602	0.40582	0.68440	2.54414	0.24064
i3	6.6800*-04	5.0215"+00	NM	0.43616	0.41512	0.69370	2.79252	0.24841
14	7.1900"-04	5.2015*+00	NH	0.93674	0.42336	0.70190	2.74876	0.25535
i 5	7.7000 -04	5.3590*+00	NM	0.93567	0.43043	0.70820	2.70709	0.26161
16	8.2000"-04	5.5009"+00	NM	0.93509	0.43670	0.71380	2.67165	0.26718
i 7	8.7100 -04	5.6457*+00	Иh	0.93525	0.44301	0.71940	2.63852	0.27273
iń		5.9772"+00	NM M-	0.93766	0.45711	0.73300	2.57136	0.24506
19	9.9800"-04	6.2674*+00	NP NP	0.94122	0.46910	0.74460	2.51953	0.24553
20	1.1250"-03			0.94419	0.48042		2.47036	0.30566
	1.2520*-03	6.5486*+00	NM			0.75510	2.42189	0.31616
21	1.3790"-03	6.8435*+00	NM	0.94760	0.49202	0.76570		
55	1.50607-03	7.1328"+00	NM	0.94821	0.50313		2.36967	0.32664
23	1.6330"-03	7.4354"+00	NM	0.95171	0,51449	0.75440	2.32450	0.33745
24	1.0070"-03	0.0870*+00	NM	0.95404	0.53812	0.80210	2.22173	0.36103
25	2.1410*-03	8.7680"+00	NM	0.95805	0.56175	051940	2.12766	0.36512
56	2,3950"-03	9,4807*+00	HM	0.95533	0.58545	0.83280	2.02347	0.41137
27	2.6490"-03	1.0224"+01	NM	0.96261	0.60917	0.84960	1.94515	0.43678
58	2,9030"-03	1.1012"+01	NM	0.96452	0.63335		1.85839	0.46460
29	3.4110"-03	1.5055,+01	HM	0.96631	0.68007	0.88480	1.70039	0.52153
30	3.9190"-03	1.4370*+01	ИM	0,97722	0.72741	0.91140	1.57159	0.50024
31	4.4270"-03	1.6348"+01	HM	0.98007	0.77748	0.93180	1.43637	0.64872
32	4.9350"-03	1.8567*+01	ИМ	0.98207	0.83005	0.94970	1.30967	0.72548
33	5.4430"-03	2.0815"+01	NM	0.46681	0.88011	0.94610	1.20496	0.80177
34	6.0780°-03	2.3422"+01	NM	0.99051	0.93481	0.98140	1.10217	0.89042
35	6.7130"-03	2.5243"+01	NM	0.99955	0.97118	0.99390	1.04734	0.94898
36	7.3480"-03	2.6122"+01	NM	1.00209	0.98826		1.02124	0.97793
37	7.9430"-03	2.4438"+01	NM	1.00145	0.99434		1.01061	0.98910
38	8.4140*-03	2.4588*+01	ИM	1.00211	0.99719		1.00664	0.99390
39	4.2530"-03	2.4637*+01	NM	1.00274	0.99814		1.00573	0.99529
40	9.8880"-03	2.6716"+01	NM	1.00214	0.99965		1.00271	0.99830
0 41	1.0520"-02	2.4735"+01	NM	1.00000	1.00000		1.00000	1.00000
J			14					.,,,,,,

INPUT VARIABLES Y,U/UD,RHD/RHDD ASSUME P=PD ALL MEASURED POINTS

7402180	MABE	1	PROFILE	TABULATION	47	POINTS, OEL	TA AT PUT	NT 47
1	Y	PT2/P	P/PD	T0/T0D	M/MD	ロノロウ	1/10	QU/U*QOHR/OHR
1 1	.0007*+00	1.0000"+00	NM	0.93597	0.00000	0.00000	4.74336	0.00000
	3.6300"-04	3.0990"+00	NM	0.93442	0.31356	0.57670	7.39501	U.17049
	4.8400"-04	3.2495"+00	NM	0.93402	0.32284	0.54860	3.32414	0.17707
	1.1400"-04	3,3979"+00	NH	0.93305	0.33170	0.59950	3.26658	0.18353
	1.3900"-04	3.5320"+00	ИW	0.93403	0.33954	0.60950	3.22237	0.18915
	4.6500"-04	3,4461"+00	NM	0.93193	0.34709	0.61780	3.16425	V.1 75 00
	4.9000"-04	3.8149"+00	NM	0.93204	0.35532	0.62770	3.12079	0.20114
	5.1600"-04	3,4344"+00	NM	0.93178	0.36180	0.63510	3.08136	0.20611
9 9	5.4100"-04	4.0295"+00	NM	0.93072	0.36678	0.64040	3.04548	0.21007
10 9	5.6600"-04	4.1449"+00	11M	0.93068	0.37288	0.64720	3.01265	0.21483
11 9	5.9200"-04	4.2136"+00	NM	0.93122	0.37642	0.65130	2.49371	0.21756
12 (.1700"-04	4.3001*+00	NM	0.93117	0.38084	0.65610	2.94794	0.22104
	-4800"-04	4.4785*+00	NM	0.93100	0.38978	0.66560	2.91601	0.22826
	7.1900"-04	4.6241"+00	NM	0.93112	0.39492	0.67310	2.87575	0.23406
	7.7000"-04	4.7513"+00	NM	0.93172	0.40305	0.67960	2.64305	0.23904
	.2000"-04	4.8585"+00	NM	0.93109	0.40615	0.68450	2.81260	0.24336
	7100"-04	4.9891"+00	rjim	0.93092	0.41426	0.69050	2.77827	0.24854
	7.9800"-04	5.2293*+00	NM	0.93110	0.42527	0.70120	2.71860	0.25793
	1.1250"-03	5.4339*+00	NM	0.93380	0.43442	0.71080	2.67711	0.24551
žó	.2520"-03	9.4359*+00	NM	0.93644	0.44327	0.71990	2.63756	0.27294
	3790"-03	5.8400"+00	NM	0.93722	0.45203	0.72800	2.59377	
		7-6400"V00						U.28067
	.5040*-03	4.0440*+00	NM	0.93963	D.44041	0.73640	2.55596	0.28811
	1.6330"-03	6.2446*+00	M	0.93958	0.46890	0.74340	2.51357	0.29575
	1.6070"-03	6.6617-+00	NM	0.44386	0.48566	0.75880	2,44116	0.31044
	2.1410"-03	7.0854"+00	NM	0.95517	0.30210	0.77620	2.38982	0.32479
	2.3950"-03	7.5107"+00	NM	0.95514	0.31808	0.76610	2.31405	0.34057
	2.6490"-03	7,4514"+00	NM	0.95065	0.53412	0.79760	2.22993	0.35768
28	2.9030"-03	8,3975"+00	NM	0.95151	0,54988	0.80860	2.14241	u.37393
29 1	3.4110"-03	4.3377*+00	Им	0.95588	0.58168	0.83050	2.03853	0.40740
	3.41407-03	1.0266"+01	NM	0.94148	0.61145	0.85010	1.93292	0.43980
	4,4270"-03	1.1274"+01	NM	0.96458	0.64219	0.86770	1.62543	0.47529
	4.9350"-03	1.2419"+01	NH	0.76811	0.67542	0.88830	1,71804	U,51530
	5,4430"-03	1.3672"+01	NM	0.97155	0.70998	0.90200	1.61404	0,55884
	6.0780"-03	1.5316"+01	NH	0.97272	0.75294	0.91940	1,49105	0.41441
35 (.7130°-03	1.7072"+01	NM	0.97736	0.79623	0.93670	1.38394	0.47483
36	7.3480*-03	1.0912"+01	NM	0.98078	0.63921	0.95170	1.28605	0.74002
37	7.9830"-03	2.0840"+01	NH	0.98347	0.66202	0.96490	1-19677	0.80625
	8.6180 -03	3.2483"+01	NM	0.98739	0.92106	0.97660	1.12424	0.86867
39	7.2530"-03	2.42764401	ЙM	0.99498	0.45352	0.98780	1.07320	0.92043
	7.6860"-03	2.5382"+01	NM	0.99578	0.97542	0.99290	1.03617	0.45424
	1.0520 -02	2,5997"+01	NM	0.99946	0.98738	0.99720	1.01999	0.97765
	1.1158*-02	2.6312"+01	NM	0.99780	0.99345	0.99760	1.00437	0.98932
	1.1790"-02	2.6455*+01	NM	0.99911	0.99620	0.99880	1.00523	0.99361
	2428*-02	2.6512"+01	NM	0.99667	0.99730	0.99880	1.00301	0.99580
	1.3040"-02	2.6549*+01	NM	0.99919	0.99800	0.99920	1.00241	0.99680
46	1.4333"-02	2.6625*+01	NM	0.99782	0.99945	0.99880	0.99670	1.00010
	\$000-02	2.6653"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
					,,,,,,,,			

INPUT VARIABLES Y,U/UD,RHO/RHOD ASSUME PMPD ALL MEASURED POINTS

740218	03 HABEY	•	PROFILE	TABULATION	47	PO1NTS, 0	ELTA AT PUII	47
1	Y	PT2/P	PZPD	TUZTOD	MZMD	טוועט	1/10	\NHOD*U\UD
1	0.0000"+00	1.9000"+00	NM	0.93212	0_00000	0.00000	4,72367	0.00000
Ž	3.6300"-04	2.9609"+00	NM	0.93305	0.30478	0.56460	3.43171	0.16452
3	3.8900"-04	3.0557*+00	NM	0.93245	0.31084	0.57250	3.39213	0.16877
4	4.1400"-04	1.2097*+00	NM	0.93309	0.12042	U.58520	3.33556	0.17544
5	4.3900"-04	3.3528"+00	NM	0.93222	0.32904	0.59590	3.27976	0.18169
6	4.6500"-04	3,4985"+00	NM	0.93070	0.33757	0.60600		U.18804
7	4.9000"-04	3.6100*+00	NM	0.93074	0.34439	0.61430	3.18167	0.19307
8	5.1400"-04	3.7358"+00	NM	0.93059	0.35098	U.62210	3.14169	0.14801
9	5.4100"-04	3.8462"+00	NM	0.92914	0.35703	0.62570	3.10078	0.20276
10	5.6600"-04	3.9595"+00	NM	0.92941	0.36313	0.63580	3.06560	0.20740
11	5.9200*-04	4.06237+00	NM	0.92896	0.36457	V.64180	3.03214	U.21167
12	6.1700*-04	4.1331"+00	NM	0.92803	0.37227	0.64560	3.00752	0.21466
13	6.6800"-04	4.3050"+00	NM	0.92798	0.38115	0.65530	2.95596	0.22169
14	7.1900*-04	4,4380*+00	NM	0.92855	0.38778	0.64260	2.91471	0.22694
15	7.7000"-04	4.5671*+00	NM	0.92884	0.39415	0.66940	2.88434	0.23208
16	8.2000 -04	4.6832"+00	NM	0.45853	0.39979	0.67500	2.65063	0.23679
17	8.7100"-04	4.7811"+00	NM	0.93023	0.40448	0.68050	2.83046	0.24042
18	9,9800"-04	5.0086*+00	NM	0.72488	0.41518	0.69100	2.77000	0.24945
19	1.1250"-03	5.2543"+00	NM	0.93409	0.42641	0.70340	2.72104	0.25850
ŽO	1.2520*-03	5.4165*+00	NM	0.93751	0.43366	0.71150	2.69179	0.26432
51	1.3790"-03	5.5788"+00	NM	0.93761	0,44980	0.71810	2.65393	0.27058
45	1.5060"-03	5.7574"+00	NM	0.93826	0.44851	0.72510	2.61504	0.27735
53	1.8870"-03	6.3090*+00	NM	0.94540	0.47153	0.74790		0.29729
24	2.1410"-03	6.6532"+00	NM	0.94775	0.48533	0.76010	2.45278	V.30989
25	2.3950"-03	7.0005*+00	NM	0.94996	0.49886	0.77160	2.19234	0.32251
50	2.6490"-03	7.3538*+00	TIM	0.95072	0.51225	0.78200	2.33046	0.33556
27	2.9010"-03	7.6980"+00	NM	0.95166	0.52497	0.79160	2.27376	0.34815
88	3.4110**03	8.3890"+00	NM	0.95479	0.54959	0.80980	2.17108	0.37299
29	3.9190"-03	9.0637*+00	NM	0.95919	0.57261	0.82640	2.08290	0.39675
30	4.4270"-03	9.7663"+00	NM	0.95976	0.59562	0.84040	1.99084	0.42213
3 i	4.9350*-03	1.0511"+01	NM	0.96475	0.61907	0.65570	1,91058	0.44787
32	5.4430**03	1.1308"+01	NM	0.96876	0.64323	0.87010	1.62983	0.47551
33	6.0780"-03	1,2394*+01	NM	0.96313	0.67473	0.88270	1.71145	0.51576
34	6.7130*-03	1.3511"+01	ИМ	0.97093	0.70566	0.89990	1.62628	0.55335
15	7.3480"-03	1.4707*+01	NM	0.97506	0.73732	0.91460	1.59870	0.59440
36	7,9830"-03	1,5974"+01	NM	0.97447	0.76947	0.92620	1.44886	0.63926
37	8.6180"-03	1.7285*+01	NM	0.97909	0.80135	0.93920	1.37363	0.66374
38	9.2530"-03	1.7634"+01	NM	0.98134	0.83290	0.49010	1.30124	0.73015
39	1.0520*-02	2.1445"+01	NM	0.48354	0.89504	U.76830	1.17041	0.82732
40	1.1158"-02	2,2847*+01	NM	0.98697	0.92447	0.97720	1.11732	0.87459
41	1.1790"-02	2,4061*+01	NM	0.98964	0.94923	0.98420	1.07504	0.91550
42	1,2428"-02	2.5045"+01	NM	0.99375	0,96882	0.99050	1.04526	0.94761
43	1.3060"=02	2,5721*+01	NM	0.99503	0.48205	0.99390	1.02428	0.97034
44	1.4333"-02	2.4370*+01	NM	0.99894	0.99460	U.9984U	1.00766	0.44041
45	1.5600"-02	2.6553*+01	Им	0.99915	0,99810	0.99920	1.00220	0.49700
46	1.6873"-02	2.4631"+01	NM	0,99976	0,99960	0.99960	1.00040	0.99940
D 47	1.0140*-02	2.4452*+01	NM	1,0000	1,00000	1.00000	1.00000	1.00000
	_							

INPUT VARIABLES Y, U/UD, RHO/RHOD ASBUME PEPD ALL MEASURED POINTS

740218	04 HABEY		PROFILE	TABULATION	52	POINTS, DCL	TA AT PUT	NT 52
1	4	P45/ P	P/PD	T0/T00	M/MD	UZUD	1/10	RHO/RHOD+U/UD
1	0-0000*+00	1.0000*+00	Им	0.93264	0.00000	0.0000	4.71032	0.00000
2	3.6300*-04	2.8547"+00	NM	0.92940	0.29845	0.35430	3.44947	0.16069
3	3.8900"-04	3.0002"+00	[494	0.92902	0.30796	0.56700	3.30983	0.16727
4	4.1490*-04	3,1229*+00	ИM	0.92927	0.31573	0.57730	3,34336	0.17267
5	4.3900"-04	3.2490*+00	NA	0.92861	0.32349	U.58710	3.29381	0.17424
6	4.4500"-04	3.3622"+00	NM	0.92716	0.33148	0.59470	3.24044	0.18414
7	4.9000"-04	3.4675"+00	NM	0.92595	0.33648	0.60250	3.20616	0.18792
8	5.1600"-04	3.5880"+00	NM	0.92707	0.34342	0.61130	3.16657	0.19293
•	5.4100"-04	3,4906"+00	NW	0.92465	0.34920	0.61740	3.12598	U.19751
10	5,6600"=04	3,7752"+00	HM	0.92369	0.15390	0.62260	3.09502	U.20116
11	5.92004-04	3.8637"+00	HW	0.92367	0.35873	0.62620	3.06654	0.20486
12	6.170004	3.9212"+00	Им	0.92408	U.36184	0.62190	3.04971	U.2072U
17	6.6800"-04	4.0542*+00	ИW	0.92322	u,36892	0.63960	3.00571	9.21279
14	7.1900"-04	4.1733"+00	NM	0.92410	0.37514	0.64680	2.47265	0.21756
15	7.7000"-04	4.2882.+00	NM	0.92430	0.36102	0.65330	2,93945	0.22225
16	W.2000"-04	4.3941"+00	MM	0.92421	U.38640	0.65900	2,40847	0.22656
17	8.7100"-04	4.4774"+00	NM	0.92395	0.39056	0.66330	2,68434	0,22997
18	9.9800"-04	4.6742"+00	ИW	0.93102	0.40044	0.67610	2,85043	0.23718
19	1.1850"-03	4.8684"+00	41M	0.92741	0.40946	0.68390	2,78940	U.24518
50	1.2520"-03	5.0364"+00	NM	0.92976	0.41734	0.69250	2.75330	0.25152
21	1.3790"-03	5.2021"+60	NM	0.93164	0.42495	0.70060	2.71813	0.25775
55	1.5060"-03	5.3598"+00	NM	0.93370	0.43205	0.70800	2.68528	0.26366
\$3	1.6330"-03	5.5085"+00	1414	0.93476	0.43865	0.71450	2.65322	0.26930
24	1.8670"-03	3.6263"+00	NM	0.93723	0.45241	0.72760	2.58799	0.28135
şş	2.14107-03	4.1133"+00	ИM	0.43716	0.46448	0.73820	2.52589	0.29225
3.	2.3950"-03	4.3940"+00	NM	0.94171.	0.47596	0.74960	2.48010	0.30224
27	2.6490"-03	4.6897"+00	HH	0.95232	0.48780	0.76340	2.44918	0.31170
50	2.9030"-03	6.94187+00	NH	0.94953	0.49765	0.77000	2,3740	0.35163
29 30	3,4110"-03	7.47074400	MM	0.94777	0.51770	0.78430	2.29514	0.34172
	3.9190"-03	8.00AZ#+90	НW	0.94937	0.53715	0.79870	2.21092	0.36125
31	4.42704-03	4.5295"+00	ИH	0.95072	0.55563	0.81160	5.13356	0.35040
17 15	4.9350"-03	9.0690*+00	NM	0.95443	0.57349	0.82480	2.06474	0.19945
	5.4430"-03	7.6794"+00	Ν'n	0.95672	0.59407	0.83780	1.96884	0.42125
34 33	4.0740"-03	1.0461"+01	1114	0.95864	0.61881	0.85250	1.69789	0.44918
36	6.7130"-03 7.3460"-03	1.1263*+01	ИM	0.95660	0.64324	0.86530	1.80463	V.47616
37	7.9830"-03	1.2113"+01	NM NM	0.95260	0.66812	0.87410	1.73130	0.50777
íá	6.4180"-03	1.3010"+01	M	0.96816	0.69340	0.89310	1,65893	0.53836
39	9.2530*-03	1.3914"+01	MN MM	0.96666	0.71805	0.90250	1.56076	0.57111
40	9.8880"-03	1.5882*+01	140	0.97081	0.74283	0.91450	1.51561	0.60339
41	1.0520 -02	1.6910"+01	NH.	0.97222	0.76878	0.42470	1.44676	0.63915
42	1.1158*-02	1.8004"+01	NM NM	0.97296 0.97808	0.79403	0:93370	1.30474	0.67525
43	1.1790*-02	1.9140"+01	NW.	0.97706	0.82008	0.94450	1.32644	0.71206
44	1.2428"-02	2.0891*+01	MM	0.98079	0.84619	0.95180	1.26518	0.75/30
45	1.3060"-02	2,1455*+01	NP	0.98079	0.87190	0.96080	1.21433	0.74122
46	1.4333"-02	2.3607"+01	IIM	0.90745	0.89713	0.96740	1.14279	0.43196
47	1.5400"-02	2.5172"+01	NP	0.99147	0.94202	0.98170	1.08601	0.90395
48	1.6873"-02	2.5996"+01	HM	54699		0,99050	1.03552	0.43653
49	1.0140-02	3.4329"+01	HM	0.77623	0.98946	0.49470	1.01651	0.98426
30	1.9413 -02	2.6446"+01	NM	0.99534	U.99590	0.99730 0.99730	1.00261	0.99451
ŠĬ	2.0463"-02	2.6498*+01	NM NM	0.99774	0.99915		0.99830	0,99700
0 52	2.1750*-08	2.65424+01	NM	1.00000	1.00000	0.49870	0.99910	0.99960
		REGREE TVE	19	* * A A A A	1144444	1.00000	1.00000	1.0000

INPUT VARIABLES Y, U/UD, RHO/RHOD ASSUME PHPD ALL MEASURED POINTS

740218	05 NAREY		PROFILE	MOITAJUBAT	45	POINTS, DEL	TA AT PUI	NT 55
1	Y	PT2/P	P/PU	10/100	MAND	0700	TZIN	RHO/RHOD#U,'UD
1	0.0000"+00	1.0000"+00	2174	0.92988	0.0000	0.00000	4.68354	0.0000
Ž	3.6300"-04	2.6355*+00	NM	0.93267	0.29766	0.55370	3.46021	0.16002
3	3.8900"-04	2.9248*+00	NM	0.93221	0.30358	0.56160	3.42231	0.16410
4	4.1400"-04	3.0769"+00	NΜ	0.95343	0.31336	0.57500	3.36700	0,17077
5	4.3900"-04	3,18877+00	NH	0.93156	0.32034	0.58340	3,31675	0.17590
6	4.6500"-04	3.3151"+00	NM	0.93093	0.35403	0.59310	3.26404	0.18143
7	4.9000"-04	3,4187"+00	IJM	0.93126	0.33419	0.60090	3.23311	0.18586
8	5.1600"-04	3,5105"+00	lin	0.92948	0.33954	0.60690	3.19489	U.18996
9	5.4100"-04	3.6026"+00	114	0.93041	0.34482	0.61360	3.16656	0.19377
10	5.0600"-04	3,6904"+00	MM	0.42886	0.34978	0.61900	3,13165	0.19765 0.20073
11	5.9200"-04	3.7618"+00 3.8336"+00	liw Livi	2085P.U 25P5P.O	U.35375 U.35769	0.62340	3.10559 3.08642	0.20360
13	6.1700"=04 6.5500"=04	3.9607*+00	NM	0.92722	0.35457	0.63560	3.03451	U.20911
14	7,1400"-04	4.0679"+00	HM	0.92773	0.37037	0.64230	1.00752	0.21356
15	7.7000*=04	4.1816"+00	IIM	0.92400	0.37620	0.64920	2.97796	0.21800
16	B.2000"-04	4.2724*+00	NM	0.92532	0.38087	0.65300	2.93945	0.22215
17	6.7100"-04	4.3566"+00	ЙM	0.92841	0.36516	0.65670	2.92483	0.22521
is	9.9800"-04	4.5696*+00	iiΜ	0.93015	0.39577	0.67050	2.A7026	0.23360
19	1.1250*-03	4.7500"+90	NM	0.93131	0.40453	U.6799U	2.82486	0.24068
20	1.2520"-03	4.9153"+00	NH	0.93631	0.41238	0.68960	2.79642	0.24660
51	1.3790"-03	5.0620"+00	1344	0.93572	0.41922	0.67610	2.75710	0.25248
22	1.5060"-03	5.2070*+00	P4 M	0.93678	0.42588	0.70290	2.72405	0.25803
52	1.6330"-03	5.3598"+00	NM	0.94100	0.43278	U.71100	2.69906	0.26143
24	1.8870"-03	5.6532"+00	NM	0.94368	0.44571	0.72390	2.63783	0.27445
25	2.14107-03	4.93377+00	NM	0.94616	0.45773	0.73550	2,58198	0.28486
20	2.3950"-03	6.1939"+00	NM	0.94742	0.46859	0.74530	2.52972	0.29462
27	5.644007	6.4486"+00	NM	0.94961	0.47899	0.75480	2,48324	0.30396
28	2.9030"-03	6.6951"+00	NH	0.95202	0.48883	0.76379	5.44081	0.31249
39	3.4110"-01	7.1514*+00	NM	0.95076	0.50654	0.77690	2.35239	0.33026
30	3.9190"-01	7.6078*+00	NM	0,95544	0.52364	0.79140	2.20415	0.34647
25 21	4,4270"=03 4,9350"=01	5.0395"+00 5.5023"+0U	NI4 NH	0.95454	0.53931 0.55562	0.80200 0.81340	2.21141	0.36266 0.37953
35	5.4430"-01	6.4320"+00	NM	0.95974	0.57034	0.02450	2.08986	0.39492
34	6.0780*+03	9.5371"+00	NM NM	0.96067	0.59044	0.63710	2.01005	0.41646
33	6.7130*-01	1.0161"+01	NM	0.96497	0.61110	U.85080	1.93836	0.43893
36	7.3460"=01	1.0822*+01	NM	9.96247	0.63097	0.86040	1.05943	0.46272
37	7.9830"-01	1.1503"+01	NM	0.96691	0.65145	0.87280	1.79501	0.48624
38	6.6180"-03	1.2182"+01	NM	0.97022	0.67122	0.88380	1.73370	U.50978
39	9.2530"=03	1.2926"+01	NM	0.97467	0.69230	0.89540	1.67280	0.53527
40	9.8880"-01	1.3679"+01	NM	0.97509	0.71287	0.90440	1.60951	0.56190
41	1.0520"-02	1.4457"+01	HM	0.97496	0.73357	0.91270	1.54799	0.54960
42	1,1158"-02	1.5268"+01	NM	0.98048	0.75457	0.92330	1.49723	0.61667
43	1.1790"-02	1.6091"+01	NM	0.47739	0.77528	0.92930	1.43678	0.64674
44	1.2428"-02	1.6939 +01	IAM	0.97830	0.79606	0.93680	1,30405	U.67646
45	1.3040"-03	1.7811 +01	IvM	0.97894	0.61666	0.94380	1.37494	0.70700
46	1.4333"-02	1.9651"+01	1111	0.98529	0.85913	0.95940	1.24/04	0.76934
47	1.5600"=02	2.1557"+01	IIM	0.98308	0.90081	0.96940	1.15808	0.83708
48	1.6673"=02	2.3315"+01	NM	0.98984	0.93762	0.98160	1.09601	0.89561
49 50	1.8140"-02	2.4765"+01	NM	0.49524	0,96693	0.99080	1.04998	0.94364 0.97471
51	1.9413"-02	2,5659"+01	NW	0.99524 0.99722	0.98454	0.99450 0.99740	1.02030	0.4402
31	2.1953*-02	2.6352*+01	NM MH	0.49760	0.99800	0.99840	1.00080	0.94760
35	2.3223"-02	2.4432"+01	(in	1.00058	0.99955	1.00020	1.00130	0.94890
54	2.4493"-02	2.6448"+01	ИW	1.00006	0.99465	1.00000	1.00030	0.99970
0 55	2.5760"-02	2.6455"+01	HM	1.00000	1.00000	1.00000	1.00000	1.00000
	-,	-,	-	2				

INPUT VARIABLES Y,U/UD,RHO/RHOQ ASSUME P=PD ALL MEASURED POINTS

Continuous tunnel, with symmetrical flexible nozzle. H=0.51, H=0.53 m. PO: 4.3 MN/m². TO: 790 K. Dried air, RE/m X 10^{-6} : 12.7.

LADERMAN A.J. and DEMETRIADES A., 1974. Mean and fluctuating flow measurements in the hypersonic boundary layer over a cooled wall. J. Fluid Mech. 63, 121-144.

And Demetriades, A., Private communications.

Also Laderman & Demetriades (1972), McRonald (1975)

1 The test boundary layer was formed on the upper wall of the contoured flexible nozzle and test section of

- 4 the tunnel. Measurements were made at a single station on the centre-line 4.064 m downstream of the throat (X = 0). The test surface was "polished to micro-inch finish" and was actively cooled. Surveys by Laufer
- 2 et al. (1967) showed that the Mach number on the axis was constant within 0.3 % for nearly 2 m leading up to and passing through the test zone. Variation across the central 0.25 m of the flow was less than 1 %
- 5. 0.3 m upstream of the test station. Differences in Pitot reading, for a given value of Y, within the central
- 3 0.3 m of the boundary layer were about 5 %. Transition was "thought to be within a few cm of the throat".
- Static pressure on the side well and roof agreed within 3 % but showed greater longitudinal variation than on the centre line. The pressure at X = 2 m was about 8 % higher than at the test station and fell to a minimum about 16 % below the test value at X = 3.0 m before rising again so that the gradient was about + 25 %/m at the test station (Editors' estimate from information supplied in graphical form).
- 6 Static pressure was measured on both sidewalls and roof of the tunnel at 0.305 m intervals, with a tapping (d = 1.70 nm) at the test station. The temperature of the wall was measured at X = 4.070 m by a thermocouple
- 7 mounted in the wall of a recess used for instrumentation. Pitot, hot-wire, static pressure and total
- 8 temperature probes were mounted on a single traverse goar. The HMP and TTP were mounted 76 mm to either side
- 5 of the Pitot probe which was on the centre-line. Additional Pitot probes were wounted at Z = 👲 152 mm and
- 7 used to check two-dimensionality. In the outer part of the layer, the Pitot probes were CPP $(d_1 \text{ or } d_2 = 3.17, 1 = 38.1 \text{ mm})$. For measurements near the wall a cranked FPP $(h_1 = 0.36, h_2 = 0.2, b_1 = 1.68, b_2 = 1.52, 1 = 38.1 \text{ mm})$ was fitted to the tip of one of the outboard Pitot tubes. The MMP carried a Pt 10 % Rh wire (typically d = 0.25, 1 = 76 m). These were mounted slackly (to avoid strain gauge effects) to two sharp-pointed prongs. These, and the initial part of the support body (d = 0.79, T = 6.3 mm) were cranked towards the surface at about 20° and mounted to a slender cylindrical support aligned with the flow (1, overall, 38.1 mm). The wires were operated in the constant-current mode. The TTP was a vented STP $(d_1 = 3.2, d_2 = 2.4, 1 = 38 \text{ mm})$ with the iron-constantan thermocouple mounted 11 mm back from the front face, and vented by three holes at the same position (d = 0.79 mm). The static pressure probe was "a sharply pointed 1.27 mm diameter tube, aligned in the direction of flow, with three sensing holes (0.38 mm diameter)
- 8 located 19 mm from its tip". The static probe was mounted with its axis 8 mm further from the tunnel wall than the line containing the tips of the CPP and STP.
- The authors have interpolated the profile measurements to the Y value of the Pitot measurements. TO values in the inner part of the layer (y < 1.6 mm) are obtained by fitting a third degree polynomial to the innermost measured values to meet the wall temperature (see source figure 6 and page 128). The authors obtained a CF value by fitting the transformed velocity profile data to the law of the wall and Coles' (1966) wake function (see source paper p 132 for datails).
- The Pitot probe readings are uncorrected. The authors calculated thermal, viscous, and rarefaction corrections, which were negligible for the large probes. For the small probe, the viscous correction could be up to 10 % but was not applied because of the lack of experimental data on such corrections. The STP was calibrated at M = 9.5 and M = 6 at 800 K, and at M = 4 for TO from 300 to 800 K. The galibration was found to depend on the probe Reynolds Number, being essentially independent of Mach number. Large corrections

for viscous interaction effects were applied to the static pressure readings (up to 60 %). For a discussion of these see the source paper and Beckwith et al. 1971. The calibration and reduction procedures for the hot-wire probes will not be discussed here in detail. The fundamental assumption is that the pressure-entropy and pressure-vorticity correlations are negligible while the entropy / vorticity correlation is - 1.

- 11 For a full discussion see the source paper and associated references. Viscosity values were taken from NAYORD report 1488 vol. 5 section 15 (1953).
- 12 The editors have accepted all the corrections and interpolations used by the authors. For the profile tables we have set the D-state at the point for which we computed the highest value of PO and arbitrarily set the D-state reservoir properties to the stated tunnel values. He found it necessary to use a trapezoidal
- 13 integration rule in calculating the integral values. There is one profile presented, supplemented by the
- 14 hot wire data in section D. We have presented the CF value obtained by the authors from a curve fit to the transformed profile.
- 5 DATA 7403 0101. Single profile, Pitot, TO and P measured simultaneously. Turbulence quantities measured with constant current hot-wire probe.

15 Editors comments

The special value of this entry lies in the provision of hot wire data at M $_{\rm M}$ 10. These are tabulated in section D for two different wires. The difficulty of obtaining such data cannot be overestimated, and the pool of available turbulence information is small. In the catalogue the whole Mach number range from 1.7 to 10 is covered by, successively, Kistler - CAT 5803, Horstman & Owen - CAT 7205 and the present entry. A contrast between ZPG and simple wave APG behaviour is given by Sturek & Danberg - CAT 7101, and a limited observation in a reflected wave APG is given by Waltrup & Schetz - CAT 7104. It is, however, difficult to form these disparate studies into any unified whole as the types of equipment, the assumptions made in data-reduction and the prejudices of each research worker are so varied.

The authors' preferred scaling length is the boundary layer thickness for 50 % intermittency, here 103 mm. At this point PO/POD is about 0.6 and U/UD is about 0.95. Thus 5 (intermittency) is here less than most values based on mean flow data, and arguments relying on the relative position of turbulence features should take account of this.

The reported static pressure variation is very difficult to explain. If the mean flow streamlines are straight and parallel, there can be no pressure difference across the boundary layer as a whole. A local dip in the region of intense momentum fluctuations could be observed as a part of the total normal stress would then be supplied by the normal Reynolds stress. The calibration procedure for the static probe requires very large corrections, so that no great emphasis should be placed on the details of the variation reported. The overall difference however can also be inferred from the wall static pressure and a Pitot-derived value in the free stream, and the adjusted static pressure variation given in the profile tables agrees with these two observations.

If the longitudinal pressure gradient of 25 %/m estimated by the editors, and referred to in § 4 above, is assumed to propagate as a simple wave from the wall on which it is measured, the static pressure would fall by about 30 % across the boundary layer, which at this level of argument is quite good agreement with the 40 % reported. The subsequent development of the necessarily curved, mean flow streamline is, however, difficult to visualise unless the whole phenomenon is an upstream influence of the diffuser. The centre line Pitot data in Laufer et al. (1967) rule out any possibility of a wave structure from upstream having this effect. As a last comment on this puzzling apparent behaviour, McRonald (1975) reports a "balance chamber pressure" at this X-station of about 1.2 PD, and quotes a variety of static pressure determinations by Demetriades and Gupta which show much increased differences between wall and "free stream isentropic" pressures as the tunnel reservoir pressure falls. It is possible that this represents an increasing upstream influence of the diffuser.

The profile is given in great detail, and using the authors' CF value, fits both inner and outer laws well in transformed coordinates. The wake region is rather more pronounced than for low speed ZPG profiles. Heasurements extend well within the momentum-deficit peak. There are no available mean flow data which

can be directly compared. The cooled tunnel wall measurements of Hopkins & Keener - CAT 7203 were made at M \sim 7, while the M \sim 10 flat plate study by Watson et al. - CAT 7305 was at lower Reynolds number and without heat transfer.

CAT 7403	LADERMAN		BOUNDARY CON	DITIONS AND E	VALUATED I	DATA. SI UNIT	s.	
RUM X RZ	MD R PODR TODR	TW/TR PH/PD SW #	RED2W RED2D D2	CF + CQ PIZ	H12 H12	H12K H12K	PM TW# UD	PD TD TR
74030101 NM Infinite	4.3730 4.2663*+06 7.9200*+02	0.4257 1.4165 0.0000	6.5232"+03 4.0009"+04 7.8778"=03	4.0609"-04 NM NC	7.2559 1.8135 1.3305	1.4168 1.7449 1.7010"-02	2.1927*+02 3.0400*+02 1.2273*+03	1.5458"+02 4.2648"+01 7.1407"+02

TRAPEZOIDAL RULE FOR ALL INTEGRATIONS

EVALUATED DATA - PRESSURE BABED	REFERENCE	FLOW
---------------------------------	-----------	------

RUN	D450 W450	Hizpo Hizpw	H32P9	H42PD	redepod Redepwd	red2pom red2pwm	DSTAR
74030101	7.7782"-03 6.0962"-03	10.0290	1.8111		3.4551"+04	4.4485#+03 6.4681#+03	6,4165"-02

740301	O1 LADER	RMAN	PROFILE	TABULATION	73	POINTS, DEL	TA AT POI	NT 71
I	Y	PT2/P	P/PD	10/10D	M/MD	U/UD	1/10	RHO/RHOD±U/UD
1	0.0000"+00	1.0000*+06	1,41850	0.38307	0.00000	0.00000	7,11388	0.00000
2	2.5400"-04	1.2203"+00	1.40051	0.44261	0.05772	0.16084	7.76509	0.02898
3	3.8100*=04	1.2775"+00	1.40807	0.47047	0.06423	0.18332	8.14645	0.03165
4 5	4.5720"-04 5.5880"-04	1.4661*+00	1.42319	0.50785 0.49146	0.08108	0,23576 0,18881	8.4544¢ 8.50032	0.03965
6	7.5740*-04	1.5904"+00	1.42404	0.54613	0.08983	0.26773	8.88249	0.04288
Ĭ	9.3980"-04	1.5923"+00	1.42199	0.57602	0.08994	0.27572	9.39836	0.04166
8	1.2446"-03	2.2118"+00	1.42131	0.58828	0.12056	0,35564	8.70226	0.05803
9	1.3716"-03	2.0895*+00	1.41599	0.59839	0.11554	0.34665	9.00101	0.05448
10	1.4478"-03	2.8913"+00	1.41775	0.59164	0.14446	0.40959	8.03932	0.07216
11	1.6002"-0"	2.2145"+00	1.41179	0.61078	0.12067	0.36254	9.03186	0.05663
12 13	1.7760"-03 1.9050"-03	2.5875"+00	1.41447	0.61443	0.13443	0.39560	8.66041	0.06455
14	2.2352"-03	2.5906"+60 3.4019"+00	1.40903	0.61990 0.62334	0.13454	0.39760 0.45155	3.73424 7.99323	0.06408 0.07955
iš	2.7940*-03	4.0953*+00	1,40679	0.63316	0.17817	0.48951	7,54629	0.09114
16	3.0988*-03	4.1038*+00	1,39969	0.63738	0.17836	0.49151	7,59183	0.09053
17	4.3688"-03	5.2002"+00	1,39292	0.64472	0.20399	0.53646	6.91611	0.10794
18	5.3066"-03	5.6609"+00	1,38479	0.64626	0.21361	0.35249	6.67642	0.11447
19	5.5626"-03	5.6661"+00	1.38170	0.65027	0.21391	0.55345	6.69391	0.11412
50	5.6388'-07	5.9259"+00	1.36147	0.64903	0.21925	0.56044	6.53418	0.11637
51	6.9342"-03 7.797 6 "-03	6.4652"+00	1.36985	0.65738	\$22992	0.57842	6.32024	0.12506
53 22	8,1786"-03	6.6771"+00 6.8812"+00	1.36910	0.65912 0.65948	0.23397 0.23781	0.58442 0.58941	6.23912	0.12612 0.13098
24	8.2296"-03	6.7504"+00	1.36850	0.45966	0.23534	0.58641	6.20804	0.12914
ã ŝ	9.3980"-03	7.3588"+00	1.36064	0.66038	0.24656	0.60040	5.92977	0.13763
56	1.0336"-02	7.5740*+00	1,35883	9.56153	0.25040	0.60539	5.04532	0.14059
27	1.0719"-02	7.7132"+00	1.35741	0.66195	0.25265	0.66839	5,78931	0.14251
28	1.1989"-02	8.1330"+00	1.34916	0.66401	0.56011	0.61738	5.63370	0.14770
59	1.3233"-02	8.2903*+00	1.34468	0.66642	0.26278	0.62136	5,59166	0.14928
70	1.5850"-02	9.1279*+00 9.8347*+00	1.33599	0.67040	0.27654	0.63736	5.31203	0.16014
31 32	1.0339"-02 2.0523"-02	1.1072*+01	1.32775	0.67339	0.28763	0.64 93 5 0.66 53 3	5.09655 4.72472	0.16900 0.16581
33	2,0701"-02	1.1213*+01	1.32316	0.68001	0.30812	0.67033	4.73304	0.16721
34	2,3190"-02	1.2053"+01	1.31773	0.69544	0.31996	0.68731	4.61430	0.19608
35	2.7026"-02	1.3705"+01	1.31045	0.65973	0.34205	0.70030	4,59178	0.21871
36	3.4595"-02	1,7008*+01	1.30073	0.70675	0.38237	0.73327	3.67744	0.25910
37	3.8481"-02	1.8507"+01	1.30133	0.72648	0.39934	0.75225	3.54846	0.27560
38	4.2215"-02	2.0811"+01	1.29506	9.72747	0.42409	0.76424	3.24741	0.30447
39 40	4.9835*-02 5.2222*-02	2.4807*+01 2.6066*+01	1.29423	0.74895 0.75064	0.46359	0.79121	5.40411	0.35165
41	5.3696"-02	2.7556"+01	1.29670	0.76845	0.47573	0.79620 0.81019	2.74077	0.36821
42	5.7607"-02	3.1152"+01	1.20826	0.77375	0.52076	6.82316	2.49169	4.42467
43	6.5075"-02	3.7358*+01	1.28095	0.79751	0.57111	0.84715	2.20032	0.49269
44	6.8885*-02	4.1886*+01	1.27112	0.81855	0.60514	0.86214	2,02973	0.53938
45	7.0129"-02	4.2708"+01	1.27338	0.60460	0.61112	0.85914	1.97642	0.55298
46	7.2746"=02	4.6615"+01	1.26202	0.82:48	0.64014	0.67313	1.86041	0.59570
47 48	7.6505*=02	5.1032"+01	1.25157	0.83184	0.66652	0.88312	1,74451	0.63294
49	7.9146"-02 8.4023"-02	5.8797*+01 6.2458*+01	1.22750 1.22268	0.84549 0.85140	0.71813	0.89719 0.90310	1.56057	0.70493 0.74128
50	8.4099*-02	6.1781"+01	1.22246	0.86214	0.73626	90309	1,52122	0.72902
51	8.9103"-02	7,1561"+01	1,18905	0.87159	0.79281	0.91908	1,34341	0.81236
52	9.1745"-02	7,7496"+01	1.16619	9.87889	0.82738	0.42607	1.25281	0.86118
53	9.4183"-92	7.9885"+01	1.16524	0.88099	0.83794	0.92807	1.22070	0.88069
54	9.4285*-02	8.2331 +01	1.14967	0.88851	0.85074	0.93307	1.20290	0.89104
35 56	9.679 0 ***C2 9.9314**=02	8.7587"+01 8.8671"+01	1.13101	0.89410 0.89906	0.87763	0.91806	1.14246	0.92773
57	4.9339"-02	9.2945"+01	1.17882	0.89811	0.70441	0.94106 0.94206	1.08500	U.93446 U.96469
58	1.0193 01	9.5159"+01	1,10464	0.90630	0.91497	0.94705	1.07136	0.97549
59	1.0198-01	9.5490*+01	1.09807	0.91185	0,91657	0.95005	1.07439	0.97002
60	1.0432"-01	9.4960"+01	1.11193	0.90260	0,91401	0.94505	1.05409	0.98195
61	1.04504-01	9.8950"+01	1.08879	0.91173	0.93311	0.95105	1,03893	0.99578
65	1.0705"-01	1.0092"+02	1.08094	0.92215	0.94239	0.95704	1.03134	1.00207
63 64	1.0945"-01	1.0017"+02	1.08576	0.92064 0.92513	0.93887	0.95604	1.03693	1.00007
65	1,1217"-01	1.0459"+02	1.07561	0.93175	0.94986 0.95946	0.95904 0.96304	1.01443	1.01088
86	1,1453"-01	1.0295"+02	1.07485	0.93262	0.45188	0.96304	1.02357	1.01027
67	1,1455"-01	1.0494-+02	1.06751	0.93157	0.96106	0.96304	1.00412	1.02381
6.6	1,2222*-01	1.08424+02	1.04795	0.95312	0.97696	0.97502	0.99605	1.02480
• 9	1.2962"-01	1.0949"+02	1.03672	0.96827	0.98176	0.98308	1,00257	1.01549
70	1.37217-01	1.1168"+02	1.02375	0.97904	0,99157	0.98901	0.44484	1.01673
0 71	1.5281"-01	1.1358*+02	1.00100	1.00000	1.00000	1.00000	1.00000	1.00000
72 73	1.7616"-01	1.1290"+02	4.98702 0.98731	1.02243	0.99701 0.99904	1.01099	1.02002	0.96950 U.97566
, ,	-10201 -01	AUT PERSON	** -0131	4.01011			1	4411948

INPUT VARIABLES V,M,U/UD,RHO/RHOD AT I=2 DATA HERE AVERAGED

SECTION D. ADDITIONAL DATA - TURBULENCE MEASUREMENTS. RESULTS FROM CONSTANT-CURRENT HOT WIRE PROBES

Fluctuation levels relative to local mean value of relevant property.

FACSIMILE FROM TABLE SUPPLIED BY AUTHORS. NB: AUTHORS SYMBOLS AND UNITS

Fluctuation levels (%):

T' - static temperature, u' - velocity, p' - static pressure, ρ' - density, σ' - entropy, τ' - vorticity. Y-distance from wall in <u>inches</u>, L_u , L_T , L_p . Integral scales (x direction) in <u>cm</u> - for velocity, temperature and pressure. SRA - "Strong Reynolds Analogy" - T'/(γ -1) M^2 u'.

	WIRE: Al	3-1		METHOD: p' f Q						
Y (inch)	T'(%)	u'(%)	p'(%)	(Z) ¹ a	SRA	L _u	<u>L</u> _T	L _P	σ'(%)	7 (%)
.063	4.86	8.69	16.5	11.8	. 943	.85	.86	.84	1.18	3.5
.078	6.13	9.60	16.87	12.6	.B56	.99	.97	.67	3.78	7.09
. 104	6.87	8.41	18.52	13.9	. B56	1.12	1.14	1.01	4.39	6.33
. 116	6.66	7.56	17.55	13.3	.849	1.23	1.19	.72	4.38	5.81
.26	6.16	4.68	13.48	10.8	.748	1.34	1.24	.63	4.81	4.14
.365	5.30	3.57	12.48	9.73	.722	1.75	1.65	.56	3.92	3.12
.469	5.37	3.22	11.95	9.48	.708	1.96	1.56	.504	4.15	2.88
. 562	5.62	3.08	11.47	9.38	.700	1.97	1.85	.479	4.57	2.81
.665	6.24	3.14	11.76	9.91	.685	2.00	1.89	.489	5.26	2.92
.763	6.01	2.90	11.8	9.78	.652	2.06	2.03	.38	4.97	2.70
.861	5.80	2.75	11.05	9.27	.61	2.12	2.16	.47	4.86	2.59
1.462	8.84	2.79	14.4	12.9	.588	1.99	2.10	.51	7.83	2.69
2.011	8.15	2.06	14.3	12.4	. 504	1.79	1.81	.36	7.05	1.99
2.513	7.79	1.56	14.8	12.4	. 446	2.06	1.96	.55	6.55	1.51
2.716	9.83	1.59	14.5	13.7	.477	2.46	3.27	.66	8.90	1.56
3.263	10.3	1.2	13.9	13.7	.453	1.52	1.37	. 18	9.50	1.18
3.413	7.03	.89	11.26	10.2	.376	1.97	1.89	. 15	6.25	.88
3.663	7.89	.74	12.36	11.3	.438	1.81	1.65	.84	7.05	.725
3.865	5.46	.525	8.95	8.01	.381	1.81	1.39	.37	4.82	. 516
4.062	2.44	.222	6.31	4.8	.372	2.88	4.15	1.86	1.65	-214
4.264	1.59	. 160	4.76	3.5	.318	1.85	1.67	1.87	.83	. 154
4.464	1.26	. 115	3.76	2.76	. 342	1.6.	1.10	1.47	.66	.11
4.613	1.22	.089	3.09	2.36	.420	2.68	. 59	1.11	.83	.085
5.54	1.50	.061	3.17	2.56	.709	1.93	1.21	2.50	1.20	.055
6.512	2.11	.037	3.05	2.9	1.61	5.55	4.68	2.28	1.93	.028

Ä	IRE: 6-	2		METHOD: p' + 0						
<u>y</u>	T'(%)	u'(%)	p'(%)	p'(%)	SRA	r ⁿ	<u>1</u> _1	<u>L</u>	σ'(%)	τ'(%)
.027	. 79	3 - 12	2.69	1.93	. 929	.26	. 26	.24	. 18	1.33
.047	4.83	10.8	16.8	12.0	.995	.486	. 48	.467	. 58	1.72
.090	3.07	3.82	8.90	6.58	. 932	1.21	1.15	.64	1.73	2.44
.11	3.59	3.78	11.3	8.22	. 956	1.31	1.27	-84	1.59	1.95
. 128	3.74	3.46	11.56	8.44	.963	1.52	1.45	. 57	1.76	1.82
144	3.65	3.10	10.92	8.02	.947	1.46	1.39	.79	1.89	1.82
187	3.77	2.78	9.37	7.2	.893	1.48	1.41	.62	2.66	2.15
.212	3.40	2.33	9.10	6.86	.910	1.56	1.45	. 59	2.18	1.67
.23	3.46	2.34	9.20	6.94	.885	1.19	1.09	. 50	2.25	1.73
1.02	3.24	1.57	11.21	9.01	.849	2.75	2.59	1.03	4.14	1.34
1.318	3.44	1.44	10-85	8.94	.776	3.03	3.23	1.27	4.47	1.29
1.618	6.54	1.42	12.30	1.0.4	.769	2.95	3.21	1.32	5.52	1.29
2.224	5.80	.875	12.39	9.97	.727	3.3	3.24	1.58	4.50	.784
2.82	6.72	.701	16.29	12.6	.687	3.51	3.40	.45	4.85	.616
3.122	6.58	.614	13,43	11.0	.622	2.92	3.50	2.85	5.35	. 572
3.971	2.94	. 197	7,36	5.64	. 522	2.98	2.64	. 59	2.06	. 183
5.047	2.08	.081	6.53	4.75	. 732	1.19	. 52	. 38	. 92	.060
6.971	3.67	. 185	2.41	3.99	- 565	.63	.36	.097	3.6	. 184

M : 2.96 falling to 2.80	7601
TW/TR : 1.05	ZPG - AW

Blow down tunnel with two-dimensional symmetrical fixed nozzle blocks. Minimum running time 20 secs. W = H = 0.232, L = 2.56 m. 0.3 < PO < 3.4 MN/m². TO : 275 K. Dry air. 35 < RE/m X 10^{-6} < 300.

VAS I.E., SETTLES G.S. and BOGDOMOFF S.M. 1976. An experimental study of the compressible turbulent boundary layer over a wide range of Reynolds number. Princeton University report in preparation.

<u>And Settles (1975)</u>, Vas & Bogdonoff (1971), Vas I.E., private communications.

- The test boundary layer was formed on the lower wall of a 0.232 m square constant area test channel, following the contoured notice block. There were nine test stations on the centre line, approximately equally distributed in the range X = 0.89 to 3.45, where X = 0 at the tunnel throat. The test surface was
- 2 machined to 1.7 µm, and was not actively cooled. Pitot surveys showed the free stream "to be even within
- 3 %."No boundary layer trip devices were used, and natural transition was believed to occur upstream of
- the throat. The test layer experienced a predominately simple wave favourable pressure gradient when passing over the nozzle block, and as a result of boundary layer growth, was subject to a slight adverse
- 5 pressure gradient in the constant-area test section. Spanwise static pressure surveys and surface flow patterns were frequently repeated, and showed the flow to be uniform and non-converging.
- 6 Wall pressure was measured by static pressure tappings (d = 0.8 mm), and wall temperature by thermocouples,
- both at the same X-stations as for the profiles. Wall shear stress was determined using Preston tubes $(d_2 = 0.6 d_1; d_1 = 1.5?, 2.39, 3,18 mm)$ and the Hopkins & Keener (1966) T/calibration.
- 7 Pitot profiles were measured with a FPP for which $h_1 = 0.178$, $h_2 = 0.089$, $b_1 = 0.762$, l = 2 mm. 20-30 total temperature surveys were made using a FMP consisting of a chromel alumel thermocouple junction
- 8 at the centre of a fine wire 2.54 mm long, and either 51 or 102 µm in diameter. The profiles were measured at the nine stations listed in section B below, and Preston tube observations were made at the same positions.
- 9 The TO profile surveys all showed "a roughly linear increase in TO/TOD from 1.0 at the boundary layer edge to 1.05 at the wall. Thus this linear total temperature profile was assumed in data reduction. The authors comment that a Crocco-Yan Driest correlation could have been used, with little consequent material differences in the reduced data. The static pressure was assumed constant through the boundary layer, and given the value obtained from the Pitot measurements at the boundary layer edge. This did not differ significantly
- 10 from the measured values of PW. No profile corrections were applied and Sutherland's viscosity formula was
- 11 used.
- 12 The editors' have accepted all the assumptions of the authors, and adopted the authors' selection of a
- 13 D-state. The data form four sets of nine successive profile observations at increasing unit Reynolds
- 14 number. For about 2/3 of the profiles, a Preston tube CF observation is provided. The raw and reduced data are given in table 1 of section D.
- 5 DATA: 7601 0101-0409. Pitot and TO profiles. NX = 9. CF from Preston tubes measured separately.

15 Editors' comments

The Reynolds number range of this experiment is both very wide and very high. The experimental coverage is relatively complete. Although temperature profiles were not obtained for each and every Pitot profile, a great deal of data was obtained. The reduced data are not very sensitive to small differences in the temperature profile at this relatively modest Mach number and with a nea radiabatic wall, so that the linear variation used to describe the measurements is probably adequate. The value of the data is greatly increased by the inclusion of shear stress measurements and the large number of streamwise stations.

Some of the profiles are extremely long but even so measurements for about helf the profiles do not extend within the momentum deficit peak.

The obvious comparison experiments are those of Moore & Harkness - CAT 6502 and Thomke - CAT 6903.

SECTION D. ADDITIONAL DATA, RAW PRESTON TUBE READINGS

DF - Preston tube diameter - inches

YP - Preston tube pressure - psia

CF - As reduced by authors.

CAT 7601	DP 1n	PP Psia	CF ₃	CAT 7601	DP in	PP Psia	CF ₃
0101	0.062	6.012	1.38	0201	0.062	10.57	1.27
0102	•	NM	•	0202	•	1994	-
0103	0.062	5.76	1.21	0203	0.062	9.98	1.10
0104	0.12 5	7.4	1.31	0204	0.125	12.7	1.18
0105	0.094	6.63	1.23	0205	0.094	11.5	1.13
0106	0.125	7.54	1.26	0206	0.0625	10.52	1.14
0107	0.062	6.19	1,21	0207	0.062	10.62	1.15
0108	-	1434	•	0208	•	NM	•
0109	-	NM	•	0209	0.062	10.58	1.07
0301	0.062	35.48	1.08	0401	•	NM	•
0302	•	NM	•	0402	•	KM	
0303	0.062	31.65	0.92	0403	0.062	52.97	0.86
0304	0.125	42.5	1.00	0404	u	NM	•
0305	0.094	38.0	0.93	0405		NM	•
0306	0.125	42.45	0.95	0406	•	NM	-
0307	0.062	33.60	0.90	0407	-	HM	•
0308	•	III	•	0408	•	NM	-
0309	0.062	33.15	0.84	0409	0.062	56.76	0.76

CAT 7601	VAS		BOUNDARY CON	SITIONS AND E	VALUATED I	DATA. BI UNIT	5.	
RUN	MO #	TW/TR	RCD2W	CF A	H12	H12K	PW	₽D
X A	P 0 D *	PW/PD*	RED2D	ÇQ	H32	H32K	TW*	TD
RZ	TOD*	3W *	05	P12*	H42	υZK	up	TH
76010101	2.9600	1.1245	9.1522*+03	1.3600*-03	5.6106	1.2374	1.1960*+04	1.1960*+04
8.8900*-01	4.1369*+05	1.0000	2.3198*+04	NM	1.8535	1.8390	2.8292"+02	9.7897*+01
INFINITE	2.6944+02	0.0000	6.4826"-04	0.0000*+00	-0.1713	9.9077"=04	5.4720*+02	2.5160*+02
76010102	2.9200	1,1237	1.2057*+04	NM	5.5008	1.2512	1.2704*+04	1.2704*+04
1.1958*+00	4.1369"+05	1.0000	3.1445*+04	NM	1.8487	1.8318	2.4583"+02	1.0063"+02
INFINITE	2.7222*+02	0.0000	8.7298"-04	0.0000*+00	-0.1684	1.3206"-03	5.8728"+02	2.5438"+02
76010103	2.9000	1.1233	1.4052"+04	1.2100*-03	5.7442	1.2463	1.3094"+04	1.3094"+04
1.4986*+00	4.1369"+05	1.0000	3.4677*+04	NM	1.0485	1.8328	2.8583"+02	1.0150"+02
INFINITE	2.7222*+02	0.0000	9.5241"-04	0.0000*+00	-0.2744	1.4512"-03	5.8579*+02	2.5447"+02
76010104	2,6800	1.1229	1.7315*+04	1.3100"-03	5.5513	1.2412	1.3497"+04	1.3497*+04
1.7907#+00	4.1369*+05	1.0000	4.2376 +04	NM	1.8496	1.8334	2.8583*+02	1.02367+02
INFINITE	2.7222*+02	0.0000	1.1514"=03	0.0000"+00	-0.2291	1.7363"-03	5.8427"+02	2.5456*+02
74010105	2.8700	1.1227	1.9562"+04	1.2300*-03	5,7958	1.2200	1.3703*+04	1.3703*+04
2.0955"+00	4-1369*+05	1.0000	4.7675 +04	NM	1.8582	1.8444	2.8583"+02	1.0263"+02
infinite	2.7222*+02	0.000	1.2866"-03	0.0000*+00	-0.3425	1.9308*-03	5.8351*+02	2.5461*+02
74010106	2.8800	1.1229	2.2509*+04	1.2600*-03	5,1555	1.2224	1.3497"+04	1.3497"+04
2.4003*+00	4.1369*+05	1.0000	5.4988*+04	NM	1.8412	1.8433	2.4875"+02	1.0343"+02
INFINITE	2.7500"+02	0.0000	1.5164"=03	0.0000"+00	-0.1098	2.2031"-03	5,8725*+02	2,5716"+02
76010107	2.8700	1.1227	2.3712"+04	1.2100*-03	5,3302	1.2345	1.3703*+04	1.3703*+04
2.6924"+00	4.1369*+05	1.0000	5.7543*+04	NM	1.8555	1.8392	2.9283*+02	1.0535"+02
INFINITE	2.7889*+02	0.000	1.6109*=03	0.0000*+00	-0.1699	2.3796*-03	5.9961*+02	2.6084"+02
760101UA	2.6100	1.1214	2 #751*100	NM	4,9893	1.2235	1.5013"+04	1.5013"+04
2.49724.00	4.1369*+05	1.0000	2.8761"+04 6.8037"+04	NM	1.6562	1-8425	2.9400"+02	1.0856*+02
INFINITE	2.6000*+02	0.0000	1.6546"=03	0.0000*+00	-0.1123	2.6759"-03	5.8702"+02	2,6217"+02
76010201	2.9600	1.1245	1.4722"+04	1.2700*-03	5.4105	1,2971	1.9933"+04	1.9933"+04
8.8900"-01	6.8948"+05	1.0000	3.7245"+04	NM	1.6474	1.6217	2.6563"+02	9.8906*+01
INFINITE	2.7222*+02	0.0000	6.3392"-04	0.0000*+00	-0.0865	9.4582"-04	5.9022"+02	2.5420*+02
76010202	2.9400	1.1241	1.8016"+04	NM	5.7530	1.2492	2.0543"+04	2.0543*+04
1.1938*+00	6.8948"+05	1.0000	4.6710"+04	NM	1.0518	1.8358	2.8583"+02	7.9762"+01
INFINITE	2.7222"+02	0.0000	7.8649"-04	U.0000*+u6	-0.2361	1.2009*-03	5.6876"+02	2.5429*+02
76010203	2.9300	1.1239	2.2049"+04	1.1000*-03	5.5334	1.2385	2.0855*+04	2.0855*+04
1.4986*+00	6.8948"+05	1.0000	5.5095*+04	NM	1.8538	1.0186	2.8583"+02	1.0019"+02
INFINITE	2.7222"+02	0.0000	4.2269*-04	0.0000#+00	-0.1794	1.3876"-03	5.8803"+02	2.5433*+02
76010204	2.9200	1,1237	2.6459"+04	1.1800*=03	5.3333	1.2740	2.1173*+04	2.1173*+04
1.7907*+00	6.8948"+05	1,0000	4.5718"+04	NM	1.8437	1.8203	2.6875*+02	1.0165"+02
INFIHITE	2.7500*+02	0.0000	1.1110"=03	0.0000"+00	-0.0990	1.6757*-03	5.9027"+U2	2.5697*+02
76010205	2.8700	1.1227	3,2354"+04	1.1300*-03	5.2707	1.2504	2.2836"+04	2.2636*+04
2.0955"+00	6.8748"+ 05	1.0000	7.8861"+04	NM	1.8564	1.8417	2.6563"+02	1.0283*+02
INFINITE	2.7222*+02	0.0000	1.2788*-03	0.0000*+00	-0.1424	1.8773"-03	5.8351"+02	2,5461"+02
76010206	2.8800	1.1229	3.77804+04	1.1400"-03	5,2857	1.2298	2.2494"+04	2.2494*+04
2.40034+00	6.8948*+05	1.0000	6.3505-04	NM	1.8564	1.8391	5.6833"+02	9.6114"+01
INFINITE	2.5556*+02	0.0000	1.3499"=03	0.0000*+00	-0.1471	2.0514"-03	5.6610"+02	2,3897*+02
76010207	2.8500	1.1222	4.0634*+04	1.1500*-03	5.1476	1.2180	2.3543"+04	2.3543*+04
2.6924"+00	6.8948"+05	1.0000	9.8216*+04	MM	1.8632	1.8494	2.0583"+02	1.0372"+02
INFINITE	2.7222*+02	0.0000	1.5756*-03	0.0000*+00	-0.1370	2.2745*=03	5.4196#+02	2.5470*+02
76010205	2.0300	1.1214	4.2019#+04	NM	5.1065	1.3232	2.42704+04	2.4270*+04
2,99724+00	6.8748*+05	1.0000	7.96067+04	NM	1.8605	1.8453	3.4450*+02	1.1146"+02
INFINITE	2.9000*+02	0.0000	1.7326*-03	0.0000*+00	-0,1388	2.5036"-03	5.9905*+02	2.7143*+02
76010209	2.6000	1.1212	4.7141*+04	1.0700*-03	5,0914	1.2095	2.5406*+04	2.5406"+04
3.3147*+00	6.8946"+05	1.0000	1.1160*+05	N#	1.8625	1.8485	2.8583"+02	1.0601*+02
INFINITE	2.7222"+02	0.0000	1.7430 -03	0.0000*+00	-0.1687	2.5043"-03	5.7801"+02	2.5494"+02

CAT 7601	VAS		BOUNDARY COND	ITIONS AND E	VALUATED D	DATA, SI UNIT	s.	
RUN X ± RZ	MD * POD* TOD*	TH/TR PH/PD* SW #	RED2D D2	CF * CQ PI2*	H12 H32 H42	H12K H32K D2K	₽₩ †₩# UD	PD TD TR
74010301	2.9600	1.1245	3.4141*+04	1.0800*=U3	5.7107	1.2327	5.9799"+04	5.9749*+U4
8.6900*-01	2.0684*+06		8.6376*+04	NH	1.8703	1.8573	2.6563"+02	9.89U6*+U1
INFINITE	2.7222*+02		9.9005*=04	0.0000*+U0	-0.2267	7.1927*-04	5.9022"+02	2.5420*+U2
76010302 1.1938*+00 INFIGITE	3,0000 2.0684"+06 2.7222"+02	1,1257 0,000	7.7092*+04 7.2113*+05 7.0219*-04	n*0000#+nU Nh NW	5.6431 1.8540 -0.1626	1.2363 1.8371 1.0795*=03	5.6310"+04 2.6563"+02 5.9308"+02	5.6310*+04 9.7222*+01 2.5402*+02
76010303	2.9200	1.1237	5.7673"+04	0.0000#+00	5.5719	1.2724	6.3516*+04	6.3516"+U4
1.4986"+00	2.0684*+06		1.4351"+05	NW	1.8547	1.6381	2.8583*+02	1.0063"+02
Infinite	2.7222*+02		7.4665"=04	4.500u#=0#	-0.1655	1.1944*=03	5.8728*+02	2.5438"+02
76010304	2.9300	1.1239	6.6344*+04	1.0000*+03	5.5741	1.1990	6.2566"+04	6.2566*+04
1.7907"+00	2.0684"+06		1.6577*+05	NM	1.8730	1.8591	2.6583"+02	1.0019*+02
Infinite	2.7222"+02		9.2543*=04	0.0000*+00	-0.2262	1.3459#-u3	5.8803"+02	2.5433*+02
74010305	2.9400	1.1241	6.9094*+04	0.0000*+Un	5.7547	1.191H	6.1629*+04	6.1629#+04
2.0955*+00	2.0664*+06		1.7336*+05	NP	1.8679	1.8554	2.6583*+02	9.9762#+01
Infini{E	2.7722*+02		9.7302*+04	9.3000*+Un	-0.2789	1.4406*-03	5.8876*+02	2.5429#+02
76010306	2.8700	1.1227	9.2577"+04	9.5000"~04	5.8050	1.2162	6.8515"+04	4.6515#+04
2,4003"+00	2.0684*+06		2.2572"+05	NM	1.8526	1.8406	2.8525"+02	1.0262#+02
Infinite	2.7167*+02		1.2164"=03	0.0000"+00	-0.3516	1.8227"~U3	5.8291"+02	2.5409#+02
7#0103U7	2.8900	1.1231	8.7445#+04	0.0000#+00	5.5262	1,2164	6.6466*+04	6.6468"+U4
2.6924"+00	2.0684"+06		2.1445#+05	WW	1.6683	1,8540	2.8933*+02	1.0319"+U2
Infinite	2.7556"+02		1.1926##03	6.0000#=0#	-0.2358	1,7409*=03	5.6660*+02	2.5765"+U2
760103U6 2,99727+00 Infinite	2.4500 2.0684*+06 2.7333*+02	1.1222	1.1113*+05 2.6843*+05 1.4439*-03	0.0000#+00 NW	5.5135 1.8576 +0.2615	1.2258 1.3432 2.1315"-03	7.0625*+04 2.8700*+02 5.8315*+02	7.0628"+04 1.0415"+02 2.5574"+02
760103U9	2,8500	1.1222	1.1875"+05	8.4000"-U4	5.4027	1.2176	7,0628"+04	7.0628*+04
3.3147"+00	2,0654*+06		2.8591"+05	NM	1.8605	1.8459	2,9225"+02	1.0405*+02
Infinite	2,7833*+02		1.5790"=03	0.0000"+U0	-0.2242	2.3198*-03	5,8846"+02	2.6042*+02
76010401	2.9600	1.1245	5.4494"+04	0"0000#+0U	5.3157	1.2112	9,7273"+04	9.7273"+04
8.8700"-01	3.3646"+06		1.3767"+05	NW	1.8626	1.6717	2,8583"+02	9.8906"+01
Infinite	2.7222"+02		4.6065"=04	NW	-0.1111	6.6046"=04	5,9022"+02	2.5420"+02
76010402	2.9900	1.1250	6,2414"+04	0.0000*+00	6.2722	1.3177	9.3364*+04	9.3364*+04
1.1 438* +00	3.3784*+06		1,5986"+05	NM	1.8632	1.8445	2.8583*+02	9.7640*+01
Infinite	2.7222*+02		5,6436"-04	NM	-0.3376	8.9640"-04	5.9237*+02	2.5407*+02
76010403	2,9600	1.1245	7,8242*+04	8.6000*+00	5.7942	1.3262	9.7273"+04	9.7273"+04
1.4966*+00	3,3646*+06		1.9795*+05	NM	1.8590	1.8398	2.8561"+02	9.8400"+01
Infinite	2,7222*+02		6.903**-04	0.0000*+00	-0.2006	1.0331"-03	5.9022"+02	2.5420"+02
74010404	2.9700	1.1246	9.4872*+04	n*0000a+00	5.7095	1.1930	9.6213"+04	9.6213"+04
1.7907*+00	3.3784"+06		2.4102*+05	iiw	1.8764	1.8644	2.6583"+02	9.8482"+01
Infinite	2.7222"+02		8.4170*+04	iiH	-0.2393	1.2200"-03	5.9094"+02	2.5415"+02
76010405	2.4500	1.3000	1.0239*+05	9.3000"-04	6.0734	1,2511	9.4154"+02	9.9154"+04
2.0955#+00	3.3764*+06		2.5798*+05	NM	1.8616	1,8425	2.8583"+02	9.9333"+01
Infinite	2.7282*+02		8.9129*+04	0.0000"+00	-0.3470	1,3408*-03	5.8949"+02	2.5424"+02
74914446	2,9300	1.1233	1.2167*+05	0.0000*+00	5.6976	1.2170	1.0693"+05	1.0693"+03
2.4003"+00	3,3784"+06		3.0025*+05	NW	1.6714	1.8599	2.8583"+02	1.0130"+02
Infinite	2,7222"+02		1.0048*-03	9.5000*+00	-0.2682	1.4744"=U3	5.8574"+02	2.5447"+02
74010447	2,4100	1.1235	1.3737"+05	0.0000=+00	5.3360	1,2091	1.0490"+05	1.0490"+05
2.6924*+00	1,1646*+06		3.4042"+05	Nh	1.8700	1,5567	2.6583"+02	1.0106"+02
Infinite	2,7222*+02		1.1358"+03	Nh	-0.1571	1,6667"=43	5.8654"+02	2.5442"+02
74010408 2.4472*+00 Infihite	2,4500 3,4474*+06 2,4944*+02	1.1243	1.4306*+05 3.6112*+05 1.2045*-03	O*0000=+00 MW	5.3768 1.8735 -9.1365	1.2048 1.6569 1.7414"-03	1.0118"+05 2.8892"+02 5.6646"+02	1.0118"+05 100"916.5 2.5165"+02
76010404	2.4700	1.1246	1.5925"+05	7.6000*+04	5.5902	1.2035	9.7194*+04	9.7194*+04
3.3147#+00	3.4129"+06		4.0457"+05	Ni ⁴	1.6775	1.5622	2.6563"+02	9.8462*+01
Infinite	2.7232"+02		1.3966"-03	0.0000*+00	-0.1966	2.0157*-03	5.9094"+02	2.5415*+02

7601010	3 VAS		PROFILE	TABULATION	49	POINTS, DE	TA AT POI	NT 49
1	Y	PT2/P	P/PD	TU/100	M/MD	UVUD	1/10	RHO/RHOD*U/UD
1	0.0000*+00	1.0000*+00	NM	1.05205	0.00000	0.00000	2.82161	0.00000
2	1.0160"-04	2.0325"+00	NM	1,02221	0.36552	0.54687	2.23852	0.24430
3	3.5560*-04	2.8778"+00	MM	1.02718	0.46552	0.06146	2.01899	0.32762
4	6.0960*-04	3.0144*+90	NM	1.03154	0.47931	0.67708	1.99549	0.33931
5	8.6360"-04	3.4894"+00	NM	1.04004	0.52414	0.72396	1.90781	0.37947
6	1.1176*-03	3.7244*+00	HМ	1.03010	0.54483	0.73958	1.84271	0.40136
7	1.3716"-03	3.9693"+00	MII	1.02263	0.56532	0.75521	1.78337	0.42347
à	1.6256"-03	4.0953*+00	NM	1.02570	0.57586	0.76562	1.76765	0.43313
Ģ	1.8796"-03	4.2238"+00	NM	1.03114	15686.0	0.77604	1.75254	0.44281
10	2.1336"-03	4,4880*+00	ЙM	1.02750	0.60690	0.79167	1.70159	0.46525
ii	2.3676"-03	4.6237*+00	NM	1.03307	0.61724	0.80208	1.68661	U.47500
íž	2.6416"-03	4.7618"+00	NM	1.03896	0.62759	0.81250	1.67610	0.48476
13	3.2766*-93	4.9973"+00	NM	1.03194	0.64483	0.82292	1.62864	0.50528
iä	3.9116"-03	5.3478*+00	NM	1.03355	0.67241	0.84375	1.57454	0.53587
iŝ	4.5466"-03	5.5894*+70	NM	1,02270	15084.0	0.84896	1.53060	0.55466
16	5.1816"-03	5.8473*+00	NM	1.03203	0.70345	0.86458	1.51060	0.57234
17	5.8164"-03	6.1654*+00	NM	1.02455	0.72414	0.87500	1.46007	0.59929
iá	6.4516"-03	4377"+00	NM	1.02347	0.74138	0.86542	1.42631	U.62077
ij	7 08448-03		NM	1.01853	0.74207			
20	7.08667-03	6.7730*+00				0.89583	1.38187	U.64826
21	7.7216*-03	7.0597"+00	HM	1.01928	0.77931	0.90625	1.35231	0.67015
25	8.3566"=03	7.3528"+00	NM	1.02076	0.79655	0.91667	1.32433	0.69218
33	8.9916"-03	7.5319"+00	NM	1.01967	0.80690	0.92147	1.30529	V.70626
	9.6266"-03	7.8969"+00	NM	1.01826	0.82759	0.93224	1.26905	0.73464
24	1.0545.405	8.1455*+00	NM	1.02541	0.84138	0.94271	1.25537	0.79094
25	1.0897"-02	8.33%6"+00	NM	1.01411	0,85172	0.94271	1.22506	0.74952
50	1.1532*-02	8.8505*+00	NM	1.01885	0.87931	0.95833	1.16782	0.80480
27	1.2167"-02	9.0482*+00	NM	1.01961	0.88966	0.96354	1.17300	0.82143
59	1.2802"-02	9.3155"+00	NM	1.01726	0.90345	0.96875	1.14979	0.84255
59	1.3437*-02	9.5869*+00	NM	1.01530	0.91724	0.97396	1.12749	0.86383
30	1.4072 -02	9.8624"+00	NM	1.01369	0.93103	0.97917	1.10607	0.88527
31	1.4707"402	1.0072"+01	NM	1.01539	0.94138	0.98438	1.09343	0.90024
25	1.5342"-02	1.0355*+01	NM	1.01435	0.95517	0.98958	1.07335	0.92196
33	1.5977"-02	1.04987+01	NM	1.00063	0.96207	0.98958	1.05802	0.93532
34	1.6412"-02	1.0642"+01	NM	1.01362	0.96897	0.99479	1.05408	0,94381
35	1.7247*-02	1.0859*+01	NM	1.00537	0.97931	0.99479	1,03107	0.96407
36	1.7862"-02	1.0933"+01	NM	1.01320	0.48276	1.00000	1.03540	0.96581
37	1.8517"-02	1.1080*+01	NM	1.00784	0.98966	1.00000	1.05105	0.97942
3.5	1.9152"-02	1.11545+01	ИW	1.00520	0.99310	1.00000	1.01394	0.98625
39	1.9787"-02	1.12287+01	NM	1.00258	0.99655	1.00000	1.00693	0.99312
40	2.0422*-02	1.1228"+01	NM	1.01306	0.99655	1.00521	1.01745	0.98797
41	2.1057"-02	1.1228"+01	NM	1.00258	0.99655	1.00000	1.00693	0.99312
42	5"7945"-05	1.1302"+01	MM	1.01044	1.00000	1.00421	1.01044	0.99482
43	2.2327"-02	1.1302"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
44	2.2462"-02	1.1302"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
45	2.3597"-02	1.1302"+01	NM	1.0000	1.00000	1.00000	1.00000	1.00000
46	2.4232"-02	1.1302"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
47	2.4667"-02	1.1302*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
46	2.5400"-02	1.1302*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
D 49	2.6162"=02	1.1302"+01	NM	1.00000	1,00000	1.00000	1.00000	1.00000
	-							

INPUT VARIABLES Y,M,U ASSUME PEPD

7601026	03 VAS		PROFILE	TABULATION	73	POINTS, DEL	TA AT PUI	NT 68
1	¥	PT2/P	P/PO	T ./100	M/MD	U/UD	T/TD	RHO/RHOD+U/UD
1	0.0000*+00	1.0000"+00	NM	1.04200	0.00000	0.00000	2.83109	0.00000
3	8.8900"-05 5.1562"-04	1.6697"+00 3.5462"+00	NM NM	1.02384	0.52397	0.51503 0.72021	2,32632	0.22139 9.38121
4	9.4234"-04	3.9509*+00	NM	1.02334	0.55822	0.75130	1.61139	0.41474
5	1.3716"-03	4.2056"+00 4.4701"+00	NM NM	1.03153	0.57877	0.77202	1.77930	0.43389
7	2.2274"-03	4.6518*+00	NM	1.02594	0.61301	0.74756 U.79793	1,69428	0.45606 0.470 9 5
8	2.6416"-03	a.8649"+00	NM	1.01846	0.63014	U.80829	1.64537	0.49125
10	3.0734"-03 3.5052"-03	5.1247"+00 5.2717"+00	NM NM	1.02516	U.65753	0.82383	1.62003	0.50851 0.52152
ii	3.9370"-03	5.5221"+00	NH	1.01476	0,67466	0.03938	1.54792	0.54226
12	4.3488"=03	5.7792"+00	NM NM	1.02400	0.69178	0.85442	1.58727	0.55977
14	4.8004"-03 5.2070"-03	5.8638"+00 6.1501"+00	NM NM	1.02535	0.69863	0.84510 0.84528	1.51568	0.56747 0.5920b
15	5,6380"-03	6.4229"+00	NM	1.02196	0.73288	0.68083	1.44451	0.60978
16 17	6.0706"-03 6.5024"-03	6.5898"+00 6.7591"+00	NM NM	1.01925	0.74315	0.84601 0.89119	1.42142	0.62333 0.63695
18	4.9342 -03	4.9884"+00	NM	1.02200	0.76712	0.90155	1.38114	0.65274
19	1.3660"-03	7.1631"+00	hw MM	1.02025	0.77740	0.90674	1.36043	0.66651
51 50	7.7724"-03 8.2042"-03	7.3998"+00 7.5197"+00	NM NM	1.01458	0.79110	0.91192 U.91710	1.32878	0.68628 0.69427
55	8.6360"-03	7,8657"+00	NM	1.01617	0.81849	0.92746	1.28399	0.72233
23 24	9.0678"-03 9.4996"-03	8.0098"+#0 8.1979"+00	NM NM	1.00836	0.03562	0.9274 <i>0</i> 0.93264	1.26277	0.73447 0.74868
25	9.9314"-03	8.3884"+00	NM	1.00621	0.84589	0.93742	1.22418	0.76297
56	1.0336"-02	4.5812*+00	NM	1.00847	0.65616	0.94301	1.21315	0.77732
27 28	1.0770"-02	8.8420"+00 9.1738"+00	NM NM	1.01649	0.86986	0.95337 0.95855	1.20121	0.79367 0.62077
54	1.1633"-02	9.2409"+00	NM	1.00718	0.89041	0.95855	1.15891	0.82712
10	1.2065"-02	9.3083"400	ИW	1.01480	0.89384	0.96373	1.16251	0.82901
35	1.2903"-02	4.4439*+00 4.7182*+00	Им	1.00832	0.90068 0.91438	0.96373 0.9689l	1.14469	0.84176 0.862 9 2
13	1.3335"=02	9,9267*+00	NM	1.00809	0.92466	0.47409	1.10979	0.07773
34 15	1.3767"-02	1.0208"+01 1.0422"+01	NM NM	1,00688	0.93836	0.97927 U.9M446	1.08411 1.076 96	0,89915 0,91411
16	1.4630"-02	1.0639"+01	NM	1.01094	0.95890	0.98964	1.04513	0.92913
17	1.5062"-02	1.0897*+01	NM	1.00267	0.46918	0.98964	1.04267	0,94914
38 39	1.5400"-02	1.0931"+01 1.1078"+01	NM NM	1.01047	0.47260	0.99462 0.99462	1.04021	U.95088 U.96432
40	1.4332"-02	1.1142"+01	NM	1.00247	0.98288	0.99452	1.02445	0.97108
42	1.6764"-02	1.1301*+01	NM NM	1.00768	0.98973	1.00000	1.02087	U .97956 U .9795 6
43	1.7628"-02	1.1376*+01	NM	1.00509	0.49515	1.00000	1.01384	0.98635
44	1.8059"-02	1.1452"+01	ИМ	1.00253	0.99658	1.00000	1.00608	0.99316
45 46	1.848405	1.1452"+01	NM NM	1.00253	1.00000	1.00000	1.00000	0,99316 1,00000
47	1.9329"=02	1.1527"+01	NM	1.00000	1.00000	1,00000	1.00000	1.00000
48	2.0193"-02	1.1527*+01	NM MM	1,00000	1.00000	1.00000	1.00000	1.00000
50	2.0625"-02	1,1527*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
31	2.1031"-02	1-1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1.0000
52 53	2.1895"-02	1.1527"+01 1.1527"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1,00000
54	2.2327"=02	1.1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
55 36	2.2758"-02	1.1527*+01	NW NM	1.00000	1.00000	1.00000	1.00000	1.00000
5.7	2.3597"-02	1.1527"+01	₩.	1.00000	1.00000	1.00000	1.00000	1.00000
56	2.4028"-02	1.1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00004
59	50-"00##.S 50-"564#.S	1.1527"+01 1.1527"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
ěį	2.5324"-02	1,1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
62 63	2.5654"=02	1.1527"+01	NM NM	1.00000	1.00000	1.00000	00000	1.00000
4	2.6670"-02	1.1527*+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
65	2.6924"-02	1,1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
66 67	2.7432"-02	1.1527*+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
D 68	2.8194"-02	1.1527"+01	NM	1.00000	1,00000	1.00000	1.00000	1.00000
49	2.8702"-02	1.1507"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
70 71	2.9710"-02	1.1527*+01	NM NM	1.00000	1.00000	1.00000	1.00000 1.00000	1.00000
12	2.9972"-02	1.1527*+01	NM	1.00000	1.00000	1_00000	1.00000	1.00000
73	3.0480*-02	1.1527"+01	NM	1.00000	1.00000	1.00000	1.00000	1,00000

INPUT VARIABLES Y, H, U ASSUME PEPO

•

760103	03 VAS		PROFILE	TABULATION	67	POINTS, DEL	.TA AT POI	NT 67
I	Y	P12/P	P/PD	10/100	M/MD	UZUD	1/10	HHO/RHOD*U/UD
1	U.0000*+00 1.7526"=04	1.0000*****	NM NA	1.04651	0.00000	U.00000	2.83109	0.00000
۶	6.0960*=04	1.9152"+00	NM NM	1.03903	0.34589	0.52850	2,33458	0.22638
3	1.0439"=03	4.1379"+00	14M 14M	1.02467 1.02734	0.57110	0.73575 0.76684	1.84890	0.39794 0.43167
5	1.4783"-03	4.4880*+00	NM	1.02207	0.60274	U.78756	1.70731	U.46129
6	1.9152"-03	4.8084"+00	MM	1.02670	0.62671	0.80829	1.66341	0.48592
7	2.3495"-03	4.9975"+00	NM	1.02659	0.64041	V.81865	1.63411	0.50098
8	2.7940"-03	5,2344"+00	Mass	1.02081	0.65755	0.82902	1.58960	0.52152
9	3.2258"-03	5.4881*+00	NM	1.01630	0.67466	0.83938	1.54792	0.54226
10	3.6576"-03	5.5894"+00	NM	1.02982	0.66151	0.84474	1.55465	0.54658
11	4.0894**03	5,8473"+00	NM	1.02659	0.69863	0.86010	1.51568	0.56747
12	4.5212"-03	6.0583"+00	NM	1.01739	0.71233	0.86525	1.47556	0.58641
13	4.9550"-03	0.440856.6	NM	1.01599	0.72945	0.87565	1,44100	U.60766
14	5.3848"-03	6.5464"+00	NM NM	1.02026	0.74315	0.88601	1.42142	0.65333
15	5.8166"=03	6.7730"+00	им	1.02498	0.75685	0.89637	1.40268	0.63904
i e	6.273A*-03	7.0597*+00	NM	1.01391	0.77397	0.90155	1.35685	0.66445
17	0.7056"=03 7.1374"=03	7.2937"+00	MW MW	1.01966	0.78767	0.01102	1.34036	0.68035 0.70025
19	7.5692"-03	7.5319"+00 7.6525"+00	NM NM	1.01752	0.80822	0.91710 0.92228		U.70826
20	6.0010"-03	7.8969"+00	NM	1.01290	0.82192	0.92746	1.30217	0.72839
žί	8.4328"-03	5.1455"+00	Wh	1.00877	0.83562	0.93264	1.24571	0.74868
žż	8.8646*-03	8.5905"+00	NM	1.01650	0.85959	0.94819	1.21676	V.77921
53	4.2964"-03	8.8505*+00	NM	1,01346	0.87329	0.95337	1.19161	0.79993
24	4.78824-03	9.0482"+00	NM	1.01423	0.88356	0.95855	1.17694	0.81444
25	1.0185*-02	9.3029"+00	NM	1.00866	0.90068	0.96373	1.14489	0.64176
26	1.0617"-02	9.6554"+00	NM	1.00682	0.41438	0.96891	1.12282	0.86292
27	1.1049*-02	9.7931"+00	NH	1.01140	0.42123	0.97409	1.11805	V.87124
28	1.1481"-02	1.0002*+01	NM	1.01303	0.91151	0.97927	1.10519	0.88607
29	1.19137-02	1.02134+01	ИM	1.00416	0.94178	0.97927	1.40151	0.90572
30	1.2344*-02	1.0355"+01	NM	1.00900	0.94863	0.98446	1.07696	0.91411
31	1.2776"-02	1.0498"+01	NM	1.00332	0.95548	0.98446	1.06157	0.92736
75	1.3206*-02	1.0714"+01	NM	1.00551	0.96575	0.98964	1.05007	0.94245
33 34	1.4097*-02	1.0933"+01	MN MN	1.00786	0.97403 0.98288	0.99452	1.03888	0.95759 0.97108
33	1,4529"-02	1.1154"+01	NM	1.00252	0.98630	U.99482 U.99482	1.02445	0.97786
16	1.4961"-02	1.1154"+01	NM NM	0.99990	0.98630	0.99482	1.01735	V. 97786
37	50-"5926.1	1.1228*+01	NH	1.00771	0.98973	1.01000	1.02087	0.47956
38	1.5824"-02	1-1302"+01	NM	1.00512	0.99315	1.00000	1.01364	0.98635
39	1.6256"-02	1.1302*+01	NM	1.00512	V. 99315	1.00000	1.01384	9.98635
40	1,0688"-02	1.1302"+01	NM	1.00512	0.99315	1.00000	1.01364	0.98635
41	1.7120"-02	1.1302*+01	N₩	0.94473	U.99315	0.994#2	1.00336	0.99149
42	1.7577"-02	1.1452"+01	NM	1.00000	1.00000	1.00000	1.90000	1.00000
43	1.8009"-02	1.14527+01	MM	1.00000	1.00000	1.00000	1.00000	1.00000
44	1.8440"-02	1.1452*+01	NM	1.00000	1.00000	1.00000	1,00000	1.00000
45	1.6672"-02	1.1452"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
46	1.9304"-02	1.1452"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.00000
47 48	1.9736"-02	1.1452*+01	NM NM	1.00000	1.00000	1.00000	1.00000	1.0000U
49	2.0599"-02	1.1452"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
30	4.1057"-02	1.1452"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
51	2.1486*-02	1.1452 +01	NM	1.00000	1,00000	1.00000	1.00000	1.00000
52	2.3647"-02	1.1452"+01	NM	1.00000	1.00000	1.00000	1.00000	1.0000
53	2.4079"-02	1.1452*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
54	2.4536"-02	1.1452*+01	NM	1.00000	1.00000	1.00000	1,00000	1.00000
15	2.4968"-02	1.1452*+01	NM	1.00000	1,00000	1.00000	1,00000	1.00000
56	2.5400"-02	1.1452*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
57	2.5904"-02	1.1452*+01	NM	1.00000	1.06000	1.00000	1.00000	1.00000
58	2.2784"-02	1.14427+01	NH	1.00000	1.00000	1.00000	1.00000	1.00000
59	5.3216"-02	1.1452*+01	NM	1.00000	1.00000	1.00070	1.00000	1.00000
60	20-"0591.5	1.14527+01	ΜM	1.00000	1.00000		1.00000	00000
• 1	2.2352*-02	1.1452*+01	NM NA	1.00000	1.00000	1.0000	1.00000	1.00000
62	2.6162"-02	1.1452*+01	NM NM	1,00000	1,00000	1.00000	1.00000	1.00000
4.1 4.4	2.7176=-02	1.14525+01	14 1 4	1.00000	1.00000	1.00000	1.00000	1.0000
•5	2.7456"-02	1.1452*+01	MW MW	1.00000	1.00000	1.00000	1.00000	1.00000
16	2.7940"-02	1.1492*+01	NH	1.00000	1.00000	1.00000	1.00000	1.00000
D 67	2.6448"-02	1.14524+01	NM	1.00000	1.00000	1.00000	1.00000	1,00000
			••			• • • • • • •		

INPUT VARIABLES Y, M, U ASSUME PEPD

76010	403 VAS		PROFILE	TABULATION	73	POINTS, DEL	TA AT POI	NT 73
1	٧	PT2/P	P/PD	TO/TOD	M/MD	U/UD	1/10	RHG/RHGD+U/UD
i	0.0000*+00 3.6322*-04	1.0000*+00	NM	1.04613	0.00000	0.00000	2,67927	0.0000
3	0.3246"-04	3.5467*+00	NW NW	1.03135	0.40203	0.59794 0.72165	2.21209	0.27031 0.37509
4	9.0170*-04	4.3108*+00	NM	1.02391	0.58108	0.77320	1.77054	0.43670
5	1.1709"-03	4.5330"+00	NM	1.02500	0.59797	0.78866	1.73947	0.45339
6	1.4376"-03	4.7618*+00	Mrr	1.01990	0.61466	0.74897	1.68850	0.47318
7	1.7069"-03	4.9023"+00	NM.	1.02614	0.62500	0.80928	1.67662	0.44268
9	1.9761"=03 2.2454"=03	5.0934*+00	NM NM	1.02629	0.63851	0.81959	1.64760	0.49744
10	2.5121 -03	5.3381"+00 5.4378"+00	NM	1.02104	0.65541	0.82990 0.83505	1.60335	0.51760 U.52507
ii	2.76864-03	5.5894*+00	NM	1.02945	0.67230	0.64536	1.56111	U.53466
12	3.0480*-03	5.7433*+00	NM	1.02490	0.68243	0.85052	1,55320	0.54757
13	3.3274"=03	5.9523"+00	NM	1.01539	0.69595	0.85567	1.51169	0.56604
14	3.5614"-03	6.1117"+00	NM	1.02347	0.70608	0.86598	1.50420	0.57571
15	3.0608"-03 4.1148"-03	6.3280"+00 6.4929"+00	MW N≒	1.01562	0.71959	0-87113	1.46553	0.59442
16	4.3942"-03	6.7165"+00	NM	1.02477	0.72973	0.88144 U.88460	1.45544	U.60413 U.62307
iá	4.6482"-03	6.9442*+00	NM	1.02253	0.75676	0.89691	1,40470	0.63851
[4	4.9276"-03	7.1762*+00	NM	1.01036	0.77027	0.90206	1.37147	0.65773
50	5.2070*-03	7.2937*+00	NM	1.01929	0.77703	0.90722	1.36317	0.44552
57	5.4610"-03	7,5319*+00	NM	1.01392	0.79054	0.91237	1.35197	0.68498
55	5.7404*-03	7.5920*+00	NM	1.05156	0.79392	0.91753	1.33562	V.48696
23 24	5.9944"-03 6.2736"-03	7.7132"+00 7.8969"+00	NM NM	1.01310	0,80068	0.91753	1.31310	0.69871
23	6.5278"-03	8.0207*+00	NM	1.01253	0.81757	0.92268 0.92784	1.29498	0.71250 0.72040
\$6	6.8072"-03	8.2063-400	NH	1.01584	0.82770	0.93299	1.27059	0.73450
äŸ	7.0866"-03	8.3962"+00	NM	1.01586	0.83784	0.93814	1.25377	U.74826
58	7.340403	8.5241*+00	NM	1.00662	0.84459	0.93814	1.23379	0.76037
39	7.6200"-03	8.7200"+00	NM	1.00905	0.85473	0.94330	1.21798	0.77448
30 31	1.8740"-03 8.1534"-03	8.7851"+00	NM AM	1.01659	0.85011	0.94845	1.22165	U.77637
35	8.4074"-03	#.8305"+00 4.1813"+00	NM NM	1.01311	0.86149	0.94845 U.95361	1.21209	0.78249 0.80908
53	6,6668"-03	9.3155*+00	NA	1.01153	0.88514	0.95876	1.17526	0.81716
34	8.9662"=03	4.3155*+00	NM	1.01153	U.88514	0.95876	1.17328	0.81716
15	9.2202"-03	9.5869"+00	NM	1.00958	0.89865	0.96192	1,15054	0.83780
36	4.4996"-03	9.5869*+00	Им	1.00958	0.89865	0.96392	1.15054	0.63780
37 38	4.7534"-03 50-"EE00.1	9.7931"+00 9.8624"+00	NM NM	1.01103	0,40878	0.96907	1.13704	0.85225
39	1.0287*-02	1.0002"+01	NW M	1.00798	0.91214	0.96907 0.97425	1.12867	U.85859 U.86675
40	1.0566"-02	1.0213"+01	NM	1.01449	6.92903	0.47938	1.11124	0.88131
41	1.0846"-02	1.0355"+01	NM	1.00864	0.93581	0.97938	1.09524	0.4418
45	1.1100"-02	1.0498*+01	NM	1.00295	0.94257	U.97938	1.07964	0.40714
43	1.1374"-02	1.0642*+01	NM Albi	1.00741	0,94932	0.76454	1.07556	0.91537
45	1.1633"-02	1.0714"+01	NM NM	1.00515	0.95270	0.98454 0.98969	1.06794	0.92190
46	1.2167=-02	1.1006"+01	NM	1.00481	0.96622	U.98969	1.0441	0.93015 0.94330
47	1.2446*-02	1.1080*+01	NM	1.00216	0.46959	0.98969	1.04188	0.94991
4 6	1.2725"=02	1.1154*+01	NH	1.00997	0,97297	0.99485	1.04547	0.95158
44	1.2979"-02	1.1559.+01	NM	1.00735	0.97635	0.49483	1.03824	0.45870
50	1.32595-02	1.1302"+01	NM	1.00475	0.47973	0.94485	1.03109	0.96404
51 52	1.3792"=02	1.1452"+01 1.1452"+01	NM NM	0.99964 0.99964	0.98649	0.99485 0.49485	1.01/02	0.97820 U.97820
53	1.4046"-02	1.1527.+01	NM	1.00748	0.98986	1.00000	1.07458	0.97983
54	1,4326"-02	1.1603***11	NM	1.00496	0.99324	1.00000	1.01365	0.98653
\$3	1.4605"-02	1.1603"+01	NM	1.00496	0.99324	1,00000	1.01365	0.98551
56	1.4859"=02	1.1603*+01	NM	1.00446	0.99324	1.00000	1.01365	V.98453
27	1.5138"-02	1,1603"+01	NM NM	1.00496	0.99324	1.00000	1.01365	0.986.3
58 59	1.5392"-02	1.1403"+01	NM NM	1.00444	0.99562	1.00000	1.01365	0.98653 0.99325
	1.5951 -02	1.1754*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
61	1.6205*-02	1.1754*+01	NH	1.00000	1.00000	1.00000	1.00000	1.00000
62	1.6485"-02	1.1754*+01	NM	1.00000	1.00000	1.00000	1.0000	1.00000
• 3	1.6739"=02	1.1754"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
64	1.7018"-02	1,17947+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
45 46	1.7272"-02	1.1754"+01	NM NM	1.00000	1.00000	1.00000	1.00000	1,0000
.7	1.7831*-02	1.1754"+01 1.1754"+01	NM NM	1.00000	1.00000	1.0000	1.00000	1.00000
98	1.8085"-02	1.1754"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
64	1.0364"-02	1.1754*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
70	1.4050*-02	1.1754"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
71	2.0320"-02	1.1754*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
72 D 73	2.1570"-02 2.2860"-02	1.1754"+01 1.1754"+01	NM NH	1.00000	1.00000	1.00000	1.00000	1.00000
w / a	******* -05	491734 704	14	*******	1.00000	1.00000	1.00000	1.00000
THPLIT	VARIABLES	Y.M.II ASSUME	ひまわり					

760104	RAV PO		PROFILE	TABULATION	34	POINTS, DE	LTA AT POI	NT 34
1	4	PT2/P	P/PD	10/100	M/MD	UZUN	1/10	RHO/RHOD+U/UD
1	U.0000*+00	1.0000*+00	NM	1.04164	0.00000	u.00000	2.87927	0.00000
5	1.0160"-04	2.0168"+00	ИW	1.02916	0.35473	0.54124	2.32798	0.23249
3	1.3716"-03	4.6514"+00	Им	1.02555	0.60473	0.79381	1.72312	0.46068
, 4	2,6416"-03	5.0758"+00	ИM	1.01819	0.63514	0.81443	1,64429	0.49531
5	3.9116"-03	5.6237*+00	ИМ	1.01560	0.67230	0.84021	1.56188	0.53794
6	5.1816"-03	6.9423"+00	ИМ	1.02110	6.09932	0.86082	1.51521	0.56812
7	6.4516"-03	6.3125"+00	N#	1.01953	0.71622	0.87113	1.47939	0.58885
6	7.7216"-03	6.7585"+00	NM	1.01647	0.74324	0.88660	1.42296	0.62307
9	8,9916"-03	7.1040*+00	NM	1.02432	0.76351	0.90206	1.39585	0.64624
10	1.056505	7.2603"+00	NM	1.02276	0.77365	U.90722	1.37510	0.65975
11	1.1532*+02	7.6400*+00	ŊM	1.02049	0.79392	0.91753	1.33562	0.68696
12	1,2802"-02	8.0091"+00	NM	1.00796	0.81419	0,92265	1.28426	0.71845
13	1.4072*-02	8.2604"+00	NM	1.01522	0.82770	0.93299	1.27059	0.73430
14	1.5342"-02	8.5805*+00	NM	1.01917	0.84459	0.94330	1.24739	V.75622
15	1.6612"-02	8.9070"+00	NM	1.01263	0.86149	0.94845	1.21209	U.78249
16	1.7882"-02	9.2401*+00	NM	1.00578	0.87838	0.95361	1.17863	U.8090B
17	1.9152"=02	4.5113"+00	NM	1.00473	0.89189	0.95876	1.15557	0.82968
18	2.0422"-02	9.8561"+00	NM	1.01072	0,90878	0.96907	1.13708	0.85225
19	2.1692"-02	1.0137*+01	NM	1.00441	0.92230	0.97423	1.11578	0.87314
20	2.2962"-02	1.0421*+01	NW	1.00842	0.93581	0.97938	1.09529	0.59418
51	2.4232"-02	1.0710"+01	NM	1.00775	0.94932	0.98454	1.07556	0.91537
22	2.5400"-02	1.1077*+01	NM	1.00470	0.96622	0.98969	1.04918	U.94330
23	2,4570"=02	1.1300*+01	NM	1.00727	0.97635	0.99485	1.03824	0.95820
24	2.;440*-02	1.1451*+01	NM	1.03213	0.98311	0.99485	1.02402	0.97151
25	2.921002	1.1602"+01	NM	0.99709	0.98486	0.99465	1.01009	0.98491
26	3.0480"-02	1.1678*+01	NM	1.00494	0.99324	1.00000	1.01365	0.98653
27	3.1750"-02	1.1675"+01	NH	1.00494	0.99324	1.00000	1.01365	U.98653
58	3.3020*-02	1.1831 +01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
29	3.4290"-02	1.1831"+01	NW	1.00000	1.00000	1.00000	1.00000	1.00000
30	1.5560"-02	1.1831"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
31	3.6830*-02	1.1831"+01	NM	1.00000	1.00000	1.00000	1.00000	1-00000
25	3.8100"-02	1.1831*+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000
33	3.9370"-02	1.1831"+01	ŇM	1.00000	1.00000	1.00000	1.00000	1.00000
D 34	4.0440*-02	1.1831"+01	NM	1.00000	1.00000	1.00000	1.00000	1.00000

INPUT VARIABLES Y,H,U ASSUME PEPD

SECTION 9

REFERENCES

9. REFERENCES

- Addock J.B., Peterson J.B., Mc Ree D.J. 1965 Experimental investigation of a turbulent boundary layer at Mach 6, high Reynolds numbers and zero heat transfer. NASA TN D-2907, (CAT 6501).
- Ahtye W.F., Peng Tzy-Cheng 1962 Approximations for the thermodynamic and transport properties of high-temperature nitrogen with shock tube applications. NASA TN D-1303.
- Akin S.W. 1950 The thermodynamic properties of Helium. Trans Am. Soc. Mech. Engrs. 72, 751-757.
- Allen J.M. 1970 Experimental Preston tube and law-of-the-wall study of turbulent skin friction on axisymmetric bodies at supersonic speeds. NASA TN D-5660, (CAT 7005).
- Allen J.M. 1972 Pitot probe displacement in a supersonic turbulent boundary layer. NASA TN D-6759, (CAT 7303).
- Allen J.M. 1973a Evaluation of compressible flow Preston tube evaluations. NASA TN D-7190, (CAT 7303).
- Allen J.M. 1973b Evaluation of Preston tube calibration equations in supersonic flow. AIAA J. 11, 1461-1463.
- AMES Research Staff 1953 Equations, tables and charts for compressible flow. NACA R 1135.
- Arrington J.P., Joiner R.C., Henderson A. 1964 Longitudinal characteristics of several configurations at hypersonic Mach numbers in conical and contoured nozzles. NASA TN D-2489.
- Back L.H., Massier P.F., Cuffel R.F. 1967 Flow phenomena and convective heat transfer in a conical supersonic nozzle, J. Spacecraft & Rockets 4, 10:10-1047.
- Back L.H., Cuffel R.F., Massier P.F. 1969 Laminar, transition and turbulent boundary layer heat transfer measurements with wall cooling in turbulent airflow through a tube. Trans. Am. Soc. Mech. Engrs. Ser. C. 91, 477-487.
- Back L.H., Cuffel R.F., Massier P.F. 1970 Laminarization of a turbulent boundary layer in nozzle flow boundary layer and heat transfer measurements w: wall cooling. Trans. Am. Soc. Mech. Engrs. Ser. C, 92, 333-344.
- Back L.H., Cuffel R.F., Massier P.F. 1970 Experimental convective heat transfer and pressure distributions and boundary layer thicknesses through a variable cross sectional area channel.

 4th Int. Heat Transfer Conf. Versailles, 2.
- Back L.H., Cuffel R.F. 1970 Relationship between temperature and velocity profiles in a turbulent boundary layer along a supersonic nozzle with heat transfer. AIAA J. 8, 2067-2069.
- Back L.H., Cuffel R.F. 1971 Turbulent boundary layer and heat transfer measurements along a convergent-divergent nozzle. Trans. Am. Soc. Mech. Engrs., Ser. C, 93, 397-407.
- Back L.H., Cuffel R.F. 1972 Turbulent boundary layer measurements along a supersonic nozzle with and without well cooling. Trans Am. Soc. Mech. Engrs., Ser. C, 94, 242-243, (CAT 7207).
- Beckwith I.E., Gallagher 3.J. 1957 Host transfer and recovery temperature on a sphere with laminar, transitional and turbulent boundary layers at Mach numbers of 2.00 and 4.15. NACA TN 4125.

- Beckwith I.E. Harvey W.D., Clark F.L. 1971 Comparisons of turbulent boundary layer measurements at Mach number 19.5 with theory and an assessment of probe errors. NASA TN D-6192, (CAT 7105).
- Behrens W. 1963 Viscous interaction effects on a static pressure probe at M = 6. AIAA J. 1, 2864-2866.
- Bertram M.H., Blackstock T.A. 1961 Some simple solutions to the problem of predicting boundary layer self-induced pressures. NASA TN D-798.
- Bertram M.H. 1966 Hypersonic laminar viscous interaction effects on the aerodynamics of two-dimensional wedge and triangular planform wings. NASA TN D-3523.
- Boldman D.R., Schmidt J.F., Fortini A. 1966 Turbulence, heat transfer and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile. NASA TN D-3221.
- Boldman D.R., Schmidt J.F., Ehlers R.C. 1967 Effect of uncooled inlet length and nozzle convergence angle on the turbulent boundary layer and heat transfer in conical nozzles operating with air. Trans. Am. Soc. Mech. Engrs. Ser. G 89, 341-350.
- Boldman D.R., Neumann H.E., Schmidt J.F. 1967b Heat transfer in 30° and 60° half-angle of convergence nozzles with various diameter uncooled pipe inlets. NASA TN 0-4177.
- Boldman D.R., Schmidt J.F., Gallagher A.K. 1968 Laminarization of a turbulent boundary layer as observed from heat-transfer and boundary layer measurements in conical nozzles. NASA TN D-4788.
- Boldman D.R., Schmidt J.F., Ehlers R.C. 1969 Experimental and theoretical turbulent boundary layer development in a Mach 4.4 water cooled conical nozzle, NASA TN D-5377, (CAT 6901).
- Boldman D.R., Neumann H.E., Ehlers R.C. 1970 Velocity, intermittency and turbulence intensity measurements in the boundary layer of an accelerated flow. NASA TN D-6043.
- Boldman D.R., Graham R.W. 1972 Heat transfer and boundary layers in conical nozzles. NASA TN D-6594.
- Brott D.L., Yanta W.J., Voisinet R.L.P., Lee R.E. 1969 An experimental investigation of the compressible turbulent boundary layer with a favourable pressure gradient. NOL TR 69-143.
- Brott D.L., Yanta W.J. et al. 1970 An experimental investigation of the compressible turbulent boundary layer with a favourable pressure gradient. AIAA J., 8, 1270-74 and AIAA Paper 69-685 (1969).
- Bruno J.R., Yanta W.J., Risher D.B. 1969 Balance for measuring skin friction in the presence of heat transfer. NOL TR 69-56.
- Clutter D.W., Kaups K. 1964 Wind-tunnel investigation of turbulent boundary layers on axially symmetric bodies at supersonic speeds. Douglas Aircraft Rept. LB 31425 AD 435111, (CAT 6401).
- Coles D. 1953 Measurements in the boundary layer on a smooth flat plate in supersonic flow.
 - I. The problem of the turbulent boundary layer.
 - II. Instrumentation and experimental sichniques at the Jet-Propulsion Laboratory.
 - III. Messurements in a flat plate boundary layer at the Jet Propulsion Laboratory.
 - J.P.J., Cal. Inst. Tech. Rep. Nos 20-69, 20-70, 20-71, (CAT 5301).
- Coles D. 1954 Measurement of turbulent friction on a smooth flat plate in supersonic flow.
 - J. Aeronaut. Sci. 21, 433-448, (CAT 5301).
- Coles D. 1986 The law of the wake in the turbulent boundary layer, J. Fluid Meck, $\underline{1}$, 191-226.

- Coles D. 1964 The turbulent boundary layer in a compressible fluid. Phys. Fluids 7, 1403-1423.
- Coles D.E., Hirst E.A. 1969 Proceedings Computation of Turbulent Boundary layers 1968 AFOSR-IFP Stanford Conference. Volume II Compiled Data. Stanford University, Stanford, USA
- Danberg J.E. 1961 The equilibrum temperature probe, a device for measuring temperatures in a hypersonic layer. NOLTR 61-2.
- Danberg J.E. 1964 Characteristics of the turbulent boundary layer with heat and mass transfer at M = 6.7. NOLTR 64-99.
- Danberg J.E. 1967 Characteristics of the turbulent boundary layer with heat and mass transfer: Data tabulation, NGLTR 67-6, (CAT 6702).
- Demetriades A., Laderman A.J. 1973 Reynolds stress measurements in a hypersonic boundary layer. AIAA J. 11, 1594-1597.
- Van Driest E.R. 1961 Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18, 145-160.
- Dwyer H.A., Doss E.D., Goldman A.L. 1971 A computer program for the calculation of laminar and turbulent boundary layer flows. NASA CR-114366.
- East R.A., Perry J.H. 1967 A short time response stagnation temperature probe. Aeronaut. Res. Council C.P. 909.
- Erickson W.D. 1960 Real-gas correction factors for hypersonic flow parameters in helium. NASA 7N U-462.
- Erickson W.D. 1963 An extension of estimated hypersonic flow parameters for helium as a real gas. NASA TN D-1632.
- Feller W.V. 1973 Effects of upstream wall temperatures on hypersonic tunnel wall boundary-layer profile measurements. AIAA J. 11, 556-558.
- Fenter F.W. 1955 A theoretical analysis of the effects of surface roughness on the turbulent boundary layer in compressible flow with zero heat transfer. Report DRL-365, CA-824.
- Fenter F.W. 1960 The turbulent boundary layer on uniformly rough surfaces at supersonic speeds. Report No DRL-468, CM-941.
- Fenter F.W., Stalmach D.J. 1957 The measurement of local turbulent skin friction at supersonic speeds by means of surface impact pressure probes. Report No DRL-392, CM-878.
- Fenter F.W., Lyons W.C. 1958 An experimental investigation of the affects of several types of surface roughness on turbulent boundary layer characteristics at supersonic speeds. Report No DRL-411, AD 657 134, (CAT 6804).
- Fernholz H. 1964 Three-dimensional disturbances in a two-dimensional incompressible turbulent boundary layer. Aero. Res. Council R + M 3368 (London).
- Fernholz H. 1969 Geschwindigkeitsprofile, Temperaturprofile und halbempirische Gesetze in kompressiblen turbulenten Grenzschichten bei konstantem Druck. Ing. Arch. 38, 311-328.

- Fernholz H. 1971 Ein halbempirisches Gesetz für die Wandreibung in kompressiblen turbulenten Grenzschichten bei isothermer und adiabater Wand, ZAMM <u>51</u>, T 148-149.
- Furnholz H. 1972 Departures from a fully developed turbulent velocity profile on a flat plate in compressible boundary layers. Fluid Dynamics Transactions V.L. 6 Pt. II.
- Fernholz H.H., Finley P.J. 1976 A critical compilation of compressible turbulent boundary layer data.

 Von Karman Institute for Fluid Dynamics Lacture Series 86.
- Fischer M.C., Maddalon D.V., Weinstein L.M., Wagner R.D. 1970 Boundary layer surveys on a nozzle wall at M = 20, including hot-wire fluctuation measurements. AIAA Paper 70-746, (CAT 7001).
- Fischer M.C., Maddalon D.V., Weinstein L.M., Wagner R.D. 1971 Boundary layer pitot and hot-wire surveys at M_ = 20. AIAA J. 9, G25-834.
- Fischer M.C., Maddalon D.V. 1971 Experimental laminar, transitional and turbulent boundary layer profiles on a wedge at local Mach number 6.5 and comparisons with theory. NASA TN D-6462, (CAT 7103).
- Franklin R.E., Wallace J.M. 1970 Absolute measurements of static hole error using flush transducers. J. Fluid Mech. 42, 33-48.
- Fütterer H. 1967 Eichung des kleinen Oberschallwindkanals der AVA. AVA-Bericht Göttingen 67 A 07.
- Gardon R. 1960 A transducer for the measurement of heat flow. Trans. Am. Soc. Mech. Engrs. Ser. G 82, 396-398.
- Sates D.F. 1973 Measurements of upstream history effects in compressible turbulent boundary layers. NOL TR 73-152, (CAT 7391).
- Gates D.F., Alien R.W. 1974 Experimental measurements of upstream history effects in supersonic turbulent flow. Proc. 1974 Heat Transfer and Fluid Mechanics Institute, 330-347.
- Gaudet L. 1965 Humidity and scale effects on static pressures measured on the walls of a large supersonic wind tunnel. RAE TR 65074.
- Gran R.L., Lewis J.E., Kubota T. 1974 The effect of wall cooling on a compressible turbulent boundary layer. J. Fluid Mech. 66, 507-528.
- Haase W., Gauler H.F., Thiele F. 1973 Ein Vergleich numerischer Integrationsverfahren bei konstanter und variabler Schrittweite. Interrer Bericht No 13 Lehrstuhl für Oberschalltechnik, Techn. Univ. Berlin.
- Hahn J.S. 1970 Experimental investigation of adiabatic wall turbulent boundary layers with pressure gradient at Mach number 4. USA AEDC TR 70-31.
- Hahn J.S., Lutz R.G. 1971 Turbulent boundary layers with pressure gradient and heat transfer at Mach number 4. AEDC TR 71-3.
- Harkness J.L. 1959 Skin friction and heat transfer studies at supersonic speeds for turbulent boundary layers. Rep. No DRL 435, CM 939.
- Harvey W.D., Clark F.L. 1972 Measurement of skin friction on the wall of a hypersonic nozzle. A1AA J. 10, 1256-1258.

- Hastings R.C., Sawyer W.G. 1970 Turbulent boundary layers on a large flat plate at M \approx 4, R.A.E., Technical Report 70040 and R + M 3678, (CAT 7006).
- Hill F.K. 1956 Boundary layer measurements in hypersonic flow. J. Aeron. Sci. 23, 35-42.
- Hill F.K. 1959 Turbulent boundary layer measurements at Mach numbers from 8 to 10. Phys. Fluids.2, 778-680, (CAT 5901).
- Hilsenrath J. et al. 1955 Tables of thermal properties of gases. NBS Circular No 564.
- Hopkins E.J., Keener E.R. 1966 Study of surface Pitots for measuring turbulent skin friction at supersonic Mach numbers adiabatic wall. NASA TN D-3478, (CAT 6601).
- Hopkins E.J., Keener E.R., Louie P.T. 1970 Direct measurements of turbulent skin friction on a nonadiabatic flat plate at Mach number 6.5 and comparison with eight theories. NASA TN D-5675.
- Hopkins E.J., Keener E.R., Dwyer H.A. 1971 Turbulent skin friction and boundary layer profiles measured on nonadiabatic flat plates at hypersonic Mach numbers. AIAA Paper 71-167.
- Hopkins E.J., Keener E.R., Polek T.E., Dwyer H.A. 1972 Hypersonic turbulent skin friction and boundary layer profiles on nonadiabatic flat plates. AIAA J. 10, 40-48.
- Hopkins E.J., Keener E.R. 1972 Pressure gradient effects on hypersonic turbulent skin friction and boundary layer profiles. AIAA J. 10, 1141-1142 and AIAA Paper 72-215, (CAT 7203).
- Horstman C.C., Owen F.K. 1972 Turbulent properties of a compressible boundary layer. AIAA J. 10, 1418-1424, (CAT 7205).
- Hottel H.C., Kalitinsky A. 1945 Temperature measurements in high velocity air streams. J. Appl. Mech. A 25-32.
- Hoydysh W.G., Zakkay V. 1969 An experimental investigation of hypersonic turbulent boundary layers in adverse pressure gradient. AIAA J. 7, 105-116 and Rep. No F-67-5, New York University.
- Jackson M.W., Czarnecki K.R., Monta W.J. 1965 Turbulent skin friction at high Reynolds numbers and low supersonic velocities. NASA TN D-2687, (CAT 6505).
- Jeromin L.O.F. 1966 Compressible turbulent boundary layer with fluid injection. Ph. D. thesis Cambridge, (CAT 6602).
- Jaremin L.O.F. 1968 An experimental investigation of the compressible turbulent boundary layer with air injection. Aeronaut. Res. Council, R. + M. No. 3526.
- Jones R.A., Faller W.V. 1970 Preliminary surveys of the wall boundary layer in a Mach 6 axisymmetric tunnel. NASA TN D-5620, (CAT 7002).
- Keener F.R., Hopkins E.J. 1969 Use of Preston tubes for measuring hypersonic turbulent skin friction.

 AIAA Paper 69-345.
- Keener E.R., Hopkins E.J. 1971 Accuracy of Pitot pressure rakes for turbulent boundary layer measurements in supersonic flow. NASA TN D-6229.
- Kesner E.R., Hopkins E.J. 1972 Turbulent boundary layer velocity profiles on a nonadiabatic flat plate at Mach number 6.5. MASA TN 0-6907; (CAT 7204).

- Keener E.R., Hopkins E.J. 1973 Van Driest generalization applied to turbulent skin friction and velocity profiles measured on the wall of a Mach 7.4 wind-tunnel. AIAA J. 11, 1784-1785.
- Kemp J.H. 1970 The Ames M-50 Helium tunnel. NASA TN D-5788.
- Kemp J.H., Sreekanth A.K. 1969 Proliminary results from an experimental investigation of nozzle wall boundary layers at Mach numbers ranging from 27 to 47. AIAA Paper 69-686.
- Kemp J.H., Owen F.K. 1972 Experimental study of nozzle wall boundary layers at Mach numbers 20 to 47, NASA TN D-6965, (CAT 7206).
- Kepler C.E., O'Brien R.L. 1962 Supersonic turbulent boundary layer growth over cooled walls in adverse pressure gradients. United Aircraft Corp. Aero. Syst. Div. ASD TDR 62-87.
- Keyes F.G. 1952 The heat conductivity, viscosity, specific heat and Prandtl numbers for thirteen gases. Project Squid TR no 37. M.I.T. Cambridge Mass.
- Kistler A.L. 1958 Fluctuation measurements in supersonic turbulent boundary layers. Ballistic Research Leboratories, Rep. 1052 and Phys. Fluids 2, 1959, (CAT 5803).
- Kistler A.L., Chen W.S. 1963 The fluctuating pressure field in a supersonic turbulent boundary layer.

 J. Fluid Mach. 16, 41-64.
- Kita J.P., Laganelli A.L. 1975 Gardon heat gauge temperature response. AIAA J. 13, 529-530.
- Kovasznay L.S.G. 1963 Development of turbulence measuring equipment. NACA TN 2839.
- Laderman A.J., Dematriades A. 1972 Measurements of the mean and turbulent flow in a cooled-wall boundary layer at Mach 9.37. AIAA Paper 72-73.
- Laderman A.J., Demetriades A. 1973 Hot-wire measurements of hypersonic boundary layer turbulence. Phys. Fluids 16, 179-181.
- Laderman A.J., Demetriades A. 1974 Mean and fluctuating flow measurements in the hypersonic boundary layer over a cooled wall. J. Fluid Mech. 63, 121-144, (CAT 7403).
- Laderman A.J. 1976 New measurements of turbulent shear stresses in hypersonic boundary layers. AIAA J. 14, 1286-1292.
- Laufer J., McClellan R. 1956 Measurement of heat transfer from fine wires in supersonic flows.

 J. Fluid Mech. 1, 276-289.
- (Laufer J. and colleagues at JPL). 1967 Jet Propulsion Laboratory Wind Tunnel Facilities. JPL Tech. Namo. 33-335.
- Lee R.E., Yanta W.J., Leonas A.C., Carner J.W. 1966 The NOL boundary layer channel. NOL TR 66-185.
- Lee R.E., Yanta W.J., Leones A.C. 3968 Velocity profile, skin friction balance and heat transfer measurements of the turbulent boundary layer at Mach 5. Proc. 1968 Heat Transfer and Fluid Mechanics Institute.
- Lee R.E., Yanta W.J., Leonas A.C. 1969 Velocity profile, skin friction balance and heat transfer measurements of the turbulant boundary layer at Mach 5 and zero pressure gradient, NOLTR 69 106.

- Lewis J.E., Gran R.L., Kubota T. 1972 An experiment on the adiabatic compressible turbulent boundary layer in adverse and favourable pressure gradients. J. Fluid Mech. 51, 657-672, (CAT 7201).
- Lobb R.K., Winkler E.M., Persh J. 1955 Experimental investigation of turbulent boundary layers in hypersonic flow. NOL NAVORD Report 3880, (CAT 5503).
- Mabey D.G., Meier H.U., Sawyer W.G. 1971 Some boundary layer measurements on a flat plate at Mach numbers from 2.5 to 4.5. AGARD Conf. Preprint No. 93.
- Mabey D.G., Meier H.U., Sawyer W.G. 1974 Experimental and theoretical studies of the boundary layer on a flat plate at Mach numbers from 2.5 to 4.5. RAE/TR 74127, (CAT 7402).
- Mabey D.G., Gaudet L. 1975 Performance of small skin friction balances at supersonic speeds.

 J. Aircraft 12, 819-825.
- Mc Croskey W.J. 1966 An experimental model for the sharp leading edge problem in rarefied hypersonic flow. Ph. D. Thesis Princeton Univ.
- Mc Lafferty G.H., Barber R.E. 1959 Turbulent boundary layer characteristics in supersonic streams having adverse pressure gradients. United Aircraft Co. East Hartford Rep. R. 1285, II, 1-124.
- Mc Lafferty G.H., Barber R.E. 1962 The effect of adverse pressure gradients on the characteristics of turbulent boundary layers in supersonic streams. J. Aerospace Sci., 29, 1-10.
- Mc Ronald A.D. 1975 Measurements of density and temperature in a hypersonic turbulent boundary layer using the electron beam fluorescence technique. Ph. D. Thesis Univ. Southern California.
- Maddalon D.V., Jackson W.E. 1970 A survey of the transport properties of Helium at high Mach number wind-tunnel conditions. NASA TM X-2020.
- Meier H.U. 1967 Messungen von turbulenten Grenzschichten ohne Wärmelbergang bei Oberschallgeschwindigkeit an einer ebenen Wand. Aerodynamische Versuchsanstalt Göttingen, 67 A 09.
- Meier H.U. 1969 Messungen von turbulenten Grenzschichten an einer wärmeisolierten Wand im kleinen Oberschallwindkanal der AVA. ZfW 17, 1-8.
- Meier H.U. 1969 A combined probe for temperature and pressure measurements in boundary layers in compressible flow. AIAA J. 7, 529-530.
- Meier H.U. 1970 Experimentelle und theoretische Untersuchung von turbulenten Grenzschichten bei Oberschallanströmung. M.P.I. Mitteilungen Nr. 49, (CAT 7003).
- Michel R. 1960 Résultat sur la couche limite turbulente aux grandes vitesses. ONERA Publ. 102 and X. Congr.Appl. Math. Mech. Stresa, (CAT 6001).
- Michel R. 1962 Developpement de la couche limite dans une tuyere hypersonique. AGARDOGRAPH 68, 693-716.
- Michel R. 1963 Couches limites turbulentes et calcul pratique des couches limites en fluide compressible. T.P. ONERA no. 25.
- Michel R., Quemard C., Elena M.P. 1969 Turbulent boundary layer velocity distributions in a uniform or accelerated compressible flow. 12th IUTAM Congress and La Recherche Aerospatiale, No. 128. 33-47 and ONERA T.P. 693. (CAT 6902).

- Mikulla V., Horstman C.C. 1975 The measurement of shear stress and total heat flux in a nonadiabatic turbulent hypersonic boundary layer. AIAA Paper 75-119.
- Monaghan R.J. 1955 The use of Pitot tubes in the measurement of laminar boundary layers in supersonic flow. 7. Meeting Wind Tunnel and Model Testing Panel (Ottawa) AGARD pp. 101-131 (AD No 109913).
- Moore D.R. 1958 An experimental investigation of the turbulent boundary layer behind a forward-facing step in supersonic flow. Rep. DRL-425, CF-2707, AD 655 462, (CAT 5805).
- Moore D.R. 1962 Velocity similarity in the compressible turbulent boundary layer with heat transfer. Ph. D. Dissertation Univ. of Texas, DRL-480, (CAT 6201).
- Moore D.R., Harkness J. 1965 Experimental investigations of the compressible turbulent boundary layer at very high Reynolds numbers. AIAA J. 3, 631-638, (CAT 6502).
- Morrisette E.L., Stone D.R., Cary A.M. 1968 Downstream effects of boundary layer trips in hypersonic flows. NASA SP 216.
- Myring D.E. 1968 The effects of normal pressure gradients on the boundary layer momentum equation. RAE TR 68214.
- Myring D.E., Young A.D. 1968 The isobars in boundary layers at supersonic speeds. Aeronaut. Quart. 19, 105-126.
- Naleid J.F. 1958 Experimental investigation of the impact pressure probe method of measuring local skin friction at supersonic speeds in the presence of an adverse pressure gradient. Report No DRL-432, CF-2739, (CAT 5801).
- Neubert W. 1974 Zähigkeit und Recovery-Faktor von Helium für Temperaturen von 0.4° bis 400°K.

 Studienarbeit Hermann-Föttinger-Institut für Thermo- und Fluiddynamik, Technische Universität Berlin.
- Owen F.K. 1970 Fluctuation and transition measurements in compressible boundary layers. AIAA Paper 70-745 and AIAA J. 8, 518-523.
- Owen F.K., Horstman C.C. 1972 On the structure of hypersonic turbulent boundary layers. J. Fluid Mech., 53, 611-636.
- Owen F.K., Horstman C.C. 1974 Turbulence measurements in an equilibrum hypersonic boundary layer. AIAA paper 74-93.
- Owen F.K., Horstman C.C., Kussoy M.I. 1975 Mean and fluctuating flow measurements of a fully-developed non-adiabatic hypersonic boundary layer. J. Fluid Nech. 70, 393-413.
- Paros J.M. 1970 Application of the force balance principle to pressure and skin friction sensors. I.E.S. Symposium pp. 363-368.
- Pasiuk L., Hastings G.M., Chatham R. 1965 Experimental Reynolds analogy factor for a compressible turbulent boundary layer with a pressure gradient. NOL TR 64-200, (CAT 6504).

THE PROPERTY OF THE PARTY OF

Peake D.J., Brakmann G., Romeskie J.M. 1971 Comparisons between some high Reynolds number turbulent boundary layer experiments of Mach 4 and various recent calculation procedures. Nat. Res. Council of Canada and AGARD CP-93-71 Paper 11. (CAT 7102).

- Perry J.H. 1968 Ph.D. thesis Univ. Southampton (CAT 6801)
- Perry J.H., East R.A. 1968 Experimental measurements of cold wall turbulent hypersonic boundary layers. AGARD CP NO 30, (CAT 6801)
- Reda D.C. 1974 Compressible turbulent skin friction on rough and rough/wavy walls in adiabatic flow. NOL TR 74-34.
- Reda D.C., Ketter F.C., Fan C. 1975 Compressible turbulent skin friction on rough and rough wavy walls in adiabatic flow. AIAA J. 13, 553-555.
- Rochelle W.C. 1963 Prandtl number distribution in a turbulent boundary layer with heat transfer at supersonic speeds. DRL-508.
- Rogers K.W., Wainwright J.B., Touryan K.J. 1966 Impact and static pressure measurements in high speed flows with transitional Knudsen numbers. Rarefied Gas Dynamics, Proc. 4th Int. Symp. 2, 157-174, Academic Press.
- Roshko A., Thomke G.J. 1970 Supersonic turbulent boundary layer interaction with a compression corner at very high Reynolds number. NASA CR 117052.
- Samuels R.D., Peterson J.B., Addock J.B. 1967 Experimental investigation of the turbulent boundary layer at a Mach number of 6 with heat transfer at high Reynolds numbers. NASA TN D-3858, (CAT 6701).
- Settles G.S.. Bogdonoff S.M., Vas I.E. 1975 Incipient separation of a supersonic turbulent boundary layer at moderate to high Reynolds numbers. AIAA-Paper 75-7 and AIAA J. 14, 50 (1976).
- Shutts W.H., hartwig W.H., Weiler J.E. 1955 Final report on turbulent boundary layer and skin friction measurements on a smooth thermally insulated flat plate at supersonic speeds. Report No DRL-364, CM-823, (CAT 5501).
- Shutts W.H., Fenter F.W. 1955 Turbulent boundary layer and skin friction measurements on an artificially roughened thermally insulated flat plate at supersonic speeds. Report No DRL-366, CM-837. AD 409935. (CAT 5502).
- Sigalla A. 1965 Calibration of Preston tubes in supersonic flow. AIAA J. 3, 1531.
- Smith D.W., Walker J.H. 1960 Skin friction measurements in incompressible flow. NASA TR 26.
- Smith K.G., Gaudet L, Winter K.G. 1962 The use of surface Pitot tubes as skin friction meters at supersonic speeds. Aeronaut. Res. Council R + M 3351.
- Sommer S.C., Short B.J. 1955 Free-flight measurements of turbulent boundary layer skin friction in the presence of severe aerodynamic heating and Mach number from 2.8 to 7. NACA TN-3391 and J. Aeronaut. Sci. 23, (1956).
- Spalding D.B., Chi S.W. 1964 The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech. 18, 117-143.
- Spangenberg W.C. 1955 Heat loss characteristics of hot-wire anemometers at various densities in transonic and supersonic flow. NACA TN-3381.
- Spangler J.E. 1963 A sensitive magnetic balance for the direct measurement of skin friction drag. LTV-Rep. 0-71000/3R-39.

- Squire L.C. 1970 Further experimental investigations of compressible turbulent boundary layers with air injection, R + M 3627.
- Stalmach C.J. 1958 Experimental investigation of the surface impact probe method of measuring local skin friction at supersonic speeds. Univ. of Texas, DRL-410, CF 2675, (CAT 5802).
- Stone D.R. 1971 The effect of discrete jets used as a boundary layer trip on transition, heat transfer and the downstream flow field at Mach numbers of 6.0 and 8.5. M.Sc. Thesis North Carolina State Univ.
- Stone D.R., Cary A.M. 1972 Discrete sonic jets used as boundary layer trips at Mach numbers of 6 and 8.5. NASA TN D-6802. (CAT 7209).
- Stroud J.F., Miller L.D. 1965 An experimental and analytical investigation of hypersonic inlet boundary layers. Lockheed-California Co. Burbank LR-18803 and AFFDL-TR-65-123 Vol. I and II, (CAT 6503).
- Stroud J.F., Miller L.D. 1966 Hypersonic inlet boundary layer research. J. Aircraft 3, 548-554.
- Sturek W.B. 1970 An experimental investigation of the supersonic turbulent boundary layer in a moderate adverse pressure gradient Pt. 1. A detailed description of the experiment and tabulation. Ballistic Research Labs. Aberdeen Proving Grounds, Md. BRL Report 1543.
- Sturek W.B. 1971 Ph.D. thesis Univ. of Delaware, Newark, Del.
- Sturek W.B., Danberg J.E. 1971 Experimental measurements of the supersonic turbulent boundary layer in a region of moderate adverse pressure gradient. AIAA Paper 71-162.
- Sturek W.B., Danberg J.E. 1971 Supersonic turbulent boundary layer in an adverse pressure gradient. Univ. Delaware T.R. No 141, (CAT 7101).
- Sturek W.B., Danberg J.E. 1971 The supersonic turbulent boundary layer in an adverse pressure gradient-experiment and data analysis. AGARD CCP-93-71.
- Sturek W.B., Danberg J.E. 1972a Supersonic turbulent boundary layer in adverse pressure gradient. Pt. I: The experiment. AIAA J. 10, 475-480.
- Sturek W.B., Danberg J.E. 1972b Supersonic turbulent boundary layer in adverse pressure gradient. Pt. II: Data analysis. AIAA J. 10, 630-636.
- Sturek W.B. 1973 Wall heat transfer effects on supersonic nozzle wall boundary layer temperature profiles. Ballistic Res. Lab. Memorandum Rep. No 2328.
- Sturek M.B. 1974 Turbulent boundary layer shear stress distribution for compressible adverse pressure gradient flow. AIAA J. 12, 375-376.
- Thomann H. 1967 Meat transfer in a turbulent boundary layer with a pressure gradient normal to the flow. FFA 113.
- Thomasm H. 1968 Effect of streamwise wall curvature on heat transfer in a turbulent boundary layer.

 J. Fluid Mech., 33, 282-292, (CAT 6800).
- Thomas G.C. 1974 Compressible turbulent boundary layers with combined air injection and pressure gradient. A.R.C. 35 483 London and R + M 3779 and Ph.D. thesis Cambridge 1973, (CAT 7401).

- Thomke G.J., Roshko A. 1969 Incipient separation of a turbulent boundary layer at high Raynolds number in two-dimensional supersonic flow over a compression corner. NASA CR 73308.
- Thomke G.J. 1969 Boundary layer skin friction characteristics in the supersonic test section of the Douglas Aerophysics Laboratory 4 ft Trisonic Wind Tunnel. McDonnell-Douglas Astronautics Co. Santa Monica, (CAT 6903). (Unpublished private communication).
- Vas I.E. 1971 Flow field measurements using a total temperature probe at hypersonic speeds. AIAA Paper 71-273.
- Vas I.E., Settles G.S., Bogdonoff S.M. 1976 An experimental study of the compressible turbulent boundary layer over a wide range of Reynolds number. Princeton University report in preparation, (CAT 7601).
- Vas I.E., Bogdonoff S.M. 1971 A preliminary report on the Princeton University high Reynolds number B x 8 in. supersonic tunnel. Internal Memo 39 AMS Dept. Gas Dynamics Lab., Princeton University.
- Voisinet R.L.P., Lee R.E., Yanta W.J. 1971 An experimental study of the compressible turbulent boundary layer with an adverse pressure gradient. AGARD CPP 93 71.
- Voisinet L.P., Lee R.E. 1972 Measurements of a Mach 4.9 zero pressure gradient turbulent boundary layer with heat transfer NOL TR 72-232, (CAT 7202).
- Voisinet L.P., Lee R.E. 1973 Measurements of a supersonic favourable-pressure-gradient turbulent boundary layer with heat transfer Part 1 Data compilation. NOL TR 73-224, (CAT 7304).
- Volluz R.J. 1961 Handbook of supersonic aerodynamics. Section 20. Wind tunnel instrumentation and operation. NAVORD Rep. 1488, Vol. 6.
- Wagner R.D., Maddalon D.V., Weinstein L.M. 1970 Influence of measured free stream disturbances on hypersonic boundary layer transition. AIAA J. 8, 1664-1670.
- Waltrup P.J., Schetz J.A. 1971 An experimental investigation of a compressible turbulent boundary layer subjected to a systematic variation of adverse pressure gradients. Virginia Polytechnic Institute VPI - E - 71 - 18, (CAT 7104).
- Waltrup P.J., Schetz J.A. 1973 Supersonic turbulent boundary layer subjected to adverse pressure gradients. AZAA J. 11, 50-58.
- Walz A. 1966 Strönungs- und Temperaturgrenzschichten. Verlag G. Braun Karlsruhe.
- Watson R.D., Bushnell D.M. 1971 Calibration of the Langley Mach 20 high Reynolds number Helium tunnel including diffuser measurements. NASA TMX-2353.
- Watson R.D., Harris J.E., Anders J.B. 1973 Measurements in a transitional/turbulent Mach 10 boundary layer at high Reynol: numbers. AIAA Paper 73-165, (CAT 7305).
- Weiler J.E., Hartwig W.H. 1952 The direct measurement of local skin friction coefficient. DRL Report 295 CF-1747.
- Weinstein L.M. 1971 A shielded fine-wire probe for rapid measurement of total temperature in high speed flows. J. Spacecraft + Rockets 8, 425-428.

- Winkler E.M. 1954 Stagnation temperature probes for use at high supersonic speeds and evaluated temperatures. NAVORD Rep. 3834.
- Winkler E.M., Cha M.H. 1959 Investigation of flat plate hypersonic turbulent boundary layers with heat transfer at a Mach number of 5.2. NOL NAVORD Rep. 6631, (CAT 5902).
- Winkler E.M. 1961 Investigation of flat plate hypersonic turbulent boundary layer with heat transfer. Trans. Am. 3oc. Mech. Engrs. Ser. E, 83, 323-329, (CAT 5902).
- Winter X.G., Smith K.G., Rotta J.C. 1965 Turbulent boundary layer studies on a waisted body of revolution in subsonic and supersonic flow. AGARDOgraph 97, 1, 933-962.
- Winter K.G., Smith K.G., Gaudet L. 1965 Measurements of turbulent skin friction at high Reynolds numbers at Mach numbers of 0.2 and 2.2. AGARDOgraph 97, 1, 97-124.
- Winter K.G., Rotta J.C., Smith K.G. 1965 Untersuchung der turbulenten Grenzschicht an einem taillierten Drehkörper bei Unter- und Oberschallanströmung. DLR FB 65-52.
- Winter K.G., Gaudet L. 1968 Some recent work on compressible turbulent boundary layers and excrescence drag. NASA SP 216, 15.1 15.25.
- Winter K.G., Gaudet L. 1970 Turbulent boundary-layer studies at high Reynolds numbers at Mach numbers between 0.2 and 2.8. RAE TR 70251.
- Winder K.G., Rotta J.C., Smith K.G. 1970 Studies of the turbulent boundary layer on a waisted body of revolution in subsonic and supersonic flow. Aeronaut. Res. Council 3633 (supersedes RAE TR 68215 (1968)), (CAT 7004).
- Yenta W.J., Brott D.L., Lee R.L. 1969 An experimental investigation of the Preston probe including effects of heat transfer, compressibility and favourable pressure gradient. AIAA Paper 69-548.
- Young F.L. 1965 Experimental investigation of the effects of surface roughness on compressible turbulent boundary layer skin friction and heat transfer. Univ. Texas Report DRL 532, AD 621 085, (CAT 6606).
- Zakkay V., Wang C.R. 1972 Turbulent boundary layer in an adverse prossure gradient without effect of wall curvature. NASA CR ~ 117247, (CAT /208).
- Zwarts F. 1970 Compressible turbulent boundary layers. Ph. D. thesis, Mc Gill Univ. Dept. Mech. Eng., (CAT 7007).

	REPORT DOCU	MENTATION PAGE	
1. Recipient's Reference	2. Originator's Reference AGARD-AG-223	3. Further Reference ISBN 92-835-1245-6	4. Security Classification of Document UNCLASSIFIED
No	ivisory Group for Aero orth Atlantic Treaty Or rue Ancelle, 92200 Ne	—	velopment
	COMPILATION OF	COMPRESSIBLE TUR	BULENT
7. Presented at			(market)
8. Author(s)	nholz and P.J.Finley		9. Date
	more and F.J.Piniey		July 1977
10. Author's Address			11. Pages
	(see flyleaf for address	ics)	480
12. Distribution Statement		tributed in accordance ons, which are outlined GARD publications.	
13. Keywords/Descriptors			
Turbulent boundary lay Compressible flow Experimental data	er Tables (data) Two dimensi Turbulent fic	onal flow	dary layer transition
14. Abstract		,	

The compilation provides data obtained in 59 experimental studies of compressible, two-dimensional, turbulent boundary layers. The data are presented in standardised form as tables and microfiche, and are available on magnetic tape. The published descriptions of the experiments have also been standardised, and in many cases supplemented by additional information provided by the original authors, who have also supplied much, as yet, unpublished data.

The entries which describe the experiments are preceded by a general introduction describing the principles and methods applied in the compilation of the data catalogue. There is also an initial discussion of some of the problems of interpretation encountered in this field.

This AGARDograph was prepared at the request of the Fluid Dynamics Panel of AGARD.

AGARDograph No.223 Advisory Group for Aerospace Research and	AGARD-AG-223	AGARDograph No. 223 Advisory Group for Aerospace Research and	AGARD-AG-223
Development, NATO A CRITICAL COMPLATION OF COMPRESSIBLE TURBULENT BOUNDARY LAYER DATA by H.H.Fernbolz and P.J.Finley Published July 1977	Turbulent boundary layer Compressible flow Experimental data Tables (data)	Development, NATO A CRITICAL COMPILATION OF COMPRESSIBLE TURBULENT BOUNDARY LAYER DATA by H.H.Fernho'z and P.J.Finley Published July 1977	Turbulent boundary layer Compressible flow Experimental data Tables (data)
480 pages. The compilation provides data obtained in 59 experimental studies of compressible, two-dimensional, turbulent boundary layers. The data are presented in standardized form as tables and microfiche, and are available on magnetic tape. The published descriptions	Two dimensional flow Turbulent flow Boundary layer transition	480 pages The compilation provides data obtained in 59 experimental studies of compressible, two-dimensional, turbulent boundary layers. The data are presented in standardised form as tables and microfiche, and are available on magnetic tape. The published descriptions	Two dimensional flow Turbulent flow Boundary layer transition
of the experiments have also been standarised, and in many cases supplemented by additional information P.T.O.		of the experiments have also been standarised, and in many cases supplemented by additional information P.T.O.	
AGARDograph No. 223 Advisory Group for Aerospace Research and	AGARD-AG-223	AGARDograph No.223 Advisory Group for Aerospace Research and	AGARD-AG-223
Development, NATO A CRITICAL COMPILATION OF COMPRESSIBLE TURBULENT BOUNDARY LAYER DATA by H.H.Fernholz and P.J.Finley Published July 1977 480 pages	Turbulent boundary layer Compressible flow Experimental data Tables (data) Two dimensional flow	Development, NATO A CRITICAL COMPILATION OF COMPRESSIBLE TURBULLENT BOUNDARY LAYER DATA by H.H.Femholz and P.J.Finley Published July 1977 480 pages	Turbulent boundary layer Compressible flow Experimental data Tables (data)
The compilation provides data obtained in 59 experimental studies of compressible, two-dimensional, turbulent boundary layers. The data are presented in standarused form as tables and microfiche, and are available on magnetic tape. The published descriptions of the experiments have also been standarised, and in many cases supplemented by additional information	l urbikent ikow Boundary layer transition	The compilation provides data obtained in 59 experimental studies of compressible, two-dimensional, turbulent boundary layers. The data are presented in standardised form as tables and microfiche, and are available on magnetic tape. The published descriptions of the experiments have also been standarised, and in many cases supplemented by additional information	Luroutent now Boundary layer transition
P.T.O.		P.T.O.	

, iu

į

ACAIND

NATO (OTAN

7 RUE ANCELLE - 92200 NEUILLY-SUR-SEINE

Talaphone 745.08.10 - Telex 610176

DISTRIBUTION OF UNCLASSIFIED AGARD PUBLICATIONS

AGARD does NOT hold stocks of AGARD publications at the above address for general distribution. Initial distribution of AGARD publications is made to AGARD Member Nations through the following National Distribution Centres. Further copies are sometimes available from these Centres, but if not may be purchased in Microfiche or Photocopy form from the Purchase Agencies listed below.

NATIONAL DISTRIBUTION CENTRES

BELGIUM

Coordonnateur AGARD -- VSL Etat-Major de la Force Aérienne Caserne Prince Baudouin Place Dailly, 1030 Bruxelics

CANADA

Defence Scientific Information Service Department of National Defence Ottawa, Ontario K1A OZ2

DENMARK

Danish Defence Research Board Østerbrogades Kaserne Copenhagen Ø

FRANCE

O.N.E.R.A. (Direction) 29 Avenue de la Division Leclerc 92 Chatillon sous Bagneux

GERMANY

Zentralstelle für Luft- und Raumfahrtdokumentation und -information Postfach 860880 D-8 München 86

GREECE

Hellenic Armed Forces Command D Branch, Athens

ICELAND

Director of Aviation c/o Flugrad Reykjavik

Microfiche or Photocopy

5285 Port Royal Road

Springfield Virginia 22151, USA

Information Service (NTIS)

National Technical

ITALY

Aeronauticz Militare Ufficio del Delegato Nazionale all'AGARD 3, Piazzale Adenauer

Roma/EUR LUXEMBOURG

See Belgium

NETHERLANDS

Netherlands Delegation to AGARD National Aerospace Laboratory, NLR P.O. Box 126

Delft

NORWAY

Norwegian Defence Research Establishment Main Library P.O. Box 25

N-2007 Kjeller

PORTUGAL

Direccao do Servico de Material da Forca Aerea Rua de Escola Politecnica 42 Lisboa

Attn: AGARD National Delegate

TURKEY

Department of Research and Development (ARGE) Ministry of National Defence, Ankara

UNITED KINGDOM Defence Research Information Centre Station Square House

St. Mary Cray Orpington, Kent BR5 3RE

UNITED STATES

National Aeronautics and Space Administration (NASA), Langley Field, Virginia 23365 Attn: Report Distribution and Storage Unit

THE UNITED STATES NATIONAL DISTRIBUTION CENTRE (NASA) DOES NOT HOLD STOCKS OF AGARD PUBLICATIONS, AND APPLICATIONS FOR COPIES SHOULD BE MADE DIRECT TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS) AT THE ADDRESS BELOW.

PURCHASE AGENCIES Microfiche

Space Documentation Service European Space Agency 10, rue Mario Nikis 75015 Paris, France

Microfiche

Technology Reports Centre (DTI) Station Square House St. Mary Cray Orpington, Kent BR5 3RF England

Requests for microfiche or photocopies of AGARD documents should include the AGARD serial number, title, author or editor, and publication date. Requests to NTIS should include the NASA accession report number. Full bibliographical references and abstracts of AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR), published by NASA Scientific and Technical information Facility Post Office Box 8757
Baltimore/Washington International Airport
Maryland 21240, USA

Government Reports Announcements (GRA), published by the National Technical information Services, Springfield Virginia 22151, USA

Printed by Technical Editing and Reproduction Ltd. Harford House, 7-9 Charlotte St, London WIP 1HD