Kolokwium nr 1 z analizy matematycznej I.1

25 listopada 2021, 14:30 – 18:00

Rozwiązanie każdego zadania **prosimy** umieścić w **jednym** pliku (każde rozwiązanie w osobnym), najlepiej **pdf**.

Można korzystać z książek, notatek z zajęć itp.

Zadania należy rozwiązywać samodzielnie.

Należy szczegółowo uzasadniać rozwiązania powołując się na odpowiednie twierdzenia, lematy, ... Jakość uzasadnienia będzie wpływała na ocenę zadań.

 ${f Nie\ należy}$ korzystać z narzędzi, które nie zostały wyprowadzone lub udowodnione na lub ćwiczeniach z analizy I.1

Nie wolno korzystać z pomocy innych osób i programów do obliczeń symbolicznych. **Nie wolno** komunikować się z innymi uczestnikami kolokwium.

Zadanie 1 (8 pkt.). Niech ciąg $(a_n)_{n\in\mathbb{N}}$ będzie zadany rekurencyjnie:

$$a_1 > 0$$
, $a_{n+1} = \frac{4}{27} + \frac{a_n}{9}$.

- (a) Wykazać, że ciąg $(a_n)_{n\in\mathbb{N}}$ jest zbieżny i obliczyć jego granicę.
- (b) Zakładając, że $6a_n \neq 1$, obliczyć granicę ciągu $(b_n)_{n \in \mathbb{N}}$ danego wzorem

$$b_n = \frac{e^{a_n} - e^{\frac{1}{6}}}{6a_n - 1}.$$

lub wykazać, że ciąg $(b_n)_{n\in\mathbb{N}}$ nie ma granicy.

Zadanie 2 (8 pkt.). Wykazać, że zbiór

$$A = \left\{ \frac{n^2 + m^2}{n! + m!}, \ n, m \in \mathbb{N} \right\}$$

jest ograniczony i wyznaczyć jego kresy. Uwaga: $\mathbb{N} = \{k \in \mathbb{Z} : k \geqslant 1\}$.

Zadanie 3 (8 pkt.). Dla ciągów zadanych poniższymi wzorami $(n \in \mathbb{N})$ znaleźć ich granicę lub wykazać, że granica nie istnieje:

(a)
$$a_n = \sqrt[n]{\frac{100^n}{n!} + \frac{1}{n^2} + (0.999)^n};$$
 (b) $b_n = \frac{1 \cdot 1! + 3 \cdot 2! + 5 \cdot 3! + \dots + (2n-1) \cdot n!}{(n+1)!}.$

Zadanie 4 (8 pkt.). Niech $(a_n)_{n\in\mathbb{N}}$ będzie takim ciągiem liczb rzeczywistych, że $\lim_{n\to\infty}\frac{a_n}{n}=0$. Wykazać, że

$$\lim_{n \to \infty} \frac{\max\{a_1, a_2, \dots, a_n\}}{n} = 0.$$

Zadanie 5 (8 pkt.). Niech $(a_n)_{n\in\mathbb{N}}$ będzie ciągiem liczb dodatnich, spełniającym warunek $\lim_{n\to\infty}\frac{a_{n-1}a_{n+1}}{a_n^2}=4$. Niech

$$b_n = \sqrt[n^2]{a_n}.$$

Obliczyć granicę $\lim_{n\to\infty} b_n$ lub wykazać, że ciąg $(b_n)_{n\in\mathbb{N}}$ nie jest zbieżny.