Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

Sidebar: bootstrapping is different

- Sometimes people confuse randomization inference with bootstrapping
- Bootstrapping randomly draws a percent of the total observations for estimation; "uncertainty over the sample"
- Randomization inference randomly reassigns the treatment;
 "uncertainty over treatment assignment"

(Thanks to Jason Kerwin for helping frame the two against each other)

6-step guide to randomization inference

The following is from Imbens and Rubin's textbook on causal inference, as well as Matthew Blackwell's helpful lectures

- 1. Choose a sharp null hypothesis (e.g., no treatment effects)
- 2. Calculate a test statistic (T is a scalar based on D and Y)
- 3. Then pick a randomized treatment vector $ilde{D_1}$
- 4. Calculate the test statistic associated with (\tilde{D},Y)
- 5. Repeat steps 3 and 4 for all possible combinations to get $\tilde{T} = \{\tilde{T}_1, \dots, \tilde{T}_K\}$
- 6. Calculate exact p-value as $p = \frac{1}{K} \sum_{k=1}^{K} I(\tilde{T}_k \ge T)$