

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Indice: 3

Date: 02/12/2019

Réf: DE-EX-01

Page: 1/3

EPREUVE D'EVALUATION

Année Universitaire : 2023/2024	Date de l'Examen : 15/05/2024		
Nature: ☐ DC ☐ Examen ☐ DR	Durée : ☐ 1h ☐ 1h30min ☑ 2h		
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 03+Annexe		
Section: ☐ GCP ☐ GCV ☐ GEA ☑ GCR ☐ GM	Enseignant : M. Abdelhakim KHLIFI		
Niveau d'étude : ☑ 1 ère ☐ 2 ème ☐ 3 ème année	Documents Autorisés :□ Oui ☑ Non		
Matière : Introduction aux Communications et	Remarque : Calculatrice autorisée		
Transmissions			

Exercice 1: (5 points)

1.	Donne	r le rôle de chacu	in de ces blocs:				
		Codage source		Wein	binaine	en	elec

b. Codage canal showshed de rogner numerqueur de debit c. Codage en ligner Baggatian des deanne pour me Bicace de flore

2. Justifiez le bon choix d'un code en ligne. The B.P. Mesto out eners

3. Codez la séquence binaire suivante S=10010011 selon

ASPE Images In Someway Dixonden 11" c. Manchester

d. NRZ bipolaire 1 -> attentive +Và-V B. Plage 4. Dans un tableau, comparez les deux codes RZ-1/2 et NRZ bipolais

5. Codez la séquence binaire suivante S=100001000011 selon HDB3

6. Quelle est la capacité d'une ligne téléphonique de rapport signal/bruit de 8 dB ? Même question avec 15 dB? Que remarquez-vous?

7. On désire transmettre des informations avec un débit de 800 Mbit/s sur un câble à paire torsadée de bande passante 100 MHz. Un rapport signal sur bruit de 20 dB est-il suffisant pour transmettre ces informations?

8. Quel est le rapport signal sur bruit requis pour transmettre correctement à 500 Mbit/s?

39. Montrez que le débit d'une ligne téléphonique vaut 64 Kbit/s.

10. Qu'est que le bruit de quantification? Comment le compenser pour le cas de la Donnes par un echantillor, dans un ech d'amp entre téléphonie? -Om et Von un parson quant q= pas de quantité cois

> Ecole Nationale d'Ingénieurs de Gabès, Rue Omar Ibn el Khattab- Zrig -6029, Gabès Dura Comp nombreso Tel: 75 392 100- Fax: 75 294 690

www.enig.rnu.tn, contact@enig.rnu.tn

Indice: 3

Date: 02/12/2019

Page: 2/3

Exercice 2: (7 points)

Soit les trois messages HDLC échangés entre le « PC A » et le « PC B » comme suit :

Trame 1

Trame 2

Trame 3

- 1. En se basant sur la méthode VRC/LRC et la parité impaire, vérifiez si les trois trames sont correctement reçues ou non et décodez les messages échangés entre le PC « A » et « B ».
- 2. D'après les trois messages décodés, en déduire le nom du protocole.
- 3. Ensuite, le PC « A » envoie le message « DATA » vers le PC « B ». Calculer le checksum sur 8 bits pour la séquence envoyée sachant que chaque caractère est suivi par un bit de parité impaire.
- 4. Le PC « B » répond par le message « OK » est transmis à l'aide de la méthode CRC standard. Chaque caractère est suivi par un bit de parité impaire. Le polynôme générateur est $x^5 + x^2 + x + 1$. Calculer le CRC et en déduire le rendement du code.
- 5. Donnez la différence entre un équipement L1, un équipement L2 et un équipement L3.
- 6. Soit le plan d'adressage suivant :

Host	Adresse		
PC A	192.168.50.1/24		
PC B	192.168.50.3/24		
Serveur	192.168.30.10/24		

Schématisez la topologie adéquate pour interconnecter les différents équipements.

Date: 02/12/2019

Page: 3/3

1.5

indice: 3

Exercice 3: (8 points)

Partie A (5 points)

1. Dans un tableau, comparer les différents types de commutation.

2. Un réseau mobile se caractérise généralement de deux parties : une partie radio et une partie réseau. On s'intéresse à la partie réseau. Décrire l'évolution de la partie réseau en citant le type de commutation employé pour chaque génération du réseau mobile (2,G à

Multiprolocal 3. Définir le réseau MPLS.

4. Justifiez pourquoi MPLS est qualifié de protocole de couche « 2,5 ».

5. Quelle est la différence entre deux types de commutation de paquets (mode connecté et virtuel non connecté)

6) Expliquez brièvement comment est possible de transmettre temps réel via un réseau à commutation de paquets connecté.

Partie B (3 points)

On souhaite transférer un document de taille L le long d'un chemin composé de la source, de la destination et de cinq commutateurs. La distance qui sépare deux nœuds successifs vau (2 Km) Supposons que chaque lien est caractérisé par un débit de 5 Mbps et que les commutateurs prennent en charge la commutation de circuits et de paquets. Ainsi, on peut soit diviser le fichier en paquets, soit configurer un circuit via les commutateurs et envoyer le fichier sous la forme d'un flux de bits. Supposons que la taille du paquet ést 1035 octets et la taille d'en-tête est 35 octets. Le temps du traitement au niveau de chaque commutateur est de l'ordre 1 ms. Le temps d'établissement du circuit est d'ordre 100 ms et la vitesse de propagation est 2×10^6 m/s

- 1. Exprimer en fonction de L, le temps de transmission pour le transfert d'un fichier dans le cas:
 - a. Commutation de circuits
 - b. Commutation de paquets
- 2. Déterminer la valeur de L à partir de laquelle la commutation de circuits sera avantageuse.
- 3. Proposez une solution pour diminuer la latence.

ASCII	BITS	ASCII	BITS	ASCII	BITS	ASCII	BITS
NUL	0000000	SP	0100000	@	1000000	Aukulav.av.av.a	1100000
SOH	0000001	!	0100001	Ā	1000001	a	1100001
STX	0000010	**	0100010	В	1000010	b	1100010
ETX	0000011	#	0100011	C	1000011	C	1100011
EOT	0000100	\$	0100100	D	1000100	d	1100100
ENQ	0000101	%	0100101	E	1000101	е	1100101
ACK	0000110	&	0100110	F	1000110	f	1100110
Bel	0000111	•	0100111	G	1000111	g	1100111
BS	0001000	(0101000	Н	1001000	h	1101000
HT	0001001)	0101001	1	1001001	i	1101001
LF	0001010	ŵ	010101φ	J	1001010	j	1101010
VT	0001011	+	0101011	K	1001011	k	1101011
FF	0001100	,	0101100		1001100		1101100
CR	0001101	外面等	0101101	M	1001101	m	1101101
SO	0001110		0101110	M	1001110	n	1101110
SI	0001111	1	0101111	0	1001111	0	1101111
DLE	0010000	0	011000φ	P	1010000	p	1110000
DC1	0010001	1	0110001	Q	1010001	q	1110001
DC2	0010010	2	011001φ	R	1010010	r	1110010
DC3	0010011	3	0110011	S	1010011	5	1110011
DC4	0010100	4	0110100	T	1010100	t	1110100
NCK	0010101	5	0110101	U	1010101	u	1110101
SYN	0010110	6	0110110	V	1010110	V	1110110
ETB	0010111	7	0110111	W	1010111	W	1110111
CAN	0011000	8	0111000	X	1011000	X	1111000
EM	0011001	9	0111001	Υ	1011001	у.	1111001
SUB	0011010	:	0111010	Z	1011010	Z	1111010
ESC	0011011	;	0111011	[1011011	{	1111011
FS	0011100	<	0111100	1	1011100		1111100
GS	0011101	112	0111101]	1011101	}	1111101
RS	0011110	>	0111110	٨	1011110	~	1111110
US	0011111		011111	<u> </u>	1011111	DEL	1111111