Matemática Discreta - Listas de Exercícios

Jorge Augusto Salgado Salhani

Novembro, 2022

1 Lista 6 - Aritmética Modular

- 1.1 Calcule o conjunto $\mathcal{U}(n)$ dos elementos invertíveis de \mathbb{Z}_n para os seguintes casos:
 - (a) n = 3

Sendo $a \in \mathbb{Z}_n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$, se $\gcd(a, n) = 1$, então $a \in \mathcal{U}(n)$.

Dessa forma, sendo $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$, então $\mathcal{U}(3) = \{\overline{1}, \overline{2}\}$.

(b) n = 4

 $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}, \text{ então } \mathcal{U}(4) = \{\overline{1}, \overline{3}\}.$

c n = 6

 $\mathbb{Z}_6=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5}\},\, ent\tilde{a}o\,\,\mathcal{U}(6)=\{\overline{1},\overline{5}\}.$

(d) n = 8

 $\mathbb{Z}_8=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7}\}, \text{ então } \mathcal{U}(8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$

(e) n = 11

 $\mathbb{Z}_{11}=\{\overline{0},\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7},\overline{8},\overline{9},\overline{10}\}. \text{ Então } \mathcal{U}(11)=\{\overline{1},\overline{2},\overline{3},\overline{4},\overline{5},\overline{6},\overline{7},\overline{8},\overline{9},\overline{10}\}$

1.2 Encontre o inverso de cada elemento de $\mathcal{U}(n)$ da questão anterior.

(a)
$$n = 3$$

$$\mathcal{U}(3) = \{\overline{1}, \overline{2}\}.$$

Seja b inverso de $\overline{a} \in \mathcal{U}(n)$, então

$$gcd(a, n) = 1 \implies ax + ny = 1$$

com a implicação dada pela identidade de Bezout. Assim $ax \equiv 1 \pmod{n}$, com $x \equiv b \pmod{n}$, onde podemos encontrar x e y pelo algoritmo de Euclides.

Para $\overline{2}$,

$$2x + 3y = 1$$

$$3 = 2(1) + 1 \implies 3 - 2(1) = 1$$

$$3(1) + 2(-1) = 1$$

$$(x,y) = (-1,2)$$
. Logo

$$-1 \equiv b \pmod{3} \implies -1 - b = 3k, k \in \mathbb{Z}$$

 $b = \overline{2}$

(b)
$$n = 4$$

$$\mathcal{U}(4) = \{\overline{1}, \overline{3}\}.$$

Para $\overline{3}$

$$3x + 4y = 1$$

$$4 = 3(1) + 1 \implies 1 = 4 - 3(1)$$

$$4(1) + 3(-1) = 1$$

$$(x,y) = (-1,1)$$
. Logo

$$-1 \equiv b \pmod{4} \implies -1 - b = 4k$$

 $b = \overline{3}$.

(c)
$$n = 6$$

 $\mathcal{U}(6) = \{\overline{1}, \overline{5}\}$

$$5x + 6y = 1$$

$$6 = 5(1) + 1 \implies 1 = 6(1) - 5(1)$$

 $6(1) + 5(-1) = 1$

(x,y) = (-1,1). Logo

$$-1 \equiv b \pmod{6} \implies -1 - b = 6k$$

 $\bar{b} = 5$

(d) n = 8

$$\mathcal{U}(8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}$$

Para $\overline{3}$

$$3x + 8y = 1$$

$$8 = 3(2) + 2$$

$$3 = 2(1) + 1$$

$$2 = 3 - 1 \implies 8 = 3(2) + (3 - 1) \implies$$

$$8 = 3(3) - 1 \implies 1 = 3(3) - 8 \implies 1 = 3(3) + 8(-1)$$

(x,y) = (3,-1). Logo

$$3 \equiv b \pmod{8} \implies 3 - b = 8k \implies b = -5$$

$$-5 \equiv 3 \pmod{8} \implies b = 3$$

 $\bar{b}=3$

Para $\overline{5}$

$$5x + 8y = 1$$

$$8 = 5 + 3$$

$$5 = 3 + 2$$

$$3 = 2 + 1$$

$$1 = 3 - 2 = 3 - (5 - 3) = 3 - 5 + 3 = 3(2) - 5$$

 $3 = 8 - 5$

$$1 = (8-5)(2) - 5 = 8(2) - 5(2) - 5 = 8(2) + 5(-3)$$

(x,y) = (-3,2). Logo

$$-3 \equiv b \pmod{8} \implies b \equiv -3 \pmod{8} \implies b+3=8k$$

 $b = \overline{5}$.

Para $\overline{7}$,

$$7x + 8y = 1 \tag{1}$$

$$8 = 7 + 1 \implies 1 = 8 - 7 = 8(1) + 7(-1)$$

(x,y) = (-1,1). Logo

$$-1 \equiv b \pmod{8} \implies b \equiv -1 \pmod{8} \implies b+1 = 8k$$

 $b = \overline{7}$.

(e) n = 11

 $\mathbb{Z}_{11} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}\}. \text{ Então } \mathcal{U}(11) = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}\}$

Para $\overline{2}$,

$$2x + 11y = 1$$

$$11 = 5(2) + 1 \implies 1 = 11(1) - 2(5) = 11(1) + 2(-5)$$

(x,y) = (-5,1). Logo

$$-5 \equiv b \pmod{11} \implies b \equiv -5 \pmod{11} \implies b+5 = 11k$$

 $b = \overline{6}$

Para $\overline{3}$,

$$3x + 11y = 1$$

$$11 = 3(3) + 2$$

$$3 = 2 + 1$$

$$11 = 3(3) + (3 - 1) = 3(4) - 1 \Longrightarrow$$

 $1 = 3(4) - 11 = 3(4) + 11(-1)$

$$(x,y) = (4,-1)$$
. Logo

$$4 \equiv b \pmod{11} \implies b = \overline{-7} = \overline{4}$$

 $b = \overline{4}$

Para $\overline{5}$,

$$5x + 11y = 1$$

$$11 = 5(2) + 1 \implies 1 = 11(1) - 5(2) = 11(1) + 5(-2)$$

$$(x,y) = (-2,1), \log 0$$

$$-2 \equiv b \pmod{11} \implies -2 - b = 11k$$

 $b = \overline{9}$

Para $\overline{10}$,

$$10x + 11y = 1$$

$$11 = 10(1) + 1 \implies 1 = 11(1) - 10(1) = 11(1) + 10(-1)$$

(x,y) = (-1,1). Logo

$$-1 \equiv b \pmod{11} \implies -1 - b = 11k$$

 $b = \overline{10}$.

1.3 Para cada $\mathcal{U}(n)$ do exercício 1, encontre a(s) raiz(es) primitiva(s), se existir(em).

(a)
$$n = 3$$

(b)
$$n = 4$$

(c)
$$n = 6$$

(d)
$$n = 8$$

(e)
$$n = 11$$

1.4	Determine a m	nenor solução	positiva d	e cada u	ıma das (congruências	abaixo

- (a) $x \equiv 7 \pmod{3}$
- **(b)** $x \equiv -1 \pmod{6}$
- (c) $3x \equiv 15 \pmod{4}$
- (d) $3x + 2 \equiv 0 \pmod{7}$
- (e) $2x 1 \equiv 7 \pmod{15}$

1.5 Calcule a função $\Phi(x)$ de Euler abaixo.

- (a) $\Phi(125)$
- (a) $\Phi(16200)$
- (a) $\Phi(10!)$