2. Context Free Languages

Context-Free Grammar: A context-free grammer (CFG) is a 4-tuple (V, Σ, R, S) , where

- *V* is a finite set called the **variables**;
- Σ is a finite set, disjoint from V, called the **terminals**;
- *R* is a finite set of **rules**, with each rule being a variable and a string of variables and terminals, that is,

$$V o (V \cup \Sigma)^*$$

• $S \in V$ is the start variable.

Derivations: Let u, v, w be strings of variables and terminals, and

$$A o w \in R$$

Then uAv yields uwv: $uAv \Rightarrow uwv$. u derives v, written $u \stackrel{*}{\Rightarrow} v$, if

- u=v, or
- there is a sequence u_1,u_2,\cdots,u_k for $k\geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v$$

Language of the grammar: the language of the grammer is $\{w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w\}$, which is a **context-free language**.

Examples

• Language $\{0^n1^n \mid n \geq 0\}$, grammer

$$S_1
ightarrow 0 S_1 1 \mid \epsilon$$

• Language $\{1^n0^n \mid n \geq 0\}$, grammer

$$S_2
ightarrow 1 S_2 0 \mid \epsilon$$

 $\bullet \ \ \mathsf{Language} \ \{0^n1^n \mid n \geq 0\} \cup \{1^n0^n \mid n \geq 0\}$

$$S o S_1 \mid S_2$$

Leftmost Derivations: A derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

Ambiguity: A string w is derived **ambiguously** is a context free grammer G if it has two or more different leftmost derivations. Grammer G is **ambiguous** if it generates some strings ambiguously.

- For example, $EXP \to EXP + EXP \mid EXP \cdot EXP \mid (EXP) \mid a$. Then the string $a + a \cdot a$ has two different derivations, thus it generate the string **ambiguously**.
- Not all ambiguity can be resolved, called **inherently ambiguous**. For example, $\{a^ib^jc^k\mid i=j\lor j=k\}.$
- There is no algorithm for resolving ambiguity.
- There is not even an algorithm for finding out whether a given CFG is ambiguous.
- However, there are **standard techniques for writing an unambiguous grammer** that help in most cases.

Chomsky Normal Form: A context-free grammer is in Chomsky normal form if every rule is of the form

$$egin{aligned} A &
ightarrow BC \ A &
ightarrow a \end{aligned}$$

where a is any terminal and A,B,C are any variables, except that B and C may be not the start variable. In addition, we permit the rule $S \to \epsilon$, where S is the start variable.

Theorem. Any context-free language is generated by a context-free grammer in Chomsky normal form.

Proof.

- 1. Add a new start variable S_0 with the rule $S_0 \to S$, where S is the original start variable.
- 2. Remove every $A \to \epsilon$, where $A \neq S$. For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.
 - a) $R \to uAv$ we add $R \to uv$;
 - b) Do the above operation for *each* occurrence of A: e.g. $R \to uAvAw$, we add $R \to uvAw \mid uAvw \mid uvw$.
 - c) For $R \to A$, we add $R \to \epsilon$ unless we had previously removed $R \to \epsilon$.
- 3. Remove every $A \to B$. Whenever a rule $B \to u$ appears, where u is a string of variables and terminals, we add the rule $A \to u$ unless this was previously removed.

4. Replace each rule $A \to u_1 u_2 \cdots u_k$ with $k \ge 3$ and each u_i is a variable or terminal with the rules

$$A \to u_1 A_1, A_1 \to u_2 A_2, A_2 \to u_2 A_3, \cdots, \text{ and } A_{k-2} \to u_{k-1} u_k.$$

The A_i 's are new variables. We replace any terminal u_i with the new variable U_i and add $U_i \rightarrow u_i$.

Theorem. If G is a context-free grammer in Chomsky normal form then any $w \in L(G)$ such that $w \neq \epsilon$ can be derived from the start state in exactly 2|w|-1 steps.

Pushdown automata: A pushdown automata (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- *Q* is a finite of *states*;
- Σ is a finite set of *input alphabet*;
- Γ is a finite set of *stack alphabet*,
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\epsilon} o \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function;
- $q_0 \in Q$ is the *start state*;
- $F \subseteq Q$ is the set of acceptance states.

Note. The "stack" can contain at most 1 element.

Computation by PDA: Let $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$ be a PDA. M accepts input w if w can be written as $w_1w_2\cdots w_m$, where each $w_i\in\Sigma_\varepsilon$ and sequences of states $r_0,r_1,\cdots,r_m\in Q$ and strings $s_0,s_1,\cdots,s_k\in\Gamma^*$ exist that satisfy the following three conditions.

- $r_0 = q_0$ and $s_0 = \epsilon$.
- For $i=0,1,\cdots,m-1$, we have $(r_{i+1},b)\in\delta(r_i,w_{i+1},a)$, where $s_i=at$ and $s_{i+1}=bt$ for some $a,b\in\Gamma_\epsilon$ and $t\in\Gamma^*$.
- ullet $r_m \in F$.

Theorem. A language is context free iff some pushdown automaton recognizes it.

Theorem. The context-free languages are closed under union, concatenation and kleene star.

Proof. Let two operand context-free languages be $N_1=(V_1,\Sigma_1,R_1,S_1)$ and $N_2=(V_2,\Sigma_2,R_2,S_2)$

- Union: add a new transition $S \rightarrow S_1 \mid S_2$;
- Concatenation: add a new transition $S \rightarrow S_1 S_2$;
- ullet Kleene star: add a new transition $S o SS_1\mid \epsilon.$

Theorem. The intersection of a context-free language with a regular language is a context-free language.

Proof. Let PFA $M_1=(Q_1,\Sigma,\Gamma_1,\delta_1,s_1,F_1)$ and DFA $M_2=(Q_2,\Sigma,\delta_2,s_2,F_2)$, build $M=(Q,\Sigma,\Gamma_1,\Delta,s,F)$.

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2);$
- $F = F_1 \times F_2$;

- Δ is defined as follows:
 - \circ For each PDA rule $(q_1,a,eta) o (p_1,r)$ and each $q_2\in Q_2$, add the following rule to Δ ;

$$((q_1,q_2),a,eta)
ightarrow ((p_1,\delta(q_2,a)),r)$$

• For each PDA rule $(q_1,\epsilon,\beta) o (p_1,r)$ and each $q_2 \in Q_2$, add the following rule to Δ .

$$((q_1,q_2),a,\beta)\to ((p_1,q_2),r)$$

Lemma. (the pumping lemma for context-free languages) If A is a context-free language, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided as s = uvxyz satisfying the conditions:

- ullet For each $i\geq 0$, $uv^ixy^iz\in A$;
- |vy| > 0;
- |vxy| < p.

Proof. Let G be a CFG for CFL A, and let b be the maximum number of symbols in the rhs of a rule. In any parse tree using this grammar, every node can have no more than b children. So, if the height of the parse tree is at most b, the length of the string generated is at most b^h . Conversely, if a generated string is at least $(b^h + 1)$ long, then each of its pase trees must be at least (h + 1) high. Therefore, we choose the pumping length

$$p=b^{|V|+1}$$

Then for any string $s \in A$ with $|s| \geq p$, any of its parse trees must be at least (|V|+1) high.

Let au be one parse tree of s with *smallest number of nodes*, whose height is at least (|V|+1). So au has a path from the root to a leaf of length (|V|+1) with (|V|+2) nodes. One variable R must appear at least twice in the last (|V|+1) variable nodes on this path. Then we can divide s into uvxyz as follows.

- **Condition 1**: Replace the subtree of the second *R* by the subtree of the first *R* will validate the condition;
- **Condition 2**: If |vy| = 0, that is, $v = y = \epsilon$, then the path between two R can be eliminated, thus τ cannot have the smallest number of nodes;
- **Condition 3**: To see $|vxy| \le p = b^{|V|+1}$, note that vxy is generated by the first R. We can always choose R so that the last two occurrences fall within the bottom (|V|+1) high. A tree of this height can generate a string of length at most $b^{|V|+1}=p$.

Theorem. The context-free language are not closed under intersection or complementation.

Proof. Clearly $\{a^nb^mc^m\mid m,n\geq 0\}$ and $\{a^mb^mc^n\mid m,n\geq 0\}$ are CFL, but there intersection $\{a^nb^nc^n\mid n\geq 0\}$ are not CFL according to the pumping lemma. To the second part of the statement,

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$$

so CFL is not closed under complementation (otherwise, it should be closed under intersection).

Problems for CFG/PDA

- **Acceetance Problem**: Given a PDA *A* and a string *w*, does *A* accept *w*?
- **Emptiness Problem**: Given a PDAA, is the language L(A) empty?
- **Equality**: Given two PDA A and B, is L(A) equal to L(B)?