

Fig. 1A



Fig. 1B



Standard curve generated with a cysteine-biotinylated peptide and quantitation by stable isotope dilution. A) Zoom-scan from an ion-trap mass spectrometer showing a 4 amu isotope distribution for the  $[M+2H]^{2+}$  ions of the peptide modified with the isotopically light (1457.9 u) and heavy (1461.8) biotinyling reagents. The ratio ( $d0/d8$ ) was 4.54. B) Curve generated from the analysis of isotope ratios from zoom-scans of 5 different concentrations of d0-labeled peptide measured in the presence of a known amount of peptide labeled with the isotopically heavy reagent.



Tandem mass spectrum of a cysteine-modified peptide from  $\alpha$ -lactalbumin. Modification of the cysteine residue with the custom synthesized biotinylation reagent did not affect the ability of the Sequest computer program to correctly match this peptide to a database sequence.

Fig. 2

Fig. 3A



Fig. 3B



Fig. 3C





Fig. 4B

s0319\_hlnavcid.0364.0364.2.out  
 # amino acids - 93009033, # proteins - 290043, # matched peptides - 1973750  
 C:\LCQ\database\owl1.3, (C# +494.50)

| #  | Rank/Sp | $(M+H)^+$ $\times 10^4$ | Ions   | Reference       | Peptide                                |
|----|---------|-------------------------|--------|-----------------|----------------------------------------|
| 1. | 1 / 1   | 1994.3                  | 4.4675 | 17/26 G3P_RABIT | (R)VPTPNVSVDLTC#R (SEQ ID NO:60)       |
| 2. | 2 / 403 | 1995.1                  | 2.7366 | 13/34 SLTRNGL   | (E)LGKPVLTANQVTIWEGLR (SEQ ID NO:61)   |
| 3. | 3 / 3   | 1995.0                  | 2.6591 | 16/36 FLP_LACCA | (N)IANPNVYETLTAATVCTI (SEQ ID NO:62)   |
| 4. | 4 / 209 | 1995.0                  | 2.6335 | 14/36 A42912    | (Y)LALLPSDAEGPHGQFVTDK (SEQ ID NO:63)  |
| 5. | 5 / 381 | 1995.1                  | 2.4634 | 13/38 H69373    | (L)ALLVLVAPAMAAGNGEDLRN (SEQ ID NO:64) |

Fig. 5A



Y502412#49885E8603



Ratio: 0.57



Ratio: >200

Fig. 5B

Fig. 5C



Figure 6A-C



**Figure 7** Schematic representation of the automated LC-MS/MS system. Proteins are typically separated by 1D or 2D SDS-PAGE (1). Protein spots or bands are selected, excised and proteolytically cleaved with trypsin (2). Digests are loaded into an autosampler, which delivers them sequentially to the injection mechanism of a narrow-bore HPLC system (Microm). The column gradient is automatically applied to separate individual peptides (3). Column eluate is sprayed directly into a mass spectrometer where sequence information from the peptides is collected (4). Recorded peptide masses and CID spectra are transferred to a data station for Sequest analysis, and a final summary of all identifications made for all samples originally loaded is sent to a printer (5).



*Figure 6 Schematic of the SPE-CE-MS/MS system. A) A fused silica capillary, typically of 50  $\mu\text{m}$  i.d., is modified at the electrospray end with a liquid junction to establish electrical contact with the analytes inside the capillary. Approx. 5 cm from the end of the capillary, the SPE device is introduced. This consists of C<sub>18</sub>-derivatized, large pore silica beads packed inside a 250  $\mu\text{m}$  i.d. Teflon tubing with Teflon membranes at each end to hold the beads in place between the two fused silica capillaries. B) The injection end of the capillary is inserted into a sealed container which is maintained at a constant, slightly hyperbaric pressure in order to ensure constant flow. A platinum electrode is inserted through the cap, into the container, in order to allow the electrical contact to be made.*