I - Quelques questions de cours

Soit E et F des \mathbb{K} -espace vectoriel et $f \in \mathscr{L}(E,F)$ une application linéaire de E dans F.

- 1. (a) Rappeler la définition de ker(f).
- (b) Montrer que c'est un sous-espace vectoriel de E.
- (c) On suppose dans cette question seulement que f est injective. Montrer que $\ker(f) = \{0_E\}.$
- (d) On suppose dans cette question seulement sur $\ker(f) = \{0_E\}$. Montrer que f est injective.
- 2. (a) Rappeler la définition de Im(f).
 - (b) Montrer que c'est un sous-espace vectoriel de F.
- 3. Rappeler le théorème du rang (sans démonstration).
- 4. Soit f l'application linéaire de \mathbb{R}^2 dont la matrice dans la base canonique de \mathbb{R}^2 est $A = Mat_{\mathscr{B}}(f) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
 - (a) Calculer f(x,y) pour tout $(x,y) \in \mathbb{R}^2$.
 - (b) Donner une base de $\ker(f)$ et une base de $\operatorname{Im}(f)$ et vérifier le théorème du rang dans ce cas très particulier.
 - (c) A-t-on $\mathbb{R}^2 = \ker(f) \oplus \operatorname{Im}(f)$?
- 5. (a) Rappeler la formule de Grassman donnant la dimension $\dim(A+B)$ pour deux sous-espaces A,B de E de dimensions finies.

Dans les questions suivantes, on propose de faire la preuve de cette formule.

(b) On se donne une base (e_1,\ldots,e_p) de $A\cap B$. On la complète en une base $(e_1,\ldots,e_p,e_{p+1},\ldots,e_q)$ de A.

Montrer que l'espace $A' = \text{Vect}(e_{p+1}, \dots, e_q)$ est un espace supplémentaire de $A \cap B$ dans B c'est-à-dire : $A = (A \cap B) \oplus A'$.

(c) On complète par ailleurs, la base (e_1,\ldots,e_p) de $A\cap B$ en une base $(e_1,\ldots,e_p,f_{p+1},\ldots,f_r)$ de B.

Sans démonstration, donner un supplémentaire B' de $A \cap B$ dans B.

- (d) Que valent $\dim(A') + \dim(A \cap B)$ et $\dim(B') + \dim(A \cap B)$?
- (e) Montrer que la somme A' + B est directe.
- (f) Montrer que tout vecteur de A+B peut s'écrire $a'+\beta$ avec $a'\in A'$ et $\beta\in B$. En déduire que $A'\oplus B=A+B$
- (g) Conclure.

II - Équation matricielle et changement de base

On considère la matrice : $C = \frac{1}{3} \begin{pmatrix} 0 & -3 & 3 \\ 1 & 1 & -2 \\ -1 & 2 & -1 \end{pmatrix}$.

- 1. Montrer que $C^3 + C = 0_{\mathcal{M}_3(\mathbb{R})}$.
- 2. Soit $f \in \mathcal{L}(\mathbb{R}^3)$ l'endomorphisme canoniquement associé à $C = Mat_{\mathscr{B}_c}(f)$. Montrer que $\ker(f)$ est une droite vectorielle et donner un vecteur u_1 dont la **première coordonnée** est 1 tel que $\ker(f) = \operatorname{Vect}(u_1)$.
- 3. On rappelle que f^2 est une notation désignant la composition $f^2 = f \circ f$. Donner la matrice de f^2 dans la base canonique puis celle de $f^2 + \mathrm{Id}_{\mathbb{R}^2}$.
- 4. Montrer que $\ker(f^2 + \operatorname{Id}_{\mathbb{R}^2})$ est un plan vectoriel et donner deux vecteurs u_2, u_3 dont les premières coordonnées sont -1 tels que : $\ker(f^2 + \operatorname{Id}_{\mathbb{R}^2}) = \operatorname{Vect}(u_2, u_3)$.
- 5. Montrer que la famille $\mathscr{B}' = (u_1, u_2, f(u_2))$ est une base de \mathbb{R}^3 .
- 6. Donner la matrice de f dans la base $(u_1, u_2, f(u_2))$.
- 7. Donner la matrice de passage $P = P_{\mathscr{B}_c \to \mathscr{B}'}$ de la base canonique à la base \mathscr{B}' et calculer son inverse.
- 8. Quelle est la relation liant les matrices $Mat_{\mathscr{B}_c}(f), Mat_{\mathscr{B}'}(f), P$ et P^{-1} ? Le vérifier par le calcul.

III - Isométries vérifiant la même équation matricielle

On suppose $E = \mathbb{R}^3$ muni du repère orthonormé direct (O, e_1, e_2, e_3) usuel. Soit $\varepsilon_1 = \frac{1}{\sqrt{3}}(1, 1, 1)$ et $\varepsilon_2 = \frac{1}{\sqrt{2}}(-1, 0, 1)$.

- 1. Calculer $\varepsilon_3 = \varepsilon_1 \wedge \varepsilon_2$.
- 2. Que peut-on dire de la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$? (soyez aussi précis que possible).
- 3. Représenter schématiquement le plan $P = \text{Vect}(\varepsilon_2, \varepsilon_3)$ et la droite $D = \text{Vect}(\varepsilon_1)$. En particulier que peut-on dire du plan P et de la droite D?
- 4. Dans la base $\mathscr{B}_{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$, donner :
 - La matrice de la projection vectorielle sur P parallèlement à D.
 - La matrice de la rotation vectorielle d'axe D et d'angle $\theta = \frac{\pi}{2}$.
 - La matrice de la composée $p \circ r$ où p (resp. r) est la projection (resp. la rotation) définie ci-dessus.
- 5. En déduire que $(p \circ r)^3 + (p \circ r) = 0_{\mathscr{L}(\mathbb{R}^3)}$.
- 6. Calculer $(p \circ r)^3(\varepsilon_1)$, $(p \circ r)^3(\varepsilon_2)$, $(p \circ r)^3(\varepsilon_3)$ et retrouver le résultat de la question précédente.