Application Project GB730

Rahul Hunasehalli Rudranna Gowda Anvesh Puppala

Agenda

Introduction

Problem Statement

Objective and Decision Variables

Constraints

Optimization Model

Benefits and Limitations

Challenges and Inspirations

Extensions and Clients

References

Supporting Files

Team Contribution

Introduction

The USA government plans to allocate Covid-19 vaccines at various distribution centers among cities with the highest populations through which the vaccines will be distributed to other cities within the State.

We found this problem interesting because of unbalanced distribution of Covid-19 vaccines that we observed in India. Having a generalized optimization model for vaccine distribution would assist any country in fighting the Covid epidemic more efficiently.

Problem Statement

Build a linear optimization model which identifies potential vaccine distribution center locations among the cities within each state in the US and allocates each city to a distribution center in its vicinity.

Objectives and Decision Variables

Objective

 Minimize the total distance traveled in shipping vaccine vials through all the cities under consideration in the state.

Decision Variables

- Assign cities where distribution centers are to be located
- Assign each city to its respective distribution center.

Constraints

- All decision variables are binary in nature.
- Number of distribution centers in a state should be equal to the number of centers allocated to it by the government.
- Assign distribution center to a city only if a distribution center exists there.
- Each city needs to get assigned to a distribution center.

Optimization Model

Model Platform

- Generalized model is built on python and an instance of the model for Wisconsin state is illustrated in Excel.
- Python is used to build the model because of its ability to scale in order to include all cities, towns and villages in the state if we have population census data.
- Python library pyomo is used to formulate, solve, and analyze the optimization model.
- Google maps API is employed to construct the distance matrix for all the cities, towns and villages with population data.

Input Parameters

- Cities and their population for the State under consideration.
- Number of distribution centers allocated to state by the government.
- Number of vaccine vials per shipment.
- Google maps API key to access and create distance matrix for the cities

Sample Inputs (Python Model)

City	Population				
Milwaukee	577,222				
Madison	269,840 107,395				
Green Bay					
Kenosha	99,986				
Racine	77,816				
Appleton	75,644 71,158				
Waukesha					
Eau Claire	69,421				
Oshkosh, Oshkosh	66,816				
Janesville	65,615				

```
# Number of vials per shipment
vials_per_shipment = 2000
# Number of DCs required in State
DC_num = 4
#Maps url and google API key
maps_url = "https://maps.googleapis.com/maps/api/distancematrix/json?"
API_key = "AIzaSyBxHhp-sHroFA0kEpa70FuzCit2UdaTEm0"
```

Optimization Model

Sample Output (Python Model)

Minimized distance to be traveled to deliver vaccine shipments = 11699.5 Vaccine distribution centers are to be located in the following locations: Milwaukee Madison Appleton Eau Claire Distribution center allocation: Distribution centre in Milwaukee allocated to Milwaukee Distribution centre in Milwaukee allocated to Kenosha Distribution centre in Milwaukee allocated to Racine Distribution centre in Milwaukee allocated to Waukesha Distribution centre in Madison allocated to Madison Distribution centre in Madison allocated to Janesville Distribution centre in Appleton allocated to Green Bay Distribution centre in Appleton allocated to Appleton Distribution centre in Appleton allocated to Oshkosh, Oshkosh Distribution centre in Eau Claire allocated to Eau Claire

Optimization Model

Single Instance for Wisconsin State Excel model

Distances I	Distances between cities											s needed to deliv	er vaccines	quantity needed in e	ach city			
Milwaukee Madison Green Bay Kenosha Racine Appleton Waukesha Eau Claire Oshkosh Janesville										esville	Tot	Total Trips required Dist. Traveled			Number of vials shipped p	oer trip		
Milwaukee	0	128	188	65	39	172	31	395	142	123	Milwaukee	289	-	577,222	2,000			
Madison	128	0	224	185	169	175	105	287	145	69	Madison	135	-	269,840			Objective: Minimize the total distance traveled in	n KM
Green Bay	191	218	0	251	236	49	218	313	81	274	Green Bay	54	2,657	107,395			11,700	
Kenosha	64	184	248	0	17	229	84	451	199	116	Kenosha	50	3,190	99,986				
Racine	39	169	233	17	0	214	69	436	184	106	Racine	39	1,529	77,816				
Appleton	172	169	49	229	214	0	158	293	32	225	Appleton	38	-	75,644				
Waukesha	31	103	214	88	72	161	0	370	131	99	Waukesha	36	1,120	71,158				
Eau Claire	396	286	309	452	437	320	372	0	319	344	Eau Claire	35	-	69,421		DC Total V	Vaccine vials to be allocated to DC by Government	
Oshkosh	143	140	81	200	184	32	128	294	0	196	Oshkosh	33	1,056	66,816	Mil	lwaukee	826,182	
Janesville	122	65	270	115	106	221	81	339	191	0	Janesville	33	2,148	65,615		Madison	335,455	
														<u> </u>	A	ppleton	249,855	
DVs: Locate a	DVs: Locate a service center? (Constraint: Binary)									-	Constraint: Buildi	ng exactly 4 distribut	ion centers		Ea	au Claire	69,421	
	1	1	0	0	0	1	0	1	0	0	4	=	4		Total Vaccine allocated to W	isconsin 1,	,480,913	
	1		•								100							
DVs: Assign	DVs: Assign cities to the DC? Constraint: Each city needs to get assigned to an DC																	
Milwaukee	1	0	0	0	0	0	0	0	0	0	1	=	1					
Madison	0	1	0	0	0	0	0	0	0	0	1	=	1					
Green Bay	0	0	0	0	0	1	0	0	0	0	1	=	1					
Kenosha	1	0	0	0	0	0	0	0	0	0	1	=	1					
Racine	1	0	0	0	0	0	0	0	0	0	1	=	1					
Appleton	0	0	0	0	0	1	0	0	0	0	1	=	1					
Waukesha	1	0	0	0	0	0	0	0	0	0	1	=	1					
Eau Claire	0	0	0	0	0	0	0	1	0	0	1	=	1					
Oshkosh	0	0	0	0	0	1	0	0	0	0	1	=	1					
Janesville	0	1	0	0	0	0	0	0	0	0	1	=	1					
100.000.000.00			222000	27 7 10														
Constraint: C	Only can assign I	DC to a city	if an DC ex		101000		550	N. Salv										
	4	2	0	0	0	3	0	1		0								
	<=	<=	<=	<=	<=	<=	<=	<=	<=	<=								

How the model works

- The python model reads the state population data by city (excel file) and creates the distance matrix using Google maps API.
- Model calculates the number of trips required to meet vaccine requirement for each city based on its population and vials per shipment.
- Pyomo utilizes the distance matrix and number of trips required, applies constraints and minimizes the objective and gives the potential distribution centers and cities assigned to them.

Benefits and Limitations

Benefits

 The model can be scaled to be used for any state in any country as long as they have the latest census data and google map coordinates (i.e., latitude and longitude)

Limitation

- The population data by city should be structured in a way that Google maps recognizes the city names.
- Population data by city needs to be collated and inputted by user.
- User should have access to Goggle Maps API which is a paid service.

13

Challenges and Inspirations

Challenges:

Structuring the API link to extract distance matrix for cities under consideration.

Inspirations:

- GB760 Business Data Technologies course helped in understanding the usage of APIs to extract information from websites.
- We are proud of how we incorporated Google maps API to construct distance matrix as a way to remove user dependencies.

Extensions and Clients

Extension of project:

 The model could be further enhanced such that the city and population data is extracted directly from either Wikipedia or population census website based on the state the user inputs.

Clients:

- Democratic Central or State Governments.
- Supply chain and Logistics companies.

15

References

References

- The population data of top 10 cities in Wisconsin state is taken from Wikipedia.
 (link: https://en.wikipedia.org/wiki/List_of_cities_in_Wisconsin)
- Google Maps distance matrix documentation (Link: <u>https://developers.google.com/maps/documentation/distance-matrix/overview</u>)

Supporting Files

Team Contribution

The team members equally contributed towards all aspects of the project

Thank you

Anvesh Puppala Rahul Hunasehalli Rudranna Gowda