

Article

A model for interactive media authoring

Jean-Michaël Celerier 1,†,‡ , Myriam Desainte-Catherine 1,‡ and Bernard Serpette 2,*

- ¹ Affiliation 1; e-mail@e-mail.com
- ² Affiliation 2; e-mail@e-mail.com
- * Correspondence: e-mail@e-mail.com; Tel.: +x-xxx-xxxx
- † Current address: Affiliation 3
- ‡ These authors contributed equally to this work.

Academic Editor: name

Version September 29, 2017 submitted to Appl. Sci.

- Featured Application: Authors are encouraged to provide a concise description of the specific
- application or a potential application of the work. This section is not mandatory.
- 3 Abstract: A single paragraph of about 200 words maximum. For research articles, abstracts should
- 4 give a pertinent overview of the work. We strongly encourage authors to use the following style of
- structured abstracts, but without headings: 1) Background: Place the question addressed in a broad
- context and highlight the purpose of the study; 2) Methods: Describe briefly the main methods or
- ⁷ treatments applied; 3) Results: Summarize the article's main findings; and 4) Conclusion: Indicate
- the main conclusions or interpretations. The abstract should be an objective representation of the
- article, it must not contain results which are not presented and substantiated in the main text and
- should not exaggerate the main conclusions.
- Keywords: interactive scores; intermedia; dataflow; patcher; i-score

2 1. Introduction

15

17

18

19

25

Many music software fit in one of three categories: sequencers, patchers, and textual programming environments. Sequencers are used to describe temporal behaviours: an audio clip plays after another, while an automation curve changes an audio filter. Patchers are more commonly used to describe invariants: for instance specific audio filters, or compositional patterns.

We propose in this paper a method that combines the sequencer and the patcher paradigm in a live system.

The general approach is as follows: we first define the temporal structure, which allows to position events and processes relatively to each other, hierarchically, and in a timely fashion. Then, we define a graph structure akin to dataflows, which is extended with special connection types to take into account the fact that nodes of the graph might not always be active at the same time. Both structures are then combined: the state of the temporal processes is bound to the dataflow nodes. This combination is then expanded with specific implicit cases that are relevant in computer music workflows. These cases are described using structures wrapping the temporal and dataflow graphs.

The usage of the system is presented in example compositions: the first one is an example of audio editing, the second an interactive musical installation.

- 1.1. State of the art
- base: max, pd, séquenceurs: cubase/protools, live/bitwig...
- 30 openmusic

- 31 antescofo
- 32 inscore
- 1.2. Relationship with i-score
- -> formalisation du papier icmc
- -> refonte suite à tentative avec LibAudioStream

36 2. Temporal model

We note: TC for the temporal conditions, IC for the instantaneous conditions, I for the intervals. chaining.

- 39 2.1. Data types
- process, interval, event, sync
- 2.1.1. Conditions and expressions

We first define the conditional operations we want to be able to express. We restrain ourselves to simple propositional logic operands: **and**, **or**, **not**.

Expressions operate on addresses and values of the device tree presented in chap. ??, according to the grammar in ??.

Formally, expressions are defined as a tree: Let **Comparator** be an identifier for standard value comparison operations: <, >, >, >, =, \neq and **Operator** standard logical operators **and** & **or**.

 $Atom : (Parameter \mid Value) \times (Parameter \mid Value) \times Comparator$

Negation: Expression

Composition: Expression \times Expression \times Operator

 $Impulse : Parameter \times Bool$

Expression: Atom | Negation | Composition | Impulse

- Two operations are defined on expressions and the data types that compose them:
 - update: Expression → Expression. Used to reset any internal state and query up-to-date values for the expressions. For instance, update on an Atom fetches if possible new values for the parameters, why may include network requests.
- evaluate : Expression \rightarrow Bool. Performs the actual logical expression evaluation, according to the expected rules.

Precisely:

50

51

$$\begin{array}{ll} \text{update}: & \text{Composition} \to \text{Composition} \\ & (e_1,e_2,o) \mapsto (\text{update } e_1, \text{update } e_2,o) \\ \text{update}: & \text{Negation} \to \text{Negation} \\ & (e_1) \mapsto (\text{update } e_1) \\ \text{update}: & \text{Atom} \to \text{Atom} \\ & \left\{ (p_1,p_2) \mapsto (\text{pull } p_1, \text{pull } p_2) \right. \\ & \left. \left(p_1,v_2 \right) \mapsto (\text{pull } p_1,v_2) \right. \\ & \dots \\ \text{update}: & \text{Impulse} \to \text{Impulse} \\ & \left. (p,b) \mapsto (p,\text{false}) \right. \end{array}$$

- An atom is a comparison between two parameters, a parameter and a value, or two values.
 - Negations and compositions are the traditional predicate logic building blocks.
- We introduce a specific operator, "impulse", which allows to decide whether a value was received.
- 58 2.1.2. Interval

55

We want to be able to express the passing of time, for a given duration. This duration may or may not be finite.

A duration is defined as a positive integer. An interval is at its core a set of durations: a min, an optional max, and the current position. The lack of max means infinity. An interval is said to be fixed when its min equals its max. It may be enabled or disabled.

```
\begin{aligned} \textbf{Status} &= \text{Waiting} \mid \text{Happened} \mid \text{Disposed} \\ \textbf{Interval} &= \text{Duration} \times \text{Maybe Duration} \times \text{Duration} \times \text{Status} \end{aligned}
```

The time scale is not specified by the system: for instance, when working with audio data it may be better to use the audio sample as a base unit of time. But many applications don't use the audio rate: when working purely with visuals it may be better to use the screen refresh rate as time base in order not to waste computer resources and energy.

- 65 2.1.3. Instantaneous condition
- Then, we want to be able to enable or disable events and intervals according to a condition, given in the expression language seen in ??. An instantaneous condition is defined as follows:

Condition = Expression
$$\times$$
 Interval[] \times Interval[] \times Status

- It is preceded and followed by a set of intervals. The most common case for an expression is to be true.
- ₇₀ 2.1.4. Temporal condition
- A temporal condition
- 72 2.1.5. Process
- ⁷³ 2.1.6. Operations
- 74 add_process interval process -> interval
- 75 add_event sync
- exécution :
- 77 interval:
- tick: interval * t -> interval * state
- 79 processes:
- state: process * t -> process * state
- 2.2. Temporal graph: scenario
- 2.2.1. Creational operations

Figure 1. Hierarchical tree

Figure 2. Temporal DAG

- state:
- process_event:
- 85 2.2.2. Execution operations
- 86 add_interval sc itv sev eev
- 87 add_sync sc
- 88 2.3. Loop
- Pbq: not introducing cycles in the temporal graph
- 90 3. Data model
- => set date => set offset pour offset audio (p-ê pas nécessaire si on fait comme LAStream)
- 92 3.1. Data types
- 93 add_node graph
- connect graph node node edge

```
3.2. Operations
3.3. Data graph
3.4. Data nodes
3.4.1. Passthrough
-> used for scenario and interval
3.4.2. Automation
3.4.3. Mapping
3.4.4. JavaScript
3.4.5. Piano Roll
3.4.6. Sound file
```

106 3.4.8. Mix

107 3.4.9. Shader

3.4.10. 3D model

gltf?

4. Combined model

3.4.7. Sound input

111 4.1.

115

116

120

121

122

125

126

5. Proposed sequencer behaviour

UI: création automatique de liens implicites des enfants vers les parents => "cable créé par défaut" quand on rajoute un processus dont on marque l'entrée

- => pour toute contrainte, pour tout scénario, créer noeud qui fait le mixage => création d'objets récursivement, etc
- Problème des states dans scénario ? => states du scénario: comment interviennent-ils ? faire un scénario fantôme *
- Mettre l'accent sur la recréation de la sémantique de i-score à partir du graphe: => messages: actuellement "peu" typés ; rajouter type de l'unité ?
- => pbq du multicanal: pour l'instant non traitée, on ne gère que les cas mono / stereo pour le upmix / downmix Choix pour multicanal: faire comme jamoma avec objets tilde => sliders et dispatching de canaux ? => cables: rubberband ? il faut mettre un rubberband dès qu'on a une entrée et une sortie qui n'ont pas la même vitesse relative. Dire que pour les automations ça interpole de manière naturelle avec le ralentissement et l'accélération (on sépare vitesse et granularité)

Exécution complète d'un tick:

- Copie des buffers audio Exécution du tick temporel Récupération des states
- Dire qu'on pourrait affiner en combinant plus précisément les "sous-ticks" temporels et de données pour que par exemple la production d'un état dans un scénario entraîne une condition dans un autre scénario

131 6. Applications

127

- Exemple article Myriam: micro-montage et sélection d'effets - Carrousel

7. Evaluation

- 7.1. Notes on implementation
- Recréation séquenceur traditionnel, patcher, et ableton live (vue session).
- => "third gen" audio sequencer. first gen: cubase, etc second gen: non-linear: ableton, bitwig third gen: i-score
 - reproducibilité: code source dispo

139 8. Discussion

140 9. Conclusion

- Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1:
 title, Video S1: title.
- Acknowledgments: Blue Yeti, ANRT, SCRIME All sources of funding of the study should be disclosed. Please clearly indicate grants that you have received in support of your research work. Clearly state if you received funds for covering the costs to publish in open access.
- Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used "X.X. and Y.Y. conceived and designed the experiments; X.X. performed the experiments; X.X. and Y.Y. analyzed the data; W.W. contributed reagents/materials/analysis tools; Y.Y. wrote the paper." Authorship must be limited to those who have contributed substantially to the work reported.
- Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.
- © 2017 by the authors. Submitted to *Appl. Sci.* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).