Quantum Phase Estimation

Renato Neves

Table of Contents

Introduction

Quantum Fourier Transform

Quantum Phase Estimation

Quantum Phase Estimation

The Problem

Unitary operator on *n* qubits

Eigenvector with eigenvalue $\lambda = e^{i2\pi\phi}$ (0 $\leq \phi < 1$)

Find out ϕ

Eigenvalues of unitaries are always of form above

Introduction 3 / 27

The Problem

Unitary operator on *n* qubits

Eigenvector with eigenvalue
$$\lambda = e^{i2\pi\phi}$$
 (0 $\leq \phi < 1$)

Find out ϕ

Eigenvalues of unitaries are always of form above

This problem occurs in diverse tasks

- Shor's algorithm
- Determining n^{Q} of solutions in unstructured search

Introduction 3 / 27

A Certain Subroutine

Previous problem uses an important subroutine called

Quantum Fourier Transform (QFT)

Essentially a change-of-basis operation which encodes information of computational basis states in local phases

Introduction

Table of Contents

Introduction

Quantum Fourier Transform

Quantum Phase Estimation

QFT: 1 Qubit

$$\textit{QFT}_1 \left| 0 \right\rangle = \tfrac{1}{\sqrt{2}} \big(\left| 0 \right\rangle + \tfrac{1}{1} \left| 1 \right\rangle \big) \qquad \quad \textit{QFT}_1 \left| 1 \right\rangle = \tfrac{1}{\sqrt{2}} \big(\left| 0 \right\rangle + \tfrac{(-1)}{1} \left| 1 \right\rangle \big)$$

QFT: 1 Qubit

$$\textit{QFT}_1 \left| 0 \right\rangle = \tfrac{1}{\sqrt{2}} \big(\left| 0 \right\rangle + \tfrac{1}{1} \left| 1 \right\rangle \big) \qquad \quad \textit{QFT}_1 \left| 1 \right\rangle = \tfrac{1}{\sqrt{2}} \big(\left| 0 \right\rangle + \tfrac{(-1)}{1} \left| 1 \right\rangle \big)$$

Hence $QFT_1 = H$. Operation H^{-1} allows to extract information encoded in local phases $\bigvee_{=H}$

QFT: 1 Qubit

$$\mathit{QFT}_1\ket{0} = rac{1}{\sqrt{2}}ig(\ket{0} + rac{1}{1}\ket{1}ig) \qquad \quad \mathit{QFT}_1\ket{1} = rac{1}{\sqrt{2}}ig(\ket{0} + rac{(-1)}{1}\ket{1}ig)$$

Hence $QFT_1 = H$. Operation H^{-1} allows to extract information encoded in local phases $\bigvee_{=H}$

Exercise

Let
$$\omega_1=\mathrm{e}^{i2\pi\frac{1}{2}}.$$
 Show that $\mathit{QFT}_1\ket{x}=\frac{1}{\sqrt{2}}\Big(\ket{0}+\omega_1^{1\cdot x}\ket{1}\Big)$

angle of π radians

Let
$$\omega_{2} = e^{i2\pi \frac{1}{4}}$$

$$QFT_{2} |00\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 0} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 0} |1\rangle)$$

$$QFT_{2} |01\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 1} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 1} |1\rangle)$$

$$QFT_{2} |10\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 2} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 2} |1\rangle)$$

$$QFT_{2} |11\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 3} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 3} |1\rangle)$$

Let
$$\omega_{2} = e^{i2\pi \frac{1}{4}}$$

$$QFT_{2} |00\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 0} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 0} |1\rangle)$$

$$QFT_{2} |01\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 1} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 1} |1\rangle)$$

$$QFT_{2} |10\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 2} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 2} |1\rangle)$$

$$QFT_{2} |11\rangle = \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{2\cdot 3} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + \omega_{2}^{1\cdot 3} |1\rangle)$$

Exercise

Use Bloch sphere to study $QFT_2|x\rangle$. Specifically note that

- previously, info. of |x> encoded by vectors pointing to the poles; now is encoded by vectors in the xz-plane
- for every $\underline{\omega_2\text{-rotation}}$ on the second qubit there are two such rotations on the first qubit

In order to derive a circuit for QFT_2 , we calculate

$$\begin{split} QFT_2 \left| x \right> &= \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \cdot \mathsf{x}} \left| 1 \right> \big) \otimes \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{1 \cdot \mathsf{x}} \left| 1 \right> \big) \\ &= \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \left(2 \mathsf{x}_1 + \mathsf{x}_2\right)} \left| 1 \right> \big) \otimes \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \mathsf{x}_1 + \mathsf{x}_2} \left| 1 \right> \big) \\ &= \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{4 \mathsf{x}_1 + 2 \mathsf{x}_2} \left| 1 \right> \big) \otimes \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \mathsf{x}_1 + \mathsf{x}_2} \left| 1 \right> \big) \\ &= \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{4 \mathsf{x}_1} \omega_2^{2 \mathsf{x}_2} \left| 1 \right> \big) \otimes \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \mathsf{x}_1} \omega_2^{\mathsf{x}_2} \left| 1 \right> \big) \\ &= \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \mathsf{x}_2} \left| 1 \right> \big) \otimes \frac{1}{\sqrt{2}} \big(\left| 0 \right> + \omega_2^{2 \mathsf{x}_1} \omega_2^{\mathsf{x}_2} \left| 1 \right> \big) \\ &= \underbrace{\frac{1}{\sqrt{2}} \big(\left| 0 \right> + \left(-1 \right)^{\mathsf{x}_2} \left| 1 \right> \big)}_{\text{some controlled rot. on } H \left| x \right| \lambda} \end{split}$$

Take $R_2 |0\rangle = |0\rangle$ and $R_2 |1\rangle = \omega |1\rangle$. Intuitively, R_2 rotates a vector in the xz-plane $\frac{\pi}{2}$ radians

Take $R_2 |0\rangle = |0\rangle$ and $R_2 |1\rangle = \omega |1\rangle$. Intuitively, R_2 rotates a vector in the xz-plane $\frac{\pi}{2}$ radians

It yields a controlled- R_2 operation defined by $|x\rangle |0\rangle \mapsto |x\rangle |0\rangle$ and $|x\rangle |1\rangle \mapsto R_2 |x\rangle |1\rangle$. Equivalently

$$|0\rangle |x_2\rangle \mapsto |0\rangle |x_2\rangle$$

$$|0\rangle |x_2\rangle \mapsto |0\rangle |x_2\rangle$$
 $|1\rangle |x_2\rangle \mapsto \omega^{\frac{1}{2}} |1\rangle |x_2\rangle$

Take $R_2 |0\rangle = |0\rangle$ and $R_2 |1\rangle = \omega |1\rangle$. Intuitively, R_2 rotates a vector in the xz-plane $\frac{\pi}{2}$ radians

It yields a controlled- R_2 operation defined by $|x\rangle |0\rangle \mapsto |x\rangle |0\rangle$ and $|x\rangle |1\rangle \mapsto R_2 |x\rangle |1\rangle$. Equivalently

$$|0\rangle |x_2\rangle \mapsto |0\rangle |x_2\rangle$$
 $|1\rangle |x_2\rangle \mapsto \omega^{\times_2} |1\rangle |x_2\rangle$

Putting all pieces together we derive the QFT circuit for 2 qubits

Let $\omega_n = e^{i2\pi \cdot \frac{1}{2^n}}$ (division of the <u>unit circle</u> in 2^n slices)

$$QFT_{3}\left|\mathbf{x}\right\rangle = \left(\left.\left|0\right\rangle + \omega_{3}^{4\cdot\mathbf{x}}\left|1\right\rangle\right.\right) \otimes \left(\left.\left|0\right\rangle + \omega_{3}^{2\cdot\mathbf{x}}\left|1\right\rangle\right.\right) \otimes \left(\left.\left|0\right\rangle + \omega_{3}^{1\cdot\mathbf{x}}\left|1\right\rangle\right.\right)$$

Let $\omega_n = e^{i2\pi \cdot \frac{1}{2^n}}$ (division of the <u>unit circle</u> in 2^n slices)

$$\mathit{QFT}_3 \left| \mathbf{x} \right\rangle = \left(\left. \left| 0 \right\rangle + \omega_3^{4 \cdot \mathbf{x}} \left| 1 \right\rangle \right) \otimes \left(\left. \left| 0 \right\rangle + \omega_3^{2 \cdot \mathbf{x}} \left| 1 \right\rangle \right) \otimes \left(\left. \left| 0 \right\rangle + \omega_3^{1 \cdot \mathbf{x}} \left| 1 \right\rangle \right) \right.$$

Actually, it is now easy to extrapolate the general defn. of QFT

$$QFT_n |\mathbf{x}\rangle = (|0\rangle + \omega_n^{2^{n-1} \cdot \mathbf{x}} |1\rangle) \otimes \cdots \otimes (|0\rangle + \omega_n^{2^0 \cdot \mathbf{x}} |1\rangle)$$

N.B. In both equations above we drop the normalisation factor $\frac{1}{\sqrt{2}}$ in each state to make notation easier on the eyes

In order to derive a circuit for QFT_3 , we observe

$$\omega_n^2 = \omega_{n-1}$$
 and thus $\omega_n^{2^{n-1}} = \mathrm{e}^{i\pi} = -1$

and recall that a binary number $x_1 cdots x_n$ represents the natural number $2^{n-1} cdots x_1 + \cdots + 2^0 cdots x_n$.

In order to derive a circuit for QFT_3 , we observe

$$\omega_n^2=\omega_{n-1}$$
 and thus $\omega_n^{2^{n-1}}=e^{i\pi}=-1$

and recall that a binary number $x_1 cdots x_n$ represents the natural number $2^{n-1} cdots x_1 + \cdots + 2^0 cdots x_n$. We then calculate

$$\begin{split} &QFT_{3}\left|x\right\rangle \\ &=\left(\left.\left|0\right\rangle+\omega_{3}^{4\cdot\mathsf{x}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{2\cdot\mathsf{x}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{1\cdot\mathsf{x}}\left|1\right\rangle\right.\right) \\ &=\left(\left.\left|0\right\rangle+\left(-1\right)^{\mathsf{x}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{2\cdot\mathsf{x}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{1\cdot\mathsf{x}}\left|1\right\rangle\right.\right) \\ &=\left(\left.\left|0\right\rangle+\left(-1\right)^{\mathsf{x}_{3}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{2\cdot\mathsf{x}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{1\cdot\mathsf{x}}\left|1\right\rangle\right.\right) \\ &=H\left|x_{3}\right\rangle\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{2\cdot\left(4x_{1}+2x_{2}+x_{3}\right)}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{1\cdot\mathsf{x}}\left|1\right\rangle\right.\right) \\ &=H\left|x_{3}\right\rangle\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{2\cdot\left(4x_{1}+2x_{2}\right)}\omega_{3}^{2\cdot\mathsf{x}_{3}}\left|1\right\rangle\right.\right)\otimes\left(\left.\left|0\right\rangle+\omega_{3}^{1\cdot\mathsf{x}}\left|1\right\rangle\right.\right) \end{split}$$

.

$$=H\left|x_{3}\right>\otimes\left(\left|0\right>+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right>\right)\otimes\left(\left|0\right>+\omega_{3}^{4x_{1}+2x_{2}+x_{3}}\left|1\right>\right)$$

$$=H\left|x_{3}\right>\otimes\left(\left|0\right>+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right>\right)\otimes\left(\left|0\right>+\omega_{3}^{4x_{1}+2x_{2}}\omega_{3}^{x_{3}}\left|1\right>\right)$$

$$=H\left|x_{3}\right>\otimes\left(\left|0\right>+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right>\right)\otimes\left(\left|0\right>+\omega_{3}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{3}^{x_{3}}\left|1\right>\right)$$

$$=H\left|x_{3}\right>\otimes\underbrace{\left(\left|0\right>+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right>\right)\otimes\left(\left|0\right>+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{3}^{x_{3}}\left|1\right>\right)}_{\text{some controlled-rotations on }QFT_{2}\left|x_{1},x_{2}\right>}$$

.

$$=H\left|x_{3}\right\rangle\otimes\left(\left|0\right\rangle+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right\rangle\right)\otimes\left(\left|0\right\rangle+\omega_{3}^{4x_{1}+2x_{2}+x_{3}}\left|1\right\rangle\right)$$

$$=H\left|x_{3}\right\rangle\otimes\left(\left|0\right\rangle+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right\rangle\right)\otimes\left(\left|0\right\rangle+\omega_{3}^{4x_{1}+2x_{2}}\omega_{3}^{x_{3}}\left|1\right\rangle\right)$$

$$=H\left|x_{3}\right\rangle\otimes\left(\left|0\right\rangle+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right\rangle\right)\otimes\left(\left|0\right\rangle+\omega_{3}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{3}^{x_{3}}\left|1\right\rangle\right)$$

$$=H\left|x_{3}\right\rangle\otimes\underbrace{\left(\left|0\right\rangle+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{2}^{x_{3}}\left|1\right\rangle\right)\otimes\left(\left|0\right\rangle+\omega_{2}^{2\cdot\left(2x_{1}+x_{2}\right)}\omega_{3}^{x_{3}}\left|1\right\rangle\right)}_{\text{some controlled-rotations on }QFT_{2}\left|x_{1}x_{2}\right\rangle}$$

Calculation easily extends to QFT_n (in lieu of QFT_3) which suggests a recursive defn. for the general QFT circuit

Take $R_n |0\rangle = |0\rangle$ and $R_n |1\rangle = \omega_n |1\rangle$. Intuitively, R_n rotates a vector in the xz-plane 'one 2ⁿ-th of the unit circle'

It yields a controlled- R_n operation defined by $|x\rangle |0\rangle \mapsto |x\rangle |0\rangle$ and $|x\rangle |1\rangle \mapsto R_n |x\rangle |1\rangle$. Equivalently

$$|0\rangle |y\rangle \mapsto |0\rangle |y\rangle$$
 and $|1\rangle |y\rangle \mapsto \omega_n^{\mathbf{y}} |1\rangle |y\rangle$

Take $R_n |0\rangle = |0\rangle$ and $R_n |1\rangle = \omega_n |1\rangle$. Intuitively, R_n rotates a vector in the xz-plane 'one 2ⁿ-th of the unit circle'

It yields a controlled- R_n operation defined by $|x\rangle |0\rangle \mapsto |x\rangle |0\rangle$ and $|x\rangle |1\rangle \mapsto R_n |x\rangle |1\rangle$. Equivalently

$$|0\rangle |y\rangle \mapsto |0\rangle |y\rangle$$
 and $|1\rangle |y\rangle \mapsto \omega_n^{\mathbf{y}} |1\rangle |y\rangle$

Putting all pieces together we derive the QFT circuit for 3 qubits

Renato Neves

General QFT Circuit

swaps positions of qubits by doing +1 in base n

Complexity of QFT

How many gates does the QFT circuit require?

Complexity of QFT

How many gates does the QFT circuit require?

$$\mathsf{n}^{\mathsf{Q}}$$
 gates $\mathit{QFT}_n = \mathsf{n}^{\mathsf{Q}}$ gates $\mathit{QFT}_{n-1} + 1 + n - 1 + n - 1$

Hadamard Rotations R_n of swap gates

Complexity of QFT

How many gates does the QFT circuit require?

$$\label{eq:problem} \mathbf{n}^{\mathbf{Q}} \text{ gates } \mathit{QFT}_n = \mathbf{n}^{\mathbf{Q}} \text{ gates } \mathit{QFT}_{n-1} \ + \ 1 \ + \ n-1 \ + \ n-1 \ + \ n-1$$
 We then calculate,
$$\mathsf{Hadamard} \ \mathsf{Rotations} \ \mathsf{R}_n \ \mathsf{n}^{\mathsf{Q}} \text{ of swap gates}$$

$$n^{Q} \text{ gates } QFT_{n} = n^{Q} \text{ gates } QFT_{n-1} + n + n - 1$$

$$= \sum_{i=1}^{n} i + \sum_{i=0}^{n-1} i$$

$$= \frac{(n+1)n}{2} + \frac{n(n-1)}{2}$$

$$\approx \frac{n^{2}}{2} + \frac{n^{2}}{2}$$

$$= n^{2}$$

Thus complexity of QFT is polynomial

An Equivalent Formulation of QFT

Previously we saw that

$$QFT_n|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{2^{n-1}\cdot x}|1\rangle)\otimes \cdots \otimes \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{1\cdot x}|1\rangle)$$

An Equivalent Formulation of QFT

Previously we saw that

$$QFT_n|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{2^{n-1} \cdot x}|1\rangle) \otimes \cdots \otimes \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{1 \cdot x}|1\rangle)$$

Equivalent and useful definition given by

$$QFT_n|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_n^{x \cdot k} |k\rangle$$

An Equivalent Formulation of QFT

Previously we saw that

$$QFT_n|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{2^{n-1} \cdot x}|1\rangle) \otimes \cdots \otimes \frac{1}{\sqrt{2}}(|0\rangle + \omega_n^{1 \cdot x}|1\rangle)$$

Equivalent and useful definition given by

$$QFT_n|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_n^{x \cdot k} |k\rangle$$

Examples with n = 1 and n = 2

$$\begin{aligned} QFT_{1}\left|x\right\rangle &= \frac{1}{\sqrt{2}}(\left|0\right\rangle + \omega_{1}^{x}\left|1\right\rangle) \\ QFT_{2}\left|x\right\rangle &= \frac{1}{\sqrt{2^{2}}}(\left|00\right\rangle + \omega_{2}^{x}\left|01\right\rangle + \omega_{2}^{2\cdot x}\left|10\right\rangle + \omega_{2}^{3\cdot x}\left|11\right\rangle) \end{aligned}$$

Exercises

Exercise 1

Show that both definitions of QFT coincide when n = 2

Exercise 2

Can you show that both definitions coincide for arbitrary n?

Table of Contents

Introduction

Quantum Fourier Transform

Quantum Phase Estimation

Quantum Phase Estimation

The Problem

Unitary operator on *n* qubits

Eigenvector with eigenvalue
$$\lambda = e^{i2\pi\phi}$$
 (0 $\leq \phi <$ 1)

Find out ϕ

Eigenvalues of unitaries are always of form above

A Simple Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$

 ϕ is equal to one of the values $\{0 \cdot \frac{1}{2}, 1 \cdot \frac{1}{2}\}$. Find out ϕ

A Simple Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ ϕ is equal to one of the values $\{0\cdot\frac{1}{2},1\cdot\frac{1}{2}\}$. Find out ϕ This is obtained via the circuit

Take a unitary U on n qubits

It gives rise to a multi-controlled operation

Intuitively it applies U to $|y\rangle$ a number of times equal to x

Take a unitary U on n qubits

It gives rise to a multi-controlled operation

Intuitively it applies U to $|y\rangle$ a number of times equal to x

Examples

$$\ket{10}\ket{y}\mapsto\ket{10}\left(\mathit{UU}\ket{y}\right)$$
 and $\ket{00}\ket{y}\mapsto\ket{00}\ket{y}$

Recall that a binary number $x_1 ldots x_n$ corresponds to the natural number $2^{n-1}x_1 + \cdots + 2^0x_n$

We use this to build the previous multi-controlled operation in terms of simpler operations

Recall that a binary number $x_1 ldots x_n$ corresponds to the natural number $2^{n-1}x_1 + \cdots + 2^0x_n$

We use this to build the previous multi-controlled operation in terms of simpler operations

Note that the multi-controlled operation uses n 'simply'-controlled rotations U^{2^i}

Renato Neves Quantum Phase Estimation 22 / 27

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\cdot\phi}$

 ϕ is equal to one of the following values $\left\{0\cdot\frac{1}{4},1\cdot\frac{1}{4},2\cdot\frac{1}{4},3\cdot\frac{1}{4}\right\}$

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\cdot\phi}$ ϕ is equal to one of the following values $\left\{0\cdot\frac{1}{4},1\cdot\frac{1}{4},2\cdot\frac{1}{4},3\cdot\frac{1}{4}\right\}$ In order to discover ϕ we use the circuit

Another Example

$$\begin{split} &|0\rangle\,|0\rangle\\ &\stackrel{H^{\otimes 2}}{\mapsto}\,\frac{1}{\sqrt{2^2}}\big(|00\rangle+|01\rangle+|10\rangle+|11\rangle\big)\\ &\stackrel{\text{ctrl. }U}{\mapsto}\,\frac{1}{\sqrt{2^2}}\big(|00\rangle+e^{i2\pi\phi}\,|01\rangle+e^{i2\pi\phi\cdot2}\,|10\rangle+e^{i2\pi\phi\cdot3}\,|11\rangle\big)\\ &=\frac{1}{\sqrt{2^2}}\big(|00\rangle+e^{i2\pi\mathbf{x}\cdot\frac{1}{4}}\,|01\rangle+e^{i2\pi\mathbf{x}\cdot\frac{1}{4}\cdot2}\,|10\rangle+e^{i2\pi\mathbf{x}\cdot\frac{1}{4}\cdot3}\,|11\rangle\big)\\ &=\frac{1}{\sqrt{2^2}}\big(|00\rangle+\omega_2^{\mathbf{x}}\,|01\rangle+\omega_2^{\mathbf{x}\cdot2}\,|10\rangle+\omega_2^{\mathbf{x}\cdot3}\,|11\rangle\big)\\ &\stackrel{QFT_2^{-1}}{\mapsto}\,|\mathbf{x}\rangle \end{split}$$

Yet Another Example

Take a unitary U with eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$

 ϕ is equal to one of the following values $\left\{0\cdot \frac{1}{2^n},\dots,2^{n-1}\cdot \frac{1}{2^n}\right\}$

Yet Another Example

Take a unitary U with eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ ϕ is equal to one of the following values $\left\{0\cdot\frac{1}{2^n},\ldots,2^{n-1}\cdot\frac{1}{2^n}\right\}$ In order to discover ϕ we use the following circuit

Exercise

Prove that the circuit returns x with $\phi = x \cdot \frac{1}{2^n}$

Yet Another Example

Exercise

Show that $QFT_n|0\rangle = H^{\otimes n}|0\rangle$. Note that this allows to rewrite the previous circuit in the one below

Complexity of Quantum Phase Estimation

How many gates does the circuit above use?

Complexity of Quantum Phase Estimation

How many gates does the circuit above use?

n 'Hadamards' + n 'simply'-controlled gates + n^2 gates for QFT_n^{-1}