Searching PAJ

(11)Publication number:

2000-199549

(43) Date of publication of application: 18.07.2000

(51)Int.Cl.

F16H 3/62

F16H 3/66

(21)Application number: 11-244136

(71)Applicant : AISIN AW CO LTD

(22)Date of filing:

30.08.1999

(72)Inventor: KASUYA SATORU

INAGAKI TOMOCHIKA

TSUKAMOTO KAZUMASA

HAYABUCHI MASAHIRO

NISHIDA MASAAKI

GOTO KENJI

(30)Priority

Priority number: 10325981

Priority date : 30.10.1998

Priority country: JP

(54) VEHICLE AUTOMATIC TRANSMISSION

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce the weight of a transmission mechanism and form the transmission in a compact manner by shortening a high torque transmission system and to reduce the occurrence of a shift shock due to reduction of inertia torque, in a multistage automatic transmission for a vehicle.

SOLUTION: A vehicle automatic transmission comprises a planetary gear set G to output a plurality of kinds of shift rotation as deceleration rotation and non-deceleration rotation; a deceleration planetary gear G1; an input shaft 11 on the inner peripheral side of the planetary gear set; first and third clutches C1 and C3 disengageably engaged with two different shift elements S2 and S3, respectively, of the planetary gear set through a deceleration planetary gear; and a second clutch C2 having an input shaft disengageably engaged with other shift elements C2 (C3) of the planetary gear set. A deceleration planetary gear and a third clutch to transmit high torque are arranged on one side of the planetary gear set and the first clutch C1 to transmit high torque is arranged on the other side thereof.

THIS PAGE BLANK (USPTO)

LEGAL STATUS

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-199549 (P2000-199549A)

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

F16H 3/62

3/66

F16H 3/62

Α

3/66

Α

審査請求 未請求 請求項の数17 OL (全 20 頁)

(21)出願番号

特願平11-244136

(22)出願日

平成11年8月30日(1999.8.30)

(31)優先権主張番号

特顧平10-325981

(32) 優先日

平成10年10月30日(1998.10.30)

(33)優先権主張国

日本(JP)

(71)出願人 000100768

アイシン・エィ・ダブリュ株式会社

愛知県安城市藤井町高根10番地

(72)発明者 精谷 悟

愛知県安城市藤井町高根10番地 アイシ

ン・エィ・ダブリュ株式会社内

(72)発明者 稲垣 知親

愛知県安城市藤井町高根10番地 アイシ

ン・エィ・ダブリュ株式会社内

(74)代理人 100095108

弁理士 阿部 英幸

最終頁に続く

(54) 【発明の名称】 車両用自動変速機

(57)【要約】

【課題】 多段の車両用自動変速機において、高トルク 伝達系を短縮して変速機構を軽量・コンパクト化し、イ ナーシャトルクの低減により変速ショックを低減させ る。

【解決手段】 車両用自動変速機は、減速回転と非減速回転を入力として複数の変速回転を出力するプラネタリギヤセットGと、減速プラネタリギヤG1と、プラネタリギヤセットの内周側を通る入力軸11と、入力軸を減速プラネタリギヤを介してプラネタリギヤセットの2つの異なる変速要素S2、S3にそれぞれ係脱自在に連結する第1及び第3のクラッチC-1、C-3と、入力軸をプラネタリギヤセットの他の変速要素C2(C3)に係脱自在に連結する第2のクラッチC-2とを備える。プラネタリギヤセットの一方側に減速プラネタリギヤと高トルクを伝達する第3のクラッチ、他方側に高トルクを伝達する第1のクラッチをそれぞれ配置した。

【特許請求の範囲】

【請求項1】 減速回転と非減速回転を入力として複数 の変速回転を出力するプラネタリギヤセットと、

該プラネタリギヤセットと軸方向に並べて配設された減 速プラネタリギヤと、

プラネタリギヤセットの内周側を通る入力軸と、

該入力軸を減速プラネタリギヤを介してプラネタリギヤ セットの2つの異なる変速要素にそれぞれ係脱自在に連 結する第1及び第3のクラッチとを備える車両用自動変 速機において、

前記プラネタリギヤセットの一方側に減速プラネタリギ ヤと第3のクラッチ、他方側に第1のクラッチがそれぞ れ配置されたことを特徴とする車両用自動変速機。

【請求項2】 前記減速プラネタリギヤの出力要素は、 プラネタリギヤセットの内周を通って第1のクラッチに 連結された、請求項1記載の車両用自動変速機。

【請求項3】 前記プラネタリギヤセットは、少なくと も4つの変速要素を備え、

第1の変速要素は、第1のクラッチにより減速プラネタ リギヤに係脱自在に連結され、

第2の変速要素は、第3のクラッチにより減速プラネタ リギヤに係脱自在に連結されるとともに、第1の係止手 段により変速機ケースに係止可能とされ、

第3の変速要素は、第2のクラッチにより入力軸に係脱 自在に連結されると共に、第2の係止手段により変速機 ケースに係止可能とされ、

第4の変速要素が出力部材に連結された、請求項1又は 2記載の車両用自動変速機。

【請求項4】 前記第1のクラッチのクラッチドラム は、その開口側をプラネタリギヤセット側に向け、か つ、減速プラネタリギヤの出力部材に連結させて配置さ れた、請求項1、2又は3記載の車両用自動変速機。

【請求項5】 前記第3のクラッチの摩擦材は、減速プ ラネタリギヤの外周に配置され、第3のクラッチのクラ ッチドラムは、プラネタリギヤセットへの入力部材に連 結された、請求項1、2又は3記載の車両用自動変速 機。

【請求項6】 前記減速プラネタリギヤは、その1要素 を変速機ケースから延材されたボス部で常時固定され、 第3のクラッチの油圧サーボは、減速プラネタリギヤの 40 一方側のボス部上に配置された、請求項5記載の車両用 自動変速機。

【請求項7】 前記第3のクラッチの油圧サーボは、減 速プラネタリギヤの他方側の入力軸上に配置され、

第3のクラッチのクラッチドラムは、減速プラネタリギ ヤの出力部材に連結された、請求項1、2又は3記載の 車両用自動変速機。

【請求項8】 前記第3のクラッチの摩擦材は、第3の クラッチの油圧サーボの外周側に配置された、請求項7 記載の車両用自動変速機。

【請求項9】 入力軸をプラネタリギヤセットの他の変 速要素に係脱自在に連結する第2のクラッチは、第1の クラッチ又は第3のクラッチに対してプラネタリギヤセ ットの他方側に配置された、請求項1、2又は3記載の 重両用自動変速機。

【請求項10】 前記第1~第3のクラッチの摩擦材 は、他の回転部材の外周に配置された、請求項9記載の 車両用自動変速機。

【請求項11】 前記第1のクラッチの摩擦材は、プラ 10 ネタリギヤセットの外周に、

第2のクラッチの摩擦材は、第1のクラッチの油圧サー ボの外周に、

第3のクラッチの摩擦材は、減速プラネタリギヤの外周 に配置された、請求項10記載の車両用自動変速機。

【請求項12】 前記第2のクラッチの油圧サーボの外 **周に第2のブレーキの油圧サーボが配置された、請求項** 11記載の車両用自動変速機。

【請求項13】 前記車両用自動変速機は、ディファレ ンシャル装置を有する横置式の変速機とされ、

20 ディファレンシャル装置は、そのデフリングギヤが第3 のクラッチの油圧サーボの外周かつ第3のクラッチの摩 擦材に軸方向に重なる位置に配置された、請求項11記 載の車両用自動変速機。

【請求項14】 前記プラネタリギヤセットに対して、 第3のクラッチと減速プラネタリギヤは前側、第1のク ラッチと第2のクラッチは後側に配置され、第3のクラ ッチの外周に第1のブレーキが配置された、請求項9記 載の車両用自動変速機。

【請求項15】 前記第1のブレーキは、バンドブレー キとされた、請求項14記載の車両用自動変速機。

【請求項16】 前記第3のクラッチの油圧サーボへの 油路と潤滑油路は、一方のケース壁のケース内の油路に

第1のクラッチと第2のクラッチの油圧サーボへの油路 は、他方のケース壁のケース内油路にそれぞれ連通され た、請求項9記載の車両用自動変速機。

【請求項17】 前記プラネタリギヤセットの出力を他 軸に出力するカウンタギヤを備え、

該カウンタギヤがプラネタリギヤセットと第3のクラッ チの間に配置された、請求項1、2又は3記載の車両用 自動変速機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両に搭載される 自動変速機に関し、特に、そのギヤトレインにおける各 変速機構成要素の配置に関する。

[0002]

【従来の技術】車両に搭載させる自動変速機には、ドラ イバビリティの確保のみならず、省エネルギに不可欠な 50 燃費の向上のために、多段化の要請がある。こうした要

請に応えるには、ギヤトレインの変速段数当たりの変速 要素数とクラッチやブレーキ数の一層の削減が必要となる。そこで、最小限の変速要素からなるプラネタリギヤセットを用い、それを操作する3つのクラッチと2つのブレーキとで、前進6速・後進1速を達成するギヤトレインが特開平4-219553号公報において提案されている。この提案に係るギヤトレインは、エンジン出力回転と、それを減速した回転とを3つのクラッチを用いて適宜変速機の4つの変速要素からなるプラネタリギヤセットへ2つの速度の異なる回転として入力させ、2つのブレーキで2つの変速要素を係止制御することで多段の6速を達成するものである。

[0003]

【発明が解決しようとする課題】上記従来技術の6速自動変速機は、その特徴として、減速プラネタリギヤを経て減速された入力をプラネタリギヤセットの異なる2つの変速要素にそれぞれ伝達する2つのクラッチを必要とする。このような構成にすることにより、良好な6速のギヤ比が得られる反面、減速により増幅されたトルクを伝達するため、これら2つのクラッチ及びその動力伝達20部材、すなわち高トルク伝達系のトルク容量の確保が必要となる。

【0004】また、これら2つの減速回転入力クラッチは、ギヤトレーンの特性上、変速段によって高速回転するので、上記の理由から高トルクを伝達させるためのみならず、高速回転に耐えるものとする面から更に高剛性にしなければならない。この点について従来技術では、ブラネタリギヤセットに対して一方側にまとめて2つの減速回転入力クラッチを配置しているため、それらの一方のクラッチとブラネタリギヤセットとを連結する部材が他方のクラッチの外周を通る構造とされている。そして、そのような部材を他方のクラッチの外周に配置すると高速回転による遠心力が一層大きくなるため、一方のクラッチとブラネタリギヤセットとを連結する部材のより一層の剛性確保が必要となり、大きく、重くなってしまう。

【0005】また、このように高トルクを伝達し、プラネタリギヤセットと共に回転する部材が、長く、重くなると、その分イナーシャトルクが大きくなるので変速制御性が悪化し、変速ショックに影響する。

【0006】本発明は、こうした事情に鑑みなされたものであり、多段化に伴う機構の大型化を、プラネタリギヤセットに対する2つの減速回転入力クラッチの配置を工夫するこで、主として高トルク伝達系を軽量・コンパクト化することにより回避し、併せて変速制御性の向上を図った車両用自動変速機を提供することを目的とする。

[0007]

【課題を解決するための手段】上記の目的を達成するた ヤセめ、本発明は、減速回転と非減速回転を入力として複数 50 る。

の変速回転を出力するプラネタリギヤセットと、該プラネタリギヤセットと軸方向に並べて配設された減速プラネタリギヤと、プラネタリギヤセットの内周側を通る入力軸と、該入力軸を減速プラネタリギヤを介してプラネタリギヤセットの2つの異なる変速要素にそれぞれ係脱白在に連結する第1及び第3のクラッチとを備える車両

自在に連結する第1及び第3のクラッチとを備える車両 用自動変速機において、前記プラネタリギヤセットの一 方側に減速プラネタリギヤと第3のクラッチ、他方側に 第1のクラッチがそれぞれ配置されたことを特徴とす

【0008】上記の構成において、前記減速プラネタリギヤの出力要素は、プラネタリギヤセットの内周を通って第1のクラッチに連結された構成とするのが有効である

【0009】更に、上記の構成において、前記プラネタ リギヤセットは、少なくとも4つの変速要素を備え、第 1の変速要素は、第1のクラッチにより減速プラネタリ ギヤに係脱自在に連結され、第2の変速要素は、第3の クラッチにより減速プラネタリギヤに係脱自在に連結さ れるとともに、第1の係止手段により変速機ケースに係 止可能とされ、第3の変速要素は、第2のクラッチによ り入力軸に係脱自在に連結されると共に、第2の係止手 段により変速機ケースに係止可能とされ、第4の変速要 素が出力部材に連結された構成を採るのが有効である。 【0010】また、上記の構成において、前記第1のク ラッチのクラッチドラムは、その開口側をプラネタリギ ヤセット側に向け、かつ、減速プラネタリギヤの出力部 材に連結させて配置された構成とするのが有効である。 【0011】また、上記の構成において、前記第3のク ラッチの摩擦材は、減速プラネタリギヤの外周に配置さ れ、第3のクラッチのクラッチドラムは、プラネタリギ ヤセットへの入力部材に連結された構成を採るのが有効

【0012】そして、前記減速プラネタリギヤは、その1要素を変速機ケースから延材されたボス部で常時固定され、第3のクラッチの油圧サーボは、減速プラネタリギヤの一方側のボス部上に配置された構成を採るのが有効である。

である。

【0013】あるいは、前記第3のクラッチの油圧サー 40 ボは、減速プラネタリギヤの他方側の入力軸上に配置され、第3のクラッチのクラッチドラムは、減速プラネタ リギヤの出力部材に連結された構成としてもよい。

【0014】また、前記第3のクラッチの摩擦材は、第3のクラッチの油圧サーボの外周側に配置された構成とするのも有効である。

【0015】更に、入力軸をプラネタリギヤセットの他の変速要素に係脱自在に連結する第2のクラッチは、第1のクラッチ又は第3のクラッチに対してプラネタリギヤセットの他方側に配置された構成を採るのが有効である

【0016】また、前記第1~第3のクラッチの摩擦材は、他の回転部材の外周に配置された構成を採るのが有効である。

【0017】より具体的には、前記第1のクラッチの摩擦材は、プラネタリギヤセットの外周に、第2のクラッチの摩擦材は、第1のクラッチの油圧サーボの外周に、第3のクラッチの摩擦材は、減速プラネタリギヤの外周に配置された構成を採るのが有効である。

【0018】更に、前記第2のクラッチの油圧サーボの外周に第2のブレーキの油圧サーボが配置された構成を 10 採るのが有効である。

【0019】また、前記車両用自動変速機が、ディファレンシャル装置を有する横置式の変速機とされる場合、ディファレンシャル装置は、そのデフリングギヤが第3のクラッチの油圧サーボの外周かつ第3のクラッチの摩擦材に軸方向に重なる位置に配置された構成を採るのが有効である。

【0020】また、前記プレネタリギヤセットに対して、第3のクラッチと減速プラネタリギヤは前側、第1のクラッチと第2のクラッチは後側に配置され、第3の 20クラッチの外周に第1のブレーキが配置された構成を採るのも有効である。

【0021】また、前記第1のブレーキは、バンドブレーキとするのも有効である。

【0022】また、前記第3のクラッチの油圧サーボへの油路と潤滑油路は、一方のケース壁のケース内の油路に連通され、第1のクラッチと第2のクラッチの油圧サーボへの油路は、他方のケース壁のケース内油路にそれぞれ連通された構成を採るのも有効である。

【0023】また、前記プラネタリギヤセットの出力を 30 他軸に出力するカウンタギヤを備える場合、該カウンタギヤがプラネタリギヤセットと第3のクラッチの間に配置された構成を採るのが有効である。

[0024]

【発明の作用及び効果】上記請求項1記載の構成では、第1のクラッチと第3のクラッチをプラネタリギヤセットの両側に配置しているため、第1のクラッチと第3のクラッチからプラネタリギヤセットの変速要素までの伝達部材の長さを最短にすることができる。これにより、プラネタリギヤセットと共に回転する高トルクを伝達する部材が短くできるので、変速機の軽量化ができ、またイナーシヤを小さくできるので変速制御性が向上する。【0025】次に、請求項2記載の構成では、減速プラネタリギヤの出力部材をプラネタリギヤセットの内周を通して第1のクラッチに連結することで、コンパクトに連結できる。また、高トルク伝達部材が大径化されないので、遠心力が小さくなる分軽量化できると共に、イナーシヤを小さくできるので変速制御性が向上する。

【0026】そして、請求項3記載の構成では、上記の のブレーキを効果を達成する6速自動変速機を少ない変速要素数で実 50 径化できる。

現することができる。

【0027】次に、請求項4記載の構成では、第1のクラッチのクラッチドラムを減速プラネタリギヤの出力部材に連結することで、入力軸上に他の部材を介さず第1のクラッチのクラッチドラムを配置できるので、該ドラム内の油圧サーボへの油圧の供給油路の漏止めに必須のシールリングを少なくすることができる。

【0028】また、請求項5記載の構成では、摩擦材を 減速プラネタリギヤの外周に配置することで、変速機の 軸長を短縮できる。

【0029】更に、請求項6記載の構成では、油圧サーボを変速機ケースのボス部上に配置することでシールリングを少なくすることができる。また、減速プラネタリギヤの1要素を固定するための部材と第3のクラッチへの油路の確保のための部材が共通化されるので、変速機を小型化することができる。

【0030】次に、請求項7記載の構成では、第3のクラッチの油圧サーボを入力軸上に直接配置できるので、入力軸から油圧サーボへの油圧の供給油路の漏止めに必須のシールリングを少なくできる。

【0031】更に、請求項8記載の構成では、摩擦材と油圧サーボを重ねて配置することで、変速機の軸長を短縮できる。

【0032】次に、請求項9記載の構成では、第1のクラッチ又は第3のクラッチとプラネタリギヤセットの間に第2のクラッチが介在しないので、第1のクラッチ又は第3のクラッチとプラネタリギヤセットとを連結する部材を短くすることができる。

【0033】そして、請求項10記載の構成では、第1 ~第3のクラッチの各摩擦材を他の回転部材の外周に配置することで、摩擦材配設分の軸方向スペースを削減できるので、変速機の軸長を短縮できる。

【0034】更に、請求項11記載の構成では、各クラッチの摩擦材をそれぞれの油圧サーボの近傍に配置しながら、変速機の軸長を短縮できる。

【0035】そして、請求項12記載の構成では、第2のブレーキの油圧サーボを第2のクラッチの外周側に、 実質上軸方向配設スペースを要せずに配置することができるので、変速機軸長の一層の短縮が可能となる。

【0036】次に、請求項13記載の構成では、ディファレンシャ装置を備える変速機を構成する場合に、大径のデフリングギヤと変速機構との干渉を防いで、デフ比設定の自由度を高くすることができる。

【0037】また、請求項14記載の構成では、第3の クラッチの外周に第1のブレーキを配置できるので、第 1のブレーキの取り回しを複雑にする必要がないので、 変速機をコンパクトにできる。

【0038】そして、請求項15記載の構成では、第1のブレーキをバンドブレーキとすることで、変速機を小径化できる。

5

【0039】更に、請求項16記載の構成では、変速機ケースにパランス良く油路を配置できるので、ケース内の油路の集中を回避でき、油路の設計自由度が向上する。

【0040】次に、請求項17記載の構成では、変速機をカウンタギヤ出力とする場合において、カウンタギヤをプラネタリギヤセットと第3のクラッチの間に配置することで、第1のクラッチをプラネタリギヤセットに隣接して配置することができる。第1のクラッチは第3のクラッチと比べて高速回転するので、その高速回転する部材を最短にすることで変速機の軽量化ができ、変速制御性も向上する。

[0041]

【発明の実施の形態】以下、図面に沿い、本発明の実施 形態を説明する。図1は本発明を具体化した車両用自動 変速機の第1実施形態のギヤトレインを、軸間を共通平 面内に展開してスケルトンで示す。また、図2は上記自 動変速機を端面からみて実際の軸位置関係を示す。この 自動変速機は、互いに並行する主軸X、カウンタ軸Y、 デフ軸乙の各軸上に各要素が配設された3軸構成の横置 20 式トランスアクスルとされている。主軸X上の変速機構 は、減速回転と非減速回転を入力として複数の変速回転 を出力するプラネタリギヤセットGと、プラネタリギヤ セットGと軸方向に並べて配設された減速プラネタリギ ヤG1と、プラネタリギヤセットGの内周側を通る入力 軸11と、入力軸11を減速プラネタリギヤG1を介し てブラネタリギヤセットGの2つの異なる変速要素S 3. S2にそれぞれ係脱自在に連結する第1及び第3の クラッチ (C-1, C-3) と、入力軸11をプラネタ リギヤセットGの他の変速要素C2(C3)に係脱自在 30 に連結する第2のクラッチ(C-2)とを備える。

【0042】ブラネタリギヤセットGは、4つの変速要素S2、S3、C2 (C3)、R2 (R3)を備え、第1の変速要素S3は、第1のクラッチ (C-1)により減速プラネタリギヤG1に係脱自在に連結され、第2の変速要素S2は、第3のクラッチ (C-3)により減速プラネタリギヤG1に係脱自在に連結されるとともに、第1の係止手段(B-1)により変速機ケース10に係止可能とされ、第3の変速要素C2 (C3)は、第2のクラッチ (C-2)により入力軸11に係脱自在に連結 40されるとともに、第2の係止手段(B-2)により変速機ケース10に係止可能とされ、第4の変速要素R2

(R3) が出力部材 19 に連結されている。なお、図に示すギャトレインでは、ブレーキ (B-2) に並列させ でワンウェイクラッチ (F-1) を配しているが、これは、後に詳記する $1 \rightarrow 2$ 変速時のブレーキ (B-2) と 7 と 19 に連結されている。また、減速プラネタリギヤ 19 に連結されている。また、減速プラネタリギヤ 19 に連結されている。また、減速プラネタリギヤ 19 に連結されている。また、減速プラネタリギヤ 19 に連結されている。また、減速プラネタリギヤ 19 に 19 に

あり、ブレーキ(B-2)と同等のものである。

【0043】以下、との実施形態のギヤトレインを更に 詳細に説明する。主軸X上には、図示しないエンジンの 回転を入力軸11に伝達するロックアップクラッチ付の トルクコンバータ4が配置されている。カウンタ軸Y上 には、カウンタギヤ2が配置されている。カウンタギヤ 2は、カウンタ軸20に固定され、カウンタドライブギ ヤ19に噛合する大径のカウンタドリブンギヤ21と、 同じくカウンタ軸20に固定され、デフリングギヤ31 に噛合する小径のデフドライブピニオンギヤ22とが配 設されており、これらにより主軸X側からの出力を減速 するとともに、反転させてディファレンシャル装置3に 伝達する機能を果たす。デフ軸乙上には、ディファレン シャル装置3が配設されている。ディファレンシャル装 置3は、デフリングギヤ31に固定してデフケース32 が設けられ、その中に配置された差動歯車の差動回転が 左右軸30に出力され、最終的なホイール駆動力とされ

【0044】プラネタリギヤセットGは、大小径の異なる一対のサンギヤS2、S3と、互いに噛合して一方が大径のサンギヤS2に噛合するとともにリングギヤR2(R3)に噛合し、他方が小径のサンギヤS3に噛合する一対のビニオンギヤP2、P3を支持するキャリアC2(C3)からなるラビニヨ式のギヤセットで構成されている。そして、この形態では、小径のサンギヤS3が第1の変速要素、大径のサンギヤS2が第2の変速要素、キャリアC2(C3)が第3の変速要素とされている。減速プラネタリギヤG1は、サンギヤS1と、それに噛合するビニオンギヤを支持するキャリアC1と、ビニオンギヤに噛合するリングギヤR1の3要素からなるシンブルプラネタリ構成とされている。

【0045】プラネタリギヤセットGの第1の変速要素 すなわち小径のサンギヤS3は、第1のクラッチ(C-1) に連結され、第2の変速要素すなわち大径のサンギ ヤS2は、第3のクラッチ(C-3)に連結されるとと もに、バンドブレーキで構成される第1のブレーキ(B - 1)により自動変速機ケース10に係止可能とされて いる。また、第3の変速要素であるキャリアC2(C 3) は、第2のクラッチ (C-2) を介して入力軸11 に連結され、かつ、第2のブレーキ(B-2)により変 速機ケース10に係止可能とされるとともに、ワンウェ イクラッチ (F-1) により変速機ケース10に一方向 回転係止可能とされている。そして、第4の変速要素す なわちリングギヤR2(R3)がカウンタドライブギヤ 19に連結されている。また、減速プラネタリギヤG1 は、そのサンギヤS1を変速機ケース10に常時固定と され、リングギヤR 1を入力要素として入力軸11に連 結され、キャリアC1を出力要素として第1のクラッチ

ネタリギヤセットGに連結されている。

【0046】とうした構成からなる自動変速機は、図示 しない電子制御装置と油圧制御装置とによる制御で、運 転者により選択されたレンジに応じた変速段の範囲で車 両負荷と車速に基づき、変速を行う。図3は各クラッチ 及びブレーキの係合及び解放(○印で係合、無印で解放 を表す)で達成される変速段を図表化して示す。また、 図4は各クラッチ及びブレーキの係合(●印でそれらの 係合を表す) により達成される変速段と、そのときの各 変速要素の速度比との関係を速度線図で示す。図におい 10 て、縦軸はそれぞれ減速プラネタリギヤG1の各要素及 びプラネタリギヤセットGの各変速要素を示し、それら 各軸間の横方向幅がギヤ比の関係、縦方向位置が速度比 を示す。ちなみに、減速プラネタリギヤGlのサンギヤ S1を固定(速度比0)とし、リングギヤR1に入力 (速度比1)を与えることで、キャリアC1に減速回転 (サンギヤS1の速度比0の点とリングギヤR1の速度 比1の点とを結ぶ直線とキャリアC1を表す縦線との交 点の速度比)が出力され、この減速回転を第1のクラッ チ (C-1) の係合でプラネタリギヤセット Gのサンギ ヤS3に入力させ、かつ、第2のブレーキ(B-2)の 係止でキャリアC2(C3)を係止(速度比0)した場 合に、リングギヤR3(R2)に第1速(1ST)の減 速回転が出力され、サンギヤS2はサンギヤS3とリン グギヤR3(R2)に対して逆回転(速度比-)で空転

【0047】両図を併せ参照してわかるように、第1速(1ST)は、クラッチ(C-1)とブレーキ(B-2)の係合(本形態において、作動表を参照してわかるように、このブレーキ(B-2)の係合に代えてワンウェイクラッチ(F-1)の自動係合が用いられているが、この係合を用いている理由及びこの係合がブレーキ(B-2)の係合に相当する理由については後に詳述する。)により達成される。この場合、図1を参照して、入力軸11から減速ブラネタリギヤG1を経て減速された回転がクラッチ(C-1)経由で小径サンギヤS3に入力され、ワンウェイクラッチ(F-1)の係合により係止されたキャリアC2、C3に反力を取って、リングギヤR2(R3)の最大減速比の減速回転がカウンタドライブギヤ19に出力される。

【0048】次に、第2速(2ND)は、クラッチ(C-1)とブレーキ(B-1)の係合により達成される。 この場合、入力軸11から減速プラネタリギヤG1を経 て減速された回転がクラッチ(C-1)経由で小径サン ギヤS3に入力され、ブレーキ(B-1)の係合により 係止された大径サンギヤS2に反力を取って、リングギヤR2(R3)の減速回転がカウンタドライブギヤ19に出力される。このときの減速比は、図4にみるよう に、第1速(1ST)より小さくなる。

【0049】また、第3速(3RD)は、クラッチ(C 50 は、それらを操作する油圧サーボの係合圧と解放圧の精

10

-1) とクラッチ(C-3)の同時係合により達成される。この場合、入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-1)とクラッチ(C-3)経由で同時に大径サンギヤS2と小径サンギヤS3に入力され、プラネタリギヤセットGが直結状態となるため、両サンギヤへの入力回転と同じリングギヤR2(R3)の回転が、入力軸11の回転に対しては減速された回転として、カウンタドライブギヤ19に出力される。

【0050】更に、第4速(4TH)は、クラッチ(C-1)とクラッチ(C-2)の同時係合により達成される。この場合、一方で入力軸11から減速ブラネタリギヤG1を経て減速された回転がクラッチ(C-1)経由でサンギヤS3に入力され、他方で入力軸11からクラッチクラッチ(C-2)経由で入力された非減速回転がキャリアC3に入力され、2つの入力回転の中間の回転が、入力軸11の回転に対しては僅かに減速されたリングギヤR2(R3)の回転としてカウンタドライブギヤ19に出力される。

【0051】次に、第5速(5TH)は、クラッチ(C-2)とクラッチ(C-3)の同時係合により達成される。この場合、一方で入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-3)経由でサンギヤS2に入力され、他方で入力軸11からクラッチクラッチ(C-2)経由で入力された非減速回転がキャリアC2に入力され、リングギヤR2(R3)の入力軸11の回転より僅かに増速された回転がカウンタドライブギャ19に出力される。

【0052】そして、第6速(6TH)は、クラッチ (C-2) とブレーキ (B-1) の係合により達成される。この場合、入力軸11からクラッチクラッチ (C-2) 経由で非滅速回転がキャリアC2にのみ入力され、ブレーキ (B-1) の係合により係止されたサンギヤS2に反力を取るリングギヤR2 (R3) の更に増速された回転がカウンタドライブギヤ19に出力される。

【0053】なお、後進(REV)は、クラッチ(C-3)とブレーキ(B-2)の係合により達成される。との場合、入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-3)経由でサンギヤS2に入力され、ブレーキ(B-2)の係合により係止されたキャリアC2に反力を取るリングギヤR2(R3)の逆転がカウンタドライブギヤ19に出力される。

【0054】 ここで、先に触れたワンウェイクラッチ (F-1) とブレーキ (B-2) との関係について説明 する。上記の第1速と第2速時の両ブレーキ (B-1, B-2) の係合・解放関係にみるように、これら両ブレーキは、両変速段間でのアップダウンシフト時に、一方の解放と同時に他方の係合が行われる、いわゆる掴み替えされる摩擦要素となる。こうした摩擦要素の掴み替えは、それらを操作する油圧サーボの係合圧と解放圧の精

密な同時制御を必要とし、こうした制御を行うには、そ のためのコントロールバルブの付加や油圧回路の複雑化 等を招くこととなる。そこで、本形態では、第1速と第 2速とで、キャリアC2(C3)にかかる反力トルクが 逆転するのを利用して、ワンウェイクラッチ(F-1) の係合方向を第1速時の反力トルク支持方向に合わせた 設定とすることで、ワンウェイクラッチ(F-1)に実 質上ブレーキ(B-2)の係合と同等の機能を発揮させ て、第1速時のブレーキ(B-2)の係合に代えて(た だし、ホイール駆動の車両コースト状態ではキャリアC 2 (C3) にかかる反力トルクの方向がエンジン駆動の 状態に対して逆転するので、エンジンプレーキ効果を得 るためには、図3に括弧付きの○印で示すようにブレー キ (B-2) の係合を必要とする)、キャリアC2 (C 3)の係止を行っているわけである。したがって、変速 段を達成する上では、ワンウェイクラッチを設けること なく、ブレーキ(B-2)の係合により第1速を達成す る構成を採ることもできる。

【0055】とのようにして達成される各変速段は、図 4の速度線図上で、リングギヤR2(R3)の速度比を 示す○印の上下方向の間隔を参照して定性的にわかるよ うに、各変速段に対して比較的等間隔の良好な速度ステ ップとなる。この関係を具体的に数値を設定して、定量 的に表すと、図3に示すギヤ比となる。この場合のギヤ 比は、減速プラネタリギヤGlのサンギヤSlとリング ギャR1の歯数比 λ 1=44/78、プラネタリギャセ ットGの大径サンギヤ側のサンギヤS2とリングギヤR 2 (R3) の歯数比 λ 2 = 36 / 78、小径サンギヤ側 のサンギヤS3とリングギヤR3の歯数比λ3=30/ 78に設定すると、入出力ギヤ比は、

第1速(1ST): (1+λ1)/λ3=4.067 第2速(2ND): (1+λ1) (λ2+λ3)/λ3 $(1+\lambda 2) = 2.354$

第3速(3RD):1+λ1=1.564

第4速(4TH):(1+λ1)/(1+λ1-λ1· $\lambda 3) = 1.161$

第5速(5TH):(1+λ1)/(1+λ1+λ1· $\lambda 2) = 0.857$

第6速(6TH):1/(1+ λ 2)=0.684 後進 (REV):-(1+λ1)/λ2=-3.389

となる。そして、これらギヤ比間のステップは、 第1.2速間:1.73 第2.3速間:1.51

第3・4速間:1.35 第4・5速間:1.35

第5.6速間:1.25

となる。

【0056】図1に戻って、本発明の特徴とするところ に従い、このギヤトレインでは、プラネタリギヤセット Gの一方側に減速プラネタリギヤG1と第3のクラッチ 50 在に支持され、支持部に隣接させて形成されたそれぞれ

(C-3)、他方側に第1のクラッチ(C-1)がそれ ぞれ配置されている。このように第1のクラッチ (C-1)と第3のクラッチ (C-3) をプラネタリギヤセッ トGの両側に分散配置しているため、第1のクラッチ (C-1)と第3のクラッチ(C-3)からプラネタリ ギヤセットGの変速要素S2, S3までの伝達部材の長 さを最短にすることができる。したがって、プラネタリ ギヤセットGと共に回転する高トルクを伝達する部材が 短くできるので、変速機の軽量化ができ、またイナーシ ヤを小さくできるので変速制御性が向上する。

【0057】更に、減速プラネタリギヤG1の出力要素 であるキャリアC1は、プラネタリギヤセットGの内周 を通って第1のクラッチ(C-1)に連結されている。 とのようにすることで、減速プラネタリギヤG1の出力 要素と第1のクラッチ(C-1)をコンパクトに連結で きる。また、高トルク伝達部材が大径化されないので、 遠心力が小さくなる分軽量化できると共に、イナーシャ を小さくできるので変速制御性が向上する。

【0058】更に、この変速機では、プラネタリギヤセ ットGの出力を他軸に出力するカウンタドライブギヤ1 9を備えることから、カウンタドライブギヤ19がプラ ネタリギヤセットGと第3のクラッチ(C-3)の間に 配置されている。とのように配置することで、第1のク ラッチ(C-1)をプラネタリギヤセットGに隣接して 配置することができる。こうした配置は、第1のクラッ チ(C-1)が第3のクラッチ(C-3)と比べて高速 回転することを考慮して、それにより高速回転する部材 を最短にすることで変速機の軽量化するのに役立ち、変 速制御性も向上する。

【0059】次に、図5は自動変速機の構成を更に具体 化した模式的断面で示す。先にスケルトンを参照して説 明した各構成要素については、同じ参照符号を付して説 明に代えるが、スケルトンから参照し得ない細部、主と して入力軸11、プラネタリギヤセットG、減速プラネ タリギヤG 1に対する各クラッチ及びブレーキの関係に ついて、ととで説明する。なお、本明細書を通じて、ク ラッチ及びブレーキという用語は、それらが多板構成の ものである場合、係脱部材としてのディスクとセパレー タプレートからなる摩擦材と、摩擦材をスプライン係合 で支持する動力伝達部材としてのドラム及びハブと、ド ラムに内包されるシリンダとピストンとリターンスプリ ングからなる油圧サーボを総称するものとする。また、 パンド構成のブレーキにしては、係脱部材としてのバン ドと、シリンダとピストンとリターンスプリングからな る油圧サーボを総称するものとする。

【0060】入力軸11は、その内部にサーボ圧の給排 油路と潤滑油路11rを形成された中空軸とされ、前端 側と後端側とを変速機ケース10から延びる前側ボス部 10 a と後側ボス部 10 b にベアリングを介して回転自

のフランジ11a, 11bと両ボス部先端との間に介装 されたスラストベアリングにより軸方向支持されてい

【0061】減速プラネタリギヤG1、プラネタリギヤ セットG及び3つのクラッチの油圧サーボ7、6、5 は、それぞれ入力軸11の軸周における外周側に軸方向 に並べて配置され、各クラッチ及びブレーキの摩擦材で 3, 63, 53, 93は、それらに径方向に重合させて 外周側に配置されている。この配置により、摩擦材配設 スペース分の軸方向寸法の短縮が図られている。しか も、外周側への配置により、各クラッチ及びブレーキの 摩擦材径が大きくなることで、それらのトルク容量を稼 げる分だけ、減速プラネタリギヤG1及びプラネタリギ ヤセットGの外周側に重合させる摩擦材73,63につ いては、構成枚数を減らして軸方向寸法を小さくし、ま た、摩擦材53が外周側に重合させて配置される油圧サ ーボ6については、摩擦材63が外周側に配置され、ト ルク容量を稼いでいるので受圧面を小さくでき、それに よる油圧サーボの小径化で、結果的にそれらの外周側に 重合する摩擦材53の小径化も可能となる。したがっ て、この構成によれば、径方向寸法の増大を抑えなが ら、軸方向寸法を最大限に短縮することができる。

【0062】更に、この形態では、変速機構における前 側に減速プラネタリギヤG1、後側にプラネタリギヤセ ットGが配置され、第3のクラッチ(C-3)の油圧サ ーボ7は、減速プラネタリギヤG1の前方、第1のクラ ッチ(C-1)の油圧サーボ6は、プラネタリギヤセッ トGの後方、第2のクラッチ(C-2)の油圧サーボ5 は、第1のクラッチ(C-1)の油圧サーボ6の後方に 配置され、第1のクラッチ(C-1)の摩擦材63は、 プラネタリギヤセットGの外周側に、第3のクラッチ (C-3)の摩擦材73は、減速プラネタリギヤG1の 外周側に、第2のクラッチ(C-2)の摩擦材53は、 第1のクラッチ(C-1)の油圧サーボ6の外周側にそ れぞれ重合配置されている。この配置により、トルク増 幅された減速回転を伝達するため大容量を必要とする第 1及び第3のクラッチの摩擦材63,73を、径方向寸 法の制約が比較的ゆるやかな軸方向位置に配置されたプ ラネタリギヤセットGと減速プラネタリギヤG1の外周 側に配置するととで、トルク容量に合わせて大径化し、 入力回転をそのまま伝達するため相対的にトルク容量が 小さくてよい第2のクラッチ(C-2)の摩擦材53 を、プラネタリギヤセットGの後方に位置して摩擦材6 3の大径化に伴い小径化した第1のクラッチ (C-1) の油圧サーボ6の外周側に重合配置することで、第2の クラッチ(C-2)の油圧サーボ5の外周側には摩擦材 がない配置となるため、第2のクラッチ (C-2) の油 圧サーボ5が小容量で足りることで小径であることと相 まって、変速機構後部の外径が大幅に小径化されてい

限に短縮しながら、更に変速機後端部の外径を小さくし て、車両側部材Bとの干渉を避けることができ、多段化 された変速機の車両搭載性が一層向上している。

【0063】また、この変速機は、図1のスケルトンを 参照して前述したように、変速機構に駆動連結されたデ フリングギヤ31を、入力軸11と並行するデフ軸2上 に備えるところから、第3のクラッチ(C-3)の油圧 サーボ7は、デフリングギヤ31と径方向に重なる位置 に配置され、第3のクラッチ(C-3)の摩擦部材73 10 は、デフリングギヤ31に対して軸方向にずらして配置 されている。この構成により、デフリングギヤ31の外 周が変速機構内に入り込んでいるにも拘わらず、変速機 構の大径部と干渉しない配置となるため、変速機の主軸 Xとしての入力軸11と、それと並行するデフ軸2との 軸間距離の設定に自由度を与えることができ、車両の要 求に合わせた良好なデフギヤ比の設定が可能となる。

【0064】一方、入力軸11の周りに配置されるシン プルプラネタリ構成の減速プラネタリギヤG1は、前側 ボス部10aの先端外周に反力要素としてのサンギヤS 1を固定し、入力要素としてのリングギヤR1を入力軸 11のフランジ11aに連結させて、変速機構の前側に 配置されている。出力要素としてのキャリアClは、減 速回転伝達部材13の筒状部に連結され、筒状部は、第 3のクラッチ(C-3)のハブ74を構成している。

【0065】次に、プラネタリギヤセットGは、入力軸 11のほぼ中間部に両サンギヤS2、S3を、ベアリン グを介して入力軸11に支持された減速回転伝達部材1 3の外周にベアリングを介して支持された形態で位置決 め支持されている。プラネタリギヤセットGの第2の変 速要素としてのサンギヤS2は、連結部材14により第 3のクラッチ(C-3)のドラム72に連結されてい る。また、第1の変速要素としてのサンギヤS3は、第 1のクラッチ(C-1)のハブ64に連結されている。 そして、第3の変速要素としてのキャリアC2(C3) は、ワンウェイクラッチ (F-1) のインナレースを介 して第2のクラッチのドラム52と、第2のブレーキ (B-2)のハブ94に連結されている。更に、第4の 変速要素としてのリングギヤR2(R3)は、連結部材 を介してカウンタドライブギヤ19にスプライン結合さ 40 れている。

【0066】第3のクラッチ(C-3)の油圧サーボ7 は、減速プラネタリギヤG1の前側に配置され、変速機 ケースの前側ボス部 10 a の外周に回転自在に支持され たシリンダ70と、それに内包されたピストン71とを 備えており、シリンダ70の外周側が拡径延長されたク ラッチドラム72を構成している。との油圧サーボ7の 油圧の給排は、前側ボス部10aに形成されたケース内 油路10xを介して行われる。なお、図において符号7 5は、ピストン71の背面に油圧かけて遠心油圧を相殺 る。したがって、この構成によれば、軸方向寸法を最大 50 するためのキャンセルプレート、76はリターンスプリ

ングを示す。

【0067】第3のクラッチ(C-3)の摩擦材73 は、内周側をハブ74にスプライン係合させ、外周側を ドラム72にスプライン係合させた多板の摩擦材ディス クとセパレータプレートから構成され、ドラム72の先 端に固定されたバッキングプレートと、油圧サーボ7内 への油圧の供給によりシリンダ70から押し出されるピ ストン71とで挟持されるクラッチ係合作動により、ハ ブ74からドラム72にトルクを伝達する構成とされて いる

15

【0068】第1のクラッチ(C-1)の油圧サーボ6は、プラネタリギヤセットGの後側に配置され、減速回転伝達部材13に連結されたシリンダ60と、それに内包されたピストン61とを備えている。この場合もシリンダ60の外周側が拡径延長されたクラッチドラム62を構成している。したがって、第1のクラッチ(C-1)のクラッチドラム62は、その開口側をプラネタリギヤセットG側に向けて配置されている。この油圧サーボ6の油圧の給排は、入力軸11に形成された油路11 cを介して行われる。この油圧サーボ6も符号65で示 20 すキャンセルプレートと、66で示すリターンスプリングを備えている。

【0069】第1のクラッチ(C-1)の摩擦材63は、内周側をハブ64にスプライン係合させ、外周側をドラム62にスプライン係合させた多板の摩擦材ディスクとセパレータプレートから構成され、ドラム62の先端に固定されたバッキングプレートと、油圧サーボ6内への油圧の供給によりシリンダ60から押し出されるピストン61とで挟持されるクラッチ係合作動により、ドラム62からハブ64にトルクを伝達する構成とされて 30いる

【0070】第2のクラッチ(C-2)の油圧サーボ5 は、ピストン51を内包するシリンダ50の内周筒状部 50aを入力軸11のフランジ部11bに固定支持し、 背面部50b及び外周筒状部50cを変速機ケース10 の後端壁10c及び周壁10dに対向させて、第1のク ラッチ(C-1)の油圧サーボ6の後側、すなわち変速 機構の最後部に配置されている。この油圧サーボ6の油 圧の給排は、変速機ケースの後側ボス部10bに形成さ れたケース内油路10yを介して行われる。この油圧サ ーボでは、キャンセル室を画定するキャンセルプレート 55の外周側にクラッチハブ54が形成され、ハブ54 とキャリアに連結するドラム52との間に摩擦材53を 支持した構成が採られている。この構成により、変速機 の制御のために必要な入力回転の検出を第2のクラッチ (C-2)の油圧サーボ5のシリンダ50の回転から変 速機ケース10に設けたセンサSにより直接行うことが できるため、センサSを変速機構の内部に配設し、ある いは特別な検出手段を用いて間接的に検出する等の複雑

きる。

【0071】第2のクラッチ(C-2)の摩擦部材53は、内周側をハブ54にスプライン係合させ、外周側をドラム52にスプライン係合させた多板の摩擦材ディスクとセパレータプレートから構成され、ハブ54の先端に固定されたパッキングプレートと、油圧サーボ5内への油圧の供給によりシリンダ50から押し出されるピストン51とで挟持されるクラッチ係合作動により、ハブ54からドラム52にトルクを伝達する構成とされている。

16

【0072】第1のブレーキ(B-1)はバンドブレーキとされ、そのブレーキバンド8は、第3のクラッチ(C-3)のドラム72の外周に配置され、ドラム72をブレーキドラムとする構成とされている。これにより、第1のブレーキ(B-1)は、軸方向スペースを要せず、しかも径方向寸法をほとんど増加させずに配置されていることになる。なお、このバンドブレーキの油圧サーボは、ブレーキバンド8と同じ軸方向位置で、ドラム73に対して接線方向に延びるものであるため、図示を省略している。

【0073】第2のブレーキ(B-2)は、各クラッチと同様に多板構成とされ、その摩擦材93は、プラネタリセットGの外周側に、ワンウェイクラッチ(F-1)と並べて配置されている。第2のブレーキ(B-2)の油圧サーボ9は、変速機ケース10のほぼ中央に設けられたサポート10eに、ピストン91を内包するシリンダを内蔵させた形態で設けられている。

【0074】そして、カウンタドライブギヤ19の支持に関しては、該ギヤ19は、上記サポート10eの内周にベアリング12を介して支持されており、詳しくは、カウンタドライブギヤ19の内周を軸方向に延びるボス部の外周がベアリング12を介して、第2のブレーキ(B-2)の油圧サーボシリンダを兼ねる変速機ケース10のサポート10eの内周に支持されている。

【0075】かくして、この実施形態では、その変速機構の絶対的なコンパクト化のために軸周における可能な限り内径側に配設することを必須とする減速プラネタリギヤG1とプラネタリギヤセットG、及び油圧供給の容易性とシールリングの摺動摩擦の軽減の面で、可能な限り小径の相対回転部を介して油路を連結することが望ましい各クラッチの油圧サーボ7.6,5を軸周の内径側に、カンウンタドライブギヤ19と共に軸方向に並べて配置し、有効径と摩擦材枚数の兼ね合いから大径とする方が有利な各クラッチの摩擦材73,63,53を外径側に重合配置し、そうして得られる中間スペースに両ブレーキ(B-1,B-2)とワンウェイクラッチ(F-1)を合理的に配置した構成により、最大限の軸方向寸法の短縮が効果が得られている。

いは特別な検出手段を用いて間接的に検出する等の複雑 【0076】ところで、上記第1実施形態では、主としな手段を用いずに、容易に入力回転を検出することがで 50 て変速機構としてのギヤ比とギヤ比ステップを良好とす

ることに重点を置いて、減速プラネタリギヤG1をシンプルプラネタリギヤ構成としたが、ブラネタリギヤセットGとの連結関係を単純化することに重点を置く場合は、減速プラネタリギヤG1をダブルピニオン構成とするのも有効である。図6はこのようにした第2実施形態の変速機構を模式化した断面で示す。この場合の相違点のみ説明すると、第1実施形態において出力要素とされていたキャリアC1が入力要素として入力軸11に連結され、入力要素とされていたリングギヤR1が出力要素として減速回転伝達部材13に連結されている。こうした連結関係を採ると、減速プラネタリギヤG1の後側からの入力に対して、出力を外周から後側に導く形態となるため、減速回転伝達部材13を減速プラネタリギヤG1の前側まで回し込む必要がなくなる分だけ短縮するととができる。

【0077】こうした連結関係の変更に伴い、第3のクラッチ(C-3)の油圧サーボ7は、そのシリンダ70を内周側で減速プラネタリギヤG1のキャリアC1に連結し、ドラム72は油圧サーボ7から切り離した構成とされている。したがって、この場合、クラッチ係合作動 20は、ハブ74のバッキングプレートとピストン71との間での摩擦材73の挟持によりなされ、減速回転伝達部材13にスラスト荷重がかかることになるが、この荷重は、減速回転伝達部材13の後端から入力軸11の後側のフランジ11bにスラストベアリングを経て伝達され、キャリアC1を介して前側のフランジ11aに固定された油圧サーボ7のシリンダ70に入力軸11を経て戻る閉ループとなって、変速機ケース10に負荷されることなく均衡する。

【0078】次に、図7は変速機の軸長を全体として短 30縮した第3実施形態を模式断面で示す。この形態では、第2のブレーキ(B-2)の油圧サーボ9が第2のクラッチ(C-2)の油圧サーボ5の外周側に変速機ケースの後壁10cに内蔵させた形態で設けられている。これに伴い、ブレーキ(B-2)の摩擦材93とワンウェイクラッチ(F-1)の位置が第1実施形態に対して逆配置とされ、位置的に離れた摩擦材93に向かって油圧サーボ9のピストン91の押圧部が第1のクラッチ(C-1)の外周を通って延長されている。

【0079】また、上記油圧サーボ位置の変更により、サポート壁10eの後側の外周側空間が自由となるのに合わせて、カウンタドライブギヤ19は、サポート壁10eの内周側を後方に延びるボス部の外周にベアリングを介して直接支持する構成が採られている。これによりリングギヤR2とカウンタドライブギヤ19の連結構造は極めて単純化され、一層の変速機軸長の短縮が実現されている。この他の構成については、第1実施形態と実質的に同様である。

【0080】次に、図8は第1実施形態に対して減速プ リングギヤR2を入力ラネタリギヤG1と第3のクラッチ(C-3)の油圧サ 50 結している点である。

ーボ7の配置を逆転させた第4実施形態を模式断面で示す。この形態では、第3のクラッチ(C-3)の油圧サーボ7が入力軸上支持とされている。これに伴い、入力軸11にはケース内油路10xと油圧サーボ7を連通させる軸内油路11dが形成されている。また、減速プラネタリギヤG1の出力は、クラッチドラム72に連結され、それらに連結された第1のブレーキ(B-1)のブレーキドラムは、クラッチドラム72の外周に被さる専用のドラムとして構成されている。

【0081】また、この第4実施形態では、変速機ケース10の外周壁に第2のブレーキ(B-2)の油圧サーボシリンダ90を別途取り付ける構成を採り、カウンタドライブギャ19の支持に関しては、第3実施形態と同様に、サポート壁10eの内周側を後方に延びるボス部の外周にベアリングを介して直接支持する構成が採られている。この他の構成については、第1実施形態と実質的に同様である。

【0082】次に、図9は第1実施形態に対して全ての 構成要素を前後(図面上で左右)逆配置とした第5実施 形態を模式断面で示す。

【0083】なお、この第5実施形態では、カウンタドライブギヤ19の支持と、第2のブレーキ(B-2)並びにワンウェイクラッチ(F-1)の構成に関しては、第3実施形態と同様の支持構成と採り、サポート壁10eの内周側を前方に延びるボス部の外周にベアリングを介して直接支持する構成が採られている。

【0084】次に、図10は第4実施形態に対して全ての構成要素を前後(図面上で左右)逆配置とした第6実施形態を模式断面で示す。この場合の各要素の配列は、第4実施形態を示す図8との対照で自ずと明らかであるので、説明を省略する。

【0085】上記6つの実施形態は、本発明を横置式の 変速機に適用したものであるが、本発明は、フロントエ ンジン・リヤドライブ (FR) 車用の縦置式の変速機に 適用することもできる。図11はこうした形態を採る第 7実施形態をスケルトンで示し、その場合の各係合要素 と達成される変速段、ギヤ比及びギヤ比ステップの関係 を図12に、また速度線図を図13に示す。この形態に 40 おける変速機構も本質的には、前記各形態を同様のもの であるが、縦置化したことに伴う2つの相違点がある。 その第1は、横置式の場合に比べて軸長の制約が緩やか であるため、変速過渡時、特に掴み替え変速時の油圧制 御を簡略化すべく、先行実施形態における第2のブレー キ(B-2)に対するワンウェイクラッチ(F-1)の 併設と同様の意味を持つワンウェイクラッチとブレーキ の組み合わせを第1のブレーキ (B-1) に対しても設 けている点である。そして、第2は、出力要素としての リングギヤR2を入力軸l1と同軸の出力軸l9Aに連

【0086】こうした構成要素の付加に伴い、第2のブレーキとワンウェイクラッチの呼称が各先行形態に対してずれているので、冗長とはなるが、混乱を避ける意味で、ギヤトレイン構成から改めて説明する。

【0087】図11を参照して、この自動変速機では、その機構の最前部に、図示しないエンジンに連結されるロックアップクラッチ付のトルクコンバータ4が配置され、その後部に前進6速・後進1速を達成する変速機構が配置された構成が採られている。

【0088】変速機構の主体をなすプラネタリギヤセッ トGは、先の各実施形態と同様に、大小径の異なる一対 のサンギヤS2, S3と、互いに噛合して一方が大径の サンギヤS2に嘲合するとともにリングギヤR2(R 3) に噛合し、他方が小径のサンギヤS3に噛合する一 対のピニオンギヤP2、P3を支持するキャリアC2 (C3) からなるラビニヨ式のギヤセットで構成されて いる。そして、ブラネタリギヤセットGの第1の変速要 素すなわち小径のサンギヤS3は、第1のクラッチ(C -1) に連結され、第2の変速要素すなわち大径のサン ギヤS2は、第3のクラッチ(C-3)に連結されると ともに、バンドブレーキで構成される第1のブレーキ (B-1)により自動変速機ケース10に係止可能とさ れ、更にこれと並列するワンウェイクラッチ(F-1) とブレーキ(B-2)によっても自動変速機ケース10 に係止可能とされている。また、第3の変速要素である キャリアC2(C3)は、第2のクラッチ(C-2)を 介して入力軸11に連結され、かつ、第2のプレーキ (B−3)により変速機ケース10に係止可能とされる とともに、ワンウェイクラッチ(F-2)により変速機 ケース10に一方向回転係止可能とされている。そし て、第4の変速要素すなわちリングギヤR2(R3)が 出力軸19Aに連結されている。

【0089】また、減速プラネタリギヤG1についても同様に、シンプルプラネタリギヤで構成され、その入力要素としてのリングギヤR1を入力軸11に連結され、出力要素としてのキャリアC1を第1のクラッチ(C-1)を介して小径サンギヤS3に連結されるとともに、第3のクラッチ(C-3)を介して大径のサンギヤS2に連結され、反力を取る固定要素としてのサンギヤS1を変速機ケース10に固定されている。

【0090】 この自動変速機の場合の各クラッチ、ブレーキ及びワンウェイクラッチの係合・解放と違成される変速段との関係は図12の係合図表に示すようになる。係合表における○印は係合、無印は解放、△印はエンジンブレーキ時のみの係合、●印は変速段の違成に直接作用しない係合を表す。また、図13は各クラッチ及びブレーキの係合(●印でそれらの係合を表す)により違成される変速段と、そのときの各変速要素の回転数比との関係を速度線図で示す。

【0091】両図を併せ参照してわかるように、第1速 50 でサンギヤS2に入力され、他方で入力軸11からクラ

(1st)は、クラッチ(C-1)とブレーキ(B-3)の係合(本形態において、作動表を参照してわかるように、このブレーキ(B-3)の係合に代えてワンウェイクラッチ(F-2)の自動係合が用いられているが、この係合を用いている理由及びこの係合がブレーキ(B-3)の係合に相当する理由については、それらの呼称がだけで、先の実施形態においてブレーキ(B-2)とワンウェイクラッチ(F-1)との関係で述べた通りである。)により達成される。この場合、入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチC-1経由で小径サンギヤS3に入力され、ワンウェイクラッチF-2の係合により係止されたキャリアC2に反力を取って、リングギヤR2(R3)の最大減速比の減速回転が出力軸19Aに出力される。

【0092】次に、第2速(2nd)は、クラッチ(C-1)とブレーキ(B-1)の係合に相当するワンウェイクラッチ(F-1)の係合とそれを有効にするブレーキ(B-2)の係合(これらの係合がブレーキ(B-1)の係合に相当する理由については後に詳述する。)により達成される。この場合、入力軸11から減速ブラネタリギヤG1を経て減速された回転がクラッチ(C-1)経由で小径サンギヤS3に入力され、ブレーキ(B-2)及びワンウェイクラッチ(F-1)の係合により係止された大径サンギヤS2に反力を取って、リングギヤR2(R3)の減速回転が出力軸19Aに出力される。このときの減速比は、図13にみるように、第1速(1st)より小さくなる。

【0093】また、第3速(3rd)は、クラッチ(C-1)とクラッチ(C-3)の同時係合により達成される。この場合、入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-1)とクラッチ(C-3)経由で同時に大径サンギヤS2と小径サンギヤS3に入力され、プラネタリギヤセットGが直結状態となるため、両サンギヤへの入力回転と同じリングギヤR2(R3)の回転が、入力軸11の回転に対しては減速された回転として、出力軸19Aに出力される。

【0094】更に、第4速(4th)は、クラッチ(C-1)とクラッチ(C-2)の同時係合により達成される。この場合、一方で入力軸11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-1)経由でサンギヤS3に入力され、他方で入力軸11からクラッチ(C-2)経由で入力された非減速回転がキャリアC3に入力され、2つの入力回転の中間の回転が、入力軸11の回転に対しては僅かに減速されたリングギヤR2(R3)の回転として出力軸19Aに出力される。

【0095】次に、第5速(5th)は、クラッチ(C-2)とクラッチ(C-3)の同時係合により達成される。この場合、一方で入力軸 11から減速プラネタリギヤG1を経て減速された回転がクラッチ(C-3)経由でサンギャS2に入力され、他方で入力軸 11からクラ

ッチ(C-2)経由で入力された非減速回転がキャリア C2 に入力され、リングギヤR2(R3)の入力軸 11 の回転より僅かに増速された回転が出力軸 19A に出力される。

【0096】そして、第6速(6th)は、クラッチ(C-2)とブレーキ(B-1)の係合により達成される。この場合、入力軸11からチクラッチ(C-2)経由で非減速回転がキャリアC2にのみ入力され、ブレーキ(B-1)の係合により係止されたサンギヤS2に反力を取り、リングギヤR2(R3)の更に増速された回 10転が出力軸19Aに出力される。

【0098】ととで、先に触れたワンウェイクラッチ (F-1) と両ブレーキ (B-1, B-2) との関係に 20 ついて説明する。この場合は、サンギヤS2に連結した ワンウェイクラッチ(F-1)の係合方向をサンギヤS 2の第2速時の反力トルク支持方向に合わせた設定とす ることで、ワンウェイクラッチ (F-1) に実質上ブレ ーキ(B-1)の係合と同等の機能を発揮させることが できる。ただし、このサンギヤS2は、キャリアC2 (C3)とは異なり、第2速時のエンジンブレーキ効果 を得るために係合するだけでなく、第6速達成のために も係止される変速要素であるため、ブレーキ (B-1) が必要となる。また、サンギヤS2は、図13の速度線 30 図でも分かるように、第1速(1st)達成時には入力 回転方向に対して逆方向に回転するが、第3速以上の変 速段の場合は、入力回転方向と同じ方向に回転する。し たがって、ワンウェイクラッチ (F-1)は、直接固定 部材に連結することができないため、ブレーキ(B-2) との直列配置により係合状態の有効性を制御可能な 構成としている。

【0099】このようにして達成される各変速段は、図13の速度線図上で、リングギヤR2(R3)の速度比を示す○印の上下方向の間隔を参照して定性的にわかるように、各変速段に対して比較的等間隔の良好な速度ステップとなる。この関係を具体的に数値を設定して、定量的に表すと、図12に示すギヤ比及びギヤ比間のステップとなる。この場合のギヤ比は、減速ブラネタリギヤG1のサンギヤS1とリングギヤR1の歯数比入1=0.556、プラネタリギヤセットGの大径サンギヤ側のサンギヤS2とリングギヤR2(R3)の歯数比入2=0.458、小径サンギヤ側のサンギヤS3とリングギヤR3の歯数比入3=0.375に設定した場合であり、ギヤ比幅は6.049となる。

【0100】次に、図14は自動変速機の構成を更に詳細に断面で示す。先にスケルトンを参照して説明した各構成要素については、同じ参照符号を付して説明に代えるが、スケルトンから参照し得ない細部について、次に説明する。まず、入力軸11は、この形態では、前端側を変速機ケースのボス部10aにベアリングを介して支持し、後端側は同軸の出力軸19Aを介して変速機ケースの後側ボス部10bに支持する構成が採られている。そのため、入力軸11の後端部は小径化され、出力軸19Aの軸穴に嵌合させてベアリング支持され、出力軸19Aを介して変速機ケース10の後端壁部10cから延材された後側ボス部10bに回転自在に支持されている。

【0101】出力軸19Aは、その前端部をローラベアリングを介して変速機ケース10の後側ボス部10bに回転自在に支持され、後端部を変速機ケース10の最後部に固定されたエクステンションハウジング10Aにボールベアリグを介して回転自在に支持されている。そして、プラネタリギヤセットGの出力要素としてのリングギヤR2(R3)への連結部は、出力軸前端のフランジとされ、ドラム状部材を介してリングギヤR3に連結されている。

【0102】との変速機では、変速機ケース10の中間部にサポートを設けない構成が採られているため、第2のブレーキ(B-3)を構成する油圧サーボ9は、変速機ケース10の後側の外周壁と後端壁部10cと後側ボス部10bとで囲まれる環状スペースをシリンダとして、そとに内蔵される配置とされている。この油圧サーボ配置により、ブラネタリギヤセットGの外周前側に配置された摩擦材93に対して遠い位置となるため、油圧サーボ9のピストン91は、その押圧部を第1及び第2のクラッチ(C-1、C-2)並びにブラネタリギヤセットのリングギヤR2(R3)の外周を延びて、摩擦材93の端部に達するように延材されている。

【0103】上記プラネタリギヤセットGのリングギヤR2(R3)の出力軸19Aへの連結部と、第2のブレーキ(B-3)の油圧サーボ9を変速機ケース10の後側の環状スペースに内蔵される配置との関連で、第2のクラッチ(C-2)の油圧サーボ5を後側ボス部10b40上に配置できないことから、油圧サーボ5は、この形態では入力軸11の後端部の外周に直接支持する構成が採られている。そして、この構成変更に伴い、油圧サーボ5への油圧供給のために、入力軸11の後部にはサーボ圧用の軸内油路11eが形成され、この油路11eにボス部の油路10yが出力軸19Aを横断する油路を経て連通されている。

【0104】この形態において付加されているワンウェイクラッチ (F-1) とブレーキ (B-2) については、ワンウェイクラッチ (F-1) は、そのインナレースを第3のクラッチ (C-3) のシリンダ70 に固定さ

れ、アウタレースをプレーキ(B-2)のハブと一体化 された構成とされ、第3のクラッチ(C-3)の前方、 すなわち変速機構の最前部に配置されている。アウタレ ースを変速機ケース 10 に係止するブレーキ (B-2) は、アウタレースに係合支持された摩擦材と、変速機ケ ース10の内周スプラインに係合支持されたセパレータ プレートを摩擦材とする多板構成のブレーキとされてい る。ブレーキ(B-2)の油圧サーボは、変速機ケース 10の前端壁部をシリンダとし、それに摺動自在に嵌挿 されたピストンと、変速機ケース10の前端壁部に軸方 10 向止めされてピストンに当接するリターンスプリングと を備えた構成とされている。

【0105】とうした構成かなる第7実施形態によれ は、プラネタリギヤセットGのリングギヤを欠く外周側 に、第2のブレーキ(B-3)の摩擦部材93が配置さ れているので、プラネタリギヤセットG外周側の本来デ ッドスペースとなる部分をブレーキの摩擦部材93の配 置に有効に活用できるので、変速機の軸方向及び径方向 の短縮に役立てることができる。

【0106】更に、第2のブレーキ(B-3)は、その 摩擦材93を多板の摩擦材とされ、その油圧サーボ9が 変速機の最後部に配置されているので、自動変速機ケー ス10の後端壁部を油圧サーボシリンダとして利用で き、油圧サーボがバンドブレーキの場合のように変速機 ケース外部に張り出すことがなくなり、車室のスペース を小さくすることがない。また、バンドブレーキの場 合、その係合によって、バンドブレーキの配置されるキ ャリアに対して、ある方向への力がかかり、これがプラ ネタリギヤセットのセンタリングや支持、あるいはプラ ネタリギヤセットが支持されている入力軸の支持やセン タリングに悪影響を及ぼす。そのため、入力軸やプラネ タリギヤセットを支持するためのブッシュやベアリン グ、あるいは入力軸自体を大型化する必要がある。しか し、この実施形態において、第2のブレーキ(B-3) は多板プレーキであるため、上記のようなことがなく、 コンパクトな自動変速機とすることができる。

【0107】とうした縦置構成の変速機への適用におい ても、横置式の場合と同様に種々の変更が可能である。 以下にこうした変更例を挙げる。まず、図15は第3の クラッチ (C-3) と減速プラネタリギヤG1の位置を 40 逆転させた第8実施形態を模式断面で示す。この場合、 第3のクラッチ (C-3) と減速プラネタリギヤG1の 相互関係、それらの支持関係、プラネタリギヤセットG との連結関係、第3のクラッチの油圧サーボ7への油圧 の供給は、図8に示す第4実施形態の場合と同様であ

【0108】次に、図16は上記第8実施形態と同様の 配置としながら、第3のクラッチ(C-3)の油圧サー ボ7をサポート10fに支持した第9実施形態を示す。 この形態では、第3のクラッチの油圧サーボ7はサポー 50 置し、減速プラネタリギヤG1をサポート10fから前

ト10fから前方に延びるボス部の外周にベアリングを 介して支持され、それに伴い油圧サーボ7は前向きの配 置に変更されている。そして、油圧サーボ7のシリンダ 70の外周側に連設されたドラム72の前端を延長し て、位置変更していないワンウェイクラッチ(F-1) のインナレースに連結している。この連結関係から、減 速プラネタリギヤGlの外周側がクラッチドラム72に より塞がれるため、減速プラネタリギヤG1のキャリア C1は、クラッチハブ74側に連結されている。

【0109】こうした配置を採る場合、サポート10f の配置により、その分の変速機軸長の増加は避けられな いが、油圧サーボ7のサポート10fへの支持で、入力 軸11を介さずにサポート内油路10 uから油圧サーボ 7に油圧の供給が可能となるため、前側ボス部10aと 入力軸内の油路配置が単純化される点にある。特に、こ の配置は、通常油路が錯綜するオイルボンプのボディの 延材部として構成される前側ボス部10aの油路を削減 することに役立ち、オイルポンプボディの油路構成の自 由度を高めることができる点で有効である。

【0110】次に、図17は上記第9実施形態と同様の 配置としながら、第2のクラッチ(C-2)を減速プラ ネタリギヤG1と第3のクラッチ(C-3)の間に移設 した第10実施形態を示す。この形態の場合に先行する 各実施形態と本質的に異なるのは、第2のクラッチ(C -2)が入力軸11の途中に介挿された動力伝達となる ため、入力軸11が2つに分割される点である。 具体的 には、入力軸11は第2のクラッチ(C-2)の油圧サ ーボ5の配設位置で前後に分割され、入力軸の前側部分 11Aに後側部分11Bを嵌合させてベアリング支持す る構成とされる。そして、第2のクラッチ(C-2)の 油圧サーボ5は入力軸11を減速プラネタリギヤG1の リングギヤR1に連結するフランジ11aの直後に、入 力軸前側部分11Aの外周と連結部材をシリンダとして 構成されている。自身の油圧サーボ5の外周に配置した 摩擦材53は、その外周を連結部材に固定したドラム5 2に支持し、内周を支持するハブ54を入力軸後側部分 11Bの前端に固定して配置されている。

【0111】こうした第10実施形態による利点は、図 12の係合図表を参照して明らかなように、第2のクラ ッチ(C-2)の係合による動力伝達を必要としな第1 ~第3速の低速段側において、入力軸後側部分11Bが 停止状態となることで、入力回転により連れ回る部材の 質量と、その慣性力を小さくできる点にある。

【0112】最後に、図18は第1及び第3のクラッチ を可及的にプラネタリギヤセットに隣接配置した第11 実施形態を示す。この形態では、減速プラネタリギヤG 1と第2のクラッチ(C-2)を変速機構の最前部に配 置している。具体的には、第2のクラッチ(C-2) を、その油圧サーボ5も前側ボス部10aに支持して配

方に延びるボス部の外周に支持した構成とされている。 そして、第2のクラッチ(C-2)の油圧サーボ5は入 力軸11のフランジ11aに連結され、クラッチドラム 53の開口側先端側が減速プラネタリギヤG1のリング ギヤR1に連結されている。第2のクラッチ(C-2) の摩擦材53は油圧サーボ5と減速プラネタリギヤG1 のほぼ中間の軸方向位置に配置され、クラッチハブ54 が油圧サーボ5と減速プラネタリギヤG1の間を通して 入力軸後側部分11Bの前端に連結されている。

【0113】第3のクラッチ(C-3)の油圧サーボ7 とワンウェイクラッチ (F-1) はサポート10 fの内 周側を後方に延びるボス部の外周に支持されている。ま た、ブレーキ(B-2)の油圧サーボはサポート10f の外周側の環状スペースに内蔵されている。そして、減 速プラネタリギヤG1の出力要素としてのキャリアC1 は、サポート10fの内周を通して第3のクラッチ(C - 3)のクラッチハブ74に連結されており、このハブ 74は、減速回転伝達部材13を介して第1のクラッチ (C-1)の油圧サーボ6に連結されている。

【0114】とうした第11実施形態による利点は、前 20 記のように第1及び第3のクラッチをプラネタリギヤセ ットGに可及的に隣接させて配置することで、クラッチ 出力側の高トルク伝達経路を最短に構成できる点に加え て、3つのクラッチへの油圧供給路をバランス良く分散 させて、入力軸 1 1 に並列する複数の軸内油路を設ける ことなく各油圧サーボへの油圧供給と潤滑油の供給とを 行うことができる点にある。

【0115】以上、本発明を構成要素の形式及び配置並 びに連結関係を変更した実施形態を挙げて詳説したが、 これらは、代表例の例示であって、本発明は、これら実 30 施形態に限定されるものではなく、特許請求の範囲の個 々の請求項に記載の事項の範囲内で種々に具体的な構成 を変更して実施することができるものである。

【図面の簡単な説明】

【図1】本発明を適用した車両用自動変速機の第1実施 形態のギヤトレインを展開して示すスケルトン図であ る。

【図2】上記ギヤトレインの実際の3軸位置関係を示す 軸方向端面図である。

【図3】上記ギヤトレインの作動及び達成されるギヤ比 40 R2, R3 リングギヤ (第4の変速要素) 並びにギヤ比ステップを示す図表である。

【図4】上記ギヤトレインの速度線図である。

【図5】上記ギヤトレインの主軸部分のみを模式化した 断面図である。

【図6】上記ギヤトレインの減速プラネタリギヤを変更 した第2実施形態の主軸部分の模式化断面図である。

【図7】上記ギヤトレインの第2のブレーキの油圧サー ボ配置を変更した第3実施形態の主軸部分の模式化断面 図である。

【図8】上記ギヤトレインの第3のクラッチの油圧サー 50 10x,10y,10z ケース内油路

ボと減速プラネタリギヤの配置を逆転させた第4実施形 態の主軸部分の模式化断面図である。

【図9】第1実施形態に対してギヤトレインの前後関係 を全て逆転させた第5実施形態の主軸部分の模式化断面 図である。

【図10】第5実施形態に対して第3のクラッチの油圧 サーボと減速プラネタリギヤの配置を逆転させた第6実 施形態の主軸部分の模式化断面図である。

【図11】本発明を縦置式の車両用自動変速機として具 10 体化した第7実施形態のギヤトレインを示すスケルトン 図である。

【図12】第7実施形態のギヤトレインの作動及び達成 されるギヤ比並びにギヤ比ステップを示す図表である。

【図13】第7実施形態のギヤトレインの速度線図であ

【図14】第7実施形態のギヤトレインを模式化した断 面図である。

【図15】第7実施形態に対して第3のクラッチと減速 ブラネタリギヤの位置を逆転させた第8実施形態のギャ トレインの模式断面図である。

【図16】第8実施形態に対して第3のクラッチの油圧 サーボをサポート支持に変更した第9実施形態のギヤト レインの模式断面図である。

【図17】第9実施形態に対して第2のクラッチを移設 した第10実施形態のギヤトレインの模式断面図であ

【図18】第1及び第3のクラッチを可及的にプラネタ リギヤセットに隣接配置した第11実施形態のギヤトレ インの模式断面図である。

【符号の説明】

G プラネタリギヤセット

G1 減速プラネタリギヤ

11 入力軸

S1 サンギヤ(1要素)

C1(R1) 出力部材

サンギヤ (第1の変速要素)

S2 サンギヤ (第2の変速要素)

C2, C3 キャリア(他の変速要素、第3の変速要 素)

C-1 第1のクラッチ

C-2 第2のクラッチ

C-3 第3のクラッチ

B-1 ブレーキ (第1の係止手段)

B-2 ブレーキ (第2の係止手段)

3 ディファレンシャル装置

6, 7, 9 油圧サーボ

10 変速機ケース

10a ボス部

(15)

特開2000-199549

28

11 r 潤滑油路

13 出力部材

14 入力部材

19 カウンタドライブギヤ(出力部材)

*31 デフリングギヤ

53,63,73 摩擦材

62, 72 クラッチドラム

*

【図1】

27

【図2】

[図3]

	C-1	6 2	C-3	B-1	B-2	F-1	ギヤ比	ステップ	
J									
REV			0		0		3.389		
N									
1ST	0				<u>6</u>	0	4.067)1.73	
2ND	0			0			2.354		
3RD	0		0				1.584)1.51	
4TH	0	٥					1.161)1.35	
ΣТΗ		0	0				0.857)1.35)1.25	
втн		0		0			0.648	7125	

【図4】

【図5】

【図6】

【図12】

	C-1	Ç-2	C-3	B-1	B-2	B-3	F-1	F-2	化さた	ステップ
P										
R			0			0	-		3.394	
N										<u> </u>
1st	0					Δ		0	4.148	1.75
2 n d	0			Δ	0		0		2.370	
3 r d	0		0		•				1.558	1.52
4th	0	0			•				1.155	1.35
5 t h	_	0	0		•				0.859	1.34
8 th		0		0	•				0.888	1.25

【図7】

【図8】

[図11]

BEST AVAILABLE COPY

【図9】

【図10】

【図15】

BEST AVAILABLE COPY

【図13】

【図14】

【図16】

BEST AVAILABLE COPY

【図17】

【図18】

フロントページの続き

(72)発明者 塚本 一雅

愛知県安城市藤井町髙根10番地 アイシ

ン・エィ・ダブリュ株式会社内

(72)発明者 早渕 正宏

愛知県安城市藤井町髙根10番地 アイシ

ン・エィ・ダブリュ株式会社内

(72)発明者 西田 正明

愛知県安城市藤井町髙根10番地 アイシ

ン・エィ・ダブリュ株式会社内

(72)発明者 後藤 健次

愛知県安城市藤井町髙根10番地 アイシ

ン・エィ・ダブリュ株式会社内