EE5907/EE5027 Week 3: Univariate Gaussian + Naive Bayes

Some of the following questions are adapted from Kevin Murphy's (KM) book "Machine Learning: A Probabilistic Perspective".

Q1: Mixed Observations Naive Bayes

Consider a 3-class naive Bayes classifier with one binary feature and one Gaussian feature. More specifically, class label y follows a categorical distribution parametrized by π , i.e., $p(y=c)=\pi_c$. The first feature x_1 is binary and follows a Bernoulli distribution: $p(x_1|y=c)=$ Bernoulli $(x_1|\theta_c)$. The second feature x_2 is univariate Gaussian: $p(x_2|y=c)=\mathcal{N}(x_2|\mu_c,\sigma_c^2)$. Let $\pi=[0.5\ 0.25\ 0.25],\ \theta=[0.5\ 0.5\ 0.5],\ \mu=[-1\ 0\ 1]$ and $\sigma^2=[1\ 1\ 1]$.

- (i) Compute $p(y|x_1=0)$. Note that result is a vector of length 3 that sums to 1.
- (ii) Compute $p(y|x_2=0)$. Note that result is a vector of length 3 that sums to 1.
- (iii) Compute $p(y|x_1 = 0, x_2 = 0)$. Note that result is a vector of length 3 that sums to 1.

Exercise 3.20 Class conditional densities for binary data

Consider a generative classifier for C classes with class conditional density $p(\mathbf{x}|y)$ and uniform class prior p(y). Suppose all the D features are binary, $x_j \in \{0,1\}$. If we assume all the features are conditionally independent (the native Bayes assumption), we can write

$$p(\mathbf{x}|y=c) = \prod_{j=1}^{D} Ber(x_j|\theta_{j,c})$$
(1)

This requires DC paramters.

a. Now consider a different model, which we will call the "full" model, in which all the features are fully dependent (i.e., we make no factorization assumptions). How might we represent $p(\mathbf{x}|y=c)$ in this case? How many parameters are needed to represent $p(\mathbf{x}|y=c)$?

- b. Assume the number of features D is fixed. Let there be N training cases. If the sample size N is very small, which model (naive Bayes or full) is likely to give lower test set error, and why?
- c. If the sample size N is very large, which model (naive Bayes or full) is likely to give lower test set error, and why?
- d. What is the computational complexity of fitting the full and naive Bayes models as a function of N and D? Use big-Oh notation. (Fitting the model here means computing the MLE or MAP parameter estimates. You may assume you can convert a D-bit vector to an array index in O(D) time.)
- e. What is the computational complexity of applying the full and naive Bayes models at test time to a single test case?
- f. Suppose the test case has missing data. Let \mathbf{x}_v be the visible features of size v, and \mathbf{x}_h be the hidden (missing) features of size h, where v + h = D. What is the computational complexity of computing $p(y|\mathbf{x}_v, \hat{\theta})$ for the full and naive Bayes models, as a function of v and h?

Q3: Posterior Predictive Distribution for Exponential Distribution

- (a) Consider an exponential distribution $p(x) = \lambda e^{-\lambda x}$. Suppose we observe N independent samples from the exponential distribution: $D = \{x_1, \dots, x_N\}$.
 - (i) What is the maximum likelihood (ML) estimate of λ ? Show your steps to get full credit.
 - (ii) Suppose we use ML estimate of λ to predict new data x_{N+1} . What problems might arise? Describe a solution to avoid this problem.
- (b) Consider the same distribution and data from part (a). Assume the conjugate prior distribution $p(\lambda) = \operatorname{Gamma}(\lambda; \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\lambda \beta}$, where $\Gamma(\cdot)$ is the Gamma function (not to be confused with the Gamma distribution). You may or may not find the following identities useful: $\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$, and $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$.
 - (i) The posterior distribution $p(\lambda|D)$ is also a Gamma distribution with parameters α', β' . What are α' and β' ? Show your steps.
 - (ii) What is the posterior predictive distribution $p(x_{N+1}|D)$? Show your steps.