PRÁCTICA DE GRAFOS

2) Dibujar el grafo $G = (V; A; \phi)$ dado por

i) $G=(\{v_1,v_2,v_3,v_4,v_5,v_6\};\{a_1,a_2,a_3,a_4,a_5,a_6\};\phi)$

ai	a ₁	a ₂	a ₃	a ₄	a ₅	a ₆
φ	$\{v_1, v_3\}$	$\{v_1, v_4\}$	$\{v_3,v_5\}$	$\{v_2, v_4\}$	$\{v_1, v_3\}$	$\{v_5, v_6\}$

ii) $G=(\{v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8\};\{a_1,a_2,a_3,a_4,a_5,a_6,a_7,a_8,a_9\};\phi)$

3) Para cada uno de los grafos de los ejercicios 1 y 2 se pide: a) i) vértices y aristas incidentes

- - ii) lazos
 - iii) aristas paralelas
 - iv) vértices adyacentes
- b) Son grafos simples?

4) Para cada uno de los siguientes grafos hallar la matriz de adyacencia y la matriz de incidencia.

- 5) Con referencia al ejercicio 4i) hallar
- a) todos los caminos de longitud 4 que empiecen en v4.
- b) tres ciclos que comiencen en v₄
- c) un camino simple que una v1 con v5
- d) dos ciclos no simples que empiecen en v7
- 6) Hallar el grado de cada uno de los vértices para los grafos de los ejercicios 4ii) y
 4iii)
- 7) Dibujar, si es posible, un grafo que sea
 - i) regular de 1 vértice
 - ii) regular de 2 vértices
 - iii) regular de 3 vértices
 - iv) regular de 4 vértices
 - v) regular de 5 vértices
 - 8) Algunos de los siguientes grafos es regular?

9) Para cada una de las siguientes secuencias de números naturales hallar un grafo cuyos vértices tengan como grado a cada uno de los números o mostrar que ese grafo no existe.

10) Hallar el cardinal del conjunto de vértices V para cada uno de los siguientes grafos G.

i) G tiene 16 aristas y es 6 - regular

ii) G es regular con 12 aristas

iii) G tiene 15 aristas con 3 vértices de grado 6 y los vértices restantes tienen grado 4

11) Para el siguiente grafo

Se pide

i) El subgrafo
$$\tilde{G}v_7, \tilde{G}v_5, \tilde{G}v_1$$
 y $\tilde{G}v_2$

ii) El subgrafo
$$\tilde{G}_{B}$$
 con $B = \{v_{2}, v_{4}, v_{6}, v_{8}, v_{10}\}$

iii) Si las aristas a1, a2, a3, a4, a5, a6 están dadas por

$$\varphi(a_1) = \{v_1, v_2\}, \varphi(a_2) = \{v_2, v_3\}, \varphi(a_3) = \{v_1, v_5\}$$

$$\phi(a_4) = \{v_2, v_{10}\}, \phi(a_5) = \{v_7, v_{10}\}, \phi(a_6) = \{v_6, v_7\}$$

hallar los subgrafos \tilde{G}_{a_i} para i = 1,6

iv) Considerando las mismas aristas que en iii) hallar el subgrafo \tilde{G}_{A_i} para i = 1,6 en $A_1 = \{a_1, a_3, a_5\}, A_2 = \{a_2, a_4, a_6\}, A_3 = \{a_1, a_5\}$

v) Dibujar cada uno de los subgrafos encontrados en i) ii) iii) y iv)

- 12) a) Dibujar un grafo completo de 6 vértices
 - b) Dibujar un grafo regular de 6 vértices que no sea completo
- 13) Probar que un grafo completo de m vértices tiene $\frac{m(m-1)}{2}$ aristas
- 14) Considerar el grafo $G = (V; A; \phi)$ y probar que la relación de conexión definido por $vRw \Leftrightarrow \exists$ camino que une v con w ó v = w es una relación de equivalencia en el conjunto de vértices del grafo.
- 15) Indicar el valor de verdad de cada una de las siguientes proposiciones. Probar las verdaderas y dar un contraejemplo si son falsas.
- i) El grafo $G = (V; A; \varphi) \text{ con } |A| \ge |V|$ es conexo
- ii) El grafo $G = (V; A; \phi)$ con $|A| \ge |V|$ tiene un ciclo
- iii) El grafo $G = (V; A; \varphi)$ con $|A| \le |V| 2$ no es conexo
- iv) El grafo $G = (V; A; \varphi)$ con $|A| \le |V| 2$ es acíclico
- v) El grafo $G = (V; A; \varphi)$ con |A| = |V| 2 tiene dos componentes
- vi) El grafo G = (V; A; φ) con |A| = |V| 2 tiene al menos dos componentes
- vii) Si el grafo $G = (V; A; \varphi)$ con |A| = |V| tiene dos componentes entonces: $|A| \le |V| 2$
- viii) El grafo $G = (V; A; \varphi)$ con |A| = |V| + 1 tiene al menos dos ciclos
- ix) El grafo $G = (V; A; \varphi)$ con |A| = |V| + 1 tiene exactamente dos ciclos
- x) Si en el grafo $G = (V; A; \varphi)$ con |A| = |V| + 1 entonces hay al menos dos ciclos
- xi) Un grafo $G = (V; A; \varphi) con |A| = |V| + 1 no es conexo$

16) Hallar la matriz de adyacend K _{3,2}	cia para el gra	fo completo K ₆ y para el grafo bipartito completo
17) Sea K _{m, n} un grafo bipartito c	ompleto.	
i) hallar el número de aristas y el	número de vé	rtices
ii) Si m = 12 y hay 72 aristas ¿cu	ánto vale m ?	
iii) Si hay 10 vértices ¿es posible	que sea regul	ar de grado 3 ?
18) Dar la matriz de adyacencia bipartito completo $K_{m,n}$.	M _a y la matri	z de incidencia M ₁ para los grafos completo K _n y
19) Hallar, si es posible un ciclo	y/o un camino	de Euler para cada uno de los siguientes grafos:
i)	ii)	
iii)	iv)	
v)	vi)	
vii)	viii)	22) Millia ejempica de la menerale propries al millio (25)
		Similarity strongs on V mitter strongs on Strain

21) Cuáles de los siguientes grafos tienen ciclos y/o caminos de Hamilton i) ii) vi) v) vii) viii)

- 22) Hallar ejemplos de los siguientes tipos de grafos
 - i) Con ciclo de Euler y de Hamilton
 - ii) Con ciclo de Euler y sin ciclo de Hamilton
 - iii) Con ciclo de Hamilton y sin ciclo de Euler
 - iv) Sin ciclo de Euler y sin ciclo de Hamilton
- 23) Probar que el grafo bipartito completo $K_{m,n}$ es de Hamilton si y sólo si m=n

