Total No. of Questions	:6]	
-------------------------------	-----	--

SEAT No:	
----------	--

[Total No. of Pages :2

P184

APR -17/ TE/Insem. - 20 T. E. (E & TC)

ANTENNA AND WAVE PROPAGATION

(Semester - II) (2012 Pattern)

Time: 1 Hour] [Max. Marks: 30

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or O.4, Q.5 or Q.6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) A plane wave of 200MHz travelling in free space impinges normally on a large block of material having $\varepsilon_r = 4$, $\mu_r = 9$ and $\sigma = 0$, determine $\eta_1, \eta_2, \beta_1, \beta_2, \Gamma_T$ and Γ_R .
 - b) Derive the expressions for field after normal incidence with conductor.[4]

OR

- Q2) a) Write the Maxwell equation in phasor form. Derive the wave equation, solve the wave equation for transverse electromagnetic (TEM) and clearly mention the assumptions to be made.[6]
 - b) What is poynting vector? What is its significance? Derive an expression for poynting vector? [4]
- **Q3)** a) Explain the effect of earth's magnetic field on ionospheric propagation. [3]
 - b) The observed critical frequencies of E and F layers at Bhubaneswar at a particular time are 2.5MHz and 8.4MHz respectively. Calculate the maximum electron concentrations of the layers. [4]
 - c) Distinguish between the sky wave and space wave propagation. [3]

Q4)	a)	Write a short note on "Space link geometry" [4]	
	b)	Write a short note on [6]	
		i) Skip distance	
		ii) Maximum Usable frequency	
		iii) Coherence bandwidth	
Q5)	a)	Derive vector potential A for an magnetic current source J. [6]	
	b)	With the help of illustrative diagrams explain the following radiation patter of antenna.	
		i) Directional	
		ii) Omnidirectional.	
		OR	
Q6)	a)	Explain in detail the radiation mechanism of antenna. [6]	
	b)	A lossless antenna has input impedance of 75Ω , maximum effective aperture of 2.14m^2 at a operating frequency of 100MHz . The antenna is connected to a 50Ω transmission line. Find the directivity of the antenna by neglecting the polarization loss.	

લ્લા