Biological Vision and Applications Module 06-01: Introduction to Neural Networks

Hiranmay Ghosh

Neural Networks

- Transfer function: y = W.x
- Feed-forward network: back-propagation algorithm for training
- W is a constant: deterministic output

Neural Networks

Training

- Back-propagation algorithm
 - Adjust network parameters based on error
 - Minimize error over many observations

Challenges for using neural network for image processing **Training**

- For a 640×480 color image
 - Number of input nodes = 927.360
 - Large number of parameters to be learned
 - Early vision:
 - Image is organized in 2D
 - ► All image locations are to be similarly processed (contrast detection)

Convolutional Neural Networks (CNN)

Exploits properties of early vision

- 2D organization exploits
 - Spatial context of a location in 2D
 - Identical operations repeated over the different spatial regions
- Drastic reduction in model parameters
 - For a 3 × 3 convolution filter, only 27 parameters to learn
 - Independent of image size

Convolutional Neural Networks

Structure

- Architecture motivated by early vision
 - Convolution: Aggregates information from receptive field
 - Filtering (ReLU): Non-linear transformation
 - ▶ Pooling (avg / max): Reduces information volume

On filter sizes

- A bank of two 3 × 3 filters in succession. has a receptive field of 5×5
- Can implement identical transfer function
- Which one would you prefer?

- Filter size = 1
- For "flattening" the layers
 - \triangleright $y(i,j) = \sum_k w_k.x_k(i,j)$

Progressive abstraction

Use of context

- Each location at any layer of a CNN holds information about some locality of the image
- A location in a deeper layer covers more visual field of the image than a shallower layer
 - A deeper layer incorporates more context than a shallower layer
 - Visual information is progressively abstracted
 - Depth of layer increases with the depth of the network

Some notable CNN implementations (2012 – 2015)

These implementations are reused in different contexts

- AlexNet
- VGG
- ResNet
- GoogleNet

A feed-forward network does not learn from (runtime) experience

Architecture comparisons (blog)

Does CNN really do progressive abstraction?

Visualization at the last layer – just before classification

Fully Convolutional Neural Network (FCNN)

Used for Image Segmentation

DeconvNet

Understanding DeconvNet

Recurrent Neural Network (RNN)

Tool for sequence processing tasks (natural language, video, ...)

- RNN incorporates a feedback loop (with delay)
- Transfer function

 - $\mathbf{y}_t = g(\mathbf{W}_3.\mathbf{h}_t)$
 - ightharpoonup h_t accumulates experience

Generative Adversarial Network (GAN)

Technology behind DeepFake, etc.

- Generator attempts to create realistic samples
- Discriminator tries to differentiate between real samples and the fakes (generated)
- Both networks are trained together both improves with training

Quiz

Quiz 06-01

End of Module 06-01