STW70N65M2

N-channel 650 V, 0.039 Ω typ., 63 A MDmesh™ M2 Power MOSFET in a TO-247 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STW70N65M2	650 V	0.046 Ω	63 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STW70N65M2	70N65M2	TO-247	Tube

Contents STW70N65M2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	8
4	Packag	e mechanical data	9
	4.1	TO-247 package information	9
5	Revisio	n history	11

STW70N65M2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	63	Α
I _D	Drain current (continuous) at T _C = 100 °C	40	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	252	Α
P _{TOT}	Total dissipation at T _C = 25 °C	446	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
dv/dt (3)	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range - 55 to 150		°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.28	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	4	Α
E _{AS}	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} , V_{DD} = 50 V)	3500	mJ

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by safe operating area.

 $^{^{(2)}}$ $I_{SD} \leq 63$ A, di/dt ≤ 400 A/µs; $V_{DS\;peak} < V_{(BR)DSS}, \, V_{DD} = 400$ V

⁽³⁾ V_{DS} ≤ 520 V

Electrical characteristics STW70N65M2

2 Electrical characteristics

(T_C= 25 °C unless otherwise specified)

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			V
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 31.5 A		0.039	0.046	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
C _{iss}	Input capacitance		-	5140	ı	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	208	ı	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	2.9	-	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 V to 520 V, V _{GS} = 0 V	-	520	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	3	1	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_D = 63 \text{ A},$	-	117	1	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	21.5	1	nC
Q_{gd}	Gate-drain charge	behavior")	-	51	-	nC

Notes:

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, I_D = 31.5 \text{ A}$	-	24	-	ns
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 14: "Test circuit for		22	1	ns
t _{d(off)}	Turn-off-delay time	resistive load switching times" and	1	134	ı	ns
t _f	Fall time	Figure 19: "Switching time waveform")		11	ı	ns

 $^{^{(1)}}$ Defined by design, not subject to production test.

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		63	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				252	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 63 A			1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 63 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	584		ns
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}$ (see Figure 16: "Test circuit for	1	14.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	ı	50.5		Α
t _{rr}	Reverse recovery time	$I_{SD} = 63 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	ı	725		ns
Q_{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	20		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	55.5		Α

Notes:

 $^{^{(1)}}$ Pulse width is limited by safe operating area

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

 $\vec{V}_{DS}(V)$

2.2 Electrical characteristics (curves)

single pulse

10¹

10⁻²

10

Figure 3: Thermal impedance

K

-0.2

-0.2

-0.05

The impedance

AM09125v1

Zth=k Rthj-c
d=tp/t

10⁻¹

10⁻

STW70N65M2 Electrical characteristics

Figure 8: Capacitance variations

C
(pF)

10⁴

10³

10²

10¹

f = 1 MHz

C_{RSS}

10⁰

10⁻¹

10⁰

10¹

10²

V_{DS} (V)

Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG030216MQF9WRON
(norm.)

2.2

1.8

1.4

1.0

0.6

0.2

-75 -25 25 75 125 T_j (°C)

Test circuits STW70N65M2

3 Test circuits

Figure 15: Test circuit for gate charge behavior

12 V 47 kΩ 100 nF 1 kΩ

Vos 1 kΩ 1 kΩ

Vos 1 kΩ 1 kΩ

AM01469v1

Figure 16: Test circuit for inductive load switching and diode recovery times

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

Figure 20: TO-247 package outline

Table 9: TO-247 package mechanical data

Dim	•	mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

STW70N65M2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
04-Feb-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved