Functional Analysis-Spring 2024

Paul Carmody Assignment #3– March 17, 2024

p. 126 #8 Show that the dual space of the space c_0 is ℓ^1 .(Cf. Prob. 1 in Sec. 2.3.)

Want to show that

1. every element of c'_0 is an element of ℓ^1 Let (e_k) be the unique Shauder basis for ℓ^1 where $e_k = (\delta_{jk})$. Let $x = (\xi_j) \in c_0$, that is $\lim_{j \to \infty} \xi_j = 0$ which has the unique representation $x = \sum_{j=1}^{\infty} \xi_j e_j$. Let $f \in c'_0$, that is $f : c_0 \to \mathbb{R}$ which is linear and bounded. Therefore,

$$f(x) = \sum_{j=1}^{\infty} \xi_j f(e_j)$$

$$|f(e_j)| \le ||f|| ||e_j|| = ||f||$$

$$||f(x)|| \le ||f|| \left| \sum_{j=1}^{\infty} \xi_j \right| \le ||f|| \sum_{j=1}^{\infty} |\xi_j| = ||f|| ||x||_{\ell^1}$$

which means that $f \in \ell^1$.

2. that the norm over c'_0 is the norm over ℓ^1 . want to show that |f(x)| = ||x||. Let $\gamma = \sup_i f(e_i)$

$$|f(x)| = \left| \sum_{j=1}^{\infty} \xi_j f(e_j) \right| \le \gamma \sum_{j=1}^{\infty} |\xi_j| = \gamma ||x||$$

p. 135 #9 Prove

Re
$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

Im $\langle x, y \rangle = \frac{1}{4} (\|x + iy\|^2 - \|x - iy\|^2)$

- p. 141 #7-10,
- 7. Show that in an inner product space, $x \perp y$ if and only if $||x + \alpha y|| = ||x \alpha y||$ (see Fig. 25.)

Fig. 25. Illustration of Prob. 7 in the Euclidean plane \mathbb{R}^2

- 8. Show that in an inner product space, $x \perp y$ if and only if $||x + \alpha y|| \geq ||x||$ for all scalars α .
- 9. Let V be the vector space of all continuous complex-valued functions on J-[a,b]. Let $X_1=(V,\|\cdot\|_{\infty})$, where $\|x\|_{\infty}=\max_{t\in J}|x(t)|$; and let $X_2=(v,\|\cdot\|_2)$, where

$$\|x\|_2 = \langle x, x \rangle^{1/2}, \ \langle x, y \rangle = \int_a^b x(t) \overline{y(t)} dt$$

Show that the identity mapping $x\mapsto x$ of X_1 onto X_2 is continuous. (It is not a homeomorphism. X_2 is not complete.)

10. (**Zero Operator**) Let T: XtoX be a bounded linear operator on a complex inner product space X. If $\langle Tx, x \rangle = 0$ for al $x \in X$, show that T = 0.

Show that this does not hold in the case of a real inner product space. *Hint*. Consider a rotation of the Euclidiean plane.

- p. 150 #2, 3a, 6,
- 2. Show that the subset $M = \{y = (\eta_j) \mid \sum \eta_j = 1\}$ of complex space \mathbb{C}^n (cf 3.1-4) is complete and convex. Find the vector of minimum norm in M.
- 3. (a) Show that the vector space X of all real-valued continuous functions on [-1, a] is the direct sum of the set of all even continuous functions and the set of all odd continuous functions on [-1, 1].
- 6. Show that $Y = \{x \mid x = (\xi_j) \in \ell^2, \xi_{2n} = 0, n \in \mathbb{N}\}$ is a closed subspace of ℓ^2 and find Y^{\perp} . What is Y^{\perp} if $Y = \text{span}\{e_1, \dots, e_n\} \subset \ell^2$, where $e_j = (\delta_{jk})$?