Обучение словаря с помощью Optimal Transport

Роли:

- Докладчик: Булатова Катя
- Рецензент: Смирнов Тимофей
- Практик-исследователь: Седашов Даня
- Хакер: Пахалко Илья

План презентации

- 1. Докладчик
 - Постановка задачи
 - Общий план решения: VOLT
 - Детали предложенного метода
 - MUV
 - Перенос на нашу задачу
 - Уточнение формул
 - Результаты
- 2. Хакер
- 3. Рецензент
- 4. Практик-исследователь

Постановка задачи

- Размер словаря важен
- Нельзя перебрать все размеры (используют стандартные)
- Хотим автоматический вычислительно недорогой способ поиска словаря
- Проблемы:
 - о Энтропия № размер словаря
 - Слишком много токенов ⇒ разреженность данных, много параметров у моделей
 - Задача скорее всего будет экспоненциально сложна

Предложенный метод: VOLT

- VOcabulary Learning approach via optimal Transport
- Измерение качества -- MUV
- Рассматривает конечное количество размеров словаря
- Учитывает и энтропию, и размер словаря
- Работает за полиномиальное время
- Можно рассматривать как задачу ОТ

MUV

- Предельная полезность, или Marginal Utility (of Vocabularization)
- Оценивает выгоду (энтропию) ~ увеличения цены (размер словаря)
- Оценка производной

$$\mathcal{M}_{v(k+m)} = \frac{-(\mathcal{H}_{v(k+m)} - \mathcal{H}_{v(k)})}{m}$$

$$v(k)$$
 -- словарь размера k

$$\mathcal{H}_v$$
 — энтропия корпуса v : $\mathcal{H}_v = -rac{1}{l_v} \sum_{j \in v} P(j) \log P(j)$ l_v — средняя длина токенов в v

P(j)-- частота токена ј в обучающем корпусе

MUV

- Предельная полезность, или Marginal Utility (of Vocabularization)
- Оценивает выгоду (энтропию) ~ увеличения цены (размер словаря)
- Оценка производной

VOLT

- $S = \{k, 2 \cdot k, ..., (t-1) \cdot k, \cdots\}$ -- набор испытуемых размеров, т.е. значения, для которых вычисляется MUV
- Функционал -- значение MUV:

$$\underset{t}{\operatorname{arg max}} \underset{v(t-1) \in \mathbb{V}_{S[t-1]}, v(t) \in \mathbb{V}_{S[t]}}{\operatorname{arg max}} - \frac{1}{k} \left[\mathcal{H}_{v(t)} - \mathcal{H}_{v(t-1)} \right]$$

v(t) имеет размер, не превышающий S[t]: $\mathbb{V}_{\boldsymbol{S}[t]}$ содержит все словари, размер которых <= S[t]

• Появятся запрещенные пары: размер v(t-1) > размера v(t). Их можно не учитывать

VOLT: алгоритм

Нашу задачу можно переформулировать в виде (смотрим на верхнюю оценку):

$$\arg\max_{t} \frac{1}{k} \left[\underset{v(t) \in \mathbb{V}_{S[t]}}{\arg\max} \, \mathcal{H}_{v(t)} - \underset{v(t-1) \in \mathbb{V}_{S[t-1]}}{\arg\max} \, \mathcal{H}_{v(t-1)} \right]$$

то есть для каждого t нужно найти модель с максимальной энтропией:

$$\underset{v(t) \in \mathbb{V}_{\mathbf{S}[t]}}{\operatorname{arg max}} - \frac{1}{l_{v(t)}} \sum_{j \in v(t)} P(j) \log P(j)$$

Сложно решить, будем оценивать верхнюю границу и решать задачу известным алгоритмом

VOLT: переход к задаче OT

Рассмотрим $\mathbb{T} \in \mathbb{V}_{\boldsymbol{S}[t]}$, содержащий S[t] самых частых токенов, \mathbb{C} -- буквы, тогда:

$$\min_{v \in \mathbb{V}_{S[t]}} \frac{1}{l_v} \sum_{j \in v} P(j) \log P(j) \le \frac{1}{l_{\mathbb{T}}} \sum_{j \in \mathbb{T}} P(j) \log P(j) =$$

$$= \frac{1}{l_{\mathbb{T}}} \sum_{j \in \mathbb{T}} \sum_{i \in \mathbb{C}} P(j, i) \log P(j, i) + \frac{1}{l_{\mathbb{T}}} \sum_{j \in \mathbb{T}} \sum_{i \in \mathbb{C}} P(j, i) (-\log P(i|j))$$

$$\mathcal{L}_{2}$$

Здесь L1 -- отрицательная энтропия распределения P(j, i), обозначим -H(P);

L2 можно переписать через матричное умножение P, D, где D -- матрица размера $|\mathbb{C}| \times |\mathbb{T}| c D[i, j] = - log P(i | j)$.

Тогда нашу задачу можно переписать как оптимизацию:

$$\min_{\boldsymbol{P} \in \mathbb{R}^{m \times n}} \langle \boldsymbol{P}, \boldsymbol{D} \rangle - \gamma H(\boldsymbol{P})$$

VOLT: Optimal Transport

Задача ОТ: как "перекинуть" одно распределение в другое, учитывая веса, нужные для "перемещения" элементов.

В нашем случае, одним из распределений будут символы, а вторым -- токены; P -- transport matrix, a D -- distance matrix.

$$\min_{\boldsymbol{P} \in \mathbb{R}^{m \times n}} \langle \boldsymbol{P}, \boldsymbol{D} \rangle - \gamma H(\boldsymbol{P})$$

VOLT: финальная формулировка

$$\min_{\boldsymbol{P} \in \mathbb{R}^{m \times n}} \left\langle \boldsymbol{P}, \boldsymbol{D} \right\rangle - \gamma H(\boldsymbol{P}), \quad \boldsymbol{D}(j, i) = \begin{cases} -\log P(i|j) = +\infty, & \text{if } i \notin j \\ -\log P(i|j) = -\log \frac{1}{len(j)}, & \text{otherwise} \end{cases}$$

Transport Matrix P

P _a	P _{a,ab}	P _{a,ab}	P _{a,a}
P _b	$P_{b,ab}$	$P_{b,bc}$	P _{b,a}
P _c	P _{c,ab}	$P_{c,bc}$	$P_{c,a}$
	Pah	Phc	Pa

Constraints
$$\forall j \in \{a, b, c\}, \sum_{i \in \{ab, bc, a\}} P_{i,j} = P_{j}$$

$$\forall i \in \{ab, bc, a\}, \sum_{j \in \{a, b, c\}} P_{i,j} - P_{i} \le \epsilon$$

$$C(P) = -H(P) + \sum_{\substack{j \in \{a, b, c\}, \\ i \in \{ab, bc, a\}}} P_{i,j} D_{i,j}$$

Distance Matrix D

a	1/2	∞	1/1
b	1/2	1/2	8
C	8	1/2	8
	ab	hc.	a

Problem $\min_{P} C(P)$

$$C(P) = -H(P) + \sum_{\substack{j \in \{a,b,c\},\\i \in \{ab,bc,a\}}} P_{i,j} D_{i,j}$$

Результаты

Двуязычные модели: меньше памяти, выше BLEU

Bilingual	WMT-14 TED												
En-X	De	Es	PTbr	Fr	Ru	He	Ar	It	NI	Ro	Tr	De	Vi
BPE-30K VOLT	29.31 29.80	39.57 39.97	39.95 40.47	40.11 40.42	19.79 20.36	26.52 27.98		34.61 34.64				29.37 29.98	28.20 28.52
X-En	De	Es	PTbr	Fr	Ru	He	Ar	It	NI	Ro	Tr	De	Vi
BPE-30K VOLT	32.60 32.30	42.59 42.34	45.12 45.93	40.72 40.72	24.95 25.33	37.49 38.70	31.45 32.97	38.79 39.09	37.01 37.31	35.60 36.53	25.70 26.75	36.36 36.68	
Vocab Size (K)	De	Es	PTbr	Fr	Ru	He	Ar	It	Nl	Ro	Tr	De	Vi
BPE-30K VOLT	33.6 11.6	29.9 5.3	29.8 5.2	29.8 9.2	30.1 3.3	30.0 7.3	30.3 9.4	33.5 3.2	29.8 2.4	29.8 3.2	29.9 7.2	30.0 8.2	29.9 8.4

VOLT не требует серий экспериментов, быстрый. Показывает хорошие результаты на multilingual задачах. Проведено сравнение с MUV-Search.

En-De	BLEU	Size	Cost
BPE-Search	29.9 29.7 29.8	12.6K	384 GH
MUV-Search		9.70K	5.4 CH + 30 GH
VOLT		11.6K	0.5 CH + 30 GH

Ссылки

- https://arxiv.org/pdf/2012.15671.pdf
- https://www.idiap.ch/webarchives/sites/www.idiap.ch/talk/otml/
- https://indico.cern.ch/event/845380/attachments/1915103/3241592/Dvurechensky_lectures.pdf
- https://aclanthology.org/W17-3204.pdf
- https://towardsdatascience.com/optimal-transport-a-hidden-gem-that-empowers-todays-machine-learning-2609bbf67e59

Два утверждения из раздела "Результаты"

 "A Simple Baseline with a VOLT-generated Vocabulary Reaches SOTA Results"

"VOLT Vocabularies and BPE Vocabularies are Highly Overlapped
 - They also have similar downstream performance"

	VOLT	30K
hate	0.5961	0.6036
sentiment	0.2649	0.3889
offensive	0.6776	0.6813
irony	0.5616	0.6004
imdb	0.8687	0.8658

Плюсы

- Актуальная проблема подбора размера словаря для задачи машинного перевода
- Предложен способ и метрика для оптимизации размера словаря
- Уникальная работа, до этого никто не пробовал придумывать метрику описывающую оптимальность размера словаря для данной задачи

Минусы

- Нет обоснования почему MUV хорошая метрика
- Кажется нечестным выбор BPE-30k и BPE-1k в качестве бейзлайна
- Нечестное сравнение VOLT с MUV-Search

En-De	BLEU	Size	Cost
BPE-Search	29.9	12.6K	384 GH
MUV-Search	29.7	9.70K	5.4 CH + 30 GH
VOLT	29.8	11.6K	0.5 CH + 30 GH

Минусы от ревьюверов

- Необоснованность зависимости качества от MUV
- Все датасеты довольно маленькие(кроме WMT14 En-De)
- Оптимальные параметры ВРЕ для данных датасетов 0.5-2к, а сетка перебора 1-30к, все бенчмарки 1к, 30к и 60к
- Все приросты в 3-м знаке BLUE

Корреляция MUV с качеством. Медиана 0.4

Минусы от ревьюверов

Поправленные

- Не рассмотрена предшествующая работа по теме
- Непонятна постановка экспериментов, глубина сети, выбранная архитектура и тд
- Воспроизводимость
- Изначально неправильно были подсвечены лучшие эксперименты
- Много опечаток и неточностей в математической части

Итоги

- Показали что подбор размера словаря можно делать не только через trial-search, до этого это никто не делал
- Теоретически метод может выдавать неплохое значение размера словаря по умолчанию и сэкономить время на подборе параметров
- VOLT в некоторых случаях лучше конструирует сам словарь и позволяет достичь прирост качества

Кто авторы?

- ByteDance Al Lab, Висконский университет в Мадисоне и Наньцинский университет
- Преимущественно занимаются исследованиями в NLP
- Один из авторов занимается только задачами NMT
- Тёзка одного из авторов профессор экономики

История публикаций

Submission на ICLR 2021

Сырая статья (мало экспериментов, плохие обоснования и пр.) Получили отказ от 4/4 ревьюеров на openreview 31 декабря 2020 отозвали сабмишн

История публикаций

Submission Ha ICLR 2021

Сырая статья (мало экспериментов, плохие обоснования и пр.) Получили отказ от 4/4 ревьюеров на openreview 31 декабря 2020 отозвали сабмишн

• ACL 2021 (дедлайн подачи заявок — 1 февраля)

Best paper (а ещё поменяли название метода с Info-VOT на VOLT)

Повлиявшие статьи

Идея метрики MUV:

- Christian Bentz and Dimitrios Alikaniotis. 2016. The word entropy of natural languages
- Ben Allison, David Guthrie, and Louise Guthrie. 2006. Another look at the data sparsity problem
- Paul A Samuelson. 1937. A note on measurement of utility

Как быстро решать задачу оптимального транспорта:

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal transport

"Конкуренты" статьи

Вся предшествующая работа относилась к оптимальному подбору гранулярности деления слов на подслова:

- Elizabeth Salesky, Andrew Runge, Alex Coda, Jan Niehues, and Graham Neubig. 2020. Optimizing segmentation granularity for neural machine translation
- Colin Cherry, George F. Foster, Ankur Bapna, Orhan Firat, and Wolfgang Macherey. 2018. Revisiting character-based neural machine translation with capacity and compression

Таким образом, статья обладает новизной: авторы исследовали область, которой раньше никто не занимался, и показали, что это тоже важно!

Дальнейшие исследования

• В статье рассмотрена оптимизация размера словаря применимо к задаче NMT => можно рассмотреть эффективность метода применимо к другим задачам NLP