

ntt.com

Transport SDN in disaggregated networks

ONIC Japan 2017 2017年10月20日 NTTコミュニケーションズ 技術開発部 宮田直輝

Transform your business, transcend expectations with our technologically advanced solutions.

トランスポートネットワークにおけるOpen化の動向

Open化の動向① Operation System

Pros

・NMS/EMSまで品質担保

Cons

- ・装置毎のオペレーション
- ・汎用的な最適化
- ・NMS/EMSはロックイン

Pros

- ・オペレーションを統一
- ・自社に最適化

Cons

- ・キャリアで品質担保
- ・Controllerがロックイン

Pros

- ・オペレーションの統一
- ・自社に最適化
- ・Eco-systemの強化

Cons

- ・キャリアで品質担保
- ・Community運営の難しさ

Open Source SDN Controller

Open化の動向② Interface / API

Pros

TL1 : Device FriendlyCLI : Human Friendly

Cons

- ・記述方法が様々
- ・Clientの実装コスト大
- ・エラーハンドリングが難

Pros

- Software Friendly
- 統一フォーマットで記述
- ・エラーハンドリングが容易

Cons

・ProprietaryなYANGを扱える Clientが必要

Pros

- Software Friendly
- ・統一フォーマットで記述
- ・エラーハンドリングが容易
- ・上位システムがシンプル

Cons

・"Common"定義の難しさ

Interface / APIのOpen化

Open ROADM

ROADMの相互接続仕様を定義し、マルチベンダ環境における相互接続を実現

- ・光学的な仕様
- ・制御用のYANGモデル

(引用) http://0201.nccdn.net/1_2/000/000/098/a85/Open-ROADM-whitepaper-v1-0.pdf

Vendor-neutralなデータモデルを定義

- Configuration
- Management

Open化の動向③ Transport Device

Pros

- ・品質担保されている
- ・シングルベンダで伝送設計

Cons

- ・デバイスのロックイン
- ・デバイスの選択肢が少ない

Pros

- ・トランスポンダの選択肢増
- ・最適な物品を組合せ

Cons

- ・インテグレーションコスト増
- ・マルチベンダで伝送設計

Pros

- ・コンポーネントの選択肢増
- ・最適な物品を組合せ

Cons

- ・インテグレーションコスト増
- ・マルチベンダで伝送設計

Transport DeviceのOpen化

- ・テレコムキャリアのインフラ設備の設計・仕様のオープン化を目指す
- ・Whiteboxトランスポンダ「Voyager」を開発
- ・伝送設計ソフトウェア(Physical Layer Simulation Environment)を開発
- ・OLS (Open Line System) WGで共通モデルを定義

(引用) https://telecominfraproject.com/

トランスポートネットワークの動向(まとめ)

NTT Communicationsの取り組み

Transport SDNの全体アーキテクチャ

Transport NW Controllerのアーキテクチャ

Disaggregated transport network PoC

- Disaggregationデバイスを使用したPoCを実施
 - ONOSでDisaggregation deviceを制御できるか?
 - サービスプロバイダが主体的にアプリケーションを実装できるか?

Dynamic Configuration Brigade architecture

Openなコンポーネントを使用したリファレンス実装の作成

まとめ

- ■トランスポートネットワークにおけるOpen化の動向
 - Operation System
 - Interface / API
 - Transport Device
- ⇒ Open化によりトランスポート領域のイノベーションを加速

- ■NTTコミュニケーションズの取り組み
 - Disaggregated transport network PoC
 - ・Openなコンポーネントを使用したリファレンス実装
- ⇒ 様々なプレイヤーとの連携で、長期的なビジョンの実現へ