		o© _o Utech
Name :		
Roll No.:		In Amount of Exercising 2nd Exercises
Invigilator's Sign	ature :	
CS/	B.TECH (ECE-NEV	W)/SEM-4/EC-401/2012
	2012	
ELECTROMAC	GNETIC THEORY &	TRANSMISSION LINES
Time Allotted: 3 Hours		Full Marks : 70
The fi	igures in the margin in	dicate full marks.
Candidates are	required to give their o as far as praction	answers in their own words cable.
	GROUP - A	A
(1	Multiple Choice Type	e Questions)
1. Choose the correct alternatives for any <i>ten</i> of the following		or any <i>ten</i> of the following:
		10 × 1 = 10
i) The di	vergence of $G = xa_x$	+ ya_y + za_z at point
P(2, 2	2, 2) is	
a) 1		
b) 2		

4356 [Turn over

3

4.

c)

d)

CS/B.TECH (ECE-NEW)/SEM-4/EC-401/2012

a)
$$\int_{1} H.dL = \oint_{S} (\nabla \times H). dS$$

b)
$$\int_{1}^{\infty} H.dL = \oint_{S}^{\infty} (\nabla \cdot H). dS$$

c)
$$\int_{1} H.dL = \int_{S} (\nabla \times H). dS$$

d)
$$\oint H.dL = \int_S (\nabla \cdot H). dS$$

Energy density in an electrostatic field E is iii)

a)
$$\frac{1}{2} \left(\varepsilon E^2 \right)$$

b)
$$(\epsilon E^2)$$

c)
$$2(\epsilon E^2)$$

d)
$$\frac{1}{2}$$
 (ϵ E).

The electric field intensity due to sheet charge density iv)

a)
$$E = \frac{\rho_s}{2 \epsilon_0} a_p$$
 b) $E = \frac{\rho_s}{2 \epsilon_0} a_n$

b)
$$E = \frac{\rho_{s}}{2 E_{0}} a_{r}$$

c)
$$E = \frac{\rho_s}{2 \epsilon_0} a_z$$
 d) $E = \frac{\rho_s}{2 \epsilon_0} a_{\theta}$.

d)
$$E = \frac{\rho_s}{2 \epsilon_0} a_{\theta}$$
.

Yag-Uda antenna is one kind of v)

> a) array

b) reflector

c) dipole

none of these. d)

4356

2

a) 0 ohm

- b) 370 ohm
- c) 377 ohm
- d) none of these.

vii) The condition for distoritionless transmission line is

- a) RL = GC
- b) RG = LC
- c) RC = LG
- d) none of these.

viii) The rate of energy flow is given by

- a) Maxwell equation
- b) Poynting vector
- c) Poisson equation
- d) Equation of continuity.

ix) Effective length of a half wave dipole is

a) $> \frac{\lambda}{2}$

b) $< \frac{\lambda}{2}$

c) 0.55 λ

d) 0.6λ .

x) Polarization refers to the orientation of the

- a) E-H fields
- b) H-field
- c) Transverse E-field
- d) E-field.

4356

3

[Turn over

CS/B.TECH (ECE-NEW)/SEM-4/EC-401/2012

- a) R/G = C/L
- b) R/G = L/C
- c) RG = LC
- d) R/Y = L/Z.
- xii) Which one of the following is not a source of magnetostatic fields?
 - a) A d.c. current in a wire
 - b) A permanent magnet
 - c) An accelerated charge
 - d) An electric field linearly changing with time.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. State and prove Uniqueness theorem.
- 3. Starting from Ampere's circuit law establish the relation, $\nabla \times H = J + \frac{\delta D}{\delta t} \ , \ \text{where symbols have their usual meanings}.$
- 4. Establish the relation between reflection coefficient and VSWR.

4356

4

- 5. Explain what 'quarter-wave' transformer means. Write applications of such a transformer.
- 6. a) What are the characteristics of Smith chart?
 - b) Define Reflection Coefficient and VSWR. What is their range of values?

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) What do you mean by Electric Potential? Derive the relation $E = -\overrightarrow{\nabla}V$.
 - b) Given the spherically symmetric potential field in free space, $V = V_0 e^{-r/a}$, find ρ_v at r = a.
 - c) Write and explain the point forms and integral forms of Maxwell's equation in time-varying EM field.
- 8. a) Write Maxwell's equations in differential vector form for time varying fields.
 - b) Define the following terms in relation to uniform plane wave propagation in a dielectric medium : 4×1
 - i) Propagation constant
 - ii) Phase velocity
 - iii) Wavelength
 - iv) Phase constant.
 - c) Prove that the electromagnetic power (P) passing through free space is given by the expression $P = E \times H \text{W/m}^2$.

CS/B.TECH (ECE-NEW)/SEM-4/EC-401/2012

- 9. a) Derive an expression for the input impedance Z_m of a lossless transmission line, in erms of relevant parameters, when the line is terminated into impedance Z_L .
 - b) Show that for a lossless transmission line the input impedance of a line repeats over every $\lambda/2$ distance. 5
 - c) At a frequency of 80 MHz, a lossless transmission line has a characteristic impedance of $300 \,\Omega$ and a wavelength of $2.5 \, \text{m}$. Find the value of L and C.
- 10. a) Establish the boundary conditions for electric and magnetic field intensities and the interference between two dielectric media.6
 - b) Explain how these conditions will be modified, if one of the media is a perfect conductor.5
 - c) If x < 0 defines region 1 and x > 0 defines region 2, then find the electric field intensity in region $2\left(\epsilon_{r_2} = 5\right)$, if electric field intensity in region

$$1\left(\epsilon_{r_1}=1\right) \text{ is } \overrightarrow{E}_1=\left(4\mathring{u}_x+1.5\mathring{u}_y-2\mathring{u}_z\right)\text{V/m}.$$

4

4356 6

CS/B.TECH (ECE-NEW)/SEM-4/E

11. Write short notes on any three of the following

- a) Skin effect
- b) Smith chart
- c) Half-wave dipole antennas
- d) Yagi-Uda antenna.

4356 7 [Turn over