

- With $V_{DS} > 0$, inversion layer electrons will move towards the higher potential, i.e., D
 - \triangleright The *drain current* I_D would *flow from D to S*
- Note:
 - The *depletion charge* would *increase* as we move *towards the D* (since the *DB junction* is *more reverse biased*)
 - The *inversion charge* would *decrease* as we move *towards the D*
 - For sufficiently high V_{DS}, it may disappear altogether

Body Effect

- The *threshold voltage* V_{TN} is a *function* of the *SB voltage* V_{SB}
- As $V_{SB} \uparrow$, the *SB junction depletion charge* would *increase*
 - For the same V_{GS}, inversion charge would decrease (to maintain charge balance)
 - Thus, to *restore* the *original level* of *inversion*, V_{GS} has to be *increased*
 - \triangleright Implies that V_{TN} has *increased*

• Expressed as:

$$V_{TN} = V_{TN0} + \gamma \left(\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right)$$

$$V_{TN0} = V_{TN}|_{V_{SD}=0} = Zero back-bias threshold voltage$$

$$\gamma = \frac{\sqrt{2q\epsilon_s N_A}}{C'_{ox}} = Body\text{-effect coefficient}$$

$$C'_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = Oxide \ capacitance \ per \ unit \ area$$

$$\phi_{F} = V_{T} \ln \left(\frac{N_{A}}{n_{i}} \right) = Bulk \ potential \ (\sim 0.3 - 0.45 \ V)$$