UNCLASSIFIED

AD NUMBER ADB025728 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 28 OCT 1977. Other requests shall be referred to Air Force Rocket Propulsion Lab., Edwards AFB, CA. AUTHORITY AFRPL ltr 10 Mar 1986

AD130 25 728

AUTHORITY: AFRAL

i Ito 10 Mar. 86

MERCHOLOGIC OF CONSUMERS EXPENSE

AFRPL-TR-77-70 /

NITROGEN TRIFLUORIDE (NF3) OXIDIZER SYSTEMS DESIGN CRITERIA

PHASE II - TECHNICAL REPORT

AEROJET LIQUID ROCKET COMPANY SACRAMENTO, CALIFORNIA 95813

00 (

CV .

252

AUTHORS: E. M. VANDER WALL

R. E. ANDERSON R. K. SCHAPLOWSKY

R. L. BEEGLE, JR.

J. A. CABEAL

T. A. FREITAG

DISTRIBUTION LIMITED TO U.S. GOV'T. AGENCIES ONLY; TEST AND EVALUATION, 28 OCTOBER 1977. OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED TO AFRPL/STINFO/XOJ, EDWARDS, CA. 93523

AIR FORCE ROCKET PROPULSION LABORATORY DIRECTOR OF SCIENCE AND TECHNOLOGY AIR FORCE SYSTEMS COMMAND EDWARDS, CALIFORNIA 93523

NOTICE

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

FOREWORD

This report covers the work performed under Contract F04611-76-C-0058, "Nitrogen Trifluoride (NF3) Oxidizer Systems Design Criteria," performed by the Aerojet Liquid Rocket Company at Sacramento, California 95813 for the Air Force Rocket Propulsion Laboratory, Edwards, California 93523. The performance period covered from 1 August 1976 to 30 November 1977 and documents the work conducted as Phase II of the contract.

The program Manager is Dr. S. D. Rosenberg; the project manager and principal investigator is Dr. E. M. Vander Wall. The work conducted in Phase II - Compatibility Determinations was performed primarily by R. L. Beegle, Jr., Senior Chemist, J. A. Cabeal, Associate Chemist, R. K. Schaplowsky, Associate Chemist, T. A. Freitag, Engineer and R. E. Anderson, Chemistry Specialist. Technical advice was supplied by G. R. Janser, Engineering Specialist for Metals, and J. J. Shore, Engineering Specialist for non-metallic materials.

The program was adminstered under the direction of the Air Force Rocket Propulsion Laboratory, Lt. William T. Leyden III, Project Manager.

This technical report is approved for publication in accordance with the Distribution Statement on the cover and on the DD Form 1473.

William T. Leyden III,

Project Manager

Forrest S. Forbes, Chief,

Propellant Systems Section

EDWARD E. STEIN, GS-15

Edward E

Deputy Chief, Liquid Rocket Division

REPORT DOCUMEN	TATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
T. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AFRPLETR-77-70		
4. TITEE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERER
Nitrogen Trifluoride (NF3) Oxidizer Systems	Phase II - Final rept. 7 1 August 76-30 November 7
Design Criteria. • Phase II - Technical Rep	And the second s	6. PERFORMING ORG. REPORT NUMBER
Phase II - Technical Repe	The state of the s	TENTONIANO ONO. NEPONT NOMBEN
7. AUTHOR(a)		. CONTRACT OR GRANT NUMBER(*)
Vander Wall, E. M., Anders	son, R.E., Schaplowsky,	() () () () () () () () () ()
R. K., Beegle, Jr., R. L.,	, Cabeai, J. A., and	FØ4611-76-C-0058
Freitag, T. A. Performing organization name and	ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Aerojet Liquid Rocket Comp	pany / 15 5	
Sacramento, California	V (14)	3326000W
		(P(04)
11. CONTROLLING OFFICE NAME AND ADD	(1.1)	12. REPORT DATE
Air Force Rocket Propulsion Edwards, California 93523	on Laboratory	13. NUMBER OF PAGES
Lawards, Carriornia 95525		255 (D) 1171 p.
	Sets different from Controlling Office)	18. SECURITY CLASS. (of this report)
M. VANder Wall, A		Unclassified
R. K. ISchaplowsky,	J.H./CAbea	15a, DECLASSIFICATION DOWNGRADING SCHEDULE
,,,	T. A. Freitno	SCHEDULE
28 ast .77		
17. DISTRIBUTION STATEMENT (of the abetra		
Approved for public releas	e; Distribution Unlimit	ed.
IB. SUPPLEMENTARY NOTES	and the second s	
Nitrogen Trifluoride, chem	ical compatibility with	metals, chemical compati-
bility with non-metals, pas	ssivation, cleaning, st	atic corrosion tests,
stress corrosion cracking, tests, adiabatic compression	racture mechanics/tou	gnness tests, gaseous flow
Jases, adrabatic compression	on, from impact tests w	(continued on reverse)
ABSTRACT (Continue on reverse side if nec	seeery and identify by block number)	(continued on textise)
The chemical compatibility mined with 29 metallic mate	of nitrogen trifluoriderials and 22 non-metal	
types of tests were used in	the determination; clo	eaning and passivation
evaluation, static exposure gaseous flow at high temper	tests, tracture mechai	nics/toughness tests,
impact test, liquid flow in	mact tests, screening	ession tests, mechanical
nitrogen trifluoride chemic	ipace cests; screening	esus, urspusar tests,

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

405880

TC

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

19. (Cont'd)

trifluoride chemical analyses, water-hammer, contaminant effects on compatibility, impurity effects on corrosion, gaseous corrosion under flow conditions, compressibility factors, screening tests, entropy of NF₃.

20. (Cont'd)

film evaluations. Five common contaminants were included in the tests in order to determine their effect on chemical compatibility. Static exposure conditions ranged in temperature from 195 to 344 K and in pressure from 3.45 to 17.24 MN/m².

None of the metals tested exhibited corrosion penetration rates of greater than 1 mil per year during a 270 day exposure period when exposed to the NF3; however the presence of HF or H₂O enhanced the corrosion rates significantly. Of the non-metals investigated, the fluorocarbons exhibited the best compatibility with NF3.

Under load-conditions several of the metals were found to be susceptible to stress corrosion cracking. Under dynamic conditions, nickel, Inconels, and the 300 series stainless steels were found to be suitable metals for use with NF_3 .

Administration of the control of the

collection of the constant and a feature and and an analytic property of the commence of the c

berneton ad Jour Zeenigel Shir het crealles word and Zeenigen.

TABLE OF CONTENTS

	Page
1.0 Introduction	1
2.0 Experimental Results and Discussion	2
2.1 Cleaning and Passivation	4
2.2 Static Exposure Tests	31
2.3 Fracture Mechanics/Toughness Tests	93
2.4 Gaseous Flow Tests	120
2.5 Adiabatic Compression Tests	137
2.6 Mechanical Impact Tests	162
2.7 Liquid Flow Impact Tests	173
2.8 Waste Disposal Tests	181
2.9 Nitrogen Trifluoride Analyses and Compressibil	ity Factors 187
2.10 Water Hammer Tests with Non-Metallic Materials	s 191
2.11 Nature and Rate of Formation of Passivation Films	197
2.12 Solubility of Passivation Films in Liquid NF3	206
2.13 Effect of Contaminants on Metals	209
2.14 Effect of Impurities on Nitrogen Trifluoride Compatibility With Metals	216
2.15 Gaseous Corrosion Rates of Metals Under Flow Conditions in Nitrogen Trifluoride	237
3.0 Conclusions and Recommendations	246
References	250
Appendix A - Typical Compositions of Candidate Materials	A-1

LIST OF TABLES

Table No.		Page
2.1-1	Pickling Solutions Used for Various Metallic Specimens	5
2.1-2	Test Matrix for Screening Metal/NF ₃ Interactions	10
2.1-3	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	13
2.1-4	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	14
2.1-5	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	15
2.1-6	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	16
2.1-7	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	17
2.1-8	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	18
2.1-9	Data Indicative of the Compatibility of Nitrogen Trifluoride with Various Metals	20
2.1-10	Data Indicative of the Compatibility of Nitrogen Trifluoride with Aluminum Alloys in Contact with and Isolated from Stainless Steel at Various Conditions	21
2.1-11	Data Indicative of the Compatibility of Nitrogen Trifluoride with 304 Stainless Steel at Various Conditions	22
2.1-12	Statistical Analysis of Weight Changes of Parent Metal Specimens Subjected to Various Pretreatments Prior to Exposure to Liquid/Vapor Nitrogen Trifluoride at 223 K	23
2.1-13	Analyses of Nitrogen Trifluoride Exposed to Various Test Conditions and Materials	24
2.1-14	Data Indicative of the Reactivity of Non-Metals with Nitrogen Trifluoride at One Atmosphere Pressure and in Comparison with Gaseous Oxygen	30
2.2-1	Static Compatibility Test Matrix for Metals	33
2.2-2	Data Indicative of the Compatibility of Liquid/Vapor Phase Nitrogen Trifluoride at 195 K (-78 C) with Various Metals	34
2.2-3	Data Indicative of the Compatibility of Vapor Phase Nitrogen Trifluoride at 344 K (160 F) and 3.45 MN/m ² (500 psia) with Various Metals	38

Table No.		Page
2.2-4	Data Indicative of the Compatibility of Vapor Phase Nitrogen Trifluoride at 344 K (160 F) and Pressures Greater than 3.45 MN/m ² (500 psia) with Various Metals	44
2.2-5	Chemical Composition of Nitrogen Trifluoride Recovered from Static Exposure Tests with Metals	47
2.2-6	Static Compatibility Test Matrix for Non-Metals	65
2.2-7	Data Indicative of the Compatibility of Liquid/Vapor Phase Nitrogen Trifluoride at 195 K (-78 C) with Various Non-Metallic Materials	66
2.2-8	Data Indicative of the Compatibility of Liquid/Vapor Phase Nitrogen Trifluoride at 195 K (-78 C) with Various Elastomers	75
2.2-9	Data Indicative of the Compatibility of Gaseous Nitrogen Trifluoride at 344 K (160 F) and Pressures Ranging from 3.45 to 17.24 MN/m ² (500 to 2500 psia) with Polytetrafluoroethylene	78
2.2-10	Data Indicative of the Compatibility of Gaseous Nitrogen Trifluoride at 344 K (160 F) and Pressure Ranging from 3.45 to 17.24 MN/m ² (500 to 2500 psia) with Kel-F-81 CTFE	80
2.2-11	Data Indicative of the Compatibility of Gaseous Nitrogen Trifluoride at 344 K (160 F) and 3.45 MN/m ² (500 psia) with Various Non-Metallic Materials	81
2.2-12	Data Indicative of the Compatibility of Gaseous Nitrogen Trifluoride at 344 K (160 F) and 3.45 MN/m ² (500 psia) with Elastomeric Materials	83
2.2-13	Data Indicative of the Compatibility of Gaseous Nitrogen Trifluoride at 344 K (160 F) and Pressures Ranging from 3.45 to 17.24 MN/m ² (500 to 2500 psia) with Viton, Class II	85
2.2-14	Chemical Composition of Nitrogen Trifluoride Recovered from Static Exposure Tests with Non-Metallic Materials	86
2.3-1	Materials Selected for the Nitrogen Trifluoride Stress Corrosion Cracking Testing with Heat Treatment and Weld Filler Wire	93
2.3-2	Specimen Material and Crack Plane Orientation for Specimens	97

Table No.		Page
2.3-3	Fracture Toughness Values for the Candidate Materials	100
2.3-4	Data Obtained from the Specimens After 180 Days Exposure in Nitrogen Trifluoride for Stress Corrosion Cracking Evaluation	103
2.3-5	Comparison of $K_i = 0.8 K_{Iq}$ with Average KISCC Values	105
2.3-6	Comparison of Fracture Toughness $K_{\mbox{\scriptsize Iq}}$ and Stress Corrosion Cracking $K_{\mbox{\scriptsize q}}$ Values	106
2.3-7	Data Indicative of the Extent of Crack Growth which Occurred in Metal Specimens Which Exhibited Stress Corrosion Cracking	119
2.4-1	Data Indicative of the Behavior of Various Metals with Flowing Gaseous Nitrogen Trifluoride at Elevated Temperatures	132
2.4-2	Data Indicative of the Behavior of Selected Non-Metallic Materials with Flowing Gaseous Nitrogen Trifluoride at Elevated Temperatures	134
2.4-3	Reaction Threshold Temperatures of Materials Subjected to Short-Term, High Velocity Flow of Compressed Gaseous NF3	135
2.5-1	Entropy of NF3	144
2.5-2	Data Indicative of the Behavior of Materials in the Presence of Gaseous Nitrogen Trifluoride Subjected to Adiabatic Compression	153
2.5-3	Observations of a Nickel-200 Sample Which was Repeatedly Subjected to Adiabatic Compression of Gaseous Nitrogen Trifluoride	159
2.5-4	Summary of Upper-Limit Values for No Reactivity Between Various Materials and Gaseous Nitrogen Trifluoride During Adiabatic Compression	160
2.6-1	Effects on Various Materials Subjected to Mechanical Impact in Liquid Nitrogen Trifluoride at 77 K	166
2.6-2	Effects on Non-Metallic Materials Subjected to Mechanical Impact in Gaseous Nitrogen Trifluoride at Ambient Temperatures	172
2.7-1	Data Indicative of the Reactivity of Liquid Nitrogen Trifluoride and Liquid Fluorine at 77°K Impacting on Various Heated Materials	178

Table No.		Page
2.7-2	Maximum Temperatures of Metal Surfaces on Which Impacting Streams of Liquid Nitrogen Trifluoride at 77°K Do Not Result in Ignition	179
2.8-1	Waste Disposal Test Data	184
2.8-2	Nitrogen and Fluorine Material Balances in Waste Disposal Test Gas Streams	186
2.9-1	Chemical Analysis of the As-Received Nitrogen Trifluoride	188
2.9-2	Data Indicative of the Variation of the Compressibility Factors of Gaseous Nitrogen Trifluoride as a Function of Temperature and Pressure	189
2.10-1	Behavior of Various Non-Metals Subjected to a Shock Wave in Liquid Nitrogen Trifluoride	196
2.13-1	Data Indicative of the Reactivity of Contaminants with Nitrogen Trifluoride at One Atmosphere Pressure and in Comparison with Gaseous Oxygen	211
2.13-2	Data Indicative of the Effects of Contaminants on Metal/Nitrogen Trifluoride Compatibility under Adiabatic Compression Conditions in Gaseous Nitrogen Trifluoride	212
2.13-3	Data Indicative of the Effects of Various Contaminants on 316 ELC Stainless Steel in Flowing Gaseous Nitrogen Trifluoride	214
2.13-4	Data Indicative of the Effects of Various Contaminants on Inconel 625 in Flowing Gaseous Nitrogen Trifluoride	215
2.14-1	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on Aluminum 2219, T-87	218
2.14-2	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on CRES 316 ELC Stainless Steel	219
2.14-3	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on Inconel 625, Annealed	220
2.14-4	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on Inconel 718, STA	281
2.14-5	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on Nickel 200, Annealed	222
2.14-6	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF ₃ on VM 250 Maraging Steel	223

Table No.		Page
2.14-7	Data Indicative of the Corrosive Effect of Hydrogen Fluoride in NF3 on C1010 Steel	224
2.14-8	Chemical Composition of NF ₃ Recovered from Static Tests with Hydrogen Fluoride	225
2.14-9	Data Indicative of the Corrosive Effect of Water in NF3 on Various Metals at 344 K (160 F) and 3.45 MN/m ² (500 psia) NF3 Vapor Pressure	230
2.14-10	Data Indicative of the Compatibility of Liquid/Vapor Water with Various Metals at 344 K (160 F)	232
2.15-1	Data Indicative of the Compatibility of Various Metals with Gaseous NF3 Under Flow Conditions at Moderate Temperatures	241

LIST OF FIGURES

Figure No.		Page
2.1.1	Metal Specimens Mounted on a Rack for Static Testing in Nitrogen Trifluoride	7
2.1.2	Container Used for Exposure of Metal Specimens Mounted on a Rack to Nitrogen Trifluoride	8
2.1.3	Container Used for Exposure of Non-Metal Specimens to Nitrogen Trifluoride	9
2.1.4	Apparatus for Non-Metal/Nitrogen Trifluoride Compatibility Screening Tests	27
2.1.5	Photograph of Reaction Zone in Screening Test Apparatus	28
2.2.1	Aluminum Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	53
2.2.2	Titanium Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	54
2.2.3	Aluminum Bronze and Tungsten Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	55
2.2.4	Beryllium Copper and 17-4 PH Stainless Steel After 9 Months Static Exposure to Nitrogen Trifluoride	56
2.2.5	Cl010 Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	57
2.2.6	301 Cryoformed Stainless Steel Specimens After 9 Months Exposure to Nitrogen Trifluoride	58
2.2.7	304, 304L, 321, and 316 ELC Stainless Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	59
2.2.8	347 Stainless Steel, Monel 400, Nickel 200, and Nickel 270 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	60
2.2.9	Incomel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	61
2.2.10	Nitronic 40, Copper OFHC, 303 Stainless Steel, A286, and Carpenter Custom 455 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	62
2.2.11	Maraging Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	63
2.2.12	Polytetrafluoroethylene and Rulon Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	70

Figure No.		Page
2.2.13	FEP Teflon, PFA Teflon and Polypropylene Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	71
2.2.14	Kel-F 81 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	72
2.2.15	Carbon Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	73
2.2.16	Kevlar After 9 Months Static Exposure to Nitrogen Trifluoride	74
2.2.17	Kalrez (Dupont ECD-006) and Silastic LS-53 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	76
2.2.18	Viton Specimens After 9 Months Static Exposure to Nitrogen Trifluoride	77
2.3.1	Compact Tension Specimen-Standard Proportions and Tolerances	95
2.3.2	Photograph of a Bolt-Loaded Stress Corrosion Cracking Specimen	96
2.3.3	Specimen and Pre-Crack Plane Orientation with Respect to Material Rolling Direction	98
2.3.4	Photograph of the ARDE 801 Qualitative Crack Growth Specimen	99
2.3.5	Al 2219-T87 KISCC Specimens After Exposure to 500 psia Gaseous NF3 at 160°F	107
2.3.6	CRES 347 Exposed to 500 psia Gaseous NF3 at 160°F	108
2.3.7	CRES 17-4 PH Exposed to Liquid and Gaseous NF3	109
2.3.8	Inconel 718 Specimens Exposed to Liquid and Gaseous NF3	111
2.3.9	Ti 5AL-2.5 Sn ELI Specimens Exposed to Liquid NF ₃ at -78°C	112
2.3.10	Ti 6AL-4V in a Gaseous NF ₃ Environment at 160°F	113
2.3.11	C-1018 Steel in a 2500 psia Gaseous NF ₃ Environment at 160°F	114
2.3.12	Welded 250 Maraging Steel Exposed to 2500 psia Gaseous NF ₃ at 160°F	115
2.3.13	Crack Growth Length Versus Time of Exposure	118

Figure No.		Page
2.4.1	Schematic of Gaseous Flow Test Apparatus	121
2.4.2	Gaseous Flow Test Apparatus	122
2.4.3	Flow Test Specimen and Holder with Thermocouple Attached	123
2.4.4	Swaged Specimen Holders	126
2.4.5	Welded Specimen Holders	127
2.4.6	Plot of Data Obtained from Gaseous Flow Test with 6Al-4V Titanium Specimen	128
2.4.7	Plot of Data Obtained from Gaseous Flow Test with Nickel 200 Specimen	129
2.4.8	Plot of Data Obrained from Gaseous Flow Test with Copper OFHC Specimen	130
2.5.1	Schematic Diagram of System for Conducting the Adiabatic Compression Testing	138
2.5.2	Schematic Diagram of U-Tube Adiabatic Compression Apparatus	139
2.5.3	Adiabatic Compression Apparatus	140
2.5.4	Schematic of Test Specimen Holder with Test Specimen in Place	141
2.5.5	Temperature-Entropy Diagram for Nitrogen Trifluoride	145
2.5.6	Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 34.47 KN/m² (5 psia) to Final Pressures in the Range of 0.2758-2.758 MN/m² (40-400 psia)	146
2.5.7	Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 34.47 KN/m ² (5 psia) to Final Pressures in the Range of 2.758-20.684 MN/m ² (400-3000 psia)	147
2.5.8	Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m ² (1 atm) to Final Pressures in the Range of 0.2758-2.758 MN/m ² (40-400 psia)	148
2.5.9	Final NF ₃ Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m ² (1 atm) to Final Pressures in the Range of 2.758-20-684 MN/m ² (400-3000 psia)	149

Figure No.		Page
2.5.10	Final NF ₃ -Ar (15/85) Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m ² (1 atm) to Final Pressures in the Range of 2.758-20.684 MN/m ² (400-3000 psia)	151
2.6.1	Photograph of the Mechanical Impact Tester	163
2.6.2	Photograph of the Anvil Section of the Mechanical Impact Tester	164
2.6.3	Mechanical Impact Test Apparatus for Gaseous Nitrogen Trifluoride Environment	168
2.6.4	Anvil Section for High Pressure Gas Testing with the Mechanical Impact Tester	169
2.6.5	Schematic Diagram of High Pressure Gaseous Nitrogen Trifluoride Impact Tester Anvil	170
2.7.1	Apparatus for Flow Impact Tests	174
2.7.2	Metal Specimen for Liquid Impact Testing with Thermocouple Attached to Back Surface	175
2.7.3	Non-Metal Specimen for Liquid Impact Testing with Thermocouples Attached	175
2.7.4	Typical Metal Specimens from Liquid Impact Tests	177
2.8.1	Schematic Diagram of Waste Disposal Test Apparatus	182
2.9.1	The Compressibility Factor of Nitrogen Trifluoride at Various Temperatures Versus Pressure	190
2.10.1	Schematic Diagram of U-Tubes Adiabatic Compression Apparatus as Used in Water Hammer Tests	192
2.10.2	Photograph of Apparatus Used in Water Hammer Tests	193
2.10.3	Schematic of Test Specimen Holder with Test Specimen in Place	194
2.10.4	Pressure Trace of Water Hammer Effect Using a Driving Pressure of 7.69 MN/m ² (1100 psig) and with Liquid Water in the U-Tube	194
2.11.1	Fluoride and Oxide Content of 304L Stainless Steel Surfaces Exposed to Liquid NF3 at 195 K (-78 C)	199
2.11.2	Fluoride and Oxide Content of 304L Stainless Steel Surfaces Exposed to Gaseous NF3 at 344 K (160 F) and 3.45 MN/m ² (500 psia)	200

Figure No.		Page
2.11.3	Fluoride and Oxide Content of Nickel 200 Surfaces Exposed to Liquid NF ₃ at 195 K (-78 C)	201
2.11.4	Fluoride and Oxide Content of Nickel 200 Surfaces Exposed to Liquid NF3 at 344 K (160 F) and 3.45 MN/m ² (500 psia)	202
2.11.5	Fluoride and Oxide Content of 2219 Aluminum Surfaces Exposed to Liquid NF ₃ at 195 K (-78 C)	203
2.11.6	Fluoride and Oxide Content of 2219 Aluminum Surfaces Exposed to Gaseous NF3 at 344 K (160 F) and 3.45 MN/m ² (500 psia)	204
2.12.1	Fluoride and Oxide Content of Metal Surfaces Exposed to Gaseous NF3 for 30 Days at 344 K (160 F) and 3.45 MN/m² (500 psia) Followed by 30 Days of Immersion in Liquid NF3 at 195 K (-78 C)	207
2.14.1	Metal Specimens After 217 Days Static Exposure to 1 Weight Percent Hydrogen Fluoride in Liquid/ Vapor Nitrogen Trifluoride at 195 K (-108 F)	226
2.14.2	Photographs of Specimen Removed from Container BHX After Exposure to 3% HF in NF ₃ for 27 Days	228
2.14.3	Metal Specimens After 227 Days Static Exposure to 3 Weight Percent Hydrogen Fluoride in NF3 at 3.45 MN/m ² (500 psia)	229
2.14.4	Metal Specimens After 33 Days Static Exposure to Liquid/Vapor Water With NF3 Present at 3.45 MN/m ² (500 psia) and 344 K (160 F)	233
2.14.5	Metal Specimens After 25 Days Static Exposure to 0.1 Weight Percent Water in NF ₃ at 3.45 MN/m ² (500 psia) and 344 K (160 F)	235
2.14.6	Metal Specimens After 29 Days Static Exposure to 0.032 Weight Percent Water in NF3 at 3.45 MN/m ² (500 psia) and 344 K (160 F)	236
2.15.1	Schematic Diagram of Test Apparatus Used in Gaseous Corrosion Tests under Flow Conditions	238
2.15.2	Photograph of Test Apparatus Used in Gaseous NF3 Flow Tests	239
2.15.3	Representative Test Specimens for Gaseous Flow Tests	240

Figure No.		Page
2.15.4	Upstream Face of Nitronic 40 Test Specimen Before and After Exposure to Gaseous NF ₃ at 400 K (260 F) for 8 Hours at 1.83 MN/m ² (250 psig)	242
2.15.5	Surface of Narloy A Specimen Before and After Exposure to Gaseous NF3 at 400 K (260 F) for 8 Hours at 1.83 MN/m ² (250 psig)	243
2.15.6	Surface of Narloy A Specimen Before and After Exposure to Gaseous NF3 at 322 K (120 F) for 8 Hours at 1.83 MN/m ² (250 psig)	245

1.0 INTRODUCTION

The objective of the "Nitrogen Trifluoride (NF3) Oxidizer Systems Design Criteria" program, Contract F04611-76-C-0058, is to obtain compatibility and safety data and to prepare a comprehensive Design Criteria Handbook for NF3 reactant systems. To attain the program objective, this program is conducted in three phases. Phase I consisted of a literature search and data assessment; Phase II consisted of experimental compatibility determinations; and Phase III consists of formulating information obtained from Phases I and II into a nitrogen trifluoride design criteria handbook. The work conducted as Phase I of the program was incorporated in the report AFRPL-TR-76-75 "Nitrogen Trifluoride (NF3) Oxidizer Systems Design Criteria", Phase I - Technical Report, Aerojet Liquid Rocket Company, Sacramento, CA 95813 (September 1976). The work conducted as Phase II of the program is the subject of this report. The work conducted as Phase III of the program will be incorporated in USAF Propellant Handbooks AFRPL-TR-77-71, "Nitrogen Trifluoride Volume III, Part A, Systems Design Criteria" Aerojet Liquid Rocket Company, Sacramento, CA and in AFRPL-TR-77-72 "Nitrogen Trifluoride, Volume III, Part B, Bibliography" Aerojet Liquid Rocket Company, Sacramento, CA.

This report is organized in the following manner: (1) Introduction, (2) Experimental Results and Discussion, and (3) Conclusions.

2.0 EXPERIMENTAL RESULTS AND DISCUSSION

The objective of this program is to obtain compatibility and safety data for nitrogen trifluoride usage and to prepare a comprehensive Design Criteria Handbook for nitrogen trifluoride reactant systems. The work conducted in Phase II of the program involves experimental compatibility determinations which are documented in the report. There are twenty-nine metallic materials included in the program:

Stainless Steels 301 (Cryoformed), 303, 304, 304L, 316L, 321, 347, 17-4PH, A-286

1010-1020 Steel

OFHC copper, annealed

Aluminums 2219 T-87, 6061 T-6, 1100, 2014

Nickels 200 annealed, 270 annealed

Monel 400, annealed

Inconels 718 STA, 625

Titaniums 6A1-4V STA, 5A1-2.5 Sn ELI

CRES Nitronic 40

Maraging Steels 200 and 250

Beryllium Copper

Carpenter Custom 455

Aluminum Bronze 623

Tungsten

Narloy A

There are twenty-two non-metallic materials included in the program:

Viton

Fluorosilicone elastomer Silastic LS53

Polytetrafluoroethylene

Polyethylene

FEP Teflon

Polypropylene

PFA Teflon

Kevlar

Kel-F 81 CTFE

Carbon (CDJ-83)

Rulon (CaF₂-Filled)

Carbon (CJPS)

Neoprene

Krytox

Tygon

Vacuum Stripped Krytox (3L-38RP)

Mylar

Fluorosilicone (FS 3451)

Lucite

Dry Powder TFE (MS-122)

Epoxy (EA-934)

Kalrez (Dupont ECD-006)

2.0, Experimental Results and Discussion (cont.)

There are five material contaminants included in the program:

Fingerprints
Petroleum Jelly
Light weight machine oil
Brazing Flux
Fluorocarbon Oil (FC-75)

Cleaning and Passivation
Static Tests
Fracture Mechanics/Toughness Tests
Flow Tests
Adiabatic Compression Tests
Mechanical Impact Tests
Flow Impact Tests
Screening Tests
Disposal Tests
Propellant Analyses
Water Hammer Tests
Passivation Film Evaluation Tests

This section of the report is presented in the following order:
(1) Cleaning and Passivation Pretreatment of Materials, (2) Static Tests,
(3) Fracture Mechanics/Toughness Tests, (4) Gaseous Flow Tests, (5) Adiabatic Compression Tests, (6) Mechanical Impact Tests, (7) Flow Impact
Tests, (8) Waste Disposal Tests, (9) Nitrogen Trifluoride Analyses and
Compressibility Factors, (10) Water Hammer Tests, (11) Nature and Rate of
Formation of Passivation Films, (12) Solubility of Passivation Films in
Liquid NF3, (13) Effect of Contaminants on Metals, (14) Effect of Impurities
on NF3 Compatibility, and (15) Gaseous Corrosion Rates of Metals Under
Flow Conditions.

2.1 CLEANING AND PASSIVATION PRETREATMENT OF MATERIALS

The objective of this task was to establish at the outset of the experimental program the proper procedures for cleaning and passivating materials prior to testing, to verify the validity of the test procedures, and to identify any gross incompatibilities which might exist between nitrogen trifluoride and the selected materials.

2.1.1 Cleaning and Passivation Pretreatment of Metals

The purpose of this task was to establish early in the experimental program the appropriate procedures for preparation of the metal surfaces prior to exposure to nitrogen trifluoride for prolonged periods of time. The two factors which required investigation were:

- (1) The effect of cleaning and pickling on metal/ nitrogen trifluoride compatibility and
- (2) The effect of pre-exposure to nitrogen trifluoride as a passivation step and whether this type of "passivation" is necessary to establish chemical compatibility between nitrogen trifluoride and metals.

2.1.1.1 Cleaning Procedures for Metals

The metal specimens used for testing were cleaned according to two procedures which are as follows. The first procedure consists of a detergent wash using Turco Plaudit as the detergent. The washing is followed by degreasing in an isopropanol bath, a deionized water rinse, an additional rinse with isopropanol and then vacuum drying the specimens for 4 hours at 333K (140F). The 1010 steel specimens were placed immediately in a vacuum flask after the last isopropanol rinse to minimize oxidation of the samples. The second procedure involves all the steps of the first procedure plus immersing the specimens in appropriate pickling solutions, followed by a deionized water rinse, then an isopropanol rinse and a final drying under vacuum at 333K (140F).

The pickling solutions are defined for the various materials in Table 2.1-1. Because the Monel 400, Nickel 200, and Nickel 270 appeared to have traces of copper on the specimens after pickling in the specified solution, the specimens were momentarily dipped in the pickling solution used for the 300 series stainless steels to remove the trace of copper. The pickling solution recommended by the manufacturer for the maraging steels was totally inadequate. Its use produced a tenacious smut on the metal specimens which was removed by hydrohoning with glass spheres.

TABLE 2.1-1

PICKLING SOLUTIONS USED FOR VARIOUS METALLIC SPECIMENS

Materials	Pickling Solutions and Procedure
300 Series Stainless Steel, 17-4 PH, Nitronic-40	10% HNO ₃ , 4% NF, 86% H ₂ O,
A-286, Carpenter Custom 455	Immersed Specimens for 5 Minutes @ 110°F
2219 Aluminum 6061 Aluminum 1100 Aluminum 2014 Aluminum	3.5% of 85% H ₃ PO ₄ , 2 grNa ₂ C _{r2} O ₇ ·2H ₂ O per 100 ML Sol'n 96.5% H ₂ O Immersed Specimens for 5 Minutes @ 212°F
Inconel 625 Inconel 718	10% HNO3, 5% HF, 85% H20 Immersed Specimens for 5 Minutes @ 110°F
Monel 400 Nickel 200 Nickel 270	50% HCl (20°Bé) 3g CuCl ₂ per 100 ML of Sol'n 50% H ₂ 0 Immersed Specimens for 5 Minutes @ 180°F
6Al-4V Titanium 5Al-2.5 Sn Titanium	20% HNO3, 1% HF, 79% H ₂ 0 Immersed 6Al-4VTi for 15 Minutes @ 120°F Immersed 5Al-2.5 Sn Ti for 5 Minutes @ 120°F
1010 Stee1	8% H ₂ SO ₄ (66° Be), 3% HF, 89% H ₂ O Immersed Specimens for 5 Minutes @ 120°F
OFHC Copper Beryllium	75% HCl (20° Bé), 25% H20 Immersed Specimens for 2 Minutes at Room Temperature
Maraging Steels	18% H ₂ SO ₄ , 82% H ₂ O at 150-160°F Immerse Specimens Until Clean
Aluminum Bronze	4-15% H ₂ SO ₄ (1.83 SP GR) by Volume Remainder H ₂ O, Immerse Specimens 1/2 to 15 Minutes at Room Temperature to 140°F

2.1, Cleaning and Passivation Pretreatment of Materials (cont.)

2.1.1.2 Passivation Procedures for Metals

With regard to passivation, the degree of prepassivation that is required in NF3 systems was not adequately defined. It remained to be demonstrated that self-passivation occurs on clean surfaces at appropriate reaction rates. From an operational standpoint, it is desirable that the treatment can be accomplished with the NF3 itself. It is also recognized that such treatments are normally conducted at a temperature above the designed use temperature when it is practical to do so. Based on the foregoing, metal specimens were subjected to three conditions with regard to passivation: (1) no pretreatment, (2) exposure to NF3 vapor at a few atmospheres pressure for at least two hours at room temperature, and (3) exposure to F2 vapor at a few atmospheres pressure for at least two hours at room temperature.

2.1.1.3 Test Apparatus and Procedures

The metals specimens were tested in the form of coupons which were 4.45 cm (1.75 in.) long, 1.59 cm (.625 in.) wide, and the thickness varied from 0.025 to 0.318 cm (.010 to .125 in.). Two holes, 0.318 cm (.125 in.) in diameter were drilled in the coupons so that they could be held in position during exposure to the nitrogen trifluoride. The rack with the specimens is shown in Figure 2.1.1. The racks were inserted into containers which were fabricated from 5.1 cm (2 in.) diameter 304L pipe and a pipe end-cap. A stainless steel bellows valve was welded to the other end cap and this assembly was welded to the 5.1 cm (2 in.) diameter pipe after the rack was in place. An internal and external purge of argon was maintained during the final welding operation. The test container was leak-checked by pressurization with helium, then evacuated to less than 1 mm (Hg) pressure and filled through the valve with the desired gas. A photograph of a test container is shown in Figure 2.1.2.

The aluminum alloy specimens were not loaded as described above but were positioned between two slotted Teflon plugs and then inserted into a container fabricated from 1.9 cm (.75 in.) diameter 304L pipe with an end cap. The pipe was then sealed by welding on the other end cap to which a .64 cm (.25 in.) diameter 304 fill tube was attached. The welding was conducted as described for the 5.1 cm (2 in.) diameter containers. After leak checking and subjecting the contents to the desired pretreatment, the tubes were filled with the desired quantity of nitrogen trifluoride, by condensation in liquid nitrogen. While the contents were immersed in the liquid nitrogen, the fill tube was crimped and then welded. The container is shown in Figure 2.1.3.

The test matrix for screening the metal/nitrogen trifluoride interactions is presented in Table 2.1-2. The F2 passivation

Figure 2.1.1. Metal Specimens Mounted on a Rack for Static Testing in Nitrogen Trifluoride

Figure 2.1.2. Container Used for Exposure of Metal Specimens Mounted on a Rack to Nitrogen Trifluoride

Figure 2.1.3. Container Used for Exposure of Non-Metal Specimens to Nitrogen Trifluoride

TEST MATRIX FOR SCREENING METAL/ ${\rm NF}_3$ INTERACTIONS TABLE 2.1-2

Conditions	Cleaning Procedure	Passivation Procedure	Exposure 2 Temperature	Type of Lyposure	Metals All Present alum	Metal Pare Condition weld	Analyses NF ₃ : Composition,	Dissolved Solids.	· seldulosul	Metals: Changes in physical properties
	αx		223K 2	1,4.4	All but 304	Parent, Pare				
2	α	"f.3	223K 2	17.50	304 and aluminum	Parent, Par welded wel		•		
3		, e	223K	/1	306 All	Parent. P				
		None	223K	*/1	All candi- date classes but aluminum	Parent		•		
5	æ	None	223K	ŝ	304 and aluminum	Parent	•	•	٠	
9	α	None	223K	\$	304	Parent.	•	•		
,	×	" "	223K	\$	All candi- date classes but aluminum	Parent	•	٠	•	
100	~	,	223K	,	304 and aluminum	Parent		٠	•	
	•	,	223K	. }	ğ	Parent,		•		
10		None	223K	ś	All candi- date classes but aluminum	Parent	•			
1 11	*	None	223K	N/1	304 and aluminum	Parent	•	•	•	
Apparatus 12	*	None	223K	\$	304	Parent.	•			
11 12 languages 13 13		κ,	223K	À	All candi- date classes but aluminum	Parent	٠		٠	
14		Nf.	223K	\$	304 and a luminum	Parent	•	•	•	
15		NF.3	223K	Ś	ğ	Perent.	•	•		
16.	ex.	M.	344K	MF3(9) 500 ps1	All candi- date classes but aluminum	Parent				
12	•	ž	344	18 3(9) -530 ps i	304 and aluminum	Parent	٠			
18	٠	*,	¥	Nf 3(9)	30	Parent.	•			
91		, x	×	NF 3(9) -500 ps1 H ₂ 0 4/9	All candi- date classes but aluminum	Parent	٠			
20	•	'n	344.5	M 3(9)		Parent				
21	~	1,1	34.4	M 3(9)		Parent.				
22		None	¥	H20 UV	All cardi- date classes but aluminum	Parent				•
12		8	ž	M20 1/4	304 and a luminum	Parent				•
120		None	*	H20 1/4	ž.	Parent.				•

Indicates a rigorous cleaning procedure which includes a piculing step indicates a Cleaning procedure from which picaling is excluded indicates in a -deeper apposite indicates user exposure only indicates that the analysis will be performed.

α **τ** ξ'.

2.1. Cleaning and Passivation Pretreatment of Materials (cont.)

treatment is considered to be the most rigorous possible and undesirable from an operational viewpoint. Therefore it is used only in conjunction with the rigorous cleaning procedure which includes the pickling step. The "non-treatment" and NF3 passivation are evaluated in conjunction with both the abbreviated and rigorous cleaning procedures. The NF3 passivation treatment with rigorous cleaning procedure as appropriate with all the candidate metals is used in the program as the baseline condition in the metal screening tests at 223K (-50 C). Selected metal specimens were used in evaluation of the effectiveness of "non-passivated"-abbreviated cleaning, "nonpassivated"-rigorous cleaning, NF3 passivated - abbreviated cleaning, and F₂ passivated - rigorous cleaning procedures. The selected metal specimens include a representative of each class of candidate metals: an austenitic stainless steel, 17-4 PH, an Inconel, Monel 400, Nickel 200, an aluminum alloy, Ti 6A1-4V, Cu OFHC and 1010 steel. The metal specimens in each test apparatus during the 30-day exposure were grouped in accordance with their pre-test treatments in order to eliminate any cross-contamination. Control tests were conducted with 304 specimens in 304L containers to verify that metal/metal interactions did not occur in the gauged metal specimen tests.

The majority of the tests were conducted at 223 K (-50 C) in order to evaluate the material compatibility under a "worst case" condition in the liquid phase, the nitrogen trifluoride critical temperature is 233 K and the vapor pressure of nitrogen trifluoride at 223 K is approximately 3.45 MN/m² (500 psia). To assess the effect of temperature on the material compatibility in the vapor phase, one series of tests was included in the matrix at conditions of 3.45 MN/m² (500 psia) and 344 K (160 F)

The 223 K (-50 C) temperature environment was achieved by injecting liquid nitrogen into an insulated box which was fitted with an internal circulating fan. A helium-gas thermometer in connection with a U-tube containing mercury which opened and closed contacts of an electrical relay was used to operate a solenoid valve which controlled the coolant flow. The temperature was maintained within \pm 3 K of the desired temperature. The 344 K (160 F) temperature environment was achieved by use of a circulating air oven which was controlled to within \pm 1 K.

2.1.1.4 Test Results

The tests reported in this section were all conducted with the same cylinder of NF3 and its analysis is reported in the tabulation presented in Table 2.1-13. All the tests were conducted in sample bombs fabricated from 304L stainless steel as described in the previous section.

2.1, Cleaning and Passivation Pretreatment of Materials (cont.)

One series of tests was designed to obtain information early in the program as to the general corrosive nature of the NF3 towards the various metallic materials. The metal specimens used in the tests were cleaned and pickled with the appropriate solutions as shown in Table 2.1-1 and then subjected to nitrogen trifluoride vapor exposure at 2 atmospheres for at least two hours before the sample bombs were loaded with the required quantity of nitrogen trifluoride. The data which are presented include the type of specimen, its surface area, weights, calculated average corrosion penetration rates in both the S.I. units of picometers/ sec (pm/sec) and English units of mils per year (mpy), and visual observations. The data from the test series are presented in Tables 2.1-3, 2.1-4, and 2.1-5. The several metallic specimens were grouped into a single test bomb for each specific exposure condition; the specimens listed in each table were in the same test bomb. The two exposure conditions indicated in Tables 2.1-3 and 2.1-4 are due to the fact that the initial exposure was at 223 K, but the bombs were stored following the initial exposure in a dry-ice environment, 195 K prior to the opening.

The significant items to note from the data in Tables 2.1-3, 2.1-4 and 2.1-5 are that (1) in general no catastrophic corrosion occurs in either the liquid/vapor or vapor only exposure at 233 K, the weight losses for the titanium alloys correspond to a corrosion rate of less than 0.2 pm/sec (0.2 mpy) in the liquid/vapor exposure and to a rate of .03 pm/sec (0.04 mpy) for the vapor exposure, the other materials exhibited rates which are an order of magnitude less; (2) in the vapor phase at 344 K (160 F) the titanium alloys exhibited a corrosion penetration rate of .16 pm/sec (0.2 mpy) and all the other materials were at least an order of magnitude less except for the 17-4 PH which exhibited a rate of .73 pm/sec (0.9 mpy). The behavior of the 17-4 PH may be an anomaly which is resolved by the long-duration static tests.

The next series of tests was designed to assess the merit of pickling the cleaned parent materials prior to exposure. The samples used in the test series were not highly oxidized in their asreceived condition and were cleaned by the procedures described in Table 2.1-1. The data are reported in Tables 2.1-6 and 2.1-7. The data indicate a general trend that the weight losses were very slightly less with the materials which were subjected to the pickling procedure. A comparison of the data in Table 2.1-3 in which case the samples were cleaned, pickled and nitrogen trifluoride passivated with the data in Table 2.1-8 in which parent metal specimens were cleaned and nitrogen trifluoride passivated, but not pickled confirms the general trend of a very slight improvement in corrosion resistance. The benefits of the pickling procedures are best demonstrated for the titanium alloys in which case a significant improvement is apparent.

TABLE 2.1-3

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: NF3 Liquid/Vapor, 223 K, 26 days, 195 K, 20 days SPECIMEN PRETREATMENTS: Cleaned, Pickled, NF3 Passivated

Marie	Materia	Specimen	Specimen Surface	Specir	Specimen Weights,		Penetration Rate	tion	
Parent 15.59 7.9921 7.9922 (.0001) 0 0 0 0		376	مرية	101111	rinai	LOSS	pm/sec	мру	Observations
ed Melded 15.74 8.7674 8.7680 (.0006) 0 0 ed Parent 13.93 0.8527 0.8527 0 0 ed Welded 13.93 1.8852 1.8850 .0002 .005 .006 Parent 14.21 2.7535 2.7533 .0002 .000 .003 .006 Parent 14.23 2.0208 2.0207 .0001 .002 .003 Parent 14.06 1.4079 1.4079 .0 .0 Parent 14.06 2.3938 2.3936 .0002 .003 .006 Parent 14.06 2.3938 2.3936 .0002 .004 .005 Baled Parent 14.56 8.8710 8.8708 .0001 .0 .0 Baled Parent 14.50 1.433 1.433 .0001 .0 .0 Ied Parent 14.50 1.515 1.525 .	, Cryoformed	Parent	15.59	7.9921	7.9922	(.0001)	0	0	Slight stain
ed Parent 13.93 0.8527 0 0 ed Welded 13.93 1.8852 1.8850 .0002 .005 .006 Parent 14.21 2.0305 2.0305 0 0 Welded 14.21 2.0305 2.0207 .0001 .002 .003 Parent 14.23 2.0208 2.0207 .0001 .002 .003 Parent 14.06 1.4079 1.4079 0 0 Welded 14.06 2.3938 2.3346 .0002 .004 .005 Parent 16.6 8.4761 0 0 0 Relded 14.06 2.3938 2.3346 .0002 .004 .005 ealed Parent 14.57 3.9605 3.000 .000 0 0 ealed Welded 14.57 4.3418 (.0001) 0 0 ealed Parent 1	. Cryoformed	Welded	15.74	8.7674	8.7680	(9000.)	0	0	Slight stain
## Welded 13.33 1.5852 1.5850 0.002 0.005 Parent 14.21 2.0305 2.0305 0 0 0 Welded 14.21 2.0305 2.0305 0 0 0 0 Welded 14.23 2.0208 2.0207 0.001 0.002 0.003 Welded 14.23 3.0123 3.0117 0.006 0.013 0.016 Welded 14.23 3.0123 3.0117 0.006 0.013 0.016 Welded 14.06 2.3338 2.3336 0.002 0.006 0.018 Welded 14.57 3.9605 3.9606 0.0011 0 0 0 Welded 14.06 2.1674 0 0 0 0 Welded 14.05 1.5159 1.5158 0.0011 0.002 0.002 Welded 14.05 1.5159 1.5159 0.0001 0.002 0.002 Welded 14.05 1.5159 1.5159 0.0001 0.002 0.002 Welded 14.05 1.2822 1.5282 0.003 0.004 Welded 14.06 2.6307 2.6276 0.003 0.014 Sh. ELI Welded 14.06 1.3384 1.3383 0.001 0.002 0.003 Welded 14.06 1.3384 1.3383 0.001 0.002 0.003 Welded 14.06 1.3384 1.3383 0.001 0.002 0.003 Welded 14.06 1.5542 1.5540 0.003 0.011 Parent 14.06 1.5542 1.5540 0.003 0.001 Welded 14.06 1.5542 1.5540 0.003 0.001 0.005 0.001 Welded 14.06 1.5542 1.5540 0.0003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000	S, Annealed	Parent	13.93	0.8527	0.8527	:	0	0	No apparent reaction
Parent 14.21 2.0305 2.0305	is, Annealed	Welded	13.93	1.5852	1.5850	.0002	.005	900.	No apparent reaction
Welded 14.21 2.7535 2.7533 .0002 .004 .005 Parent 14.23 2.0208 2.0207 .0001 .002 .003 Welded 14.23 3.0123 3.0117 .0006 .013 .016 Welded 14.23 3.0123 3.0117 .0006 .013 .016 Welded 14.06 1.4079 1.4079 0 0 Welded 14.06 2.3938 2.3936 .0002 .005 .006 Welded 15.66 3.8710 8.8708 .0002 .004 .005 Saled Parent 14.57 3.9605 3.9606 .0001) 0 0 Saled Parent 14.57 4.3418 4.3419 (.0001) 0 0 Saled Parent 14.05 1.5159 1.5159 (.0001) 0 0 Welded 14.05 2.1574 2.1570 .0001 .002 .005 Saled Parent 14.05 1.5159 1.5158 .0001 .002 .005 Saled Parent 17.02 15.3524 16.3520 .0002 .004 .005 Saled Welded 14.05 1.72825 17.2822 .0003 .005 .006 STA Welded 14.05 2.6307 2.6276 .0031 .112 .115 Sn, ELI Parent 14.05 1.3384 1.3383 .0001 .002 .001 Sn, ELI Welded 14.05 1.3384 1.3383 .0001 .002 .001 Parent 14.05 1.3894 1.3383 .0001 .002 .001 Welded 14.05 1.3894 1.3883 .0001 .002 .001 Welded 14.05 1.3894 1.3883 .0001 .002 .001 Welded 14.05 1.3894 1.3893 .0001 .002 .004 Welded 14.05 1.3894 1.3893 .0001 .002 .004 Welded 14.05 1.3894 1.3893 .0001 .002 .004 .005 Welded 14.06 3.3738 3.3735 .0002 .004 .005 .007 Welded 14.06 3.3738 3.3735 .0003 .0001 .0001 .0001 Welded 14.06 3.3738 3.3735 .00	: SS	Parent	14.21	2.0305	2.0305	1	0	0	Slight stain
Marie	: SS	Welded	14.21	2.7535	2.7533	.0002	.004	.005	Some stain
Welded 14.23 3.0123 3.0117 .0006 .013 .016 Parent 14.06 1.4079 1.4079 0 0 Welded 14.06 2.3338 2.3336 .0002 .005 .006 Parent 15.66 8.4761 0 0 0 Welded 14.56 3.8710 8.8708 .0002 .004 .005 saled Parent 14.57 4.3418 4.3419 (.0001) 0 0 saled Parent 14.06 2.1674 0 0 0 saled Parent 14.06 2.1674 2.1674 0 0 saled Parent 14.06 2.1674 2.1674 0 0 saled Parent 14.05 2.1593 2.0001 0 0 0 saled Parent 14.05 2.1593 2.002 0 0 0	Annealed	Parent	14.23	2.0208	2.0207	.000	.002	.003	Some stain
aled Parent 14.06 1.4079 1.4079 0 0 aled Welded 14.06 2.3938 2.3936 .0002 .005 .006 .005 .005 .005 .005 .005 .005	Annealed	Welded	14.23	3.0123	3.0117	9000	.013	.016	Some stain
Melded Helded 14.06 2.3938 2.3936 .0002 .0005	Annealed	Parent	14.06	1.4079	1.4079	ł	0	0	
025 Parent 15.66 8.4761 8.4761 0 0 025 Welded 15.66 8.8710 8.8708 .0002 .004 .005 Annealed Parent 14.57 3.9605 3.9606 (.0001) 0 0 Annealed Welded 14.57 4.3418 4.3419 (.0001) 0 0 Annealed Welded 14.06 2.1674 2.1674 0 0 Annealed Welded 14.06 2.1674 2.2570 .0001 .002 .002 Annealed Welded 14.21 2.2571 2.2570 .0001 .002 .002 Annealed Welded 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .003 .006 Annealed Welded 17.02 15.3524 16.3520 .0002 .003 .004	Annealed	Welded	14.06	2.3938	2.3936	. 0002	.005	900.	No apparent reaction
O25 Welded 15.66 8.8710 8.8708 .0002 .004 .005 Annealed Parent 14.57 3.9605 3.9606 (.0001) 0 0 Annealed Welded 14.57 4.3418 4.3419 (.0001) 0 0 Annealed Parent 14.06 2.1674 2.1674 0 0 Annealed Welded 14.06 2.1674 2.2570 .0001 .002 .002 Annealed Parent 14.12 2.2571 2.2570 .0001 .002 Annealed Parent 14.05 1.5159 1.5158 .0001 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Welded 17.02 17.2825 17.2822 .0003 .002 .004 4V, STA Welded 17.02 17.2825 2.1593 .0002 .003 4V, STA Welded	, H-1025	Parent	15.66	8.4761	8.4761	;	0	0	
Annealed Parent 14.57 3.9605 3.9606 (.0001) 0 Annealed Welded 14.57 4.3418 4.3419 (.0001) 0 0 Annealed Parent 14.06 1.4438 1.4439 (.0001) 0 0 Annealed Parent 14.05 2.1674 2.1674 0 0 Annealed Parent 14.21 2.2571 2.2570 .0001 .002 .002 Annealed Parent 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Parent 17.02 1.5159 1.5158 .0001 .002 .002 Annealed Welded 17.02 17.2825 .0002 .004 .005 Annealed Welded 17.02 17.2825 .1582 .0001 .002 Av, STA Welded 14.72 2.4092 2.4056 .003 .004 .005 -2.5 Sn, ELI Parent 14.	, H-1025	Welded	15.66	8.8710	8.8708	.0002	.004	.005	
Annealed Welded 14.57 4.3418 4.3419 (.0001) 0 Annealed Parent 14.06 1.1674 2.1674 0 0 Annealed Welded 14.06 2.1674 0 0 0 nnealed Parent 14.01 2.2571 2.2570 .0001 .002 .002 Annealed Welded 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Parent 17.02 16.3524 16.3520 .0002 .004 .005 Annealed Parent 17.02 17.2825 17.2822 .0003 .004 .005 -4V, STA Welded 14.72 2.4092 2.4056 .0033 .14 .17 -4V, STA Welded 14.72 2.6307 2.6276 .0031 .12 .15 -2.5 Sn, ELI Welded 14.68 2.5896 2.6853 .0030 .11 .14 -2.5 Sn, ELI We	625, Annealed	Parent	14.57	3.9605	3.9606	(.000)	0	0	No apparent reaction
Annealed Parent 14.06 1.4438 1.4439 (.0001) 0 0 Annealed Welded 14.06 2.1674 2.1674 0 0 Annealed Parent 14.21 2.2571 2.2570 .0001 .002 .002 Annealed Welded 14.21 3.8787 3.8788 (.0001) 0 0 Annealed Welded 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Welded 17.02 16.3524 16.3520 .0002 .004 .005 Av, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 -2.5 Sn, ELI Parent 14.68 2.6883 2.6876 .0030 .11 .14 -2.5 Sn, ELI Welded 14.05 1.3384 1.3383 .0001 .002 .003 <th< th=""><th>625, Annealed</th><th>Welded</th><td>14.57</td><td>4.3418</td><td>4.3419</td><td>(.0001)</td><td>0</td><td>0</td><td>No apparent reaction</td></th<>	625, Annealed	Welded	14.57	4.3418	4.3419	(.0001)	0	0	No apparent reaction
Annealed Welded 14.06 2.1674 2.1674 0 0 nnealed Parent 14.21 2.2571 2.2570 .0001 .002 .002 Annealed Parent 14.21 3.8787 3.8788 (.0001) 0 0 Annealed Parent 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Welded 17.02 15.2825 17.2825 .0002 .003 .004 .005 -4V, STA Welded 17.02 17.2825 17.2825 .003 .14 .17 -4V, STA Welded 14.72 2.6307 2.6276 .003 .14 .17 -2.5 Sn, ELI Parent 14.68 2.6883 2.6853 .0030 .11 .14 Parent 14.05 1.3384 1.3383 .0001 .002 .003	718, Annealed	Parent	14.06	1.4438	1.4439	(.0001)	0	0	Some stain
nnealed Parent 14.21 2.2571 2.2570 .0001 .002 .002 Annealed Welded 14.21 3.8787 3.8788 (.0001) 0 0 Annealed Parent 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 17.02 16.3524 16.3520 .0002 .003 .004 Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 -4V, STA Welded 17.02 17.2825 17.2822 .0003 .005 .006 -4V, STA Welded 17.02 2.6307 2.6276 .0036 .14 .17 -2.5 Sn, ELI Parent 14.68 2.6883 2.6853 .0030 .11 .14 -2.5 Sn, ELI Welded 14.05 1.3384 1.3883 .0030 .11 .14 Parent 14.05 1.3383 .0030 .009 .009 .011 Welded	718, Annealed	Welded	14.06	2.1674	2,1674	;	0	0	4.0
Annealed Welded 14.21 3.8787 3.8788 (.0001) 0 0 Annealed Parent 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Parent 17.02 16.3524 16.3520 .0002 .003 .004 Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 -4V, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 -4V, STA Welded 14.72 2.6307 2.6276 .0031 .12 .15 -2.5 Sn, ELI Parent 14.68 2.6883 2.6853 .0030 .11 .14 Parent 14.05 1.3384 1.3383 .0001 .002 .003 Welded 14.05 1.7895 1.7891 .0004 .009 .011 Parent 14.06 1.5542 1.5540 .0002 .004 .005 Welded 14.06 1.5542 1.5540 .0002 .004 .005	00, Annealed	Parent	14.21	2.2571	2.2570	1000.	.002	.002	Some stain
Annealed Parent 14.05 1.5159 1.5158 .0001 .002 .002 Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Parent 17.02 16.3524 16.3520 .0002 .003 .004 Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 -4V, STA Melded 14.72 2.4092 2.4056 .0036 .14 .17 -2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .10 -2.5 Sn, ELI Welded 14.05 1.3384 1.3383 .0001 .002 .003 Welded 14.05 1.3844 1.3383 .0001 .002 .003 Welded 14.05 1.5895 1.5891 .0004 .009 .011 Parent 14.06 1.5542 1.5540 .0002 .004 .005 Welded 14.06 1.5542 1.5550 .0003 .007	00, Annealed	Welded	14.21	3.8787	3.8788	(.0001)	0	0	Some stain
Annealed Welded 14.05 2.1595 2.1593 .0002 .004 .005 Annealed Parent 17.02 16.3524 16.3520 .0002 .003 .004 Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 -4V, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 -2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .10 Parent 14.05 1.3384 1.3383 .0001 .002 .003 Welded 14.05 1.7895 1.7891 .0004 .009 .011 Parent 14.06 1.5542 1.5540 .0002 .004 .005 Welded 14.06 3.3738 3.3735 .0003 .000 .007	200, Annealed	Parent	14.05	1.5159	1.5158	.0001	.002	.002	Some stain
Annealed Parent 17.02 16.3524 16.3520 .0002 .003 .004 Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 4V, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 -4V, STA Welded 14.72 2.6307 2.6276 .0031 .12 .15 -2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .10 Parent 14.05 1.3384 1.3383 .0001 .002 .003 Welded 14.05 1.7895 1.7891 .0004 .009 .011 Parent 14.06 1.5542 1.5540 .0002 .004 .005 Welded 14.06 3.3738 3.3735 .0003 .006 .007	200, Annealed	Welded	14.05	2.1595	2.1593	.0002	.004	.005	Some stain
Annealed Welded 17.02 17.2825 17.2822 .0003 .005 .006 .44, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 .17	270, Annealed	Parent	17.02	16.3524	16.3520	.0002	.003	.004	Considerable stain
-4V, STA Parent 14.72 2.4092 2.4056 .0036 .14 .17 -4V, STA Welded 14.72 2.6307 2.6276 .0031 .12 .15 -2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .10 -2.5 Sn, ELI Welded 14.68 2.6883 2.6853 .0030 .11 .14 -2.5 Sn, ELI Welded 14.05 1.3384 1.3383 .0001 .002 .003 Welded 14.05 1.7895 1.7891 .0004 .009 .011 Parent 14.05 1.5542 1.5540 .0002 .004 .005 Welded 14.06 3.3738 3.3735 .0003 .006 .007	270, Annealed	Welded	17.02	17.2825	17.2822	.0003	500.	900	Considerable stain
-4V, STA Welded 14.72 2.6307 2.6276 .0031 .12 .15 .15 .2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .10 .2.5 Sn, ELI Welded 14.68 2.6883 2.6853 .0030 .11 .14 .14 .25 Parent 14.05 1.3384 1.3383 .0001 .002 .003 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9	m 6A1-4V, STA	Parent	14.72	2.4092	2.4056	.0036	.14	.17	Yellow deposit, heavier in liquid phase
-2.5 Sn, ELI Parent 14.68 2.3696 2.3674 .0022 .08 .102.5 Sn, ELI Welded 14.68 2.6883 2.6853 .0030 .11 .14 .14 Parent 14.05 1.3384 1.3383 .0001 .002 .003 .9 Parent 14.05 1.7895 1.7891 .0004 .009 .011 .9 Parent 14.06 1.5542 1.5540 .0002 .004 .005 .9 Parent 14.06 3.3738 3.3735 .0003 .006 .007 .005	m 6Al-4V, STA		14.72	2.6307	2.6276	.0031	.12	.15	Yellow deposit, heavier in liquid phase
-2.5 Sn, ELI Welded 14.68 2.6883 2.6853 .0030 .11 .14 Parent 14.05 1.3384 1.3383 .0001 .002 .003 (Welded 14.05 1.7895 1.7891 .0004 .009 .011 (Welded 14.06 1.5542 1.5540 .0002 .004 .005 Melded 14.06 3.3738 3.3735 .0003 .006 .007 (Melded 14.06 3.007 (Melded 14.06 3.3738).000 (Melded 14.06 3.007 (Melded 14.06 3.3738).000 (Melded 14.06 3.007 (Melded 14.06 3.3738).000 (Melded 14.06 3.007 (Melded	m 5A1-2.5 Sn, EL		14.68	2.3696	2.3674	.0022	.08	01.	Yellow deposit, heavier in liquid phase
Parent 14.05 1.3384 1.3383 .0001 .002 .003 (Welded 14.05 1.7895 1.7891 .0004 .009 .011 (Parent 14.06 1.5542 1.5540 .0002 .004 .005 .005 .005 .006 .005 .005 .005 .005	m 5Al-2.5 Sn, EL		14.68	2,6883	2.6853	.0030	r	.14	Yellow to brown deposit, heavier in liquid phase
Welded 14.05 1.7895 1.7891 .0004 .009 .011 (Parent 14.06 1.5542 1.5540 .0002 .004 .005	Steel	Parent	14.05	1.3384	1.3383	.0001	.002	.003	Considerable stain
Parent 14.06 1.5542 1.5540 .0002 .004 .005	Steel	Melded	14.05	1.7895	1.7891	.0004	600.	.011	Considerable purple stain
₩elded 14.06 3.3738 3.3735 .0003 .006 .007	OFHC	Parent	14.06	1.5542	1.5540	.0002	.004	. 005	Some tarnish, heavier in vapor phase
	OFFIC	rel ded	14.05	3.3738	3.3735	.0003	900.	.007	Considerable tarnish in vapor phase

TABLE 2.1-4

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: NF3 Vapor, 223 K, 3.45 MN/m² (500 psi) 26 days; 195 K, 15 days SPECIMEN PRETREATMENTS: Cleaned, Pickled, NF3 Passivation

Material 301 SS, Cryoformed	Specimen Type Parent	Specimen Surface Area, Cm ² 15.59	Specir Initial 8.1121	Specimen Weights,	Loss	Penetration Rate pm/sec mpy 0 0	mpy 0	Observations Very slight stain
301 SS, Cryoformed	Welded	15.74	8.8275	8.8274	.0001	.002	.003	No apparent reaction
304 L SS, Annealed	Parent	13.93	0.8337	0.8336	1000.	.002	.003	Very slight stain
304 L SS, Annealed	Welded	13.93	1.6492	1.6491	.0001	.002	.003	No apparent reaction
316 ELC SS	Parent	14.21	2.0367	2.0366	.0001	.002	.003	Very slight stain
316 ELC SS	Welded	14.21	3.0879	3.0876	.0003	.007	600.	No apparent reaction
321 SS, Annealed	Parent	14.23	2.0503	2.0502	.0001	.002	.003	Stain
321 SS, Annealed	Welded	14.23	2.7905	2.7903	. 0002	.005	900	No apparent reaction
347 SS, Annealed	Parent	14.06	1.4172	1.4171	.0001	.002	.003	No apparent reaction
347 SS, Annealed	Welded	14.06	2.5815	2.5813	. 0002	.005	900.	No apparent reaction
17-4 PH, H-1025	Parent	15.66	8.4748	8.4747	.0001	.002	.003	Very slight stain
17-4 PH, H-1025	Welded	15.66	8.6527	8.6530	(:0003)	0	0	No apparent reaction
Inconel 625, Annealed	Parent	14.57	3.9567	3.9567	;	0	0	No apparent reaction
Inconel 625, Annealed	Welded	14.57	4.4271	4.4270	.0001	.002	.003	No apparent reaction
Inconel 718, Annealed	Parent	14.06	1.4486	1.4486	;	0	0	Slight stain
Inconel 718, Annealed	Welded	14.06	2.1143	2.1143	;	0	0	No apparent reaction
Monel 400, Annealed	Parent	14.21	2.2728	2.2726	. 0002	.005	900.	Very slight stain
Monel 400, Annealed	Welded	14.21	4.6882	4.6880	.0002	.005	900.	No apparent reaction
Nickel 200, Annealed	Parent	14.05	1.5199	1.5198	.0001	.002	.002	No apparent reaction
Nickel 200, Annealed	Welded	14.05	2.1883	2.1881	.0002	.004	.005	No apparent reaction
Nickel 270, Annealed	Parent	17.02	16.3954	16.3949	.0005	.010	.012	No apparent reaction
Nickel 270, Annealed	Welded	17.02	17.7915	17.7913	.0002	.004	.005	No apparent reaction
Titanium 6Al-4V, STA	Parent	14.72	2.4031	2.4023	.0008	.034	.043	No apparent reaction
Titanium 6Al-4V, STA	Welded	14.72	2.7325	2.7318	.0007	.030	.037	Very slight stain
	I Parent	14.68	2,3808	2.3804	.0004	710.	.021	No apparent reaction
Titanium 5Al-2.5 Sn, ELI	I Welded	14.68	2.5322	2.5313	6000.	.038	.048	No apparent reaction
C-1010 Steel	Parent	14.05	1.3453	1.3448	.0005	.013	.016	Slight blue stain
C-1010 Steel	Welded	14.05	1.9050	1.9043	.0007	.018	.022	Slight darkening
Copper, OFHC	Parent	14.06	1.5519	1.5518	.0001	.002	.003	Slight tarnish
Copper, OFHC	Welded	14.06	3.4312	3.4307	.0005	110.	.014	Slight stain

TABLE 2.1-5

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: NF3 Vapor, 344 K, 3.45 MN/m² (500 psia) 33 Days SPECIMEN PRETREATMENTS: Cleaned and Pickled, NF3 Passivation

		Observations	Slight stain	Slight stain	Considerable stain	Slight stain	Covered with a black deposit	No apparent reaction	Some stain	Slight stain	Some stain	Some stain	Yellow to gray deposit	Yellow to brown deposit	Stained severely	Some tarnish
1	on Rate	MDV	0	0	.012	.008	16.	0	0	0	.003	.043	.20		910.	.003
	Penetration Rate	pm/sec	0	0	600.	900.	.73	0	0	0	.003	.035	.16	.14	.013	.003
	5, 9	Loss	;	(1000.)	.0003	.0002	.0261	1	1	;	.0001	.0015	.0031	.0027	.0004	.0001
	Specimen Weights, g	runa	0.8388	2.0375	2.0729	1.3984	8.4414	3.9567	1,4554	2.2425	1.5324	16.3273	2.3946	2.3755	1.3065	1.5499
	Specim	PLILLI	0.8388	2.0374	2.0732	1.3986	8.4675	3.9567	1.4554	2.2425	1.5325	16.3288	2.3977	2.3782	1.3069	1.5500
	Specimen 2	our lace Area, on	13.93	14.21	14.23	14.06	15.66	14.57	14.06	14.21	14.05	17.02	14.72	14.68	14.05	14.06
	× 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ומרבו ומי	304L SS, Annealed	316 ELC SS,	321 SS, Annealed	347 SS, Annealed	17-4 PH, H-1025	Inconel 625, Annealed	Inconel 718, STA	Monel 400, Annealed	Nickel' 200, Annealed	Nickel 270, Annealed	Titanium 6A1-4V, STA	Titanium 5A1-2.5 Sn ELI	C-1010 Steel	Copper, OFHC

TABLE 2.1-6

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: Liquid/Vapor, 233 K, 26 days; 195 K, 15 days SPECIMEN PRETREATMENTS: Cleaned, No Passivation

	Checimen		Sterimen Weights a	C			
Material	Surface Area, Cm ²		Final	Loss	Penetration rate pm/sec mpy	mpy mpy	Observations
304 L SS, Annealed	13.93	0.8426	0.8424	.0002	.005	900.	Some stain
316 ELC SS,	14.21	2.0749	2.0748	.0001	.002	.003	Some stain
321 SS, Annealed	14.23	2.0219	2.0217	.0002	.005	900.	Some stain
347 SS, Annealed	14.06	1.4103	1.4100	.0003	.008	600.	Slight stain
17-4 PH, H-1025	15.66	8.4685	8.4682	.0003	.007	.008	Some stain
Inconel 625, Annealed	14.57	3.9402	3.9400	.0002	.005	900	Very slight stain
Inconel 718, STA	14.06	1.4438	1.4433	.0005	.012	.015	Considerable stain, greatest in vapor phase
Monel 400, Annealed	14.21	2.2996	2.2993	.0003	.007	800.	Some stain
Nickel 200, Annealed	14.05	1.5611	1.5609	.0002	.005	900.	Some stain, heavier in liquid phase
Nickel 270, Annealed	17.02	16.2041	16.2038	. 0003	900.	.007	No apparent reaction
Titanium 6A1-4V, STA	14.72	2.4807	2.4744	.0063	.27	.34	Yellow deposit, heavier in liquid phase
Titanium 5A1-2.5 Sn ELI	14.68	2.3686	2.3620	9900.	.28	.35	Yellow to gray deposit, heavier in liquid phase
C-1010 Steel	14.05	1.3362	1.3358	.0004	010.	.013	Some purple stain
Copper, OFHC	14.06	1.5444	1.5439	. 0005	.011	.014	Considerable stain and tarnish

TABLE 2.1-7

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIJE WITH VARIOUS METALS

EXPOSURE CONDITIONS: Liquid/Vapor, 233 K, 26 days; 195 K 12 days SPECIMEN PRETREATMENTS: Cleaned, Pickled, No Passivation

	Coorings	Chorie	Sperimen Meights				
Material	Surface Area, Cm ²	Initial	Final	Loss	Penetration Ratra pm/sec mp	on Ratrs	Observations
304 L SS, Annealed	13.93	0.8319	0.8318	Ą	0	C	No apparent reaction
316 ELC SS,	14.21	2.0565	2.0563	. 0002	.005	.007	Very Slight stain
321 SS, Annealed	14.23	2.0730	2.0727	.0003	.008	010	Slight stain
347 SS, Annealed	14.06	1.4114	1.4114	;	0	0	No apparent reaction
17-4 PH, H-1025	15.66	8.3371	8.3371	1	0	0	Very slight stain
Inconel 625, Annealed	14.57	3.9338	3.9338	1	0	0	No apparent reaction
Inconel 718, STA	14.06	1.4730	1.4730	1	0	0	Very slight stain
Monel 400, Annealed	14.21	2.2544	2.2543	1000	.0002	.0003	Some stain
Nickel 200, Annealed	14.05	1.5186	1.5187	(.0001)	0	0	Some stain
Nickel 270, Annealed	17.02	16.4671	16.4664	.0007	.014	710	Some stain
Titanium 6A1-4V, STA	14.72	2.3990	2,3932	.0058	.27	.33	Yellow deposit, heavier in liquid phase
Titanium 5Al-2.5 Sn ELI	14.68	2.3682	2.3650	.0032	.15	.18	Brown deposit, heavier in liquid phase
C-1010 Steel	14.05	1.3185	1.3178	.0007	610.	.024	Purple to black coloration
Copper, OFHC	14.06	1.5669	1.5665	.0004	010.	.012	Slightly tarnished

TABLE 2.1-8

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: Liquid/Vapor, 233 K, 26 days; 195 K, 11 days SPECIMEN PRETREATMENTS: Cleaned, NF3 Passivated

		ij					
Material	Surface Area, Cm ²	Specim Initial	Specimen Weights, g nitial Final Los	Loss	Penetration Rates pm/sec mpy	Rates	Observations
304 L SS, Annealed	13.93	0.8348	0.8348	;	C	C	Very slight stain
316 ELC SS,	14.21	2.0716	2.0713	.0003	.008	.010	Slight stain
321 SS, Annealed	14.23	2.0356	2.0354	.0002	900	.007	Some staining
347 SS, Annealed	14.06	1.4112	1.4110	.0002	900.	007	No apparent reaction
17-4 PH, H-1025	15.66	8.4668	8.4666	.0002	.005	900.	No apparent reaction
Inconel 625, Annealed	14.57	3.9377	3.9375	.0002	.005	900.	No apparent reaction
Inconel 718, STA	14.06	1.4642	1.4637	: 0005	.013	710.	Considerable stain
Monel 400, Annealed	14.21	2.3078	2.3076	.0002	.005	900	Considerable stain
Nickel 200, Annealed	14.05	1.5672	1.5670	.0002	500	900	Some of aire
Nickel 270, Annealed	17.02	16.4597	16.4594	0003	900	008	No apparent reservios
Titanium 6A1-4V, STA	14.72	2.4893	2.4818	.0075	36	44	Yellow depocit heavier in liquid phase
Titanium 5A1-2.5 Sn ELI	14.68	2.3631	2.3509	.0122	85.	.72	Yellow to oray denosit, heavier in liquid phase
C-1010 Steel	14.05	1.3534	1.3532	.0002	900-	.007	Purple stain
Copper, OFHC	14.06	1.5665	1.5658	.0007	710.	.022	

The effectiveness of the "passivation treatment" can be assessed by comparison of the data in Tables 2.1-3, 2.1-7, and 2.1-9. Only parent material specimens were used in the tests reported in Tables 2.1-7 and 2.1-9. From the data it is apparent that the rigorous fluorine passivation (Table 2.1-9) does not significantly alter the corrosion resistance compared to the nitrogen trifluoride passivation (Table 2.1-3), and neither one of the "passivation treatments" exhibits a significant improvement in corrosion resistance over the "non-passivated" specimen tabulated in Table 2.1-7. It must be kept in mind at this point that the presence of a "passivation-film" as a result of pre-exposure was not experimentally determined.

In order to determine if the presence of many different materials within a sample bomb can lead to metal/metal interactions which will bias the inherent compatibility of a material with NF3, a series of tests was conducted with aluminum alloys in contact with and electrically isolated from 304 stainless steel specimens under the exposure conditions already described in the previous test series. The data from the tests is presented in Table 2.1-10.

The data indicate that there is no significant difference in the weight losses that are measured for the aluminum specimens in contact with the 304 stainless steel and the aluminum specimens that are isolated from the 304 stainless steel. The electrical isolation was achieved by placing the ends of the coupons in slots between two Teflon plugs.

Finally a test series was conducted in which only 304 stainless specimens were exposed to nitrogen trifluoride under various conditions in 304-L test bombs. The data are presented in Table 2.1-11. The weight loss values do not differ significantly from the values obtained with 304L specimens used in the multicoupon exposure tests. The welded samples generally exhibit a greater weight loss than the parent samples, but no significant corrosion occurs.

A statistical analysis of the weight changes which all parent metal specimens exhibited after exposure to the liquid/vapor phase nitrogen trifluoride at 233 K was conducted as a function of the pretreatment given prior to exposure. The titanium alloys were analyzed separately because of the large weight losses they incurred in comparison with all the other metal specimens. The results are presented in Table 2.1-12.

TABLE 2.1-9

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH VARIOUS METALS

EXPOSURE CONDITIONS: NF3 Liquid/Vapor, 233 K, 26 days; 195 K, 15 days SPECIMEN PRETREATMENTS: Cleaned, Pickled, F2 Passivation

Material	Specimen Surface Area, Cm ²	Specin Initial	Specimen Weights, g litial Final Los	s, g Loss	Penetration Rates pm/sec mpy	Rates	Observations	
304 L SS, Annealed	13.93	0.8448	0.8447	. 0001	.002	.003	No apparent reaction	
316 ELC SS,	14.21	2.0498	2.0497	.0001	.002	.003	No apparent reaction	
321 SS, Annealed	14.23	2.0482	2.0480	. 0002	.005	900.	Some stain	
347 SS, Annealed	14.06	1.4031	1.4030	.0001	.002	.003	No apparent reaction	
17-4 PH, H-1025	15.66	8.4748	8.4747	.0001	.002	.003	Very slight stain	
Inconel 625, Annealed	14.57	3.9297	3.9298	(.0001)	0	0	No apparent reaction	
Inconel 718, STA	14.06	1.4376	1.4376	:	0	0	Slight stain	
Monel 400, Annealed	14.21	2.2575	2.2574	.0001	.002	.003	Some stain	
Nickel 200, Annealed	14.05	1.5377	1.5376	.000	.002	.003	Some stain	
Nickel 270, Annealed	17.02	16.2478	16.2478	;	0	0	Some stain	
Titanium 6Al-4V, STA	14.72	2.4173	2.4131	.0042	.18	.22	Yellow deposit, heavier in the liquid phase	hase
Titanium 5Al-2.5 Sn ELI	14.68	2.3773	2.3735	. 0038	.16	.20	Yellow to gray deposit, heavier in liquid phase	id phase
C-1010 Steel	14.05	1.3244	1.3240	.0004	010.	.013	Dark gray coloration	
Copper, OFHC	14.06	1.5534	1.5531	. 0003	.007	.008	Slightly tarnished	

TABLE 2.1-10

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH ALUMINUM ALLOYS IN CONTACT WITH AND ISOLATED FROM 304 STAINLESS STEEL AT VARIOUS CONDITIONS

Observations	Slight stain in liquid phase Very slight stain in liquid phase No apparent reaction Very slight stain in liquid phase No apparent reaction	Some stain in liquid phase No apparent reaction Very slight stain in liquid phase	No apparent reaction No apparent reaction No apparent reaction	No apparent reaction No apparent reaction No apparent reaction Very slight stain in liquid phase No apparent reaction	No apparent reaction No apparent reaction No apparent reaction	Very slight stain Very slight stain Slight stain on contact side	No apparent reaction No apparent reaction No apparent reaction No apparent reaction Some tarnish on contact side with 6061 Al	io apparent reaction No apparent reaction, except for slight stain No apparent reaction	No apparent reaction No apparent reaction Some stain	Very slight stain on contact side No apparent reaction Slight stain on contact sides with 6061 and 2219 No apparent reaction No apparent reaction	Some stain Some stain and harmish on contact side
Rates	00000	.008	.008	.016	.023 .016 .006	.003	.023 .016 .008	.009 710.	710. 710.	.016 .016 .016	110.
Penetration pm/sec	00000	.020	.020	.007	.019	.006	00.007	.014	.014	0.00	900.
Loss	(.0001)	.0003	.0003		.0003	.0003	.0003	.0001	.0002	.0002	1000.
Weights, g	1.6691 1.7112 0.4805 0.4356 1.3825	1.7734	0.8378 0.8663 2.0888	0.4905 0.4841 1.3807 1.7158	0.9794 0.7682 1.8750	1.8589 1.5379 1.3677	1.7127 1.6916 0.4897 0.4841 1.3815	0.4859	0.4848 0.4908 1.3620	1.7014 1.6778 1.3832 0.4824 0.4820	0.4810
Initial	1.6691 1.7112 0.4804 0.4855 1.3825	1.7735	0.8381 0.8664 2.0890	0.4906 0.4841 1.3807 1.7160	0.9797 0.7684 1.8752	1.8592 1.5380 1.3678	1.7130 1.6918 0.4897 0.4842 1.3815	0.4860 0.4556 1.3916	0.4850 0.4910 1.3621	1.7016 1.6780 1.3832 0.4826	0.4811
Surface Area Cm2	15.13 15.13 14.42 14.05	15.13 15.13 14.05	14.42	14.42 14.42 15.13	14.42 14.42 14.05	15.13 15.13 14.05	15.13 15.13 14.42 14.62	14.42 14.05	14.42	15,13 14,05 14,42 14,42	14.42
Exposure Period*, Days	26 + (18)	26 + (17)	26 + (19)	26 + (20)	26 + (20)	26 + (19)	26 + (19)	26 + (16)	26 + (16)	26 + (19)	33
tion	Contact Isolated Contact Isolated	Contact	Contact Isolated	Contact Isolated Contact Isolated	Contact Isolated	Contact Isolated	Contact Isolated Contact Isolated	Contact Isolated	Contact Isolated	Contact Isolated Contact Isolated	Contact
Exposure Condition	MF3 1/v. 223 K	NF3 1/v, 223 K	NF3 1/v, 223 K	NF3 V, 223 K	NF3 v, 223 K	NF3 V, 223 K	иF3 1/v, 223 K	1F3 1/v, 223 K	MF3 1/v, 223 K	MF 1/v, 223 K	NF3 v, 500 psig, 344 K
Specimen Pretreatment	Cleaned Pickled MF3 Passivation	Cleaned Pickled NF ₃ Passivation	Cleaned Pickled NF3 Passivation	Cleaned Pickled Pickled NFg Passivation	Cleaned Pickled MF3 Passivation	Cleaned Pickled NF ₃ Passivation	Cleaned Pickled No Passivation	Cleaned Pickled F2 Passivation	Cleaned Mo Passivation	Cleaned NF3 Passivation	Cleaned Pickled MF3 Passivation
Type of Specimen	Parent Parent Parent Parent	Welded Welded Parent	Welded Welded Parent	Parent Parent Parent	Welded Welded Parent	Welded Welded Parent	Parent Parent Parent Parent	Parent Parent Parent	Parent Parent Parent	Parent Parent Parent Parent	Parent Parent Parent
Specimen	2219 A1 T-87 2219 A1 T-87 6061 A1 T-6 6061 A1 T-6 304 SS	2219 A1 T-87 2219 A1 T-87 304 SS	6061 A1 T-6 6061 A1 T-6 304 SS	6061 A1 T-6 6061 A1 T-6 304 SS 2219 A1 T-87 2219 A1 T-87	6061 A1 T-6 6061 A1 T-6 304 SS	2219 A1 T-87 2219 A1 T-87 304 SS	2219 Al T-87 2219 Al T-37 6061 Al T-6 6061 Al T-6 304 SS	6061 A1 T-6 6061 A1 T-6 304 SS	6061 A1 T-6 6061 A1 T-6 304 SS	2219 Al T-87 2219 Al T-87 304 SS 6061 Al T-6	6061 A1 T-6 6061 A1 T-6 304 SS

alues in parentheses are the number of days in which the samples were stored

TABLE 2.1-11

DATA INDICATIVE OF THE COMPATIBILITY OF NITROGEN TRIFLUORIDE WITH 304 STAINLESS STEEL AT VARIOUS CONDITIONS

	Observations			stain	stain	reaction	reaction	reaction	reaction	reaction	reaction	ained	attack		•	Major deposits in vapor phase, greater attack in liquid phase	Major deposits in vapor phase	attack	attack
		Some stain	Some stain	Very slight stain	Very slight stain	No apparent reaction	No apparent reaction	No apparent reaction	No apparent reaction	No apparent reaction	No apparent reaction	Slightly stained	No apparent attack	Some tarnish	Some tarnish	Major deposits in vaporattack in liquid phase	Major deposi	No apparent attack	No apparent attack
Penetration Rates	МРУ	0	.014	010	.017	0	.007	.003	210.	.003	.024	0	0	900	.012	.81		1.05	.00
Penetrat	Dm/sec	0	110.	.008	.013	0	.005	.002	010.	.002	.020	0	0	900	600	99.		. 85 0	.003
	Loss	}	.0005	.0003	.0005	;	.0002	1000	.0004	1000	.0008	ł	1	.0002	.0003	.0211	.0273	1	.0001
Weights, g	Final	1.3873	2.0590	1.3570	1.7670	1.3896	1.9264	1.3807	1.9426	1.3819	1.9661	1.3626	2.1699	1.3626	1.9547	1.3572	1.7319	1.3768	2.0764 2.0703
Wei	Initial	1,3873	2.0595	1.3753	1.7675	1,3896	1.9266	1.3808	1.9430	1.3820	1.9669	1.3626	2.1699	1.3628	1.9550	1.3783	1.7592	1.3768	2.0704
Surface	CIIIS	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06	14.06
Exposure	Period, * days	26, (19)	26, (19)	(12)	(12)	(15)	(12)	(16)	(16)	(16)	(16)	(19)	(18)						
ξx	Perio	26,	26,	26,	26,	26.	26,	26,	26,	26,	26,	26,	26,	33	33	33	33	33	33
Exposure	Condition	-50°C, 1/v		-50°C, V,		-50°C, 1/v		-50°C, 1/v		-50°C, 1/v		-50°C, 1/v		71°C, v		71°C, NF3 1/v H ₂ 0	ı	71°C, 1/v H20	ı,
	Specimen Pretreatment	Cleaned, Pickled, NF ₃ Passivation		Cleaned, Pickled, NF ₃ Passivation		Cleaned, Pickled, No Passivation		Cleaned, Pickled, F ₂ Passivation		vation		ivation		Cleaned, Pickled, NF ₃ Passivation		Cleaned, Pickled, NF ₃ Passivation		Cleaned, Pickled, No Passivation	Cleaned, Pickled, No Passivation
	imen Pr	pickled,		ickled,		ickled,		ickled,		to Passi		F3 Pass		ickled,		ickled,		ickled,	ickled,
	Sper	Cleaned, 1		Cleaned, i		Cleaned, !		Cleaned, i		Cleaned, No Passivation		Cleaned, NF ₃ Passivation		Cleaned,		Cleaned,		Cleaned, I	Cleaned,
Type of	Specimen	Parent	We1ded	Parent	Welded	Parent	Welded	Parent	Welded	Parent	Welded	Parent	Welded	Parent	Welded	Parent	Welded	Parent	Welded

*Values in parentheses are the number of days in which the samples were stored at $-78^{\circ}\mathrm{C}$.

TABLE 2.1-12

STATISTICAL ANALYSIS OF WEIGHT CHANGES OF PARENT METAL
SPECIMENS SUBJECTED TO VARIOUS PRETREATMENTS
PRIOR TO EXPOSURE TO LIQUID/VAPOR NITROGEN TRIFLUORIDE AT 223 K

	Mean Weight	Change, mg
Pretreatment Procedure	Titanium Alloys	All Other Metals
Cleaned only	6.4 <u>+</u> .2	0.26 <u>+</u> .13
Cleaned, Pickled, No Preexposure	4.5 <u>+</u> 1.8	$0.094 \pm .14$
Cleaned, Preexposed to NF ₃	9.8 ± 3.3	0.23 <u>+</u> .17
Cleaned, Pickled, Preexposed to NF ₃	3.0 ± 0.6	$0.056 \pm .12$
Cleaned, Pickled, Preexposed to F ₂	4.0 ± 0.3	0.11 <u>+</u> .12

The data in Table 2.1-12 indicate that pickling after cleaning does reduce the weight changes which occur during exposure to nitrogen trifluoride, but that pre-exposure to nitrogen trifluoride or fluorine at ambient temperatures after pickling does not significantly enhance the metal/nitrogen trifluoride compatibility. Based on this data, the metal specimens subjected to long-term exposure to nitrogen trifluoride were cleaned and pickled, but were not pre-exposed to nitrogen trifluoride as a passivation step.

Chemical analyses of the nitrogen trifluoride recovered from the tests reported in Tables 2.1-3 through 2.1-11 were conducted using the method described in "Analysis of Nitrogen Trifluoride", AFRPL-TR-76-89, December 1976 using gas chromatography and a specific ion electrode to determine the total active fluorides.

Al" were fitted with valves which allowed the nitrogen trifluoride to be sampled directly. All the other test bombs were opened in a helium atmosphere with the liquid nitrogen trifluoride condensed in a liquid nitrogen bath and the contents were transferred to an appropriate size sample bomb for the analysis. The analyses obtained with direct sampling are less subject to sample handling contamination and thus are more reliable. In some cases samples were lost prior to analysis. Because nitrogen trifluoride was vapor-transferred from the original sample containers, an attempt was made to recover the solid materials which remained by washing the opened sample containers with Freon and weighing the residues after the Freon had evaporated. In some cases no data was obtained and it is so specified in the tabulation. The data are presented in Table 2.1-13.

	FI	TABLE 2.1-13	2.1-	13						
ANALYSES OF NITROGEN TRIFLUORIDE EXPOSED TO VARIOUS TEST CONDITIONS AND MATERIALS	DE EX	POSED	10	VAR	OUS	日	ST C	ONDITI	ONS AND MA-	FERIALS
		Compos	Composition, Weight Percent	Weight	Percer					
Type of Exposure	NF.3	Active Fluorides as HF	ж 2	C0/02	CF.	202	N20	Total Solids Recovered	Table No. in Which Specimen Data are Reported	Metal Pretreatment
NF ₃ as received, cyl 17341-C in September	98.3	.077	0.31	0.74	0.38	.03	.013			
Cylinder 17341-C, December analysis	5.86	.035	0.59	0.17	0.58	.05	0.42			
Liquid/vapor NF ₃ 223 K, 26 days, 195 K - 20 days, all metals except Al	98.1	.031	0.25	0.71	0.75	8	0.13	0.5 mg	2.1-3	Cleaned, Pickled, NF, Passivated
500 psig wapor NF3, 223 K - 26 days, 195 K - 15 days, all metals except Al	98.7	.015	0.14	0.33	0.67	.05	0.11	No Data	2.1-4	Cleaned, Pickled, NF ₃ Passivated
Liquid/vapor ${\sf NF}_3$, 223 K - 26 days, 195 K - 18 days, aluminum and 304	98.3	.018	0.22	0.61	0.68	.05	0.14	0.6 mg	2.1-10	Cleaned, Pickled, NF. Passivated
Liquid/wapor NF3. 223 K - 26 days, 195 K - 19 days, aluminum and 304	98.2	810.	0.25	0.68	0.64	5	0.13	0.3 mg	2.1-10	Cleaned, Pickled, NF, Passivated
Liquid/wapor NF3, 223 K - 26 days, 195 K - 17 days, aluminum and 304	98.2	120.	0.25	0.70	0.68	.05	0.11	None	2.1-10	Cleaned, Pickled, NF, Passivated
Liquid/wapor NF ₃ , 223 K - 26 days, 195 K - 12 days, all metals except Al	98.1	.053	. 0.27	0.65	0.73	.05	0.12	No Data	2.1-7	Cleaned, Pickled
Liquid/vapor NF3, 223 K - 26 days, 195 K - 19 days, aluminum and 304	98.3	.031	0.19	0.64	0.65	.03	0.15	None	2.1-10	Cleaned, Pickled
Liquid/wapor Nf3, 223 K - 26 days, 195 K - 12 days, 354 only	0.86	.042	0.27	0.79	0.71	8	0.11	No Data	2.1-11	Cleaned, Pickled
Liquid/wapor ${\rm MF_3}$, 223 K - 26 days, 195 K - 15 days, all metals except Al	98.2	290.	0.26	0.63	0.71	8	0.13	No Data	2.1-9	Cleaned, Pickled, F ₂ Passivated
Liouid/wapor NF ₃ , 223 K - 26 days, 195 K - 16 days, 304 only	98.2	.040	0.31	0.63	0.72	Š	0.11	None	2.1-11	Cleaned, Pickled, F. Passivated
Liquid/vapor NF $_3$, 223 K - 26 days, 195 K - 15 days, all metals except Al	18.1	.033	0.25	0.68	0.71	.05	0.14	0.9 mg	2.1-6	
Liquid/wapor MF $_3$, 223 K - 26 days, 195 K - 16 days, aluminum and 304	96.5	.020	0.10	0.51	0.69	.05	9.12	0.1 mg	2.1-10	Cleaned
Liquid/vapor NF3, 223 K - 26 days, 195 K - 16 days, 304 only	38	.033	0.31	0.66	0.66	8	0.11	0.4 mg	2.1-11	Cleaned
Liquid/wapor NF ₃ , 223 K - 26 days, 195 K - 11 days, all metals except Al	98.2	.038	0.26	0.63	0.74	8	0.14	0.5 mg	2.1-8	Cleaned, NF ₃ Passivated
Liquid/vapor NF $_3$, 223 K - 26 days, 195 K - 19 days, aluminum and 304	38.0	910.	0.33	0.87	0.66	.05	0.12	0.3 mg	2.1-10	Cleaned, NF ₂ Passivated
Lingle/vapor MF3, 223 K - 26 days, 195 K - 9 days, 304 only	38.5	.027	0.25	0.73	0.73	.03	0.10	None	2.1-11	Cleaned, NF ₃ Passivated
500 psia MF3 vapor,344 K - 23 days all metals except Al	97.2	.393	99.0	0.92	0.62	90.	0.17	No Data	2.1-5	Cleaned, Pickled, NF, Passivated
500 psia $M_{\rm S}$ vapor, 344 K - 33 days, aluminum and 304	8.76	.256	0.47	0.69	0.61	.05	0.11	No Data	2.1-10	Cleaned, Pickled, NF, Passivated
500 psia MF_3 vapor, 344 K - 33 days, 304 only	98.2	.019	0.35	0.66	0.60	.07	0.11	No Data	2.1-11	Cleaned, Pickled, NF3 Passivated

The significant items to note from the data are: (1) the nitrogen trifluoride used in the 223 K static storage tests is virtually unchanged, (2) at 344 K the nitrogen trifluoride stored with "all metals except Al" exhibited a decrease of 1% in nitrogen trifluoride and a significant increase in active fluoride content (the titanium samples and the 17-4 PH sample exhibited significant weight losses); the "aluminum and 304" sample exhibits a smaller decrease in nitrogen trifluoride content and increase in active fluoride while the "304 only" sample shows no change. Based on the data, the titanium and 17-4 PH specimens were exposed to nitrogen trifluoride vapor at elevated temperatures for prolonged periods in isolated test bombs.

The results can be summarized as follows.

- 1. No metal specimen exposed to either liquid or vapor nitrogen trifluoride at 223 K (-50° C) for a month, or to nitrogen trifluoride vapor at 3.45 MN/m² (500 psia) at 344 K (160 F) for a month exhibited a corrosion penetration rate of greater than 0.8 pm/sec (1 mil per year).
- 2. The pickling of the metal samples provided a very slight improvement in the corrosion resistance of the materials.
- 3. Pre-exposure of the metal specimens to nitrogen trifluoride or fluorine at room temperature did not alter the corrosive behavior as compared to no pre-exposure of the metal specimens.
- 4. No intermetallic interactions or galvanic corresion occurred in uncontaminated liquid NF_3 .
- 5. No significant compositional changes in nitrogen trifluoride occurred at the lower temperatures and only minimal compositional changes were detected at 344 K.

2.1.2 Cleaning and Passivation Pretreatment of Non-Metallic Materials

The purpose of this task was to establish early in the experimental program the appropriate procedures for preparation of non-metallic material surfaces, prior to exposure to nitrogen trifluoride for prolonged periods of time.

2.1.2.1 Cleaning Procedures for Non-Metallic Materials

The non-metal specimens were, except for the carbon, the greases, and the epoxy, detergent washed with a Turco Plaudit solution, rinsed with deionized water and vacuum dried overnight at 333 K (140 F). The carbons, the greases, and the epoxy were used in the as-received condition.

2.1.2.2 Passivation Procedure for Non-Metallic Materials

Although passivation per se of non-metals is inappropriate, the exposure of non-metals after cleaning and drying to nitrogen trifluoride at ambient temperature and pressure may have merit in regard to removal or reaction with absorbed or occluded species. We had planned to evaluate this procedure by exposing non-metal samples for the initial non-metal screening tests to nitrogen trifluoride vapor at room temperature for several hours prior to the testing. The results obtained with nitrogen trifluoride-exposed samples were then to be compared to the results obtained with the samples which were not subjected to the pretreatment. On the basis of these results, the appropriate pretreatment was to be selected. However, the initial screening tests with non-metallic materials with no pre-exposure to nitrogen trifluoride exhibited no gross incompatibility between the nitrogen trifluoride and non-metallic candidates at temperatures up to 478 K (400 F) except for the Epoxy EA-384 and Silastic LS-53 during 5-15 minute exposure periods.

2.1.2.3 Test Apparatus and Procedures

A photograph of the assembled test apparatus is shown in Figure 2.1.4. The test apparatus consists of a reaction flask which contains a copper plate which is heated from beneath by electrical resistance coils. The lower section of the glass flask is filled with nitrogen to prevent the nitrogen trifluoride from reacting with the hot resistance wire. The top half of the glass flask (~480ml volume) is initially filled with nitrogen which is displaced by the nitrogen trifluoride as its flow is initiated. The surface of the copper plate is shown in Figure 2.1.5. The nitrogen trifluoride is heated as it passes through a 0.32 cm (.125 in.) copper coil which is located immediately beneath the copper plate. The flowing gas impinges on the surface of the non-metal specimen and a thermocouple is placed on the surface of the non-metal specimen to measure the temperature. The output from the thermocouple is recorded on the Y-axis of an X-Y recorder. Another thermocouple is placed on the surface of the copper plate and the output is recorded on the X-axis of the X-Y recorder. In this manner as the sample is heated, any endotherm or exotherm is detected by deviations in slope of the recorded trace.

Figure 2.1.4. Apparatus for Non-Metal/Nitrogen Trifluoride Compatibility Screening Tests

Figure 2.1.5. Photograph of Reaction Zone in Screening Test Apparatus

Two types of tests were conducted with the apparatus. In the first test series the specimens were heated from ambient temperature to 478 K (400°F) in a period of 10 to 15 minutes while either oxygen or nitrogen trifluoride was flowing at a rate of 60 ml/min onto the surface of the specimen. In addition to the thermal measurements, visual changes in the specimens were noted. The total pressure in the reaction flask was one atmosphere. In the second test series, the specimens were heated while nitrogen trifluoride was flowing onto the surface at a rate of 60 ml/min to the maximum usage temperature recommended for the material and the specimen was held at that temperature for a period of five minutes while the nitrogen trifluoride flow rate remained a 60 ml/minute.

2.1.2.4 Test Results

The results of the tests are presented in Table 2.1-14. The tests in which nothing occurred are identified by a minus sign (-); the tests in which something occurred are designated by a plus sign (+) and the phenomena are identified. The temperatures reported in the table are the values for the exposed surface of the specimens. The nitrogen trifluoride used in the tests had a minimum purity level of 98.2 weight percent NF3 and a maximum active fluoride content of 0.17 weight percent.

The significant items to note from the test results are: (1) no apparent reaction occurred between NF3 and the non-metals except for Mylar at 478 K (400 F), Epoxy (EA-934) at 450 K (350 F), and Silastic LS-53 at 433 K (320 F); (2) the reactivity of nitrogen trifluoride with the non-metals is comparable to that of oxygen under the same conditions with the exception of the above mentioned materials. The reader should be cautioned that the preceding tests are screening tests for gross incompatibility under the described test condition and are not necessarily an indication of compatibility during long-term exposure.

TABLE 2.1-14

DATA INDICATIVE OF THE REACTIVITY OF NON-METALS WITH NITROGEN TRIFLUORIDE AT ONE ATMOSPHERE PRESSURE AND IN COMPARISON WITH GASEOUS OXYGEN

	Phenomena Detected	None	None	None	None	None	Darkening in Coloration	Melting	Meltinj	Melting	None	None	None	None	Slight Color Change	Coloration Change from Gray to Reddish-Brown	None	None	Kimwipe Gradually turned Brown	Slight Black Deposit	Slight Endotherm at 433K (320F). At 533K (500F) Slight Color Change and Hardening Occurred.
ilike Es	<u>u</u>	500	400	400	400	350	200	250	200	250	200	400	400	009	350	200	009	400		500	200
Usage ature Minutes	20	533	478	478	478	450	366	394	366	394	533	478	478	589	450	533	589	478		533	533
Maximum Usage Temperature For Five Minutes	Reaction	3	1		٨		+				•			1		+	II.			+	+
ے اور	NF ₃					10 m	456K (361F)	448K (346F)	371K (208F)	416K (290F)					478K (400F)	450K (350F)					433K (320F)
Ambient to 478K (400F) T	20				0111	1	455K (360F)	428K (310F)	371K (208F)	402K (264F)			•	•	ı	• 12.	•	L	•and		
	Material	Polytetrafluoroethylene	FFP Teflon	PFA Teflon	KEL-F 81 CTFE	Neoprene	Tygon	Lucite	Polyethylene	Polypropylene	Kevlar	Krytox	Dry Powder TFE (MS-122)	AF-E-124 (DuPont ECD-006)	Mylar	Epoxy (EA-934)	Carbon CJPS	Fluorosilicone (FS 3451)	Oil-Soaked (Nujol Mineral Oil) Kimwipe	Viton (MIL-R-83248 Class 1)	Silastic LS-53

2.0, Experiment Results and Discussion (cont.)

2.2 STATIC EXPOSURE TESTS

The purpose of the static exposure tests was to determine the degree of chemical compatibility which exists between nitrogen trifluoride and the various candidate materials under static conditions.

2.2.1 Static Exposure Tests with Metals

2.2.1.1 Apparatus and Procedures

The metal specimens used in the tests were of the same dimensions as described in Section 2.1.1.3 and the specimen containers were the same as described in Section 2.1.1.3 and shown in Figures 2.1.1, 2.1.2, and 2.1.3. Based on the results reported in Section 2.1.1.4, prior to testing, the metal specimens were washed in detergent solution (Turco Plaudit), degreased in an isopropanol bath, rinsed with deionized water, then immersed in the appropriate pickling solution listed in Table 2.1-1, rinsed with deionized water, rinsed with isopropanol, and finally dried under vacuum at 333 K (140 F). There was no pre-exposure of the specimens to gaseous nitrogen trifluoride prior to the loading with the desired quantity of nitrogen trifluoride for the test condition.

The following metals were tested in separate 304L stainless steel containers as shown in Figure 2.1.3: (1) the aluminum alloys, (2) the titanium alloys, (3) aluminum bronze 623, (4) tungsten-2% thoria, (5) beryllium copper, (6) CRES 17-4PH, H-1025, (7) C-1010 steel and (8) Carpenter Custom 455. The remainder of the metal alloys were exposed in ganged-fashion as shown in Figure 2.1.1 and 2.1.2. Typical compositions of the metal candidates evaluated are presented in Appendix A.

The static test durations were for periods of 30 days, 90 days, and 270 days. The varying exposure periods allowed the nature of the reaction which might occur to be evaluated and provided some realistic corrosion penetration rate data.

Liquid/vapor exposure tests were conducted at 195 K (-78 C) because the temperature could be reliably maintained using evaporating solid CO₂ as the refrigerant, the vapor pressure of the liquid nitrogen trifluoride is significant 1.4 MN/m² (200 psia), and the liquid/metal reaction rates should be greater than in a boiling liquid nitrogen environment 77 K (-196 C).

Gaseous exposure tests were conducted at 344 K (160 F) because the temperature represents the upper limit which is likely to be encountered at earth surface conditions. The gaseous tests were conducted at pressures ranging from 3.45 MN/m^2 (500 psia) for all the materials to 17.24 MN/m^2 (2500 psia) for selected materials.

2.2, Static Exposure Tests (cont.)

The static compatibility test matrix for the metals is presented in Table 2.2-1. The numbers in the test matrix table should be interpreted as follows. Number 1 indicates one test specimen of parent material. Number 2 indicates that both a welded and a parent metal speciment are tested.

After the tests were completed, the nitrogen trifluoride was recovered from the test containers and analyzed to determine the compositional changes which may have occurred during the exposure.

2.2.1.2 Experimental Results

The experimental results obtained from the liquid/vapor static exposure tests for durations of 30, 90 and 270 days at 195 K (-78 C) are tabulated in Table 2.2-2. The weight changes, corrosion penetration rate values, initial active fluoride content of the nitrogen trifluoride and visual observations are recorded in the table. The initial active fluoride values are important because one of the active fluoride species, hydrogen fluoride, is shown to significantly increase the corrosion of metals in nitrogen trifluoride (see Section 2.14).

The significant items to note from the data in Table 2.2-2 after 270 days exposure are as follows: (1) none of the metal alloys exhibited any significant corrosion, the maximum corrosion penetration rate observed is less than 0.08 pm/sec (0.1 mpy); (2) the aluminum alloys corrosion penetration rates ranged from 0.006 to 0.063 pm/sec (0.008 to 0.078 mpy); and (3) the remainder of the metals except for copper OFHC (0.04 pm/sec, 0.05 mpy) and Inconel 718 (0.014 pm/sec, 0.018 mpy) exhibited rates of less than 0.008 pm/sec (0.010 mpy). On a comparison basis, the 270 day-exposure corrosion data for the aluminum alloys generally are higher values than were obtained for the 30 and 90 day exposures. The nitrogen trifluoride which was used for the 270 day exposure tests contained 0.10 weight percent active fluoride calculated as HF while the nitrogen trifluoride used for the 30 and 90 day tests contained less than 0.0001 weight percent active fluoride. This difference in active fluoride content can produce the difference in corrosion rates which are reported.

The experimental results obtained from the gaseous static exposure tests for durations of 30, 90 and 270 days at 344 K (160 F) and 3.45 MN/m^2 (500 psia) are presented in Table 2.2-3.

The significant items to note from the data obtained from the metal specimens exposed to nitrogen trifluoride for 270 days at 344 K (160 F) and 3.45 MN/m 2 (500 psia) are as follows: (1) none of the metal alloys except for Carpenter Custom 455 (0.34 pm/sec, 0.43 mpy),

TABLE 2.2-1

STATIC COMPATIBILITY TEST MATRIX FOR METALS

							Sicoses	ME Evno				
	Vapor/Li	iquid NF3 Exposure ℃. ∿200 psia	Exposure	1600 E	500 neia	ia	Sugaseous	Jener Jene acta	Sares	15091	2500	
Material	30 Day	90 Da	270 Days	30 Days	90	270 Days	30 Days	90 Days	5 270 Davs	30 Davs	90 Davs 270 Dave	270
A1 2219, 1-37	2	2	2	2	2	2	2	2	2	2	2	2
Al 6061, T-6	2	2	2	2	2	2					,	•
Al 2014, T-6	2	2	2	2	2	2						
A1 1100	2	2	2	2	2	2						
301 55				2	2	2	2	2	2	~	0	~
304 SS, Annealed	2	2	2	2	2	2					ı	
304L SS, Annealed	2	2	2	2	2	2						
316 ELC SS, Annealed	2	2	2	2	2	2						
321 SS, Annealed	2	2	2	2	2	2						1
347 SS, Annealed	2	2	2	2	2	2						
17-4PH, H-1025	2	2	2	2	2	2						
Inconel 625, Annealed	2	2	2	2	2	2						
Inconel 718, STA	2	2	2	2	2	2	2	2	2	~	٥	~
Monel 400, Annealed	2	2	2	2	2	2					ı	
Nickel 200, Annealed	2	2	2	2	2	2						
Nickel 270, Annealed	2	2	2	2	2	2						
Ti 6A1-4V, STA	2	2	2	2	2	2	2	2	2	2	,	^
Ti 5A1-2.5 Sn	2	2	2	2	2	2		ı	,		ı	•
1020 Steel	1	•	1	2	2	2	2	2	2	2	~	^
Cu OFHC, Annealed	2	2	2	2	2	2					ı	•
Nitronic 40	2	2	2	2	2	2						
Maraging Steel 200	2	2	2	2	2	2	2	2	2	~	2	
Maraging Steel 250	2	2	2	2	2	2	2	2	. ~		, 0	
Carpenter Custom 455	2	2	2	2	2	2		ı	ı		j	•
Aluminum Bronze 623	-	-	_	_	-	_						
A-286 SS	-	_	-	-	_	_						
Tungsten	-	_	_	_	_	~						
303 SS	_	-	-	_	_	_						
Beryllium Copper	_	_	-		,	,						

TABLE 2.2-2

DATA INDICATIVE OF THE COMPATIBILITY OF LIQUID/VAPOR PHASE NITROGEN TRIFLUORIDE AT 195 K (-78 C) WITH VARIOUS METALS

		DON'T THE	MI INDUEN INTEROURIDE	OURIDE	06 I N	AI 195 K (-/8 C) WITH VARIOUS METALS	Σ. Σ.	H VA	KIOUS	MEIALS	
Material	Specimen Type	Exposure Time, Days	Specimen Surface Area, cm ²	Specim Initial	Specimen Weights, gm Initial Final Lo	Loss	Penetration Rates pm/sec mp	tion s mpy	Test No.	Initial Active Fluoride	Observations
1100 Aluminum	Parent Welded	333	14.38	0.4909	0.7100	0.0001	0.009	0.011	ATA	.000	No apparent reaction No apparent reaction
	Parent	88	14.22	0.4905	0.4905	00	00	00	Al¥	1000	No apparent reaction
	Parent	27.1	14.13	0.4873	0.4849	0.0024	0.027	0.033	A1Z	100.	so apparent reaction Slight tarnish
	Welded	271	14.4	0.7008	0.6991	0.0017	0.019	0.023	AIZ	.10	Slight tarnish
2014, T6 Aluminum	Parent	33	16.42	4.0781	4.0781	0	0	0	AIX	.0001	Very, very slight stain
	Parent	8 6	16.51	4.4346	4.4346	0.0001	0.003	0.004	A X	000	Very, very slight stain Mo apparent reaction
	Welded	90	16.54	4.3839	4.3837	0.0002	0.006	0.007	Aly	.0001	No apparent reaction
	Welded	271	16.48	4.3226	4.069/	0.0032	0.031	0.038	A12 A12	20.	Very slight tarnish . Very slight tarnish
2219, T87 Aluminum	Parent	33	15.35	1.6436	1.6436	0	0	0	Alx	.0001	No apparent reaction
	Welded	e e	15.00	1.9041	1.9040	0.0001	0.00	0.011	Alx	.000	No apparent reaction
	Welded	88	14.63	3.6917	3,6911	0.0006	0.006	0.008	A]¥	000	No apparent reaction
,ªI	Parent	27.1 27.1	15.39	1.6591	1.6585	0.0006	0.006	0.008	A12 A17	0	Slight tarnish
6061 TA Bluminum	Darrent	23	14 51	0.4762	0 4762						2022
	Welded	38	14.71	0.7610	0.7610	00	00	00	X X	1000	No apparent reaction No apparent reaction
	Parent	88	14.39	0.4800	0.4798	0.0002	0.007	0.008	Aly	1000	Some tarnish
	Parent	271	14.42	0.4681	0.4666	0.0015	0.016	0.020	AlZ	.10	Slight tarnish with a clear streak
	Welded	172	14.57	0.9338	0.9280	0.0958	0.063	0.078	A12	.10	(both phases) Slight tarnish with a clear streak
											(both phases)
301 SS, Cryoformed	Parent Welded	88	16.27	8.1285	8.1284	0.0001	0.003	0.004	AMX	01.	No apparent reaction
	Parent	<u> 6</u>	16.03	8.0089	8.0090	(0.0001)	00	00	AMY	.0003	apparent
	Parent	274	16.14	8.8381	8.0262	0.0001	.000	96.0	AMZ	100.	No apparent reaction No apparent reaction
303 55	Parent	34	20.47	24 8956	24 9945	1100 0	0 000	020	2		מבלים בייני
	Parent	91	20.47	24.9855	24.9855 25.0758	0000	0.00	0.028	AMY	.0003	Very, very slight stain No apparent reaction
					2	0.000	0.00	00.0	744	2	very singnt tarnish
304 SS, Annealed	Parent	3 7	14.20	1.3668	1.3669	(0.0001)	00	00	AMX	0.0	No apparent reaction
	Parent	6 9	14.38	1.3882	1.3883	(0.0001)	00	00	AMY	.0003	
	Parent	274	14.29	1.3751	1.3750	0.0001)	.00	.001	AMY	.10	No apparent reaction No apparent reaction
	Welded	5/2	14.23	1.9020	1.9016	0.0004	0.001	0.005	AMZ	.10	No apparent reaction

TABLE 2.2-2 (cont.)

Observations	ion SSh ion ion	ion	ion ion ion sh	ion ion ion	tarnish d stain	ion ion ion y tarnish in	stain ion or exposure onl
Observ	No apparent reaction No apparent reaction Very slight tarnish No apparent reaction Mo apparent reaction	No apparent reaction		No apparent reaction	Very, very slight tarnish Slight tarnish and stain Very slight stain	Slight stain Slight stain No apparent reaction No apparent reaction No apparent reaction Very slight spotty tarnish in	Very, very slight stain No apparent reaction Slight stain, vapor exposure only No apparent reaction
Initial Active Fluoride W/O	.0003	0003	.10 .0003 .0003 .10	.10 .0003 .0003 .10	.10	000000000000000000000000000000000000000	.0003
Test No.	AMX AMY AMZ AMZ	AMX AMY AMZ AMZ	AMX AMY AMZ AMZ	AMX AMY AMZ AMZ	AMX AMY AMZ	A6X A6X A6Y A6Z A6Z A6Z	AMX AMY AMY
t ion s mpy	0.00	000000	0.002	0.000	0.004	0.021 0.010 0.003 0	0.007
Penetration Rates pm/sec mp	00.00	00.00	0.002	0.0000	0.003	0.008 0.002 0.002 0.001	0.006
Loss	0.0003 (0.0001)	(0.0002)	(0.0001) (0.0001) 0 0 0 0.0005	(0.0001) 0 (0.0001) 0.0002	0.0001	0.0006 0.0003 0.0002 (0.0002) 0.0003	0.0001 0.0002 0 (0.0001)
n Weights Final	0.8455 1.6227 0.8199 1.4235 0.8353	2.0707 2.8067 2.0885 2.7402 2.0687 2.7659	2.0224 3.0427 2.0581 3.1411 2.0449 3.0165	1.4027 2.3147 1.4067 2.1692 1.4105 2.2718	3.0849 3.0538 3.0762	8.4919 8.9314 8.4100 9.0131 8.4406 8.9542	3.3636 3.7699 3.3919 3.8116
Specimen Weights, gm Initial Final Lo	0.8455 1.6230 0.8198 1.4235 0.8353	2.0707 2.8065 2.0885 2.7402 2.0690	2.0223 3.0426 2.0581 3.1411 2.0449 3.0170	1.4026 2.3147 1.4067 2.1691 1.4105 2.2720	3.0850 3.0538 3.0773	8.4925 8.9317 8.4102 9.0129 8.4401 8.9545	3.3637 3.7701 3.3919 3.8115
Specimen Surface Area, cm ²	14.26 14.13 13.86 13.87 14.11	14.33 14.36 14.22 14.24 14.37	14.09 14.18 14.06 14.09	14.29 14.40 14.28 14.46 14.35	14.51 14.47 14.49	16.23 16.14 16.26 16.03 16.21	14.56 14.84 14.57 14.68
Exposure Time, Days	34 34 91 274 274	34 34 91 274 274	34 34 91 274 274	34 34 91 274 274	34 91 274	33 33 90 90 269 269	34 99 99 99
Specimen Type	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Farent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Parent Parent Parent	Parent Welded Parent Welded Parent	Parent Welded Parent Welded
Material	304-L SS, Annealed	316-ELC SS, Annealed	321 SS, Annealed	347 SS, Annealed	A-286 SS	17-4РН SS, H-1025	Nitronic-40 SS

TABLE 2.2-2 (cont.)

		Fxposure	Sperimen				Donot	4		Initial	
Material	Specimen	Time, Days	Surface Area, cm2	Specim Initial	Specimen Weights, gm Initial Final Lo	Loss	Rates pm/sec	S mpy	Test No.	Fluoride W/0	Observations
Maraging Steel-200	Parent	34	18.04	12.9366	12.9361	0.0005	0.012	0.015	AMX	01.	Slight stain, vapor exposure only
	Parent	6 6	17.95	13.0523	13.0523	000	000		AMY	.0003	Slight stain
	Parent	274	17.88	12.9503	12.9495	0.0008	0.002	2	AMY	.10	Slight stain Some stain, heavier in vapor
	Welded	274	17.79	13.3778	13.3771	0.0007	0.002	0.003	AMZ	.10	exposure Some stain, heavier in vapor exposure
Maraging Steel-250	Parent	34	16.14	10.8840	10.8830	0.0010	0.027	0.033	AMX	0.5	Slight stain, vapor exposure only
	Parent	66	15.95	11.1841	11.1836	0.0005	0.005	0.006	AMY	.0003	Slight stain
	Parent	274	16.08	10.8850	10.8840	0.0000	0.003	0.00	AMY	.10	Slight stain Some stain, heavier in vapor
	Welded	274	16.03	10.7982	10.7972	0.0010	0.003	0.004	AMZ	.10	exposure Some stain, heavier in vapor
Carpenter Custom 455	Parent Welded	34	14.18	2.6160	2.6163	(0.0003)	0.003	0 0	AMX	01.	exposure Very slight stain Very clickt ctain
	Parent We dod	16	14.23	2.6423	2.6420	0.0003	0.003		A20Y	.0003	Very slight stain
	Parent Welded	274	14.15	2.6591	2.6593 2.7881	(0.0002)	0.001		AZUT AMZ AMZ	01.00	Very slight stain Some stain Some stain
Inconel-625, Annealed	Parent	34	15.03	3.9761	3.9762	(0.0001)	O		AMX	10	No apparent reartion
	Welded	34	14.84	4.5063	4.5063	0	0		AMX	0	apparent
	Welded	50.5	14.76	4.3909	4,3910	(0.0001)	00		AMY AMY	0003	No apparent reaction No apparent reaction
	Welded	274	14.88	4.5309	3.9376 4.5305	0.0005	0.002	0.002	AMZ	01.	No apparent reaction No apparent reaction
Inconel-718, STA	Parent Welded	34	14.23	1.4144	1.4145	(0.0001)	0 076		AMX	2.5	No apparent reaction
	Parent	16	14.36	3.4624	3.4608	0.0016	0.017		AMY	.0003	
	Parent Welded	274	14.41	1.4704	1.9893	0.0002	0.001	0.001	AMZ		Some stain Some stain
Monel-400, Annealed	Parent	34	14.19	2.3049	2.3049	0	0		AMX	.10	Slight stain
	Parent	‡ 5 8	14.17	2.3114	2.3114	000	00		AMY	.0003	Slight stain Some stains
,	Parent Welded	274 274	13.98 14.39	4.1055 2.2539 3.7504	4.1051 2.2539 3.7501	0.0004	0.004	0.005	AMY AMZ AMZ	.0003 .10 .10	Some stains Light purple stain Light purple stain

TABLE 2.2-2 (cont.)

;	Specimen	Exposure Time,	Specimen Surface,	Specim	Specimen Weights,	U1	Penetration Rates	tion	Fest	Initial Active Fluoride	
Material	Type	Days	Area, cm ²	Initial	Final	Loss	pm/sec	мру	9	M/0	Observations
Nickel-200, Annealed	Parent	34	14.19	1.5480	1.5479	0.0001	0.003	0.003	AMX	01.	No apparent reaction
	Welded	34	14.15	2.1330	2.1330	0	0	0	AMX	0.	
	Parent	16	14.31	1.5617	1.5618	(0.0001)	0	0	AMY	.0003	Tarnish and stains
	Welded	5 6	14.24	7.17.4	2.1/45	(0.0001)	0	ə 5	AMY	50003	Singht tarnish
	Welded	274	14.20	2.1958	2.1950	0.0008	0.003	0.003	AMZ	20.	Slight tarnish
		,			0000	(,	•	;	9	
Nickel-2/U, Annealed	Parent	4 %	17.85	15.4182	17 3177	-	5 C	> C	IMY	2.5	No apparent reaction
	Parent	£ 6	17.73	16.2625	16.2621	0.0004	0.003	0.004	AMY	.0003	Slight stain
	Welded	16	18.01	17.3377	17.3373	0.0004	0.003	0.004	AMY	.0003	Slight stain
	Parent	274	17.54	16.2995	16.2982	0.0013	0.00	0.00	AMZ AM7	2.5	Slight tarnish
	papiam	+/7	10.00	0000./1	17.0030	÷	50.0	0.003	7114	-	מוולטור לפנווואו
Titanium 6A1-4V, STA	Parent	33	15.12	2.4316	2.4316	0	0	0	A2X	.0001	
	Welded	33	15.06	2.7464	2.7466	(0.0002)	0	0	A2X	1000	
	Parent	88	14.65	2.0449	2.0448	0.0001	0.005	0.002	A2Y	.000	
	Weided	8 5	14.58	2.2619	2.2617	0.0002	0.004	0.00	AZY 127	1000	parent reaction
	Parent	1/7	15.15	2 7550	274475	0.000	0.00	00.0	A22 A37	25	Slight purplish
	Welded	1/7	14.92	7.7668	7.7901	0.000	0.004	0.00	ACL	7	very silgnt purpilsn stain
Titanium 5Al-2.5 Sn. ELI	I Parent	33	14.88	2.3581	2.3581	0	0	0	A2X	.0001	Very slight stain
		33	14.84	2.6215	2.6215	0	0	0	A2X	1000.	Very slight stain
	Parent	6	15.17	2.3980	2.3978	0.0002	0.004	0.005	A2Y	1000	No apparent reaction
	Welded	06	14.99	2.6873	2.6871	0.0002	0.004	0.005	A2Y	.0001	Slight purplish tinge on edge
	Parent	277	15.01	2.3686	2.3678	0.0008	0.005	0.000	A22	25	Very slight purplish stain
	Melded	1/7	14.6/	7.0000	60000	0.000	0.00	0.002	774		
Copper, OFHC	Parent	34	14.28	1.5624	1.5601	0.0023	0.060	0.074	AMX	.10	Some corrosion, greater in liquid
	Welded	34	14.46	3.5182	3.5159	0.0023	0.059	0.073	AMX	.10	exposure Some corrosion, greater in liquid
					ł						exposure
	Parent	6 6	14.22	1.5561	1.5561	0	0 0	0 0	AMY	.0003	Slight tarnish
	Parent	274	14.29	1.5370	1.5275	0.0005	0.032	0.040	AMZ	. 10	Some tarnish, white deposit in
											liquid exposure
	Welded	274	14.31	3.4411	3.4282	0.0129	0.043	0.053	AMZ	.10	Some tarnish, white deposit in liquid exposure
December 11 & 12		;	20.00	4007	1 4204	5,000	000	000	×	-	410000
perylinam copper	Parent	206	14.16	1.4793	1.4789	0.0004	0.00	0.002	A5Y	.000	No apparent reaction
	Parent	569	14.30	1.4868	1,4853	0.0015	0.005	0.006	A52	.10	Tarnished
623	4	33	17 97	16 9443	16.9437	0.0006	0.015	0.019	A3X	1000	
Aluminum-bronze 623	Parent	806	17.94	16.8973	16.8948	0.0025	0.023	0.029	A3Y	.0001	Light stain over entire surface
	Parent	270	17.96	16.9737	16.9718	0.0019	0.00	0.00	A32	.10	Englis stain, neavier in 1142.5
				4.					Ì		A SANDER MANAGEMENT
Tungsten-2% Th	Parent	33	8.78	12.4464	12.4464	0.0002	0.002	0.003	A4X A4Y	1000.	No apparent reaction No apparent reaction
	Parent	270	8.92	12.8788	12.3782-	9000.0	0.001	0.002	A42	.10	Gray color slightly darker in liquid exposure

TABLE 2.2-3

DATA INDICATIVE OF THE COMPATIBILITY OF VAPOR PHASE NITROGEN TRIFLUORIDE AT 344 K (160°F) AND 3.45 MN/m² (500 PSIA) WITH VARIOÙS METALS

	Observations	tion	tion			-	100	tion				tion	Llon		o to in	stain					Purple stain concentrated at weld	r i	brown and purple stain brown and purple stain	cit		ourple stain		nie	le stain	yellow stain	yellow stain
,*	Obse	No apparent reaction	No apparent reaction Slight tarmish	Slight tarnish	Slight tarnish Slight tarnish	Very slight stain	No apparent reaction	No apparent reaction	Slight tarnish Slight tarnish	very slight stair	Very slight stain	No apparent reaction	Slight tarnish	Slight tarnish	Trace of clinht	Trace of slight		Slight tarnish	Slight tarnish	Purple stain	Purple stain con	Light purple stain	Heavy brown and	Slight purple stain	Slight tarnish	Light brown and purple stain	Slight tarnish	Slight purple st	Very Silght purp	Some purple and yellow stain	Some purple and
Initial Active Fluoride	M/0	.000	.000	1000.	0	.0001	000	1000	0	.0001	.0001	.000	30	.10	000	. CC.	1000	1000:	20.	.10	.10	.000	01.	.10	.0003	01.	01.	.10	.0003	0.5	01.
Test	Š.	B1X	2 E	Y I	81Z 81Z	B1X	81×	B 1	81Z 81Z	BIX	81X	814	812	812	RIX	81X	81Y) A	218	BMX	BMX	BMY	BMZ	BMX	BMY	BMZ	BMX	BMX	RMY	BMZ	2M8
ation es	мру	0.011	0.004	0.004	0.056	0.043	0.030	0.004	0.012	0.022	0.044	0.004	0.010	0.028	C	0.204	0	0.052	6.151	0.004	0 00	0.00	00	0.026	0.011	0.004	0	0	0.00	0.001	0.001
Penetration Rates	pm/sec	0.000	0.003	0.003	0.045	0.033	0.003	0.003	0.010	0.018	0.036	0.003	0.008	0.022	0	0.164	0	0.042	0.121	0.003	0.003	0.003	00	0.021	0.00	0.003	0	0	0.003	0.001	0.001
E,	Loss	0.0001	0.0001	0.0001	0.0041	0.0004	0.0003	0.0001	0.0010	0.0002	0.0004	0.000	0.0008	0.0021	0	0.0018	(0.0002)	0.0013	0.0113	0.0001	0.0001	0.0003	(0.0002) (0.0005)	0.0009	0.0011	0.0011	(0.0005)	0 0000	0.0003	0.0003	0.0003
Specimen Weights, gm	FINA	0.4953	0.4962	0.7292	0.7214	4.0569	4.3/63	4.3438	4.3455	1.6087	2.0095	3.5518	1.6247	1.9783	0.4779	0.8449	0.4694	0.8408	0.9685	7.6775	8.8429	8.5004	8.0805	24.6189	24.9389	24.6373	1.3573	1.9656	2.0545	1.3847	070/1
Specim	111113	0.4954	0.4963	0.7293	0.7255	4.0673	4.3755	4.3439	4.0966	1.6889	2.0099	3, 5519	1.6255	1.9804	0.4779	2.8467	0.4692	0.8421	0.9798	7.6776	8.8430	8.5007	8,0803	24.6198	24.9400	24.6384	1.3571	1.9656	2.0548	1.3850	207.
Specimen Surface	Ared, CH	14.36	14.44	14.36	14.28	16.36	16.53	16.41	16.57	14.95	14.99	14.97	14.95	14.84	14.59	14.64	14.12	16.74	14.71	15.89	16.49	15.85	16.19	20.32	20.42	67.07	14.12	14.30	14.05	14.33	-
Exposure Time,	0435	32	8	90	271	32	8 6	90	271	32	35	88	27.2	271	32	32	8		27.1	30	9 F	16	270	30	91 07.0		8	€ 6	91	270	
Specimen	2016	Parent Welded	Farent	Melded	Welded	Parent	Parent	Welded	Welded	Parent	Welded	Welded	Parent	We I ded	Parent	Welded	Parent	Parent	Welded	Parent	Parent	Welded	Welded	Parent	Parent	rarent	Parent	Parent	Welded	Parent	
M 6 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	101 22	1100 Aluminum				2014, T6 Aluminum				2219, T87 Aluminum					6061, T6 Aluminum					301 SS, Cryoformed				S			304 5S, Annealed				
	l	1100				2014,				2219,					6061,					301 S				303 SS			304 5				

TABLE 2.2-3 (cont.)

Material	Specimen Type	Esposure Time, Days	Specimen Surface, Area, car		Specimen Weights, gm Initial Final Lo	, gm Loss	Penetration Pates pm/sec mp	es ties	Test No.	Initial Active Fluoride	Observations
304-L SS, Annealed	####### ##############################	30 30 19 270 270 270	32.14 20.44	0.8493 1.0415 0.8349 1.1204 0.8414 1.2312	0.844 1.0414 0.8348 1.1201 1.2305	0.0049 0.0001 0.0001 0.0003 0.0004)	200000 200000 200000 200000 200000	0.004 0.004 0.004 0.004	*****	55.000	Very slight purple stain Purple stain Very slight purple stain Very slight purple stain Some purple and yellow stain Some purple and yellow stain
116-ELC SS, Amealed		882258	16.27 16.34 16.34 11.05 11.05	2.0718 2.0569 2.9184 2.9184 2.0017 2.7248	2.0717 2.0668 2.0568 2.9181 2.0015 2.7246	0.0001 0.00001 0.00003 0.00003 0.00003	0 0000	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222	558855	No apparent reaction No apparent reaction No apparent reaction Some purple and yellow stain Some purple and yellow stain
221 SS, Annealed	######################################	RREERS	444544 844288	2.0381 2.0482 2.0676 2.0676	2.0780 3.2564 2.0471 2.8481 2.0673 2.8643	0.0000 0.00000 0.00000 0.00000	000000	4800000 4000000000000000000000000000000		55000000	Slight purple stain Slight purple stain Light purple stains Light purple stains Some purple and yellow stain Some purple and yellow stain
347-55, Annealed		882258	242222	1,4062 2,1573 1,4016 2,5287 1,4056 2,0807	2.1570 1.4012 2.5282 2.5282 1.4052 2.0800	0.0001 0.0003 0.0006 0.0006 0.0004	0.00000 0.00000 0.000000 0.000000	0.005 0.005 0.005 0.005 0.005	EEEEE	558855	Slight purple stain Slight purple stain Light purple stains Light purple stains Some purple and yellow stain Some purple and yellow stain
55 992-4	Parent Parent	82.00	14.80 14.80 14.80	3.0938	3.0935	0.0003	9 9 9 9	0.005	N 10 10 10 10 10 10 10 10 10 10 10 10 10	01.00.	Slight purple stain Dark gray stains Very light brown and purple stain
D-4 PM SS, H-1025	######################################	2288EE	85.85.85.85 85.85.85.85 85.85.85.85 85.85.85 85 85 85 85 85 85 85 85 85 85 85 85 8	88.88.88.88.89.99.99.99.99.99.99.99.99.9	8.7540 8.5777 8.5370 9.0233	0.0080 0.0085 0.0085 0.0088 0.0088 0.0088 0.0088	0.0088899999999999999999999999999999999	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2222222	0000 0000 0000 0000 0000 0000 0000 0000 0000	Dark brown deposit Dark brown deposit Slack coating on surface Bark spots on surface Dark brown coating
Nitronic-40 SS	# # # # # # # # # # # # # # # # # # #	885528	23222 22222 222222	3.3447 3.8137 3.3441 3.8993 3.3993 3.7906	3.3445 3.8136 3.3439 3.3367 3.3367	0.0002 0.0002 0.0002 0.0006 0.0006	0.0000000000000000000000000000000000000	845555 84555 8655 8655 8655 8655 8655 86	****	556655	No apparent reaction Slight purple stain on one edge Very light tarmish Heavy brown and purple stain Heavy brown and oursle stain

TABLE 2.2-3 (cont.)

Observations	Purple stain Purple stain Dark gray stains Dark gray stains Heavy dark gray stain Heavy dark gray stain	Purple stain Purple stain Dark gray stains Dark gray stains Heavy dark gray stain Heavy dark gray stain	Some purple stain Some purple stain Slight reddish tarnish Slight reddish tarnish Light purple stain Light purple stain	Heavy black deposit Heavy black deposit Stained, brown and gray Stained, brown and gray Heavy brown and black deposit Heavy brown and black deposit	No apparent reaction No apparent reaction No apparent reaction No apparent reaction Very light tarnish Very light tarnish	No apparent reaction No apparent reaction Some black stain Some tlack stain Heavy black stain Heavy black stain
Initial Active Fluoride	.10 .0003 .0003	0003	10000	. 10 . 0003 . 0003 . 10	.0003	.10 .0003 .0003 .10
Fe S.		WWW WWW WWW	87X 87X 87Y 87Z 87Z	8MX 820Y 820Y 8MZ	BMX BMX BMY BMY BMY BMY	
ation mpy	0.034 0.034 0.020 0.020 0.026	0.048 0.030 0.014 0.015 0.021	0.041 0.081 0.012 0.025 0.009	1.42 1.26 0.035 0.427 0.424	0.001	0.004 0.070 0.024 0.113 0.001
Penetration Rates pm/sec mp	0.027 0.028 0.016 0.016 0.021 0.020	0.039 0.024 0.012 0.012 0.017	0.033 0.065 0.009 0.020 0.007	1.14 1.01 0.028 0.024 0.343	0.003	0.003 0.019 0.091 0.030
Loss	0.0010 0.0010 0.0018 0.0018 0.0071	0.0013 0.0008 0.0011 0.0012 0.0051	0.0010 0.0020 0.0008 0.0017 0.0018	0.0336 0.0292 0.0025 0.0021 0.0908	(0.0001) 0.0001 0.0001 0.0002 0.0002	0.0001 0.0017 0.0018 0.0086 0.0003
Specimen Weights, gm Initial Final Lo	13.1124 13.1787 12.9057 13.5331 12.9885 13.6882	10.9729 11.6268 8.7755 10.1712 11.2923	1.3302 9.6259 1.3262 1.5988 1.3228 1.6636	2.5938 2.5728 2.6197 2.8853 2.5355	3.9188 4.4504 3.9603 4.2587 3.9460 4.4125	1.4067 1.9278 3.4949 4.0128 1.4069
Secime	13.1134 12.9075 12.9956 12.9956	10.9744 11.6276 8.7766 10.1724 11.2974	1.3312 1.6279 1.3270 1.6005 1.5669	2.6274 2.6020 2.6222 2.8874 2.6263 2.6263	3,9187 4,4505 3,9604 4,2587 4,127	1.4068 3.4967 4.0214 1.4072
Specimen surface Area, cm ²	18.09 17.81 17.77 17.84 17.92	16.52 16.17 15.33 15.91 16.40	13.97 14.07 13.95 13.91 13.98	14.17 13.88 14.23 13.81 14.14	14.85 14.93 14.93 14.93	14.18 14.18 14.60 14.18 14.18
Exposure Time, Days	30 30 91 91 270 270	30 30 91 91 270 270	32 32 90 90 271 271	30 30 91 91 270 270	30 30 91 91 270 270	30 30 91 91 270 270
Specimen Type	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent	Parent Welded Parent Welded Parent
Material	Maraging Steel-200	Maraging Steel-250	Steel, Cl010	Carpenter Custom 455	Inconel-625, Annealed	Inconel-718, STA

TABLE 2.2-3 (cont.)

	Specimen	Exposure Time.	Specimen	Specim	Specimen Weights. om	5	Penetration Rates	tion	Test	Initial	
Material	Type	Days	Area, cm2	Initial	Fina	Loss	pm/sec	мру	o.	Fluoride W/0	Observations
Money And Basel	Daront	30	3.6.24	2 3175	2 2170	(00000)	c	c	2		
none too	To land	3 8	17.71	2010	4 3 6 3 0	10.0001	0 0	000	X E	2	Mo apparent reaction
	000000	3 6	7 7 7	7.14.0	01110	0.0001	0.003	0.00	Zi.	01.	No apparent reaction
	יים	F :	14.61	2.3140	7 - 314/	2000	0.00	0.001		.0003	Very light tarnish
	Melded	<u> </u>	3.95	3.6318	3.6316	0.0002	0.002	0.003	i i	.0003	Very light tarnish
	Parent	270	14.14	2.3078	2.3078	0	0	0	248	10	Very light tarnish
	Melded	270	14.42	3.8745	3.8740	0.0005	0.002	0.002	ZWG	10	Very light tarnish
Wickel-200 Assessor	400	00	14 21	1 5224	1	.000				,	
increased, America	Dap ar	2 6	14.61	0.0304	7 2533	0.0001		0.00	an d	0.	No apporent reaction
	40000	3 5	02.41	4.3323	9705.7	0.000		5.00	Z.	0	No apparent reaction
	Tal dod		14.26	1.0462	1.3461	0.0001	0.001	0.001	in in	.0003	Very light tarnish
	Danie D	070	14.74	1 5470	2 . 1844	0.0001		0.003	- I	.0003	Very light tarnish
	יפועור	0.72	77.41	0/40	1.5469	000.0		<0.00	7	0.	Some tarnish
	e loed	0/7	4.15	2.1896	2.1892	0.0004		0.002	748	.10	Some tarnish
Mickel-270. Appealed	Parent	30	17.62	DEUE 31	16 3037	0000	200	200 0	270	4	
	Volded	30	17.06	17 6653	37.000	2000	0,000	0.00		2.5	No apparent reaction
	Derec	3 6	17.50	2000.11	7550.11	0.0001	0.002	0.003	×	01.	No apparent reaction
	107 (07)		27.00	17 33 40	10.3/50	0.000	0.00	5.58		.0003	Very light tarnish
	and ded	2 6	68.71	17.1142	/ 138	0.0004	0,003	0.004	i i	. 0003	Very light tarnish
	Parent	0/7	1/./6	15,4769	16.4761	0.0008	0.002	0,003	BMZ	01.	Very light tarnish
	papiak	270	17.92	17.9026	17.9007	0.0019	0.005	0.006	SMZ	01.	Very light tarnish
Titanium 641-4V STA	Parent	cc	15 17	2 AEAD	OCSA C	000	100	.00		1000	
	Pap an	32	15.03	2 0047	2 0007	0.000	2000	200	200	000	Some stain
	Daront	25	20.01	7,004	2.0027	0.0010	0.024	20.0	22g	1000	
	Tolder	0 0	15.03	6010.7	20102	0.000	0.012	0.014	229	1000	
	200000	2	20.00	2/66.7	7/60.7	0.000	5.0	0.014	824	200	Light film, purple and gray coloration
	Tarent Tolded	112	13.13	2.4601	2,4559	0.0042	0.027	0.033	B22	0.	
	2021	117	4.30	7107.7	5267.7	0.0032	0.020	0.025	827	2	Light gray, very hygroscopic film
Titanium 441-2.5 Sn. FII	1 Parent	32	14 98	2 3727	2 37/18	0.0019	103	0 136	*60	1000	
		32	14.97	2 7753	2 7735	0000	0 007	0.120	200	1000	
	Parent	30	12.1	2,3990	2,3972	0.00	0.036	0.042	200		Dark Start Asta
	Welded	8	14,95	2.6940	2.6921	0.00	2000	20.0	200	1000	Dark gray Film covering specimen
	Parent	271	14 91	2 3472	2222	0000	Dag - 0	0,00	170	1000	Dark gray Trim Covering Specimen
	pep les	273	800	2 7340	2 7287	0.0030	200.0	0.0	779	2	Gray, very hygroscopic stain, turning
		ì	3	2	7.77	2000	0.003	10.0	779	2	(prown after exposure to air
Copper, OFHC	Parent	30	14.27	1,5630	1.5629	0.0001	0.003	0.004	N :	.10	Very slight tamish
	Melded	30	14.23	3.5280	3.5277	0.0003	0.009	0,011	Ma	3.0	SO PRODUCE CONTINUE
	Parent	E .	14.30	1.5571	1,5663	0.0008	900.0	0.010	N. CO	.0003	Very light tarnish
	D 00	5	14.25	3,6391	3.6378	0.0013	0.013	0.016	200	.0003	Very light tarmish
	Parent	270	14.32	1.5708	1.5706	0.0002	0.001	0.001	25.8	.10	Very light tarnish
	4	617	14.70	3.3371	3,3364	0.0007	0.005	0,003	7.43	.10	Very light tarnish

TABLE 2.2-3 (cont.)

Observations	Slight tarnish Tarnished surface Some tarnish	Slight tarnish Surface film covering specimen Covered with a brown stain	Stain gray to dark gray Dark gray film covering specimens Covered with a very hygroscopic powder. Turned gray after hydrolyzing
Initial Active Fluoride	1000.	.000.	.0001
Test No.	85X 85Y 85Z	83X 83Y 83Z	84X 84Y 84Z
tion s	0.043	0.035	0.093
Penetration Rates pm/sec mp	0.039	0.029	0.075
gm	0.0013	0.0011	0.0036 (0.0002) 0.1402
Specimen Weights, gm tial Final Lo	1.4782	16.7806 16.8232 16.7829	12.6052 12.4011 12.5708
Specime	1.4795	16.7817 16.8248 16.7839	12.6088 12.4009 12.7110
Specimen Surface Area, cm ²	14.19	17.91 17.97 17.89	8.72 8.55 8.87
Exposure Time, Days	33 90 270	32 90 270	33 90 270
Specimen Type	Parent Parent Parent	Parent Parent Parent	Parent Parent Parent
Material	Beryllium Copper	Aluminum Bronze-623	Tungsten-2: Tn

2.2, Static Exposure Tests (cont.)

6061-T-6 aluminum (0.12 pm/sec, 0.15 mpy), and tungsten (0.35 pm/sec, 0.44 mpy) exhibited any significant corrosion, that is, a rate greater than 0.08 pm/sec (0.10 mpy); (2) the aluminum alloys corrosion penetration rates ranged from 0.01 pm/sec (0.012 mpy) to 0.12 pm/sec (0.15 mpy); and the 300 series stainless steel alloys and nickel exhibited rates equal to or less than 0.005 pm/sec (0.006 mpy); and the rates for the titanium alloys ranged from 0.02 pm/sec (0.025 mpy) to 0.059 pm/sec (0.074 mpy). The nitrogen trifluoride used for the 270 day exposure tests contained 0.10 weight percent active fluoride calculated as hydrogen fluoride while all the 90 day exposure tests reported in Table 2.2-3 were conducted with nitrogen trifluoride which contained 0.0003 weight percent active fluoride or less. For the 30 day exposure tests labeled BMX the nitrogen trifluoride contained 0.10 weight percent active fluoride while all the other 30 day exposure tests were conducted with nitrogen trifluoride which initially contained 0.0001 weight percent active fluoride. During the 270 day exposure tests the oven which contained the sample containers did undergo a temperature excursion from 344 K (160 F) to 422 K (300 F) for a two day period during a weekend. An examination of the test data indicates that the event did not adversely affect the metal corrosion rates.

The experimental results obtained from the gaseous static exposure tests with selected metals for duration of 30, 90 and 270 days at 344 K (160 F) and pressures up to 17.24 MN/m² (2500 psia) are presented in Table 2.2-4. The significant items to note from the data are as follows: (1) generally the corrosion rate, based on 270 day data, increases slightly with pressure but the rates for all the metals tested are very low, the highest measured rate is 0.18 pm/sec (0.22 mpy), (2) the corrosion which occurs apparently does so during the initial portion of the exposure period, the 30 day rates are generally greater than the 270 day rates, and (3) the chemical compatibility of the metals selected for testing with nitrogen trifluoride increases in the order Maraging steel 200, Maraging steel 250, titanium 6Al-4V, Inconel 718 STA, 2219 aluminum, T-87, 1010 carbon steel and CRES 301, cryoformed.

The chemical analyses of the nitrogen trifluoride recovered from the tests are presented in Table 2.2-5. The chemical analysis of the nitrogen trifluoride as it was received in the cylinders which were used to fill the test containers are included in the table for the reader's convenience. The data in the table indicate that no significant decomposition of nitrogen trifluoride occurred in the presence of the metals in the liquid/vapor tests at 195 K (-78 C). At 344 K (160 F) and at pressures from 3.45 MN/m² (500 psia) to 17.24 MN/m² (2500 psia) the nitrogen trifluoride did not decompose to a significant extent although there is some evidence that there is a nitrogen-forming decomposition reaction occurring at the rate of a few tenths of a percent per year.

TABLE 2.2-4

DATA INDICATIVE OF THE COMPATIBILITY OF VAPOR PHASE NITROGEN TRIFLUORIDE AT 344 K (160 F) AND PRESSURES GREATER THAN 3.45 MN/m² (500 PSIA) WITH VARIOUS METALS

Observations	No apparent reaction Slight tarnish Slight tarnish No apparent reaction	Purple stain Purple stain Siight purple stain Siight purple stain Some purple stain Light purple stain Light purple stain Purple-gray stain Purple-gray stain Purple stain Purple stain Purple stain Purple stain	Slight amber stain around holes Slight amber stain around holes Must colored stain around holes Rust colored stain around holes Some gray stain Some gray stain Bark gray film Dark gray film Dark gray film Dark gray film Dark gray to black coating Light gray to black coating Purplish-gray coating Gray-brown coating Gray-brown coating Gray-brown coating
Initial Active Fluoride Content Weight	0000 0000 0000 0000 0000 0000 0000 0000 0000	.17 .17 .17 .17 .0003 .0003 .0002 .0002 .0003 .13	.17 .17 .17 .0003 .0003 .0002 .0003 .0003 .13
fest No.		CONX CONZ CONZ CONZ CONZ CONZ CONZ CONZ CONZ	COXX COMPANY C
tion s mpy	0.043 0.065 0.055 0.055 0.016 0.017 0.062 0.013 0.041 0.071	-0- -0- -0- -0- -0- 0.003 0.003 0.005 0.00	0.151 0.092 0.078 0.074 0.126 0.125 0.215 0.230 0.199 0.104
Penetration Rates pm/sec mp	0.035 0.053 0.064 0.004 0.007 0.009 0.050 0.011 0.013 0.018	-0- -0- -0- -0- 0.003 0.002 0.002 0.003 0.004 0.003	0.121 0.066 0.066 0.060 0.137 0.102 0.173 0.254 0.160 0.084
s, gm Loss	0.0006 0.0005 0.0005 0.0005 0.0004 0.0012 0.0012 0.0012 0.0013	(0.0002) (0.0001) (0.0001) (0.0001) (0.0007 (0.0004) (0.0004) (0.0004) (0.0004) (0.0009) (0.0009)	0.0045 0.0023 0.0022 0.0150 0.0157 0.0564 0.0068 0.0096
Specimen Weights, gm Initial Final Loss	1.6949 4.1620 4.0574 3.5554 3.5554 3.5556 2.0553 3.5806 4.1525 1.637 1.637	7,9859 8.5588 8.1978 8.1712 8.3344 8.8184 8.0973 8.0102 8.0102 8.0102 8.0648	13.2157 13.4952 13.6954 12.7834 12.7834 13.6890 13.6837 13.5911 12.8556 13.6750
Speci	1.6953 4.1626 3.05818 3.5568 1.6595 2.0601 3.5818 4.1568 1.6388 1.6388 1.6388 1.6388	7.9857 8.5588 8.0977 8.1713 8.3340 8.3340 8.8191 8.6549 8.5549 8.5549 8.5184 8.6184 8.6184	13.2202 13.4976 13.6927 12.7984 13.6997 13.6997 13.6927 13.5979 13.5979 13.3318 12.9106
Specimen Surface Area cm ²	15.23 16.23 16.23 17.23 16.39 16.39 16.33 16.39 16.90 16.90	6.06 10.07 10.07 10.08 1	18.19 17.79 18.02 17.98 17.98 17.99 17.82 17.88 17.88 17.98 17.98
psia	1250 1950 1950 1950 1500 1500 2500 2500 2500 2500 2500	1250 1950 1950 1950 1500 1500 1500 2500 2500 2500 2500 25	1250 1950 1950 11500 11500 11500 2500 2500 2500 2500
Test Pressure	8.62 8.62 13.44 13.44 10.34 10.34 10.34 17.24 17.24 17.24 17.24 17.24	8.62 8.62 13.44 10.34 10.34 10.34 17.24 17.24 17.24 17.24 17.24	8.62 8.62 13.44 10.34 10.34 10.34 17.24 17.24 17.24 17.24 17.24 17.24
Exposure Time, days	32 32 32 32 32 273 32 32 87 87 87 87	30 30 30 30 30 269 269 270 270	269 269 269 269 270 270
Specimen Type	Parent Welded Parent Welded Welded Parent Welded Parent Welded Parent Welded Parent Welded Parent Welded	Parent Welded Parent Welded Parent Welded Parent Melded Parent Welded Parent	Parent Welded Parent Welded Welded Welded Parent Welded Parent Welded Parent
Material	2219, TB7 Aluminum	301 SS, Cryoformed	Maraging Steel-200

TABLE 2.2-4 (cont.)

Observations	Slight amber stain around holes Slight amber stain around holes Rust-colored stain around holes Rust-colored stain around holes Some gray stain Some gray stain Dark gray film Dark Goating Furplish-gray to black coating Purplish-gray coating Gray-brown coating Gray-brown coating	Some purple stain Some purple stain Purple stain Purple stain Purplish-gray stain Deep purple stain No apparent reaction No apparent reaction Purplish-gray stain Purplish-gray stain Purple stain Purple stain	No apparent reaction No apparent reaction No apparent reaction No apparent reaction Some black stain Light brown and purple stain Black Light gray to black coating Light gray to black coating Light coating, black color Sight coating, black color Dark stain Dark stain
Initial Active Fluoride Content	17 17 17 17 1003 0003 0002 0002 0003 13 13	.17 .17 .17 .17 .17 .0002 .0002 .0003 .0003 .0002	17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Test No.		07.4 07.4	CONTRACTOR OF THE CONTRACTOR O
ttion ss mpy	0.170 0.173 0.123 0.123 0.110 0.117 0.129 0.309 0.309 0.121 0.121	0.018 -0- -0- -0- -0- 0.0012 0.012 0.012 0.012 0.012 0.012 0.004	0.008 0.073 0.033 0.024 0.025 0.003 0.094 0.094 0.057 0.045 0.045
Penetration Rates Pm/sec mp	0.137 0.099 0.099 0.099 0.099 0.104 0.345 0.249 0.098 0.098	0.00 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.007 0.059 0.026 0.026 0.035 0.075 0.075 0.046 0.036
Loss.	0.0045 0.0040 0.0033 0.0037 0.0097 0.0277 0.0279 0.0111 0.0078 0.0099 0.0088	0.0004 (0.0002) (0.0001) (0.0001) (0.0001) (0.0002) (0.0002) (0.0001) (0.0002) (0.00	0.0002 0.0018 0.0018 0.0055 0.0013 0.0013 0.0027 0.0027 0.0048 0.0034 0.0010
S.ecimen Weights, gm nitial Final Loss	10.0978 11.6609 11.2371 10.6916 8.8118 10.4308 10.644 11.2793 10.6145 11.2339 10.8951 11.2215	1,3428 1,7500 1,3247 1,7537 1,7537 1,6635 1,3268 1,7535 1,7535 1,7535 1,7535 1,7535 1,7535 1,7535 1,7535 1,7535 1,7535	1.4662 2.3066 1.3862 1.3862 3.5450 3.8690 1.38690 1.3845 1.3845 1.3845 1.4400 1.9381
Secin	10.1023 11.6649 11.2904 10.6223 8.8215 11.3398 10.4585 10.6223 11.2904 10.6223 11.2438 11.2743 11.2743	1,3428 1,7504 1,3245 1,7536 1,7536 1,7659 1,7659 1,7536 1,7536 1,3272 1,3572 1,358	2.3084 1.3870 1.3870 1.3870 3.5443 3.5443 1.3870 1.3870 1.3870 1.3870 1.3870 1.3870 1.4410
Specimen Surface Area cm ²	16.05 16.06 16.08 15.83 16.08 16.18 16.22 16.22 16.22 16.22 16.22 16.22	14.01 13.99 14.04 14.04 13.98 14.07 14.07 14.07 14.07	146.25 146.25 146.26 146.28 146.28 146.28 146.36 146.36 146.36 146.36 146.36
essure	1250 1750 1950 1950 1500 1500 1500 2500 2500 2500 2500 25	1250 1950 1950 1950 1500 1500 2500 2500 2500 2500 2500	1250 1950 1950 1950 1950 1500 1500 1500 2500 2500 2500 2500 25
Test Pressure	8.62 8.62 13.44 10.34 10.34 10.34 17.24 17.24 17.24 17.24 17.24	8.62 8.62 13.44 10.34 10.34 10.34 17.24 17.24 17.24 17.24	8.62 8.62 13.44 13.44 10.34 10.34 17.24 17.24 17.24 17.24
Exposure Time, days	30 30 30 30 91 91 92 92 92 92 92 92 92	30 30 30 269 269 32 269 269	30 30 30 30 30 269 269 29 29 270 270
Specimen Type	Parent Parent Melded Parent Parent Parent Parent Melded Parent Melded Parent Melded	Parent Felded Felded Farent Felded Parent Felded Parent Felded Felded Felded Felded Felded	Parent Parent Parent Parent Parent Parent Parent Parent Parent Parent Parent
Material	Maraging Steel-250	Steel, C 1010	Inconel-718, STA

TABLE 2.2-4 (cont.)

												anitial and	
		Francura			Specimen							ACE1 Ve	
	Cocimon	7,000	Test Pr	est Pressure	Surface Area				renetration	1001		Fluoride	
To A see a see	שלכ ווויבוו	, 1116	~		2	Specia	Specimen Weight	mb .	Rates		Test	Content	
Mater 141	, vpe	days	m/m	psia	6	Initial	Fina	Loss	pm/sec	mpy	No.	Weight %	Observations
Titanium, 6 Al-4V.	Parent	32	8.62	1250	15 13	2 4590	2 4500	1000	0.833	0530	200	,000	
CTA	7 - 7 - 7 - 7	0		0 0		1	2000	1000-0	0.400	0.230	YZZ	1995	Mygroscopic dark brown deposit
<u> </u>	Me i ded	35	8.62	1250	4.88	2.6547	2.6469	0.0078	0.424	0.527	C2X	1000	Hyprosconic dark brown denocit
	Parent	32	13.44	1950	15.02	2.3746	2,3633	0.0113	0.606	0 757	10 x	1000	Hyproperion control of the control o
	we ded	32	13.44	1950	14 42	2 0625	2 0506	0110	0000	000	200		indication is a serious of the proposition
		1 6			1,1	7 . 000	0000	6.0.0	0.000	0.830	UCX	000	turning brown after exposure to air.
	rarent	200	10.34	1500	14.71	2.3154	2,3091	0.0063	0.072	0.089	C2y	.0002	Greenish-oray coating
	Welded	88	10.34	1500	14.71	2.3598	2.3512	0.0086	0 098	121	C2V	0000	Contract Con
	Parent	273	10.34	1500	15 07	2 4457	2 4373	0000	000	000	- 100		מו בבוויים מו המרווות
	11014			000			7.401	1000	0.000	0.00	777		very hydroscopic yellow-green film,
	me i ded	5/3	10.34	200	15.03	2.7085	2.6988	0.0097	0.061	0.076	C27	_	turning brown on hydrolycic
	Parent	32	17.24	2500	15.02	2.3746	2,3610	0.0136	0.73	0	*024		Dell orac coation
	Welded	32	17.24	2500	14.42	2.0625	2 0481	0 0144	180	50	*55		pull gray coating
	Parent	88	17 24	2500	34 20	1070	0000				V	_	Dals gray coating
	7 . 7 . 7 . 7	3	17.7	2000	000	00/01	1.8689	0.0000	0.0//	0.036	DZY		Gray costing
	Melded	88	17.24	2500	14.58	2.1412	2,1335	0.0077	0.089	0.111	N2Y	_	State Coating
	Parent	569	17.24	2500	15.14	2.4473	2.4330	0.0143	000	0 113	n27	0000	Money hoperconfo well an error fell
	Melded	269	17 24	2500	16.02	2 7200	2 7363	0000			770		tery hygroscopic yellow-green film,
		201		2007	20.0	506/-7	101/17	0.0238	0.153	184	770		terraine brown on hydrolyein

TABLE 2.2-5

CHEMICAL COMPOSITION OF NITROGEN TRIFLUORIDE RECOVERED FROM STATIC EXPOSURE TESTS WITH METALS

	FROM ST	STATIC E	EXPOSURE .	TESTS	WITH	WITH METALS				
			Comp	Composition,	Weight	Percent			of action of	Table No.
			Active						Origin for	Specimen
Test No.	Type of Exposure	NF3	as HF	1 ^N 2	02/00	CF4	200	N20	the NF3	Reported
Alx	Liquid/Vapor NF3, 195 K, 33 days All aluminum alloys	99.19	0.0004	0.24	0.38	0.0083	0	0.18	н81136	2.2-2
Al¥	Liquid/Vapor NF3, 195 K, 90 days All aluminum alloys	98.93	0.0008	0.52	0.47	0.0072	0	0.075	н81136	2.2-2
A1Z	Liquid/Vapor NF3, 195 K, 271 days All aluminum alloys	97.98	0.31	0.61	0.53	0.46	0.046	0.068	17319~C	2.2-2
XI8	3.45 MN/m ² NF ₃ , 344 K, 32 days All aluminum alloys	99.55	0.051	0.12	0.20	0.0073	0.0053	0.074	H81136	2.2-3
81Y	3.45 MN/m^2 NF_3 , 344 K, 90 days All aluminum alloys	98.73	0.0033	0.77	0.39	0.0070	0.0097	0.083	н81136	2.2-3
812	3.45 MN/m ² NF3, 344 K, 271 days All aluminum alloys	98.09	0.38	0.65	0.30	0.45	0.048	0.076	17319-C	2.2-3
XLO	8.62 MN/m ² NF ₃ , 344 K, 32 days 2219, T-87 aluminum	99.31	0.053	0.18	0.37	0.0070	0.0046	0.075	H81136	2.2-4
ClY	10.34 MN/m ² NF3, 344 K, 87 days 2219, T-87 aluminum	98.48	0.043	0.24	0.22	96.0	0.012	0.044	H55957	2.2-4
213	10.34 MN/m ² NF3, 344 K, 273 days 2219, T-87 aluminum	97.95	0.050	0.64	0.32	0.99	0.0083	0.039	Н55957	2.2-4
XIO	13.44 MN/m² NF3, 344 K, 32 days 2219, T-87 aluminum	99.42	0.056	Ļ	0.45	0.0078	0.0048	0.058	н81136	2.2-4
*D1X	17.24 MN/m ² NF3, 344 K, 32 days 2219, T-87 aluminum	99.30	0.028	0.28	0.33	0.015	900.0	0.033	P178684	2.2-4
YIO	17.24 MN/m ² NF3, 344 K, 87 days 2219, T-87 aluminum	98.62	0.027	0.094	0.20	1.00	0.0079	0.044	Н55957	2.2-4
ZIO	17.24 MN/m ² NF3, 344 K, 269 days 2219, T-87 aluminum	98.52	0.085	0.17	0.20	0.99	0.0095	0.022	H55957	2.2-4
	Cylinder 17229-C Cylinder 17319-C Cylinder H55957 Cylinder H81136	98.68 98.72 98.68	0.10	0.20	0.10	0.75	0.016	0.083		
	Cylinder P178684	89.66	0.0003	0	0.29	0.017	0 0	0.014		
A2X	Liquid/Vapor NF3, 195 K, 33 days Titanium alloys	99.25	Ţ.	0.29	0.39	0.0080	0.0024	0.057	H81136	2.2-2

TABLE 2.2-5 (cont.)

			Compo	sition,	Weight	Composition, Weight Percent				Table No.
Test No.	Type of Exposure	NF ₃	Active Fluorides as HF	22	02/20	CF4	200	N20	Cylinder of Origin for the NF ₃	Specimen Data are Reported
A2Y	Liquid/Vapor NF3, 195 K, 90 days Titanium alloys	99.57	0.0001	구.	0.36	0.0072	0	0.060	H81136	2.2-2
A2Z	Liquid/Vapor NF3, 195 K, 271 days Titanium alloys	98.42	0.10	0.48	0.47	0.45	0.017	0.054	17319-C	2.2-2
В2х	3.45 MN/m^2 NF_3 , 344 K, 32 days Titanium alloys	99.43	0.0006	0.16	0.21	0.0074	0.0040	0.19	Н81136	2.2-3
В2У	3.45 MN/m^2 NF3, 344 K, 90 days Titanium alloys	98.88	0.0021	0.65	0.38	0.0071	0.011	0.073	н81136	2.2-3
827	3.45 MN/m^2 NF3, 344 K, 271 days Titanium alloys	98.44	0.0049	0.72	0.24	0.49	0.024	0.089	17319-C	2.2-3
C2X	8.62 MN/m ² NF ₃ , 344 K, 32 days Titanium 6A1-4V	98.25	0.0006	1.08	0.59	0.0074	0.0024	0.078	н81136	2.2-4
C2Y	10.34 MN/m² NF3, 344 K, 88 days Titanium 6A1-4V	98.45	0.028	0.21	0.28	0.98	0.0047	0.040	Н55957	2.2-4
C2Z	10.34 MN/m2 NF3, 344 K, 273 days Titanium 6A1-4V	97.86	0.037	0.73	0.36	0.97	0.0089	0.037	Н55957	2.2-4
D2X	13.44 MN/m ² NF ₃ , 344 K, 32 days Titanium 6A1-4V	No Data							н81136	2.2-4
*D2X	17.24 MN/m 2 NF $_3$, 344 K, 32 days Titanium 6A1-4 $^{\rm V}$	99.57	0.006	0.090	0.29	0.015	900.0	0.027	P178684	2.2-4
024	17.24 MN/m ² , 344 K, 88 days Titanium 6Al-4V	98.52	0.014	0.17	0.25	0.99	0.0053	0.048	Н55957	2.2-4
022	17.24 MN/m^2 NF_3 , 344 K, 269 days Titanium 6A1-4V	98.58	0.020	0.15	0.22	1.00	0.011	0.026	H55957	2.2-4
A3X	Liquid/Vapor NF3, 195 K, 33 days Aluminum-Bronze 623	99.48	0.0002	F.	0.41	0.0080	0.0024	0.099	H81136	2.2-2
АЗУ	Liquid/Vapor NF3, 195 K, 90 days Aluminum-Bronze 623	99.18	0.002	0.34	0.41	0.0073	0	0.058	H81136	2.2-2
A3Z	Liquid/Vapor NF3, 195 K, 270 days Aluminum-Bronze 623	98.4/	0.10	0.33	0.57	0.45	0.017	0.058	17319-C	2.2-2
B3X	3.45 MN/m² NF3, 344 κ , 32 days Aluminum-Bronze 623	99.18	0.0052	0.40	0.29	0.0077	0.0053	0.11	H81136	2.2-3
83Y	3.45 MN/m ² NF3, 344 K, 90 days Aluminum-Bronze 623	98.48	0.0084	1.1	0.24	0.0077	0.015	0.14	H81136	2.2-3

TABLE 2.2-5 (cont.)

			Сомро	Composition,	Weight	Percent			fulinder of	Table No. in Which
Test No.	Type of Exposure	NF3	Active Fluorides as HF	142	02/50	CF4	c02	N ₂ 0	Origin for the NF ₃	Specimen Data are Reported
вбх	3.45 MN/m ² NF ₃ , 344 K, 32 days 17-4 PH SS, H-1025	99.47	0.0002	0.19	0.22	0.0078	0.0055	0.11.	н81136	2.2-3
B6Y	3.45 MN/m ² NF3, 344 K, 90 days 17-4 PH SS, H-102E	98.77	<.0002	0.71	0.43	0.0066	0.0070	0.065	H81136	2.2-3
298	3.45 MN/m ² NF ₃ , 344 K, 271 days 17-4 PH SS, H-1025	96.62	0.052	2.18	0.59	0.45	0.030	0.080	17319-C	2.2-3
87X	3.45 MN/m ² NF3, 344 K, 32 days 1010 Steel	99.54	0.0051	0.13	0.21	0.0077	0.0052	0.10	H81136	2.2-3
87Y	$3.45 \text{ MN/m}^2 \text{ NF3, } 344 \text{ K, } 90 \text{ days}$ 1010 Stee1	99.14	<.0002	0.43	0.34	0.0068	0.0084	0.064	H81136	2.2-3
872	3.45 MN/m ² NF3, 344 K, 271 days 1010 Steel	98.55	0.11	0.80	ŗ.	0.46	0.020	0.070	17319-C	2.2-3
C7.X	8.62 MN/m ² NF ₃ , 344 K, 30 days 1010 Steel	97.28	0.45	1.47	Tr.	99.0	0.078	0.057	17228-C	2.2-4
C7Y	10.34 MW/m ² NF3, 344 K, 87 days 1010 Steel	98.23	0.071	0.35	0.32	96.0	0.018	0.046	H55957	2.2-4
272	10.34 MN/m ² NF3, 344 K, 269 days 1010 Steel	97.83	0.068	0.76	0.33	96.0	0.011	0.029	H55957	2.2-4
D7.X	13.44 MN/m ² NF3, 344 K, 30 days 1010 Steel	97.94	0.44	0.50	0.25	0.65	0.16	0.065	17228-C	2.2-4
D7.X	17.24 MN/m ² NF3, 344 K, 32 days 1010 Stee!	99.66	0.0004	0.11	0.18	0.014	0.005	0.033	P178684	2.2-4
D7Y	17.24 MN/m ² NF3, 344 K, 87 days 1010 Steel	98.43	0.032	0.24	0.24	1.00	0.014	0.045	H55957	2.2-4
210	17.24 MN/m ² NF3, 344 K, 269 days 1010 Steel	98.47	0.078	0.21	0.21	0.99	0.013	0.022	Н55957	2.2-4
A20Y	Liquid/Vapor NF3, 195 K, 91 days Carpenter Custom 455	99.26	0.025	0.30	0.36	0.014	0	0.034	P178684	2.2-2
B20Y	3.45 MN/m ² NF ₃ , 344 K, 91 days Carpenter Custom 455	99.44	0.0005	0.28	0.24	0.014	0.0045	0.022	P178684	2.2-3
AMX	Liquid/Vapor NF3, 195 K, 34 days All other metal alloys	98.69	0.086	0.14	0.39	0.59	0 028	0.073	17319-C	2.2-2

TABLE 2.2-5 (cont.)

			Сомр	osition.	Weight	Composition, Weight Percent				Table No.
est No.	Type of Exposure	NF3	Active Fluorides as HF	22	02/20	CF.	200	N ₂ 0	Cylinder of Origin for the NF ₃	Specimen Data are Reported
332	3.45 MN/m ² NF3, 344 K, 270 days Aluminum-Bronze 623	98.14	0.041	0.94	0.29	0.45	0.055	0.076	17319-C	2.2-3
14 X	Liquid/Vapor NF3, 195 K, 33 days Tungsten, 2% Throiam	99.28	0.0003	0.26	0.39	0.0078	0.0085	0.062	н81136	2.2-2
ł4 y	Liquid/Vapor NF3, 195 K, 90 days Tungsten, 2% Thoriam	99.48	0.0001	7.	0.44	0.0073	0	0.071	H81136	2.2-2
142	Liquid/Vapor NF3, 195 K, 270 days Tunbsten, 2% Thoriam	98.67	0.10	0.36	0.34	0.43	0.032	0.058	17319-C	2.2-2
34 X	3.45 MN/m ² NF ₃ , 344 K, 33 days Tungsten, 2% Thoriam	99.21	0.0042	0.39	0.30	0.0075	0.015	0.075	H81136	2.2-3
347	$3.45~\text{MN/m}^2~\text{NF}_3$, $344~\text{K}$, 90 days Tungsten, 2% Thoriam	96.99	0.0026	0.56	0.36	0.0072	0.012	0.073	н81136	2.2-3
342	3.45 MN/m 2 NF $_3$, 344 K, 270 days Tungsten, 2% Thoriam	97.88	0.054	1.49	F.	0.47	0.019	0.083	17319-C	2.2-3
15 X	Liquid/Vapor NF3, 195 K, 33 days Beryllium Copper	99.48	0.0004	0.055	0.39	0.0077	0.0026	0.056	н81136	2.2-2
157	Liquid/Vapor NF3, 195 K, 90 days Beryllium Copper	99.43	0.0076	0.12	0.38	0.0072	0	0.056	H81136	2.2-2
Z51	Liquid/Vapor NF3, 195 K, 269 days Beryllium Copper	98.39	0.073	0.50	0.45	0.48	0.040	0.071	17319-C	2.2-2
35.X	3.45 MN/m2 NF3, 344 K, 33 days Beryilium Copper	98.99	0.0025	0.57	0.35	0.0073	0.011	0.067	H81136	2.2-3
15 Y	3.45 MN/m ² NF ₃ , 344 K, 90 days Beryllium Copper	98.66	<.0002	0.31	0.46	0.0068	0.0068	0.055	H81136	2.2-3
75	3.45 MN/m ² NF ₃ , 344 K, 270 days Beryllium Copper	98.31	0.12	0.75	0.20	0.48	0.051	0.000	17319-C	2.2-3
X9)	Liquid/Vapor NF3, 195 K, 33 days 17-4 PH SS, H-1025	99.64	Ť.	0.096	0.36	0.0078	0	0.10	н81136	2.2-2
, (6Y	Liquid/Vapor NF3, 195 K, 90 days 17-4 PH SS, H-1025	99.20	<.0001	0.32	0.42	0.0072	0	0.056	н81136	2.2-2
791	Liquid/Vapor NF3, 195 K, 269 days 17-4 PH SS, H-1025	97.11	0.098	1.40	0.84	0.45	0.033	0.065	17319-C	2.2-2

TABLE 2.2-5 (cont.)

1000	F3 Reported	684 2.2-2		9-C 2.2-2	17319-C 2.2-3	2.2-2	*000/1A	17319-C 2.2-3	17228-C 2.2-4		P178684 2.2-4	2 2 2 A	84% 1,728-C 2.2.	17228-C 2.2-4		P178684 2.2-4	H55957 2.2-4	% 17228-C 2.2-4	26% H55957
Cylinder of	N ₂ 0 the NF ₃	p 044 p178684		0.077 17319-C	0.064 173		090.0	0.11	٠.	0.00	0.022		0.078 84%	0.082		0.031	0.052	7.00	
	200		5	0.029	0.075		0.020	0.033		0.043	4 0.0023		0.054	0.039		15 0.0064	5 0.012		
Composition, Weight Percent	0,/C0 CF4		0.19 0.01/	0.37 0.46			0.32 0.015	0 15 0 46		0.14 0.65	0.32 0.014		Tr. 0.68	0 12 0 65	7.0	0.32 0.015	0 31 0.45		3 Tr. 0.72
iposition, We	0 K	1	0	0.19	ć	0.50	Tr.	(0.54	0.48	į.		0.49		0.33	29 Tr.	ļ		.2 0.43
Co	Acti	as H	99.75 0.0002	81 0 03 00	60.06	98.03 0.47	99.56 0.022		98.62 0.27	98.05 0.56		99.62	98.24 0.46		97.96 0.60	99.59 0.029		99.15 0.028	98.32 0.42
	1	Type of Exposure	(, 91 days		Liquid/Vapor NF3, 195 K, 274 days All other metal alloys	3.45 MN/m ² NF3, 344 K, 30 days	All Other metal and k 91 days		3.45 MN/m ² NF3, 344 K, 270 days		8.02 mv/III 3.30 1 mconel -718	10.34 MN/m2 NF3, 344 K,91 days	301 55, VM-2001250, MESS	10.34 MN/ML Nr3, 344 N, E0. 778 301 SS, VM-200+250, Inconel -718	13.44 MN/m2 NF3, 344 K, 30 days	301 SS, VM-200+250, Incone! -/!o	17.24 MN/m ² NF3, 344 K, 32 days 301 SS, VM-200 +250, Inconel -718	17.24 MN/m2 NF3, 344 K, 29 days 301 SS, VM-200+250, Inconel -718	22 MES 344 K. 270 days
		Tect No.		AMY	AMZ	BMX		BMY	BMZ		ČW.	CMY		CMZ	NWX	5	DMY	* DMX	

2.2, Static Exposure Tests (cont.)

The metal coupons which were subjected to the 270 day exposure tests were photographed in the condition in which they were removed from the test containers and the photographs are presented in Figures 2.2.1 through 2.2.11.

Conditions: Liquid/Napor, 195°K (-108°F)

Figure 2.2.1. Aluminum Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

17.24 MN/-2 (2500 psia),

344°Y (160°F)

Conditions: 3.45 Mn/m^2 (500 psia), 344°K (160°F)

Conditions: 17.24 MN/m² (2500 psia), 344°K (160°F) Conditions: 10.34 MN/m 2 (1500 psia), 344 $^\circ$ K (160 $^\circ$ F)

TI 8A1-4V

Titanium Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.2.

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m² (500 psia), 344°R (160°F)

Aluminum Bronze and Tungsten Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.3.

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m^2 (500 psia), 344°K (160°F)

Figure 2.2.4. Beryllium Copper and 17-4 PH Stainless Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Conditions: 3.45 MN/m^2 (500 psia), 344°K (160°F)

344°K (160°F)

Conditions: 10.34 MN/m^2 (1500 psia), Conditions: 17.24 MN/m^2 (2500 psia), 344°K (160°F)

Figure 2.2.5. C1010 Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 10.34 MN/m² (1500 psia), 344°K (160°F)

Conditions: 3.45 MN/m² (500 psia), 344°K (160°F)

Conditions: 17.24 MN/m² (2500 psia), 344°K (160°F)

Figure 2.2.6. 301 Cryoformed Stainless Steel Specimens After 9 Months Exposure to Nitrogen Trifluoride

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions:

304, 304L, 321, and 316 ELC Stainless Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Figure 2.2.7.

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: $3.45 \text{ MN/m}^2 (500 \text{ psia}), 344^{\circ}\text{K} (160^{\circ}\text{F})$

347 Stainless Steel, Monel 400, Nickel 200, and Nickel 270 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.8.

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: $10.34 \text{ MN/m}^2 (1500 \text{ psia})$, $344^{\circ}\text{K} (160^{\circ}\text{F})$

Conditions: 3.45 MN/m² (500 psia), 344°K (160°F)

Conditions: 17.24 MN/m² (2500 psia), $344^{\circ} \text{K} (160^{\circ} \text{F})$

Figure 2.2.9. Inconel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Conditions: Liquid/Vapor, 195 °K (-108°F)

Nitronic 40, Copper OFHC, 303 Stainless Steel, A286, and Carpenter Custom 455 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Conditions: 3.45 M/m² (500 psia), 344°K (160°F) Figure 2.2.10.

Maraging Steel Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.11.

2.2.2 Static Exposure Tests with Non-Metallic Materials

2.2.2.1 Apparatus and Procedures

The non-metal candidates used in the tests can be divided into five categories, (1) thermoplastics, (2) elastomers, (3) graphites, (4) lubricants, and (5) a thermosetting polymer. The thermoplastics were tested in the form of strips nominally 6.4 cm (2.5 in.) long, .64 cm (.25 in.) wide, and 0.33 cm (.13 in.) thick. The thermoplastics were evaluated by weight and appearance changes which occurred and by changes in the modulus of rigidity per ASTM D 1043. The elastomers were tested in the form of "O"-rings; and evaluated by weight and appearance changes, and physical testing for tensile strength, modulus at 100% elongation, ultimate elongation and Wallace hardness per ASTM D 1414. The graphites were in the form of plates 2.5 cm (1 in.) long, 1.2 cm (0.5 in.) wide, and 0.25 cm (0.1 in.) thick; and they were evaluated by weight and appearance changes. The lubricants were tested by placing samples in aluminum cups for physical confinement, and were evaluated by weight and appearance changes. The thermosetting plastic, Kevlar was tested in the form of woven cloth which was rolled and placed in 304 L stainless steel tubes for confinement. The Kevlar was evaluated by weight and appearance changes and by resistance to tear.

The non-metal specimens were exposed for nominal periods of 30, 90 and 270 days to nitrogen trifluoride in liquid- and vapor-phases at 195 K (-78 C) and at 344 K and 3.45 MN/m² (500 psia) for all candidates and with selected candidates at pressures up to 17.24 MN/m² (2500 psig). The test matrix is shown in Table 2.2-6. The number 2 in the matrix refers to duplicate samples being tested at the same condition; the number 4 in the matrix indicates that one set of duplicates are in the liquid phase and one set of duplicates are in the vapor phase. The grease samples were evaluated as single samples in the liquid phase and the vapor phase in the 195 K temperature environment. The non-metallic specimens were tested in the 304 L stainless steel containers shown in Figure 2.1.3.

Prior to exposure, the non-metallic specimens were, except for the carbon and the grease, washed with a detergent solution (Turco Plaudit), rinsed with deionized water and vacuum dried overnight at 333 K (140 F). The carbons and greases were used in the as-received condition. The compositional definition of the non-metallic materials is presented in Appendix A for the reader's convenience.

2.2.2.2 Experimental Results

The data obtained from testing all the non-metallic materials except the elastomers at 195 K (-78 C) in both liquid- and vapor-phase nitrogen trifluoride are presented in Table 2.2-7. Besides the

STATIC COMPATIBILITY TEST MATRIX FOR NON-METALS

	Vapor/Lic	quid NF3	Exposure				Gaseon	Gaseous NF ₃ Exposures	sarres			
Material	30 Days 90 Days	°C, ~200 90 Days	psia 270 Days	160°F, 30 Days 90	500 Day	psia 270 Days	160°F 30 Days	1500 90 Days	psia 270 Days	30 Days	F, 2500 psia 90 Days 27	ia 270 Days
Polytetrafluoroethylene	4	4	4	2	2	2	2	2	2	2	2	2
FEP Teflon	4	4	ব	2	2	2						
PFA Teflon	4	4	4	2	2	2						
Kel-F-81 CTFE	4	4	4	2	2	2	2	2	2	2	2	2
Rulon	4	4	4	2	2	2						
Kevlar	4	4	4	2	2	2						
Carbon (CDJ-83)	4	4	4	2	2	2						
Carbon (CJPS)	4	4	4	2	2	2						
Krytox	2	2	2	2	2	2						
Fluorosilicone FS 3451	2	2	2	2	2	2						
AF-E-124 (DuPont ECD-006)	4	4	4	2	2	2						
Viton (MIL-R-83248 Class 1)	4	4	4	2	2	2						
Viton (MIL-R-83248 Class 2)	4	4	4	2	2	2	2	2	2	2	2	2
Silastic LS-53	4	4	4	2	2	2						
Polypropylene	ı	•	•	2	2	2						
Ory Powder TFE (MS-122)	ı	•	ī	-	-	-						

TABLE 2.2-7

DATA INDICATIVE OF THE COMPATIBILITY OF LIQUID/VAPOR PHASE NITROGEN TRIFLUORIDE AT 195 K (-78 C) WITH VARIOUS NON-METALLIC MATERIALS

TERIALS	Observations	No apparent reaction	No apparent reaction	No apparent reaction	No apparent reaction Slight darkening of original color Slight darkening of original
S M	Test No.	A8X A8X A8X A8Y A8Y A8Z A8Z A8Z A8Z	A88X A88X A88X A88Y A88Y A88Z A88Z A88Z A88Z	A8X A8X A8X A8Y A8Y A8Z A8Z A8Z A8Z A8Z	A99X A99X A99Y A99Y A92Z A93Z
ETALLI	us of Ey, psi Final	31,440 33,100 29,480 25,610 23,930 24,600 26,080 24,760 23,970 22,160	25,000 24,460 24,550 24,910 26,550 25,710 25,480 26,820 26,220 26,200 27,700 25,690	25,350 24,140 24,270 25,900 25,580 25,580 25,580 25,580 25,050 24,060 23,830 25,050	97,580 95,320 92,250 91,280 92,040 92,320 94,490 91,070
NON-N	Modulus Rigidity, Initial F	31,580 + 4,040	26,310 + 1,800	25,520 + 1,650	93,640 + 3,670
VARIOUS NON-METALLIC MATERIAL	Percent Change	.10 .11 .06 .045 .055	019 019 019 019 023 027 111	. 076 . 077 . 077 . 054 . 050 . 036 . 10	0.00 -0000 0.00 0.00 0.00 0.00 0.00
MIH (change	0.0027 0.0034 0.0036 0.0016 0.0017 0.0019 0.0019 0.0019	0.0005 0.0005 0.0005 0.0006 0.0007 0.0007 0.0028 0.0028 0.0030	0.0020 0.0020 0.0019 0.0012 0.0012 0.0013 0.0027 0.0020 0.0020	0.0011 0.0011 0.0011 0.0002 0.0002 0.0002 0.0002
(-/8 (-)	Specimen Weights, gm Initial Final Change	2.6289 2.6529 2.6400 2.6418 2.6418 2.6344 2.6715 2.6711 2.6738 2.6746 2.6766	2.6234 2.6125 2.6127 2.6192 2.6196 2.6161 2.6161 2.6250 2.6274 2.6274 2.6274	2.6218 2.6218 2.6288 2.5337 2.5734 2.5728 2.5902 2.6341 2.6151 2.6156	1.2865 1.2865 1.2872 1.2873 1.2868 1.2868 1.2868 1.2881
7 c6.	Specin Initial	2.6262 2.6498 2.6366 2.6328 2.6328 2.6349 2.6462 2.6447 2.6447 2.6462 2.6447	2.6229 2.6120 2.6122 2.6128 2.6148 2.6148 2.6192 2.6192 2.6222 2.6222 2.6222 2.6177	2.6198 2.6269 2.6269 2.5720 2.5720 2.7395 2.7395 2.6122 2.6122 2.6122 2.6122 2.6122 2.6122 2.6122	1.2854 1.2861 1.2872 1.2863 1.2866 1.2901 1.2871 1.2873 1.2873
FLUUKIUE AI	Specimen Surface Area,	12.89 12.92 12.98 12.99 13.09 13.03 12.97	13.06 12.94 12.94 13.05 13.00 13.01 13.01 12.99 12.99	12.98 12.93 12.93 12.83 12.83 13.08 13.00 12.97	10.42 10.30 10.32 10.30 10.36 10.45 10.25
IKIFL	Type of Exposure	Liquid Vapor Liquid Vapor Vapor Liquid Liquid Liquid Liquid Vapor	i iquid Liquid Vapor Liquid Liquid Vapor Liquid Liquid Liquid Vapor	Liquid Vapor Liquid Liquid Vapor Vapor Vapor Vapor Vapor	Liquid Liquid Vapor Liquid Vapor Liquid Liquid Liquid
	Exposure Time, days	33 33 33 33 33 90 90 273 273 273	33 33 33 33 33 33 90 90 273 273 273 273	33 33 33 33 33 273 273 273 273	34 34 34 34 34 90 90 272 272
	Material	Polytetra- fluoroethylene	FEP Teflon	PFA Teflon	Kel-F-81 CTFE

TABLE 2.2-7 (cont.)

Observations	Slight darkening of original	color Slight darkening of original color	No apparent reaction	apparent	No apparent reaction	**	Come color change - lighter		color change - 11	Some color change - ilgnter	No apparent reaction	No apparent reaction	No apparent reaction					reaction	Very Singht darkening of color	5	darkening of	No apparent reaction				No apparent reaction	No apparent reaction	apparent		apparent	No apparent reaction	apparent				
Test No.	76Y	A92	A8.X	ABX	A8X	X82	20	A14Y	AIA	A 147	487	407	407	AST	AIAX	ATAX	A14X	A14X	A 4×	AIAY	AIAY	A 4 4	7414	7114	A142	ATOX	ATOX	A10X	ATOX	Aloy	Aloy	ATOY	Aloy	7014	A10Z	A10Z
Modulus of Rigidity, psi itial Final	89,460	90,360	45,090	49,990	44,370	51,560	062.63	45,540	52,030	50, 150 50, 450	56 340	000	20,030	20,000	3																					
Modul Rigidi Initial			51,090	+ 8,500											¥																					
Percent Change	.015	.016	.022	.022	100	1.00	.037	.033	.037	020	025	250	. 000	. 026	-1.0	-1.37	1.10	1.26	0, i	500	2.5	4.	4.4	9	2.86	090	10	093	086	00	= :	S		410	.028	.020
Change	0.0002	0.0002	9000.0	0.0006	0.0001	-0.0001	0.0010	0.0003	0.000	0.0003	90000	0.000	9000	3	-0.0024	-0.0034	0.0024	0.0031	-0.0024	-0.0034	0.0028	200.0	0.0012	0 0049	0.0071	-0.0013	-0.0015	-0.0013	-0.0013	0.0025	0.0016	0.0020	0.0022	-0.0002	0.000	0.0003
Specimen Weights, gm itial Final Chan	1.2907	1.2861	2.7412	2.7463	2.7305	2.7487	604/.7	2 7318	2 7159	2.7478	2.7414	2 7340	2 7436	2	0.2290	0.2454	0.2200	0.2437	0.2419	0.2406	0.2367	0 2540	0.2532	0.2545	0.2553	1.4319	1.4382	1,4015	1.4660	3845	1.4225	46.34	4400	3778	1.4201	1.4370
Specim	1.2905	1.2859	2.7406	2.7457	2.7304	2.7488	2 7222	2 7300	2 7150	2.7470	2.7408	2 7334	2 7430	200	0.2314	0.2488	0.2176	0.2466	0.2443	0.24.0	0.2339	0 2528	0.2520	0.2496	0.2482	1.4332	1,4397	1.4028	1.4673	1.3820	4208	1 44 4	1 4321	1.3776	1.4197	1.4367
Specimen Surface Area,	10.32	10.29	12.95	12.98	12.96	3.5	12.00	12.03	12.89	12.98	12.99	13.03	3.11		× ×											8.33	80 G	. 3 . 3	× × ×	29.50	6.32	20.0	0.00	8.23	8.12	8.40
Type of Exposure	Vapor	Vapor	Liquid	Liquid	Vapor	Yapor	1,000	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor		Liquid	Liquid	Vapor	Vapor	Cidera	Cidora	2000	ioni	Liquid	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor	רומחום	רופתום	Vapor.	Liquid	Liguid	Vapor	Vapor
Exposure Time, days	272	272	33	E (ب ب در	ກອ	2 8	, S	8	275	275	275	275		35	35	S S	c c	2 6	2 6	2 6	275	275	275	275	E :	7 7	<u>5</u> ?	2 6	26	25	260	273	273	273	273
Material			Pulon												Kevlar											Carbon CDJ-83										

TABLE 2.2-7 (cont.)

Observations	No section to section of	No apparent reaction	No apparent reaction	apparent	apparent		apparent	apparent	apparent	apparent	No apparent reaction	No apparent reaction	Nearly all dispersed			=	A		A]	F	Specimen dispersed	Chariman disparsed	Coordinate dispersion	Specimen dispersed	Specimen dispersed	Specimen dispersed	Specimen dispersed
Test No.	ATTA	ATTA	ATTX	Allx	ATTY	Ally	A]]Y	Ally	AIIZ	AIIZ	A112	AllZ	A12x	A12X	A12Z	A12Z	A12*X	A12*X	A12*X	A12*X	Alax	A13Y	V214	200	AIST	A13Z	A13Z
s of Y, psi Final	q	5																									
Modulus of Rigidity, ps Initial Fina	AM	į																									
Percent Change	- 063	- 077	061	062	.007	0	007	007	0	.021	.034	.071	-96.7	-99.5	-100	-100	-100	-100	-100	-100	-100	100	100	8 6	90.	3	-100
S, gm Change	-0.000	-0.0011	-0.0009	-0.000	0.0001	0	-0.0001	-0.0001	-0-	0.0002	0.0005	0.0010	-0.1750	-1.2400	<u></u>	0-	þ	0	-0-	-0-	-1.1929	-1.1020	-1 4243	1 2752	2070-1-	-1.3951	-1.5599
Specimen Weights, gm	1.4115	1.4237	1.4743	1.4396	1.4386	1.4241	1.4169	1,4232	1.4332	1.4478	1.4580	1.4109	0.0060	0.0068	-0-	-	0-	- 0-	-0-	þ	-0-	-0-	-0-	0	50	-	-0-
Specime	1.4119	1.4248	1.4752	1.4405	1.4385	1.4241	1.4170	1.4233	1.4332	1.4475	1.4575	1.4099	0.1810	1.2468	1.2918	0.2554	0.9493	0.4887	1.0004	0.9138	1.1929	1.1020	1.4243	1 2752	1 2051	1.3951	. 3333
Specimen Surface Area, cm ²	8.44	8.40	8.41	8.31	8.21	8.45	8.25	8.13	8.29	8.36	8.53	8.53	AN				NA				NA						
Type of Exposure	Liquid	Liquid	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	pinbi.	Liquid	Liquid	Liquid	Vapor	Vapor	Liquid	Vapor	Liquid	Vanor	- incin	בי למי	Adpor
Exposure Time, days	34	34	34	34	35	35	95	95	270	270	0/2	270	33	33	2/3	2/3	32	32	35	32	33	33	91	6	273	27.5	617
Material	Carbon CJPS												Krytox				Krytox, Vacuum-	Stripped			Fluorosilicone	FS3451					

weight and appearance changes, the modulus of rigidity values are given for the thermoplastics.

The significant items to note from the data in Table 2.2-7 are as follows: (1) the greases, both Krytox and Fluorosilicone FS 3451, dissolved readily in nitrogen trifluoride and the materials were dispersed throughout the test container; (2) the modulus of rigidity values of the thermoplastics were unaffected by the liquid/vapor exposure except for polytetrafluoroethylene which exhibited a significant decrease in values with increasing exposure times; (3) the graphite samples exhibited weight changes of about 0.1% which is acceptable, and (4) the Kevlar exhibited a slight color change and a variable weight change, but maintained its structural integrity.

Photographs of the polytetrafluoroethylene and Rulon specimens after 9 months exposure are shown in Figure 2.2.12; photographs of the FEP and PFA Teflon specimens after 9-months exposure are shown in Figure 2.2.13; the Kel-F specimens after 9-months exposure are shown in Figure 2.2.14; the carbon specimens after 9 months exposure are shown in Figure 2.2.15; and the Kevlar specimens after 9-months exposure is shown in Figure 2.2.16.

The data obtained from testing the elastomeric materials in both liquid- and vapor-phase nitrogen trifluoride are presented in Table 2.2-8. The significant items to note from the data are as follows: (1) Kalrez was visibly affected by the nitrogen trifluoride as evidenced by the slight blistering of the surface and the tensile and hardness values did decrease with increasing periods of exposure; (2) the Vitons except for the slight swelling noted for two of the specimens exhibited no visible changes, minimal changes after 270 days in tensile strength, and some decrease in hardness after 270 days; and (3) the Silastic LS-53 showed no visible changes, but did decrease in tensile strength after every exposure period. Photographs of the Kalrez and Silastic LS-53 specimens after 9-months exposure are shown in Figure 2.2.17. A Kalrez specimen in the as-received condition is shown in the photograph as the untagged specimen. Photographs of the Viton specimens after 9-month exposure are shown in Figure 2.2.18.

The data obtained from the exposure of polytetrafluoro-ethylene to nitrogen trifluoride at 344 K (160 F) and pressures ranging from 3.45 to 17.24 MN/m² (500 to 2500 psia) are presented in Table 2.2-9. The significant items to note from the data are as follows: (1) there is no visible change in the appearance of the specimens after exposure, (2) there is a decrease in the modulus of rigidity values which is not entirely time dependent, (specimens from Test No. D8X were reused in Test *DNX giving

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m^2 (500 psia), 344°K (160°F)

Conditions: 10.34 MN/m² (1500 psia), 344°K (160°F)

Conditions: 17.24 MN/m² (2500 psia), 344°K (160°F)

Polytetrafluoroethylene and Rulon Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.12.

Conditions: Liquid/Vapor, 195 °K (-108°F)

Conditions: 3.45 MN/m² (500 psia), 344 °K (160°F)

POLYPROPYLENE

FEP Teflon, PFA Teflon, and Polypropylene Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.13.

Liquid/Vapor, 195°K (-108 °F) Conditions:

3.45 MW/m2 (500 psia), 344 °K (160°F) Conditions:

KET-E-81

10.34 MN/m2 (1500 psia), 344 °K (160°F) Conditions:

Figure 2.2.14.

Conditions: 17.24 MN/m2 (2500 psia), 344°K (160°F)

Kel-F 81 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m_2 (500 psia), 344 °K (160°F)

Figure 2.2.15. Carbon Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m^2 (500 psia), 344°K (160°F)

Figure 2.2.16. Kevlar After 9 Months Static Exposure to Nitrogen Trifluoride

TABLE 2.2-8

DATA INDICATIVE OF THE COMPATIBILITY OF LIQUID/VAPOR PHASE NITROGEN TRIFLUORIDE AT 195 K (-78 C) WITH VARIOUS ELASTOMERS

Observations	Wery white coloration, slight blistering Very white coloration, slight blistering Very white coloration, slight blistering Very white coloration, slight blistering No apparent reaction No apparent reaction No apparent reaction No apparent reaction Very white, surface bubbled Very white, surface bubbled Very white, surface bubbled Very white, surface bubbled	No apparent reaction	Me apparent reaction No apparent reaction Sightly swollen Sightly swollen No apparent reaction	No apparent reaction
Final	67 68 68 68 67 67 67 67 68 88 88 88 88 88 88 88 88 88 88 88 88	74 72 72 72 72 74 74 74 65	733 882 882 882 882 882 882 882 882 882 8	74 72 73 73 73 65 65 65 65 65 65 65 65 65
Wallace Hardness Initial Final	89 +1 80 0	74 + 0. 5	95 +1 0.8	6. 6. 6. 6.
on, %	165 174 174 156 165 165 166 130 139	178 227 166 192 209 192 208 174 183 209	134 134 113 113 174 166 166 122 122 122	122 78 114 96 131 148 96 78 113
Ultimate Elongation, Initial Fin	173 + 17	230 + 16	167 + 14	159 + 25
100% PS1 Final	690 643 642 701 742 763 760 790 717	520 491 471 471 421 425 590 699 556 561 561	1059 983 1044 997 906 966 966 800 1036 11160 11160	396 427 382 435 435 435 435
Modulus at 100% Elongation, psi Initial Final	694 1+38	453 + 23	995 + 20	361 + 13
rength,	1543 1631 1762 1560 1560 1322 1322 1255 1327 1255 1327 1255	1143 1391 975 1170 1118 1317 1301 1316 1352	1059 1222 1417 1075 1235 1339 1449 1417 1366 1604	499 312 313 355 355 519 619 386 315 315 510 510 510 510 510 510 510 510 510 5
Tensile Strength, psi Initial Final	1778 + 119	1394 + 44	1483 + 107	+ 124
change	0.0168 0.0165 0.0069 0.0013 0.0009 0.0009 0.0132 0.0131	0.0009 0.0012 0.0009 0.0009 0.0005 0.0004 0.0015 0.0015	0.0005 0.0005 0.0003 0.0003 0.0003 0.0010 0.0010 0.0010	0.0020 0.0016 0.0019 0.0020 0.0020 0.0020 0.0020 0.0002 0.0002
Specimen Weights,	1.5451 1.5464 1.5388 1.5328 1.5328 1.5334 1.5335 1.5453 1.5453 1.5450 1.5450	1,2325 1,2276 1,2301 1,2195 1,2195 1,2192 1,2287 1,2283 1,2283 1,2283 1,2283 1,2283 1,2283 1,2283 1,2283	1.2805 1.2969 1.2829 1.2859 1.2899 1.2702 1.2691 1.3030 1.2771	0.9554 0.9550 0.9548 0.9511 0.9531 0.9570 0.9537 0.9537 0.9531
Specime	1.5283 1.5299 1.5390 1.5317 1.5317 1.5317 1.5320 1.5321 1.5321 1.5335 1.5335	1.2316 1.2264 1.2292 1.2117 1.2296 1.2198 1.2096 1.2096 1.2272 1.2272 1.2181	1.2864 1.2864 1.2819 1.2856 1.2900 1.2705 1.2693 1.2693 1.2911 1.2019 1.2763	0.9534 0.9539 0.9539 0.9511 0.9511 0.9535 0.9535 0.9536 0.9536 0.9536
Specimen Surface Area,	6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99999999999999999999999999999999999999	8 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Type of Exposure		Liquid Liquid Vapor Liquid Liquid Vapor Vapor Vapor Vapor Vapor Vapor Vapor	Liquid Liquid Vapor Liquid Liquid Vapor Liquid Vapor Vapor Vapor	Liquid Vapor Vapor Vapor Vapor Liquid Liquid Liquid Vapor Va Vapor Vapor Va Vapor Va Va Va Va Va Va Va Va Va Va Va Va Va
Exposure Time, days	274 274 274 274 274 274	270 270 270 270 270 270	######################################	22,22,22
Material and Test No.	Alsy Alsy Alsz Alsz	Viton, Class I AITX AITY AITZ	Viton, Class II A17X A177 A177	Silastic LS-53 Al6X Al6X Al67

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m^2 (500 psia), 344°K (160°F)

SILASTIC LS53

Kalrez (Dupont ECD-006) and Silastic LS-53 Specimens After 9 Months Static Exposure to Nitrogen Trifluoride Figure 2.2.17.

Note: Unexposed Kalrez spacimen in upper portion of each group for comparison purposes

LIQUID VITON C1. 2 VAPOR

Conditions: Liquid/Vapor, 195°K (-108°F)

Conditions: 3.45 MN/m² (500 psia), 344°K (160°F)

Conditions: 10.34 MN/m² (1500 psia), 344°K (160°F)

VITON C1. 2

Figure 2.2.18. Viton Specimens After 9 Months Static Exposure to Nitrogen Trifluoride

TABLE 2.2-9

DATA INDICATIVE OF THE COMPATIBILITY OF GASEOUS NITROGEN TRIFLUORIDE AT 344 K (160 F) AND PRESSURES RANGING FROM 3.45 to 17.24 MN/m² (500 TO 2500 PSIA) WITH POLYTETRAFLUOROETHYLENE

ă	Exposure Conditions	ditions	Specimen Surface					Modulus of	يو مو			
Time,		Pressure	Area	Specim	Specimen Weights, gm	mg ,	Percent	Rigidity, psi	ty, psi	Test		
Days	MN/mZ	psia	CMC	Initial	Final	Change	Change	Initial	Final	8	Observation	5
30	3.45	200	13.08	2.6781	2.6887	0.0106	0.40	31,580	29,350	RRY	No apprecant treatment on	i
೫	3.45	200	13.02	2.6476	2.6584	0.0108	0.41	+4.040	31,720	RAX		
8	3.45	200	13.03	2.6619	2.6649	0.0030	0.11		27,930	BRY	apparent	
8	3.45	200	12.91	2.6440	2.6474	0.0034	0.13		27.840	88V	No apparent react	i
272	3.45	200	12.99	2.6400	2.6421	0.0021	0.080		26,140	887	No apparent reaction.	Lion
272	3.45	200	12.96	2.6418	2.6438	0.0020	0.076		24,740	B8 Z	No apparent reaction.	tion.
30	8.62	1250	13.03	2 6594	2 6720	9610 0	0.47		200	>		
2	8 62	1250	12.00	2 66.40	200.7	0.010	,		000,00	X 2	apparent	
2 6	30.05	0.00	13.02	2.0040	16/0.7	0.0143	0.54		29,540	C8X	apparent	tion.
3 8	13.44	0561	12.94	2.6327	2.6463	0.0136	0.52		28,250	X80	apparent	tion.
9	13.44	1950	13.04	2.6672	2.6810	0.0138	0.52		28,710	D8.x	apparent	tion
53	17.24	2500	13.05	2.6327	2.6332	0.0005	0.019	(28.250)	23,280	*DNX	apparent	ion
53	17.24	2500	13.12	2.6672	2.6676	0.0004	0.015	(28,710)	22,420	*DNX		L
8	10.34	1500	12.96	2.6533	2.6567	0.0034	0.13		27,960	C84	apparent	ion
8	10.34	1500	12.93	2.6490	2.6572	0.0082	0.31		27,700	C87	annarent	L O
8	17.24	2500	12.95	2.6535	2.6538	0.0003	0.011		26,740	D87	annarent	Lion
83	17.24	2500	12.91	2.6635	2.6638	0.0003	0.011		23,570	D84	annarent	0
273	10.34	1500	13.04	2.6734	2.6764	0.0030	0.011		25,370	C87	annarent	Lion
273	10.34	1500	12.90	2.6281	2.6320	0.0039	0.015		26,480	C87		Lion
569	17.24	2500	12.92	2.6363	2.6368	0.0005	0.019		23,970	087	apparent	t ion
569	17.24	2500	13.04	2.6689	2.6696	0.0010	0.037		23,530	D8Z	No apparent reaction.	tion.

an accumulated exposure period of 59 days; the values after 59 days exposure are comparable to the values obtained after 269 days exposure at the $17.24~\text{MN/m}^2$ (2500 psia) condition) and (3) polytetrafluoroethylene is compatible with gaseous nitrogen trifluoride under static conditions. Photographs of the specimens after the 9 month exposure period are shown in Figure 2.2.12.

The data from the exposure of Kel-F 81 CTFE to nitrogen trifluoride at 344 K (160 F) and pressures ranging from 3.45 MN/m² to 17.24 MN/m² (500 to 2500 psia) are presented in Table 2.2-10. The significant items to note from the data are as follows: (1) there is a visible change in appearance of the Kel-F in which blotches of white coloration appear within the specimens, and (2) the modulus of rigidity values for the Kel-F decrease significantly with the time of exposure as the pressure of the nitrogen trifluoride is increased to 17.24 MN/m² (2500 psia), (the modulus of rigidity values for the specimens used for 29 day exposure at 17.24 MN/m² (2500 psia) were determined prior to and after exposure) and (3) no apparent physical degradation of Kel-F occurs at the 3.45 MN/m² (500 psia) pressure level during the 272 days of exposure. Photographs of the specimens after the exposures are shown in Figure 2.2.14.

The data for the remaining thermoplastic materials, the graphites, the greases, and the thermosetting plastic Kevlar which were exposed to nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m 2 (500 psia) are presented in Table 2.2-11.

The significant items to note from the data are as follows: (1) FEP and PFA Teflons are apparently unaffected by this exposure condition; (2) Rulon exhibits some color change but no statistically significant degradation in modulus of rigidity; (3) Kevlar undergoes color change, but maintains significant structural integrity (see Figure 2.2.16); (4) the carbons exhibit weight changes of less than 1% and the white deposit on the Carbon CDJ-83 may be due to the interaction of the phosphate salt with nitrogen trifluoride, (5) polypropylene changes significantly and is apparently unsuitable for prolonged exposure to nitrogen trifluoride, (6) the greases, Krytox and Fluorisilicone FS 3451 dispersed throughout the test container exhibiting a miscibility characteristic that is not tolerable in a use-system, and (7) the Dry Powder TFE underwent significant weight changes but no visibly apparent changes.

The data from the exposure of Kalrez, Viton, Class I, and Silastic LS 53 to nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m 2 (500 psia) are presented in Table 2.2-12. The significant items to note from the data are as follows: (1) the Viton, Class I and Silastic LS 53 deteriorated to the extent that tensile properties could not be determined

TABLE 2.2-10

DATA INDICATIVE OF THE COMPATIBILITY OF GASEOUS NITROGEN TRIFLUORIDE AT 344 K (160 F) AND PRESSURES RANGING FROM 3.45 to 17.24 MN/m² (500 TO 2500 PSIA) WITH KEL-F-81 CTFE

	Observations	No apparent reaction.		No apparent reaction.	No apparent reaction.	Blotchy white spots	Blotchy white spots	No apparent reaction	No apparent reaction		No apparent reaction	Blotchy white spots.	Blotchy white spots.	Whites in coloration, blotche	Whites in coloration, blotche	Significant white blotches.	Significant white blotches.	Blotchy white spots.	Blotchy white spots.	Blotchy white spots.	white	1000						
	Test No.	X68	89X	E9 Y	897	268	768	X6J	X63	N ₀ X	X60	*DNX	*DNX	C9Y	C97	790	160	Z63	760	260	760							
Is of	ty, psi	94,820	97,700	91,630	90,430	98,170	100,240	89,620	92,770	67,990	68,830	79.740	79,230	75,490	78,280	77,570	/3,4/0	80,840	72,830	42,310	44,310							
Modulus of	Rigidity, psi Initial Fin	93,640	±3,670									(95,320)	(92,250)	01														
	Percent	0.13	0.13	8.38	8.38	0.18	0.19	0.68	0.69	1.29	1.38	0.64	0.62	0.78	0.77	0.83	67.0	9.68	0.98	1.32	1.32							
	Change	0.0017	0.001/	0.0049	0.0049	0.0023	0.0024	0.0088	0.0089	0.0166	0.0177	0.0082	0.0080	0.0101	0.0099	0.0107	0.0101	0.0126	0.0126	0.0171	0.0170							
	Specimen Weights, itial Final	1.2886	1.2895	1.2943	1.2953	1.2861	1.2893	1.2992	1.2990	1.3043	1.3027	1.2943	1.2952	1.2962	1.2967	1.2987	1.0903	1.29/6	1.2998	1.3035	1.3048							
	Specim	1.2869	8/87	1.2894	1.2904	1.2838	1.2869	1.2904	1.2901	1.2877	1.2850	1.2851	1.2872	1.2861	2997	1.2880	7007	0637.1	2/82.1	1.2864	1.2878							
Specimen Surface	Area	10.33	10.32	10.34	10.70	10.36	10.31	10.33	10.29	10.35	16.32	10.30	10.32	10.35	10.30	10.34	10.39	10.32	10.29	10.29	10.23							
tions	Pressure psia	200	000	000	3 6	000	000	1250	1250	3920	1950	2500	2500	200	200	2500	1500	0001	2001	2007	2200							
Exposure Conditions	MN/m2	.0.4.		5. c		4.40	5.45	8.62	8.62	13.44	13.44	17.24	17.24	10.34	13.54	17.24	10.34	10.00	\$	67.71	17.24							
EXPOS	Time, Days	33	2 6	2 8	2 6	212	717	90	೫	8	8	53	53	5 5	- 6	8 8	373	2.5	5,7	607	597							

es.

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE \$200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

TABLE 2.2-11

DATA INDICATIVE OF THE COMPATIBILITY OF GASEOUS NITROGEN TRIFLUORIDE AT 344 K (160 F) AND 3.45 MN/m² (500 PSIA) WITH VARIOUS NON-METALLIC MATERIALS

Observations	No apparent reaction	No apparent reaction	Color change from brown to yellowish-white Color change from brown to yellowish-white No apparent reaction No apparent reaction Color change from tan to yellow tinge Color change from tan to yellow tinge	Slight darkening of the material Reddish-brown color	No apparent reaction No apparent reaction No apparent reaction No apparent reaction White surface deposit-easily hydrolysed	No apparent reaction	Some material dissolved and deposited on container walls. Specimen dissolved - white in color Specimen dissolved - white in color
Test No.	88X 88X 88Y 88Y 88Z 88Z	88X 88X 88Y 88Y 88Z 88Z	88X 88X 88Y 88Y 88Z 88Z	814X 814X 814Y 814Z 814Z	810X 810Y 810Z 810Z	811X 811X 811Y 811Z	812X 812X 812Z 812Z
s of V. psi Final	26,080 25,310 26,020 25,700 25,280 24,790	25,490 27,520 25,210 26,720 26,500 23,730	50,640 61,420 46,260 57,970 49,910	A.A.			
Modulus (Rigidity, Initial	26,310 + 1,800	25,520 + 1,650	51,090 + 8,500	N.A.		6	
Percent Change	.32 .52 .12 .11 .050	.30 .32 .053 .054 .031	.20 .19 .073 .073 .036	.84 .74 .86 75	52 46 .041 .048 24	.29 .049 .034 .51	-6.9 -32.2 -100
change	0.0086 0.0135 0.0032 0.0030 0.0013	0.0076 0.0084 0.0014 0.0014 0.0008	0.0054 0.0052 0.0020 0.0010 0.0010	0.0020 0.0020 0.0018 0.0020 -0.0018	-0.0075 -0.0066 0.0006 0.0007 -0.0035	0.0041 0.0039 0.0007 0.0005 0.0074	-0.0607 -0.1126 -0-
Specimen Weights,	2.6289 2.6279 2.6158 2.6165 2.6219 2.6092	2.5792 2.6241 2.6326 2.5752 2.5858 2.6040	2.7419 2.7459 2.7446 2.7320 2.7435 2.7689	0.2394 0.2437 0.2448 0.2347 0.2391	1.4283 1.4310 1.4702 1.4482 1.4254 1.3896	1.413 1.4398 1.4313 1.4499 1.4526	0.8148 0.2369 -0-
Specim Initial	2.6203 2.6144 2.6126 2.6135 2.6206 2.6079	2.5716 2.6157 2.6312 2.5738 2.5850 2.6031	2.7365 2.7407 2.7426 2.7298 2.7425 2.7681	0.2374 0.2417 0.2430 0.2327 0.2409 0.2539	1.4358 1.4376 1.4696 1.4475 1.4032	1.4372 1.4359 1.4306 1.4494 1.4452	0.8755 0.3495 0.9509 0.2113
Specimen Surface Area, cm ²	13.00 13.01 12.99 12.98 12.98	12.82 12.97 13.01 12.84 12.85 12.93	12.96 13.02 13.02 13.05 12.98 13.15		8.88.89 8.89 8.55 8.55 8.55 8.55	8 4 4 8 8 3 7 8 3 2 8 3 2 8 3 2 8 9 3 2 8 9 3 2 8 9 3 2 8 9 3 2 8 9 3 2 8 9 3 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
Exposure Time, days	30 30 90 90 272 272	30 30 90 272 272	30 30 90 90 272 272	32 92 274 274	32 32 90 90 273 273	32 32 91 91 273 273	32 32 272 272
Material	FEP Teflon	PFA Teflon	Rulon	Kevlar	Carbon CDJ-83	Carbon CJPS	Krytox

TABLE 2.2-11 (cont.)

Observations	Some apparent softening - most material on container bottom.	Some material dissolved and deposited on container walls. Specimen dissolved Specimen dissolved	Discolored to dark reddish-brown Discolored to dark reddish-brown Dark reddish-brown Dark reddish-brown Slack - some apparent surface attack Slack - some apparent surface attack	No apparent reaction No apparent reaction No apparent reaction
Test No.	B12*X B12*X	813X 813X 813Z 813Z	818X 818Y 818Y 818Z 818Z	819X 819Y 819Z
of psi Final	N.A.		72* 72* 67* 70* >100*	
Modulus of Rigidity, psi Initial Final	N.A.		*19	
Percent Change	-74.2	-16.8 -65.5 -100	.25 .25 .086 .041 .38	100 46.7 -18.2
Change	-0.3514	-0.2367 -0.7561 -0-	0.0022 0.0021 0.0007 0.0004 0.0035	0.0006 0.0007 -0.0002
Specimen Weights, gm itial Final Char	0.1224	1.1723 0.3988 -0- -0-	0.8850 0.8514 0.8191 0.9655 0.9163	0.0012 0.0022 0.0009
Specim	0.4738	1.4090 1.1549 1.3301 1.2555	0.8828 0.8493 0.8184 0.9651 0.9128	0.0006 0.0015 0.0011
Specimen Surface Area,			10.66 10.38 9.87 11.56 11.50 8.66	
Exposure Time, days	933	30 30 272 272	32 32 91 91 273 273	32 91 273
Material	Krytox, Vacuum Stripped	Fluorosilicone FS3451	Polypropylene	Dry Powder TFE (MS 122)

*Shore "D" Hardness Values.

DATA INDICATIVE OF THE COMPATIBILITY OF GASEOUS NITROGEN TRIFLUORIDE AT 344 K (160 F) AND 3.45 MN/m² (500 PSIA) WITH ELASTOMERIC MATERIALS

Observations	Color changed to white No apparent reaction No apparent reaction No apparent reaction Seellen, elongated and stuck together Swollen, elongated and stuck together	No apparent reaction No apparent reaction No apparent reaction No apparent reaction Elongated and axoollen, stuck to other "Qrings."	No apparent reaction No apparent reaction No apparent reaction No apparent reaction Specimen cracked and soft to touch Specimen cracked and soft to touch
	88157 88157 88157 88157 88157	817X 817X 817Y 817Z 817Z	816x 816x 816x 8162 8162
The	69 70 55 44	5555;	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Wallace Na Interal	58 ± 0.5	74 + 0.5	63 + 0.6
fine Fine	174 174 165 191	\$238 538 538 538 538 538 538 538 538 538 5	70 148 52 52 53
Ultimate Elongation	173	230 + 16	159 ± 25
Final	935 932 786 831 838 933	\$ 5 5 5 5 5	4 ::
Modulus 1005 Elone 255	₩ • 1	453 + 23	361 ± 13
Final	2194 1980 2064 1840 1470 1205	344 348 1337 1225	239 104 631 235
Tensile Strength	1778 + 119	1394 + 44	+ 124
Change	0.0177 0.0178 0.0059 0.0035 0.1425	0.0037 0.0034 0.0076 0.0073 0.0308	-0.0034 -0.0046 0.0022 0.0013 -0.0176 -0.0195
Final	1,5445 1,5505 1,5331 1,5307 1,6739	1.2313 1.2352 1.2374 1.2233	0.9475 0.9471 0.9534 0.9587 0.9359
Telfis	1.5268 1.5327 1.5295 1.5272 1.5314	1.2276 1.2318 1.2303 1.2160 1.2339 1.2325	0.9509 0.9517 0.9512 0.9535 0.9535 0.9543
Specimen Surface Area,	នុស្សសុស្ស 7. កាភិមិល 2. កាភិមិល 2. កាភិមិល 3. កាភិមិ	8.72 8.73 8.73 8.63 8.63	සා සු
Exposure Time, days	32 932 931 274 274	888 99 HH	27.5 27.5 27.5 27.5 27.5
Material	Kalrez	Viton, Class I	Silastic LS-53

**Specimens deteriorated to the stage that valid measurements were not possible.

after 270 days of exposure, and (2) the Kalrez exhibited some decrease in tensile strength and hardness which was not prohibitive, but the surface was visibly affected by the exposure. The test specimens were heated to 422 K (300 F) for two days during the 270 day exposure period due to an oven controller problem, and this event may have accelerated some deterioration of the materials. Photographs of the Kalrez and Silastic LS 53 after the 270 day exposure period are shown in Figure 2.2.17.

The data obtained from the exposure of Viton, Class II to nitrogen trifluoride at 344 K (160 F) and at pressures ranging from 3.45 MN/m² (500 psia) to 17.24 MN/m² (2500 psia) are presented in Table 2.2-13. The significant items to note from the data are as follows: (1) short-term exposure of Viton, Class II for 90 days or less at pressures below 10.34 MN/m² (1500 psia) is possible without significant degradation in properties and (2) longer-term exposure, between 90 and 270 days, results in the unacceptable degradation of use-properties at pressures ranging from 3.45 MN/m² (500 psia) to 17.24 MN/m² (2500 psia). Photographs of the Vitons exposed to gaseous nitrogen trifluoride for 270 days are shown in Figure 2.2.18.

The chemical analyses of the nitrogen trifluoride recovered from the static exposure of the non-metallic materials are given in Table 2.2-14. Generally, at 195 K (-78 C), no effect of materials on the decomposition of nitrogen trifluoride is observed except that approximately one percent decomposition of nitrogen trifluoride is observed in the presence of Silastic LS F3, and a few percent decomposition in the presence of Krytox after the sample composition is corrected for air contamination.

At 344 K (160 F), the Fluorosilicone FS 3451 caused a 17 wt % decrease in the nitrogen trifluoride assay; changes in nitrogen trifluoride content ranging from 1 to 3 weight percent were observed in the presence of Kalrez, Silastic LS 53, polypropylene, Carbon CJPS, Carbon CDJ-83, Kevlar, Krytox, and dry powder PTFE (MS-22). The remaining materials, Vitons, polytetrafluoroethylene, FEP Teflon, PFA Teflon, Rulon and Kel-F 81, had a negligible effect on the decomposition of nitrogen trifluoride.

TABLE 2.2-13

DATA INDICATIVE OF THE COMPATIBILITY OF GASEOUS NITROGEN TRIFLUORIDE AT 344 K (160 F) AND PRESSURES RANGING FROM 3.45 TO 17.24 MN/m² (500 TO 2500 PSIA) WITH VITON, CLASS II

	Observations	Clichtly cuplion	Clickely sworler	Singificial Smollen	No apparent reaction	Strate to other "O" state	Stuck to other "O"rings		Swollen and elongated			Swollen and elongated			Swollen and elongated		Such and elongated		Swollten and elongaled	Swollen and elongated	Cracked, elongated	deformed, sticky	and soft to the touch.
Test	Q	R17Y	74	2,7	27.0	77	817Z	3,5	77	74.00	××10	*Unix	Ž NO.	77.	C177	D17Y	7710	1177	7/17	7/17	D17Z	2710	
rdness	Fina	6		7 6	5 6	27	38	8	26	10	5 6	- a	8 8	2	77	85	72	2 00	9 5	4	*	:	
Wallace Hardness	Initial	97 + 0 8	2																				
ate ion, %	Final	174	157	142	15.7	:	279	001	73) 'C	100	166	192	227	200	113	113	:	: ;		*	:	
Ultimate Elongation, %	Initial	167	4 14	1																			
at 100% on, psi	Final	983	957	1001	97B		460	820	928	d	894	88	841	799	837	870	169	*	1		‡	*	
Modulus at 100% Elongation, psi	Initial	992	+ 20	ł																			
rength,	+ 1na	1419	1364	1340	1344	#	712	1370	1314	643	894	1448	1293	1390	1343	936	816	**	;	: :	k K	*	
Tensile Strength,	INICIAL	1483	+ 107	1																			
mb (S)	Change	0.0043	0.0041	0.0076	0.0076	0.0685	0.0607	0.0095	0.0100	0.0138	0.0136	0.0092	0.0092	0.0125	0.0131	0.0136	0.0121	0.0723	0.0698	0000		0.0444	
Specimen Weights, gm	P	1.3034	1.2865	1.3129	1.3075	1,3590	1.3301	1,2974	1.2979	1,3054	1.3018	1.2707	1.2613	1.2690	1.2777	1.2751	1.2843	1.3625	1.3488	1 3154	1000	1.3331	
Specim	THE	1.2291	1.2824	1.3053	1.2999	1.2905	1.2694	1.2879	1.2879	1.2916	1.2882	1.2615	1.2521	1.2565	1.2646	1.2615	1.2722	1.2902	1.2790	1 2770	1 2007	/007-1	
Specimen Surface Area,	5	9.23	9.5 5.5	9.10	9.17	9.05	9.05	9.11	11.6	8.98	9.04	9.6	9.04	6.0	9.10	8.97	9.16	9.03	9.00	40.6	70.0	5	
Sure		200	203	200	200	200	200	1250	1250	1950	1950	2500	2500	200	1500	0057	2500	200	1500	2500	2500	200	
Pressure		3.45	3.45	3.45	3.45	3.45	3.45	8.62	8.62	13.44	13.44	17.24	17.24	0.34	10.34	47.71	17.24	0.34	10.34	17.24	17 24		
Exposure Time,		33	33	<u>.</u>	16	568	768	33	93	77	33	53	53	88	88	8 8	8 8	697	569	569	269		

**Specimens deteriorated to the stage that valid measurements were not possible

TABLE 2.2-14

CHEMICAL COMPOSITION OF NITROGEN TRIFLUORIDE RECOVERED FROM STATIC EXPOSURE TESTS WITH NON-METALLIC MATERIALS

			אזוו אסטבערוערוני		277					
			Сомпо	Composition,	Weight	Percent				Table No.
Test No.	Type of Exposure	NF3	Active Fluorides as HF	2	1	CF4	200	N20	Lylinder of Origin for the NF ₃	Specimen Data are Reported
A8X	Liquid/Vapor NF3, 195 K, 33 days All Teflons	91.66	0.0004	0.35	0.44	0.0078	0.0012	0.051	H81136	2.2-6
A8Y	Liquid/Vapor NF3, 195 K, 90 days All Teflons	98.49	<.0002	0.84	0.59	0.0070	0.013	0.061	H81136	2.2-6
A8Z	Liquid/Vapor NF3, 195 K, 273 days All Teflons		0.0056	No Chr	Chromatographic	aphic An	Analysis		17319-C	2.2-6
B8X	$3.45~\text{MN/m}^2~\text{NF}_3$, $344~\text{K}$, $30~\text{days}$ All Teflons	16.76	0.20	0.85	0.15	0.66	0.14	0.082	17228-C	2.2-10
B8Y	3.45 MN/m ² NF3, 344 K, 90 days All Teflons	98.91	<.0002	0.55	0.41	0.0070	0.048	0.072	H81136	2.2-10
288	3.45 MW/m ² NF3, 344 K, 272 days All Teflons	98.57	0.086	0.47	0.15	0.46	0.18	0.078	17319-C	2.2-10
C8X	8.62 MN/m ² NF3, 344 K, 30 days Polytetrafluoroethylene	97.29	0.42	1.20	0.32	0.65	0.055	0.056	17228-C	2.2-10
C8Y	10.34 MN/m2 NF3, 344 K, 90 days Polytetrafluoroethylene	98.41	0.063	0.22	0.27	0.97	0.011	0.049	Н55957	2.2-10
C82	10.34 MN/m ² NF3, 344 K, 273 days Polytetrafluoroethylene	97.86	0.11	0.69	0.33	0.97	0.0036	0.030	H55957	2.2-10
D8X	13.44 MN/m2 NF3, 344 K, 30 days Polytetrafluoroethylene	98.07	0.45	0.71	7	99.0	0.041	0.070	17228-C	٥، 2.2
*DNX	17.24 MM/m2 NF3, 344 K, 29 days Polytetrafluoroethylene, Kel F and Viton Class II	99.12	0.031	0.098	0.21	0.44	0.059	0.037	H55957 P178684	2.2-10 2.2-11 2.2-12
D8Y	17.24 MN/m2 NF3, 344 K, 89 days Polytetrafluoroethylene	98.61	0.036	0.11	0.19	1.00	0.0088	0.043	H55957	2.2-10
Z80	17.24 MN/m2 NF3, 344 K, 259 days Polytetrafluoroethylene	98.40	0.084	0.27	0.22	1.00	0.0036	0.027	H55957	2.2-10
	Cylinder 17228-C	98.68	0.17	0.20	0.10	0.75	0.013	0.083		
	Cylinder 17319-C	98.72	0.10	0.13	0.45	0.51	0.016	0.070		
	Cylinder H55957	98.68	0.0002	0	0.24	1.03	0.011	0.048		
	Cylinder H81136	99.56	0.0001	0	0.35	0.009	0	0.074		
	Cylinder P178684	99.68	0.0003	0	0.29	0.017	0	0.014		

TABLE 2.2-14 (cont.)

			Comp	Composition,	Weight	Weight Percent	ابد		Cylinder of	in Which
	General State of the State of t	NF3	Active Fluorides as HF	N ₂	05/00	CF4	200	N ₂ 0	Origin for the NF ₃	Specimen Data are Reported
Test No.	Liquid/Vapor NF3, 195 K, 34 days kel-F 81	98.67	0.025	0.21	0.45	0.59	0.033	0.058	17319-C	2.2-6
	Liquid/Vapor NF3, 195 K, 90 days Kel-F 81	99.11	<0002	0.34	0.46	0.0068	0.024	0.062	н81136	2.2-6
	Liquid/Vapor NF ₃ , 195 K, 272 days Kel-F 81	98.42	11.0	0.35	09.0	0.46	0.024	0.042	17319-C	2.2-6
	3.45 MN/m ² NF3, 344 K, 32 days Kel-F 81	98.36	0.029	0.66	0.28	0.47	0.11	0.083	17319-C	2.2-11
	3.45 MN/m2 NF ₃ , 344 K, 90 days Kel-F 81	98.89	0.0011	0.62	0.40	0.0069	0.015	0.068	н81136	2.2-11
	3.45 MN/m ² NF3, 344 K, 272 days Kel-F 81	98.79	0.076	0.53	۲.	0.46	0.055	0.031	17319-C	2.2-11
	8.62 MN/m² NF3, 344 K, 30 days Kel-F 81	17.71	0.46	0.89	0.17	0.66	0.056	0.053	17228-C	2.2-11
	10.34 MN/m^2 NF3, 344 K, 91 days Kel-F 81	98.05	0.074	0.51	0.35	0.97	0.005	0.035	н5595 7	2.2-11
	10.34 MN/m ² NF ₃ , 344 K, 273 days Kel-F 81	97.87	0.10	0.69	0.33	0.97	0.005	0.038	Н55957	2.2-11
	13.44 MN/m2 NF3, 344 K, 30 days Kel-F 81	98.02	0.44	0.63	0.14	0.66	0.055	0.065	17228-C	2.2-11
	17.24 MN/m ² NF3, 344 K, 88 days Kel-F 81	98.43	0.0058	0.25	0.25	1.00	0.022	0.045	H55957	2.2-11
	17.24 MN/m ² NF3, 344 K, 269 days Kel-F 81	98.58	0.069	0.10	0.21	1.00	0.015		H55957	2.2-11
	Liquid/Vapor NF3, 195 K, 31 days Carbon CDJ-83	98.37	0.13	0.23	0.40	0.79	0.015	0.066	17228-C	2.2-6
	Liquid/Vapor NF3, 195 K, 92 days Carbon CDJ-83	99.41	0.0004	0.20	0.32	0.014	0	0.048	P178684	2.2-6
	Liquid/Vapor NF3, 195 K, 273 days Carbon CDJ-83	98.72	0.080	0.34	0.35	0.44	0.023		17319-0	2.2-6
810X	3.45 MN/m ² , 344 K, 32 days Carbon CDJ-83	97.64	0.019	0.97	0.49	0.48	0.31	0.088	17319-0	8-7.7

TABLE 2.2-14 (cont.)

			Comp	osition	, Weight	Composition, Weight Percent			And the state of	Table No. in Which
Test No.	Type of Exposure	NF ₃	Active Fluorides as HF	₹2	05/00	CF4	200	N20	Origin for the NF ₃	Specimen Data are Reported
A13Z	Liquid/Vapor NF3, 195 K, 273 days Fluorosilicone FS 3451	98.61	0.023	0.37	0.40	0.49	0.020	0.091	17319-C	2.2-6
B13X	3.45 MN/m ² NF3, 344 K, 30 days Fluorosilicone FS 3451	97.48	0.15	0.84	ř.	0.67	0.78	0.084	17228-C	2.2-8
8132	3.45 MN/m^2 , 344 K, 272 days Fluorosilicone FS 3451	81.72	7.19	4.28	1.86	0.68	2.48	1.26	17319-C	2.2-8
A14X	Liquid/Vapor NF3, 195 K, 35 days Kevlar	98.37	0.0042	0.44	0.56	0.56	0.015	0.049	17319-C	2.2-6
Al4Y	Liquid/Vapor NF3, 195 K, 93 days Kevlar	98.43	900.0	0.39	0.43	0.61	0.023	0.10	17319-0	2.2-6
A14Z	Liquid/Vapor NF3, 195 K, 275 days Keylar	98.64	0.013	0.34	0.38	0.54	0.0072	0.090	17319-C	2.2-6
B14X	3.45 MN/m2 NF3, 344 K, 32 days Keylar	No Data							17319-C	2.2-8
B14Y	3.45 MV/m² NF3, 344 K, 92 days Kevlar	96.71	0.001	2.01	0.48	0.47	0.23	0.099	17319-C	2.2-8
B14Z	3.45 MN/m2 NF3, 344 K, 274 days Kevlar	97.72	0.10	1.27	Ŧ.	0.46	0.34	0.11	17319-C	2.2-8
A15X	Liquid/Vapor NF3, 195 K, 33 days Kalrez	98.83	0.0052	0.15	0.33	09.0	0.019	0.059	17319-C	2.2-7
Alsy	Liquid/Vapor NF3, 195 K, 91 days Kalrez	99.45	0.0002	0.21	0.30	0.014	0	0.027	P178684	2.2-7
A152	Liquid/Vapor NF3, 195 K,274 days Kalrez	98.78	0.066	0.25	0.29	0.50	0.036	0.074	17319-C	2.2-7
B15X	3.45 MN/m ² NF ₃ , 344 K, 32 days Kalrez	97.56	0.013	0.96	0.36	0.48	0.55	0.074	17319-C	2.2-9
втя	3.45 MN/m² NF3, 344 K, 91 days Kalrez (Corrected for air)	88.60 97.01	0.0036	9.22	2.04	0.012	0.11	0.016	P178684	2.2-9
12518	3.45 iM/m² NF3, 344 K, 274 days Kalrez	95.03	0.068	2.70	0	0.54	1.15	0.51	17319-C	2.2-9
А16х	Liquid/Vapor NF3, 195 K, 33 days Silastic LS-53	98.75	0.004	0.17	0.38	0.62	0.020	0.053	1,7319-C	2.2-7
A16Y	Liquid/Vapor NF3, 195 K, 91 days Silastic LS-53	99.34	0.0002	0.20	0.41	0.014	0	0.047	P178684	2.2-7
A16Z	Liquid/Vapor NF3, 195 K, 270 days Silastic LS-53	97.95	0.011	0.93	0.54	0.47	0.018	0.080	17319-0	2.2-7

TABLE 2.2-14 (cont.)

		1	Comp	osition	Composition, Weight Percent	Percent				Table No.
Test No.	Type of Exposure	NF ₃	Active Fluorides as HF	N ₂	02/20	GF.	200	N ₂ 0	Origin for the NF ₃	Specimen Data are Reported
810Y	3.45 MN/m², 344 K, 90 days Carbon CDJ-83	99.45	0.0084	0.24	0.18	0.014	0.065	0.041	P178684	2.2-8
8102	3.45 MN/m², 344 K, 273 days Carbon CDJ-83	95.96	0.087	2.68	0	0.49	0.52	0.27	17319-C	2.2-8
Allx	Liquid/Vapor NF3, 195 K, 34 days Carbon CJPS	98.76	0.024	0.15	0.36	09.0	0.040	٦.064	17319-C	2.2-6
Ally	Liquid/Vapor NF3, 195 K, 92 days Carbon CJPS	99.21	<.0002	0.31	0.43	0.014	0	0.028	P178684	2.2-6
A112	Liquid/Vapor NF3, 195 K, 270 days Carbon CJPS	98.52	0.031	0.40	0.50	0.45	0.028	0.061	17319-C	2.2-6
XII8	3.45 MN/m ² NF ₃ , 344 K, 32 days Carbon CJPS	95.74	0.0083	2.36	1.23	0.47	0.12	0.082	17319-C	2.2-8
¥III	3.45 MN/m ² NF ₃ , 344 K, 91 days Carbon CJPS	98.89	0.023	0.24	0.18	0.014	0.065	0.041	P178684	2.2-8
2112	3.45 MN/m² NF3, 344 K, 273 days Carbon CJPS	95.33	0.10	2.75	1.15	0.44	0.12	0.11	17319-C	2.2-8
A12X	Liquid/Vapor NF3, 195 K, 33 days Krytox	98.65	0.019	0.20	0.42	0.61	0.031	0.068	17319-C	2.2-6
A12Z	Liquid/Vapor NF3, 195 K, 273 days Krytox	91.12	0.028	95.9	1.78	0.41	0.041	0.057	17319-C	2.2-6
B12X	3.45 MN/m ² NF ₃ , 344 K, 32 days Krytox	97.19	0.099	1.61	0.52	0.48	0.032	990.0	17319-C	2.2-8
8122	3.45 MN/m^2 NF ₃ , 344 K, 272 days Krytox	98.42	0.072	0.95	<u>۲</u>	0.43	0.068	0.064	17319-C	2.2-8
41 <i>2</i> *x	Liquid/Vapor NF3, 195 K, 32 days Vacuum-stripped Krytox	98.77	0.0016	0.17	0.25	0.75	0.013	0.043	H55957 P178684	2.2-6
812*х	3.45 MN/m² NF3, 344 K, 31 days Vacuum-stripped Krytox	99.05	0.0010	0.071	0.074	0.75	0.036	0.0010	H\$5957 P178684	2.2-8
413X	Liquid/Vapor NF3, 195 K, 33 days Fluorosilicone FS 3451	99.55	0.0020	0.088	0.30	0.016	0.0076 0.032	0.032	P178684	2.2-6
A13Y	Liquid/Vapor NF3, 195 K, 91 days Fluorosilicone FS 3451	99.33	0.0006	0.25	0.35	0.015	0	0.057	P178684	2.2-6

TABLE 2.2-14 (cont.)

		H.	Comp Active Fluorides	osition	Composition, Weight Percent re ides N. 0./CO CF.	Percent CF.	8	0 2	Cylinder of Origin for the NF	Table No. in Which Specimen Data are
Blex	Z 2	96 82	as HF	7.	000	6 6	2 0 66	2	3	Reported
		30.05	0.0	90.	0.00	*	0.00	0.00	1-818-1	6-7.7
816Y	3.45 MN/m ² NF ₃ , 344 K, 91 days Silastic LS-53	99.44	0.0034	0.25	0.15	0.014	0.11	0.027	P178684	2.2-9
8162	3.45 MN/m ² NF ₃ , 344 K, 276 days Silastic LS-53	97.88	0.063	1.12	7	0.48	0.37	0.081	17319-C	2.2-9
A17X	Liquid/Vapor NF3, 195 K, 33 days Vitons	99.46	7.	0.11	0.36	0.008	0.0029	0.060	H81136	2.2-7
A17Y	Liquid/Vapor NF3, 195 K, 91 days Vitons	99.32	0.0002	0.26	0.37	0.015	0	0.032	P178684	2.2-7
A172	Liquid/Vapor NF3, 195 K, 33 days Vitons	98.50	0.13	0.36	91.0	0.73	0.019	0.097	17228-C	2.2-7
817X	$3.45 \text{ MN/m}^2 \text{ NF}_3$, 344 K , 33 days Vitons	99.35	돈	0.25	0.18	0.0073	0.15	0.073	H81136	2.2-9
817Y	$3.45 \text{ MN/m}^2 \text{ NF}_3$, 344 K , 91 days Vitons	99.14	0.0002	0.42	0.17	0.014	0.23	0.031	P178684	2.2-9
8172	3.45 MN/m ² NF ₃ , 344 K, 268 days Vitons	93.43	1.16	0.021	1.38	0.70	2.40	0.91	17228-C	2.2-9
XZ13	8.62 MN/m2 NF3, 344 K, 33 days Viton, Class II	99.24	0.0002	0.23	0.37	0.0074	0.070	0.072	H81136	2.2-12
C17Y	19.34 MN/m 2 NF3, 344 K, 94 days Viton, Class II	99.07	0.0005	0.058	0.029	0.68	0.11	0.045	H55957 P178684	2.2-12
ZZ 13	$10.34 \text{MV/m}^2 \text{NF}_3$, 344K , 269days Viton Class II	98.43	0.030	0.22	0.22	0.99	0.084	0.026	H55957	2.2-12
XZIO	13.44 MN/m 2 NF3, 344 K, 33 days Viton, Class II	99.38	0.0005	0.15	0.35	0.0075	0.061	0.058	H81136	2.2-12
YZ10	17.24 MN/m² NF3, 344 K, 96 days Viton, Class II	No data							H55957 P178684	2.2-12
ZZ 10	$17.24~\text{MN/m}^2~\text{NF}_3$, 344 K, 269 days Viton, Class II	98.55	0.036	0.15	0.15	0.98	0.11	0.03	H55957	2.2-12
818X	3.45 MN/m ² NF3, 344 K, 32 days Polypropylene	97.49	0.027	1.24	0.34	0.47	0.35	0.074	17319-C	2.2-8

ė

TABLE 2.2-14 (cont.)

		TABLE 2	TABLE 2.2-14 (cont.)	ont.)						
			Z Z	osition	Ve joht	Composition. Welght Percent				Table No
Test No.	Type of Exposure	NF3	Active Fluorides as HF	N ₂	N ₂ 0 ₂ /c ₀	CF ₄	200	N ₂ 0	Cylinder of Origin for the NF3	Specimen Data are Reported
B18Y	3.45 MN/m ² NF3, 344 K, 91 days Polypropylene	99.44	0.0036	0.25	0.10	0.014	0.15	0.040	P178684	2.2-8
8182	3.45 MN/m² NF3, 344 K, 273 days Polypropylene	97.31 0.11	0.11	1.75	7.	0.43	0.31	0.085	17319-C	2.2-8
819x	3.45 MN/m ² NF3, 344 K, 32 days Dry Powder TFE (MS 122)	97.85	0.062	1.07	0.40	0.47	0.073	0.073 0.072	17319-C	2.2-8
B19Y	3.45 MN/m ² NF3, 344 K, 91 days Dry Powder TFE (MS 122)	97.92	0.0029	1.47	0.50	0.015	0.047	0.047 0.046	P178684	2.2-8
Z618	3.45 MN/m ² NF ₃ , 344 K, 273 days Dry Powder TFE (MS 122)	97.42	0.12	1.85	F	0.45	0.061	0.061 0.094	17319-C	2.2-8

2.0, Experiment Results and Discussion (cont.)

2.3 FRACTURE MECHANICS/TOUGHNESS TESTS

The purpose of the fracture mechanics/toughness tests is to determine the susceptibility of the selected metals to the phenomenon of stress-crack corrosion. The resistance of a structure to failure by flaw propagation under a rising load is a mechanical property known as the fracture toughness, KIC, for plane strain loading conditions. To predict the behavior of structures the fracture toughness of the material of interest is determined by testing fatigue precracked specimens and determining the stress intensity, K, (a quantity which depends on the crack length, load, and specimen geometry) at which the specimen fails by rapid or unstable crack propagation. This critical value of stress intensity is defined as KIC. Tests for $K_{\rm IC}$ determination are conducted in air under conditions specified by ASTM-E399-74.

Enhanced flaw propagation is also observed under constant load conditions below the critical stress intensity level in specific environment-material combinations and is referred to as stress corrosion cracking (SCC). In testing in environments such as salt water or nitrogen trifluoride a stress intensity less than K_{IC} is imposed and the precrack in the specimen grows in a slow stable fashion as a result of environmental interactions. If the jaws of the test fixture remain fixed (constant deflection), the stress intensity, K, will drop from K<K $_{IC}$ to K = K $_{ISCC}$ as a result of the crack growth. K $_{ISCC}$ is the limiting or critical stress intensity below which no crack growth will occur for a defined material-environment combination under sustained load conditions. Some materials have poor stress corrosion cracking resistance and experience a major decrease in K when exposed to service environments; others do not. Nine candidate metals were selected for evaluation. The candidates with their heat-treat conditions are itemized in Table 2.3-1.

2.3.1 Test Procedures

Plate was procured for all the specimens except Inconel 718 and Arde 301. One inch plate was procured for the titanium alloys, CRES 347 and C-1018 steel materials. 3/4 inch plate was procured for aluminum, CRES 17-4PH and 250 Maraging materials. Inconel 718 specimens were machined from 3 inch diameter bar stock and the Arde' 301 specimens were machined from 1/16 inch thick sheet.

The program was conducted in two steps: (1) the fracture toughness measurements were made initially in an air environment and (2) the stress corrosion cracking tests which were subsequently conducted in various nitrogen trifluoride environments. With the exception of the Arde 301, one welded and one parent specimen of each material were prepared as compact

TABLE 2.3-1

MATERIALS SELECTED FOR THE NITROGEN TRIFLUORIDE STRESS CORROSION CRACKING TESTING WITH HEAT TREATMENT AND WELD FILLER WIRE

Material As-Received	GMA Welded Weld Filler Metal		rdness After it Treatment
A1 2219-T37	A1 2319	Weld and Parent were aged at 340-360°F for 18 hrs. air cooled. (MIL-H-6088). Brings to T87 condition.	R _B 77
CRES 347	94.50	Received in annealed condition.	de se
CRES 347	CRES 349	Stress relieved at 1600-1700°F for 2 hrs, air cooled.	R _B 38
CRES 17-4 PH H 1025	CRES 17-4 PH	Weld and parent were solution treated at 1875-1925°F for 30 min, air cooled below 90°F and aged at 1025°F for 4 hi (MIL-H-6875).	R _C 37
Inconel 718	Inconel 718	Weld and parent were solution treated at 1925-1975°F for 1 hr, water quenched, precipitation treated at 1385-1415°F for 10 hrs, furnace cooled to 1185-1215°F and held there until a total precipitation time of 20 hrs had been reached, air cooled.	
T1 5A1-2.5 Sn EL1	9n 166	Received in annealed condition.	94 94
Ti 5A1-2.5 Sn ELI	Ti 5A1-2.5 Sn	Stress relieved at 985-1015°F for 4 hrs, air cooled.	R _C 31
T1 6A1-4V	MA TAL	Received in the STA condition.	10 10
T1-6A1-4V	T1 6A1-4V	Stress relieved at 1000°F for 4 hrs, air cooled.	R _C 41
C-1018 Steel	96.50	Annealed	101.104
C-1018 Stee1	Linde 85	Stress relieved 1 hr at 1085- 1115°F for 1 hr, air cooled.	R _B 81
VM-250 Maraging Steel	250 Maraging	Aged at 900°F for 3 hrs	640 658
Arde 301	Steel	As-received welded-sheet.	

tension specimens in the configuration shown in Figure 2.3.1. The welded specimens were double vee grooved and GMA welded with the filler metals identified in Table 2.3-1. These specimens were subjected to fracture toughness testing in air.

The metal specimens used in the stress corrosion cracking tests in the nitrogen trifluoride environments were bolt-loaded and had the same weld preparation and crack orientation as the compact tension specimens. A photograph of the typical stress corrosion cracking specimen is shown in Figure 2.3.2. The crack plane orientation with respect to the rolling direction of the test specimens is given in Table 2.3-2. The rolling direction code given in the table is pictorially presented in Figure 2.3.3. Because the Arde 301 was available only in the form of a thin sheet, it was tested for stress corrosion cracking effect only in the configuration shown in Figure 2.3.4.

The fracture toughness tests, were conducted first to determine the preload value for the bolt-loaded constant stress corrosion cracking specimens. Specimens were precracked and tested per ASTM E399-74 by Atlas Testing Laboratories.* At the end of each test the resulting K value was judged either valid or invalid according to the criteria in ASTM E399-74. Values judged invalid were still useful for estimating the loading required for the stress corrosion cracking specimens. The fracture toughness values obtained are reported in Table 2.3-3.

The bolt-load constant deflection test specimens were supplied by Atlas Testing Laboratories in the machined and precracked condition. In addition, each of the bolt loaded specimens was loaded at Atlas Testing Laboratories to a value which corresponded to $K_{\hat{i}}$, see Table 2.3-3, as determined by the following equation:

$$P = \frac{0.8 \, K_i \, B \, W^{1/2}}{f \left(\frac{a}{W}\right)} \tag{1}$$

where:

P is the bolt load on the specimen; in.-1b

 K_i is 80 percent of the stress intensity which caused failure in the fracture toughness tests

B is specimen thickness in in.

w is specimen width in in.

*Atlas Testing Laboratories, Los Angeles, CA.

Note 1—A surfaces shall be perpendicular and parallel as applicable to within 0.002 W TIR.

Note 2—The points of intersection of the crack starter tips with the two specimen faces shall be equally distant from either pin hole center to within 0.005 W.

Note 3—Integral or attachable knife edges for clip gage attachment to the crack mouth may be used (see Fig. 7 and 7.5.2)

	Metric Eq	uivalents	
in.	0.002	0.005	0.010
ınm	0.05	0.13	0.25

Figure 2.3.1. Compact Tension Specimen - Standard Proportions and Tolerances

Figure 2.3.2. Photograph of a Bolt-Loaded Stress Corrosion Cracking Specimen

TABLE 2.3-2

SPECIMEN MATERIAL AND CRACK PLANE ORIENTATION FOR SPECIMENS

<u>Material</u>	Crack Plane Orientation With Respect to Rolling Direction
A1 2219-T87	T-L
Welded	In Weld
CRES 347	T-L
Welded	In Weld
17-4 PH - H1025	T-L
Welded	In Weld
Inconel 718	T-S/S-T
Welded	In Weld
Ti 5A1-2.5 Sn ELI	T-L
Welded	In Weld
Ti 6A1-4V STA	T-L
1018 Steel	T-L
Welded	In Weld
250 Maraging Steel	
We I ded	In Weld
Arde 301	

Figure 2.3.3. Specimen and Pre-Crack Plane Orientation with Respect to Material Rolling Direction

MAG. 3X

Figure 2.3.4. Photograph of the Arde 301 Qualitative Crack Growth Specimen. Sheet Specimen is Indicated by the Arrow

TABLE 2.3-3
FRACTURE TOUGHNESS VALUES FOR THE CANDIDATE MATERIALS

		K _{Iq}	$K_i = .8 K_{Iq}$	
Material	•	$1bf \times 10^{-3} \cdot in.^{-3/2}$	$1bf \times 10^{-3} \cdot in.^{-3/2}$	Valid K _{IC}
Al 2219 T87	Parent	24.2	19.4	Yes
	Welded	16.1	12.9	No
CRES 347	Parent	45.2	36.2	No
	Welded	42.8	34.2	No
CRES 17-4 PH	Parent	64.0	51.2	Yes
	Welded	77.6	62.1	No
Inconel 718	Parent	81.6	65.3	Yes
	Welded	74.9	59.9	No
Ti 5A1-2.5 Sn	Parent	63.9	51.1	Yes
	Welded	82.9	66.3	No
Ti 6Al-4V	Parent	36.1	28.9	No
	Welded	60.9	48.7	No
C-1018 Steel	Parent	62.2	49.8	Yes
	Welded	51.1	40.9	No
250 Maraging 7. Steel	Welded	76.4	61.1	Yes
Arde 301	Welded			

a is crack length in in., and f $(\frac{a}{w})$ is a function determined by specimen geometry.

The relative displacement was measured across the crack mouth using a clip gage and was recorded for each specimen.

At ALRC the specimens were cleaned with isopropanol, bolt-loaded to the clip gage displacement determined at Atlas Testing Laboratories, and placed in test bombs. Specimens were exposed to each of the three nitrogen trifluoride test environments: 2500 psia gas, at 344 K (160 F), 500 psia gas at 344 K (160 F) and liquid at 195 K.

At the end of 30 and 90 days specimens were removed, the cracks were measured to the nearest 0.1 mm on both sides of each specimen by means of a microscope with calibrated stage, and the specimens were re-exposed to the environment. After 180 days of total exposure the specimens were removed from the bombs and unloaded by loosening the bolt with the clip gage in place. Once the clip gage displacement had been noted the specimen was placed in an Instron tensile test machine, loaded, and the load necessary to open the specimen crack mouth to the bolt-loaded clip-gage displacement was recorded as PISCC. Following the determination of PISCC each specimen was broken open in air, the $P_{\rm Q}$ determined and the crack front measured at its quarter points per ASTM-E399-74. The KISCC and $K_{\rm Q}$ were then calculated for each specimen by:

$$K_{ISCC} = \frac{P_{ISCC} f(\frac{a}{w})}{B w^{1/2}}$$
 (2a)

and

$$K_{q} = \frac{P_{q} f(\frac{a}{w})}{R_{w} 1/2}$$
 (2b)

where:

KISCC is the limiting or critical stress intensity below which no crack growth will occur for a defined material-environment combination under sustained load;

 P ISCC is the residual load left in the specimen after the 180 days of exposure; K_{q} is the stress intensity where specimens failed by rapid or unstable crack propagation;

 P_{q} is the load taken from the load-clip gage displacement curve as defined by ASTM-E399-74;

and B, w, f $(\frac{a}{w})$ are as defined for equation (1).

2.3.2 Experimental Results

The specimen data from the stress corrosion cracking tests after 180 days exposure are presented in Table 2.3-4. The data have been subdivided according to the nitrogen trifluoride environment and the parent or welded condition of the test specimens. In Table 2.3-5 the average KISCC values are compared with the $\rm K_{1}$ values generated by the fracture toughness testing. The $\rm K_{Iq}$ values from the fracture toughness tests are compared with the $\rm K_{Q}$ values in Table 2.3-6.

Typical fracture surfaces of the specimens exposed to nitrogen trifluoride are shown in Figure 2.3.5 through Figure 2.3.12. In some cases, the bands on the fracture surfaces correspond to the 30, 90, and 180 day exposure periods as the specimens were removed from the nitrogen trifluoride, examined, and re-exposed. Weld defects such as poor penetration and gas porosity can be seen on many welded specimen fracture surfaces.

The comparison of the average KISCC for the materials in Table 2.3-5 shows some interesting material-environment interactions. In the 160°F, 500 psia gaseous environment welded Al 2219 did not show evidence of stress corrosion cracking whereas the parent material did crack (see Figure 2.3.5). Parent and welded CRES 17-4PH behaved similarly in the 160°F, 500 psia environment (see Figure 2.3.7a and 2.3.7b). The Ti 6Al-4V parent specimen was severely cracked (see Figure 2.3-10a). No evidence of stress corrosion cracking was found in either the parent or welded CRES 347, Figure 2.3.6, nor in Inconel 718, Figure 2.3.8.

In the 2500 psia environment welded Inconel 718 specimens did not stress corrosion crack nor did welded C-1018 steel specimens. In contrast both parent and welded Ti 6Al-4V specimens cracked to such an extent that they were removed from the environment after 30 days of exposure. The welded Ti 6Al-4V specimens in the 160° F, 2500 psia nitrogen trifluoride cracked all the way (see Figure 2.3.10b), thus indicating a KISCC value much lower than that listed for the parent material in Table 2.3-5. Other materials that cracked in the 160° F 2500 psia NF3 environment were parent C-1018 and welded 250 Maraging steels, see Figure 2.3.11a and 2.3.12.

Parent Ti 5A1-2.5 Sn was the only material to exhibit stress corrosion cracking in liquid nitrogen trifluoride at 108°F, see Figure 2.3.9. No indication of stress corrosion cracking was seen on the fracture surfaces of the other specimens tested in liquid nitrogen trifluoride.

TABLE 2.3-4

DATA OBTAINED FROM THE SPECIMENS AFTER 180 DAYS EXPOSURE IN NITROGEN TRIFLUORIDE FOR STRESS CORROSION CRACKING EVALUATION

									KISCC		ಸ್ಥ	Α,
Material	NF ₃ Environment	Specimen No.	a in.	3 .E	B in.	\$ 100	$f(\frac{a}{w})$		lbfx10 ⁻³ .in. ^{-3/2}	⁷ ₽.5	lbfx10 ⁻³	lbfx10-3/2
Al 2219-T87 Parent 160°F, 500	160°F, 500 psia	1-1	0.942 0.870 0.876	1.502	0.671 0.666 0.666	0.627 0.580 0.583	15.155 12.517 12.670	910	16.77	1410 1745 1748	25.99	19.4
Al 2219-T87 Welded 160°F, 500	160°F, 500 psia	1-6w 1-7w 1-8w	0.729 0.822 0.746	1.505	0.668 0.668 0.671	0.484 0.547 0.496	9.174 11.125 9.481	1030 970 655	11.53 13.18 7.54*	1476 1325 1510	16.52 18.00 17.39	12.9
Al 2219-T87 Welded	-108°F,liquid	1-4w 1-5w 1-9w	0.769 0.745 0.746	1.504	0.669 0.667 0.672	0.511	9.937 9.453 9.500	875 927 1000	10.60, 10.71	1425 1400 1498	17.26	12.9
CRES 347 Parent	160° F, 500 psia	2-1 2-2 2-3	1.026 1.020 0.999	2.003 2.016 2.004	0.910 0.910 0.910	0.512 0.506 0.499	9.965	4200 4280 4990	32.50 32.38 37.03	6700 6860 7160	51.84 51.91 53.14	36.2
CRES 347 Welded	160°F, 500	2-4w 2-5w	1.036	2.003	0.910	0.517	10.121	4460 4820	35.05 34.96	6320 7000	49.66	34.2
CRES 17-4PH Parent	160°F, 500 psia	3-2-3-3	1.237 1.247 1.300	1.508 1.505 1.509	0.665 0.664 0.664	0.820 0.829 0.861	42.182 44.309 53.934	535 545 362	27.64 29.65 23.94	920 810 565	47.52 44.06 37.36	51.2
CRES 17-4PH Welded 160°F, 500	160°F, 500 psia	3-5w 3-9w 3-12w	0.765 0.772 0.770	1.505	0.666 0.666 0.666	0.508 0.512 0.511	9.847 9.967 9.937	5090 5600 5290	61.34 68.27 64.31	9180 8000 8980	110.63 97.53 109.18	62.1
CRES 17-4PH Welded	160°F,2500		1.212 0.828 1.256	1.502 1.504 1.506	0.665 0.664 0.665	0.807 0.551 0.834	38.98 11.281 45.76	890 4540 709	42.56 62.90 39.76	1260 7450 1370	60.26 103.21 76.83	62.1
CRES 17-4PH Welded	-108°F,liquid	3-4w 3-7w 3-8w	0.754 0.756 0.778	1.511	0.665 0.663 0.665	0.499 0.499 0.515	9.575 9.566 10.037	4040 4470 4420	47.32 52.38 54.25	8760 9120 8560	102.61 106.87 105.07	62.1
Inconel 718 Parent	160°F, 500 psia	4-1 4-2 4-3	0.988 1.029 0.997	1.998 1.998 1.992	0.913 0.918 0.895	0.494 0.515 0.501	9.448 10.051 9.618	9450 9590 6250	69.18 74.29 47.59	14950 11050 13800	109.45 85.60 105.07	65.3
Inconel 718 Welded 160°F, 500		4-6w 4-9w 4-11w	0.911 0.985 1.048	2.004 2.000 1.996	0.910 0.915 0.912	0.455 0.492 0.525	8.442 9.393 10.373	8690 8310 7640	56.95 63.95 61.51	13100 10000 8700	85.35 72.59 70.04	59.9
Inconel 718 Welded 160°F,2500	160°F,2500 psia	4-7w 4-10w 4-12w	0.951 0.979 0.974	2.000 2.005 2.002	0.904 0.925 0.908	0.475 0.488 0.487	8.945 9.278 9.231	8610 8740 8790	60.24 61.91 63.16	12500 11850 11250	87.46 83.94 80.83	6.65
Inconel 718 Welded	-168°F,liquid	4-5w 4-8w	0.953	1.994	0.912	0.478	9.007	9220 9410	57.49	10100	70.64	6.65
Ti 5Al-2.5Sn Parent -108°F,liquid ELI	-108°F,liquid	5-1 5-2 5-3	1.608 1.608 1.501	2.010 2.00 6 2.006	0.914 0.911 0.910	0.800 0.837 0.748	37.421 46.726 27.796	1365 1130 1830	39.42 40.92 39.47	No Pq.	~ ~ ~ ~	51.1
Ti 5Al 2.5Sn Welded –108°F,liquid ELI	-108°F,liquid	5-4w 5-5w	1.016	2.006	0.910	0.506	9.792	9400	64.58 66.75	11750	89.27 88.05	66.3

TABLE 2.3-4 (cont.)

									KISCC		× ₀	Ϋ́.
Material	NF ₃ S ₁	Specimen No.	a in.	3 .	9	x ₪	f(\(\frac{a}{\pi}\))	P ISCC	lbfx10 ⁻³ in3/2	م ق	1bfx10 ⁻³	1bfx10 ⁻³
Ti 6Al-4V Parent	160°F, 500 psia	6-1 6-2 6-3	1.730	2.004	0.913	0.863	54.510	455	19.19	364	15.31	28.9
		9-9-9	1.788	2.002	0.910	0.893	65.151 65.151 57.951	325 347	16.44	320 330	16.19	
Ti 6A1-4V Parent	160°F,2500 psia	6-4	1.736	2.007	0.910	0.865	55.076	375	16.04	365	15.61	28.9
Ti 6Al-4V Welded	160°F,2500 psia		These K _{TSCC}	specimens must be le	cracked ess than	all the wa that for	y through the parent	after 30 specimen	days.			
AISI 1018 Parent	160°F,2500 psia		1.214 0.936 0.956	2.002 2.004 2.004	0.925 0.920 0.918	0.606 0.467 0.477	13.893 8.736 8.984	4500 7560 7400		4390 8890 7550	46.60 59.63 52.19	49.8
AISI 1018 Welded	160°F,2500 psia	7-4w 7-5w	0.989	2.003	0.918	0.494	9.428	6160	44.70	8230	59.72	40.9
250 Marage Welded	160°F,2500 psia	8-1w 8-2w 8-3w	0.831 1.030 0.805	1.506 0.672 1.513 0.665 1.507 0.654	0.672 0.665 0.654	0.552 - 3 0.681 19.439 3 1 0.532 10.682 4	19.439	3820 3220 4610	55.23 76.52 61.34	6710 4120 7080	97.91	61.1

TABLE 2.3-5

COMPARISON OF K_i = 0.8 K_{Iq} WITH AVERAGE K_{ISCC} VALUES

KISCC Values for the Various

\$20.80%				NF3 lest Environments	
		$K_{j} = 0.8 K_{I_{Q}}$	2500 psia gas 160°F	500 psia gas 160°F	lionid -108°E
Material	Short S	$1bf \times 10^{-3} \cdot in.^{-3/2}$	1bf x 10 ⁻³ .in. 3/2	1bf x 10 ⁻³ ·in3/2	lbf x 10-3.in3/2
A1-2219-T87	Parent	19.4		17.93	
	Welded	12.9		12.35*	10.94*
CRES 347	Parent	36.2		33.97*	
	Welded	34.2		35.00*	
CRES 17-4 PH	Parent	51.2		27.07	
	Welded	62.1	41.16	64.64*	51.32*
Inconel 718	Parent	65.3		63.68*	
	Me I ded	59.9	61.77*	*08.09	62.48*
Ti 5A1-2.5 Sn	Parent	51.1			39.94
	Welded	66.3			65.66 *
Ti 6A1-4V	Parent	28.9	16.04	17.82	
	Welded	48.7	Cracked Through		
C-1018 Steel	Parent	49.8	47.77**		
	Welded	40.9	44.09*		
250 Maraging Steel	Welded	61.1	64.36		

*No crack growth occurred. **Only one of three specimens showed cracking and its value was used. +Only two of three specimens showed cracking and their values were averaged.

TABLE 2.3-6

COMPARISON OF FRACTURE TOUGHNESS K_{IG} AND STRESS CORROSION CRACKING K_G VALUES

				K After Exposure to	
		K _{Iq} -3/2	160°F, 2500 psi gas	160°F, 500 psi gas	-108°F, liquid
Material		10 . 10 . 10.	101 x 10	.nr. 10 x 101	1bt x 10 '1n'
AI-2219-18/	Parent	24.2		26.61	
	Welded	16.1		17.30	16.90
CRES 347	Parent	45.2		52.30	
	Welded	42.8		50.22	
CRES 17-4 PH	Parent	64.0		42.98	
	Me1 ded	77.6	68.54	105.78	104.85
Inconel 718	Parent	81.6		100.03	
	Welded	74.9	84.08	76.16	75.11
Ti 5A1-2.5 Sn	Parent	63.9			*
	Welded	82.9			88.66
Ti 6A1-4V	Parent	36.1	*	*	
	Welded	6.09	*		
C-1018 Steel	Parent	62.2	55.91		
	Welded	51.1	57.21		
250 Maraging Steel	Welded	76.4	96.37		

^{*}A P_q value could not be determined, therefore no K_q is listed.

Figure 2.3.5. Al 2219-T87 $\rm K_{\rm ISCC}$ Specimens After Exposure To 500 psia Gaseous NF $_3$ at $\rm 160^{\circ}F$

Figure 2.3.6. CRES 347 Exposed to 500 psia Gaseous NF_3 at $160^{\circ}\mathrm{F}$

a. Parent Specimen Exposed to Gaseous NF_3 at 500 psia and $\mathrm{160^\circ F}$

b. Welded Specimen Exposed to Gaseous NF_3 at 500 psia and $160^{\circ}\mathrm{F}$

Figure 2.3.7. CRES 17-4 PH Exposed to Liquid and Gaseous NF_3

c. Welded Specimen Exposed to Liquid NF $_3$ at -78°C

d. Welded Specimen Exposed to Gaseous $\ensuremath{\mathrm{NF}}_3$ at 2500 psia and $160\ensuremath{^{\circ}}\ensuremath{\mathrm{F}}$

Figure 2.3.7. CRES 17-4 PH Exposed to Liquid and Gaseous ${\rm NF}_3$ (cont.)

a. Parent Specimen Exposed to Gaseous NF_3 at 500 psia and $160\,^{\circ}\mathrm{F}$

Figure 2.3.8. Inconel 718 Specimens Exposed to Liquid and Gaseous $\ensuremath{\mathsf{NF}}_3$

a. Parent Specimen

precrack

Figure 2.3.9. Ti 5A1-2.5 Sn ELI Specimens Exposed to Liquid NF3 at $-78\,^{\circ}\text{C}$

a. Welded Specimen Exposed to 2500 psia Gaseous $\ensuremath{\mathrm{NF}}_3$

b. Welded Specimen Exposed to 2500 psia Gaseous $\ensuremath{\mathrm{NF}}_3$

Figure 2.3.10. Ti 6Al-4V in a Gaseous NF $_3$ Environment at 160°F

b. Welded Specimen

Figure 2.3.11. C-1018 Steel in a 2500 psia Gaseous NF $_3$ Environment at 160°F

MAG. 3X

Figure 2.3.12. Welded 250 Maraging Steel Exposed to 2500 psia Gaseous ${\rm NF}_3$ at $160^{\circ}{\rm F}$

If the Titaniums, 6Al-4V and 5Al-2.5 Sn, are grouped together, a transition from no cracking in the welded Ti 5Al-2.5 Sn in liquid nitrogen trifluoride at -108°F to severe cracking in welded Ti 6Al-4V in 2500 psia gaseous nitrogen trifluoride at 160°F is seen. The increase in the stress corrosion cracking of the Titanium alloys as temperature and pressure of the nitrogen trifluoride is increased suggests that gaseous nitrogen trifluoride at 2500 psia is the most aggressive of the three test environments. The results with the welded CRES 17-4PH supports the aforementioned trend by showing stress corrosion cracking in the 2500 psia gaseous nitrogen trifluoride environment only, although it was tested in all three environments.

The best stress corrosion cracking resistance in the 160°F, 2500 psia environment is exhibited by Inconel 718 and C-1018 steel. These two iron base alloys are very different in chemistry with Inconel having major alloy additions of chromium and nickel whereas C-1018 steel has no alloy additions.

Another trend is indicated by the Al 2219, CRES 17-4PH, Ti 5Al-2.5 Sn and C-1018 steel specimens. In each of these materials the parent specimens stress corrosion cracked whereas the welded specimens did not. The general trend is for parent specimens to be more stress corrosion cracking susceptible than welded specimens. The difference in cracking behavior for welded versus parent specimens is attributed to the orientation of the crack plane in the rolled plate from which the parent specimens were machined. Welding would wipe out the effects of rolling direction in the weld metal but not in the heat affected zone.

 $\rm K_i$ is included in Table 2.3-5 to show the reduction in stress intensity that accompanies crack growth. Because of the accuracy of the loading system it was impossible to set each stress corrosion cracking specimen at exactly $\rm K_i$. However, a reduction in stress intensity from $\rm K_i$ to KISCC indicates crack growth that can be confirmed by examining specimen fracture surfaces as shown in Figure 2.3.12 and noted in the table entry for 250 Maraging Steel.

In general there is a good correlation between the KIq values from the fracture toughness tests and the stress corrosion cracking Kq values listed in Table 2.3-6. Exceptions are welded CRES 17-4PH in 160°F, 500 psia gas and -108°F liquid environments, parent Inconel 718 in the 160°F, 500 psia gaseous nitrogen trifluoride environment and the welded 250 Maraging steel in the 160°F, 2500 psia gaseous environment. In each of the aforementioned exceptions the Kq value for the specimens previously exposed to nitrogen trifluoride were higher than the KIq value which was exposed to air only.

The Arde' 301 specimens, which were tested for qualitative information only, exhibited some crack growth in the 500 psia nitrogen trifluoride at 160°F. No KISCC value could be calculated.

The KISCC values obtained after the 180 days of exposure in some cases are not the final KISCC values; the crack growth was still occurring in some of the specimens. This is shown in Figure 2.3.13 for parent specimens of Al 2219 T-87 and CRES 17-4 PH in the 500 psia nitrogen trifluoride environment. The crack growth measurements are presented in Table 2.3-7 for the metal specimens which exhibited stress corrosion cracking during the exposure to nitrogen trifluoride.

In summation, Incomel 718 and 347 stainless steel were the only metals in which no stress corrosion cracking was detected. In addition, the stress corrosion cracking in C-1018 steel was found only to a slight extent in the parent specimens and not at all in the welded specimens. The titanium 6Al-4V specimens were found to be extremely susceptible to stress corrosion cracking.

Figure 2.3.13. Crack Growth Length Versus Time of Exposure

TABLE 2.3-7

DATA INDICATIVE OF THE EXTENT OF CRACK GROWTH WHICH OCCURRED IN METAL SPECIMENS WHICH EXHIBITED STRESS CORROSION CRACKING

		u Z		Visua	Visually Measured	ured	Initial	Crack A	Crack Arrest Markes Fracture Surface.	kes On
Material		Environment	Specimen No.	Crack 30 da	k Length, 90 da	in. 180 da	Crack Length, in.	Leng	Length in Inches	thes 3
Al 2219-T87	Parent	160°F, 500 psia	1-1	0.772	0.783	0.874	0.776	0.766	0.942	
			1-2	0.702	0.750	0.793	0.728	0.728	0.870	
			1-3	0.766	0.764	0.793	0.761	0.761	0.876	
CRES 17-4 PH	Parent	160°F, 500 psia	3-1	0.728	1.053	1.128	0.756	0.756	0.988	1.237
			3-2	0.766	1.110	1.138	0.755	0.755	1.006	1.247
			3-3	1.041	1.173	1.219	0.814	0.814	1.256	1.300
CRES 17-4 PH	Welded	160°F, 2500 psia	3-6w	0.738	0.925	1.128	0.745	0.745	1.000	1.212
			3-10₩	0.707	0.715	0.713	0.752	0.752	0.772	0.828
			3-11w	0.713	0.896	1.156	0.751	0.751	0.981	1.256
Ti 5Al-2.5 Sn Parent	Parent	-108°F liquid	5-1	1.281	1.281	1.293	1.013	1.013	1.608	
			2-5	1.333	1.307	1.378	1.114	1.114	1.680	
			2-3	1.211	1.181	1.189	1.010	1.010	1.501	
Ti 6A1-4V	Parent	160°F, 500 psia	1-9	1.641	1.622	1.643	1.047	1.047	1.730	
			2-9	1.683	1.671	1.691	1.067	1.067	1.747	
			6-3	1.663	1.640	1.667	1.029	1.029	1.713	
			9-9	1.713	1.701	1.713	1.020	1.020	1.788	
			9-9	1.638	1.667	1.665	1.045	1.045	1.754	
Ti 6A1-4V	Parent	160°F, 2500 psia	6-4	1.703	Removed	from Tes	from Test After 30 da	;	1	
Ti 6A1-4V	Welded	160°F, 2500 psia	6-7w 6-8w	Cracked After 3	d All the 30 days	Cracked All the Way Through After 30 days	ngh			
C-1018 Steel	Parent	160°F, 2500 psia	7-1	1.069	0.998	1.026	0.968	0.968	1.214	
			7-2	0.953	0.965	0.965	0.936	0.936		
			7-3	0.972	0.990	0.984	0.956	0.956		
250 Marage	Welded	160°F, 2500 psia	8-1	0.732	0.756	0.758	0.764	0.764	0.831	
			8-2	0.771	0.939	0.939	0.841	0.841	1.030	
			8-3	0.752	0.772	0.783	0.787	0.787	0.805	

2.0, Experiment Results and Discussion (cont.)

2.4 FLOW TESTS

The objective of the tests was to determine the maximum temperature levels that materials can withstand in flowing gaseous nitrogen trifluoride for short periods of time without the materials exhibiting detrimental effects and to determine whether the detrimental effects were dependent on the velocity of the gas.

Eleven representative metals and four non-metallic materials were tested to define the threshold non-ignition temperatures for nitrogen trifluoride/material interactions and the effect of velocity on the threshold values. The materials tested were as follows:

Al 2219, T-87 CRES 304L, Annealed	Nickel 200, Annealed Ti 6 Al-4V, STA	CRES 17-4PH, H-1025 PFA Teflon
CRES 316L, Annealed Inconel 625, Annealed	1018 Steel Cu OFHC Annealed	Polytetrafluoroethylene Kel-F 81 CTFE
Monel 400, Annealed	Narloy A	Carbon CJPS

One series of tests was conducted in the subsonic velocity regime, and one series was conducted in the sonic velocity regime.

2.4.1 Apparatus and Procedures

A schematic diagram of the apparatus in which the tests were conducted is shown in Figure 2.4.1; a photograph of the entire apparatus is shown in Figure 2.4.2. The basic apparatus consists of an Inconel X-750 tube, 1.27 cm (0.5 inch) diameter with .89 mm (.035 inch) wall thickness which was heated by direct electrical resistance heating. The tube is divided into three parts: a preheat section, the heated test section containing the metal specimen of choice, and a downstream section with the flow controlling orifice.

The test section is approximately 15.2 cm (6 in.) long. A cylinder of the metal to be tested is welded in place between two sections of the Inconel X-750 tubing. A .508 mm (0.020 inch) diameter hole was drilled through the metal specimen and the length of the hole was approximately .64 cm (0.25 inches). An isolated junction, chromel-alumel thermocouple sheathed in .508 mm (0.020 inch) diameter Inconel was inserted into a hole drilled into the side of the metal specimen to within .25 mm (0.010 inch) of the flow passage. An assembled test section is shown in Figure 2.4.3 with the thermocouples in place. The metal specimens which could not be readily welded to the Inconel, i.e., Copper, Narloy A, 2219 Al, and Titanium 6Al-4V and the non-metal specimens were swaged in place in the Inconel tube and fitted with thermocouples similarly.

Figure 2.4.1. Schematic of Gaseous Flow Test Apparatus

Figure 2.4.2. Gaseous Flow Test Apparatus

Flow Test Specimen and Holder With Thermocouples Attached Figure 2.4.3.

2.4, Flow Tests (cont.)

Prior to conducting the tests, the apparatus was checked out using nitrogen to insure satisfactory operation and calibration of the test apparatus. A special specimen holder was fabricated which had a thermocouple TI-3 located in the gas stream immediately upstream of the orifice. A comparison of the readings of the thermocouple inserted in the sample (TT-1) and the one located in the gas stream showed agreement within 8 K (15 F).

The procedure for testing was as follows. The test section containing the desired metal disc was placed in the apparatus and the system was purged with nitrogen to insure that the test conditions were in order. Then the system was flushed repeatedly with nitrogen trifluoride to remove the nitrogen. Then with nitrogen trifluoride flowing, the heating of the apparatus was initiated. The pressures used in testing ranged from .15 to 1.5 MN/m 2 (22 to 220 psia) and the heating rates ranged from 5.5 to 11 K (10 to 20 F)/sec.

The flow rate of the gas through the orifice of the test specimen was controlled by the use of orifices at the exit of the downstream section for the subsonic tests and for the sonic velocity tests the exit was left open. In case of burn out of the test section, the gaseous flow was limited by a .42 mm (0.0165-in.) dia venturi in the unheated portion of the feed system. The data were recorded with an analog-to-digital recorder with each instrumentation channel sampled 85 times per second (the system sampling rate is 3,750 channels per second) and the data were reduced using a Hewlett Packard Model 2100 electronic computer. A direct read-out system and television monitor were used during the tests as means to indicate heating rates and to indicate when the test specimen failed.

The pressure transducers used in the apparatus were accurate to \pm 4.1 kN/m² (\pm 0.6 psi) and were sensitive to 0.69 kN/m² (0.1 psi) which is more than adequate for the testing. The thermocouples were prepared from special chromel and alumel wire and were accurate to \pm 0.38% in the temperature range that was encountered. Thus, the temperature values reported are accurate to at least (\pm 10°F).

2.4.2 Experimental Results

The nitrogen trifluoride used in the gaseous flow tests was analyzed and the composition was as follows.

2.4, Flow Tests (cont.)

Component	Weight Percent
NF ₃	99.68
Active fluoride as HF	.0003
CO/O ₂	0.29
CF ₄	0.017
N ₂ 0	0.014

The analysis was conducted with and without the KI scrubber in the gas chromatograph sampling loop and the results were in agreement.

Examples of the swaged specimen holders used in the testing are shown in Figure 2.4.4; examples of the welded specimen holders used in the testing are shown in Figure 2.4.5.

Typical plots of the data which were obtained from the tests are presented in three figures. In Figure 2.4.6 the initial velocity through the titanium 6Al-4V orifice was subsonic, the pressure ratio being 1.23. At the temperature labeled "l", there is the onset of a major film buildup as evidenced by the increase in the pressure drop across the orifice and the increase in the pressure ratio across the orifice due to the decrease in the orifice diameter. At the temperature labeled "2" there is a slight disruption in the pressure increases indicative of the loss of a small amount of material. At the temperature labeled "3", a major exotherm occurs as evidenced by sudden temperature increases and there is significant loss of materials as evidenced by the sudden decrease in pressure drop across the test orifice.

In Figure 2.4.7, the initial velocity through the nickel 200 test orifice is subsonic, the pressure ratio being 1.09. No significant events occurred until the temperature reached the position labeled "1", at which time a film formation occurred in the orifice as evidenced by a pressure drop increase and an endothermic reaction. At the temperature labeled "2", there was a minor loss of film as evidenced by the reversal of the pressure drop trend. At the temperature labled "3", some gradual film loss occurred as shown by a gradual decrease in the pressure drop; at the temperature labled "4" the film formation process was again repeated.

In Figure 2.4.8, the initial velocity through the copper OFHC was subsonic, the pressure ratio being 1.17. At the temperature labeled "l", there is the gradual onset of some film formation as evidenced by an increase in pressure drop across the orifice. At the temperature

Swaged Specimens Holders: (1) Heated to Failure, (2) Heated Until Threshold Events Occurred Figure 2.4.4.

Welded Specimen Holders: (1) Heated to Failure (2) Heated Until Threshold Events Occurred Figure 2.4.5.

Figure 2.4.6. Plot of Data Obtained from Gaseous Flow Test with 6 Al-4V Titanium Specimen

Figure 2.4.7. Plot of Data Obtained from Gaseous Flow Test with Nickel 200 Specimen

Figure 2.4.8. Plot of Data Obtained from Gaseous Flow Test with Copper OFHC Specimen

2.4, Flow Tests (cont.)

labeled "2", some minor film loss is noted by the decrease in pressure drop. At the temperature labeled "3", the film formation reoccurs as evidenced by an increase in the pressure drop. At the temperature labeled "4", the pressure drop increases more rapidly and the pressure ratio increases rapidly which is indicative of some major film formation in the test orifice. At the temperature labeled "5", a major exotherm occurs with a concurrent decrease in the pressure drop which is indicative of the loss of a significant amount of material.

The test data obtained and interpreted in the manner described above are presented in Table 2.4-1 for the metallic materials and in Table 2.4-2 for the non-metallic materials. In the case of the tests initiated at subsonic velocities the pressure ratio across the test orifice is indicated; in the case of tests at sonic velocity (pressure ratio ≥ 1.78) the pressure ratio is indicated as "sonic".

From the data in Tables 2.4-1 and 2.4-2 it is not apparent that the velocity significantly affects the temperature at which nitrogen trifluoride/material interactions occur. Generally higher pressures and sonic velocities did intensify the reactions which occurred. From the data, three threshold temperature values have been identified. The first attack threshold is the lowest temperature at which the material under any of the conditions of pressure and velocity investigated gave a detectable response attributable to attack. The second threshold temperature, referred to as "major-corrosion", is the lowest temperature under any of the conditions investigated at which major corrosion as evidenced by large thermal or pressure changes occurred. The third threshold temperature, referred to as the incipient-failure threshold, is the temperature at which gross material failure is first detected. The various threshold temperatures for each of the materials is presented in Table 2.4-3.

In considering this data for design limits one should keep in mind that the events detected occurred within the time frame of seconds and that long-term exposure at temperatures below the threshold values may result in intolerable corrosion rates or other unacceptable behavior.

It is of some interest to observe that the first-attack threshold for copper given in Table 2.4-3 (505 K) compares very favorably with the onset of an exothermic reaction at approximately 498 K observed by Pisacone, et al. (Reference 2.4-1) who employed a differential scanning calorimeter and low-pressure gaseous NF3 under static conditions. They also observed further but stronger exotherms at 543 and 613 K which would appear to correspond roughly to the major-corrosion threshold for copper (589 K) given in Table 2.4-3. Pisacane's study of aluminum showed an

TABLE 2.4-1

DATA INDICATIVE OF THE BEHAVIOR OF VARIOUS METALS WITH FLOWING GASEOUS NITROGEN TRIFLUORIDE AT ELEVATED TEMPERATURES

	Specimen	Orifice	Upstre Pressu			
Material	Temperature F	Pressure Ratio	3	psia	Material Response	No.
304-L Stainless Steel	1094 1510 1094 1510 1133 1580 1144 1600 1155 1620 1197 1695 1197 1695 1197 1695 1197 1695 1198 1625 1200 1700	1,44 1.49 Sonic	.67 .78 .79 .69 .78 .77 .83 .40	97 113 115 100 113 112 120 58 58 61	Minor film buildup Moderate film loss Major film buildup Moderate film loss Major film buildup Major film buildup Major exotherm with loss of mat'l. Major exotherm with loss of mat'l., gross specimen burning Very minor film loss and reformation Major film buildup Major loss of mat'l., orifice enlarged appreciably	104 112 112 104 112 104 112 157 157
316 ELC Stainless Steel	1100 1520 1158 1625 1172 ~1650 12u3 1705	Sonic	1.21 1.25 1.24 1.25	175 181 180 182	Major film buildup Film loss Film buildup Major exotherm and loss of mat'l., gross specimen burning/ melting	107 107 107 107
	914 1185 955 1260 964 1275 1066 1460 1100 1520 1103 1525 1139 1590 1158 1625 1180 1665 1205 1710 1208 1715 1144 ~1600 1241 1775	1.60 1.44 Sonic	.57 .58 .79 .59 .61 .80 .81 .79 .73 .76 .83 .40	83 84 115 86 88 116 118 114 106 111 120 58 62	Minor film loss Minor film buildup Minor film buildup Minor film buildup Major film buildup Major film buildup Major film buildup Minor film loss Minor film loss Minor film buildup Major exotherm and loss of mat'l., gross specimen burning Major exotherm and loss of mat'l., gross specimen burning Major exotherm and loss of mat'l., moderate specimen burning Major exotherm and loss of mat'l., moderate specimen burning	103 103 111 103 103 111 103 103 103 111 156
17-4PH, H-1025	1155 1620 1178 1660	Sonic	1.18	171 174	Significant exotherm film buildup Major exotherm with loss of specimen mat'l., gross specimen	106 106
	1139 1590 1166 1640	1.46	7.65 7.65	111	burning Minor exotherm and film buildup Major exotherm with loss of spec. mat'l., excess specimen	114 114
	866 ~1100 1005 ~1350 1122 ~1560 1178 1660	1.31 1.32 1.36 Sonic	.41 .41 .41 .43	60 60 60 63	burning Yery minor material loss Onset of a minor film buildup Major film buildup Major exotherm with loss of spec. mat'l.	158 158 158 158
1018 Carbon Steel	750	Sonic	1.37 1.44 1.43	198 209 208	Small, sharp endotherm Onset of major film loss Major exotherm with loss of spec. mat'l., gross orifice	138 138 138
	894 ~1150 1000 ~1340 1080 1485 1100 1520 1144 1600	1.35 1.56 Sonic	.73 .75 .76 .77	106 109 110 111 115	burning Onset of appreciable buildup Modest endotherm Rapid endothermic film buildup Minor film loss and subsequent major reformation Major exotherm with loss of spec. mat'l., gross orifice burning	117 117 117 117
	908 ~1175 1061 ~1450 1311 1900 1386 2035	1.39 1.40 1.34 1.37	.14 .14 .13 .14	20 20 19 20	Onset of minor film buildup Modest exothermic film loss Moderate film buildup No failure to max. test temp., some orifice opening observed	145 145 145 145
Monel 400	889 ~1140 903 ~1165 1058 ~1445 1066 ~1550 11141 1595 1144 1600 1178 1660 1214 1725 1300 1880 1311 1900 1075 1475 1125 1565 1144 1600 1286 1855	1.30 Sonic Sonic 1.41 1.45 Sonic	.76 .61 .64 .76 .81 .66 .70 .76 .81 .80 .38 .39 .41	110 89 93 110 110 117 96 101 110 117 116 55 57 59 65	Minor sharp exotherm Minor sharp exotherm Moderate exothermic film buildup Moderate exothermic film buildup Major film buildup No failure to max. test temp., orifice plugged off Major film buildup Very rapid endothermic film buildup Minor film loss and reformation Minor film loss No failure to max. test temp., orifice essentially plugged off Onset of moderate film buildup Major endothermic film buildup Minor film loss followed by continuing film buildup No failure to max. test temp. but orifice essentially plugged off	113 105 105 113 113 105 105 105 105 155 155

TABLE 2.4-1 (cont.)

	Specimen	Orifice				T4
Material	Temperatu	re Pressure Ratio	MN/m ²	psia	Material Response	Test No.
Inconel 625	950 12 1116 15 1194 16 1244 17 1264 18 1294 18	50 90 80 15 70	1.38 1.39 1.42 1.42 1.41	200 202 206 206 204 205	Apparent onset of a slow, minor exotherm Major endotherm with some film buildup Modest film loss followed by film reformation Modest film loss followed by film reformation Modest film loss followed by film reformation Minor film loss followed by film reformation	139 139 139 139 139 139
	1305 18 1372 20 1466 21 1044 14 1075 14 1114 15 1172 16 1222 17 1239 17 1255 186	10	1.43 1.53 1.53 .72 .73 .72 .80 .77 .77	207 222 222 105 106 105 116 112 111	Modest film loss followed by film reformation No failure but essentially complete blockage of orifice Burnout failure of preheater section Modest film buildup Modest film loss Major endothermic film buildup Minor film loss followed by film reformation Minor film loss followed by film reformation Minor film loss No failure to maximum test temperature, orifice virtually unchanged	139 139 139 118 118 118 118 118
Nickel 200	1061 ~141 1150 ~16 1166 16 1200 17 1266 18 1297 187 1308 189 1350 197 1083 149 1133 156 1172 166 1269 182 1322 192	100 100	1.35 1.39 1.38 1.39 1.44 1.44 1.50 .74 .78	196 201 200 201 209 209 218 107 113 115 109 108	Significant film buildup Moderate film loss and endothermic reformation Minor film loss and subsequent buildup Mo failure to max. test temp., orifice essentially plugged off Major endothermic film buildup Minor film loss and subsequent reformation Onset of a gradual film loss Onset of a minor film reformation No failure to max. test temp., orifice open and virtually unchanged	140 140 140 140 140 140 140 116 116 116
Copper OFHC	505 45 561 55 589 60 622 66 866 110 916 119 589 60 750 89 905 117 1022 138 1161 80 589 60 714 82 811 108 983 131 1108 153 1158 162 1203 170	00	.62 .62 .63 .64 .63 .67 .46 .45 .44 .46 .19 .18 .16 .20 .17	90 90 91 93 92 97 66 67 65 64 68 23 23 29 24 23 23	Very minor film loss and reformation Minor film loss Significant film buildup Minor film loss and reformation Slow film buildup No failure to maximum test temp. Minor film buildup Minor film buildup Major film buildup Major film buildup Major exotherm with loss of mat'l., gross orifice opening Very minor film loss Possible minor film formation Possible minor film loss Minor film buildup No failure to maximum test temp. Moderate film loss No failure to maximum test temp., orifice enlarged appreciably	142 142 142 142 142 153 153 153 153 143 144 144 144 144 144
Narloy A	958 126 1011 136 1028 139 822 102 897 115 905 117 939 123 953 125 983 131 1019 137 1189 168	0 1.27 0 1.27 5 1.26 0 1.23 0 1.30 5 1.37 0 1.28 5 Sonic	1.21 1.21 1.18 .48 .45 .45 .46 .45 .50 .46	176 175 171 70 69 65 69 67 65 72 66	Minor film loss Moderate exothermic film loss Major exotherm with loss of mat'l., gross specimen burning Very minor film loss Onset of moderate film buildup Onset of rapid film buildup Major film buildup Modest film loss Major film buildup Orifice totally plugged off Maximum film buildup achieved and onset of a significant film loss Major exotherm with loss of mat'l., gross orifice opening	110 110 110 147 147 152 147 152 147 152
6Al-4V Titanium	744 %88 750 %89 922 120 941 123 983 %131 1091 150 1191 1689	0 1.23 0 1.41 5 1.33 0 1.70 0 1.45 5 Sontc	.49 .44 .46 .49 .46 .50 .51	71 64 66 71 67 73 74 66	Onset of film buildup Onset of film buildup Minor film disruption and subsequent rebuilding Modest film loss followed by more rapid film buildup Small decrease in film buildup rate Minor film loss and subsequent rebuilding No failure to max. test temp., orifice plugged off Major exotherm and loss of spec. mat'l., significant specimen burning	146 151 151 146 151 146 146 151
2219 Aluminum, T-87	658 ~729 908 ~1179		.43 .45	63 65	Onset of gradually increasing rate of film buildup Orifice essentially plugged off, specimen partially melted along holder boundary	148 148

TABLE 2.4-2

DATA INDICATIVE OF THE BEHAVIOR OF SELECTED NON-METALLIC MATERIALS WITH FLOWING GASEOUS NITROGEN TRIFLUORIDE AT ELEVATED TEMPERATURES

Test No.	880 880 861 861 871 871	109 109 149 149	150	141	141	141	154	154	154
Material Response	Sudden small increase in flow area accompanied by an exotherm Rapid gross increase in flow area Onset of an exothermic flow restriction Specimen broke loose from its holder without specimen failure Onset of a increase in flow area Specimen broke loose from its holder, evidence of melting but no charring	Abrupt increase in flow area Onset of a mildly endothermic flow restriction Orifice melted closed, spec. melted at holder boundary and slid downstream, some specimen discoloration Onset of a gradually increasing flow restriction Major exotherm and loss of specimen	Onset of a strong exotherm, spec. melted at orifice and holder boundary	Brief exotherm without significant orifice dimensional change Onset of major exothermic loss of spec. mat'l. Onset of apparent orifice constriction accompanying an exothermic reaction	Endothermic reaction and apparent continuing orifice	Major exotherm, gross specimen burning Onset of apparent major orifice constriction accompanied	by experience reaction Apparent endothermic reaction and continuing orifice	Apparent excitemic reaction and continuing orifice	restriction No gross failure to max. test temp., orifice plugged off
ream sure psia	188 180 143 127 124	193 139 153 64 70	89	118	==	112 66	29	99	29
Upstream Pressure N/m ² ps	1.30 1.24 0.99 1.01 0.88	1.33 1.05 44 .48	.47	.81 .81 .77.	.77	46	.46	.46	.46
Orifice Pressure Ratio	Sonic	Sonic	Sonic	1.56 1.64 1.35	1.43	1.59	1.52	1.58	1.66
Specimen Femperature	6365 420 455 490 485 525	7420 505 920 7420 985	585	1060 1360 ~1650	∿1860	2000 1480	∿1675	∿1830	1950
Specimen Temperatu	458 489 508 528 525 547	489 536 766 489 802	580	844 1011 1172	1289	1366 1078	1186	1272	1339
Material	Kel-F 81	Polytetra- fluoroethylene	PFA Teflon	Carbon CJPS					

TABLE 2.4-3

THRESHOLD REACTION TEMPERATURES OF MATERIALS SUBJECTED TO SHORT-TERM, HIGH-VELOCITY FLOW OF COMPRESSED GASEOUS NF3

		Th		1 Temper	ratures	
	P3A	AAA l.	Maj		To a do do a a a	Fadlum.
Material	K	Attack F	K	sion F	Incipient K	F
Nickel 200	∿1061	∿1450	No.	**	>1350	>1970
Inconel 625	950	1250	1114	1545	>1372	>2010
316 L Stainless Steel	914	1185	1100	1520	1203	1705
Monel 400	∿889	∿1140	1116	1550	*1311	≥1900
304 L Stainless Steel	878	1120	1144	1600	1197	1695
17-4 PH Stainless Steel	∿866	∿1100	∿1122	∿1560	1166	1640
Narloy A	822	1020	905	1170	1028	1390
1018 Carbon Steel	∿750	∿890	1080	1485	1133	1580
Titanium 6 Al-4V	~744	∿880	922	1200	1191	1685
Aluminum 2219	∿658	∿725	••	-	_{~908} (a)	∿1175 ^(a)
Copper OFHC	505	450	589	600	1161	1630
Carbon CJPS	844	1060	1011	1360	1366	2000
Polytetrafluoroethylene	~489	√420	-	-	766 ^(a)	$920^{(a)}$
PFA Teflon	90	***		-	$580^{(a)}$	585(a)
Kel-F 81 CTFE	∿458	∿365	489	420	528 ^(a)	490(a)

⁽a) Onset of softening/partial melting.

2.4, Flow Tests (cont.)

exotherm at about 600 K. That reaction probably is related to the first-attack threshold for aluminum (\sim 658 K) as given in Table 2.4-3. It can thus be seen that the thresholds defined under flow conditions mark significant NF3/material interactions that, at least in some cases, correspond reasonably well with interactions observed under static conditions.

5

2.0, Experiment Results and Discussion (cont.)

2.5 ADIABATIC COMPRESSION TESTS

The objective of the adiabatic compression tests is to determine the behavior of selected materials in the presence of nitrogen trifluoride subjected to adiabatic compression. The test simulates the condition which can occur during the rapid opening and closing of valves. The materials selected for testing in the tabulation below are considered to be representative system materials which could be exposed to NF3 undergoing rapid compression.

Al 2219, T-87 CRES 304L, Annealed CRES 347, Annealed CRES 17-4 PH, H-1025 Inconel 718, STA Monel 400, Annealed Nickel 200, Annealed Ti 6Al-4V, STA 1010 Steel, Normalized Cu OFHC, Annealed Polytetrafluoroethylene Kel F 81 CTFE Carbon CJPS Kalrez, Epoxy EA 934

2.5.1 Apparatus and Procedures

2.5.1.1 Description of Apparatus

The requirements of the adiabatic compression test necessitates the use of an apparatus in which gaseous nitrogen trifluoride at variable initial temperatures and/or pressures is adiabatically compressed to variable compression ratios in the presence of selected material specimens. The apparatus previously used successfully under Contract F04611-72-C-0031 for similar adiabatic compression tests with fluorine and chlorine pentafluoride is employed for these tests with nitrogen trifluoride.

The apparatus is a U-tube adiabatic compression test apparatus which is modified to accommodate the introduction of gaseous nitrogen trifluoroide and material specimens and to incorporate a means of temperature conditioning the loaded U-tube. A schematic diagram of the entire apparatus for handling the nitrogen trifluoride and conducting the tests is shown in Figure 2.5.1. The schematic diagram of the U-tube adiabatic compression apparatus is shown in Figure 2.5.2; a photograph of the apparatus is shown in Figure 2.5.3; and the schematic of the test specimen holder with the test specimen in place is shown in Figure 2.5.4. The test specimen holder is a 0.64 cm (0.25 in.) solid AN plug used to seal the end of the U-tube. The test specimen is a strip of material 0.25 mm (0.010-in.) thick by 2.5 mm (0.10-in.) wide by 2.5 mm (0.10-in.) long which is spot welded, if metal, to the end of the AN plug or wedged into the end of a hollow AN plug and cemented in place with Sauereisen if the specimen is a non-metal. The U-tube is fabricated from Hastelloy-X 0.64 cm (0.25 in.) tubing approximately 40.6 cm (16-in.) long.

LEGEND:

PRESSURE GAUGE PG : BURST DISC BD GASEOUS NF3 REGULATOR R-1 : CHECK VALVE CV REMOTE OPERATION VALVE (RUN VALVE) : GASEOUS NITROGEN ACCUMULATOR ROV GN2-A GNF₃-C : GASEOUS NF₃ CYLINDER GNF₃-R : GASEOUS NF₃ RESERVOIR VACUUM TRAP TRAP HAND OPERATED VALVE, 1/4-IN. CONTROL COMPONENTS

Figure 2.5.1. Schematic Diagram of System for Conducting the Adiabatic Compression Testing

Figure 2.5.2. Schematic Diagram of U-tube Adiabatic Compression Apparatus

Figure 2.5.3. Adiabatic Compression Apparatus

Figure 2.5.4. Schematic of Test Specimen Holder with Test Specimen in Place

2.5.1.2 Test Procedures

The tests are conducted in the following manner. The U-tube is attached to the apparatus and the specimen holder used to seal the open-end of the U-tube. The tube is then evacuated to 1 torr or less, temperature conditioned, and then gaseous nitrogen trifluoride is gradually introduced into the assembly to a predefined pressure level. The pneumatic line valves are then actuated and the nitrogen from the accumulator tank is used to compress the gaseous nitrogen trifluoride. The U-tube assembly is then vented and flushed with nitrogen and the test specimen is examined visually to ascertain if any attack occurred. Microscopic examination is used to evaluate the samples which are not totally consumed in the test. A 1000 lb burst disc made of 304-L stainless is used in each test to seal the pneumatic valve and check valve assembly from the nitrogen trifluoride atmosphere prior to the test. At driving pressures below 7.68 MN/m² (1100 psig) no burst disc was used. The driving pressure in the accumulator tank and the initial nitrogen trifluoride temperature and/or pressure is varied with each material to achieve final pressures and temperatures at which the metals are susceptible to attack. The test specimen is replaced after each test to insure that comparable surfaces are being exposed to the test conditions. The pneumatic valve opens completely withing 1.5 milliseconds so with an accumulator pressure of 6.89 MN/m² (1000 psia), the minimum pressurization rate is 4.6×10^6 MN/m²/sec (6.7 x 10^5 psi/sec).

The data obtained from the test directly includes the initial nitrogen trifluoride temperature and pressure, the final nitrogen trifluoride pressure (after adiabatic compression) and the test specimen response. The test specimen response is reported as (-) for a negative result indicating no microscopically visible effect, as (+) when the specimen shows definite attack but is not destroyed, and as (++) when the specimen is destroyed. Tests were conducted with both pure nitrogen trifluoride and a mixture of 15% nitrogen trifluoride - 85% argon which permitted significantly higher temperature levels to be attained and also significantly lower values for the density of the gaseous nitrogen trifluoride.

2.5.1.3 Calculation Procedures

The final temperature values were obtained from graphs of final pressure values versus temperature. The graphs were generated from entropy diagrams for gaseous nitrogen trifluoride and the gaseous nitrogen trifluoride/argon mixture.

2.5.1.3.1 Entropy of Gaseous Nitrogen Trifluoride

The entropy of ideal gaseous nitrogen trifluoride at one atmosphere pressure $(0.101325 \text{ MN/m}^2)$ and various temperatures was taken from the JANNAF Thermochemical Tables (Reference 2.5.1). The entropy of the real gas at various pressures and temperatures was determined by calculating isothermal entropy changes between real-gas and ideal-gas states and between pressures in the real-gas region and then applying those entropy changes to the ideal-gas data. The entropy changes are analytically given by equation (1) which is taken from Reference 2.5.2, p. 269.

$$S_2 - S_1 = \frac{1}{T_r} \left[\left(\frac{H_2 - H^0}{T_c} \right)_{Pr_2} - \left(\frac{H_1 - H^0}{T_c} \right)_{Pr_1} \right] - R \left[\ln \frac{f_2}{P_2} - \ln \frac{f_1}{P_1} + \ln \frac{P_2}{P_1} \right]$$
 (1)

Values for the enthalpy deviations, $(H-H_O)/T_C$, and fugacity coefficients, f/P, were taken from Appendix B of Reference 2.5.2 at selected reduced temperatures, $T_r = T/T_C$, and reduced pressures, $P_r = P/P_C$, using values for the critical temperature and pressure, T_C and P_C , of nitrogen trifluoride from Jarry and Miller (Reference 2.5.3). The resulting entropy data for nitrogen trifluoride are given in Table 2.5-1, and are presented in the form of a T-S diagram in Figure 2.5.5.

To aid in the selection of test conditions for the adiabatic compression tests and in the reduction of experimental test data, the entropy data from Table 2.5-1 were interpolated to yield curves relating nitrogen trifluoride temperatures following adiabatic compression from fixed initial pressures and various initial temperatures to various final pressures. In Figures 2.5.6 and 2.5.7 the initial nitrogen trifluoride pressure is 34.47 KN/m² (5 psia) and curves are given for initial nitrogen trifluoride temperatures in the range of 283.16 to 298.16 K (10 to 25 C) and final pressures in the ranges of 0.2758 to 2.758 MN/m² (40 to 400 psia) and 2.758 to 20.684 MN/m² (400 to 3000 psia), respectively. Similar curves are shown in Figures 2.5.8 and 2.5.9 except the initial nitrogen trifluoride pressure in these cases is 0.1013 MN/m² (1 atm).

2.5.1.3.2 Entropy of Gaseous Nitrogen Trifluoride-Argon Mixtures

The entropies of nitrogen trifluoride-argon mixtures were calculated assuming the ideal mixing of the components starting with each component at the pressure of the mixture and treating each component as a real-gas. In such cases the entropy of the mixture is defined analytically by Equation (2):

TABLE 2.5-1 ENTROPY OF NF3

250.53 244.76 241.42 238.72 232.6 228.9 223.8
260.96
280.80 277.60 275.02 295.26 292.06 289.50
.94 385.74
.21 399.01

Figure 2.5.5. Temperature-Entropy Diagram for Nitrogen Trifluoride

Figure 2.5.6. Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 34.47 KN/m2 (5 psia) to Final Pressures in the Range of 0.2758-2.758 MN/m² (40-400 psia)

Figure 2.5.7. Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 34.47 KN/m² (5 psia) to Final Pressures in the Range of 2.758-20.684 MN/m² (400-3000 psia)

2.8

0.28

400

FINAL TEMPERATURE, °F

200

100

Figure 2.5.8. Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m^2 (1 atm) to Final Pressures in the Range of 0.2758-2.758 MN/m^2 (40-400 psia)

FINAL TEMPERATURE, K

FINAL TEMPERATURE, °F

Figure 2.5.9. Final NF3 Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m^2 (1 atm) to Final Pressures in the Range of 2.758-20.684 MN/m^2 (400-3000 psia)

$$S_{mix} = \sum y_i S_i - R \sum y_i \ln y_i$$
 (2)

where:

S_i = the entropy of the ith component at the pressure and temperature of the mixture, and

 y_i = mole fraction of the ith component in the mixture.

In these calculations, values for the entropy of nitrogen trifluoride (realgas) were taken from Table 2.5.1 and for argon (real-gas) from Reference 2.5.4. For argon, real-gas entropies at pressures above $10.1325 \, \text{MN/m}^2$ (100 atm) were obtained by logarithmic extrapolation of values given at 70 and 100 atm. Argon entropies at pressures between 0.01 and 100 atm were obtained by logarithmic interpolation of the tables given in Reference 2.5.4.

On the basis of the calculated temperature-entropy data for nitrogen trifluoride-argon mixtures containing 10, 15, 20, 25, and 50% vol nitrogen trifluoride, a mixture containing 15% vol nitrogen trifluoride was selected as being most useful in adiabatic compression tests aimed at defining threshold material compatibility limits with nitrogen trifluoride in the high temperature-low density regime. As a further aid in the selection of adiabatic compression test conditions and in the reduction of experimental test data, the temperature-entropy data for nitrogen trifluoride-argon (15/85) were interpolated to yield curves relating nitrogen trifluoride temperatures following adiabatic compression to pressures in the range of 2.758 to 20.684 MN/m² (400 to 3000 psia) wherein the initial pressure is 0.1013 MN/m² (1 atm) and initial temperatures are in the range of 283.16 to 298.16 K (10 to 25 C). These curves are presented in Figure 2.5.10.

2.5.1.3.3 Final Density Calculation

The final gas density value for the tests in which pure nitrogen trifluoride was used was calculated on the basis of the gas law:

$$\rho = \frac{(MW)(P)}{ZRT}$$

The compressibility factor (Z) was assumed to be unity.

In the tests in which the gaseous mixture of 15% NF3-85% Ar (volume percents) was used, the final gas density was calculated from the gas law equation using a mean molecular weight value of 44.61 for the mixture and then multiplying the calculated density value by the weight fraction of nitrogen trifluoride in the mixture, 0.2388, to obtain the nitrogen trifluoride density values which are reported in Table 2.5-2.

FINAL TEMPERATURE, K

Figure 2.5.10. Final NF3-Ar (15/85) Temperatures Resulting from Adiabatic Compression from an Initial Pressure of 0.1013 MN/m² (1 atm) to Final Pressures in the Range of 2.758-20.684 MN/m² (400-3000 psia)

2.5.2 Experimental Results

The data which were derived from the adiabatic compression tests are presented in Table 2.5-2. The initial pressure values which are presented in paretheses are for the 15% nitrogen trifluoride-85% argon mixture and the pressure value corresponds to the partial pressure of the nitrogen trifluoride present in the mixture. The data in Table 2.5-2 are presented in both SI units and in English units. The test results are based on the visual microscopic observations prior to and after each test. In many cases the decreasing severity of the attack was noted as the driving pressures were decreased. The surface changes observed for the metal specimens were generally minor and might fall into a category of being comparable to the formation of passivation films. None of the metal samples appeared to react in a manner which would result in the ignition of the material.

In order to obtain additional information on the nature of the reaction which occurs with the metal surfaces, a Ni 200 sample was subjected repeatedly to the adiabatic compression test and the results are presented in Table 2.5-3. The data indicate that additional surface reaction occurs with each adiabatic compression cycle above the threshold level defined in Table 2.5-2, and implies that the reaction which occurs is more severe than one would anticipate from a passivation reaction, i.e., pitting occurs.

The threshold conditions for each material as identified by the adiabatic compression tests are summarized in Table 2.5-4. The data in the table corresponds to the final conditions at which no reaction was observed.

Although the adiabatic compression environment is complex due to the shock waves which are also present during the process and this complicates the interpretation of the data for design purposes, there are a significant number of items to note from the data which is given in Table 2.5-2 and summarized in Table 2.5-4. The items to note are as follows: (1) definite threshold limits exist for the various materials when they are subjected to adiabatic compression of nitrogen trifluoride from various initial conditions and these thresholds provide a basis for rating the relative resistance of materials to nitrogen trifluoride attack during compression; (2) of the metals tested, 304L stainless steel and Nickel-200 rate best while carbon steel, copper, and titanium rate poorly; (3) of the non-metals tested, carbon CJPS rates best and is comparable to many of the intermediate metals; and (4) some of the best fluorocarbon plastics such as polytetrafluoroethylene, Kel-F 81, and Kalrez exhibit moderate compatibility but comparable only to some of the less compatible metals.

TABLE 2.5-2

DATA INDICATIVE OF THE BEHAVIOR OF MATERIALS IN THE PRESENCE OF GASEOUS NITROGEN TRIFLUORIDE SUBJECTED TO ADIABATIC COMPRESSION

		Test Results	+, Some surface change	+, Some surface change		•	+, Considerable surface change		+, Slight surface change		+, Slight surface change	+, Slight surface change	+, Very slight surface change				1	1	+, Very slight surface change	1	+, Some surface change		1	+, Slight surface change	+, Very slight surface change		ı	ı
	Calculated Density	1b/ft3	10.97	10.04	9.46	8.29	9.95	3.45	2.85	2.25	0.89	0.82	0.79	0.75	12.88	11.44	0.89	0.89	12.97	12.37	4.62	4.04	3.47	0.89	0.87	0.84	0.79	0.72
_	Calculat	kg/m3	175.7	160.8	151.5	132.8	158.9	55.3	45.7	36.0	14.3	13.1	12.7	12.0	206.2	183.1	14.3	14.3	207.8	198.1	74.0	64.7	55.6	14.3	12.1	13.5	12.7	11.5
Final Condition	Calculated Temperature	-	226	540	532	512	687	530	504	470	1800	1740	1705	1670	277	708	1800	1800	570	292	267	548	523	1800	1740	1700	1705	1630
Final (Calculated Temperatur	~	564	256	551	540	637	220	536	217	1255	1222	1203	1183	576	649	1255	1255	575	570	570	999	546	1255	1222	1200	1203	1161
	ure	psia	1715	1515	1415	1215	1715	515	415	315	2015	1815	1715	1615	2015	2015	2015	2015	2015	1915	715	615	515	2015	1915	1815	1715	1515
	Pressure	MN/m2	11.8	10.4	9.76	8.38	11.8	3.55	5.86	2.17	13.9	12.5	11.8	1.1	13.9	13.9	13.9	13.9	13.9	13.2	4.93	4.24	3,55	13.9	13.2	12.5	11.8	10.4
	15	psia	14.7	14.7	14.7	14.7	4.9	4.9	4.9	4.9	(2.2)	(2.2)	(2.2)	(2.2)	14.7	4.9	(2.2)	(2.2)	14.7	14.7	4.9	4.9	4.9	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)
	Condition Pressure	kN/mZ	101	101	101	101	33.8	33.8	33.8	33.8	15.2	15.2	15.2	15.2	101	33.8	15.2	15.2	101	101	33.8	33.8	33.8	15.2	15.2	15.2	15.2	15.2
		<u>u</u>	99	99	99	99	99	99	89	89	7	17	11	1	99	99		r.	29	49	64	64	64	29	27	22	29	<i>L</i> 9
	Ē	*	262	262	292	262	262	262	293	293	295	295	295	295	292	292	295	295	290	291	162	291	291	293	287	287	293	293
	:	Material	Aluminum 2219 T-87												Stainless Steel	oost, ameaica			Stainless Steel									

TABLE 2.5-2 (cont.)

						0	Final (Final Condition	5		
	Tempere	itial (Initial Condition Temperature Pressure	ure	Pressure	ure	Calculated	ated	Calculated	Density	
Material	× ×	<u>.</u>	kN/m2	psia	MN/m2	psia	×		kg/m3 1b/ft3	1b/ft3	Test Results
Stainless Steel	294	69	101	14.7	12.5	1815	920	292	187.9	11.73	+, Slight surface change
1/-4rm, n-1025	294	69	101	14.7	11.1	1615	295	551	169.5	10.58	+, Slight surface change
	294	69	101	14.7	10.4	1515	223	542	160.5	10.02	
	586	22	33.8	4.9	4.24	615	552	533	65.7	4.10	+, Some surface change
	586	55	33.8	4.9	2.86	415	525	486	46.6	2.91	+, Some surface change
	586	22	33.8	4.9	1.48	215	484	412	26.3	1.64	+, Very slight surface change
	286	22	33.8	4.9	1.14	165	469	385	20.7	1.29	
	287	22	33.8	4.9	0.79	115	447	345	15.2	0.95	•
	293	29	15.2	(2.2)	13.9	2015	1255	1800	14.3	0.89	+, Slight surface change
	294	69	15.2	(2.2)	12.5	1815	1222	1740	13.1	0.82	+, Surface change
	295	7.	15.2	(2.2)	11.8	1715	1205	1710	12.7	0.79	•
	295	7	15.2	(2.2)	11.1	1615	1189	1680	12.0	0.75	•
	294	69	15.2	(2.2)	9.76	1415	1139	1590	1.1	0.69	ı
Inconel 718, STA	294	69	101.	14.7	13.9	2015	578	580	205.7	12.84	+, Slight surface change
	294	69	101	14.7	12.5	1815	570	999	187.9	11.73	
	294	69	101	14.7	10.4	1515	556	542	160.8	10.04	
	294	69	101	14.7	8.38	1215	542	515	132.3	8.26	
	294	69	101	14.7	7.00	1015	529	492	113.3	7.07	
	294	69	101	14.7	6.31	915	525	485	102.8	6.42	+, Slight surface change
	294	69	101	14.7	29.6	815	514	465	93.5	5.84	
	294	69	33.8	4.9	3.55	515	551	532	55.1	3.44	+, Some surface change
	294	69	33.8	4.9	2.86	415	536	909	45.7	2.85	
	294	69	33.8	4.9	2.17	315	518	473	35.9	2.24	ı
	295	7	15.2	(2.2)	13.9	2015	1264	1815	14.1	0.88	+, Slight surface change
	295	7	15.2	(2.2)	13.2	1915	1244	1780	13.6	0.85	ì
Monel 400,	589	09	101	14.7	13.9	2015	570	292	208.6	13.02	+, Very slight surface change
Villea Leo	588	9	101	14.7	13.2	1915	999	260	199.6	12.46	+, Slight surface change
	588	09	101	14.7	1.1	1615	555	539	171.7	10.72	+, Slight surface change
	290	9	101	14.7	8.38	1215	534	205	134.2	8.38	+, Slight surface change
	291	64	101	14.7	7.69	1115	532	497	123.7	7.72	+, Slight surface change
	290	9	101	14.7	7.00	1015	524	483	114.2	7.13	
	291	9	33.8	4.9	2.86	415	533	200	46.0	2.87	+, Slight surface change
	291	94	33.8	4.9	2.17	315	515	467	36.0	2.25	+, Slight surface change
	162	64	33.8	4.9	1.48	215	490	423	25.9	1.62	Ť
	293	8	15.2	(2.2)	13.9	2015	1255	1800	14.3	0.89	ı

TABLE 2.5-2 (cont.)

		Test Results	+, Slight surface change		+, Slight surface change		+, Slight surface change		+, Some surface change			ı	+, Some surface change			•	+, Slight surface change		+, Surface change		+, Slight surface change	•	1	+, Surface change	+, Surface change with pitting		+, Some surface change	+, Very slight surface change	+, Very slight surface change		+, Slight surface change	+, Some surface change	+, Some surface change			
	Calculated Density	1b/ft3	12.95	12.33	10.93	10.41	9.93	8.89	7.86	7.34	6.78	0.88	6.58	3.99	3.32	2.60	96.0	0.58	0.89	0.82	0.75	0.69	0.62	0.54	0.50	0.46	12.93	10.05	8.87	7.69	7.07	6,49	5.85	2.25	1.60	1.27
ion	Calculat	kg/m3	207.4	197.5	175.1	166.8	159.1	142.4	125.9	117.6	108.6	14.1	105.4	63.9	53.2	41.6	15.1	9.3	14.3	13.1	12.0	11.1	6.6	8.6	8.0	7.4	207.1	0.191	142.1	123.2	113.3	104.0	93.7	36.0	25.6	20.3
Final Condition	Calculated Temperature	-	572	570	702	695	989	029	650	639	628	1830	462	395	368	345	350	287	1800	1740	1670	1590	1500	1405	1350	1290	574	540	523	501	492	475	463	470	430	400
Final	Calculated Temperatur	¥	573	212	645	642	929	628	919	610	604	1272	512	475	460	447	450	415	1255	1222	1183	1139	1089	1036	1005	972	574	555	546	534	529	519	513	919	464	478
	ure	psia	2015	1915	1915	1815	1715	1515	1315	1215	1115	2015	915	515	415	315	115	65	2015	1815	1615	1415	1215	1015	915	815	2015	1515	1315	1115	1015	915	815	315	215	165
	Pressure	MN/m2	13.9	13.2	13.2	12.5	11.8	10.4	9.07	8.38	7.69	13.9	6.31	3.55	2.86	2.17	0.79	.45	13.9	12.5	11.1	9.76	8.38	7.00	6.31	5.62	13.9	10.4	9.07	7.69	7.00	6.31	5.62	2.17	1.48	1.14
	5	psia	14.7	14.7	4.9	4.9	4.9	4.9	4.9	4.9	4.9	(2.2)	14.7	14.7	14.7	14.7	4.9	4.9	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	14.7	14.7	14.7	14.7	14.7	14.7	14.7	4.9	4.9	4.9
:	Condition	kN/mZ	101	101	33.8	33.8	33.8	33.8	33.8	33.8	33.8	15.2	101	101	101	101	33.8	33.8	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15.2	101	101	101	101	101	101	101	33.8	33.8	33.8
	ature	<u>.</u>	99	99	99	99	99	99	99	99	99	9/	22	22	22	22	23	55	69	69	69	69	69	69	69	69	64	99	99	99	99	99	99	99	88	88
	Temperature	¥	292	262	262	262	262	262	292	262	292	298	586	586	586	287	287	286	294	294	294	294	294	294	294	294	291	262	262	262	292	292	292	262	293	293
		Material	Nickel 200,										Titanium 6Al-4V,	5													1010 Steel									

TABLE 2.5-2 (cont.)

								Final	Final Condition			
		Initial	- 1	Condition				Calculated	ated	5		
Material		ok oF		kN/m2 p	psia	Pressure MN/m ² ps	psia	Temperature K	ature	Calculated kg/m3	ted Density 1b/ft3	Test Results
1010 Steel		293 6	89	33.8	4.9	0.79	115	457	363	14.9	0.93	•
(2011)	. •		64	15.2	(2.2)	13.9	2015	1247	1785	14.3	0.89	+, Slight surface change
	. •	291 6	64	15.2	(2.2)	10.4	1515	1150	1610	11.7	0.73	+, Slight surface change
	. •	29] 6	64	15.2	(2.2)	9.07	1315	1105	1530	10.6	0.66	+, Some surface change
	. •		25	15.2	(2.2)	8.38	1215	1080	1485	6.6	0.62	+, Very slight surface change
		286 5	55	15.2	(2.2)	7.69	1115	1039	1410	9.5	0.59	+, Some surface change
		262	99	15.2	(2.2)	7.00	1015	1033	1400	8.6	0.54	
Copper OFHC,	. 4	287 5	22	101	14.7	9.07	1315	540	512	143.7	8.97	+, Some surface change
Annealed		288 5	28	101	14.7	7.69	1115	529	492	124.3	7.76	+, Very slight surface change
	. 4	288 5	88	101	14.7	7.00	1015	525	480	114.7	7.16	
		589 6	09	33.8	4.9	2.86	415	530	494	46.1	2.88	+, Slight surface change
	. 7		09	33.8	4.9	1.48	215	489	420	25.9	1.62	+, Surface change ·
Ť	. 7		62	33.8	4.9	0.79	115	452	353	15.1	0.94	+, Surface change
	. •		62	33.8	4.9	0.45	92	420	297	9.1	0.57	+, Surface change
			9/	15.2	(2.2)	10.4	1515	1178	1660	11.4	0.71	+, Surface pitted
	3		9/	15.2	(2.2)	9.76	1415	1155	1620	11.11	0.69	+, Surface pitted
			9/	15.2	(2.2)	9.07	1315	1133	1580	10.3	0.64	+, Slightly pitted surface
		298 7	9/	15.2	(2.2)	8.38	1215	1105	1530	8.6	0.61	
Polytetra-		7 297	. 52	101	14.7	13.9	2015	583	290	203.9	12.73	++, Char spots, surface removed
i i nor de cirjo l'ene			75	101	14.7	29.6	815	519	475	95.6	5.78	+, Slight char, slight surface change
	. 4		. 22	101	14.7	4.93	715	510	458	82.7	5.16	1
			75	101	14.7	3.55	515	489	420	62.2	3.88	
	. 4		75	33.8	4.9	3.55	515	955	542	54.6	3.41	+, Slight surface change
	. •		75	33.8	4.9	5.86	415	542	515	45.2	2.82	
			75	33.8	4.9	2.17	315	523	482	35.6	2.22	
•			64	15.2	(2.2)	13.9	2015	1272	1830	14.1	0.88	+, Surface change, material removed
			64	15.2	(2.2)	12.5	1815	1233	1760	13.0	0.81	+, Some surface removed
			2	15.2	(2.2)	1.1	1615	1194	1690	12.0	0.75	+, Surface change
			9	15.2	(2.2)	10.4	1515	1175	1655	11.4	0.71	+, Surface change
	. •		4	15.2	(2.2)	9.0	1315	1128	1570	10.3	0.64	+, Very slignt surface change
		291 6	64	15.2	(2.2)	8.38	1215	1103	1525	8.6	0.61	

TABLE 2.5-2 (cont.)

		4000		++, Specimen-burned	++, Specimen burned	+, Slight surface change	•	+, Very slight surface change		+, Surface melting, char spot	+, Surface melting	+	÷	+, Very slight surface change	•	•	+, Some surface pitting	+	+	•	+, Slight pitting	1	+, Some surface pitting		1	++, Specimen burned	+, Very slight surface change	+, Very slight surface change	•	+, Slight surface change	+, Very slight surface change	+, Slight surface change	1	1	1	+, Slight surface change
		Calculated Density	101/01	9.58	8.23	7.78	7.18	2.89	2.28	0.90	0.83	0.80	0.76	0.73	0.73	0.69	12.84	11.73	11.16	10.58	4.60	4.03	0.91	0.87	0.84	10.76	7.20	6.57	5.96	5.78	5.22	4.66	4.10	2.89	1.63	0.90
ļ	uo	Calcula kn/m3	754	153.5	131.8	124.6	115.0	46.3	36.5	14.4	13.3	12.8	12.2	11.7	11.7	11.1	205.7	187.9	178.8	169.5	73.7	64.6	14.6	13.9	13.5	172.4	115.3	105.2	95.5	95.6	83.6	74.6	65.7	46.3	26.1	14.4
	Final Condition	Calculated Temperature K	-	520	200	490	478	492	455	1765	1720	1675	1645	1610	1600	1565	580	292	559	552	572	552	1750	1720	1690	536	475	463	448	290	575	228	535	492	416	1760
	Final	Calcu Tempe	4	544	533	528	521	529	208	1236	1211	1186	1169	1150	1144	1125	578	570	999	295	573	295	1228	1211	1194	553	519	513	504	583	575	265	553	529	486	1233
		Sure		1415	1215	1115	1015	415	315	2015	1815	1715	1615	1515	1515	1415	2015	1815	1715	1615	715	615	2015	1915	1815	1615	1015	915	815	915	815	715	615	415	215	2015
		Pressure MN/m ² ps	1	9.76	8.38	7.69	7.00	2.86	2.17	13.9	12.5	11.8	וו	10.4	10.4	9.76	13.9	12.5	11.8	ו	4.93	4.24	13.9	13.2	12.5	==	7.00	6.31	5.62	6.31	5.62	4.93	4.24	2.86	1.48	13.9
		sure		14.7	14.7	14.7	14.7	4.9	4.9	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	(2.2)	14.7	14.7	14.7	14.7	4.9	4.9	(2.2)	(2.2)	(2.2)	14.7	14.7	14.7	14.7	4.9	4.9	4.9	4.9	4.9	4.9	(2.2)
		Initial Condition Temperature Pressure °K °F kN/m² p		101	101	101	101	33.8	33.8	15.2	15.2	15.2	15.2	15.2	15.2	15.2	101	וסו	101	101	33.8	33.8	15.2	15.2	15.2	101	101	101	101	33.8	33.8	33.8	33.8	33.8	33.8	15.2
		rature °F		27	22	22	22	27	27	28	62	62	62	62	88	29	69	69	69	69	29	29	22	22	55	22	22	22	27	27	22	27	27	22	22	27
	•	Tempe		287	287	287	287	287	287	288	290	290	230	290	288	290	294	294	294	294	293	293	586	586	586	287	586	586	287	287	287	287	287	287	287	287
		Material		Kel F 81 CTFE													Carbon CJPS									Kalrez Compound	ECD-006)									

TABLE 2.5-2 (cont.)

		Tect Beculto	CTIPESW SCS.	+, Very slight surface change		+, Slight surface change	+, Slight surface change	+, Very slight surface change		+, Slight surface change	+, Slight surface change		+, Color change, surface melt	+, Very slight surface change	
		kg/m3 lb/ft3		0.80	0.77	5.84	4.66	3.99	3.32	1.64	0.95	0.58	0.88	0.55	0.51
uo	1	kg/m3		12.8	12.3	93.5	74.6	63.9	53.2	26.3	15.2	9.3	14.1	8.8	8.2
Final Condition	ated	K F		1670	1640	465	415	395	370	412	345	287	1830	1370	1310
Final	Calculated	K		1183	1166	514	486	475	461	484	447	415	1272	1016	983
	9	psia		1715	1615	815	615	515	415	215	115	65	2015	1015	915
	Drago	MN/m2		11.8	1.1	5.62	4.24	3.55	2.36	1.48	0.79	0.45	13.9	7.00	6.31
	- In	psia		(2.2)	(2.2)	14.7	14.7	14.7	14.7	4.9	4.9	4.9	(2.2)	(2.2)	(2.2)
	Condition	kN/m2		15.2	15.2	101	101	101	101	33.8	33.8	33.8	15.2	15.2	15.2
	rature	Jo No		28	9	29	55	22	55	22	22	22	75	55	22
1	Temor	×		288	583	293	586	286	586	586	285	586	297	586	286
		Material		Kalrez Compound	ECD-006) (cont.)	Epoxy EA934									

TABLE 2.5-3

OBSERVATIONS OF A NICKEL-200 SAMPLE WHICH WAS REPEATEDLY SUBJECTED TO ADIABATIC COMPRESSION OF GASEOUS NITROGEN TRIFLUORIDE

Test	Init Press		Fin Press			nal rature	
No.	kg/m ²	psia	MN/m2	psia	K	F	
1	33.8	4.9	9.07	1315	611	641	+, Some surface change
2	33.8	4.9	9.07	1315	611	641	+, Slight additional change
3	33.8	4.9	9.07	1315	611	641	+, Slight additional change
4	33.8	4.9	9.07	1315	611	641	+, More change
5	33.8	4.9	9.07	1315	611	641	+, Some pitting
6	33.8	4.9	9.07	1315	611	641	+, More Change
7	33.8	4.9	9.07	1315	612	643	+, More change
8	33.8	4.9	9.07	1315	612	643	+, More change
9	33.8	4.9	9.07	1315	612	643	+, More change
10	33.8	4.9	9.07	1315	612	643	+, More change
11	33.8	4.9	13.9	2015	644	700	+, Pitting
12	33.8	4.9	13.9	2015	644	700	+, Additional pitting

TABLE 2.5-4

SUMMARY OF UPPER-LIMIT VALUES FOR NO REACTIVITY BETWEEN VARIOUS MATERIALS AND GASEOUS NITROGEN TRIFLUORIDE DURING ADIABATIC COMPRESSION

INITIAL CONDITIONS:	NF3,	101 kN/ nbient	NF ₃ ,101 kN/m ² (14.7 psia) Ambient Temperature	psia) ure	NF3,	33.8 kN nbient	NF ₃ ,33.8 kN/m ² (4.9 psia) Ambient Temperature	psia) ure	15% NF	15% NF3/Ar, 101 kN/m² (14.7 psia) Ambient Temperature	kN/m ² (1 emperatu	4.7 ps re	ia)
FINAL CONDITIONS:	Ā	K K	Pressure MN/m ² ps	ure psia	T Temp		Pressure MN/m ² p	re psia	Temp		Pres MN/m2	Ħ	PS ia
Material													
Aluminum 2219, T-87	551	532	9.76	1415	517	470	2.17	315	1183	1670		1	1615
Stainless Steel 304L*	9/9	277	13.9	2015	649	708	13.9	2015	1255	1800	13	13.9 2	2015
Stainless Steel 347	920	295	13.2	1915	260	548	4.24	615	1200	1700	12	12.5	1815
Stainless Steel 17-4PH	557	545	10.4	1515	469	385	1.14	165	1205	1710	Per c	11.8	1715
Inconel 718	514	465	5.62	815	536	909	2.86	415	1244	1780	13	13.2	1915
Monel 400	524	483	7.00	1015	490	423	1.48	215	1255	1800	13	13.9 2	2015
Nickel 200	572	570	13.2	1915	610	639	8.38	1215	1272	1830	13	13.9 2	2015
Titanium 6Al-4V	460	368	2.86	415	415	287	0.45	92	1005	1350	9	6.31	915
1010 Steel	513	463	5.62	815	457	363	0.79	115	1033	1400	1	7.00 1	1015
Copper OFHC	525	480	7.00	1015	<420	<297	<0.45	·65	1105	1530	8	8.38	1215
Polytetrafluoroethylene	510	458	4.93	715	545	515	2.86	415	1102	1525	8	8.38	1215
Kel-F 81 CTFE	521	478	7.00	1015	208	455	2.17	315	1144	1600	5	9.76	1515
Carbon CJPS	295	295	11.1	1615	295	299	4.24	615	1211	1720	13	13.2	1915
Kalrez Compound 1045 (Dupont ECD-006)	504	448	5.62	815	553	535	4.24	615	1166	1640	Ξ		1615
Epoxy (EA-934)	461	370	2.86	415	415	287	0.45	99	983	1310	Ψ	6.31	915

^{*}No positive reactions were observed with the 304L.

The data also provide an insight into the conditions of compression which produce the greatest interaction with materials. The two significant items are as follows: (1) the reaction thresholds as a function of driving pressure decrease as the initial pressure of the nitrogen trifluoride decreases, and (2) dilution of the nitrogen trifluoride with an inert gas, in almost every case, increases the driving pressure threshold even though the calculated final temperatures due to adiabatic compression may be substantially increased by the dilution.

Part Tools Action to the Control of the Control of

2.6 MECHANICAL IMPACT TESTS

The objective of the mechanical impact tests was to determine the effect of mechanical impact on materials in the presence of liquid and gaseous nitrogen trifluoride. Historically the test method was developed for evaluation of the compatibility of liquid oxygen with various materials. Experience demonstrated that materials which could withstand a mechanical impact at an energy level of 10 kg-m (72 ft-lbs) in liquid oxygen without reaction were suitable for use in liquid oxygen service.

2.6.1 Mechanical Impact in Liquid Nitrogen Trifluoride

The discussion is presented in two sections: (1) Apparatus and Procedures and (2) Experimental Results.

2.6.1.1 Apparatus and Procedures

The mechanical impact tests were conducted in accordance with ASTM D-2512-70 (Reference: Annual Book of ASTM Standards, Part 18, 1973). This method is normally used to determine the relative sensitivity of materials with liquid oxygen under impact energy using the Army Ballistic Missile Agency (ABMA) type tester. A sample of the test material is placed in an aluminum specimen cup and the 17-4 PH striker pin is centered in the cup which contains the liquid nitrogen trifluoride. The entire anvil assembly is cooled with liquid nitrogen to retain the liquid nitrogen trifluoride in the cup. The plummet is dropped from selected heights up to 1.22 meters (4 feet) onto the pin, which transmits the energy to the test specimen. The plummet weight is 9.07 + .023 kg (20 + 0.05 lb), and dropping it 1.22 meters (4 feet) provides the impact level of 11.07 kg-m (80 ft-1bs).

Observation for any reaction is made and the liquid nitrogen trifluoride impact sensitivity of the test material is noted. Drop tests are continued using fresh cups and striker pins for each drop until a threshold value is achieved or no sensitivity is noted up to 11 kg-m (80 ft-1bs) of impact energy. The approximate threshold value is defined as the greatest height at which no reaction is obtained in 20 drops.

A photograph of the test apparatus is shown in Figure 2.6.1 and a photograph of the anvil section of the apparatus for the testing with liquid nitrogen trifluoride is shown in Figure 2.6.2. The apparatus was enclosed in an acrylic plastic box which was continuously purged with nitrogen to prevent condensation of atmospheric vapors in the chilled portion of the apparatus. The drop times were measured with a special electronic timer which was triggered and stopped by electrical shorting contacts. Valid tests are those in which the actual plummet drop time corresponds to a value that is within 3 percent of the computed free-fall time.

Figure 2.6.1. Photograph of the Mechanical Impact Tester

Figure 2.6.2. Photograph of the Anvil Section of the Mechanical Impact Tester

2.6, Mechanical Impact Tests (cont.)

2.6.1.2 Experimental Results

Based on the available literature for liquid fluorine, liquid chlorine pentafluoride, and liquid oxygen, only two types of metal alloys were appropriate candidates for impact testing, an aluminum alloy and a titanium alloy. The alloys selected for testing were 2219 aluminum, T-87, and 5Al-2.5 Sn titanium, ELI. The 5Al-2.5 Sn titanium was selected instead of 6Al-4V titanium because the former is more suitable for cryogenic service than the latter.

The non-metal candidates selected for testing were: polytetrafluoroethylene, Kel-F 81 CTFE, PFA teflon, and Viton. In addition a few tests were conducted with other non-metallic materials to obtain some indication of their reactivity in liquid nitrogen trifluoride under impact conditions. The data obtained from the tests are presented in Table 2.6-1.

The significant items to note from the data are as follows. The threshold energy-level values for reaction are greater than 11 kg-m (80 ft-1b) for the polytetrafluoroethylene and Kel-F 81 CTFE and this corresponds to the maximum energy level attainable with the apparatus. The threshold energy level for Viton, Class 1 is 6.9 kg-m (50 ft-1b). The threshold energy-level for the PFA Teflon is 9.7 kg-m (70 ft-1b). For comparison purposes, energy-level values for polytetrafluoroethylene and Kel-F 81 in liquid oxygen are greater than 10 kg-m (72 ft-1bs) (the upper limit tested). Viton A was found to vary from batch to batch in reactivity and 5 kg-m (36 ft-1bs) was an apparent threshold value. No data were found for PFA Teflon in liquid oxygen. For the 2219 aluminum, the threshold energy-level value in liquid nitrogen trifluoride was found to be greater than 11 kg-m (80 ft-1b); for the 5 Al-2.5 Sn titanium, the threshold energy-level value is 10 kg-m (72 ft-1b). In all the tests in liquid NF3, the positives were noted as a flash of light.

For comparison purposes, the energy-level value for reaction between liquid oxygen and 2219 aluminum is greater than 10 kg-m (72 ft-lbs), and for 6A1-4V titanium the value is approximately 2 kg-m (14 ft-lbs).

The limited tests with the silicone grease indicate that its threshold energy-level value is less than 2 kg-m (15 ft-1b) and sustained burning was observed along with the flash of light. One test with Krytox at the 11 kg-m (80 ft-1b) energy level produced a negative result. Two tests were conducted with polyethylene at the maximum drop height, 1.22 meters (48 inches). One drop was negative, but the other produced a flash of light with sustained burning. One test was conducted with

TABLE 2.6-1

EFFECTS ON VARIOUS MATERIALS SUBJECTED TO MECHANICAL IMPACT IN LIQUID NITROGEN TRIFLUORIDE AT 77K

	Mate	rial			Resul	ts
Material	Thic	kness inch	Drop m	Height inches	Positives	No. of Drops
Polytetrafluoroethylene	1.63	.064	1.22	48	0	20
Kel-F-81 CTFE	0.81	.032	1.22	38	0	20
Viton, Class 1 (Parco 9009-75)	2.2	.085	1.22 1.10 0.84 0.76 0.61	48 43.3 33 30 24	1 1 2 0 0	6 2 7 20 20
PFA Teflon	.18	.007	1.22 1.14 1.10 1.07 0.99 0.84	48 45 43.3 42 39 33	1 1 0 0 0	14 5 4 20 20 20
2219 Aluminum, T-87	1.37	. 054	1.22	48	0	20
5A1-2.5 Sn Titanium, ELI	0.81	.032	1.22 1.14 1.10 .84	48 45 43.3 33	1 1 0 0	11 12 21 3
Silicone Grease (Dow Corning High Vacuum)			.30 .23 .15	12 9 6	2 1 0	2 1 1

2.6, Mechanical Impact Tests (cont.)

Vaseline at the maximum drop height; the result was a <u>detonation</u> which <u>shattered</u> the plexiglas box which surrounded the apparatus. These tests re-emphasized the necessity for maintaining the NF3 systems free of hydrocarbon contamination.

The composition of the nitrogen trifluoride used in the tests was as follows:

Component	Content, Weight Percent
NF ₃	99.66
Active fluorides as HF	0.0006
N ₂	0
CO/O ₂	0.29
CF4	0.017
CO ₂	0.011
N ₂ 0	0.017

2.6.2 Mechanical Impact in Gaseous Nitrogen Trifluoride

Because high pressure storage of nitrogen trifluoride is one means to minimize the storage container size, mechanical impact tests were conducted with potential non-metallic materials which would be used in such systems at pressures up to 17.34 MN/m² (2500 psig). The discussion is presented in two sections: (1) Apparatus and Procedures, and (2) Experimental Results.

2.6.2.1 Apparatus and Procedures

The tests were conducted in a manner similar to those involving gaseous oxygen which have been described by C. F. Key (Reference 2.6.1). The impact test apparatus is shown in Figure 2.6.3. Because the tests were conducted at ambient temperatures, the acrylic plastic box which enclosed the test apparatus was not required to prevent moisture condensation and therefore was removed to provide better access to the test components.

The anvil section which contained the nitrogen trifluoride at high pressures is shown in a photograph in Figure 2.6.4. The schematic of the anvil design is presented in Figure 2.6.5. High pressure nitrogen was used to counterbalance the effect of the nitrogen trifluoride pressure against the striker pin. Teflon 0-rings were used to

Figure 2.6.3. Mechanical Impact Test Apparatus for Gaseous Nitrogen Trifluoride Environment

Figure 2.6.4. Anvil Section for High Pressure Gas Testing with the Mechanical Impact Tester

Schematic Diagram of High Pressure Gaseous Nitrogen Trifluoride Impact Tester Anvil Figure 2.6.5.

2.6, Mechanical Impact Tests (cont.)

seal the gas chambers. A rupture disc was incorporated in the NF3 chamber to prevent the pressure from exceeding 24.23 MN/ m^2 (3500 psig). The threshold levels for reaction were identified in the same manner as described for the mechanical impact tests in liquid nitrogen trifluoride. The positive reactions all resulted in test samples being consumed and usually the burst disc ruptured.

2.6.2.2 Experimental Results

Only non-metallic materials were tested in gaseous nitrogen trifluoride. The materials were polytetrafluoroethylene, Kel-F 81 CTFE, PFA Teflon, and Viton, Class 1 (Parco 9009-75). The materials were tested at pressure levels as great as $17.34 \, \text{MN/m}^2$ (2500 psig) and as low as $7.0 \, \text{MN/m}^2$ (1000 psig). The data are presented in Table 2.6-2.

Based on the data, the threshold energy-level values for reaction are (1) 3.45 kg-m (25 ft-lbs) at 7.0 MN/m² (1000 psig) for PFA Teflon, (2) 2.72 kg-m (20 ft-lbs) at 7.0 MN/m² (1000 psig) for Kel-F81, (3) greater than 11 kg-m (80 ft-lbs) at 7.0 MN/m² (1000 psig), 9.0 kg-m (65 ft-lbs) at 8.72 MN/m² (1250 psig), about 3.45 kg-m (25 ft-lbs) at 17.34 MN/m² (2500 psig) for polytetrafluoroethylene, and (4) greater than 11 kg-m (80 ft-lbs) at 17.34 MN/m² (2500 psig) for the Viton, Class 1. The latter result is surprising in view of Viton's behavior in liquid NF3 and may be due to the ability of the elastomer to dissipate the impact energy at ambient temperatures.

Two different cylinders of nitrogen trifluoride were used in the tests. The compositions were as follows.

		Composition					
	NF ₃	Active Fluorides as HF	N ₂	C0/0 ₂	CF ₄	co ₂	N ₂ 0
Cylinder H79957	99.01	<.0001	0	0.27	0.65	.012	.053
Cylinder 309029	99.58	<.0001	.039	0.30	0.030	.0083	.043

As a basis for comparison with oxygen, Key has reported that in gaseous oxygen at 6.8 MN/m 2 (986 psia) samples of polytetrafluoroethylene 0.157 cm thick reacted in 20 percent of the impact drops at an energy level of 10 kg-m (72 ft-1bs) and samples 0.086 cm thick reacted in 10 percent of the impact drops at an energy level of 10 kg-m (72 ft-1bs) (Reference 2.6.1).

TABLE 2.6-2

EFFECTS ON NON-METALLIC MATERIALS SUBJECTED TO MECHANICAL IMPACT IN GASEOUS NITROGEN TRIFLUORIDE AT AMBIENT TEMPERATURES

	Mate Thic	rial kness	Gaseou Press			rop ight	Results	No. of
Materials	mm	Inch	MN/m ²	psia	m	Inches	Positives	Drops
Polytetrafluoroethylene	1.63	.064	17.34	2515	1.22	48		4
			17.34	2515	1.10	43.3	2100	1
			17.34	2515	0.84	33		1
			17.34	2515	0.61	24	40.45	1
			17.34	2515	0.38	15	0	8
			10.45	1515	1.22	48	1	2
			8.72	1265	1.22	48	1	2
			8.72	1265	0.84	43.3	1	1
			8.72	1265	1.07	42	0	1
			8.72	1265	0.99	39	0	20
			8.72	1265	0.84	33	0	20
			7.0	1015	1.22	48	0	20
Kel-F 81 CTFE	0.81	.032	17.34	2515	0.84	33	1	1
			17.34	2515	0.61	24	1	3
			17.34	2515	0.38	15	0	2
			7.00	1015	0.84	33	1	1
			7.00	1015	0.61	24	-1	2
			7.00	1015	0.38	15		1
			7.00	1015	0.30	12	0	20
			7.00	1015	0.15	6	0	20
PFA Teflon	0.18	.007	7.00	1015	1.10	43.3	1	1
			7.00	1015	0.84	33	1	1
			7.00	1015	0.61	24	1	6
			7.00	1015	0.53	21	1	6
			7.00	1015	0.46	18	1	1
			7.00	1015	0.38	15	0	20
Viton, Class 1	2.2	.085	17.34	2515	1.22	48	0	20
(Parco 9009-75)			13.89	2015	1.22	48	0	1
			10.45	1515	1.22	48	0	1
			7.Q0	1015	1.22	48	0	1
			7.00	1015	1.10	43.3	0	1
			7.00	1015	0.61	24	0	2
			7.00	1015	0.38	15	0	1
			7.00	1015	0.30	12	0	1
			7.00	1015	0.15	6	0	1

2.7 FLOW IMPACT TESTS

The objective of the liquid impact tests was to determine the maximum temperature to which various materials may be heated without detrimental effects occurring when impacted by liquid streams of nitrogen trifluoride. The tests were performed at two velocities to establish the effect of velocity on the allowable temperature level. The materials tested were

Al 2219, T-87 CRES 304L, Annealed CRES 347, Annealed CRES 17-4 PH, H-1025 Inconel 718, STA Monel 400, Annealed Nickel 200, Annealed Ti 6Al-4V, STA 1010 Steel, Normalized Cu OFHC, Annealed Polytetrafluoroethylene Kel-F 81 CTFE Carbon CJPS PFA Teflon

The apparatus, procedures, and results are discussed below.

a. Apparatus and Procedures

The test apparatus consisted of two major components: (1) a liquid feed system which was maintained at 77 K (-196) and (2) an electrical-resistance heating system for the metal specimens. A photograph of the test apparatus is shown in Figure 2.7.1. The temperature of the metal specimens was measured by means of thermocouples attached to the back of the metal strip which was approximately .25 mm (0.010-in.) thick (Figure 2.7.2). The metal specimens were placed within 4.76 mm (3/16 in.) of the discharge orifice of the liquid propellant feed system. The exit orifice diameter of the propellant feed system was approximately 0.38 mm (0.015 in.) and the entire feed system was appropriately temperature conditioned with liquid nitrogen. For each test, a fresh, unpassivated specimen was used and the temperature level was increased in 56 K (100 F) increments for each test until the impacting liquid propellant caused the metal specimen to burn. As soon as the metal specimen reached the desired temperature, the liquid propellant was flowed for one second during each test and the feed lines were then immediately purged with helium to prevent moisture from accumulating at the exit orifice. The temperature at which significant attack occurs was determined within approximately 33 K (50 F). Normally there was only slight evidence of attack on the metal surfaces until the ignition temperature was reached.

Nonmetallic materials were placed on a metal strip which was heated electrically. A non-metal specimen of PFA Teflon is shown in Figure 2.7.3. The non-metal specimen was held in place by means of two

Figure 2.7.1. Apparatus for Flow Impact Tests

Figure 2.7.2. Metal Specimen for Liquid Impact Testing with Thermocouple Attached to Back Surface

Figure 2.7.3. Non-Metal Specimen for Liquid Impact Testing with Thermocouples Attached

2.7, Flow Impact Tests (cont.)

wire loops. One thermocouple was attached to the metal strip to insure that the non-metal specimen was not subjected to localized overheating while another thermocouple was located at the impact surface of the non-metal specimen in order to measure the temperature of the non-metal surface. The latter thermocouple values were used in the tabulation of the data.

The flow velocity through the exit orifice was determined from the orifice diameter and flow rates which were determined as a function of driving pressure using water, methanol, and trichlorotrifluoroethane as calibration fluids. In addition liquid nitrogen trifluoride itself at 77 K (-196 C) was used to calibrate the flow rate at a driving pressure of 1.82 MN/m² (250 psig). Two driving pressures were used in the tests 1.82 and 13.79 MN/m² (250 and 2000 psig), and the corresponding velocities were 39 and 107.6 meter/sec (128 and 353 ft/sec). The temperatures were measured with chromel-alumel thermocouples which are accurate to \pm 0.75% or approximately \pm 11 K (\pm 20 F) at the highest temperatures encountered.

b. Experimental Results

The results of the liquid nitrogen trifluoride impacting the heated metal and non-metal specimens are reported as either being positive or negative test results. A photograph containing examples of positive and negative test results is shown in Figure 2.7.4. The span between the temperature at which significant attack of the specimen first occurred and the temperature at which the specimen actually burned on impact is less than 56 K (100 F). The data from 136 tests are summarized in Table 2.7-1. Data previously obtained with liquid fluorine is presented in the table for the convenience of the reader (Reference 2.7.1). The non-metal specimens except for the carbon specimen were treated only to their normal maximum usage temperature.

Based on the data summarized in Table 2.7-1, a tabulation of the maximum temperatures to which metal surfaces can be heated and then impacted with liquid nitrogen trifluoride at 77°K (-321°F) without significant attack was prepared. The data is presented in Table 2.7-2. It should be kept in mind that the data was generated using thin metal strips which are readily cooled on impact with the liquid nitrogen trifluoride. The threshold level for more massive metal parts may occur at somewhat lower temperatures.

The significant items to note from the data in Tables 2.7-1 and 2.7-2 are: (1) the non-metals are not attacked at temperatures corresponding to their maximum usage temperature by the impacting liquid nitrogen trifluoride, (2) the reaction threshold between liquid nitrogen

Figure 2.7.4. Typical Metal Specimens from Liquid Impact Tests

TABLE 2.7-1

DATA INDICATIVE OF THE REACTIVITY OF LIQUID NITROGEN TRIFLUORIDE AND LIQUID FLUORINE AT 77°K IMPACTING ON VARIOUS HEATED MATERIALS

						i			Initi	al Specimen pacted by Li	Initial Specimen Temperature When Impacted by Liquid Fluorine	ithen e
	4 19	*							Liquid Velocity 73 m/s	elocity /s	Liquid Velo 39.6 m/s	Liquid Velocity 39.6 m/s
	V jourd	Plocity 107 6	mperatu	53 ft/c	Initial Specimen iemperature then Impacted by Liquid Nitrogen Trifluoride (found Velocity 107 6 m/c 1353 fr/c)	rogen Irifl		10,10	(240 ft/s		(130 ft/s	t/s)
Specimen Material	Positive Reaction K	eaction F	2 ×	Reaction	Positive Reaction	action		Reaction	Reaction	Reaction	Reaction	No Reaction
Aluminum 2219	Burned in air > 900	006 ^	755	< 900 (3)	Burned in air	006 ₹	755	< 900 (3)	839 (1)		4	728 (1)
CRES 304L	1366	2000 (1)	1339	<1950 (3)	1339	>1950 (2)	1311	<1900 (2)	1200 (2)	1172 (2)	1200 (5)	1172 (4)
CRES 316L					1478	>2200 (1)	1450	<2150 (1)				
CRES 347	1255	>1800 (4)	1228	<1750 (2)	1255	>1800 (3)	1228	<1750 (5)	978 (1)	922 (2)	1033 (2)	978 (2)
CRES 17-4 PH	1366	>2000 (4)	1339	<1950 (1)	1478	>2200 (2)	1450	<2150 (3)				
Inconel 718	1394	>2050 (2)	1366	<2000 (4)	1339	<1950 (2)	1311	<1900 (2)	1339 (2)	1283 (1)	1366 (2)	1339 (2)
Monel 400	Burned in air	2250	1478	<2200 (4)	1478	2200 (1)	1450	<2150 (3)				
Nickel 200	1589	2400 (1)	1561	2350 (1)	1616	>2450 (1)	1589	<2400 (4)	1450 (1)	1422 (2)	1478 (3)	1450 (3)
Titanium 6Al-4V	1450	2150 (1)	1422	2100 (1)	1422	2100 (1)	1394	<2050 (3)				
1010 Steel	1339	>1950 (5)	1311	1900 (1)	1450	>2150 (3)	1422	<2100 (4)				
Copper OFHC	Burned in air	>1700	1200	1700 (1)	Burned in air	~1700	1200	<1700 (6)				
Polytetrafluoroethylene			533	≤ 500 (2)			533	≤ 500 (2)				
Kel F 81 CTFE			478	≤ 400 (2)			478	< 400 (2)				
Carbon CJPS			1255	<1800 (1)			1255	<1800 (2)				
PFA Teflon			478	< 400 (2)			478	< 400 (2)				

() indicates the number of specimens included in the data point.

TABLE 2.7-2

MAXIMUM TEMPERATURES OF METAL SURFACES ON WHICH IMPACTING STREAMS OF LIQUID NITROGEN TRIFLUORIDE AT 77 K DO NOT RESULT IN IGNITION

	Approxima	te Non-Igniti	ion Threshold Tem	
		Velocity		Velocity
Material	107.6 m/s K	(353 ft/s) F	39 m/s (12 K	F F
Aluminum 2219	755	900	755	900
CRES 304 L	1339	1950	1311	1900
CRES 316 L			1450	2150
CRES 347	1228	1750	1228	1750
CRES 17-4 PH	1339	1950	1450	2150
Inconel 718	1366	2000	1311	1900
Monel 400	1478	2100	1450	2150
Nickel 200	1561	2350	1589	2400
Titanium 6Al-4V	1422	2100	1394	2050
1010 Steel	1311	1900	1422	2100
Copper OFHC	1200	1700	1200	1700
Polytetrafluoroethylene	533	500	533	500
Kel F 81 CTFE	478	400	478	400
Carbon CJPS	1255	1800	1255	1800
PFA Teflon	478	400	478	400

2.7, Flow Impact Tests (cont.)

trifluoride and the heated metals is higher than that between liquid fluorine and the heated metals and (3) the effect of velocity on the threshold value is minimal except for the 1010 steel and CRES 17-4 PH, both of which dropped 111°K (200°F) as the velocity increased from 39 and 107.6 meters/sec (128 to 353 ft/sec).

2.8 WASTE DISPOSAL TESTS

The objective of the waste disposal test series was to investigate methods for disposing of nitrogen trifluoride in an environmentally acceptable manner. Tests in the series were conducted by passing nitrogen trifluoride through packed static beds using both limestone and activated charcoal as candidate bed materials. No literature data was available concerning the reaction of limestone with nitrogen trifluoride, but previous investigations by Massonne (Reference 2.8.1) indicated that activated charcoal heated in the presence of nitrogen trifluoride could react explosively. Gould (Reference 2.8.2), however, reported no such problem when passing nitrogen trifluoride through a preheated fluidized charcoal bed. In our investigations, care was taken to preheat charcoal beds so that significant adsorption of nitrogen trifluoride by the bed would not occur and lead to the accumulation of the oxidizer prior to reaction initiation.

2.8.1 Apparatus and Procedure

A schematic diagram of the waste disposal apparatus is shown in Figure 2.8.1. Two different reactor types were employed during the tests. Both were externally heated one inch diameter tubes made of 304 stainless steel. The original reactor used in Tests 1 through 3 and 14 through 18 was 61 cm (24 in.) long with bed thermocouples at 7.6 cm (3 in.), 30.5 cm (12 in.), and 53.3 cm (21 in.) from the gas inlet. In order to detect hot spots in the reaction bed, a second reactor, 40.6 cm (16 in.) long, with bed thermocouples at 1.9 cm (.75 in.), 4.4 cm (1.75 in.), 5.7 cm (2.25 in.), and 20.3 cm (8 in.) from the gas inlet was used in runs 20 and 21.

At the start of each test, the bed material with nitrogen gas flowing through it was heated to a temperature sufficient for reaction initiation, 616 K (650 F) for limestone and 533 K (500 F) for activated charcoal. When this bed temperature was attained, nitrogen trifluoride was introduced into the system at a predetermined flow rate, while the system pressure was maintained at 0.14 MN/m^2 (5 psig) by adjusting the gas exit control valve. Bed temperatures were monitored during each test and temperature control was achieved through variation in nitrogen diluent flow. As bed temperatures began to stabilize, inlet gas driving pressures and system pressures were checked to insure that they remained at 1.4 MN/m² (50 psig) and 0.14 MN/m² (5 psig) respectively; nitrogen trifluoride and nitrogen flows were recorded from rotameters; reactor exit gas flow measurements were taken using a wet-test meter; and an effluent gas sample was trapped in the sample container. After obtaining the desired data, the nitrogen trifluoride flow was terminated and the reaction quenched by flooding the bed with nitrogen. Chemical analysis of the

Figure 2.8-1. Schematic Diagram of Waste Disposal Test Apparatus

2.8, Waste Disposal Tests (cont.)

effluent samples was performed by means of a Hewlett Packard 5830 A Gas Chromatograph in conjunction with active fluoride measurements from an Orion Model 96-09 fluoride specific ion electrode.

2.8.2 Experimental Results

Test results are presented in Table 2.8-1. In examining the data it should be carefully noted that temperatures given in the table represent the maximum measurement among thermocouple locations in the bed. Both limestone and activated charcoal static beds were found to react in extremely localized zones which were strongly influenced by the type of bed and gas velocity. This reaction behavior presented major difficulties in obtaining accurate reaction temperatures.

This reaction behavior also presented serious problems with the limestone bed itself. The temperature in the localized reaction zones was sufficient to cause sintering of the limestone particles which resulted in a consequent reduction of flow through the reactor. The problem was recognized by bed agglomerates deposited on the reactor wall during the short duration at conditions of Test 1. Attempts to control the temperature short duration zones through reduction in space velocity and an increase in of the reaction zones through reduction in space velocity and an increase in diluent flow in Tests 2 and 3 respectively, resulted in continuing problems with the bed material.

Activated charcoal proved to be an advantageous choice for bed material in this application, not only due to its lack of agglomerative tendencies, but also because of its desirable nitrogen trifluoride conversion characteristics and its apparently safety when used in preheated beds.

No indication of any type of explosive tendency such as that reported by Massonne was observed when flowing nitrogen trifluoride through charcoal beds at the space velocities examined in this test series. Before introducing nitrogen trifluoride into the system, beds were heated to a minimum of 533 K (500 F) at which temperature reaction initiation was immediate.

Desirable conversion characteristics of activated charcoal beds include extremely low N_2F_4 production and excellent NF_3 conversion efficiency. Superior conversion efficiency is evident from the data in Table 2.8-1. None of the reaction conditions listed in the table for charcoal beds resulted in greater than 0.14% by volume unreacted table for charcoal beds resulted in greater than 0.14% by volume unreacted nitrogen trifluoride in the exit gas. A direct comparison of nitrogen trifluoride conversion between limestone and charcoal beds under similar trifluoride conversion between limestone and charcoal beds under similar conditions is afforded by Tests 2 and 16. In both tests, undiluted

TABLE 2.8-1

WASTE DISPOSAL TEST DATA

			Inlet	Inlet Gas Composition	position				Reaction Parameters	Param	reters				Ext	t Gas Con	Exit Gas Composition				
Run Sample #	NF3	N2	C0/02	CF4 Vol. X	CO ₂	N20 Vol. x	Active Fluoride Vol. 1	Temp. (Max t.c. in bed) K	Pressure	_ '	elocity n/sec	Space Velocity sec-1	NF3	M2 Vol.	C0/02	CF4	CO ₂	N20	Active Fluoride Vol. \$	å	Bed Composition (Remarks)
Ξ	56.44		0.39		0	0.025	0.032	77.5	0.136		0.53	0.255	33.83	55.79	1.67	0.0063	6.43	0.093	2.18	Caco, (aco, (Bed Agglomeration)
2-1	99.20		69.0		0	0.044	0.056	727	0.136	NO.	0.063	0.056	32.62	1,91	18.64	0.014	28.11	0.44	18.26	Caco.	Red Applomenation
3-1	26.70		0.19		0.012	0.010	0.0027	852	0.136	5	0.271	0.056	1.14	\$2.32		0.010	30.56	0.18	0.71	000	CaCO. (Bed Applomeration)
14-1	14.37		0.099		0	9600.0	0.00087	1505	0.136	S	1.66	0.103	0.11	90.66	0	9.64	0.12	0.035	0.036	Activet	ed Charcoal
15-1	9.74		0.067	0.053	0	0.0065	0.00059	1078	0.136	2	1.76	0.103	990.0	88.68	0	1.17	0.058	0	0.023	Activat	Activated Charcoal
16-1	98.16	0.55	0.67	0.54	0	0.065	0.0060	1023	0.136	5	0.10	0.060	0.14	89.79	0	9.90	0.15	0	0.015	Activat	Activated Charcoal
17-1	9.38		0.064	0.052	0	0.0063	0.00067	1153	0.136	5	2.34	0.124	0.0020	97.59	0	2.34	0.049	0	0.017	Activat	Ctivated Charcoal
18-1	11.54		0.079	0.064	0	0.0077	0.00070	1329	0.136	S	2.20	0.124	<0.0007	98.87	0	1.05	0.053	0	0.020	Activat	Activated Charcoal
20-1	11.54		0.079	0.064	0	0.0077	0.00070	1500	0.136	S	2.48	0.185	0.019	95.45	0	4.43	0.082	0	0.020	Activat	Activated Charcoal
21-1	11,95		0.082	0.065	0	0.0079	0.00074	>1366	0.136	2	1.50	0.128	<0.0007	97.36	0	2.59	0.032	0	910.0	Activat	ictivated Charcoal

*The limestone (CaCO3) was used in the form Culligan Water Conditioning Co., nominal 8 mesh was dried prior to use.

2.8, Waste Disposal Tests (cont.)

nitrogen trifluoride was fed into the reactor at a space velocity of about $200\ hr^{-1}$. The effluent gas stream from the limestone packed reactor in Test 2 showed 32.62% nitrogen trifluoride remaining, while the charcoal bed reactor stream in Test 16 contained only 0.14% by volume unreacted NF3.

Optimum nitorgen trifluoride conversion was obtained by using between 11.5% and 12% nitrogen trifluoride inlet gas at a space velocity of about 450 hr⁻¹. At these conditions, no nitrogen trifluoride was detected in the effluent gas streams of Tests 18 and 20. An increase in space velocity from optimum conditions, as in Test 19, resulted in a very low content of unreacted nitrogen trifluoride in the exit gas. Decreasing the temperature in Tests 15 and 17 through increased dilution also resulted in very small but detectable amounts of nitrogen trifluoride in the effluent. Tests 14 and 16 present somewhat puzzling results; in both cases space velocity and dilution were decreased from optimum conditions, and a small amount of nitrogen trifluoride passed through the bed. In spite of the anamolous results, the nitrogen trifluoride conversion to innocuous products was promising under all conditions tested.

Under all conditions used in testing with the charcoal beds, there was no indication of N_2F_4 forming although there was a slight increase in the concentration of active fluoride species as evidenced by the exit gas active fluoride analyses.

Although no bed agglomeration occurred, localized reaction zones also caused a slight problem with activated charcoal bed reactions. The high temperatures attained in these zones caused the formation of metal fluorides at reactor surfaces. Material balances from inlet and outlet gas streams shown in Table 2.8-2 suggest this side reaction. Nitrogen balances were generally within 10%, while fluorine content of the exit gas stream was consistently low. Possibly a significant portion of the fluorine is retained in the bed as solid carbon-fluorine addition comppounds and as adsorbed fluorocarbons on the charcoal. Some metal fluorides were found interspersed with bed material upon post-reaction examination of beds. The occurrence of this reaction indicates a need for proper reactor design considerations including increased bed diameters and suitable materials of construction.

In summary, limestone proved to be unsatisfactory as a bed material in static bed NF3 waste disposal applications due to its tendency to agglomerate in the localized high temperature zones characteristic of the reaction. Preheated activated charcoal was found to be a suitable bed material for converting nitrogen trifluoride to innocuous compounds because in this application not only because the bed particles do not agglomerate, but the conversion of nitrogen trifluoride to innocuous compounds is accomplished with negligible production of gaseous active fluoride species.

TABLE 2.8-2

NITROGEN AND FLUORINE MATERIAL BALANCES IN WASTE DISPOSAL TEST GAS STREAMS

	7	Nitrogen	oden			Fluoride	apide	
	2000	In		Out		In		Out
Test #	$(\text{SCFM*} \times 10^2)$	millimoles per sec	$(SCFM* \times 10^2)$	millimoles per sec	$(\text{SCFM} \times 10^2)$	millimoles per sec	$(SCFM \times 10^2)$	millimoles per sec
14	59.6	11.6	62.1		14.0		0.92	0.18
15	90.2	17.6	101.5	19.8	14.0	2.74	2.51	0.49
17	124.1	24.3	119.0	23.3	18.5	3.62	5.73	1.12
18	7.66	19.5	108.2	21.1	18.5	3.62	2.33	0.46
12	62.0	12.1	94.2	18.4	12.8	2.50	5.01	0.98

SCFM at 70°F

2.9 NITROGEN TRIFLUORIDE ANALYSES AND COMPRESSIBILITY FACTORS

2.9.1 Nitrogen Trifluoride Analyses

The analyses of the nitrogen trifluoride were conducted according to the procedures described in AFRPL-TR-76-89 "Nitrogen Trifluoride Analytical Procedures Final Report" by L. A. Dee and W. T. Leyden. The analyses conducted after testing are reported in the appropriate sections containing the test data. The analysis of the as-received nitrogen trifluoride is reported in Table 2.9-1.

2.9.2 Compressibility Factors for Gaseous Nitrogen Trifluoride

A review of the literature indicated that no experimental compressibility data were available at 344 K (160 F) and at pressures as high as 17.24 MN/m² (2500 psia) for gaseous nitrogen trifluoride. In order to assure safe operations during the high pressure testing reported in Sections 2.2, 2.3, and 2.6, experimental determinations of the compressibility factors were made in the temperature range from 273 to 344 K (32 to $160 \, \text{F}$) and a pressure range of 3.45 to $20.7 \, \text{MN/m²}$ (500 to $3000 \, \text{psia}$).

A series of tests were conducted in which various quantities of NF3 were placed in fixed volume stainless steel apparatuses which were completely immersed in water baths at various temperatures. The bath temperatures were measured with thermometers and the pressures were measured with a 3000 psia Taber transducer which is accurate to within 0.5%. The data are tabulated in Table 2.9-2. Selected data are plotted in Figure 2.9.1. Included in the plots are a few points calculated from the compressibility tables in R. C. Reid and T. K. Sherwood, "Properties of Gases and Liquids", 2nd Edition, McGraw-Hill, 1966. The agreement between the experimentally determined compressibility factors and the calculated values is excellent.

TABLE 2.9-1
CHEMICAL ANALYSIS OF THE AS-RECEIVED NITROGEN TRIFLUORIDE

		Com	position	n, Weight	t Percer	it	
Cylinder No.	NF ₃	Active Fluoride as HF	N ₂	co/o ₂	CF ₄	co ₂	N ₂ 0
17228-C	98.68	0.17	0.20	0.10	0.75	0.013	0.083
17319-C	98.72	0.10	0.13	0.45	0.51	0.016	0.070
17341-C	98.3	0.077	0.31	0.74	0.38	0.03	0.013
Н 81136	99.56	0.0001	0	0.35	0.009	0	0.074
Н 55957	98.68	0.0002	0	0.24	1.03	0.011	0.048
Н 79957	99.01	<0.0001	0	0.27	0.65	0.012	0.053
N 36777	99.66	0.0006	0	0.29	0.017	0.011	0.017
P 178684	99.68	0.0003	0	0.29	0.017	0	0.014
309029	99.58	<0.0001	0.039	0.30	0.030	0.008	0.043
237250	98.76	0.0017	0.22	0.31	0.67	∿ 0	0.041
C 5298	99.64	0.016	~0	0.31	0.014	~0	0.025
385580	99.50	0.0027	0.12	0.31	0.015	0.027	0.023

TABLE 2.9-2

DATA INDICATIVE OF THE VARIATION OF THE COMPRESSIBILITY FACTORS OF GASEOUS NITROGEN TRIFLUORIDE AS A FUNCTION OF TEMPERATURE AND PRESSURE

Compressibility Cortes	Z Z	0.843	0.909	0.690	0.648 0.700 0.772 0.809	0.560 0.625 0.715 0.785	0.724	0.509 0.598 0.681 0.706 0.806	0.527 0.593 0.622 0.650	0.740 0.781 0.839 0.857	0.660 0.715 0.792 0.829
sure	psia	469 515 584	635	854 974 1174	954 1115 1345 1497	1174 1397 1744 2065	1865	1474 1860 2239 2369 2934	2015 2350 2504 2664	724 826 974 1054	954 1105 1354 1504
Pressure	Z=/ X	3.23 4.03	4.38	5.89 6.72 8.09	6.58 7.69 9.27 10.32	8.09 9.63 12.02 14.24	12.86	10.16 12.82 15.44 16.33 20.23	13.89 16.20 17.26 18.37	4.99 5.70 6.72 7.27	6.58 7.61 9.34 10.37
ature	Je	21.1 48.0	71.0	19.7	0 22 50.4 71.0	0 18,4 45.5 71.1	53	0 19.3 37 43.5 71.1	0 10.3 15.0 20.0	22 22 51.5 71.1	0 19.0 50.8 71.0
Temperature	Хe	273.2 294.3 321.2	344.2	273.2 292.9 324.3	273.2 295.2 323.6 344.2	273.2 291.6 318.7 344.3	326.2	273.2 293.5 310.2 316.7 344.3	273.2 283.5 288.2 293.2	273.2 295.2 324.7 344.3	273.2 292.2 324.0 344.2
Specific Volume	cc/dm	8. 8. 8. 8. 8. 8.	8.34	3.75 3.75 3.75	9.9.9.5. 5.5.5.5.	2.22 2.22 2.22 2.22	2.15	88999 9999 9999	1.21	4.75* 4.75* 4.75*	

*Volume of system was 2.465 times greater than initial system

Figure 2.9.1. The Compressibility Factor for Nitrogen Trifluoride at Various Temperatures Versus Pressure

2.10 WATER HAMMER TESTS WITH NON-METALLIC MATERIALS

The objective of the water hammer tests was to determine the effects of a shock wave promulgated through liquid nitrogen trifluoride on non-metallic materials. The non-metal candidates which were considered appropriate for this test are:

Polytetrafluoroethylene Carbon (CJPS) Kel-F 81 Silastic LS-53 Viton Polyethylene

The test apparatus, procedures and results are discussed below.

2.10.1 <u>Test Method and Apparatus</u>

The apparatus used was the U-tube adiabatic compression test apparatus which was modified to incorporate a means of temperature-conditioning the U-tube to condense the nitrogen trifluoride as liquid. A schematic diagram of the entire appratus for handling the nitrogen trifluoride and conducting the test is shown in Figure 2.5.1. The schematic diagram of the U-tube adiabatic compression apparatus is shown in Figure 2.10.1; a photograph of the apparatus is shown in Figure 2.10.2; and the schematic of the test specimen holder with the test specimen in place is shown in Figure 2.10.3. The test specimen holder was 6.35 mm (.25 in.) hollow AN plug used to seal the end of the U-tube. The test specimen was a strip of material 2.5 mm (0.10-in.) long which was wedged into the end of the hollow AN plug and cemented in place with Sauereisen. The U-tubewas fabricated from Hastelloy-X 6.35 mm (.25 in.) tubing approximately 40.6 cm (16-in.) long.

The tests were conducted in the following manner. The U-tube was attached to the apparatus and the specimen holder used to seal the open-end of the U-tube. The tube was then evacuated to $133~\text{N/m}^2$ (1 torr) or less, a predetermined quantity of NF3 was gradually introduced into the assembly to a predefined pressure level and condensed in liquid nitrogen. The pneumatic remotely-operated valve was then actuated and the nitrogen from the accumulator tank was used to drive the liquid NF3 against the non-metal specimen. The U-tube assembly was then vented and flushed with nitrogen and the test specimen was examined visually to ascertain if any attack occurred. Microscopic examination was used to evaluate the samples which were not totally consumed in the test. A 1000 1b burst disc

Figure 2.10.1. Schematic Diagram of U-Tube Adiabatic Compression Apparatus as Used in Water Hammer Tests

Figure 2.10.2. Photograph of Apparatus Used in Water Hammer Tests

Figure 2.10.3. Schematic of Test Specimen Holder with Test Specimen in Place

Figure 2.10.4. Pressure Trace of Water Hammer Effect Using a Driving Pressure of 7.69 MN/m^2 (1100 psig) and with Liquid Water in the U-Tube

2.10, Water Hammer Tests with Non-Metallic Materials (cont.)

made of 304-L stainless was used in each test to seal the pneumatic valve and check valve assembly from the nitrogen trifluoride atmosphere prior to the test. At driving pressures below 7.58 MN/m² (1100 psia) no burst disc is used. The driving pressure in the accumulator tank is varied with each material to achieve final pressures at which the non-metals are susceptible to attack. The test specimen is replaced after each test to insure that comparable surfaces are being exposed to the test conditions. The pneumatic valve opens completely within 1.5 milliseconds so with an accumulator pressure of 6.89 MN/m² (1000 psia), the minimum pressurization is 4.6 GN/m²/sec (6.7 x 10^5 psi/sec). An example of the water hammer effect achieved with the apparatus is shown in Figure 2.10.4. The driving pressure of 7.69 MN/m² (1115 psia) produced a pressure spike of 55.2 MN/m² (8000 psia), greater than a seven-fold increase over the driving pressure.

2.10.2 Experimental Results

The data obtained from the water hammer test are presented in Table 2.10-1.

The significant items to note from the data are as follows. The Kel-F 81 is apparently the most durable and compatible material evaluated in this test. Teflon ranks second; although no chemical incompatibility of the Carbon (CJPS) with NF3 was apparent, the structural integrity of the carbon specimens was destroyed at the higher driving pressures. Viton undergoes small changes in its surface at driving pressures above 6.3 MN/m² (915 psia). Both polyethylene and Silastic LS 53 ignited at the higher driving pressures but polyethylene withstood higher driving pressure without reaction than the Silastic LS 53.

TABLE 2.10-1

BEHAVIOR OF VARIOUS NON-METALS SUBJECTED TO A SHOCK WAVE IN LIQUID NITROGEN TRIFLUORIDE

	Initial Tempe	Liquid rature	Driv Press		Results
Non-Metal	<u>°K</u>	<u>°F</u>	MN/m ²	psia	responses all total and
			13.9 13.9 12.5 10.4 8.38 7.00 7.00 6.31 6.31	2015 2015 1815 1515 1215 1016 1015 915 915	Slight change in edge Some surface change Some surface change Some surface change Some surface change Very slight surface change Slight surface change No effect No effect
Polyethylene	77	-321	13.9 10.4 8.38 7.69 7.69 7.00	2015 1515 1215 1115 1115 1015	Surfaced burned Surfaced burned Surfaced burned Surfaced burned Surfaced burned No effect
Carbon (CJPS)	77	1977) 11 (1978)	13.9 12.5 11.8 11.1 10.4 7.00	2015 1815 1715 1615 1515 1015	Sample crumbled Sample crumbled Sample crumbled Sample crumbled No effect No effect
Silastic LS 53	77	-321	13.9 10.4 7.00 7.00 3.55 2.86	2015 1515 1015 1015 515 415	Sample burned Sample burned Sample burned Sample burned Slight surface change No effect
Kel-F 81 CTFE	77	-321	17.3 17.3 13.9 13.9	2515 2515 2015 2015	No effect No effect No effect No effect
Polytetra fluoroethylene	77	-321	17.3 17.3 17.3 17.3 16.7 16.7 13.9	2515 2515 2515 2515 2415 2415 2015 2015	Slight surface change No effect No effect Sample burned No effect No effect No effect

2.11 NATURE AND RATE OF FORMATION OF PASSIVATION FILMS

The purpose of this task was to determine whether a stoichiometric fluoride compound formed as a passive film on metals in the temperature range from 195 to 344 K and to determine the rate at which such a film would form.

2.11.1 Apparatus and Procedures

The nature and rate of formation of passivation films in liquid and gaseous nitrogen trifluoride were evaluated by varying exposure times of selected metals to nitrogen trifluoride, and analyzing the resulting surfaces for the formation of surface films utilizing Ion Scattering Spectrometery (ISS) coupled with a quadrupole mass analyzer which allows analysis of the secondary ion mass (SIMS) values and residual gas analysis (RGA). The data obtained from the procedure allows identification of the chemical elements present as a function of their distance from the surface. The result is a layer by layer examination of the sample. The analyses were conducted by SEAL, Inc.* The representative metals were subjected to gaseous nitrogen trifluoride exposure at 344 K (160 F) and 3.45 MN/m² (500 psia) for periods of 30 seconds, 30 minutes, 30 hours and 30 days; the same metals were subjected to liquid nitrogen trifluoride exposure at 195 K (-78 C) for periods of 30 minutes, 30 hours, and 30 days. The metals used in the evaluation were: 2219 Aluminum, 304 Stainless Steel, and Nickel 200.

Prior to exposure to the nitrogen trifluoride, the metal samples were washed with a detergent solution (Turco Plaudit) and then washed with isopropanol and vacuum dried. They were not exposed to any pickling solutions and therefore any fluoride present in the specimens must be obtained from the nitrogen trifluoride.

The elemental peak heights in the ISS spectra were converted into concentration values in atomic percent in the following manner. First, the peak areas were measured in each spectra; second, because only the oxide or fluoride anions were present in the spectra, the ionic radii of the oxide and fluoride were chosen as representative of the size of the anions; third, the relative number of atoms of each species on the surface was calculated by dividing the areas under each peak by the square of the corresponding ionic radii; and fourth, the atomic percent was calculated from the relative number of atoms of each species present.

^{*}Scanning Electron Analysis Laboratories, Inc., Los Angeles, CA 90066.

2.11, Nature and Rate of Formation of Passivation Films

The elemental concentrations, in atomic percent, for fluorine and oxygen were then correlated with the fluorine and oxygen peak heights obtained from the SIMS spectra at the same sputtered depth for each sample. The correlation between the ISS atomic percent concentration and the SIMS peak heights exhibited appreciable scatter, but it was deemed acceptable by the analyst. Correlation lines for converting SIMS peak heights to atomic percent were drawn through the origin; factors were obtained from the slopes of these lines to permit conversion of SIMS peak heights to atomic percent. Using these conversion factors, the fluorine and oxygen peak heights obtained as a function of depth for each sample were converted to atomic percent.

There was no evidence of nitrogen or fluorides adsorbed on the surface of the materials, only a hydrocarbon which is attributable to the isopropanol.

Because the metal specimens were analyzed as two batches, two different correlation sets were used to calculate the concentrations; one correlation set was used for metal specimens exposed for 30 days and 30 hours to nitrogen trifluoride and the other set was used for metal specimens exposed for 30 minutes and 30 seconds to nitrogen trifluoride.

2.11.2 Test Results

The data obtained from the 304 stainless steel specimens are shown in Figures 2.11.1 and 2.11.2; the data obtained from the nickel 200 specimens are presented in Figures 2.11.3 and 2.11.4; and the data obtained from the aluminum 2219 specimens are shown in Figures 2.11.5 and 2.11.6.

If the surface were converted to a pure layer of stoichiometric compounds, the fluoride concentration should be a minimum of 66 atomic percent for the 304 stainless steel, 66 atomic percent for the Nickel 200, and 75 atomic percent for the 2219 Al. From the data presented, it is apparent that none of the materials evaluated form such a layer at the surface, because the maximum fluoride concentration detected is 11 atomic percent near the surface of the 304 stainless steel.

For the 304 stainless steel it is apparent that the diffusion of the fluoride into the surface is enhanced significantly by exposure at 344 K (160 F) and 3.45 MN/m² (500 psia) to gaseous nitrogen trifluoride as compared to exposures in liquid nitrogen trifluoride at 195 K (-78 C). After 30 days in liquid nitrogen trifluoride at 195 K (-78 C) less than 1 atomic percent fluoride is present on the surface of the metal,

Fluoride and Oxide Content of 304L Stainless Steel Surfaces Exposed to Liquid NF $_{\rm 3}$ at 195K (-78C) Figure 2.11.1.

Fluoride and Oxide Content of 304L Stainless Steel Surfaces Exposed to Gaseous NF $_3$ at 344K (160F) and 3.45 MN/m 2 (500 psia) Figure 2.11.2.

Fluoride and Oxide Content of Nickel 200 Surfaces Exposed to Liquid ${\rm NF}_3$ at 195K (-78C) Figure 2.11.3.

Fluoride and Oxide Content of Nickel 200 Surfaces Exposed to Gaseous NF3 at 344K (160F) and 3.45 MN/m² (500 psia) Figure 2.11.4.

Fluoride and Oxide Content of 2219 Aluminum Surfaces Exposed to Liquid NF $_3$ at 195K (-78C) Figure 2.11.5.

Figure 2.11.6. Fluoride and Oxide Content of 2219 Aluminum Surfaces Exposed to Gaseous NF $_3$ at 344K (160F) and 3.45 MN/m 2 (500 psia)

2.11, Nature and Rate of Formation of Passivation Films (cont.)

while after 30 days in gaseous nitrogen trifluoride at $3.45~\text{MN/m}^2$ (500 psia) and 344 K (160 F), 11 atomic percent fluoride is apparently present. The data also indicate that the penetration of the metal surface by the fluoride is a relatively slow process at 344 K (160 F). Several hours elapse before any appreciable concentration is detectable below the immediate surface; after 30 second and 30 minute exposure the concentration level is less than 0.5 atomic percent which considering the semi-quantitative nature of the data is detectable but not significant. In liquid NF3 at 195 K (-78 C), the fluoride penetration rate is extremely low, with less than 0.6 atomic percent of fluoride present after 30 days exposure. No nitrogen species were detected on or below the surface of the 304 stainless steel in either the liquid or gaseous exposure tests.

For Nickel 200, much the same situation exists as that which occurs with the 304 stainless steel at 344 K (160 F). Fluoride penetration is enhanced by the higher temperature; no significant fluoride penetration of the surface occurs within 30 minutes in gaseous NF3 at 344 K (160 F); and it appears that 400 Å below the surface a maximum concentration of 6.8 atomic percent fluoride is present after 30 days in gaseous NF3 at 344 K (160 F). The data from the liquid nitrogen trifluoride exposure tests are completely reversed from what reason would predict. The highest fluoride concentration is produced by the shortest exposure period, 30 minutes; and the lowest fluoride concentration is produced by the longest period of exposure, 30 days. The anomaly exists, and perhaps is a reflection on the semi-quantitative nature of the analytical method. The data for the 30 hour, and 30 day, exposed samples were calculated with one set of calibration curves, and the data for the 30 minute exposed was calculated with the other set of calibration curves. In spite of this dilemma, it is apparent that at 300 $\hbox{\normalfont\AA}$ below the nickel 200 surface, the fluoride concentration may be detectable, but is not significant.

For the 2219 aluminum samples exposed to the gaseous nitrogen trifluoride at 344 K (160 K) and 3.45 MN/m² (500 psia) it appears that several hours are required before significant quantities (5 atomic percent) of fluoride penetrate the metal surface; the reversal of the 30-second and 30-minute exposure data may again be due to the semi-quantitative characteristic of the data. The data obtained from the samples exposed to the liquid nitrogen trifluoride are confusing with regard to rate of fluoride penetration because the 30-hour values are nearly three times as large as the 30 day data. But the data do indicate that a pure aluminum fluoride passivation film does not exist on the metal surface.

2.0, Experiment Results and Discussion (cont.)

2.12 SOLUBILITY OF PASSIVATION FILMS IN LIQUID NITROGEN TRIFLUORIDE

This study was contingent on the results obtained in the previous study. If there was a distinct difference in the passivation films formed in liquid and gaseous nitrogen trifluoride, then an evaluation of the solubility of such films was warranted. The results indicated that at the conditions used in the tests no distinct passivation films formed, but the data did indicate that after 30 days exposure to gaseous nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m² (500 psia), the fluoride concentration levels in the metal surfaces were substantially greater than after 30 days exposure in liquid nitrogen trifluoride at 195 K (-78 C). After 30 days the maximum fluoride concentrations near the metal surfaces from liquid and gaseous exposures were as follows: Ni 200, < l versus 6.7 atomic percent; Al 2219, 2.5 versus 7.4 atomic percent; and 304 stainless steel, < l versus 10.8 atomic percent. Whether this behavior is strictly a function of temperature or whether the presence of the liquid phase affects the resultant concentration levels was not uniquely resolved.

2.12.1 Apparatus and Procedures

Tests were conducted in which samples of Ni 200, 304 stainless steel, and 2219 aluminum were initially subjected to a 30 day exposure in gaseous nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m² (500 psia) and then the samples were subsequently exposed to liquid nitrogen trifluoride for 30 days at 195 K (-78 C). After the second exposure period the metal surfaces were subjected to the SIMS and ISS analyses described in Section 2.11.1.

2.12.2 Test Results

The data obtained from the tests is presented in Figure 2.12.1. The data indicate that the maximum fluoride concentration near the metal surface is as follows: Ni 200, 4.9 atomic percent; 2219 Al, 2.5 atomic percent; 304 stainless steel, 2.5 atomic percent.

The implications from the data are: (1) that the fluoride present in the Nickel 200 from gaseous exposure is not affected by later exposure to liquid nitrogen trifluoride (the 4.9 versus the 6.7 atomic percent value measured for a sample exposed to gaseous nitrogen trifluoride only are in agreement with each other as one considers the semi-quantitative nature of the data), and (2) the fluoride present in the 2219 aluminum and 304 stainless samples from exposure to gaseous trifluoride may have been removed to some extent. The apparent reductions from 7.4 to 2.5 atomic percent in 2219 aluminum and from 10.8 to 2.5 atomic percent in 304 stainless steel are large enough to establish some validity to the actual removal of

Fluoride and Oxide Content of Metal Surfaces Exposed to Gaseous NF3 for 30 Days at 344K (160F) and 3.45 MN/m² (500 psia) Followed by 30 Days of Immersion in Liquid NF3 at 195K (-78C) Figure 2.12.1.

2.12, Solubility of Passivation Films in Liquid Nitrogen Trifluoride (cont.)

some of the fluoride by the liquid nitrogen trifluoride. In any case, very little fluoride is present initially near the metal surfaces after exposure to the gaseous nitrogen trifluoride, so the quantity that can be removed by the presence of the liquid phase is also small.

Analysis of the wash water used to flush any residuals after the evaporation of the nitrogen trifluoride from the sample container indicated that no Al, Fe, Cr, and Ni compounds were present in the nitrogen trifluoride. The analyses were conducted by atomic absorption spectroscopy and limits of detection are 1 ppm for aluminum and 0.2 ppm for iron, chromium, and nickel, and correspond to microgram quantities of the metals. The findings are consistent with the fact that very little fluoride is present near the metal surfaces to form compounds with the base metals.

In summation, there is some evidence that the fluorides near the surface of 304 stainless steel and 2219 aluminum may be removed by the presence of liquid nitrogen trifluoride, but the fluorides are not apparently removed from Nickel 200. The data from the static exposure tests reported in Section 2.2 indicates that none of the alloys used in this study are subject to corrosion in liquid nitrogen trifluoride.

2.0, Experiment Results and Discussion (cont.)

2.13 EFFECTS OF CONTAMINANTS ON METAL COMPATIBILITY IN NITROGEN TRIFLUORIDE

The purpose of the tests reported herein was to establish the effect of common contaminants on the chemical compatibility of nitrogen trifluoride with various materials. The effects of five contaminants, (1) fingerprints, (2) petroleum jelly, (3) lightweight machine oil, (4) brazing flux, and (5) a fluorocarbon oil, FC-75, were evaluated in the tests described below.

2.13.1 Apparatus and Procedures

Three types of tests were conducted with the candidate contaminants; (1) screening tests, (2) adiabatic compression tests, and (3) gaseous flow tests. The apparatus and procedure for each type of test is discussed.

2.13.1.1 Screening Tests

The screening tests were conducted with the apparatus described in Section 2.1.2.3 and shown in Figures 2.1.4 and 2.1.5. The tests were conducted in the following manner. The candidate contaminants were placed in a small aluminum cup except for the fingerprint contamination which was placed on Silastic LS-53 specimens to determine whether the contaminant would lower the threshold temperature at which the Silastic LS-53 previously had exhibited a slight endotherm in the presence of nitrogen trifluoride. The specimens were heated from ambient temperature to 478 K (400 F) in a period of 10 to 15 minutes while either oxygen or nitrogen trifluoride was flowing at a rate of 60 ml/min onto the surface of the specimens. In addition to the thermal measurements, visual changes in the specimens were noted. The total pressure in the reaction flask was one atmosphere.

2.13.1.2 Adiabatic Compression Tests

The adiabatic compression tests were conducted with the apparatus and procedures described in Section 2.5.1. The tests were conducted by placing small quantities of the contaminants on nickel 200 and 347 stainless steel specimens which were subjected to adiabatic compression in gaseous nitrogen trifluoride. The metal specimens were examined prior to testing and after testing microscopically to establish the reactive threshold levels.

2.13.1.3 Gaseous Flow Tests

The gaseous flow test appratus is shown in Figures 2.4.1, 2.4.2 and 2.4.5. The metal specimens were contaminated by applying

2.13, Effects of Contaminants on Metal Compatibility in Nitrogen Trifluoride (cont.)

the contaminants to the test orifice specimen with a cotton swab. The test procedures and data evaluation process are described in Section 2.4.1.

2.13.2 Experimental Results

2.13.2.1 Screening Test Results

The results of the screening tests are presented in Table 2.13-1. The temperatures reported in the table are the values for the exposed surface of the contaminant. The nitrogen trifluoride used in the tests had a minimum purity level of 98.2 weight percent nitrogen trifluoride and a maximum active fluoride content of 0.17 weight percent.

The significance of the data in Table 2.13-1 is that the candidate contaminants except for FC-75 are more reactive with gaseous NF3 than with gaseous 02 at comparable temperatures, but the reactions are not vigorous at the mild conditions existing in the test.

2.13.2.2 Adiabatic Compression Test Results

The results of the adiabatic compression tests are presented in Table 2.13-2. The threshold conditions at which no reaction occurs with either clean Nickel 200 or 347 stainless steel are incorporated into the table with the contaminant labeled as none and the values are 606 K (632 F) and 560 K (548 F) respectively.

The significant items to note from the data in Table 2.13-2 are as follows. The presence of fingerprints on Nickel 200 and 347 stainless steel lowered the threshold values 27 K (50 F) and 35 K (63 F) respectively. The presence of light weight machine oil (Walsco #985) on Nickel 200 and 347 stainless steel lowered the threshold values 17 K (32 F) and 19 K (34 F) respectively. The presence of FC-75 (3M) on Nickel 200 and 347 stainless steel lowered the threshold values 18 K (33 F) and 74 K (133 F) respectively. The presence of Brazing flux (Victor #3, general brazing) on Nickel 200 and 347 stainless steel lowered the threshold values 15 K (27 F) and 6 K (10 F) respectively. The presence of petroleum jelly (Vaseline) on the Nickel 200 and 347 stainless steel led to ignition of the petroleum jelly on the nickel with no apparent surface change while the threshold value of the 347 stainless steel was lowered 35 K (63 F), the same degree of lowering as observed in the presence of fingerprints. The data clearly demonstrate that the selected contaminants are detrimental to the compatibility of the metals with gaseous nitrogen trifluoride under adiabatic compression conditions.

TABLE 2.13-1

DATA INDICATIVE OF THE REACTIVITY OF CONTAMINANTS WITH NITROGEN TRIFLUORIDE AT ONE ATMOSPHERE PRESSURE AND IN COMPARISON WITH GASEOUS OXYGEN

Contaminant	Gas Present	Observations
Petroleum Jelly (Vaseline)	N ₂	Slight changes in the slope of the heating curves at 364 K (195 F) and above. No apparent color change.
	02	Very slight changes in the slope of the heating curves at 323 K (121 F) and 325 K (143 F). No apparent color change.
	NF ₃	Slight changes in heating curve slope as low as 314 K (105 F), color change occurred at temperatures as low as 380 K (225 F). By 478 K (400 F), its coloration was a dark-brown.
Brazing Flux	02	No apparent reaction.
(Victor #3 General Brazing)	NF ₃	Color change from bright yellow to yellowish-brown at 372 K (210 F), slight changes in heating curves occurring above 383 K (230 F).
Fluorocarbon Oil (FC-75)	02	No changes in heating curves as the FC-75 gradually evaporated.
	NF3	The same behavior as with 0_2 .
Light-Weight Machine Oil (Walco #985)	02	No changes in the heating curve below 483 K (410 F) but a slight color change occurred.
	NF ₃	Slight change in slope of the heating curve at 414 K (285 F) accompanied by a color change.
Fingerprints on Silastic LS-53	02	No changes in slope of the heating curve below 478 K (400 F).
	NF ₃	Slight changes in slope of the heating curves occurred at temperatures from 336 K (145 F) to 428 K (310 F).

TABLE 2.13-2

DATA INDICATIVE OF THE EFFECTS OF CONTAMINANTS ON METAL/NITROGEN TRIFLUORIDE COMPATIBILITY UNDER ADIABATIC COMPRESSION CONDITIONS IN GASEOUS NITROGEN TRIFLUORIDE

7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.38 7.43 7.45				- 1	Conditions	S	l	Final C	ondition	S	NF.	Dencity	
M-200 289 61 33.8 4.9 666 682 6.39 17.5 118 7.38 7.3 M-200 286 53 33.8 4.9 596 500 1015 102 6.37 4.9 M-200 286 53 33.8 4.9 590 500 1015 102 6.37 4.9 M-200 286 53 33.8 4.9 500 662 8.38 1215 118 7.38 4.9 347 55 33.8 4.9 500 662 8.3 1215 118 7.38 4.9 500 662 8.3 1215 118 7.38 4.9 500 662 8.3 1215 118 7.38 4.9 500 662 8.3 4.1 663 8.4 9.5 662 8.3 111 662 8.3 4.1 662 8.3 4.1 662 8.3 4.1 662 8.3	Contaminant	Material	e ≥	ature of	KN/m²	PSTa	ed w	ature	Pres MV/m2	psia	3 Kg/m3	16/423	Test Results
M-200 286 53 33.8 4.9 586 596 7.00 1015 102 6.37 4.7 M-200 286 53 33.8 4.9 579 582 6.31 913 5.82 - M-200 286 53 33.8 4.9 570 582 6.31 913 5.82 - 347 55 33.8 4.9 580 53.9 4.9 566 3.28 1.15 118 5.32 - - 3.28 4.9 582 6.31 913 5.8 4.9 582 6.31 1.15 118 7.32 4.1 4.9 582 6.31 1.15 118 7.32 4.1 4.9 582 6.31 1.15 118 4.1 4.9 582 6.31 4.1 4.9 582 6.31 1.15 111 4.1 4.9 582 6.31 1.1 4.1 4.9 582 6.31 1.1	Fingerprints	N1-200	588	19	33.8	4.9	909	632	8.38	1215	118	7.38	+, Slight surface change
N+200 286 53 33.8 4.9 579 586 6.31 915 5.86 6.31 915 5.86 6.31 915 5.86 6.31 915 5.86 6.87 84.3 5.26 -	Fingerprints	N1-200	582	53	33.8	4.9	586	969	7.00	1015	102	6.37	+, Some surface change
M1-200 265 513 4.9 570 567 5.62 815 613 5.20 347 286 523 33.8 4.9 506 632 8.38 1215 118 7.38 9 347 55 286 53 33.8 4.9 525 465 2.66 415 46.6 2.91 7 4.9 526 465 2.66 415 46.6 2.91 7 4.9 526 465 2.66 4.1 4.0 5.66 2.96 415 46.6 2.91 4.7 4.9 5.66 2.91 4.0 5.67 2.66 2.91 4.1 4.9 5.69 600 7.00 1015 10.6 2.91 4.9 5.60 3.8 4.9 5.8 600 7.00 1015 10.6 2.91 4.9 5.60 4.24 61.6 4.9 5.60 4.24 61.6 5.91 4.9 5.60 4.24 61.6	Fingerprints	N1-200	285	53	33.8	4.9	579	285	6.31	915	93.2	5.82	
M1-200 200 62 33.8 4.9 666 632 8.38 1215 118 7.38 347 55 286 53 33.8 4.9 551 533 4.24 615 64.8 4.11 4.9 347 55 286 53 33.8 4.9 560 546 4.24 615 64.9 4.10 4.9 347 55 23.8 4.9 560 546 4.24 615 64.9 4.05 -4 M1-200 286 55 33.8 4.9 560 670 176 110 6.09 4.09 M1-200 286 55 33.8 4.9 586 600 7.00 1015 102 6.09 4.09 M1-200 286 53 33.8 4.9 586 600 7.00 1015 102 6.09 4.09 6.00 7.00 1015 102 6.03 6.03 6.01	Fingerprints	M1-200	285	53	33.8	4.9	570	292	5.62	815	84.3	5.26	
347 SS 286 53 33.8 4.9 551 533 4.24 615 65.8 4.11 4.1 347 SS 286 53 33.8 4.9 526 648 4.56 615 64.9 3.52 4.9 347 SS 286 53 33.8 4.9 560 548 4.26 615 64.9 4.66 2.91 4.6 3.52 4.9 MH-200 286 55 33.8 4.9 566 613 7.69 1115 110 6.1 7.69 1115 110 6.99 4.9 MH-200 286 55 33.8 4.9 566 613 7.69 1115 110 6.39 7.4 4.9 6.6 3.26 6.3 4.9 566 613 7.69 1111 110 6.99 4.9 566 613 7.69 111 4.1 4.24 615 6.1 7.69 111 111 4.1	None	N1-200	290	62	33.8	4.9	909	632	8.38	1215	118	7.38	
347 SS 285 53 33.8 4.9 539 510 3.55 515 56.4 3.52 4.9 534 4.9 525 485 2.86 415 46.6 2.91 <t< td=""><td>Fingerprints</td><td>347 SS</td><td>285</td><td>53</td><td>33.8</td><td>4.9</td><td>551</td><td>533</td><td>4.24</td><td>619</td><td>65.8</td><td>4.11</td><td>+, Slight surface change</td></t<>	Fingerprints	347 SS	285	53	33.8	4.9	551	533	4.24	619	65.8	4.11	+, Slight surface change
347 SS 286 53 33.8 4.9 525 486 6.26 64.9 4.05 347 SS 291 64 33.8 4.9 560 548 4.24 615 64.9 4.05 N1-200 286 55 33.8 4.9 560 613 7.60 1115 119 6.93 N1-200 286 55 33.8 4.9 589 600 7.00 1015 110 6.93 347 SS 286 53 33.8 4.9 589 600 7.00 1015 102 6.38 347 SS 286 53 33.8 4.9 584 599 7.00 1015 102 6.38 M1-200 286 53 33.8 4.9 584 599 7.00 1015 102 6.38 9.00 7.00 1015 102 6.38 9.	Fingerprints	347 SS	285	53	33.8	4.9	539	510	3.55	515	56.4	3.52	+. Considerable surface change
347 SS 291 64 33.8 4.9 560 548 4.24 615 115 119 7.43 4.9 N1-200 286 55 33.8 4.9 603 625 8.38 125 119 7.43 4.9 N1-200 286 55 33.8 4.9 596 613 7.69 1115 110 6.35 4.9 4.9 544 574 615 6.55 4.03 4.9 547 574 615 6.55 4.03 6.7 4.04 618 6.25 6.35 4.03 6.49 4.04 6.00 7.00 1015 110 6.35 4.9 600 621 8.38 14.9 528 490 2.86 41.9 6.00 7.00 1015 111 6.19 4.0 6.00 7.00 1015 11.9 7.45 4.9 6.00 7.00 1015 11.0 7.45 4.9 6.00 7.00 1015 11	Fingerprints	347 SS	285	23	33.8	4.9	525	485	2.86	415	46.6	2.91	
H1-200 286 55 33.8 4.9 603 625 8.38 1215 119 7.43 +.4 M1-200 286 55 33.8 4.9 596 613 7.69 1115 110 6.99 +.4 347 SS 286 53 33.8 4.9 554 537 7.06 1015 102 6.35 7 347 SS 285 53 33.8 4.9 528 400 7.06 1015 102 6.35 7 347 SS 286 53 33.8 4.9 528 400 7.06 1015 102 6.35 7 M1-200 286 53 33.8 4.9 564 610 7.09 1015 102 6.36 7 M1-200 286 55 33.8 4.9 584 59 7.00 1015 10.2 6.36 7 M1-200 286 55 33.8 <	None	347 SS	162	2	33.8	4.9	260	548	4.24	615	64.9	4.05	Partie of the second
H1-200 286 55 33.8 4.9 596 613 7.69 1115 110 6.89 +.9 AM 250 286 55 33.8 4.9 589 600 7.00 1015 102 6.35 9 347 55 286 53 33.8 4.9 544 514 315 56.5 4.09 9 347 55 285 53 33.8 4.9 560 621 8.38 1215 111 111 6.91 +.9 MH-200 286 55 33.8 4.9 600 621 8.38 146.4 2.90 9 MH-200 286 55 33.8 4.9 584 690 7.00 1015 10.6 4.09 9 347 55 286 55 33.8 4.9 584 690 7.00 1015 10.0 9 9 9 4.9 5.0 10.0 10.0 9	Machine 011	N1-200	586	55	33.8	4.9	603	625	8.38	1215	119	7.43	+, Slight surface change, oil ignited
N1-200 286 55 33.8 4.9 589 600 7.00 1015 102 6.35 4.09 4.4 347 SS 286 53 33.8 4.9 541 514 3.55 515 6.05 4.09 4.9 347 SS 286 53 33.8 4.9 541 516 415 66.1 4.09 6.0 6.0 621 8.38 1.9 6.0 6.0 6.1 8.38 1.9 6.0 6.0 6.1 8.38 1.9 6.0 6.0 6.1 8.38 1.9 6.0 7.0 1015 102 6.35 4.0 7.0 1015 102 6.3 6.0 7.00 1015 102 6.3 6.0 7.0 1015 102 6.3 6.0 7.0 1015 102 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 1015 10.0 7	Machine 011	N1-200	586	55	33.8	4.9	296	613	7.69	1115	110	6.89	+, Slight surface change
347 SS 285 53 33.8 4.9 554 554 615 615 615 4.09	. Machine Oil	N1-200	586	55	33.8	4.9	583	009	7.00	1015	102	6.35	
347 SS 286 53 33.8 4.9 541 514 3.55 515 56.1 3.50 347 SS 286 53 33.8 4.9 528 490 2.86 415 46.4 2.90 NH-200 286 53 33.8 4.9 586 599 7.00 1015 111 6.91 4.9 NH-200 286 55 33.8 4.9 586 599 7.00 1015 102 6.36 347 SS 286 55 33.8 4.9 584 599 7.00 1015 102 6.36 4.9 4.9 584 599 7.00 1015 102 6.36 4.9 4.9 584 499 584 419 486 415 419 46.4 5.05 4.1 4.9 4.9 486 419 4.9 4.9 4.9 4.9 4.9 584 4.9 </td <td>Machine 011</td> <td>347 SS</td> <td>285</td> <td>53</td> <td>33.8</td> <td>4.9</td> <td>554</td> <td>537</td> <td>4.24</td> <td>615</td> <td>65.5</td> <td>4.09</td> <td>+, Some surface change</td>	Machine 011	347 SS	285	53	33.8	4.9	554	537	4.24	615	65.5	4.09	+, Some surface change
347 55 33.8 4.9 52.86 490 2.86 415 46.9 52.86 415 111 6.91 4.9 4.9 600 621 8.38 1215 119 7.45 4.9 NH-200 286 55 33.8 4.9 594 610 7.69 1115 111 6.91 4.9 NH-200 286 55 33.8 4.9 584 599 7.00 1015 102 6.36 - 347 SS 286 55 33.8 4.9 584 528 4.24 615 65.5 4.08 4.9 584 528 4.24 615 65.5 4.08 4.9 584 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586 4.9 586	Machine 011	347 SS	285	23	33.8	4.9	54	514	3.55	515	56.1	3.50	
N1-200 285 53 4.9 600 621 8.38 1215 119 7.45 +, N1-200 286 55 33.8 4.9 594 610 7.69 1115 111 6.91 +, N1-200 286 55 33.8 4.9 588 599 7.00 1015 102 6.36 - 347 S5 286 55 33.8 4.9 528 490 2.86 415 66.5 6.36 - 347 S5 286 55 33.8 4.9 509 4.7 615 65.5 4.08 4.9 66.9 7.00 1015 102 6.36 - 4.9 66.9 7.00 1015 102 6.36 - 6.36 - 4.08 4.9 589 699 7.00 1015 102 6.36 - 6.96 4.9 6.8 699 7.00 1015 10.00 1015	Machine Oil	347 SS	285	23	33.8	4.9	528	490	2.86	415	46.4	2.90	10
N1-200 286 55 33.8 4.9 594 610 7.69 1115 111 6.91 +.4 N1-200 286 55 33.8 4.9 588 599 7.00 1015 102 6.36 - 347 SS 266 55 33.8 4.9 584 599 7.00 1015 102 6.36 - 347 SS 286 55 33.8 4.9 584 400 2.86 415 46.4 2.90 4.7 347 SS 286 55 33.8 4.9 589 617 315 36.5 2.08 4.9 NH-200 284 52 33.8 4.9 586 659 7.00 1015 11.63 -7.8 NH-200 284 52 33.8 4.9 544 556 4.93 715 74.8 4.67 4.94 347 SS 286 55 33.8 4.9 554 <th< td=""><td>FC-75</td><td>N1-200</td><td>285</td><td>53</td><td>33.8</td><td>4.9</td><td>9</td><td>621</td><td>8.38</td><td>1215</td><td>119</td><td>7.45</td><td>+, Considerable surface change</td></th<>	FC-75	N1-200	285	53	33.8	4.9	9	621	8.38	1215	119	7.45	+, Considerable surface change
Ni-200 286 55 33.8 4.9 588 599 7.00 1015 102 6.36 -1,4 347 SS 266 55 33.8 4.9 554 536 4.74 615 65.5 4.08 +, + 347 SS 286 55 33.8 4.9 528 490 2.86 415 46.4 2.90 +, 6 347 SS 286 55 33.8 4.9 509 457 2.17 315 46.4 2.90 +, 6 347 SS 286 55 33.8 4.9 599 617 8.38 116 116 116 116 116 1.63 -, 18 +, 18 116 <td< td=""><td>FC-75</td><td>N1-200</td><td>586</td><td>22</td><td>33.8</td><td>4.9</td><td>594</td><td>610</td><td>7.69</td><td>1115</td><td>11</td><td>6.91</td><td>+, Very slight surface change</td></td<>	FC-75	N1-200	586	22	33.8	4.9	594	61 0	7.69	1115	11	6.91	+, Very slight surface change
347 SS 266 55 33.8 4.9 554 538 4.24 615 65.5 4.08 +, 9 347 SS 286 55 33.8 4.9 528 490 2.86 415 46.4 2.90 +, 9 347 SS 286 55 33.8 4.9 509 457 2.17 315 36.5 2.78 +, 9 M1-200 288 55 33.8 4.9 598 617 8.38 1215 120 7.48 +, 9 M1-200 284 52 33.8 4.9 598 617 8.38 1215 120 7.48 +, 9 M1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 -, 9 4.9 54 556 4.9 564 4.9 564 596 4.9 564 4.9 564 596 596 4.9 564 596 4.9 <	FC-75	N1-200	586	22	33.8	4.9	288	599	7.00	1015	102	6.36	
347 SS 286 55 33.8 4.9 528 490 2.86 415 46.4 2.90 4.7 347 SS 286 55 33.8 4.9 509 457 2.17 315 36.5 2.78 4,9 347 SS 286 55 33.8 4.9 598 617 8.38 1215 120 7.48 4,9 M1-200 284 52 33.8 4.9 591 605 7.69 1115 111 6.94 4,9 M1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 347 SS 286 55 33.8 4.9 564 556 4.93 715 74.8 4.67 4.9 M1-200 284 52 33.8 4.9 554 556 4.93 715 74.8 4.67 4.9 M1-200 284 52 33.8 <	FC-75	347 SS	286	22	33.8	4.9	554	538	4.24	615	65.5	4.08	+, Some surface change
347 SS 286 55 33.8 4.9 509 457 2.17 315 36.5 2.78 +, 9 347 SS 286 55 33.8 4.9 486 415 1.48 215 26.1 1.63 - N1-200 284 52 33.8 4.9 591 605 7.69 1115 111 6.94 - N1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 - 347 SS 286 55 33.8 4.9 574 573 5.62 815 83.8 5.23 +, 347 SS 286 55 33.8 4.9 554 556 4.93 715 74.8 4.67 +, 347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 -, NH-200 284 52 33.8 4.9 </td <td>FC-75</td> <td>347 SS</td> <td>286</td> <td>55</td> <td>33.8</td> <td>4.9</td> <td>528</td> <td>490</td> <td>5.86</td> <td>415</td> <td>46.4</td> <td>2.90</td> <td>+, Slight surface change</td>	FC-75	347 SS	286	55	33.8	4.9	528	490	5.86	415	46.4	2.90	+, Slight surface change
347 SS 286 55 33.8 4.9 486 415 1.48 215 26.1 1.63 N1-200 283 50 33.8 4.9 598 617 8.38 1215 120 7.48 +, N1-200 284 52 33.8 4.9 596 617 8.38 1215 110 6.94 -, 347 SS 286 55 33.8 4.9 564 556 4.93 715 74.8 4.67 +, 347 SS 286 55 33.8 4.9 564 556 4.93 715 74.8 4.67 +, 347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 -, +, 4.9 554 538 4.24 615 65.5 4.09 -, +, 4.9 54 58 111 6.3 +, +, 4.9 59	FC-75	347 SS	586	55	33.8	4.9	509	457	2.17	315	36.5	2.78	+, Some surface change
N1-200 283 50 33.8 4.9 598 617 8.38 1215 120 7.48 +, 148 +, 149 591 605 7.69 1115 111 6.94 - N1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 - 347 55 33.8 4.9 574 573 5.62 815 83.8 5.23 4, 5 347 55 524 556 4.93 715 74.8 4.67 4, 9 347 55 286 55 33.8 4.9 554 558 4.93 715 74.8 4.67 4, 9 NH-200 284 52 33.8 4.9 599 618 7.69 1115 111 6.92 4, 9 NH-200 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 4, 9	FC-75	347 SS	586	22	33.8	4.9	486	415	1.48	215	26.1	1.63	3 ()
N1-200 284 52 33.8 4.9 591 605 7.69 1115 111 6.94 N1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 347 SS 286 55 33.8 4.9 574 573 5.62 815 83.8 5.23 +, 347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 -+ Ni-200 284 52 33.8 4.9 599 618 8.38 1215 120 7.47 +, Ni-200 284 52 33.8 4.9 599 608 7.69 1115 111 6.92 +, Ni-200 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 +, 347 SS 284 52 33.8 4.9	Brazing Flux	N1-200	283	20	33.8	4.9	298	119	8.38	1215	120	7.48	+, Some surface change
N1-200 284 52 33.8 4.9 586 595 7.00 1015 102 6.38 347 SS 286 55 33.8 4.9 574 573 5.62 815 83.8 5.23 +. 347 SS 286 55 33.8 4.9 554 558 4.93 715 74.8 4.67 +. 347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 -+ Ni-200 284 52 33.8 4.9 599 618 8.38 1215 120 7.47 +, Ni-200 284 52 33.8 4.9 593 608 7.69 1115 111 6.92 +, 347 SS 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 +, 347 SS 284 52 33.8 4.9	Brazing Flux	N1-200	584	25	33.8	4.9	591	605	7.69	1115	111	6.94	VI M
347 SS 286 55 33.8 4.9 574 573 5.62 815 83.8 5.23 +, 347 55 4.93 715 74.8 4.67 +, 347 55 4.93 715 74.8 4.67 +, 347 55 4.93 715 74.8 4.67 +, 347 55 6.84 554 618 6.83 7.24 615 65.5 4.09 - +, 4.09 - - - -	Brazing Flux	N1-200	284	52	33.8	4.9	989	595	7.00	1015	102	6.38	
347 SS 286 55 33.8 4.9 564 556 4.93 715 74.8 4.67 +, 347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 - N1-200 284 52 33.8 4.9 593 608 7.69 1115 111 6.92 +, N1-200 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 +, 347 SS 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 SS 284 52 33.8 4.9 551 537 507 3.55 56.6 3.53 +, 347 SS 285 53 33.8 4.9 525 485 2.86 417 2.91 -	Brazing Flux	347 SS	586	22	33.8	4.9	574	573	5.62	815	83.8	5.23	+, Some surface change
347 SS 286 55 33.8 4.9 554 538 4.24 615 65.5 4.09 - N1-200 284 52 33.8 4.9 599 618 8.38 1215 120 7.47 +, N1-200 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 +, 347 SS 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 SS 284 52 33.8 4.9 557 507 3.55 516 65.9 4.11 +, 347 SS 285 53 4.9 525 485 2.86 415 46.7 2.91 -	Brazing Flux	347 SS	586	55	33.8	4.9	564	929	4.93	715	74.8	4.67	+, Slight surface change
N1-200 284 52 33.8 4.9 599 618 8.38 1215 120 7.47 +, N1-200 284 52 33.8 4.9 586 595 7.09 1015 42.3 6.38 +, 347 55 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 55 284 52 33.8 4.9 557 507 3.55 515 56.6 3.53 +, 347 55 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Brazing Flux	347 SS	586	55	33.8	4.9	554	538	4.24	615	65.5	4.09	A.
N1-200 284 52 33.8 4.9 593 608 7.69 1115 111 6.92 +, N1-200 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 SS 284 52 33.8 4.9 551 537 507 3.55 515 56.6 3.53 +, 347 SS 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Petroleum Jelly	N1-200	78	25	33.8	4.9	599	618	8.38	1215	120	7.47	+. Some surface change, contaminant ignited
N1-200 284 52 33.8 4.9 586 595 7.00 1015 42.3 6.38 +, 347 S5 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 S5 284 52 33.8 4.9 537 507 3.55 515 56.6 3.53 +, 347 S5 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Petroleum Jelly	N1-200	284	25	33.8	6.4	593	809	7.69	1115	Ξ	6.92	+, Contaminant ignited, surface unchanged
347 SS 284 52 33.8 4.9 551 532 4.24 615 65.9 4.11 +, 347 SS 284 52 33.8 4.9 537 507 3.55 515 56.6 3.53 +, 347 SS 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Petroleum Jelly	Ni-200	284	25	33.8	4.9	286	595	7.00	1015	42.3	6.38	+, Contaminant ignited, surface unchanged
347 SS 284 52 33.8 4.9 537 507 3.55 515 56.6 3.53 +, 347 SS 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Petroleum Jelly	347 SS	284	52	33.8	4.9	551	532	4.24	615	62.9	4.11	+, Slight surface change
. 347 SS 285 53 33.8 4.9 525 485 2.86 415 46.7 2.91 -	Petroleum Jelly	347 SS	284	25	33.8	4.9	537	207	3,55	515	56.6	3.53	+, Slight surface change
	Petroleum Jelly	347 SS	282	53	33.8	6.4	525	485	2.86	415	46.7	2.91	

2.13, Effects of Contaminants on Metal Compatibility in Nitrogen Trifluoride (cont.)

2.13.2.3 Gaseous Flow Test Results

The data obtained from the tests in which the 316 ELC stainless steel was contaminated are presented in Table 2.13-3 and the data obtained from the tests in which Inconel 625 was contaminated are presented in Table 2.13-4. The threshold temperatures at which events occurred with uncontaminated samples are 911 K (1180 F) for the 316 ELC stainless steel and 950 K (1250 F) for the Inconel 625. The significant items to note from the data in Tables 2.13-3 and 2.13-4 are as follows.

First, the petroleum jelly does not affect the nitrogen trifluoride/metal compatibility under the test conditions but the contaminant and the nitrogen trifluoride can react explosively. Second, the nitrogen trifluoride/metal compatibility is not significantly altered by the presence of machine oil in the flow tests, but the nitrogen trifluoride/ machine oil interactions do affect the flow conditions. Third, the fluorocarbon oil, FC-75, is apparently vaporized under the test conditions and no detrimental event occurs. Fourth, the presence of the brazing flux leads to thermal excursions in the flowing nitrogen trifluoride, the reaction threshold temperature with 316 ELC stainless steel was not lowered but the reaction threshold temperature for Inconel 625 was apparently lowered from 950 K (1250 F) to 875 K (1115 F). And fifth, the presence of fingerprints does not affect the nitrogen trifluoride/metal compatibility and there is probably insufficient contaminant present to indicate a nitrogen trifluoride/fingerprint interaction in the test configuration used. The data do demonstrate the need for adequate cleanliness precautions to avoid undesired upsets in the flowing NF3 systems.

TABLE 2.13-3

DATA INDICATIVE OF THE EFFECTS OF VARIOUS CONTAMINANTS ON 316 ELC STAINLESS STEEL IN FLOWING GASEOUS NITROGEN TRIFLUORIDE

Test No.	134 134 134 134	124 124 124 124	135 135 135 rtually 135	125 125 125 125 125 Changed 125	137 137 rtually 137	128 128 rtually 128	virtually 126 virtually 126
Material Response	Onset of rapidly increasing flow resistance Nondestructive explosion Flow resistance essentially back to normal No abnormal behavior to max. test temp., orifice	essentially unchanged Onset of rapidly increasing flow resistance Max. flow resistance observed Flow resistance essentially back to normal No abnormal behavior to max. test temp., orifice virtually unchanged	Onset of abnormal increase in flow resistance Max. flow resistance and sudden relief Flow resistance essentially back to normal No abnormal behavior to max. test temp., orifice virtually	Uncateryed Onset of rapidly increasing flow resistance Max. flow resistance observed Flow resistance essentially back to normal Major film buildup Minor film loss No failure to max. test temp., orifice virtually unchanged	Onset of a sharp endotherm Onset of a modest film buildup No abnormal behavior to max. test temp., orifice virtually unchanged	Onset of a sharp endotherm Onset of a minor film buildup No abnormal behavior to max. test temp., orifice virtually unchanged	No abnormal behavior to max. test temp., orifice vir unchanged No abnormal behavior to max. test temp., orifice vir unchanged
eam ure psia	196 226 186 192	123	194 220 185 194	116 120 114 115	197 199 201	113	111
Upstream Pressure N/m ² ps	1.35 1.56 1.28 1.32	.85 .78 .79	1.34 1.52 1.28 1.34	.83 .79 .79 .86	1.36	.78 .77 .79	77.
Orifice Pressure Ratio	Sonic	1.21 Sonic 1.31 1.43	Sonic	1.21 1.51 1.35 1.49 Sonic	Sonic	1.33	1.55 Sonic
Specimen mperature K	∿380 ∿610 ∿800 1465	∿350 ∿580 ∾900 1495	~380 ~600 ~740 1490	690 690 990 1530 1590 1620	700 ∿1235 1495	700 ℃1220 1495	~1500 ~1500
Specimen Temperature	466 594 700 1069	450 578 755 1086	466 589 666 1083	461 639 805 1105 1139 1155		644 933 1086	1089
Material and Contaminant	316 ELC and Vaseline		316 ELC and Machine Oil		316 ELC and Brazing Flux		316 ELC and FC-75

TABLE 2.13-4

DATA INDICATIVE OF THE EFFECTS OF VARIOUS CONTAMINANTS ON INCONEL 625 IN FLOWING GASEOUS NITROGEN TRIFLUORIDE

Test No.	133 133 133 133 133 133 133 133 133 133	1119	129 129 129	120 120 120 120 120 120 120 120	132 132 132 132 122 122	130 130 121	131
Material Response	Onset of rapidly increasing flow resistance Max. flow resistance and sudden relief Flow resistance back to normal Sharp minor exotherm No abnormal behavior to max. test temp. orifice virtually	unchanged Onset of a rapidly increasing flow resistance Max. flow resistance and sudden relief Flow resistance back to normal Minor endothermic film buildup and loss Major endothermic film buildup Najor endothermic film buildup No bnormal behavior to max. test temp., orifice virtually unchanged	Onset at rapidly increasing flow resistance and a series of sharp exotherms Max. Flow resistance observed Flow resistance back to normal No abnormal behavior to max. test temp., orifice virtually	unchanged Onset of rapidly increasing flow resistance Max. flow resistance observed Flow resistance back to normal Major endothermic film buildup Minor film loss and reformation Minor film loss No failure to max. test temp., orifice virtually unchanged	Minor film loss and sharp exotherm Sharp minor exotherm Sharp exotherm; minor film loss/reformation Minor sharp exotherm Minor sharp exotherm and film loss Modest film loss, orifice virtually unchanged Endo-/exothermic reactions and minor film loss No unusual behavior to max. test temp., orifice virtually unchanged	Minor film buildup Minor film loss, orifice virtually unchanged No unusual behavior to max. test temp, orifice virtually unchanged	No unusual behavior to max. test temp., orifice virtually unchanged No unusual behavior to max. test temp., orifice virtually unchanged
eam ure psia	193 208 187 192 195	107 104 106 106 111	187 206 186 194	801 801 801 901 901 901	190 192 194 196 195 108	197 199 106	200
Upstream Pressure N/m ² ps	1.33 1.29 1.32 1.34	74 72 73 73 77	1.29 1.42 1.28 1.34	44. 7.7. 7.7. 7.7. 44. 7.7. 7.6.	1.31 1.32 1.32 1.34 1.35 1.34	1.36	1.38
Orifice Pressure Ratio	Sonic	1.26 Sonic 1.35 1.52 1.54 Sonic Sonic	Sonic Sonic Sonic	1.34 Sonic 1.37 1.45 1.71 1.70 Sonic Sonic	Sonic 1.34 1.40	Sonic † 1.49	Sonic 1.39
Specimen Temperature °K	~380 ~610 ~775 1285 1500	~380 ~620 ~920 1535 1600 1725	375 660 1000 1515	360 765 1250 1575 1620 1675 1715 1715 1780	690 1060 1115 1240 1490 725 1490	1250 1490 1495	1510
Spec Tempe	466 594 686 969 1089	466 600 766 1108 1144 1172	464 622 811 1097	455 680 950 1130 1155 1186 1244 1275	639 844 875 944 1039 1083 658	950 1083 1086	1094
Material and Contaminant	Inconel 625 and Vaseline		Inconel 625 and Machine Oil		Inconel 625 and Brazing Flux	Inconel 625 and FC-75	Inconel 625 and Fingerprints

2.0, Experiment Results and Discussion (cont.)

2.14 EFFECTS OF IMPURITIES IN NITROGEN TRIFLUORIDE COMPATBILITY WITH METALS

Two impurities which can readily occur in nitrogen trifluoride are hydrogen fluoride and water. The objective of this study was to determine the effect of these in nitrogen trifluoride on the chemical compatibility with selected metals.

2.14.1 The Effect of Hydrogen Fluoride in Nitrogen Trifluoride

Seven metals were selected for evaluation in the study: 2219 aluminum T-87, CRES 316 ELC, Inconel -625, Inconel 718, Nickel 200, C-1010 steel, and VM 250 maraging steel.

2.14.1.1 Apparatus and Procedures

The metal specimens were mounted as coupons on a rack and placed in a 5.1 cm (2 inches) diameter test containers as shown in Figures 2.1.1 and 2.1.2. The predetermined quantity of anhydrous hydrogen fluoride was transferred to the test container and then the nitrogen trifluoride was added. The test containers were then placed in the appropriate temperature bath.

2.14.1.2 Experimental Results

The periods of exposure were nominally 30, 90, and 230 days. One of the test containers, BHX, which was originally loaded with the equivalent of 1 weight percent hydrogen fluoride in nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m 2 (500 psia) was removed from the temperature bath periodically to obtain a sample of the gas for chemical analysis. The container was recharged twice with the equivalent of 1 weight percent hydrogen fluoride. The sequence of events was as follows:

Day	<u>Event</u>
1	Container loaded to contain 1 w/o HF
18	Analysis indicates 0.0076 w/o HF
18	Additional 1 w/o HF added to container
19	Analysis indicates 0.24 w/o HF
19	Additional 1 w/o HF added to container
27	Analysis indicates 0.052 w/o HF, container removed from 344 K oven to ambient temperature environment
31	Analysis indicates 0.019 w/o HF

2.14, Effects of Impurities in Nitrogen Trifluoride Compatibility with Metals (cont.)

The data indicate that the hydrogen fluoride-metal reaction is relatively rapid at 344 K (160 F) with some of the metals present.

The data obtained for the various metals for the exposure periods are presented in Tables 2.14-1 through 2.14-7. The corrosion penetration rate values are given, but the values are misleading because the hydrogen fluoride is rapidly depleted in test container. For example, the data in Table 2.14-1 indicates that after 27 days exposure to the equivalent of 3 w/o hydrogen fluoride the average corrosion penetration rate of the 2219 aluminum is 33 pm/sec and that for 227 days of exposure the rate drops to 4.8 pm/sec. The associated average weight losses are 0.32 gm and 0.39 gm respectively. The data should be interpreted to indicate that the corrosion stops when the hydrogen fluoride is depleted. Further the aluminum surfaces were deeply pitted which invalidates a uniform corrosion penetration rate value.

The corrosion penetration rates for the liquid/vapor tests at 195 K (-78 C) indicates some enhancement of corrosion due to the presence of hydrogen fluoride in the nitrogen trifluoride. However, the rates are all well below 0.8 pm/sec (1 mpy) at initial hydrogen fluoride concentrations up to 1 weight percent. The initial hydrogen fluoride concentration is apparently depleted to 0.021 weight percent after 217 days. The corrosion rates of the maraging steel 250, Inconel 718 (STA), and aluminum 2219 T87 were enhanced to a greater degree by hydrogen fluoride contamination than the Nickel 200 and 316 ELC stainless steel. The Inconel 625 was apparently unaffected by the presence of the hydrogen fluoride under the test conditions.

The presence of hydrogen fluoride in nitrogen trifluoride at 344 K (160 F) causes severe corrosion of 2219 aluminum, maraging steel 250 and the 1010 steel, but only slight enhancement of the corrosion of 316 ELC, Nickel 200, and Inconels 718 and 625. It must be recognized however that the specimens were exposed in a ganged-manner and that the hydrogen fluoride was depleted rapidly via the corrosion of the less compatible metals. The corrosion rates reflect only qualitatively the relative corrosion resistance of the metals to the hydrogen fluoride-contaminated nitrogen trifluoride. The depletion of the hydrogen fluoride in the nitrogen trifluoride is demonstrated by the post-test analyses presented in Table 2.14-8.

The post-test condition of the metal specimens subjected to liquid/vapor exposure of nitrogen trifluoride contaminated with hydrogen fluoride is shown in Figure 2.14.1. The vapor exposed portion of the coupon has been exposed to very low hydrogen fluoride

TABLE 2.14-1

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON ALUMINUM 2219, T-87

Hn/m	Initial HF Content, Time,		TA SE	Condit	nditions Temperature	Specimen Surface Area,	Spec	Specimen Weight,	£	Penetration Rate	ation	Test	
0.28 28 Liquid/Vapor 195 -108 14.95 3.3702 0.28 Liquid/Vapor 195 -108 15.07 3.8982 1.0 91 Liquid/Vapor 195 -108 15.02 3.4940 1.0 217 Liquid/Vapor 195 -108 15.02 3.4940 1.0 217 Liquid/Vapor 195 -108 15.05 3.4940 1.0 34 3.45 500 294 70 14.95 3.5940 1.0 34 3.45 500 294 70 14.95 3.6977 0.1 25 3.45 500 344 160 14.95 1.6087 0.5 25 3.45 500 344 160 15.20 3.4636 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.27 3.4231		£	/m psia	~	u.	5	Initial	Final	1	pm/sec	мру	2	Observations
0.28 Liquid/Vapor 195 -108 15.07 3.8982 1.0 91 Liquid/Vapor 195 -108 15.19 3.4940 1.0 217 Liquid/Vapor 195 -108 15.25 3.4164 1.0 217 Liquid/Vapor 195 -108 15.25 3.4164 1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 294 70 14.95 1.6087 0.1 25 3.45 500 344 160 14.95 1.6087 1.0 90 3.45 500 344 160 15.20 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.14 3.9943		Liq	uid/Vapor	195	-108	14.95	3.3702	3.3706	(0.0004)	0	0	AHX	Random dark spots.
1.0 91 Liquid/Vapor 195 -108 15.19 3.4940 1.0 217 Liquid/Vapor 195 -108 15.25 3.4164 1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.22 3.4531 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 27 3.45 500 344 160 15.10 3.9300 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0		Liq	uid/Vapor	195	-108	15.07	3.8982	3.8977	0.0005	0.051	0.063	АНХ	Random dark spots
1.0 217 Liquid/Vapor 195 -108 15.02 3.8324 1.0 217 Liquid/Vapor 195 -108 15.25 3.4164 1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 344 160 15.07 3.8977 0.1 25 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 27 3.45 500 344 160 15.22 3.4231 3.0 27 3.45 500 344 160 15.22 3.4231	91	Liq	uid/Vapor	195	-108	15.19	3.4940	3.4866	0.0074	0.23	0.29	AHY	Gray and black deposits
1.0 217 Liquid/Vapor 195 -108 15.25 3.4164 1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 294 70 15.07 3.8977 0.1 25 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.27 3.7643	16	Liq	uid/Vapor	195	-108	15.02	3.8324	3.8196	0.0128	0.41	0.53	AHY	Gray and black deposits
1.0 217 Liquid/Vapor 195 -108 15.19 3.9540 1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 294 70 14.95 3.8977 0.1 25 3.45 500 344 160 14.95 1.6087 0.5 25 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.14 3.9300	217	Liq	uid/Vapor	195	-108	15.25	3.4164	3.4111	0.0053	0.069	0.086	ZHV	Drak gray stain with some
1.0 34 3.45 500 294 70 14.95 3.3706 1.0 34 3.45 500 294 70 15.07 3.8977 0.1 25 3.45 500 344 160 14.95 1.6087 0.5 25 3.45 500 344 160 15.35 1.6436 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.14 3.9300	217	Liq	ufd/Vapor	195	-108	15.19	3.9540	3.9473	0.0067	0.088	0.11	AHZ	Dark gray stain with some
1.0 34 3.45 500 294 70 15.07 3.8977 0.1 25 3.45 500 344 160 14.95 1.6087 0.5 25 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.14 3.4881	*	3.4	of all not	294	0,	14.95	3.3706	3.2221	0.1485	12.6	15.7	蓋	Two distinct coating layers: Rough brown surface scale; Thick, flakey pinkish-white outer coating
0.1 25 3.45 500 344 160 14.95 1.6087 0.5 25 3.45 500 344 160 15.35 1.6436 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.14 3.4881	¥	ж. Ж	200	294	02	15.07	3.8977	3.8205	0.0772	6.5	8.1	H	Two distinct coating layers: Rough, brown surface scale; Thick, flakey bink'sh-white outer coating
0.5 25 3.45 500 344 160 15.35 1.6436 1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.14 3.4881	52	3.4	200	344	160	14.95	1.6087	1.6050	0.0037	0.45	0.53	BHIX	Tarnished surface
1.0 90 3.45 500 344 160 15.20 3.3695 1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.03 3.9300	52		2 200	344	160	15.35	1.6436	1.5406	0.1030	=	Z	ВН5х	White film on surface
1.0 90 3.45 500 344 160 14.97 3.9043 3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.03 3.9300	06		ю	344	160	15.20	3.3695	2.9757	0.3938	12.3	15.3	ВНУ	Badly corroded with severe
3.0 227 3.45 500 344 160 15.22 3.4231 3.0 227 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.03 3.9300	06	3.4		344	160	14.97	3.9043	3.5617	0.3426	10.9	13.5	8HY	Badly corroded with severe oitting
3.0 27 3.45 500 344 160 15.27 3.7643 3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.03 3.9300	227	3.4	5	344	160	15.22	3.4231	3.0373	0.3858	8.8	0.9	SHZ	Heavy white deposit with considerable pitting
3.0 27 3.45 500 344 160 15.14 3.4881 3.0 27 3.45 500 344 160 15.03 3.9300	722	3.4	ıo.	344	160	15.27	3.7643	3.3687	0.3956	4.9	6.1	BHZ	Heavy white deposit with considerable pitting
3.0 27 3.45 500 344 160 15.03 3.9300	27	3.4	50	344	160	15.14	3.4881	3.1862	0.3019	32	39	2н8	General corrosion and
	27	3.4		344	160	15.03	3.9300	3.5852	0.3348	35	4	ВНХ	General corrosion and pitting

TABLE 2.14-2

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON CRES 316 ELC STAINLESS STEEL

Haterial Continu Tree	Initial HF Content,	Time	Exposi Pressure	Exposure Conditions	Condit	anditions	Specimen Surface Area,	Speci	Specimen Weight, gm	5.	Penetration Rate	tion	Test	
	0.28	8	Liquid/V	fquid/Vapor	8 8	1 80	14.45	2.0606	Final 2.0592	0.0014	0.050	Mpy 0.062	MAY AHY	Observations Tarniched appearance
	1.0	6	Liquid	iquid/Vapor	195	-108	14.31	2.0591	2.0586	0.0005	0.006	0.007	AHY	Very light gray stain
	1.0	<u>16</u>	Liquid	-fquid/Vapor	195	-108	14.09	2.6809	2.6787	0.0022	0.025	0.031	AHY	Very light gray stain
	1.0	217	Liquid	iquid/Vapor	195	-108	14.38	2.0805	2.0801	0.0004	0.002	0.002	AHZ	Very light purple stain
	1.0	217	Liquid	.iquid/Vapor	195	-108	14.04	3.0337	3.0323	0.0014	0.007	900.0	AHZ	Very light purple stain
	1.0	₹.	3.45	200	294	02	14.45	2.0592	2.0524	0.0068	0.20	0.25	X	Random dark brown spots
	1.0	52	3.45	200	*	160	14.27	2.0717	2.0716	0.0001	0.004	0.005	BHTX	Purplish-gold stains
	0.5	52	3.45	200	344	9	14.33	2.0707	2.0615	0.0092	0.37	0.46	ВН5х	Reddish-brown film on
	1.0	8	3.45	200	34	160	14.29	2.0501	2.0440	0.0061	0.068	0.085	ВНУ	Covered with green-gray stain
	1.0	8	3.45	200	344	160	14.15	2.8803	2.8757	0.0046	0.052	0.065	3HZ	Covered with green-gray
	3.0	27	3.45	200	344	160	14.31	2.0545	2.0325	0.0220	0.82	1.02	BHX	Brownish gray film
	3.0	227	3.45	200	344	160	14.42	2.0440	2.0285	0.0155	0.069	0.085	ZHB	Yellow-green deposit
	3.0	227	3.45	200	344	160	14.27	3.0538	3.0365	0.0173	0.077	960.0	BHZ	Yellow-green deposit

TABLE 2.14-3

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON INCONEL 625, ANNEALED

Material	Initial HF Content,	Time,	Pres	Exposure Conditions Pressure Temperatu	Tempe	ditions	Specimen Surface Area,	Spec	Specimen Weight,	r,	Penetration Rate	tion	Test	
	0.28	28	Liquid/Vapor	Vapor	195	-108	14.73	3.8518	3.8515	0.0003	0.010 0.010	мру 0.013	AHX	Observations No apparent reaction
	1.0	16	Liguid/Vapor	/Vapor	195	-108	14.98	3.9253	3.9248	0.0005	0.005	900.0	AHY	Light gray stain
	1.0	16	Liquid/Vapor	/Vapor	195	-108	14.87	4.3826	4.3821	0.0005	0.005	900.0	AHY	Light gray stain
	1.0	217	Liquid/Vapor	/Vapor	195	-108	14.93	3.9544	3.9541	0.0003	0.001	0.002	AHZ	Very slight purple color with small vellow snots
	1.0	217	Liquid/Vapor	/Vapor	195	-108	14.77	4.4523	4.4519	0.0004	0.002	0.005	AHZ	Very slight purple color with small vellow snots
	1.0	34	3.45	200	294	70	14.73	3.8515	3.8518	(0.0003)	0	0	EHX	Thin pink film with random green and blue spots
	0.1	25	3.45	200	344	160	14.86	3.9188	3.9182	9000.0	0.022	0.027	BHTX	No apparent reaction
	9.9	52	3.45	200	344	160	15.03	3.9762	3.9692	0.0070	0.25	0.32	ВН5х	Light gray-green film
	1.0	96	3.45	200	344	160	14.85	3.8722	3.8692	0.0030	0.031	0.038	BHY	Covered with purple, green, and gray stains
	1.0	8	3.45	200	344	160	14.85	4.4041	4.4001	0.0040	0.041	0.051	8HY	Covered with purple, green, and gray stains
	3.0	27	3.45	200	344	160	14.85	3.9039	3.8858	0.0181	0.62	0.76	ВНХ	Yellow-green film
	3.0	227	3.45	200	344	160	14.68	3.8725	3.8539	0.0186	0.077	0.095	BHZ	Heavy yellow-green deposit
	3.0	227	3.45	200	344	160	14.83	4.5767	4.5570	0.0197	0.080	0.10	ВНХ	Heavy yellow-green deposit

TABLE 2.14-4

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON INCONEL 718, STA

Observations	Slight dark stain	Slight dark stain	No apparent reaction	Black stain with some white	Black stain with some white	No apparent reaction	No apparent reaction	No apparent reaction	Covered with green and dark	Covered with green and dark	Yellow-green deposit
Test No.	AHX	AHX	AHY	AHZ	AHZ	EHX	BHTX	ВН5Х	ВНУ	ВНУ	2H8
Penetration Rate /sec mpy	0.089	0.15	0.027	0.017	0.11	0.01	0.054	0.14	0.024	0.035	0.091
Penetrat Rate pm/sec	0.072	0.12	0.021	0.014	0.091	0.01	0.043	0.11	0.019	0.028	0.073
nt, gm Loss	0.0021	0.0035	0.0020	0.0031	0.0199	0.0004	0.0011	0.0028	0.0018	0.0026	0.0170
Specimen Weight, gm	3.6530	3.5924	3.6180	3.5275	3.6381	3.5920	1.4134	1.4034	3.6539	3.8731	3.6014
Spec	3.6551	3.5959	3.6200	3.5306	3.6580	3.5924	i.4145	1.4062	3.6557	3.8757	3.6185
Specimen Surface Area,	14.61	14.38	14.54	14.44	14.28	14.38	14.23	14.18	14.67	14.47	14.49
nditions Temperature °K °F	-108	-108	-108	-108	-108	70	160	160	160	160	160
Conditi	195	195	195	195	195	294	344	344	344	344	344
Exposure Conditions Pressure Temperature S Mn/m psia °K °F	Liquid/Vapor	d/Vapor	d/Vapor	d/Vapor	d/Vapor	200	200	200	200	200	200
Mn/n	Liqui	Liqui	Liqui	Liqui	Liqui	3.45	3.45	3.45	3.45	3.45	3.45
Time, Days	58	88	16	217	217	34	25	52	8	90	227
Initial HF Content, Weight X	0.28	0.28	1.0	1.0	1.0	1.0	0.1	0.5	1.0	1.0	3.0
Material -Specimen Type	I-718 -Parent	I-718 -Parent	I-718 -Parent	I-718 -Parent	I-718 -We1ded	I-718 -Parent	I-718 -Parent	I-718 -Parent	I-718 -Parent	I-718 -Welded	I-718 -Parent

TABLE 2.14-5

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON NICKEL 200, ANNEALED

Observations	Random stains	Random stains	Purple stains	Purple stains	Light purple stains most evident in liquid phase accompanied by slight pitting	Light purple stains most evident in liquid phase	Random purple stains	Random purple stains	Some stains	Gray-green coating	Gray coating	Gray coating	Yellow-green film with black spots	Yellow-green film with black spots	Green deposit with some pitting	Green deposit with some pitting
Test No.	AHX	AHX	AHY	AHY	AHZ	AHZ I	EHX	EHX	BHIX	вн5х (ВНУ (ВНУ (ВНХ	BHX	BHZ (BHZ (
tion	0.012	0.020	0.011	0.014	0.0052	0.0068	0.040	0.02	0.005	0.16	0.112	0.141	1.21	1.00	0.11	0.16
Penetration Rate pm/sec_mp	0.010	0.016	0.009	0.011	0.0042	0.0055	0.032	0.01	0.004	0.13	0.090	0.114	0.97	0.80	0.089	0.12
t, gm Loss	0.0003	0.0005	0.0009	0.0011	0.0010	0.0013	0.0012	0.0005	0.0001	0.0036	0.0089	0.0112	0.0286	0.0239	0.0221	0.0308
Specimen Weight,	1.5303	2.1346	1.5298	2.2159	1.5532	2.2710	1.5291	2.1341	1.5478	1,4430	1.5367	2.3318	1.4999	2,1856	1.5173	2.2629
Speci	1.5306	2.1351	1.5307	2.2170	1542	2.2723	1.5303	2.1346	1.5479	1.4466	1.5456	2.3430	1.5276	2.2095	1.5394	2.2937
Specimen Surface Area,	14.19	14.19	14.15	14.36	14.28	14.21	14.19	14.19	14.19	14.21	14.28	14.24	14.14	14.28	14.17	14.12
Iemperature	-108	-108	-108	-108	-108	-108	70	20	160	160	160	160	160	160	160	160
Ondition Temper of K	195	195	195	195	195	195	294	294	344	344	344	344	344	344	344	344
Exposure Conditions Pressure Temperat In/m ² psia K	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	200	200	200	200	200	200	200	200	200	200
₹ ₹	Liqui	Liqui	Liqui	Liqui	Liqui	Liqui	3.45	3.45	3.45	3.45	3.45	3.45	3.45	3.45	3.45	3.45
Time, Days	58	28	16	16	217	217	34	34	52	52	8	06	27	27	227	227
Initial HF Content, Weight %	0.28	0.28	1.0	1.0	1.0	1.0	1.0	1.0	0.1	0.5	1.0	1.0	3.0	3.0	3.0	3.0
Material -Specimen Type	Ni 200 -Parent	Ni 200 -Welded	Ni 200 -Parent	Ni 200 -Welded	Ni 200 -Parent	NI 200 -Welded	Ni 200 -Parent	Ni 200 -Welded	Ni 200 -Parent	Ni 200 -Parent	Ni 200 -Parent	Ni 200 -Welded	Ni 200 -Parent	Ni 200 -Welded	Ni 200 -Parent	Ni 200 -Welded

TABLE 2.14-6

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON VM 250 MARAGING STEEL

	Observations	Dark stain	Dark stain	Gray and black stain	Gray and black stain	Gray stain most intense in liquid phase	Gray stain most intense in liquid phase	Three distinct coating layers: Blue surface coating; White middle layer; Rough, brown outer scale	Three distinct coating layers; Blue surface coating; White middle layer; Rough, brown outer scale	Gray-black coating over surface	Heavy, dark gray-black deposit on surface	Layer of purplish black film	Layer of purplish black film	Light purple-brown-black coating	Light purple-brown-black coating	Very heavy green-black deposit	Very heavy green-black deposit
	Test No.	AHX	AHX	AHY	AHY	AHZ	AHZ	ЕНХ	EHX	BHIX	ВН5Х	ВНУ	BHY	ВНХ	ВНХ	ВНХ	ВНХ
	ation e mpy	0.190	0.226	0.095	0.110	0.057	0.061	2.26	5.87	09.0	1.9	90.9	5.24	4.93	4.76	8.99	8.16
	Penetration Rate pm/sec mp	0.153	0.182	0.077	0.089	0.046	0.049	1.82	4.73	0.48	1.6	4.89	4.22	3.97	3.83	7.24	6.58
	t, gm Loss	0.0046	0.0056	0.0076	0.0086	0.0111	0.0117	0.0664	0.1766	0.0135	0.0427	0.4869	0.4095	0.1169	0.1135	1.8230	1.6225
	Specimen Weight,	8.7654	11.4744	11.1033	10.7450	10.6046	10.7246	8.6990	11.2978	10.9594	10.8403	10.7858	9.9990	10.3620	10.8300	9.3083	9.1617
	Spec	8.7700	11.4800	11.1109	10.7536	10.6157	10.7364	8.7654	11.4744	10.9729	10.8830	11.2727	10.4085	10.4789	10.9435	11.1313	10.7842
Specimen	Area,	15.79	16.15	16.16	15.81	16.33	16.02	15.79	16.15	16.52	16.14	16.26	15.85	16.01	16.12	16.31	15.98
Suc	°K °F	-108	-108	-108	-108	-108	-108	02	70	160	160	160	160	160	160	160	160
Conditions	γ ×	195	195	195	195	195	195	294	294	344	344	344	344	344	344	344	344
بو	1 .00	Vapor	Vapor	Vapor	Vapor	Vapor	Vapor	200	200	200	200	200	200	200	200	200	200
Expo	Pressure Mn/m ² ps	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	3.45		3.45		3.45	3.45	3.45	3.45	3.45	3.45
	Time, Days	28	28	16	6	217	217	3 5	34	52	25	8	8	27	27	227	227
Initial	Content,	0.28	0.28	1.0	1.0	0.1	0.	1.0	1.0	0.1	0.5	0.	1.0	3.0	3.0	3.0	3.0
	Material -Specimen Type	VM 250 -Parent	VM 250 -Welded	VM 250 -Parent	VM 250 -Welded	VM 250 -Parent	VM 250 -Welded	VM 250 -Parent	VM 250 -Welded	VM 250 -Parent	VM 250 -Parent	-Parent	VM 250 -Welded	VM 250 -Parent	-Welded	-Parent	VM 250 -Welded

TABLE 2.14-7

DATA INDICATIVE OF THE CORROSIVE EFFECT OF HYDROGEN FLUORIDE IN NITROGEN TRIFLUORIDE ON C 1010 STEEL

	Observations	Stained	Purple stain	Gray-purple stain showing increased intensity together with pitting in the liquid phase	Gray-purple stain showing increased intensity together with pitting in the liquid phase	Two distinct coating layers: Rough, brown surface scale Chalky, blue-white outer coating		Red-brown deposit on surface	Layer of purplish-black film	Layer of purplish-black film	Layer of purplish-black film	Gray-green deposit
	No.	AHX	AHY	AHZ	AHZ	Ħ	BHIX	BH5X	ВНУ	BHY	ВНХ	BHZ
Penetration	шру	0.005	0.033	0.014	0.022	5.02	0.021	0.24	3.05	2.78	3.16	1.61
Peneti	Pm/sec	0.004	0.027	6.011	0.017	4.04	0.017	0.19	2.46	2.24	2.54	1.30
	Loss	0.0001	0.0023	0.0023	0.0036	0.1312	0.0004	0.0046	0.2121	0.1921	0.0654	0.2816
	Specimen Weight, gm	1.3301	1.3205	1.3397	1.6692	1.1989	1.3298	1.6213	1.1268	1.6023	1.2735	1.0461
•	Spec Initial	1.3302	1.3228	1.3420	1.6728	1.3301	1.3302	1.6259	1.3389	1.7944	1.3389	1.3277
Specimen Surface Area.	cm ²	14.06	14.10	14.22	13.99	14.06	13.97	14.07	14.11	14.03	14.11	14.08
onditions Temperature	4	-108	-108	-108	-108	20	160	160	160	160	160	160
Condit	×	195	195	195		294	344	344	344	344	344	344
Exposure Conditions essure Temperatu	psia	'Vapor	iid/Vapor	Liquid/Vapor	/Vapor	200	200	200	200	200	200	200
Press	Mn/m ² psia	Liquid/Vapor	Liquid,	Liquid,	Liquid/Vapor 195	3.45	3.45	3.45	3.45	3.45	3.45	3.45
	Days	28	16	217	217	34	52	25	8	06	22	227
Initial HF	Weight %	0.28	1.0	1.0	0	1.0	0.1	0.5	1.0	1.0	3.0	3.0
	-Specimen Type	C 1010 -Parent	C 1010 -Parent	C 1010 -Parent	C 1010 -Welded	C 1010 -Parent	C 1010 -Parent	C 1010 -Welded	C 1010 -Parent	C 1010 -Welded	C 1010 -Parent	c 1010 -Parent

TABLE 2.14-8

CHEMICAL COMPOSITION OF NITROGEN TRIFLUORIDE RECOVERED FROM STATIC TESTS WITH HYDROGEN FLUORIDE

Original	- Cylinder	Used in Test	0.0012 H81136	0.0021 P178684	.0.0012 H81136)13 P178684	0.0012 Mixed Batch	97 Mixed Batch)21 P178684	196 н81136	30.000
		H2	V		•	2 0.013	٧	6 0.0097	0.0021	0.0096	
Compsotion, Weight Percent		N ₂ 0	0.072	0.052	0.082	0.062	0.043	0.036	0.10	0.50	
		c02	0.0062	0	0	0.010	0.013	0.0095	0.0076	0.0075	
		CF.	0.0064	0.014	0.012	0.016	0.65	99.0	0.016	0.0096	2000
		02/50	0.25	0.31	0.47	0.015	0.18	Trace	0.0015	0	ć
		N ₂	0	0	0	0.031	0.068	0.15	0.26	1.12	000
	Active	as HF	0.021	0.0071	0.021	0.26	0.0023	<0.0001	0.18	0.033	0.00
Exposure		NF3	99.65	19.61	99.42	99.60	99.04	99.13	99.43	98.30	00 70
		K oF	-108	-108	-108	70	160	160	160	160	160
	Suc	Y.	195	195	195	294	344	344	344	344	344
	ure	psia	Vapor	uid/Vapor	'Vapor	200	200	200	200	200	202
Exp	Press	MN/m ²	Liquid/	Liquid/	Liquid/	3.45	3.45	3.45	3.45	3.45	3 45
	Time	Days	28	16	112	34 3.45 500	52	52	06	227	7.7
Initial	HF	Weight %	0.28	1.0	1.0	1.0	0.1	0.5	1.0	3.0	3.0
		Test No.	АНХ	АНУ	AHZ	EHX	ВНТХ	ВН5х	ВНУ	ВНХ	BHX

Figure 2.14.1. Metal Specimens After 217 Days Static Exposure to 1 Weight Percent Hydrogen Fluoride in Liquid/Vapor Nitrogen Trifluoride at 195°K (-108°F)

2.14, Effects of Impurities in Nitrogen Trifluoride Compatibility with Metals (cont.)

concentrations because the majority of the hydrogen fluoride is present in the liquid phase.

The corrosivity of hydrogen fluoride-contaminated nitrogen trifluoride at 344 K (160 F) is vividly demonstrated in Figure 2.14.2. The metal specimens subjected to the same conditions for 227 days are shown in Figure 2.14.3. By comparison of the photographs one can observe that the degree of attack is very similar between 27 days and 227 days. This further substantiates that the hydrogen fluoride is depleted significantly during the initial period of exposure.

The implication of the preceding findings is that the hydrogen fluoride concentration in nitrogen trifluoride systems should be minimized as much as possible in order to avoid significant corrosion of metals. In addition some hydrogen (see Table 2.14-8) is generated by the corrosion reactions which in turn can form a hazardous gas mixture.

2.14.2 The Effect of Water in Nitrogen Trifluoride

The effects of water on nitrogen trifluoride compatibility with metals was briefly investigated in two ways, (1) excess liquid water in the presence of nitrogen trifluoride and (2) low levels of water vapor in gaseous nitrogen trifluoride.

2.14.2.1 Apparatus and Procedures

The apparatus and procedures were similar to those described in Section 2.14.1.1.

2.14.2.2 Experiment Results

The effect of water with both liquid- and vapor-phase present in the presence of nitrogen trifluoride was evaluated at 344 K (160 F) with the nitrogen trifluoride at 3.45 MN/m 2 (500 psia). The test container was approximately half-filled with liquid water to accentuate the effects. The data are presented in Table 2.14-9; the data with only water present which served as the control experiment is presented in Table 2.14-10.

The data indicate that the presence of a liquid water interface with gaseous nitrogen trifluoride at 344 K (160 F) is an extremely corrosive environment for carbon steel, copper, nickel, and Monel 400 and strongly corrosive for titanium and aluminum. The post-test metal specimens are shown in Figure 2.14-4.

SIDE VIEW

FACE VIEW

Figure 2.14.2. Photographs of Specimen Removed From Container BHX After Exposure to 3% HF in NF $_3$ for 27 Days

Metal Specimens After 227 Days Static Exposure to 3 Weight Percent Hydrogen Fluoride in Nitrogen Trifluoride at 3.45 MN/m² (500 psia) and 344 °K (160°F) Figure 2.14.3.

TABLE 2.14-9

DATA INDICATIVE OF THE CORROSIVE EFFECT OF WATER IN NITROGEN TRIFLUORIDE ON VARIOUS METALS AT 344°K (160°F) AND 3.45 MN/m² (500 PSIA) NF3 VAPOR PRESSURE

	Observations	Light gray stain	Slight tarnish	Corrosion greatest in liquid phase	Major deposits in vapor phase, greatest attack in liquid phase	Major deposits in vapor phase	Rust deposits and stain in vapor	Very slight tarnish	Slight tarnish	Rust deposits and stain heaviest in vapor phase	Rust deposits and stain heaviest in vapor phase	Rust deposits and stain heaviest in vapor phase	Rust deposits and stains heaviest in vapor phase	Very light vellow-green deposit	Gray-green film	Some stain and rust spots	Black deposit	Black deposit	Considerable stain and rust deposits	Badly corroded particularly in liquid phase	Light yellow-green deposit	Gray-green film	Badly corroded particularly in liquid phase	Badly corroded particularly in liquid phase	Corrosion worse in liquid phase	Corrosion worse in liquid phase	Red-brown film
Test	No.	BVLWX	BW1X	20	23	12	19	BVLWX	BWTX	19	19	19	19	BVLWX	BWTX	19	BVLWX	BWTX	19	19	BVLWX	BWTX	19	19	19	19	BWTX
ation	мру	1.50	0.54	2.26	0.82	1.1	0.32	0.082	0.055	0.26	0.28	0.04	0.28	0.29	0.49	0	1.1	0.79	06.0	10.1	0.51	0.50	11.8	10.2	3.5	5.6	0.28
Penetration Rate	pm/sec	1.21	0.43	1.82	99.0	0.85	0.25	0.066	0.044	0.21	0.22	0.03	0.23	0.23	0.39	0	0.88	0.63	0.73	8.11	0.41	0.40	9.48	8.20	2.8	2.1	0.23
6		0.0123	0.0038	0.0203	0.0211	0.0273	0.0081	0.0019	0.0011	0.0068	0.0073	0.0001	0.0078	0.0073	0.0106	0	0.0258	0.0160	0.0241	0.2890	0.0130	0.0111	0.3376	0.3537	0.0520	0.0401	0.0055
Specimen Weight.	Final	1.8914	2.0057	0.4638	1.3572	1.7319	0.8395	2.8043	2.8678	2.0587	2.0686	1.4235	8.3502	4.4429	4.4957	3.9639	2.1959	1.9118	1.4136	1.9905	2.1084	2.3417	1.1996	16.1115	2.3557	2.3296	1.3189
Specii	Initial	1.9037	2.0095	0.4841	1.3783	1.7592	0.8476	2.8062	2.8689	2.0655	2.0759	1.4236	8.3580	4.4502	4.5063	3.9639	2.2217	1.9278	1.4377	2.2795	2.1214	2.3528	1.5372	16.4652	2.4077	2.3697	1.3244
Specimen Surface Area,	Cm	15.00	14.99	14.42	14.06	14.06	13.93	14.31	14.34	14.21	14.23	14.06	15.66	14.84	14.84	14.57	14.19	14.18	14.06	14.21	14.15	14.26	14.05	17.02	14.72	14.68	14.10
Exposure Time,	Days	59	25	33	33	33	33(9)	29	25	33(9)	33(9)	33(9)	33(9)	59	25	33(9)	59	25	33(9)	33(9)	29	25	33(9)	33(9)	33(9)	33(9)	25
	1	0.032	0.1	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	0.032	0.1	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	0.032	0.1	Liquid/Vapor	0.032	0.1	Liquid/Vapor	Liquid/Vapor	0.032	0.1	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	Liquid/Vapor	0.1
Specimen	Type	Welded	Welded	Parent	Parent	Welded	Parent	Welded	Welded	Parent	Parent	Parent	Parent	Welded	Welded	Parent	Welded	Welded	Parent	Parent	Wellied	Welded	Parent	Farent	Parent	Parent	Parent
	Material	AI 2219, T-87	Al 2219, T-87	Al 6061, T-6	304 SS	304 SS	304L SS	316 ELC SS	316 ELC SS	316 ELC 55	321 SS	347 SS	17-4 PH, H-1025	Inconel 625	Inconel 625	Inconel 625	Inconel 718	Inconel 718	Inconel 718	Monel 400	Nickel 200	Nickel 200	Nickel 200	Nickel 270	Titanium 6A1-4V	Titanium 5A1-2.5 Sn	C-1010 Steel

TABLE 2.14-9 (cont.)

Material	Specimen Type	Initial H20 Exposure Content, Time, Weight % Days	xposure Time, Days	Specimen Surface Area, cm ²	Specim Initial	en Weight, Final	Loss	Penetra Rati	ation e mpy	Test No.	Specimen Surface Area, Specimen Weight, gm Rate Test Cm ² Initial Final Loss pm/sec mpy No. Observations
C-1010 Steel	Parent	Liquid/Vapor 33(9)	33(9)	14.05	1.3045	0.6422	0.6623	21.2	26.3	19	Very little material left in liquid
Copper, OFHC	Parent	Parent Liquid/Vapor 33(9)	33(9)	14.06	1.5707	1,1541	0.4166	11.5	14.3	19	Corroded through at L/V interface
W 250 Steel	Welded	0.032	53	16.17	11.6266	11.6148	0.0118	0.38	0.47	BVLWX	Heavy rusty brown deposit
VM 250 Steel	Welded	0.7	25	16.34	11.7236	11,7190	0.3046	71.0	12.0	Y LINE	Brown over 611

TABLE 2.14-10

DATA INDICATIVE OF THE COMPATIBILITY OF LIQUID/VAPOR WATER WITH VARIOUS METALS AT 344°K (160°F)

	Observations	Coated with corrosion products	No apparent reaction	No apparent reaction	No apparent reaction	Some stain in vapor phase	Some stain	Slight stain in vapor phase	Some stain	Stain at L/V interface	Stain in liquid phase	Slight stain in liquid phase	Stain in liquid phase	Black deposits on sample	Considerable tarnish in vapor phase			
ation	Хфш	98.0	0	0.0039	0	0.0036	0.0036	0.0037	0.0034	0	0	0.0033	0.0066	0.28	0.21	0	0.28	0.0065
Penetration Date	pm/sec	69.0	0	0.0031	0	0.0029	0.0029	0.0029	0.0027	0	0	0.0026	0.0053	0.23	0.17	0	0.22	0.0052
!	Loss	0.0077	0	0.0001	0	0.0001	0.0001	0.0001	0.0001	0	0	0.0001	0.0002	0.0103	0.0033	(0.0001)	0.0074	0.0002
1	pecimen weldni, dm	0.4733	1.3768	2.0703	0.8270	2.0640	2.0567	1.4235	8.4657	3.9639	1.4774	2.2347	1.5245	16.4094	2.3946	2.3658	1.3028	1.5519
,	Initial	0.4810	1.3768	2.0704	0.8270	2.0641	2.0568	1.4236	8.4658	3.9639	1.4774	2.2348	1.5247	16.4197	2.3977	2.3657	1.3102	1.5521
Specimen Surface	gm ²	14.42	14.06	14.06	13.93	14.21	14.23	14.06	15.66	14.57	14.06	14.21	14.05	17.02	14.72	14.68	14.05	14.06
Exposure	Time, Days	43	3 %	3 2	32	32	35	35	35	ያ ኢ	; ;;	: X	32	35	35	32	35	35
	Specimen Type			ratent														
	Material	2 5001 1	A! 6061, 1-6	304 55	304 - 50	216 [1 55	323 66	35 135	34/ 35 17 4 Pt tt 1026	1/-4 PH, H-1063	Income! 625	March 400	Mickel 200	Nickel 230	Ti CAT AV	Ti 541-2 5 Sn	C 1010 Steal	Copper, OFHC

Figure 2.14.4. Metal Specimens After 33 Days Static Exposure to Liquid/Vapor Water With Nitrogen Trifluoride Present at 3.45 MN/m² (500 psia) and 344 °K (160°F). The Upper Portion of the Specimens in the Photographs Were Immersed in Liquid Water

2.14, Effects of Impurities in Nitrogen Trifluoride Compatibility with Metals (cont.)

The data for the tests in which water vapor only was present in the nitrogen trifluoride at 344 K (160 F) and 3.45 MN/m² (500 psia) is also presented in Table 2.14-9. The data indicate that at water vapor levels as low as 0.032 weight percent in nitrogen trifluoride, there is significant enhancement of corrosion with an alloy such as 316 ELC stainless steel exhibiting the greatest resistance to corrosion of the metal specimens tested. The post-test condition of the metal specimens is shown in Figures 2.14.5 and 2.14.6. The corrosivity enhancement due to the presence of water in the nitrogen trifluoride is very similar to that produced by the presence of hydrogen fluoride. The presence of water vapor in gaseous nitrogen trifluoride should be minimized at all times to levels which are practically attainable.

Figure 2.14.5. Metal Specimens After 25 Days Static Exposure to 0.1 Weight Percent Water in Nitrogen Trifluoride at 3.45 MN/m2 (500 psia) and 344 $^{\circ}$ K (160 $^{\circ}$ F)

Figure 2.14.6. Metal Specimens After 29 Days Static Exposure to 0.032 Weight Percent Water in Nitrogen Trifluoride at 3.45 MN/m^2 (500 psia) and 344 PK (160°F)

2.0, Experiment Results and Discussion

2.15 GASEOUS CORROSION RATES OF METALS UNDER FLOW CONDITIONS

The data reported thus far involved tests which determined the compatibility of NF3 with various metals either at static conditions at a maximum temperature of 344 K (160 F) or at dynamic conditions of short duration at much higher temperatures. The tests in this task were conducted at 400 K (260 F) for a period of 8 hours under flow conditions. In cases in which the corrosion was nil at 400 K (260 F) no further tests were conducted with the candidate materials. If significant corrosion did occur, the test was repeated at 322 K (120 F) to ascertain whether significant corrosion occurs at the lower temperature. The metal candidates used in this task were:

Nitronic - 40 316 ELC Stainless Steel Inconel 718 Inconel 625 Aluminum Bronze 623 Narloy A

2.15.1 Apparatus and Procedures

A schematic diagram of the apparatus in which the tests were conducted is shown in Figure 2.15.1; a photograph of the apparatus is shown in Figure 2.15.2; and representative testspecimens are shown in Figure 2.15.3. The test specimens were approximately 1.6 mm thick and were drilled to provide a 0.21 mm orifice through which the gaseous nitrogen trifluoride flowed. The gaseous nitrogen trifluoride was condensed in liquid nitrogen after passing through the orifice. A nominal pressure drop of 1.72 MN/m² (250 psi) was maintained across the orifice during the entire test duration and the flow rates through the orifices ranged between 6,000 and 8,000 cc/min.

Prior to each test the orifice discs were weighed and photographed at approximately 75-fold magnification. The flowrate through the orifices was monitored periodically during the test; and the flowrate at the end of each test was restored to the initial flowrate value and the pressure drop values were compared to determine if significant changes occurred. The flow meter readings could be read to within 100 cc/min and the repeatability of the flowmeter was within 250 scc/min. The implication of the repeatability value is that under the test conditions used, a change in the pressure drop value of 69 KN/m 2 (10 psi) is within the limits of repeatability of the flow meter.

Figure 2.15.1. Schematic Diagram of Test Apparatus Used in Gaseous Corrosion Tests Under Flow Conditions

Figure 2.15.2. Photograph of Test Apparatus Used in Gaseous ${\rm NF}_3$ Flow Tests

DOWNSTREAM SIDE (LOW PRESSURE)

UPSTREAM SIDE (HIGH PRESSURE)

Figure 2.15.3. Representative Test Specimens for Gaseous Flow Tests

2.15, Gaseous Corrosion Rates of Metals Under Flow Conditions (cont.)

2.15.2 Test Results

The test results are presented in Table 2.15-1. It should be kept in mind in reviewing the data that a 0.1 mg change in weight is the limit of repeatability of the balance used and that a 69 KN/m^2 (10 psi) pressure drop change is within the limits of repeatability of the flowmeter at the test conditions used.

TABLE 2.15-1

DATA INDICATIVE OF THE COMPATIBILITY OF VARIOUS METALS WITH GASEOUS NF3 UNDER FLOW CONDITIONS AT MODERATE TEMPERATURES

Material	Exposure Temperature		Orifice Pre		Final		Flowrate scc/min	Weight Change
	K	<u> </u>	MN/m ²	psi	MN/m ²	<u>ps i</u>		mg
316 ELC SS	400	260	1.76	255	1.79	260	6700	0.0
Inconel 718	400	260	1.73	251	1.76	256	7300	0.1
Inconel 625	400	260	1.72	249	1.78	259	6300	0.1
Nitronic 40	400	260	1.72	249	1.78	258	7100	0.4
Aluminum Bronze 623	400	260	1.67	243	1.71	248	7300	0.0
Narloy A	400	260	1.71	248	1.89	274	8200	1.4
Narloy A	322	120	1.71	248	1.78	259	7700	0.1

The significant items to note from the data are that (1) at 400 K (260 F) no significant corrosion of 316 ELC SS, Inconel 718, Inconel 625, or Aluminum Bronze 623 occurred during exposure to flowing, gaseous nitrogen trifluoride for eight hours; (2) at 400 K the Nitronic 40 exhibited no significant change in pressure drop or visual appearance (see Figure 2.15.4), but a 0.4 mg weight loss was detected, the loss was not apparently due to corrosion; (3) at 400 K, the Narloy A specimen did undergo a significant change in pressure drop during the eight hour period, a significant weight loss, and a significant change in appearance; the specimen was a dark red mahogany color when removed from the test fixture and the coloration turned white upon exposure to the atmosphere; some of the corrosion product was readily removed by a water wash and other portions of the product required brushing to achieve removal (see Figure 2.15.5); assuming that

BEFORE EXPOSURE

AFTER EXPOSURE

Figure 2.15.4. Upstream Face of Nitronic 40 Test Specimen Before and After Exposure to Gaseous NF₃ at 400K (260F) for 8 Hours at 1.83 MN/m² (250 psig) (Magnification ~75X)

The significant form as another section of the distribution of the distribution of the distribution of the section of the sect

2.15, Gaseous Corrosion Rates of Metals Under Flow Conditions (cont.)

the corrosion was not apparently more severe in the flow channel than on the surface of the disc a corrosion penetration of 188 mpy was calculated for the specimen based on weight loss; a repeat of the test at 322 K (120 F) indicated no significant pressure drop or weight change, but visual inspection revealed a corrosive film which darkened on exposure to air and when removed by washing with water left the surface of the Narloy A in a smoother condition. (See Figure 2.15.6; note the initial turning marks are much less evident after exposure.) The large penetration rate value for Narloy A at 400 K is predicted by the relatively short exposure period. After formation of a layer of corrosion products, the corrosion rate should decrease significantly.

The composition of the nitrogen trifluoride used in the tests was as follows.

	NF ₃	Active F ⁻ as HF	N ₂	co/o ₂	CF ₄	co ₂	N ₂ 0
Prior to Use	99.64	0.016	Tr	0.31	.014	Tr	.025
After Use	99.68	0.0016	Tr	0.26	.021	Tr	.033

The data indicate that the no significant decomposition of the nitrogen trifluoride occurred during the testing.

BEFORE EXPOSURE

AFTER EXPOSURE

Figure 2.15.6. Surface of Narloy A Specimen Before and After Exposure to Gaseous NF $_3$ at 322 (120F) for 8 Hours at 1.83 MN/m 2 (250 psig) (Magnification \sim 75X)

3.0 CONCLUSIONS AND RECOMMENDATIONS

3.1 CONCLUSIONS

A diverse group of chemical compatibility tests were conducted using a diverse set of test conditions. The conclusions which can be drawn from the data are presented in accordance with the type of tests which were performed.

3.1.1 Cleaning-Passivation

For metals, a cleaning procedure which includes a detergent wash and an appropriate pickling step with rinse followed by thorough drying enhances the chemical compatibility with nitrogen trifluoride. A pre-exposure of metals to nitrogen trifluoride or fluorine at ambient temperature for a few hours prior to static exposure to nitrogen trifluoride is not required and is not an effective passivation procedure.

For most non-metals, a cleaning procedure which includes a detergent wash, water rinse, followed by thorough drying is an adequate pretreatment prior to exposure to nitrogen trifluoride.

3.1.2 Static Exposure

Based on static exposure of metals for 270 days at temperatures ranging from 195 to 344 K and pressures ranging from 1.38 to $17.24~\text{MN/m}^2$ with nitrogen trifluoride having an active fluoride content of 0.1 percent or less, no metal candidate exhibited a corrosion penetration rate greater than 0.35 pm/sec (0.43 mpy). Generally, a corrosion penetration rate of 0.8 pm/sec (1 mpy) or less is considered acceptable for long-term compatibility.

Based on the static exposure of non-metallic materials for 270 days at a temperature of 195 K to either liquid- or vapor-phase nitrogen trifluoride, all the materials appeared to be acceptable except for the greases which were dispersed throughout the system. The elastomers did exhibit degradation in mechanical properties but did not fail entirely. At 344 K and 3.45 MN/m², the elastomers failed after 90 days except for the Kalrez which exhibited significant changes in mechanical properties but did maintain its structural integrity. The greases were thoroughly dispersed throughout the system and are unacceptable for this reason. The thermoplastics except for polypropylene exhibited slight mechanical property degradation during 270 days exposure but are suitable for use in nitrogen trifluoride. At 344 K and 17.24 MN/m², polytetrafluoroethylene exhibits a 20% decrease in modulus of rigidity as compared to a 55% decrease for Kel-F 81. Thus polytetrafluoroethylene is the preferred material from a compatibility standpoint.

3.1, Conclusions (cont.)

3.1.3 Effect of Impurities

Both hydrogen fluoride and water enhance the corrosion of metals exposed to nitrogen trifluoride and thus both impurities should be reduced to the minimum concentration levels which are practically possible in nitrogen trifluoride.

3.1.4 Effect of Contaminants

The hydrocarbon contaminants in nitrogen trifluoride systems can initiate destructive failures in use-systems. The presence of brazing flux can significantly lower reaction thresholds.

3.1.5 Fracture Mechanics/Toughness

Inconel 718 and 347 stainless steel were not susceptible to stress corrosion cracking in nitrogen trifluoride and C-1018 steel exhibited a very slight susceptibility only in the parent condition.

3.1.6 Gaseous Flow

Nickel 200 was the most corrosion-resistant metal tested at elevated temperatures in flowing gaseous nitrogen trifluoride as evidenced by attaining the highest temperature at which no reaction was apparent. The non-metals tested were all suitable in their normal temperature use range.

3.1.7 Adiabatic Compression

Nickel 200 and 304 stainless steel were found to be the superior metals in resistance to chemical attack during adiabatic compression, while OFHC copper and 6Al-4V titanium were least resistant. Of the non-metals tested, Carbon CJPS rated most resistant to adiabatic compression, while polytetrafluoroethylene, Kel-F 81 and Kalrez were moderately resistant to attack during the adiabatic compression process.

3.1.8 Mechanical Impact

2219 Aluminum is not sensitive to mechanical impact in liquid nitrogen trifluoride at the 11 kg-m energy level; 5A1-2.5 Sn titanium exhibits sensitivity above the 10 kg-m energy level. The threshold levels for reaction of non-metals in liquid nitrogen trifluoride were: greater than 11 kg-m for polytetrafluoroethylene and Ke1-F 81, 9.7 kg-m for PFA Teflon, 6.9 kg-m for Viton, Class I. These energy level values are no less than those measured for the same materials in liquid oxygen.

3.1, Conclusions (cont.)

In high pressure gaseous nitrogen trifluoride only non-metallic materials were tested. The threshold energy levels were found to be: 3.45 kg-m at 7.0 MN/m² for PFA Teflon, 2.72 kg-m at 7.0 MN/m² for Kel-F 81, >11 kg-m at 7.0 MN/m², 9.0 kg-m at 8.72 MN/m², and 3.45 kg-m at 17.34 MN/m² for polytetrafluoroethylene, and >11 kg-m at 17.34 MN/m² for Viton, Class I.

3.1.9 Liquid Flow-Impact

The liquid velocity impacting on the heated material surfaces had only a minimal effect on the reaction threshold temperatures. All the non-metals tested were not attacked at their maximum usage temperature. Of the metals tested, Nickel 200 exhibited resistance to attack at the highest temperature, none of the metals were attacked below their maximum usage temperatures.

3.1.10 Waste Disposal

Preheated activated charcoal is a suitable reactant for conversion of nitrogen trifluoride to innocuous and environmentally-acceptable compounds.

3.1.11 Water-Hammer Effects

Of the non-metals tested, Kel-F 81 was superior in resistance to attack by liquid nitrogen trifluoride when subjected to the "water-hammer" effect. Polytetrafluoroethylene was almost as resistant as the Kel-F 81.

3.1.12 Passivation Films

Passivation films on metals are not rapidly formed by nitrogen trifluoride at temperatures from 195 to 344 K, and there is evidence of minimal solubility of the fluorides which are present at the surface of some metals in liquid nitrogen trifluoride.

3.1.13 Gaseous Corrosion Rates

Of the metals tested at 400 K and 1.7 MN/m^2 under flow conditions only Narloy A exhibited significant attack during 8 hours of exposure; 316 ELC stainless steel, Inconel 718, Inconel 625, and Aluminum Bronze 623 were not affected by the nitrogen trifluoride.

3.0, Conclusions and Recommendations (cont.)

3.2 RECOMMENDATIONS

The following recommendations are made for further work.

- 3.2.1 Additional testing of candidate metals should be conducted under flow conditions at moderate temperatures in gaseous nitrogen trifluoride.
- 3.2.2 Tests should be conducted to establish suitable valve components and designs for gaseous nitrogen trifluoride usage.
- 3.2.3 Additional tests should be conducted with elastomers at temperatures of 344 K and lower in hardware assemblies.
- 3.2.4 The search for and evaluation of suitable lubricants for nitrogen trifluoride systems should be continued.
- 3.2.5 Physical properties of nitrogen trifluoride which should be experimentally determined are as follows: viscosity of the liquid from 77 to 200 K, densities at 170 to 233.9 K, surface tension at 77 to 144 K, gaseous P-V-T data, adiabatic compressibility/sonic velocity, thermal conductivity of the liquid, heat capacity of the liquid at temperatures greater than 144 K, isothermal compressibility of the liquid, and the dielectric constant of the liquid.

REFERENCES

- 2.4.1 Pisacane, "Reactions of NF3 with Metals. Progress Report for April 1974" in memorandum from B. Pallay to A. Corbin, "NF3 Safety/Hazards Tests; Progress Reports", Naval Ordnance Laboratory, Silver Springs, Md. June 13, 1974.
- 2.5.1 JANAF Thermochemical Tables, The Dow Chemical Company, Midland, Mich., Nitrogen Trifluoride (NF3), June 30, 1969.
- 2.5.2 Reid, R.C. and Sherwood, T.K., "The Properties of Gases and Liquids", 2nd ed., Mc-Graw Hill, New York (1966).
- 2.5.3 Jarry, R.L. and Miller, H.C., J. Phys. Chem., 60, 1412-13 (1956).
- 2.5.4 Hilsenrath, J., et al., "Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen and Steam", Pergamon Press, New York (1960).
- 2.6.1 Key, C.F., "An Apparatus for Determination of Impact Sensitivity of Materials in Contact with Liquid and Gaseous Oxygen at High Pressures", Materials Research and Standards, MTRSA, Volume II, No. 6, 28, (1971).
- 2.7.1 Vander Wall, E.M., Anderson, R.E., Beegle, R.L., Jr., and Cabeal, J.A., "Dynamic Compatibility of Halogen Propellants", AFRPL-TR-72-118, January 1973.
- 2.8.1 Massonne, J. and Holst, R., "Explosion of Nitrogen Trifluoride on Active Charcoal, Reaction of NF3 with Carbon", Angew. Chem., 78(6), 3B6 (1966), English Translation Angew. Chem. Intern. Ed. Engl., 5(3), 317 (1966).
- 2.8.2 Gould, J.R. and Smith, R.A., "A New Process for Producing Tetra-fluorohydrazine" in Abstracts of Papers, 138th Meeting of American Chemical Society, p. 7M, American Chemical Society, New York, September 11-16, 1960.

APPENDIX A

TYPICAL COMPOSITIONS OF CANDIDATE MATERIALS

COMPOSITIONS OF CANDIDATE NON-METALS

ELASTOMERS

Viton - Hydrocarbon cross-linked vinylidene fluoride-hexa fluoropropylene Silastic LS53 - Fluoroalkyl polysiloxane (fluorosilicone) Neoprene - polychloroprene

Kalrez (Dupont ECD-006) - copolymer consisting of about 60 mole percent polytetrafluoroethylene, 40 mole percent perfluoro(methylvinyl ether) and 2 mole percent or less of perfluoro(phenylvinyl ether) cross-linked at pendant perfluorophenyl groups with a hydrocarbon bridge.

THERMOPLASTICS

Polyethylene - saturated polymer of ethylene

Polypropylene - saturated polymer of propylene

Tygon - plasticized polyvinylchloride

Mylar - film form of polyethylene terephthalate

Lucite - polymethyl acrylate

Polytetrafluoroethylene - saturated polymer of tetrafluoroethylene

Teflon FEP - polyperfluoropropylene

Teflon PFA - Copolymer of tetrafluoroethylene with perfluoroalkoxy side chains.

Rulon (CaF_2 filled) - Calcium fluoride filled polytetrafluoroethylene Kel-F 81 - polytrifluoromonochloroethylene

THERMOSETTING POLYMERS

Epoxy EA 934 - believed to be a phenolic resin modified epoxy resin containing asbestos and aluminum filler.

Kevlar - aramid polymer in fiber form.

COMPOSITIONS OF CANDIDATE NON-METALS (cont.)

GRAPHITES

CDJ-83 - medium density bulk graphite impregnated with phosphate salt.

CJPS - medium density bulk graphite impregnated with a special oxidation resistant treatment.

LUBRICANTS

Krytox - polyfluoroalkylester

- 3L-38RP vacuum stripped version of polyfluoroalkylester containing low molecular weight, sub-micron size particles of polytetra-fluoroethylene.
- MS-122 a low molecular weight, sub-micron particle size form of polytetrafluoroethylene
- FS 3451 a grease consisting of low molecular weight fluoroalkyl polysiloxane thickened with low molecular weight, sub-micron size particles of polytetrafluoroethylene

NOMINAL COMPOSITIONS OF CANDIDATE METALS

STAINLESS STEELS - Fe BASE

Туре	C, Max	Mn Max	P Max	S Max	Si Max	Cr	Ni	Others
301	0.15	2.00	0.045	0.030	1.00	16.00 to 18.00	6.00 to 8.00	
303	0.15	2.00	0.20	0.030	1.00	17.00 to	8.00 to 10.00	
304	0.08	2.00	0.045	0.030	1.00	18.00 to 20.00	8.00 12.00	
304L	0.03	2.00	0.045	0.030	1.00	18.00 to 20.00	8.00 12.00	
316L	0.03	2.00	0.045	0.030	1.00	16.00 to 18.00	10.00 to 14.00	2.00-3.00 Mo
321	0.08	2.00	0.045	0.030	1.00	17.00 to 19.00	9.00 to 12.00	5XC min Ti
347	0.08	2.00	0.045	0.030	1.00	17.00 to 19.00	9.00 13.00	10XC min Cb + Ta
17-4 PH	0.07	1.00	0.04	0.03	1.00	15.50 to 17.50	3.00 to 5.00	Cu 3.00 to 5.00 Cb + Ta 0.15-0.45
A286	0.08	1.00 to 2.00	 		0.40 to 1.00	13.50 to 16.00	24.00 27.00	Mo 1.00 to 1.75 Ti 1.90 to 2.30 V 0.10 to 0.50 Al 0.35 Max
Nitronic 40	0.08	8.00 to	0.060	0.030	1.00	19.25 to 21.50	5.50 7.50	B 0.003-0.010 N 0.15-0.40
Carpenter 455	0.03	0.50	0.015	0.015	0.50	11.00 to 12.50	7.50 9.50	Cb + Ta 0.50 Max Ti 0.90 to 1.40 Ca 1.50 to 2.50 Mo 0.50 Max
INCONELS								
625	0.10	0.50	0.015	0.015	0.50	20.00 to 23.00	Base	8.00-10.00 Mo Cb + Ta 3.15-4.15 A1 0.40 Max Ti 0.40 Max Co 1.00 Max Fe 5.0 Max
718 STA	0.08	0.35	0.015	0.015	0.35	17.00 to 21.00	+Co 50.00- 55.00	Fe Base Cb + Ta 4.75-5.50 Mo 2.80-3.30 Ti 0.65-1.15 Al 0.20-0.80 Co 1.00 Max B 0.006 Max Cu 0.30 Max
MARAGING S	TEELS							
200	0.03	0.10	0.01	0.01	0.10		18.50	A1 0.10 B 0.003 Co 8.50 Mo 3.25 Ti 0.20 Zr 0.02
250	0.02	0.10	0.010	0.010	0.10		18.00 to 19.00	Co 7.00-8.50 Mo 4.60-5.00 Ti 0.30-0.50 Al 0.05-0.15 B 0.006 Max Zr 0.02 Max
LOW CARBON	STEELS					······································		
1010	0.08 to 0.13	0.3 to 0.6	0.040	0.050	••			Remainder Fe
1018	0.15 to 0.20	0.6 to 0.9	0.040	0.050				Remainder Fe
1020	0.18 to 0.23	0.30 to 0.60	0.040	0.050		**		Remainder Fe

NOMINAL COMPOSITIONS OF CANDIDATE METALS (cont.)

N	I	CI	(Ei	L

Туре	C, Max	Mn Max	P Max	S Max	Si Max	Cr	Ni	Others
200	0.15	0.35		0.01	0.35		99.0 Min	Cu 0.25 Max Fe 0.40 Max
270	0.02	0.001		0.001	0.001		99.97 Min	Cu 0.001 Max Fe 0.005 Max Co 0.001 Max Co 0.001 Max Mg 0.001 Max Ti 0.001 Max
MONEL								
400	0.30	2.00		0.024	0.50		+Co 63.00- 70.00	Fe 2.50 Max Cu Bal
COPPER ALL	OYS							
OFHC CA 101			0.0003					Te .0010 Cu 99.99
Be-Cu CA172								Be 1.8-2.0 Cu + Ag 99.5 Fe+Ni+Co 0.60 Max
A1 BRONZE								
CA 623					0.25			Cu 99.5 Fe 2.0-4.0 Sn 0.20 Max Al 8.00-10.00
ALUMINUM A	LLOYS	 					····	
Туре	Si Max	Fe Max	Cu Max	Mn	Mg	Cr	Zn Max	Others
1100	1.0	Si+Fe	0.20	0.05			0.10	
2014	0.5- 1.2	1.0	3.9 to 5.0	0.40 to 1.2	0.20 to 0.8	0.10	0.25	
2219	0.20	0.30	5.8 to 6.8	0.20 to 0.40	0.02		0.10	
6061	0.40 to 0.8	0.7	0.15 to 0.40	0.15	0.8 to 1.2	0.04 to 0.35	0.25	
TITANIUM A	LLOYS							
Туре	_A1	C Max	H Max	Fe Max	N Max	0 Max	V Max	Others
6A1-4V	5.50 to 6.75	0.10	0.0125	0.30	0.05	0.20	4.50	
5A1-2.5 Sn ELI	4.7 to 5.6	0.08	0.0175	0.15	0.05	0.12		\$n 2.00-3.00
TUNGSTEN								
		W, Min	Thoria	Other % Max				
EW Th-1		98.5	0.8-	0.5				
EW TH-2		97.5	1.7-2.2	0.5				