Лабораторная работа №2

ГЕНЕРАТОРЫ ПРЯМОУГОЛЬНЫХ ИМПУЛЬСОВ (НА ОПЕРАЦИОННЫХ УСИЛИТЕЛЯХ)

Цель: изучение методики построения генераторов прямоугольных импульсов с использованием операционного усилителя и измерение их основных параметров.

Введение

Генераторы прямоугольных импульсов наиболее широкое применение получили при настройке цифровой техники (поверка осциллографа), а также в музыкальных и устройствах сигнализации.

Работа и расчет операционного усилителя (ОУ) подробно описано в работе [1] и [2] списка литературы к данной лабораторной работе.

Построение генераторов основываются на работе RC-цепочек, свойствах ОУ и базовой схеме на рис.1. Такие схемы называют мультивибраторами. Мультивибратором называется генератор периодически повторяющихся импульсов прямоугольной формы. Вибраторы бывают симметричными и несимметричными.

Схема мультивибратора на операционном усилителе, показанная на рисунке 4.7, позволяет получить на выходе прямоугольные импульсы с крутыми фронтами за счет высокого коэффициента усиления операционного усилителя (ОУ).

Симметричный мультивибратор на операционном усилителе.

В данной схеме (рис. 1) операционный усилитель (ОУ) осуществляет сравнение напряжения U_c на конденсаторе C и напряжения U с делителя, образованного из резисторов R_1 и R_2 . Напряжение $U_{\text{вых}}$ на выходе ОУ пропорционально разности напряжений между его входами $\Delta U = \phi_A - \phi_C$. Если в некоторый момент времени разность ΔU станет положительной, то

положительная обратная связь приведёт к лавинообразному нарастанию напряжения $U_{\text{вых}}.$

Рис. 1 Симметричный мультивибратор на операционном усилителе.

Его увеличение прекратится, когда $U_{\text{вых}}$ достигнет своего максимально возможного значения U_0 , близкого к положительному напряжению питания +E. При этом напряжение U_A будет равно

$$U_{A} = U_{0} * \frac{R_{1}}{(R_{1} + R_{2})}$$
 (1)

Такое состояние системы сохранится до тех пор, пока напряжение U_C на конденсаторе, заряжающемся через резистор R_1 , не превысит значения (1). Как только разность ΔU станет отрицательной, напряжение $U_{\text{вых}}$ скачком уменьшится до своего мин. значения - U_0 , близкого к отрицательному напряжению питания -E. Напряжение U_A станет равным (1) и конденсатор начнёт разряжаться. Когда напряжение U_C сравняется с (1), выходное напряжение снова скачком увеличится до значения U_0 и т. д. Время зарядки и разрядки конденсатора одинаково и пропорционально RC.

Мультивибратор является автогенератором и работает без подачи входного сигнала.

Несимметричный мультивибратор на операционном усилителе.

Рис. 2 Несимметричный мультивибратор на операционном усилителе.

Рассмотрим принцип работы мультивибратора на рис. 2. Конденсатор С и резисторы R_1 , R_2 образуют интегрирующую RC-цепь: при заряде конденсатора открыт диод VD1, ток протекает через R_1 , при разряде - открыт VD2, ток идет через R2.

Временные диаграммы приведены на рис.3. Пусть при $t < t_I$ источники питания ОУ отключены: $E_n = 0$, $-E_n = 0$. Конденсатор C_1 разряжен и $u_c = 0$. В момент t_1 подключим E_n , $-E_n$. При их включении выходное напряжение ОУ $u_{\text{вых}}$ отклонится либо в положительном, либо в отрицательном направлении (случайный процесс). Предположим, что произошло положительное приращение $\Delta U_{\text{вых}}$. Через цепь из резисторов R_3 , R_4 это приращение подается на прямой вход ОУ, усиливается и в свою очередь вызывает приращение $\Delta U'_{\text{вых}}$. Процесс развивается лавинообразно, в результате в момент t_I скачком устанавливается $U_{\text{вых}} = U_{\text{вых}}$ мах. Начиная с момента t_I , конденсатор C заряжается током при напряжении $U = U_{\text{вых}}$ через резистор R_1 , так как к аноду диода VD1 приложена положительное напряжение, постоянная времени $\tau = R_1 * C$. Нарастающее по экспоненте напряжение U_c подается на инвертирующий вход ОУ. На прямой вход

ОУ через цепочку положительной обратной связи (ПОС) R_3 , R_4 подается напряжение

Рис. 3 Временные диаграммы напряжений а) $U_{\text{вых}}$ б) $U_{\text{с}}$ в) итоговая осциллограмма

$$U_{oc} = \frac{U_{BbIXmax} * R_4}{R_3 + R_4} = U_0$$
 (2)

В момент $t=t_2$ напряжение на конденсаторе U_c достигает значения U_0 и происходит срабатывание ОУ. Его переключение протекает лавинообразно и завершается при $U_{\text{вых}}=-U_{\text{вых max}}$. Напряжение на конденсаторе не может изменится скачком и начиная с момента t_2 , происходит перезаряд конденсатора через резистор R_2 напряжением $U=-U_{\text{вых max}}$ с постоянной времени $\tau=R_2*C$ (на диоде

VD2 прямое напряжение - минус на катоде). Заметим, что компаратор осуществляет переключение цепей заряда (VD1, R_1) и разряда (VD2, R_2) конденсатора С. При $t_2 < t < t_3$ напряжение на прямом входе ОУ

$$u_{oc} = -\frac{U_{bbxmax} * R_4}{R_3 + R_4} = -U_0$$
 (3)

Конденсатор С не успевает разрядиться до напряжения $-U_{вых max}$, так как в момент t_3 напряжение на нем достигает значения $-U_0$ и снова происходит обратное переключение ОУ, при этом устанавливается $U_{выx} = U_{выx max}$. Вновь начинается этап заряда конденсатора С через резистор R_1 . При напряжении на конденсаторе $u_c(t_4) = U_0$ происходит очередное срабатывание ОУ. Установившийся процесс начинается при $t = t_2$ и характеризуется изменением напряжения на конденсаторе от U_0 к - U_0 и обратно. Интервал t_3 - t_4 определяет длительность импульса t_μ , длительность паузы $t_n = t_3$ - t_2 .

Найдем $t_{\rm u}$, $t_{\rm n}$. Для нахождения $t_{\rm u}$ рассмотрим заряд конденсатора C от источника $E=U_{\rm вых\ max}$ с постоянной времени $\tau=R1*C$. Процесс начинается при $U_{\rm c}(0)=-U_0$ (момент t_3 рис.3) и завершается при $U_{\rm c}(t_{\rm u})=U_0$.

$$t_{\omega} = R_1 * C * \ln \frac{U_{\theta \omega \omega \max} + U_0}{U_{\theta \omega \omega \max} - U_0}$$
(4)

Учитывая зависимость U_0 от $U_{\text{вых max}}$, получим

$$t_{\omega} = R_1 * C * ln(1 + \frac{2*R_4}{R_3})$$
 (5)

Интервал паузы t_{π} найдем при рассмотрении перезаряда конденсатора C от источника E=- $U_{\text{вых max}}$ c постоянной времени τ = R_2 *C; $U_c(0)$ = U_0 ; $U_c(t_{\pi})$ =- U_0 .

$$t_{\kappa} = R_2 * C * \ln \frac{U_{\theta \nu \kappa \max} + U_0}{U_{\theta \nu \kappa \max} - U_0}$$
 (6)

$$t_{\kappa} = R_2 * C * ln(1 + \frac{2*R_4}{R_3})$$
 (7)

Период

$$T = t_{\omega} + t_{\kappa} = (R_1 + R_2) * C * ln(1 + \frac{2*R_4}{R_2})$$
 (8)

Скважность

$$Q = \frac{T}{t_{\omega}} = \frac{R_1 + R_2}{R_1} \tag{9}$$

Реальную осциллограмму схемы на рис. 3 представлена на рис. 4.

Рис. 4 Осциллограмма напряжений U_c и $U_{\text{вых}}$

Таймер на операционных усилителях.

Рис.5 Схема таймера на ОУ

В данной схеме, после замыкания ключа, заряжаем конденсатор C1 через резистор R1. Время зарядки определяется через τ = R_1*C_1 . Зарядив конденсатор до уровня E=9B начинается разрядка этого конденсатора. Когда напряжение на инвертирующем выводе станет ниже, чем на неинвертирующем выводе (+4,5 B), выходное напряжение у DA1 мгновенно возрастет с 0 до +9 B, что, в свою

очередь, заставит измениться выходное напряжение у DA2 и DA3. В результате один светодиод погаснет, а другой загорится.

Выполнение

В настоящей работе используется операционный усилитель фирмы STMicroelectronics LM358N в корпусе dip8. Этот ОУ использует двуполярное так и однополярное питание. Цоколевка представлена на рисунке 6.

Рис.6 Цоколевка ОУ

1	Выход 1
2	Инвертирующий вход 1
3	Неинвертирующий вход 1
4	"-" Питания
5	Неивертирующий вход 2
6	Инвертирующий вход 2
7	Выход 2
8	"+" Питания

Напряжение питания ОУ: 3..30В. Рекомендуется использовать ± 5 В в заданиях (1, 3, 4, 5) где используется двуполярное питание и ± 5 В при однополярном питании (задание 2).

Задание 1 Создание генерации прямоугольных импульсов за счет RC-цепей

Рис.7 Схема релаксатора с двумя хронирующими RC-цепями на входах ОУ Подберите параметры емкостей и резисторов так чтобы на выходе ОУ образовались прямоугольные импульсы. Постройте эпюры напряжений в точках 1, 2, 3.

Задание 2

Измерение различных характеристик симметричного мультивибратора Заполните недостающие ячейки таблицы 1, используя схему из рис.2. (С1=10мкФ). Постройте эпюры напряжений в точках 1, 2, 3.

Таблица 1

Νп/п	R1	R2	R3	tи=tπ
1				10мкс
2	100кОм	47кОм		
3		47кОм	47кОм	

Рис. 8 Симметричный мультивибратор на операционном усилителе.

Дополнительно: 1) Постройте генератор однополярных импульсов. Постройте эпюры напряжений на выходе ОУ и на конденсаторе. Как уменьшить наблюдаемое напряжение смещения U_{cm} ?

- 2) При каких минимальных значениях С и R_i еще можно получить прямоугольные импульсы у однополярного (двуполярного) генератора? Какой элемент отвечает за переключение из одного устойчивого состояния в другое? Ответ поясните, используя schematic diagram ниже.
- 3) Назовите основные составные части данного ОУ. На каких базовых схемах включения транзистора они основаны?

Figure 1: Schematic diagram (1/2 LM158)

Рис. 8.1. Структурная схема ОУ LM358N.

Задание 3

Построение генератора с параметрической стабилизацией на стабилитронах

Рис.9 Схема генератора прямоугольных импульсов с параметрическим стабилизатором на выходе

Приборы и принадлежности: Резисторы R1 = R2 = R3 = R5 = 1.2K; C1 = C3 = 10н Φ ; C2 = 10мк Φ ; R4 = 100Ом. Постройте эпюры напряжений в точках 1, 2, 3, 4.

Задание 4

Измерение различных характеристик несимметричного мультивибратора Заполните недостающие ячейки таблицы 1, используя схему из рис.2. (C1=10мк Φ).

Таблица 2

Νп/п	R_1	R_2	R_3	R_4	$t_{\scriptscriptstyle \rm I\! I}$	t_{Π}	T	Q
1					10 мкс	100мкс		11
2								5
3					5мкс		50	
4			1кОм	1кОм				2
5								4

Постройте эпюры напряжений U_c и $U_{\text{вых}}$ для одного из пунктов таблицы 1.

Задание 5

Организация временной задержки на ОУ

Приборы и принадлежности: 1) Конденсатор $C_1 = 1000$ мк Φ 2) Резисторы R3 = R4 = R5 = 1кОм 3) ОУ DA1 = DA2 = DA3 = LM358N 4) кнопка КМ1-1

- 1. Определить параметры R1 и R2 при C1 = 1000мкФ для того, чтобы получить время задержки включения светодиода VD2 в t=30сек.
 - 2. Собрать схему из рис.5

Как организовать переключение светодиодов используя только один ОУ?

ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ РАБОТЫ И ВЫВОДЫ

- 1. В отчете необходимо кратко изложить содержание и основные результаты работы.
- 2. Опираясь на результаты измеренных/полученных значений элементов, сделайте вывод о влиянии каждого из элементов на схему. В отчете укажите:
 - Задание 2. На что влияет каждый из резисторов?
 - Задание 3. Какая цель установки конденсаторов С1 и С3?
 - Задание 3. На что влияют стабилитроны D1 и D2?
 - Ответы на дополнительные вопросы в каждом из заданий.
- 3. В отчете должны быть представлены графики напряжений в разных точках схемы. Обсудите полученные зависимости.

ЛИТЕРАТУРА

Основная

- 1. *Агаханян Т.М.* Электронные устройства в медицинских приборах, 2010. 479 с.
- 2. *У. Наундорф* Аналоговая электроника. Основы, расчет, моделирование, 2008.- 475 с.

Дополнительная

- 1. *Лебедев В.И.* Транзисторные схемы ч.2, 1971. 159 с.
- 2. Х. Титце, К. Шенк Полупроводниковая схемотехника, 1982. 512 с.