Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Реализация передачи событий между внутренними и third-party сервисами в web-приложении с микросервисной архитектурой с использованием брокера сообщений

Выполнил: Шарапенков Иван Ильич, гр. 7304

Руководитель: Яновский Владислав Васильевич, к.т.н., доцент

Консультант: Борисенко Константин Алексеевич, к.т.н., ст. преподаватель

Санкт-Петербург, 2021

Контекст

Актуальность

Актуальность: микросервисный монолит

- наличие прямых связей между микросервисами усложняет анализ проблем;
- с ростом количества микросервисов архитектура становится сложнее для понимания;
- усложняется проектирование и изменение API из-за того, что неизвестно кто является его потребителем.

Цель и задачи

Цель: внедрение брокера сообщений в часть архитектуры web-приложения

Задачи:

- Изучить существующую архитектуру взаимодействия микросервисов
- 2. Сформировать требования к брокеру сообщений и выбрать технологию для внедрения
- 3. Перестроить часть архитектуры web-приложения с использованием брокера сообщений
- 4. Создать алгоритм для подключения микросервисов к брокеру сообщений

Существующая архитектура

Требования к брокеру сообщений

- гарантия доставки сообщений;
- наличие готовых библиотек для разработки на языках Python, Java, Go, PHP;
- поддержка различных тактик доставки сообщений (pull/push);
- наличие встроенного мониторинга;
- возможность хранения сообщений внутри брокера;
- активно разрабатывается и поддерживается;
- развертывание и поддержка от сторонних компаний;
- время доставки сообщения не превышает 10 секунд.

Выбор технологии для внедрения

	Хранение внутри брокера	Тактика доставки	Поддержка	Стоимость
Pub/Sub	+	pull, push	Google	\$40 за ТіВ + \$0.27 за GiB
Kafka	+	pull	_	Free
RabbitMQ	_	push	_	Free
KubeMQ	+	pull, push	_	\$0.05/GB

Перестроение архитектуры

Алгоритм для подключения микросервисов к брокеру сообщений

Исследование решения

	1/10 сообщ/с	1 сообщ/с	100 сообщ/с
Mean	0.1156	0.0718	0.0500
Median	0.0671	0.0589	0.0459

Заключение

- Проведен анализ существующей архитектуры
- Сформулированы требования к брокеру сообщений
- В качестве технологии для внедрения выбран Google Cloud Pub/Sub
- Перестроена часть архитектуры web-приложения
- Сформирован алгоритм для подключения микросервисов к брокеру сообщений
- Исследование решения на соответствие требованиям
- Дальнейшие шаги для перестроения всей архитектуры включают в себя: формирование согласования о именовании очередей, организация отправки данных из других микросервисов в брокер сообщений

Апробация работы

Работы выполнена для компании ООО «СЕМРАШ РУ» в апреле 2021 года, https://semrush.com/