稀疏矩阵的随机快速奇异值分解

李家郡

2019.5.8

背景与研究意义

常用的矩阵分解

- 奇异值分解 (特征值分解)
- QR 分解
- LU 分解

奇异值分解作用

- 主成分分析等价问题
- 社交网络分析
- 推荐系统
- 自然语言处理

Matrix Sketching

定义

给定 $A \in R^{m \times n}$ $S \in R^{n \times s}$ 为 sketching 矩阵 (random projection or column selection)

 $C = AS \in R^{m \times s}$ 即为 A 的 sketch

这里的 C 可以比 A 小很多, 但保留着很多 A 的性质

基本的稀疏矩阵随机奇异值分解算法

算法 1 基础 SVD

输入: $A \in R^{m \times n}$, 秩参数 k, PI 参数 p, 随机高斯矩阵 Ω

输出: $U \in R^{m \times k}$, $S \in R^{k \times k}$, $V \in R^{n \times k}$

- 1: $Q = orth(A\Omega)$
- 2: for i in 1: p
- 3: $G = \operatorname{orth}(A^T Q)$
- 4: Q = orth(AG)
- 5: end for
- 6: $B = Q^{T}A$
- 7: [U, S, V] = svd(B)
- 8: U = QU
- 9: U = U(:,1:k), S = S(1:k,1:k), V = V(:,1:k)

本文算法改进方向

- LU 分解替代 QR 分解
- Count Sketch 替代 Gaussian Sketch

Count Sketch

等价的两种理解方式

- map-reduce fashion
- streaming fashion

Count Sketch - map-reduce fashion

Example:

- Matrix size 9 × 15
- Sketch size s = 3

(a) Hash each column with a value uniformly sampled from $[s] = \{1, 2, 3\}$.

Count Sketch - streaming fashion

Count Sketch

改进的算法

算法 3 CS-frSVD

输入: A ∈ R^{m×n}, 秩参数 k, PI 参数 q, Count Sketch 矩阵Ω

输出: $U \in R^{m \times k}$, $S \in R^{k \times k}$, $V \in R^{n \times k}$

1: if
$$q\%2 == 0$$
:

2:
$$Q = \Omega(n, k + s)$$

3:
$$Q = AQ$$

4: if
$$q > 2[Q, \sim] = lu(Q)$$

5: else
$$[Q, \sim, \sim] = eigSVD(Q)$$

7:
$$Q = \Omega(m, k + s)$$

8: for i in 1:
$$\left| \frac{q-1}{2} \right|$$

9: if
$$i = = \left\lfloor \frac{q-1}{2} \right\rfloor [Q, \sim, \sim] = eigSVD(A(A^TQ))$$

10: else
$$[Q, \sim] = lu(A(A^TQ))$$

11:
$$[\widehat{U}, \widehat{S}, \widehat{V}] = eigSVD(A^{T}Q)$$

12:
$$index = k + s: -1: s + 1$$

13:
$$U = O\hat{V}(:.index), V = \hat{U}(:.index), S = \hat{S}(index)$$

数据说明

数据名称	维度	非零个数	
SNAP(Leskovec and Krevl,2014)	82,168×82,168	948,464	
Cit-Patents	3,774,768×3,774,768	116,514,648	
Soc-LiveJournal	4,847,571×4,847,571	1,216,415,176	
Pokec-relationships	1,632,803×1,632,803	625,101,587	
Web-BerkStan	685,230×685,230	69,197,810	
Web-Google	875,713×875,713	36,818,556	

实验效果-时间

单线程下,实验迭代参数 q 为 3,LU 迭代次数为 1 时不同数据运行时间比较 (s)

粉捉住	基础随机 SVD	frPCA 基于 MKL	CS-frSVD 基于	
数据集	基于 Eigen	IIPCA 奉丁 MKL	Armadillo	
SNAP	225.41	3.41	2.38	
Cit-Patents	14088.10	501.73	395.77	
Soc-LiveJournal	50867.9	3321.01	3196.61	
Soc-Pokec-relationships	22084.50	1752.79	2107.10	
Web-BerkStan	3362.85	49.50	45.27	
Web-Google	3262.71	74.20	45.90	

实验效果-时间

多线程下,实验迭代参数 q 为 3, LU 迭代次数为 1 时不同数据运行时间比较 (s)

数据集	Facebook-fbPCA	frPCA 基于 MKL	CS-frSVD 基于 MKL
SNAP	9.22	0.59	1.76
Cit-Patents	903.95	61.82	75.17
Soc-LiveJournal	6834.01	1726.22	1305.98
Soc-Pokec-relationships	2874.16	234.42	198.87
Web-BerkStan	149.74	6.00	13.26
Web-Google	180.63	7.56	9.76

迭代次数为 1 时,不同数据精确度比较(前一百个奇异值平方和开根)

	E 1 1	through in orm	CDC+#	co corre #	CC CCTTD	
数据集	Facebook-	基础随机 SVD	frPCA 基	CS-frSVD 基	CS-frSVD	F-norm
	fbPCA	基于 Eigen	于 MKL	于 Armadillo	基于 MKL	1'-norm
SNAP	330.4	329.7	304.8	305.6	302.7	973.9
Cit-Patents	1459.9	1450.7	1063.1	1711.7	1055.9	18216.9
Soc-LiveJournal	3583.7	3563.4	2800.4	2807.5	2820.7	31157.7
Soc-Pokec-	2299.1	2275 7	1701.7	1721.4	1721 5	20057.4
relationships		2275.7	1721.7	1731.4	1731.5	20057.4
Web-BerkStan	5858.1	5846.4	5678.7	5676.7	5673.0	10302.2
Web-Google	2998.3	2982.5	2618.9	2624.4	2614.2	9631.0

迭代分解次数为 1 时,不同数据集对应的前一百个奇异值分布

迭代次数为 3 时,不同数据精确度比较 (前一百个奇异值平方和开根)

表格 5 迭代次数为 3 时,不同数据精确度比较(前一百个奇异值平方和开根)

数据集	Facebook-	基础随机 SVD	frPCA 基	CS-frSVD 基	CS-frSVD	F-norm
	fbPCA	基于 Eigen	于 MKL	于 Armadillo	基于 MKL	
SNAP	346.7	351.9	350.2	350.2	350.1	973.9
Cit-Patents	1673.1	1729.9	1677.9	1711.7	1702.1	18216.9
Soc-LiveJournal	3952.9	4037.0	3943.6	4015.5	4011.2	31157.7
Soc-Pokec- relationships	2563.1	2621.2	2607.0	2606.2	2606.5	20057.4
Web-BerkStan	5931.4	5949.4	5943.2	5948.9	5945.3	10302.2
Web-Google	3160.4	3190.8	3168.2	3185.9	3183.3	9631.0

迭代分解次数为 3 时,不同数据集对应的前一百个奇异值分布

