МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 2

на тему «Принципы нелинейного кодирования и декодирования»

Дисциплина: СиСПИ

Группа: 21ПТ2

Выполнил: Рогашевский А. В.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

1 Цель работы: изучение принципы нелинейного кодирования и декодирования.

2 Задание. Выполнить кодирование дискретных отсчетов методом ИКМ и декодирование кодовых комбинаций цифрового сигнала. Величины эталонных напряжений для нижней границы каждого сегмента и при кодировании внутри сегмента представлены на рисунке 1. Вариант задания представлен на рисунке 2.

Номер	Эталонное	Эталонные напряжения при						
сегмента	напряжение	кодировании в пределах сегмента						
N _c	нижней	$8\Delta_i(A)$	$4\Delta_i(B)$	$2\Delta_{i}I(C)$	$\Delta_i(D)$			
	границы							
	сегмента							
0	0	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$			
1	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$			
2	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$			
3	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$			
4	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$			
5	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$			
6	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$			
7	$1024\Delta_0$	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$			

Рисунок 1 - Величины эталонных напряжений

21	1222	-345	619	69	222	145

Рисунок 2 — 21 вариант задания

- 3 Выполнение задания.
- 3.1 Был закодирован отсчет 1222.
- 3.1.1 Полярность отсчета равна 1, так как 1222 >= 0.
- 3.1.2 Сегмент отсчета равен 7 (111 в двоичной системе).
- 3.1.3 Было определено значение уровней квантования в пределах сегмента. 1222 1024 = 198. 198 512 < 0, значит первый бит равен 0. 198 256 < 0, значит второй бит равен 0. 198 128 >= 0, третий бит равен 1. 70 64 >= 0, четвертый бит равен 1.
 - 3.1.4 Итоговый закодированный отсчет равен 11110011.

- 3.2 Был закодирован отсчет -345.
- 3.2.1 Полярность отсчета равна 0, так как -345 < 0.
- 3.2.2 Сегмент отсчета равен 5 (101 в двоичной системе).
- 3.2.3 Было определено значение уровней квантования в пределах сегмента. 345 256 = 89. 89 128 < 0, значит первый бит равен 0.89 64 >= 0, второй бит равен 1.25 32 < 0, третий бит равен 0.25 16 >= 0, четвертый бит равен 1.25 32 < 0, третий бит равен 1.25 32 < 0, четвертый бит р
 - 3.2.4 Итоговый закодированный отсчет равен 01010101.
 - 3.3 Был закодирован отсчет 619.
 - 3.3.1 Полярность отсчета равна 1, так как $619 \ge 0$.
 - 3.3.2 Сегмент отсчета равен 6 (110 в двоичной системе).
- 3.3.3 Было определено значение уровней квантования в пределах сегмента. 619 512 = 51.51 256 < 0, значит первый бит равен 0.51 128 < 0, второй бит равен 0.51 64 < 0, третий бит равен 0.51 32 >= 0, четвертый бит равен 1.
 - 3.3.4 Итоговый закодированный отсчет равен 11100001.
 - 3.4 Было декодировано число 69.
 - 3.4.1 Число 69 было переведено в двоичную систему 01000101.
 - 3.4.2 Был определен сегмент отсчета 100 (4 в десятичной).
- 3.4.3 Была определена дополнительная величина дискретного отсчета. 128 +0+32+0+8=-168 (полярность отсчета равна 0).
 - 3.5 Было декодировано число 222.
 - 3.5.1 Число 222 было переведено в двоичную систему 11011110.
 - 3.5.2 Был определен сегмент отсчета 101 (5 в десятичной).
- 3.5.3 Была определена дополнительная величина дискретного отсчета. 256 + 128 + 64 + 32 + 0 = 280 (полярность отсчета равна 1).
 - 3.6 Было декодировано число 145.
 - 3.6.1 Число 145 было переведено в двоичную систему 10010001.
 - 3.6.2 Был определен сегмент отсчета 001 (1 в десятичной).
- 3.6.3 Была определена дополнительная величина дискретного отсчета. 16 + 0 + 0 + 0 + 1 = 17 (полярность отсчета равна 1).

4 Вывод: были изучены принципы нелинейного кодирования и декодирования.