We claim:

1. A quinoline derivatives according to the formula 1

$$\begin{array}{c} Z \\ P \\ (CH_2)m \\ R_1 \\ R_2 \end{array}$$

in which

R, R₁, R₂, R₃ can be attached to any of the quinoline carbon atoms C_2 to C_8 , are the same or different and independently of one another denote hydrogen, straight-chain or branched C_{1-8} alkyl, hydroxyl, C_{3-7} cycloalkyl, straight-chain or branched C_{1-8} alkoxy, alkylcarbonyl, straight-chain or branched C_{1-8} alkoxy, halogen, aryl- C_{1-8} alkoxy, nitro, amino, mono- C_{1-4} alkylamino, di- C_{1-4} alkylamino, C_{1-8} alkoxycarbonylamino, C_{1-6} alkoxycarbonylamino- C_{1-8} alkyl, cyano, straight-chain or branched cyano- (C_1-C_6) -alkyl, carboxyl, C_{1-8} alkoxycarbonyl, C_{1-4} alkyl which is substituted by one or more fluorine atoms, carboxy- C_{1-8} alkyl or C_{1-8} alkoxycarbonyl- C_{1-6} alkyl, C_{2-6}

3.

alkenyl, C₂₋₆ alkynyl, straight-chain or branched cyano-C₁₋₆ alkyl, aryl, where the aryl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of halogen, straight-chain or branched C₁₋₈ alkyl, C₃₋₇ cycloalkyl, carboxyl, straight-chain or branched C₁₋₈ alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched C₁₋₈ alkoxy, benzyloxy, nitro, amino, mono-C₁₋₄ alkylamino, di-C₁₋₄ alkylamino, cyano, straight-chain or branched cyano-C₁₋₆ alkyl, where R and R₁ or R₂ and R₃ can form a fused aromatic 6-membered ring with the quinoline ring forming an acridine ring which can be substituted at any C atom ring position by the radicals R, R₁, R₂ and R₃ having the meanings mentioned above;

Z is oxygen or sulfur, where the radical

$$Z$$
 P
 $(CH_2)m$
 Q

substituted on the quinoline heterocycle can be attached to C atoms C_{2-8} of the quinoline ring;

36 T

5

2

 R_{4}

X is nitrogen or $C-R_5$, where R_5 is hydrogen or C_{1-6} alkyl;

n,m are independently of one another a cardinal number between 0 and 3, with the proviso that when n is 0, X is a CR_5R_6 group wherein R_5 and R_6 are independently of one another hydrogen or C_{1-6} alkyl, and that the nitrogen atom adjacent to the C=Z group is substituted by a hydrogen atom or a C_{1-6} alkyl group;

is a straight-chain or branched C_{1-20} alkyl radical which can be saturated or unsaturated, with one to three double and/or triple bonds, and which can be unsubstituted or can optionally be substituted at the same or different C atoms by one, two or more aryl, heteroaryl, halogen, cyano, C=NH (NH_2), C_{1-6} alkoxycarbonylamino, C_{1-6} alkoxy, amino, mono- C_{1-4} alkylamino or di- C_{1-4} alkylamino; C_{1-4} alkoxy carbonyl, a C_{6-14} aryl radical, C_{6-14} aryl- C_{1-4} alkyl radical, or a a C_{2-10} heteroaryl or C_{2-10} heteroaryl- C_{1-4} alkyl radical which contains one or more heteroatoms N, O and S, where the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and where the C_{6-14} aryl or C_{2-10} heteroaryl radical can be unsubstituted or mono- or polysubstituted

by the same or different substituents from the group of straight-chain or branched C_{1-8} alkyl, C_{3-7} cycloalkyl, halogen, cyano, C_{1-6} alkoxycarbonylamino, C_{1-6} alkoxy, carboxyl, C_{1-8} alkoxycarbonyl, straight-chain or branched C_{1-6} alkyl which is substituted by one or more fluorine atoms, hydroxyl, straight-chain or branched C_{1-8} alkoxy, where adjacent oxygen atoms may also be linked by C_{1-2} alkylene groups, benzyloxy, nitro, amino, mono- C_{1-4} alkylamino, di- C_{1-4} alkylamino, aryl, which can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched C_{1-8} alkyl, C_{3-7} cycloalkyl, carboxyl, straight-chain or branched C_{1-8} alkoxycarbonyl, trifluoromethyl, hydroxyl, straight-chain or branched C_{1-8} alkoxy, benzyloxy, nitro, amino, mono- C_{1-4} alkylamino, di- C_{1-4} alkylamino, cyano, straight-chain or branched cyano- C_{1-6} alkyl;

and their structural isomers and stereoisomers, particularly tautomers, diastereomers and enantiomers, and their pharmaceutically acceptable salts.

2. The quinoline derivative of claim 1, wherein

in R, R_1 , R_2 , and R_3 , said C_{1-8} alkylcarbonyl is acetyl, said C_{1-8} alkoxy is benzyloxy or phenylethoxy, said fluorine atoms are trifluoromethyl, said C_{2-6} alkenyl is allyl, said C_{2-6} alkynyl is ethynyl or propargyl,

said cyano- C_{1-6} alkyl is cyanomethyl, said C_{1-8} alkoxy- carbonyl is tert-butoxycarbonyl, and said C_{1-8} alkoxy is methoxy or ethoxy, and in R_4 said fluorine atoms are trifluoromethyl, said C_{1-8} alkoxy is methoxy or ethoxy, and said C_{1-2} alkylene group is a methylene group.

3. The quinoline derivative of formula 1 of claim 1, wherein R, R1, R2, R3, X, Z, P, Q, n and m have the meanings given in claim 1

R4 is a straight-chain or branched C_{1-20} alkyl radical which can be saturated or unsaturated, with one to three double and/or triple bonds, and which can be unsubstituted or optionally substituted on the same or different C atoms by one, two or more aryl, heteroaryl, halogen, C_{1-6} alkoxy, amino, mono- C_{1-4} alkylamino or di- C_{1-4} alkylamino;

a phenyl ring or a naphthyl ring, each of which can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or

24

25

26

27

28

branched C₁₋₈ alkyl, C₃₋₇ cycloalkyl, halogen, cyano,C₁₋₆ alkoxycarbonylamino, C₁₋₆ alkoxy, carboxyl, C₁₋₈ alkoxycarbonyl, straight-chain or branched C₁₋₆ alkyl which is substituted by one or more fluorine atoms, hydroxyl, straightchain or branched C₁₋₈ alkoxy, benzyloxy, nitro, amino, mono- C_{1-4} alkylamino, di- C_{1-4} alkylamino, aryl, which can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched C₁₋₈ alkyl, C₃₋₇ cycloalkyl, carboxyl, straight-chain or branched C₁₋₈ alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched C₁₋₈ alkoxy, benzyloxy, nitro, amino, mono-C₁₋₄ alkylamino, di-C₁₋₄ alkylamino, cyano, straight-chain or branched cyano- C_{1-6} alkyl;

a 2-, 4-, 5- or 6-pyrimidinyl radical, or a 2-, 4-, 5- or 6-pyrimidinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or

oxo (=O), and the 2-, 4-, 5- or 6-pyrimidinyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y

wherein Y is a C_{1-6} alkyl, halogen, nitro, amino, mono- C_{1-6} alkylamino, di- C_{1-6} alkylamino, hydroxyl, C_{1-6} alkoxy, benzyloxy, carboxyl, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxycarbonylamino or C_{1-6} alkyl which is mono- or polysubstituted by fluorine, C_{6-10} aryl and C_{6-10} aryl- C_{1-6} alkyl;

a 3-, 4-, 5- or 6-pyridazinyl radical, or a 3-, 4-, 5- or 6-pyridazinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 3-, 4-, 5- or 6-pyridazinyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 3-, 5- or 6-pyrazinyl radical, or a 2-, 3-, 5- or 6-pyrazinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C₁₋₆ alkyl, halogen or oxo (=O), and the 2-, 3-, 5- or 6-pyrazinyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y; a 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl radical, or a 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl- $C_{1\text{--}4}$ alkyl radical, wherein the $C_{1\text{--}4}$ alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C₁₋₆ alkyl, halogen or oxo (=O), and the 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl radical can be unsubstituted or mono- or up to pentasubstituted by the same or different substituents from the group of hydrogen, or Y;

58 59

60

57

a 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl radical, or a 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the

6 -

same or different substituents from the group of hydrogen, C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl radical can be unsubstituted or mono- or up to pentasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl radical, or a 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl radical can be unsubstituted or mono- or up to pentasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl radical, or a 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the

same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=0), and the 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl radical can be unsubstituted or mono- or up to pentasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl radical, or a 2-, 3-, 4-, 5-, 6-, 7 or 8-quinolyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl radical can be unsubstituted or mono- or up to hexasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl radical, or a 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl,

halogen or oxo (=O), and the 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl radical can be unsubstituted or mono- or up to hexasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 6-, 8- or 9-[9H]-purinyl radical, or a 2-, 6-, 8- or 9-[9H]-purinyl- C_{1-4} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 6-, 8- or 9-[9H]-purinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 6-, 7- or 8-[7H]-purinyl radical, or a 2-, 6-, 7- or 8-[7H]-purinyl- C_{1-4} alkyl radical, wherein the C_{1-4} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 6-, 7- or 8-[7H]-purinyl radical can be

110

unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y;

111 112 113

119

120

121

122

123

124

a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl radical, or a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl- C_{1-4} alkyl radical, where the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C₁₋₆ alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9unsubstituted or radical can be octasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl radical, or a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl-C₁₋₆ alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, C₁₋₆ alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl radical can be

134

135

136

137

138

139

unsubstituted or mono- or up to octasubstituted by the same or different substituents of Y;

a 2-, 3-, 4-, 5- or 6-pyridyl radical where the 2-, 3-, 4-, 5- or 6-pyridyl radical can be unsubstituted or mono- or up to tetrasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 3-, 4-, 5- or 6-pyridinyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 3-, 4-, 5- or 6-pyridinyl radical can be unsubstituted or mono- or up to tetrasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 3-, 4- or 5-thienyl radical, or a 2-, 3-, 4- or 5-thienyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents

143

144

151

152 153

154

155

from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 3-, 4- or 5-thienyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the

group of hydrogen, or Y;

a 2-, 4-, or 5-thiazolyl radical, or a 2-, 4-, or 5-thiazolyl C_{1-6} alkyl radical, wherein the C₁₋₆ alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=0), and the 2-, 4-, or 5-thiazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, or Y;

a 3-, 4-, or 5-isothiazolyl radical, or a 3-, 4-, or 5-isothiazolyl-C₁₋ $_{\rm 6}$ alkyl radical, wherein the $C_{\rm 1-6}$ alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 3-, 4-, or 5-isothiazolyl radical can be unsubstituted or mono- or

disubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 4-, 5-, 6-, or 7-benzothiazolyl radical, or a 2-, 4-, 5-, 6-, or 7-benzothiazolyl-C₁₋₆ alkyl radical, wherein the C₁₋₆ alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C₁₋₆ alkyl, halogen or oxo (=O), and the 2-, 4-, 5-, 6-, or 7-benzothiazolyl radical can be unsubstituted or mono- or up to tetrasubstituted by the same or different substituents from the group of hydrogen, or Y:

166

167

168

169

a 1-, 2-, 4-, or 5-imidazolyl radical, or a 1-, 2-, 4-, or 5imidazolyl- $C_{\text{1-6}}$ alkyl radical, wherein the $C_{\text{1-6}}$ alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C₁₋₆ alkyl, halogen or oxo (=O), and the 1-, 2-, 4-, or 5-imidazolyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y;

171

a 1-, 3-, 4-, or 5-pyrazolyl radical, or a 1-, 3-, 4- or 5-pyrazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 1-, 3-, 4- or 5-pyrazolyl radical can be unsubstituted or mono- or up to trisubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1-, 2-, 3-, 4-, or 5-pyrrolyl radical, or a 1-, 2-, 3-, 4-, or 5-pyrrolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4- or 5-pyrrolyl radical can be unsubstituted or mono- or up to tetrasubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1-, 3-, or 5-[1.2.4]-triazolyl radical, or a 1-, 3-, or 5-[1.2.4]-triazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be

unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, C_{1-6} alkyl, halogen or oxo (=O), and the 1-, 3-, or 5-[1.2.4]-triazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from Y;

a 1-, 4-, or 5-[1.2.3]-triazolyl radical, or a 1-, 4-, or 5-[1.2.3]-triazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 1-, 4-, or 5-[1.2.3]-triazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, or Y;

a 1- or 5-[1H]-tetrazolyl radical, or a 1-, or 5-[1H]-tetrazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 1-, or

5-[1*H*]-tetrazolyl radical can be unsubstituted or substituted by hydrogen, or Y;

a 2- or 5-[2H]-tetrazoyl radical, or a 2- or 5-[2H]-tetrazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2- or 5-[2H]-tetrazolyl radical can be unsubstituted or substituted by hydrogen, or Y;

a 2-, 4-, or 6-[1.3.5]-triazinyl radical, or a 2-, 4-, or 6-[1.3.5]-triazinyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 4-, or 6-[1.3.5]-triazinyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, or Y;

a 2-, 4-, or 5-oxazolyl radical, or a 2-, 4-, or 5-oxazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 2-, 4-, or 5-oxazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, or Y;

a 3-, 4-, or 5-isoxazolyl radical, or a 3-, 4-, or 5-isoxazolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 3-, 4-, or 5-isoxazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, or Y;

233

230

231

232

or 7-indolyl- C_{1-6} alkyl radical, wherein the C_{1-6} alkyl radical can

a 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl radical, or a 1-, 2-, 3-, 4-, 5-, 6-

be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of C_{1-6} alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl radical can be unsubstituted or mono- or up to hexasubstituted by the same or different substituents from the group of hydrogen, or Y.

- 4. The pyridine derivative of claim 3, wherein in R_4 said fluorine atoms are trifluoromethyl, and said C_{1-8} alkoxy is methoxy or ethoxy.
- 5. The quinoline derivative of claim 1, wherein R, R_1 , R_2 , R_3 , X, Z, P, Q, n and m have the meanings given above, and R4 is phenyl which is unsubstituted or substituted by one to five the same or different C_{1-6} alkoxy groups, where adjacent oxygen atoms can also be linked by C_{1-2} alkylene groups.
- 6. The quinoline derivative of claim 1, wherein R, R₁, R₂, R₃, X, Z, P, Q, n and m have the meanings given above and R₄ is 3,5-dimethoxyphenyl.

- 7. The quinoline derivative of claim 1, wherein R_4 has the meanings given above, R, R_1 , R_2 , R_3 each is hydrogen, Z is an oxygen atom, X is a nitrogen atom, P and Q are each two hydrogen atoms as in -CH2-, P0 is zero, and P1 is 2.
- 8. The quinoline derivative of claim 1, wherein R, R_1 , R_2 , R_3 are each a hydrogen atom, Z is an oxygen atom, X is a nitrogen atom, P and Q each are two hydrogen atoms as in -CH2-, P is zero, P is 2, and P is a 3,5-dimethoxyphenyl radical.
- 9. A process for preparing the quinoline derivative of claim 1, which comprises reacting a quinoline carboxylic acid of formula (2)

$$R_1$$
 R_2 R_3 R_2 R_3 R_2 R_3 R_2 R_3

in which R, R1, R2, R3 have the meanings given above, Z is an oxygen or sulfur atom, and Y is a leaving group with an amine of formula (3)

$$\begin{array}{c} \text{HN} & \text{CH}_2 \text{)n} & \text{R}_4 \\ \text{P} & \text{(CH}_2 \text{)m} & \text{Q} \end{array} \tag{3}$$

in which R4, X, P, Q, m and n have the meanings given above, optionally in the presence of diluents and auxiliaries.

- 10. The process of claim 10, wherein said leaving group is halogen, hydroxyl, C_{1-6} alkoxy, -O-tosyl, -O-mesyl, or imidazolyl.
- 11. The process of claim 10, wherein said C_{1-6} alkoxy is methoxy or ethoxy.

- 12. A therapeutic method for treating tumors in mammals, which comprises administering to a mammal in need therefor at least one quinoline derivative of claim 1 in a tumor treatment effective dose.
- 13. A medicament which comprises as active ingredient at least one quinoline derivative according of claim 1, together with conventional pharmaceutically acceptable auxiliaries, additives and carriers.
- 14. The pharmaceutically acceptable acid addition salt of the quinoline derivative of claim 1, when formed with one of the acids hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, fumaric acvid, succinic acid, lactic acid, citric acid, acetic acid, tartaric acid, malic acid, maleic acid, embonic acid, malonic acid, trifluoroacetic acid, metanesulfonic acid, and sulfoacetic acid.