The Problem With Historical Instrumental Variables

Alternative title: Identification of Bi-Directional Two-Variable System With Time-Invariant Instrument

John T.H. Wong

- Many historical IV papers use the following strategy.
 - e.g., AJR use settlers mortality (z_i) to instrument for constraints on the government's executive (d_{it}) , and then estimate the latter's effect on output growth (y_{it}) .

- Many historical IV papers use the following strategy.
 - e.g., AJR use settlers mortality (z_i) to instrument for constraints on the government's executive (d_{it}) , and then estimate the latter's effect on output growth (y_{it}) .

 $ightharpoonup z_i$ must affect y_{it} only through d_{it} .

- Many historical IV papers use the following strategy.
 - e.g., AJR use settlers mortality (z_i) to instrument for constraints on the government's executive (d_{it}) , and then estimate the latter's effect on output growth (y_{it}) .

- \triangleright z_i must affect y_{it} only through d_{it} .
- \blacktriangleright But note that z_i is time-invariant, whereas d_{it} is time-variant.

- ▶ If z_i affects d_{it} , then it must also also affect $d_{i,t-1}$.
 - This violates exclusion restriction.

- If z_i affects d_{it} , then it must also also affect $d_{i,t-1}$.
 - This violates exclusion restriction.
- We can add $d_{i,t-2}$, $d_{i,t-3}$, and so forth, to the graph.

$$y_{it} = \beta_0 d_{it} + \beta_1 d_{i,t-1} + \epsilon_{y,it}.$$

$$y_{it} = \beta_0 d_{it} + \beta_1 d_{i,t-1} + \epsilon_{y,it}.$$

- Note that this is a dynamic panel data model (DPDM).
- ▶ This is quite similar to an autoregressive distributed lag (ADL) setup.

$$y_{it} = \beta_0 d_{it} + \beta_1 d_{i,t-1} + \epsilon_{y,it}.$$

- Note that this is a dynamic panel data model (DPDM).
- ► This is quite similar to an autoregressive distributed lag (ADL) setup.

First-stage equation

$$d_{it} = \delta z_i + \alpha_0 d_{i,t-1} + \epsilon_{d,it}.$$

$$y_{it} = \beta_0 d_{it} + \beta_1 d_{i,t-1} + \epsilon_{y,it}.$$

- Note that this is a dynamic panel data model (DPDM).
- This is quite similar to an autoregressive distributed lag (ADL) setup.

First-stage equation

$$d_{it} = \delta z_i + \alpha_0 d_{i,t-1} + \epsilon_{d,it}.$$

What happens when we omit d_{t-1} in the first stage?

▶ Obtain the particular solution of the first-stage equation:

$$d_{it} = (\delta \sum_{j=0}^{\infty} a_1^j) z_i + \underbrace{\sum_{j=0}^{\infty} a_1^j \epsilon_{i,t-j}}_{\text{Not iid!}}.$$

Let me prove it to you

I simulated a panel with 50 units, each with 1000 observations (to show the misspecified model is inconsistent).

Let me prove it to you

I simulated a panel with 50 units, each with 1000 observations (to show the misspecified model is inconsistent).

	True	TSLS				
Intercept	0.00	0.00				
		(0.01)				
d_t	0.30	-0.10^{***}				
		(0.02)				
Ld_t	-0.40					
Num. obs.		49950				
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$						

Table 1: Two-Stage Least Squares Results With Omitted Treatment Lag

Monte Carlo Results

▶ These results are consistently biased across samples. (Each unit has 100 observations.)

Figure 1: Monte Carlo Results, Omitted Treatment Lag (500 iterations; 50 units; 100 observations per unit; \pm 2 SD shaded; black dotted line indicates true mean)

Solution

Including Ld_{it} in both stages of the equation leads to a consistent estimator on all variables.

	True	TSLS	TSLS With Lag
Intercept	0.00	0.00	0.00
		(0.01)	(0.00)
d_t	0.30	-0.10^{***}	0.30^{***}
		(0.02)	(0.03)
Ld_t	-0.40		-0.40^{***}
			(0.01)
Num. obs.		49950	49950
*** . 0 001	** . 0 01	* . 0 05	

^{***} p < 0.001; ** p < 0.01; * p < 0.05

Table 2: Two-stage least squares results with treatment lag

Monte Carlo results

Figure 2: Monte Carlo results, with treatment lag (500 iterations; 50 units; 100 observations per unit; \pm 2 SD shaded)

Generalize to bi-directional Granger causation

 \blacktriangleright What if y_{t-1} feeds into y_{it} and d_{it} ?

For example, the Solow model implies this system

$$\begin{array}{l} (1) \ \Delta k = k_t - k_{t-1} = s y_{t-1} - \delta k_{t-1} \\ \Longrightarrow \ k_t = s y_{t-1} + (1 - \delta) k_{t-1} \end{array}$$

Generalize to bi-directional Granger causation

 \blacktriangleright What if y_{t-1} feeds into y_{it} and d_{it} ?

For example, the Solow model implies this system

(1)
$$\Delta k = k_t - k_{t-1} = sy_{t-1} - \delta k_{t-1}$$

 $\implies k_t = sy_{t-1} + (1 - \delta)k_{t-1}$
(2) $y_t = f(k_t)$

We simulate then estimate the following equations:

$$\begin{split} y_{it} &= \beta d_{it} + \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \epsilon_{y,it} \\ d_{it} &= \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \delta z_i + \epsilon_{it}. \end{split}$$

We simulate then estimate the following equations:

$$\begin{split} y_{it} &= \beta d_{it} + \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \epsilon_{y,it} \\ d_{it} &= \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \delta z_i + \epsilon_{it}. \end{split}$$

In VAR terms:

$$\begin{bmatrix} 1 & -\beta \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} y_{it} \\ d_{it} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} y_{i,t-1} \\ d_{i,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \delta \end{bmatrix} z_i + \begin{bmatrix} \epsilon_{y,it} \\ \epsilon_{d,it} \end{bmatrix}.$$

We simulate then estimate the following equations:

$$\begin{split} y_{it} &= \beta d_{it} + \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \epsilon_{y,it} \\ d_{it} &= \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \delta z_i + \epsilon_{it}. \end{split}$$

In VAR terms:

$$\begin{bmatrix} 1 & -\beta \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} y_{it} \\ d_{it} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} y_{i,t-1} \\ d_{i,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \delta \end{bmatrix} z_i + \begin{bmatrix} \epsilon_{y,it} \\ \epsilon_{d,it} \end{bmatrix}.$$

Our procedure is analogous to a Cholesky decomposition.

We simulate then estimate the following equations:

$$\begin{split} y_{it} &= \beta d_{it} + \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \epsilon_{y,it} \\ d_{it} &= \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \delta z_i + \epsilon_{it}. \end{split}$$

In VAR terms:

$$\begin{bmatrix} 1 & -\beta \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} y_{it} \\ d_{it} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} y_{i,t-1} \\ d_{i,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \delta \end{bmatrix} z_i + \begin{bmatrix} \epsilon_{y,it} \\ \epsilon_{d,it} \end{bmatrix}.$$

- Our procedure is analogous to a Cholesky decomposition.
- Note that lagged outcome enters the first-stage equation.

We simulate then estimate the following equations:

$$\begin{split} y_{it} &= \beta d_{it} + \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \epsilon_{y,it} \\ d_{it} &= \alpha_{11} y_{i,t-1} + \alpha_{12} d_{i,t-1} + \delta z_i + \epsilon_{it}. \end{split}$$

In VAR terms:

$$\begin{bmatrix} 1 & -\beta \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} y_{it} \\ d_{it} \end{bmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} y_{i,t-1} \\ d_{i,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \delta \end{bmatrix} z_i + \begin{bmatrix} \epsilon_{y,it} \\ \epsilon_{d,it} \end{bmatrix}.$$

- Our procedure is analogous to a Cholesky decomposition.
- Note that lagged outcome enters the first-stage equation.

What most historical IV papers are doing, in VAR terms

$$\begin{bmatrix} 1 & -\beta \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} y_{it} \\ d_{it} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} y_{i,t-1} \\ d_{i,t-1} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \delta \end{bmatrix} z_i + \begin{bmatrix} \epsilon_{y,it} \\ \epsilon_{d,it} \end{bmatrix}.$$

Results

-	1st-Stage (d_t)		2nd-Stage (y_t)				
	True	(a)	(b)	True	(c)	(d)	
Intercept	0.00	0.02	0.00	0.00	0.01	0.01	
		(0.01)	(0.00)		(0.01)	(0.00)	
z_t	0.200	0.29***	0.20***				
		(0.01)	(0.00)				
Ld_t	0.50		0.50^{***}	-0.40		-0.40^{***}	
			(0.00)			(0.01)	
Ly_t	0.70		0.70^{***}	0.60		0.60^{***}	
			(0.00)			(0.02)	
d_t				0.30 -	-0.24**	* 0.30***	
					(0.03)	(0.03)	
Num. obs		49950	49950		49950	49950	
*** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$							

Table 3: Two-stage least squares results, comparison

Monte Carlo results

Figure 3: Monte Carlo results, with treatment and outcome lag (500 iterations; 50 units; 100 observations per unit; \pm 2 SD shaded)

Monte Carlo results

Figure 3: Monte Carlo results, with treatment and outcome lag (500 iterations; 50 units; 100 observations per unit; \pm 2 SD shaded)

Note that

- 1. We didn't need a second set of instruments.
- 2. Our instrument didn't need to be time-variant.
- 3. We didn't need to instrument for d_{t-1} .

Discussion

- ► Most of the papers are in epidemiology (see Labrecque and Swanson 2018 in particular).
 - This is because they use genetic variants to predict disease's effect (e.g., smoking) on health outcome (e.g., life expectancy), i.e., Mendelian randomization.
 - Also, their theoretical derivations didn't hold up in my Monte Carlos.

- ► Most of the papers are in epidemiology (see Labrecque and Swanson 2018 in particular).
 - This is because they use genetic variants to predict disease's effect (e.g., smoking) on health outcome (e.g., life expectancy), i.e., Mendelian randomization.
 - Also, their theoretical derivations didn't hold up in my Monte Carlos.
- There is one development econ paper which talks about this (Casey and Klemp 2021), but their solution is questionable.
 - They propose to estimate d_{it} and $d_{i,t-Q}$, and instrument for the latter with z_i , and use the resulting parameter to adjust the second-stage equation parameter.

- ► Most of the papers are in epidemiology (see Labrecque and Swanson 2018 in particular).
 - This is because they use genetic variants to predict disease's effect (e.g., smoking) on health outcome (e.g., life expectancy), i.e., Mendelian randomization.
 - Also, their theoretical derivations didn't hold up in my Monte Carlos.
- There is one development econ paper which talks about this (Casey and Klemp 2021), but their solution is questionable.
 - They propose to estimate d_{it} and $d_{i,t-Q}$, and instrument for the latter with z_i , and use the resulting parameter to adjust the second-stage equation parameter.
 - The lag length is arbitrary. And even if it works, their method only recovers a "long-run" parameter, not the instantaneous parameter that is of policy interest.

- ► Most of the papers are in epidemiology (see Labrecque and Swanson 2018 in particular).
 - This is because they use genetic variants to predict disease's effect (e.g., smoking) on health outcome (e.g., life expectancy), i.e., Mendelian randomization.
 - Also, their theoretical derivations didn't hold up in my Monte Carlos.
- There is one development econ paper which talks about this (Casey and Klemp 2021), but their solution is questionable.
 - They propose to estimate d_{it} and $d_{i,t-Q}$, and instrument for the latter with z_i , and use the resulting parameter to adjust the second-stage equation parameter.
 - ► The lag length is arbitrary. And even if it works, their method only recovers a "long-run" parameter, not the instantaneous parameter that is of policy interest.
- There are actually a lot of time series tools that can help analyze and solve the problem. But the Anderson-Rubin causal inference people don't talk to the time series people or something?

1. This does not require a time-variant treatment (unlike proxy SVARs, aka SVARs with external instruments).

- 1. This does not require a time-variant treatment (unlike proxy SVARs, aka SVARs with external instruments).
 - In lieu, this setup reverts back to a Cholesky identification (but this is not an issue, and in fact taken as given in the causal inference setting).

- 1. This does not require a time-variant treatment (unlike proxy SVARs, aka SVARs with external instruments).
 - In lieu, this setup reverts back to a Cholesky identification (but this is not an issue, and in fact taken as given in the causal inference setting).
- 2. The development economics literature has been misspecifying a lot of IV papers.

- 1. This does not require a time-variant treatment (unlike proxy SVARs, aka SVARs with external instruments).
 - In lieu, this setup reverts back to a Cholesky identification (but this is not an issue, and in fact taken as given in the causal inference setting).
- 2. The development economics literature has been misspecifying a lot of IV papers.
- A contribution to the causal revolution-revolution, e.g., issues with TWFE DID estimator (Callaway & Sant'Anna 2020), geographical IVs (Mellon 2022).