Architektury systemów komputerowych

Lista zadań nr 11

Na zajęcia 21 i 22 maja 2018

UWAGA! W trakcie prezentacji rozwiązań należy być przygotowanym do wyjaśnienia pojęć, które zostały oznaczone wytłuszczoną czcionką.

Zadanie 1. Wzorując się na slajdach do wykładu "Virtual Memory: Systems" (strony 10–21) powtórz proces translacji adresów i adresowania pamięci podręcznej dla adresów: 0x027c, 0x03a9 i 0x0040 zakładając poniższy stan TLB, pamięci podręcznej i tablicy stron.

Set	Tag	PPN	Valid									
0	03	_	0	09	0D	1	00	-	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	_	0	08	_	0	06	_	0	03	_	0
3	07	-	0	03	0D	1	0A	34	1	02	_	0

ldx	Tag	Valid	Blk 0	Blk 1	Blk 2	Blk 3	_					
0	19	1	99	11	23	11	1					
1	15	0	_	_	_	_						
2	1B	1	00	02	04	08						
3	36	0	-	-	-	-						
4	32	1	43	6D	8F	09						
5	0D	1	36	72	F0	1D	1					
6	31	0	_	-	-	_	VPN	PPN	Valid	VPN	PPN	Valid
7	16	1	11	C2	DF	03	00	28	1	08	13	1
8	24	1	3A	00	51	89	01		0	09	17	
9	2D	0	1	_	-	-		_				1
Α	2D	1	93	15	DA	3B	02	33	1	0A	09	1
В	0B	0	_	_	_	_	03	02	1	0B	-	0
С	12	0	_	-	_	_	04	_	0	0C	_	0
D	16	1	04	96	34	15	05	16	1	0D	2D	1
Ε	13	1	83	77	1B	D3	06	_	0	0E	11	1
F	14	0	_	_	_	_	07	_	0	0F	0D	1
							-					

Zadanie 2. W tym zadaniu będziemy analizowali w jaki sposób system operacyjny musi aktualizować tablicę stron wraz z kolejnym dostępami do pamięci głównej. Załóż, że strony są wielkości 4KiB, TLB jest w pełni asocjacyjne z zastępowaniem LRU. Jeśli potrzebujesz wtoczyć (ang. swap-in) strone z dysku użyj następnego numeru ramki (ang. page frame) większego od największego istniejącego w tablicy stron.

Dla poniższych danych podaj ostateczny stan TLB i tablicy stron po wykonaniu wszystkich dostępów do pamięci. Dla każdej operacji dostępu do pamięci wskaż czy było to trafienie w TLB, trafienie w tablicę stron, czy też błąd strony.

VPN	Valid?	PPN
0	1	5
1	0	dysk
2	0	dysk
3	1	6
4	1	9
5	1	11
6	0	dysk
7	1	4
8	0	dysk
9	0	dysk
10	1	3
11	1	12
12	0	brak

Początk	kowy	stan	TL	_B
---------	------	------	----	----

Tag

11

7

3

4

LRU

0

1

2

3

PPN

12

4

6

9

Valid?

1

1

1

0

l	Adres
ĺ	4669
	2227
	13916
	34587
İ	48870
İ	12608
	49225

Ciąg dostępów do pamięci

Początkowy stan tablicy stron

Zadanie 3. Niech system posługuje się 32-bitowymi adresami wirtualnymi, rozmiar strony ma 4KiB, a rozmiar wpisu tablicy stron zajmuje 4 bajty. Dla procesu, który łącznie używa 1GiB swojej przestrzeni adresowej podaj rozmiar tablicy stron: (a) jednopoziomowej, (b) dwupioziomowej, gdzie katalog tablicy stron ma 1024 wpisy. Dla drugiego przypadku – jaki jest maksymalny i minimalny rozmiar tablicy stron?

Zadanie 4. Wiemy, że pamięć podręczna TLB jest niezbędna do przeprowadzania szybkiej translacji adresów. Czemu, w najogólniejszym przypadku, należy wyczyścić zawartość TLB przy **przełączaniu przestrzeni adresowych**? Jak można uniknąć tej kosztownej operacji?

Wskazówka: Rozważ wprowadzenie identyfikatorów przestrzeni adresowych (ASID), tak jak w architekturze MIPS.

Zadanie 5. Jaka jest maksymalna wielkość **zbioru roboczego** procesu, dla którego nie będzie on generował nowych chybień w TLB? Rozważ wariant pesymistyczny i optymistyczny dla czterodrożnego TLB o 64 wpisach. Jak zmieni się oszacowanie, jeśli zezwolimy na używanie dużych stron (ang. *huge pages*) o wielkości 4MiB?

Zadanie 6. Opisz dokładnie pola **deskryptorów stron** (ang. *page table entry*) i **deskryptorów katalogów stron** (ang. *page directory entry*) dla architektury x86–64. Które z **bitów pomocniczych**:

- dotyczą sposobu używania pamięci podręcznej,
- wspomagają algorytmy zarządzania pamięcią wirtualną,
- określają uprawnienia dostępu (włączając w to tryb pracy procesora).

Wskazówka: Przeczytaj §7.9.1 z podręcznika. Szczegóły można znaleźć w §4.5 wolumenu 3 dokumentacji procesorów Intel.

Zadanie 7. Na wykładzie przyjęliśmy, że translacja adresów jest wykonywana przed dostępem do pamięci podręcznej. Taki schemat określa się mianem pamięci podręcznej **indeksowanej** i **znakowanej adresami fizycznymi** (ang. *physically-indexed, physically-tagged*). Wyjaśnij jak zrównoleglić dostęp do TLB i pamięci podręcznej, stosując schemat pamięci indeksowanej wirtualnie i znakowanej fizycznie.

Wskazówka: Posłuż się slajdem 34 do wykładu "Virtual Memory: Systems", ale wytłumacz to szczegółowo!

Zadanie 8. Celem zwiększenia wydajności dostępów do pamięci architekt procesora decyduje się na użycie schematu pamięci indeksowanej i znakowanej adresami wirtualnymi (ang. *virtually-indexed*, *virtually-tagged*). Wyjaśnij jak w takim przypadku może zamanifestować się problem homonimów i synonimów¹?

Wskazówka: Można posłużyć się rysunkiem 4.2 z książki "Memory Systems: Cache, DRAM, Disk".

Zadanie 9 (bonus). Na podstawie §31.1.4 książki "Memory Systems: Cache, DRAM, Disk" wyjaśnij jak przebiega mechanizm translacji adresów bazujący na odwróconej tablicy stron stosowany w architekturze PowerPC. Wymień wady i zalety tego rozwiązania w porównianiu do wielopoziomowej tablicy stron.

¹https://en.wikipedia.org/wiki/CPU_cache\#Homonym_and_synonym_problems