William Stallings Computer Organization and Architecture

Chapter 8 Computer Arithmetic

Arithmetic & Logic Unit

- Does the calculations
- Everything else in the computer is there to service this unit
- Handles integers
- May handle floating point (real) numbers
- May be separate FPU (maths co-processor)
- May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

- Only have 0 & 1 to represent everything
- Positive numbers stored in binary
 - □ e.g. 41=00101001
- No minus sign
- No period
- □ Sign-Magnitude
- Two's compliment

Sign-Magnitude

- Left most bit is sign bit
- 0 means positive
- □ 1 means negative
- \Box +18 = 00010010
- \Box -18 = 10010010
- Problems
 - Need to consider both sign and magnitude in arithmetic
 - □ Two representations of zero (+0 and -0)

Two's Compliment

```
\Box +3 = 00000011
```

$$\Box$$
 +2 = 00000010

$$\Box$$
 +1 = 0000001

$$\Box$$
 +0 = 00000000

$$\Box$$
 -1 = 111111111

$$\Box$$
 -2 = 111111110

$$\Box$$
 -3 = 11111101

Benefits

- One representation of zero
- Arithmetic works easily (see later)
- Negating is fairly easy
 - $\square 3 = 00000011$
 - ☐ Boolean complement gives 11111100
 - □ Add 1 to LSB 11111101

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

- \Box 0 = 00000000
- □ Bitwise not 11111111
- □ Add 1 to LSB +1
- ☐ Result 1 00000000
- Overflow is ignored, so:
- \Box 0 = 0 $\sqrt{}$

Negation Special Case 2

- \Box -128 = 10000000
- □ bitwise not 01111111
- □ Add 1 to LSB +1
- ☐ Result 10000000
- ☐ So:
- \Box -(-128) = -128 X
- Monitor MSB (sign bit)
- It should change during negation

Range of Numbers

□ 8 bit 2s compliment

$$\Box$$
 +127 = 01111111 = 2⁷ -1

- \Box -128 = 10000000 = -2⁷
- ☐ 16 bit 2s compliment

```
\Box +32767 = 0111111111 11111111 = 2<sup>15</sup> - 1
```

 \Box -32768 = 100000000 00000000 = -2¹⁵

Conversion Between Lengths

- Positive number pack with leading zeros
- \Box +18 = 00010010
- \square +18 = 00000000 00010010
- Negative numbers pack with leading ones
- \Box -18 = 10010010
- \square -18 = 11111111 10010010
- □ i.e. pack with MSB (sign bit)

Addition and Subtraction

- Normal binary addition
- Monitor sign bit for overflow
- Take twos compliment of substahend and add to minuend

$$\Box$$
 i.e. $a - b = a + (-b)$

So we only need addition and complement circuits

Hardware for Addition and Subtraction

OF = overflow bit

SW = Switch (select addition or subtraction)

Multiplication

- Complex
- Work out partial product for each digit
- □ Take care with place value (column)
- Add partial products

Multiplication Example

```
1011 Multiplicand (11 dec)
  x 1101
           Multiplier (13 dec)
     1011 Partial products
  0000
           Note: if multiplier bit is 1 copy
 1011
            multiplicand (place value)
1011
            otherwise zero
10001111 Product (143 dec)
Note: need double length result
```

Unsigned Binary Multiplication

Execution of Example

C 0	A 0000	Q 1101	M 1011	Initial Valu	es
0 0	1011 0101	1101 1110	1011 1011	Add } First Shift Cyc:	st le
0	0010	1111	1011	Shift } Seco	ond Le
0	1101 0110	1111 1111	1011 1011	Add } Thir Shift } Cyc:	rd le
1	0001 1000	1111 1111	1011 1011	Add } Four	rth le

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

- This does not work!
- □ Solution 1
 - Convert to positive if required
 - Multiply as above
 - ☐ If signs were different, negate answer
- □ Solution 2
 - Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q ₋₁	M	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M } First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	$ \begin{array}{ccc} A & A + M \\ Shift & Cycle \end{array} $
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Division

- More complex than multiplication
- Negative numbers are really bad!
- Based on long division

Division of Unsigned Binary Integers

Real Numbers

- Numbers with fractions
- Could be done in pure binary
 - \square 1001.1010 = 2⁴ + 2⁰ + 2⁻¹ + 2⁻³ = 9.625
- Where is the binary point?
- ☐ Fixed?
 - Very limited
- Moving?
 - ☐ How do you show where it is?

Floating Point

- \square +/- .significand x 2^{exponent}
- Misnomer
- □ Point is actually fixed between sign bit and body of mantissa
- Exponent indicates place value (point position)

Floating Point Examples

(b) Examples

Signs for Floating Point

- Mantissa is stored in 2s compliment
- Exponent is in excess or biased notation
 - ☐ e.g. Excess (bias) 128 means
 - □ 8 bit exponent field
 - ☐ Pure value range 0-255
 - ☐ Subtract 128 to get correct value
 - ☐ Range -128 to +127

Normalization

- FP numbers are usually normalized
- □ i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- ☐ Since it is always 1 there is no need to store it
- (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- \Box e.g. 3.123 x 10³)

FP Ranges

- ☐ For a 32 bit number
 - □ 8 bit exponent
 - \square +/- $2^{256} \approx 1.5 \times 10^{77}$
- Accuracy
 - □ The effect of changing lsb of mantissa
 - \square 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$
 - ☐ About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754

- Standard for floating point storage
- □ 32 and 64 bit standards
- 8 and 11 bit exponent respectively
- Extended formats (both mantissa and exponent) for intermediate results

FP Arithmetic +/-

- Check for zeros
- Align significands (adjusting exponents)
- Add or subtract significands
- Normalize result

FP Arithmetic x/÷

- Check for zero
- Add/subtract exponents
- Multiply/divide significands (watch sign)
- Normalize
- Round
- All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Required Reading

- Stallings Chapter 8
- ☐ IEEE 754 on IEEE Web site