Complete the chronogram corresponding to the following system and indicate the final content of the memory. The system inputs are start, clk and rst, the output is end. The rest of the signals are internal signals according to the attached table.

The memory is synchronous for reading/writing and is of type WRITE_FIRST.

SRAM Data

Dirección	Dato		
0x00	0x0004		
0x01	0x0005		
0x02	0x0006		
0x03	0xBEEF		
0x04	0x1010		
0x05	0x0202		
0x06	0x3131		

FSM Outputs

Estado	clear	cu	sel	ld_rdata	WE	end
S0	1	0	1	0	0	1
S1	0	0	1	0	0	0
S2	0	1	0	0	0	0
S3	0	0	1	1	0	0
S4	0	0	1	0	1	0

The counter module is ascending, 8b wide, has the signal cu as count enable and the clear signal loads a 0 synchronously.

