Geolocalización de rutas de transporte en tiempo real mediante MQTT: Diseño e implementación de UrbanTracker

Resumen

Objetivo: Optimizar la movilidad urbana mediante geolocalización en tiempo real de vehículos de transporte, aprovechando IoT con protocolo MQTT para la transmisión de datos. Métodos: Se diseñó UrbanTracker, compuesto por una app móvil para conductores (GPS), un Backend con bróker MQTT y clientes web para visualizar rutas y buses. Resultados: El sistema permite monitoreo en vivo con baja latencia, gestión de rutas, conductores y vehículos.

Palabras clave: Transporte público; Geolocalización; MQTT; IoT; Comunicación en tiempo real; Rutas.

Introducción

El transporte urbano Tiene una problemática sobre la desinformación sobre la llegada de autobuses y sus rutas. Las tecnologías IoT y protocolos ligeros como MQTT permiten construir soluciones de rastreo vehicular mediante un gps, con visualización en mapas para usuarios y administradores.

MARCO DE REFERENCIA — Geolocalización en transporte urbano: Según «Aplicación web para el control de desviaciones de rutas en el transporte público mediante IOT» (ESPOL, 2025), combinar GPS en buses y una plataforma web permite visualizar en tiempo real ubicación y trayectos de las unidades.

Marco referencial

Aportes clave seleccionados del thesaurus y su relación con UrbanTracker:

- DESARROLLO DE UN SISTEMA DE LOCALIZACIÓN BASADO EN GPS E IOT: UN ESTUDIO DE CASO EN QUITO (2025). Fuente: Google Sschoolar. https://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/165
- SISTEMA DE GEOLOCALIZACION DE VEHICULOS RECOLECTORES DE BASURA APLICANDO INTERNET DE LAS COSAS (2025). Fuente: Google Sschoolar. https://repositorio.upea.bo/jspui/handle/123456789/89
- Aplicación web para el control de desviaciones de rutas en el transporte público mediante IOT (2025). Fuente: Google Sschoolar. https://www.dspace.espol.edu.ec/handle/123456789/65811
- Aplicación del protocolo MQTT y recolección de datos para aplicaciones IoT (2025). Fuente: Google Sschoolar. https://repositorio.unitec.edu/items/2b823853-4bb8-4fd7-887a-d93f122933c5
- Arquitectura orientada a eventos sobre protocolo MQTT (2025). Fuente: Google Sschoolar. https://sedici.unlp.edu.ar/handle/10915/130301

En conjunto, estos trabajos recomiendan una arquitectura de tres capas con GPS en el vehículo, un pub/sub —preferentemente MQTT— y cliente web para visualización. UrbanTracker adopta este enfoque y lo aplica a un contexto local.

MARCO DE REFERENCIA — MQTT: Según «Arquitectura orientada a eventos sobre protocolo MQTT» (SEDICI-UNLP, 2025), el paradigma publicación/suscripción de MQTT reduce latencia y uso de ancho de banda en telemetría vehicular.

Métodos

Arquitectura: (1) Adquisición de datos: la app del conductor obtiene coordenadas con el GPS del dispositivo móvil y publica JSON al bróker; (2) Backend: bróker MQTT (Mosquitto), almacenamiento y API de apoyo; (3) Presentación: apps web con mapas interactivos.

Comunicación: tópicos del tipo /ruta/vehículo que permiten separar productores y consumidores. Para la web se habilita MOTT sobre WebSocket.

Seguridad: autenticación por roles, JWT.

MARCO DE REFERENCIA — Diseño IoT para rastreo vehicular: Según «DESARROLLO DE UN SISTEMA DE LOCALIZACIÓN BASADO EN GPS E IOT: UN ESTUDIO DE CASO EN QUITO» (ISTCT, 2025), un dispositivo con GPS y conectividad GSM/4G envía datos a la nube para visualización en tiempo real.

MARCO DE REFERENCIA — Uso de smartphone como nodo IoT: Según «SISTEMA DE GEOLOCALIZACION DE VEHICULOS RECOLECTORES DE BASURA APLICANDO INTERNET DE LAS COSAS» (UPEA, 2025), es viable sustituir hardware dedicado por dispositivos móviles con GPS para reducir costos de implementación.

Resultados

Se implementó:

- (a) consulta de rutas y trazado;
- (b) visualización en tiempo real de los vehículos activos;
- (c) inicio/fin de recorrido desde la app del conductor;
- (d) administración de rutas, conductores y vehículos desde panel del administrador web.

MARCO DE REFERENCIA — Gestión y monitoreo web/móvil: Según «Aplicación web para el control de desviaciones de rutas en el transporte mediante IOT» (ESPOL, 2025), la visualización cartográfica en tiempo real mejora la toma de decisiones operativas y la experiencia del usuario.

Discusión

MQTT habilitó flujos ligeros y de baja latencia. Frente a HTTP, el enfoque pub/sub reduce la sobrecarga y escala mejor con múltiples vehículos y usuarios.

MARCO DE REFERENCIA — MQTT vs alternativas: Según «Arquitectura orientada a eventos sobre protocolo MQTT» (SEDICI–UNLP, 2025), la arquitectura orientada a eventos con bróker ofrece ventajas de desempeño para actualización continua.

Usar dispositivos móviles como punto de conexión IoT disminuyendo el costo, pero se requiere políticas de uso y reconexión.

Conclusiones

UrbanTracker demuestra la viabilidad de geolocalizar rutas de transporte con MQTT, aportando información precisa al usuario y herramientas operativas al administrador.

Referencias

DESARROLLO DE UN SISTEMA DE LOCALIZACIÓN BASADO EN GPS E IOT: UN ESTUDIO DE CASO EN QUITO (2025). *Google Sschoolar*. Disponible en: https://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/165

SISTEMA DE GEOLOCALIZACION DE VEHICULOS RECOLECTORES DE BASURA APLICANDO INTERNET DE LAS COSAS (2025). *Google Sschoolar*. Disponible en: https://repositorio.upea.bo/jspui/handle/123456789/89

Aplicación web para el control de desviaciones de rutas en el transporte publico mediante IOT (2025). *Google Sschoolar*. Disponible en: https://www.dspace.espol.edu.ec/handle/123456789/65811

Aplicación del protocolo MQTT y recolección de datos para aplicaciones IoT (2025). Google Sschoolar. Disponible en: https://repositorio.unitec.edu/items/2b823853-4bb8-4fd7-887a-d93f122933c5

Arquitectura orientada a eventos sobre protocolo MQTT (2025). *Google Sschoolar*. Disponible en: https://sedici.unlp.edu.ar/handle/10915/130301

Especificación de Requisitos de Software (SRS) – UrbanTracker, versión 1.0 (2025).

Aplicación del protocolo mqtt y recolección de datos para aplicaciones iot. (2025). [Artículo]. Repositorio UNITEC. https://repositorio.unitec.edu/items/2b823853-4bb8-4fd7-887ad93f122933c5 Aplicación web para el control de desviaciones de rutas en el transporte publico mediante iot. (2025).[Tesis]. Repositorio Digital ESPOL. https://www.dspace.espol.edu.ec/handle/123456789/65811 Arquitectura orientada a eventos sobre protocolo mqtt. (2025). [Tesis]. SEDICI, Universidad Nacional de La Plata. https://sedici.unlp.edu.ar/handle/10915/130301 Desarrollo de un sistema de localización basado en gps e iot: un estudio de caso en quito. (2025). Investigación [Artículo]. Tecnológica (ISTCT). https://www.investigacionistct.ec/ojs/index.php/investigacion_tecnologica/article/view/1 65

https://repositorio.upea.bo/jspui/handle/123456789/89