Verificación de Programas (clases 10 y 11)

Ejercicio 1.

Se verificó el programa que calcula el factorial de x > 0, con la especificación (x > 0, y = x!).

- a. Justificar por qué esta especificación no es correcta.
- b. Proponer una que sí lo sea y que además establezca que el valor de x al final sea el mismo que al comienzo.
- c. ¿Podría agregarse a la especificación que el valor de x no se altere a lo largo de todo el programa? Justificar.

Ejercicio 2.

Asumiendo |= {p} S {q}, indicar en cada caso si vale lo afirmado. Justificar las respuestas:

- a. Si S termina en un estado que satisface q, entonces su estado inicial satisface p.
- b. Si S termina en un estado que no satisface q, entonces su estado inicial no satisface p.
- c. Si S no termina, entonces su estado inicial no satisface p.
- d. ¿Las respuestas en (a), (b) y (c) son las mismas considerando la fórmula $\models \langle p \rangle S \langle q \rangle$?

Ejercicio 3.

Indicar en cada caso si vale lo afirmado. Justificar las respuestas:

- a. Se cumple $= \{x = 0\}$ while z = 0 do z := 0 od $\{x = 0\}$.
- b. Se cumple $|=\langle x=0\rangle$ while z=0 do z:=0 od $\langle x=0\rangle$.
- c. Si se cumple $|= \{p_1 \land p_2\} \ S \{q_1 \land q_2\}$, entonces $|= \{p_1\} \ S \{q_1\}$ o bien $|= \{p_2\} \ S \{q_2\}$.

Ejercicio 4.

Sea el siguiente lenguaje de expresiones enteras: $e :: 0 | 1 | x | (e_1 + e_2) | (e_1 \cdot e_2)$.

Y sea var(e) el conjunto de las variables de e.

Se pide definir inductivamente var(e).

Por ejemplo: $var(0) = \emptyset$.

Ejercicio 5.

Probar que para todo estado σ y para todo par de aserciones p, q, se cumple:

```
val(\pi(S_1, \sigma)) = val(\pi(S_2, \sigma)) \text{ si y s\'olo si } |= \{p\} \ S_1 \ \{q\} \longleftrightarrow |= \{p\} \ S_2 \ \{q\}
```

Comentario: para facilitar la notación, se puede utilizar $M(S)(\sigma)$ en lugar de $val(\pi(S,\sigma))$.

Ejercicio 6.

Supóngase que se agrega al lenguaje PLW la instrucción repeat S until B, con la semántica habitual (se ejecuta S, se evalúa B, si se cumple B se termina la repetición, y si no se cumple B se vuelve al comienzo).

- a. Definir la semántica operacional de la instrucción.
- b. Proponer una regla de prueba para la misma.

Ejercicio 7.

Probar por medio del método H las fórmulas de correctitud parcial siguientes, relacionadas respectivamente a programas que calculan el valor absoluto de un número entero y el producto de dos números naturales:

- a. $\{x = X\}$ if x > 0 then y := x else y := -x $\{y = |X|\}$, siendo |X| el valor absoluto de X.
- b. $\{x \ge 0 \land y \ge 0\}$ prod := 0; k := y; while k > 0 do prod := prod + x; k := k - 1 od $\{prod = x.y\}$.