Chapter 11: Vector Spaces May 20, 2023

				1 -
\mathbf{C}	or	$1 \mathrm{L} \epsilon$	'n	$\mathbf{L}\mathbf{S}$

_			
1	Introduction 1.1 Notation	1 1	
2	Euclidean division and gcd	1	
3	Congruences	1	
4	Bezout's theorems 4.1 Bezout Theorem	1	
5	Little Fermat's theorem	2	
6	RSA encryption		
7	El Gamal encryption	2	

Mathematics 4 Bezout's theorems

1 Introduction

1.1 Notation

a|b means a divides b $b \in a\mathbb{Z}$ means b is a multiple of a

2 Euclidean division and gcd

Euclidean division: a = b * q + rEuclidean Lemma: pgcd(a, b) = pgcd(b, r)

$$pgcd(a, b) = pgcd(b, a - qb)$$

3 Congruences

$$a \equiv b \pmod{n} \implies \exists k \in \mathbb{N}, a = b + kn$$
 also $a \equiv b[n]$

$$\begin{array}{l} a \equiv b[n] \text{ and } c \equiv d[n] \implies a+c \equiv b+d[n] \\ a \equiv b[n] \text{ and } c \equiv d[n] \implies ac \equiv bd[n] \\ a \equiv b[n], \forall m \in \mathbb{N}, a^m \equiv b^m[n] \end{array}$$

We denote D(a) the set of divisors of a and $a\mathbb{Z}$ the set of multiples of a

4 Bezout's theorems

4.1 Bezout Theorem

let (a,b) be two integers, then $\exists (u_1, u_2) \in \mathbb{Z}^2$ so that $au_1 + bu_2 = \gcd(a, b)$

4.2 Bezout Corollary

if d|a and d|b then d|gcd(a,b)

4.3 Gauss Lemma

if a|bc and $gcd(a,b) = 1 \implies a|c$ to solve ax + by = d equations you need to do the Euclid algorithm and "go back up"

5 Little Fermat's theorem

Let p be a prime number,

$$p | \binom{p}{k}$$
 and $\binom{p}{k} \equiv 0[n]$
$$n^p \equiv n[p]$$

if $p \nmid n$ then

$$n^{p-1} \equiv 1[p]$$

- 6 RSA encryption
- 7 El Gamal encryption