Network: Cellular

Reference

William Stalling, Data and Computer Communications 10/E, Prentice Hall

Cellular Wireless Networks

- Developed to increase the capacity available for mobile radio telephone service
- Key technology for mobiles, wireless networks etc.
 - Based on the use of multiple low power transmitters
- Area divided into cells
 - In a tiling pattern to provide full coverage
 - Each with own antenna, along with own range of frequencies
 - Served by base station: consisting of transmitter, receiver, and control unit
 - Adjacent cells re assigned different frequencies to avoid crosstalk: cells sufficiently distant can use same frequency band

Cellular Geometries

(a) Square pattern

(b) Hexagonal pattern

Frequency Reuse (1)

- Object is to share nearby (but not adjacent) cell frequencies without interfering with each other
 - Allows multiple simultaneous conversations with the same frequency, at the different areas
 - 10 to 50 channels per cell
- Power of base transceiver controlled
 - Allow communications within cell using a given frequency
 - Limit escaping power to adjacent cells

Frequency Reuse (2)

(c) Black cells indicate a frequency reuse for N = 19

Increasing Capacity (1)

- Add new channels
 - Not all channels used to start with
- Frequency borrowing
 - Taken from adjacent cells by congested cells
- Cell splitting
 - Use smaller cells in high use areas

Increasing Capacity (2)

- Cell sectoring with directional antennas
 - Cell divided into wedge shaped sectors (3-6 per cell)
 - Each sector is assigned a separate subset of the cell's channels
 - Directional antennas are used to focus on each sector

Microcells

- As cells become smaller, antennas move from tops of hills and large buildings to tops of small buildings and sides of large buildings
- Use reduced power to cover a much smaller area
- Good for city streets in congested areas, along highways, inside large public buildings

Cellular System

- Cellular system channels between mobile and base station
 - Control channels : set up and maintain calls
 - Traffic channels : carry voice and data

Example of Cellular Call

Cellular Network Generations

Technology	1G.	2 G₀	2.5G ₀	3G.	4 G∂
Design began-	1970-	1980-	1985₽	1990-	2000₽
Implementation.	1984.	1991	1999.	20020	2012
Services.	Analog voice	Digital voice	Higher capacity packetized data	Higher capacity, broadband	Completely IP based
Data rate.	1.9. kbps.	14.4 kbps.	384 kbps-	2 Mbps	200 Mbps₽
Multiplexing	FDMA.	TDMA, CDMA	TDMA, CDMA	CDMA.	OFDMA, SC- FDMA
Core network	PSTN.	PSTN.	PSTN, packet network	Packet network	IP backbone.

System Pe	rformance.	LTE.	LTE-Advanced
Peak rate	Downlink.	100 Mbps @20 MHz	1 Gbps @100 MHz
r eak rates	Uplink∘	50 Mbps @20 MHz	500 Mbps @100 MHz
Control plane delay.	Idle to connected	<100 <u>ms</u> .	< 50 <u>ms</u> .
Control plane delays	Dormant to active	<50 <u>ms</u> .	< 10 <u>ms</u> .
User plane delay.		< 5ms.	Lower than LTE
Spectral efficiency	Downlink.	5 bps/Hz @2×2.	30 bps/Hz @8×8.
(peak)	Uplink.	2.5 bps/Hz @1×2	15 bps/Hz @4×4-
Mobility.		Up to 350 km/h	Up to 350—500 km/h