7D.2 聚合反应动力学

聚合反应是把低分子量的单体转化成高分子量的聚合物的过程,聚合物具有低分子量单体所不具备的可塑性等重要性能,可广泛地用作塑料,纤维,橡胶,涂料,黏合剂等用途.聚合物是由一种以上的结构单元(单体)构成的,由单体经重复反应合成的高分子化合物.

聚合反应最特殊的一点在于,我们一般不以产物浓度衡量反应进行的状况,转而用聚合度这一概念.

Definition 7D.2.1 聚合度

聚合度即每个聚合物分子中留存的单体的平均数目,记作DP.

根据机理的不同,我们可以将聚合反应分为如下两类.

Definition 7D.2.2 逐步聚合与链聚合

逐步聚合是指带有两个或多个官能团的单体相互反应,逐步生成二聚体,三聚体,寡聚物以最终形成高分子聚合物的聚合反应.缩聚反应一般通过逐步聚合进行.

链聚合是指中间体与单体反应,每次增长一个长度的聚合反应.加聚反应一般通过链聚合进行,这其中最典型的是自由基链聚合.

我们先来考虑逐步聚合的速率方程.为了简便考虑,假定只有一种单体参与逐步聚合.不妨假定是羟基羧酸HO-R-COOH发生缩聚反应.我们现在来推导这一聚合反应的速率方程.

Derivation.

直接考虑聚合过程显然有些麻烦,因为任意长度的两条链都有可能发生反应形成一条新的链.但有一点是可以确定的,即每一次反应都会使得-OH和COOH减少一个.因此,我们可以考虑用-COOH官能团(记作A)的浓度衡量反应的进度.

一般的酯化反应对于醇和羧酸均为一级,即

$$v = k[R_1OH][R_2COOH]$$

对于HO-R-COOH而言,每个分子(以及聚合形成的链)都有一个-COOH和-OH,因此有

$$v = -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = k[\mathbf{A}]^2$$

这是一个典型的二级反应,由7B.1.5可知它的积分速率方程

[A] =
$$\frac{[A]_0}{1 + k[A]_0 t}$$

由于每个聚合物分子都仅在端基含有一个-COOH,因此聚合物的平均链长与-COOH的数目的乘积应当是定值.反应开始时体系中均为单体,聚合度为1.于是就有

$$DP \cdot [A] = [A]_0$$

于是

$$DP = \frac{[A]_0}{[A]} = 1 + k[A]_0 t$$

可见聚合度随着时间线性增长.

我们也可以使用尚未参与反应的A的比例p衡量聚合反应进行的程度.这样就有

$$p = \frac{[A]_0 - [A]}{[A]_0} = \frac{k[A]_0 t}{1 + k[A]_0 t}$$

以及

$$DP = \frac{1}{1 - p}$$

这样,我们就知道在这样的简单逐步聚合中,聚合度随时间线性增长这一事实.如果你对更加复杂的体系(例如有多种反应物)感兴趣,也可以用相似的步骤推导它们的速率方程.

我们在前面还给出了聚合度DP与反应程度p的关系,即 $D = \frac{1}{1-p}$.Carothers于1935年提出了在各种体系中DP与p的关系.

Theorem 7D.2.3 Carothers方程

逐步聚合中,两种等物质的量的单体形成完全线性的聚合物(或者一种单体自身聚合)时,聚合度DP与反应程度p满足

$$DP = \frac{1}{1 - p}$$

如果一种单体相对过量,则有

$$DP = \frac{1+r}{1+r-2rp}$$

其中r是较少量单体和较多单体的基团比或物质的量之比.

你可以自行推导上述结论.

现在,我们来考虑另一种聚合机理——链聚合.它的过程与我们在**7D.1**中提到的直链反应十分相似,我们假定引发剂为In,聚合单体为M,则反应机理可以表述如下.

$$\begin{split} & \text{In} \xrightarrow{k_i} 2 \, \mathbf{R} \, \cdot \\ & \mathbf{M} + \mathbf{R} \cdot \xrightarrow{\text{fast}} \mathbf{M}_1 \, \cdot \\ & \mathbf{M}_n \cdot + \mathbf{M} \xrightarrow{k_p} \mathbf{M}_{n+1} \, \cdot \\ & \mathbf{M}_n \cdot + \mathbf{M}_m \cdot \xrightarrow{k_t} \mathbf{M}_{n+m} \end{split}$$

引发剂形成的自由基R·由于其高活泼性,容易在与M反应之前就发生分解.因此,我们设参与第二个反应的R·的比例为f.同时,为了简化体系,我们在链终止中只考虑偶联终止.现在我们来推导体系的速率方程.

Derivation.

我们记M·为体系中任意长度的聚合物中间体(这是推导过程中最重要的一步,由于不同长度的中间体在动力学上并无显著不同,因此我们可以将它们视同一种物质).

引发过程的决速步为引发剂In的裂解;链增长步骤不改变M·的总浓度.因此,对M·稳态近似可得

$$\frac{\mathrm{d}[\mathrm{M}\,\cdot\,]}{\mathrm{d}t} = 2fk_i[\mathrm{In}] - 2k_t[\mathrm{M}\,\cdot\,]^2$$

从而

$$[\mathbf{M} \cdot] = \sqrt{\frac{fk_i[\mathbf{In}]}{k_t}}$$

M主要在链增长过程中被消耗,于是其消耗速率

$$-\frac{\mathrm{d}[\mathbf{M}]}{\mathrm{d}t} = k_p[\mathbf{M} \cdot][\mathbf{M}] = k_p \sqrt{\frac{fk_i}{k_t}}[\mathbf{M}][\mathbf{In}]^{\frac{1}{2}}$$

现在考虑聚合物的链长.我们先不考虑终止方式,仅考虑引发与增长过程.显然,在链增长时被消耗的M的数目与用于引发的R·的数目之比就是每个链在终止之前的平均长度.我们把它记为动力学链长 λ .即有

$$\lambda = \frac{n \, (消耗的M)}{n \, (用于引发的R \cdot)} = \frac{v \, (链增长)}{v \, (链引发)} = \frac{v \, (链增长)}{v \, (链终止)} = \frac{k_p[M \cdot][M]}{2k_t[M \cdot]^2} = \frac{k_p[M]}{2k_t[M \cdot]}$$

代入[M·]的表达式即有

$$\lambda = \frac{k_p}{2\sqrt{fk_ik_t}}[M][In]^{-\frac{1}{2}}$$

由于这里的终止方式是偶联终止,因此产物事实上由两条链构成.于是聚合度

$$DP = 2\lambda = \frac{k_p}{\sqrt{fk_ik_t}}[M][In]^{-\frac{1}{2}}$$

这就是链聚合的聚合度的表达式.对于不同的引发剂和终止方式,上式略有不同,但整体上的推导方式是相似的.

从上式也可以看出,单体M的浓度越高,引发剂In的浓度越低,聚合度越大.