EXAM BELT 3 SCADA NAJD FARIS ALEID

Question 1

Consider the topology below. You have been tasked to secure the communication between site 1 and site 2 using IPsec.

Initial Setup

1/ Use a crossover cable to connect the routers together.

ANSWERS

We are using the 1941 Routers for this topology.

2/ Connect the other devices together using a straight through cable connection.

3/ Perform initial router configuration.

Configure the interface IP addresses on the routers and a default route on R_01 and R_03 pointing to the R_02 router. The R_02 router acts as an internet provider and has no knowledge of other networks except its directly connected network.

Configure the interface IP addresses on the routers and a default route on R_01

R_01(config)#hostname R_01

R_01(config)#interface g0/1

R_01(config-if)#ip address 172.16.1.1 255.255.255.0

R 01(config-if)#no shut

R_01(config-if)#interface g0/0

R_01(config-if)#ip address 100.100.100.1 255.255.255.0

R_01(config-if)#no shut

R_01(config-if)#exit

R_01(config)#ip route 0.0.0.0 0.0.0.0 100.100.100.2

Configure the interface IP addresses on the routers and a default route on R_02

R 02>en

R_02#

R_02#conf t

Enter configuration commands, one per line. End with CNTL/Z.

R_02(config)#hostname R_02

R 02(config)#interface g0/1

R_02(config-if)#ip address 100.100.200.2 255.255.255.0

R_02(config-if)#no shut

R_02(config-if)#interface g0/0

R 02(config-if)#

R 02(config-if)#ip address 100.100.100.2 255.255.255.0

R 02(config-if)#no shut

R 02(config-if)#exit

Configure the interface IP addresses on the routers and a default route on R_03

R_03>

R 03>en

R_03#conf t

Enter configuration commands, one per line. End with CNTL/Z.

R_03(config)#hostname R_03

R_03(config)#interface g0/1

R_03(config-if)#ip address 172.16.3.1 255.255.255.0

R_03(config-if)#no shut

R_03(config-if)#interface g0/0

R_03(config-if)#ip address 100.100.200.1 255.255.255.0

R_03(config-if)#no shut

R_03(config-if)#exit

R_03(config)#ip route 0.0.0.0 0.0.0.0 100.100.200.2

4/ Ensure that the laptops have static IP addresses configured. Laptop0 should have IP 172.16.1.100/24. Laptop1 should have 172.16.3.100/24. Attempt pinging across from Laptop0 to Laptop1. This should fail as R_02 does not know how to route this traffic.

Laptop0

Laptop1

!Laptop0 Ping 172.16.3.100

!Laptop1 ping 172.16.1.100

Question 2

Answers

Configure ASA basic security and firewall settings.

Configure vlans:

```
Type help or '?' for a list of available commands.
ciscoasa>en
Password:
ciscoasa#conf t
ciscoasa(config)#hostname ASA
ASA(config)#interface Vlan 1
ASA(config-if) #nameif inside
ASA(config-if) #security-level 100
ASA(config-if) #ip address 192.168.1.1 255.255.255.0
ASA(config-if) #no shutdown
ASA(config-if)#exit
ASA(config)#interface Vlan 2
ASA(config-if) #nameif outside
ASA(config-if) #security-level 0
ASA(config-if) #ip address 209.165.200.226 255.255.255.248
ASA(config-if) #no shutdown
ASA(config-if)#
```

Assign and enable:

```
ASA(config-if)#exit
ASA(config) #interface Ethernet0/0
ASA(config-if) #switchport access vlan 2
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/1
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/2
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/3
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/4
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/5
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/6
ASA(config-if) #no shutdown
ASA(config-if)#interface Ethernet0/7
ASA(config-if) #no shutdown
ASA(config-if)#
```

Configure PAT:

```
ASA(config-if) #exit

ASA(config) #object network inside-net

ASA(config-network-object) #subnet 192.168.1.0 255.255.255.0

ASA(config-network-object) #nat (inside,outside) dynamic interface

ASA(config-network-object) #exit

ASA#conf t

ASA(config) #route outside 0.0.0.0 0.0.0 209.165.200.225 1

ASA(config) #
```

Modify the default MPF application inspection global service policy:

```
ASA(config) #class-map inspection_default
ASA(config-cmap) #match default-inspection-traffic
ASA(config-cmap) #exit
ASA(config) #policy-map global_policy
ASA(config-pmap) #class inspection_default
ASA(config-pmap-c) #inspect icmp
ASA(config-pmap-c) #exit
ASA(config) #service-policy global_policy global
ASA(config) #
```

Configure dhcp:

```
ASA(config) #telnet timeout 5
ASA(config) #ssh timeout 5
ASA(config) #dhcpd auto_config outside
ASA(config) #dhcpd address 192.168.1.5-192.168.1.36 inside
ASA(config) #dhcpd dns 209.165.201.2 interface inside
ASA(config) #dhcpd enable inside
ASA(config) #
```

Check successful connectivity from laptop to server:

Question 3

You been tasked to come up with information security controls which can satisfy the following requirement

- End user accounts create in devices or centralized authentication server
 Software and devices authenticate using certificates.
- 2. Mobile devices and network infrastructure authenticates users.
 - 3. Firewalls monitor traffic from untrusted networks.
 - 4. EPO server can restrict interactions with mobile devices.
 - 5. Audit records/logs generated by equipment.
- 6. Equipment supports encrypted protocols, robust check sums/hashing.
 - 7. Application whitelisting enabled on end devices.
 - 8. Equipment supports user names and passwords for authorization
 - 9. Firewalls segment networks and protect boundaries.
 - 10. Firewall can filter messages from external networks.