# Khôlles de Mathématiques - Semaine 24

### Hugo Vangilluwen, George Ober

### 22 Avril 2024

Pour cette semaine,  $\mathbb{K}$  désigne un corps commutatif, E et F des  $\mathbb{K}$ -espaces vectoriels, E' et F' des sous-espaces vectoriels respectivement de E et de F.

Nous rappelons que  $\dim\{0_E\} = 0$  et que  $\{0_E\} = \text{Vect }\emptyset$ .

## 1 Existence d'un supplémentaire en dimension finie

Pour tout sous-espace vectoriel de E, il existe un sous-espace vectoriel complémentaire.

Démonstration.

Théorème de la base incomplète (admis ici mais démontré dans le cours) : pour toute famille libre de E, nous pouvons y adjoindre une partie d'une famille quelconque génératrice de E (généralement une base, la base canonique si elle a un sens) pour en faire une base de E.

Posons  $n = \dim E$  et  $p = \dim E'$ . Ainsi, il existe  $(e_1, \ldots, e_p)$  base de E'. Appliquons le théorème de la base incomplète pour cette famille. Il existe  $(e_{p+1}, \ldots, e_n)$  n-p vecteurs de E tel que  $(e_1, \ldots, e_n)$  est un base de E. Posons  $E'' = \text{Vect } \{e_{p+1}, \ldots, e_n\}$  et vérifions qu'il est complémentaire à E'.

- $\ast$  Par définition de Vect,  $E^{\prime\prime}$  est un sous-espace vectoriel .
- \* Trivialement, E' + E'' = E.
- \*  $\{0_E\} \subset E' \cap E''$  car E' et E'' sont deux sous-espaces vectoriels .
- \* Soit  $x \in E' \cap E''$ .

Solt 
$$x \in E \cap E$$
.  
 $X \in E' \implies \exists (\lambda_1, \dots, \lambda_p) \in \mathbb{K}^p : x = \sum_{i=1}^p \lambda_i e_i$   
 $X \in E'' \implies \exists (\lambda_{p+1}, \dots, \lambda_n) \in \mathbb{K}^{n-p} : x = \sum_{i=p+1}^n \lambda_i e_i$   
Par différence,  $\sum_{i=1}^p \lambda_i e_i + \sum_{i=p+1}^n (-\lambda_i) e_i = 0_E$ .  
Or  $(e_i)_{i \in [\![1;n]\!]}$  est une base de  $E$  donc  $\forall i \in [\![1;p]\!], \lambda_i = 0_K$ .  
donc  $x = 0_E$ . Ainsi,  $E' \cap E'' \subset \{0_E\}$ .

# 2 Dimension de $\mathcal{L}_{\mathbb{K}}(E,F)$

 $\mathcal{L}_{\mathbb{K}}(E,F)$  est dimension finie et

$$\dim \mathcal{L}_{\mathbb{K}}(E, F) = \dim E \times \dim F \tag{1}$$

Démonstration. Notons  $n = \dim E$  et  $(e_i)_{i \in [1:n]}$  une base de E. Considérons

$$\varphi \begin{vmatrix} \mathcal{L}_{\mathbb{K}}(E,F) & \to & F^n \\ f & \mapsto & (f(e_i)))_{1 \leq i \leq n} \end{vmatrix}$$

 $\varphi$  est linéaire et, d'après le théorème de création des applications linéaires, bijective. Ainsi,  $\mathcal{L}_{\mathbb{K}}(E,F)$  et  $F^n$  sont isomorphes.  $F^n$  est de dimension finie, ce qui conclut.

#### 3 Formule de Grassman

Supposons E de dimension finie.

Soient  $E_1$  et  $E_2$  deux sous-espaces vectoriels. Alors  $E_1 + E_2$  est de dimension finie et

$$\dim E_1 + E_2 = \dim E_1 + \dim E_2 - \dim E_1 \cap E_2 \tag{2}$$

Démonstration. Commençons par prouver une version simplifier de la somme directe. Supposons que  $E_1$  et  $E_2$  sont en somme directe.

Fixons  $\mathcal{B}_1$  et  $\mathcal{B}_2$  deux bases de  $E_1$  et  $E_2$ . Alors  $(\mathcal{B}_1, \mathcal{B}_2)$  engendre  $E_1 + E_2$ . Or  $(\mathcal{B}_1, \mathcal{B}_2)$  est finie donc  $E_1 + E_2$  est de dimension finie.

Posons  $n = \dim E_1$  et  $p = \dim E_2$ . Notons  $(e_i)_{i \in [\![1:n]\!]}$  la base  $\mathcal{B}_1$  et  $(f_i)_{i \in [\![1:n]\!]}$  la base  $\mathcal{B}_2$ .

Soient 
$$\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_p$$
  $\in \mathbb{K}^{n+p}$  fixés quelconques tels que  $\sum_{i=1}^n \lambda_i e_i + \sum_{i=1}^p \mu_i f_i = 0_E$ . Alors  $\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^p (-\mu_i) f_i$ . Or  $\sum_{i=1}^n \lambda_i e_i \in E_1$  et  $\sum_{i=1}^n (-\mu_i) e_i \in E_2$  donc  $\sum_{i=1}^n \lambda_i e_i \in E_1 \cap E_2 = \sum_{i=1}^n (-\mu_i) e_i$ 

 $\{0_E\}$ . Donc  $\lambda = \widetilde{0}$ . De même,  $\mu = \widetilde{0}$ . Donc  $(\mathcal{B}_1, \mathcal{B}_2)$  est libre.

Ainsi,  $(\mathcal{B}_1, \mathcal{B}_2)$  est une base de  $E_1 \oplus E_2$ . Donc dim  $E_1 \oplus E_2 = |(\mathcal{B}_1, \mathcal{B}_2)| = |\mathcal{B}_1| + |\mathcal{B}_2| =$  $\dim E_1 + \dim E_2$ .

Enlevons l'hypothèse que  $E_1$  et  $E_2$  sont en somme directe.  $E_1 \cap E_2$  est un sous-espace vectoriel de  $E_2$ . Comme  $E_2$  et un  $\mathbb{K}$ -espace vectoriel de dimension finie, il existe  $E_2'$  sous-espace vectoriel de  $E_2$  tel que  $E_2 = (E1 \cap E_2) \oplus E'_2$ .

Montrons que  $E_1 + E_2 = E_1 \oplus E_2'$ 

$$E_1 \cap E_2' = E_1 \cap (E_2' \cap E_2)$$
 car  $E_2' \subset E_2$   
=  $(E_1 \cap E_2) \cap E_2'$  car  $\cap$  est associative et commutative  
=  $0_E$  car  $E_1$  et  $E_2$  sont en somme directe et  $E_2'$  sev

Donc  $E_1$  et  $E'_2$  sont en somme directe.

 $E_2' \subset E_2$  donc  $E_1 + E_2' \subset E_1 + E_2$ . Soit  $x \in E_1 + E_2$ . Alors  $\exists (x_1, x_2) \in E_1 \times E_2 : x = x_1 + x_2$ . Or  $E_2 = (E_1 \cap E_2) \oplus E_2'$  donc  $\exists (x_{21}, x_2') \times E_2' : x_2 = x_{21} + x_2'$ . D'où  $x = x_1 + x_{21} + x_2'$ . Or  $x_1 + x_{21} \in E_1$  et  $x'_2 \in E_2$  donc  $x \in E_1 + E_2$ .

Ainsi,  $E_1$  et  $E_2'$  étant des sous-espace vectoriel de dimension finie, dim  $E_1 \oplus E_2' = \dim E_1 + \dim E_2$  $\dim E_2'$ . De plus,  $\dim E_2 = \dim(E_1 \cap E_2) \oplus E_2' = \dim E_1 \cap E_2 + \dim E_2'$ . Donc  $\dim E_1 + E_2 = \dim E_2'$  $\dim E_1 + \dim E_2 - \dim E_1 \cap E_2.$ 

### Caractérisation injectivité/bijectivité/surjectivité par le 4 rang

Soit  $f \in \mathcal{L}_{\mathbb{K}}(E, F)$ .

 $(i)\,$  Si E est de dimension finie

$$f \text{ injective } \iff \operatorname{rg} f = \dim E$$
 (3)

(ii) Si F est de dimension finie

$$f \text{ surjective } \iff \operatorname{rg} f = \dim F$$
 (4)

(iii) Si E et F sont de même dimension finie

$$f$$
 bijective  $\iff f$  injective  $\iff f$  sujective

C'est l'accident de la dimension finie!

Démonstration.

(i) Supposons E de dimension finie, fixons  $(e_1, \ldots, e_n)$  une base de E (avec  $n = \dim E$ ) Supposons f injective :

$$\operatorname{rg} f = \dim \operatorname{Im} f = \dim \operatorname{Vect} \{ f(e_1) \dots f(e_n) \}$$

Donc  $(f(e_1), \dots f(e_n))$  est génératrice.  $(f(e_1), \dots f(e_n))$  est de plus libre car f est injective. Donc c'est une base, donc

$$\dim \operatorname{Vect} \{f(e_1) \dots f(e_n)\} = n = \dim E$$

donc  $\operatorname{rg} f = \dim E.$  Réciproquement, supposons que  $\operatorname{rg} f = \dim E = n.$  Alors

$$n = \operatorname{rg} f = \dim \operatorname{Vect} \{ f(e_1), \dots, f(e_n) \}$$

Donc  $(f(e_1), \dots f(e_n))$  est génératrice de cardinal n, égal à la dimension du sous-espace vectoriel engendré. C'est donc une base du sous-espace vectoriel engendré. Donc  $(f(e_1), \dots, f(e_n))$  est libre, donc f est injective.

(ii) Supposons F de dimension finie

$$f$$
 surjective  $\iff$  Im  $f = F \iff$  dim Im  $f = \dim F$ 

(iii) Supposons E et F de même dimension finie

$$f$$
 injective  $\iff$  rg $f = \dim E \iff$  rg $f = \dim F \iff$   $f$  surjective

D'où la bijectivité.

## 5 Théorème du rang

Si E est de dimension finie alors pour toute  $f \in \mathcal{L}_{\mathbb{K}}(E, F)$  application linéaire,

$$\dim E = \operatorname{rg} f + \dim \ker f \tag{5}$$

 $D\acute{e}monstration$ . Démontrons d'abord le lemme suivant. Soient  $f \in \mathcal{L}_{\mathbb{K}}(E,F)$  et H un supplémentaire de  $\ker f$  dans E. Alors  $f_{|H}^{|\mathrm{Im}f}$  est un isomorphisme de H sur  $\mathrm{Im}f$ .

Notons  $\hat{f}$  un telle restriction et corestriction. Cette application est bien définie (car  $f(H) \subset \text{Im} f$ ) et  $\hat{f} \in \mathcal{L}_{\mathbb{K}}(H, \text{Im} f)$ .

Calculons son noyau.  $\ker \hat{f} = \{x \in H \mid \hat{f}(x) = 0_E\} = \{x \in H \mid x \in \ker f\} = H \cap \ker f = \{0_E\}$  car H et  $\ker f$  sont complémentaire. Donc  $\hat{f}$  est injective.

Soit  $y \in \text{Im} f$ . D'où  $\exists x \in E : y = f(x)$ . Décomposons x dans  $E = H \oplus \ker f$ ,  $\exists (x_H, x_k) \in H \times \ker f : x = x_H + x_k$ . Ainsi,  $y = f(x) = f(x_H) + f(x_k) = f(x_H)$  car  $x_k \in \ker f$ . Donc y admet un antécédent par  $\hat{f}$  (qui est  $x_H$ ). Donc  $\hat{f}$  est surjective.

Donc  $f_{|H}^{|\text{Im}f}$  est un isomorphisme de H sur Imf.

Supposons maintenant que E est de dimension finie. Soit  $f \in \mathcal{L}_{\mathbb{K}}(E,F)$ . D'après le théorème d'existence d'un supplémentaire en dimension finie,  $\ker f$ , étant un sous-espace vectoriel de E, admet un supplémentaire H c'est-à-dire  $E = H \oplus \ker f$ . En prenant la dimension sur cette égalité,  $\dim E = \dim \ker f + \dim H$ . D'après le lemme précédent,  $\dim H = \dim \operatorname{Im} f = \operatorname{rg} f$ . D'où  $\dim E = \operatorname{rg} f + \dim \ker f$ .

# 6 Rang d'une composition d'applications linéaires

Soit G un  $\mathbb{K}$  -espace vectoriel et  $(u,v) \in \mathcal{L}_{\mathbb{K}}(E,F) \times \mathcal{L}_{\mathbb{K}}(F,G)$ . Si E et F sont de dimension finie alors

$$\operatorname{rg} u = \operatorname{rg} v \circ u + \dim \ker v \cap \operatorname{Im} u \tag{6}$$

Démonstration. Considérons que E et F sont de dimension finie. Soient de tels objets. Appliquons le théorème du rang à  $v_{|\text{Im}u}$  ce qui est autorisé puisque  $v_{|\text{Im}u}$  est une application linéaire et Imu est un  $\mathbb{K}$ -espace vectoriel de dimension finie (car sev de F).

$$\dim \operatorname{Im} u = \operatorname{rg} v_{|\operatorname{Im} u} + \dim \ker v_{|\operatorname{Im} u}$$

Ainsi,  $\ker v_{|\operatorname{Im} u} = \{y \in \operatorname{Im} u \mid v(y) = 0_G\} = \{y \in \operatorname{Im} u \mid y \in \ker v\} = \operatorname{Im} u \cap \ker v \text{ et } \operatorname{Im} v_{|\operatorname{Im} u} = v(\operatorname{Im} u) = \operatorname{Im} v \circ u \text{ (cette égalité est vraie pour deux fonctions de } E \text{ dans } F \text{ et de } F \text{ dans } G \text{ quelconques, pas forcément linéaires)}. Ce qui conclut. <math>\square$ 

## 7 Caractérisation des hyperplans

Soit H un sous-espace vectoriel de E. Les conditions suivantes sont équivalentes :

- (i) H est un hyperplan de  $E: \exists \varphi \in E^*: H = \ker \varphi$
- (ii) H admet une droite vectorielle comme supplémentaire :  $\exists a \in E \setminus \{0_E\} : H \oplus \text{Vect } \{a\} = E$

Démonstration. (i)  $\Longrightarrow$  (ii) Supposons que H est un hyperplan de E. Appliquons la définition de l'hyperplan,  $\exists \varphi \in E^* : H = \ker \varphi$ . Par l'absurde, supposons que  $E \setminus H = \emptyset$ . Or  $H \subset E$  donc E = H. Donc  $\varphi = 0_{E^*}$  ce qui est une contradiction.

Ainsi fixons  $a \in E \setminus H$  quelconque. Montrons que  $E = H \oplus \text{Vect } \{a\}$ . Trivialement,  $\{0_E\} \subset H \cap \text{Vect } \{a\}$ . Soit  $x \in H \cap \text{Vect } \{a\}$ .  $x \in \text{Vect } \{a\}$  donc  $\exists \lambda \in \mathbb{K} : x = \lambda$ . De plus,  $x \in H = \ker \varphi$  donc  $0_{\mathbb{K}} = \varphi(x) = \lambda \varphi(a)$ . Si  $\lambda \neq 0_{\mathbb{K}}$ , alors  $a \in \ker \varphi$  ce qui est impossible car  $a \notin H$ . Donc  $\lambda = 0_{\mathbb{K}}$ , d'où  $x = 0_E$ . Ainsi,  $H \cap \text{Vect } \{a\} = \{0_E\}$ . H et  $\text{Vect } \{a\}$  sont en somme directe.

Trivialement,  $H + \text{Vect } \{a\} \subset E$ . Soit  $x \in E$  fixé quelconque.  $a \notin H$  donc  $\varphi(a) \neq 0_{\mathbb{K}}$ .  $\varphi(a)$  est inversible dans  $\mathbb{K}$  d'où :

$$\varphi(x) = \frac{\varphi(x)}{\varphi(a)} \cdot \varphi(a) = \varphi\left(\frac{\varphi(x)}{\varphi(a)} \times a\right)$$

Donc  $x - \frac{\varphi(x)}{\varphi(a)} \cdot a \in H$ . D'où

$$x = \underbrace{x - \frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in H} + \underbrace{\frac{\varphi(x)}{\varphi(a)} \cdot a}_{\in \text{Vect } \{a\}}$$

Ainsi,  $E = H + \text{Vect } \{a\}.$ 

 $(ii) \Longrightarrow (i)$  Supposons maintenant que H soit un sous-espace vectoriel tel que  $\exists a \in E \setminus \{0_E\}$ :  $E = H \oplus \text{Vect } \{a\}$ . Posons  $\varphi : E = H \oplus \text{Vect } \{a\} \to \mathbb{K}$ . Montrons que  $\varphi$  est une forme linéaire non triviale dont H est le noyau.

 $\varphi$  est bien définie (car  $h_x$  et  $\lambda_x$  sont uniques), linéaire, à valeur dans le corps de base  $\mathbb{K}$  donc  $\varphi$  est un forme linéaire.  $\varphi \neq 0_{E^*}$  car  $\varphi(a) = 1_{\mathbb{K}} \neq 0_{\mathbb{K}}$ . Soit  $x \in E$  fixé quelconque. Alors  $\exists (h_x, \lambda_x) \in H \times \mathbb{K} : x = h_x + \lambda_x \cdot a$ .

$$x \in \ker \varphi \iff \varphi(x) = 0_{\mathbb{K}} \iff \lambda_x = 0_{\mathbb{K}} \iff x \in H$$

donc  $\ker \varphi = H$ . Donc H est un hyperplan de E.

Si E est de dimension finie, alors les deux conditions sont équivalentes à

- (iii) H est de codimension 1 c'est-à-dire de dimension n-1.
- $(ii) \implies (iii)$  Il faut prendre la dimension de l'égalité  $H \oplus \text{Vect } \{a\}$ .
- $(iii) \implies (ii)$  Supposons que dim H = n 1. Comme E est de dimension finie, H admet un supplémentaire I dans  $E: H \oplus I = E$ . En prenant la dimension, dim I = 1. Donc I est une droite vectorielle. D'où  $\exists a \in E: I = \text{Vect } \{a\}$ .  $a \notin H$  car sinon  $I \subset H$  ce qui contredit  $I \cap H = \{0_E\}$  (I et I sont en somme directe).

# 8 Proportionnalité des formes linéaires ayant le même noyau

Lemme fondamental dans l'étude des formes linéaires Soit  $\varphi \in E^* \setminus \{0_{E^*}\}.$ 

Tout vecteur de E n'appartenant pas au noyau de  $\varphi$  engendre une droite qui est supplémentaire au noyau de  $\varphi$  dans E.

$$\forall a \in E \setminus \ker \varphi, \ E = \ker \varphi \oplus \text{Vect } \{a\}$$
 (7)

Deux formes linéaires non nulles  $\varphi$  et  $\psi$  ont le même noyau si est seulement si elles sont proportionnelles ce qui revient à dire que la famille  $(\varphi, \psi)$  est liée.

$$\forall (\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2, \text{ ker } \varphi = \ker \psi \iff \exists \lambda \in \mathbb{K}^* : \varphi = \lambda \cdot \psi$$
 (8)

Démonstration. Commençons par prouver le lemme. Soit  $a \in E \setminus \ker \varphi$ .

Soit  $x \in E$  fixé quelconque. Exhibons la décomposition unique de x dans ker  $\varphi$  + Vect  $\{a\}$ .

Analyse Supposons qu'il existe  $(x_k, \lambda) \in \ker \varphi \times \mathbb{K}$  tel que  $x = x_k + \lambda a$ . Puisque  $x_k \in \ker \varphi$ ,  $\varphi(x) = \lambda \cdot \varphi(a)$ . Or  $\varphi(a) \neq 0_{\mathbb{K}}$  (car  $a \notin \ker \varphi$ ) donc  $\varphi(a)$  est inversible dans  $\mathbb{K}$ . D'où  $\lambda = \varphi(x)/\varphi(a)$ et  $x_k = x - \frac{\varphi(x)}{\varphi(a)}$ .

Ainsi, sous réserve d'existence, 
$$\lambda$$
 et  $x_k$  sont uniques.

Synthèse Posons 
$$\begin{cases} \lambda = \frac{\varphi(x)}{\varphi(a)} \\ x_k = x - \frac{\varphi(x)}{\varphi(a)} \end{cases}$$
 Nous avons bien  $x = x_k + \lambda \cdot a, \ \lambda \cdot a \in \text{Vect } \{a\} \ (\text{car } \lambda \in \mathbb{K})$ 

et 
$$x_k \in \ker \varphi$$
 (car  $\varphi(x_k) = \varphi(x) - \varphi\left(\frac{\varphi(x)}{\varphi(a)}a\right) = \varphi(x) - \frac{\varphi(x)}{\varphi(a)}\varphi(a) = 0_{\mathbb{K}}$ ). Ainsi  $E = \ker \varphi \oplus \operatorname{Vect} \{a\}$ .

Soient  $(\varphi, \psi) \in (E^* \setminus \{0_{E^*}\})^2$  fixés quelconques. Sens direct Supposons que  $\ker \varphi = \ker \psi$ .  $\varphi \neq 0_{E^*}$  donc  $\ker \varphi \neq E$  donc  $\exists a \in E : a \notin \ker \varphi$ . Appliquons la lemme ci-dessus :

$$E = \lim_{\substack{|\alpha| \\ \text{ker } \psi}} \bigoplus \text{Vect } \{a\} \rightarrow \mathbb{K}$$

$$\varphi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \varphi(x)$$

$$\psi : x = \left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) + \frac{\varphi(x)}{\varphi(a)} \cdot a \mapsto \psi(x)$$

Or  $\left(x - \frac{\varphi(x)}{\varphi(a)} \cdot a\right) \in \ker \psi$  donc  $\psi(x) = \frac{\psi(a)}{\varphi(a)} \varphi(x)$ . Ainsi,  $\psi = \frac{\psi(a)}{\varphi(a)} \varphi$ . Donc  $\varphi$  et  $\psi$  sont proportionnelles.

Sens réciproque Supposons que  $\varphi$  et  $\psi$  sont proportionnelles. Alors  $\exists \lambda \in \mathbb{K}^* : \varphi = \lambda \psi. \ \varphi = \lambda \psi.$  $\lambda \psi \implies \ker \psi \subset \ker \varphi$  et  $\psi = \lambda^{-1} \varphi \implies \ker \varphi \subset \ker \psi$ . Ce qui donne l'égalité.

#### Intersection d'hyperplans 9

Soit  $\varphi \in E^*$  une forme linéaire non nulle. Soit F un sous-espace vectoriel de E de dimension finie  $p \in \mathbb{N}$ , alors

$$\dim_{\mathbb{K}} F \cap \ker \varphi = \begin{cases} p & \text{si } F \subset \ker \varphi \\ p - 1 & \text{sinon} \end{cases}$$
 (9)

En particulier, on a toujours  $\dim_{\mathbb{K}} F \cap \ker \varphi \geqslant p-1$ 

Supposons que E un  $\mathbb{K}$ -espace vectoriel de dimension finie  $n \in \mathbb{N}^*$ . Soient  $m \in \mathbb{N}^*$  et  $(H_i)_{n \in [1, m]}$ , m hyperplans de E. Alors

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{m} H_i \geqslant n - m \tag{10}$$

Démonstration. Si  $F \subset \ker \varphi$ ,  $F \cap \ker \varphi = F$  donc dim  $F \cap \ker \varphi = p$ Sinon, il existe  $a \in F$  tel que  $a \notin \ker \varphi$ . Ainsi,

$$Vect \{a\} \oplus \ker \varphi = E$$

Montrons alors que  $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$ .

$$\operatorname{Vect} \{a\} \cap (F \cap \ker \varphi) = \underbrace{\operatorname{Vect} \{a\} \cap F}_{=\operatorname{Vect} \{a\}} \cap \ker \varphi = \operatorname{Vect} \{a\} \cap \ker \varphi = \{0_E\}$$

car les deux espaces sont supplémentaires donc en somme directe.

Par double inclusion, montrons que Vect  $\{a\} + (F \cap \ker \varphi) = F$ . Pour l'inclusion directe, remarquons que  $a \in F$  donc  $\text{Vect}\{a\} \subset F$  or  $F \cap \ker \varphi \subset F$  donc leur somme est bien incluse  $\operatorname{Vect} \{a\} + (F \cap \ker \varphi) \subset F$ . Réciproquement, soit  $x \in F$  fixé quelconque. Puisque  $\operatorname{Vect} \{a\} \oplus \ker \varphi = F$ 

$$\exists (\lambda, x_K) \in \mathbb{K} \times \ker \varphi : x = \lambda . a + x_K$$

De plus,  $x_K = x - \lambda . a \in F$  car  $(a, x) \in F^2$  donc

$$x = \underbrace{\lambda.a}_{\in \operatorname{Vect}\{a\}} + \underbrace{x_K}_{\in F \cap \ker \varphi} \in \operatorname{Vect}\{a\} + (F \cap \ker \varphi)$$

D'où l'inclusion réciproque.

Donc  $F = \text{Vect}\{a\} \oplus (F \cap \ker \varphi)$  en passant à la dimension :

$$\underbrace{\dim F}_{=p} = \underbrace{\dim \operatorname{Vect}\left\{a\right\}}_{=1} + \dim(F \cap \ker \varphi)$$

Donc  $\dim(F \cap \ker \varphi) = p - 1$ .

Considérons la propriété  $\mathcal{P}(\cdot)$  définie pour tout  $m \in \mathbb{N}^*$  par :

$$\mathcal{P}(m)$$
: "pour tous  $H_1,\ldots,H_m$  hyperplans de  $E,\dim_{\mathbb{K}}\bigcap_{i=1}^m H_i\geqslant n-m$ "

Soit  $H_1$  un hyperplan de E fixé quelconque. D'après la caractérisation des hyperplans en dimension finie.

$$\dim_{\mathbb{K}} \bigcap_{i=1}^{1} H_i = \dim_{\mathbb{K}} H_1 = n - 1 \geqslant n - 1$$

Donc  $\mathcal{P}(1)$  est vraie.

Soit  $m \in \mathbb{N}^*$  fixé quelconque tel que  $\mathcal{P}(m)$  est vraie. Soient  $H_1, \ldots, H_m$  et  $H_{m+1}$  m+1 hyperplans de E. D'après la définition d'un hyperplan, il existe  $\varphi \in E^*$  non nulle telle que  $H_{m+1} = \ker \varphi$ .

Appliquons donc le lemme précédent pour  $F \leftarrow \bigcap_{i=1}^m H_i$  (autorisé car c'est un sous espace de l'espace E, qui est de dimension finie, donc ses sous espaces les sont aussi) et  $\varphi \leftarrow \varphi$  (autorisé car c'est une forme linéaire non nulle) :

$$\dim_{\mathbb{K}} \underbrace{\left(\bigcap_{i=1}^{m} H_{i}\right) \cap \ker \varphi}_{=\left(\bigcap_{i=1}^{m} H_{i}\right) \cap H_{m+1}}^{\text{min}} \geqslant \dim_{\mathbb{K}} \left(\bigcap_{i=1}^{m} H_{i}\right) - 1 \underbrace{\geqslant n - m - 1}_{\text{en appliquant } \mathcal{P}(m) \text{ pour } H_{1}, \dots, H_{m}}$$

Donc par associativité de l'intersection,  $\dim_{\mathbb{K}} \bigcap_{i=1}^{m+1} H_i \geqslant n - (m+1)$ . Donc  $\mathcal{P}(m+1)$  est vraie.