JITESH JOSHI

jitesh.joshi.20@ucl.ac.uk | linkedin.com/in/jnj256 | jnj256.github.io

PROFESSIONAL SUMMARY

An AI researcher specializing in computer vision, deep learning, advanced attention mechanisms, and methods for domain generalization, with publications in top-tier forums such as NeurIPS and BMVC. Combined theoretical research with industry leadership experience, managing cross-functional teams to deliver AI-enabled healthcare solutions in regulated environments. Contributed to several open-source projects, including widely adopted toolkits for remote photoplethysmography (rPPG), physiological computing, and diffusion-model-based image-inpainting applications. Track record of translating cutting-edge algorithms into patented technologies and clinically deployed devices while mentoring technical teams.

PROFESSIONAL EXPERIENCE

 $\textbf{Post-graduate Teaching \& Research Associate} \mid \textit{University College London}, \ \textit{UK} \mid \textbf{2020} - \textbf{Present}$

- Served as post-graduate teaching assistant for 4 course modules, mentored graduate students on dissertation projects, provided guidance on research methodologies, experiment design, implementation of deep learning as well as signal processing techniques
- Conducted research on photorealistic image-inpainting using diffusion models with controlnet-based multimodal guidance, optimizing visual fidelity and computational efficiency

Solution Architect | Tata Elxsi, India and UK | 2016 - 2024

- Led development of robust AI systems for healthcare applications, resulting in three patents and successful clinical implementations
- Optimized Faster R-CNN architecture for NVIDIA Jetson TX2 and Nano deployment, achieving optimal balance between accuracy and computational efficiency for edge computing applications
- Managed cross-functional teams on high-impact projects exceeding \$1M, ensuring seamless alignment between R&D, software engineering, hardware, and regulatory compliance requirements
- Established comprehensive validation frameworks for AI and optical imaging systems
- Mentored team of 10+ AI engineers on implementing advanced deep learning architectures and computer vision solutions, accelerating technical skill development and improving project delivery outcomes

Sr. Scientist - R&D | Azoi Inc, India | 2014 - 2016

- Developed algorithms for real-time physiological sensing from multi-channel sensor data, optimizing signal processing pipelines for mobile device constraints
- Implemented comprehensive validation frameworks for medical device certification, ensuring system performance across diverse operational conditions

Senior R&D Engineer | National Brain Research Centre, India | 2011 - 2014

- Conducted functional MRI (fMRI) research, applying multivariate pattern analysis and machine learning techniques to identify statistically significant visuospatial perception biomarkers for early-stage Alzheimer's disease detection
- Developed frameworks for synchronized acquisition of fMRI data and presentation of audiovisual stimuli

EDUCATION

Ph.D. in Computer Science | University College London, UK | 2020 - 2025

- Thesis Title: Enhancing Out-of-distribution Generalization for Camera-based Remote Physiological Sensing
- Contributions: Developed novel matrix factorization-based multidimensional attention mechanism which achieved 2× better cross-dataset generalization for physiological signal extraction, while reducing model parameters by 99% and setting a benchmark for inference latency. In addition, contributed frameworks for robust thermal facial segmentation, real-time signal quality assessment for wearable biosensors, and published an rPPG dataset that is now widely used by researchers in remote physiological sensing.

- Methods: Multidimensional attention through constrained matrix factorization, multi-task learning, multi-modal data, contrastive learning, generative adversarial networks
- Publications: 2 of 5 papers in top tier conferences (NeurIPS, BMVC), 1 paper under review in IJCV
- Key Skills: Computer vision, deep learning architectures, attention mechanisms, semantic segmentation, physiological computing, signal processing
- Advisors: Prof. Youngjun Cho, Prof. Nadia Berthouze

M.Sc., Cognitive Systems & Interactive Media | Universitat Pompeu Fabra, Spain | 2010 - 2011

- Dissertation: EEG-based Investigation of Brain Wave Entrainment by Binaural Beats & Music
- An examination of phase coherence was conducted on multi-channel EEG data that had been pre-processed using independent component analysis to investigate the effect of auditory stimulus on functional brain connectivity, among healthy individuals and comatose patients.

B.Tech., Electronics & Communication | Nirma University, India | 2004 – 2008

• Key Modules: Signal Processing, Digital System Design, Modern Processor Architecture

SELECTED PUBLICATIONS AND PATENTS

- 1. **J. Joshi** and Y. Cho, "Efficient and Robust Multidimensional Attention in Remote Physiological Sensing through Target Signal Constrained Factorization," 2025. arXiv: 2505.07013; in review-IJCV. | Paper | Code
- 2. **J. Joshi**, S. Agaian, and Y. Cho, "FactorizePhys: Matrix factorization for multidimensional attention in remote physiological sensing," in *NeurIPS*, 2024. | Paper | Code
- 3. **J. Joshi** and Y. Cho, "iBVP Dataset: RGB-Thermal rPPG dataset with high resolution signal quality labels," *Electronics*, vol. 13, no. 7, p. 1334, **2024**. | Paper | Dataset access
- 4. **J. Joshi**, K. Wang, and Y. Cho, "Physiokit: An Open-source, Low-cost Physiological Computing Toolkit for Single-and Multi-user Studies", **Sensors**, 23(19), 2023 | Paper | Code
- 5. **J. Joshi**, N. Bianchi-Berthouze, and Y. Cho, "Self-adversarial multi-scale contrastive learning for semantic segmentation of thermal facial images," in 33rd British Machine Vision Conference, **BMVC 2022**, London, UK, November 21-24, 2022. | Paper | Code
- 6. T. Tran, H. Watson, J. Joshi, "Imaging device with illumination components," 2021. | Patent | Product
- 7. T. Tran, H. Watson, **J. Joshi**, A. SK, and R. Tiwari, "Detecting a condition for a culture device using a machine learning model," 2021. | Patent | Product

SKILLS & COMPETENCIES

Technical Skills: Deep learning architectures, attention mechanisms, representation learning, diffusion mod-

els, contrastive learning, domain generalization, computer vision, signal processing, phys-

iological computing, wearable devices, system engineering

Technical Stack: PyTorch, TensorFlow, Python, C++, model optimization, edge computing, TensorRT,

ONNX

Certifications: Generative AI with Large Language Models (Coursera, 2025), Executive Data Science

Specialization (Coursera, 2019), Deep Learning Specialization (Coursera, 2018)

AWARDS AND ACHIEVEMENTS

2020 Project Excellence Awards, Tata Elxsi

Led the design of an AI-based edge imaging device for automated bacterial colony counting

2019 Hackathon Winner, Tata Elxsi

AI-based medical image enhancement solution

2018 Prestigious Tata Innovista Award

Point-of-care diagnostic device for malaria and sickle cell disease