To perform and Data analysis with Confusion matrix

```
In [1]: import pandas as pd
       import numpy as np
       from sklearn.datasets import load_iris
       from sklearn.model_selection import train_test_split
       from sklearn.linear_model import LogisticRegression
       from sklearn.metrics import confusion_matrix, classification_report, ConfusionMatrixDisplay
       import seaborn as sns
       import matplotlib.pyplot as plt
In [2]: iris = load_iris()
       X = iris.data
       y = iris.target
In [3]: X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.3, random_state=42)
In [4]: model = LogisticRegression(max_iter=200)
       model.fit(X_train, y_train)
       y_pred = model.predict(X_test)
In [5]: cm = confusion_matrix(y_test, y_pred)
       print("Confusion Matrix:")
       print(cm)
       Confusion Matrix:
       [[19 0 0]
        [ 0 13 0]
        [ 0 0 13]]
In [6]: disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=iris.target_names)
        disp.plot(cmap=plt.cm.Blues)
       plt.title("Confusion Matrix - Iris Classification")
       plt.show()
                         Confusion Matrix - Iris Classification
```


In [7]: print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

Classificatio	n Report: precision	recall	f1-score	support
setosa	1.00	1.00	1.00	19
versicolor	1.00	1.00	1.00	13
virginica	1.00	1.00	1.00	13
accuracy			1.00	45
macro avg	1.00	1.00	1.00	45
weighted avg	1.00	1.00	1.00	45