

W3C Web of Things and Geolocation Discovery

Michael McCool

21 July 2022

Presented to W3C SDW IG/WG

Outline

- What is WoT?
 - Applying and extending web standards for IoT
 - Descriptive interoperability: Thing Descriptions
 - Recent Activity
 - Finding Thing Descriptions: Discovery
- Discussion
 - Gaps and Future Work
 - Geolocation Discovery
 - Data: Dynamic and Static
 - Geolocation queries for Discovery
 - Interval queries on actual data?

W3C Web of Things (WoT)

- W3C Working Group goal: Adapting web technologies to IoT
- Already published: Thing Description (TD) metadata format
 - TD describes the available interactions (network API) of a Thing
- New deliverables in progress, including Discovery
 - How does a potential user obtain the TD for a Thing?

Descriptive Interoperability: TDs

WoT Architecture

- Constraints
 - "Things" must have a TD
 - Must use URIs, IANA media types, etc.
- Thing Description Affordances
 - Describes WHAT the possible choices are
 - Describes HOW to interact with the Thing

WoT Thing Description (TD)

```
"https://www.w3.org/2022/wot/td/v1.1",
 { "iot": "http://iotschema.org/" }
"id": "urn:dev:org:32473:1234567890",
"title": "MyLEDThing",
"description": "RGB LED torchiere",
"@type": ["Thing", "iot:Light"],
"securityDefinitions": {
 "default": {"scheme": "bearer"}
"security": ["default"],
"properties": {
 "brightness": {
    "@type": ["iot:Brightness"],
    "type": "integer",
    "minimum": 0,
    "maximum": 100,
    "forms": [ ... ]
actions": {
 "fadeIn": {
```

Usage Patterns Overview

)

Orchestration

Node-RED/node-gen

node-wot/Scripting API


```
WoTHelpers.fetch( "coap://localhost:5683/counter" ).then( async (td) => {
 // using await for serial execution (note 'async' in then() of fetch())
 try {
  const thing = await WoT.consume(td);
  console.info( "=== TD ===" );
                                                                     THINGWEB
  console.info(td);
  console.info( "=======" );
  // read property #1
  const read1 = await thing.readProperty( "count" );
  console.info( "count value is" , await read1.value());
  // increment property #1 (without step)
  await thing.invokeAction( "increment" );
  const inc1 = await thing.readProperty( "count" );
  console.info( "count value after increment #1 is" , await inc1.value());
  // increment property #2 (with step)
  await thing.invokeAction( "increment" , {'step' : 3});
  const inc2 = await thing.readProperty( "count" );
  console.info( "count value after increment #2 (w/ step 3) is", await inc2.value());
  // decrement property
  await thing.invokeAction( "decrement", undefined, {
    formIndex: getFormIndexForDecrementWithCoAP(thing);
  const dec1 = await thing.readProperty( "count" );
  console.info( "count value after decrement is", await dec1.value());
 } catch(err) {
  console.error( "Script error:", err);
}).catch( (err) => { console.error( "Fetch error:", err); });
```

Deliverables

New/Updated Normative Documents:

- Architecture 1.1: https://github.com/w3c/wot-architecture
- Thing Description 1.1: https://github.com/w3c/wot-thing-description
- Discovery: https://github.com/w3c/wot-discovery
- Profiles: https://github.com/w3c/wot-profile

New/Updated Informative Documents:

- Binding Templates: https://github.com/w3c/wot-binding-templates
- Scripting API: https://github.com/w3c/wot-scripting-api
- Use Cases and Requirements: https://github.com/w3c/wot-usecases

Community Resources:

Web Site: https://www.w3.org/WoT/

Recent Activity

- Commercial Usages related to Geolocation
 - Takenaka Construction Smart Building Information Management systems
 - Netzo IoT dashboards and device management
- Directory Implementations
 - WoT Hive, LogiLab (SPARQL based), Fraunhofer LinkSmart
- IETF Relationships: JSON Path, CoreRD, COSE/JOSE, ASDF
- Under Discussion:
 - Geospatial data, Embedded JSON Signatures
 - New Charters/New Deliverables

Applications

https://www.takenaka.co.jp/news/2021/05/02/

Takenaka Corporation

CGLL Platform - BIM

https://netzo.io/

Netzo

- IoT Data Hub
- Dashboards

ditto

https://www.eclipse.org/ditto/2022-03-03-wot-integration.html

Bosch

Eclipse Ditto - Digital twin

https://new.siemens.com/global/en/products/buildings/automation/desigo.html

https://www.evosoft.com/en/digitalization-offering/saywot/

Siemens

- Desigo CC BIM
- Say WoT!

Gaps and Future Work

- GIS Integration
 - Geospatial data and discovery
- Data Management
 - Digital Twins and shadows
 - Event notifications
 - Historical data
- Security
 - Key provisioning and onboarding
 - Secure LAN access
 - Proxy services
 - Access control and ad-hoc sharing
 - MUDS

- Accessibility
 - Sensory modality mapping
 - Textual/descriptive interfaces
 - Service location
 - Mobility services
- Advanced Use Cases
 - Transportation
 - Logistics
 - Distributed energy management
 - AR visualization
 - Analytics integration e.g. for health and safety monitoring

Discovery

Goal:

Obtain TD of interest

- Not limited to local network
- Scalable to many TDs
- Need to preserve privacy

Architecture:

- Phased access:
 - 1.Introduction: open
 - 2. Exploration: controlled access
- Introduction mechanisms
 - Direct, WK, DNS-SD, CoRE-RD, DID
- Exploration mechanisms
 - TD Server, Self, Directory
- Directories searchable via
 - JSON Path (IETF RFC pending)
 - XPath 3.1
 - SPARQL

Discovery

- Possible future work:
 - Encode static geospatial data in Thing Descriptions
 - Provide ontologies for dynamic geospatial data
 - Index Things by location in TD Directories
 - Provide geolocation filters in Introduction mechanisms
 - e.g. geolocation filters in DNS-SD
 - Discover Things using geospatial queries
 - "find all Things within 100m of lat 49.2803175 long -123.1286623"
 - "find all HVAC sensors in Room 101 of Sheraton Wall Vancouver"
 - Both "quantitative" and "qualitative" locations important
 - Also store sensor data and search based on interval queries
- See:
 - Geolocation proposal and examples
 - <u>Discussion of next WoT charter</u>

Example TDs using Geolocation

- Simple static installation, using schema.org
- Static installation, using modular (proposed) geolocation ontology
- Dynamic installation, using internal geolocation resource
- Dynamic installation, using separate geolocation service
- Dynamic installation, geolocation service

Discovery extensions:

- Spatially-aware introduction mechanisms (e.g. ext. DNS-SD or DID)
- Query mechanisms for Directories (GeoSPARQL and/or JSONPath ext.)

Resources and Contacts

https://www.w3.org/WoT

Dr. Michael McCool

Principal Engineer

Intel

Technology Pathfinding

michael.mccool@intel.com

Dr. Sebastian Kaebisch

Senior Key Expert

Siemens

Technology

sebastian.kaebisch@siemens.com