Pracownia z analizy numerycznej

Sprawozdanie do zadania **P.1.6.**Prowadzący: mgr. Filip Chudy

Wrocław, 11 listopada 2022, 21:37

Spis treści

1.	Wste	₹p	1
2.	Pier	wsze próby	
	2.1.	Szereg Taylora	1
	2.2.	Algorytm Monte Carlo	2
	2.3	Wzór Wallisa?	ç

1. Wstęp

Metoda Chudowskiego - rekord cyfr pi z 2009, na podstawie wzoru Ramanujana

2. Pierwsze próby

2.1. Szereg Taylora

W matematyce bardzo często w celu przybliżania porządanych wartości używa się szeregów Taylora. Tak dla przykładu, korzystając z rozszerzenia funkcji arctan x w punkcie 0 możemy oszacować wartość $\frac{\pi}{4}$:

(1)
$$\frac{\pi}{4} = \arctan 1 = \sum_{k=0}^{\infty} \frac{\arctan^{(k)} 0}{k!} (1-0)^k = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}.$$

W obliczeniach praktycznych nie możliwe jest dodawanie kolejnych elementów sumy w nieszkończoność. Konieczne jest więc zatrzymanie się na pewnym N, co daje pewien błąd, R_N :

$$\frac{\pi}{4} \approx \sum_{k=0}^{N} \frac{(-1)^k}{2k+1} + R_N.$$

Oznaczmy tę sumę jako P_N . Ponieważ dla przybliżeń funkcji szeregiem Taylora coraz wyższego stopnia dostajemy coraz dokładniejszy wynik, to P_{N+1} powinno być dokładniejsze niż P_N . Zauważamy też, że

$$P_{N+1} - P_N = \frac{(-1)^{N+1}}{2N+3}$$

w takim razie możemy oszacować błąd dla szeregu Taylora N-tego stopnia za pomocą

$$R_N \approx \max \frac{(-1)^{N+1}}{2N+3},$$

co daje zbieżność liniową.

Problem tego przybliżenia π został prze
analizowany już przez Madhawa z Sangamagramy w XIV wieku. Zaproponował on następującą korekcję wzoru dla skończonych sum:

(2)
$$\frac{\pi}{4} \approx \sum_{k=0}^{N} \frac{(-1)^k}{2k+1} \pm \frac{N^2+1}{4N^3+5N}.$$

WYPADAŁOBY NAKLEPAĆ I PRZEDSTAWIĆ WYNIKI

2.2. Algorytm Monte Carlo

Ponieważ π jest stosunkiem pola koła jednostkowego do jego promienia, do przybliżania jego wartości można skorzystać z kwadratu i ćwiartki koła. Zauważmy, że jeżeli będziemy wybierać losowo punkty kwadratu o polu 1, to $\frac{\pi}{4}$ z nich powinno znaleźć się w ćwiartce koła o środku w jednym z wierzchołków tego kwadratu:

Korzystając z algorytmu Monte Carlo możemy wybierać losowo współrzędne $x,y\in[0,1]$ kolejnych punktów, a następnie sprawdzać ile z nich spełnia warunek

$$x^2 + y^2 \leqslant 1.$$

Otrzymany stosunek będzie coraz bliższy $\frac{\pi}{4}$ wraz ze zwiększaniem ilości testowanych punktów. NAKLEPAĆ I TYM LOGIEM PRZYBLIŻYĆ ZBIEŻNOŚĆ CZY INNE CHUJU MUJU

2.3. Wzór Wallisa?

9.4 ze skryptu szwarca do analizy I

$$\sqrt{\pi} = \lim_{n \to \infty} \frac{(n!)^2 4^n}{(2n)! \sqrt{n}}$$