Project Development Phase Model Performance Test

Date	11 November 2022
Team ID	PNT2022TMID16005
Project Name	Efficient Water Quality Analysis and Prediction Using Machine Learning
Maximum Marks	10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Regression	from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor(n_estimators = 10, random_state = 0) regressor.fit(x_train, y_train) y_pred = regressor.predict(x_test) from sklearn import metrics print('MAE:',metrics.mean_absolute_err or(y_test,y_pred)) print('MSE:',metrics.mean_squared_erro r(y_test,y_pred)) print('RMSE:',np.sqrt(metrics.mean_squ ared_error(y_test,y_pred))) MAE: 1.013774436090232 MSE: 6.2406858345864675 RMSE: 2.498136472370248 #accuracy of the model metrics.r2_score(y_test, y_pred) 0.9659820315121997	MAE: 1.013774436090232

	T		
2.	Hyperparamete	r SPACE = [
	tuning	skopt.space.Real(0.01, 0.5, name='lea	
		rning_rate', prior='log-uniform'),	
		skopt.space.Integer(1, 30, name='max	
		_depth'),	
		skopt.space.Integer(2, 100, name='nu	
		m_leaves'),	
		skopt.space.Real(0.1, 1.0, name='feat	
		ure_fraction', prior='uniform'),	best result: 0.6509559162948146
		skopt.space.Real(0.1, 1.0, name='subs	
		ample', prior='uniform')]	0.50 parameter 37 [010343040103124720] 21) 20) 01312342211733303) 01000220102430003]
		@skopt.utils.use_named_args(SPACE)	
		def objective(**params):	
		return -1.0 * train_evaluate(params)	
		results = skopt.forest_minimize(objectiv	
		e, SPACE, n_calls=30, n_random_starts	
		=10)	
		best_auc = -1.0 * results.fun	
		best_params = results.x	
		<pre>print('best result: ', best_auc)</pre>	
		<pre>print('best parameters: ', best_params)</pre>	
3.	Validation	def train_evaluate(search_params):	
J.	Method	path = "water_potability.csv"	
	Wiethou	$data = pd.read_csv(path)$	
		X = data.drop(['Sulfate','Potability'], a	
		xis=1)	
		y = data['Potability']	
		X_train, X_valid, y_train, y_valid = tr	
		ain_test_split(X, y, test_size=0.2, rando	
		m_state=1234)	
		train_data = lgb.Dataset(X_train, label	validation AUC: 0.6509559162948146
		=y_train) valid_data = lgb.Dataset(X_valid, labe	
		l=y_valid, reference=train_data)	
		i-y_vand, reference-train_data/	
		params = {'objective': 'binary',	
		'metric': 'auc',	
		**search_params}	
		model = lgb.train(params, train_data,	
		num_boost_round=300,	
		early_stopping_rounds=30	
		, valid_sets=[valid_data],	
		valid_names=['valid'])	
		score = model.best_score['valid']['auc']	
		return score	
		ifname== 'main':	
		score = train_evaluate(SEARCH_PA	
		RAMS)	
		print('validation AUC:', score)	

	Confusion	print('XGB Classifier\n')			
	Matrix (XGB Classifier)	xgb = XGBClassifier() xgb.fit(X_train, y_train)	o 344	143	300
		<pre>y_xgb = xgb.predict(X_test) print(metrics.classification_report(y_t</pre>			250
		est, y_xgb)) print(modelAccuracy.append(metrics.			150
		accuracy_score(y_test, y_xgb)))	F 55	277	100
		sns.heatmap(confusion_matrix(y_test, y_xgb), annot=True, fmt='d') plt.show()	0	1	
7.	Precision Recall F1 Score	<pre>print('Random Forest Classifier\n') Rfc = RandomForestClassifier() Rfc.fit(X_train, y_train)</pre>	Random Forest Classifier		
	(Random		precision	recall f1-score	support
	Forest Classifier)	<pre>y_Rfc = Rfc.predict(X_test) print(metrics.classification_report(y_t</pre>	0 0.84 1 0.71	0.78 0.81 0.79 0.74	487 332
		est, y_Rfc)) print(modelAccuracy.append(metrics. accuracy_score(y_test, y_Rfc)))	accuracy macro avg 0.77 weighted avg 0.79	0.78 0.78 0.78 0.78 0.78	819 819 819
	Precision Recall F1 Score (XGB Classifier)	<pre>print('XGB Classifier\n') xgb = XGBClassifier() xgb.fit(X_train, y_train)</pre>	XGB Classifier	recall f1-score	support
	(AGB Classifier)	y_xgb = xgb.predict(X_test)	0 0.86	0.71 0.78	487
		print(metrics.classification_report(y_t	1 0.66	0.83 0.74	332
		est, y_xgb)) print(modelAccuracy.append(metrics. accuracy_score(y_test, y_xgb)))	accuracy macro avg 0.76 weighted avg 0.78	0.76 0.77 0.76 0.76 0.76	819 819 819
8.	Precision- Recall or PR curve	from scikitplot.metrics import plot_roc_curve from sklearn.metrics import plot_precision_recall_curve plot_precision_recall_curve(Rfc,X_test ,y_test) plt.plot([0,1], [0.2035,0.2035], c='k') plt.legend(loc='best') plot_precision_recall_curve(xgb,X_test ,y_test) plt.plot([0,1], [0.2035,0.2035], c='k') plt.legend(loc='best')	Tunction plot, precision, recall_curve is deprecision_recall_curve is deprecision_reca	ed; Function "plot_precision_recall_curr this/deprecation.py:E7: Futureseming: ed; Function "plot_precision_recall_curr [77]	e' is deprecated in 1.0

