Análisis de encuestas de hogares con R

Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Análisis de encuestas de hogares con R Modulo 7: Modelos lineales generalizados (Variable categóricas)

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

CEPAL - Unidad de Estadísticas Sociales

Análisis de encuestas de hogares con R Andrés Gutiérrez,

Ph.D. Stalyn Guerrero M.Sc.

Método de Pseudo máxima verosimilitud

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Sea \mathbf{y}_i el vector de observaciones los cuales provienen de los vectores aleatorios \mathbf{Y}_i para $i \in U$. Suponga también que $\mathbf{Y}_1, \ldots, \mathbf{Y}_N$ son IID con función de densidad $f(\mathbf{y}, \theta)$. Si todos los elementos de la población finita U fueran conocidos la función de log-verosimilitud estaría dada por:

$$L_{U}(\theta) = \sum_{i \in U} \log [f(\mathbf{y}_{i}; \theta)]$$

y las ecuaciones de verosimilitud están dadas por:

$$\sum_{i\in U}\boldsymbol{u}_{i}\left(\theta\right)=\mathbf{0}$$

donde

$$\boldsymbol{u}_{i}\left(\theta\right) = \frac{\partial \log\left[f\left(\boldsymbol{y}_{i};\theta\right)\right]}{\partial \theta}$$

Método de Pseudo máxima verosimilitud

Análisis de encuestas de hogares con R Andrés

> Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Si se cumplen las condiciones de regularidad (Ver Pag 281 de Cox and Hinkley 1974^1), es posible considerar a

$$T = \sum_{i \in U} u_i(\theta)$$

como un vector de totales. La estimación ${\it T}$ se puede hacer mediante

$$\hat{\boldsymbol{T}} = \sum_{i \in U} w_i \boldsymbol{u}_i \left(\theta\right),$$

donde w_i son los pesos previamente definidos.

¹Cox, D. R., & Hinkley, D. V. (1974). Theoretical Statistics Chapman and Hall, London. See Also.

Método de Pseudo máxima verosimilitud (Definición)

Pseudo-Verosimilitud dadas por

Análisis de encuestas de

hogares con R

Andrés Gutiérrez, Ph.D.

Stalvn Guerrero M Sc

Un estimador de Máxima Pseudo Verosimilitud (MVP) $\hat{\theta}_{MPV}$ de θ_U será la solución de las ecuaciones de

$$\hat{\boldsymbol{\tau}} = \sum w_i \boldsymbol{u}_i(\theta) = 0,$$

$$T = \sum_{i \in U} w_i u_i(\theta) = 0$$

Através de la Linealización de Taylor podemos obtener la varianza asintotica de $\hat{\theta}_{MPV}$ dada por:

Através de la Linealización de Taylor podemos obtener la varianza asintotica de
$$\hat{\theta}_{MPV}$$
 dada por:
$$V_p\left(\hat{\theta}_{MPV}\right) \approx \left[J\left(\theta_U\right)\right]^{-1} V_p\left[\sum_{i \in s} w_i \boldsymbol{u}_i\left(\theta_U\right)\right] \left[J\left(\theta_U\right)\right]^{-1}$$

 $\hat{V}_{p}\left(\hat{\theta}_{MPV}\right) = \left[\hat{J}\left(\hat{\theta}_{MPV}\right)\right]^{-1}\hat{V}_{p}\left|\sum_{i \in \mathcal{I}}w_{i}\boldsymbol{u}_{i}\left(\hat{\theta}_{MPV}\right)\right|\left[\hat{J}\left(\hat{\theta}_{MPV}\right)\right]^{-1}$

Método de Pseudo máxima verosimilitud (Definición)

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Con
$$J(\theta_U) = \frac{\partial T(\theta)}{\partial \theta} \bigg|_{\theta = \theta_U} = \sum_{i \in U} \frac{\partial \mathbf{u}_i(\theta)}{\partial \theta} \bigg|_{\theta = \theta_U}$$

$$\hat{J}\left(\hat{\theta}_{MPV}\right) = \frac{\partial \hat{T}\left(\theta\right)}{\partial \theta}\bigg|_{\theta = \hat{\theta}_{MPV}} = \sum_{i \in s} w_i \frac{\partial \boldsymbol{u}_i\left(\theta\right)}{\partial \theta}\bigg|_{\theta = \hat{\theta}_{MPV}}$$

 $\hat{V}_p\left[\sum_{i\in s}w_i \boldsymbol{u}_i\left(\theta_U\right)\right]$ es la matriz de varianza estimada y $\hat{V}_p\left[\sum_{i\in s}w_i \boldsymbol{u}_i\left(\theta_{MPV}\right)\right]$ es un estimador consitente para la varianza.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Un modelo lineal generalizado tiene tres componentes básicos:

■ Componente aleatoria: Identifica la variable respuesta $(y_1, ..., y_N)$ y su distribución de probabilidad.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Un modelo lineal generalizado tiene tres componentes básicos:

- Componente aleatoria: Identifica la variable respuesta $(y_1, ..., y_N)$ y su distribución de probabilidad.
- Componente sistemática: Especifica las variables explicativas (independientes o predictoras) utilizadas en la función predictora lineal.

Las covariables x_1, \ldots, x_k producen un predictor lineal η_i que resulta de la combinación lineal $\eta_i = \sum_{j=1}^k x_{ij} \beta_j$ donde x_{ij} es el valor del j-ésimo predictor en el i-ésimo individuo, e $i = 1, \ldots, N$.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ Función link: Es una función del valor esperado de Y , E(Y), como una combinación lineal de las variables predictoras.

Se denota el valor esperado Y como $\mu = E(Y)$, entonces la función link especifica una función

$$g(\mu) = \sum_{j=1}^k x_{ij}\beta_j.$$

Así, la función $g(\cdot)$ realciona las componentes aleatoria y sistemática. De este modo, para i = 1, ..., N

$$\mu_i = E(Y_i)$$

$$\eta_i = g(\mu_i) = \sum_i \beta_j x_{ij}$$

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ Todos los modelos se pueden incluir dentro de la llamada familia exponencial de distribuciones

$$f(y_i | \theta_i) = a(\theta_i) b(\theta_i) \exp[y_i Q(\theta_i)]$$

de modo que $Q(\theta)$ recibe el nombre de *parámetro natural*. Además, $a(\cdot)$ y $b(\cdot)$ son funciones conocidas.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

■ Todos los modelos se pueden incluir dentro de la llamada familia exponencial de distribuciones

$$f(y_i | \theta_i) = a(\theta_i) b(\theta_i) \exp[y_i Q(\theta_i)]$$

de modo que $Q(\theta)$ recibe el nombre de *parámetro natural*. Además, $a(\cdot)$ y $b(\cdot)$ son funciones conocidas.

■ Los modelos de regresión lineal típicos para respuestas continuas son un caso particular de los *GLM*.

Lectura de la base

Análisis de encuestas de hogares con R

```
encuesta <- readRDS("../Data/encuesta.rds")</pre>
```

Definir diseño de la muestra con srvyr

```
Análisis de
encuestas de
hogares con R
```

```
library(srvyr)

diseno <- encuesta %>%
   as_survey_design(
    strata = Stratum,
   ids = PSU,
   weights = wk,
   nest = T
)
```

definir nuevas variables

```
Análisis de
encuestas de
hogares con R
```

```
diseno <- diseno %>% mutate(
   pobreza = ifelse(Poverty != "NotPoor", 1, 0),
   desempleo = ifelse(Employment == "Unemployed", 1, 0
```

Modelo para el ingreso

Análisis de

encuestas de hogares con R

Andrés

Gutiérrez, Ph.D.

Stalyn Guerrero

M Sc

```
library(ggplot2)
## Estimador de momentos de la distribución gamma
x <- encuesta$Income
n = length(x)
(\frac{\text{shape1}}{\text{shape1}} = (\frac{x}{2})/\frac{2}{\text{sum}((x-\text{mean}(x))^2)}
## [1] 1.443
(rate1 = (n*mean(x))/sum((x-mean(x))^2))
## [1] 0.002494
ggplot(data = encuesta, aes(x = Income)) +
  geom_histogram(aes(y = ..density..), bins = 30) +
  geom_density(aes(y = ..density..), size = 2)+
  geom_function(fun = dgamma,
  args = list(shape = shape1, rate = rate1).
```

Modelo para el ingreso

Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

La función de enlace $g(\cdot)$ para el GLM con una variable dependiente distribuida por Gamma es el recíproco, $\frac{1}{\mu_i}$. Eso significa que el valor esperado de y_i observado, $(E(y_i) = \mu_i)$, está relacionado con sus variables de entrada como, por ejemplo,

$$\frac{1}{\mu_i} = B_0 + B_1 x_1$$

0

$$\mu_i = \frac{1}{B_0 + B_1 x_1}$$

```
Análisis de
           mod_qw <- lm(wk ~ Age + Sex + Region + Zone,
encuestas de
hogares con R
                          data = encuesta)
 Andrés
           encuesta$wk2 <- encuesta$wk/predict(mod_qw)</pre>
 Gutiérrez.
  Ph D
 Stalvn
 Guerrero
           diseno <- encuesta %>%
  M Sc
             as_survey_design(
               strata = Stratum,
               ids = PSU,
               weights = wk2,
               nest = T
           modelo <- svyglm(formula = Income ~ Age + Sex +
                                Region + Zone,
                                 design = diseno,
                               family = Gamma(link = "inverse"))
           broom::tidy(modelo)
```

Análisis de encuestas de hogares con R

term	estimate	std.error	statistic	p.value
(Intercept)	0.0024	2e-04	10.9726	0.0000
Age	0.0024	0e+00	-1.2838	0.2019
SexMale	-0.0001	0e+00	-1.8423	0.0681
RegionSur	-0.0001	2e-04	-0.2316	0.8173
RegionCentro	0.0000	2e-04	0.1383	0.8903
RegionOccidente	0.0002	2e-04	1.0196	0.3101
RegionOriente	0.0000	3e-04	0.0319	0.9746
Zone Urban	-0.0009	2e-04	-4.8762	0.0000

[1.] 0.591 0.09

Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc

Análisis de encuestas de Es útil la estimación de la dispersión que ofrece *svyglm* de forma predeterminada dado que no tiene en cuenta la información especial sobre la dispersión que se puede calcular utilizando la distribución Gamma. **No todos los GLM tienen una forma mejorada y específica del modelo para estimar**.

```
#library(MASS)
(alpha = MASS::gamma.dispersion(modelo))

## [1] 0.4831

mod_s <- summary(modelo, dispersion = alpha)
mod_s$dispersion

## variance SE</pre>
```

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

mod_s\$coefficients

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0024	2e-04	10.9726	0.0000
Age	0.0000	0e + 00	-1.2838	0.2019
SexMale	-0.0001	0e + 00	-1.8423	0.0681
RegionSur	-0.0001	2e-04	-0.2316	0.8173
RegionCentro	0.0000	2e-04	0.1383	0.8903
RegionOccidente	0.0002	2e-04	1.0196	0.3101
RegionOriente	0.0000	3e-04	0.0319	0.9746
ZoneUrban	-0.0009	2e-04	-4.8762	0.0000

Utilizando la función predict

```
Análisis de
           pred <- data.frame(</pre>
encuestas de
hogares con R
              predict(modelo, type = "response", se = T))
 Andrés
            pred_IC <- data.frame(</pre>
 Gutiérrez,
  Ph D
              confint(predict(modelo, type = "response", se = T))
  Stalvn
 Guerrero
            colnames(pred_IC) <- c("Lim_Inf", "Lim_Sup")</pre>
  M Sc
            pred <- bind_cols(pred, pred_IC)</pre>
            pred$Income <- encuesta$Income</pre>
            pred$Age <- encuesta$Age</pre>
            pred %>% slice(1:6L)
```

response	SE	Lim_Inf	Lim_Sup	Income	Age
456.8	41.80	374.9	538.8	409.9	68
434.4	38.07	359.8	509.0	409.9	56
423.5	37.33	350.3	496.7	409.9	24
441.2	39.35	364.1	518.3	409.9	26
416 7	27.70	240 6	400.7	400.0	2

Scaterplot de la predicción

```
Análisis de
encuestas de
hogares con R
```

Utilizando la función predict

Análisis de encuestas de hogares con R

Efecto del modelo.

```
Análisis de
encuestas de
hogares con R
```

Efecto del modelo.

Análisis de encuestas de hogares con R

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

El modelo de regresión logit multinomial es la extensión natural del modelo de regresión logística binomial simple para encuestar respuestas que tienen tres o más categorías distintas. Esta técnica es más apropiada para variables de encuesta con categorías de respuesta nominales.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

Para ajustar el modelo debemos tener presente que:

■ Su variable dependiente debe medirse en el nivel nominal.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

- Su variable dependiente debe medirse en el nivel nominal.
- Tiene una o más variables independientes que son continuas, ordinales o nominales (incluidas las variables dicotómicas).

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

- Su variable dependiente debe medirse en el nivel nominal.
- Tiene una o más variables independientes que son continuas, ordinales o nominales (incluidas las variables dicotómicas).
- Tener independencia de las observaciones y la variable dependiente debe tener categorías mutuamente excluyentes y exhaustivas

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

- Su variable dependiente debe medirse en el nivel nominal.
- Tiene una o más variables independientes que son continuas , ordinales o nominales (incluidas las variables dicotómicas).
- Tener independencia de las observaciones y la variable dependiente debe tener categorías mutuamente excluyentes y exhaustivas
- No debe haber multicolinealidad. La multicolinealidad ocurre cuando tiene dos o más variables independientes que están altamente correlacionadas entre sí.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

- Su variable dependiente debe medirse en el nivel nominal.
- Tiene una o más variables independientes que son continuas , ordinales o nominales (incluidas las variables dicotómicas).
- Tener independencia de las observaciones y la variable dependiente debe tener categorías mutuamente excluyentes y exhaustivas
- No debe haber multicolinealidad. La multicolinealidad ocurre cuando tiene dos o más variables independientes que están altamente correlacionadas entre sí.
- Debe haber una relación lineal entre cualquier variable independiente continua y la transformación logit de la variable dependiente

Andrés Gutiérrez, Ph.D. Stalvn

Guerrero

M Sc

Análisis de encuestas de

- Su variable dependiente debe medirse en el nivel nominal.
- Tiene una o más variables independientes que son continuas , ordinales o nominales (incluidas las variables dicotómicas).
- Tener independencia de las observaciones y la variable dependiente debe tener categorías mutuamente excluyentes y exhaustivas
- No debe haber **multicolinealidad**. La multicolinealidad ocurre cuando tiene dos o más variables independientes que están altamente correlacionadas entre sí.
- Debe haber una relación lineal entre cualquier variable independiente continua y la transformación logit de la variable dependiente
- No debe haber valores atípicos, valores de apalancamiento elevados o puntos muy influyentes .

Análisis de encuestas de hogares con R Andrés

> Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

$$Pr(Y_{ik}) = Pr(y_i = k \mid \mathbf{x}_i : \beta_1, \dots \beta_m) = \frac{\exp(\beta_{0k} + \beta_k \mathbf{x}_i)}{\sum_{j=1}^m \exp(\beta_{0j} + \beta_j \mathbf{x}_i)}$$

donde β_k es el vector de coeficiente de \boldsymbol{X} para la k-ésima categoría de Y.

```
Análisis de
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc.
```

```
diseno %>% group_by(Employment) %>%
summarise(Prop = survey_mean(vartype = c("se", "ci")
```

Employment	Prop	Prop_se	Prop_low	Prop_upp
Unemployed	0.0323	0.0057	0.0210	0.0435
Inactive	0.2734	0.0107	0.2523	0.2946
Employed	0.4142	0.0139	0.3867	0.4417
NA	0.2801	0.0140	0.2524	0.3078

diseno %>% filter(Age >= 15)%>% group_by(Employment)
 summarise(Prop = survey_mean(vartype = c("se", "ci"

Employment	Prop	Prop_se	Prop_low	Prop_upp
Unemployed	0.0448	0.0078	0.0294	0.0602

```
encuestas de
hogares con R
Andrés
Gutiérrez,
Ph.D.
Stalyn
Guerrero
M.Sc.
```

Análisis de

La función broom::tidy(), que normalmente usamos para limpiar y estandarizar la salida del modelo, no puede ser empleada en este caso, sin embargo, en el link² encuentra la función que utilizamos a continuación.

²https://tech.popdata.org/pma-data-hub/posts/2021-08-15-covid-analysis/

```
Análisis de
encuestas de
hogares con R
```

Análisi encuest hogares Andr Gutiér Ph.I Staly Guerr M.S

y.level	term	estimate	std.error	statistic	p.valu
1	(Intercept)	2.2904	0.7846	2.9193	0.003
1	Åge	0.0247	0.0098	2.5132	0.012
1	SexMale	-2.2195	0.3063	-7.2454	0.000
1	RegionSur	-0.4362	0.7146	-0.6105	0.541
1	RegionCentro	0.3713	0.6277	0.5916	0.554
1	RegionOccidente	0.2536	0.6336	0.4002	0.689
1	RegionOriente	0.6176	0.6730	0.9177	0.358
1	Zone Urban	-0.2346	0.4335	-0.5412	0.588
2	(Intercept)	2.0931	0.6322	3.3108	0.000
2	Age	0.0207	0.0084	2.4672	0.013
2	SexMale	-0.5563	0.2718	-2.0470	0.040
2	RegionSur	-0.2791	0.5746	-0.4857	0.627
2	RegionCentro	0.2558	0.5373	0.4760	0.634
2	RegionOccidente	0.0928	0.5143	0.1804	0.856
2	RegionOriente	0.4706	0.6159	0.7640	0.444

Plot coeficientes.

theme_bw() + theme(

```
Análisis de
           tab_model %>%
encuestas de
hogares con R
             mutate(
  Andrés
               model = if_else(
 Gutiérrez,
  Ph.D.
                  y.level == 1,
  Stalvn
 Guerrero
                  "Inactive",
  M Sc
                  "Employed",
               ),
                sig = gtools::stars.pval(p.value)
             ) %>%
             dotwhisker::dwplot(
               dodge size = 0.3,
               vline = geom_vline(xintercept = 1, colour = "grey
                                      linetype = 2)
             guides(color = guide_legend(reverse = TRUE)) +
```

Plot coeficientes.

Análisis de encuestas de hogares con R

modelo multinomial función alternativa.

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

La función svy_vglm realiza la estimación de los paramatros, sin embargo, presenta limitaciones para hacer las predicciones con el modelo, por lo tanto, podemos usar como alternativa.

```
library(CMAverse)
model_mul2 <- svymultinom(
  formula = Employment ~ Age + Sex + Region + Zone,
  weights = diseno_15$variables$wk2,
  data = diseno_15$variables
)
summary(model_mul2)$summarydf</pre>
```

Modelo multinomial función alternativa.

0.0207

Employed:(Intercept)2.0929

Employed:Age

Employed:SexMale

Análisis o encuestas hogares co Andrés Gutiérre: Ph.D. Stalyn Guerrero M.Sc.

		C. I	_	
		Std.	t	
	Estimate	Error	value	Pr(> t)
Inactive:(Intercept)	2.2901	0.5587	4.0992	0.0000
Inactive:Age	0.0248	0.0100	2.4721	0.0135
Inactive:SexMale	-	0.3162	-	0.0000
	2.2195		7.0182	
Inactive:RegionSur	-	0.4258	-	0.3058
	0.4361		1.0243	
Inactive:RegionCent	r © .3715	0.4910	0.7566	0.4494
Inactive:RegionOccid	d ⊕ n ⊉5 37	0.4553	0.5573	0.5774
Inactive:RegionOrier	nt@e.6175	0.5158	1.1973	0.2314
In active: Zone Urban	-	0.2907	-	0.4197
	0.2346		0.8071	

0.5427

0.0096

0.3053

3.8563

2.1496

0.0001

0.0317

0.0686

Predicción del modelo

```
Análisis de
encuestas de
hogares con R
```

```
tab_pred <- predict(model_mul2, type = "probs") %>%
  data.frame()
tab_pred %>% slice(1:15)
```

Predicción del modelo

Análisis de encuestas de hogares con R

Unemployed	Inactive	Employed
0.0387	0.2237	0.7376
0.0151	0.5948	0.3901
0.0310	0.5551	0.4139
0.0908	0.1854	0.7238
0.0134	0.6005	0.3861
0.0317	0.5537	0.4146
0.0467	0.2157	0.7376
0.0173	0.5878	0.3949
0.0791	0.1921	0.7289
0.0295	0.2350	0.7355
0.0095	0.6170	0.3735
0.0621	0.2032	0.7347
0.0687	0.1986	0.7327
0.0839	0.1892	0.7268
0.0730	0.1958	0.7312

Predicción del modelo

```
Análisis de encuestas de hogares con R

Andrés
Gutiérrez, Ph.D. Stalyn
Guerrero M.Sc.

Análisis de encuestas de hogares con R

Misc.

diseno_15$variables %<>%
mutate(predicion = predict(model_mul2))

diseno_15 %>% group_by(Employment) %>%
summarise(Prop = survey_mean(vartype = c("se", "ci"
```

Employment	Prop	Prop_se	Prop_low	Prop_upp
Unemployed	0.0448	0.0078	0.0294	0.0602
Inactive	0.3798	0.0150	0.3501	0.4096
Employed	0.5754	0.0131	0.5495	0.6013

```
diseno_15 %>% group_by(predicion) %>%
  summarise(Prop = survey_mean(vartype = c("se", "ci"))
```

¡Gracias!

Análisis de encuestas de hogares con R

> Andrés Gutiérrez, Ph.D. Stalyn Guerrero M.Sc.

> > Email: andres.gutierrez@cepal.org