Face recognition for automatic class attendance system

Pablo Aguado – IS15EC001

Motivation

- Attendance taking tries to increase the involvement of students
- A lot of learning time is lost:
 - 160 students -> 15 minutes
 - Posterior copy to digital system, by the teacher
- State-of-the-art face recognition systems performance is satisfactory
- Also useful for similar scenarios: assemblies, meetings, conferences...

Why face recognition

Face recognition

- No contact
 - No damage
 - More hygienic
- Large groups at the same time
- May be able to use existing cameras

Cards, Biometrics, RFID

- Important initial investment
- Needs user cooperation
 - Large queues
 - Same time than taking attendance

Literature review

- More than 35 papers reviewed
- Overall bad quality
 - Incomplete
 - no results
 - plagiarized...
- Just another application

Aspects to consider

- Hardware
 - Cameras
 - N°, position, angle, resolution, zoom, movement
 - Computer
 - PC
 - Embedded
 - Server-side processing
 - Connection between cameras and computer
 - Power

Aspects to consider

- Feature extraction
- Face detection
- Pre-processing techniques
- Anti-spoofing
- Imaging: one, multiple
 - When?
- Unknown

Aspects to consider

- Feedback
 - Students
 - Teacher
- Report
- GUI
- Level of automation
- Databases
 - Connection
 - Amount of faces
- Enrolling system

System proposal: Constraints

- One camera per classroom
 - Wide angle, high resolution
- Students will face the camera and not intentionally occlude their faces
- Viola-Jones face detector
- EigenFaces feature description
- Matlab

System proposal

System proposal

- Object oriented programming
 - Modular framework
 - Easy to upgrade

```
FeatureExtractor = Eigenfaces();
FeatureExtractor.getFeatures(image_array);
...
FeatureExtractor = LBP();
```

- Super resolution
 - For images, before detection
 - For faces, before recognition : Face hallucination. Uses known information about faces.

- Face frontalization before recognition
 - Geometric normalization
 - Tal Hassner et al. (2014-2015)

Tan & Triggs photometric normalization

- Database
 - Multiple faces for each student
 - Different angles, illumination, expressions
 - Unique ID
- Unrecognized
 - Manual verification if reliability under pre-set threshold

- Classification: k Nearest Neighbours
 - Distance functions: Cityblock, Euclidean, Standardized
 Euclidean, Mahalanobis, Cosine, Chi Square

- Classes
 - Image
 - TestImage
 - Student
 - Class
 - ClassDatabase
 - FeatureExtractor
 - EigenFaces
 - Classifier

- Load photos from database. Split and save in testing and training sets.
- Preprocess and save training faces (detection, normalization)
- Class object, load IDs corresponding to that class. Load faces for that class. Train feature extractor. Train classifier
- Load test images. Preprocess. Classify and evaluate reliability

• Results:

 10 fold mean loss for different k nearest neighbours

Distance	knn = 1	knn = 3	knn = 5	knn = 7
Euclidean	0,22857143	0,22857143	0,21428571	0,25
Seuclidean	0,18571429	0,18571429	0,2	0,19285714
Cosine	0,22142857	0,21428571	0,19285714	0,2

- Results:
 - Correctly recognized face

Incorrectly recognized face

False negative

Input program

- Classes:
 - InputSequence
 - DetectedPerson
- Extract sample frames from a video
- Detect faces in frames
- All faces in the same position are assigned to the same detected person

Input program

Globally rotation invariant multi-scale co-occurrence local binary pattern (MCLBP)

MCLBP

MCLPB/C

- "Completed" or "center gray level"
- Feature vector for pixels above mean pixel value
- Feature vector for pixels below mean pixel value
- 443 + 443 = 886 components

MCLBP/C

- Database: FERET
- September 96 evaluation protocol
 - FA: Gallery / Training set
 - Probe sets:
 - FB
 - FC
 - Dup1
 - Dup2

MCLBP/C

MCLPB/C

MCLPB/C

MCLPB/C with FAFB probe set

Euclidean	57
Euclidean	68
Euclidean	71
Euclidean	32
Cityblock	49
Euclidean	8
Cityblock	10
	Euclidean Euclidean Euclidean Cityblock Euclidean

Our results

Liu et al. 2014

Method	FB	fc	dup. I	dup. II
PCA	0.85	0.65	0.44	0.22
Fisherface	0.94	0.73	0.55	0.31
LBP	0.97	0.79	0.66	0.64
Gabor-M+FLDA	0.9615	0.7629	0.5817	0.3419
LGBP-M [4]	0.98	0.97	0.74	0.71
E-GV-LBP-M [5]	0.9841	0.9897	0.8199	0.8162
VLD-GLBP	0.9707	0.9536	0.7230	0.7009

Phillips et al. 2000

MCLPB/C with FAFB probe set

Resu	lts at	Rank	: 1 ((%)
------	--------	------	-------	-----

Metric				
L1	L2	MAH	cos	
Fb				
82.26	82.18	64.94	81.00	
81.00	81.51	64.94	80.92	
64.94	74.31	64.94	83.85	
78.08	82.76	70.88	81.51	
	Fc	c		
55.67	25.26	32.99	18.56	
18.04	17.53	32.99	12.89	
15.98	44.85	32.99	64.95	
26.80	26.80	41.24	20.62	
	Du_{l}	p1		
36.29	33.52	25.62	33.52	
32.55	31.86	25.62	32.27	
28.81	31.99	25.62	42.66	
34.76	32.96	27.70	33.38	
	Du_{l}	p2		
17.09	10.68	14.53	11.11	
8.97	7.69	14.53	8.97	
16.24	19.66	14.53	28.21	
16.24	10.26	16.67	10.68	
	82.26 81.00 64.94 78.08 55.67 18.04 15.98 26.80 36.29 32.55 28.81 34.76	L1 L2 82.26 82.18 81.00 81.51 64.94 74.31 78.08 82.76 55.67 25.26 18.04 17.53 15.98 44.85 26.80 26.80 Duy 36.29 33.52 31.86 31.99 34.76 32.96 Duy 17.09 10.68 8.97 7.69 16.24 19.66	Fb 82.26 82.18 64.94 81.00 81.51 64.94 64.94 74.31 64.94 78.08 82.76 70.88 Fc 55.67 25.26 32.99 18.04 17.53 32.99 15.98 44.85 32.99 26.80 41.24 Dupl 36.29 33.52 25.62 32.95 31.86 25.62 28.81 31.99 25.62 34.76 32.96 27.70 Dup2 17.09 10.68 14.53 8.97 7.69 14.53 16.24 19.66 14.53	

Delac et al. 2005

Conclusions

- Real 90% recognition rate can be more than enough for earning time
 - Not state-of-the-art needed, but EigenFaces is not enough
- Field conditions should be evaluated
 - Pan/zoom/tilt camera Super-resolution
 - Robust feature extractor
 - Photometric normalization
 - Geometric normalization

Conclusions

- Testing code needs more development
 - All system features should be previously determined
 - Object orientation is good, but classes should be reviewed
- Hardware platform should be determined for final code
- Public code was very useful for developing.
 Sharing code is important for research.

Conclusions

- MCLBP should be tested again, assuring that the framework is already working for PCA and LBP.
 - SVM with Chi squared kernel?