Contrastive Mixture of Posteriors for Counterfactual Inference, Data Integration and Fairness

Lucas Cosier

ETH Zürich lcosier@ethz.ch

Presentation for the Topics in Medical Machine Learning Seminar November 15, 2022

Presentation Overview

- Background
 - Variational Auto-Encoders (VAEs)
 Conditional Variational Auto-Encoders (CVAEs)
 Counterfactual Inference
- 2 Contrastive Mixture of Posteriors

Aligning Representations
The new objective
Counterfactual identifiability in CVAE

- 3 Experiments
 Datasets and Results
- **4** Closing Remarks

Introduction

Background

Figure: the VAE: the encoder generates a latent representation of the input x which the decoder samples from to generate new patterns x'

- Generative models which explain high-dimensional features $x \in \mathcal{X}$ using low-dimensional latent variables $z \in \mathcal{Z}$
- use an approximate posterior $q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$ to compute an approximation to the marginal likelihood $p_{\theta}(x)$
- **important**: training done with isotropic priors $p(z) = \mathcal{N}(0, I)$

Lucas C. Cosier (ETH)

November 15, 2022 3/23

Conditional Variational Auto-Encoders (CVAEs)

Conditional Variational Auto-Encoders

Problem: VAEs cannot generate a specific type of observation x on demand. **Solution:** Augment data by considering pairs $\{(x_i, c_i)\}_{i=1}^n$, where c_i s are categorical variables (representing some condition).

Conditional Variational Auto-Encoders (CVAEs)

Training CVAEs

• Training procedure changes very little:

$$\log p_{\theta}(\boldsymbol{x} \mid c) \ge \mathbb{E}_{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, c)} \left[\log p_{\theta}(\boldsymbol{x} \mid \boldsymbol{z}, c) \right] - KL(q_{\phi}(\boldsymbol{z} \mid \boldsymbol{x}, c) || p_{\theta}(\boldsymbol{z} \mid c)) \tag{1}$$

- For $c \neq \phi \rightarrow$ CVAE, when $c \equiv \phi$ the original VAE is retrieved
- Other CVAE (trVAE¹, VFAE²) variants introduce additional terms to the ELBO to penalize overlap (like the MMD kernel)

¹Lotfollahi et al. (2019)

²Christos et al. (2015)

Pearl's Causal Hierarchy³

Layer	Typical Activity	Typical Question
\mathbf{L}_1 Association $p(y \mid x)$	Seeing	How would seeing x change my belief in y ?
L_2 Intervention $p(y \mid do(x), z)$	Doing	What if I do x?
L_3 Counterfactuals $p(y_{x \neq x'} \mid x', y')$	Imagining	How would the observation have changed if x' had been replaced by x ?

³For more details see Pearl (2009)

Lucas C. Cosier (ETH)

Counterfactual Inference

The Structural Equation Model

Figure: The Structural Equation Model considered. z and c are independent in the prior.

- Counterfactual questions are difficult to answer because they refer to unobservable data
- A principled approach to such questions is to adopt the framework of Structural Equation Models

Background

Counterfactual Inference

The Structural Equation Model

Counterfactual inference can be then performed by

- **1** *abduction*: inferring the latent z from x and c using $p(z \mid x, c)$
- **2** *action*: swap c for c'
- **3** *prediction*: use $p(x \mid z, c')$ to obtain a predictive distribution for the counterfactual

Under the assumption that $z \perp \!\!\! \perp c$ counterfactual distribution of x_i can be written as

$$p(x_{c=c'} \mid x_i, c_i) = \int \underbrace{p(z \mid x_i, c_i)}_{\text{approx. by } g_{\theta}} \underbrace{p(x \mid z, c')}_{\text{approx by } p_{\theta}} dz$$
 (2)

Contrastive Mixture of Posteriors

Summary: Learning a CVAE where $z \perp \!\!\! \perp c$ under encoder q_{ϕ} by penalising misalignment between different conditions as part of the variational framework

Figure: Latent representations of a single-cell gene expression under c = red and $\neg c = black$

A TO A CONTRACTOR OF A STATE OF A

Aligning Representations

Ties to Counterfactual Inference, Fairness and Data Integration

- **Counterfactual Inference.** Non-trivial since CVAEs may choose to maximize $p_{\theta}(x|c)$ and ignore the constraint, which violates the SEM. Also requires additional assumptions.
- Data Integration. x may suffer from noise injected from experimental conditions. z can be used instead for downstream tasks
- **Fairness.** Since *z* contains information about *x* can use it as proxy to make predictive rules about *x*

The new objective

CoMP Penalty

- Include a penalty term $\underbrace{\log q(z_i \mid c_i)}_{\text{increase entropy}} \underbrace{\log q(z_i \mid \neg c_i)}_{\text{increase overlap}}$
- For some batch $\{(\mathbf{x}_i, c_i)\}_{i=1}^B$ let $I_c = \{j : c_j = c\}$ and $I_{\neg c}$ be its complement.
- Then, $\log q(z_i \mid \neg c_i) \approx \log \left(\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(z_i \mid x_j, c_j) \right)$ $\Rightarrow \frac{\mathsf{CoMP}}{\mathsf{Penalty}} = \frac{1}{B} \sum_{i=1}^{B} \log \left(\frac{\frac{1}{|I_{c_i}|} \sum_{j \in I_{c_i}} q(z_i \mid x_j, c_i)}{\frac{1}{|I_{\neg c_i}|} \sum_{j \in I_{\neg c_i}} q(z_i \mid x_j, c_j)} \right) \tag{3}$

Background

- The penalty is actually an upper bound to a sum of weighted KL terms $KL(q(z \mid c)||q(z \mid \neg c))$
- Bound becomes tight as $B \to \infty$
- Adding the CoMP penalty to the familiar CVAE objective results in the complete training objective for a batch of size B:

$$\mathcal{L}(\theta, \phi) = \frac{1}{B} \sum_{i=1}^{B} \left[\log \left(\frac{p_{\theta}(\mathbf{x}_i \mid \mathbf{z}_i, c_i) p(\mathbf{z}_i)}{q_{\phi}(\mathbf{z}_i \mid \mathbf{x}_i, c_i)} \right) \right] - \gamma \times \mathsf{CoMP} \; \mathsf{Penalty}$$

Counterfactual identifiability in CVAE

Towards Identifiable Counterfactuals

Theoretical results

- if $z \sim \mathcal{N}(0, I)$ then **identifiability breaks down** in CVAEs
- if $z \sim r(z)$, $r
 eq \mathcal{N}$, necessitates additional assumptions to ensure counterfactual identifiability:
 - 1 linear decoders for each condition e.g. $x = A_c z$
 - 2 must be decomposable as Bs, s_i are non-Gaussian of unit variance
 - $PN \neq I$, $PNs \neq s$
- For CoMP particularly if $KL(r(z)|||p(z)|) \le K_1$ this **ensures** consistency and identifiability.

Evaluation Metrics

Two goals

- 1 Testing the extent of $z \perp \!\!\! \perp c$
 - k-nearest Batch Effect Test⁴

Experiments

- Local Silhouette Coefficient $s_{k.c.}$
- 2 Quantify useful information retained in z
 - mean Silhouette Coefficient $\tilde{s}_{k,c}$ and mean kBET: s and kBET are calculated on the d_i subpopulations

⁴Büttner et al. (2019)

⁵Rousseauw (1987)

Alignment of tumour and cell-line samples

Tumour/Cell line dataset. Warren et al. (2021)

Task: dataset integration and batch effect correction

• consists of bulk expression profiles for tumours $(n \approx 12k)$ and cancer cell-lines (n = 1.2k) across 39 different cancer types (the d_i 's)

	Accuracy	s	KBET	s	m-kBET
VAE	0.209	0.658	0.974	0.803	0.581
CVAE	0.328	0.554	0.931	0.684	0.571
VFAE	0.585	0.168	0.258	0.198	0.188
trVAE	0.585	0.096	0.163	0.138	0.123
Celligner	0.578	0.082	0.525	0.568	0.226
CoMP	0.579	0.023	0.160	0.094	0.101

Figure: Tumour / Cell Line experiment results, with k=100, c= Cell Line, and parameter $\alpha=0.01$ for the kBET and m-kBET metrics. $s_{k,c}$ and $\tilde{s}_{k,c}$ are the two Silhouette Coefficient variants introduced earlier. Top scores are in **bold**.

Lucas C. Cosier (ETH)

November 15, 2022

15 / 23

Experiments

Alignment of tumour and cell-line samples

Results

Figure: 2D UMAP projection of the CoMP and trVAE posterior means of z_i from Tumour/Cell Line data and the detailed Prostate Cancer tumour sample clusters.

Lucas C. Cosier (ETH)

November 15, 2022

16 / 23

Experiments

Background

Interventions

Dataset details and data processing

stimulated/untreated single-cell PBMCs expression dataset⁶ Task: Counterfactual inference.

- $\approx 14k$ single-cell expression profiles for peripheral blood mononuclear cells (PBMCs), various immune cell types
- 7k cells stimulated with interferon (IFN)- β , 6k left untreated

Figure: Stimulated and control PBMC scRNA-seq data with colours highlighting immune cell types

Lucas C. Cosier (ETH) November 15, 2022

Interventions

Figure: The difference in gene expression values for the top 50 differentially expressed genes (up-regulated: red, down-regulated: blue) between IFN- β stimulated cells and counterfactually stimulated control cells for CD14 monocytes, dendritic cells (DC) and natural killer (NK) cells.

Experiments 00000

Background

Fair classification

Dataset details and results

UCI Adult Income dataset

 contains information relating to education, marriage status, ethnicity, self reported gender of census participants and a binary high/low income label

	Gender Acc	Income Acc	s	kBET
Original data	0.796	0.849	0.067	0.786
VAE	0.764	0.812	0.054	0.748
CVAE	0.778	0.819	0.054	0.724
VFAE-s	0.680	0.815	-	-
VFAE-m	0.789	0.805	0.046	0.571
trVAE	0.698	0.808	0.066	0.731
CoMP	0.679	0.805	0.011	0.451

Figure: Experiment results with k = 1000, c = Male for silhouette score s, and k = 100, $\alpha = 0.01$ for kBET. A lower gender prediction accuracy is better; 0.675 is the lowest achievable

Lucas C. Cosier (ETH) November 15, 2022 19/23

Conclusion

CoMP

- is a novel method that **enforces** latent alignment $z \perp \!\!\! \perp c$ as part of the variational framework
- introduces identifiability and consistency results to show that alignment is not always sufficient to perform valid counterfactual inference with a CVAE
- performs very well in areas of counterfactual inference, fairness and data integration

The gap between theory (which assumes linear decoders) and practice (non-linear decoders) still needs to be addressed

References I

Background

Allison Warren et al. (2021)

Global computational alignment of tumor and cell line transcriptional profiles

Nature communications, 12(1), 1-12

Hyun Min Kang et al. (2018)

Multiplexed droplet single-cell RNA-sequencing using natural genetic variation

Nature biotechnology 36(1), 89-94.

Judea Pearl (2009)

Causality

Cambridge university press 2009.

Louisos Christos et al. (2015)

The variational fair autoencoder arXiv preprint arXiv:1511.00830

References II

Background

Maren Büttner et al. (2019)

A test metric for assessing single-cell RNA-seq batch correction *Nature methods*, 16(1), 43-49.

Mohammad Lotfollahi et al. (2019)

Conditional out-of-sample generation for unpaired data using trVAE arXiv preprint arXiv:1910.01791

Peter J. Rousseauw (1987)

Silhouettes: a graphical aid to the interpretation and validation of cluster analysis

Journal of computational and applied mathematics, 20, 53-65.

The End

Questions? Comments?