Project Data Mining

The Goal of Our Project

The objective of this project was to develop an **automated image recommender system** based on **open-access image data retrieved from Wikidata via SPARQL queries**. The system was designed to follow a structured pipeline, from **data acquisition to user preference modeling and recommendation generation**.

However, during the implementation, **several limitations emerged** that prevented the system from functioning correctly. Issues related to **metadata extraction**, **classification accuracy**, **and recommendation reliability** significantly impacted the project's success.

Data Sources of Our Images and License

1. Image Sources

Images were retrieved using **SPARQL queries on Wikidata**, specifically targeting images **hosted on Wikimedia Commons**. The dataset was centered around **animals** and was manually structured to ensure a sufficient number of images.

The images were categorized based on taxonomic classification, including:

- Mammals and Birds
- Reptiles and Fish
- Invertebrates

2. Image Licensing

All images were obtained via Wikimedia Commons.

Size of Our Data

We collected **approximately 400 images** using **Wikidata queries**, representing different **animal taxonomic groups**.

Information That We Decided to Store for Each Image

For each retrieved image, we stored the following information:

- Image URL Direct link to the image hosted on Wikimedia Commons.
- Taxonomic Classification Classification of the subject (e.g., species, family).
- **EXIF Metadata** Image attributes such as format, size, and orientation (when available).
- **Dominant Colors** Extracted using **K-Means clustering** to detect the **three most** prominent colors.

These details were stored in **JSON format** for further analysis.

Information Concerning User Preferences

The system attempted to build a user profile based on selected images by storing:

- Favorite colors (extracted using K-Means clustering).
- Preferred image orientation (landscape, portrait, or square).
- Most frequently selected tags (either system-generated or user-defined).
- Chosen images (explicit selections by the user).

Although this information was successfully stored, it was not effectively used in the recommendation system due to classification issues.

Data Mining and Machine Learning Models Used

1. K-Means Clustering (Color Extraction)

- Purpose: Extract dominant colors from images.
- Implementation: K-Means clustering (k=3) was used to group pixel colors.
- Outcome: Color data was successfully extracted, but its use in recommendations was limited.

2. Content-Based Filtering (Recommendation System)

Approach: The system attempted to **recommend images based on similarity in colors and tags**.

The filtering did not work properly, might be due to Metadata inconsistencies.

Self-Evaluation of Our Work

The workload was **evenly distributed** between the two of us.

Despite the many issues, the project provided valuable experience in data mining, SPARQL queries, and image processing techniques.

Remarks Concerning the Practical Sessions, Exercises, and Scope for Improvement

All practical sessions focused on **analyzing pre-written code rather than writing our own**. While this was useful for understanding **existing implementations**, we believe that **actively writing and debugging our own code** would have been a more effective learning experience.

Conclusion

This project attempted to implement an **automated image recommender system** using **Wikidata queries and machine learning techniques**. While the **image retrieval and annotation steps were successfully implemented**, the **classification and recommendation system did not work as intended**.

Despite the **unsuccessful outcome**, the project provided insights into **automated data processing**, **SPARQL queries**, **and the challenges of machine learning in recommendation systems**.