





# Microchip: A Partner in Your Success

Microchip is a leading provider of microcontroller and analog semiconductors, providing low-risk product development, lower total system cost and faster time to market for thousands of diverse customer applications worldwide. Offering outstanding technical support along with dependable delivery and quality, Microchip serves over 70,000 customers in more than 65 countries who are designing high-volume embedded control applications in the consumer, automotive, office automation, communications and industrial control markets worldwide.

### 8-bit Microcontrollers

Microchip's PIC® and AVR® microcontrollers (MCUs) represent two dominant architectures for embedded design. With a combined 45 years' experience developing commercially available and cost-effective 8-bit MCUs, Microchip is the supplier of choice for many due to its strong legacy and history of innovation in 8-bit. Our current lineup of 8-bit PIC and AVR MCUs incorporates the latest technologies to enhance system performance while reducing power consumption and development time. With more than 1,200 devices, Microchip offers the industry's largest 8-bit portfolio. Key features include Core Independent Peripherals, low-power performance with picoPower® and eXtreme Low Power (XLP) technology, industry-leading robustness driven by best-in-class EMI/EMC performance and simplified development with our suite of easy-to-use development tools. For more information visit: www.microchip.com/8bit

## 16-bit PIC Microcontrollers

The PIC24 is a cost-effective, low-power family of MCUs, featuring devices with eXtreme Low Power (XLP) technology, 16 MIPS performance and dual partition memory up to 1024 KB of Flash with a rich set of Core Independent Peripherals (CIPs). Our portfolio offers an upgrade in features and peripherals for applications that are pushing the boundaries of 8-bit MCU capabilities, offering more memory, more pins and faster peripherals in the same ecosystem for easy migration. The PIC24 MCUs also feature dedicated peripherals and functions to help increase the reliability in safety critical applications and with AEC Q100 qualification, the high-performance PIC24 MCUs offer 3V, 5V and up to 150°C robust operations. For more information visit: www.microchip.com/16bit

# dsPIC® Digital Signal Controllers

The dsPIC family of Digital Signal Controllers (DSCs) features a fully implemented Digital Signal Processor (DSP) engine with up to 100 MIPS performance capable of high-efficiency, high-precision variable speed, constant torque PI control and Field Oriented Control (FOC) motor control. Equipped with high-speed Analog-to-Digital Converters (ADCs), op-amps, and comparators coupled with functional safety features and operations up to 150°C, the dsPIC33 family is ideal for PMSM, ACIM and BLDC motor control in industrial, medical,

automotive and consumer applications.

The dsPIC family also offers dual cores with up to 100 MIPS equipped with high speed PWMs, ADCs, PGAs to handle very tight control loop execution and separate time-critical control loops from housekeeping making them ideal for demanding power conversion applications and lighting in industrial, medical, automotive and consumer applications. The dsPIC33 MCUS also offer the capability to live update firmware, which is critical for server applications that cannot afford any downtime. For more information visit: www.microchip.com/dspic.

## 32-bit Microcontrollers

From simple embedded control to advanced graphics and secured Internet of Things applications, Microchip portfolio of 32-bit MCUs can meet your design challenge. Spanning a wide range of options—from offering the industry's lowest power consumption to delivering the highest performance—these MCUs run at up to 600 DMIPs and deliver ample code and data space with up to 2048 KB Flash and 512 KB RAM with 32 MB integrated DDR2 DRAM or 128 MB externally addressable options. They are supported by novel and easy-to-use software solutions to speed up your application development. For more information visit: www.microchip.com/32bit

# 32-bit Arm® Microprocessors

As you push beyond the boundaries of 32-bit MCUs, the SAM9 (ARM9) and SAMA5 (Cortex® A5) microprocessor (MPU) families provide the power and performance needed for demanding applications. They feature up to 600 MHz (942 DMIPS) operation and support for up to 512 MB of external DDR2 or DDR3 DRAM. Microchip's MPUs offer a rich set of peripherals and user interfaces including Gigabit Ethernet MACs, high-speed USB, hardware video decoding, capacitive touch, 12-bit CMOS image (camera) sensors, I2S audio interfaces and advanced 24-bit graphic LCD controllers with overlays. They deliver market-leading low power (down to 0.3 mW sleep) and advanced security features needed for Internet-connected gateways and cost-sensitive industrial and consumer applications. The MPU devices come with free Linux® OS and third-party tools and software, and low-cost hardware development boards are available to ease development. For more information visit: www.microchip.com/mpu

2 www.microchip.com

# Microchip: A Partner in Your Success

# **Analog and Interface Products**

Microchip's integrated analog technology, peripherals and features are engineered to meet today's demanding design requirements. Our extensive spectrum of analog products addresses thermal management, power management, battery management, mixed-signal, linear, interface and safety and security solutions. Our broad portfolio of stand-alone analog and interface devices offers highly integrated solutions that combine various analog functions in space-saving packages and support a variety of bus interfaces. Many of these devices support functionality that enhances the analog features currently available on PIC microcontrollers. For more information visit: www.microchip.com/analog.

# **Security and Authentication Products**

Microchip offers a variety of crypto element devices that offer an ideal way to provide the three pillars of security—authentication, data integrity, and confidentiality—in applications such as disposables, accessories and nodes used in home automation, industrial networking, medical and other applications. Crypto devices employ ultra-secure, hardware-based cryptographic key storage and cryptographic countermeasures such as tamper detection, which offer higher security than software-based key storage. For more information visit: www.microchip.com/security

# **Timing and Communication Products**

Microchip has an expansive, wide-ranging clock and timing portfolio that delivers total solutions for your complex timing requirements. Our oscillator products offer both low-jitter and low-power online-configurable products with the option of choosing a traditional quartz-based solution or going with our MEMS silicon-based resonator products. The clock generation line offers online configurable, single chip, multiple-frequency clock tree solutions. Rounding out the portfolio, our clock and data distribution product line includes one of the industry's largest portfolios of buffers, logic translators and multiplexers.

With the right combination of products, configuration tools and technical support, Microchip's Timing and Communications products are ideal for all designs, from simple to high-performance systems. For more information visit: www.microchip.com/timing

### Real-Time Clock/Calendar

Microchip offers a family of highly integrated, low-cost Real-Time Clock/Calendar devices with battery backup capability, digital trimming, plus on-board EEPROM and SRAM memory. For more information visit: www.microchip.com/clock

# **Memory Products**

Microchip's broad portfolio of memory devices includes Serial EEPROM, Serial SRAM, Serial Flash, Serial NVSRAM, Serial EERAM, Parallel EEPROM, Parallel OTP (One-Time Programmable) and Parallel Flash devices. Our innovative, low-power designs and extensive testing have ensured industry-leading robustness and endurance, along with best-in-class quality, at low costs. For more information visit: www.microchip.com/memory

## **Wireless Products**

The Microchip wireless portfolio is focused on offering extremely low-power operation and is designed for sensing or command/control operation products. This extensive portfolio is comprised of solutions for Wi-Fi®, Bluetooth®, LoRa® technology, 802.15.4 (such as zigbee® or MiWi™ wireless networking protocol) along with proprietary 2.4 GHz and Sub-GHz communications. For more information visit: www.microchip.com/wireless

# High-Throughput USB and Ethernet Interface Solutions

High-speed networking is the backbone of many industrial, loT, consumer and automotive applications. Microchip offers a complete portfolio of Ethernet PHYs, switches, controllers and bridge devices, enabling Gigabit-speed communications in harsh environments. The USB offering spans low cost to SuperSpeed and incorporates value-rich solutions such as USB smart hub controllers, power delivery and charging, transceivers/switches, Flash media controllers and security solutions. For more information visit www.microchip.com/usb and www.microchip.com/ethernet





# MOST® Technology

Media Oriented Systems Transport (MOST) technology is the accepted standard in high-bandwidth automotive infotainment systems. It is broadly standardized from the physical layer up to the application level. Various speed grades and physical layers are available. The highly flexible and scalable MOST platform can transmit AV streaming, packet, and isochronous and control data. It is also approved to transmit DVD and Blu-ray™ content using Digital Transmission Content Protection (DTCP). For more information visit: www.microchip.com/automotiveproducts

# **Embedded Controllers and Super I/O**

Microchip's computing-related products include state-of-the-art embedded controllers based on the innovative eSPI bus technology, Input/Output (I/O) devices, keyboard controllers, root of trust, secure boot and authentication devices and systemmanagement devices. These components serve the computing

industry, including major OEMs and motherboard manufacturers worldwide. Applications include traditional computing applications such as notebooks and desktops, and embedded computing which is found in a variety of applications such as information kiosks, networking equipment, automatic teller machines and devices for the oil and gas industries. For more information visit: www.microchip.com/computing.

# **Touch, Multi-Touch and 3D Gesture Control**

Microchip offers the most feature-rich solutions in capacitive sensing for applications ranging from single-touch buttons and proximity sensing to touchpads, touch screens and free-space 3D gesture control. Turnkey solutions (maXTouch® technology) as well as MCUs/MPUs solutions (PIC, AVR and SAM) come with Graphical User Interface (GUI) software tools and code configurators for easy design-in cycles that shorten your time to market. For more information please visit: www.microchip.com/touch.

# **Microchip Block Diagram Support**



4 www.microchip.com

# **Table of Contents**

| 8-bit PIC Microcontrollers 6         |
|--------------------------------------|
| 8-bit AVR Microcontrollers           |
| 16-bit Microcontrollers and dsPIC    |
| Digital Signal Controllers           |
| 32-bit Microcontrollers              |
| 32-bit Microprocessors17             |
| Analog and Interface Products        |
| Thermal Management19                 |
| Power Management                     |
| Display and LED Drivers              |
| High-Voltage Interface               |
| Linear28                             |
| Mixed Signal28                       |
| Interface (CAN)                      |
| Interface (LIN)                      |
| Ultrasound                           |
| CO and Smoke Detector ICs            |
| Motor Drivers                        |
| Timing and Communication Products33  |
| Oscillators                          |
| Clock Generators                     |
| Clock and Data Distribution 40       |
| High-Speed Communication             |
| Memory Products46                    |
| Wireless Products53                  |
| Wireless Audio                       |
| USB Products                         |
| Ethernet Products57                  |
| Automotive Products                  |
| Embedded Controllers and Super I/O60 |
| Security Products61                  |
| Touch and 3D Gesture Control 61      |
| Terms and Definitions                |
|                                      |

|                        |           |                           |             |                                     |      |                    |             |      |           |               |            |                |          | 8                     | -bit PIC                       | C <sub>®</sub> Mic   | rocon   | 8-bit PIC® Microcontrollers |                     |                          |                             |                                             |                             |                   |                                     |               |         |                   |                                                                                     |
|------------------------|-----------|---------------------------|-------------|-------------------------------------|------|--------------------|-------------|------|-----------|---------------|------------|----------------|----------|-----------------------|--------------------------------|----------------------|---------|-----------------------------|---------------------|--------------------------|-----------------------------|---------------------------------------------|-----------------------------|-------------------|-------------------------------------|---------------|---------|-------------------|-------------------------------------------------------------------------------------|
|                        |           | (                         |             |                                     | Inte | Intelligent Analog | t Analo     | - BC |           | Wave          | Waveform   | Control        | <u>ō</u> | Meas                  | Timing and<br>Measurements (1) | and<br>ents (1       |         | Logic and<br>Math           |                     | Safety and<br>Monitoring |                             | Communications                              |                             | User<br>Interface | Low Power and<br>System Flexibility | owel<br>n Fle | and     |                   |                                                                                     |
| Product Family         | Fin Count | Program Flash Memory (KB) | Data EE (B) | ADC (# of bits) ADC w / Computation | Comp | DAC (# of bits)    | (Am) O\I OH | ряч  | SlopeComp | 10-Pit PWM    | MWG iid-8r | NCO<br>COG/CMG | DSM      | AMTgnA<br>(jid-8) TJH | NCO (20-bit)                   | SMT (24-bit)<br>RTCC | TEMP/TS | MULT                        | MathACC<br>CRC/SCAN | TGWW                     | EUSART/AACOIs TRASUA/TRASUE | P <sup>2</sup> C/SPI<br>CAN<br>USB with ACT | LIN Capable MTouch® Sensing | FCD<br>HCAD       | Sdd                                 | DME/DOZE/PMD  | 9AM\AIQ | Pricing (\$) 5 ku | Раскадеѕ                                                                            |
| PIC10(L)F3XX           | 9         | 384-896 B                 | HH          | ω                                   |      |                    |             |      |           | >             |            | >              |          |                       | >                              |                      | >       |                             |                     |                          |                             |                                             |                             |                   |                                     |               |         | 98.0              | SOT-23, DFN, PDIP                                                                   |
| PIC16LF155X/6X         | 8–20      | 3.5–14                    | 里           | 10                                  |      |                    |             |      |           | >             |            |                |          |                       |                                |                      | >       |                             |                     |                          | >                           | Ø                                           | >                           | >                 |                                     |               |         | 0.49              | PDIP, SOIC 150 mil, TSSOP, QFN, SSOP<br>208 mil, UQFN, SOIC<br>300 mil, SPDIP, TQFP |
| PIC16(L)F145X          | 14-20     | 14                        | Ħ           | 10                                  | >    |                    |             |      |           | >             |            | >              |          |                       |                                |                      | >       |                             |                     |                          | >                           | >                                           | >                           |                   |                                     |               |         | 0.87              | PDIP, SOIC 150 mil, TSSOP, QFN, UQFN, SOIC 300 mil, SSOP 208 mil                    |
| PIC1X(L)F157X          | 8–20      | 1.75–14                   | 里           | 10                                  | >    | rv                 |             |      |           |               | >          | >              |          |                       | >                              |                      | >       |                             |                     |                          | >                           |                                             | >                           |                   | >                                   |               |         | 0.39              | DFN, MSOP, PDIP, SOIC 150 mil, UDFN, TSSOP, UQFN, PDIP, SOIC 300 mil, SSOP 208 mil  |
| PIC16(L)F153XX         | 8-48      | 3.5–28                    | 里           | 10                                  | >    | 2                  |             |      | >         | <i>&gt;</i> 4 |            | >              |          | >                     | >                              |                      | >       |                             | >                   | >                        | 2                           | 2                                           | >                           |                   | >                                   | >             | >       | 0.46              | PDIP, SOIC 150 mil, TSSOP, UQFN, SOIC 300 mil, SSOP 208 mil, QFN, SPDIP, TQFP       |
| PIC1X(HV)F752/53       | 8-14      | 1.75-3.5                  | ı           | 10                                  | >    | 6/9                | 20          |      | `         | >             |            | >              |          | >                     |                                |                      |         |                             | >                   |                          |                             |                                             | >                           |                   |                                     |               |         | 0.59              | DFN, PDIP, SOIC 150 mil, TSSOP, QFN                                                 |
| PIC1X(L)F1612/3        | 8-14      | 3.5                       | Ħ           | 10                                  | >    | ω                  |             |      | >         | >             |            | >              |          | >                     |                                | >                    | >       |                             | >                   | >                        |                             |                                             | >                           |                   |                                     |               |         | 0.56              | DFN, PDIP, SOIC 150 mil, TSSOP, QFN                                                 |
| PIC16(L)F161X          | 14-20     | 7–14                      | 出           | 10                                  | >    | 00                 | 100         |      | >         | <i>&gt;</i>   |            | >              | ,        | >                     |                                | >                    | >       |                             | <i>&gt;</i>         | >                        | >                           | >                                           | >                           |                   | >                                   |               |         | 09.0              | PDIP, SOIC 150 mil, TSSOP, QFN, SOIC<br>300 mil, SSOP 208 mil, UQFN, TQFP           |
| PIC16(L)F170X          | 14-20     | 3.5-14                    | Ħ           | 10                                  | >    | 2/8                | >           | ,    | >         | <i>&gt;</i>   |            | >              |          |                       | >                              |                      | >       |                             |                     |                          | >                           | >                                           | >                           | >                 |                                     |               |         | 0.62 F            | PDIP, SOIC 150 mil, TSSOP, QFN, SOIC 150 mil, UQFN, SOIC 300 mil, SSOP 208 mil      |
| PIC16(L)F171X          | 28-40     | 7–28                      | 里           | 10                                  | >    | 8/9                | >           | ,    | >         | <i>&gt;</i>   |            | >              |          |                       | >                              |                      | >       |                             |                     |                          | >                           | >                                           | >                           | >                 |                                     |               |         | 0.92              | QFN, SOIC 300 mil, SPDIP, SSOP 208 mil,<br>UQFN, PDIP, TQFP                         |
| PIC16(L)F176X/7X 14-40 | 14-40     | 7–28                      | 岩           | 10                                  | >    |                    | 5/10 100 🗸  | >    | >         | >             | >          | >              | >        | >                     | >                              |                      | >       |                             | >                   |                          | >                           | >                                           | >                           |                   | >                                   |               |         | 0.91              | PDIP, SOIC 150 mil, TSSOP, QFN, SOIC 300 mil, SSOP 208 mil, SPDIP, UQFN, TQFP       |
| PIC16(L)F183XX         | 8-20      | 3.5-14                    | 256         | 10                                  | >    | 2                  |             |      |           | <i>&gt;</i>   |            | >              | >        |                       | >                              |                      | >       |                             |                     |                          | >                           | 2                                           | >                           |                   | >                                   | >             |         | 0.53              | PDIP, SOIC 150 mil, UDFN, TSSOP, UQFN,<br>SOIC 300 mil, SSOP 208 mil                |
| PIC16F184XX            | 14–28     | 7-28                      | 256         | 12                                  | >    | 2                  |             |      | >         | <i>&gt;</i>   |            | <i>&gt;</i>    | >        | >                     | >                              |                      | >       |                             | >                   | >                        | >                           | 0                                           | >                           | >                 | >                                   | >             |         | 0.53              | PDIP, SOIC 150 mil, UQFN, TSSOP, QFN,<br>SOIC 300 mil, SSOP 208 mil                 |
| PIC16(L)F188XX         | 28-40     | 7-56                      | 256         | 10 <                                | >    | 2                  |             |      | >         | >             |            | >              | >        | >                     | >                              | >                    | >       | ,                           | >                   | >                        | >                           | 0                                           | >                           | >                 | >                                   |               |         | 0.78              | QFN, SOIC 300 mil, SPDIP, SSOP 208 mil,<br>UQFN, PDIP, TQFP                         |
| PIC16(L)F191XX         | 28-64     | 14–56                     | 256         | 12 <                                | >    | 2                  |             |      | >         | >             | >          | >              |          | >                     |                                | >                    | >       |                             | >                   | >                        | >                           | >                                           | >                           | >                 | >                                   | >             | >       | 1.61              | QFN, TQFP                                                                           |
| PIC18FQ10              | 28-40     | 16–128                    | 256-1K      | 10 ×                                | >    | 5                  |             |      | >         | >             |            | >              | >        | >                     |                                |                      | >       | >                           | >                   | >                        | >                           | >                                           | >                           | >                 | >                                   | >             |         | 0.81              | QFN, SOIC 300 mil, SPDIP, SSOP 208 mil,<br>UQFN, PDIP, TQFP                         |
| PIC18FK40              | 28-64     | 16–128                    | 256-1K      | 10 ×                                | >    | Ŋ                  |             |      | >         | >             |            | >              | >        | >                     |                                |                      | >       | >                           | >                   | >                        | r2                          | 0                                           | >                           | >                 | >                                   | >             |         | 0.87              | QFN, SOIC 300 mil, SPDIP, SSOP 208 mil,<br>UQFN, PDIP, TQFP                         |
| PIC18FK42              | 28-48     | 16–128                    | 256-1K 12   | (12 ✓                               | >    | ro                 |             |      | >         | 4             |            | >              | >        | >                     | >                              | >                    | >       | >                           | >                   | >                        | -                           | 0                                           | >                           | >                 | >                                   | >             | >       | 1.08              | QFN, SOIC 300 mil, SPDIP, SSOP 208 mil,<br>UQFN                                     |
| PIC18(L)FK50           | 20-40     | 8-32                      | 256         | 10                                  | >    | 2                  |             |      |           | >             |            |                |          |                       |                                |                      |         | >                           |                     |                          | >                           | >                                           | >                           |                   | >                                   | >             |         | 1.39              | PDIP, QFN, SOIC 300 mil, SSOP 208 mil                                               |
| PIC18FK83              | 28        | 32-64                     | <del></del> | 12 <                                | >    | 2                  |             |      | >         | >             |            | >              | >        | >                     | >                              | >                    | >       | >                           | >                   | >                        | >                           | >                                           | >                           | >                 | >                                   | >             | >       | 1.41              | SOIC 300 mil, SPDIP, SSOP 208 mil, UQFN                                             |
| PIC18FK90              | 08-09     | 32-128                    | <del></del> | 12                                  | >    |                    |             |      |           | >             |            |                |          |                       |                                | >                    |         | >                           |                     |                          | 2                           | >                                           | >                           | >                 | >                                   | >             |         | 2.53              | QFN, TQFP                                                                           |

|                                                                             |                 |                        |                |                           |                   |                 |                                         |             |                                        |           | ώ                   | 8-bit AVR® Microcontrollers             | R® Mic               | rocont               | rollers                        |                              |     |                          |             |                            |                |              |                             |                        |                                     |             |                                                       |                                                                    |
|-----------------------------------------------------------------------------|-----------------|------------------------|----------------|---------------------------|-------------------|-----------------|-----------------------------------------|-------------|----------------------------------------|-----------|---------------------|-----------------------------------------|----------------------|----------------------|--------------------------------|------------------------------|-----|--------------------------|-------------|----------------------------|----------------|--------------|-----------------------------|------------------------|-------------------------------------|-------------|-------------------------------------------------------|--------------------------------------------------------------------|
|                                                                             |                 | KB)                    |                |                           |                   |                 | Ā                                       | Analog      |                                        | 5         | Waveform<br>Control |                                         | Timing               | Вu                   | CryF                           | Logic,<br>Crypto and<br>Math |     | Safety and<br>Monitoring |             | Comm                       | Communications | suo          | User<br>Interface           |                        | Low Power and System<br>Flexibility | Systen      |                                                       |                                                                    |
| Product Family                                                              | Pin Count Range | Program Flash Memory ( | Boot Code (KB) | (B) MARS                  | Speed (MHz)       | ADC (# of bits) | Comparators  Comparators                | (# of bits) | Temperature Sensor<br>Internal Voltage | Reference | 16-bit PWM          | Waveform Extension<br>Real-Time Counter | 8-bit Timer/Counters | 12-bit Timer Counter | 16-bit Timer/Counters          | Crypto (AES/DES)             | СВС | BOD                      | TGW<br>TAAU | TAASU                      | J₂I            | SPI          | OTouch® Technology With PTC | External Bus Interface | Event System                        | SeboM qeelS | picoPower <sup>⊚</sup> Technology Pricing (\$) (5 ku) | Раскадеѕ                                                           |
| ATtiny4/9                                                                   | 9               | 0.5-1                  | 0.             | 0.032                     | 12                |                 | >                                       |             |                                        |           | 2                   |                                         |                      |                      | -                              |                              |     |                          | >           |                            |                |              |                             |                        |                                     | 4           | 0.24                                                  | SOT-23, UDFN                                                       |
| ATtiny5/10                                                                  | 9               | 0.5-1                  | 0.             | 0.032                     | 12                | 9               | >                                       |             |                                        |           | 2                   |                                         |                      | _                    |                                |                              |     | `                        | >           |                            |                |              |                             |                        |                                     | 4           | 0.24                                                  | SOT-23, UDFN                                                       |
| ATtiny102/ATtiny104                                                         | -8<br>-4        | -                      | 0.             | 0.032                     | 12                | 10              | >                                       |             | >                                      |           | 2                   |                                         |                      | .4                   | 2                              |                              |     | `                        | >           | -                          |                |              |                             |                        |                                     | 4           | 0.41                                                  | SOIC 150 mil,<br>UDFN                                              |
| ATtiny13A                                                                   | 20 8            | -                      | Ö              | 0.064 0.0                 | 0.064 20          | 10              | >                                       |             |                                        |           | Ø                   |                                         |                      |                      |                                |                              |     | >                        | `           |                            |                |              |                             |                        |                                     | m           | × 0.38                                                | PDIP, SOIC,<br>SOIC 150 mil,<br>SOIJ, VDFN,<br>WQFN                |
| ATtiny20/40                                                                 | 14-             | 2/4                    | Ö              | 0.128                     | 12                | 10              | >                                       | ,           | >                                      | Ø         | 0                   |                                         | -                    | ,                    | _                              |                              |     | >                        | >           |                            | -              | -            |                             |                        |                                     | 4           | 0.39                                                  | <br>WLCSP, SOIC<br>150 mil, TSSOP,<br>JFBGA, VQFN,<br>SOIC 300 mil |
| ATtiny24A/44A/84A                                                           | 14-             | 2/4/8                  | ח"ס            | Up to Up 0.5              | Up to 20          | 10              | <i>&gt;</i>                             |             | <i>&gt;</i>                            | Ø         | 0                   |                                         | -                    |                      | -                              | >                            |     | `<br>`                   | >           |                            | -              | -            |                             |                        |                                     | 4           | V 0.48                                                | PDIP, SOIC<br>150 mil, UFBGA,<br>VQFN, WQFN                        |
| ATtiny25(V)/45(V)/85(V)                                                     | 8 02            | 2/4/8                  | Σö             | Up to Up                  | Up to 20          | 10              | <i>&gt;</i>                             |             | <i>&gt;</i>                            | 4         |                     |                                         | 01                   |                      |                                | >                            |     | >                        | >           |                            | -              | <del>-</del> |                             |                        |                                     | ო           | 0.54                                                  | PDIP, SOIC,<br>SOIC 150 mil,<br>SOIJ, WQFN,<br>TSSOP               |
| ATtiny48/88                                                                 | 28-<br>32       | 4/8                    | J 0            | Up to 0.0                 | 0.064 12          | 10              | >                                       | ,           | >                                      | -         | -                   |                                         | -                    | -                    | -                              |                              |     | <i>&gt;</i>              | >           |                            | -              | -            |                             |                        |                                     | n           | × 0.63                                                | SPDIP, VQFN,<br>TQFP                                               |
| ATtiny87/167                                                                | 20 <del>-</del> | 8/16                   | 0.             | 0.512 0.5                 | 0.512 20          | 10              | >                                       | ,           | <i>&gt;</i>                            | -         | 0                   |                                         | -                    |                      | -                              | >                            |     | `<br>`                   | <i>-</i>    |                            | -              | 0            |                             |                        |                                     | 4           | 0.95                                                  | SOIC 300 mil,<br>TSSOP, WQFN,<br>VQFN                              |
| ATtiny261A/461A/861A                                                        | 32              | 2/4/8                  | <u>7</u> 0     | Up to Up<br>0.512 0.5     | Up to 20          | 10              | <i>&gt;</i>                             |             | <i>&gt;</i>                            |           |                     |                                         | -                    |                      | -                              |                              |     | `<br>`                   | >           |                            | -              | -            |                             |                        |                                     | 4           | V 0.61                                                | PDIP, SOIC<br>300 mil, TSSOP,<br>VQFN                              |
| ATtiny212/214/412/414/416<br>/417/814/ 816/817/1614/<br>1616/1617/3216/3217 | 8 42            | 2/4/8/                 | ďΩ             | Up to 2 Up                | Up to 20          | 10              | >                                       | ω .         | <i>&gt;</i>                            |           | 0                   | >                                       | ż                    | up<br>to 2           | 2                              | >                            | >   | `<br>`                   | >           | -                          | -              | -            | >                           |                        | <i>&gt;</i>                         | m           | <b>√</b> 0.31                                         | VQFN, SOIC<br>150 mil, SOIC<br>300 mil                             |
| ATtiny202/204/404/406/804<br>/806/807/1604/1606/1607                        | - 8<br>- 42     | 2/4/8/                 | d              | Up to 1 Up                | Up to 20          | 10              | >                                       | •           | <i>&gt;</i>                            |           | Ø                   | >                                       |                      |                      | >                              | >                            | >   | ``<br>``                 | >           | -                          | -              | -            |                             |                        | <b>&gt;</b>                         | m           | 0.29                                                  | VQFN, SOIC<br>150 mil, SOIC<br>300 mil                             |
| ATmega3208/3209/4808/<br>4809                                               | 28-<br>48       | 32/48                  | η              | Up to 6 0.2               | 0.256 20          | 10              | >                                       | ,           | >                                      |           | 2                   | >                                       |                      | ۵)                   | 7                              | >                            | >   | >                        | >           | 4                          | -              | -            |                             |                        | >                                   | n           | V 0.87                                                | VQFN, UQFN<br>TQFP, SSOP                                           |
| ATtiny441/841                                                               | 14-             | 4/8                    | Ъ́о            | Up to Up 0.512 0.5        | Up to 16<br>0.512 | 10              | <i>&gt;</i>                             |             | >                                      | -         | 0                   |                                         | -                    | - (4                 | 2                              |                              |     | `<br>`                   | >           | 0                          | -              | -            |                             |                        |                                     | 4           | V 0.64                                                | SOIC 150 mil,<br>VQFN, WQFN                                        |
| ATtiny1634                                                                  | 20              | 16                     |                | 1 0.2                     | 0.256 12          | 10              | >                                       | ,           | >                                      | Ø         | 0                   |                                         | -                    | ,                    | -                              | >                            |     | >                        | >           | 0                          | -              |              |                             |                        |                                     | 4           | 69.0                                                  | SOIC 300 mil,<br>WQFN                                              |
| ATtiny2313A                                                                 | 20              | 2                      | 0.             | 0.128 0.1                 | 0.128 20          | 10              | >                                       |             | >                                      | N         | 2                   |                                         | -                    |                      | -                              | >                            |     | >                        | >           | -                          | -              | 2            |                             |                        |                                     | m           | V 0.48                                                | PDIP, SOIC<br>300 mil, WQFN                                        |
| ATmega8A/16A/32A                                                            | 32- 8           | 8/16/                  | 1              | 1/1/2 0.5                 | 0.5/ 16           | 10              | >                                       |             |                                        | N         | -                   | >                                       | N                    | , .                  | -                              | >                            |     | >                        | >           | -                          | -              | -            |                             |                        |                                     | Ŋ           | 1.39                                                  | SPDIP, TQFP,<br>VQFN, PDIP                                         |
| ATmega8U2/16U2/32U2                                                         | 32              | 32                     | 4              |                           | 1 20              | 0 10            | 1                                       | ,           | >                                      | 4         | 9                   | >                                       | 2                    | 0                    | 3                              | >                            |     | >                        | >           | 2                          | 2              | 0            | >                           |                        |                                     | 9           | 1.62                                                  | TQFP, VQFN                                                         |
| ATmega16U4/32U4                                                             | 32              | 8/16/<br>32            | 4 0.0          | 0.5/ 0.5                  | 0.5/ 16           | 10              | 1 0                                     | >           | >                                      | Ω         | 1                   |                                         | -                    | ,                    | -                              | >                            |     | `<br>`                   | >           | -                          |                | -            |                             |                        |                                     | 9           | 2.72                                                  | TQFP, VQFN                                                         |
| ATmega48PB/<br>88PB/168PB                                                   | 32              | 4/8/                   | 1/1/ 0         |                           | 0.25/ 20          | 10              | 1                                       | ,           | >                                      | 4         | 7                   | >                                       | N                    |                      | -                              | >                            |     | >                        | >           | -                          | -              | -            |                             |                        |                                     | 9           | 0.76                                                  | TQFP, VQFN                                                         |
| ATmega64A/128A                                                              | 64              | 64/<br>128             | ω              | 4 2/                      | 2/4 16            | 10              | )<br>-                                  | ,           | >                                      | N         | 9                   |                                         | N                    | - 4                  | 7                              | >                            |     | `<br>`                   | >           | 0                          | -              | -            |                             |                        |                                     | 9           | 3.16                                                  | TQFP, VQFN                                                         |
| 1: LIN port also 2: Peripheral Touch Controller                             | al Touch Co     | ontroller              | 3; On          | 3: Only on the ATtiny5/10 | Ttiny5/10         | 4               | 4: Not on the ATtiny212/214/412/414/416 | he ATtin    | y212/2                                 | 14/412.   | /414/416            | 5:                                      | Only on              | the ATr              | 5: Only on the ATmega1281/2561 | 31/2561                      | 9   | : Only o                 | in the A    | 6: Only on the ATmega328PB | BB<br>E        | 7: Only      | 7: Only on the C3 and C4    | nd C4                  |                                     |             |                                                       |                                                                    |

| : Only on the C3 and (   |  |
|--------------------------|--|
| : Only on the ATmega328P |  |

| Amount of the continue of th   |                                     |                               | ı              |          |  |             |             |           |       | -DIG-0             | o-bit Avn - microcontrollers | 0000  | 8 10 10 | <u>.</u> |        |                |      |          |          |          | ı    |   |                  |          | r                                 | l                   |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------|----------------|----------|--|-------------|-------------|-----------|-------|--------------------|------------------------------|-------|---------|----------|--------|----------------|------|----------|----------|----------|------|---|------------------|----------|-----------------------------------|---------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | KB)                           |                |          |  | An          | alog        |           | Wavef | orm<br>ol          | Tim                          | ing   | Crypte  | o and    | Safety | y and<br>oring | O    | numo     | nication | ns       | User |   | w Power<br>Flexi | and Syst | m<br>ge                           |                     |                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | enges truo Grid                     |                               | Boot Code (KB) | (a) MARS |  | Comparators | (# of bits) | Reference |       | Waveform Extension |                              |       | ссг     |          |        | BOD            | TAAU |          |          |          |      |   | Slennsh2 AMD     |          | picoPower <sup>®</sup> Technology | Pricing (\$) (5 ku) | Раскадеѕ                  |
| 14.00   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.   | 4                                   | 16/64/                        | 4/4/8          |          |  | -           |             |           |       |                    |                              | 1, 1, |         |          | >      | >              | C/I  | <u>.</u> |          | -        |      |   |                  | 9        |                                   |                     | PDIP, TOFP,<br>DFN, VFBGA |
| Hander Signature   Hander Sign   | 4                                   |                               | 4              |          |  |             |             |           |       |                    |                              | co    |         |          | >      |                | (r)  | ~        |          | 2        | >    |   |                  | 9        |                                   |                     | QFP, VQFN                 |
| 14.00   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.   | 79                                  |                               | 2              |          |  |             |             | >         |       |                    |                              | -     | >       | ,        | >      |                | _    |          | -        | -        |      |   |                  | 5        | CV                                |                     | 'QFP, VQFN                |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                   |                               | 2              |          |  |             |             | >         |       |                    |                              | -     |         |          | >      | >              | _    |          |          | -        |      | > |                  | 5        | _                                 |                     | OFP, VOFN                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33                                  |                               | 4              |          |  |             | >           | 7         |       |                    |                              | 8     |         | ,        | >      | >              | ca   | ٥.       |          | 7        | >    |   |                  | 9        | O                                 |                     | 'QFP, VQFN                |
| Hand      | 10                                  |                               | ∞              |          |  | >           |             | 7         |       |                    |                              | 4     |         |          | >      |                | 2    | 4        | -        | -        |      |   |                  | 9        | u)                                | 92                  | -BGA, TQFP                |
| 14   4   4   5   5   5   5   5   5   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                   |                               | 00             |          |  | >           |             | 7         |       |                    |                              | -     | >       |          | >      |                |      |          | -        | -        |      |   |                  | 5        | (1)                               |                     | 'QFP, VQFN                |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                   |                               | 4              |          |  | >           |             | >         |       |                    |                              | -     |         |          | >      |                | _    |          | -        | -        |      | > |                  | 5        |                                   | 21                  | QFP, VQFN                 |
| 100 326 8 8 2 4 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9                                   |                               | ω              |          |  | >           |             | 7         |       |                    | N .                          | 4     |         |          | >      |                | 2    | 4        | -        | <b>—</b> |      | > |                  | 9        | 0                                 |                     | OFP, VOFN                 |
| 100 32964 4 4 122 4 1/2 5 0 10 5 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 2 5 0 1 | 10                                  |                               | 80             |          |  | >           |             |           |       |                    |                              | -     |         |          | >      |                | _    |          | -        | -        |      |   |                  | 5        | (1)                               | 3.35                | TQFP                      |
| 100 3264 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                  |                               | 4              |          |  | >           |             | >         |       |                    |                              | -     | >       |          | >      | >              | -    |          | -        | -        |      | > |                  | 5        |                                   | 3.29                | TQFP                      |
| 100 644 8 4 4 5 2 2 2 0 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                   |                               | 80             |          |  | >           |             |           |       |                    |                              | -     | >       | ,        | >      |                | _    |          |          | -        |      | > |                  | 5        | (1)                               | 3.76                | TQFP                      |
| 100 644 8 48 48 48 6478 648 6478 648 6478 648 6478 648 6478 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                  |                               | 00             |          |  | >           |             | >         |       |                    |                              | -     | >       |          | >      |                | ,    |          | -        | -        |      |   |                  | 5        | (1)                               | 3.01                | TOFP                      |
| 100   64/128    4/8   4/8   4/8   5   2   3   12   2   2   3   12   2   2   3   2   3   2   3   3   2   3   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                  |                               | 00             | 4        |  | >           |             |           |       |                    |                              | _     | >       |          | >      |                | _    |          | -        | -        |      |   |                  | 5        | (1)                               | 3.38                | TOFP                      |
| 64 1287 4/84 1/14 2 244 1/15 244 2 24 32 12 × V 12  |                                     |                               | 4/8            |          |  | >           |             | >         | ω     | >                  | >                            | 00    |         |          |        | >              | ω    |          |          |          |      | > |                  | Ŋ        |                                   |                     | -BGA, TQFP,<br>VFBGA      |
| 44- 16/32/ 4/4 2/4 1/1 32 12 7 7 12 7 7 12 8BP 7 7 7 7 12 7 7 12 8BP 7 7 7 7 12 7 7 12 7 7 12 8BP 7 7 7 7 12 7 7 12 7 12 7 12 7 12 7 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                               |                |          |  | >           |             | >         | 7     | >                  | >                            | 7     |         |          |        | >              | 2    |          |          |          |      |   |                  | Ŋ        |                                   |                     | OFP, VOFN                 |
| 44- 16/32/ 4/4/ 2/4/ 1/1/ 32 12 ~ ~ 12 ~ ~ 12 ~ ~ ~ 5 ~ ~ ~ ~ ~ ~ 6 ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                   |                               | ∞              |          |  | >           |             | >         | 7     | >                  | 26                           | 2     |         |          |        | >              | 9    |          |          |          |      |   |                  | 5        |                                   |                     | 'QFP, VQFN                |
| 100 64/128 4/8 4/8 4/8 4/8 4/8 1/1 32 12 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 7 12 7 7 12 7 7 7 12 7 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 7 12 7 12 7 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 | ATxmega16A4U/32A4U/<br>64A4U/128A4U |                               | 4/4/           |          |  | >           |             | >         | 2     | >                  | >                            | Ŋ     |         |          |        | >              | (L)  |          |          |          |      |   |                  | Ŋ        |                                   |                     | QFP, VQFN,<br>VFBGA       |
| 64 64/128 4/8 4/4/8 1/2/2 24/4 1/2 32 12 × 12 × 12 × 2 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                  |                               | 4/8            |          |  | >           |             | >         | က     | >                  | >                            | 0     |         |          |        |                | CA   |          | -        | >        |      | > |                  | 5        |                                   |                     | <b>ZFP, VFBGA</b>         |
| 22.64/ 4/4/8/ 1/2/2/ 2/4/4/8 1/2/2/ 2/4/4/8 1/2/2/ 2/4/4/8 1/2/2/ 4/4/8 1/2/2/ 4/4/8 1/2/2/ 4/4/8 1/2/2/ 4/4/8 1/2/2/ 4/4/8 1/2/2 2/4/4 1/2/2 2/4/4 1/2/4 0.55/1 32 12 7 7 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 79                                  |                               | 4/8            |          |  | <i>&gt;</i> |             | >         | 2     | >                  | >                            | 2     |         |          |        | >              | _    |          |          |          |      | > |                  | 5        |                                   |                     | OFP, VOFN                 |
| 44- 16/32/ 4/4/ 2/4/4/8 1/2/ 32 12 12 × × 4 × × × 4 × × × × 2 2 2 2 × × 5 × 1.96<br>49 64/128 4/8 2/2 3 × 12 × 12 × × 12 × × 3 × × × 3 × × × 2 3 × × × 7 2 1 1 1 × 7 7 5 × 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 32/64/<br>128/192/<br>256/384 | 4/4/8/         |          |  | <b>&gt;</b> |             | >         | 2     | >                  | >                            | 20    |         |          |        | >              | (0)  | ~        |          |          |      |   | >                | ß        |                                   |                     | OFP, VOFN                 |
| 32 8/16/32 2/4/4 1/2/4 0.5/1 32 12 \ \ \ \ \ \ \ 12 \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 84                               |                               |                |          |  |             |             | >         | 4     | >                  | >                            | 4     |         |          |        |                | CA   | 0:       |          |          |      |   | >                | 9        |                                   |                     | QFP, VQFN,<br>VFBGA       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 8/16/32                       |                |          |  | >           |             | >         | ო     | >                  | >                            | n     | >       |          |        | >              | CV   | 0.       | -        | >        |      |   |                  | Ŋ        |                                   |                     | QFP, UQFN,<br>VQFN        |

# 8-bit PIC and AVR MCU Terminology

| Intelligent A                                              | Intelligent Analog: Sensor Interfacing and Signal Conditioning                                                             |                                                                               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| ADC: Analog-to-Digital Converter                           | General-purpose 10-/12-bit ADC                                                                                             | USART: Universal Asynch                                                       |
| ADC Gain Stage: Analog-to-Digital<br>Converter Gain Stage  | Programmable gain stage, providing amplification steps on the differential input voltage                                   | receiver fransmitter  1°C: Inter-Integrated Circu                             |
| Comp: Comparator                                           | General-purpose rail-to-rail comparator                                                                                    | SPI: Serial Peripheral Inte                                                   |
| DAC: Digital-to-Analog Converter                           | Programmable voltage reference with multiple internal and external connections                                             | IRCOM: Infrared Commu                                                         |
| VREF: Voltage Reference                                    | Stable fixed voltage reference for use with integrated analog peripherals                                                  | Module                                                                        |
| Waveform                                                   | Waveform Control: PWM Drive and Waveform Generation                                                                        |                                                                               |
| PWM: Pulse-Width Modulation                                | General-purpose 10-bit PWM control                                                                                         | LCD: Liquid Crystal Displ                                                     |
| 16-bit PWM: Standalone 16-bit PWM                          | High-resolution 16-bit PWM with edge- and center-aligned modes     Concentration on 16-bit inner/content                   | QTouch® Technology: Mis<br>Proprietary Touch Techno                           |
| Timing and Measurem                                        | Timing and Measurements: Signal Measurement with Timing and Counter Control                                                | QTouch Technology with<br>QTouch Technology with<br>Peripheral Touch Controll |
| 8-/12-/16-bit Timer                                        | General-purpose 8-/12-/16-bit timer/counter                                                                                | Low Powe                                                                      |
| Logic, Crypto                                              | Logic, Crypto and Math: Customizable Logic and Math Functions                                                              | DMA: Direct Memory Acc                                                        |
| CCL: Configurable Custom Logic                             | Integrated combinational and sequential logic     Customer interconnection and re-routing of digital peripherals           | Event System                                                                  |
| MULT: Hardware Multiplier                                  | MULTIPLY function of two 8-bit values with 16-bit result                                                                   |                                                                               |
| Crypto (AES/DES)                                           | Data encryption and decryption can be easily performed for both internally stoned data or for small external data packets. | External Bus Interface                                                        |
| Safety and Mc                                              | Safety and Monitoring: Hardware Monitoring and Fault Detection                                                             | picoPower® Technology                                                         |
| CRC/SCAN:<br>Cyclical Redundancy Check<br>with Memory Scan | Automatically calculates CPC checksum of<br>Program/DataEE memory for NVM integrity                                        | Sleep Modes SleepWalking                                                      |

| Communica                                                                            | Communications: General, Industrial, Lighting and Automotive                                                          |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| USART: Universal Asynchronous<br>Receiver Transmitter                                | 1. General-purpose serial communications<br>2. Support for LIN/IrDA®                                                  |
| I <sup>2</sup> C: Inter-Integrated Circuit                                           | General-purpose 2-wire serial communications                                                                          |
| SPI: Serial Peripheral Interface                                                     | General-purpose 4-wire serial communications                                                                          |
| IRCOM: Infrared Communication<br>Module                                              | Encodes and decodes data according to the IrDA communication protocol                                                 |
| User Interl                                                                          | User Interface: Capacitive Touch Sensing and LCD Control                                                              |
| LCD: Liquid Crystal Display                                                          | Highly integrated segmented LCD controller                                                                            |
| QTouch® Technology: Microchip<br>Proprietary Touch Technology                        | Provides a simple-to-use solution to create touch-sensitive interfaces                                                |
| QTouch Technology with PTC:<br>QTouch Technology with<br>Peripheral Touch Controller | Provides a simple-to-use solution to create touch-sensitive interfaces with a Peripheral Touch Controller             |
| Low Power and System F                                                               | Low Power and System Flexibility: Low-Power Technology, Peripheral and Interconnects                                  |
| DMA: Direct Memory Access                                                            | Moves data between memories and peripherals without CPU overhead, improving overall system performance and efficiency |
| Event System                                                                         | Flexible routing of peripheral events, ability to control peripheral independent from the CPU                         |
| External Bus Interface                                                               | Highly flexible module for interfacing external memories and memory-addressable peripherals                           |
| picoPower® Technology                                                                | Low-power technology                                                                                                  |
| Sleep Modes                                                                          | Low-power saving modes, IDLE, power-down, power-save, standby and extended standby                                    |
| SleepWalking                                                                         | Ability to put the CPU core to sleep until a relevant event occurs                                                    |

|                                                                       |              |                      |                 |                  |                   |             |          |                  |                  |        |             |                     |                             |              |              |             | 6-bit N   | /licroca | ontrolle                        | rs and   | 16-bit Microcontrollers and dsPIC® Digital Signal Controllers | ) Digita | al Sign  | nal Col | ntrolle       | ers                         |                       |                  |                                                                |         |                      |                    |                      |        |             |                    |                     |                                       |         |                     |                                                              |                                                                      |
|-----------------------------------------------------------------------|--------------|----------------------|-----------------|------------------|-------------------|-------------|----------|------------------|------------------|--------|-------------|---------------------|-----------------------------|--------------|--------------|-------------|-----------|----------|---------------------------------|----------|---------------------------------------------------------------|----------|----------|---------|---------------|-----------------------------|-----------------------|------------------|----------------------------------------------------------------|---------|----------------------|--------------------|----------------------|--------|-------------|--------------------|---------------------|---------------------------------------|---------|---------------------|--------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                       |              | (KB)                 |                 | Ξ                | Integrated Analog | d Ana       | golu     | >                | Waveform Control | rm Co  | ontrol      |                     | ō                           | Clocks and   |              | Timers      | "         | Safety ( | Safety and Monitoring           | onitorin | Б                                                             |          | Cor      | nmun    | Communication | Ę                           |                       | User             | User Interface                                                 |         | Secure Data          | Data               |                      |        | Syste       | System Flexibility | ibility             |                                       |         |                     |                                                              |                                                                      |
| Product<br>Family                                                     | SqIM mumixeM | Program Flash Memory | RAM (KB)        | (resolution) (1) | (noituloser) DAG  | HS Comp     | HS Comp  | SCCP<br>CCP/ECCP | MCCP MWG         | MC PWM | IC and OC   | PWM Resolution (ns) | 8-bit Timer                 | 16-bit Timer | 32-bit Timer | 22TR<br>□=0 | ΓΛD<br>ŒΙ | TOW      | TMQ                             | СВС      | Class B Safety®                                               | САИ      | TRAU NIJ | ®Ad₁I   | Sbl           | w1851                       | SENT<br>Parallel Port | ©TMU and mTouch® | LCD (Segments)                                                 | GEX     | Cryptographic Engine | Secure Key Storage | Dual Partition Flash | СГС    | PPS         | AMG                | IDLE, SLEEP and PMD | XLP DOZE                              | TABV    | Pricing (\$) (5 ku) |                                                              | Раскадея                                                             |
|                                                                       |              |                      |                 |                  |                   |             |          |                  |                  |        |             |                     |                             |              |              |             |           |          |                                 | PIC2     | 4F Famil                                                      | Ajji     |          |         |               |                             |                       |                  |                                                                |         |                      |                    |                      |        |             |                    |                     |                                       |         |                     |                                                              |                                                                      |
| PIC24<br>F04KA201                                                     | ω            | 0 4                  | 0.5 20          | 10               |                   | >           |          |                  | >                |        | >           | 62                  |                             | >            | <u> </u>     |             |           | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        |             |                    | >                   | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` |         | 1:00                | SPDI<br>TSSOP<br>(P), SC<br>SSOP (                           | SPDIP (SP),<br>TSSOP (ST), PDIP<br>(P), SOIC (SO),<br>SSOP (SS), QFN |
| PIC24<br>F04KL101                                                     | 91           | 0                    | 0.5 14-         | 1.0              |                   | >           |          | `                | >                |        | >           | 5                   | >                           | >            | >            |             | `         | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       |                  |                                                                |         |                      |                    |                      |        |             |                    | >                   | ` <u>`</u>                            |         | 0.80                | SSOP (                                                       | (ST), SOIC (SO),<br>SSOP (SS), 5 × 5                                 |
| PIC24<br>F08KL201                                                     | 16           | 8 0.                 | 14-             | 0 10             |                   | >           |          | >                | >                |        | >           | 15                  | >                           | >            | >            |             | ,         | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       |                  |                                                                |         |                      |                    |                      |        |             |                    | >                   | >                                     |         | 1.16                | 5, -,                                                        | PDIP (P), SOIC<br>SO), SSOP (SS),<br>5 x 5 QFN (MQ)                  |
| PIC24<br>F08KL302                                                     | 16           |                      | 1 28-           | l m              |                   | <i>&gt;</i> |          | >                | >                |        | >           | 15                  | >                           | >            | >            |             | ,         | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       |                  |                                                                |         |                      |                    |                      |        |             |                    | >                   | <i>&gt;</i>                           |         | 1.01                | SPDIP (SO), S 5 × 5 C                                        | (SP), SOIC<br>SSOP (SS),<br>QFN (MQ),<br>QFN (ML)                    |
| PIC24<br>F16KL402                                                     | 16 8         | -8 -16 -             | 1 20-           | 9 0              |                   | >           |          | >                | >                |        | >           | 15                  | >                           | >            | >            |             | `         | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       |                  |                                                                |         |                      |                    |                      |        |             |                    | >                   | <i>&gt;</i>                           |         | 1.36                | SPDIP (<br>(SO), S<br>5 × 5 C                                | IP (SP), SOIC<br>, SSOP (SS),<br>5 OFN (MQ),                         |
| PIC24<br>F16KA102                                                     | 16           | 16 1                 | 1.5 28          | 7 °              |                   | >           |          |                  | >                |        | >           | 62                  |                             | >            | >            |             | ,         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        |             |                    | >                   | >                                     |         | 1.44                |                                                              | (P), SOIC<br>SSOP (SS),                                              |
| PIC24<br>F16KM104                                                     | 16 8         | -8-                  | 1 20-           | 1 4 12           |                   | >           |          | >                | <i>&gt;</i>      |        | >           | 62                  |                             | >            | >            |             | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      | >      |             |                    | >                   | <b>&gt;</b>                           |         | 1.68                | (SP), SOIC<br>SSOP (SS)                                      | PDIP (P), SPDIP<br>(SP), SOIC (SO),<br>SSOP (SS), QFN                |
| PIC24<br>F16KM204                                                     | 16 8         | 16 1                 | 2 20-           | 1 4              | ω                 | >           | >        | >                | >                |        | >           | 29                  |                             | >            | >            |             | `         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      | >      |             |                    | >                   | `                                     |         | 1.79                | SPDIP (SP), (SO), (SO), SOP (SP), (PT), OFN (MQL), T         | (MCL)<br>SO), SSOP (SS),<br>FIN (MQL), TQFP<br>(PT), QFN (ML),       |
| PIC24<br>F32KA304                                                     | 16           |                      |                 | 1 4 12           |                   | >           |          |                  | >                |        | >           | 15                  |                             | >            | >            |             | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        |             |                    | >                   | >                                     |         | 1.86                | TOPPOT                                                       | TOFP (PT), OFN                                                       |
| PIC24<br>FJ64GA004                                                    | 16 16        | 16                   | 4- 28-<br>8 44  | 6                |                   | >           |          |                  | >                |        | >           | 62                  |                             | >            | >            |             | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             | >                     |                  |                                                                |         |                      |                    |                      |        | >           |                    | >                   | >                                     |         | 1.62                | 5.6                                                          | TOFP (PT),<br>OFN (ML)                                               |
| PIC24<br>FJ32MC104                                                    | 16 31        | 32 4                 | 1- 20-<br>2 44  | 7 4<br>6         | 4                 | >           |          |                  | >                | >      | >           | 8                   |                             | >            | `            | >           |           | >        |                                 |          | 5                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        |             |                    | >                   | >                                     |         | 1.57                | (SO), SO<br>(PT)                                             | PDIP (P), SOIC<br>(SO), SSOP (SS),<br>QFN (MQL),TQFP<br>(PT), TLA,   |
| PIC24<br>EP512GP206                                                   | 70 5: 33     | 32- 4<br>512 4       | 4- 28-<br>48 64 | 1 4              | 4                 | >           | >        |                  | >                |        | >           | 4                   |                             | >            | `            |             |           | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        | >           | >                  | >                   | >                                     |         | 1.37                | 562                                                          | OFN (MR),<br>TOFP (PT)                                               |
| PIC24<br>EP512MC206                                                   | 20           |                      | 4- 28-<br>48 64 | 12               | 4                 | >           | >        |                  | >                | >      | <i>&gt;</i> | 7                   |                             | >            | >            | ,           | `         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             |                       | >                |                                                                |         |                      |                    |                      |        | <i>&gt;</i> | >                  | >                   | >                                     |         | 1.37                | SPDIP (SP)<br>(SO), SSO<br>QFN (MM)                          | SPDIP (SP), SOIC<br>(SO), SSOP (SS),<br>QFN (MM),QFN                 |
| PIC24<br>FJ64GA104                                                    | 16           |                      | 8 28-           | 5                | _                 | >           |          |                  | >                |        | >           | 15                  |                             | >            | >            |             | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             | >                     | >                |                                                                |         |                      |                    |                      |        | >           |                    | >                   | >                                     |         | 1.99                | Ď.                                                           | TOFP (PT),<br>OFN (ML)                                               |
| PIC24<br>FJ64GB004                                                    | 16 3         | 32-                  | 8 28-           | 10               | -                 | >           |          |                  | >                |        | >           | 15                  |                             | >            | >            |             | >         | >        |                                 | >        | > 7                                                           |          | >        | >       | >             |                             | >                     | >                |                                                                |         |                      |                    |                      |        | `           |                    | >                   | >                                     |         | 2.20                | <u> </u>                                                     | TOFP (PT),<br>OFN (ML)                                               |
| FJ128GA010                                                            | 9 11         |                      | 8 50.           | 9                |                   | >           |          |                  | >                |        | >           | 82                  |                             | >            | `            |             |           | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             | >                     |                  |                                                                |         |                      |                    |                      |        |             |                    | >                   | >                                     |         | 2.18                | 2                                                            | (PT), CFN                                                            |
| PIC24<br>FJ256GA110                                                   | 16 6         |                      | 16 64-          | 0 10             | _                 | >           |          |                  | >                |        | >           | 15                  |                             | >            | >            |             | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             | ,                           | >                     | >                |                                                                |         |                      |                    |                      |        | >           |                    | >                   | >                                     |         | 3.11                | TOFP.                                                        |                                                                      |
| PIC24<br>FJ256GB110                                                   | 16 6         |                      | 16 64-          | 9                |                   | >           |          |                  | >                |        | >           | 15                  |                             | >            | `            |             | >         | >        |                                 | >        | >                                                             |          | >        | >       | >             |                             | >                     | >                |                                                                |         |                      |                    |                      |        | `           |                    | >                   | `                                     |         | 3.29                | TOFP (PT                                                     | ĘĘ                                                                   |
| PIC24<br>FJ128GA204                                                   | 16 6         | 128                  | 8 28-           | 12               |                   | >           |          |                  | >                |        | >           | 5                   |                             | >            | `            | >           | `         | >        |                                 |          |                                                               |          | >        |         | >             | >                           | >                     | >                |                                                                | •       | ,                    | ,                  |                      |        |             | >                  | >                   | <i>&gt;</i>                           | >       | 2.39                | SPDIP (SP),<br>(SO), SSOP<br>QFN (MM),1<br>(PT), QFN         | (SP), SOIC<br>SSOP (SS),<br>MM), TOFP<br>OFN (ML)                    |
| PIC24<br>FJ128GB204                                                   | 9 9 21       |                      | 8 28-           | 1 4              |                   | >           |          |                  | >                |        | >           | 15                  |                             | >            | `            | >           | `         | >        |                                 |          | >                                                             |          | >        |         | >             | >                           | >                     | >                |                                                                | ,       | `                    | `                  |                      |        | `           | >                  | >                   | <i>&gt;</i>                           | >       | 2.53                | SPDIP (SP), 8<br>(SO), SSOP (<br>QFN (MM), TO<br>(PT), QFN ( | (SP), SOIC<br>SSOP (SS),<br>MM), TOFP<br>OFN (ML)                    |
| PIC24<br>FJ128GA310                                                   | 16 6         |                      | 8 64-           | 12               |                   | >           |          |                  | >                |        | >           | 15                  |                             | >            | `            | >           | >         | >        |                                 | >        | 7                                                             |          | >        | >       | >             | ,                           |                       | >                | up to<br>480                                                   |         |                      |                    |                      |        | `           | >                  | >                   | >                                     | >       | 2.31                | TOFP (M                                                      | -P (PT),<br>N (MR)                                                   |
| PIC24<br>FJ128GC010                                                   | 9 9 1        | 128                  |                 | 0 16             | 9                 | >           |          |                  | >                |        | >           | 15                  |                             | >            | ,            | `           | >         | >        |                                 | >        | 2                                                             |          | >        | >       | >             |                             | >                     | >                | up to<br>472                                                   |         |                      |                    |                      |        | `           | >                  | >                   | >                                     | >       | 3.36                | P S S                                                        | P (PT),                                                              |
| PIC24<br>FJ256DA210                                                   | 16 12        | 28-<br>56 24         | 24-96 64-       | 0 10             |                   | >           |          |                  | >                |        | >           | 15                  |                             | >            | >            |             | >         | >        |                                 | >        | > 2                                                           |          | >        | >       | >             |                             | >                     | >                |                                                                | >       |                      |                    |                      |        | `           | >                  | >                   | >                                     |         | 4.34                | PFO<br>PFN<br>OFN                                            | =P (PT),<br>N (MR)                                                   |
| PIC24<br>FJ256GB210                                                   | 16 25        |                      | 96 64-          | 0 10             | 6                 | >           |          |                  | >                |        | >           | 62                  |                             | >            | >            |             | >         | >        |                                 | >        | 7                                                             |          | >        | >       | >             | ,                           | >                     | >                |                                                                |         |                      |                    |                      |        | `           |                    | >                   | >                                     |         | 4.30                |                                                              | TOFP (PT),<br>OFN (MR)                                               |
| 1: 16-bit PIC® MCU offers SAR ADC, high-speed ADC and Delta-Sigma ADC | ACU offe     | irs SA               | R ADC,          | high-s           | peed A            | \DC a       | ind Delt | ta-Sign          | na ADC           |        | 2:16        | 3-bit P             | 2: 16-bit PIC MCU offers ge | U offer      | an an        | eral-bi     | sodun     | ⇒ DAC    | neral-purpose DAC and audio DAC | √O oibr  |                                                               | 3: Cla   | tss B    | Safet   | y Fea         | 3: Class B Safety Features: |                       | Include          | L1: Includes WDT, oscillator fail-safe, illegal opcode detect, | oscilla | tor fail             | l-safe,            | illegal              | apcode | detect      |                    | reset               | trace, r                              | egister | lock, ↑             | TRAP, reset trace, register lock, frequency check            | y check,                                                             |

1:16-bit PIC® MOU offers SAR ADC, high-speed ADC and Delta-Sigma ADC 2:16-bit PIC MCU offers general-purpose DAC and audio DAC 3: Class B Safety Features. L1: Includes WDT, oscillator fail-safe, illegal opcode detect, TRAP, reset trace, register lock, frequency check, frequency check, CodeGuaran work Not lock\* L2: Includes features of L1 + CRC L3: Includes features of L3: Includes features of

|                                                               |                       | Раскадеѕ                 | TOFP (PT), OFN      | TOFP (PT), OFN<br>(ML), XBGA (BG) | (M6), SOIC (SO),<br>SSOP (SS), SPDIP<br>(SP), TQFP (PT), | TOFP (PT, PF, PH),<br>LOPF (PL) | OFN (MR), TOFP<br>(PT, PH), LOPF (PL) | TOFP (PT), QFN<br>ML) .TFBGA (BG) | TOFP (PT), OFN<br>(ML), TFBGA (BG) |            | PDIP (P), SOIC<br>(SO), SSOP (SS) | SDIP (P, SP), SOIC<br>(SO), SSOP (SS),<br>OFN (MM) | SDIP (SP), SOIC<br>(SO), SSOP (SS),<br>QFN (MM) | SPDIP (SP), ŚOIC<br>(SO), QFN (MM,<br>ML, MR), TOFP (PT) | SPDIP (SP), SOIC<br>(SO), QFN (MM,<br>MI), TOFP (PT) | SPDIP (SP), SOIC<br>(SO), SSOP (SS),<br>QFN (MQL, ML),<br>TOFP (PT), TLA. | SPDIP (SP),<br>SOIC (SO),<br>SSOP (SS), QFN<br>(MQL,ML), TQFP | SPDÍP (SP), SOIC<br>(SO), QFN-S (MM,<br>MI), TOFP (PT) | SPDIP (SP), SOIC<br>(SO), QFN-S (MM,<br>MI), TOFP (PT) | SPDÍP (SP), ŠOÍC<br>(SO), QFN-S (MM,<br>ML), TQFP (PT) | SPDIP (SP), SOIC<br>(SO), QFN-S<br>(MM,ML), TQFP | TOFP (PF, PT),<br>OFN(MR) | OFP (PF, PT),<br>OFN (MR) | SPUIP (SP), SOLC<br>(SO), SSOP (SS),<br>QFN (MM, ML),<br>TQFP (PT) |
|---------------------------------------------------------------|-----------------------|--------------------------|---------------------|-----------------------------------|----------------------------------------------------------|---------------------------------|---------------------------------------|-----------------------------------|------------------------------------|------------|-----------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|---------------------------|---------------------------|--------------------------------------------------------------------|
|                                                               |                       |                          |                     |                                   |                                                          |                                 |                                       | 08<br>0 A                         |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               | SP. (SO)                                               |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       | Pricing (\$) (5 ku)      | 3.14                | 3.35                              | 1.16                                                     | 5.49                            | 5.39                                  | 2.8                               | 2.94                               |            | 1.61                              | 1.75                                               | 2.06                                            | 2.52                                                     | 3.04                                                 | 1.68                                                                      | 1.68                                                          | 2.5                                                    | 2.76                                                   | 3.42                                                   | 2.52                                             | 3.36                      | 3.81                      | 2.60                                                               |
|                                                               |                       | TABV                     | >                   | >                                 |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       | XLP                      | >                   | >                                 |                                                          | >                               | >                                     | >                                 |                                    |            | >                                 | `                                                  | >                                               | >                                                        |                                                      | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         |                                                                    |
|                                                               | ility                 | IDLE, SLEEP and PMD      | ,                   | `                                 | >                                                        | ,                               | >                                     | >                                 | >                                  |            | >                                 | ,                                                  | ,                                               | ,                                                        | >                                                    | ,                                                                         | ,                                                             | ,                                                      | >                                                      | ,                                                      | ,                                                | ,                         | >                         | `                                                                  |
|                                                               | System Flexibility    | AMG                      | >                   | >                                 | `                                                        | >                               | >                                     |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        | >                                                      | >                                                      |                                                  |                           | >                         |                                                                    |
|                                                               | ystem                 | 91q                      |                     |                                   |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | Ø.                    | Sdd                      | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      |                                                  |                           |                           | >                                                                  |
|                                                               |                       | сгс                      | >                   | >                                 | >                                                        |                                 |                                       | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       | Dual Partition Flash     | >                   | >                                 |                                                          | >                               | >                                     | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | Data                  | RNG                      | >                   | >                                 |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | Secure Data           | Secure Key Storage       | >                   | >                                 |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | Š                     | Cryptographic Engine     | >                   | >                                 |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | rface                 | CFX                      | 0.                  | 0 0                               |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | User Interface        | LCD (Segments)           | up to               | up to<br>512                      |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | Ns                    | CTMU and mTouch®         | >                   | >                                 | >                                                        |                                 |                                       | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      | >                                                                         | >                                                             |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       | SENT Parallel Port       | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        | >                                                      | >                                                      |                                                  |                           |                           |                                                                    |
| ers                                                           | Ę                     | MTZSI                    | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           | ,                                                             |                                                        |                                                        | ,                                                      |                                                  |                           | ,                         |                                                                    |
| 16-bit Microcontrollers and dsPIC® Digital Signal Controllers | Communication         | Jas Dal                  | >                   | >                                 | <i>&gt;</i>                                              | >                               | >                                     | >                                 | >                                  |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | <b>&gt;</b>                                                   | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         | >                                                                  |
| nal Co                                                        | muu                   | LIN<br>•AG1              |                     |                                   | >                                                        | >                               | >                                     |                                   |                                    |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         | >                                                                  |
| tal Sig                                                       | ŏ                     | TAAU                     | >                   | >                                 | ``                                                       | >                               | >                                     | >                                 | >                                  |            | >                                 | >                                                  | >                                               | `                                                        | >                                                    | `                                                                         | \$                                                            | `                                                      | >                                                      | >                                                      | `                                                | >                         | >                         | `                                                                  |
| ° Digi                                                        |                       | C∀N<br>∩2B               | Н                   | >                                 |                                                          | >                               | >                                     |                                   | >                                  | Family     |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        | >                                                      |                                                  |                           | >                         |                                                                    |
| dsPIC                                                         | БL                    | Class B Safety®          | 2                   | 2                                 | 2                                                        | 2                               | 2                                     | 2                                 | 7                                  | dsPIC33F I | 5                                 | 5                                                  | 5                                               | 5                                                        | 5                                                    | 5                                                                         | 5                                                             | 5                                                      | 2                                                      | 7                                                      | 5                                                | 5                         | 5                         | 5                                                                  |
| rs and                                                        | Safety and Monitoring | ово                      | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  | dsPI       |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        | >                                                      | >                                                      |                                                  |                           |                           |                                                                    |
| ntrolle                                                       | nd Mo                 | TMG                      |                     |                                   |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
| crocol                                                        | afety a               | TOW                      | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         | >                                                                  |
| -bit Mi                                                       | Š                     | ГАВ                      | >                   | >                                 | >                                                        |                                 |                                       | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
| 16                                                            | mers                  | QEI                      |                     |                                   |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        | >                                                | >                         | >                         | >                                                                  |
|                                                               | nd Tim                | 32-bit Timer<br>RTCC     | >                   | >                                 | `                                                        |                                 |                                       | `                                 | ,                                  |            |                                   |                                                    |                                                 |                                                          |                                                      | `                                                                         | `                                                             |                                                        |                                                        |                                                        |                                                  |                           | _                         | _                                                                  |
|                                                               | Clocks and Tii        | 16-bit Timer             | >                   | >                                 | ` <u>`</u>                                               | >                               | >                                     | >                                 | >                                  |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | ` <u>`</u>                                                    | >                                                      | <i>&gt;</i>                                            | >                                                      | >                                                | >                         | >                         | <i>&gt;</i>                                                        |
|                                                               | clo                   | s-bit Timer              | Ĺ                   |                                   |                                                          | ĺ                               | -                                     |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      | ŕ                                                                         | ,                                                             | ·                                                      |                                                        | •                                                      |                                                  | ĺ                         |                           |                                                                    |
|                                                               |                       | (sn) noifulosaR MW9      | 62                  | 29                                | 29                                                       | 4                               | 14                                    | 62                                | 62                                 |            |                                   | -                                                  | -                                               | -                                                        | -                                                    | 82                                                                        | 12                                                            | 25                                                     | 25                                                     | 25                                                     | -                                                | -                         | -                         | 42                                                                 |
|                                                               | trol                  | OO bns Ol                | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            |                                   |                                                    | >                                               | >                                                        | >                                                    | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         | >                                                                  |
|                                                               | Waveform Control      | SWPS PWM                 | Н                   |                                   |                                                          |                                 |                                       |                                   |                                    |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    |                                                                           | >                                                             |                                                        |                                                        |                                                        | >                                                | >                         | >                         | >                                                                  |
|                                                               | iveforr               | MWq                      | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            |                                   | >                                                  | >                                               | >                                                        | >                                                    | >                                                                         | >                                                             | >                                                      | >                                                      | >                                                      | >                                                | >                         | >                         | >                                                                  |
|                                                               | Wa                    | SCCP                     | >                   | >                                 | >                                                        |                                 |                                       | >                                 | >                                  |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       | OPA/PGA                  |                     |                                   |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          |                                                      |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               | nalog                 | HS Comp                  | >                   | >                                 | >                                                        | >                               | >                                     | >                                 | >                                  |            | >                                 |                                                    | >                                               |                                                          | >                                                    | >                                                                         | >                                                             |                                                        | >                                                      | >                                                      |                                                  | >                         | >                         |                                                                    |
|                                                               | ated A                | ©\(resolution)\(\omega\) | >                   | >                                 | >                                                        |                                 |                                       | >                                 | >                                  |            | >                                 | >                                                  | >                                               | >                                                        | >                                                    | _                                                                         |                                                               |                                                        |                                                        | (0                                                     | >                                                | >                         | >                         |                                                                    |
|                                                               | Integrated Analog     | (roifulosex) DDA         | 12 10               | 12 10                             | 12                                                       | 12 4                            | 12 4                                  | 12                                | 12                                 |            | 10 10                             | 10                                                 | 10 10                                           | 10                                                       | 10 10                                                | 4 01                                                                      | 4 01                                                          | 12                                                     | 12 4                                                   | 12 16                                                  | 10                                               | 10 10                     | 10 10                     | 12                                                                 |
|                                                               |                       | Pin Count                |                     |                                   |                                                          |                                 |                                       |                                   |                                    |            |                                   |                                                    |                                                 |                                                          | 4                                                    |                                                                           |                                                               |                                                        |                                                        |                                                        |                                                  |                           |                           |                                                                    |
|                                                               |                       |                          | 121                 |                                   | 6 24-48                                                  | 52 100-                         |                                       |                                   | 2 64-                              |            | 25 18                             | 25 18-28                                           | 28                                              | 64 28-44                                                 | 28                                                   | 2 20-44                                                                   | 2 20-44                                                       | 28-44                                                  | 28-44                                                  | 6 28-44                                                | 8 64                                             | 100                       |                           | 4 28-44                                                            |
|                                                               | lav                   | BAM (KB)                 | 8-16                | 8-16                              | 18                                                       | 3- 28-52                        | 2 52                                  | 32 32                             | 32 32                              |            | 0.25                              | 0.25                                               | Ф<br>Ф                                          | 16-64                                                    | 2                                                    | 1-2                                                                       | 32 1-2                                                        | 0                                                      | 0                                                      | 16                                                     | 64 2-8                                           | 4                         | 80                        | 2 -4                                                               |
|                                                               | KB)                   | Program Flash Memory (   | 64-                 |                                   | 9 256                                                    | 256-                            |                                       |                                   | ) 128-<br>1024                     |            | 9 (                               | 9                                                  | 6-9                                             | 91                                                       | 16                                                   | 88                                                                        | 16-32                                                         | 32                                                     | 16                                                     | 64-                                                    | 32-64                                            | 32                        | 0 64                      | 35                                                                 |
|                                                               |                       | SqIM mumixeM             | 16                  | 91                                | 16                                                       | 8                               | 70                                    | 16                                | 16                                 |            | 40                                | 40                                                 | 40                                              | 92                                                       | 25                                                   | 91                                                                        | 16                                                            | 40                                                     | 40                                                     | 40                                                     | 22                                               | 8                         | 22                        | 20                                                                 |
|                                                               |                       | Product<br>Family        | PIC24FJ<br>256GA412 | PIC24FJ<br>256GB412               | PIC24FJ<br>256GA705                                      | PIC24EP<br>512GU814             | PIC24EP<br>512GP806                   | PIC24FJ<br>1024GA610              | PIC24FJ<br>1024GB610               |            | dsPIC33<br>FJ06GS001              | dsPIC33FJ<br>06GS102/1/A                           | dsPIC33FJ<br>06GS202/<br>A/302                  | dsPIC33FJ<br>16GS404                                     | dsPIC33FJ<br>16GS504                                 | dsPIC33FJ<br>32GP104                                                      | dsPIC33FJ<br>32MC104                                          | dsPIC33FJ<br>32GP204                                   | dsPIC33FJ<br>16GP304                                   | dsPIC33FJ<br>128GP804                                  | dsPIC33FJ<br>64GS406                             | dsPIC33FJ<br>32GS610      | dsPIC33FJ<br>64GS610      | dsPIC33FJ<br>32MC204                                               |

1: 6-bit PC® MOU offers SAR ADC, high-speed ADC and Delta-Sigma ADC and Delta-Sigma ADC and Listers general-purpose DAC and audio DAC and audio DAC 3: Glass B Safety Features. L1: Includes Mot appearance of L1 + CRC L3: Includes features of L3:

11

|                                                                         |                       | Раскадеѕ                    |          | SPDIP (SP), SOIC<br>(SO), SSOP (SS),<br>QFN (MM, ML),<br>TOPP (PT) | SPDIP (SP), SOIC (SO), SSOP (SS), QFN (MM, ML), TOFP (PT) | SPDIP (SP), SOIC<br>(SO), SSOP (SS),<br>QFN (MM, ML), | TOFP (PT, PF), | TOFP (PT, PF),<br>OFN (MR) | TOFP (PT, PF),<br>OFN (MR) | TOFP (PT, PF),<br>QFN (MR) |                  | SPDIP (SP), SOIC<br>(SO), QFN (MM,<br>ML), TQFP (PT) | PDÍP (SP), SOÍC<br>SO), QFN (MM,<br>AL), TOFP (PT) |            | SOIC (SO), SSOP<br>(SS), UQFN (M6,<br>MX, 2N), QFN<br>(MM, ML),<br>TQFP (PT) | OIC (SO), UGFN<br>2N), QFN (MM,<br>AL), TQFP (PT) | 7DIP (SP), SOIC<br>3O), QFN (MM,<br>1L, MR), TQFP | TOFP (PT),<br>QFN (MR) | TOFP (PT),<br>OFN (MR) | QFN (ML, MR),<br>TQFP (PT, PF),<br>TFBGA (BG) | OFN (ML, MR),<br>TOFP (PT, PF),<br>TFBGA (BG) | IOFP (PT, PF), OFN (MR), LOFP (PL) | TOFP (PT),<br>OFN (MR) |                    | SSOP (SS), UGFN<br>(2N, M5, M4),<br>TQFP (PT),<br>QFN (MR) |
|-------------------------------------------------------------------------|-----------------------|-----------------------------|----------|--------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------|----------------|----------------------------|----------------------------|----------------------------|------------------|------------------------------------------------------|----------------------------------------------------|------------|------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|------------------------|------------------------|-----------------------------------------------|-----------------------------------------------|------------------------------------|------------------------|--------------------|------------------------------------------------------------|
|                                                                         |                       | Pricing (\$) (bul)          |          | S) 78:                                                             | 3.29 (S                                                   | 80.08                                                 | 4.10           | . 8                        | 4.20                       | . 84                       |                  | SF<br>(9)                                            | 2.00                                               |            | 86.                                                                          | 3.47 (2                                           | 3. SE. (6                                         | 2.10                   | 2.31                   | 89                                            | 3.89                                          | 5.01 TQ                            | 5.39                   |                    | 2.73                                                       |
|                                                                         |                       | TA8 <b>V</b>                |          | 6                                                                  | ಣ                                                         | 6,                                                    | 4              | ಣ                          | 4                          | 69                         |                  | ļ                                                    | 2                                                  |            | +-                                                                           | ಣ                                                 | +-                                                | 2.                     | .2                     | ಣ                                             | ri<br>ri                                      | .5                                 | .5                     |                    | 61                                                         |
|                                                                         |                       | XLP                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    | , , , , , , , , , , , , , , , , , , ,                      |
|                                                                         |                       | DOZE                        |          | `                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | ibility               | IDFE, SLEEP and PMD         |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | System Flexibility    | AMD                         |          |                                                                    | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            |                                                                              | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | Syste                 | 914                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             |                                    |                        |                    | >                                                          |
|                                                                         |                       | bb8                         |          | >                                                                  | >                                                         | >                                                     |                |                            |                            |                            |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         |                       | Dual Partition Flash CLC    |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              | >                                                 |                                                   |                        |                        |                                               |                                               | >                                  | >                      |                    | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `                      |
|                                                                         | а                     | BNG                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            | ,                                                                            | ,                                                 |                                                   |                        |                        |                                               |                                               | >                                  | >                      |                    | ,                                                          |
|                                                                         | Secure Data           | Secure Key Storage          |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    |                                                            |
|                                                                         | Secu                  | Cryptographic Engine        |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    |                                                            |
|                                                                         | eo                    | GFX                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    |                                                            |
|                                                                         | User Interface        | LCD (Segments)              |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    |                                                            |
|                                                                         | User                  | ©TMU and mTouch®<br>Sensing |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  | >                                                    | >                                                  |            |                                                                              |                                                   | >                                                 | >                      | >                      | >                                             | >                                             |                                    |                        |                    |                                                            |
|                                                                         |                       | Parallel Port               |          | >                                                                  | >                                                         | >                                                     |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
| ဖွာ                                                                     |                       | SENT<br>IsSTM               |          |                                                                    |                                                           |                                                       |                | >                          | >                          |                            |                  | ,                                                    | >                                                  |            | >                                                                            | >                                                 |                                                   |                        |                        | >                                             | >                                             | >                                  | >                      | Core)              | >                                                          |
| ntroller                                                                | Communication         | Spl                         |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      | Slave C            | >                                                          |
| ıal Cor                                                                 | nmuni                 | ®A <b>Q</b> ₁I              |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            |                                                                              | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      | S-                 | >                                                          |
| al Sign                                                                 | Cor                   | TAAU<br>NIJ                 |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      | r Core,            | >                                                          |
| <sup>®</sup> Digit                                                      |                       | C∀N<br>∩2B                  | Family   |                                                                    |                                                           | >                                                     | >              |                            | >                          | >                          | amily            |                                                      | >                                                  | Family     |                                                                              | >                                                 | >                                                 |                        | >                      |                                               | >                                             | >                                  | >                      | Master             | >                                                          |
| dsPIC                                                                   | a                     | Class B Safety <sup>®</sup> |          | 2                                                                  | 2                                                         | 2                                                     | 5              | 5                          | 5                          | 5                          | dsPIC33EV Family | 2                                                    | 2                                                  | 3EP F      | 5                                                                            | 5                                                 | 2                                                 | 2                      | 2                      | 2                                             | 2                                             | 7                                  | 7                      | Core (M -          | <u></u>                                                    |
| rs and                                                                  | nitorin               | свс                         | dsPIC33F | >                                                                  | >                                                         | >                                                     |                |                            |                            |                            | dsPIC            |                                                      |                                                    | ds PIC33EP |                                                                              |                                                   | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      | Dual Cor           | >                                                          |
| ntrolle                                                                 | nd Mo                 | TMG                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  | >                                                    | >                                                  |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        | ily - Du           | >                                                          |
| crocol                                                                  | Safety and Monitoring | TOW                         |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      | H Fam              | >                                                          |
| 16-bit Microcontrollers and dsPIC $^{\circ}$ Digital Signal Controllers | ű                     | TAD                         |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        | dsPIC33CH Family - |                                                            |
| 16                                                                      | ners                  | RTCC                        |          | `                                                                  | >                                                         | >                                                     | >              |                            |                            | >                          |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   | >                      | >                      | >                                             | >                                             | >                                  |                        | dsb                | >                                                          |
|                                                                         | nd Tin                | 32-bit Timer                |          | <b>\</b>                                                           | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | ,                                                    | >                                                  |            | >                                                                            | ,                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    |                                                            |
|                                                                         | Clocks and Tin        | 16-bit Timer                |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | ö                     | 8-bit Timer                 |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    |                                                            |
|                                                                         |                       | PWM Resolution (ns)         |          | 5                                                                  | 12                                                        | 12                                                    | 12             | 25                         | 25                         | 12                         |                  | ω                                                    | ω                                                  |            | -                                                                            | -                                                 | 4                                                 | 7                      | 7                      | _                                             | 7                                             | 7                                  | 14                     |                    | .25                                                        |
|                                                                         | untrol                | SMPS PWM                    |          | >                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | orm Cc                | MC PWM                      |          | >                                                                  | >                                                         | >                                                     | >              |                            |                            | >                          |                  | >                                                    | >                                                  |            |                                                                              |                                                   |                                                   | >                      | >                      | >                                             | >                                             | >                                  |                        |                    | >                                                          |
|                                                                         | Waveform Control      | PWM<br>MCCP                 |          | `                                                                  | >                                                         | >                                                     | >              | >                          | >                          | >                          |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         |                       | SCCP/ECCP                   |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  |                                                      |                                                    |            |                                                                              |                                                   |                                                   |                        |                        |                                               |                                               |                                    |                        |                    | >                                                          |
|                                                                         | 6c                    | A294/A90                    |          |                                                                    |                                                           |                                                       |                |                            |                            |                            |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             |                                    |                        |                    | >                                                          |
|                                                                         | Integrated Analog     | HS Comp                     |          | >                                                                  | >                                                         | >                                                     |                |                            |                            |                            |                  | >                                                    | >                                                  |            | >                                                                            | >                                                 | >                                                 | >                      | >                      | >                                             | >                                             | >                                  | >                      |                    | >                                                          |
|                                                                         | gratec                | ©(noifuloser) DAG           |          | 4                                                                  | 4                                                         | 4 to                                                  |                |                            |                            |                            |                  | ~                                                    | 7                                                  |            | 5                                                                            | 12                                                | 4                                                 | 4                      | 4                      | 4                                             | 4                                             | 4                                  | 4                      |                    | 4                                                          |
|                                                                         | Inte                  | (t)(noitulosər) D <b>QA</b> |          | 42                                                                 | 12                                                        | 12                                                    | 12             | 12                         | 12                         | 12                         |                  | 12                                                   | 12                                                 |            | 12                                                                           | 12                                                | 12                                                | 12                     | 12                     | 12                                            | 12                                            | 12                                 | 12                     |                    | 12                                                         |
|                                                                         |                       | Pin Count                   |          | 28-44                                                              | 28-44                                                     | 28-44                                                 | 100            | 100                        | 100                        | 64-100                     |                  | 28-64                                                | 28-64                                              |            | 28-64                                                                        | 28-80                                             | 28-64                                             | 28-64                  | 28-64                  | 44<br>100                                     | 44 00 1                                       | 64-<br>144                         | 64                     |                    | 28-80                                                      |
|                                                                         |                       | RAM (KB)                    |          | 4                                                                  | 00                                                        | 16                                                    | 8-16           | 8-16                       | 16-32                      | 8-32 (                     |                  | 4-16                                                 | 4-16                                               |            | 2-8                                                                          | 00                                                | 4-48                                              | 4-48                   | 4-48                   | 16-48                                         | 16-48                                         | 28-52                              | 52                     |                    | M: 16<br>S: 4                                              |
|                                                                         | KB)                   | Program Flash Memory (      |          | 83                                                                 | 64-<br>128                                                | 64-<br>128                                            | 128            | 128                        | 256                        | 64-<br>256                 |                  | 32-<br>256                                           | 32-<br>256                                         |            | 16-64                                                                        | 64-<br>128                                        | 32-<br>512                                        |                        |                        | 128-<br>512                                   | 128-<br>512                                   | 256-                               | 512                    |                    | M:<br>64-<br>128<br>S: 24                                  |
|                                                                         |                       | SqIM mumixsM                |          | 02                                                                 | 02                                                        | 02                                                    | 02             | 40                         | 20                         | 20                         |                  | 02                                                   | 02                                                 |            | 02                                                                           | 02                                                | 02                                                | 02                     | 20                     | 20                                            | 02                                            | 70                                 | 70                     |                    | M:90<br>S:100                                              |
|                                                                         |                       | lot<br>ily                  |          | 2.4                                                                | F 40                                                      | E 4                                                   | FJ 710A        | FJ<br>310A                 | FJ 94                      | FJ 710A                    |                  | ) EV                                                 | )6<br>26                                           |            | 56<br>06                                                                     | 3808                                              | 9090                                              | EP 90                  | EP 90                  | G ⊡                                           | EP 710                                        | ₽ <u>4</u>                         | EP<br>6                |                    |                                                            |
|                                                                         |                       | Product<br>Family           |          | dsPIC33FJ<br>32MC304                                               | dsPIC33FJ<br>128MC204                                     | dsPIC33FJ<br>128MC804                                 | dsPIC33FJ      | dsPIC33I                   | dsPIC331<br>256GP5/        | dsPIC33FJ<br>256MC5/710A   |                  | dsPIC33EV<br>256GM006                                | dsPIC33EV<br>256GM106                              |            | dsPIC33EP<br>64GS2/506                                                       | dsPIC33<br>EP128GS808                             | dsPIC33<br>EP512GP506                             | dsPIC33EP<br>512MC206  | dsPIC33L<br>512MC50    | dsPIC33EP<br>512GM310                         | dsPIC33EP<br>512GM6/710                       | dsPIC33EP<br>512MU814              | dsPIC33EP<br>512GP806  |                    | dsPIC33CH<br>128MP508                                      |

1:16-bit PC® MOU offers SAR ADC, high-speed ADC and Delta-Sigma ADC 2.16-bit PIC MOU offers general-purpose DAC and audio DAC 3: Class B Safety Features. L1: Includes WDT, oscillator fail-safe, illegal opcode detect, TRAP, reset trace, register lock, frequency check, frequency check, CodeGuaran with MC PWM/SMPS PWM peripheral 4: 5V operating voltage

# 16-bit MCUs and DSCs Terminology

| i i                                                |                                                                                                                                                                               |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADC: Analog-to-Digital Converter                   | General-purpose ADC with up to 10-/12-/16-bit resolution                                                                                                                      |
| HS ADC: High-Speed Analog-to-Digital Converter     | High-speed SAR ADC with 12-bit resolution and sampling speed of 10 Msps                                                                                                       |
| ΔΣ ADC: Delta-Sigma Analog-to-Digital Converter    | Bipolar differential inputs configurable gain integrated PGA Delta-Sigma ADC                                                                                                  |
| DAC: Digital-to-Analog Converter                   | General-purpose DAC with resolution up 16-bit resolution                                                                                                                      |
| ΔΣ DAC: Delta-Sigma Digital-to-Analog<br>Converter | Second-order digital bipolar, two output channel Delta-Sigma DAC with stereo operation support                                                                                |
| CVREF: Internal Voltage Reference                  | Programmable voltage reference with multiple internal and external connections                                                                                                |
| HS Comp: High-Speed Comparator                     | General-purpose rail-to-rail comparator with <1 ns response time                                                                                                              |
| <b>OPA:</b> Operational Amplifier                  | General-purpose op amp for internal and external signal source conditioning                                                                                                   |
| Waveform Cor                                       | Waveform Control: PWM Drive and Waveform Generation                                                                                                                           |
| CCP/ECCP: (Enhanced) Capture/Compare/<br>PWM       | Multi-purpose timers with functionality of the comparable input capture, output compare and PWM with four outputs                                                             |
| SCCP: Single Capture/Compare/PWM                   | Multi-purpose 16-/32-bit input capture, output compare and PWM                                                                                                                |
| MCCP: Multiple Capture/Compare/PWM                 | Multi-purpose 16-/32-bit input capture, output compare and PWM with up to six outputs and an extended range of output control features                                        |
| PWM: Pulse Width Modulation                        | 16-bit PWM with up to nine independent time bases                                                                                                                             |
| MC PWM: Motor Control Pulse-Width Modulation       | Motor control 16-bit PWM with multiple synchronized pulse-width modulation, up to six outputs with four duty cycle generators and resolution up to 1 ns                       |
| SMPS PWM: Power Supply Pulse-Width Modulation      | Power supply 16-bit PWM with multiple synchronized pulse-width modulation, up to eight outputs with four independent time bases and resolution up to 1 ns                     |
| IC: Input Capture                                  | Input capture with an independent timer base to capture an external event                                                                                                     |
| OC: Output Compare                                 | Output compare with an independent time base to compare value with compare registers and generate a single output pulse, or a train of output pulses on a compare match event |
| Clocks and Timers: Si                              | Signal Measurement with Timing and Counter Control                                                                                                                            |
| 8-/16-/32-bit Timer                                | General-purpose 8-/16-/32-bit timer/counter with compare capability                                                                                                           |
| RTCC: Real-Time Clock/Calendar                     | Real-time clock and calendar with a Binary-Coded Decimal (BCD) clock calendar to maintain accurate timing with external 32.768 kHz crystal                                    |
| QEI: Quadrature Encoder Interface                  | Quadrature encoder interface to increment encoders for obtaining mechanical position data                                                                                     |
| Safety and Monito                                  | Safety and Monitoring: Hardware Monitoring and Fault Detection                                                                                                                |
| LVD: Low-Voltage Detection                         | LVD detects drops in system operating voltage using an internal reference voltage for comparison, especially in battery-powered applications                                  |
| WDT: Watchdog Timer                                | System supervisory circuit that generates a reset when software timing anomalies are detected within a configurable critical window                                           |
| DMT: Dead Man Timer                                | System supervisory circuit that generates a reset when instruction sequence anomalies are detected within a configurable critical window                                      |
| CRC: Cyclical Redundancy Check with Memory Scan    | Automatically calculates CRC checksum of Program/DataEE memory for NVM integrity and a general-purpose 16-bit CRC for use with memory and communications data                 |
| Class B Safety                                     | Hardware Class B support with Flash error correction, backup system oscillator, WDT, DMT, CRC scan, etc.                                                                      |
|                                                    |                                                                                                                                                                               |

| USB OTG: Universal Serial Bus                                                                                        |                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3550                                                                                                                 | USB 2.0 full-speed (nost and device), low-speed (nost) and Un-The-Go (UTG) support                                                                                                                                                                                  |
| CAN: Controller Area Network                                                                                         | Industrial- and automotive-centric communication bus                                                                                                                                                                                                                |
| <b>UART:</b> Universal Asynchronous Receiver Transmitter                                                             | General-purpose full-duplex, 8-bit or 9-bit data serial communications with optional ISO 7816 Smart Card support                                                                                                                                                    |
| LIN: Local Interconnect Network                                                                                      | Industrial- and automotive-centric communication bus     Support for LIN when using the EUSART                                                                                                                                                                      |
| IrDA®: Infrared Data Association                                                                                     | IrDA encoder and decoder logic support through UART                                                                                                                                                                                                                 |
| PC: Inter-Integrated Circuit                                                                                         | General purpose 2-wire inter IC serial interface for communicating with other peripherals or microcontroller devices                                                                                                                                                |
| SPI: Serial Peripheral Interface                                                                                     | General-purpose 4-wire synchronous serial interface for communicating with other peripherals or microcontroller devices                                                                                                                                             |
| PS: Data Converter Interface                                                                                         | 3-wire synchronous half duplex serial interface to handle the stereo data                                                                                                                                                                                           |
| SENT: Single-Edge Nibble Transmission                                                                                | SENT is an unidirectional, single-wire serial communications protocol designed for point-to-point transmission of signal values                                                                                                                                     |
| Parallel Port                                                                                                        | General-purpose parallel communication interface                                                                                                                                                                                                                    |
| User Interface:                                                                                                      | : Capacitive Touch Sensing and LCD Control                                                                                                                                                                                                                          |
| CTMU and mTouch® Sensing: Microchip<br>Proprietary Capacitive Touch Technology<br>Using Charge Time Measurement Unit | Capacitive sensing for touch buttons, sliders and system measurements and detection (e.g. water level, intrusion detection, etc.) using an analog CTMU that provides accurate differential time measurement between pulse sources and asynchronous pulse generation |
| LCD: Liquid Crystal Display                                                                                          | Highly integrated segmented LCD controller                                                                                                                                                                                                                          |
| GFX: Graphics Controller                                                                                             | Highly integrated graphics controller supporting direct interface with display glasses with built-in analog drive for individual pixel control                                                                                                                      |
| Secure Data:                                                                                                         | Hardware-Integrated Cryptographic Engine                                                                                                                                                                                                                            |
| Cryptographic Engine                                                                                                 | Independent NIST-standard encryption and decryption engine                                                                                                                                                                                                          |
| Secure Key Storage                                                                                                   | Multiple option for key storage, selection and management                                                                                                                                                                                                           |
| RNG: Random Number Generator                                                                                         | Hardware true random number generation                                                                                                                                                                                                                              |
| System Flexil                                                                                                        | System Flexibility: System Peripherals and Interconnects                                                                                                                                                                                                            |
| Dual Partition Flash                                                                                                 | Dual partition Flash operation, allowing the support of robust bootloader systems and fail-safe storage of application code, with options designed to enhance code security                                                                                         |
| CLC: Configurable Logic Cell                                                                                         | Integrated combinational and sequential logic with custom interconnection and re-routing of digital peripherals                                                                                                                                                     |
| PPS: Peripheral Pin Select                                                                                           | I/O pin remapping of digital peripherals for greater design flexibility and improved EMI board layout                                                                                                                                                               |
| PTG: Peripheral Trigger Generator                                                                                    | User-programmable sequencer, capable of generating complex trigger signal sequences to coordinate the operation of other peripherals                                                                                                                                |
| DMA: Direct Memory Access                                                                                            | Direct memory access for transfer of data between the CPU and its peripherals without CPU assistance                                                                                                                                                                |
| IDLE, SLEEP and PMD                                                                                                  | Low-power saving modes                                                                                                                                                                                                                                              |
| DOZE                                                                                                                 | Ability to run the CPU core slower than the system clock used by the internal peripherals                                                                                                                                                                           |
| XLP: eXtreme Low Power Technology                                                                                    | XLP technology devices with extreme low-power operation modes for battery/low-power applications                                                                                                                                                                    |
|                                                                                                                      |                                                                                                                                                                                                                                                                     |

|                         |                         | Раскадеѕ                                                 |       | SSOP,<br>SOIC,<br>SPDIP, QFN,<br>UQFN,<br>VQFN | SSOP,<br>SOIC,<br>SPDIP, QFN,<br>UQFN,<br>VQFN   | SOIC,<br>SSOP,<br>SPDIP, QFN,<br>VTLA, TQFP,<br>TFBGA* | SOIC, QFN,<br>TQFP  | TOFP, OFN,<br>TFBGA,<br>VTLA | QFN, TQFP,<br>TFBGA,<br>VTLA | QFN, TQFP        | QFN, TQFP,<br>TFBGA,<br>VTLA, LQFP | LFBGA,<br>LQFP               | OEN NOC               | OFN, SOIC,      | OFN, SOIC,<br>WLCSP   | TOFP, QFN,<br>WLCSP,<br>UFBGA | TQFP, QFN,<br>WLCSP,<br>UFBGA | TQFP, QFN        | TQFP, QFN           | TQFP, QFN,<br>WLCSP |
|-------------------------|-------------------------|----------------------------------------------------------|-------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|---------------------|------------------------------|------------------------------|------------------|------------------------------------|------------------------------|-----------------------|-----------------|-----------------------|-------------------------------|-------------------------------|------------------|---------------------|---------------------|
|                         |                         | Pricing (\$) (5 ku)                                      |       | 0.80                                           | 0.80                                             | 1.40                                                   | 2.77                | 2.45                         | 2.94                         | 4.51             | 5.71                               | 8.10                         | 8                     | 0.72            | 0.83                  | 1.10                          | 1.18                          | 1.29             | 1.63                | 1.75                |
|                         |                         | Olfra Small Package (WLCSP)                              |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    |                              | п                     | >               | >                     | >                             | >                             |                  |                     | >                   |
|                         |                         | CLC/CCL (4)                                              |       | >                                              | >                                                |                                                        |                     |                              |                              |                  |                                    |                              | ı                     |                 |                       |                               |                               |                  |                     | >                   |
|                         | xibilit                 | TABV\(SHM\Au)  TOGQUS V3                                 |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    |                              | ı                     |                 |                       |                               |                               |                  |                     | _                   |
|                         | n Fle                   | Low Active Power                                         |       |                                                |                                                  |                                                        | >                   |                              |                              |                  |                                    |                              | >                     | >               | >                     | >                             | >                             |                  | >                   | VBM                 |
|                         | System Flexibility      | (4) (alənnardə) (4) (Alənnardə) AMQ                      |       |                                                | 4                                                | 4                                                      | 4                   | 4                            | 00                           | 13               | 18                                 | 26                           | (                     | 9 9             | 9                     |                               | 12                            | 12               | ω                   | 16                  |
|                         | •,                      | Intelligent Low-Power<br>Peripheral Event System         |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    |                              | w w                   | 9 9             | 9                     | ω                             | 12                            | 12               | 12                  | 12                  |
|                         |                         | Dual Panel/Bank Flash (4)                                |       |                                                |                                                  |                                                        |                     |                              |                              | >                | >                                  | >                            | ı                     |                 |                       |                               |                               |                  |                     |                     |
|                         | Security                | ECC, RSA/DSA, TRNG) Tamper Detection                     |       |                                                |                                                  |                                                        |                     |                              |                              |                  | ⊢,<br>S,                           | E,S                          | Н                     |                 |                       |                               |                               |                  |                     | -                   |
|                         | Se                      | Crypto Engine (AES. SHA,                                 |       |                                                |                                                  |                                                        |                     |                              |                              |                  | ∢                                  | Ą                            | ı                     |                 |                       |                               |                               |                  |                     | A,T                 |
|                         | face                    | LCD/GFX Interface (PMP/EBI)                              |       |                                                |                                                  | ۵                                                      | ۵                   | ۵                            | ۵                            | ۵                | P <sub>+E</sub>                    | P <sub>+</sub> E             | ı                     |                 |                       |                               |                               |                  |                     |                     |
|                         | User Interface          | Segment/Graphics LCD<br>Controller                       |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    | ڻ                            | ı                     |                 |                       |                               |                               |                  |                     |                     |
|                         | Usel                    | Touch (PTC/CTMU, channels) (4)                           |       |                                                |                                                  | Ç                                                      | Ç                   | O<br>E                       |                              |                  |                                    | S                            |                       | D <sub>72</sub> | P <sup>72</sup>       | P256                          | P256                          |                  | P256                | P168                |
|                         |                         | Peripheral Bus Interface<br>PMP/EBI (bus width, bit) (4) |       |                                                |                                                  | <u> ۳</u>                                              | 2                   | P16                          | P16                          | <b>D</b> 24      | P/E <sup>24</sup>                  | P/E <sup>24</sup>            |                       |                 |                       |                               |                               |                  |                     |                     |
|                         |                         | Audio CODEC (I2STM) (4)                                  |       | N                                              | m                                                | 4                                                      | 2                   | 0                            |                              | 9                | 9                                  | 9                            | ı                     |                 |                       |                               | -                             |                  | -                   |                     |
|                         |                         | Idsd/ids                                                 |       |                                                |                                                  |                                                        |                     |                              |                              |                  | >                                  | >                            | ı                     |                 |                       |                               |                               |                  |                     |                     |
|                         | tion                    | SDIO/SD/eMMC                                             |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    | -                            | H                     |                 |                       |                               |                               |                  |                     |                     |
|                         | Communication           | (i) IdS                                                  |       | N                                              | ო                                                | 4                                                      | 2                   | Ø                            | 4                            | 9                | 9                                  | 9                            | c                     | 1 m             | က                     | 9                             | 9                             | 2                | 9                   | 9                   |
| ers                     | m mo                    | USART/UART<br>P²C                                        |       | N                                              | n<br>n                                           | 2                                                      | 2                   | 5 2                          | 9                            | 9                | 9                                  | 6 5                          | 0                     |                 | е<br>е                | 9                             | 9 9                           |                  |                     | 9 9                 |
| 32-bit Microcontrollers | 0                       | SERCOM/FLEXCOM (4)                                       |       |                                                |                                                  | 47                                                     |                     | 4,                           |                              | •                | •                                  |                              | c                     |                 | m                     | 9                             | 9                             |                  |                     | 9                   |
| croco                   |                         | Ethernet (10/100)                                        | PIC32 |                                                |                                                  | _                                                      |                     |                              | -                            |                  | -                                  | -                            | SAM                   |                 |                       |                               |                               |                  |                     |                     |
| oit Mic                 |                         | (Transceiver)<br>CAN (2.0B or FD)                        |       |                                                | <del>+</del> + + + + + + + + + + + + + + + + + + | 1F-P9.                                                 | 9-                  | <u>ā</u> _                   | CV                           | 4                | £ ∠2                               | Ε <sub>P</sub> 2             |                       |                 | 9-                    |                               | 9                             |                  | 1F±P                | 9                   |
| 32-1                    | pu<br>Bu                | Safety<br>USB (FS/HS) + PHY                              |       |                                                | +                                                |                                                        | 4<br>4<br>1         | B 1F+P.                      | 4-F-F                        | в 25             | - H+P                              | в 1н+Р                       |                       | -               | 1F#P                  | Ė                             | T+ 15-                        |                  |                     | 14-                 |
|                         | Safety and Monitoring   | Man Timer) (4) Class B Safety/DSU/Touch                  |       | >                                              | >                                                | \$ \frac{1}{8}                                         | 9                   | × ×                          | × ×                          | ₽ Q+             | -f-                                | £ 8                          | × ×                   |                 | √B+T                  | × F+T                         | N<br>F+T                      |                  | W ✓B+T              | ×<br>F <sup>+</sup> |
|                         |                         | Watchdog Timer DMT (Dead                                 |       | \$                                             | >                                                | *                                                      | <b>^</b> ₩+D        | *                            | \$                           | √W+D             | ✓ W+D                              | ✓W+D                         | *                     | >               | >                     | \$                            | \$                            | >                | >                   | >                   |
|                         | Timing and Measurements | Motor Interface (QEI/QDEC) (4)                           |       |                                                |                                                  |                                                        |                     |                              |                              | Ш                |                                    |                              | ı                     |                 |                       |                               |                               |                  |                     |                     |
|                         | Timing<br>leasurer      | (24-bit Control Timer)                                   |       |                                                |                                                  |                                                        |                     |                              |                              |                  |                                    |                              | ı                     | -               | -                     |                               | ო                             | က                | က                   | 0                   |
|                         | Me                      | 16-bit/32-bit Timer                                      |       | 2/3                                            | 21/9                                             | 5/2                                                    | 5/2                 | 5/2                          | 5/2                          | 14/16            | 9/4                                | 9/4                          | 2/4                   | 2/1             | 2/1                   | 5/2                           | 5/2                           | 2/5              | 5/2                 | 5/2                 |
|                         | form                    | Input Capture Channels  PWM Channels                     |       | ω                                              | 9 24                                             | 2                                                      | Ω                   | 2                            | 2                            | 16 16            | 6                                  | 6                            |                       |                 | 3 12                  | 3 16                          | 8 24                          |                  |                     | 8 24                |
|                         | Waveform<br>Control     | Output Compare Channels                                  |       | е<br>е                                         | 6                                                | 0                                                      | 5                   | 5 5                          | 5                            | 12 1             | 6                                  | 6                            | 0                     |                 | 9                     | 16 8                          | 18                            |                  |                     | 24 8                |
|                         | D                       | Analog Comparator (+Op Amp)                              |       | N                                              | m                                                | m                                                      | m                   | 0                            | N                            | 504              | N                                  | 2                            | c                     | 1 2             | 2                     | N                             | N                             |                  | 2                   | 203                 |
|                         | Intelligent Analog      | DAC (channels/bits)                                      |       | 1/5                                            | 1/5                                              |                                                        |                     |                              |                              | 3/12             |                                    |                              | 40                    | 1/10            | /10                   | 1/10                          | 40                            |                  | /10                 |                     |
|                         | igent                   | (sqs) beeq& OdA                                          |       | 200k 1                                         |                                                  | Σ                                                      | ₹                   | Σ                            | ₹                            | 16M 3,           | 18M                                | 18M                          | 107                   | 350K 1,         | 50K 1,                | 350k 1,                       | 50K 1,                        | 50K              | 350k 1/10           | 1M 2/12             |
|                         | Intel                   | (stid\slannsda) DQA                                      |       | 14/12 2                                        | 24/12 200k                                       | 48/10                                                  | 13/10               | 16/10                        | 16/10                        | 42/12 1          | 48/12 1                            | 45/12 1                      | 1/10 3                | 10/12 3         | 1,12 3                | 20/12 3                       | 1,12 3                        | 3/12 3           | 20/12 3             |                     |
|                         |                         | Pin Count                                                |       | 20-36 14                                       |                                                  | 28-<br>100                                             | 28-44 13            | 64- 16                       | 64-<br>100                   | 64- 42           |                                    | 169- 46<br>288 46            | 14-24 10/12 350k 1/10 | 14-24 10        | 14-24 10/12 350k 1/10 | 32-64 20                      | 32-64 20/12 350k 1/10         | 32-48 18/12 350k | 32-64 20            | 32-64 20/12         |
|                         |                         |                                                          |       |                                                | 64-256 16-32 28-64                               |                                                        | 64 28               |                              |                              |                  |                                    | _                            |                       |                 |                       |                               |                               |                  |                     |                     |
|                         |                         | BAM (KB)                                                 |       | 4-8                                            | 26 16-4                                          | 12 4-64                                                | 32-64               | 16-                          | 16-<br>128                   | - 128-           |                                    | 1- 256-<br>3 640             |                       |                 | 4                     | 56 2-32                       | 32-256 4-32                   | 4 4-8            | 4 4-8               | 32-256 4-32         |
|                         |                         | Program Flash Memory (KB)                                |       | 16-64                                          | 64-2                                             | 16-512                                                 | 128-<br>256         | 32-512                       | 64-512                       | 512-             |                                    | 1024-2048                    | 9-19                  | 8-16            | 16                    | 16-256                        | 32-26                         | 32-64            | 16-64               | 32-2                |
|                         |                         | Max. Operation Freq. (MHz)                               |       | 7 25                                           | 7 25                                             | 20                                                     | 72                  | 120                          | 80                           | 120              | 252                                | , 200                        | 78                    | 48              | 48                    | 48                            | 48                            | 48               | 48                  | 48                  |
|                         |                         | Core                                                     |       | microAptiv                                     | microAptiv                                       | M<br>X4                                                | ⊼<br>¥4             | M<br>44                      | M4K                          | microAptiv       | M-Class                            | microAptiv                   | OWO                   | CMO             | CM0+                  | CM0+                          | CM0+                          | CMO+             | CM0+                | CM0+                |
|                         |                         | Product<br>Family                                        |       | PIC32MM<br>GPL                                 | PIC32MM<br>GPM                                   | PIC32MX<br>1/2*/5*+                                    | PIC32MX<br>1/2* XLP | PIC32MX<br>3/4*              | PIC32MX<br>5/6/7             | PIC32MK<br>GP/MC | PIC32MZ<br>EF <sup>(3)</sup>       | PIC32MZ<br>DA <sup>(2)</sup> | POUMPO                | SAMD10          | SAMD11                | SAMD20                        | SAMD21                        | SAMD21L          | SAMDA1 <sup>®</sup> | SAML21              |

Note 1: USARTs with SPI mode are taken into account. Note 2: DRAM Memory Support: PIC32MZ DA with DDR2 (32 MB entbedded or 128 MB external); SAM S7x/E7xV7x with SDRAM (external). Note 3: Automotive Grade Devices. Note 4: Terminology in following table Note 5: SAM C20/C21 are true 5V devices; SAM C21 also comes with 3x 16-bit Delta-Sigma ADC \*: Variants with USB function +: Variants with CAN function

|                         |                          | Раскадея                                                 |     | TQFP, QFN,<br>WLCSP,<br>UFBGA | TQFP, QFN,<br>WLCSP | TQFP, QFN,<br>WLCSP   | LQFP,<br>TFBGA,<br>VFBGA,<br>QFN | LQFP,<br>TFBGA,<br>VFBGA,<br>QFN,<br>WLCSP | LFBGA,<br>TFBGA,<br>LQFP | LQFP,<br>WLCSP           | LQFP, QFN,<br>WLCSP | TQFP, QFN,<br>WLCSP | TOFP, OFN | LGFP,<br>LFBGA,<br>TFBGA,<br>UFBGA,<br>VFBGA,<br>QFN | LQFP,<br>LFBGA,<br>TFBGA,<br>UFBGA | LQFP,<br>TFBGA,<br>LFBGA  |
|-------------------------|--------------------------|----------------------------------------------------------|-----|-------------------------------|---------------------|-----------------------|----------------------------------|--------------------------------------------|--------------------------|--------------------------|---------------------|---------------------|-----------|------------------------------------------------------|------------------------------------|---------------------------|
|                         |                          | Pricing (\$) (5 ku)                                      |     | 2.11                          | 1.42                | 1.49                  | 2.51                             | 2.15                                       | 4.41                     | 3.25                     | 2.21                | 2.55                | 2.97      | 5.57                                                 | 6.12                               | ı                         |
|                         |                          | Olfra Small Package (WLCSP)                              |     | >                             | >                   | >                     |                                  | >                                          |                          | >                        | >                   | >                   |           |                                                      |                                    |                           |
|                         | ţ.                       | CLC/CCL (4)                                              |     | >                             | >                   | >                     |                                  |                                            |                          |                          |                     | >                   | >         |                                                      |                                    |                           |
|                         | System Flexibility       | TABV\(SHM\Au)<br>ToqquS V3                               |     | √ VBÆ                         | >                   | >                     |                                  |                                            |                          |                          |                     |                     |           |                                                      | >                                  | >                         |
|                         | em Fl                    | DMA (channels) Low Active Power                          |     | 16                            | 9                   | 12 ×                  | 23                               | 22                                         | 33                       | 7 91                     | 30                  | 32                  | 32 <      | > 45                                                 | 24                                 | 24                        |
|                         | Syst                     | Peripheral Event System<br>(channels) (4)                |     | ω                             | 9                   | 12                    |                                  | 4                                          |                          | 4                        | 9                   | 32                  | 32        | 2                                                    | 12                                 | 12                        |
|                         |                          | Dusi Panel/Bank Flash (4) Intelligent Low-Power          |     |                               |                     |                       |                                  | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `      |                          |                          |                     | >                   | >         |                                                      |                                    |                           |
|                         | ırity                    | Tamper Detection                                         |     | >                             |                     |                       |                                  |                                            | >                        |                          | >                   | >                   | >         | >                                                    | >                                  | >                         |
|                         | Security                 | Crypto Engine (AES. SHA,<br>ECC, RSA/DSA, TRNG)          |     | ,<br>⊢,                       |                     |                       |                                  |                                            | ∢                        | À,                       |                     | A,S,E<br>R,⊤        | A,S,E,    | F,S,                                                 | A,S,T                              | A,S,⊤                     |
|                         | ace                      | LCD/GFX Interface (PMP/EBI)                              |     |                               |                     |                       |                                  | ш                                          | Ш                        |                          |                     |                     |           | Ш                                                    | ш                                  | Ш                         |
|                         | User Interface           | Segment/Graphics LCD<br>Controller                       |     | OSSO<br>SSO                   |                     |                       |                                  |                                            |                          | S160                     |                     |                     |           |                                                      |                                    |                           |
|                         | Usel                     | Touch (PTC/CTMU, channels) (4)                           |     | D256                          | P256                | P256                  |                                  |                                            |                          |                          |                     | P256                | P256      |                                                      |                                    |                           |
|                         |                          | Peripheral Bus Interface<br>PMP/EBI (bus width, bit) (4) |     |                               |                     |                       |                                  | F24                                        | <u>т</u>                 |                          |                     |                     |           | F24                                                  | F24                                | <u>т</u>                  |
|                         |                          | Audio CODEC (I2STIA) (4)                                 |     |                               |                     |                       |                                  | -                                          |                          | -                        | N                   | -                   | -         | 0                                                    | N                                  | N                         |
|                         |                          | CMOS Camera Interface                                    |     |                               |                     |                       |                                  |                                            |                          |                          |                     | >                   | >         | >                                                    | >                                  | >                         |
|                         | ation                    | SDIO/SD/eMMC                                             |     |                               |                     |                       |                                  | <del>-</del>                               | >                        | >                        |                     | 0                   | 2         | <del>-</del>                                         | ,<br>,                             | <del>-</del>              |
|                         | Communication            | (i) IdS                                                  |     | 9                             | 4                   | ω                     | 4                                | ო                                          | က                        | S                        | ω                   | ω                   | ∞         | ro                                                   | 2                                  | 2                         |
| ers                     | Somm                     | TAAU\TAASU<br>⊃°I                                        |     | 9                             | 4                   | 80                    | 3/4 3                            | 2/2 2                                      | 2/2 2                    | 4/1 4                    | ω ω                 | ω<br>ω              | ω ω       | 3/5 3                                                | 3/5 3                              | 3/5 3                     |
| ntroll                  | O                        | SEBCOM/FLEXCOM (4)                                       |     | 9                             | 4                   | 00                    | m                                | 0                                          | N                        | 4                        | ω                   | 00                  | œ         | n                                                    | n                                  | m                         |
| roco                    |                          | Ethernet (10/100)                                        | SAM |                               |                     | 0                     |                                  |                                            | -                        |                          |                     |                     | -         |                                                      | -                                  | -                         |
| 32-bit Microcontrollers |                          | (Transceiver)<br>CAN (2.0B or FD)                        |     | ą.                            |                     | 2FD                   |                                  | α.                                         | ۵ ۷                      | α.                       | ą.                  | α.                  | .Р 2FD    | ф.                                                   | P 2F0                              | P 2F0                     |
| 32-b                    | pi<br>6c                 | Safety<br>USB (FS/HS) + PHY                              |     | -T -1F+P                      | F                   | Ļ.                    |                                  | <del>+</del>                               | 4+<br>G++                | 4+P                      | 4+                  | <u>+</u>            | 1F+P      | ±                                                    | ±<br>±                             | ±                         |
|                         | Safety and<br>Monitoring | Man Timer) (4) Class B Safety/DSU/Touch                  |     | , HB                          | ><br>F#             | V B +T                | >                                | >                                          | >                        | >                        | >                   | >                   | >         | >                                                    | >                                  | >                         |
|                         |                          | Watchdog Timer DMT (Dead                                 |     | >                             | >                   | \$                    | >                                | >                                          | \$                       | \$                       | >                   | >                   | *         | >                                                    | >                                  | >                         |
|                         | g and<br>ements          | Motor Interface (QEI/QDEC) (4)                           |     |                               |                     |                       | Ω                                |                                            |                          |                          |                     |                     |           | ۵                                                    | ۵                                  |                           |
|                         | Timing a                 | (P) (19miT lontroD tid-42) DDT                           |     | -                             | 7                   | Ø                     |                                  |                                            |                          |                          |                     | 7                   | N         |                                                      |                                    |                           |
|                         | Me                       | 16-bit/32-bit Timer                                      |     | 4/2                           | 2/5                 | 5/2                   | 2/-                              | 2/-                                        | -\3                      | 2/-                      | 2/-                 | 8/4                 | 8/4       | -/4                                                  | -/4                                | -/4                       |
|                         | form                     | Input Capture Channels PWM Channels                      |     | 8 12                          | 6 18                | 8 24                  | 12 4                             | 4 4                                        | 18 4                     | 12 5                     | 9 9                 | 16 24               | 16 24     | 24 8                                                 | 24 8                               | 24 8                      |
|                         | Waveform<br>Control      | Output Compare Channels                                  |     | 12                            | 41                  | 18                    | 18                               | 8                                          | 24                       | 18                       | 9                   | 25                  | 25        | 44                                                   | 44                                 | 44                        |
|                         | od                       | Analog Comparator (+Op Amp)                              |     | N                             | 0                   | 4                     |                                  | -                                          | -                        | 4                        |                     | 27                  | N         | -                                                    | -                                  | -                         |
|                         | Intelligent Analog       | (stid\elannsha) DAG                                      |     |                               |                     | 1/10                  | 1/10                             | 2/12                                       | 2/12                     | 1/10                     |                     | 2/12                | 2/12      | 2/12                                                 | 2/12                               | 2/12                      |
|                         | lligen                   | (sqs) beeq2 DQA                                          |     | ₹                             | ₹                   | ₹                     | . 310k                           | Σ                                          | 300K                     | 300K                     | 500K                | ₹                   | ₹         | ZM 2                                                 | Z<br>M                             | Z<br>W                    |
|                         | Inte                     | (stid\alennaha) DDA                                      |     | 20/12                         | 12/12               | 20/12                 | 16/10 510k 1/10                  | 16/12                                      | 24/12 300k 2/12          | 16/12 300k 1/10          | 8/12                | 32/12               | 32/12     | 24/12                                                | 24/12                              | 24/12                     |
|                         |                          | Pin Count                                                |     | 48-<br>100                    | 32-                 |                       |                                  | 1000                                       | 144                      | 1000                     | 100                 | 64-<br>128          | 64-       |                                                      | 64-                                | 64-                       |
|                         |                          | BAM (KB)                                                 |     | 8-32                          | 4/32                | 4-32                  | 64-80                            | 64-                                        | 128                      | 32-64                    | 64-                 | 128-                | 128-      |                                                      | 256-                               | 256-                      |
|                         |                          | Program Flash Memory (KB)                                |     | 64-256                        | 32-256              | 32-256                | 512-<br>1024 <sup>6</sup>        | 128-                                       | 512-                     | 128-<br>512 <sup>3</sup> |                     | 1024                | 1024      |                                                      | 512- 2                             | 512- 2048                 |
|                         |                          | Max. Operation Freq. (MHz)                               |     | 32 64                         | 48 32               | 48 32                 | 100 5                            | 120 1                                      | 120 5                    | 1 48                     | 120 2               | 120 2               | 120 2     | 300 5                                                | 300 5                              | 300 5                     |
|                         |                          |                                                          |     |                               |                     |                       |                                  |                                            |                          |                          |                     |                     |           |                                                      |                                    |                           |
|                         |                          | - Соге                                                   |     | CM0+                          | CM0+                | CM0+                  | CM4                              | CM4                                        | CM4F                     | CM4                      | CM4F                | CM4F                | CM4F      | CM7                                                  | CM7                                | (3) CM7                   |
|                         |                          | Product<br>Family                                        |     | SAML22                        | SAMC20              | SAMC21 <sup>(5)</sup> | SAM4N                            | SAM4S                                      | SAM4E                    | SAM4L                    | SAMG                | SAMD5x              | SAME5x    | SAMS7x <sup>(2)</sup>                                | SAME7x <sup>(2)</sup>              | SAMV7x <sup>(2) (3)</sup> |

LFBGA

Note 1: USARTs with SPI mode are taken into account. Note 2: DRAM Memory Support: PIC32MZ DA with DDR2 (32 MB embedded or 128 MB external); SAM S7x/E7xV7x with SDRAM (external). Note 3: Automotive Grade Devices. Note 4: Terminology in following table. Note 5: SAM C21 are true 5V devices; SAM C21 also comes with 3x 16-bit Delta-Sigma ADC \*: Variants with USB function +: Variants with CAN function

# 32-bit MCUs Terminology

| Timing and Measurements: Sig                              | Timing and Measurements: Signal Measurement with Timing and Counter Control                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TCC: Timer/Counters for Control                           | Select SAM products have TCCs for applications like Switch Mode Power Supplies (SMPS), lighting and motor control. The TCCs support up to 96 MHz and 24-bit resolution.                                                                                                                                             |
| QE: Quadrature Encoder Interface QDEC: Quadrature Decoder | QEI to increment encoders for obtaining mechanical position data typical for automation or motor control applications.  QDEC performs the input lines filtering, decoding of quadrature signals and connects to the timers/counters in order to read the position and speed of the motor through the user interface |
| Safety and Monitoring: Hardwa                             | Safety and Monitoring: Hardware Monitoring and Fault Detection                                                                                                                                                                                                                                                      |
| DMT: Dead Man Timer                                       | The primary function of the DMT is to reset the processor in the event of a software malfunction. A DMT is typically used in mission-critical and safety-critical applications, where any single failure of a software functionality and sequencing must be detected.                                               |
| Communications: General, Indu                             | Communications: General, Industrial, Lighting and Automotive                                                                                                                                                                                                                                                        |
| SERCOM: Serial Communication<br>Module                    | The SERCOM is software that is configurable to operate as I <sup>2</sup> C, SPI or USART, giving you extended flexibility to mix serial interfaces and greater freedom in PCB layout. Each SERCON instance can be assigned to different I/O pins through I/O multiplexing, further increasing versatility.          |
| I-STM: Inter-IC Sound Controller                          | The Inter-IC Sound Controller provides a bidirectional, synchronous digital audio link with external audio devices.                                                                                                                                                                                                 |
| PMP: Parallel Master Port EBI: External Bus Interface     | PMP/EBI provide a high-speed and convenient interface to external parallel memory devices graphic LCDs and camera sensors.                                                                                                                                                                                          |

# **Development Tools**

# **MIPS-Based PIC32 Products**

| Tool                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MPLAB® X IDE                           | MPLAB X Integrated Development Environment (IDE) is for developing and debugging MIPS-based PIC32 MCU applications, in addition to Microchip's 6- and 16-bit PIC® microcontrollers. It is based on the open-source NetBeans IDE from Oracle, runs under Windows®, Mac OS® and Linux®, and connects seamlessly to a range of debuggers, programmers and development kits.                                                                                                                                                |
| MPLAB Harmony<br>Configurator          | MPLAB Harmony Configurator (MHC) is a time-saving hardware configuration utility for MPLAB Harmony, Microchip's award-winning software framework. You can use MHC to get visual understanding and control of the configuration of your target device and application. MHC is a fully integrated tool within MPLAB X IDE.                                                                                                                                                                                                |
| MPLAB Harmony<br>Software<br>Framework | MPLAB Harmony is a flexible, abstracted, fully integrated firmware development platform for PIC32 microcontrollers. It takes key elements of modular and object-oriented design, and provides the option of adding in the flexibility of a Real-Time Operating System (RTOS). MPLAB Hamony provides a framework of software modules that are easy to use, configurable for your specific needs and in a format that allows for maximum reuse to reduce your time to market.                                             |
| MPLAB Harmony<br>Graphics<br>Composer  | MPLAB Harmony Graphics Composer (MHGC) is Microchip's industry-leading Graphical User Interface (GUI) design tool for PIC32 microcontrollers. Providing a fully integrated, easy-to-use WYSIWYG editor, graphics asset management and code generator within the MPLAB Harmony framework, the MHGC allows you to go from concept to glass in minutes without writing a single line of code. Additionally the integrated Display Manager plug-in enables quick support for new and unsupported displays in MPLAB Harmony. |

| User Interface: Capacitive Touch Sensing and LCD Control | n Sensing and LCD Control                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTC: Peripheral Touch Controller                         | An embedded peripheral touch controller makes it easy to add capacitive touch sensing to your project with buttons, silders, wheals and proximity. By offering superb sensitivity and noise and moisture tolerance as well as self-calabration, the PTC eliminates the need for external components and minimizes CPU overhead. The PTC supports up to 256 charmels on 64-pin devices, 120 charmels on 48-pin devices and 60 charmels on 32-pin devices. |
| System Flexibility: System Peripherals and Interconnects | herals and Interconnects                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CLC/CCL: Configurable Custom<br>Logic                    | The CCL is a programmable logic peripheral which can be connected to the device pins, events or to other internal peripherals. This allows you to eliminate logic gates for simple glue logic function on the PCB.                                                                                                                                                                                                                                       |
| EVSYS: Event System                                      | The Event System allows autonomous, low-latency and configurable communication between peripherals. Several peripherals can be configured to generate and/or respond to signals known as events. Communication is made without CPU intervention and without consuming system resources such as bus or RAM bandwidth. This reduces the load on the CPU and other system resources as compared to a traditional interrupt-based system.                    |
| Dual Panel/Bank Flash                                    | Dual Bank Flash allows live field firmware/program update on one bank while the CPU can continue executing code from another Flash bank.                                                                                                                                                                                                                                                                                                                 |

# Arm® Cortex®-M Based SAM Products

| Tool                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Atmel Studio 7                       | Atmel Studio 7 is the Integrated Development Platform (IDP) for developing and debugging AVR® and Arm®-based SAM MCU applications. Atmel Studio 7 provides you with an easy-to-use environment to develop and debug applications written in C/C++ or assembly code. It connects seamlessly to a range of debuggers, programmers and development kits.                                                                                                                                                                                                                                                        |
| Atmel START                          | Atmel START is an innovative online tool for intuitive, graphical configuration and deployment of embedded software. It lets you select and configure software components, drivers and middleware, as well as deploy complete example projects tallored to the needs of your application. It is completely platform independent, and able to generate project files for a number of IDEs. The configuration engine lets you review dependencies between software components and available hardware resources in the selected MCU and automatically suggests solutions to any conflicts in your chosen setup. |
| ASF Software<br>Framework for<br>SAM | ASF provides software drivers and libraries to build applications for AVR and SAM devices. It is architected for readability and performance and contains a number of advanced middleware components for 32-bit SAM devices such as USB device, TCP/IP, Wi-Fi°, RTOS kernel (FreeRTOS), Bluetooth®, file system and more.                                                                                                                                                                                                                                                                                    |
| Data Visualizer                      | Track and profile your applications, run-time behavior using the powerful Data Visualizer. It provides an oscilloscope view of signals such as GPIO, SPI, UART, etc. The Data Visualizer also provides live power measurements when used together with a supported probe or board, such as the power debugger. Profiling your applications power usage has never been easier.                                                                                                                                                                                                                                |
| QTouch®<br>Composer                  | The QTouch Composer allows you to seamlessly develop capacitive touch functionality for your application. This simplifies the design process by tying together the tools required to edit the code in Atmel Studio 7 and tune the touch design in QTouch Composer.                                                                                                                                                                                                                                                                                                                                           |

Touch Interface

Capacitive and resistive touch screen support is an integrated part of the MPLAB Harmony Graphics Composer (MHGC). With automatic generation and configuration of event handlers for touch events, the MHGC allows quick development of touch enabled graphics solutions.

\*Clock speed: Max. clock speed @ +85°C. Notes: 1. Temperature Range: -40°C to +85°C (ambient) 2. UART: Support for RS485, ISO7816, InD4°, LIN, modem control lines and SPI on selected UARTs. 3. TWI: Two-Wire Interface; interconnects components on a two-wire bus. 4. SSC: Serial Synchronous Controller, supports many serial synchronous communications protocols used in audio and telecom applications such as FS, short or long frame sync. 5. 16-bit and 32-bit Timers: Capture/compare, waveform generation and PWM modes. 6. ECC: Error Correction Code controller, 7. Security level: Adv. = hardware encryption engine + on the fly DDR encryption/decryption + secure storage + tamper prins; Med. = hardware encryption engine + on the fly DDR encryption frame secure at the secure and the ATSAMASD2 series. 10. Caraphics LCD: Error Correction Code controller, and the secure and the ATSAMASD2 series. 10. Caraphics LCD: Late ATSAMASD2 series. 10. 14 Flore of decoding and image post processing: H.264, MPEG4, H.263, MPEG2, JPEG, VPB. 12. eMMC\*\*. V4.3 = ALC high Speed (HS), Fligh Speed (HS), Fligh Speed (HS), High Speed Inter-Chip (HSIC) 14. Peripheral implementation varies among products. Consult individual product datasheets for a detailed description.

17

|                        |                 |      | Баскадев                        |        | BGA 324, 15 × 15,<br>0.8 mm pitch | BGA 324, 15 × 15,<br>0.8 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch,<br>BGA 247, 10 × 10,<br>0.5 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch,<br>BGA 247, 10 × 10,<br>0.5 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch,<br>BGA 247, 10 × 10,<br>0.5 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch,<br>BGA 247, 10 × 10,<br>0.5 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch | BGA 324, 15 × 15,<br>0.8mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch | BGA 217, 15 × 15,<br>0.8 mm pitch,<br>QFP 208, 28 × 28,<br>0.5 mm pitch |
|------------------------|-----------------|------|---------------------------------|--------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-------------------------------------------------------------------------|
|                        |                 | •    | 10-bit ADC Channels             |        | ω                                 | ω                                 | 12                                | 12                                | 12                                | 12                                                                      | 12                                | 12                                                                      | 12                                                                      | 12                                                                      | 4                                 | - 1                               | 1                                | 1                                 | 4                                                                       |
|                        | trol            |      | bww Channels                    |        | 4                                 | 4                                 | 4                                 | 4                                 | 4                                 | 4                                                                       | 4                                 | 4                                                                       | 4                                                                       | 4                                                                       | I                                 | I                                 | 4                                | I                                 | 1                                                                       |
|                        | Contro          |      | 32-bit Timers                   |        | 1                                 | 1                                 | 9                                 | 9                                 | 9                                 | 9                                                                       | 9                                 | 1                                                                       | 1                                                                       | 1                                                                       | I                                 | I                                 | 1                                | 1                                 | 1                                                                       |
|                        |                 |      | 16-bit Timers                   |        | 9                                 | 9                                 | 1                                 | I                                 | - 1                               | 1                                                                       | 1                                 | 9                                                                       | 9                                                                       | Θ                                                                       | 9                                 | က                                 | က                                | က                                 | Θ                                                                       |
|                        | Security        |      | Secure Boot                     |        | I                                 | I                                 | I                                 | I                                 | I                                 | I                                                                       | I                                 | >-                                                                      | I                                                                       | 1                                                                       | I                                 | ı                                 | I                                | 1                                 | 1                                                                       |
|                        | Sec             |      | Security Level                  |        | Med.<br>(M11)                     | Med.<br>(G46)                     | I                                 | I                                 | I                                 | ı                                                                       | I                                 | Med.                                                                    | 1                                                                       | 1                                                                       | I                                 | I                                 | I                                | I                                 | 1                                                                       |
|                        |                 |      | Camera Interface                |        | -                                 | -                                 | I                                 | I                                 | I                                 | -                                                                       | I                                 | 1                                                                       | 1                                                                       | 1                                                                       | >                                 | I                                 | >                                | I                                 | >                                                                       |
|                        | User Interface  |      | Hardware Video<br>Decoder       |        | 30fps,<br>D1                      | 1                                 | I                                 | I                                 | 1                                 | I                                                                       | 1                                 | I                                                                       | I                                                                       | I                                                                       | 1                                 | I                                 | 1                                | 1                                 | I                                                                       |
|                        | ser In          | ue   | Resistive Touchscre             |        | >                                 | >                                 | >                                 | I                                 | >                                 | I                                                                       | >                                 | >                                                                       | >                                                                       | >                                                                       | I                                 | 1                                 | 1                                | 1                                 | 1                                                                       |
|                        | ž               |      | LCD Overlay                     |        | >                                 | I                                 | >                                 | I                                 | >                                 | I                                                                       | >                                 | I                                                                       | I                                                                       | I                                                                       | I                                 | - 1                               | - 1                              | 1                                 | 1                                                                       |
|                        |                 |      | Graphic LCD                     |        | -                                 | -                                 | -                                 | I                                 | -                                 | I                                                                       | -                                 | -                                                                       | -                                                                       | -                                                                       | I                                 | -                                 | -                                | -                                 | I                                                                       |
|                        |                 |      | eniq O\I xeM                    |        | 160                               | 160                               | 105                               | 105                               | 105                               | 105                                                                     | 105                               | 105                                                                     | 105                                                                     | 105                                                                     | 96                                | 96                                | 160                              | 96                                | 96                                                                      |
|                        |                 |      | Soft Modem                      |        | I                                 | I                                 | >                                 | >                                 | >                                 | >                                                                       | >                                 | 1                                                                       | I                                                                       | 1                                                                       | I                                 | I                                 | 1                                | I                                 | I                                                                       |
|                        |                 |      | SD/6MMC                         |        | 2                                 | Ø                                 | 0                                 | 0                                 | 2                                 | Ø                                                                       | 2                                 | -                                                                       | -                                                                       | -                                                                       | -                                 | -                                 | 2                                | -                                 | -                                                                       |
|                        |                 | c    | Ethernet<br>10/100 Ethernet MAC |        | -                                 | -                                 | -                                 | 2                                 | -                                 | -                                                                       | 1                                 | 1                                                                       | I                                                                       | 1                                                                       | -                                 | 1                                 | -                                | 1                                 | -                                                                       |
| ors                    | >               |      | VlnO teoH                       |        | 2 HS                              | 2 HS                              | 1 HS,                             | 1 HS,                             | 1 HS,                             | 1 HS,                                                                   | 1 HS,                             | 1 FS                                                                    | 8                                                                       | TS TS                                                                   | 2 FS                              | 2 FS                              | 2 FS                             | 2 FS                              | 2 FS                                                                    |
| 32-bit Microprocessors | Connectivity    | USB  | Device and Host                 | 6W     | 1 HS                                                                    | 1 HS                              | 1                                                                       | ı                                                                       | 1                                                                       | 1                                 | 1                                 | 1                                | 1                                 | 1                                                                       |
| Microp                 | Con             |      | Device Only                     | ATSAM9 | 1                                 | ı                                 | I                                 | ı                                 | 1                                 | ı                                                                       | I                                 | - FS                                                                    | - E                                                                     | 8                                                                       | 1 FS                              | - FS                              | 1 FS                             | 1 FS                              | T S                                                                     |
| 2-bit                  |                 |      | САИ                             |        | 1                                 | 1                                 | 2                                 | 2                                 | 1                                 | ı                                                                       | 1                                 | 1                                                                       |                                                                         | 1                                                                       | ·<br>I                            | 1                                 | ·<br>-                           | 1                                 | 1                                                                       |
| ဗ                      |                 |      | (I₅2)                           |        | ~                                 | N                                 | -                                 | -                                 | -                                 | -                                                                       | -                                 | -                                                                       | ₩.                                                                      | -                                                                       | -                                 | m                                 | 2                                | က                                 | -                                                                       |
|                        |                 |      | (S⁵I) IWT                       |        | 0                                 | Ø                                 | က                                 | က                                 | က                                 | m                                                                       | က                                 | Ø                                                                       | N                                                                       | 0                                                                       | -                                 | -                                 | -                                | -                                 | -                                                                       |
|                        |                 |      | IdS                             |        | 9                                 | 9                                 | 2                                 | 9                                 | 2                                 | 9                                                                       | 2                                 | 9                                                                       | 9                                                                       | 9                                                                       | 9                                 | Ŋ                                 | 2                                | Ŋ                                 | ω                                                                       |
|                        |                 |      | TAAU                            |        | 2                                 | 2                                 | 7                                 | 7                                 | 9                                 | ~                                                                       | 2                                 | ~                                                                       | ~                                                                       | ~                                                                       | 7                                 | 4                                 | 4                                | 4                                 | 7                                                                       |
|                        |                 | ş    | MLC ECC (bit)                   |        | 1                                 | 1                                 | 24                                | 24                                | 24                                | 24                                                                      | 24                                | 24                                                                      | 24                                                                      | 24                                                                      | 1                                 | 1                                 | 1                                | Ţ                                 | 1                                                                       |
|                        |                 | NAND | SLC ECC (bit)                   |        | -                                 | -                                 | 24                                | 24                                | 24                                | 24                                                                      | 24                                | 24                                                                      | 24                                                                      | 24                                                                      | -                                 | -                                 | -                                | -                                 | -                                                                       |
|                        |                 | 감    | DDBS/LPDDR/LPDD                 |        | 1/1/-                             | 1/1/-                             | 1/1/-                             | 1/1/-                             | 1/1/-                             | 1/1/-                                                                   | 1/1/-                             | 1/1/-                                                                   | 1/1/-                                                                   | 1/1/-                                                                   | I                                 | I                                 | I                                | 1                                 | 1                                                                       |
|                        | Memory          | əc   | External Bus Interfac           |        | 2                                 | Ø                                 | -                                 | -                                 | -                                 | -                                                                       | -                                 | -                                                                       | -                                                                       | -                                                                       | -                                 | -                                 | 2                                | -                                 | -                                                                       |
|                        | Me              |      | LPSDR/SDRAM                     |        | 7                                 | 7                                 | 7                                 | 1/1                               | 1,1                               | 7                                                                       | 7                                 | 1,4                                                                     | \$                                                                      | ₹                                                                       | 7                                 | 7                                 | 7                                | 7                                 | 7                                                                       |
|                        |                 | (B)  | L1 Cache Memory (k              |        | 2 × 32                            | 2 × 32                            | 2 × 16                            | 2 × 16                            | 2 × 16                            | 2 × 16                                                                  | 2 × 16                            | 2 × 16                                                                  | 2 × 16                                                                  | 2 × 16                                                                  | 2 × 32                            | 2 × 16                            | 2 × 16                           | 2 × 16                            | 20<br>X<br>80                                                           |
|                        |                 |      | ЗВАМ (КВ)                       |        | 64                                | 64                                | 32                                | 32                                | 32                                | 32                                                                      | 32                                | 32                                                                      | 32                                                                      | 32                                                                      | 32                                | 16                                | 96                               | 160                               | ω                                                                       |
|                        | _               | əße  | Core Operating Volts            |        | 1.00                              | 1.00                              | 1.0                               | 1.00                              | 1.0V                              | 1.0V                                                                    | 1.0                               | 1.0V                                                                    | 1.0V                                                                    | 1.0                                                                     | 1.0V                              | 1.2V                              | 1.3V                             | 1.2V                              | 1.2                                                                     |
|                        | -Systen         |      | Clock Speed (MHz)*              |        | 400                               | 400                               | 400                               | 400                               | 400                               | 400                                                                     | 400                               | 400                                                                     | 400                                                                     | 400                                                                     | 400                               | 266                               | 240                              | 190                               | 190                                                                     |
|                        | Core Sub-System |      | элоЭ                            |        | ARM926EJ-S                        | ARM926EJ-S                        | ARM926EJ-S                        | ARM926EJ-S                        | ARM926EJ-S                        | ARM926EJ-S                                                              | ARM926EJ-S                        | ARM926EJ-S                                                              | ARM926EJ-S                                                              | ARM926EJ-S                                                              | ARM926EJ-S                        | ARM926EJ-S                        | ARM926EJ-S                       | ARM926EJ-S                        | ARM926EJ-S                                                              |
|                        |                 |      |                                 |        |                                   | Ą                                 | Ą                                 | AF                                | AF                                | Ą                                                                       | AF                                |                                                                         |                                                                         | Ą                                                                       | Ą                                 | Ą                                 | Ą                                | Ą                                 | Ą                                                                       |
|                        |                 |      | Product                         |        | ATSAM9M10/<br>M11                 | ATSAM9G45/<br>G46                 | ATSAM9X35                         | ATSAM9X25                         | ATSAM9G35                         | ATSAM9G25                                                               | ATSAM9G15                         | ATSAM9CN12                                                              | ATSAM9CN11                                                              | ATSAM9N12                                                               | ATSAM9G20                         | ATSAM9G10                         | ATSAM9263                        | ATSAM9261                         | ATSAM9260                                                               |

\* Clock speed. Max. clock speed @ +85°C. Notes: 1. Temperature Range: -40°C to +85°C (ambient) 2. UART: Support for RS485, ISO7816, IrDA, LIN, modem control lines and SPI on selected UARTs. 3. TWI: Two-Wire Interface; interconnects components on a two-wire bus. 4. SSC. Serial Synchronous Controller, supports many serial synchronous communications protocols used in audio and telecom applications such as FS, short or long frame sync. 5. 16-bit and 32-bit Timers: Capture/compare, waveform generation and remove memory protocols used in audio and telecom applications such as FS, short or long frame sync. 5. Camera interface: FO CMOS-type modes on order of the anterface; programmable frame capture rate, up to 12-bit data interface, SV and and the Max short of the ATSAMASD2 series. 10. Graphics: LOS: 2-bit parallel interface; programmaple frame capture rate, up to 18A volors in TFT modes. 11. Video Decoder: Hardware video decoding and image post processing: H.284, MPEG4, MPS. MPEG4, MPS. 12. eMMC\*\*\*. V43. — MLC NAND Flash supported through eMMC interface; V4.5 support for the ATSAMASD2 series. 13. USB: High speed (HS), High Speed Inter-Chip (HSIC). 14. Peripheral implementation varies among products. Consult individual products capture and the anterface; V4.5 support for the ATSAMASD2 series. 13. USB: High speed (HS), Full Speed (HS), Full Speed Inter-Chip (HSIC). 14. Peripheral implementation varies among products. Consult individual products of a specific product of a specific products of a specific product of a specifi detailed description.

|                  |                                                              |                       | Therma                       | Thermal Management: Temperature Sensors | emperature Ser   | sors                           |        |                                |                      |                                                    |
|------------------|--------------------------------------------------------------|-----------------------|------------------------------|-----------------------------------------|------------------|--------------------------------|--------|--------------------------------|----------------------|----------------------------------------------------|
| Product          | Description                                                  | # Temps.<br>Monitored | Typical/Max<br>Accuracy (°C) | Temp. Range<br>(°C)                     | Vcc<br>Range (V) | Typical Supply<br>Current (µA) | Alerts | Resistance Error<br>Correction | Beta<br>Compensation | Packages                                           |
| MCP9501/2/3/4    | Temperature Switch Replacing MAX6501/2/3/4                   | -                     | 1.0/3.0                      | -40 to +125                             | +2.7 to +5.5     | 25                             | I      | I                              | I                    | 5-pin SOT-23                                       |
| MCP9509/10       | Resistor-Programmable Temperature Switch                     | -                     | 0.5/3.5                      | -40 to +125                             | +2.7 to +5.5     | 30                             | ı      | ı                              | 1                    | 5-pin SOT-23                                       |
| MCP9800/1/2/3    | SMBus/I²C Temperature Sensor                                 | -                     | 0.5/1.0                      | -55 to +125                             | +2.7 to +5.5     | 200                            | -      | I                              | I                    | 5-pin SOT-23                                       |
| MCP9804          | SMBus/I²C Temperature Sensor                                 | -                     | 0.25/1.0                     | -40 to +125                             | +2.7 to +5.5     | 200                            | -      | 1                              | 1                    | 8-pin DFN, 8-pin MSOP                              |
| MCP9808          | SMBus/I²C Temperature Sensor                                 | -                     | 0.25/0.5                     | -40 to +125                             | +2.7 to +5.5     | 200                            | -      | 1                              | I                    | 8-pin DFN, 8-pin MSOP                              |
| MCP98244         | SMBus/l²C Temperature Sensor with EEPROM                     | -                     | 0.5/3.0                      | -40 to +125                             | +2.2 to +3.6     | 100                            | -      | 1                              | 1                    | 8-pin TDFN                                         |
| MCP9902/3/4      | Lower Temperature Multi-Temperature Sensors                  | 2/3/4                 | 0.25/1.0                     | -40 to +125                             | +3.0 to +3.6     | 200                            | -      | >                              | Automatic            | 8-pin WDFN, 10-pin VDFN                            |
| TCN75A           | SMBus/I²C Temperature Sensor                                 | -                     | 0.5/3.0                      | -40 to +125                             | +2.7 to +5.5     | 200                            | -      | 1                              | I                    | 8-pin MSOP, 8-pin SOIC                             |
| AT30TS74         | SMBus/I²C Temperature Sensor                                 | -                     | 1.0/2.0                      | -55 to +125                             | +1.7 to +5.5     | 160                            | ı      | 1                              | 1                    | 4/5 ball WLCSP                                     |
| AT30TS750A       | SMBus/PC Temperature Sensor with NVM                         | -                     | 0.5/1.0                      | -55 to +125                             | +1.7 to +5.5     | 150                            | 1      | 1                              | 1                    | 8-pin SOIC, 8-pin MSOP, 8-pin UDFN                 |
| AT30TS752A/4A/8A | SMBus/PC Temperature Sensor with NVM, 2/4/8 KB Serial EEPROM | -                     | 0.5/1.0                      | -55 to +125                             | +1.7 to +5.5     | 150                            | ı      | ı                              | I                    | 8-pin SOIC, 8-pin MSOP, 8-pin UDFN                 |
| MCP9700/01       | Linear Active Thermistor IC                                  | -                     | 1.0/4.0                      | -40 to +150                             | +2.3 to +5.5     | 9                              | I      | I                              | I                    | 3-pin SOT-23, 3-pin TO-92, 5-pin SC-70             |
| MCP9700/01A      | Linear Active Thermistor IC                                  | -                     | 1.0/2.0                      | -40 to +150                             | +2.3 to +5.5     | 9                              | I      | ı                              | I                    | 3-pin SOT-23, 3-pin TO-92, 5-pin SC-70             |
| EMC1033          | SMBus/I²C Multi-Temperature Sensor                           | က                     | 1.0/3.0                      | -40 to +125                             | +3.0 to +3.6     | 50                             | 2      | >                              | 1                    | 8-pin MSOP                                         |
| EMC1043          | SMBus/I²C Multi-Temperature Sensor                           | က                     | 0.5/1.0                      | -40 to +125                             | +3.0 to +3.6     | 105                            | ı      | >                              | Configurable         | 8-pin MSOP                                         |
| EMC1046/7        | SMBus/l²C Multi-Temperature Sensor with Hottest of Zones     | 2/9                   | 0.25/1.0                     | -40 to +125                             | +3.0 to +3.6     | 395                            | 1      | >                              | Automatic            | 10-pin MSOP                                        |
| EMC1412/3/4      | SMBus//2C Multi-Temperature Sensor                           | 2/3/4                 | 0.25/1.0                     | -40 to +125                             | +3.0 to +3.6     | 430                            | Ø      | >                              | Automatic            | 8-pin TDFN, 8-pin MSOP, 10-pin DFN,<br>10-pin MSOP |
| EMC1422/3/4      | SMBus/I²C Multi-Temperature Sensor with Shutdown             | 2/3/4                 | 0.25/1.0                     | -40 to +125                             | +3.0 to +3.6     | 430                            | -      | >                              | Automatic            | 8-pin MSOP, 10-pin MSOP                            |

|           |                            |                            |                                                           |                            |                       | Thermal Management: Sensor Conditioning ICs                                      | gement: Sens                        | sor Condition        | ing ICs                             |                  |             |                           |                                                                                                                   |            |
|-----------|----------------------------|----------------------------|-----------------------------------------------------------|----------------------------|-----------------------|----------------------------------------------------------------------------------|-------------------------------------|----------------------|-------------------------------------|------------------|-------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|------------|
| Product   | Typical Tc<br>Accuracy (°) | Typical Тн<br>Accuracy (°) | Operating Temp. Range (°C)                                |                            | Vcc Range<br>Max (V)  | Max Supply<br>Current (µA)                                                       |                                     |                      |                                     | Feat             | Features    |                           |                                                                                                                   | Packages   |
| MCP9600   | 1                          | 1                          | -40 to +125                                               |                            | 2.7 to 5.5            | 200                                                                              | Fully integra:                      | ted thermocou        | uple EMF to tem                     | perature convert | ter. Suppor | rts thermocouple t        | Fully integrated thermocouple EMF to temperature converter. Supports thermocouple types K, J, T, N, S, E B and R. | 5 × 5 MQFN |
|           |                            |                            |                                                           |                            |                       | Thermal M                                                                        | Thermal Management: Fan Controllers | Fan Controlle        | ırs                                 |                  |             |                           |                                                                                                                   |            |
| Product   |                            | Description                |                                                           | # Fan PWM/L<br>Drivers Con | PWM/Linear<br>Control | WM/Linear # External Typical Max. Control Temp. Inputs Accuracy (*) Accuracy (*) | Typical<br>Accuracy (º)             | Max.<br>Accuracy (°) | Vcc Range<br>(V)                    | Interface        | Alerts      | Fan Speed<br>Lookup Table | Packages                                                                                                          | S          |
| EMC2101   | Programmable F.            | an Controller with T       | Programmable Fan Controller with Thermal Management       | -                          | PWM                   | 2                                                                                | 0.5                                 | 1.0                  | +3.0 to +3.6 SMBus/l²C              | SMBus/l2C        | >           | >                         | 8-pin MSOP, 8-pin SOIC                                                                                            | oin SOIC   |
| EMC2103-1 | Programmable F             | an Controller with T       | Programmable Fan Controller with Thermal Management       | -                          | PWM                   | -                                                                                | 0.5                                 | 1.0                  | +3.0 to +3.6                        | SMBus/I2C        | >           | >                         | 12-pin QFN                                                                                                        | Z          |
| EMC2104   | Programmable Mul           | Iti-Fan Controller with    | Programmable Multi-Fan Controller with Thermal Management | 7                          | PWM                   | 4                                                                                | 0.25                                | 1.0                  | +3.0 to +3.6 SMBus/l <sup>2</sup> C | SMBus/I2C        | >           | >                         | 20-pin QFN                                                                                                        | Z          |

16-pin QFN

Automatic

450

+3.0 to +3.6

-40 to +125

0.25/1.0

 $\infty$ 

SMBus/PC Multi-Temperature Sensor with Hottest of Zones

|            |                            |                         |                               | Power Ma                     | Power Management: Switching Regulators                  | gulators                                                                         |                                         |
|------------|----------------------------|-------------------------|-------------------------------|------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| Product    | Input Voltage<br>Range (V) | Output Voltage (V)      | Operating Temp.<br>Range (°C) | Switching<br>Frequency (kHz) | Output Current (mA)                                     | Features                                                                         | Packages                                |
|            |                            |                         |                               | Single Output Swi            | Single Output Switching Regulator - Step Down Regulator | Down Regulator                                                                   |                                         |
| MCP1601/3  | 2.7 to 5.5                 | 0.9V to Vin             | -40 to +85                    | 750                          | 900                                                     | UVLO, Auto-Switching, LDO/Overtemperature and Overcurrent Protection             | 8-pin MSOP                              |
| MCP1612    | 2.7 to 5.5                 | 0.8 to 5.5              | -40 to +85                    | 1400                         | 1000                                                    | Overall Efficiency > 94%, Soft Start, Overtemperature and Overcurrent Protection | 8-pin MSOP, 8-pin $(3 \times 3)$<br>DFN |
| MIC23030/1 | 2.7 to 5.5                 | 1.0, 1.2, 1.5, 1.8, Adj | -40 to +125                   | 8000/4000                    | 400                                                     | HyperLight Load® Mode                                                            | 6-pin 1.6 x 1.6 MLF                     |

8-pin MSOP, 10-pin MSOP, 12-pin QFN, 16-pin QFN

+3.0 to +3.6 SMBus/l<sup>2</sup>C

PWM

1/2/3/5

Programmable Fan Controller

EMC2301/2/3/5

Focus Product Selector Guide

EMC1438

|                                    |                            |                                                         |                               | Power Ma                     | Power Management: Switching Regulators                  | ıgulators                                                                                                                                                    |                                              |
|------------------------------------|----------------------------|---------------------------------------------------------|-------------------------------|------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Product                            | Input Voltage<br>Range (V) | Output Voltage (V)                                      | Operating Temp.<br>Range (°C) | Switching<br>Frequency (kHz) | Output Current (mA)                                     | Features                                                                                                                                                     | Packages                                     |
|                                    |                            |                                                         |                               | Single Output Sw             | Single Output Switching Regulator - Step Down Regulator | Down Regulator                                                                                                                                               |                                              |
| MIC23050/1                         | 2.7 to 5.5                 | 1.0, 1.2, 1.8, 3.3/1-1.2, 1-1.8,<br>1.15-1.4, 0.95-1.25 | -40 to +125                   | 4000                         | 009                                                     | HyperLight Load Mode                                                                                                                                         | 8-pin 2 x 2 MLF                              |
| MIC23150/3                         | 2.7 to 5.5                 | 1.0, 1.2, 1.35, 1.8, 3.3/1.8, Adj                       | -40 to +125                   | 4000                         | 2000                                                    | HyperLight Load Mode                                                                                                                                         | 8-pin 2 x 2 MLF                              |
| MIC23155                           | 2.7 to 5.5                 | 1.8, Adj                                                | -40 to +125                   | 3000                         | 2000                                                    | Power Good, HyperLight Load Mode                                                                                                                             | 10-pin 2.5 × 2.5 MFL                         |
| MIC23303                           | 2.7 to 5.5                 | Adj                                                     | -40 to +125                   | 4000                         | 3000                                                    | Power Good, HyperLight Load Mode                                                                                                                             | 12-pin 3 x 3 MLF                             |
| MCP16311/12                        | 4.4 to 30.0                | 2.0 to 24.0                                             | -40 to +125                   | 500                          | 1000                                                    | PFM/PWM Operation, Enable Function                                                                                                                           | 8-pin MSOP,<br>8-pin (2 × 3) TDFN            |
| MCP16301                           | 4.0 to 30                  | 2.0 to 15                                               | -40 to +85                    | 200                          | 009                                                     | Integrated N-channel, UVLO, Soft Start, Overtemperature Protection                                                                                           | 6-pin SOT-23                                 |
| MIC24045                           | 4.5 to 19                  | 0.7 to 3.3                                              | -40 to +125                   | 400-790                      | 0009                                                    | FC Programmable, 4.5V-19V Input                                                                                                                              | 20-pin (3 × 3) QFN                           |
| MIC24046                           | 4.5 to 19                  | 0.7 to 3.3                                              | -40 to +125                   | 400-790                      | 0009                                                    | Pin Selectable, 4.5V-19V Input                                                                                                                               | 20-pin (3 × 3) QFN                           |
| MIC24051/53/55                     | 4.5 to 19                  | Adj.                                                    | -40 to +125                   | 009                          | 600/9000/1200                                           | Power Good, Soft Start, COT Regulation Scheme                                                                                                                | 28-pin (5 × 6) QFN                           |
| MIC24052/54/56                     | 4.5 to 19                  | Adj.                                                    | -40 to +125                   | 009                          | 600/9000/1200                                           | Power Good, Soft Start, HyperLight Load Mode                                                                                                                 | 28-pin (5 × 6) QFN                           |
| MIC26601/<br>MIC26901/<br>MIC26950 | 4.5 to 28                  | Adj.                                                    | -40 to +125                   | 009                          | 6000/9000/12000                                         | Power Good, Soft Start, Hyper Speed Control® Architecture                                                                                                    | 28-pin (5 × 6) QFN                           |
| MIC26603/<br>MIC26903              | 4.5 to 28                  | Adj.                                                    | -40 to +125                   | 009                          | 0009                                                    | Power Good, Soft Start, HyperLight Load Mode                                                                                                                 | 28-pin (5 × 6) QFN                           |
| MIC27600                           | 4.5 to 36                  | Adj.                                                    | -40 to +125                   | 300                          | 2000                                                    | Soft Start, COT Regulation scheme - Hyper Speed Control Architecture, Thermal Shutdown                                                                       | 28-pin (5 × 6) QFN                           |
| MIC28510                           | 4.5 to 75                  | Adj.                                                    | -40 to +125                   | 100-500                      | 4000                                                    | Soft Start, COT Regulation scheme - Hyper Speed Control Architecture, Thermal Shutdown                                                                       | 28-pin (5 × 6) QFN                           |
| MIC28511/12/13 (-1/2)              | 4.6 to 60/70/45            | Adj.                                                    | -40 to +125                   | 200–680                      | 3000/2000/4000                                          | Power Good, Soft Start, HyperLight Load Mode, Hyper Speed Control                                                                                            | 24-pin (3 × 4) FCQFN                         |
| MIC28514/15                        | 4.5 to 75                  | Adj.                                                    | -40 to +125                   | 270–800                      | 2000                                                    | Power Good, Adjustable Soft Start (MIC28514), Hyper Speed Control Architecture, Selectable HyperLight Load/CCM mode (MIC28515)                               | 6 X 6 mm PQFN                                |
| MCP1623/4                          | 0.65 to 5.5                | 2.0 to 5.5                                              | -40 to +85                    | 500                          | 425                                                     | Integrated synchronous boost regulator, 0.65V start-up voltage, soft start, true load disconnect                                                             | 6-pin SOT-23,<br>8-pin (2 × 3) DFN           |
| MCP16251/2                         | 0.82 to 5.5                | 1.8 to 5.5                                              | -40 to +85                    | 200                          | 650                                                     | True load disconnect shutdown (MCP16251)/<br>Input to output bypass shutdown (MCP16252)                                                                      | 6-pin SOT-23,<br>8-pin (2 × 3) DFN           |
| MCP1640/B/<br>C/D                  | 0.65 to 5.5                | 2.0 to 5.5                                              | -40 to +85                    | 200                          | 800                                                     | Integrated synchronous boost regulator, 0.65V start-up voltage, soft start, true load disconnect or input-to-output bypass option                            | 6-pin SOT-23,<br>8-pin (2 × 3) DFN           |
| MCP1642B/D                         | 0.65 to 5.5                | 1.8 to 5.5                                              | -40 to +85                    | 1000                         | 1800                                                    | Integrated synchronous boost regulator, 0.65V start-up voltage, soft start, enable, power good output, true load disconnect or input-to-output bypass option | 8-pin MSOP,<br>8-pin (2 × 3) DFN             |
| MIC2877                            | 2.5 to 5.5                 | Up to Vin                                               | -40 to +125                   | 6500                         | 4800                                                    | 6.5A ISW, Synchronous Boost Regulator with Bidirectional Load Disconnect and Bypass Mode                                                                     | 8-pin 2 × 2 mm FTQFN                         |
| MIC2145                            | 2.4 to 16                  | Up to 16                                                | -40 to +85                    | 450                          | 006                                                     | High-Efficiency 2.5W Boost Converter                                                                                                                         | 8-pin MSOP, 3 × 3 MLF                        |
| MIC2253                            | 2.5 to 10                  | Up to 30                                                | -40 to +125                   | 1000                         | 3500                                                    | 3.5A, 1 MHz High-Efficiency Boost Regulator with OVP and Soft Start                                                                                          | 12-pin 3 × 3 MLF                             |
| MIC2290                            | 2.5 to 10                  | Up to 34                                                | -40 to +125                   | 1200                         | 750                                                     | PWM Boost Regulator with Internal Schottky Diode                                                                                                             | 8-pin 2 × 2 MLF                              |
| MIC2295/96                         | 2.5 to 10                  | Up to 34                                                | -40 to +125                   | 1200/600                     | 1700                                                    | High Power Density 1.2A Boost Regulator                                                                                                                      | 5-pin SOT23, $2 \times 2$ MLF                |
| MCP1663/4                          | 2.4 to 5.5                 | Up to 32                                                | -40 to +85                    | 200                          | 1800                                                    | High-efficiency (up to 92%), fixed-frequency, non-synchronous,<br>300 mV feedback for LED driving (MCP1664)                                                  | 5-pin SOT-23,<br>8-pin (2 × 3) TDFN          |
| MCP1665                            | 2.7 to 5                   | Up to 32                                                | -40 to +85                    | 200                          | 3600                                                    | 3.6A Integrated Switch PFM/PWM Boost Regulator                                                                                                               | 10-pin 2 x 2 VQFN                            |
| MIC2601/02                         | 4.5 to 20                  | Up to 40                                                | -40 to +125                   | 1200/2000                    | 1700                                                    | 1.2A, 1.2 MHz/2 MHz Wide Input Range Integrated Switch Boost Regulator                                                                                       | 8-pin 2 × 2 MLF                              |
| MIC2171/72                         | 3 to 40                    | Up to 65                                                | -40 to +85                    | 100                          | 2500/1250                                               | 100 kHz 2.5A/1,25A Switching Regulator                                                                                                                       | 5-pin TO220, TO263/<br>8-pin SOIC, 8-pin DIP |

|            |                            |                                                                                                  |                               | Power Ma                      | Power Management: Switching Regulators    | ulators                                                                                                                        |                                               |
|------------|----------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Product    | Input Voltage<br>Range (V) | Output Voltage (V)                                                                               | Operating Temp.<br>Range (°C) | Switching<br>Frequency (kHz)  | Output Current (mA)                       | Features                                                                                                                       | Packages                                      |
|            |                            |                                                                                                  |                               | Multiple                      | Multiple Output Switching Regulators      | itors                                                                                                                          |                                               |
| MIC2800/10 | 2.9 to 5.5                 | Adj./Adj.                                                                                        | -40 to +125                   | 2.0 MHz                       | 008/008/009                               | 600 mA Buck Regulator, 2 $\times$ 300 mA LDO, LowQ Mode (MIC2810)                                                              | 16-pin (3 × 3) MLF                            |
| MIC2238/30 | 2.5 to 5.5                 | 1.28/1.65, 1.8/1.2, 1.8/1.545, 1.8/1.575, 1.8/3.3, 1.8/1.6, 2.5/1.2, 3.3/1.2, 3.3/3.3, Adj./Adj. | -40 to +125                   | 2.5 MHz                       | 008/008                                   | Power Good, Soft Start, Current Limit Protection, Dual Output Voltages                                                         | 12-pin (3 × 3) MLF                            |
| MIC23250   | 2.7 to 5.5                 | 0.9/1.1, 1.2/1.0, 1.2/1.6, 1.2/1.8, 1.2/2.8, 1.2/3.3, 1.575/1.8, 2.6/3.3, Adj./Adj.              | -40 to +125                   | 4.0 MHz                       | 400/400                                   | 20 mVpp in HyperLight Load® Mode, Soft Start, Ultra-Fast Transient Response                                                    | 10-pin (2 × 2) MLF, 12-pin<br>(2.5 × 2.5) MLF |
| MIC23254   | 2.5 to 5.5                 | 1.0/1.8                                                                                          | -40 to +125                   | 4.0 MHz                       | 400/400                                   | 20 mVpp in HyperLight Load Mode, Soft Start, Ultra-Fast Transient Response                                                     | 10-pin (2 $\times$ 2) Thin MLF                |
| MIC23450   | 2.7 to 5.5                 | Adj./Adj./Adj.                                                                                   | -40 to +125                   | 3.0 MHz                       | 2000/2000/2000                            | Power Good, Soft Start, HyperLight Load Mode                                                                                   | 32-pin (5 × 5) QFN                            |
| MIC24420   | 4.5 to 15                  | Adj./Adj.                                                                                        | -40 to +125                   | 1 MHz                         | 2500/2500                                 | Power Good, Soft Start                                                                                                         | 24-pin (4 × 4) MLF                            |
| MIC24421   | 4.5 to 15                  | Adj./Adj.                                                                                        | -40 to +125                   | 500 KHz                       | 2500/2500                                 | Power Good, Soft Start                                                                                                         | 24-pin (4 × 4) MLF                            |
| MIC23158   | 2.7 to 5.5                 | Adj./Adj.                                                                                        | -40 to +125                   | 3.0 MHz                       | 2000/2000                                 | Power Good, Soft Start, HyperLight Load Mode                                                                                   | 20-pin (3 $\times$ 4) MLF                     |
| MIC23159   | 2.7 to 5.5                 | Adj./Adj.                                                                                        | -40 to +125                   | 3.0 MHz                       | 2000/2000                                 | Power Good, Soft Start, HyperLight Load Mode                                                                                   | 20-pin (3 × 4) MLF                            |
| MIC23451   | 2.7 to 5.5                 | Adj./Adj./Adj.                                                                                   | -40 to +125                   | 3.0 MHz                       | 2000/2000/2000                            | Power Good, Soft Start, HyperLight Load Mode                                                                                   | 26-pin (4 $\times$ 4) QFN                     |
| MIC7400/1  | 2.4 to 5.5                 | 1.8V, 1.1V, 1.8V, 1.05V, 1.25V, 12V or<br>Configurable                                           | -40 to +125                   | 2 MHz Boost,<br>1.3 MHz Bucks | DC to DC Bucks: 3,000,<br>DC/DC Boost 200 | Highly integrated-configurable, featuring five buck regulators, one boost regulator and global Power Good indicator/enable pin | 36-pin 4.5 × 4.5 QFN                          |

|                 |                            |                      |                                           |                       | Power Managemen                     | Power Management: Inductorless Offline Switches | ches                                                        |                                                                                                                                 |                                                     |
|-----------------|----------------------------|----------------------|-------------------------------------------|-----------------------|-------------------------------------|-------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Product         | oct                        | Vin (Vac)            |                                           | Adjustable Vουτ (V)   |                                     | Fixed Vour (V)                                  | lout Max. (mA)                                              | Load Regulation (%/mA)                                                                                                          | Packages                                            |
| SR086           |                            | 80–285               |                                           | 9.0–20                | 0                                   | 3.3                                             | 100                                                         | 0.025                                                                                                                           | 8-Lead SOIC with Heat Slug                          |
| SR10            |                            | 80–285               |                                           | 6.0–28                | 6                                   | 6.0, 12, 24                                     | 09                                                          | 1                                                                                                                               | 8-Lead SOIC                                         |
|                 |                            |                      |                                           |                       | Power Manag                         | Power Management: PWM Controllers               |                                                             |                                                                                                                                 |                                                     |
| Product         | Supported Topologies       | Supported<br>Outputs | Supported Input Voltage Outputs Range (V) | Output<br>Voltage (V) | Operating Frequency (Hz) Range (°C) | Operating Temperature<br>Range (°C)             | -                                                           | Features                                                                                                                        | Packages                                            |
| MIC2103/4       | Sync. Buck                 | -                    | 4.5–75                                    | 0.8–24                | 200-600 KHz                         | -40 to +125                                     | HyperLight Load® Mode, Exterr<br>Internal Comper            | HyperLight Load® Mode, External Clock Sync, Power Good, Soft Start,<br>Internal Compensation and Voltage Bias                   | 16-pin 3 × 3 MLF                                    |
| MIC2124         | Sync. Buck                 | -                    | 3.0–18                                    | 0.8–12                | 300 KHz                             | -40 to +125                                     | Soft Start, I                                               | Soft Start, Internal Voltage Bias                                                                                               | 10-pin MSOP                                         |
| MIC2130/1       | Sync. Buck                 | -                    | 8.0–40                                    | 0.7–24                | 150 or 400 kHz                      | -40 to +125                                     | Power Good, Soft                                            | Power Good, Soft Start, Internal Voltage Bias                                                                                   | 16-pin e-TSSOP,<br>16-pin 4 × 4 MLF                 |
| MIC2150/1       | Sync. Buck                 | 2                    | 4.5–14.5                                  | 0.7-5.5               | 500 KHz                             | -40 to +125                                     | Power Good, Soft                                            | Power Good, Soft Start, Internal Voltage Bias                                                                                   | 24-pin 4 × 4 MLF                                    |
| MIC2183         | Sync. Buck                 | -                    | 2.9–14                                    | 1.3–12                | 200/400 kHz                         | -40 to +125                                     | External Clock Sync, S                                      | External Clock Sync, Soft Start, Internal Voltage Bias                                                                          | 16-pin SOP, 16-pin QSOP                             |
| MIC2184         | Async. Buck                | -                    | 2.9–14                                    | 1.3–12                | 200/400 kHz                         | -40 to +125                                     | External Clock Sync, 3                                      | External Clock Sync, Soft Start, Internal Voltage Bias                                                                          | 16-pin SOP, 16-pin QSOP                             |
| MIC2185/86      | Boost, SEPIC, Ćuk          | -                    | 2.9–14                                    | 3.3-14                | 100/200/400 kHz                     | -40 to +125                                     | Skip Mode, External Clock S                                 | Skip Mode, External Clock Sync, Soft Start, Internal Voltage Bias                                                               | 16-pin SOIC, 16-pin QSOP                            |
| MIC38HC42/3/4/5 | Forward, Flyback           | -                    | 9.0 up to 20                              | I                     | Adj. to 500 kHz                     | -40 to +85                                      | Forward, Flybac                                             | Forward, Flyback Supported Topologies                                                                                           | 8-pin PDIP, 14-pin PDIP,<br>8-pin SOIC, 14-pin SOIC |
| MIC9130/1       | Forward, Flyback           | -                    | 9.0–180                                   | I                     | Adj. up to 1.5 MHz                  | -40 to +125                                     | Forward, Flyback Supporte                                   | Forward, Flyback Supported Topologies, External Clock Sync                                                                      | 16-pin SOIC, 16-pin QSOP                            |
| MCP1630/1/2     | Flyback, Boost, SEPIC, Ćuk | -                    | 3.0-5.5                                   | I                     | Sync. up to 2 MHz                   | -40 to +125                                     | External Clock Sync, Current L<br>Internal Voltage Bias, UN | External Clock Sync, Current Limit/Short Circuit Protection, Soft Start, Internal Voltage Blas, UVLO, Peak Current Control Mode | 20-pin TSSOP, 20-pin SSOP,<br>20 pin 4 × 4 QFN      |
| MCP1631HV       | Flyback, Boost, SEPIC, Ćuk | -                    | 3.5–16                                    | I                     | Sync. to 2 MHz                      | -40 to +125                                     | External Clock Sync, Cur                                    | External Clock Sync, Current Limit/Short Circuit Protection                                                                     | 20-pin TSSOP, 20-pin SSOP                           |
| MCP19035        | Sync. Buck                 | -                    | 4.5–30                                    | ı                     | 300/600 kHz                         | -40 to +125                                     | Power Good, Soft Start, Internal Voltage                    | Power Good, Soft Start, Internal Voltage Bias, UVLO, Current Limit/Short Circuit Protection                                     | 10-pin 3 × 3 DFN                                    |
| MIC2128/27A     | Sync. Buck                 | -                    | 4.5–75                                    | 0.6-32                | 270-800KHz                          | -40 to +125                                     | Internal and External soft start, Inter                     | Internal and External soft start, Internal LDO, Short Circuit Protection, Current limit                                         | 16-pin 3 × 3 DFN                                    |

|                      |                            |                       |                                  |          |                   | Power                      | Manageme       | int: Hybrid | Power Management: Hybrid PWM Controllers                                                                                                                                                     |                                  |
|----------------------|----------------------------|-----------------------|----------------------------------|----------|-------------------|----------------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Part #               | Input Voltage<br>Range (V) | Output<br>Voltage (V) | Topologies<br>Supported          | Channels | Integrated<br>MCU | Program Memory<br>(KWords) | RAM<br>(bytes) | GPIO        | Product Features Integrated MCU, LDO, MOSFET Drivers,<br>10b A/D Converter, Temp Sensor, User-Configurable Operation and:                                                                    | Packages                         |
| MCP19110<br>MCP19111 | 4.5–32                     | 0.5 to 90%<br>of Vin  | Sync. Buck                       | 1        | >                 | 4                          | 256            | 11          | Configurable and dynamically changeable internal analog compensation network                                                                                                                 | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19114<br>MCP19115 | 4.5–42                     | Topology<br>Dependent | Boost,<br>Flyback,<br>SEPIC, Ćuk | -        | >                 | 4                          | 256            | 12          | Excellent regulation for constant current applications                                                                                                                                       | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19116<br>MCP19117 | 4.5–42                     | Topology<br>Dependent | Boost,<br>Flyback,<br>SEPIC, Ćuk | -        | >                 | ω                          | 336            | 12 8        | Improved current regulation accuracy, additional code space (compared to MCP19114 or MCP19115)                                                                                               | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19118<br>MCP19119 | 4.5-40                     | 0.5 to 90%<br>of Vin  | Sync. Buck                       | -        | >                 | 4                          | 256            | 11          | Configurable and dynamically changeable internal analog compensation network                                                                                                                 | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19122<br>MCP19123 | 4.5-40                     | 0.3–16                | Sync. Buck                       | -        | >                 | 4                          | 256            | 12          | Emulated average current mode control, progammable gain feedback amplifier, multiphase operation, improved regulation accuracy and current measurement accuracy (compared to MCP19110/1/8/9) | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19124<br>MCP19125 | 4.5–42                     | Topology<br>Dependent | Boost,<br>Flyback,<br>SEPIC, Ćuk | -        | >                 | 4                          | 256            | 12          | Dual independent voltage and current control loops allow seamless transitions from constant voltage to constant current regulation                                                           | 24-pin 4×4 QFN<br>28-pin 5×5 QFN |
| MCP19214<br>MCP19215 | 4.5-42                     | Topology<br>Dependent | Boost,<br>Flyback,               | 2        | >                 | ω                          | 336            | 8 27        | Dual chamels, which can be configured to control two outputs, or one bidirectional system                                                                                                    | 28-pin 5×5 QFN<br>32-pin 5×5 QFN |

|               |                            |                          |                               |                | Power                        | Management       | Power Management: Power Modules | sa                                                                               |                                |
|---------------|----------------------------|--------------------------|-------------------------------|----------------|------------------------------|------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------|
| Product       | Input Voltage<br>Range (V) | Output Voltage (V)       | Operating Temp.<br>Range (°C) | Control Scheme | Switching<br>Frequency (kHz) | Vouт Ma×.<br>(V) | Output<br>Current (A)           | Features                                                                         | Packages                       |
| MIC28304-1/-2 | 4.5 to 70                  | Adj.                     | -40 to +125                   | COT            | 009                          | 24               | 8                               | HyperLight Load® Mode, Hyper Speed Control® Architecture, Power Good, Soft Start | 64-pin (12 × 12) QFN           |
| MIC45205-1/-2 | 4.5 to 26                  | Adj.                     | -40 to +125                   | T00            | 200–600                      | 5.5              | 9                               | HyperLight Load Mode, Hyper Speed Control Architecture, Power Good, Soft Start   | 52-pin (8 × 8) QFN             |
| MIC45208-1/-2 | 4.5 to 26                  | Adj.                     | -40 to +125                   | T00            | 200–600                      | 5.5              | 10                              | HyperLight Load Mode, Hyper Speed Control Architecture, Power Good, Soft Start   | 52-pin (10 × 10) QFN           |
| MIC45212-1/-2 | 4.5 to 26                  | Adj.                     | -40 to +125                   | T00            | 200–600                      | 5.5              | 14                              | HyperLight Load Mode, Hyper Speed Control Architecture, Power Good, Soft Start   | 64-pin (12 × 12) QFN           |
| MIC33030      | 2.7 to 5.5                 | 1.2, 1.8, Adj.           | -40 to +125                   | PWM            | 8,000                        | 3.6              | 0.4                             | HyperLight Load Mode                                                             | 10-pin (2.5 $\times$ 2.0) MLF® |
| MIC33050      | 2.7 to 5.5                 | 1.0, 1.2, 1.8, 3.3, Adj. | -40 to +125                   | PWM            | 4,000                        | 3.3              | 9.0                             | HyperLight Load Mode                                                             | 12-pin (3 × 3) MLF             |
| MIC33153      | 2.7 to 5.5                 | 1.2, Adj.                | -40 to +125                   | PWM            | 4,000                        | 3.6              | 1.2                             | HyperLight Load Mode, Power Good, Soft Start                                     | 14-pin $(3 \times 3.5)$ MLF    |
| MIC3385       | 2.7 to 5.5                 | 1.5, Adj.                | -40 to +125                   | PWM            | 8,000                        | 5.5              | 9.0                             | LowQ                                                                             | 14-pin (3 × 3.5) MLF           |
| MIC28303-1/-2 | 4.5 to 50                  | Adj.                     | -40 to +125                   | T00            | 009                          | 24               | က                               | HyperLight Load Mode, Hyper Speed Control Architecture, Power Good, Soft Start   | 64-pin (12 × 12) QFN           |
| MIC45116-1/-2 | 4.5 to 20                  | Adj.                     | -40 to +125                   | T00            | 009                          | 17               | 9                               | HyperLight Load Mode, Hyper Speed Control Architecture, Power Good, Soft Start   | 52-pin (8 × 8) QFN             |
| MIC45404      | 4.5 to 19                  | Selectable               | -40 to +125                   | Fixed          | 400–790                      | 3.3              | Ŋ                               | Power Good, Soft Start                                                           | 64-pin (6 × 10) QFN            |

| Part # | ±Vin Min (V) | ±Vin Max (V) | Output Voltage (V) | Power Management Max Output Current (mA) | Power Management: Linear Regulators  ax Output Current (mA) Typical Line Regulation (%/V) | Typical Load Regulation (%/mA) | Packages                                   |
|--------|--------------|--------------|--------------------|------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|
| LR8    | 12           | 450          | 1.2-440            | 10                                       | 0.003                                                                                     | 0.15                           | 3-Lead TO-252, 3-Lead TO-92, 3-Lead SOT-89 |
| LR12   | 12           | 100          | 1.2–88             | 20                                       | 0.003                                                                                     | 0.06                           | 3-Lead TO-252, 8-Lead SOIC, 3-Lead TO-92   |

| Product MIC5166    | lour Vin                     | Vin Min. (V)    | Vin Max. (V)               | Vour (V)                              | PWR Good                                   | VTT Accuracy                                         | External Transistor                                          | Sync Buck                            | Frequency                         | Features                                                                  | Packages                     |
|--------------------|------------------------------|-----------------|----------------------------|---------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------------------------------------------|------------------------------|
| ш                  |                              | ı               |                            |                                       |                                            |                                                      |                                                              |                                      |                                   |                                                                           | 0 C C C                      |
| Н                  | ±3A                          | 6.0             | 3.6                        | 1/2 of Vin                            | >                                          | ±40 mV                                               | I                                                            | I                                    | 1                                 | Integrated FETs                                                           | 2000                         |
|                    | ±6A                          | 2.6             | 5.5                        | Adj. down to 0.35V                    | >                                          | ±12 mV                                               | ı                                                            | >                                    | 1 MHz                             | Integrated Sync-Buck                                                      | 4 × 4 DFN                    |
|                    |                              |                 |                            | ď                                     | ower Management:                           | Power Management: Charge Pump DC-to-DC Converters    | DC Converters                                                |                                      |                                   |                                                                           |                              |
| Product Con        | Configuration Ra             | Input Voltage C | Output Voltage (V)         | Typical Output Swi<br>Current (mA)    | Switching Frequency<br>(kHz)               | Supply Current<br>(Is, floating output,<br>µA, 25°C) | Output Resistance<br>(Ω, at typical output<br>current, 25°C) | Power Conversion<br>Efficiency (%)   |                                   | Features                                                                  | Packages                     |
|                    |                              |                 |                            |                                       | Inverting o                                | Inverting or Doubling Charge Pumps                   | sdu                                                          |                                      |                                   |                                                                           |                              |
| TC7660S/H Invertin | Inverting or doubling 1      | 1.5-12          | -Vin or 2* Vin             | 20                                    | 10, 45, or 120                             | 80 or 1000                                           | 55 or 60                                                     | 98% at 1 mA,<br>85% at 10 mA         | Boost pin increa                  | Boost pin increases switching frequency, high-voltage oscillator          | 8-pin SOIC and<br>8-pin PDIP |
| TC7662A/B Invertin | Inverting or doubling        | 1.5–15          | -Vin or 2* Vin             | 20 or 40                              | 10, 12 or 35                               | 80 or 190                                            | 50 or 65                                                     | 96% at 1 mA,<br>97% at 7.5 mA        | Boost pin increa<br>no low-volta  | Boost pin increases switching frequency, no low-voltage terminal required | 8-pin SOIC and<br>8-pin PDIP |
|                    |                              |                 |                            |                                       | Regu                                       | Regulated Charge Pumps                               |                                                              |                                      |                                   |                                                                           |                              |
| MCP1252/3          | Regulated 2                  | 2.0–5.5         | 3.3, 5.0, or<br>Adjustable | 150                                   | 650, 1000                                  | 09                                                   | N/A                                                          | 81% at 10 mA                         | Shutdown, powe<br>adjus           | Shutdown, power good, regulated output,<br>adjustable version             | 8-pin MSOP                   |
|                    |                              |                 |                            |                                       | Power Manage                               | Power Management: Power MOSFET Drivers               | <sup>r</sup> Drivers                                         |                                      |                                   |                                                                           |                              |
| Product            | Drivers                      | ers             | Conf                       | Configuration                         | Peak Output<br>Current<br>(source/sink, A) | Max Supply Voltage (V)                               | (V) Output Resistance (source/sink, Ω)                       | e Propagation Delay<br>(To1/To2, ns) | אי Rise/Fall Time<br>(Tr, Tf, ns) | Packages                                                                  | Si                           |
|                    |                              |                 |                            |                                       | Low-Side                                   | Low-Side Power MOSFET Drivers                        | ers                                                          |                                      |                                   |                                                                           |                              |
| MCP14A0051/2       | Single                       | ale             | Inverting/                 | Inverting/Non-Inverting               | 0.5/0.5                                    | 18                                                   | 6.5/4.5                                                      | 40/31                                | 51/39                             | 6-pin SOT-23, 6-pin 2 x 2 DFN                                             | 2×2 DFN                      |
| MIC4416/7          | Single                       | gle             | Non-Inverting/Inv          | Non-Inverting/Inverting/Complimentary | 1.2/1.2                                    | 18                                                   | 3.5/3.5                                                      | 42/42                                | 3.5/3.5                           | SOT-143                                                                   | 3                            |
| MIC4467/8/9        | Quad                         | ad              | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 1.2/1.2                                    | 18                                                   | 2/2                                                          | 35/22                                | 2/2                               | 16-pin WSOIC, 14-pin PDIP                                                 | 1-pin PDIP                   |
| MCP14A0151/2       | Single                       | gle             | Inverting/                 | Inverting/Non-Inverting               | 1.5/1.5                                    | 18                                                   | 17/10                                                        | 41/32                                | 18.5/17                           | 6-pin SOT-23, 6-pin 2 x 2 DFN                                             | 2×2 DFN                      |
| MCP14A0153/4/5     | Dual                         | <u>a</u>        | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 1.5/1.5                                    | 18                                                   | 4.5/3                                                        | 32/24                                | 11/10                             | 8-pin SOIC, 8-pin MSOP, 8-pin 2 x 3 DFN                                   | , 8-pin 2 x 3 DFN            |
| MCP14E6/7/8        | Dual                         | <u> </u>        | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 2.0/2.0                                    | 33 18                                                | 5/5                                                          | 45/45                                | 12/15                             | 8-pin SOIC, 8-pin PDIP, 8-pin 6 x 5 DFN 8-pin SOIC                        | 8-pin 6 x 5 DFN              |
| MCP14E9/10/11      | Dual                         | <u> </u>        | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 3.0/3.0                                    | 3 81                                                 | 4/4                                                          | 45/45                                | 14/17                             | 8-pin SOIC, 8-pin PDIP 8-pin 6 x 5 DFN                                    | 8-pin 6 x 5 DFN              |
| MAQ4123/4/5        | Dual                         | ıal             | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 3.0/3.0                                    | 20                                                   | 2/2                                                          | 40/60                                | 11/11                             | 8-pin ePAD SOIC                                                           | SOIC                         |
| MIC4123/4/5        | Dual                         | 123             | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 3.0/3.0                                    | 20                                                   | 2/2                                                          | 44/59                                | 11/11                             | 8-pin ePAD SOIC                                                           | SOIC                         |
| MCP14E3/4/5        | Dual                         | ıal             | Inverting/Non-Inv          | Inverting/Non-Inverting/Complimentary | 4.0/4.0                                    | 18                                                   | 2.5/2.5                                                      | 46/50                                | 15/18                             | 8-pin SOIC, 8-pin PDIP, 8-pin 6 x 5 DFN                                   | 8-pin 6 x 5 DFN              |
| MCP14A0451/2       | Single                       | gle             | Non-Inve                   | Non-Inverting/Inverting               | 4.5/4.5                                    | 18                                                   | 1.6/1.2                                                      | 16/19.5                              | 9/9.5                             | 8-pin MSOP, 8-pin SOIC 8 pin 2 x 2 WDFN                                   | 8 pin 2 x 2 WDFN             |
| MCP14A0601/2       | Single                       | gle             | Non-Inve                   | Non-Inverting/Inverting               | 0.0/0.9                                    | 18                                                   | 1.2/0.9                                                      | 22/22                                | 10/10                             | 8-pin MSOP, 8-pin SOIC 8 pin 2 x 3 WDFN                                   | 8 pin 2 x 3 WDFN             |
| MCP14A031/2        | Single                       | gle             | Non-Inve                   | Non-Inverting/Inverting               | 3.0/3.0                                    | 18                                                   | 2.2/1.5                                                      | 15/18                                | 18/17                             | 8-pin MSOP, 8-pin SOIC, 8-pin, 2 x 2 DFN                                  | 8-pin, 2 x 2 DFN             |
| MIC4120/29         | Single Allowed               | ale ale         | Non-inver                  | Non-inverting/Inverting               | 9.0/8.0                                    | 70 70 1                                              | 0.8/06                                                       | 45/35                                | 20/24                             | 8-nin PDIP 8-nin SOIC 5-nin TO-220                                        | Sill 3 X 3 MILT              |
| MIC4451/2          | Single                       | gle             | Inverting/                 | Inverting/Non-Inverting               | 12.0/12.0                                  | 18                                                   | 0.8/0.6                                                      | 25/40                                | 20/24                             | 8-pin SOIC, 8-pin PDIP, 5-pin TO-220                                      | , 5-pin TO-220               |
|                    |                              |                 |                            |                                       | High-Side                                  | High-Side Power MOSFET Drivers                       | ers                                                          |                                      |                                   |                                                                           |                              |
| MIC5011/13         | High-Side or Low-Side Single | ow-Side Single  | -noN                       | Non-Inverting                         | 950 µA*/225 µA*                            | 32                                                   | N/A                                                          | A/N                                  | 25 µs/4 µs                        | 8-pin SOIC, 8-pin PDIP                                                    | oin PDIP                     |
| MIC5014/15         | High-Side or Low-Side Single | ow-Side Single  | Non-Inve                   | Non-Inverting/Inverting               | 800 µA*                                    | 30                                                   | N/A                                                          | A/N                                  | srl 9/srl 06                      | 8-pin SOIC, 8-pin PDIP                                                    | oin PDIP                     |
| MIC5018/19         | High-Side or Low-Side Single | ow-Side Single  | Non-                       | Non-Inverting                         | 10 µA*                                     | 6                                                    | N/A                                                          | N/A                                  | 750 µs/10 µs                      | 4-pin SOT-143                                                             | 143                          |
|                    |                              |                 |                            |                                       | High-Side                                  | High-Side Power MOSFET Drivers                       | ərs                                                          |                                      |                                   |                                                                           |                              |
| MIC5021            | High-Side or Low-Side Single | ow-Side Single  | -noN                       | Non-Inverting                         | 5600 µA*                                   | 36                                                   | N/A                                                          | 200/800                              | 400 ns/400 ns                     | 8-pin SOIC, 8-pin PDIP                                                    | nin PDIP                     |
| MIC5060            | High-Side or Low-Side Single | ow-Side Single  | -noN                       | Non-Inverting                         | 800 µA*                                    | 30                                                   | N/A                                                          | N/A                                  | sri 9/sri 06                      | 8-pin 3 x 3 MLF                                                           | MLF                          |
|                    |                              |                 |                            |                                       | Sy                                         | Synchronous Drivers                                  |                                                              |                                      |                                   |                                                                           |                              |
| MCP14628/MCP14700  |                              | ge Driver       | Due                        | Dual Inputs                           | 2.0/3.5                                    | 5.5 (36V Boot Pin)                                   | 1/1 (0.5 on low side)                                        | e) 15/22                             | 10/10                             | 8-pin SOIC, 8-pin 3 × 3 DFN                                               | 3 × 3 DFN                    |
| MIC4100/1          | Half Bridge Driver           | ge Driver       | Due                        | Dual Inputs                           | 2.0/2.0                                    | 16 (100V Boot Pin)                                   | 2.5/2.0                                                      | 27/27                                | 10/10                             | 8-pin SOIC                                                                | Q                            |

|                    |              |                                                               |                                       |                         | Power N                                    | Power Management: Power MOSFET Drivers | MOSFET Drive           | ərs                                       |                                    |                       |                                |                        |                                   |                                                  |
|--------------------|--------------|---------------------------------------------------------------|---------------------------------------|-------------------------|--------------------------------------------|----------------------------------------|------------------------|-------------------------------------------|------------------------------------|-----------------------|--------------------------------|------------------------|-----------------------------------|--------------------------------------------------|
| Product            |              | Drivers                                                       | Config                                | Configuration           | Peak Output<br>Current<br>(source/sink, A) |                                        | Max Supply Voltage (V) | Output Resistance<br>(source/sink, Ω)     | Propagation Delay<br>(To1/To2, ns) |                       | Rise/Fall Time<br>(Tr, Tf, ns) |                        | Packages                          | S                                                |
| MIC4102            |              | Half Bridge Driver                                            | Single                                | Single PWM              | 3.0/2.0                                    | 0 16 (100V Boot Pin)                   | Boot Pin)              | 1.5/2.0                                   | 60/75                              | 75                    | 10/6                           |                        | 8-pin SOIC                        | 0                                                |
| MIC4103/4          |              | Half Bridge Driver                                            | Dual I                                | Dual Inputs             | 3.0/2.0                                    |                                        | 16 (100V Boot Pin)     | 1.5/2.0                                   | 24/24                              | 54                    | 10/6                           |                        | 8-pin SOIC                        | 0                                                |
| MIC4600            |              | Half Bridge Driver                                            | Dual Inputs,                          | Dual Inputs, Single PWM | 1.0/1.0                                    |                                        | 28                     | 2.0/1.5                                   | 26/55                              | 25                    | 15/13.5                        |                        | 16-pin 3 × 3 QFN                  | OFN                                              |
| MIC4604            |              | Half Bridge Driver                                            | Dual I                                | Dual Inputs             | 1.0/1.0                                    |                                        | 16 (85V Boot Pin)      | 4.4/4.0                                   | 33/34                              | 34                    | 20/20                          | 8-pin S                | 8-pin SOIC, 10-pin 2.5 x 2.5 TDFN | 5 x 2.5 TDFN                                     |
| MIC4605            |              | Half Bridge Driver                                            | Dual Inputs,                          | Dual Inputs, Single PWM | 1.0/1.0                                    | 0 16 (85V Boot Pin)                    | Boot Pin)              | 10/6                                      | 35/35                              | 35                    | 20/20                          | 8-pin S                | 8-pin SOIC, 10-pin 2.5 x 2.5 TDFN | 5 x 2.5 TDFN                                     |
| MIC4606            |              | Full Bridge Driver                                            | Dual Inputs,                          | Dual Inputs, Single PWM | 1.0/1.0                                    | 0 16 (85V Boot Pin)                    | Boot Pin)              | 10/6                                      | 35/35                              | 35                    | 20/20                          |                        | 16-pin 4 x 4 QFN                  | OFN                                              |
| MIC4607            |              | 3 Phase Driver                                                | Dual Inputs,                          | Dual Inputs, Single PWM | 1.0/1.0                                    |                                        | 16 (85V Boot Pin)      | 10/6                                      | 35/35                              | 35                    | 20/20                          | 28-pir                 | 28-pin TSSOP, 28-pin 4 x 5 QFN    | in 4 x 5 QFN                                     |
| MIC4608            |              | Half Bridge Driver                                            | Dual Inputs,                          | Dual Inputs, Single PWM | 1.0/1.0                                    | 0 20 (600V Boot Pin)                   | Boot Pin)              | 8/9.2                                     | 450/450                            | 150                   | 31/31                          |                        | 14-pin SOIC                       | ō                                                |
| MIC4609            |              | 3 Phase Driver                                                | Dual I.                               | Dual Inputs             | 1.0/1.0                                    |                                        | 20 (600V Boot Pin)     | 8/9.2                                     | 450/450                            | 150                   | 31/31                          |                        | 28-pin SOIC                       | 9                                                |
|                    |              |                                                               |                                       |                         | Pow                                        | Power Management: Power Switches       | wer Switches           |                                           |                                    |                       |                                |                        |                                   |                                                  |
| Part #             |              | Description                                                   | USB                                   | USB Port Power H        | ligh-Speed USB<br>2.0 Switch               | Battery Charger<br>Emulation Profiles  | 8 Resistor Set         | or Set Charging Charging Indicator Output | Attach Detection                   |                       | Current<br>Measurement         | Power<br>Allocation    | Interface                         | Packages                                         |
|                    |              |                                                               |                                       |                         |                                            | USB Port Power Controllers             | ntrollers              |                                           |                                    | ı                     |                                |                        |                                   |                                                  |
| UCS1001-3/4        | USB Port Po  | USB Port Power Controller with Charger Emulation              | rger Emulation                        | 1                       | 1                                          | 6                                      | Up to 2.4A             | .4A –3 option                             | -4 option                          | noito                 | 1                              | -                      | Discrete I/O                      | 20-pin 4 × 4 QFN                                 |
| UCS1002-2          | Prograr      | Programmable USB Port Power Controller with Charger Emulation | Controller                            | -                       | 1                                          | 9 + 1 Programmable                     |                        | .4A                                       | I                                  |                       | >                              | >                      | PC/SMBus                          | 20-pin 4 x 4 QFN                                 |
| UCS1003-1          | Progran      | Programmable USB Port Power Controller with Charner Emulation | Controller                            | -                       | -                                          | 9 + 1 Programmable                     | le Up to 3A            |                                           | <b>&gt;</b>                        |                       | >                              | >                      | PC/SMBus                          | 20-pin 4 x 4 QFN                                 |
| UCS81003           | Programmable | Programmable USB Port Power Controller - Automotive           | iller - Automotive                    | -                       | -                                          | 9 + 1 Programmable                     | le Up to 3A            | 3A -                                      | >                                  |                       | >-                             | >                      | PC/SMBus                          | 28-pin 5 x 5 QFN                                 |
|                    |              |                                                               |                                       |                         | , and d                                    | Dougr Monogont Dougs Suitches          | Switchoe               |                                           |                                    |                       |                                |                        |                                   |                                                  |
|                    |              |                                                               |                                       |                         |                                            | er management. Fo                      | salicilies and         |                                           |                                    |                       |                                | l                      |                                   |                                                  |
| Part #             | Channels     | Vin Range (V)                                                 | Fixed Current Limit Min.              | ¥ .                     | dj. Current Limit<br>Max.                  | Rbs(oN) (mΩ)                           | Reverse<br>Blocking    | Enable Logic                              | UNLO                               | Thermal<br>Protection | Fault C<br>Flag Mea            | Current<br>Measurement | Pac                               | Packages                                         |
|                    |              |                                                               |                                       |                         | Curre                                      | Current Limit USB Protection Switches  | tion Switches          |                                           |                                    |                       |                                |                        |                                   |                                                  |
| MIC200x/201x       | Single       | 2.5-5.5                                                       | 500 mA, 800 mA, 1.2A                  |                         | Up to 2A                                   | 70/100/170                             | 1                      | Active Low, Active High                   | >-                                 | >                     | <i></i>                        | - 2                    | 5-pin SOT23, 6                    | 5-pin SOT23, 6-pin SOT23, 2 × 2                  |
| MIC2025/75         | Single       | 2.7-5.5                                                       | 500 mA                                |                         | I                                          | 06                                     | >-                     | Active Low, Active High                   | >                                  | >                     | >                              | 1                      | 8-pin SOIC                        | 8-pin SOIC, 8-pin MSOP                           |
| MIC2033/39         | Single       | 2.5-5.5 475 mA,                                               | 475 mA, 517 mA, 760 mA, 950 mA, 1.14A | A, 1.14A                | 2.5A                                       | 75                                     | 1                      | Active Low, Active High                   | >                                  | >                     | >-                             | 1                      | 6-pin SOT-2                       | 6-pin SOT-23, 2 x 2 TDFN                         |
| MIC2042/43         | Single       | 0.8-5.5                                                       | I                                     |                         | 3.0A                                       | 09                                     | >                      | Active Low, Active High                   | >                                  | >                     | >-                             | 1                      | 8-pin SOIC,                       | 8-pin SOIC, 14-pin TSSOP                         |
| MIC2044/45         | Single       | 0.8-5.5                                                       | 1                                     |                         | 6.0A                                       | 30                                     | >                      | Active Low, Active High                   | >                                  | >                     | >-                             | 1                      | 16-pir                            | 16-pin TSSOP                                     |
| MIC2544/48         | Single       | 2.7-5.5                                                       | I                                     |                         | 1.5A                                       | 80                                     | >-                     | Active Low, Active High                   | 1                                  | >                     | >                              | 1                      | 8-pin SOIC                        | 8-pin SOIC, 8-pin MSOP                           |
| MIC2545A/49A       | Single       | 2.7–5.5                                                       | I                                     |                         | 3.0A                                       | 35                                     | >                      | Active Low, Active High                   | 1                                  | >                     | >                              | I                      | 8-pin SOIC                        | 8-pin SOIC, 8-pin PDIP,<br>14-pin TSSOP          |
| MIC2026/76         | Dual         | 2.7-5.5                                                       | 500 mA                                |                         | 1                                          | 06                                     | >-                     | Active Low, Active High                   | >-                                 | >                     | >                              | 1                      | 8-pin SOIC                        | 8-pin SOIC, 8-pin PDIP                           |
| MIC2506            | Dual         | 2.7-7.5                                                       | 1.0A                                  |                         | 1                                          | 75                                     | >                      | Active Low, Active High                   | 1                                  | >                     | >                              | 1                      | 8-pin SOIC                        | 8-pin SOIC, 8-pin PDIP                           |
| MIC2546/47         | Dual         | 2.7-5.5                                                       | 1                                     |                         | 1.5A                                       | 80                                     | >                      | Active Low, Active High                   | 1                                  | >                     | >                              | 1                      | 16-pin SOIC,                      | 16-pin SOIC, 16-pin TSSOP                        |
| UCS2113/2114       | Dual         | 2.9–5.5                                                       | 1                                     |                         | 3.4A                                       | 40/18                                  | >                      | Active Low, Active High                   | >                                  | >                     | >                              | <b>&gt;</b>            | 20-pin 2                          | 20-pin $4 \times 4$ QFN, 20-pin $3 \times 3$ QFN |
|                    |              |                                                               |                                       |                         | Pow                                        | Power Management: Power Switches       | wer Switches           |                                           |                                    |                       |                                |                        |                                   |                                                  |
| Part #             | Channels     | nnels Vin Range (V)                                           | Max. Switch Current (A)               | (A) Rbs(on) (           | (mΩ)                                       | Soft Start (µs)                        |                        | Load Discharge (Ω)                        |                                    | Enable Logic          |                                | Reverse Blocking       | ing                               | Packages                                         |
|                    |              |                                                               |                                       |                         |                                            | Load Switches                          | sa                     |                                           |                                    |                       |                                |                        |                                   |                                                  |
| MIC94040/1/2/3/4/5 | 3/4/5 Single | gle 1.7–5.5                                                   | 3.0                                   | 28                      | ı                                          | 100 (94042), 900 (94044/5)             | l                      | 250 (94041/3), 200 (94045)                |                                    | Active High           | lh<br>h                        | 1                      | l                                 | 1.2 × 1.2                                        |
| MIC94070/1/2/3     |              | Single 1.7–5.5                                                | 1.2                                   | 120                     |                                            | 800 (94072/3)                          |                        | 200 (94071/3)                             |                                    | Active High           | th.                            | 1                      | 6-pir                             | 6-pin SC70, 1.2 × 1.6*                           |
| MIC94080/1/2/3/4/5 |              | Single 1.7–5.5                                                | 2.0                                   | 29                      |                                            | 800 (94082/3), 120 (94084/5)           | 2)                     | 250 (94081/3/5)                           |                                    | Active High           | ų                              | I                      |                                   | $0.85 \times 0.85$                               |
| MIC94161/2/3/4/5   |              | Single 1.7–5.5                                                | 3.0                                   | 15.5                    |                                            | 2700 (94161/4/5), 60 (94162/3)         | (3)                    | 200 (94162/4)                             |                                    | Active High           | ų.                             | >-                     | -                                 | 1.5 × 1 WLCSP                                    |
| MIC95410           | Sin          | Single 0.5–5.5                                                | 7.0                                   | 9.9                     |                                            | 1100                                   |                        | 2300                                      |                                    | Active High           | ų.                             | ı                      |                                   | 1.2 × 2                                          |
| MIC94066/7/8/9     | Dual         | 1.7-5.5 lar                                                   | 2                                     | 85                      |                                            | 800 (94068/9)                          |                        | 200 (94067/9)                             |                                    | Active High           | th.                            | ı                      |                                   | 2 × 2                                            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     |             |                 |                      |                          | Power Manage              | Power Management: LDO Single Output | le Output             |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-------------|-----------------|----------------------|--------------------------|---------------------------|-------------------------------------|-----------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------|
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | Output Current (mA) | Vin Min.    | Vin Max.<br>(V) |                      | νουτ (ν)                 | Voltage Drop<br>Typ. (mV) | IGND Typ.<br>(µA)                   | Output<br>ccuracy (%) | PSRR<br>1 kHz (dB) | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | Packages                                       |
| 100   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5   2.5  |                | 25/50/100/150       | 4.5         | 120             |                      | 3.3, 5.0, Adj.           | 1100                      |                                     | ±2/±3                 |                    | High Input Voltage, Load Du<br>Reverse Battery Protectic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ump,<br>on              | 8-pin SOIC                                     |
| 100   2.3   5.0   1.0   1.0   2.5   5.0   1.0   1.0   2.5   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0  | MCP1790/1      | 70                  | 9           | 30              |                      | 3.0, 3.3, 5.0            | 200                       | 70 µA                               | ±0.2                  | 06                 | High Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 23, 3-pin DDPAK, 5-pin DDPAK, 5-pin<br>SOT-223 |
| 1.00   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0   2.0 | MIC5233        | 100                 | 2.3         | 36              | 1.8, 2.5             | 5, 3.0, 3.3, 5.0, Adj    | 270                       | 18 µA                               | <del>-</del>          |                    | High Input Voltage, Reverse Bat<br>Current Protection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | in SOT-223, 5-pin SOT-23                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MCP1810        | 150                 | 2.5         | 5.5             | 1.2, 1.8             | 3, 2.5, 3.0, 3.3, 4.2    | 380                       | 0.02 uA                             | +1                    |                    | Ultra Low Quiescent Curre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent                     | 2x2 DFN                                        |
| 1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00    | MIC5365        | 150                 | 2.5         |                 | .0, 1.2, 1.3, 1.5, 1 | _                        |                           | 32 µA                               | #5                    | 80                 | High PSRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S-pin S                 | C70, 5-pin TSOT, 4-pin UDFN                    |
| 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0  | MCP1711        | 150                 | 1.4         |                 |                      | 1.2 - 5.0                | 200                       | 0.6 µA                              | <del>+</del>          | 20                 | Ultra Low lq, Capless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                       | pin UQFN, 5-pin SOT-23                         |
| March   State   Stat | MCP1703A       | 250                 | 2.7         | 16              |                      | 1.2 - 5.5                | 625                       | 2 µA                                | ±0.4                  | 35                 | High Input, Low Iq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-pin SOT-89, 3         | -pin SOT-23A, 3-pin SOT-223, 8-pin DFN         |
| State   Color   Colo | MIC5501/2/3/4  | 300                 | 2.5         | 5.5             | 1.2,                 | 1.8, 2.8, 3.0, 3.3       | 160                       | 38 µA                               | #5                    | 09                 | Low Dropout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | pin UDFN, 5-pin SOT-23                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIC5239        | 200                 | 2.3         | 30              | 1.5, 1.8,            | 2.5, 3.0, 3.3, 5.0, Adj  | 350                       | 23 µA                               | <del>-</del>          | 20                 | Reverse Battery and Current Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 30P, 8-pin SOIC, 3-pin SOT-223                 |
| 1900   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000    | MIC5524        | 200                 | 2.5         | 5.5             | 1.2,                 | 1.8, 2.8,3.0, 3.3        | 260                       | 38 µA                               | #5                    | 65                 | Low Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 4-pin UDFN                                     |
| State   Stat | MIC39100       | 1000                | 2.25        | 16              | 1.8                  | 3, 2.5, 3.3, 5.0         | 410                       | 6.5 mA                              | +1                    |                    | Reverse Battery and Current Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         | 3-pin SOT-223                                  |
| 25   25   25   25   25   25   25   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIC29151       | 1500                | 2.25        | 26              |                      | 3.3, 5.0, 12             | 350                       | 22 mA                               | <del>[</del> #        |                    | Load Dump, Reverse Current Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | oin 10-220, 5-pin DDPAK                        |
| Part   Topology   Input Voltage Mm. by   Input Voltage Mm. by   Input Voltage Mm. co   In | MIC29301       | 3000                | 2.25        | 56              |                      | 3.3, 5.0, 12<br>3.3, 5.0 | 370                       | 37 mA                               | <b>4</b> 4            |                    | Load Dump, Reverse Current Program Daylorse Current Daylor |                         | oin TO-220, 5-pin DDPAK<br>5-nin TO-247        |
| Fig. 2016   Part   Pa |                |                     |             |                 |                      |                          | olay and LED Drivers: E   | Electroluminesce                    | ent Backlight I       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1              |                     |             |                 |                      |                          |                           | Nominal C                           | Output Ma             | ax. Switch         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max. Lamp Size          |                                                |
| 16-Stagmont Divises   16-Stagmont Divises   16-Stagmont Divises   16-Stagmont Divises   16-Stagmont Divises   18-Stagmont Divises  | Part#          |                     |             | Type            | 5                    | iput Voltage Min. (V)    | Input Voltage Max. (      |                                     |                       | istance (Ω)        | Output Regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Per Device (in2)        | Packages                                       |
| Figure   Company   Figure    |                |                     |             |                 |                      |                          | 16-S                      | egment Drivers                      |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Single Lamp Drivers   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HV509          |                     | 16-8        | Segment Drivers |                      | 2                        | 5.5                       | ±50 to ±                            | 200                   | 1                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5                     | 32-pin VQFN                                    |
| Single Lamp Diviers   1.8   5   40   4   Y   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                     |             |                 |                      |                          | Singl                     | e Lamp Drivers                      |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Single Lamp Drivers   1,8   5   4.60   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HV833          | ŀ                   | Sing        | ile Lamp Driver | l                    | 1.8                      | 6.5                       | 06#                                 | ŀ                     | 4                  | >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                      | 8-pin MSOP                                     |
| Single Lamp Divers   Single  | HV852          | 0)                  | Single Indu | actorless Lamp  | Driver               | 2.4                      | ις.                       | 08#                                 |                       | ı                  | >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                     | 10-pin WDFN, 8-pin MSOP                        |
| Part   Tabology   Ta | HV859          |                     | Sing        | yle Lamp Driver |                      | 1.8                      | D                         | ±106                                | 10                    | 9                  | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ŋ                       | 8-pin WDFN, 8-pin MSOP                         |
| Topology   Input Voltage (N)   Divide Lamp Divides   Expense   E |                |                     |             |                 |                      |                          | Dual                      | Lamp Drivers                        |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Part #   Topology   Input Voltage (V)   Dimming   La Typ. (mA)   Switching Frequency (Hz)   Switching MOSFET   Difference   Difference   LLED Accuracy   Vin (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HV861          | ŀ                   | Dua         | I Lamp Drivers  | l                    | 2.5                      | 4.5                       | 06#                                 | ŀ                     | 7                  | >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŋ                       | 16-pin WQFN                                    |
| The color of the |                |                     |             |                 |                      |                          |                           |                                     | ı                     | ı                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| 4         Dimming         Input Vottage (V)         Dimming         Input Vottage (V)         Dimming         Input Vottage (V)         Dimming         Input Vottage (V)         Dimming         Propology         Input Vottage (V)         Dimming (Value)         Input Vottage (V)         Input Vottage (V) <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Display and L</th><th>.ED Drivers: LED</th><th>Drivers</th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                     |             |                 |                      |                          | Display and L             | .ED Drivers: LED                    | Drivers               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Buck   15-450   4-Level Switch   1.0   100k   External FET   -   14-2%   0.26   16-pin SOIC 14-2%   1.0   1.00k   External FET   -   4-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%   0.28   1-2%    | Part #         | Topology            |             | ut Voltage (V)  | Dimming              | S                        |                           | Switching MOSF                      |                       | ithered            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VFB (V)                 | Packages                                       |
| 4         Buck         15-450         4-Lekel Switch         1.00         100k         Ekternal FET         -         4-2%         0.25         16-pin SOIO 13           3         Buck         7-13.2         PVM/Linear         1.5         100k         External FET         -         4-2%         0.28         1-25         9-pin SOIO 14           3/N/98101         Buck         35-17.5         -         2.5         320k         External FET         -         45%         0.28         16-pin SOIO 15           3/N/98102         Buck         35-17.5         -         0.2         320k         External FET         -         45%         0.2         16-pin SOIO 15           4/N/99138         Buck         4.5-40         PVM         1.5         2M         0.74 FET/EXI; FET         -         4.5%         0.23         16-pin SOIO 15           4/N/99138         Buck         8-200         PVM         1.5         1/9 kit to 1.0M         1/4 FET         -         4.5%         0.23         16-pin SOIO 15           A         Buck         8-450/15-450         PVM         1.2         1/9 kit to 1.0M         1/4 FET         7         4.5%         0.23         16-pin SOIO 15           A         Buck<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |             |                 |                      |                          | General P                 | urpose LED Dri                      | vers                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Buck         7-13.2         PWM/Linear         1.5         100k         External FET         -         ±2%         0.28         8-pi           2/5/Bage         102-266         -         2.5         370k         0.7A FET         -         ±2%         0.28         8-pi           3/1/99101         Buck         8-450/15-450         PWM/Linear         1.0         100k         External FET         -         ±5%         0.28         16-pin SOIC 18           4/499104         Buck         8-260/15-450         PWM/Linear         1.5         2M         0.7A FETCH FET         -         ±5%         0.28         16-pin SOIC 18           4/499104         Buck         8-260/15-450         PWM/Linear         1.5         2M         0.7A FETCH FET         -         ±5%         0.25         16-pin SOIC 18           2/1/2         Buck         6-37         PWM         1.2         Hysto 1.0M         ±AFET         Y         ±5%         0.25         16-pin SOIC 18           2/1/2         Buck         6-37         PWM         3.2         Pysto 1.0M         ±AFET         Y         ±5%         0.25         16-pin SOIC 18           Annal         Image 1         Image 2         Image 2         Image 2 </th <th>HV9801A</th> <td>Buck</td> <td></td> <td>15-450</td> <td>4-Level Switch</td> <td>1.0</td> <td>100k</td> <td>External FET</td> <td></td> <td>1</td> <td>N/A</td> <td></td> <td>OIC 150 mil, 8-pin SOIC 150 mil</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HV9801A        | Buck                |             | 15-450          | 4-Level Switch       | 1.0                      | 100k                      | External FET                        |                       | 1                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | OIC 150 mil, 8-pin SOIC 150 mil                |
| 2-Stage   102-266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HV9803B        | Buck                |             | 7-13.2          | PWM/Linear           | 1.5                      | 100k                      | External FET                        |                       | ı                  | ±2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.28                    | 8-pin SOIC 150 mil                             |
| MHV98104         Buck - Boost         9.5-17.5         -         0.2         320k         External FET         -         ±5%         0.2         16-pin SOIC 15           3HV99105         Buck         8-45/15-450         PWM/Linear         1.5         100k         External FET         -         ±5%         0.25         16-pin SOIC 15           14/9814         Buck         8-45/15-450         PWM         1.5         Look         External FET         -         ±5%         0.25         16-pin SOIC 15           2 buck         8-45/15-450         PWM/Linear         1.5         Hyst to 1.0M         External FET         Y         ±5%         0.25         16-pin SOIC 15           2 buck         6-45         PWM         3.2         Programmable         External FET         Optional         ±5%         0.25         10-pin MSOP, 12-pin SOIC 15           2 buth         Y/N V/Y         Vour (V)         Vour (V)         Output Current (mA)         Dimming         Parallelable         Features           Buck         5.0-90         5.0-90         Output Current (mA)         Output Current (mA)         Dimming         Parallelable         Features           Buck         5.0-90         5.0-90         Output Current (mA)         Dimming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HV9805         |                     |             | 102-265         | I                    | 2.5                      | 370k                      | 0.7A FET                            |                       | 1                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.25                    | 10-pin MSOP                                    |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100  | HV98100/HV9810 |                     |             | 9.5-17.5        | 1                    | 0.2                      | 320k                      | External FET                        |                       | 1                  | #2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 6-pin SOT23                                    |
| Cuk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HV9910B/HV9910 |                     | φ           | 450/15-450      | Pww/Linear           | D: +                     | JOK N                     | O ZA EFET/Est EF                    | F                     | ı                  | #2%<br>%G=:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                                                |
| Hy9861A         Buck         8-450/15-450         PWM/Linear         1.5         Hyst to 1.00k         External ET         -         43%         0.27         16-pin SOIC 18           2         Buck         6-45         PWM         3.2         Physt to 1.0M         1A FET         Y         ±5%         0.25         16-pin SOIC 18           2/1/2         Buck         6-45         PWM         3.2         Programmable         External ET         Y         ±5%         0.25         10-pin MSOP 12-           Part#         Vin (V)         Vour (V)         Output Current (mA)         Dimming         Parallelable         Features           Buck         5.0-90         5.0-90         20         External FET         Yes         CTD Separate BUAR           Buck         5.0-20         20         External FET         Yes         CTD Separate BUAR         CTD Separate BUAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HV9930/HV9919E |                     |             | 4.3–40          |                      | ů.                       | Vorioblo                  | O./Arel/EXt. FE                     | _                     | 1 1                | %C#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23                    | 8-pir SOIC 150 mil                             |
| Part #   Puck   G-45   PukM   3.2   Programmable   External FET   Y   2.0   Public   Public | HV9961/HV9861A |                     | ď           | 750/15_450      | PMM/I ipear          | . r.                     | 100k                      | External FET                        |                       |                    | W#+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | OC 150 mil 8-pip SOIC 150 mil                  |
| 501/2         Boost         6–45         PVM         3.2         Programmable         External FET         Optional         ±5%         0.25         10-pin MSOP, 12-pin MSOP, 12-                                                                                                                | MIC3202        |                     |             | 6-37            | PWM                  | i ci                     | Hyst to 1.0M              | 1A FET                              |                       | >                  | #2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 8-pin SOIC                                     |
| Part #         Vin (V)         Vour (V)         Ouput Current (mA)         Dimming         Parallelable         Features           5.0–90         5.0–90         20         External FET         Yes         -           Buck         5.0–220         20         External FET         Yes         -           6.6–90         4.0–90         20         External FET         Yes         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIC3230/1/2    | Boost               |             | 6-45            | PWM                  |                          | Programmable              | External FET                        | 0                     | Optional           | #3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | P, 12-pin VDFN, 16-pin TSSOP EP                |
| Part#         Vin (V)         Vour (V)         Vour (V)         Ouput Current (mA)         Dimming         Parallelable         Features           Linear Regulators         Linear Regulators         Linear Regulators         -         -         -           Buck         5.0-220         20         External FET         Yes         -           F. Control         A Control         A Control         A Control         A Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |             |                 |                      |                          | Display and L             | .ED Drivers: LED                    | Drivers               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Linear Regulators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Part #         |                     |             | Viv (V)         |                      | Vouт (V)                 | Ouput Current (mA)        |                                     | Dimming               |                    | Parallelable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Features                | Packages                                       |
| 5.0–90         5.0–90         20         External FET         Yes         -           Buck         5.0–220         20         External FET         Yes         -           6.5–220         20         External FET         Yes         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                     |             |                 |                      |                          | Line                      | ear Regulators                      |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |
| Exercise 5.00 220 20 External FET Yes OTD Seasons ENABLE Bin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17           | l                   |             | 20.00           | ŀ                    | 00-02                    | L                         |                                     | Tytomal FET           | ŀ                  | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | TO.059.3 TO.09.3 SOT.89.3                      |
| C. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CL 230         |                     |             | 0.0-90<br>Parek |                      | 5,0-20                   | 02                        |                                     | External FET          |                    | SS >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 !                     | TO-252-3, TO-35-3, 3O-39-3                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CL220          |                     |             | Duck<br>On Se   |                      | 0.0-220<br>4 0 00        | 02                        |                                     | -Atellial I L         |                    | SS >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a = IdAINE ofcogogo aTO |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                     |             |                 |                      |                          |                           |                                     |                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Part #     | Vin (V)     | # of White I FDs  |                    |               |                        |                           |              |                  | i               |                    |                             |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-------------------|--------------------|---------------|------------------------|---------------------------|--------------|------------------|-----------------|--------------------|-----------------------------|-----------|
| Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |             | # CI WILLIAM 10 # | Dimming            | la (mA)       | Vрвороит∟ер @ 20 mA    |                           | Ext LDOs     | Vряороит         | IQLDO           | Comments           | Packages                    |           |
| 200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200   200  |            |             |                   |                    |               | Linea                  | r LED Drivers             |              |                  |                 |                    |                             |           |
| 2   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIC2860-2D | 3-5.5       | 2 @ 30.2 mA       | 1-Wire, 32-Steps   | 0.7           | 52 mV                  | *0.5%                     | 1            | 1                | 1               |                    | 6-pin SC70, 6-pin S         | OT-23     |
| 2   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MIC2860-2P | Buck        | 2 @ 30.2 mA       | PWM down to 250 Hz |               | 52 mV                  | ±0.5%                     | 1            | 1                | ı               |                    | 6-pin SC70, 6-pin S         | OT-23     |
| Part    | AIC4811    | 3-5.5       | 6 @ 50 mA         | PWM (200 Hz-500 kH |               | 100 mV @ 50 mA         | ±1.0%                     | 1            | 1                | ı               | DAM                | 10-pin MSOF                 |           |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIC4812    | 3-5.5       | 6 @ 100 mA        | PWM (200 Hz-500 KH |               | 190 mV @ 100 mA        | ±1.0%                     | ı            | 1                | 1               | DAM                | 10-pin eMSOF                |           |
| Compact Channels   Vor Vot Channels   Vor Vot Channels   Vor Cha |            |             |                   |                    |               | Display and LE         | D Drivers: LED Drivers    |              |                  |                 |                    |                             |           |
| Sequential Into Diverse   Sequential Into  | Part       | #           | Vin (VA           | (C)                |               | Ouput Current (Peak m  |                           |              | Parallelable     |                 | Features           | Packag                      | S         |
| Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |                   |                    |               | Sequen                 | tial LED Drivers          |              |                  |                 |                    |                             |           |
| Couptic Channels   190-275   170-280   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   1 | 1 8800     |             | 90-97             | 'n                 | 70_350        |                        | External Dimm.            | ă            | > >              | l               | 6-Ctade            | OENI-3                      |           |
| 15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.8801    |             | 20-06             | o ic               | 70–350        | 200                    | External Dimme            | ה ה          | Kes Kes          |                 | 4-Stage            |                             | . ~-      |
| Figh-Voltage Biant Race Chieve Arrays   Figh-Voltage Biant Race Chieve Ch | CL88020    |             | 90-13             | 15                 | 70–190        | 115                    | External Dimm.            | of of        | Yes              |                 | 4-Tap              | SOIC-81                     | <u>a.</u> |
| Contact Channels   Voir Operating   Voir Standing   Voir Operating   Voir Standing   Voir Operating   Voir Standing   Voir Standing   Voir Operating   Voir Standing   Voir  |            |             |                   |                    |               | High-Voltage I         | nterface: Driver Arrays   |              |                  |                 |                    |                             |           |
| Santa   San  | Part #     | Output Char |                   |                    |               |                        | Output Structure          | lour per Cha |                  | n. Data Clock ( | (MHz)              | Packages                    |           |
| 15   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |                   |                    |               |                        | Source                    |              |                  |                 |                    |                             |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1V57009    | 64          |                   | 96                 | 85            | Serial                 | P-Ch Open Drain           | -2 (Progra   | mmable)          | 16              |                    | 80-pin PQFP                 |           |
| Single   Single   Single   Nicht Open Danie   100   8   8   8   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AIC2981/82 | 8           |                   | 50                 | 50            | Parallel               | Darlington Open Emitter   | -20          | 00               | I               | 18-                | pin PDIP, 18-pin SOIC 300   | lin.      |
| 100   25   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   250   |            |             |                   |                    |               |                        | Sink                      |              |                  |                 |                    |                             |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IV5222     | 32          |                   | 250                | 225           | Serial                 | N-Ch Open Drain           | 10           | 0                | 80              | 44-pin CE          | RQUAD, 44-pin PLCC, 44-     | in PQF    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1V5630     | 32          |                   | 315                | 300           | Serial                 | N-Ch Open Drain           | 10           | 0                | 80              |                    | 44-pin PLCC                 |           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AIC58P01   | 88          |                   | 80                 | 80            | Parallel               | Darlington Open Collector | 40           | 0                | 1               | 24-1               | oin SOIC 300 mil, 28-pin PL | 8         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |                   |                    |               | S                      | ource-Sink                |              |                  |                 |                    |                             |           |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V507       | 64          |                   | 320                | 300           | Serial                 | Half-Bridge               | ±1.          | 0                | 8               |                    | 80-pin PQFP                 |           |
| 8   24 pin SDC 300 mil 324   24 pin SDC 300  | V508       | 2           |                   | 09                 | 45            | Parallel               | Half-Bridge               | -2.8, +      | 40.38            | I               |                    | 8-pin SOIC 150 mil          |           |
| 8   64   50   50   50   50   50   50   50   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1V513      | 80          |                   | 275                | 250           | Serial                 | Half-Bridge               | #5           | 0                | ∞               | 24-6               | in SOIC 300 mil, 32-pin WC  | Z         |
| 128   96   85   80   Serial   Hall-Bridge   ±75   30   169-pin TBGAN   169-p | 1057908    | 64          |                   | 06                 | 80            | Serial                 | Half-Bridge               | -13          | 25               | ∞               |                    | 80-pin PQFP                 |           |
| 128   90   80   80   80   80   148146039   ±30   40   1400   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1000   1  | 1V582      | 96          |                   | 982                | 80            | Serial                 | Half-Bridge               | 7 + 7        | က် (             | S :             |                    | 169-pin TFBGA               |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1V583      | 128         |                   | G 8                | S 8           | Serial                 | Half-Bridge               | £# 50        | 0 99             | 40              |                    | 169-pin IFBGA               |           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1V7224     | 40          |                   | 260                | 940           | S. Odlia               | Half-Bridge               | 27-          | 2 0              | റെ              |                    | 64-pin POFP                 |           |
| Siew Rate (V/is)   Closed Loop Gain (V/Y)   Feedback Resistance (MG)   Source Current Max. (µA)   Sink Current Max. (µA | 17620      | 32          |                   | 225                | 200           | Serial                 | Half-Bridge               | ±5           | 0                | 10              |                    | 64-pin PQFP                 |           |
| Siew Rate (V/µs)   Slew Rate ( |            |             |                   |                    |               | High-Voltage Interface | : Amplifiers and MEMS Dri | vers         |                  |                 |                    |                             |           |
| 12   715   715   715   715   715   710   715   710   715   710   715   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   710   | Part #     | Output      |                   | Slew Rate (V/µs)   |               | Feedback Resistan      |                           |              | ink Current Max. |                 | put Capacitive Loa |                             | kages     |
| art#         BVDest Min. (v)         Ros (ow) Max. (Ω)         Figh-Voltage Interface: MOSFETs - Interface         Aligh-Voltage Interface: MOSFETs - Interface         Aligh-Voltage Interface: MOSFETs - Interface           art#         BVDest Min. (v)         Ros (ow) Max. (Ω)         Vos (or) Max. (Ω)         Packages           popletion-Mode N-Channel         -3         Spin SOT-23         Spin SOT-23           9         6         -1.8         -3.5         Spin SOT-89           5         50         10         -1.5         -2.1         Spin SOT-89           0         50         10         -1.5         -3.5         Spin DPAK, 3-pin SOT-89           0         500         1000         -1.5         -3.5         3-pin DPAK, 3-pin SOT-89           0         500         1000         -1.5         -3.5         3-pin DPAK, 3-pin SOT-89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1V256      |             | 32                | 2                  | 72            | 12                     | 715                       |              | 715              |                 | 3000               | 100-p                       | n MQFF    |
| High-Voltage Interface: MOSFETs - Interface           Int#         BVosx Min. (V)         Ros (ov) Max. (Q)         Vos (or) Min. (V)         Vos (or) Max. (V)           1         9         1.44         -0.8         -3           5         250         6         -1.8         -3.5           2         3.5         -1.5         -2.1           -1         -1.5         -2.1           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -1.5         -3.5           -1         -3.5         -3.5           -1         -3.5         -3.5           -1         -1.5         -3.5           -1         -3.5         -3.5           -1         -1.5         -3.5           -1         -3.5         -3.5           -1         -3.5         -3.5           -1         -3.5         -3.5           -1         -3.5         -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1V264      |             | 4                 | 6                  | 66.7          | 5.3                    | 3000                      |              | 3000             |                 | 15                 | 24-pir                      | TSSOP     |
| Int #         BVosx Min. (y)         Ros (ow) Max. (3)         Vos (orf) Min. (y)         Vos (orf) Min. (y)           9         1.4         -0.8         -3           90         6         -1.8         -3.5           250         8.5         -1.5         -2.1           300         12         -1.5         -2.1           500         100         -1.5         -3.5           500         1000         -1.5         -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |                   |                    |               | High-Voltage Inter     | face: MOSFETs - Interface |              |                  |                 |                    |                             |           |
| Depletion-Mode N-Channel           9         1.4         -0.8         -3           90         6         -1.8         -3.5           5         250         3.5         -1.5         -2.1           300         12         -1         -3.5           500         1000         -1.5         -3.5           500         1000         -1         -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Part #     |             | BVDSX Min. (V)    | RDS                | (on) Max. (Ω) | VGS (o                 | FF) Min. (V)              |              | VGS (OFF) Max.   | 3               |                    | Packages                    |           |
| 9         1,4         -0,8         -3           90         6         -1,8         -3.5           250         3.5         -1,5         -2.1           300         12         -1         -3.5           500         10         -1,5         -3.5           500         1000         -1         -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |             |                   |                    |               | Depletion              | -Mode N-Channel           |              |                  |                 |                    |                             |           |
| 90     6     -1.8     -3.5       250     3.5     -1.5     -2.1       300     12     -1     -3.5       500     10     -1.5     -3.5       500     1000     -1     -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LND01      |             | o                 |                    | 1.4           |                        | -0.8                      |              | ဗု               | l               | l                  | 5-pin SOT-23                |           |
| 250 3.5 -1.5 -2.1<br>300 12 -1 -3.5<br>500 100 -1 -3.5<br>500 -1.5 -3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0N1509     |             | 06                |                    | 9             |                        | -1.8                      |              | -3.5             |                 | (7)                | -pin SOT-89, 5-pin SOT-23   |           |
| 500 10 -1.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3.5 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ON2625     |             | 250               |                    | 3.5           |                        | -1.5                      |              | -2.1             |                 |                    | 8-pin VDFN, 3-pin DPAK      |           |
| 500 1000 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NZ530      |             | 300               |                    | 10            |                        | _ C                       |              |                  |                 |                    | 3-pin DPAK 3-pin SOT-89     |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND150      |             | 200               |                    | 1000          |                        | 2 -                       |              | )<br>ကို         |                 | 3-pin TC           | 0-92, 3-pin SOT-89, 3-pin S | DT-23     |

|        |                            |                         |                         | High-Voltage Int            | High-Voltage Interface: MOSFETS Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
|--------|----------------------------|-------------------------|-------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Part # | BV <sub>DSS</sub> Min. (V) | Roc                     | Rbs (on) Max. (Ω)       | Cis                         | Ciss Max. (pF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VGS (тн) Мах. (V)                                       | (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Packages                                    |
|        |                            |                         |                         | Enhancem                    | Enhancement-Mode N-Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| TN0702 | 20                         |                         | 1.3                     |                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92                                 |
| TN0104 | 40                         |                         | 2.0                     |                             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 3-pin SOT-89                   |
| VN0808 | 80                         |                         | 4.0                     |                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92                                 |
| VN2210 | 100                        |                         | 0.4                     |                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 3-pin TO-39                    |
| TN0620 | 200                        |                         | 0.9                     |                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.6                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92                                 |
| TN2640 | 400                        |                         | 5.0                     |                             | 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin DPAK, 3-pin TO-92, 8-pin SOIC 150 mil |
| VN2450 | 200                        |                         | 13.0                    |                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 3-pin SOT-89                   |
| VN2460 | 009                        |                         | 20.0                    |                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 3-pin SOT-89                   |
|        |                            |                         |                         | Enhancen                    | Enhancement-Mode P-Channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| TP2502 | -20                        |                         | 2.0                     |                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin SOT-89                                |
| TP0604 | -40                        |                         | 2.0                     |                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92                                 |
| VP0808 | -80                        |                         | 5.0                     |                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4.5                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92                                 |
| TP2510 | -100                       |                         | 3.5                     |                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.4                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin SOT-89                                |
| TP2520 | -200                       |                         | 12.0                    |                             | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin SOT-89                                |
| TP2640 | -400                       |                         | 15.0                    |                             | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -2.0                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 8-pin SOIC 150 mil             |
| VP2450 | -200                       |                         | 30.0                    |                             | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3.5                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-pin TO-92, 3-pin SOT-89                   |
|        |                            |                         |                         | High-Voltage Int            | High-Voltage Interface: MOSFETs Interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Part # | BVpss N-Channel (V)        | (V) BVpss P-Channel (V) | Res(on) N               | -Channel Max. (Q)           | Res(on) P-Channel Max. (Ω)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>GS</sub> (TH) Max. (V)                           | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Packages                                    |
|        |                            |                         |                         | Complimentary (Enha         | Complimentary (Enhancement Mode MOSFET Arrays)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| TC6320 | 200                        | 006-                    | ŀ                       | 0.7                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0                                                     | N- and P-Channel Pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8-pin SOIS, 8-pin VDFN                      |
| TC6321 | 200                        | -200                    |                         | 7.0                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2:0                                                     | N- and P-Channel Pair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
| TC8220 | 200                        | -200                    |                         | 5.3                         | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0                                                     | 2 N- and P-Channel Pairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |
|        |                            |                         |                         | High-Voltage Int            | High-Voltage Interface: Application Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| #<br>t | 04/04                      | Work Wolface Min AV     | W Solface May W         | Such aiM operatory trustano | Serring Services of Services o | May Name   Name   Name                                  | in his part of the |                                             |
|        |                            |                         | יייספר פסופסס אומעי (א) | Zi -                        | - É                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ł                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| HV892  | Internal Charge Pump       | 2.65                    | 5.5                     | 10                          | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100                                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-pin WDFN                                 |
|        |                            |                         |                         | High-Voltage Int            | High-Voltage Interface: Application Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Part # | # of Channels              | Input Voltage Min. (V)  | Input Voltage Max. (V)  | Output Voltage Min. (V)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output Voltage Max. (V)   Input to Output Isolation (V) | l (A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Packages                                    |
|        |                            |                         |                         | Complimentary MC            | Complimentary MOSFET LEVEL Translator Driver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| HT0440 | 2                          | 3.15                    | 5.5                     | 9                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ±400                                                    | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10-pin VDFN, 8-pin SOIC 150 mil             |
| HT0740 | -                          | 3.15                    | 5.5                     | 4.5                         | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ±400                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-pin SOIC 150 mil                          |
|        |                            |                         |                         | High-Voltage Int            | High-Voltage Interface: Application Specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Part # | Vin (V)                    | Gain                    | Rise and Fall Time (µs) | Vsense                      | Vsense Max. (mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Quiescent Current Max. (µA)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Packages                                    |
|        |                            |                         |                         | High-Si                     | High-Side Current Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| HV7800 | 8.0–450                    | Fixed, 1                | 0.7–2.0                 |                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-pin SOT-23                                |
| HV7801 | 8.0–450                    | Fixed, 5                | 0.7–2.0                 |                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-pin SOT-23                                |
| HV7802 | 8.0–450                    | Adjustable              | 0.7–1.4                 |                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-pin MSOP                                  |
|        |                            |                         |                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |

|                     |       | ı                 | ı             | ı                                  |                                         |                                    | V 4-:11                                     |                                                                      |                       |                                      | ı                | ı                 | ı                           | ı                                                             |                                                      |                                          |
|---------------------|-------|-------------------|---------------|------------------------------------|-----------------------------------------|------------------------------------|---------------------------------------------|----------------------------------------------------------------------|-----------------------|--------------------------------------|------------------|-------------------|-----------------------------|---------------------------------------------------------------|------------------------------------------------------|------------------------------------------|
|                     |       |                   |               |                                    |                                         |                                    |                                             | <del>"</del>                                                         | Application op        |                                      |                  |                   |                             |                                                               |                                                      |                                          |
| Part # VI           | 3     | Vin Max.          | (mA)          | Oscillator Frequency<br>Min. (kHz) | tz)                                     | Oscillator Frequency<br>Max. (kHz) | cy Oscillator Frequency<br>FSYNC Max. (kHz) | Max. Output                                                          |                       | Iypical Current<br>Sense Pull-In (V) | Sense Hold       |                   | nal Adjustat<br>Output Volt | External Adjustable Regulator<br>Output Voltage (V)           | External Adjustable Regulator<br>Output Current (mA) | egulator Packages                        |
|                     |       |                   |               |                                    |                                         |                                    |                                             | Relay Driver and Controller                                          | Controller            |                                      |                  |                   |                             |                                                               |                                                      |                                          |
| HV9901              | 10    | 450               | 2             | 20                                 |                                         | 140                                | 150                                         | 99.5                                                                 | 0.                    | 0.883                                | Adjustable       | ple               | 2.0–5.5                     | 5                                                             | 0-1.0                                                | 14-pin SOIC                              |
|                     |       |                   |               |                                    |                                         |                                    |                                             | Linear: Op Amps                                                      | Amps                  |                                      |                  |                   |                             |                                                               |                                                      |                                          |
| Product             | ct    | # Per<br>Package  | GBWP<br>(MHz) | lo Typical (µA)                    | Vos Max<br>(mV)                         | Operating<br>Voltage (V)           | Packages                                    |                                                                      | Product               | # Per<br>Package                     | GBWP<br>ge (MHz) | lα Typical (μΑ)   | Vos Max<br>(mV)             | Operating<br>Voltage (V)                                      | Pac                                                  | Packages                                 |
| MCP661/2/3/4/5/9    | 4/5/9 | 1/2/1/4/2/4       | 8             | 0009                               | 8                                       | 2.5 to 5.5                         | SOIC, MSOP, DFN, TSSOP, QFN, SOT            | OP, QFN, SOT                                                         | MCP6V01/2/3           | 3 1/2/1                              | 1.3              | 300               | 0.002                       | 1.8 to 5.5                                                    | SOIC, E                                              | SOIC, DFN, TDFN                          |
| MCP651/1S/2/3/4/5/9 |       | 1/1/2/1/4/2/4     | 20            | 0009                               | 0.2                                     | 2.5 to 5.5                         | SOIC, MSOP, DFN, TSSOP, QFN, SOT            | OP, QFN, SOT                                                         | MCP6V06/7/8           | 1/2/1                                |                  | 300               | 0.003                       | 1.8 to 5.5                                                    | SOIC, D                                              | SOIC, DFN, TDFN                          |
| MCP631/2/3/4/5/9    |       | 1/2/1/4/2/4       | 24            | 2500                               | ∞                                       | 2.5 to 5.5                         | SOIC, MSOP, DFN, TSSOP, QFN, SOT            | OP, QFN, SOT                                                         | MCP6071/2/4           | 4 1/2/4                              |                  | 110               | 0.15                        | 1.8 to 6.0                                                    | SOIC, TSS                                            | SOIC, TSSOP, DFN, SOT                    |
| MCP621/1S/2/3/4/5/9 |       | 1/1/2/1/4/2/4     | 8             | 2500                               | 0.2                                     | 2.5 to 5.5                         | SOIC, MSOP, DFN, TSSOP, QFN, SOT            | OP, QFN, SOT                                                         | MCP6H01/2/4           | 4 1/2/4                              | 1.2              | 135               | 4.5                         | 3.5 to 16                                                     | SOIC, TSSOP,                                         | SOIC, TSSOP, TDFN, SOT, SC70             |
| MCP6H91/2/4         | 4     | 1/2/4             | 10            | 2000                               | 4                                       | 3.5 to 12.0                        | DFN, SOIC, TSSOP                            | SSOP                                                                 | MCP6001/2/4           | 4 1/2/4                              | -                | 100               | 4.5                         | 1.8 to 6.0                                                    | PDIP, SOIC, MSOP, TS                                 | PDIP, SOIC, MSOP, TSSOP, TDFN, SOT, SC70 |
| MCP6V91/2/4         | 4     | 1/2/4             | 10            | 1100                               | 0.009                                   | 2.4 to 5.5                         | TSSOP, MSOP, TDFN, SOT, SC70                | , SOT, SC70                                                          | MCP6401/2/4           | 4 1/2/4                              | -                | 45                | 4.5                         | 1.8 to 6.0                                                    | SOIC, TSSOP,                                         | SOIC, TSSOP, TDFN, SOT, SC70             |
| MCP6021/2/3/4       | 3/4   | 1/2/1/4           | 10            | 1000                               | 0.5                                     | 2.5 to 5.5                         | PDIP, SOIC, MSOP, TSSOP, SOT                | SSOP, SOT                                                            | MCP6411               |                                      | -                | 47                | -                           | 1.7 to 5.5                                                    | SOT                                                  | SOT, SC70                                |
| MCP6291/2/3/4/5     | 3/4/5 | 1/2/1/4/2         | 10            | 1000                               | က                                       | 2.4 to 6.0                         | PDIP, SOIC, MSOP, TSSOP, SOT                | SSOP, SOT                                                            | MCP6V61/2/4           |                                      |                  | 80                | 0.008                       | 1.8 to 5.5                                                    | TSSOP, MSOP,                                         | TSSOP, MSOP, TDFN, SOT, SC70             |
| MCP6491/2/4         | 4     | 1/2/4             | 7.5           | 230                                | 1.5                                     | 2.4 to 5.5                         | SOT, SC70, MSOP, TDFN, SOIC, TSSOP          | I, SOIC, TSSOP                                                       | MCP6061/2/4           |                                      |                  | 09                | 0.15                        | 1.8 to 6.0                                                    | SOIC, TSS                                            | SOIC, TSSOP, DFN, SOT                    |
| MCP6H81/2/4         | 4     | 1/2/4             | 5.5           | 200                                | 4                                       | 3.5 to 12.0                        | DFN, SOIC, TSSOP                            | SSOP                                                                 | MCP6241/2/4           |                                      | 0.55             | 20                | 2                           | 1.8 to 5.5                                                    | PDIP, SOIC, MSOP, TS                                 | PDIP, SOIC, MSOP, TSSOP, TDFN, SOT, SC70 |
| MCP6V81/2/4         |       | 1/2/4             | 2             | 200                                | 0.009                                   | 2.2 to 5.5                         | TSSOP, MSOP, TDFN, SOT, SC70                | , SOT, SC70                                                          | MCP6051/2/4           |                                      |                  |                   | 0.15                        | 1.8 to 6.0                                                    | SOIC, TSS                                            | SOIC, TSSOP, DFN, SOT                    |
| MCP6281/2/3/4/5     | 3/4/5 | 1/2/1/4/2         | 2             | 445                                | က                                       | 2.2 to 6.0                         | PDIP, SOIC, MSOP, TSSOP, SOT                | SSOP, SOT                                                            | MCP6V31/2/4           |                                      |                  | 23                | 0.008                       | 1.8 to 5.5                                                    | TSSOP, MSOP,                                         | TSSOP, MSOP, TDFN, SOT, SC70             |
| MCP6481/2/4         | 4     | 1/2/4             | 4             | 240                                | 1.5                                     | 2.2 to 5.5                         | SOT, SC70, MSOP, TDFN, SOIC, TSSOP          | I, SOIC, TSSOP                                                       | MCP6231/2/4           |                                      |                  | 50                | 2                           | 1.8 to 6.0                                                    | PDIP, SOIC, MSOP, T8                                 | PDIP, SOIC, MSOP, TSSOP, TDFN, SOT, SC70 |
| MCP6286             |       | -                 | 3.5           | 540                                | 1.5                                     | 2.2 to 5.5                         | SOT                                         |                                                                      | MCP616/7/8/9          |                                      |                  | 19                | 0.15                        | 2.3 to 5.5                                                    | PDIP, SOIC,                                          | PDIP, SOIC, MSOP, TSSOP                  |
| MCP601/2/3/4        | 4     | 1/2/1/4           | 2.8           | 230                                | 2 .                                     | 2.7 to 6.0                         | PDIP, SOIC, TSSOP, SOT                      | DP, SOT                                                              | MCP606/7/8/9          |                                      |                  | 19                | 0.25                        | 2.5 to 6.0                                                    | PDIP, SOIC                                           | PDIP, SOIC, TSSOP, SOT                   |
| MCP6H71/2/4         | 4     | 1/2/4             | 2.7           | 480                                | 4                                       | 3.5 to 12.0                        | DFN, SOIC, TSSOP                            | SSOP                                                                 | MCP6141/2/3/4         | `                                    |                  | 9.0               | m                           | 1.4 to 6.0                                                    | PDIP, SOIC, MS                                       | PDIP, SOIC, MSOP, TSSOP, SOT             |
| MCP6271/2/3/4/5     | 3/4/5 | 1/2/1/4/2         | 2             | 170                                | თ !                                     | 2.0 to 6.0                         | PDIP, SOIC, MSOP, TSSOP, SOT                | SSOP, SOT                                                            | MCP6421/2/4           |                                      |                  | 4.4               | - ;                         | 1.8 to 5.5                                                    | SOT, SC70, MS                                        | SOT, SC70, MSOP, SOIC, TSSOP             |
| MCP6471/2/4         | 4     | 1/2/4             | 7             | 100                                | 1.5                                     | 2 to 5.5                           | SOT, SC70, MSOP, TDFN, SOIC, TSSOP          | I, SOIC, TSSOP                                                       | MCP6V11/2/4           |                                      |                  | 7.5               | 0.008                       | 1.6 to 5.5                                                    | TSSOP, MSOP,                                         | TSSOP, MSOP, TDFN, SOT, SC70             |
| MCP6V26/7/8         | m .   | 1/2/1             | SV (          | 029                                | 0.002                                   | 2.3 to 5.5                         | SOIC, MSOP, DFN                             | DFN<br>0100 T00                                                      | MCP6041/2/3/4         |                                      |                  | 9.0               | m .                         | 1.4 to 6.0                                                    | PDIP, SOIC, ME                                       | PUIF, SOIC, MSOP, 18SOP, SOI             |
| MCF6V/1/2/4         |       | 1/2/4             | N             | 1/0                                | 0.008                                   | 2.0 to 5.5                         | ISSOF, MSOF, IDFN, SOI, SC/O                | 0,001,000                                                            | MCD6441/0/4           |                                      |                  |                   | 0.15                        | 1.8 to 5.5                                                    | SOIC, MSOF, I                                        | SOLO, MISOR, ISSOR, DEN, SOL             |
|                     |       |                   |               |                                    |                                         |                                    |                                             |                                                                      | MCF6441/2/4           | 4/Z/L +                              | 0.009            | 0.45              | 4.5                         | 1.4 to 6.0                                                    | SOIC, MSOP, I                                        | SOIC, MISOP, 18SOP, SO1, SC70            |
|                     |       |                   |               |                                    |                                         |                                    | _                                           | Linear: Instrumentation Amps                                         | tation Amps           |                                      |                  |                   |                             |                                                               |                                                      |                                          |
| Product             |       | Bandwidth (kHz)   | (Hz)          |                                    | lo Typical (μΑ)                         | (hu)                               | Vos Max (µV)                                | Opera                                                                | Operating Voltage (V) | s                                    |                  |                   | Features                    | S.                                                            |                                                      | Packages                                 |
| MCP6N11             | l     | 200               | ı             |                                    | BOO                                     | l                                  | 350                                         |                                                                      | 181055                | l                                    | ä                | all-to-rail innut | /orthrut enah               | Bail-to-rail input/output enable pip mCal technology          | hology                                               | SOIC TDEN                                |
| MCP6N16             |       | 200               |               |                                    | 1100                                    |                                    | 17                                          |                                                                      | 1.8 to 5.5            |                                      | Rail-t           | o-rail input/ou   | tput, enable p              | Rail-to-rail input/output, enable pin, enhanced EMI rejection | MI rejection                                         | MSOP, DFN                                |
|                     |       |                   |               |                                    |                                         | Mixed                              | Mixed Signal: Successive Ap                 | Successive Approximation Begister (SAB) Analog-to-Digital Converters | ster (SAR) An         | aloa-to-Dia                          | tal Conver       | ers               |                             |                                                               |                                                      |                                          |
|                     | l     |                   |               |                                    |                                         | н                                  | _                                           |                                                                      | ŀ                     |                                      |                  |                   |                             |                                                               | ŀ                                                    |                                          |
| Product             | t c   | Resolution (bits) | (bits)        | Maxim<br>(                         | Maximum Sampling Rate<br>(ksamples/sec) | ling Rate<br>sec)                  | # of Input Channels                         | Input Type                                                           | 90                    | Interface                            | ø,               | Max. Supp         | Max. Supply Current (µA)    |                                                               | Temperature Range (°C)                               | Packages                                 |
| MCP3021/3221        | 21    | 10/12             |               |                                    | 22                                      |                                    | -                                           | Single-ended                                                         | led                   | <u>2</u>                             |                  |                   | 250                         | 14-                                                           | -40 to +125                                          | SOT-23A                                  |
| MCP3001/2/4/8       | 1/8   | 10                |               |                                    | 200                                     |                                    | 1/2/4/8                                     | Single-ended                                                         | led                   | SPI                                  |                  | 90                | 500-550                     | 4-                                                            | -40 to +85 PDI                                       | PDIP, SOIC, MSOP, TSSOP                  |
| MCP3201/2/4/8       | 1/8   | 12                |               |                                    | 100                                     |                                    | 1/2/4/8                                     | Single-ended                                                         | ped                   | SPI                                  |                  | 40                | 400-550                     | 7-                                                            | -40 to +85 PDI                                       | PDIP, SOIC, MSOP, TSSOP                  |
| MCP3301/2/4         | =     | 13                |               |                                    | 100                                     |                                    | 1/2/4                                       | Differential                                                         | <u>a</u>              | SPI                                  |                  |                   | 450                         | 7-                                                            | -40 to +85 PDI                                       | PDIP, SOIC, MSOP, TSSOP                  |
|                     |       |                   |               |                                    |                                         |                                    | Mixed (                                     | Mixed Signal: Digital-to-Analog Converters                           | Analog Conve          | rters                                |                  |                   |                             |                                                               |                                                      |                                          |
| Product             |       | Resolution Ch     | DAC           | Memory                             | DNL (±LSb)                              | (sb)   INL (±LSb)                  | Packages P                                  | Product Re                                                           | Resolution Ch         | DAC Channels                         | Memory           | (qST=) DNG        | (qg                         | INL (±LSb)                                                    |                                                      | Packages                                 |
| MCD48EEB01/11/91    |       | ١.                | -             | MOAGE                              | 0.25/0.5/1                              | 74 6/4 6/6                         | MSOD,8                                      | ı                                                                    | ı                     | -                                    | Volatilo         | 0.35              | l                           | 0.7                                                           | SOTOS                                                | SOT03.6 SC70.6                           |
|                     |       | 1 2 2             | - (           |                                    | ) (                                     |                                    | Ť                                           | 0000000                                                              |                       | . ,                                  | 7                |                   |                             |                                                               |                                                      | 0,000                                    |

MSOP-8, 2 × 3 DFN-8, SOIC-8, PDIP-8

MSOP-8, 2 × 3 DFN-8, SOIC-8, PDIP-8 MSOP-8, 2 × 3 DFN-8, SOIC-8, PDIP-8 MSOP-8,  $2 \times 3$  DFN-8, SOIC-8, PDIP-8

1/3.5/12 1/3.5/12

> 0.5/0.5/0.75 0.5/0.5/0.75

Volatile EEPROM EEPROM

N

8/10/12

MCP4802/12/22 MCP4901/11/21 MCP4902/12/22

MCP4801/11/21

MCP4728 MCP4725

> MSOP-8 MSOP-8 MSOP-8

> > 0.5/1.5/6

0.25/0.5/1

EEPROM Volatile

EEPROM

2

MCP47FEB02/12/22

MCP47FVB01/11/21

0.25/0.5/1 0.25/0.5/1

N

8/10/12 8/10/12

8/10/12

12 8/10/12 Volatile

Volatile

N

8/10/12

MSOP-8

0.5/1.5/6

0.25/0.5/1

Volatile Volatile

N

8/10/12

MCP47FVB02/12/22

8/10/12

MSOP-8

0.5/1.5/6

0.25/0.5/1

8/10/12

0.5/0.5/0.75

0.5/0.5/0.75

Volatile

0.75 0.75

1/3.5/12 1/3.5/12

MSOP-10 SOT23-6

SOT23-6, 2 × 2 DFN-6

0.05/0.188/0.75 0.907/3.625/14.5

EEPROM

8/10/12

MCP4706/16/26

MSOP-8

0.5/1.5/6 0.5/1.5/6 0.5/1.5/6

0.25/0.5/1

EEPROM

0

8/10/12

MCP48FEB02/12/22 MCP48FVB01/11/21 MCP48FVB02/12/22 MCP47FEB01/11/21

8/10/12

MSOP-8

0.5/1.5/6

0.25/0.5/1

Volatile

12

14.5 13

|              |                  |                           |                   |                   |                                  |                      | Mixed Sign                     | Mixed Signal: Energy Meter and Power Monitoring ICs | r and Power Me            | onitoring ICs             |                                                                                                                                                                                     |            |
|--------------|------------------|---------------------------|-------------------|-------------------|----------------------------------|----------------------|--------------------------------|-----------------------------------------------------|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Product      | Dynamic<br>Range | iic Typical<br>e Accuracy | oy Channels       |                   | ADC Gain<br>Resolution Selection | o Monitoring         | Zero-Cross<br>Detection<br>Pin | Output Type                                         | V <sub>DD</sub> (V)       | Temperature<br>Range (°C) | Features                                                                                                                                                                            | Packages   |
| MCP39F511    | 4000:1           | 1 0.1%                    | I, V, Temp.       | ıp. 24-bit        | Up to 32                         | 32 5                 | Yes                            | UART/Single-wire                                    |                           | 2.7 to 3.6 -40 to +125    | Power monitoring IC with active, reactive and apparent power, active and reactive energy, PF, RMS current/voltage, frequency, event notifications, EEPROM, PWM output               | argy, QFN  |
| MCP39F521    | 4000:1           | 1 0.1%                    | I, V, Temp.       | ıp. 24-bit        | Up to 32                         | 32 4                 | Yes                            | PC                                                  | 2.7 to 3.6                | -40 to +125               | Power monitoring IC with active, reactive and apparent power, active and reactive energy, PF, RMS current/voltage, frequency, event notifications, EEPROM                           | argy, QFN  |
| MCP39F511N   | 4000:1           | 1 0.5%                    | 11, 12, V         | v 24-bit          | Up to 32                         | 32 6                 | Yes                            | UART                                                | 2.7 to 3.6                | 2.7 to 3.6 -40 to +125    | Dual-channel power monitoring IC with active, reactive and apparent power, active and reactive energy, PF, RMS current/voltage, frequency, event notifications, EEPROM, PWMA output | MM OFN     |
| MCP3905A/06A | 500:1/1000:1     | 00:1 0.10%                | N, I, V           | 16-bit            | Up to 32                         | 32 –                 | 1                              | Active Power Pulse                                  | se 4.5 to 5.5             | -40 to +125               | Active power calculation                                                                                                                                                            | SSOP       |
|              |                  |                           |                   |                   |                                  |                      | Mix                            | Mixed Signal: Energy Measurement AFEs               | y Measuremen              | t AFEs                    |                                                                                                                                                                                     |            |
| Product      | Dynamic<br>Range | Typical<br>Accuracy (     | ADC<br>Channels F | ADC<br>Resolution | SINAD                            | SINAD Gain Selection | Output Type                    | (V) aaV                                             | Temperature<br>Range (°C) |                           | Features                                                                                                                                                                            | Packages   |
| MCP3918/10   | 10000:1          | 0.1%                      | 1/2               | 24-bit            | 93.5                             | Up to 32             | SPI/2-wire                     | 2.7 to 3.6                                          | 40 to +125 A              | FE with phase co          | -40 to +125 AFE with phase correction, programmable data rate, 16-bit ORC, register map lock, 2-wire interface                                                                      | SSOP, QFN  |
| MCP3919      | 10000:1          | 0.1%                      | က                 | 24-bit            | 93.5                             | Up to 32             | SPI/2-wire                     | 2.7 to 3.6                                          | 40 to +125 A              | FE with phase co          | -40 to +125 AFE with phase correction, programmable data rate, 16-bit ORC, register map lock, 2-wire interface                                                                      | SSOP, QFN  |
| MCP3912      | 10000:1          | 0.1%                      | 4                 | 24-bit            | 93.5                             | Up to 32             | SPI                            | 2.7 to 3.6                                          | -40 to +125               | AFE with p                | AFE with phase correction, programmable data rate, 16-bit CRC, register map lock                                                                                                    | SSOP, QFN  |
| MCP3913/14   | 10000:1          | 0.1%                      | 8/9               | 24-bit            | 94.5                             | Up to 32             | G.S.                           | 2.7 to 3.6 -40 to +125                              | 40 to +125                | AFF with r                | AFF with phase correction, programmable data rate, 16-bit CBC, register man lock                                                                                                    | SSOP LIDEN |

Mixed Signal: Current/DC Power Measurement ICs

| Packages                                                    | 10-pin DFN              | 10-pin DFN                                                     | WLCSP                                          | 12-pin QFN, 10-pin MSOP,<br>16-pin QFN, 14-pin SOIC |                                      | Packages                  | TSSOP, QFN       | TSSOP, QFN     | TSSOP, QFN       | TSSOP, QFN       | TSSOP, QFN       | TSSOP, QFN     | MSOP, DFN      | MSOP, DFN      | MSOP, DFN      | TSSOP, QFN     | TSSOP, QFN       | MSOP, DFN        | MSOP, DFN      |
|-------------------------------------------------------------|-------------------------|----------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------|------------------|----------------|------------------|------------------|------------------|----------------|----------------|----------------|----------------|----------------|------------------|------------------|----------------|
| eo.                                                         | /lsC                    | /PC                                                            | /I <sub>P</sub> C                              |                                                     |                                      | Temperature<br>Range (°C) | -40 to +125      | -40 to +125    | -40 to +125      | -40 to +125      | -40 to +125      | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125      | -40 to +125      | -40 to +125    |
| Interface                                                   | SMBus/PC                | SMBus/PC                                                       | SMBus/PC                                       | SMBus/PC                                            |                                      | . eou                     | 100              | 100            | , 100            | , 100            | , 100            | 50, 102        | , 100          | , 100          | 50, 100        | , 100          | , 100            | 50, 100          | , 100          |
| Peak<br>Detection                                           | 1                       | 1                                                              | I                                              | >                                                   |                                      | Resistance<br>(kΩ)        | 5,10,50,100      | 5,10,50,100    | 5, 10, 50, 100   | 5, 10, 50, 100   | 5, 10, 50, 100   | 5, 10, 50      | 5, 10, 50, 100 | 5, 10, 50, 100 | 5, 10, 50      | 5, 10, 50, 100 | 5, 10, 50, 100   | 5, 10, 50        | 5, 10, 50, 100 |
| y Alert/<br>Therm.                                          | 1                       | 1                                                              | -                                              | N                                                   |                                      | Interface                 | SPI              | SPI            | 1 <sub>C</sub> C | <u>S</u>         | 1 <sub>C</sub> C | <u>N</u>       | <u>S</u>       | <u>∑</u>       | <u> </u> C     | <u>S</u>       | 1 <sub>C</sub> C | 1 <sub>C</sub> C | <u>S</u>       |
| Temp. Accuracy<br>Typ./Max. (°C)                            | N/A                     | ∀/Z                                                            | Ϋ́Z                                            | ±0.25/±1.0                                          |                                      | Channels   In             | 4                | 4              | 4                | 4                | 4                | 4              | -              | 2              | -              | -              | -                | 2                | -              |
| Bus Voltage # Temp. Monitors<br>Range (V) (Ambient, Remote) | N/A                     | N/A                                                            | A/N                                            | 1, 0/1/3                                            |                                      | Memory C                  | Volatile         | Volatile       | Volatile         | Nonvolatile      | Volatile         | Nonvolatile    | Volatile       | Volatile       | Nonvolatile    | Volatile       | Volatile         | Nonvolatile      | Volatile       |
| Bus Voltage<br>Range (V)                                    | 0 to +40                | 0 to +32                                                       | 0 to +32                                       | +3 to +24                                           | eters                                | # of<br>Taps              | 129              | 257            | 129              | 129              | 257              | 257            | 128            | 128            | 128            | 128            | 256              | 128              | 256            |
| Effective Sampling<br>Interval Min. to Max.<br>(msec)       | 2.5 to 2600             | 2.5 to 2900                                                    | 0.98 to 125                                    | 2.5 to 2600                                         | Mixed Signal: Digital Potentiometers | Product                   | MCP4331/32       | MCP4351/52     | MCP4431/32       | MCP4441/42       | MCP4451/52       | MCP4461/62     | MCP4531/32     | MCP4631/32     | MCP4541/42     | MCP56HV31      | MCP45HV51        | MCP4641/42       | MCP4551/52     |
| Current Effe<br>Measurement Inter<br>Max. Accr. (%)         | +1                      | +1                                                             | ±0.9                                           | ±1                                                  | Mixed Signal:                        | Packages                  | DFN, SOT-23      | SC70           | SC70             | DFN, SOT-23      | MSOP, QFN, DFN   | MSOP, QFN, DFN | QFN, DFN       | MSOP, QFN, DFN | MSOP, QFN, DFN | TSSOP, QFN     | TSSOP, QFN       | MSOP, QFN, DFN   | MSOP, QFN, DFN |
| Full Scale<br>Range (mV)                                    | 10, 20, 40, 80          | 100                                                            | 100                                            | 10, 20, 40, 80                                      |                                      | Temperature<br>Range (°C) | -40 to +125      | -40 to +125    | -40 to +125      | -40 to +125      | -40 to +125      | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125    | -40 to +125      | -40 to +125      | -40 to +125    |
|                                                             | 1(                      | alog Output                                                    | ccumulator                                     |                                                     |                                      | Resistance<br>(kΩ)        | 2.1, 5, 10, 50   | 5, 10, 50, 100 | 5, 10, 50, 100   | 2.1, 5, 10, 50   | 5, 10, 50, 100   | 5, 10, 50, 100 | 5, 10, 50, 100 | 5, 10, 50, 100 | 5, 10, 50, 100 | 5, 10, 50, 100 | 5, 10, 50, 100   | 5, 10, 50, 100   | 5, 10, 50, 100 |
| Description                                                 | Current/DC Power Sensor | SMBus/I <sup>2</sup> C Current/Power Sensor with Analog Output | SMBus/PC Current/Power Sensor with Accumulator | Current/DC Power Sensor with Temperature Monitoring |                                      | Channels Interface        | Up/Down          | O <sub>N</sub> | O <sub>N</sub>   | Up/Down          | SPI              | SPI            | SPI            | SPI            | SPI            | SPI            | SPI              | SPI              | SPI            |
| Descr                                                       | irrent/DC F             | ent/Power                                                      | rent/Power                                     | er Sensor v                                         |                                      | Channels                  | -                | -              | -                | -                | -                | 2              | -              | 2              | -              | -              | -                | -                | 7              |
|                                                             | Õ                       | MBus/I <sup>2</sup> C Curr                                     | SMBus/PC Cur                                   | urrent/DC Pow                                       |                                      | Memory                    | Volatile         | Volatile       | Volatile         | Nonvolatile      | Nonvolatile      | Nonvolatile    | Volatile       | Volatile       | Volatile       | Volatile       | Volatile         | Nonvolatile      | Volatile       |
| # Current<br>Sensors                                        | 1/2                     | 1 S                                                            | 4                                              | - O                                                 |                                      | # of<br>Taps              | 25               | 128            | 9 128            | 64               | 128              | 128            | 128            | 128            | 256            | 128            | 256              | 256              | 256            |
| Product Ser                                                 | PAC1710/20              | PAC1921                                                        | PAC1934                                        | EMC1701/2/4                                         |                                      | Product                   | MCP4011/12/13/14 | MCP4017/18/19  | MCP40D17/D18/D19 | MCP4021/22/23/24 | MCP4141/42       | MCP4241/42     | MCP4131/32     | MCP4231/32     | MCP4151/52     | MCP41HV31      | MCP41HV51        | MCP4161/62       | MCP4251/52     |

MSOP, DFN MSOP, DFN MSOP, DFN

-40 to +125 -40 to +125

5, 10, 50, 100 5, 10, 50, 100

<u>S</u>

 $^{\circ}$ 

Volatile

256 256

MCP4651/52 MCP4561/62

MSOP, QFN, DFN TSSOP, QFN TSSOP, QFN

-40 to +125

5, 10, 50, 100 5, 10, 50, 100

SP SP

N

256 Nonvolatile Nonvolatile

-40 to +125

5, 10, 50, 100 -40 to +125

<u>N</u>

-0

Nonvolatile

Nonvolatile

256

MCP4661/62

5, 10, 50, 100 -40 to +125

SP

4 4

257 Nonvolatile

129

MCP4341/42 MCP4361/62

MCP4261/62

| Product   Resolution (bits) |
|-----------------------------|
|-----------------------------|

|           |                   |                                        | Mixed Sign          | gnal: Successive Ap | proximation R | al: Successive Approximation Register (SAR) Analog-to-Digital Converters | igital Converters                                                                        |         |                        |                          |
|-----------|-------------------|----------------------------------------|---------------------|---------------------|---------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------|------------------------|--------------------------|
| Product   | Resolution (bits) | Maximum Sampling<br>Rate (samples/sec) | # of Input Channels | Input Type          | Interface     | Input Voltage Range (V)                                                  | Interface Input Voltage Range (V) Max Supply Current (µA) Max INL Temperature Range (°C) | Max INL | Temperature Range (°C) | Packages                 |
| MCP33111D | 12                | M                                      | -                   | Differential        | SPI           | 2.5 to 5.1                                                               | 2250                                                                                     | ±0.35   | -40 to +85             | 10-pin MSOP, 10-pin TDFN |
| MCP33121D | 14                | TM.                                    | -                   | Differential        | SPI           | 2.5 to 5.1                                                               | 2250                                                                                     | ±1.5    | -40 to +85             | 10-pin MSOP, 10-pin TDFN |
| MCP33131D | 16                | Ψ                                      | -                   | Differential        | SP            | 2.5 to 5.1                                                               | 2250                                                                                     | 9#      | -40 to +85             | 10-pin MSOP, 10-pin TDFN |

|                                                      | Packages                                   | 124-pin VTLA,<br>121-pin TFBGA                                        | 124-pin VTLA,<br>121-pin TFBGA                | 124-pin VTLA,<br>121-pin TFBGA                                        | 124-pin VTLA,<br>121-pin TFBGA                | 124-pin VTLA,<br>121-pin TFBGA             | 124-pin VTLA,<br>121-pin TFBGA               | 124-pin VTLA,<br>121-pin TFBGA             | 124-pin VTLA,<br>121-pin TFBGA   | 124-pin VTLA,<br>121-pin TFBGA   | 124-pin VTLA,<br>121-pin TFBGA              |
|------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|
|                                                      | Features                                   | Digital down-converter, decimation filters, noise-shaping requantizer | Decimation filters, noise-shaping requantizer | Decimation filters, digital down-converter, noise-shaping requantizer | Decimation filters, noise-shaping requantizer | Digital down-converter, decimation filters | Decimation filters, noise-shaping requanizer | Decimation filters, digital down-converter | Decimation filters               | Decimation filters               | Digital down-contverter, decimation filters |
| erters                                               | Temperature<br>Range (°C)                  | -40 to +85                                                            | -40 to +85                                    | -40 to +85                                                            | -40 to +85                                    | -40 to +85                                 | -40 to +85                                   | -40 to +85                                 | -40 to +85                       | -40 to +85                       | -40 to +85                                  |
| al Conve                                             | SFDR<br>(dB)                               | 96                                                                    | 96                                            | 06                                                                    | 06                                            | 96                                         | 96                                           | 06                                         | 06                               | 06                               | 06                                          |
| -to-Digit                                            | SNR<br>(dB)                                | 29                                                                    | 29                                            | 71.3                                                                  | 71.3                                          | 67.8                                       | 67.8                                         | 74.2                                       | 74.2                             | 74                               | 74                                          |
| ipelined Analog                                      | Input Channel<br>BW (MHz)                  | 029                                                                   | 650                                           | 1.2, 1.8                                                              | 1.2, 1.8                                      | 650                                        | 650                                          | 1.2, 1.8                                   | 1.2, 1.8                         | 200                              | 200                                         |
| Mixed Signal: Pipelined Analog-to-Digital Converters | Interface                                  | Serial DDR LVDS or Parallel CMOS                                      | Serial DDR LVDS or Parallel CMOS              | Serial DDR LVDS or Parallel CMOS                                      | Serial DDR LVDS or Parallel CMOS              | Serial DDR LVDS or Parallel CMOS           | Serial DDR LVDS or Parallel CMOS             | Serial DDR LVDS or Parallel CMOS           | Serial DDR LVDS or Parallel CMOS | Serial DDR LVDS or Parallel CMOS | Serial DDR LVDS or Parallel CMOS            |
|                                                      | Power<br>Dissipation<br>(mW)               | 338                                                                   | 338                                           | 468                                                                   | 468                                           | 348                                        | 348                                          | 490                                        | 490                              | 490                              | 490                                         |
|                                                      | # of Input<br>Channels                     | 1                                                                     | -                                             | 8-mux, Diff                                                           | 8-mux, Diff                                   | -                                          | -                                            | 8-mux, Diff                                | 8-mux, Diff                      | 8-mux, Diff                      | 8-mux, Diff                                 |
|                                                      | Maximum<br>Sampling Rate<br>(Msamples/sec) | 200                                                                   | 200                                           | 200                                                                   | 200                                           | 200                                        | 200                                          | 200                                        | 200                              | 200                              | 200                                         |
|                                                      | Resolution<br>(bits)                       | 12                                                                    | 12                                            | 12                                                                    | 12                                            | 14                                         | 14                                           | 14                                         | 14                               | 16                               | 16                                          |
|                                                      | Product                                    | MCP37D10-200                                                          | MCP37210-200                                  | MCP37D11-200                                                          | MCP37211-200                                  | MCP37D20-200                               | MCP37220-200                                 | MCP37D21-200                               | MCP37221-200                     | MCP37D31-200                     | MCP37231-200                                |

|           | Interface: CAN Products                                                                                                                                                                    |                       |                                              |                                           |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------|-------------------------------------------|
| Product   | Description and Features                                                                                                                                                                   | Operating Voltage (V) | Operating Operating Temperature (voltage (V) | Packages                                  |
| ATA6560   | CAN Transceiver with stand-by and silent mode, 5V I/O, CAN FD ready, 5 Mbps, AECQ100 Grade 1                                                                                               | 4.5–5.5               | -40 to +125                                  | VDFN8, SOIC8                              |
| ATA6561   | CAN Transceiver with stand-by mode, compatible with 3.3V and 5V microcontroller, CAN FD ready, 5 Mbps, AECQ100 Grade 1                                                                     | 4.5–5.5               | -40 to +125                                  | VDFN8, SOIC8                              |
| ATA6562   | CAN Transceiver with stand-by and silent mode, 5V I/O, wake-up pattern, CAN FD ready, 5 Mbps, AECQ100 Grade 0, 1                                                                           | 4.5-5.5               | -40 to +125/150                              | VDFN8, SOIC8                              |
| ATA6563   | CAN Transceiver with stand-by mode, compatible with 3.3V and 5V microcontroller, wake-up pattern, CAN FD ready, 5 Mbps, AEC0100 Grade 0, 1                                                 | 4.5–5.5               | -40 to +1+25/150                             | VDFN8, SOIC8                              |
| ATA6564   | CAN Transceiver with silent mode, compatible with 3.3V and 5V microcontroller, CAN FD ready, 5 Mbps, AECQ100 Grade 0, 1                                                                    | 4.5-5.5               | -40 to +125/150                              | VDFN8, SOIC8                              |
| ATA6565   | Dual CAN Transceiver with stand-by mode, 5V I/O, wake up pattern, CAN FD ready, 5 Mbps, AECQ100 Grade 0, 1                                                                                 | 4.5-5.5               | -40 to +125/150                              | VDFN14, SO14                              |
| ATA6566   | CAN Transceiver with stand-by mode, compatible with 3.3V and 5V microcontroller, wake-up pattern, CAN FD ready, 2 Mbps, AECQ100 Grade 0, 1, suitable for the Japanese market               | 4.5-5.5               | -40 to +125/150                              | VDFN8, SOIC8                              |
| ATA6570   | CAN Partial Networking Transceiver with Wake pin and Window Watchdog, compatible with 3.3V and 5V microcontroller, wake-up pattern or wake-up frame, CAN FD ready, 5 Mbps, AECQ100 Grade 1 | 4.55–28               | -40 to +125                                  | SOIC14                                    |
| MCP2515   | Stand-Alone CAN 2.0B Controller with SPI Interface                                                                                                                                         | 2.7–5.5               | -40 to +125                                  | 18-pin PDIP, 18-pin SOIC,<br>20-pin TSSOP |
| MCP2517FD | MCP2617FD External CAN FD Controller with SPI Interface, ISO 11898-1:2015 Compliant, 32-bit Time Stamp, Supports CAN 2.0B and CAN FD, Highly Configurable 31 FIFOs and 32 Filters          | 2.7-5.5               | -40 to +150                                  | 14-pin SOIC, 14-pin VDFN                  |
| MCP25625  | Integrated High-Speed CAN Transceiver and CAN 2.0B Controller                                                                                                                              | 2.7-5.5               | -40 to +125                                  | 28-pin SSOP, 28-pin 6 × 6 QFN             |

|              |                                                                                                | Interface: LI              | Interface: LIN Products             |                             |                             |                   |                                 |              |
|--------------|------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|-----------------------------|-----------------------------|-------------------|---------------------------------|--------------|
| Product      | Description                                                                                    | VREG Output<br>Voltage (V) | Operating Temperature<br>Range (°C) | VREG OUtput<br>Current (mA) | Supply Voltage<br>Range (V) | Max. Baud<br>Rate | LIN Specification Supported     | Packages     |
| ATA663211    | LIN Transceiver                                                                                | 1                          | -40 to +125                         | 1                           | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8, SOIC8 |
| ATA663201    | LDO, pin compatible with ATA663231 LIN SBC                                                     | 3.3                        | -40 to +125                         | 85                          | 5–28                        | 1                 | ı                               | VDFN8        |
| ATA663203    | LDO, pin compatible with ATA663254 LIN SBC                                                     | 5.0                        | -40 to +125                         | 85                          | 5–28                        | 1                 | I                               | VDFN8        |
| ATA663231    | LIN Transceiver with integrated VREs, pinout acc. to OEM hardware recommendation               | 3.3                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8        |
| ATA663254    | LIN Transceiver with integrated VREs, pinout acc. to OEM hardware recommendation               | 5.0                        | -40 to +125                         | 85                          | 5-28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8, SOIC8 |
| ATA663232    | LIN Transceiver with integrated VREs and Wake Pin, pinout acc. to OEM hardware recommendation  | 3.3                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8        |
| ATA663255    | LIN Transceiver with integrated VREs and Wake Pin, pinout acc. to OEM hardware recommendation  | 5.0                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8        |
| ATA6625      | LIN Transceiver with integrated VREs, classic pinout                                           | 5.0                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN8, SOIC8 |
| ATA663331    | LIN Transceiver with integrated VREG and 2 relay driver                                        | 3.3                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN16       |
| ATA663354    | LIN Transceiver with integrated Vara and 2 relay driver                                        | 5.0                        | -40 to +125                         | 85                          | 5-28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN16       |
| ATA663431    | LIN Transceiver with integrated VREs and WWDT                                                  | 3.3                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN16       |
| ATA663454    | LIN Transceiver with integrated VREG and WWDT                                                  | 5.0                        | -40 to +125                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | VDFN16       |
| ATSAMHA1G14A | LIN System-in-Package (SiP) Solution incl. Arm® Cortex® M0+ MCU, 16 KB Flash memory            | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
| ATSAMHA1G15A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 32 KB Flash memory              | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
| ATSAMHA1G16A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 64 KB Flash memory              | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
| ATSAMHA1E14A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 16 KB Flash memory              | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA1E15A | LIN System-in-Package (SiP) Solution incl. Arm Cortex M0+ MCU, 32 KB Flash memory              | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA1E16A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 64 KB Flash memory              | 3.3                        | -40 to +85                          | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA0E14A | LIN System-in-Package (SiP) Solution incl. Arm Cortex M0+ MCU, 16 KB Flash memory              | 3.3                        | -40 to +105                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA0E15A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 32 KB Flash memory              | 3.3                        | -40 to +105                         | 85                          | 5-28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA0E16A | LIN System-in-Package (SiP) Solution incl. Arm Cortex M0+ MCU, 64 KB Flash memory              | 3.3                        | -40 to +105                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN32        |
| ATSAMHA0G14A | LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 16 KB Flash memory              | 3.3                        | -40 to +105                         | 85                          | 5-28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
| ATSAMHA0G15A | LIN System-in-Package (SiP) Solution incl. Arm Cortex M0+ MCU, 32 KB Flash memory              | 3.3                        | -40 to +105                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
| ATSAMHA0G16A | ATSAMHA0G16A LIN System-in-Package (SIP) Solution incl. Arm Cortex M0+ MCU, 64 KB Flash memory | 3.3                        | -40 to +105                         | 85                          | 5–28                        | 20 kBaud          | 2.0, 2.1, 2.2, 2.2A, SAEJ2602-2 | QFN48        |
|              |                                                                                                | Ultrasound: T/R Switch ICs | /R Switch ICs                       |                             |                             |                   |                                 |              |
|              |                                                                                                |                            |                                     |                             |                             | ŀ                 |                                 |              |

|         |                    |                   |                    | Ultrasound: T/R Switch ICs                     | ICs                    |                                |                    |                  |                          |
|---------|--------------------|-------------------|--------------------|------------------------------------------------|------------------------|--------------------------------|--------------------|------------------|--------------------------|
| Product | Number of Channels | Voltage (V)       | RSW                |                                                | Diode Clamps           | VTRIP (V)                      | BW (MHz)           |                  | Packages                 |
| MD0100  | 1 or 2             | ∓100              | 15                 |                                                | No                     | ±2.0                           | 100                |                  | 3-pin SOT-89, 8-pin VDFN |
| MD101   | 4                  | ±100              | 15                 | 10                                             | Yes                    | ±2.0                           | 100                |                  | 18-pin VDFN              |
| MD0105  | 4                  | ±100              | 15                 | 20                                             | Yes                    | ±2.0                           | 100                |                  | 18-pin VDFN              |
|         |                    |                   | Ultraso            | Ultrasound: Arbitrary Waveform Generator       | ı Generator            |                                |                    |                  |                          |
| Product | Resolution         | Amplitude Control | ol Apodization     |                                                | Input Voltage (V)      | Typical Delay Time (ns)        | Output Current (A) | nt (A)           | Packages                 |
| MD2131  | 7.5° Phase         | PWM               | 8-bit SPI          | SPI                                            | 2.5                    | 4                              | 0-3.0              |                  | 40-pin WQFN              |
| MD2134  | ±127 steps         | PWM               | 8-bit SPI          | SPI                                            | 2.5                    | 4                              | 0-3.0              |                  | 40-pin WQFN              |
|         |                    |                   | Ultrasound         | Ultrasound: High-Voltage Analog Switches/MUXes | witches/MUXes          |                                |                    |                  |                          |
| Product | Number of Channels | Config.           | Supply Voltage (V) | Analog Signal Voltage (V)                      | (V) Switch Current (A) | t (A) Switch on Resistance (Ω) |                    | Output Resistors | Packages                 |
| HV2201  | 8                  | 8-SPST            | 200                | 180                                            | #2                     | 16                             | 2                  | o <sub>N</sub>   | 28-pin PLCC, 48-pin LQFP |

| Product<br>HV2301<br>HV209<br>HV2631<br>HV2601 | Number of Channels        | Channels            |                           |                        |                           |                                                  |                            |                                                                      |                                  |                          |                           |
|------------------------------------------------|---------------------------|---------------------|---------------------------|------------------------|---------------------------|--------------------------------------------------|----------------------------|----------------------------------------------------------------------|----------------------------------|--------------------------|---------------------------|
| HV2301<br>HV209<br>HV2631<br>HV2601            |                           |                     | Config.                   | Supply Voltage (V)     |                           | Analog Signal Voltage (V)                        | Switch Current (A)         | Switch on Resistance (Ω)                                             | Output Resistors                 | Pac                      | Packages                  |
| HV2631<br>HV2601<br>HV2601                     | 8                         |                     | 8-SPST                    | 200                    |                           | 180                                              | ±2                         | 16                                                                   | Yes                              | 28-pin PLO               | 28-pin PLCC, 48-pin LQFP  |
| HV2631<br>HV2601<br>HV2605                     | 12                        |                     | 6X2:1 MUX                 | 200                    |                           | 180                                              | ±2                         | 16                                                                   | Yes                              | 48-p                     | 48-pin LQFP               |
| HV2601                                         | 16                        |                     | 16-SPST                   | 220                    |                           | 200                                              | ±2                         | 18                                                                   | No                               | 48-p                     | 48-pin LQFP               |
| HV2605                                         | 16                        |                     | 16-SPST                   | 200                    |                           | 180                                              | ±2                         | 16                                                                   | No                               | 48-pin L                 | 48-pin LQFP, 0/CSP        |
| 0001                                           | 16                        |                     | 16-SPST                   | 200                    |                           | 180                                              | ±2                         | 16                                                                   | No                               | 48-pin L                 | 48-pin LQFP, 0/CSP        |
| HV2701                                         | 16                        |                     | 16-SPST                   | 200                    |                           | 180                                              | ±2                         | 16                                                                   | Yes                              | 48-pin L                 | 48-pin LQFP, 0/CSP        |
| HV2705                                         | 16                        |                     | 16-SPST                   | 200                    |                           | 180                                              | ±2                         | 16                                                                   | Yes                              | 48-pin L                 | 48-pin LQFP, 0/CSP        |
| HV2762                                         | 24                        |                     | 24-SPST                   | 200                    |                           | 180                                              | ±2                         | 18                                                                   | Yes                              | 64-pi                    | 64-pin VFBGA              |
| HV2901                                         | 32                        |                     | 16x2:1 MUX                | 200                    |                           | 180                                              | +2                         | 18                                                                   | Yes                              | 64-1                     | 64-pin QFN                |
|                                                |                           |                     |                           |                        | Ultrasound                | Ultrasound: MOSFET Driver                        |                            |                                                                      |                                  |                          |                           |
| Product                                        | uct                       | Number of Drivers   |                           | Input Voltage Min. (V) | Input Vo                  | Input Voltage Max. (V)                           | Output Voltage Bipolar (V) |                                                                      | Output Voltage Unipolar (V)      | Packages                 | sə                        |
| MD1210                                         |                           | 2                   |                           | 1.2                    |                           | 5                                                | 1                          |                                                                      | 0-12                             | 12-pin QFN               | ZL.                       |
| MD1711                                         |                           | 12                  |                           | 1.8                    |                           | 5.5                                              | 1                          |                                                                      | 0-12                             | 48-pin LQFP, 48-pin VQFN | -pin VQFN                 |
| MD1712                                         |                           | 12                  |                           | 1.8                    |                           | 5.5                                              | 1                          |                                                                      | 0-12                             | 48-pin LQFP, 48-pin VQFN | -pin VQFN                 |
| MD1715                                         |                           | 2                   |                           | 1.8                    |                           | 3.6                                              | 1                          |                                                                      | 0-12                             | 40-pin VQFN              | NHX                       |
| MD1810                                         |                           | 4                   |                           | 1.2                    |                           | 5                                                | ±5.0                       |                                                                      | 0-12                             | 16-pin QFN               | N.                        |
| MD1811                                         |                           | 4                   |                           | 1.2                    |                           | 5                                                | ±5.0                       |                                                                      | 0-12                             | 16-pin QFN               | N.H.                      |
| MD1820                                         |                           | 4                   |                           | 1.7                    |                           | 5.25                                             | ±5.0                       |                                                                      | 0–12                             | 16-pin VQFN              | NHC                       |
| MD1822                                         |                           | 4                   |                           | 1.7                    |                           | 5.25                                             | ±5.0                       |                                                                      | 0-12                             | 16-pin VQFN              | NHC                       |
|                                                |                           |                     |                           | Ultra                  | asound: High-Volt         | Ultrasound: High-Voltage Ultrasound Transmitters | nsmitters                  |                                                                      |                                  |                          |                           |
| Product                                        | Number of Channels        | Output Voltage (V)  |                           | Number Output Levels   | HD2 (dB) OL               | Output Current (A)                               |                            | Features                                                             |                                  | Packages                 |                           |
| HV7321                                         | 4                         | ∓80                 |                           | 2                      | -44                       | ±2.5                                             | Built-in T/R switches, ou  | Built-in T/R switches, output protection diodes and clamp diodes     |                                  | 64-pin VQFN (9 x 9 mm)   | (9 mm)                    |
| HV7350                                         | æ                         | 09 <sup>#</sup>     |                           | e                      | -40                       | ±1.0                                             | Built-in                   | Built-in floating power supplies                                     |                                  | 56-pin VQFN              | z                         |
| HV7351                                         | 80                        | ±70                 |                           | 0                      | -40                       | ±3.0                                             | Programmable launch delay  | Programmable launch delay, 4 transmit waveforms, clock up to 200 MHz | ck up to 200 MHz                 | 80-pin VQFN              | z                         |
| HV7360                                         | -                         | ±100                |                           | က                      | 1                         | ±2.5                                             | Buit                       | Built-in coupling capacitors                                         |                                  | 22-pin CABGA             | ΑE                        |
| HV7361                                         | -                         | ±100                |                           | ಣ                      | I                         | ±2.5                                             | Built-in                   | Built-in T/R switch, 8 capacitors                                    |                                  | 22-pin CABGA             | 3A                        |
| HV748                                          | 4                         | ±75                 |                           | 2                      | -40                       | ±1.25                                            | Built-in                   | Built-in coupling, 4 current modes                                   |                                  | 48-pin VQFN              | z                         |
|                                                |                           |                     |                           |                        | Ultrasound                | Ultrasound: MOSFET Array                         |                            |                                                                      |                                  |                          |                           |
| Product                                        | BVdss/BVdss N-Channel (V) | nannel (V)          | BVdss/BVdss P-Channel (V) | annel (V)              | Rds(on) N-Channel max (Ω) | nel max (Ω)                                      | Rds(on) P-Channel max (Ω)  | (Ω) Vgs(th) max (V)                                                  | Note                             |                          | Package                   |
| TC6320                                         | 200                       |                     | -200                      |                        | 2                         |                                                  | 8                          | 2                                                                    | N- and P-Channel pair            |                          | 8-pin SOIC, 8-pin<br>VDFN |
| TC8020                                         | 200                       |                     | -200                      |                        | ω                         |                                                  | 9.5                        | m                                                                    | Six N- and P-Channel pairs       |                          | 56-pin VQFN               |
| TC8220                                         | 200                       |                     | -200                      |                        | 5.3                       |                                                  | 6.5                        | 2                                                                    | Two N- and P-Channel Pairs       | iel Pairs                | 12-pin VDFN               |
|                                                |                           |                     |                           |                        | CO and Sm                 | CO and Smoke Detector ICs                        |                            |                                                                      |                                  |                          |                           |
| Product                                        | Hom Driver                | Detection<br>Method | Low Battery<br>Detection  | Alarm Memory           | Alarm Interconnect        | rconnect                                         | Hush/Sensitivity Timer     |                                                                      | Operating Temperature Range (°C) | Packages                 | səbi                      |
| RE46C191                                       | Yes                       | Photo               | Yes                       | Yes                    | Yes                       | s                                                | Yes                        | -                                                                    | -10 to +60                       | 16-pin SOIC              | SOIC                      |
| RE46C317/8                                     | Yes                       | Just Driver         | No                        | N <sub>O</sub>         | No                        | 0                                                | No                         | 1-                                                                   | -10 to +60                       | PDIP, SOIC               | SOIC                      |
| RE46C803                                       | Yes                       | 00                  | No                        | ON.                    | No                        | 0                                                | No                         | <u> </u>                                                             | -10 to +60                       | 20-pin SSOP              | SSOP                      |

|                                                  |                     |                               |                               |                           | M                                                            | otor Drivers:            | Motor Drivers: Stepper Motors, DC Motors and 3-Phase BLDC Fan Controllers                                                | -Phase BLD                   | C Fan Controllers                                                                                                                                                                                                                            |                                          |
|--------------------------------------------------|---------------------|-------------------------------|-------------------------------|---------------------------|--------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                  | Motor Type          | Input<br>Voltage<br>Kange (V) | Internal/<br>External<br>FETs | tuqtuO<br>turrent<br>(Am) | Control<br>Scheme                                            | Motor<br>Speed<br>Output | Protections                                                                                                              | Operating<br>Temp.<br>(C°)   | Features                                                                                                                                                                                                                                     | Раскадеѕ                                 |
| DC Motor                                         |                     | 7 to 40                       | Internal                      | 1000                      | SPI                                                          | Z/A                      | Short Circuit, Overtemperature,<br>Power Supply Fail                                                                     | -40 to<br>125                | 3 half bridge outputs, No shoot-through, Very low quiescent current <2 µA                                                                                                                                                                    | SO14                                     |
| DC Motor                                         |                     | 7 to 40                       | Internal                      | 1000                      | SPI                                                          | ΑX                       | Short Circuit, Overtemperature,<br>Power Supply Fail                                                                     | -40 to                       | 3 half bridge outputs, No shoot through, Very low quiescent current <2 µA, PWM input                                                                                                                                                         | 18-pin 4 × 4 QFN                         |
| DC Motor                                         |                     | 7 to 40                       | Internal                      | (950)                     | SPI                                                          | Ϋ́                       | Short Circuit, Overtemperature,<br>Power Supply Fail                                                                     | -40 to<br>125                | 6 half bridge outputs, No shoot through, Very low quiescent current <2 µA                                                                                                                                                                    | 24-pin 5 x 5 QFN,<br>SO28                |
| DC Motor                                         |                     | 7 to 20                       | Internal                      | 100                       | PWM, DIR                                                     | N/A                      | Short Circuit, Overtemperature,<br>Over/Under Voltage,<br>Chargepump Fail                                                | -40 to<br>125 (150)          | Dead time adjust, Charge pump supply for external battery reverse protection NMOS, LDO 3.3V/5V, Window Watchdog, LIN TRX (HV interface)                                                                                                      | 32-pin 7 x 7 QFN,<br>32-pin 7 x 7 TQFP   |
| 3-Phase<br>Brushless Motors                      | otors               | 6 to 28                       | External                      | 200                       | Direct PWM                                                   | N/A                      | Overcurrent, Overvoltage,<br>Undervoltage, Overtemperature,<br>48V Load Dump Protection,<br>Short Circuit, Shoot Through | -40 to<br>+150               | 3 Op Amps, Adj. Buck Regulator, 5V LDO, 12V LDO, Thermal Warning, Dead Time,<br>Blanking Time, Level Translator, Motor Enable, Sleep Mode (MCP8026)                                                                                          | 40-pin 5 × 5 QFN,<br>48-pin 7 × 7 TQFP   |
| 3-Phase<br>Brushless Motor                       | otor                | 6 to 19                       | External                      | 200                       | Direct PWM                                                   | N/A                      | Overcurrent, Overvoltage,<br>Undervoltage, Overtemperature,<br>48V Load Dump Protection,<br>Short Circuit, Shoot Through | -40 to<br>+150               | Sleep Mode, LIN Transceiver, AZ Output, Adj. Buck Regulator, LDO, Op Amp, Overcurrent Comparator, Fault Output, Thermal Warning, Selectable Dead Time and Blanking Time                                                                      | 40-pin 5 × 5 QFN,<br>48-pin 7 × 7 TQFP   |
| One Bipolar<br>Stepper Motor or<br>Two DC Motors | ar<br>or or<br>tors | 10 to 40                      | Internal                      | 750                       | Direct PWM Input,<br>Current Limit Control,<br>Microstepping | S<br>N                   | Overtemperature, Under Voltage                                                                                           | -40 to<br>+105               | Dual Full-Bridge Motor Driver for Stepper Motors, Pin Compatible with Allegro 6219                                                                                                                                                           | 24-pin SOIC                              |
| 3-Phase<br>Brushless Motor                       | lotor               | 2 to 14                       | Internal                      | 750                       | Sensorless<br>Sinusoidal                                     | Frequency<br>Generator   | Overtemperature, Motor<br>Lock-up, Overcurrent,<br>Overvoltage                                                           | -40 to<br>+125               | 3-Phase BLDC 180° Sinusoidal Sensorless Fan Motor Driver, Overcurrent limitation, Output Switching Frequency at 23 kHz                                                                                                                       | Thermally<br>Enhanced 8-pin<br>4 × 4 DFN |
| 3-Phase<br>Brushless Motor                       | lotor               | 2 to 14<br>(5,5)              | Internal                      | 500-                      | Sensorless<br>Sinusoidal                                     | Frequency<br>Generator   | Overtemperature, Motor<br>Lock-up, Overcurrent,<br>Overvoltage                                                           | -30 (-40)<br>to +95<br>(125) | 3-Phase BLDC 180° Sinusoidal Sensorless Drive, Direction Control, Programmable BEMF Coefficient Range, 20 kHz+ Output Switching Frequency, Programmable Start-up RPM and Slew Rate, Selectable Start-up Strength and Phase Target Regulation | SOP, DFN, QFN                            |

|         |                        |              |                  | Oscillators: Ul           | Oscillators: Ultra-Low-Power MEMS |                    |                  |                                     |                    |                      |
|---------|------------------------|--------------|------------------|---------------------------|-----------------------------------|--------------------|------------------|-------------------------------------|--------------------|----------------------|
| Product | Output Frequency (MHz) | Output Logic | Pin-1 function   | Frequency Stability (ppm) | Temperature Range (°C)            | Supply Voltage (V) | Current (mA)     | Current (mA) Period Jitter (ps RMS) | Package            | age                  |
| DSC6001 | 1–80                   | LVCMOS       | Output Enable    | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  |                    |                      |
| DSC6003 | 1–80                   | LVCMOS       | Output Enable    | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  |                    |                      |
| DSC6011 | 1–80                   | LVCMOS       | Standby          | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  |                    |                      |
| DSC6013 | 1–80                   | LVCMOS       | Standby          | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  |                    |                      |
| DSC6021 | 1–80                   | LVCMOS       | Frequency Select | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  |                    |                      |
| DSC6023 | 1–80                   | LVCMOS       | Frequency Select | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.3              | 10                                  | 1.6 x 1.2 mm 4-pin | nm 4-pin             |
| DSC6101 | 1–100                  | LVCMOS       | Output Enable    | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 | 2.0 × 1.6 mm 4-pin | nm 4-pin<br>pm 4-pin |
| DSC6102 | 1–100                  | LVCMOS       | Output Enable    | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 | 3.2 x 2.5 mm 4-pin | nm 4-pin             |
| DSC6111 | 1–100                  | LVCMOS       | Standby          | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 | i<br>i             | <u>.</u>             |
| DSC6112 | 1–100                  | LVCMOS       | Standby          | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 |                    |                      |
| DSC6121 | 1–100                  | LVCMOS       | Frequency Select | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 |                    |                      |
| DSC6122 | 1–100                  | LVCMOS       | Frequency Select | +25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 3.0              | 7.0                                 |                    |                      |
| DSC6081 | 0.002-1                | LVCMOS       | KHz Clock Output | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.2              | 1                                   |                    |                      |
| DSC6083 | 0.002-2                | LVCMOS       | KHz Clock Output | ±25, ±50                  | -40 to 85                         | 1.71 to 3.63       | 1.2              | 1                                   |                    |                      |
|         |                        |              |                  |                           |                                   |                    |                  |                                     |                    |                      |
|         |                        |              |                  | Oscillators:              | Oscillators: Low-Power MEMS       |                    |                  |                                     |                    |                      |
| Product | Output Frequency (MHz) | Output Logic | Pin-1 Function   | Frequency Stability (ppm) | Temperature Range (°C)            | Supply Voltage (V) | (V) Current (mA) | (mA) Period Jitter (ps RMS)         | ps RMS)            | Package              |
| DSC1001 | 1–170                  | LVCMOS       | Standby          | +10; +25; +50             | -40 to 105                        | 1.62 to 3.63       | 5.0              | 0.9                                 |                    |                      |
| DSC1003 | 1–170                  | LVCMOS       | Standby          | ±10; ±25; ±50             | -40 to 105                        | 1.62 to 3.63       | 0.9              | 0.2                                 |                    |                      |
| DSC1004 | 1–170                  | LVCMOS       | Standby          | ±10; ±25; ±50             | -40 to 105                        | 1.62 to 3.63       | 7.0              | 5.0                                 | 2.5                | 2.5 x 2.0 mm 4-pin   |
| DSC1018 | 1–150                  | LVCMOS       | Standby          | ±25; ±50                  | -40 to 85                         | 1.8 ±10%           | 3.0              | 12.5                                | 3.2                | 3.2 x 2.5 mm 4-pin   |
| DSC1025 | 1–150                  | LVCMOS       | Standby          | ±25; ±50                  | -40 to 85                         | 2.5 ±10%           | 3.0              | 12.5                                | 5.0                | 5.0 x 3.2 mm 4-pin   |
| DSC1028 | 1–150                  | LVCMOS       | Standby          | +25; +50                  | -40 to 85                         | 2.8 ±10%           | 3.0              | 12.5                                | 7.0                | 7.0 x 5.0 mm 4-pin   |
| DSC1030 | 1–150                  | LVCMOS       | Standby          | +25; +50                  | -40 to 85                         | 3.0 ±10%           | 3.0              | 12.5                                |                    |                      |
| DSC1033 | 1–150                  | LVCMOS       | Standby          | ±25; ±50                  | -40 to 85                         | 3.3 ±10%           | 3.0              | 12.5                                |                    |                      |

|                 |                        |                            | Osc                          | Oscillators: Low Jitter MEMS  |                       |                                 |                      |                                   |
|-----------------|------------------------|----------------------------|------------------------------|-------------------------------|-----------------------|---------------------------------|----------------------|-----------------------------------|
| Product Out     | Output Frequency (MHz) | Output Logic Freq          | Frequency Stability (ppm) Te | Temperature Range (°C)        | Supply Voltage (V)    | Phase Noise (ps RMS)            |                      | Package                           |
| DSC1101         | 2.3–170                | LVCMOS                     | ±10; ±25; ±50                | -55 to +125                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) | o 20M)               |                                   |
| DSC1102         | 2.3–460                | LVPECL                     | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) | o 20M)               |                                   |
| DSC1103         | 2.3–460                | LVDS                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 2.5 x 2.0 mm 6-pin                |
| DSC1104         | 2.3–460                | HCSL                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200K-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 6-pin                |
| DSC1121         | 2.3–170                | LVCMOS                     | ±10; ±25; ±50                | -55 to +125                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 5.0 x 3.2 mm 6-pin                |
| DSC1122         | 2.3–460                | LVPECL                     | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | $7.0 \times 5.0 \text{ mm 6-pin}$ |
| DSC1123         | 2.3–460                | LVDS                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) | o 20M)               |                                   |
| DSC1124         | 2.3–460                | HCSL                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) | o 20M)               |                                   |
| DSC2010         | 2.3–170                | LVCMOS                     | ±10; ±25; ±50                | -55 to +125                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2020         | 2.3–460                | LVPECL                     | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2030         | 2.3–460                | NDS                        | ±10; ±25; ±50                | -40 to +105                   | 2.25-3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2040         | 2.3–460                | HCSL                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2110         | 2.3–170                | LVCMOS                     | ±10; ±25; ±50                | -55 to +125                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2120         | 2.3–460                | LVPECL                     | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2130         | 2.3–460                | NDS                        | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2140         | 2.3–460                | HCSL                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2210         | 2.3–170                | LVCMOS                     | ±10; ±25; ±50                | -55 to +125                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2220         | 2.3–460                | LVPEOL                     | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2230         | 2.3–460                | LVDS                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
| DSC2240         | 2.3–460                | HCSL                       | ±10; ±25; ±50                | -40 to +105                   | 2.25–3.63             | 0.3 (200k-20M)/1.7 (12k to 20M) |                      | 3.2 x 2.5 mm 14-pin               |
|                 |                        |                            | so .                         | Oscillators: Ultra-Low Jitter |                       |                                 |                      |                                   |
| Product         | Output Frequency (MHz) | Output Logic               | Input Function               | Frequency Stability (ppm)     | Temperature Range (C) | Supply Voltage (V)              | Phase Noise (ps RMS) | Package                           |
| MX57            | 10 to 860              | ISOH SON DECINEDATE        | A C                          | )<br>                         | -40 to 85             | 2 375 to 3 63                   | 0 16 (19k-90M)       | 7 0 x 5 0 mm 6-nin                |
| MX55            | 10 to 860              | LYCMOS, LYPECL, LYDS, HCSL |                              |                               | -40 to 85             | 2.375 to 3.63                   | 0.16 (12K-20M)       | 5.0 x 3.2 mm 6-pin                |
| MX574BBD322M265 | e                      | HCSL                       |                              |                               | -40 to 85             | 2.375 to 3.63                   | 0.143/0.098          | 7.0 × 5.0 mm 6-pin                |
| MX555ANR133M333 | 3 133.3333             | IVPECL                     | OE on pin2                   | ±50                           | -40 to 85             | 2.375 to 3.63                   | 0.143/0.092          | 5.0 x 3.2 mm 6-pin                |
| MX553BBA156M250 | 156.25                 | LVPECL                     | OE on pin1                   | ±50                           | -40 to 85             | 2.375 to 3.63                   | 0.165/0.11           | 5.0 x 3.2 mm 6-pin                |
| MX553BBB156M250 | 156.25                 | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.162/0.093          | 5.0 x 3.2 mm 6-pin                |
| MX573BBA156M250 | 156.25                 | LVPECL                     | OE on pin1                   | ±50                           | -40 to 85             | 2.375 to 3.63                   | 0.165/0.11           | $7.0 \times 5.0 \text{ mm 6-pin}$ |
| MX553BBA312M500 | 312.5                  | LVPECL                     | OE on pin1                   | ±50                           | -40 to 85             | 2.375 to 3.63                   | 0.155/0.108          | 5.0 x 3.2 mm 6-pin                |
| MX575ABA25M0000 | 25                     | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.152/0.088          | 7.0 x 5.0 mm 6-pin                |
| MX573LBB148M500 | 148.5                  | LVDS                       | OE on pin1                   | ∓20                           | -40 to 85             | 2.375 to 3.63                   | 0.149/0.096          | 7.0 x 5.0 mm 6-pin                |
| MX555ABD100M000 | 100                    | HCSL                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.22/0.1             | 5.0 x 3.2 mm 6-pin                |
| MX573NBA622M080 | 622.08                 | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.148/0.103          | 7.0 x 5.0 mm 6-pin                |
| MX573BBB156M250 | 156.25                 | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.162/0.093          | 5.0 x 3.2 mm 6-pin                |
| MX554BBD322M265 | 322.265625             | HCSL                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.154/0.1            | 5.0 x 3.2 mm 6-pin                |
| MX574BBD322M265 | 32                     | HCSL                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.154/0.1            | 7.0 x 5.0 mm 6-pin                |
| MX573BBA312M500 | 312.5                  | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.148/0.103          | 7.0 x 5.0 mm 6-pin                |
| MX573BBB312M500 | 312.5                  | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.175/0.08           | 7.0 x 5.0 mm 6-pin                |
| MX555ABA25M0000 | 25                     | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.152/0.08           | 5.0 x 3.2 mm 6-pin                |
| MX575ABB200M000 | 200                    | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.22/0.1             | 7.0 x 5.0 mm 6-pin                |
| MX555ABB200M000 | 200                    | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.22/0.1             | 5.0 x 3.2 mm 6-pin                |
| MX575ABC200M000 | 200                    | LVCMOS                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.128/0.089          | 7.0 x 5.0 mm 6-pin                |
| MX575ABC125M000 | 125                    | LVCMOS                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.128/0.089          | 7.0 x 5.0 mm 6-pin                |
| MX553ABB212M500 | 212.5                  | LVDS                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.175/0.08           | 5.0 x 3.2 mm 6-pin                |
| MX573ABA212M500 |                        | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.175/0.08           | 7.0 x 5.0 mm 6-pin                |
| MX555ABA150M000 |                        | LVPECL                     | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.143/0.098          | 5.0 x 3.2 mm 6-pin                |
| MX575ABD100M000 |                        | HCSL                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.22/0.1             | 7.0 × 5.0 mm 6-pin                |
| MX555ABD100M000 | 100                    | HCSL                       | OE on pin1                   | ±20                           | -40 to 85             | 2.375 to 3.63                   | 0.22/0.1             | 5.0 x 3.2 mm 6-pin                |

|                  |                        |                                     | Oscillators: I            | Oscillators: Ultra-Low Jitter     |                           |                      |                                     |                                   |
|------------------|------------------------|-------------------------------------|---------------------------|-----------------------------------|---------------------------|----------------------|-------------------------------------|-----------------------------------|
| Product          | Output Frequency (MHz) | Output Logic                        | Input Function   Frequ    | Frequency Stability (ppm)   Tempo | Temperature Range (°C) Su | Supply Voltage (V)   | Phase Noise (ps RMS)                | Package                           |
| MX575ABA100M000  | 100                    | LVPECL                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.152, 0.112                        | 7.0 x 5.0 mm 6-pin                |
| MX555ABC50M0000  | 90                     | LVCMOS                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.142, 0.1                          | 5.0 x 3.2 mm 6-pin                |
| MX575ABC50M0000  | 90                     | LVCMOS                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.142, 0.1                          | 7.0 × 5.0 mm 6-pin                |
| MX555ABA50M0000  | 90                     | LVPECL                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.142, 0.101                        | 5.0 x 3.2 mm 6-pin                |
| MX575ABA50M0000  | 20                     | LVPECL                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.142, 0.101                        | 7.0 x 5.0 mm 6-pin                |
| MX555ABC25M0000  | 25                     | LVCMOS                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.131, 0.077                        | 5.0 x 3.2 mm 6-pin                |
| MX575ABC25M0000  | 25                     | LVCMOS                              | OE on pin1                | ∓20                               | -40 to 85                 | 2.375 to 3.63        | 0.131, 0.077                        | 7.0 × 5.0 mm 6-pin                |
| MX574BBF644M531  | 644.53125              | LVPECL                              | OE on pin1                | ±50                               | -40 to 85                 | 2.375 to 3.63        | 0.139, 0.101                        | $7.0 \times 5.0 \text{ mm 6-pin}$ |
|                  |                        |                                     | Oscillators: Higl         | Oscillators: High-Frequency TCXO  |                           |                      |                                     |                                   |
| Product          | Output Frequency (MHz) | z) Output Logic                     | Frequency Stability (ppm) | ) Temperature Range (°C)          | ) Supply Voltage (V)      | Phase Noise (ps RMS) |                                     | Package                           |
| MXT57            | 10 to 860              | LVCMOS, LVPECL, LVDS, HCSL          | +2.5/±5.0                 | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0×                                | 7.0 x 5.0 mm 6-pin                |
| MXT573ABA200M000 | 200                    | LVPECL                              | ±2.5                      | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0 ×                               | 7.0 x 5.0 mm 6-pin                |
| MXT573ABC250M000 | 250                    | LVCMOS                              | ±2.5                      | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0×                                | 7.0 x 5.0 mm 6-pin                |
| MXT573ABA250M000 | 250                    | LVPECL                              | ±2.5                      | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0×                                | 7.0 × 5.0 mm 6-pin                |
| MXT573ABB156M250 | 156.25                 | LVDS                                | ±2.5                      | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0×                                | 7.0 x 5.0 mm 6-pin                |
| MXT573ABC200M000 | 200                    | TACMOS                              | ±2.5                      | -40 to 85                         | 2.375 to 3.63             | 0.5                  | 7.0×                                | 7.0 x 5.0 mm 6-pin                |
|                  |                        |                                     | Oscillators: M            | Oscillators: Multi-Output OSC     |                           |                      |                                     |                                   |
| Product Outp     | Output Frequency (MHz) | Output                              | Frequency Stability (ppm) | Temperature Range (°C)            | Supply Voltage (V)        |                      | Phase Noise (ps RMS)                | Package                           |
| DSC2311          | 2.3 to 170             | LVCMOS x2                           | ±25 ppm/±50 ppm           | -55 to 125                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200K-20M), 1.7 (12K-20M)       | 2.5 x 2.0 mm 6-pin                |
| DSC2011          | 2.3 to 170             | LVCMOS x2                           | ±25 ppm/±50 ppm           | -55 to 125                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2021          | 2.3 to 460             | LVPECL + LVCMOS                     | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2031          | 2.3 to 460             | LVDS + LVCMOS                       | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2041          | 2.3 to 460             | HCSL + LVCMOS                       | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200k–20M), 1.7 (12k–20M)       | 3.2 × 2.5 mm 14-pin               |
| DSC2022          | 2.3 to 460             | LVPECL XZ                           | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200K-20M), 1.7 (12K-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2042          | 2.3 to 460             | HOSI + IVPFOI                       | +25 ppm/+50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200K-20M); 1.7 (12K-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2033          | 2.3 to 460             | LVDS x2                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2043          | 2.3 to 460             | HSCL + LVDS                         | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2044          | 2.3 to 460             | HCSL x2                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2111          | 2.3 to 460             | LVCMOS x2                           | ±25 ppm/±50 ppm           | -55 to 125                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2122          | 2.3 to 460             | LVPECL x2                           | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2133          | 2.3 to 460             | LVDS x2                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2144          | 2.3 to 460             | HCSL x2                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2211          | 2.3 to 460             | LVCMOS x2                           | ±25 ppm/±50 ppm           | -55 to 125                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200K-20M), 1.7 (12K-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2222          | 2.3 to 460             | LVPECL XZ                           | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200K-20M), 1.7 (12K-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC2233          | 2.3 to 460             | X 100 T                             | +25 ppm/+50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k)           | 0.3 (200K-20M), 1.7 (12K-20M)       | 3.2 x 2.5 mm 14-pin               |
| DSC400-1111      | 2.3 to 460             | 1 VOMOS ×4                          | +25 ppm/+50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.0 (200K)           | 0.3 (200k-20M) 17 (12k-20M)         | 50 x 32 mm 20-pin                 |
| DSC400-2222      | 2.3 to 460             | LVPECL x4                           | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k–20M), 1.7 (12k–20M)       | 5.0 × 3.2 mm 20-pin               |
| DSC400-3333      | 2.3 to 460             | LVDS x4                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200K-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 5.0 x 3.2 mm 20-pin               |
| DSC400-4444      | 2.3 to 460             | HCSL x4                             | ±25 ppm/±50 ppm           | -40 to 105                        | 2.25 to 3.63              | 0.3 (200k-           | 0.3 (200k-20M), 1.7 (12k-20M)       | 5.0 x 3.2 mm 20-pin               |
| MX852            | 2.3 to 460 LVF         | LVPECL, LVDS, HCSL x5 or LVCMOS x10 | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.0                  | 0.2 (12k-20M)                       | 5.0 × 7.0 mm 38-pin               |
| MX852BB0030      | 156.25                 | HCSL x5                             | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.162 (12K-20        | 0.162 (12K-20M), 0.087 (1.875M-20M) | 5.0 × 7.0 mm 38-pin               |
| MX852EB0027      | 100                    | HCSL x5                             | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.2 (12K-20          | 0.2 (12K-20M), 0.1 (1.875M-20M)     | 5.0 x 7.0 mm 38-pin               |
| MX852EH0140      | 156.25/25              | LVPECL x5                           | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.2                  | 0.263 (12K-20M)                     | 5.0 × 7.0 mm 38-pin               |
| MX852BB0141      | 156.25                 | HCSL x4                             | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.162 (12k-20        | 0.162 (12k-20M), 0.073 (1.875M-20M) | 5.0 × 7.0 mm 38-pin               |
| MX852EB0102      | 52                     | LVCMOS x4                           | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.219 (12K-20        | 0.219 (12k-20M), 0.08 (1.875M-20M)  | 5.0 × 7.0 mm 38-pin               |
| MX852BB0084      | 156.25                 | LVPECL x3, LVCMOS x2                | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.2 (12K-20          | 0.2 (12K-20M), 0.1 (1.875M-20M)     | 5.0 × 7.0 mm 38-pin               |
| MX852AB0070      | 155.52                 | LVPECL x5                           | ±25 ppm/±50 ppm           | -40 to 85                         | 2.25 to 3.63              | 0.2 (12k–20          | 0.2 (12k-20M), 0.1 (1.875M-20M)     | 5.0 × 7.0 mm 38-pin               |

|                  |                        |                             | Oscillators: Programmable OSC | 25                 |                      |                         |
|------------------|------------------------|-----------------------------|-------------------------------|--------------------|----------------------|-------------------------|
| Product          | Output Frequency (MHz) | Output Logic                | Temperature Range (°C)        | Supply Voltage (V) | Current (mA)         | Package                 |
| DSC8001          | 1–170                  | LVCMOS                      | -40 to 105                    | 1.62 to 3.63       | 5.0                  | 2.5 × 2.0 mm 4-pin      |
| DSC8002          | 1–150                  | LVCMOS                      | -40 to 85                     | 1.62 to 3.63       | 3.0                  | 3.2 × 2.5 mm 4-pin      |
| DSC8003          | 1–170                  | LVCMOS                      | -40 to 105                    | 1.62 to 3.63       | 6.0                  | 5.0 × 3.2 mm 4-pin      |
| DSC8004          | 1–170                  | LVCMOS                      | -40 to 105                    | 1.62 to 3.63       | 7.0                  | 7.0 × 5.0 mm 4-pin      |
| DSC8101          | 2.3–170                | LVCMOS                      | -55 to 125                    | 2.25 to 3.63       | 25                   |                         |
| DSC8102          | 2.3–460                | LVPECL                      | -40 to 105                    | 2.25 to 3.63       | 51                   |                         |
| DSC8103          | 2.3–460                | INDS                        | -40 to 105                    | 2.25 to 3.63       | 29                   | 2.5 × 2.0 mm 6-pin      |
| DSC8104          | 2.3–460                | HCSL                        | -40 to 105                    | 2.25 to 3.63       | 30                   | 3.2 × 2.5 mm 6-pin      |
| DSC8121          | 2.3–170                | LVCMOS                      | -55 to 125                    | 2.25 to 3.63       | 25                   | 5.0 × 3.2 mm 6-pin      |
| DSC8122          | 2.3–460                | LVPECL                      | -40 to 105                    | 2.25 to 3.63       | 51                   | 7.0 × 5.0 mm 6-pin      |
| DSC8123          | 2.3–460                | SUNT                        | -40 to 105                    | 2.25 to 3.63       | 29                   |                         |
| DSC8124          | 2.3–460                | HCSL                        | -40 to 105                    | 2.25 to 3.63       | 30                   |                         |
| DSC6001-000.0000 | 1-80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.3                  |                         |
| DSC6003-000.0000 | 1–80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.3                  |                         |
| DSC6011-000.0000 | 1–80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.3                  |                         |
| DSC6013-000.0000 | 1–80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.3                  |                         |
| DSC6021-000.0000 | 1–80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.3                  |                         |
| DSC6023-000.0000 | 1–80                   | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 6.1                  | 1.6 x 1.2 mm 4-pin      |
| DSC6101-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  | 2.0 × 1.6 mm 4-pin      |
| DSC6102-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  | 2.5 x 2.0 mm 4-pin      |
| DSC6111-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  | 3.2 × 2.5 mm 4-pin      |
| DSC6112-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  |                         |
| DSC6121-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  |                         |
| DSC6122-000.0000 | 1–100                  | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 3.0                  |                         |
| DSC6081-000.0000 | 0.002-1                | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.2                  |                         |
| DSC6083-000.0000 | 0.002-1                | LVCMOS                      | -40 to 85                     | 1.71 to 3.63       | 1.2                  |                         |
|                  |                        |                             |                               |                    |                      |                         |
|                  |                        |                             | Oscillators: Oscillator Die   |                    |                      |                         |
| Product          | Function               | Input Frequency Range (MHz) | Output Frequency Range (MHz)  | Pull Range (±PPM)  | Output Logic         | Package                 |
| PL500-15         | VCXO, Non-Multiplier   | 16–36                       | 1–4                           | 150                | TACMOS               | Die, SOT23-6L, SOP-8L   |
| PL500-16         | VCXO, Non-Multiplier   | 16–36                       | 4–18                          | 150                | LVCMOS               | Die, SOT23-6L, SOP-8L   |
| PL500-17         | VCXO, Non-Multiplier   | 17–36                       | 17–36                         | 150                | LVCMOS               | Die, SOT23-6L, SOP-8L   |
| PL500-37         | VCXO, Non-Multiplier   | 36–130                      | 36–130                        | 150                | LVCMOS               | Die, SOT23-6L, SOP-8L   |
| PL520-20         | VCXO, Non-Multiplier   | 100–200                     | 100                           | 100                | LVCMOS, LVPECL, LVDS | Die                     |
| PL520-30         | VCXO, Non-Multiplier   | 65–130                      | 65                            | 100                | LVPECL, LVDS         | Die                     |
| PL520-80         | VCXO, Non-Multiplier   | 19–65                       | 9.5                           | 100                | LVPECL, LVDS         | Die                     |
| PL502-00         | VCXO Multiplier        | 12–25                       | 12–200                        | 250                | LVCMOS               | Die                     |
| PL502-30         | VCXO Multiplier        | 12–25                       | 0.75–800                      | 150                | LVCMOS, LVPECL, LVDS | Die                     |
| PL520-00         | VCXO Multiplier        | 100–200                     | 100-1000                      | 100                | LVCMOS, LVPECL, LVDS | Die                     |
| PL565-08         | VCXO Multiplier        | 150–200                     | 008-009                       | 120                | LVPECL               | Die                     |
| PL560-08         | VCXO Multiplier        | 62.5–150                    | 250–600                       | 120                | LVPECL               | Die                     |
| PL565-68         | VCXO Multiplier        | 62.5–160                    | 250–320                       | 120                | LVPECL               | Die                     |
| PL565-37         | VCXO Multiplier        | 30-62.5                     | 120–250                       | 120                | LVCMOS               | Die                     |
| PL565-38         | VCXO Multiplier        | 30-62.5                     | 120–250                       | 120                | LVPECL               | Die                     |
| PL560-47         | VCXO Multiplier        | 30–80                       | 60–160                        | 120                | LVCMOS               | Die                     |
| PL560-48         | VCXO Multiplier        | 30–80                       | 60–160                        | 120                | LVPECL               | Die                     |
| PL663-18         | XO Multiplier (x2)     | 75–140                      | 150–280                       |                    | LVPECL               | Die, QFN-16L, TSSOP-16L |
| PL663-28         | XO Multiplier (x2)     | 140–160                     | 280–320                       |                    | LVPEOL               | Die, QFN-16L, TSSOP-16L |
| PL663-29         | XO Multiplier (x2)     | 100–160                     | 200–320                       |                    | LVDS                 | Die, QFN-16L, TSSOP-16L |

|              |                             |                             | Oscillators: Oscillator Die  |                   |                      |         |
|--------------|-----------------------------|-----------------------------|------------------------------|-------------------|----------------------|---------|
| Product      | Function                    | Input Frequency Range (MHz) | Output Frequency Range (MHz) | Pull Range (±PPM) | Output Logic         | Package |
| PL620-20     | XO Non-Multiplier           | 100–200                     | 100–200                      |                   | LVPECL, LVDS         | Die     |
| PL620-21     | XO Non-Multiplier           | 100–200                     | 100–200                      |                   | LVPECL, LVDS         | Die     |
| PL620-30     | XO Multiplier               | 32.5–130                    | 32.5–130                     |                   | LVPECL, LVDS         | Die     |
| PL620-80     | XO Multiplier               | 19–65                       | 9.5–65                       |                   | LVCMOS, LVPECL, LVDS | Die     |
| PL602-00     | XO Multiplier               | 12–25                       | 12–200                       |                   | LVCMOS               | Die     |
| PL620-00     | XO Multiplier               | 100–200                     | 100–800                      |                   | LVCMOS, LVPECL, LVDS | Die     |
| PL610 Series | OX                          | 10–60                       | 0.02–60                      |                   | LVCMOS               | Die     |
| PL610-01     | Programmable                | 10–130                      | 10–13                        |                   | LVCMOS               |         |
| PL610-32     | XO 32 kHz, with 516 Divider | 16.777216                   | 0.032768                     |                   | LVCMOS               | Die     |
| PL610-32A    | XO 32 kHz, with 516 Divider | 16.777216                   | 0.032768                     |                   | LVCMOS               | Die     |
| PL610-33     | XO 32 kHz, with 794 Divider | 26.017792                   | 0.032768                     |                   | LVCMOS               | Die     |
| PL611s-02    | Programmable                | 10–50                       | 2–200                        |                   | LVCMOS               | Die     |
| PL611s-03    | Programmable                |                             | 2–200                        |                   | LVCMOS               | Die     |
| PL611s-04    | Programmable                | 10–50                       | 2–200                        |                   | LVCMOS               | Die     |

|             |                                                               |                                      | Clock Genera                     | Clock Generators: Ultra-Low Jitter MEMS | MEMS                                              |                 |                        |                    |
|-------------|---------------------------------------------------------------|--------------------------------------|----------------------------------|-----------------------------------------|---------------------------------------------------|-----------------|------------------------|--------------------|
| Product     | Functionality                                                 | Typ Phase Jitter<br>12 kHz to 20 MHz | Input Frequency<br>Crystal (MHz) | Input Frequency<br>Reference (MHz)      | Output Frequency Range (MHz)                      | # of<br>Outputs | Output Logic           | Package Size       |
| SM802xxx    | 8 programmable ouptuts                                        | 220 fs                               | 11–30                            | 11–80                                   | 11–840                                            | up to 8         | PECL, LVDS, HCSL, CMOS | 16-44-pin QFN      |
| SM803xxx    | 12 programmable ouptuts                                       | 180 fs                               | 12–50                            | 12–850                                  | 12–850                                            | up to 12        | PECL, LVDS, HCSL, CMOS | 48-pin, 76-pin QFN |
| SM813xxx    | 12 programmable ouptuts                                       | 115 fs                               | 31.25-156.250                    | 12–850                                  | 12–850                                            | up to 12        | PECL, LVDS, HCSL, CMOS | 48-pin, 76-pin QFN |
| SM802283UMG | 8 outputs 100 MHz for PCle Gen 1, 2, 3, and 4                 | 245 fs                               | 25                               | 25                                      | 100                                               | ∞               | HCSL                   | 44-pin QFN         |
| SM802355UMG | 2 outputs 156.25 MHz                                          | 262 fs                               | 25                               |                                         | 156.25                                            | 2               |                        | 16-pin QFN         |
| SM802272UMG | 8 outputs 156.25 MHz                                          | 262 fs                               | 25                               | 25                                      | 156.25                                            | ∞               |                        | 44-pin QFN         |
| SM813005UMG | 8 outputs 156.25 MHz 150 fs Max Phase Jitter 12 KHz to 20 MHz | 105 fs                               | 31.25                            |                                         | 156.25                                            | 12              | PECL                   | 48-pin QFN         |
| SM803285UMG | 5-100 MHz 5-156.25 MHz outputs                                | 180 fs                               | 31.25                            |                                         | 100–156.25                                        | 10              | HCSL                   | 48-pin QFN         |
| MX85XXXX    | Integrated crystal, 5 programmable outputs                    | 220 fs                               | Internal                         | Internal                                | 11-840                                            | up to 5         | PECL, LVDS, HCSL, CMOS | 5 × 7              |
| MX852BB0030 | Integrated crystal, 5 HCSL outputs at 156.25 MHz              | 220 fs                               | Internal                         | Internal                                | 156.25                                            | 5               | HCSL                   | 5 × 7              |
| MX852EB0027 | Integrated crystal, 5 HCSL outputs at 100 MHz                 | 220 fs                               | Internal                         | Internal                                | 100                                               | 2               | HCSL                   | 5 × 7              |
| MX852BB0020 | Integrated crystal, 5 PECL outputs at 156.25 MHz              | 200 fs                               | Internal                         | Internal                                | 156.25                                            | 5               | HCSL                   | 5 × 7              |
| SM843256KA  | Pin-selectable frequencies for Gigabit, SAS/SATA, SONET       | 251 fs                               | 19.44–25                         |                                         | 156.25, 150, 625, 125, 312.5, 125, 311.04, 622.08 | 9               | PECL                   | 24-pin TSSOP       |
| SM844256KA  | Pin-selectable frequencies for Gigabit, SAS/SATA, SONET       | 251 fs                               | 19.44–25                         |                                         | 156.25, 150, 625, 125, 312.5, 125, 311.04, 622.08 | 9               | PECL                   | 24-pin TSSOP       |
| PL602-03    | XO Multiplier                                                 | 3 ps                                 | 12                               | 25                                      | 48–100                                            | -               | LVCMOS                 | SOP-8L, TSSOP-8L   |
| PL602-04    | XO Multiplier                                                 | 3 ps                                 | 12                               | 25                                      | 96–200                                            | -               | LVCMOS                 | SOP-8L, TSSOP-8L   |
| PL602-37    | XO Multiplier                                                 | 2.4 ps                               | 12                               | 25                                      | 0.75–800                                          | -               | LVCMOS                 | QFN-16L, TSSOP-16L |
| PL602-38    | XO Multiplier                                                 | 2.4 ps                               | 12                               | 25                                      | 0.75–800                                          | -               | LVPECL                 | QFN-16L, TSSOP-16L |
| PL602-39    | XO Multiplier                                                 | 2.4 ps                               | 12                               | 25                                      | 0.75–800                                          | -               | IVDS                   | QFN-16L, TSSOP-16L |

|         |                        |                 |                           | Clock Generators: Low-Jitter MEMS         | -Jitter MEMS       |                               |                            |
|---------|------------------------|-----------------|---------------------------|-------------------------------------------|--------------------|-------------------------------|----------------------------|
| Product | Output Frequency (MHz) | Output          | Frequency Stability (ppm) | Temperature Range (°C) Supply Voltage (V) | Supply Voltage (V) | Phase Noise (ps RMS)          | Package                    |
| DSC2311 | 2.3 to 170             | LVCMOS x2       | ±25 ppm/±50 ppm           | -55 to 125                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 2.5 × 2.0 mm 6-pin         |
| DSC2011 | 2.3 to 170             | LVCMOS x2       | ±25 ppm/±50 ppm           | -55 to 125                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2021 | 2.3 to 460             | LVPECL + LVCMOS | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2031 | 2.3 to 460             | LVDS + LVCMOS   | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2041 | 2.3 to 460             | HCSL + LVCMOS   | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | $3.2 \times 2.5$ mm 14-pin |
| DSC2022 | 2.3 to 460             | LVPECL x2       | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 × 2.5 mm 14-pin        |
| DSC2032 | 2.3 to 460             | LVDS + LVPECL   | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2042 | 2.3 to 460             | HCSL + LVPECL   | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 × 2.5 mm 14-pin        |
| DSC2033 | 2.3 to 460             | LVDS x2         | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2043 | 2.3 to 460             | HSCL + LVDS     | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
| DSC2044 | 2.3 to 460             | HCSL x2         | ±25 ppm/±50 ppm           | -40 to 105                                | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin        |
|         |                        |                 |                           |                                           |                    |                               |                            |

|             |                        |                                        |                                            | Clock Generators: Low-Jitter MEMS    | -Jitter MEMS       |                               |                     |
|-------------|------------------------|----------------------------------------|--------------------------------------------|--------------------------------------|--------------------|-------------------------------|---------------------|
| Product     | Output Frequency (MHz) | Output                                 | Frequency Stability (ppm)                  | Temperature Range (°C)               | Supply Voltage (V) | Phase Noise (ps RMS)          | Package             |
| DSC2111     | 2.3 to 460             | LVCMOS x2                              | ±25 ppm/±50 ppm                            | -55 to 125                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2122     | 2.3 to 460             | LVPECL x2                              | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2133     | 2.3 to 460             | LVDS x2                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2144     | 2.3 to 460             | HCSL x2                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2211     | 2.3 to 460             | LVCMOS x2                              | ±25 ppm/±50 ppm                            | -55 to 125                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2222     | 2.3 to 460             | LVPECL x2                              | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2233     | 2.3 to 460             | LVDS x2                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC2244     | 2.3 to 460             | HCSL x2                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 3.2 x 2.5 mm 14-pin |
| DSC400-1111 | 2.3 to 460             | LVCMOS x4                              | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 5.0 × 3.2 mm 20-pin |
| DSC400-2222 | 2.3 to 460             | LVPECL x4                              | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 5.0 × 3.2 mm 20-pin |
| DSC400-3333 | 2.3 to 460             | LVDS x4                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 5.0 x 3.2 mm 20-pin |
| DSC400-4444 | 2.3 to 460             | HCSL x4                                | ±25 ppm/±50 ppm                            | -40 to 105                           | 2.25 to 3.63       | 0.3 (200k-20M), 1.7 (12k-20M) | 5.0 x 3.2 mm 20-pin |
|             |                        |                                        |                                            | Clock Generation: Low Power          | ow Power           |                               |                     |
| Product     | Function               | Input<br>Frequency<br>Crystal<br>(MHz) | Input Frequency Outpur Reference Ran (MHz) | t Frequency # of<br>ge (MHz) Outputs |                    | Current                       | Voltage Package     |
|             |                        |                                        |                                            |                                      |                    |                               |                     |

|           |                                                |                                        |                                          |                                 | Clock Ger       | Clock Generation: Low Power                                                         |             |                    |
|-----------|------------------------------------------------|----------------------------------------|------------------------------------------|---------------------------------|-----------------|-------------------------------------------------------------------------------------|-------------|--------------------|
| Product   | Function                                       | Input<br>Frequency<br>Crystal<br>(MHz) | Input<br>Frequency<br>Reference<br>(MHz) | Output Frequency<br>Range (MHz) | # of<br>Outputs | Current                                                                             | Voltage     | Package            |
| PL610-01  | XO, Programmable 6-bit Odd/Even Divider        | 10-130                                 | 1–130                                    | 0.16-130                        | 22              | V <sub>DD</sub> = 1.8V, 26 MHz, Load = 15 pF, 1.2 mA                                | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL610-32  | XO 32 kHz, with 512 Divider                    | 10-40                                  | 32.768 KHz                               | 0.0195-0.0781                   | _               | Vbb = 1.8V, 32.768 kHz output, CL = 15 pF, 0.2 mA                                   | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611-01  | Programmable, OE, or FSEL, or CLK2             | 10-30                                  | 1-200                                    | 1–200                           | V               | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA                           | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-30  | Programmable, SE or Diff                       | 10-30                                  | 1–200                                    | 5-400                           | ₩.              | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA                           | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-31  | Programmable, SE or Diff with Long Divider     | 10-30                                  | 1–200                                    | 5-200                           | Š               | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA                           | 2.50, 3.30  | SOP-8L             |
| PL611s-02 | Programmable, OE, PDB, FSEL, or CLK2           | 10-50                                  | 1-200                                    | 2–200                           | 8               | Vpp = 1.8V, 30 MHz, Load = 15 pF, 2.1 mA                                            | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611s-18 | Programmable, Very Low-Power                   | 10-50                                  | 1-125                                    | 0.5-125                         | 2               | Vpp = 1.8V, 27 MHz, CLK = 032.768 KHz, CLK1 = 27 MHz, Load = 5 pF, 0.9 mA           | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611s-19 | Programmable, Ultra Low-Power, Reference Input |                                        | 1–125                                    | 0.5–125                         | ζ,              | Vpp = 1.8V, 32 kHz, load = 15 pF                                                    | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL613-01  | Programmable, OE, PDB, FSEL, or CLK2           | 10-40                                  | 10-200                                   | 1–200                           | &<br>%          | Vpp = 1.8V, all 8 outputs @ 20 MHz, No load, 9.5mA                                  | 1.8V ~ 3.3V | QFN-16L, TSSOP-16L |
| PL613-21  | Programmable, PDB, Varying Voltage on Outputs  | 10-40                                  | 10-200                                   | 0.032-125                       | 54              | Vpp = 1.8V, CLK2,3,4 outputs at 40 MHz, CLK1 output at 32.768 kHz, No Load., 4.7 mA | 1.8V ~ 3.3V | QFN-16L, TSSOP-16L |
| PL611-01  | Programmable, OE, or FSEL, or CLK2             | 10-30                                  | 1-200                                    | 1–200                           | V               | Vpp = 3.3V, 10 MHz, load = 15 pF                                                    | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-30  | Programmable, SE or Diff                       | 10-30                                  | 1-200                                    | 5-400                           | S,              | Vpp = 3.3V, 10 MHz, load = 15 pF                                                    | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-31  | Programmable, SE or Diff with Long Divider     | 10-30                                  | 1-200                                    | 5-200                           | S,              | Vpp = 3.3V, 10 MHz, load = 15 pF                                                    | 2.5V, 3.3V  | SOP-8L             |

| PL610-01  | XO, Programmable 6-bit Odd/Even Divider       | oit Odd/Even Divider      | 10-130 | 1-130            | 0.16-130      | Ŋ                             | $V_{DD} = 1.8V, 2$                                                                  | Vpp = 1.8V, 26 MHz, Load = 15 pF, 1.2 mA                  | nA                              | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
|-----------|-----------------------------------------------|---------------------------|--------|------------------|---------------|-------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|-------------|--------------------|
| PL610-32  | XO 32 KHz, with 512 Divider                   | հ 512 Divider             | 10-40  | 32.768 KHz       | 0.0195-0.0781 | 1                             | Vpp = 1.8V, 32.76                                                                   | Vpp = 1.8V, 32.768  kHz output, $CL = 15  pF$ , $0.2  mA$ | 3.2 mA                          | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611-01  | Programmable, OE, or FSEL, or CLK2            | or FSEL, or CLK2          | 10-30  | 1–200            | 1–200         | ₹3                            | At CLK0 = CLK1, 10 N                                                                | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA | slock, 15 mA                    | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-30  | Programmable, SE or Diff                      | e, SE or Diff             | 10-30  | 1–200            | 5-400         | 53                            | At CLK0 = CLK1, 10 N                                                                | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA | slock, 15 mA                    | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-31  | Programmable, SE or Diff with Long Divider    | Diff with Long Divider    | 10-30  | 1-200            | 2-200         | 83                            | At CLK0 = CLK1, 10 N                                                                | At CLK0 = CLK1, 10 MHz, load = 15 pF on each clock, 15 mA | slock, 15 mA                    | 2.5V, 3.3V  | SOP-8L             |
| PL611s-02 | Programmable, OE, PDB, FSEL, or CLK2          | 'DB, FSEL, or CLK2        | 10-50  | 1–200            | 2–200         | Ŋ                             | Vpp = 1.8V, 3                                                                       | Vpp = 1.8V, 30 MHz, Load = 15 pF, 2.1 mA                  | nA                              | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611s-18 | Programmable, Very Low-Power                  | ery Low-Power             | 10-50  | 1–125            | 0.5-125       | \$2                           | Vpp = 1.8V, 27 MHz, CLK = 032.768 kHz, CLK1 = 27 MHz, Load = 5 pF, 0.9 mA           | 2.768 KHz, CLK1 = 27 MHz,                                 | Load = 5 pF, 0.9 mA             | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL611s-19 | Programmable, Ultra Low-Power, Reference Inpu | Power, Reference Input    |        | 1–125            | 0.5-125       | ₹                             | Vpp = 1                                                                             | Vpb = 1.8V, 32 kHz, load = 15 pF                          |                                 | 1.8V ~ 3.3V | DFN-6L, SOT23-6L   |
| PL613-01  | Programmable, OE, PDB, FSEL, or CLK2          | DB, FSEL, or CLK2         | 10-40  | 10–200           | 1–200         | 87                            | Vpp = 1.8V, all 8 c                                                                 | Vpb = 1.8V, all 8 outputs @ 20 MHz, No load, 9.5mA        | 9.5mA                           | 1.8V ~ 3.3V | QFN-16L, TSSOP-16L |
| PL613-21  | Programmable, PDB, Varying Voltage on Outputs | ing Voltage on Outputs    | 10-40  | 10-200           | 0.032-125     | ≤4 Vpp =                      | Vpp = 1.8V, CLK2,3,4 outputs at 40 MHz, CLK1 output at 32.768 kHz, No Load., 4.7 mA | MHz, CLK1 output at 32.76                                 | 38 KHz, No Load., 4.7 mA        | 1.8V ~ 3.3V | QFN-16L, TSSOP-16L |
| PL611-01  | Programmable, OE, or FSEL, or CLK2            | or FSEL, or CLK2          | 10-30  | 1-200            | 1–200         | ₹3                            | $V_{DD} = 3$ .                                                                      | Vpp = 3.3V, 10 MHz, load = 15 pF                          |                                 | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-30  | Programmable, SE or Diff                      | e, SE or Diff             | 10-30  | 1–200            | 5-400         | V,                            | Vpp = 3.                                                                            | Vpp = 3.3V, 10 MHz, load = 15 pF                          |                                 | 2.5V, 3.3V  | SOP-8L, SOT23-6L   |
| PL611-31  | Programmable, SE or Diff with Long Divider    | Diff with Long Divider    | 10-30  | 1–200            | 5-200         | 8                             | $V_{DD} = 3$ .                                                                      | Vpb = 3.3V, 10 MHz, load = 15 pF                          |                                 | 2.5V, 3.3V  | SOP-8L             |
|           |                                               |                           |        |                  |               | Clock Generation: PCIe Clocks | : PCIe Clocks                                                                       |                                                           |                                 |             |                    |
| Product   | Description                                   | Input Type                |        | Input Freq (MHz) | Multiplier    | Output Freq (MHz)             | # of Outputs                                                                        | Voltage                                                   | Spread Spectrum (EMI Reduction) | Reduction)  | Package            |
| PL602-21  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 4             | 100                           | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602-22  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 2             | 125                           | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602-23  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 80            | 200                           | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602-26  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | -             | 25                            | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602-27  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 10            | 250                           | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602-15  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 6.25          | 156.25                        | -                                                                                   | 2.5V, 3.3V                                                |                                 |             | SOP-8L, SOT23-6L   |
| PL602031  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | -             | 25                            | 2                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-163×3          |
| PL602032  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 4             | 100                           | 2                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-163×3          |
| PL602033  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 2             | 125                           | 2                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-163 x 3        |
| PL602034  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 80            | 200                           | Ø                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-163×3          |
| PL602041  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 4, 5, 8    | 25, 100, 125, 200             | 4                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-24 4 x 4       |
| PL607041  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 4, 5, 8    | 25, 100, 125, 200             | 4                                                                                   | 2.5V, 3.3V                                                | Yes                             |             | QFN-24 4 x 4       |
| PL602081  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 4, 8       | 25, 100, 200                  | 80                                                                                  | 2.5V, 3.3V                                                |                                 |             | QFN-44 7 × 7       |
| PL602082  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 5, 10      | 25, 125, 250                  | 80                                                                                  | 2.5V, 3.3V                                                |                                 |             | QFN-447×7          |
| PL607081  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 4, 8       | 25, 100, 200                  | 80                                                                                  | 2.5V, 3.3V                                                | Yes                             |             | QFN-44 7 × 7       |
| PL607082  | PCIe CLK Gen1/2/3                             | XTAL or Ref Input         |        | 25               | 1, 5, 10      | 25, 125, 250                  | 80                                                                                  | 2.5V, 3.3V                                                | Yes                             |             | QFN-447×7          |
| DSC557-03 | PCIe CLK Gen1/2/3                             | Integrated MEMS Resonator | nator  | ı                | I             | 100-460                       | 2                                                                                   | 2.5V, 3.3V                                                |                                 |             | TSSOP-20 5.1 x 6.8 |
| DSC557-04 | PCIe CLK Gen1/2/3                             | Integrated MEMS Resonator | nator  | ı                | I             | 100-460                       | က                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-20, 5 x 3.2    |
| DSC557-05 | PCIe CLK Gen1/2/3                             | Integrated MEMS Resonator | nator  | 1                | 1             | 100-460                       | 4                                                                                   | 2.5V, 3.3V                                                |                                 |             | QFN-20, 5 x 3.2    |

|                      |                           |                      |                                                     |                  |                           |                                      |                           |               | Program        | maple Pin(s)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
|----------------------|---------------------------|----------------------|-----------------------------------------------------|------------------|---------------------------|--------------------------------------|---------------------------|---------------|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|
| Product              | Description               | PLIs                 | Input Frequency (MHz) Crystal                       | Input Frequency  | (MHz) Reference           | Output Frequency (MHz)               | # of Outputs              | Voltage       | PDB OF         | DB OF CSEL CLK        | Output Logic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oaic             | Package                 |
| PL671-01             |                           |                      | 10–40                                               | -                | 00                        |                                      | 83                        | 2.5V, 3.3V    | >              |                       | TNCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOP-8L, SOT23-6L        |
| PL671-02             |                           | -                    |                                                     | +                | 1–200                     | 1–200                                |                           | 2.5V, 3.3V    | >              | <i>&gt;</i>           | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOT23-6L                |
| PL671-25             | EMI Reduction             | _                    | 10-40                                               | -                | 1–200                     | 1–200                                | 2                         | 2.5V, 3.3V    | >              | >                     | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOP-8L                  |
| PL671-29             | EMI Reduction 1           | _                    | 10-40                                               | -                | 1–200                     | 1–200                                | -                         | 2.5V, 3.3V    |                | >                     | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOP-8L                  |
| PL671-30             | EMI Reduction 1           | _                    |                                                     | -                | 1–200                     | 1–200                                | £                         | 2.50, 3.30    |                | >                     | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOP-8L                  |
| PL671-33             | EMI Reduction             | _                    | 10–40                                               | 1                | 1–200                     | 1–200                                | s2                        | 2.50, 3.30    | >              | >                     | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOP-8L                  |
| PL902XXX             | JitterBlocker 1           | _                    | 10–200                                              | -                | 1–200                     | 1.25–200                             | ≥3                        | 2.50, 3.30    | >              | >                     | LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC               | SOT23-6L                |
| PL903XXX             | JitterBlocker 1           | -                    |                                                     | 21               | 12–840                    | 12-840                               | -                         | 2.5V, 3.3V    | >              |                       | LVPECL, LVDS, HCSL, LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSL, LVCMOS      | QFN-24                  |
| PL904XXX             | JitterBlocker 1           | _                    |                                                     | 21               | 12–850                    | 12–850                               | 2                         | 2.50, 3.30    | >              |                       | LVPECL, LVDS, HCSL, LVCMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSL, LVCMOS      | QFN-32                  |
|                      |                           |                      |                                                     |                  | Clock G                   | Clock Generation: Clock Synthesizers | ers                       |               |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| Product              | Fuctionality              | lity                 | # of Outputs                                        | Output Logic     | Frequency Range           | Input Type                           | Voltage                   | Temp          | Temp Range     | Package               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OE               | CSEL                    |
| SY87729LHY           | Configruable any rate CLK | rate CLK             | -                                                   | PECL             | 10-365 MHz                | 27 MHz ref                           | 3.3V                      | -45°C to      | -45°C to +85°C | 32-pin TQFP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes              | Yes                     |
| SY87739LHY           | Configruable any rate CLK | rate CLK             | -                                                   | PECL             | 10-792 MHz                | 27 MHz ref                           | 3.3V                      | -45°C to      | -45°C to +85°C | 32-pin TQFP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes              | Yes                     |
| SY89421VZH           | Configruable any rate CLK | , rate CLK           | -                                                   | PECL             | 30-1120 MHz               | 30-560 MHz ref                       | 3.3V, 5V                  | -45°C to      | -45°C to +85°C | 32-pin TQFP           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes              | Yes                     |
| SY89537LHY           | Configruable any rate CLK | rate CLK             | 7                                                   | PECL, LVDS       | 87-700 MHz                | 14-18 MHz crystal                    | 3.3V                      | -45°C t       | -45°C to +85°C | 44-pin QFN            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes              | Yes                     |
|                      |                           |                      |                                                     |                  | Ö                         | Clock Generation: VCXOs              |                           |               |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| Product              |                           | Function             | Input Frequency Range (MHz)                         | nge (MHz) Output | out Frequency Range (MHz) | MHz) Linearity                       | Pull Range (±             | (±PPM)        | Outpu          | Output Logic          | Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | Package                 |
| PL500-15             | VCXO, N                   | VCXO, Non-Multiplier | er 16–36                                            |                  | 1-4                       | %9>                                  | 150                       |               | INCI           | LVCMOS                | 2.50, 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die, SC          | Die, SOT23-6L, SOP-8L   |
| PL500-16             | VCXO, N                   | VCXO, Non-Multiplier | er 16–36                                            |                  | 4-18                      | %5>                                  | 150                       |               | INCI           | LVCMOS                | 2.50, 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die, S¢          | Die, SOT23-6L, SOP-8L   |
| PL500-17             | VCXO, N                   | VCXO, Non-Multiplier |                                                     |                  | 17–36                     | %5>                                  | 150                       |               | INC            | LVCMOS                | 2.50, 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die, SC          | Die, SOT23-6L, SOP-8L   |
| PL500-37             | VCXO, N                   | VCXO, Non-Multiplier |                                                     |                  | 36–130                    | <5%                                  | 150                       |               | LVC            | LVCMOS                | 2.50, 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Die, St          | Die, SOT23-6L, SOP-8L   |
| PL520-20             | VCXO, N                   | VCXO, Non-Multiplier | er 100–200<br>er 65–130                             |                  | 100                       | % %<br>V \                           | 001                       |               | VCIMIOS, EX    | LVCMOS, LVPECL, LVDS  | 2.50, 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Die Die                 |
| PL520-80             | VCXO, N                   | VCXO, Non-Multiplier |                                                     |                  | 0.00                      | %2><br><2%                           | 100                       |               | LVPECL         | LVPECL, LVDS          | 2.5V, 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Die                     |
| PL502-00             | VCXO                      | VCXO Multiplier      | 12–25                                               |                  | 12–200                    | <10%                                 | 250                       |               | INCI           | LVCMOS                | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Die                     |
| PL502-02             | NOXO                      | VCXO Multiplier      | 12–25                                               |                  | 24–50                     | <10%                                 | 250                       |               | - INC          | LVCMOS                | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | SOP-8L                  |
| PL502-03             | NCXC                      | VCXO Multiplier      | 12–25                                               |                  | 48–100                    | <10%                                 | 250                       |               | INC            | LVCMOS                | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | SOP-8L                  |
| PL502-04             | NOXO                      | VCXO Multiplier      | 12–25                                               |                  | 96-200                    | <10%                                 | 250                       |               | LVCMOS         | MOS                   | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | SOP-8L                  |
| PL502-30             | ACXC                      | VCXO Multiplier      | 12-25                                               |                  | 0.75-800                  | %10×                                 | 150                       |               | VCMOS, LY      | LVCIMOS, LVPECL, LVDS | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Die Toop 12             |
| PL502-35<br>PL502-35 |                           | VCXO Multiplier      | 12-25                                               |                  | 0.75-800                  | %01>                                 | 150                       |               | LVPECL         | LVPECL 1VPC           | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z Z              | OFN-16L, ISSOP-16L      |
| PL520-00             |                           | VCXO Multiplier      | 100-200                                             |                  | 100-1000                  | <10%                                 | 6 6                       |               | VOMOS, LV      | LVCMOS, LVPECL, LVDS  | \$0.0<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00<br>\0.00 | 3                | Die Die                 |
| PL565-08             | VCXO                      | VCXO Multiplier      | 150-200                                             |                  | 008-009                   | %9×                                  | 120                       |               | LVPECL         | ECL                   | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Die, QFN-16L            |
| PL560-08             | VCXO                      | VCXO Multiplier      | 62.5–150                                            |                  | 250-600                   | <2%                                  | 120                       |               | LVPECL         |                       | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Die, QFN-16L            |
| PL565-68             | VCXO                      | VCXO Multiplier      | 62.5–160                                            |                  | 250-320                   | <5%                                  | 120                       |               | LVPECL         |                       | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | Die, QFN-16L            |
| PL565-37             | VCXO                      | VCXO Multiplier      | 30-62.5                                             |                  | 120–250                   | <2%                                  | 120                       |               | N              | LVCMOS                | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die, QFI         | Die, QFN-16L, TSSOP-16L |
| PL565-38             | NCXO                      | VCXO Multiplier      | 30-62.5                                             |                  | 120–250                   | ×2>                                  | 120                       |               | LVPECL         | ECL                   | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die, QFI         | Die, QFN-16L, TSSOP-16L |
| PL560-47             | NOXO                      | VCXO Multiplier      | 30–80                                               |                  | 60–160                    | <5%                                  | 120                       |               | NO.            | LVCMOS                | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die, OH          | Die, QFN-16L, TSSOP-16L |
| PL360-48             | NOXON                     | VCAO Muitiplier      | 08-05                                               |                  | 091-09                    | %G> :                                | OZI                       |               | IN THE C       | 7                     | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Die, OH          | DIE, QRN-18L, 1350P-18L |
|                      |                           |                      |                                                     |                  |                           | Clock Generation: Timers             |                           |               |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |
| Product              |                           | Description          |                                                     | Frequency Range  | Vcc (Min) (V)             | Vcc (Max) (V)                        | Supply Current (Max) (µA) | nt (Max) (µA) |                |                       | Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | age              |                         |
| MIC1555Y             | IttyBitty® RC Astab       | and One              | IttyBitty® RC Astable and One-Shot Timer/Oscillator | 0.1 Hz to 5 MHz  | 2.7                       | 18                                   | 420                       | 30            |                | 5-Pin                 | 5-Pin Thin SOT-23, 5-Pin SOT-23, 10-Pin UTDFN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SOT-23, 10-Pin L | JTDFN                   |
|                      | ,                         |                      |                                                     |                  |                           |                                      |                           |               |                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                         |

|            |              |                                         | Clock and Data Distribution: Fanour | n: Fanout          |                              |                       |                   |
|------------|--------------|-----------------------------------------|-------------------------------------|--------------------|------------------------------|-----------------------|-------------------|
| Product    | Input/Output | Input Type                              | Output Type                         | Supply Voltage (V) | Output Frequency (Max) (GHz) | Fail-Safe Input (FSI) | Package           |
| PL123-02N  | 1:2          | LVCMOS                                  | LVCMOS                              | 1.8/2.5/3.3        | 0.2                          | 1                     | DFN-6L            |
| PL123-05N  | 1:5          | LVCMOS                                  | LVCMOS                              | 1.8/2.5/3.3        | 0.134                        | 1                     | SOP-8L            |
| PL123-09N  | 1:9          | LVCMOS                                  | LVCMOS                              | 1.8/2.5/3.3        | 0.134                        | 1                     | SOP-16L           |
| PL133-27   | 1:2          | LVCMOS                                  | LVCMOS                              | 1.8/2.5/3.3        | 0.15                         | ı                     | DFN-6L            |
| PL133-37   | 1:3          | LVCMOS                                  | LVCMOS                              | 1.8/2.5/3.3        | 0.15                         | 1                     | SOT23-6L          |
| PL133-47   | 1:4          | LVCMOS                                  | LVCMOS                              | 2.5/3.3            | 0.15                         | 1                     | SOP-8L            |
| PL133-67   | 1:6          | LVCMOS                                  | LVCMOS                              | 2.5/3.3            | 0.15                         | 1                     | TSSOP-16L         |
| PL133-97   | 1:9          | LVCMOS                                  | LVCMOS                              | 2.5/3.3            | 0.15                         | 1                     | QFN-16L           |
| PL135-27   | 1:2          | XTAL                                    | LVCMOS                              | 1.8/2.5/3.3        | 0.04                         | ı                     | DFN-6L            |
| PL135-37   | 1:3          | XTAL                                    | LVCMOS                              | 1.8/2.5/3.3        | 0.04                         | 1                     | SOP-8L            |
| PL135-47   | 1:4          | XTAL                                    | LVCMOS                              | 1.8/2.5/3.3        | 0.04                         | ı                     | QFN-16L/TSSOP-16L |
| PL135-67   | 1:6          | XTAL                                    | LVCMOS                              | 1.8/2.5/3.3        | 0.04                         | 1                     | QFN-16L/TSSOP-16L |
| PL138-48   | 1:4          | LVDS/LVPECL/LVHSTL/SSTL/HCSL/CML/LVCMOS | LVPECL                              | 2.5/3.3            | 0.8                          | 1                     | TSSOP-20L/QFN-16L |
| SY58608U   | 1:2          | ANY                                     | LVDS                                | 2.5                | 3 (typ)                      | yes                   | QFN-16L           |
| SY58606U   | 1:2          | ANY                                     | OML                                 | 2.5/3.3            | 3 (typ)                      | yes                   | QFN-16L           |
| SY58607U   | 1:2          | ANY                                     | LVPEOL                              | 2.5/3.3            | 3 (typ)                      | yes                   | QFN-16L           |
| SY89311U   | 1:2          | PECL/LVPECL/ECL                         | PECL/LVPECL/ECL                     | 2.5/3.3/5          | 3 (min)                      | ı                     | MLF-8L            |
| SY89851U   | 1:2          | ANY                                     | LVPEOL                              | 2.5/3.3            | 4 (typ)                      | 1                     | QFN-16L           |
| SY54011R   | 1:2          | ANY                                     | OML                                 | 2.5                | 3.2 (min)                    | ı                     | MLF-16L           |
| SY54020AR  | 1:4          | ANY                                     | CML                                 | 2.5                | 3.2 (min)                    | 1                     | MLF-16L           |
| SY54020R   | 1:4          | ANY                                     | CML                                 | 2.5                | 2.5 (min)                    | yes                   | MLF-16L           |
| SY56011R   | 1:2          | ANY                                     | CML                                 | 2.5                | 4.5 (min)                    | 1                     | QFN-16L           |
| SY58012U   | 1:2          | ANY                                     | LVPECL                              | 2.5/3.3            | 5 (min)                      | I                     | MLF-16L           |
| SY58013U   | 1:2          | ANY                                     | RS-LVPECL                           | 2.5/3.3            | 6 (min)                      | 1                     | QFN-16L           |
| SY58011U   | 1:2          | ANY                                     | CML                                 | 2.5/3.3            | 8 (typ)                      | ı                     | QFN-16L           |
| SY89843U   | 2:1:2        | ANY                                     | LVPECL                              | 2.5/3.3            | 2 (typ)                      | yes                   | QFN-24L           |
| SY89844U   | 2:1:2        | ANY                                     | LVDS                                | 2.5                | 2 (typ)                      | yes                   | QFN-24L           |
| SY89473U   | 2:1:2        | ANY                                     | LVPECL                              | 2.5/3.3            | 3 (typ)                      | 1                     | QFN-24L           |
| SY89474U   | 2:1:2        | ANY                                     | LVDS                                | 2.5                | 4 (typ)                      | 1                     | QFN-24L           |
| SY89645L   | 1:4          | LVCMOS/LVTTL                            | SOAT                                | 3.3                | 0.65 (min)                   | 1                     | TSSOP-20L         |
| SY89831U   | 1:4          | ANY                                     | LVPECL                              | 2.5/3.3            | 2.5 (typ)                    | 1                     | MLF-16L           |
| SY89832U   | 1:4          | ANY                                     | SOAT                                | 2.5                | 2.5 (typ)                    | 1                     | QFN-16L           |
| SY89833AL  | 1:4          | ANY                                     | LVDS                                | 3.3                | 2 (typ)                      | ı                     | QFN-16L           |
| SY89833L   | 1:4          | ANY                                     | LVDS                                | 9.3                | 2 (typ)                      | ı                     | QFN-16L           |
| SY89854U   | 1:4          | ANY                                     | LVPECL                              | 2.5/3.3            | 3.5 (typ)                    | I                     | QFN-16L           |
| SY58021U   | 1:4          | ANY                                     | LVPECL                              | 2.5/3.3            | 4 (min)                      | 1                     | QFN-16L           |
| SY56020R   | 1:4          | ANY                                     | CML                                 | 2.5                | 4.5 (min)                    | I                     | QFN-16L           |
| SY58022U   | 1:4          | ANY                                     | RS-LVPECL                           | 2.5/3.3            | 5.5 (min)                    | I                     | QFN-16L           |
| SY58020U   | 1:4          | ANY                                     | CML                                 | 2.5/3.3            | 6 (min)                      | 1                     | QFN-16L           |
| SY898535XL | 2:1:4        | XTAL/LVCMOS/LVTTL                       | LVPECL                              | 3.3                | 0.24                         | 1                     | TSSOP-20L         |
| SY898533L  | 2:1:4        | LVDS/LVPECL/CML/LVHSTL/SSTL/HCSL        | LVPEOL                              | 3.3                | 0.65 (min)                   | I                     | TSSOP-20L         |
| SY89834U   | 2:1:4        | LVTT/CMOS                               | LVPECL                              | 2.5/3.3            | 1 (min)                      | ı                     | MLF-16L           |
| SY89830U   | 2:1:4        | LVECL/PECL/LVPECL/HSTL                  | ECL/PECL/LVPECL/LVECL               | 2.5/3.3/5          | 2.5 (min)                    | ı                     | TSSOP-16L         |
| SY89846U   | 2:1:5        | ANY                                     | LVPECL                              | 2.5/3.3            | 2 (typ)                      | yes                   | QFN-32L           |
| SY89847U   | 2:1:5        | ANY                                     | LVDS                                | 2.5                | 2 (typ)                      | yes                   | QFN-32L           |
| SY89856U   | 2:1:6        | ANY                                     | LVPECL                              | 2.5/3.3            | 3 (typ)                      | 1                     | QFN-32L           |
| SY58035U   | 2:1:6        | ANY                                     | LVPECL                              | 2.5/3.3            | 5.5 (typ)                    | 1                     | MLF-32L           |
| SY58034U   | 2:1:6        | ANY                                     | CML                                 | 2.5/3.3            | 7.5 (typ)                    | 1                     | QFN-32L           |
| SY58036U   | 2:1:6        | ANY                                     | RS-LVPECL                           | 2.5/3.3            | 7 (typ)                      | 1                     | MLF-32L           |
| SY89200U   | 1:8          | ANY                                     | LVDS                                | 2.5                | 1.5 (min)                    | I                     | QFN-32L           |

|               |              |                              | Clock and Data Distribution: Fanout | n: Fanout          |                              |                       |                  |
|---------------|--------------|------------------------------|-------------------------------------|--------------------|------------------------------|-----------------------|------------------|
| Product       | Input/Output | Input Type                   | Output Type                         | Supply Voltage (V) | Output Frequency (Max) (GHz) | Fail-Safe Input (FSI) | Package          |
| SY89202U      | 1:8          | ANY                          | LVPECL                              | 2.5/3.3            | 1.5 (min)                    | 1                     | QFN-32L          |
| SY89858U      | 1:8          | ANY                          | LVPECL                              | 2.5/3.3            | 3 (typ)                      | ı                     | QFN-32L          |
| SY58032U      | 1:8          | ANY                          | LVPECL                              | 2.5/3.3            | 4 (min)                      | 1                     | MLF-32L          |
| SY58031U      | 1:8          | ANY                          | CML                                 | 2.5/3.3            | 6 (min)                      | 1                     | QFN-32L          |
| SY58033U      | 1:8          | ANY                          | RS-LVPECL                           | 2.5/3.3            | 5.5 (min)                    | 1                     | QFN-32L          |
| SY89837U      | 2:1:8        | ANY                          | LVPECL                              | 2.5/3.3            | 2 (typ)                      | 1                     | QFN-32L          |
| SY89838U      | 2:1:8        | ANY                          | LVDS                                | 2.5                | 2 (typ)                      | ı                     | QFN-32L          |
| SY89809AL     | 2:1:9        | LVPECL/HSTL                  | LVPECL/HSTL                         | 1.8/3.3            | 0.75                         | 1                     | TQFP-32L         |
| SY89828L      | Dual 2:1:10  | LVPECL/LVDS                  | LVDS                                | 3.3                | 1 (min)                      | 1                     | TQFP-64L         |
| SY89829U      | Dual 2:1:10  | LVPECL/LVDS                  | LVPECL                              | 2.5/3.3            | 2 (min)                      | 1                     | TQFP-64L         |
| SY89464U      | 2:1:10       | ANY                          | LVPECL                              | 2.5/3.3            | 2 (typ)                      | Yes                   | QFN-44L          |
| SY89465U      | 2:1:10       | ANY                          | LVDS                                | 2.5                | 2 (typ)                      | Yes                   | QFN-44L          |
| SY89112U      | 2:1:12       | ANY                          | LVPECL                              | 2.5/3.3            | 3 (typ)                      | 1                     | QFN-44L          |
| SY89113U      | 2:1:12       | ANY                          | LVDS                                | 2.5                | 1 (min)                      | 1                     | QFN-44L          |
| SY898530U     | 1:16         | LVDS/LVPECL/LVHSTL/SSTL/HCSL | LVPECL                              | 2.5/3.3            | 0.5 (min)                    | 1                     | TQFP-48L         |
| SY89467U      | 2:1:20       | ANY                          | LVPECL                              | 2.5/3.3            | 2 (typ)                      | Yes                   | TQFP-64L         |
| SY89468U      | 2:1:20       | ANY                          | LVDS                                | 2.5                | 1.5 (typ)                    | Yes                   | TQFP-64L         |
| SY89825U      | 2:1:22       | LVPECL/LVDS                  | LVPECL                              | 2.5/3.3            | 2 (min)                      | 1                     | TQFP-64L         |
| SY89826L      | 2:1:22       | LVPECL/LVDS                  | SUA                                 | 3.3                | 1 (min)                      | I                     | TQFP-64L         |
| SY897132L     |              | ANY                          | LVPECL                              | 3.3                | ı                            | ı                     | TSSOP-28L        |
| SY10/100EL11V | 1:2          | PECL                         | PECL                                | 3.3/5              | 0.75 (min)                   | ı                     | SOIC-8L          |
| SY100EP14U    | 2:1:5        | PEOL/LVPECL/ECL/HSTL         | PECL/LVPECL/ECL                     | 2.5/3.3/5          | 2 (min)                      | 1                     | TSSOP-20L        |
| SY100EL14V    | 2:1:5        | PECL                         | PECL                                | 3.3/5              | ı                            | 1                     | TSSOP-20L        |
| SY100EP15V    | 2:1:4        | PEOL/LVPECL/ECL/HSTL         | PECL/LVPECL/ECL                     | 3.3/5              | 2.5 (min)                    | 1                     | TSSOP-16L        |
| SY100EL15L    | 2:1:4        | ECL/PECL                     | ECL/PECL                            | 3.3                | I                            | 1                     | SOIC-16L         |
| SY10/100H641L | 1:9          | LVPECL                       | Ę                                   | 3.3                | ı                            | 1                     | PLCC-28L         |
| SY100EP111U   | 2:1:10       | LVPECULVECUHSTL              | LVPECL/LVECL                        | 2.5/3.3            | 3 (min)                      | I                     | TQFP-32L         |
| SY10/100EP11U | 1:2          | LVPECL/ECL/VECL              | PECL/LVPECL/ECL/LVECL               | 2.5/3.3/5          | 3 (min)                      | ı                     | SOIC-8L, MSOP-8L |
| SY100E310L    | 2:1:8        | LVPECL/ECL                   | LVPECL/ECL                          | 3.3                | 0.8 (typ)                    | I                     | PLCC-28L         |

|           |                    | Clock                        | Clock and Data Distribution: Zero Delay Buffers | Buffers            |                                  |                    |
|-----------|--------------------|------------------------------|-------------------------------------------------|--------------------|----------------------------------|--------------------|
| Product   | No. of Outputs     | Output Frequency (Max) (MHz) | Output Type                                     | Supply Voltage (V) | Within Device Skew<br>(Max) (ps) | Package Options    |
| PL102-10  | ဇ                  | 170                          | TACMOS                                          | 2.5/3.3            | 200                              | SOP-8L, SOT23-6L   |
| PL123-05  | S                  | 134                          | LVCMOS                                          | 3.3                | 250                              | SOP-8L             |
| PL123-09  | Ō                  | 134                          | LVCMOS                                          | 3.3                | 250                              | TSSOP-16L, SOP-16L |
| PL123E-05 | S                  | 220                          | LVCMOS                                          | 2.5/3.3            | 100                              | SOP-8L             |
| PL123E-09 | Ō                  | 220                          | LVCMOS                                          | 2.5/3.3            | 100                              | TSSOP-16L, SOP-16L |
| PL123S-05 | S                  | 134                          | LVCMOS                                          | 8.8                | 250                              | SOP-8L             |
| PL123S-09 | Ō                  | 134                          | LVCMOS                                          | 3.3                | 250                              | TSSOP-16L, SOP-16L |
| MDB1900ZB | 19                 | 250                          | HCSL                                            | 2.5/3.3            | 35                               | QFN-72L            |
| MDB1900ZC | 19                 | 250                          | HCSL                                            | 2.5/3.3            | 35                               | QFN-72L            |
|           |                    | Clo                          | Clock and Data Distribution: PCI Buffers        | ers                |                                  |                    |
| Product   | Input/Output Ratio | Input Type                   | Output Type                                     | Supply Voltage (V) | Output Frequency (Max) (GHz)     | Package Options    |
| SY75572L  | 1:2                | HCSL/LVDS                    | HCSL/LVDS                                       | 3.3                | 0.267                            | QFN-16L            |
| SY75576L  | 1:4                | HCSL/LVDS                    | HCSL/LVDS                                       | 3.3                | 0.267                            | TSSOP-20L          |
| SY75578L  | 1:8                | HCSL-LVDS                    | HCSL                                            | 3.3                | 0.267                            | QFN-32L            |

|              |                  |                                                                                             | Clock and Data      | Clock and Data Distribution: Clock Dividers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                              |                 |
|--------------|------------------|---------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-----------------|
| Product      | Divider Value    | Input Type                                                                                  | Output Type         | Supply Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # of Outputs                 | Output Frequency (Max) (GHz) | Package         |
| SY89200U     | 1, 2, 4          | ANY                                                                                         | TNDS                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80                           | 1.5                          | QFN-32L         |
| SY89202U     | 1, 2, 4          | ANY                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ω                            | 1.5                          | QFN-32L         |
| SY89228U     | 3,5              | ANY                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                            | 1                            | QFN-16L         |
| SY89230U     | 3,5              | ANY                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                            | 3.2                          | QFN-16L         |
| SY89312V     | 2                | ECL/PECL                                                                                    | ECL/PECL            | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            | 4                            | QFN-8L          |
| SY89313V     | 4                | ECL/PECL                                                                                    | EOL/PEOL            | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                            | 4                            | MLF-8L          |
| SY89871U     | 2, 4, 8, 16      | AN≺                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                            | 2.5                          | QFN-16L         |
| SY89872U     | 2, 4, 8, 16      | ANY                                                                                         | SUA                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                            | 2                            | QFN-16L         |
| SY89873L     | 2, 4, 8, 16      | ANY                                                                                         | LVDS                | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                            | 2                            | QFN-16L         |
| SY89874AU    | 1, 2, 4, 8, 16   | ANY                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                            | 2.5                          | QFN-16L         |
| SY89874U     | 1, 2, 4, 8, 16   | ANY                                                                                         | LVPECL              | 2.5/3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                            | 2.5                          | QFN-16L         |
| SY89875U     | 2, 4, 8, 16      | AN≺                                                                                         | SUZ                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                            | 0                            | MLF-16L         |
| SY89876L     | 1, 2, 4, 8, 16   | AN≺                                                                                         | LVDS                | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                            | 2                            | MLF-16L         |
| SY100S834L   | 1, 2, 4, 8       | ECL/PECL/LVPECL                                                                             | ECL/PECL            | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | က                            | 1                            | SOIC-16L        |
| SY100EL32V   | 2                | EOL                                                                                         | EOL                 | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            | က                            | SOIC-8L         |
| SY100EL33L   | 4                | ECL                                                                                         | ECL                 | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                            | 4                            | SOIC-8L         |
| SY100EL34L   | 2, 4, 8          | EOL                                                                                         | EOL                 | 3.3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | က                            | I                            | SOIC-16L        |
| SY100E222L   | 1,2              | LVECL/LVPECL                                                                                | LVPECL              | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                           | 1.5                          | LQFP-52L        |
|              |                  |                                                                                             | taid chad bac dool? | Cook and Date Distribution: Deliver Decorptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                 |
|              | -                |                                                                                             | Sign Bala Data      | That on the control of the control o |                              | H                            |                 |
| Product      | Input Type       | Output Type                                                                                 | Supply Voltage (V)  | Output Frequency (Max) (GHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Output Data Rate (Max) (Gbps | s)   Fail-Safe Input (FSI)   | Package         |
| SY89207L     | LVECL/LVPECL     | LVPECL                                                                                      | 3.3                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                            | ı                            | MSOP-10L        |
| SY89250V     | PECL/LVPECL      | PECL/LVPECL                                                                                 | 3.3/5               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                            | I                            | MLF-8L          |
| SY58605U     | ANY              | LVDS                                                                                        | 2.5                 | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                          | Yes                          | DFN-8L          |
| SY89835U     | ANY              | LVDS                                                                                        | 2.5                 | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                          | Yes                          | MLF-8L          |
| SY58604U     | ANY              | LVPECL                                                                                      | 2.5/3.3             | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.25                         | Yes                          | DFN-8L          |
| SY89850U     | ANY              | LVPECL                                                                                      | 2.5/3.3             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                          | ı                            | DFN-8L          |
| SY58603U     | ANY              | CML                                                                                         | 2.5/3.3             | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.25                         | Yes                          | DFN-8L          |
| SY58601U     | ANY              | LVPECL                                                                                      | 2.5/3.3             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                            | I                            | MLF-8L          |
| SY56016R     | ANY              | CML                                                                                         | 2.5                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.4                          | 1                            | MLF-10L         |
| SY58016L     | CML/PECL         | CML                                                                                         | 3.3                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7                         | I                            | MLF-16L         |
| SY58600U     | ANY              | OML                                                                                         | 2.5/3.3             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.7                         | 1                            | MLF-8L          |
| SY89251V     | PECL/LVPECL      | PECL/LVPECL                                                                                 | 3.3/5               | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            | I                            | DFN-8L          |
| SY897132L    | LVPECL/CML       | LVPECL                                                                                      | 3.3                 | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.25                         | I                            | TSSOP-28L       |
| SY100EL16VS  | ECL/LVPECL       | ECL/LVPECL                                                                                  | 3.3/5               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I                            | I                            | MSOP-8L         |
| SY100EL17V   | ECL/LYPECL       | ECL/LVPECL                                                                                  | 3.3/5               | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                            | I                            | SOIC-20L        |
| SY100S313    | ECL/PECL         | ECL/PECL                                                                                    | S.                  | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı                            | ı                            | PLCC-28L        |
| SY10/100E416 | ECL/PECL         | ECL/PECL                                                                                    | D                   | Ο.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                            | I                            | PLCC-28L        |
| SY10EP89V    | ECL/PECL         | ECL/PECL                                                                                    | 3.3/5               | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            | 1                            | SOIC-8L/MSOP-8L |
|              |                  |                                                                                             | Clock and Data      | Clock and Data Distribution: Translators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                              |                 |
|              | 100              |                                                                                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                              |                 |
| Product      | # or Channels    | dki mdui                                                                                    | 0                   | ec e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (v) 96                       | Output Frequency (Max) (GHZ) | Package         |
| PL130-05     | Single           | Multiple                                                                                    | Φ (                 | LVPECL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5/3.3                      |                              | CPN-16L         |
| PL130-09     | Single<br>Single | Multiple                                                                                    | D 0                 | LVDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5/3.3                      | 1                            | SOP-8L, QFN-8L  |
| PL130-58     | Single           | Multiple                                                                                    | Ф                   | LVPECL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5/3.3                      | 0.26                         | SOP-8L          |
| SY55851A     | Single           | PECL/LVPECL/CML                                                                             | 3L/CML              | CML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5/3.3                      | m                            | MSOP-10         |
| SY55855V     | Dual             | PECL/LVPECL/CML                                                                             | 2L/CML              | LVDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3/5                        | 0.75                         | MSOP-10L        |
| SY55857L     | Dual             | ANY                                                                                         |                     | LVPECL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3                          | 2.5                          | MSOP-10L        |
| SY89222L     | Dnal             | 工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工<br>工 |                     | PECL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.3                          | 0.40                         | MLF-8L          |
| SY89321L     | Single           | LVPECL/CML/LLVDS                                                                            | ALLYDS              | LVITL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3                          | 0.28                         | MLF-8L          |

| **: F0.20     | aloused as         | See I.       | Clock and Data Distribution: Translators  |                    | V 025540V +125410            | CHOS (VANA) VANADA PARA PARA PARA PARA PARA PARA PARA P | o se sycolo          |
|---------------|--------------------|--------------|-------------------------------------------|--------------------|------------------------------|---------------------------------------------------------|----------------------|
|               | # OI Citalliels    | adki indiii  | Output 13                                 |                    | output voitage (v)           | Output rieduency (Max) (GHZ)                            | rachage              |
| SY89322V      | Dual               | LVTTL        | LVPECL                                    |                    | 3.3/5                        | 0.80                                                    | MLF-8L               |
| SY89323L      | Dual               | LVPECL       | JEM                                       |                    | 3.3                          | 0.28                                                    | MLF-8L               |
| SY89327L      | Single             | AN≺          | LVPECL                                    |                    | 3.3                          | 2.5                                                     | QFN-8L               |
| SY89328L      | Single             | LVPECL/LVTTL | LVTTL/LVPECL                              | ECL                | 3.3                          | 0.28                                                    | MLF-8L               |
| SY89329V      | Single             | LVTTL        | LVPECL                                    |                    | 3.3/5                        | 0.80                                                    | MLF-8L               |
| SY100ELT21L   | Single             | LVPECL       |                                           |                    |                              | 0.28                                                    | SOIC-8L              |
| SY10/100ELT22 | Dual               | Ĭ i          | PECL                                      |                    | 2                            | 0.75                                                    | SOIC-8L              |
| SY100EL122L   | Dual               |              |                                           |                    | <br>                         | 0.25                                                    | SOIC-8L              |
| SY100EL123    |                    | PECL         |                                           |                    | 000                          | 0.18                                                    | 2000<br>2000<br>2000 |
| SY100EPI20V   | ) C                | SOMO/ ITT    | LVII.L                                    |                    | 3.9/5                        | D -: 0                                                  | SOIC-8L              |
| SY100EPT21L   | 1                  | LVPECL       |                                           |                    | 0 0                          | 0.275                                                   | SOIC-8L/MSOP-8L      |
| SY100EPT22V   | Dual               | SUZ          | PECL                                      |                    | 3.3/5                        | 0.8                                                     | SOIC-8L/MSOP-8L      |
| SY100EPT23L   | Dual               | LVPECL       | JEMI                                      |                    | 3.3                          | 0.275                                                   | SOIC-8L/MSOP-8L      |
|               |                    |              | Clock and Data Distribution: Multiplexers | tion: Multiplexers |                              |                                                         |                      |
| Product       | Input/Output Ratio | Input Type   | Output Type                               | Supply Voltage (V) | Output Frequency (Max) (GHz) | ) (GHz)                                                 | Package              |
| SY54017AR     | 2:1                | ANY          | CML                                       | 2.5                | 2.5                          |                                                         | 3×3                  |
| SY56017R      | 2:1                | ANY          | CML                                       | 2.5                | 3.2                          |                                                         | 5×5                  |
| SY56034AR     | 2:6                | ANY          | CML                                       | 2.5                | 6.4                          |                                                         |                      |
| SY56572XR     | 4:1                | ANY          | OML                                       | 2.5                | 4.5                          |                                                         | n × n                |
| SY58017U      | 2:1                | ANY          | CML                                       | 2.5/3.3            | 7                            |                                                         | s × s                |
| SY58018U      | 2:1                | ANY          | LVPECL                                    | 2.5/3.3            | 4                            |                                                         | 0×0                  |
| SY58019U      | 2:1                | ANY          | RS-LVPECL                                 | 2.5/3.3            | 7                            |                                                         | 9×9                  |
| SY58026U      | Dual 2:1           | ANY          | LVPECL                                    | 2.5/3.3            | 9                            |                                                         | 5×5                  |
| SY58028U      | 4:02               | ANY          | CML                                       | 2.5/3.3            | 7                            |                                                         | 5×5                  |
| SY58029U      | 4:02               | ANY          | LVPECL                                    | 2.5/3.3            | 4                            |                                                         | 5×5                  |
| SY58038U      | 8:01               | ANY          | LVPECL                                    | 2.5/3.3            | 5                            |                                                         | 7×7                  |
| SY58609U      | 2:01               | ANY          | CML                                       | 2.5/3.3            | 2.5                          |                                                         | 3×3                  |
| SY58610U      | 2:01               | ANY          | LVPECL                                    | 2.5/3.3            | 2.5                          |                                                         | 3×3                  |
| SY58611U      | 2:01               | ANY          | LVDS                                      | 2.5                | 2.5                          |                                                         | 9×9                  |
| SY89464U      | 2:10               | ANY          | LVPECL                                    | 2.5/3.3            | 2                            |                                                         | 7×7                  |
| SY89465U      | 2:10               | ANY          | LVDS                                      | 2.5                | 2                            |                                                         | 7×7                  |
| SY89473U      | 2:02               | ANY          | LVPECL                                    | 2.5/3.3            | 2.5                          |                                                         | 4×4                  |
| SY89474U      | 2:02               | ANY          | LVDS                                      | 2.5                | 2.5                          |                                                         | 4×4                  |
| SY89543L      | Dual 2:1           | ANY          | INDS                                      | 3.3                | က                            |                                                         | 5×5                  |
| SY89544U      | 4:01               | ANY          | LVDS                                      | 2.5                | 4                            |                                                         | 5×5                  |
| SY89545L      | 4:01               | ANY          | LVDS                                      | 3.3                | က                            |                                                         | 5×5                  |
| SY89547L      | 4:02               | ANY          | LVDS                                      | 3.3                | 4                            |                                                         | 5×5                  |
| SY89840U      | 2:01               | ANY          | LVPECL                                    | 2.5/3.3            | 2                            |                                                         | 3×3                  |
| SY89841U      | 2:01               | ANY          | LVDS                                      | 2.5                | 1.5                          |                                                         | 3×3                  |
| SY89843U      | 2:02               | ANY          | LVPECL                                    | 2.5/3.3            | 2                            |                                                         | 4×4                  |
| SY89844U      | 2:02               | ANY          | LVDS                                      | 2.5                | 2                            |                                                         | 4×4                  |
| SY89853U      | Dual 2:1           | ANY          | LVPECL                                    | 2.5/3.3            | 2.5                          |                                                         | 5×5                  |
| SY89855U      | 4:02               | ANY          | LVPECL                                    | 2.5/3.3            | 2.5                          |                                                         | 5×5                  |
| SY897132L     | 2:01               | LVPECL       | LVPECL                                    | 3.3                | 0.8                          |                                                         | TSSOP-28             |
| SY100EL56V    | Dual 2:1           | ECL          | ECL                                       | 3.3/5              | 0                            |                                                         | SOIC-20              |
| SY100S355     | 4:01               | ECL          | ECL                                       | 2                  | 0                            |                                                         | PLCC-28              |
| SY100S371     | Triple 4:1         | EOL          | ECL                                       | 5                  | 0                            |                                                         | PLCC-28              |
| SY100EP56V    | 2:01               | PECI/ECL     | PECL/ECL                                  | 3.3/5              | က                            |                                                         | TSSOP-20             |
| SY100EP57V    | 4:01               | PECL/ECL     | PECL/ECL                                  | 3.3/5              | က                            |                                                         | TSSOP-20             |
| SY100EL56V    | Multiplexer        |              | ECL/PECL                                  | 3.3                |                              |                                                         | SOIC-8               |

|              |                                              |                                               |                       | Clock and Da     | Clock and Data Distribution: CrossPoint Switches        | t Switches     |                               |                                  |                              |                |
|--------------|----------------------------------------------|-----------------------------------------------|-----------------------|------------------|---------------------------------------------------------|----------------|-------------------------------|----------------------------------|------------------------------|----------------|
| Product      | Input/Output Ratio                           |                                               | Input Type            | Output Type      |                                                         | Supply Voltage | Output Data Rate (Max) (Gbps) | Max) (Gbps)                      | Package                      | Ф              |
| SY58023U     | 2×2                                          |                                               | ANY                   | CML              | 2.5                                                     | 2.5/3.3        | 10.7                          |                                  | 8×8                          |                |
| SY55859L     | Dual 2 x 2                                   |                                               | CML                   | CML              | ́ г                                                     | 3.3            | 2.7                           |                                  | 5×5                          |                |
| SY55858U     | Dual 2 x 2                                   |                                               | CML/PECL/LVPECL       | CML              |                                                         | 2.5/3.3        | 3.0                           |                                  | TQFP-32                      | 2              |
| SY58024U     | Dual 2 x 2                                   |                                               | ANY                   | CML              |                                                         | 2.5/3.3        | 10.7                          |                                  | 5×5                          |                |
| SY56034AR    | 2 x 2 with 6 Outputs                         | puts                                          | ANY                   | CML              | 2                                                       | 2.5            | 6.4                           |                                  | 5×5                          |                |
| SY89540U     | 4×4                                          |                                               | ANY                   | LVDS             |                                                         | 2.5            | 3.2                           |                                  | 9×9                          |                |
| SY58040U     | 4×4                                          |                                               | ANY                   | CML              | 2.5                                                     | 2.5/3.3        | 5.0                           |                                  | 9×9                          |                |
|              |                                              |                                               |                       | Clock and Data D | Clock and Data Distribution: Backplane Cable Management | ole Managemen  | ŧ                             |                                  |                              |                |
| Product      | Description                                  |                                               | Pre-Emphasis          | Equalization     | Input Type                                              | Output Type    |                               | Output Data Rate (Max)<br>(Gbps) | Supply Voltage (V)           | Package        |
| SY58626L     | Transmit buffer with output pre-emphasis     | emphasis                                      | >                     | 1                | Any                                                     | CML            |                               | 6.4                              | 3.3                          | QFN-32L        |
| SY58627L     | Backplance receiver with EQ                  | EQ                                            | 1                     | >                | Any                                                     | CML            |                               | 6.4                              | 3.3                          | QFN-32L        |
|              |                                              |                                               |                       | Clock and D      | Clock and Data Distribution: Skew Management            | nagement       |                               |                                  |                              |                |
| Product      | Description                                  | Input Type                                    | Output Type           | Propagatio       | Propagation Delay Resolution (Typ) (ps/step)            | s/step)        | Supply Voltage (V)            | Output Frequ                     | Output Frequency (Max) (GHz) | Package        |
| SY89295U     | Programmable Delay                           | LVPECL/LVTTL                                  | LVPECL                |                  | 10                                                      |                | 2.5/3.3                       |                                  | 1.5                          | TQFP-32, 5 x 5 |
| SY89296U     | Delay with Fine Tune Control                 | LVPECL/LVTTL                                  | LVPECL                |                  | 10                                                      |                | 2.5/3.3                       |                                  | 1.5                          | TQFP-32, 5 x 5 |
| SY89297U     | Dual Channel Programmable<br>Delay           | Any                                           | CML                   |                  | 5                                                       |                | 2.5                           |                                  | 1.6                          | QFN-24, 4 x 4  |
| SY55856U     | Dual Channel Programmable<br>Delay           | CML                                           | CML                   |                  | 10                                                      |                | 2.5/3.3                       |                                  | 2.5                          | eTQFP-32       |
| SY100E196    | Programmable Delay Chip with<br>Analog Input | ECL                                           | ECL                   |                  | 20                                                      |                | Ŋ                             |                                  | -                            | PLCC-28        |
| SY100EP195V  | Programmable Delay                           | Any                                           | ECL                   |                  |                                                         |                | 3.3/5                         |                                  | 2.5                          | TQFP-32, 5 x 5 |
| SY100E195    | I                                            | I                                             | ı                     |                  | ı                                                       |                | I                             |                                  | 1                            | ı              |
| SY10E196     | ı                                            | ı                                             | ı                     |                  | ı                                                       |                | I                             |                                  | 1                            | ı              |
|              | ı                                            |                                               |                       | Clock and Dat    | Clock and Data Distribution: Registers and Flip Flops   | nd Flip Flops  |                               |                                  | ı                            |                |
| Product      | +                                            | Description                                   | tion                  |                  | Туре                                                    |                | Bits                          | , KlddnS                         | Supply Voltage (V)           | Package        |
| SY100S341    |                                              | 8-bit Shift Register                          | Register              |                  | Single                                                  |                | 88                            |                                  | 5                            | PLCC-28        |
| SY100EL29V   | Õ                                            | Data and Clock D Flip Flop with Set and Reset | p with Set and Reset  |                  | Dual                                                    |                | Dual                          | 8                                | 3.3/5                        | SOIC-20        |
| SY55852U     |                                              | D Flip Flop                                   | dol                   |                  | Single                                                  |                | Single                        | 2.5                              | 2.5/3.3/5                    | MSOP-10        |
| SY10EP51V    |                                              | D Flip-Hop with Reset and Differential Clock  | nd Differential Clock |                  | Single                                                  |                | Single                        | e                                | 3.3/5                        | SOIC-8         |
| SY10/100E212 |                                              | 3-bit Scannable Register                      | e Register            |                  | ECL/PECL                                                |                | ECL/PECL                      |                                  | 2                            |                |
| SY10/100E336 |                                              | 3-bit Register Bus Transceiver                | s Transceiver         |                  | ECL/PECL                                                |                | ECL/PECL                      |                                  | 5                            |                |
| SY10/100E337 |                                              | 3-bit Scannable Register Bus Transceiver      | er Bus Transceiver    |                  | ECL/PECL                                                |                | ECL/PECL                      |                                  | 5                            |                |
| SY100S891    |                                              | 5-bit Registered Transceiver                  | Transceiver           |                  | ECL/PECL                                                |                | ECL/PECL                      |                                  | 5                            |                |

|            |                                 |                                                                            |                  | High-Speed                   | Communication: L                              | High-Speed Communication: Limiting Amplifiers            |                     |                   |               |                                                   |                                     |
|------------|---------------------------------|----------------------------------------------------------------------------|------------------|------------------------------|-----------------------------------------------|----------------------------------------------------------|---------------------|-------------------|---------------|---------------------------------------------------|-------------------------------------|
| Product    |                                 | Product Type                                                               | Dé               | Data Rate Capability P       | Power Supply (V)                              | Data Input Type                                          | Da                  | Data Output Type  | TOS/SD        |                                                   | Packages                            |
| SY84113BU  | Fiber (                         | Fiber Optic Post Amplifiers                                                |                  | 1.25 Gbps                    | 2.5                                           | PECL                                                     |                     | CML               | (TLLL) SOT    |                                                   | 16-pin VQFN                         |
| SY88053CL  | Limiting Amplifiers - Burst Mod | Limiting Amplifiers - Burst Mode and Limiting Amplifiers - Continuous Mode | nous Mode        | 12.5 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | OML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88063CL  | Limiting Amplifiers - Burst Mod | Limiting Amplifiers - Burst Mode and Limiting Amplifiers - Continuous Mode | noous Mode       | 12.5 Gbps                    | 3.3                                           | OML/PECL                                                 |                     | OML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88073L   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 12.5 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | CML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88083L   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 12.5 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | CML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88147DL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 1.25 Gbps                    | 3.3                                           | PECL                                                     |                     | PECL              | (TLL) SOT     |                                                   | 10-pin MSOP                         |
| SY88149CL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 1.25 Gbps                    | 3.3                                           | PECL                                                     |                     | PECL              | (TLL) SOT     |                                                   | 10-pin MSOP                         |
| SY88149HAL | Limiting                        | Limiting Amplifiers - Burst Mode                                           |                  | 1.25 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | PECL              | SD/LOS (TTL.) |                                                   | 16-pin VQFN                         |
| SY88149NDL | Limiting /                      | Limiting Amplifiers - Burst Mode                                           |                  | 1.25 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | PECL              | SD/LOS (TTL)  |                                                   | Please call for package information |
| SY88303BL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 3.2 Gbps                     | 3.3                                           | PEOL                                                     |                     | OML               | LOS (TTL)     |                                                   | 10-pin MSOP, 16-pin VQFN            |
| SY88343BL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 3.2 Gbps                     | 3.3                                           | PECL                                                     |                     | OML               | LOS (TTL)     |                                                   | 10-pin MSOP, 16-pin VQFN            |
| SY88349NDL | Limiting A                      | Limiting Amplifiers - Burst Mode                                           |                  | 2.5 Gbps                     | 3.3                                           | CML/PECL                                                 |                     | PECL              | SD/LOS (TTL.  |                                                   | Please call for package information |
| SY88353BL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 3.2 Gbps                     | 3.3                                           | PECL with Internal 500 to V REF                          | V REF               | CML               | LOS (TTL)     |                                                   | 16-pin VQFN                         |
| SY88403BL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 4.25 Gbps                    | 3.3                                           | PECL                                                     |                     | CML               | (TLL)         |                                                   | 10-pin MSOP, 16-pin VQFN            |
| SY88773V   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 3.2 Gbps                     | 3.3, 5.0                                      | PECL                                                     |                     | CML               | LOS (TTL)     |                                                   | 16-pin VQFN                         |
| SY88803V   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 0.16 Gbps                    | 3.3, 5.0                                      | PECL                                                     |                     | PECL              | (TLI) SOT     |                                                   | 10-pin MSOP                         |
| SY88813V   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 0.16 Gbps                    | 3.3, 5.0                                      | PECL                                                     |                     | PECL              | SD (PECL)     |                                                   | 10-pin MSOP                         |
| SY88843V   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 3.2 Gbps                     | 3.3, 5.0                                      | PECL                                                     |                     | CML               | SD (TTL)      |                                                   | Please call for package information |
| SY88893V   | Fiber (                         | Fiber Optic Post Amplifiers                                                |                  | 0.155 Gbps                   |                                               | PECL                                                     |                     | PECL              | SD (TTL)      |                                                   | 10-pin MSOP                         |
| SY88903AL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 1.25 Gbps                    | 3.3                                           | PECL                                                     |                     | PECL              | (TLLI) SOT    |                                                   | 10-pin MSOP                         |
| SY88903V   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 1.25 Gbps                    | 3.3, 5.0                                      | PECL                                                     |                     | PECL              | LOS (TTL)     |                                                   | 10-pin MSOP                         |
| SY88923AV  | Fiber (                         | Fiber Optic Post Amplifiers                                                |                  | 3.2 Gbps                     | 3.3, 5                                        | PEOL                                                     |                     | PECL              | LOS (TTL)     |                                                   | 10-pin MSOP                         |
| SY88933AL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 1.25 Gbps                    | 3.3                                           | PEOL                                                     |                     | PECL              | SD (TTL)      |                                                   | 10-pin MSOP                         |
| SY88073L   | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 12.5 Gbps                    | 3.3                                           | OML/PECL                                                 |                     | CML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88063CL  | Limiting Amplifiers - Burst Mod | Limiting Amplifiers - Burst Mode and Limiting Amplifiers - Continuous Mode | noous Mode       | 12.5 Gbps                    | 3.3                                           | CM/PECL                                                  |                     | CML               | SD/LOS (TTL)  |                                                   | 16-pin VQFN                         |
| SY88053CL  | Limiting Amplifiers - Burst Mod | Limiting Amplifiers - Burst Mode and Limiting Amplifiers - Continuous Mode | noous Mode       | 12.5 Gbps                    | 3.3                                           | CML/PECL                                                 |                     | CML               | SD/LOS (TTL.) |                                                   | 16-pin VQFN                         |
| SY84403BL  | Limiting Am                     | Limiting Amplifiers - Continuous Mode                                      |                  | 4.25 Gbps                    | 3.3                                           | PECL with Internal 500 to V REF                          | , V REF             | OML               | (ILLI) SOT    |                                                   | Please call for package information |
| SY84113BU  | Fiber (                         | Fiber Optic Post Amplifiers                                                |                  | 1.25 Gbps                    | 2.5                                           | PECL                                                     |                     | CML               | LOS (TTL)     |                                                   | 16-pin VQFN                         |
|            |                                 |                                                                            |                  | High-Speed                   | High-Speed Communication: Laser Diode Drivers | aser Diode Drivers                                       |                     |                   |               |                                                   |                                     |
| Product    | Product Type                    | Data Rate Capability                                                       | Pow              | Power Supply (V)             | Data Input Type                               |                                                          | Modulation Current  | Bias              | Bias Current  |                                                   | Packages                            |
| SY84782U   | DFB/FP Laser Drivers            | 1.25 Gbps                                                                  |                  | 2.5                          | CML                                           |                                                          | 06                  |                   |               | 16                                                | 16-pin VQFN                         |
| SY88022AL  | DFB/FP Laser Drivers            | 11.3 Gbps                                                                  |                  | 3.3                          |                                               |                                                          | 09                  |                   | 80            | Please call fo                                    | Please call for package information |
| SY88024L   | VCSEL Drivers                   | 11.3 Gbps                                                                  |                  | 3.3                          |                                               |                                                          | 20                  |                   | 20            | Please call fo                                    | Please call for package information |
| SY88422L   | DFB/FP Laser Drivers            | 4.25 Gbps                                                                  |                  | 3.3                          |                                               |                                                          | 06                  |                   |               | 1                                                 | 16-pin VQFN                         |
| SY88822V   | DFB/FP Laser Drivers            | 0.155 Gbps                                                                 |                  | 3.3, 5.0                     |                                               |                                                          |                     |                   |               | 10                                                | 10-pin MSOP                         |
| SY88922V   | DFB/FP Laser Drivers            | 2.5 Gbps                                                                   |                  | 3.3, 5.0                     |                                               |                                                          | 25                  |                   |               | )[                                                | 10-pin MSOP                         |
| SY88932L   | DFB/FP Laser Drivers            | 4.25 Gbps                                                                  |                  | m c                          | CML                                           |                                                          | 09                  |                   |               |                                                   | 16-pin VOFN                         |
| SY88992L   | VCSEL Drivers                   | 4.25 Gbps                                                                  |                  | 0.00<br>0.00<br>0.00<br>0.00 |                                               |                                                          | 25                  |                   |               | 1                                                 | 16-pin VOFN                         |
|            |                                 |                                                                            |                  | High-Speed                   | High-Speed Communication: Laser Diode Drivers | aser Diode Drivers                                       |                     |                   |               |                                                   | ı                                   |
| Product    | Product Type                    | Data Rate Capability P                                                     | Power Supply (V) | LA Data Input Type           | pe                                            |                                                          | LDD Data Input Type | LDD Modulation Cu | urrent (mA)   | LDD Modulation Current (mA) LDD Bias Current (mA) | Packages                            |
| SY88432L   | Transceivers                    | 4.25 Gbps                                                                  | 3.3              | CML                          | CML                                           |                                                          | CML                 | 09                |               |                                                   | 24-pin VQFN                         |
|            |                                 |                                                                            |                  | High-Speed Comm              | nunication: Fiber O                           | ligh-Speed Communication: Fiber Optic Module Controllers |                     |                   |               |                                                   |                                     |
|            | Product                         | Product Type                                                               |                  | Power Supply (V)             |                                               | Serial Interface                                         |                     |                   |               | Packages                                          |                                     |
| 1740       |                                 | C NO.                                                                      |                  | C                            |                                               |                                                          |                     |                   | 91100         |                                                   |                                     |

Please call for package information Please call for package information Please call for package information

PC SMBus Compliant PC SMBus Compliant PC SMBus Compliant

ස ස ස ස ස ස ස

FOM Controllers FOM Controllers FOM Controllers

MIC3003GML MIC3003GFL MIC3003GML

|                |          |                                         |                         |              |                         |                                                          | High-Sp                 | peed Cor                   | mmunicatio                      | High-Speed Communication: Clock and Data Recovery | Data Recover         | 2                       |                  |                        |                                                                                            |                                                                                                                                                                  |                       |
|----------------|----------|-----------------------------------------|-------------------------|--------------|-------------------------|----------------------------------------------------------|-------------------------|----------------------------|---------------------------------|---------------------------------------------------|----------------------|-------------------------|------------------|------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Product        |          | Produ                                   | Product Type            |              | Data Rate               | Data Rate Capability                                     | Power Supply (V)        | (S)                        | Da                              | Data Input Type                                   | Ď                    | Data Output Type        | ut Type          |                        |                                                                                            | Packages                                                                                                                                                         |                       |
| SY69753AL      |          | Clock and [                             | Clock and Data Recovery | ∑ir          | 125-15                  | 125-155 Mbps                                             | 3.3                     |                            |                                 |                                                   |                      | PECL                    |                  |                        |                                                                                            | 32/TQFP                                                                                                                                                          | l                     |
| SY87700AL      |          | Clock and [                             | Clock and Data Recovery | SIL)         | 32-208                  | 32-208 Mbps                                              | 3.3                     |                            |                                 |                                                   |                      | PECL                    |                  |                        |                                                                                            | Please call for package information                                                                                                                              |                       |
| SY87701AL      |          | Clock and [                             | Clock and Data Recovery | 3ry          | 28–130                  | 28-1300 Mbps                                             | 3.3                     |                            |                                 |                                                   |                      | PECL                    |                  |                        |                                                                                            | Please call for package information                                                                                                                              |                       |
|                |          |                                         |                         |              |                         |                                                          |                         | Mer                        | mory Produ                      | Memory Products: Serial Flash                     | sh                   |                         |                  |                        |                                                                                            |                                                                                                                                                                  |                       |
| Product        |          | sng                                     | Density                 | noitezinegaO | Max. Clock<br>Frequency | Operating<br>Voltage                                     | Temperature<br>Range    | E/W Endurance<br>(Minimum) | Data Retention<br>(Miniminim)   | beeg& etinW                                       | (Typical)            | Max. Standby<br>Current | Hard Pin Protect | Software<br>Protect    | Protected<br>Array Size                                                                    | Ьзскадеѕ                                                                                                                                                         |                       |
| SST25VF512A    |          | ×                                       | 512 KB                  | 8 ×          | 33 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100K                       | 100 Years                       |                                                   | 14 µs (Byte Program) | 8 µА                    | >                | ×<br> >                | Various                                                                                    | 8L-SOIC, 8C-WSON                                                                                                                                                 |                       |
| SST25VF010A    |          | ×                                       | 1 MB                    | ω<br>×       | 33 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100K                       | 100 Years                       |                                                   | 14 µs (Byte Program) | 8 µА                    | >                | >>                     | Various                                                                                    | 8L-SOIC, 8C-WSON                                                                                                                                                 |                       |
| SST25VF020B    |          | ×                                       | 2 MB                    | ×            | 80 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 7 µs (Word Program)  | 5 µA                    | >                | ×                      | Various                                                                                    | 8L-SOIC, 8C-WSON                                                                                                                                                 |                       |
| SST25WF020A    |          | ×                                       | 2 MB                    | ×            | 40 MHz                  | 1.65-1.95V                                               | -40°C to +85°C          | 100K                       | 20 Years                        |                                                   | 3 ms (Page Program)  | 10 µA                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-WSON, 8C-USON, 9B-WLCSP                                                                                                                              |                       |
| SST25VF040B    |          | ×                                       | 4 MB                    | ×            | 40 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 7 µs (Word Program)  | 5 µА                    | >                | ×                      | Various                                                                                    | 8L-SOIC, 8C-WSON                                                                                                                                                 |                       |
| SST25WF040B    |          | × 1, × 2                                | 4 MB                    | ×            | 40 MHz                  | 1.65-1.95V                                               | -40°C to +85°C          | 100K                       | 20 Years                        |                                                   | 1 ms (Page Program)  | 10 µA                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-USON, 9B-WLCSP                                                                                                                                       |                       |
| SST26WF040B/BA |          | ×1, ×2, ×                               | 4 4 MB                  | ×            | 104 MHz                 | 1.65-1.95V                                               | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 40 pM                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-WSON, 8C-USON, 8B-WLCSP                                                                                                                              |                       |
| SST25VF080B    |          | ×                                       | 8 MB                    | ×            | 40 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100K                       | 100 Years                       |                                                   | 7 µs (Word Program)  | 5 µА                    | >                | >>                     | Various                                                                                    | 8L-SOIC, 8C-WSON, 8B-XFBGA                                                                                                                                       |                       |
| SST25WF080B    |          | × 1, × 2                                | 8 MB                    | ×            | 40 MHz                  | 1.65-1.95V                                               | -40°C to +85°C          | 100k                       | 20 Years                        |                                                   | 1 ms (Page Program)  | 10 µA                   | >                | ×                      | Various                                                                                    | 8L-SOIC, 8C-USON, 9B-WLCSP                                                                                                                                       |                       |
| SST26WF080B/BA |          | ×1, ×2, ×4                              | 4 8 MB                  | ×            | 104 MHz                 | 1.65-1.95V                                               | -40°C to +85°C          | 100K                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 40 pvA                  | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-WSON, 8C-USON, 8B-WLCSP                                                                                                                              |                       |
| SST25VF016B    |          | ×                                       | 16 MB                   | ×            | 50 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 7 µs (Word Program)  | 5 µА                    | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-WSON                                                                                                                                                 |                       |
| SST26VF016     |          | × 4                                     | 16 MB                   | ω<br>×       | 80 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100K                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 15 µA                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIJ, 8C-WSON                                                                                                                                                 |                       |
| SST26WF016B/BA |          | ×1, ×2, ×4                              | 4 16 MB                 | ω<br>×       | 104 MHz                 | 1.65-1.95V                                               | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 40 pM                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8C-WSON, 8B-WLCSP                                                                                                                                       |                       |
| SST26VF016B    |          | ×1, ×2, ×4                              | 4 16 MB                 | ω<br>×       | 104 MHz                 | 2.3-3.6V                                                 | -40°C to +105°C         | 100K                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 45 µA                   | >                | »<br>≻                 | Various                                                                                    | 8L-SOIC, 8L-SOIJ, 8C-WSON                                                                                                                                        |                       |
| SST26VF032     |          | × 4                                     | 32 MB                   | ×            | 80 MHz                  | 2.7-3.6V                                                 | -40°C to +85°C          | 100k                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 15 µA                   | >                | ×                      | Various                                                                                    | 8L-SOIJ, 8C-WSON                                                                                                                                                 |                       |
| SST26VF032B/BA |          | ×1, ×2, ×4                              | 4 32 MB                 | ω<br>×       | 104 MHz                 | 2.3-3.6V                                                 | -40°C to +105°C         | 100K                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 45 µA                   | >                | >>                     | Various                                                                                    | 8L-SOIJ, 8C-WSON, 24B-TBGA                                                                                                                                       |                       |
| SST26VF064B/BA |          | ×1, ×2, ×4                              | 4 64 MB                 | ×            | 104 MHz                 | 2.3-3.6V                                                 | -40°C to +105°C         | 100K                       | 100 Years                       |                                                   | 1 ms (Page Program)  | 45 µA                   | >                | »<br>≻                 | Various 8L-                                                                                | 8L-SOIJ, 16L-SOIC, 8C-WSON, 8C-TDFN-S, 24B-TBGA                                                                                                                  | TBGA                  |
| SST26WF064C    |          | ×1, ×2, ×4                              | 4 64 MB                 | ∞<br>×       | 104 MHz                 | 1.65-1.95V                                               | -40°C to +85°C          | 100Ķ                       | 100 years                       | s 1.5 ms (Page Program)                           | ge Program)          | 40 µA                   | >                | >                      | Various                                                                                    | 8L-SOIJ, 16L-SOIC, 8C-WSON, 24B-TBGA                                                                                                                             |                       |
|                |          |                                         |                         |              |                         |                                                          |                         | Memory                     | Products:                       | Memory Products: LPC Firmware Flash               | Flash                |                         |                  |                        |                                                                                            |                                                                                                                                                                  |                       |
| Product        | Density  | Organization<br>Max. Clock<br>Frequency | Operating<br>Voltage    | Temperature  | E/M<br>Bange            | Endurance<br>(Minimum)<br>Data<br>Retention<br>(Minimum) | Write Spped             | Max. Standby Current       | Hard Pin<br>Protect<br>Software | Protected Size                                    |                      |                         |                  |                        | Special/<br>Unique<br>Features                                                             |                                                                                                                                                                  | Раскадеѕ              |
| SST49LF008A 8  | 8 MB × 4 | × 8 33 MHz                              | 1z 3.0–3.6V             |              | 0°C to 70°C 100         | 100K 100 Years                                           | 14 µs<br>(Byte Program) | 14 µA                      | ><br>>                          | Various                                           |                      | Firmwar                 | e Hub (          | FWH) de                | (FWH) device for PC-BIOS application, provi<br>for the storage and update of code and data | Firmware Hub (FWH) device for PC-BIOS application, provide protection for the storage and update of code and data                                                | 32L-PLCC,<br>32L-TSOP |
| SST49LF080A 8  | 8 MB × 4 | × 8 33 MHz                              | lz 3.0–3.6V             | / 0°C tc     | 0°C to 70°C 100         | 100K 100 Years                                           | 14 µs<br>(Byte Program) | 14 µA                      | ><br>>                          | Various                                           | LPC Flash o          | devices co<br>prov      | ide pro          | ith the s<br>tection f | tandard Intel Low Pir<br>or the storage and up                                             | LPC Flash devices comply with the standard Intel Low Pin Count (LPC) Interface Specification 1.1, provide protection for the storage and update of code and data | 32L-PLOC,<br>32L-TSOP |
|                |          |                                         |                         |              |                         |                                                          |                         |                            |                                 |                                                   |                      |                         |                  |                        |                                                                                            |                                                                                                                                                                  |                       |

| Memory Products: Parallel Flash | Access Time (ns)  Operating Voltage ("C)  Erw Fander ("Injoical)  Data Protected Protected Protected Protected Array Size (KB)  Software Software Minimum)  Minimum)  Array Size (KB)  Software Protected Array Size (KB) | 70 4.5-5.5V -40 to +85 100K 100 Years 14 µs (Byte Program) 30 µA NVA Fast read, program and erase; Low power; Small erase sector 32L-PLCC, 32L-PDIP, 32L-TSOP | 55 3.0-3.6V 0 to 70 100K 100 Years 14 µs (Byte Program) 1 µA - N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 32L-TSOP, 32L-PLCC | 70 2.7-3.6V -40 to +85 100K 100 Years 14 µs (Byte Program) 1 µA N/A | 55 3.0-3.6V 0 to 70 100K 100 Years 14 µs (Byte Program) 1 µA - N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 32L-TSOP, 32L-PLCC | 55, 70 4.5–5.5V -40 to +85 100K 100 Years 14 µs (Byte Program) 30 µA N/A | 70 2.7-3.6V -40 to +85 100K 100 Years 14 µs (Byte Program) 1 µA - NA Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 32L-TSOP, 32L-PLCC | 3 55 3.0-3.6V 0 to 70 100K 100 Years 14 µs (Word Program) 3 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48L-TSOP | 3 70 2.7-3.6V -40 to +85 100K 100 Years 14 µs (Word Program) 3 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48L-TSOP, 48B-WFBGA | 70 4.5-5.5V -40 to +85 100K 100 Years 14 µs (Byte Program) 30 µA - N/A Fast read, program and erase; Low power; Small erase sector 32L-PDIP, 32L-TSOP | 55 3.0-3.6V 0 to 70 100K 100 Years 14 µs (Byte Program) 1 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 32L-TSOP, 32L-PLCC | 70 2.7-3.6V -40 to +85 100K 100 Years 14 µs (Byte Program) 1 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 32L-TSOP, 32L-PLCC | 5 55 3.0-3.6V 0 to 70 100K 100 Years 7 µs (Word Program) 3 µA Y - 8 Fast read, program and erase; Low power; Small erase sector; 48B-TFBGA, 48L-TSOP; 48B-WFBGA | 1.6540 to +85 100K 100 Years 28 µs (Word Program) 40 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48B-WFBGA, 48B-XFBGA | 5 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Word Program) 3 µA Y - 8 Fast read, program and erase; Low power; Small erase sector; 48B-TFBGA, 48L-TSOP, 100 Years 7 µs (Word Program) 3 µA Y - 8 Industry-standard command set and boot block structure 48B-WFBGA | 1.6540 to +85 100K 100 Years 28 µs (Word Program) 40 µA N/A Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48B-XFBGA, 48B-XFBGA | 5 55 3.0-3.6V 0 to 70 100K 100 Years 7 Lis (Word Program) 3 LiA Y - N/A Fast read, program and erase; Low power; Small erase sector; 48B-TFBGA, 48L-TSOP; 10-3.6V | 5 70 2.7–3.6V -40 to +85 100K 100 Years 7 µs (Word Program) 3 µA Y - N/A Industry-standard command set and boot block structure 48B-WFBGA | 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Byte Program) 3 µA Y 64 Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48L-TSOP | 1.6540 to +85 100K 100 Years 28 µs (Word Program) 40 µA Y - 64 Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48B-WFBGA, 1.95V | 5 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Word Program) 3 µA Y - 8 Fast read, program and erase; Low power; Small erase sector; 48B-TFBGA, 48L-TSOP, 100 Years 7 µs (Word Program) 3 µA Y - 8 Industry-standard command set and boot block structure 48B-WFBGA | 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Byte Program) 3 µA Y - 64 Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48L-TSOP | 3 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Word Program) 4 µA Y - 32 Fast read, program and erase; Low power; Small erase sector 48B-TFBGA, 48L-TSOP | 5 70 2.7-3.6V -40 to +85 100K 100 Years 7 µs (Word Program) 4 µA Y - 8 hdustny-standard command set and boot block structure | Fast read, program and erase; Low power; Small erase sector  7 Ls/1.75 µs  9 µA Y Y 32, 8 Industry-standard command set and boot block structure, Security features |  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 | (muminiM)<br>sted                                                                                                                                                                                                         | 100                                                                                                                                                           | 100                                                                                                                                                          | 100                                                                 | 100                                                                                                                                                          | 100                                                                      | 100                                                                                                                                                            | 100                                                                                                                                                | 100                                                                                                                                                              | 100                                                                                                                                                   | 100                                                                                                                                                        | 100                                                                                                                                                           | 100                                                                                                                                                             | 100                                                                                                                                                     | 100                                                                                                                                                                                                                                                                | 100                                                                                                                                                     | 100                                                                                                                                                               | 100                                                                                                                                       | 100                                                                                                                                                 | 100                                                                                                                                                    | 100                                                                                                                                                                                                                                                                | 100                                                                                                                                                   | 100                                                                                                                                                     | 100                                                                                                                          | 100                                                                                                                                                                 |  |
|                                 |                                                                                                                                                                                                                           | 100                                                                                                                                                           | 100                                                                                                                                                          | 100                                                                 | 100                                                                                                                                                          |                                                                          |                                                                                                                                                                | 100                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                       | 100                                                                                                                                                        |                                                                                                                                                               | 100                                                                                                                                                             |                                                                                                                                                         | 100                                                                                                                                                                                                                                                                |                                                                                                                                                         | 100                                                                                                                                                               | 100                                                                                                                                       |                                                                                                                                                     | 100                                                                                                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                         |                                                                                                                              |                                                                                                                                                                     |  |
|                                 | Temperature<br>Range (°C)                                                                                                                                                                                                 | -40 to +85                                                                                                                                                    | 0 to 70                                                                                                                                                      | -40 to +85                                                          | 0 to 70                                                                                                                                                      | -40 to +85                                                               | -40 to +85                                                                                                                                                     | 0 to 70                                                                                                                                            | -40 to +85                                                                                                                                                       | -40 to +85                                                                                                                                            | 0 to 70                                                                                                                                                    | -40 to +85                                                                                                                                                    | 0 to 70                                                                                                                                                         | -40 to +85                                                                                                                                              | -40 to +85                                                                                                                                                                                                                                                         | -40 to +85                                                                                                                                              | 0 to 70                                                                                                                                                           | -40 to +85                                                                                                                                | -40 to +85                                                                                                                                          | -40 to +85                                                                                                                                             | -40 to +85                                                                                                                                                                                                                                                         | -40 to +85                                                                                                                                            | -40 to +85                                                                                                                                              | -40 to +85                                                                                                                   | -40 to +85                                                                                                                                                          |  |
|                                 |                                                                                                                                                                                                                           | 4.5-5.5V                                                                                                                                                      | 3.0-3.6V                                                                                                                                                     | 2.7-3.6V                                                            | 3.0-3.6V                                                                                                                                                     | 4.5-5.5V                                                                 | 2.7-3.6V                                                                                                                                                       | 3.0-3.6V                                                                                                                                           | 2.7-3.6V                                                                                                                                                         | 4.5-5.5V                                                                                                                                              | 3.0-3.6V                                                                                                                                                   | 2.7-3.6V                                                                                                                                                      | 3.0-3.6V                                                                                                                                                        | 1.65-<br>1.95V                                                                                                                                          | 2.7-3.6V                                                                                                                                                                                                                                                           | 1.65-<br>1.95V                                                                                                                                          | 3.0-3.6V                                                                                                                                                          | 2.7-3.6V                                                                                                                                  | 2.7-3.6V                                                                                                                                            | 1.65-<br>1.95V                                                                                                                                         | 2.7-3.6V                                                                                                                                                                                                                                                           | 2.7-3.6V                                                                                                                                              | 2.7-3.6V                                                                                                                                                | 2.7-3.6V                                                                                                                     | 2.7-3.6V                                                                                                                                                            |  |
|                                 |                                                                                                                                                                                                                           | 70                                                                                                                                                            | 55                                                                                                                                                           | 70                                                                  | 55                                                                                                                                                           | 55, 70                                                                   | 70                                                                                                                                                             | 22                                                                                                                                                 | 20                                                                                                                                                               | 20                                                                                                                                                    | 22                                                                                                                                                         | 70                                                                                                                                                            | 55                                                                                                                                                              | 70                                                                                                                                                      | 20                                                                                                                                                                                                                                                                 | 20                                                                                                                                                      | 55                                                                                                                                                                | 20                                                                                                                                        | 70                                                                                                                                                  | 20                                                                                                                                                     | 20                                                                                                                                                                                                                                                                 | 70                                                                                                                                                    | 20                                                                                                                                                      | 20                                                                                                                           | 02                                                                                                                                                                  |  |
|                                 | noitezinegrO                                                                                                                                                                                                              | ω<br>×                                                                                                                                                        | ω<br>×                                                                                                                                                       | ω<br>×                                                              | ω<br>×                                                                                                                                                       | ω<br>×                                                                   | ω<br>×                                                                                                                                                         | × 16                                                                                                                                               | × 16                                                                                                                                                             | ω<br>×                                                                                                                                                | ω<br>×                                                                                                                                                     | ω<br>×                                                                                                                                                        | × 16                                                                                                                                                            | × 16                                                                                                                                                    | × 16                                                                                                                                                                                                                                                               | × 16                                                                                                                                                    | × 16                                                                                                                                                              | × 16                                                                                                                                      | ×                                                                                                                                                   | × 16                                                                                                                                                   | × 16                                                                                                                                                                                                                                                               | ω<br>×                                                                                                                                                | × 16                                                                                                                                                    | × 16                                                                                                                         | × 16                                                                                                                                                                |  |
|                                 | sng                                                                                                                                                                                                                       | ω<br>×                                                                                                                                                        | ω<br>×                                                                                                                                                       | ω<br>×                                                              | ω<br>×                                                                                                                                                       | ∞<br>×                                                                   | ×                                                                                                                                                              | × 16                                                                                                                                               | × 16                                                                                                                                                             | ∞<br>×                                                                                                                                                | ω<br>×                                                                                                                                                     | ∞<br>×                                                                                                                                                        | × 16                                                                                                                                                            | × 16                                                                                                                                                    | × 16                                                                                                                                                                                                                                                               | × 16                                                                                                                                                    | × 16                                                                                                                                                              | × 16                                                                                                                                      | ×                                                                                                                                                   | × 16                                                                                                                                                   | × 16                                                                                                                                                                                                                                                               | × 16                                                                                                                                                  | × 16                                                                                                                                                    | × 16                                                                                                                         | × 16                                                                                                                                                                |  |
|                                 | Density                                                                                                                                                                                                                   | 1 MB                                                                                                                                                          | 1 MB                                                                                                                                                         | 1 MB                                                                | 2 MB                                                                                                                                                         | 2 MB                                                                     | 2 MB                                                                                                                                                           | 2 MB                                                                                                                                               | 2 MB                                                                                                                                                             | 4 MB                                                                                                                                                  | 4 MB                                                                                                                                                       | 4 MB                                                                                                                                                          | 4 MB                                                                                                                                                            | 4 MB                                                                                                                                                    | 4 MB                                                                                                                                                                                                                                                               | 8 MB                                                                                                                                                    | 8 MB                                                                                                                                                              | 8 MB                                                                                                                                      | 16 MB                                                                                                                                               | 16 MB                                                                                                                                                  | 16 MB                                                                                                                                                                                                                                                              | 16 MB                                                                                                                                                 | 32 MB                                                                                                                                                   | 32 MB                                                                                                                        | 64 MB                                                                                                                                                               |  |
|                                 | Product                                                                                                                                                                                                                   | SST39SF010A                                                                                                                                                   | SST39LF010                                                                                                                                                   | SST39VF010                                                          | SST39LF020                                                                                                                                                   | SST39SF020A                                                              | SST39VF020                                                                                                                                                     | SST39LF200A                                                                                                                                        | SST39VF200A                                                                                                                                                      | SST39SF040                                                                                                                                            | SST39LF040                                                                                                                                                 | SST39VF040                                                                                                                                                    | SST39LF40XC                                                                                                                                                     | SST39WF400B                                                                                                                                             | SST39VF40xC                                                                                                                                                                                                                                                        | SST39WF800B                                                                                                                                             | SST39LF80xC                                                                                                                                                       | SST39VF80xC                                                                                                                               | SST39VF168x                                                                                                                                         | SST39WF160x                                                                                                                                            | SST39VF160xC                                                                                                                                                                                                                                                       | SST39VF160x                                                                                                                                           | SST39VF320xB                                                                                                                                            | SST39VF320xC                                                                                                                 | SST38VF640x                                                                                                                                                         |  |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Раскадеѕ              | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO), 3-SOT-23 (TT), WLCSP (CS) | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO), 3-SOT-23 (TT), WLCSP (CS) | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO),<br>3-SOT-23 (TT), WLCSP (CS)                                              | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO), 3-SOT-23 (TT), WLCSP (CS) | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO), 3-SOT-23 (TT), WLCSP (CS) | PDIP (P), SOIC (SN), MSOP (MS), DFN (MNY), TO-92 (TO), 3-SOT-23 (TT), WLCSP (CS) | SOIC (SS), SOT-23 (ST), UDFN (MA), WLCSP (U), XSFN (MS) | SOIC (SS), SOT-23 (ST), UDFN (MA), WLCSP (U), XSFN (MS) | PDIP (P), SOIC (SN), TSSOP (ST), DFN (MNY), 5-SOT-23 (OT) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), SC70 (LT) | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C) | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C)             | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                          | WLCSP (U)                                                                                                                                                                                                              | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), SC70 (LT) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), SC70 (LT)                                                                 | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C) | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C)             | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                       | WLCSP (U)                                                                                                                                                                                                               | PDIP (P), SOIC (SS), TSSOP (X)                                                                          | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                                         | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1 KB   X   100 kHz   1.30 -5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ном      |                       | Single VO for all clock, data, control and write protection                      | Single VO for all clock, data, control and write protection                      | Single I/O for all clock, data, control and write protection, Unique EUI-48™/FUI-64™ MAC address and unique ID options available | Single VO for all clock, data, control and write protection                      | Single VO for all clock, data, control and write protection                      | Single VO for all clock, data, control and write protection                      |                                                         |                                                         | No address pins - single slave address                    | Ø                                                                               | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus | Unique 128-bit serial number separate from the main<br>memory array | Software Slave Address, 256-bit security register separate from the main array (128-bit register factory-programmed, 128-bit user programmable and permanently lockable), write protect can also be permanently locked |                                                                                 | Three address pins - cascade up to eight devices to share a common 2-wire bus, unique EUI-48/EUI-64 MAC address and unique ID options available | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus | Unique 128-bit serial number separate from the main memory array | Software Slave Address, 256-bit security register separate from the main array (128-bit register factory-programmed, 128-bit user programmable and permanently lockable), write protect can also be permanently locked. | Three address pins - cascade up to eight devices to share a common 2-wire bus, half array write protect | Unique IEEE-provided 48-bit pre-programmed MAC/EUI address, unique read-only 128-bit serial number | Unique IEEE-provided 64-bit pre-programmed MAC/EUI address, unique read-only 128-bit serial number |
| 1 KB   X   100 kHz   1.30 -5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ial EEP  | 5 ku Pricing (\$)     | 0.15                                                                             | 0.16                                                                             | 0.25                                                                                                                             | 0.17                                                                             |                                                                                  | 0.20                                                                             | 0.42                                                    | 0.42                                                    | 0.14                                                      |                                                                                 | 0.09                                                                          |                                                                               | 0.15                                                                | 0.10                                                                                                                                                                                                                   | 0.16                                                                            | 0.18                                                                                                                                            | 0.08                                                                          |                                                                               | 0.16                                                             | 0.11                                                                                                                                                                                                                    | 0.11                                                                                                    | 0.22                                                                                               | 0.22                                                                                               |
| 1 KB   X   100 kHz   1.30 -5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ucts: Se | Protected Array Size  | W, ½, ¼                                                                          | W, ½, ¼                                                                          | W, ½, ¼                                                                                                                          | W, ½, ¼                                                                          | W, ½, ¼                                                                          | W, ½, ¼                                                                          | W, %,                                                   | W, %,                                                   | I                                                         | W, 1/2                                                                          | >                                                                             | >                                                                             | >                                                                   | W, %,                                                                                                                                                                                                                  |                                                                                 | W, ½                                                                                                                                            | >                                                                             | >                                                                             | >                                                                | W, 34,<br>1/2, 1/4                                                                                                                                                                                                      | 1/2                                                                                                     | W, ½                                                                                               | W, 1/2                                                                                             |
| 1 KB   X   100 kHz   1.30 -5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ry Prod  | Software Protect      |                                                                                  |                                                                                  |                                                                                                                                  |                                                                                  |                                                                                  |                                                                                  | >                                                       | >                                                       | 1                                                         | 1                                                                               | 1                                                                             | 1                                                                             | 1                                                                   | >                                                                                                                                                                                                                      | ı                                                                               | 1                                                                                                                                               | 1                                                                             | 1                                                                             | 1                                                                | >                                                                                                                                                                                                                       | ı                                                                                                       | >                                                                                                  | >                                                                                                  |
| 1 KB   x   x   x   x   x   x   x   x   x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Memo     |                       | ı                                                                                |                                                                                  |                                                                                                                                  |                                                                                  | ı                                                                                |                                                                                  |                                                         |                                                         |                                                           |                                                                                 |                                                                               |                                                                               |                                                                     |                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                 |                                                                               |                                                                               |                                                                  | 1                                                                                                                                                                                                                       |                                                                                                         | >                                                                                                  | >                                                                                                  |
| 1 KB   X   8   100 kHz   1.8V-5.5V   40°C to +125°C   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Current               | 1 µA                                                                             | 1 µA                                                                             | 4 L                                                                                                                              | 1 µA                                                                             | 1 µA                                                                             | 1 µA                                                                             | 2.5 W                                                   | 2.5 W                                                   | 1 µA                                                      | 1 µA                                                                            | 6 µА                                                                          | 0.8 uv                                                                        | 6 µА                                                                | 0.8 uv                                                                                                                                                                                                                 | 1 µA                                                                            | 4 L                                                                                                                                             | 6 µА                                                                          | 0.8 uv                                                                        | 6 µА                                                             | 0.8 uv                                                                                                                                                                                                                  | 6 µА                                                                                                    | 6 µА                                                                                               | 6 µА                                                                                               |
| 1 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.8V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +125°C   11 KB   x 8   100 kHz   1.7V-5.5V   -40°C to +1   |          |                       | z                                                                                | Z                                                                                | >                                                                                                                                | Z                                                                                | z                                                                                | Z                                                                                | >                                                       | >                                                       | z                                                         | Z                                                                               | Z                                                                             | Z                                                                             | >                                                                   | >-                                                                                                                                                                                                                     | z                                                                               | >                                                                                                                                               | z                                                                             | z                                                                             | >                                                                | >-                                                                                                                                                                                                                      | Z                                                                                                       | >                                                                                                  | >-                                                                                                 |
| 2 KB x 8 100 kHz 1.8V-5.5V 40°C to +125°C 1N 1KB x 8 100 kHz 1.8V-5.5V 40°C to +125°C 1N 1KB x 8 100 kHz 1.8V-5.5V 40°C to +125°C 1N 1KB x 8 100 kHz 1.8V-5.5V 40°C to +125°C 1N 1KB x 8 100 kHz 1.8V-5.5V 40°C to +125°C 1N 1KB x 8 400 kHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB x 8 1 MHz 1.7V-5.5V 40°C to +125°C 1N 1KB 1.7V-5.2V 40°C to +125°C 1N 1KB 1.7V-5.2V 40°C to +125°C 1N |          |                       | 200 Years                                                                        | 200 Years                                                                        | 200 Years                                                                                                                        | 200 Years                                                                        | 200 Years                                                                        | 200 Years                                                                        | 100 Years                                               | 100 Years                                               | 200 Years                                                 | 200 Years                                                                       | 100 Years                                                                     | 100 Years                                                                     | 100 Years                                                           | 100 Years                                                                                                                                                                                                              | 200 Years                                                                       | 200 Years                                                                                                                                       | 100 Years                                                                     | 100 Years                                                                     | 100 Years                                                        | 100 Years                                                                                                                                                                                                               | 100 Years                                                                                               | 100 Years                                                                                          | 100 Years                                                                                          |
| 2 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                       | Σ                                                                                | ₹                                                                                | Σ                                                                                                                                | Σ                                                                                | Σ                                                                                | ₹                                                                                | Σ                                                       | Σ                                                       | ξ                                                         | ₹                                                                               | Σ                                                                             | ₹                                                                             | ₹                                                                   | ₹                                                                                                                                                                                                                      | ₹                                                                               | ₹                                                                                                                                               | ₹                                                                             | Σ                                                                             | ₹                                                                | ₽                                                                                                                                                                                                                       | ₹                                                                                                       | ₹                                                                                                  | Σ                                                                                                  |
| 2 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Temperature Range     | -40°C to +125°C                                                                  | -40°C to +125°C                                                                  | -40°C to +125°C                                                                                                                  | -40°C to +125°C                                                                  | -40°C to +125°C                                                                  | -40°C to +125°C                                                                  | -40°C to +85°C                                          | -40°C to +85°C                                          | -40°C to +125°C                                           | -40°C to +150°C                                                                 |                                                                               | -40°C to +125°C                                                               | -40°C to +125°C                                                     | -40°C to +125°C                                                                                                                                                                                                        | -40°C to +125°C                                                                 | -40°C to +125°C                                                                                                                                 | -40°C to +125°C                                                               |                                                                               | -40°C to +125°C                                                  | -40°C to +125°C                                                                                                                                                                                                         | -40°C to +125°C                                                                                         | -40°C to +85°C                                                                                     | -40°C to +85°C                                                                                     |
| Viened R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | (V) Operating Voltage | 1.8V-5.5V                                                                        | V8.2-V8.                                                                         | 1.8V-5.5V                                                                                                                        | V3.2-V8.1                                                                        | 1.8V-5.5V                                                                        | 1.8V-5.5V                                                                        | 1.7V-3.6V                                               | 2.7V to<br>4.5V                                         | 1.7V-5.5V                                                 | 1.7V-5.5V                                                                       | 1.7V-5.5V                                                                     | V9.E-VT.1                                                                     | 1.7V-5.5V                                                           | 1.7V-5.5V                                                                                                                                                                                                              | 1.7V-5.5V<br>1.5V-3.6V                                                          | 1.7V-5.5V                                                                                                                                       | 1.7V-5.5V                                                                     | V9.E-VT.1                                                                     | 1.7V-5.5V                                                        | 1.7V-5.5V                                                                                                                                                                                                               | 1.7V-5.5V                                                                                               | 1.7-5.5V                                                                                           | 1.7-5.5V                                                                                           |
| Viened R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                       |                                                                                  | 100 kHz                                                                          |                                                                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                         | 125<br>kbps                                             |                                                           |                                                                                 |                                                                               |                                                                               |                                                                     |                                                                                                                                                                                                                        |                                                                                 |                                                                                                                                                 |                                                                               |                                                                               |                                                                  |                                                                                                                                                                                                                         |                                                                                                         | 1 MHz                                                                                              | 1 MHz                                                                                              |
| Viscos S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | noitezinegrO          | ω                                                                                | ω                                                                                | <sub>∞</sub>                                                                                                                     | ω                                                                                | œ                                                                                | <sub>∞</sub>                                                                     | ω<br>×                                                  | ω<br>×                                                  | ω                                                         | <sub>∞</sub>                                                                    | 80                                                                            | œ                                                                             | 00                                                                  | ω                                                                                                                                                                                                                      | ω                                                                               | ω                                                                                                                                               | œ                                                                             | 00                                                                            | œ                                                                | ω                                                                                                                                                                                                                       | 00                                                                                                      | ω<br>×                                                                                             | & ×                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Vtiena                |                                                                                  |                                                                                  | Υ<br>Ω                                                                                                                           |                                                                                  |                                                                                  |                                                                                  |                                                         |                                                         |                                                           |                                                                                 |                                                                               |                                                                               | χ<br>Ω                                                              | a<br>m                                                                                                                                                                                                                 | Σ<br>Ω                                                                          | Α<br>Ω                                                                                                                                          | Υ<br>Ω                                                                        |                                                                               | χ<br>Ω                                                           | m<br>m                                                                                                                                                                                                                  |                                                                                                         | 2 KB                                                                                               | 2 KB                                                                                               |
| 11xx020<br>11xx020<br>11xx020<br>11xx020<br>11xx040<br>11xx040<br>11xx040<br>11xx040<br>11xx020<br>24xx020<br>24xx020<br>24xx020<br>24xx020<br>AT24CS<br>AT24CS<br>AT24CS<br>AT24CS<br>AT24CS<br>AT24CS<br>AT24CS<br>AT24CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | foubor¶               | 11xx010                                                                          | 11xx020 2                                                                        | 11xx020E48/<br>E64/UID                                                                                                           | 11xx040 4                                                                        | 11xx080 8                                                                        | 11xx160                                                                          | AT21CS01                                                | AT21CS11 1                                              |                                                           | 24xx01/014                                                                      | AT24C01C                                                                      | AT24C01D 1                                                                    | AT24CS01                                                            | AT24CSW01 1                                                                                                                                                                                                            | <b>24××02/</b> 024/025                                                          | <b>24xx02E48</b> / E64/UID                                                                                                                      | AT24C02C 2                                                                    | AT24C02D 2                                                                    | AT24CS02 2                                                       | AT24CSW02 2                                                                                                                                                                                                             | AT24HC02C 2                                                                                             | AT24MAC402 2                                                                                       | AT24MAC602 2                                                                                       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                              | ( <b>/</b> )           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | noitszinsgyO | Max. Clock<br>Frequency      | Operating Voltage (    | Temperature Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E/W Endurance<br>(Minimum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data Retention<br>(MiniminiM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factory Programmed<br>Serial Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Max. Standby<br>Current<br>(@ 5.5V, 85°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hard Pin Protect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Software Protect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Protected Array Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 ku Pricing (\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Special/Unique<br>Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Раскадеѕ                                                                          |
| 2 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 ×          | 1 MHz                        | 1.7V-5.5V<br>1.5V-3.6V | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ψ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>∧</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W, ½ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 MHz @ 2.5V, permanent and resettable software WP –<br>DIMM-DDR2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MINY), 6-SOT-23 (OT)             |
| AT34C02D 2 KB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ω<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , W, 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W, lower 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JEDEC EE1002 and EE1002A Serial Presence Detect (SPD) compliant EEPROM for use in DDR, DDR2, and DDR3 DIMM modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), VFBGA (C)                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ω<br>×       | 400 KHz                      | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 pA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A has three address pins - cascade up to eight devices,     A has two address pins - cascade up to four devices, 044     has lower current specs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), WLCSP (CS)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 ×          | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wo address pins - cascade up to four devices to share a common 2-wire bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×          | 1 MHz                        |                        | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wo address pins - cascade up to four devices to share a common 2-wire bus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C)                 |
| 4 KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | × ×          | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unique 128-bit serial number separate from the main memory array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ω<br>×       | 1 MHz                        | 1.7–5.5V               | -40°C to +85°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ξ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | →<br>,%,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 74,74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oftware Slave Address, 256-bit security register separate om the main array (128-bit register factory-programmed, 8-bit user programmable and permanently locked protect can also be permanently locked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WLCSP (U)                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wo address pins - cascade up to four devices to share a common 2-wire bus, half array write protect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PDIP (PU), SOIC (S), TSSOP (T)                                                    |
| 4 KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ω<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SPD for DRAM (DDR4) modules, SMBus compatible bus time out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MUY, MNY)                        |
| 4 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ω<br>×       | 1 MHz                        | 1.7V-3.6V              | -20°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , W, ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JEDEC JC42.4 (EE1004-v) Serial Presence Detect (SPD) compliant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOIC (SS), TSSOP (X), UDFN (MA)                                                   |
| 8 KE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ω<br>×       | 400 KHz                      | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iree address pins - cascade up to eight devices to share a common 2-wire bus, 16 byte page write buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MINY), 5-SOT-23 (OT),            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × ×          | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | One address pin - cascade up to two devices to share a common 2-wire bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ω<br>×       | 1 MHz                        | 1.7V-3.6V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | One address pin - cascade up to two devices to share a common 2-wire bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C), WLCSP (U)      |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9 ри                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unique 128-bit serial number separate from the main memory array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ω<br>×       | 1 MHz                        | 1.7–5.5V               | -40°C to +85°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ><br>%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7, 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oftware Slave Address, 256-bit security register separate om the main array (128-bit register factory-programmed, 8-bit user programmable and permanently lockable), write prodect can also be permanently locked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WLCSP (U)                                                                         |
| 7 TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ω<br>×       | 400 kHz                      | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iree address pins - cascade up to eight devices to share a common 2-wire bus, 16 byte page write buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), WLCSP (CS)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∞<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No address pins - single slave address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C), XDFN (MB)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×            | 1 MHz                        | 1.7V-3.6V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No address pins - single slave address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C), WLCSP (U)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∞<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unique 128-bit serial number separate from the main memory array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                        |
| 32<br>AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ω<br>×       | 400 KHz                      | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iree address pins - cascade up to eight devices to share a common 2-wire bus, 32 byte page write buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 5-SOT-23 (OT), WLCSP (CS)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | irree address pins - cascade up to eight devices to share a common 2-wire bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C), XDFN (ME)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80<br>×      | 1 MHz                        | 1.7V-3.6V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8 uA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iree address pins - cascade up to eight devices to share a common 2-wire bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PDIP (P), SOIC (SS), SOT-23 (ST), TSSOP (X), UDFN (MA), VFBGA (C), WLCSP (U)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×<br>8       | 1 MHz                        |                        | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unique 128-bit serial number separate from the main memory array                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SOIC (SS), TSOT (ST), TSSOP (X), UDFN (MA)                                        |
| 8 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∞<br>×       | 1 MHz                        | 1.7V-5.5V              | -40°C to +125°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10M<br>10M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t µA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rree address pins - cascade up to eight devices to share a common 2-wire bus, 32 byte page write buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MINY), 5-SOT-23 (OT), MLCSP (CS) |
| AT24C04C AT24C04D AT24C04D AT24C08D AT24C08C AT24C08C AT24C08C AT24C08C AT24C08C AT24C08C AT24C3C AT24 | 4 в          | <b>2 8 8 8 8 8 8 8 8 8 8</b> | 2                      | 4 KB × 8 1 MHZ 8 KB × 8 1 MHZ 8 KB × 8 1 MHZ 8 KB × 8 1 MHZ 16 × 8 1 MHZ 17 KB × 8 1 MHZ 18 × 8 1 MHZ 18 × 8 1 MHZ 18 × 8 1 MHZ 19 × 8 1 MHZ 10 × 8 1 MHZ 10 × 8 1 MHZ 10 × 8 1 MHZ 11 × 8 1 MHZ 12 × 8 1 MHZ 13 × 8 1 MHZ 14 × 8 1 MHZ 15 × 8 1 MHZ 16 × 8 1 MHZ 16 × 8 1 MHZ 17 × 8 1 MHZ 18 × 8 1 MHZ | 4 KB       × 8       400 KHZ       1.77-5.5V         4 KB       × 8       1 MHZ       1.77-5.5V         8 KB       × 8       1 MHZ       1.77-5.5V         16       × 8       1 MHZ       1.77-5.5V         17       × 8       1 MHZ       1.77-5.5V         18       × 8       1 MHZ       < | 4 KB         x 8         400 KHz         1.7V-5.5V         -40°C to +125°C           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C | 4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           1 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           1 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           1 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M           1 KB         x 8 <t< th=""><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           16         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         <t< th=""><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           16         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         <t< th=""><th>4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 18 µA 18 µA 11 µA 11 µA 18 µA 11 µA 18 µA 11 µA 11 µA 11 µA 18 µA 11 µ</th><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N         1µA         Y         -7           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years</th><th>4 KB         × 8         400 kHz         1.7V-6.5V         -40°C to +125°C         1M         200 Years         N         6 µA         Y         -         W ½           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         W, bw           8 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         Y         W, bw           1 KB         × 8         1 MHz         1.7V-6.5V</th><th>4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         1µA         Y         -         W,%         0.11           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         6 µA         Y         -         W,%         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         0.8 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV<!--</th--><th>  4 Kig   x   x   x   x   x   x   x   x   x  </th></th></t<></th></t<></th></t<> | 4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           16         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C <t< th=""><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           16         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         <t< th=""><th>4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 18 µA 18 µA 11 µA 11 µA 18 µA 11 µA 18 µA 11 µA 11 µA 11 µA 18 µA 11 µ</th><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N         1µA         Y         -7           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years</th><th>4 KB         × 8         400 kHz         1.7V-6.5V         -40°C to +125°C         1M         200 Years         N         6 µA         Y         -         W ½           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         W, bw           8 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         Y         W, bw           1 KB         × 8         1 MHz         1.7V-6.5V</th><th>4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         1µA         Y         -         W,%         0.11           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         6 µA         Y         -         W,%         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         0.8 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV<!--</th--><th>  4 Kig   x   x   x   x   x   x   x   x   x  </th></th></t<></th></t<> | 4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y           16         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C <t< th=""><th>4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 18 µA 18 µA 11 µA 11 µA 18 µA 11 µA 18 µA 11 µA 11 µA 11 µA 18 µA 11 µ</th><th>4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N         1µA         Y         -7           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years</th><th>4 KB         × 8         400 kHz         1.7V-6.5V         -40°C to +125°C         1M         200 Years         N         6 µA         Y         -         W ½           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         W, bw           8 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         Y         W, bw           1 KB         × 8         1 MHz         1.7V-6.5V</th><th>4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         1µA         Y         -         W,%         0.11           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         6 µA         Y         -         W,%         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         0.8 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV<!--</th--><th>  4 Kig   x   x   x   x   x   x   x   x   x  </th></th></t<> | 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 6 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 1 µA 4 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 8 KB × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 16 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 17 µA 18 × 8 1 MHz 1.7V-5.5V -40°C to +123°C 1M 100 Years N 0.8 µA 18 µA 18 µA 11 µA 11 µA 18 µA 11 µA 18 µA 11 µA 11 µA 11 µA 18 µA 11 µ | 4 KB         x 8         400 kHz         1.7V-5.5V         -40°C to +125°C         1M         200 Years         N         1µA         Y         -7           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -           4 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years         Y         Y         Y           8 KB         x 8         1 MHz         1.7V-5.5V         -40°C to +125°C         1M         100 Years | 4 KB         × 8         400 kHz         1.7V-6.5V         -40°C to +125°C         1M         200 Years         N         6 µA         Y         -         W ½           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         N         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         6 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         0.8 µA         Y         -         W           4 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         W, bw           8 KB         × 8         1 MHz         1.7V-6.5V         -40°C to +125°C         1M         100 Years         Y         Y         W, bw           1 KB         × 8         1 MHz         1.7V-6.5V | 4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         1µA         Y         -         W,%         0.11           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         N         6 µA         Y         -         W,%         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         6 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         0.8 µA         Y         -         W         0.13           4 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV         -40°C to +128°C         1M         100 Veers         Y         Y         Y         W,%         0.13           8 KB         x B         1 JM-2 SV </th <th>  4 Kig   x   x   x   x   x   x   x   x   x  </th> | 4 Kig   x   x   x   x   x   x   x   x   x                                         |

|                                | Раскадеѕ                                  | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT), WLCSP (CS) | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C), WLCSP (U), XDFN (ME)  | SOIC (SS), TSSOP (X), UDFN (MA)                                  | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), MLCSP (CS)             | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C), WLCSP (U), XDFN (ME)  | PDIP (P), SOIC (SN), TSSOP (ST), SOU (SM), MSOP (MS),<br>DFN (MF), WLCSP (CS), TDFN (MNY) | PDIP (P), SOIC (SN), TSSOP (ST), SOIJ (SM), MSOP (MS),<br>DPN (MP), WLCSP (CS), TDFN (MNY)                                    | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)                        | PDIP (P), SOIC (SN), TSSOP (ST), DFN (MF), SOIJ (SM),<br>WLCSP (CS)           | SOIC (SS), SOIJ (S), TSSOP (X), UDFN (MA), VFBGA (C), WLCSP (U)               | PDIP (P), SOIC (SN), SOIJ (SM)                                                                                   | SOIC (SS), SOIJ (S), TSSOP (X), WLCSP (U)                                   | SOIC (SS), WLCSP (U)                                                        | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | PDIP (P), PDIP (PU), SOIC (S), TSSOP (f), UDFN (Y), VFBGA (U) | PDIP (BP), PDIP (PU), SOIC (S), TSSOP (T) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | SOIC (SS), TSSOP (X), UDFN (MA), VFBGA (C), XDFN (ME) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | SOIC (SS), TSSOP (X), UDFN (MA), VFBGA (C), XDFN (ME) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT) | PDIP (PU), SOIC (S), TSSOP (T), UDFN (Y)          |
|--------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|
| ROM                            | Special/Unique<br>Seatufse3               | Three address pins, software WP, high endurance block, page size up to 64 Bytes  | Three address pins - cascade up to eight devices to share a common 2-wire bus | Unique 128-bit serial number separate from the main memory array | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus             | Three address pins - cascade up to eight devices to share a common 2-wire bus, EUI-48, EUI-64 and unique ID options available | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus | Three address pins - cascade up to eight devices to share a common 2-wire bus | Two address pins - cascade up to four devices to share a common 2-wire bus, 25 and 26 difference is address pins | Two address pins - cascade up to four devices to share a common 2-wire bus. | Two address pins - cascade up to four devices to share a common 2-wire bus. | ORG pin to select word size on 46C version; EUI-48 option available  | ORG pin to select word size on 46C version; EUI-48 option available  | User-selectable x8 orx16 Internal Organization                | x 16 organization only                    | ORG pin to select word size in 56C version                           | User-selectable × 8 or × 16 Internal Organization     | ORG pin to select word size in 66C version                           | User-selectable × 8 or × 16 Internal Organization     | ORG pin to select word size in 76C version                           | ORG pin to select word size in 86C version                           | User-selectable × 8 or × 16 Internal Organization |
| rial EEP                       | 5 ku Pricing (\$)                         | 0.28                                                                             | 0.15                                                                          | 0.32                                                             | 0.40                                                                          | 0.22                                                                          | 0.59                                                                                      | 0.68                                                                                                                          | 0.34                                                                          | 0.90                                                                          | 0.65                                                                          | 2.22                                                                                                             | 0.99                                                                        | 1.16                                                                        | 0.16                                                                 | 0.18                                                                 | 0.09                                                          | 0.11                                      | 0.17                                                                 | 0.12                                                  | 0.19                                                                 | 0.11                                                  | 0.25                                                                 | 0.28                                                                 | 0.18                                              |
| Memory Products: Serial EEPROM | Protected Array Size                      | up to 15<br>4 KB<br>blks                                                         | >                                                                             | ≥                                                                | *                                                                             | ≥                                                                             | >                                                                                         | ≷                                                                                                                             | 8                                                                             | ≯                                                                             | >                                                                             | ≯                                                                                                                | >                                                                           | >                                                                           | I                                                                    | 1                                                                    | I                                                             | 1                                         | 1                                                                    | ı                                                     | 1                                                                    | 1                                                     | ≷                                                                    | *                                                                    | ı                                                 |
| y Proc                         | Software Protect                          | >                                                                                | ı                                                                             | I                                                                | I                                                                             | - 1                                                                           | ı                                                                                         | I                                                                                                                             | I                                                                             | ı                                                                             | 1                                                                             | 1                                                                                                                | I                                                                           | I                                                                           | 1                                                                    | I                                                                    | ı                                                             | 1                                         | 1                                                                    | ı                                                     | ı                                                                    | - 1                                                   | ı                                                                    | 1                                                                    | I                                                 |
| Nemor                          | Hard Pin Protect                          | 1                                                                                | >                                                                             | >                                                                | >                                                                             | >                                                                             | >                                                                                         | >                                                                                                                             | >                                                                             | >                                                                             | >                                                                             | >                                                                                                                | >                                                                           | >                                                                           | I                                                                    | 1                                                                    | I                                                             | -1                                        | 1                                                                    | 1                                                     | ı                                                                    | 1                                                     | >                                                                    | >                                                                    | 1                                                 |
|                                | Max. Standby<br>Current<br>(@ 5.54, 85°C) | 1 µA                                                                             | 6 µА                                                                          | 6 µА                                                             | 1 µA                                                                          | 6 µА                                                                          | 1 µA                                                                                      | 1 µA                                                                                                                          | 6 µА                                                                          | 1 µA                                                                          | 6 µА                                                                          | 5 µА                                                                                                             | 6 µА                                                                        | 6 µА                                                                        | 1 µA                                                                 | 1 µA                                                                 | 15 µA                                                         | 15 µA                                     | 1 µA                                                                 | 15 µA                                                 | 1 µA                                                                 | 15 µA                                                 | 1 µA                                                                 | 1 µA                                                                 | 15 µA                                             |
|                                | Factory Programmed<br>Serial Number       | z                                                                                | z                                                                             | >                                                                | z                                                                             | z                                                                             | z                                                                                         | >                                                                                                                             | z                                                                             | z                                                                             | z                                                                             | z                                                                                                                | z                                                                           | z                                                                           | z                                                                    | z                                                                    | z                                                             | z                                         | z                                                                    | z                                                     | z                                                                    | z                                                     | z                                                                    | z                                                                    | z                                                 |
|                                | Data Retention<br>(muminiM)               | 200 Years                                                                        | 100 Years                                                                     | 100 Years                                                        | 200 Years                                                                     | 100 Years                                                                     | 200 Years                                                                                 | 200 Years                                                                                                                     | 100 Years                                                                     | 200 Years                                                                     | 40 Years                                                                      | 200 Years                                                                                                        | 40 Years                                                                    | 100 Years                                                                   | 200 Years                                                            | 200 Years                                                            | 100 Years                                                     | 100 Years                                 | 200 Years                                                            | 100 Years                                             | 200 Years                                                            | 100 Years                                             | 200 Years                                                            | 200 Years                                                            | 100 Years                                         |
|                                | E/W Endurance<br>(Minimum)                | 1M,                                                                              | ₹                                                                             | ₹                                                                | ₹                                                                             | ₹                                                                             | ₹                                                                                         | ₹                                                                                                                             | ₹                                                                             | ₹                                                                             | ₹                                                                             | ₹                                                                                                                | ₹                                                                           | ₹                                                                           | ₹                                                                    | ₹                                                                    | ₹                                                             | Ψ                                         | ₹                                                                    | ₹                                                     | ₹                                                                    | ₹                                                     | ₹                                                                    | ₹                                                                    | ₹                                                 |
|                                | Temperature Range                         | -40°C to +125°C                                                                  | -40°C to +125°C                                                               | -40°C to +125°C                                                  | -40°C to +125°C                                                               | -40°C to +125°C                                                               | -40°C to +125°C                                                                           | -40°C to +125°C                                                                                                               | -40°C to +125°C                                                               | -40°C to +125°C                                                               | -40°C to +125°C                                                               | -40°C to +125°C                                                                                                  | -40°C to +125°C                                                             | -40°C to +125°C                                                             | -40°C to +125°C                                                      | -40°C to +125°C                                                      | -40°C to +125°C                                               | -40°C to +85°C                            | -40°C to +125°C                                                      | -40°C to +125°C                                       | -40°C to +125°C                                                      | -40°C to +125°C                                       | -40°C to +125°C                                                      | -40°C to +125°C                                                      | -40°C to +125°C                                   |
|                                | (V) epsting Voltage (V)                   | 1.8V-6V                                                                          | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                        | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                                                 | 1.7V-5.5V                                                                                                                     | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                                     | 1.7V-5.5V                                                                                                        | 1.7V-5.5V                                                                   | 1.7V-5.5V                                                                   | 1.8V-5.5V                                                            | 1.8V-5.5V                                                            | 1.7V-5.5V                                                     | 1.8V-5.5V                                 | 1.8V-5.5V                                                            | 1.8V-5.5V                                             | 1.8V-5.5V                                                            | 1.8V-5.5V                                             | 1.8V-5.5V                                                            | 1.8V-5.5V                                                            | 1.8V-5.5V                                         |
|                                | Max. Clock<br>Frequency                   | 1 MHz                                                                            | 1 MHz                                                                         | 1 MHz                                                            | 1 MHz                                                                         | 1 MHz                                                                         | 1 MHz                                                                                     | 1 MHz                                                                                                                         | 1 MHz                                                                         | 1 MHz                                                                         | 1 MHz                                                                         | 1 MHz                                                                                                            | 1 MHz                                                                       | 1 MHz                                                                       | 3 MHz                                                                | 3 MHz                                                                | 2 MHz                                                         | 2 MHz                                     | 3 MHz                                                                | 2 MHz                                                 | 3 MHz                                                                | 2 MHz                                                 | 3 MHz                                                                | 3 MHz                                                                | 2 MHz                                             |
|                                | noitezinegaO                              | ω<br>×                                                                           | 80<br>×                                                                       | ω<br>×                                                           | ω<br>×                                                                        | ∞<br>×                                                                        | ω<br>×                                                                                    | ω<br>×                                                                                                                        | ω<br>×                                                                        | ω<br>×                                                                        | ω<br>×                                                                        | ω<br>×                                                                                                           | ω<br>×                                                                      | ω<br>×                                                                      | × × 8,                                                               | × × 8,<br>× 16                                                       | × × 8,                                                        |                                           | × × 8,                                                               | × × 8,<br>× 16                                        | × 8,<br>× 16                                                         | × × 8,                                                | × × 8,<br>× 16                                                       | × × 8,<br>× 16                                                       | × × 8,                                            |
|                                | Density                                   | 64<br>KB                                                                         | 4 8<br>8                                                                      | 20 X                                                             | 128<br>KB                                                                     | 45 AB                                                                         | 256<br>KB                                                                                 | 256<br>KB                                                                                                                     | 256<br>KB                                                                     | 512<br>KB                                                                     | 512<br>KB                                                                     | 1 MB                                                                                                             | 1 MB                                                                        | 1 MB                                                                        | 1 KB                                                                 | - KB                                                                 | +<br>X<br>B                                                   | 1 KB                                      | 2 KB                                                                 | 2 KB                                                  | 4 KB                                                                 | 4 KB                                                  | 8 KB                                                                 | 5 AB                                                                 | 5                                                 |
|                                | Bus<br>Product                            | 24×x65                                                                           | AT24C64D                                                                      | AT24CS64                                                         | 24xx128                                                                       | AT24C128C                                                                     | 24xx256                                                                                   | ୁ<br>24xx256UID                                                                                                               | AT24C256C                                                                     | 24xx512                                                                       | AT24C512C                                                                     | 24xx1025/26                                                                                                      | AT24CM01                                                                    | AT24CM02                                                                    | 93xx46A/B/C                                                          | 93xx46AE48                                                           | AT93C46D                                                      | AT93C46E                                  | 93xx56A/B/C                                                          | AT93C56B                                              | 93xx66A/B/C                                                          | АТ93С66В                                              | 93xx76A/B/C                                                          | 93xx86A/B/C                                                          | AT93C86A                                          |

|         |                        |                  |              |                         |                       |                   |                            |                             |                                     | 2                                         | <b>l</b> emor    | y Prod           | ucts: Se             | Memory Products: Serial EEPROM | ROM                                                                                                                 |                                                                                 |
|---------|------------------------|------------------|--------------|-------------------------|-----------------------|-------------------|----------------------------|-----------------------------|-------------------------------------|-------------------------------------------|------------------|------------------|----------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| sng     | Product                | Density          | noitezinegıO | Max. Clock<br>Frequency | (V) Operating Voltage | Temperature Range | E/W Endurance<br>(Minimum) | Data Retention<br>(muminiM) | Factory Programmed<br>Serial Number | Max. Standby<br>Current<br>(@ 5.54, 85°C) | Hard Pin Protect | Software Protect | Protected Array Size | 5 ku Pricing (\$)              | Special/Unique<br>Features                                                                                          | Раскадеѕ                                                                        |
| ď       | 25xx010A               | 1 KB             | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | Ψ                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 4 0.28                         | 5 MHz @ 2.5V, Status register, 16 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT)            |
| A       | AT25010B               | 1 KB             | ω<br>×       | 20 MHz                  | 1.7–5.5               | -40°C to +125°C   | ₽                          | 100 Years                   | z                                   | 3.5 µA                                    | >                | >                | W, ½, ¼              | 1 0.12                         | Supports SPI Modes 0 (0, 0) and 3 (1, 1)                                                                            | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)                          |
| N       | 25××020A               | 2 XB             | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ξ                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | i 0.29                         | 5 MHz @ 2.5V, Status register, 16 byte page,<br>Unique EUI-48/EUI-64 MAC address and<br>unique ID options available | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT)            |
| 0, Ш    | 25xx020E48/<br>E64/UID | 2 XB             | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ₹                          | 200 Years                   | >-                                  | 1 µA                                      | >                | >                | W, ½, ¼              | 0.30                           | 5 MHz @ 2.5V, Status register, 16 byte page,<br>Unique EUI-48/EUI-64 MAC address and<br>unique ID options available | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT)            |
| ⋖       | AT25020B               | 2 KB             | & ×          | 20 MHz                  | 1.7-5.5               | -40°C to +125°C   | ₽                          | 100 Years                   | z                                   | 3.5 µA                                    | >                | >                | W, ½, ¼              | 4 0.15                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP)                                     |
| Ñ       | 25xx040A               | 4<br>8<br>8      | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ξ                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 6 0.31                         | 5 MHz @ 2.5V, Status register, 16 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY), 6-SOT-23 (OT)            |
| 4       | AT25040B               | 4 KB             | ω<br>×       | 20 MHz                  | 1.7–5.5               | -40°C to +125°C   | ₽                          | 100 Years                   | z                                   | 3.5 µA                                    | >                | >                | W, ½, ¼              | 1 0.13                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)                          |
| Ñ       | 25xx080C/D             | %<br>W<br>W<br>W | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ₽                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 1 0.37                         | 16/32 byte page, 5 MHz @ 2.5V, Status register                                                                      | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY)                           |
| ⋖       | AT25080B               | 8<br>X<br>M      | ω<br>×       | 5 MHz                   | 1.7–5.5               | -40°C to +125°C   | Ξ                          | 100 Years                   | z                                   | 13 µA                                     | >                | >                | W, ½, ¼              | 9 0.16                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA<br>(C), WLCSP (J), XDFN (ME) |
| Ñ       | 25xx160C/D             | 5 A              | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ₹                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 90.39                          | 16/32 byte page, 5 MHz @ 2.5V, Status register                                                                      | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY)                           |
| ₹       | AT25160B               | 6 A              | ω<br>×       | 5 MHz                   | 1.7–5.5               | -40°C to +125°C   | Ψ                          | 100 Years                   | Z                                   | 13 µA                                     | >                | >                | W, ½, ¼              | 4 0.17                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C), XDFN (ME)               |
| ld<br>% | 25xx320A               | 32<br>KB 23      | ∞<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | Σ                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 1 0.42                         | 5 MHz @ 2.5V, Status register, 32 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY)                           |
|         | AT25320B               | XB 32            | ω<br>×       | 5 MHz                   | 1.7–5.5               | -40°C to +125°C   | Ψ                          | 100 Years                   | z                                   | 13 µA                                     | >                | >                | W, ½, ¼              | 4 0.22                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (O), XDFN (ME)               |
| Ñ       | 25xx640A               | 8 X              | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ₹                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | i 0.43                         | 5 MHz @ 2.5V, Status register, 32 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), MSOP (MS), DFN (MNY, MF)                       |
| ⋖       | AT25640B               | 26 A<br>B        | ω<br>×       | 5 MHz                   | 1.7–5.5               | -40°C to +125°C   | Ψ                          | 100 Years                   | z                                   | 13 µA                                     | >                | >                | W, ½, ¼              | 9 0.35                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP),<br>VFBGA (C), XDFN (ME)            |
| Ñ       | 25xx128                | 128<br>KB        | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ξ                          | 200 Years                   | z                                   | 1 µA                                      | >                | >                | W, ½, ¼              | 9 0.62                         | 5 MHz @ 2.5V, Status register, 64 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), DFN (MF)                                       |
| ⋖       | AT25128B               | 128<br>KB        | ω<br>×       | 20 MHz                  | 1.7–5.5               | -40°C to +125°C   | ξ                          | 100 Years                   | z                                   | 5.0 µA                                    | >                | >                | W, ½, ¼              | 1 0.41                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)                          |
| Ñ       | 25xx256                | 256<br>KB        | ω<br>×       | 10 MHz                  | 1.8–5.5               | -40°C to +150°C   | ₹                          | 200 Years                   | z                                   | 4 L                                       | >                | >                | W, ½, ¼              | 4 0.87                         | 5 MHz @ 2.5V, Status register, 64 byte page                                                                         | PDIP (P), SOIC (SN), TSSOP (ST), DFN (MF), SOIJ (SM)                            |
| ₹       | AT25256B               | 256<br>XB        | ω<br>×       | 20 MHz                  | 1.7–5.5               | -40°C to +125°C   | Ψ                          | 100 Years                   | z                                   | 5.0 µA                                    | >                | >                | W, ½, ¼              | 4 0.75                         | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), SOIJ (S), TSSOP (X), UDFN (MA), UDFN (MAP), VFBGA (C)                |
| Ø       | 25xx512                | 512<br>KB        | ω<br>×       | 20 MHz                  | 1.8–5.5               | -40°C to +125°C   | Σ                          | 200 Years                   | z                                   | 10 µA                                     | >                | >                | W, ½, ¼              | 1.21                           | 10 MHz @ 2.5V, Deep power down, Status register,<br>Page/sector/chip erase                                          | PDIP (P), SOIC (SN), DFN (MF), SOU (SM)                                         |
| ⋖       | AT25512                | 512<br>KB        | ω<br>×       | 20 MHz                  | 1.8–5.5               | -40°C to +85°C    | ₹                          | 40 Years                    | z                                   | 5.0 µA                                    | >                | >                | W, ½, ¼              | 96:0                           | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (S), TSSOP (T), UDFN (Y)                                                   |
| Ñ       | 25xx1024               | 1 MB             | ω<br>×       | 20 MHz                  | 1.8–5.5               | -40°C to +125°C   | ξ                          | 200 Years                   | z                                   | 12 µA                                     | >                | >                | W, ½, ¼              | 4 2.28                         | 10 MHz @ 2.5V, Deep power down, Status register,<br>Page/sector/chip erase                                          | PDIP (P), DFN (MF), SOIJ (SM)                                                   |
| A       | AT25M01                | 1 MB             | ω<br>×       |                         | 1.7–5.5               | -40°C to +85°C    |                            |                             | z                                   | 5.0 µA                                    |                  |                  | W, ½, ¼ 1.18         | 1.18                           | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), SOIJ (S), UDFN (MF), WLCSP (U)                                       |
| ∢       | AT25M02                | 2 MB             | ∞<br>×       | 5 MHz                   | 1.7–5.5               | -40°C to +85°C    | ₹                          | 40 Years                    | Z                                   | 3.0 µA                                    | >                | >                | W, ½, ¼              | 1.24                           | Supports SPI Modes 0 (0,0) and 3 (1,1)                                                                              | SOIC (SS), WLCSP (U)                                                            |

|                              |         |                      |                     |                         |                                                                                              |                                 |                               |                                | Mer                                       | Memory Products: Serial RAM      | ıcts: Seria                    | I RAM             |                                                                                                                                                                       |                                                                             |                                                  |
|------------------------------|---------|----------------------|---------------------|-------------------------|----------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|--------------------------------|-------------------------------------------|----------------------------------|--------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------|
| Bus Product                  |         | Density              | noitezinegıO        | Max. Clock<br>Frequency | Operating<br>Voltage (V)                                                                     | Temperature<br>Range (°C)       | E/W<br>Endurance<br>(Minimum) | Data<br>Retention<br>(muminiM) | Max. Standby<br>Current<br>(@ 5.5V, 85°C) | Hard Pin<br>Protect<br>Software  | Protected<br>Srray Size        | 5 ku Pricing (\$) | Special/<br>Unique<br>Features                                                                                                                                        |                                                                             | Раскадеѕ                                         |
|                              |         |                      |                     |                         |                                                                                              |                                 |                               |                                |                                           | Seria                            | Serial SRAM                    |                   |                                                                                                                                                                       |                                                                             |                                                  |
| 23x640                       | 64      | 64 KB                | × 8 ×               | 20 MHz                  | 1.5–1.95, 2.7–3.6                                                                            | -40 to +125                     | 8                             | Volatile                       | 4 pA                                      | 1                                | 1                              | 0.51              | Zero write cycle time, Infinite endurance, Volatile RAM, Byte/page/sequential read-write modes                                                                        | Volatile RAM,<br>nodes                                                      | PDIP (P), SOIC (SN), TSSOP (ST)                  |
| 23x256                       | 25      | 256 KB               | x 8 2               | 20 MHz                  | 1.5-1.95, 2.7-3.6                                                                            | -40 to +125                     | 8                             | Volatile                       | 4 µA                                      | 1                                | ı                              | 0.87              | Zero write cycle time, Infinite endurance, Volatile RAM, Byte/page/sequential read-write modes                                                                        | Volatile RAM,<br>nodes                                                      | PDIP (P), SOIC (SN), TSSOP (ST)                  |
| යි<br>23xx512                |         | 512 KB               | × × ×               | 20 MHz                  | 1.7–2.2, 2.5–5.5                                                                             | -40 to +125                     | 8                             | Volatile                       | 4 pvA                                     | 1                                | ı                              | 1.24              | Fast Speed: Quad SPI available (80 MHz), Infinite endurance Zero write times, 5V capable                                                                              | nfinite endurance,<br>e                                                     | SOIC (SN), PDIP (P), TSSOP (ST)                  |
| 23xx1024                     |         | 1024 KB              | × 8                 | 20 MHz                  | 1.7-2.2, 2.5-5.5                                                                             | -40 to +125                     | 8                             | Volatile                       | Au 4                                      | 1                                | 1                              | 1.73              | Fast Speed: Quad SPI available (80 MHz), Infinite endurance<br>Zero write times, 5V capable                                                                           | nfinite endurance,<br>e                                                     | SOIC (SN), PDIP (P), TSSOP (ST)                  |
|                              |         |                      |                     |                         |                                                                                              |                                 |                               |                                |                                           | Serial                           | Serial NVSRAM                  |                   |                                                                                                                                                                       |                                                                             |                                                  |
| 23LCV512                     |         | 512 KB               | × 8                 | 20 MHz                  | 2.5–5.5                                                                                      | -40 to +85                      | 8                             | 20 Years<br>via battery        | 4 µA                                      | 1                                | ı                              | 1.4               | Battery-backed non-volatile SPAM, Infinite endurance, Zero write times                                                                                                | ance, Zero write times                                                      | SOIC (SN), PDIP (P), TSSOP (ST)                  |
| 23LCV1024                    |         | 1024 KB              | x<br>8<br>2         | 20 MHz                  | 2.5–5.5                                                                                      | -40 to +85                      | 8                             | 20 Years<br>via battery        | 4 µA                                      | 1                                | 1                              | 1.98              | Battery backed non-volatile SRAM, Infinite endurance, Zero write times                                                                                                | ance, Zero write times                                                      | SOIC (SN), PDIP (P), TSSOP (ST)                  |
|                              |         |                      |                     |                         |                                                                                              |                                 |                               |                                |                                           | Serial                           | EERAM                          |                   |                                                                                                                                                                       |                                                                             |                                                  |
| 47×04                        | 4       | 4 KB                 | ω<br>×              | 1 MHz                   | 2.7–3.6, 4.5–5.5                                                                             | -40 to +125                     | 8                             | 200 Years                      | 40 µA                                     | > 1                              | W to<br>1/64                   | 0.47              | Unlimited endurance to SRAM, Data automatically backed up to EEPROM and power down (with small external capacitor)                                                    | acked up to EEPROM and apacitor)                                            | SOIC (SN), PDIP (P), TSSOP (ST)                  |
| 47x16                        | 16      | Ω.                   | ω<br>×              | 1 MHz                   | 2.7-3.6, 4.5-5.5                                                                             | -40 to +125                     | 8                             | 200 Years                      | 40 µA                                     | >-<br>I                          |                                | 0.54              | Unlimited endurance to SPAM, Data automatically backed up to EEPROM and at power down (with small extenal capacitor)                                                  | cked up to EEPROM and at pacitor)                                           | SOIC (SN), PDIP (P), TSSOP (ST)                  |
|                              |         |                      |                     |                         |                                                                                              |                                 |                               |                                | Memor                                     | Memory Products: Parallel EEPROM | s: Parallel                    | EEPRON            |                                                                                                                                                                       |                                                                             |                                                  |
| qnet                         |         | noitne<br>(mumir     |                     | (IDOM                   |                                                                                              | ndby<br>rent                    |                               | d Pin<br>toet                  | tware<br>tected<br>tected<br>ay Size      |                                  | (\$) 6ui:                      |                   |                                                                                                                                                                       | :қ эй ег                                                                    |                                                  |
| Proo                         | stsQ    |                      | finW<br>eq2<br>avT) | d(u)                    | .dVT                                                                                         |                                 |                               | Prof                           | Prot<br>Prot                              |                                  | 5 ku<br>Pric                   |                   |                                                                                                                                                                       | Pac                                                                         |                                                  |
| AT28xx64B                    |         | 10 Years             | 10 ms               |                         | 100 µA CMOS, 2 mA TTL                                                                        | 3, 2 mA TTL                     | ļ                             |                                | M :                                       | -                                | 2.57                           | ļ                 | PLCC (32J), SOIC                                                                                                                                                      | PLCC (32J), SOIC (28S), TSOP (28T), PDIP (28P)                              | (8P)                                             |
| AT28xx256/E/F<br>AT28xx010/E |         | 10 Years<br>10 Years | 10 ms               |                         | Ind. 200 µA CMOS, Mil. 300 µA CMOS, 3 mA TTL<br>Ind. 200 µA CMOS, Mil. 300 µA CMOS, 3 mA TTL | 300 µA CMOS, 3                  | mA TTL                        | > >                            |                                           | Ind. 5<br>Ind. 23                | Ind. 23.70, Mil. 219.58        | 19.58             | PLCC (32J), SOIC (28S), 13OF (281), PUIP (28P), CERDIP (28D), CLCC (32L), FLATPACK (28F) PLCC (32J), SOIC (28S), TSOP (32T), CERDIP (32D), CLCC (32L), FLATPACK (32F) | II), CERDIP (32D), CLCC (3                                                  | -UC (32L), FLATPACK (28F)<br>2L), FLATPACK (32F) |
| AT28HC64B/F<br>AT28HC256/E/F |         | 10 Years             | 10 ms               |                         | 100 µA CMOS, 2 mA TTL<br>300 µA CMOS, 3 mA TTL, 60 mA TTL for 70ns                           | S, 2 mA TTL<br>TL, 60 mA TTL fc | or 70ns                       | > >                            |                                           | Ind. 7                           | 3.93<br>Ind. 7.21, Mil. 96.91  | 3.91              | PLCC (32J), SOIC (28S), TSOP (28T) PLCC (32J), SOIC (28S), TSOP (28T), CERDIP (28D), CLCC (32L), FLATPACK (28F)                                                       | PLCC (32J), SOIC (28S), TSOP (28T)<br>3), TSOP (28T), CERDIP (28D), CLCC (3 | 2L), FLATPACK (28F)                              |
|                              |         |                      |                     |                         |                                                                                              |                                 |                               | Memor                          | , Products                                | : One Time                       | Program                        | mable (C          | Memory Products: One Time Programmable (OTP) EPROM                                                                                                                    |                                                                             |                                                  |
| Product                      | Density | Organization         |                     | emiT ssecoA             | Operating                                                                                    | Operating<br>Voltage (V)        |                               | Temperature<br>Range           | E/W                                       | (muminiM)                        | Data<br>Retention<br>(muminiM) |                   | Write Speed<br>(Typical)                                                                                                                                              | Typ. Standay Current 5 ku Pricing (\$)                                      | Раскадея                                         |
| AT27xx256x                   | 256 KB  | ∞<br>×               | 45, 70              | 70, 90                  | BV - 2.7–3.6,<br>C -, 4.5–5.5<br>LV - 3.0–3.6                                                | .7-3.6,<br>5-5.5<br>0-3.6       | 740                           | -40°C to +85°C                 | 1                                         |                                  | 10 Years                       | PG                | PGM program pulse width = 105 µs/byte 20µA max 100 µA m                                                                                                               | 20µA max @ Vcc 3.6V<br>100 µA max @ 5.5V                                    | PLCC (32J), PDIP (28P)                           |
| AT27xx512x                   | 512 KB  | ω<br>×               | 45, 70              | 70, 90                  | C - 4.5-5.5<br>3.0-3.6                                                                       | 5-5.5                           | -40°C                         | )°C to +85°C                   | I                                         |                                  | 10 Years                       | PG                | PGM program pulse width = 105 µs/byte 100 µA mx 100 µA m.                                                                                                             | 20µA max @ Vcc 3.6V 1.35                                                    | PLCC (32J), PDIP (28P)                           |
| AT27xx010x                   | 1 MB    | ω<br>×               | 45, 70              | 70, 90                  | BV - 2.7–3.6<br>C - 4.5–5.5<br>LV - 3.0–3.6                                                  | .7-3.6<br>5-5.5<br>0-3.6        | -40                           | -40°C to +85°C                 | I                                         |                                  | 10 Years                       | PG                | PGM program pulse width = 105 µs/byte 100 µA max                                                                                                                      | 20µA max @ Vcc 3.6V<br>100 µA max @ 5.5V                                    | PLCC (32J), PDIP (32P)                           |
| AT27xx1024                   | 1 MB    | × 16                 | 45, 70, 90          | 06 '0.                  | BV - 2.7–3.6<br>C - 4.5–5.5                                                                  | 5-5.5                           | -40°C                         | )°C to +85°C                   | I                                         |                                  | 10 Years                       | P                 | PGM program pulse width = 105 µs/byte 100 µA m                                                                                                                        | 20µA max @ Vcc 3.6V 2.14<br>100 µA max @ 5.5V                               | PLCC (44J), PDIP (40P)                           |
| AT27xx020x                   | 1 MB    | ω<br>×               | 55, 90              | 55, 90, 120             | C - 4.5–5.5<br>LV - 3.0–3.6                                                                  | 5-5.5<br>0-3.6                  | -40                           | -40°C to +85°C                 | I                                         |                                  | 10 Years                       | P                 | PGM program pulse width = 105 µs/byte 100 µA max                                                                                                                      | 20µA max @ Vcc 3.6V 2.10<br>100 µA max @ 5.5V                               | PLCC (32J), PDIP (32P)                           |
| AT27C2048                    | 1 MB    | × 16                 | 55,                 | 55, 90                  | C - 4.                                                                                       | 5-5.5                           | -40°C                         | 0°C to +85°C                   | I                                         |                                  | 10 Years                       | PGN               | PGM program pulse width = 52.5 µs/byte 100 µA m                                                                                                                       | 100 µA max @ 5.5V 3.05                                                      | PLCC (44J)                                       |
| AT27xx040x                   | 1 MB    | ×                    | 70,                 | 70, 90                  | C - 4.5-5.5<br>LV - 3.0-3.6                                                                  | 5-5.5<br>0-3.6                  | -40                           | -40°C to +85°C                 | I                                         |                                  | 10 Years                       | P                 |                                                                                                                                                                       | 20µA max @ Vcc 3.6V 3.24<br>100 µA max @ 5.5V                               | PLCC (32J), PDIP (32P)                           |
| AT27C4096                    | 1 MB    | × 16                 | 55,                 | 55, 90                  | C - 4.5-5.5                                                                                  | 5-5.5                           | 94 6                          | -40°C to +85°C                 | 1                                         |                                  | 10 Years                       | PG                |                                                                                                                                                                       |                                                                             | PLCC (44J), PDIP (40P)                           |
| AIZ/ COOO                    | MM<br>L | ×                    | ))                  | S                       | 1                                                                                            | 0-0.0                           | Ť                             | J-C to +85°C                   |                                           |                                  | 10 Years                       | 5                 | PGM program pulse width = 52.5 µs/byte 100 µA m                                                                                                                       | 100 µA max @ 5.5V                                                           | PLOC (32J), PDIP (32P)                           |

|     |              |      |                                     |                   |                 |                 | Ž               | emory Prod        | Memory Products: Real-Time Clock/Calendar (RTCC) | lock/Calend | ar (RTCC) |                                              |           |                                                        |
|-----|--------------|------|-------------------------------------|-------------------|-----------------|-----------------|-----------------|-------------------|--------------------------------------------------|-------------|-----------|----------------------------------------------|-----------|--------------------------------------------------------|
|     |              |      |                                     | Timing            | Timing Features | S               |                 | Memory            | >                                                | Power       | ver       | (S) <b>:</b>                                 | виi       |                                                        |
| sng | Product      | eniq | Digital<br>Trimming<br>(Adj./Range) | Alarm<br>Settings | WDT             | Outputs         | SRAM<br>(Bytes) | EEPROM<br>(KBits) | Protected<br>EEPROM (bits)                       | Min Vcc     | Min Ibat  | Unique<br>Features                           | 2 kn Pric | Packages                                               |
|     | MCP7940M     | 80   | ±127 ppm                            | 1 sec.            | 1               | IRQ/CLK         | 64              | 0                 | 0                                                | 1.8         | 1         | 1                                            | 0.46      | SOIC (SN), TSSOP (ST), MSOP (MS), TDFN (MNY), PDIP (P) |
|     | MCP7940N     | ∞    | ±127 ppm                            | 1 sec.            | ı               | IRQ/CLK         | 64              | 0                 | 0                                                | 1.8         | 1.3       | Power Fail Timestamp                         | 0.59      | SOIC (SN), TSSOP (ST), MSOP (MS), TDFN (MNY), PDIP (P) |
| I₅C | MCP7940x     | ω    | ±127 ppm                            | 1 sec.            | ı               | IRQ/CLK         | 64              | 0                 | 64                                               | 1.8         | 1.3       | Power Fail Timestamp                         | 0.66      | SOIC (SN), TSSOP (ST), MSOP (MS), TDFN (MNY)           |
|     | MCP7941x     | ∞    | ±127 ppm                            | 1 sec.            | I               | IRQ/CLK         | 64              | -                 | 64                                               | 1.8         | 1.3       | Power Fail Timestamp                         | 0.72      | SOIC (SN), TSSOP (ST), MSOP (MS), TDFN (MNY)           |
|     | MCP7951x     | 10   | ±255 ppm                            | 0.01 sec.         | ı               | IRQ/CLK         | 64              | -                 | 128                                              | 1.8         | 1.3       | Power Fail Timestamp                         | 0.90      | SOIC (SL), TSSOP (ST)                                  |
|     | MCP7952x     | 10   | ±255 ppm                            | 0.01 sec.         | ı               | IRQ/CLK         | 64              | 2                 | 128                                              | 1.8         | 1.3       | Power Fail Timestamp                         | 0.96      | MSOP (MS), TDFN (MN)                                   |
| IdS | MCP795W1x 14 | 14   | ±255 ppm                            | 0.01 sec.         | >               | IRQ/CLK/WDT RST | 64              | -                 | 128                                              | 1.8         | 1.3       | Power Fail Timestamp,<br>Event Detects (x 2) | 1.22      | SOIC (SL), TSSOP (ST)                                  |
|     | MCP795W2x 14 | 14   | ±255 ppm                            | 0.01 sec.         | >               | IRQ/CLK/WDT RST | 64              | 2                 | 128                                              | 1.8         | 1.3       | Power Fail Timestamp,<br>Event Detects (x 2) | 1.28      | SOIC (SL), TSSOP (ST)                                  |

|               |                      |           |                 |                          |                      | Wireless Pro          | Wireless Products: Wi-Fi® Modules |                                 |                                                                                                        |                 |                               |
|---------------|----------------------|-----------|-----------------|--------------------------|----------------------|-----------------------|-----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------|-----------------|-------------------------------|
| Product       | oibeA                | Pin Count | snneJnA         | Frequency<br>Range (GHz) | Sensitivity<br>(mBb) | Power Output<br>(mBb) | 19wo¶ xT<br>noùqmuzno⊃<br>(Am)    | Rx Power<br>Consumption<br>(Am) | Eucryption/                                                                                            | Interface       | Packages<br>(Dimensions)      |
| ATSAMW25      | 802.11 b/g/n         | 51        | Chip, PCB, U.FL | 2.412–2.472              | -98                  | 17                    | 264                               | 61                              | WEP, WPA/WPA2 Personal and<br>Enterprise, TLS                                                          | SPI             | 51/Module<br>(33.9 x 14.9 mm) |
| ATWINC1500    | 802.11 b/g/n         | 28        | Chip, PCB, U.FL | 2.412–2.472              | -89                  | 17                    | 264                               | 61                              | WEP, WPA/WPA2 Personal and Enterprise, TLS                                                             | SPI             | 28/Module<br>(21.7 × 14.7mm)  |
| ATWINC3400-MR | 802.11 b/g/n and BLE | 36        | Ohip            | 2.412–2.484              | 96-                  | 4 (BLE), 14 (Wi-Fi)   | 350 (Wi-Fi)                       | 92 (Wi-Fi), 45 (BLE)            | WEP, WPA/WPA2 Personal                                                                                 | SPI, UART       | Module<br>(22.4 x 14.7 mm)    |
| ATWILC1000-MR | 802.11 b/g/n         | 28        | PCB             | 2.412–2.484              | 96-                  | 15                    | 588                               | 52.5                            | WEP, WPAWPA2 Personal and<br>Enterprise, TLS (Linux)<br>WEP, WPAWPA2 Personal and<br>Enterprise (RTOS) | SPI, SDIO       | Module<br>(21.5 x 14.5 mm)    |
| ATWILC3000-MR | 802.11 b/g/n and BLE | 36        | Ohip            | 2.412–2.484              | 96-                  | 4 (BLE), 14 (Wi-Fi)   | 295 (Wi-Fi), 110 (BLE)            | 86 (Mi-Fi), 45 (BLE)            | WEP, WPA/WPA2 Personal and Enterprise, TLS (Linux) WEP, WPA/WPA2 Personal                              | SPI, SDIO, UART | Module<br>(22.4 x 14.7 mm)    |

|                                                                                  |            |            |                          |                      |                       |       |                                 | Wir                             | eless Pro      | oducts: IE | EE 802. | Wireless Products: IEEE 802.15.4 Transceivers/Modules | ers/Modules                                 |            |            |                                   |
|----------------------------------------------------------------------------------|------------|------------|--------------------------|----------------------|-----------------------|-------|---------------------------------|---------------------------------|----------------|------------|---------|-------------------------------------------------------|---------------------------------------------|------------|------------|-----------------------------------|
| Product                                                                          | Pin Count  | snnətnA    | Frequency<br>Range (GHz) | Sensitivity<br>(m8b) | Power Output<br>(dBm) | ISSA  | Tx Power<br>Consumption<br>(Am) | Rx Power<br>Consumption<br>(Am) | (MHz)<br>Clock | dəəlS      | DAM     | MAC<br>Features                                       | Protocols                                   | Encryption | Interface  | Раскадеs<br>(Dimensions)          |
| AT86RF215                                                                        | 48         | 1          | .3895 -2.483             | -123                 | +14.5                 | Yes   | 62                              | 28                              | . 26           | .03 mA     | Yes     | 1                                                     | zigbee®, MiWi™ wireless networking protocol | I          | ØΊ         | 48 QFN                            |
| AT86RF233                                                                        | 32         | I          | 2.4                      | -101                 | 4                     | Yes   | 13.8                            | 11.8                            | 16             | .02 mA     | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | SPI        | 32 QFN                            |
| AT86RF212B                                                                       | 32         | 1          | .769 –.930               | -110                 | 1                     | Yes   | 18                              | 9.5                             | 16             | .2 mA      | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | SPI        | 32 QFN                            |
| MR.F24J40                                                                        | 40         | 1          | 2.405-2.48               | -96                  | 0                     | Yes   | 23                              | 19                              | 20             | 2 µA       | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | 4-wire SPI | 40/QFN                            |
| MRF24J40MA                                                                       | 12         | PCB        | 2.405-2.48               | -94                  | 0                     | Yes   | 23                              | 19                              | 20             | 2 µA       | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | 4-wire SPI | 12/Module (17.8 $\times$ 27.9 mm) |
| MRF24J40MD                                                                       | 12         | PCB        | 2.405-2.48               | -104                 | +19                   | Yes   | 140                             | 32                              | 20             | 10 µA      | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | 4-wire SPI | 12/Module (17.8 $\times$ 27.9 mm) |
| MRF24J40ME                                                                       | 12         | U.FL       | 2.405-2.48               | -104                 | +19                   | Yes   | 140                             | 32                              | 20             | 10 µA      | Yes     | CSMA-CA                                               | zigbee, MiWi wireless networking protocol   | AES128     | 4-wire SPI | 12/Module (17.8 $\times$ 27.9 mm) |
| 1. Indicates "off" current for sleep column. 2. Supported in the provided stack. | rent for s | sleep colu | ımı. 2. Support          | ed in the pr         | rovided st            | tack. |                                 |                                 |                |            |         |                                                       |                                             |            |            |                                   |

<sup>1.</sup> Indicates "off" current for sleep column. 2. Supported in the provided st

|                       |                       |                          |                                   |                                |                                          | Wireless Products: Bluetooth®                              |                                                           |                       |                    |                                                                                                                                  |
|-----------------------|-----------------------|--------------------------|-----------------------------------|--------------------------------|------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Product               | Functionality         | bleid2 oV                | Option<br>Rx Sensitivity<br>(dBb) | Power Output<br>(dBm) (typ.)   | dəəlS                                    | səlifor <b>q</b>                                           | eserface                                                  | Pin Count             |                    | Packages<br>(Dimensions)                                                                                                         |
| RN4020                | Data, Single-Mode BLE | S<br>H                   | -92.5                             | 7                              | Dormant < 700 nA,<br>deep sleep < 5.0 µA | GAP, GATT, SM, L2CAP,<br>integrated public profiles        | UART, PIO, AIO, SPI                                       | 24                    |                    | 11.5 × 19.5 mm<br>Module                                                                                                         |
| ATBTLC1000-ZR         | Data, Single-Mode BLE | N H                      | -93                               | -20 to +3.5                    | 1.17 µA                                  | L2CAP, SM, ATT, GATT, GAP, Integrated public profiles      | UART                                                      | 24                    |                    | 12.7 x 20 x 2.1 mm<br>Module                                                                                                     |
| ATSAMB11-ZR           | Data, Single-Mode BLE | N<br>E                   | -95                               | -20 to +3.5                    | 2 µA                                     | L2CAP, SM, ATT, GATT, GAP, Integrated public profiles      | UART                                                      | 39                    |                    | 15.4 x 22.9 x 2.1 mm<br>Module                                                                                                   |
| BM70                  | Data, Single-Mode BLE | -E Yes                   | 06-                               | 0                              | Power Saving 1 µA                        | GAP, GATT, SM, L2CAP,<br>Integrated public profiles        | UART, I²C, SPI, ADC, PWM, GPIOs                           | 33                    |                    | 22 × 12 × 2.4 mm<br>15 × 12 × 1.8 mm<br>Module                                                                                   |
| BM71                  | Data, Single-Mode BLE | -E Yes                   | 06-                               | 0                              | Power Saving 1 µA                        | GAP, GATT, SM, L2CAP,<br>Integrated public profiles        | UART, I°C, SPI, ADC, PWM, GPIOS                           | Js 17                 |                    | 9 × 11.5 × 2.1 mm<br>6 × 8 × 1.6 mm<br>Module                                                                                    |
| BM78                  | Data, Dual-Mode       | Yes                      | -90 (BR/EDR)<br>-92 LE            | N                              | Deep Power Down 130 µA                   | GAP, SPP, SDP, RFCOMM, L2CAP<br>GAP, GATT, ATT, SMP, L2CAP | UART, FC, GPIOs                                           | 83                    |                    | 22 × 12 × 2.4 mm<br>15 × 12 × 1.8 mm<br>Module                                                                                   |
| RN4678                | Data, Dual-Mode       | Yes                      | -90 (BR/EDR)<br>-92 LE            | 0                              | Deep Power Down 130 µA                   | GAP, SPP, SDP, RFCOMM, L2CAP<br>GAP, GATT, ATT, SMP, L2CAP | UART, PC, GPIOs                                           | 33                    |                    | 22 × 12 × 2.4 mm<br>15 × 12 × 1.8 mm<br>Module                                                                                   |
| BM20                  | Audio                 | Yes                      | -91                               | 4                              | System Off 2 µA                          | HFP, HSP, A2DP, AVRCP, SPP, PCAP                           | Analog audio out, mic in, line in, UART                   | ART 40                |                    | $29 \times 15 \times 2.5 \text{ mm}$ Module                                                                                      |
| BM23                  | Audio                 | Yes                      | -91                               | 4                              | System Off 2 µA                          | HFP, HSP, A2DP, AVRCP, SPP, PCAP                           | I <sup>2</sup> S Digital audio out, mic in, line in, UART | JART 43               |                    | $29 \times 15 \times 2.5 \text{ mm}$ Module                                                                                      |
| BM62                  | Audio                 | Yes                      | 06-                               | +2 (Class 2)                   | System < 10 µA                           | HFP, AVRCP, A2DP, HSP, SPP                                 | UART                                                      | 37                    |                    | 29 x 15 x 2.5 mm<br>Module                                                                                                       |
| BM64                  | Audio                 | Yes                      | 06-                               | +15 (Class 1),<br>+2 (Class 2) | System < 10 µA                           | HFP, AVRCP, A2DP, HSP, SPP                                 | UART                                                      | 43                    |                    | 32 x 15 x 2.5 mm<br>Module                                                                                                       |
|                       |                       |                          |                                   |                                |                                          | Wireless Products: Bluetooth ICs                           |                                                           |                       |                    |                                                                                                                                  |
| 1S2062                | Audio                 | Yes                      | 06-                               | +2 (Class 2)                   | System < 20 µA                           | HFP, AVRCP, A2DP, HSP, SPP                                 | UART                                                      | 56                    |                    | LGA (7 × 7 mm)<br>Module                                                                                                         |
| 1S2064                | Audio                 | Yes                      | 06-                               | +15 (Class 1),<br>+2 (Class 2) | System < 20 µA                           | HFP, AVRCP, A2DP, HSP, SPP                                 | UART                                                      | 68, 61                | 68 LGA (8)<br>61 E | 68 LGA (8 × 8 × 1.0), 68 QFN (8 × 8 × 0.9),<br>61 BGA (5 × 5 × 0.9) Module                                                       |
| IS2021S               | Audio                 | Š                        | 06-                               | 4                              | Showdown 1 µA                            | Audio: HFP, HSP, A2DP, AVRCP, SPP,<br>PBAP                 | UART                                                      | 48, 56, 68            |                    | 5 × 6.5 mm 48 QFN package (IS2021S)<br>7 × 7 mm 56 QFN package (IS2020S, IS2023S)<br>8 × 8 mm 68 QFN package (IS2025S)<br>Module |
|                       |                       |                          |                                   |                                | Wireless                                 | Wireless Products: Sub-GHz Transceivers/Modules            | s                                                         |                       |                    |                                                                                                                                  |
| Product               | Pin Count             | Frequency<br>Range (MHz) |                                   | Sensitivity F<br>(dBm)         | Power Output RSSI (dBm)                  | TX Power<br>Consumption (mA)                               | RX Power<br>Consumption (mA)                              | Sleep                 | Interface          | Packages                                                                                                                         |
| MRF89XAM8A            | 12                    | 898                      |                                   | -113                           | 12.5 Yes                                 |                                                            | 3 12.8 MHz                                                | 0.1 µA                | 4-wire SPI         | 12/Module (17.8 $\times$ 27.9 mm)                                                                                                |
| MRF89XAM9A<br>MRF89XA | 12 %                  | 915                      |                                   | -113                           | 12.5 Yes                                 | 25 mA @ +10 dBm                                            | 3 12.8 MHz                                                | 0.1 µA                | 4-wire SPI         | 12/Module (17.8 × 27.9 mm)                                                                                                       |
|                       |                       |                          | ı                                 |                                | ı                                        |                                                            | ı                                                         |                       |                    |                                                                                                                                  |
|                       | L                     |                          |                                   |                                |                                          |                                                            | :                                                         |                       |                    |                                                                                                                                  |
| Product               | Pin Count Fre         | ednency                  | Frequency Range (MHz)             | Mod                            | oo                                       | Data Rate (Kbps)                                           | Tx Power (dBm)                                            | Operating Voltage (V) | oltage (V)         | Packages                                                                                                                         |
| MICRF114              | 9 (                   | 285                      | 285–445                           | 0                              |                                          | 115.2 (NRZ), 57.6 (Manchester Encoded)                     | 10                                                        | 1.8–3.6               | 3.6                | 6-pin SOT-23                                                                                                                     |
| MICRF113              | 10                    | 300                      | 300-450                           | ASK                            | ASK/FSK                                  | 20<br>50 (ASK), 10 (FSK)                                   | 01 01                                                     | 1.8-3.6               | 3.6                | 6-pin SOI-23<br>10-pin MSOP, 10-pin DFN                                                                                          |

|                 |           |                          |                            |                           |                |                       | Wir                     | eless Product                | Wireless Products: Sub-GHz Receivers                   | seivers                                           |              |                     |                       |                      |                                              |
|-----------------|-----------|--------------------------|----------------------------|---------------------------|----------------|-----------------------|-------------------------|------------------------------|--------------------------------------------------------|---------------------------------------------------|--------------|---------------------|-----------------------|----------------------|----------------------------------------------|
| Product         | nct       | Pin Count                | Frequency<br>Range (MHz)   | Sensitivity (dBm)         |                | Power Output<br>(dBm) |                         | RSSI                         | Modulation                                             | RX Power<br>Consumption (mA)                      | er<br>n (mA) | Sleep               | ul                    | Interface            | Packages                                     |
| MICRF219A       |           | 16                       | 300-450                    | -110                      |                | ı                     |                         | Yes                          | ASK/OOK                                                | 4.3                                               |              | ı                   |                       | 1                    | 16-pin QSOP                                  |
| MICRF220        |           | 16                       | 300-450                    | -110                      |                | 1                     |                         | Yes                          | ASK/OOK                                                | 4.3                                               |              | 1                   |                       | 1                    | 16-pin QSOP                                  |
| MICRF221        |           | 16                       | 850-950                    | -109                      |                | 1                     |                         | Yes                          | ASK/OOK                                                | 0                                                 |              | I                   |                       | 1                    | 16-pin QSOP                                  |
| MICRF229        |           | 16                       | 400-450                    | -112                      |                | 1                     |                         | Yes                          | ASK/OOK                                                | 9                                                 |              | I                   |                       | 1                    | 16-pin QSOP                                  |
| MICRF230        |           | 16                       | 400-450                    | -112                      |                | ı                     |                         | Yes                          | ASK/OOK                                                | 9                                                 |              | 1                   |                       | 1                    | 16-pin QSOP                                  |
|                 |           |                          |                            |                           |                |                       | Wireles                 | s Products: Lo               | Wireless Products: LoRa <sup>®</sup> Technology Modems | y Modems                                          |              |                     |                       |                      |                                              |
| Product         | Pin Count | Frequency<br>Range (MHz) | Sensitivity<br>(dBm)       | ty Power Output (dBm)     | put RSSI       |                       | TX Power<br>Consumption | TX Power<br>Consumption (mA) | RX P<br>Consump                                        | RX Power<br>Consumption (mA)                      | de           | Interface           | eoe                   |                      | Packages                                     |
| RN2483          | 47        | 433/868                  | -148                       | 14                        | N/A            |                       | 1A @ +14 c              | 40 mA @ +14 dBm (868 MHz)    | 14                                                     | 14.2                                              | 1 µA         | UART                | F                     | 47/Module            | 47/Module (17.8 × 26.7 × 3 mm)               |
| RN2903          | 47        | 915                      | -146                       | 18.5                      | A/N            |                       | 24 mA @                 | 124 mA @ +18.5 dBm           | 13                                                     | 13.5 2 µ                                          | 2 µA         | UART                | F                     | 47/Module            | 47/Module (17.8 $\times$ 26.7 $\times$ 3 mm) |
| ATSAMR34        | 64        | 137-1020                 | -136                       | 20                        | N/A            |                       | 95 mA @                 | 95 mA @ +17 dBm              | 2                                                      | 20 1.5                                            | 1.5 µA       | USB, UART, SPI, I°C | ; SPI, I2C            |                      | 64-pin QFN                                   |
|                 |           |                          |                            |                           |                | >                     | Vireless F              | Products: rfPIC              | Wireless Products: rfPIC® Transmitters + PIC® MCUs     | + PIC® MCUs                                       |              |                     |                       |                      |                                              |
| Pro             | Product   | I/O Pins Ra              | Frequency<br>Range (MHz) N | Program<br>Memory (Bytes) | EEPROM (bytes) | RAM D<br>(bytes) T    | Digital \               | Watchdog N<br>Timer          | Max. Speed   IC<br>(MHz)                               | Max. Speed   ICSP™ Programming (MHz)   Capability | Modulation   | Data Rate<br>(kbps) | Output Power<br>(dBm) | Operating<br>Voltage | Packages                                     |
| PIC12F529T39A   | 39A       | 9                        | 310-928                    | 2.3K                      | 64             | 201                   | 1                       | 1                            | 8                                                      | Yes                                               | OOK/FSK      | 100                 | 10                    | 2.0–3.7              | 14-pin TSSOP                                 |
| PIC12LF1840T39A | )T39A     | 9                        | 310-928                    | 7.1K                      | 256            | 256                   | 2                       | ٢                            | 32                                                     | Yes                                               | OOK/FSK      | 100                 | 10                    | 1.8–3.6              | 14-pin TSSOP                                 |
| PIC16LF1824T39A | 1T39A     | 20                       | 310-928                    | ¥                         | 256            | 256                   | -                       | -                            | 32                                                     | Yes                                               | OOK/FSK      | 100                 | 10                    | 1.8–3.6              | 20-pin TSSOP                                 |
| rfPIC12F675F    | L         | 9                        | 380-450                    | 1.7K                      | 128            | 64                    | -                       | -                            | 20                                                     | Yes                                               | ASK/FSK      | 40                  | 10                    | 2.0–5.5              | 20-pin SSOP                                  |
| rfPIC12F675H    | I         | 9                        | 850-930                    | 1.7K                      | 128            | 64                    | -                       | -                            | 20                                                     | Yes                                               | ASK/FSK      | 40                  | 10                    | 2.0–5.5              | 20-pin SSOP                                  |
| 10.0.0.         | ,         |                          |                            |                           |                |                       |                         |                              | 1                                                      |                                                   |              |                     |                       | 1 1 0 0              | 1000                                         |

|                      |                                                                                                        | USB Products                |                           |                                                   |              |                    |                   |
|----------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|---------------------------------------------------|--------------|--------------------|-------------------|
| Product              | Description                                                                                            | <u> </u>                    | Processor Interface   # o | # of Downstream Ports                             | Card Formats | Industrial Version | Packages          |
|                      |                                                                                                        | USB 2.0 Hubs/Controllers    | lers                      |                                                   |              |                    |                   |
| USB2412              | Hi-Speed USB 2.0 2-Port Hub                                                                            |                             | USB 2.0                   | 2                                                 | ı            | 1                  | 28-pin QFN        |
| USB2422              | Small-footprint, 2-Port Value Hub, Commercial and Industrial Temperature with USB Battery Charging 1.1 | tery Charging 1.1           | USB 2.0                   | 2                                                 | 1            | >                  | 24-pin QFN        |
| USB251XB/<br>USB2517 | Hi-Speed USB 2.0 Hub with Battery Charger Detection                                                    |                             | USB 2.0 2,                | , 3, 4, 7 port options                            | ı            | `                  | 36- or 64-pin QFN |
| USB2524              | 4-Port Hi-Speed USB 2.0 Multi-Switch Hub                                                               |                             | USB 2.0 × 2               | 4                                                 | 1            | 1                  | 56-pin QFN        |
| USB3503              | 3-Port Hi-Speed USB 2.0 HSIC Hub for Mobile Applications                                               |                             | HSIC                      | m                                                 | I            | >                  | 25-ball WLCSP     |
| USB3803              | 3-Port Hi-Speed USB 2.0 Hub for Mobile Applications                                                    |                             | USB 2.0                   | က                                                 | I            | `                  | 25-ball WLCSP     |
| USB3X13              | 3-Port Hi-Speed USB 2.0 Smart Hub for Mobile Applications                                              |                             | SIC                       | 3 (USB 2.0 ×2/HSIC ×1)                            | I            | >                  | 30-ball WLCSP     |
| USB253X              | USB2.0 Hi-Speed Smart Hub with Battery Charging Detection                                              |                             | USB 2.0                   | 2, 3, 4 port options                              | 1            | >                  | 36-pin QFN        |
| USB46X4              | Hi-Speed USB 2.0 Controller Hub with USB and HSIC Interfaces                                           |                             | USB 2.0 or HSIC           | 4 (USB 2.0 ×4 or<br>USB 2.0 ×2/HSIC ×2)           | I            | Automotive         | 48-pin QFN        |
| USB8460X             | Automotive Smart Hub, Host/Device Switching, USB/HSIC interfaces                                       |                             | USB 2.0                   | 2 or 4 ports                                      | 1            | Automotive only    | 48-pin QFN        |
| USB491X              | Automotive Smart Hub, Multi-Host Endpoint Reflector                                                    |                             | USB 2.0                   | 3 or 5 ports                                      | I            | Automotive only    | 48- or 64-pin QFN |
| USB4715              | Smart Hub, FlexConnect on all ports                                                                    |                             | USB 2.0                   | 4 ports                                           | ı            | Automotive         | 48-pin QFN        |
| USB492X              | Automotive Smart Hub, Dual Upstream architecture                                                       |                             | USB 2.0                   | 3 or 5 ports                                      | I            | Automotive only    | 48- or 64-pin QFN |
|                      |                                                                                                        | USB 3.x Hubs/Controllers    | lers                      |                                                   |              |                    |                   |
| USB5537B             | SuperSpeed Hub with Battery Charger Detection                                                          |                             |                           | 2, 3, 4 or 7 port options                         | 1            | ı                  | 64- or 72-pin QFN |
| USB5734              | SuperSpeed Smart Hub with I/O Bridging and FlexConnect                                                 |                             | USB 3.1 Gen1              | 4                                                 | 1            | >                  | 64-pin QFN        |
| USB574X              | SuperSpeed Smart Hub with FlexConnect                                                                  |                             | USB 3.1 Gen1              | 2 or 4 port options                               | 1            | >                  | 56-pin QFN        |
| USB58XX              | SuperSpeed Smart Hub with I/O Bridging and FlexConnect with USB-C™ support downstream                  | downstream                  | USB 3.1 Gen1              | 6 or 7 port options                               | 1            | >                  | 100-pin QFN       |
| USB59X               | SuperSpeed Smart Hub with VO Bridging and FlexConnect with USB-C support upstream and downstream       | n and downstream            | USB 3.1 Gen1              | 9                                                 | 1            | >                  | 100-pin QFN       |
| USB553XB             | SuperSpeed USB 3.0 Hub with Battery Charger Detection                                                  |                             | USB 3.0 2,                | 2, 3, 4 or 7 port options                         | I            | `                  | 64- or 72-pin QFN |
| USB5734              | SuperSpeed USB 3.1 Gen1 Smart Hub Controller with I/O Bridging and FlexConnect                         | onnect                      | USB 3.1 Gen1              | 4                                                 | I            | Automotive         | 64-pin QFN        |
| USB5744              | SuperSpeed USB 3.1 Gen1 Small Form Factor Hub Controller                                               |                             | USB 3.1 Gen1              | 4                                                 | 1            | >                  | 56-pin QFN        |
|                      |                                                                                                        | USB Products                |                           |                                                   |              |                    |                   |
| Product              | Description                                                                                            | Processor Interface         | # of Downstream Ports     | Card Formats                                      | ats          | Industrial Version | Packages          |
|                      |                                                                                                        | USB-C™ Power and Charging   | arging                    |                                                   |              |                    |                   |
| UTC200X              | USB-C Controller                                                                                       | O/I                         | 1 DFP or 1 UFP            | 1                                                 |              | Automotive         | 16-pin QFN        |
|                      |                                                                                                        | USB Transceivers/Switches   | ches                      |                                                   |              |                    |                   |
| USB333X              | Mobile Hi-Speed USB 2.0 Transceiver with Multi-frequency Support                                       | ULPI                        | 1                         | 1                                                 |              | >                  | 25-ball WLCSP     |
| USB334X              | Hi-Speed USB 2.0 Transceiver with Multi-frequency Support                                              | ULPI                        | ı                         | 1                                                 |              | Automotive         | 24- or 32-pin QFN |
| USB3300              | Hi-Speed USB 2.0 Transceiver (24 MHz reference clock support)                                          | ULPI                        | I                         | 1                                                 |              | <b>&gt;</b>        | 32-pin QFN        |
| USB3740B             | Hi-Speed USB 2.0 Switch with Extremely Low Power                                                       | USB 2.0                     | ı                         | 1                                                 |              | `                  | 10-pin QFN        |
| USB375XA-X           | Hi-Speed USB 2.0 Port Protection with Switch and Charger Detection                                     | USB 2.0                     | 1                         | 1                                                 |              | `                  | 16-pin QFN        |
|                      |                                                                                                        | USB Flash Media Controllers | ollers                    |                                                   |              |                    |                   |
| USB224X              | Hi-Speed USB 2.0 Multi-Format Flash Media Controller                                                   | USB 2.0                     | I                         | SD <sup>TM</sup> /MIMC/eMIMC <sup>TM</sup> /MS/xD | TM/MS/xD     | `                  | 36-pin QFN        |
| USB225X              | Hi-Speed USB 2.0 Multi-Format Flash Media Controller                                                   | USB 2:0                     | 1                         | SD/MMC/eMMC/MS/xD/CF                              | AS/xD/CF     | `                  | 128-pin VTQFP     |
| USB264X              | Hi-Speed USB 2.0 Multi-Format Flash Media Hub Controller                                               | USB 2.0                     | 7                         | SD/MMC/eMMC/MS/xD                                 | /MS/xD       | Automotive         | 48-pin QFN        |
| USB2660              | Hi-Speed USB 2.0 Multi-Format Flash Media Hub Controller                                               | USB 2.0                     | 2                         | SD/MMC/eMMC/MS/xD (x2)                            | 1S/xD (x2)   | `                  | 64-pin QFN        |
| USB4640              | USB 2.0 Hi-Speed Smart Hub with HSIC interface Option                                                  | HSIC                        | 2                         | SD/MMC/eMMC/MS/xD                                 | /MS/xD       | <b>&gt;</b>        | 48-pin QFN        |

|               |                                                                                                                 | 3                         | osp riodacis                      |                       |               |                       |                    |                                       |
|---------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|-----------------------|---------------|-----------------------|--------------------|---------------------------------------|
|               |                                                                                                                 | USB-C <sup>TM</sup> /Pow  | USB-C™/Power Delivery Controllers |                       |               |                       |                    |                                       |
| Product       | Description                                                                                                     | PD Version                | Interface                         | Port Power Controller |               | Industrial Version    | # of Pins          | Packages                              |
| UPD360        | PD 2.0 Compliant USB-C PD Controller with Integrated PPC                                                        | PD 2.0                    | I <sup>2</sup> C, SPI             | Yes                   |               | No<br>No              | 44                 | BGA                                   |
| UPD350        | PD 3.0 Compliant USB-C PD Controller                                                                            | PD 3.0                    | I <sup>2</sup> C, SPI             | S<br>S                |               | Yes + Auto            | 28, 40             | OFN                                   |
| UTC2000       | USB-C Controller                                                                                                | Type-C                    | None                              | No                    |               | Yes + Auto            | 16                 | OFN                                   |
|               |                                                                                                                 | Ď                         | USB Security                      |                       |               |                       |                    |                                       |
| Product       | Description                                                                                                     | Processor Interface       | ace # of Downstream Ports         | n Ports               | Card Formats  |                       | Industrial Version | Package                               |
| SEC1110       | Smart Card Controller                                                                                           | USB 2:0                   | 1                                 |                       | Smart Card    |                       | >                  | 16-pin QFN                            |
| SEC1210       | Smart Card Controller with Multi-Interface Support                                                              | USB, UART                 | 1                                 |                       | Smart Card ×2 |                       | `                  | 24-pin QFN                            |
|               |                                                                                                                 | Ethe                      | Ethernet Products                 |                       |               |                       |                    |                                       |
| Product       | Description                                                                                                     |                           | Interface (Upstream)              | Wake-on-LAN           | BEE           | Industrial<br>Version |                    | Packages                              |
|               |                                                                                                                 | Ether                     | Ethernet Controllers              |                       |               |                       |                    |                                       |
| ENC28J60      | 10Base-T Ethernet Controller                                                                                    |                           | SPI                               | 1                     | 1             | >                     | 28-pin SPD         | 28-pin SPDIP, SSOP, SOIC, QFN         |
| ENC624J600    | 10Base-T/100Base-TX Ethernet Controller with Security                                                           | curity                    | SPI/Parallel                      | I                     | I             | >                     | 24-pin TQF         | 24-pin TQFN, QFN, 64-pin TQFN         |
| LAN9217       | 10Base-T/100Base-TX Ethernet Controller with 16-bit/Mll interface                                               | Il interface              | 16-bit Host Bus/MII               | 1                     | 1             | 1                     | 10                 | 100-pin TQFP                          |
| LAN9218       | 10Base-T/100Base-TX Ethernet Controller with 32-bit interface                                                   | interface                 | 32-bit Host Bus                   | ı                     | 1             | >                     | 10                 | 100-pin TQFP                          |
| LAN9221       | 10Base-T/100Base-TX Ethernet Controller with 16-bit interface                                                   | interface                 | 16-bit Host Bus                   | 1                     | 1             | >                     | 9                  | 56-pin QFN                            |
| LAN9250       | 10Base-TX                                                                                                       |                           | SPI, SQI™, HBI                    | >                     | >             | ı                     | 64-pin QF          | 64-pin QFN, 64-pin TQFP-EP            |
| LAN9420       |                                                                                                                 | 21 interface              | 32-bit PCI 3.0                    | I                     | 1             | >                     | 12                 | 128-pin VTQFP                         |
| LAN89218      | £                                                                                                               | 32-bit interface          | 32-bit Host Bus                   | 1                     | 1             | Automotive            | 5                  | 100-pin TQFP                          |
| KSZ8851       | 10/100Base-TX Ethernet Controller                                                                               |                           | 8-/16-/32-bit or SPI              | > '                   | 1 `           | Automotive            | 32-pin QFN, 48     | 32-pin QFN, 48-pin LQFP, 128-pin PQFP |
| KSZ8852       | 2-Port 10/100Base-TX Ethernet Controller                                                                        |                           | 8-/16-/32-bit                     | > '                   | > '           | > '                   | 9                  | 64-pin LQFP                           |
| KSZ8441       | 10/100Base-TX/FX Ethernet Controller with 1588/2 PTP and Clock Synchronization                                  | ck Synchronization        | 8-/16-/32-bit or PCI              | >                     | >             | >                     | 9                  | 64-pin LQFP                           |
|               |                                                                                                                 | Ethe                      | Ethernet Products                 |                       |               |                       |                    |                                       |
| Product       | Description                                                                                                     |                           | Interface (Upstream)              | Wake-on-LAN           | 3             | Industrial Version    | sion               | Packages                              |
|               |                                                                                                                 | ISN                       | USB to Ethernet                   |                       |               |                       |                    |                                       |
| LAN9500A      | USB 2.0 to 10/100 Ethernet Controllers                                                                          |                           | USB 2.0                           | >                     | '             | >                     |                    | 56-pin QFN                            |
| LAN9730       | USB HSIC 2.0 to 10/100 Ethernet Controllers                                                                     |                           | USB 2.0 (HSIC), MII               | I                     | 1             | >                     |                    | 56-pin QFN                            |
| LAN7500       | USB 2.0 to 10/100/1000 Ethernet Controllers                                                                     |                           | USB 2.0                           | >                     | I             | `                     |                    | 56-pin QFN                            |
| LAN7800/01/50 | USB 3.1 Gen1 to 10/100/1000 Ethernet Controllers (Optional RGMII Output)                                        | RGMII Output)             | USB 3.1/2.0/HSIC                  | `                     | >             | Automotive            |                    | 48-pin SQFN/56-SQFN/64-SQFN           |
| LAN9512       | USB 2.0 to 10/100 Ethernet Controllers with 2-Port USB 2.0 Hub                                                  | 2.0 Hub                   | USB 2.0                           | 1                     | ı             | > `                   |                    | 64-pin QFN                            |
| LAN9513       | USB 2.0 to 10/100 Ethernet Controllers with 3-Port USB 2.0 Hub                                                  | 2.0 Hub                   | USB 2:0                           | ı                     | I             | > >                   |                    | 64-pin QFN                            |
| LAN89730      | USB 2.0 to 10/100 Ethernet Controllers                                                                          | Z.O muio                  | USB 2:0                           | ١ >                   | 1 1           | Automotive            |                    | 56-pin OFN                            |
| LAN89530      | USB 2.0 to 10/100 Ethernet Controllers                                                                          |                           | USB 2.0                           | >                     | 1             | Automotive            |                    | 56-pin QFN                            |
|               |                                                                                                                 | Ethernet                  | Ethernet Transceivers (PHY)       |                       |               |                       |                    |                                       |
| LAN8710       | 10/100                                                                                                          |                           | MII/RMII                          | 1                     | ľ             | 1                     |                    | 32-pin QFN                            |
| LAN8720A      | Featured 10/100                                                                                                 | Ethernet Transceivers     | RMII                              | 1                     | 1             | >                     |                    | 24-pin QFN                            |
| LAN8740A      | Small-Footprint, 10/100 PHY Family Featuring Energy Efficient Ethernet and Wake-on-LAN                          | et and Wake-on-LAN        | MII/RMII                          | >                     | >             | >                     |                    | 32-pin QFN                            |
| KSZ8051       | Small-Footprint, 10/100 PHY Family Featuring Wake-on-LAN                                                        | -LAN                      | MI/RMII                           | 1                     | ı             | Automotive            |                    | 32-pin QFN                            |
| KSZ8061       | Small-Footprint, 10/100 PHY Family Ultra-Deep Sleep Standby and Quiet-WIRE® Technology                          | ilet-WIRE® Technology     | MII/RMII                          | ı                     | 1             | Automotive            |                    | 32-/48-pin QFN                        |
| KSZ8081       | Small-Footprint, 10/100 PHY Family Featuring Wake-on-LAN and Low-Power Voltage Drive                            | Power Voltage Drive       | MII/RMII                          | 1                     | 1             | >                     |                    | 24-/32-pin QFN, 48-pin LQFP           |
| KSZ8091       | Small-Footprint, 10/100 PHY Family Featuring Energy Efficient Ethernet, Wake-on-LAN and Low-Power Voltage Drive | AN and Low-Power Voltage  |                                   | `                     | >             | >                     | 24-/32-            | 24-/32-pin QFN, 48-pin LQFP           |
| KSZ9031       | MII/GMII/RGMII 10/100/1000 Ethernet Transceiver Family Featuring Energy Efficient Ethernet and Wake-on-LAN      | ent Ethernet and Wake-on- | LAN MII/RMII/RGMII                | >                     | >             | Automotive            | _                  | 48-/64-pin QFN                        |
| LAN88730      | Small-Footprint, Full-Featured 10/100 Ethernet Transceivers                                                     | eivers                    | MI/RMII                           | ı                     | ı             | Automotive            |                    | 32-pin OFN                            |

|          |                                                                                        | Etherne                                                                | Ethernet Products     |                                                            |                        |                            |
|----------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|------------------------------------------------------------|------------------------|----------------------------|
| Product  | Description                                                                            | Interface (Upstream)                                                   | 1588-2008             | Cable Diagnostics                                          | 100 FX (Fiber Support) | Packages                   |
|          |                                                                                        | EtherCAT                                                               | EtherCAT® Controllers |                                                            |                        |                            |
| LAN9252  | 2/3-Port 100 EtherCAT Slave Controller                                                 | SPI/SQI <sup>TM</sup> /8/16/32 Host Bus Clock Synchronization          | Clock Synchronization | <i>*</i>                                                   | <i>&gt;</i>            | 64-pin QFN, 64-pin TQFP-EP |
|          |                                                                                        | Etherne                                                                | Ethernet Switches     |                                                            |                        |                            |
| LAN9352  | 2-Port 10/100Base-TX                                                                   | SPI/SQI/HBI                                                            | >                     | <i>&gt;</i>                                                | ı                      | 72-pin QFN, 80-pin TQFP-EP |
| LAN9303  | 3-Port 10/100 Managed Ethernet Switch                                                  | MII/RMII/Turbo MII                                                     | ı                     | ı                                                          | I                      | 56-pin QFN                 |
| LAN9303M | 3-Port 10/100 Managed Ethernet Switch with Dual MIL/KMLL/Turbo MIL                     | 2x MII/RMII/Turbo MII                                                  | 1                     | 1                                                          | 1                      | 72-pin QFN                 |
| LAN9353  | 3-Port 10/100 Managed Ethernet Switch with Single MII/RMII/Turbo MII or Dual RMII      | MII/RMII/Turbo MII                                                     | >                     | >                                                          | >                      | 64-pin QFN, 64-pin TQFP-EP |
| LAN9354  | 3-Port 10/100 Managed Ethernet Switch with Single RMII                                 | RMII                                                                   | >                     | >                                                          | >                      | 56-pin QFN                 |
| LAN9355  | 3-Port 10/100 Managed Ethernet Switch with Dual MII/RMII/Turbo MII                     | MII/RMII/Turbo MII                                                     | >                     | >                                                          | >                      | 88-pin QFN, 80-pin TQFP-EP |
| KSZ8863  | 3-Port 10/100Base-TX/FX Switch with MII/RMII Interface                                 | MII/RMII                                                               | 1                     | >                                                          | >                      | 48-pin LQFP                |
| KSZ8873  | 3-Port 10/100Base-TX/FX Switch with MII/RMII Interface (Automotive Qualified)          | MIVRMII                                                                | 1                     | >                                                          | >                      | 64-pin VQFN                |
| KSZ8463  | 3-Port 10/100Base-TX/FX 1588v2 Switch with MII/RMII Interface                          | MII/RMII                                                               | >                     | >                                                          | >                      | 64-pin LQFP                |
| KSZ8864  | 4-Port Switch with 2x 10/100Base-TX + 2x MII/RMII Interface (Automotive Qualified)     | MIVRMII                                                                | 1                     | >                                                          | ı                      | 64-pin VQFN                |
| KSZ8794  | 4-Port Switch with 3× 10/100Base-TX + 1× RGMII/MII/RMII Interface                      | MII/GMII/RGMII                                                         | 1                     | >                                                          | 1                      | 64-pin VQFN                |
| KSZ8795  | 5-Port Switch with 4× 10/100Base-TX + 1× GMII/RGMII/MII/RMII Interface                 | GMI/RGMI/MII/RMII                                                      | 1                     | >                                                          | ı                      | 80-pin LQFP                |
| KSZ8775  | 5-Port Switch with 3× 10/100Base-TX + 2× RGMII/MII/RMII Interface                      | MII/GMII/RGMII                                                         | 1                     | >                                                          | 1                      | 80-pin LQFP                |
| KSZ8765  | 5-Port Switch with 2× 10/100Base-TX + 2× 100Base-FX + 1× GMII/RGMII/MII/RMII Interface | MII/GMII/RGMII                                                         | I                     | `                                                          | >                      | 64-pin QFN, 80-pin LQFP    |
| KSZ8895  | 5-Port10/100Base-TX/FX Switch with MII/RMII Interface (Automotive Qualified)           | MIVRMII                                                                | 1                     | >                                                          | ı                      | 128-pin PQFP               |
| KSZ8567  | 9/7-Port 10/100 Switch with AVB, IEEE1588V2                                            | SGMIVRGMIVMIVRMII                                                      | >                     | >                                                          | SSMII                  | 128-pin TQFP               |
| KSZ9897  | 6/7-Port Gigabit Switch                                                                | SGMI/RGMI/MI/RMII                                                      | 1                     | >                                                          | 1                      | 128-pin TQFP               |
| KSZ9567  | 7-Port Gigabit Switch with AVB, 11EEE 588V2                                            | SGMIVRGMIVMIVRMII                                                      | >                     | >                                                          | ı                      | 128-pin TQFP               |
| KSZ9477  | 7-Port Gigabit Switch with DLR, HSR, AVB, IEEE 1558V2                                  | SGMII/RGMII/MII/RMII                                                   | >                     | LinkMD® Technology With Signal Quality Indicator           | ı                      | 128-pin TQFP               |
|          | Automotive:                                                                            | Media Oriented Systems Transport (MOST®) Network Inferface Controllers | nsport (MOST®) Networ | k Inferface Controllers                                    |                        |                            |
|          |                                                                                        |                                                                        | Ispair (most ) necess | A IIII CII GOO COLIN CII CII CII CII CII CII CII CII CII C |                        |                            |

|                                          | Automotive: Media Oriented Systems Transport (MOST®) Network Inferface Controllers<br>Intelligent Network Interface Controller (INIC) for MOST Networks                                                                                  | ") Network Inferface Controllers<br>)) for MOST Networks                                                                                  |                                                            |       |                                        |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|----------------------------------------|
|                                          | Features                                                                                                                                                                                                                                 | Interface                                                                                                                                 | Ambient Temperature<br>Range                               | Pin F | Pin Package                            |
| OS81110 INIC                             | Fully-encapsulated, single-chip, single MOST150 network port, embedded network management, supports MOST embedded Ethernet channel and isochronous channels (MOST150)                                                                    | MOST150 FOT or external MOST150 coax transceiver, I²C, PS/SPDIF, TSI, SPI, RMCK, JTAG, MediaLB® 3-Pin, MediaLB bus 6-Pin                  | -40°C to 105°C                                             | 48    | OFN                                    |
| OS81082 INIC                             | Fully-encapsulated, single-chip, embedded network management (MOST50)                                                                                                                                                                    | MOST50 electrical (UTP), I²C, I²S®, MediaLB                                                                                               | -40°C to 95°C                                              | 64    | ETQFP                                  |
| OS81092 INIC                             | ROM version of OS81082 INIC (MOST50)                                                                                                                                                                                                     | MOST50 electrical (UTP), P.C, P.S, MediaLB                                                                                                | -40°C to 105°C                                             | 48    | OFN<br>N                               |
| OS81050 INIC                             | Fully-encapsulated, single-chip with embedded network management (MOST25)                                                                                                                                                                | MOST25 FOT, PC, PS, MediaLB                                                                                                               | Standard range: -40 to 85<br>Extended range:<br>-40 to 105 | 44    | QFP,<br>ETQFP                          |
| OS81060 INIC                             | ROM version of OS81050 INIC (MOST25)                                                                                                                                                                                                     | MOST25 FOT, I°C, I°S, MediaLB                                                                                                             | -40°C to 105°C (targeted))                                 | 40    | S<br>N                                 |
| OS81118AF INIC                           | Fully-encapsulated, single-chip, single MOST150 network port, embedded network management, integrated MOST150 coaxial transceiver, supports MOST embedded Ethernet channel, isochronous channels (MOST150), and USB 2.0 high-speed port  | MOST150 FOT or MOST150 coaxial physical layer, USB 2.0 high-speed, GPIO, PC, PS, SPI, RMCK, JTAG, MediaLB 3-Pin, MediaLB bus 6-Pin        | -40°C to +85°C                                             | 72    | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- |
| OS81118BF INIC                           | Fully-encapsulated, single-chip, single MOST150 network port, embedded network management, supports MOST embedded Ethernet channel, isochronous channels (MOST150), and USB 2.0 high-speed port                                          | MOST150 FOT or external MOST150 coaxial transceiver, USB 2.0 high-speed, GPIO, PC, I°S, SPI, RMCK, JTAG, MediaLB 3-Pin, MediaLB bus 6-Pin | -40°C to +85°C                                             | 72    | S.<br>N.                               |
| OS81119AF INIC                           | Fully-ercapsulated, single-chip, double MOST150 network ports, embedded network management, integrated MOST150 coaxial transceiver, supports MOST embedded Ethernet channel, isochronous channels (MOST150), and USB 2.0 high-speed port | MOST150 FOT or MOST150 coaxial physical layer, USB 2.0 high-speed, GPIO, PC, PS, SPI, RMOK, JTAG, MediaLB 3-Pin, MediaLB Bus 6-Pin        | -40°C to +85°C                                             | 88    | N<br>N                                 |
| OS82150 (MOST150<br>Coaxial Transceiver) | MOST150 Coaxial Transceiver, integrates coaxial cable driver and coaxial cable receiver in a single package                                                                                                                              | MOST150 coaxial physical layer, interface to MOST150 INIC                                                                                 | -40°C to +105°C                                            | 16    | N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N- |
|                                          |                                                                                                                                                                                                                                          |                                                                                                                                           |                                                            |       |                                        |

|          | For Diagnostics,                                                               | For Diagnostics, Status Monitoring and Power Supply |                        |     |          |
|----------|--------------------------------------------------------------------------------|-----------------------------------------------------|------------------------|-----|----------|
| Product  | Features                                                                       | Interface                                           | Temperature Range (°C) | Pin | Packages |
| MPM85000 | Power management companion for diagnostics, status monitoring and power supply | LIN 2.0, 12C                                        | -40 to 105             | 24  | OFN      |
|          |                                                                                |                                                     |                        |     |          |

|         |                                                                                                 | Automotive: Multimedia I/O Companion<br>Multimedia I/O Port Expander                                                              |                                |     |          |
|---------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|----------|
| Product | Features                                                                                        | Interface                                                                                                                         | Temperature Range Pin Packages | Pin | Packages |
| 0885650 | Low-cost multimedia I/O port expander, DTCP co-processor                                        | MediaLB $^\circ$ bus 3-pin and 6-pin, Host Bus Interface (HBI), 2 × multi-channel streaming ports, 2 × TSI, 2 × SPI, I $^\circ$ C | -40°C to 105°C 128 ETQFP       | 128 | ETQFP    |
| 0S85652 | Low-cost multimedia I/O port expander                                                           | MediaLB bus 3-pin and 6-pin, Host Bus Interface (HBI), 2 × multi-channel streaming ports, 2 × TSI, 2 × SPI, PC                    | -40°C to 105°C 128 ETQFP       | 128 | ETQFP    |
| 0885656 | Low-cost multimedia I/O port expander well-suited for streaming applications                    | MediaLB bus 3-pin, streaming port PS (FSYN, FCLK, 4 × In, 4 × Out, @ 512 Fs), serial transport stream interface (TSI), PC         | -40°C to 105°C                 | 48  | NFO.     |
| 0S85654 | Low-cost multimedia I/O port expander well-suited for streaming applications, DTCP co-processor | OSS6664 Low-cost multimedia I/O cort expander well-suited for stream interface ITSI). PC -40°C to 105°C 48 QFN                    | -40°C to 105°C                 | 48  | N-O      |

|          |                                                                              | Automotive: Ethernet Controllers<br>10/100 Ethernet Controllers with USB 2.0, HSIC or HBI |                        |     |              |
|----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------|-----|--------------|
| Product  | Features                                                                     | Interface                                                                                 | Temperature Range (°C) | Pin | Packages     |
| LAN89218 | LAN89218 High-performance, single-chip controller with HP Auto-MDIX support* | MAC/PHY, 10Base-T/100Base-TX, 32- and 16-bit Host Bus Interface (HBI)                     | -40 to 85              | 100 | TOFP         |
| LAN89530 | Hi-Speed USB 2.0 to 10/100 Ethernet controller                               | USB 2:0                                                                                   | -40 to 85              | 56  | N-RO<br>N-RO |
|          |                                                                              |                                                                                           |                        |     |              |

\*HP Auto-MDIX eliminates the need for special "crossover" cables when connecting LAN devices together.

|          |                                                                                              | Automotive: Ethernet Switch 10/100 Managed Ethernet Switch with HP Auto-MDIX Support                                      | Support                                         |       |     |          |
|----------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|-----|----------|
| Product  | Features                                                                                     | Interface                                                                                                                 | Temperature Range (°C)                          | Ports | Pin | Packages |
| LAN89303 | LAN89303 High performance, small-footprint, full-featured, single MII/RMII/Turbo MII support | MII/RMII, 2 × 10/100 PHYs, 3 × 10/100 MACs                                                                                | -40 to 85                                       | 4     | 56  | NHO      |
|          | 10/100 Ether                                                                                 | Automotive: Ethernet Transceiver<br>10/100 Ethernet Transceiver with HP Auto-MDIX Support*, Featuring flexPWR® Technology | ı flexPWR® Technology                           |       |     |          |
| Product  | lot Features                                                                                 | Interface                                                                                                                 | Temperature Range (°C)                          | Pin   |     | Packages |
| LAN88730 | Small footprint, low-power consumption, full featured                                        | 10Base-T/100Base-TX, MII/RMII                                                                                             | LAN88730AM: -40 to 85<br>LAN88730BM: -40 to 105 | 32    |     | OFN      |

\*HP Auto MDIX eliminates the need for special "crossover" cables when connecting LAN devices together.

|          | Automotive: Hi-Speed USB 2.0 Hub USB 2.0 Hub Featuring MultiTRAK <sup>Tw</sup> Technology                                                                    | : Hi-Speed U<br>uring MultiTR                                       | SB 2.0 Hub<br>4K™ Technology                                            |                                                                   |                        |             |                           |              |          |          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------|-------------|---------------------------|--------------|----------|----------|
| Product  | t Features                                                                                                                                                   |                                                                     | Interface                                                               | Temperature Range (°C)                                            | nge Ports              |             | Pin                       |              | Packages | sə       |
| USB82512 | Versatile, cost effective, energy efficient, incorporating MultITRAK, PortMap, PortSwap, PHYBoost technologies                                               | chnologies                                                          | SMBus/PC                                                                | -40 to 85                                                         | 2                      |             | 36                        |              | AP.      |          |
| USB82513 | Versatile, cost effective, energy efficient, incorporating MultTRAK, PortMap, PortSwap, PHYBoost technologies                                                | chnologies                                                          | SMBus/PC                                                                | -40 to 85                                                         | က                      |             | 36                        |              | OFN      |          |
| USB82514 | Versatile, cost effective, energy efficient, incorporating MultiTRAK, PortMap, PortSwap, PHYBoost technologies                                               | chnologies                                                          | SMBus/PC                                                                | -40 to 85                                                         | 4                      |             | 36                        |              | N N N    |          |
|          | Automotive: Hi-Speed USB 2.0 Hub and Flash Media Card Controllers<br>USB 2.0 Hub and Card Controller Combos                                                  | .0 Hub and F<br>nd Card Cont                                        | ash Media Card Contro<br>oller Combos                                   | llers                                                             |                        |             |                           |              |          |          |
| Product  | Features                                                                                                                                                     | Socket<br>Type                                                      |                                                                         | Supports                                                          |                        |             | Temperature<br>Range (°C) | USB<br>Ports | Pin P    | Packages |
| USB82640 | USB Hub/Card Reader combo with PortMap, PortSwap and PHYBoost Technologies                                                                                   | Single                                                              | SD™/SD High Capacity™/MultiMediaCard™/Memory Stick®/MS PRO™, MS PRO-HG™ | MultiMediaCard™/Mem                                               | ory Stick®/MS PRO™, №  | MS PRO-HGTM | -40 to 85                 | 2            | 48       | OFN      |
| USB82642 | USB bridge/card reader combo with USB to SDIO and USB to IPC bridging functionality and PortMap, PortSwap and PHYBoost technologies                          | Single                                                              | SD/SD High Capacity/                                                    | SD/SD High Capacity/MultiMediaCard/Memory Stick/MS PRO, MS PRO-HG | ory Stick/MS PRO, MS   | S PRO-HG    | -40 to 85                 | 0            | 48       | N N N    |
| USX2730  | USB Card Reader only                                                                                                                                         | Single                                                              | SD                                                                      | SD/SD High Capacity/MultiMediaCard                                | ultiMediaCard          |             | -40 to 85                 | 0            | 48       | OFN      |
|          | Automotive: Hi-Speed USB 2.0 Transceiver USB 2.0 Transceiver with 1.8V ULPI Interface                                                                        | -Speed USB ;<br>iver with 1.8\                                      | .0 Transceiver<br>ULPI Interface                                        |                                                                   |                        |             |                           |              |          |          |
| Product  | Features                                                                                                                                                     | Interface                                                           |                                                                         | Temperature Range (°C)                                            | Ports                  |             | Pin                       |              | Packages | Se       |
| USB83340 | Multi-frequency reference clock                                                                                                                              | 1.8V to 3.3V ULPI                                                   |                                                                         | -40 to 105                                                        | -                      |             | 32                        |              | N N N    |          |
|          | Automotive: Hi-Speed USB 2.0 Battery Charger Standalone USB Battery Charger                                                                                  | otive: Hi-Speed USB 2.0 Battery C<br>Standalone USB Battery Charger | Battery Charger<br>/ Charger                                            |                                                                   |                        |             |                           |              |          |          |
| Product  | Features                                                                                                                                                     |                                                                     |                                                                         |                                                                   | Temperature Range (°C) |             | Supports                  | Pin          | Pac      | Packages |
| UCS81001 | USB battery charger supporting BC1.2, China charging, Apple® and RIM® charging profiles as well as programmable charging profiles for unforeseen peripherals | grammable cha                                                       | rging profiles for unforese                                             | en peripherals                                                    | -40 to 85              | USB, I      | USB, I2C, SMBus           | 28           | 0        | QFN      |
| UCS81002 | USB battery charger supporting BC1.2, China charging, Apple and RIM charging profiles as well as programmable charging profiles for unforeseen peripherals   | ammable cha                                                         | ging profiles for unforesee                                             | n peripherals                                                     | -40 to 85              | USB, I      | USB, I²C, SMBus           | 28           | G        | QFN      |
|          | Automotive: Hi-Speed USB 2.0 Charger Controllers and Port Protection                                                                                         | 0 Charger Co                                                        | ntrollers and Port Prote                                                | ction                                                             |                        |             |                           |              |          |          |

Packages QFN QFN

Pin

Temperature Range (°C) -40 to 85 -40 to 105

USB port charger controller supporting BC1.2, China charging, Apple® and RIM® charging profiles as well as programmable charging profiles for unforeseen peripherals and integrated current monitoring

Dual USB port power protection switch and current monitor

Product UCS81003 UCS2113

28

USB, PC, SMBus PC, SMBus

|          |                                                                                                                                                                                                                                  | Automotive:<br>Radio Frequency D                            | Automotive: Wireless Audio<br>Radio Frequency Digital Audio Transceiver |                                        |                  |                             |               |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|------------------|-----------------------------|---------------|
| Product  | Features                                                                                                                                                                                                                         |                                                             |                                                                         | Typical Sink Mode Power<br>Consumption | PA Output Power  | Audio                       | Qualification |
| KLR83012 | Wirelessly streams uncompressed lossless audio up to 25m over robust 2.4 GHz radio link, multi-point to multi-point connectivity, strong Wi-Fi® coexistence, data channel for audio playback control, very low power consumption | dio link, multi-point to multi-promery low power consumptio | oint connectivity,                                                      | 20 mW                                  | 1.5 dBm          | 16 bit, 44.1 Ks/s<br>stereo | AEC Q100      |
|          |                                                                                                                                                                                                                                  | Automotive: Cap                                             | Automotive: Capacitive Touch Sensors                                    |                                        |                  |                             |               |
| Product  | Features                                                                                                                                                                                                                         | Input Channels                                              | LED Drivers                                                             | Proximity Included                     | Interface        | Pin                         | Packages      |
| 001100   | Donot well and along authorizing the properties and properties and properties                                                                                                                                                    | o                                                           | 0                                                                       | >                                      | /kii   OQ/QO/OZI | 70                          | OEN           |

|                  |                                                                                                                           | Aut              | Automotive: Capacitive Touch Sensors                     | ve Touch Sensors |                                        |                    |        |                 |                               |            |         |                          |
|------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------|------------------|----------------------------------------|--------------------|--------|-----------------|-------------------------------|------------|---------|--------------------------|
| Product          | Features                                                                                                                  | Input C          | Input Channels                                           | LED Drivers      | Proxi                                  | Proximity Included | pa     | Interface       | Pin                           | u u        | Pa      | Packages                 |
| CAP81188 R       | Reset, wake and alert, automatic recalibration, base capacitance compensation                                             |                  | 8                                                        | 80               |                                        | >                  |        | I2C/SPI/BC-Link | 24                            | <b>V</b> t |         | QFN                      |
|                  |                                                                                                                           | Embedded Cor     | Embedded Controllers and Super I/O: Embedded Controllers | r I/O: Embedded  | Controllers                            |                    |        |                 |                               |            |         |                          |
| Product          | Description                                                                                                               | Core             | Code Storage                                             | Data RAM         | EEPROM                                 | Crypto<br>Engine   | GPIO I | Host Interface  | Operating<br>Temperature (°C) | UART       | MAF/SAF | Package                  |
| MEC1322-NU       | High-performance 32-bit embedded microcontroller with 128 KB of<br>SRAM and 32 KB of Boot ROM and Secure Boot             | Arm® Cortex®-M4F | 128 KB SRAM<br>(Code + Data)                             | PO SRAM          | A/N                                    | Yes                | 116    | LPC, I²C        | 0 to +70                      | II I       | MAF     | 128 VTQFP,<br>16 x 16 mm |
| MEC1408-NU       | High-performance 32-bit embedded microcontroller with 128 KB of<br>SRAM and 32 KB of Boot ROM, LPC, FC                    | MIPS             | 192 KB SRAM<br>(Code + Data)                             | PO SRAM          | N/A                                    | o<br>N             | 106    | LPC, I²C        | 0 to +70                      | Full       | MAF     | 128 VTQFP,<br>16 x 16 mm |
| MEC1418-I/SZ     | High-performance 32-bit embedded microcontroller with 128 KB of SRAM and 32 KB of Boot ROM, eSPI, LPC, I <sup>2</sup> C   | MIPS             | 192 KB SRAM<br>(Code + Data)                             | PO SRAM          | N/A                                    | ° N                | 106    | eSPI, LPC, PC   | -40 to +85                    | III        | MAF     | 144 WFBGA,<br>9 x 9 mm   |
| MEC1418-NU       | High-performance 32-bit embedded microcontroller with 128 KB of SRAM and 32 KB of Boot ROM, eSPI, LPC, I²C                | MIPS             | 192 KB SRAM<br>(Code + Data)                             | PO SRAM          | Υ<br>Α                                 | °Z                 | 106    | eSPI, LPC, PC   | 0 to +70                      | Full       | MAF     | 128 TQFP,<br>16 x 16 mm  |
| MEC1428-I/NU-C0  | High-performance 32-bit embedded microcontroller with 128 KB of SRAM and 32 KB of Boot ROM, eSPI, LPC, I²C                | MIPS             | 192 KB SRAM<br>(Code + Data)                             | PO SRAM          | ×××××××××××××××××××××××××××××××××××××× | Yes                | 108    | eSPI, LPC, PC   | -40 to +85                    | E          | MAF/SAF | 128 VTQFP,<br>16 x 16 mm |
| MEC1428-SZ-C0    | High-performance 32-bit embedded microcontroller with 224 KB of SRAM and 32 KB of Boot ROM, eSPI, LPC, I²C                | MIPS             | 192 KB SRAM<br>(Code + Data)                             | PO SRAM          | N/A                                    | Yes                | 99     | eSPI, LPC, PC   | 0 to +70                      | Full       | MAF/SAF | 144 WFBGA,<br>9 x 9 mm   |
| MEC1701H-C1-SZ   | High-performance 32-bit embedded microcontroller with 224 KB of SRAM and 32 KB of Boot ROM and Secure Boot, eSPI, LPC, FC | Arm Cortex-M4F   | 224 KB                                                   | 32 KB            | N/A                                    | Yes                | 123    | eSPI, LPC, №    | 0 to +70                      | 21         | MAF     | 144 WFBGA,<br>9 x 9 mm   |
| MEC1703H-C1-SZ   | High-performance 32-bit embedded microcontroller with 224 KB of SPAM and 32 KB of Boot ROM and Secure Boot, eSPI, LPC, FC | Arm Cortex-M4F   | 224 KB                                                   | 32 KB            | 2 KB                                   | Yes                | 148    | eSPI, LPC, PC   | 0 to +70                      | 0          | MAF     | 144 WFBGA,<br>9 x 9 mm   |
| MEC1704Q-C1-I/SZ | High-performance 32-bit embedded microcontroller with 316 KB of SRAM and 64 KB of Boot ROM and Secure Boot, eSPI, LPC, FC | Arm Cortex-M4F   | 316 KB                                                   | 64 KB            | N/A                                    | Yes                | 123    | eSPI, LPC, PC   | -40 to +85                    | 0          | MAF     | 144 WFBGA,<br>9 x 9 mm   |
| MEC1705Q-C1-I/SZ | High-performance 32-bit embedded microcontroller with 316 KB of SRAM and 64 KB of Boot ROM and Secure Boot eSPI, LPC, I²C | Arm Cortex-M4F   | 316 KB                                                   | 84 KB            | 2 KB                                   | Yes                | 148    | eSPI, LPC, PC   | -40 to +85                    | 2          | MAF     | 144 WFBGA,<br>9 x 9 mm   |

|         |                                                                            | Embedde                  | ed Contro | llers and Supe           | Embedded Controllers and Super I/O: Super I/O |                          |                       |                 |           |
|---------|----------------------------------------------------------------------------|--------------------------|-----------|--------------------------|-----------------------------------------------|--------------------------|-----------------------|-----------------|-----------|
|         | Description                                                                | Operating<br>Temperature | сыо       | Security Key<br>Register | PECI Support                                  | SMBus Interface          | Intruder<br>Detection | Resume<br>Reset | Package   |
| SCH3112 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 40        | Yes                      | ON.                                           | No                       | N <sub>O</sub>        | No              | 128 VTQFP |
| SCH3114 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | 0°C to +70°C             | 40        | Yes                      | OZ                                            | No                       | o <sub>N</sub>        | No              | 128 VTQFP |
| SCH3116 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 40        | Yes                      | ON                                            | °N                       | 9<br>2                | No              | 128 VTQFP |
| SCH3221 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 33        | S<br>S                   | ° N                                           | No                       | S <sub>O</sub>        | No              | 64 WFBGA  |
| SCH3222 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 23        | Yes                      | ° N                                           | No                       | N <sub>o</sub>        | Yes             | 84 WFBGA  |
| SCH3223 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 19        | Yes                      | ° N                                           | No                       | No                    | Yes             | 64 WFBGA  |
| SCH3224 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 24        | Yes                      | ON                                            | oN<br>N                  | o<br>N                | Yes             | 100 WFBGA |
| SCH3226 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 40        | Yes                      | °Z                                            | No                       | No                    | Yes             | 100 WFBGA |
| SCH3227 | LPC IO with multiple serial ports, 8042 KBC, reset generation and HWM      | -40°C to +85°C           | 40        | Yes                      | O <sub>N</sub>                                | No                       | No                    | Yes             | 144 WFBGA |
| SCH5627 | Desktop embedded controller with fan control, hardware monitoring and PECI | 0°C to +70°C             | 09        | <u>8</u>                 | PECI 1.1, x2 CPU, x4 domain, C3/C4            | Y - 2, (Master or Slave) | Yes                   | Yes             | 128 QFP   |
| SCH5636 | Desktop embedded controller with fan control, hardware monitoring and PECI | 0°C to +70°C             | 09        | <u>8</u>                 | PECI 2.0, x2 CPU, x4 domain, C3/C4            | Y - 2, (Master or Slave) | Yes                   | Yes             | 128 QFP   |

|         |                               |                                                                   |                   |                                |                         |                   |                    |                   |                         | Sec               | Security Products     | oducts                                                                                                                            |                                   |                     |                                              |                  |                                                                                      |                        |                                   |
|---------|-------------------------------|-------------------------------------------------------------------|-------------------|--------------------------------|-------------------------|-------------------|--------------------|-------------------|-------------------------|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------|------------------------|-----------------------------------|
| Product |                               | Core Sp                                                           | Max R<br>Speed (F | Ram Operating (KB) Temperature | nting<br>ature          | Package           | RNG                |                   | Monotonic<br>Counter    |                   |                       | Crypto Algorithms                                                                                                                 |                                   |                     | OTP - User<br>Programmable                   | Mei<br>Protect   | Memory Debug<br>Protection Unit Interface                                            | Floating<br>Point Unit | ting<br>Unit                      |
| CEC1302 |                               | Arm® Cortex®-M4                                                   | 1 48              | 128 0°C to +70°C               | -70°C                   | 144-pin<br>WFBGA  | Yes                |                   | o<br>N                  | AES1              | 28, AES               | AES128, AES129, AES256, SHA-1, SHA-256, RSA-512 to RSA-2048                                                                       | 2 to RSA-2048                     |                     | 500-bits                                     | _                | No 5-pin                                                                             | , w                    | Yes                               |
| CEC1702 | Arm Co                        | Arm Cortex-M4                                                     | 96                | 480 0°C to +70°C               | -70°C                   | 84-pin<br>WFBGA   | Yes                |                   | Yes AE                  | S128, /<br>to RSA | AES129,<br>A-4096, I  | AES128, AES129, AES256, SHA-1, SHA-256, SHA-384, SHA-512, RSA-1024 to RSA-4096, ECDSA, EC-KODSA, Support for Curve 25519, Ed25519 | 3HA-512, RSA-10<br>25519, Ed25519 | 124                 | 2500-bits                                    | >                | Yes 5-pin and SWD                                                                    |                        | Yes                               |
|         |                               |                                                                   |                   |                                |                         |                   |                    |                   |                         | Sec               | Security Products     | oducts                                                                                                                            |                                   |                     |                                              |                  |                                                                                      |                        |                                   |
| Product | Typical Sleep<br>Current      | lsoiqyT<br>noi3soinqA                                             |                   | Interface<br>(Designator)      | Tamper<br>Detection Pin | Memory<br>Density | Temp Range<br>(°C) | ooV niM<br>VlqquS | al supinU               | вис               | Monotonic<br>Counters | Crypto<br>Algorithms                                                                                                              | Key Size                          | Individual<br>Stol2 | TLS Stack<br>Support                         | Cloud<br>Support | Pacakges<br>(Designator)                                                             | Secure                 | Secure<br>Provisioning<br>Service |
| ECC508A | 30 nA Typ<br>2 uA Max         | Authentication for IP connected node and accessory authentication | de and            | PC (DA)<br>Single wire (CZ)    | -                       | 4.5 Kb            | -40 to<br>+85      | 2.0V              | 72-bit serial<br>number | HPS               | 2                     | FIPS186-3 ECDSA, NIST P256, NIST SHA256 with HMAC option, ECDH                                                                    | 256-bit keys                      | 16 W                | CycloneSSL,<br>WolfSSL, OpenSSL,<br>WINC TLS | AWS,<br>Azure    | SOIC (MAH), UDFN (SSH),<br>3 contacts (RBH)                                          | SH),                   | Yes                               |
| ECC108A | 30 nA Typ<br>2 uA Max         | Accessory authentication                                          | entication        | PC (DA)<br>Single wire (CZ)    | -                       | 4.5 Kb            | -40 to             | 2.0V              | 72-bit serial<br>number | HPS               | 77                    | FIPS186-3 ECDSA, NIST P256, NIST<br>B283, NIST K283, NIST SHA256 with<br>HMAC option                                              | 256-bits and<br>283-bits keys     | 16                  | Z/A                                          | A/A              | SOIC (MAH), UDFN (SSH),<br>3 contacts (RBH)                                          | SH),                   | Yes                               |
| SHA204A | 30 nA Typ<br>2uA Max          | Disposable/accessory authentication                               | cessory           | PC (DA)<br>Single wire (CZ)    | -                       | 4.5 Kb            | -40 to<br>+85      | 2.0V              | 72-bit serial<br>number | HPS               | 67                    | NIST SHA256 with HMAC Option                                                                                                      | 256-bit keys                      | 16                  | Z/A                                          | N/A<br>8         | SOIC (MAH), UDFN (SSH)<br>3 contacts, (RBH), SOT-23 (STU),<br>TSSOP (XHD) XDFN (MXH) |                        | Yes                               |
| AES132  | 100 µA<br>@3.3V Vcc<br>250 µA | Secure storage                                                    | rage              | SPI (Q)<br>PC (R.)             |                         | 16x<br>2 Kb       | -40 to<br>+85      | 2.0V              | 64-bit serial<br>number | HPS               | 16                    | AES-CCM for authentication,<br>MAC Capability                                                                                     | Up to 16x<br>128-bit keys         |                     | Ϋ́                                           | ĕ<br>Ż           | SOIC (8S1), UDFN (8MA2)                                                              |                        | 9                                 |

| Productional particular productional particular productional posture productional posture productional posture productional posture productional posture productional productional posture productional posture productional posture productional posture productional posture productional production productional productional productional productional production productional                   |            |    |    | Touch and 3D Gesture Control: Capacitive Touch Controllers                                                           | trollers  |                       |                                                |             |       |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|----|----------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|------------------------------------------------|-------------|-------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |    |    | Additional Features                                                                                                  | Proximity | Interface             | Safety certified Touch<br>VDE/UL 60730 class B | Voltage (V) | Pins  | Packages          |
| 1   1   2   Cap     1   2   Cap     2   Cap     3   Cap     4   2   Cap     4   2   Cap     5   4   Cap     5   4   Cap     5   4   Cap     5   4   Cap     5   5   4   Cap     5   5   4   Cap     5   5   5   Cap     6   5   5   Cap     6   6   7   Cap     6   7   Cap     7   7   7   Cap     8   7   Cap     9   6   7   Cap     9   6   7   Cap     9   8   Cap     9   9   Cap | 1010       | 1  | 1  | adjustable sensitivity, noise filtering                                                                              | >         | GPIO                  |                                                | 1.8–5.5     | 8/9   | SOT-23, UDFN      |
| 12         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent keys uppression (AKS)         CGPO         18-5.5         6.0           20         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         18-5.5         12.70           20         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         18-5.5         14.70           20         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         18-5.5         14.70           20         1         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         18-5.5         20           20         1         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         PCGPO         18-5.5         20           20         1         adjuistable sensitivity, noise rejection filters, low-power mode, Aglacent key suppression (AKS)         PCGPO         PCGPO         18-5.5         20           20         1         adjuistable sensitivity, noise rejection filters, Aglacent key suppression (AKS)         PCGPO         PCGPO         18-5.5         20           21         2         adjuistable sensitivity, noise rejection filters, Aglacent key suppression (AKS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11011      | -  | 1  | adjustable sensitivity, noise filtering                                                                              | >         | GPIO                  |                                                | 1.8–5.5     | 8/9   | SOT-23, UDFN      |
| 44         a digutabble serselishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         GPDO         18-55         12/20           56         a digutabble serselishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO         18-55         12/20           70         a digutabble sersilishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO         18-55         14/20           10         a digutabble sersilishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO         18-55         22           11         a digutabble sersilishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO         18-55         22           24         a sidek-wikeel, adjustable sersilishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO         PCGPIO         18-55         22           244         a sidek-wikeel, adjustable sersilishing, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PCGPIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T1012      | -  | 1  | adjustable sensitivity, noise rejection filters, low-power mode                                                      | >         | GPIO                  |                                                | 1.8–5.5     | 8/9   | SOT-23, UDFN      |
| 56         -         adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FCGPIO         18-6.5         28           70         1         -         adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FCGPIO         18-6.5         32           10         -         sidear/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FCGPIO         50-6.5         32           20         1.2         -         sidear/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FC         50-6.5         32           244         2.4         -         sidear/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FC         50-6.5         32           244         2.4         -         reCretivuLe0730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FC         *         *         7         *         30-6.5         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32         32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T1040      | 4  | I  | adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)                      |           | GPIO                  |                                                | 1.8–5.5     | 20    | VQFN              |
| 60         6         a digustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FCGPIO         1.8-5.5         14.05           77         a side-whole sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         x         FCGPIO         3.0-5.5         3.0-5.5           28         a side-whole, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         x         FCG PO         x         1.8-5.5         3.0-5.5           240         1.0         a side-whole, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         x         FCG         FC         FC         A.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-5.5         3.0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2T1050     | 2  | 1  | adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)                      |           | I <sup>2</sup> C/GPIO |                                                | 1.8-5.5     | 12/20 | VQFN, WLCSP       |
| 770         7         a disturbable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FC/GPIO         1.8-5.5         14/50           10         -         adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         C         SPH/GPIO         2.0-5.5         3.2           20         1         -         adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         C         FPC         C         C         C         2.0-5.5         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.2         3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2T1060     | 9  | I  | adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)                      |           | I²C/GPIO              |                                                | 1.8–5.5     | 28    | VQFN              |
| 00         1.0         -         sider/wheel, adjustable sersitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         SPI/GPIO         3.0-5.5         3.2           1.0         -         adjustable sersitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         ×         PC         N         1.8-5.5         3.2           2.4         -         adjustable sersitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         ×         PC         Y         1.8-5.5         3.2           2.4         -         ECCENUL 60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjustable sensitivity, noise rejection filters         SPI         Y         Y         Adjustable sensitivity, noise rejection filters         SPI         Y         Adjustable sensitivity, noise rejection filters         Adjustable sensitivity, noise rejection filt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QT1070     | 7  | 1  | adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)                      |           | I²C/GPIO              |                                                | 1.8–5.5     | 14/20 | SOIC, VQFN        |
| 10         adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FPC         PFC         1.8-5.5         20           10         1         side-fw/Meel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         FPC         FPC         1.8-5.5         28           44         2.4         1         ECCENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, Adjacent key suppression (AKS)         PPC         Y         1.8-5.5         28           44         2.4         1         ECCENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjustable sensitivity, noise rejection filters         SPPI         Y         1.8-5.3         24           44         2         1         ECCENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjustable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AT42QT2100 | 10 | ı  | slider/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)        |           | SPI/GPIO              |                                                | 2.0-5.5     | 32    | VQFN              |
| 20         12         a side/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         Ye         FC         18-5.5         20           244         2         ECCEN/UL60730 dass B safety, FMEA, adjustable sensitivity, noise rejection filters. Adjacent key suppression (AKS)         PG         Y         30-5.5         22           245         2         ECCEN/UL60730 dass B safety, FMEA, adjustable sensitivity, noise rejection filters. Adjacent key suppression (AKS)         PFC         Y         30-5.5         32           246         2         ECCEN/UL60730 dass B safety, FMEA, adjustable sensitivity, noise rejection filters. Adjacent key suppression (AKS)         PFC         Y         AB-5.3         44           246         3         4         ECCEN/UL60730 dass B safety, FMEA, adjustable sensitivity, noise rejection filters         PFC         SPV/UART         Y         AB-5.3         44           247         3         3         3         AB-5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QT1110     | 11 | ı  | adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)                      |           | SPI/GPIO              |                                                | 3.0-5.5     | 32    | TQFP, VQFN        |
| 60         16         a silder/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)         PC         V         18-5.5         28           244         24         2         ECENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, Adjacent key suppression (AKS)         PC         V         SPI         V         30-5.5         32         28           346         2         ECENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjacent key suppression (AKS)         SPI         V         RB-5.3         44         48-5.3         44           340         3         3         3         30-5.6         30-5.6         32         32         32           481         4         -         EC/ENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjacent RB-3         44         48-5.3         44         48-5.3         44         48-5.3         44           40         6         -         EC/ENVLL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         7         PC         Adjacent RB-3         41         41         48-5.3         44         48-5.3         44           40         -         -         -         -         -         - <th>AT42QT2120</th> <td>12</td> <th>I</th> <td>slider/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)</td> <td>&gt;</td> <td><sup>2</sup>C</td> <td></td> <td>1.8–5.5</td> <td>20</td> <td>SOIC, TSSOP, VQFN</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AT42QT2120 | 12 | I  | slider/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)        | >         | <sup>2</sup> C        |                                                | 1.8–5.5     | 20    | SOIC, TSSOP, VQFN |
| 244         24         -         EC/EN/ULGO/30 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, Adjacent key suppression (AKS)         PC         Y         30–5.5         32         32           245         2         LEC/EN/ULGO/30 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Adjacent key suppression (AKS)         SPI         Y         18-5.3         44         48-5.3         44           340         3         -         EC/EN/ULGO/30 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Y         PPU         Y         48-5.3         44           440         3         3         3         3         3PI/UAFT         Y         48-5.3         44           450         6         4         EC/EN/ULGO/30 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Y         PC         PC         Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QT2160     | 16 | ı  | slider/wheel, adjustable sensitivity, noise rejection filters, low-power mode, Adjacent key suppression (AKS)        |           | <u>S</u>              |                                                | 1.8-5.5     | 28    | VQFN              |
| 446         24         —         EC/ENVUL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         SPIVART         V         48-6.5         30-6.5         32           448         -         EC/ENVUL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         SPI         V         18-6.3         44         48-6.3         44           440         -         EC/ENVUL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         V         180         V         48-6.3         44         10           440         -         EC/ENVUL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         V         180         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QT1244     | 24 | I  | IEC/EN/UL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, Adjacent key suppression (AKS) |           | <u>S</u>              | `                                              | 3.0-5.5     | 32    | TQFP, VQFN        |
| 48         -         EC/ENVULEO730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         SPIVART         Y         SPIVART         Y         48-6.3         44           44         -         EC/ENVULEO730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Y         PC         12         48-6.3         44           5         -         EC/ENVULEO730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         Y         PC         12         3.0-36         10           6         -         alert, automatic calibration, base capacitance compensation         Y         PC/SPI         3.0-36         10         10           6         6         B         silder, reset, alert, automatic calibration, base capacitance compensation         Y         PC/SPI         3.0-36         20         20           8         2         silder, reset, alert, automatic calibration, base capacitance compensation         Y         PC/SPI         3.0-36         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QT1245     | 24 | ı  | IEC/EN/UL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters, Adjacent key suppression (AKS) |           | SPI                   | `                                              | 3.0-5.5     | 32    | TQFP, VQFN        |
| 44         C         IEC/EN/ULGO730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters         SPI         V         RPC         A8-5.3         44           3         3         3         3         3         30-36         10         30-36         10           6         -         slider, reset, alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         10           6         6         slider, reset, alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         20           8         2         slider, reset, alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         20           8         8         slider, reset, alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6         3.0-3.6 <td< td=""><th>2T1481</th><td>48</td><th>1</th><td>IEC/EN/UL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters</td><td></td><td>SPI/UART</td><td>`</td><td>4.8-5.3</td><td>44</td><td>TQFP</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2T1481     | 48 | 1  | IEC/EN/UL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters                                 |           | SPI/UART              | `                                              | 4.8-5.3     | 44    | TQFP              |
| 3         3         3         10         30-3.6         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3T2640     | 64 | ı  | IEC/EN/UL60730 Class B safety, FMEA, adjustable sensitivity, noise rejection filters                                 |           | SPI                   | `                                              | 4.8-5.3     | 44    | TQFP              |
| 6         –         alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         10           6         2         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         20           8         2         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         20           8         8         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         2           14         11         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         3.0-3.6         2           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         PC         3.0-3.6         3.0-3.6         3.2           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         BC         3.0-3.6         3.0-3.6         3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 133        | က  | က  |                                                                                                                      | >         | <u></u>               |                                                | 3.0-3.6     | 10    | QFN<br>NHQ        |
| 6         2         RIGARD         Sider, reset alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         16           6         6         sider, reset alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         2           8         2         sider, reset alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         2           14         11         sider, reset alert, automatic calibration, base capacitance compensation         V         PC/SPI         3.0-3.6         3.0-3.6         3           3         -         alert, automatic calibration, base capacitance compensation         V         PC         3.0-3.6         3         3           3         -         alert, automatic calibration, base capacitance compensation         V         PC         3.0-3.6         3         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 106        | 9  | ı  | alert, automatic calibration, base capacitance compensation                                                          | >         | S<br>S                |                                                | 3.0-3.6     | 10    | OFN.              |
| 6         6         Silder, reset, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         20           8         2         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         24           14         11         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0-3.6         24           3         -         alert, automatic calibration, base capacitance compensation         V         PC         3.0-3.6         3.3-5.0         8           3         -         alert, automatic calibration, base capacitance compensation         V         PC         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126        | 9  | 2  | slider, reset, alert, automatic calibration, base capacitance compensation                                           | >         | PC/SPI                |                                                | 3.0–3.6     | 16    | OFN.              |
| 8         2         Rider reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0–3.6         20           8         8         sider reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0–3.6         24           14         11         sider reset alert, automatic calibration, base capacitance compensation         ✓         PC         3.0         3.3–5.0         8           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         8         3.3–5.0         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAP1166    | 9  | 9  | slider, reset, alert, automatic calibration, base capacitance compensation                                           | >         | PC/SPI                |                                                | 3.0-3.6     | 20    | N N N             |
| 8         8         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC/SPI         3.0–3.6         24           14         11         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC         3.0–3.6         3.2           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         3.3–5.0         8           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAP1128    | ω  | 2  | slider, reset, alert, automatic calibration, base capacitance compensation                                           | >         | PC/SPI                |                                                | 3.0-3.6     | 20    | NHO               |
| 14         11         silder, reset alert, automatic calibration, base capacitance compensation         ✓         PC         3.0–3.6         3.2           3         -         alert, automatic calibration, base capacitance compensation         PC         3.3–5.0         8           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         3.3–5.0         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 188        | 00 | 80 | slider, reset, alert, automatic calibration, base capacitance compensation                                           | >         | PC/SPI                |                                                | 3.0-3.6     | 24    | OFN               |
| 3         -         alert, automatic calibration, base capacitance compensation         PC         3.3–5.0         8           3         -         alert, automatic calibration, base capacitance compensation         ✓         PC         RC         RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114        | 14 | 11 | slider, reset, alert, automatic calibration, base capacitance compensation                                           | `         | <u>S</u>              |                                                | 3.0-3.6     | 32    | QFN               |
| 3 - alert, automatic calibration, base capacitance compensation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAP1203    | ო  | ı  | alert, automatic calibration, base capacitance compensation                                                          |           | S<br>C                |                                                | 3.3-5.0     | 80    | OFN               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAP1293    | က  | 1  |                                                                                                                      | `         | <u>S</u>              |                                                |             |       | QFN<br>NHQ        |

|                         |         |                | Touch and 3D Gesture Control: Capacitive Touch Controllers                                                      | trollers  |                               |                                                |                  |       |            |
|-------------------------|---------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|------------------------------------------------|------------------|-------|------------|
| Product Buttons Drivers | Buttons | LED<br>Drivers | Additional Features                                                                                             | Proximity | Interface                     | Safety certified Touch<br>VDE/UL 60730 class B | Voltage (V) Pins | Pins  | Packages   |
| CAP1206                 | 9       | 1              | alert, automatic calibration, base capacitance compensation                                                     |           | l <sup>2</sup> C              |                                                |                  |       | OFN        |
| CAP1296                 | 9       | ı              | alert, automatic calibration, base capacitance compensation                                                     | `>        | <u>\</u>                      |                                                |                  |       | NHO        |
| CAP1208                 | ω       | ı              | alert, automatic calibration, base capacitance compensation                                                     |           | <sup>S</sup> C                |                                                |                  |       | NHQ<br>NHQ |
| CAP1298                 | ∞       | 1              | alert, automatic calibration, base capacitance compensation                                                     | `         | <sup>1</sup> / <sub>C</sub> C |                                                | 3.3–5.0          | 16    | NHO        |
| CAP1214                 | 14      | Ę              | slider, reset, alert, automatic calibration, base capacitance compensation, audio output                        | >         | <u>S</u>                      |                                                | 3.0-3.6          | 32    | N N        |
| MTCH101                 | -       | 1              | optimized for button replacement, adjustable sensitivity, noise rejection filters, low-power mode               |           | GPIO                          |                                                | 2.0–5.5          | 9     | SOT23      |
| MTCH102                 | 2       | ı              | optimized for button replacement, adjustable sensitivity, noise rejection filters, active guard, low-power mode | `         | GPIO                          |                                                | 2.1–3.6          | 00    | MSOP, UDFN |
| MTCH105                 | 5       | 1              | optimized for button replacement, adjustable sensitivity, noise rejection filters, active guard, low-power mode | >         | GPIO                          |                                                | 2.1–3.6          | 14/16 | TSSOP, QFN |
| MTCH108                 | 80      | 1              | optimized for button replacement, adjustable sensitivity, noise rejection filters, active guard, low-power mode | `         | GPIO                          |                                                | 2.1–3.6          | 20    | SSOP, UQFN |
| MTCH112                 | 2       | ı              | adjustable sensitivity, noise rejection filters, low-power mode                                                 |           | <sup>2</sup> C                |                                                | 1.8-3.3          | ∞     | SOIC, DFN  |

| Product         110 minetals         Surface Gestures         Additional Features         Additional Features         Cow Power         Interface         1.9-3.0         Pin           MTCH6102         15         X         Interface         X         Interface         Y         Interface         Y         18-3.0         28           MTCH6102         15         X         Interface         X         Interface         X         18-3.0         28         8           Product         Channels         Surface Cestures         Self and mutual capacitance, glove and thick lens, mosture support         Automotive         Temp Range (C)         Interface         Y         RC         18-3.3V         16           ATMXT144U         144         Single and dual linger         Self and mutual capacitance, glove and thick lens, mosture support         Y         4010 + 105         Y         PC         SP         18-3.3V         11           ATMXT3291         36         Single and dual linger         Self and mutual capacitance, glove and thick lens, mosture support         Y         4010 + 105         Y         PC         SP         18-3.3V         11           ATMXT3291         36         Single and dual linger         Self and mutual capacitance, glove and thick lens, mosture support         Y         401                                                                                                      |           |          |                        | Touch and 3D Gesture Control: Capacitive Touchpads and Controllers                 | ads and Contr | ollers              |                  |                  |          |      |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|------------------------|------------------------------------------------------------------------------------|---------------|---------------------|------------------|------------------|----------|------|------------|
| 15   Channels   Projected capacitive touch controller, single touch and gostures, self capacitive Multi-touch Touchada and Touchacker Controllers (Turns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Product   | Channels | Surface Gestures       | Additional Features                                                                |               | Low Power           | Interface        | Voltage          |          | Pac  | Package    |
| Charmels   Surface Costures   Auditional Features   Automotive   Temp Range (C)   Low Power   Interface   Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MTCH6102  | 15       | <b>,</b>               | Projected capacitive touch controller, single touch and gestures, self capacitance |               | <i>&gt;</i>         | I <sub>2</sub> C | 1.8–3.6\         |          | SSOP | SSOP, UQFN |
| Channels         Surface Cestures         Additional Features         Automotive         Intended (C)         Low Power         Interface         Voltage           144         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         — 40 to +85         Y         PC, SPI         3.1–3.3V           224         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         40 to +85         Y         PC, SPI         3.1–3.3V           336         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         40 to +85         Y         PC, SPI         3.1–3.3V           640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         40 to +105         Y         PC, SPI         3.1–3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         40 to +105         Y         PC, SPI         3.1–3.3V           1086         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         PC, SPI         7.8–3.3V           1086         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         <      |           |          |                        |                                                                                    | d Touchscreen | Controllers (Turnke | y Solutions)     |                  |          |      |            |
| 144         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         - 40 to +105         Y         PC, SPI         3.1-3.3V           224         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         - 40 to +105         Y         PC, SPI         3.1-3.3V           448         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         - 40 to +105         Y         PC, SPI         3.1-3.3V           640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1066         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glo | Product   | Channels | Surface Gestures       |                                                                                    | Automotive    | Temp Range (°C)     | Low Power        | Interface        | Voltage  | Pin  | Package    |
| 224         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         Act to +165         Y         FC, SPI         3.1–3.3V           336         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -d0 to +165         Y         FC, SPI         3.1–3.3V           640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -d0 to +165         Y         FC, SPI         3.1–3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -d0 to +105         Y         FC, SPI         3.1–3.3V           1066         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -d0 to +105         Y         FC, SPI         3.1–3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -d0 to +105         Y         FC, SPI         3.1–3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         +d0 to +105         Y         FC, SPI         3.1–3.3V           1664         Single and dual f                   | ATMXT144U | 144      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >-               | I <sub>2</sub> C | 1.8–3.3V | 38   | OFN        |
| 386         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         FC, SPI         3.1-3.3V           448         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         FC, SPI         3.1-3.3V           640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         +0 to +105         Y         FC, SPI         3.1-3.3V           2912         Single and dual fi                   | ATMXT225T | 224      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >             | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 100  | TQFP       |
| 448         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         A-0 to +105         Y         FC, SPI         3.1-3.3V           640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1066         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         +0 to +105         Y         FC, SPI         3.1-3.3V           2912         Single and dual f                   | ATMXT336U | 336      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >                | <u>2</u>         | 1.8-3.3V | 56   | XQFN       |
| 640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         PC, SPI         3.1-3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1066         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         PC, SPI         3.1-3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         PC, SPI         3.1-3.3V           2912         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         PC, SPI         3.1-3.3V           2912         Single and dual                   | ATMXT449T | 448      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >             | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 100  | TQFP       |
| 640         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           798         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         FC, SPI         3.1-3.3V           1188         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           1664         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         Y         -40 to +105         Y         FC, SPI         3.1-3.3V           2912         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         FC, SPI         3.1-3.3V           2912         Single and dual finger         Self and mutual capacitance, glove and thick lens, moisture support         -         -40 to +105         Y         FC, SPI         3.1-3.3V                                                          | ATMXT640U | 640      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >                | <u>2</u>         | 1.8-3.3V | 88   | UFBGA      |
| Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 1066 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 1188 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support 2912 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support -40 to +105 Y PC, SPI 3.1-3.3V 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support -40 to +105 Y PC, SPI 3.1-3.3V 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support -40 to +105 Y PC, USB 1.8-3.3V 1.8-3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATMXT641T | 640      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >             | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 100  | TQFP       |
| Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  188 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1864 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1865 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1867 Single and dual finger  Self and mutual capacitance, glove and thick lens, moisture support  1867 Single and dual finger                                                                                                                                                                                                                                                                                                                                                                                                                         | ATMXT799T | 798      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >             | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 144  | LOFP       |
| Slingle and dual finger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MXT1066T2 | 1066     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >                |                  | 1.8-3.3V | 114  | UFBGA      |
| Self and mutual capacitance, glove and thick lens, moisture support – 40 to +85 Y PC, USB 1.8–3.3V 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support Y –40 to +105 Y PC, SPI 3.1–3.3V 2912 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support – 40 to +85 Y PC, USB 1.8–3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MXT1189T  | 1188     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >-            | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 144  | LQFP       |
| 1664 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support Y –40 to +105 Y FC, SPI 3.1–3.3V Self and mutual capacitance, glove and thick lens, moisture support – –40 to +85 Y FC, USB 1.8–3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MXT1664T3 | 1664     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >                | PC, USB          | 1.8-3.3V | 136  | UFBGA      |
| 2912 Single and dual finger Self and mutual capacitance, glove and thick lens, moisture support – -40 to +85 Y FC, USB 1.8–3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MXT1665T  | 1664     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | >             | -40 to +105         | >                | PC, SPI          | 3.1-3.3V | 144  | LOFP       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MXT2952T2 | 2912     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                | 1             | -40 to +85          | >                | PC, USB          | 1.8-3.3V | 162  | UFBGA      |

|           |          | Tou                    | Touch and 3D Gesture Control: Projected Capacitive Multi-touch Touchpad and Touchscreen Controllers (Turnkey Solutions) | and Touchscree | en Controllers (Turnke | y Solutions) |                  |          |     |         |
|-----------|----------|------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|--------------|------------------|----------|-----|---------|
| Product   | Channels | Surface Gestures       | Additional Features                                                                                                     | Automotive     | Temp Range (°C)        | Low Power    | Interface        | Voltage  | Pin | Package |
| ATMXT144U | 144      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | 1              | -40 to +85             | <b>&gt;</b>  | l <sub>2</sub> C | 1.8-3.3V | 38  | QFN     |
| ATMXT225T | 224      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 100 | TQFP    |
| ATMXT336U | 336      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | ı              | -40 to +85             | >            | <u>2</u> C       | 1.8-3.3V | 26  | XQFN    |
| ATMXT449T | 448      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 100 | TQFP    |
| ATMXT640U | 640      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | ı              | -40 to +85             | >            | <u>2</u>         | 1.8-3.3V | 88  | UFBGA   |
| ATMXT641T | 640      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 100 | TQFP    |
| ATMXT799T | 798      | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 144 | LOFP    |
| MXT1066T2 | 1066     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | 1              | -40 to +85             | >            |                  | 1.8-3.3V | 114 | UFBGA   |
| MXT1189T  | 1188     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 144 | LOFP    |
| MXT1664T3 | 1664     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | 1              | -40 to +85             | >            | PC, USB          | 1.8-3.3V | 136 | UFBGA   |
| MXT1665T  | 1664     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | >              | -40 to +105            | >            | PC, SPI          | 3.1-3.3V | 144 | LOFP    |
| MXT2952T2 | 2912     | Single and dual finger | Self and mutual capacitance, glove and thick lens, moisture support                                                     | I              | -40 to +85             | >            | PC, USB          | 1.8-3.3V | 162 | UFBGA   |

|         |                  |                      | To                                             | ouch and 3D Ge | Touch and 3D Gesture Control: 3D Gesture Controllers |           |                        |         |     |         |
|---------|------------------|----------------------|------------------------------------------------|----------------|------------------------------------------------------|-----------|------------------------|---------|-----|---------|
| Product | Product Channels | Position<br>Tracking | Additional Features                            | Automotive     | Temperature Range                                    | Low Power | Interface              | Voltage | Pin | Package |
| MGC3030 | 2                | 1                    | Gesture port, auto wake/sleep, touch detection | 1              | -20°C to +85°C                                       | >         | PC, EDI (gesture port) | 3.3V    | 28  | SSOP    |
| MGC3130 | 5                | >                    | Gesture port, auto wake/sleep, touch detection | ı              | -20°C to +85°C                                       | >         | PC, EDI (gesture port) | 3.3V    | 28  | OFN     |
| MGC3140 | 2                | >                    | Gesture port, auto wake/sleep, touch detection | >              | -40°C to +125°C                                      | >         | PC, EDI (gesture port) | 3.3V    | 48  | NAGN    |
|         |                  |                      |                                                |                |                                                      |           |                        |         |     |         |

# **Terms and Definitions**

| 1 KB1024 bytes                                                                       |
|--------------------------------------------------------------------------------------|
| 1 Kw 1024 words                                                                      |
| 18F/PIC18 16-bit instruction word: 75/83 instructions ADCAnalog to Digital Converter |
| ADC2/ADCCADC with Computation                                                        |
| AngTMRAngular Timer                                                                  |
| AUSART Addressable Universal Synchronous Asynchronous Receiver Transmitter           |
| BL/Baseline 12-bit instruction word: 33 instructions                                 |
| BOR/PBORProgrammable Brown Out Reset/                                                |
| BTLEBluetooth® Low Energy                                                            |
| CANController Area Network                                                           |
| CCP/ECCPEnhanced Capture Compare PWM/                                                |
| CLCConfigurable Logic Cell                                                           |
| COGComplementary Output Generator                                                    |
| Comp Capacitive Sensing Implemented via Comparator                                   |
| CRC/SCANCyclical Redundancy Check with Memory Scanner                                |
| CTMUCharge Time Measurement Unit                                                     |
| CVDCharge Voltage Divide (Capacitive Sensing Implemented via ADC)                    |
| CWG Complementary Waveform Generator                                                 |
| DACDigital-to-Analog Converter                                                       |
| DOZELow-Power Doze Mode                                                              |
| DSMData Signal Modulator                                                             |
| dsPIC® DSC16-bit Core with DSP                                                       |
| EBL Enhanced Baseline                                                                |
| EEPROMElectrically Erasable Programmable Read Only Memory                            |
| EMR/Enhanced14-bit instruction word: 49 instructions                                 |

| Mid-Range(Denoted as PIC1XF1XXX)                                                                       |
|--------------------------------------------------------------------------------------------------------|
|                                                                                                        |
| EUSARTEnhanced Universal Synchronous Asynchronous Receiver Transmitter                                 |
| EWDT/WDT Extended Watchdog Timer/ Watchdog Timer                                                       |
| HC I/OHigh-Current I/O                                                                                 |
| HEFHigh-Endurance Flash (128B of Nonvolatile Data Storage)                                             |
| HLTHardware Limit Timer                                                                                |
| HV High Voltage                                                                                        |
| ICDIn-Circuit Debug                                                                                    |
| ICEIn-Circuit Emulation                                                                                |
| ICSP <sup>TM</sup> In-Circuit Serial Programming <sup>TM</sup>                                         |
| IDEIntegrated Development Environment                                                                  |
| IDLELow-Power Idle Mode                                                                                |
| Inst AmpInstrumentation Amplifier                                                                      |
| LCDLiquid Orystal Display                                                                              |
| LDO Low Drop-Out Voltage Regulator                                                                     |
| LFLow-Power Flash                                                                                      |
| LPBORLow-Power Brown Out Reset                                                                         |
| MI <sup>2</sup> C/I <sup>2</sup> CMaster Inter-Integrated Circuit Bus/<br>Inter-Integrated Circuit Bus |
| MathACCMath Accelerator                                                                                |
| MIPS Million Instructions Per Second                                                                   |
| MR/Mid-Range14-bit instruction word:                                                                   |
| MSSP/SSPMaster/Synchronous Serial Port (I²C and SPI Peripheral)                                        |
| mTouch Proprietary Touch Sensing Technology                                                            |
| NCONumerically Controlled Oscillator                                                                   |
| Op AmpOperational Amplifier                                                                            |
| PIC10/12/16/188-bit Core                                                                               |
| PIC2416-bit Core                                                                                       |

| PIC32Programmable Low Voltage Detect                         | 32-bit Core<br>Itage Detect               |
|--------------------------------------------------------------|-------------------------------------------|
|                                                              | tule Disable<br>Master Port               |
| Power ON Reset                                               | OFF Reset                                 |
| PPSPeripheral Pin Select                                     | Il Pin Select                             |
| PRG Programmable Ramp Generator                              | Generator                                 |
| PSMCProgrammable Switch Mode Controller (16-bit PVM)         | de Controller<br>(16-bit PWM)             |
| PWMPulse-Width Modulation                                    | Modulation                                |
| QEIQuadrature Encoder Interface                              | er Interface                              |
| RAMRandom Access Memory                                      | ss Memory                                 |
| RTCCReal-Time Clock Calendar                                 | k Calendar                                |
| SlopeCompSlope Compensation                                  | npensation                                |
| SMT24-bit Signal Measurement Timer                           | ment Timer                                |
| Source/Sink CurrentAll Products                              | All Products                              |
|                                                              |                                           |
| SK LatchSet Heset Latch                                      | reset Latch                               |
| SRAMStatic Random Access Memory                              | ss Memory                                 |
| SPISerial Peripheral Interface                               | al Interface                              |
| TEMPTemperature Indicator                                    | re Indicator                              |
| T1GTi                                                        | Timer 1 Gate                              |
| USARTUniversal Synchronous Asynchronous Receiver Transmitter | nous Asynchronous<br>Receiver Transmitter |
| USBUniversa                                                  | Universal Serial Bus                      |
| USB (Full Speed)12 MB Data Rate                              | 3 Data Rate                               |
| USB OTGUSB On-The-Go                                         | On-The-Go                                 |
| WWDTWindow Watchdog Timer                                    | ndog Timer                                |
| XLPeXtreme Low-Power Technology                              | Technology                                |
| ZCDZero-Cross Detection                                      | s Detection                               |

# **Packaging**

For detailed dimensions, view our package drawings and dimensions specifications at: www.microchip.com/packaging.

# Support

Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. For more information, please visit www.microchip.com:

- Technical Support: www.microchip.com/support
- Evaluation samples of any Microchip device: www.microchip.com/sample
- Knowledge base and peer help: www.microchip.com/forums
- Sales and Global Distribution: www.microchip.com/sales

## **Training**

If additional training interests you, Microchip offers several resources including in-depth technical training and reference material, self-paced tutorials and significant online resources.

- Overview of Technical Training Resources: www.microchip.com/training
- MASTERs Conferences: www.microchip.com/masters
- Developer Help Website: www.microchip.com/developerhelp
- Technical Training Centers: www.microchip.com/seminars

# Sales Office Listing

### **AMERICAS**

Atlanta, GA Tel: 678-957-9614

Austin, TX Tel: 512-257-3370

Boston, MA Tel: 774-760-0087

Chandler, AZ (HQ) Tel: 480-792-7200

Chicago, IL

Tel: 630-285-0071

Dallas, TX Tel: 972-818-7423

Detroit, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis, IN Tel: 317-773-8323 Tel: 317-536-2380

Los Angeles, CA Tel: 949-462-9523 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980

### **EUROPE**

Austria - Wels Tel: 43-7242-2244-39

Denmark - Copenhagen Tel: 45-4450-2828

Finland - Espoo Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20 Germany - Garching

Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766-400 Germany - Heilbronn

Tel: 49-7131-67-3636 Germany - Karlsruhe

Tel: 49-721-62537-0

Germany - Munich Tel: 49-89-627-144-0

Germany - Rosenheim Tel: 49-8031-354-560

### **EUROPE**

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800

### ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Wuhan Tel: 86-27-5980-5300

China - Xiamen

Tel: 86-592-2388138

China - Xian Tel: 86-29-8833-7252

### ASIA/PACIFIC

China - Zhuhai Tel: 86-756-321-0040

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880-3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

10/31/17



www.microchip.com

Microchip Technology Inc. | 2355 W. Chandler Blvd.

Chandler AZ, 85224-6199

The Microchip name and logo, the Microchip logo, AVR, dsPIC, Hyper Speed Control, HyperLight Load, KleerNet, KeeLoq, LinkMD, flexPWN, UNI/O, rfPIC, maXTouch, MediaLB, MOST, MPLAB, PIC, picoPower, QTouch and Quiet-WIRE are registered trademarks and ICSP, JitterBlocker, MiWi, MultiSwitch, MultiTRAK, NetDetatch, RapidCharge Anywhere, SMSC BC-Link, SQI, UniClock, VariSenso and Wireless DNA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. Arm and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and other countries. mTouch is a registered trademark of Microchip Technology Inc in the U.S.A. The LoRa name and associated logo are trademarks of Semtech Corporation or its subsidiaries. USB-C and USB Type-C are trademarks of the USB Developers Forum. All other trademarks mentioned herein are property of their respective companies. © 2018, Microchip Technology Incorporated. All Rights Reserved. 6/18