# Optimizing First-Stage Rocket Recovery: A Feasibility Study

Deborah L. Boxall November 2024



### **Table of Contents**

- Executive Summary
- Introduction
- Methodology
- Data Collection
  - SpaceX API
  - Web Scraping
- Data Wrangling
- Predictive Analytics
- Results
  - Exploratory Data Analysis
  - Interactive Map of Launch Sites
  - Plotly Dashboard
  - Charts:
    - Flight number and Payload vs Launch Site
    - Payload vs. Orbit
- Conclusion
- Appendix

### **Executive Summary**

#### **Summary of Methodologies**

- Data analysis was employed to identify the factors that contribute to a successful landing of reusable first stage boosters. The following methodologies were utilized:
- Collect data using SpaceX API and web scraping techniques
- Wrangle the data in order to correct for missing values and to generate a binary column to track the success (value = 1) or failure (value = 0) of an attempted landing
- Examine how payload, launch site, flight number and yearly trend are correlated to successful landings using data visualization and statistical (SQL) techniques.
- Create an interactive map to visualize geographic trends in landing success data
- Compare the training/test results for logistic regression, support vector machine, decision tree and K-nearest neighbor to identify the best model for predictive analysis of successful landings

#### **Key results**

- Launch success has improved over time
- Kennedy Space Center has the highest success rates among landing sites
- Boosters used for Low Earth Orbits have a higher success rate than geosynchronous transfer orbits
- The Decision Tree predictive analysis model highest accuracy score for validation
  data and test data

### Introduction

When it comes to lowering launch costs for commercial applications, SpaceX is a leader in the space industry. One of the key ways that they have brought costs down is by having the first stage booster for the rocket land on either land or ocean drones. The retrieved booster can then be refurbished and relaunched. To date, SpaceX's turnaround time to refurbish a Falcon 9 booster is on the order of 20 days. An additional cost saving strategy that SpaceX employs is to keep all construction, launching and refurbishing in-house. The only component that is not always constructed by SpaceX is the payload, which is furnished by the customer.

#### **Objectives for this study**

- •Determine the relationship between successful landings and payload mass, launch site, number of flights and orbit
- •Quantitatively determine the landing success rate for each of the factors listed above
- •Develop a machine learning model to predict the probability of a successful landing from given values for the above factors.

: March 18, 2022

SpaceX achieves a new milestone in reusable boosters with 12th successful launch of the same Falcon 9 booster.

[Alcantarilla, 2022]

#### **TESLA**RATI

: April 29, 2022

SpaceX sets new turnaround record by refurbishing Falcon 9 booster in 9 days; significantly lower than the previous refurbishment time of 21 days. [Ralph, 2022]

RARK : September 26, 2022

It is estimated that it costs ~\$800/kg to launch a refurbished Falcon 9 to low Earth orbit as compared to ~\$2700/kg for a new Falcon 9. [Korus, 2022]

### Methodology

#### **Steps:**

- 1. Data collection using SpaceX REST API and web scraping techniques
- 2. Data wrangling to prepare collected data for analysis
- 3. Exploratory data analysis with SQL and data visualization techniques
- 4. Data visualization using Folium to prepare an interactive map and Plotly Dash to prepare an interactive dashboard
- 5. Build and train models to determine best model for predicting landing outcomes



Attribution: gtstudioimagen on Freepik

### **Data Collection: SpaceX API**

#### **Steps:**

- 1. Request data from SpaceX API, decode using .json\_normalize, and convert to dataframe
- 2. Filter dataframe to contain only Falcon 9 boosters
- 3. Replace missing values in payload mass column with the calculated mean
- 4. Export data to csv file



Falcon 9 launch
(By Joel Kowsky - https://www.flickr.com)

### Data Collection: Webscraping

#### Steps:

- 1. Request Falcon 9 launch data from Wikipedia and create Beautiful Soup object using HTML parser
- 2. Extract column names from HTML header information
- 3. Create dictionary from parsing the HTML data tables
- 4. Create dataframe from the dictionary
- 5. Export data to csv file

#### WikipediA





### **Data Wrangling**

#### Steps:

- Determine the number of launches from each site and if had a successful landing of booster
- Determine the different types of orbitals
- Create binary landing outcome column
- Export data to csv file

<u>Landing outcome values</u>: consist of two terms

First term: True/False for landing success

Second term: location of landing

#### Examples:

- •True Ocean = landed successfully in designated ocean site
- False RTLS = did not land on ground pad

### **Predictive Analytics**

#### **Steps:**

- 1. Create Numpy array from Class column
- 2. Standardize data with StandardScaler, then fit and transform data
- 3. Split the data into 80% train and 20% test sets
- 4. Apply a GridSearchCV on algorithims listed below and determine accuracy of each model
  - Logistic Regression
  - Support Vector Machine
  - Decision Tree Classifier
  - K-Nearest Neighbor
- 5. Assess confusion matrix for each model
- 6. Identify the best model using the Jaccard Score, F1 Score and Accuracy

# Results: Initial EDA using SQL

- The first successful landing of a first stage booster rocket occurred on December 22, 2015
- Three Falcon 9 Full Thrust booster versions were successfully landed (on land or on drone ship)
  - <u>Full Thrust</u> boosters (F9 FT) were used for 24 launches from December 2015 to February 2018. If the rocket was intended to deliver the payload to LEO, a successful landing was achieved 38% of the time. If a GTO was attempted, the first stage of the rocket was only able to land successfully 25% of the time. There was also an 8% failure rate for GTO orbits as compared to 0% for LEO, suggesting that the extra power needed to reach the higher GTO may have been compromising the performance of the rocket.
  - o <u>Block 4</u> boosters (F9 B4) were only used 12 times from August 2017 to June 2018. While they did have a 33% success rate of landing, this was only for LEO orbit. No landing attempt for the other two orbital types, GTO and HEO, were made with these boosters.
  - <u>Block 5</u> boosters (F9 B5)were used for over half (55%) of the launches between May 2018 to December 2020, and were used for the greatest variety of orbital types, with LEO having the highest landing success rate of 56%. In addition, 18% of the GTO also were also landed successfully with no failures.

### Results: Exploratory Data Analysis

#### **Exploratory Data Analysis**

• Launch success has increased over time (see Figure 1)



Figure 1: Success rate vs. Launch Date

The number of successful landings with high payloads increased with time (see figure below)



### Results: Interactive Map of Launch Sites

#### **Steps:**

 Indicated site of NASA Johnson Space Center with blue marker, and used red markers to indicate SpaceX launch sites



• Each SpaceX launch site was marked with popup **green** markers for successful landings and **red** markers for unsuccessful landings





# Interactive Map of Launch Sites (cont.)

- A function was defined to calculate the distance between Vandenberg Space Force Complex (VAFB) and another location identified by coordinates.
- A second function was defined to draw a line connecting VAFB to the second location.



### Results: Dashboard with Plotly Dash

#### **Dashboard consists of:**

Dropdown list of launch sites to allow user selection of specific site



• Pie chart of successful launches that updates depending on launch site selected



### Dashboard with Plotly Dash (cont.)

• Slider for payload mass range



• Scatter chart shows successful landings (y = 1) and unsuccessful landings (y = 0) for each Falcon 9 booster that was used to lift the user selected payload mass.

# Results: Orbit Types and Predictive Analytics

- Orbits ES-L1, GEO, HEO and SSO had the highest landing success rate for the booster used
- Most launch sites are close to coast and located in areas with low population density



#### **Predictive Analytics**

The Decision Tree model is the best predictive model used as can be seen (below) from the accuracy values for both the validation and test data sets

**Machine Learning Models** 

|                          | riacimie zeariii.Bricacie          |                                    |                       |                                |  |  |  |  |  |  |  |
|--------------------------|------------------------------------|------------------------------------|-----------------------|--------------------------------|--|--|--|--|--|--|--|
| Accuracy of model using: | Logistic<br>Regression<br>(LogReg) | Support Vector<br>Machine<br>(SVM) | Decision Tree<br>(DT) | K-Nearest<br>Neighbor<br>(KNN) |  |  |  |  |  |  |  |
| Validation data          | 0.846                              | 0.848                              | 0.875                 | 0.848                          |  |  |  |  |  |  |  |
| Test data                | 0.833                              | 0.833                              | 0.944                 | 0.833                          |  |  |  |  |  |  |  |

### Results: Flight Number vs. Launch Site

In the figure below, successful landings are denoted with orange markers while unsuccessful landings are denoted with blue markers.

- The probability of a successful landing increased with time (higher flight numbers)
- The majority of the launches occurred at Cape Canaveral LC-40
- However, Vandenberg and Kennedy Space Center had an overall higher success rate.



### Results: Payload vs. Launch Site

- In general, success rate increases with payload mass.
- Kennedy Space Center has a 100% success rate for launches with payloads below 5500 kg
- Vandenberg Air Force Base is primarily used for low payload mass (<10,000 kg) launches</li>



### Results: Payload vs. Orbit

- Heavy payloads (>6000 kg) are more likely to be successful when launched for lower elevation orbitals (LEO, PO, VLEO)
- GTO had mixed results for heavy payloads
- SSO was 100% successful but was only used for light payloads (<6000 kg)</li>



### **Appendix**

#### **Sources:**

Alcantarilla, A. *SpaceX Sets New Booster Reuse Record on Starlink Mission*. **Nasa Space Flight** (March 18, 2022) <a href="https://www.nasaspaceflight.com/2022/03/spacex-booster-reuse-record-starlink">https://www.nasaspaceflight.com/2022/03/spacex-booster-reuse-record-starlink</a>. (accessed 11/19/24)

Korus, S. The Turnaround Time in Rocket Reuse Suggests that the Cost of Refurbishing the First Stage of the Falcon 9 Has Dropped from Roughly 13 Million t \$1 Million in the Last Five Years, **ARK Invest Newsletter**, (September 26, 2022). <a href="https://www.ark-invest.com/newsletters/issue-335">https://www.ark-invest.com/newsletters/issue-335</a> (accessed 11/19/24)

Ralph, E. *SpaceX Smashes Falcon 9 Booster Turnaround Record*. **Teslarati**. (April 29, 2022) <a href="https://www.teslarati.com/spacex-falcon-9-new-booster-turnaround-record-21-days">https://www.teslarati.com/spacex-falcon-9-new-booster-turnaround-record-21-days</a>. (accessed 11/19/24)

# **Extras: SQL EDA**

#### Landing Outcome from 2010-06-04 to 2020-12-06 (SQL EDA)

| Landing_Outcome        | COUNT_LAUNCHES |  |  |  |  |  |  |
|------------------------|----------------|--|--|--|--|--|--|
| Success                | 38             |  |  |  |  |  |  |
| No attempt             | 21             |  |  |  |  |  |  |
| Success (drone ship)   | 14             |  |  |  |  |  |  |
| Success (ground pad)   | 9              |  |  |  |  |  |  |
| Failure (drone ship)   | 5              |  |  |  |  |  |  |
| Controlled (ocean)     | 5              |  |  |  |  |  |  |
| Failure                | 3              |  |  |  |  |  |  |
| Uncontrolled (ocean)   | 2              |  |  |  |  |  |  |
| Failure (parachute)    | 2              |  |  |  |  |  |  |
| Precluded (drone ship) | 1              |  |  |  |  |  |  |
| No attempt             | 1              |  |  |  |  |  |  |

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000



#### EDA SQL: Booster Version, Payload Mass, Orbit and Landing Outcome

|            | E 98920      |                                    |                  | 2.000     | Maria Maria          |            |              |                 |                  |           |                      |            |                                         |                |                 |             |                 |
|------------|--------------|------------------------------------|------------------|-----------|----------------------|------------|--------------|-----------------|------------------|-----------|----------------------|------------|-----------------------------------------|----------------|-----------------|-------------|-----------------|
| Date       | Launch_Site  | AND THE RESERVE OF THE PROPERTY OF | PAYLOAD_MASS_KG_ | Orbit     | Landing_Outcome      | Date       | Launch_Site  | Booster_Version | PAYLOAD_MASS_KG_ | Orbit     | Landing_Outcome      |            | 000000000000000000000000000000000000000 | Mesto ententos | PAYLOAD_MASSKG_ |             | Landing_Outcome |
| 2015-12-22 | CCAFS LC-40  | F9 FT B1019                        | 2034             | LEO       | Success (ground pad) | 2017-08-14 | KSC LC-39A   | F9 B4 B1039.1   | 3310             | LEO (ISS) | Success (ground pad) | 2019-07-25 | CCAFS SLC-40                            | F9 85 B1056.2  | 2268            | LEO (ISS)   | Success         |
| 2016-03-04 | CCAFS LC-40  | F9 FT 81020                        | 5271             | GTO       | Failure (drone ship) | 2017-09-07 | KSC LC-39A   | F9 B4 B1040.1   | 4990             | LEO       | Success (ground pad) | 2019-08-06 | CCAFS SLC-40                            | F9 B5 B1047.3  | 6500            | GTO         | No attempt      |
| 2016-04-08 | CCAFS LC-40  | F9 FT B1021.1                      | 3136             | LEO (ISS) | Success (drone ship) | 2017-10-09 | VAFB SLC-4E  | F9 B4 B1041.1   | 9600             | Polar LEO | Success (drone ship) | 2019-11-11 | CCAFS SLC-40                            | F9 B5 B1048.4  | 15600           | LEO         | Success         |
| 2016-05-06 | CCAFS LC-40  | F9 FT B1022                        | 4696             | GTO       | Success (drone ship) | 2017-10-30 | KSC LC-39A   | F9 B4 B1042.1   | 3500             | GTO       | Success (drone ship) | 2019-12-05 | CCAFS SLC-40                            | F9 B5B1059.1   | 2617            | LEO (ISS)   | Success         |
| 2016-05-27 | CCAFS LC-40  | F9 FT B1023.1                      | 3100             | GTO       | Success (drone ship) | 2018-01-08 | CCAFS SLC-40 | F9 B4 B1043.1   | 5000             | LEO       | Success (ground pad) | 2019-12-17 | CCAFS SLC-40                            | F9 B5 B1056.3  | 6956            | GTO         | Success         |
| 2016-06-15 | CCAFS LC-40  | F9 FT B1024                        | 3600             | GTO       | Failure (drone ship) | 2018-03-06 | CCAFS SLC-40 | F9 B4 B1044     | 6092             | GTO       | No attempt           | 2020-01-07 | CCAFS SLC-40                            | F9 B5 B1049.4  | 15600           | LEO         | Success         |
| 2016-07-18 | CCAFS LC-40  | F9 FT B1025.1                      | 2257             | LEO (ISS) | Success (ground pad) | 2018-03-30 | VAFB SLC-4E  | F9 B4 B1041.2   | 9600             | Polar LEO | No attempt           | 2020-01-19 | KSC LC-39A                              | F9 B5 81046.4  | 12050           | Sub-orbital | No attempt      |
| 2016-08-14 | CCAFS LC-40  | F9 FT 81026                        | 4600             | GTO       | Success (drone ship) | 2018-04-02 | CCAFS SLC-40 | F9 B4 B1039.2   | 2647             | LEO (ISS) | No attempt           | 2020-01-29 | CCAFS SLC-40                            | F9 85 81051.3  | 15600           | LEO         | Success         |
| 2017-01-14 | VAFB SLC-4E  | F9 FT 81029.1                      | 9600             | Polar LEO | Success (drone ship) | 2018-04-18 | CCAFS SLC-40 | F9 B4 B1045.1   | 362              | HEO       | Success (drone ship) | 2020-02-17 | CCAFS SLC-40                            | F9 85 81056.4  | 15600           | LEO         | Failure         |
| 2017-02-19 | KSC LC-39A   | F9 FT B1031.1                      | 2490             | LEO (ISS) | Success (ground pad) | 2018-05-22 | VAFB SLC-4E  | F9 B4 B1043.2   | 6460             | Polar LEO | No attempt           | 2020-03-07 | CCAFS SLC-40                            | F9 B5 B1059.2  | 1977            | LEO (ISS)   | Success         |
| 2017-03-16 | KSC LC-39A   | F9 FT B1030                        | 5600             | GTO       | No attempt           | 2018-06-04 | CCAFS SLC-40 | F9 B4 B1040.2   | 5384             | GTO       | No attempt           | 2020-03-18 | KSC LC-39A                              | F9 B5 B1048.5  | 15600           | LEO         | Failure         |
| 2017-03-30 | KSC LC-39A   | F9 FT B1021.2                      | 5300             | GTO       | Success (drone ship) | 2018-06-29 | CCAFS SLC-40 | F9 B4 B1045.2   | 2697             | LEO (ISS) | No attempt           | 2020-04-22 | KSC LC-39A                              | F9 85 81051.4  | 15600           | LEO         | Success         |
| 2017-05-01 | KSC LC-39A   | F9 FT B1032.1                      | 5300             | LEO       | Success (ground pad) |            |              |                 |                  |           |                      | 2020-05-30 | KSC LC-39A                              | F9 B5B1058.1   | 12530           | LEO (ISS)   | Success         |
| 2017-05-15 | KSC LC-39A   | F9 FT B1034                        | 6070             | GTO       | No attempt           | Date       | Launch_Site  | Booster_Version | PAYLOAD_MASSKG_  | Orbit     | Landing_Outcome      | 2020-06-04 | CCAFS SLC-40                            | F9 85 81049.5  | 15600           | LEO         | Success         |
| 2017-06-03 | KSC LC-39A   | F9 FT B1035.1                      | 2708             | LEO (ISS) | Success (ground pad) | 2018-05-11 | KSC LC-39A   | F9 B5 B1046.1   | 3600             | GTO       | Success (drone ship) | 2020-06-13 | CCAFS SLC-40                            | F9 85 81059.3  | 15410           | LEO         | Success         |
| 2017-06-23 | KSC LC-39A   | F9 FT 81029.2                      | 3669             | GTO       | Success (drone ship) | 2018-07-22 | CCAFS SLC-40 | F9 B5B1047.1    | 7075             | GTO       | Success              | 2020-06-30 | CCAFS SLC-40                            | F9 8581060.1   | 4311            | МЕО         | Success         |
| 2017-06-25 | VAF8 SLC-4E  | F9 FT B1036.1                      | 9600             | LEO       | Success (drone ship) | 2018-07-25 | VAFB SLC-4E  | F9 B5B1048.1    | 9600             | Polar LEO | Success              | 2020-07-20 | CCAFS SLC-40                            | F9 85 81058.2  | 5500            | GTO         | Success         |
| 2017-07-05 | KSC LC-39A   | F9 FT B1037                        | 6761             | GTO       | No attempt           | 2018-08-07 | CCAFS SLC-40 | F9 B5 B1046.2   | 5800             | GTO       | Success              | 2020-08-07 | KSC LC-39A                              | F9 85 81051.5  | 14932           | LEO         | Success         |
| 2017-08-24 | VAF8 SLC-4E  | F9 FT B1038.1                      | 475              | SSO       | Success (drone ship) | 2018-09-10 | CCAFS SLC-40 | F9 B5B1049.1    | 7060             | GTO       | Success              | 2020-08-18 | CCAFS SLC-40                            | F9 85 81049.6  | 15440           | LEO         | Success         |
| 2017-10-11 | KSC LC-39A   | F9 FT 81031.2                      | 5200             | GTO       | Success (drone ship) | 2018-10-08 | VAFB SLC-4E  | F9 B5 B1048.2   | 3000             | SSO       | Success              | 2020-08-30 | CCAFS SLC-40                            | F9 B5 B1059.4  | 3130            | sso         | Success         |
| 2017-12-15 | CCAFS SLC-40 | F9 FT B1035.2                      | 2205             | LEO (ISS) | Success (ground pad) | 2018-11-15 | KSC LC-39A   | F9 B5 B1047.2   | 5300             | GTO       | Success              | 2020-09-03 | KSC LC-39A                              | F9 B5 B1060.2  | 15600           | LEO         | Success         |
| 2017-12-23 | VAFB SLC-4E  | F9 FT 81036.2                      | 9600             | Polar LEO | Controlled (ocean)   | 2018-12-03 | VAFB SLC-4E  | F9 B5 B1046.3   | 4000             | SSO       | Success              | 2020-10-06 | KSC LC-39A                              | F9 85 B1058.3  | 15600           | LEO         | Success         |
| 2018-01-31 | CCAFS SLC-40 | F9 FT B1032.2                      | 4230             | GTO       | Controlled (ocean)   | 2018-12-05 | CCAFS SLC-40 | F9 B5B1050      | 2500             | LEO (ISS) | Failure              | 2020-10-18 | KSC LC-39A                              | F9 B5 B1051,6  | 15600           | LEO         | Success         |
| 2018-02-22 | VAFB SLC-4E  | F9 FT B1038.2                      | 2150             | SSO       | No attempt           | 2018-12-23 | CCAFS SLC-40 | F9 B5B1054      | 4400             | MEO       | No attempt           | 2020-10-24 | CCAFS SLC-40                            | F9 85 81060.3  | 15600           | LEO         | Success         |
|            |              |                                    |                  |           |                      | 2019-01-11 | VAFB SLC-4E  | F9 85 B1049.2   | 9600             | Polar LEO | Success              | 2020-11-05 | CCAFS SLC-40                            | F9 8581062.1   | 4311            | MEO         | Success         |
|            |              |                                    |                  |           |                      | 2019-02-22 | CCAFS SLC-40 | F9 B5 B1048.3   | 4850             | GTO       | Success              | 2020-11-16 | KSC LC-39A                              | F9 8581061.1   | 12500           | LEO (ISS)   | Success         |
|            |              |                                    |                  |           |                      | 2019-03-02 | KSC LC-39A   | F9 B5B1051.1    | 12055            | LEO (ISS) | Success              | 2020-11-21 | VAFB SLC-4E                             | F9 B581063.1   | 1192            | LEO         | Success         |
|            |              |                                    |                  |           |                      | 2019-05-04 | CCAFS SLC-40 | F9 B5B1056.1    | 2495             | LEO (ISS) | Success              | 2020-11-25 | CCAFS SLC-40                            | F9 85 81049.7  | 15600           | LEO         | Success         |
|            |              |                                    |                  |           |                      | 2019-05-24 | CCAFS SLC-40 | F9 B5 B1049.3   | 13620            | LEO       | Success              | 2020-12-06 | KSC LC-39A                              | F9 B5 B1058.4  | 2972            | LEO (ISS)   | Success         |
|            |              |                                    |                  |           |                      | 2019-06-12 | VAFB SLC-4E  | F9 B5 B1051.2   | 4200             | SSO       | Success              |            |                                         |                |                 |             |                 |