

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Выпускная квалификационная работа бакалавра

Система авторизации инфраструктурных сервисов

Студент:

Васильев А. И. ИУ7-82Б

Научный руководитель: Клорикьян П. В.

Цели и задачи работы

Цель: реализация программно-алгоритмического комплекса для авторизации запросов в инфраструктурные сервисы.

Задачи:

- 1. Провести обзор предметной области, существующих решений, подходов к аутентификации и авторизации в микросервисной архитектуре.
- 2. Разработать и описать ключевые алгоритмы работы программноалгоритмического комплекса, реализующего аутентификацию и авторизацию запросов в инфраструктурные сервисы.
- 3. Провести исследование влияния работы авторизации на время выполнения запросов в инфраструктурные сервисы.

Обзор предметной области

Микросервисная архитектура — архитектурный подход к разработке программного обеспечения, при котором оно состоит из небольших слабо связанных сервисов.

Инфраструктурный сервис предоставляет базовый функционал для работы сервисов с бизнес-логикой. Пример — база данных.

Решаемая проблема — запросы из сервисов с бизнес-логикой в инфраструктурные должны быть авторизованы во избежании несанкционированного доступа.

Kubernetes и сайдкар контейнер

Pod 1

Kubernetes (k8s) – система для управления приложениями в изолированных друг от друга контейнерах.

Под – представляет собой группу из одного или нескольких контейнеров приложения, совместно использующие ресурсы.

Кластер – содержит набор таких рабочих машин.

Сайдкар – дополнительный контейнер, выполняющий вспомогательные для основного функции. В работе использован как прокси эндпоинт для внедрения авторизации входящих запросов.

Основные используемые понятия авторизации

Аутентификация — проверка личности сервиса. **Авторизация** — проверка доступов сервиса. **OAuth 2.0** — открытый стандарт авторизации, позволяет приложению получать ограниченный доступ к ресурсам от сервиса.

OIDC – надстройка над OAuth 2.0 для аутентификации. Предоставляет стандартный способ аутентификации субъекта (ID Token в формате JWT).

JSON Web Token (JWT) — зашифрованный приватным ключом токен в формате json. IdP (Identity Provider) — сервис, управляющий идентификацией и правами доступа, выпускающий токены с учетными данными.

eyJhbGciOiJSUzI1NiIsImtpZCI6ImcxSm9WYTd ZcTN4YnFld0ZqR0tKTjAwTDJicjd3eU8yZ25wYn hNU1R0TmsifQ.eyJhdWQi0lsiaHR0cHM6Ly9rdW Jlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIub G9jYWwiLCJrM3MiXSwiZXhwIjoxNzc5NjM4NDUw LCJpYXQi0jE3NDqxMDI0NTAsImlzcyI6Imh0dHB z0i8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbH VzdGVyLmxvY2FsIiwianRpIjoiNzYwZDA5M2QtY zI2YS00NTNjLTg10TYtZDU3MTQzMzA10TIxIiwi a3ViZXJuZXRlcy5pbyI6eyJuYW1lc3BhY2Ui0iJ wb3N0Z3Jlcy1hIiwibm9kZSI6eyJuYW1lIjoiaz NkLWJtc3R1Y2x1c3Rlci1zZXJ2ZXItMCIsInVpZ CI6IjdjNjQ1NDMzLWQxYTMtNGZhNC04ZmI2LWI3 ZTI3ZmI40GV1ZCJ9LCJwb2Qi0nsibmFtZSI6InB vc3RncmVzLWEtNjc5NGZjYjVmNy1iZmp3cSIsIn VpZCI6IjY1NDB1MTM5LWNjNGUtNDgxMC1hNjNiL TR1MWQ30Dc1MjhmMCJ9LCJzZXJ2aWN1YWNjb3Vu dCI6eyJuYW1lIjoiZGVmYXVsdCIsInVpZCI6ImE wYWIwZTRmLWQzZWYtNGFk0C040DQ1LTgyMWJhZT MyZTJ1ZCJ9LCJ3YXJuYWZ0ZXIiOjE3NDgxMDYwN Td9LCJuYmYi0jE3NDgxMDI0NTAsInN1YiI6InN5 c3RlbTpzZXJ2aWNlYWNjb3VudDpwb3N0Z3Jlcy1 hOmRlZmF1bHQifQ.TKOX3WQJAeYR3f3OohF7adt SyYft6Us7C5csichRxFd00BMSH4V5DlvWh6cDD4 1LKR0b191ZJ5Qyebhr_k_BK56hDrRArKs2OufNE

RONOK-

```
HEADER: ALGORITHM & TOKEN TYPE
   "alg": "RS256"
    "kid": "g1JoVa7Yq3xbqewFjGKJN00L2br7wy02gnpbxMSTtNk
PAYLOAD: DATA
    "aud": [
     "https://kubernetes.default.svc.cluster.local",
    "exp": 1779638450.
    "iat": 1748102450,
  "https://kubernetes.default.svc.cluster.local"
    "jt1": "760d093d-c26a-453c-8596-d57143305921",
    "kubernetes.io": {
     "namespace": "postgres-a",
       "name": "k3d-bmstucluster-server-0",
       "uid": "7c645433-d1a3-4fa4-8fb6-b7e27fb88eed"
      "pod": {
       "name": "postgres-a-6794fcb5f7-bfjwq",
       "uid": "6540e139-cc4e-4810-a63b-4e1d787528f0"
      "serviceaccount": {
       "name": "default"
        "uid": "a0ab0e4f-d3ef-4ad8-8845-821bae32e2ed"
      "warnafter": 1748106057
    "sub": "system:serviceaccount:postgres-a:default"
```

Пример k8s ID Token в формате JWT

Обзор существующих подходов и решений

Подход	Аутентификация	Авторизация	Управление доступами
K8s политики сети	нет	нет	нет
Service Mesh (Istio, Linkerd)	да (mTLS)	да	нет
SPIFFE/SPIRE	да	нет	да
Предлагаемое решение	да	да	да

Формальная постановка задачи

Функциональная модель метода авторизации запроса

Алгоритм выпуска IdP токена

Алгоритм проверки k8s токена

Алгоритм авторизации входящего запроса

Диаграмма компонентов разработанного ПО

Пример интерфейса ПО

Административная панель авторизации

Мониторинг показателей сервисов

- **Prometheus** инструмент для сбора данных (метрик) сервиса.
- **Grafana** инструмент для визуализации собранных данных.
- Всего было задано 15 метрик.

Исследование влияния работы авторизации

'INSERT INTO log (message) VALUES (Benchmark at %s", time.Now())'

`WITH heavy_cte AS (SELECT generate_series(1,1000000) AS data) SELECT COUNT(*), AVG(data) FROM heavy_cte`

Заключение

Выполнена цель: реализован программно-алгоритмический комплекс для авторизации запросов в инфраструктурные сервисы.

Выполнены задачи:

- 1. Проведен обзор предметной области, существующих решений, подходов к аутентификации и авторизации в микросервисной архитектуре.
- 2. Разработаны и описаны ключевые алгоритмы работы программноалгоритмического комплекса, реализующего аутентификацию и авторизацию запросов в инфраструктурные сервисы.
- 3. Проведено исследование влияния работы авторизации на время выполнения запросов в инфраструктурные сервисы.