Universidad de Concepción Facultad de Ingeniería Departamento de Ingeniería Civil Profesores: Pablo Guarda - Juan Antonio Carrasco

Taller 2: Programación Lineal Marzo 28, 2019

Problemas

1. ENAP desea producir y vender dos tipos de gasolina: corriente y especial. Para ello utiliza dos tipos de petróleo crudo: liviano y pesado, que tienen un costo de US\$15 y US\$20 por barril, respectivamente. La densidad [kg/lt] del petróleo liviano y pesado es 0,65 y 0,85 respectivamente. El octanaje del petróleo liviano y pesado es 70 y 102, respectivamente. Además, la empresa sabe que la disponibilidad máxima de petróleo liviano y pesado con la que puede contar es de 800 y 600 barriles respectivamente. Las especificaciones exigidas para los productos finales: gasolina corriente y especial, y los precios de venta se muestra en la tabla de abajo.

Combustible	Densidad (kg/lt)	Octanaje	Precio (US\$/barril)
Gasolina corriente	Min = 0.7 - Max = 0.75	85	25
Gasolina especial	Min = 0.7 - Max = 0.75	94	30

Por último, considere que cada barril puede contener 40kg de petróleo liviano, o 50 kg de petróleo pesado, o 60 lt de gasolina

- (a) Formule un modelo de programación lineal para determinar qué tipos de mezclas utilizar para cada combustible y cuál debe ser el nivel de producción, de manera que se obtenga la mayor utilidad posible.
- (b) Utilice la herramienta Solver de Microsoft Excel para determinar la solución óptima del problema
- 2. Una empresa transnacional exportadora de frutas que opera en América del Sur desea determinar un plan de distribución de la fruta desde las plantas empacadores hasta los centros de distribución para el periodo de verano. Las plantas se encuentran ubicadas en Rancagua, San Pablo y Bogotá. El mercado se ha agrupado en cuatro regiones, como se muestra en la figura de abajo, siendo cada una de ellas atendida por un distribuidor. Los centros de distribución están localizados en Santiago, Rio de Janeiro, Quito y Caracas.

En la tabla de abajo se señalan los costos unitarios de transporte en M\$, los requerimientos de cada región y la producción de fruta en las plantas, para el periodo de verano.

	Co	stos de Transp	orte (M\$/to	on)		
		Destinos				
Orígenes	Santiago	Rio de Janeiro	Quito	Caracas	(ton)	
Rancagua	3	20	30	35	300	
San Pablo	15	5	35	40	250	
Bogotá	45	25	10	12	200	
Requerimientos (ton)	120	300	80	200		

- (a) Formule un modelo de programación lineal que permita minimizar el costo total de transporte del problema de distribución de la empresa. Indique los supuestos usados para formular el problema, así como las variables de decisión, función objetivo y restricciones
- (b) Utilice la herramienta Solver de Microsoft Excel para determinar la solución óptima del problema
- (c) Generalice la solución del problema de programación lineal para m orígenes y n destinos.

3. Una fábrica puede producir dos tipos de aceite para automóviles: normal y premium. Para obtener cada uno de estos productos se agregan tres tipos de aditivo: K1, H4 y SP a un aceite base. La cantidad de aditivo que requiere cada tipo de aceite y la cantidad disponible de cada aditivo se muestra en la tabla de abajo:

	Cantidad (cm	Disponibilidad (cm³)	
Aditivo	Normal	Premium	
K1	0,02	0,01	100
H4	0,03	0,02	70
SP	0,02	0,05	50
Precio (\$/It)	800	2.000	

- (a) Formule un modelo de programación lineal que permita decidir la cantidad de cada uno de los dos tipos de aceite que es conveniente producir, de modo que no se exceda la disponibilidad de los aditivos y se maximice el ingreso total. Indique los supuestos usados para formular el problema, así como las variables de decisión, función objetivo y restricciones
- (b) Resuelva el modelo de a) mediante análisis gráfico. Describa las características de la solución óptima, indicando cuales son las restricciones activas del problema, la cantidad de recursos que no son utilizados y la cantidad producida de cada tipo de aceite
- (c) Determine, gráficamente, cuanto debe aumentar el precio del aceite normal para que sea conveniente producirlo

Solucion problema 1

Parte a)

Supuestos

- El octanaje de la gasolina es igual al promedio ponderado entre el volumen y octanaje de cada tipo de petróleo
- Las variables de decisión pueden tomar valores no enteros

Variables de decisión

- \bullet x_{11} : cantidad de petróleo liviano utilizado para la producción de gasolina corriente (kg)
- x₁₂: cantidad de petróleo liviano utilizado para la producción de gasolina especial (kg)
- x_{21} : cantidad de petróleo pesado utilizado para la producción de gasolina corriente (kg)
- x₂₂: cantidad de petróleo pesado utilizado para la producción de gasolina especial (kg)

En general, x_{ij} es la cantidad de petróleo tipo i utilizado para la producción de gasolina tipo j, con i = $\{1:\text{liviano}, 2:\text{pesado}\}\ y\ j = \{1:\text{corriente}, 2:\text{especial}\}$

Función objetivo

$$\operatorname{Max} \frac{25}{60} \left(\frac{x_{11}}{0,65} + \frac{x_{21}}{0,85} \right) + \frac{30}{60} \left(\frac{x_{12}}{0,65} + \frac{x_{22}}{0,85} \right) - 15 \left(\frac{x_{11} + x_{12}}{40} \right) - 20 \left(\frac{x_{21} + x_{22}}{50} \right)$$

Restricciones

1) Densidad gasolina

$$\frac{x_{11} + x_{21}}{\frac{x_{11}}{0.65} + \frac{x_{21}}{0.85}} \ge 0.7 \quad \text{(densidad mínima gasolina corriente)}$$

$$\frac{x_{11} + x_{21}}{\frac{x_{11}}{0.65} + \frac{x_{21}}{0.85}} \le 0.75 \quad \text{(densidad máxima gasolina corriente)}$$

$$\frac{x_{12} + x_{22}}{\frac{x_{12}}{0.65} + \frac{x_{22}}{0.85}} \ge 0.7 \quad \text{(densidad mínima gasolina especial)}$$

$$\frac{x_{12}+x_{22}}{\frac{x_{12}}{0.65}+\frac{x_{22}}{0.85}} \leq 0.75 \quad \text{(densidad máxima gasolina especial)}$$

2) Octanaje

$$\frac{70 \cdot \frac{x_{11}}{0,65} + 102 \cdot \frac{x_{21}}{0,85}}{\frac{x_{11}}{0,65} + \frac{x_{21}}{0,85}} \ge 85 \quad \text{(octanaje mínimo gasolina corriente)}$$

$$\frac{70 \cdot \frac{x_{12}}{0,65} + 102 \cdot \frac{x_{22}}{0,85}}{\frac{x_{12}}{0,65} + \frac{x_{22}}{0,85}} \ge 94 \quad \text{(octanaje mínimo gasolina especial)}$$

3) Disponibilidad petróleo

$$\begin{array}{ll} x_{11} + x_{21} \leq 800 \cdot 40 & \text{(Petr\'oleo liviano [lt])} \\ x_{12} + x_{21} \leq 600 \cdot 50 & \text{(Petr\'oleo pesado [lt])} \end{array}$$

4) No negatividad

$$x_{11}, x_{12}, x_{21}, x_{22} \ge 0$$

Parte b)

Para resolver con Solver, primero expresamos las restricciones del problema como un modelo de programación lineal (Ax = b)

$$\begin{array}{lll} \operatorname{Max} & \frac{25}{60} \bigg(\frac{x_{11}}{0,65} + \frac{x_{21}}{0,85} \bigg) + \frac{30}{60} \bigg(\frac{x_{12}}{0,65} + \frac{x_{22}}{0,85} \bigg) - 15 \bigg(\frac{x_{11} + x_{12}}{40} \bigg) - 20 \bigg(\frac{x_{21} + x_{22}}{50} \bigg) \\ & \text{s.a} \\ & (1 - \frac{0.7}{0,65}) x_{11} + (1 - \frac{0.7}{0,85}) x_{21} & \geq & 0 \\ & (1 - \frac{0.75}{0,65}) x_{11} + (1 - \frac{0.75}{0,85}) x_{21} & \leq & 0 \\ & (1 - \frac{0.75}{0,65}) x_{12} + (1 - \frac{0.7}{0,85}) x_{22} & \geq & 0 \\ & (1 - \frac{0.75}{0,65}) x_{12} + (1 - \frac{0.75}{0,85}) x_{22} & \leq & 0 \\ & (\frac{70}{0,65} - \frac{85}{0,65}) x_{11} + (\frac{102}{0,85} - \frac{85}{0,85}) x_{21} & \geq & 0 \\ & (\frac{70}{0,65} - \frac{94}{0,65}) x_{12} + (\frac{102}{0,85} - \frac{94}{0,85}) x_{22} & \geq & 0 \\ & x_{11} + x_{21} & \leq & 32000 \\ & x_{12} + x_{22} & \leq & 30000 \\ & x_{1}, x_{2}, x_{3}, x_{4} & \geq & 0 \end{array}$$

El output de de la herramienta Solver de Microsoft Excel es el siguiente:

Función objetivo

FO	5498.6
1 0	13430.0

Variables de decisión

Petroleo	Gasolina	Variable Decisión	Tipo	Cota	Valor VD
Liviano	Corriente	x11	>=	0	14857.14
Liviano	Especial	x12	>=	0	0.00
Pesado	Corriente	x21	>=	0	17142.86
Pesado	Especial	x22	>=	0	0.00

Restricciones

Descripción	Tipo	Cota	Valor Restricción	Valor Real	Cota Real
Densidad Minima Gasolina Corriente	>=	0	1882.35	0.74	0.70
Densidad Maxima Gasolina Corriente	<=	0	-268.91	0.74	0.75
Densidad Minima Gasolina Especial	>=	0	0.00	#DIV/0!	0.70
Densidad Maxima Gasolina Especial	<=	0	0.00	#DIV/0!	0.75
Octanaje Gasolina Corriente	>=	0	0.00	85.00	85.00
Octanaje Gasolina Especial	>=	0	0.00	#DIV/0!	94.00
Disponibilidad	<=	32000	32000.00	32000.00	32000.00
Disponibilidad	<=	30000	0.00	0.00	30000.00

Solucion problema 2

Parte a)

Supuestos

- Las variables de decisión pueden tomar valores no enteros
- Toda la producción que exceda las unidades demandadas se puede almacenar sin costo

Variables de decisión

 x_{ij} : cantidad de fruta transportada desde la planta empacadora i al centro de distribución j, para i = {1: Rancagua, 2: San Pablo, 3: Bogotá} y j = {1: Santiago, 2: Rio de Janeiro, 3: Quito, 4: Caracas }.

Función objetivo

$$Min 3x_{11} + 20x_{12} + 30x_{13} + 35x_{14} + 15x_{21} + 5x_{22} + 35x_{23} + 40x_{24} + 45x_{31} + 25x_{32} + 10x_{33} + 12x_{34}$$

Restricciones

a) Disponibilidad en las plantas

$$x_{11} + x_{12} + x_{13} + x_{14} \le 300$$
 (Rancagua)
 $x_{21} + x_{22} + x_{23} + x_{24} \le 250$ (Santiago)
 $x_{31} + x_{32} + x_{33} + x_{34} \le 200$ (Bogotá)

b) Cumplimiento de la demanda

$$x_{11} + x_{21} + x_{31} = 120$$
 (Santiago)
 $x_{12} + x_{22} + x_{32} = 300$ (Rio de Janeiro)
 $x_{13} + x_{23} + x_{33} = 80$ (Quito
 $x_{14} + x_{24} + x_{34} = 200$ (Caracas)

c) No negatividad

$$x_{ij} \ge 0$$
 $i = 1,2,3; j = 1,2,3,4$

Parte b)

Primero planteamos el modelo de programación lineal que define el problema de optimización.

Min
$$3x_{11} + 20x_{12} + 30x_{13} + 35x_{14} + 15x_{21} + 5x_{22} + 35x_{23} + 40x_{24} + 45x_{31} + 25x_{32} + 10x_{33} + 12x_{34}$$
 s.a
$$x_{11} + x_{12} + x_{13} + x_{14} \leq 300$$

$$x_{21} + x_{22} + x_{23} + x_{24} \leq 250$$

$$x_{31} + x_{32} + x_{33} + x_{34} \leq 200$$

$$x_{11} + x_{21} + x_{31} = 120$$

$$x_{12} + x_{22} + x_{32} = 300$$

$$x_{13} + x_{23} + x_{33} = 80$$

$$x_{14} + x_{24} + x_{34} = 200$$

$$x_{ij} \geq 0 \qquad \forall i \in \{1, 2, 3\}, \forall j \in \{1, 2, 3, 4\}$$

Luego, con la herramienta Solver de Microsoft Excel se encuentra la solución óptima del problema:

FO	7410 0
10	7410.0

Variables de decisión

Origen-Destino	Variable Decisión	Tipo	Cota	Valor VD
R-S	x11	>=	0	120
R-R	x12	>=	0	50
R-Q	x13	>=	0	80
R-C	x14	>=	0	0
S-S	x21	>=	0	0
S-R	x22	>=	0	250
S-Q	x23	>=	0	0
S-C	x24	>=	0	0
B-S	x31	>=	0	0
B-R	x32	>=	0	0
B-Q	x33	>=	0	0
B-C	x34	>=	0	200

Restricciones

Descripción	Tipo	Cota	Valor Restricción
Producción Rancagua	<=	300	250
Producción San Pablo	<=	250	250
Producción Bogotá	<=	200	200
Demanda Santiago	>=	120	120
Demanda Rio de Janeir	>=	300	300
Demanda Quito	>=	80	80
Demanda Caracas	>=	200	200

Datos

Origen-Destino	Costos Transporte
R-S	3
R-R	20
R-Q	30
R-C	35
S-S	15
S-R	5
S-Q	35
S-C	40
B-S	45
B-R	25
B-Q	10
B-C	12

Parte c)

Min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.a
$$\sum_{i=1}^{m} x_{ij} = b_{j} \quad \forall j \in 1..., n$$

$$\sum_{j=1}^{n} x_{ij} \leq a_{i} \quad \forall i \in 1..., m$$

$$x_{ij} \geq 0 \quad \forall i \in 1...m, \forall j \in 1...n$$

Donde m y n son la cantidad de orígenes y destinos, respectivamente, c_{ij} el costo unitario de transporte entre cada origen i y destino j, a_i la cantidad de producto disponible en el origen i, y b_j la demanda de productos en el destino j.