1 – Construa a tabela verdade que representará o funcionamento do circuito

	Entradas				Saídas						
Números	Α	В	С	1	2	3	4	5	6	7	
0	0	0	0	1	1	1	1	1	1	0	
1	0	0	1	0	1	1	0	0	0	0	
2	0	1	0	1	1	0	1	1	0	1	
3	0	1	1	1	1	1	1	0	0	1	
4	1	0	0	0	1	1	0	0	1	1	
5	1	0	1	1	0	1	1	0	1	1	
6	1	1	0	1	0	1	1	1	1	1	
7	1	1	1	1	1	1	0	0	0	0	

Para a nossa tabela verdade usaremos três variáveis onde 2³ nos daria 8 possibilidades de ligar nosso Display, porem usaremos somente os números (0,1,2,3). As Saídas do circuito estão representadas pelos números de 1 a 7 onde

- 0 (Zero) A, B, C, D, E, F
- 1 (Um) B, C
- 2 (dois) A, B, D, E, G
- 3 (três) A, B, C, D, G

A simbologia do A Barrado será representado pelo "A" (um A Sublinhado) e a simbologia do B Barrado será representado pelo "B" (um B Sublinhado).

No mapa de Karnaugh representaremos A=1, A=0, B=1 e B=0

Saída 1

Simplificação no Mapa de Karnaugh

	Entradas				Saídas						
Números	Α	В	С	1	2	3	4	5	6	7	
0	0	0	0	1	1	1	1	1	1	0	
1	0	0	1	0	1	1	0	0	0	0	
2	0	1	0	1	1	0	1	1	0	1	
3	0	1	1	1	1	1	1	0	0	1	
4	1	0	0	0	1	1	0	0	1	1	
5	1	0	1	1	0	1	1	0	1	1	
6	1	1	0	1	0	1	1	1	1	1	
7	1	1	1	1	1	1	0	0	0	0	

	<u> </u>	3	В			
<u>A</u>	1	0	1	1		
Α	0	1	1	1		
	<u>C</u>	(<u>C</u>		

Expressão Logica da Saída 1: $B + AC + \underline{AC}$

Saída 2

	Entradas				Saídas					
Números	Α	В	С	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	0
1	0	0	1	0	1	1	0	0	0	0
2	0	1	0	1	1	0	1	1	0	1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1	0	1	1
6	1	1	0	1	0	1	1	1	1	1
7	1	1	1	1	1	1	0	0	0	0

Simplificação no Mapa de Karnaugh

	<u> </u>	3	В				
<u>A</u>	1	1	1	1			
Α	1	0	1	0			
	<u>C</u>	(<u>C</u>				

Expressão Logica da Saída 2: $\underline{A} + \underline{BC} + BC$

Saída 3

Simplificação no Mapa de Karnaugh

	Entradas				Saídas						
Números	Α	В	С	1	2	3	4	5	6	7	
0	0	0	0	1	1	1	1	1	1	0	
1	0	0	1	0	1	1	0	0	0	0	
2	0	1	0	1	1	0	1	1	0	1	
3	0	1	1	1	1	1	1	0	0	1	
4	1	0	0	0	1	1	0	0	1	1	
5	1	0	1	1	0	1	1	0	1	1	
6	1	1	0	1	0	1	1	1	1	1	
7	1	1	1	1	1	1	0	0	0	0	

	<u> </u>	3	В			
<u>A</u>	1	1	1	0		
Α	1	1	1	1		
	<u>C</u>	(<u>C</u>			

Nessa expressão, utilizando o produto das somas pela linha da saída que é 0 quem tiver 0 vira 1 e quem tiver 1 vira 0

Expressão Logica da Saída 3: $\mathbf{A} + \mathbf{\underline{B}} + \mathbf{C}$

	Entradas			Saídas						
Números	Α	В	С	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	0
1	0	0	1	0	1	1	0	0	0	0
2	0	1	0	1	1	0	1	1	0	1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1	0	1	1
6	1	1	0	1	0	1	1	1	1	1
7	1	1	1	1	1	1	0	0	0	0
1	1	1	1	1	1	1	U	U	U	U

	<u> </u>	3	В			
<u>A</u>	1	0	1	1		
Α	0	1	0	1		
	<u>C</u>	(<u>C</u>		

Expressão Logica da Saída 4: $\underline{AB} + \underline{BC} + \underline{AC} + \underline{ABC}$

Saída 5

Simplificação no Mapa de Karnaugh

	Entradas				Saídas					
Números	Α	В	С	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	0
1	0	0	1	0	1	1	0	0	0	0
2	0	1	0	1	1	0	1	1	0	1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1	0	1	1
6	1	1	0	1	0	1	1	1	1	1
7	1	1	1	1	1	1	0	0	0	0

	<u>_</u>	3	В			
<u>A</u>	1	0	0	1		
Α	0	0	0	1		
	<u>C</u>	(<u>C</u>			

Expressão Logica da Saída 5: $B\underline{C} + \underline{AC}$

Saída 6

Sim	nlifica	າລິດ ກ <i>ດ</i>	Mana	da	Karnaugh
SIIII	pillica	,ao no	ινιαμα	ue	Karnaugh

	Entradas			Saídas						
Números	Α	В	С	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	0
1	0	0	1	0	1	1	0	0	0	0
2	0	1	0	1	1	0	1	1	0	1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1	0	1	1
6	1	1	0	1	0	1	1	1	1	1
7	1	1	1	1	1	1	0	0	0	0

	<u> </u>	3	В		
<u>A</u>	1	0	0	0	
Α	1	1	0	1	
	<u>C</u>	(<u> </u>		

Expressão Logica da Saída 6: <u>BC</u> + A<u>B</u> + A<u>C</u>

Saída 7

Simplificação no Mapa de Karnaugh

	Entradas			Saídas						
Números	Α	В	С	1	2	3	4	5	6	7
0	0	0	0	1	1	1	1	1	1	0
1	0	0	1	0	1	1	0	0	0	0
2	0	1	0	1	1	0	1	1	0	1
3	0	1	1	1	1	1	1	0	0	1
4	1	0	0	0	1	1	0	0	1	1
5	1	0	1	1	0	1	1	0	1	1
6	1	1	0	1	0	1	1	1	1	1
7	1	1	1	1	1	1	0	0	0	0

Expressão Logica da Saída 7: $\underline{AB} + \underline{AB} + \underline{BC}$

Circuito Logico com display ligado em 0,1,2,3

