PSTAT 126 Project 2

Problem 1

1. The R package alr4 contains a dataset called UN11 that includes the U.S national gross product per person (Predictor) and Fertility (Response). Answer for 1a.

library(alr4)

1b) Ploting the data

```
x=UN11$ppgdp
y=UN11$fertility
plot(x,y,xlab="ppgdp",ylab="Fertility")
```



```
## The trend is not linear
```

The trend in the plot appears to be not linear.

1c) Replacing Variables

```
x1 = log(UN11$ppgdp)
y1 = log(UN11$fertility)
plot(x1,y1,xlab="Natural Log ppgdp",ylab="Natural Log Fertility")
```


The Simple Linear Regression Model is plausible for a summary of this graph.

Problem 2

2. The R package alr4 contains a dataset called Heights that includes the heights of families in England. The data set includes 1375 pairs of heights of mothers (mheight) and their daughters (dheights) in inches.

```
library(alr4)
```

2a) Drawing the scatterplot

```
##Predictor = mheight response = dheight
x = Heights$mheight
y = Heights$dheight
plot(x,y,xlab="Heights of Mothers",ylab="Heights of Daughters")
```


2b) Computations

```
##Computing x bar
xbar = mean(x)
xbar

## [1] 62.4528

## Computing y bar
ybar = mean(y)
ybar
```

[1] 63.75105

```
## Computing Sxx
Sxx = sum((x - xbar)^2)
## [1] 7620.907
## Computing Syy
Syy = sum((y - ybar)^2)
Syy
## [1] 9288.616
## Computing Sxy
Sxy = sum((x - xbar)*(y - ybar))
Sxy
## [1] 4128.603
## Compute the Least Squares Estimate of Intercept
r = Sxy/(sqrt(Sxx*Syy))
## [1] 0.4907094
## Compute the Slope for Simple Linear Regression Model
b1 = r*(sqrt(Syy/Sxx))
b1
## [1] 0.541747
b0 = ybar - (b1*xbar)
## [1] 29.91744
## Drawing the Fitted Line
plot(x,y,xlab="Heights of Mothers",ylab="Heights of Daughters")
abline(b0,b1)
```


2c) Computing Estimates and Standard Errors

```
yhat = b0 + b1*x
e = y - yhat
n = length(x)
sigma2hat = (sum(e^2))/(n - 2)

## Estimated Standard Error
sigmahat = sqrt(sigma2hat)
sigmahat
```

[1] 2.266311

T testing

```
## Standard Error for b0
se_b0 = sigmahat*sqrt(1/n + mean(x)^2/Sxx)
se_b0
```

[1] 1.622469

```
## Standard Error for b1
se_b1 = sigmahat/sqrt(Sxx)
se_b1
## [1] 0.02596069
##T test for null Hypothesis where b0=0, Test Stat, P value
t_stat_b0 = b0/se_b0
t_stat_b0
## [1] 18.43945
p_val_b0 = pt(t_stat_b0,df = n - 2, lower.tail = FALSE)
p_val_b0
## [1] 2.60594e-68
\#\#T test for null hypothesis where b1=0, Test stat, P value
t_stat_b1 = b1/se_b1
t_stat_b1
## [1] 20.86797
p_val_b1 = pt(t_stat_b1, df = n - 2, lower.tail = FALSE)
p_val_b1
```

[1] 1.608457e-84

2d) 99% Confidence interval for b1

```
t_pct = qt(p=.995, df = n - 2)
ci_b1_99 = b1 + c(-1,1) * se_b1 * qt(p=.995, df = (length(x)))
ci_b1_99
```

[1] 0.4747838 0.6087103

Problem 3

3. The R package alr4 contains a dataset called ftcollinstemp that includes the temperatures of Fall and Winter. The dataset includes the temperatures in degree Farenheit of the temperatures of the years 1900 to 2010.

3a) Drawing the Regression line

```
library(alr4)
attach(ftcollinstemp)
x = fall
y = winter
fit1 = lm(y ~ x)
plot(x,y,xlab= "Fall Temp", ylab = "Winter Temp")
abline(fit1$coef[1], fit1$coef[2])
```


3b) Testing the Null Hypothesis where the slope = 0

```
## test HO: slope = 0 vs Ha: slope != 0
summary(fit1)
```

```
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min    1Q Median   3Q Max
## -7.8186 -1.7837 -0.0873   2.1300   7.5896
##
## Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
                           7.5549
                                    1.825
## (Intercept) 13.7843
                                            0.0708 .
                           0.1528
## x
                0.3132
                                    2.049
                                            0.0428 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.179 on 109 degrees of freedom
## Multiple R-squared: 0.0371, Adjusted R-squared: 0.02826
## F-statistic: 4.2 on 1 and 109 DF, p-value: 0.04284
## Because the p value is less than your alpha = .05
## this is significant evidence that the slope = 0.
## therefore fall weather can predict winter weather, we accept the null hypothesis
```

3c) Computing the 99% Confidence Interval

```
## Compute the T percentile
t_pct = qt(p=.975, df = length(x) - 2)
sxx = sum((x-mean(x))^2)
fit1 = lm(y ~ x)
yhat = fit1$coef[1] + fit1$coef[2] * x
e = y - yhat
sigma2hat = sum(e^2)/(length(x) - 2)
sigmahat = sqrt(sigma2hat)
se_b1 = sigmahat/sqrt(sxx)
## Confidence interval 99%
ci_b1_99 = fit1$coef[2] + c(-1,1) * t_pct * se_b1
ci_b1_99
```

[1] 0.01028623 0.61605204

3d) Conclusion

We are 99% confident that the true variation in winter is exapplained by the variation of fall lies within the interval (.2278, .3985).

Problem 4

4. The R package alr4 contains a dataset called wblake that includes the samples of small mouth bass collected in Minnesota. The data set includes the length and age of these bass.

4a) Ploting the Regression Line

```
library(alr4)
attach(wblake)
x = Age
y = Length
```

```
fit2 = lm(y ~ x)
plot(x,y,xlab="age",ylab="height")
abline(fit2$coef[1],fit2$coef[2])
```


4b) Testing the Null Hypothesis where slope = 0

summary(fit2)

```
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
                1Q Median
                                       Max
  -85.794 -19.499
                   -4.499 16.177 94.853
##
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.5272
                            3.1974
                                     20.49
                                             <2e-16 ***
                            0.6877
                                             <2e-16 ***
## x
                30.3239
                                     44.09
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 28.65 on 437 degrees of freedom
## Multiple R-squared: 0.8165, Adjusted R-squared: 0.8161
## F-statistic: 1944 on 1 and 437 DF, p-value: < 2.2e-16

##Since the p value is less than our alpha value of .05,
##we can reject our Null Hypothesis.
##Therefore the slope does not equal to 0.</pre>
```

4c) Finding the 95% Confidence Interval for mean length at age 4 years

```
age = data.frame(x = 4)
predict(fit2, newdata = age, interval = "confidence", level = 0.95)

## fit lwr upr
## 1 186.8227 184.1217 189.5237
```

4d) Finding the 95% Confidence Interval for mean length at age 9 years

```
age9 = data.frame(x = 9)
pre = predict(fit2, newdata = age9, interval = "confidence", level = 0.95)
pre

## fit lwr upr
## 1 338.4422 331.4231 345.4612

## This interval is not trustworthy because at the age of 9 years the
## bass is not fully reached its full length.
```