Chapter 1 Introduction to VLSI Testing

超大型積體電路測試簡介 趙家佐

Goal of this Lecture

- Understand the process of testing
- Familiar with terms used in testing
- View testing as a problem of economics

Introduction to IC Testing

- Introduction of design flow and testing
- Types of IC testing
- Manufacturing tests
- Test quality and economy
- Test industry

IC (SOC) Design/manufacture Process

- In chip production, every manufactured chip will be tested.
- A chip is shipped to customers, if it works according to specification.

Tasks of IC Design Phase

- Function and performance requirements
- Die size estimation
- Power analysis
- Early IO assignment
- High-Level Description Block diagrams
- IP/Cores selection (mapped to a platform)
- SW/HW partition/designs
- Logic synthesis
- Timing verification
- Placement, route and layout
- Physical synthesis
- Test development and plan
- First silicon debug
- Characterization
- Production tests

Objectives of VLSI Testing

- Exercise the system and analyze the response to ascertain whether it behaves correctly after manufacturing
- Test objectives
 - Ensure product quality
 - Diagnosis & repair
- All considered under the constraints of economics

Test Challenges

- Test time exploded for exhaustive testing
 - For a combinational circuit with 50 inputs, we need $2^{50} = 1.126 \times 10^{15}$ patterns = 1.125×10^{8} s = 3.57yrs. $(10^{-7}\text{s/pattern})$
 - Combinational circuit = circuit without memory

Too many input pins → too many input patterns

More Challenges

- High automatic test equipment (ATE) cost for functional tests
- Testing circuits with high clock rates
- Deep sub-micron/nano effects
 - Crosstalk, power, leakage, lithography, high vth variation...
- Test power > design power
- Integration of analog/digital/memories
- SOC complexities

Testing Cost

- Test equipment cost
 - Analog/digital signal and measuring instrumentation
 - Test head
 - Test controller (computer & storage)
- Test development cost
 - Test planning, test program development and debug
- Testing-time cost
 - Time using the equipment to support testing
- Test personnel cost
 - Training/working

Testing Cost in Y2k

- Testing of complex IC is responsible for the second highest contribution to the total manufacturing cost (after wafer fabrication)
- 0.5-1.0GHz, analog instruments, 1024 digital pins: ATE purchase price
 - \$1.2M + 1024*\$3000 = \$4.272M
- Running cost (5-yr linear depreciation)
 - = Depreciation + Maintenance + Operation
 - \bullet = \$0.854M + \$0.085M + \$0.5M
 - \bullet = \$1.439M/yr

Types of IC Testing (I): Audition of System Specification

- Translation of customer requirements to system specifications is audited.
- The specification has to be reviewed carefully throughout the design/production process.

Types of IC Testing (II): Verification

- The design is verified against the system specifications to ensure its correctness.
- Verification is an essential and integral part of the design process.
- Especially for complex designs, the time and resource for verification exceed those allocated for design.

Types of IC Testing (III): Characterization Testing

- Before production, characterization testing are used.
 - Design debug and verification.
 - Determine the characteristics of chips in silicon.
 - Setup final specifications and production tests.

Types of IC Testing (IV): Production Testing

- In production, all fabricated parts are subjected to production testing to detect process defects.
- To enforce quality requirements
 - Applied to every fabricated part
 - The test set is short but verifies all relevant specifications, i.e., high coverage of modeled faults
- Test cost and time are the main drivers.

Types of IC Testing (V): Diagnosis

- Failure mode analysis (FMA) is applied to failed parts.
- To locate the cause of misbehavior after the incorrect behavior is detected.
- Results can be used to improve the design or the manufacturing process.
- An important step for improving chip production yield.

Multiple Design Cycles

Long iterations → Late time-to-market/production

A Broad View of Chip Design and Production Phases

What Are We After in Testing?

- Design errors (first silicon debug)
 - Design rule violation
 - Incorrect mapping between levels of design
 - Inconsistent specification
- Manufacturing defects
 - Process faults/variation
 - Time-dependent failures (reliability)
 - Packaging failures

Various Design Errors

Breakdown of design errors in Pentium 4.

- Goof (12.7%) typos, cut and paste errors, careless coding.
- Miscommunication (11.4%)
- Microarchitecture (9.3%)
- Logic/Microcode change propagation (9.3%)
- Corner cases (8%)
- Power down issues (5.7%) clock gating.
- Documentation (4.4%)
- Complexity (3.9%)
- Random initialization (3.4%)
- Late definition of features (2.8%)
- Incorrect RTL assertions (2.8%)
- Design mistake (2.6%) the designer misunderstood the spec

Source: Bentley, DAC2001

Methods to Find First-Silicon Bugs

- Post-silicon debug requires a lot of efforts
 - System Validation (71%).
 - Compatibility Validation (7%)
 - Debug Tools Team (6%)
 - Chipset Validation (5%)
 - Processor Architecture Team (4%)
 - Platform Design Teams and Others (7%)

Defect Example: Particle

Source: ITC2004, D. Mark J. Fan, Xilinx

Defect Example: Metal breaks

Source: ITC2004, D. Mark J. Fan, Xilinx

Defect Example: Bridging

Source: ITC1992 Rodriguez-Montanes, R.; Bruis, E.M.J.G.; Figueras, J.

Systematic Process Variations

Metal layer of NOR3XL standard Cell

Tests Before and After Production

- (Before) Characterization Testing
 - For design debug and verification
 - Usually performed on designs prior to production
 - Verify the correctness of the design & determine exact device limits
 - Comprehensive functional, DC and AC parametric tests
 - Set final spec. and develop production tests
- (After) Production Testing
 - To enforce quality requirements
 - Applied to every fabricated parts
 - Test vectors should be as short as possible under the constraints of test costs and product quality
 - Test costs are the main drivers

Test Items for Production Testing

- Circuit probe test (CP)
 - Examine each part on the wafer before it is broken up into chips
- Final test (FT)
 - Examine each part after packaging
- Usually FT includes
 - Contact test
 - DC parameter test
 - Functional test
 - Make sure circuits function as required by specification.
 - Consume most test resources in production.
- Burn-in test (optional)
 - Exercise chips in extreme conditions, e.g., high temperature or voltage, to screen out infant mortalities
- Speed binning (optional)
 - Determine the max speed of a chip and sell it accordingly

An Exemplary Test Flow

Objective: gross process defect

Metric: coverage of targeted faults

Patterns: functional / scan / BIST

Objective: process defect, package defect

Metric: coverage of targeted faults

Patterns: functional / scan / BIST

Burn-in

Objective: aging defects

Metric: toggle coverage

Patterns: functional / scan (without comparison)

Speed binning

Objective: performance

Metric: speed, delay fault coverage

Patterns: functional (mostly) / scan (rare)

Quality Assurance test

Objective: Final quality screen

Metric: Adhoc

Patterns: Functional, System

Connectivity Test

- Verify whether the chip pins have opens or shorts
- Also called open/short test
- Draw current out of the device and measure voltage at the input pin
- Utilize the forward bias current of the protection diodes at the pin to determine whether a short or open exists

DC Parametric Test

- Tests performed by Parametric Measurement Unit (PMU)
- Much slower than the normal operation speed
 - Static (operating) current test
 - check the power consumption at standby (operating) mode
 - Output short current test
 - Verify that the output current drive is sustained at high and low output voltage
 - Output drive current test
 - For a specified output drive current, verify that the output voltage is maintained

AC Parametric Test

- To ensure that value/state changes occur at the right time
- Some AC parametric tests are mainly for characterization and not for production test.
 - Test for rise and fall times of an output signal
 - Tests for setup, hold and release times
 - Tests for measuring delay times
 - E.g. tests for memory access time

Burn-in Test

- Early failure detection reduces cost
 - Burn-in to isolate infant mortality failures

Bathtub Curve of IC's Failure Rate

An Example of IC Failure Rate vs. System Operating Time With/Without Burn-in

Functional Test

 Selected test patterns are applied to circuits and response are analyzed for functional correctness.

Activities for Developing Functional Test

Key Issues of Functional Test

- Where does patterns come from?
 - Design simulation patterns (Functional patterns)
 - Automatic test pattern generation (ATPG)
- How to evaluate the quality of test patterns?
 - Fault coverage evaluation
- How to improve test efficiency?
 - Design for Testability (DFT)
- How to apply test patterns?
 - Automatic test equipments (ATE)
 - Built-in self test (BIST)

Functional v.s. Structural Test

Functional test

- Exercise the functions according to the spec
- Often require designers' inputs
- Large number of patterns with low fault coverage
- Difficult to be optimized for production tests

Structural test

- Use the information of interconnected components (e.g., gates) to derived test regardless of the functions
- Fault modeling is the key
- Basis of current testing framework---ATPG, Fault simulator, DFT tools, etc.

Fault Models

- Fault modeling is a way to represent the cause of circuit failure.
- Model the effects of physical defects by the logic function and timing
 - Enumeration of real defects is impossible
- Makes effectiveness measurable by experiments
 - Fault coverage can be computed for specific test patterns to reflect its effectiveness

Single Stuck-At Fault Model

- Assumptions:
- Only One line is faulty
- Faulty line permanently set to 0 or 1
- Fault can be at an input or output of a gate

- One of the gate input terminal was mistakenly connected to ground
- Fault: b stuck at 0
- signal b will always be "0"

Logic Gate Basics

	AND Gate
A	G
В 🍑	

А	В	G	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Α	В	G	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Only binary values, 0 and 1, will be used. A and B are inputs and G is the output.

Stuck-At Faults Example

Total Faults = Nf = 2* total number of signals = 2*7=14

A Simple Simulation with Input (ABCD)=(0111)

We use logic simulation to propagate (transfer) input values to outputs.

What if F stuck-at-0 occurs with (ABCD)=(0111)

We use logic simulation to propagate (transfer) faulty values to outputs.

For this case, we say (0111) covers the fault F stuck-at-0.

Other Faults Covered By (ABCD)=(0111)

By performing several logic simulation with faults (**fault simulation**), we found (0111) covers four faults: C, D, F, and G stuck-at-0.

Fault Coverage of (ABCD)=(0111)

Since (0111) covers four faults: C, D, F, and G stuck-at-0. And total number of faults is 14.

We say (0111) has a fault coverage of 4/14 ~ 28.6%

Fault Coverage of (ABCD)=(0101)

Since (0101) covers four faults: A, C, E, F, and G stuck-at-1. And total number of faults is 14.

We say (0101) has a fault coverage of 5/14 ~ 35.7%

Combined Fault Coverage of (ABCD)=(0111) and (0101)

We know that both vectors cover different faults, so the total number of covered faults are 4+5. Therefore we have a total fault coverage 9/14 ~ 64.3%

Fault Coverage

- Fault Coverage T
 - Is the measure of the ability of a set of tests to detect a given class of faults that may occur on the device under test (DUT)

 Fault simulation is used to evaluate fault coverage for test patterns.

Meaning of Fault Coverage

- Our goal in testing is to find test patterns to achieve 100% fault coverage.
- Under the assumption of the fault model (e.g., single stuck-at fault), we've done a good job!
 - Remember the problem of testing a circuit with 50 inputs?
 - Remember the problem of numerous defects that can occur in a chip?
- Though single stuck-at fault model is very simple, it is very effective.
 - Other fault models is still needed to further improve chip quality.

Automatic Test Pattern Generation (ATPG)

- Generate test patterns to cover modeled faults automatically.
- A complex process to determine the quality of tests
 - The most time-consuming process in test development
- Very difficult for sequential circuits (circuits has memory elements).

An Example of ATPG for E stuck-at-0

Step 4: assign (C, D)=(0, 0), (0, 1), or (1, 0)

We can have test vectors (A, B, C, D)=(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)

The Infamous Design/Test Wall

30 years of experience proves that test after design does not work!

Design for Testability (DFT)

- DFT is a technique to design a circuit to be easily testable
- Add the cost of area/performance, but dramatically reduce cost for tests
- For example, use scan technique to make test generation feasible on sequential circuit.
- A very important step in circuit design to make sure a circuit is testable.

Full Scanned Sequential Logic --- An Example of DfT

Multiple Design Missions

Chips have to optimally satisfy many constraints:
 area, performance, testability_power, reliability, etc.

Definition of BIST

- BIST is a DFT technique in which testing (test generation, test application) is accomplished through built-in hardware features.
- Advantages
 - Better quality
 - Reduce test application time
 - Reduce test development time
- Costs
 - Area increased
 - Circuit performance degrade
 - Yield loss

Tools for Developing Functional Tests (Recap)

Testing and Quality

Quality of shipped part is a function of yield Y and the test (fault) coverage T.

Defect Level

- Defect Level
 - Is the fraction of the shipped parts that are defective

$$DL = 1 - Y^{(1-T)}$$

Y: yield

T: fault coverage

Defect Level v.s. Fault Coverage

DPM v.s. Yield and Coverage

Yield	Fault Coverage	DPM
50%	90%	67,000
75%	90%	28,000
90%	90%	10,000
95%	90%	5,000
99%	90%	1,000
90%	90%	10,000
90%	95%	5,000
90%	99%	1,000
90%	99.9%	100

A chip with 100 DPM or below is considered of high quality.

Components of Test Costs (I)

- Determining the costs in each design phase is very important for evaluating different test strategies
- Cost directly impacted by tests
 - Test equipment
 - Test development
 - Test planning, test program development
 - Test time
 - Time using the equipment to support testing
 - Test personnel

Components of Test Costs (II)

- Other costs associated with tests
 - Design time
 - Chip area (manufacturing costs)
 - Time to Market
 - Product quality
 - Impact a company's image and sales

Cost Of Testing - The Rule of Tens

Implications of Rule of Tens

- Early detection can prevent costly diagnosis and replacement later.
- For example, if a bad IC is not detected, the cost to find a board including the bad IC is at least 10 times higher.

Test Economics

- Build an appropriate cost/benefits model based on empirical data of the manufacturing process.
- Evaluate test strategies (DFT; BIST) according to the model
- Customize the model for each project
- Follow and review the model closely through careful management

A Case Study for Test Economics

- A BIST and Boundary-Scan Economics Framework by JOSÉ M. MIRANDA
 - Lucent Technologies Bell Laboratories
 - IEEE Design and Test of Computers, JULY– SEPTEMBER 1997

Conclusions

- Testing is used to ensure a chip's quality.
- Testing is a complex and expensive task and should be dealt with at early (design) stage.
- Test strategies should be evaluated with a solid and overall economics model.