Stereochemistry Illustrated By Carbohydrates

from chapter(s) _____ in the recommended text

A. Introduction

B. Assigning R- and S-Configurations

highest priority lowest

L-glyceraldehyde zig-zag

C. Stereochemical Representations Of Carbohydrates

are all used to describe compounds in this series.

D-gylceraldehyde zig-zag

(eg glucose): if they contain an aldehyde they are called aldoses ketoses.

top

$$\begin{array}{c} \text{CHO} \\ \text{H} \longrightarrow \text{OH} \\ \text{CH}_2\text{OH} \end{array}$$

triose pentoses, hexose.

enantiomers. epimers.

be *D*-. are D-.

(six-membered ring) (five-membered ring

$$H^{+}$$
 H^{+}
 H^{+

protonated pyranose form

protonated furanose form

protonated aldehyde

protonated aldehyde redrawn poised for 5-membered ring formation

pyranose

hexoses to Fischer projections.

is β -.

trans to the -CH2OH

CHO HOH HOH HOH HOH HOH HOH HOH HOH CH₂OH
$$\alpha$$
-anomer β -anomer

E. Homologation Of Sugars By Reaction With HCN

imines aldoses

epimers would not be

F. Conversion Of Aldoses To Lower Homologs

left right.

Fill in the gaps in the following sequence.

G. Other Reactions Of Sugars

oxidized reducing

H. Relative Stabilities Of Anomers

axial non-bonded

 α -anomer σ-to-σ* interactions possible

β**-anomer** σ -to- σ * interactions impossible

I. Di- And Oligosaccharides

acetal or ketal

cellobiose

maltose

cellulose

linkages are: β-1,4

ÓН ЮH sucrose

linkage is: α 1, β 2

poly-saccharide, di-saccharide. photosynthesis.

J. Carbohydrates In Summary

 β -D-ribofuranose. β -D-2-deoxyribofuranose.