More Finite Automata

Formal Languages and Abstract Machines

Week 03

Baris E. Suzek, PhD

Outline

- Last time
- Equivalence of Machines
- Regular Language Properties
- Regular expressions

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

O: set of states

 \sum : input alphabet

 δ transition function is a total function there must be an action defined for every combination of state and symbol

 q_0 : initial state

F: set of final states

Transition Function δ

δ	а	Ь	
q_0	q_1	q ₅	
q_1	<i>q</i> ₅	92	a h
92	q_5	q_3	a,b
<i>q</i> ₃	q_4	<i>q</i> ₅	
<i>q</i> ₄	<i>q</i> ₅	<i>q</i> ₅	q_5
q ₅	<i>q</i> ₅	q ₅	
			$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_3 \xrightarrow{a} q_4$

Regular Languages

ullet A language L is regular if there is a DFA M such that L=L(M)

All regular languages form a language family

Nondeterministic Finite Accepter (NFA)

Alphabet = $\{a\}$

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

O: Set of states, i.e.

 \sum • Input alphabet, i.e.

 δ : Transition function

 q_0 : Initial state

F: Final states

 $\{q_0, q_1, q_2\}$

 $\{a,b\}$

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \to 2^Q.$

NFA vs. DFA

- Transition functions range is Q vs. 2^Q (powersets of Q)
- $m{\cdot}\,\lambda$ can be an argument of transition function; transition without consuming a symbol
- $\cdot \delta(q_k,a)$ can be empty (not a total function)

δ	а	Ь
90	q_1	
$\overline{q_1}$		92

Outline

- Last time
- Equivalence of Machines
- Regular Language Properties
- Regular expressions
- Regular grammars

Equivalence of Machines

- NFAs accept the Regular Languages
- ullet Machine M_1 is equivalent to machine $\ M_2$

• if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

 M_1

•
$$L(M_1) = \{10\} *$$

We will prove:

NFAs and DFAs have the same computation power

Step 1

Proof: Every DFA is trivially an NFA

Any language L accepted by a DFA is also accepted by an NFA

Step 2

Proof: Any NFA can be converted to an equivalent DFA

Any language L accepted by an NFA is also accepted by a DFA

Convert NFA to DFA

Convert NFA to DFA

Convert NFA to DFA q_1 q_2 q_1 q_2 q_3 q_4 q_4 q_4 q_5 q_6 q_7 q_8 q_8

Convert NFA to DFA

Convert NFA to DFA

Convert NFA to DFA (Assign final state(s))

Convert NFA to DFA

States of DFA	а	b
{q0}	{q1, q2}	{qq}
{q1,q2}	{q1,q2}	(q0}
{qq}	{qq}	{qq}

NFA to DFA: Remarks

ullet We are given an NFA $\,M\,$

• We want to convert it M' to an equivalent DFA with L(M) = L(M')

If the NFA has states

$$q_0, q_1, q_2, \dots$$

• the DFA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Procedure NFA to DFA (Step 1)

• Initial state of NFA:

 q_0

• Initial state of DFA:

 $\{q_0\}$

Example

Procedure NFA to DFA (Step 2)

- For every DFA's state $\{q_i,q_j,...,q_m\}$
- Compute in the NFA

$$\left. \begin{array}{l} \delta^*(q_i, a), \\ \delta^*(q_j, a), \end{array} \right\} = \{q_i', q_j', \dots, q_m'\}$$

• • •

Add transition to DFA

$$\delta(\{q_i,q_j,...,q_m\},a)=\{q_i',q_j',...,q_m'\}$$

Example

•

Procedure NFA to DFA

• Repeat Step 2 for all letters in alphabet, until no more transitions can be added.

Example

Procedure NFA to DFA (Step 3)

• For any DFA state $\{q_i,q_j,...,q_m\}$

 $\bullet \quad \hbox{If some } \ q_j \hbox{ is a final state in the NFA}\\$

• Then, $\{q_i,q_j,...,q_m\}$ is a final state in the DFA

Theorem

• Take NFA M and apply procedure to obtain DFA M^\prime then M and M^\prime are equivalent.

• Also
$$L(M) = L(M')$$

Example: Convert NFA to DFA

State	0	1
(q0)=q0	{q0,q1}	{q1}
{q0,q1}=q1	{q0,q1,q2}	{q1,q2}
{q1}=q2	{q2}	{q2}
{q0,q1,q2}=q3	{q0,q1,q2}	{q1,q2}
{q1,q2}=q4	{q2}	{q2}
{q2}=q5	qq	{q2}
qq=q6	qq	qq

More Conversions: Single Final State NFAs

Any NFA can be converted to an equivalent NFA with a single final state

In general

Conversions Covered

- NFA -> DFA
- NFA with multiple final states -> NFA with single final state
- DFA with multiple final states -> NFA with single final state

Outline

- Last time
- Equivalence of Machines
- Regular Language Properties
- Regular expressions

Regular Languages

ullet A language L is regular if there is a DFA M such that L=L(M)

All regular languages form a language family

Regular Language Examples

```
 \{abba\} \qquad \{\lambda, ab, abba\} \qquad \{a^nb: n \geq 0\}   \{\text{ all strings with prefix } ab \}   \{\text{ all strings without substring } \mathbf{001}\}
```

Regular Language Properties

For regular languages $\,L_{\!1}\,$ and $\,L_{\!2}\,$

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: $L_1 *$

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Are regular Languages

Or we say regular languages are closed under

Union:
$$L_1 \cup L_2$$

Concatenation:
$$L_1L_2$$

Star:
$$L_1$$
 *

Reversal:
$$L_1^R$$

Complement:
$$\overline{L_1}$$

Intersection:
$$L_1 \cap L_2$$

 L_2

$$L(M_1) = L_1$$

$$M_1$$

Single final state

 M_2

Single final state

$$L_1 = \{a^n b\}$$

$$L_2 = \{ba\} \qquad \begin{array}{c} M_2 \\ \\ b \\ \end{array}$$

Union

 $L_1 \cup L_2$

• NFA for

Concatenation

 L_1L_2

• NFA for

$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

NFA for

$$L_{1} = \{a^{n}b\}$$

$$a$$

$$L_{2} = \{ba\}$$

$$b$$

$$\lambda$$

$$b$$

$$\lambda$$

Star Operation L_1 *

• NFA for

$$L_1^* = \{a^n b\}^* \qquad w = w_1 w_2 \cdots w_k \\ w_i \in L_1$$

• NFA for

Reverse

1. Reverse all transitions

2. Make initial state final state and vice versa

$$L_1 = \{a^n b\}$$

$$L_1^R = \{ba^n\}$$

Complement

1. Take the **DFA** that accepts L_1

2. Make final states non-final, and vice-versa

Intersection

DeMorgan's Law:

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

$$L_1$$
, L_2

regular

$$\overline{L_1}$$
 , $\overline{L_2}$

regular

$$\overline{L_1} \cup \overline{L_2}$$

regular

$$\overline{\overline{L_{\!\!1}}\! \cup\! \overline{L_{\!\!2}}}$$

regular

$$L_1 \cap L_2$$

regular

$$L_1 = \{a^nb\}$$
 regular $L_1 \cap L_2 = \{ab,ba\}$ regular regular

Outline

- Last time
- Equivalence of Machines
- Regular Language Properties
- Regular expressions

Describing Regular Languages

- DFA or NFA (covered)
- Regular expressions
- Regular grammars

Regular Expressions

Regular expressions describe regular languages

$$(a+b\cdot c)^*$$

• Example describes the language:

$$\{a,bc\}^* = \{\lambda,a,bc,aa,abc,bca,\ldots\}$$

Recursive Definition

Primitive regular expressions:

 \emptyset , λ , α

Given regular expressions r_1 and r_2

Union (or)
$$r_1 + r_2$$

Concatenation

$$r_1 \cdot r_2$$

Star closure

$$(r_1)$$

Are regular expressions

A regular expression:

$$(a+b\cdot c)*\cdot (c+\varnothing)$$

Not a regular expression:

$$(a+b+)$$

Languages of Regular Expressions

L(r): language of regular expression r

$$L((a+b\cdot c)^*) = \{\lambda, a, bc, aa, abc, bca, \ldots\}$$

Definition

• For primitive regular expressions:

$$L(\varnothing) = \varnothing$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\}$$

Definition (continued)

• For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = (L(r_1))^*$$

$$L((r_1)) = L(r_1)$$

 $(a+b)\cdot a^*$ Regular expression: $L((a+b)\cdot a^*) = L((a+b))L(a^*)$ = L(a+b)L(a*) $= (L(a) \cup L(b))(L(a))^*$ $=({a}\cup{b})({a})*$ $= \{a,b\}\{\lambda,a,aa,aaa,...\}$ $= \{a, aa, aaa, ..., b, ba, baa, ...\}$