

LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V

ZHCSIT6W - JUNE 1976-REVISED OCTOBER 2019

行业标准双路运算放大器

1 特性

- 3V 至 36V 宽电源范围 (B 版本)
- 静态电流:每个放大器 300µA(B版本,典型值)
- 单位增益带宽为 1.2MHz(B 版本)
- 共模输入电压范围包括接地,支持近地直接检测
- 3mV(25℃ 时)的低输入失调电压(A和B版本,最大值)
- 内部射频和 EMI 滤波器 (B 版本)
- 对于符合 MIL-PRF-38535 标准的产品,所有参数 均经过测试,除非另外注明。对于所有其他产品, 生产流程不一定包含对所有参数的测试。

2 应用

- 商用网络和服务器电源单元
- 多功能打印机
- 电源和移动充电器
- 电机控制:交流感应、刷式直流、无刷直流、高电压、低电压、永久磁性和步进电机
- 台式计算机和主板
- 室内外空调
- 洗衣机、烘干机和冰箱
- 交流逆变器、串式逆变器、中央逆变器和变频器
- 不间断电源
- 可编程逻辑控制器
- 电子销售点系统

单极低通滤波器

$$\frac{V_{OUT}}{V_{IN}} = \left(1 + \frac{R_F}{R_G}\right) \left(\frac{1}{1 + sR_1C_1}\right)$$

3 说明

LM358B 和 LM2904B 是业界通用运算放大器 LM358 和 LM2904 的下一代版本,其中包括两个高压 (36V)运算放大器。这些器件为成本敏感型 应用带来了出色的价值,该器件的 特性 包括低失调电压(300µV,典型值)、接地共模输入范围以及高差分输入电压能力。

LM358B 和 LM2904B 运算放大器具有增强的 功能,例如单位增益稳定性、较低的 3mV(室温下的最大值)失调电压和每个放大器 300μA(典型值)的静态电流,从而简化了电路设计。高 ESD(2kV,HBM)和集成 EMI 以及射频滤波器可支持将 LM358B 和 LM2904B 器件用于最严苛、最具环境挑战性的 应用。

LM358B 和 LM2904B 放大器采用行业通用封装(包括 SOIC、TSSOP 和 VSSOP)。

器件信息(1)

器件型号	封装	封装尺寸(标称值)
LM358B、LM2904B、 LM358、LM358A、 LM2904、LM2904V、 LM258、LM258A	SOIC (8)	4.90mm × 3.90mm
LM358B ⁽²⁾ 、LM2904B ⁽²⁾ 、 LM358、LM358A、 LM2904、LM2490V	TSSOP (8)	3.00mm × 4.40mm
LM358B ⁽²⁾ 、LM2904B ⁽²⁾ 、 LM358、LM358A、 LM2904、LM2904V、 LM258、LM258A	VSSOP (8)	3.00mm × 3.00mm
LM358、LM2904	SO (8)	5.20mm × 5.30mm
LM358、LM2904、 LM358A、LM258、 LM258A	PDIP (8)	9.81mm × 6.35mm
LM158、LM158A	CDIP (8)	9.60mm × 6.67mm
LM158、LM158A	LCCC (20)	8.89mm × 8.89mm

- (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。
- (2) 封装仅供预览。

1	特性1		9.1 Overview	24
2	应用 1		9.2 Functional Block Diagram - LM358B, LM358BA	
2 3 4 5 6 7	应用	10 11 12 13	9.2 Functional Block Diagram - LM358B, LM358BA LM2904B, LM2904BA	24 25 26 26 27 27 27 27 27 27 29 29
8 9	7.10 Electrical Characteristics: LM258, LM258A 13 7.11 Typical Characteristics 14 7.12 Typical Characteristics 21 Parameter Measurement Information 23 Detailed Description 24	14	13.4 社区资源	29 29

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

CI	riged CDM ESD rating for LM358B and LM2904B in <i>ESD Ratings</i>			
•	Added specification in the Device Comparison Table	4		
•	Changed CDM ESD rating for LM358B and LM2904B in ESD Ratings	6		
•	Changed V _S to V+ in Recommended Operating Conditions	7		
•	Changed Thermal Information for the LM158FK and LM158JG devices	7		
•	已添加 Typical Characteristics section for the LM358B and LM2490B op amps	14		
•	已添加 test circuit for THD+N and small-signal step response, G = −1 in the <i>Parameter Measurement Information</i> section	23		
•	已更改 the Functional Block Diagram	2 ⁴		
•	已删除 在相关链接 部分中删除了 LM358B 和 LM2904B 的预览标识符	29		

CI	hanges from Revision U (January 2017) to Revision V	Page
•	更改了数据表标题	1
•	更改了特性部分的前四个项目	1
	更改了 应用 部分中的第一项并添加了四个新项	
•	在说明部分的第一段中更改了电压值	1
	更改了说明 部分第二段中的文本	
•	已添加 在数据表中添加了器件 LM358B 和 LM2904B	
•	更改了器件信息表的前三行,并为预览状态器件添加了交叉引用的注释	
•	Added Device Comparison table	4
•	Added a table note to the Pin Functions table	5
•	Changed "free-air temperature" to "ambient temperature" in the Absolute Maximum Ratings condition statement	6
•	Changed all entries in the Absolute Maximum Ratings table except T _J and T _{stg}	6

www.ti.com.cn

ZHCSIT6W -JUNE 1976-REVISED OCTOBER 2019

•	Deleted lead temperature and case temperature from Absolute Maximum Ratings	6
•	Changed device listings and their voltage values in the ESD Ratings table	<mark>6</mark>
•	Changed "free-air temperature" to "ambient temperature" in the Recommended Operating Conditions condition statement	<mark>7</mark>
•	Changed table entries for all parameters in the Recommended Operating Conditions table	<mark>7</mark>
•	Added rows to the Thermal Information table, and a table note regarding device-package combinations	7
•	Deleted the Operating Conditions table	13
•	Added a condition statement to the Typical Characteristics section	21
•	Changed specific voltages to a Recommended Operating Conditions reference	24
•	Changed unity-gain bandwidth from 0.7 MHz for all devices to 1.2 MHz for B-version devices	25
•	Changed slew rate from 3 V/µs for all devices to o.5 V/µs for B-version devices	25
•	Changed the Input Common Mode Range section in multiple places throughout	25
•	Changed V _{CC} to V _S in the <i>Application Information</i> section	26
•	Subscripted the suffixes fro R _I and R _F	26
	已更改 Operational Amplifier Board Layout for Noninverting Configuration with an image that includes a dual op a	mp 28
•	Deviational Ampliner board Eayout for North Verting Coringaration with an image that includes a dual op at	
<u>.</u>	在表 1	•
<u>.</u>		•
<u>.</u>	在表 1	29
<u>.</u>	在表 1anges from Revision T (April 2015) to Revision U	Page
<u>CI</u>	在表 1	Page
<u>CI</u>	在表 1	Page 29
CI CI	在表 1	Page 29
CI CI	在表 1	Page Page Page
CI CI CI	manges from Revision T (April 2015) to Revision U 己更改 数据表标题	Page Page Page Page 1
- CI - CI -	manges from Revision T (April 2015) to Revision U 已更改 数据表标题	Page Page Page Page 1
CI	manges from Revision T (April 2015) to Revision U 已更改 数据表标题 已添加 接收文档更新通知 部分和社区资源 部分 manges from Revision S (January 2014) to Revision T 已添加 应用 部分、ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实现 部分、电源推荐 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分 manges from Revision R (July 2010) to Revision S 使用 Web 上的 PDF 将此数据表从 QS 格式转换为 DocZone	Page Page Page Page 1 Page 1 Page 1 Page

5 Device Comparison Table

PART NUMBER SUPPLY VOLTAGE		TEMPERATURE RANGE	V _{OS} (MAXIMUM AT 25°C)	I _Q / CH (TYPICAL AT 25°C)	INTEGRATED EMI FILTER	PACKAGE
LM358B	3 V–36 V	-40°C to 85°C	3 mV	300 μΑ	Yes	D, DGK, PW
LM2904B	3 V–36 V	-40°C to 125°C	3 mV	300 μΑ	Yes	D, DGK, PW
LM358	3 V–32 V 0°C to 70°C		7 mV	350 μΑ	No	D, PW, DGK, P, PS
LM2904	3 V–26 V	-40°C to 125°C	7 mV	350 µA	No	D, PW, DGK, P, PS
LM358A	3 V–32 V	0°C to 70°C	3 mV	350 µA	No	D, PW, DGK, P
LM2904V	3 V–32 V	-40°C to 125°C	7 mV	350 μΑ	No	D, PW
LM158	3 V–32 V	–55°C to 125°C	5 mV	350 µA	No	JG, FK
LM158A	3 V–32 V	–55°C to 125°C	3 mV	350 μΑ	No	JG, FK
LM258	3 V–32 V	-25°C to 85°C	5 mV	350 μΑ	No	D, DGK, P
LM258A	3 V-32 V	-25°C to 85°C	3 mV	350 µA	No	D, DGK, P

6 Pin Configuration and Functions

D, DGK, P, PS, PW, and JG Packages 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP, and CDIP Top View

NC - No internal connection

Pin Functions

		PIN	I/O	DESCRIPTION			
NAME LCCC ⁽¹⁾ SOIC, SSOP, CDIP, TSSOP, CF		SOIC, SSOP, CDIP, PDIP, SO, TSSOP, CFP ⁽¹⁾					
IN1-	5	2	1	Negative input			
IN1+	7	3	1	Positive input			
IN2-	15	6	1	Negative input			
IN2+	12	5	1	Positive input			
OUT1	2	1	0	Output			
OUT2	17	7	0	Output			
V-	10	4	_	Negative (lowest) supply or ground (for single-supply operation)			
NC	1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19	_	_	No internal connection			
V+	20	8	_	Positive (highest) supply			

⁽¹⁾ For a listing of which devices are available in what packages, see Device Comparison Table.

7 Specifications

7.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
		LM358B, LM358BA, LM2904B, LM2904BA		±20 or 40	
Supply voltage, $V_S = ([V+] - [V-])$		LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V		±16 or 32	V
		LM2904		±13 or 26	
Differential input voltage, V _{ID} ⁽²⁾	LM358B, LM358BA, LM2904B, LM2904BA,LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	-32	32	V	
		LM2904	-26	26	
Input voltage, V _I		LM358B, LM358BA, LM2904B, LM2904BA	-0.3	40	
	Either input	LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	-0.3	32	V
		LM2904	-0.3	26	
Duration of output short circuit (one ampli $V_S \le 15 V^{(3)}$	fier) to ground at (o	r below) T _A = 25°C,		Unlimited	s
	LM158, LM158A	-55	125		
		LM258, LM258A	-25	85	
Operating ambient temperature, T _A		LM358B, LM358BA	-40	85	°C
Operating ambient temperature, 14		LM358, LM358A	0	70	J
	LM2904B, LM2904BA, LM2904, LM2904V	-40	125		
Operating virtual-junction temperature, T _J		_		150	°C
Storage temperature, T _{stg}			-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT					
LM358E	LM358B, LM358BA, LM2904B, AND LM2904BA								
\/ Float	Floatroototic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V					
V(ESD)	V _(ESD) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		±1000	V					
LM158,	LM158, LM258, LM358, LM158, LM258A, LM358A, LM2904, AND LM2904V								
V Flootmostatic dischause		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)		V					
V _(ESD)	Electrostatic discharge C	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V					

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

⁽²⁾ Differential voltages are at IN+, with respect to IN-

⁽³⁾ Short circuits from outputs to V_S can cause excessive heating and eventual destruction.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

			MIN	MAX	UNIT
Vs	LM358B, LM358BA, LM2904B, LM2904BA Supply voltage, V _S = ([V+] – [V–]) LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	· · · · · · · · · · · · · · · · · · ·	3	36	
		LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V	3	30	V
		LM2904	3	26	
V_{CM}	Common-mode voltage		V-	V+ - 2	V
T _A		LM358B, LM358BA	-40	85	
		LM2904B, LM2904BA, LM2904, LM2904V	-40	125	
	Operating ambient temperature	LM358, LM358A	0	70	°C
		LM258, LM258A	-20	85	
		LM158, LM158A	-55	125	

7.4 Thermal Information

14 Mornia Morniadon									
		LM258, LN	LM258, LM258A, LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ⁽²⁾				LM158, LM158A		
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DGK (VSSOP)	P (PDIP)	PS (SO)	PW (TSSOP)	FK (LCCC)	JG (CDIP)	UNIT
		8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	20 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	124.7	181.4	80.9	116.9	171.7	84.0	112.4	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	66.9	69.4	70.4	62.5	68.8	56.9	63.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	67.9	102.9	57.4	68.6	99.2	57.5	100.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	19.2	11.8	40	21.9	11.5	51.7	35.7	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.2	101.2	56.9	67.6	97.9	57.1	93.3	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	_	_	_	_	_	10.6	22.3	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.

⁽²⁾ For a listing of which devices are available in what packages, see Device Comparison Table.

7.5 Electrical Characteristics: LM358B and LM358BA

 $V_{S} = (V+) - (V-) = 5 \; V \; - \; 36 \; V \; (\pm 2.5 \; V \; - \; \pm 18 \; V), \; T_{A} = 25 ^{\circ}C, \; V_{CM} = V_{OUT} = V_{S}/2, \; R_{L} = 10 k \; connected \; to \; V_{S}/2, \; V_{CM} = V_{OUT} = V_{S}/2, \; V_{CM} = V_{OUT} = V_{S}/2, \; V_{CM} = V_{CM} =$

(unless otherwise noted)

	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE							
		LMOSOD				±0.3	±3.0	mV
\/	Input offect voltage	LM358B		$T_A = -40$ °C to +85°C			±4	mV
Vos	Input offset voltage	I MOEODA					±2.0	mV
		LM358BA		$T_A = -40$ °C to +85°C			±2.5	mV
dV _{OS} /d _T	Input offset voltage drift			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{(1)}$		±3.5	11	μV/°C
PSRR	Power Supply Rejection Ratio			1		±2	15	μV/V
	Channel separation, dc	f = 1 kHz to 20 kHz				±1		μV/V
INPUT V	OLTAGE RANGE	1						
		V _S = 3 V to 36 V			(V-)		(V+) - 1.5	V
V _{CM}	Common-mode voltage range	V _S = 5 V to 36 V		T _A = -40°C to +85°C	(V-)		(V+) - 2	V
		$(V-) \le V_{CM} \le (V+) - 1.5 \text{ V}$	/ V _S = 3 V to 36 V			20	100	
CMRR	Common-mode rejection ratio	$(V-) \le V_{CM} \le (V+) - 2.0 \text{ V}$		T _A = -40°C to +85°C		25	316	μV/V
INPUT B	IAS CURRENT	(,) = . CM = () =	13 111111	*A				
						±10	±35	nA
I _B	Input bias current			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{(1)}$			±50	nA
				A 5 6.0 .00 0		0.5	4	nA
Ios	Input offset current			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}^{(1)}$		0.0	5	nA
dl _{OS} /d _T	Input offset current drift			$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		10	J	pA/°C
NOISE	mpat onset candit unit			1A 40 0 10 103 0		10		pA C
	Input voltage noise	f = 0.1 to 10 Hz				3		u\/
E _n	Input voltage noise Input voltage noise density	f = 1 kHz				40		μV _{PP} nV/√/H
e _n	MPEDANCE	I = I KIIZ				40		IIV/ V/FI
					Ι .	10 11 0 1		MOILs
Z _{ID}	Differential					10 0.1		MΩ p
Z _{IC}	Common-mode					4 1.5		GΩ p
OPEN-LO	OOP GAIN							
A _{OL}	Open-loop voltage gain	V _S = 15 V; V _O = 1 V to 1	1 V; R _L ≥ 10 kΩ, connected to (V-)		70	140		V/mV
				$T_A = -40$ °C to +85°C	35			V/mV
	NCY RESPONSE	T.			1			
GBW	Gain bandwidth product					1.2		MHz
SR	Slew rate	G = + 1				0.5		V/µs
Θ_{m}	Phase margin	$G = + 1, R_L = 10k\Omega, C_L =$	20 pF			56		۰
t _{OR}	Overload recovery time	V _{IN} × gain > V _S				10		μs
t _s	Settling time		Step , G = +1, C _L = 100 pF			4		μs
THD+N	Total harmonic distortion + noise	$G = + 1$, $f = 1$ kHz, $V_0 = 3$	$3.53 \text{ V}_{\text{RMS}}, \text{ V}_{\text{S}} = 36 \text{V}, \text{ R}_{\text{L}} = 100 \text{k}, \text{ I}_{\text{OUT}} \le \pm 50 \mu$	A, BW = 80 kHz		0.001		%
OUTPUT		T						
				$I_{OUT} = 50 \mu A$		1.35	1.42	V
		Positive Rail (V+)		I _{OUT} = 1 mA		1.4	1.48	V
Vo	Voltage output swing from rail			$I_{OUT} = 5 \text{ mA}^{(1)}$		1.5	1.61	V
VO	Voltage output swing from rain			$I_{OUT} = 50 \mu A$		100	150	mV
		Negative Rail (V-)		I _{OUT} = 1 mA		0.75	1	V
			$V_S = 5 \text{ V}, \text{ RL} \le 10 \text{ k}\Omega \text{ connected to (V-)}$	$T_A = -40$ °C to +85°C		5	20	mV
		V _S = 15 V; V _O = V-;	Source ⁽¹⁾		-20	-30		
		V _{ID} = 1 V	Source	$T_A = -40$ °C to +85°C	-10			mA
Io	Output current	V _S = 15 V; V _O = V+;	Sink ⁽¹⁾		10	20	-	mA
		V _{ID} = -1 V	Ollik	$T_A = -40$ °C to +85°C	5			
		V _{ID} = -1 V; V _O = (V-) + 20	00 mV		60	100		μА
I _{sc}	Short-circuit current	V _S = 20 V, (V+) = 10 V, (V-) = -10 V, V _O = 0 V			±40	±60	mA
C _{LOAD}	Capacitive load drive					100		pF
	'	f = 1 MHz, I _O = 0 A				300		Ω
	Open-loop output resistance							
R _O		1			II		· · · · · · · · · · · · · · · · · · ·	
R _o	SUPPLY Quiescent current per amplifier	V _S = 5 V; I _O = 0 A				300	460	μA

7.6 Electrical Characteristics: LM2904B and LM2904B

 $V_{S} = (V+) - (V-) = 5 \; V \; - \; 36 \; V \; (\pm 2.5 \; V \; - \; \pm 18 \; V), \; T_{A} = 25 ^{\circ}C, \; V_{CM} = V_{OUT} = V_{S}/2, \; R_{L} = 10 k \; connected \; to \; V_{S}/2, \; V_{CM} = V_{OUT} = V_{S}/2, \; V_{CM} = V_{OUT} = V_{S}/2, \; V_{CM} = V_{CM} =$

(unless otherwise noted

(arriooc	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
OFFSET	VOLTAGE		1201 001121110110				0.1	0
						±0.3	±3.0	mV
		LM2904B		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±4	mV
Vos	Input offset voltage			14 40 0 10 1120 0			±2.0	mV
		LM2904BA		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±2.5	mV
dV _{OS} /d _T	Input offset voltage drift			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$		±3.5	12	μV/°C
PSRR	Power Supply Rejection Ratio			1A = -40 C to +125 C		±3.3	15	μV/V
FORK	Channel separation, dc	f = 1 kHz to 20 kHz			 	±2 ±1	13	μV/V
INDUT V	OLTAGE RANGE	I = I KHZ tO ZO KHZ			L			μν/ν
INFO I V	OLIAGE RANGE	V = 2 V to 26 V			()()		(\/.\ 15	V
V_{CM}	Common-mode voltage range	$V_S = 3 \text{ V to } 36 \text{ V}$ $V_S = 5 \text{ V to } 36 \text{ V}$		T 40°C to 1405°C	(V-)		(V+) - 1.5	V
			V 2.V45.26.V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	(V-)		(V+) - 2	V
CMRR	Common-mode rejection ratio	$(V-) \le V_{CM} \le (V+) - 1.5 V$		T 4000 / 40500		20	100	μV/V
		$(V-) \le V_{CM} \le (V+) - 2.0 \text{ V}$	V _S = 5 V to 36 V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	<u> </u>	25	316	
INPUT B	IAS CURRENT	1			1			
I _B	Input bias current					±10	±35	nA
				$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$			±50	nA
Ios	Input offset current				<u> </u>	0.5	4	nA
	'			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}^{(1)}$			5	nA
dl _{OS} /d _T	Input offset current drift	<u> </u>		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	<u></u>	10		pA/°C
NOISE	1	_						
En	Input voltage noise	f = 0.1 to 10 Hz				3		μV_{PP}
\mathbf{e}_{n}	Input voltage noise density	f = 1 kHz				40		nV/√/Hz
INPUT IN	MPEDANCE							
Z_{ID}	Differential					10 0.1		MΩ pF
Z _{IC}	Common-mode					4 1.5		GΩ pF
OPEN-LO	OOP GAIN							
٨	Ones lees veltage gain	V 45 V/V 4 V/40 44	V. D. > 10 kO. composted to (V.)		70	140		V/mV
A _{OL}	Open-loop voltage gain	V _S = 15 V; V _O = 1 V to 11	V ; R_L ≥ 10 kΩ, connected to (V-)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	35			V/mV
FREQUE	NCY RESPONSE							
GBW	Gain bandwidth product					1.2		MHz
SR	Slew rate	G = + 1				0.5		V/µs
Θ_{m}	Phase margin	$G = + 1, R_L = 10k\Omega, C_L = 2$	20 pF			56		۰
t _{OR}	Overload recovery time	V _{IN} × gain > V _S				10		μs
t _s	Settling time	To 0.1%, V _S = 5 V, 2-V Ste	ep , G = +1, C ₁ = 100 pF			4		μs
THD+N	Total harmonic distortion + noise		.53 V_{RMS} , $V_{S} = 36V$, $R_{L} = 100k$, $I_{OUT} \le \pm 50\mu$	ıA, BW = 80 kHz		0.001		%
OUTPUT			Allies C 2 E 2 COV T	·				1
				I _{OUT} = 50 μA		1.35	1.42	V
		Positive Rail (V+)		I _{OUT} = 1 mA		1.4	1.48	V
		()		$I_{OUT} = 5 \text{ mA}^{(1)}$		1.5	1.61	V
V_{O}	Voltage output swing from rail			I _{OUT} = 50 μA		100	150	mV
		Negative Rail (V-)		I _{OUT} = 1 mA		0.75	1	V
		galivo rali (v-)	$V_S = 5$ V, RL ≤ 10 kΩ connected to (V–)	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		5	20	mV
		N 451111	V ₅ = 5 V, I/L ≥ 10 KΩ CONNECTED (0 (V=)	1 _A = - 1 0 0 10 +120 0	-20		20	1117
		V _S = 15 V; V _O = V-; V _{ID} = 1 V	Source ⁽¹⁾	T _ 40°C to :405°C	-20	-30		
	Output ourropt			$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	-10			mA
l _o	Output current	$V_S = 15 \text{ V}; V_O = V+; V_{ID}$ = -1 V	Sink ⁽¹⁾	T 4000 / 40500	10	20		
			2 22 1	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	5	400		
		$V_{ID} = -1 \ V; \ V_{O} = (V-) + 200$			60	100		μА
I _{sc}	Short-circuit current	V _S = 20 V, (V+) = 10 V, (V	/-) = -10 V, V _O = 0 V		<u> </u>	±40	±60	mA
C _{LOAD}	Capacitive load drive				<u> </u>	100		pF
R _o	Open-loop output resistance	$f = 1 \text{ MHz}, I_0 = 0 \text{ A}$			<u> </u>	300		Ω
	SUPPLY							
POWER		т		T				
I _Q	Quiescent current per amplifier	V _S = 5 V; I _O = 0 A		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		300	460	μA

(1) Specified by characterization only

7.7 Electrical Characteristics: LM358, LM358A

	PARAMETER		TEST COND	ITIONS ⁽¹⁾		MIN	TYP ⁽²⁾	MAX	UNIT
OFFSET \	VOLTAGE								
				LM358	T 000 to 7000		3	7	
Vos	Input offset voltage	$V_S = 5 \text{ V to } 30 \text{ V}; V_{CM} = 0$	$V; V_0 = 1.4$	1.140504	$T_A = 0$ °C to 70°C			9	mV
		v		LM358A	T 000 + 7000		2	3	
					T _A = 0°C to 70°C			5	
dV _{OS} /d _T	Input offset voltage drift			LM358	T _A = 0°C to 70°C		7		μV/°C
				LM358A	T _A = 0°C to 70°C		7	20	
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_S)$	V _S = 5 V to 30 V				65	100		dB
V _{O1} / V _{O2}	Channel separation	f = 1 kHz to 20 kHz					120		dB
INPUT VC	DLTAGE RANGE			T					
		V _S = 5 V to 30 V		LM358		(V-)		(V+) - 1.5	
V	Common-mode voltage range	V _S = 30 V		LM358A		(*)		(*1) 1.0	V
V _{CM}	Common-mode voltage range	V _S = 5 V to 30 V		LM358	T _A = 0°C to 70°C	(V-)		(V+) – 2	v
		V _S = 30 V		LM358A	1 _A = 0 C to 70 C	(V-)		(V+) - Z	
CMRR	Common-mode rejection ratio	$V_S = 5 \text{ V to } 30 \text{ V; } V_{CM} = 0$) V			65	80		dB
INPUT BI	AS CURRENT								
							-20	-250	
				LM358	T _A = 0°C to 70°C			-500	
I _B	Input bias current	V _O = 1.4 V					-15	-100	nA
				LM358A	T _A = 0°C to 70°C			-200	
					A		2	50	
				LM358	T _A = 0°C to 70°C			150	
los	Input offset current	set current V _O = 1.4 V			1 _A = 0 0 10 10 0		2	30	nA
				LM358A	T - 0°C to 70°C		2	75	
					$T_A = 0$ °C to 70°C		10	75	
dI_{OS}/d_T	Input offset current drift			LM358A	T _A = 0°C to 70°C		10	300	pA/°C
NOISE		-							
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
OPEN-LO	OP GAIN	11.			-			1	
		., .=.,,,				25	100		
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11$	1 V; R _L ≥ 2 kΩ		T _A = 0°C to 70°C	15			V/mV
FREQUEN	NCY RESPONSE				<u> </u>				
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1					0.3		V/µs
OUTPUT									
			V _S = 30 V; R _L	= 2 kO	T _A = 0°C to 70°C			4	
		Positive rail	V _S = 30 V; R _L		1 _A = 0 0 10 10 0		2	3	V
Vo	Voltage output swing from rail	1 ositive raii	V _S = 50 V; R _L ≥					1.5	•
		No motive wait			T _A = 0°C to 70°C		5	20	\ /
		Negative rail	V _S = 5 V; R _L s	≥ 10 KΩ2	1 _A = 0.0 to 70.0	20	 	20	mV
		V _S = 15 V; V _O = 0 V; V _{ID}	Causas	LMOEGA		-20	-30	00	
		= 1 V	Source	LM358A				-60	
lo	Output current				T _A = 0°C to 70°C	-10			mA
		$V_S = 15 \text{ V}; V_O = 15 \text{ V}; V_{ID} = -1 \text{ V}$ Sink				10	20		
					$T_A = 0$ °C to 70°C	5			
		$V_{ID} = -1 \text{ V}; V_{O} = 200 \text{ mV}$				12	30		μΑ
I _{SC}	Short-circuit current	$V_S = 10 \text{ V}; V_O = V_S / 2$					±40	±60	mA
POWER S	SUPPLY								
	Quiescent current per	$V_{O} = 2.5 \text{ V}; I_{O} = 0 \text{ A}$			T = 0°C +0 70°C		350	600	
I _Q	amplifier	V _S = 30 V; V _O = 15 V; I _O	- 0 Δ		$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$		500	1000	μA

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM358 and LM358A.

⁽²⁾ All typical values are T_A = 25°C.

7.8 Electrical Characteristics: LM2904, LM2904V

	PARAMETER		TES	ST COND	ITIONS ⁽¹⁾		MIN	TYP (2)	MAX	UNIT
OFFSET	VOLTAGE									
					Non-A suffix			3	7	
		V- = 5 V to maxi	mum: V 0 V: V	/ 1 /	devices	T _A = -40°C to 125°C			10	
Vos	Input offset voltage	V _S = 5 V to maxi	mum; $V_{CM} = 0 \text{ V}$; $V_{CM} = 0 \text{ V}$	0 - 1.4	A-suffix			1	2	mV
					devices	T _A = -40°C to 125°C			4	
dV _{OS} /d _T	Input offset voltage drift					T _A = -40°C to 125°C		7		μV/°C
PSRR	Input offset voltage vs power	V 5 V to 20 V					CE	400		
PSKK	supply (ΔV _{IO} /ΔV _S)	V _S = 5 V to 30 V					65	100		dB
V_{O1}/V_{O2}	Channel separation	f = 1 kHz to 20 k	Hz					120		dB
INPUT V	OLTAGE RANGE					1	T			
V _{CM}	Common-mode voltage range	V _S = 5 V to maxi	mum				(V-)		(V+) - 1.5	V
- CIVI						$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	(V-)		(V+) - 2	
CMRR	Common-mode rejection ratio	V _S = 5 V to maxi	mum; $V_{CM} = 0 V$				65	80		dB
INPUT B	IAS CURRENT					T	Т			
I _B	Input bias current	V _O = 1.4 V						-20	-250	nA
	<u> </u>					$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$			-500	
					Non-V suffix			2	50	
Ios	Input offset current	V _O = 1.4 V			device	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			300	nA
00	•				V-suffix			2	50	
					device	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			150	
dl _{OS} /d _T	Input offset current drift					$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		10		pA/°C
NOISE							1			
e _n	Input voltage noise density	f = 1 kHz						40		nV/√Hz
OPEN-LO	OOP GAIN					T	1			
A _{OL}	Open-loop voltage gain	V _S = 15 V; V _O =	1 V to 11 V; R _L ≥ 2	kΩ			25	100		V/mV
						$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$	15			
FREQUE	NCY RESPONSE									
GBW	Gain bandwidth product							0.7		MHz
SR	Slew rate	G = +1						0.3		V/µs
OUTPUT			1				T			
			$R_L \ge 10 \text{ k}\Omega$	1		T	V _S – 1.5			
				$V_S = ma$ 2 k Ω	aximum; R _L =				4	
			Non-V suffix device	-	aximum; R _L ≥	_				
	Valtaga autaut auriag fram vail	Positive rail		10 kΩ	axiiiidiii, INL =	T 40°C to 40°C		2	3	V
Vo	Voltage output swing from rail			V _S = ma	aximum; R _L =	$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			6	
			V-suffix device	2 kΩ						
				$V_S = ma$ 10 k Ω	aximum; R _L ≥			4	5	
		Negative rail		V _e = 5.	V: R₁ ≤ 10 kΩ	T _A = -40°C to 125°C		5	20	mV
				3 -	, , ,	A	-20	-30		
		V _S = 15 V; V _O =	$0 \text{ V; V}_{\text{ID}} = 1 \text{ V}$	Source		T _A = -40°C to 125°C	-10			
						A	10	20		mA
Io	Output current	V _S = 15 V; V _O =	15 V; $V_{ID} = -1 V$	Sink		T _A = -40°C to 125°C	5			
								30		
		$V_{ID} = -1 \ V; \ V_{O} = 3$	200 mV	V-suffix	suffix device device		12	40		μA
I _{sc}	Short-circuit current	V _S = 10 V; V _O =	V _S / 2	-1				±40	±60	mA
POWER			-				1			1
		V _O = 2.5 V; I _O = 0	0 A					350	600	
lα	Quiescent current per amplifier		$V_0 = \text{maximum} / 2;$	I _O = 0 A		$T_A = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		500	1000	μΑ
		• 5axiiiiaiii,	. _U =	2; I _O = 0 A		1	1	000	1000	

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 26 V for LM2904 and 32 V for LM2904V. All typical values are $T_A = 25^{\circ}C$.

7.9 Electrical Characteristics: LM158, LM158A

	PARAMETER	TE	ST COND	ITIONS ⁽¹⁾		MIN	TYP ⁽²⁾	MAX	UNIT
OFFSET	VOLTAGE						***		
011021	VOLINGE						3	5	
				LM158	T 5500 to 40500		<u> </u>	5	
Vos	Input offset voltage	V _S = 5 V to 30 V; V _{CM} = 0 V; V _C	= 1.4 V		$T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$			7	mV
				LM158A				2	
					$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			4	
dV _{OS} /d _T	Input offset voltage drift			LM158	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$		7		μV/°C
4.09.41	put chock rollage a.m.			LM158A	$T_A = -55$ °C to 125°C		7	15 ⁽³⁾	μ., σ
PSRR	Input offset voltage vs power supply	V _S = 5 V to 30 V				65	100		dB
	(ΔV _{IO} /ΔV _S)								
V _{O1} / V _{O2}		f = 1 kHz to 20 kHz					120		dB
INPUT V	OLTAGE RANGE								
		V _S = 5 V to 30 V		LM158		(V-)		(V+) - 1.5	
V _{CM}	Common-mode voltage range	V _S = 30 V		LM158A		. ,		(V
* CM	Common mode voltage range	$V_S = 5 \text{ V to } 30 \text{ V}$		LM158	T _A = -55°C to 125°C	(V-)		(V+) - 2	•
		V _S = 30 V		LM158A	1 _A = -55 C to 125 C	(V-)		(V+) - Z	
CMRR	Common-mode rejection ratio	V _S = 5 V to 30 V; V _{CM} = 0 V				70	80		dB
INPUT B	IAS CURRENT	!			*				
							-20	-150	
				LM158	T _A = -55°C to 125°C			-300	
l _B	Input bias current	V _O = 1.4 V			^		-15	-50	nA
				LM158A	T _A = -55°C to 125°C			-100	
					14 - 00 0 10 120 0		2	30	
				LM158	T FE9C to 10F9C				
los	Input offset current	V _O = 1.4 V			T _A = -55°C to 125°C			100	nA
				LM158A			2	10	
					$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			30	
dl _{os} /d _T	Input offset current drift						10		pA/°C
				LM158A	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$			200	
NOISE									
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
OPEN-L	OOP GAIN								
^	Ones less valters sein	\\ 45\\\\\ 4\\\\\\\\\\\\\\\\\\\\\\\\\\\	> 2 1:0			50	100		\//m\/
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11 \text{ V}; R_L$	_ < 2 K12		$T_A = -55^{\circ}C$ to 125°C	25			V/mV
FREQUE	NCY RESPONSE								
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1					0.3		V/µs
ОИТРИТ									
			V ₀ = 30 \	/; R _I = 2 kΩ	T _A = -55°C to 125°C			4	
		Positive rail	_	/; R _L ≥ 10 kΩ	14 - 00 0 10 120 0		2	3	V
Vo	Voltage output swing from rail	r ositive rail						1.5	v
		N		R _L ≥ 2 kΩ	T 5500 4 40500				.,,
		Negative rail	$V_S = 5 V;$	R _L ≤ 10 kΩ	$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$		5	20	mV
						-20	-30		
		$V_S = 15 \text{ V}; V_O = 0 \text{ V}; V_{ID} = 1 \text{ V}$	Source	LM158A				-60	
lo	Output current			$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	-10			mA	
-	•	$V_S = 15 \text{ V}; V_O = 15 \text{ V}; V_{ID} = -1 \text{ V}$			10	20			
		V		$T_A = -55^{\circ}C \text{ to } 125^{\circ}C$	5				
		$V_{ID} = -1 \text{ V}; V_{O} = 200 \text{ mV}$		<u></u>		12	30		μΑ
I _{sc}	Short-circuit current	V _S = 10 V; V _O = V _S / 2		-			±40	±60	mA
POWER	SUPPLY	•			+				
		V _O = 2.5 V; I _O = 0 A					350	600	
lα	Quiescent current per amplifier	V _S = 30 V; V _O = 15 V; I _O = 0 A			$T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$		500	1000	μA
		5 22 1, 10 = 10 1, 10 = 0 N			1		000	.000	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM158 and LM158A.

⁽²⁾ All typical values are T_A = 25°C.

⁽³⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

7.10 Electrical Characteristics: LM258, LM258A

	$= (V+) - (V-) = 5 V, I_A =$ PARAMETER		ST COND			MIN	TYP ⁽²⁾	MAX	UNIT
OFFSET	VOLTAGE								
							3	5	
				LM258	T _A = -25°C to 85°C			7	
Vos	Input offset voltage	$V_S = 5 \text{ V to } 30 \text{ V; } V_{CM} = 0 \text{ V; } V_C$) = 1.4 V		1 _A = -23 0 to 63 0		2	3	mV
				LM258A	T _A = -25°C to 85°C			4	
				LM258	1 _A = -23 C to 63 C		7	4	
dV _{OS} /d _T	Input offset voltage drift			LM258A	$T_A = -25^{\circ}\text{C to } 85^{\circ}\text{C}$		7	15	μV/°C
	Input offeet veltage ve newer euroly			LIVIZOOA			,	13	
PSRR	Input offset voltage vs power supply $(\Delta V_{IO}/\Delta V_{S})$	V _S = 5 V to 30 V				65	100		dB
V ₀₁ / V ₀₂	Channel separation	f = 1 kHz to 20 kHz					120		dB
INPUT V	OLTAGE RANGE				*			•	
		V _S = 5 V to 30 V		LM258		0.()		04) 45	
		V _S = 30 V		LM258A		(V–)		(V+) - 1.5	
V _{CM}	Common-mode voltage range	V _S = 5 V to 30 V		LM258					V
		V _S = 30 V		LM258A	$T_A = -25^{\circ}\text{C to } 85^{\circ}\text{C}$	(V–)		(V+) – 2	
CMRR	Common-mode rejection ratio	V _S = 5 V to 30 V; V _{CM} = 0 V				70	80		dB
INPUT E	IAS CURRENT				ļ				
							-20	-150	
				LM258	T _A = -25°C to 85°C			-300	
l _B	Input bias current	V _O = 1.4 V					-15	-80	nA
				LM258A	T _A = -25°C to 85°C			-100	
							2	30	
				LM258	T _A = -25°C to 85°C			100	
los	Input offset current	V _O = 1.4 V					2	15	nA
				LM258A	T _A = -25°C to 85°C			30	
					A		10		
dl _{os} /d _T	Input offset current drift			LM258A	T _A = -25°C to 85°C			200	pA/°C
NOISE		II.							
e _n	Input voltage noise density	f = 1 kHz					40		nV/√ Hz
	OOP GAIN	1			l.			ļ	
						50	100		
A _{OL}	Open-loop voltage gain	$V_S = 15 \text{ V}; V_O = 1 \text{ V to } 11 \text{ V}; R_I$	≥ 2 kΩ		T _A = -25°C to 85°C	25			V/mV
FREQUE	ENCY RESPONSE	1							
GBW	Gain bandwidth product						0.7		MHz
SR	Slew rate	G = +1					0.3		V/µs
OUTPU	-	1						ļ	
			V _S = 30 \	/; R _I = 2 kΩ	T _A = -25°C to 85°C			4	
		Positive rail	_	/; R _L ≥ 10 kΩ			2	3	V
Vo	Voltage output swing from rail			R ₁ ≥ 2 kΩ				1.5	
		Negative rail	-	R _L ≤ 10 kΩ	T _A = -25°C to 85°C		5	20	mV
			3 - 1		A	-20	-30		
		V _S = 15 V; V _O = 0 V; V _{ID} = 1 V	Source	LM258A				-60	
		$v_S = 15 \text{ V}; v_O = 0 \text{ V}; v_{ID} = 1 \text{ V}$ Source			T _A = -25°C to 85°C	-10			mA
lo	Output current	V _S = 15 V; V _O = 15 V; V _{ID} = -1 Sink			.,	10	20		
		$V_S = 15 \text{ V}; V_O = 15 \text{ V}; V_{ID} = -1 \text{ V}$		T _A = -25°C to 85°C	5				
		V _{ID} = -1 V; V _O = 200 mV	1		A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12	30		μA
I _{sc}	Short-circuit current	$V_S = 10 \text{ V}; V_O = V_S / 2$					±40	±60	mA
	SUPPLY	,							
		V _O = 2.5 V; I _O = 0 A					350	600	
lα	Quiescent current per amplifier	$V_S = 30 \text{ V}; V_O = 15 \text{ V}; I_O = 0 \text{ A}$			$T_A = -25^{\circ}\text{C to } 85^{\circ}\text{C}$		500	1000	μΑ
		5 22 1, 10 = 10 1, 10 = 0 1						.000	

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum V_S for testing purposes is 30 V for LM258 and LM258A. All typical values are $T_A=25^{\circ}\mathrm{C}$.

7.11 Typical Characteristics

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}C$, $V_S = 36$ V (±18 V), $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2 (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}C$, $V_S = 36$ V (±18 V), $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2 (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}\text{C}$, $V_S = 36 \text{ V}$ (±18 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10 \text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}C$, $V_S = 36$ V (±18 V), $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2 (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}C$, $V_S = 36$ V (±18 V), $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2 (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}\text{C}$, $V_S = 36 \text{ V}$ (±18 V), $V_{CM} = V_S / 2$, $R_{LOAD} = 10 \text{ k}\Omega$ connected to $V_S / 2$ (unless otherwise noted).

Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with $T_A = 25^{\circ}C$, $V_S = 36$ V (±18 V), $V_{CM} = V_S$ / 2, $R_{LOAD} = 10$ k Ω connected to V_S / 2 (unless otherwise noted).

图 38. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency

7.12 Typical Characteristics

Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358A, LM358A, LM2904, and LM2904V.

Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358A, LM2904, and LM2904V.

8 Parameter Measurement Information

图 49. Unity-Gain Amplifier

图 50. Noise-Test Circuit

图 51. Test Circuit, G = -1, for THD+N and Small-Signal Step Response

9 Detailed Description

9.1 Overview

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range specified in the *Recommended Operating Conditions* section, and V_S is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

9.2 Functional Block Diagram - LM358B, LM358BA, LM2904B, LM2904BA

9.3 Feature Description

9.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (B Version).

9.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.5-V/µs slew rate (B Version).

9.3.3 Input Common Mode Range

The valid common mode range is from device ground to $V_S - 1.5 \text{ V}$ ($V_S - 2 \text{ V}$ across temperature). Inputs may exceed V_S up to the maximum V_S without device damage. At least one input must be in the valid input common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V- then input current should be limited to 1 mA and the output phase is undefined.

9.4 Device Functional Modes

These devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application.

10 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before V_S for flexibility in multiple supply circuits.

10.2 Typical Application

A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

图 52. Application Schematic

10.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

10.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using 公式 1 and 公式 2:

$$A_{V} = \frac{VOUT}{VIN}$$

$$A_{V} = \frac{1.8}{-0.5} = -3.6$$
(2)

Once the desired gain is determined, choose a value for R_I or R_F . [Subscripts should be fixed in the accompanying figures and equations also.] Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 k Ω for R_I which means 36 k Ω is used for R_F . This was determined by $\Delta \lesssim 3$.

$$A_{V} = -\frac{RF}{RI}$$
 (3)

Typical Application (接下页)

10.2.3 Application Curve

图 53. Input and Output Voltages of the Inverting Amplifier

11 Power Supply Recommendations

CAUTION

Supply voltages larger than specified in the recommended operating region can permanently damage the device (see the *Absolute Maximum Ratings*).

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see the *Layout* section.

12 Layout

12.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. [Things in parallel never cross, by definition]
- Place the external components as close to the device as possible. Keeping R_F and R_G close to the inverting
 input minimizes parasitic capacitance, as shown in *Layout Examples*.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

12.2 Layout Examples

图 54. Operational Amplifier Board Layout for Noninverting Configuration

图 55. Operational Amplifier Schematic for Noninverting Configuration

13 器件和文档支持

13.1 文档支持

13.1.1 相关文档

• 德州仪器 (TI), 《电路板布局技巧》。

13.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。

器件 产品文件夹 立即订购 技术文档 工具与软件 支持和社区 单击此处 单击此处 单击此处 LM158 单击此处 单击此处 LM158A 单击此处 单击此处 单击此处 单击此处 单击此处 LM258 单击此处 单击此处 单击此处 单击此处 单击此处 LM258A 单击此处 LM358 单击此处 单击此处 单击此处 LM358A 单击此处 单击此处 LM358B中为 LM358B 和 LM2904B 器件添 单击此处 单击此处 单击此处 单击此处 单击此处 加了预览标识 I M2904 单击此处 单击此处 单击此处 单击此处 单击此处 单击此处 单击此处 LM2904B 单击此处 单击此处 单击此处 LM2904V 单击此处 单击此处 单击此处 单击此处 单击此处

表 1. 相关链接

13.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

13.4 社区资源

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

13.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

13.7 术语表

SLYZ022 - TI 术语表。

本术语表列出并解释了术语、首字母缩略词和定义。

www.ti.com.cn

14 机械、封装和可订购信息

以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。数据如有变更,恕不另行通知和修订此文档。如需获取此数据表的浏览器版本,请查看左侧的导航面板。

www.ti.com

16-Nov-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-87710012A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
5962-8771001PA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
5962-87710022A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
5962-8771002PA	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158 MW8	ACTIVE	WAFERSALE	YS	0	1	RoHS & Green	Call TI	Level-1-NA-UNLIM	-55 to 125		Samples
LM158AFKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
LM158AJG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	LM158AJG	Samples
LM158AJGB	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158FKB	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
LM158JG	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	LM158JG	Samples
LM158JGB	ACTIVE	CDIP	JG	8	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
LM258AD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	
LM258ADGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG SN	Level-1-260C-UNLIM	-25 to 85	(M3L, M3P, M3S, M3 U)	Samples
LM258ADR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples

16-Nov-2021 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM258AP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-25 to 85	LM258AP	Samples
LM258APE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Samples
LM258D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	
LM258DG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	
LM258DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG SN	Level-1-260C-UNLIM	-25 to 85	(M2L, M2P, M2S, M2 U)	Samples
LM258DGKRG4	LIFEBUY	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-25 to 85	(M2L, M2P, M2S, M2 U)	
LM258DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DRG3	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM258PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM2904AVQDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904BAIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904BA	Samples
LM2904BIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904BIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	28BB	Samples
LM2904BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904B	Samples
LM2904BIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904B	Samples
LM2904D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	
LM2904DE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	

16-Nov-2021 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904DG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	
LM2904DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG SN	Level-1-260C-UNLIM	-40 to 125	(MBL, MBP, MBS, MB U)	Samples
LM2904DGKRG4	LIFEBUY	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	(MBL, MBP, MBS, MB U)	
LM2904DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG3	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	-40 to 125	LM2904P	Samples
LM2904PSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PW	ACTIVE	TSSOP	PW	8	150	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWRG3	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904PWRG4-JF	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Samples
LM2904QDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904QDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Samples
LM2904VQDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQDRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples
LM2904VQPWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Samples

16-Nov-2021 www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM358AD	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	
LM358ADE4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	
LM358ADG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	
LM358ADGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG SN	Level-1-260C-UNLIM	0 to 70	(M6L, M6P, M6S, M6 U)	Samples
LM358ADGKRG4	LIFEBUY	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	(M6L, M6P, M6S, M6 U)	
LM358ADR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358AP	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APW	ACTIVE	TSSOP	PW	8	150	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358BAIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	L358BA	Samples
LM358BIDDFR	ACTIVE	SOT-23-THIN	DDF	8	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358	Samples
LM358BIDGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	-40 to 85	358B	Samples
LM358BIDR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358B	Samples
LM358BIPWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LM358B	Samples
LM358D	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	
LM358D-JF	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	
LM358DG4	LIFEBUY	SOIC	D	8	75	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	
LM358DGKR	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU NIPDAUAG SN	Level-1-260C-UNLIM	0 to 70	(M5L, M5P, M5S, M5 U)	Samples
LM358DGKRG4	LIFEBUY	VSSOP	DGK	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	(M5L, M5P, M5S, M5	

PACKAGE OPTION ADDENDUM

www.ti.com 16-Nov-2021

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)			U)	
LM358DR	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRE4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRG3	ACTIVE	SOIC	D	8	2500	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRG4	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358P	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU SN	N / A for Pkg Type	0 to 70	LM358P	Samples
LM358PE3	ACTIVE	PDIP	Р	8	50	RoHS & Non-Green	SN	N / A for Pkg Type	0 to 70	LM358P	Samples
LM358PE4	ACTIVE	PDIP	Р	8	50	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	LM358P	Samples
LM358PSR	ACTIVE	SO	PS	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PW	ACTIVE	TSSOP	PW	8	150	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWR	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRG3	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	SN	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRG4	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples
LM358PWRG4-JF	ACTIVE	TSSOP	PW	8	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

PACKAGE OPTION ADDENDUM

www.ti.com 16-Nov-2021

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM258A, LM2904, LM2904B:

Automotive: LM2904-Q1, LM2904B-Q1

Enhanced Product: LM258A-EP, LM2904-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

www.ti.com 13-Nov-2021

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRG4	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BIDDFR	SOT- 23-THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2904BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG4-JF	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358BAIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358BIDDFR	SOT- 23-THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM358BIDGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358BIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM358BIPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358PSR	SO	PS	8	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG4-JF	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

^{*}All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM258ADGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM258ADR	SOIC	D	8	2500	853.0	449.0	35.0
LM258ADR	SOIC	D	8	2500	340.5	336.1	25.0
LM258ADR	SOIC	D	8	2500	364.0	364.0	27.0
LM258ADRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM258ADRG4	SOIC	D	8	2500	853.0	449.0	35.0
LM258DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM258DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM258DR	SOIC	D	8	2500	340.5	336.1	25.0
LM258DR	SOIC	D	8	2500	364.0	364.0	27.0
LM258DR	SOIC	D	8	2500	853.0	449.0	35.0
LM258DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM258DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM258DRG4	SOIC	D	8	2500	853.0	449.0	35.0
LM258DRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQDRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM2904AVQPWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904AVQPWRG4	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904BAIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM2904BIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904BIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904BIPWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM2904DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM2904DR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904DR	SOIC	D	8	2500	364.0	364.0	27.0
LM2904DR	SOIC	D	8	2500	853.0	449.0	35.0
LM2904DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM2904DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM2904DRG4	SOIC	D	8	2500	853.0	449.0	35.0
LM2904DRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM2904PSR	SO	PS	8	2000	853.0	449.0	35.0
LM2904PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904PWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904PWRG4	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904PWRG4-JF	TSSOP	PW	8	2000	853.0	449.0	35.0
LM2904QDR	SOIC	D	8	2500	350.0	350.0	43.0
LM2904VQDR	SOIC	D	8	2500	340.5	336.1	25.0
LM2904VQPWR	TSSOP	PW	8	2000	853.0	449.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2904VQPWRG4	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358ADGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358ADR	SOIC	D	8	2500	853.0	449.0	35.0
LM358ADR	SOIC	D	8	2500	364.0	364.0	27.0
LM358ADR	SOIC	D	8	2500	340.5	336.1	25.0
LM358ADRG4	SOIC	D	8	2500	853.0	449.0	35.0
LM358ADRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM358APWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358APWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358APWRG4	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358BAIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM358BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
LM358BIDGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358BIDR	SOIC	D	8	2500	340.5	336.1	25.0
LM358BIPWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
LM358DGKR	VSSOP	DGK	8	2500	366.0	364.0	50.0
LM358DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358DR	SOIC	D	8	2500	340.5	336.1	25.0
LM358DR	SOIC	D	8	2500	853.0	449.0	35.0
LM358DR	SOIC	D	8	2500	364.0	364.0	27.0
LM358DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM358DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM358DRG4	SOIC	D	8	2500	853.0	449.0	35.0
LM358DRG4	SOIC	D	8	2500	340.5	336.1	25.0
LM358PSR	SO	PS	8	2000	853.0	449.0	35.0
LM358PWR	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358PWRG4	TSSOP	PW	8	2000	853.0	449.0	35.0
LM358PWRG4-JF	TSSOP	PW	8	2000	853.0	449.0	35.0

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

PLASTIC SMALL OUTLINE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司