DECODER, ENCODER, PRIORITY ENCODER, DEMULTIPLEXER

• A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2^n unique output lines.

- Extract "Information" from the code
- Binary Decoder
- Example: 2-to-4 Line Decoder

Only *one* lamp will turn on

• 2-to-4 Line Decoder

$I_1 I_0$	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$$Y_3 = I_1 I_0$$
$$Y_1 = \bar{I}_1 I_0$$

$$Y_2 = I_1 \, \bar{I}_0$$

$$Y_0 = \bar{I}_1 \, \bar{I}_0$$

3-TO-8 LINE DECODER

Truth table:

$I_2 I_1 I_0$	Y_{7}	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_{o}
0 0 0	0	0	0	0	0	0	0	1
0 0 1	0	0	0	0	0	0	1	0
0 1 0	0	0	0	0	0	1	0	0
0 1 1	0	0	0	0	1	0	0	0
1 0 0	0	0	0	1	0	0	0	0
1 0 1	0	0	1	0	0	0	0	0
1 1 0	0	1	0	0	0	0	0	0
1 1 1	1	0	0	0	0	0	0	0

Fig: 3X8 decoder

• "Enable" Control

E	$I_1 I_0$	Y_3	Y_2	Y_1	Y_{0}
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

Active-High / Active-Low

$I_1 I_0$	Y_3	Y_2	Y_1	Y_0
0 0	0	0	0	1
0 1	0	0	1	0
1 0	0	1	0	0
1 1	1	0	0	0

$I_1 I_0$	Y_3	Y_2	Y_1	Y_0
0 0	1	1	1	0
0 1	1	1	0	1
1 0	1	0	1	1
1 1	0	1	1	1

Fig. 4-19 2-to-4-Line Decoder with Enable Input

DESIGN A 3X8 LINE DECODER USING TWO 2X4 DECODERS

Expansion

$I_2 I_1 I_0$	Y_{7}	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0	0	0	0	0	0	0	0	1
0 0 1	0	0	0	0	0	0	1	0
0 1 0	0	0	0	0	0	1	0	0
0 1 1	0	0	0	0	1	0	0	0
100	0	0	0	1	0	0	0	0
1 0 1	0	0	1	0	0	0	0	0
1 1 0	0	1	0	0	0	0	0	0
1 1 1	1	0	0	0	0	0	0	0

BOOLEAN FUNCTION IMPLEMENTATION USING DECODERS

• Design and implement $F = \Sigma(3,5,6,7)$ using a 3-to-8 decoder.

Truth Table:

ABC	<u> </u> F_
000	0
0 0 1	0
0 1 0	0
0 1 1	1
100	0
101	1
1 1 0	1
111	1

BOOLEAN FUNCTION IMPLEMENTATION USING DECODERS

- Each output is a minterm
- All minterms are produced
- Sum the required minterms

Example: Full Adder

$$S(x, y, z) = \sum (1, 2, 4, 7)$$

$$C(x, y, z) = \sum (3, 5, 6, 7)$$

ENCODERS

- Does reverse operation to decoder
- An encoder has 2^n (or fewer) input lines and n output lines
- Constraint only one input is active at a time
- Example: 4X2, 8X3,16X4, 512X9 encoder etc

ENCODERS

• Octal-to-Binary Encoder (8-to-3)

I_7	<i>I</i> ₆	I_5	I_4	I_3	I_2	I_1	I_{θ}	$Y_2 Y_1$	Y_0
0	0	0	0	0	0	0	1	0 0	0
0	0	0	0	0	0	1	0	0 0	1
0	0	0	0	0	1	0	0	0 1	0
0	0	0	0	1	0	0	0	0 1	1
0	0	0	1	0	0	0	0	1 0	0
0	0	1	0	0	0	0	0	1 0	1
0	1	0	0	0	0	0	0	1 1	0
1	0	0	0	0	0	0	0	1 1	1

$$Y_2 = I_7 + I_6 + I_5 + I_4$$

 $Y_1 = I_7 + I_6 + I_3 + I_2$
 $Y_0 = I_7 + I_5 + I_3 + I_1$

PRIORITY ENCODERS

- Encoder with priority function
 - Multiple inputs may be true simultaneously
 - Higher priority input gets the precedence

PRIORITY ENCODERS

• 4-Input Priority Encoder

$I_3 I_2 I_1 I_0$	$Y_1 Y_0$
0 0 0 0	X X
0 0 0 1	0 0
0 0 1 x	0 1
0 1 x x	1 0
1 x x x	1 1

$$Y_1 = I_3 + \bar{I}_3 I_2 = I_3 + I_2$$

$$Y_0 = I_3 + \bar{I}_3 \bar{I}_2 I_1 = I_3 + \bar{I}_2 I_1$$

DEMULTIPLEXERS

- A circuit receives information from a single line and directs it to one of 2^n possible output lines.
- The selection of a specific output line is controlled by the bit values of n selection lines.

DEMULTIPLEXERS / DECODERS

• A decoder with enable input can function as a demultiplexer

E	$I_1 I_0$	Y_3	Y_2	Y_1	Y_{θ}
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

DEMULTIPLEXERS

I	$S_1 S_0$	Y_3	Y_2	Y_1	Y_0
0	X X	0	0	0	0
1	0 0	0	0	0	1
1	0 1	0	0	1	0
1	1 0	0	1	0	0
1	1 1	1	0	0	0

• Using a decoder and external gates, design the combinational circuit defined by the following three boolean functions:

$$F_1 = x'y'z' + xz = \sum (0, 5, 7)$$

$$F_2 = xyz' + x'y = \sum (2, 3, 4)$$

$$F_3 = x'y'z + xy = \sum (1, 6, 7)$$

• Implement the following Boolean function with a 4 X 1 multiplexer and external gates.

$$F(A, B, C, D) = \sum (1, 3, 4, 11, 12, 1, 3, 14, 15)$$

• Implement the following Boolean function with a 4 X 1 multiplexer and external gates.

$$F(A, B, C, D) = \sum (1, 2, 4, 7, 8, 9, 10, 11, 13, 15)$$

• Construct a 16 X 1 multiplexer with two 8 X 1 and one 2 X 1 multiplexers. Use block diagrams