Higgs Boson Production and Properties in the H→ZZ→4ℓ Channel

Adish Vartak
On behalf of the CMS Collaboration
ICHEP 2014

$H \rightarrow ZZ \rightarrow 4\ell$ Overview

- "Golden" channel for Higgs discovery and measurements
 - High resolution and high S/B
- Statistically parched
 - ~20 signal events expected with current data
 - Need high lepton reconstruction, selection efficiency to catch lowest p_T leptons
- We attempt to squeeze the most possible information from available events
 - Exploit the rich final state topology to enhance search sensitivity and then to measure Higgs properties
 - Use event-by-event mass uncertainties to measure mass

Event Selection

- Require 20/10 GeV leptons in the event (consistency with trigger)
- Lepton selection : $p_T > 7(5)$ GeV, $|\eta| < 2.5(2.4)$ for $e(\mu)$, ID+isolation+IP requirements
- Construct Z candidates and recover FSR photons (ΔR<0.5)
- Select "Z₁" candidate with mass closest to Z peak (40 < m(Z₁) < 120 GeV)
- Select " Z_2 " candidate from remaining highest p_T leptons (12 < m(Z_2) < 120 GeV)
- Require $m(\ell^+\ell^-) > 4$ GeV to suppress QCD

Search Strategy (I)

- ZZ→4ℓ events form the dominant and irreducible background
- Some additional reducible background from sources such as Z+jets, ttbar, etc.
- Higgs signal produces a sharp bump on a smooth background mass distribution
- We can see the signal peak building up around $m(4\ell) \sim 125 \text{ GeV}$

Search Strategy (I)

- ZZ→4ℓ events form the dominant and irreducible background
- Some additional reducible background from sources such as Z+jets, ttbar, etc.
- Higgs signal produces a sharp bump on a smooth background mass distribution
- We can see the signal peak building up around $m(4\ell) \sim 125 \text{ GeV}$

Channel	4 <i>e</i>	2 <i>e</i> 2µ	4μ	4ℓ
ZZ background	1.1 ± 0.1	3.2 ± 0.2	2.5 ± 0.2	6.8 ± 0.3
Z + X background	0.8 ± 0.2	1.3 ± 0.3	0.4 ± 0.2	2.6 ± 0.4
All backgrounds	1.9 ± 0.2	4.6 ± 0.4	2.9 ± 0.2	9.4 ± 0.5
$m_H = 125 \text{ GeV}$	3.0 ± 0.4	7.9 ± 1.0	6.4 ± 0.7	17.3 ± 1.3
$m_H = 126 \text{ GeV}$	3.4 ± 0.5	9.0 ± 1.1	7.2 ± 0.8	19.6 ± 1.5
Observed	4	13	8	25

Search Strategy (II)

 Use additional information in the event (two Z masses, five production & decay angles) to increase signal-background separation

 Construct a kinematic discriminant with these inputs using LO matrix elements

$$\mathcal{D}_{\text{bkg}}^{\text{kin}} = \frac{\mathcal{P}_{0^{+}}^{\text{kin}}}{\mathcal{P}_{0^{+}}^{\text{kin}} + \mathcal{P}_{\text{bkg}}^{\text{kin}}} = \left[1 + \frac{\mathcal{P}_{\text{bkg}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}|m_{4\ell})}{\mathcal{P}_{0^{+}}^{\text{kin}}(m_{Z_{1}}, m_{Z_{2}}, \vec{\Omega}|m_{4\ell})}\right]^{-1}$$

Such discriminants also used to measure Higgs properties like spin-parity, Higgs width

 D^{kin} v/s m(4 ℓ) distribution Data overlaid on signal+background prediction

Search Strategy (III)

- Probe the different production modes of the Higgs boson
- Categorize events as dijet-tagged and untagged
- Dijet tagged events: A linear discriminant constructed using Δη(jj) and m(jj) to separate VBF from gluon fusion
- Untagged events: The p_T of the four-lepton system used to discriminate between VBF and gluon fusion
- Search performed using a 3D fit with m(4ℓ), kinematic discriminant, dijet discriminant (or four-lepton p_T)

Search Results

1D: $m(4\ell)$ only

2D : $m(4\ell)$, kinematic discriminant

3D : $m(4\ell)$, kinematic discriminant, dijet

discriminant (or four-lepton pt)

 6.8σ signal observed for $m_H = 125.7$ GeV

Phys. Rev. D 89, 092007 (2014)

Mass Measurement

- H→ZZ→4ℓ channel is highly sensitive to the Higgs mass
- Precise measurement of lepton momenta is critical
- Multivariate regression used to improve the measurement of electron momentum
- Corrections applied to account for differences in momentum scale/resolution between data and simulation
- Event-by-event mass uncertainties used to optimally exploit the available data
- Mass measurement performed as a 3D fit using m(4ℓ), kinematic discriminant, and event-by-event mass uncertainties

Channel	Measured mass (GeV)		
$\overline{4e}$	$126.2^{+1.5}_{-1.8}$		
$2e2\mu$	$126.3_{-0.7}^{+0.9}$		
4μ 4ℓ	$125.1_{-0.9}^{+0.6}$		
4ℓ	$125.6 \pm 0.4(\text{stat}) \pm 0.2(\text{syst})$		

Dedicated talk on the mass measurement by M. Sani

Phys. Rev. D 89, 092007 (2014)

Signal Strength

- 3D search analysis allows to disentangle the production modes
- Production modes grouped in two categories:
 - → Vector boson induced (VBF, WH, ZH)
 - → Fermion induced (gluon fusion, ttH)

	VBF,VH	ggH,ttH	Overall
μ	$1.45^{+0.89}_{-0.62}$	$0.83^{+0.31}_{-0.25}$	$0.93^{+0.26}_{-0.23}(\text{stat})^{+0.13}_{-0.09}(\text{syst})$

Phys. Rev. D 89, 092007 (2014)

Width Measurement

- Measurement of the Higgs width from the observed peak is limited by detector resolution (~1 GeV)
 - Width of a 125.6 GeV SM Higgs boson : 4.15 MeV
 - Direct fit to the signal resonance gives Γ_H
 3.4 GeV at 95% CL
- It has been recently shown* that Γ_H can be constrained (with mild model dependence) at few 10s of MeV with current data using off-shell signal events

$$\sigma_{
m gg o H o ZZ}^{
m on\text{-}shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{m_{
m H} \Gamma_{
m H}} \qquad \sigma_{
m gg o H o ZZ}^{
m off\text{-}shell} \sim rac{g_{
m ggH}^2 g_{
m HZZ}^2}{(2m_{
m Z})^2}$$

- * JHEP 08 116 (2012); Phys. Rev. D 88 054024 (2013);
- * arxiv:1311.3589

Dedicated talk on the width measurement by L. Quertenmont

Γ_H < 33 MeV at 95% CL

arxiv:1405.3455 (Accepted by PLB)

Spin-Parity Tests

- SM Higgs boson expected to be a scalar particle
- This needs to be established in data
- Perform hypothesis tests w.r.t. spin-1 or spin-2 models using dedicated kinematic discriminants

All spin-2 models considered are excluded at 95% CL or higher

Any mixture of 1+ and 1- states excluded at 99% CL or higher

Dedicated talk on spin-parity studies by E. Di Marco

Probing Spin-0 Couplings

- We have excluded the pure pseudoscalar hypothesis at greater than 99% CL
- Extensive set of studies of the tensor structure of the spin-0 amplitude have been performed

fit for the effective fraction of the 0-component

More results in the talk by E. Di Marco

Summary

- A Higgs boson candidate observed in the H→ZZ→4I search with a local significance of 6.8σ
- Several properties of the particle have been measured with this channel
 - ✓ Mass: 125.6±0.4(stat)±0.2(syst) GeV
 - ✓ Signal strength consistent with SM prediction
 - √ Width constrained to Γ_H < 33 MeV at 95% CL</p>
 - ✓ Spin-parity of the particle consistent with a scalar
- The Higgs boson candidate is consistent with the SM Higgs boson

Backup

Signal Efficiency

Fraction of signal events selected

Kinematic Distributions

Events in the mass range 121.5-130.5 GeV

Four-lepton Mass Distribution

Search Results Upto 1 TeV

Limits

p-values

SM Higgs boson excluded at 95% in the range 114.5-119 GeV and 129.5-832 GeV

No significant excess except for $m_H = 125.7 \text{ GeV}$

Signal Resolution By Channel

Mass and On-shell Width Measurement

Lepton Scale Uncertainties

Difference in mass scale between data and simulation

Estimates of scale uncertainty by channel:

0.1% (4 μ), 0.1% (2 $e2\mu$), 0.3% (4e)

Measurement of $Z \rightarrow 4\ell$ Mass Peak

Best fit mass: 91.1 ± 0.4 GeV