Тепловые двигатели

1. КПД теплового двигателя работающего по циклу Карно можно рассчитать по формуле

A)
$$\eta = \frac{T_1 - T_2}{T_2}$$
 B) $\eta = \frac{T_1 + T_2}{T_2}$ B) $\eta = \frac{T_1 + T_2}{T_1}$ Γ $\eta = \frac{T_1 - T_2}{T_1}$

2. КПД теплового двигателя можно рассчитать по формуле

A)
$$\eta = \frac{Q_1 - Q_2}{Q_1}$$
 B) $\eta = \frac{Q_1 + Q_2}{Q_2}$ **B)** $\eta = \frac{Q_1 + Q_2}{Q_1}$ Γ $\eta = \frac{Q_1 - Q_2}{Q_2}$

- **3.** Газ, участвуя в циклическом процессе, от нагревателя получил $Q_1 = 500$ Дж, а холодильнику передал $Q_2 = 400$ Дж теплоты. Определите КПД η цикла.
- **4.** Идеальная машина Карно работает с нагревателем, имеющим температуру $T_1 = 500~\mathrm{K}$, и холодильником с температурой $T_2 = 300~\mathrm{K}$. Каков КПД η машины Карно?
- **5.** Определите количество теплоты Q_1 , полученное рабочим телом за цикл, если термический коэффициент полезного действия $\eta_t = 24$ %. А работа совершенная рабочим телом теплового двигателя за цикл, A = 60 кДж
- **6.** Определите КПД η идеальной тепловой машины Карно, температура холодильника которой $T_2=300$ K, а разность температур нагревателя и холодильника $\Delta T=100$ K.
- 7. Определите значение работы A, совершённой рабочим телом двигателя за цикл, если термический коэффициент полезного действия $\eta_t=16$ %, а при сгорании топлива в тепловом двигателе выделилось количество теплоты $Q_1=400~\mathrm{kJm}$.
- **8.** Тепловая машина с КПД $\eta = 20$ % получает от нагревателя $Q_1 = 10$ кДж теплоты. Сколько теплоты Q_2 передается холодильнику?
- **9.** Машина Карно совершает за цикл работу A=1,2 кДж, получая от нагревателя $Q_1=3$ кДж теплоты. Температура нагревателя $T_1=1500$ К. Определите температуру T_2 холодильника.
- **10.** КПД идеальной тепловой машины $\eta = 10$ %. Какую полезную работу А совершает машина за цикл, если холодильнику при этом передается $|Q_2| = 900$ Дж теплоты?
- **11.** Машина Карно совершает за цикл работу A=1,2 кДж, отдавая холодильнику $|Q_2|=800$ Дж теплоты. Температура холодильника $t_2=7$ °C. Определите температуру T_1 нагревателя.
- **12.** Температура нагревателя идеального теплового двигателя $t_1 = 327$ °C, а температура холодильника $T_2 = 360$ К. Какое количество теплоты Q_1 получает рабочее тело двигателя за один цикл, если при этом оно совершает работу A = 600 Дж?
- **13.** Определите КПД η тракторного двигателя, который развивает мощность $P=95~\mathrm{kBr}$ и расходует за $\Delta t=2,0$ ч дизельного топлива ($q=42~\mathrm{MДж/kr}$) массой $m=50~\mathrm{kr}$.

- **14.** Идеальная тепловая машина совершает за один цикл работу A = 73.5 кДж. Температура нагревателя $t_1 = 100 \text{ °C}$, температура холодильника $t_2 = 0 \text{ °C}$. Найдите количество теплоты $|Q_2|$, отдаваемое за один цикл холодильнику.
- **15.** В идеальной тепловой машине рабочим веществом является пар с начальной температурой $T_1 = 710$ K, температура отработанного пара $T_2 = 350$ K. Определите среднюю полезную мощность P машины, если от нагревателя поступает в среднем $Q_1 = 142$ кДж теплоты в минуту.
- **16.** Двигатель реактивного самолёта с КПД $\eta = 20$ % при полёте со скоростью $\upsilon = 1800$ км/ч развивает силу тяги F = 88 кН. Определите массу m сгоревшего керосина за время $\Delta t = 1,0$ ч полёта. Удельная теплота сгорания керосина $q = 4,6\cdot10^7$ Дж/кг.
- **17.** Автомобиль движется со средней скоростью $\upsilon = 90$ км/ч. Определите массу дизельного топлива (q = 4,2·10⁷ Дж/кг), расходуемого на пути s = 100 км, если средняя мощность двигателя автомобиля P = 120 кВт, а его эффективный коэффициент полезного действия $\eta_2 = 30$ %.
- **18.** Идеальная тепловая машина, работающая при нормальных условиях окружающего воздуха ($t_2=0$ °C), который для нее является холодильником, поднимает груз массой $m=400~\rm kr$. Рабочее тело машины получает от нагревателя с температурой $t_1=200~\rm ^{\circ}C$ количество теплоты $Q=80~\rm kДж$. На какую максимальную высоту h поднимает груз эта машина? Трением пренебречь.
- **19.** Автомобиль движется со средней скоростью $\upsilon=90$ км/ч. Определите среднюю мощность, развиваемую двигателем, если объем дизельного топлива (q = 4,2·10⁷ Дж/кг, $\rho=800$ кг/м³), расходуемого на пути s = 100 км, составляет V = 40 л, а его эффективный коэффициент полезного действия $\eta_{\scriptscriptstyle 9}=28$ %.
- **20.** Идеальный газ совершает цикл 1-2-3-1, показанный на рисунке. Найдите КПД тепловой машины, работающей по данному циклу, если рабочее тело идеальный одноатомный газ.

21. Идеальный газ совершает цикл 1-2-3-4-1, показанный на рисунке. Найдите КПД тепловой машины, работающей по данному циклу, если рабочее тело — идеальный одноатомный газ.

Ответы

3. $\eta = 20 \%$; 4. $\eta = 40 \%$; 5. $Q_1 = 250 \text{ кДж}$; 6. $\eta = 25 \%$; 7. A = 64 кДж; 8. $Q_2 = 8 \text{ кДж}$; 9. $T_2 = 900 \text{ K}$; 10. A = 100 Дж; 11. $T_1 = 700 \text{ K}$; 12. $Q_1 = 1500 \text{ Дж}$; 13. $\eta = 33 \%$; 14. $Q_2 = 198,7 \text{ кДж}$; 15. P = 12 кВт; 16. P = 12 kBT; 17. P = 38 kF; 18. P = 8,5 M; 19. P = 94 kBT;

20. $\eta = 8.7 \%$; **21.** $\eta = 15.6 \%$