IPv6-foredrag

Grunnleggende

Trond Endrestøl

Fagskolen Innlandet

18. september 2013

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser

- ► Filene til foredraget er tilgjengelig gjennom:
 - Subversion: svn co \
 svn://svn.ximalas.info/ipv6-foredrag-grunnleggende
 - Web: http://svnweb.ximalas.info/viewvc.cgi/ ipv6-foredrag-grunnleggende/
- ► Hovedfila bærer denne identifikasjonen:

```
$Ximalas: trunk/ipv6-foredrag-grunnleggende.tex 5
2013-09-18 12:10:46Z trond $
```

Hva er IPv6? Hvorfor trenger vi IPv6? IPv6 ved Fagskolen Innlandet RFC-er om IPv6

IPv6-header

Adresser

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser Hva er IPv6? Hvorfor trenger vi IPv6? IPv6 ved Fagskolen Innlandet RFC-er om IPv6

Kort om IPv6 Hva er IPv6?

- ► En lag-3-protokoll ment å erstatte IPv4
- ► Har eksistert siden desember 1995, RFC 1883
- Enkel grunnheader med fast lengde
- ► Flere utvidelsesheadere, riktig rekkefølge er viktig
- 128-bit adresser
- Ny versjon av ICMP: ICMPv6
- ► ARP og RARP for IPv6 er en del av ICMPv6
 - ▶ Ikke nødvendig med ekstra lim for adressene i lagene 2 og 3
- ▶ Ny versjon av DHCP: DHCPv6
- Automatisk adressekonfigurasjon uten bruk av DHCPv6

Hva er IPv6?

- Totalt antall IPv6-adresser:
- $> 2^{128} = 340.282.366.920.938.463.463.374.607.431.768.211.456$
- ▶ Bare 1/8 kan brukes til offentlige unicast-adresser:
- $2^{125} = 42.535.295.865.117.307.932.921.825.928.971.026.432$
- ► Fortsatt mye mer enn det fullstendige IPv4-adresserommet:
- \triangleright 2³² = 4.294.967.296
- ► Bare 3.702.258.688 IPv4-adresser kan bli brukt som offentlige IPv4-unicast-adresser
- Se Tronds utregning fra 2012: http://ximalas.info/2012/ 07/20/how-many-ipv4-addresses-are-there/

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser Hva er IPv6?
Hvorfor trenger vi IPv6?
IPv6 ved Fagskolen Innlandet
RFC-er om IPv6

Kort om IPv6

Hvorfor trenger vi IPv6?

- Verden går tom for offentlige IPv4-adresser
- ▶ IANA gikk tom i februar 2011
 - ► APNIC gikk tom i april 2011
 - ▶ RIPE gikk tom i september 2012
 - Dersom disse oppfører seg pent:
 - LACNIC kan holde på til juni 2014
 - ARIN kan holde på til desember 2014
 - AFRINIC kan holde på til oktober 2020

Hvorfor trenger vi IPv6?

- ► NAT (RFC 2663), CGN (RFC 6264) og Shared Address Space (RFC 6598) er bare støttebandasje
 - ► Glem det
 - ► Ende-til-ende-konnektivitet blir best oppnådd uten noen former for adresseoversettelse
- Hierarkisk adressestruktur
- ► Enklere planlegging av subnett sammenlignet med IPv4
 - ▶ De fleste IPv6-subnett bruker et 64-bit prefiks
 - ► Fast prefikslengde på 64 bit er ikke et absolutt krav
 - Autokonfigurasjon krever 64-bit prefiks
- Kortere rutingtabeller

I rond	restøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser Hva er IPv6?
Hvorfor trenger vi IPv6?
IPv6 ved Fagskolen Innlandet
RFC-er om IPv6

Kort om IPv6

Hvorfor trenger vi IPv6?

Uninett annonserer disse IPv4-subnettene med BGP:

•	78.91.0.0/16,	128.39.0.0/16,	129.177.0.0/16,
	129.240.0.0/15,	129.242.0.0/16,	144.164.0.0/16,
	151.157.0.0/16,	152.94.0.0/16,	156.116.0.0/16,
	157.249.0.0/16,	158.36.0.0/14,	161.4.0.0/16,
	193.156.0.0/15,	192.111.33.0/24,	192.133.32.0/24,
	192.146.238.0/23		

- ► Til gjengjeld trenger Uninett bare å annonsere dette IPv6-prefikset:
- **2001:700::/32**

IPv6 ved Fagskolen Innlandet

- ▶ 1994: Ble tildelt 128.39.174.0/24 av Uninett
- ▶ 1. juni 2005: Ny IT-ansvarlig, yours truly
- Høsten 2005: Fikk reservert IPv4-serien 128.39.172.0/23
- Påska 2006: Fikk reservert IPv6-serien 2001:700:1100::/48
- ► Før og etter pinsehelga 2006: Fiberlinjer fra serverrommet og til sentralt punkt i hver etasje i hovedetasjen
- ► Sommeren 2006: Nytt Cisco-gear som Catalyst 3560G og 2960
 - ▶ 128.39.174.0/24 ble brukt til servernett og ansattnett, m.m.
 - ▶ 128.39.172.0/24 ble brukt til datalab
 - ▶ 128.39.173.0/24 ble brukt til klienter på trådløst studentnett

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser Hva er IPv6? Hvorfor trenger vi IPv6? IPv6 ved Fagskolen Innlandet RFC-er om IPv6

Kort om IPv6

IPv6 ved Fagskolen Innlandet

- ▶ 6. september 2006: IPv6-linknettet 2001:700:0:11D::/64 ble aktivert mellom HiG/Uninett og FSI
 - 2001:700:0:11D::1/64 brukes hos HiG
 - ▶ 2001:700:0:11D::2/64 brukes hos FSI
- Samme dag ble IPv6-subnett innført for FSI-VLAN-ene 20, 30, 70 og 80.
 - FSI-VLAN 20: 2001:700:1100:1::/64
 - FSI-VLAN 30: 2001:700:1100:2::/64
 - FSI-VLAN 70: 2001:700:1100:3::/64
 - ► FSI-VLAN 80: 2001:700:1100:4::/64
- Høsten 2010: Enda en IPv4-serie ble innført: 128.39.194.0/24
 - ▶ 128.39.172.0/23 brukes til klienter på trådløst studentnett
 - ▶ 128.39.194.0/24 brukes til datalab etter samme mønster som for 128.39.172.0/24

- ▶ IPv6-spesifikasjon: RFC 2460, RFC 5095, RFC 5722, RFC 5871, RFC 6437, RFC 6564, RFC 6935 og RFC 6946.
- ► ICMPv6: RFC 4443 og RFC 4884.
- ▶ Neighbor Discovery: RFC 4861, RFC 5942 og RFC 6980.
- Path MTU: RFC 1981.
- ► DHCPv6: RFC 3315, RFC 4361, RFC 5494, RFC 6221, RFC 6422 og RFC 6644.
- Overføring av IPv6-pakker over Ethernet: RFC 2464 og RFC 6085.

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser Hva er IPv6? Hvorfor trenger vi IPv6? IPv6 ved Fagskolen Innlandet RFC-er om IPv6

Kort om IPv6

- ▶ Adressearkitektur: RFC 4291, RFC 5952 og RFC 6052.
- Unicastadresser: RFC 3587.
- ► Autokonfigurering av adresser: RFC 4862.
- Random interface ID: RFC 4941.
- Prefiks-baserte multicastadresser: RFC 3306, RFC 3956 og RFC 4489.
- ► For programmerere av nettverksprogrammer: RFC 4038

IPv6-header

► Bla, bla, bla

Trond Endrestøl

IPv6-foredrag

Oversikt Kort om IPv6 IPv6-header Adresser

Adresser

► Bla, bla, bla