Permit Number 103048

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2) Air Contaminant Name (3)		Emission	Rates
(-)			lbs/hour	TPY (4)
RUPK31	Steam Boiler	voc	0.53	
		NO _x	2.45	
		NO _x (MSS)	5.88	
		со	7.24	
		SO ₂	1.37	
		РМ	0.73	
		PM ₁₀	0.73	
		PM _{2.5}	0.73	
		NH ₃	0.44	
RUPK32	Steam Boiler	voc	0.53	
		NO _x	2.45	
		NO _x (MSS)	5.88	
		со	7.24	
		SO ₂	1.37	
		РМ	0.73	
		PM ₁₀	0.73	
		PM _{2.5}	0.73	
		NH₃	0.44	

RUPK31/RUPK32	Boiler Cap	VOC		1.4
		NO _x		2.75
		СО		9.61
		SO ₂		3.64
		PM		1.94
		PM ₁₀		1.94
		PM _{2.5}		1.94
		NH ₃		1.17
RUPK71	Regenerative Thermal Oxidizer	voc	1.07	2.31
	(RTO)	NO _x	0.28	1.11
		со	0.38	1.52
		SO ₂	0.06	0.24
		РМ	0.03	0.14
		PM ₁₀	0.03	0.14
		PM _{2.5}	0.03	0.14
RUPK71MSS	RTO Downtime	voc	34.84	2.29
3UF61A/B/C (6)	Flameless Thermal	voc	3.99	(6)
	Oxidizer (FTO) System	NO _x	30.62	(6)
		со	111.82	(6)
		SO ₂	1.9	(6)
		РМ	0.05	(6)
		PM ₁₀	0.05	(6)
		PM _{2.5}	0.05	(6)

3UFLARE62 (6)	Elevated Flare	voc	733.92	(6)
		NOx	154.08	(6)
		со	613.63	(6)
		SO ₂	2.28	(6)
3UFLARE63 (6)	Multi-Point Ground Flare	voc	989.06	(6)
	Flate	NO _x	687.67	(6)
		со	1051.73	(6)
		SO ₂	0.04	(6)
PEXVCS (6)	Vent Control System	voc		30.11
		NO _x		18.64
		со		43.07
		SO ₂		0.37
		РМ		0.02
		PM ₁₀		0.02
		PM _{2.5}		0.02
PEXTK1	Hexene Storage Tank	voc	1.12	2.41
PEXANALZ	PEX Analyzer Catalytic Oxidizers	voc	0.04	0.18
PEXFUGEM (5)	Fugitives	VOC	2.1	9.2
		NH ₃	0.06	0.26
RUCT01	Cooling Tower	VOC (5)	42.08	2.27
		РМ	1.32	5.76
		PM ₁₀	0.82	3.59
		PM _{2.5}	<0.01	0.02
RLD01	Primary A/O Run Tank	voc	<0.01	0.01
RLD02	Secondary A/O Run	voc	<0.01	0.02

	Tank			
4DDC04	Granule Filter	voc	(8)	(8)
	Receiver (seed bed filter)	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3NDC01	Line 3 - Elutriator Cyclone Vent	VOC	(8)	(8)
	Cyclone vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4NDC01	Line 4 - Elutriator Cyclone Vent	VOC	(8)	(8)
	Cyclone vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC11	Line 3 - Prime Pellet Silo Vent 01	voc	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC12	Line 3 - Prime Pellet Silo Vent 02	voc	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC13	Line 3 - Prime Pellet Silo Vent 03	voc	(8)	(8)
	5.15 Vol. 100	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC14	Line 3 - Prime Pellet	VOC	(8)	(8)

		РМ	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC15	Line 3 - Prime Pellet Silo Vent 05	VOC	(8)	(8)
	She vented	РМ	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PDC16	Offspect - Pellet Silo Vent 06	VOC	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PDC11	Line 4 - Prime Pellet Silo Vent 01	VOC	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PDC12	Line 4 - Prime Pellet Silo Vent 02	VOC	(8)	(8)
	0.10 70.11.02	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PDC13	Line 4 - Prime Pellet Silo Vent 03	VOC	(8)	(8)
	She vented	РМ	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PDC14	Line 4 - Prime Pellet Silo Vent 04	VOC	(8)	(8)
		РМ	(9)	(9)

		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PDC15	Line 4 - Prime Pellet Silo Vent 05	voc	(8)	(8)
	Silo ventos	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3MDC01	Line 3 - Pellet Surge Bin Vent	voc	(8)	(8)
	Bill Vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4MDC01	Line 4 - Pellet Surge Bin Vent	VOC	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3MFAN01	Line 3 - Pellet Dryer Vent-01	voc	(8)	(8)
	Vent of	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3MFAN02	Line 3 - Pellet Dryer Vent-02	voc	(8)	(8)
	Vont 02	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)

4MFAN01	Line 4 - Pellet Dryer Vent-01	voc	(8)	(8)
	VCIII OI	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4MFAN02	Line 4 - Pellet Dryer Vent-02	VOC	(8)	(8)
	7 S.I.R G2	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3MBN01	Line 3 - Film Test Extruder Filter	voc	(8)	(8)
	Receiver	РМ	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4MBN01	Line 4 - Film Test Extruder Filter	voc	(8)	(8)
	Receiver	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LDC23	Finishing Building Vacuum System	voc	(8)	(8)
	Dust Collector	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
34PKGBLDG	Combined Packaging Building	VOC	(8)	(8)
	Fugitives	РМ	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PFAN01	Bagging Line 3 Feed Hopper Vent	voc	(8)	(8)

		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PFAN21	Bagging Line 4 Feed Hopper Vent	voc	(8)	(8)
	noppor vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PFAN41	Bagging Line 5 Feed Hopper Vent	voc	(8)	(8)
	Tioppor vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PFAN01	Bagging Line 1 Feed Hopper Vent	voc	(8)	(8)
		PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PFAN21	Bagging Line 2 Feed Hopper Vent	voc	(8)	(8)
	Tioppor vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3PFAN04	Bulk Loading Station 1 Vent	VOC	(8)	(8)
	I vont	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)

3PFAN05	Bulk Loading Station 2 Vent	voc	(8)	(8)
	2 Vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PFAN04	Bulk Loading Station 3 Vent	VOC	(8)	(8)
	3 Vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4PFAN05	Bulk Loading Station 5 Vent	voc	(8)	(8)
	Vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LFAN04	Line 3 Additive Feed Hopper Blower Vent	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4LFAN04	Line 4 Additive Feed Hopper Blower Vent	PM	(9)	(9)
	Tropper Blower Verit	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LDC06	Line 3 - Additive Drying Hopper Dust	PM	(9)	(9)
	Collector	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4LDC06	Line 4 - Additive Drying Hopper Dust	PM	(9)	(9)
	Collector	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LB01	Line 3 - Vacuum Blower-01 Vent for	РМ	(9)	(9)

Additive AB Transfer

		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LB02	Line 4 - Vacuum Blower-02 Vent for	PM	(9)	(9)
	Additive AB Transfer	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LB03	Line 3 - Vacuum Blower-03 Vent for	PM	(9)	(9)
	Additive Transfer	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LB04 3LB05[1]	Lines 3/4 - Vacuum Blower-04 Vent for	PM	(9)	(9)
02500[2]	Additive Transfer	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4LB01	Line 4 - Vacuum Blower-01 Vent for	PM	(9)	(9)
	Additive Transfer	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3LFAN01	Line 3 - Additive Dump Station Vent	PM	(9)	(9)
	Dust Collector	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4LFAN01	Line 4 - Additive Dump Station Vent	PM	(9)	(9)
	Dust Collector	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3BFIL01	Line 3 - Cylinder Vent Filter-01	PM	(9)	(9)
	Volker likel 61	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3BFIL02	Line 3 - Cylinder Vent Filter-02	PM	(9)	(9)
	75	PM ₁₀	(10)	(10)

		PM _{2.5}	(11)	(11)
3BFIL03	Line 3 - Cylinder Vent Filter-03	PM	(9)	(9)
	vent i iller-05	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4BFIL01	Line 4 - Cylinder Vent Filter-01	PM	(9)	(9)
	Vollet mol 01	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4BFIL02	Line 4 - Cylinder Vent Filter-02	PM	(9)	(9)
	V 61/10 1 11/10 1 0 2	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4BFIL03	Line 4 - Cylinder Vent Filter-03	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3CFIL04	Line 3 - Catalyst Hold Tank Filter-04	PM	(9)	(9)
		PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3CFIL05	Line 3 - Catalyst Hold Tank Filter-05	PM	(9)	(9)
	Tiola Tallict mer ee	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
3CFIL06	Line 3 - Catalyst Hold Tank Filter-06	PM	(9)	(9)
	Tiola Tallict mer 90	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4CFIL04	Line 4 - Catalyst Hold Tank Filter-04	PM	(9)	(9)
	Tiona Faint Intol 04	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)

4CFIL05	Line 4 - Catalyst Hold Tank Filter-05	PM	(9)	(9)
	Tiola rank ritter 03	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
4CFIL06	Line 4 - Catalyst Hold Tank Filter-06	PM	(9)	(9)
	Tiola railly iller oo	PM ₁₀	(10)	(10)
		PM _{2.5}	(11)	(11)
MISCVENTS (7)	Miscellaneous Vents	VOC (8)	17.42	13.83
		PM (9)	5.94	15.8
		PM ₁₀ (10)	1.01	2.51
		PM _{2.5} (11)	0.86	1.88
PEXMSS	Planned MSS	voc	113.51	6.17
		NO _x	1.17	0.06
		со	1.17	0.06
		PM	1.81	0.13
		PM ₁₀	1.81	0.13
		PM _{2.5}	1.81	0.13
MAINDEG	Controlled Tank Degassing	voc	1.08	0.02
		NO _x	8.16	0.10
		со	0.63	0.01
		SO ₂	< 0.01	< 0.01
		PM	0.02	< 0.01
		PM ₁₀	< 0.01	< 0.01
		PM _{2.5}	< 0.01	< 0.01

⁽¹⁾ Emission point identification - either specific equipment designation or emission point number from plot plan.

⁽²⁾ Specific point source name. For fugitive sources, use area name or fugitive source name.

⁽³⁾ VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

NH₃ - ammonia

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) The Vent Control System (EPN: PEXVCS) contains annual emissions from the FTO System, Elevated Flare, and Multi-Point Ground Flare (EPNs 3UF61A/B/C, 3UFLARE62, and 3UFLARE63).
- (7) Miscellaneous Vents (EPN: MISCVENTS) includes emissions from the Pellet Loadout Sources, Polyethylene Product Sources, Additive Sources, Catalyst Transfer Sources, Pellet Finishing Building, Pellet Packaging Building, and Pellet Bagging System.
- (8) The listed emission rates are the cap for VOC emissions from the group of emission points in the polyethylene product transfer, storage, and loadout systems. The sum of emissions from all of the emission points in this group shall not exceed the emission rate listed for the group.
- (9) The listed emission rates are the cap for total PM emissions from the group of emission points in the polyethlyene product, catalyst, and additive systems. The sum of emissions from all of the emission points in this group shall not exceed the emission rate listed for the group.
- (10) The listed emission rates are the cap for PM₁₀ emissions from the group of emission points in the polyethlyene product, catalyst, and additive systems. The sum of emissions from all of the emission points in this group shall not exceed the emission rate listed for the group.
- (11) The listed emission rates are the cap for $PM_{2.5}$ emissions from the group of emission points in the polyethlyene product, catalyst, and additive systems. The sum of emissions from all of the emission points in this group shall not exceed the emission rate listed for the group.

Date: October 7, 2013