BMI 203 Biocomputing Algorithms

Lecture I: Introduction, Complexity
Theory and Sorting

Instructor: Ryan Hernandez < ryan.hernandez@ucsf.edu >

TA₁: Tamas Nagy < tamas@tamasnagy.com >

TA₂: Seth Axen < tamas@tamasnagy.com >

Dropbox: http://tinyurl.com/BMI203-18

Course email list

- Email me: <u>ryan.hernandez@ucsf.edu</u>
- Include:
 - Subject: "BMI 203 email list"
 - Body:
 - Name
 - Program
 - Favorite programing language
 - Audit, Grade, or Pass/Fail
 - BMI students: mini-qual?
 - Auditing and want to present papers?

Important stuff...

- This course meets 3 times per week, all are required
- Mondays 2:30-3:30
 - Typically a TA discussion session
 - additional material and homework
- Wednesdays 10:30-12
 - Lecture
- Fridays 10:30-12
 - Paper discussion/labs

Paper discussions

- Slides or chalk talk is fine
 - Probably best to do one of each
 - Different opportunities in each format
- What should you focus on?
 - What did the authors try to show?
 - How does the algorithm work?
 - Are there tradeoffs in algorithm construction that yield lower complexity for potentially lower performance? What are the cases where this will manifest?
 - Did the authors manage to convince you? Did they miss obvious controls? Did they make appropriate use of statistics?

Textbooks

- No single book covers all the topics in this course...
- Introduction to Algorithms, Cormen, Leiserson, and Rivest.
- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, Durbin, Eddy, Krogh, and Mitchison.
- Numerical Recipes in C: The Art of Scientific
 Computing, Press, Teukolsky, Vetterling, and Flannery.
 - www.nr.com
- You should probably buy the first book. You will be looking at it 20 years from now if you continue research in bioinformatics and algorithms.

Biocomputing Algorithms

- Computational issues and methods in bioinformatics and computational biology
 - Analytical thinking
 - Problem decomposition
 - Algorithm understanding, design, and implementation
- This course is **not** about:
 - Expert use of existing tools
 - Learning how to program (if you can't program in C, Python, or a similar language, you should take the course after you have become somewhat proficient)

Programming Languages

- We are formally agnostic about programming languages
- However, for some assignments, it will be easier to use Python, since you will be provided some code, and we can provide more help with Python than other languages.
- Languages that are OK: Python, C, C++, Julia,
 Fortran, Java, ...

Course Information

- Three homeworks represent 40% of your grade
- Classroom participation, including paper presentations, represent 30%
- Your final projects represent 30%
- Course Lecturers: Mike Keiser, Scott Pegg, and Jimmy Ye
- TAI: Tamas Nagy <tamas@tamasnagy.com>
- TA2: Seth Axen <tamas@tamasnagy.com>
- We encourage you to work individually at first on all homework. However, making use of the overlapping prior training among you is OK. If you are a weaker hacker, find someone who is not! Lend a hand (<u>not solutions</u>) if you are!

Computer Resources

- We expect you to have access to your own computer!
- You can download Python: www.python.org
- You can download Cygwin (gnu c): www.cygwin.com
- You can run clang to compile on Mac (OS X ships with developer tools, but you have to install them)

Reproducibility

- Research must be reproducible.
- Computational tools/methods SHOULD be open and accessible.
- Github is one resource for maintaining a code repository.
 - More on this Wednesday!

Outline

- Complexity Theory (See Cormen, Chapters I and 2)
 - Every computer algorithm has execution time and space and/or bandwidth requirements dependent on the size or complexity of its input
 - Design of useful algorithms is largely dominated by complexity considerations
 - We will cover very basic notational conventions (no proofs)
- Sorting (see Cormen, Part II, particularly Chapter 8)
 - Sorting is the classic algorithms problem space in which complexity issues are taught
 - Bubble sort
 - Quicksort
- Reference: Introduction to Algorithms, Second Edition by Thomas H. Cormen (Editor), Charles E. Leiserson, Ronald L. Rivest

Computational Complexity Theory

- What is an algorithm?
 - Given a precise problem description
 - Sort a list of N real numbers from lowest to highest
 - An algorithm is a precise method for accomplishing the result
- A critical concern is efficiency: how do we characterize it?

Computational Complexity Theory

- O notation: informally
 - Want to capture how fast or how much space an algorithm requires
 - We ignore constant factors (even if very large)
 - O(N) indicates that an algorithm is linear in the size of its input
 - Example: sum of N numbers is O(N)

Notes on Notation

- We will define the complexity of algorithms based on describing a function that provides a boundary on time or space
- Formally, we will describe complexity in terms of the membership of the function in a larger set of functions
- Notation
 - N = {0,1,2,3,...} "Natural numbers"
 - $N^+ = \{1,2,3,4,...\}$ "Positive natural numbers"
 - R = Set of Reals
 - R⁺ = Set of Positive Reals
 - $R^* = R^+ \cup \{0\}$

Big O notation

- Big O describes the complexity of the worst-case scenario of an algorithm.
 - Either in terms of runtime or memory.
 - Usually described as a function of the number of input elements (N).
 - Always excludes constants!

- O(I): Complexity is independent of the size of the input data.
 - Check the sign of the first element of a list.
- O(N): Complexity is linear in the input size.
 - s=0;
 for (i=0; i<n; i++) { s += i; }</pre>
 - O(I) implementation?

• $O(N^2)$: Complexity is proportional to the square of the input data size.

```
s=0;
for (i=0;i<n;i++) {
  for (j=0;j<n;j++) {
    s += i+j;
  }
}</pre>
```

 Nested loops are sometimes convenient, but will become VERY PAINFUL. Avoid if at all possible.

- O(log N): Less intuitive.
 - Often arises in a binary search for a particular element in a sorted list.
 - A common algorithm is a multiplicative index jump:

```
h = 1;
while (h < n){
    s;
    h = 2*h;
}</pre>
```

- O(2^N): dire situation... runtime doubles with each additional element. Exponential growth!!
 - An example is a recursive calculation of Fibonacci numbers:
 - 1,2,3,5,8,13,...,F(i-2)+F(i-1),...

```
int Fibonacci(int number){
  if (number <= 1) return number;
  return Fibonacci(number - 2) + Fibonacci(number - 1);
}</pre>
```

Comparing f(n) and g(n)

- Let f be a function from N to R.
- O(f) (Big O of f) is the set of all functions g from N
 to R such that:
 - There exists a real number c>0
 - AND there exists an n₀ in N
- Such that: $g(n) \le cf(n)$ whenever $n \ge n_0$
- In English: g grows no faster than f.

Notation and pronunciation

- Proper Notation: $g \in O(f)$
- Also Seen: g = O(f)
 - "g is oh of f"
- g is essentially bounded above by f
- "My function is no worse than linear in input size"

Big Omega

- Let f be a function from N to R.
- $\Omega(f)$ (Big Ω of f) is the set of all functions g from N to R such that:
 - There exists a real number c>0
 - AND there exists an n₀ in N
- Such that: $g(n) \ge cf(n)$ whenever $n \ge n_0$
- g is essentially bounded below by f
- "My function is worse than linear in input size"

Big Theta

- $\bullet \ \ \Theta(f) = O(f) \cap \Omega(f)$
- $g \in \Theta(f)$
- "g is of Order f"

English Interpretations

- O(f) Functions that grow no faster than f
- ullet $\Omega(f)$ Functions that grow no slower than f
- \bullet $\Theta(f)$ Functions that grow at the same rate as f

Properties

- Constant factors may be ignored
 - For all k>0, kf is O(f)
- Higher powers of n grow faster than lower powers
- The growth rate of a sum of terms is the growth rate of its fastest term
 - So, if you have a linear element of an algorithm and a element that is n^2 , then the algorithm will be $O(n^2)$
- Transitivity: If f grows faster than g which grows faster than h, then f grows faster than h.
- Exponential functions grow faster than powers
- Logarithms grow more slowly than powers (and all logarithms grow at the same rate, irrespective of their base)

When complexity gets bad

- Polynomial time algorithms
 - All algorithms such that there exists an integer d where the algorithms is O(nd)
- Intractable algorithms
 - The class of problems that cannot be solved in polynomial time
 - Particularly interesting class of intractable problems: NP-complete
- When this happens, we often care about approximate solutions
 - Traveling Salesman Problem: Given N cities, find the route that goes to each city exactly once that minimizes the total distance traveled
 - N! ways of ordering N cities
 - NP-complete: if you can solve this problem in polynomial time, you can solve all NP-complete problems in polynomial time
 - E-approximate solutions abound
 - You can find a city ordering such that for any E, your solution is within E of the optimal solution
 - You can do this in polynomial time

Sorting algorithms

- Input: a sequence of **n** numbers (a₁, a₂, ..., a_n)
- Output: a permutation (b₁, b₂, ..., b_n)
- Such that $a[b_1] \le a[b_2] \le ... \le a[b_n]$
- Example: Insertion Sort (order a hand of cards)
 - Create an empty array of size n
 - Find the smallest value in input array
 - Put it in the new array in the first unfilled position
 - Mark the input array value as done
 - Repeat until the new array has n values

Bubble sort: In English

- Go through your list of n numbers, checking for misordered adjacent pairs
- Swap any adjacent pairs where the second value is smaller than the first
- Repeat this procedure a total of n times
- Your final list will be sorted low to high

Bubble sort: In C

```
/* Bubble sort for integers */
  void bubble( int a[], int n )
  /* Pre-condition: a contains n items to be sorted */
    int i, j, t;
    /* Make n passes through the array */
    for(i=0; i<n; i++) { Outer loop</pre>
      /* From the first element to
         the end of the unsorted section */
      for(j=1; j<(n-i); j++) { Inner loop
        /* If adjacent items are out of order, swap */
        if( a[j-1]>a[j] ) { One conditional
          t = a[j];
          a[j] = a[j-1]; } Three assignments
          a[j-1] = t;
```

Bubble sort complexity: Worst case

- We make (n-1) passes through the data
 - When i=(n-1), (n-i) is (n-(n-1))=1
 - So, on the last outer loop pass, we don't do the inner loop
- How many operations do we do in each pass (at worst)?
 - On the last pass, we do one conditional and three assignments
 - On the second to last pass, we do 2 and 6
 - Etc...
- So
 - (1*(1+2+ ... + (n-1))) compares
 - (3*(1+2+ ... + (n-1))) assignments
 - Recall that sum (1...k) is k(k+1)/2
 - We have n(n-1)/2 compares and 3n(n-1)/2 assignments
- Since we don't care about constant factors and higher-order polynomials dominate, BubbleSort is O(n²).

QuickSort: In English

- Quicksort is a divide and conquer algorithm
- It was invented by C. A. R. Hoare
- Divide: The array A[p...r] is partitioned into two nonempty subarrays A[p...q] and A[q+1...r] (q is pivot element)
- Conquer: The two subarrays A[p...q-1] and A[q+1...r] are themselves subjected to Quicksort (by recurrence)
- Combine: The results of the recursion don't need combining, since the subarrays are sorted in place
- The final A[p...r] is now sorted

Quicksort: Complexity

- The average case for Quicksort is O(n log(n)) with smallish constant factors for good implementations
 - The partitioning algorithm requires O(n) time to rearrange the array (it examines every element once)
 - The partitioning is done around a pivot, which is chosen with no knowledge (in the simplest case); elements are partitioned to be less than or greater than the pivot
 - We expect that randomly chosen pivots will tend to partition an array into roughly two halves
 - So, we end up doing O(log(n)) partitions, and O(n log(n)) overall
- In practice, this is one of the fastest sorting methods known
- However, its worst case behavior is O(n²): poor luck with the pivot choices can lead to n partitions!

Quicksort: In C

```
/* We would call quicksort(a, 0, n-1) */
quicksort( void *a, int p, int r ) {
   int pivot;
   /* Termination condition! */
   if ( r > p ) {
      pivot = partition( a, p, r );
      quicksort( a, p, pivot-1 );
      quicksort( a, pivot+1, r );
   }
}
```

- The partition function does all of the work
- It selects the pivot element
- It partitions the subarray
- The quicksort function just does bookkeeping
- Note: in C, arrays are passed by reference, so the operations are occurring on the same array

Quicksort partitioning

- There is a straightforward way to partition
 - Pick any element as the pivot (say the first)
 - Create a new array of the same size as input
 - For each element in the old array, put it at the beginning if it is less than the pivot element
 - Else, put it at the end
 - [Keep track of the "beginning" and "end", which move]
 - Copy the new array back into the original one
 - Return the value of the pivot index
- Problem: requires additional space (allocate and free) and an additional n assignments in the end

Quicksort: Partition in place

```
int partition( void *a, int p, int r ) {
  int left, right;
  void *pivot item;
  pivot item = a[p];
  pivot = left = p;
  right = r;
  while ( left < right ) {</pre>
    /* Move left while item < pivot */</pre>
    while( a[left] <= pivot item ) left++;</pre>
    /* Move right while item > pivot */
    while( a[right] > pivot item ) right--;
    if ( left < right ) SWAP(a,left,right);</pre>
  /* right is final position for the pivot */
  a[p] = a[right];
                                          left
                                                           right
  a[right] = pivot item;
  return right;
                                          45 38 12 62 42 34 8 24 76 48
                                         pivot
                           35
```

https://en.wikipedia.org/wiki/Quicksort

Wednesday

- Tamas/Seth will give an overview of computational aspects of the course
- Homework 1 will be distributed
- No class on Friday