

Geometry Workbook Solutions

Congruence

CONGRUENT ANGLES

■ 1. $m \angle 3 = 4x - 11$ and $m \angle 1 = 5x + 2$. Find $m \angle 2$.

Solution:

 $m \angle 2 = 33^\circ$. $\angle 1 \cong \angle 4$ because they are vertical angles. And because the three interior angles of a triangle always sum to 180° ,

$$m \angle 3 + m \angle 4 + 90 = 180$$

$$4x - 11 + 5x + 2 + 90 = 180$$

$$x = 11$$

Then $m \angle 2 = m \angle 3 = 4(11) - 11 = 33^{\circ}$.

\blacksquare 2. Find the values of x and y.

Solution:

x = 5 and y = 151. Because they are vertical angles, we know that

$$3x + 14 = 5x + 4$$

$$10 = 2x$$

$$x = 5$$

And because $(3x + 14)^{\circ}$ and y° are supplementary angles, we can say

$$3x + 14 + y = 180$$

$$3(5) + 14 + y = 180$$

$$y = 151$$

\blacksquare 3. Find the value of x and y.

x = 3 and y = 5. Because they are vertical angles, we know that

$$35 = 8x + 11$$

$$24 = 8x$$

$$x = 3$$

And because they are alternate exterior angles, we can say

$$5x + 4y = 35$$

$$5(3) + 4y = 35$$

$$4y = 20$$

$$y = 5$$

■ 4. \overline{CD} is an angle bisector of the triangle and $\overline{CD} \perp \overline{AB}$. $m \angle CAD = 5x - 10$ and $m \angle BCD = 25$. Find x.

Solution:

x = 15. We know the interior angles of a triangle sum to 180° , so

$$m \angle DBC = 180^{\circ} - 90^{\circ} - 25^{\circ} = 65^{\circ}$$

And because $m \angle DBC = m \angle CAD$, we can say

$$5x - 10 = 65$$

$$5x = 75$$

$$x = 15$$

TRIANGLE CONGRUENCE WITH SSS, ASA, SAS

■ 1. Fill in the blank. $\triangle ABC \cong \triangle ADC$ by the ______ Theorem.

Solution:

SAS (Side-Angle-Side) Theorem. We know $\overline{AC} \cong \overline{AC}$ by the Reflexive Property of Congruence. We know $\angle ACD \cong \angle ACB$ because they are both right angles. And we know $\overline{DC} \cong \overline{BC}$ because of the markings shown on the diagram.

■ 2. Fill in the blank. L is a midpoint of \overline{JN} . $\triangle JKL \cong \triangle NML$ by the ______ Theorem.

ASA (Angle-Side-Angle) Theorem. $\angle JLK \cong \angle NLM$ because they are vertical angles. $\angle J \cong \angle N$ because they are alternate interior angles. JL = NL because L is a midpoint of \overline{JN} .

■ 3. \triangle $PRQ \cong \triangle$ ______ by the _____ Theorem.

 \triangle *TUS* by the *ASA* (Angle-Side-Angle) Theorem. In the diagram, $\angle Q \cong \angle W$, $\angle R \cong \angle U$, and RQ = 6 = US.

■ 4. $\triangle PMO$ is an isosceles triangle with vertex angle at M. N is a midpoint of \overline{PO} . $\triangle PMN \cong \triangle OMN$ by the ______ Theorem.

SSS (Side-Side) Theorem. We know that $\overline{MN}\cong \overline{MN}$ by the Reflexive Property of Congruence. $\overline{PM}\cong \overline{OM}$ because $\triangle PMO$ is isosceles. And $\overline{PN}\cong \overline{ON}$ because N is a midpoint.

TRIANGLE CONGRUENCE WITH AAS, HL

■ 1. Which theorem could be used to prove $\triangle PRS \cong \triangle XTS$?

Solution:

AAS (Angle-Angle-Side) Theorem. We know that $\angle 2 \cong \angle 3$ because they are vertical angles, and that $\angle R \cong \angle T$ because they are both right angles, and the diagram shows $\overline{PS} \cong \overline{XS}$.

■ 2. Which theorem could be used to prove $\triangle ACB \cong \triangle CED$? The following facts are given about the triangles.

 $\overline{AE} \perp \overline{BC}$, $BC \mid DE$, $\overline{AB} \cong \overline{DC}$, and C is a midpoint of \overline{AE}

HL. We're told that the hypotenuses are congruent. We also know that AC = EC, because C is a midpoint. This makes a set of legs congruent.

 \blacksquare 3. What additional information would we need to prove these triangles are congruent using AAS Theorem?

 $\angle A \cong \angle C$

■ 4. ABCD is a rectangle. BEC is an isosceles triangle with vertex angle at E. Write a proof to verify that $\triangle BAE \cong \triangle CDE$ by the HL Theorem.

 $\angle A$ and $\angle D$ must be right angles, because ABCD is a rectangle. $\triangle BAE$ and $\triangle CDE$ must be right triangles by definition of a right triangle. $\overline{AB} \cong \overline{DC}$ because opposite sides of rectangles are congruent, and $\overline{BE} \cong \overline{CE}$ because $\triangle BEC$ is an isosceles triangle. Therefore, $\triangle BAE \cong \triangle CDE$ by the HL Theorem.

ISOSCELES TRIANGLE THEOREM

 \blacksquare 1. Find the values of x and y.

Solution:

x = 6 and y = 38. Because the triangle is isosceles, we get

$$5x - 2 = 3x + 10$$

$$2x = 12$$

$$x = 6$$

Therefore, the matching angles are

$$m \angle B = m \angle C = 5(6) - 2 = 28^{\circ}$$

Which means that $m \angle A$ must be $m \angle A = 180 - 28 = 124^\circ$, which means the value of y is

$$3y + 10 = 124$$

$$3y = 114$$

$$y = 38$$

■ 2. $\triangle JKL$ is isosceles with vertex angle K. JK = 4x - 5, LK = 3x + 8, and $m \angle J = 2x + 4$. Find $m \angle L$.

Solution:

 30° . JK = LK because the triangle is isosceles.

$$4x - 5 = 3x + 8$$

$$x = 13$$

Then we can say $m \angle J = 2(13) + 4 = 30^\circ$, and therefore that $m \angle C = m \angle J = 30^\circ$ by the Isosceles Triangle Theorem.

■ 3. Find $m \angle ABC$.

100°. By the Triangle Sum Theorem and the Isosceles Triangle Theorem,

$$m \angle BDE = m \angle BED = \frac{180 - 20}{2} = 80^{\circ}$$

Then because they form a linear pair,

$$m \angle ADB = 180 - 80 = 100^{\circ}$$

So

$$m\angle ABD = \frac{180 - 100}{2} = 40^{\circ}$$
 and $m\angle EBC = 40^{\circ}$

Which means

$$m \angle ABC = 40 + 20 + 40 = 100^{\circ}$$

100°. Use the Isosceles Triangle Theorem, vertical angles, and supplementary angles to find all the missing angles in the diagram.

CPCTC

■ 1. Fill in the blank. Given $\triangle LMO \cong \triangle SQR$, $\overline{LO} \cong$ ______.

Solution:

 \overline{SR} . By CPCTC, these two line segments must be congruent if the triangles are congruent.

■ 2. Determine whether $\angle M \cong \angle N$. Justify your answer.

Yes, $\triangle PRN \cong \triangle SRM$ by the *ASA* Theorem. Therefore, $\angle M \cong \angle N$ by CPCTC.

■ 3. $\triangle DOG \cong \triangle TCA$ by SSS. What three conclusions can be drawn by CPCTC?

Solution:

 $\angle D \cong \angle T$, $\angle O \cong \angle C$, and $\angle G \cong \angle A$. Congruent parts of congruent triangles are congruent (CPCTC), which makes each corresponding pair of angles congruent.

■ 4. Given $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$, prove $\overline{AB} \cong \overline{CD}$.

- 1. Given $\angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$.
- 2. $\overline{BD} \cong \overline{BD}$ by the Reflexive Property of Congruence.
- 3. $\triangle ABD \cong \triangle CDB$ by the ASA Theorem.
- 4. $\overline{AB} \cong \overline{CD}$ by CPCTC.
- 5. Given that L is the midpoint of \overline{JN} and \overline{KM} , prove $\overline{JK} \cong \overline{NM}$.

- 1. L is the midpoint of \overline{JN} and \overline{KM} , so by definition of midpoint JL = NL and ML = KL.
- 2. $\overline{JL} \cong \overline{NL}$ and $\overline{ML} \cong \overline{KL}$ by definition of congruent segments.

- 3. $\angle 2 \cong \angle 6$ by definition of vertical angles.
- 4. $\triangle JLK \cong \triangle NLM$ by SAS Theorem.
- 5. $\overline{JK} \cong \overline{NM}$ by CPCTC.
- 6. Given that $\triangle CAB$ is an isosceles triangle, that D is the midpoint of \overline{CE} , and that E is the midpoint of \overline{BD} , prove that $\triangle DAE$ is isosceles.

- 1. \triangle *CAB* is an isosceles triangle, so by definition, $\overline{AC} \cong \overline{AB}$.
- 2. D is the midpoint of \overline{CE} , and E is the midpoint of \overline{BD} , so by definition $\overline{CD} = \overline{DE}$ and $\overline{DE} = \overline{EB}$.
- 3. $\overline{CD}\cong \overline{DE}$ and $\overline{DE}\cong \overline{EB}$ by definition of congruent segments.

- 4. $\overline{CD} \cong \overline{EB}$ by the Transitive Property of Congruence.
- 5. $\angle C \cong \angle B$ by the Isosceles Triangle Theorem.
- 6. $\triangle ACD \cong \triangle ABE$ by the *SAS* Theorem.
- 7. $\overline{AD}\cong \overline{AE}$ by CPCTC.
- 8. \triangle *DAE* is isosceles by the definition of an isosceles triangle.

W W W . KRISTAKING MATH. COM