DISCERN

2025 annual progress report

International Agency for Research on Cancer

Vivian Viallon Ali Farnudi

Over view

- Bird's eye view of the project
- Pre-processing of untargeted metabolomics data
- Construction and evaluation of high-dimensional signatures of cancer risk in "untypical" casecohort studies
- Federated analysis of cohort (and case-cohort) data
- Publishing of a public website for all developed tools on a collaborative platform

Metabolic data LC-MS + GCMS

Pipelines will be

publically available on a collaborative platform with Documentation

Case cohort + case series

De-centralised data

Federated analysis

Pre-processing of untargeted metabolornics data

The "IARC pipeline" for IARC LC-MS data

Pre-processing of untargeted metabolomics data

The "IARC pipeline" for IARC LC-MS data

- Input: data measured and "curated" by Pekka's lab
- Pre-processing steps implemented in an R package
 - 1. Filtering of features with too many missing values
 - 2. Filtering of samples with too many missing values, and outlier samples
 - 3. Imputation of missing data
 - LCMD + RF (to be added)
 - 4. Normalization
 - plate correction
 - intensity drift correction (to be added)
 - 5. Clustering based on RT and correlations (optional; to be added)
- Output: data ready for statistical analyses
 - Various versions can be produced, for sensitivity analyses

Imputation of missing values

- Pekka and people from the lab: "Missing values are generally <LOD": use LOD/2 or LCMD
- Do et al. (Krumsiek's lab). "Not always": use KNN or RF
- Hybrid approach:
 - RF if it performs really well
 - LCMD otherwise

Comparison with targeted metabolomics (bile acids) data in EPIC

Plate correction... is not always enough

- Inspection of QCs and/or run order is useful
- Correcting for plate effects is not good enough for some features

SERRF to correct for "intensity drift"

- [Fan et al. (2019). Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal. Chem.]
- Try different approaches and check consistency of the end results
- Visual inspection is helpful

ICC and CV

Distribution of ICC $_j$ and CV $_j$, $j=1,\ldots,p$ (POS mode)

SERRF[Fan et al. (2019). Systematic Error Removal Using Random Forest for Normalizing Large-Scale Untargeted Lipidomics Data. Anal. Chem.]

Next steps

- Finalize the package with "IARC"-methods
- Integrate alternative/complementary approaches (eg., from Marc and EXPANSE?)
- Illustrate the use of the package on some of the DISCERN metabolomics data (Rmarkdown)
- Extension to Recetox GC-MS data

Construction and evaluation of high-dimensional signatures of cancer risk in "untypical" case-cohort studies

Key aims

Untypical

Conclusion

- Performance of weighted Lasso models:
 - variable selection: all versions perform similarly
 - Discrimination: Barlow weights perform slightly better
- Performance of the C-index estimate on case-cohort data
 - Analysis in progress

F1 Score across: Typical case-cohort (sub cohort proportion 20%) and Untypical (case proportion 50%) case-cohorts

C-index estimation of models with differnet weights across: Typical case-cohort (sub cohort proportion 20%) and Untypical (case proportion 50%) case-cohorts

Performance of the C-index estimation for lasso + Prentice, on case-cohort designs (sub cohort proportion 20%) and Untypical (case proportion 50%) case-cohorts

Next steps

- Add time-dependent AUC analysis.
- Consider alternatives to the simple lasso
 - David's approach?
 - Lasso + stability selection (eg the sharp package)
- Deliver simulation pipeline, tools, and weight recommendations as an R package.
- Publish a comprehensive webpage for application of tools and reproducibility of all results for DISCERN partners

Federated analysis of cohort (and case-cohort) data

Federated Computation

Meta analysis

Federated analysis

Federated computation:

- Decentralised data
- Decentralised Processing
- Data Privacy & Security

Limitations:

- Complex Implementation
- Local Computational Resources

Federated Computation

Meta analysis

Federated analysis

Meta analysis

- Coefficient estimates
- Variance estimates
- Perform a weighted sum

Advantages:

Simple

Limitations:

Not intended to reproduce pooled estimates

Terminology

Federated Computation

Meta analysis

Federated analysis

Federated analysis

- Federated algorithms
- Gradients and Hessians

Advantages:

Intended to mimic pooled estimates

Limitations:

Complex [model specific]

Federated analysis + Somalogic data

EPIC -> Proteomics Data -> Protein concentrations ~7500

- Italy
- Spain
- The Netherlands
- United Kingdom

~10,000 observations

Cancer

protein

Adjustment factors

age, sex, etc

~7500 Hazard Ratios

CoxPH models

Case-cohort design weights [under development]

Feedback

Federated analysis:

- Privacy preserving
- Close results to pooled analysis
- Implementation is feasible

PDA:

- Pros: Easy to setup and use.
 - Open to development.

Cons: • Limited list of methods.

Mostly tested on synthetic data

DataSHIELD:

- Automated.
- Adds complexity

Conclusion

International Agency for Research on Cancer

Bonuses

Next steps

 Debug and finalize variance estimation for case-cohort design using the PDA package.

Investigate features and application of Data-Shield

Publishing of a public website for all developed tools on a collaborative platform

DISCERN data and codes on the SIT platform

Consortium Folder

	Management	Private	Shared
Consortium PI	Read	Read	Read
Consortium Data Manager	Full	Full	Full
Consortium Private Member	None	Read	Read
Consortium Member	None	None	Read

SubProject Folders

Sources	Files	Work
Full	None	None
Read	Read	Full
Read	Full	Full
Read	Read	Full
	Full Read Read	Full None Read Read Read Full