Vector Similarity in Recommender Systems

- Recommendation assign relevance score to an item w.r.t. a user model (system's representation of the user).
 - Core idea in recommender systems: Represent complex entities
 users and arbitrary items as vectors!
- Different approaches: Collaborative filtering, contentbased, knowledge-based. In practice: hybrid systems.
- Collaborative filtering: Assign relevance score
 - Based on similarities between users (user-based collaborative filtering)
 - Based on similarities between items (item-based collaborative filtering).
 - "relevant to user A" ~ user A has rated well, has viewed, clicked on, bought, recommended to someone else, edited, etc.

Learning Goals

Understand

- The machine learning task "classification"
- What is machine learning; unsupervised, reinforcement and supervised learning.
- The principle of the human brain neurons, their components (nucleus, cell body, dendrite, axon, synapse) and the basic function of the components
- The simplest artificial neuron (McCulloch-Pitts Neuron)
- The perceptron

Be able to

- Give examples for a classification task
- Express a boolean formula as McCulloch-Pitts Net
- Express McCulloch-Pitts Net as boolean formula
- Express mathematically (as linear equation) a single-layer Perceptron Network
- Formally define a perceptron

So now we can represent natural language text, users, and any entity

as vector ...

and can ask for similar entities

Can we also differentiate between different TYPES of text/user/entity? Automatically add metadata?

-> Different computational task: Classification

Is it sunny or raining?

Es nieselt gerade.

Classification - Definition

Classification is the activity of deciding for a given input x, to which class/category the input belongs.

Given an input x

Determine y = f(x)

 $y \in \{y_1...y_n\}$ – is one of a finite number of classes

Typical machine learning task, when rules of classification become too complex

What is Learning?

Learning = Long-term changes in knowledge, behaviour, perception due to experience

For humans: change in brain structure

For machines this translates to: change in parameters of represented knowledge / potentially: in knowledge representation formalism / in reasoning method

What Feedback to Use for Learning?

Unsupervised Learning – No explicit feedback is provide, e.g., clustering

Reinforcement Learning – Rewards or punishments

Supervised Learning – Example input-output pairs are given, e.g., classification

 Reason why supervised learning isn't only a great technique, it's also great human-computer interaction: Humans are much better at giving examples, than at specifying the underlying rules...

Classification as supervised learning problem

Given a **training set** of example pairs (x_1,y_1) , (x_2,y_2) ... (x_n,y_n)

Where each y_i was generated by an unknown function $y=f_{TRUE}(x)$

Discover a function f (**hypothesis**) that approximates the true function f_{TRUE}

Measure the quality of f using a **different test set** (example pairs not within the training set)

Example – Simple Happiness Detector based on Short Text Messages (Skype status, FB status, ...)

Example 1: ("I'm now working on Analysis", neutral)

Example 2: ("I got a 1 in Analysis! (dance)", happy)

Example 3: ("Aaarghh!!! I will never understand Analysis (headbang)", unhappy)

What machine learning task are we talking about? Is this supervised, unsupervised, or reinforcement learning?

What could be a hypothesis h on how to detect whether the writer is emotionally neutral, happy or unhappy?

Artificial Neural Networks

Viktoria Pammer-Schindler

Introduction to Data Science and Artificial Intelligence

Human Neuron

Dendrites ~ Input
Cell body ~ Processing
Axon/Synapse ~ Output

Human brain ~ 10¹² neurons

Abstraction

 $\textbf{From:}\ \underline{https://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2017-18/lec01.pdf}$

McCulloch-Pitts Neuron

$$x_1...x_n \in \{0,1\} = B$$

 $f: B^n \rightarrow B$

f is a threshold function: if $sum(x_1...x_n)>T$ then 1, else 0

Example 1

X ₁	x ₂	Х	$f(x_1, x_2, x_3)$
		3	
1	1	1	
1	1	0	
1	0	1	
1	0	0	
0	1	1	
0	1	0	
0	0	1	
0	0	0	

McCulloch-Pitts Neuron with Inhibitory Inputs

```
Normal inputs x_1 \dots x_n
Inhibitory inputs y<sub>1</sub> ... y<sub>m</sub>
Threshold T
if (at least one y_i = 1)
     then 0
else if (sum(x_1 ... x_n) > threshold T)
     then 1
else
                 f(x_1 ... x_n, y_1 ... y_m) = f(x_1 ... x_n) * \pi(1-y_i)
```


Usefulness of inhibitory inputs for neuron's expressive power

X ₁	f(x ₁)		
1	0		
0	1		

With inhibitory inputs, McCulloch Pitts
Neurons can express all Boolean functions

Generalisation: Perceptron

$$f(x_0...x_n): w_0x_0 + w_1x_1 + ... w_nx_n \ge T$$

Generalisation: Perceptron

$$f(x_0...x_n): w_0x_0 + w_1x_1 + ... w_nx_n \ge T$$

$$W_1X_1 + W_2X_2 \ge (T - W_0X_0)$$

-> $X_2 \ge (T - W_0X_0)/W2 - (W_1/W_2)X_1$

$$x_0 = 0$$

-> $x_2 \ge T/w2 - (w_1/w_2)x_1$

From: https://commons.wikimedia.org/wiki/File:Svm_sep arating_hyperplanes_(SVG).svg

Separates Rⁿ in 2 classes (with a line/n-dimensional plane)

Perceptron: Beyond linear separation

With the following extensions, perceptron networks can also non-linearly separate data:

- Multilayer Perceptron Networks
- Nonlinear activation functions (e.g.: $f(x_1,x_2)$: $2x_1 + 2x_2 4 x_1x_2 > 0$)

Exercise 14

What are the truth values? Which Boolean function is represented by the McCullochPittsNeuron?

X ₁	X ₂	Х	$f(x_1, x_2, x_3)$
		3	
1	1	1	
1	1	0	
1	0	1	
1	0	0	
0	1	1	
0	1	0	
0	0	1	
0	0	0	

Exercise 15

Draw a McCulloch Pitts Neural Network that expresses the following Boolean formula

$$(x_1 AND x_2) OR x_3$$

Recommended Reading

- <u>https://ecee.colorado.edu/~ecen4831/lectures/NNet2.html</u> Short reading, highly recommended!
- I have found slides by Günther Rudolph very useful (https://ls11-www.cs.tu-dortmund.de/people/rudolph/teaching/lectures/CI/WS2017-18/lec01.pdf) but they contain an error in the picture of the NOT gate

And two classic books:

- the AI classic book by Stuart Russell & Peter Norvig (http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/Prentice-Hall-Series-in-Artificial-Intelligence_-A-Modern-Approach-Prentice-Hall-2010.pdf)
- Another classic machine learning book by Tom Mitchell (here I took especially the Perceptron figure from): http://myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/Prentice-Hall-Series-in-Artificial-Intelligence -A-Modern-Approach-Prentice-Hall-2010.pdf

