

ENV 797 - TIME SERIES ANALYSIS FOR ENERGY AND ENVIRONEMNT APPLICATIONS

M5 – ARIMA Models

Prof. Luana Medeiros Marangon Lima, Ph.D.

Learning Goals

- Discuss Models for Stationary Time Series
 - Autoregressive Model (AR)
 - Moving Average Model (MA)
 - ARMA Model
 - ARIMA Model
- Learn how to implement those models in R

What do we know so far?

- Trend
- Seasonality
- Stationarity Test
- Outliers
- Missing Data

Filtering and Preparation

Estimation

- Auto Correlation Function
- Partial Autocorrelation Function
- Model Parameter estimation

- Forecast
- Model accuracy
- Model Selection

Forecasting

Introduction

- Basic concepts of parametric time series models the ARMA or ARIMA models
 - AR stands for Auto Regressive; and
 - MA stands for Moving Average
 - And the I stands for Integrated (more on that later)
- Traditional Box-Jenkins models
- To model a time series with the Box-Jenkins approach, the series has to be stationary
- Recall: series is stationary if tends to wonder more or less uniformly about some fixed level

Review: Achieving Stationarity

- Is the trend stochastic or deterministic?
 - Run the tests
 - If stochastic: use differencing
 - If determinist: use regression
- Check if variance changes with time
 - If yes: make it constant with log transformation

AR models

Auto Regressive Models

- □ The simplest family of these models are the autoregressive (AR)
- They generalize the idea of regression to represent the linear dependence between a dependent variable y_t and an explanatory variable y_{t-1} , such that:

$$y_t = c + \phi y_{t-1} + a_t$$

where c and ϕ are constants to be determined and a_t are i.i.d. $N(0,\sigma^2)$

First order autoregressive process

Auto Regressive Models

- □ From the unit root test, the condition $-1 < \phi < 1$ is necessary for the process to be stationary, but why?
- \square Suppose $y_o = h$ where h is constant

$$y_1 = c + \phi h + a_1$$

$$y_2 = c + \phi y_1 + a_2 = c + \phi (c + \phi h + a_1) + a_2 = c(1 + \phi) + \phi^2 h + \phi a_1 + a_2$$

$$y_3 = c(1 + \phi + \phi^2) + \phi^3 h + \phi^2 a_1 + \phi a_2 + a_3$$

General Form

$$y_t = c \sum_{i=0}^{t-1} \phi^i + \phi^t h + \sum_{i=0}^{t-1} \phi^i a_{t-i}$$

$$E[a_t] = 0$$
 $E[y_t] = c \sum_{i=0}^{t-1} \phi^i + \phi^t h$

Auto Regressive Models

 Hence the process is stationary if this function does not depend on t

$$E[y_t] = c \sum_{i=0}^{t-1} \phi^i + \phi^t h$$

The first term is a geometric progression with ratio ϕ , thus

$$\sum_{i=0}^{t-1} \phi^i \approx \frac{1-\phi^{t-1}}{1-\phi} \approx \frac{1}{1-\phi} if |\phi| < 1$$

Second term needs to converge to zero, this is only true if

$$|\phi|$$
<1

Review: Geometric Progression

 Sequence of numbers where each term is found by multiplying the previous one by a fixed ratio

Ex.:
$$a$$
, ar , ar^2 , ar^3 , ar^4 , ar^5 ,... where $r \neq 0$

 The sum of the first n element of a geometric progression is given by

$$\sum_{k=1}^{n} ar^{k-1} = a \sum_{k=1}^{n} r^{k-1} = a \frac{(1-r^n)}{1-r}$$

Auto Regressive Models (cont'd)

This linear dependence can be generalized so that the present value of the series, y_t , depends not only on y_{t-1} , but also on the previous p lags,

$$y_{t-2} \dots, y_{t-p}$$

 \Box Thus, AR process of order p is obtained $y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + a_t$

ACF and PACF for AR Process

 For AR models ACF will decay exponentially with time

$$p = 1$$

MA models

Moving Average Models

- The AR process have infinite non-zero autocorrelation coefficients that decay with the lag
- Therefore, we say AR processes have a relatively "long memory"
- There is another family of model, that have a "short memory", the moving average or MA process
- The MA processes are a function of a finite and generally small number of its past residuals

Moving Average Models

 A first order moving average process MA(1), is defined by

$$y_t = \mu + a_t - \theta a_{t-1}$$

where μ is the process mean and a_t are i.i.d. $N(0,\sigma^2)$

$$\widetilde{y}_t = a_t - \theta a_{t-1}$$
 where $\widetilde{y}_t = y_t - \mu$

 \blacksquare Note: This process will always be stationary for any value of θ

MA(q) Process Basic Concepts

A q-order moving average process, denoted MA(q)
 takes the form

$$y_t = \mu + a_t - \theta_1 a_{t-1} - \dots + \theta_q a_{t-q}$$

 Assume that error terms are i.i.d (independent and identically distributed)

$$cov(a_i, a_j) = 0$$
 if $i \neq j$
 $cov(a_i, a_i) = \sigma^2$ if $i = j$

ACF and PACF for MA Process

- For MA models ACF
 will identify the order
 of the MA model
- The PACF will decay exponentially

$$\mathsf{q}=1$$

AR vs MA - Comparing Series Plots

AR vs MA - Comparing Series Plots

AR vs MA - Comparing ACF Plots

Often if the stationary series has positive autocorrelation at lag 1 AR terms work best

Often if it has negative autocorrelation at lag 1, MA terms work best

AR vs MA - Comparing PACF Plots

In summary...

□ AR Process

- Series current values depend on its own previous values
- AR(p) current value depend on its own p-previous values
- p is order of the AR process

□ MA Process

- The current deviation from mean depends on previous deviations
- MA(q) current deviation depends on q-previous deviations
- q is the order of the MA process
- □ But we can also have ARMA Process
 - Takes into account both of the above factors when making predictions

ARMA models

ARMA Process

□ The simplest process, the ARMA(1,1) is written as

$$\widetilde{y_t} = \phi_1 \widetilde{y}_{t-1} + a_t - \theta_1 a_{t-1}$$

where $|\phi_1| < 1$ for the process to be stationary

- The ACF and PACF of the ARMA processes are the result of superimposing the AR and MA properties
 - In the ACF initial coefficients depend on the MA order and later a decay dictated by the AR part
 - In the PACF initial values dependent on the AR followed by the decay due to the MA part

ARMA Model Plots

ARIMA models

ARIMA Models

- Auto-Regressive Integrated Moving Average
- We know the AR and MA part already
- The Integrated part refers to a series that needs to be differenced to achieve stationarity
- The non-seasonal ARIMA model is described by three numbers

ARIMA(p, d, q)

p: number of autoregressive terms

d: number of differences (non-seasonal)

q: number of moving average terms

ARIMA Models

Equation

 \square \hat{y}_t is an estimate for the differenced version of the series therefore

If
$$d = 0$$
: $\hat{Y}_t = \hat{y}_t$
If $d = 1$: $\hat{Y}_t = \hat{y}_t + Y_{t-1}$
:

Drawbacks

- There is no systematic approach for identification and selection
- The identification is mainly trial-and-error

ARIMA class models in R

Fit ARIMA Models in R

arima() from package "stats"

```
arima(x, order = c(0L, 0L, 0L),
    seasonal = list(order = c(0L, 0L, 0L), period = NA),
    xreg = NULL, include.mean = TRUE,
    transform.pars = TRUE,
    fixed = NULL, init = NULL,
    method = c("CSS-ML", "ML", "CSS"), n.cond,
    SSinit = c("Gardner1980", "Rossignol2011"),
    optim.method = "BFGS",
    optim.control = list(), kappa = 1e6)
```

Arguments

Most relevant arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three integer components (p, d, q) are the AR

order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which defaults to frequency(x)).

This should be a list with components order and period, but a specification of just a numeric vector of length 3

will be turned into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the same number of rows as x.

clude.mean Should the ARMA model include a mean/intercept term? The default is TRUE for undifferenced series, and it is

ignored for ARIMA models with differencing.

Simulate ARIMA Models in R

arima.sim() from package "stats"

Arguments

model A list with component ar and/or ma giving the AR and MA coefficients respectively. Optionally a component order can be used. An empty list gives an ARIMA(0, 0, 0) model, that is white noise.

length of output series, before un-differencing. A strictly positive integer.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided, rand.gen is used.

n.start length of 'burn-in' period. If NA, the default, a reasonable value is computed.

THANK YOU!

luana.marangon.lima@duke.edu

Master of Environmental Management Program
Nicholas School of the Environment - Duke University