Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Высшая школа прикладной математики и вычислительной физики

Вычислительные комплексы

Лабораторная работа №1

Работу выполнила: Т. В. Алпатова Группа: 3630102/70201 Преподаватель: А. Н. Баженов

 $ext{Санкт-Петербург}$ 2020

Содержание

1.	Постановка задачи	į
	1.1. Задание 1	
	1.2. Задание 2	
2.	Решение	9
	2.1. Задача 1	
	2.2. Задача 2	4
3.	Приложение	5

1. Постановка задачи

1.1. Задание 1

Имеем 2*2 - матрицу А.

$$A = \begin{pmatrix} 1 & 1 \\ 1.1 & 1 \end{pmatrix}$$

Пусть все элементы имеют радиус ε .

$$rada_{ij} = \varepsilon > 0$$

Получаем

$$A = \begin{pmatrix} [1 - \varepsilon, 1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \\ [1.1 - \varepsilon, 1.1 + \varepsilon] & [1 - \varepsilon, 1 + \varepsilon] \end{pmatrix}$$

Определить, при каком ε матрица содержит особенные матрицы.

1.2. Задание 2

Имеем n*n - матрицу А.

$$A = \begin{pmatrix} 1 & [0, \varepsilon] & \cdots & [0, \varepsilon] \\ [0, \varepsilon] & 1 & \cdots & [0, \varepsilon] \\ \vdots & \vdots & \vdots & \vdots \\ [0, \varepsilon] & [0, \varepsilon] & \cdots & 1 \end{pmatrix}$$

Определить, при каком радиусе ϵ матрица содержит особенные матрицы.

2. Решение

2.1. Задача 1

Интервальная матрица называется особенной, если она содержит в себе особенную точечную матрицу.

Будем использовать критерий Баумана: интервальная матрица неособенна тогда и только тогда, когда определители всех её крайних матриц имеют одинаковый знак.

Посчитаем определитель матрица А по правилам интервальной арифметики. Получаем, что:

$$\det A = [-0.1 - 4.1\varepsilon, -0.1 + 4.1\varepsilon]$$

 $-0.1 - 4.1\varepsilon < 0$, поскольку $\varepsilon > 0$.

Значит, нам нужно подобрать ε так, чтобы $-0.1+4.1\varepsilon>0$. Тогда матрица будет особенной.

Решая неравенство получаем, что при радиуса $\varepsilon > \frac{1}{41} \approx 0.024$ матрица А содержит особенные матрицы.

Приведем пример такой особенной матрицы. Возьмем $\varepsilon = 0.025$ и посчитаем ее определитель.

$$\det\begin{pmatrix}\begin{bmatrix}0.975, 1.025\end{bmatrix} & [0.975, 1.025]\\ [1.075, 1.125] & [0.975, 1.025]\end{pmatrix} = \begin{bmatrix}0.095062; 1.050625\end{bmatrix} - \begin{bmatrix}1.048125; 1.153125\end{bmatrix} = \begin{bmatrix}-0.2025; 0.0025\end{bmatrix}.$$

Как видим $0 \in [-0.2025; 0.0025]$, а значит при $\varepsilon = 0.025$ матрица A особенна.

2.2. Задача 2

Интервальная матрица с диагональным преобладание является неособенной (по теореме Адамара).

Матрица имеет диагональное преобладание, если сумма модулей всех элементов кроме диагонального в каждой строке не превосходит модуля диагонального элемента этой же строки.

Максимальная сумма элементов вне диагонали в каждой строке равна $\varepsilon(n-1)$, тогда, чтобы диагональное преобладание нарушилось нужно, чтобы $\varepsilon > \frac{1}{n-1}$. Проверим эту оценку.

Заметим, что существуют такие крайние матрицы, что их определитель положителен. А значит, чтобы матрица была особенной, нужно, чтобы существовали крайние матрицы с отрицательным определителем.

Посчитаем определитель для различных n. Обозначим $[0,\varepsilon]=a$ и вычислим определитель таких матриц программно, используя символьные вычисления. Далее вручную посчитаем определитель и внесем результаты в программу для дальнейшего анализа. Ссылка на git с кодом приведена в приложении.

Получим следующее:

```
2 : [ 1 - a**2 ; 1 ]
3 : [ 1 - 3*a**2 ; a**3 + 1 ]
4 : [ -3*a**4 - 6*a**2 + 1 ; 8*a**3 + 1 ]
5 : [ -15*a**4 - 10*a**2 + 1 ; 4*a**5 + 20*a**3 + 1 ]
6 : [ -5*a**6 - 45*a**4 - 15*a**2 + 1 ; 24*a**5 + 40*a**3 + 1 ]
7 : [ -35*a**6 - 105*a**4 - 21*a**2 + 1 ; 6*a**7 + 84*a**5 + 70*a**3 + 1 ]
8 : [ -7*a**8 - 140*a**6 - 210*a**4 - 28*a**2 + 1 ; 48*a**7 + 224*a**5 + 112*a**3 + 1 ]
```

Заметим, что правая граница всегда получается положительной, поскольку мы имеем там полиномы с положительными коэффициентами и $\varepsilon>0$ по условию.

Будем рассматривать левую границу и искать такие ε , при которых левая граница будет отрицательной. Сделаем это при помощи Python. Результаты занесем в таблицу. Получим следующее

++						
N	1 / (N - 1)	eps*	delta			
2	1.0	1.0	0.0			
3	0.5	0.577	0.077			
4	0.333	0.393	0.06			
5	0.25	0.297	0.047			
6	0.2	0.238	0.038			
7	0.167	0.199	0.033			
8	0.143	0.171	0.028			
+	+	+	+			

Как видим по таблице, с увеличением n граница, с которой начинаются подходящие нам ε (столбец eps^*) уменьшается. Так же отметим, что эта граница приближается (столбец delta) к оценке при которой нарушается диагональное преобладание матрицы(столбец 1/(N-1)).

3. Приложение

Ссылка на гит https://github.com/atani20/comp_complex