9.1b Do Now: Transformations and corresponding parts

1. Slide $\triangle ABC$ to the right three and up four. Label the image $\triangle A'B'C'$.

2. Translate $\triangle DEF$ by $(x,y) \rightarrow (x+3,y-5)$. Label the image $\triangle D'E'F'$.

3. Plot and label $\triangle XYZ$ with $X(-1,2),\ Y(3,4),\$ and Z(1,-3). Then translate by $(x,y) \to (x-6,y-1),$ labeling the image $\triangle X'Y'Z'.$

4. What transformation maps $\triangle ABC$ onto $\triangle DEC$, shown below? Fully specify the transformation. Complete the table of mappings to corresponding objects.

5. Reflect $\triangle TRS$ across the y-axis, labeling the image $\triangle T'R'S'$. Check those properties that are maintained by reflection.

$$\square$$
 Orientation

$$\square$$
 Parallel relationships

6. A translation maps triangle PQR onto triangle STU.

Write each corresponding object.

(a)
$$Q \rightarrow \underline{\hspace{1cm}}$$

(b)
$$\angle QRP \cong \underline{\hspace{1cm}}$$

(c)
$$\underline{\hspace{1cm}} \cong \overline{ST}$$

(d) Justify $\triangle PQR \cong \triangle STU$. Use the words "rigid motion".

7.	Check	those	transformations	that	are	rigid	motions.
	CIICCII	CIICOCC		CIICO	COL C	11514	TITO CIOILO

□ Dilation

☐ Translation

□ Reflection

□ Rotation

☐ An isometry

☐ Horizontal stretch

8. A rigid motion maps $\triangle DEF$ onto $\triangle LMN$. Fill in the blanks.

The following is given:

(a) $D \rightarrow \underline{\hspace{1cm}}$

DE = 10

 $m\angle E = 40^{\circ}$

 $m \angle F = 110^{\circ}$

(b) LM =_____

(c) $m \angle M =$ _____

(d) $\overline{LM} \cong \underline{\hspace{1cm}}$

9. Given $\triangle JKL \sim \triangle MNO$. $m\angle K = 40^{\circ}$ and $m\angle M = 100^{\circ}$. Find the measure of $\angle J$.