Kalman Filter

2019.03.18

차례

Kalman Filter algorithm

Kalman Filter algorithm

$$x_k = 14$$

Kalman Filter algorithm

$$x_k = 14$$

$$v_k = N(0, 2^2)$$

$$x_{k+1} = x_k$$

$$x_k = 14$$

$$v_k = N(0, 2^2)$$

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

 x_k 는 상태 변수

 z_k 는 측정값

A는 상태전이행렬

H는 mXn 행렬

 w_k 는 잡음

 w_k 는 측정 잡음

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

 x_k 는 상태 변수 z_k 는 측정값 A는 상태전이행렬 H는 mXn 행렬 w_k 는 잡음 w_k 는 측정 잡음

$$A = 1$$

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

 x_k 는 상태 변수 A=1 A는 상태전이행렬 A=1 A는 mXn 행렬 A=1

 w_k 는 측정 잡음

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

 x_k 는 상태 변수 A=1 A=1 A는 상태전이행렬 A=1 A는 mXn 행렬 A=0 A=1 A는 짧음 A=1 A=1

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

$$x_k$$
는 상태 변수 $A=1$ $A=1$ A 는 상태전이행렬 $A=1$ A 는 W $_k$ 는 잡음 $A=1$ $A=1$

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

$$x_k$$
는 상태 변수 z_k 는 측정값 $A=1$ $\hat{x}_0^-=14$ A 는 상태전이행렬 $H=1$ $Q=0$ w_k 는 잡음 $R=4$

Kalman Filter algorithm

$$x_{k+1} = x_k$$
 $x_k = 14$ $z_k = x_k + v_k$ $v_k = N(0, 2^2)$

$$x_{k+1} = Ax_k + w_k$$
 $Q = w_k$ 의 공분산 행렬 $z_k = Hx_k + v_k$ $R = v_k$ 의 공분산 행렬

$$x_k$$
는 상태 변수 z_k 는 측정값 $A=1$ $\hat{x}_0^-=14$ A 는 상태전이행렬 $H=1$ $P_0=6$ $Q=0$ W_k 는 잡음 $Q=4$

Kalman Filter algorithm

Kalman Filter algorithm

```
clear all
dt = 0.2i
t = 0:dt:10;
Nsamples = length(t);
Xsaved = zeros(Nsamples, 1);
Zsaved = zeros(Nsamples, 1);
for k=1:Nsamples
  z = GetVolt();
  volt = SimpleKalman(z);
  Xsaved(k) = volt;
  Zsaved(k) = z;
end
figure
plot(t, Xsaved, 'o-')
hold on
plot(t, Zsaved, 'r:*')
```


Kalman Filter algorithm

function z = GetVolt()

w = 0 + 4*randn(1,1);

z = 14.4 + w;

Kalman Filter algorithm

Kalman Filter algorithm

```
function z = GetVolt()
%
%
w = 0 + 4*randn(1,1);
z = 14.4 + w;
```

```
function volt = SimpleKalman(z)
persistent A H Q R
persistent x P
persistent firstRun
if isempty(firstRun)
  A = 1;
  H = 1;
  Q = 0;
  R = 4;
  x = 14;
  P = 6;
  firstRun = 1;
end
xp = A*x;
Pp = A*P*A' + O;
K = Pp*H'*inv(H*Pp*H' + R);
x = xp + K*(z - H*xp);
P = Pp - K*H*Pp;
volt = x;
```


Kalman Filter algorithm

Kalman Filter algorithm

```
clear all
dt = 0.2i
t = 0:dt:10;
Nsamples = length(t);
Xsaved = zeros(Nsamples, 1);
Zsaved = zeros(Nsamples, 1);
for k=1:Nsamples
  z = GetVolt();
  volt = SimpleKalman(z);
  Xsaved(k) = volt;
  Zsaved(k) = z;
end
figure
plot(t, Xsaved, 'o-')
hold on
plot(t, Zsaved, 'r:*')
```