Ay124 PS5 Solutions

TA: Yuguang Chen

02/28/2017

1 Giant Molecular Cloud and Turbulence

[4+1+2+4+3+2]

Table 1: Physical Properties of GMCs

	Large	Medium	Small
M/M_{\odot}	10^{6}	10^{4}	10^{2}
R/pc	31.6	3.16	0.316
$\Sigma/(M_{\odot}/{ m pc}^2)$	318	318	318
$\Sigma/({ m g/cm}^2)$	0.0667	0.0667	0.0667
$\rho/(M_{\odot}/\mathrm{pc}^3)$	7.55	75.5	755
$ ho/({ m g/cm}^3)$	5.12×10^{-22}	5.12×10^{-21}	5.12×10^{-2}
$t_{\rm ff}/{ m yr}$	2.9×10^{6}	9.2×10^{5}	2.9×10^{5}

Adopted from the previous PS: for large, medium, and small GMCs, their mass(M), radius(R), surface density (Σ), density (ρ) and free-fall time ($t_{\rm ff}$) are listed in Table 1.

a) Plugging in $c_s \sim \sqrt{\frac{kT}{2m_H}}$ for molecular hydrogen,

$$\lambda_J \sim \sqrt{\frac{kT}{2m_H G \rho}}$$
 (1)

=
$$3.48 \times 10^{18}$$
, 1.10×10^{18} , 3.48×10^{17} g/cm³ (2)

$$= 1.12, 0.35, 0.11 \text{ pc}. \tag{3}$$

All of the clouds are unstable since $R > \lambda_J$. If all of the fragmented gas turns into a star, their masses will be,

$$M_* = \frac{4\pi}{3} \lambda_J^3 \rho$$
 (4)
= $45, 14, 4.5 M_{\odot}$. (5)

$$= \boxed{45, 14, 4.5M_{\odot}}.$$
 (5)

b) The characteristic timescales are the dynamical timescales, which are $t_{\rm dyn} \sim 2.9, 0.92, 0.29 \rm Myr$ for large, medium and small GMCs.

c)
$$N_* \sim \frac{0.01 M_{\text{cloud}}}{10 M_{\odot}} \sim \boxed{1000, 10, 0.1}.$$
 (6)

Since the average number of high-mass stars in low mass cloud is 0.1, the highmass stars are generally insignificant for those clouds. If by chance, they do form a high-mass star, the cloud will be easily destroyed.

d) Under photoionization equilibrium (rate of ionization equals to rate of recombination)[1],

$$Q = \frac{4\pi}{3} R_S^3 \alpha_B n(H^+) n_e, \tag{7}$$

where α_B is the case B recombination coefficient, and it approximately is $\alpha_B \approx 2.56 \times 10^{-13} \left(\frac{T}{10^4 \text{ K}}\right)^{-0.83} \text{ cm}^3/\text{s}$. Thus,

$$R_S = \left(\frac{3Q}{4\pi n_H^2 \alpha_B}\right)^{1/3} \tag{8}$$

$$= 4.6 \times 10^{18}, 1.0 \times 10^{18} \text{ cm}$$
 (9)

$$= [1.5, 0.32 \text{ pc}], \tag{10}$$

for large and medium mass clouds correspondingly.

The thermal energy for each Stromgren sphere is,

$$E_{\rm th} \sim 2N_H kT$$
 (11)

$$\sim \frac{8\pi}{3}R_S^3 n_H kT \tag{12}$$

$$\sim \left[3.5 \times 10^{47}, 3.5 \times 10^{46} \text{ erg}\right].$$
 (13)

The potential energy is,

$$\Phi \sim \frac{GM_S^2}{R_S}$$
(14)
$$\sim \left[6.5 \times 10^{44}, 3.0 \times 10^{43} \text{ erg}\right].$$
(15)

$$\sim \left[6.5 \times 10^{44}, 3.0 \times 10^{43} \text{ erg}\right].$$
 (15)

Therefore, the thermal energies are much larger than the potential energies of GMCs by a factor of 10^3 . It will cause the gas in the Stromgren sphere to expand.

The timescales to evaporate the GMCs are,

$$t_{\text{evaporate}} \sim \frac{R_{\text{cloud}}}{c_s} \sim 3.5, 0.35 \text{Myr}.$$
 (16)

Note: now the gas is ionized, so the number density is calculated from the mass of each hydrogen atom.

e) For $M > 10^6 M_{\odot}$ clouds, the timescale for ionized gas to push out is too long to finish before SNe explosion.

To put in enough momentum to unbind the cloud, the timescale Δt must satisfy,

$$\frac{2N_*L}{c}\Delta t \sim M_{\text{cloud}}\sqrt{\frac{GM_{\text{cloud}}}{R_{\text{cloud}}}}.$$
(17)

Therefore, $|\Delta t \sim 2.9, 0.94 \text{ Myr}|$, similar to $t_{\rm dyn}$.

f) Since most of the GMC is destroyed by the time SNe explodes, the SNe mostly affects the outside ISM. Since the typical ISM is 10^{-4} more diffuse than GMC, the radius of each bubble in ISM is ~ 22 times larger than the bubble in GMC. Thus, the probability of overlapping bubbles is significantly increased, causing the formation of galactic outflows.

2 Feedback

[1+3+3+2+2]

a) The energy injection rate is,

$$P \sim \frac{1}{2} \times 10^{51} \text{ erg} \left(\frac{\dot{M}_*}{100 M_{\odot}} \right) \sim 5 \times 10^{48} \text{ erg/s} \left(\frac{\dot{M}_*}{1 M_{\odot}/\text{s}} \right)$$
 (18)

b) Given energy conservation,

$$P = \frac{1}{2} \dot{M_{\text{wind}}} v_{\text{esc}}^2 \sim 5 \times 10^{48} \text{ erg/s} \left(\frac{\dot{M}_*}{1 M_{\odot}/\text{s}} \right).$$
 (19)

Therefore, the mass loading factor,

$$\eta = \frac{\dot{M_{\rm wind}}}{\dot{M}_*} \sim 10^{49} \text{ erg/} M_{\odot} \frac{1}{v_{\rm esc}^2}.$$
(20)

Plugging in $v_{\rm esc}$, we get,

$$\eta \sim 2.0 \left(\frac{10^{12} M_{\odot}}{M_{\text{habo}}}\right)^{2/3}$$
 (21)

c)
$$M_{b,\text{gal}} = \frac{f_b M_{\text{halo}}}{1+n} \sim \frac{f_b M_{\text{halo}}}{n}, \tag{22}$$

if $\eta \gg 1$. Therefore,

$$M_{b,\text{gal}} \sim \frac{f_b}{2} \frac{M_{\text{halo}}^{5/3}}{(10^{12} M_{\odot})^{2/3}}.$$
 (23)

For momentum-driven wind, $M_{b,\mathrm{gal}} \propto M_{\mathrm{halo}}^{4/3}$. Therefore, the gas fraction and baryon "conversion" and "retention" efficiencies are expected to have stronger dependence on mass.

d) For a typical SNe, the energy ejection rate is $\sim 2\%$, which is ~ 25 times as the energy ejection rate of photoinozation star light. Therefore, the mass loading factor η becomes ~ 25 times larger, and at a given halo mass, the mass of the galaxy is ~ 25 times smaller.

References

[1] Bruce T Draine. Physics of the interstellar and intergalactic medium. Princeton University Press, 2010.