

Catcatcat electronics

Главная Новости

Проекты

Скачать 🔻

Обучение ▼ Сh-светомузыка ▼

Схемотехника ▼

О сайте

Форум

Файлообменник

DHT11 — Датчик влажности и температуры

Измерение температуры и влажности при помощи датчика DHT11.

DHT11 недорогой цифровой датчик температуры и влажности. Он использует емкостной датчик влажности и терморезистор для измерения температуры окружающего воздуха, данные выдает в цифровой форме по шине типа 1-wire. В использовании он довольно прост, но требует точного определения длительности временных сигналов, чтобы декодировать данные. Единственный недостаток это возможность получения данных не чаще 1 раза в две секунды.

Особенности.

- Температурная компенсация во всем диапазоне работы
- Измерение относительной влажности и температуры

- Калиброванный цифровой сигнал
- Отличная долгосрочная стабильность показаний
- Не требуются дополнительные компоненты
- Возможность передачи данных на большое растояние
- Низкое энергопотребление
- 4-контактный корпус и полностью взаимозаменяемы

Детали.

Для преобразования данных внутри датчика используется 8-битный микроконтроллер, В процессе производства датчики калибруются и калибровочная константа записывается вместе с программой в память микроконтроллера. Однопроводный последовательный интерфейс дает возможность быстрой интеграции в устройство. Его небольшие размеры, низкое энергопотребление и до-20-метром передачи сигнала, что делает его привлекательным выбором для различных приложений.

Диапазон измеряемых параметров.

Обзор:

Параметр	Диапазон измерения	Точность	Разрешение
Влажность	20-90%	±5%	1
Температура	0-50°C	±2°C	1

Подробные спецификации:

Параметр	Условия	Минимальное	Типичное	Максимальное
Влажность				
Разрешение		1%	1%	1%
			8 бит	
Стабильность			±1%RH	
Точность	25°C		±4%RH	
	0-50°C			±5%RH
Взаимозаменяемость	полностью взаимозаменяемы			
Диапазон измерения	0°C	30%RH		90%RH
	25°C	20%RH		90%RH
	50°C	20%RH		80%RH
Время отклика (в секундах)	1/e(63%)25 1m/s Air	6	10	15

Гистерезис			±1%RH	
Долговременная стабильность	типичная		±1%RH/year	
Температура		1°C	1°C	1°C
Разрешение		8 бит	8 бит	8 бит
Стабильность			±1°C	
Точность		±1°C		±2°C
Диапазон измерения		0°C		50°C
Время отклика (в секундах)		6		30

Электрические параметры:

Параметр	Режим	Мин	Типовое	Макс	Ед.изм.
Напряжение питания	DC	3	5	5.5	V
Ток потребления	Измерение	0.5		2.5	mA
	Ожидание	100		150	uA
	Среднее	0.2		1	mA

Габаритные размеры и подключение:

Питание DHT11 составляет 3-5.5V DC. После подачи питания на датчик, необходимо выдержать паузу длительностью не менее 1 секунды перед началом считывания данных. Для фильтрации напряжения питания можно добавить один конденсатор 0,1 мкФ между Vdd и Vss.

Последовательный интерфейс (Single-Wire Двусторонний)

Весь обмен данными выполняется по одной одному проводу (шине). На шине может присутствовать только один датчик. Для получения высокого уровня используется подтягивающий резистор (5-10 кОм), т.е в пассивном состоянии на шине высокий уровень. Формат обмена данными может быть разделен на три этапа:

- 1) Инициализации.
- 2) Преамбула.
- 3) Передача данных.

Инициализация.

Процесс чтения данных начинается с импульса инициализации который формирует микроконтроллер. Он должен установить на шине низкий уровень на время не менее 18 mS, для инициализации DHT-11.

Преамбула.

Микроконтроллер после формирования импульса инициализации должен сразу перевести порт в режим чтения (режим приема данных). Если датчик готов к передачи данных, он ответит сформировав преамбулу. Один период меандра длительностью ~160 us.

Микроконтроллер получив ответ от датчика, может начать чтение данных.

Передача данных.

Данные представляют собой 5 байт данных, которые читаются по битно микроконтроллером, т.е всего 40 бит.

Влажность, целая часть	Влажность, дробная часть	Температура, целая часть	Температура, дробная часть	Контрольная сумма
26orr	Siforr	26 болг	Sifter .	3forr

Первые два байта данные влажности (относительная влажность), целая и дробная часть. Третий и четвертый температура (градусы Цельсия), целая и дробная часть и пятый последний байт контрольная сумма, которая равна сумме первых 4 байт. К сожалению хотя и присутствуют байты отвечающие за десятые доли градуса и процента, реально контроллер датчика их не вычисляет (хотя это и понятно при такой точности это бесполезно), поэтому в них всегда присутствуют нули. Если реально считывать эти байты то мы увидим, например:

```
bait0 = 41 // влажность
bait1 = 0
bait2 = 31 // температура
bait3 = 0
bait4 = 72 // контрольная сумма
```

Но нет худа без добра, если в этих байтах всегда нули, то можно это значение (аналогично как для контрольной суммы) использовать для достоверности передачи данных.

Данные кодируются длительностью высокого уровня в каждом бите, бит начинается стробом низкого уровня длительностью приблизительно 50-54uS, после строба идет высокий уровень, если длительность высокого уровня в пределах 24 uS, то это передается «0", если в пределах 70 uS — передается «1".

Бит '0 ':

По окончанию передачи данных датчик передает последний строб, устанавливает на шине высокий уровень и переходит в спящий режим.

Логика чтения данных может быть следующая.

Вид передачи полностью:

Датчик подключается ко входу контроллера который может формировать прерывания по изменению уровня на входе. Для определения длительности импульса можно использовать таймер микроконтроллера.

Для демо проекта используем плату ILLISSI_B4_primum с установленным микроконтроллером PIC16F1936. Для индикации данные будем выводить, через USB порт на терминал программы AN1310 Microchip.

Вариант построение программа для чтения данных с датчика для компилятора MPLAB® XC8 Compiler v1.20. Для измерение длительности мы применим таймер Timer0. А для контроля моментов изменения сигнала на входах будем использовать возможность микроконтроллера формировать прерывания по изменению состояния на входах. Всё декодирование данных будет выполняться в прерывании (благо там минимум работы), поэтому для основной программы остается только дать «толчек» для выдачи данных и обработать их когда данные будут готовы.

Настройка прерывание для работы с датчиком

Функция запуска измерения (её можно в ставить в главный цикл для постоянного получения данных)

```
if(DHT11==0)// запуск измерения
{
      DHT11=1;
                      // включить цикл измерения
      TRISB=0;
                      // настроить порт на выход
      LATB0=0;
                      // установить низкий уровень
      __delay_ms(18); // задержка в 18 миллисекунд (больше можно :))
      IOCBP0=1;
                      // настроить прерывание на входе RBO на фронт
      IOCBF0=0;
                      // сбросить флаг прерывания
      TRISB=1;
                      // настроить порт на вход
      PREAM=1;
                       // поиск преамбулы
}
```

Вариант обработки прерываний

```
if(IOCIF)
   IOCIF=0; //сбросить флаг
   IOCBF0=0; //сбросить флаг
   if(DHT11)
      if(IOCBP0)// если прерывания по фронту
         ІОСВР0=0; // отключить прерывание по фронту
         {\tt IOCBN0=1;} // включить прерывание по срезу
         TMR0=0; // сбросить таймер
         TMR0IF=0; // сбросить флаг переполнения
         TMR0IE=1; // разрешить прерывания TMR0
       }
       else
          dlinimp=TMR0; // сохранить значение таймера в регистр
          TMR0=0; // сбросить таймер
          TMR0IF=0; // сбросить флаг переполнения
          ІОСВР0=1; //включить прерывание по фронту
          IOCBN0=0; //отключить прерывание по срезу
         LATB1=!LATB1; // переключить светодиод
          if(!TMR0IF)
             if(PREAM)// поиск прембулы
                if(dlinimp>80)
                   PREAM=0;// преамбула принята
                   countbit=0;
                }
              }
              else
                 if(countbit<8)
                 {
                    bait0<<=1;
                    if(dlinimp>30) bait0 |= 0b00000001;// определение бита и запись
его в байт приема
                  else if(countbit>=8&&countbit<16)</pre>
                     bait1<<=1;
                     if(dlinimp>30) bait1 |= 0b00000001;// определение бита и запис
ь его в байт приема
                  else if(countbit>=16&&countbit<24)</pre>
```

```
bait2<<=1;
                   if(dlinimp>30) bait2 |= 0b00000001;// определение бита и запис
ь его в байт приема
                else if(countbit>=24&&countbit<32)</pre>
                   bait3<<=1;
                   if(dlinimp>30) bait3 |= 0b00000001;// определение бита и запис
ь его в байт приема
                 else if(countbit>=32&&countbit<40)</pre>
                 bait4<<=1;
                 if(dlinimp>30) bait4 |= 0b00000001;// определение бита и запись
его в байт приема
                 countbit++;
              }
           else
              ERROR_DHT11=1; // неисправность датчика
         }
      }
    if(TMR0IF)
      TMR0IF=0;
      DHT11=0;
      TMR0IE=0; //запретить прерывания TMR0
     }
```

Вывод: простой недорогой датчик влажности и температуры, для проектов бытового назначения.

Файлы для загрузки

Демонстрационный проект, MPLAB® X IDE v1.85, MPLAB® XC8 Compiler v1.20

