Directed cycles of length 4 in oriented bipartite graphs

Bo Ning*and Jun Ge[†]

Abstract

In this note we obtain a new sufficient condition for the existence of directed cycles of length 4 in oriented bipartite graphs. As a corollary, a conjecture of H. Li (Rainbow C_3 's and C_4 's in edge-colored graphs, Discrete Math., to appear) is confirmed.

Keywords: Directed cycle; Oriented bipartite graph

AMS Subject Classification (2000): 05C20, 05C38

Throughout this note, we consider finite simple oriented graphs only, i.e., graphs without multiple edges and loops and in which each edge is replaced by only one arc. Let D be an oriented bipartite graph with bipartition (A, B). For $A_1 \subseteq A$ and $B_1 \subseteq B$, we denote by $A_D(A_1, B_1)$ the set of arcs from A_1 to B_1 in D. For terminologies and notations not defined here, we refer to Bondy and Murty [1].

In [4], G. Wang et al. raised the following conjecture.

Conjecture 1. Let D be a directed bipartite graph with bipartition (A, B). If $d^+(u) > \frac{|B|}{3}$ for $u \in A$ and $d^+(v) \ge \frac{|A|}{3}$ for $v \in B$, or $d^+(u) \ge \frac{|B|}{3}$ for $u \in A$ and $d^+(v) > \frac{|A|}{3}$ for $v \in B$, then there exists a directed C_4 in D.

G. Wang et al. [4] used a construction from [2] to show that if the conjecture holds, then it would be best possible. Now we rewrite the construction here. Let m and n be two positive integers divisible by 3. Let $|M_0| = |M_1| = |M_2| = \frac{m}{3}$ and $|N_0| = |N_1| = |N_2| = \frac{n}{3}$. We will construct an oriented bipartite graph with bipartition (M, N), where $M = M_0 \cup M_1 \cup M_2$ and $N = N_0 \cup N_1 \cup N_2$. Create all possible arcs from M_i to N_i , and from N_i to M_{i+1} , i = 0, 1, 2 (modulo 3). In the rest parts of this note, we use $D^*(m, n)$ to denote the construction above for convenience.

Recently, H. Li [3] proposed the following conjecture, which is a weak form of Conjecture 1. H. Li [3] proved the conjecture for balanced oriented bipartite graphs.

^{*}Department of Applied Mathematics, Northwestern Polytechnical University, Xian, Shaanxi 710072, P.R. China. E-mail address: ningbo_math84@mail.nwpu.edu.cn (BO NING). This author is responsible for communication.

[†]School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China. E-mail address: mathsgejun@163.com (JUN GE).

Conjecture 2. Let D be an oriented bipartite graph with bipartition (A, B). If $d^+(u) > \frac{|B|}{3}$ for $u \in A$ and $d^+(v) > \frac{|A|}{3}$ for $v \in B$, then there exists a directed C_4 in D.

The main purpose of this note is to prove Conjecture 2. In fact, we prove a stronger result as follows.

Theorem 1. Let D be an oriented bipartite graph with bipartition (A, B), where $|A| = m \ge 3$ and $|B| = n \ge 3$. If $d^+(u) \ge \frac{n}{3}$ for $u \in A$ and $d^+(v) \ge \frac{m}{3}$ for $v \in B$, then there exists a directed C_4 in D or $D = D^*(m, n)$.

Proof. Let D(m, n) be a family of digraphs consisting of all oriented bipartite graphs with bipartition (A, B) satisfying the conditions in Theorem 1, where m = |A| and n = |B|. Choose any $D \in D(m, n)$.

First we claim that it is sufficient to prove Theorem 1 for those m and n which are both multiples of 3. Suppose that Theorem 1 holds for D(m,n), where $m \equiv n \equiv 0 \pmod{3}$. If $m \equiv n \equiv 0 \pmod{3}$, then it is trivially true. Otherwise, without loss of generality, assume that m is not divided by 3. Let $s_1 = 3\lceil \frac{m}{3} \rceil - m$, $A^* = \{u_1, \dots, u_{s_1}\}$ and $A' = A \cup A^*$. If $n \equiv 0 \pmod{3}$, let B' = B. Otherwise, let $s_2 = 3\lceil \frac{n}{3} \rceil - n$, $B^* = \{v_1, \dots, v_{s_2}\}$ and $B' = B \cup B^*$. Now we construct a new oriented bipartite graph D' with bipartition (A', B'), where $A(D') = A(D) \cup \{u'v, v'u : u \in A, u' \in A^*, v \in B, v' \in B^*\}$. Notice that $d_{D'}^+(u) \geq \lceil \frac{|B|}{3} \rceil = \frac{|B'|}{3}$ for each $u \in A$ and $d_{D'}^+(u') = n > \frac{|B'|}{3}$ for each $u' \in A^*$. Similarly, $d_{D'}^+(v) \geq \lceil \frac{|A|}{3} \rceil = \lceil \frac{|A'|}{3} \rceil$ for each $v \in B$ and $d_{D'}^+(v') = m > \frac{|B'|}{3}$ for each $v' \in B^*$. It follows that $D' \in D[3\lceil \frac{m}{3}\rceil, 3\lceil \frac{n}{3}\rceil]$. Hence there is a directed C_4 in D'. Since the vertices in A^* and B^* only have outdegrees, the directed C_4 in D' is also in D. The proof of our claim is complete.

Now we assume $m = 3m_1$ and $n = 3n_1$, where m_1, n_1 are two positive integers. Let D_1 be a spanning subdigraph of D satisfying $d_{D_1}^+(u) = n_1$ for $u \in A$ and $d_{D_1}^+(v) = m_1$ for $v \in B$. Suppose that there is no directed C_4 in D_1 . Let u_0 be a vertex with maximum indegree k_1 among all the vertices in A, and v_0 be a vertex with maximum indegree k_2 among all the vertices in B. Let $B_1 = N_{D_1}^-(u_0)$, $B_2 = N_{D_1}^+(u_0)$, $A_3 = N_{D_1}^+(B_2)$ and $B_3 = N_{D_1}^+(A_3) - B_2$, where $|B_1| = k_1$, $|B_2| = n_1$. Since there is no directed C_4 in D_1 , we have $N_{D_1}^+(A_3) \cap B_1 = \emptyset$. Since $|B_3|k_2 \geq |N_{D_1}^-(B_3)| \geq |A_{D_1}(A_3, B_3)| = |A_3|n_1 - |A_{D_1}(A_3, B_2)| \geq |A_3|n_1 - (|A_3||B_2| - |A_{D_1}(B_2, A_3)|) = |A_{D_1}(B_2, A_3)| = \frac{nm}{9}$, we get $|B_3| \geq \frac{nm}{9k_2}$. Therefore $|B| = n \geq |B_1| + |B_2| + |B_3| \geq k_1 + \frac{n}{3} + \frac{nm}{9k_2} \geq \sqrt[3]{\frac{k_1n^2m}{k_2}}$. It follows that $k_2n \geq k_1m$. By symmetry, we also have $k_1m \geq k_2n$. Thus, $k_1m = k_2n$ and all the inequalities above become equalities. This implies $|B_1| = |B_2| = |B_3| = n_1$, and $|A_{D_1}(B_2, A_3)| = |A_{D_1}(A_3, B_3)| = \frac{mn}{9}$. That is, $A_{D_1}(B_2, A_3) = \{vu : v \in B_2, u \in A_3\}$ and $A_{D_1}(A_3, B_3) = \{uv : u \in A_3, v \in B_3\}$. Notice that $|A_{D_1}(A_3, B_3)| = \frac{mn}{9} = |A_3| \cdot \frac{n}{3}$, we obtain $|A_3| = m_1$. Furthermore, we obtain the

fact $k_1 = \frac{n}{3}$ and $\sum_{u \in A} d_{D_1}^-(u) = \sum_{v \in B} d_{D_1}^+(v) = \frac{mn}{3}$. It follows that $d_{D_1}^-(u) = \frac{n}{3} = n_1$ for $u \in A$. Similarly, we have $d_{D_1}^-(v) = \frac{m}{3} = m_1$ for $v \in B$. Now let $A_1 = N_{D_1}^+(B_3)$ and $A_2 = N_{D_1}^-(B_2)$. Since there is no directed C_4 in D, $A_1 \cap A_2 = \emptyset$ and $A_{D_1}(A_1, B_2) = \emptyset$. Also we obtain $A_1 \cap A_3 = A_2 \cap A_3 = \emptyset$. Notice that $|A_{D_1}(A_3, B_3)| = \frac{nm}{9}$ implies all inneighbors of any vertex of B_3 are in A_3 . Hence $A_{D_1}(A_1, B_3) = \emptyset$ and $N_{D_1}^+(A_1) = B_1$, which means $A_{D_1}(A_1, B_1) = \{uv : u \in A_1, v \in B_1\}$ and $|A_1| = \frac{m}{3}$. Similarly, we have $A_{D_1}(B_1, A_2) = \{vu : v \in B_1, u \in A_2\}$, $A_{D_1}(A_2, B_2) = \{uv : u \in A_2, v \in B_2\}$, and $|A_2| = \frac{m}{3}$. Now we can easily deduce $D_1 = D^*(m, n)$. If there are other arcs in D but not in D_1 , then obviously, there would be a directed C_4 in D, a contradiction. Thus $D = D_1 = D^*(m, n)$. The proof is complete.

Acknowledgement

The first author is supported by NSFC (No. 11271300) and the Doctorate Foundation of Northwestern Polytechnical University (cx201326). The second author is supported by NSFC (No. 11171279).

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory, GTM-244, Springer, Berlin (2008).
- [2] R.A. Brualdi and J. Shen, Disjoint cycles in Eulerian digraphs and the diameter of interchange graphs, J. Comb. Theory Ser. B 85 (2) (2002) 189-196.
- [3] H. Li, Rainbow C_3 's and C_4 's in edge-colored graphs, Discrete Math., to appear.
- [4] G. Wang, H. Li, Y. Zhu and G. Liu, A note on heterochromatic C_4 in edge-colored triangle-free graphs, *Graphs Combin.* **28** (6) (2012) 901-905.