Descriptive Statistical Analysis with R

Paolo Girardi and Livio Finos

15/10/2020

Contents

First phases	2
Univariate analysis	Ą
Bivariate analysis	ę
More attractive graphs with GGplot2 package	15

```
Ph.D. Course in Neuroscience
Calendar of the Basic Courses – Academic Year 2020-2021
Basic Concept of Statistics
```

Lesson 3 - Descriptive Statistical Analysis with R

First phases

Descriptive analysis is used to describe the basic features of the data in the study. They provide simple summaries about the sample and the measures. Together with simple graphical analysis, they form the basic virtual of any quantitative analysis of data.

```
# remove all in the R environment
rm(list=ls())
```

Now we import a dataset in EXCEL format. Let's install a package to do that (package readxl).

```
# if not installed, digit install.packages("readxl")
library(readxl)
```

Now we import the dataset "cat_ex.xlsx" in EXCEL format.

```
setwd("/Users/Paolo/Dropbox/Dottorato_Neurosciences")
DATASET <- read_excel("cat_ex.xlsx")</pre>
```

Let's see what we have imported.

```
View(DATASET)
dim(DATASET)
## [1] 63 5
str(DATASET)
## tibble [63 x 5] (S3: tbl_df/tbl/data.frame)
## $ Id
                : num [1:63] 1 1 1 2 2 2 3 3 3 4 ...
   $ Gruppi
                : chr [1:63] "HC" "HC" "HC" "HC" ...
  $ condizioni: chr [1:63] "Volti" "Scene" "Parole" "Volti" ...
##
   $ Y1
                : num [1:63] 0.662 0.864 0.762 0.71 0.813 ...
   $ Y2
                : num [1:63] 0.996 0.87 1.271 1.483 0.825 ...
DATASET=as.data.frame(DATASET)
```

The data is formed by 21 subjects who took part in a study measuring the cognitive ability through a verbal fluency test. The study enrolled healthy controls (11) and subjects with the Parkison Disease (10).

The test consisted on:

- a phonological fluency test with the use of three letters (different at each condition);
- a semantic fluency test using three categories (the type of condition is reported in the variable "condizioni").

We have 5 variables:

- ID: subject ID
- Gruppi: HC= Healthy Control; LE=Parkison Disease
- Condizioni: type of "subject" on the fluency test
- Y1: Phonemic fluency index: Z-score on the fluency test Phonemic
- Y2: Semantic fluency index: Z-score on the fluency test Semantic

```
DATASET$Gruppi=factor(DATASET$Gruppi)
DATASET$condizioni=factor(DATASET$condizioni)
str(DATASET)
## 'data.frame':
                  63 obs. of 5 variables:
             : num 1 1 1 2 2 2 3 3 3 4 ...
## $ Gruppi : Factor w/ 2 levels "HC", "LE": 1 1 1 1 1 1 1 1 1 1 ...
## $ condizioni: Factor w/ 3 levels "Parole", "Scene",..: 3 2 1 3 2 1 3 2 1 3 ...
## $ Y1
          : num 0.662 0.864 0.762 0.71 0.813 ...
## $ Y2
              : num 0.996 0.87 1.271 1.483 0.825 ...
# We can change the name
names(DATASET)
                  "Gruppi"
                                                      "Y2"
## [1] "Id"
                              "condizioni" "Y1"
names(DATASET)[4:5]<-c("Phonemic", "Semantic")</pre>
names(DATASET)
## [1] "Id"
                              "condizioni" "Phonemic"
                  "Gruppi"
                                                     "Semantic"
# I can calculate the difference between the Z-score on phonological and semantic test.
DATASET$delta=DATASET$Phonemic-DATASET$Semantic
DATASET$delta
## [1] -0.333604757 -0.005080331 -0.509661819 -0.772923006 -0.012313640
## [6] 0.006906715 -0.516024693 -0.723058795 -0.182181532 -0.687452482
## [16] -0.188255956 -1.379416347 -0.431996308 -0.867955450 -0.596997921
## [21] 0.001557256 -0.541236789 -0.832196235 -0.401281630 -1.399747826
## [26] 1.553087875 1.729171409 -0.362111916 -0.791746169 0.114356303
## [31] -0.954005200 -0.777088182 -1.735565316 -1.550650883 -1.452093166
## [36] -1.870504585 -0.808755358 -1.066325518 -0.208962929 -0.484628239
## [41] -0.798624740 -0.331374774 -1.134931507 -5.841208263 -1.681766687
## [46] -1.979407799 -0.609277539 -0.525475889 -0.900821427 -0.532275204
## [56] -0.710914458 -0.466386930 -0.374177497 -0.570108028 0.223138391
## [61] 0.049615349 -0.119425555 0.341029698
```

Univariate analysis

A simple way is to perform a separate analysis for each variable.

```
table(DATASET$Id)
##
##
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# 3 tests for each ID
table(DATASET$Gruppi)
##
## HC LE
## 33 30
# 33 for HC, 30 for LE
table(DATASET$condizioni)
##
## Parole Scene Volti
      21
             21
# Condition is repeated 21 times each ID
#Some indices for the quantitative variables
summary(DATASET$Phonemic)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                          Max.
## -3.9973 0.3246 0.5623 0.4169 0.6999 0.9374
summary(DATASET$Semantic)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                          Max.
## -1.2170 0.7278 1.0764 1.0121 1.3589 2.3298
summary(DATASET$delta)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                          Max.
## -5.8412 -0.8205 -0.5323 -0.5952 -0.1611 1.7292
# other indices
mean(DATASET$Phonemic)
## [1] 0.4168511
sd(DATASET$Phonemic)
## [1] 0.6393836
median(DATASET$Phonemic)
## [1] 0.5623233
IQR(DATASET$Phonemic)
## [1] 0.3752947
Some Figures:
#Histogram
hist(DATASET$Phonemic, breaks = 20,col="red")
```

Histogram of DATASET\$Phonemic

hist(DATASET\$Semantic, breaks = 20,col="green")

Histogram of DATASET\$Semantic


```
#Together
par(mfrow=c(2,1))
hist(DATASET$Phonemic, breaks = 20,col="red")
```


Histogram of DATASET\$Phonemic

Histogram of DATASET\$Semantic

DATASET\$Semantic

```
par(mfrow=c(1,1))

#Boxplot
boxplot(DATASET$Phonemic, breaks = 20,col="red")
```


#the presence of an outlier... I can limit the y axis extension from -1 to 1. boxplot(DATASET\$Phonemic, breaks = 20,col="red",ylim=c(-1,1))

boxplot(DATASET\$Semantic, breaks = 20,col="green")

par(mfrow=c(1,2))
boxplot(DATASET\$Phonemic, breaks = 20,col="red",ylim=c(-1,2),main="Phonemic scores")
boxplot(DATASET\$Semantic, breaks = 20,col="green",ylim=c(-1,2),main="Semantic scores")

Phonemic scores

Semantic scores

par(mfrow=c(1,1))

Bivariate analysis

```
We use a package ("tabs") to produce table (to export in Latex, Word, Html).
```

```
# if not installed, digit install.packages("tab")
library(tab)
## Loading required package: dplyr
## Warning: replacing previous import 'vctrs::data_frame' by 'tibble::data_frame'
## when loading 'dplyr'
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
## Loading required package: knitr
# we use the function tabmulti, please see tabmulti help (?tabmulti)
#table by variable " Gruppi"
tab1<-tabmulti(data=DATASET, condizioni+Phonemic+Semantic+delta~Gruppi)
# The numeric variables are summarized with MEAN and SD ad a p-value with t.test. I can change to MEDIA
library(knitr)
kable(tab1)
```

Variable	НС	LE	Р
condizioni, n (%)			1.00
Parole	11 (33.3)	10(33.3)	
Scene	11(33.3)	10(33.3)	
Volti	11 (33.3)	10(33.3)	
Phonemic, M (SD)	0.64(0.16)	0.17(0.85)	0.005
Semantic, M (SD)	1.06(0.66)	0.96 (0.59)	0.50
delta, M (SD)	-0.42 (0.69)	-0.79(1.15)	0.13

Variable	НС	LE	Р
condizioni, n (%)			1.00

Variable	НС	LE	Р
Parole	11 (33.3)	10 (33.3)	
Scene	11 (33.3)	10 (33.3)	
Volti Phonemic, Median (IQR)	11 (33.3) 0.66 (0.19)	$10 (33.3) \\ 0.31 (0.52)$	< 0.001
Semantic, Median (IQR)	1.23 (0.57)	0.79 (0.82)	0.15
delta, Median (IQR)	-0.52 (0.65)	-0.55 (0.83)	0.44

I can export the tables in HTML format by means of print.html = TRUE, html.filename = "table1.html" p
By condition

tab2<-tabmulti(data=DATASET, Phonemic+Semantic+delta~condizioni)
kable(tab2)</pre>

Variable	Parole	Scene	Volti	Р
Phonemic, M (SD)	0.50 (0.38)	0.28 (1.02)	0.48 (0.24)	0.47
Semantic, M (SD)	0.79 (0.74)	1.04 (0.61)	1.21 (0.46)	0.09
delta, M (SD)	-0.29 (0.79)	-0.76 (1.33)	-0.73 (0.51)	0.21

And some bivariate graphs, Phonemic score.

by Gruppi boxplot(DATASET\$Phonemic~DATASET\$Gruppi)

DATASET\$Gruppi

add limits and colours
boxplot(DATASET\$Phonemic~DATASET\$Gruppi,ylim=c(-1,1),col=c("red","green"))

#by condizioni
boxplot(DATASET\$Phonemic~DATASET\$condizioni,ylim=c(-1,1),col=1:3)

Semantic score

by Gruppi
boxplot(DATASET\$Semantic~DATASET\$Gruppi)

add limits and colours
boxplot(DATASET\$Semantic~DATASET\$Gruppi,col=c("red","green"))

#by condizioni
boxplot(DATASET\$Semantic~DATASET\$condizioni,col=1:3)

We can generate statistical analysis by means of functions done by ourselves. In particular we are going to use the library "doBy" that permits to perform a function by an other variable.

```
# if not installed, digit install.packages("doBy")
library(doBy)
##
## Attaching package: 'doBy'
## The following object is masked from 'package:dplyr':
##
##
       order_by
#This function calculate for a numeric vector
# MEAN, MEDIAN, VARIANCE AND THE LENGTH
fun <- function(x){</pre>
  c(m=mean(x), me=median(x), v=var(x), n=length(x))
#I use the function summaryBy to apply the function "fun" by type of the variable "Gruppi" and "Condizi
summaryBy(Semantic ~ condizioni+Gruppi, data=DATASET,
          FUN=fun)
##
     condizioni Gruppi Semantic.m Semantic.me Semantic.v Semantic.n
## 1
         Parole
                    HC
                        0.8527763
                                     0.8893248 0.73078861
## 2
         Parole
                         0.7220497
                                     0.5448075 0.38738667
                    LE
                                                                   10
## 3
          Scene
                    HC
                         1.0848226
                                     1.2340554 0.50287548
                                                                   11
## 4
          Scene
                    LE
                         0.9891230
                                     0.8357029 0.26934627
                                                                   10
## 5
          Volti
                    HC
                         1.2524907
                                     1.2804987 0.08319085
                                                                   11
          Volti
                    LE
                        1.1559139
                                     1.2867281 0.36407590
                                                                   10
summaryBy(cbind(delta,Phonemic) ~ condizioni+Gruppi, data=DATASET,
          FUN=fun)
                                                delta.v delta.n Phonemic.m
     condizioni Gruppi
                           delta.m
                                     delta.me
```

0.6937118

11

HC -0.1590645 -0.1821815 0.6735847

1

Parole

```
Parole LE -0.4439226 -0.2701689 0.5866438
Scene HC -0.4247216 -0.7230588 0.6088019
## 2
        Parole
                                                            10 0.2781271
## 3
                                                            11 0.6601010
## 4
         Scene LE -1.1349568 -0.6600960 2.9715636
                                                            10 -0.1458338
## 5
          Volti
                    HC -0.6753721 -0.6874525 0.1161715
                                                            11 0.5771187
                    LE -0.7860698 -0.7966665 0.4335148
                                                            10 0.3698441
## 6
          Volti
## Phonemic.me Phonemic.v Phonemic.n
## 1 0.7429972 0.02538157
## 2 0.3645354 0.18551385
                                    10
      0.6927294 0.02552888
## 3
                                    11
## 4 0.2141080 1.89813504
                                    10
## 5 0.6005389 0.01898461
                                    11
## 6 0.4900615 0.08191612
                                    10
```

More attractive graphs with GGplot2 package

This package (GGplot2) offers to us the possibility to create elegant data visualisations. Please visit:

https://ggplot2.tidyverse.org/

```
# if not installed, digit install.packages("ggplot2")
library(ggplot2)
# an instogram
gg=ggplot(DATASET, aes(x=delta,color="black", fill="red")) +
  geom_histogram(bins=10)
gg
  30 -
  20 -
                                                                                   colour
                                                                                       black
count
                                                                                   fill
                                                                                       red
  10-
                                     -2.5
                 -5.0
                                                          0.0
                                                                              2.5
                                        delta
# we add a mean line
gg=gg+ geom_vline(aes(xintercept=mean(delta)),
                   color="blue", linetype="dashed", size=1)
gg
```



```
# we add a smoothed density line
gg=ggplot(DATASET, aes(x=delta,y=..density..,color="black", fill="red")) +
   geom_histogram(bins=10)+
   geom_density(alpha=.2, fill="#FF6666")
gg
```


Warning: Removed 1 rows containing non-finite values (stat_boxplot).

