

PROJECT 2 Ames Housing Data and Kaggle Challenge

Background

The project aims to explore the relationship between the Sale Price of houses in Ames, lowa and the various features of the houses. We will be looking at some of the factors affecting house prices and using this information we will be creating regression models to predict house prices based on these features.

The findings from this project can hopefully be used by real estate firms in Ames, lowa to help them realise the importance of the some of the housing features as well as giving them a rough guideline on how new properties with these features could be priced at.

Datasets

- train.csv 2051 rows, 81 columns
- test.csv 879 rows, 80 columns

Column Types

- 23 nominal
- 23 ordinal
- 14 discrete
- 20 continuous variables
- 2 additional observation identifiers

	lo	I PID	MS SubClass	MS Zoning	Lot Frontage	Lot Area	Street	Alley	Lot Shape	Land Contour	Utilities	Lot Config	Land Slope	Neighborhood	Condition 1	Condition 2
(109	533352170	60	RL	NaN	13517	Pave	NaN	IR1	LvI	AllPub	CulDSac	Gtl	Sawyer	RRAe	Norm
1	544	531379050	60	RL	43.0	11492	Pave	NaN	IR1	LvI	AllPub	CulDSac	Gtl	SawyerW	Norm	Norm
2	153	535304180	20	RL	68.0	7922	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	NAmes	Norm	Norm
3	318	916386060	60	RL	73.0	9802	Pave	NaN	Reg	LvI	AllPub	Inside	Gtl	Timber	Norm	Norm
4	25	906425045	50	RL	82.0	14235	Pave	NaN	IR1	LvI	AllPub	Inside	Gtl	SawyerW	Norm	Norm

Data Exploration

•	Correlation of Numeric Features to Sale Price	1.00
SalePrice -	1	- 1.00
Gr Liv Area	0.7	
Garage Cars -	0.65	
Total Bsmt SF	0.63	
1st FIr SF -	0.62	- 0.75
Year Built -	0.57	
Year Remod/Add -	0.55	
Full Bath -	0.54	
Mas Vnr Area	0.5	- 0.50
TotRms AbvGrd	0.5	
Fireplaces -	0.47	
BsmtFin SF 1	0.42	
Open Porch SF -	0.33	- 0.25
Lot Frontage -	0.33	
Wood Deck SF	0.33	
Lot Area	0.3	
Bsmt Full Bath -	0.28	0.00
Half Bath -	0.28	- 0.00
2nd Flr SF -	0.25	
Bsmt Unf SF	0.19	
Bedroom AbvGr	0.14	
Screen Porch	0.13	0.25
3Ssn Porch	0.049	
Mo Sold	0.031	
BsmtFin SF 2	0.016	
Misc Val	-0.0076	0.50
Yr Sold -	-0.014	
Low Qual Fin SF -	-0.042	
Bsmt Half Bath -	-0.046	
MS SubClass -	-0.089	0.75
Kitchen AbvGr	-0.13	
Alley -	-0.14	
Enclosed Porch	-0.14	
Fence -	-0.18	3.00
	SalePrice	1.00

Distribution of Housing Prices in Ames, IA ('07-'10)

Data Cleaning

Missing values imputation

Take a look to see how many null values need to be address

```
df.isnull().sum().sort_values(ascending=False).head(27)
```

Pool QC	2042
Misc Feature	1986
Alley	1911
Fence	1651
Fireplace Qu	1000
Lot Frontage	330
Garage Finish	114
Garage Qual	114
Garage Yr Blt	114
Garage Cond	114
Garage Type	113
Bsmt Exposure	58
BsmtFin Type 2	56
Bsmt Cond	55
Bsmt Qual	55
BsmtFin Type 1	55
Mas Vnr Area	22
Mas Vnr Type	22
Bsmt Full Bath	2
Bsmt Half Bath	2
Garage Area	1
Garage Cars	1
Total Bsmt SF	1
Bsmt Unf SF	1
BsmtFin SF 2	1
BsmtFin SF 1	1

It seems like there are some features that

- contain more than 1000 null values (5 features)
- Others below 1000 null values (23 features)

First, we will gradually verify what the missing information is interesting.

Dealing with the worst offenders

Pool QC is mostly null, then I will take a look at the values it does have

Misc Feature (Miscellaneous feature) are uncommon features in a home

Fence and Alley are two remaining features with mostly null values

```
fence_quality = ['MnPrv', 'GdPrv', 'GdWo', 'MnWw']
for quality in fence_quality:
    df.Fence = df.Fence.str.replace(quality, '1')
df.Fence.fillna(0, inplace=True)
df.Fence = df.Fence.apply(lambda x: int(x))
df.Fence.head(8)

alley_quality = ['Grvl', 'Pave']
for quality in alley_quality:
    df.Alley = df.Alley.str.replace(quality, '1')
```

df.Alley.fillna(0, inplace=True)

df.Alley.head(8)

So, I will convert these both columns to a binary one where

- "1" indicates that a property has a fence
- "0" indicates that a property has no fence

Fireplace is another features with plenty of null values

df.Alley = df.Alley.apply(lambda x: int(x))

```
df.drop(columns='Fireplace Qu', inplace=True)
```


Since we already have a numeric features, "Fireplaces" that indicate how many fireplaces are in each property, I feel comfortable dropping "Fireplace Qu" from the dataset

Garage-related Features

```
Garage Type
Garage Yr Blt
Garage Finish
Garage Cars
Garage Area
Garage Qual
Garage Cond
```

Basement-related Features

Bsmt Qual
Bsmt Cond
Bsmt Exposure
BsmtFin Type 1
BsmtFin SF 1
BsmtFin Type 2
BsmtFin SF 2
Bsmt Unf SF
Total Bsmt SF
Bsmt Full Bath
Bsmt Half Bath

- 113 properties are missing garage-related values → Imply that these properties do not have garage so I will fill those values as 'NA'
- Compare the years that garages were built with the years the properties were built to see how many garages were built after the original construction
 - o **362 properties** have garages with different build years than the property itself
 - Low enough then I feel comfortable dropping the 'Garage Yr Blt'
- Fill "NA" of the four remaining garage features (Type, Finish, Qual, Cond)
- Since there don't seem to be any stray values for these features, Fill "NA" to the null categories

```
'Bsmt Qual'] = 'NA'
'Bsmt Cond'] = 'NA'
'Bsmt Exposure'] = 'NA'
'BsmtFin Type 1'] = 'NA'
'BsmtFin Type 2'] = 'NA'
```

- Total Bsmt SF = BsmtFin SF 1 + BsmtFin SF2 + Bsmt Unf_SF → Drop the components
- Bsmt Full Bath & Bsnt Half Bath → Manually set those values to 0

Last Miscellaneous Nulls

628

168

13

Name: Mas Vnr Type, dtype: int64

BrkFace

Stone

BrkCmn

 Since most properties have no masonry work, I'll impute the mode of 'None' and 0 for Mas Vnr Type and Mas Vnr Area.

```
df['Lot Frontage'].fillna(value=df['Lot Frontage'].mean(), inplace=True)
```

- We have too many nulls for Lot Frontage to drop those properties from our dataset, but not enough nulls to drop the feature entirely.
- Since it is unlikely that a property truly has zero linear feet of **Lot Frontage I will impute the mean value**.

Deleting some outlier data

Fixing nonsensical values...

• Replacing Garage Yr Blt value that is in the future (2207) with the year the house was built.

```
count
         1937,000000
         1978,707796
mean
std
           25.441094
min
         1895,000000
25%
         1961.000000
50%
         1980.000000
75%
         2002.000000
max
         2207.000000
```

Name: Garage Yr Blt, dtype: float64

Feature Engineering

Converting Year columns to age...

Converting...

- 'Year Built'
- 'Year Remod/Add'
- 'Garage Yr Blt'
- 'Yr Sold'

from actual Years to age

```
def convert_yrs_cols(df):
    yr_cols = ['Year Built','Year Remod/Add','Garage Yr Blt','Yr Sold']
    df_copy = df.copy(deep=True)
    for col in yr_cols:
        df_copy[col] = 2011 - df_copy[col]
    return df_copy
```

Adding Polynomial Features

- 1. Getting a list of features that has a strong correlation (0.6<) against SalePrice.
- 2. Using sklearn's PolynomialFeatures to create interaction terms between these features with degree of freedom = 3.

Overall Qual^3	Overall Qual^2 Gr Liv Area	Overall Qual^2 Garage Area	Overall Qual^2 Total Bsmt SF	Overall Qual^2 1st Fir SF	Overall Qual^2 Exter Qual_TA	Overall Qual Gr Liv Area^2	Overall Qual Gr Liv Area Garage Area	Overall Qual Gr Liv Area Total Bsmt SF	Overall Qual Gr Liv Area 1st Fir SF	Overall Qual Gr Liv Area Exter Qual_TA	Overall Qual Garage Area^2
216.0	53244.0	17100.0	26100.0	26100.0	0.0	13124646.0	4215150.0	6433650.0	6433650.0	0.0	1353750.0
343.0	103978.0	27391.0	44737.0	44737.0	0.0	31520188.0	8303386.0	13561702.0	13561702.0	0.0	2187367.0
125.0	26425.0	6150.0	26425.0	26425.0	25.0	5586245.0	1300110.0	5586245.0	5586245.0	5285.0	302580.0
125.0	36100.0	10000.0	9600.0	18600.0	25.0	10425680.0	2888000.0	2772480.0	5371680.0	7220.0	800000.0
216.0	52020.0	17424.0	24336.0	29916.0	36.0	12528150.0	4196280.0	5860920.0	7204770.0	8670.0	1405536.0

OneHotEncoding (Categorical data)

	MS Zoning	Street	Land Contour	Utilities	Condition 2	Roof Matl	Exter Qual	Bsmt Qual	Heating	Kitchen Qual	
0	RL	Pave	Lvl	AllPub	Norm	CompShg	Gd	TA	GasA	Gd	Υ
1	RL	Pave	LvI	AllPub	Norm	CompShg	Gd	Gd	GasA	Gd	Υ
2	RL	Pave	LvI	AllPub	Norm	CompShg	TA	TA	GasA	Gd	Υ
3	RL	Pave	LvI	AllPub	Norm	CompShg	TA	Gd	GasA	TA	Υ
4	RL	Pave	LvI	AllPub	Norm	CompShg	TA	Fa	GasA	TA	N
	MS Zoning_A (agr)	MS Zoning_C (all)	MS Zoning_FV	MS Zoning_I (all)	MS Zoning_RH	MS Zoning_RL	MS Zoning_RM	Street_Gr	vl Street_l	Pave Con	Land itour_Bnk
0	0	0	0	0	0	1	0		0	1	0
1	0	0	0	0	0	1	0		0	1	0
2	0	0	0	0	0	1	0		0	1	0
3	0	0	0	0	0	1	0		0	1	0
4	0	0	0	0					0		0

Target Encoding (Categorical data)

Target Encoding replaces a categorical value with the mean of the **target** variable

	Lot Shape	Utilities	Land Slope		Exter Cond		Bsmt Cond	Heating QC	Kitchen Qual	Fireplace Qu	Garage Qual	Garage Cond	Pool	Bsmt Exposure	BsmtFin Type 1	BsmtFin Type 2	Electrical
0	IR1	AllPub	Gtl	Gd	TA	TA	TA	Ex	Gd	Gd	TA	TA	Gd	No	GLQ	Unf	SBrkr
1	IR1	AllPub	GtI	Gd	TA	Gd	TA	Ex	Gd	TA	TA	TA	Gd	No	GLQ	Unf	SBrkr
2	Reg	AllPub	Gtl	TA	Gd	TA	TA	TA	Gd	Gd	TA	TA	Gd	No	GLQ	Unf	SBrkr
3	Reg	AllPub	Gtl	TA	TA	Gd	TA	Gd	TA	Gd	TA	TA	Gd	No	Unf	Unf	SBrkr
4	IR1	AllPub	Gtl	TA	TA	Fa	Gd	TA	TA	Gd	TA	TA	Gd	No	Unf	Unf	SBrkr

	Lot Shape	Utilities	Land Slope	Exter Qual	Exter Cond	Bsmt Qual	Bsmt Cond	Heating QC	Kitchen Qual
0	211848.670520	181551.602245	180358.476703	230802.484935	185258.202475	138023.926752	181760.117522	216027.607512	211629.451613
1	211848.670520	181551.602245	180358.476703	230802.484935	185258.202475	202537.582176	181760.117522	216027.607512	211629.451613
2	162925.812355	181551.602245	180358.476703	143270.978348	167623.023256	138023.926752	181760.117522	138986.705193	211629.451613
3	162925.812355	181551.602245	180358.476703	143270.978348	185258.202475	202537.582176	181760.117522	160174.009404	139501.607450
4	211848.670520	181551.602245	180358.476703	143270.978348	185258.202475	107752.166667	223969.550562	138986.705193	139501.607450

Standard scaling the features

Using StandardScaler to standardise these numerical features to avoid the model being sensitive to features with bigger magnitudes.

	MS SubClass	Lot Frontage	Lot O Area	verall Qual	Overall Cond	Year Built I	Year Remod/Add	Mas Vnr Area	BsmtFin SF 1		lint	Total Bsmt SF	1st Fir SF	2nd Flr SF	Low Qual Fin SF	Gr Liv Area	Bsmt Full Bath	Bsmt Half Bath
0	60	69.0552	13517	6	8	35	6	289.0	533.0	0.0	192.0	725.0	725	754	0	1479	0.0	0.0
1	60	43.0000	11492	7	5	15	14	132.0	637.0	0.0	276.0	913.0	913	1209	0	2122	1.0	0.0
2	20	68.0000	7922	5	7	58	4	0.0	731.0	0.0	326.0	1057.0	1057	0	0	1057	1.0	0.0
3	60	73.0000	9802	5	5	5	4	0.0	0.0	0.0	384.0	384.0	744	700	0	1444	0.0	0.0
4	50	82.0000	14235	6	8	111	18	0.0	0.0	0.0	676.0	676.0	831	614	0	1445	0.0	0.0
	MS SubClass	Lot Frontage	Lot Area	a C	overall Qual	Overal Cond			Year od/Add	Mas Vnr Area	BsmtF SF	Fin Bs F1	mt <mark>Fi</mark> n SF 2	Bsmt	Unf SF	Tot Bsmt S		1st Fir SF
0	0.069866	0.000000	0.51207	1 -0.0	78644	2.207728	3 -0.142227	-0.	989479	1.089794	0.1971	17 -0.2	90862	-0.844	1026	- <mark>0.7393</mark>	59 -1.	108838
1	0.069866	-1.223182	0.211664	4 0.6	22656	-0.509102	2 -0.805126	-0.	609090	0.187536	0.4226	88 -0.2	90862	-0.655	208	-0.3213	22 -0.	634510
2	-0.864413	-0.049537	-0.31794	4 -0.7	79944	1.302118	0.620106	-1.	084576	-0.571050	0.6265	69 -0.2	90862	-0.542	2817	-0.00112	24 -0.	271195
3	0.069866	0.185192	-0.039047	7 -0.7	79944	-0.509102	2 -1. <mark>1</mark> 36575	-1.	084576	-0.571050	-0.9589	32 -0.2	90862	-0.412	2443	-1.4976	05 -1.	060900
4	-0.163704	0.607704	0.618586	6 -0.0	78644	2.207728	3 2.376787	-0.	418896	-0.571050	-0.9589	32 -0.2	90862	0.243	3923	-0.8483	15 -0.	841397

Feature Selection

Feature selection using Lasso/Elastic Net

Lasso/Elastic Net has the property of being able to eliminate features that are not important by setting their corresponding coefficients to zero.

```
coef = list(zip(elasticnet.coef ,X.columns))
important feats = sorted(coef, key=lambda x: np.abs(x[0]),reverse=True)
                                                            (0.0, 'Roof Matl CompShg'),
                                                            (0.0, 'Roof Matl Membran'),
                                                            (-0.0, 'Roof Matl Tar&Grv'),
                                                            (0.0, 'Roof Matl WdShake'),
(19505.015532660454, 'Gr Liv Area'),
                                                            (0.0, 'Mas Vnr Type BrkFace'),
(18976.496977384428, 'Overall Qual^2 Gr Liv Area'),
                                                            (-0.0, 'Mas Vnr Type None'),
                                                            (0.0, 'Mas Vnr Type_Stone'),
 -9979.309738142503, 'Gr Liv Area 1st Flr SF^2'),
                                                            (0.0, 'Misc Feature Gar2'),
 (8499.539433900221, 'Kitchen Qual^2 Gr Liv Area')]
                                                            (-0.0, 'Misc Feature TenC'),
                                                            (0.0, 'Exter Qual^2'),
                                                            (0.0, 'Exter Qual Bsmt Qual'),
                                                            (0.0, 'Bsmt Qual^2'),
                                                            (0.0, 'Bsmt Qual Garage Area'),
```

Sequential Forward Selection (SFS)

- 1. First, the best single feature is selected (i.e., using some criterion function).
- 2. Then, pairs of features are formed using one of the remaining features and this best feature, and the best pair is selected.
- 3. Next, triplets of features are formed using one of the remaining features and these two best features, and the best triplet is selected.
- 4. This procedure continues until a predefined number of features are selected.

Evaluation Metrics

Root Mean Square Error & R-Squared

Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction errors). Residuals are a measure of how far from the regression line data points are.

R-squared (R²) is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model.

$$RMSE = \sqrt{\frac{1}{n} * \sum (prediction - actual)^2}$$

$$R^{2} = 1 - \left(\frac{\sum(y - \hat{y})^{2}}{\sum(y - \bar{y})^{2}}\right)$$

The Models

Regression Models

The models that were used include...

- Linear Regression
- Ridge
- Lasso
- Elastic Net

Best Performing Model

Elastic Net

Model Description:

- Missing values have been imputed with mean (numerical) and mode (categorical)
- Categories columns that are ordinal have been encoded using Target Encoder
 (Mean Encoder)
- Categories columns that aren't ordinal have been encoded using *OneHotEncoder*
- Polynomial Features (degree = 3) performed on columns that have correlation of
 > 0.6 against Sale Price.
- Features standardised
- Backward Elimination to get important features (99 from 360 features)
- Elastic Net (best alpha = 674, best I1 ratio = 1)

Evaluation Metrics

Training R2	Cross Val R2	Training RMSE	Cross Val RMSE	Kaggle Private RMSE
0.930	0.905	20921	24251	25412

Conclusion

Conclusion

- Features that are important include
 - Above Ground Living Area
 - Overall Quality
 - Total square feet of basement area
- Features that negatively impact the house prices include
 - Year Built
 - Year Remod/Add
- Our model was able to predict the house prices with +/- 25000 error on average on unseen data.
- The model could be used by real estate businesses to give them an estimate of the prices of new properties entering the market.