Numer indeksu:	Grupa ¹ :				
	8–10 s.104 8–10 s.105 8–10 s.139				
Wersja: A	10–12 s. 5 10–12 s.104				
	10–12 s.105 10–12 s.140 10–12 s.141				
Logika dla inform	natyków				
I/ 1 1	. 2017				
Kolokwium nr 3, 13 s czas pisania: 30+6	·				
Zadanie 1 (2 punkty). Jeśli istnieją dwie różne relacje równoważności na zbiorze $\{0,1,2\}$, które mają tyle samo klas abstrakcji, to w prostokąt poniżej wpisz dowolne dwie takie relacje. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie relacje nie istnieją.					
Zadanie 2 (2 punkty). Rozważmy funkcje					
$f: (A \times B)^C \to (A \times C)^B$	$g: C \to A \times B,$				
$h: A \times B \to (A \times C)^B$					
oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $f(a)$ nie jest poprawne, bo $a \notin (A \times B)^C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia $h(a,b)$ jest $(A \times C)^B$. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".					
$h(a,b)$ $A \times C^B$ $g(c)$	h(g(c))				
$f(a)$ NIE $\Big(h(g(c))\Big)(b)$	(f(g))(h)				
Zadanie 3 (2 punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem $f(n, m) = 3^n \cdot 4^m$. W prostokąt poniżej wpisz obliczony obraz zbioru $\{0, 1\} \times \{0, 1\}$ przez funkcję f .					
$f[\{0,1\} \times \{0,1\}] =$					

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Rozważmy funkcję $F:[0,1]^{\mathbb{N}} \to [2,3]^{\mathbb{N}}$, która dla argumentów $f \in [0,1]^{\mathbb{N}}$ przyjmuje takie wartości $F(f):\mathbb{N} \to [2,3]$, że $(F(f))(n)=f(n)+2$. Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do F . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.
Zadanie 5 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N})$ definiujemy relację binarną \simeq w następujący sposób:
$X \simeq Y$ wtedy i tylko wtedy, gdy zbiór $X \cap Y$ jest skończony.
Jeśli \simeq jest relacją równoważności, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz uzasadnienie, dlaczego \simeq nie jest relacją równoważności.

		Numer indeksu:
Wersja:	$oldsymbol{A}$	

Grupa.		
8–10 s.104	8-10 s. 105	8–10 s.139
	10–12 s. 5	10–12 s.104
10-12 s. 105	10-12 s.140	10–12 s.141

Zadanie 6 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że dla dowolnego zbioru A zbiory $A^{\{0,1\}}$ i $A \times A$ są równoliczne.

Zadanie 7 (5 punktów). Udowodnij, że każda relacja równoważności, która jednocześnie jest funkcją, jest także bijekcją.

Zadanie 8 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na zbiorze A, że $R_1 \cap R_2 = I_A$ (tutaj I_A jest relacją identyczności na zbiorze A). Dla $i \in \{1,2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest różnowartościowa.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

-	Numer indeksu:	$Grupa^1$:				
		8–10 s.104	8–10 s.105	8–10 s.139		
Wersja: $ \mathbf{D} $		10 10 10	10–12 s. 5	10–12 s.104		
		10–12 s.105	10–12 s.140	10–12 s.141		
	Logika dla info	rmatyków				
	Kolokwium nr 3, 13 stycznia 2017 czas pisania: 30+60 minut					
Zadanie 1 (2 punkt	xy). Rozważmy funkcje					
	$\begin{array}{lcl} f & : & (A \times B)^C \to (A \times C)^B, \\ h & : & A \times B \to (A \times C)^B \end{array} \qquad \qquad g : C \to A \times B,$					
oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie $f(a)$ nie jest poprawne, bo $a \notin (A \times B)^C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia $h(a,b)$ jest $(A \times C)^B$. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".						
$h(a,b)$ $A \times C$	f(g)	h	(g)			
f(a) NIE	(h(a,b))(b)	(f(g))	(b)			
Zadanie 2 (2 punkty). Rozważmy funkcję $F: \mathbb{N}^{[0,1]} \to \mathbb{N}^{[2,3]}$, która dla argumentów $f \in \mathbb{N}^{[0,1]}$ przyjmuje takie wartości $F(f): [2,3] \to \mathbb{N}$, że $(F(f))(x) = f(x-2)$. Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do F . W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.						

¹Proszę zakreślić właściwą grupę ćwiczeniową.

	, to w prostokąt poniżej wpisz dowolne dwie takie relacje. W prze- zasadnienie, dlaczego takie relacje nie istnieją.
——————————————————————————————————————	zasadnienie, diaczego takie reiacje nie istnieją.
adanie 4 (2 punkty). N	a zbiorze $\mathcal{P}(\mathbb{N})$ definiujemy relację binarną \simeq w następujący sposób
$X \simeq Y$ wto	edy i tylko wtedy, gdy zbiór $X \setminus Y$ jest skończony.
	ażności, to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym nie, dlaczego \simeq nie jest relacją równoważności.
	,
adanie 5 (2 punkty). N	Viech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie dana wzorem $f(n,m) = 3^n \cdot 4^m$
	bliczony przeciwobraz zbioru $\{0,1,2,3,4,5,6,7,8,9\}$ przez funkcję f
$^{-1}[\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}]$	

		Numer indeksu:		Grupa ¹ :		
				8-10 s. 104	8 - 10 s. 105	8–10 s.139
Wersja:	$\mid \mathbf{D} \mid$		Ì		10–12 s. 5	10–12 s.104
				10-12 s. 105	10–12 s.140	10–12 s.141

Zadanie 6 (5 punktów). Mówimy, że funkcja $f: \mathbb{N} \to \mathbb{N}$ jest ściśle rosnąca, jeśli spełnia warunek $\forall n \in \mathbb{N}$. f(n) < f(n+1). Udowodnij, że każda funkcja $f: \mathbb{N} \to \mathbb{N}$, która jednocześnie jest relacją równoważności, jest ściśle rosnąca.

Zadanie 7 (5 punktów). Konstruując odpowiednią bijekcję udowodnij, że dla dowolnego zbioru A zbiory $A \times A^{\mathbb{N}}$ i $A^{\mathbb{N}}$ są równoliczne.

Zadanie 8 (5 punktów). Niech R_1 i R_2 będą takimi relacjami równoważności na A, że $R_1; R_2 = A \times A$. Dla $i \in \{1, 2\}$ niech A/R_i będzie rodziną klas abstrakcji relacji R_i , tzn. $A/R_i = \{[a]_{R_i} \mid a \in A\}$. Udowodnij, że funkcja $f: A \to A/R_1 \times A/R_2$ zdefiniowana wzorem $f(x) = \langle [x]_{R_1}, [x]_{R_2} \rangle$ jest "na".

 $^{^{1}\}mathrm{Proszę}$ zakreślić właściwą grupę ćwiczeniową.