

DIGITAL COMMUNICATION

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

BASEBAND PULSE SHAPING

Background on Random Process, Power Spectrum of a Discrete PAM Signal

Bharathi V Kalghatgi.

Department of Electronics and Communication Engineering

Definition

A random variable can be considered to be a collection of real numbers, characterized by a probability description.

Similarly, a random process is an ensemble (collection) of real signals, characterized by a probability description.

It can also be viewed as a sequence/continuum of random variables.

It is denoted by X(t) / X(n).

Definition

Examples:

Communications: message signal, noise, the received signal.

Statistics: Stock market index, rainfall, weather etc.

The result of sampling the random process X(t) at $t = t_0$ is the random variable $X(t_0)$.

Any specific signal in the ensemble is called a "sample function" or realization, and is denoted by x(t).

Definition

A random process is said to be "deterministic" if the future values of any realization can be predicted from the past samples.

Ex: 1.
$$X(t) = A$$
, where $A \sim N(0, \sigma^2)$
 $2 \cdot X(t) = A \cos(w_0 t + \phi)$, where A and w_0 are constants, and $\phi \sim unf[-\pi, \pi]$

If the future values cannot be predicted from the past samples, then the process is called "non-deterministic".

Probabilistic Description

consider the r.p X(t). At any t=t,, we have the $\gamma \cdot v \times_1 = \chi(t_1)$. Let its $p \cdot d \cdot f$ be denoted by $f_{\chi}(\gamma_1; t_1)$ we can define $\mu_{X}(t) = E[X(t)]$: "Ensemble average" of X(t). $\sigma_{x}^{2}(t) = E\left[\{x(t) - \mu_{x}(t)\}^{2} \right]$ There are the "1st order statistics", They are, in general, function of time. [Also the mean squared value E[x2(t)]

Probabilistic Description

Similarly, by considering the random variables
$$X_1 = X(t_1)$$
 and $X_2 = X(t_2)$ at times t_1 and t_2 , we denote their joint p.d.f as $f_X(n_1, n_2; t_1, t_2)$ $W.r.t$ this joint p.d.f, we can define $*$ "the autocorrelation function" $R_X(t_1, t_2) = E[X(t_1) \times (t_2)]$

Probabilistic Description

$$C_{x}(t_{1},t_{2}) = E\left[\left\{x(t_{1}) - \mu_{x}(t_{1})\right\} \left\{x(t_{2}) - \mu_{x}(t_{2})\right\}\right]$$

$$= R_{x}(t_{1},t_{2}) - \mu_{x}(t_{1}) \mu_{x}(t_{2})$$

** NOTE:
$$R_{x}(t_{1},t_{1}) = E[x^{2}(t_{1})]$$

$$C_{x}(t_{1},t_{1}) = \sigma_{x}^{2}(t_{1})$$

In general, we can depict the nth order joint p.d.f as $f_{x}(\gamma_{1},\gamma_{2},...,\gamma_{n},t_{1},t_{2},...,t_{n})$

Stationarity

A random process is said to be "first order stationary" if its first order density function does not change with time.

ire,
$$f_{x}(\eta_{1};t_{1}) = f_{x}(\eta_{1};t_{1}+\Delta)$$

for any $t = t_{1}$ and any Δ .
 $\Rightarrow f_{x}(\eta_{1};t_{1})$ is independent of t_{1} , and can be expressed as $f_{x}(\eta_{1})$.
Also $\mu_{x}(t) = \mu_{x}$ constant.
 $\sigma_{x}^{2}(t) = \sigma_{x}^{2}$

Wide Sense Stationary (WSS)

The definitions of stationarity are "probabilistic", and are difficult to either ensure or verify.

We instead go for a "statistical" notion of stationarity.

A process is said to be "wide sense stationary" (WSS),

i)
$$E[x(t)] = \mu_x$$
: a constant
ii) $R_x(t_1, t_2) = R_x(t_2-t_1) = R_x(c)$
 $= E[x(t)x(t+c)]$

Autocorrelation function

i.e., the autocorrelation is a function of only the "time lag" τ , and not of the actual time values t_1 and t_2 .

Consider the autocorrelation function

$$R_{\chi}(z) = E\left[\chi(t)\chi(t+z)\right]$$

This function is a measure of the similarity between X(t) and $X(t+\tau)$.

For discrete-time random process,

Discrete PAM Signals

Let v(t) indicate the basic pulse shape for NRZ schemes. (Figure)

Figure : Basic Pulse Shape of NRZ

The different discrete PAM signals can be expressed as the realization of the random process given by:

$$X(t) = \sum_{k=-\infty}^{\infty} A_k v(t - kT_b)$$
 (1)

where A_k is a discrete random variable that determines the PAM format (Unipolar, Polar, etc..)

Discrete PAM Signals

 A_k for the different pulse shaping formats can be expressed as:

Unipolar:
$$A_k = \begin{cases} a & symbol \ 1 \\ 0 & symbol \ 0 \end{cases}$$
 (2)

$$Polar/Manchester: A_k = \begin{cases} a & symbol \ 1 \\ -a & symbol \ 0 \end{cases}$$
 (3)

Bipolar:
$$A_k = \begin{cases} a, -a & alternating \ 1s \\ 0 & symbol \ 0 \end{cases}$$
 (4)

Discrete PAM Signals

We can rewrite X(t) in eqn. (1) as:

$$X(t) = \sum_{k=-\infty}^{\infty} A_k \left\{ \delta(t - kT_b) * v(t) \right\}$$

$$= \left\{ \sum_{k=-\infty}^{\infty} A_k \delta(t - kT_b) \right\} * v(t)$$

$$= A(t) * v(t)$$

Discrete PAM Signals

The Generation of X(t) can be modeled as:

Polar Example

If v(t) is a WSS process as:

Then,

$$S_{v}(f) = \left| H(f) \right|^{2} S_{w}(f)$$

Discrete PAM Signals

PES UNIVERSITY ONLINE

In the present case, X(t) is a cyclostationary process with period T_b . Hence it follows that:

$$S_X(f) = \frac{|V(f)|^2}{T_b} S_A(f)$$
 (5)

Finding
$$|V(f)|^2$$
:

$$w.k.t. v(t) = \begin{cases} 1 & 0 \le t \le T_b \\ 0 & Elsewhere \end{cases}$$
 (6)

Discrete PAM Signals

$$V(f) = \int_{-\infty}^{\infty} v(t)e^{-j2\pi ft}$$
 (7)

Substituting v(t) from (6) into (7), we get:

$$V(f) = \int_{0}^{T_{b}} v(t)e^{-j2\pi ft}$$

$$= \frac{-1}{j2\pi f}e^{-j2\pi ft}|_{0}^{T_{b}} = \frac{1}{j2\pi f}\left[1 - e^{-j2\pi fT_{b}}\right]$$

$$= \frac{e^{-j\pi fT_{b}}}{\pi f}\left[\frac{e^{j\pi fT_{b}} - e^{-j\pi fT_{b}}}{2j}\right]$$

$$= e^{-j\pi fT_{b}}\frac{\sin(\pi fT_{b})}{\pi f}$$

Discrete PAM Signals

$$\therefore |V(f)| = \frac{\sin(\pi f T_b)}{\pi f} = \frac{T_b \sin(\pi f T_b)}{\pi f T_b}$$

$$|V(f)| = T_b sinc(fT_b)$$

$$|V(f)|^2 = T_b^2 sinc^2 (fT_b)$$
 (8)

Discrete PAM Signals

Finding $S_A(f)$:

We know that power spectrum is the Fourier Transform of the Autocorrelation Function. Consider the sequence of samples x_k .

$$x(n) = \sum_{k=-\infty}^{\infty} x_k \delta(n-k)$$
 (9)

$$x(t) = \sum_{k=-\infty}^{\infty} x_k \delta(t - kT)$$
 (10)

$$x(n) \stackrel{\mathsf{F.T}}{\longleftrightarrow} X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x_k e^{-j\omega k}$$

$$x(t) \stackrel{\mathsf{F.T}}{\longleftrightarrow} X(f) = \int_{t=-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

Finding $S_A(f)$:

$$X(f) = \int_{t=-\infty}^{\infty} \sum_{k} x_{k} \delta(t - KT) e^{-j2\pi f t} dt$$
$$= \sum_{k} x_{k} \left\{ \int_{t=-\infty}^{\infty} \delta(t - KT) e^{-j2\pi f t} dt \right\}$$

$$WKT \quad \delta(t) \stackrel{\mathsf{F.T}}{\longleftrightarrow} 1 \text{and} :: \delta(t - KT) \quad \stackrel{\mathsf{F.T}}{\longleftrightarrow} e^{-j2\pi fKT} \quad (Time \ Shift \ Property)$$

$$X(f) = \sum_{k} x_k e^{-j2\pi fKT}$$
 (11)

$$S_A(f) = \sum_{k=0}^{\infty} R_A(n)e^{-j2\pi f n T_b}$$
 where $R_A(n) = E[A_k A_{k-n}]$ (12)

Finding S_A(f) for different schemes

We will find $S_X(f)$ for each of the following three cases:

- i NRZ Unipolar
- ii NRZ Polar
- lii NRZ Bipolar.
- Iv Manchester Coding

Note: To obtain $S_{\times}(f)$, we first find $S_{\triangle}(f)$ from $R_{A}(n)$ and substitute in

$$S_X(f) = \frac{|V(f)|^2}{T_b} S_A(f)$$

THANK YOU

Bharathi V Kalghatgi

Department of Electronics and Communication Engineering

BharathiV.Kalghatgi@pes.edu