Smart OBD System

•••

Team 3 - Cole Arduser, Luke Farmer, Sam Loecke,
Samuel Nicklaus

Project Background

Motivation

Saw need for vehicle diagnostics and analysis tools beyond traditional OBD systems.

Purpose

• Provide real-time dashboard data visualization and a detailed web-based post-trip analytics.

Design Focus

Creating a user-friendly interface to make advanced vehicle diagnostics for all car owners

Project Goal

Improve vehicle maintenance and safety by increasing driver awareness and vehicle longevity

System Overview

Reading from the Car's OBD Port

- Using the Veepeak bluetooth OBD sensor to read from the car's OBD port
- The OBD port is located under the steering wheel/driver's side dash
 - All gas cars made after 1996 are required to have an OBD port
- Queries the car's computer for live data along with diagnostic trouble codes (DTCs)
- Sensor is bluetooth enabled to be able to connect to our Raspberry Pi
- Sensor receives commands from the Pi, queries the car, and returns the results

ELM-327 OBD-II Emulator

- Emulates a car's OBD port directly on Pi
- Supports basic ELM327 commands and OBD service requests
- Allows for customization of emulated data
- Python library made by Github user Ircama

Collecting Data with the Raspberry Pi

- Using the Python OBD library
- First querying the car for all available data points
- Then querying the car's OBD port for all available live data every second
- Passing the received data to the GUI for use in the live dashboard
- Storing the data into the MariaDB database
 - Stored along with a timestamp
- Logging the data to text files as a back up

In Car Dashboard

- 7" Touchscreen Display
- 3 pages
 - o Data Display
 - o Display Selection
 - Settings
- Uses Kivy
- Allows user to select data types they'd like to see
- Allows user to connect to internet and upload data

Pi Database

- Uses a local MariaDB database
 - MariaDB is based on a MySQL database
- Saves all available information from the car's OBD port
- Stores data for every second the car is running
- Uploads all of its content to the server via flask apis when connected to the internet

Server

- Python/Flask based implementation
- Connects to Supabase for storage
 - PostgreSQL based
- Server handles the processing of car data
 - Sorts the data by Day
 - Sorts the data into "Trips"
- User auth and verification done through JWT Library

DB Diagram

Users	
username	
password	

:ar		OBD	
ar_id 🖉	int8	obd_id ⊘	int8
name		car_id	
make		code	
model		description	
year		symptoms	
		cause	
		dismissed	

Client

- Vuejs Framework
- Communicates to server through HTTP calls
- Handles user management through JWT Token and Cookies
- Allows user to view summarized information about their vehicle data

Questions?

Project Objectives

Completed

- Project Initiation and Planning
- Finalized Requirements
- Hardware Procurement and Setup
- Software Development Initial Phase

In Progress

- Integration of Hardware and Software
- Initial Testing and Debugging
- Development of Web Application

Future Project Objectives

- Finalize Software
- Final Integration and Testing
- Final Report
- Final Presentation Preparation

	Mar 26 Apr 9	Ans 0 Ans 22	Apr 23 - May 3
	Mar 26 - Apr 9	Apr 3 - Apr 23	Apr 25 - may 5
Project Initiation and Planning			
Requirements Finalization			
System Design and Architecture			
Hardware Procurement and Setup			
Software Development - Initial Phase			
Integration of Hardware and Software			
Intial Testing and Debugging			
Development of Web Application			
Finalize Software	Whole Team		
Final Integration and Testing	Whole Team		
Final Report		Whole Team	
Final Presentation Preperation		Whole Team	

Team Member Contributions

- Sam Loecke
 - Sensor and reading data
- Luke Farmer
 - o Pi GUI
- Cole Arduser
 - Pi Database to Server Connection
 - o OBD Emulator
- Samuel Nicklaus
 - Web Application
 - Server Help

