

Barick Chung

Employment:
2014-present Senior Lecturer, Department of Economics, CUSZ – Shenzhen.
2012-2014 Lecturer, School of Economics and Finance, University of Hong Kong.
2006-2012 Instructor, Department of Economics, CUHK – Hong Kong.

Education. 2003-2007 Ph.D. (Business) Indiana University – Bloomington. 1987-1991 BS.Sc. (Economics) Chinese University of Hong Kong – Hong Kong.

Research paper: Chung, Barick, "Two Level Price Discrimination and Vertical Relationship" (March 05, 2012). Available at SSRN: http://issrn.com/abstract=1997070.

Homepage: Deleted Facebook: Deleted Wechat ID: barickchung

ECO 2011 (Sections L07-10) **Basic Microeconomics**

Barick Chung Department of Economics 235-18822 Zhiren Building, 409 barickchung@cuhk.edu.cn

11:46:42

Pindyck and Rubinfeld, 2014, p.76:

Perfect substitutes are two goods for which the Marginal rate of substitution of one for the other is a constant.

Perfect complements are two goods for which the MRS is zero or infinite; the indifference curves are shaped as right angles.

Bad is good for which less is preferred rather than more.

nree extreme cases

11:46:42

We assign numbers to represent the consumer's preference, so that $U(A) \geq U(B)$ if and only if bundle A is preferred to bundle B, i.e., A B.

A & B

11:46:42

8

Example #02:

For example: given that $A \succ B$.

We can assign: U(A) = 5; U(B) = 3

Alternatively, we can also assign: U(A) = 17; U(B) = 2

11:46:42

Pipdyck and Rubinfeld, 2014, p.80:

Ordinal utility function is a utility function that generates a ranking of market baskets (bundles) in order of most to least preferred.

Cardinal utility function is a utility function describing by how much one market basket is preferred to another.

Definition

11:46:42

U2 = 955

6

Pindyck and Rubinfeld, 2014, p. 82:

Budget constraints are constraints that consumers face as a result of limited incomes.

11:46:42

My remark #11:

The consumer's constraint is call budget constraint:

Total expenditure =
$$\underbrace{P_{\chi} \cdot X}_{\text{expenditure}} + \underbrace{P_{\gamma} \cdot Y}_{\text{expenditure}} = I = \text{Total income}$$

11:46:42

Pindyck and Rubinfeld, 2014, p. 82:

Budget line are all combinations of goods for which the total amount of money spent is equal to income.

11:46:42

-	 1	
Function #04		
Exercise #01:		
If income falls (prices are unchanged), what happens to the budget line?		
Income ↓		
11:46:42	16	
Exercise #02:		
If income rises (prices are unchanged), what happens to the		
budget line?		
Income ↑		
11:46:42	17	
11.40.42	<u>''</u>	
Exercise #03:		
If P_X rises (I and P_y are unchanged), what happens to the budget line?		
_		
\sim		
\p ↑		
$\left(P_{x} T \right)$		
11:46:42	10	
11:46:42	18	

Pindyck and Rubinfeld, 2014, p.86:

The consumer's problem is to maximize satisfaction, given the limited budget available to them.

The optimal bundle satisfies two conditions:

1) It must be located on the budget line.

2 2) It must give the consumer the most preferred combination of goods and services.

Two conditions

Bundle D and H is not feasible, and bundles G and F are not optimal:

11:46:42

20

Bundles E and J are not optimal. Similarly, bundles H, G, C, D, ..., are not optimal.

Pindyck and Rubinfeld, 2014, p.96:

Pindyck and Rubinteiu, 2013, p.5.

Equal Marginal principle is the principle that utility is maximized when the consumer has equalized the Marginal utility per dollar of expenditure across all goods.

$$\frac{MU_X}{P_X} = \frac{MU_Y}{P_Y}$$

11:46:42