Model Selection with 근본

완성편

Roh

Nested Model

- Two models are said to be 'nested' if one of the models constitutes a special case of the other model
- A linear regression model which contains 'temperature' as a covariate, is, for example, nested within an otherwise identical model that includes both 'temperature' and 'rainfall' as covariates, because the former model can be obtained by fixing the coefficient associated with 'rainfall' in the latter model to be zero.
- Model A: Homeless = Gender
- Model B: Homeless = Gender + Substance
- 모델 A 는 B에 nested 되어 있다

Stepwise / Forward / Backward Selection 은 태생적으로 nested model들의 비교이다

Intercept only

Model A:Homeless = b0

. . .

Full model

- Model B: Homeless = b0 + b1 Gender + b2 Substance + b3 i1 + b4 Sexrisk + b5 indtot

Comparing two nested models: Likelihood

Model A is nested within B

- L(B) > L(A) as Model A is a special case of Model B

Because logistic regression predicts probabilities, rather than just classes, we can fit it using likelihood. For each training data-point, we have a vector of features, x_i , and an observed class, y_i . The probability of that class was either p, if $y_i = 1$, or 1 - p, if $y_i = 0$. The likelihood is then

$$L(\beta_0, \beta) = \prod_{i=1}^{n} p(x_i)^{y_i} (1 - p(x_i)^{1 - y_i}$$
 (12.6)

What can we do with likelihood?

변수를 추가 했을경우 (모델 complexity 상승)

- 복잡한 모델 B가 간단한 모델 A보다 Likelihood는 높음
 - 왜냐면 둘다 Likelihood가 Maximized 되게끔 Parameter Set이 추정됨
 - 왜냐면 B의 스페셜 case가 모델 A
 - 그럼 항상 복잡한 모델이 좋은건가?
- Likelihood를 가지고 할 수 있는것
 - n = sample size, k = num of variable, L = likelihood
 - AIC = 2k 2log(L)
 - BIC = klog(n) 2log(L)
- 하지만, AIC/BIC는 테스트가 아님! (not test statistics)
 - Model selection through AIC and BIC is completely different paradigm

AIC/BIC 는 non-nested model에 좀더 유용함

How to test? - Overall model evaluation

Likelihood ratio test

$$-2~\log\Lambda = -2~\log\Bigl(rac{L_0}{L_1}\Bigr) = -2~(\ell_0-\ell_1) \stackrel{d}{\longrightarrow} \chi_k^2$$

2. Rao's Score test (a.k.a Lagrange Multiplier test)

$$S = \left(rac{\partial L(\hat{eta}_0)}{\partial eta}
ight)^T - E\!\left(rac{\partial^2 L(\hat{eta}_0)}{\partial eta \partial eta'}
ight)^{-1} \! rac{\partial L(\hat{eta}_0)}{\partial eta} \stackrel{d}{\longrightarrow} \chi_k^2$$

3. Wald test

$$W = (\hat{\beta} - \beta_0)^T [Cov(\hat{\beta})]^{-1} (\hat{\beta} - \beta_0) \stackrel{d}{\longrightarrow} \chi_p^2$$

Log-likelihood function $\ell(\theta)$

Log-likelihood function $\ell(\theta)$ Wald test

3 개 중에 뭘 써야하나?

- n이 클때는 3개 다 유사하다 (asymptotic)
- SAS Logistic 에서 모델 Selection 을 할때는 Rao Score를 쓴다
- Global test 를 할때는 Wald 를 쓴다
- R에서 Rao나 LRT를 쓰는 방법은 anova 함수를 사용하면 된다
- R에서 Wald를 쓸때는 'aod' package를 쓰면 된다
 - test (beta_i =0) 하고자 하는 파라미터가 전체라면 (0, 0, 0, ..., 0) 인 joint test 가 된다

Health Evaluation and Linkage to Primary Care (HELP 데이터)

rioditir Evalue						
Homeless	0=No, 1=Yes	지난 6개월동안 길거리 노숙한 적있는 사람				
Gender	0=male, 1=female					
i1	0-142	지난 한달간 일일 평균 주량				
Substance	술, 코카인, 헤로인	주요 약물 종류				
Sexrisk	0-21	성관련 리스크 스코어, 높을수록 안좋음				
indtot	0-184	중독약물 관련 설문지 스코어				
Age		나이				
Racegrp	white, black, hispanic, others					

R 에서 똑같이 만들어보기

SAS 결과물

```
proc logistic data=help descending;
  class substance (param=ref ref='alcohol');
  model homeless = female i1 substance sexrisk indtot;
run;
```

Class	Level Inform	mation	
Class	Value	Des Varia	
SUBSTANCE	alcohol	0	0
	cocaine	1	0
	heroin	0	1

Dummy Coding (left) & Effect Coding (right)

\$substance	\$substance	
2 3	[,1]	[,2]
alcohol 0 0	alcohol 1	0
cocaine 1 0	cocaine () 1
heroin 0 1	heroin −1	-1

Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC 627.284 590.652 SC 631,400 619.463 576.652 -2 Log L 625.284

```
'``{r}
n = dim(df)[1]
k = 1
aic = -2*logLik(logres_intcept)[1] + 2*k
bic = -2*logLik(logres_intcept)[1] + log(n)*k
sprintf('aic is %.3f', aic)
sprintf('bic is %.3f', bic)
sprintf('-2LogL is %.3f', -2*logLik(logres_intcept)[1])
'``
```

```
[1] "aic is 627.284"
[1] "bic is 631.400"
[1] "-2LogL is 625.284"
```

```
· ```{r}
 n = dim(df)[1]
 k = dim(df)[2]+1
 aic = -2*logLik(logres)[1] + 2*k
 bic = -2 \times \log \text{Lik}(\log \text{res})[1] + \log(n) \times k
 sprintf('aic is %.3f', aic)
 sprintf('bic is %.3f', bic)
 sprintf('-2LogL is %.3f', -2*logLik(logres)[1])
 111
  [1] "aic is 590.652"
  [1] "bic is 619,463"
  [1] "-2LogL is 576.652"
```

<u> </u>			
Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	48.6324	6	<.0001
Score	45.6522	6	<.0001
Wald	40.7207	6	<.0001

Testing Global Null Hypothesis: BETA=0

Globaltests output assess the joint null hypothesis that all parameters except the intercept equal 0

score = anova(logres_intcept,logres, test = 'Rao')
cbind(score)

	Resid. Df	Resid. Dev	Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi)
1	452	625.2845	NA	NA	NA	NA
2	446	576.6520	6	48.63245	45.65242	3.471746e-08

 $wald = wald.test(b=coef(logres), \ Sigma = vcov(logres), \ Terms = 1:dim(df)[2]+1) \\ wald$result$chi2$

chi2 df P 4.072111e+01 6.000000e+00 3.286007e-07

Туре	3 Ana	lysis of Effec	ts
		Wald	
Effect	DF	Chi-Square	Pr > ChiSq
FEMALE	1	1.0831	0.2980
I1	1	7.6866	0.0056
SUBSTANCE	2	4.2560	0.1191
SEXRISK	1	3.4959	0.0615
INDTOT	1	8.2868	0.0040

The ODS type3 output contains tests for each covariate (including joint tests for class variables with two or more values) conditional on all other covariates being included in the model.

Effect <chr></chr>	chi2 <dbl></dbl>	df <dbl></dbl>	P <dbl></dbl>
female	1.083131	1	0.297998255
il	7.686783	1	0.005562669
substance	4.256031	2	0.119073377
sexrisk	3.495973	1	0.061518259
indtot	8.286941	1	0.003993119

SAS는 Wald로 했는데 Rao로 해도 무방함! Function 만들어서 자동으로 돌리기에는 Rao가 편함!

Standard Wald Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept -2.13190.6335 11.3262 0.0008

Analysis of Maximum Likelihood Estimates

FEMALE	1	-0.2617	0.2515	1.0831	0.2980
I1	1	0.0175	0.00631	7.6866	0.0056
SUBSTANCE cocaine	1	-0.5033	0.2645	3.6206	0.0571
SUBSTANCE heroin	1	-0.4431	0.2703	2.6877	0.1011
SEXRISK	1	0.0725	0.0388	3.4959	0.0615
INDTOT	1	0.0467	0.0162	8.2868	0.0040
		Estimate	Std. Error	z value	Pr(> z)
(Intercept)	8	2.13192130	0.633470892	-3.365461	0.0007641599
female	82	0.26170295	0.251459584	-1.040736	0.2979982548
i1		0.01748948	0.006308187	2.772505	0.0055626693
substancecocai	ne -	0.50334542	0.264529994	-1.902791	0.0570677590

substanceheroin -0.44313645 0.270302572 -1.639409 0.1011281272

sexrisk 0.07250902 0.038780017 1.869752 0.0615182589 indtot 0.04668849 0.016218576 2.878705 0.0039931193

sexrisk 1유닛 증가할때마다 homeless 될 odd가 1.075배 증가 (기존에는 log-odd)

	Point	95% Wa	ald
Effect	Estimate	Confidence	e Limits
FEMALE	0.770	0.470	1.260
I1	1.018	1.005	1.030
SUBSTANCE cocaine vs alcohol	0.605	0.360	1.015
SUBSTANCE heroin vs alcohol	0.642	0.378	1.091
SEXRISK	1.075	0.997	1.160
INDTOT	1.048	1.015	1.082

exp(cbind(UR = co	ef(logres),	confint(I	ogres)))
Waiting for prof	iling to be	done	
	OR	2.5 %	97.5 %
(Intercept)	0.1186092	0.03307666	0.3988986
female	0.7697396	0.46813610	1.2573692
i 1	1.0176433	1.00548459	1.0307037
substancecocaine	0.6045050	0.35921120	1.0148768
substanceheroin	0.6420196	0.37707881	1.0898444
sexrisk	1.0752025	0.99697625	1.1610664
indtot	1.0477956	1.01573979	1.0826271

Stepwise in R

Selection Entry: 0.3 Selection Stay: 0.35

Age 와 Race를 추가한 모델

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 -2.772789
                             0.834716
                                        -3.322 0.000894 ***
female
                 -0.281222
                             0.252795
                                        -1.112 0.265945
                  0.016883
                             0.006351 2.658 0.007853 **
substancecocaine -0.293095
                             0.289485
                                        -1.012 0.311313
substanceheroin
                 -0.408693
                             0.278440
                                        -1.468 0.142160
sexrisk
                  0.084311
                             0.039726
                                         2.122 0.033810 *
indtot
                  0.042709
                             0.016399
                                         2.604 0.009205 **
                  0.013004
                             0.013715
                                         0.948 0.343060
age
                  0.429851
                             0.256989
                                         1.673 0.094397
racegrpwhite
racegrphispanic
                  0.259021
                             0.359435
                                         0.721 0.471134
                  0.260721
                             0.445219
                                         0.586 0.558143
racegrpother
```

Step1: Intercept only ⇒ Choose li

Effect <chr></chr>	Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi) <dbl></dbl>	Lik <chr></chr>
female	1	4.365390	4.319663	0.0376744	-310.46
il	1	27.186776	25.543496	0.0000004	-299.05
substance	2	17.066582	17.012163	0.0002022	-304.11
sexrisk	1	4.199706	4.189231	0.0406816	-310.54
indtot	1	22.416662	21.046221	0.0000045	-301.43
age	1	3.349754	3.344173	0.0674434	-310.97
racegrp	3	8.538131	8.525780	0.0363078	-308.37

Step2: Intercept + li ⇒ Choose indtot

Effect <chr></chr>	Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi) <dbl></dbl>	Lik <chr></chr>
female	1	2.9647237	2.9394924	0.0864379	-297.57
substance	2	3.8534595	3.8965744	0.1425180	-297.12
sexrisk	1	3.0045201	2.9953111	0.0835059	-297.55
indtot	1	14.3507174	13.7559005	0.0002082	-291.87
age	1	0.7278456	0.7287849	0.3932773	-298.68
racegrp	3	5.2103688	5.2252045	0.1560301	-296.44

2 2

Step2-2: Intercept + Ii + indtot ⇒ Remove Nothing

Step3: Intercept + li + indtot ⇒ Choose sexrisk

Effect <chr></chr>	Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi)	Lik <chr></chr>
female	1	0.6051738	0.6041358	0.4370044	-291.57
substance	2	2.9934185	3.0214244	0.2207527	-290.38
sexrisk	1	1.8510630	1.8471898	0.1741106	-290.95
age	1	0.8375619	0.8386890	0.3597720	-291.45
racegrp	3	2.6049349	2.6150177	0.4548628	-290.57

Step3-2: Intercept + li + indtot + sexrisk⇒ Remove Nothing

Step4: Intercept + li + indtot + sexrisk ⇒ Choose substance

Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi)	Lik <chr></chr>
1	1.000547	0.9977198	0.3178629	-290.45
2	4.154531	4.1965955	0.1226651	-288.87
1	1.258767	1.2602753	0.2615990	-290.32
3	3.886806	3.8932461	0.2732248	-289
	Df <dbl> 1 2 1 3</dbl>	dbl> <dbl> <dbl> 1.000547 2 4.154531 1 1.258767</dbl></dbl>	dbl> dbl> 1 1.000547 0.9977198 2 4.154531 4.1965955 1 1.258767 1.2602753	dbl> dbl> dbl> 1 1.000547 0.9977198 0.3178629 2 4.154531 4.1965955 0.1226651 1 1.258767 1.2602753 0.2615990

Step4-2: Intercept + li + indtot + sexrisk + substance ⇒ Remove Nothing

```
wald = wald.test(b=coef(logres), Sigma = vcov(logres), Terms = 5:6)
wald
```
```

#### Wald test:

Chi-squared test: X2 = 4.2, df = 2, P(> X2) = 0.12

#### Step5: Intercept + li + indtot + sexrisk + substance ⇒ Choose age

| Effect<br><chr></chr> | <b>Df</b><br><dbl></dbl> | Deviance<br><dbl></dbl> | Rao<br><dbl></dbl> | Pr(>Chi)  | Lik<br><chr></chr> |
|-----------------------|--------------------------|-------------------------|--------------------|-----------|--------------------|
| female                | 1                        | 1.000547                | 0.9977198          | 0.3178629 | -290.45            |
| age                   | 1                        | 1.258767                | 1.2602753          | 0.2615990 | -290.32            |
| racegrp               | 3                        | 3.886806                | 3.8932461          | 0.2732248 | -289               |

#### Step5-2: Intercept + li + indtot + sexrisk + substance + age ⇒ Remove age

```
wald = wald.test(b=coef(logres), Sigma = vcov(logres), Terms = 7)
wald
```
Wald test:
------
Chi-squared test:
X2 = 0.64, df = 1, P(> X2) = 0.42
```

Step6: Intercept + li + indtot + sexrisk + substance ⇒ Choose racegrp

Effect <chr></chr>	Df <dbl></dbl>	Deviance <dbl></dbl>	Rao <dbl></dbl>	Pr(>Chi)	Lik <chr></chr>
female	1	1.000547	0.9977198	0.3178629	-290.45
age	1	1.258767	1.2602753	0.2615990	-290.32
racegrp	3	3.886806	3.8932461	0.2732248	-289

Step5-2: Intercept + li + indtot + sexrisk + substance + racegrp ⇒ Remove racegrp

```
wald = wald.test(b=coef(logres), Sigma = vcov(logres), Terms = 7:9)
wald
```
Wald test:

Chi-squared test:
X2 = 2.7, df = 3, P(> X2) = 0.44
```

# Done.

### **Useful Website**

- Logistic Regression Model Comparison
- How to test for simultaneous equality of choosen coefficients in logit or probit model?
- Odd Ratios