2024 高等概率论期中考试

杨赛赛

2024.11.26

满分 120 分, 第二到四题 20 分, 剩下 15 分。

问题 1. X 为一随机变量,满足 $\mathbb{E}[X^2] = 1, \mathbb{E}[|X|] \ge a > 0$,证明对于任意的常数 $0 \le \lambda \le 1$,有 $\Pr(|X| \ge \lambda a) \ge (1 - \lambda)^2 a^2$ 。

问题 2. 设 X,Y 为两独立的随机变量,并且存在常数 $p \ge 1$,使得 $\mathbb{E}[|X|^p] < +\infty$ 。若 $\mathbb{E}[Y] = 0$,证明 $\mathbb{E}[|X + Y|^p] \ge \mathbb{E}[|X|^p]$ 。

问题 3. 令 $1 \le p < +\infty$ 为一常数, 而 X 为一非负随机变量, 证明:

$$\mathbb{E}[X^p] < +\infty \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} n^{p-1} \Pr(X \ge n) < +\infty$$

问题 4. 设 m 是 $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ 上的勒贝格测度,而 μ 是 $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ 上的有限测度。定义 $F(x) = \mu((-\infty, x])$,证明:

(1) $\forall -\infty < a < b < +\infty$:

$$2\int_{(a,b]} F \,\mathrm{d}\mu = F^2(b) - F^2(a) + \sum_{x \in (a,b]} \mu(\{x\})^2$$

(2) $\forall c \in \mathbb{R}$:

$$\int_{\mathbb{R}} (F(x+c) - F(x)) m(\mathrm{d}x) = c\mu(\mathbb{R})$$

问题 5. X 为一随机变量,满足 $\Pr(X > t) = e^{-t}, \ t > 0$ 。对任意 t > 0,计算 $\mathbb{E}[X \mid X \lor t]$ 。

问题 6. X, Y 为平方可积的随机变量。若对于任意的有界连续函数 $f: \mathbb{R} \to \mathbb{R}$,有:

$$\mathbb{E}[X \mid f(X)] = \mathbb{E}[Y \mid f(X)], \ \mathbb{E}[X^2 \mid f(X)] = \mathbb{E}[Y^2 \mid f(X)]$$

证明 X = Y a.e.。

问题 7. 设 \mathcal{G} 是 (Ω, \mathcal{F}) 上的子 σ -代数,X, Y 为 (Ω, \mathcal{F}) 上的实值随机变量,并且有 X 与 \mathcal{G} 独立,且 Y 关于 \mathcal{G} 可测。

证明对于任意 $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ 上的有界可测函数 $f: \mathbb{R}^2 \to \mathbb{R}$,有 $g(y) = \mathbb{E}[f(X, y)]$ 关于 $\mathcal{B}(\mathbb{R})$ 可测,且:

$$\mathbb{E}[f(X,Y) \mid \mathcal{G}] = g(Y)$$
, a.e.