COMP 478/6771 (FALL 2020) Digital Image Processing

Digital Image Enhancement in Spatial Domain (cont.)

Instructor: Prof. Yiming Xiao

Tutors:

Materials provided by Dr. T. D. Bui

Introduction

The first-order Derivatives – The Gradient

In one-dimensional, the first-order derivative of the function f(x)

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

 $\begin{array}{c|ccccc}
x & x+1 & x+2 \\
\hline
f(x) & f(x+1) & f(x+2) & \dots \\
\hline
\frac{\partial f}{\partial x} & & & & & \\
\hline
\end{array}$

In two-dimensional, the gradient of the function f(x, y)

$$\nabla f = grad(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$g_x = \frac{\partial f(x, y)}{\partial x} = f(x+1, y) - f(x, y)$$

$$g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y+1) - f(x, y)$$

The magnitude (length):

$$M(x, y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

The first-order Derivatives – The Gradient

$$M(x,y) = mag(\nabla f) = \sqrt{g_x^2 + g_y^2} \approx |g_x| + |g_y|$$

How to apply the first-order derivative filters to the image $I(x,y) \rightarrow G(x,y)$?

Step 1:

- Convolve the 1st mask g_x with the image $I(x,y) \rightarrow G_1(x,y)$
- Convolve the 2nd mask g_v with the image $I(x,y) \rightarrow G_2(x,y)$

Step 2:

- Get the absolute values of $|G_1(x,y)|$, $|G_2(x,y)|$.

Step 3:

- Get the filtered image: $G(x,y) = |G_1(x,y)| + |G_2(x,y)|$

Edge detection

Note:

Gradient – based methods can be used to detect edges in images (detect sudden changes in image intensity) by adding one more step **thresholding**.

Edge detection: $I(x,y) \rightarrow E(x,y)$

Step 1:

- $E(x,y) = \begin{cases} 1 & G(x,y) > th \\ 0 & otherwise \end{cases}$
- Convolve the 1st mask g_x with the image $I(x,y) \rightarrow G_1(x,y)$
- Convolve the 2nd mask g_v with the image $I(x,y) \rightarrow G_2(x,y)$

Step 2:

- Get the absolute values of $|G_1(x,y)|$, $|G_2(x,y)|$.

Step 3:

- Get the filtered image: $G(x,y) = |G_1(x,y)| + |G_2(x,y)|$

Step 4:

- Apply the thresholding at th (we choose):
 - + if pixel value $G(x,y) < \mathbf{th}$ then E(x,y) = 0
 - + if pixel value $G(x,y) \ge \mathbf{th}$ then E(x,y) = 1

How to set-up the filtering masks

The first-order Derivatives – Roberts operators

Remember, the first-order of the function f(x, y)

$$\nabla f = \operatorname{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \operatorname{grad}(f) = \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$g_x = \frac{\partial f(x, y)}{\partial x} = f(x+1, y) - f(x, y) = z_8 - z_5$$

$$g_y = \frac{\partial f(x, y)}{\partial y} = f(x, y+1) - f(x, y) = z_6 - z_5$$

Roberts suggested using the cross differences:

$$g_x = f(x+1, y+1) - f(x, y) = z_9 - z_5$$
Roberts cross-gradient
$$g_y = f(x+1, y) - f(x, y+1) = z_8 - z_6$$
Roberts cross-gradient

	-1	0	g_{x}
	0	1	8x
•			

	1	
	-1	g
1	0	0)

The first-order Derivatives – Prewitt operators

Using 3×3 neighbors:

$$g_r = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$

$$g_y = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

Prewitt operators >

-1	-1	-1
0	0	0
1	1	1

 g_{y}

The first-order Derivatives – Sobel operators

Using 3×3 neighbors:

$$g_{x} = (z_{7} + 2z_{8} + z_{9}) - (z_{1} + 2z_{2} + z_{3})$$

$$g_{y} = (z_{3} + 2z_{6} + z_{9}) - (z_{1} + 2z_{4} + z_{7})$$
Sobel
operators

-1	-2	-1
0	0	0
1	2	1

 g_{x}

-1	0	1
-2	0	2
-1	0	1

 g_{y}

Notes:

- Using a weigh value of 2 in the center coefficient is to achieve some smoothing by giving more importance to the center point.
 - Sum of a mask is zero

Example

Using the **Sobel gradient operators** to find the **edges** of the following image I(x,y), with the threshold $\mathbf{th} = \mathbf{20}$ (use matlab to check the result).

9×9

$$9999999922

9899999222

99999992222

I(x,y) = 7999922222

9999922222

999922222

999922222$$

Step 1 & 2:

- Convolve I(x,y) with the g_x :

$$G_1(x,y) = I(x,y) \Theta g_x =$$

26	34	35	3	6	36	29	15	8	6
0	0	0	0	0	-6	-12	-6	0	
1	2	1	0	-7	-14	-7	0	0	
-4	-2	0	0	-7	-15	5 -9	-1	0	
0	0	0	-7	-14	-7	0	0	0	
4	2	0	-7	-14	-7	2	4	2	
0	0	-7	-14	-7	0	0	0	0	
0	-7	-14	-7	0	-1	-4	-5	-2	
-27	-30	6 -2	29 -	-15	-8	-8	-8	-8	-6

	g_x	
-1	-2	-1
0	0	0
1	2	1

$$|G_1(x,y)| =$$

Step 1 & 2 (cont.):

- Convolve I(x,y) with the g_v :

$$G_2(x,y) = I(x,y) \Theta g_v =$$

26	0	1	0	0	-7	-21	-14	-6
34	0	2	0	0	-20	-28	-8	-8
35	0	1	0	-7	-26	-21	-2	-8
36	2	0	0	-21	-27	-7	-1	-8
36	4	0	-7	-28	-21	0	0	-8
36	2	0	-21	-28	-7	2	0	-10
36	0	-7	-28	-21	0	4	0	-12
36	-7	-14	-21	-14	4 -	1 2	2 1	-10
27	-14	-7	-7	-14	-2	2 0	2	-6

	g_y	
-1	0	1
-2	0	2
-1	0	1

$$|G_2(x,y)| =$$

Step 3:

$$G(x,y) = |G_1(x,y)| + |G_2(x,y)| =$$

Step 4:

- Apply the thresholding $\mathbf{th} = 20$:

+ if pixel value $G(x,y) < \mathbf{th}$ then E(x,y) = 0

+ if pixel value $G(x,y) \ge \mathbf{th}$ then E(x,y) = 1

$$E(x,y) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The second-order Derivatives – The Laplacian

In one-dimensional, the second-order derivative of the function f(x)

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

In two-dimensional, the Laplacian of the function f(x, y)

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\frac{\partial^2 f(x, y)}{\partial x^2} = f(x+1, y) + f(x-1, y) - 2f(x, y)$$

$$\frac{\partial^2 f(x, y)}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

The discrete Laplacian of two variable:

$$\partial^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

The second-order Derivatives – The Laplacian

Note:

- In the Gradient-based method: check for the high values
- In the Laplacian-based method: check for the zero values

The Laplacian-based methods can be divided into:

- Standard Laplacian method
- Laplacian of Gaussian (LoG)

The standard Laplacian

$$\partial^2 f(x,y) = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Laplacian operators:

	g	
0	1	0
1	-4	1
0	1	0

or

1	1	1
1	-8	1
1	1	1

or

-1	-1	-1
-1	8	-1
-1	-1	-1

Edge detection with the standard Laplacian

Note:

Detect the sudden changes in intensity images. This method is sensitive to abrupt changes, but not slow changes.

Edge detection: $I(x,y) \rightarrow E(x,y)$

Step 1:

- Convolve the mask g with the image $I(x,y) \to G(x,y)$

Θ: convolve

Step 2:

- Apply the Zero-crossing:
 - + if neighbor pixels value G(x,y) sign change then E(x,y) = 1
 - + if neighbor pixels value G(x,y) sign does not change then then E(x,y) = 0

The Laplacian of Gaussian (LoG)

Why do we use the LoG?

- The effect of noise is exaggerate when we get the first derivative.
- The second derivative will exaggerate the noise one more time.
- Additionally, the first derivative doesn't give us any information about the direction of edges.

Solutions:

- We use the second derivatives to get information about the direction of edges.
- However, to reduce the noise, we use the Gaussian smoothing to remove the noise.

The Laplacian of Gaussian (LoG)

Notes:

- The convolution is a time consuming operation. Here, we have used this operation 2 times!
 - => We can combine both together, apply mask and smooth at the same time.

$$(f \Theta g)$$
" = $f \Theta g$ "

How can we do ? $g(r) = e^{-r^2/2\sigma^2}$

- The Gaussian:
$$g'(r) = \frac{\partial g(r)}{\partial r} = \frac{-r}{\sigma^2} e^{-r^2/2\sigma^2}$$

$$g''(r) = \frac{\partial^2 g(r)}{\partial r^2} = \frac{-1}{\sigma^2} [1 - \frac{r^2}{\sigma^2}] e^{-r^2/2\sigma^2}$$

From this function, we can get a LoG mask: $\begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -2 & -1 & 0 \\ -1 & -2 & 16 & -2 & -1 \\ 0 & -1 & -2 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 \end{bmatrix}$

Then, we can apply directly on the input image I(x,y).

Edge detection with LoG

Edge detection: $I(x,y) \rightarrow E(x,y)$

Step 1:

Θ: convolve

- Convolve the LoG mask g with the image $I(x,y) \rightarrow G(x,y)$

Step 2:

- Apply the Zero-crossing:

MATLAB Functions

- List of useful functions for spatial operations:
 - conv2
 - imnoise, rand, randn
 - imfilter
 - edge

