Pràctiques de Matemàtica Discreta: Introducció a la Teoria de Grafs

Sessió 7

1 Camí de pes mínim

Algorisme de Dijkstra

Camí de pes mínim

Definició

Si $C = v_0 e_1 v_1, \dots e_n v_n$ és un camí en un graf Γ , es defineix el pes de C, w(C), com la suma dels pesos de les seues arestes. És a dir:

$$w(C) = \sum_{i=1}^{n} w(e_i).$$

Problema

Donats dos vèrtexs v_1 i v_2 d'un graf, trobar un camí C de vèrtex inicial v_1 yi vèrtex final v_2 tal que el seu pes w(C) siga el menor possible (és a dir, un *camí de pes mínim*).

1 Camí de pes mínim

2 Algorisme de Dijkstra

Algorisme de Dijkstra (idea)

- Requisit: Existeix, almenys, un camí que connecta els vèrtexs v_1 i v_2 .
- La idea de l'algorisme de Dijkstra consisteix en començar pel vèrtex inicial v₁ i moure's a través del graf assignant una etiqueta E(u) a cada vèrtex u que representa el pes del camí més curt descobert fins a eixe moment entre v i u.
- Els valors E(u) son considerats, inicialment, com a temporals, i poden canviar si descobrim un camí de v₁ a u que tinga un pes menor que el valor actual de E(u).
- L'algorisme construeix un subraf, que és un arbre, i que conté als vèrtexs v₁ i v₂.
- Un camí de pes mínim entre v₁ i v₂ és l'únic camí simple de l'arbre obtingut que connecta v₁ amb v₂.

Algorisme de Dijkstra (descripció)

- 1) Si v_1 denota el vèrterx inicial, assignem $E(v_1) = 0$ i diem que v_1 ha sigut *etiquetat* amb el valor 0. A més a més, aquesta etiqueta és permanent, ja que no canviarem més el seu valor. Considerem l'arbre T consistent només en el vèrtex v_1 (sense cap aresta).
- 2) Siga u el darrer vèrtex etiquetat de manera permanent. Considerem cada vèrtex u' adjacent a u (i sense etiqueta permanent) i li assignem una etiqueta temporal de la següent manera:
 - a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
 - b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

Algorisme de Dijkstra (descripció)

- 3) Triem un vèrtex a amb etiqueta temporal mínima (no necessàriament adjacent al darrer vèrtex etiquetat) i convertim en permanent la seua etiqueta. Afegim a l'arbre T l'aresta que ha donat lloc al valor E(a).
- 4) Repetimos els passos 2 i 3 fins que el vèrtex final v₂ haja rebut una etiqueta permanent. Un camí de pes mínim entre v₁ i v₂ és l'únic camí simple de l'arbre T que uneix v₁ i v₂; el seu pes (el pes mínim) és E(v₂).

Exemple

Volem calcular un camí de pes mínim entre els vèrtexs A i H del següent graf:

Pas 1)

Si v_1 denota el vèrtex inicial, asignarem $E(v_1) = 0$ (etiqueta permanente).

T: árbol consistent només en el vèrtex v_1 (sense cap aresta).

Pas 1)

Si v_1 denota el vèrtex inicial, asignarem $E(v_1) = 0$ (etiqueta permanente).

T: árbol consistent només en el vèrtex v_1 (sense cap aresta).

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

Pas 4)

Repetim els passos 2 i 3 fins que el vèrtex final v_2 haja rebut una *etiqueta* permanent.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

- a) Si u' no té etiqueta, aleshores definim E(u') = E(u) + w(e), on e és l'aresta que uneix u i u'. (Si hi ha més d'una aresta unint u i u', triem aquella que tinga menor pes).
- b) Si u' ja té etiqueta, aleshores calculem E(u) + w(e) com a l'apartat a). Si aquest nombre és menor que E(u') aleshores canviem el valor de E(u') per E(u) + w(e); en cas contrari E(u') no canvia.

Un camí de pes mínim entre v_1 i v_2 és l'únic camí simple de l'arbre T que uneix $v_1 = A$ i $v_2 = H$; el seu pes (el pes mínim) és $E(v_2)$.

Un camí de pes mínim entre v_1 i v_2 és l'únic camí simple de l'arbre T que uneix $v_1 = A$ i $v_2 = H$; el seu pes (el pes mínim) és $E(v_2)$.

