Sound Classification Overview

EE3662: Digital Signal Processing Lab #Lecture11 – Dec. 13, 2021

Prof. Chi-Chun Lee, Yi-Wen Liu

TAs: 邱信豪、許暐彤、陳舫慶、陳靖杰

Machine Learning Concept

$$f: X \to Y$$

- Mapping from data to label
- ◆Input domain X: word sequence, audio, video, physiological signal
- Output domain Y: label, sequence tags, probability

$$f(ABC) = A$$

Features

Taxonomy of Acoustic Features

Temporal Features

- Short time energy
 - of frame n: $E_n = \sum_{m=n-N+1}^n x^2(m)$
 - windowed squared for x[n]
 - window: rectangular window

Indicator for silence detection

General short-time energy equation: $\sum_{m=-\infty}^{\infty} [x[m]w[n-m]]^2$

Temporal Features

- Short time zero crossing
 - The subsequent samples have different signs
 - Measures how rapidly signal changes
 - Captures frequency content

$$Z_n = \sum_{m=-\infty}^{\infty} \left| \frac{sign[x(m)] - sign[x(m-1)]}{2} \right| w(n-m)$$

Unvoiced region: lower energy higher zero-crossing rate Voiced region: higher energy lower zero-crossing rate

Temporal Features

- Short time autocorrelation
 - $R_n(k) = \sum_{m=-\infty}^{\infty} x(m)w(n-m)x(m+k)w(n-m-k)$
 - How similar x(m) is to x(m+k)
 - k is the lag parameter
 - $R_n(k)$ for voiced speech: periodic (not for unvoiced)
 - $R_n(k)$ peaks occur at lag (k) intervals approximately equal to pitch period

Spectral Features

- ◆Spectral descriptors: slope, flux, roll-off ...
- ◆Formants: bandwidth, relative energy
- ◆ Harmonics: relative difference/ratio of energy

Spectral Features

Spectral Features

Typical voiced and unvoiced speech have different distribution in spectrum

Spectrogram

Cepstral Features

- ◆Features based on cepstrum
 - Mel-frequency cepstral coefficients (MFCC)
 - Linear prediction cepstral coefficients (LPCC)

Models

Classifiers

This Lab

Decision Tree

Neural network

Linear Classifiers

The margin varies with different decision boundaries.

Support Vector Machine

Maximum Margin Classifier: Find w, b that

1. Get all samples correct

$$wx_i + b \ge 1 \text{ for } y_i = +1$$

$$wx_i + b \le -1 \text{ for } y_i = -1$$

$$y_i(wx_i + b) \ge 1 \text{ for all samples}$$

2. Maximize margin

$$argmax \frac{2}{\|w\|} \implies argmin \frac{1}{2} \|w\|^2$$

Support Vector Machine

- ◆ Solution to this problem:
 - $w = \sum_{n=1}^{N} a_n t_n x_n$
 - $b = y_k w^T x_k$ for any x_k such that $\alpha_k \neq 0$
 - Either $a_n = 0$ or $y_n y(x_n) = 1$
- lacktriangle Each non-zero a_n implies the corresponding x_n is a support vector

Support Vector Machine

◆The classifying function:

•
$$y(x) = w^T x + b = \sum_{n=1}^{N} a_n t_n x_n^T x + b$$

- lacktriangleOutput y only relies on $x_n^T x$ the inner product between test sample and support vectors
- •We can use kernel functions k(x, x') to replace simple $x_n^T x$

Non-Linear SVM

Data samples are mapped into high-dimensional space through kernels functions, and we find the hyperplane

Some Kernel Functions

lacktriangle Linear: $\langle x, x' \rangle$

• Polynomial: $(\Gamma(x, x') + r)^d$

◆Gaussian radial-basis function (rbf): $\exp(-\Gamma ||x - x'||^2)$

lacktriangle Sigmoid: $tanh(\Gamma\langle x, x' \rangle + r)$

Overlapping Distribution

- ◆When the data is not completely separable, strong kernel could lead to overfitting.
- ◆We allow misclassification but with penalty.
- lacktriangle A penalty variable ξ is increased by the distance from that boundary

Overlapping Distribution

◆The objective to be minimized becomes

$$\frac{1}{2}\|w\|^2 + C\sum_{n=1}^N \xi_n$$

 $C \rightarrow \infty$ for separable data

Large C: high accuracy but poor generalization

Small C: low accuracy but good generalization

Multiclass Classification

◆One-vs-One:

- Train on every two classes
- Total of n_class * (n_class 1) / 2 models
- The class with most votes as final output

♦One-vs-Rest:

- Train on one class and the remaining as others
- Total of n_class models
- The class with highest decision score as final output

Evaluation Metrics

Confusion matrix

Ground Truth

Prediction

	Yes	No
Yes	TP (True Positive)	FN (False Negative)
No	FP (False Positive)	TN (True Negative)

Precision = TP/(TP+FP)

Recall = TP /(TP+FN)

Accuracy: (TP+FN)/(TP+FN+TN+FP)

P(positive): Predict YES N(negative): Predict NO

T(True): Predict Correctly F(False): Predict Wrongly

Cross Validation

Better generalization to unknown data & finding parameters

