Lab Report : Image Classification Practice

王浩天 陶昱丞

I. 数据处理

为了缓解实验过程中可能出现的过拟合,我们采用了Data Augmentation(数据增量)的方案。在本次实验中, 我们采用了transforms操作进行数据增强。

具体地,我们通过概率水平翻转和竖直翻转给定的PIL图像来人工地增大数据集。

- 1 transforms.RandomHorizontalFlip(0.5),
- transforms.RandomVerticalFlip(0.5),

此外,我们还使用transforms.ToTensor()将数据分布调整到 (0, 1) 之间,并使用Normalize进行计算,将数据归一化到 (-1,1) 之间,从而让数据更加贴合正态分布。

II. 系统设计

1. 模型设计

关于本次大作业的模型设计,从图像分类的任务出发,我们决定选择CNN图像分类算法以及其相关的模型。

首先,我们根据PyTorch的tutorial实现了基础的CNN图像分类算法,设计出了一个具有两个卷积层的卷积神经网络,并对其进行实验测试。经过一段时间的参数调试之后,我们发现,这个模型不能满足我们的作业要求,虽然这个模型的较为简单,训练用时也非常短,但是这个简单的CNN模型在Cifar-10数据集上训练后进行测试的准确率仅有55%左右。

在此基础上,我们调研了当前学术界较为知名、用途广泛的各种CNN模型,例如AlexNet、VGG、ResNet、GoogLeNet等。经过广泛地调研和阅读,我们决定在AlexNet的基础上,根据Cifar-10数据集的特征,实现自己的CNN模型。在完成自己的模型之后,我们还进行了一系列的模型优化和参数调试,最终能够达到大约79%的准确率。这个结果相比于最初的模型已经有了很大的提升,在Cifar-10数据测试集上图像分类的效果很好。

但是,这还是没有达到我们的预期目标,为了使我们的实验结果更进一步,达到更为精确的图像分类效果,我们又转而采用当前学术界和工业界广泛使用的ResNet残差网络模型,经过代码实现,最终在Cifar-10数据测试集上达到92.35%的测试准确率。这个结果超出我们的预期,完全实现了我们对于此次项目的目标。

下面,我们会——介绍上述提到的各个模型。

A. Shallow CNN

Shallow CNN model是我们最开始尝试的模型,它的网络设计和PyTorch官方的CNN tutorial给出的模型是一致的,输入32*32*30RGB三通道图片,经过两个卷积层、两个池化层、两个非线性激活层,经过Flatten连接到三个全连接层,将最终结果映射到10*1的向量进行label的判断,损失函数采用常用的交叉熵,利用随机梯度下降进行参数更新。

这个卷积神经网络只有两个卷积层,卷积核大小分别为5*5和5*5。 网络的效果非常差,在 $EPOCH=100\ LR=0.001$ 的条件下训练出的模型在Cifar-10的准确率只有55%左右。

分析其效果不佳的原因,我们认为这个网络只有两个卷积层,且每个卷积层的卷积核数量非常少,无法提取到足够的图像信息。而且在Cifar-10数据集本身图像较小的情况下,经过两个MaxPool池化层处理,损失了较多图像信息。另外,这个模型没有正则化,容易导致梯度爆炸和梯度消失,导致反向传播和参数更新的效果不佳。

以上都是导致这个模型效果不佳的原因,对此,我们汲取了深刻的经验教训。

B. ElexNet: Inspired by AlexNet

在经历了Shallow CNN的失败后,我们从中总结经验教训,考虑从卷积层数量、池化层位置、正则化等方面入手,设计更加优化的模型,以期得到更好的实验结果。

在查阅了论文和资料后,我们了解了当前学术界和工业界一些主流CNN算法的实现,例如AlexNet、VGG、ResNet, GoogLeNet等。这些模型都在卷积层、卷积核等很多方面做了优化。在综合评估后,我们决定首先在AlexNet的基础上搭建一个CNN网络。下图是AlexNet的模型结构。

在AlexNet的启发下,我们搭建了自己的模型,并将其命名为ElexNet。考虑到Cifar-10数据集图片本身尺寸很小的特点,我们并没有完全按照AlexNet论文的描述实现卷积神经网络,而是根据测试效果,调整了卷积核的大小,使其更加适应数据集的特点。另外,我们还删除了第一个卷积层Conv1之后的池化层Overlapping Max Pool,原因是Cifar-10数据集尺寸过小,经过池化层处理后会损失很多信息。经过测试,我们还修改了一些对模型结果影响不大的结构,以加快拟合速度。

最终, ElexNet在Cifar-10测试集上的测试准确率为79%, 这个效果相比与Shallow CNN有了很大的提升。

C. ResNet-18

经历了ElexNet的成功后,我们仍然觉得79%的测试准确率仍然有些低。这时,我们将目光投向了被称为CNN图像史上里程碑的ResCNN,期望能达到更高的准确率。根据ResNet论文中给出的结构列表,我们搭建了18层的RNN网络。下图是ResNet-18模型的详细结构。

ResNet-18由17层卷积层和1个全连接层组成。网络中存在两种不同的基本块:一种是在通道数不变的情况下,进行的残差结构运算,如上图中实线标注的跳跃连接部分;另一种则是在进行残差结构运算时,发生了通道数改变,如上图中虚线部分所示。我们分别将他们作为不同的基本块。在卷积操作都完成后,通过平均池化avgpool层最终到达全连接层。此外我们还对图像预处理的参数进行了一些优化,使得数据分布更加正则。

在最后的测试中,ResNet-18在Cifar-10测试集上的准确率最高可以达到92.35%,相比之前的两种模型而言可以说是有了质的飞跃。

2. 训练方法

我们首先使用torchvision加载了CIFAR10训练集和测试集,并对数据集做了归一化处理。对于训练集,我们还使用transforms进行了Data Augmentation来缓解可能出现的过拟合。

之后我们创建了Convolutional Neural Network,并使用交叉熵来评估loss,定义了loss function。

紧接着,我们在GPU上使用自己定义的network进行迭代计算。从训练集中不断取出样本输入到网络中,计算出实际的输出和理想输出的差,即loss,打印出loss并绘制loss图像用于辅助分析,并按照极小化误差的方法反向传播调整权矩阵。经过100次epoch后结束训练。

训练完成后,我们将测试集输入到所得的模型中,将输出结果与真实值比较,并记录下模型的预测准确率。

接下来,我们通过不断更新network的模型和参数一次次进行训练和迭代。最终,我们筛选出预测准确率最高的模型和参数设置。

III. 实验结果

1. Shallow CNN

A. 预测准确率

Shallow CNN的准确率在最好情况下只有55%

B. 训练过程

我们对Shallow CNN的模型进行搭建之后,设置Batch Size=256 EPOCH=100进行训练,每次训练用时大概为20s。

C. 调参实验及结果分析

```
def __init__(self):
    super().__init__()
    self.conv1 = nn.Conv2d(3, 6, 5)
    self.pool = nn.MaxPool2d(2, 2)
    self.fconv2 = nn.Conv2d(6, 16, 5)
    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

def forward(self, x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = torch.flatten(x, 1) # flatten all dimensions except batch
    x = F.relu(self.fc1(x))
    x = self.fc3(x)
    return x
```

我们调整了多组Batch Size、Kernel Size等参数,模型准确率均没有太大变化。

由于这个模型只有两层卷积层,卷积核尺寸也非常小,对于图像信息的提取能力非常弱。考虑到模型的这些固有缺陷制约了准确率的提高,无论如何调整参数都不可能达到较好的效果,因此我们在这个模型上并没有耗费太多时间。

2. ElexNet

A. 预测准确率

ElexNet在最佳情况下的预测准确率为79%

B. 训练过程

下图给出了**最终版本**ElexNet在最佳情况时的loss变化,从图中可以看到,在训练的初始阶段,loss下降很快,随着epoch增加,loss下降的速度逐渐降低,并最终趋于平稳。

C. 调参实验及结果分析

针对ElexNet模型,我们对其网络结构进行了一些列调整,以达到更好的训练效果。

下图为最初版本ElexNet的模型参数,在这组模型参数下调整Batch Size,以epoch=100的条件运行,得到的结果在Cifar-10测试集上的准确率为70%

plane	car	bird	cat	deer	dog	frog	horse	ship	truck	total
72.1%	84.1%	71.4%	53.8%	64.8%	62.9%	76.4%	74.5%	72.9%	75.9%	70%

总体准确率为70%,在cat类别上的预测准确率非常低。

考虑到这个模型已经有足够的深度,受到计算资源的限制,继续增加深度会带来很多的训练时间增长,我们考虑从卷积核数量入手,在卷积层增加卷积核的数量,以期达到更好的训练效果。

b.

针对上述问题,我们调整了模型参数,作出一些改进,在对每个卷积层都增加了卷积核的数量,使用更多的参数进行非线性函数的拟合。

plane	car	bird	cat	deer	dog	frog	horse	ship	truck	total
78.6%	81.4%	51.9%	60.3%	71.8%	64.2%	77.6%	76.3%	82.5%	81.9%	72%

总体预测准确率达到72%,相比于原始的模型上升了2%。在细分种类中,对于ship、truck、plane的分类能力显著提升,但是对于bird的分类能力降低较多。虽然准确率有所上升,但是仍然没有达到我们的预期。还需要继续改进模型。

c.

考虑到Cifar-10数据集的自身尺寸小的特点,我们进行了针对性的调整,删除了第一个卷积层后的池化层,原因是Cifar-10本身为32 * 32 * 3,在小尺寸的数据集上进行池化会损失较多图片信息。删除第一层池化层之后,模型对于图像细节信息的提取更强,可以提高分类能力。

plane	car	bird	cat	deer	dog	frog	horse	ship	truck	total
80.8%	86.5%	68.6%	61.1%	75.4%	68.2%	84.6%	80.7%	85.0%	84.2%	77%

可以看到,删除了第一层池化层之后,模型分类准确率提升显著,从72%上升至77%。在各个细分种类的分类能力也均有所提升。这说明我们的优化思路是正确的,模型对于细节信息的提取能力大大增强。

d.

为了进一步优化分类效果,我们又对这个模型进行了探究。经过仔细探究发现,第一层的卷积层中stride=1 kernel_size=7 padding=0,这样的卷积核参数导致我们损失了图像边缘的部分信息,为此我们再次修改参数,为第一层卷积层增加大小为3的padding,以便充分利用边缘的信息。在这样的参数条件下,模型的预测准确率达到了79%,相较于不加padding提升了2%。

e.

此外,我们还调整了学习率分别进行了多次测试

学习率	0.0008	0.001	0.0012	0.0014	0.0016	0.0018
准确率	76%	79%	78%	76%	76%	78%

最终发现当学习率为0.001时,准确率以微弱的优势胜出。而在这几组实验中,loss图像相差微乎其微,肉眼几乎无法观察出其差别,因而我们认为其图像近似相同。最终,我们觉得选用准确率最高的那组参数,即学习率为0.001。

下面,依次给出不同学习率的loss图像:

学习率=0.0008时

学习率=0.001时

学习率=0.0012时

学习率=0.0014时

学习率=0.0016时

学习率=0.0018时

D. 参数量

以最终版本的ElexNet为准,这个模型的参数量还是十分可观的,也正是这么多的参数量带来了模型精度的提升。

Layer (type)	Output Shape	Param #
=======================================		
Conv2d-1	[500, 16, 32, 32]	2,368
ReLU-2	[500, 16, 32, 32]	0
BatchNorm2d-3	[500, 16, 32, 32]	32
Conv2d-4	[500, 64, 32, 32]	25,664
ReLU-5	[500, 64, 32, 32]	0
BatchNorm2d-6	[500, 64, 32, 32]	128
MaxPool2d-7	[500, 64, 15, 15]	0
Conv2d-8	[500, 128, 15, 15]	73,856
ReLU-9	[500, 128, 15, 15]	0
Conv2d-10	[500, 256, 15, 15]	295,168
ReLU-11	[500, 256, 15, 15]	0
Conv2d-12	[500, 192, 15, 15]	442,560
ReLU-13	[500, 192, 15, 15]	0
MaxPool2d-14	[500, 192, 7, 7]	0
Linear-15	[500, 1568]	14,753,312
Linear-16	[500, 1568]	2,460,192
Linear-17	[500, 10]	15,690

3. ResNet-18

A. 预测准确率

ResNet-18在最佳情况下的预测准确率高达92.35%

B. 训练过程

下图给出了**最终版本**ResNet-18在最佳情况时的loss变化,从图中可以看到,在训练之初,loss下降很快,随着epoch不断增大,loss下降速度逐渐放缓,并最终趋于平稳状态。

下图给出了**最终版本**ResNet-18在最佳情况时测试准确率的变化,从图中可以看到,在训练开始之初,随着epoch的增加,训练集的测试准确率和测试集的测试准确率都在迅速增加,而后两组数据集的准确率增长速度几乎同时放缓,并在不断波动的同时继续增大,最后趋于平稳。其中,测试集的测试准确率增长速度放缓更为明显,波动也更为剧烈,且随着epoch的继续增加,波动的幅度也越来越小,并且最终稳定在了90%以上。

C. 调参实验及结果分析

a.

针对ResNet18,我们调整了模型的学习率进行测试,但是结果没有显著差异,因此不在此赘述

Residual Block:

```
1
    class ResidualBlock(nn.Module):
 2
        def __init__(self, in_channel, out_channel, stride=1):
 3
            super(ResidualBlock, self).__init__()
4
            self.left = nn.Sequential(
5
                nn.Conv2d(in_channel, out_channel, kernel_size=(3, 3), stride=(stride, stride),
    padding=(1, 1), bias=False),
6
                nn.BatchNorm2d(out_channel),
 7
                nn.ReLU(inplace=True),
                nn.Conv2d(out_channel, out_channel, kernel_size=(3, 3), stride=(1, 1), padding=
 8
    (1, 1), bias=False),
9
                nn.BatchNorm2d(out_channel)
10
             self.shortcut = nn.Sequential()
11
            if stride != 1 or in_channel != out_channel:
12
                 self.shortcut = nn.Sequential(
13
                     nn.Conv2d(in_channel, out_channel, kernel_size=(1, 1), stride=(stride,
14
    stride), bias=False),
                     nn.BatchNorm2d(out_channel)
15
16
                 )
17
```

```
def forward(self, x):
    out = self.left(x)
    out += self.shortcut(x)
    out = F.relu(out)
    return out
```

ResNet main body:

```
class ResNet(nn.Module):
 2
        def __init__(self, residual_block, num_classes=10):
 3
             super(ResNet, self).__init__()
            self.in_channel = 64
4
            self.conv1 = nn.Sequential(
 6
                 nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
                 nn.BatchNorm2d(64),
8
                 nn.ReLU(),
9
             )
10
             self.layer1 = self.make_layer(residual_block, 64, 2, stride=1)
11
             self.layer2 = self.make_layer(residual_block, 128, 2, stride=2)
12
            self.layer3 = self.make_layer(residual_block, 256, 2, stride=2)
            self.layer4 = self.make_layer(residual_block, 512, 2, stride=2)
13
            self.fc = nn.Linear(512, num classes)
15
16
        def make layer(self, block, channels, num blocks, stride):
            strides = [stride] + [1] * (num_blocks - 1) # strides=[1,1]
17
18
            layers = []
19
            for stride in strides:
20
                 layers.append(block(self.in_channel, channels, stride))
21
                 self.in channel = channels
            return nn.Sequential(*layers)
22
23
24
        def forward(self, x):
            out = self.conv1(x)
25
26
            out = self.layer1(out)
27
            out = self.layer2(out)
            out = self.layer3(out)
28
            out = self.layer4(out)
30
            out = F.avg_pool2d(out, 4)
31
            out = out.view(out.size(0), -1)
32
            out = self.fc(out)
33
            return out
```

b.

为了获得更高的准确率,我们还对预处理的正则化参数进行了修改。我们认为原先的默认参数mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]不够精准,因此自己对训练集中的图像数据进行处理,求出了他们的平均值和标准差(这部分代码详见calc_mean_std.py文件中),得到的结果为mean=[0.4940, 0.4849, 0.4495],std=[0.2014, 0.1985, 0.2001],我们将这组数据代入图片数据预处理中,然后进行训练,最终得到的测试集准确率为90.79%。

超过90%的准确率让我们大受鼓舞,但我们仍然期望能在此基础上有所精进。于是我们仔细查找了一些使用 ResNet处理Cifar-10数据集的论文和帖子,发现他们普遍提到的一组正则化参数是mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225],我们尝试将这组数据应用到正则化处理中,最终得到的测试集准确率为91.41%。

我们继续在网络上查找相关的资料,偶然发现有一篇帖子指出当mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]可以获得更高的测试准确率,但没有给出相应的理论依据。我们将信将疑,将数据代入模型训练中。意外的是,我们的测试准确率竟然真的有了进一步的提升,达到了92.35%。

mean std accuracy

mean	std	accuracy
[0.4940, 0.4849, 0.4495]	[0.2014, 0.1985, 0.2001]	90.79%
[0.485, 0.456, 0.406]	[0.229, 0.224, 0.225]	91.41%
[0.4914, 0.4822, 0.4465]	[0.2023, 0.1994, 0.2010]	92.35%

D. 参数量

-	er (type)	Output Shape	Param #
	Conv2d-1	[500, 64, 32, 32]	1,728
Batc	hNorm2d-2	[500, 64, 32, 32]	128
	ReLU-3	[500, 64, 32, 32]	0
	Conv2d-4	[500, 64, 32, 32]	36,864
Batc	hNorm2d-5	[500, 64, 32, 32]	128
	ReLU-6	[500, 64, 32, 32]	0
	Conv2d-7	[500, 64, 32, 32]	36,864
Batc	hNorm2d-8	[500, 64, 32, 32]	128
Residu	alBlock-9	[500, 64, 32, 32]	0
	Conv2d-10		36,864
	Norm2d-11	[500, 64, 32, 32]	
	ReLU-12	[500, 64, 32, 32]	0
,	Conv2d-13	[500, 64, 32, 32]	36,864
	Norm2d-14	[500, 64, 32, 32]	128
	lBlock-15	[500, 64, 32, 32]	0
	Conv2d-16		73,728
	Norm2d-17	[500, 128, 16, 16]	256
baccin	ReLU-18	[500, 128, 16, 16]	0
(Conv2d-19	[500, 128, 16, 16]	
	Norm2d-20	[500, 128, 16, 16]	256
	Conv2d-21	[500, 128, 16, 16]	8,192
	Norm2d-22	[500, 128, 16, 16]	256
	1Block-23		0
	Conv2d-24	[500, 128, 16, 16]	
			147,456
Dattil	Norm2d-25	[500, 128, 16, 16]	256
	ReLU-26	[500, 128, 16, 16]	147.456
	Conv2d-27		147,456
	Norm2d-28	[500, 128, 16, 16]	256
	lBlock-29	[500, 128, 16, 16]	0
	Conv2d-30	[500, 256, 8, 8]	294,912
Batchi	Norm2d-31	[500, 256, 8, 8]	512
	ReLU-32	[500, 256, 8, 8]	0
	Conv2d-33	[500, 256, 8, 8]	589,824
	Norm2d-34	[500, 256, 8, 8]	512
(Conv2d-35	[500, 256, 8, 8]	32,768
Batch	Norm2d-36	[500, 256, 8, 8]	512
Residua	lBlock-37	[500, 256, 8, 8]	0
(Conv2d-38	[500, 256, 8, 8]	589,824
Batch	Norm2d-39	[500, 256, 8, 8]	512
	ReLU-40	[500, 256, 8, 8]	0
(Conv2d-41	[500, 256, 8, 8]	589,824
Batchi	Norm2d-42	[500, 256, 8, 8]	512
Residua	lBlock-43	[500, 256, 8, 8]	0
,	Conv2d-44	[500, 512, 4, 4]	1,179,648

48	BatchNorm2d-45	[500, 512, 4, 4]	1,024	
49	ReLU-46	[500, 512, 4, 4]	0	
50	Conv2d-47	[500, 512, 4, 4]	2,359,296	
51	BatchNorm2d-48	[500, 512, 4, 4]	1,024	
52	Conv2d-49	[500, 512, 4, 4]	131,072	
53	BatchNorm2d-50	[500, 512, 4, 4]	1,024	
54	ResidualBlock-51	[500, 512, 4, 4]	0	
55	Conv2d-52	[500, 512, 4, 4]	2,359,296	
56	BatchNorm2d-53	[500, 512, 4, 4]	1,024	
57	ReLU-54	[500, 512, 4, 4]	0	
58	Conv2d-55	[500, 512, 4, 4]	2,359,296	
59	BatchNorm2d-56	[500, 512, 4, 4]	1,024	
60	ResidualBlock-57	[500, 512, 4, 4]	0	
61	Linear-58	[500, 10]	5,130	
62		=======================================	=========	
63	Total params: 11,173,962			
64	Trainable params: 11,173,96	2		
65	Non-trainable params: 0			
66				
67	Input size (MB): 5.86			
68	Forward/backward pass size	(MB): 6812.54		
69	Params size (MB): 42.63			
70	Estimated Total Size (MB):	6861 02		
	Listinated Total Sile (TD):	0001.02		