

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA

Inteligência Artificial

Classificação em Mineração de Dados

Docentes: Eng Roxan Cadir

Eng Ruben Manhiça

Maputo, 2 de abril de 2024

Conteúdo da Aula

- 1. Tipos de Problemas em Mineração de dados
- 2. Classificação;
- 3. Algoritmo ID3;
- 4. Teoria da Informação
- 5. Calculo da Entropia do ID3

Tipos de Problemas em Mineração de Dados

TAREFA	DESCRIÇÃO		EXEMPLOS
Classificação	Constrói um modelo de algum tipo	??	Classificar pedidos de crédito
	que possa ser aplicado a dados não	??	Esclarecer pedidos de seguros
	classificados a fim de categorizá -los		fraudulentos
	em classes	??	Identificar a melhor forma de
			tratamento de um paciente
Estimativa	Usada para definir um valor para	??	Estimar o número de filhos ou a renda
(ou Regressão)	alguma variável contínua desconhecida		total de uma família
	desconnecida	??	Estimar o valor em tempo de vida de um cliente
		??	Estimar a probabilidade de que um
			paciente morrerá baseando-se nos
			resultados de diagnósticos médicos
		??	Prever a demanda de um consumidor
			para um novo produto
Associação	Usada para determinar quais itens	??	Determinar quais os produtos costumam
	tendem a co-ocorrerem (serem		ser colocados juntos em um carrinho de
	adquiridos juntos) em uma mesma		supermercado
	transação		
Segmentação	Processo de partição de uma	??	Agrupar clientes por região do país
(ou Clustering)	população heterogênea em vários	??	Agrupar clientes com comportamento
	subgrupos ou grupos mais		de compra similar
	homogêneos	??	Agrupar seções de usuários Web para
			prever comportamento futuro de usuário
Sumarização	Envolve métodos para encontrar uma	??	Tabular o significado e desvios padrão
	descrição compacta para um		para todos os itens de dados
	subconjunto de dados	??	Derivar regras de síntese

Classificação: Introdução

Classificação: é uma das técnicas mais utilizadas na mineração, por exemplo são comuns as tarefas de classificação de clientes em baixo, médio ou alto risco de empréstimo bancário.

"Classificar um objecto é determinar com que grupo de entidades, já classificadas anteriormente, esse objecto apresenta mais semelhanças"

Classificação: Definição

Definição: É o processo pelo qual examinamos as propriedades (aspectos, estrutura) de um objeto (dados) e atribuí-lo a uma das classes predefinidas.

É aprender o mapeamento de uma função dos objetos em uma das classes predefinidas.

Classificação: objetivos

Objetivo: analisar os dados de entrada (treino) e desenvolver uma **descrição** ou **modelo** para cada classe utilizando as estruturas presentes nos objetos.

Usar o relacionamento descoberto para prever a classe (o valor do atributo meta) de um registro com classe desconhecida.

Classificação: tarefas

Tarefa: descobrir um relacionamento entre os atributos previsores e o atributo meta, usando registros cuja classe é conhecida, para se construir um modelo de algum tipo que possa ser aplicado aos objectos não classificados para classificá-los.

Árvores de Decisão

É um método de aprendizagem supervisionado que constrói árvores de classificação a partir de exemplos.

Algoritmos: ID3, C4.5, (Quinlan)

CART (Breiman)

Ross Quinlan

Leo Breiman

Árvores de Decisão: Exemplo

ID	Sexo	Cidade	Idade	Comprar?
1	M	Xai-Xai	25	S
2	M	Matola	21	s s
3	F	Xai-Xai	23	⇒ s
4	F	Matola	34	S
5	F	Xai-Xai	30	N
6	M	Maputo	21	N
7	M	Maputo	20	N
8	F	Maputo	18	N
9	F	Xai-Xai	34	\rightarrow N
10	M	Xai-Xai	55	\rightarrow N

Regras:

Se (Cidade=Maputo) Então (Decisão = Não)

Se (Cidade=Matola) Então (Decisão = Sim)

Se (Cidade=Xai-Xai e Idade <= 27) Então (Decisão = Sim)

Se (Cidade=Xai-Xai e Idade > 27) Então (Decisão = Não)

Árvores de Decisão

Os métodos baseados em árvores para classificação, dividem o espaço de entrada em regiões disjuntas para construir uma fronteira de decisão.

As regiões são escolhidas baseadas em uma optimização heurística onde a cada passo os algoritmos selecionam a variável que provê a melhor separação de classes de acordo alguma função custo.

ID3, é um algoritmo simples que constrói uma **árvore de decisão** sob as seguintes premissas:

Cada vértice (nodo) corresponde a um atributo, e cada aresta da árvore a um valor possível do atributo.

Uma **folha** da árvore corresponde ao valor esperado da **decisão** segundo os dados de treino utilizados.

A **explicação** de uma determinada decisão está na **trajetória** da raiz a folha representativa desta decisão.

Cada **vértice** é **associado** ao **atributo** mais **informativo** que ainda não tenha sido considerado.

Para medir o **nível de informação** de um atributo se utiliza o conceito de **entropia da Teoria da Informação**.

Menor o valor da entropia, menor a incerteza e mais utilidade tem o atributo para a classificação.

Dia	Aspecto	Temperatura	Umidade	Vento	Decisão
1	Sol	Quente	Alta	Fraco	N
2	Sol	Quente	Alta	Forte	N
3	Nublado	Quente	Alta	Fraco	S
4	Chuva	Agradável	Alta	Fraco	S
5	Chuva	Fria	Normal	Fraco	S
6	Chuva	Fria	Normal	Forte	N
7	Nublado	Fria	Normal	Forte	S
8	Sol	Agradável	Alta	Fraco	N
9	Sol	Fria	Normal	Fraco	S
10	Chuva	Agradável	Normal	Fraco	S
11	Sol	Agradável	Normal	Forte	S
12	Nublado	Agradável	Alta	Forte	S
13	Nublado	Quente	Normal	Fraco	S
14	Chuva	Agradável	Alta	Forte	N

O número de combinações possíveis são:

Aspecto: sol, nublado, chuva

Temperatura: quente, agradável, frio

Umidade: alta, normal

Vento: fraco, forte

 $(3 \times 3 \times 2 \times 2 = 36)$

4/2/24

Algoritmo ID3

Seleção de atributos para construir a árvore de decisão.

Qual é o atributo previsor mais relevante para prever a classe a qual pertencem os dados ?

Dada uma distribuição de probabilidade

P = (p₁, p₂, . . . , p_n), a informação contida nesta distribuição, é chamada de **entropia** (função de informação de Shannon), e definida como:

$$I(P) = -[p_1^* log_2(p_1) + ... + p_n^* log_2(p_n)]$$

EntropiaEsperada(Decisão) = $-\sum_{i=1}^{n} p_i \log_2 (p_i)$

Observação: log_a N = log N / log a

Claude Shannon

Exemplos:

$$P = (0.5;0.5)$$
 \rightarrow $I(P) = 1;$

$$P = (0.67; 0.33) \rightarrow I(P) = 0.92;$$

$$P = (1.0;0.0)$$
 \rightarrow $I(P) = 0.0;$

Observação: quanto mais uniforme é a distribuição de probabilidade, maior é a entropia e portanto maior a incerteza ou menor a informação.

Se temos um conjunto T de registros, particionados em k classes (C_1, \ldots, C_k), a informação necessária para identificar a classe de um elemento de T é

$$Info(T) = I(P)$$

onde P é a distribuição de probabilidade das classes (C_1 , . . . , C_k)

$$P = (C_1 / T, ..., C_k / T)$$

Isto é, a proporção de elementos pertencentes a classe i.

Dia	Aspecto	Temperatura	Umidade	Vento	Decisão
1	Sol	Quente	Alta	Fraco	N
2	Sol	Quente	Alta	Forte	N
3	Nublado	Quente	Alta	Fraco	S
4	Chuva	Agradável	Alta	Fraco	S
5	Chuva	Fria	Normal	Fraco	S
6	Chuva	Fria	Normal	Forte	N
7	Nublado	Fria	Normal	Forte	S
8	Sol	Agradável	Alta	Fraco	N
9	Sol	Fria	Normal	Fraco	S
10	Chuva	Agradável	Normal	Fraco	S
11	Sol	Agradável	Normal	Forte	S
12	Nublado	Agradável	Alta	Forte	S
13	Nublado	Quente	Normal	Fraco	S
14	Chuva	Agradável	Alta	Forte	N

Conjunto de registros T com 14 observações. Duas partições S e N, com probabilidade 9/14 e 5/14.

```
Info(T) = I( 9/14, 5/14 ) = -(9/14 \cdot \text{Log}_2 (9/14) + 5/14 \cdot \text{Log}_2 (5/14)) = 0.94
```


Se particionamos T sobre a base dos valores do atributo X em conjuntos t_1, \ldots, t_n , então a informação necessária para identificar a classe de um elemento de T, é:

Info (X,T) =
$$\sum_{i} (t_i;T) * Info(t_i)$$

, onde t_i é o conjunto de possíveis valores do atributo \mathbf{X} .

Info (Aspecto, T) =
$$sol/T * I (sol) + nublado/T * I (nublado) + chuva/T * I (chuva) =$$

Aspecto	Fs	F _N
Sol	2/5	3/5
Nublado	4/4	0/4
Chuva	3/5	2/5

5/14 * I (3/5,2/5) = 0.693

Definição: o ganho de informação do atributo X, é a diferença entre a informação necessária para identificar um elemento de T e a informação necessária para identificar um elemento de T depois que o valor de atributo X tenha sido considerado:

Ganho (X,T) = Info (T) - Info (X, T) ou

Ganho (X,T) = (Entropia Esperada) – (Entropia Real)

Info(T) = 0.94 (Entropia Esperada)

Info(Aspecto, T) = 0.693 (Entropia Real)

Ganho (Aspecto, T) = 0.940 - 0.693 = 0.247

Com o objetivo de criar árvores de decisão pequenas, para identificar poucas regras, o atributo escolhido para nó da árvore é o atributo de maior ganho.

Passo 1:

Se todos os dados estão classificados em alguma das classes então parar;

senão

selecionar (utilizando alguma heurística) algum atributo A com valores v₁, v₂, ..., v_n e criar um nó de decisão.

Passo 2: particionar o conjunto de dados de treino T, em subconjuntos $t_1,\,t_2,\,\ldots,\,t_n$ de acordo com os valores do atributo A

Passo 3 : aplicar o algoritmo recursivamente para cada conjunto de dados ti

Aspecto	Fs	F _N
Sol	2/5	3/5
Nublado	4/4	0/4
Chuva	3/5	2/5

Info (Sol) = 0.971

Info (Nublado) = 0.0

Info (Chuva) = 0.971

Info (Aspecto) = 0.693 (5/14 * 0.971 + 4/14 * 0.0 + 5/14 * 0.971) Ganho (Aspecto) = 0.940 - 0.693 = 0.247

Temperatura	Fs	F _N
Quente	2/4	2/4
Agradável	4/6	2/6
Fria	3/4	1/4

```
Info (Quente) = 1.0
Info (Agradável) = 0.919
Info (Fria) = 0.811
```

```
Info (Temperatura ) = 0.911
(4/14 * 1.0 + 6/14 * 0.919 + 4/14 * 0.811 )
Ganho (Temperatura ) = 0.940 - 0.911 = 0.029
```


Umidade	Fs	F _N
Alta	3/7	4/7
Normal	6/7	1/7

```
Info (Alta) = 0.984
Info (Normal) = 0.592
```

```
Info (Umidade ) = 0.788
( 7/14 * 0.984 + 7/14 * 0.592 )
Ganho (Umidade ) = 0.940 - 0.788 = 0.152
```


Vento	Fs	F _N
Fraco	6/8	2/8
Forte	3/6	3/6

```
Info (Forte) = 1.0
Info (Fraco) = 0.811
```

```
Info (Vento) = 0.892
(6/14 * 1.0 + 8/14 * 0.541)
Ganho (Vento) = 0.940 - 0.892 = 0.048
```


Ganho (Aspecto) = 0.247

Ganho (Temperatura) = 0.028

Ganho (Umidade) = 0.152

Ganho (Vento) = 0.048

Dia	Aspecto	Temperatura	Umidade	Vento	Decisão
1	Sol	Quente	Alta	Fraco	N
2	Sol	Quente	Alta	Forte	N
3	Nublado	Quente	Alta	Fraco	S
4	Chuva	Agradável	Alta	Fraco	S
5	Chuva	Fria	Normal	Fraco	S
6	Chuva	Fria	Normal	Forte	N
7	Nublado	Fria	Normal	Forte	S
8	Sol	Agradável	Alta	Fraco	N
9	Sol	Fria	Normal	Fraco	S
10	Chuva	Agradável	Normal	Fraco	S
11	Sol	Agradável	Normal	Forte	S
12	Nublado	Agradável	Alta	Forte	S
13	Nublado	Quente	Normal	Fraco	S
14	Chuva	Agradável	Alta	Forte	N

Escolhemos Aspecto = Sol

Info (T) = I (2/5; 3/5) = 0.971

Temperatura

```
Info (Quente) = I ( 0/2, 2/2) = 0.0
Info (Agradável) = I ( 1/2, 1/2) = 1.0
Info (Fria) = I ( 1/1, 0/1) = 0.0
```

```
Info(Temperatura) = 0.4 (2/5 * 0.0 + 2/5 * 1.0 + 1/5 * 0.0)
```

Ganho (Temperatura) = 0.971 - 0.4 = 0.571

Umidade

Info (Alta) =
$$I (0/3, 3/3) = 0.0$$

Info (Normal) = $I (2/2, 0/2) = 0.0$

Info(Umidade) =
$$0.0$$

(3/5 * $0.0 + 2/5 * 0.0 = 0.0$)

Ganho (Umidade) = 0.971 - 0.0 = 0.971

Vento

Info (Fraco) = I (
$$1/3$$
, $2/3$) = 0.919
Info (Forte) = I ($1/2$, $1/2$) = 1.0

Info(Vento) =
$$0.951$$

(3/5 * $0.919 + 2/5 * 1.0$) = 0.951

Ganho (Vento) = 0.971 - 0.951 = 0.020


```
Ganho (Temperatura) = 0.571
```

```
Ganho (Umidade) = 0.971
```


Dia	Aspecto	Temperatura	Umidade	Vento	Decisão
1	Sol	Quente	Alta	Fraco	N
2	Sol	Quente	Alta	Forte	N
3	Nublado	Quente	Alta	Fraco	S
4	Chuva	Agradável	Alta	Fraco	S
5	Chuva	Fria	Normal	Fraco	S
6	Chuva	Fria	Normal	Forte	N
7	Nublado	Fria	Normal	Forte	S
8	Sol	Agradável	Alta	Fraco	N
9	Sol	Fria	Normal	Fraco	S
10	Chuva	Agradável	Normal	Fraco	S
11	Sol	Agradável	Normal	Forte	S
12	Nublado	Agradável	Alta	Forte	S
13	Nublado	Quente	Normal	Fraco	S
14	Chuva	Agradável	Alta	Forte	N

Escolhemos Aspecto = Chuva

Info (T) = I (
$$3/5$$
; $2/5$) = 0.971

Temperatura

```
Info (Quente) = I ( 0/0, 0/0) = 0;
Info (Agradável) = I ( 2/3, 1/3) = 0.919
Info (Fria) = I ( 1/2, 1/2) = 1.0
```

```
Info(Temperatura) = 0.951
3/5 * 0.919 + 2/5 * 1.0 = 0.951
```

Ganho (Temperatura) = 0.971 - 0.951 = 0.020

Vento

```
Info (Fraco ) = I ( 3/3, 0/3) = 0.0
Info (Forte ) = I ( 0/2, 2/2) = 0.0
Info(Vento) = 0.0
(3/5 * 0.0 + 2/5 * 0.0)
```

Ganho (Vento) = 0.971 - 0.0 = 0.971Ganho (Temperatura) = 0.020

Se Aspecto = Sol e Umidade = Alta

Então Jogar = Não

Se Aspecto = Sol e Umidade = Normal

Então Jogar = Sim

Se Aspecto = Chuva e Vento = Fraco

Então Jogar = Sim

Se Aspecto = Chuva e Vento = Forte

Então Jogar = Não

Se Aspecto = Nublado Então Jogar = Sim

Qual será a decisão, se o dia estiver com sol, temperatura fria, umidade alta e vento forte ?

FIM!!!

Duvidas e Questões?

