## التطورات غير الرتيبة

## مراقبة تطور جملة كيميائية

الكتاب الثاني

الوحدة 06

GUEZOURI Aek - lycée Maraval - Oran

الدرس الثاني

## تطبيق على الأعمدة (الأبيال) - خاص بشعبة الرياضي والتقني رياضي

ما يجب أن أعرفه حتى أقول: إنى استوعبت هذا الدرس

- 1 يجب أن أعرف كيفية تشكيل عمود.
- 2 يجب أن أعرف كيفية التمييز بين القطب الموجب والسالب لعمود.
- 3 يجب أن أعرف العلاقة بين شدّة التيار ومدّة اشتغال عمود وكميات مادة الأفراد المستهلكة أو الناتجة .

#### 1 - ما هو العمود ؟

يتشكّل العمود بإحدى الطرق التالية:

- صفيحتان من معدنين مختلفين مغمورتان في محلول شاردي (الشكل 1).
- صفيحتان من معدنين مختلفين مغمورتان في محلول مائي يحتوي على شاردتي هذين المعدنين (الشكل 2).
- محلولان مختلفان أحدهما يحتوي على شاردة المعدن M والآخر يحتوي على شاردة المعدن M. نغمر في الأول صفيحة من المعدن M ، ثم نصل المحلولين بأنبوب مملوء بمحلول شاردي (الشكل M).

أو نضع أحد المحلولين في إناء مسامي وندخله في الإناء الآخر (الشكل – 4).

نسمّي الصفيحتين: المسريان (مفردها: مسرى).



 $Cu^{2+}$ 

الشكل - 4

 $Zn^{2+}$ 

 $SO_4^{2-} SO_4^{2-}$ 



الشكل - 2



الشكل - 3

# 2 - التحولات الكيميائية في عمود:

## أ) التحوّل التلقائي بتحويل إلكتروني مباشر:

ملاحظة 1: التحولات الكيميائية التلقائية هي التحولات التي تؤول إلى حالة توازن معينة حسب ثابت التوازن. أما التحولات الكيميائية القسرية (عكس التلقائية) هي التي يمكن تغيير جهتها التنابات المسابات المسابات

بطاقة خارجية ، مثل التحليل الكهربائي لمحلول شاردي . (التحولات القسرية منزوعة من البرنامج ) .

ملاحظة 2: الفقرة 1.2.1 في الصفحة 403 من الكتاب المدرسي! محتواها لا يؤدي للهدف المطلوب منها ، لأن أصلا لا يوجد معدن النحاس في المزيج ولا شوارد التوتياء . فكيف نتوقع أن ينمو التفاعل  $(Zn + Cu^{2+} = Cu + Zn^{2+})$  في الجهة غير المباشرة ؟ كان من الأحسن أن نضيف في الإناء محلولا لكبريتات التوتياء ونغمر صفيحة من النحاس في المزيج كذلك .

الهدف التي تلبيه هذه الفقرة هو فقط استحالة الاستفادة من الطاقة الكيميائية الناتجة عن هذا التحول على شكل طاقة كهربائية .

نمزج في إناء محلولين أحدهما لكبريتات النحاس  $CuSO_4$  حجمه  $CuSO_4$  وتركيزه المولي ،  $C_1 = 1 \, mol.L^{-1}$  وتركيزه المولي ، والآخر لكبريتات النحاس والأخرى من التوتياء  $V_2 = 20 \, mL$  حجمه  $V_2 = 20 \, mL$  حجمه  $V_2 = 20 \, mL$  حجمه  $V_2 = 20 \, mL$  حجمه التوتياء .

نلاحظ: الاختفاء التدريجي للون الأزرق (أي استهلاك شوارد النحاس) وترسب طبقة حمراء على صفيحة التوتياء (أي تشكل النحاس). التفاعل الكيميائي:

 $Cu^{2+}/Cu$  و  $Zn^{2+}/Zn$  و يحدث التفاعل أكسدة إرجاع بين الثنائيتين مر  $Zn^{2+}/Zn$  و يحدث

(أكسدة) 
$$Zn = Zn^{2+} + 2e^{-}$$

(ارجاع) 
$$Cu^{2+} + 2e^{-} = Cu$$

(أكسدة – إرجاع) 
$$Zn_{(s)} + Cu^{2+}_{(aq)} = Zn^{2+}_{(aq)} + Cu_{(s)}$$

Cu

$$Q_{ri} = \frac{\left[Zn^{2+}\right]_i}{\left[Cu^{2+}\right]_i} = \frac{\frac{C_2V_2}{V_1 + V_2}}{\frac{C_1V_1}{V_1 + V_2}} = \frac{C_2V_2}{C_1V_1} = \frac{1 \times 20 \times 10^{-3}}{1 \times 20 \times 10^{-3}} = 1$$
ڪسر التفاعل الابتدائي لهذا التحوّل هو:

. أذا بما أن  $Q_{ri} < K$  فإن التفاعل هو  $X = 2 \times 10^{37}$  هو الجهة المباشرة .  $X = 2 \times 10^{37}$ 

## أ) التحوّل التلقائي بتحويل إلكتروني غير مباشر:

نصل صفيحتي النحاس والتوتياء بمقياس أمبير مربوط مع ناقل أومي مقاومته من رتبة Ω10 ، فلا يسجّل المقياس مرور أي تيار حتى من أجل أصغر العيارات . الدليل على هذا أن الدارة مفتوحة (الشكل – 5) .

 $\left(K^{+},NO_{3}^{-}
ight)$  مثلا أنبوبا على شكل حرف U بمحلول من نترات البوتاسيوم مثلا

ونغمره في الإناءين (الشكل – 6) فيمر في الدارة الخارجية تيار كهربائي يشير

له مقياس الأمبير.



Zn

## حركة حوامل الشحن في الدارة:

 $Zn = Zn^{2+} + 2e^{-}$  يتشرد مسرى التوتياء

يتحرر الكترونان ويمران في الدارة الخارجية ، ثم يصلان إلى المسرى النحاسي .

تاتقطهما شاردة من النحاس  $\left(Cu^{2+}\right)$  الموجودة في محلول كبريتات النحاس ، وذلك

بجوار مسرى النحاس ، لأن الإلكترونات لا تمر في المحاليل المائية .

تتحوّل هذه الشاردة لذرة من النحاس وتترسب فوق المسرى ، وبالتالي يمر تيار كهربائي من مسرى النحاس (القطب الموجب) نحو مسرى التوتياء (القطب السالب).

الجسر الملحي يضمن التعادل الكهربائي في كل إناء ، أي أن الشوار د السالبة  $(NO_3^-)$  تمرّ نحو إناء كبريتات التوتياء والشاردة الموجبة  $(K^+)$  تمر نحو إناء كبريتات النحاس ( الشكل  $(K^+)$  . ويحدث في المسربين نفس التفاعلات السابقة .

 $Zn = Zn^{2+} + 2e^-$  ، (Zn) الأكسدة : يحدث عند المسرى السالب

 $Cu^{2+} + 2e^- = Cu$  ، (Cu) بموجب الموجب عند المسرى الموجب ، يحدث عند المسرى



تعريف الفاراداي F: هو كمية الكهرباء المارة عبر ناقل عند انتقال mol من الإلكترونات.

نعلم أن الإلكترون الواحد يحمل كمية من الكهرباء  $q=\left|e\right|=1,6\times10^{-19}C$  ، وبالتالي 1~mol من الإلكترونات يحمل كمية من الكهرباء  $Q=1,6\times10^{-19}\times N_A=1,602\times10^{-19}\times 6,023\times10^{23}\approx96500C$ 

$$1 F = 96500 C$$

سعة عمود: هي كمية الكهرباء التي يعطيها العمود منذ لحظة اشتغاله إلى أن يصل التحول الكيميائي فيه حالة التوازن. كمية الكهرباء التي يعطيها العمود: تتناسب مع شدة التيار المار في المدة الزمنية  $\Delta t$  التي استغرقها خلال مروره.

$$Q = I \, \Delta t$$

#### الرمز الاصطلاحي لعمود:

، حيث يرمز الخطان المائلان المتوازيان للجسر الملحي .

$$M_1/M_1^{n_1^+}//M_2^{n_2^+}/M_2^{\oplus}$$

### العلاقة بين كمية الكهرباء والتقدّم الكيميائى:

دراسة مثال : عمود دنيال عبارة عن نصفي عمود يحتوي الأول على محلول كبريتات النحاس  $\left(Cu^{2+},SO_4^{2-}\right)$  مغمورة فيه صفيحة من  $\left(Zn^{2+},SO_4^{2-}\right)$  مغمورة فيه صفيحة من التوتياء  $\left(Zn^{2+},SO_4^{2-}\right)$  .

. V=10mL وحجمه  $C=1\,mol.L^{-1}$  اليكن التركيز المولي لكل من المحلولين

 $Zn/Zn^{2+}//Cu^{2+}/Cu^{\oplus}$  الرمز الاصطلاحي لهذا العمود

- 1 اكتب نصفى معادلتي الأكسدة و الإرجاع في المسريين ، ثم استنتج معادلة الأكسدة إرجاع.
- 2-1 . I=10mA ، احسب كمية الكهرباء المارة خلال I=10mA
  - 3 أنشئ جدول التقدم للتفاعل الحادث.
  - .  $30\,mn$  التقدم الكيميائي في نهاية المدة 4
  - .  $K = 10^{37}$  احسب مدة اشتغال العمود مع العلم أن ثابت توازن التفاعل الحادث  $K = 10^{37}$

#### الحل:

$$Zn = Zn^{2+} + 2e^{-}$$
 : (الأكسدة (تحدث دائما في المسرى السالب) - 1

$$Cu^{2+} + 2e^{-} = Cu$$
 : (الإرجاع المسرى الموجب المسرى الموجب

$$Zn + Cu^{2+} = Zn^{2+} + Cu$$
 : معادلة الأكسدة – إرجاع

$$Q = I \times \Delta t = 0,010 \times 30 \times 60 = 18C$$
 : حمية الكهرباء - 2

3 – جدول التقدم:

$$n_{Zn^{2+}} = CV = 1 \times 0,01 = 0,01 = n_{Cu^{2+}}$$

|                                           | $Zn + Cu^{2+} = Zn^{2+} + Cu$ |                 |                 |                | كمية مادة الإلكترونات المنتقلة |
|-------------------------------------------|-------------------------------|-----------------|-----------------|----------------|--------------------------------|
| الحالة الإبتدائية                         | $n_{Zn}$                      | $10^{-2}$       | $10^{-2}$       | $n_{Cu}$       | 0                              |
| الحالة الإنتقالية                         | $n_{Zn}-x$                    | $10^{-2} - x$   | $10^{-2} + x$   | $n_{Cu} + x$   | 2x                             |
| الحالة النهائية                           | $n_{Zn}-x_f$                  | $10^{-2} - x_f$ | $10^{-2} + x_f$ | $n_{Cu} + x_f$ | $2x_f$                         |
| الحالة النهائية<br>(إذا كان التفاعل تاما) | $n_{Zn}-x_m$                  | $10^{-2} - x_m$ | $10^{-2} + x_m$ | $n_{Cu} + x_m$ | $2x_m$                         |

ملاحظة : يمكن كتابة  $x_{\acute{e}q}$  في مكان  $x_f$  ، ونقصد به التقدّم عند التوازن (équilibre) .

4 - بما أن القطب السالب هو مسرى التوتياء ، إذن معدن التوتياء هو الذي يتشرد وشوارد النحاس تترسب على شكل ذرات النحاس أي التفاعل ينمو في الجهة المباشرة ، أي ننقص x من اليسار ونضيفها لليمين في المعادلة الكيميائية .

 $F = 96500 \, C$  عندما يمر  $1 \, \text{mol}$  من الإلكترونات نحصل على كمية من الكهرباء قدر ها

Q عندما يمر  $2x\ mol$  من الإلكترونات نحصل على كمية من الكهرباء قدرها

$$x = \frac{Q}{2F} = \frac{18}{2 \times 96500} = 9.3 \times 10^{-5} \, mol$$
 وبالتالي ،  $Q = 2x \times F$  بالقاعدة الثلاثية نجد

حيث z هو عدد الإلكترونات المنتقلة من المرجع إلى المؤكسد .

Q = z.x.F : نستنتج العلاقة

ملاحظة : في حالة عدد الإلكترونات الذي يتخلى عنها المرجع لا يساوي العدد الذي يتلقاه المؤكسد ، نأخذ المضاعف المشترك الأصغر ، وهو العدد الذي نستعمله لموازنة تفاعل الأكسدة – إرجاع .

. 6 مثلا من أجل الثنائيتين  $2l^{3+}/Al$  و  $2l^{2+}/Cu$  يكون عدد الإلكترونات المنتقلة

5 – مدة اشتغال العمود (أي مدة حياة العمود): هي المدة اللازمة عندما يصل التفاعل لحالة التوازن ، أو ينتهي المتفاعل المحد إذا كان التفاعل تاما .

.  $x=x_m=10^{-2}\,mol$  بما أن  $K>10^4$  ، إذن نعتبر التفاعل تاما ، وبالتالي

.  $Q = 2x_m \times F = 2 \times 10^{-2} \times 96500 = 1930$  كمية الكهرباء التي نحصل عليها في هذه الحالة

. وهي مدة اشتغال العمود .  $\Delta t = \frac{Q}{I} = \frac{1930}{0.01} = 193000s = 53.6h$  ، وهي مدة اشتغال العمود .  $\Delta t = \frac{Q}{I} = \frac{1930}{0.01} = 193000s = 53.6h$ 

### خلاصة: هذا الذي يحدث عند اشتغال عمود:

| في نهاية حياة العمود                    | خلال اشتغال العمود |                            |
|-----------------------------------------|--------------------|----------------------------|
| $x = x_{\acute{e}q}$                    | يزداد              | x التقدم                   |
| $Q_r = K$                               | يتغيّر             | $Q_r$ کسر التفاعل          |
| $I_{\acute{e}q}=0 \hspace{1cm} I\neq 0$ |                    | I شدة التيار               |
| E = 0                                   | تتناقص             | E القوة المحركة الكهربائية |

الحصيلة الطاقوية للجملة (عمود): نتيجة التفاعل الكيميائي الحادث في العمود تتحول الطاقة الكيميائية إلى طاقة كهربائية ، بحيث يمكن الاستفادة منها في حالة التحويل الإلكتروني غير المباشر.

في الشكل - 8 مثلنا الحصيلة الطاقوية لعمود ، حيث أن عندما يشتغل العمود تتناقص

.  $\left(W_{e}\right)$  ويكون التحويل عبارة عن تحويل كهربائي  $E_{i1}$  ، ويكون التحويل عبارة عن الداخلية من



### ملاحظة

يمكن أن تتحول الإلكترونات من المرجع إلى المؤكسد بدون الاستفادة منها على شكل طاقة كهربائية .

مثلا لما نغمر صفيحة من التوتياء في محلول كبريتات النحاس (الشكل - 9) ، فإن شوارد النحاس تقترب من صفيحة التوتياء لكي

تلتقط الإلكترونين الذين تخلُّت عنهما ذرة التوتياء ، لأن الإلكترونات لا تتحرك داخل المحاليل .

وبالتالي لا يمكن الاستفادة من هذا التحول على شكل طاقة كهربائية .

