PREPARATION A L'AGREGATION

Problème d'Analyse

AGRÉGATION DES SCIENCES MATHÉMATIQUES - 1965-

Analyse.

— Il est rappelé que la présentation et la rédaction sont des éléments importants d'appréciation de la copie.

N désigne l'ensemble des entiers naturels, R l'ensemble des nombres réels, C l'ensemble des nombres complexes. On appelle $\mathcal F$ l'ensemble des fonctions définies sur R, à valeurs dans C; si f appartient à $\tilde F$, on note f l'élément de $\mathcal F$ défini par

$$a \in \mathbb{R}$$
 et $\forall x \in \mathbb{R}$, $a f(x) = f(x + a)$.

Lorsque l'ensemble

$$\{|f(x) - g(x)|; x \in \mathbb{R}\} \ (f \in \mathcal{F}, g \in \mathcal{F})$$

admet dans R une borne supérieure, elle sera désignée par ||f - g||.

I. — 1º Soit f une fonction appartenant à \mathcal{F} . A tout $\varepsilon > 0$, on associe l'ensemble $\mathrm{E}(\varepsilon)$, qui dépend de f, des nombres réels τ vérifiant

$$||f - f|| \leq \varepsilon.$$

Montrer que, si E (ϵ) contient τ , il contient $-\tau$, que b-a appartient à E (ϵ) si, et seulement si,

$$\|f - f\| \leq \varepsilon$$

et que, si τ_1 appartient à E (ϵ_1) et si τ_2 appartient à E (ϵ_2) , alors $\tau_1 + \tau_2$ appartient à E $(\epsilon_1 + \epsilon_2)$.

2º On dit qu'une fonction f de \mathcal{F} appartient à \mathcal{L} (sous-ensemble de \mathcal{F}) si:

a) elle est continue;

b) quel que soit $\epsilon > 0$, il existe un nombre réel positif l dépendant de ϵ , tel que, pour tout α réel, l'intervalle $[\alpha, \alpha + l[$ contienne au moins un élément de E (ϵ).

Montrer que toute fonction de F, continue et périodique, appartient à L.

Montrer que, si \mathcal{L} contient f, il contient aussi:

$$|f|$$
, \overline{f} (fonction conjuguée), $\alpha f(\forall a; a \in \mathbb{R})$, $kf(\forall k; k \in \mathbb{C})$.

3º Montrer que, si la suite $f_1, f_2, \ldots, f_n, \ldots$ de fonctions de \mathcal{Z} converge uniformément sur \mathbf{R} vers une fonction f, alors f appartient à \mathcal{Z} .

4º Soit f une fonction de \mathcal{L} et $\varepsilon > 0$. Montrer qu'à tout nombre réel a, on peut associer un nombre réel b, appartenant à l'intervalle [0, l], de façon que

$$|f(b)-f(a)| \leq ||f-af|| \leq \varepsilon.$$

5º Montrer que toute fonction de £ est bornée sur R et uniformément continue sur R.

Montrer que, étant donné $\varepsilon > 0$, on peut lui associer $\eta > 0$, de façon que l'intervalle $[-\eta, +\eta]$ soit contenu dans $E(\varepsilon)$.

Montrer que, étant donné $\epsilon > 0$, on peut déterminer $\delta > 0$ et L > 0 de façon que, pour tout α réel, l'intervalle $[\alpha, \alpha + L]$ contienne un intervalle $[\beta, \beta + \delta]$ inclus dans $E(\epsilon)$.

II. — On considère l'ensemble

ß des fonctions définies sur R, à valeurs dans C, continues et bornées, muni de la topologie de la convergence uniforme.

On dit qu'une partie \mathcal{M} de \mathcal{B} possède la propriété (Π) si, à tout nombre $\varepsilon > 0$, on peut associer un ensemble fini $\{f_i; 1 \le i \le n\}$ de points de \mathcal{M} , de façon que les boules ouvertes de centre f_i , de rayon ε , constituent un recouvrement de \mathcal{M} .

1º a) Démontrer que B est complet.

- b) Montrer qu'une partie $\mathfrak R$ vérifie la propriété (Π) si, et seulement si, son adhérence est un ensemble compact.
- 2º Soit f une fonction de \mathfrak{B} ; on appelle A(f) l'ensemble des ${}_{a}f$ quand a varie dans R. Montrer que A(f) vérifie la propriété (Π) si, et seulement si, f appartient à \mathfrak{L} .

Montrer que & contient, avec deux éléments, leur somme et leur produit.

3º a) Montrer que, si la série

$$\sum_{n=0}^{+\infty} a_n e^{i\lambda_n x} \quad (a_n \in \mathbb{C}, \ \lambda_n \in \mathbb{R})$$

est uniformément convergente sur R, sa somme définit une fonction de £.

b) Montrer que la fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} \frac{e^{i\frac{x}{n}}}{n^2}$$

appartient à L et n'est pas périodique.

4º Comment peut-on caractériser l'ensemble £, non plus seulement dans £ comme en II, 2º, mais dans l'ensemble des fonctions continues sur R, à valeurs complexes?

III. — Dans cette partie, f désigne une fonction de \mathcal{L} , t un nombre réel strictement positif; on pose

$$K = ||f|| = \sup_{x \in \mathbb{R}} |f(x)|, \quad \varphi(t) = \frac{1}{t} \int_{0}^{t} f(x) dx.$$

1º Dans le cas particulier où f est une fonction continue périodique, montrer que $\varphi(t)$ admet une limite quand t tend vers $+\infty$. Calculer cette limite, pour toute valeur du réel λ , lorsque la fonction f est définie par

$$f(x) = e^{i\lambda x}.$$

20 a) Soit T un nombre réel strictement positif; à tout réel positif t', on associe la partie entière n de $\frac{t'}{T}$. Montrer que

$$|\varphi(t') - \varphi(nT)| < \frac{2K}{n}$$

b) Montrer que

$$\left| \int_{0}^{t} f(x) dx - \int_{\alpha}^{\alpha+t} f(x) dx \right| \leqslant \varepsilon t + 2Kl.$$

c) En déduire, en décomposant l'intervalle [0, nt] en n intervalles égaux de longueur t, que

$$\forall n \in \mathbb{N}, \quad \forall t > 0, \quad |\varphi(t) - \varphi(nt)| \leqslant \varepsilon + \frac{2Kl}{t}.$$

d) Montrer que, étant donné $\varepsilon' > 0$, on peut déterminer n_0 , puis t_0 , de façon que, pour tout couple (t', t'') vérifiant $t' \ge n_0 t_0$, $t'' \ge n_0 t_0$, on ait

$$|\varphi(t')-\varphi(t'')|\leqslant \epsilon'.$$

En déduire que, quand t tend vers $+\infty$, $\varphi(t)$ admet une limite M(f) et que

$$\forall \varepsilon > 0, \quad |\varphi(t) - M(f)| \leqslant \varepsilon + \frac{2Kl}{t}.$$

3º Montrer que M: $f \rightarrow M(f)$ est une forme linéaire continue sur \mathcal{L} .

4º Montrer que, pour tout a de R, M(f) = M(f) et que la convergence de

$$\frac{1}{t} \int_0^t f(x+a) \ dx$$

vers M(f) est uniforme sur R.

5º Montrer que

$$\frac{1}{t} \int_0^t f(x+u) \overline{f}(u) \ du$$

admet une limite $\gamma(x)$ quand t tend vers $+\infty$, que la convergence est uniforme par rapport à x sur R, que γ appartient à $\mathcal L$ et que

$$M(\gamma) = |M(f)|^2,$$

$$|\gamma(x)| \leqslant \gamma(0) = M(|f|^2).$$

IV. — Soit f une fonction de \mathcal{L} . On pose, pour tout λ réel,

$$a(\lambda) = \lim_{t \to +\infty} \frac{1}{t} \int_0^t f(x)e^{-i\lambda x} dx.$$

1º Dans le cas particulier où f est une fonction continue de période 2π , déterminer $a(\lambda)$ pour les valeurs entières de λ et montrer que $a(\lambda) = 0$ quand λ n'est pas un entier.

$$P_k(x) = \sum_{n=0}^k b_n e^{i\lambda_n x} \quad (b_n \in \mathbb{C}, \ \lambda_n \in \mathbb{R}).$$

Calculer $M(|f-P_k|^2)$. Comment doit-on choisir les nombres complexes b_n pour que, f et λ_n étant donnés, $M(|f-P_k|^2)$ soit minimal? Montrer que

$$\sum_{k=0}^{n} |a(\lambda_k)|^2 \leqslant M(|f|^2).$$

3º Montrer qu'à toute fonction de £ on peut associer un ensemble dénombrable Λ tel que λ appartient à Λ si, et seulement si, $a(\lambda) \neq 0$. Quand λ parcourt Λ , la famille des fonctions $a(\lambda)e^{i\lambda x}$ est dite associée à la fonction f.

Montrer que, pour toute bijection $n \to \lambda_n$ de N sur Λ ,

$$\sum_{n=0}^{+\infty} |a(\lambda_n)|^2 \leqslant M(|f|^2).$$

Déterminer la famille associée à la somme de la série uniformément convergente sur R

$$\sum_{n=0}^{+\infty} a_n e^{i\lambda_n x} \quad (a_n \in \mathbb{C}, \ \lambda_n \in \mathbb{R}).$$

Connaissant la famille associée à une fonction f, déterminer la famille associée à la fonction y définie en III, 5°.

AG.