

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Faculdade de Ciências Exatas e Tecnologia Curso de Engenharia de Computação – FACET

Projeto de Microcontroladores e Aplicações

Sistema de Controle de Temperatura para Criação de Aves

Alunos: Matheus Cimatti Moreira Pedro Henrique dos Santos

Dourados, MS 05/2021

Descrição do problema abordado:

Em determinados ambientes rurais, podemos observar a existência de aviários, ou seja, um lugar para a criação de aves como por exemplo: Galinhas, patos, pássaros, entre outros. No estado inicial, ou seja, nos primeiros dias de vida de uma ave, elas precisam de mais calor do que o corpo delas pode oferecer. Essas aves em estado inicial perdem calor de forma muito mais acelerada do que uma ave adulta que tem capacidade isolante e já está bem desenvolvida.

Para esse problema, muitas vezes é usado lâmpadas incandescentes para gerar o calor que falta para as aves. Os animais ficam agrupados em um lugar geralmente fechado, para diminuir qualquer tipo de interferência externa como o vento e outros animais. Dentro desse ambiente fechado junto com as aves, permanece uma lâmpada incandescente pra gerar aquecimento para elas, geralmente ligada por um interruptor pelo próprio produtor rural.

O problema desse método é que ele é manual, ou seja, o produtor precisa ir até o interruptor, ligar e desligar a lâmpada e isso pode ser inviável, pois as vezes a pessoa pode esquecer, sair, entre outros fatores. E essa ausência da pessoa pode acabar matando o animal, já que muitas vezes o animal morre por falta do calor necessário.

Descrição da solução encontrada;

A solução para o problema citado é utilizar o PIC, para criar um dispositivo que permitiria ao usuário, no caso, um produtor rural por exemplo, ter o controle das lâmpadas de forma automatizada, ou seja, sem que seja necessário ligar e desligar o interruptor. O dispositivo teria um sensor LM35 (que é um sensor de temperatura), que está sendo simulado por um potenciômetro. A cada minuto, o sensor envia o sinal analógico para o dispositivo converter em sinal digital e o resultado dessa conversão é a temperatura. Se a temperatura medida estiver abaixo da temperatura ideal para que as aves sobrevivam, o dispositivo aciona o Relê que acende a lâmpada incandescente para que a temperatura dos animais esteja de acordo com o programado. Se a temperatura ambiente estiver dentro da temperatura ideal durante o dia, a lâmpada vai permanecer desligada. Exceto nesse caso, como em regiões agrícolas o período noturno é mais frio, o dispositivo tem um relógio que conforme a idade, em determinados horários, ele aciona a lâmpada sem a verificação da temperatura, baseado em quanta luz as aves precisam receber. A seguir, uma tabela mostrando o período de luz que uma ave precisa receber em relação ao tempo de vida que ela tem.

IDADE	LUZ (Horas)	ESCURO (Horas)			
1 Dia	24				
2 - 7 Dias	23	1			
8 – 21° Dias	18	6			
22 – 28° Dias	19	5			
29 – 35° Dias	20	4			
36 – 42° Dias	21	3			
43 – 49° Dias	22	2			

Tabela encontrada no link a seguir: https://agroceresmultimix.com.br/blog/interferencia-da-iluminacao-na-producao-e-reproducao-das-aves/

No site da Embrapa, encontramos a temperatura ideal para a ave de cada "idade". Pode ser encontrado no 5º paragrafo da pagina a seguir:

https://www.agencia.cnptia.embrapa.br/gestor/frango_de_corte/arvore/CONT000fc6ggagn02wx5eo0a2ndxyufdtpf4.html.

A seguir temos os intervalos de dias agrupados de onde obtivemos as informações:

Dia	Horario Liga	Horario De:	Temp. Liga	Temp. Desl.	Dia	Ho	orario Liga	Horario Des	Temp. Liga	Temp. Desl.	Intervalos encontrados
	0 >=18	>=6	<31	>33		25 >=	23	>=6	<22	>24	01
	1 >=18	>=6	<31	>33		26 >=	23	>=6	<22	>24	2
	2 >=19	>=6	<31	>33		27 >=	23	>=6	<22	>24	3 4
	3 >=19	>=6	<28	>30		28 >=	23	>=6	<22	>24	5 7
	4 >=19	>=6	<28	>30		29 >=	22	>=6	<22	>24	8 15
	5 >=19	>=6	<26	>28		30 >=	22	>=6	<22	>24	16 20
	6 >=19	>=6	<26	>28		31 >=	22	>=6	<22	>24	21
	7 >=19	>=6	<26	>28		32 >=	22	>=6	<22	>24	22 28
	8 >=0	>=6	<26	>28		33 >=	22	>=6	<22	>24	29 35
	9 >=0	>=6	<26	>28		34 >=	22	>=6	<22	>24	36 42
	10 >=0	>=6	<26	>28		35 >=	22	>=6	<22	>24	42+
	11 >=0	>=6	<26	>28		36 >=	21	>=6	<22	>24	
	12 >=0	>=6	<26	>28		37 >=	21	>=6	<22	>24	
	13 >=0	>=6	<26	>28		38 >=	21	>=6	<22	>24	
1	14 >=0	>=6	<26	>28		39 >=	21	>=6	<22	>24	
	15 >=0	>=6	<26	>28		40 >=	21	>=6	<22	>24	
	16 >=0	>=6	<24	>26		41 >=	21	>=6	<22	>24	
	17 >=0	>=6	<24	>26		42 >=	21	>=6	<22	>24	
	18 >=0	>=6	<24	>26		43 >=	20	>=6	<22	>24	
	19 >=0	>=6	<24	>26		44 >=	20	>=6	<22	>24	
	20 >=0	>=6	<24	>26		45 >=	20	>=6	<22	>24	
	21 >=0	>=6	<22	>24		46 >=	20	>=6	<22	>24	
	22 >=23	>=6	<22	>24		47 >=	20	>=6	<22	>24	
	23 >=23	>=6	<22	>24		48 >=	20	>=6	<22	>24	
	24 >=23	>=6	<22	>24	-	49 >=	20	>=6	<22	>24	

Isso garante que o ambiente ficará sempre aquecido durante a noite, sem precisar acionar o sensor de temperatura, além do que também ajudará no desenvolvimento dos animais, pois com o ambiente claro, com a luminosidade da lâmpada, as aves vão continuar se alimentando durante a noite, isso as ajudaria a se desenvolverem mais rapidamente.

No simulador usamos o LCD da placa PICGenius para exibir para o usuário a idade das aves, o horário atual e a temperatura ambiente atual. Usamos também o botão RB1 configurado como interrupção 1 para fazer o "reset" total do dispositivo. Usaríamos essa interrupção caso fosse implementado uma função de armazenamento não volátil (EEPROM) porem como não conseguimos, essa foi apenas uma função de reset extra da placa. A ideia era armazenar os valores de idade e tempo caso o dispositivo fosse reiniciado pelo Watchdogtimer ou algum outro método. Além disso, usamos na aba de spare partes, um teclado matricial(keypad), configurado com 2 linhas e 5 colunas, para fazer a entrada da idade em que os animais estão e o horário em que o dispositivo é iniciado. O teclado foi configurado da seguinte forma:

Fora isso, como já dito, usamos o potenciômetro (AN0) da placa para simular o sensor LM35, que varia 10mV a cada temperatura medida em °C. Como o intervalo de temperatura captável do LM35 é de -55 a 150°C, e não utilizamos todas essas variações, o potenciômetro simula apenas valores entre 0° e 50°C. A seguir o datasheet do sensor LM35:

https://storage.googleapis.com/baudaeletronicadatasheet/lm35-texas.pdf

Código-Fonte

Como o código-fonte desenvolvido ficou muito extenso, ao invés de indexá-lo neste relatório, o enviamos em anexo dentro da pasta do projeto em geral.