Simple & Multiple Correspondence Analyses Contingency, categorical, ordinal, continuous and mixed data

Derek Beaton

Rotman Research Institute

October 28, 2019

Our new best friends

via @allison_horst

via @allison_horst

▶ What do we do with all of these in a PCA like way?

- ▶ What do we do with all of these in a PCA like way?
- ► Some are *very* difficult and effectively ignored

- ▶ What do we do with all of these in a PCA like way?
- Some are very difficult and effectively ignored
 - ► We won't do that!

- What do we do with all of these in a PCA like way?
- ► Some are *very* difficult and effectively ignored
 - ► We won't do that!
- See SS Steven's typology: https://en.wikipedia.org/wiki/Level_of_measurement

► Not everything is a number

- Not everything is a number
 - Sometimes numbers aren't numbers!

- Not everything is a number
 - Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens

- Not everything is a number
 - ► Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens
 - And know what to do

- Not everything is a number
 - ► Sometimes numbers aren't numbers!
- We need to recognize when this happens
 - And know what to do
- Introduce CA, MCA, and tricks

- Not everything is a number
 - Sometimes numbers aren't numbers!
- We need to recognize when this happens
 - And know what to do
- Introduce CA, MCA, and tricks
 - Leave you overwhelmed, but knowing that

- Not everything is a number
 - Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens
 - And know what to do
- ► Introduce CA, MCA, and tricks
 - Leave you overwhelmed, but knowing that
 - PCA is sometimes the most wrong approach

- Not everything is a number
 - Sometimes numbers aren't numbers!
- ▶ We need to recognize when this happens
 - And know what to do
- Introduce CA, MCA, and tricks
 - Leave you overwhelmed, but knowing that
 - ▶ PCA is sometimes the most wrong approach
 - CA & MCA are suitably less wrong

Where to find everything

► Generally: https://github.com/derekbeaton/workshops

Where to find everything

- ► Generally: https://github.com/derekbeaton/workshops
- ➤ Today: https://github.com/derekbeaton/Workshops/tree/ma ster/Misc/CA_MCA

► Revisit PCA

- ► Revisit PCA
- ► Looking at some data

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis

- Revisit PCA
- ► Looking at some data
- ► Simple correspondence analysis
 - and many of its connections

- Revisit PCA
- ► Looking at some data
- Simple correspondence analysis
 - and many of its connections
- ► Multiple correspondence analysis

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- ► Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses

- Revisit PCA
- Looking at some data
- Simple correspondence analysis
 - and many of its connections
- ► Multiple correspondence analysis
 - generalizes CA (amongst many other things)
 - and how to handle various data types
- A whole bunch of bonuses
 - Robustness, PLS, Networks, Software

Revisting PCA

▶ When we can compute a covariance or correlation matrix

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components

- ▶ When we can compute a covariance or correlation matrix
- ► Break data into components
 - Orthogonal

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered

- ▶ When we can compute a covariance or correlation matrix
- Break data into components
 - Orthogonal
 - Rank ordered
 - Made of bits & pieces of original measures

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Eigen- and singular value decompositions

Left (row) singular vectors

Diagnosis and education

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

•	Given a table, and asked for a multivariate analysis
	We do what we know: PCA

What did we analyze?

	CN	Dementia	MCI
CN	1.000	0.730	0.921
Dementia	0.730	1.000	0.652
MCI	0.921	0.652	1.000

What did PCA detect?

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
HS+	39	9	77	125

Let's try something different!

	ADV	В	B+	HS	HS+
CN	39	57	75	25	39
Dementia	7	17	19	13	9
MCI	54	75	113	46	77

Component 1. Explained variance: 97.8%

What did PCA analyze?

	ADV	В	B+	HS	HS+
ADV	1.000	1.000	0.995	0.935	0.963
В	1.000	1.000	0.994	0.932	0.960
B+	0.995	0.994	1.000	0.965	0.984
HS	0.935	0.932	0.965	1.000	0.996
HS+	0.963	0.960	0.984	0.996	1.000

What did PCA detect?

	ADV	В	В+	HS	HS+	Row sums
CN	39	57	75	25	39	235
Dementia	7	17	19	13	9	<i>65</i>
MCI	54	75	113	46	77	365

What is PCA for?

► When we can compute a *meaningful* covariance or correlation matrix

Let's take another look

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
$\mathit{HS}+$	39	9	77	125
Column sums	235	65	365	

► Tell me things about this matrix

Let's take another look

	CN	Dementia	MCI	Row sums
ADV	39	7	54	100
В	57	17	75	149
B+	75	19	113	207
HS	25	13	46	84
$\mathit{HS}+$	39	9	77	125
Column sums	235	65	365	

- ► Tell me things about this matrix
- ▶ What kind of problem does this look like?

Simple correspondence analysis

▶ Initially: visualize contingency tables (a la PCA, factor analyses)

- ▶ Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
 - ► Fully developed by Escofier (1969)

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
 - ► Fully developed by Escofier (1969)
- Explosion of the technique in France

- Initially: visualize contingency tables (a la PCA, factor analyses)
 - ► Text (corpus) of philosphy, biblical passages, literature
 - From Benzecri (1964) & Escofier (1965)
 - ► Fully developed by Escofier (1969)
- Explosion of the technique in France
 - Across virtually every field (except psychology and neuroscience)

► Hotelling (1933) & Thurstone (1933)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)
- ► And then Benzecri (1964) & Escofier (1965)

- ► Hotelling (1933) & Thurstone (1933)
- ► Hirschfeld (1935) & Horst (1935)
- ► Guttman (1941)
- ▶ Burt (1950)
- ► And then Benzecri (1964) & Escofier (1965)
- Many more very important characters to re-discover CA

➤ See Lebart's History & Prehistory of CA

► See Lebart's History & Prehistory of CA

http://www.dtmvic.com/doc/About_the_History_of_CA.pdf

- ► See Lebart's History & Prehistory of CA http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- And Beh & Lombardo's series.

- ► See Lebart's History & Prehistory of CA
- http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- ► And Beh & Lombardo's series

842X.2012.00676.x

A geneaology of CA: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-

- See Lebart's History & Prehistory of CA
- http://www.dtmvic.com/doc/About_the_History_of_CA.pdf
- - https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-842X.2012.00676.x
 - A geneaology of CA 2: http://sibaese.unisalento.it/index.php/ejasa/article/view/19785

We're diving in

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46

HS+ 39

CN

What if we perform CA on this?

ADV

В B+

HS

HS+

How did that happen?

Table 1: Data

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

Table 2: Observed probabilites

	CN	Dementia	MCI
ADV	0.059	0.011	0.081
В	0.086	0.026	0.113
B+	0.113	0.029	0.170

0.020

0.014

0.069

0.116

HS

HS+

0.038

0.059

Table 3: Observed probabilites and margins

	CN	Dementia	MCI	Row sums
ADV	0.059	0.011	0.081	0.150
3	0.086	0.026	0.113	0.224
3+	0.113	0.029	0.170	0.311
15	0.038	0.020	0.069	0.126
HS+	0.059	0.014	0.116	0.188
Column sums	0.353	0.098	0.549	

Table 4: Expected probabilites and margins

	CN	Dementia	MCI	Row sums
ADV	0.053	0.015	0.083	0.150
В	0.079	0.022	0.123	0.224
B+	0.110	0.030	0.171	0.311
HS	0.045	0.012	0.069	0.126
$\mathit{HS}+$	0.066	0.018	0.103	0.188
Column sums	0.353	0.098	0.549	

Table 5: Deviations: Observed - Expected

	CN	Dementia	MCI
ADV	0.006	-0.004	-0.001
В	0.007	0.004	-0.010
B+	0.003	-0.002	-0.001

0.007 0.000

-0.005 0.013

HS -0.007

HS+ -0.008

Table 6: Row constraints (inverse row margins)

	ADV	В	В+	HS	HS+
ADV	6 65	0.000	0.000	0.000	0.00

	ADV	В	B+	HS	HS+
ADV	6.65	0.000	0.000	0.000	0.00
В	0.00	4.463	0.000	0.000	0.00

3.213

0.000

0.000

0.000

7.917

0.000

0.00

0.00

5.32

0.000

0.000

0.000

B+

HS

HS+

0.00

0.00

0.00

Table 7: Column constraints (inverse column margins)

	CN	Dementia	MCI
CN	2.83	0.000	0.000
Dementia	0.00	10.231	0.000
MCI	0.00	0.000	1.822

What CA needs

R: Row constraints (inverse row probabilities)

Z: Deviations

C: Column constraints (inverse column probabilities)

- ► GSVD(R, X, C)
- ► Uses but generalizes the SVD

- ► GSVD(**R**, **X**, **C**)
- ► Uses but generalizes the SVD
 - ► Uses row & column weights (constraints)

- ► GSVD(R, X, C)
- ► Uses but generalizes the SVD
 - ► Uses row & column weights (constraints)
- Gives back

- ► GSVD(R, X, C)
- ► Uses but generalizes the SVD
 - Uses row & column weights (constraints)
- ► Gives back
- Component (factor) scores

▶ GSVD(**R**, **X**, **C**)

Gives back

- Uses but generalizes the SVD
 - Uses row & column weights (constraints)
 - - Component (factor) scores
 - ► Eigenvalues, singular values, & singular vectors

- **▶** GSVD(**R**, **X**, **C**)
- ► Uses but generalizes the SVD
 - Uses row & column weights (constraints)
- Gives back
 - Component (factor) scores
 - Eigenvalues, singular values, & singular vectors
 - Generalized singular vectors

What we really decompose

- A rectangle
- Deviations: Observed Expected
 - Expected from Observed's margins

- Two squares
- Row margins and column margins

$\frac{\mathbf{Z}}{\mathbf{R}^{\frac{1}{2}}\mathbf{C}^{\frac{1}{2}}}$

$\frac{(\mathbf{O}-\mathbf{E})}{\mathbf{E}^{\frac{1}{2}}}$

 $\chi^2 = \Sigma \frac{(\mathbf{O} - \mathbf{E})^2}{\mathbf{E}}$

CA's secrets

```
EDU <- amerge subset$PTEDUCAT
DX <- amerge_subset$DX
edu dx table <- table(EDU, DX)
chisq.test(edu dx table)
##
##
   Pearson's Chi-squared test
##
## data: edu dx table
## X-squared = 8.648, df = 8, p-value = 0.3729
edu_dx_ca <- epCA(edu_dx_table, graphs = F)
sum(edu dx ca$ExPosition.Data$eigs) * sum(edu dx table)
## [1] 8.647979
```


Besides χ^2 this looks really familiar. What else are rectangles over squares?

$r = \frac{cov(\mathbf{x}, \mathbf{y})}{\sigma_{\mathbf{x}} \times \sigma_{\mathbf{y}}}$

More of CA's secrets

► CA generalizes canonical correlation analysis (CCA)

More of CA's secrets

- ► CA generalizes canonical correlation analysis (CCA)
- ► CA is the CCA between two *nominal* tables

More of CA's secrets

- ► CA generalizes canonical correlation analysis (CCA)
- ► CA is the CCA between two *nominal* tables
- ► How do we create a contingency table?

Nominal data

EDU	DX	В	B+	ADV	HS+	HS	MCI	CN	Dementi
В	Dementia	1	0	0	0	0	0	0	1
В	MCI	1	0	0	0	0	1	0	0
B+	Dementia	0	1	0	0	0	0	0	1
HS	Dementia	0	0	0	0	1	0	0	1
B+	CN	0	1	0	0	0	0	1	0

	CN	Dementia	MCI	В	B+	ADV	HS+	HS	MCI	CN	Dementia
ADV	39	7	54	1	0	0	0	0	0	0	1
В	57	17	75	1	0	0	0	0	1	0	0
B+	75	19	113	0	1	0	0	0	0	0	1
HS	25	13	46	0	0	0	0	1	0	0	1

0

0 0

0

0 1

HS+ 39

9

77

В	B+	ADV	HS+	HS	MCI	CN	Dementia
1	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1
0	0	0	0	1	0	0	1
0	1	0	0	0	0	1	0

How to analyze nominal data?

"coding categorical variables with the indicator matrix of dummy variables and considering them as Gaussian, for instance, is almost a crime." in Jan de Leeuw and the French School of Data Analysis (Husson, Josse, Saporta)

How to analyze nominal data?

- "coding categorical variables with the indicator matrix of dummy variables and considering them as Gaussian, for instance, is almost a crime." in Jan de Leeuw and the French School of Data Analysis (Husson, Josse, Saporta)
- We could perform PCA on nominal data, but what would we get?

	В	B+	Al	DV	HS+	Н	S	MCI	CN	Dementia
В	1	-0.361	-0.	226	-0.259	-0.	204	-0.049	0.033	0.03
B+	-0.361	1	-0.	283	-0.323	-0.	256	-0.004	0.013	-0.013
ADV	-0.226	-0.283		1	-0.202	-0	.16	-0.008	0.032	-0.039
HS+	-0.259	-0.323	-0.	202	1	-0.	183	0.065	-0.042	-0.042
HS	-0.204	-0.256	-0	.16	-0.183	•	l	-0.001	-0.044	0.073
MCI	-0.049	-0.004	-0.	800	0.065	-0.	001	1	-0.815	-0.363
CN	0.033	0.013	0.0	032	-0.042	-0.	044	-0.815	1	-0.243
Dementia	0.03	-0.013	-0.	039	-0.042	0.0	73	-0.363	-0.243	1
		В	B+	ADV	HS+	HS	MC	I CN	Dementia	
	E	B 149	0	0	0	0	75	57	17	
	B-	+ 0	207	0	0	0	113	75	19	
	AD	V 0	0	100	0	0	54	39	7	
	HS-	+ 0	0	0	125	0	77	39	9	
	HS	S 0	0	0	0	84	46	25	13	
	MC	75	113	54	77	46	365	0	0	
	CI	V 57	75	39	39	25	0	235	0	
	Dementia	a 17	19	7	9	13	0	0	65	

D D ADV IIO IIO MOI ON Demanti-

► Two perspectives:

- ► Two perspectives:
 - Weighted PCA for nominal data

- ► Two perspectives:
 - Weighted PCA for nominal data
 - ► Generalized CA for N-way contingency tables

- ▶ Two perspectives:
 - Weighted PCA for nominal data
 - Generalized CA for N-way contingency tables
- So much more than nominal

We're diving in

В	B+	ADV	HS+	HS	MCI	CN	Dementia
1	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1
0	0	0	0	1	0	0	1
0	1	0	0	0	0	1	0

This is the kind of table we're analyzing. It has N = 665.

Does any of this look familiar?

CA & MCA Magic!

	CN	Dementia	MCI
ADV	39	7	54
В	57	17	75
B+	75	19	113
HS	25	13	46
HS+	39	9	77

В	B+	ADV	HS+	HS	MCI	CN	Dementia
1	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1
0	0	0	0	1	0	0	1
0	1	0	0	0	0	1	0

Same technique on two different tables: same result

Scaling up

► Let's bring in ApoE

Scaling up

- Let's bring in ApoE
- ▶ It has 3 levels: 0 copy, 1 copy, 2 copies

DU	DX	APOE	В	B+	ADV	HS+	HS	MCI	CN	Dementia	0
В	Dementia	2	1	0	0	0	0	0	0	1	0
В	MCI	0	1	0	0	0	0	1	0	0	1
B+	Dementia	2	0	1	0	0	0	0	0	1	0
HS	Dementia	2	0	0	0	0	1	0	0	1	0
B+	CN	0	0	1	0	0	0	0	1	0	1

MCA: Row component scores -553 Component 2 550 508 * 205 565 588 **58**8

Component 1

Crisp vs. fuzzy coding

EDU	DX	APOE
В	Dementia	2
В	MCI	0
B+	Dementia	2
HS	Dementia	2
B+	CN	0

EDU	DX	APOE
В	Dementia	2
В	MCI	0
B+	Dementia	2
HS	Dementia	2
B+	CN	0

Our first fuzzy friend

► Modified Hachinksi

- ► Modified Hachinksi
 - ▶ 0, 1, 2, 3 (in these data)

- ► Modified Hachinksi
 - 0, 1, 2, 3 (in these data)
- ► Specific form of fuzzy coding: "bipolar"

H	HA	CH-	HACH+	
		1	0	
		0	1	
	0.	667	0.333	
	0.	333	0.667	
	0.	667	0.333	

				EDU	J	DX		APOE	HA	CH	1		
				В	De	ment	tia	2		1			
				В		MCI		0		1			
				B+	De	ment	tia	2	()			
				HS	De	ment	ia	2	()			
				B+		CN		0	()			
3	B+	ADV	HS+	HS	MCI	CN	De	mentia	0	1	2	HACH-	HACH+
3	B+ 0	ADV 0	HS+ 0	HS 0	MCI 0	CN 0	De	mentia	-		2 1	HACH- 0.667	HACH+ 0.333
3 1 1			-	-	-	-	De		0	0		-	-
3 1 1 0	0	0	0	0	0	0	De	1	0	0	1	0.667	0.333
1 1	0	0	0	0	0	0	De	1	0	0	1	0.667 0.667	0.333 0.333
1 1)	0 0 1	0 0 0	0 0 0	0 0 0	0 1 0	0 0 0	De	1 0 1	0 1 0	0 0 0	1 0 1	0.667 0.667 1	0.333 0.333 0

Our second fuzzy friend CONTINUOUS

measured data, can have ∞ values within possible range.

► Age: 55.00 - 89.60

► Age: 55.00 - 89.60

But we need to scale it (Z-score)

- ► Age: 55.00 89.60
 ► But we need to scale it (Z-score)
- We use two columns again:

► Age: 55.00 - 89.60

 $ightharpoonup \frac{(1-x)}{2} \& + \frac{(1+x)}{2}$

- ▶ But we need to scale it (Z-score)
- ▶ We use two columns again:

AGE	AGE (Z)
6.3	0.637
	0.666
_	1.095
	-1.314
)	-1.168

					ь		IIIciilia	_			70.5			
					В		MCI	0		1	76.5			
					B+	De	mentia	2		C	64.4			
					HS	De	mentia	2		C	62.9			
					B+		CN	0		C	63.9			
В	B+	ADV	HS+	HS	MCI	CN	Dement	tia 0	1	2	HACH-	HACH+	AGE-	AGE+
B	B+ 0	ADV 0	HS+ 0	HS 0	MCI 0	CN 0	Dement	tia 0			HACH- 0.667	HACH+ 0.333	AGE - 0.181	AGE+ 0.819
								0		1				
1	0	0	0	0	0	0	1	0	0	1 0	0.667	0.333	0.181 0.167	0.819 0.833
1	0	0	0	0	0	0	1 0	0 1 0	0	1 0 1	0.667 0.667	0.333 0.333	0.181 0.167 1.048	0.819

EDU DX APOE HACH AGE

2 1 76.3

B Dementia

Chi-squared

See here

Chi-squared

See here

(Some) References

See the reference sections of these

▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.

See the reference sections of these

- ▶ Beaton, D., Saporta, G., Abdi, H., & Alzheimer's Disease Neuroimaging Initiative. (2019). A generalization of partial least squares regression and correspondence analysis for categorical and mixed data: An application with the ADNI data. bioRxiv, 598888.
- Beaton, D., Sunderland, K. M., Levine, B., Mandzia, J., Masellis, M., Swartz, R. H., ... & Strother, S. C. (2019). Generalization of the minimum covariance determinant algorithm for categorical and mixed data types. bioRxiv, 333005.

And these

Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.

And these

- Abdi, H., Guillemot, V., Eslami, A., & Beaton, D. (2017). Canonical correlation analysis. Encyclopedia of Social Network Analysis and Mining, 1-16.
- Beaton, D., Dunlop, J., & Abdi, H. (2016). Partial least squares correspondence analysis: A framework to simultaneously analyze behavioral and genetic data. Psychological methods, 21(4), 621.

► Greenacre, M. (2017). Correspondence analysis in practice. CRC press.

- Greenacre, M. (2017). Correspondence analysis in practice. CRC press.
- Greenacre, M. J. (1984). Theory and Applications of Correspondence Analysis. Retrieved from http://books.google.com/books?id=LsPaAAAAMAAJ

▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.

- ▶ Greenacre, M. J. (2010). Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(5), 613–619. https://doi.org/10.1002/wics.114
- Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. Wiley.
- Nguyen, L. H., & Holmes, S. (2019). Ten quick tips for effective dimensionality reduction. PLOS Computational Biology, 15(6), e1006907.

Data

► Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.

Data

- Escofier, B. (1978). Analyse factorielle et distances répondant au principe d'équivalence distributionnelle. Revue de Statistique Appliquée, 26(4), 29–37.
- Escofier, B. (1979). Traitement simultané de variables qualitatives et quantitatives en analyse factorielle. Cahiers de l'Analyse Des Données, 4(2), 137–146.
- Greenacre, M. (2014). Data Doubling and Fuzzy Coding. In J. Blasius & M. Greenacre (Eds.), Visualization and Verbalization of Data (pp. 239–253). Philadelphia, PA, USA: CRC Press.

History

▶ Holmes S, Josse J. Discussion of "50 Years of Data Science". Journal of Computational and Graphical Statistics. 2017, V26(4) 768-769. https://www.tandfonline.com/doi/full/10.10 80/10618600.2017.1385471