Matematica for dummies

Riccardo Carlesso

September 1, 2004

Contents

1	Notazione 5						
	1.1	Insiemi famosi					
		1.1.1 simboli					
2	Numeri 7						
	2.1	I numeri naturali					
	2.2	I numeri interi					
	2.3	I numeri reali					
	2.4	I numeri reali					
3	Fun	zioni 9					
	3.1	Cos'è una funzione					
	3.2	Funzioni notevoli					
		3.2.1 Polinomi					
		$3.2.2 \sin(x) \dots 13$					
		$3.2.3 \cos(x) \dots 14$					
		$3.2.4 \tan(x) \dots 14$					
		3.2.5 Funzioni iperboliche $(\sinh(x), \cosh(x),)$ 14					
		$3.2.6 e^x \dots \dots 15$					
		$3.2.7 \log(x) \dots 16$					
		3.2.8 Funzioni iperboliche?!?					
	3.3	Studi di funzione					
		3.3.1 Dominio e codominio					
		3.3.2 Incontro con gli assi					
		3.3.3 Massimi e minimi					
		3.3.4 Aree e integrali					
	3.4	Altro sulle funzioni					
		3.4.1 Relazioni					
		3.4.2 Funzioni inverse					
		3.4.3 Funzioni di più variabili					
		3 4 4 Funzioni composte 23					

4 CONTENTS

4	Trig	gonometria	25				
	4.1	Seni & co	25				
	4.2	Altro	27				
5	Limiti 29						
	5.1	Limiti: un'introduzione	29				
	5.2	Limiti: definizione	30				
		5.2.1 Limiti sinistrie destri	32				
		5.2.2 Limiti e infinito	33				
	5.3	Limiti notevoli	33				
	5.4	Derivate notevoli	33				
	5.5	Limiti: uso pratico	33				
		5.5.1 Trucchi coi limiti	33				
6	Der	ivate	35				
	6.1	Cos'è una derivata	35				
	6.2	Derivate notevoli	40				
		6.2.1 Proprietà delle derivate	41				
	6.3	Massimi e minimi	42				
7	Ean	azioni differenziali	45				
•	7.1	Introduzione	45				
8	Seri	ie di Taylor	47				
Ü	8.1	v	47				
9	Util	lità varie	49				
	9.1	Binomi di Newton	49				
	9.2	Gli esponenti	50				
	9.3	Il fattoriale	51				
	9.4	I numeri di Fibonacci	51				
	9.5	I grafici cartesiani	51				
	9.6	La ricorsione	53				

Chapter 1

Notazione

In questo capitoletto tratteremo il difficile problema di capirci: non solo quando si parla italiano (il che è lasciato alla mia capacità di scriverlo e a quella delle vostre maestre delle elementarii), ma anche quando si parla matematichese (con quegli strani simboli come $\forall,\ \nu,\ \dot=,\ |,\ \ldots)$. Questo capitolo vuole in parte spiegare come i matematici parlano matematichese (80% circa) e in parte come io parlo matematichese (il rimanente 20%). Tenetelo in considerazione almeno ogni tanto; ora come ora, vi do il permesso di saltarlo, poichè è certamente il più noioso.

1.1 Insiemi famosi

Ν

 \mathbf{Z}

Q

R: insieme dei reali. Chiameremo R+ l'insieme dei reali j=0 e con R- i reali con xj=0, e con R* l'insieme dei reali $senza\{0\}$

C

1.1.1 simboli

- 1. \(\delta\) Simbolo di definizione; il 90% delle volte si intende: definisco ciò che sta a sinistra con ciò che sta a destra
- 2. \equiv Simbolo di equivalenza; $a \equiv b$ vuole dire che a è equivalente a b (el 90% delle volte si intende: definisco ciò che sta a sinistra con ciò che sta a destra). E' qualcosa di più forte dell'uguaglianza (so che fa strano, ma pensate a dire f(x) = g(x) e a dire $f(x) \equiv g(x)$: nel primo caso cerchiamo di vedere per quali x f e g si ugagliano, nel secondo stiamo dicendo che le due funzioni sono perfettamente identiche).

6 Notazione

Chapter 2

Numeri

In questo capitolo si parlerà della teoria dei numeri (nella quale son sempre stato poco ferrato): vi dirò lo stretto necessario per capire i numeri naturali, reali, complessi senza la pretesa di dare rigorose specifiche formali degli stessi.

I numeri fondamentali che servono nella matematica sono naturali, interi, razionali, reali e complessi. Cercherò di darne una rudimentale definizione, di fare qualche esempio, e di vederne alcune proprietà.

2.1 I numeri naturali

Tutto nasce dai naturali. Schiere di filosofi e matematici hanno provato a darne una definizione. Peano e Russell (se ben ricordo) ne hanno dato una definizione operativa che vi propongo.

- Esiste un numero iniziale che chiameremo zero (0).
- Per ogni numero naturale N esiste un successore, che chiameremo s(N) (è una funzione, se ci si pensa).¹.
 - Mi pare vi siano altre proprietà, ma non mi vengono in mente.

Una interessante proprietà dei naturali è che non hanno un limite destro, per cui si dice che vanno all'infinito. Vi sono anche studi su quanti siano i naturali. L'infinità dei naturali viene detta \aleph_0 , ed è la più piccola infinità conosciuta. Ebbene sì, ci sono tanti infiniti, alcuni più forti, alcuni più deboli.

Denoteremo con N l'insieme dei naturali: $\mathbf{N} \cdot \{0, 1, 2, 3, 4...\}$

2.2 I numeri interi

Tutti pensano che gl'interi siano i naturali. In matematica, invece, i naturali sono i numeri interi positivi, men tre si chiamano *interi* i numeri interi

¹Quindi $1 = s(0), 2 = s(s(0)), e \cos i$ via.

8 Numeri

positivi o negativi. Credo che la definizione sia:

- Esiste lo zero (0).
- Per ogni z esiste un successore s(z).
- Per ogni numero z esiste l'opposto -z.

L'insieme che viene fuori è: $\mathbf{Z} \cdot \{0,1,-1,2,-2,3,-3,\ldots\}$. Attenti, potevo anche dire che l'insieme è: $\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$.

2.3 I numeri reali

2.4 I numeri reali

complessi

Chapter 3

Funzioni

In questo capitolo si parlerà di funzioni. Nella prima parte ne verranno dati definizioni ed esempi, nella seconda si parlerà dello 'studio di funzione', e nella terza si affronteranno tanti piccoli temi collaterali. Ho speso molte parole per spiegarne il concetto poiché è a mio parere uno dei più affascinanti e complessi della matematica: l'uomo riesce con facilità a ragionare su numeri, ma su qualcosa che associa infiniti numeri a infiniti numeri tende ad avere sempre delle perplessità. Molto spazio verrà dato alle funzioni notevoli, poiché è a partire da questi mattoncini che si costruiscono quei maestosi castelli che i prof mettono nei compiti...

■ Domande propedeutiche Prima di passare oltre, è opportuno che sappiate rispondere alle seguenti domande (se non sapete rispondere ad esse, difficilmente riuscirete a capire ciò che segue).

Dovete guardare prima i grafici.

3.1 Cos'è una funzione

Cosa è una funzione? Essa è una applicazione che associa tutti i valori di un dominio (ovvero un insieme \mathbf{X}) a certi valori su un codominio \mathbf{Y} (un altro insieme).

$$f: x \in \mathcal{X} \mapsto \mathcal{Y} \tag{3.1}$$

Detto in parole più povere, è un oggetto che mangia numeri e sputa fuori numeri in maniera prevedibile. Se gli date da mangiare una stessa cosa (per esempio $x_0 := 46, 2$) e lui 'gradisce' questa cosa (ovvero x_0 è contenuta nel dominio \mathcal{X}), la funzione sparerà sempre fuori uno stesso numero. Esso è detto $f(x_0)$. Il concetto di funzione è molto importante poiché è quanto di più generale ci sia: una funzione può mangiare qualunque cosa e 'spararla' in quasi qualunque altra cosa. Ciò che è più difficile da capire è che il nome della funzione è indipendente da quello che le si dà in 'ingresso'.

Vediamo di inventarci qualche funzione per fissare il concetto.

$$f(0) \doteq 3; f(1) := 4; f(2) := 5; f(-5) := -2; \dots$$
 (3.2)

La funzione che ho scritto potrebbe essere qualunque cosa; probabilmente la più semplice funzione che si comporti come lei è: $f_1(x) = x + 3^1$. Non bisogna sottovalutare la potenza di questa notazione, per cui prendiamoci un po' di tempo per capirla. Quando scrivo $f(x \in \mathbf{R}) = x + 3$ intendo un oggetto che, dato un numero, vi risponde con un altro numero. In ingressso dovete dargli un numero reale e in uscita vi restituirà un altro numero reale. Per capirci meglio, daremo d'ora in poi a f il simpatico nome di 'sommatré' 2 .

E' importante capire che la funzione **sommatré** è qualcosa che somma tre al numero che le date in pasto. Alcune domande *ben poste* potrebbero essere: quanto vale f(0)? Per quale x, f((x) vale 15? Quando è massima f? Quand'è che f incontra gli assi cartesiani? Per quali valori del dominio \mathcal{X} f è definita? f

Tutte queste sono domande che vi potrebbero essere fatte quando vi si chiede di fare lo $studio\ di\ funzione\ di\ f$.

Mi ritengo soddisfatto se sapete rispondere a queste domande a trabocchetto: Che cos'è f(x)? Che cos'è f(t)? Che cos'è f(0)?

Una risposta può essere: le prime due sono funzioni (per la precisione sono sempre la nostra amica 'sommatré'), la terza è un numero (ed è il numero 3, poiché 0+3=3: provatelo con le vostre calcolatrici tascabili). Ma allora che cos'è x? E che differenza c'è tra x e t? Questa credo sia la domanda più difficile che ci si possa fare sulle funzioni. Una buona risposta è che la t è la 20^{ma} lettera dell'alfabeto anglosassone mentre la x è la 24^{ma} . a parte la battuta il fatto è che non c'è alcuna differenza tra f(x) e f(t), se non il fatto che nel primo caso f dipende da x e nel secondo da t: la

¹Ma attenti, esistono un bel po' di funzioni che rispettano questi vincoli. E' un po' come cercare moglie secondi i vincoli: '2 occhi', '2 seni', 'che respiri'. Un altro esempio, solo per persuadere i più scettici, è $f(x) = 4 + sen(\frac{\pi}{2}(x-1))$

 $^{^2}$ Mi piacerebbe spiegarvi le funzioni in un modo simile a come me lo spiegò il mio prof di Geometria, Massimo Ferri. Pensate che avete un asse orizzontale in cui è libero di muoversi un cannone; esso può sparare solo in verticale, su o giù, ma sempre in verticale rispetto a dov'è. Ora immaginate che il cannone sia programmato per sparare sempre in un medesimo punto (esempio in 3) se si trova in una certa posizione (ad esempio 0). Se il cannone si trova nel punto -5 (che sta ad ovest, per intenderci), sparerà sempre in basso all'altezza di -2. Infine, quando si trova in -3, si spara addosso, ma questo non è un problema che ci tocchi. Se dopo aver istruito il cannone su come sparare, lo fate andare all'infinito a destra e a sinistra, potrete osservare la scia che lascia su un ipotetico foglio di carta; questa è il grafico della funzione. Cos'è la funzione? L'equazione? Il grafico? Il carroarmato? No! Essa è l'insieme di istruzioni che avete dato al carroarmato. Ciò che più si avvicina alla sua definizione senza perdere infiniti fogli a scrivere $f(0,1,2,3,\ldots)$ è la parola 'sommatré'; ma attenti: se la funzione si complica non sempre avrete la fortuna di poterle dare un nome semplice.

 $^{^3}$ Alcune domande mal poste potrebbero essere: 'sì okf(x),ma questa benedetta xquanto cacchio vale?!?'

variabile è muta e ha senso solo nella definizione stessa della funzione⁴; ma la funzione sarà sempre lei, nel nostro caso sarà sempre 'sommatré', ovvero qualcosa che mangia un numero, gli somma 3 e sputa fuori il risultato. Un altro modo per capirlo, è inventarsi un mondo senza x; proviamoci per un attimo. Prendiamo la nota funzione $f(x) = x^2 + 2x + 1$; prima dell'ottocento, i matematici la leggevano come 'prendi un numero, elevalo al quadrato, poi aggiungi il doppio del numero e infine aggiungi uno'. Capirete che se un prof vi chiede se questa sia una parabola o un'iperbole farete abbastanza fatica a rispondergli, no? Allora diremo: $f(numero) = numero^2 + 2 \cdot numero + 1$. Ancora troppo lungo. Proviamo con la x: $f(x) = x^2 + 2x + 1$. Oh! ora va meglio.

Scusate la lunghezza della digressione, ma dopo anni e anni di matematica, vedo persone ancora perplesse sul vero significato della fatidica variabile indipendente. Potete pensare che x sia una variabile muta, assolutamente inutile, e quindi il vero modo per chiamare la nostra amica 'sommatré' in modo matematico non sia f(x), bensì $f(\dot)^5$. Ricordate: se scrivo f(x) = x+3 e g(y) = y+3, definisco la stessa funzione: f e g sono perfettamente identiche!!! D'ora in poi, però, preferiremo chiamare x ciò che la f(x) mangia e g ciò che la g sputa, e al posto della g useremo g se pensiamo ad angoli: i matematici ci tengono molto a dare significati diversi alle diverse lettere, e ne hanno così tanti che le 26 dell'alfabeto anglosassone non bastan loro, e devon tirarne fuori anche da quello greco ed ebraico...

3.2 Funzioni notevoli

In questa sezione cercherò di analizzare le funzioni più famose. La maggior parte delle funzioni che vi cappiterà di studiare saranno 'case' costruite con questi mattoncini... Per ciascuna funzione cercherò di evidenziare le caratteristiche più interessanti di ciascuna, tra cui il grafico (un giorno), derivate, primitive, estremanti, poli, eccetera

3.2.1 Polinomi

Un polinomio è una equazione nella forma:

$$f(x) = \sum_{i=0}^{n} a_i x^i = a_n x^x + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 (3.3)

 $Alcuni\ esempi\ di\ funzione\ sono:\ x^42+37x+41,3x^2+6x+3,\ x^2+1,\ ma\ non$

⁴La cosa diventerebbe rilevante in qualcosa come: f(x) = 3tx, in tal caso x è la variabile e t sarà probabilmente un parametro.

⁵credo che l'unico modo di apprezzare una funzione per ciò che è sia proprio quella di usare un puntino, del tipo $f(\cdot) = \frac{\cdot + 1}{1 + \cdot 2}$; ovvio che se usate una x al posto di \cdot si legge meglio, no?

 $\frac{1}{x^2+1}$. Attenzione, anche 3-x e 5 (una delle mie funzioni preferite, l'avrete notato) sono polinomi, e questo la gente tende a dimenticarlo spesso...

Attenzione, come sempre le x^n sono potenze della nostra amica variabile indipendente, mentre le varie a_0, a_1, \ldots sono il DNA del polinomio stesso. Capiamolo con un esempio stupido: in $x^2 + 3x + 41$ $a_0 = 41; a_1 = 3; a_2 = 1; a_3 = 0; a_4 = 0; a_5 = 0; a_6 = 0; \ldots$ Se non vi offendete mi fermo qua, dicendovi che da a_3 in poi tutti i coefficienti son nulli. Si dice allora che il polinomio è di grado 2 poiché è alla posizione 2^6 che c'è l'ultimo valore non nullo. 7

Dominio I polinomi non han problemi di dominio: tutto R va bene.

Codominio Bazza: se ponete x = 0 si annulla tutto meno il termine noto, quindi $f(0) = a_0$.

Zeri Tanti. In realtà ce ne possono essere tanti quanti il grado del polinomio, ma se non avete gli 'occhiali' complessi ci possono essere coppie di soluzioni (complesse coniugate) che non potete vedere. Esempio: un polinomio di terzo grado ha o 3 o 1 soluzioni. Esiste bun trucco per calcolare le soluzioni di un polinomio di secondo grado 8 , un altro per le equazioni di terzo e quarto grado, e - se non sbaglio - è stato dimostrato che non possono esistere trucchi per i polinomi di grado oltre al quarto. Attenti alle moolteplicità: $f = x^4 + x$ ha 4 zeri: (0,0,0,-1); -1 è uno zero normalissimo, mentre 0 (che solo per caso si pronuncia allo stesso modo) è uno zero di molteplicità tripla. Questo è molto importante: quando ad esempio una funzione ha uno zero doppio tende non solo a passare per il punto ma a esservi tangente (ovvero arrivarci da sotto, toccarlo, e tornar giù proprio in quel punto - o viceversa). In generale, non trascurate la molteplicità nei vostri scritti: certe persone ci tengono molto ;).

Poli Nessuno.

Derivata, massimi e minimi E' molto facile e divertente derivare polinomi. Per la proprietà di linearità, possiamo derivarla a pezzi, ovvero vale la comodissima proprietà che la derivata della somma è uguale alla somma delle derivate. Se sapete derivare un generico pezzettone x^n (che fa nx^{n-1}), sapete derivare tutto. Vien fuori: $f'(x) = \sum_{i=1}^n i \cdot a_i x^{i-1} = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \ldots + 2a_2 x + a_1$. Fate attenzione che è scomparso il termine noto a_0 . Il nuovo polinomio ha un grado in

 $^{^6\}mathrm{che}$ è al terzo posto, ma ai matematici piace complicarsi la vita, e quasi sempre hanno ragione loro...

 $^{^{7}}$ Un modo molto elegante per definire il polinomio è di identificarlo la lista ordinata (41,3,1). Ancora una volta, è scomparsa la x, che guarda caso è l'unica cosa non importante per il polinomio!

⁸Il famoso $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

meno dell'originale, a meno che non avesse grado zero (nel qual caso rimane zero). I massimi/minimi saranno tanti, fino a n-1. Calcolate la derivata, e di essa calcolate gli zeri. (Io dico sempre: lo studio di funzione di un polinomio è per il 60% studio degli zeri di f, per il 40% studio degli zeri di f': rimane ben poco ancora di interessante).

Primitiva Anche qui è molto facile, se sapete qual è una primitiva dei mattoncini x^i (che è $\frac{x^{n+1}}{n+1}$). Viene fuori: $F(x) = \sum_{i=0}^n \frac{a_i}{i+1} x^{i+1} + 37 = \frac{a_n}{n+1} x^{n+1} + \frac{a_{n-1}}{n} x^n + \ldots + \frac{a_1}{2} x^2 + a_0 x + 37$. Il 37 l'ho aggiunto io per ricordarvi che le primitive son tante, e nessuna ha una dignità maggiore delle altre. Se volete usare quella col +0 anziché quella col +37, avete il mio permesso: io farei lo stesso.

3.2.2 $\sin(x)$

La funzione seno (una delle mie preferite) è una funzione trigonometrica. Essa è periodica, di periodo 2π . Ciò vuol dire che potete disegnarla e studiarla da 0 a 2π (ma anche da 7π a 9π !) perchè si ripeterà all'infinito con lo stesso andamento. Ci limiteremo a studiarla su $[0,2\pi]$. Per una definizione pratica di seni e coseni rimando al capitolo su di essi (3.4.4, pag. 24). Capirete che una funzione come questa se ha uno zero ne ha infiniti, se ha un polo ne ha infiniti e così via... Mi limiterò al solo intervallo $[0,2\pi[$. Spesso potrebbe capitarvi di studiiare invece $]-\pi;\pi]$

(3.12)

3.2.3 $\cos(x)$

Come il seno è periodica di periodo 2π : useremo, tanto per allenarci, l'intervallo $]-\pi;\pi].$

3.2.4 tan(x)

[rcl] **Dominio**

La tangente altri non è che $\frac{\sin(x)}{\cos(x)}$, e ne eredita la periodicità. Anzi, è addirittura periodica di periodo π (il che non inficia la frase prededente, rifletteteci). La studieremo su $]-\frac{\pi}{2};\frac{\pi}{2}]$.

Codominio
$$Tutto R.$$
(3.25)Zeri0(3.24)Poli $\frac{\pi}{2}$ (3.25)Derivate $D \tan(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$ (come preferite). Massimi/minimi: nessual

$$\underline{\mathbf{Integrali}} \qquad \int \tan(t)dt = k - \log|\cos(x)| \tag{3.27}$$

Altro La funzione è periodica di periodo
$$\pi$$
. (3.28)

(3.22)

Punti notevoli
$$f(0) = 0; f(\pi/4) = 1; f(\pi/2^{-}) = +\infty; f(-\pi/2^{+}) = -\infty.$$
 (3.29)

(3.30)

3.2.5 Funzioni iperboliche $(\sinh(x), \cosh(x), ...)$

]novanta; $\frac{\pi}{2}$ [; 11

Le funzioni iperboliche sono fondamentalmente degli esponenziali che puzzano dannatamente di funzioni trigonometriche. Se li disegnate, o li derivate,

sono proprio degli esponenziali. Se li guardate al microscopio (con le serie di Taylor), troverete delle inquietanti somiglianze con i 'cugini' trigonometrici (seno con seno iperbolico, coseno con coseno iperbolico, e soprattutto tangente e tangente iperbolica). La cosa più buffa è che le funzioni sono completamente diverse (ad esempio, le iperboliche vanno spesso all'infinito e sono aperiodiche mentre le trigonometriche sono spesso limitate tra -1 e 1 e sono periodiche). Vediamone la definizione.

$$\sinh(x) := \frac{e^x - e^{-x}}{2} \cosh(x) := \frac{e^x + e^{-x}}{2} \tanh(x) := \frac{\sinh(x)}{\cosh(x)} \left(= \frac{e^x - e^{-x}}{e^x + e^{-x}} \right) 3.31$$

Le funzioni inverse di queste tre funzioni iperboliche sono facilmente esprimibili con logaritmi. Riuscite a trovarle?

Ricavate la funzione arcsinh(x) e le sue sorelle. Hint: $y = arcsinh(x) \Rightarrow x = \frac{e^y - e^{-y}}{2}, ponete\theta = e^y, \cdots$. Dovrebbe venir fuori qualcosa con logaritmi e radici quadrate mi pare.

Provate un po' a derivarli: cosa notate di strano?

3.2.6 e^x

Che cos'è l'esponenziale (e^x) ? E' una particolare funzione che viene usata tantissimo in tutti i campi dell'analisi, dell'ingegneria, della fisica; perché? Credo la sua importanza sia dovuta al fatto che sbuca fuori magicamente dalla Equazioni Differenziali. Prima di andare avanti, vi consiglio di guardare la sezione sugli esponenti (sez. ??, pag. ??).

Come si calcola un esponenziale? Se l'argomento è intero, lo può fare chiunque sia dotato di addizione e moltiplicazione. Negli altri casi, la faccenda si complica e richiede anche le radici (quadrate, subiche, ...). Vediamo una defizizione ridondante sufficiente a definire gli esponenziali 'di esponente intero' (poniamo $a \neq 0$):

$$a^0 \doteq 1 \tag{3.32}$$

$$a^{n+1} \doteq a \cdot a^n \tag{3.33}$$

$$a^{-n} \doteq \frac{1}{a^n} \tag{3.34}$$

Da questa definizione, segue che $10^0=1,10^1=10,10^2=100,10^3=1000,\cdots,10^{-1}=\frac{1}{10},10^{-2}=\frac{1}{100},\cdots,\ldots$ Come vedete questa funzione cresce in fretta: f(9) vale un miliardo, f(18) vale un miliardo di miliardi e f(-27) vale un miliardesimo di miliardesimo di miliardesimo 12 . Questa funzione è sicuramente la più veloce di tutte le colleghe (potete immaginare quindi il comportamento della sua funzione inversa, il logaritmo...). Ora vediamo di capire la parte in mezzo

¹²Come si pronuncia f(-16)?

Per capire e^x credo dovremo cominciare da qualcosa cui siete più familiari, tipo la funzione (molto simile) 10^x (che si legge 10allax).

3.2.7 $\log(x)$

tbds

Notiamo anzitutto che la derivata di $\ln(x)$ coincide con quella di $\ln|x|$. Se guardate i grafici, vi accorgete che a destra vale $\ln(x)$ e a sx dell'asse $y - \ln(x)$. Qui il valore assoluto può essere visto come un 'completamento naturale di dominio'.

3.2.8 Funzioni iperboliche?!?

tbds

3.3 Studi di funzione

Cosa vuol dire studiare una funzione? Vuol dire semplicemente dire tante cose interessanti di una funzione. Supponiamo che il vostro prof di matematica vi porti in centro città il sabato pomeriggio e vi proponga qualcosa di simile: lo studio di persona. Vi addita un passante e vi dice: cosa puoi dirmi di lui? Voi direte: è alto 1,70 circa, pesa sui 70kg kg, ha una corporatura media, i capelli mori ricci e porta gli occhiali; ha un neo vicino alle labbra e ha dei seni particolarmente grossi. C'è qualcosa di non banale in ciò che avete detto: l'altezza, il peso, il colore dei capelli, degli occhi eccetera sono caratteristiche di qualsiasi persona. Gli occhiali, i nei, lentiggini, eccetera sono invece caratteristiche di alcuni individui, eccezioni della cui presenza ci si accorge ma la cui assenza passa inosservata. Difficilmente direte: "senza occhiali", "senza barba", "senza nei visibili", o sbaglio? (Ovvio che alla polizia direte anche queste cose se si tratta di un ricercato!)

Lo studio di funzione è qualcosa di molto simile: si tratta di delineare una funzione (come la nostra amica 'sommatré') secondo alcune caratteristiche comuni a tutte le funzioni, e di trovare quei tratti della funzione che sono interessanti.

3.3.1 Dominio e codominio

La prima cosa da studiare in una funzione è sicuramente il dominio di definizione della funzione stessa, ovvero l'insieme di valori (le x, per intenderci) su cui la funzione è definita. Alcuni esempi:

$$f_1(x) = 3x^4 - 2x^3 + 87x - 57\pi$$

$$f_2(x) = \sin(x)$$

$$f_3(x) = \log(x)$$

$$f_4(x) = \sqrt{(x+1)}$$

$$f_5(x) = \frac{(x-29)(x+3)}{(x-29)(x-12)(x-1976)}$$
(3.35)

I casi più complicati sono certamente i primi due: teniamoli dunque per ultimi. Se conoscete la funzione logaritmo, sapete che essa è definita solo per x > 0, quindi il $\mathcal{D}_{f_3} = \{\mathbf{R} \setminus \mathbf{R}^-\}$. Attenti alla pignoleria: \mathbf{R}^+ comprende lo zero, quindi un modo carino è prendere tutto \mathbf{R} e togliergli \mathbf{R}^- , liberandomi in un sol colpo dei numeri negativi e dello zero.

Il caso f_4 è molto simile: la radice quadrata esige un argomento non negativo (ovvero i numeri minori di zero le sono indigesti). Attenti però all'argomento: non c'è x questa volta, ma una funzione molto più complicata: x+1. Abituatevi a ciò: per calcolare il dominio della funzione dovete imporre che l'argomento sia non negativo, il che produce la seguente equazione: $x+1 \geq 0$. Dunque $\mathcal{D}_{f_4} = \{x | x \geq -1\}$.

Il caso f_5 vi capiterà spesso. Come sapete dalle elementari, la funzione divisione non accetta un divisore (che è la parte che sta dopo il diviso) uguale a zero, quindi se avete che la vostra funzione è uguale a $f(x) = \frac{qual \cos a}{Pippo \cdot Bluto}$ dovrete imporre che sia Pippo sia Bluto siano diversi da zero. Ciò significa, nel nostro caso particolare, imporre x diverso da quei tre numerini presi assolutamente a caso: $\mathcal{D}_{f_5} = \mathcal{R} \setminus \{12; 29; 1976\}$. Un appunto: quei tre numeri hanno assolutamente la stessa dignità, e non ne viene uno prima dell'altro (lo dico perchè molta gente pensa il contrario).

Veniamo ora ai primi due: vedete qualche pezzettone di funzione che vi faccia scattare un qualche allarme? Vedete poli, radici, logaritmi, o cose del genere? No, dunque il dominio delle prime funzioni è proprio **R**.

In generale, studiare il dominio di una funzione vuol dire partire da \mathbf{R} , e poi cominciare a stringerlo per ogni funzione strana che c'è lì dentro, introducendo le limitazioni della funzione (logaritmi, equazioni fratte, radici, etc).

Parliamo ora di **codominio**. Il codominio è l'insieme di valori che la funzione produce.

3.3.2 Incontro con gli assi

Questa caratteristica è una delle più generiche e interessanti: si tratta semplicemente di vedere in quali punti la nostra f incontra l'asse delle x (detti 'zeri') e l'asse delle y (che non hanno nome che io sappia: li chiameremo antizèri). La seconda è facilissima, mentre la prima è più complicata. Vediamo, ricordandoci che l'asse x ha come equazione y=0 (disegnare per credere!) e viceversa l'asse y ha x=0:

$$zeri: \begin{cases} y = f(x); \\ y = 0; \end{cases} \quad anti-zeri: \begin{cases} y = f(x); \\ x = 0; \end{cases}$$
 (3.36)

Nel primo caso otteniamo l'equazione f(x) = 0, che pone la domanda Per quali x otteniamo un valore nullo?': non necessariamente la soluzione c'è, né se c'è è unica. Esempio 1: $f = x^2 + 42$ non si annulla mai (se $x \in \mathbf{R}$), quindi non ha zeri; esempio 2: $f = x^2 - 81$ ha due zeri, poiché si annulla sia per x = 9 (lo zero più famoso) che per x = -9 (lo zero che amo chiamare 'forse non tutti sanno che', anche qui provare per credere). Purtroppo non sempre è facile ottenere gli zeri di una funzione; un modo per risolvere il problema è quello di invertire la funzione (vedi ??), ma non aspettatevi di trovare in genere TUTTE le soluzioni. :(

Tutto ciò che si può dire è che si ottiene una relazione nella forma h(x) = 0, dove non sempre è facile estrapolare le x per cui h si azzera. Non saprei darvi dei trucchi, poiché la soluzione va vista caso per caso; se la funzione è facile, la soluzione è facile; se è media, la soluzione di solito è abbastanza facile (per esempio: $f = \frac{\sin(x)}{x}$); se è molto difficile, la soluzione è ancora più vantaggiosa: nemmeno il vostro prof la saprebbe risolvere e quindi di certo non ve lo chiede. Come vedete, in ogni caso ce l'abbiamo fatta.

Esempio. La funzione 'sommatré' incontra l'asse delle x nel punto -3.

Il secondo caso è talmente facile (non sto scherzando) che la maggior parte degli studenti ci si perde (secondo il motto 'più la soluzione è vicina più è difficile da vedere'). Esso pone la domanda: Per quali y la x vale zero?' Ma attenzione: noi abbiamo una funzione 'esplicitata' per dirci a quale x corrisponde quale y. E' in generale difficile dire quali x producono 0 (ad esempio), ma è facilissimo dire cquale y è prodotta da 0!!! Quindi, è sufficiente mettere 0 nella scatola magica e vedere cosa viene fuori; qua sì che abbiamo la certezza che il risultato sarà esistente (purchè la x data appartenga al dominio) e unico.

3.3.3 Massimi e minimi

Un'altra cosa importantissima per qualunque funzione sono i punti in cui questa smette di crescere cominciando a scendere, e viceversa. Purtroppo per fare questo tipo di studio occorre conoscere derivate (5.5.1, pag. 33) e limiti (4.2, pag. 27): rimando fortemente a questi capitoli prima di procedere con la lettura.

Dando ora per scontato che sappiate derivare meglio che allacciarvi le scarpe, dirò qualche cosa sulla connessione tra derivate e massimi (o minimi, che è la stessa cosa¹³: quando in una funzione si azzera la derivata è

 $^{^{13}}$ Ai matematici piace parlare così: se Dio vi dà in mano il modo di tirar fuori un

molto probabile che sia un punto di massimo (49.5%) o minimo (49.5%), ma può essere anche nessuno dei due (1%). Per saperlo con esattezza, occorre ispezionare meglio la funzione con le derivate successive; il modo esatto se ben ricordo è (e lo percorreremo con un esempio):

- 1. Prendere la funzione. Ad esempio $f(x) = x^4 + 2x^3 + 4$
- 2. Derivarla e calcolare gli zeri (chiameremo questi valori estremanti); $f'(x) = 4x^3 + 6x^2$ nell'esempio vien fuori $x_1 = 0; x_1 = 0; x_2 = -frac32$
- 3. Calcolare la derivata seconda e vedere quanto vale f'' per ciascuno degli estremanti: $h_i = f''(x_i)$. $f''(x) = 12(x^2 + x)$; $f''(x_1) = 0$; $f''(x_2) = 9$.
- 4. Per tutti gli estremanti con derivata seconda non nulla, siamo a posto: $f''(x_i) > 0$ implica che l'estremante x_i è effettivamente un minimo, mentre se la derivata è minore di zero lo lascio alla vostra immaginazione. Se la derivata è nulla è un grosso guaio (quell'1% di cui vi parlavo). In tal caso occorre procedere con le derivate successive. ¹⁵
- 5. (Caso sfortunato) Per ogni estremante che ha derivata seconda nulla, esso può essere: flesso (98%), massimo (1%) o minimo (1%). Cosa vuol dire flesso? Vuol dire che se tagliate la funzione nelle parti sinistra e destra e date i grafici delle due metà a due passanti a caso (possibilmente laureati in matematica), uno dei due vi dirà che l'avete tagliato intorno a un minimo, l'altro vi dirà che l'avete tagliato intorno a un massimo. Per vedere cosa sia, dovete fare la derivata terza (tranquilli, se siete sfortunati abbastanza potreste dover andare avanti fino alla derivata centesima). Se è non nulla, è un flesso e siamo a posto. Se è nulla, ricominciamo daccapo con la derivata quarta; se non è nulla abbiamo massimo o minimo (esattamente come con la derivata seconda); se è nulla avanti con la quinta: si ripete il caso sfortunato in cui però dovete sommare due agli ordini delle derivate. $f'''(x_1) = 24x_1 = 0$: non è un flesso, purtroppo, quindi si va avanti con f''''(x) = 24. Eccoci alla fine del calvario: il punto (0;4) è un minimo. Nella mia vita mi è capitato una volta un caso come questo, e u altro

massimo da ogni funzione, non avete bisogno d'altro: per il minimo basta studiare la funzione -f(x): meditare, gente.

¹⁴Scusate la pignoleria: abbiam detto che la molteplicità degli zeri è importante, quindi ve lo rimarco; ma il punto è sempre uno e uno solo, quindi diamogli un nome solo, no?

 $^{^{15}}$ Trucchetto che uso io per ricordarmi a memoria che f''>0 è minimo e f''<0 è massimo: prendo la funzione $f(x)=x^2$. E' una parabola che conosco a memoria: ha il culetto nell'oriegine e si protende verso l'alto quindi in (0;0) ha un minimo. La derivata prima è 2x (che ci dà ovviamente x=0) e derivata seconda f''=2 che è sempre positiva. Dunque positivo \iff minimo. Spero vi aiuti, ma ora che la scrivo non so quanto sia mnemonica...

centinaio di volte di potermi fermare alla derivata seconda. Ma dovevo prepararvi al meglio no? Spero di non aver generato confusione.

Limiti notevoli

Se dovete stuudiare una funzione che non è definita in un punto (come $\frac{1}{x+1}$) o non è definita a partire da un certo punto (ad esempio $\log(x)$) è opportuno che vi calcoliate il limite della funzione nel punto d'interesse; nel primo caso, è il punto 'fuori dominio' (nell'esempio -1): , nel secondo è il primo punto (da sinistra o destra) fuori dominio (nell'esempio 0).

3.3.4 Aree e integrali

A volte vi si potrebbe chiedere di calcolare una l'area di una porzione di piano che abbia vagamente a che fare col vostro grafico. In tal caso, l'integrale della funzione (se non lo sapete calcolare, andatevelo a studiare a ??, pag. ??) può tornarvi molto utile. L'unica cosa da sapere è che, se f(x) è la vostra funzione e F(x) è una sua primitiva, vale la relazione:

$$A_R = F(b) - F(a) \left(= \int_a^b f(\xi) d\xi \right),$$
 (3.37)

dove A_R è l'area del rettangoloide delimitato dai seguenti 4 punti: $A \equiv (a;0)$, $B \equiv (b;0)$, $C \equiv (b;f(b))$, $D \equiv (a;f(a))$. Si chiama rettangoloide poiché ha 3 lati belli dritti più uno completamente curvo; esso è l'area del luogo dei punti che stanno in verticale tra 0 e f(x) nel percorso orizzontale che va da a b. 16

3.4 Altro sulle funzioni

In questa sezione verranno descritte caratteristiche interessanti sulle funzioni che non potevano essere messe nei capitoli precedenti.

3.4.1 Relazioni

E' brutto definire una funzione senza aver definito una relazione, poiché quest'ultima nasce concettualmente prima. Vediamolo con un esempio:

$$x^2 + y^3 - 2xy = 0 (3.38)$$

 $^{^{16}}$ In realtà questo non è corretto: l'integrale è talmente bravo che conta le aree come negative se f va sotto l'asse delle x, e positive altrimenti. Con ciò potreste anche ritrovarvi (e succede spesso, fidatevi) con l'area di due triangoloni - uno sotto l'altro sopra l'asse x - che ammonta a zero! Per evitare questi errori, dovete spezzare l'integrale in più pezzi, anzichè su [a,b], su $[a,x_1]$, $[x_1,x_2]$, ..., $[x_n,b]$, dove i vari x_i sono i punti in cui la funzione si annulla, e prendere di ogni area il valore assoluto.

Questa equazione definisce un insieme di punti del piano (coppie (x;y)). In particolare un punto $P(x_0;y_0)$ appartiene a questa curva se e solo se, mettendo i numerini x_0 e y_0 nella parte sinistra dell'equazione viene fuori 0! Esempio: (0;0) fa parte della equazione, mentre (7,6) non appartiene (provare per credere: 49 + 216 - 84 non fa 0, purtroppo)

3.4.2 Funzioni inverse

Data una qualunque funzione f, la funzione inversa g di una funzione f è una funzione ad essa 'complementare' che ha il seguente scopo: se f mangia x e sputa y, g dev'essere in grado di mangiare quella y e sputare di nuovo x. Vi assicuro che questo non è un compito facile, e infatti invertire una funzione non sempre è possibile. Vediamo alcune funzioni:

$$f_1: y = x + 3; \ f_2: y = 41; \ f_3: y = x^2 + 1; \ f_4: y = 2x; \ f_5: y = \frac{9}{5}x + 32;$$

$$(3.39)$$

Diamo intanto un nome alle quattro funzioni per poterne parlare meglio: nell'ordine le chiameremo 'sommatré', 'quarantuno', 'Pippo', 'doppiodi' e 'c2f'^{17}. Vediamo: 'doppiodi(8)=16', hmmm... sì, direi che torna. A dir il vero avrei potuto chiamare 'Pippo' col nome 'unopiuquadratodi': ho scelto Pippo così quando vi troverete a un esame a studiare $f = \frac{e^{x+3}+1}{x^3+\log(x)}$ non vi sentirete costretti a terminare l'inchiostro con 'segnodifrazioneconalnumeratoreesponenzialediicspiùtreiltuttopiùunoealdenomminatorexallatrepiùlogìcs' e potrete usare un simpatico 'Luisa'.

Il modo più facile per trovare la funzione inversa è non ragionarci (se no saremmo uomini, e non macchine), fare un'operazione che in matematica non ha pari quanto a inutilità ma che aiuta l'uomo per i secoli di preconcetti sui simboli: invertire il simbolo x col simbolo y. ¹⁸.

$$g_1: x = y+3;$$
 $g_2: x = 41;$ $g_3: x = y^2+1;$ $g_4: x = 2y;$ $g_5: x = \frac{9}{5}y+32;$ (3.40)

Chiamiamo pseudoinversa la schifezza che viene fuori (dico schifezza poiché non necessariamente viene fuori una funzione) ricavando la nuova y (che era la vecchia x) in funzione di x (la vecchia y). Portiamo come si suol dire 'a sinistra' la y:

$$g_1: y = x-3;$$
 $g_2: y = ????;$ $g_3: y = \pm \sqrt{x-1}; g_4: y = \frac{x}{2}; g_5: y = \frac{5}{9}(x-32);$ (3.41)

¹⁷La quinta è un tipico caso di funzione che ha un'utilità nella vita vera, ma voglio lasciare un'aura di mistero su di essa e sul perché del nome

¹⁸E se non credete a quanto vi ho detto ditemi che figura geometrica corrisponde all'equazione $y = ax^2 + bx + c$ e quale a $b = xa^2 + ya + z...$ eheheeh.

Ehi, ma che succede? La funzione g_2 non ha una y: come la porto a sinistra?!?!? E g_3 ? Non mi piace mica tanto: prima per ogni x veniva fuori qualcosa, ora invece per alcune x ha un valore doppio, per altre non ha proprio valore! Che casino!

Ebbene, questo è ciò che vien fuori a usare la matematica col'pilota automatico'. Vediamo di ragionare su ogni funzione. Vediamo intanto le funzioni 'ben educate': g_1 è diventata la funzione 'sottraitré', g_4 è 'metàdì' e g_5 la chiamo f_2 c (soddiabbolico, lo so).

Perché g_2 e g_3 non si comportano bene? La definizione di funzione era semplice: per ogni cosa che mangi devi sparare fuori uno ed un solo valore e sempre lui. Se f_2 sputa fuori 41 qualunque cosa le si dia in bocca, allora g_2 dovrà per forza fare una dieta a base di 41, per sua stessa definizione: queso vuol dire che g_2 avrà come dominio il solo numero 41 (in matematichese si scrive $\mathcal{D} = \{41\}$) e come codominio tutto \mathbf{R} . Ma questo è impossibile, e lo si vede dal fatto che se il vostro cuginetto vi chiede quanto vale $g_2(41)$, voi non potrete rispondergli se non in maniera zen: essa vale tutto e niente. Tra gl'infiniti punti che g_2 tocca, se vogliamo renderla una funzione, dobbiamo sceglierne uno solo. Propongo 5040, dato che ha un valore affettivo per me. Ecco dunque che g_2 , definita come $g_2(x) = 5040, x \in \{41\}$, è ora una funzione. Se vi divertite a re-invertirla non otterrete f_2 , come potreste aspettarvi, ma otterrete qualcosa di vagamente simile: ovvero una restrizione di f_2 ad un dominio che le consenta di essere invertibile (ovvero la sola x = 5040).

Veniamo ora a g_3 che, essendo più difficile da calcolare, è paradossalmente molto più facile da capire ¹⁹. Siamo d'accordo che non ha valori
per x < 1. Dunque il dominio di g_3 è $\mathcal{D}_{\ni} = \{x | x \ge 1\}$. Altro problema
è quello del '±': è necessario infatti battezzare uno dei due, e per farvi
capire che nessuna scelta ha una dignità rispetto all'altra lancerò un dado:
1,2,3: più, 4,5,6: meno. E' uscito 6, quindi scelgo meno. Ecco dunque che $g_3 \doteq -\sqrt{x-1}$ (con $x \in \mathcal{D}_{\ni}$) è una funzione inversa di f_3 .

Cosa abbiamo imparato? Che invertire una funzione f è fattibile solo se prima si restringe il dominio di f 8a propria scelta) in modo che essa sia iniettiva/suriettiva NOTA RICnon mi ricordo mai quale dei due!.

3.4.3 Funzioni di più variabili

Le funzioni di cui abbiam parlato finora sono le funzioni di singola variabile. Esse sono le più interessanti poiché si parte da esse per studiare le altre. Sappiate però che esistono anche funzioni di più variabili, come ad esempio:

$$f(x,y) \doteq x^2 + 3y^2 - 8 \tag{3.42}$$

 $^{^{19}}$ Se non ci credete, chiedete a uno studente universitario di disegnarvi la funzione sin(x) e la funzione 5: di solito avrà meno problemi a disegnare la prima! Oppure vi chiederà se non vi siete sbagliati a scrivere la seconda!

Esse sono, in generale, funzioni che hanno bisogno di mangiare più variabili per sputarne fuori una sola. La più famosa credo sia $f(x,y) \doteq x + y$ che in Italia e in altre nazioni viene chiamata somma, ma essa ha la stessa dignità di x-y (differenza), x/y (rapporto), x^2+y^2-1 (circonferenza goniometrica) e $e^{x^2+y^2}$ (collinetta di Gauss). Sinceramente, l'ultima è quella che preferisco. Da notare che in generale $f(x,y) \neq f(x,y)$, e lo potete notare dalla funzione differenza. Poco importa se in quasi tutti i miei esempi ciò vale: chiamatela coincidenza; in realtà l'uomo fa fatica a sparare cose davvero a caso, pure quando ci si impegna. Davvero.

3.4.4 Funzioni composte

Le funzioni composte sono funzioni di funzioni. Se f e g sono due funzioni e c'è compatibilità tra il codominio di g e il dominio di f, allora definiamo $h \doteq f \circ g$ come quella funzione che associa a ogni x il valore f(g(x)). Perchè c'è un problema di dominio? E' un semplicissimo problema di dieta: se g è onnivoro e sputa fuori di tutto, mentre f è vegetariana esisterà probabilmente una x che g trasforma in carne, e f non può mangiarla. L'unico modo è restringere il dominio di g a quelle sole x che - trasformate in y da g - non possano essere indigeste per f. Il vincolo, in matematichese è che $\mathcal{Y}_g \in \mathcal{X}_f$. I domini non devono coincidere: non c'è alcun problema, infatti, se f è onnivoro ma g gli passa soltanto verdure.

Molti miei conoscenti fanno confusione con le funzioni composte. Vediamo di fare qualche esempio, definendo alcune funzioni e chiamandole per nome (rispettivamente 'sommauno', 'cinque', 'Pippo', 'raddoppia'):

$$f_1: y = x + 1;$$
 $f_2: y = 5;$ $f_3: y = x^2 + 1;$ $f_4: y = 2x;$ (3.43)

Proviamo a giocherellare con le 16 combinazioni possibili, vi va?

```
f_1(f_1)
            sommauno(sommauno(x)) = x + 2;
                                                   (sommadue)
f_1(f_2)
            sommauno(cinque(x)) = 6;
                                                   (sei)
            sommauno(Pippo(x)) = x^2 + 2;
                                                   (Pluto)
f_1(f_3)
            sommauno(raddoppia(x)) = 2x + 1;
                                                   (unopiudoppiodi)
f_1(f_4)
            cinque(sommauno(x)) = 5;
f_2(f_1)
                                                   (cinque)
            cinque(cinque(x)) = 5;
f_2(f_2)
                                                   (cinque)
            cinque(Pippo(x)) = 5;
                                                   (cinque)
f_2(f_3)
           cinque(raddoppia(x)) = 5;
f_2(f_4)
                                                   (cinque)
           Pippo(sommauno(x)) = x^2 + 2x + 2;
                                                   (Paperino)
f_3(f_1)
           Pippo(cinque(x)) = 26;
                                                   (ventisei)
f_3(f_2)
          Pippo(Pippo(x)) = x^4 + 2x^2 + 2;
f_3(f_3)
                                                   (Paperone)
f_3(f_4)
           Pippo(raddoppia(x)) = 4x^2 + 1;
                                                   (Minny)
           raddoppia(sommauno(x)) = 2x + 2;
                                                   (duepiudoppiodi)
f_4(f_1)
           raddoppia(cinque(x)) = 10;
                                                   (dieci)
f_4(f_2)
           raddoppia(Pippo(x)) = 2x^2 + 2;
f_4(f_3)
                                                   (Qui)
f_4(f_4)
            raddoppia(raddoppia(x)) = 4x;
                                                   (quadruplica)
                                                                  (3.44)
```

Secondo il solito famoso 'principio inverso della semplicità', la funzione 'cinque' è quella più dispotica e più difficile da usare. Notate che la funzione meno intuitiva, Pippo, è quella responsabile della nascita di un'intera famiglia di funzioni non intuitive (che ho chiamato in modo simile a lui). Molte persone confondono la 'composizione' di funzioni con il prodotto; non poche volte ho visto porre $f_1(f_1(x)) = (x+1)^2$. Se date un nome alle funzioni come faccio io, questi errori dovrebbero capitarvi di rado. Si noti che in generale $f \circ g \neq g \circ f$.

Cosa risulta dalla composizione delle funzioni 'sommauno' (x+1) e 'togliuno' (x-1)? E dalla composizione di 'raddoppia' (2x) e 'dimezza' $(\frac{1}{2})$? Qual è l'elemento neutro della composizione?

Chapter 4

Trigonometria

Come diceva il mio prof di Analisi 3, la trigonometia serve solo a 3 categorie di persone: ai navigatori, agli astronomi, e agli scrittori di libri di trigonometria.

A parte la battuta, la trigonometria è qualcosa di molto utile nell'analisi (meno nella vita di tutti i giorni, temo) e merita un capitolo a sé.

4.1 Seni & co.

Per capire questo paragrafo vi consiglio vivamente di armarvi di carta e penna, o carta e matita, insomma di scrivibile e scrivente.

Il mattone fondamentale della trigonometria è - a mio dire - la funzione $\sin(x)$. La funzione coseno è molto simile alla funzione seno (così come seni e sederi sono due caratteristiche indissolubili in una donna), e ha quindi più senso entrare nel merito della prima per poi vedere le affinità con la seconda. Prendete carta e matita e disegnate una circonferenza di raggio 1 sugli assi cartesiani con centro nell'origine $=\equiv (0,0)$. Se l'avete disegnata bene, osserverete che essa interseca gli assi nei punti $E\equiv (1,0)$, $N\equiv (0,1)$, $W\equiv (-1,0)$ (ovest), $S\equiv (0,-1)$. Prendete una semiretta che parte dall'origine e taglia il primo quadrante circa a metà, ma abbastanza bassa (in modo che l'angolo $E\stackrel{\wedge}{O}P$ sia di circa 30). Chiameremo θ l'angolo tra la semiretta per \overrightarrow{OP} e la semiretta per \overrightarrow{OE} . La funzioen seno è definita come l'altezza del punto P al variare dell'angolo θ (e il coseno ne è l'ascissa). Segue direttamente dalla definizione che il punto P, al variare di θ , varrà: $P\equiv (\cos(\theta),\sin(\theta))$. L'angolo θ (e qui davvero non chiedetemi il perché) viene posto a zero nel punto E, e si muove in senso antiorario.

Non credete mi sia dimenticato di voi, prendete carta e matita e disegnate i tre punti notevoli che vi dirò: tagliate il primo quadrante in due parti uguali (quindi θ vale 45) e intersecatelo con la circonferenza goniometrica. Tagliatelo ora in 3 parti uguali, tagliando sempre il quadrante di nordest con angoli di 30 e 60. I tre punti in cui la circonferenza taglia la bisettrice e le

due 'trisettrici' li chiameremo A, B, C partendo da est e arrivando a nord. Dalla definizione di θ che vi ho dato, gli angoli relativi ai tre punti sono, rispettivamente, 30,45,60. Dato che le cose son troppo facili, vi devo dire che i matematici non ragionano in gradi. L'angolo naturale che si usa (e con ottime ragioni) è il radiante, che vale $\frac{180}{\pi}$ (circa 57,3). Se pensate che 180 sian 3,14 radianti non vi passerà mai, quindi vi do un consiglio: dimenticate la parola radiante e fate finta che l'angolo si misuri in 'pigrechi': un angolo giro son due pigrechi, un angolo retto è mezzo 'pigreco', e un angolo piatto è un pigreco esatto (to', che coincidenza). Cosa ulteriore, all'occorrenza un 'pigreco' vale esattamente quanto il π che avete conosciuto alle medie; ma per ora dimenticatevene, fate finta che sia un'altra cosa. Se proprio non vi piace come atteggiamento, chiamate π radianti 'un gradone'; e adottate come suo simbolo π : così vi ho fregati di nuovo. Attenti, metà degli errori che si fanno con la trigonometria nascono da quanto poco sia intuibile un radiante, quindi perdeteci qualche minuto...

Adesso prendete E, A, B, C, N e calcolatemi i valori delle x e delle y. E' molto facile, perciò calcolatevelo e imparatevi a memoria questi valori. Allora, vi aiuto: E e N sono dati dall'inizio; BOE è un bel triangolo rettangolo isoscele; ne conoscete l'ipotenusa ma non i cateti (la cui lunghezza poniamo uguale a x). Come calcolarlo? Usiamo pitagora, sapendo che l'ipotenusa è unitario: $x^2 + x^2 = 1^2 \longrightarrow x = \frac{\sqrt{2}}{2} \simeq 0.707$. Ora veniamo ad A: OAA' (con A' proiezione di A sul lato di sud est della circonferenza) è un triangolo equilatero, lo si vede dagli angoli. Ma allora, l'ipotenusa è noto, l'altezza di AA' è sempre unitaria, manca solo l'ascissa di A che è l'altezza di triangolo equilatero. Si ricava che $y_A = \frac{1}{2}$ (poiché è metà di AA') e con pitagora possiamo anche scoprire x_A : $x^2 + (\frac{1}{2})^2 = 1^2 \longrightarrow x_A = \frac{\sqrt{3}}{2} \simeq 0.866$ (il famoso apotema del triangolo, pensa che coincidenza!). Mettendo insieme i valori, otteniamo che:

$$E \equiv (1;0); \theta = 0$$

$$A \equiv (\frac{\sqrt{3}}{2}; \frac{1}{2}); \theta = \frac{\pi}{6}$$

$$B \equiv (\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2})\theta = \frac{\pi}{4}$$

$$C \equiv (\frac{1}{2}; \frac{\sqrt{3}}{2})\theta = \frac{\pi}{3}$$

$$N \equiv (0; 1)\theta = \frac{\pi}{2}$$
(4.1)

Negli altri quattro quadranti i valori sono gli stessi, solo che cambiano i segni (nella metà sud il seno è negativo, nella metà ovest il coseno è negativo). Ci sono molte cose da notare: vediamone alcune. Anzitutto, seno e coseno si scambiano al passare dei 45: i valori a 30 sono gli stessi di 60 e state tranquilli che lo stesso vale anche tra 20 e 70 (sebbene sian valori un po' più ostici da calcolare); ehi, ma se questa proprietà è vera, seno e coseno devono essere per forza uquali in 45! E infatti è così 1! Altra cosa:

¹Riflettete su questa cosa, se avete un minuto.

gli angoli in natura sono piccoli (ho fatto molti studi psicologici alla Peter Vienkmann e vi posso assicurare che se chiedete a qualcuno di disegnari un angolo questo sarà dannatamente vicino a 30); se è vero che nella vostra vita avete in mente angoli piccoli, avete in mente coseni molto grandi (tra 0,8e0.9) e seni piccoli (tra 0.3e0.5). Questo discorso è effettivamente da pazzi, ma vi aiuterà (spero) quando vi troverete a confondervi tra seni e coseni all'esame. Ricordate: per angoli piccoli il coseno è tanto e il seno è piccolo; e di solito è il seno che più si avvicina alla metà ed è il più sensibile alle variazioni (ovvero se variate di poco l'angolo, il seno varierà di più in proporzione². Per quanto riguarda i segni, ricordate che il seno è negativo per angoli che vanno da 180 a 360, mentre i coseni son negativi da 90 a 270³. Ricordate che il 90% degli errori nella trigonometria sono nei segni o nella confusione tra seno e coseno, mentre il 999% rimanente sta negli errori di scrittura.

Quanto vale circa il seno di 40? E il seno di 40? Non dico di dirmi i valori esatti, ma a occhio? Riuscite ad abbozzare un valore senza calcolatrice e poi vedere se avete sbagliato di molto? Lo zio Ric vi consiglia di perderci qualche minuto, è davvero istruttivo.

4.2 Altro

Ci sono altre funzioni trigonometriche; le più interessanti sono la tangente $(=\sin(x)/\cos(x))$, la secante $(\frac{1}{\cos(x)})$ e la cosecante $(\frac{1}{\sin(x)})$. in tanti anni non ho mai trovato alcuna applicazione pratica a secanti e cosecanti, quindi non m'impegnerò a trovare qualche rilevanza. La tangente, invece è importantissima e sarebbe opportuno studiarla un po'. Essa è periodica di periodo π , e tende all'infinito nei suoi estremi più famosi $(\pm \pi/2)$. Se v'interessa, la sua funzione inversa (l'arcotangente) è una delle mie funzioni preferite e si usa abbastanza nell'elettronica. Credo sia la funzione più educata seppur elegante che io conosca.

²Poiché a mio parere questa regola potrebbe salvarvi ad un esame di Analisi o soprattutto di Meccanica Razionale, vorrei darvi una regola per ricordarvela a vita: "Se vedete una donna con il seno piccolo e il culo (= coseno) grosso, vi girerete poco per guardarla (= angoli piccoli)". Come esempio fa schifo, lo so, ma ho visto troppi amici cadere per un errore di segno o di angolo in trigonometria, quindi mandatelo a mente.

³Anche qui, regola mnemonica (e non importa che sia vera o meno): "Le scandinave (=nord) hanno un bel seno, e le russe (=ovest) hanno un bel sedere".

Chapter 5

Limiti

Questo paragrafo spiega il difficile (almeno a mio parere) e antintuitivo concetto di limite. Esso è propedeutico al concetto di derivata ed integrale, per esempio, e consiglio di familiarizzare coi limiti prima di procedere con argomenti che li usano.

5.1 Limiti: un'introduzione

I limiti sono a mio parere uno dei più potenti e interessanti costrutti umani per l'analisi matematica; con ciò voglio dire che grazie ad essi si va molto lontano, ma sono anche convinto che se degli extraterrestri inventassero un loro sistema di matematica non potrebbero vivere senza interi, reali, derivate e funzioni questi potrebbero però benissimo andare avanti senza la nostra definizione di limite. E' una mia impressione: trattatela come tale.

Vediamo di iniziare con un esempio. Prendiamo la funzione:

$$f(x) = \frac{x^2 - 4}{x - 2} \qquad \left(= \frac{(x+2)(x-2)}{x-2} \right)$$
 (5.1)

Attenti! Non barate! So che vi verrà la tentazione di dire che f(x) = x + 2, ma a essere esatti la cosa non vale. Se facciamo un piccolo studio di funzione, ci persuadiamo subito che la funzione non è definita per x = 2, mentre in ogni altro punto essa vale f(x) = x + 2 (il che dimostra che non avete ancora completamente dato di matto). Questo capitolo serve a creare una base teorica per poter dire la seguente, rilassante frase: "La funzione f non è definita in 2, ma se la differenza tra x e 2 è piccola, f si avvicina molto a 4". Sembra banale ma, come diceva il mio professore di Analisi III, "Sono 50 anni che faccio matematica e nessuno mi ha mai spiegato cosa voglia dire piccolo". Anzitutto provare per credere (calcolatrice alla mano, se vi serve):

$$f(1.9) = 3.9$$

$$f(1.99) = 3.99$$

$$f(1.9999) = 3.9999$$

$$f(2) = ?!?$$

$$f(2.0001) = 4.0001$$

$$f(2.01) = 4.01$$
(5.2)

La tentazione che mi viene è di mettere un cerotto a f e creare una funzione simile (chiamiamola f o f_{rep}) che viene 'riparata' nel punto di discontinuità (nel nostro caso la f_{rep} varrebbe proprio x+2, esattamente come vi sareste aspettati).

5.2 Limiti: definizione

Diremo che:

$$\lim_{x \to x_0} f(x) = y_0 \tag{5.3}$$

(che si legge 'limite per x che tende a x_0 di f(x) è y_0 ') se vale la seguente condizione:

$$\forall \epsilon > 0 \exists \nu_{\epsilon} : \{ |x - x_0| < \nu_{\epsilon} \Longrightarrow |f(x) - y_0| < \epsilon \} \tag{5.4}$$

Lo so, lo so, suona assolutamente incomprensibile; vediamo di capirlo; anzitutto chiamiamo $P_{incriminato} \doteq (x_0; y_0)$. Detto ciò, potete asserire che il limite di f in x_0 è y_0 con assoluta certezza solo se, comunque un antipatico (che chiameremo Andrea poiché ne condivide l'iniziale) fissi una ϵ 'piccola a piacere', voi siete in grado di trovare una ν in funzione di ϵ tale che se la funzione dista in orizzantale da P meno di quanto avete detto voi, essa dista pure in verticale meno di quel che vi ha detto Andrea. In altre parole, ϵ è il ΔY massimo che Andrea accetterà, e ν_{ϵ} è il ΔX massimo, dettato da voi, intorno al quale la funzione si comporterà così bene da non uscire dai limiti (che brutta parola!) imposti da Andrea.

Notiamo anzitutto una cosa: la definizione di limite non aiuta a scoprire quanto un limite valga, bensì a verificare se esso tenda effettivamente a un certo valore. Ovvero: se un uccellino vi dice che $\lim_{x\to 5} f(x) = 7$, potete verificare se l'uccellino abbia ragione o torto; ma questa definizione non vi aiuta assolutamente a capire quanto sia $\lim_{x\to 5} f(x)$: se 7,8,9, o $-\pi$.

Vediamo di usare questa definizione per verificare la funzione definita all'inizio del capitolo (??, pag. ??). Anzitutto concorederete con me che calcolare il limite in un punto diverso da 2 sia possibile ma alquanto inutile: non serve la potenza dei limiti dato che la funzione fuori da 2 è definita in modo semplice.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4 \tag{5.5}$$

Vediamo se è vero applicando la definizione:

$$\forall \epsilon > 0 \exists \nu_{\epsilon} : \{ |x - 2| < \nu_{\epsilon} \Longrightarrow \left| \frac{x^{2} - 4}{x - 2} - 4 \right| < \epsilon \}$$

$$\left| \frac{x^{2} - 4 - 4(x - 2)}{x - 2} \right| < \epsilon \longrightarrow \left| \frac{x^{2} - 4x + 4}{x - 2} \right| < \epsilon$$

$$\left| \frac{x^{2} - 4x + 4}{x - 2} \right| < \epsilon \longrightarrow \left| \frac{(x - 2)^{2}}{x - 2} \right| < \epsilon$$

$$\left| x - 2 \right| < \epsilon$$

$$(5.6)$$

Ora che abbiamo semplificato, è il turno di Andrea a fissare un ϵ (errore massimo voluto): diciamo che lui dica 0.1 (un decimo). Non è gentile con noi, poteva dire 10, ma dobbiamo abituarci a tali bassezze se vogliamo andare in giro orgogliosi a dire che il limite vale 4! Ora noi dobbiamo trovare un ν_{ϵ} che faccia valere la definizione. Ehi! Prendiamo la metà di quel che ha detto lui, 0.05 (mezzo decimo): dobbiamo mostrare la parte tra parentesi graffe dell'eq. 5.13:

$$|x-2| < \nu_{\epsilon} \Longrightarrow \left| \frac{x^2 - 4}{x - 2} - 4 \right| < \epsilon |x - 2| < 0.05 \Longrightarrow \left| \frac{x^2 - 4}{x - 2} - 4 \right| = |x - 2| < 0.1$$
(5.7)

Bè, chiamando |x-2| col nome 'Pippo', è dannatamente ovvio che se Pippo è minore di 0.05, allora Pippo sarà anche minore di 0.1! C'è però un problema: io vorrei andare a casa prima di sera, e invece con questa tecnica devo aspettare che Andrea si stanchi di sparare numeri sempre più piccoli! Lui potrebbe dire 0.01, 0.0000001, $\pi/10^{42}$, e io dovrei sempre andare avanti a dimostrare che so trovare un ν_{ϵ} che freghi il suo ϵ . Dobbiamo essere più furbi di così, dobbiamo inventarci una funzione (che con molta fantasia chiameremo $\nu(\epsilon)$ che ad ogni numero che ci dia Andrea associ un numero buono per fregarlo. Proviamo con $\nu(\epsilon) \doteq \frac{\epsilon}{2}$. Applichiamo la definizione:

$$|x-2| < \nu(\epsilon) \Longrightarrow |x-2| < \epsilon |x-2| < \frac{\epsilon}{2} \Longrightarrow |x-2| < \epsilon$$
 (5.8)

Direi che funziona: se Pippo è minore della metà di ϵ , a maggior ragione è minore di ϵ (attenti, questo vale solo perché $\epsilon > 0!!!$ Non sottovalutate i cavilli). D'ora in poi, possiamo mettere una segreteria telefonica, e ogni volta che Andrea telefona gli risponderà: "Quello che hai detto diviso due!", e così potremo anche uscire di casa a farci una birra, ogni tanto.

Attenzione, questa volta l'uccellino ha suggerito giusto (che f = 4), ma

se ci avesse detto 5?!? Proviamo, tanto per vedere.

$$\forall \epsilon > 0 \exists \nu_{\epsilon} : \{ |x - 2| < \nu_{\epsilon} \Longrightarrow |\frac{x^{2} - 4}{x - 2} - 5| < \epsilon \}$$

$$\left| \frac{x^{2} - 4 - 5(x - 2)}{x - 2} \right| < \epsilon \longrightarrow \left| \frac{x^{2} - 4x + 4}{x - 2} \right| < \epsilon$$

$$\left| \frac{x^{2} - 5x + 6}{x - 2} \right| < \epsilon \longrightarrow \left| \frac{(x - 2)(x - 3)}{x - 2} \right| < \epsilon$$

$$\left| x - 3 \right| < \epsilon$$

$$(5.9)$$

Adesso, Andrea - che si è fatto più gentile - ci dice: $\epsilon = 10$. Noi rispondiamo, ad esempio (tiro a caso), $\nu = 1$. Vediamo se funziona:

$$|x-2| < 1 \Longrightarrow \left|\frac{x^2-4}{x-2} - 5\right| = |x-3| < 10$$
 (5.10)

Direi che ci siamo: la parte di sinistra dice che x sta nell'intervallo [1,3] e per qualunque di questi valori direi che |x-3| sta abbondantemente sotto a 10. Ma aspettate a cantar vittoria: Andrea ci propone $\epsilon = 0.1$. Noi prendiamo un ν piccolissimo, diciamo 0.001. Vediamo che succede:

$$|x-2| < 0.001 \Longrightarrow |x-3| < 0.1$$
 (5.11)

Questa volta, $x \in [1.999, 2.001]$; è forse vero che per qualunque valore nel range dato x dista da 3 non più di 0.1?!? Certamente no: la distanza va da 1.001 a 0.999 e in ogni caso è ben più grande del valore datoci di Andrea! Siamo stati fregati! L'uccellino non ci ha detto la verità!

Dagli esempi visti, siamo stati in grado di dire che il limite e'4 e che il limite none'5, ma non abbiamo imparato a fare due cose: (1) a sapere che se è 4 non può essere nient'altro; (2) a scoprire che fa 4 senza l'aiuto dell'uccellino. La prima prendetelo come atto di fiducia, la sezonda sarà scopo del paragrafo successivo.

5.2.1 Limiti sinistrie destri

Nota: In realtà, per ogni funfione f e punto x_0 esistono due limiti, detti sinistro e destro; questo è molto importante poiché non sempre i due limiti coincidono (spesso sì, comunque). Vediamo la definizione di limite sinistro:

$$\lim_{x \to x_0^-} f(x) = y_0 \tag{5.12}$$

(che si legge 'limite per x che tende a x_0 di f(x) è y_0 ') se vale la seguente condizione:

$$\forall \epsilon > 0 \exists \nu_{\epsilon} : \{ x < x_0 \land |x - x_0| < \nu_{\epsilon} \Longrightarrow |f(x) - y_0| < \epsilon \} \tag{5.13}$$

Come semplice esercizio scrivete anche la definizione di limite destro. Una funzione f si dice avere limite in un punto x_0 se (1) esistono i limiti destro e sinitro e (2) coincidono.

5.2.2 Limiti e infinito

Vi ricordo che coi limiti l'infinito ha senso di esistere come non mai... la deifnizione cambia TBDS

5.3 Limiti notevoli

5.4 Derivate notevoli

x_0	f(x)	$\lim_{x \to x_0} f(x)$
0	x^n	0
1	x^n	1
$+\infty$	x^n	0

5.5 Limiti: uso pratico

Il modo migliore per affrontare i limiti è di em non sfruttare la definizione (che serve solo per le interrogazioni) ma adottare i trucchettini che v'insegnerò, quasi fossero dogmi (mica li ho inventati io, sia chiaro!).

Una volta trovati i limiti dei cosiddetti 'mattoncini', potrete usarli liberamente per trovare i limiti fi unzioni ben più complesse.

Trattiamo tutti i limiti 'notevoli' come esercizi, e poi mettiamoli alla fine in una tabella riassuntiva (che deprecabilmente fotocopierete e lillipuzianamente metterete negli astucci, ...).

$$\lim_{x\to 0} \log(x) =$$

5.5.1 Trucchi coi limiti

tbds

osppedale, deriva su e giù.

Chapter 6

Derivate

Questo capitolo tenterà di spiegare il concetto di derivata che è tanto importante per tutta l'analisi matematica. Esso esige come prerequisito una buona conoscenza delle funzioni come concetto e delle funzioni notevoli.

6.1 Cos'è una derivata

La derivata è una specie di 'lastra' della vostra funzione: è un aiuto che vi consente di comprendere meglio la funzione che state studiando. Buffamente, è essa stessa una funzione; mentre la vostra f(x) è qualcosa che associa ad ogni x una y che voi - o il vostro prof - ritenete interessante in quanto tale, la derivata (che chiameremo f') fornisce invece una ulteriore informazione su f stessa: non tanto il valore di f nel punto (per questa informazione basta f!!!!) quanto la sua variazione lì intorno a x. Ma facciamo un passo indietro.

definizione 2 1 (Andazzo) Definiamo andazzo di una funzione la pendenza media che ha una curva f(x) sull'intervallo [a,b] (possibilmente continua sull'intervallo stesso); poiché l'ho inventato io, lo definirò in maniera pignola; esso è un operatore che accetta in ingresso una funzione f e due numeri $a;b\in\mathcal{D}_f$: $\mathcal{A}nd[f(x);a;b]\doteq \frac{f(b)-f(a)}{b-a}$. Per comodità assumeremo b>a. Il suo significato pratico è di dire quant'è l'andamento medio di una funzione su un certo intervallo.

Vediamo di sfruttare questa definizione per qualche uso pratico. Supponiamo che abbiate investito il vostro danaro (diciamo $10 \in$). A gennaio investite quei 10 e nei mesi successivi mi trovate i seguenti soldi: (10,11,10,9,9,10,9,12,13,14,11,11). Come potete notare, a gennaio dell'anno dopo avete guadagnato soltanto $1 \in$, mentre qualche mese prima vi eravate illusi di guadagnare ben di più. Prima di parlare di derivate, vediamo una 36 Derivate

cosa: quanto vale f? Ciò è tutt'altro che banale. Poichè vi ho dato soltanto 12 punti, la cosa più corretta da dire è che f ha come dominio 12 punti (= $\{1,2,3,\cdot,12\}$) e come codominio i valori dati. Un altro approccio è di dire che la funzione è definita per tutti i giorni dell'anno, o addirittura per tutti i minuti dell'anno (basta vedere l'andamento di borsa dei vostri soldi minuto per minuto), ma di tutti questi valori son noti solo i dodici valori mensili. In generale, qualunque sia f, pensiamo che f passi per dodici punti noti: $(1;10),(2;11),(3;10),\cdots,(12,11)$. Ai matematici questa definizione puntiforme di solito piace poco. Esistono infinite funzioni passanti per quesi dodici punti, ma una delle più semplici è sicuramente (senza usare i sinc, per chi li conosce) il polinomio di grado 12 che passi per quei punti, che chiameremo P(x).

Ora vediamo di rispondere a qualche domanda: qual è stato l'andamento del nostro titolo su base annua? Qual è stato l'andamento del nostro titolo su tutto il primo mese? E su tutto l'ultimo mese? E quale l'andamento alle 14:30 ddell'8 Agosto? Per rispondere alle prime tre domande è sufficiente la definizione di andazzo, per l'ultima è opportuna la definizione di derivata; ma dato che gli esempi pratici sono molto difficili da usare in matematica, torneremo a un esempio assolutamente poco veritiero, innaturale e incomprensibile, ma la cui derivata sia facile da calcolare:).

Supponiamo che il vostro conto in banca valga $x(t) = 2t^2 + 3t + 10^4$. All'istante zero, in cui depositate i soldi, depositate 10 (per comodità pensiamo che siano migliaia di euro, ma potrebbero essere anche dollari altairiani). Per non rischiare di dire qualcosa di sensato, diciamo che l'unità di t sia il secondo; tanto per capirci, dopo 10 secondi che avete depositato i vostri soldi avrete già maturato da 10 di partenza 240 mila euro. Spero ciò vi persuada che siamo in un mondo diverso da quello reale.

Poniamoci un paio di domande, e per ciascuna di esse chiediamoci di che strumenti abbiamo bisogno per rispondere.

(1) Quanti soldi avremo tra un minuto? (2) Tra quanto tempo avremo 1000 soldi (una specie del nostro 'primo miliardo')? (3) Tra quanto tempo raddoppieremo i nostri soldi? (4) Quant'è l'andamento del mio conto nei primi dieci minuti? (5) Ma è conveniente investire in questa banca? Se sì, quando lo è e quando no?

Mettiamoci con carta e penna a risolvere le domande.

- (1) Abbiamo x(t), ed è più che sufficiente a rispondere; anzi direi che è nata proprio per lo scopo: "Quanti soldi abbiamo al tempo t?". La risposta è x(60) = 7200 + 180 + 10 = 7390. Tantini, direi...
- (2) Qua dovremmo usare la funzione inversa: è il tempo t_0 in cui $x(t_0) = 1000$. Calcoliamolo: $1000 = 2t_o^2 + 3t + 10 \longrightarrow t_0 = \frac{-3 \pm \sqrt{3^2 4 \cdot 2 \cdot (-990)}}{4}$.

¹Non sp
paventatevi: qui la variabile è il tempo mentre la vostra f or
a si chiama x. Scusate, ma è corretto pure così e dovrete pure abituarvi no? D'ora in po
i f si chiama 'ics' e x si chiama 'tì'. Lo so, sono cattivo!

Delle due soluzioni, entrambe sensate, prenderei quella positiva dato che per tempi minori di zero abbiamo l'imbarazzo di avere un conto altissimo in banca senza ancora aver depositato nulla: prodigi della matematica! Queste cose capitano spesso quando create di modellare la realtà con dei numeri; i numeri vi aiutano in tanti casi, ma spesso sono 'stupidi' e non danno per scontato quello che voi date per scontato. Io vi ho avvisati...

- (3) Questa domanda è una tipica domanda in cui buttate i dati in ua equazione e sperate che venga fuori qualcosa di sensato. Ci chiediamo il tempo t_1 in cui i nostri 10 son diventati 20, ovvero il tempo in cui semplicemente noi avremo 20, no? Ecco qua: $20 = 2t_1^2 + 3t_1 + 10$. Anche qui vengono fuori due soluzioni, di cui vi consiglio la positiva. non c'interessa calolcarla, solo capire che c'è e che significato ha...
- (4) Cos'è l'andamento? E' l'aumento (o diminuzione) del nostro capitale in un certo lasso di tempo. Il valore medio è quindi $\frac{\Delta x}{\Delta t}$. Ma allora la definizione di andazzo (def. 6.1, pag. 35) capita a puntino! Proviamo: $\mathcal{A}nd[x(t);0;600] = \frac{x(600)-x(0)}{600-0} = \frac{2\cdot600^2+3\cdot600+10-10}{600} = 600\frac{2\cdot600+3}{1} = 600\cdot1203 = 721800$. E senza calcolatrice! Qual è il significato pratico della risposta? Che mediamente sui primi 10 minuti si può dire che guadagniamo una media di 721800 \in al secondo. E infatti, se moltiplichiamo per 10' otteniamo proprio la nostra differenza di capitale tra ora e 10' da ora. E' importante notare due cose: primo, l'andazzo è diverso per intervalli diversi ma di stessa durata (se non ci credete calcolate l'andazzo tra 10' e 20', scommetto che sarà molto più grande); secondo, questo è un valore medio che 'smussa' i valori locali in favore di uno studio 'globale'².
- (5) Vediamo di riformulare la domanda: in quali istanti i soldi crescono e in quali i soldi calano? Se potessi calcolare questa cosa, potrei andare in banca appena prima di ogni ribasso e riportarglieli quando tornan su!!! Sarebbe una previsione molto interessante, no? Una errore comune è confondere la crescita dei soldi col segno della funzione. Questo è sbagliatissimo. Il segno di x(t) ci dice se siamo in attivo o in passivo. Ma la crescita o la decrescita del denaro ci è dato dalla derivata, che quindi ci dice quanto ci dobbiamo aspettare che cambi il nostro patrimonio nei brevissimi istanti successivi. Perché brevissimi? Vediamolo con la definizione.

definizione2 2 (Derivata) Sia data una funzione f(x) continua sull'intervallo [a;b]. Sia x_0 un punto interno a tale intervallo $(x_0 \in]a;b[)$. Definiamo la derivata di f nel punto x_0 come il valore:

$$\lim_{x \to x_0} \mathcal{A}nd[f; x_0; x] \doteq f'(x_0) \tag{6.1}$$

Poiché molti veterani potrebbero essere schifati dal mio operatore fatto in

 $^{^2}$ Se nel bel mezzo dell'intervallo perdiamo tutto, e dopo qualche tempo riguadagnamo tutto l'operatore $\mathcal{A}nd$ non se ne accorgerebbe: è in virtù di questa pecca che i matematici hanno inventato la derivata

casa (l'Andazzo) vi do ua definizione che non lo usa:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \doteq f'(x_0) \tag{6.2}$$

Notiamo intanto che la derivata non sembra essere una funzione, ma un semplice numero. Tranquilli, non vi ho ingannato. In realtà, per ogni x_0 su cui è definita f è definita anche f': potremmo definire la funzione derivata come la funzione che segue, punto per punto, i valori dati dalla definizione. Attenzione, però! La derivata non è necessariamente calcolabile su ogni punto su cui è definita f: su ogni punto deve esserci abbastanza spazio sia a sinistra che a destra affinchè il limite possa essere calcolato³. Un modo spesso più facile per definire la derivata è quella di non dire: "limite per x che tende a x_0 " ma di dire: "limite per $x = x_0 + h$ con h che tende a 0". Se ci pensate non cambia assolutamente nulla, ma i calcoli son spesso più semplici; in tal caso, abbiamo ottenuto non più $f'(x_0)$ ma già f'(x):

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \doteq f'(x) \tag{6.3}$$

Il significato fisico più semplice (e che non dovrete mai dimenticare) della derivata è: $f'(x_0)$ è sempre il valore della pendenza della retta tangente a f nel punto x_0 .

La derivata è, per nostra fortuna, sempre facile da calcolare (ciò non vale, ad esempio per gli integrali). Per ogni funzione 'notevole', esiste una funzione che di essa è la derivata. vediamo di ricavarne alcune; delle rimanenti daremo semplicemente la ricetta qià fatta.

■ Calcolare la derivata di $x(t) = 2t^2 + 3t + 10$, che chiameremo x'(t).

$$[rcl]x'(t) = \lim_{t \to h} \frac{f(t+h) - f(t)}{h} =$$

$$= \lim_{t \to h} \frac{(2(t+h)^2 + 3(t+h) + 10) - (2t^2 + 3t + 10)}{h} =$$

$$= \lim_{t \to h} \frac{2t^2 + 4ht + 2h^2 + 3t + 3h + 10 - 2t^2 - 3t - 10}{h} =$$

$$= \lim_{t \to h} \frac{4ht + 2h^2 + 3h}{h} =$$

$$= \lim_{t \to h} \frac{(h)(3 + 4t + 2h)}{h} =$$

$$(6.8)$$

$$= \lim 3 + 4t + 2h = \tag{6.9}$$

$$= 3 + 4t.$$
 (6.10)

affinché il limite sia calcolabile.

³Questo ha a che fare con i cosiddetti punti di accumulazione, di cui non parlerò. In generale, è sufficiente che esista un insieme [a, b] compatto che racchiuda il punto x_0

Semplice, no? Notate che le parti che non contenevano h si sono elise a vicenda (riflettete un attimo sul perchè), le parti che la contenevano di grado 1 (ovvero (3 + 4t)h) sono rimaste fino alla fine, mentre le parti che la contenevano di grado 2 sono state elise in quanto infinitesimi di ordine superiore.

Ora possiamo finalmente rispondere alla domanda (5): quanto è stiamo guadagnando in un certo momento? Nel momento in cui versiamo i soldi (tempo 0), il nostro patrimonio è crescente. Esso vale f'(0) = 3. Questo vuol dire che la pendenza della retta tangente a f nel punto 0 è 3, quindi vuol dire che in un istante piccolissimo a sinistra e a destra dello zero noi stiamo guadagnando 3 soldi (nell'esempio, $3000 \in)$ al secondo. Attenzione! Non vuol dire come potreste pensare che tra un secondo avrete esattamente 3 soldi in più 4 , ma qualcosa di comunque simile: vuol dire che tra un secondo avrete circa 3 soldi in più, tra $\frac{1}{1000}$ di secondo avrete circa $\frac{3}{1000}$ di soldi in più, tra $\frac{1}{1'000'000}$ di secondo avrete circa $\frac{3}{1'000'000}$ di soldi in più, e che questi 'circa' si avvicinano a realtà tanto più quanto più il tempo diventa piccolo. Vi sembra poco? Se sì, vi sbagliate di grosso.

Calcolare la derivata di $f(x) = x^n$ (con $n \in \mathbb{N}^+$). Per risolvere questa, occorre conoscere i binomi di Newton. Per essi

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}b^n,$$
(6.11)

Sapendo ciò, usiamo la definizione di derivata:

rimando a 9, pag. 49. Vi ricordo che:

$$D[x^n] = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h} =$$
 (6.12)

$$= \lim \frac{(x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + h^n) - (x^n)}{h} (6.13)$$

$$= \lim \frac{\binom{\binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + h^n}{h}}{h}$$
 (6.14)

$$= \binom{n}{1} x^{n-1} \tag{6.15}$$

$$= nx^{n-1} (6.16)$$

Anche qui, i termini di ordine h^2 o superiori sono morti, lasciandoci qualcosa di pulitissimo! La cosa più bella di questo risultato è che ora sapete
derivare ogni singolo pezzo di un polinomio, quindi in pratica sapete derivare
un polinomio (non è ovvio, dovete ringraziare il principio di multilinearità
della derivata che trovate in seguito).

 $^{^4}$ Questo perché in 0 la funzione f' vale 3, ma dopo mezzo secondo ha già un altro valore, e per sapere quanto avete dovete calcolare l'*integrale* di ques'andamento, che banalmente è la f stessa.

■ Provate a calcolare la derivata di e^x , $\log(x)$, $\sin(x)$. Attenti perchè il limite è fattibile ma richiede una buona 'cultura' supplementare ;)

6.2 Derivate notevoli

Funzione	Derivata		
x^n	nx^{n-1}		
$ax^n + bx + c$	$2ax + b^{\dagger}$		
$\frac{1}{r^n}$	$\frac{-1}{r^{n+1}}$		
\sqrt{x}	$\frac{1}{2\sqrt{\pi}}$ [†]		
$ax^{n} + bx + c$ $\frac{1}{x^{n}}$ \sqrt{x} $\sqrt[n]{x}(=x^{\frac{1}{n}})$ $\log_{a}(x)$ $\ln(x)$ $\ln x $ $\sin(x)$	$\frac{1}{n\sqrt[n]{r^{n-1}}}$		
$\log_a(x)$	$\frac{\log_a(e)}{e}$		
$\ln(x)$	<u>1</u> †**		
$\ln x $	$\frac{x}{\frac{1}{x}}$		
$\sin(x)$	$\cos(x)$		
$\cos(x)$	$-\sin(x)$		
$\tan(x)$	$\frac{1}{\cos^2(x)} (= 1 + \tan^2(x))$		
$\arcsin(x)$	$\frac{1}{\sqrt{1-x^2}}$		
$\arccos(x)$	$\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$		
$\arctan(x)$	$\frac{\frac{1}{x^2+1}}{x^2+1}$		
a^x	$a^x \ln a$		
e^x	$e^{x\dagger}$		
$\sinh(x)$	$\cosh(x)^{\dagger}$		
$\cosh(x)$	$-\sinh(x)^{\dagger}$		
tanh(x)	$\frac{1}{\cosh^2(x)}^{\dagger}$		
$arcsinh(x) (= ln x + \sqrt{x^2 + 1})$	$\frac{1}{\sqrt{1-x^2}}$		
$arccosh(x) (= ln x \pm \sqrt{x^2 - 1})$	$\frac{-1}{\sqrt{1-x_{\cdot}^2}}$		
$arctanh(x) (= \frac{1}{2}ln \frac{1+x}{1-x})$	$\frac{1}{x^2-1}^{\dagger}$		

(†): questa derivata può essere tranquillamente dedotta dalle altre (non è 'primitiva'); l'ho messa solo per comodità (leggasi pigrizia) vostra.

Le derivate più stupefacenti sono senz'altro quella del logaritmo e quella dell'arcotangente.. ricordatevene quando studierete gl'integrali selle funzioni polinomiali fratte ;)

Ho notato che molta gente ha paura a derivare \sqrt{x} e non dorme al pensiero di derivare $\sqrt[3]{x}$. Vi ricordo che la radice n-ma di qualcosa equivale, in campo reale, a un'esponenziazione: $\sqrt[n]{x} \equiv x^{\frac{1}{n}}$; ciò la riduce a godere delle proprietà di derivazione di qualsiasi polinomio!!!

6.2.1 Proprietà delle derivate

Multilinearità della derivata

$$D\alpha f(x) + \beta g(x) = \alpha f'(x) + \beta g'(x)$$

Tirerei gentilmente un pugno in faccia a chi desse per scontata la relazione seguente, e amabilmente chiederei a queste persone di dirmi quanto vale la derivata del prodotto di due funzioni... ebbene sappiate che non vale assolutamente la seguente: Df(x)g(x) = f'(x)g'(x). Alla faccia delle ovvietà.

Derivata del prodotto

$$Df(x)g(x) = f'(x)g(x) + f(x)g'(x)$$

Derivata del rapporto

Questa è davvero incasinata: $D\frac{f(x)}{g(x)} = \frac{f'g - g'f}{g^2}$

Se mai ve la doveste dimenticare (per esempio è facilissimo sbagliare il segno, cosa che succede se al numeratore invertite f con g), con un po' di tempo ve la potete ricavare, dopotutto è il prodotto di f e $\frac{1}{g}$, e la seconda è la funzione composta $\frac{1}{g(x)} = [\frac{1}{x}] \circ [g(x)]$.

Derivata di funzione composta

$$Df(g(x)) = f'(g(x))g'(x)$$

Attenti, la precedente è facilissima da enunciare, ma difficile da capire e applicare. Mi piacerebbe che i più bravini di voi deducessero dalla precedente equazione la seguente:

$$D_{q(x)}^{f(x)} = \frac{f'g - g'f}{g^2}$$

Oltre questa, potete dedurre anche le seguenti ⁵ (potete dedurle da voi; se avete 5 minuti. investiteli nel dedurre le seguenti):

$$De^{f(x)} = f'\dot{e}^f$$

$$D\log^{f(x)} = \frac{f'}{f}$$

$$D\sin^{f(x)} = f'\dot{\cos}(f)$$

$$D\sqrt{f(x)} = \frac{f'}{2\sqrt{f}}$$

State molto attenti alla derivata del logaritmo: d'ora in poi quando troverete $\frac{2x}{x^2+42}$ vi dovrà suonare un allarme, solo così diventerete dei bravi integratori.

⁵Dedurle da voi fa la differenza tra il ricordarle o meno al prossossimo esame: tutti sappiamo che al prossimo avrete i bigliettini; ma un giorno potrebbe servirvi in un esame in cui non credete che vi possa servire; è *li* che potrebbe tornarvi utile. Sono sinceramente convinto che la matematica che non sapete a memoria sia completamente inutile (ma non mi darete retta poiché voi volete solo passare esami, non sapere le cose, e vi capisco perché la pensiamo tutti così in un intorno sinistro dell'esame).

Calcolate le derivate di $\cos(f(x))$, $\arctan(f(x))$, $f(x)^x$, $f(x)^{g(x)}$. Attenti che le ultime due son difficilotte.

Derivata di funzione inversa

Anzitutto mettiamo in chiaro una cosa: la funzione inversa non è $\frac{1}{f(x)}$, come molti credono. E' in realtà la funzione che si estrare da f invertendo x e y; i grafici delle due funzioni sono speculari rispetto alla retta (y = x), se non ci credete quardate il grafico di e^x e della sua inversa ln(x).

Se io so la derivata di sin(x), non sarebbe bello se potessi usare una scorciatoia per avere la derivata di $\arcsin(x)$? Ebbene, la c'è!

$$Df^{-1}(x) = \frac{1}{f'(y)} \bigg|_{y=f^{-1}(x)}$$

 $Df^{-1}(x) = \frac{1}{f'(y)}\Big|_{y=f^{-1}(x)}$ Questo non è affatto banale: derivate f e la mettete al denominatore; ora avrete una g(y) che non c'entra più nulla con f. Dovete fare in modo che non dipenda da x, y o altro, ma solo da f, e ciò è tutt'altro che semplice. Esempio da manuale:

$$D\arcsin(x) = \frac{1}{\cos(y)} \bigg|_{y=\arcsin(x)} = \frac{1}{\sqrt{1-\sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1-x^2}}$$
Antipatico, vero? Eh già. Credo meriti un minuto di riflessione: "Quanto

 $fa\cos(\arcsin(x))$?" Non lo so. Ma so che $\cos=\pm\sqrt{1-\sin^2(x)}$. E' un passo avanti, dato che so che $\sin(\arcsin(x)) = x$, così come $pippo(pippo^{-1}(x)) = x$ per qualunque funzione pippo. C'è un unico appunto da fare: nulla è gratis, e abbiamo dovuto pagare un prezzo. Il fatto è che abbiamo avuto in risposta x applicando la funzione seno e arcoseno, e per far ciò ci siam dovuti 'restringere' secondo tutti i restringimenti di dominio apportati dalle funzioni (nel nostro caso, solo la seconda, che restringe $\mathcal{D} = [-1; 1]$). Anche il nostro barbatrucco di dire che $\cos(x) = \pm \sqrt{1 - \sin^2(x)}$ ha avuto un costo; ad esser piqnoli dobbiamo dividere il dominio in due parti, a seconda che venga fuori il più o il meno. Metterei una mano sul fuoco (sperando di non fare scevolate) che alla fine venga ciò che ho detto io, ovvero $\frac{1}{\sqrt{1-x^2}}$. Ma fate i conti per sicurezza.

6.3 Massimi e minimi

Sicuramente, l'aiuto maggiore che possono dare le derivate nello studio di funzione è il calcolo di massimi e minimi; poiché la derivata è la pendenza della retta tangente a f nel punto, gli zeri di f' sono proprio quei punti in cui la funzione smette di crescere o decrescere e si gode un attimo di pace; se passa da positiva a negativa, abbiamo un massimo (cresceva poi decresce), se da negativa diventa positiva abbiamo un minimo; se invece dopo lo zero il segno viene mantenuto ⁶ possiamo osservare un flesso, che ai nostri fini

 $^{^6\}mathrm{Vi}$ segnalo l'interessante effetto matrioska: se la derivata intorno a zero passa da positiva a nulla e di nuovo a positiva ha un minimo in zero, e quindi si annulla la derivata

 $\grave{e}\ solo\ un\ falso\ allarme.$

Per maggiori dettagli su derivate, massimi e minimi rimando allo studio di funzione (cap. 3.3.2, pag. 18).

seconda!!!

Chapter 7

Equazioni differenziali

Questo capitolo ha come prerequisito che conosciate alla perfezione derivate e integrali. Non dovete solo averle studiate, ma dovete a sapere a memoria tutte le derivate e integrali notevoli. Se no, fidatevi, non ne uscirete più.

■ Domande propedeutiche Prima di passare oltre, è opportuno che sappiate rispondere alle seguenti domande (se non sapete rispondere ad esse, difficilmente riuscirete a capire ciò che segue).

Qual è quella funzione uguale alla propria derivata? e qual è quella funzione che derivata una volta cambia di segno? Cosa si ottiene derivando n volte un innocente $\sin(x)$? Quali famiglie di funzioni derivate un po' di volte e sommate tra loro possono dare una polinomiale fratta (vi aiuto, sono 3)?

7.1 Introduzione

"E Dio creò il mondo secondo la legge -mx'' - px' - kx + F(x) = 0 e vide che non era cosa buona; allora cambiò qualche segno e vide che era cosa buona..."

Chapter 8

Serie di Taylor

Questo capitolo tratta l'interessantissimo - a mio vedere - mondo delle serie di Taylor. A cosa servono? Bè, direi che la serie di Taylor è un modo 'squadrato' di vedere una cosa 'curva', o un modo semplice di vedere una cosa complessa. Purtroppo, per capirne i concetti dovrete avere buone basi di serie/successioni, derivate e funzioni. Vi anticipo subito che Taylor è il mio argomento preferito, ed è per farlo capire al mondo che ho deciso di scrivere sto libro.

■ Domande propedeutiche Prima di passare oltre, è opportuno che sappiate rispondere alle seguenti domande (se non sapete rispondere ad esse, difficilmente riuscirete a capire ciò che segue).

Quanto vale la derivata n-ma di $\sin(x)$? Quanto vale la serie $\sum_{n=0}^{\infty} \frac{1}{n!}$? Quanto vale in 0 la derivata k-ma di e^x ? E di $\sin(x)$? E della nostra amica $ax^2 + bx + c$?

8.1 Lo sviluppo di Taylor

Chapter 9

Utilità varie

In questo capitolo sono descritte alcune cose interessanti di pubblica utilità che a mio parere non meritano posto in un capitolo particolare, ma che devono essere menzionate perché usate da qualche parte.

9.1 Binomi di Newton

I binomi di Newton sono assolutamente fondamentali in statistica e tornano utili quando si affrontano certi problemi con i polinomi. Proviamo a sviluppare a mano $(x + 1)^6$:

$$(x+1)^6 = x^6 + 6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x + 1$$
 (9.1)

Vi potreste chidere: da dove cacchio vengon fuori i numeri 1, 6, 15, 20, 15, 6, 1?!? Questi numeri vengon fuori dal triangolo di Tartaglia che sicuramente avrete visto allle medie. Ma esiste un modo matematico rigoroso per definirli, ammesso che sappiate cos'è un fattoriale (9.2, pag. 50). Definiamo binomio di Newton $\binom{n}{k}$ (e lo leggiamo "n su k") il seguente:

$$\binom{n}{k} \doteq \frac{n!}{n!(n-k)!} \tag{9.2}$$

Il binomio di Newton gode di quattro proprietà fondamentali, che chiameremo: unarietà $(\forall n \binom{n}{0} = 1)$; ennarietà $(\binom{n}{1} = n)$, simmetria $(\binom{n}{k} = \binom{n}{n-k})$ e tartaglietà $(\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1})$. Quest'ultimo è la base su cui si basa il triangolo di Tartaglia. NOTA RIC guarda che sia corretto!!! Io adoro anche il principio di cin-cin $(\binom{n}{2} = \frac{n(n-1)}{2})$, che è il numero di cin-cin che fanno n persone non maleducate che brindano. Il principio di simmetria vi tornerà spesso utile quindi CAPITELO! Esempio: $\binom{10}{9} = \binom{10}{1} = 10$. Comodo, no?

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n-1}a^1b^{n-1} + \binom{n}{n}b^n,$$
(9.3)

dove:

9.2 Gli esponenti

Vorrei perdere qualche riga sull'argomento esponenti poiché la gente ha spesso diifficoltà con essi. L'esponenziazione è un'operazione che si scrive a^b e si legge aallab. In generale (se b è intero), il suo significato è: prendi a e moltiplicalo per se stesso tante volte quante è b: $a^b \doteq \underline{a} \cdot \underline{a} \cdot \underline{a} \cdot \underline{a} \cdot \underline{a} \cdot \underline{a}$.

bvolte

Essa gode di alcune interessanti proprietà (poniamo a > 0):

$$a^{b+c} = a^b \cdot a^c a^b \cdot c = (a^b)^c a^0 = 1a^{-n} = \frac{1}{a^n}$$
(9.4)

Alcuni esempi: $2^6 = 2^3 2^3 = 2^4 2^2$; $10^6 = (10^2)^3 = (10^3)^2$ (ovvero un milione è sia il cubo di cento che il quadrato di mille).

Si può esponenziare un valore nullo? O può essere elevato a qualunque cifra tranne che a 0 (e farà sempre 0), poiché 0^0 introdurrebbe un disturbo nella Forza, pensateci: (qualunquecosa) $^0=1$ e $0^{qualunquecosa}=0$; se facessimo 0^0 il mondo esploderebbe trasformandosi in qualcosa di ancora più incomprensibile. In realtà si può aggirare il problema per vedere chi vince mettendoci due cose che tendono a zero e facendo il limite. Esempio: $\lim_{x\to 0} x^x$, $\lim_{x\to 0} \sinh(x)^{\sin(x)}$, e così via.

Si può esponenziare con una base negativa? Ni. Se l'esponente è intero (0, 10, -5, ...) si può fare, e il risultato coincide con il valore positivo a meno del segno; il segno sarà negativo se il numero è dispari, positivo se pari. Tutte queste cose le potete vedere da voi sfruttando la definizione.

Veniamo ora alla cosa più seria: si può esponenziare con esponente reale? Anzitutto dobbiamo esigere che la base sia non negativa; togliamo pure la base nulla poiché ha poco senso. A questo punto, si può definire l'esponenziale di base positiva e esponente razionale:

$$a^{\frac{p}{q}} \doteq \sqrt[q]{a^p} \tag{9.5}$$

Esempio.
$$4^{1.5} = 8$$
; $2^{4.5} = 16\sqrt{2}$; $10^{0.2} = \sqrt[5]{10}$; $9^{0.5} = 3$; $43^{0.763} = 1000\sqrt[3]{43^{763}}$;

Lo so, lo so, vi avevo promesso i reali. Ci arriviamo. A dir il vero, non ho la più pallida idea di come calcolare una cosa come 2^{π} . So solo dirvi che esiste e che fa poco più di 8, e si avvicina ancor di più a $2^{3.14}$. Altro dirvi non vo'.

¹Almeno secondo la teoria di qualcuno...

9.3 Il fattoriale

Il fattoriale è uno dei più semplici operatori che si definiscono ricorsivamente. La definizione è questa:

$$fatt(0) \doteq 1 \tag{9.6}$$

$$fatt(n+1) \doteq n \cdot fatt(n)$$
 (9.7)

Esempio. I primi valori della serie sono: $1, 1, 2, 6, 24, 120, 720, 5040, \dots$ fatt(3) = 6; fatt(4) = 24; $fatt(7) = 5040, \dots$

9.4 I numeri di Fibonacci

I numeri di Fibonacci sono una serie di numeri che potete osservare (almeno per i primi numeri della serie, dato che è infinita) su un lato del tetto della chiesa di Notre Dame a Parigi. Ebbene sì.

Questa serie è definita in modo ricorsivo, esattamente come il fattoriale:

$$fib(0) \doteq 0 \tag{9.8}$$

$$fib(1) \doteq 1 \tag{9.9}$$

$$fib(n+2) \doteq fib(n) + fib(n+1) \tag{9.10}$$

E' abbastanza semplice da dimostrare che all'infinito hanno un andamento del tipo $fib(n) \approx \alpha^n$, con $\alpha = \frac{-1+\sqrt{5}}{2} \approx 1.618$ (detto anche numero aureo, noto già agli antichi greci).

9.5 I grafici cartesiani

Nel capitolo funzioni (cap. 2.4, pag. 8) ho dato per scontata la parte grafica delle funzioni stesse. Credo sia di massima importanza sapere disegnare un funzione, poiché dà una comprensione molto più profonda del problema che ci si sta ponendo. Inoltre, poiché i numeri non mentono, consente di accorgersi visivamente di certi errori di calcolo. E' per questo che è importante imparare a disgenare funzioni e ad acquisire quel colpo d'occhio che getta un 'ponte' tra equazioni e relativi disegni.

Come si disegna un grafico? Anzitutto prendete due semirette perpendicolari, una che va a nord/su (che chiameremo asse delle y) e ua che va a est/destra (asse delle x). Poi vi consiglio di fare 4-5 stanghette in ciascuno dei 4 punti cardinali equidistanti da loro. Se la carta che avete è quadrettata, tanto meglio: rendete ogni stanghetta lunga un quadretto. Ogni punto del piano (inteso come coppia di numeri che indicheremo con $P \equiv (x;y)$) può essere ora disegnato. Non è proprio come disegnare donne nude, ma vi assicuro che dà la sua parte di gusto. Poniamo ad esempio $A \equiv (3,4)$:

si legge come "punto A di coordinate (3,4). Come si disegna? Ebbene, si prende la x (che vale 3) e si va lungo l'asse x (ovvero verso est) di 3 tacche. Poi si sale a nord di 4 tacche. Attenti ai segni! Il punto (3; -4) indica di andare a est di 3 e a nord di -4, quindi di retrocedere di 4 tacche a nord, quindi fondamentalmente di andare a sud di 4, siete d'accordo? Esiste un punto 'raccomandato' detto origine (che si chiama con la sua iniziale, O). Esso è sull'intersezione degli assi (cioè è l'unico punto che non è né a nord né a sud, né a est né a ovest).

Provate a disegnare i 4 punti $(\pm 3; \pm 4)$ e i due punti $A \equiv (5; 0)$ e $B \equiv (0; 5)$. Quali sono le distanze di questi punti dall'origine?

Il bello dei diagrammi cartesiani è che per molte cose esiste sia la rappresentazione grafica sia la rappresentazione sotto forma di equazione. Vedere i nessi tra le due cose è affascinante per molti, e se siete arrivati a leggere fin qui vuol certamente dire che per voi - se non altro - non è soporifero. Prendiamo il concetto di distanza: la distanza tra due punti $A \equiv (x_A; y_A); B \equiv (x_B; y_b)$ è graficamente la lunghezza del segmento che unisce i due punti, mentre è analiticamente il numero:

$$d_{Eucl} \doteq \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2} \tag{9.11}$$

Questa distanza è detta euclidea poiché i matematici - che non sono mai contenti - ne hanno inventate infinite altre. Io ne conosco altre due, e giusto per divertimento ve ne dico una che chiameremo 'distanza in isolati':

$$d_{Isol} \doteq |x_A - x_B| + |y_A - y_B| \tag{9.12}$$

Il nome derivata dal fatto che questa distanza è effettivamente la distanza in chilometri tra due punti supponendo che ci siano grattacieli tra le varie strade, che le strade siano tutte parallele o perpendicolari tra loro, e che quindi si possa camminare solo in orizzontale o in verticale.

Se disegnate nel diagramma il punto $C \equiv (3; -4)$ e l'origine O, potete divertirvi a calcolare la distanza euclidea e 'in isolati' del punto dall'origine. Vengono due bei numerelli, e se non ci credete potete verificarli col righello.

Ora veniamo a qualcosa di più complicato. Se vi ho insegnato bene a disegnare un punto, credete di potervela cavare a disegnarne 2? E 3? E infiniti? Credete di no? Bè, pensate che lo fate (quasi) tutti i giorni, ad esempio quando disegnate un cerchio o una lettera dell'alfabeto o un ditone.

Supponiamo che vi dia una funzione (le studierete meglio al cap. 2.4, pag. 8), ad esempio $y=x^2-2x$. Provate a disegnarla. Sembra difficile? Non lo è, fidatevi. Poiché la funzione mangia x e sputa y, vi conviene prendere delle x a casaccio (le mie preferite sono le seguenti 5: -2; -1; 0; 1; 2) e vedere quanto vale f in quei 5 punti. Vediamo di fare una tabella:

\boldsymbol{x}	-2	-1	0	1	2	
y	8	3	0	-1	0	

Siete persuasi? Bene, adesso disegnate i 5 punti trovati. Ricordate che avete a disposizione tutti i punti che volete. Ad esempio, volete disegnarla meglio a destra? Calcolate f(3) e avete un punto in più a destra. Volete andare a sinistra? Tentate con $f(-3), f(-4), \ldots$ Avete tutto il tempo che volete. Volete raffinare i punti? Vi consiglio di provare con $-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots$ Volete raffinare ancora di più? Provate con $0.1, 0.2, 0.3, \ldots$ ma qui io non vi aiuto più perchè alla mia età tale precisione è superiore a quella delle mie mani ormai...

9.6 La ricorsione

La ricorsione è un concetto che ben si sposa con certi aspetti della matematica. Ad esempio, è utile a ocmprendere i fattoriali o i numeri di Fibonacci. In genere una definizione ricorsiva è una definizione di una successione (cap. ??, pag. ??) in due parti: si dà intanto la definizione del primo valore, poi si dà la definizione di ogni pezzo in funzione del precedente. Esattamente come i pezzi di un domino, questi valori prendono forma a cascata. Vediamo un esempio 'idiota': defininiamo la successione scemo_i. Anzitutto, la successione pippo_i (ancor prima di sapere che cosa sia) è un insieme di valori esattamente come una funzione: pippo₀ di solito è il suo primo valore, poi viene pippo₁, poi pippo₂, e dopo 1000 valori avremo pippo₉₉₉...

$$pippo_0 = 10;$$
 (9.13)

$$pippo_{n+1} = pippo_n + 3. (9.14)$$

La successione pippo poteva essere definita così: $pippo_0 = 10$; $pippo_1 = 13$; $pippo_2 = 16$; $pippo_3 = 19$; Ma vi rendete conto che non posso stare qua fino a sera a dirvi tutti i valori? La definizione ricorsiva mi sembra sia una bella comodità, no? Il punto è proprio quello.