Abstract Linear Algebra: Vector Space

Definition

A **vector space** over a field \mathbb{F} is a set V equipped with

- vector addition $+: V \times V \rightarrow V$.
- scalar multiplication $\cdot : \mathbb{F} \times V \to V$.

satisfying for all $u, v, w \in V$, $\alpha, \beta \in \mathbb{F}$:

There exists
$$0 \in V$$
 such that $v + 0 = v$ (additive identity)

For each v , there exists $-v$ with $v + (-v) = 0$ (additive inverse)

• For each
$$v$$
, there exists $-v$ with $v + (-v) = 0$

Abstract Linear Algebra: Remark

Remark

A vector space by itself has only the structure given by addition and scalar multiplication.

- It does *not* have a notion of **length**, **angle**, or **orthogonality**.
- These geometric notions are **induced** when we add an **inner product**, and from it, a norm.

Abstract Linear Algebra: Inner Product

Definition

An **inner product** on a real vector space V is a function

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$$

such that for all $u, v, w \in V$, $\alpha \in \mathbb{R}$:

(symmetry)

(linearity)

(homogeneity)

$$\langle v, v \rangle \geq 0$$
, and $\langle v, v \rangle = 0 \iff v = 0$

(positivity)

Abstract Linear Algebra: Norm

Definition

Given an inner product $\langle \cdot, \cdot \rangle$ on V, the induced **norm** is defined by

$$||v|| = \sqrt{\langle v, v \rangle}, \quad v \in V.$$

This norm introduces the notions of:

- Length: ||v||
- Angle: $\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}$
- Orthogonality: $u \perp v \iff \langle u, v \rangle = 0$

Abstract Linear Algebra: Example

Example

Let $V = \mathbb{R}^2$ with the standard inner product

$$\langle u,v\rangle=u_1v_1+u_2v_2.$$

For u = (3, 4) and v = (4, -3):

$$\langle u, v \rangle = 3 \cdot 4 + 4 \cdot (-3) = 12 - 12 = 0.$$

Thus $u \perp v$. Also $||u|| = \sqrt{3^2 + 4^2} = 5$.

Abstract Linear Algebra: Exercise

Exercise

Let u=(1,2,2) and v=(2,0,1) in \mathbb{R}^3 with the standard inner product.

- Compute $\langle u, v \rangle$.
- \bigcirc Find ||u|| and ||v||.
- \odot Determine the cosine of the angle between u and v.