Devoir Vacances

Lundi 24/10/2022

Exercice 1. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = x^2 e^{-\frac{1}{x}}$$

2. Donner la partie réelle et imaginaire de

$$z = \left(\frac{1+i}{1+\sqrt{3}i}\right)^{12}$$

3. Calculer

$$\sum_{k=1}^{n+2} (k+1)$$

4. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 0, \ u_{n+1} = \frac{1}{2}u_n + 1 \end{cases}$$

Mardi 25/10/2022

Exercice 2. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(e^x + x^2)$$

2. Calculer

$$\sum_{i=2}^{n} \binom{n}{i-1} \frac{1}{2^i}$$

- 3. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{(2n+1)^3}{(\sqrt{n}+2)^6}$
- 4. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 1 \\ \forall n \ge 0, & u_{n+2} = 2u_{n+1} - 4u_n \end{cases}$$

5. Donner la partie imaginaire et partie réelle de

$$z = \frac{1-i}{1+i}e^{i\pi/3}$$

Mercredi 26/10/2022

Exercice 3. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = e^{x\cos(x)}$$

2. Soit $x \in \mathbb{R}$. Calculer

$$\sum_{i=0}^{n} (2x)^{2i}$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 1, u_{n+1} = 2u_n + 1 \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{n\cos(n)}{(1+n^2)}$
- 5. Résoudre pour $x \in \mathbb{R}$:

$$x^4 - 4x^2 + 4 = 0$$

Jeudi 27/10/2022

Exercice 4. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \frac{\sin^3(2x)}{2 + \cos(5x)}$$

(l'expression finale n'est pas "jolie")

2. Montrer (avec une étude de fonction) que pour tout $x \in \mathbb{R}$:

$$e^x > x + 1$$

3. Calculer

$$\sum_{k=2}^{n} (k^2 + 1)$$

4. Ecrire sous forme exponentielle

$$z = (1+i)e^{i\pi/4}$$

5. Ecrire un script Python qui permet calculer

$$\sum_{k=1}^{n} \frac{1}{k}$$

Vendredi 28/10/2022

Exercice 5. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \left(\frac{\sqrt{x^2 + 3x}}{3^x}\right)^4$$

2. Simplifier pour x > 0

$$\ln\left(\frac{(x+1)^2}{x^3}\right) + \ln(x) - \ln\left(\left(1 + \frac{1}{x}\right)^2\right)$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 1 \\ \forall n \ge 0, u_{n+2} = -u_{n+1} + 2u_n \end{cases}$$

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{n!^2}{n^{2n}}$
- 5. Ecrire une fonction Python qui simule le lancer d'un dé à 6 faces et retourne la valeur du lancer.

Samedi 29/10/2022

Exercice 6. 1. Montrer à l'aide d'une étude de fonction que pour tout $x \in \mathbb{R}$:

$$\ln(1+x^2) \le x^2$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln\left(\sqrt{x^2 - 1} + x\right)$$

3. Calculer

$$\sum_{j=0}^{2n} \binom{2n}{j} (-2)^j$$

- 4. Resoudre $\sqrt{2x+1} \le x$
- 5. Ecrire une fonction Python qui prend en argument 3 nombres (x,y,z) et retourne 'True' si ils sont solutions du système $\begin{cases} \pi^2x & +1,4y & +z & =120 \\ \ln(2)x & +1,7y & +2^4z & =0 \end{cases}$ et 'False' sinon.

Dimanche 30/10/2022

REPOS!

Lundi
$$31/10/2022$$

REPOS!

Mardi 01/11/2022

Exercice 7. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(\ln x)$$

2. Etudier (donner les variations et les limites aux bornes) la fonction

$$f(x) = x^x$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1 \\ \forall n \ge 0, u_{n+1} = 2u_n^2 \end{cases}$$

(on pourra regarder $v_n = \ln(u_n)$)

- 4. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{\ln(n)}{\ln(1+n^2)}$
- 5. Résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$:

$$z^2 = i$$

Mercredi 02/11/2022

Exercice 8. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln\left(\frac{x+2}{\sqrt{9x^2-4}}\right)$$

2. Calculer

$$\sum_{k=0}^{n-1} e^{\frac{ik\pi}{n}} \quad \text{et} \quad \prod_{k=0}^{n} e^{\frac{ik\pi}{n}}$$

3. Calculer

$$\sum_{\ell=1}^{n} \sum_{i=1}^{\ell^2} \frac{i}{\ell^2}$$

- 4. Ecrire une fonction Python qui prend en argument un entier n qui simule n lancers de dé à 6 faces et retourne la somme des valeurs des lancers.
- 5. Résoudre dans \mathbb{R}

$$\sqrt{x+1} \le x$$

Jeudi 03/11/2022

Exercice 9. 1. Montrer par récurrence que pour tout $n \ge 1$:

$$\prod_{k=1}^{n} k! = \prod_{k=1}^{n} k^{n+1-k}$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = (e^{2x} - 1)^{\pi}$$

3. Exprimer le terme général en fonction de n de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 = 1, & u_1 = 2 \\ \forall n \ge 0, u_{n+2} = \frac{u_{n+1}^2}{u_n} \end{cases}$$

(On pourra regarder $v_n = \ln(u_n)$)

4. Résoudre dans \mathbb{C} :

$$z + \frac{1}{z} = 1$$

5. Ecrire un script Python qui permet calculer

$$\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\sqrt{j}}{k}$$

Vendredi 04/11/2022

Exercice 10. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \exp\left(\frac{1}{x} + \ln(x)\right)$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \sqrt{\exp(-x^2) + 1}$$

- 3. Calculer la limite quand $n \to +\infty$ de $u_n = \frac{(\ln(n))^2}{\ln(1+n^2)}$
- 4. Ecrire une fonction Python qui prend en argument deux nombres et retourne le minimum de ces deux nombres. (Sans utiliser la foncton min de Python)

Samedi 05/11/2022

Exercice 11. 1. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \ln(-x)$$

2. Déterminer l'ensemble de définition et calculer la dérivée de

$$f(x) = \frac{2\exp(x)}{\ln(x^2)}$$

3. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de

$$\sum_{j=1}^{n} \sum_{i=1}^{n} \min(i, j)$$

4. Résoudre dans \mathbb{R} :

$$\frac{1}{x+1} \le x$$

5. Montrer que la suite suivante est majorée par 2 :

$$u_n = \frac{1}{n!} \sum_{k=0}^{n} k!$$

(On pourra prendre 0! = 1, mais ca n'importe peu sur la preuve) (La majoration est un peu plus dur que le reste, il faut sortir le dernier terme et majorer le reste de la somme) (Pour les courageux, vous pouvez montrer qu'elle converge vers 1.)