

# Non-sinking marbles are wonky: world knowledge in scalar implicature



**Judith Degen** 

Michael Henry Tessler Noah D. Goodman

{ jdegen, mtessler, ngoodman}@stanford.edu Department of Psychology, Stanford University

Background: integrating world knowledge in utterance interpretation

#### Questions

- 1. How does world knowledge enter into utterance interpretation?
- 2. When do listeners update their beliefs about common ground?

#### Case study: scalar implicature

(1) Some of the boys drank beer. (2) Some of the marbles sank. → Not all of the boys drank beer. → Not all of the marbles sank.

The scalar implicature should intuitively be weaker with increasing subjective prior probability of the all-state. But: when the prior probability of the all-state is very high, as in (2), the implicature is intuitively very strong (Geurts, 2010). Here, we

- 1. collect empirical estimates of subjective prior probabilities of events (world knowledge)
- 2. collect empirical estimates of subjective posterior probabilities of events (interpretation of an utterance)
- 3. use **Bayesian social reasoning** models to explore when listeners update prior beliefs (common ground)

# Rational Speech Act models

(Frank & Goodman, 2012; Goodman & Stuhlmüller, 2013)



## Experiments

## **Experiment 1: prior elicitation** Carol threw 15 marbles into a pool. How many of the marbles do you think sank?

**13** 

**Experiment 2a: comprehension** 

Melissa glued 15 stickers to a piece of paper. Angela, who observed what happened, says, "Some of the stickers stuck."

(expected number of objects)

How many stickers stuck?

**10** 

**Experiment 2b: comprehension** (posterior all-state probability)

Michelle threw 15 cakes against a wall.



#### **Overview**

- 1. Estimate prior beliefs about how many X Y (Exp. 1)
- 2. Estimate listeners' posterior beliefs about how many X Yed (Exp. 2a and 2b) and how likely the world is wonky (Exp. 3) to test RSA and wRSA models

## **Experimental details**

90 items: *Q of the X Yed Q*: *some* (10), *all* (5), *none* (5) X: marbles, shirts, carrots,... *Y*: sank, ripped, dissolved,...

30 trials per participant in each experiment, including 5 short fillers (*Typical*) and 5 long fillers (What a stupid thing to do.)

Participants in each experiment

|   | Exp. 1 | Exp. 2a | Exp. 2b | Exp. 3 |
|---|--------|---------|---------|--------|
| n | 60     | 120     | 120     | 60     |

## **Experiment 3: wonkiness**

Justin threw 15 matches into a fire. Jason, who observed what happened, says,

"None of the matches burnt."

How likely is it that these are normal matches? definitely not normal definitely normal

## Conclusion

The effect of world knowledge (prior beliefs) on interpretation was much smaller, and qualitatively different, than predicted by a standard Bayesian model of quantifier interpretation (RSA). Extending RSA with a lifted wonkiness variable that captures whether listeners think the world is wonky upon encountering an odd utterance, and allows them to back off to alternative beliefs, provided a good fit to the data, suggesting: listeners revise common ground when utterances are odd.

## Empirical results

increases with unexpectedness of utterance.

# Model predictions

 $[u_{\text{all}}] = \{s_i | i = 15\}$ 



Robust effect of prior on posterior expectation ( $\beta$ =.18, SE=.02, t=7.4, p < .0001) and all-state probability ( $\beta = .06$ , SE = .01, t = 5.0, p < .0001). But: effect is much smaller than predicted by RSA. The data are much better fit by the wonky RSA model.



Acknowledgments This work was supported by a James S. McDonnell Foundation Scholar Award and and ONR grant N00014-13-1-0287 (NDG).

**References** Frank, M. C., & Goodman, N. D. (2012). Predicting pragmatic reasoning in language games. *Science*, 336, 998. Geurts, B. (2010). Quantity Implicatures. Cambridge: Cambridge Univ Press. Goodman, N. D., & Stuhlmüller, A. (2013). Knowledge and implicature: modeling language understanding as social cognition. *Topics in Cognitive Science*, 5(1), 173–84.