

Team Members:

7818 Mohamed Hussein

7925 Fares Amin

7721 Alaa Elkhouly

REINFORCEMENT LEARNING ASSIGNMENT

Artificial Intelligence

What is a Markov Decision Process (MDP)?

An MDP is a mathematical framework for modeling decision-making in situations where outcomes are partly random and partly controlled by a decision-maker. Its key components are:

- 1. **States (S):** Possible situations in the system, e.g., positions in a 3x3 grid.
- 2. Actions (A): Choices available at each state, like moving Up, Down, Left, or Right.
- 3. **Transition Model (P):** Probabilities of moving to new states after actions. For instance, moving in the intended direction 80% of the time.
- 4. **Rewards (R):** Immediate payoff or penalty for being in a state or taking an action, such as +10 in a top-right cell.
- 5. **Discount Factor (\gamma):** Determines the importance of future rewards. A higher γ values future rewards more.

The goal of an MDP is to find a **policy** (set of actions) that maximizes long-term rewards.

What is a Policy?

A policy, denoted as $\pi(s)$, provides the agent with the action to take in each state to maximize rewards. It acts as a guide for the agent.

Types of Policies

- 1. **Random Policy:** Initial policy where actions are chosen randomly.
- 2. **Deterministic Policy:** Fixed rules that suggest specific actions for each state.
- 3. **Optimal Policy:** The best policy to maximize total rewards, computed through Value Iteration or Policy Iteration.

How Policies are Derived

Policies are based on state values, which indicate how rewarding each state is. The agent selects actions that lead to the highest-value states.

- 1. Value Iteration: Calculates state values first, then derives the optimal policy.
- 2. **Policy Iteration:** Starts with a random policy, refines it by evaluating state values and improving actions until it stabilizes.

Importance of Policies

- 1. **Efficiency:** Once computed, the agent can follow the policy without recalculating decisions.
- 2. **Optimality:** Ensures consistent reward maximization.
- 3. Adaptability: Policies can adjust if the environment changes.

Solving the MDP: Value Iteration and Policy Iteration

Both algorithms determine the optimal policy for the agent.

1. Value Iteration

Value Iteration iteratively updates state values until they stabilize:

- 1. Initialize Values: Set all state values to zero.
- 2. Update Values:
 - o For each state, calculate the expected value of all possible actions:
 - Account for transition probabilities, rewards, and discounted future values.
 - Assign the highest action value to the state.
- 3. **Repeat:** Continue until state values converge (stop changing significantly).
- 4. **Extract Policy:** Once stable, determine the optimal action for each state.

2. Policy Iteration

Policy Iteration alternates between refining a policy and evaluating it:

- 1. **Start with a Random Policy:** Assign random actions to states.
- 2. Policy Evaluation:
 - Compute the value of each state under the current policy by updating state values repeatedly.
- 3. Policy Improvement:
 - Compare actions to find better ones for each state.
 - Update the policy with actions that maximize value.
- 4. **Repeat:** Continue until the policy stabilizes and becomes optimal.

Value Iteration vs. Policy Iteration

Key Similarities

- Both solve MDPs to find the optimal policy.
- Both rely on the Bellman Optimality Equation.

Key Difference

- Value Iteration: Focuses on calculating state values first, then derives the policy.
- **Policy Iteration:** Starts with a policy, alternates between evaluating and improving it until convergence.

Step-by-Step Comparison

Aspect	Value Iteration	Policy Iteration
Focus	State values first, policy second	Policy refinement through iterations
Initial Step	All state values set to zero	Start with a random policy
Iterations	Update state values to convergence	Alternate between evaluation and improvement
Output	Optimal policy derived from stable values	s Optimal policy directly

Advantages

- 1. Value Iteration:
 - Simpler implementation.
 - o Faster for small problems.
- 2. Policy Iteration:
 - Structured and robust.
 - o Often faster for large problems in terms of iterations.

Why Both Lead to the Same Result

Both algorithms aim to solve for the same optimal policy, π^* , and rely on the Bellman Optimality Equation:

$$V^*(s) = \max_a \sum\nolimits_{s',r} P(s',r|s,a) \cdot (r + \gamma V^*(s'))$$

This equation ensures that state values and actions are optimized for long-term rewards.

Path to Convergence

- 1. Value Iteration: Iteratively refines state values and derives the policy after stabilization.
- 2. **Policy Iteration:** Alternates between policy evaluation and improvement, refining both state values and the policy step by step.

Conditions for Convergence

Both algorithms converge to the same result if:

- The discount factor γ<1, ensuring finite rewards.
- The state and action spaces are finite.

Summary

- 1. An MDP models decision-making under uncertainty using states, actions, rewards, and probabilities.
- 2. The goal is to find an optimal policy that maximizes long-term rewards.
- 3. Value Iteration and Policy Iteration are two algorithms to compute the optimal policy:
 - Value Iteration focuses on refining state values first.
 - o Policy Iteration alternates between evaluating and improving policies.
- 4. Both algorithms converge to the same optimal policy if properly implemented.

Outputs

Value and Policy Iteration for r = 100

- Values: The high values represent the substantial reward of 100 for reaching the top-left cell. As the agent moves farther from this reward, the values decrease due to the discounting of future rewards.
- **Policy:** The optimal policy directs the agent upwards and towards the left, aligning with the goal of maximizing the reward at the top-left cell. Minor differences between value iteration and policy iteration policies may occur due to rounding or tie-breaking.
- **Incentive:** The terminal state (state 0) with its high positive reward incentivizes the agent to prioritize this state.
- **Behavior:** The agent avoids distractions or long paths, creating a direct policy focused on reaching the high-reward state.

Value and Policy Iteration for r = 3

- Values: Lower than those for r = 100, reflecting a moderate reward of 3. The values still propagate across the grid but with less magnitude.
- **Policy:** The optimal policy now directs the agent towards the top-right terminal reward (10). The moderate reward at the top-left does not dominate decision-making, allowing the agent to focus on the larger terminal reward.
- **Incentive:** While state 0 is desirable, its reward does not overshadow others, leading to a balanced policy.
- **Behavior:** The agent moves toward state 0 but less deterministically, considering alternative paths.

Value and Policy Iteration for r = 0

- Values: Slightly lower, as state rewards contribute less. The terminal reward of 10 becomes the primary driver of values.
- **Policy:** Without a significant incentive for the top-left cell, the policy guides the agent toward the top-right reward (10).
- **Incentive:** With no advantage at state 0, the agent's decisions are influenced mainly by the grid structure and discount factor.

• **Behavior:** The agent takes paths without urgency, as all non-terminal states hold equal value.

Value and Policy Iteration for r = -3

- **Values:** These further decrease due to penalties for each step, highlighting the importance of shorter paths to terminal rewards.
- **Policy:** The agent minimizes time spent in the grid by moving directly to the nearest reward (top-right), avoiding unnecessary detours.
- **Incentive:** A negative reward at state 0 makes it less desirable, prompting the agent to prioritize the alternative terminal state (10).
- **Behavior:** The agent actively avoids paths leading to state 0, resulting in a more circuitous but efficient strategy.

Observations

- **Convergence:** Both value iteration and policy iteration converge closely, ensuring the algorithms work correctly.
- Effect of r:
 - o Higher r: Encourages the agent to maximize rewards by reaching state 0 faster.
 - Moderate r: Balances exploration, allowing the agent to weigh rewards more evenly.
 - Negative r: Discourages reaching state 0, with the agent prioritizing the higher reward at the alternative terminal state.
- **Behavioral Adaptation:** As r decreases or becomes negative, the agent adapts its policy to minimize penalties, reflecting a shift in priorities based on rewards.