

Winning Space Race with Data Science

Jesus R Rosila Mares 12 October 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of Methodologies

- Web scraped using SpaceX API and python packages such as scikit-learn.
- Cleaned and formatted data for data visualization and machine learning.
- Split data into train and test.

Summary of all results

- KSC launch site had highest success rate at 76.9% out of 13 launches.
- Decision Tree method had highest accuracy at 88.9% with only 2 misclassifications
- First Booster Stage landing on May 1, 2017

Introduction

Project background and context

- Investigate SpaceX Falcon 9 First-stage Booster Recovery
- Determine if flight will be a success or failure
- Implement Machine Learning to Classify future launches successes

Problems you want to find answers

- What type of Orbits and Payload Mass are being used? What is the success rate?
- Where and when are they launching these missions?
- How has years of experience increased SpaceX success
- How well does trained models predict success

Methodology

Executive Summary

- Data collection methodology:
 - Data Scraping using SpaceX API
- Perform data wrangling
 - Filtered and Used Regex to collected data from JSON
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Compare with: SVM, Tree, Log Reg, and KNN with GridSearchCV

Data Collection

- SpaceX API Requests
- Clean data
- Down select to hone-in only to Falcon 9 launches
- Fix null and missing values
- Use in following data analysis

Data Collection – SpaceX API

 Use SpaceX API to scrape data for Statistical Data Analysis and Machine Learning

Data Collection - Scraping

- Scrape data from generated CSV files
- Apply filters to get desired output

```
{'Flight No.': 121,
'Launch site': 121,
'Payload': 121,
'Payload mass': 121,
'Orbit': 121,
'Customer': 121,
'Launch outcome': 121,
'Version Booster': 121,
'Booster landing': 121,
'Date': 121,
'Time': 121}
```


Data Wrangling

- Classify Success and Failures from scraped data
- True ASDS, None None, True RTLS, False ASDS, True Ocean, False Ocean, None ASDS, False RTLS
- Collect success and failures to 'Class' column
- Prep for Data Analysis

EDA with Data Visualization

- Success Rates for each Orbit type
- Payload Mass per each Orbit type
- Payload Mass per Flight Number
- Flights per Launch Site and Classified Success

EDA with SQL

- Query database for DISTINCT site launch locations
- Find how many NASA missions there were
- Average Payload Mass for F9 v1.1 Booster
- First Ground Success
- Sub-Query for Booster landing failures

Build an Interactive Map with Folium

- Mark all Falcon 9 Launch Sites
- Use 'Class' Label to define success and failures
- Find distances of Points of Interests to Launch Sites

Build a Dashboard with Plotly Dash

- Build Dash dashboard for manger use
- Inputs: Launch Sites and Payload Mass slider
- Populate with Success or Success Rate Pie Charts
- Display Launch Site specific 'Class' within Payload Mass slider

Predictive Analysis (Classification)

- One Hot Encoding
- Machine Learning Methods
 - SVM, Tree, Log Reg, and KNN with GridSearchCV
 - Compare with accuracies
- Confusion Matrices

Results

	Orbit	success	attempts	SuccessRate
0	ES-L1	1	1	1.000000
1	GEO	1	1	1.000000
2	GTO	14	27	0.518519
3	HEO	1	1	1.000000
4	ISS	13	21	0.619048
5	LEO	5	7	0.714286
6	MEO	2	3	0.666667
7	РО	6	9	0.666667
8	SO	0	1	0.000000
9	SSO	5	5	1.000000

Launch Site vs. Flight Number

Launch Site vs. Payload

Success Rate vs. Orbit Type

Orbit Shorthand	Orbit Name
ES-L1	Heliocentric Lagrange Point 1
GEO	Geocentric Orbit
HEO	Heliocentric Orbit
ISS	LEO to International Space Station
LEO	Low Earth Orbit
MEO	Medium Earth Orbit
РО	Polar Orbit
SO	Sub-Orbital
SSO	Sun-Synchronous Orbit
VELO	Very Low Earth Orbit

Orbit Type vs. Flight Number

Orbit Type vs. Payload

Launch Success Yearly Trend

All Launch Site Names

```
%%sql
SELECT DISTINCT Launch_Site
FROM spacex_data
ORDER BY Launch_Site;
```

Launch_Site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

```
%%sql
SELECT *
FROM spacex_data
WHERE Launch_Site like 'CCA%'
LIMIT 5;
```

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
04-06-2010	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12-2010	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05-2012	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10-2012	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03-2013	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
%%sql
SELECT SUM(PAYLOAD_MASS__KG_) as 'Total Payload Mass kg'
FROM spacex_data
WHERE UCASE(customer) LIKE '%NASA%';
```

Total Payload Mass kg 107010

Average Payload Mass by F9 v1.1

```
%%sql
SELECT AVG(PAYLOAD_MASS__KG_) as avg_mass
FROM spacex_data
WHERE UCASE(Booster_Version) LIKE '%F9 V1.1%';
```

avg_mass 2534.6667

First Successful Ground Landing Date

```
%%sql
SELECT MIN(Date) as 'First Success Ground'
FROM spacex_data
WHERE LCASE(Landing_Outcome) LIKE 'success%ground%';
```

First Success Ground

01-05-2017

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
SELECT Booster_Version
FROM spacex_data
WHERE LCASE(Landing_Outcome) LIKE 'success%drone%'
AND PAYLOAD_MASS__KG_ BETWEEN 4000 AND 6000;
```

Booster_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

F9 FT B1022

Total Number of Successful and Failure Mission Outcomes

```
%%sql
SELECT Mission_Outcome, COUNT(Mission_Outcome) as Mission_Freq
FROM spacex_data
GROUP BY Mission_Outcome;
```

Mission_Outcome	Mission_Freq
Success	99
Failure (in flight)	1
Success (payload status unclear)	1

Boosters Carried Maximum Payload

Booster_Version
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1051.4
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

Month	Landing_Outcome	Booster_Version	Launch_Site
January	Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
April	Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Landing_Outcome	Landing_Outcome_Freq
Success (drone ship)	5
Success (ground pad)	3

Map of All Space X Launches

Attempted Launches at KSC

Key Points of Interest near VAFB

Success Rate Share per Site

Highest Success Percentage

Successes in Payload Mass Range

All Sites

Classification Accuracy

Confusion Matrix

Conclusions

- Tree Decision Machine Learning
- Highest Success Rate at KSC
- Success Rate increasing consistently over time
- First Booster Successful Landing on 01-05-201
- Learning

