# ASSIGNMENT -III BUILD CNN MODEL for CLASSIFICATION of FLOWERS

Assignment Date 30 September 2022

Student Name Prakash H K
Student Roll Number 963619104013
Maximum Marks 2 Marks

#### Question-1:

Download the dataset

#### Question-2:

**Image Augmentation** 

#### Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train\_datagen=ImageDataGenerator(rescale=1./255,zoom\_range=0.2,horizontal\_flip=True,vertical\_flip=True)

test\_datagen=ImageDataGenerator(rescale=1./255)



# Question-3:

Create model

#### **Solution**

from tensorflow.keras.models import Sequentialfrom tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

| 3)Create Model                                                                   |                        |
|----------------------------------------------------------------------------------|------------------------|
| [ ] from tensorflow.keras.models import Sequential                               |                        |
| [ ] from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten |                        |
| [ ] model=Sequential()                                                           | ↑ ↓ © <b>目 /</b> ∏ î : |

#### Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)

#### Solution

# a)Convolution Layer

model.add(Convolution2D(32,(3,3),kernel\_initializer="random\_uniform",activation="relu",strides=(1,1),input\_shape=(64,64,3)))

# b) MaxPooling Layer

model.add(MaxPooling2D(pool\_size=(2,2)))

## c) Flatten Layer

model.add(Flatten())

## d) Dense(Hidden layer)

model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))

# e) Output layer

model.add(Dense(5,activation="softmax"))

## Question-5:

Compile The Model

## Solution

model.compile(loss="categorical\_crossentropy",metrics=['accuracy'],optimizer='adam')

```
5)Compile the model

[ ] model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')
```

# Question-6:

Fit The Model

# Solution

 $model.fit(x\_train,epochs=5,steps\_per\_epoch=len(x\_train),validation\_data=x\_test,validation\_steps=len(x\_test))$ 

| a)Convolution Layer                                                                                                              |   |     |             |   |   |
|----------------------------------------------------------------------------------------------------------------------------------|---|-----|-------------|---|---|
| [ ] model.add(Convolution2D(32,(3,3),kernel_initializer="random_uniform",activation="relu",strides=(1,1),input_shape=(64,64,3))) |   |     |             |   |   |
| b)MaxPooling Layer                                                                                                               |   |     |             |   |   |
| [ ] model.add(MaxPooling2D(pool_size=(2,2)))                                                                                     |   |     |             |   |   |
| c)Flatten                                                                                                                        |   |     |             |   |   |
| [ ] model.add(Flatten())                                                                                                         |   |     |             |   |   |
| d)Dense(Hidden layer)                                                                                                            |   |     |             |   |   |
| [ ] model.add(Dense(300,activation="relu"))                                                                                      |   |     |             |   |   |
| [ ] model.add(Dense(300,activation="relu"))                                                                                      |   |     |             |   |   |
|                                                                                                                                  |   |     |             |   |   |
| d)Dense(Hidden layer)                                                                                                            |   |     |             |   |   |
| [ ] model.add(Dense(300,activation="relu"))                                                                                      |   |     |             |   |   |
| [ ] model.add(Dense(300,activation="relu"))                                                                                      |   |     |             |   |   |
| e)Output layer                                                                                                                   |   |     |             |   |   |
| <pre>model.add(Dense(5,activation="softmax"))</pre>                                                                              | 1 | ∱ ⊕ | <b>\$</b> [ | î | : |

#### Question-7:

Save The Model

#### Solution

model.save("Flowers.h5")

7)Save the model

[ ] model.save("Flowers.h5")

#### **Question-8:**

Test The Model

#### **Solution**import

numpy as np

from tensorflow.keras.models import load\_model from tensorflow.keras.preprocessing import image model=load\_model("Flowers.h5") img=image.load\_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205\_a07c9f1752\_m.jpg",target\_size=(64,64) ) x=image.img\_to\_array(img)x=np.expand\_dims(x,axis=0) pred=model.predict(x)pred index=['daisy','dandelion','rose','sunflower','tulip'] index[np.argmax(pred)]

| O\Te  | est the model                                                                                                                                                                                  |                   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| o) re | the model                                                                                                                                                                                      |                   |
| []    | <pre>import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image</pre>                                                                  |                   |
| []    | model=load_model("Flowers.hS")                                                                                                                                                                 |                   |
| []    | img-image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64                                                           | ,64))             |
| []    | ing                                                                                                                                                                                            |                   |
|       |                                                                                                                                                                                                |                   |
| []    | x=image.img_to_array(img)                                                                                                                                                                      |                   |
| F 1   | and a second distriction and a con-                                                                                                                                                            |                   |
| [ ]   | x=np.expand_dims(x,axis=0)                                                                                                                                                                     |                   |
|       |                                                                                                                                                                                                |                   |
| []    | x=image.img_to_array(img)  x=pa.expand_dims(x,axis=0)                                                                                                                                          |                   |
| []    | x=image.img_to_array(img)                                                                                                                                                                      |                   |
| []    | <pre>x=image.img_to_array(img) x=np.expand_dims(x,axis=0)</pre>                                                                                                                                |                   |
| []    | <pre>x=image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x)</pre>                                                                                                          |                   |
| []    | <pre>x-image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred array([[1., 0., 0., 0., 0.]], dtype-float32) index=['daisy','dandelion','rose','sunflower','tulip']</pre> |                   |
| []    | <pre>x-image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred array([[1., 0., 0., 0., 0.]], dtype-float32) index=['daisy','dandelion','rose','sunflower','tulip']</pre> | ↑ ↓ co <b>□ ‡</b> |