IN THE CLAIMS

Please amend the claims as indicated below.

Fax:7132668510

What is claimed is:

1 1. (currently amended) A method for determining estimating a parameter of interest 2 of an earth formation with a logging tool having a nuclear radiation source for irradiating said earth formation and a nuclear radiation detector spaced apart from 3 4 the nuclear radiation source for making measurements resulting from interaction of said irradiation with said earth formation, the method comprising: 5 6 activating the nuclear radiation source; (a) (a) (b) defining a starting time for a processing time window at which said 7 measurements made by the nuclear radiation detector are responsive 8 9 primarily to said the parameter of interest; 10 (b) (c) defining an ending time for said the processing time window at which said 11 the measurements are substantially uncontaminated by noise; and 12 (e)(d) analyzing said the measurements within said the processing time window for determining estimating the parameter of interest. 13 14 1 2. (currently amended) The method of claim 1 wherein defining said the start starting 2 time further comprises determining a time at which a value of said the measurements has a predetermined relationship to a determined an estimated 3

10/730,552

P. 05

Fax:7132668510

value of a parameter of interest at an ending time of a processing time window for 4 5 an earlier operation of said source.

6

1 3. (currently amended) The method of claim 2 1 wherein said the nuclear radiation 2 source comprises a pulsed neutron source.

3

1 4. (currently amended) The method of claim 2 1 wherein said the measurements 2 made by the nuclear radiation detector comprise gamma ray measurements.

3

- 1 5. (currently amended) The method of claim 3 wherein said the parameter of interest
- 2 further comprises at least one of (i) a thermal neutron capture cross section of said
- the earth formation, (ii) porosity, (iii) formation water salinity, and, (iv) the 3
- 4 quantity and type of hydrocarbons contained in pore spaces.

5

1 6. canceled

2

- 1 7. (currently amendedl) The method of claim 2 wherein said relationship is of the
- 2 form
- $istr = K/\Sigma$ 3
- where istr is the start time of a window, K is a constant, and Σ is a capture cross
- 5 section at said the ending time of said the processing time window for said the
- 6 earlier pulsing operation of said the source.

10/730,552

Fax:7132668510

7

1	8.	(сите	ently amended) The method of claim 1 wherein defining said time window
2		ondin	g time the ending time of the processing window further comprises forming
3		a runi	ning sum of count rates starting at said the starting time.
4			
1	9.	(сште	ently amended) The method of claim 8 wherein defining said time window
2		endin	g time the ending time of the processing window further comprises
3		deterr	nining a time at which a count rate has a predetermined relation to said
4		runni	ng sum.
5			
1	10.	(силте	ently amended) The method of claim 1 further comprising partitioning said
2		the pr	ocessing time window into a plurality of channels (time intervals) having a
3		length	depending upon said the start starting time.
4			
1	11.	(curre	ntly amended) An apparatus for use within a borehole penetrating an earth
2		forma	tion for determining estimating a parameter of interest of said earth
3		forma	tion, comprising:
4		(a)	a nuclear radiation source for irradiating said the earth formation;
5		(b)	a <u>nuclear radiation</u> detector spaced apart from said <u>nuclear radiation</u> source
6			for making measurements resulting from interaction of said irradiation
7			with said earth formation;
8		(c)	a processor for which
	10/730,	552	5

9		(1) defining defines a starting time for a processing time window for
10		at which said measurements made by the nuclear radiation detector
11		are responsive primarily to said the parameter of interest; and
12		(ii) defining defines an ending time for said the processing time
13		window for at which said the measurements made by the nuclear
14		radiation detector are substantially uncontaminated by noise.
15		
1	12.	(currently amended) The apparatus of claim 11, wherein said the processor define
2		said the starting time by determining a time at which a value of said-the
3		measurements has a predetermined relation to a determined value of a parameter
4		of interest at an ending time of a processing time window for an earlier operation
5		of said the nuclear radiation source.
6		
· 1	13.	(currently amended) The apparatus of claim 12 wherein said the processor further
2		analyzes said the measurements within said processing time window and
3		determines said the parameter of interest.
4		
1	14.	(currently amended) The apparatus of claim 12, wherein said the nuclear radiation
2		source further comprises a pulsed neutron source.
3		<i>;</i>
1	15.	(currently amended) The apparatus of claim 14, wherein said the measurements
2		made by the nuclear radiation detector further comprise gamma ray

3		measurements.
4		
1	16.	(currently amended) The apparatus of claim 14, wherein said the parameter of
2		interest further comprises at least one of (i) a thermal neutron capture cross
3		section of said the earth formation, (ii) porosity, (iii) formation water salinity, and
4		(iv) the quantity and type of hydrocarbons contained in pore spaces. [0005]
5		
1	17.	(currently amended) The apparatus of claim 12, wherein said predetermined
2		relation is of the form
3		$istr = K/\Sigma$
4		where istr is the start time of a window, K is a constant, and Σ is a capture cross
5		section at said the ending time of said the processing time window for said the
б		earlier pulsing operation of said the nuclear radiation source.
7		
1	18.	(currently amended) The apparatus of claim 11 wherein said the processor define
2		said the ending time based on forming a running sum of count rates starting at
3		said the starting time.
4		
1	19.	(original) The apparatus of claim 18, wherein processor defines said ending base
2		on forming a running sum of count rates starting at said starting time.
3		
1	20.	(original) The method of claim 19, wherein said processor defines said ending
	10/730	,552 7

2		time l	ased on determining a time at which a count rate has a predetermined
3		relation	n to said running sum.
4			
1	21.	(curre	atly amended) A system for estimating determining a parameter of interest
2		from .	n earth formation, comprising:
3		(a)	a logging tool including:
4			(i) a <u>nuclear radiation</u> source for irradiating said earth formation,
5			(ii) at least one nuclear radiation detector spaced apart from said
6			nuclear radiation source for making measurements resulting from
7			interaction of said irradiation with said oarth formation;
8		(b)	a processing unit processor for defining a starting time and an ending time
9			for of a time window of for analysis of said measurements made by the
10			nuclear radiation detector, wherein said measurements are responsive
1			primarily to said parameter of interest at said starting time and are
2			substantially uncontaminated by noise at said ending time.
13			
1	22.	(origi	al) The system of claim 21, wherein said processor defines said start time
2		based	on a a time at which a value of said measurements have a predetermined
3		relation	n to a determined value of a parameter of interest at an ending time of a
4		proce	sing time window for an earlier operation of said source.
5			
1	23.	(curre	ntly amended) The system of claim 22 21, wherein said the nuclear radiation
	10/730	1 552	Q

P.10

2		source further comprises a pulsed neutron source.
3		
1	24,	(currently amended) The system of claim 22 21, wherein said measurements made
2		by the nuclear radiation detector further comprise gamma ray measurements.
3		
1	25.	(currently amended) The system of claim 22, wherein said the parameter of
2		interest further comprises at least one of (i) a thermal neutron capture cross
3		section of said the earth formation, (ii) porosity, (iii) formation water salinity, and,
4		(iv) the quantity and type of hydrocarbons contained in pore spaces.
5		
1	26.	(currently amended) The system of claim 22, wherein said predetermined relation
2		is of the form
3		$istr = K/\Sigma$
4		where istr is the start time of a window, K is a constant, and Σ is a capture cross
5		section at said the ending time of said the processing time window for said earlier
б		pulsing operation of said source.
7		
1	27.	(original) The system of claim 21, wherein said processor determines said ending
2		time based on forming a running sum of count rates starting at said starting time.
3		
1	28.	(original) The system of claim 27, wherein said processor determines said ending
2		time based on determining a time at which a count rate has a predetermined
	10/730.	.552 9

Fax:7132668510

3 relation to said running sum. 4 1 29. (new) The system of claim 21 further comprising a conveyance device which 2 conveys the tool into a borehole in the earth formation. 3 30. (new) The system of claim 21 wherein the conveyance device is one of (i) a wireline, (ii) coiled tubing. 2 3 (new) The system of claim 21 further comprising a channel number generator 1 31. 2 which produces a numerical sequence of memory address codes corresponding to 3 a sequence of adjacent time windows. 4 32. (new) The system of claim 21 further comprising a mass storage unit associated 1 2 with the processor. 3 (new) The system of claim 31 further comprising a spectrum accumulator. 1 33. 2 (new) The system of claim 30 wherein the conveyance device comprises a 1 34. wireline, the system further comprising a depth controller which provides signals 2 indicative of a depth of said tool. 3

4