컴파일러구성, UNIX시스템

2019학년도 2 학기

3 학년 2 교시

※ 정답 하나만을 골라 반드시 컴퓨터용 사인펜으로 OMR 답안지에 표기할 것.

학 과		감독관	(1)
학 번	-	성 명	

1과목 컴파일러구성 (1~35)

출제위원 : 방송대 김강현

출제범위:교재 4장~9장 (해당 멀티미디어 강의 포함)

- 1. 다음 중 프로그램 문장 전체를 표현하는 것으로 구문분석과 관련 있는 언어는?
 - ① 위축형 문법
 - ② 비위축형 문법
 - ③ Context-Free-문법
 - ④ 정규문법
- ※ (2~5) 다음 문법을 보고 물음에 답하라.
 - 1) $S \rightarrow aAS$
 - 2) $S \rightarrow a$
 - 3) $A \rightarrow SbA$
 - 4) $A \rightarrow SS$
 - 5) $A \rightarrow b$
- 2. 다음은 ababa를 좌단유도하는 과정이다. 관계없는 것은?
 - ① aAS
 - ② abS
 - ③ abaAS
 - 4 aSbAS
- 3. 다음은 ababa를 우단유도하는 과정이다. 관계없는 것은?
 - ① aAS
 - ② aAa
 - ③ aAaAS
 - 4 aAaba
- 4. First(A)는?
 - ① a
 - 2 a, b
 - 3 a,b,ε
 - 4 a,b,\$
- 5. Follow(A)는?
 - ① a
 - ② a, b
 - 3 a, b, \$
 - ④ ε, a, b, \$
- 6. 다음은 모호한 문법이다.

 $E \rightarrow E + E \mid E * E \mid id$

- 이 문법을 모호하지 않은 문법으로 변환하는 방법은?
- ① 불필요한 생성규칙 제거
- ② ε-생성규칙의 제거
- 3 left factoring
- ④ 연산자 우선순위 또는 결합법칙 적용

7. 다음 문법규칙에서 시작기호로부터 도달 불가능한 기호를 갖는 생성규칙은?

$$G = (V_N, V_T, P, S)$$

$$P : S \rightarrow A \mid C$$

$$A \rightarrow aS$$

$$B \rightarrow b$$

$$C \rightarrow c$$

- ① $S \rightarrow A \mid C$
- \bigcirc A \rightarrow aS
- $3B \rightarrow b$
- $\bigoplus C \rightarrow c$
- 8. 다음 문법을 단일생성 규칙을 갖지 않는 문법으로 변환하려 한다. 빈칸에 들어갈 내용으로 <u>틀린</u> 것은?

- 1 E + T
- ② T

3 (E)

- 4 a
- ※ (9~10) 다음은 주어진 생성규칙을 적용하여 문장 cabd를 유도 하는 과정이다.

S → cAd
A → a | ab
(cabd 유도과정)
S → cAd → cad 다시 되돌아가서 A → ab를 적용한다.
S → cAd → cabd

- 9. 이처럼 다시 되돌아가는 문제점을 무엇이라고 하는가?
 - ① 모호성
- ② back tracking
- ③ 단일 생성규칙
- 4 left factoring
- 10. 이 문제점에 대한 설명으로 <u>관계없는</u> 것은?
 - ① left factoring 으로 해결한다.
 - ② 구문분석의 효율이 높아진다.
 - ③ 같은 기호 a 를 prefix로 갖는 2개 이상의 생성규칙이 존재한다.
 - ④ 해결된 문법은 S \rightarrow cAd, A \rightarrow aA', A' \rightarrow ϵ | b 이다.
- 11. 다음 구문분석에 대한 설명 중 올바르게 설명한 것은?
 - ① Shift-reduce 구문분석은 Top-down 방법이다.
 - ② Bottom-up 구문분석방법은 backtracking을 해야 한다는 단점이 있다.
 - ③ Top-down 구문분석방법은 주어진 문자열로부터 reduce에 의해 시작기호를 찾아가는 방법이다.
 - ④ Bottom-up 방법은 터미널 노드부터 시작하여 루트 노드를 향하여, 반면에 Top-down 방법은 루트 노드로부터 터미널 노드를 향하여 파스트리를 만들어 나간다.

- ※ (12~16) 다음은 주어진 문법을 보고 id-id*id를 shift-reduce 구문분석을 하는 과정이다. 물음에 답하라.
 - 1) $E \rightarrow E * E$
 - 2) $E \rightarrow E E$
 - 3) $E \rightarrow id$
- 12. 문자열 id id * id 를 우단 유도하고 핸들을 표시한 것이다. 다음 중 핸들을 <u>잘못</u> 표시한 단계가 있는가?

우단유도 과정	(핸들)	
1. $E \rightarrow E - E$	(E - E)	
$2. E \rightarrow E - E * E$	(E * E)	
3. $E \rightarrow E - E * id$	(id)	
4. $E \rightarrow E - id * id$	(id)	
5. $E \rightarrow id - id * id$	(id)	

- ① 1단계
- ② 3단계
- ③ 5단계
- ④ 없다.
- ※ (13~16) 계속해서 shift-reduce 구문분석하는 과정이다.

단 계	스 택	입 력	구문분석 행동
0	\$	id-id*id \$	shift ('フト')
1	\$id	-id*id \$	reduce ('나')
2	\$E	-id*id \$	shift -
3	\$E-	id*id \$	shift id
4	\$E-id	*id \$	reduce $E \rightarrow id$
5	\$E-E	*id \$	shift *
6	\$E-E*	id \$	shift id
7	\$E-E*id	\$	reduce $E \rightarrow id$
8	\$E-E*E	\$	reduce ('다')
9	\$E-E	\$	reduce ('라')
10	\$E	\$	accept

- 13. 빈칸 '가'에 알맞은 것은?
 - ① id
 - $② E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} E \rightarrow E-E$
- 14. 빈칸 '나'에 알맞은 것은?
 - \bigcirc id
 - $② E \rightarrow id$
 - $\Im E \to E * E$
 - $\textcircled{4} E \rightarrow E-E$
- 15. 빈칸 '다'에 알맞은 것은?
 - ① id
 - $② E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} E \rightarrow E-E$
- 16. 빈칸 '라'에 알맞은 것은?
 - \bigcirc id
 - $2 E \rightarrow id$
 - $\Im E \to E * E$
 - $\textcircled{4} E \rightarrow E-E$

※ (17~18) 다음은 단순순위문법을 이용해서 기호들 사이의 순위 관계를 정하는 과정이다. 빈칸에 알맞은 것을 고르시오.

```
F 
ightarrow (E) \quad ( \ ( \doteq E, E \doteq ) \ )

ightarrow (E_1) \quad ( \ ( \lessdot E_1, E_1 > ) \ )

ightarrow (T_1) \quad ( \  \  '가' \ )

ightarrow (T) \quad ( \  \  '가' \ )
```

- 17. 빈칸 '가'에 알맞은 것은?
 - ① (\triangleleft T₁
 - \bigcirc (\triangleleft T₁, T₁ \triangleright)
 - $3T_1 > 1$
 - 4 (\lessdot T₁, T₁ \lessdot)
- 18. 빈칸 '나'에 알맞은 것은?
 - ① (< T
 - \bigcirc (\triangleleft T, T \gt)
 - ③ T >)
 - 4 (\lessdot T, T \lessdot)
- **※** (19~21) 다음은 LR(0) 항목 집합의 canonical collection을 구하는 과정이다. 물음에 답하라.
 - (1) 증가문법은 다음과 같다.
 - 0) $S' \rightarrow E$
 - 1) $E \rightarrow E+T$
 - 2) $E \rightarrow T$
 - 3) $T \rightarrow T*F$
 - 4) $T \rightarrow F$
 - 5) $F \rightarrow (E)$
 - 6) $F \rightarrow id$
 - (2) Canonical Collection.

$$\begin{split} I_0 &= \text{closure } ([S' \to \cdot E]) = &\{[S' \to \cdot E], \ [E \to \cdot E + T], \ [E \to \cdot T], \\ &[T \to \cdot T * F], \ [T \to \cdot F], \ [F \to \cdot (E)], \ [F \to \cdot id] \} \end{split}$$

- $I_1 = GOTO (I_0, E)$
- $I_2 = GOTO (I_0, T)$
- $I_3 = GOTO (I_0, F)$
- $I_4 = GOTO (I_0, ()$
- -<보 기>-
- $(가) \{[T \rightarrow F \cdot]\}$
- (나) $\{[S' \rightarrow E \cdot], [E \rightarrow E \cdot +T]\}$
- (다) $\{[E \rightarrow T \cdot], [T \rightarrow T \cdot *F]\}$
- (라) { $[F \rightarrow (\cdot E)], [E \rightarrow \cdot E+T], [E \rightarrow \cdot T], [T \rightarrow \cdot T*F],$ $[T \rightarrow \cdot F], [F \rightarrow \cdot (E)], [F \rightarrow \cdot id]$ }
- 19. I₁ = GOTO (I₀, E)를 보기에서 고르면?
 - ① (가)
- ② (나)
- ③ (다)
- ④ (라)
- 20. I₃ = GOTO (I₀, F)를 보기에서 고르면?
 - ① (가)

② (나)

- ③ (다)
- ④ (라)
- **21.** $I_4 = GOTO(I_0, ()$ 를 보기에서 고르면?
 - ① (가)
- ② (나)
- ③ (다)

④ (라)

※ (22∼24) 계속해서 GOTO 그래프를 이용하여 SLR 파싱표를 구하는 과정이다. 물음에 답하라.

< SLR 파 싱 표 >

시네	구문분석기의 행동						GOTO 함수		
상태	id	+	*	()	\$	E	Т	F
0	S5			'가'			1	'다'	3
1		S6				acc			
2			'나'						

- 22. '가'에 알맞은 내용은?
 - ① S4

② S5

3 S6

- 4 S7
- 23. '나'에 알맞은 내용은?
 - ① S4

② S5

3 S6

- 4 S7
- 24. '다'에 알맞은 내용은?
 - ① 1

2 2

3 3

- 4 4
- * (25~30) 다음은 CLR 그래프를 이용하여 파싱표를 구성하고 구문분석하는 과정이다.

				1	
 상태	구문분석기의 행동			GOTO 함수	
' ও পা	С	d	\$	S	С
0	S3	('가')		1	2
1			acc		
2	S6	S7			5
3	S3	S4			8
4	r3	r3			
5			r1		
6	S6	S7			9
7			r3		
8	('나')	r2			
9			r2		

CLR 파싱표

- 25. 빈칸 '가'에 알맞은 것은?
 - ① S3

② S4

3 S6

- 4 S7
- 26. 빈칸 '나'에 알맞은 것은?
 - ① r2

② r3

③ r4

- 4 r5
- * (27~30) 계속해서 다음은 CLR 파싱표를 보고 문장 ccdd를 구문분석하는 과정이다.

단계	스택	입력기호	구문분석 내용
0	0	ccdd\$	'z}'
1	0c3	cdd\$	'나'
2	0c3c3	dd\$	shift 4
3	0c3c3d4	d\$	'다'
4	0c3c3C	d\$	'라'
5	0c3c3C8	d\$	reduce2
6	0c3C	d\$	goto8

	•	•	•
13	0S	\$	goto1
14	0S1	\$	acc

- 27. '가'에 알맞은 것은?
 - ① shift 3
- ② shift 4
- 3 shift 6
- 4 shift 7
- 28. '나'에 알맞은 것은?
 - ① shift 3
- ② shift 4
- ③ shift 6
- 4 shift 7
- 29. '다'에 알맞은 것은?
 - ① reduce 1
- ② reduce 2
- ③ reduce 3
- 4 reduce 4
- 30. '라'에 알맞은 것은?
 - ① goto 1
- 2 goto 2
- 3 goto 5
- 4 goto 8

- * (31~32) 다음은 Top-Down 구문분석에서 아래 주어진 문법에 대하여 predictive 파싱표를 구성하는 과정이다.
 - 1) $E \rightarrow TE'$
 - 2) $E' \rightarrow +TE'$
 - 3) $E' \rightarrow \epsilon$
 - 4) $T \rightarrow FT'$
 - 5) $T' \rightarrow *FT'$
 - 6) $T' \rightarrow \epsilon$
 - 7) $F \rightarrow (E)$
 - 8) $F \rightarrow id$

 $FIRST(E) = FIRST(T) = FIRST(F) = \{ (, id) \}$

 $FOLLOW(E) = FOLLOW(E') = \{ \}, \}$

 $FOLLOW(T) = FOLLOW(T') = \{ +, \},$

 $FOLLOW(F) = \{+, *, \}$

[파싱표]

$V_{\rm N}$	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			('가')	('나')
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T ′→ ε	$T' \rightarrow * FT'$		T ′→ ε	T ′→ ε
F	$F \rightarrow id$			F → (E)		

- 31. 빈 칸 '가'에 들어갈 내용은?
 - ① $E' \rightarrow \epsilon$
 - $② E \rightarrow TE'$
 - $\Im F \rightarrow (E)$
 - $\textcircled{4} E' \rightarrow +TE'$
- 32. 빈칸 '나'에 들어갈 내용은?
 - ① $E' \rightarrow \epsilon$
 - ② $E \rightarrow TE'$
 - $\Im F \rightarrow (E)$
 - $\textcircled{4} E' \rightarrow +TE'$
- 33. Bell 연구소에서 Stephen C. Johnson을 중심으로 개발된 LALR(1) 구문분석기 생성기로 아래 그림 '가'에 적당한 것은?

① Lex

- ② Scan gen
- 3 YACC
- **4** FLEX
- 34. 다음 기호표의 내용 중 기억장치에서 식별자의 정확한 위치를 나타내는 것은?
 - ① 유형

- ② 매개변수
- ③ 오프셋
- ④ 차원수

35. 다음은 A := -B * (C + D)를 3 주소 코드로 표현한 것이다. 이 방법의 이름은?

번호	op	피연산자 1	피연산자 2	결과
(0)	uminus	В		T_1
(1)	+	C	D	T_2
(2)	*	T_1	T_2	T_3
(3)	:=	T_3		A

- ① 후위표현
- ② triple 표현
- ③ 간접 triple 표현
- ④ quadruple 표현