UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE ESTUDIOS DE POSTGRADOS

Proyecto

El presente proyecto tiene como objetivo realizar un exhaustivo análisis de datos relacionados con las órdenes, clientes (afiliados por medio de una membresía) y tipos de comida de un grupo de restaurantes, con el fin de identificar patrones, tendencias y áreas de mejora que contribuyan a optimizar las operaciones y mejorar la experiencia del cliente.

Objetivos

- Realizar un análisis descriptivo para comprender la distribución y características de las órdenes, clientes y tipos de comida.
- Identificar patrones de consumo de los clientes, preferencias alimenticias y tendencias de ventas
- Evaluar la rentabilidad de cada tipo de comida y su impacto en las ventas.
- Identificar los platos más populares y aquellos que presentan oportunidades de mejora en términos de rentabilidad y satisfacción del cliente.
- Proponer recomendaciones y estrategias basadas en los hallazgos del análisis para mejorar la eficiencia operativa, aumentar las ventas y fidelizar a los clientes.

Descripción

En este proyecto, se llevará a cabo un análisis de información recopilada de varios restaurantes, centrándose en datos relacionados como, el tipo de restaurante, ubicación del restaurante, información de los clientes, información de la orden, fecha y hora en que se realiza la orden. El objetivo principal es comprender el comportamiento de los clientes, identificar tendencias en las órdenes y obtener información valiosa sobre las preferencias de comida en diferentes ubicaciones.

Datos disponibles

En términos generales los datos disponibles incluyen:

- **Información del restaurante**: Tipo de restaurante, ciudad en donde se ubica y porcentaje de ingresos.
- **Información del cliente**: Datos demográficos de los clientes (género y ciudad de origen), recuento de pedidos al mes y presupuesto (límite de crédito por la membresía adquirida).
- **Información de la orden**: Detalles de las órdenes realizadas, incluyendo los productos pedidos, precio, fecha y hora de la orden.

Metodología

- **Preparación de datos**: Se cargarán los datos en un Notebook de R desde los diferentes conjuntos de datos proporcionados. Clic <u>aquí</u> para descargar.
- Análisis descriptivo: Se llevará a cabo un análisis descriptivo de los datos para comprender la distribución de variables, frecuencia de órdenes y tipos de comida más populares. Se utilizarán técnicas estadísticas para resumir y visualizar la información de manera efectiva.
- **Identificación de tendencias**: Se identificarán tendencias de consumo a lo largo del tiempo.

Pasos a desarrollar

1. Conociendo los datos

1.1. Cargue los paquetes tidyverse, dplyr, ggplot2.

1.2. Lea cada uno de los archivos . CSV que se compartieron usando la función read_csv y para cada uno defina una variable.

Imprima cada una de las variables que almacenan los datos, estos poseen una estructura como la que se presenta en la **Figura 1**. Como puede notar existe una relación entre los datos. Analice toda la información para comprender el contexto. En la sección de **Anexos** también puede encontrar un detalle de cada una de las variables. También utilice las funciones head y str en cada variable para tener más contexto.

2. Transformando los datos

- *2.1.. Luego de cargar los datos y asignarlos a variables, use aquella variable donde asigno el archivo "members.csv" y por medio del concepto de Factores transforme la columna sex a un factor y renombre los niveles "F" y "M" por "Femenino" y "Masculino" respectivamente.
 - 2.2. Use la variable donde asigno el archivo "meals.csv" y por medio del concepto de Factores transforme la columna hot_cold a un factor y aplique un ordenamiento donde "cold" es menor que "hot". Valide usando una comparación (cold < hot).

Use la variable donde asigno el archivo "monthly_member_totals.csv" y por medio del concepto de Factores transforme la columna sex a un factor y renombre los niveles "F" y "M" por "Femenino" y "Masculino", haga lo mismo con la columna month y renombre los niveles "1", "2", "3", "4" y "5" por "Enero", "Febrero", "Marzo", "Abril" y "Mayo" respectivamente. Por último, agregue una nueva columna por medio de la función mutate, que calculará la proporción de órdenes (usando la variable "order_count") por la cantidad de comidas (usando la variable "meals count").

Imprima la variable con los cambios aplicados y con la nueva columna.

3. Comportamiento de los datos

Evaluando tendencias lineales

Si ahora graficamos la proporción order_count/meals_count, (columna construida en el inciso 2.3) veremos un patrón curioso.

- 3.1. Utilice ggplot para hacer una gráfica lineal. Tome de referencia la variable creada en el inciso 2.3 (eje y) versus la variable month (eje x).
- 3.2. Utilice la variable month para definir un color distinto en la estética de la gráfica.

Relación, selección y ordenamiento de datos

- 3.3. Tomando como referencia las variables en donde asigno los siguiente archivos:
 - "cities.csv"
 - "member.csv"
 - "orders.csv"
 - "restaurants.csv"
- 3.4. Utilice la función inner-join y construya las relaciones correspondientes (tome en cuenta cada uno de los identificadores de cada archivo), agregue sufijos a las columnas coincidentes por medio del parámetro suffix. Asigne la relación construida a una variable.
- 3.5. Use la función select en la variable creada anteriormente para presentar los siguientes campos:
 - first_name
 - surname
 - sex
 - email
 - city (campo perteneciente a miembro)
 - date
 - hour
 - total_order
 - name
 - city (campo perteneciente a restaurante)
- 3.6. Cree un ordenamiento ascendente para el campo date order.
- 3.7. Por último imprima el resultado.

Obteniendo el conteo por tipo de comida

- 3.8. Tomando como referencia las variables en donde asigno los siguiente archivos:
 - "meals.csv"
 - "serve_types.csv"
 - "meal types.csv"
 - "restaurants.csv"
 - "cities.csv"
 - "restaurant types.csv"
- 3.9. Utilice la función inner-join y construya las relaciones correspondientes, agregue sufijos a las columnas coincidentes por medio del parámetro suffix. Asigne la relación construida a una variable.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE ESTUDIOS DE POSTGRADOS

- 3.10. Use la función select en la variable creada anteriormente para presentar los siguientes campos:
 - restaurant name
 - city
 - restaurant_type
 - income persentage
 - serve type
 - meal type
 - meal name
 - price
- 3.11. Use la función count en la variable creada anteriormente para obtener el conteo por la variable meal type, luego asigne el resultado a una variable.
- 3.12. Imprima la variable del inciso anterior.

Comportamiento de ingresos por ciudad

- 3.13. Use la función group_by en la variable creada en el inciso 3.10 y agrupe por city, luego aplique la función summarize para obtener la sumatoria de income_persentage, asigne a la sumatoria la etiqueta sumIncomePersentaje, el resultado deberá almacenarlo en una variable.
- 3.14. Imprima la variable del inciso anterior.
- 3.15. Tome de referencia la variable anterior y aplique la función ggplot para construir un gráfico de barras, use city para el eje x y sumIncomePersentaje para el eje y.
- 3.16. Utilice la variable city para definir un color distinto en la estética de la gráfica.

Conociendo la tendencia de consumo en un restaurante en particular

- 3.17. Use la función filter en la variable creada en el inciso 3.10 para obtener los datos que cumplan con las siguientes condiciones:
 - meal type = "Vegan", "Chiken"
 - restaurant name = "Restaurant 2"
 - price > 30
- 3.18. Guarde el resultado en una variable
- 3.19. Utilice la variable del inciso anterior para aplicar la ggplot y construir un gráfico de barras, use serve type para el eje x y price para el eje y.
- 3.20. Investigue cómo utilizar la función labs para agregar un título, un subtítulo y etiquetas al eje \times y y.

Tendencias de comida por restaurante y ubicación (ciudad)

- 3.21. Tomando como referencia las variables en donde asigno los siguiente archivos:
 - "cities.csv"
 - "restaurants.csv"
 - "restaurant_types.csv"
 - "orders.csv"
 - "meals.csv"
 - "serve types.csv"
 - "meal_types.csv"
 - "order_details.csv"

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE ESTUDIOS DE POSTGRADOS

- 3.22. Utilice la función inner-join y construya las relaciones correspondientes, agregue sufijos a las columnas coincidentes por medio del parámetro suffix. Asigne la relación construida a una variable.
- 3.23. Use la función select en la variable creada anteriormente para presentar los siguientes campos:
 - restaurant name
 - city
 - restaurant type
 - income percentage
 - serve type
 - meal type
 - meal name
 - price
 - date
 - hour
 - total order
 - id (Identificador de order details)
- 3.24. Tome la variable del inciso anterior y aplique la función group_by para agrupar por city, restaurant name, meal name.
- 3.25. Luego utilice la función summarise para obtener la sumatoria de total_order y asigne la etiqueta totals.
- 3.26. Por último guarde el resultado en una variable e imprima.
- 3.27. Toma la variable del inciso anterior y construye una gráfica de barras por medio de la función ggplot. Para ello use restaurant name en el eje x y totals en el eje y.
- 3.28. Por último, toma de referencia el inciso anterior y aplica faceting tomando de referencia la variable city.

Análisis estadístico propio

- 3.29. Utilice la variable donde asigno el archivo "monthly_member_totals.csv" y haga un análisis estadístico propio considerando lo siguiente:
 - Aplique las funciones filter, group_by, summarise y count para descubrir comportamientos particulares.
 - Use un tipo de gráfica para representar comportamientos o tendencias en los datos.
- 3.30. Para cada uno de los dos incisos anteriores concluya en función de los resultados obtenidos.

Condiciones

- El proyecto se debe trabajar en parejas.
- Todos los incisos deben ser desarrollados en un Notebook de R con el nombre **Provecto.Rmd**.
- En el Notebook debe figurar el nombre de cada uno de los estudiantes.
- Para dudas concernientes al proyecto se utilizará el foro creado en el aula virtual de manera que todos los estudiantes puedan ver las preguntas y posteriores respuestas.
- Las copias totales o parciales obtendrán una nota de 0 puntos.
- No habrá prórroga.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE ESTUDIOS DE POSTGRADOS

Entrega

- La entrega será el martes 16 de abril a las 23:59.
- La entrega se hará en el aula virtual y solo 1 de los integrantes debe hacer la entrega.
- Enviar únicamente el .Rmd.

Anexos

cities

- id: Identificador único para cada ciudad.
- city: Nombre de la ciudad.

restaurant_types

- **id**: Identificador único para el tipo de restaurante.
- **restaurant_type**: Nombre del tipo de restaurante.

serve_types

- **id**: Identificador único para el tipo de servicio.
- **city**: Nombre del tipo de servicio.

meal_types

- **id**: Identificador único para el tipo de comida.
- city: Nombre del tipo de comida.

restaurants

- **id**: Identificador único del restaurante.
- **restaurant name**: Nombre del restaurante.
- **restaurant_type_id**: Identificador único para el tipo de restaurante.
- income_persentage: Porcentaje de ingresos del restaurante.
- **city_id**: Identificador único para cada ciudad.

orders

- **id**: Identificador único para cada pedido.
- **date**: Fecha del pedido.
- **hour**: Hora del pedido.
- **member_id**: Identificador único para cada miembro.
- **restaurant_id**: Identificador único para cada restaurante.
- total_order: Precio total del pedido.

members

- id: Identificador único para cada miembro.
- **first_name**: Nombre del miembro.
- **surname**: Apellido del miembro.
- **sex**: Sexo del miembro.
- email: Correo electrónico del miembro.
- **city_id**: Identificador único de la ciudad.
- **monthly_budget**: Presupuesto mensual del miembro.

meals

- **id**: Identificador único para cada comida.
- **restaurant_id**: Identificador único para cada restaurante.
- **serve_type_id**: Identificador único para cada tipo de servicio.
- **hot_cold**: Comida fría o caliente.
- **meal_name**: Nombre de la comida.
- **price**: Precio de la comida.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ESCUELA DE ESTUDIOS DE POSTGRADOS

order_details

- id: Identificador único para cada detalle del pedido.
- order_id: Identificador único para cada pedido.
- **meal_id**: Identificador único para cada comida.

monthly_member_totals

- **member_id**: Identificador único para cada miembro.
- **first_name**: Nombre del miembro.
- **surname**: Apellido del miembro.
- **sex**: Sexo del miembro.
- email: Correo electrónico del miembro.
- **city**: Ciudad del miembro.
- year: Año relevante.
- month: Mes relevante.
- **order_count**: Conteo de pedidos en el mes correspondiente para cada miembro.
- **meals_count**: Conteo de comidas en el mes correspondiente para cada miembro.
- **monthly_budget**: Presupuesto mensual del miembro.
- total_expense: Gasto total mensual del miembro.
- **balance**: Saldo mensual del afiliado.
- **commission**: Comisión mensual del socio.