ГУАП

КАФЕДРА № 44

ОТЧЕТ	. V		
защищен с оценко	РИ		
ПРЕПОДАВАТЕЛЬ			
доц., канд. техн. наук			О.О. Жаринов
должность, уч. степень,	звание	подпись, дата	инициалы, фамилия
(ОТЧЕТ О ЛА	БОРАТОРНОЙ РАБС	OTE № 6
РАЗРАБОТКА	модуля с	ЧЁТНОГО УСТРОЙО	СТВА С ЗАДАННЫМ
			ЯЗЫКОВ ОПИСАНИЯ
		АППАРАТУРЫ	
	по ку	рсу: СХЕМОТЕХНИКА	
	,		
РАБОТУ ВЫПОЛНИЛ			
СТУДЕНТ гр. №	4143		Д.В. Пономарев
	-	подпись, дата	инициалы, фамилия

Цель работы

Разработать проект модуля счётного устройства, работающего по заданному алгоритму в среде программирования Quartus, используя языки описания аппаратуры.

Индивидуальное задание

Задание заключается в разработке устройства формирования заданных последовательностей выходных кодов. Здесь особенно важно подчеркнуть недопустимость даже кратковременных "врезок" двоичных кодов, нарушающих заданную последовательность. Наличие таких элементов на временной диаграмме допускается только по согласованию с преподавателем, при предъявлении результатов работы в часы занятий.

Моделирование проекта следует осуществить в среде ModelSim Altera, с использованием файла, описывающего тестовые воздействия (testbench).

Последовательность выходных кодов устройства для варианта №5 показана в таблице 1. Подметим, что значение М взято из предыдущей лабораторной работы №3. Согласно отчёту, **M** = **29**.

Таблица 1

	таолица т (начало) - последовательность выходных кодов устроиства																		
.№	порядковый номер входного импульса счетного модуля																		
варианта	0	1	2		M-2	M-1	M	M+1	M+2		2M-1	2M	2M+1	2M+2		3M-1	3M	3M+1	3M+2
1	0	1	2		M-2	M-1	M	M-1	M-2		1	0	1	2		M-1	M	M-1	M-2
2	0	1	2		M-2	M-1	M	M	M		M	0	1	2		M-1	M	M	M
3	0	1	2		M-2	M-1	M	M	M		M	M	M-1	M-2	•••	1	0	1	2
4	0	1	2		M-2	M-1	0	0	0		0	0	1	2		M-1	0	0	0
5	0	1	2		M-2	M-1	M	M-1	M-2		1	0	0	0	•••	0	0	1	2
6	0	1	2		M-2	M-1	0	0	0		0	0	0	0	•••	0	0	1	2
7	0	0	0		0	0	0	1	2		M-1	M	M-1	M-2	•••	1	0	0	0
8	0	1	2		M-2	M-1	M	M	M		M	0	0	0	•••	0	0	1	2
9	0	0	0		0	0	0	1	2		M-1	M	0	0	•••	0	0	0	0
10	0	1	2		M-2	M-1	0	1	2		M-1	0	0	0	•••	0	0	1	2

Ход работы

В качестве языка описания аппаратуры был выбран Verilog.

Начнём с настройки ModelSim, чтобы правильно построить временную диаграмму. Дальнейшая настройка проводилась согласно лекции №4 от 11 марта 2024 года. Во время создания проекта на этапе настройки EDA Tool Settings нужно указать ModelSim Altera и Verilog HDL. Это показано на

рисунке 1.

Рисунок 1 – Настройка EDA Tool Settings

Затем в настройках симуляции EDA Tool укажем имена созданного ранее тестбенча и добавим файл с расширением vt. Результат показан на рисунке 2.

Рисунок 2 — Настройка симуляции

Опираясь на таблицу 1, можно сделать вывод о том, то один цикл счётчика состоит из нескольких этапов. Рассмотрим каждый из них:

Этап 0: счёт от 0 до 29 (такт 0-29).

Этап 1: счёт от 28 до 0 (такт 30 – 58).

Этап 2: счёт 0 (такт 59 – 86).

Заглядывая вперёд, данные этапы и будут будущими состояниями автомата.

Примерный вид последовательности в течение 1 итерации показан в таблице 2, где голубым выделены номера тактов, а под ними — соответствующие выходные значения счётчика.

Таблица 2

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
28	27	26	25	24	23	22	21	20	19
40	41	42	43	44	45	46	47	48	49
18	17	16	15	14	13	12	11	10	9
50	51	52	53	54	55	56	57	58	59
8	7	6	5	4	3	2	1	0	0
60	61	62	63	64	65	66	67	68	69
0	0	0	0	0	0	0	0	0	0
70	71	72	73	74	75	76	77	78	79
0	0	0	0	0	0	0	0	0	0
80	81	82	83	84	85	86	87	88	89
0	0	0	0	0	0	0	0	1	2

Идея заключается в использовании автомата с тремя состояниями. Рассмотрим автомат подробнее. Первое состояние имеет название S0. Оно является начальным, предназначен же для вывода последовательности от 0 до 29 включительно. Второе состояние имеет название S1. Оно является «обратным» по отношению к начальному в каком-то смысле, потому что оно предназначено для вывода обратного счёта от 28 до 0 включительно. Наконец, третье состояние имеет название S2 и предназначено для вывода нулей.

Перейдём к разработанной программе. На вход модуля будут подаваться обычные тактовые сигналы, а на выходе будет обычный регистр out размером 6 бит. Затем идёт инициализация состояний автомата. Итого получаем:

$$S0 = 00$$

$$S1 = 01$$

$$S2 = 10$$

После этого идёт объявление регистров. Всего их будет два: регистр s размером 2 бита, которому будет присваиваться значение состояния, а также счётчик counter размером 5 битов. С помощью инициализации зададим начальное состояние автомата, а именно: автомат пребывает в состоянии S0 и счётчик обнулён.

Затем идёт обширный блок always @, который реагирует на каждый положительный фронт тактового сигнала. Внутри него, с помощью конструкции саѕе, расписано поведение каждого из состояний. Логика в целом соответствует расписанной раннее, но есть момент. В состоянии S0, когда счётчик дошёл до значения 30, идёт переход в блок else, где внутри него сначала идёт вывод значения 28, потом присваивание счётчику значения 27 и только потом переход в состояние S1. Это сделано для того, чтобы вывелась последовательность вида

...28 29 28...

Листинг программы

```
module lab6 (
input clk,
output reg [5:0] out
);

parameter S0 = 2'b00;
parameter S1 = 2'b01;
```

```
parameter S2 = 2'b10;
reg [1:0] s;
reg [4:0] counter;
initial begin
  s = S0;
  counter = 0;
end
always @(posedge clk) begin
     case(s)
                   S0: begin
                          if (counter < 30) begin
                                out <= counter;
                                counter = counter + 1;
                          end
                          else begin
                                out <= counter - 2;
                                counter \leq 27;
                                s \le S1;
                          end
                   end
       S1: begin
                          if (counter > 0) begin
                                out <= counter;
                                counter = counter - 1;
                          end
                          else begin
                                out <= 0;
                                counter \leq 0;
                                s \le S2;
                          end
        end
       S2: begin
                          if (counter < 28) begin
                                out <= 0;
```

```
counter = counter + 1; end else \ begin counter <= 0; s <= S0; end
```

end

endcase

end

endmodule

ПЛИС

Результат назначения выводов ПЛИС показан на рисунке 3, а на рисунке 4 показана сама ПЛИС.

	Node Name		Direction	Location	I/O Bank	VREF Group	I/O Standard	
1		dk	Input	PIN_A1	2		3.3-V LVTTL (default)	
2	•	out[5]	Output	PIN_A2	2		3.3-V LVTTL (default)	
3	•	out[4]	Output	PIN_A3	2		3.3-V LVTTL (default)	
4	•	out[3]	Output	PIN_A4	2		3.3-V LVTTL (default)	
5	•	out[2]	Output	PIN_A5	2		3.3-V LVTTL (default)	
6	•	out[1]	Output	PIN_A6	2		3.3-V LVTTL (default)	
7	•	out[0]	Output	PIN_A7	2		3.3-V LVTTL (default)	
8		< <new node="">></new>						

Рисунок 3 — Назначение выводов ПЛИС

Top View
MAX II - EPM570ZM256I8

Рисунок 4 - ПЛИС

Временная диаграмма

Временная диаграмма продемонстрирована на рисунках 5-9.

Рисунок 5 – Временная диаграмма (первая часть)

Рисунок 6 – Временная диаграмма (вторая часть)

Рисунок 7 – Временная диаграмма (третья часть)

Рисунок 8 – Временная диаграмма (четвёртая часть)

Рисунок 9 – Временная диаграмма (пятая часть)

Выводы

В данной лабораторной работе был разработан проект модуля счётного устройства, работающего по заданному алгоритму в среде программирования Quartus, используя языки описания аппаратуры.

Список используемых источников

- 1. Проектирование встраиваемых систем на ПЛИС. / З.Наваби; перев. с англ.В.В. Соловьева. М.: ДМК Пресс, 2016. 464 с.
- 2. Проектирование цифровых устройств на ПЛИС: учеб. пособие / И.В. Ушенина. СПб: Лань, 2022. 408 с.
- 3. Цифровая схемотехника и архитектура компьютера / Д.М. Харрис, С.Л. Харрис; пер. с англ. ImaginationTechnologies. М.: ДМК Пресс, 2018. 792 с.
- 4. Учебно-методические материалы к выполнению лабораторной работы №6 по дисциплине «Схемотехника» (2-й семестр изучения дисциплины) // Жаринов. О.О: [Электронный ресурс] // Санкт-Петербургский государственный университет аэрокосмического приборостроения. URL.:

- https://pro.guap.ru/inside/student/tasks/43730981ca7ca6713e1a6eadb8e83b51/dow nload. (Дата обращения: 05.04.24).
- 5. Лекция №4 от 25 марта 2024 года по дисциплине «Схемотехника» (2-й семестр изучения дисциплины) // Жаринов. О.О: [Электронный ресурс] // Санкт-Петербургский государственный университет аэрокосмического приборостроения.

 URL.: https://bbb2.guap.ru/playback/presentation/2.3/8df832b35e59b7b17bb499a557e56
 942cdbfdf0b-1711367744513. (Дата обращения: 05.04.24).
- 6. Отчёт о выполнении лабораторной работы №4 по дисциплине «Схемотехника» (2-й семестр изучения дисциплины) // Пономарев Д.В: [Электронный ресурс] // Санкт-Петербургский государственный университет аэрокосмического приборостроения. URL.: https://pro.guap.ru/inside/student/reports/3920740/download. (Дата обращения:

05.04.24).