Parallelism (PAR) Course presentation

Lluc Álvarez, Eduard Ayguadé¹, José Ramón Herrero, Julián Morillo, Jordi Tubella and Gladys Utrera

> Computer Architecture Department Universitat Politècnica de Catalunya

Course 2018/19 (Fall semester)

Parallelism (PAR)

¹Course coordinator (eduard@ac.upc.edu)

 Objectives
 Syllabus
 Methodology
 Course materials
 Evaluation

General objectives I

Design, implement, compile and execute parallel programs

- Specific objectives
 - Create a task or data decomposition strategy to parallelise a serial application
 - ► Implement the parallelisation strategy using the extensions provided by a given parallel programming model
 - ▶ Use of task creation and work distribution mechanisms that appropriately balance work and exploit data locality
 - Use of synchronisation techniques to avoid race conditions while minimising overheads
 - ► Task vs. data decomposition

UPC-DAC

Parallelism (PAR) 2 / 12

 Objectives
 Syllabus
 Methodology
 Course materials
 Evaluation

General objectives II

Create simple performance models, analyse performance and understand parallel architecture support

- Specific objectives
 - Create simple models based on the decomposition strategy
 - ► Analyse the performance of a parallel program using instrumentation and analysis tools
 - Detect performance degradation factors: granularity, load balance, task interaction, etc.
 - Understand the required support from the architecture to the parallel programming model

LIPC-DAC

Parallelism (PAR) 3/12

Chronological syllabus (2T/P and 2L per week)

- 1. Why parallel computing?
 - ► Parallelism and concurrency
- 2. Understanding parallelism
 - Amdahl's law, speedup, scalability, overheads, performance models, ...
- 3. Parallel programming strategies I: Task decomposition
- 4. Introduction to (shared-memory) parallel architectures
- 5. Parallel programming strategies II: Data decomposition

UPC-DAC

Parallelism (PAR) 4 / 12

Course methodology: Theory

- ► Theory/Problems (T/P): 2 hours/week (in class)
 - ► Material available (through **Atenea**):
 - Slides presenting concepts and examples
 - Collection of exercises and exams from previous courses
 - Video lessons and short quizzes (additional material)
 - ► Two in-term exams:
 - First in-term exam: November 7^{th} (12:30–14:30)
 - \triangleright Second in-term exam: December 12^{nd} (12:30–14:30)
 - Closed book exams: not allowed to use textbooks, notes, collection of problems/exams, ...

UPC-DAC

Parallelism (PAR) 5 / 12

Course methodology: Laboratory I

- ► Laboratory (L): 2 hours/week (in lab)
 - ▶ 5 laboratory assignments (Lab1–5)
 - Documentation for each assignment and additional material available through Atenea
 - One deliverable per assignment and group, submitted via FIB Raco
 - pdf documents, C codes, scripts, etc.
 - ▶ Deadline: Just before starting the next laboratory assignment
- Attendance to and performance during laboratory sessions contribute to laboratory grading

UPC-DAC

Parallelism (PAR) 6 / 12

Course methodology: Laboratory II

- Guided laboratory sessions
 - ► Lab 1: Compilation, execution, performance prediction and analysis tools
 - ▶ Labs 2, 3 and 5: Parallelisation of applications using OpenMP
 - ▶ Lab 4: understanding parallelisation/data—sharing overheads
 - ▶ 3 sessions devoted to each laboratory assignment, except for Lab4 (2 sessions)
- Development context:
 - Groups of two students
 - Remote access to a multiprocessor server machine at the Computer Architecture Department
 - ▶ Programming language: C using OpenMP extensions

UPC-DAC

Parallelism (PAR) 7 / 12

Course materials

- ▶ All documentation published through **Atenea**
 - ► Slides, collection of exercises and collection of solved in-term/final exams for the T/P sessions
 - Videos and quizzes to support your study
 - Description of L assignments
 - Links to manuals and quick reference guides for the programming models and tools used in L sessions
- ► All the documentation is in English (third-language transversal competence)

UPC-DAC

Parallelism (PAR) 8 / 12

Evaluation I

- ▶ Based on the following components:
 - AC = $(1^{st} \text{ in-term exam} \times 0.5) + (2^{nd} \text{ in-term exam} \times 0.5)$
 - Final Exam (EF): **mandatory if** AC < 5.0, optional otherwise
 - Lab = Grading of laboratory deliverables modulated by performance during sessions (including attendance to classroom)
 - Lab1 (1 point, 3 sessions), Lab2 (2.5 points, 3 sessions), Lab3 (2.5 points, 3 sessions), Lab4 (1.5 points, 2 sessions) y Lab5 (2.5 points, 3 sessions)
 - Attendance to lab sessions: each not attended session subtracts 10% from the maximum grading of the specific assignment
 - ► Individual student interview, if necessary

Parallelism (PAR) 9 /

Evaluation II

- ► Final mark (F)
 - ▶ If $AC \ge 5.0$ then $F = 0.7 \times max(EF, AC) + 0.3 \times Lab$ being EF optional in this case (to improve AC)
 - ▶ If AC < 5.0 then $F = 0.7 \times max(EF, 0.25 \times AC + 0.75 \times EF) + 0.3 \times Lab$
- ▶ Date for final exam: January 16^{th} (11.30–14:30)

UPC-DAC

Parallelism (PAR) 10 / 12

Third-language transversal competence

- ► Reading/comprehension: implicit evaluation, no explicit contribution to Final mark (F)
 - ► All course material in English
 - ▶ Mid-term controls and final exam **statement** in English
 - ► Answer in catalan, spanish or english ...
 - ... except for students in group 10 (English group)
- ► The *third-language generic competence* will be evaluated (optional) through
 - ▶ Reports for Labs 2, 3 and 5 fully written in English
 - ▶ Rubrics and evaluation criteria known in advance
 - ► Grading: A, B, C, D or NA

Parallelism (PAR) UPC-DAC 11 / 12

Parallelism (PAR) Course presentation

Lluc Álvarez, Eduard Ayguadé², José Ramón Herrero, Julián Morillo, Jordi Tubella and Gladys Utrera

> Computer Architecture Department Universitat Politècnica de Catalunya

Course 2018/19 (Fall semester)

Parallelism (PAR) 12 / 12

²Course coordinator (eduard@ac.upc.edu)