1 IMPLICAÇÕES LÓGICAS (⇒)

1.1 Definição

Uma proposição $P(p,q,r,\cdots)$ implica uma proposição $Q(p,q,r,\cdots)$, $P\Rightarrow Q$, se $Q(p,q,r,\cdots)$ é **verdadeira** sempre que $P(p,q,r,\cdots)$ for **verdadeira**. Em outras palavras, $P\Rightarrow Q$ se em quaisquer linhas das tabelas-verdade de P e de Q não ocorre de P ser V e Q ser F, simultaneamente. Ou seja, não podemos ter VF nas linhas da tabela de P e de Q, respectivamente.

Exemplos.

1. Mostre que a proposição $(p \rightarrow q) \land \sim q$ implica a proposição $\sim p$.

Fazendo as tabelas-verdade destas proposições, temos:

	p	q	$p \rightarrow q$	$\sim q$	$(p \rightarrow q) \land \sim q$	$\sim p$
	V	V	V	F	F	F
	V	F	F	V	F	F
ĺ	F	V	V	F	F	V
	F	F	V	V	V	V

Analisando a tabela de $(p \to q) \land \sim q$ e a tabela de $\sim p$, nesta ordem, percebe-se que não há nenhum V seguido de F e, portanto, conclui-se que $(p \to q) \land \sim q \Rightarrow \sim p$.

Observação: Se $P\Rightarrow Q$ não necessariamente a recíproca é verdadeira, ou seja, se $P\Rightarrow Q$ não necessariamente temos que $Q\Rightarrow P$.

2. Mostre que $\sim p$ não implica $(p \to q) \land \sim q$

Analisando a tabela de $\sim p$ e a tabela de $(p \to q) \land \sim q$, nesta ordem, percebe-se que há V seguido de F na 3^a linha e, portanto, $\sim \mathbf{p} \Rightarrow (\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q}$.

Logo, temos que $(\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q} \Rightarrow \sim \mathbf{p}$, mas $\sim \mathbf{p} \Rightarrow (\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q}$, comprovando que na implicação lógica não vale a propriedade simétrica.

3. Mostre que $\sim p \Rightarrow p \rightarrow q$.

Utilizando a mesma tabela dos exemplos 1. e 2. também é possível verificar que $\sim p \Rightarrow p \to q$, pois não há nenhum V seguido de F nas tabelas de $\sim p$ e $p \to q$, respectivamente.

4. Mostre que $\sim q \Rightarrow (p \rightarrow q) \land \sim q$.

Utilizando a mesma tabela dos exemplos anteriores, temos que há um V seguido de F na 2^a linha das tabelas de $\sim q$ e $(p \to q) \land \sim q$, respectivamente, logo, $\sim q$ não implica $(p \to q) \land \sim q$.

5. Mostre que a proposição $\sim p \wedge (p \wedge \sim q)$ implica a proposição p.

p	q	$\sim p$	$\sim q$	$p \land \sim q$	$\sim p \wedge (p \wedge \sim q)$
V	V	F	F	F	F
V	F	F	V	V	F
F	V	V	F	F	F
\overline{F}	F	V	V	F	F

Analisando a tabela de $\sim p \land (p \land \sim q)$ e a tabela de p, nesta ordem, percebe-se que não há nenhum V seguido de F e, portanto, conclui-se que $\sim p \land (p \land \sim q) \Rightarrow p$.

Note que, como $\sim p \wedge (p \wedge \sim q)$ é uma contradição, esta proposição implica qualquer uma das proposições dessa tabela, pois nunca teremos VF nas linhas da tabela, já que $\sim p \wedge (p \wedge \sim q)$ é sempre falsa.

1.2 Tautologias e Implicações Lógicas

Uma outra maneira de determinar se uma proposição P implica uma proposição Q é analisando a condicional $P \to Q$, pois se $P \to Q$ for uma tautologia, temos que $P \Rightarrow Q$. Este resultado se baseia no teorema a seguir:

Teorema. A proposição $P(p,q,r,\cdots)$ implica a proposição $Q(p,q,r,\cdots), P \Rightarrow Q$, se, e somente se, a condicional

$$P \rightarrow Q$$

é tautológica.

Lembre-se que a condicional $P \to Q$ só é falsa quando o valor lógico de P é a verdade e o de Q é a falsidade, ou seja, $P \to Q$ só é falsa se tivermos V seguido de F nas tabelas de P e Q, respectivamente. Assim, $P \to Q$ só não será uma tautologia se tivermos V seguido de F nas tabelas de P e Q, respectivamente, - condição para $P \not\Rightarrow Q$ -, isto é, os métodos de verificação de implicação lógica são equivalentes.

A seguir são apresentados os mesmos exemplos da Seção 1.1, porém fazendo-se uma análise sobre a condicional entre as proposições.

Exemplos.

1. Mostre que a proposição $(p \rightarrow q) \land \sim q$ implica a proposição $\sim p$.

Fazendo a tabela-verdade da condicional entre a proposição $(p \to q) \land \sim q$ e a proposição $\sim p$, temos:

p	q	$p \rightarrow q$	$\sim q$	$(p \rightarrow q) \land \sim q$	$\sim p$	$((p \to q) \land \sim q) \to \sim p$
V	V	V	F	F	F	V
V	F	F	V	F	F	V
F	V	V	F	F	V	V
\overline{F}	F	V	V	V	V	V

Analisando a tabela de $(p \to q) \land \sim q$ e a tabela de $\sim p$, nesta ordem, percebe-se que não há nenhum V seguido de F e, portanto, a condicional entre $(p \to q) \land \sim q$ e $\sim p$ é sempre **verdadeira**, ou seja, $(p \to q) \land \sim q \to \sim p$ é uma **tautologia**. Logo, pelo Teorema anterior, temos que $(p \to q) \land \sim q \Rightarrow \sim p$.

2. Mostre que $\sim p$ não implica $(p \rightarrow q) \land \sim q$

p	q	p o q	$\sim q$	$(p \rightarrow q) \land \sim q$	$\sim p$	$\sim p \to ((p \to q) \land \sim q)$
V	V	V	F	F	F	V
V	F	F	V	F	F	V
F	V	V	F	F	V	F
F	F	V	V	V	V	V

Como a proposição $\sim p \to ((p \to q) \land \sim q)$ não é uma tautologia, temos que $\sim p$ não implica $(p \to q) \land \sim q$, ou simbolicamente, $\sim \mathbf{p} \Rightarrow (\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q}$.

Note que $\sim p \to ((p \to q) \land \sim q)$ não é uma tautologia porque na tabela de $\sim p$ e na tabela de $(p \to q) \land \sim q$, nesta ordem, há V seguido de F na 3^a linha e, como vimos na seção anterior, se há VF então $\sim \mathbf{p} \Rightarrow (\mathbf{p} \to \mathbf{q}) \land \sim \mathbf{q}$.

3. Mostre que $\sim p \Rightarrow p \rightarrow q$.

Fazendo a tabela-verdade da condicional entre a proposição $\sim p$ e a proposição $p \to q$, temos:

p	q	$\sim p$	$p \rightarrow q$	$\sim p \rightarrow (p \rightarrow q)$
V	V	F	V	V
V	F	F	F	V
F	V	V	V	V
F	F	V	V	V

Como $\sim p \to (p \to q)$ é uma **tautologia**, pelo Teorema anterior, temos que $\sim p \Rightarrow (p \to q)$.

4. Mostre que $\sim q \Rightarrow (p \rightarrow q) \land \sim q$.

Fazendo a tabela-verdade da condicional entre a proposição $\sim q$ e a proposição $(p \rightarrow q) \land \sim q$, temos:

p	q	$p \rightarrow q$	$\sim q$	$(p \to q) \land \sim q$	$\sim q \to ((p \to q) \land \sim q)$
V	V	V	F	F	V
V	F	F	V	F	F
F	V	V	F	F	V
F	F	V	V	V	V

Como a proposição $\sim q \to ((p \to q) \land \sim q)$ não é uma tautologia, temos que $\sim q \Rightarrow (p \to q) \land \sim q$. Observe que esta justificativa é análoga a dizer que $\sim q$ não implica $(p \to q) \land \sim q$ porque há um V seguido de F na 2^a linha das tabelas de $\sim q$ e $(p \to q) \land \sim q$, respectivamente, e, por isso, não há como a condicional em questão ser tautológica.

5. Mostre que a proposição $\sim p \wedge (p \wedge \sim q)$ implica a proposição p.

p	q	$\sim p$	$\sim q$	$p \land \sim q$	$\sim p \wedge (p \wedge \sim q)$	$\sim p \land (p \land \sim q) \rightarrow p$
V	V	F	F	F	F	V
V	F	F	V	V	F	V
F	V	V	F	F	F	V
F	F	V	V	F	F	V

Como $\sim p \land (p \land \sim q) \rightarrow p$ é uma **tautologia**, temos que $\sim p \land (p \land \sim q)$ **implica** a proposição p.

Observação: Toda proposição **implica** uma tautologia e somente uma contradição **implica** uma contradição.

- Se P é uma proposição qualquer e Q é uma tautologia, então $P \Rightarrow Q$ sempre, já que nunca teremos VF;
- Se Q é uma contradição, então P necessariamente também precisa ser uma contradição para que $P \Rightarrow Q$, pois precisamos garantir que não ocorra VF nas tabelas de P e Q, respectivamente.