

Submittal

General Contractor	North American Pipeline Services, LLC		
Job Name:	SEWER & MANHOLE REHABILI	TATION	
Contract Number:	SR-01-15-15B		
Submitted to:	North American Pipeline Services, L 210 Bennett Road, Freehold, NJ 077		
Engineer:	Maser Consulting, P.A. 331 Newman Springs Road, Suite 20 Project No. 15001124A	03, Red Bank, NJ 07701	
Allstate Submittal #:	3		
Item Submitted:	Polyester Resin		
Manufacturer:	Interplastic Corp. 1225 Willow Lake Blvd Saint Paul, MN 55110	AOC 955 Hwy 57 E Collierville, TN 38017	
Date Submitted:	March 17, 2016		
Specification Section:	02607		
Item is as specified in contract documents:	Yes		
Certification Statement:			
construction criteria, material	present that I have determined and ve s, dimensions, catalog numbers and s ther applicable approved shop drawin	imilar data and I have checked and	
Submitted By:	altant	/ 	
	Al Hic Allstat	kson e Power Vac, Inc	

Vipel_® L758-LTI Polyester Resin

PRODUCT INFORMATION

Polyester Resin for Underground Sewer Pipe Liners

DESCRIPTION

The Vipel L758-LTI is a high molecular weight unsaturated polyester resin. The Vipel L758-LTI provides the corrosion resistance, durability and toughness that is required for cured in place pipe applications.

FEATURES

- Excellent catalyzed pot life
- Superior mechanical properties
- High molecular weight

TYPICAL LIQUID PROPERTIES (1) SEE BACK	PAGE	
Test	Units of Measure	Nominal
Viscosity @ 25°C/77°C, RVF Brookfield		
Spindle #4 @ 20 RPM	cps	5,800
Thix Index 2/20	-	2.5+
Color	-	Opaque
Specific Gravity @ 25°C/77°C	=	1.29
Non-Violatiles	%	30
Gel Time @ 140°F with (1.0% Di-(4-tert-buty	/l-cyclohexyl)	
peroxydicarbonate and 0.5%		
Trigonox® C)	minutes	12
Pot Life @ 25°C/77°C (1% Di-(4-tert-butyl-cy	clohexyl)	
peroxydicarbonate and + 0.5%		
Trigonox [®] C)	hours	40
Trigonox is a trademark of Akzo Nobel Chemicals		

pel_®L758-LTI Polyester Resin

PERFORMANCE GUIDELINES

A. Keep full strength catalyst levels between 1.0% - 3.0% of the total resin weight.

B. Maintain shop temperatures between 18°C/65°F and 32°C/90°F and humidity between 40% and 90%. Consistent shop conditions contribute to consistent gel times and will help the fabricator make a high quality part.

STORAGE STABILITY

Resins are stable for three months from date of production when stored in the original containers away from sunlight at no more than 25°C/77°F.

During the hot summer months, no more than two months stability at 30°C /86°F should be anticipated. After extended storage, some drift may occur in gel time and viscosity.

Storage in plastic totes made out of materials such as polyethylene (PE) or polypropylene (PP), in particular translucent PE/PP, will accelerate gel formation and result in a significantly reduced storage stability.

Storage of this resin outdoors in translucent plastic totes may reduce the storage stability to only a few weeks. AOC cannot assume responsibility for gel formation under these storage conditions.

SAFETY

See appropriate Material Safety Data Sheet for guidelines.

ISO 9001:2008 CERTIFIED

The Quality Management Systems at every AOC manufacturing facility have been certified as meeting ISO 9001:2008 standards. This certification recognizes that each AOC facility has an internationally accepted model in place for managing and assuring quality. We follow the practices set forth in this model to add value to the resins we make for our customers.

FOOTNOTES

(1) The pot life times shown are typical but may be affected by catalyst, promoter and inhibitor concentrations in resin, and environmental temperature. Variations in gelling characteristics can be expected between different lots of catalysts and at extremely high humidities. Pigment and fillers can retard or accelerate gelation. It is recommended that the fabricator check the gelling characteristics of a small quantity of resin under actual operating conditions prior to use.

(2) Based on tests on Vipel L758-LTI pipe at 77° F/25° and 50% relative humidity. Ccastings were prepared using 1.0% Perkadox 16 and 0.5 Trigonox C.

The information contained in this data sheet is based on laboratory data and field experience. We believe this information to be reliable, but do not guarantee its applicability to the user's process or assume any liability for occurrences arising out of its use. The user, by accepting the products described herein, agrees to be responsible for thoroughly testing each such product before committing to production.

Our recommendations should not be taken as inducements to infringe any patent or violate any law, safety code or insurance regulation. © 2014, AOC, LLC

NORTH AMERICA
Toll free: +1 866 319 8827
northamerica@aoc-resins.com

AOC UK LTD. +44 01206 390400 salesUK@aoc-resins com LATIN AMERICA +01 863 815 5016

!atinamerica@aoc-resins com INDIA

INDIA +44 1206 390415 india@aoc-resins.com MIDDLE EAST +44 1206 390415 !middleeast@aoc-resins.com

> ASIA/AUSTRALIA +44 1206 390415 asia@aoc-resins.com

1. No. UC- Vipel® £758-LTI 2ctive Date: April, 2014 EUROPE +44 1206 390415 europe@aoc-resins.com

orld Leader in Resin Technology

MSDS #: 16485V4

WHMIS (Canada)

NFPA (USA) Fire

8am-5pm (Central Time) Mon-Fri

Reactivity

HMIS (USA)

Protective clothing

B-2 D-2A D-2B

Specific hazard

Health

Section 1. Chemical product and company identification Trade name L758-LTI-14 Product type Polyester Resin Solution Chemical family Aromatic. Used in the manufacture of thermoset plastic parts. Material uses In case of emergency AOC, LLC Manufacturer 950 Highway 57 East Collierville, TN U.S.A. 38017 CHEMTREC (US): 24 hours/7 days (800) 424-9300 Website: www.aoc-resins.com CANUTEC (Canada): 24 hours/7 days (613) 996-6666 Phone Number: (901) 854-2800

∠SHA status	This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).			
Routes of entry	Eye contact, Skin contact, Inhalation, Ingestion			
Potential acute health effects	Eyes: Severe eye irritant which may result in redness, burning, tearing and blurred vision. Skin: Skin irritant which may result in burning sensation. Repeated or prolonged skin contact may cause dermatitis. Ingestion: Ingestion may result in mouth, throat and gastrointestinal irritation, nausea, vomiting and diarrhea. Inhalation: Inhalation of spray mist or liquid vapors may cause upper respiratory irritation and possible central nervous system effects including headaches, nausea, vomiting, dizziness, drowsiness, loss of coordination, impaired judgement and general weakness.			
Potential chronic health effects	CARCINOGENIC EFFECTS: Styrene: Classified A4 (not classifiable for human or animal) by ACGIH. Classified 2B (possible for human) by IARC. Classified as "reasonably anticipated to be a human carcinogen" by NTP. An increased incidence of lung tumors was observed in mice from a recent inhalation study. The relevance of this finding is uncertain since data from other long-term animal studies and from epidemiology studies of workers exposed to styrene do not provide a basis to conclude that styrene is carcinogenic to humans. Talc: Classified A2 (suspected for human) by ACGIH. Classified 1 (proven for human) by IARC. Classified R2 (suspected for human) by ACGIH. Classified A2 (suspected for human) by ACGIH. Classified A2 (suspected for human) by ACGIH. Classified 1 (proven for human) by IARC. Classified 1 (proven for human) by IARC.			

Man		CACH	O/ becausing		
Name		CAS#	% by weight		
Styrene Talc Crystalline Silica	100-42-5 31.0 14807-96-6 20 - 30 14808-60-7 0.1 - 1				
Section 4. First aid mea	asures				
Eye contact	Flush with a continuous flow of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Use of buffered baby shampoo will aid in removal. Seek medical attention.				
Skin contact	Gently and thoroughly wash the contamin persists, seek medical attention.	ated skin with running water and non-	abrasive soap. If irritation		
Inhalation	Move the victim to a safe area as soon as breathing is difficult, give oxygen. If the vi immediate medical attention.				
Ingestion	Do not induce vomiting. Seek immediate	medical attention.			
Section 5. Fire-fighting	measures	V. 18 42 5			
The product is:	Flammable liquid, Class IC.	To the state of th			
Auto-ignition temperature	914°F(490°C) Styrene				
Flash point	87.6°F (31°C) Styrene				
"mmable limits	Lower: 0.9% Upper: 6.8% (Styrene)				
Products of combustion	May produce carbon monoxide, carbon did	oxide, and irritating or toxic vapors, ga	ses or particulate.		
Fire hazard	Flammable in the presence of open flames	s, sparks, or heat.			
Explosion hazard	Can react with oxidizing materials. Explos polymerize when container is exposed to be container which may cause the container to	neat (fire) and polymerization will incre	d to heat or flame. Material may ease pressure in a closed		
Fire-fighting media and nstructions	SMALL FIRE: Use carbon dioxide, foam, LARGE FIRE: Evacuate surrounding area Wear self-contained breathing apparatus (vessels with water spray in order to preven sewers or other water ways.	s. Use carbon dioxide, foam, dry che SCBA) and full fire-fighting protective	mical or water fog to extinguish clothing. Cool containing		
Section 6. Accidental re	elease measures	7.			
Small spill	Absorb with an inert material and place in an appropriate waste disposal container.				
Large spill	Stop leak if without risk. Eliminate all ignition sources. Contain with an inert material, recover as much as possible and place the remainder in an appropriate waste disposal container. Warn unauthorized personnel to move away. Prevent entry into sewers or confined areas.				
Section 7. Handling and	d storage	AND THE PARTY OF T	1		
''andling	WARNING! Use only in well-ventilated ar with eyes, skin, and clothing. Wear approall containers when transferring the mater expose to heat, flame, sparks or other ign electricity. Do not pressurize. Provide ad	priate personal protective equipment ial. Empty containers may retain protition sources such as cutting, welding	for your task. Ground and bond duct and product vapor. Do not , drilling, grinding or static		

Section 7. Handling and storage

rage

Keep away from heat. Keep away from sources of ignition. Keep container tightly closed. Keep in a cool, well-ventilated place. Containers should be grounded.

Section 8. Exposure cor	ntrols/personal protection	
Exposure limits	Slyrene	ACGIH TLV (United States, 3/2012). Absorbed through skin. TWA: 20 ppm 8 hour(s). TWA: 85 mg/m³ 8 hour(s). STEL: 40 ppm 15 minute(s). STEL: 170 mg/m³ 15 minute(s). OSHA PEL Z2 (United States, 11/2006). TWA: 100 ppm 8 hour(s). AMP: 600 ppm 5 minute(s). CEIL: 200 ppm NIOSH REL (United States, 6/2009). TWA: 50 ppm 10 hour(s). TWA: 215 mg/m³ 10 hour(s). STEL: 100 ppm 15 minute(s). STEL: 100 ppm 15 minute(s).
	Talc	NIOSH REL (United States, 6/2008). TWA: 2 mg/m³ 10 hour(s). Form: Respirable fraction OSHA PEL Z3 (United States, 9/2005). STEL: 1 f/cc 30 minute(s). Form: not containing asbestos TWA: 20 mppcf 8 hour(s). Form: not containing asbestos ACGIH TLV (United States, 1/2008).
	Crystalline SIlica	TWA: 0.1 f/cc 8 hour(s). OSHA PEL Z3 (United States, 9/2005). Notes: 250/(SiO2+5) TWA: 250 mppcf 8 hour(s). Form: Respirable OSHA PEL Z3 (United States, 9/2005). Notes: 10/(SiO2+2) TWA: 10 mg/m³ 8 hour(s). Form: Respirable OSHA PEL 1989 (United States, 3/1989). TWA: 0.1 mg/m³, (as quartz) 8 hour(s). Form: Respirable dust ACGIH TLV (United States, 3/2012). TWA: 0.025 mg/m³ 8 hour(s). Form: Respirable fraction NIOSH REL (United States, 6/2009). TWA: 0.05 mg/m³ 10 hour(s). Form: respirable dust OSHA PEL Z3 (United States, 9/2005). Notes: 30/(%SiO2+2) TWA: 30 mg/m³ 8 hour(s). Form: Total dust.
Engineering controls		engineering controls to keep the airborne concentrations of vapors below re limits. Provide adequate safety showers and eyewashes in the area of
Personal protection	Eyelface: Wear eye protection such safety glasses. Skin: Avoid skin contact. Imperviou or impervious jackets. Respiratory: Determine if airborne or your company's PPE program and re respirator that provides adequate pro are generally adequate for organic variations.	· ·
Personal protection in case of a large spill		tive suit, and boots. Respiratory protection in accordance with OSHA contained breathing apparatus should be used to avoid inhalation of the

Section 9. Physical and	chemical properties
/sical state	Liquid.
Jolor	Grey.
Odor	Aromatic.
Molecular weight (g/mol)	1000 to 15000
Boiling point	293°F(145°C) Styrene
Melting point	Not available.
pH (1% soln/water)	Not applicable.
Vapor pressure	4.5 mm Hg@ 68°F (20°C) Styrene
Vapor density	3.59 Styrene (Air = 1)
Specific gravity	1.29 (Water = 1)
Partition coefficient: n- octanol/water	Not available.
Evaporation rate	Not available.
Odor threshold	0.14 ppm Styrene
Solubility in water	Slight.
Dispersibility properties	Not dispersed in water,

reactivity
This product is normally stable, but can become unstable at elevated temperatures and undergo polymerization, which could produce heat and fumes resulting in over-pressurization and rupture in a closed container.
>170°F (77°C)
Heat.
Polymerizes in the presence of organic peroxides, oxidizing materials, or heat.
Our database contains no additional remark on the corrosivity of this product

Toxicity to animals	Name	Result	Species	Dose	Exposure
	Crystalline Silica	TDLo Oraí	Rat	120 g/kg	200
	Styrene	LD50 Intraperitoneal	Rat	898 mg/kg	
	•	LD50 Oral	Rat	5000 mg/kg	· ·
		LD50 Oral	Rat	2650 mg/kg	580
		TDLo Dermal	Rat	26.4 mg/kg	*.
		LC50 Inhalation	Rat	11800 mg/m3	4 hours
		Vapor			
		LC50 Inhalation Gas.	Rat	2770 ppm	4 hours
Special remarks on toxicity to animals	Lung effects that have been observe mouse specific enzymes (not in hum				
necial remarks on chronic rects on humans	A study of long term effects of worker indicated a possible mild hearing los	-	els in the	range of 25-35 ppn	n, 8 hour TWA,

Section 11. Toxicological information

ecial remarks on other xic effects on humans

Talc

Exposure to dusts containing talc can be toxic and can produce acute and chronic effects. Contact with dusts may irritate the eyes. Breathing dust may irritate the nose and throat and cause coughing and chest discomfort. There are reports that relatively mild pneumoconiosis can develop after years of occupational exposure to mixed dusts containing talc. Prolonged inhalation may also produce a fibrotic response.

Section 12. Ecological information

Ecotoxicity

Toxic to aquatic organisms. Should not be released to sewage system or other bodies of water at concentrations above limits established in regulations or permits.

Section 13. Disposal considerations

Waste disposal

Recycle to process, if possible. Consult your local or regional authorities. Ignitable characteristic.

Section 14. Transport information

27	
DOT	

UN1866; Resin Solution; 3; III.

Labels

UN1866; Resin Solution; 3; III.

IATA/IMDG

UN1866; Resin Solution; 3; III

Additional information

US regulations require the reporting of spills when the amount exceeds the Reportable Quantity (RQ) for specific components of this material. See CERCLA in Section 15, Regulatory Information, for the Reportable Quantities.

ection 15. Regulatory information

Other regulations

This section does not reference all applicable regulatory compliance lists.

TSCA: All Ingredients are listed or compliant with TSCA.

DSL: All ingredients are listed or compliant with the NSNR.

Proposition 65 Warning: This product contains a chemical(s) known to the State of California to cause cancer, birth defects and/or reproductive harm.

SARA 302 component(s): None.

SARA 313 component(s): Styrene.

CERCLA(RQ); Styrene - 1000 lbs. (453.6 kg)

Section 16. Other information

Prepared by

AOC, LLC - Corporate Regulatory Affairs.

FL

LEGAL DISCLAIMER

The information contained in this data sheet is furnished in good faith and without warranty, representation, or inducement or license of any kind, except that it is accurate to the best of AOC, LLC's knowledge, or was obtained from sources believed by AOC, LLC to be reliable. The accuracy, adequacy or completeness of health and safety precautions set forth herein cannot be guaranteed, and the buyer is solely sponsible for ensuring that the product is used, handled, stored, and disposed of safety and in compliance with applicable federal, state or ovincial, and local laws. AOC, LLC disclaims liability for any loss, damage or personal injury that arises from, or is in any way related to, use if the information contained in this data sheet.

Vipel_® L758-NET-14 Polyester Resin

PRODUCT INFORMATION

TYPICAL LIQUID PROPERTIES (1) SEE BACK	PAGE	
Test	Units of Measure	Nominal
Viscosity @ 25°C/77°C, RVF Brookfield		
Spindle #4 @ 20 RPM	cps	5,600
Thix Index 2/20	-	>3
Color	-	Opaque
Specific Gravity @ 25°C/77°C		1.1
Non-Violatiles	%	60
Gel Time @ 140°F with (1.0% Di-(4-tert-but	yl-cyclohexyl)	
peroxydicarbonate and 0.5%		
Trigonox® KSM	minutes	14
Pot Life @ 25°C/77°C (1% Di-(4-tert-butyl-cy	yclohexyl)	
peroxydicarbonate and + 0.5%		
Trigonox® KSM	hours	45
Trigonox is a trademark of Akzo Nobel Chemicals		

DESCRIPTION

The Vipel_® L758-NET-14 is a high molecular weight unsaturated polyester resin. Vipel_® L758-NET-14 Series provides the corrosion resistance, durability and toughness that is required for cured in place pipe applications.

BENEFITS

AOC's Vipel® L758-NET-14 molecular architecture provides an excellent balance of corrosion and physical properties.

FEATURES

- Excellent catalyzed pot life
- Superior mechanical properties
- High molecular weight
- · High viscosity version

Vipel_® L758-NET-14 Series Polyester Resin

PERFORMANCE GUIDELINES

A. Keep full strength catalyst levels between 1.0% - 3.0% of the total resin weight.

B. Maintain shop temperatures between 18°C/65°F and 32°C/90°F and humidity between 40% and 90%. Consistent shop conditions contribute to consistent gel times and will help the fabricator make a high quality part.

STORAGE STABILITY

Resins are stable for three months from date of production when stored in the original containers away from sunlight at no more than 25°C/77°F.

During the hot summer months, no more than two months stability at 30°C /86°F should be anticipated. After extended storage, some drift may occur in gel time and viscosity.

Storage in plastic totes made out of materials such as polyethylene (PE) or polypropylene (PP), in particular translucent PE/PP, will accelerate gel formation and result in a significantly reduced storage stability.

Storage of this resin outdoors in translucent plastic totes may reduce the storage stability to only a few weeks. AOC cannot assume responsibility for gel formation under these storage conditions.

SAFETY

See appropriate Material Safety Data Sheet for guidelines.

ISO 9001:2008 CERTIFIED

The Quality Management Systems at every AOC manufacturing facility have been certified as meeting ISO 9001:2008 standards. This certification recognizes that each AOC facility has an internationally accepted model in place for managing and assuring quality. We follow the practices set forth in this model to add value to the resins we make for our customers.

FOOTNOTES

(1) The pot life times shown are typical but may be affected by catalyst, promoter and inhibitor concentrations in resin, and environmental temperature. Variations in gelling characteristics can be expected between different lots of catalysts and at extremely high humidities, Pigment and fillers can retard or accelerate gelation. It is recommended that the fabricator check the gelling characteristics of a small quantity of resin under actual operating conditions prior to use.

(2) Based on tests on Vipel® L758-NET-14 pipe at 77°F/25° and 50% relative humidity. Castings were prepared using 1.0% Perkadox 16 and 0.5 Trigonox C.

The information contained in this data sheet is based on laboratory data and field experience. We believe this information to be reliable, but do not guarantee its applicability to the user's process or assume any liability for occurrences arising out of its use. The user, by accepting the products described herein, agrees to be responsible for thoroughly testing each such product before committing to production.

Our recommendations should not be taken as inducements to infringe any patent or violate any law, safety code or insurance regulation, © 2014, AOC, LLC

NORTH AMERICA Toll free: +1 866 319 8827 northamerica@aoc-resins com

AOC UK LTD +44 01206 390400 salesUK@aoc-resins com LATIN AMERICA +01 863 815 5016 latinamerica@aoc-resins com

> INDIA +44 1206 390415 india@aoc-resins.com

MIDDLE EAST +44 1206 390415 middleeast@aoc-resins com

> ASIA/AUSTRALIA +44 1206 390415 asia@aoc-resins com

Pub. No. AOC- Vipel® L758-NET 14 Effective Date: November, 2014 EUROPE +44 1206 390415 europe@aoc-resins com

ASTM F1216 Test Results on 6 mm Felt Composite L713-NET One Month Results at 25°C

	L713-NET (Isophthalic)	REQUIREMENTS %	PASS OR FAIL
CONTROL SAMPLE			
FLEXURAL STRENGTH, psi	8,142		
STANDARD DEVIATION	48		
FLEXURAL MODULUS, psi	510,105		
STANDARD DEVIATION	6,384		
TAP WATER			
FLEXURAL STRENGH, psi	7,647		
STANDARD DEVIATION	749		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	506,626		
STANDARD DEVIATION	3,165		
% FLEXUARAL MODULUS RETENTION	99	>80	PASSED
5% NITRIC ACID			
FLEXURAL STRENGH, psi	6,699		
STANDARD DEVIATION	818		
% FLEXURAL STRENGTH, psi RETENTION	82	>80	PASSED
FLEXURAL MODULUS, psi	482,282		
STANDARD DEVIATION	3,418		
% FLEXUARAL MODULUS RETENTION	95	>80	PASSED
10% PHOSPHORIC ACID	SHEET SHEET STATE OF SHEET		- 100
FLEXURAL STRENGH, psi	7,627		
STANDARD DEVIATION	452		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	457,576		
STANDARD DEVIATION	70,529		
% FLEXUARAL MODULUS RETENTION	90	>80	PASSED
10% SULFURIC ACID			
FLEXURAL STRENGH, psi	7,637		
STANDARD DEVIATION	326		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	499,252		
STANDARD DEVIATION	10,060		
% FLEXUARAL MODULUS RETENTION	98	>80	PASSED

AMOCO GASOLINE			
FLEXURAL STRENGH, psi	7,318		
STANDARD DEVIATION	670		
% FLEXURAL STRENGTH, psi RETENTION	90	>80	PASSED
FLEXURAL MODULUS, psi	510,580		
STANDARD DEVIATION	755		
% FLEXURAL MODULUS RETENTION	100	>80	PASSED
VEGETABLE OIL	4-2-4		
FLEXURAL STRENGH, psi	7,806		10.00
STANDARD DEVIATION	181		
% FLEXURAL STRENGTH, psi RETENTION	96	>80	PASSED
FLEXURAL MODULUS, psi	504,863		
STANDARD DEVIATION	11,570		
% FLEXUARAL MODULUS RETENTION	99	>80	PASSED
0.1% DETERGENT			1
FLEXURAL STRENGH, psi	7,811		
STANDARD DEVIATION	422	- A THE HAZE CONTROL	
% FLEXURAL STRENGTH, psi RETENTION	96	>80	PASSED
FLEXURAL MODULUS, psi	436808		
STANDARD DEVIATION	66392		
% FLEXUARAL MODULUS RETENTION	86	>80	PASSED
0.1% SOAP			
FLEXURAL STRENGH, psi	7,318		1
STANDARD DEVIATION	670		
% FLEXURAL STRENGTH, psi RETENTION	90	>80	PASSED
FLEXURAL MODULUS, psi	510,580	some firmer	
STANDARD DEVIATION	755		
% FLEXURAL MODULUS RETENTION	100	>80	PASSED

The information contained in this data sheet is based on laboratory data and field experience. We believe this information to be reliable, but do not guarantee its applicability to the user's process or assume any liability for occurrences arising out of its use. The user, by accepting the products described herein, agrees to be responsible for thoroughly testing any application before committing to production.

Our recommendation should not be taken as inducements to infringe any patent or violate any law, safety code or insurance regulation.

ASTM F1216 Test Results on 6 mm Felt Composite L713-NET One Month Results at 25°C

	L713-NET (Isophthalic)	REQUIREMENTS %	PASS OR FAIL
CONTROL SAMPLE	(Last)		
FLEXURAL STRENGTH, psi	8,142		
STANDARD DEVIATION	48		
FLEXURAL MODULUS, psi	510,105		
STANDARD DEVIATION	6,384		
TAP WATER			
FLEXURAL STRENGH, psi	7,647		
STANDARD DEVIATION	749		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	506,626		
STANDARD DEVIATION	3,165		
% FLEXUARAL MODULUS RETENTION	99	>80	PASSED
5% NITRIC ACID			
FLEXURAL STRENGH, psi	6,699		
STANDARD DEVIATION	818		
% FLEXURAL STRENGTH, psi RETENTION	82	>80	PASSED
FLEXURAL MODULUS, psi	482,282		
STANDARD DEVIATION	3,418		
% FLEXUARAL MODULUS RETENTION	95	>80	PASSED
10% PHOSPHORIC ACID			
FLEXURAL STRENGH, psi	7,627		
STANDARD DEVIATION	452		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	457,576		
STANDARD DEVIATION	70,529		
% FLEXUARAL MODULUS RETENTION	90	>80	PASSED
10% SULFURIC ACID			
FLEXURAL STRENGH, psi	7,637		
STANDARD DEVIATION	326		
% FLEXURAL STRENGTH, psi RETENTION	94	>80	PASSED
FLEXURAL MODULUS, psi	499,252		
STANDARD DEVIATION	10,060		
% FLEXUARAL MODULUS RETENTION	98	>80	PASSED

AMOCO GASOLINE			
FLEXURAL STRENGH, psi	7,318		
STANDARD DEVIATION	670		
% FLEXURAL STRENGTH, psi RETENTION	90	>80	PASSED
FLEXURAL MODULUS, psi	510,580		
STANDARD DEVIATION	755		
% FLEXURAL MODULUS RETENTION	100	>80	PASSED
VEGETABLE OIL	(6		
FLEXURAL STRENGH, psi	7,806		
STANDARD DEVIATION	181		
% FLEXURAL STRENGTH, psi RETENTION	96	>80	PASSED
FLEXURAL MODULUS, psi	504,863		
STANDARD DEVIATION	11,570		
% FLEXUARAL MODULUS RETENTION	99	>80	PASSED
0.1% DETERGENT			
FLEXURAL STRENGH, psi	7,811		
STANDARD DEVIATION	422	***************************************	
% FLEXURAL STRENGTH, psi RETENTION	96	>80	PASSED
FLEXURAL MODULUS, psi	436808		
STANDARD DEVIATION	66392		
% FLEXUARAL MODULUS RETENTION	86	>80	PASSED
0.1% SOAP	71		
FLEXURAL STRENGH, psi	7,318		
STANDARD DEVIATION	670		
% FLEXURAL STRENGTH, psi RETENTION	90	>80	PASSED
FLEXURAL MODULUS, psi	510,580		
STANDARD DEVIATION	755		11x
% FLEXURAL MODULUS RETENTION	100	>80	PASSED

The information contained in this data sheet is based on laboratory data and field experience. We believe this information to be reliable, but do not guarantee its applicability to the user's process or assume any liability for occurrences arising out of its use. The user, by accepting the products described herein, agrees to be responsible for thoroughly testing any application before committing to production

Our recommendation should not be taken as inducements to infringe any patent or violate any law, safety code or insurance regulation.

HTS Pipe Consultants, Inc. 420 Pickering, Houston, Texas 77091 Tel: (713) 692-8373 Fax: (713) 692-8502

Project Name:

Project No.:

Tested Temperature: 71°F

Lab Humidity: 50%

Specimen Gage Length: 3.5"

Stress: 1250 psi

Sample ID No.: L758-NET

HTS Report#: AOCF431.001

HTS Report AOCF431.001

Sample ID: L758-NET

Spec#	<u>: 1</u>	Spec#	2	Spec#	<u>e</u>
Thickness: 0.224"	Width: 0.570"	Thickness: 0_224"	Width: 0.562"	Thickness: 0.227"	Width: 0.574"
TIME (HRS)	Modulus (psi)	TIME (HRS)	Modulus (psi)	TIME (HRS)	Modulus (psi
0.02	493707	0.02	493707	0.02	433051
0.10	464665	0.10	464665	0.10	416098
0.20	457489	0.20	453983	0.20	410258
0.50	447131	0.50	447131	0.50	401799
1	442125	1	438850	1	396351
2	437231	2	429310	2	388451
5	426222	5	415753	5	377173
20	411422	20	400303	20	363117
50	397616	50	384706	50	345928
100	384706	100	376157	100	338909
196	359059	196	356896	196	322993
500	341469	500	338542	500	309322
700	337577	700	331904	700	303698
1004	324629	1004	324629	1004	296009
2012	310182	2012	307765	2012	284486
3020	299974	3020	297713	3020	275763
4004	294019	4004	293291	4004	271915
5012	290416	5012	287596	5012	267560

HTS Report AOCF431.001

Sample ID: L758-NET

Snec	Ħ	А
SUEU	#	4

Thickness: 0,225" Width: 0.587"

Spec# 5 Thickness: 0.225" Width: 0.571"

7111011110007 - 1-1-1			
TIME (HRS)	Modulus (psi)	TIME (HRS)	Modulus (psi)
0.02	450240	0.02	471852
0.10	436900	0.10	460793
0.20	427402	0.20	457221
0.50	418308	0.50	450240
1	411021	1	441809
2	405371	2	436900
5	395849	5	427402
20	379302	20	409594
50	366345	50	393210
100	357464	100	384244
196	332290	196	357464
500	317959	500	346950
700	311248	700	344921
1004	303247	1004	332290
2012	294172	2012	317105
3020	275614	3020	306397
4004	271179	4004	300926
5012	266885	5012	296389

HTS Pipe Consultants, Inc. 420 Pickering, Houston, Texas 77091 Tel: (713) 692-8373 Fax: (713) 692-8502

Project Name:

Project No.:

Sample ID No.: L758-NET

Tested Temperature: 71°F

Lab Humidity: 50%

Specimen Gage Length: 3.5"

Stress: 1300 psi

HTS Report#: AOCF431.001

HTS Repor AOCF431.001

Sample ID: L758-NET

Spec#	<u>: 1</u>	Spect	<u> </u>	Spec#	3
Thickness: 0.224"	Width: 0.570"	Thickness: 0.224"	Width: 0.562"	Thickness: 0.227"	Width: 0.574"
TIME (HRS)	Strain (%)	TIME (HRS)	Strain (%)	TIME (HRS)	Strain (%)
0.02	0.2633	0.02	0.2633	0.02	0.3002
0.10	0.2798	0.10	0.2798	0.10	0.3124
0.20	0.2842	0.20	0.2864	0.20	0.3169
0.50	0.2907	0.50	0.2907	0.50	0.3235
1	0.2940	1	0.2962	1	0.3280
2	0.2973	2	0.3028	2	0.3347
5	0.3050	5	0.3127	5	0.3447
20	0.3160	20	0.3248	20	0.3580
50	0.3269	50	0.3379	50	0.3758
100	0.3379	100	0.3456	100	0.3836
196	0.3621	196	0.3643	196	0.4025
500	0.3807	500	0.3840	500	0.4203
700	0.3851	700	0.3917	700	0.4281
1004	0.4005	1004	0.4005	1004	0.4392
2012	0.4191	2012	0.4224	2012	0.4570
3020	0.4334	3020	0.4367	3020	0.4714
4004	0.4421	4004	0.4432	4004	0,4781
5012	0.4476	5012	0.4520	5012	0.4859

HTS Report AOCF431.001

Sample ID: L758-NET

5012

0.4871

Spec#	4	Spec#	5
Thickness: 0.225"	Width: 0.587"	Thickness: 0.225"	Width: 0,571"
TIME (HRS)	Strain (%)	TIME (HRS)	Strain (%)
0.02	0.2887	0.02	0.2755
0.10	0.2976	0.10	0.2821
0.20	0.3042	0.20	0.2843
0.50	0.3108	0.50	0.2887
3	0.3163	1	0.2942
2	0.3207	2	0.2976
5	0.3284	5	0.3042
20	0.3427	20	0.3174
50	0.3549	50	0.3306
100	0.3637	100	0.3383
196	0.3912	196	0.3637
500	0.4089	500	0.3747
700	0.4177	700	0.3769
1004	0.4287	1004	0.3912
2012	0.4419	2012	0.4100
3020	0.4717	3020	0.4243
4004	0.4794	4004	0.4320

5012

0,4386

March 26, 2009 Page 1 of 9

Test Report: 0710-00240

TEST REPORT

CLIENT:

AOC, LLC

950 Highway 57 East Collierville, TN 38017

Attention:

Bill Moore

Re: P.O. #8142

SAMPLES:

One sample of felt laminate was submitted and identified by the client as L713-NET. The sample was received on October 31, 2007. The sample was cut into individual test coupons (each approximately 7" x 0.5") by Hauser Laboratories.

TESTING:

Flexural creep testing was performed in general accordance with ASTM D2990-01, Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics. Five (5) test coupons were randomly selected and tested per Section 6.3 of ASTM D2990, Flexural Creep, using a three-point static-load configuration, a 4.25 inch span, and a 400 psi testing stress. The ASTM D2990 flexural creep testing was performed at 23±2°C and 50±5% Relative Humidity throughout the duration of the testing. The testing was started on December 12, 2007 and was completed on March 3, 2009.

The client requested determination of the 50 year modulus. This was performed by extrapolating the most linear portion of the data set (from 20 hours through 10,000 hours duration) using linear trend line analysis contained within commercially available software (Microsoft Excel).

Chemical resistance testing was performed in accordance with ASTM D543-06, Evaluating the Resistance of Plastics to Chemical Reagents, using the guidelines set by ASTM D5813-04, Standard Specification for Cured-in-Place Thermosetting Resin Sewer Pipe, Section 8.2.1. Sets of five (5) test coupons were randomly selected and exposed to the reagents below for one year at 23°C. Following the chemical exposure, the coupons were tested in accordance with ASTM D790-07, Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. The results of the flexural properties testing were compared to those of an additional set of five (5) coupons randomly selected and conditioned at 23±2°C and 50±5% Relative Humidity for the duration of the exposures.

Reagent	Concentration
Nitric acid	1%
Sulfuric acid	5%
ASTM Fuel C	100%
Vegetable oil	100%
Detergent	0.1%
Soap	0.1%
Sodium hydroxide	0.5%

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tboyce@microbac.com or Bob Morgan, Chief Operating Officer, at rmorgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

<u>Microbac</u>

March 26, 2009 Page 2 of 9

Test Report: 0710-00240

RESULTS:

The individual creep specimen dimensions are displayed in Table 1. The raw time-displacement creep data are presented in Table 2. The creep test results through 10,000 hours test duration are presented in Table 3. For each specimen, flexural modulus versus time data is displayed in tabular format. Additionally, graphical data displaying the average log modulus versus log time is presented in Figure 1, and graphical data displaying the individual log modulus versus log time is presented in Figure 2.

Using the linear trend line analysis extrapolation of the most linear portion of the data set (from 20 hours through 10,000 hours duration; See Figure 1) the 50 year (438,000 hour) modulus was calculated to be 175,000 psi.

The results of the chemical exposure testing are presented in Table 4.

DATA REVIEWED AND REPORT WRITTEN BY:

Douglas Bert Scientist II REPORT REVIEWED BY:

Steve Ferry

Managing Director, Hauser Laboratories

TABLE 1
INDIVIDUAL D2990 TEST SPECIMEN DIMENSIONS

Specimen Number	Width	Thickness
	in	in
1	0.530	0.266
2	0.556	0.272
3	0.554	0.252
4	0.566	0.268
5	0.558	0.269

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tboyce@microbac.com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 3 of 9

Test Report: 0710-00240

TABLE 2 FLEXURAL DISPLACEMENT DATA

TEMPERATURE: 23°C RELATIVE HUMIDITY: 50%

STRESS: 400psi

SPAN LENGTH: 4.25 inches

Elapsed Time	Flexural Displacement (inches)				
hours	1	2	3	4	5
0.00	0.2204	0.2191	0.2232	0.2917	0.2429
0.02	0.2104	0.2058	0.2129	0.2797	0.2370
0.03	0.2103	0.2041	0.2123	0.2793	0.2370
0.12	0.2092	0.2022	0.2123	0.2790	0.2370
0.22	0.2092	0.2008	0.2123	0.2788	0.2370
0.52	0.2091	0.1988	0.2123	0.2781	0.2368
1.0	0.2090	0.1981	0.2123	0.2777	0.2367
2.0	0.2089	0.1975	0.2122	0.2772	0.2366
4.7	0.2088	0.1972	0.2120	0.2763	0.2365
19.7	0.2086	0.1968	0.2116	0.2744	0.2362
148.2	0.2078	0.1961	0.2108	0.2670	0.2358
507.1	0.2072	0.1955	0.2102	0.2609	0.2352
1003.7	0.2057	0.1941	0.2087	0.2580	0.2340
2131.9	0.2054	0.1938	0.2084	0.2566	0.2338
2734.4	0.2050	0.1935	0.2080	0.2557	0.2335
3380.7	0.2049	0.1934	0.2079	0.2553	0.2333
4055.7	0.2047	0.1930	0.2075	0.2547	0.2331
4708.7	0.2046	0.1930	0.2075	0.2544	0.2331
5404.9	0.2045	0.1928	0.2073	0.2541	0.2328
6243.7	0.2044	0.1928	0.2072	0.2540	0.2328
6910.3	0.2044	0.1927	0.2071	0.2536	0.2327
7611.4	0.2043	0.1927	0.2070	0.2533	0.2326
8351.5	0.2041	0.1925	0.2069	0.2531	0.2325
9189.7	0.2040	0.1924	0.2068	0.2528	0.2325
9890.7	0.2040	0.1924	0.2068	0.2526	0.2324
10731.2	0.2038	0.1923	0.2067	0.2519	0.2322

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at thouse imicrobac com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 4 of 9 Test Report: 0710-00240

TABLE 3 FLEXURAL CREEP DATA

TEMPERATURE: 23°C RELATIVE HUMIDITY: 50%

STRESS: 400psi

SPAN LENGTH: 4.25 Inches

Elapsed Time	Flexu	Flexural Modulus (psi)					
Hours	1	2	3	4	5	Average	
0.00							
0.02	452600	332900	464400	374400	758700	476600	
0.03	448100	295200	438800	362300	758700	460600	
0.12	404100	262000	438800	353800	758700	443500	
0.22	404100	241900	438800	348300	758700	438400	
0.52	400500	218100	438800	330400	733800	424300	
1.0	397000	210800	438800	320900	722000	417900	
2.0	393600	205000	434800	309900	710500	410800	
4.7	390200	202200	427100	291800	699400	402100	
19.7	383600	198500	412400	259700	668100	384500	
148.2	359200	192500	385800	181900	630500	350000	
507.1	342900	187600	367900	145900	581400	325100	
1003.7	307900	177100	329900	133300	503000	290200	
2131.9	301700	175000	323200	128000	491900	284000	
2734.4	293900	172900	314700	124800	476200	276500	
3380.7	292000	172300	312600	123400	466300	273300	
4055.7	288300	169700	304700	121400	456800	268200	
4708.7	286500	169600	304700	120500	456800	267600	
5404.9	284700	168300	300800	119500	443200	263300	
6243.7	282900	168300	299000	119200	443200	262500	
6910.3	282900	167700	297100	117900	438900	260900	
7611.4	281100	167700	295300	117000	434600	259100	
8351.5	277700	166400	293500	116400	430400	256900	
9189.7	276000	165800	291700	115500	430400	255900	
9890.7	276000	165800	291700	114900	426300	254900	
10731.2	272700	165200	289900	112900	418400	251800	

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tboyce@microbac.com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 5 of 9

Test Report: 0710-00240

FIGURE 1 AVERAGE LOG MODULUS VS LOG TIME 20 hours to 10,000 hours

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tobyce@microbac.com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 6 of 9

Test Report: 0710-00240

FIGURE 2 LOG MODULUS VS LOG TIME

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at thouse@microbac.com or Bob Morgan, Chief Operating Officer, at imorgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 7 of 9 Test Report: 0710-00240

TABLE 4
CHEMICAL RESISTANCE TEST RESULTS

	Flexural Yield Strength	Strain @ Flexural Yield Strength	Flexural Modulus (Tangent)
Specimen Number	psi	in	psi
L 713-NET Unexposed			
1	7910	1.7	506000
2	7980	1.8	491000
3	8230	1.8	500000
4	8590	2.5	521000
5	8270	2.3	551000
Average	8200	2.0	514000
Std. Dev.	270	0.4	24000
L 713-NET Nitric acid	CONTINUOUS TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TOT		540000
1	7450	1.6	512000
2	8830	1.9	504000
3	7390	2.4	478000
4	7950	1.7	506000
5	6710	1.5	488000
Average	7670	1.8	498000
Std. Dev.	790	0.4	14000
Retention of Flexural Modulus (%)			96.9
L 713-NET Sulfuric acid		70	
1	6230	1.3	489000
2	7390	1.5	514000
3	6450	2.1	499000
4	6410	1.4	480000
5	7420	1.7	479000
Average	6780	1.6	492000
Std. Dev.	580	0.3	14000
Retention of Flexural Modulus (%)			95.7

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tobac.com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 8 of 9

Test Report: 0710-00240

TABLE 4 CONTINUED CHEMICAL RESISTANCE TEST RESULTS

	Flexural Yield Strength	Strain @ Flexural Yield Strength	Flexural Modulus (Tangent)
Specimen Number	psi	in	psi
L 713-NET ASTM Fuel C			
1	6950	1.5	502000
2	7270	1.7	482000
3	8600	1.9	506000
4	7100	1.7	485000
5	7440	1.6	512000
Average	7470	1.7	497000
Std. Dev.	660	0.2	13000
Retention of Flexural Modulus (%)	Augusta Maria		96.7
L 713-NET Vegetable oil			
1	8000	1.7	505000
2	7970	1.8	503000
3	8370	1.8	515000
4	7740	1.6	500000
5	8420	1.9	503000
Average	8100	1.8	505000
Std. Dev.	290	0.1	6000
Retention of Flexural Modulus (%)			98.2
L 713-NET Detergent			
1	7960	2.9	508000
2	7840	1.8	513000
3	7940	2.2	497000
4	8120	2.5	506000
5	7930	1.7	510000
Average	7960	2.2	507000
Std. Dev.	100	0.5	6000
Retention of Flexural Modulus (%)			98.6

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at tboyce@microbac.com or Bob Morgan, Chief Operating Officer, at morgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.

March 26, 2009 Page 9 of 9 Test Report: 0710-00240

TABLE 4 CONTINUED
CHEMICAL RESISTANCE TEST RESULTS

	Flexural Yield Strength	Strain @ Flexural Yield Strength	Flexural Modulus (Tangent)
Specimen Number	psi	in	psi
L 713-NET Soap			
1	7060	1.5	504000
2	6740	1.5	485000
3	7180	1.6	461000
4	7630	1.7	491000
5	7130	1.7	471000
Average	7150	1.6	482000
Std. Dev.	320	0.1	17000
Retention of Flexural Modulus (%)			93.8
L 713-NET Sodium hydroxide			
1	6350	1.4	466000
2	7790	4.1	476000
3	6170	2.3	463000
4	6250	2.3	476000
5	6530	2.5	470000
Average	6620	2.5	470000
Std. Dev.	670	1.0	6000
Retention of Flexural Modulus (%)			91.4

DISCUSSION:

The equation of the line used to extrapolate the 50 year modulus is: $Log(modulus\ in\ psi) = -0.0706*(Log(time\ in\ hours))+5.6419$

The extrapolated 50 year modulus is 175,000 psi.

The sample passed the chemical resistance requirements of ASTM D5813-04, Section 6.4.1., which states, "The specimens shall be capable of exposure to the solutions in Table 1 at a temperature of $73.4\pm3.6^{\circ}F$ ($23\pm2^{\circ}C$) with a percentage retention of flexural modulus of elasticity, when tested in accordance with 8.3, of at least 80% after one-year exposure".

For any feedback concerning our services, please contact the Managing Director or Trevor Boyce, President, at thoyce@microbac.com or Bob Morgan, Chief Operating Officer, at mnorgan@microbac.com. This report applies only to the sample(s) tested or analyzed. This report may be copied only in its entirety, unless prior written consent has been granted by an authorized agent of the Hauser Laboratories Division of Microbac Laboratories, Inc.