MI3 Sección A Primer Semestre 2021

Profesora: Inga. Ericka Cano Aux: William Hernández

CLASE 09/04/2021

ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR

ECUACIONES DIFERENCIALES NO HOMOGENEAS

MÉTODO VARIACIÓN DE PARÁMETROS

MÉTODO VARIACIÓN DE PARÁMETROS

El método se utiliza para resolver EDO de orden superior no homogéneas con coeficientes constante y cualquier expresión de g(x), en especial para expresiones como tan(x), csc(x), ln x o expresiones racionales

$$y'' + P(x)y' + Q(x)y = g(x)$$

Recordando que la solución general de una E D No Homogénea es $y(x) = y_c + y_p$

En variación de parámetros se plantea y_p como

$$y_p = u_1 y_1 + u_2 y_2$$

Donde u_1 y u_2 son funciones desconocidas que deber ser determinadas.

- 1. Estandarizar la E D y'' + P(x)y' + Q(x) = g(x)
 - El coeficiente de la mayor derivada debe ser uno.
- 2. Encontrar la E D Homogénea Asociada

$$y'' + P(x)y' + Q(x) = 0$$

- 3. Resolver la ED Homogénea Asociada para obtener la función complementaria 🕟
- 4. Identificar las funciones y_1 y y_2 se obtienen de y_c ($y_c = c_1 v_1 + c_2 y_2$)
- 5. Plantear $y_p = u_1 v_1 + u_2 v_3$
- 6. Encontrar los wronskianos $(w, w_1 y w_2)$

$$Para w \qquad Para w_1 \qquad Para w_2$$

$$w = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} \quad w_1 = \begin{vmatrix} 0 & y_2 \\ g(x) & y'_2 \end{vmatrix} \quad w_2 = \begin{vmatrix} y_1 & 0 \\ y'_1 & g(x) \end{vmatrix}$$

7. Encontrar las funciones $u_1 y u_2$, utilizando los wronskianos encontrados.

$$u_1 = \int \frac{w_1}{w} dx \, i \quad u_2 = \int \frac{w_2}{w} dx$$

- 8. Encontrar $y_p = u_1 y_1 + u_2 y_2$
- 9. Dar la solución general.

$$y(x) = y_c + y_p$$

Se tendrían y_1 , y_2 y y_3 por lo tanto $y_c = c_1 y_1 + c_2 y_2 + c_3 y_3$ La solución particular

$$y_p = \underbrace{u_1 v_1}_{1} + \underbrace{u_2 v_2}_{1} + \underbrace{u_3 v_3}_{2}$$

$$u_1 = \int \frac{w_1}{w} dx$$
 , $u_2 = \int \frac{w_2}{w} dx$, $u_3 = \int \frac{w_3}{w} dx$

Encontrar los wronskianos (w, w_1, w_2, w_3)

$$w = \begin{vmatrix} y_1 & y_2 & y_3 \\ y'_1 & y'_2 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} \quad w_1 = \begin{vmatrix} 0 & y_2 & y_3 \\ 0 & y'_2 & y'_3 \\ g(x) & y''_2 & y''_3 \end{vmatrix} \quad w_2 = \begin{vmatrix} y_1 & 0 & y_3 \\ y'_1 & 0 & y'_3 \\ y''_1 & y''_2 & y''_3 \end{vmatrix} \quad w_3 = \begin{vmatrix} y_1 & y_2 & 0 \\ y'_1 & y'_2 & 0 \\ y''_1 & y''_2 & 0 \end{vmatrix}$$

Resuelva

$$2y'' + 8y = 2 \sec 2x$$

Variación Parámetros

Estandarizar la ED, el coeficiente de la mayor derivada debe ser uno.

$$2y'' + 8y = 2 \sec 2x$$

$$y'' + 4y = \sec 2x$$

$$g(x)$$

Encontrar la ED Homogénea Asociada

$$y'' + 4y = 0$$

Ecuacion Caracteristica

$$r^{2} + 4 = 0$$

$$r_{c} = \pm 2i$$

$$y_{c} = c_{1} \cos 2x + c_{2} \sin 2x$$

$$y_{c} = c_{1} \cos 2x + c_{2} \sin 2x$$

Identificar las funciones y_1 y y_2 de y_c ($y_c = c_1y_1 + c_2y_2$)

$$y_1 = \cos 2x$$
 $y_2 = \sin 2x$

Plantear
$$y_p = u_1 y_1 + u_2 y_2$$

$$y_p = u_1 \cos 2x + u_2 \sin 2x$$

Encontrar los wronskianos $(w, w_1 \ y \ w_2)$

$$y_1 = \cos 2x$$
 $y_2 = \sin 2x$ $g(x) = \sec 2x$

$$w = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

$$w = \begin{vmatrix} \cos 2x & \sin 2x \\ -2 \sin 2x & 2 \cos 2x \end{vmatrix}$$

$$w = 2\cos^2(2x) + 2\sin^2(2x)$$

$$w = 2$$

$$w = 2$$

$$w = 2$$
 (cos^{2} 2× + sin^{2} 2×

 $Para w_1$

 $\rightarrow 0 = \int \frac{\omega}{\omega_1} dx$

 $\rightarrow v_2 = \sqrt{\frac{w_2}{w}} dx$

$$w_1 = \begin{vmatrix} 0 & y_2 \\ g(x) & y_2' \end{vmatrix}$$

$$w_1 = \begin{vmatrix} 0 & \sin 2x \\ \sec 2x & 2\cos 2x \end{vmatrix}$$

$$w_1 = 0 * (2\cos 2x) - \sin 2x * \sec 2x$$

$$w_1 = -\tan 2x$$

$$w_{2} = \begin{vmatrix} y_{1} & 0 \\ y'_{1} & g(x) \end{vmatrix}$$

$$w_{2} = \begin{vmatrix} \cos 2x & 0 \\ -2 \sin 2x & \sec 2x \end{vmatrix}$$

$$w_{2} = \cos 2x * \sec 2x - 0 * (-2 \sin 2x)$$

$$w_{3} = 1$$

 $w_2 = 1$

2

Encontrar las funciones $u_1 y u_2$, utilizando los wronskianos encontrados.

$$u_1 = \int \frac{w_1}{w} dx \quad , \qquad u_2 = \int \frac{w_2}{w} dx$$

$$u_1 = \int \frac{w_1}{w} dx = \int -\frac{\tan 2x}{2} dx = -\frac{1}{2} \int \frac{\sin 2x}{\cos 2x} dx = \frac{1}{4} \ln|\cos 2x|$$

$$u_2 = \int \frac{w_2}{w} dx = \int \frac{1}{2} dx = \frac{x}{2}$$

$$\frac{1}{2} \int \frac{\sin 2x}{\cos 2x} dx$$

$$\frac{1}{2} = \cos 2x$$

$$d = \cos 2x$$

$$d = -2 \sin 2x dx$$

$$d = \sin 2x dx$$

$$-\frac{1}{2} \left(-\frac{1}{2}\right) \int dz$$

$$d = \sin 2x dx$$

$$-\frac{1}{2} \left(-\frac{1}{2}\right) \int dz$$

$$d = \sin 2x dx$$

$$d = \sin 2x$$

Encontrando
$$y_p$$

$$u_1 = \frac{1}{4} \ln |\cos 2x|$$
 , $u_2 = \frac{x}{2}$

$$y_p = u_1 y_1 + u_2 y_2$$

$$y_p = u_1 cos2x + u_2 sen2x$$

$$y_p = \frac{1}{4} \ln|\cos 2x| \cos 2x + \frac{x}{2} \sin 2x$$

$$y(x) = y_c + y_p$$

$$y_c = c_1 \cos 2x + c_2 \sin 2x$$

$$y(x) = c_1 \cos 2x + c_2 \sin 2x + \frac{1}{4} \ln|\cos 2x| \cos 2x + \frac{x}{2} \sin 2x$$

Resuelva

$$3y'' + 3y = 3\tan x + 3$$

Estandarizar la ED, el coeficiente de la mayor derivada debe ser uno.

$$3y'' + 3y = 3\tan x$$

$$\forall y'' + y = \tan x \qquad \Leftrightarrow \qquad g(x)$$

Encontrar la ED Homogénea Asociada

$$y'' + y = 0$$

Ecuacion Caracteristica

$$r^{2} + 1 = 0$$

$$r_{c} = \pm i$$

$$y_{c} = c_{1} \cos x + c_{2} \sin x$$

$$\zeta_{c} = \zeta_{1} \zeta_{1} + \zeta_{2} \zeta_{2}$$

Identificar las funciones y_1 y y_2 de y_c $(y_c = c_1y_1 + c_2y_2)$

$$(y_c = c_1 y_1 + c_2 y_2)$$

$$y_1 = \cos x$$
 $y_2 = \sin x$

Plantear
$$y_p = u_1y_1 + u_2y_2$$

$$y_p = u_1 cosx + u_2 senx$$

$$\int U_1 = \int \frac{W_2}{W_2} dx$$

$$\int V_2 = \int \frac{W_2}{W_2} dx$$

Encontrar los wronskianos $(w, w_1 y w_2)$

$$y_1 = \cos x$$
 $y_2 = \sin x$ $g(x) = \tan x$

$$w = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix}$$

$$w = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix}$$

$$w = \cos^2(x) + \sin^2(x)$$

$$w = 1$$

Paraw

$$\begin{aligned}
& Para w_1 \\
w_1 &= \begin{vmatrix} 0 & y_2 \\ g(x) & y_2' \end{vmatrix} \\
w_1 &= \begin{vmatrix} 0 & \sin x \\ \tan x & \cos x \end{vmatrix} \\
w_1 &= 0 * (\cos x) - \sin x * \tan x \\
w_1 &= -senx * \tan x
\end{aligned}$$

 $\begin{aligned} Para w_2 \\ w_2 &= \begin{vmatrix} y_1 & 0 \\ y'_1 & g(x) \end{vmatrix} \\ w_2 &= \begin{vmatrix} \cos x & 0 \\ -\sin x & \tan x \end{vmatrix} \\ w_2 &= \cos x * \tan x - 0 * (-\sin x) \\ w_2 &= \sin x & \cos x & \cos x \end{vmatrix}$ $w_2 = \sin x$

$$w_1 = -senx * tanx$$

$$w_2 = senx$$

16

Encontrar las funciones $u_1 y u_2$, utilizando los wronskianos encontrados.

 $\frac{(5en^2x)^2\cos^2x = 1}{5en^2x = 1-\cos^2x}$

$$u_1 = \int \frac{w_1}{w} dx \quad , \qquad u_2 = \int \frac{w_2}{w} dx$$

$$u_1 = \int \frac{w_1}{w} dx = \int \frac{-senx * tanx}{1} dx = -\int senx \left(\frac{senx}{cosx}\right) dx = -\int \frac{sen^2x}{cosx} dx = -\int \frac{(1 - cos^2x)}{cosx} dx$$

$$u_1 = -\int \frac{(1 - \cos^2 x)}{\cos x} dx = -\int \frac{1}{\cos x} dx + \int \frac{\cos^2 x}{\cos x} dx = -\int \sec x dx + \int \cos x dx$$

$$u_1 = -\ln|secx + tanx| + senx$$

$$u_2 = \int \frac{w_2}{w} dx = \int \frac{senx}{1} dx = \int senx dx = -\cos x$$

 $\overline{u_2} = -cosx$

$$c_1 = -\ln|secx + tanx| + senx$$

$$y_p = u_1 y_1 + u_2 y_2$$

$$y_p = u_1 cosx + u_2 senx$$

$$y_p = (-\ln|secx + tanx| + senx)(cosx) - cosx(senx)$$

$$y_p = -\ln|secx + tanx|cosx + senx(cosx) - senx(cosx)$$

$$y_p = -\ln|secx + tanx|cosx$$

$$y(x) = y_c + y_p$$

$$y_c = c_1 \cos x + c_2 \sin x$$

$$y(x) = c_1 \cos x + c_2 \sin x - \ln|\sec x + \tan x|\cos x$$

PRUEBA DE CONOCIMIENTO

Determine la solucion general de la siguiente Ecuacion Diferencial

PRUEBA DE CONOCIMIENTO

Determine la solucion general de las siguiente Ecuacion Diferencia

$$2y''' + 8y' = 2 \sec 2x$$
$$y''' + 4y' = \sec 2x$$

$$y_c = c_1 + c_2 \cos 2x + c_3 \sin 2x$$

$$y_1 = 1$$
 $y_2 = \cos 2x$ $y_3 = \sin 2x$ $g(x) = \sec 2x$

$$w = 8$$
 $w_1 = 2\sec 2x$ $w_2 = -2$ $w_3 = -2\frac{\sin x}{\cos x}$

$$w = 8$$
 $w_1 = 2\sec 2x$ $w_2 = -2$ $w_3 = -2\frac{\sec 2x}{\cos 2x}$ $u_1 = \frac{1}{8}\ln|\sec 2x + \tan 2x|$ $u_2 = -\frac{x}{4}$ $u_3 = \frac{1}{8}\ln|\cos 2x|$

$$y_p = \frac{1}{8} \ln|\sec 2x + \tan 2x| - \frac{x}{4} \cos 2x + \frac{1}{8} \ln|\cos 2x| \sin 2x$$

$$y(x) = c_1 + c_2 \cos 2x + c_3 \sin 2x + \frac{1}{8} \ln|\sec 2x + \tan 2x| - \frac{x}{4} \cos 2x + \frac{1}{8} \ln|\cos 2x| \sin 2x$$