

TD2

ING1 EC551 Statistiques descriptives

Galharret Jean-Michel
département MSC
https://galharret.github.io/WEBSITE/cours_ONIRIS.html

Exercice 1: Lien entre deux variables quantitatives

- 1. Calculer la matrice de corrélation entre les différents types d'acide gras contenus dans les huiles d'olives (fonction *cor*).
- 2. A l'aide du package *corrplot* que vous chargerez au préalable, représenter la matrice de corrélation sous la forme ci-dessous (fonction *corrplot*). Quelles corrélations vous semblent intéressantes ?

corrplot 0.92 loaded

3. A l'aide du package *psych* que vous chargerez au préalable, reproduire le graphique cidessous (fonction *panels.pairs*). Ecrire le lien qui existe entre les variables considérées.

Figure 1: Matrice de corrélation

Figure 2: Graphe des corrélations

Exercice 2 : Lien entre 1 variable qualitative et une variable quantitative

- 1. Définissez sur R la fonction VAR telle que $Var(x) = \frac{1}{N} \sum_{i=1}^{N} (x_i \bar{x})^2$.
- 2. Calculer les moyennes et les variances de l'acide palmitique contenue dans les huiles en fonction de la région considérée (fonction by). Les résultats seront stockées dans deux vecteurs Moy_Region et Var_Region (pour transformer une liste en vecteur on utilisera la fonction as.vector).
- 3. En déduire quelle région a en moyenne le plus d'acide palmitique et dans quelle région les huiles sont le plus dispersées en termes d'acide palmitique.
- 4. En utilisant le cours (diapo 74) calculer les variances inter et intra de l'acide palmique selon la région considérée.
- 5. Quel est l'acide gras dont la présence est le plus lié à la région considérée ? On pourra utiliser la question précédente.

Exercice 3: Lien entre deux variables qualitatives

Téléchargez et ouvrez sur Connect le fichier mais.txt:

1. Etablir la table de contingence des variables enracinements et couleur de l'épi. On ajoutera la somme marginale des colonnes

	Jaune	Jaune.rouge	Rouge	Somme
Faible	13	2	3	48
Fort	6	7	13	22
Moyen	17	3	8	29
Tres.fort	12	10	5	48

Etablir les profils de l'enracinement selon la couleur (fonction *proportions*).

- 2. Pour calculer la valeur du χ^2 on va utiliser la fonction *chisq.test*. A partir de l'aide déterminer la valeur correspondante.
- 3. En déduire V^2 (diapo 82).