Linux Scheduling

O(n) Scheduler

- all processes are kept into single linked list
- to select next process which will run on CPU, scheduler has to traverse whole linked list
- linked list of processes is known as "run queue"
- to select next process, time required is
 O(n)
- upto linux kernel 2.5 this scheduler was used

Linux Scheduling

O(1) Scheduler

- created two run queue
 - 1. active runqueue (array)
 - 2. expired runqueue(array)
- array indices represent priority levels
- size of array = no of level of priority
- task are divided into two categorities
 - 1. Real time task : Priority 0 to 99
 - 2. Other task : Priority 100 to 139

Time Share

TS(i) =
$$\frac{\text{Targeted}}{\text{Lattency}} = 100 \text{ mS}$$
 $\frac{\text{Wi}}{\text{Vo}} = 1024$
 $\frac{\text{Wi}}{\text{ZWa}} = \frac{\text{Vi}}{\text{ZWa}} = \frac{\text{Vi}}{\text{ZWa}} = \frac{\text{Vi}}{\text{Vo}} = \frac$

= 25 mS

$$P| \rightarrow 25 \text{ mS}$$

$$P2 \rightarrow 25 \text{ mS}$$

$$P3 \rightarrow 25 \text{ mS}$$

$$P4 \rightarrow 25 \text{ mS}$$

$$TS(i) = \frac{Wi}{S}XTL$$

$$TS(0) = \frac{N0}{N0 + NS + NS + NS}$$

$$= \frac{1024}{1024 + 335 + 335 + 335}$$

$$= 50 - 46 \text{ mS}$$

$$P = 50 - 46 \text{ mS}$$

$$TS(s) = \frac{Ws}{Wo + Ws + Ws + Ws} \times TL$$
 $= \frac{885}{1024 + 335 + 335} \times 1000$
 $= 16.51 \text{ m/s}$
 $P2, P3, P4 \longrightarrow 16.51 \text{ m/s}$

	PI	· 65	P3	P4	PI	· PZ	P3	P4	PI	· P2	P3	PLA
Ó				70				2	D D			

Time Share

$$N_0 = 10249$$
 $W_5 = 335$

P3, P4, P5 -> 10.97 m5

PI	PZ	P3 P4	P5	PI	PZ	PS	Py	P5	41	PZ	PS	Py	P5
0		00				200							

Virtual Runtime

vruntime = decay factor x aruntime

decar factor = VVO nice>0 nice=0 nice <0 factor = 1 factor < 1 nice = 5 factor = 1024 = 3.05

task is having actual runtime = 20 ms vountime = factor & arun time

Vruntime = 1 × 20

Vruntime = 3.05X20

= 20 ms = 60.

Linux Scheduling

- There are two types of policies in linux
 - 1. Real time policies
 - i. SCHED RR
 - ii. SCHED_FIFO
 - 2. Non real time policies
 - i. SCHED_OTHER
 - ii. SCHED BATCH
 - iii. SCHED_IDLE

