进程切换与调度算法

cctalk: 里昂学长

处理机调度

调度常考的知识点

- 1.作业是用户提交的,以用户任务为单位
- 2.进程是系统自动生成的,以操作系统控制为单位
- 3.进程的调度就是把一个进程从就绪态转换为了运行态,有很多事件会导致进程的调度,注意区分!!! 下面有详细介绍

基本概念

- 1.调度是处理机进行分配,即从<mark>就绪队列</mark>中按一定算法(公平,高效的原则)选择一个进程并将处理机分配给他运行,以实现进程并发地执行
- 2.调度是多道程序OS的基础;调度是OS设计的核心问题

层次分类模型图

1.高级调度/ <u>作业</u> <u>调度</u>	 是内存与辅存的调度,从后备队列中调度作业 每个作业只调入调出一次 通常存在于多道批处理系统中 内存与磁盘之间交换数据的转态转换: 就绪态到挂起态(408不考挂起)
2.中级调度/ <u>内存</u> <u>调度</u>	目的是提高内存利用率和系统吞吐量将暂时不能运行的进程调到外存等待,设为挂起态按照某种规则从挂起队列中选择合适的进程将其数据调回内存是存储器管理中的对换功能
3.低级调度/ <u>进程</u> <u>调度</u>	<u>从就绪队列中选取一个进程</u> ,调用频率很高 各种Os都必须配置这种调度
三种调度的联系	1.作业调度为进程活动做准备,进程调度使进程正常活动 2.中级调度将暂时不能运行的进程挂起,中级调度处于 另外两个调度之间 3.调用频率:作业调度<内存调度<进程调度 4.进程调度是最基本的,不可或缺

调度的实现

层次分类模型图

	调度器是	2 件么?	用于调度和分派CPU	的组件		
调度器的组成	1.排队器		按策略给就绪进程排出一个或多个队列			
<u> </u>	2.分派器		从就绪队列中取出进程,并分配CPU			
	3.上下文切换器		在对处理机进行切换时,会发生两对上下文的切换操作			
★ _{重点} 调度的时机	 <u>先调度再切换</u> 如果就绪队列中还有其他进程,则一个进程从阻塞态到就绪态时不一定会发生调度 调度时机举例 运行的进程运行完毕 					
<u>19152H5H5T/U</u>		行的进程时间				
	运行的进程所需资源未准备好 运行的进程自我阻塞 运行的进程出现错误					
	不能进 行调度 与切换 的情况	在处理中断的过程中进程在OS内核临界区中其他需要完全屏蔽中断的原子操作过程中				
进程的切换	可以进行调度 与切换的情况	• 在进程结束时能进行处理机调度 • 创建新进程后能进行处理机调度				
切换的过程	 1. <u>将原进程的信息推入到当前进程的内核堆栈中</u>,并更新堆栈指针 2. 内核从新进程的内核栈中装入新进程的信息 3.内核更新当前运行的进程空间指针,重设PC寄存器后开始运行新的进程 					
4		非抢占调度	方式 (主动下CPU)	抢占调度方式(被迫下CPU)		
调度方式	<u>优点</u>	实现简单, 就处理系统	系统开销小,适合	有利于提高系统吞吐率和响应效率		
	<u>缺点</u>	不适合分时 ^元	和大多数的实时系	必须遵循一定的准则(如优先级, 短进程优先,时间片原则)		

重 与调度相关的指标

调度最终目标 要考虑的元素	特定用户的要求(长作业还是短作业有利)	+ <u>系统整体效率</u> + <u>调度算法的开销</u>	
<u>常用的指标</u>	CPU利用率 =	等待时间 = 等待CPU的时间	
	周转时间 (t_i) = 作业完成时间 - 作业提交时间	带权周转时间(w _i) = 周转时间 作业实际运行时间	
	平均周转时间 = $\frac{t_1+t_2++t_i}{i}$	平均带权周转时间 = $\frac{w_1 + w_2 + + w_i}{i}$	
	响应时间 :从用户提交请求到首次响应所用 的时间	系统吞吐量 =单位时间内完成的作业数量	

[、] 重点 ・ <mark>调度算法</mark>								
举例:假设有4个作业,提交时间分别为8,8.4,8.8,9,运行时间为2,1,0.5,0.2								
	FCFS							
	作业号	提交时 间	运行时 间	开始时 间	等待时 间	完成时 间	周转时 间	带权周转时间
FCFS先来先服	1	8	2	8	0	10	2	1
<u>务</u>	2	8.4	1	10	1.6	11	2.6	2.6
	3	8.8	0.5	11	2.2	11.5	2.7	5.4
	4	9	0.2	11.5	2.5	11.7	2.7	13.5
		平均	等待 t = 1.5	75, 平均周]转 T = 2.5,	平带权周	转 = 5.625	
					SJF			
	作业号	提交时 间	运行时 间	开始时 间	等待时 间	完成时 间	周转时 间	带权周转时间
SJF短作业优先	1	8	2	8	0	10	2	1
331,2211	2	8.4	1	10.7	2.3	11.7	3.3	3.3
	3	8.8	0.5	10.2	1.4	10.7	1.9	3.8
	4	9	0.2	10	1	10.2	1.2	6
		平均	等待 t = 1.1	175, 平均周	转 T = 2.1,	平带权周	转 = 3.525	
高响应比优先 调度算法	响应比 $R_p=rac{{ m *}6{ m *}{ m HD}{ m *}+{ m F}{ m *}{ m *}{ m *}{ m F}{ m *}{ m *$							
	 优先级调度算法 ● I/O繁忙作业优先于计算繁忙作业【因为IO操作要及时完成,他没有办法长时间保存数据;IO型先处理,后面IO就可以和CPU并行,提高系统利用率】 ● 系统进程优先于用户进程,前台进程高于后台进程 							
	• 优先级分为静态优先级和动态优先级 动态优先级 动态优先级							
	如	果某进程在	就绪队列等	等待了很长时	时间,可以	适当提升优	先级	
	如	果某进程占	i用了处理机	几很长时间,	可以适当	降低优先级	ţ	
₩^***	频繁IO的进程可以适当提高优先级							
其余算法	有点类似。	向应比						
	时间片轮车							
	● <u>若时间片过大</u> ,退化为FCFS ● 若时间片过小,则切换频繁,处理机开销增大							
	多级队列算法(不用死记硬背,根据题目来)							
	多级队列昇法(个用死证使育,恨据越日米)							

• 进程在就绪队列间的迁移条件 调度算法对比图 有时候题目也会说短进程优先,做法是一样的

多级反馈队列算法需要综合考虑 • 优先级数量,优先级之间的转换规则 • 就绪队列数量,就绪队列的调度算法

	FCFS	SJF (短作业 优先)	高响应比	时间片轮转	多级反馈队列
<u>可抢占?</u>	×	v (又叫最短剩 余时间优先算 法)	٧	٧	<u>队列内算法不一定</u>
不可抢占?	٧	٧	٧	×	队列内算法不一定
<u>默认决策</u> 模式	<u>非抢占</u>	<u>非抢占</u>	<u>非抢占</u>	<u>抢占</u>	抢占 (很少用)
<u>特点</u> & 优点	<u>从时间角度看公平</u> <u>实现简单</u> <u>有利于长作业</u> 不利于短作业 有利于CPU繁忙作业 不利于IO繁忙作业	效率高(可抢 占下效率最高)平均等待时间 最少	• <u>兼顾长短作业</u> • 满足短作业优先 且不会发生饥饿现 象	• 兼顾长短作业 • 绝对公平 • 绝对可抢占的 • 为了多个用户能及 时干预系统	• 兼顾长短作业 • 有较好的响应时间 • 可行性强
<u>缺点</u>	• <u>不利于短作业</u>	长作业会饥饿估计时间不易确定	• 计算响应比的开销大	平均等待时间最长 上下文切换浪费时 回	无
<u>适用于</u>	无	• <u>作业调度</u> • <u>批处理系统</u>	无	分时系统(更关心响应时间)适用于人机交互系统	• <u>相当通用</u> • <u>大家都满意的算法</u>