# FWD – Advanced Embedded Systems Course

# Project #3 – Embedded Software Design

# 1<sup>st</sup>: Fully Dynamic Design.

- **Dynamic design analysis:**
- > ECU1 State Machine Diagram
  - o ECU1 Operation

ECU1 runs RTOS to handle all tasks:



#### o ECU1 Components State Machine

ECU1 Tasks states (RTOS Tasks) are composite states from the ECU Operation "RunningTaskx\_State" State, ECU1 Tasks are two types, first the tasks serving the sensors/switch with same operation algorithm and summarized under "RunSensorxTask" Condition branch, second the Sending task under "RunCANSendTask" Condition branch:



# > ECU1 Sequence Diagram



**ECU1 CPU Load** 

# > ECU2 State Machine Diagram

### o ECU2 Operation

ECU1 Runs an Event-Triggered Architecture to immediately receive ECU1 updates vis CAN Bus and then update the control applied on ECU2 attached components (Lights/Buzzer):



#### o ECU2 Components State Machine

### Control is a composite state to control Lights/Buzzer according the required logic:

If the door is opened while the car is moving  $\rightarrow$  Buzzer ON, Lights OFF

If the door is opened while the car is stopped → Buzzer OFF, Lights ON

If the door is closed while the lights were ON → Lights are OFF after 3 seconds

If the car is moving and the light switch is pressed → Buzzer OFF, Lights ON

If the car is stopped and the light switch is pressed → Buzzer ON, Lights ON





**ECU2 CPU Load**