Software Programming for Performance

Name : Abhijnan Vegi Roll No : 2020101004

Assignment 1

Know your Computer

CPU Specifications

Specification	Value	
CPU	AMD Ryzen 7	
Model	4800H	
Frequency Range	2.9GHz - 4.2GHz	
Number of physical cores	8	
Hyperthreading	Yes	
SIMD ISA	AVX2	
Cache	512 KiB, 4 MiB, 8 MiB	
Memory Bandwidth	68.27 GB/s	

Theoretical FLOPS

Whetstone benchmark

Running the whetstone benchmark with \(10^6\) loops gives a total of 6.25 GIPS.

```
Loops: 1000000, Iterations: 1, Duration: 16 sec.
C Converted Double Precision Whetstones: 6250.0 MIPS
```

Compiling the whetstone benchmark with the flag -03 we get the following result

```
Loops: 1000000, Iterations: 1, Duration: 4 sec.
C Converted Double Precision Whetstones: 25000.0 MIPS
```

Using the icc compiler instead of gcc gives us 10000 MIPS even with the -03 flag

My benchmark

My benchmark has been able to achieve 400 GFLOPS.

Memory Specifications

Specification	Value
Memory size	32 GiB
Туре	DDR4
Maximum Memory Bandwidth	34.13 GB/s

My memory benchmark has been able to achieve a total of 33.5 GB/s.

Storage Specifications

1. **SSD**

Specification	Value	
Size	256 GiB	
Read	2400 MB/s	
Write	950 MB/s	

2. **HDD**

Specification	Value	
Size	1 TiB	
Read	160 MB/s	
Write	40 MB/s	

Know your Cluster

1. ADA peak FLOPS : 70.66 TFLOPS 2. Abacus Peak FLOPS : 14 TFLOPS

BLAS Problems

3.1 BLAS Level 1

xSCAL

- ullet Operational Intensity : 0.25 FLOP/Byte for float , 0.125 FLOP/Byte for double
- ullet Execution times (input size : $1e^8$)

sscal with gcc : 50ms dscal with gcc : 100ms

sscal with icc : 55ms dscal with icc : 110ms

• Baseline execution time: 400ms Best execution time: 50ms

• Speedup: $8 \times$

• Baseline GFLOPS: 0.25 Best GFLOPS: 2.0

• Optimization strategies : Vectorization

Memory bandwidth: 8 GB/sThe problem is CPU bound!

xDOT

- ullet Operational Intensity : 0.25 FLOP/Byte for float and 0.125 FLOP/Byte for double
- Execution times (Input size $1e^8$)

sdot with gcc : 40ms
sdot with icc : 55ms

ddot with gcc : 75ms
ddot with icc : 80ms

Baseline execution time: 700ms
 Best execution time: 40ms

 $\bullet \ \ \text{Speedup}: 14 \times$

Baseline GFLOPS: 0.3 Best GFLOPS: 4

• Optimization strategies: O3 and vectorization

• Memory bandwidth : 16 GB/s

• Problem is memory bound

xAXPY

- Operational Intensity: 0.25 for float and 0.125 for double
- ullet Execution times (Input size $1e^8$)

```
saxpy with gcc : 60ms
saxpy with icc : 75ms

daxpy with gcc : 115ms
daxpy with icc : 130ms
```

- Baseline execution time : 650ms Best execution time : 60ms
- $\bullet \ \ \text{Speedup}: 10 \times$
- Baseline GFLOPS: 0.3

Best GFLOPS: 3.5

- Optimization strategies : O3 and Vectorization
- Memory bandwidth: 16 GB/s
- Problem is memory bound

3.2 BLAS Level 2

xGEMV

- Operational Intensity : $\frac{3MN+M}{sizeof(unit)\times(MN+M+N)}$
- Execution times (Input size $1e^8$)

```
sgemv with gcc : 15ms
sgemv with icc : 19ms

dgemv with gcc : 28ms
dgemv with icc : 32ms
```

- Baseline execution time: 300ms
 Best execution time: 15ms
- Speedup : $20 \times$
- Baseline GFLOPS: 0.2
 Best GFLOPS: 10
- Optimization strategies: -03, parallelization with OpenMP and vectorization
- Memory bandwidth: 28 GB/s
- Problem is CPU bound

3.3 BLAS Level 3

xGEMM

- $\bullet \quad \text{Operational Intensity}: \frac{3MNK + MN}{sizeof(unit) \times (MN + NK + MN)} \\$
- Execution times (Matrix sizes $1e^4$)

```
sgemm with gcc : 38ms
sgemm with icc : 60ms

dgemm with gcc : 80ms
dgemm with icc : 95ms
```

- Baseline execution time: 2700ms
 - Best execution time: 38ms
- Speedup: $71 \times$
- Baseline GFLOPS: 1.12

Best GFLOPS: 7

- Optimization strategies: -03, parallelization with OpenMP and vectorization
- Memory bandwidth:
- Problem is CPU bound

Comparision with blis

Operation	My Implementation	Blis
sscal	50ms	50ms
dscal	100ms	100ms
sdot	40ms	40ms
ddot	75ms	77ms
saxpy	58ms	56ms
daxpy	112ms	113ms
sgemv	15ms	12ms
dgemv	28ms	28ms
sgemm	38ms	25ms
dgemm	80ms	50ms

2D Stencil

• Operational Intensity : $\frac{2 \times k^2 \times hw}{sizeof(unit) \times hw + k^2}$

Execution times

HD:
gcc: 10ms
icc: 50ms

UHD:
gcc: 30ms
icc: 130ms

icc looks heavily unoptimized. This might be due to the fact that its being tested on an AMD processor rather than an Intel one.

Baseline execution time: 130ms
 Best execution time: 10ms

Note that the baseline execution time is after compiling with gcc rather than icc

 $\bullet \ \ \text{Speedup}: 13 \times$

 With k = 3 and HD image Baseline GFLOPS: 0.32 Best GFLOPS: 3.87

• Optimization strategies: -03 and parallelization with openmp

• Memory bandwidth : 1.12 GB/s

• The problem is compute bound

On HD image with varying stencil size the runtime varies exponentially as expected.

