Λήμμα 0.0.1. Εστω $\ell\geqslant 1$ και $\Delta_{d_\ell,\ldots,d_1}$ ένας τελεστής διαδοχικών διαφορών. Έστω $f(x)=\alpha x^k+\cdots$ πολυώνυμο βαθμού k. Τότε,

$$\Delta_{d_{\ell},\dots,d_1}(f)(x) = d_1 \cdots d_{\ell}(k(k-1)\cdots(k-\ell+1)\alpha x^{k-\ell} + \cdots)$$

aν $1 \leqslant \ell \leqslant k$ και

$$\Delta_{d_{\ell},\dots,d_1}(f)(x) = 0$$

αν $\ell>k$. Ειδικότερα, αν $\ell=k-1$ και $d_1\cdots d_{k-1}\neq 0$, τότε το

$$\Delta_{d_{\ell},\dots,d_{1}}(f)(x) = d_{1}\cdots d_{k-1}k!\alpha x + \beta$$

είναι πολυώνυμο βαθμού 1.

 $A\pi \delta \delta \epsilon \imath \xi \eta$. Έστω $f(x) = \sum_{j=1}^k x^j$, όπου $\alpha_k = \alpha$. Καθώς ο τελεστής διαφορών είναι γραμμικός έχουμε

$$\Delta_{d_{\ell},\dots,d_{1}}(f)(x) = \sum_{j=0}^{k} \alpha_{j} \Delta_{d_{\ell},\dots,d_{1}}(x^{j}) = d_{1} \cdots d_{\ell} \left(\frac{k!}{(k-\ell)!} \alpha x^{k-\ell} + \cdots \right)$$

και η απόδειξη του λήμματος είναι πλήρης.