Devoir maison 6.

À rendre le lundi 17 janvier 2022

Exercice 1

Pour tout entier n supérieur ou égal à 2, on définit la fonction f_n sur $[1, +\infty[$ par : $f_n(x) = x^n - x - 1.$

- 1°) Montrer que, pour tout $n \geq 2$, l'équation $f_n(x) = 0$ admet une unique solution x_n dans $[1, +\infty[$. Justifier que $x_n \neq 1$.
- 2°) Soit n un entier supérieur ou égal à 2. Déterminer le signe de $f_{n+1}(x_n)$.
- 3°) En déduire que la suite (x_n) est monotone.
- $\mathbf{4}^{\circ}$) Montrer que la suite (x_n) converge vers 1.
- **5**°) Justifier que, pour tout $n \ge 2$, $x_n = \exp\left(\frac{\ln(1+x_n)}{n}\right)$.
- 6°) Quelle est la limite de $\ln(1+x_n)$? Traduire à l'aide de la notation o.
- 7°) En déduire que :

$$x_n \underset{n \to +\infty}{=} 1 + \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

On parle de développement asymptotique de x_n à la précision $\frac{1}{n}$.

8°) En déduire un développement asymptotique de x_n à la précision $\frac{1}{n^2}$ (on utilisera encore la question 5).

Exercice 2

Déterminer $\lim_{x\to 0} f(x)$ où $f(x) = \frac{\sin(2x) - 2\sin(x)}{\tan^2(x)}$.