Competitive Analysis - MUELLER Brand Performance in the PASTA Category

Student ID: 24014297

Name: Ling Leng

Content

01 Introduction

02 Data Preparation & SQL Queries

03 Brand Performance Analysis: Customer Dashboard

04 Dirichlet Model Insights

05 Conclusion and Recommendations

Introduction

1. Introduction

Objective

- Competitive analysis of MUELLER in the PASTA category.
- Use of Dunnhumby Carboload dataset for analysis.

Methodology

- SQL data extraction and Python data cleaning.
- Application of the Dirichlet model to set benchmarks.

Key Focus Areas

- Evaluate MUELLER's market performance.
- Compare with competitive brands.
- Identify trends in category demand.

Outcome

 Actionable insights and strategic recommendations for MUELLER's market growth. 02

Data Preparation & SQL Queries

2. Data Preparation & SQL Queries

Data Source

- Dunnhumby Carboload CSV files
- Dataset: dh_causal_lookup dh_product_lookup dh_transactions

SQL Data Extraction

- Extracted category data and saved as CSV for further analysis.
- · Key steps:
- Import and combine CSV files into SQL database.
- Query data using SQL in jupyter.

- Removed duplicates
- · handled missing data
- · ensured correct time periods.

```
# Connecting to a SQLite Database
conn = sqlite3.connect(r'D:\L Leng\master of analytics\156761 Customer

→Insights\A2\A2\Assignment2.db')
```

```
# Perform inner joins to extract related data
query = """
SELECT
    t.upc,
    t.dollar_sales,
    t.units,
    t.time_of_transaction,
    t.week,
    t.household,
    t.basket,
    p.brand,
    p.product_description,
    p.commodity
FROM
    dh transactions t
JOIN
    dh_product_lookup p
ON
    t.upc = p.upc;
11 11 11
```

03

Brand Performance Analysis: Customer Dashboard

Key Metrics for MUELLER

Focal Brand Market Share (B): 9.50%

Focal Brand Purchase Frequency (W): 2.06

1. [Key Metrics]

Market Share: 9.50%

Purchase Frequency: 2.06

2. [Sales Trends]

- Sales Decline: Total sales show a downward trend, with a brief increase in Quarter 6.
- Household Penetration: Gradual decline in households purchasing MUELLER over time.

3. [Insights]

- MUELLER is losing household reach.
- Sales recovery in Quarter 6 is not sustained.

Competitive Comparison

brand	Market_Share_B	Purchase_Frequency_W
Private Label	0.20	1.61
Ragu	0.16	1.47
Prego	0.09	1.41
Aunt Jemima	0.07	1.22
Barilla	0.06	1.32
Classico	0.06	1.27
Private Label Premium	0.05	1.27
Bertolli	0.03	1.24
Ronzoni	0.03	1.25
Creamette	0.03	1.28

1. [Market Share Comparison]

- MUELLER's Market Share: 9.50% (lower compared to leading brands like Private Label at 20%).
- MUELLER's Purchase Frequency: 2.06, which is higher than most competitors, indicating strong loyalty from existing customers.

2. [Sales Trends]

MUELLER vs. Other Brands:

- Other brands consistently outperform MUELLER in total sales.
- MUELLER saw a sales spike in Quarter 6, but it was not sustained, showing a sharp drop in Quarter 8.
- Competitors maintained relatively stable performance compared to MUELLER's fluctuations.

3. [Insights]

- MUELLER's market share is lower than key competitors, but its purchase frequency suggests strong potential to grow.
- The spike in Quarter 6 suggests a temporary successful strategy, but consistency is lacking.

4. [Recommendation]

 Focus on strategies to stabilize sales and increase market share by capturing more customers from competitors like Private Label and Ragu.

Category Demand Trends

Market Share (B): 31.24%

Purchase Frequency (W): 4.76

1. [Key Metrics]

Market Share: 31.24%

This indicates a significant share in the category, reflecting strong market positioning.

Purchase Frequency: 4.76

The high purchase frequency suggests strong and frequent demand for the category from consumers.

2. [Demand Trend Insights]

Total Revenue (Green Line):

There is a notable dip in total revenue in Quarter 4, followed by a sharp increase, peaking in Quarter 6. A decline is observed again in Quarter 8, indicating fluctuations in category demand.

Total Units Sold (Yellow Line):

Similar to revenue, the number of units sold drops in Quarter 4, then surges in Quarter 6, before another drop in Quarter 8.

3. Conclusion:

- The category shows overall strong demand but with significant seasonal fluctuations.
- The spike in Quarter 6 suggests the category may be influenced by promotions or seasonal factors.

4. Recommendation:

Implement targeted marketing during low-demand periods (such as Quarters 4 and 8) to stabilize sales throughout the year.

Dirichlet Model Insights

1. Model Fit and Validation

TABLE 2 Model Fitting Sta	tistics			•	weighted [*]		Intermediar	у			Mo	del Fitting C	alculations		
Brand	b	w	Mkt Share Use to Est	s^	8^	р0	m m/M	We	eight	b	w	[b]	[w]		
Mueller	0.1	2.1		3.987		91%	0.2	13%		-0.02	0.39	0.02	0.39	23%	19%
Private Label	0.0	1.6	Y	4.942	.1	98%	0.0	2%	0.02	-0.01	0.41	0.01	0.41	35%	26%
Ragu	0.2	1.5	Y	50.001	7.9	84%	0.2	16%	0.16	0.03	-0.31	0.03	0.31	17%	21%
Prego	0.1	1.4	Y	50.001	4.3	91%	0.1	9%	0.09	0.00	-0.07	0.00	0.07	4%	5%
Aunt Jemima	0.1	1.2	Y	50.001	2.9	93%	0.1	6%	0.06	0.01	-0.14	0.01	0.14	10%	11%
Barilla	0.1	1.3	Y	48.503	2.6	94%	0.1	5%	0.05	0.00	-0.02	0.00	0.02	1%	1%
Classico	0.1	1.3	Y	50.001	2.6	94%	0.1	5%	0.05	0.00	-0.06	0.00	0.06	4%	5%
Private Label Premi	0.1	1.3	Y	49.499	2.1	95%	0.1	4%	0.04	0.00	-0.02	0.00	0.02	2%	2%
Bertolli	0.0	1.2	Y	26.974	.7	97%	0.0	3%	0.03	0.00	0.03	0.00	0.03	2%	2%
Ronzoni	0.0	1.3	Y	25.022	.6	97%	0.0	3%	0.03	0.00	0.04	0.00	0.04	3%	3%
Creamette	0.0	1.3	Y	20.431	.5	97%	0.0	3%	0.03	0.00	0.06	0.00	0.06	5%	5%

- The **Dirichlet model** was applied to validate MUELLER's market performance metrics, including **market share** and **purchase frequency**. The model's penetration rate and purchase frequency predictions were a good match with actual data, confirming that the brand is performing as expected.
- MUELLER's market share (10%) and purchase frequency (2.1) align closely with the model estimates, showing that the brand is attracting repeat buyers but has room to improve its overall penetration.

2. Penetration and Market Share

TABLE 1	Brand Share	Penetrat	tion	% !	Buying		Purcha	ases F	Per Buyer	Share of Category		100% Lo	yal	Repeat Buyir	ng
Output Statistics				Once	Five +		of the Brand	(of the Category	Requirements	9,	6	Rate		
		0	T	O T	0 T		0 T		o T	O T	0	T	0 T	0	T
1 Mueller		10%	12%	64	6	4%	2.1	1.7	8.1	21%		12%		1.1	51%
² Private Label		2%	3%	85	6	0%	1.6	1.2	10.1	12%		8%		1.0	25%
3 Ragu		16%	13%	61	6	5%	1.5	1.8	7.7	23%		13%		1.1	54%
⁴ Prego		9%	9%	71	6	2%	1.4	1.5	8.8	17%		11%		1.1	43%
5 Aunt Jemima		7%	6%	76	6	1%	1.2	1.4	9.3	15%		10%		1.0	37%
6 Barilla		6%	6%	77'		1%	1.3	1.3	9.4	14%		9%		1.0	36%
7 Classico		6%	6%	77		1%	1.3	1.3	9.4	14%		9%		1.0	35%
9 Private Label Premium		5%	5%	79	6	1%	1.3	1.3	9.6	13%		9%		1.0	33%
9 Bertolli		3%	3%	84	6	0%	1.2	1.2	10.0	12%		8%		1.0	27%
10 Ronzoni		3%	3%	84		0%	1.3	1.2	10.0	12%		8%		1.0	27%
11 Creamette		3%	3%	84	6	0%	1.3	1.2	10.0	12%		8%		1.0	27%
1		- 3-3-4	2000			1	40000				6				

- MUELLER has a 12% penetration rate, which is lower than Private Label (16%) and Ragu (13%). The model results suggest that while MUELLER is capturing a loyal customer base, it needs to focus on expanding its reach to more households.
- Other competing brands like **Private Label** and **Ragu** hold higher penetration rates and market share, indicating that MUELLER is lagging in terms of broad consumer adoption.

3. Repeat Purchase and Loyalty

TABLE 1	Brand Share	Penetrat	tion	% Buy	ving	Purch	hases F	Per Buyer	Share of Category		100% Lo	oyal	Repeat Buy	ing
Output Statistics				Once	Five +	of the Brand	1 (of the Category	Requirements	%		Rate		
		0	т	O T	0 T	0 1	r	0 1	0 T	0	T	0 T	0	T
¹ Mueller		10%	12%	64%	4%	2.1	1.7	8.1	21%		12%		1.1	51%
² Private Label		2%	3%	85%	0%	1.6	1.2	10.1	12%		8%		1.0	25%
3 Ragu		16%	13%	61%	5%	1.5	1.8	7.7	23%		13%		1.1	54%
⁴ Prego		9%	9%	71%	2%	1.4	1.5	8.8	17%		11%		1.1	43%
5 Aunt Jemima		7%	6%	76%	1%	1.2	1.4	9.3	15%		10%		1.0	37%
6 Barilla		6%	6%	77%	1%	1.3	1.3	9.4	14%		9%		1.0	36%
7 Classico		6%	6%	77%	1%	1.3	1.3	9.4	14%		9%		1.0	35%
9 Private Label Premium		5%	5%	79%	1%	1.3	1.3	9.6	13%		9%		1.0	33%
9 Bertolli		3%	3%	84%	0%	1.2	1.2	10.0	12%		8%		1.0	27%
10 Ronzoni		3%	3%	84%	0%	1.3	1.2	10.0	12%		8%		1.0	27%
11 Creamette		3%	3%	84%	0%	1.3	1.2	10.0	12%		8%		1.0	27%

- MUELLER's repeat purchase rate is 51%, which is higher than competitors such as Private Label (25%) and Prego (43%). This shows that MUELLER has strong customer loyalty, but the lower penetration limits the brand's overall market potential.
- Increasing the penetration rate without sacrificing the loyalty of existing customers should be a key strategy for growth.

4. Model Accuracy

Model Fitting Statistics										
K	.162	A	•	9.2	s^	44.42				
P	enetration		Purchases Per Buyer							
AVE%	1.6%	1		AVE%	2.1%	1				
.r	0.96	1		.r	0.58	×				
MAD%	10.8%	1		MAD%	10.0%	1				
MAPE	9.8%	1		MAPE	9.0%	1				
mber of Test	s Passed			7	out of 8	3				

- The model's MAD% (Mean Absolute Deviation) and MAPE (Mean Absolute Percentage Error) values are low, with MAD% for penetration at 10.8% and for purchases per buyer at 10.0%, confirming that the model provides an accurate fit.
- The MAPE values also demonstrate the model's predictive strength, as they remain under 10%, a strong indicator that the Dirichlet model can reliably estimate market dynamics in the PASTA category.

5. Competitor Analysis

TABLE 1	Brand Share	Penetra	tion	% Buyir	ng	Purc	hases F	Per Buyer	Share of Category	60	100% L	oyal	Repeat B	Buying
Output Statistics				Once	Five +	of the Brand	d c	of the Category	Requirements		%	Rate		
		0	T	O T	0 T	0	T	0 1	0 T	0	T	O T	0	
1 Mueller		10%	12%	64%	4%	2.1	1.7	8.1	21%		12%		1.1	51%
² Private Label		2%	3%	85%	0%	1.6	1.2	10.1	12%		8%		1.0	25%
3 Ragu		16%	13%	61%	5%	1.5	1.8	7.7	23%		13%		1.1	54%
4 Prego		9%	9%	71%	2%	1.4	1.5	8.8	17%		11%		1.1	43%
5 Aunt Jemima		7%	6%	76%	1%	1.2	1.4	9.3	15%		10%		1.0	37%
6 Barilla		6%	6%	77%	1%	1.3	1.3	9.4	14%		9%		1.0	36%
7 Classico		6%	6%	77%	1%	1.3	1.3	9.4	14%		9%		1.0	35%
9 Private Label Premium		5%	5%	79%	1%	1.3	1.3	9.6	13%		9%		1.0	33%
9 Bertolli		3%	3%	84%	0%	1.2	1.2	10.0	12%		8%		1.0	27%
10 Ronzoni		3%	3%	84%	0%	1.3	1.2	10.0	12%		8%		1.0	27%
11 Creamette		3%	3%	84%	0%	1,3	1.2	10.0	12%		8%		1.0	27%
					1									

- **Private Label** leads the category with a **20% market share** and a **16% penetration rate**, making it the dominant player in the PASTA category.
- **MUELLER** has a relatively low **10% market share**, but its higher purchase frequency and repeat purchase rate (51%) show the potential for growth if the brand can increase household reach.
- Competing brands like Ragu (13% penetration, 16% market share) and Prego (9% penetration, 9% market share) provide a middle ground, showing that these brands also balance moderate penetration with loyal customers.

6. Recommendations for MUELLER

- Increase Penetration: MUELLER should focus on expanding its customer base by investing in targeted marketing campaigns to attract new buyers. Increasing penetration is key to capturing more market share.
- Leverage Loyalty: The high loyalty rate indicates an opportunity to capitalize on repeat customers through loyalty programs or bundled offers to further increase purchase frequency.
- Competitive Strategy: Given that Private Label dominates with a significantly higher market share, MUELLER could differentiate itself by emphasizing product quality or sustainability to appeal to more discerning buyers.

Conclusion and Recommendations

1. [Conclusion]

- MUELLER is performing well in terms of customer loyalty, with a 51% repeat purchase rate and a purchase frequency of 2.1. However, its market share (10%) and penetration (12%) are lower than key competitors like Private Label and Ragu.
- The Dirichlet model confirms that MUELLER's current performance aligns with theoretical expectations, indicating a solid customer base but with room for expansion.

2. [Recommendations]

- Increase Market Penetration: MUELLER should focus on expanding its reach to new households through targeted marketing campaigns and promotions. This will help boost its low penetration rate.
- Enhance Brand Awareness: Marketing efforts should emphasize
 MUELLER's product quality and value, positioning it as a preferred brand in the PASTA category to compete with market leaders.
- Leverage Customer Loyalty: With a high repeat purchase rate, MUELLER can introduce loyalty programs or bundled offers to incentivize more frequent purchases from existing customers and retain them long-term.

Thanks for watching

156762_Customer Insights_Assignment2

September 18, 2024

```
[1]: import sqlite3
  import pandas as pd
  import numpy as np
  import matplotlib.pyplot as plt
  import seaborn as sns
  import plotly.express as px
  import scipy.stats as stats
```

1 Write an SQL query to extract and save a .csv file containing relevant category data

```
[2]: # Connecting to a SQLite Database
    conn = sqlite3.connect(r'D:\L Leng\master of analytics\156761 Customer_

¬Insights\A2\A2\Assignment2.db')
[3]: # Query all table names in the database
    tables_query = "SELECT name FROM sqlite_master WHERE type='table';"
    tables = conn.execute(tables_query).fetchall()
    for table in tables:
        print(table[0])
   dh_causal_lookup
   dh_product_lookup
   dh_transactions
[4]: # 1. View the field information of dh_causal_lookup
    table_name = 'dh_causal_lookup'
    columns_query = f"PRAGMA table_info({table_name});"
    columns = conn.execute(columns_query).fetchall()
    for column in columns:
        print(f"Column ID: {column[0]}, Name: {column[1]}, Type: {column[2]}")
    # 2. View the field information of dh_product_lookup
```

```
table_name = 'dh_product_lookup'
   columns_query = f"PRAGMA table_info({table_name});"
   columns = conn.execute(columns_query).fetchall()
   for column in columns:
       print(f"Column ID: {column[0]}, Name: {column[1]}, Type: {column[2]}")
   # 3. View the field information of dh_transactions
   table_name = 'dh_transactions'
   columns_query = f"PRAGMA table_info({table_name});"
   columns = conn.execute(columns query).fetchall()
   for column in columns:
       print(f"Column ID: {column[0]}, Name: {column[1]}, Type: {column[2]}")
   Column ID: 0, Name: upc, Type: REAL
   Column ID: 1, Name: store, Type: INTEGER
   Column ID: 2, Name: week, Type: INTEGER
   Column ID: 3, Name: feature_desc, Type: TEXT
   Column ID: 4, Name: display_desc, Type: TEXT
   Column ID: 5, Name: geography, Type: INTEGER
   Column ID: 0, Name: upc, Type: INTEGER
   Column ID: 1, Name: product_description, Type: TEXT
   Column ID: 2, Name: commodity, Type: TEXT
   Column ID: 3, Name: brand, Type: TEXT
   Column ID: 4, Name: product size, Type: TEXT
   Column ID: 0, Name: upc, Type: INTEGER
   Column ID: 1, Name: dollar sales, Type: REAL
   Column ID: 2, Name: units, Type: INTEGER
   Column ID: 3, Name: time_of_transaction, Type: INTEGER
   Column ID: 4, Name: geography, Type: INTEGER
   Column ID: 5, Name: week, Type: INTEGER
   Column ID: 6, Name: household, Type: INTEGER
   Column ID: 7, Name: store, Type: INTEGER
   Column ID: 8, Name: basket, Type: INTEGER
   Column ID: 9, Name: day, Type: INTEGER
   Column ID: 10, Name: coupon, Type: INTEGER
[7]: # Perform inner joins to extract related data
   query = """
   SELECT
       t.upc,
       t.dollar_sales,
       t.units,
       t.time_of_transaction,
       t.week,
       t.household,
```

```
t.basket,
p.brand,
p.product_description,
p.commodity
FROM
dh_transactions t

JOIN
dh_product_lookup p

ON
t.upc = p.upc;
"""

[8]: # Execute the query and save the results as a pandas DataFrame
df = pd.read_sql_query(query, conn)

[9]: # Export query results to a CSV file
df.to_csv('relevant_category_data.csv', index=False)
```

2 Use Python and Jupyter notebooks to clean the data

```
[3]: # Reload data from a CSV file
    df = pd.read_csv('relevant_category_data.csv')
    print(df.head())
                  dollar sales units
                                       time_of_transaction week household \
   0 7680850106
                          0.80
                                                       1100
                                                                      125434
                          3.59
   1 3620000470
                                    1
                                                       1100
                                                                1
                                                                      125434
   2 1800028064
                          2.25
                                                       1137
                                                                      108320
                                    1
                                                                1
                          0.85
   3 9999985067
                                    1
                                                       1148
                                                                1
                                                                      162016
   4 9999985131
                          2.19
                                                       1323
                                                                1
                                                                       89437
      basket
                              brand
                                                 product_description \
   0
                            Barilla
                                                  BARILLA ANGEL HAIR
           1
   1
           1
                           Bertolli
                                           BERTOLLI TOM&BASIL SAUCE
   2
           2
                        Hungry Jack
                                          H J PANCK BTRMLK COMP MIX
   3
                      Private Label
                                            PRIVATE LABEL VERMICELLI
           4 Private Label Premium PRIVATE LABEL IMPORTED LASAGNA
          commodity
   0
              pasta
        pasta sauce
   2
     pancake mixes
   3
              pasta
              pasta
```

2.1 1. Check for missing and duplicate values

```
[4]: # Check if there are any missing values
missing_values = df.isnull().sum()
print("Missing value statistics:\n", missing_values)

# Remove Duplicate Rows
df = df.drop_duplicates()
```

Missing value statistics: upc dollar_sales 0 units 0 time_of_transaction week 0 household 0 basket 0 brand 0 product_description commodity dtype: int64

2.2 2. Time column processing

Trading volume by week:

- 1 43148
- 2 45735
- 3 54344

```
4
          53512
   5
          43824
          . . .
   100
          47815
   101
          50571
   102
          47365
   103
          49884
   104
          53626
   Name: week, Length: 104, dtype: int64
[7]: # Delete data with incomplete time periods
    df_cleaned = df.dropna(subset=['time_of_transaction', 'week'])
[8]: # Check the cleaned data
    print(df_cleaned.info())
   <class 'pandas.core.frame.DataFrame'>
   Int64Index: 5197681 entries, 0 to 5197680
   Data columns (total 10 columns):
        Column
                              Dtype
        ----
                              int64
    0
        upc
    1
        dollar_sales
                              float64
    2
        units
                              int64
    3
        time_of_transaction datetime64[ns]
    4
                              int64
        week
    5
        household
                              int64
    6
        basket
                              int64
    7
        brand
                              object
        product_description object
        commodity
                              object
   dtypes: datetime64[ns](1), float64(1), int64(5), object(3)
   memory usage: 436.2+ MB
   None
```

2.3 3. Filter outliers

```
[9]: # Set pandas not to use scientific notation
pd.set_option('display.float_format', '{:.2f}'.format)

# Re-examine the descriptive statistics
print(df.describe())
```

```
upc dollar_sales
                                     units
                                                week household
                                                                   basket
count
        5197681.00
                     5197681.00 5197681.00 5197681.00 5197681.00
mean 6203548088.76
                           1.76
                                      1.20
                                               53.22 223137.62 1662961.43
    3152023380.33
                           1.13
                                     0.57
                                               30.05 141216.42 959318.89
std
     111112360.00
                         -11.76
                                     1.00
                                                1.00
                                                           1.00
                                                                     1.00
min
```

```
27.00 99053.00 829906.00
25%
     3620000300.00
                            0.99
                                      1.00
50% 5100012910.00
                            1.50
                                      1.00
                                                55.00 209694.00 1666884.00
                            2.19
75%
    9999981583.00
                                      1.00
                                                79.00 339568.00 2496495.00
     9999985766.00
                          153.14
                                    156.00
                                               104.00 510027.00 3316349.00
max
```

```
[10]: # Delete records with negative sales
df_cleaned = df[df['dollar_sales'] >= 0]

# Check the cleaned data
print(df_cleaned.describe())

# Reassign the cleaned data to df
df = df_cleaned
```

	upc	dollar_sales	units	week	household	basket
count	5193177.00	5193177.00	5193177.00	5193177.00	5193177.00	5193177.00
mean	6204517447.02	1.76	1.20	53.23	223121.95	1663045.33
std	3152341097.98	1.13	0.57	30.05	141227.64	959354.44
min	111112360.00	0.00	1.00	1.00	1.00	1.00
25%	3620000300.00	0.99	1.00	27.00	99006.00	830008.00
50%	5100012910.00	1.50	1.00	55.00	209669.00	1666846.00
75%	9999981583.00	2.19	1.00	79.00	339573.00	2496690.00
max	9999985766.00	153.14	156.00	104.00	510027.00	3316349.00

3 Creating Customer Dashboard and Visualization

3.1 1. Customer Dashboard

3.1.1 1. 1 customer dashboard for the focal brand(MUELLER)

```
[11]: # Generates the 'Quarter' column for every 13 weeks in a quarter
df['Quarter'] = (df['week'] - 1) // 13 + 1
print(df[['week', 'Quarter']].head())
```

```
    week
    Quarter

    0
    1
    1

    1
    1
    1

    2
    1
    1

    3
    1
    1

    4
    1
    1
```

```
[12]: # Filter out the data of focal brand -- 'Mueller'
focal_brand = 'Mueller'
df_focal = df[df['brand'] == focal_brand]

# Summary of focal brand key indicators by quarter
```

```
focal_metrics = df_focal.groupby('Quarter').agg(
    Total_Revenue=('dollar_sales', 'sum'),
    Total_Units=('units', 'sum'),
    Total_SKUs=('upc', 'nunique'),
    Total_Baskets=('basket', 'nunique'),
    Total_Households=('household', 'nunique')
)
print(focal_metrics)
```

	Total_Revenue	Total_Units	Total_SKUs	Total_Baskets	\
Quarter					
1	37925.61	47181	25	28223	
2	33974.97	31650	24	25205	
3	32778.68	39601	27	26702	
4	32567.47	25324	25	20941	
5	33114.07	25351	24	20540	
6	37116.89	27743	23	22769	
7	32499.61	26719	21	21793	
8	30873.20	25830	21	21074	
	Total_Househol	ds			
Quarter					
1	221	40			
2	192	270			
3	210	78			
4	168	63			
5	165	89			
6	179	03			
7	172	02			
8	167	19			

3.1.2 1.2 customer dashboard for the Competitive Performance

```
[13]: # Aggregate sales and purchase data for all brands in different quarters, by_\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex
```

	Ouerter		hrand	Total Powonuo	Total Unita	\
6	Quarter		brand	Total_Revenue	_	\
	1		Aunt Jemima	72361.99	28130	
7	1		Barilla	69294.24	48762	
9	1		Bertolli	27095.80	9554	
20	1		Classico	60181.43	24752	
24	1		Creamette	37091.72	35557	
756	8		Hunt's	28833.15	32423	
786	8		Prego	92435.64	45327	
787	8		Private Label	216700.10	255201	
788	8	Priva	te Label Premium	50300.09	34400	
791	8		Ragu	176330.57	100928	
			_			
	Total_Ba	askets	Total_Households			
6		25377	20666			
7		33267	25189			
9		7905	6308			
20		17613	13526			
24		28189	21781			
756		19410	14680			
786		33534	23702			
787	1	157610	98115			
788	-	25404	19942			
791		74320	50409			
		1 1020	00403			
08]	rows x 6	column	s]			

3.1.3 1.3 customer dashboard for the Category Demand Trends

```
Total_Category_Revenue Total_Category_Units Total_Category_Baskets \
Quarter
                                                  765849
1
                      1141361.63
                                                                           404337
2
                      1159413.84
                                                  735915
                                                                           418127
3
                      1140770.75
                                                 776400
                                                                           414608
4
                      1007255.96
                                                  683649
                                                                           368721
5
                      1135519.88
                                                 776148
                                                                           413475
6
                      1207767.57
                                                 823988
                                                                           446374
7
                      1220550.05
                                                 880329
                                                                           446205
8
                      1118279.40
                                                 772252
                                                                           403685
         Total_Category_Households
Quarter
                             190704
1
2
                              197483
3
                              195335
4
                             181891
5
                             197181
6
                             208475
7
                             207332
8
                             195558
```

3.2 2. Visualization

3.2.1 2.1 Quarterly sales trends for Focal Brand

```
[15]: # Summarize the quarterly sales data of focal brand and add the summaries of \Box
     \rightarrowbasket and household
     focal_sales_by_quarter = df_focal.groupby('Quarter').agg(
         Total_Sales=('dollar_sales', 'sum'),
         Total_Baskets=('basket', 'nunique'),
         Total_Households=('household', 'nunique')
     )
     plt.figure(figsize=(10, 6))
     # Draw a line chart of sales
     plt.plot(focal_sales_by_quarter.index, focal_sales_by_quarter['Total_Sales'],
              marker='o', linestyle='-', color='blue', linewidth=2, label='Totalu

→Sales')
     # Plot a trend graph for baskets and households
     plt.plot(focal_sales_by_quarter.index, focal_sales_by_quarter['Total_Baskets'],
              marker='s', linestyle='--', color='green', linewidth=2, label='Totalu
     →Baskets')
     plt.plot(focal_sales_by_quarter.index,_
      →focal_sales_by_quarter['Total_Households'],
```

```
marker='^', linestyle=':', color='red', linewidth=2, label='Total
→Households')

plt.title('Quarterly Sales Trends for Focal Brand', fontsize=14)
plt.xlabel('Quarter', fontsize=12)
plt.ylabel('Values', fontsize=12)
plt.legend()
plt.grid(True)
plt.xticks(focal_sales_by_quarter.index)
plt.tight_layout()
plt.show()
```


3.2.2 2.2 Comparison of performance of competing brands

2.2.1 Comparison of sales of the top 10 brands

```
[16]: # Calculate total sales for all brands
brand_sales = df.groupby('brand')['dollar_sales'].sum().

→sort_values(ascending=False)

# Select the top 10 brands for analysis
top_brands = brand_sales.head(10)

# Draw a bar chart of sales of the top 10 brands
plt.figure(figsize=(10,6))
top_brands.plot(kind='bar', color='orange')
```

```
plt.title('Top 10 Brands by Total Sales')
plt.xlabel('Brand')
plt.ylabel('Total Dollar Sales')
plt.xticks(rotation=45)
plt.show()
```


2.2.2 Compare focal brand to competing brands

```
[17]: # Check the sales summary of focal brand Mueller
focal_sales = df_focal.groupby('Quarter')['dollar_sales'].sum()
print(focal_sales)
```

Quarter

- 1 37925.61
- 2 33974.97
- 3 32778.68
- 4 32567.47
- 5 33114.07
- 6 37116.89
- 7 32499.61

8 30873.20 Name: dollar_sales, dtype: float64

```
[18]: # Calculate the quarterly sales of competing brands
    competitive_sales = df[df['brand'] != focal_brand].
     →groupby('Quarter')['dollar_sales'].sum()
    plt.style.use('seaborn-whitegrid')
    fig, ax1 = plt.subplots(figsize=(10,6))
    # Plotting the quarterly sales trends of competing brands (left axis)
    ax1.plot(competitive_sales.index, competitive_sales.values, marker='s',__
     →linestyle='--', color='teal', label='Other Brands')
    ax1.set_xlabel('Quarter')
    ax1.set_ylabel('Total Dollar Sales (Other Brands)', color='teal')
    ax1.tick_params(axis='y', labelcolor='teal')
    # Plotting Mueller's quarterly sales trend (right axis)
    ax2 = ax1.twinx()
    ax2.plot(focal_sales.index, focal_sales.values, marker='o', linestyle='-', u
     ax2.set_ylabel('Total Dollar Sales (Mueller)', color='coral')
    ax2.tick_params(axis='y', labelcolor='coral')
    ax1.legend(loc='upper left')
    ax2.legend(loc='upper right')
    plt.title('Mueller vs Competitive Brands Sales Trend by Quarter')
    plt.show()
```

C:\Users\23968\AppData\Local\Temp\ipykernel_7344\478139940.py:5:

MatplotlibDeprecationWarning: The seaborn styles shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the styles shipped by seaborn. However, they will remain available as 'seaborn-v0_8-<style>'.

Alternatively, directly use the seaborn API instead.

plt.style.use('seaborn-whitegrid')

2.2.3 Charting Category Demand Trends

```
[19]: # Summarize sales and purchases for the entire category by quarter and keep_

→ 'Quarter'

category_metrics = df.groupby('Quarter').agg(

Total_Category_Revenue=('dollar_sales', 'sum'),

Total_Category_Units=('units', 'sum')
).reset_index()

print(category_metrics.columns)
```

Index(['Quarter', 'Total_Category_Revenue', 'Total_Category_Units'],
dtype='object')

4 Calculate the relevant data required for the Dirichlet spreadsheet

4.1 1. Calculate category data

```
[21]: # Filter out data for the Pasta category

df_pasta = df[df['commodity'] == 'pasta']

# Calculate the total sales, total number of orders, and total number of

→households in the Pasta category

total_revenue_pasta = df_pasta['dollar_sales'].sum()

total_baskets_pasta = df_pasta['basket'].nunique()
```

```
total_households_pasta = df_pasta['household'].nunique()

# Assume total_market_revenue is the total market revenue
total_market_revenue = df['dollar_sales'].sum()

# Calculate Market Share (B)
market_share_B = total_revenue_pasta / total_market_revenue
print(f"Market Share (B): {market_share_B:.2%}")

# Calculate Purchase Frequency (W)
purchase_frequency_W = total_baskets_pasta / total_households_pasta
print(f"Purchase Frequency (W): {purchase_frequency_W:.2f}")
```

Market Share (B): 31.24% Purchase Frequency (W): 4.76

4.2 2. Calculate data of focal brand

```
[22]: focal_brand = 'Mueller'
    df_focal = df[df['brand'] == focal_brand]

total_revenue_focal = df_focal['dollar_sales'].sum()
    total_baskets_focal = df_focal['basket'].nunique()
    total_households_focal = df_focal['household'].nunique()

total_category_revenue = df[df['commodity'] == 'pasta']['dollar_sales'].sum()

# Calculate the Market Share of the focal brand (B)
market_share_B_focal = total_revenue_focal / total_category_revenue
print(f"Focal Brand Market Share (B): {market_share_B_focal:.2%}")

# Calculate the purchase frequency (W) of the focal brand
purchase_frequency_W_focal = total_baskets_focal / total_households_focal
    print(f"Focal Brand Purchase Frequency (W): {purchase_frequency_W_focal:.2f}")
```

Focal Brand Market Share (B): 9.50% Focal Brand Purchase Frequency (W): 2.06

4.3 3. Calculate data of competing brands

```
[23]: last_complete_quarter = competitive_metrics['Quarter'].max()
last_quarter_data = competitive_metrics[(competitive_metrics['brand'] !=_

→'Mueller') &

(competitive_metrics['Quarter'] ==_

→last_complete_quarter)]

# Calculate the market share (B) and purchase frequency (W) of each brand
```

```
last_quarter_data['Market_Share_B'] = last_quarter_data['Total_Revenue'] / ___
 →last_quarter_data['Total_Revenue'].sum()
last_quarter_data['Purchase_Frequency_W'] = last_quarter_data['Total_Baskets'] /
 → last quarter data['Total Households']
# Sort by sales and extract the top 10 brands
top_10_brands_last_quarter = last_quarter_data.sort_values(by='Total_Revenue',_
 \rightarrowascending=False).head(10)
# Select the relevant columns and print the B and W of the top 10 brands, reset,
 \rightarrowthe index
top_10_brands_BW = top_10_brands_last_quarter[['brand', 'Market_Share_B',_
 →'Purchase_Frequency_W']].reset_index(drop=True)
print(top_10_brands_BW)
                   brand Market_Share_B Purchase_Frequency_W
0
           Private Label
                                     0.20
                                                           1.61
1
                                     0.16
                                                           1.47
                    Ragu
2
                                     0.09
                                                           1.41
                   Prego
3
             Aunt Jemima
                                     0.07
                                                           1.22
4
                 Barilla
                                     0.06
                                                           1.32
5
                Classico
                                     0.06
                                                           1.27
 Private Label Premium
                                     0.05
                                                           1.27
6
7
                Bertolli
                                     0.03
                                                           1.24
8
                 Ronzoni
                                    0.03
                                                           1.25
9
               Creamette
                                     0.03
                                                           1.28
C:\Users\23968\AppData\Local\Temp\ipykernel_7344\1770371965.py:9:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  last_quarter_data['Market_Share_B'] = last_quarter_data['Total_Revenue'] /
last_quarter_data['Total_Revenue'].sum()
C:\Users\23968\AppData\Local\Temp\ipykernel_7344\1770371965.py:10:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  last_quarter_data['Purchase_Frequency_W'] = last_quarter_data['Total_Baskets']
/ last_quarter_data['Total_Households']
```