2.3: Calculating Limits Using Limit Laws

Limit Laws

If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist, then the following *limit laws* are true

•
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

•
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

•
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 $\left(\lim_{x \to a} g(x) \neq 0\right)$

•
$$\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} f(x)\right]^n$$
 where n is a positive integer

•
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$
 where n is a positive integer $\left(\lim_{x \to a} f(x) > 0 \text{ if } n \text{ is even}\right)$

Example 1. Use the limit laws and the graphs of f and g below to evaluate the following limits, if they exist.

(a)
$$\lim_{x \to -2} [f(x) + 5g(x)]$$

(c)
$$\lim_{x\to 2} \frac{f(x)}{g(x)}$$

(b)
$$\lim_{x\to 1} [f(x)g(x)]$$

(d)
$$\lim_{x \to 3^{-}} [f(x) + g(x)]^2$$

Also, if f is continuous at a, that is, if the graph of f has no holes, jumps, essential discontinuities, or vertical asymptotes at a, then $\lim_{x\to a} f(x) = f(a)$.

Example 2. Evaluate the following limits

(a)
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$
 (b) $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$.

(b)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
.

(c)
$$\lim_{x \to 2} \sqrt{\frac{2x^2+1}{3x-2}}$$

Example 3. Evaluate the following limits

(a)
$$\lim_{h\to 0} \frac{(3+h)^2-9}{h}$$

(b)
$$\lim_{h \to 0} \frac{\sqrt{9+h}-3}{h}$$

(a)
$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h}$$
 (b) $\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h}$ (c) $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$.

Theorem 1. $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = L = \lim_{x\to a^+} f(x)$.

Example 4. If

$$f(x) = \begin{cases} -(x-2)^2 + 3 & \text{if } x \le 2\\ 8 - 2x & \text{if } 2 < x < 4\\ \sqrt{x-4} & \text{if } x > 4 \end{cases}$$

evaluate the following limits, if they exist,

(a)
$$\lim_{x \to 4} f(x)$$

(b)
$$\lim_{x\to 2} f(x)$$

Theorem 2. (Squeeze Theorem) If $f(x) \leq g(x) \leq h(x)$ for x in a neighborrhood of a and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L, \text{ then } \lim_{x\to a} g(x) = L.$

Example 5. Prove the following using the Squeeze Theorem.

(a)
$$\lim_{x\to 0} x^2 \sin \frac{\pi}{x} = 0$$
.

(b) If
$$2x \le g(x) \le x^4 - x^2 + 2$$
 for all x , then $\lim_{x \to 1} g(x) = 2$,