2. Двофакторний варіансний аналіз

Нехай дані про деяку мінливу величину поділяються на m груп за ознакою A і n груп за ознакою B. Одержимо mn класифікаційних підгруп. Припустимо, що для кожної підгрупи проводиться лише одне спостереження.

Позначимо через $^{x_{ij}}$ - спостереження в i – й групі за ознакою A , та в j – й групі за ознакою B . Тоді всі mn спостережень можна записати в наступній таблиці

Позначимо через $x_{i\bullet}$ середнє i ої групи за ознакою A (i – рядка)

$$x_{i\bullet} = \frac{1}{n} \sum_{j=1}^{n} x_{ij}, \quad (i = 1, m)$$

через $x_{\bullet j}$ - середнє j – ої групи за ознакою B

$$x_{\bullet j} = \frac{1}{m} \sum_{i=1}^{m} x_{ij}, \quad (j = \overline{1}, n)$$

через $x_{\bullet \bullet}$ – загальне середнє всіх спостережень

$$x_{\bullet\bullet} = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}$$

Повна мінливість всіх спостережень виражається девіацією

$$\sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - x_{\bullet \bullet})^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left[\left(x_{ij} - x_{i \bullet} - x_{\bullet j} + x_{\bullet \bullet} \right) + \left(x_{i \bullet} - x_{\bullet \bullet} \right) + \left(x_{\bullet j} - x_{\bullet \bullet} \right) \right]^{2} =$$
(3)

яку запишемо у вигляді

$$= n \sum_{i=1}^{m} (x_i - x_{\bullet \bullet})^2 + m \sum_{j=1}^{n} (x_{\bullet j} - x_{\bullet \bullet})^2 + \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - x_{i \bullet} - x_{\bullet j} + x_{\bullet \bullet})^2$$

(мінливість між групами ознаки A або девіація, мінливість між групами ознаки B та залишкова мінливість). Тут три суми подвійних добутків дорівнюють нулю (за властивістю середнього арифметичного).

Таким чином повна мінливість розкладається на мінливість між групою A, мінливість між групою B та залишкову.

Кожна з цих дивіацій має своє число $d_{\bullet}f_{\bullet}$ (ступенів вільності)

$$mn-1$$
 $m-1$ $m-1$ $mn-(m+n-1)=(m-1)(n-1)$

Сума чисел ступенів вільності справа = числу ступенів вільності зліва. Якщо тотожність (3) поділити на (mn-1), то одержимо, що повна варіанса є опуклою лінійною комбінацією варіанс між групами ознак A, між групами ознаки B та залишковою варіансою.

Варіанси справа позначимо через S_A^2 , S_B^2 , S_r^2 . Тоді три варіанси:

$$S_A^2 = \frac{1}{m-1} n \sum_{i=1}^m (x_{i\bullet} - x_{\bullet \bullet})^2$$

$$S_B^2 = \frac{1}{n-1} \cdot m \sum_{j=1}^n (x_{\bullet j} - x_{\bullet \bullet})^2$$

$$S_r^2 = \frac{1}{(m-1)} \sum_{i=1}^m \sum_{j=1}^n (x_{ij} - x_{i\bullet} - x_{\bullet j} + x_{\bullet \bullet})^2$$

$$\frac{1}{mn-1} \sum_{i=1}^m \sum_{j=1}^n (x_{ij} - x_{\bullet \bullet})^2 = \frac{m-1}{mn-1} \quad n \cdot \frac{1}{m-1} \sum_{i=1}^m (x_i - x_{\bullet \bullet})^2 + \frac{n-1}{mn-1} m \frac{1}{n-1} \sum_{j=1}^n (x_{\bullet j} - x_{\bullet \bullet})^2$$

$$+ \frac{(m-1)(n-1)}{mn-1} \cdot \frac{1}{m-1} \cdot \frac{1}{n-1} \sum_{i=1}^m \sum_{j=1}^n (x_{ij} - x_{i\bullet} - x_{j\bullet} - x_{i\bullet})^2$$

Якщо припустити, що спостереження однорідні і взяті з нормальної генеральної сукупності, то варіанси S_A^2, S_B^2, S_r^2 є незалежними оцінками дисперсії генеральної сукупності (тобто справа кожна з варіанс незалежна від двох інших) Звідси слідує для перевірки H: однорідності можна вибрати статистику Фішера.

Формулюємо паралельно дві гіпотези:

 H_A : коли вплив груп ознаки A не істотний (=0)

Два доведення гіпотези вибираємо статистику

$$(1^*) \quad F_A = \frac{S_A^2}{S_*^2}$$

тобто гіпотезу H_A : доводимо незалежно від впливу груп ознак B, а гіпотезу H_B - незалежно від впливу груп ознаки A.

 $H_{\it B}$: коли вплив груп ознаки $\it B$ не істотний $\it (=0)$

Для доведення цієї гіпотези вибираємо статистику

$$(2^*) \quad F_B = \frac{S_B^2}{S_r^2}$$

Якщо гіпотеза про однорідність даних табл. (*) з генеральної популяції вірна , то статистики (1^*) , (2^*) мають розподіл Фішера відповідно з $d_{\bullet}f_{\bullet}=(m-1,(m-1)(n-1))$ та $d_{\bullet}f_{\bullet}=(n-1,(m-1)(n-1))$. Це дозволяє визначити критичні значення для обидвох гіпотез.

Обчислення при двофакторному варіансному аналізі оформляємо у вигляді таблиці при одному спостереженні в кожній підгрупі

Мінливість Девіація $d_{\bullet}f_{\bullet}$ Варіанса

між групами
$$A$$
 $n \sum_{i=1}^{m} (x_{i\bullet} - x_{\bullet \bullet})^2$ $m-1$ S_A^2 між групами B $m \sum_{j=1}^{n} (x_{\bullet j} - x_{\bullet \bullet})^2$ $n-1$ S_B^2 Залишкова $\sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - x_{i\bullet} - x_{j\bullet} + x_{\bullet \bullet})^2$ $(m-1)(n-1)$ S_r^2 Повна $\sum_{i=1}^{m} \sum_{j=1}^{n} (x_{ij} - x_{\bullet \bullet})^2$ $mn-1$ -

Останній рядок ϵ сумою трьох попередніх, а це служить контролем правильності обчислень

<u>Приклад</u> .Затрати матеріалу на виготовлення деякого виробу трьома різними технологіями $^{(A)}$ на 4-х різних заводах $^{(B)}$ були такі:

В	1	2	3	4
A				
1	25	20	30	25
2	30	40	40	50
3	23	18	20	27

При рівні значущості $\alpha = 0.10$ перевірити гіпотезу про те, що рівень затрат матеріалу на виріб не впливає ані на вибір технології ані на вибір заводу.

$$H_{\scriptscriptstyle A}$$
: вплив технології $A=0$ $H_{\scriptscriptstyle B}$: вплив заводу $B=0$

Для перевірки H проводимо варіансний аналіз

$$m = 3$$
 $n = 4$

$$x_{1 \bullet} = 25 \qquad x_{1 \bullet} = \frac{1}{4} \sum_{i=1}^{4} x_i \qquad x_{\bullet 1} = 26$$

$$x_{2 \bullet} = 40 \qquad x_{\bullet 2} = 26$$

$$x_{3 \bullet} = 22 \qquad x_{\bullet 3} = 30$$

$$x_{\bullet 4} = 34$$

$$x_{\bullet 2} = 29$$

Результати

Мінливість	Девіація	$d_{\bullet}f_{\bullet}$	Варіанса
між технологіями	744 744	2	$S_A^2 = 372$
між заводами В	132	3	$S_B^2 = 44$
Залишкова	164	6	$S_r^2 = 27,33$
Повна	1040	11	-

$$F_{Aemn} = \frac{S_A^2}{S_r^2} = \frac{372}{27,33} = 13,61$$
 $F_{Aeem} \ \Box \ F_{AKK}$

 H_{A} – відкидаємо. Тип технології істотно впливає на рівень затрат матеріалу при виготовлені.

$$lpha=0.10$$
 $d_{\bullet}f_{\bullet}=(2,6)$ $F_{AKK}=4.76$ $F_{Beem}< F_{AKK}$

 $H_{\it B}$ – приймаємо.

Заводи не впливають істотно на рівень затрат матеріалу.