Module 18 Multivariate Analysis for Genetic data Session 02: Matrix decompositions

Jan Graffelman

jan.graffelman@upc.edu

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

> ²Department of Biostatistics University of Washington Seattle, WA, USA

26th Summer Institute in Statistical Genetics (SISG 2021)

Introduction

- Introduction
- The spectral decomposition
- The singular value decomposition
- Numerical examples

Matrix decompositions

- Matrix decompositions play an important role in multivariate analysis.
- These decompositions allow the approximation of high-dimensional data sets in fewer dimensions.
- Matrix decompositions are the mathematical underpinning of multivariate graphics called biplots (next session).

Matrix decompositions

- We will discuss two decompositions
- The spectral decomposition (or eigenvalue-eigenvector decomposition or eigendecomposition)
- The singular value decomposition (SVD or Eckart-Young theorem)
- Many classical multivariate methods (PCA, CA, MDS, CCA, LDA) are based on these decompositions.

Correlation matrix of allele intensities

	SNP1_IA	SNP1_IB	SNP2_IA	SNP2_IB
SNP1_IA	1.00	-0.89	0.96	-0.94
SNP1_IB	-0.89	1.00	-0.89	0.96
SNP2_IA	0.96	-0.89	1.00	-0.92
SNP2_IB	-0.94	0.96	-0.92	1.00

The problem

- The correlation matrix **R** is 4×4 , and of rank 4.
- Can we approximate **R** by a rank 2 matrix, say **R**
- ullet Entries of $\hat{f R}$ must be as "close" as possible to ${f R}$
- A rank 2 matrix can be represented exactly in a two-dimensional graph.

The Solution

$$\mathbf{R} = \begin{bmatrix} 1.00 & -0.89 & 0.96 & -0.94 \\ -0.89 & 1.00 & -0.89 & 0.96 \\ 0.96 & -0.89 & 1.00 & -0.92 \\ -0.94 & 0.96 & -0.92 & 1.00 \end{bmatrix}$$

$$\mathbf{\hat{R}} = \begin{bmatrix} 0.98 & -0.90 & 0.98 & -0.94 \\ -0.90 & 0.99 & -0.88 & 0.98 \\ 0.98 & -0.88 & 0.98 & -0.93 \\ -0.94 & 0.98 & -0.93 & 0.98 \end{bmatrix}$$

Least squares criterion

- In linear regression, we estimate the model $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ by minimizing $\sum e_i^2$, where $e_i = y_i (b_0 + b_1 x_i)$.
- ullet In this matrix approximation we minimize the errors in ${f E}={f R}-{f \hat R}.$
- The least squares criterion amounts to $\sum_{i=1}^{n} \sum_{j=1}^{p} e_{ij}^2 = \operatorname{tr}(\mathbf{E}'\mathbf{E})$.
- The approximation $\hat{\mathbf{R}}$ can be obtained by extracting eigenvalues and eigenvectors of \mathbf{R} .

Eigenvalues & eigenvectors

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v} \qquad \mathbf{A}_{k\times k}$$

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$$

The characteristic equation

$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$

- There are k roots, not necessarily all distinct.
- The roots are called eigenvalues or characteristic values
- If $\mathbf{A} = \mathbf{A}'$, all roots are real.
- Each root (eigenvalue) has an associated eigenvector or characteristic vector.
- \mathbf{v} usually scaled (normalized) to unit length such that $\mathbf{v}'\mathbf{v} = 1$.

Spectral decomposition

$$\mathbf{A}_{k \times k}$$
 and $\mathbf{A} = \mathbf{A}'$

$$\mathbf{A} = \sum_{i=1}^{k} \lambda_i \mathbf{v}_i \mathbf{v}_i' = \lambda_1 \mathbf{v}_1 \mathbf{v}_1' + \lambda_2 \mathbf{v}_2 \mathbf{v}_2' + \dots + \lambda_k \mathbf{v}_k \mathbf{v}_k'$$
$$\mathbf{A} = \mathbf{V} \mathbf{D}_{\lambda} \mathbf{V}'$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \end{bmatrix}, \quad \mathbf{D}_{\lambda} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k \end{bmatrix}, \quad \mathbf{V}'\mathbf{V} = \mathbf{I}.$$

- Eigenvalues usually ordered s.t. $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_k$
- If A is not of full rank, there will be zero eigenvalues.
- $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{V}\mathbf{D}_{\lambda}\mathbf{V}') = \operatorname{tr}(\mathbf{V}'\mathbf{V}\mathbf{D}_{\lambda}) = \operatorname{tr}(\mathbf{I}\mathbf{D}_{\lambda}) = \operatorname{tr}(\mathbf{D}_{\lambda}) = \sum_{i=1}^{k} \lambda_{i}$.
- $\lambda_1 \mathbf{v}_1 \mathbf{v}_1' + \lambda_2 \mathbf{v}_2 \mathbf{v}_2'$ provides a rank 2 least squares approximation to a **A**.

Jan Graffelman (SISG 2021)

Matrix powers

$$A = VDV'$$

$$A^2 = VDV'VDV' = VD^2V'$$

$$\mathbf{A}^k = \mathbf{V} \mathbf{D}^k \mathbf{V}'$$

$$\mathbf{A}^{-1} = \mathbf{V}\mathbf{D}^{-1}\mathbf{V}'$$

$$\boldsymbol{\mathsf{A}}^{\frac{1}{2}} = \boldsymbol{\mathsf{V}}\boldsymbol{\mathsf{D}}^{\frac{1}{2}}\boldsymbol{\mathsf{V}}'$$

$$A^{-\frac{1}{2}} = VD^{-\frac{1}{2}}V'$$

Spectral decomposition in R

```
> X <- read.table("http://www-eio.upc.es/~jan/SISG/Intensities.dat",header=TRUE)
> R <- cor(X[.1:4])
> R.
          SNP1_IA
                     SNP1_IB SNP2_IA
                                           SNP2_IB
SNP1 IA 1.0000000 -0.8947940 0.9617704 -0.9367175
SNP1 IB -0.8947940 1.0000000 -0.8859773 0.9618440
SNP2_IA 0.9617704 -0.8859773 1.0000000 -0.9204350
SNP2 IB -0.9367175 0.9618440 -0.9204350 1.0000000
> out <- eigen(R)
> V <- out$vectors
> V
                     [,2]
                                [,3]
           [,1]
                                            [,4]
[1,] 0.5016859 -0.4352583 -0.5749687
[2,] -0.4948632 -0.6497792 -0.3320110 -0.4718751
[3,] 0.4983229 -0.5334929 0.6404236 -0.2385733
[4,] -0.5050703 -0.3220598 0.3860534 0.7015299
> D1 <- diag(out$values)
> D1
         [,1]
                  [,2]
                             [,3]
                                        [,4]
[1,] 3.780985 0.0000000 0.00000000 0.00000000
[2.] 0.000000 0.1499301 0.00000000 0.00000000
[3,] 0.000000 0.0000000 0.04099305 0.00000000
[4,] 0.000000 0.0000000 0.00000000 0.02809177
>
```

Spectral decomposition in R

```
> t(V)%*%V
             [,1]
                           [,2]
                                         [,3]
                                                       [,4]
[1,] 1.000000e+00 -1.665335e-16 -2.775558e-16 0.00000e+00
[2,] -1,665335e-16 1.000000e+00 5.551115e-17 -1,94289e-16
[3,] -2.775558e-16 5.551115e-17 1.000000e+00
                                               0.00000e+00
[4,] 0.000000e+00 -1.942890e-16 0.000000e+00 1.00000e+00
>
> V2 <- V[.1:2]
> D12 <- D1[1:2,1:2]
> Rhat <- V2%*%D12%*%t(V2)
> Rhat
                     Γ.27
           [,1]
                                 Γ.37
                                           [.4]
[1.] 0.9800356 -0.8962861
                           0.9800670 -0.9370340
[2,] -0.8962861 0.9892262 -0.8804235
                                      0.9763975
[3,] 0.9800670 -0.8804235 0.9815881 -0.9258684
[4.] -0.9370340 0.9763975 -0.9258684 0.9800653
```

Geometry of eigenvalues and eigenvectors

- $x_1^2 + x_2^2 = c^2$ is a circle.
- $a_1x_1^2 + a_2x_2^2 = c^2$ and $a_{11}x_1^2 + 2a_{12}x_1x_2 + a_2x_2^2 = c^2$ are ellipses.
- Constant (squared) distance from origin: $\mathbf{x}' \mathbf{A} \mathbf{x} = c^2$
- $\bullet \ \mathbf{x'Ax} = \mathbf{x'}(\lambda_1\mathbf{v}_1\mathbf{v}_1' + \lambda_2\mathbf{v}_2\mathbf{v}_2')\mathbf{x} = \lambda_1(\mathbf{x'v_1})^2 + \lambda_2(\mathbf{x'v_2})^2 = \lambda_1\tilde{x}_1^2 + \lambda_2\tilde{x}_2^2 = c^2$
- Half the length of *i*th principal axis: $\frac{c}{\sqrt{\lambda_i}}$
- Eigenvectors are principal axes, eigenvalues relate to the length of the principal axes.

Jan Graffelman (SISG 2021)

Geometry of eigenvalues and eigenvectors

$$\mathbf{R}_1 = \left[\begin{array}{cc} 1.00 & +0.90 \\ +0.90 & 1.00 \end{array} \right]$$

$$\lambda_1 = 1.9, \lambda_2 = 0.1$$

$$\mathbf{x}'\mathbf{A}\mathbf{x} = 1$$
 with $\mathbf{A} = \mathbf{R}_1^{-1}$

$$\mathbf{R}_2 = \left[\begin{array}{cc} 1.00 & -0.90 \\ -0.90 & 1.00 \end{array} \right]$$

$$\lambda_1 = 1.9, \lambda_2 = 0.1$$

$$\mathbf{x}'\mathbf{A}\mathbf{x} = 1$$
 with $\mathbf{A} = \mathbf{R}_2^{-1}$

Generalization

- The spectral decomposition allows to approximate a square symmetric matrix.
- Mostly used in those multivariate methods that approximate covariance or correlation matrices.
- It is (often) of interest to approximate just any rectangular matrix.
- This can be done by the singular value decomposition (SVD).
- Also known as the Eckart-Young theorem (1936).
- The spectral decomposition is a special case of the SVD.

Singular value decomposition (compact)

Any real matrix $n \times p$ matrix **X** can be decomposed as

$$X = UDV'$$

- **U** $n \times r$ matrix of orthonormal left singular vectors. $\mathbf{U}'\mathbf{U} = \mathbf{I}_r$
- **D** $r \times r$ diagonal matrix of non-increasing positive singular values $(d_{11} \ge d_{22} \ge \cdots \ge d_{rr})$.
- $\mathbf{V} p \times r$ matrix of orthonormal right singular vectors. $\mathbf{V}'\mathbf{V} = \mathbf{I}_r$

Alternatively

$$\mathbf{X} = \sum_{i=1}^{r} d_{ii} \mathbf{u}_i \mathbf{v}_i' = d_1 \mathbf{u}_1 \mathbf{v}_1' + d_2 \mathbf{u}_2 \mathbf{v}_2' + \dots + d_r \mathbf{u}_r \mathbf{v}_r'$$

Singular value decompostion (theorem)

A rank k approximation $\hat{\mathbf{X}}$ to matrix \mathbf{X} , optimal in the least squares sense, is obtained as

$$\hat{\mathbf{X}} = \mathbf{U}_{[,1:k]} \mathbf{D}_{[1:k,1:k]} \mathbf{V}_{[,1:k]}'$$

E.g., a rank 2 approximation to matrix **X** is obtained by

$$\mathbf{U}_{n\times 2}\mathbf{D}_{(2\times 2)}\mathbf{V}_{p\times 2}'$$

Numerical example: allele frequencies of Y-STR DYS448 over 129 populations worldwide

		Origin	al data	
Population	A19	A20	A21	Other
Arg-B	0.402	0.337	0.109	0.152
Arg-F	0.423	0.310	0.183	0.085
Arg-M	0.446	0.337	0.119	0.099
Arg-N	0.460	0.280	0.060	0.200
Arg-S	0.500	0.200	0.120	0.180
Aus	0.417	0.386	0.093	0.104
Bel-A	0.558	0.296	0.058	0.087
Bel-V	0.600	0.305	0.029	0.067
Ben	0.078	0.137	0.627	0.157
Bol-M	0.432	0.409	0.091	0.068
Bol-N	0.286	0.589	0.089	0.036
Bos	0.440	0.460	0.060	0.040
Bra-R	0.431	0.228	0.195	0.146
Bra-SG	0.574	0.197	0.164	0.066
Bra-SP	0.450	0.275	0.200	0.075
Chi-B	0.370	0.325	0.110	0.195
Chi-C	0.440	0.190	0.060	0.310
Chi-Sh	0.321	0.450	0.055	0.174
Chi-So	0.567	0.133	0.033	0.267
Chi-Xi	0.065	0.576	0.043	0.315
Chi-Xu	0.366	0.255	0.028	0.352
Chi-Y	0.307	0.386	0.030	0.277
CoR	0.452	0.253	0.163	0.133
Cro-C	0.432	0.456	0.064	0.048
Cro-Z	0.351	0.553	0.088	0.009
Cze-B	0.347	0.625	0.014	0.014
Cze-M	0.310	0.524	0.119	0.048
Den	0.411	0.497	0.054	0.038
ENG-C	0.568	0.296	0.037	0.099
ENG-S	0.579	0.263	0.053	0.105
	-	-	-	
Wal	0.720	0.144	0.025	0.110
Zim	0.055	0.109	0.764	0.073
	0.000	0.209	0.704	0.013

Original data

		Darl 2 ar	proximation	
Population	A19	A20	A21	Other
Arg-B	0.405	0.335	0.111	0.149
Arg-F	0.376	0.344	0.139	0.141 0.132
Arg-M Arg-N	0.418	0.357		
	0.464	0.277	0.064	0.195
Arg-S	0.458	0.230	0.080	0.231
Aus	0.414	0.388	0.090	0.108
Bel-A	0.506	0.334	0.008	0.152
Bel-V	0.539	0.349	-0.029	0.141
Ben	0.002	0.193	0.555	0.250
Bol-M	0.419	0.419	0.078	0.084
Bol-N	0.333	0.555	0.135	-0.022
Bos	0.433	0.465	0.053	0.049
Bra-R	0.383	0.262	0.150	0.205
Bra-SG	0.467	0.275	0.062	0.197
Bra-SP	0.383	0.324	0.136	0.157
Chi-B	0.392	0.309	0.131	0.168
Chi-C	0.467	0.171	0.085	0.277
Chi-Sh	0.385	0.403	0.116	0.096
Chi-So	0.544	0.150	0.011	0.295
Chi-Xi	0.264	0.431	0.233	0.072
Chi-Xu	0.444	0.198	0.102	0.256
Chi-Y	0.401	0.318	0.119	0.162
CoR	0.407	0.286	0.120	0.187
Cro-C	0.428	0.459	0.060	0.053
Cro-Z	0.367	0.541	0.103	-0.011
Cze-B	0.397	0.589	0.061	-0.047
Cze-M	0.335	0.505	0.144	0.016
Den	0.419	0.492	0.062	0.028
ENG-C	0.522	0.330	-0.007	0.155
ENG-S	0.522	0.305	-0.002	0.175
Wal	0.614	0.222	-0.076	0.241
Zim	-0.080	0.207	0.636	0.237

Purps, J. et al. (2014) A global analysis of Y-chromosomal haplotype diversity for 23 STR loci. Forensic Science International: Genetics 12: 12-23.

Singular vectors are eigenvectors

- $X'X = VDU'UDV' = VD^2V'$
- $XX' = UDV'VDU' = UD^2U'$
- Eigenvalues of **XX**' and **X'X** are squared singular values.
- Singular vectors are eigenvectors, U of XX' and V of X'X.

Singular value decomposition (extended)

Sometimes the svd is also written as

$$X = UDV'$$

- **U** $n \times p$ matrix of orthonormal left singular vectors. $\mathbf{U}'\mathbf{U} = \mathbf{I}_p$
- **D** $p \times p$ diagonal matrix of non-increasing singular values.
- ullet $oldsymbol{V}$ p imes p matrix of orthonormal right singular vectors. $oldsymbol{V'V} = oldsymbol{I}_{
 ho}$

where matrix **D** now has trailing zeros on the diagonal.

Singular value decomposition in R

```
> X <- read.table("http://www-eio.upc.es/~ian/SISG/PurpsAlleleFreg.dat".header=TRUE)</p>
> rownames(X) <- X[,1]
> X <- X[,-1]
> head(X)
Arg-B 0.4021739 0.3369565 0.10869565 0.15217391
Arg-F 0.4225352 0.3098592 0.18309859 0.08450704
Arg-M 0.4455445 0.3366337 0.11881188 0.09900990
Arg-N 0.4600000 0.2800000 0.06000000 0.20000000
Arg-S 0.5000000 0.2000000 0.12000000 0.18000000
     0.4169884 0.3861004 0.09266409 0.10424710
> m <- colMeans(X)
A19 A20 A21 Other
0.3868279 0.3469738 0.1269583 0.1392401
  Xc <- scale(X,scale=FALSE)
> out <- svd(Xc)
 U <- out$u
 D <- diag(out$d)
> V <- out$v
> head(U)
                          Γ.21
                                        Γ.31
[1.] 0.004474539 0.014019460 -0.003715464 0.15739050
[2,] 0.003501264 -0.007690527 0.064411346
[3,] -0.010391789 0.022202399 0.037869618 0.15633749
[4,] 0.030303555 0.061403042 -0.005661096 -0.01203709
[5,] 0.059008082 0.060551765 0.057607799 -0.00997095
[6.] -0.028691684 0.016890721 0.004138589 -0.01297603
> t(U)%*%U
                                           [,3]
[1.] 1.000000e+00 -8.326673e-17 -1.040834e-17 -1.595946e-16
[2.] -8.326673e-17 1.000000e+00 -5.551115e-17 -4.857226e-17
[3,] -1.040834e-17 -5.551115e-17 1.000000e+00 3.469447e-17
[4.] -1.595946e-16 -4.857226e-17 3.469447e-17 1.000000e+00
> head(V)
            Γ.17
                       Γ.21
[1.] -0.07470358 0.7002366 0.5040714 -0.5
[2,] -0.76460411 -0.1739959 -0.3675677 -0.5
[3,] 0.24997587 -0.6759941 0.4801500 -0.5
[4,] 0.58933182 0.1497533 -0.6166538 -0.5
```

Singular value decomposition in R

```
> t(V)%*%V
                            Γ.21
                                          Γ.31
[1,] 1.000000e+00 5.551115e-17
                                 2.220446e-16 -5.551115e-17
[2,] 5.551115e-17 1.000000e+00
                                 1.387779e-17 1.110223e-16
      2.220446e-16 1.387779e-17 1.000000e+00 -5.551115e-17
[4,] -5.551115e-17 1.110223e-16 -5.551115e-17 1.000000e+00
        Γ.17
                  Γ.21
                           [,3]
                                        [.4]
[1,] 2,13876 0,000000 0,000000 0,000000e+00
[2,] 0.00000 1.909569 0.000000 0.000000e+00
[3,] 0.00000 0.000000 1.433727 0.000000e+00
[4,] 0.00000 0.000000 0.000000 2.970001e-08
> U2 <- U[.1:2]
> D2 <- D[1:2,1:2]
> V2 <- V[.1:2]
  Xhat <- U2%*%D2%*%t(V2)</pre>
> head(Xhat)
                         Γ.21
[1.] 0.01803122 -0.011975303 -0.01570487
                                           0.009648952
[2,] -0.01084280 -0.003170401 0.01179929
[3,] 0.03134828 0.009616835 -0.03421599 -0.006749126
[4,] 0.07726341 -0.069957158 -0.06306114 0.055754880
[5,] 0.07153892 -0.116614967 -0.04661572 0.091691764
[6.] 0.02716959 0.041307586 -0.03714319 -0.031333986
 Xhat <- Xhat + rep(1.nrow(X))%o%m</pre>
> head(X)
Arg-B 0.4021739 0.3369565 0.10869565 0.15217391
Arg-F 0.4225352 0.3098592 0.18309859 0.08450704
Arg-M 0.4455445 0.3366337 0.11881188 0.09900990
Arg-N 0.4600000 0.2800000 0.06000000 0.20000000
Arg-S 0.5000000 0.2000000 0.12000000 0.18000000
     0.4169884 0.3861004 0.09266409 0.10424710
> head(Xhat)
                     A20
                                A21
[1,] 0.4048591 0.3349985 0.11125339 0.1488890
[2.] 0.3759851 0.3438034 0.13875755 0.1414540
[3.] 0.4181761 0.3565906 0.09274227 0.1324909
[4.] 0.4640913 0.2770166 0.06389712 0.1949949
[5.] 0.4583668 0.2303588 0.08034254 0.2309318
[6,] 0.4139975 0.3882814 0.08981507 0.1079061
```

Introduction

Goodness-of-fit

- How good (or bad) is our approximation to X?
- lacktriangle Some statistic expressing goodness of fit is needed (like R^2 in regression)
- The singular values are informative about the goodness-of-fit

Note that

$$\operatorname{tr}(\mathbf{X}'\mathbf{X}) = \operatorname{tr}(\mathbf{V}\mathbf{D}\mathbf{U}'\mathbf{U}\mathbf{D}\mathbf{V}') = \operatorname{tr}(\mathbf{V}\mathbf{D}^2\mathbf{V}') = \operatorname{tr}(\mathbf{V}'\mathbf{V}\mathbf{D}^2) = \operatorname{tr}(\mathbf{D}^2) = \sum_{j=1}^p d_{ij}^2 = \sum_{j=1}^p \lambda_j$$

And that for a rank 2 approximation

$$\begin{split} \operatorname{tr}(\hat{\boldsymbol{X}}'\hat{\boldsymbol{X}}) &= \operatorname{tr}(\boldsymbol{V}_{[,1:2]}\boldsymbol{D}_{[1:2,1:2]}\boldsymbol{U}_{[,1:2]}'\boldsymbol{D}_{[1:2,1:2]}\boldsymbol{V}_{[,1:2]}'\boldsymbol{V}_{[,1:2]}') = \operatorname{tr}(\boldsymbol{V}_{[,1:2]}\boldsymbol{D}_{[1:2,1:2]}'\boldsymbol{V}_{[,1:2]}') = \operatorname{tr}(\boldsymbol{V}_{[,1:2]}'\boldsymbol{V}_{[,1:2]}'\boldsymbol{V}_{[,1:2]}'\boldsymbol{D}_{[1:2,1:2]}') \\ &= \operatorname{tr}(\boldsymbol{D}_{1:2,1:2]}^2) = d_{11}^2 + d_{22}^2 = \lambda_1 + \lambda_2 \end{split}$$

And that for the error matrix

$$\mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}((\mathbf{X} - \mathbf{\hat{X}})'(\mathbf{X} - \mathbf{\hat{X}})) = \mathsf{tr}(\mathbf{V}_{[,3:p]}\mathbf{D}^2_{[3:p,3:p]}\mathbf{V}'_{[,3:p]}) = \lambda_3 + \lambda_4 + \cdots \\ \lambda_p = \mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}((\mathbf{X} - \mathbf{\hat{X}})'(\mathbf{X} - \mathbf{\hat{X}})) = \mathsf{tr}(\mathbf{V}_{[,3:p]}\mathbf{D}^2_{[3:p,3:p]}\mathbf{V}'_{[,3:p]}) = \lambda_3 + \lambda_4 + \cdots \\ \lambda_p = \mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}((\mathbf{X} - \mathbf{\hat{X}})'(\mathbf{X} - \mathbf{\hat{X}})) = \mathsf{tr}(\mathbf{V}_{[,3:p]}\mathbf{D}^2_{[3:p,3:p]}\mathbf{V}'_{[,3:p]}) = \lambda_3 + \lambda_4 + \cdots \\ \lambda_p = \mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}((\mathbf{X} - \mathbf{\hat{X}})'(\mathbf{X} - \mathbf{\hat{X}})) = \mathsf{tr}(\mathbf{V}_{[,3:p]}\mathbf{D}^2_{[3:p,3:p]}\mathbf{V}'_{[,3:p]}) = \lambda_3 + \lambda_4 + \cdots \\ \lambda_p = \mathsf{tr}(\mathbf{E}'\mathbf{E}) = \mathsf{tr}(\mathbf{V}_{[,3:p]}\mathbf{D}^2_{[3:p,3:p]}\mathbf{D}^2_{[3$$

And a natural measure for goodness-of-fit is

$$\frac{\operatorname{tr}(\hat{\mathbf{X}}'\hat{\mathbf{X}})}{\operatorname{tr}(\mathbf{X}'\mathbf{X})} = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^{p} \lambda_i}$$

Similar to the total, explained and residual sum-of-squares in regression.

Weighted singular value decomposition

- On occasions we may wish to use weights for cases (rows, r_i) and/or variables (columns, c_i)
- We normally minimize $\sum_{i=1}^{n} \sum_{j=1}^{p} e_{ij}^2 = \operatorname{tr}(\mathbf{E}'\mathbf{E})$
- Define D_r with weights for the rows D_c with weights for the columns.
- We now wish to minimize $\sum_{i=1}^{n} \sum_{i=1}^{p} r_i c_i e_{ii}^2 = \operatorname{tr}(\mathbf{D}_c \mathbf{E}' \mathbf{D}_r \mathbf{E})$
- Note that $\sum_{i=1}^{n} \sum_{i=1}^{p} r_i c_i e_{ii}^2 = \sum_{i=1}^{n} \sum_{i=1}^{p} (\sqrt{r_i} \sqrt{c_i} e_{ij})^2 = \sum_{i=1}^{n} \sum_{i=1}^{p} \tilde{e}_{ii}^2$
- Oslution obtained by transforming the data prior to the svd, and backtransforming afterwards

$$\mathbf{X}_t = \mathbf{D}_r^{\frac{1}{2}} \mathbf{X} \mathbf{D}_c^{\frac{1}{2}} = \mathbf{U} \mathbf{D} \mathbf{V}'$$

Now compute $\tilde{\mathbf{U}}=\mathbf{D}_r^{-\frac{1}{2}}\mathbf{U}$ and $\tilde{\mathbf{V}}=\mathbf{D}_c^{-\frac{1}{2}}\mathbf{V}$

- Note that $\tilde{\mathbf{U}}\mathbf{D}\tilde{\mathbf{V}}' = \mathbf{D}_r^{-\frac{1}{2}}\mathbf{U}\mathbf{D}\mathbf{V}'\mathbf{D}_c^{-\frac{1}{2}} = \mathbf{D}_r^{-\frac{1}{2}}\mathbf{D}_r^{\frac{1}{2}}\mathbf{X}\mathbf{D}_c^{\frac{1}{2}}\mathbf{D}_c^{-\frac{1}{2}} = \mathbf{X}$
- \bullet $\tilde{\mathbf{U}}_{[,1:k]}\mathbf{D}_{[1:k,1:k]}\tilde{\mathbf{V}}'_{[,1:k]}$ is a rank k approximation to \mathbf{X} in the weighted least squares sense.

References

- Johnson & Wichern, (2002) *Applied Multivariate Statistical Analysis*, 5th edition, Prentice Hall, Chapter 2.
- Mardia, K.V. et al. (1979) Multivariate Analysis. Academic press. Appendix A.