Camouflaged Object Detection

GNR 638 Course Project

Shubham Lohiya (18D100020)

Aditya Iyengar (180100007)

Sharvaree Sinkar (19D070058)

Contents

- Problem Statement
- Background Study
- Implemented Algorithm
- Modifications
- References
- Contributions

Problem Statement: Camouflaged Object Detection

To precisely search and identify camouflaged objects.

To overcome the challenge of object detection despite of being high intrinsic similarities between target object and background.

Background Study

- The oldest recorded studies in camouflaged objects come from papers by Thayer and Cott classifying camouflage into natural (e.g. animals) and artificial (e.g. adulterants, defective products) kinds.
- The most well-known datasets prior to *COD10K* were the unpublished *CHAMELEON* and *CAMO*, however both provided few images of acceptable quality and were sparsely annotated.
- Detection of camouflaged objects was performed at a pixel-level, by assigning each pixel with a confidence probability. The higher the probability, the greater are the chances of the pixel belonging to a camouflaged object.
- The MAE metric, while popular with salient object detection, cannot judge structural similarities, hence the need for a new evaluation metric.

COD10K Dataset

- Contains 10K images covering 78 camouflaged object categories such as aquatic, flying, amphibians, terrestrial etc.
 - 6K training images
 - 4K testing images

COD10K Dataset

- All the camouflaged images are hierarchically annotated (taxonomic system) as:
 - Category
 - Bounding box
 - Attribute
 - Object/Instance
- Facilitates many vision tasks, such as localization, object proposal, semantic edge detection, task transfer learning etc.
- Each camouflaged image is assigned challenging attributes and matting level which provides deeper insights into the algorithm

Major Contributions by the Paper

- Carefully assembled the COD10K dataset:
 - 10K images (78 categories)
- Used two existing datasets + collected COD images, rigorous evaluation of 12 state-of-the-art baselines making largest COD study ever
- Proposed SINet framework which outperformed all existing methods
 - Provided potential solution to the highly challenging problem of camouflaged object detection

The Project Pipeline

Data Loading

+

Pre-processing

The Architecture: SINet

Framework

Training +
Testing
Results

Data Loading + Data Pre-processing

- A PyTorch DataLoader is defined to collate the training as well as test datasets into separate iterable dataloader objects.
- The images are then resized, converted to a PyTorch tensor and normalized.
- Images are further processed into one of two forms:
 - Colour image to 3-channel RGB image
 - Colour image to single channel grayscale image ("L" mode)

The Architecture

- SINet framework
 - Search Module(search of camouflaged objects)
 - Identification Module(precise detection)
 (Inspired by hunting!)
- Two Components
 - Receptive Field Module
 - Partial Decoder Component

Switcher: Search Attention Module

SINet Architecture

Define: The Bconv Operation

- BConv:
 - Convolutional layer
 - Batchnorm layer
 - ReLU activation

The Search Module

- Uses <u>Receptive Field component</u> to incorporate more discriminative feature representations during the searching stage
- For input image, set of features extracted from **ResNet50**:
 - X0, X1 : Low level features
 - X2: Middle level features
 - X3, X4 : High level features
- Extracted features concatenated, upsampled, downsampled to form dense net
- Set of enhanced features are obtained after feeding into RF component for learning robust cues

Receptive Field Component

- Includes 5 branches: b_k,(k=1,...,5)
- In each branch:
 - First conv. layer has dimensions as 1x1 to reduce the channel size to 32
 - Followed by (2k-1)x(2k-1)Bconv layer & dilation = 2k-1
- b_1, b_2, b_3, b_4: concatenated
- b_5 added and model fed to ReLU

The Identification Module

- Uses <u>Partial Decoder component(PDC)</u> to precisely detect candidate features obtained from previous search module
- PDC:
 - Integrates 4 levels of features from Search Module
 - Obtains coarse camouflaged map C_s
- Switcher **Search Attention Module** Introduced which:
 - Enhances middle level features X2
 - Effectively eliminates interference from irrelevant features

Partial Decoder Component(PDC)

- New features generated from existing features coming from search and identification stages
- Element-wise multiplication adopted to decrease the gap between adjacent features

Partial Decoder Component (PDC)

- The features coming from search and identification stages are
 - given as: $\{rf_k^c, k \in [m, \dots, M], c \in [s, i]\}$
- New features generated from PDC: $\{rf_k^{c1}\}$
- Shallow features: $rf_M^{c1}=rf_M^{c2}$ when k=M
- **Deeper features:** $rf_k^{c1}, k < M$, we update it as rf_k^{c2} : $rf_k^{c2} = rf_k^{c1} \otimes \Pi_{j=k+1}^M Bconv(UP(f_j^{c1})),$ where $k \in [m, \dots, M-1].$

Search Attention Module

- Coarse camouflaged map C_s(from search module): $C_s = PD_s(rf_1^s, rf_2^s, rf_3^s, rf_4^s),$ where $\{rf_k^s = rf_k, k = 1, 2, 3, 4\}$
- SA module enhances features as: $C_h = f_{max}(g(\mathcal{X}_2, \sigma, \lambda), C_s)$,
 - g(.): SA function(which is a gaussian filter with kernel_size = 4 and dev.=32)
 - f_max: maximum function that highlights initial camouflaged regions
- To obtain high level features, PDC is aggregated to another three levels of features, enhanced with RF to obtain final camouflaged map C_i:

$$C_i = PD_i(rf_1^i, rf_2^i, rf_3^i)$$
 where $\{rf_k^i = rf_k, k = 1, 2, 3\}$

Loss Function

 C_{csm}

Camouflaged map obtained after upsampling C_s to a resolution of 352x352

 C_{cim}

Camouflaged map obtained after upsampling C_i to a resolution of 352x352

$$L = L_{CE}^{s}(C_{csm}, G) + L_{CE}^{i}(C_{cim}, G)$$

Summarizing SINet Framework

Training and Testing Results:

Training

- Trained models (base and modified) for 20-40 epochs
- Achieved MAE on base model of about 0.02 on the train set in only 20 epochs (computational constraints)
- Achieved MAE on modified model (modified for speed) of about 0.027 on the train set in 40 epochs

Test

- Achieved a MAE of 0.091 averaged on test set using base model in only 20 epochs
- Achieved a MAE of 0.094 averaged on test set using modified model in 40 epochs

Modifications

Proposed modifications

- Decrease resolution of input images to speeden up the training process while still achieving our goal of detecting and localizing the camouflaged object
- Doubling the number of channels to 64 in the RF module (lead to exploding gradients)
- Increasing the depth of the network (hurdle of computational resources)

Modification 1 showed promising results

Camouflaged testing img modified base model

Camouflaged testing img

base model

modified

Camouflaged testing img

base model

modified

Camouflaged testing img

ground truth

base model

Non -Camouflaged test img

base model

modified

References:

- Link to the original paper: <u>Camouflaged Object</u>
 <u>Detection(CVPR 2020)</u>
- Dataset: COD10K
- Original Github Repository: <u>SINet</u>
- ResNet50: ResNet50

Contributions

- Shubham Lohiya:
 - Dataset acquirement + extraction
 - Training base model
 - Training modified models
 - Evaluation of models on test sets
 - o Analysis of evaluation data
 - Post-processing of results

Contributions

Aditya Iyengar:

- Shortlisting the paper and finalizing the problem statement
- Background study by reviewing similar papers
- Creating the data loader for training and testing data
- Comparison and implementation of various techniques for preprocessing
- Training with several loss functions to identify the best fit
- o Performed systematic documentation for the entire code

Contributions

• Sharvaree Sinkar:

- Created modified ResNet50 backbone code
- Wrote code for SINet framework from scratch
- Analysis of Search and Identification Modules
- Study of Partial Decoder Component and Receptive Field
- Examined relations between PDC and RF
- Entire Analysis of SINet architecture
- Made Presentation slides