

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 2000-080100
 (43) Date of publication of application : 21.03.2000

(51) Int.Cl.

```

C07K 16/26
A61P 1/92
A61P 3/00
A61P 25/04
A61P 29/00
A61P 35/00
A61P 43/00
A61K 39/395
C12N 5/10
C12N 15/92
C12P 21/08
//(C12N 5/10
C12R 1:91 )
(C12N 15/92
C12R 1:91 )
(C12P 21/08
C12R 1:91 )

```

(21) Application number: 10-304793
 (22) Date of filing : 12.10.1998

(71) Applicant: JAPAN TOBACCO INC
 (72) Inventor: Hori Nobuaki
 Kusunoki Chihiro
 Kamata Masafumi

(30) Priority

Priority number : 10188196 Priority date : 17.06.1998 Priority country : JP
 10196729 26.06.1998 JP

(54) HUMAN MONOCLONAL ANTIBODY AGAINST PARATHYROID HORMONE-RELATED PROTEIN

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain (a part of) a human monoclonal antibody against a parathyroid hormone-related protein which is completely free from the antigenicity to human body, free from side effect and useful for the treatment of hypercalcemia, malignant tumor, septicemia, hypophosphatemia or the like since the antibody has reactivity with (a part of) the human parathyroid hormone-related protein.

AVSEHQIILHDKKSIQDLRRRPFPLRHLIAEHTAEIAT

SOLUTION: This antibody has reactivity with (a part of) a human parathyroid hormone-related protein and has a property among (i) suppressive activity on the intracellular increase of cAMP accompanied by the stimulation with a parathyroid hormone-related protein, (ii) suppressive activity on the release of calcium from bone and (iii) suppressive activity on the increase of blood calcium. Further, the human monoclonal antibody has reactivity with a partial amino acid sequence of a human parathyroid hormone-related protein having an amino acid sequence of either formula I or formula II, and a bonding velocity constant K_a and a dissociation velocity constant K_d between the antibody and the human parathyroid hormone-related protein are $\geq 1.0 \times 10^3$ (l/M.sec) and $\leq 1.0 \times 10^{-3}$ (l/sec), respectively.

AVSEHQIILHDKKSIQDLRRRPFPLRHLIAEHTAEIAT

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2000-80100

(P2000-80100A)

(43)公開日 平成12年3月21日(2000.3.21)

(51)Int.Cl. ⁷	識別記号	F I	テマコード*(参考)
C 0 7 K 16/26		C 0 7 K 16/26	4 B 0 2 4
A 6 1 P 1/02		A 6 1 K 31/00	6 0 1 B 4 B 0 6 4
3/00			6 0 3 4 B 0 6 5
25/04			6 2 6 4 C 0 8 5
29/00			6 2 9 A 4 H 0 4 5

審査請求 未請求 請求項の数52 FD (全 88 頁) 最終頁に続く

(21)出願番号	特願平10-304793	(71)出願人	000004569 日本たばこ産業株式会社 東京都港区虎ノ門二丁目2番1号
(22)出願日	平成10年10月12日(1998.10.12)	(72)発明者	堀 伸明 神奈川県横浜市金沢区福浦1-13-2 日 本たばこ産業株式会社医薬探索研究所内
(31)優先権主張番号	特願平10-188196	(72)発明者	橋 千洋 神奈川県横浜市金沢区福浦1-13-2 日 本たばこ産業株式会社医薬探索研究所内
(32)優先日	平成10年6月17日(1998.6.17)	(74)代理人	100100217 弁理士 大東 輝雄
(33)優先権主張国	日本 (JP)		
(31)優先権主張番号	特願平10-196729		
(32)優先日	平成10年6月26日(1998.6.26)		
(33)優先権主張国	日本 (JP)		

最終頁に続く

(54)【発明の名称】 副甲状腺ホルモン関連タンパクに対するヒトモノクローナル抗体

(57)【要約】

【課題】 ヒト副甲状腺ホルモン関連タンパク(PTHrP)の生物活性を抑制する活性を有し、且つ非ヒト由来のモノクローナル抗体が有するヒトに対する免疫原性を有せず、またヒトPTHrPに対する起因する悪性腫瘍に伴う高カルシウム血症及び骨溶解並びに癌の骨転移等の種々の疾患の治療または予防において有用なヒトPTHrPに対する種々のヒトモノクローナル抗体及びその医薬組成物を提供するものである。

【解決手段】 遺伝子組換え技術を用いて作製したヒト抗体産生トランスジェニックマウスをヒトPTHrPで免疫することにより、抗原特異性、抗原親和性及びPTHrPの生物機能の中和活性等の性質の点で各々異なる特性を有するヒトPTHrPに対する種々のヒトモノクローナル抗体を調製した。これらのヒトモノクローナル抗体は、マウス抗体、マウス/ヒトキメラ抗体及びCDR-grafted抗体等の従来の非ヒト由来抗体が治療学上の大きな欠点として有していたヒトに対する免疫原性等の副作用を惹起することがないことから抗体医薬品として極めて有用である。

【特許請求の範囲】

【請求項1】 ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体またはその一部。

【請求項2】 該ヒトモノクローナル抗体が、下記

(a) 乃至 (c) のいずれかに記載の性質を有することを特徴とする請求項1に記載のヒトモノクローナル抗体またはその一部：

(a) 副甲状腺ホルモン関連タンパク刺激に伴う細胞内でのcAMPの上昇に対して抑制的に作用する；

(b) 副甲状腺ホルモン関連タンパク刺激に伴う骨からのカルシウムの放出に対して抑制的に作用する；または

(c) 副甲状腺ホルモン関連タンパク刺激に伴う血中カルシウムの上昇に対して抑制的に作用する。

【請求項3】 該ヒトモノクローナル抗体が、下記

(a) または (b) のいずれかのアミノ酸配列を有するヒト副甲状腺ホルモン関連タンパクの部分アミノ酸配列に反応性を有することを特徴とする請求項1に記載のヒトモノクローナル抗体またはその一部：

(a) AVSEHQQLHDKGKSIQDLRRRFFLHHHLIAEIHITA；または

(b) AVSEHQQLHDKGKSIQDLRRRFFLHHHLIAEIHAEIRAT。

【請求項4】 該ヒトモノクローナル抗体のイムノグロブリンクラスが、IgG2であることを特徴とする請求項1乃至請求項3のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項5】 該ヒトモノクローナル抗体が、ヒト抗体を産生する能力を有するトランスジェニック非ヒト哺乳動物に由来するモノクローナル抗体であることを特徴とする請求項1乃至請求項4のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項6】 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする請求項5に記載のヒトモノクローナル抗体またはその一部。

【請求項7】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの結合速度定数 (ka) が、 1.0×10^4 (1/M.Sec)以上の数値であることを特徴とする請求項1乃至請求項6のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項8】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離速度定数 (kd) が、 1.0×10^{-3} (1/Sec)以下の数値であることを特徴とする請求項1乃至請求項6のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項9】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離定数 (Kd) が、 1.0×10^{-7} (M)以下の数値であることを特徴とする請求項1乃至請求項6のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項10】 該結合速度定数 (ka) が、 1.0×10^4

(1/M.Sec)以上の数値であることを特徴とする請求項7に記載のヒトモノクローナル抗体またはその一部。

【請求項11】 該解離速度定数 (kd) が、 1.0×10^{-4} (1/Sec)以下の数値であることを特徴とする請求項8に記載のヒトモノクローナル抗体またはその一部。

【請求項12】 該解離定数 (Kd) が、 1.0×10^{-7} (M)以下の数値であることを特徴とする請求項9に記載のヒトモノクローナル抗体またはその一部。

【請求項13】 該解離定数 (Kd) が、 1.0×10^{-9} (M) 10以下の数値であることを特徴とする請求項12に記載のヒトモノクローナル抗体またはその一部。

【請求項14】 該解離定数 (Kd) が、 1.0×10^{-10} (M) 11以下の数値であることを特徴とする請求項13に記載のヒトモノクローナル抗体またはその一部。

【請求項15】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの結合速度定数 (ka) が、 1.0×10^4 (1/M.Sec)以上の数値であることを特徴とする請求項2または請求項3に記載のヒトモノクローナル抗体またはその一部。

【請求項16】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離速度定数 (kd) が、 1.0×10^{-3} (1/Sec)以下の数値であることを特徴とする請求項2または請求項3に記載のヒトモノクローナル抗体またはその一部。

【請求項17】 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離定数 (Kd) が、 1.0×10^{-7} (M)以下の数値であることを特徴とする請求項2または請求項3に記載のヒトモノクローナル抗体またはその一部。

【請求項18】 該結合速度定数 (ka) が、 1.0×10^4 (1/M.Sec)以上の数値であることを特徴とする請求項15に記載のヒトモノクローナル抗体またはその一部。

【請求項19】 該解離速度定数 (kd) が、 1.0×10^{-4} (1/Sec)以下の数値であることを特徴とする請求項16に記載のヒトモノクローナル抗体またはその一部。

【請求項20】 該解離定数 (Kd) が、 1.0×10^{-7} (M)以下の数値であることを特徴とする請求項17に記載のヒトモノクローナル抗体またはその一部。

【請求項21】 該解離定数 (Kd) が、 1.0×10^{-9} (M) 40以下の数値であることを特徴とする請求項20に記載のヒトモノクローナル抗体またはその一部。

【請求項22】 該解離定数 (Kd) が、 1.0×10^{-10} (M)以下の数値であることを特徴とする請求項21に記載のヒトモノクローナル抗体またはその一部。

【請求項23】 ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体を産生する細胞。

【請求項24】 該細胞が、ヒト抗体を産生する能力を有するトランスジェニック非ヒト哺乳動物に由来するB細胞であることを特徴とする請求項23に記載の細胞。

【請求項25】 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする請求項24に記載の細胞。

【請求項26】 該細胞が、ヒト抗体を產生する能力を有するトランスジェニック非ヒト哺乳動物に由来するB細胞と哺乳動物由来のミエローマ細胞とを融合して得られるハイブリドーマであることを特徴とする請求項23に記載の細胞。

【請求項27】 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする請求項26に記載の細胞。

【請求項28】 該細胞が、国際寄託番号FERM BP-6390で識別されるハイブリドーマであることを特徴とする請求項27に記載の細胞。

【請求項29】 該細胞が、ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体の重鎖をコードするDNA若しくはその軽鎖をコードするDNAのいずれか一方のDNA、または両方のDNAが細胞内に導入されることにより形質転換された形質転換細胞であることを特徴とする請求項23に記載の細胞。

【請求項30】 ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体またはその一部であって、国際寄託番号FERMBP-6390で識別されるハイブリドーマから產生されるヒトモノクローナル抗体若しくは該ヒトモノクローナル抗体と実質的に同一の性質を有するヒトモノクローナル抗体、またはその一部。

【請求項31】 ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するモノクローナル抗体またはその一部であって、該モノクローナル抗体の軽鎖可変領域が下記(a)または(b)のいずれかに記載のアミノ酸配列:

(a) 配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20及び配列番号22からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号21乃至119番目のアミノ酸配列; または (b) 配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20及び配列番号22からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号21乃至119番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列; を含むアミノ酸配列を有することを特徴とするモノクローナル抗体またはその一部。

【請求項32】 ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するモノクローナル抗体またはその一部であって、該モノクローナル抗体の重鎖可変

領域が下記(a)乃至(d)のいずれかに記載のアミノ酸配列:

(a) 配列番号24、配列番号26、配列番号28、配列番号30、配列番号32、配列番号34、配列番号36、配列番号38、及び配列番号42からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号20乃至117番目のアミノ酸配列;

(b) 配列番号40に記載されるアミノ酸配列中のアミノ酸番号20乃至115番目のアミノ酸配列;

(c) 配列番号24、配列番号26、配列番号28、配列番号30、配列番号32、配列番号34、配列番号36、配列番号38、及び配列番号42からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号20乃至117番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列; または

(d) 配列番号40に記載されるアミノ酸配列中のアミノ酸番号20乃至115番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列; を含むアミノ酸配列を有することを特徴とするモノクローナル抗体またはその一部。

【請求項33】 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々V3-30、DN1及びJH6に由来することを特徴とする請求項1乃至請求項22のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項34】 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々VH4.16、DA1及びJH6に由来することを特徴とする請求項1乃至請求項22のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項35】 該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする請求項1乃至請求項22のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項36】 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々V3-30、DN1及びJH6に由来し、且つ該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする請求項1乃至請求項22のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項37】 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々VH4.16、DA1及びJH6に由来し、且つ該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする請求項1乃至請求項22のいずれかに記載のヒトモノクローナル抗体またはその一部。

【請求項38】 請求項1乃至請求項22または請求項30乃至請求項37のいずれかに記載のヒトモノクローナル抗体またはその一部、及び薬学的に許容されうる担体とを含んでなる医薬組成物。

【請求項39】 請求項2、請求項3、請求項15乃至請求項22または請求項30乃至請求項37のいずれかに記載のヒトモノクローナル抗体またはその一部、及び薬学的に許容されうる担体とを含んでなる医薬組成物。

【請求項40】 該医薬組成物が、副甲状腺ホルモン関連タンパク依存的な骨からのカルシウムの放出に起因する疾患の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項41】 該医薬組成物が、高カルシウム血症の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項42】 該医薬組成物が、骨溶解の抑制または予防に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項43】 該医薬組成物が、関節リウマチまたは変形性関節症の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項44】 該医薬組成物が、骨への癌転移の抑制または予防に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項45】 該医薬組成物が、骨組織に存在する癌細胞の増殖の抑制または予防に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項46】 該医薬組成物が、局所での副甲状腺ホルモン関連タンパクの産生に起因する疾患の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項47】 該医薬組成物が、原発性の局所癌に起因する症状の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項48】 該症状が、疼痛、神経圧迫、高カルシウム血症、骨折及び悪液質からなる群から選ばれる症状であることを特徴とする請求項47に記載の医薬組成物。

【請求項49】 該医薬組成物が、原発性の局所癌に罹患している患者の延命に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項50】 該医薬組成物が、歯、歯周または歯肉における疾患の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【請求項51】 該医薬組成物が、敗血症(sepsis)または全身性炎症応答症候群(SIRS)の治療に用いられることを特徴とする請求項38に記載の医薬組成物。

【請求項52】 該医薬組成物が、低リン血症の治療に用いられることを特徴とする請求項39に記載の医薬組成物。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、ヒト副甲状腺ホルモン関連タンパク(Parathyroid Hormone-Related Protein, PTH-related Protein, PTHrP)またはその一部に反応性を有するヒトモノクローナル抗体、該ヒトモノクローナル抗体を産生する細胞、及び該ヒトモノクローナル抗体を含んでなる医薬組成物に関する。

【0002】

【従来の技術】正常な哺乳動物の血清カルシウム濃度は、厳格に約9~10mg/100ml(約2.5mM)に維持されており、これを生体のカルシウムホメオスタシス(calcium homeostasis)と呼ぶ。この値が50%以下に低下すると、テタニー(強直)を起こし、逆に50%上昇すると意識の混濁を起こし、いずれの場合も生命を脅かす状態となる。このカルシウムホメオスタシスの維持には、十二指腸がカルシウムの取り込み器官として、骨がカルシウムの貯蔵器官として、また腎臓がカルシウムの排泄器官としてそれぞれ役割を担っている。さらに、そのようなカルシウム動態の制御は、「カルシウム調節ホルモン」と総称される種々のホルモンにより行われており、代表的ホルモンには、活性型ビタミンD [$1\alpha,25(OH)_2D_3$]、副甲状腺ホルモン(Parathyroid Hormone, PTH)、カルシトニン及びPTHrP(Parathyroid Hormone-Related Protein, PTH-related Protein, PTHrP)などが挙げられる。

【0003】骨は、生体の支持組織として、及び運動器官としての役割のみならず、その構成成分であるカルシウムの貯蔵器官としての重要な役割を担っている。そのような機能を果たすために、骨組織は、一生涯の間、その形成(骨形成)と吸収(骨吸収)を繰り返している。骨形成は、間葉系細胞由來の骨芽細胞が、また骨吸収は、造血系細胞由來の破骨細胞が主な役割を担っている。骨形成は、骨形成表面に存在する骨芽細胞が産生する骨有機質(I型コラーゲンなどの骨基質蛋白)による類骨の形成とそれに引き続く石灰化を経るメカニズムである。一方、骨吸収は、破骨細胞が骨表面に付着し、酸分泌及びイオン輸送を介して細胞内にカルシウムを吸収し、吸収したカルシウムを骨髄側に排出することにより、血中にカルシウムの送り出すメカニズムである。破骨細胞により吸収された骨の欠損部は、骨芽細胞による骨形成により修復される。このような一連の現象は、骨のリモデリングと呼ばれ、リモデリングにより、古い骨が新しい骨に置換され、骨全体の強度が維持されるとともに、カルシウムホメオスタシスが維持されている。

【0004】このような骨のリモデリング及びカルシウムホメオスタシスに重要な役割を果たす骨芽細胞と破骨細胞の生成(未熟細胞からの分化、誘導、増殖)には、種々の因子(骨代謝調節ホルモン、骨形成制御サイトカイン、骨吸収制御サイトカインなど)が関与している。

骨代謝調節ホルモンとしては、ビタミンA、ビタミンD、副甲状腺ホルモン(PTH)、副甲状腺関連タンパク(PTHrP)、カルシトニン、エストロゲン及びプロスタグランジンなどが挙げられる。

【0005】副甲状腺ホルモン(PTH)は、カルシウムホメオスタシスの維持において最も重要なホルモンである。ヒトのPTHは、31アミノ酸配列からなるプレプロペプチド(-31-1)と引き続く84アミノ酸配列(PTH(1-84))からなり、PTHの生物活性の発現に必要十分な構造は、該PTH(1-84)のN末端側の1-34の領域(PTH(1-34))に保持されている(Proc. Natl. Acad. Sci. USA., Vol. 68, p.63, 1971; Endocrinology, Vol. 93, p.1349, 1973; Peptide and Protein Reviews, Vol. 1, p.209, 1984)。PTHのホルモン作用は、骨や腎臓の細胞膜に存在するPTH/PTHrP受容体(PTH及びPTHrPは同一の受容体を共有する)に特異的に結合することにより発揮される。

【0006】PTHの最も重要な作用は、カルシウムホメオスタシスの維持であり、即ち、血中カルシウム濃度が低下すると副甲状腺からPTHの分泌が直ちに促進され、骨においては骨芽細胞に作用して(骨芽細胞による破骨細胞の活性化、骨有機質分解酵素の産生など)破骨細胞性再吸收を促進し、骨からカルシウムを助員し、また、腎臓においては、遠位尿細管でのカルシウムの再吸收を促進する。一方、血中カルシウムイオン濃度が上昇すると、副甲状腺からのPTHの分泌が直ちに抑制され、細胞外液へ供給されるカルシウム量を減少させる(Brown, E.M., Homeostatic mechanisms regulating extracellular and intracellular calcium metabolism, in The parathyroids, p.19, 1994, Raven press, New York)。

【0007】副甲状腺ホルモン(PTH)と同様に重要な骨代謝調節ホルモンとして近年脚光を浴びているホルモンが、副甲状腺ホルモン関連タンパク(PTHrP)である。PTHrPの存在の示唆は、1930年代に遡り、悪性腫瘍に伴う高カルシウム血症の患者では、高カルシウム血症や低リン血症など、その血清生化学所見が内因性PTH過剰状態である原発性副甲状腺機能亢進症に酷似することが知られていた。1941になって、悪性腫瘍による異所性PTHの産生により高カルシウム血症の発症が示唆され、PTH様物質の存在が想定された(New Engl. J. Med., Vol. 225, p.789, 1941)。1980年代になり、そのPTH様物質がPTHとは異なるがPTHと同一の受容体を介してPTH様の作用を惹起する別の物質として、種々の腫瘍細胞から単離、同定された(Proc. Natl. Acad. Sci. USA, Vol. 80, p.1454, 1983; J. Clin. Invest., Vol. 72, p.1511, 1983)。

【0008】ヒトのPTHrPには3種類のアイソフォームが存在し、1つは、36アミノ酸配列からなるプレプロペプチド(-36-1)と引き続く139アミノ酸配列(PTHrP(1-139))からなり、他の2つは、該プレプロペプチド

及びそれに引き続くPTHrP(1-139)と同一の配列のC末端に、各々さらに2アミノ酸及び34アミノ酸が延長したPTHrP(1-141)とPTHrP(1-173)である。即ち、これら3つのアイソフォームは、そのプレプロ配列とそれに引き続く1-139迄のアミノ酸配列は完全に同一である。ヒトPTHrPは、マウス及びラットのPTHrPと高いアミノ酸相同意を有しており、特に1-111アミノ酸においての相同意は極めて高い(Crit. Rev. Biochem. Mol. Biol., Vol. 1.26, No. 3-4, p.377, 1991)。

【0009】PTHrPのN末端の1-13のアミノ酸部分はPTHと比較的高い相同意を示し(8個のアミノ酸が同一)、14-34アミノ酸部分のアミノ酸配列はPTHrPに特異的であるが、その高次構造はPTHの14-34アミノ酸部分の高次構造と類似している。また、この様な構造的特性に加え、PTHrPの1-34アミノ酸部分がPTHとほぼ同一の生物活性を示すことから、PTHrPの1-34アミノ酸部分は、PTH様領域(PTH-like region)と呼ばれる(Endocrine Rev., Vol. 1.12, p.110, 1991; Endocrinology, Vol. 125, p.2215, 1989)。一方、1-34アミノ酸部分よりC末端側のアミノ酸配列はPTHrPに特有でありPTHと相同意を示さないことから、PTH-unlike regionと呼ばれる。また前述のとおり、PTHrPはPTHと受容体を共有し、PTH/PTHrP受容体に結合する。これら一連の特性から、PTHrPは副甲状腺ホルモン関連タンパク(PTH-related protein, PTH-like protein, PTHrP)と呼ばれるようになった(Proc. Natl. Acad. Sci. USA, Vol. 84, p.5048, 1987; Science, Vol. 237, p.893, 1987; Biochem Biophys. Res. Comm., Vol. 146, p.672, 1987; J. Clin. Invest., Vol. 80, p.1803, 1987; Crit. Rev. Biochem. Mol. Biol., Vol. 26, No. 3-4, p.377, 1991)。

【0010】PTHrPは、悪性腫瘍に伴う高カルシウム血症の原因物質として発見され、実際に、扁平上皮癌に代表される高カルシウム血症を合併した悪性腫瘍では高率にPTHrPが過剰発現されている。これまでの研究から、PTHrPは、成熟動物や胎児の広範な組織で生理的に発現されていることが明らかとなっている。成熟動物では、皮膚、腎臓、骨、滑膜、脳、末梢神経、脈絡叢、胃、骨髓、副甲状腺、副腎、脾臓ランゲルハンス島及び脳下垂体などの内分泌器官、血管平滑筋、横紋筋、胎盤、膀胱、輸精管、細精管、尿道、及び乳腺などの組織で発現が見られる。また胎生期の哺乳動物では、内軟骨性骨化をする軟骨や骨、皮膚、毛髪、気管支、咽頭、腸管、甲状腺、副甲状腺、副腎、平滑筋、横紋筋、羊膜、核毛膜、及び脈絡叢などで発現が見られる。

【0011】PTHrPの生理学的機能については、未だ不明な点も残っているが、PTH/PTHrP受容体との結合を介して、細胞の増殖や分化をバラクライン・オートクライン的に調節する因子であることが明かとなってきている。これまでの研究から、PTHrPは、PTH様作用、非PTH様作用、TCF-β様作用、破骨細胞抑制作用等の種々の作

用を有することが解明及び／または示唆されてきている。

【0012】これらのうち、PTHRPのPTH様作用については、比較的十分に研究されており、その生物活性の発現に必要な構造はPTHRPの少なくとも1-34アミノ酸部分を含む領域により保持されている。PTHRPのPTH様作用については、PTHRP(1-34)はPTH(1-34)とほぼ等価であり、またPTHRP(1-34)より長い分子（例えば、PTHRP(1-84)、PTHRP(1-108)、及びPTHRP(1-141)など）とも等価である（J. Biol. Chem., Vol.264, p.14806, 1989）。PTHRPの1-34アミノ酸部分には、PTH(1-34)と同じく、PTH/PTHRP受容体に対する少なくとも2つの受容体結合部位（1-6及び25-34アミノ酸部分）が存在する。PTHRPのPTH様作用としては、例えば、骨では骨芽細胞に作用してアデニレートシクラーゼ（AC）やフォスフォリバーゼC（PLC）を賦活化し、破骨細胞性の骨吸収を誘導し、また腎臓では、サイクlickAMP（cAMP）やリン排泄を促進し、カルシウムの再吸収を促進する（Crit. Rev. Biochem. Mol. Biol., Vol.26, No.3-4, p.377, 1991）。

【0013】一方、上述のようにPTHRPが、骨の代謝調節に深く関与しているが故に、PTHRPと骨代謝関連疾患及びカルシウム体内動態異常との関連性を示唆する報告もなされており、癌（悪性腫瘍）に伴う高カルシウム血症、癌の骨転移及びリウマチとPTHRPとの関連性については、特に注目されている。癌（悪性腫瘍）には、様々なカルシウム代謝異常や骨病変が合併することが知られており、その代表的な症状が、癌に伴う高カルシウム血症と癌の骨転移に伴う骨病変である。

【0014】癌（悪性腫瘍）に伴う高カルシウム血症（malignancy-associated hypercalcemia (MAH)）は、臨床上しばしば見られる腫瘍隨伴症候群（paraneoplastic syndrome）である。高カルシウム血症患者で最も頻度の高いのは、原発性副甲状腺機能亢進症（primary hyperparathyroidism (HPT)）であり通常は慢性の経過をたどる。一方、MAHの多くは、進行性であり且つ重篤であり、迅速な治療の開始が患者のQOL (quality of life) の改善に効果的である。MAHは、次の2種類に大別され、1つは、腫瘍から産生される液性因子の全身性作用によりもたらされる悪性の液性高カルシウム血症（humoral hypercalcemia of malignancy (HHM)）であり、他の1つは、腫瘍の骨への直接浸潤（骨転移）により骨吸収が亢進すること（骨破壊、骨溶解）によりもたらされる局所性骨融解性高カルシウム血症（local osteolytic hypercalcemia (LOH)）である。LOHは、癌の広範な骨転移に基づくものが主であり骨病変に伴う二次的なものと考えられる。一方、HHMは、癌に伴う高カルシウム血症の約90%近くを占め（N. Engl. J. Med., Vol.300, p.1377, 1980）、その主要な原因物質は腫瘍が分泌するPTHRPの作用によることが明らかにされつつある（Am.

J. Clin. Pathol., Vol.105, p.487, 1996）。

【0015】上記の分類に従えば、HHMには癌の骨転移はないか、あっても少数であるはずであるが、広範な癌の骨転移とPTHRPの大量産生が同時に見られる高カルシウム血症（LOHとHHMの両面を持つ症例）も臨床では見受けられる。また、LOHでも腫瘍が産生するPTHRPが局所の骨破壊（骨溶解）に寄与している場合もある。さらに、希ではあるが良性腫瘍が産生するPTHRPによる高カルシウム血症も存在する（Am. J. Clin. Pathol., Vol.105, p.487, 1996）。PTHRP産生によるHHMは、あらゆる組織にわたる各種癌において見られるが、特に扁平上皮癌（肺、食道、子宮頸部、外陰部、皮膚、頭、頸部）、腎癌、膀胱癌、卵巣癌、及び成人T細胞白血病（ATL）での報告が多い（N. Engl. J. Med., Vol.322, p.1106, 1990；J. Clin. Endocrinol. Metab., Vol.73, 1309, 1991）。

【0016】LOHは、骨腫瘍、乳癌、リンパ腫見られることが多い、前述のとおり腫瘍細胞の広範な骨への浸潤と骨破壊が直接の原因とされている。しかしながら、

LOHにおいても、その成因にPTHRPの関与が明かにされつつある。骨腫瘍については、TNF- β 、IL-1 β 及びIL-6と共に、PTHRPの関与も示唆されており（Am. J. Hematol., Vol.45, p.88, 1994）、高カルシウム血症を伴う多発性骨腫瘍患者での血中PTHRPの上昇が報告されている（Ann. Intern. Med., Vol.111, p.807, 1989, Budayr AAら）。乳癌ではしばしば広範な骨転移が見られ、約40%の患者で高カルシウム血症が起り、乳癌の骨転移部ではPTHRPの高い発現が見られる（Cancer Res., Vol.51, p.3059, 1991）。また、乳癌患者の原発巣と骨転移部におけるPTHRPの発現を比較すると、骨において特に高く、骨微細環境下で癌細胞によるPTHRPの産生が促進されていることが示唆されている（J. Bone Miner. Res., Vol.7, p.971, 1992）。ATL患者においては、約80%が高カルシウム血症を併発するとと言われており、病勢に比例してPTHRPの発現は高値に達し、高カルシウム血症の程度とも相関することが示されていることから、ATLの成因の1つにPTHRPが深く関与することが示唆されている（Leukemia, Vol.8, p.1708, 1994）。

【0017】LOHの主要原因である癌の骨転移とPTHRPとの関連性については、上述したとおり、乳癌患者の原発巣と骨転移部におけるPTHRPの発現が、骨において特に高いことが報告されており（J. Bone Miner. Res., Vol.7, p.971, 1992）、さらにヌードマウスにおけるヒトの乳癌細胞の骨破壊性転移が抗PTHRP抗体により抑制されることが報告されている（J. Clin. Invest., Vol.98, p.1544, 1996；Cancer Res., Vol.56, p.4040, 1996；国際特許出願公開W096/22790号公報）。PTHRPと関節リウマチ（Rheumatoid Arthritis (RA)）及び変形性関節症（Osteoarthritis (OA)）との関連性については、RA患者及びOA患者のいずれの滑液（Synovial fluids）中

にも、高濃度のPTHRPの発現が観察されている（*J. Bone Miner. Res.*, Vol.12, p.847, 1997）。

【0018】一方、高カルシウム血症に治療としては、従来、輸液、利尿剤、副腎皮質ステロイドやカルシトニン製剤が用いられていたが、近年は強力な骨吸収抑制作用を有するビスフォスフォネート系化合物（例えば、バミドロネートなど）が用いられている。また、上述のとおり高カルシウム血症とPTHRPとの関連性を示す知見をもとに、PTHRPに対する抗体を用いた高カルシウム血症の治療の試みも行われている（日本国特許出願公開第4-228089号公報）。また、上述のような癌の骨転移及び骨溶解とPTHRPとの関連性の知見を基に、PTHRPに対する抗体を用いた癌の骨転移、骨溶解並びに癌細胞の増殖等の癌に伴う一連の症状を予防、治療する試みも行われてきている（国際特許出願公開WO96/22790号公報）。

【0019】さらに、癌（悪性腫瘍）と高カルシウム血症との密接な関係、並びにそれらとPTHRPとの関連性の知見を基に、前述のビスフォスフォネート系化合物による高カルシウム血症の治療と抗PTHRP抗体による癌関連症状の治療とを組み合わせた治療の試み、即ち、ビスフォスフォネート系化合物と抗PTHRP抗体を併用して用いることにより、一連の癌関連症状と高カルシウム血症を予防、治療しようとする試みもなされてきている（前述の国際特許出願公開WO96/22790号公報）。このような治療は、PTHRPがPTH様の強力な骨吸収作用を有する骨代謝調節ホルモンであるとの知見に基づくものであるが、最近になって、PTHRPが、細菌毒素（エンドトキシン）や病原菌による敗血症（sepsis）や全身性炎症応答症候群（Systemic Inflammatory Response Syndrome (SIRS)）等の炎症の成因に関与するとの知見から、PTHRPに対する抗体を用いて敗血症やSIRSを治療しようとする試みもなされている。

【0020】また、悪性腫瘍による高カルシウム血症の患者で見られる低リン血症は、PTHRPの腎臓でのリン再吸収抑制作用／リン排泄作用促進作用によるものと考えられており、PTHRPに対する抗体を用いて低リン血症を治療しようとする試みもなされている（国際特許出願公開WO98/13388号公報）。さらに、骨と同様にカルシウムにより構成される歯とPTHRPとの関連性についても研究がなされており、PTHRPは歯の発生並びに歯に関連する種々疾患（歯槽膿漏、歯肉炎など）に関与することが示唆されている（解剖誌, Vol.68, No.6, p.726, 1993; 日骨代謝会誌, Vol.14, No.2, p.334, 1996; 日発生生物会30回講要, p.118, 1997）。

【0021】上述のような抗体による患者の治療においては、言うまでもなくヒトPTHRPに対するモノクローナル抗体が用いられる。ヒトPTHRPに対するモノクローナル抗体については、ヒトPTHRPタンパクまたはその部分ペプチドをマウスやラット等の非ヒト哺乳動物に免疫することにより作製されるマウスモノクローナル抗体やラッ

トモノクローナル抗体等の非ヒト哺乳動物由來のモノクローナル抗体が多数知られている（*Clin. Chem.*, Vol.37, No.10, p.1781, 1991; *J. Immunol. Methods*, Vol.146, p.33-42, 1992; *Clin. Chem.*, Vol.37, No.5, p.678, 1991; *J. Immunol. Methods*, Vol.127, p.109, 1990; *J. Bone Min. Res.*, Vol.8, No.7, p.849, 1993; 米国特許第5,217,896号公報：国際特許出願公開WO97/04312号公報など）。また、マウスモノクローナル抗体の可変領域とヒト免疫グロブリンの定常領域からなるキメラ抗体の作製も報告されている（国際特許出願公開WO98/13388号公報）。しかしながら、ヒトPTHRPに対するヒト由來のモノクローナル抗体の作製、ならびに該ヒトモノクローナル抗体を用いた種々疾患の治療の試みについては、未だ全く報告されていない。

【0022】

【発明が解決しようとする課題】これまでに報告されたマウスやラット等の非ヒト哺乳動物由來のモノクローナル抗体は、ヒトを含む哺乳動物の血清あるいは組織でのPTHRPの発現のインピクトでの検出あるいは該モノクローナル抗体の疾患治療効果の確認のための非ヒト哺乳動物を用いたインピボ試験における使用の目途においては有用であるかもしれない。しかしながら、そのような非ヒト哺乳動物由來のモノクローナル抗体を、患者（人体）に投与した場合には、該投与されたマウスあるいはラット等のモノクローナル抗体は人体にとって異物である（免疫原性を有する）ため、人体の異物排除の免疫機構により、該モノクローナル抗体は、急速に排除されるだけでなく、その過程において該投与されたモノクローナル抗体に対する抗体が產生されるHAMA免疫応答（Human Anti-Mouse/Murine Antibody Immune Response）が惹起される。このHAMAのメカニズムにより、該マウスモノクローナル抗体等の非ヒト哺乳動物由來抗体の反復投与においては該投与されたモノクローナル抗体が中和されてその効果が減殺されるだけでなく、重篤なアレルギーなどの副作用が引き起こされる。

【0023】このようなHAMA免疫応答を低減させる試みとして、近年、マウスモノクローナル抗体等の非ヒト哺乳動物由來の抗体の部分アミノ酸配列を遺伝子工学的にヒト免疫グロブリン由來のアミノ酸配列に改変させることによりヒト生体に対する免疫原性を低減させようとする手法が用いられている。その1つは、マウスモノクローナル抗体の定常領域をヒト免疫グロブリンの定常領域に置き換えたマウス／ヒトキメラ抗体であり、他の1つは、マウスモノクローナル抗体の超可変領域の3つの相補性決定領域（Complementarity-determining residue: CDR1, CDR2, CDR3）を除く全ての配列をヒト免疫グロブリン由來の配列で置き換えたヒト型化抗体（humanized antibody, CDR-grafted antibody）である。

【0024】しかしながら、このような遺伝子組換え抗体であっても、その構造中にマウス等の非ヒト哺乳動物

由来の部分配列が残っている以上、ヒト生体にとっては異物であり、HAMA免疫応答と同様のHACA免疫応答(Human AntiChimeric Antibody Immune Response)やHAHA免疫応答(Human AntiHumanized Antibody Immune Response)が少なからず惹起される。従って、抗体を医薬品として用いるためにはそのようなHAMAによる副作用を惹起しない抗体、即ちヒト由来の抗体(ヒト抗体)が最も望ましい。

【0025】ヒトPTHRPについても、副作用を伴わず該PTHRPの產生に起因する前述のような種々の疾患または症状(高カルシウム血症、癌の骨転移、骨溶解、骨破壊、関節リウマチ、変性性関節症など)、歯、歯周及び歯肉等の口腔部位での疾患(歯槽膿漏、歯肉炎、歯周病など)、並びに他の種々の疾患または症状(敗血症(sepsis)、全身性炎症応答症候群(SIRS)及び低リン血症など)の予防または治療に適用可能なヒトモノクローナル抗体の提供が強く望まれている。

【0026】

【課題を解決するための手段】本発明者らは、上述のような臨床上の社会的ニーズを満たすために、ヒトPTHRPに対するヒトモノクローナル抗体の作製に関して鋭意研究した結果、遺伝子工学技術を用いて、ヒト由来の抗体を產生する能力を有するトランスジェニックマウスを製造し、該トランスジェニックマウスにヒトPTHRPまたはその一部を免疫し、モノクローナル抗体の製造において慣用されているケーラー及びミルシュタインらの方法(Nature, Vol.256, p.495, 1975)を用いることにより、各々種々の特性(抗原特異性、抗原親和性、中和活性、及び交叉反応性等)及び生物活性(PTHRP依存的細胞内cAMP上昇抑制活性、PTHRP依存的な骨からのCa放出の抑制活性、骨吸収抑制活性、骨溶解抑制活性など)を有するヒトPTHRPに対する種々のヒトモノクローナル抗体を作製することに世界に先んじて初めて成功した。即ち、本発明のヒトモノクローナル抗体は、ヒトに対する抗原性を全く有せず、従来のマウス由来の抗体等の非ヒト哺乳動物由来の抗体からなる抗体医薬品の治療上の大問題点であったHAMAによる副作用を全く惹起しないことから、抗体の医薬品としての価値を劇的に増大させるものである。

【0027】即ち、本発明の下記のとおりの発明である。

(1) ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体またはその一部。
 (2) 該ヒトモノクローナル抗体が、下記(a)乃至(c)のいずれかに記載の性質を有することを特徴とする前記(1)に記載のヒトモノクローナル抗体またはその一部：
 (a) 副甲状腺ホルモン関連タンパク刺激に伴う細胞内のcAMPの上昇に対して抑制的に作用する：

- (b) 副甲状腺ホルモン関連タンパク刺激に伴う骨からのカルシウムの放出に対して抑制的に作用する；または
 (c) 副甲状腺ホルモン関連タンパク刺激に伴う血中カルシウムの上昇に対して抑制的に作用する。
- (3) 該ヒトモノクローナル抗体が、下記(a)または(b)のいずれかのアミノ酸配列を有するヒト副甲状腺ホルモン関連タンパクの部分アミノ酸配列に反応性を有することを特徴とする前記(1)に記載のヒトモノクローナル抗体またはその一部：
- 10 (a) AVSEHQLLHDKGKSIQDLRRFFLHHLIAEHTA；または
 (b) AVSEHQLLHDKGKSIQDLRRFFLHHLIAEHTAEIRAT。
- (4) 該ヒトモノクローナル抗体のイムノグロブリンクラスが、IgG2であることを特徴とする前記(1)乃至(3)のいずれかに記載のヒトモノクローナル抗体またはその一部。
- (5) 該ヒトモノクローナル抗体が、ヒト抗体を產生する能力を有するトランスジェニック非ヒト哺乳動物に由来するモノクローナル抗体であることを特徴とする前記(1)乃至(4)のいずれかに記載のヒトモノクローナル抗体またはその一部。
- (6) 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする前記(5)に記載のヒトモノクローナル抗体またはその一部。
- (7) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの結合速度定数(k_a)が、 1.0×10^6 (1/M.Sec)以上の数値であることを特徴とする前記(1)乃至(6)のいずれかに記載のヒトモノクローナル抗体またはその一部。
- 20 (8) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離速度定数(k_d)が、 1.0×10^{-7} (1/Sec)以下の数値であることを特徴とする前記(1)乃至(6)のいずれかに記載のヒトモノクローナル抗体またはその一部。
- (9) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離定数(K_d)が、 1.0×10^{-7} (M)以下の数値であることを特徴とする前記(1)乃至(6)のいずれかに記載のヒトモノクローナル抗体またはその一部。
- 30 (10) 該結合速度定数(k_a)が、 1.0×10^6 (1/M.Sec)以上の数値であることを特徴とする前記(7)に記載のヒトモノクローナル抗体またはその一部。
- (11) 該解離速度定数(k_d)が、 1.0×10^{-7} (1/Sec)以下の数値であることを特徴とする前記(8)に記載のヒトモノクローナル抗体またはその一部。
- (12) 該解離定数(K_d)が、 1.0×10^{-7} (M)以下の数値であることを特徴とする前記(9)に記載のヒトモノクローナル抗体またはその一部。
- (13) 該解離定数(K_d)が、 1.0×10^{-9} (M)以下の数値であることを特徴とする前記(12)に記載のヒト

モノクローナル抗体またはその一部。

(14) 該解離定数 (K_d) が、 1.0×10^{-10} (M) 以下の数値であることを特徴とする前記 (13) に記載のヒトモノクローナル抗体またはその一部。

(15) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの結合速度定数 (k_a) が、 1.0×10^3 (1/M.Sec) 以上の数値であることを特徴とする前記 (2) または前記 (3) に記載のヒトモノクローナル抗体またはその一部。

(16) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離速度定数 (k_d) が、 1.0×10^{-3} (1/Sec) 以下の数値であることを特徴とする前記

(2) または前記 (3) に記載のヒトモノクローナル抗体またはその一部。

(17) 該ヒトモノクローナル抗体とヒト副甲状腺ホルモン関連タンパクとの解離定数 (K_d) が、 1.0×10^{-7} (M) 以下の数値であることを特徴とする前記 (2) または前記 (3) に記載のヒトモノクローナル抗体またはその一部。

(18) 該結合速度定数 (k_a) が、 1.0×10^4 (1/M.S ec) 以上の数値であることを特徴とする前記 (15) に記載のヒトモノクローナル抗体またはその一部。 (19)

該解離速度定数 (k_d) が、 1.0×10^{-4} (1/Sec) 以下の数値であることを特徴とする前記 (16) に記載のヒトモノクローナル抗体またはその一部。 (20)

該解離定数 (K_d) が、 1.0×10^{-9} (M) 以下の数値であることを特徴とする前記 (17) に記載のヒトモノクローナル抗体またはその一部。

(21) 該解離定数 (K_d) が、 1.0×10^{-9} (M) 以下の数値であることを特徴とする前記 (20) に記載のヒトモノクローナル抗体またはその一部。

(22) 該解離定数 (K_d) が、 1.0×10^{-10} (M) 以下の数値であることを特徴とする前記 (21) に記載のヒトモノクローナル抗体またはその一部。

(23) ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体を產生する細胞。

(24) 該細胞が、ヒト抗体を產生する能力を有するトランスジェニック非ヒト哺乳動物に由来するB細胞であることを特徴とする前記 (23) に記載の細胞。

(25) 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする前記 (24) に記載の細胞。

(26) 該細胞が、ヒト抗体を產生する能力を有するトランスジェニック非ヒト哺乳動物に由来するB細胞と哺乳動物由来のミエローマ細胞とを融合して得られるハイブリドーマであることを特徴とする前記 (23) に記載の細胞。

(27) 該トランスジェニック非ヒト哺乳動物が、トランスジェニックマウスであることを特徴とする前記

(26) に記載の細胞。

(28) 該細胞が、国際寄託番号FERM BP-6390で識別されるハイブリドーマであることを特徴とする前記 (27) に記載の細胞。

(29) 該細胞が、ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体の重鎖をコードするDNA若しくはその軽鎖をコードするDNAのいずれか一方のDNA、または両方のDNAが細胞内に導入されることにより形質転換された形質転換細胞であることを特徴とする前記 (23) に記載の細胞。

(30) ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体またはその一部であって、国際寄託番号FERM BP-6390で識別されるハイブリドーマから產生されるヒトモノクローナル抗体若しくは該ヒトモノクローナル抗体と実質的に同一の性質を有するヒトモノクローナル抗体、またはその一部。

(31) ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するモノクローナル抗体またはその一部であって、該モノクローナル抗体の軽鎖可変領域が下記 (a) または (b) のいずれかに記載のアミノ酸配列:

(a) 配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20及び配列番号22からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号21乃至119番目のアミノ酸配列; または (b) 配列番号4、配列番号6、配列番号8、配列番号10、配列番号12、配列番号14、配列番号16、配列番号18、配列番号20及び配列番号22からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号21乃至119番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列; を含むアミノ酸配列を有することを特徴とするモノクローナル抗体またはその一部。

(32) ヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するモノクローナル抗体またはその一部であって、該モノクローナル抗体の重鎖可変領域が下記 (a) 乃至 (d) のいずれかに記載のアミノ酸配列:

(a) 配列番号24、配列番号26、配列番号28、配列番号30、配列番号32、配列番号34、配列番号36、配列番号38、及び配列番号42からなる群から選ばれるいずれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号20乃至117番目のアミノ酸配列;

(b) 配列番号40に記載されるアミノ酸配列中のアミノ酸番号20乃至115番目のアミノ酸配列;

(c) 配列番号24、配列番号26、配列番号28、配

列番号30、配列番号32、配列番号34、配列番号36、配列番号38、及び配列番号42からなる群から選ばれるいづれか1つの配列番号に記載されるアミノ酸配列中のアミノ酸番号20乃至117番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列；または

(d) 配列番号40に記載されるアミノ酸配列中のアミノ酸番号20乃至115番目のアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列；を含むアミノ酸配列を有することを特徴とするモノクローナル抗体またはその一部。

(33) 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々V3-30、D₁及びJH6に由来することを特徴とする前記(1)乃至前記(22)のいづれかに記載のヒトモノクローナル抗体またはその一部。

(34) 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々VH4.16、DA1及びJH6に由来することを特徴とする前記(1)乃至前記(22)のいづれかに記載のヒトモノクローナル抗体またはその一部。

(35) 該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする前記(1)乃至前記(22)のいづれかに記載のヒトモノクローナル抗体またはその一部。

(36) 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々V3-30、D₁及びJH6に由来し、且つ該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする前記(1)乃至前記(22)のいづれかに記載のヒトモノクローナル抗体またはその一部。

(37) 該ヒトモノクローナル抗体の重鎖をコードするV領域、D領域及びJ領域のDNAが、各々VH4.16、DA1及びJH6に由来し、且つ該ヒトモノクローナル抗体の軽鎖をコードするV領域及びJ領域のDNAが、各々DPK15及びJK3に由来することを特徴とする前記(1)乃至前記(22)のいづれかに記載のヒトモノクローナル抗体またはその一部。

(38) 前記(1)乃至前記(22)または前記(30)乃至前記(37)のいづれかに記載のヒトモノクローナル抗体またはその一部、及び薬学的に許容されうる担体とを含んでなる医薬組成物。

(39) 前記(2)、前記(3)、前記(15)乃至前記(22)または前記(30)乃至前記(37)のいづれかに記載のヒトモノクローナル抗体またはその一部、及び薬学的に許容されうる担体とを含んでなる医薬組成物。

(40) 該医薬組成物が、副甲状腺ホルモン関連タン

パク依存的な骨からのカルシウムの放出に起因する疾患の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(41) 該医薬組成物が、高カルシウム血症の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(42) 該医薬組成物が、骨溶解の抑制または予防に用いられることを特徴とする前記(39)に記載の医薬組成物。

10 (43) 該医薬組成物が、関節リウマチまたは変形性関節症の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(44) 該医薬組成物が、骨への癌転移の抑制または予防に用いられることを特徴とする前記(39)に記載の医薬組成物。

(45) 該医薬組成物が、骨組織に存在する癌細胞の増殖の抑制または予防に用いられることを特徴とする前記(39)に記載の医薬組成物。

20 (46) 該医薬組成物が、局所での副甲状腺ホルモン関連タンパクの產生に起因する疾患の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(47) 該医薬組成物が、原発性の局所癌に起因する症状の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(48) 該症状が、疼痛、神経圧迫、高カルシウム血症、骨折及び悪液質からなる群から選ばれる症状であることを特徴とする前記(47)に記載の医薬組成物。

(49) 該医薬組成物が、原発性の局所癌に罹患している患者の延命に用いられることを特徴とする前記(39)に記載の医薬組成物。

(50) 該医薬組成物が、歯、歯周または歯肉における疾患の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

(51) 該医薬組成物が、敗血症(sepsis)または全身性炎症応答症候群(SIRS)の治療に用いられることを特徴とする前記(38)に記載の医薬組成物。

(52) 該医薬組成物が、低リン血症の治療に用いられることを特徴とする前記(39)に記載の医薬組成物。

40 【0028】

【発明の実施の形態】以下、本発明で用いる語句の意味を明らかにすることにより、本発明を詳細に説明する。本発明における「哺乳動物」とは、ヒト、ウシ、ヤギ、ウサギ、マウス、ラット、ハムスター、及びモルモット等を意味し、好ましくは、ヒト、ウサギ、ラット、ハムスターまたはマウスであり、特に好ましくは、ヒト、ヤギ、ウシ、ラット、またはマウスである。本願明細書または図面においてアミノ酸を表記するために用いられるアルファベットの三文字あるいは一文字は、各々次に示すアミノ酸を意味する。(Gly/G) グリシン、(Ala/A

A) アラニン、(Val/V) バリン、(Leu/L) ロイシン、(Ile/I) イソロイシン、(Ser/S) セリン、(Thr/T) スレオニン、(Asp/D) アスパラギン酸、(Glu/E) グルタミン酸、(Asn/N) アスパラギン、(Gln/Q) グルタミン、(Lys/K) リジン、(Arg/R) アルギニン、(Cys/C) システイン、(Met/M) メチオニン、(Phe/F) フェニルアラニン、(Tyr/Y) チロシン、(Trp/W) トリプトファン、(His/H) ヒスチジン、(Pro/P) プロリン。

【0029】本発明でいう「ヒト副甲状腺ホルモン関連タンパク (Parathyroid hormone-related protein (PTH-related protein, PTHrP); Parathyroid hormone-like protein (PTH-like protein, PTHLP))」とは、前述したような構造を有し、また前述に例示したような生物活性及び／または機能を有するヒトの副甲状腺ホルモン関連タンパク (PTHrP) である。ヒト PTHrPには、3種類のアイソフォームが存在し、具体的には、各々、配列番号1に記載されるアミノ酸配列のアミノ酸番号1乃至139のアミノ酸配列を有する PTHrP(1-139)、同配列番号1のアミノ酸番号1乃至141のアミノ酸配列の141番目のアラニン (Ala) がヒスチジン (His) に置き変わったアミノ酸配列を有する PTHrP(1-141)、及び同配列番号1のアミノ酸番号1乃至173のアミノ酸配列を有する PTHrP(1-173)である。これらいずれのアイソフォームも本発明で言うヒト副甲状腺ホルモン関連タンパクに包含される (Critical Reviews in Biochemistry and Molecular Biology, Vol.26, p.377-395, 1991; Bone Science, 「骨形成と骨吸収及びそれらの調節因子 (第2巻)」, p.322, 図11.34, 1995, 廣川書店 (発行))。

【0030】また、本発明で言う「ヒト副甲状腺ホルモン関連タンパクの一部」とは、前記に定義される「ヒト副甲状腺ホルモン関連タンパク」のアミノ酸配列の任意の部分配列を意味し、具体的には5乃至100個のアミノ酸残基を有するヒト PTHrPの部分配列、より具体的には5乃至50個のアミノ酸残基を有するヒト PTHrPの部分配列、さらに具体的には5乃至40個のアミノ酸残基を有するヒト PTHrPの部分配列が含まれる。好ましくは、ヒト PTHrPがその生物学的機能を発揮するために必要な部位 (例えばPTH様作用を発揮する PTHrP(1-34)を含む領域などの種々の活性部位) またはヒト PTHrPがその受容体と結合若しくは相互作用する部位 (PTHrP(1-6)や PTHrP(25-34)といった受容体結合部位など) 等を含むヒト PTHrPの部分配列である。

【0031】具体的には例えば、PTH様作用を保持する領域と考えられる PTHrP(1-34) (配列番号1に記載されるアミノ酸配列のアミノ酸番号1乃至34) を少なくとも含む部分ポリペプチドが挙げられる。また、悪性腫瘍の高カルシウム血症患者の血清中で検出されるような PTHrP(1-74) (配列番号1のアミノ酸番号1乃至74) や PTHrP(109-138) (配列番号1のアミノ酸番号1乃至138)

も含まれる (N. Engl. J. Med., Vol.322, p.1106, 1989)。さらに、PTHrPは、Arg37で翻訳後修飾を受け、A1-a38で始まる PTHrPも产生されることが知られており (J. Biol. Chem., Vol.267, p.18236, 1992)。本発明においては、そのような種々の翻訳後修飾部位でプロセッシングされることにより生ずる翻訳後修飾 PTHrPも含まれる。また、PTHrPの非PTH様作用を担う種々の領域も当該「一部」に包含され、例えば、胎盤カルシウム輸送促進作用に関与する領域と考えられる PTHrP(75-85) (Exp.

10 Physiol., Vol.75, p.605, 1990)、TGF β 様作用を有するものと考えられる PTHrP(1-36) (J. Clin. Invest., Vol.83, p.1057, 1989)、並びに PTHrP の部分配列であり破骨細胞抑制作用を有するオステオスタチン (osteostatin) と呼ばれる PTHrP(107-111) 及び当該領域を含み同様に破骨細胞抑制作用を有すると考えられる領域 PTHrP(107-139) (Endocrinology, Vol.129, p.3424, 1991) などが挙げられる。

【0032】さらに、本発明における「副甲状腺ホルモン関連タンパク」及びその「一部」には、後述する本願発明の「ヒトモノクローナル抗体」が前述のような天然型のタンパク一次構造 (アミノ酸配列) を有するヒト PTHrPまたはその一部に反応性を有する限り、該天然型のタンパク一次構造と実質的に同一のアミノ酸配列を有するヒト PTHrP誘導体及びその一部も包含される。

【0033】ここで「実質的に同一のアミノ酸配列を有するヒト PTHrP誘導体」なる用語は、天然型のヒト PTHrPと実質的に同等の生物学的性質を有する限り、該アミノ酸配列中の数個のアミノ酸、好ましくは1乃至10個のアミノ酸、特に好ましくは1乃至5個のアミノ酸が置換、欠失及び／または修飾されているアミノ酸配列を有するタンパク、並びに該アミノ酸配列に、数個のアミノ酸、好ましくは1乃至10個のアミノ酸、特に好ましくは1乃至5個のアミノ酸が付加されたアミノ酸配列を有するタンパクを意味する。さらに、そのような置換、欠失、修飾及び付加の複数の組み合わせの場合であってもよい。

【0034】本発明におけるヒト PTHrPは、遺伝子組換え技術のほか、化学的合成法、細胞培養方法等のような当該技術的分野において知られる公知の方法あるいはその修飾方法を適宜用いることにより製造することができる。またヒト PTHrPの部分配列は、後述する当該技術的分野において知られる公知の方法あるいはその修飾方法に従って、遺伝子組換え技術または化学的合成法により製造することもできるし、また細胞培養方法により単離したヒト PTHrPをタンパク分解酵素等を用いて適切に切断することにより製造することができる。

【0035】本発明における「ヒトモノクローナル抗体」とは、前記に定義したような「ヒト副甲状腺ホルモン関連タンパク」または「その一部」に反応性を有するヒトモノクローナル抗体である。具体的には、前記発明

(1) 乃至(22)または(30)乃至(37)のいずれかに記載される特徴を有するヒトモノクローナル抗体である。例えば、後述の実施例に記載される様々な特性を有する各種のヒトモノクローナル抗体を挙げることができる。本発明の「ヒトモノクローナル抗体」には、該抗体を構成する重鎖及び／または軽鎖の各々のアミノ酸配列において、1または数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を有する重鎖及び／または軽鎖からなるモノクローナル抗体も含まれるが、ここで、「数個のアミノ酸」とは、複数個のアミノ酸を意味し、具体的には1乃至10個のアミノ酸であり、好ましくは1乃至5個のアミノ酸である。本発明のPTHRPまたはモノクローナル抗体のアミノ酸配列中に、前記のようなアミノ酸の部分的改変(欠失、置換、挿入、付加)は、該アミノ酸配列をコードする塩基配列を部分的に改変することにより導入することができる。この塩基配列の部分的改変は、既知の部位特異的変異導入法(Site specific mutagenesis)を用いて常法により導入することができる(Proc. Natl. Acad. Sci. USA, Vol. 81, p. 5662-5666, 1984)。

【0036】ここで、「ヒトモノクローナル抗体」とは、イムノグロブリンを構成する重鎖(H鎖)の可変領域(Variabie region)及びH鎖の定常領域(Constant Region)並びに軽鎖(L鎖)の可変領域及びL鎖の定常領域を含む全ての領域がヒトイムノグロブリンをコードする遺伝子に由来するヒトイムノグロブリンである。L鎖としては、ヒトκ鎖またはヒトι鎖が挙げられる。本発明のヒトモノクローナル抗体には、IgG(IgG1, IgG2, IgG3, IgG4)、IgM、IgA(IgA1, IgA2)、IgDあるいはIgE等のいずれのイムノグロブリンクラス及びアイソタイプを有するモノクローナル抗体をも包含する。好ましくは、IgGまたはIgMであり、さらに好ましくはIgGである。特に好ましくはIgG2またはIgG4である。

【0037】本発明のヒトモノクローナル抗体は、例えば、下記のような製造方法によって製造することができる。即ち、例えば、前記で定義したようなヒト副甲状腺ホルモン関連タンパク(天然体、組換体、合成物、細胞培養上清を含む)若しくはその一部、または抗原の抗原性を高めるための適当な物質(例えば、KLH(keyhole limpet hemocyanin)など)との結合物を、必要に応じてフロイントアジュバント(Freund's Adjuvant)とともに、後述するようなヒト抗体を産生するように追伝子工学的に作出されたトランスジェニック非ヒト哺乳動物(好ましくはヒト抗体産生トランスジェニックマウス)に免疫する。ポリクローナル抗体は、該免疫感作トランスジェニック動物から得た血清から取得することができる。またモノクローナル抗体は、該免疫感作動物から得た該抗体産生細胞と自己抗体産生能のない骨髓腫系細胞(ミエローマ細胞)からハイブリドーマを調製し、該ハ

イブリドーマをクローン化し、哺乳動物の免疫に用いた抗原に対して特異的親和性を示すモノクローナル抗体を产生するクローンを選択することによって製造される。

【0038】さらに具体的には下記のようにして製造することができる。即ち、前記で定義したようなヒト副甲状腺ホルモン関連タンパク(天然体、組換体、合成物、細胞培養上清を含む)若しくはその一部、または抗原の抗原性を高めるための適当な物質(例えば、KLH(keyhole limpet hemocyanin)など)との結合物(コンジュゲート)を、必要に応じてフロイントアジュバント(Freund's Adjuvant)とともに、後述するようなヒト抗体を産生するように追伝子工学的に作出されたトランスジェニック非ヒト哺乳動物(好ましくはヒト抗体産生トランスジェニックマウス)の皮下内、筋肉内、静脈内、フットパッドあるいは腹腔内に1乃至数回注射するあるいは移植することにより免疫感作を施す。通常、初回免疫から約1乃至14日毎に1乃至10回免疫を行って、最終免疫より約1乃至5日後に免疫感作された該動物から抗体産生細胞が取得される。免疫を施す回数及び時間的インターバルは、使用する免疫原の性質などにより、適宜変更することができる。

【0039】モノクローナル抗体を分泌するハイブリドーマの調製は、ケーラー及びミルシュタインらの方法(Nature, Vol. 256, p. 495-497, 1975)及びそれに準じる修飾方法に従って行うことができる。即ち、前述の如く免疫感作されたトランスジェニック非ヒト哺乳動物から取得される脾臓、リンパ節、骨髓あるいは扁桃等、好ましくはリンパ節または脾臓に含まれる抗体産生細胞と、好ましくはマウス、ラット、モルモット、ハムスター、ウサギまたはヒト等の哺乳動物、より好ましくはマウス、ラットまたはヒトに由来する自己抗体産生能のないミエローマ細胞との細胞融合させることにより調製される。

【0040】細胞融合に用いられるミエローマ細胞としては、例えばマウス由来ミエローマ細胞P3/X63-AG8.653(ATCC No.: CRL 1580)、P3/NS1/1-Ag4-1(NS-1)、P3/X63-Ag8.U1(P3U1)、SP2/0-Ag14(SP2/O, SP2)、NSO、PAI、FOあるいはBWS147、ラット由来ミエローマ210RCY3-Ag.2.3.、ヒト由来ミエローマU-266AR1、GM1500-6TG-A1-2、UC729-6、CEM-AGR、D1R11あるいはCEM-T15などを使用することができる。モノクローナル抗体を産生するハイブリドーマクローンのスクリーニングは、ハイブリドーマを、例えばマイクロタイヤープレート中で培養し、増殖の見られたウェルの培養上清の前述の免疫感作で用いた免疫抗原に対する反応性を、例えばRIAやELISA等の酵素免疫測定法によって測定することにより行なうことができる。

【0041】ハイブリドーマからのモノクローナル抗体の製造は、ハイブリドーマをインビトロで培養して培養上清から単離することができる。また、マウス、ラッ

ト、モルモット、ハムスターまたはウサギ等、好ましくはマウスまたはラット、より好ましくはマウスの腹水中等でのインビポで培養し、腹水から単離することもできる。

【0042】また、当該ハイブリドーマからヒトモノクローナル抗体をコードする遺伝子をクローニングし、トランスジェニック動物作製技術を用いて当該遺伝子が内在性遺伝子に組み込まれたトランスジェニックなウシ、ヤギ、ヒツジまたはブタを作製し、当該トランスジェニック動物のミルク中から当該抗体遺伝子に由来するモノクローナル抗体を大量に取得することも可能である(日系サイエンス、1997年4月号、第78頁乃至84頁)。

ハイブリドーマをインビトロで培養する場合には、培養する細胞種の特性、試験研究の目的及び培養方法等の種々条件に合わせて、ハイブリドーマを増殖、維持及び保存させ、培養上清中にモノクローナル抗体を産生させるために用いられるような既知栄養培地あるいは既知の基本培地から誘導調製されるあらゆる栄養培地を用いて実施することが可能である。

【0043】基本培地としては、例えば、Ham'培地、MCDB153培地あるいは低カルシウムMEM培地等の低カルシウム培地及びMCD104培地、MEM培地、D-NEM培地、RMFI1640培地あるいはRD培地等の高カルシウム培地、ASF104培地(商標)、EX-CELL620培地(商標)あるいはHYBRIDOMA-SFM培地(商標)等が挙げられ、該基本培地は、目的に応じて、例えば血清、ホルモン、サイトカイン及び/または種々無機あるいは有機物質等を含有することができる。モノクローナル抗体の単離、精製は、上述の培養上清あるいは腹水を、飽和硫酸アンモニウム、ユーグロプリン沈殿法、カブロイン酸法、カブリル酸法、イオン交換クロマトグラフィー(DEAEまたはDE52等)、抗イムノグロブリンカラムあるいはプロテインAカラム等のアフィニティカラムクロマトグラフィーに供すること等により行うことができる。

【0044】本発明における「モノクローナル抗体の一部」とは、前記で定義したヒトモノクローナル抗体の一部分を意味し、具体的には $F(ab')_2$ 、Fab'、Fab、Fv(variable fragment of antibody)、sFv、d sFv(disulphide stabilised Fv)あるいはdAb(single domain antibody)が挙げられる(エキスパート・オピニオン・オン・テラビューティック・パテンツ(Exp. Opin. Ther. Patents)、第6巻、第5号、第441~456頁、1996年)。

【0045】ここで、「 $F(ab')_2$ 」及び「Fab」とは、イムノグロブリン(モノクローナル抗体)を、蛋白分解酵素であるペプシンあるいはババイン等で処理することにより製造され、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の前後で消化されて生成される抗体フラグメントを意味する。例えば、IgGをババインで処理すると、ヒンジ領域中の2本のH鎖間に存在するジ

スルフィド結合の上流で切断されて V_L (L鎖可変領域)と C_L (L鎖定常領域)からなるL鎖、及び V_H (H鎖可変領域)と $C_H\gamma_1$ (H鎖定常領域中の γ_1 領域)とからなるH鎖フラグメントがC末端領域でジスルフィド結合により結合した相同的2つの抗体フラグメントを製造することができる。これら2つの相同的抗体フラグメントを各々Fab'といふ。またIgGをペプシンで処理すると、ヒンジ領域中の2本のH鎖間に存在するジスルフィド結合の下流で切断されて前記2つのFab'がヒンジ領域でつながったものよりやや大きい抗体フラグメントを製造することができる。この抗体フラグメントをF(ab')₂といふ。

【0046】本発明における「結合速度定数(ka)」とは、抗原抗体反応速度論に基づき算出される該モノクローナル抗体の標的抗原への結合の強さ(程度)を示す値を意味する。「解離速度定数(kd)」とは、抗原抗体反応速度論に基づき算出される該モノクローナル抗体の標的抗原からの解離の強さ(程度)を示す値を意味する。「解離定数(Kd)」とは、該「解離速度定数(kd)」値を該「結合速度定数(ka)」値で除して求められる値である。これらの定数は、該モノクローナル抗体の抗原に対する親和性及び抗原の中和活性を表す指標として用いられる。当該定数は、種々の方法に従って解析することができるが、市販の測定キットであるBiacoreX(アマシャムファルマシア社製)または類似のキットを用い、当該キットに添付の取扱い説明書及び実験操作方法に従って容易に解析することができる。当該キットを用いて求められるka値、kd値及びKd値は各々、1/M.Sec、1/Sec及びM(モル)なる単位を以て表される。試験されたモノクローナル抗体は、ka値が大きいほど強い抗原結合活性を有していることを示し、Kd値が大きいほど強い中和活性を有していることを示す。

【0047】本発明のヒトモノクローナル抗体には、下記(1)乃至(3)に示されるようなka値、kd値またはKd値を有するヒトモノクローナル抗体が含まれる。

(1) ヒト副甲状腺ホルモン関連タンパクとの結合速度定数(ka)が、 1.0×10^3 (1/M.Sec)以上の数値、好ましくは 1.0×10^4 (1/M.Sec)以上の数値であるヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体。

(2) ヒト副甲状腺ホルモン関連タンパクとの解離速度定数(kd)が、 1.0×10^{-3} (1/Sec)以下、好ましくは 1.0×10^{-4} (1/Sec)以下の数値であるヒト副甲状腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体。

(3) ヒト副甲状腺ホルモン関連タンパクとの解離定数(Kd)が、 1.0×10^{-7} (M)以下、好ましくは 1.0×10^{-8} (M)以下、より好ましくは 1.0×10^{-9} (M)以下、さらに好ましくは 1.0×10^{-10} (M)以下の数値であるヒト副甲状

腺ホルモン関連タンパクまたはその一部に反応性を有するヒトモノクローナル抗体。

【0048】より具体的には、例えば、 k_a 値(1/M.Se C)については、約 1.9×10^4 以上のヒトモノクローナル抗体が挙げられ、さらに具体的には約 1.9×10^4 乃至約 1.5×10^3 のヒトモノクローナル抗体が挙げられる。 k_d 値(1/Sec)については、約 9.5×10^{-3} 以下のヒトモノクローナル抗体が挙げられ、さらに具体的には約 6.0×10^{-6} 乃至約 9.5×10^{-3} のヒトモノクローナル抗体が挙げられる。 K_d 値(M)については、約 8.4×10^{-10} 以下のヒトモノクローナル抗体が挙げられ、さらに具体的には、約 1.1×10^{-10} 乃至 8.4×10^{-10} のヒトモノクローナル抗体が挙げられる。なお、上述の k_a 、 k_d 及び K_d の各々の値は、測定時の諸条件に依存して多少の変動は誤差範囲として起こり得ることが予測されるが、指數についてはほとんどの変動しないのが一般的である。本発明の「ヒトモノクローナル抗体を産生する細胞」とは、前述した本発明のヒトモノクローナル抗体を産生する任意の細胞を意味する。具体的には、例えば、下記(1)乃至(3)のいずれかに記載される細胞を挙げることができる。

(1) ヒトPTHRP、その一部または該PTHRPを分泌する細胞等でヒト抗体を産生する能力を有するトランスジェニック非ヒト哺乳動物を免疫することにより得られ、該ヒトPTHRPまたはその一部に反応性を有するヒトモノクローナル抗体を産生する該非ヒト哺乳動物由来のモノクローナル抗体産生B細胞。

(2) そのようにして得られた抗体産生B細胞を哺乳動物由来のミエローマ細胞と細胞融合して得られる前述のハイブリドーマ(融合細胞)。

(3) 該モノクローナル抗体産生B細胞またはモノクローナル抗体産生ハイブリドーマから単離される該モノクローナル抗体をコードする遺伝子(重鎖をコードする遺伝子若しくは軽鎖をコードする遺伝子のいずれか一方、または両方の遺伝子)により該B細胞及びハイブリドーマ以外の細胞を形質転換して得られるモノクローナル抗体産生形質転換細胞(遺伝子組換え細胞)。

ここで、前記(3)に記載のモノクローナル抗体産生形質転換細胞(遺伝子組換え細胞)は、即ち、前記(1)のB細胞または(2)のハイブリドーマが産生するモノクローナル抗体の遺伝子組換え体を産生する遺伝子組換え細胞を意味する。

【0049】本発明のヒトモノクローナル抗体の作製において被免疫動物として用いられるヒト抗体産生トランスジェニックマウスは、既報の方法に従って製造することができる(Nature Genetics, Vol.7, p.13-21, 1994; Nature Genetics, Vol.15, p.146-156, 1997; 特表平4-504365号公報; 特表平7-509137号公報; 日経サイエンス、6月号、第40~第50頁、1995年; 国際出願公開WO94/25585号公報; Nature, Vol.368, p.856-859, 1994; 及び特表平6-500233号公報

など)。具体的には、例えば下記の工程からなる手法を用いることにより作製可能である。

【0050】(1) マウス内在性イムノグロブリン重鎖遺伝子座の少なくとも一部を相同組換えにより薬剤耐性マーカー遺伝子(ネオマイシン耐性遺伝子など)で置換することにより該マウス内在性イムノグロブリン重鎖遺伝子が機能的に不活性化されたノックアウトマウスを作製する工程。

(2) マウス内在性イムノグロブリン軽鎖遺伝子座の少なくとも一部を相同組換えにより薬剤耐性マーカー遺伝子(ネオマイシン耐性遺伝子など)で置換することにより該マウス内在性イムノグロブリン軽鎖遺伝子(特に κ 鎖遺伝子)が機能的に不活性化されたノックアウトマウスを作製する工程。

(3) 酵母人工染色体(Yeast artificial chromosome, YAC)ベクター等に代表されるような巨大遺伝子を運搬可能なベクターを用いて、ヒト免疫グロブリン重鎖遺伝子座の所望の領域がマウス染色体中に組み込まれたトランジェニックマウスを作製する工程。

(4) YAC等に代表されるような巨大遺伝子を運搬可能なベクターを用いて、ヒト免疫グロブリン軽鎖(特に κ 鎖)遺伝子座の所望の領域がマウス染色体中に組み込まれたトランジェニックマウスを作製する工程。

(5) 前記(1)乃至(4)のノックアウトマウス及びトランジェニックマウスを任意の順序で交配することにより、マウス内在性免疫グロブリン重鎖遺伝子座及びマウス内在性免疫グロブリン軽鎖遺伝子座がともに機能的に不活性化され、且つヒト免疫グロブリン重鎖遺伝子座の所望の領域及ヒト免疫グロブリン軽鎖遺伝子座の所望の領域がともにマウス染色体上に組み込まれたトランジェニックマウスを作製する工程。

【0051】前記ノックアウトマウスは、マウス内在性イムノグロブリン遺伝子座の適当な領域を外来性マーカー遺伝子(ネオマイシン耐性遺伝子など)で相同組換えにより置換することにより該遺伝子座が再構成(リアレンジメント)できないよう不活性化することにより作製できる。該相同組換えを用いた不活性化には、例えば、ポジティブ・ネガティブ・セレクション(Positive Negative Selection; PNS)と呼称される方法を用いることができる(日経サイエンス、5月号、p.52-62, 1994)。イムノグロブリン重鎖遺伝子座の機能的不活性化には、例えば、J領域またはC領域(例えばC μ 領域)の一部に障害を導入することにより達成できる。またイムノグロブリン軽鎖(例えば κ 鎖)に機能的不活性化は、例えば、J領域若しくはC領域の一部、またはJ領域及びC領域にまたがる領域を含む領域に障害を導入することにより達成可能である。

【0052】トランジェニックマウスは、トランジェニック動物の製造において通常使用されるような常法(例えば、最新動物細胞実験マニュアル、エル・アイ・

シー発行、第7章、第361～第408頁、1990年を参照)に従って作製することが可能である。具体的には、例えば、正常マウス胚盤胞(blastcyst)に由来するHPRT陰性(ヒポキサンチングアミニ・フォスフォリボシルトランスクレオチド追伝子を欠いている)ES細胞(embrionic stem cell)を、該ヒトタイムノグロブリン重鎖追伝子座または軽鎖追伝子座をコードする追伝子またはその一部並びにHPRT追伝子が挿入されたYACベクターを含む酵母とスフェロblast融合法により融合する。該外來性追伝子がマウス内在性追伝子上にインテグレートされたES細胞をHATセレクション法により選別する。次いで、選別したES細胞を、別の正常マウスから取得した受精卵(胚盤胞)にマイクロインジェクションする(Proc. Natl. Acad. Sci. USA, Vol. 77, No. 12, pp. 7380-7384, 1980; 米国特許第4,873,191号公報)。該胚盤胞を仮親としての別の正常マウスの子宮に移植する。そうして該仮親マウスから、キメラトランスジェニックマウスが生まれる。該キメラトランスジェニックマウスを正常マウスと交配させることによりヘテロトランスジェニックマウスを得る。該ヘテロ(heterogeneous)トランスジェニックマウス同士を交配することにより、メンデルの法則に従って、ホモ(homozygous)トランスジェニックマウスが得られる。

【0053】本発明における「医薬組成物」は、本発明のヒトモノクローナル抗体またはその一部を有効成分として、薬学的に許容され得る担体、即ち、賦形剤、希釈剤、增量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤あるいはその他の添加剤等の一つ以上とともに医薬組成物とし、錠剤、丸剤、散剤、顆粒剤、注射剤、液剤、カプセル剤、トローチ剤、エリキシル剤、懸濁剤、乳剤あるいはシロップ剤等の形態により経口あるいは非経口的に投与することができる。

【0054】とりわけ注射剤の場合には、例えば生理食塩水あるいは市販の注射用蒸留水等の非毒性の薬学的に許容され得る担体中に $0.1\mu\text{g}$ 抗体/mI担体～ 10mg 抗体/mI担体の濃度となるように溶解または懸濁することにより製造することができる。このようにして製造された注射剤は、処置を必要とするヒト患者に対し、1回の投与において 1kg 体重あたり、 $1\mu\text{g}$ ～ 100mg の割合で、好ましくは $50\mu\text{g}$ ～ 50mg の割合で、1日あたり1回～数回投与することができる。投与の形態としては、静脈内注射、皮下注射、皮内注射、筋肉内注射、腹腔内注射、腹膜注射、脳脊髄注射、あるいは局所注射のような医療上適当な投与形態が例示できる。好ましくは静脈内注射または局所注射であるが、癌の骨転移部位、骨疾患部位(骨溶解部位、骨破壊部位、骨折部位など)または口腔(歯周、歯肉、歯茎など)への局所注射も好ましい態様の1つである。

【0055】本発明のモノクローナル抗体または医薬組

成物は、PTHrPに起因する可能性を有する種々の疾患または症状の治療または予防への適用が可能である。当該疾患または症状としては、副甲状腺ホルモン関連タンパク依存的な骨からのカルシウムの放出に起因する疾患(高カルシウム血症など)、悪性腫瘍(腎癌、肺癌、胃癌、乳癌、咽頭癌、食道癌、舌癌、前立腺癌、膀胱癌、悪性リンパ腫、皮膚癌、甲状腺癌、精巣癌、肝臓癌、脾癌、大腸癌、直腸癌、尿路上皮癌など)に伴う高カルシウム血症、関節リウマチ、変性性関節症、癌(扁平上皮癌細胞、腺癌細胞、黒色腫細胞、骨肉腫細胞、神経芽腫細胞、血液系癌細胞など)の骨転移、骨溶解、骨破壊、骨組織に存在する癌細胞の増殖、局所での副甲状腺ホルモン関連タンパクの産生に起因する疾患、原発性の局所癌に起因する症状(疼痛、神経圧迫、高カルシウム血症、骨折及び悪液質など)、歯、歯周若しくは歯肉等における疾患(歯槽膿漏、歯肉炎、歯周病など)、敗血症(sepsis)、全身性炎症応答症候群(SIRS)、及び低リン血症(低リン血性くる病、低リン血性ビタミンD抵抗性くる病など)などが挙げられる。また、本発明のヒトモノクローナル抗体は、原発性の局所癌に罹患している患者の延命にも適用可能である。

【0056】また、本発明のヒトPTHrPに反応性を有するヒトモノクローナル抗体及びその医薬組成物は、高カルシウム血症、並びに骨、歯及びカルシウム代謝異常に関連する疾患の治療剤として用いられている強力な骨吸収抑制作用を有するビスフォスフォン酸塩(ビスフォスフォネート)系化合物(例えば、バミドロン酸塩、エチドロン酸塩、リセドロン酸塩、ピロリン酸、クロドロン酸塩、チルドロン酸塩、アレンドロン酸塩、BM21.095

30 5、YM-175、CGP42446など)またはその水和物と併用して用いることにより、一連の癌関連症状と高カルシウム血症とを合わせて予防、治療することも可能である。ビスフォスフォン酸塩系化合物の投与は、例えば、体重 70kg の成人に対しては約 5 乃至 $25\text{mg}/\text{日}$ の投与量で行うことができるが、患者の体重、年齢及び健康状態に依存して適切な投与量を設定することができる。

【0057】また、本発明のモノクローナル抗体または医薬組成物の治療または予防効果については、常法に従って、インピリオ試験または既知の疾患モデル動物を用いたインビオ試験により検討することができる。副甲状腺ホルモン関連タンパク依存的な骨からのカルシウムの放出に対する抑制効果は、 ^{13}Ca を投与した妊娠マウスから生まれた新生仔の頭頂骨を、PTHrPと抗PTHrPモノクローナル抗体の存在下で培養し、培地中へ放出された ^{13}Ca の量を液体シンチレーションカウンターで測定することにより検討することができる。

【0058】悪性腫瘍により高カルシウム血症に対する治療効果は、既報と同様の方法、即ち、PTHrP産生ヒト腫瘍細胞を移植したヌードマウスに抗PTHrPモノクローナル抗体を投与し、血中カルシウムイオン濃度を測定す

ることにより検討できる (J. Bone and Min. Res., Vol. 1.8, p. 849-860, 1993)。悪性腫瘍に伴う骨溶解に対する治療効果は、例えば、エストロゲン非依存性ヒト乳癌細胞MDA-MB-231または黒色腫細胞A375を心臓の左心室に投与（または移植）されたヌードマウスに抗PThrPモノクローナル抗体を投与し、骨溶解（骨障害）の程度をX線検査によって観察することにより検討することができる (J. Clin. Invest., Vol. 98, p. 1544-1549, 1996; Cancer Res., Vol. 52, p. 5395-5399, 1992; J. Bone Min. Res., Vol. 8, Suppl. 1, No. 92, 1993)。

【0059】癌の骨転移に対する治療効果は、前記既報のモデルを用いX線検査により同時に検討することができる (J. Clin. Invest., Vol. 98, p. 1544-1549, 1996)。関節リウマチ (Rheumatoid Arthritis) 及び変形性関節症 (Osteoarthritis) に対する治療効果は、既報に詳述される種々の関節症モデルを用いて検討することができる（生物薬科学実験口座、「12 炎症とアレルギー」、I-2, p. 153-193, 1993、廣川書店）。

【0060】敗血症 (sepsis) または全身性炎症応答症候群 (SIRS) に対する治療効果は、抗PThrPモノクローナル抗体を前投与したマウスに、敗血症の起因物質の一つであり細菌の構成成分であるLPS（リポ多糖）を投与し、その炎症反応及び致死性を分析・観察することにより検討することができる（国際特許出願公開WO96/39184号公報）。悪性腫瘍による高カルシウム血症等の患者で見られる低リン血症に対する治療効果は、PThrP産生ヒト腫瘍細胞を移植することにより高カルシウム血症を惹起させたヌードマウスに抗PThrPモノクローナル抗体を投与し、膀胱に挿入したカニューレを通じて採取した抗体投与前後の尿、並びに血液中に含まれるリン濃度を測定することにより検討することができる（国際特許出願公開WO98/13388号公報）。

【0061】

【実施例】以下、実施例を以て本発明をさらに詳細に説明するが、本発明が該実施例に記載される態様のみに限定されるものではないことは言うまでもない。

【0062】実施例1 ヒト抗体産生トランスジェニックマウスの作製

前述したノックアウトマウス及びトランスジェニックマウスの作製において慣用される遺伝子工学技術を基礎として、既報の方法に従ってイムノグロブリンクラスがIgG/ κ であるヒト免疫グロブリンを産生するヒト抗体産生トランスジェニックマウスを製造した (Nature Genetics, Vol. 7, p. 13-21, 1994; Nature Genetics, Vol. 1.5, p. 146-156, 1997; 特表平4-504365号公報; 特表平7-509137号公報; 日経サイエンス、6月号、第40～第50頁、1995年; 国際出願公開WO94/25585号公報; Nature, Vol. 368, p. 856-859, 1994; 及び特表平6-500233号公報など)。このヒト抗体産生トランスジェニックマウスを後述の実施例で用いた。

【0063】実施例2 ヒトPThrP部分ペプチドの調製

<2-1> ヒトPThrP(1-34)-KLHの調製

ヒトPThrPのN末端1-34の配列 (PThrP(1-34)、配列番号1のアミノ酸番号1乃至34、ペプチド研究所(製)) に、コンジュゲーション緩衝液 (5ml (0.1MのMES, 0.9MのNaCl, pH4.7) 中に3.2mgとなるように調製) とKLH (keyhole limpet hemocyanin, 20mg/2ml H₂O, ピアース (PIERCE社製) を混和し、EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide, 35mg) を加え、室温で攪拌しながら3時間反応させた。反応溶液を、リン酸緩衝液で3回透析 (300mlで3時間、600mlで15時間、500mlで2時間) し、リン酸緩衝液で洗浄し、PThrP(1-34)-KLHコンジュゲート (2.7mg/ml) を調製した。得られたPThrP(1-34)-KLHを後述の実施例に述べるヒト抗体産生マウスの免疫感作における抗原（免疫原）として用いた。

<2-2> ヒトPThrP(1-39)-Cys-KLHの調製

ヒトPThrPの1-39の配列 (PThrP(1-39)、配列番号1のアミノ酸番号1乃至39) のC末端にシステインを付加させた配列PThrP(1-39)-Cys (5mg, ペプチド研究所(製)) を、リン酸緩衝液 (1ml) に溶かし、マレイミド活性化KLH (10mg/ml, PIERCE社製) を加え、室温で3.5時間反応させた。反応溶液をリン酸緩衝液で透析し、PThrP(1-39)-Cys-KLHコンジュゲート (1.65mg/ml) を調製した。得られたPThrP(1-39)-Cys-KLHを後述の実施例に述べるヒト抗体産生マウスの免疫感作における抗原（免疫原）として用いた。

【0065】実施例3 ヒトPThrPcに対するヒトモノクローナル抗体の調製

本実施例におけるモノクローナル抗体の作製は、実験医学(別冊)細胞工学ハンドブック(黒木登志夫ら編集、羊土社発行、第66～第74頁、1992年)及び單クローン抗体実験操作入門(安東民衛ら著作、講談社発行、1991年)等に記載されるような一般的方法に従って調製した。免疫原としてのヒトPThrPは、実施例2で調製したPThrP(1-34)-KLHまたはPThrP(1-39)-Cys-KLHのいずれかを用いた。被免疫動物は、実施例で作製したIgG/ κ ヒト免疫グロブリンを産生するヒト抗体産生トランスジェニックマウスを用いた。なお、細胞培養操作は、マルチウェルマイクロプレートを用いて行った。

【0066】ヒト抗体産生トランスジェニックマウス (30匹) の各々に、PThrP(1-34)-KLH (50 μ g/匹) を、完全フロイントアジュvant (Complete Freund's Adjuvant) とともにフッドバッド内注射することにより初回 (0日) 免疫した。初回免疫から1週間毎に同抗原 (同量。但し完全フロイントアジュvantなし) をフッドバッド内注射により4回以上追加免疫し、さらに以下に述べる脾臓細胞及びリンパ節細胞の取得の4日及び3日前にPThrP(1-34) (50 μ g/匹) を同様にして免疫した。各々の動物から脾臓及びリンパ節を外科的に取得し、各々の組織から回収した脾臓細胞及びリンパ節細胞

をマウスミエローマP3/X63-AG8.653 (ATCC No.: CRL1580)と5:1で混合し、融合剤としてポリエチレングリコール4000またはポリエチレングリコール1500 (Boehringer Mannheim社製)を用いて細胞融合させることにより多数のハイブリドーマを作製した。ハイブリドーマの培養は、10%のウシ胎児血清 (Fetal Calf Serum, FCS)とアミノブテリンを含有するHAT含有EX-CELL620-HSF培地 (JRH Bioscience社製) 中で培養することにより行った。抗ヒトPTHRPヒトモノクローナル抗体を產生するハイブリドーマクローンの選択 (スクリーニング) 及び各々のハイブリドーマが產生するヒトモノクローナル抗体の特徴付けは、後述するELISAにより測定することにより行った。

【0067】実施例4 ヒトモノクローナル抗体產生ハイブリドーマのELISAによるスクリーニング
以下に述べる4種類のELISAにより、ヒト免疫グロブリン重鎖 (hIgH) 及びヒト免疫グロブリン軽鎖 κ を有し、かつヒトPTHRPに特異的な反応性を有するヒトモノクローナル抗体を產生する多数のハイブリドーマを得た (表1及び表2)。なお、本実施例を含め以下のいずれの実施例中、並びに当該実施例における試験結果として示した表または図中においては、各々の本発明のヒト抗ヒトPTHRPモノクローナル抗体を產生するハイブリドーマク

ローンを記号を用いて命名した。以下のハイブリドーマクローンは親クローンを表わす: 1A12, 12A7, 1B3, 1B4, 4B4, 5B12, 1C1, 1C11, 5C5, 1D2, 2D10, 15D9, 5E6, 16E12, 2F8, 11F11, 13F7, 1G7, 2G4, 3G4, 4G4, 16G5, 及び15H7。ここで、クローン16G5は、前記実施例においてPTHRP(1-39)-Cys-KLHを免疫することにより得られたクローンである。また、上記各々の親クローンからサブクローニングされたハイブリドーマクローンは、その親クローン名の次にさらなる番号を付加することによって命名した。また、ID5及びID11は、後述のELISAにおいて対照として用いたマウス抗ヒトPTHRPモノクローナル抗体である。ID5はヒトPTHRP(1-34)に特異的なマウスモノクローナル抗体であり、ID11はヒトPTHRP(37-67)に特異的なマウスモノクローナル抗体である (Clin. Chem., Vol. 37, No. 10, p. 1781, 1991; J. Immunol. Methods, Vol. 146, p. 33-42, 1992; Clin. Chem., Vol. 37, No. 5, p. 678, 1991; J. Immunol. Methods, Vol. 127, p. 109, 1990)。ID5及びID11とともに、後述のELISAにおいて陽性である。また後述のPTHRP依存的細胞内CAM Pの上昇に対する抑制試験においては、ID5は抑制活性を有するが、ID11は抑制活性を有しない。

【0068】

【表1】

表 1

抗体クローニ名	種々ELISAによる測定結果			
	hIgH(Fc)の検出 (蛍光強度)	hIgL(κ)の検出 (吸光度)	N-Bio-PTHrP(1-34) に対する反応性 (蛍光強度)	C-Bio-PTHrP(1-39)-Cys に対する反応性 (蛍光強度)
ID5 (100ng/ml) (positive control)	448~2371	0.04~0.05	389~1730	700~1640
1B3	1508	4.00	1707	1712
12A7-1	1638	3.68	1485	1870
12A7-8	1253	3.89	1002	1391
12A7-9	1360	3.83	1133	1423
1B3-1	1218	3.71	1133	1483
1B3-6	1176	3.96	1186	1411
1B3-9	1223	3.68	1135	1385
1B4-7	1189	3.86	1147	1546
1B4-10	1155	3.81	1155	1462
11F11	1078	3.14	685	1252
1C1	1162	3.62	1267	1340
2D10	1192	3.94	1271	1331
15D9	1124	3.46	1184	1353
3G4	1122	4.11	1279	1357
2F8	1162, 1135	3.81, 3.91	1282, 1316	1371, 1457
4B4	1133	4.09	1256	1438
15H7	1133	4.00	1375	1450
1D2	1138	3.87	1366	1480
1C11-6	1081	3.20	1286	1452

[0069]

【表2】

表 2

抗体クローニ名	種々ELISAによる測定結果			
	hIgH(Fc)の検出 (蛍光強度)	hIgL(×)の検出 (吸光度)	N-Bio-PTHrP(1-34) に対する反応性 (蛍光強度)	C-Bio-PTHrP(1-39)-Cys に対する反応性 (蛍光強度)
ID5 (100ng/ml) (オージタイプコントロール)	448~2371	0.04~0.05	389~1730	700~1640
1C11-12	1118	3.38	1275	1461
1C1-3	1391	3.75	1761	1750
1C1-13	2348	3.14	1996	2135
1SD9-13	1640	3.83	1640	1704
1SD9-9	1454	3.81	1518	1644
1SD9-2	1634	3.48	1521	1633
2G4	1760	3.89	1550	1629
5B12	1748	3.92	1576	1689
16E12	1783	3.94	1637	1645
4G4-14	1667	4.00	1630	1734
1A12	1405	4.00	1559	1688
1G7	1394	4.00	1355	1595
16E12-5	1424	4.00	1515	1604
3G4-9	1472	4.00	1585	1342
16E12-11	1478	4.00	1619	1712
3G4-3	1427	4.00	1554	1666
3G4-7	1501	4.00	1738	1795
1G7-1	1231	4.20	1298	1498
16E12-6	971	4.00	1252	1340
1G7-16	960	4.00	1139	1314

【0070】それらの内の1つのハイブリドーマクローニ1B3-9-16を、平成10年6月16日付で通商産業省工業技術院生命工学工業技術研究所に国際寄託した（国際寄託番号FERM BP-6390）。

【0071】<4-1> ヒト免疫グロブリン重鎖(IgH)を有するモノクローナル抗体の検出

ヒトPTHrP(1-34)とオバルブミン(OVA、シグマ社製)とからなるコンジュゲート(ヒトPTHrP(1-34)-OVA: 25~50μg/ml, 50μl/ウェル)を、ELISA用96穴マイクロプレート(SUMILON社製)の各ウェルに加え、室温で2時間インキュベートし、ヒトPTHrP(1-34)-OVAをマイクロプレートに吸着させた。次いで、上清を捨て、0.05%Tween 20含有リン酸緩衝液(PBS-T)で3回洗浄後、各ウェルにブロッキング試薬(100μl, 0.5%ウシ血清アルブミン(BSA)を含有するPBS-T)を加え室温で1.5時間インキュベートし、ヒトPTHrP(1-34)-OVAが結合していない部位をブロックした。各ウェルを、PBS-Tで3回洗浄した。このようにして、各ウェルをヒトPTHrP(1-34)-OVAでコーティングしたマイクロプレートを作製した。

【0072】各ウェルに、各々のハイブリドーマの培養

上清(50μl)を加え、室温下で2時間反応させた後、各ウェルを、PBS-Tで3回洗浄した。次いで、ビオチン(Biotin)で標識したヤギ抗ヒトIgG(Fc)抗体(EY Laboratories社製)をPBS-Tで1,000倍に希釈した溶液(50μl/ウェル)を、各ウェルに加え、室温下1時間インキュベートした。マイクロプレートを、PBS-Tで3回洗浄後、2mMのMgCl₂を含むPBS-Tで10,000倍に希釈したストレプトアビシン-β-ガラクトシダーゼ(Streptavidin-β-galactosidase, 50μl/ウェル、Gibco BRL社製)40を各ウェルに加え、室温下で1時間インキュベートした。

【0073】マイクロプレートを、PBS-Tで4回洗浄後、基質緩衝液(100mMのNaCl, 1mMのMgCl₂, 10mMのリノ酸緩衝液(Na及びKを含有)、BSA(1mg/ml))(pH7.0)で希釈した5mg/mlの4-メチル-ウンベリフェリル-β-D-galactoside(4-Methyl-umbelliferyl-β-D-galactoside, 100μl/ウェル、Sigma社製)を各ウェルに加え、室温下で20分間インキュベートした。各ウェルに、2MのNa₂CO₃(21.2g/200ml, 50μl/ウェル)を50加え、反応を止めた。波長460nm(励起: 355nm)での蛍

光強度をフルオロスキヤンマイクロプレートリーダー（Labsystems/大日本社製）で測定した。なお、対照の抗ヒトPTHRPモノクローナル抗体として、ヒトPTHRP(1-34)に特異的なマウスモノクローナル抗体1D5 (100ng/ml) (Clin. Chem., Vol.37, No.10, p.1781, 1991; J. Immunol. Methods, Vol.146, p.33-42, 1992; Clin. Chem., Vol.37, No.5, p.678, 1991; J. Immunol. Methods, Vol.127, p.109, 1990) を用いた。本対照の試験においては、ビオチン標識抗体として、ビオチン標識ヤギ抗マウスIgG(H+K)抗体（アメリカン・コレックス社製）を用いた。

[0074] <4-2> ヒト免疫グロブリン軽鎖κ(IgL κ)を有するモノクローナル抗体の検出
 ヒトPTHRP(1-34)とオバルブミン(OVA、シグマ社製)とからなるコンジュゲート(ヒトPTHRP(1-34)-OVA; 1.25 μg/ウェル)を、ELISA用96穴マイクロプレート(Nunc-Immuno Plate、カタログNo.#439454)の各ウェルに加え、室温で2時間インキュベートし、PTHRP(1-34)をマイクロプレートに吸着させた。次いで、上清を捨て、リン酸緩衝液(PBS)で洗浄後、各ウェルにブロッキング試薬(200μl、0.5%OVAを含有する緩衝液)を加え室温で2時間インキュベートし、ヒトPTHRP(1-34)-OVAが結合していない部位をブロックした。各ウェルを、0.05%Tween20を含有するリン酸緩衝液(PBS、200μl)で3回洗浄した。このようにして、各ウェルをヒトPTHRP(1-34)-OVAでコーティングしたマイクロプレートを作製した。

【0075】各ウェルに、各々のハイブリドーマの培養上清(50μl)を加え、2時間反応させた後、各ウェルを、0.05%Tween20を含有するリン酸緩衝液(200μl)で3回洗浄した。次いで、各ウェルに、過酸化酵素(Peroxidase)で標識したヤギ抗ヒトIgκ抗体(1,000倍希釈、50μl/ウェル、PROTOS社製、カタログNo.726)を加え、室温下で1時間インキュベートした。マイクロプレートを、0.05%Tween20を含有するリン酸緩衝液で3回洗浄後、基質緩衝液(100μl/ウェル；クエン酸/リン酸緩衝液(pH5.0, 50ml)、オルトフェニレンジアミン(O-Phenylenediamine, OPD; 20mg)、30%過酸化水素水(15μl))を各ウェルに加え、室温下で20分間インキュベートした。

〔0076〕次いで、2M硫酸(50μl)を各ウェルに加え、反応を止めた。波長490nmでの吸光度をフルオロスキャンマイクロプレーリーダー(Labsystems/大日本社製)で測定した。なお、対照の抗ヒトPTHRPモノクローナル抗体として、ヒトPTHRP(1-34)に特異的なマウスマノクローナル抗体1D5(100ng/ml)(Clin. Chem., Vol.37, No.10, p.1781, 1991; J. Immunol. Methods, Vol.146, p.33-42, 1992; Clin. Chem., Vol.37, No.5, p.678, 1991; J. Immunol. Methods, Vol.127, p.109, 1990)を用いた。本対照の試験においては、2次抗体と

38

〔0077〕<4-3> N-Bio-PTHrPを用いたヒト PTHrPに対する反応性の検出

に対する反応性の検出
リン酸緩衝液で希釈したヤギ抗ヒト IgG(Fc)抗体(2.4μg/ml, 50μl/ウェル, Organon Teknika社製)を、ELISA用96穴マイクロプレート(Nunc社製)の各ウェルに加え、室温で2時間インキュベートし、ヤギ抗ヒト IgG(Fc)抗体をマイクロプレートに吸着させた。次いで、上清を捨て、0.05%Tween20含有リン酸緩衝液(PBS-T)で3回洗浄後、各ウェルにブロッキング試薬(200μl, 0.5%ウシ血清アルブミン(BSA)を含有するPBS-T)を加え室温で2時間インキュベートし、ヤギ抗ヒト IgG(Fc)抗体が結合していない部位をブロックした。

【0078】各ウェルを、PBS-T (0.05%のTween20を含有するリン酸緩衝液、200μl) で3回洗浄した。このようにして、各ウェルをヤギ抗ヒト IgG(Fc)抗体でコーティングしたマイクロプレートを作製した。各ウェルに、ブロッキング試薬で希釈した各々のハイブリドーマの培

20 養上清 ($50\mu l$) を加え、室温下で2時間反応させた後、各ウェルを、PBS-Tで3回 洗浄した。次いで、アミノ末端(N末)をビオチン(Biotin)で標識したヒトPT HRP(1-34)(以下、N-Bio-PTHRP(1-34)と称する場合もある。Peninsula Laboratories社製)のブロッキング試薬希釈溶液(100ng/ml , $50\mu l$ /ウェル)を、各ウェルに加え、室温下で2時間インキュベートした。

【0079】インキュベーションの後、マイクロプレートを、PBS-Tで3回洗浄後、2 mMのMgCl₂を含むプロッキング試薬で10,000倍に希釈したストレブトアビシン-β-ガラクトトシダーゼ (Streptoavidin-β-D-galactosidase, 5.0 μl/ウェル、Gibco BRL社製) を各ウェルに加え、室温下で1時間インキュベートした。マイクロプレートを、PBS-Tで3回洗浄後、基質緩衝液 (100 mMのNaC1, 1 mMのMgCl₂, 10 mMのリン酸緩衝液 (Na及びKを含有)、BSA(1 mg/ml)) (pH7.0) で希釈した5 mg/mlの4-メチル-ウンベリフェリル-β-D-ガラクトシド (4-Methyl-umbelliferyl-β-D-galactoside, 100 μl/ウェル、Sigma社製) を各ウェルに加え、室温下で20分間インキュベートした。各ウェルに、2 mMのNa₂CO₃ (21.2

40 a/200ml、50μl/ウェル)を加え、反応を止めた。波長
460nm(励起:355nm)での蛍光強度をフルオロスキャン
マイクロプレートリーダー(Labsystems/大日本社製)
で測定した。なお、対照の抗ヒトPTHRPモノクローナル
抗体として、ヒトPTHRP(1-34)に特異的なマウスモノク
ローナル抗体1D5(100ng/ml)(Clin. Chem., Vol. 3
7, No. 10, p. 1781, 1991; J. Immunol. Methods, Vol. 1
46, p. 33-42, 1992; Clin. Chem., Vol. 37, No. 5, p. 67
8, 1991; J. Immunol. Methods, Vol. 127, p. 109, 199
0)を用いた。本対照の試験においては、コーティング
50 抗体として、ヤギ抗マウスIgG(Fc)抗体(Organon Tekn)

ka社製)を用いた。

【0080】<4-4> C-Bio-PTHrPを用いたヒトPTHrPに対する反応性の検出

前記実施例<4-3>で使用したN-Bio-PTHrP(1-34)の代りに、カルボキシル末端(C末)を同様にしてビオチンで標識したC-Bio-PTHrP(1-39)-Cys(CysのSH基を介してビオチンと結合している)を標識抗原として用いる以外は、前記実施例<4-3>と同様にして行った。

【0081】実施例5 交叉反応性の確認

前記実施例<4-2>において用いたヒトPTHrP(1-34)-OVA及びヤギ抗ヒトIgκ抗体の代りに、各々ヒトPTH(1-34)(配列番号2)及びヤギ抗ヒトIgH(Fc)抗体を用いること以外は全て同様の操作を行う過酸化酵素(Peroxidas*

* e) 標識ELISAにより、前記実施例で得た種々のハイブリドーマが产生するヒト抗ヒトPTHrPモノクローナル抗体のヒトPTHに対する反応性を検討した。なお、比較のために、各々のヒト抗ヒトPTHrPモノクローナル抗体のヒトPTHrPに対する反応性を、前記実施例<4-2>において用いたヤギ抗ヒトIgκ抗体の代りにヤギ抗ヒトIgH(Fc)抗体を用いること以外は全て同様の操作を行う過酸化酵素標識ELISAにより測定した。表3に示したとおり、いずれのヒト抗ヒトPTHrPモノクローナル抗体も、ヒトPTHrPのみに特異的な反応性を示し、ヒトPTHには反応性を有しないことが確認された。

【0082】

【表3】

表3

抗体クローニ名	交叉反応性の検出(吸光度)		抗体クローニ名	交叉反応性の検出(吸光度)	
	ヒトPTHrPへの反応性	ヒトPTHへの反応性		ヒトPTHrPへの反応性	ヒトPTHへの反応性
1B3	4.00	0.125	1C11-12	4.00	0.112
12A7-1	4.183	0.121	1C1-3	4.00	0.154
12A7-8	4.00	0.087	1C1-13	4.00	0.108
12A7-9	4.078	0.109	15D9-13	4.128	0.122
1B3-1	4.00	0.078	15D9-9	4.00	0.129
1B3-6	4.00	0.111	15D9-2	4.00	0.118
1B3-9	4.00	0.079	2G4	4.00	0.154
1B4-7	4.00	0.165	5B12	4.197	0.137
1B4-10	4.00	0.114	16E12	4.195	0.166
11F11	4.00	0.118	1A12	4.00	0.134
1C1	4.00	0.107	1G7	4.00	0.135
2D10	4.00	0.123	16E12-5	4.00	0.161
15D9	4.00	0.106	3G4-9	4.00	0.105
3G4	4.00	0.091	16E12-11	4.00	0.165
2F8	4.00	0.098	3G4-3	4.00	0.137
4B4	4.00	0.106	3G4-7	4.00	0.146
15H7	4.00	0.124	1G7-1	4.00	0.174
1D2	4.00	0.155	16E12-6	4.00	0.131
1C11-6	4.00	0.111	1G7-16	4.00	0.114

【0083】実施例6 モノクローナル抗体の精製

後述のインピリト試験に用いるために、実施例4で取得した各々のハイブリドーマの培養上清からヒトモノクローナル抗体を下記のようにして精製した。各ハイブリド

ーマの抗体産生量(μg/ml)を表4に示した。

【0084】

【表4】

表4

抗体クローニ名	抗体産生量 (μ g/ml)	抗体クローニ名	抗体産生量 (μ g/ml)
1B3	7.5	1C11-12	9.3
12A7-1	27.8	1C1-3	22.2
12A7-8	12.7	1C1-13	4.5
12A7-9	31.6	15D9-13	7.8
1B3-1	16.7	15D9-9	9.3
1B3-6	45.0	15D9-2	6.3
1B3-9	10.7	2G4	30.3
1B4-7	16.3	5B12	26.7
1B4-10	30.7	16E12	44.8
11F11	3.4	1A12	19.0
1C1	7.6	1G7	33.5
2D10	17.5	16E12-5	51.1
15D9	5.5	3G4-9	22.2
3G4	9.6	16E12-11	53.8
2F8	23.7	3G4-3	48.7
4B4	30.8	3G4-7	40.6
15H7	24.9	1G7-1	12.1
1D2	67.9	16E12-6	36.1
1C11-6	5.5	1G7-16	13.0

【0085】10%のウシ胎児血清 (Fetal Calf Serum, FCS) とアミノブテリンを含有するHAT含有EX-CELL L-620-HSF培地 (JRH Bioscience社製) 中で培養した各々のハイブリドーマの培養上清 (30~40ml/50mlチューブ) を加え、吸着緩衝液 (20mMのKH₂PO₄, 180mMのNa₂HP_O₄ 及び154mMのNaCl, pH7.6) 並びに組換えプロテインA (rProtein A Fast Flow, 0.2ml, IgG吸着量: 35mg/ml ゲル、ファルマシア社製) を加え、15°Cで5時間攪拌することにより、各々の培養上清中に含まれる抗体をProtein Aに吸着させた。各々のチューブを遠心分離 (3,000 rpm, 10分) した後、遠心上澄を捨て、緩衝液 (20mMのNaPi, 150mMのNaCl, pH6.0) (10ml) を添加し、培養上清中に含まれるウシIgGを溶出させた。遠心分離 (3,000 rpm, 10分) した後、遠心上澄 (ウシIgGが溶出されている) を捨て、緩衝液 (20mMのNaPi, 150mMのNaCl, pH6.0) (10ml) を添加した後、さらに遠心分離 (3,000rpm, 10分) した。この遠心後、遠心上澄を捨て、遠心残渣に緩衝液 (20mMのNaPi, 150mMのNaCl, pH6.0) (0.65ml) を2回加え混和した後、1.5mlマイクロチューブに移した。

【0086】各々のマイクロチューブについて、以下の操作を1乃至3回行い、ヒト抗ヒトPTHRPモノクローナル抗体の精製物を得た。各々のマイクロチューブを遠心分離 (14,000rpm, 2分) し、上澄を捨て、溶出緩衝液 (77mMのNa₂HPO₄, 67mMのクエン酸, 150mMのNaCl, pH3.

8) (0.9ml) を加え、攪拌後さらに遠心分離 (1400rpm, 2分) した。遠心上澄をフィルターで濾過した後、中和緩衝液 (500mMのNa₂HPO₄, 50mMのKH₂PO₄, pH8.7) (0.1mlまたは0.2ml) 中に注入し溶出画分を得た。得られた溶出画分を、リン酸緩衝液で透析し、ヒト抗ヒトPTHRPモノクローナル抗体の精製物を得た。

【0087】実施例7 ヒト抗ヒトPTHRPモノクローナル抗体によるPTHRP依存的細胞内cAMPの上昇の抑制 PTHRPのPTH様作用としては、例えば、骨では骨芽細胞に作用してアデニレートシクラーゼ (AC) やフォスフォリバーゼC (PLC) を賦活化し破骨細胞性の骨吸収を誘導する作用、また腎臓ではサイクlickAMP (cAMP) やリン排泄を促進しカルシウムの再吸収を促進するという作用が挙げられる (Crit. Rev. Biochem. Mol. Biol., Vol. 26, No. 3-4, p. 377, 1991)。cAMPは、細胞表面に作用するホルモンや神経伝達物質などの細胞外からの情報 (第1メッセンジャー) を細胞内に伝達する役割を有する第2メッセンジャーとしての役割を担っており、該ホルモンやアミンなどの種々の第1メッセンジャーによるシグナルに依存して、その産生が上昇し、細胞内の引き続く反応を制御する。

【0088】本試験では、前記で得た種々のヒト抗ヒトPTHRPモノクローナル抗体の、ヒトPTHRPの作用の制御のために機能的に働く活性の有無を、PTHRP依存的な細胞内cAMPの産生の上昇に対する抑制効果を指標として検討

した。10%ウシ胎児血清（FCS）含有RPMI1640培地を含む24穴マイクロタイターブレートにラット骨肉腫細胞株UMR106 (ATCC CRL-1661) (1×10^4 個／ウェル) を播種し3日間培養した。各ウェルをRPMI1640培地で洗浄した後、修飾RPMI1640培地 (PPMI1640培地100ml中に、0.1%ウシ血清アルブミン (BSA) を100mg、1mMのIBMX (cAMP分解酵素阻害作用を有する。シグマ社製) を22.2mgを含む) を1ml／ウェル濃度で加え、37°Cで20分培養した。培地を、ヒトPTHrP (10ng/ml) 及び各々のヒト抗ヒトPTHrPモノクローナル抗体 (0.3, 1.0または $5.0\mu g/ml$) を含有する10%FCS含有RPMI1640培地 (PTHrPと抗体添加して室温下1時間の前培養、0.5ml/ウェル) に交換し、37°Cで20分培養した。次いで培地を除いた後、cAMPを抽出操作として、3mM塩酸を含む95%エタノール (0.25ml/ウェル) を加え、4°Cで2時間処理することにより抽出液を回収し、1.5mlマイクロチューブに注入した。各上清サンプルを乾燥させた後、cAMP検出EIAキット (Amersham社製) を用いて該キットに添付の実験操作法に従って、各々の培養上清サンプル中に含まれるcAMPの量を測定した。

【0089】いずれのヒト抗ヒトPTHrPモノクローナル抗体を含まずヒトPTHrP(1-34)のみを含む培地を用いて同様にして培養した場合の結果を対照とした。なお、対照の抗ヒトPTHrPモノクローナル抗体として、ヒトPTHrP(1-34)に特異的なマウスモノクローナル抗体1D5 (ポジティブコントロール) 並びにヒトPTHrP(37-67)に特異的なマウスモノクローナル抗体1D11 (ネガティブコントロール) (Clin. Chem., Vol.37, No.10, p.1781, 1991; J. Immunol. Methods, Vol.146, p.33-42, 1992; Clin. Chem., Vol.37, No.5, p.678, 1991; J. Immunol. Methods, Vol.127, p.109, 1990) を用いた。結果を図1乃至図8に示した。

【0090】この試験結果から、いずれのヒト抗ヒトPTHrPモノクローナル抗体を、PTHrP依存的細胞内cAMPの上昇を有意に抑制し、ヒトPTHrPの作用を機能的に抑制する活性を有していることが確認された。

【0091】実施例8 ヒト抗ヒトPTHrPモノクローナル抗体によるPTHrP依存的骨吸収の抑制

前述したとおり、PTHrPは、PTHと同様のPTH様作用、即ち、骨においては骨芽細胞に作用して（骨芽細胞による破骨細胞の活性化、骨有機質分解酵素の産生など）破骨

細胞性再吸収を促進し骨からカルシウムを动员するという骨吸収作用を有している (Brown, E.M., Homeostatic mechanisms regulating extracellular and intracellular calcium metabolism, in The parathyroids, p.19, 1994, Raven press, New York)。本試験では、前記で得た種々のヒト抗ヒトPTHrPモノクローナル抗体の、ヒトPTHrPの作用の制御のために機能的に働く活性の有無を、PTHrP依存的な骨吸収作用の抑制効果を指標として検討した。

- 10 【0092】妊娠15日目のICRマウス (4~8匹/抗体、日本チャールズリバー社製) に、 ^{14}C a放射性同位体 ($50\mu Ci/匹$) を皮下投与した。投与から7日後、新生仔 (6~7日齢) の左右の頭頂骨を無菌的に取りだし、BG-Jb培地 (Gibco BRL社製) 中で24時間前培養した。次いで、培地を捨て、ヒトPTHrPのN末端1-34の配列 (PTHrP(1-34)、配列番号1のアミノ酸番号1乃至34、ペブチド研究所 (製)) (10ng/ml) 並びに各々のヒト抗ヒトPTHrPモノクローナル抗体 (0.1, 1.0, 10または $100\mu g/ml$) を含むBG-Jb培地 (Gibco BRL社製) を加え培養した。48時間の培養後、前記と同濃度のヒトPTHrP(1-34)及びヒト抗ヒトPTHrPモノクローナル抗体を含む培地に交換し、さらに48時間培養した。培養後、培地中及び頭頂骨中 (2N塩酸で60°C24時間処理して溶解した) の各々に含まれる ^{14}C a量を液体シンチレーションカウンターを用いて測定した。
- 【0093】いずれのヒト抗ヒトPTHrPモノクローナル抗体を含まずヒトPTHrP(1-34)のみを含む培地を用いて同様にして培養した場合の結果を対照とした。なお、対照の抗ヒトPTHrPモノクローナル抗体として、ヒトPTHrP(1-34)に特異的なマウスモノクローナル抗体1D5 (ポジティブコントロール) 並びにヒトPTHrP(37-67)に特異的なマウスモノクローナル抗体1D11 (ネガティブコントロール) (Clin. Chem., Vol.37, No.10, p.1781, 1991; J. Immunol. Methods, Vol.146, p.33-42, 1992; Clin. Chem., Vol.37, No.5, p.678, 1991; J. Immunol. Methods, Vol.127, p.109, 1990) を用いた。結果を図9乃至図11に示した。また、骨吸収を50%阻害する抗体濃度 (IC₅₀) を表5に示した。
- 30 【0094】
40 【表5】

表5

抗体クローナル名	骨吸収促進活性の50%阻害濃度 IC ₅₀ (μg/ml)
ID5 (ポジティブコントロール)	0.2~1.0
2F8-10-3	1
1C1-3	2
1B3-9-16	3
15H7-8-3	3
16E12-6	3
5B12-16-12	3
4B4-6-21	4
3G4-3	4
2G4-12-20	8
1B4-10-13	11

【0095】実施例9 モノクローナル抗体の抗原に対する親和性及び中和活性の測定

前記実施例で作製された種々のヒト副甲状腺ホルモン関連タンパクに対するヒトモノクローナル抗体のヒト副甲状腺ホルモンとの結合速度定数 (k_a)、解離速度定数 (k_d) 並びに解離定数 (K_d) を、市販の測定キットであるBiacoreX (アマシャムファルマシア社製) を用いて測定した。なお、下記に述べる抗原のセンサーチップへの固定化以外の操作は、当該キットに添付の取扱説明書及び実験操作法に従って行った。センサーチップに固定化するヒト副甲状腺ホルモン関連タンパクは、前記実施例で作製したヒトPTHRP(1-39)-Cysを用いた。抗原のセンサーチップへの固定は、センサーチップの表面に被覆されているカルボシキメチルデキストラン (CM) が有するカルボキシル基に、リンカーを介してヒトPTHRP(1-39)-Cysのシステイン残基が有するメルカブト基 (SH基) と結合させることにより行われた。

【0096】キットに付随のフローセル1 (Flow Cell 1) に、0.01MのHEPES緩衝液 (0.15MのNaCl、3mMのEDTA 及び0.005%の界面活性剤P20を含有。pH7.4) を5 μl/分で流し、100 μlの0.05M NHS (N-Hydroxysuccinimide) /0.2M EDC (N-Ethyl-N'-(dimethylaminopropyl)carbodiimido) を添加し、センサーチップ表面に被覆されているCMのカルボキシル基を活性化させた。次いで、100 μlの80mM PDEA (2-(2-pyridinyl)dithio)ethaneamine) /0.1M ほう酸緩衝液 (pH8.5) を添加し、SH基の反応を受けるSS基を導入した。さらに、8 μlの1 μg/ml ヒトPTHRP(1-39)-Cys/10mM 酢酸ナトリウム緩衝液 (pHS.0) を添加することによりヒトPTHRP(1-39)-Cysをセンサー

チップに固定化した。固定化されたヒトPTHRP(1-39)-Cysの量は、45RU (resonance unit) であった。なお、未反応のSS基は、100 μlの50mM システイン/1M NaCl/0.1M 酢酸ナトリウム緩衝液 (pH4.3) を添加することによりブロックした。

【0097】リファレンスとしてのフローセル2 (Flow Cell 2) は、ヒトPTHRP(1-39)-Cysの代わりにシスティンを用いて上記と同様にしてキャッピングした。フローセルに、リン酸緩衝液を30 μl/分の流速で流し、前記実施例で作製した下記ハイブリドーマクローン由来の精製ヒトモノクローナル抗体 (20~60 μg/ml, 60 μl) または下記対照モノクローナル抗体を添加した。

<クローン> 2F8-10-3, 1C1-3, 1B3-9-16, 15H7-8-3, 16E12-6, 5B12-16-12, 4B4-6-21, 2G4-12-20、及び1B4-10-13

<対照抗体> ヒトPTHRP(1-34)に特異的なマウスモノクローナル抗体1D5 (Clin. Chem., Vol.37, No.10, p.1781, 1991; J. Immunol. Methods, Vol.146, p.33-42, 1992; Clin. Chem., Vol.37, No.5, p.678, 1991; J. Immunol. Methods, Vol.127, p.109, 1990)

測定は、結合相2分間及び解離相15分間を標準条件として行い、センサーグラムを得た。得られたセンサーグラムのデータに基づき、キットに付随の解析ソフト (BI Aeveluation3.1) を用いて、結合速度定数 (k_a)、解離速度定数 (k_d) 及び解離定数 (K_d) を算出した。結果を表6に示す。いずれのモノクローナル抗体も、極めて高い抗原親和性及び抗原中和活性を有していた。

【0098】

【表6】

表 6

抗体クローナー名	結合速度定数 k _a (1/M.Sec)	解離速度定数 k _d (1/Sec)	解離定数 K _d (M)
IDS (コントロール)	5.1×10^4	4.4×10^{-5}	8.6×10^{-10}
2F8-10-3	5.3×10^4	6.0×10^{-6}	1.1×10^{-10}
1C1-3	4.0×10^4	7.1×10^{-6}	1.8×10^{-10}
1B3-9-16	4.4×10^4	2.6×10^{-5}	5.9×10^{-10}
15H7-8-3	1.9×10^4	1.6×10^{-5}	8.4×10^{-10}
16E12-6	2.9×10^4	2.2×10^{-5}	7.6×10^{-10}
5B12-16-12	6.4×10^4	1.7×10^{-5}	2.7×10^{-10}
4B4-6-21	1.5×10^5	9.5×10^{-5}	6.3×10^{-10}
2G4-12-20	7.8×10^4	2.1×10^{-5}	2.7×10^{-10}
1B4-10-13	5.0×10^4	1.3×10^{-5}	2.6×10^{-10}

【0099】実施例10 追伝子配列及びアミノ酸配列の決定及び解析

前記実施例で作製された種々のヒト副甲状腺ホルモン関連タンパクに対するヒトモノクローナル抗体を構成する重鎖(Heavy Chain)の可変領域をコードするcDNA配列、並びに軽鎖(Light Chain)の可変領域及び定常領域をコードするcDNA配列を下記のようにして決定するとともに、該追伝子の構造的特徴を解析した。本実施例における配列解析の手順を図12に模式的に示した。前記実施例で作製したヒト副甲状腺ホルモン関連タンパクに対するヒトモノクローナル抗体を産生する下記ハイブリドーマ(各々約 5×10^7 細胞)を培養後、遠心分離し、沈殿物を回収し、後述するPolyA+RNAの抽出時まで-80°Cで保存した。<ハイブリドーマクローン>15H7-8-3、16E12-6、1B3-9-16、1B4-10-13、1C1-3、2F8-10-3、2G4-12-20、3G4-3、4B4-6-21、及び5B12-16-12。

【0100】各々のハイブリドーマからのPolyA+RNAの抽出、精製は、市販のFastTrack2.0kit(INVITROGEN製)を用いて次のようにして行った。前記各々の凍結細胞を、細胞溶解緩衝液(Lysis Buffer)に溶解し、POLYTRONにより細胞を破壊し、可溶化させた。該可溶化物を45°Cでインキュベーションした後、Oligo(dT) celluloseを加え約1時間緩やかに振盪した。次いで、Oligo(dT) celluloseを洗浄後、PolyA+RNAをElution Bufferで溶出させた。溶出したPolyA+RNAをエタノール沈殿させ、20μlのTris-EDTA緩衝液に溶解した。得られたPolyA+RNAの濃度を、260nmの波長での吸光度を測定することにより決定した。得られたPolyA+RNAを錆型とし、市販のMarathon cDNA Amplification Kit(CLONTECH製)を用いたRACE-PCR法により常法によりcDNAを合成した(「追伝子増幅PCR法・基礎と新しい展開」、1992年第2刷、共立出版株式会社発行、p.13-15)。即ち、各々のハイブリドーマから精製したPolyA+RNA(1乃至5μg)を錆型として、1st strand cDNA及び2nd strand cDNAを順次合成した。

該cDNAを、フェノール／クロロホルム／イソアミノアルコール並びにクロロホルムを用いて各々回すつ抽出に供した。次いで、cDNAをエタノール沈殿させ、アダプターDNA(配列番号43)に連結させた。得られたDNA反応物を1/250に希釈したものを錆型とし、合成プライマーを用いて常法によりPCRを行い抗体重鎖及び抗体軽鎖を各々コードするcDNAを調製した。抗体重鎖に係るPCRには、配列番号44に記載のプライマーを用いた。抗体軽鎖に係るPCRには、配列番号45に記載のプライマーを用いた。

【0101】各々のPCR産物をアガロースゲル電気泳動で分画し、DNAを回収した。得られた各々のcDNAの塩基配列の決定を、市販のDyeTerminator Cycle Sequencing FS Kit(PE-Applied Biosystems製)及びPRISM377 DNA Sequencer(PE-Applied Biosystems製)を用いて行った。なお、本配列決定のためのSequencing Primerは、前述のPCRにおいて使用したプライマーを使用した。さらに、得られた配列から適切なSequencing Primerを作成しさらに反応を実施した。前記の各々のハイブリドーマが産生するヒト副甲状腺ホルモン関連タンパクに対するヒトモノクローナル抗体の重鎖の可変領域をコードするcDNA配列、軽鎖(Light Chain)の可変領域及び定常領域をコードするcDNA配列、並びに該各々のcDNA配列から演繹されるアミノ酸配列を下記のとおり配列表に示した。

【0102】<クローン15H7-8-3>

(重鎖の可変領域)

DNA配列：配列番号23(シグナル配列：塩基番号1乃至57、V領域：塩基番号58乃至351、N領域：塩基番号352乃至354、D領域：355乃至369、N領域：370乃至373、J領域：374乃至429)

アミノ酸配列：配列番号24(シグナル配列：アミノ酸番号1乃至19、可変領域：アミノ酸番号20乃至117を含む)

アミノ酸配列：配列番号16（シグナル配列：アミノ酸番号1乃至20、可変領域：アミノ酸番号21乃至119を含む）

<クローン3G4-3>

（重鎖の可変領域）

DNA配列：配列番号37（シグナル配列：塩基番号1乃至57、V領域：塩基番号58乃至351、N領域：塩基番号352乃至354、D領域：355乃至369、N領域：370乃至373、J領域：374乃至429）

アミノ酸配列：配列番号38（シグナル配列：アミノ酸番号1乃至19、可変領域：アミノ酸番号20乃至117を含む）

（軽鎖の可変領域及び定常領域）

DNA配列：配列番号17（シグナル配列：塩基番号1乃至60、V領域：塩基番号61乃至359、J領域：塩基番号360乃至397、C領域：塩基番号398乃至717）

アミノ酸配列：配列番号18（シグナル配列：アミノ酸番号1乃至20、可変領域：アミノ酸番号21乃至119を含む）

<クローン4B4-6-21>

（重鎖の可変領域）

DNA配列：配列番号39（シグナル配列：塩基番号1乃至57、V領域：塩基番号58乃至347、N領域：塩基番号348乃至349、D領域：350乃至356、N領域：357、J領域：358乃至417）

アミノ酸配列：配列番号40（シグナル配列：アミノ酸番号1乃至19、可変領域：アミノ酸番号20乃至115を含む）

（軽鎖の可変領域及び定常領域）

DNA配列：配列番号19（シグナル配列：塩基番号1乃至60、V領域：塩基番号61乃至359、J領域：塩基番号360乃至397、C領域：塩基番号398乃至717）

アミノ酸配列：配列番号20（シグナル配列：アミノ酸番号1乃至20、可変領域：アミノ酸番号21乃至119を含む）

<クローン5B12-16-12>

（重鎖の可変領域）

DNA配列：配列番号41（シグナル配列：塩基番号1乃至57、V領域：塩基番号58乃至351、N領域：塩基番号352乃至354、D領域：355乃至369、N領域：370乃至373、J領域：374乃至429）

アミノ酸配列：配列番号42（シグナル配列：アミノ酸番号1乃至19、可変領域：アミノ酸番号20乃至117を含む）

（軽鎖の可変領域及び定常領域）

DNA配列：配列番号21（シグナル配列：塩基番号1乃至60、V領域：塩基番号61乃至359、J領域：塩基番号360乃至397、C領域：塩基番号398乃至717）

アミノ酸配列：配列番号22（シグナル配列：アミノ酸番号1乃至20、可変領域：アミノ酸番号21乃至119を含む）

む）

【0103】決定された各々のDNA配列を基に、遺伝子配列解析ソフトウェアを用いて、Tomlinsonらにより作成されたヒト免疫グロブリンの可変領域遺伝子のライブラリーV BASE Sequence (Immunol. Today, Vol.16, No.5, p.237-242, 1995) を検索した。その結果、重鎖V領域については、クローン4B4-6-21を除く9クローンが同一のV_κセグメントV3-30から構成されていた。クローン4B4-6-21は、セグメントV4.16から構成されていた。重鎖D領域については、クローン4B4-6-21を除く9クローンが同一のDセグメントDNAから構成されていた。クローン4B4-6-21は、セグメントDA1から構成されていた。重鎖J領域については、10クローン全てが同一のJ_κセグメントJH6から構成されていた。軽鎖V領域については、10クローン全てが同一のV_κセグメントDPK15から構成されていた。軽鎖J領域については、10クローン全てが同一のJ_κセグメントJ_κ3から構成されていた。軽鎖C領域については、10クローン全てがC_κから構成されていた。さらに、該10種類のヒトモノクローナル抗体の重鎖をコードするcDNA配列には、配列にも示したとおり、V領域とD領域の間、並びにD領域とJ領域の間にN領域(N-addition)を有していた。

【0104】実施例11 抗体フラグメントF(ab')_n及びFabの調製

前述のようにして調製した各種のヒト抗ヒトPTHRPモノクローナル抗体の抗体フラグメントF(ab')_n及びFabは、下記のようにして調製できる。モノクローナル抗体(5mM)を、20mMの酢酸ナトリウム緩衝液(pH3.5)に加え、37°Cで30分間インキュベートする。次いで、不溶化ペプシン(1mL、ピアス社製)を加え、ローターで回転させながら37°Cで12時間インキュベートする。反応液を回収し、遠心分離(3,000rpm、10分間)し、上澄を回収する。プロテインAアフィニティクロマトグラフィーを、プロテインAカラムキット(Amersham社製)のプロトコールに従って以下のようにして行う。遠心沈殿物に結合緩衝液を加え、遠心分離(3,000rpm、10分間)し、上澄を回収する。2回の遠心分離で回収した上澄を集め、等量の結合緩衝液を加え、さらに1Nの水酸化ナトリウムを加えてpH8.9に調整する。該混合溶液を、該結合緩衝液で平衡化した該プロテインAカラムに添加した後、該結合緩衝液(5mL)で2回洗浄し、溶出分画を回収する。得られた溶出分画を、5mMのリン酸緩衝液(2L、pH6.8)で透析(4°C、24時間)する。

【0105】さらなる精製のためヒドロキシアバタイトカラム(バイオラッド社製)を用いて、高速液体クロマトグラフィー(HPLC)を行う。透析により得られる溶液を、該ヒドロキシアバタイトカラムに添加し、5mMのリン酸緩衝液を15分間流した後、5mM~0.4Mのリン酸緩衝液で直線濃度勾配溶出させる。溶出液をフラク

ションコレクターで分取し、280nmでの吸光度を測定し、 $F(ab')$ を含む分画を回収する。得られた分画をリン酸緩衝液(2L)で透析(4°C、24時間)し、モノクローナル抗体の精製 $F(ab')$ を得る。上記方法に加え、次の別法によっても調製できる。即ち、モノクローナル抗体を、市販のペブシンを結合させたマイクロビーズと混合し反応させた後、遠心分離により上澄を回収する。当該上清を、市販のプロテインAを結合させたマイクロビーズ(例えが、ピアス社製)に加え、溶出液を回収する。この溶出液を、 $F(ab')$ 溶液とする。

【0106】実施例12 抗ヒトPTHRPヒトモノクローナル抗体によるPTHRP誘導性高カルシウム血症の治療効果

前述したとおり、PTHRPは、PTHと同様のPTH様作用、即ち、骨においては骨芽細胞に作用して(骨芽細胞による破骨細胞の活性化、骨有機質分解酵素の産生など)破骨細胞性再吸収を促進し骨からカルシウムを動員するという骨吸收作用を有している(Brown, E.M., Homeostatic mechanisms regulating extracellular and intracellular calcium metabolism, in The parathyroids, p.19, 1994, Raven press, New York)。しかしながら、前述したように、癌患者においては、腫瘍細胞が大量に分泌するPTHRPによりしばしば引き起こされる腫瘍依存性高カルシウム血症のように、過剰なPTHRPの産生は、高カルシウム血症を引き起す。本試験では、前記で得た種々のヒト抗ヒトPTHRPモノクローナル抗体の高カルシウム血症の治療効果を、PTHRPを投与することにより人為的に作製した高カルシウム血症モデルマウスを用いて検討した。

【0107】一晩絶食させた正常CRJ ICRマウス(5週齢、雄、約300匹、日本チャールズリバーソー製)の各々について、眼底採血を行い、血中カルシウム濃度を測定することにより10匹ずつに群分けした。血中カルシウム濃度は、634型自動Ca²⁺/PHアライザーを用いて測定した。眼底採血から3時間後、該マウス(各群10匹)の各々に、ヒト抗ヒトPTHRPモノクローナル抗体(2F8-10-3、1B3-9-16、15H7-8-3、5B12-16-12若しくは4B4-6-21のいずれか。濃度: 3、10若しくは30mg/kg)、または陽性対照としてのマウス抗ヒトPTHRPモノクローナル抗体1D5(濃度: 1または3mg/kg)を静脈内投与し、さらにその直後にヒトPTHRPのN末端1-34の配列(PTHRP(1-34)、配列番号1のアミノ酸番号1乃至34、ペブチド研究所(製))(0.1μg/body)を皮下投与した。該PTHRPの投与から1時間後、各々のマウスについて眼底採血を行い、前記と同様にして血中カルシウム濃度を測定した。なお、前記と同様にして下記の対照実験を行った。

(1) 眼底採血から3時間後にリン酸緩衝液を静脈内投与し、その直後に生理食塩水を皮下投与した場合。

(2) 眼底採血から3時間後にリン酸緩衝液を静脈内投

与し、その後に前記PTHRP(0.1μg/body)を皮下投与した場合。

結果を、図13乃至図17に示した。この試験から、本発明のいずれのヒト抗ヒトPTHRPモノクローナル抗体も、PTHRP誘導性の高カルシウム血症に対して有意な抑制及び治療効果を有していることが示された。

【0108】実施例13 抗ヒトPTHRPヒトモノクローナル抗体による腫瘍隨伴性悪性高カルシウム血症の治療効果

- 10 癌患者においてしばしば見られる腫瘍隨伴症候群(para neoplastic syndrome)としては悪性高カルシウム血症(malignancy-associated hypercalcemia (MAH))が代表的である。MAHの多くは、進行性であり且つ重篤である。MAHは、腫瘍から產生される液性因子の全身性作用によりもたらされる悪性の液性高カルシウム血症(humoral hypercalcemia of malignancy (HHM))と、腫瘍の骨への直接浸潤(骨転移)により骨吸収が亢進すること(骨破壊、骨溶解)によりもたらされる局所性骨融解性高カルシウム血症(local osteolytic hypercalcemia (LOH))に大別される。LOHは、癌の広範な骨転移に基づくものが主であり骨病変に伴う二次的なものと考えられるが、腫瘍が產生するPTHRPが局所の骨破壊(骨溶解)に寄与している場合もある。一方、HHMは、癌に伴う高カルシウム血症の約90%近くを占め(N. Engl. J. Med., Vol. 300, p.1377, 1980)、その主要な原因物質は腫瘍が分泌するPTHRPの作用によることが明らかにされつつある(Am. J. Clin. Pathol., Vol. 105, p.487, 1996)。PTHRP産生によるHHMは、あらゆる組織にわたる各種癌において見られるが、特に扁平上皮癌(肺、食道、子宫頸部、外陰部、皮膚、頭、頸部)、腎癌、膀胱癌、卵巣癌、及び成人T細胞白血病(ATL)での報告が多い(N. Engl. J. Med., Vol. 322, p.1106, 1990; J. Clin. Endocrinol. Metab., Vol. 73, 1309, 1991)。
- 20 【0109】本試験では、前記で得た種々のヒト抗ヒトPTHRPモノクローナル抗体の腫瘍隨伴性悪性高カルシウム血症(MAH)の治療効果を、腫瘍細胞を生体に移植することにより人為的に作製したMAHモデルマウスを用いて検討した。BALB/C-nuマウス(4週齢、雄、各群5乃至7匹、日本クレア製)の各々に、ヒト口腔偏平上皮癌由来細胞株HOSO(Hasina Rifatら、第54回日本癌学会総会記事、p.349、1995、並びにHasina Rifatら、第55回日本癌学会総会記事、p.184、1996)を、約6×10⁶細胞/headの濃度で培養液とともに皮下移植した。細胞を移植してから約4乃至5ヶ月後、各々のマウスについて眼底採血を行い、634型自動Ca²⁺/PHアライザーを用いて血中カルシウム濃度を測定した。血中カルシウム濃度が1.3mmol/l以上に上昇したマウス(7匹)を選択し、各々のマウスに、リン酸緩衝液に溶解した抗ヒトPTHRPヒトモノクローナル抗体4B4-6-21(3mg/kg)を尾静脈内投与した。抗体投与から1、3及び6日後の各々に、各々

マウスについて眼底採血を行い、血中カルシウム濃度を測定した。

【0110】なお、前記と同様にして下記の対照実験を行った。

(1) 上述の試験において癌細胞株の皮下移植と同じ日に培養液のみ（前記癌細胞株を含まない）を皮下移植して約4乃至5ヶ月経過したマウスに、リン酸緩衝液のみ（抗ヒトPTHRPヒトモノクローナル抗体4B4-6-21を含まない）を尾静脈内投与した場合。

(2) 上述の試験と同じく前記癌細胞株HOSO（同濃度）を皮下移植して約4乃至5ヶ月後血中カルシウム濃度が1.3mmol/l以上に上昇したマウス（6匹）に、リン酸緩衝液のみ（抗ヒトPTHRPヒトモノクローナル抗体4B4-6-21を含まない）を尾静脈内投与した場合。

結果を、図18に示した。この試験から、本発明のヒト抗ヒトPTHRPモノクローナル抗体は、腫瘍隨伴性悪性高カルシウム血症に対して有意な抑制及び治療効果を有していることが示された。

【0111】

【発明の効果】本発明は、未だ社会に提供されていないヒトPTHRPに対するヒトモノクローナル抗体を世界に先んじて初めて提供するものである。本発明のヒト抗ヒトPTHRPモノクローナル抗体の一態様として開示したヒトモノクローナル抗体は、各々種々の特性（抗原特異性、抗原親和性、中和活性、等）及び生物活性（PTHRP依存的細胞内cAMP上昇抑制活性、PTHRP依存的な骨からのカルシウム（Ca）放出の抑制活性、骨吸収抑制活性、骨溶解抑制活性など）を有するものである。本発明のヒトモノクローナル抗体は、ヒトに対する抗原性を全く有せず、従来のマウス由来の抗体等の非ヒト哺乳動物由来の抗体からなる抗体医薬品の治療上の大きな問題点であったHAMA、HACAあるいはHAHAによる副作用を全く惹起しないことから、抗体の医薬品としての価値を劇的に増大させるものである。

【0112】即ち、本発明のモノクローナル抗体は、ヒトPTHRPの生物活性を機能的に制御する活性を有し、また従来の抗体医薬品の大きな問題点であったアレルギー＊

* や拒絶反応等の副作用を惹起しないことから、本発明のヒトPTHRPに対するヒトモノクローナル抗体またはその医薬組成物は、PTHRPに起因する可能性を有する下記のような種々の疾患または症状の治療または予防のために極めて有用である。当該疾患または症状としては、副甲状腺ホルモン関連タンパク依存的な骨からのカルシウムの放出に起因する疾患（高カルシウム血症など）、悪性腫瘍（腎癌、肺癌、胃癌、乳癌、咽頭癌、食道癌、舌癌、前立腺癌、膀胱癌、悪性リンパ腫、皮膚癌、甲状腺癌、精巣癌、肝臓癌、脾癌、大腸癌、直腸癌、尿路上皮癌など）に伴う高カルシウム血症、関節リウマチ、変性性関節症、癌（扁平上皮癌細胞、腺癌細胞、黒色腫細胞、骨肉腫細胞、神経芽腫細胞、血液系癌細胞など）の骨転移、骨溶解、骨破壊、骨組織に存在する癌細胞の増殖、局所での副甲状腺ホルモン関連タンパクの産生に起因する疾患、原発性の局所癌に起因する症状（疼痛、神経圧迫、高カルシウム血症、骨折及び悪液質など）、歯、歯周若しくは歯肉等における疾患（歯槽膿漏、歯肉炎、歯周病など）、敗血症（sepsis）、全身性炎症応答

10 20 20 20 20 30

症候群（SIRS）、及び低リン血症（低リン血性くる病、低リン血性ビタミンD抵抗性くる病など）などが挙げられる。また、本発明の抗ヒトPTHRPヒトモノクローナル抗体は、原発性の局所癌に罹患している患者の延命のための使用においても有用である。

【0113】さらに、本発明のヒトPTHRPに反応性を有するヒトモノクローナル抗体及びその医薬組成物は、高カルシウム血症、並びに骨、歯及びカルシウム代謝異常に関連する疾患の治療剤として用いられている強力な骨吸収抑制作用を有するビスフォスフォン酸塩（ビスフォスフォネート）系化合物（例えば、バミドロン酸塩、エチドロン酸塩、リセドロン酸塩、ビロリン酸、クロドロン酸塩、チルドロン酸塩、アレンドロン酸塩、BM21.0955、YM-175、CGP42446など）またはその水和物と併用して用いることにより、一連の癌関連症状と高カルシウム血症とを合わせた予防、治療においても有用である。

【0114】

【配列表】

SEQUENCE LISTING

<110> Japan Tobacco, Inc.

<120> Human Monoclonal Antibody For Parathyroid Hormone-Related Protein

<130> J98-0142

<140>

<141>

<150> JP P1998-188196

<151> 1998-06-17

<150> JP P1998-196729

<151> 1998-06-26

<160> 45

<170> PatentIn Ver. 2.0

57

58

<210> 1

<211> 209

<212> PRT

<213> Homo sapiens

<220>

<221> PROPEP

<222> (1)..(36)

<400> 1

Met Gln Arg Arg Leu Val Gln Gln Trp Ser Val Ala Val Phe Leu Leu
 1 5 10 15
 Ser Tyr Ala Val Pro Ser Cys Gly Arg Ser Val Glu Gly Leu Ser Arg
 20 25 30
 Arg Leu Lys Arg Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly
 35 40 45
 Lys Ser Ile Gln Asp Leu Arg Arg Arg Phe Phe Leu His His Leu Ile
 50 55 60
 Ala Glu Ile His Thr Ala Glu Ile Arg Ala Glu Ser Glu Val Ser Pro
 65 70 75 80
 Asn Ser Lys Pro Ser Pro Asn Thr Lys Asn His Pro Val Arg Phe Gly
 85 90 95
 Ser Asp Asp Glu Gly Arg Tyr Leu Thr Gln Glu Thr Asn Lys Val Glu
 100 105 110
 Thr Tyr Lys Glu Gln Pro Leu Lys Thr Pro Gly Lys Lys Lys Ala
 115 120 125

Lys Pro Gly Lys Arg Lys Glu Gln Glu Lys Lys Arg Arg Thr Arg
 130 135 140
 Ser Ala Trp Leu Asp Ser Gly Val Thr Gly Ser Gly Leu Glu Gly Asp
 145 150 155 160
 His Leu Ser Asp Thr Ser Thr Ser Leu Glu Leu Asp Ser Arg Thr
 165 170 175
 Ala Leu Leu Trp Gly Leu Lys Lys Lys Glu Asn Asn Arg Arg Thr
 180 185 190
 His His Met Gln Leu Met Ile Ser Leu Phe Lys Ser Pro Leu Leu Leu
 195 200 205

Leu

<210> 2

<211> 34

<212> PRT

<213> Homo sapiens

<220>

<221> PEPTIDE

<222> (1)..(34)

<400> 2

Ser Val Ser Glu Ile Gln Leu Met His Asn Leu Gly Lys His Leu Asn
 1 5 10 15
 Ser Met Glu Arg Val Glu Trp Leu Arg Lys Lys Leu Gln Asp Val His
 20 25 30
 Asn Phe

59

60

<210> 3
 <211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> sia_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> C_region
 <222> (398)..(717)
 <220>
 <221> unsure
 <222> (80)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Phe,
 Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (467)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Phe,
 Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (492)
 <223> This base has not yet been determined. The codon
 containing this base encodes Phe or Leu.
 <400> 3

atq aqq ctc cct gct caq ctc ctq qgg ctq cta atq ctc tgg gtc tct	48
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser	
1 5 10 15	
qqa tcc aqt qgg qat att qtq atq act caq tnt cca ctc tcc ctq ccc	96
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Xaa Pro Leu Ser Leu Pro	
20 25 30	
qtc acc cct qqa qaq ccq qcc tcc att tcc tgc aqq ttt aqt caq aqc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Phe Ser Gln Ser	
35 40 45	
ctc ctq cat aqt aat qqa aac aac tat ttq qat tgg tac ctg caq aag	192
Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys	
50 55 60	
cca qgg caq tct cca caq ttc ctq atc tat ttq qgt tct aat cgg gcc	240
Pro Gly Gln Ser Pro Gln Phe Leu Ile Tyr Leu Gly Ser Asn Arg Ala	
65 70 75 80	
tcc qgg gtc cct qac aqq ttc aqt qgc aqt qga tca qgc aca qat ttt	288

Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 aca ctg aaa atc aqc aqa qtq qaq qct qaq qat qtt qqq qtt tat tac 336
 Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 tgc atq caa qct cta caa act cca ttc act ttc aqc cct qgg acc aca 384
 Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 qtq qat atc aaa cqa act qtq qct qca cca tct gtc ttc atc ttc ccq 432
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 cca tct qat qaa caq ttq aaa tct qga act qcc tnt qtt qtq tgc ctq 480
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Xaa Val Val Cys Leu
 145 150 155 160
 ctq aat aac ttn tat ccc aqa qaq qcc aaa qta caq tqq aaq qtq qat 528
 Leu Asn Asn Xaa Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 aac qcc ctc caa tcq qgt aac tcc caq qaq aqt qtc aca qaq caq dac 576
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 aqc aaq aqc aqc acc tac aqc ctc aqc aqc acc ctg acq ctg aqc aaa 624
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 qca qac tac qaq aaa cac aaa qtt tac qcc tgc qaa qtc acc cat caq 672
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 qgc ctg aqc tcg ccc qtc aca aaq aqc ttc aac aaq qga qaq tqt tag 720
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 4
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (27)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser,
 Tyr or Cys.
 <220>
 <221> unsure
 <222> (156)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser,
 Tyr or Cys.
 <220>
 <221> unsure
 <222> (164)
 <223> This amino acid has not yet been determined
 and is possibly Phe or Leu.

(33)

特開2000-80100

63

64

<400> 4

Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser
 1 5 10 15
 Gly Ser Ser Gly Asp Ile Val Met Thr Gln Xaa Pro Leu Ser Leu Pro
 20 25 30

Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Phe Ser Gln Ser
 35 40 45
 Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys
 50 55 60
 Pro Gly Gln Ser Pro Gln Phe Leu Ile Tyr Leu Gly Ser Asn Arg Ala
 65 70 75 80
 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Xaa Val Val Cys Leu
 145 150 155 160
 Leu Asn Asn Xaa Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235
 <210> 5
 <211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> siq_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> C_region
 <222> (398)..(717)
 <400> 5

atq aqq ctc cct gct caq ctc ctg ggg ctg cta atq ctc tgg qtc tct 48

Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser
 1 5 10 15
 qqa tcc aqt qqq qat att qtq atq act caq tct cca ctc tcc ctq ccc 96
 Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro
 20 25 30
 gtc acc cct qqa qaq ccg qcc acc atc tcc tqc aqg tcc aqt caq agc 144
 Val Thr Pro Gly Glu Pro Ala Thr Ile Ser Cys Arg Ser Ser Gln Ser
 35 40 45
 ctc ctq cat aqa aat qqa aac aac tat ttq qat tqg ttc ttq caq aqg 192
 Leu Leu His Arg Asn Gly Asn Asn Tyr Leu Asp Trp Phe Leu Gln Lys
 50 55 60
 cca qgg caq tct cca caq ctc ctq atc tat ttq qgc tct aat cqg qcc 240
 Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala
 65 70 75 80
 tcc qgg qtc cct gac aqg ttc aqt qgc aqt qqa tca qgc aca qat ttt 288
 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 aca ctq aaa ctc aqc aqa qtd qaq gct qaq qat gtt qgg ctt tat tac 336
 Thr Leu Lys Leu Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr
 100 105 110
 tqc atq caa qct cta caa att cca ttc act ttc qgc cct qgg acc aaa 384
 Cys Met Gln Ala Leu Gln Ile Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 qtq qat atc aaa cga act qtq gct qca cca tct qtc ttc atc ttc ccq 432
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 cca tct qat qaq caq ttq aaa tct qqa act qcc tct qtt qtq tqc ctq 480
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 ctq aat aac ttc tat ccc aqa qaq gcc aaa qta caq tqg aag qtq qat 528
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 aac qcc ctc caa tcg qgt aac tcc caq qaq aqt qtc aca qaq caq qac 576
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Gln Asp
 180 185 190
 aqc aaq qac aqc acc tac aqc ctc aqc aqc acc ctq acq ctq aqc aaa 624
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 qca qac tac qaq aaa cac aaa qtc tac qcc tqc qaa qtc acc cat caq 672
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 qqc ctq aqc tca ccc qtc aca aaq aqc ttc aac aqc qqa qaq tqt taq 720
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 6
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <400> 6

Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser

(35)

特開2000-80100

67

68

1	5	10	15
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro			
20	25	30	
Val Thr Pro Gly Glu Pro Ala Thr Ile Ser Cys Arg Ser Ser Gln Ser			
35	40	45	
Leu Leu His Arg Asn Gly Asn Asn Tyr Leu Asp Trp Phe Leu Gln Lys			
50	55	60	
Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala			
65	70	75	80
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe			
85	90	95	
Thr Leu Lys Leu Ser Arg Val Glu Ala Glu Asp Val Gly Leu Tyr Tyr			
100	105	110	
Cys Met Gln Ala Leu Gln Ile Pro Phe Thr Phe Gly Pro Gly Thr Lys			
115	120	125	
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro			
130	135	140	
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu			
145	150	155	160
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp			
165	170	175	
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp			
180	185	190	
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys			
195	200	205	
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln			
210	215	220	
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys			
225	230	235	
<210> 7			
<211> 720			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (1)..(720)			
<220>			
<221> sig_peptide			
<222> (1)..(60)			
<220>			
<221> V_region			
<222> (61)..(397)			
<220>			
<221> C_region			
<222> (398)..(717)			
<220>			
<221> unsure			
<222> (74)			
<223> This base has not yet been determined. The codon containing this base encodes either one of Ile,			

69

70

Thr, Asn or Ser.

<220>

<221> unsure

<222> (80)

<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Ser, Tyr or Cys.

<220>

<221> unsure

<222> (252)

<223> This base has not yet been determined. The codon containing this base highly possibly encodes Pro.

<400> 7

atq aqq ctc cct qct caq ctc cta	aaa ctg cta atq ctc tgg	atc tct	48
Met Arg Leu Pro Ala Gln Leu Leu Gly	Leu Leu Met Leu Trp Val Ser		
1	5	10	15
gqa tcc aqt qqq gat att qtq atq ant	caq tnt cca ctc tcc ctq ccc		96
Gly Ser Ser Gly Asp Ile Val Met Xaa	Gln Xaa Pro Leu Ser Leu Pro		
20	25	30	
qtc acc cct qqa qaq ccq qcc tcc atc	tcc tqc aqg tct aqt caq aqc		144
Val Thr Pro Gly Glu Pro Ala Ser Ile	Ser Cys Arg Ser Ser Gln Ser		
35	40	45	
ctc ctq cat aqt aat qqa aac aat tat	ttq qat tqq tat ctq caq aaq		192
Leu Leu His Ser Asn Gly Asn Asn Tyr	Leu Asp Trp Tyr Leu Gln Lys		
50	55	60	
cca qqq caq tct cta caq ctc ctq atc	tat ttq qqc tct aat cqg acc		240
Pro Gly Gln Ser Leu Gln Leu Leu Ile	Tyr Leu Gly Ser Asn Arg Ala		
65	70	75	80
tcc qqq qtc cca qac aqg ttc aqt qqc	aqt qqa tca qqc aca qat ttt		288
Ser Gly Val Xaa Asp Arg Phe Ser Gly	Ser Gly Ser Gly Thr Asp Phe		
85	90	95	
aca ctg aaa atc aqc aqa qtq qaq	qtt qag qat ott qqg qtt tat tac		336
Thr Leu Lys Ile Ser Arg Val Glu Val	Glu Asp Val Gly Val Tyr Tyr		
100	105	110	
tqc atq caa qct tta caa act cca ttc	act ttc qqc cct qag acc aaa		384
Cys Met Gln Ala Leu Gln Thr Pro Phe	Thr Phe Gly Pro Glu Thr Lys		
115	120	125	
gtq qat ttc aaa cqa act gtq qct qca	cca tct qtt qtg ttc atc ttc ccq		432
Val Asp Phe Lys Arg Thr Val Ala Ala	Pro Ser Val Phe Ile Phe Pro		
130	135	140	
cca tct qat qaq caq ttq aaa tct	qqa act qcc tct qtt qtq tqc ctq		480
Pro Ser Asp Gln Leu Lys Ser Gly Thr	Ala Ser Val Val Cys Leu		
145	150	155	160
ctq aat aac ttc tat ccc aqa qag	qcc aaa qta caq tqq aqg qtq qat		528
Leu Asn Asn Phe Tyr Pro Arg Gln Ala	Lys Val Gln Trp Lys Val Asp		
165	170	175	
aac qcc ctc caa tcq qqt aac tcc	caq qaq aqt qtc aca qaq caq qac		576
Asn Ala Leu Gln Ser Gly Asn Ser Gln	Gln Glu Ser Val Thr Glu Gln Asp		
180	185	190	

71

72

aqc aag qac aqc acc tac aqc ctc aqc aqc acc ctq aqc ctq aqc aaa 624
 Ser Lys Asp Ser Thr Tyr Ser ,Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 gca qac tac qaq aaa cac aaa qtt tac qcc tcc gaa qtc acc cat caq 672
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 gac ctq aqt tcq ccc qtc aca aaq aqc ttc aac aqq qqa qaq tqt tag 720
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 8
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (25)
 <223> This amino acid has not yet been determined
 and is possibly either one of Ile, Thr,
 Asn or Ser.
 <220>
 <221> unsure
 <222> (27)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser,
 Tyr or Cys.
 <220>
 <221> unsure
 <222> (84)
 <223> This amino acid has not yet been determined
 and is possibly Pro.
 <400> 8
 Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser
 1 5 10 15
 Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu Pro
 20 25 30
 Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser
 35 40 45
 Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys
 50 55 60
 Pro Gly Gln Ser Leu Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala
 65 70 75 80

 Ser Gly Val Xaa Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 Thr Leu Lys Ile Ser Arg Val Glu Val Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Glu Thr Lys
 115 120 125
 Val Asp Phe Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140

73

74

Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235
 <210> 9
 <211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> sia_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> C_region
 <222> (398)..(717)
 <220>
 <221> unsure
 <222> (230)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Phe,
 Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (252)
 <223> This base has not yet been determined. The codon
 containing this base highly possibly encodes Pro.
 <220>
 <221> unsure
 <222> (349)
 <223> This base has not yet been determined. The codon
 containing this base either one of Leu, Ile or
 Val.
 <400> 9
 atq aqq ctc cct gct caq ctc ctg aqq ctg cta atq ctc tgg qtc tct 48
 Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser
 1 5 10 15
 qqa tcc aqt aqq qat att qtq atq act caq tct cca ctc tcc ctq ccc 96

Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro
 20 25 30
 gtc acc cct qqa qaq ccq qcc atc tcc tcc tqc aqq tct aqt caq aqc 144
 Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser
 35 40 45
 ctc ctq cat aqt aat qqa aac aat tat ttq qat tqg tat ctq caq aaq 192
 Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys
 50 55 60
 cca qqg caq tct cta caq ctc ctq atc tat ttq qgc tnt aat cqg qcc 240
 Pro Gly Gln Ser Leu Gln Leu Leu Ile Tyr Leu Gly Xaa Asn Arg Ala
 65 70 75 80
 tcc qgg atc ccn qac aqq ttc aqt qgc aqt qqa tca qac aca qat ttt 288
 Ser Gly Val Xaa Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 aca ctq aaa atc aqc aqa qtq qaq qtt qaq qat qtt qqq qtt tat tac 336
 Thr Leu Lys Ile Ser Arg Val Glu Val Asp Val Gly Val Tyr Tyr
 100 105 110
 tqc atq caa qct nta caa act cca ttc act ttc qgc cct qag acc aaa 384
 Cys Met Gln Ala Xaa Gln Thr Pro Phe Thr Phe Gly Pro Glu Thr Lys
 115 120 125
 qtq qat ttc aaa cqa act qtq qct qca cca tct qtc ttc atc ttc ccq 432
 Val Asp Phe Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 cca tct qat qag caq ttq aaa tct gga act qcc tct qtt qtq tqc ctq 480
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 ctq aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqg aqg qtq qat 528
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 aac gcc ctc caa tcq qgt aac tcc caq qag aqt gtc aca gaa qac caq qac 576
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 aqc aag qac aqc acc tac aqc ctc aqc aqc acc ctq acq ctg aqc aaa 624
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 qca qac tac qaq aaa cac aaa qtc tac qcc tqc gaa qtc acc cat caq 672
 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 qgc ctq aqc tcg ccc qtc aca aqg aqc ttc aac aqg gga qag tqt taq 720
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 10
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (77)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser, Tyr

77

78

or Cys.

<220>

<221> unsure

<222> (84)

<223> This amino acid has not yet been determined
and is possibly Pro.

<220>

<221> unsure

<222> (117)

<223> This amino acid has not yet been determined
and is possibly either one of Leu, Ile
or Val.

<400> 10

Met	Arg	Leu	Pro	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Met	Leu	Trp	Val	Ser
1					5				10				15		
Gly	Ser	Ser	Gly	Asp	Ile	Val	Met	Thr	Gln	Ser	Pro	Leu	Ser	Leu	Pro
					20				25				30		
Val	Thr	Pro	Gly	Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser
					35				40				45		
Leu	Leu	His	Ser	Asn	Gly	Asn	Asn	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys
					50				55				60		
Pro	Gly	Gln	Ser	Leu	Gln	Leu	Leu	Ile	Tyr	Leu	Gly	Xaa	Asn	Arg	Ala
					65				70				75		80
Ser	Gly	Val	Xaa	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe
					85				90				95		
Thr	Leu	Lys	Ile	Ser	Arg	Val	Glu	Val	Glu	Asp	Val	Gly	Val	Tyr	Tyr
					100				105				110		
Cys	Met	Gln	Ala	Xaa	Gln	Thr	Pro	Phe	Thr	Phe	Gly	Pro	Glu	Thr	Lys
					115				120				125		
Val	Asp	Phe	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro
					130				135				140		
Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu
					145				150				155		160
Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp
					165				170				175		
Asn	Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp
					180				185				190		
Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Leu	Ser	Ser	Thr	Leu	Thr	Leu	Ser	Lys
					195				200				205		
Ala	Asp	Tyr	Glu	Lys	His	Lys	Val	Tyr	Ala	Cys	Glu	Val	Thr	His	Gln
					210				215				220		
Gly	Leu	Ser	Ser	Pro	Val	Thr	Lys	Ser	Phe	Asn	Arg	Gly	Glu	Cys	
					225				230				235		

<210> 11

<211> 720

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(720)

79

80

<220>
 <221> sia_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> C_region
 <222> (398)..(717)
 <220>
 <221> unsure
 <222> (74)
 <223> This base has not yet been determined. The codon containing this base encodes either one of Ile, Thr, Asn or Ser.
 <220>
 <221> unsure
 <222> (80)
 <223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (349)
 <223> This base has not yet been determined. The codon containing this base encodes either one of Leu, Ile or Val.
 <220>
 <221> unsure
 <222> (437)
 <223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (648)
 <223> This base has not yet been determined. The codon containing this base highly possibly encodes Val.

<400> 11

atq aqq ctc cct qct caq ctc ctq aqq cta atq ctc tqq atc tct	48
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser	
1 5 10 15	
gga tcc aqt qqa qat att qtq atq ant caq tnt cca ctc tcc ctq ccc	96
Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu Pro	
20 25 30	
gtc act cct gga qaq ccq gcc tcc atc tcc tqc aqq tct aqt caq agc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser	
35 40 45	
ctc ctq cat aqt aat qqa aac aac tat ttq qat tqq tac ctq caq aaq	192
Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys	

33

84

Tyr or Cys.

220

<221> unsure

<222> (117)

<223> This amino acid has not yet been determined and is possibly either one of Leu, Ile or Val.

220

<?> unsure

<222> (146)

<223> This amino acid has not yet been determined
and is possibly either one of Phe, Ser,
Tyr or Cys.

220

221 USEURE

-222- (216)

<223> This amino acid has not yet been determined
and is possibly Val

400 12

85

86

<211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> siq_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> C_region
 <222> (398)..(717)
 <220>
 <221> unsure
 <222> (465)
 <223> This base has not yet been determined. The codon
 containing this base highly possibly encodes Ala.
 <400> 13

atq aqq ctc cct qct caq ctc ctq qqq ctq cta atq ctc tqq qtc tct	48
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser	
1 5 10 15	
qqt tcc aqt qqq qat att qtq atq act caq tcc cca ctc tcc ctq ccc	96
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro	
20 25 30	
qtc acc cct qqa qaq ccq qcc tcc atc tcc tqc aqq tct aqt caq aqc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser	
35 40 45	
ctc ctq cat aqt aat qqq aat aac tat ttq qat tqq tac ctq caq aaq	192
Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys	
50 55 60	
cca qqq caq tct cca caq ctc ctq atc tat ttq qqt tct aat cqq qcc	240
Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala	
65 70 75 80	
tcc gag qtc cct qac aqg ttc aqt qqc aqt qqa tca qqc aca qat ttt	288
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe	
85 90 95	
aca ctq aaa atc aqc aqg qtq qaq qct qaq qat qtq qqq att tat tac	336
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Ile Tyr Tyr	
100 105 110	
tqc atq caa qct cta caa act cca ttc act ttc qqc cct qqq acc aaa	384
Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys	
115 120 125	
qtq qat atc aaa cqa act qtq qct qca cca tct qtc ttc atc ttc ccq	432
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro	
130 135 140	
cca tct gat qaq caq ttq aaa tct gga act qcn tct gtt qtq tgc ctg	480
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Xaa Ser Val Val Cys Leu	

(45)				特開2000-80100
87				88
145	150	155	160	
c当地	aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqq aaq qtq oat			528
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp				
165	170	175		
aac qcc ctc caa tcq qgt aac tcc caq qaq agt qtc aca qaq caq oac				576
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp				
180	185	190		
aqc aaq aqc acc tac aqc ctc aqc aqc acc ctq acq ctq aqc aaa				624
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys				
195	200	205		
qca qac tac qaq aaa cac aaa qtc tac qcc toc qaa qtc acc cat caq				672
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln				
210	215	220		
qqc ctq aqc tcq ccc qtc aca aaq aqc ttc aac aqq qqa qaq tqt taq				720
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys				
225	230	235	240	
<210> 14				
<211> 239				
<212> PRT				
<213> Homo sapiens				
<220>				
<221> unsure				
<222> (155)				
<223> This amino acid has not yet been determined and is possibly Ala.				
<400> 14				
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser				
1	5	10	15	
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro				
20	25	30		
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser				
35	40	45		
Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys				
50	55	60		
Pro Gly Gln Ser Pro Gln Leu Ile Tyr Leu Gly Ser Asn Arg Ala				
65	70	75	80	
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe				
85	90	95		
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Ile Tyr Tyr				
100	105	110		
Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys				
115	120	125		
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro				
130	135	140		
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Xaa Ser Val Val Cys Leu				
145	150	155	160	
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp				
165	170	175		

Asn Ala Leu Cln Ser Gly Asn Ser Cln Glu Ser Val Thr Glu Cln Asp
180 185 190
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
195 200 205
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Cln
210 215 220
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
225 230 235
<210> 15
<211> 720
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(720)
<220>
<221> seq_peptide
<222> (1)..(60)
<220>
<221> V_region
<222> (61)..(397)
<220>
<221> C_region
<222> (398)..(717)
<220>
<221> unsure
<222> (14)
<223> This base has not yet been determined. The codon
containing this base encodes either one of Val,
Ala, Asp or Gly.
<220>
<221> unsure
<222> (39)
<223> This base has not yet been determined. The codon
containing this base highly possibly encodes Leu.
<220>
<221> unsure
<222> (74)
<223> This base has not yet been determined. The codon
containing this base encodes either one of Ile,
Thr, Asn or Ser.
<220>
<221> unsure
<222> (80)
<223> This base has not yet been determined. The codon
containing this base encodes either one of Phe,
Ser, Tyr or Cys.
<220>
<221> unsure
<222> (648)

91

92

<223> This base has not yet been determined. The codon containing this base highly possibly encodes Val.

<400> 15

atq aqg ctc cct qnt caq ctc cta aqg ctg cta atq ctn tqg qtc tct	48
Met Arg Leu Pro Xaa Gln Leu Leu Gly Leu Leu Met Xaa Trp Val Ser	
1 5 10 15	
qga tcc aqt qgg qat att qtq atq ant caq tnt cca ctc tcc cta ccc	96
Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu Pro	
20 25 30	
qtc acc cct qqa qaq ccq qcc tcc atc tcc tqc aqg tct aqt caq aqc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser	
35 40 45	
ctc ctt cat aqt aat qga tac aac tat ttq qat tqg ttc ctq caq aqg	192
Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Phe Leu Gln Lys	
50 55 60	
cca qgg caq tct cca caq ctc atc tat ttq qat tqg ttc ctq caq aqg	240
Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala	
65 .70 75 80	
tcc qgg qtc cct qac aqg ttc aqt qgc aqt qga tca qgc aca qat ttt	288
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe	
85 90 95	
aca ctg aaa atc aqc aqa qtq qaq qct qaq qat qtt qgg qtt tat tac	336
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr	
100 105 110	
tqc atq caa qct cta caa act cca ttc act ttc qgc cct qgg acc aaa	384
Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys	
115 120 125	
qtq qat atc aaa cqa act qtq qct qca cca tct qtc ttc atc ttc ccq	432
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro	
130 135 140	
cca tct qat qaq caq ttq aaa tct qqa act qcc tct qtt qtq ttc ctq	480
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu	
145 150 155 160	
ctq aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqg aqg qtq qat	528
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp	
165 170 175	
aac gcc ctc caa tcq qgt aac tcc caq qaq aqt qtc aca qaq caq qac	576
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp	
180 185 190	
aqc aqg qac aqc acc tac aqc ctc aqc aqc acc ctq acq ctq aqc aaa	624
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys	
195 200 205	
qca qac tac qaq aaa cac aaa qtn tac qcc tcc qaa qtc acc cat caq	672
Ala Asp Tyr Glu Lys His Lys Xaa Tyr Ala Cys Glu Val Thr His Gln	
210 215 220	
qgc ctq aqc tcq ccc qtc aca aqg aqc ttc aac aqg qqa qaq tqt tag	720
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys	
225 230 235 240	

<210> 16

93
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (5)
 <223> This amino acid has not yet been determined
 and is possibly either one of Val, Ala,
 Asp or Gly.
 <220>
 <221> unsure
 <222> (13)
 <223> This amino acid has not yet been determined
 and is possibly Leu.
 <220>
 <221> unsure
 <222> (25)
 <223> This amino acid has not yet been determined
 and is possibly either one of Ile, Thr,
 Asn or Ser.
 <220>
 <221> unsure
 <222> (27)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser,
 Tyr or Cys.
 <220>
 <221> unsure
 <222> (216)
 <223> This amino acid has not yet been determined
 and is possibly Val.
 <400> 16
 Met Arg Leu Pro Xaa Gln Leu Leu Gly Leu Leu Met Xaa Trp Val Ser
 1 5 10 15
 Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu Pro
 20 25 30
 Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser
 35 40 45
 Leu Leu His Ser Asn Gly Tyr Asn Tyr Leu Asp Trp Phe Leu Gln Lys
 50 55 60
 Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala
 65 70 75 80
 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 Cys Met Gln Ala Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140

Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 Ala Asp Tyr Glu Lys His Lys Xaa Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235
 <210> 17
 <211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> siq_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61)..(397)
 <220>
 <221> V_region
 <222> (398)..(717)
 <220>
 <221> unsure
 <222> (7)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Phe,
 Leu, Ile or Val.
 <220>
 <221> unsure
 <222> (11)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Leu,
 Pro, His or Arg.
 <220>
 <221> unsure
 <222> (80)
 <223> This base has not yet been determined. The codon
 containing this base encodes either one of Phe,
 Ser, Tyr or Cys.
 <220>
 <221> unsure
 <222> (349)
 <223> This base has not yet been determined. The codon

97

98

containing this base encodes either one of Leu,
Ile or Val.

<400> 17

atq aqq ntc ctt qct caq ctc ctq aqq cta cta atq ttc tqq atc tct	48
Met Arg Xaa Xaa Ala Gln Leu Leu Gly Leu Leu Met Phe Trp Val Ser	
1 5 10 15	
qqa tcc aqt qqq qat att qtq atq act caq tnt cca ctc tcc ctq ccc	96
Gly Ser Ser Gly Asp Ile Val Met Thr Gln Xaa Pro Leu Ser Leu Pro	
20 25 30	
qtc acc cct qga qaq ccq qcc tcc att tcc tqc aqq tct aqt caq aqc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser	
35 40 45	
ctc ctq cat aqt aat qqa aac aac tat ttq qat tqq tac ctq caq aaq	192
Leu Leu His Ser Asn Gly Asn Asn Tyr Leu Asp Trp Tyr Leu Gln Lys	
50 55 60	
cca qqq caq tct cca caq ttc ctq atc tat ttq qat tct aat cqg acc	240
Pro Gly Gln Ser Pro Gln Phe Leu Ile Tyr Leu Gly Ser Asn Arg Ala	
65 70 75 80	
tcc qqq qtc cct gac aqq ttc aqt qqc aqt qqa tca qqc aca qat ttt	288
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe	
85 90 95	
aca ctq aaa atc aqc aqa qtq qaq oct qaq qat qtt qqq qtt tat tac	336
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr	
100 105 110	
tqc atq caa qct nta caa act cca ttc act ttc qgc cct qqq acc aaa	384
Cys Met Gln Ala Xaa Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys	
115 120 125	
atq qat atc aaa cqa act qtq oct oca cca tct qtc ttc atc ttc ccq	432
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro	
130 135 140	
cca tct qat qaq caq ttq aaa tct oqa act qcc tct qtt atq tcc ctq	480
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu	
145 150 155 160	
ctq aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqq aaq qtq qat	528
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp	
165 170 175	
aac qcc ctc caa tcq qgt aac tcc caq qaq aqt qtc aca qaq caq gac	576
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp	
180 185 190	
aqc aaq aqc acc tac aqc ctc aqc aqc acc ctq acq ctq aqc aaa	624
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys	
195 200 205	
qca qac tac qaq aaa cac aaa qtc tac qcc tcc qaa qtc acc cat caq	672
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln	
210 215 220	
qgc ctq aqc tcq ccc tcc aca aag aqc ttc aac aqc aqq qaa qag tqt tag	720
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys	
225 230 235 240	
<210> 18	
<211> 239	

99

100

<212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (3)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Leu,
 Ile or Val.
 <220>
 <221> unsure
 <222> (4)
 <223> This amino acid has not yet been determined
 and is possibly either one of Leu, Pro,
 His or Arg.
 <220>
 <221> unsure
 <222> (27)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Ser,
 Tyr or Cys.

<220>
 <221> unsure
 <222> (117)
 <223> This amino acid has not yet been determined
 and is possibly either one of Leu, Ile
 or Val.

<400> 18

Met	Aro	Xaa	Xaa	Ala	Gln	Leu	Leu	Gly	Leu	Leu	Met'	Phe	Trp	Val	Ser	
1					5				10					15		
Gly	Ser	Ser	Gly	Asp	Ile	Val	Met	Thr	Gln	Xaa	Pro	Leu	Ser	Leu	Pro	
					20			25					30			
Val	Thr	Pro	Gly	Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	
					35			40				45				
Leu	Leu	His	Ser	Asn	Gly	Asn	Asn	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys	
					50			55				60				
Pro	Gly	Gln	Ser	Pro	Gln	Phe	Leu	Ile	Tyr	Leu	Gly	Ser	Asn	Arg	Ala	
					65			70			75			80		
Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	
					85			90			95					
Thr	Leu	Lys	Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val	Tyr	Tyr	
					100			105			110					
Cys	Met	Gln	Ala	Xaa	Gln	Thr	Pro	Phe	Thr	Gly	Pro	Gly	Thr	Lys		
					115			120			125					
Val	Asp	Ile	Lys	Arg	Thr	Val	Ala	Ala	Pro	Ser	Val	Phe	Ile	Phe	Pro	
					130			135			140					
Pro	Ser	Asp	Glu	Gln	Leu	Lys	Ser	Gly	Thr	Ala	Ser	Val	Val	Cys	Leu	
					145			150			155			160		
Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala	Lys	Val	Gln	Trp	Lys	Val	Asp	
					165			170			175					
Asn	Ala	Leu	Gln	Ser	Gly	Asn	Ser	Gln	Glu	Ser	Val	Thr	Glu	Gln	Asp	

特開2000-80100

101	(52)	102
180	185	190
Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys		
195	200	205
Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln		
210	215	220
Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys		
225	230	235
<210> 19		
<211> 720		
<212> DNA		
<213> Homo sapiens		
<220>		
<221> CDS		
<222> (1)..(720)		
<220>		
<221> sia_peptide		
<222> (1)..(60)		
<220>		
<221> V_region		
<222> (61)..(397)		
<220>		
<221> C_region		
<222> (398)..(717)		
<220>		
<221> unsure		
<222> (74)		
<223> This base has not yet been determined. The codon containing this base encodes either one of Ile, Thr, Asn or Ser.		
<220>		
<221> unsure		
<222> (80)		
<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Ser, Tyr or Cys.		
<220>		
<221> unsure		
<222> (637)		
<223> This base has not yet been determined. The codon containing this base encodes either one of Gln, Lys or Glu.		
<220>		
<221> unsure		
<222> (643)		
<223> This base has not yet been determined. The codon containing this base encodes either one of Gln, Lys or Glu.		
<220>		
<221> unsure		
<222> (657)		

<223> This base has not yet been determined. The codon containing this base encodes Cys or Trp.

<220>

<221> unsure

<222> (659)

<223> This base has not yet been determined. The codon containing this base either one of Val, Ala, Glu or Gly.

<220>

<221> unsure

<222> (665)

<223> This base has not yet been determined. The codon containing this base encodes either one of Ile, Thr, Asn or Ser.

<400> 19

atq aqq ctc cct qct caq ctc ctq aaa cta atq ctc tqq qtc tct	48
Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Ser	
1 5 10 15	
qaa tcc aqt qqq gat att qtq atq ant caq tnt cca ctc tcc ctq ccc	96
Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu Pro	
20 25 30	
gtc acc cct qqa qaq ccq gcc tcc atc tcc tqc aqq tct aqt caq aqc	144
Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser	
35 40 45	
ctc ctq aat aqt aat qqa tac aac tat ttc qat tqq tac ctq caq aag	192
Leu Leu Asn Ser Asn Gly Tyr Asn Tyr Phe Asp Trp Tyr Leu Gln Lys	
50 55 60	
cca qqq caq tct cca caq ctc ctq atc tat ttq qat tct aat cqg qcc	240
Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg Ala	
65 70 75 80	
tcc qag gtc cct qac agg ttc aqt qgc aqt qqa tca qgc aca qat ttt	288
Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe	
85 90 95	
aca ctg aaa atc agc aqa qtq qaq qct qaq qat qtt qgg qtt tat tac	336
Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr	
100 105 110	
tqc atq caa act cta caa act cca ttc act ttc gqc cct qgg acc aaa	384
Cys Met Gln Thr Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr Lys	
115 120 125	
qtq qat atc aaa cga act qtq qct qca cca tct qtc ttc atc ttc ccq	432
Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro	
130 135 140	
cca tct qat qaq caq ttq aaa tct qqa act qcc tct qtt qtq tqc ctq	480
Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu	
145 150 155 160	
ctq aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqq aag qtq qat	528
Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp	
165 170 175	
aac qcc ctc caa tcq qgt aac tcc cag qaq agt gtc aca gag caq gac	576
Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp	

(54)

特開2000-80100

105

106

180

185

190

aac aaq qac aqc acc tac aqc ctc aqc acc ctq acq qtq aqc aaa 624

Asn Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Val Ser Lys

195

200

205

qca qaa tac qaq naa cac naa qtt tac qcc tgn qna qtc anc cat caq 672

Ala Glu Tyr Glu Xaa His Xaa Val Tyr Ala Xaa Xaa Val Xaa His Gln

210

215

220

qgc ctq aqc tcq ccc qtc aca aag aqc ttc aac aqg qda qaq tqt tag 720

Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys

225

230

235

240

<210> 20

<211> 239

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> (25)

<223> This amino acid has not yet been determined

and is possibly either one of Ile, Thr,

Asn or Ser.

<220>

<221> unsure

<222> (27)

<223> This amino acid has not yet been determined

and is possibly either one of Phe, Ser,

Tyr or Cys.

<220>

<221> unsure

<222> (213)

<223> This amino acid has not yet been determined

and is possibly either one of Gln, Lys

or Glu.

<220>

<221> unsure

<222> (215)

<223> This amino acid has not yet been determined

and is possibly either one of Gln, Lys

or Glu.

<220>

<221> unsure

<222> (219)

<223> This amino acid has not yet been determined

and is possibly Cys or Trp.

<220>

<221> unsure

<222> (220)

<223> This amino acid has not yet been determined

and is possibly either one of Val, Ala,

Glu or Gly.

<220>

(55)

特開2000-80100

107
 <221> unsure
 <222> (222)
 <223> This amino acid has not yet been determined
 and is possibly either one of Ile, Thr,
 Asn or Ser.
 <400> 20
 Met Arg Leu Pro Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val
 1 5 10 15
 Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Leu Ser Leu
 20 25 30
 Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln
 35 40 45
 Leu Leu Asn Ser Asn Gly Tyr Asn Tyr Phe Asp Trp Tyr Leu Gln
 50 55 60
 Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asn Arg
 65 70 75
 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
 85 90 95
 Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr
 100 105 110
 Cys Met Gln Thr Leu Gln Thr Pro Phe Thr Phe Gly Pro Gly Thr
 115 120 125
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe
 130 135 140

 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys
 145 150 155 160
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
 165 170 175 180
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln
 180 185 190 195
 Asn Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Val Ser
 195 200 205 210
 Ala Glu Tyr Glu Xaa His Xaa Val Tyr Ala Xaa Xaa Val Xaa His
 210 215 220 225
 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 21
 <211> 720
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(720)
 <220>
 <221> siq_peptide
 <222> (1)..(60)
 <220>
 <221> V_region
 <222> (61..620)

109

110

<220>
<221> C_region
<222> (398)..(717)
<220>
<221> unsure
<222> (1)..(2)
<223> These bases have not yet been determined. The codon containing these bases highly possibly encodes Met.
<220>
<221> unsure
<222> (7)
<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Leu, Ile or Val.
<220>
<221> unsure
<222> (11)..(12)
<223> These bases have not yet been determined. The codon containing these bases encodes either one of Leu, Pro, His, Gln or Arg.
<220>
<221> unsure
<222> (14)
<223> This base has not yet been determined. The codon containing this base encodes either one of Val, Ala, Asp or Gly.
<220>
<221> unsure
<222> (31)
<223> This base has not yet been determined. The codon containing this base encodes either Leu, Ile or Val.
<220>
<221> unsure
<222> (47)
<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Ser, Tyr or Cys.
<220>
<221> unsure
<222> (74)
<223> This base has not yet been determined. The codon containing this base encodes either one of Ile, Thr, Asn or Ser.
<220>
<221> unsure
<222> (80)
<223> This base has not yet been determined. The codon containing this base encodes either one of Phe,

111

Ser, Tyr or Cys.

<220>

<221> unsure

<222> (87)

<223> This base has not yet been determined. The codon containing this base highly possibly encodes Leu.

<220>

<221> unsure

<222> (88)

<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Leu, Ile or Val.

<220>

<221> unsure

<222> (349)

<223> This base has not yet been determined. The codon containing this base encodes either one of Leu, Ile or Val.

<220>

<221> unsure

<222> (648)

<223> This base has not yet been determined. The codon containing this base highly possibly encodes Val.

<220>

<221> unsure

<222> (693)

<223> This base has not yet been determined. The codon containing this base highly possibly encodes Thr.

<400> 21

mng	aqq	ntc	cnn	qnt	caq	ctc	ctq	aaa	ctq	nta	atq	ctc	tqg	qtc	tnt		48
Xaa	Arg	Xaa	Xaa	Xaa	Gln	Leu	Leu	Gly	Leu	Xaa	Met	Leu	Trp	Val	Xaa		
1		5		10		15											
gqa	tcc	aqt	qqq	gat	att	gtq	atq	ant	caq	tnt	cca	ctn	ntc	ctq	ccc		96
Gly	Ser	Ser	Gly	Asp	Ile	Val	Met	Xaa	Gln	Xaa	Pro	Xaa	Xaa	Leu	Pro		
20		25		30													
gtc	acc	cct	qqa	gag	ccg	gcc	tcc	atc	tcc	tqt	aqq	tct	qqt	caq	cac		144
Val	Thr	Pro	Gly	Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Gly	Gln	Arg		
35		40		45													
ctc	ctq	cat	aqa	aat	qqa	aac	acc	tat	ttq	qat	tqg	tac	ctq	caq	aaq		192
Leu	Leu	His	Arg	Asn	Gly	Asn	Thr	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys		
50		55		60													
cca	qqq	caq	tcc	cca	caq	ctc	atc	tat	ttq	qqt	tct	qat	caq	gcc		240	
Pro	Gly	Gln	Ser	Pro	Gln	Leu	Leu	Ile	Tyr	Leu	Gly	Ser	Asp	Arg	Ala		
65		70		75													80
tcc	qqq	qtc	cct	qac	agg	ttc	aqt	qqc	agt	aaa	tca	qqc	aca	qat	ttc		288
Ser	Gly	Val	Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe		
85		90		95													
aca	ctq	aaa	atc	aqc	aqa	gtq	qad	qct	qaq	qat	qtt	qqq	qtt	tat	tac		336

113

114

Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 tgc atq caa qct nta caa att cca ttc act ttc ggc cct qqq acc aaa 384
 Cys Met Gln Ala Xaa Gln Ile Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 qtq gat atc aaa cga act qtq qct qca cca tct gtc ttc atc ttc ccg 432
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 cca tct qat qaq caq ttq aaa tct qqa act qcc tct qtt qtq tgc ctq 480
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 ctq aat aac ttc tat ccc aqa qaq qcc aaa qta caq tqq aaq qtq qat 528
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 aac qcc ctc caa tcq qqt aac tcc caq qaq aqt qtc aca qaq caq qac 576
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190
 aqc aaq qac aqc acc tac aqc ctc aqc aqc acc ctq acq ctq aqc aaa 624
 Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 qca qac tac qaq aaa cac aaa qtn tac qcc tgc qaa qtc acc cat caq 672
 Ala Asp Tyr Glu Lys His Lys Xaa Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 ggc ctq aqc tcq ccc qtc acn aaq aqc ttc aac aqg qqa qaq tqt tag 720
 Gly Leu Ser Ser Pro Val Xaa Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235 240
 <210> 22
 <211> 239
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (1)
 <223> This amino acid has not yet been determined
 and is possibly Met.
 <220>
 <221> unsure
 <222> (3)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Leu,
 Ile or Val.
 <220>
 <221> unsure
 <222> (4)
 <223> This amino acid has not yet been determined
 and is possibly either one of Leu, Pro,
 His, Gln or Arg.
 <220>
 <221> unsure
 <222> (5)

<223> This amino acid has not yet been determined
and is possibly either one of Val, Ala,
Asp or Gly.

<220>

<221> unsure

<222> (11)

<223> This amino acid has not yet been determined
and is possibly either one of Leu, Ile
or Val.

<220>

<221> unsure

<222> (16)

<223> This amino acid has not yet been determined
and is possibly either one of Phe, Ser,
Tyr or Cys.

<220>

<221> unsure

<222> (25)

<223> This amino acid has not yet been determined
and is possibly either one of Ile, Thr,
Asn or Ser.

<220>

<221> unsure

<222> (27)

<223> This amino acid has not yet been determined
and is possibly either one of Phe, Ser,
Tyr or Cys.

<220>

<221> unsure

<222> (29)

<223> This amino acid has not yet been determined
and is possibly Leu.

<220>

<221> unsure

<222> (30)

<223> This amino acid has not yet been determined
and is possibly either one of Phe, Leu,
Ile or Val.

<220>

<221> unsure

<222> (117)

<223> This amino acid has not yet been determined
and is possibly either one of Leu, Ile
or Val.

<220>

<221> unsure

<222> (216)

<223> This amino acid has not yet been determined
and is possibly Val.

<220>

117

118

<221> unsure

<222> (231)

<223> This amino acid has not yet been determined
and is possibly Thr.

<400> 22

Xaa Arg Xaa Xaa Xaa Gln Leu Leu Gly Leu Xaa Met Leu Trp Val Xaa
 1 5 10 15
 Gly Ser Ser Gly Asp Ile Val Met Xaa Gln Xaa Pro Xaa Xaa Leu Pro
 20 25 30
 Val Thr Pro Gly Glu Pro Ala Ser Ile Ser Cys Arg Ser Gly Gln Arg
 35 40 45
 Leu Leu His Arg Asn Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys
 50 55 60
 Pro Gly Gln Ser Pro Gln Leu Leu Ile Tyr Leu Gly Ser Asp Arg Ala
 65 70 75 80
 Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe
 85 90 95
 Thr Leu Lys Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr
 100 105 110
 Cys Met Gln Ala Xaa Gln Ile Pro Phe Thr Phe Gly Pro Gly Thr Lys
 115 120 125
 Val Asp Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro
 130 135 140
 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 145 150 155 160
 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 165 170 175
 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 180 185 190

Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 195 200 205
 Ala Asp Tyr Glu Lys His Lys Xaa Tyr Ala Cys Glu Val Thr His Gln
 210 215 220
 Gly Leu Ser Ser Pro Val Xaa Lys Ser Phe Asn Arg Gly Glu Cys
 225 230 235

<210> 23

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(429)

<220>

<221> sia_peptide

<222> (1)..(57)

<220>

<221> V_region

<222> (58)..(429)

<220>

119

120

<21> N_region

<22> (352)..(354)

<23>

<24> N_region

<25> (370)..(373)

<400> 23

atq qaa ttt aqq ctq aqc tqg qtq ttc ctc qtq qct ctt tta aqa aqt 48

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly

1

5

10

15

qtc caq tqt caq qtq caq ctq qtq qaq tct qqg qqa qac qtq qtc caq 96

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln

20

25

30

cct qaa qaa tcc ctq aqa ctc tcc tqt qca qca tct aqa ttc acc ttc 144

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe

35

40

45

aqt acc tat qqc atq cac tqg qtc cqc caq aqt cca qac aaq qqq ctq 192

Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

50

55

60

qaq tqg qtq qca qtt ata tqg ttt qat qga aqt cat aaa tac tat qca 240

Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser His Lys Tyr Tyr Ala

65

70

75

80

qac tcc qtq aaq qqc cqg ttc acc atc tcc aqa qac aat tcc aaq aac 288

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

85

90

95

acq ctq tat ctq caa atq aac aqc ctq aqa qcc qag qac acq qct ata 336

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile

100

105

110

tat tac tqt qcc aqa cac aqc aqt qqc tac qaq qac tac tac tac 384

Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr

115

120

125

qgt atq qac qtc tqg qoc caa qqq acc acq qtc acc qtc tcc tca 429

Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser

130

135

140

<210> 24

<211> 143

<212> PRT

<213> Homo sapiens

<400> 24

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly

1

5

10

15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln

20

25

30

Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe

35

40

45

Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

50

55

60

Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser His Lys Tyr Tyr Ala

65

70

75

80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

85

90

95

121

122

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile
 100 105 110

Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125

Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140

<210> 25

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(429)

<220>

<221> sia_peptide

<222> (1)..(57)

<220>

<221> V_region

<222> (58)..(429)

<220>

<221> N_region

<222> (352)..(354)

<220>

<221> N_region

<222> (370)..(373)

<400> 25

atq qaq ttt qqq ctq aac taa qtt ttc ctc qtt qct ctt tta aqa aqt 48

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15

qtc cag tqt caq qtq caq ctq qtq qaq tct qaa qqa qqc qtq qtc caq 96

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30

cct qqq aqq tcc ctq aqa ctc tcc tqt qca qcq tct qqa ttc acc ttc 144

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

agt aqc tat qqc atq cac taa qtc cqc caq qct cca qqc aaq qqq ctq 192
 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60

qaa taa qtq qca qtt ata taa ttt qat qqa aqt aaq aaa tac tat qca 240
 Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser Lys Lys Tyr Tyr Ala
 65 70 75 80

gac tcc gtg aaq ggc cga ttc acc atc tcc aqa gac aat tca aaq aac 288
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95

acq ctq tat ctq caa atq aac aqc ctq aqa qcc qaq qac acq qct qtq 336
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110

tat tac tqt qcq aqa cac aqc aqt qqc taa tac qad qac tac tac tac 384

(63)

特開2000-80100

123

124

Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 qqt atq qac qtc tqq qqc caa qqq acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 26
 <211> 143
 <212> PRT
 <213> Homo sapiens
 <400> 26
 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30
 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser Lys Lys Tyr Tyr Ala
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 27
 <211> 429
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(429)
 <220>
 <221> sig_peptide
 <222> (1)..(57)
 <220>
 <221> V_region
 <222> (58)..(429)
 <220>
 <221> N_region
 <222> (352)..(354)
 <220>
 <221> N_region
 <222> (370)..(373)
 <220>
 <221> unsure
 <222> (1)..(2)

(65)

特開2000-80100

127

128

acq ctg tat ctg caa atq aac aqa ctg aqa acc gaa gac acq oct gta 336
 Thr Leu Tyr Leu Gln Met Asn Arg Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 tat tac tqt qcq aqa cat aqc aat aqc tqq tac gaa gac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 qqt atq gac qtc tqq aqc caa qqq acc acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 28
 <211> 143
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (1)
 <223> This amino acid has not yet been determined
 and is possibly Met.
 <220>
 <221> unsure
 <222> (3)
 <223> This amino acid has not yet been determined.
 <220>
 <221> unsure
 <222> (5)
 <223> This amino acid has not yet been determined
 and is possibly either one of Met, Thr, Lys
 or Arg.
 <220>
 <221> unsure
 <222> (6)
 <223> This amino acid has not yet been determined
 and is possibly Ser or Arg.
 <220>
 <221> unsure
 <222> (10)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Leu, Ile
 or Val.
 <220>
 <221> unsure
 <222> (11)
 <223> This amino acid has not yet been determined
 and is possibly either one of Val, Asp, Arg
 or Gly.
 <400> 28
 Xaa Glu Xaa Gly Xaa Xaa Trp Val Phe Xaa Xaa Ala Leu Arg Arg Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln
 20 25 30

129

130

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
35 40 45

Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
50 55 60

Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Gln Tyr Tyr Ala
65 70 75 80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
85 90 95

Thr Leu Tyr Leu Gln Met Asn Arg Leu Arg Ala Glu Asp Thr Ala Val
100 105 110

Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
115 120 125

Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
130 135 140

<210> 29

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(429)

<220>

<221> sig_peptide

<222> (1)..(57)

<220>

<221> V_region

<222> (58)..(429)

<220>

<221> N_region

<222> (352)..(354)

<220>

<221> N_region

<222> (370)..(373)

<220>

<221> unsure

<222> (7)..(9)

<223> These bases have not yet been determined.

<220>

<221> unsure

<222> (22)

<223> This base has not yet been determined. The codon containing this base encodes either one of Phe, Leu, Ile or Val.

<220>

<221> unsure

<222> (32)

<223> This base has not yet been determined. The codon containing this base encodes either one of Val, Ala, Asp or Gly.

<400> 29

131

132

atg qaq nnn qqq aqq aqc tgg ntc ttc qtc qnt qct cta aqa aqa qgt 48
 Met Glu Xaa Gly Arg Ser Trp Xaa Phe Val Xaa Ala Leu Arg Arg Glv
 1 5 10 15
 qtc caq tqt caq qtc caq ctq qtq qaa tct qaa qqa qac qtq atc caq 96
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln
 20 25 30
 cct qqq aqq tcc ctq aqa ctc tcc tqt qca qca tct qqa ttc acc ttc 144
 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45

 aqt acc tat qqc atq cac tgg qtc cqc caq oct cca qqc aaq qqq ctq 192
 Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 qaa tgg qtq qca qtt ata tgg tat qat qqa aqt aat caa tac tat qca 240
 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Gln Tyr Tyr Ala
 65 70 75 80
 qac tcc qtq aaq qqc cqg ttc acc atc tcc aqa gac aat tcc aaq aac 288
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 acq ctq tat ctq caa atq aac aqa ctg aqa qcc qaq qac acq qct qtq 336
 Thr Leu Tyr Leu Gln Met Asn Arg Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 tat tac tqt qcq aqa cat aqc aat qqc tgg tac qaq qac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 qgt atq qac qtc tgg qqc caa qqq acc acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 30
 <211> 143
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> unsure
 <222> (3)
 <223> This amino acid has not yet been determined.
 <220>
 <221> unsure
 <222> (8)
 <223> This amino acid has not yet been determined
 and is possibly either one of Phe, Leu,
 Ile or Val.
 <220>
 <221> unsure
 <222> (11)
 <223> This amino acid has not yet been determined
 and is possibly either one of Val, Ala,
 Asp or Gly.
 <400> 30
 Met Glu Xaa Gly Arg Ser Trp Xaa Phe Val Xaa Ala Leu Arg Arg Glv

(69)

特開2000-80100

135

136

50

55

60

qaa taa qtq qca gtt ata taa tat qat qqa aqc cat aaa ttc tat qca 240
 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser His Lys Phe Tyr Ala

65

70

75

80

qac tcc qtq aaq qqc cqa ttc acc atc tcc aqa gac aat tcc aaq aac 288
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

85

90

95

aca ctq tat ctq caa atq aac aqc ctq aqa acc qaq qac acq oct qtq 336
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val

100

105

110

tat tat tqt qcq aqa cac aqc aat aqc taa tac qaq qac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr

115

120

125

qqt atq qac oct taa qqc cca qqq acc acq oct acc oct tcc tca 429
 Gly Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser

130

135

140

<210> 32

<211> 143

<212> PRT

<213> Homo sapiens

<400> 32

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly

1

5

10

15

Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln

20

25

30

Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe

35

40

45

Ser Asp Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu

50

55

60

Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser His Lys Phe Tyr Ala

65

70

75

80

Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn

85

90

95

Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val

100

105

110

Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr

115

120

125

Gly Met Asp Val Trp Gly Pro Gly Thr Thr Val Thr Val Ser Ser

130

135

140

<210> 33

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(429)

<220>

<221> siq_peptide

<222> (1)..(57)

<220>

137
 <221> V_region
 <222> (58)..(429)
 <220>
 <221> N_region
 <222> (352)..(354)
 <220>
 <221> N_region
 <222> (370)..(373)
 <400> 33

atq	qaq	ttt	qqq	ctq	aqc	tqq	qtt	ttc	ctc	qtt	gct	ctt	tta	aqa	aat	48
Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Leu	Leu	Arg	Gly	
1																15
qtc	caq	tqt	caq	qtq	caq	ctq	qtq	qaq	tct	qqq	qaa	qac	atq	qtc	caq	96
Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Val	Val	Gln	
																20
cct	qqq	aqq	tcc	ctq	aqa	ctc	tcc	tqt	qca	qca	tct	qqa	ttc	acc	ttc	144
Pro	Gly	Arg	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	
																35
aqt	acc	tat	qgc	atq	cac	tqq	qtc	cqc	caq	qct	cca	qqc	aaq	qqq	ctq	192
Ser	Thr	Tyr	Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	
																50
qaq	tqq	qtq	qca	qtt	ata	tqq	tat	qat	qqa	aqt	tat	aaa	tac	tat	qca	240
Glu	Trp	Val	Ala	Val	Ile	Trp	Tyr	Asp	Gly	Ser	Tyr	Lys	Tyr	Tyr	Ala	
																65
qac	tcc	qtq	aaq	qqc	cqa	tcc	acc	atc	tcc	aga	qac	aat	tcc	aaq	aac	288
Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	
																85
acq	ctq	tat	ctq	caa	atq	aac	aqc	ctq	aga	qcc	qaq	qac	acq	qct	ata	336
Thr	Leu	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	
																100
tat	tac	tqt	qcq	aga	cac	aqc	aqt	qac	tqq	tac	qaq	qac	tac	tac	tac	384
Tyr	Tyr	Cys	Ala	Arg	His	Ser	Ser	Gly	Trp	Tyr	Glu	Asp	Tyr	Tyr	Tyr	
																115
ggt	atq	gac	qtc	tqq	qqc	caa	qqq	acc	acq	qtc	acc	qtc	tcc	tca		429
Gly	Met	Asp	Val	Trp	Gly	Gln	Gly	Thr	Thr	Val	Thr	Val	Ser	Ser		
																130
<210>	34															135
<211>	143															140
<212>	PRT															
<213>	Homo sapiens															
<400>	34															
Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Leu	Leu	Arg	Gly	
																1
																5
																10
																15
Val	Gln	Cys	Gln	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Val	Val	Gln	
																20
																25
																30
Pro	Gly	Arg	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	
																35
																40
																45
Ser	Thr	Tyr	Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	
																50
																55
																60
Glu	Trp	Val	Ala	Val	Ile	Trp	Tyr	Asp	Gly	Ser	Tyr	Lys	Tyr	Tyr	Ala	

(71)

特開2000-80100

139			140
65	70	75	80
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn			
85	90	95	
Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val			
100	105	110	
Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr			
115	120	125	
Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser			
130	135	140	
<210> 35			
<211> 429			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> CDS			
<222> (1)..(429)			
<220>			
<221> sia_peptide			
<222> (1)..(57)			
<220>			
<221> V_region			
<222> (58)..(429)			
<220>			
<221> N_region			
<222> (352)..(354)			
<220>			
<221> N_region			
<222> (370)..(373)			
<400> 35			
atq qag ttt qgg ctg aqc tgg gtt ttc ctc qtt qct ctt tta aqa qgt			
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly			
1	5	10	15
gtc caq tqt caq qtg caq ctg qtq qaq tct qgg qga qqc qtq qtc caq			
Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln			
20	25	30	
cct qgg aqq tcc ctq aqa ctc tcc tqt qca qcg tct qqa ttc acc ttc			
Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe			
35	40	45	
agt aqc tat qgc atq cac tqq qtc cqc caq qct cca qqc aag qgg ctq			
Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu			
50	55	60	
qag tqq qtq qca qtt ata tqq tat qat qqa agt tat aaa atc tat qca			
Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Ile Tyr Ala			
65	70	75	80
qac tcc qtq aaq qgc cqa ttc acc atc tcc aqa qac aat tcc aag aac			
Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn			
85	90	95	
acq ctq aat ctq caa atq aac aqc ctq aqa qcc qag qac acq qct qtq			
Thr Leu Asn Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val			
100	105	110	

141

142

tat tat tot qcq aga cac aqc aqt gac tgg tat qaq qac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 qgt atq qac qtc tgg qgc caa qqq acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 36
 <211> 143
 <212> PRT
 <213> Homo sapiens
 <400> 36
 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30
 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Ile Tyr Ala
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 Thr Leu Asn Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 37
 <211> 429
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> (1)..(429)
 <220>
 <221> sig_peptide
 <222> (1)..(57)
 <220>
 <221> V_region
 <222> (58)..(429)
 <220>
 <221> N_region
 <222> (352)..(354)
 <220>
 <221> N_region
 <222> (370)..(373)
 <400> 37
 atq gaa ttt qqq ctg aqc tag gtt ttc ctc gtt gct ctt tta aqa ggt 48

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 gtc caq tqt caq qtq caq ctg qtq qaq tct aaa qqa qac qtq atc caq 96
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30
 cct qqq qqq tcc ctg aqa ctc tcc tqt qca qcq tct qqa ttc acc ttc 144
 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 aqt acc tat qdc atq cac tgg qtc cqc caq act cca qdc aaq qqq ctg 192
 Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 qaq tgg qtq qca qtt ata tgg ttt qat qqa aqt cat aaa tac tat oca 240
 Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser His Lys Tyr Tyr Ala
 65 70 75 80
 qac tcc qtq aaq qdc cqg acc atc tcc aqa qac aat tcc aaq aac 288
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 acq ctg tat ctg caa atq aac aqc ctg aqa qcc qaq qac acq qct ata 336
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile
 100 105 110
 tat tac tqt qcq aqa cac aqc aqt qac tgg tac qaq qac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 ggt atq qac qtc tgg qgc caa qqq acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 38
 <211> 143
 <212> PRT
 <213> Homo sapiens
 <400> 38

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30
 Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 Ser Thr Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 Glu Trp Val Ala Val Ile Trp Phe Asp Gly Ser His Lys Tyr Tyr Ala
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Ile
 100 105 110
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Tyr
 115 120 125
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 39

145 <211> 417 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(417) <220> <221> siq_peptide <222> (1)..(57) <220> <221> V_region <222> (58)..(417) <220> <221> N_region <222> (348)..(349) <220> <221> N_region <222> (357) <220> <221> unsure <222> (231) <223> This base has not yet been determined. The codon containing this base highly possibly encodes Tyr. <400> 39	146
atq aaa cat ctq tqq ttc ttc ctt ctc ctq qtq qca gct ccc aqa tqq Met Lys His Leu Trp Phe Phe Leu Leu Leu Val Ala Ala Pro Arg Trp 1 5 10 15 qtc ctq tcc caq gtq caq ctq caq qaq tcq qqc cca qqa ctq qtq aaq Val Leu Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys 20 25 30 cct tcg qag acc ctq tcc ctc acc tqc act qtc tct qgt qqc tcc atc Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile 35 40 45 agt aqt tac tac tqq aqc tqg atc cqg caq ccc cca qgg aqg qqa ctq Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu 50 55 60 qag tqg att qgg tat atc tat tac aqt qgg aqc acc aan tac aac ccc Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Xaa Tyr Asn Pro 65 70 75 80 tcc ctc aaq aqt cqa qtc acc ata tca qtq qac acq tcc aaq aac caq Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln 85 90 95 ttc tcc ctq aaq ctq aqc tct qtq acc gct qcg gac acq qcc qtt tat Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr 100 105 110 tac tqt gcg aqc qca qta acc tac tac tac tac qgt ttq qac qtc Tyr Cys Ala Ser Ala Val Thr Tyr Tyr Tyr Tyr Gly Leu Asp Val 115 120 125 tqq qac caa qgg acc acq qtc acc qtc tcc tca	417

(75)

147

Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser

130

135

<210> 40

<211> 139

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> (77)

<223> This amino acid has not yet been determined
and is possibly Tyr.

<400> 40

Met Lys His Leu Trp Phe Phe Leu Leu Leu Val Ala Ala Pro Arg Trp

1

5

10

15

Val Leu Ser Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys

20

25

30

Pro Ser Glu Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Gly Ser Ile

35

40

45

Ser Ser Tyr Tyr Trp Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu

50

55

60

Glu Trp Ile Gly Tyr Ile Tyr Tyr Ser Gly Ser Thr Xaa Tyr Asn Pro

65

70

75

80

Ser Leu Lys Ser Arg Val Thr Ile Ser Val Asp Thr Ser Lys Asn Gln

85

90

95

Phe Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr

100

105

110

Tyr Cys Ala Ser Ala Val Thr Tyr Tyr Tyr Tyr Gly Leu Asp Val

115

120

125

Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser

130

135

<210> 41

<211> 429

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(429)

<220>

<221> sia_peptide

<222> (1)..(57)

<220>

<221> V_region

<222> (58)..(429)

<220>

<221> N_region

<222> (352)..(354)

<220>

<221> N_region

<222> (370)..(373)

特開2000-80100

148

149

150

<400> 41

atq qaq ttt qqq ctq aqc tqg qtt ttc ctc qtt qct ctt tta aqa aqt 48
 Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 gtc caq tqt caq gtq caq ctq qtq qaq tct qqq gqa qac qtq qtc caq 96
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30

cct qqq aqq tcc ctq aqa ctc tcc tqt qca qcc tct qqa ttc acc ttc 144
 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 aqt aqc tat qqc ata cac tqg qtc cqc caq aqt cca qqc aaq qqq ctq 192
 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 qaq tqg qtq qca qtt ata tqg tat qat qqa aqt aat aaa tac tat qta 240
 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Val
 65 70 75 80
 gac tcc qtq aaq qqc cqa ttc acc atc tcc aqa qac aat tcc aaq aac 288
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 acq ctq tat ctq caa atq aac aqc ctq aqa qcc qaq qac acq qct qtq 336
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 tat tac tqt qcq aqa cac aqc aqt qqc tqg tac qaq qac tac tac tac 384
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Val
 115 120 125
 qqt atq gac qtc tqg qqc caa qqq acc acq qtc acc qtc tcc tca 429
 Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 130 135 140
 <210> 42
 <211> 143
 <212> PRT
 <213> Homo sapiens

<400> 42

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Leu Arg Gly
 1 5 10 15
 Val Gln Cys Gln Val Gln Leu Val Glu Ser Gly Gly Val Val Gln
 20 25 30
 Pro Gly Arg Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe
 35 40 45
 Ser Ser Tyr Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu
 50 55 60
 Glu Trp Val Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Val
 65 70 75 80
 Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn
 85 90 95
 Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val
 100 105 110
 Tyr Tyr Cys Ala Arg His Ser Ser Gly Trp Tyr Glu Asp Tyr Tyr Val
 115 120 125

本アミノ酸は、PheまたはLeuであり得る。

配列番号：7

存在位置：(74)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(252)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Proをコードする可能性が高い。

配列番号：8

存在位置：(25)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerのいずれかであり得る。

存在位置：(27)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(84)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Proであり得る。

配列番号：9

存在位置：(230)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(252)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Proをコードする可能性が高い。

存在位置：(349)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、IleまたはValのいずれかをコードする。

配列番号：10

存在位置：(77)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(84)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Proであり得る。

存在位置：(117)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、IleまたはValのいずれかであり得る。

配列番号：11

存在位置：(74)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(349)

10 他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、IleまたはValのいずれかをコードする。

存在位置：(437)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(648)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Valをコードする可能性が高い。

20 配列番号：12

存在位置：(25)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerのいずれかであり得る。

存在位置：(27)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(117)

30 他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、IleまたはValであり得る。

存在位置：(146)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(216)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Valであり得る。

配列番号：13

40 存在位置：(465)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Alaをコードする可能性が高い。

配列番号：14

存在位置：(155)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Alaであり得る。

配列番号：15

存在位置：(14)

50 他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Val、Ala、AspまたはGlyのいずれかをコードする。

ドする。

存在位置：(39)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leuをコードする可能性が高い。

存在位置：(74)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(648)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Valをコードする可能性が高い。

配列番号：1 6

存在位置：(5)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Val、Ala、AspまたはGlyのいずれかであり得る。

存在位置：(13)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leuであり得る。

存在位置：(25)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerのいずれかであり得る。

存在位置：(27)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysであり得る。

存在位置：(216)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Valであり得る。

配列番号 1 7

存在位置：(7)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Leu、IleまたはValのいずれかをコードする。

存在位置：(11)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、Pro、HisまたはArgのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(349)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、IleまたはValのいずれかをコードする。

配列番号：1 8

存在位置：(3)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Leu、IleまたはValのいずれかであり得る。

存在位置：(4)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、Pro、HisまたはArgのいずれかであり得る。

10 存在位置：(27)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(117)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、IleまたはValであり得る。

配列番号：1 9

存在位置：(74)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(637)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Gln、LysまたはGluのいずれかをコードする。

20 存在位置：(643)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Gln、LysまたはGluのいずれかをコードする。

存在位置：(657)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、CysまたはTrpをコードする。

存在位置：(659)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Val、Ala、GluまたはGlyのいずれかをコードする。

40 存在位置：(665)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

配列番号：2 0

存在位置：(25)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerのいずれかであり得る。

50 存在位置：(27)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(213)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Gln、LysまたはGluのいずれかであり得る。

存在位置：(215)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Gln、LysまたはGluのいずれかであり得る。

存在位置：(219)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、CysまたはTrpであり得る。

存在位置：(220)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Val、Ala、GluまたはGlyのいずれかであり得る。

存在位置：(222)

他の情報：本アミノ酸は未だ同定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerであり得る。

配列番号：2 1

存在位置：(1) .. (2)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Metをコードする可能性が高い。

存在位置：(7)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Leu、IleまたはValのいずれかをコードする。

存在位置：(11) .. (12)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、Pro、His、GlnまたはArgのいずれかをコードする。

存在位置：(14)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Val、Ala、AspまたはGlyのいずれかをコードする。

存在位置：(31)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、IleまたはValのいずれかをコードする。

存在位置：(47)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(74)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Ile、Thr、AsnまたはSerのいずれかをコードする。

存在位置：(80)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Ser、TyrまたはCysのいずれかをコードする。

存在位置：(87)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leuをコードする可能性が高い。

存在位置：(88)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Leu、IleまたはValのいずれかをコードする。

存在位置：(349)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Leu、IleまたはValのいずれかをコードする。

存在位置：(648)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Valをコードする可能性が高い。

存在位置：(693)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Theをコードする可能性が高い。

配列番号 2 2

存在位置：(1)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Metであり得る。

存在位置：(3)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Leu、IleまたはValのいずれかであり得る。

存在位置：(4)

30 他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、Pro、His、GlnまたはArgのいずれかであり得る。

存在位置：(5)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Val、Ala、AspまたはGlyのいずれかであり得る。

存在位置：(11)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、IleまたはValのいずれかであり得る。

40 存在位置：(16)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(25)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Ile、Thr、AsnまたはSerのいずれかであり得る。

存在位置：(27)

50 他の情報：本アミノ酸は未だ決定されていない。また、

本アミノ酸は、Phe、Ser、TyrまたはCysのいずれかであり得る。

存在位置：(29)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leuであり得る。

存在位置：(30)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Leu、IleまたはValのいずれかであり得る。

存在位置：(117)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Leu、IleまたはValのいずれかであり得る。

存在位置：(216)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Valであり得る。

存在位置：(231)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Thrであり得る。

配列番号：2 7

存在位置：(1) .. (2)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Metをコードする可能性が高い。

存在位置：(7) .. (9)

他の情報：本塩基は未だ決定されていない。

存在位置：(14)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Met、Thr、LysまたはArgのいずれかをコードする。

存在位置：(18)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、SerまたはArgをコードする。

存在位置：(28)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Leu、IleまたはValのいずれかをコードする。

存在位置：(32)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Val、Ala、AspまたはGlyのいずれかをコードする。

配列番号：2 8

存在位置：(1)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Metであり得る。

存在位置：(3)

他の情報：本アミノ酸は未だ決定されていない。

存在位置：(5)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Met、Thr、LysまたはArgのいずれかであり得る。

存在位置：(6)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、SerまたはArgであり得る。

存在位置：(10)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Leu、IleまたはValのいずれかであり得る。

存在位置：(11)

他の情報：本アミノ酸は未だ決定されていない。また、
10 本アミノ酸は、Val、Asp、ArgまたはGlyのいずれかであり得る。

配列番号：2 9

存在位置：(7) .. (9)

他の情報：本塩基は未だ決定されていない。

存在位置：(22)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Phe、Leu、IleまたはValのいずれかをコードする。

存在位置：(32)

20 他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Val、Ala、AspまたはGlyのいずれかをコードする。

配列番号：3 0

存在位置：(3)

他の情報：本アミノ酸は未だ決定されていない。

存在位置：(8)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Phe、Leu、IleまたはValのいずれかであり得る。

30 存在位置：(11)

他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Val、Ala、AspまたはGlyのいずれかであり得る。

配列番号：3 9

存在位置：(231)

他の情報：本塩基は未だ決定されていない。本塩基を含むコドンは、Tyrをコードする可能性が高い。

配列番号：4 0

存在位置：(77)

40 他の情報：本アミノ酸は未だ決定されていない。また、本アミノ酸は、Tyrであり得る。

配列番号：4 3

他の情報：人工配列についての記載：人工的に合成したアダプター配列

配列番号：4 4

他の情報：人工配列についての記載：人工的に合成したプライマー配列

配列番号：4 5

他の情報：人工配列についての記載：人工的に合成した
50 プライマー配列

【0116】

【図面の簡単な説明】

【図1】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が1または $5\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図2】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図3】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図4】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が1または $5\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図5】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

のいずれをも含まない）を用いた試験における結果を示す。

【図6】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図7】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図8】PTHrP依存的細胞内cAMPの上昇に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の抑制効果を示す図。縦軸は、cAMPの産生量を示し、また横軸は、抗体濃度が0.3または $1.0\mu\text{g}/\text{ml}$ における各々のモノクローナル抗体のクローニング名を表わす。なお、横軸において、「PTHrP(+)」は、いずれのモノクローナル抗体も含まずPTHrP(1-34)のみを含む培地を用いた試験における結果を示し、「PTHrP(-)」は、培地のみ（抗体及びPTHrP(1-34)のいずれをも含まない）を用いた試験における結果を示す。

【図9】PTHrPの骨吸収促進作用に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の阻害効果を示す図。縦軸は、阻害率（%）を示し、また横軸は、抗体濃度を示す。nは、試験したマウスの匹数を示す。なお、各値は、複数のマウスを用いた試験の平均値（± SEM）。

【図10】PTHrPの骨吸収促進作用に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の阻害効果を示す図。縦軸は、阻害率（%）を示し、また横軸は、抗体濃度を示す。nは、試験したマウスの匹数を示す。なお、各値は、複数のマウスを用いた試験の平均値（± SEM）。

【図11】PTHrPの骨吸収促進作用に対する各種の抗ヒトPTHrPヒトモノクローナル抗体の阻害効果を示す図。縦軸は、阻害率（%）を示し、また横軸は、抗体濃度を示す。nは、試験したマウスの匹数を示す。なお、各値は、複数のマウスを用いた試験の平均値（± SEM）。

【図12】抗ヒトPTHrPヒトモノクローナル抗体の重鎖及び軽鎖の各々をコードするDNA配列の決定の手順を模式的に示す図。

【図13】抗ヒトPTHRPヒトモノクローナル抗体2F8-10-1が有するPTHRP誘導性高カルシウム血症の治療効果を示す図。

【図14】抗ヒトPTHRPヒトモノクローナル抗体1B3-9-1が有するPTHRP誘導性高カルシウム血症の治療効果を示す図。

【図15】抗ヒトPTHRPヒトモノクローナル抗体15H7-8-3が有するPTHRP誘導性高カルシウム血症の治療効果を示す図。

*

* 【図16】抗ヒトPTHRPヒトモノクローナル抗体5B12-16-12が有するPTHRP誘導性高カルシウム血症の治療効果を示す図。

【図17】抗ヒトPTHRPヒトモノクローナル抗体4B4-6-2-1が有するPTHRP誘導性高カルシウム血症の治療効果を示す図。

【図18】抗ヒトPTHRPヒトモノクローナル抗体4B4-6-2-1が有する腫瘍隨伴性悪性高カルシウム血症の治療効果を示す図。

【図1】

【図4】

【図11】

【図3】

【図10】

【図5】

【図6】

【図7】

【図8】

【図9】

【図12】

【図13】

【図14】

【図15】

【図16】

【図17】

【図18】

フロントページの続き

(51)Int.CI.

A 6 1 P 35/00
43/00

A 6 1 K 39/395

C 1 2 N 5/10

識別記号

F I

A 6 1 K 31/00

マークコード(参考)

6 3 5
6 4 3

39/395

D
N

C 1 2 P 21/08

15/02	Z N A
C 1 2 P	21/08
//(C 1 2 N	5/10
C 1 2 R	1:91)
(C 1 2 N	15/02
C 1 2 R	1:91)
(C 1 2 P	21/08
C 1 2 R	1:91)

C 1 2 N	5/00	B
	15/00	Z N A C

(72)発明者 鎌田 雅史
神奈川県横浜市金沢区福浦1-13-2 日
本たばこ産業株式会社医薬探索研究所内

F ターム(参考) 4B024 AA01 AA11 BA44 BA80 CA04
DA02 EA04 GA03 GA12 GA18
HA01 HA15
4B064 AG01 AG27 CA06 CA10 CA19
CA20 CC24 CE12 DA01 DA13
4B065 AA91X AA93Y AB01 AB05
BA02 BA04 BA08 BD15 CA24
CA25 CA44 CA46
4C085 AA14 BB07 CC02 EE01 GG01
GG02 GG03 GG04 GG06
4H045 AA11 AA30 BA10 BA18 BA19
BA41 CA40 DA45 DA76 EA21
EA22 EA24 EA25 EA27 EA28
FA70 FA74 GA10 GA15 GA24
GA26