February 2017 February 18, 2017

Geometry

- 1. Let A, B, C, D be four points on a circle in that order. Also, AB = 3, BC = 5, CD = 6, and DA = 4. Let diagonals AC and BD intersect at P. Compute $\frac{AP}{CP}$.
- 2. Let ABC be a triangle with AB = 13, BC = 14, and CA = 15. Let ℓ be a line passing through two sides of triangle ABC. Line ℓ cuts triangle ABC into two figures, a triangle and a quadrilateral, that have equal perimeter. What is the maximum possible area of the triangle?
- 3. Let S be a set of 2017 distinct points in the plane. Let R be the radius of the smallest circle containing all points in S on either the interior or boundary. Also, let D be the longest distance between two of the points in S. Let a, b are real numbers such that $a \leq \frac{D}{R} \leq b$ for all possible sets S, where a is as large as possible and b is as small as possible. Find the pair (a, b).
- 4. Let ABCD be a convex quadrilateral with AB = 5, BC = 6, CD = 7, and DA = 8. Let M, P, N, Q be the midpoints of sides AB, BC, CD, DA respectively. Compute $MN^2 PQ^2$.
- 5. Let ABCD be a quadrilateral with an inscribed circle ω and let P be the intersection of its diagonals AC and BD. Let R_1 , R_2 , R_3 , R_4 be the circumradii of triangles APB, BPC, CPD, DPA respectively. If $R_1 = 31$ and $R_2 = 24$ and $R_3 = 12$, find R_4 .
- 6. In convex quadrilateral ABCD we have AB = 15, BC = 16, CD = 12, DA = 25, and BD = 20. Let M and γ denote the circumcenter and circumcircle of $\triangle ABD$. Line CB meets γ again at F, line AF meets MC at G, and line GD meets γ again at E. Determine the area of pentagon ABCDE.
- 7. Let ω and Γ by circles such that ω is internally tangent to Γ at a point P. Let AB be a chord of Γ tangent to ω at a point Q. Let $R \neq P$ be the second intersection of line PQ with Γ . If the radius of Γ is 17, the radius of ω is 7, and $\frac{AQ}{BQ} = 3$, find the circumradius of triangle AQR.
- 8. Let ABC be a triangle with circumradius R=17 and inradius r=7. Find the maximum possible value of $\sin \frac{A}{2}$.
- 9. Let ABC be a triangle, and let BCDE, CAFG, ABHI be squares that do not overlap the triangle with centers X, Y, Z respectively. Given that AX = 6, BY = 7, and CZ = 8, find the area of triangle XYZ.
- 10. Let ABCD be a quadrilateral with an inscribed circle ω . Let I be the center of ω let IA = 12, IB = 16, IC = 14, and ID = 11. Let M be the midpoint of segment AC. Compute $\frac{IM}{IN}$, where N is the midpoint of segment BD.