Abstract Algebra Homework 10

Zachary Meyner

5. Prove or disprove: If D is an integral domain, then every prime element in D is also irreducible in D.

Proof. Let D be an integral domain and let $p \in D$ be prime. Consider p = ab for some $a, b \in D$. Because p is prime p|a or p|b. WLOG assume p|a. Then pn = a for some $n \in D$. Then we have

$$a = pn$$
$$= (ab)n$$
$$= a(bn)$$

Because D is an integral domain we can use the cancellation law and get 1 = bn. So b is a unit. Thus p is irreducible.

14. Let D be a Euclidean domain with Euclidean valuation ν . If u is a unit in D, show $\nu(u) = \nu(1)$.

Proof. Let D be a Euclidean Domain and $u \in D$ be a unit. Since u is a unit we know $ua = 1 \ \forall a \in D$. Since D is a Euclidean Domain we also know

$$\nu(u) \leq \nu(ua) = \nu(1) \leq \nu(1 \cdot u) = \nu(u)$$

And since $\nu(u) \le \nu(1) \le \nu(u)$ we know that $\nu(u) = \nu(1)$.

15. Let *D* be a Euclidean Domain with Euclidean valuation ν . If *a* and *b* are associates in *D*, prove that $\nu(a) = \nu(b)$.

Proof. Let D be a Euclidean Domain with $a, b \in D$ being associates. We know $\exists u \in D$ s.t. a = bu. Because D is a Euclidean Domain

$$\nu(b) < \nu(bu) = \nu(a) < \nu(au^{-1}) = \nu(b)$$

Since $\nu(b) \le \nu(a) \le \nu(b)$ we know that $\nu(a) = \nu(b)$.