A Partial Ranking Choice Structure for Optimal Sequential Search

Tinghan Zhang

Tilburg School of Economics and Management Department of Econometrics and Operation Research

Sep, 2024

Motivation: Sequential Search Model

- Imagine that a consumer plans to purchase a product among many alternatives in a large market, but she has only partial information about each product.
- The consumer can spend time and attention to collect detailed product information sequentially to help her make better purchase decision.
- This is the basic setup of the Consumer Sequential Search Model (SSM).
- Weitzman (1979) proposes stepwise Optimal Search Rules to describe the optimal solution to SSM.
- Yet, the Optimal Search Rules are not empirically friendly.
 - The optimal decision in each step depends on unobserved search outcomes in previous steps.
 - It is not easy to decompose joint probability.
 - The estimation is either difficult in computation, lacking precision, or complicated in implementation.
 - Inflexible under partial/extra data and model variations.
- Either use the full model with a heavy implementation burden, or discard search information.

This paper

- This paper aids empirical analysis by describing the optimal solution of SSM differently.
- Four conditions equivalent to (yet do not rely on) Weitzman's rules. The conditions form a Partial Ranking (PR) choice structure.
- With the PR structure, the probability of observations can be expressed in a value-difference form. Easy for specifying identification arguments and implementing estimation.
- Flexible for partial data, extra information, or tractable model variations.
 - Adaptive to the standard discrete choice structure on Choi et al.'s (2018) Eventual Purchase Theorem.
 - For more complicated variations, I provide an estimator with good performance for the search-with-product-discovery model.
 - The other example is my JMP, in which preference discovery alters the ranking in the middle of search.

Background: Standard Discrete Choice (SDC) Structure

- A consumer i plans to purchase one product from a set of alternatives \mathcal{M}_i .
- The consumer has full knowledge of \mathcal{M}_i , and full knowledge of each alternative in \mathcal{M}_i .
- Optimal rule: purchase product H with the largest match value u_{ij} : $u_{iH} \ge u_{iK}, \forall K \in \mathcal{M}_i$.

- Stack the MV of all unchose products to $u_{i,-H}$. The joint probability is: $\Pr(u_{i,-H} u_{ih} \le 0)$.
- Estimation: MLE with closed-form likelihood, or Simulated MLE.

Baseline Model: Sequential Search Model (SSM)

- A consumer i plans to purchase one product from a set of alternatives \mathcal{M}_i .
- The consumer has full knowledge of \mathcal{M}_i , but partial knowledge of each product in \mathcal{M}_i .
- The consumer can inspect products sequentially: she expends a search cost and fully resolves a product's uncertainty. Match value is determined once a product is inspected.
- The consumer can stop searching and buy one inspected product after each inspection.
- ullet Data of each consumer: purchased product, set of inspected products, order of inspections, \mathcal{M}_i .
- $\{H, S, R, M\}_i$: sequence observation of consumer i.
- Number inspected products following \mathcal{R}_i : $\{1, \dots, J\}_{\mathcal{R}_i}$. Randomly number uninspected products with $J+1, \dots, |\mathcal{M}_i|$.
- (Always) mark the number of the purchased product (H) by h. $1 \le h \le J$.

Baseline Model: Value of Inspection

- Assume search costs c_{ij} is independent, invariant, and observed by the consumer i.
- Weitzman (1979) simplifies consumers' dynamic optimization problem of sequential search model. He first introduced the value of an inspection.
- Imagine you have an alternative option that offers you a determined value of \bar{u} . Then inspecting an additional product j is indifferent when:

$$\underbrace{-c_{ij}}_{\text{Search cost}} + \underbrace{\int_{u>\bar{u}} (u-\bar{u}) \ dF_{ij}^{u}(u)}_{\text{Expected extra gain}} = 0 \tag{1}$$

- Unique solution z_{ij} . Inspect j when \bar{u} larger than z_{ij} ; not inspect j when \bar{u} is smaller than z_{ij} .
- z_{ij} is considered as the value of inspecting product j, or the reservation value of j.
- c_{ii} is only relevant to the model through z_{ii} .

Optimal Search Rules (Weitamzn, 1979)

- "If a box is to be opened, it should be that closed box (products not inspected) with highest reservation price (reservation value)."
- "Terminate search whenever the maximum sampled reward (*match value*) exceeds the reservation price of every closed box."
- In empirical, we add one rule: "Select the opened box with the highest sampled reward."
- Joint probability: all three rules hold.
- These rules are interdependent with unobserved search outcomes.

Optimal Search Rules (OSR) Choice Structure

• Lead to the choice structure of Optimal Search Rules (OSR):

- Step-by-step structure. All solid arrows are supposed to hold.
- Interdependence: later choices are made conditional on outcomes from previous steps.
- Difficult to decompose probability, specify identification arguments, or implement estimation.

Partial Ranking (PR) Choice Structure

Proposition 1

Define $y_i = \min\{u_{ih}, z_{iJ}\}$ the Core Value of consumer i. Weitzman's optimal rules are fulfilled if and only if the following conditions are fulfilled:

- **1** Distribution Condition: $u_{ih} \leq z_{iJ}$ if h < J.
- ② Ranking Condition: $z_{i1} \geq z_{i2} \geq ... \geq z_{ij}$;
- **1** Choice Condition 1: $z_{ik} \leq y_i$ for all k > J;
- Choice Condition 2: $u_{ij} \leq y_i$ for all $j \leq J, j \neq h$.

• The joint probability:

$$\Pr(\{H,S,R,\mathcal{M}\}_i) = \Pr(z_{iJ} \geq u_{ih} \cap z_{i1} \geq ... \geq z_{iJ} \cap \max_{j \leq J} u_{ij} \leq y_i \cap \max_{k > J} z_{ik} \leq y_i)$$

Partial Ranking (PR) Choice Structure: Illustration

• The four conditions form the Partial Ranking (PR) choice structure, illustrated as follows:

- Static structure.
- The search process, as well as the eventually unpurchased and uninspected products, are only
 conditional on the core value.

Partial Ranking (PR) Choice Structure: Optimality

- The optimality of the PR choice structure does not rely on the Optimal Search Rules.
- Key idea: parameters (preferences, search costs) are fully informed by the ranking of MVs and RVs.
- The ranking remains stable but not fully revealed. Initially, consumers only observe RVs.
- Every inspection collapses an RV and reveals an MV without changing values.

Partial Ranking (PR) Choice Structure: Optimality (Cont'd)

- Optimal: take actions following the descending order of the ranking (Keller & Oldale, 2003).
- Search stops when acting on an alternative with MV, i.e., purchase.
- At last, RVs of all and MVs of inspected are revealed; MVs of uninspected are eliminated.
- ullet Part of the ranking is censored. Values of uninspected and unpurchased are smaller than y_i .

Partial Ranking (PR) Choice Structure: Joint Probability

• Take the following value specification as an example (Honka and Chintagunta, 2017):

$$u_{ij} = X_{ij}\beta_i + \zeta_{ij} + \varepsilon_{ij}, \quad c_{ij} = c, \quad z_{ij} = X_{ij}\beta_i + \zeta_{ij} + m_{\varepsilon}(c).$$

- It can be proved that z_{ii} follows a linear specification. $\delta(.)$ is derived from Equation (1).
- ζ_{ij} is a pre-inspection taste shock for product j.
- Assumptions:
 - **①** Consumer knows $F_{ij}^{\varepsilon}(.) = F^{\varepsilon}(.)$, but not ε_{ij} until inspecting j.
 - **2** Consumer observes ζ_{ij} at the beginning of search.
 - (Independence) Taking action on related products does not lead to information on other actions.
 - (Invariance) No external factor changes product values throughout the search process.
- Stack product values for vectorized representation:

$$\mathbf{z}_{i}^{k} = (z_{i,J}, \cdots, z_{i,1})^{\top}, \ \mathbf{z}_{i}^{u} = (z_{i,J+1}, \cdots, z_{i,|\mathcal{M}_{i}|})^{\top}, \ \mathbf{u}_{i}^{k'} = (u_{i,1}, \cdots, u_{i,h-1}, u_{i,h+1}, \cdots u_{i,J})^{\top}$$

Partial Ranking (PR) Choice Structure: Joint Probability

• Joint Probability of SSM when h < J:

$$\Pr\left(\underbrace{\hat{D}}_{(J+|\mathcal{M}_{i}|-1)\times(J+|\mathcal{M}_{i}|)} \begin{pmatrix} u_{ih} \\ \mathbf{z}_{i}^{k} \\ \mathbf{z}_{i}^{u} \\ \mathbf{u}_{i}^{k'} \end{pmatrix}_{(J+|\mathcal{M}_{i}|)\times 1} \leq \mathbf{0}\right) = \Pr\left(\hat{D}\begin{pmatrix} \varepsilon_{ih} \\ \zeta_{i}^{k} \\ \zeta_{i}^{u} \\ \varepsilon_{i}^{k'} \end{pmatrix} \leq -\hat{D}\begin{pmatrix} f_{i}(\mathbf{X}_{i}^{k}) + \vec{m}_{\varepsilon}(c) \\ \vec{f}_{i}(\mathbf{X}_{i}^{k}) + \vec{m}_{\varepsilon}(c) \\ \vec{f}_{i}(\mathbf{X}_{i}^{k'}) \end{pmatrix}\right).$$

• The full-rank difference matrix $\hat{D} = \begin{pmatrix} \hat{D}_1 & \hat{D}_3 \\ \hat{D}_2 & \hat{D}_4 \end{pmatrix}$:

$$\hat{D}_1 = \begin{pmatrix} 1 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1 & 0 \\ 0 & 0 & \cdots & 0 & 1 & -1 \end{pmatrix}_{J \times (J+1)}, \quad \hat{D}_2 = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \cdots & 0 \end{pmatrix}_{(|\mathcal{M}_i|-1) \times (J+1)},$$

$$\hat{D}_3 = \{0\}_{J \times (|\mathcal{M}_i|-1)}, \quad \hat{D}_4 = I_{(|\mathcal{M}_i|-1) \times (|\mathcal{M}_i|-1)}$$

• When h = J, the rank of the difference matrix \tilde{D} is also $J + |\mathcal{M}| - 1$.

Partial Ranking (PR) Choice Structure: Identification

- For either $D \in \{\hat{D}, \tilde{D}\}$, it does not differentiate model identification from an SDC model.
- The introduction of heterogeneity in RV is important for "Only difference matters."
- Scale is RELEVANT. σ_{ε} determines $m_{\varepsilon}(c)$ and therefore the estimated c.
- Relative scale may also rely on assumptions: identification of heteroskedasticity with undetermined correlation is fragile.
 - Honka and Chintagunta (2017): Normalize ζ_{ij} by dividing σ_{ζ} , and assume $\varepsilon_{ij}/\sigma_{\zeta}$ is Gaussian.
 - A different tack is to assume $\sigma_{arepsilon}=1$ and estimate $\sigma_{\zeta}.$

Partial Ranking (PR) Choice Structure: Estimation

- Following the OSR structure, estimating SSM is practically difficult due to interdependency.
- The widely-applied simulator under OSR: Kernel-Smoothed Frequency Simulator.
 - Calculate $t_{ij}^1, t_{ij}^2, t_i^3, t_i^4$ for each observation *i*. Smooth with a kernel and scaling factors $\{\rho_1, \rho_2, \rho_3, \rho_4\}$.
 - Highly sensitive to the scaling factors. Needs pre-calibration on an artificial dataset.
 - More complicated model: more scaling factors. "Curse of dimensionality" for researchers.
- Recent development (Chung et al., 2024; Jiang et al., 2021): OSR-GHK simulator.
 - The simulator is smooth and efficient. No smoothing factors are needed.
 - Complicated in implementation: separate observations into 3 or 4 different cases before calculating the likelihood for each case.

Partial Ranking (PR) Choice Structure: Estimation (Cont'd)

• PR-GHK simulator: 1. draw to recover the observed ranking; 2. leave the rest to the core value.

- Compared to the KSFS: higher precision, circumventing pre-calibration on scaling factors.
- Compared to the OSR-GHK: almost the same efficiency, simpler implementation, higher flexibility.

Extension 1: Compatibility to Partial Data

Corollary 1

When a product is known to consumer (its MV is determined) without search, if it is not purchased, its mv follows Choice Condition 2; if it is purchased, all other products follow conditions in Proposition 1.

- Adding a known product (e.g., an outside option) does not affect the choice structure.
- Also when information on the inspection of some products is missing.
- If all products are known without inspection, Distribution and Rank Conditions are trivial.
 - With only two Choice Conditions, the PR structure degenerates to an SDC structure.

Extension 1: Compatibility to Partial Data

• When S_i or R_i is unavailable, summing up all possible S_i coincides with the SDCM based on the Eventual Purchase Theorem proposed by Choi et al. (2018).

Proposition 2 (when S_i is unavailable)

Define $w_{ij} = \min\{z_{ij}, u_{ij}\}$ the Effective Value of product j to consumer i. If $w_{iH} \geq w_{iL}$, $\forall L \in \mathcal{M}_i \setminus \{H\}$, then following Proposition 1, H is always inspected and purchased. On contrary, $w_{ih} \geq w_{ij}, \forall j \neq h$ must hold for any $\{H, \mathcal{S}, \mathcal{R}, \mathcal{M}\}_i$ fulfilling conditions in Proposition 1.

Corollary 2 (when \mathcal{R}_i is unavailable)

A product H in S_i is purchased if and only if:

- $w_{iH} > z_{iL'}, \forall L' \notin S_i$
- More convenient for demand estimation, while information in the search process is left out.

Extension 2: Variation on the Theme

- We can take additional information into the joint probability for estimation, as long as the ranking condition remains traced throughout the search process, including:
 - Extra information on the unobserved ranking (e.g., the 'second choice').
 - Unforeseen shocks that vary product values during the search process (e.g., preference discovery).
 - Other index-valued behaviors. Requiring Independence assumption. (e.g. product discovery).
- Key point: we focus on its impact on the ranking, but not what new optimal rules it introduces.

Extension 2: Search and Product Discovery (Greminger 2022)

- Take the search-and-product-discovery model as an example.
- The consumer has partial knowledge of the alternatives in the choice set \mathcal{M}_i . She can pay a discovery cost (c^{dis}) to discover more alternatives with uncertainty.
- Greminger (2022) proves that the discovery behavior has an independent and invariant discovery value (DV). Consider the value of dth discovery on route r also follows an additive form:

$$v_{ird} = \Theta_i(E_r(X_{ijr}^1), Var_r(X_{ijr}^1), c_{ijr}^{ins}, c_{ir}^{dis}) + au_{ird}, \quad \text{where } \Pr(au_{ird} < x) = F^{ au}(x)$$

- Each step: Buy inspected (end search), inspect uninspected, or discover through one of many routes to find more uninspected products.
- Discovery changes the rank conditions by expanding \mathcal{M}_i .

Extension 2: PR-GHK Simulation

- KSFS is still applicable (Zhang et al., 2023) but is more challenging in practice due to the increased model complexity.
- Greminger (2024) purposed an OSR-GHK estimator that does not employ full inspection order information, as it is not needed in his specification.
- PR-GHK idea: specify a multi-layer ranking condition of u_{ih} , z_{ii} , and v_{ir} from the data.
 - Segment the search process into sessions with discoveries. Each session has a stable linear ranking.
 - Take the DV of each session as the 'sub-core value' of each session.
 - State the ranking condition of the last session as the bottom, and lay the other conditions over up.
- Monte Carlo Simulation Results (100 reps, 2000 consumers, KSFS from Zhang et al., 2023):

	True val	KSFS	PR-GHK	PR-GHK		True val	KSFS	PR-GHK	PR-GHK
γ_1 :	2.00	2.17 (0.20)	1.86 (0.05)	1.94 (0.04)	log c _{ins}	-2.00	-2.20 (0.33)	-1.98 (0.04)	-2.00 (0.03)
γ_2 :	1.00	1.36 (0.25)	0.90 (0.06)	0.96 (0.05)	$\log c_{dis}$	-2.00	-1.72 (0.75)	-1.87 (0.04)	-1.96 (0.04)
γ_3 :	-0.55	-0.48 (0.15)	-0.51 (0.02)	-0.53 (0.02)	Draws		200	200	1000

Conclusion

- This paper proposes a choice structure of the optimal solution to the Sequential Search Model that is more empirically friendly.
- Easy for specifying identification argument and implementing estimation without information loss.
- Very flexible for partial or additional information. Fits for a wide range of model variations with the independence assumption.
- Suitable for policy evaluations of consumers' search behavior.

- Suppose initially 2 products are available, 2 routes, every inspection discover 2 prods.
- Consider the following sequence: {D2 | S3, D2 | S5, D1 | S4, S6, S7, P5}.
- Number the sessions from backward as 0, -1, -2, -3. Number the inspections from backward as -1, -2, -3, -4, -5.
- Define the values of behaviors as follows:
 - For purchasing: u^a , a is the session number in which the MV of the purchased product is realized (inspected).
 - For inspection: z_b^c , b is the inspection number, c is the session number in which the RV of the inspected product is realized (discovered).
 - For discovery: v_d^e , d is the route number, e is the session number where the DV is realized.
- Sub-core values for previous sessions: DV; for session 0: $\min\{u_a, z_b^0\}$
- Construct the ranking condition for each session sequentially.
- Core value for each session: minimum among all subsequent sub-core values.

