Medical Genomics Practical #2: Multi-omic analyses in R

N. Alcala

Rare Cancers Genomics Team

November 23th & 30th 2022

Plan

Practical (3.5 hrs)

- Concepts: interfacing R and python, reminder of MOFA model, MOFA2 implementation
- Practical: unsupervised analyses of rare lung cancers

Projects (0.5 hrs)

- Choice
- Quickstart

Concepts | Interfacing R and python

Why choose between python and R?

R Vs Python: What's the Difference?

Carmile de Terre recrute.

Perfoque à pas propose d'information en most insolment sur
encopage 9

En savour dutes

R and Python are both open-source programming languages with a large community. New libraries or tools are added continuously to their respective catalog, R is mainly used for statistical analysis while Python provides a more general approach to data science.

R and Python are state of the art in terms of programming language oriented towards data science, Learning both of them is, of course, the ideal solution. R and Python requires a timeinvestment, and such luxury is not available for everyone. Python is a general-purpose language with a readable syntax. R, however, is built by statisticians and encompasses their specific language.

In this tutorial, you will learn

Python vs R for Data Science: And the winner is..

About: Data-Driven Science (DDS) provides training for people building a career in Artificial Intelligence (AI). Follow us on Twitter.

- · Python
- Popularity index
- Job Opportunity
- · Analysis done by R and Python
- · Percentage of people switching
- · Difference between R and Python
- · R or Python Usage

R vs Python for Data Analysis — An Objective Comparison

Concepts | Interfacing R and python

Why choose between python and R?

- The core of the MOFA method is in python (mofapy, mofapy2) and uses the powerful python machine learning packages (e.g., scikit-learn)
- The downstream analyses and graphical functions are in R and leverage the contributions of the enormous R community of computational biologists and statisticians

Issues

- Need to correctly interface python and R
- Many dependencies in both languages, making the code difficult to set up and fragile

Concepts | Interfacing R and python

Why choose between python and R?

- The core of the MOFA method is in python (mofapy, mofapy2) and uses the powerful python machine learning packages (e.g., scikit-learn)
- The downstream analyses and graphical functions are in R and leverage the contributions of the enormous R community of computational biologists and statisticians

Solutions

- (earlier MOFA and MOFA+ releases) R
 package reticulate: allows to specify a
 python install or conda env, run python
 functions, transfer R and Pandas data frames,
 or R matrices and NumPy arrays
- (newer MOFA+ releases) R bioconductor
 package basilisk: allows R to directly create
 and handle conda environments with specific
 python dependencies, allowing smooth usage
 of incompatible python installs within a same
 R session

Concepts | *Multivariate regression reminder*

Multivariate linear models

- model Y = AX + ε,
- where Y is the matrix of observations for M features (rows) and N sample (columns)
- X is the known covariable matrix (K by N)
- **A** is the **unknown** weights matrix (*M* by *K*)
- ε is the residual noise (M by N)

Example: effect of smoking on gene expression in 100 patients

- Y: 2 genes x 100 patients
- X: smoking in pack-years for 100 patients
- A=[1,0]^t

Example MLM. The expression of the first gene (Y[1,]) is associated with smoking (x). The expression of the second gene (Y[2,]) is independent of (x)

Concepts | *Multivariate regression reminder*

Principal Component Analysis

- model Y = WZ + ε,
- where Y is the matrix of observations for M features (rows) and N samples (columns)
- Z is the unknown latent variable matrix (K by N)
- **W** is the **unknown** weights matrix (*M* by *K*)
- ε is the residual noise (*M* by *N*)

=> similar to regression but we do not have access to the

"true covariable" explaining the variation in Y, we try to guess

Concepts | *Multivariate regression reminder*

Principal Component Analysis

- model Y = WZ + ε,
- where Y is the matrix of observations for M features (rows) and N samples (columns)
- **Z** is the **unknown** latent variable matrix (**K** by **N**)
- **W** is the **unknown** weights matrix (*M* by *K*)
- ε is the residual noise (*M* by *N*)

Example: unknown effect of smoking on gene expression in 100 patients

- Y: 2 genes x 100 patients
- X: smoking in pack-years for 100 patients is unknown
- Z: 2 latent variables x 100 patients, obtained by the PCA
- W=[-1,0]^t, direction is not important

Example PCA. The first latent variable (Z[,1]) recapitulates smoking (x) although the model was blind to x, because the first gene (Y[,1]) is highly variable and strongly correlated with x => the PCA "found" the hidden covariable x

Concepts | *MOFA reminder*

Multi-Omics Factor Analysis (MOFA)

- Generalization of Principal Component Analysis to multiple modalities M
- model $Y^m = W^mZ + \varepsilon^m$,
- where Y^m is the matrix of observations for each feature d (rows) and each sample n (columns) for modality m (e.g., genomic alterations, expression)
- Z is the latent factors matrix (K by N) shared by all modalities m
- W^m is the weights (loadings) matrix (M by K) of m
- ε^m is the residual noise (M by N)

MOFA directed acyclic graph. Source: Argelaguet et al. Mol Syst Biol 2018.

Concepts | *MOFA implementation*

Multi-Omics Factor Analysis (MOFA)

• Model $Y^m = W^mZ + \varepsilon^m$

Bayesian inference of elements of **Z** and \mathbf{W}^m

• Sparse (Automatic Relevance Determination X "spike-and-slab") priors on weights $w^m_{d,k} = s^m_{d,k} \hat{w}^m_{d,k}$, with priors $s^m_{d,k} \sim$ Bernoulli(Θ^m_k) and $\hat{w}^m_{d,k} \sim$ Normal($0,1/\alpha^m_k$), so in modality m, if Θ^m_k is close to 0, factor k is sparse (most features have 0 weights), and if α^m_k is large factor k not active (e.g., the factor does not explain any variation)

Spike and slab prior. The arrow represents a Dirac point mass at 0.

Concepts | *MOFA implementation*

Multi-Omics Factor Analysis (MOFA)

• Model $Y^m = W^mZ + \varepsilon^m$

Bayesian inference of elements of **Z** and W^m

• Gaussian (for continuous data, e.g. normalized expression data and methylation M values), Bernoulli (for binary data, e.g. genomic alterations), or Poisson (for count data, e.g. as expression in read counts) **prior distributions on noise** ε^m_n

MOFA directed acyclic graph. Source: Argelaguet et al. Mol Syst Biol 2018.

Concepts | *MOFA implementation*

Multi-Omics Factor Analysis (MOFA)

Variational Bayes (or VI) implementation:

- Rationale: when fitting complex Bayesian models, the posterior distribution of the parameters is often intractable; we need an approximation
- Method (VI): a lower bound on the model likelihood (the Evidence Lower Bound--ELBO) is optimized (E-M algorithm), using a simpler factorized form for the posterior
- Note: less computer-intensive alternative to the popular Monte Carlo Markov Chains (MCMC)

Practical 2

Using MOFA to build a molecular map of expression and methylation of the rare lung neuroendocrine neoplasms

https://github.com/IARCbioinfo/medical_genomics_course/wiki/Practical-2

- **preprocessing** with RNA-seq pipeline from Practical 1 and the DNA methylation array processing script at https://github.com/IARCbioinfo/Methylation analysis scripts
- normalize expression data with the VST function
- convert methylation into M-values (<0 for unmethylation, >0 for methylated)
- **split methylation data** into 3 datasets according to location (sites within gene promoter regions, within gene bodies, and within enhancers)
- select the 5000 most variable features for each of the 4 datasets

Understanding MOFA | Link with PCA

MOFA factors explain variance across the input matrices

- Independent factorization with PCAs on each 'omic layer (input matrix):
 - Variance decreases monotonously with PC #
 - O PCs do not necessarily match across PCAs

- Joint factorization with MOFA
 - Sum of variance decreases monotonously but not necessarily the variance of each 'omic layer
 - Factors are shared across 'omic layers

Understanding MOFA | Link with PCA

MOFA factors explain variance across the input matrices

- Independent factorization with PCAs on each 'omic layer (input matrix):
 - O Variance decreases monotonously with PC #
 - PCs do not necessarily match across PCAs

- Joint factorization with MOFA
 - Sum of variance decreases monotonously but not necessarily the variance of each 'omic layer
 - Factors are shared across 'omic layers and correspond to a compromise between PCs

-80 -20 0 20 Axis1.RNA

Axis1.Meth pro

Axis1.Meth_bod

Understanding MOFA | Link with PCA

MOFA factors explain variance across the input matrices

- Independent factorization with PCAs on each 'omic layer (input matrix):
 - O Variance decreases monotonously with PC #
 - O PCs do not necessarily match across PCAs

- Joint factorization with MOFA
 - O Sum of variance decreases monotonously but not necessarily the variance of each 'omic layer
 - Factors are shared across 'omic layers and correspond to a compromise between PCs, not necessarily in the same order

Projects

Different flavors of computational biology for medical genomics

- I have heard of new analyses techniques that I want to try on my data => Projects 1 and 2 (R scripting)
- I have new data that I want to explore and compare with previous data => **Project 3** (R scripting)
- I have scripts for a software that I want to implement in a reproducible workflow => **Project 4** (nextflow coding)
- I have data from new types/technologies and I want to explore their possibilities => **Project 5 and 6** (R scripting)

