

λε (φε ~ Poisson (βε)
Pt-1 (Dt-1 ~ gamma (Az-1, ac-1/men)
st of b /R
$\beta(\phi_{t-1} b_{t-1}) \propto \beta_{t-1}^{n_{t-1}-1}$

(a) In Exercise 4, we have proven that

$$\beta_{0} \sim g_{amma}(a, b), \quad 1 \sim Be(\beta_{0}, \beta_{1}, \beta_{1}), \quad f_{b}, \beta_{1}, \theta_{1}, \theta_{2}) \wedge g_{amma}(\beta_{0}, \beta_{0})$$
In this case

$$\frac{\beta_{c-1}}{\beta_{c-1}} = g_{amma}(a_{c-1}, \frac{a_{c-1}}{\beta_{c-1}}), \quad f_{c}(\beta_{c-1}, \beta_{c-1}) \wedge f_{c}(\beta_{c-1}, \beta_{c-1})$$
Thus $p(\beta_{c}|D_{c-1}) \sim \mathcal{N}(\beta_{c-1}, \beta_{c-1}) = \epsilon(\beta_{c}|D_{c-1})$

$$= \frac{\beta_{ac-1}}{\beta_{ac-1}} = Mc-1$$
(b) $E(X_{a}|D_{c-1}) = \epsilon(E(X_{c}|\mathcal{A}_{c}, D_{c-1})) = \epsilon(\beta_{c}|D_{c-1})$

$$= \frac{\beta_{ac-1}}{\beta_{ac-1}} = Mc-1$$
(c) $p(x_{c}|D_{c-1}) = \epsilon(\beta_{c-1}|\mathcal{A}_{c-1}) \wedge \beta_{c-1}$

$$= \frac{1}{\gamma_{c}} \times \frac{\beta_{c-1}}{\beta_{c-1}} \wedge \frac{\beta_{c-1}}{\beta_{c-1$$

~ nb(pari, meithous)

we can simulate reprospective distribution P(40, 14, 17) a gamma (act min)

les we a	an simulate that posterior distribution of \$1 \$7
	The fact that $ g_{t-1} = \beta \beta_t + \Gamma_e $ It a gamma (at-1, $\frac{\alpha-1}{m+1}$)
Þírst.	Sample PT from \$ 100 a gamma (at, at) (1-1)
	sample (1) from Jamma (at 1. mg.)
	Calculate \$7-1 = B \$4 (5) + 1- (5)
	Then sumple (T-1 (1) from James (atl. m7-2)
	Calculate \$7-1 = \$ \$7-1 + 17. (c)
, ,,,	
iterate	Above procedure simulare
he can	Above procedure simulare got (\$1 \$7) CSI Pull joint potterior distribution