

Homework 2.1

- We are going to examine the effects of grain fracture on the Burn profiles for our familiar AMW L777 Rocket
- Let's develop a simple "fracture model" for 0, 1, 2, 3, and 4 "whole length" grain fractures .. Use Integrator of your choice to integrate the chamber pressure equation .. Assume isentropic nozzle

$$\frac{\partial P_{0}}{\partial t} = \underbrace{\frac{A_{burn}aP_{o}^{n}}{V_{c}}} \left[\rho_{p}R_{g}T_{0} - P_{0} \right] - P_{0} \left[\frac{A^{*}}{V_{c}} \sqrt{\gamma R_{g}T_{0}} \left(\frac{2}{\gamma + 1} \right)^{\frac{\gamma + 1}{(\gamma - 1)}} \right] \\ \dot{r} = a \cdot P_{0}^{n} \longrightarrow \dot{m}_{propellant} = \rho_{p} \cdot A_{burn} \cdot \dot{r}$$

Medicile: Ferospoe Engineering

27

Homework 2.1 (2)

Cylindrical port

Fuel Grain Geometry

$$L_0 = 35 cm$$

$$D_0 = 7.6 \ cm$$

$$D_0=3$$
 cm

 $\rho_{propellant} = 1260 \text{ kg/M}^3$

Nozzle Geometry

$$A^* = 1.887 \ cm^2$$

$$A_{exit}/A^* = 3.746$$

$$\theta_{exit} = 20 deg.$$

Assume ends are burn inhibited, single segment grain

MAE 6530 - Propulsion Systems II

Homework 2.1 (3)

Combustion Gas Properties

$$\gamma = 1.18$$

$$M_W = 23_{kg/kg-mol}$$

$$T_0 = 2900 \text{ K}$$

Burn Parameters

a=0.12 cm/(sec-kPa n)

n=0.16

 $M^{crit} = 0.15$

k = 1.0

(cylindrical port only)

Properties of Propellant Products

MAE 6530 - Propulsion Systems II

Homework 2.1 (4)

Simple. Linear Regression, Grain Fracture Model

Grain Fracture

 R_p (Port radius)

 R_f (Fracture radius)

 R_c (Motor case radius)

y (fracture half-width at midpoint)

___ Medicilled & Flerospees Engineering

Homework 2.1 (5)

• Fracture Dimensions

$$R_{f} = R_{f_{0}} + s$$

$$R_{p} = R_{p_{0}} + s \longrightarrow$$

$$R_{f} = R_{f_{0}} + s$$

$$R_{p} = R_{p_{0}} + s$$

$$y = y_{0} + s$$

$$S = \int \dot{r} \cdot dt$$

$$r$$

$$"0" = Initial values$$

• Fracture angular half width

$$\theta = \tan^{-1} \left(\frac{y}{\frac{R_f - R_p}{2} + R_p} \right) = \tan^{-1} \left(\frac{y}{\frac{R_f + R_p}{2}} \right) = \tan^{-1} \left(\frac{2 \cdot y}{R_f + R_p} \right)$$

Port Cross Section Area and Internal Volume

$$A_{c} = \pi \cdot R_{p}^{2} + \theta \cdot \left(R_{f}^{2} - R_{p}^{2}\right)$$

$$V_{port} = A_{c} \cdot L_{port}$$

Homework 2.1 (6)

Port Total Perimeter and Surface Burn Area

$$\begin{split} P_{port} &= 2 \cdot \left(\pi - \theta\right) \cdot R_p + 2 \cdot \left[\left(R_c - R_p\right)\right] + 2 \cdot \theta \cdot R_c = \\ 2 \cdot \pi \cdot R_p + 2 \cdot \left[\left(R_c - R_p\right)\right] + 2 \cdot \theta \cdot \left(R_c - R_p\right) \\ A_{burn} &= P_{port} \cdot L_{port} \end{split}$$

• Motor case, and Fuel Grain Cross section area, volume

$$egin{aligned} A_{case} &= 2 \cdot \pi \cdot R_{g}^{-2} \ A_{fuel} &= A_{case} - A_{c} \end{aligned}$$
 • Total Propellant Mass $V_{case} = 2 \cdot \pi \cdot R_{g}^{-2} \cdot L_{port}$ $V_{propellant} = \rho_{propellant} \cdot A_{propellant} \cdot L_{port}$ $V_{fuel} = A_{fuel} \cdot L_{port}$

Homework 2.1 (7)

• Allow for 0, 1, 2, 3, or 4 symmetrical grain fractures

Three Crack port cross section

Single Crack port cross section

432150-1-2-3-4-4-4-20

X, cm

Four Crack port cross section

$$y_0 = 0.4 \text{ mm}$$

X, cm

$$R_{f0} = 3 cm$$

Homework 2.1 (8)

Calculate, plot, and compare for 0, 1, 2, 3, 4 grain fracture models:

Chamber pressure profile

Regression rate profile

Massflow rate profile

Thrust profile

Total Impulse profile

Ratio of Surface Burn Area to Port Volume

Calculate Effective Mean Specific Impulse

Allow:

St. Robert's Parameter Input

Variable Step Size

Variable Thermodynamic Properties (as inputs to

the problem)

Erosive burn model for cylindrical port

Homework 2.1 (9)

Plot grain cross section profiles at 0, 1, 2, 4, 6, and 8 seconds. Note Burn times when burn breaches outer motor case wall

Grain cross section after 1 sec burn

• Turn In Report describing your results