	"Мо ОДН Робо У цій р	Курсова робота на тему 'Методи знаходження локальних екстремумів для одновимірної функції". Роботу виконав Тищенко Тимофій Андрійович. 3 курс, група Компютерна математика 2. (цій роботі реалізовано 4 методи знаходження екстремумів:									
1) Пошук золотого перетину (Golden section search). 2) Тернарній алгоритм пошуку (Ternary search). 3) Метод Ньютона 4) Метод Брента Про кожний метод поговоримо докладніше нижче, але для початку показано допоможні функції, щоб орієнтуватися. In [10]: import matplotlib.pyplot as plt import numpy as np										, щоб потім б	уле легче
In [11]:	Задамо eps 0.0001 для всіх методів та Створимо список коефіцієнтів многочлена для функції eps = 0.0001 global coefs coefs = [1, 2, -8, -16, 11, 28, 12] # Коефіцієнти многочлена f = np.polyld(coefs) def equation_in_str(coefs): s = ''										
In [13]:	s = '' for pow, coef in enumerate(coefs[::-1][:-1]): s += f'{coef}*x^{pow} + ' s += f'{coefs[0]}*x^{len(coefs)-1}' return s Графік функції, яку ми викристовуємо										
	plt.	<pre>plot(x, y) title('y = ylim(-30, 1) grid() show()</pre>	_			16*x^3 + -	8*x^4 + 2*:	x^5 + 1*x^	`6		
	60										
	0										
In [14]:	def (_4 -4 - ція для зная diff_(f): return np.pe	olyder(f) т нкція уні	і похідно модальн	ї функції		лише од	ну точку	з 4 єкстрему м	лу на пром	іжку)
	1) П Пошук	F = diff_(froots = np.: good_x = [x if len(good return True ОШУК ЗС	roots(F) for x in _x) != 1: False	noots if D Пере Jen section	ТИНУ search) — L	це техніка г	, ,	. , , , ,	, ,	3 3 1 1	ункції всередині ремум, тоді як для
	інтерва екстрег звужен назву в співвід ефекти точкам був від	алу, що містит мум на інтерв іня діапазону від того факту ношенні ф:1:q вними. За виі	ь кілька екс алі знаходи значень на що алгори р де ф – зол нятком гран що мінімум	стремумів (пться на ме заданому тм підтрим отий перет	можливо, в жі інтервал інтервалі, ц лує значенн гин(golden ок, при поц	ь ключаючи у, він сходи цо робить і я функції д ration). Ці с шуку мініму	имежі інтер иться до ціє його віднос для чотирьо піввідноше иму централ	валу), вона пранично но повільн х точок, тр ення зберіг	а збіжиться д ої точки. Мето ним, але дуже ои ширини ін аються для к завжди мень	о одного з нод діє шляхого діє шляхого надійним. Матервалів яких сожної ітерация або дорів	их. Якщо єдиний и послідовного Метод отримав свою к знаходяться у ії і максимально нює зовнішнім ук золотого перерізу
	Нехай задана функція $f(x): [a, b] o \mathbb{R}, \ f(x) \in \mathrm{C}([a, b])$ Тоді для того, щоб знайти невизначене значення цієї функції на заданому відрізку, що відповідає критерію пошуку (нехай це буде мінімум), даний відрізок ділиться в пропорції золотого перерізу в обох напрямах, тобто вибираються дві точки x_1 і x_2 такі, що: $\frac{b-a}{b-x_1} = \frac{b-a}{x_2-a} = \Phi = \frac{1+\sqrt{5}}{2} = 1.618\dots$ де Φ золотий переріз. $x_1 = b - \frac{(b-a)}{\Phi}$ Тобто точка x_1 ділить відрізок $[a,x_2]$ у відношенні золотого перерізу. Аналогічно x_2 ділить відрізок $[a,x_2]$ у відношенні золотого перерізу. Аналогічно x_2 ділить відрізок $[a,x_2]$ у відношенні золотого перерізу. Аналогічно x_2 ділить відрізок $[a,x_2]$ у відношенні золотого перерізу.										
	відрізок $[x_1,b]$ у тій же пропорції. Ця властивість і використовується для побудови ітеративного процесу. Алгоритм <i>Крок 1.</i> Задаються початкові межі відрізку a,b і точність eps . $x_1=b-\frac{(b-a)}{\Phi}, x_2=a+\frac{(b-a)}{\Phi}$ і значення в них цільової функції: $y_1=f(x_1), \ y_2=f(x_2)$ • Якщо $y_1>=y_2$ (для пошуку тах змінити нерівність на $y_1<=y_2$), то $a=x_1$										
	• Якщо $y_1>=y_2$ (для пошуку тах змінити нерівність на $y_1<=y_2$), то $a=x_1$ • Інкше $b=x_2$ Крок 3. • Якщо $ b-a , то x=(a+b)/2 і завершуємо. • Інакше повернення до кроку 2. Код для алгоритму пошуку золотого перетину Задамо \Phi$										
In [16]:	<pre>phi = (np.sqrt(5) + 1) / 2</pre> <pre> Функція пошуку золотого перетину (3 можливістю вибрати, що хочеш знайти. Точку максимума, чи мінімума) def golden_section(f, a, b, eps, min_max): x1 = b - (b - a) / phi x2 = a + (b - a) / phi while abs(b - a) > eps: if min_max == 'min': </pre>										
	<pre>if min_max == 'min': if f(x1) < f(x2): b = x2 else: a = x1 else: if f(x1) >= f(x2): b = x2 else: a = x1</pre> # We recompute c and d to avoid loss of precision x1 = b - (b - a) / phi x2 = a + (b - a) / phi										
In [18]:	# extremum is between current bounds ans = (b + a) / 2 return round(ans, 2), round(f(ans), 2) Приклад знаходження точки екстремуму функції за допомогою методу Golden section для $x \in [a,b]$ $x = \text{np.linspace}(-4, 4, 100)$ $y = f(x)$ $a = 0$ $b = 2$										
	<pre>b = 2 min_max = 'max' if check_if_unimodal(f, a, b): ext = golden_section(f, a, b, eps, min_max) print(f'Find {min_max} using golden section method from {a} to {b}') fig = plt.figure(figsize=(11, 9)) plt.plot(x, y) plt.plot(*ext, marker='o', color='r') # plot extremum plt.plot(a, f(a), marker='<', color='g', markeredgewidth=4) # plot left border (a) plt.plot(b, f(b), marker='>', color='g', markeredgewidth=4) # plot right border (b)</pre>										
	100 Find :		olden sect				8*x^4 + 2*	x^5 + 1*x^	`6		
	20					(0.85, 31	01)				
	2) Te	if you don	ій алго	ритм	пошук	xy		nge min_m			
	Тернарний алгоритм пошуку (Ternary search) — це техніка в інформатиці для знаходження мінімуму або максимуму унімодальної функції . Потрійний пошук визначає, що мінімум або максимум не може бути в першій третині домену або що він не може бути в останній третині домену, а потім повторюється на решті двох третин. Потрійний пошук є прикладом алгоритму « розділяй і володарюй ». Припустимо, ми шукаємо максимум $f(x)$ і що ми знаємо, що максимум лежить десь посередині A і B . Щоб алгоритм був застосовним, має бути якесь значення x таке, що: • для усіх a,b з $A <= a < b <= x$, ми маємо $f(a) < f(b)$, і • для усіх a,b з $x <= a < b <= B$, ми маємо $f(a) > f(b)$.										
	Алгоритм Дозволяє $f(x)$ бути унімодальною функцією на деякому інтервалі $[l;r]$. Візьміть будь-які дві точки m_1 і m_2 в цьому сегменті: $l < m_1 < m_2 < r$. Тоді є три можливості: • якщо $f(m_1) < f(m_2)$, то необхідний максимум не може бути розташований з лівого боку $-[l;m_1]$. Це означає, що максимум далі має сенс дивитися тільки в проміжку $[m_1;r]$ • якщо $f(m_1) > f(m_2)$, що ситуація схожа на попередню, аж до симетрії. Тепер необхідний максимум не може бути в правій частині $-[m_2;r]$, тож перейдіть до сегмента $[l;m_2]$ • якщо $f(m_1) = f(m_2)$, то обшук слід провести в $[m_1;m_2]$, але цей випадок можна віднести до будь-якого з двох попередніх (з метою спрощення коду). Рано чи пізно довжина відрізка буде трохи менше заданої константи, і процес можна зупинити.										
	точки вибору m_1 і m_2 : • $m_1 = l + (r - l)/3$ • $m_2 = r - (r - l)/3$ Код для алгоритму Тернарного пошуку Функція тернарного пошуку (3 можливістю вибрати, що хочеш знайти. Точку максимума, чи мінімума) def ternary_search(f, a, b, eps, min_max): while abs(b - a) >= eps:										
In [20]:	# maximum is between current bounds ans = (b + a) / 2 return round(ans, 2), round(f(ans), 2) Приклад знаходження мінімуму за допомогою Тернарного пошуку для $x \in [a, b]$ $x = \text{np.linspace}(-4, 4, 100)$ $y = f(x)$ $a = -1.3$ $b = 0.5$										
	<pre>min_max = 'min' if check_if_unimodal(f, a, b): ext = ternary_search(f, a, b, eps, min_max) print(f'Find {min_max} using ternary search method from {a} to {b}') fig = plt.figure(figsize=(11, 9)) plt.plot(x, y) plt.plot(*ext, marker='o', color='r') # plot extremum plt.plot(a, f(a), marker='<', color='g', markeredgewidth=4) # plot left border (a) plt.plot(b, f(b), marker='>', color='g', markeredgewidth=4) # plot right border (b)</pre>										
	<pre>plt.text(ext[0], ext[1] + 1, f'({ext[0]}, {ext[1]})', horizontalalignment='center') plt.text(a, f(a) - 3.5, 'a', horizontalalignment='center') plt.text(b, f(b) - 3.5, 'b', horizontalalignment='center') plt.title('y = ' + equation_in_str(coefs)) plt.ylim(-30, 100) plt.grid() plt.show() print('NOTE: if you dont see the red point(extremum) you have to change min_max value') else: print(f'This function from {a} to {b} is not unimodal. Please change the range')</pre> Find min using ternary search method from -1.3 to 0.5 y = 12*x^0 + 28*x^1 + 11*x^2 + -16*x^3 + -8*x^4 + 2*x^5 + 1*x^6										
	80	у	= 12*x^0 +	- 28*x^1 +	11*x^2 + -	16*x^3 + -	8*x^4 + 2*;	x^5 + 1*x^	`6		
	20			a	74, 111)	b					
	NOTE: if you dont see the red point (extremum) you have to change min_max value 3) Метод Ньютона У обчисленні метод Ньютона є ітераційним методом для знаходження коренів диференційованої функції F , які є розв'язками рівняння $F(x) = 0$. Таким чином, метод Ньютона можна застосувати до похідної f' двічі диференційованої функції f , щоб знайти корені похідної (розв'язки $f'(x) = 0$), також відомі як критичні точки f . Ці рішення можуть бути мінімумами, максимумами або										
	рівняння $F(x)=0$. Таким чином, метод Ньютона можна застосувати до похідної f двічі диференційованої функції f , щоб з корені похідної (розв'язки $f'(x)=0$), також відомі як критичні точки f . Ці рішення можуть бути мінімумами, максимумами а сідловими точками. Y										цення (початкова дку f навколо
	ітерацій. Розкладання Тейлора другого порядку f навколо x_k є $f(x_k+t) pprox f(x_k) + f'(x_k)t + rac{1}{2}f''(x_k)t^2.$ Наступна ітерація x_{k+1} визначається так, щоб мінімізувати це квадратичне наближення до t , і налаштування $x_{k+1} = x_k + t$. Якщо друга похідна додатна, квадратичне наближення є опуклою функцією від t , а його мінімум можна знайти, встановивши похідну на нуль. Оскільки $0 = rac{\mathrm{d}}{\mathrm{d}t}\left(f(x_k) + f'(x_k)t + rac{1}{2}f''(x_k)t^2 ight) = f'(x_k) + f''(x_k)t,$ досягається мінімум для $t = -rac{f'(x_k)}{f''(x_k)}.$										
	3ібраві Код Функі	ши все разом ДЛЯ МС ція яка за м newton(f0, :	для , метод Нью г оду Н ветодом Н	отона вико ЬЮТОН Ньютона	нує ітераціі І а знаходит		$x_k+t=$ мум найб			оипущення	
	;	# print print retorn xn = xn	nge(0, max (xn) fxn) < eps rint('Four urn xn (xn) == 0: nt('Zero courn None - fxn/Fxr	s: and solution derivative	e. No solu	ıtion fou	nd.')				
fig = plt.figur nearest to gu 4, 100) y = f(x horizontalalig	Оскіл екстро функц re(figsiza less if ea x) str_ec gnment	EXCEPTION NONE SECTION NO SECTION NONE SE	eded maxim ді Ньютон прішив од extremum : in map(laml n_str(coefs) itle('y = ' + s	на ми по цразку ст = [] for gue bda x: x[0], for p in all_	винні дат ворити 5 ss in np.lins all_extremu extremum:	и припуц 0 припуц pace(-20, 20 m): all_extre plt.plot(*p,	цення, де цень для 0, 50): ext = emum.appe marker='o',	$x \in [-20,$ round(new nd([ext, rou color='r') p	20], щоб з	найти всі е eps, 50), 2) # print(all_extro	5 знайти всі точки кстремуми в моїй find extremum value emum) x = np.linspace(-4,]}, {p[1]})',
	У чиселоборне методи якщо и Бренто Розбе Метод	ено-квадрати в. Алгоритм на де можливо, а м і ґрунтуєтью гремося з 3 бісекції	і метод Бре чну інтерпо амагається в ле, якщо не ся на попер методам	ляцію . Він використов обхідно, ві едньому ал и, які ви і	має надійн вувати поте ін повертає лгоритмі Те	ність поділу нційно шв ться до біл одора Дек юються у	навпіл, але идко збіжні вы надійно кера. Отже, иметоді Е	е може бут ий метод с ого методу метод так орента.	и таким же ц ічної або обе бісекції. Мет ож відомий я	ивидким, як і ернено-квадр од Брента сті як Метод Бре	
	Метод на теор $f(c) = f(a) * f(x) = $ Для дан	бісекції такох ремі Больцано: 0 . $f(b)$, означає 0 . ної функції $f(b)$	о для непер \mathfrak{g} кщо функс \mathfrak{g} що вони о \mathfrak{g} цього кор \mathfrak{g}	ервних фун ція $f(x)$ нег бидва маю еня до дійс ісекції прац	нкцій. перервна н ть протиле ного корен цює наступі	а інтервалі жні знаки. Ія залежить	[a,b] і $f(a)$ Значення a ь від допуск	(a,b) st f(b) < aг, для якого	0, то існує зн о графік пере	лачення $c\epsilon(a,$ етинає вісь x ,	томії. Він заснований b), для якого ϵ коренем рівняння лу.
	2)3)4)5)6) Методкроншкроншттт<	січної січної вважає гейна. Цей мє	а с обчислн 0 , ми знайц $f(b)>0$ замроку 2 або ${\mathbb C}$ ться найбіл	оється як со шли корінь. мінити <i>b</i> на вакінчити, я пьш ефекти истовує два	ереднє знач . Повернути . <i>с.</i> якщо макво вним у зна початкови	и його (retu симальна к ходженні к х припуще	rn). ількість ітер ореня неліі ння та знах	рацій досяг нійного рів одить корі	няння. Це ві, нь функції за	дноситься до з допомогою	пення задоволене. типу відкритого інтерполяції. При
	 Послідо Метод 2) 3) 4) Метод У цьом 	овній ітерації січної працю Отримати поч $c=b-(f(b))$ Перейти до к $c=b$	два останні ϵ наступним наткові знач ϵ , $f(b)$. $*(b-a)$), року 2 або звадратично ϵ тімо, що ϵ тр	х припуще μ чином: нення прип $\mu'(f(b)-f(b))$ закінчити, у інтерполя	ння викори (a)). якщо $f(c)$ я	і допустим $=0$ або $ c $	я для пошу $= b < e.$ кові значен	ку наступн ня е. іня. Функці	я буде оціне	на в кожній з	з цих точок, у
	резуль g , то x_r через г y , маєм Лагран	гаті чого y_{n-2} , $g(y_{n-2})$, ці три задані т $f^{-1}(y)=$ но:	$=f(x_{n-2}),$ $x_{n-1}=g(y)$ очки, і взят $\dfrac{(y-f_n)}{(f_{n-2}-f_n)}+\dfrac{(y-f_n)}{(f_n-g)}$ вши $y=0$,	$y_{n-1} = f(x_{n-1})$ і $x_n = f(x_{n-1})$ і $x_n = f(x_n)$ тя перетин $f(x_n) = f(x_n)$ $f(x_n) = f(x_n)$ $f(x_n) = f(x_n)$ $f(x_n) = f(x_n)$ нова корен	x_{n-1}) та y_n $g(y_n)$, і талу параболи $\left(\frac{1}{f_n}\right) x_{n-2} - \frac{f_{n-1}}{f_{n-1}} x_n$ нева оцінка	$=f(x_n)$, в к далі. Цей і з віссю $x+rac{(y-}{(f_{n-1}-1)}$ і, x_{n+1} , буд	ідповідно. Я процес вин як нової оц $f_{n-2})(y-f_{n-2})$ е обчислен	Якщо вваж конується с цінки корен $\frac{f_n}{1-f_n} x_n$	ати, що f ма шляхом обчи ня. Підігнавш –1 Цю форму	є обернену к слення параб и точки за до	в цих точок, у вадратичну функцію боли, яка проходить опомогою параболи в вають поліномом
	$f^{-1}(y) = rac{(y-f_{n-1})(y-f_n)}{(f_{n-2}-f_{n-1})(f_{n-2}-f_n)}x_{n-2} + rac{(y-f_{n-2})(y-f_n)}{(f_{n-1}-f_{n-2})(f_{n-1}-f_n)}x_{n-1} + rac{(y-f_{n-2})(y-f_{n-1})}{(f_n-f_{n-2})(f_n-f_{n-1})}x_n.$ Однак він не може обчислити комплексні корені, оскільки завжди перетинатиме вісь x . Крім того, якщо вибрані три початкові значення припущення дуже далекі від кореня, цей метод не збіжиться. Об'єднаємо ці методи в один, щоб вийшов метод Брента На кожній ітерації метод Брента-Деккера спочатку пробує крок методу січної або ОКІ. Якщо цей крок незадовільний, що зазвичай означає занадто довгий, занадто короткий або занадто близький до кінцевої точки поточного інтервалу, то крок повертається до										
	означає занадто довгий, занадто короткий або занадто близький до кінцевої точки поточного інтервалу, то крок повертається до кроку поділу навпіл. Цей крок повернення захищає метод від виконання величезної кількості кроків із меншим збільшенням значення кореня. Використання методу Брента для знаходження екстремумів Метод Брента знаходить корені рівняння $f(x) = 0$, а як ми знаємо, точки ексремума, це точки в яких $f'(x) = 0$. Отже перед використанням методу Брента, потрібно продифернціювати нашу функцію. Я цей крок додам одразу до функції def brents (f0, x0, x1, max_iter=50, tolerance=eps): $f = diff_{(f0)}$										
	<pre>fx0 = f(x0) fx1 = f(x1) assert (fx0 * fx1) <= 0, "Root not bracketed" if abs(fx0) < abs(fx1): x0, x1 = x1, x0 fx0, fx1 = fx1, fx0 x2, fx2 = x0, fx0 mflag = True steps_taken = 0</pre>										
	<pre>steps_taken = 0 while steps_taken < max_iter and abs(x1-x0) > tolerance: fx0 = f(x0) fx1 = f(x1) fx2 = f(x2) if fx0 != fx2 and fx1 != fx2: L0 = (x0 * fx1 * fx2) / ((fx0 - fx1) * (fx0 - fx2)) L1 = (x1 * fx0 * fx2) / ((fx1 - fx0) * (fx1 - fx2)) L2 = (x2 * fx1 * fx0) / ((fx2 - fx0) * (fx2 - fx1)) new = L0 + L1 + L2 else: new = x1 - ((fx1 * (x1 - x0)) / (fx1 - fx0))</pre>										
		<pre>if ((new</pre>	<pre>w < ((3 * lag == Tru lag == Fal lag == Fal = (x0 + x) ag = True ag = False f(new)</pre>	x0 + x1) te and (at and at and at and at and at and at an at a	/ 4) or nos(new - 2) abs(new - 2) cs(x1 - x2)	new > x1) x1)) >= (xx1)) >= x1)) >= (x1)) >= (x1)) < tole	or abs(x1 - x) (abs(x2 - erance)	d) / 2))			
	<pre>d, x2 = x2, x1 if (fx0 * fnew) < 0: x1 = new else: x0 = new if abs(fx0) < abs(fx1): x0, x1 = x1, x0 steps_taken += 1 return round(x1, 2), round(f0(x1), 2)</pre>										
In [35]:	x = 1 y = : a = 0 b = : if cl	np.linspace f(x) 1 neck_if_uninext = brent; print(f"Fince fig = plt.f.	modal(f, as(f, a, b,d {min_maxigure(figs	n, b): tolerance s) using H	ce=eps) Brent's me	ethod meth	nod from	(a) to {b	}")		
	1 1 1 1 1 1 1	polt.plot(x, polt.plot(*e) polt.plot(a, polt.plot(b, polt.text(ex) polt.text(a, polt.text(b, polt.title(') polt.ylim(-3) polt.grid() polt.show()	y) xt, marker f(a), mar f(b), mar t[0], ext[f(a) - 3. f(b) - 3.	r='o', color cker='<', rker='>', rker=', rker='>', rker=', rker='>', rker=', rker='>	lor='r'); color='g color='g f'({ext[0] norizontal norizontal	, markered, markered, markered), {ext[]}, {ext[]}, {allignment}	edgewidth= edgewidth= 1]})', hor t='center' t='center'	=4) # plo	t right bon	rder (b)	
	else	<pre>polt.show() print('NOTE : print(f'This min using B</pre>	s functior	n from {a}	} to {b} :	is not und	imodal. Pl	Lease cha:	nge the rar	_	
	40					(0.85, 31	01)				
	0 -20	-4 -if you don	t see the			n) you ha	l Z		3 4 ax value		