

AFFINE MMSE ESTIMATORS

Why

1

Definition

We want to estimate a random variable $x: \Omega \to \mathbb{R}^n$ from a random variable $y: \Omega \to \mathbb{R}^n$ using an estimator $\phi: \mathbb{R}^m \to \mathbb{R}^n$ which is affine.² In other words, $\phi(\xi) = A\xi + b$ for some $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$. We will use the mean squared error cost.

We want to find A and b to minimize

$$E ||Ax + b - y||^2$$
.

Proof. Express
$$E(\|Ax+b-y\|^2)$$
 as $E((Ax+b-y)^{\top}(Ax+b-y))$
+ $tr(A E(xx^{\top})A^{\top}) + E(x)^{\top}A^{\top}b - tr(A^{\top} E(yx^{\top}))$
+ $b^{\top}A E(x) + b^{\top}b - b^{\top} E(y)$
- $tr(A E(xy^{\top})) - E(y)^{\top}b + E(yy^{\top})$

The gradients with respect to b are

so 2A E(x) + 2b - 2 E(y). The gradients with respect to A are

¹Future editions will include an account.

²Actually, the development flips this. Future editions will correct.

so $2 \operatorname{E}(xx^{\top})A^{\top} + 2\operatorname{E}(x)b^{\top} - 2\operatorname{E}(xy^{\top})$. We want A and b solutions to

$$A E(x) + b - E(y) = 0$$
$$E(xx^{\mathsf{T}})A^{\mathsf{T}} + E(x)b^{\mathsf{T}} - E(xy^{\mathsf{T}}) = 0$$

so first get b = E(y) - A E(x). Then express

$$E(xx^{\top})A^{\top} + E(x)(E(y) - A E(x))^{\top} - E(xy^{\top}) = 0.$$

$$E(xx^{\top})A^{\top} + E(x) E(y)^{\top} - E(x) E(x)^{\top}A^{\top} - E(xy^{\top}) = 0.$$

$$(E(xx^{\top}) - E(x) E(x)^{\top})A^{\top} = E(xy^{\top}) - E(x) E(y)^{\top}.$$

$$cov(x, x)A^{\top} = cov(x, y).$$

So $A^{\top} = \operatorname{cov}(x, x)^{-1} \operatorname{cov}(x, y)$ means $A = \operatorname{cov}(y, x) \operatorname{cov}(x, x)^{-1}$ is a solution. Then $b = \operatorname{E}(y) - \operatorname{cov}(y, x) \operatorname{cov}(x, x)^{-1} \operatorname{E}(x)$. So to summarize, the estimator $\phi(x) = Ax + b$ is

$$cov(y, x) (cov x, x)^{-1} x + E(y) - cov(y, x) cov(x, x)^{-1} E(x)$$

or

$$E(y) + cov(y, x) (cov x, x)^{-1} (x - E(x))$$

