Color rocks

1 second, 256 MB

You are given a sequence of N color rocks. The **i**-th rock has color C_i where C_i is an integer. After you receive each rock, you put them at the top of a vertical pile. It turns out that if there are K consecutive rocks of the same color in the pile, they will magically disappear. (**Note:** In this task, K can be 2 or 3 depending on test cases. The case where K = 2 is simpler, and you can score 50% of the points in this task by working only on this case.)

Consider the following example. Suppose that N=11 and K=2. Suppose that the rocks that you get have the following colors (in order): 1, 2, 4, 4, 3, 5, 5, 2, 2, 3, 9. This is what is going to happen in your pile of rocks.

Steps:	1	2	3	4	5	6	7	8	9	10	11
							5	2	2		
				4		5	5	2	2	3	
			4	4	3	3	3	3	3	3	9
		2	2	2	2	2	2	2	2	2	2
	1	1	1	1	1	1	1	1	1	1	1

Note that in steps 4, 7, 9, and 10, K consecutive rocks of the same colors disappear (shown in orange). In the end you have 3 rocks left.

Consider another example where K=3 and N=11. Suppose the sequence of rocks are of the following colors: 1, 1, 2, 5, 5, 4, 4, 4, 5, 2, 2.

Steps:	1	2	3	4	5	6	7	8	9	10	11
							4	4 4			
						4	4	4	5		
					5	5	5	5	5		2
				5	5	5	5	5	5	2	2
			2	2	2	2	2	2	2	2	2
		1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1

In this example, you have 2 rocks left.

You task is to write a program that takes the sequence of color rocks and find out **the number of rocks left** after the process. In examples above, the answers are 3 and 2, consecutively.

Input

The first line contains two integers N and K (1<=N<=100,000; 2<=K<=3). For 50% of test cases, K=2.

The second line contains N integers representing the colors of the rocks. More specifically, for $1 \le i \le N$, the i-th integer C_i is the color of the i-th rock ($1 \le C_i \le 1,000,000$).

Output

You program should output one integer: the number of rocks in the pile at the end of the process.

Example 1

Input	Output
11 2 1 2 4 4 3 5 5 2 2 3 9	3

Example 2

Input	Output
11 3	2
1 1 2 5 5 4 4 4 5 2 2	