Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа по дисциплине «Методы машинного обучения» на тему

«Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей»

Выполнил: студент группы ИУ5-64Б Зубков А. Д.

1. Цель лабораторной работы

Изучение сложных способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей

2. Задание

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделить выборку на обучающую и тестовую.
- 3. Обучить модель k-ближайших соседей для произвольно заданного гиперпараметра К. Оценить качество модели с помощью подходящих для задачи метрик.
- 4. Построить модель и оценить качество модели с использованием кросс-валидации.
- 5. Произвести подбор гиперпараметра K с использованием GridSearchCV и кроссвалидации.

3. Ход выполнения лабораторной работы

Подключим необходимые библиотеки и загрузим набор данных

```
[1]: import pandas as pd
     import seaborn as sns
     import numpy as np
     import matplotlib.pyplot as plt
     from sklearn.model_selection import train_test_split, cross_val_score,_
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.metrics import accuracy_score
     %matplotlib inline
     # Устанавливаем тип графиков
     sns.set(style="ticks")
     # Для лучшего качествоа графиков
     from IPython.display import set_matplotlib_formats
     set_matplotlib_formats("retina")
     # Устанавливаем ширину экрана для отчета
     pd.set_option("display.width", 70)
     # Загружаем данные
     data = pd.read_csv('heart.csv')
     data.head()
```

```
[1]:
      age sex cp trestbps chol fbs restecg thalach exang \
       63
                3
                        145
                             233
                                    1
                                            0
                                                   150
                                                           0
    0
             1
                2
    1
       37
                        130
                             250
                                           1
                                                   187
                                                           0
                                    0
       41
               1
                        130
                             204
                                    0
                                            0
                                                   172
                                                           0
```

```
4
         57
                0
                    0
                             120
                                    354
                                           0
                                                      1
                                                             163
                                                                       1
        oldpeak
                  slope
                              thal
                                     target
                          ca
     0
             2.3
                       0
                           0
                                  1
                                           1
             3.5
                                  2
     1
                       0
                           0
                                           1
     2
             1.4
                       2
                           0
                                  2
                                          1
                       2
                                  2
     3
             0.8
                           0
                                           1
     4
             0.6
                       2
                           0
                                  2
                                          1
[2]: data.shape
[2]: (303, 14)
[3]: data.dtypes
                     int64
[3]: age
                     int64
     sex
                     int64
     ср
     trestbps
                     int64
     chol
                     int64
     fbs
                     int64
     restecg
                     int64
     thalach
                     int64
                     int64
     exang
     oldpeak
                  float64
     slope
                     int64
     ca
                     int64
     thal
                     int64
     target
                     int64
     dtype: object
[4]: data.isna().sum()
[4]: age
                  0
     sex
                  0
                  0
     ср
     trestbps
                  0
                  0
     chol
     fbs
                  0
                  0
     restecg
     thalach
                  0
                  0
     exang
     oldpeak
                  0
     slope
                  0
     ca
                  0
     thal
                  0
                  0
     target
     dtype: int64
[5]: data.isnull().sum()
```

56

1

1

120

236

0

178

1

0

3

```
[5]: age
                 0
    sex
                 0
                 0
    ср
    trestbps
                 0
                 0
    chol
    fbs
                 0
    restecg
    thalach
                 0
    exang
                 0
    oldpeak
                 0
    slope
                 0
    ca
                 0
                 0
    thal
    target
    dtype: int64
```

Как видим, пустых значений нет, значет нет необходимости преобразовывать набор данных

Разделим данные на целевой столбец и признаки

```
[6]: X = data.drop("target", axis=1)
Y = data["target"]
print(X, "\n")
print(Y)
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	\
0	63	1	3	145	233	1	0	150	0	
1	37	1	2	130	250	0	1	187	0	
2	41	0	1	130	204	0	0	172	0	
3	56	1	1	120	236	0	1	178	0	
4	57	0	0	120	354	0	1	163	1	
						•••				
298	57	0	0	140	241	0	1	123	1	
299	45	1	3	110	264	0	1	132	0	
300	68	1	0	144	193	1	1	141	0	
301	57	1	0	130	131	0	1	115	1	
302	57	0	1	130	236	0	0	174	0	

	oldpeak	slope	ca	thal
0	2.3	0	0	1
1	3.5	0	0	2
2	1.4	2	0	2
3	0.8	2	0	2
4	0.6	2	0	2
	•••		•••	
298	0.2	1	0	3
299	1.2	1	0	3
300	3.4	1	2	3
301	1.2	1	1	3
302	0.0	1	1	2

```
0
            1
     1
            1
     2
            1
     3
            1
     4
            1
     298
            0
     299
            0
     300
            0
     301
            0
     302
            0
     Name: target, Length: 303, dtype: int64
[7]: X.shape
[7]: (303, 13)
[8]: Y.shape
[8]: (303,)
     С использованием метода train test split разделим выборку на обучающую
     и тестовую
[9]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,__
      →random_state=1)
[10]: print("X_train:", X_train.shape)
     print("X_test:", X_test.shape)
     print("Y_train:", Y_train.shape)
     print("Y_test:", Y_test.shape)
     X_train: (227, 13)
     X_test: (76, 13)
     Y_train: (227,)
     Y_test: (76,)
     Обучим модель k-ближайших соседей
                                                         произвольно
                                                   для
                                                                        заданного
     гиперпараметра К
[11]: # В моделях к-ближайших соседей большое значение к
      # ведёт к большому смещению и низкой дисперсии (недообучению)
      # 70 ближайших соседей
      cl1_1 = KNeighborsClassifier(n_neighbors=70)
      cl1_1.fit(X_train, Y_train)
     target1_0 = cl1_1.predict(X_train)
     target1_1 = cl1_1.predict(X_test)
     accuracy_score(Y_train, target1_0), accuracy_score(Y_test, target1_1)
```

[303 rows x 13 columns]

```
[11]: (0.6475770925110133, 0.5789473684210527)
```

Построим модель и оценим качество модели с использованием кроссвалидации

```
[12]: scores = cross_val_score(KNeighborsClassifier(n_neighbors=2), X, Y, cv=3)
```

```
[13]: # Значение метрики асситасу для 3 фолдов scores
```

```
[13]: array([0.6039604 , 0.53465347, 0.61386139])
```

```
[14]: # Усредненное значение метрики асситасу для 3 фолдов np.mean(scores)
```

[14]: 0.5841584158415842

Произведем подбор гиперпараметра K с использованием GridSearchCV и кросс-валидации

```
[15]: # Список настраиваемых параметров
n_range = np.array(range(1, 50, 2))
tuned_parameters = [{'n_neighbors': n_range}]
n_range
```

```
[15]: array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])
```

```
[16]: %%time

clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5,

⇒scoring='accuracy', return_train_score=True)

clf_gs.fit(X, Y)

clf_gs.best_params_
```

```
CPU times: user 2.69 s, sys: 2.37 ms, total: 2.69 s Wall time: 2.69 \ s
```

[16]: {'n_neighbors': 37}

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

```
[17]: plt.plot(n_range, clf_gs.cv_results_["mean_train_score"]);
```


Очевидно, что для K=1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность.

Посмотрим на тестовом наборе данных

Проверим получившуюся модель:

```
[19]: cl1_2 = KNeighborsClassifier(**clf_gs.best_params_)
    cl1_2.fit(X_train, Y_train)
    target2_0 = cl1_2.predict(X_train)
    target2_1 = cl1_2.predict(X_test)
    accuracy_score(Y_train, target2_0), accuracy_score(Y_test, target2_1)
```

[19]: (0.6740088105726872, 0.5921052631578947)

Как видим, точность модели улучшилось