

(19) 日本国特許庁 (JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭56-159206

⑤ Int. Cl.³C 08 F 220/36

C 08 K

C 09 J

識別記号

庁内整理番号 7133-4 J 砂公開 昭和56年(1981)12月8日

7133—4 J 6911—4 J 7016—4 J

発明の数 1 審査請求 未請求

(全 7 頁)

匈嫌気性密封用組成物

3/10

3/14

②特

願 昭55-62727

20出

願 昭55(1980)5月14日

⑩発 明 者 鈴木直久

愛知県知多郡武豊町字熊野21番

地の1

⑩発 明 者 福士恭輔

愛知県知多郡武豊町字熊野21番

地の1

⑪出 願 人 日本油脂株式会社

東京都千代田区有楽町1丁目10

番1号

⑩代 理 人 弁理士 浅野豊司

时 和 和

1. 発明の名称

赚员性密封用组成物

- 2. 特許請求の範囲
 - (1) 一般式(1)で表わされる単量体(a)、

(R」及びR。は水素原子又は炭素数1-6のアルキル基、R。は炭素数1~6のアルキル基、R。は炭素数1~6のアルキル基を示す)、単量体(a)に対し少なくとも1当歳のアクリル酸(b)、パーオキシケタール類(c)、ピロガロール(d)及びNーブミノロダニン又はペンズヒドラジドを主成分とすることを特徴とする磁気性密封用組成物。

(2) 一般式(1)の単量体が次式で表わされる単量体である特許請求の範囲第1項記載の嫌気性密封用組成物。

3. 発明の詳細な説明

本発明は嫌気性密封用組成物、さらに詳しく は貯蔵安定性にすぐれた機気性密封用組成物に 関する。

環気性密封用組成物は空気中で長時間にわたり貯蔵し得るが、空気が存在しない場合には重 合性を有するものである。

従来職気性密封用組成物は過酸化物としてクメンハイドロバーオキサイドを含有するものであったが、このほかにもープチルハイドロバーオキサイド等のいわゆるハイドロバーオキサイド類が含有された組成物が用いられるようになり、今日なおこの組成物が多用されている。

しかし、この組成物は嫌気性密封用組成物としての接着性、セットタイム、油面接着性及び 貯蔵安定性等に要譲される点が多く、これにつ いて多くの改善法が提案されてきた。

特別昭56-159206(2)

これらのうち、有機過酸化物のタイプ又は化合物名を特定する方法として分類されるものに下記公報が公知にされている。すなわち、特公昭48-17 昭45-48 が公田48-17 20号公報がパーオキシエステル類を、特公田48-17 49-13205号公報がセーブチルパーオキシアセテートを、特開昭48-86937号公報 20年公報及び特別昭50-1279 88号公報がジアルキルパーオキサイド類を用いることを開示している。

また、特開昭 5 1 - 1 1 7 7 8 9 号公報は重合性のアクリレート及び又はメタクリレート、バーオキサイド及び下配の基を有する化合物からなる離気性硬化組成物を開示し、

特開昭 5 2 - 5 7 2 8 1 号公報は特定の種類の単量体の 組合わせたものに特定の 重合開始 剤 を加えたもの、

ノ アルキル基からなる群から選ばれた単量体で ある。)

この特別昭か7 一 4 3 0 4 3 号公報の嫌気性 密封用組成物(以下マナカ発明という)は各種 金属材料に対する接着力がすぐれ、硬化速度が 大きく、金属配品にあらかじめ脱脂処理を施さ なくとも固着できる、いわゆる油面接着性など の器特性に秀れている反面、貯蔵安定性(棚寿 命)は必ずしも十分でなくその改良が要望されていた。

マナカ発明の組成物の棚寿命(貯蔵中製品の品質劣化が認められない期間)は20℃においては製造後2年~2年半であり、また調温されていない室内では約1~1年半で特に夏期における高温雰囲気の影響を受けることがいちじるしい。

本発明者らは嫌気性密封用組成物としての接着性、セット・タイム、油面接着性等の路特性を損りことなく、貯蔵安定性(棚寿命)を改善した嫌気性密封用組成物を提供すべく研究した

及びとの混合組成物にジアルキルパーオキサイトを追加的に存在させた組成物を提案している。

しかし、これらの嫌気性密封用組成物は嫌気 性密封用組成物としての1特性が改善されると 他の特性が低下する欠点を有している。

特開昭 4 7 - 4 3 0 4 8 号公報で開示された 嫌気性 密封 用組成物は下記の化学構造式(II)を する単量体 2 世 量体 1 当量に対して 1 当量以上のビニル有機酸、 セーブチルパーペングェート 等で示される 重合開始剤、 空気中 1 2 0 9 で 1 0 日間以上組成物のゲル化を防ぐビロガロール抑制剤及び 1 時間以下のセット・タイムとする N ー アミノロダニンで代表される 促進剤からなることを特徴とする組成物である。

(ただしRi 及びR。は水素及び低級アルキル基からなる群から選ばれ、R。は低級アルキル、低級ヒドロキシアルキル、シアノ及び低級シア

結果、下記(I)式で示される単領体、アクリル酸 又はアルキル基置換アクリル酸及びパーオキシ ケタール類を組合せた組成物は本発明の目的が 達成されることを見出し、本発明を完成させた。

(式中R」及びR。は水素原子又は炭素数1~6のアルキル基、R。は炭素数1~6のアルキル基又は炭り数1~6のヒドロキンアルキル基を示す。)

すなわち、本発明の嫌気性密封用組成物は、(1)([)式で示される単量体、(2)([)式の単単体に対し少なくとも1当量のアクリル酸又は炭素数1~6のアルキル基置換アクリル酸、(3)パーオキシケタール類、(4)ピロガロール及び(5) Nーナミノロダニン又はベンズヒドラジドを主成分とすることを要旨とする。

本発明のパーオキシケタール類は、ケトン類とハイドロパーオキサイド類とを酸敏媒下で反

広させて得られるパーオキシケタール類であり その具体例をあげれば、1、1-ヒス(t-ブ チルパーオキシ)ー3、5、5ートリメチルシ クロヘキサン;1、1ーピス(モープチルパー オキシ)シクロヘキサン: ロープチルー 4 、 ーピス(モーブチルパーオキシ)パレレート: 2、2-ヒス(tープチルパーオキ) プタン: メチルー3、3ーピス(1ープチルパーオキシ) n - プチレート: 1 、 1 - ピス(t - プチル パーオキシ)シクロドデカン; 1、1ービス(tープチルパーオキシ)エタン: 2、2-ヒス (tープチルパーオキシ) トルエン; 2、 ヒス(tープチルパーオキシ) プロパン: 2、 2-ヒス(tープチルパーオキシ) ヘプタン: 2 - ヒス(セープチルパーオキシ) チルヘキサン;2、2ーヒス(tープチルバー シ)オクタン;1、1-ヒス(セープチル パーオキシ)シクロペンタン: モープチルー 3、 3 ーヒス(tープチルパーオ ート:iso ーアミルー8、8㎡ピス(モーブ

チルパーオキシ) nープチレート; nーオクチ ルー3、8-ビス(tープチルパーオキシ) n - プチレート:2 - エチルヘキシル、3、3 -ピス(モープチルパーオキシ) ロープチレート ; nーデシルー 8 、 8 ーピス (tープチルパー シ) nープチレート; ペンジルー3、3ー ヒス(tープチルパーオキシ) nープチレート クロヘキシルー3、8ーピスし セーブチル パーオキシ) n - プチレート: シクロヘキシル 4-ヒス(セープチルパーオキシ) パレ レート: 2 、 2 ー ヒス (ク ミルパーオキシ) ブ ロバン; 2 、 2 - ヒス(クミルバーオキシ)ブ : 2、2-ヒス(クミルパーオキシ)ペン : 2、2 - ヒス (クミルパーオキシ) 4 -ルペンタン: 8、3ーピス(クミルパーオ キシ) 8 ーメチルヘブタン、2、2 ーヒス(ク ミルパーオキシ)オクタン:1、1ーピス(ク ミルパーオキシ)シクロペンタン: 1、1ービ クミルパーオキシ)シクロヘキサン:1、 1-ビス(クミルパーオキシ) 8、3、5-ト

リメチルシクロヘキサン; イソプロビリデンー ヒス (パーオキシ) 2、5 ージメチルー 2、5 ー 4 ー 4 ー 4 ー 4 と、5 ー 4

単盤体は前述した一般式(I)で示される化学構造を有するものである。この単盤体は極性の大きなヒドロキシル基及び三級アミノ基を有するから、主として金属の結合のために使用される。 域気性密封用組成物の成分としては好適である。 また三級アミノ基は後述するように組成物中で はメタクリル酸及びアクリル酸などのビニル有機酸で中和されてアミン塩を生成しているから 価性は更に強まる。

次の構造を有する単量体が特に好ましい。

CH₀ C CH₀ CH₀

との単歯体はイソブロビルアミン1当編とグリシジメタクリレートを反応させることにより 容易に得られる。

単層体の分配は、組成物に過まれる特性によりかなり随意に変えられるが、組成物の約5ないし約80重層%、好ましくは約15ないし約45重量%である。

上述した単度体1当量に対し少なくとも1当 量のビニル有機酸が必要である。ここでいうビ ニル有機酸とはアクリル酸又は低級アルキル置 換アクリル酸を意味する。メタクリル酸が特に 好ましい。単量体1当量に対してビニル有機酸 が1当量以下の場合は十分な貯蔵安定性が得ら れない。

また単量体1当量に対してビニル有機酸が約1 当量の場合は中和反応により生成したアミン塩 が主たる成分であるため一般に極めて高粘度な いしはゲル状であるから夜状の組成物を得るた めには種釈効果のある他の種類の単量体を添加 する必要がある。それらの単量体の例としては メチルメタリリレート、 2ーヒドロキシエチル メモクリレート、イソプチルメタクリレートお よび 2 ーエチルヘキシルメタクリレートがあげ られる。単量体 1 当量に対してビニル有機酸が 1 当量以上である場合はそのうち1 当職は単層 体を中和してアミン塩を生成し機部は稀釈剤と して作用して組成物を液状にする。ビニル有機 酸の存在はまた金属に対する接着性を高めるか ら一層好都合である。 ヒニル有機酸がメタクリ ル酸である場合単量体と同重量程度で特に好き しい結果が得られる。

本発明の嫌気性密封用組成物に使用される硬化促進剤はN-アミノロダニン又はベンズビド

0,2 ないし約 0.5 重量%である。

本発明の嫌気性密封用組成物には上に説明した 5 種類の基本成分の他に必要に応じて、接着力と粘度を胸筋するための各種重合性単量体、増粘用樹脂、チクントロビック剤及び着色剤等公知の添加剤を含有させることができる。

本発明の嫌気性密封用組成物は嫌気性密封用組成物としての特性、すなわち接着性、硬化速度及び油面接着性等において従来品と避色なく、すなわち綜合的見地から秀れているとみなされるマナカ発明品のそれらと同等以上で、しかも棚寿命についてはマナカ発明品より大きく延長された。

これを数字で述べると、マナカ発明の組成物の棚券命は室温下で製造後約1年ないし約1年半であり、これは後述する貯蔵安定性試験法で測定すると49℃の雰囲気下で約20ないし約30日に相当する期間である。これに対して本発明の組成物の棚券命は前記貯蔵安定性試験によれば49℃の雰囲気下で約35ないし約50

本発明に使用される安定剤はビロガロールである。これは後述する貯蔵安定性試験で30日以上がル化させない量で存在すると、その量に対応してセット・タイムが長くなり組成物のの実用的価値をそれだけ減ずることになるので、セット・タイムが1時間を越えない量にといるので、やっか0.1ないし約1.0 重量%、好ましくは約

日であり、これは宝温下の約 1.8 年ないし約 2.6 年に相当する期間である。

次に本発明の実施例を示す。なお、脱出トルク強度、セットタイムおよび貯蔵安定性は次の方法により測定した。

(脱出トルク強度)

トリクロルエチレン脱脂したポルト及びナツトの各ネジ部に嫌気硬化性密封用組成物を適布して組合せ、23±2℃で24時間静置した後トルクレンチを使用してナットをもどす。1/4、2/4、3/4 および 4/4 回転時のトルク値を読み取る。これらの平均値を脱出トルク強度とした。この試験には次の規格のポルト及びナットを使用する。

ボルト: 3 / 8 - 2 4 U N F 2 A × 1 座 つき 6 角ボルト、 S A B グレード 2 測

ナット: 8 / 8 - 2 4 U N F 2 B 6 角ナット、 S A E グレード 2 額

(セット・タイム)

上記の脱出トルク強度の測定手順において、

嫌気性密封用組成物を強布したポルト及びナットを組合せたのち、指でナットを回転することができなくなるまでの時間を閲定してこれをセット・タイムとした。

(貯蔵安定性)

内容積100 CC のポリエチレン製容器に嫌気 性密封用組成物を50 CC 入れ、49±1 CC の空 気恒温槽中に静置する。当初の組成物と比較して、粘度が著しく上昇し始めるかまたはセット・タイムが1時間をこえるまでの期間を測定してそれらを貯蔵安定性の尺度とする。

実施例1~6

提拌器付ガラス製反応容器にコンデンサー、 温度計及び滴下ロートを取り付け、グリシジル メククリレート(日本油脂㈱製ブレンマーG) 216.5 年(1.5 2 当量)を入れた。イソブロ ビルアミン 4 5.0 年(0.7 6 当量)を、反応容 器内温度を 2 5 ± 2 でに保ちながら約 1 時間かけて滴下した。同温度で更に約 2 0 0 時間提拌 を設けた後イソブロビルアミン 5.0 年(0.0 8 当量)を追加して昇温し82±1℃に1時間保つたあと室温まで冷却した。このようにして得たものは、粘度 4014センチポイズ(28℃)、全アミン価163.8、三級アミン価157.6のほとんど無色の液体であり、次の構造式の物質 96.4%を含有すると推定される(以下この液体を単に単単体という)。

単量体100個盤部(以下単に部という)に
メタクリル酸100部、ビロガロール10部及
びNーアミノロダニン0.26部を加えて嫌気性
密封用組成物のためのマスターバッチを調製し
た。マスターパッチ各100部に表ー1に示す
パーオキシケタール组をそれぞれ1.5部加えて
嫌気性密封用組成物の性能を試験したところ表ー
2に示した通りの結果が得られた。

表 - 1 パーオキシクタール類の種類

化合物名	日本油脂钾商品名
1、1-ビス(tープチルバーオキシ)ー& 5、5-トリメチルシクロヘキサン	- 〜キサ 8 M−100
1、1ービス(モーブチルパーオキ ツ)シクロヘキサン	パーヘキサロ
nープチルも、4ービス(tープチル バーオキシ)バレレート	バーヘキサ V
2、2ーヒス(tープチルパーオキ シ)プタン	パーヘキサ22
メチルー8、8ービス(tープチル パーオキシ)ロープチレート	実験室試作品
1、1ービス(モーブテルバーオキ シ)シクロドデカン	闰 上

##	※	※	※	*	*	*	
Œ	122	ш	•	ш	on .	₩.	
₽K	0	10	a	တ	-	9	
F	-5⊓	တ	-	•	•	-31	
20⇒							
2 840							
5 6	*	0	δ	Ф	œ	0	
# ÷	9	4	တ	03	9	9	
脱出トルク海 展(よっの)	1			~			
, , , , , , , , , , , , , , , , , , , 	0	œ	_	φ	တ	ص	
# # # # # # # # # # # # # # # # # # #	83	တ	4	-	-	-	
有破過酸化物の複数	×++3 ×-100	0 **();	A 4+<->	284411	メチルー3、8ービス(モーブ チルパーオキシ)ロープチレート	1、1ービス(モーブチルバーコナンジャル・	
機能	1	0)	<i>&</i>	•	ro 	69	
张 路	1	83	- w	4	us.	90	

※脱出トルク強度はまだ発揮されるがセット・ タイムが1時間をこえる。

比較例1~1.5

実施例1~7で調製した嫌気性密封用組成物 のためのマスターバッチ100部に、表-3に 示す有機過酸化物のそれぞれを 1.5 部加えて難 気性密封用組成物 7~21を得た。

得られた嫌気性密封閉組成物のそれぞれの性能 を試験したところ妻一まに示したとおりの結果 が得られた。

※特問的47-48048号公報が開示する確気性密封用組成物に用いられる有機過酸化物 떕 3. 2、6ートリメチルシクロヘキサインン・オキサイドー、・ナート ハーブチルト パープチル目 9 % P. P. 樫 パープチルロ 4 イバードロ ゾチル 4 サイーン 日本油路在 1 % ۱ ۲ 政政コー」5 に用った布装過級化物 ジーインブロピルペンポンペイドロペーオキ 8、5ージメチルー2、5ージ(tープチル ツー セーブチ ケジベー オキシレダワート※ × エープチルハイドロ パーオキサイド たープチャパーメサシアセゲート※ **tープチルパーオキシペンゾエート** メチルエチルケトンパーオキサイド 쇡 トンパーオキサイト類 | シクロヘキサノンパーオキサイド クメンハイドロパーオキサイド ジーセーブチルパーオキサイド ロートルイルパーオキサイド \$ ペンゾイルペーオキサイド ナヤノイグパーみをサイド ンクミルパーオキサイド ハヤキン (ハキャーン ħ 五 パーオキシエステル點 ジアシルパーオキサイ ド類 حم ا ジアルキルパーオキサ イド盤 ハイドロバーオキサイ ド盤 有政過酸化物の分類

8 解党年労姓用館及客の有票

(EE	' '	~	~(٠,	~	Υ,	Υ	Υ	~	+	+	Υ .	``	٠;	٠;	- 1
安治療代容の鍵盤	ープチル2	4. N + L -	ニンチルト	H 4 11 6 -	エッチル出	4 % % I	ーブチルD	- 0 : v D	- \ + + 2.5 B	4 % B	イベードエー 8 0	- u 1 ~ D	N 6 % * -	H + (おばなかくし	
セントタイム 窓出 (分) (4)	1 5	1 6	2 1	•	4	2	2.4時間以上	•	•	1.4	1 1	7 2	♣	10	مر	
脱出トルク強度(kg・cm)	1 6 1	177	8 8	2 8 1	0 2 3	2 1 6	1	1	ı	بن جو بن	8 6 8	& 4 8	3 6 0	8 3 1	83 90 83	
B. 戴安定性	2 6 B.X.X	2 3 H:%-%	%%B 0 8	4 8 %%	* B * * * * * * * * * *	1 2 B.%%	į	I	t	% ₩B •	1 8以内淡	₩₩.	3 ⊞	6 ************************************	6 B %%	

註:※ゲル化 ※※設出トルク協度はまだ発揮されるがセツト・タイムが1時間をこえた。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.