Computación estadística!

→ Cuaderno 1

07 de Marzo de 2022

Subir un archivo desde excel

- 1. En el menu izquierdo abrir files
- 2. Conectar el Drive
- 3. Buscar el archivo dentro de MyDrive
- 4. Copiar el Path

Crear un notebook que haga las siguientes tareas:

- 1. Cargar un archivo de excel con una ruta permanente en drive (apoyarse en el modulo pandas)
- 2. Cargar una matriz 4*4 en el notebook
- 3. Copiar una imagen del internet y llevarla a Notebook
- 4. Crear una tabla en (LAT_EX)
- 5. Copiar una ecuación y llevarla a (LT_EX)

Crear una cuenta en GitHub

- 1. Entrar al link
- 2. Crear Cuenta
- 3. Crear un nuevo repositorio público
- 4. Subir los Archivos .ipynb

→ Solución

▼ 1. Cargar un archivo con ruta permanente

```
Link_archivo='/content/drive/MyDrive/My_Comp_Est_2022-1/california_housing_train.csv'
```

Double-click (or enter) to edit

```
import pandas as pd
Data=pd.read_csv(Link_archivo)
```

print(Data)

3

	longitude	latitude h	nousing_median_age	total_rooms	total_bedrooms	\
0	-114.31	34.19	15.0	5612.0	1283.0	
1	-114.47	34.40	19.0	7650.0	1901.0	
2	-114.56	33.69	17.0	720.0	174.0	
3	-114.57	33.64	14.0	1501.0	337.0	
4	-114.57	33.57	20.0	1454.0	326.0	
	• • •		• • •	• • •		
16995	-124.26	40.58	52.0	2217.0	394.0	
16996	-124.27	40.69	36.0	2349.0	528.0	
16997	-124.30	41.84	17.0	2677.0	531.0	
16998	-124.30	41.80	19.0	2672.0	552.0	
16999	-124.35	40.54	52.0	1820.0	300.0	
	population	households	s median_income m	edian_house_va	alue	
0	1015.0	472.6	1.4936	6696	0.0	
1	1129.0	463.6	1.8200	8016	00.0	
2	333.0	117.0	1.6509	8576	00.0	

3.1917

1.9250

73400.0

65500.0

226.0

262.0

515.0

624.0

• • •	• • •	• • •	• • •	• • •
111400.0	2.3571	369.0	907.0	16995
79000.0	2.5179	465.0	1194.0	16996
103600.0	3.0313	456.0	1244.0	16997
85800.0	1.9797	478.0	1298.0	16998
94600.0	3.0147	270.0	806.0	16999

[17000 rows x 9 columns]

▼ 2. Cargar una matriz de 4×4

Para este ejemplo opté por hacer una matríz de covarianza, las cuales generalmente tienen muchas aplicaciones estadísticas (se usa principalmente en el cálculo matricial de los coeficientes de la regresión lineal mediante Mínimos Cuadrados Ordinarios, entre otros usos).

Link para construir ecuaciones en LaTeX

Link 2

$$\Sigma = egin{pmatrix} Var(X_1) & Cov(X_1, X_2) & Cov(X_1, X_3) & Cov(X_1, X_4) \ Cov(X_2, x1) & Var(X_2) & Cov(X_2, X_3) & Cov(X_2, X_4) \ Cov(X_3, x1) & Cov(X_3, X_2) & Var(X_3) & Cov(X_3, X_4) \ Cov(X_4, x1) & Cov(X_4, X_2) & Cov(X_4, X_3) & Var(X_4) \end{pmatrix}$$

De manera más general:

$$\Sigma = egin{pmatrix} \sigma_{11}^2 & \sigma_{12} & \dots & \sigma_{1m} \ \sigma_{21} & \sigma_{22}^2 & \dots & \sigma_{2m} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{nm}^2 \end{pmatrix}$$

3. Subir Una imagen desde la web

$$p(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}; -\infty < z < \infty$$

$$p(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} ; -\infty < z < \infty$$
$$F(z) = p(Z \le z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{u^2}{2}} du$$

Característica de la distribución normal tipificada (reducida o estándar):

No depende de ningún parámetro.

Su media es 0, su varianza es 1 y su desviación típica es 1.

La curva f(x) es simétrica respecto al eje de ordenadas y tiene un máximo

Tiene dos puntos de inflexión en z =1

0.4 + f(z)

16

lacksquare 4. Cargar una tabla en L^2TEX , ejemplos de plantillas online:

\$\$

baz bar 3

column1	column2	column3	column4
foo	bar	foo	bar
foo	bar	foo	bar
foo	bar	foo	bar

column1	column2	column3	column4
foo	bar	foo	bar
foo	bar	foo	bar
foo	bar	foo	bar

column1	column2	column3	column4
foo	bar	foo	bar
foo	bar	foo	bar
foo	bar	foo	bar

column1	column2	column3	column4
foo	bar	foo	bar
foo	bar	foo	bar
foo	bar	foo	bar

\$\$

Se construyo una tabla con algunas medidas empleadas en Estadística:

Nombre	Fó $rmula$
$Desviaci\'{o}n\ est\'{a}ndar$	$\sigma = \sqrt{rac{1}{n} imes \sum_{i=1}^N (X_i - ar{X})^2}$
Varianza	$\sigma^2 = rac{1}{n} imes \sum_{i=1}^N (X_i - ar{X})^2$
Desviación media	$D_m = rac{1}{n} imes \sum_{i=1}^N X_i - ar{X} $
Mediana	$X imes rac{n+1}{2} \ si \ N \ impar$
	$\left[egin{array}{l} rac{1}{2} imes (Xrac{N}{2} + X(rac{N}{2} + 1)) \ si \ N \ par \end{array} ight]$
Moda	$Datos\ m\'{a}s\ repitidos$
Media	$ar{X} = rac{1}{N} \sum_{i=1}^N X_i$

4. Subir una ecuación en $L\!\!\!/T_E\!X$

$$\widehat{Y_i} = a + b \cdot X_i$$

Con:

$$a=rac{\sum X_i^2\cdot\sum Y_i-\sum X_i\cdot\sum X_i\cdot Y_i}{n\cdot\sum X_i^2-\left(\sum X_i
ight)^2}$$

Pendiente:

$$b = rac{n \cdot \sum X_i \cdot Y_i - \sum X_i \cdot \sum Y_i}{n \cdot \sum X_i^2 - \left(\sum X_i
ight)^2}$$