HiOA Big Data Course

Session 5 - Time Series 101 + Unsupervised Learning

Dirk Hesse

Time Series Analysis

- We actually don't have much time to talk about it TS analysis.
- So we'll be very, very brief.
 - But it's an important topic.
 - So read up on it!

Time Series Analysis

A **time series** is a series of data points indexed (or listed or graphed) in time order.

- Typically X(t)
- ullet Or X_t .

Time Series: Examples

- Temperature measurements.
- Visitor counts.
- Things sold.
- Ocean tides.
- Sun spot counts.
- Stock prices.

How can we analyze it?

- What is the time scale?
 - Hours?
 - Years?
 - Microseconds?
- Is there a general trend?
 - Linear fit?
 - We'll generally assume there isn't (stationary process).
- Is there periodicity?
 - Fourier transform?
 - Autocorrelation function?

Correlation and Autocorrelation

$$\mathrm{Cor}(X,Y) = rac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

$$\mathrm{R}(au) = rac{E[(X_t - \mu)(X_{t+ au} - \mu)}{\sigma^2}$$

 Time series with periodicity have a non-zero ACF.

A simple time series model.

$$X(t) = a + bt + ct^2.$$

Doesn't take periodicity into account.

Direct (Component) Modeling

$$X(t) = \alpha_0 \operatorname{hour}(t) + \alpha_1 \operatorname{monday}(t) + \dots$$

$$monday(t) = \begin{cases} 1 & \text{if } t \text{ on a Monday} \\ 0 & \text{else} \end{cases}$$

Periodicity explicitly assumed.

Auto-regressive Moving Average (ARMA)

$$X(t) = c + \sum_{i=1}^p lpha_i X(t-i) + \epsilon_t + \sum_{i=1}^q heta_i \epsilon_{t-i}$$

- Auto-regressive + moving average.
- Can be used separately.

Unsupervised Learning

- Supervised learning:
 - \circ Training data, $(x_i,y_i), i=1,\ldots,N$.
 - \circ Target: y_i .
 - \circ Variables: $x_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(K)})^T$.
 - \circ Want to find $\hat{y}(X) = \mathrm{E}(Y|X)$.
- Unsupervised learning:
 - \circ Have a bunch of x_i , no target.
- Try to make sense of the x_i .
 - \circ Sometimes means finding an approximation of p(X=x) given the training data.
 - Gives a measure how improbable the observation is.
 - Sometimes means finding groups in the data.

Clustering

Definition

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters).

Examples

- Types of tissues in medical imaging.
- Cluster consumers in market segments.
- Analyze social networks.
- Group search results.
- Image segmentation.

Clustering

- ullet Objective: Find k clusters of points that are close together.
 - Some methods find k automatically.
 - Most methods need it as input.
- Needed: Some measure for distance between measurements.
 - I.e. a metric.
- Needed: A measure for distance of clusters (linkage).
 - Total.
 - Minimal.
 - Maximal.
 - Average.

Types of Clustering

- Hierarchical
 - Arranges samples in a hierarchy, according to distance.
 - Types:
 - Agglomerative (bottom-up)
 - Divisive (top-down, not terribly common)
- Non-hierarchical
 - Examples:
 - K-Means.
 - DBSCAN.

Agglomerative Clustering

- Start with each x_i defining its own cluster.
- At each step, merge the closest two clusters.
 - Closest according to linkage you've chosen.
- Keep going until you have only one cluster.
- Choose a place to 'cut' the resulting tree.

Agglomerative Clustering

Distance between two clusters?

- Linkage
 - Single (closest points of clusters).
 - Full (furthest points of clusters).
 - Average (average distance of points).
 - Centroid (distance of cluster centers).

How to find the number of clusters?

- Sometimes given.
 - \circ Want to distribute customers to k service people.
- Sometimes can be 'eyeballed' by looking at the dendrogram.
- Sometimes we need to work a little.
 - Number of classes might be unknown.
 - Might be questionable if there is structure at all.

Preparations for finding k numerically.

- Given clustering with k cluster centers μ_l .
- Assign each x_i a cluster $C(x_i)$, such that

$$C(x_i) = \operatorname*{argmin}_{l} \|x_i - \mu_l\|$$

ullet For agglomerative clustering we'll often have the $C(x_i)$ first and calculate

$$\mu_l = rac{1}{N_l} \sum_{i; C(x_i) = l} x_i$$

Define the inertia (or within-cluster RSS)

$$\sum_l \sum_{i;C(x_i)=l} \|\mu_l - x_i\|^2$$

Finding k numerically.

- Set a range k you want to explore.
- Calculate the inertia for each of them.
- Plot vs. k.
- Often you'll see a knee-shape.
 - Less clusters than optimal: High reduction in variance.
 - More clusters than optimal: Don't gain much.
- Choose k at or close to 'knee'.

K-scan for the iris data set.

How do you know you did well?

- Inspect per-cluster means of $X^{(i)}$.
 - o Do they separate well?
- Inspect known labels.
 - o Do we classify correctly?
 - Beware of cluster label mismatch.

Evaluating the iris clusters.

K-Means Clustering

- Start with k random cluster means μ_l .
- Given the data x_i , calculate new cluster centers, again using

$$C(x_i) = rgmin_l \|x_i - \mu_l\| \ \mu_l' = rac{1}{N_l} \sum_{i; C(x_i) = l} x_i$$

Iterate until the assignment stops changing.

Pros and Cons

- K-Means
 - \circ Fast ($O(N^2)$).
 - Good for sphere shaped clusters.
 - Some randomness.
 - Starts with random center assignments.
 - Outcome might vary from run to run.
- Hierarchical clustering.
 - \circ Slower ($O(n^2)$).
 - Works well with any cluster shape.
 - \circ Can eyeball k from dendrogram.

Practical Considerations

- Needs a good metric.
- Observations might need to be standardized.
- Metric chosen might be of interest.
 - 1-Norm (aka Manhattan distance).
 - *l*-Norm (usually Euclidean).

Questions?

Outlier Detection

Example: Predicting machine malfunction.

The Normal Distribution

The z Value

- Assume we have data x_1, \ldots, x_N .
- Calculate the mean $\overline{x} = \frac{1}{N} \sum_i x_i$.
- Calculate the standard deviation

$$\sigma = \sqrt{rac{1}{N}\sum_i (x_i - \overline{x})^2}$$

- Calculate the z-value $z_i = (x_i \overline{x})/\sigma$.
- Flag everything with $z>z_{
 m max}$ as anomaly.

Chebyshev's inequality

- Valid for a wide variety of probability distributions.
- Statement:

$$|Pr(|X-\mu| \geq k\sigma) \leq rac{1}{k^2}$$

 I.e. looking at z values for anomaly detection makes sense.

Sigmas and Probabilities

For the normal distribution:

Threshold	Fraction Outside
3σ	1 / 370
4σ	1 / 15 787
5σ	1 / 1 744 278
6σ	1 / 506 797 346

Chebyshev guarantees

Threshold	Percent Outside
3σ	11.1111%
4σ	6.25%
5σ	4%
6σ	2.7778%

Example: Predicting machine malfunction.

The Need For Clustering

- There might be natural variations in data.
 - Weekend vs. weekday spending patterns.
 - Heart rhythms at rest vs. during sport.
- Fit a bunch of (multivariate) normal distributions.
 - How? We generally don't have labels.
- Enter: Cluster methods.