

Lecture 02: What sets Bayes apart?

Perry Williams, PhD

NRES 779

Bayesian Hierarchical Modeling in Natural Resources

Today

• A high elevation view of approaches for statistical inference

Some motivation for learning

• The basic ideas of Bayesian inference

Learning Objectives

- Understand basic notation for data, parameters, and conditional distributions
- Understand fundemental difference between frequentist inference and Bayesian inference
- Understand and interpret the Bayesian credible interval vs. frequentist confidence interval

Exercise

Write the definition of a frequentist, 95% confidence interval on a parameter of interest, θ .

Exercise

In frequentist statistics, a 95% confidence interval represents an interval of a specified width such that if the experiment or sample were repeated many times, 95% of the intervals would contain the true parameter value.

A line of inference

Some notation

- y is data
- $oldsymbol{ heta}$ a parameter or other unknown quantity of interest
- ullet [heta|y] The probability distribution of heta conditional on y
- ullet [y| heta] The probability distribution of y conditional on $oldsymbol{ heta}$
- $[y|\theta] = P(y|\theta) = p(y|\theta) = f(y|\theta)f(y,\theta)$, different notation that means the same thing.

Bayesian Credible Interval

Exercise

Describe how Bayesian analysis differs from other types of statistical analyses.

What sets Bayes apart?

- Bayesians divide the world into things that are observed (y) and unobserved (θ) .
- All unobserved quantities are treated as random variables.
- A random variable is a quantity whose behavior is governed by chance.
- Probability distributions are mathematical abstractions of "governed by chance."
- We seek to understand the characteristics of these probability distributions, particularly $[\theta|y]$.

Treating unobserved quantities as random variables is profound!

What sets Bayes apart?

All unobserved quantities are treated in exactly the same way.

- Parameters
- Latent states
- Missing data
- Censored data
- Predictions in space (interpolations)
- Predictions in time (forecasts)

An unobserved quanity (θ)

You Can Understand It

KEY	TO	STATIST	TCAL	METHODS

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 ariable 1 ample	Examination of a single sample	Procedure for grouping a Frequency distribution, Box 2,1: stem and leaf display, Section 2,5: testing for outliers, Section 13.4 Computing median of frequency distribution, Box 4.1 Computing arthmetic mean: unordered sample, Box 4.2; frequency distribution, Box 4.3 unordered sample, Box 4.2; frequency distribution, Box 4.3 Setting confidence limits mean, Box 7.2; variance, Box 7.3 Computing a pad ag, Box 6.2.		Confidence limits for a percentage, Section 17.1. Runs test for randomness in dichotomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests: parameters from a extrinsic hypothesis, Box 17.2; from an intrinsic hypothesis, Box 17.2 Kolmogorov-Smirnov test of goodness of fit, Box 17.3 Graphic Tests (7 on romality: large sample sizes, Box 6.3; small sample sizes transit test), Box 6.4 Test of sample statistic against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
able 2 2 pples	Single classification	Single classification anon; uncounted with the state of t	Kruskal-Wallis test, Box 13.5 Unplanned comparison of means by a monparametric STP, Box 17.5	G itse for homogeneity of precentages, Boxes 13 and 12.8 Comparison of several samples with an expected frequency distribution, Box 174, unplanned analysis of replicated tests of goodness of fit, Box 17.5
	Nested classification	Two level nested anova: equal sample sizes, Box 10.1; unequal sample sizes, Box 10.4 Three level nested anova: equal sample sizes, Box 10.3; unequal sample sizes, Box 10.5		
	Two-way or multi-way classification	Tax say armous with replication. Box 11.1; without replication, Box 11.2; unequal but proportional subcless sizes. Box 11.4; with a single missing observation, Box 11.5. Three way anowa, Box 12.1 More than three way classification, Section 12.3 and Box 12.2 Text for nonadiarity in a 1x ow way anova. Box 13.4	Friedman's method for randomized blocks, Box 13.9	Three way log-linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals), Box 17.11

14 / 17

You Can Understand It

A norbe that show, the likelyhood that a value is the same as another

Confidence Interval - bibows A range of values that we have a certain level of confidence our value of interest falls in.

- Definition of Prolue
 The probability of the tignificant
 difference between measured (cherryed)
 value & other measured values
- 3) What is confidence Interval?

 The range of measured (elserved)

 true population mean
 value can decur within it

You Can Understand It

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

16 / 17

One Approach Tailored to Many Problems

- An unobservable state of interest, z
- A deterministic model of a process, $f(\theta, x)$ controlling the state
- A model of the data
- Models of parameters (priors)

