```
from sklearn.datasets import load_iris
from sklearn.cluster import AgglomerativeClustering, KMeans
import scipy.cluster.hierarchy as shc
import matplotlib.pyplot as plt
import numpy as np

# Load the iris dataset
data = load_iris()
df = data.data
target = data.target
feature_names = data.feature_names

# Extract Sepal Length and Sepal Width
sepal_length_width = df[:, :2]
```

Show dendrogram of the iris data using hierarchical clustering using the ward method.

```
# Dendrogram using ward method
plt.figure(figsize=(10, 7))
plt.title("Iris Dendrogram - Ward")
dend_ward = shc.dendrogram(shc.linkage(sepal_length_width,
method='ward'))
plt.show()

# Dendrogram using complete method
plt.figure(figsize=(10, 7))
plt.title("Iris Dendrogram - Complete")
dend_complete = shc.dendrogram(shc.linkage(sepal_length_width,
method='complete'))
plt.show()
```


Scatter plots of the data in 2d showing the clusters in different colors using Agglomerative Clustering for different k values. Show the plots side by side for ward and complete linkage.

```
# Define k values
k_{values} = [2, 3, 4, 5]
# Agglomerative Clustering for different k values using ward and
complete linkage
for k in k_values:
    # Create a subplot with 1 row and 2 columns
    fig, axes = plt.subplots(\frac{1}{2}, figsize=(\frac{10}{5}))
    # Agglomerative Clustering with ward linkage
    cluster ward = AgglomerativeClustering(n clusters=k,
linkage='ward')
    labels ward = cluster ward.fit predict(sepal length width)
    axes[0].scatter(sepal length width[:, 0], sepal length width[:,
1], c=labels ward, cmap='rainbow')
    axes[0].set title(f'Ward Linkage with k={k}')
    axes[0].set xlabel('Sepal Length')
    axes[0].set_ylabel('Sepal Width')
```

```
# Agglomerative Clustering with complete linkage
  cluster_complete = AgglomerativeClustering(n_clusters=k,
linkage='complete')
  labels_complete = cluster_complete.fit_predict(sepal_length_width)
  axes[1].scatter(sepal_length_width[:, 0], sepal_length_width[:,
1], c=labels_complete, cmap='rainbow')
  axes[1].set_title(f'Complete Linkage with k={k}')
  axes[1].set_xlabel('Sepal Length')
  axes[1].set_ylabel('Sepal Width')

# Display the plot
  plt.show()
```


Scatter plot of the data in 2d showing the clusters in different colors using K-Means clustering for different k values. Also show the cluster centers in the plot

```
# K-Means Clustering for different k values
for k in k values:
    # Create a subplot for each k value
    plt.figure(figsize=(10, 5))
    plt.title(f'K-Means Clustering with k={k}')
    # Perform the clustering
    kmeans = KMeans(n clusters=k)
    kmeans.fit(sepal_length width)
    y kmeans = kmeans.predict(sepal length width)
    # Plot the clusters
    plt.scatter(sepal length width[:, 0], sepal length width[:, 1],
c=y kmeans, cmap='rainbow')
    # Plot the centroids
    centers = kmeans.cluster_centers_
    plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200,
alpha=0.5)
    plt.xlabel('Sepal Length')
    plt.ylabel('Sepal Width')
    plt.show()
```


Based on the provided dendrograms and scatter plots

5.0

5.5

1. Logical Interpretation from Clusters:

4.5

2.0

- The scatter plots for both hierarchical clustering methods with (k=2) show a clear distinction between two groups. However, as the number of clusters increases to (k=4) and (k=5), the clusters become less distinct.

6.0

Sepal Length

7.0

7.5

8.0

6.5

 The K-Means clustering with (k=3) seems to align well with the known classification of the Iris dataset, which has three species. The clusters are wellseparated and compact, which suggests good clustering performance.

2. Comparison of Euclidean Distance and Complete Linkage:

- The dendrogram using the ward method (which employs the Euclidean distance) suggests two main clusters with a significant height difference indicating a strong distinction between them.
- The complete linkage dendrogram and scatter plots, on the other hand, show a less distinct separation between clusters, especially as (k) increases. For (k=2), complete linkage creates a cluster with a wide spread which may include more variance within the cluster compared to ward linkage.
- In higher values of (k), the clusters from complete linkage seem to be more fragmented compared to those from ward linkage, which may indicate less cohesion within the clusters.

3. Comparison of Agglomerative and K-Means Clustering Scatter Plots:

- The scatter plots from Agglomerative clustering with ward linkage tend to show more cohesive and compact clusters, especially for (k=3), which is consistent with the natural grouping in the Iris dataset.
- K-Means clustering scatter plots, particularly for (k=3) and (k=5), show distinct clusters with clear centroids. K-Means tends to create more spherical clusters due to the algorithm's tendency to minimize variance within clusters.
- Comparing the scatter plots for (k=2) in both methods, K-Means provides a clearer separation between clusters, which could be due to its centroid initialization and optimization approach.
- For (k=3), both methods perform similarly well in separating the clusters, but K-Means has a slight edge in terms of the compactness of the clusters.
- For (k=5), the K-Means clustering method begins to show some overlap and less clear distinctions between clusters, suggesting that (k=3) might be a more appropriate choice for the number of clusters in this dataset.