

Presentación Pipeline utilizando la API de Spaceflight News para el Análisis de Tendencias en la Industria Espacial

Título: "ETL y Análisis de Noticias en Google Cloud Platform"

Objetivo principal:

"Automatizar la ingesta, transformación,depuración y análisis de noticias usando Google Cloud Plataform"

⊗ Beneficios esperados:

Mayor eficiencia en el procesamiento de datos

"Este proyecto busca extraer datos de la API de Spaceflight News, procesarlos con Spark en Dataproc y analizarlos en BigQuery, proporcionando insights sobre tendencias en noticias científicas."

Tabla de contenido

MODELO TRANSVERSAL GENERADO CON IA-GPTS AUTONOMOS-MULTI-ROL

Arquitectura del Pipeline

- * Diagrama del flujo de datos:
- • Herramientas utilizadas:
 - Extracción → API Spaceflight News
 - Orquestación → Cloud Composer (Airflow)
 - Procesamiento → Dataproc- (Apache Spark)-Dataflow(Apache Beam)
 - Almacenamiento → Cloud Storage + BigQuery
 - Visualización → Looker Studio

Flujo del Pipeline

- * Explicación paso a paso:
 - Se extraen noticias desde la API de Spaceflight News (con paginación y rate limits)
 - Se almacenan en formato JSON-parquet en Google Cloud Storage
 - Spark en Dataproc limpia y transforma los datos
 - Se insertan en un modelo dimensional en BigQuery
 - Se analizan tendencias con SQL y se visualizan en Looker Studio

Modelo de Datos en BigQuery

- Modelo de Datos en BigQuery □
 - 🖈 Diagrama de las tablas en BigQuery
 - dim_fuentes_noticias (Fuentes de noticias)
 - dim_temas (Temas de artículos)
 - fact_articulos (Datos principales con métricas de impacto)
- 🖈 Optimización del Data Warehouse:
- ✓ Particionamiento por published_at
- ◆ Clustering por source_id y topic_id
- 🗸 Estrategia de actualización con MERGE

Tabla de contenido

MODELO TRANSVERSAL GENERADO CON IA-GPTS AUTONOMOS-MULTI-ROL

Análisis de Datos y Resultados

- * Consultas SQL clave:
- ✓ Tendencias de temas por mes
- Fuentes de noticias más influyentes
- Predicción de impacto de artículos con ML

Integración con Machine Learning

- 🖈 Explicación paso a paso:
- 1 Se extraen noticias desde la API de Spaceflight News (con paginación y rate limits)
- 2 Se almacenan en formato JSON en Google Cloud Storage
- 3 Spark en Dataproc limpia y transforma los datos
- 4 Se insertan en un modelo dimensional en BigQuery
- 5 Se analizan tendencias con SQL y se visualizan en Looker Studio (Modelo IDE)

Pruebas y Validaciones

- ★ Tests unitarios:
- ✓ Pruebas en Airflow → Verifica que el DAG funciona correctamente
- ✔ Pruebas en BigQuery → Validación de datos antes de insertarlos
- Demostración del Modelo SandBox

Arquitectura del Pipeline

BATCH DATA PIPELINE

INGESTA

SPACHE SPOCK

Google Cloud Storage

DataProc
Jobs

Drquestador

Airflow+Composer GCC

Flujo del PipeLine

TRANSFORMACIÓN DE DATOS

Explicación del Flujo:

- 1. Extracción de datos (extract_articles, extract_blogs, extract_reperts):
- * Utiliza PythonOperator para obtener datos de la API y guardarlos en archivos temporales.
- 2. Limpieza y deduplicación con Spark (limpia_y_deduplica.py):
- * Ejecuta un script de Spark almacenado en Google Cloud Storage para limpiar y deduplicar los datos.
- * SparkSubmitOperator se coñecta al cluster de Dataproc para ejecutar el trabajo.
- 3. Análisis y clasificación de temas (proceso_analisis.py identifica_topics.py):
- * Estos trabajos de Spark realizan el análisis avanzado, extracción de palabras clave y clasificación de artículos.
- 4. Carga en BigQuery (cargue_data_procesada.py):
- * Usa PythonOperator para cargar los datos procesados en BigQuery.
- 5. Generación de insights y actualización de dashboards (generacion_diaria_insights, actualiza_dashboards):
- * Genera reportes diarios y actualiza los dashboards.

Modelo de Datos en BigQuery

5

TRANSFORMACIÓN DE DATOS

			1000				6-1
	Buscar (/) recursos, documentos, productos y más						
î ·	×	@ *Consulta ulo	▼ X 🖽 Entorno_	elo 🕶 🗙	■ noticia	ıs das ▼ X	■ dim_fuenias
1	notici	as_procesadas	s Q cons	ULTA ▼	***COMPAR	RTIR 🗖 C	DPIAR ± INSTA
ESC	QUEMA	DETALLES	VISTA PREVIA	A EXI	PLORADOR D	E TABLAS VIS	TA PREVIA
	₹ Filtr	o Ingresar el nomb	bre o el valor de la pro	opiedad			
		Nombre del campo	Tipo	Modo	Clave	e Intercala	ción Valor predete
		id_articulo	INTEGER	NULLAE	BLE -	-	-
		id_fuente	INTEGER	NULLAE	BLE -	-	-
		id_tema	INTEGER	NULLAE	BLE -	-	-
		fecha_publicacion	TIMESTAMP	NULLAE	BLE -	-	-
		titulo	STRING	NULLAE	BLE -	-	-
		resumen	STRING	NULLAE	BLE -	-	-
		url	STRING	NULLAE	BLE -	-	-
		visitas	INTEGER	NULLAE	BLE -	-	-
		compartidos	INTEGER	NULLAE		-	-

Integración con Machine Learning 🛛

ARQUITECTURA

End

Análisis de Datos y Resultados M

FUENTE DE NOTICIAS MAS INFLUYENTES

TENDENCIAS POR MES

El tablero muestra el anàlisis de publicaciones sobre SpaceFlight entre 2024 y 2025. Octubre 2024 fue el más publicaciones (704), mientras que febrero 2026 menor actividad (12). Los artículos lideran el conte 5,000 publicaciones, seguido por reportes y blogs. fuente más influyente con 3,086 publicaciones, de claramente sobre SpaceNews y Planetary Society. El tendencias refleja una caída notable en 2025.

Integración con Machine Learning 🛭

MODELOS ML

```
-- • Entrenar un Modelo de Predicción de Popularidad
CREATE OR REPLACE MODEL
    `analitica-contact-center-dev.Entorno_Pruebas_modelo.modelo_prediccion_popularidad`
OPTIONS(
    model_type='LINEAR_REG',
    input_label_cols=['impacto total']
) AS
SELECT
   f.nombre AS fuente,
   a.titulo.
   a.visitas,
   a.compartidos,
    (a.visitas + a.compartidos) AS impacto total
FROM `analitica-contact-center-dev.Entorno_Pruebas_modelo.fact_articulos` a
JOIN `analitica-contact-center-dev.Entorno_Pruebas_modelo.dim_fuentes_noticias` f
ON a.source_id = f.source_id;
★ Explicación:
Entrena un modelo de Regresión Lineal con BigQuery ML
Usa datos históricos de visitas y compartidos como etiquetas
✓ Predice el impacto de nuevos artículos
o un la opcion de este modelo
✓ predicción al usar normalización y ajustar la métrica de impacto.
Más precisión con datos adicionales como categoria y duracion portada.
Modelo más robusto que no se ve afectado por escalas diferentes en las variables.
```

```
Opción 2: Clasificación de Artículos con Vertex AI
Otra opción es usar Vertex AI para clasificar automáticamente los artículos en temas relevantes.
♦ Entrenar un Modelo de Clasificación en Vertex AI
Sube los datos a GCS
bg extract --destination format CSV \
    analitica-contact-center-dev.Entorno_Pruebas_modelo.fact_articulos \
    gs://us-central1-flujotransacion-9cfbfa36-bucket/ml_data/articulos.csv
Crea un Dataset en Vertex AI y entrena un modelo AutoML
gcloud ai datasets create --display-name="Dataset Noticias" --metadata-schema-uri=gs://google-cloud
Desplegar el modelo y hacer inferencias
gcloud ai endpoints create --display-name="Clasificador Noticias"
gcloud ai models deploy --model=projects/analitica-contact-center-dev/models/clasificador_noticias

    Realizar una Predicción con el Modelo

gcloud ai endpoints predict \
    --endpoint=projects/analitica-contact-center-dev/endpoints/clasificador_noticias \
    --json-request=prediccion.json

♠ Explicación:

Usa AutoML en Vertex AI para clasificar automáticamente los artículos
Se puede conectar con BigQuery para análisis más avanzado
```

Opcion 2-Arquitectura del Pipeline mejoras

STREAMING Y 100% SERVELESS

Ventajas del Módelo de Pipeline en Google Cloud

STREAMING Y 100% SERVELESS

1 Totalmente Automatizado y Orquestado

Cloud Composer (Airflow) la orquestación, lo que asegura que todas las tareas del pipeline se ejecuten en el orden correcto y sin intervención manual.

Reintentos automáticos en caso de fallos y monitoreo constante para asegurar la continuidad del proceso.

2 Escalabilidad y Flexibilidad

- •Google Cloud Dataflow permite procesar grandes volúmenes de datos en tiempo real o en batch, sin necesidad de administrar servidores.
- •La arquitectura serverless garantiza escalabilidad automática según la carga de trabajo, lo que permite manejar tanto pequeñas como grandes cantidades de datos sin modificar la infraestructura.

3 Optimización de Consultas y Costos

- •Particionamiento de datos históricos en BigQuery mejora el rendimiento y reduce costos al ejecutar consultas solo en las particiones necesarias.
- •Caching de resultados frecuentes permite agilizar consultas repetidas sin necesicad de recular resultados, mejorando la eficiencia del sistema.

5 Mantenimiento Simplificado

- •Arquitectura modular: Cada componente (ingesta, procesamiento, almacenamiento) es independiente y fácil de actualizar, lo que simplifica el mantenimiento del sistema.
- •Cloud Functions y Dataflow se integran directamente con Pub/Sub, reduciendo la complejidad del flujo de datos y mejorando la eficiencia.

4 Análisis y Visualización Avanzada

- ·BigQuery permite ejecutar consultas rápidas y complejas para identificar tendencias, analizar patrones y generar reportes automáticos.
- •Looker Studio facilita la creación de dashboards dinámicos, proporcionando visualización en tiempo real de las principales métricas y tendencias.

MODELO-GENERADO CON IA-OPS BASADO EN AGENTES-AUTOGPTS.

