2 ((a)	Explain	what i	is	meant	b١
_ ,	~,		*******	_		~

(i)	work done,	
		[1
(ii)	kinetic energy.	
		[1

(b) A leisure-park ride consists of a carriage that moves along a railed track. Part of the track lies in a vertical plane and follows an arc XY of a circle of radius 13 m, as shown in Fig. 2.1.

Fig. 2.1

The mass of the carriage is $580\,\mathrm{kg}$. At point X, the carriage has velocity $22\,\mathrm{m\,s^{-1}}$ in a horizontal direction. The velocity of the carriage then decreases to $12\,\mathrm{m\,s^{-1}}$ in a vertical direction at point Y.

- (i) the carriage moving from X to Y
 - 1. show that the decrease in kinetic energy is $9.9 \times 10^4 \, \text{J}$,

[2]

2. calculate the gain in gravitational potential energy.

(iii)	your answers in (b)(i) and (b)(ii) to calculate the average resistive force acting on the carriage as it moves from X to Y.
(iv)	resistive force =
(v)	Determine the magnitude of the change in linear momentum when the carriage moves from X to Y.
	change in momentum =
(v)	Determine the magnitude of the change in linear momentum when the carriage move from X to Y. change in momentum =

(ii) Show that the length of the track from X to Y is $20\,m$.