SEANCE DE SOUTIEN

Dans tous les exercices, le triplet $(\Omega, \mathcal{F}, \mathbb{P})$ désigne l'espace de probabilité sous-jacent. Les exercices plus difficiles ou faisant intervenir des notions avancées de théorie de la mesure sont indiqués par un astérisque.

1. Convergence de variables aléatoires

Exercice 1.

Soit Y_n , $n \in \mathbb{N}$, une suite de variables aléatoires de lois de Bernoulli $\mathcal{B}(p_n)$ sur $\{0,1\}$ de paramètres respectifs de succès $p_n = \frac{1}{n}$.

a) Si Z est une variable aléatoire intégrable, démontrer que pour tout $n \in \mathbb{N}$,

$$\mathbb{E}(|nY_n - Z|) \ge \mathbb{E}(|Z|) - \mathbb{E}(\mathbb{1}_{\{Y_n = 1\}}|Z|).$$

En déduire que si la suite nY_n , $n \in \mathbb{N}$ converge vers Z dans L^1 , nécessairement Z = 0presque sûrement. Y a-t-il convergence?

- b) Dans cette question, les $Y_n, n \in \mathbb{N}$, sont supposées mutuellement indépendantes. Que dire des limites presque sûres et dans L^1 de la suite $Y_n, n \in \mathbb{N}$?
- c) Mêmes questions si $p_n = \frac{1}{n^2}$.

Exercice 2.

Soit une suite X_n , $n \in \mathbb{N}$, de variables aléatoires convergeant en probabilité vers une variable aléatoire X.

a) Construire par récurrence une suite strictement croissante d'entiers n_k , $k \in \mathbb{N}$, telle que, pour tout $k \geq 1$,

$$\mathbb{P}\left(|X_{n_k} - X| \ge \frac{1}{k}\right) \le \frac{1}{2^k}.$$

b) Démontrer que pour tout $\varepsilon > 0$, $\sum_{k \ge 1} \mathbb{P}(|X_{n_k} - X| \ge \varepsilon) < \infty$. En conclure que la suite $X_{n_k}, k \in \mathbb{N}$, converge vers X presque sûrement.

Exercice 3. Déterminer les limites suivantes :

1.
$$\lim_{n\to\infty} \int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) dx_1\cdots dx_n$$
, pour f une fonction continue sur $[0,1]$.

$$2. \lim_{n \to \infty} \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} f\left(\frac{k}{n}\right), \text{ pour } f \text{ une fonction continue sur } [0,1] \text{ et } p \in [0,1].$$

3.
$$\lim_{n\to\infty}\sum_{k=0}^{\infty}\frac{e^{-\lambda n}(\lambda n)^k}{k!}f\left(\frac{k}{n}\right)$$
, pour f une fonction continue et bornée sur \mathbb{R}_+ et $\lambda>0$.

2. FONCTION CARACTÉRISTIQUE

Exercice 4.

Soit X une variable aléatoire sur (Ω, \mathcal{A}, P) à valeurs dans \mathbb{Z} , dont la loi a pour fonction caractéristique φ_X .

— Montrer que

$$P(X=0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \varphi_X(\theta) d\theta.$$

- Soit à présent une suite $(X_k)_{k\geq 1}$ de variables aléatoires indépendantes de même loi de Bernoulli, avec $P(X_k = +1) = P(X_k = -1) = \frac{1}{2}$, et, pour tout $n \ge 1$, $S_n = X_1 + \cdots + X_n$.
 - a) Démontrer que pour tout $n \geq 1$,

$$P(S_{2n} = 0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos^{2n}(\theta) d\theta.$$

- b) Déduire de la question précédente la divergence de la série de terme général $P(S_{2n} =$
- c) Montrer de façon probabiliste que

$$P(S_{2n} = 0) = \frac{1}{2^{2n}} \binom{2n}{n}, \quad n \ge 1,$$

et démontrer que $P(S_{2n}=0) \sim \frac{1}{\sqrt{\pi n}}$ avec la formule de Stirling $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$. (Indication: faire une transformation pour se ramener à une loi binomiale.)

Exercice 5.

Soient U et V deux variables aléatoires indépendantes de loi de Cauchy C(1) de paramètre 1 et soient a, b, c, d des nombres réels strictement positifs. Considérons les variables aléatoires X et Y définies par

$$X = aU + bV$$
, $Y = cU + dV$.

- (i) Calculer la fonction caractéristique $\varphi_{(X,Y)}$ de la variable aléatoire (X,Y) et en déduire que X et Y ne sont pas indépendantes.
- (ii) Calculer la fonction caractéristique φ_{X+Y} de X+Y et en déduire l'égalité des lois $P_{X+Y} = P_X * P_Y.$

3. Temps d'arrêt

Exercice 6.

On considère un processus $(X_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{R}^d . On se donne également un sous-ensemble A de \mathbb{R}^d (précisément $A \in \mathcal{B}(\mathbb{R}^d)$).

- (1) Montrer que le temps d'atteinte de $A, T_A := \inf\{n \geq 0, X_n \in A\}$, est un temps d'arrêt pour le processus $(X_n)_{n\in\mathbb{N}}$.
- (2) Montrer que le temps de second passage dans $A, T_A^2 := \inf\{n > T_A, X_n \in A\}$ est également un temps d'arrêt pour le processus $(X_n)_{n\in\mathbb{N}}.$
- (3) Le temps de dernier passage dans $A, S_A := \sup\{n \geq 0, \ X_n \in A\}$, est-il un temps d'arrêt pour cette filtration?

Exercice 7. Exercice 2

Soit T un temps d'arrêt pour une filtration $(\mathcal{F}_n)_{n\geq 0}$. On suppose qu'il existe $\varepsilon>0$ et $n_0\in\mathbb{N}^*$ tels que pour tout $n \geq 0$, on a p.s.

$$\mathbb{P}(T \le n + n_0 \mid \mathcal{F}_n) > \varepsilon.$$

Montrer que T est fini presque sûrement et que $\mathbb{E}[T]<+\infty$.

Exercice 8. Identité de Wald.

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a.i.i.d. et T un temps d'arrêt associé. On suppose que les espérances $\mathbb{E}[|X_1|]$ et $\mathbb{E}[T]$ sont finies.

(1) Montrer que

$$\sum_{k=1}^T X_k = \sum_{k=1}^\infty X_k \mathbf{1}_{T \ge k} \ .$$

- (2) Montrer que $\mathbb{E}[T] = \sum_{k \geq 1} \mathbb{P}(T \geq k)$.
- (3) En déduire que $\sum_{k=1}^{T} X_k$ est intégrable et que $\mathbb{E}\left[\sum_{k=1}^{T} X_k\right] = \mathbb{E}[T] \mathbb{E}[X_1]$.

4. Espérance conditionelle

Exercice 9. Let S be a random variable with $\mathbb{P}(S > t) = e^{-t}$ for all t > 0. Calculate the conditional expectation $\mathbb{E}[S \mid S \wedge t]$, where $S \wedge t := \min(S, t)$ for arbitrary t > 0.