

Symmetric Cryptography

Block Cipher Operation Modes

Sang-Yoon Chang, Ph.D.

Modern Cipher (vs. Classical Cipher)

Digital computer communications based on bits

Product cipher

More sophisticated techniques

Module Objectives: Block Cipher Operation Modes

Electronic Codebook (ECB)

Cipher Block Chaining (CBC)

Cipher Feedback (CFB)

Output Feedback (OFB)

Counter (CTR)

Block Cipher Operation Modes

Handle plaintext that can be longer than a block in a secure manner

Alice and Bob agrees on a key and a cipher (an enc./dec. function)

Variables

b: the block length

P_i: *i*-th plaintext block (*b* bits)

C_i: *i*-th ciphertext block (*b* bits)

K: key

Electronic Code Book (ECB)

ECB Encryption (top) and Decryption (bottom)

ECB Encryption (top) and Decryption (bottom)

Electronic Code Book (ECB)

A simple block cipher mode

Use the same raw key over multiple blocks

For block i, $C_i = Enc(K,P_i)$, $P_i = Dec(K,C_i)$

Electronic Code Book Security

Use the same raw key over multiple blocks

Redundancy/patterns in long plaintext carries over to the ciphertext

Electronic Code Book Security

(Source: Dake from Wikimedia Commons)

Cipher Block Chaining (CBC) Mode

Each previous ciphertext block is chained with the current plaintext block

Applicable when all data is already available

For block i,

Encryption: $C_i = Enc(K, [C_{i-1} \oplus P_i])$

Stream Modes of Operation for Block Cipher

Cipher feedback (CFB) mode

Output feedback (OFB) mode

Counter (CTR) mode

Block Cipher vs. Stream Cipher

Block cipher (left) processes in blocks (multiple bits) while stream cipher (right) processes them a bit/byte at a time

Stream Modes of Operation for Block Cipher

Block cipher for pseudo-random generator

XOR the data (enables smaller unit)

CFB mode, OFB mode, and CTR mode

Cipher Feedback (CFB) Mode

Use key to generate pseudo-random bits

Ciphertext is fed to the pseudo-random generator

Encryption: $C_i = P_i \oplus Enc(K, C_{i-1})$

Decryption: $P_i = C_i \oplus Enc(K, C_{i-1})$

s-bit CFB mode

CFB Encryption $C_i = P_i \oplus Enc(K, C_{i-1}))$

CFB Decryption $P_i = C_i \oplus Enc(K, C_{i-1}))$

s-bit CFB mode

CFB Encryption $C_i = P_i \oplus Enc(K, C_{i-1}))$

CFB Decryption $P_i = C_i \oplus Enc(K, C_{i-1}))$

Output Feedback (OFB) Mode

Cipher function output is the feedback

Feedback is independent to P_i and C_i

Encryption: $C_i = P_i \oplus Enc(K, [C_{i-1} \oplus P_{i-1}])$

Decryption: $P_i = C_i \oplus Enc(K, [C_{i-1} \oplus P_{i-1}])$

Output Feedback (OFB) Mode

Cipher function output is the feedback

Feedback is independent to P_i and C_i

Encryption: $C_i = P_i \oplus Enc(K, [C_{i-1} \oplus P_{i-1}])$ Decryption: $P_i = C_i \oplus Enc(K, [C_{i-1} \oplus P_{i-1}])$

OFB Encryption

$$C_i = P_i \oplus$$

 $Enc(K, [C_{i-1} \oplus P_{i-1}])$

OFB Decryption $P_{i} = C_{i} \oplus \\ \text{Enc}(K, [C_{i-1} \oplus P_{i-1}])$

OFB Encryption

$$C_i = P_i \oplus$$

Enc(K, $[C_{i-1} \oplus P_{i-1}]$)

Because

$$X \oplus Y = Z \rightarrow X = Y \oplus Z$$

OFB Decryption

$$P_{i} = C_{i} \oplus Enc(K, [C_{i-1} \oplus P_{i-1}])$$

Vulnerable to attacker's message stream modification

Counter (CTR) Mode

No explicit chaining/feedback

Counter for pseudo-random generation

The initial counter (T₁) must be nonce

Encryption: $C_i = P_i \oplus Enc(K, T_i)$

Decryption: $P_i = C_i \oplus Enc(K, T_i)$

CTR Mode Use

Standard requires that the counter is initialized to different values every time it is used (every plaintext has Different T_1)

Used in Asynchronous Transfer Mode network security and IPSec (IP security)

Block Cipher Modes Feedback

ECB, CBC, CFB, OFB, CTR

Except for ECB, chaining and dependence across blocks

For CTR, the CTR value is dependent (implicit feedback within counter)