# **Decoding Diabetes**

Predictive Models and Insights Using Machine Learning

Professor: 안용길



#### **Presents**

# Introduction

**Diabetes** is one of the most prevalent **chronic diseases**, affecting millions globally. This project aims to **predict** the likelihood of an individual having diabetes using the Behavioral Risk Factor Surveillance System **(BRFSS)** dataset from Kaggle.

<u>The focus</u> will be on understanding which factors contribute the most to diabetes risk and developing machine learning models to predict diabetes based on survey responses.

#### **Dependent Variable Y:** Diabetes\_012

(0) no diabetes or only during pregnancy(1) prediabetes(2) diabetes

## **Dependent Variable X:** 21 variables in the dataset



# Digging deeper into the Data

#### Source:

CDC (Centers for Disease Control and Prevention) Behavioral Risk Factor Surveillance System, [LINK]

**ANNUAL**, uniform, state-specific data on preventive health practices and risk behaviors

Year 2011, extracted on Kaggle from CDC itself [LINK]

Original Data, in 'csv' format, 253,680 survey responses

Alex Teboul (Data Scientist), based on Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques on Kaggle [LINK]

The data was **cleaned** into a useable format for machine learning alogrithms, reduction was made from **330 features** (dependent variables) onto **21 variables Link to his Notebook can be found here:** [LINK]



Alex Teboul

# Shaping the Data: Preprocessing & Preparation

# Target Variable Binarization



allows the models to **focus** on a simpler task!

## Perform univariate logistic regression for each feature

after standardizing the data

# Feature selection based on their p-values

# **Shaping the Data: Preprocessing & Preparation**

## Feature selection based on their p-values

|          | coefficient | p-value | odds_ratio |
|----------|-------------|---------|------------|
| HighBP   | 0.780275    | <0.001  | 2.182072   |
| Age      | 0.579303    | <0.001  | 1.784794   |
| DiffWalk | 0.552433    | <0.001  | 1.737476   |
| PhysHlth | 0.444809    | <0.001  | 1.560193   |
| GenHlth  | 0.914087    | <0.001  | 2.494498   |

### **Cross-Validation**

Using 5 splits

# **Data Undersampling**

Using the RandomUnderSampler from imblearn-undersampling Python Library

# Key Traits of the three chosen Models

three models implemented

## **Random Forest**

- Builds multiple decision trees and combines their predictions
- Provides feature importance,
   which tells us which factors are
   most important in predicting
   diabetes
- Better suited for capturing complex patterns and interactions between features

# **Logistic Regression**

- Assigns weights (coefficients)
   to each feature, making it easy
   to interpret how each feature
   affects diabetes risk
- Simple and more
   interpretable, but may not
   capture complex patterns as
   well as Random Forest

# **Gradient Boosting**

- Builds an ensemble of weak learners, each focusing on correcting errors made by previous models.
- Combines predictions in a sequential manner, leading to higher accuracy over time.
- More complex than Logistic Regression.

# Key Traits of the three chosen Models

three models implemented

## **Random Forest**

- Splitted Training and Testing
   Sets
- Built Random Forest Model
  - estimating 100 trees
- Fit & trained the model
- Predicted the data
- Evaluated the model
- Analyzed Feature Importance
- Plotted the results visually

# **Logistic Regression**

- Splitted Training and Testing
   Sets
- Built Logic Regression Model
  - with 1000 iterations
- Fit & trained the model
- Predicted the data
- Evaluated the model
- Plotted the results visually

# **Gradient Boosting**

- Splitted Training and Testing Sets
- Built Gradient Boosting Model
  - using 100 estimators and a learning rate of 0.1
- Fit & trained the model
- Predicted the data
- Evaluated the model
- Analyzed Feature Importance
- Plotted the results visually

#### **Random Forest: Confusion Matrix**

 Breakdown of true and false positives and negatives

#### Correctly predicted

- 27,520 negatives
- 31,053 positives

#### Incorrectly flagged

- 8,924 negatives
- 12,457 positives



**Logistic Regression: Confusion Matrix** 

 Breakdown of true and false positives and negatives

#### Correctly predicted

- 28,954 negatives
- 30,437 positives

#### Incorrectly flagged

- 9,540 negatives
- 11,023 positives



**Gradient Boosting: Confusion Matrix** 

 Breakdown of true and false positives and negatives

#### Correctly predicted

- 28,320 negatives
- 31,446 positives

#### Incorrectly flagged

- 8,531 negatives
- 11,657 positives



**Conclusion: Model Evaluation** 

#### Random Forest:

- Lower accuracy (73.2%)
- Good feature importance
- Low precision (71.3%)

#### Logistic Regression:

- Higher accuracy (74.2%)
- More interpretable
- Slightly better precision (73.4%)

#### Gradient Boosting:

- Best accuracy (74.7%)
- Best ROC-AUC (82.4%)
- Good precision (73.0%)



|                     | Acccuracy | Precision | ROC-AUC |
|---------------------|-----------|-----------|---------|
| Random Forest       | 73,2%     | 71,3%     | 80,2%   |
| Logistic Regression | 74,2%     | 73,4%     | 81,8%   |
| Gradient Boosting   | 74,7%     | 73,0%     | 82,4%   |

# Literature

From the Web

#### **Dataset:**

#### Centers for Disease Control and Prevention:

https://www.cdc.gov/brfss/annual\_data/annual\_data.htm

#### Kaggle Datasets:

- <a href="https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system">https://www.kaggle.com/datasets/cdc/behavioral-risk-factor-surveillance-system</a>
- https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

#### **Material:**

#### Statistical Learning with Python, Stanford Online

https://www.youtube.com/playlist?list=PLoROMvodv4rPP6braWoRt5UCXYZ71GZIQ

#### **Python Libraries:**

- https://scikit-learn.org/
- https://imbalanced-learn.org/stable/under\_sampling.html

#### More on Random Forest:

https://www.geeksforgeeks.org/random-forest-algorithm-in-machine-learning/

# Thank you

for your attention!