CAP 5610: Machine Learning Lecture 3: Bayes Classifiers

Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu

Announcement

No office hours for me on Thursday

Neda's office hours: Tue-Friday 9:30-11:00 at HEC 308

Survey: Machine Learning Interests

- Cybersecurity
- Robotics/computer vision
- Graphics
- Natural language processing
- Evolutionary computing
- Bioinformatics
- Reinforcement learning
- Financial applications
- Data science

- Specialty applications:
 - Traffic/driving
 - \circ loT
 - Manufacturing
 - Modeling/simulation

Joint Distributions

- Joint distribution over
 - Input vector $X = (X_1, X_2)$
 - $X_1 = B \text{ or } \neg B \text{ (drinking beer or not)}$
 - $X_2 = H \text{ or } \neg H \text{ (headache or not)}$
 - Output vector Y = F or $\neg F$ (binary class)

Prior Distribution

Prior for positive class

$$P(Y=F) = 0.05+0.05+0.015+0.015$$

= 0.13

Prior for negative class

$$P(Y = \neg F) = 0.4 + 0.1 + 0.17 + 0.2 = 0.87$$

¬F	¬B	¬Н	0.4
¬F	¬B	Н	0.1
¬F	В	¬Н	0.17
¬F	В	Н	0.2
F	¬B	¬Н	0.05
F	¬B	Н	0.05
F	В	¬Н	0.015
F	В	Н	0.015

Marginalize over values of the other variables

Class-conditional Distribution

• By Bayes Rule,
$$P(X_1, X_2 | Y = F) = \frac{P(X_1, X_2, Y = F)}{P(Y = F)}$$

• By Bayes Rule,
$$P(X_1, X_2 | Y = F) = \frac{P(X_1, X_2, Y = F)}{P(Y = F)}$$

• $P(X_1 = B, X_2 = H | Y = F) = \frac{P(X_1 = B, X_2 = H, Y = F)}{P(Y = F)} = \frac{0.015}{0.13} = 0.1154$

X ₁	Н	¬H
В	0.1154	?
¬В	?	?

¬F	¬B	¬H	0.4
뚜	¬В	Η	0.1
뚜	В	Ŧ	0.17
뚜	В	Ι	0.2
F	¬В	구	0.05
F	¬B	Н	0.05
F	В	¬H	0.015
F	В	Η	0.015

Class-conditional Distribution

• Bayes Rule
$$P(X_1, X_2 | Y = \neg F) = \frac{P(X_1, X_2, Y = \neg F)}{P(Y = \neg F)}$$

• Bayes Rule
$$P(X_1, X_2 | Y = \neg F) = \frac{P(X_1, X_2, Y = \neg F)}{P(Y = \neg F)}$$

• $P(X_1 = B, X_2 = H | Y = \neg F) = \frac{P(X_1 = B, X_2 = H, Y = \neg F)}{P(Y = \neg F)} = \frac{0.2}{0.87} = 0.2299$

X ₁	Н	¬H
В	0.2299	?
¬В	?	?

¬F	¬B	¬Η	0.4
뚜	¬В	Η	0.1
Ļ.	В	¬Η	0.17
누	В	Н	0.2
F	¬В	구	0.05
F	¬B	Н	0.05
F	В	¬H	0.015
F	В	Η	0.015

Posterior Distribution

•
$$P(Y = F | X_1, X_2) = \frac{P(X_1, X_2, Y = F)}{P(X_1, X_2)}$$

• $P(Y = F | X_1 = B, X_2 = H) = \frac{P(X_1 = B, X_2 = H, Y = F)}{P(X_1 = B, X_2 = H)} = \frac{0.015}{0.015 + 0.2}$

•
$$P(Y = \neg F | X_1, X_2) = \frac{P(X_1, X_2, Y = \neg F)}{P(X_1, X_2)}$$

$$= \frac{0.2}{0.015 + 0.2}$$

¬F	¬B	¬Η	0.4
¬F	¬B	Н	0.1
¬F	В	¬Η	0.17
¬F	В	Н	0.2
F	¬B	¬Н	0.05
F	¬B	Н	0.05
F	В	¬Н	0.015
F	В	Н	0.015

Prior, class-conditional, and posterior distribution

- Prior distribution for a class P(Y)
 - has no input, the fraction of a particular class in a population
 - What's the fraction of digit 9 among all digits [0-9]?
 - What's the fraction of people who are infected with Flu?

Class-conditional Distribution

• Given a class, it is the distribution from which we can draw an example for this class.

Posterior Distribution

- Posterior distribution for classes $P(Y|X_1,X_2)$ given an input X, what's the likelihood of a particular class?
 - How likely is this image a digit 9?

Decision Theory

- Maximum A Posteriori (MAP) Rule: given an input vector X, making an optimal decision about the class label (i.e., Y) in a certain sense
 - Minimizing the classification error

Case I: When $P(Y=F|X_1,X_2)>P(Y=\neg F|X_1,X_2)$, X shall belong to F (i.e., X is infected with Flu)

Case II: When $P(Y=F|X_1,X_2) < P(Y=\neg F|X_1,X_2)$, X shall belong to $\neg F$ (i.e., X is not infected with Flu)

Proof: MAP rule gives the minimal classification error.

Note: the MAP decision rule is different than the MAP estimation process that we spoke about last week!

Proof

• The decision region defines a region in the feature space such that every point in this region belongs to a particular class.

Error Model

•
$$p(error) = \int_{R_1} p(X, Y = C_2) dX + \int_{R_2} p(X, Y = C_1) dX$$

$$= \int_{R_1} p(Y = C_2|X)p(X) dX + \int_{R_2} p(Y = C_1|X)p(X) dX$$

• For each X, it either belongs to R1 or R2; to minimize the error rate, it shall be assigned to the region with a smaller posterior probability.

Intuition: errors occur when instances from class 2 fall in region 1 and class 1 fall in region 2

Likelihood Ratio

Maximum A Posterior rule

Case I: When $P(Y=F|X_1,X_2)>P(Y=\neg F|X_1,X_2)$, X shall belong to F (i.e., X is infected with Flu)

Case II: When $P(Y=F|X_1,X_2)< P(Y=\neg F|X_1,X_2)$, X shall belong to $\neg F$ (i.e., X is not infected with Flu)

Likelihood Ratios

$$f(X) = \frac{P(Y= F|X_1, X_2)}{P(Y= \neg F|X_1, X_2)}$$

Where f(X) > 1, X belongs to F, otherwise X belongs to ¬ F

Discriminative Function

• Given an input X, a discriminative function decides its class by comparing f(X) with a certain threshold.

$$f(X) \begin{cases} > 1, X \in F \\ < 1, X \in \neg F \end{cases}$$

Example: Linear Discriminative Function

• $f(X) = X_1 + X_2 - 1$ with threshold 0.

Bayes Error

- Bayes error is the minimal error that is made by MAP rule.
- It is the lowest bound of error rate that can be achieved by any classifier

$$p(\text{error}|X) = \begin{cases} p(Y = C_1|X), & \text{if } P(Y = C_2|X) > P(Y = C_1|X) \\ p(Y = C_2|X), & \text{if } P(Y = C_1|X) > P(Y = C_2|X) \\ = \min\{p(Y = C_1|X), p(Y = C_2|X)\} \end{cases}$$

- To minimize errors, choose the least risky class, i.e. the class for which the expected loss is smallest
- A conceptual measure for the fundamental hardness of separating y-values given only features x

Nearest Neighbor Error

- The error made by nearest neighbor classifier (1-NN) is bounded by twice the Bayes error.
- Given an example X, its nearest neighbor is X_{NN} ; the true class of X is Y, and test the true class of X_{NN} is Y_{NN} .

$$\begin{aligned} p_{NN}(error|X,X_{NN}) &= p(Y=C_1,Y_{NN}=C_2|X,X_{NN}) + p(Y=C_2,Y_{NN}=C_1|X,X_{NN}) \\ &= p(Y=C_1|X)p(Y_{NN}=C_2|X_{NN}) + p(Y=C_2|X)p(Y_{NN}=C_1|X_{NN}) \end{aligned} \quad \text{(independence)}$$

When the size of training set is large enough (approaching infinity), X_{NN} will also approach to X

$$p_{NN}(error|X) = 2p(Y = C_1|X)p(Y = C_2|X)$$

Bayes error and NN asymptotic error

- Bayes error: $p(error|X) = \min\{p(Y = C_1|X), p(Y = C_2|X)\}$
- NN asymptotic error: $p_{NN}(error|X) = 2p(Y = C_1|X)p(Y = C_2|X)$

$$p_{NN}(error|X) < 2p(error|X)$$

Even though nearest neighbor is not an optimal classifier.

Bayesian Classifier

- Comparing the posterior distribution
 - Given an input feature vector X,

$$C_1$$
, if $P(Y = C_1|X) > P(Y = C_2|X)$
 C_2 , if $P(Y = C_2|X) > P(Y = C_1|X)$

where
$$P(Y = C_i | X) \propto P(X | Y = C_i) P(Y = C_i)$$
, $i = 1,2$

Practical Issues

- Prior distribution $P(Y = C_i)$, i = 1,2
 - Counting the fraction of two classes in training set
- Class-conditional distribution $P(X|Y=C_i)$, i=1,2
 - Modeled from the training examples belonging to two classes

Four training examples

X ₁ (Drinking beer)	X ₂ (Headache)	Y (Flu)
0	1	1
1	1	1
1	0	0
0	0	0

$$P(X = (0,1)|Y = 1) = \frac{\#(X = (0,1), Y = 1)}{\#(Y = 1)} = \frac{1}{2}$$

$$P(X = (1,1)|Y = 1) = \frac{\#(X = (1,1), Y = 1)}{\#(Y = 1)} = \frac{1}{2}$$

$$P(X = (1,0)|Y = 1) = \frac{\#(X = (1,0), Y = 1)}{\#(Y = 1)} = \frac{0}{2}$$

$$P(X = (0,0)|Y = 1) = \frac{\#(X = (0,0), Y = 1)}{\#(Y = 1)} = \frac{0}{2}$$

N attributes of feature vector

- Input vector: $\mathbf{X} = (X_1, X_2, \dots, X_N)$
- Estimate $P(X|Y=C_i)$, how many examples suffice to do estimation ?
 - Assume X is binary vector, then at least 2^N examples are required to ensure that each possible assignment of binary attributes to **X** has one training example.
 - N=20, $2^N = 1,048,576$
 - N=30, $2^N = 1,073,741,824$
 - In MNIST, N = 28X28 (pixel), $2^N = 1.01X10^{236}$

Naive Bayesian Classifier

- If we assume features of an instance are independent given the category (conditionally independent).
- Therefore, we then only need to know $P(X_i \mid Y)$ for each possible pair of a feature-value and a category.
- If Y and all X_i are binary, this requires specifying only 2n parameters:
 - $P(X_i = \text{true} \mid Y = \text{true})$ and $P(X_j = \text{true} \mid Y = \text{false})$ for each X_j
 - $P(X_i = false | Y) = 1 P(X_i = true | Y)$
- Compared to specifying 2ⁿ parameters without any independence assumptions.

Naive Bayes Inference Problem

Naive Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(small <i>Y</i>)	0.4	0.4
P(medium Y)	0.1	0.2
P(large Y)	0.5	0.4
P(red <i>Y</i>)	0.9	0.3
P(blue <i>Y</i>)	0.05	0.3
P(green Y)	0.05	0.4
P(square Y)	0.05	0.4
P(triangle <i>Y</i>)	0.05	0.3
P(circle Y)	0.9	0.3

We learn these probabilities from the training data.

Test Instance: <medium ,red, circle>

Naive Bayes Example

Probability	positive	negative
P(<i>Y</i>)	0.5	0.5
P(medium <i>Y</i>)	0.1	0.2
P(red <i>Y</i>)	0.9	0.3
P(circle Y)	0.9	0.3

Test Instance: <medium ,red, circle>

Answer: Drawn from the positive urn

```
P(positive | X) = P(positive)*P(medium | positive)*P(red | positive)*P(circle | positive) / P(X)

0.5 * 0.1 * 0.9 * 0.9

= 0.0405 / P(X) = 0.0405 / 0.0495 = 0.8181
```

P(negative |
$$X$$
) = P(negative)*P(medium | negative)*P(red | negative)*P(circle | negative) / P(X)
0.5 * 0.2 * 0.3 * 0.3
= 0.009 / P(X) = 0.009 / 0.0495 = 0.1818

P(positive |
$$X$$
) + P(negative | X) = 0.0405 / P(X) + 0.009 / P(X) = 1
P(X) = (0.0405 + 0.009) = 0.0495

For purposes of making a decision, we can ignore the denominator since it is the same for both classes.

Classification Methodologies

- •There are three methodologies:
 - a) Model a classification rule directly

Examples: k-NN, linear classifier, SVM, neural nets, ...

- b) Model the probability of class memberships given input data Examples: logistic regression, probabilistic neural nets (softmax),...
- *C*) Make a probabilistic model of data within each class Examples: naive Bayes, model-based
- Important ML taxonomy for learning models
 probabilistic models vs non-probabilistic models
 discriminative models vs generative models

Background

 Based on the taxonomy, we can see the essence of different supervised learning models (classifiers) more clearly.

	Probabilistic	Non-Probabilistic
Discriminative	 Logistic Regression Probabilistic neural nets 	K-nnLinear classifierSVMNeural networks
Generative	Naïve BayesModel-based (e.g., GMM)	N.A. (?)

Summary

- Recap prior distribution, class-conditional distribution, posterior distribution
- Maximum A Posteriori (MAP) Rule to decide the class assigned to each input vector X
- Likelihood Ratio and discriminant function
- Decision Boundary and Region
- Practical Issues:
 - Estimate prior distribution and class-conditional distribution from training example
 - Naive Bayes
- Discriminative vs. generative models

References

PRML (Bishop) Section 1.5

ML:PP (Murphy) Section 3.5 and Section 5.7