

Digital Logic Circuit (SE273 – Fall 2020)

Lecture 5: Arithmetic Functions

Jaesok Yu, Ph.D. (jaesok.yu@dgist.ac.kr)

Assistant Professor

Department of Robotics Engineering, DGIST

Goal

- Continue to focus on functional blocks
 - Specifically, functional blocks that perform arithmetic operations
 - Iterative circuits made up of arrays of combinational cells
 - Complement-based arithmetic (simplify the design)

Iterative Combinational Circuits

- The arithmetic blocks are designed to operate on binary input vectors and produce binary output vectors
 - The function implemented often requires the same subfunction be applied to each bit position
 - Thus, a simple functional block can be used repetitively for each bit position

[Array of cells]

Also, called an iterative array

Iterative Combinational Circuits

- Iterative arrays are useful in handling vectors of bits
 - A circuit that adds two 32-bit binary integers (64 inputs and 32 outputs)
 - It is not easy to begin with truth tables and writing equations
 - Iterative circuits make the design process considerably simple

[Array of cells]

Binary Adders

- We begin with the simple arithmetic unit that performs the addition of two binary digits
 - Four possible elementary operations: 0+0=0, 0+1=1, 1+0=1, 1+1=10
 - The case 1+1 requires two bits as an output (otherwise, 1bit is sufficient)
 - Thus, we define the carry and the sum
 - There are two types of binary adders: half adder and full adder

► Half Adder

- A half adder is an arithmetic circuit that generates the sum of two binary digits (augend and addend)
 - We set two output bits: S for "sum" and C for "carry"
 - The Boolean functions for the two outputs are as follows:

Inp	outs	Out	puts
X	Υ	С	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic diagram of half adder

Full Adder

- A full adder is a circuit that forms the arithmetic sum of three input bits
 - Two of input variables are X and Y (two bits to be added)
 - The third input, Z, represents the carry from the previous lower significant position

Inputs			Out	puts
X	Y	Z	С	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Binary Ripple Carry Adder

- A parallel binary adder is a digital circuit that produces the arithmetic sum of two (binary) numbers
 - It uses 'n' full adders in parallel, with all input bits applied simultaneously
 - They are connected in cascade, with rippled carry connections

4-bit ripple carry adder (RCA)

- Drawback: Binary Ripple Carry Adder
 - The simplest design of multi-bit adder is to connect carry-out of one bit to the carry-in to the next bit

How to minimize?

Delay increases linearly with number of bits: $t_d = O(N)$

More on Adders

- Prior to moving to the design of efficient multipliers, let's look at a couple of design choices for adders
 - Ripple Carry Adder (RCA): the simplest design!
 - Carry Lookahead Adder (CLA): it predicts the carry!
 - Carry Save Adder (CSA)

4-bit ripple carry adder (RCA)

Carry Lookahead Adder: Useful Definitions

- A fast parallel adder as it reduces the propagation delay
- We first need to understand Carry Propagate and Generate signals

• Propagate: $P_i = A_i \oplus B_i$

• Generate: $G_i = A_i \cdot B_i$

Α	В	С	G	Р	$c_{ m out}$	S
0	0	0	0	0	0	0
Ů		1	Ŭ	Ü	0	1
0	1	0	0	1	0	1
Ü	1	1	O	1	1	0
1	0	0	0	1	0	1
1	Ü	1	Ü	1	1	0
1	1 0	0	1	0	1	0
1	1	1	1	Ü	1	1

Carry Lookahead Adder: Cout Boolean Function

- The main idea is to predict internal carry signals by looking at only A_i and B_i (+ C_{in})
 - $C_1 = G_0 + P_0 \cdot C_{in}$
 - $C_2 = G_1 + P_1 \cdot C_1 = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot C_{in}$
 - $C_3 = G_2 + P_2 \cdot C_2 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot C_{in}$

• $C_4 = G_3 + P_3 \cdot C_3 = ?$

Carry generator for C₂, C₃, and C₄

- ▶ 4-bit Carry Lookahead Adder
 - Now, the carry at intermediate nodes can be computed even without waiting for previous FAs complete their computations

Carry Save Adder (CSA)

- In CSA, three bits are added in parallel at a time
- Each CSA is simply an independent Full Adder without Carry propagation
- A Parallel Adder is required only at the last stage

A set of full adders generate Carry and Sum bits in parallel

The Sum and Carry vectors are added at the last stage (with proper shifting)

- Carry Save Adder (CSA)
 - In CSA, three bits are added in parallel at a time
 - The carry is not propagated through stages

Carry Save Adder (CSA)

Benefit for adding m Numbers

Critical Path Delay

Let's briefly compare critical path delay RCA and CSA

Binary Subtraction

- Let's consider the subtraction of unsigned binary numbers
 - It is used in signed-magnitude addition and subtraction algorithms
 - Later we will compare it with the complement arithmetic

Borrows into: 11100

Minuend: 10011

Subtrahend: -11110

Difference: $10101 \quad M - N + 2^n$

Correct Difference: -01011 $2^n - (M - N + 2^n) = N - M$

If **borrow occurs** into the MSB, it means that **minuend is smaller** than subtrahend

Then, the result must be negative!

Two's Complement (Subtraction in Binary System)

- Subtraction of a binary number from 2ⁿ to obtain an n-digit result is called taking the 2s complement of the number
 - The subtraction of two n-digit numbers in base 2 is as follows:
 - 1. Subtract the subtrahend N from the minuend M.
 - 2. If no end borrow occurs, then $M \ge N$, and the result is nonnegative and correct.
 - 3. If an end borrow occurs, then N > M, and the difference, $M N + 2^n$, is subtracted from 2^n , and a minus sign is appended to the result.

- Example: Unsigned Binary Subtraction
 - Perform binary subtraction 01100100 10010110

Borrows into:

Minuend: 01100100

Subtrahend: - 10010110

Initial Result

Binary Adder-Subtractor

- As a general arithmetic unit, we can design binary adder-subtractor
 - The inputs are applied to both adder and subtractor
 - Both operations are performed in parallel

Result

If an end borrow value of 1 occurs in subtraction, then the selective 2's complementer is activated

This circuit is more complex than necessary

Later, we will see how to share logic btw adder and subtractor

Complements

- There are two types of complements for base-r system
 - The radix complement: r's complement
 - The diminished radix complement: (r-1)'s complement
 - For binary number system, 2's complement and 1's complement exist

1's complement

$$(2^n - 1) - N$$

→ Subtract each digit from 1

The 1's complement of 1011001 is 0100110. The 1's complement of 0001111 is 1110000.

2's complement

$$2^{n} - N for N \neq 0$$
$$0 for N = 0$$

→ Add 1 to the 1's complement

Subtraction Using 2s Complement

- Now, let's perform subtraction armed with complements
 - Add 2s complement of the subtrahend (N) to minuend (M)

•
$$M + (2^n - N) = M - N + 2^n$$

- If $M \ge N$, the sum produces an end carry 2^n . Discard the end carry.
- If M < N, the sum does not produce an end carry. Perform a correction, taking the 2s complement of the sum and placing a minus sign

$$X = 1010100$$

 $Y = 1000011$
 $X = 1010100$
 $2s \text{ complement of } Y = 0111101$
 $Sum = 10010001$
 $Discard \text{ end carry } 2^7 = -10000000$
 $Answer: X - Y = 0010001$


```
2s complement of X = \underline{0101100}
Sum = \underline{1101111}
There is no end carry.
```

Answer:
$$Y - X = -(2s \text{ complement of } 1101111) = -0010001.$$

- Recap: 2's complement
 - Representation of signed integer
 - ex) Representation of "-7"

Step 1: Positive number (= 7)

Step 2: Take a 1's complement (Invert each bit)

Step 3: +1 (if negative)
2's Complement

Bit pattern: 1000 1001 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1011 1010 1's complement: -7 -5 -3 -2 -1 0 1 2 3 4 2's complement: -8 -7 -6

Why? > Faster (in perspective of the hardware)

Recap: 2's complement

Representation of signed integer

1100 Bit pattern: 1000 1001 1010 0000 0001 0010 0011 0100 0101 1011 1's complement: -5 -3 0 2 3 5 6 -6 4 -4 2's complement: -8 -7 -6 -5 -3 0 2 3 5

Recap: 2's complement

• ex) Subtraction 6-3

Case 1: 6 - 3

- 0 0 1 1

0 0 1 1

Case 2: 6+(-3) by 2's complement

Recap: 2's complement

• ex) Overflow in subtraction

Signed Binary Addition Using 2s Complement

- It does not require comparison or subtraction!
 - Simply add two numbers in signed 2s complement form, and discard any carry out if happens

```
+ 6 00000110 - 6 11111010 + 6 00000110 - 6 11111010 
 <math>+ 13 00001101 + 13 00001101 - 13 11110011 - 13 11110011 
 <math>+ 19 00010011 + 7 00000111 - 7 11111001 - 19 11101101
```


Signed Binary Subtraction Using 2s Complement

- The subtraction is simple as well
 - Take 2s complement of the subtrahend (including sign bit)
 - Add it to the minuend (including sign bit)
 - A carry out of the sign bit position is discarded

Then how can we design the adder-subtractor for signed binary numbers (in 2s complement)?

Simplified Binary Adder-Subtractor

- Using 2s complement, we can eliminate the subtraction operation
 - Only the complementer and an adder are needed
 - When performing subtraction, we do complement on the subtrahend

For subtraction,

we need inverters placed btw each B and the adder input, then add 1

What is the difference btw $A \ge B$ and A < B?

Signed Binary Numbers

- So far, we considered arithmetic operations on unsigned numbers
 - To represent negative integers, we need a notation for negative values
 - Conventionally, '0' is for positive numbers and '1' is for negative numbers

0 1	0	0	1
-----	---	---	---

Unsigned binary: 9
Signed binary: +9

Signed-magnitude system!

Signed-Magnitude Addition and Subtraction

- For n-bit numbers, we separate the single sign bit and (n-1) magnitude bits for processing
 - Magnitude bits are processed as unsigned binary numbers
 - To avoid correction step in subtraction, we use a signed-complement system
 - Either 1s or 2s complement can be used

Decimal	Signed 2s Complement	Signed Magnitude
+7	0111	0111
+6	0110	0110
+5	0101	0101
+4	0100	0100
+3	0011	0011
+2	0010	0010
+1	0001	0001
+0	0000	0000
-0	_	1000
-1	1111	1001
-2	1110	1010
-3	1101	1011
-4	1100	1100
-5	1011	1101
-6	1010	1110
-7	1001	1111
-8	1000	_

Note on Signed Number System

- It is used in ordinary arithmetic, but is awkward when employed in computer arithmetic
 - Mainly due to separate handling of the sign and the correction step for subtraction
 - Thus, the signed complement is normally used in computers

2's complement representation

Overflow

- To obtain the correct answer, we must ensure the result has a sufficient number of bits to accommodate the sum
 - If we add two n-bit numbers, the sum may occupy n+1 bits (overflow!!)
 - In computers, the number of bits that holds the result is fixed
 - Thus, we need to detect and handle the overflow

Overflow in Binary Numbers

- For unsigned numbers,
 - An overflow is detected from the end carry out of the MSB (for addition only)
- For signed numbers,
 - An overflow may occur if two numbers added are both positive or negative
 - Also, overflow may occur for either addition or subtraction

Carries:	0 1	Carries:	10
+ 70	0 1000110	- 70	1 0111010
+ 80	0 1010000	- 80	1 0110000
+ 150	1 0010110	-150	0 1101010

Overflow Detection

- An overflow can be detected by observing the carry into the sign bit position and the carry out of the sign bit position
 - If these two carries do not match, an overflow has occurred
 - XOR gate can be used!

What is the use of 'V' and 'C'??

Carries:	0 1	Carries:	10
+ 70	0 1000110	- 70	1 0111010
+ 80	0 1010000	- 80	1 0110000
+ 150	1 0010110	-150	0.1101010

Unsigned Multiplication

It is all about adding partial products!!

Easy part: forming partial products (just an AND gate since $B_{\rm I}$ is either 0 or 1)

$$A_3$$
 A_2 A_1 A_0
 X B_3 B_2 B_1 B_0

$$AB_i$$
 called a "partial product" $\longrightarrow A_3B_0 A_2B_0 A_1B_0 A_0B_0$

$$A_3B_1$$
 A_2B_1 A_1B_1 A_0B_1

Hard part:

adding M N-bit partial products

$$A_3B_2 A_2B_2 A_1B_2 A_0B_2$$

 $A_3B_3 A_2B_3 A_1B_3 A_0B_3$

Multiplying N-bit number by M-bit number gives (N+M)-bit result

Unsigned Multiplication

Sequential Multiplier

• Time multiplexed design:

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N-bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:


```
Init: P \leftarrow 0, load A and B

Repeat M times {
    P \leftarrow P + (B_{LSB}==1 ? A : 0)
    shift P/B right one bit
}

Done: (N+M)-bit result in P/B
```


Shift-and-Add Multiplier

Shift-and-Add Multiplier

		example
Multiplicand		1000
Multiplier		× 1001
		1000
		0000
		0000
Shift	>	1000
Product		1001000

Question) How to design Signed multiplier?

Single Combinational Multiplier

$$t_{PD} = 10 * t_{PD,FA}$$

not 16

 $t_{PD} = (2*(N-1) + N) * t_{PD,FA}$

Components N * HA N(N-1) * FA

Unsigned Multiplication

Wallace Tree Multiplier

CSA

CSA

This is called a 3:2 counter by multiplier hackers: counts number of 1's on the 3 inputs, outputs 2-bit result.

Wallace Tree:

Combine groups of three bits at a time

Higher fan-in adders can be used to further reduce delays for large M.

4:2 compressors and 5:3 counters are popular building blocks.

8bit x 8bit Wallace Tree Multiplier

Summary

- We looked at combinational circuits for performing arithmetic
 - Binary number representations: sign-magnitude, 2s complement
 - Implementation of adders, subtractors
- We learned how to design binary multipliers
 - Shift-and-Add multiplier
 - Array multiplier
 - Wallace Tree multiplier