احتمال پیشرفته		
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع
صفحه 10	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس

هفتهی سوم - جلسهی ششم

حل برخی از تمرینهای فصلهای اول و دوم

Exercise 1.3.1. Suppose that $\Omega = \{1, 2\}$, with $\mathbf{P}(\emptyset) = 0$ and $\mathbf{P}\{1, 2\} = 1$. Suppose $\mathbf{P}\{1\} = \frac{1}{4}$. Prove that \mathbf{P} is countably additive if and only if $\mathbf{P}\{2\} = \frac{3}{4}$.

Exercise 1.3.3. Suppose that $\Omega = \mathbf{N}$ is the set of positive integers, and \mathbf{P} is defined for all $A \subseteq \Omega$ by $\mathbf{P}(A) = 0$ if A is finite, and $\mathbf{P}(A) = 1$ if A is infinite. Is \mathbf{P} finitely additive?

Exercise 2.7.1. Let $\Omega = \{1, 2, 3, 4\}$. Determine whether or not each of the following is a σ -algebra.

(a)
$$\mathcal{F}_1 = \{\emptyset, \{1,2\}, \{3,4\}, \{1,2,3,4\}\}.$$

(b)
$$\mathcal{F}_2 = \left\{ \emptyset, \{3\}, \{4\}, \{1,2\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{1,2,3,4\} \right\}.$$

(c)
$$\mathcal{F}_3 = \{\emptyset, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3,4\}\}$$
.

Exercise 2.7.5. Suppose that $\Omega = \mathbf{N}$ is the set of positive integers, and \mathcal{F} is the set of all subsets A such that either A or A^C is finite, and \mathbf{P} is defined by $\mathbf{P}(A) = 0$ if A is finite, and $\mathbf{P}(A) = 1$ if A^C is finite.

- (a) Is \mathcal{F} an algebra?
- (b) Is \mathcal{F} a σ -algebra?
- (c) Is P finitely additive?
- (d) Is **P** countably additive on \mathcal{F} , meaning that if $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint, and if it happens that $\bigcup_n A_n \in \mathcal{F}$, then $\mathbf{P}(\bigcup_n A_n) = \sum_n \mathbf{P}(A_n)$?

Exercise 2.7.17. Let $\Omega = \{1, 2\}$, and let \mathcal{J} be the collection of all subsets of Ω , with $P(\emptyset) = 0$, $P(\Omega) = 1$, and $P\{1\} = P\{2\} = 1/3$.

- (a) Verify that all assumptions of Theorem 2.3.1 other than (2.3.3) are satisfied.
- (b) Verify that assumption (2.3.3) is <u>not</u> satisfied.
- (c) Describe precisely the \mathcal{M} and \mathbf{P}^* that would result in this example from the modified version of Theorem 2.3.1 in Exercise 2.7.16(b).