

UNIVERSIDAD COMPLUTENSE MADRID

TRABAJO DE FIN DE GRADO

Esd2: Cuaderno de recogida de datos para el estudio médico

Eduardo Gonzalo Montero

&

Sergio Pacheco Fernández

Profesor director: Pablo Manuel Rabanal Basalo

Curso académico: 2019-2020

Identificación asignatura: Grado de Ingeniería del Software

UNIVERSIDAD COMPLUTENSE MADRID

FINAL DEGREE PROJECT

Esd2: Cuaderno de recogida de datos para el estudio médico

Eduardo Gonzalo Montero

&

Sergio Pacheco Fernández

Director professor: Pablo Manuel Rabanal Basalo

Academic year: 2019-2020

Subject identification: Degree in Software Engineering

Índice

Resumen										4												
Pa	Palabras clave														5							
Αl	Abstract															6						
K	eywo	m rlds																				7
1.	Tec	nología	5																			8
	1.1.	Lengua	jes de programació	n																		8
		_	TypeScript																			8
		1.1.2.	HTML-5																			8
		1.1.3.	CSS-3																			9
		1.1.4.	Java 8																			9
		1.1.5.	SQL																			9
	1.2.	Entorn	os de desarrollo																			9
			Visual Studio Code																			9
			MySQL Workbenc																			9
		1.2.3.	PhpMyAdmin																			9
		1.2.4.	GitHub																			10
		1.2.5.	BitBucket																			10
			Eclipse																			10
		1.2.7.	Overleaf																			10
			MobaXterm																			10
	1.3.		vorks																			10
			Java Spring																			10
			Angular																			11
2.	Des	pliegue																				13
	2.1.	FrontE	nd																			13
	2.2.	BackEr	nd																			14
	2.3.	Base de	e Datos																			15
3.	Res	ultados																				17
	3.1.	Simulae	ción de resultados .																			17
		3.1.1.	Suposiciones																			17
			Modelos																			17
	3.2.		dos preliminares																			17
	3.3.		dos postprocesados																			17

4.	Bibliograf	ía															18
	3.3.2.	Correlaciones .															17
	3.3.1.	Valores atípicos															17

Agradecimientos

"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Resumen

La diabetes mellitus se encuentra entre las 10 principales causas de muerte a nivel mundial (4 millones de personas entre 20 y 79 años fallecieron solo en 2017 debido a ella). Se calcula que alrededor de 425 millones de personas tienen diabetes actualmente en el mundo a pesar de que muchos de los casos permanecen sin registrar. Solo en Europa alrededor del 38 % de los casos de diabetes aún están sin diagnosticar, lo que supone unos 22 millones más de afectados. En España se estima que más de 5 millones de personas padecen esta enfermedad, dándose más de 380.000 nuevos pacientes cada año.

En el caso de la diabetes mellitus tipo 2 se estima que 9 de cada 10 casos pueden atribuirse a hábitos de vida que podrían modificarse promoviendo estilos de vida saludables como el deporte o seguir una dieta equilibrada, ya que la obesidad es uno de los mayores factores de riesgo. Sin embargo en los últimos años se han planteado también otros importantes factores de riesgo, entre ellos el déficit de Vitamina D. No obstante los umbrales de niveles correctos de esta vitamina son muy controvertidos y el estudio de su impacto, por tanto, es complejo.

Este proyecto consiste en el desarrollo de un portal web que dará soporte a un equipo médico en su recopilación de datos de contraste en pacientes con diabetes mellitus tipo 2. La aplicación les permitirá recopilar datos sobre los niveles de Vitamina D entre otros factores vía formularios para posteriormente, compararlos y extraer conclusiones que esperan ayuden a delimitar mejor la enfermedad, promover su prevención y, en general, una mejor comprensión de la misma.

El objetivo es que el portal esté en funcionamiento antes de la culminación de este Trabajo de Final de Grado, con el fin de darle soporte durante sus primeros meses útiles, mediante tareas de mantenimiento, mientras los médicos desempeñan su labor. Se busca tras la finalización del proyecto, proporcionar a los médicos una herramienta útil y ajustada que les permita recopilar datos para avanzar en su investigación.

Palabras clave

- Servicio web
- Estudio médico
- lacksquare Diabetes
- Vitamina D
- API-REST
- Investigación
- Sanidad

Abstract

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse venenatis consequat massa, vitae porttitor augue. Donec commodo ornare justo, vitae fermentum orci posuere sit amet. Curabitur vulputate sem odio, in tincidunt turpis venenatis vel. Nunc facilisis mi dui, tristique condimentum velit eleifend at. Nulla facilisi. Sed ac arcu sed ex convallis vestibulum eu et ante. Suspendisse sagittis eget nunc eget tempus. Nullam venenatis, felis non viverra volutpat, ex arcu lacinia magna, eget ullamcorper tellus sapien id magna.

Curabitur convallis tempus augue. Aliquam vehicula consectetur elit, ac porta arcu porttitor nec. Ut fringilla diam et est semper, at semper erat placerat. Sed in blandit magna, et suscipit lacus. Phasellus maximus libero vel libero ornare, vitae eleifend magna pellentesque. Vestibulum pharetra, arcu sit amet semper efficitur, lorem metus posuere nunc, in efficitur est nisi a neque. Pellentesque eu tellus urna.

In sit amet placerat sem. Donec sed efficitur velit. Sed at turpis eget tortor consequat consequat. Suspendisse et ullamcorper nibh. Phasellus dolor risus, tincidunt eget scelerisque eu, lacinia eget dui. Sed nibh lectus, tempor pharetra tempus sed, ultrices eget nisi. Fusce interdum, sapien ut accumsan blandit, urna sem suscipit lorem, in posuere enim lectus pharetra felis. Donec orci ligula, interdum facilisis lacinia in, venenatis et diam. Aliquam ut sem ut magna congue dapibus eget sed orci. Integer bibendum metus sit amet nisi dignissim elementum. Vestibulum imperdiet lacus enim. Ut at mauris et ipsum dapibus tincidunt. Nam id ipsum nec libero lobortis facilisis sit amet luctus ligula.

	Keyworlds

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse

CAPÍTULO 1

Tecnologías

En este capítulo se detalla todo lo relativo a los lenguajes de programación, los entornos de desarrollo y los frameworks elegidos para llevar a cabo este proyecto, así como sus características principales y la razón de su uso.

1.1. Lenguajes de programación

1.1.1. TypeScript

TypeScript es un lenguaje de programación orientado a objetos(OO) el cual es superset de JavaScript. Decimos que una tecnología es un superset de un lenguaje de programación, cuando puede ejecutar programas de la tecnología [1]. En resumen, ejecutará el código como si fuese javaScript.

TypeScript se diferencia de JavaScript principalmente en que posee inferencia de tipos, es decir, está fuertemente tipado, además de algunas funcionalidades extra.

Este lenguaje se utiliza en el FrontEnd del proyecto, dado que el framework elegido para realizar esta parte es Angular, el cual se explicará en detalle más adelante.

1.1.2. HTML-5

HTML-5 (HyperText Markup Language) es la quinta revisión importante del lenguaje básico de la World Wide Web[2]. Se trata de un lenguaje de marcación para la elaboración del contenido de las páginas web. Hoy en día es el lenguaje estándar que aceptan la gran mayoría de los navegadores a la hora de la construcción de las páginas web.

HTML-5 se diferencia de sus versiones anteriores en que incorpora nuevas etiquetas(section, article, header, footer etc...) con las cuales se busca mejorar y estandarizar la estructura de las páginas web además de otras actualizaciones como la mejora de los formularios o la inclusión de elementos de audio y vídeo.

Se ha optado por utilizar este lenguaje de marcación debido a su popularidad y a la inclusión de nuevas etiquetas que favorecen la lectura de la página web por parte de los navegadores.

1.1.3. CSS-3

CSS (Cascading Style Sheets) es un lenguaje de diseño gráfico para definir y crear la presentación de un documento estructurado escrito en un lenguaje de marcado[3]. Se utiliza en la mayoría de sitios web junto con html para generación de páginas web. De esta manera es mucho más sencillo generar páginas web, ya que, el diseño(CSS) se encuentra separado del contenido(HTML).

1.1.4. Java 8

Java es un lenguaje de programación y una plataforma informática comercializada por primera vez en 1995 por Sun Microsystems [4]. Proviene de los lenguajes C y C++, y sus aplicaciones pueden ser ejecutadas en cualquier JVM(Java Virtual Machine).

Para este proyecto se ha utilizado la version 8 porque esta versión es la que menos bugs tiene y la que mejora más la eficacia en el desarrollo y la ejecución de programas Java. [5] Además de estas razones, escogimos java por ser un lenguaje orientado a objetos ideal para desarrollas proyectos API-REST.

1.1.5. SQL

SQL es un lenguaje declarativo estándar internacional de comunicación dentro de las bases de datos que nos permite a todos el acceso y manipulación de datos en una base de datos [6].

Se decidió utilizar este lenguaje debido a su uso en el SGDB(Sistema de Gestión de Base de Datos) que utilizamos en el proyecto, MySQL. Además de esto, SQL es ideal para trabajar con JPA(Java Persistence API) en el BackEnd del proyecto.

1.2. Entornos de desarrollo

1.2.1. Visual Studio Code

Visual Studio Code es un editor de código fuente desarrollado por Microsoft para Windows, Linux y macOS. Incluye soporte para la depuración, control integrado de Git, resaltado de sintaxis, finalización inteligente de código, fragmentos y refactorización de código.[7].

En este proyecto se ha utilizado este entorno de desarrollo para gestionar un proyecto Angular, ya que este editor posee gran versatilidad a la hora de instalar plugins y gestionar diferentes lenguajes de programación de manera simultánea.

1.2.2. MySQL Workbench

Se trata de un programa para gestionar, diseñar y adminstrar bases de datos relacionales, utilizado en nuestro proyecto a la hora de manejar datos de manera local.

Se decidió utilizar debido a que se ha usado previamente en nuestros estudios de grado en diversas asignaturas de manera productiva, además de que posee una versión gratuita.

1.2.3. PhpMyAdmin

Al igual que MySQL Worbench se trata de una herramienta de gestión de bases de datos Mysql, pero con la diferencia que el acceso a esta herramienta es vía web, alojándose en un servidor.

Esta herramienta la utiliza Hostinger[8], proveedor de alojamiento web donde se ha decidido alojar el proyecto para desplegarlo en la web.

1.2.4. GitHub

GitHub es un sistema de gestión de proyectos y control de versiones de código que funciona con git, el cual hemos utilizado para trabajar en equipo. Hemos creado tres repositorios; un repositorio para el FrontEnd del proyecto, otro repositorio para el BackEnd dle proyecto y otro para guardar la memoria escrita en LATEX.

Se decidió utilizar este sistema debido a la familiaridad que poseemos con el mismo, lo que se traduce en efectividad y productividad en el workflow del equipo.

1.2.5. BitBucket

BitBucket es, al igual que GitHub, un sistema de gestión de proyectos y control de versiones. No se tenía planificado utilizar este sistema, pero un cambio en la política de GitHub nos obligó a buscar otras opciones con versiones gratuitas en las cuales guardar el proyecto y gestionar sus diferentes versiones.

Tras una búsqueda de sistemas similares, nos decantamos por utilizar BitBucket debido a la posibilidad de crear repositorios privados gratuitos e ilimitados para equipos pequeños (menos de 5 personas).

1.2.6. Eclipse

Eclipse es una plataforma de software compuesto por un conjunto de herramientas de programación de código abierto multiplataforma para desarrollar aplicaciones[9].

A lo largo de nuestro paso por los estudios de grado en Ingeniería del Software, hemos utilizado este programa para desarrollar código, razón por la cual lo hemos escogido para la realización de la parte Backend del proyecto.

1.2.7. Overleaf

Overleaf es un gestor online de proyectos escritos en IATEX. Gracias a los cursos formativos impartidos por la Oficina de Software Libre[10] realizado en años anteriores y a los recursos puestos a disposición de los alumnos[11] nos animamos a realizar la memoria con este editor online y en lenguaje de maquetación IATEX.

1.2.8. MobaXterm

MobaXterm es una herramienta muy versátil, entre sus funciones destacan la emulación de terminales o la conexión a un cliente SSH.

En este proyecto lo utilizamos con el objetivo de conectarse al servidor remoto proporcionado por Hostinger[8], en el cual albergamos el despliegue de la parte BackEnd de nuestro proyecto.

1.3. Frameworks

1.3.1. Java Spring

Spring es un framework del lenguaje de programacion java el cual nos permite desarrollar aplicaciones de manera más rápida, eficaz y corta, saltándonos tareas repetitivas y ahorrándonos lineas de código[12].

Sus dos características principales son la inversión de control y la inyección de dependencia. Además de esto da soporte a una gran cantidad de frameworks a través de dependencias, facilitando la tarea del programador.

Hemos escogido este framework para realizar la parte BackEnd de nuestra aplicación por sus características citadas anteriormente, construyendo una API-REST. Esta API-REST actúa como un servidor, siendo consumida por un cliente.

Spring da soporte a una gran cantidad de herramientas a través de dependencias. Dichas depdencias se gestionan mediante Maven, una herramienta open-source que simplifica los procesos de build.

Figura 1.1: Instalación Maven en Java Spring

Swagger

Swagger es un proyecto open source para describir, producir, consumir y visualizar API's REST. Para este proyecto vamos a utilizarlo con código Java, con el objetivo de generar la documentación de los endpoints y de las entidades que se envían y se reciben.

Mockito

Mockito es un framework utilizado junto con J Unit en Java para realizar test
s de manera sencilla. En este proyecto se va a utilizar para teste
ar las capas de Business y Controller, con el objetivo final de conseguir un $100\,\%$ de cobertura en las clases teste
adas.

JPA

JPA(Java Persistence API)), es una especificación de java para acceder, persistir y manejar datos entre Clases-Objetos de Java y bases de datos relacionales[13].

Gracias a los conocimientos de JPA adquiridos y desarrollados en las asignaturas de IS(Ingeniería del Software) y MS(Modelado de Software), nos decantamos por esta opción para gestionar las llamadas a las bases de datos correspondientes.

1.3.2. Angular

Angular es un framework de desarrollo de aplicaciones SPA(Single Page Applications), el cual utiliza Typescript como lenguaje de programación. Este framework tiene la ventaja de que no refresca el navegador al modificar los elementos de la página web, dando una sensación de dinamismo y de inmersión al usuario.

Nos decantamos por utilizar este framework debido a su popularidad y al gran uso que se le da a nivel empresarial.

Bootstrap

Bootstrap es una herramienta para crear interfaces de usuario limpias y totalmente adaptables a todo tipo de dispositivos y pantallas, sea cual sea su tamaño[14].

Escogimos esta herramienta ya que nos proporciona resultados óptimos y limpios de manera rápida, además de que posee una documentación muy extensa a la que acudir en caso de duda[15].

CAPÍTULO 2

Despliegue

En este capítulo se detalla como, una vez terminada una versión final de la aplicación, se comienza con el proceso de habilitar el uso de la aplicación desde la web. Para ello decidimos utilizar la pataforma Hostinger[8], y todos los servicios que la misma proporciona a sus usuarios.

El despliegue de la aplicación consta de tres partes; el despliegue de la aplicación FrontEnd, el despliegue de la aplicación BackEnd, y el despliegue de la base de datos.

2.1. FrontEnd

Para desplegar la aplicación Angular que representa el FrontEnd de nuestra aplicación, se utilizó la herramienta "Administrador de archivos" que nos ofrece Hostinger y que nos proporciona una interfaz de usuario para administrar archivos y directorios en nuestro dominio tfg-estudio-medico.com.

En dicho administrador, se procedió a subir la carpeta dist generada por el proyecto Angular.

Figura 2.1: Administrador de archivos de Hostinger

2.2. BackEnd

Para desplegar la aplicación Java Spring que constituye el BackEnd de nuestra aplicación, se utilizó un servidor proporcionado por Hostinger[8]. En dicho servidor instalamos un sistema operativo Ubuntu 18.04 64bit.

Figura 2.2: Servidor en Hostinger

Para conectarnos al servidor utilizamos el programa MobaXterm, conectándonos al servidor a traves de SSH. Nuestro objetivo era mantener el archivo .jar ejecutándose en la máquina incluso si no estamos conectados a la misma, para ello generamos un *servicio*, esto es, un script que se mantiene arrancado incluso si cerramos la sesión.

Lo primero que tenemos que hacer es generar el archivo ejecutable de nuestro proyecto BackEnd. Una vez generado el archivo SNAPSHOT .jar de nuestro proyecto Java Spring, nos disponemos a subirlo a la carpeta /root/back.

Figura 2.3: Jar desplegado en MobaXterm

A continuación, generamos un script llamado $start_back.sh$ que simplemente ejecuta el comando java-jar para arrancar el ejecutable .jar, el cual vamos a guardar en el directorio /usr/local/bin. Lo guardamos en dicho directorio debido a que este directorio es accesible por todos los usuarios.

```
igava -jar /root/back/tfg-estudio-medico-2019-0.0.1-SNAPSHOT.jar
```

Figura 2.4: Script start_back.sh desplegado en MobaXterm

Después hemos generado un servicio llamado daemonback.service en la carpeta /etc/systemd/system, que es el directorio indicado en sistemas Linux para almacenar y gestionar demonios. Este servicio se encarga de ejecutar en segundo plano el script $start_back.sh$.

```
② 2.194.31.52.72 (root)

[Unit]

Description = Init BACK service.

[Service]

Type=simple

ExecStart=/bin/bash /usr/local/bin/start_back.sh

[Install]

WantedBy=multi-user.target

~
```

Figura 2.5: Servicio daemonback.service desplegado en MobaXterm

Por último tan solo tenemos que ejecutar el servicio generado previamente con el comando sudo service daemonback start. Para ver el estado del .jar, ejecutamos el comando sudo service daemonback status y nos muestra lo siguiente:

Figura 2.6: Estado servicio

2.3. Base de Datos

Para desplegar la base de datos en la web, se utilizó un servicio que ofrece Hostinger para desplegar bases de datos MvSQL.

A través de PhpMyAdmin y con la opción de generar la base de datos automáticamente al ejecutar un proyecto Java Spring con JPA, se generó la siguiente base de datos:

Figura 2.7: Modelo de datos generado en PhpMyAdmin

capítulo 3

Resultados

- 3.1. Simulación de resultados
- 3.1.1. Suposiciones
- 3.1.2. Modelos
- 3.2. Resultados preliminares
- 3.3. Resultados postprocesados
- 3.3.1. Valores atípicos
- 3.3.2. Correlaciones

CAPÍTULO 4

Bibliografía

- [1] Uriel Hernandez. Qué es typescript.
- [2] Wikipedia. Html5, 2019.
- [3] Wikipedia. Css, 2019.
- [4] Wikipedia. Java, 2019.
- [5] Wikipedia. Java8, 2019.
- [6] Carlos Eduardo Plasencia Prado. Sql.
- [7] Wikipedia. Visual studio code.
- [8] Hostinger.
- [9] Wikipedia. Eclipse.
- [10] David Pacios Izquierdo José Luis Vázquez Poletti. Oficina sotware libre ucm curso básico latex
- [11] Publicaciones oficina software libre ucm.
- [12] Jonathan Zea. Spring framework ¿qué es y para qué sirve? java, 2017.
- [13] Grégor González. ¿que es jpa? diferencia con hibernate?, 2019.
- [14] Álvaro Fontela. ¿que es bootstrap?, 2015.
- [15] Bootstrap team. ¿que es bootstrap?