Computer Vision for HCI

Image Segmentation and Template Matching

Image Segmentation

- Goal: Partition an image into distinct regions containing each pixels with similar attributes
- Use "discontinuity" or "similarity" approach
 - Discontinuity: segment into regions based on discontinuity (gradient or edge detection)
 - Similarity: Merge similar regions (clustering, region growing etc.)
- Topics
 - Simple Segmentation
 - Segmentation by Clustering
 - Superpixel Segmentation

Goal

Recap: Otsu's Simple Segmentation

- Distribution of graylevels can be used to determine binary threshold
- <u>Histogram</u> graphs number of pixels in the image with a particular graylevel, as a function of the possible graylevels
 - Find peaks and set threshold between peaks

Otsu's Method

- "A threshold selection method from graylevel histograms", IEEE Trans on Sys., Man, and Cyb., Vol 9, No 1, pp 62-66, 1979.
 - Basic idea: threshold is chosen such that the division in the histogram yields the largest reduction in standard deviation of the pixel intensities (black, white)
 - Matlab: graythresh()

Image Segmentation by Clustering

Identify groups of pixels that "go together"

- K-Means
- Mean-Shift Clustering

K-Means

K-means Clustering

- Each "point" is a 3-D vector of color (RGB)
- Initialization:
 - Choose k cluster centers (how pick k?)
- Repeat:
 - Assignment step:
 - For every point, find its closest center
 - Update step:
 - Update every center as the mean of its assigned points
- Until:
 - The maximum number of iterations is reached, or
 - No changes during the assignment step, or
 - The average distortion per point drops very little

K-means: Initialization

- K-means is *extremely sensitive* to initialization
- Bad initialization can lead to
 - Poor convergence speed
 - Poor overall clustering
- How to initialize?
 - Randomly from data
 - Try to find K "spread-out" points
- Try multiple initializations and pick best result
 - Minimize total "distortion" (sum of distances of points from their cluster centers)

$$J(\mu,\mathbf{r}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{nk} ||x_n - \mu_k||^2$$

Example

Mean-Shift

Mean-Shift segmentation

- Recall Mean-Shift tracking lecture...
- Used here for unsupervised clustering
 - Unlike K-means, do not need initial 'K'
- Assigns the data points to clusters iteratively by shifting points towards the local modes
 - Mode: The highest density of data points in the region, in the context of the Mean-Shift

Mean-Shift clustering

• Relate to "Kernel Density Estimation"

- Imagine the data sampled from a probability distribution
- Estimate the underlying distribution (also called the probability density function) for a set of data
 - Place kernel on each point (think weighing function)
 - Add all the individual kernels generates a probability surface (e.g., density function)

Mean-Shift Clustering

• Idea:

- Make points climb up the hill to the nearest peak on the density surface
- Iteratively shift each point uphill until it reaches a peak

Mean-Shift Algorithm

- Define x
 - Color only: [*R*, *G*, *B*]
 - Spatial and Color: [x-loc, y-loc, R, G, B]
- For each datapoint x, find the neighboring points N(x) of x, given Kernel function/window K
- For each x, calculate the *mean shift* m(x):

$$m(x) = \frac{\sum_{x_i \in N(x)} K(x_i - x) x_i}{\sum_{x_i \in N(x)} K(x_i - x)}$$

- Then update each x with $x \leftarrow m(x)$
- Repeat *n times* or until the points stabilize

More details:

RGB Visualization

Examples

Superpixels

Superpixel Segmentation

- "Superpixels" capture local visual redundancy in the image
 - SLIC Superpixel algorithm

SLIC Superpixel Segmentation

- Generated by clustering pixels based on:
 - Color similarity, and
 - Spatial proximity in the image
- Employ 5-D vector per pixel: [lab, x, y]
 - lab = pixel color vector in CIELAB color space
 - (l): intensity, (a, b): color
 - Perceptual color space with Euclidean distance properties
 - x, y = pixel position (or row, col)

SLIC Superpixel Algorithm

- Initially choose K = number of desired superpixels
- Divide image into regular "grid" steps S (for the K)

Algorithm 1 Efficient superpixel segmentation

- 1: Initialize cluster centers $C_k = [l_k, a_k, b_k, x_k, y_k]^T$ by sampling pixels at regular grid steps S.
- 2: Perturb cluster centers in an $n \times n$ neighborhood, to the lowest gradient position.
- 3: repeat

(to the pixel with smallest lab gradient magnitude in 3x3 region)

- 4: **for** each cluster center C_k **do**
- 5: Assign the best matching pixels from a $2S \times 2S$ square neighborhood around the cluster center according to the distance measure (see next slide)
- 6: end for
- 7: Compute new cluster centers and residual error E {L1 distance between previous centers and recomputed centers}
- 8: **until** $E \leq \text{threshold}$

Notation

N	Number of pixels in the input image
К	Number of Superpixels used to segment the input image
N/K	Approximate size of each superpixel
$S = \sqrt{N/K}$	For roughly equally sized superpixels there would be a superpixel centre at every grid interval S

SLIC Superpixel Segmentation

• Distance function between 2 pixels:

$$D_{s} = d_{lab} + \frac{m}{s} d_{x,y}$$

d_{lab}: lab distance (Euclidean) between the 2 pixels.

 $\frac{1}{s} d_{x,y}$: Euclidean spatial distance, normalized by grid interval S.

m: compactness control of a super pixel. Large values make it more compact.

Superpixels: More Examples

Approx. 300 to 100 superpixels

Template Matching

Template Matching Intro

• Want to find areas of a search image that are similar to given template image *T*

Template Image *T*

Search Image

Best Matching Patch in Search Image

General Approaches

- Template-Based:
 - Utilize raw template (pixels) and find best matching patches in search image
 - Sum-of-absolute differences (SAD)
 - Sum-of-squared differences (SSD)
 - Normalized cross-correlation (NCC)

1) Sum-of-Absolute Differences (SAD)

• Compute **absolute differences of pixel intensities** of template *T* and image patch *P* extracted from search image (note that *P* is same size as template

SAD(P,T) =
$$\sum_{R,G,B} \sum_{x,y} |P(x,y) - T(x,y)|$$

- Compute SAD for all unique patch locations within the search image
- Keep patch with minimum SAD or patches with SAD less than given threshold

SAD Example

Search Image

Template Image *T*

Negative SAD,
Origin is in center of patch

SAD Example

kth best matching patch

k

^{*}Pixel values scaled between 0 and 1

2) Sum-of-Squared Differences (SSD)

• Similar to SAD, but replace absolute differences with **squared differences**

$$SSD(P,T) = \sum_{R,G,B} \sum_{x,y} (P(x,y) - T(x,y))^{2}$$

- Compute SSD for all unique patches within the search image
- Keep patch with minimum SSD

SSD Example

Search Image

Negative SSD,
Origin is in center of patch

Template Image *T*

SSD Example

kth best matching patch

1000

k

1200 1400 1600 1800 2000

800 600 400

200

^{*}Pixel values scaled between 0 and 1

Illumination Changes

- SAD and SSD can work well if the template and search images have the same brightness
 - Problem: images can have varying illumination conditions

Search Image

Template Image *T*

 k^{th} best matching patch using SSD

k = 1

k = 10

k = 50 k = 100

k = 150 k = 200 k = 250 k = 500 k = 1000

3) Normalized Cross-Correlation (NCC)

• Normalize images to remove variations from illumination conditions

Mean of pixel values in patch (each color computed independently)

$$NCC(P,T) = \sum_{R,G,B} \frac{1}{n-1} \sum_{x,y} \frac{(P(x,y) - \overline{P}) \cdot (T(x,y) - \overline{T})}{\sigma_P \sigma_T}$$
Constant

Can just be Calculated on

Standard deviation of pixel values in patch (each color computed independently)

Note: <u>larger</u> values of NCC <u>better</u>!

The maximum value is 1 when two <u>1</u>-channel signals are exactly the same:

NCC Example

Search Image

Template

Image T

NCC, Origin is in center of patch

NCC Example

 k^{th} best matching patch using <u>color</u> images

k

NCC Example

 k^{th} best matching patch using **grayscale** images

800

1000

k

1200 1400

1600

1800

600

Handling Scale

- Construct fixed-size template of the <u>smallest</u> size you want to detect
- Scan through image pyramid
 - Detects larger scales of object higher in the pyramid
- Efficient scanning method, with less pixels to examine overall
 - Instead of repeatedly scaling template and scanning original full-sized image multiple times

Pyramid of image

Summary

K-Means

- Choose cluster centers and label every pixel based on its nearest neighbor
- Minimize total distortion
- Sensitive to initialization
- Mean-Shift
 - Iteratively shifts data towards peaks
- Superpixel Segmentation
 - Clustering small pixel regions based on color similarity and proximity
- Template Matching
 - SAD, SSD, NCC