

Fiche technique et méthode sur les formes différentielles et A.U.: 2020-2021 les intégrales curviligne et surfaciques Prof. H. El-Otmany

NB: cette fiche présente les techniques nécessaires minimales pour les formes différentielles, les intégrales curvilignes, Théorème de Green-Riemann, Théorème de Gauss-Ostrogradski et Théorème de Stokes. Elle ne constitue pas un objectif, mais un prérquis!!!

---- Formes différentielles et facteur intégrant -

Soit ω une 1-forme différentielle 1 définie sur un ouvert U de \mathbb{R}^2 (resp. de \mathbb{R}^3) telle que

$$\omega = Pdx + Qdy \quad (resp. \, \omega = Pdx + Qdy + Rdz)$$

- où P,Q et Q sont des fonctions de classe C^1 sur U à valeurs dans \mathbb{R} .
 - 1. ω est de classe C^k si P, Q et Q sont des fonctions de classe C^k sur U.
 - 2. ω est une forme différentielle exacte sur U si et seulement s'il existe $f \to \mathbb{R}$ telle que $df = \omega$.

Remarque: ω exacte sur U avec $df = \omega \implies \omega$ admet au moins une primitive f et $\{f + c, c \in \mathbb{R}\}$. !!!! Attention : f n'est pas unique sauf s'il vous demande de chercher une primitive qui vérifie une telle condition $f(x_0, y_0, z_0) = b \in \mathbb{R}$, ici il faut chercher la valeur de c.

- 3. ω est forme différentielle fermée si $d\omega = 0$, c'est-à-dire

 $\begin{array}{l} - \, \operatorname{sur} \, \mathbb{R}^2 : \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}. \\ - \, \operatorname{sur} \, \mathbb{R}^3, \, \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}, \, \frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}, \, \frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}. \\ \operatorname{Remarque} : \omega \, \operatorname{exacte} \, \operatorname{sur} \, U \, \operatorname{avec} \, df = \omega \, \Longrightarrow \, \omega \, \operatorname{ferm\'{e}e} \, \operatorname{sur} \, U. \end{array}$

4. Le champs vectoriel $\vec{\mathbf{V}}:U\subset\mathbb{R}^n\to\mathbb{R}^n$ dérive d'un potentiel scalaire (ou admet un potentiel scalaire) s'il existe un champs scalaire $f:U\subset\mathbb{R}^n\to\mathbb{R}$ de classe C^1 tel que $\vec{\mathbf{V}}=\vec{\mathrm{grad}}f$, i.e. si on associe $\vec{\mathbf{V}} = (P, Q, R)$ à une 1-forme différentielle ω , on a $\vec{\mathbf{V}} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$.

Remarque: ω exacte avec $df = \omega \Leftrightarrow \vec{\mathbf{V}}$ dérive d'un potentiel et $\vec{\mathbf{V}} = gradf$.

- 5. Théorème de Poincaré : si U est étoilé 2 et ω fermée sur U alors ω est exacte sur U.
- 6. \vec{V} dérive (admet) d'un potentiel scalaire $\implies r \vec{o} t \vec{V} = \vec{0}$.
- 7. $\vec{rot}\vec{V} = \vec{0}$ et \vec{U} étoilé $\Longrightarrow \vec{V}$ dérive (admet) d'un potentiel scalaire,i.e. $\vec{V} = \vec{qrad}f$.
- 8. ϕ est un facteur intégrant d'une 1-forme différentielle non exacte si $\phi\omega$ est exacte.

!!!! Attention : Ici, on cherche

- sur \mathbb{R}^2 , $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ qui depend uniquement d'une seule variable x ou y telle que $\phi\omega =$ $\phi P dx + \phi Q dy$ est exacte.
- sur \mathbb{R}^3 , $\phi: \mathbb{R}^n \longrightarrow \mathbb{R}$, n=1,2 qui depend au maximum de deux variables (x,y) ou (y,z) ou (x, z) telle que $\phi \omega = \phi P dx + \phi Q dy + \phi R dz$ est exacte.

^{1.} une 1-forme différentielle ou une forme différentielle de degrée 1 sur U est une application de U dans l'espace dual de \mathbb{R}^n noté $\mathcal{L}(\mathbb{R}^n,\mathbb{R}), n=2,3$

^{2.} on dit que U est étoilé par rapport à un point a si $\forall x \in U$, $[a,x] = \{M(t) : ta + (1-t)x, t \in [0,1]\} \subset U$, i.e. le segment [a,x] est inclu dans U pour tout $x \in U$. U est donc étoilé s'il est étoilé par rapport à un point quelconque de U. Exemples: toute partie convexe est étoilé, \mathbb{R}^2 est étoilé, $\mathbb{R}^2\{(0,0)\}$ n'est pas étoilé. Géométriquement, tout milieu sans obstacle (trou, fracture,...) est étoilté

Soit $\gamma:[a,b] \longrightarrow \mathbb{R}^2$ une courbe paramétrée (ou paramétrage) dont l'image $\gamma([a,b])$ est le chemin $\stackrel{\frown}{AB}$ de point initial $A=\gamma(a)$ et de point final $B=\gamma(b)$. Par exemple : $\gamma(t)=(1+t,2-t),\ t\in[0,1]$ est le paramétrage de la droite dirigée par le vecteur (1,-1) et qui passe par le point (1,2), i.e. le paramétrage du segment [AB] avec A(1,2) et B(2,1).

- 1. L'intégrale curviligne de la forme différentielle ω le long du chemin γ est
 - $\operatorname{sur} \mathbb{R}^2, \int_{\gamma} \omega = \int_a^b \left[P(x(t), y(t)) x'(t) + Q(x(t), y(t)) y'(t) \right] dt \text{ où } \gamma(t) = (x(t), y(t)).$ $\operatorname{sur} \mathbb{R}^3, \int_{\gamma} \omega = \int_a^b \left[P(x(t), y(t), z(t)) x'(t) + Q(x(t), y(t), z(t)) y'(t) + R(x(t), y(t), z(t)) z'(t) \right] dt$ $\operatorname{où } \gamma(t) = (x(t), y(t), z(t)).$
- 2. Si ω est une 1-forme différentielle exacte alors $\int_{\gamma} \omega = f(\gamma(b)) f(\gamma(a))$. Remarque : γ est fermé, i.e. $f(\gamma(b)) = f(\gamma(a)) \Longrightarrow \int_{\gamma} \omega = 0$.
- 3. Relation de Chasles : si $\gamma = \gamma_1 \cup \gamma_2$ alors $\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$.

 Remarque : Toutes les propriétés des intégrales simples sont valables pour les intégrales curvilignes (linéarité, produit par un scalaire, inversion des bornes,...).

\lozenge — — — — — — — — Théorème de Green-Riemann — — — — — \diamondsuit

Soient D un compact 3 de \mathbb{R}^2 ayant le bord 4 ∂D orienté dans le sens direct et $\omega = Pdx + Qdy$ une 1-forme différentielle de classe C^1 sur un ouvert contenant D. Alors, on a

$$\int_{\partial D^+} \omega = \int_{\partial D^+} P dx + Q dy = \int \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

*Calcul d'aire de D, $Aire(D) = \int \int_D dx dy$:

- En coordonnées cartésiennes : $Aire(D) = \int_{\partial D^+} x dy = -\int_{\partial D^+} y dx = \frac{1}{2} \int_{\partial D^+} x dy y dx$.
- En coordonnées polaires : $Aire(D) = \frac{1}{2} \int_{\partial D^+}^{\infty} r(\theta)^2 d\theta$.

$$\Diamond$$
 ----- \Diamond

Avant d'énoncer les théorèmes d'intégration sur une surface, il utile de rappeller les notions suivantes :

— Une surface S paramétrée dans l'espace est la donnée d'une fonction $s:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}^3$ de classe C^1 telle que

$$s(u, v) = (x(u, v), y(u, v), z(u, v)).$$

— Une surface paramétrée S est régulière en un (u,v) sile vecteur normal $\vec{n}_S := \frac{\partial s}{\partial u} \wedge \frac{\partial s}{\partial v}$ est non nul au point (u,v). Autrement, si la famille $\left\{\frac{\partial s}{\partial u}, \frac{\partial s}{\partial v}\right\}$ est libre ou linéairement independante.

^{3.} Dest un compact si il vérifie la propriété de Borel-Lebesgue, i.e. de tout recouvrement de D par des ouverts on peut extraire un sousrecouvrement fini. Tout partie fermée bornée est un compact.

^{4.} Le bord de D est l'ensemble des points de \mathbb{R}^2 appartenant à D mais n'appartenant pas à l'intérieur de D, i.e. $\partial D = D \setminus \mathring{D}$

— Le flux d'un champs vectoriel $\vec{\mathbf{V}}$ à travers une surface orientée par un choix de normale \vec{n}_S est

$$\Phi(\vec{\mathbf{V}},S^+) = \iint_{S^+} \vec{\mathbf{V}} \cdot d\vec{S} = \iint_{S^+} \vec{\mathbf{V}} \cdot \vec{n}_S dA = \iint_{S^+} \vec{\mathbf{V}}(s(u,v)) \cdot \left(\frac{\partial s}{\partial u} \wedge \frac{\partial s}{\partial v}\right) du dv = -\Phi(\vec{\mathbf{V}},S^-).$$

$\diamondsuit ---$ Théorème de Gauss-Ostrogradski ou Théorème de divergence $----\diamondsuit$

Soit S une surface fermée 5 qui délimite un volume $\Omega \subset \mathbb{R}^3$, i.e. $\partial \Omega = S$. Soient $\vec{\mathbf{V}} = P, Q, R$) un champs vectoriel de classe C^1 et \vec{n}_S le vecteur normal vers l'extérieur de Ω . Alors, on a

$$\iiint_{\Omega} \operatorname{div} \vec{\mathbf{V}} \, dx dy dz = \iint_{\partial S^{+}} \vec{\mathbf{V}} \cdot d\vec{S} = \Phi(\vec{\mathbf{V}}, S^{+})$$

où
$$\operatorname{div} \vec{\mathbf{V}} = \nabla \cdot \vec{\mathbf{V}} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
.

Remarque : si div $\vec{\mathbf{V}} = 0$ alors $\Phi(\vec{\mathbf{V}}, S^+) = 0$.

Pour une 1-forme différentielle $\omega=Pdx+Qdy+Rdz$ de classe C^1 , on a

$$\iint\limits_{\partial S^+} P dy dz + Q dx dz + R dx dy = \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz.$$

*Calcul du volume de $\Omega: Vol(\Omega) = \iiint_{\Omega} dx dy dz = \frac{1}{3} \left| \iint_{\partial S^+} dy dz + dx dz + dx dy \right|.$

$\diamondsuit----$ Théorème de Stokes ou Théorème de rotationnel $-----\diamondsuit$

Soient S une surface orientée de bord ∂S et $\vec{\mathbf{V}}=(P,Q,R)$ un champs de vecteurs de classe C^1 sur un voisinage de S. Alors, on a

$$\oint\limits_{\partial S^+} \vec{\mathbf{V}} \cdot d\mathbf{O} \vec{\mathbf{M}} = \iint\limits_{S} r \vec{o} t \vec{\mathbf{V}} \cdot d\vec{\mathbf{S}} = \iint\limits_{S} \left(\nabla \times \vec{\mathbf{V}} \right) \cdot d\vec{\mathbf{S}}$$

où
$$\vec{rot}\vec{\mathbf{V}} = \nabla \times \vec{\mathbf{V}} = \det \begin{pmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{pmatrix} = \begin{pmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \end{pmatrix} \vec{i} + \begin{pmatrix} \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \end{pmatrix} \vec{j} + \begin{pmatrix} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix} \vec{k}$$
. En terme de

flux, on a $\Phi(\vec{rot}\vec{\mathbf{V}},S)=circulation(\vec{\mathbf{V}},\partial S^+)$. De plus, si $\{s(u,v),\,u,v\in D\}$ une paramamétrisation de la surface S compatible avec l'orientation choisie suivant la normale \vec{n}_S , alors le théorème de Stokes s'écrit

$$\Phi(\vec{rot}\vec{\mathbf{V}}, S) = \iint_D \vec{rot}\vec{\mathbf{V}} \cdot \vec{n}_S(u, v) du dv = \iint_D \vec{rot}\vec{\mathbf{V}} \cdot \left(\frac{\partial s}{\partial u} \wedge \frac{\partial s}{\partial v}\right) du dv.$$

Remarque : Le cercle autour de l'intégrale ϕ désigne que l'intégrale est calculée sur un chemin fermé. Si on associe une 1-forme différentielle de classe C^1 au champrs vectoriel $\vec{\mathbf{V}}$, on obtient :

— sur
$$\mathbb{R}^3$$
, $\oint_{\partial S^+} P dx + Q dy + R dz = \iint_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx dz + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$.

— sur
$$\mathbb{R}^2$$
 avec $S=D,$ $\oint_{\partial D^+}Pdx+Qdy=\iint_S\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)dxdy$. (Théorème de Green-Riemann).

Remarque : Si S est une surface fermée (i.e. sans bord) et $\vec{\mathbf{V}}$ est un champs vectoriel de classe C^1 au voisinage de S alors le flux de $r\vec{ot}\vec{\mathbf{V}}$ à travers S est nul. On écrit

$$\partial S = \Longrightarrow \Phi(\vec{rot}\vec{\mathbf{V}}, S) = 0.$$

^{5.} Une surface paramétrée régulière S est dite fermée (ou sans bord) si son bord est vide i.e. $\partial S = \emptyset$. Exemple : une sphère est une surface fermée. Mais, la surface S paramétrée par $s(u,v)=(u,v,v^2),\ u,v\in[0,1]$ n'est pas fermée car son bord est l'union de 4 courbes.