

Twierdzenie o pierwiastkach wymiernych wielomianu

- Wprowadzenie
- Przeczytaj
- Animacja
- Sprawdź się
- Dla nauczyciela

Wiemy, że wielomian stopnia n ma co najwyżej n pierwiastków. Ważnym zagadnieniem związanym z rozwiązywaniem równań wielomianowych jest umiejętność wyznaczenia wszystkich pierwiastków wielomianu, czyli po prostu wszystkich rozwiązań równania W(x)=0.

Czasem jest to stosunkowo proste, czasem trudne, czasem wręcz niemożliwe. W tym materiale pokażemy, jak wyznaczyć pierwiastki wymierne wielomianu o współczynnikach całkowitych.

Twoje cele

- Podasz i udowodnisz twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych.
- Wyznaczysz pierwiastki wymierne wielomianu o współczynnikach wymiernych.
- Zastosujesz to twierdzenie do znalezienia wszystkich (również niewymiernych) pierwiastków wielomianu w niektórych przypadkach.

Przeczytaj

Twierdzenie: o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych

Dany jest wielomian $W(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, w którym wszystkie współczynniki $a_n, a_{n-1}, \ldots, a_1$ i a_0 są liczbami całkowitymi, przy czym $a_n \neq 0$ i $a_0 \neq 0$. Jeżeli liczba wymierna $\frac{p}{q}$ zapisana w postaci ułamka nieskracalnego, w którym liczby p i q są całkowite jest pierwiastkiem wielomianu W(x), to p jest dzielnikiem (dodatnim lub ujemnym) wyrazu wolnego a_0 , zaś q jest dzielnikiem współczynnika a_n przy najwyższej potędze zmiennej.

Dowód

Dane są liczby całkowite p, q spełniające założenia.

Wiemy, że
$$W\Big(rac{p}{q}\Big)=0$$
, czyli $a_n\cdotrac{p^n}{q^n}+a_{n-1}\cdotrac{p^{n-1}}{q^{n-1}}+\ldots+a_1\cdotrac{p}{q}+a_0=0.$

Po obustronnym przemnożeniu przez q^n mamy

$$a_np^n+a_{n-1}p^{n-1}q+\ldots+a_1pq^{n-1}+a_0q^n=0$$
, więc $a_np^n+a_{n-1}p^{n-1}q+\ldots+a_1pq^{n-1}=-a_0q^n$

Zauważmy, że liczba

$$a_n p^n + a_{n-1} p^{n-1} q + \ldots + a_1 p q^{n-1} =$$

= $p (a_n p^{n-1} + a_{n-1} p^{n-2} q + \ldots + a_1 q^{n-1})$

jest podzielna przez p, więc również a_0q^n musi być podzielna przez p.

Liczby p i q są z założenia względnie pierwsze (bo ułamek $\frac{p}{q}$ jest nieskracalny), więc p musi być dzielnikiem a_0 .

Analogicznie dowodzimy, że q musi być dzielnikiem a_n .

Wystarczy zauważyć, że liczba

$$a_{n-1}p^{n-1}q + \ldots + a_1pq^{n-1} + a_0q^n = q(a_{n-1}p^{n-1} + \ldots + a_1q^{n-2} + a_0q^{n-1})$$
czyli a_np^n musi być podzielne przez q .

Przykład 1

Wyznaczmy wszystkie pierwiastki rzeczywiste wielomianu $W(x)=2x^4-11x^3+4x^2+2x+15.$

• Na początek sprawdźmy, czy wielomian ma pierwiastki całkowite. Zgodnie z twierdzeniem o pierwiastkach całkowitych wielomianu o współczynnikach

całkowitych szukamy ich wśród dzielników wyrazu wolnego (liczby $\pm 1, \pm 3, \pm 5, \pm 15$).

- Po wykonaniu obliczeń można zauważyć, że W(5)=0.
- Korzystając z twierdzenia Bézouta po wykonaniu odpowiedniego dzielenia wielomianów możemy więc zapisać $W(x) = (x-5)(2x^3-x^2-x-3)$.
- Zajmiemy się teraz wielomianem $W_1(x)=2x^3-x^2-x-3$. Jeżeli sprawdziliśmy wcześniej, że $\pm 1, \pm 3$ nie są pierwiastkami W(x) to wiemy, że wielomian $W_1(x)$ nie ma pierwiastków całkowitych.
- Sprawdźmy, czy ma jakiś pierwiastek niecałkowity wymierny. Zgodnie z twierdzeniem o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych wystarczy przeanalizować liczby $\pm \frac{1}{2}$, $\pm \frac{3}{2}$.
- Po wykonaniu rachunków można zauważyć, że $W_1 \left(\frac{3}{2} \right) = 0.$
- Po podzieleniu przez dwumian $x-\frac{3}{2}$ uzyskujemy równość $W(x)=(x-5)\big(x-\frac{3}{2}\big)\big(2x^2+2x+2\big).$
- Za pomocą wyróżnika Δ możemy sprawdzić, że wielomian $W_2(x)=2x^2+2x+2$ nie ma pierwiastków rzeczywistych.
- Jedynymi pierwiastkami rzeczywistymi wielomianu W(x) są zatem liczby 5 oraz $\frac{3}{2}$.

Przykład 2

Wyznaczmy wszystkie pierwiastki rzeczywiste wielomianu $W(x)=2x^4+7x^3-10x^2-21x+12.$

Pierwiastki całkowite

- Sprawdźmy najpierw, czy wielomian ma jakieś pierwiastki całkowite. Jeżeli istnieją, muszą być całkowitymi dzielnikami wyrazu wolnego 12.
- Analizujemy więc wartość wielomianu dla $\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12.$
- Po wykonaniu obliczeń (większość można przeliczyć w pamięci, wystarczy tylko oszacować wynik i sprawdzić, czy jest różny od zera) możemy zauważyć, że tylko W(-4)=0.

Dzielenie

Po wykonaniu dzielenia W(x) przez x+4 dostajemy $W(x)=(x+4)\big(2x^3-x^2-6x+3\big)$. Wiemy, że dla dzielników wyrazu wolnego (czyli ± 1 , ± 3) wielomian W(x) przyjmuje wartości różne od zera, wielomian nie ma więc więcej pierwiastków całkowitych.

Pierwiastki niecałkowite wymierne

- Sprawdźmy, czy wielomian $2x^3-x^2-6x+3$ ma jakieś pierwiastki niecałkowite wymierne.
- Zgodnie z twierdzeniem o pierwiastkach wymiernych pierwiastków takich należy szukać wśród liczb $\pm \frac{1}{2}$, $\pm \frac{3}{2}$.
- Po wykonaniu obliczeń możemy zauważyć, że $W\left(\frac{1}{2}\right)=0$.

Kolejne dzielenie

Wykonując kolejne dzielenie możemy zatem zapisać, że

$$W(x) = (x - \frac{1}{2})(x+4)(2x^2 - 6).$$

Wielomian drugiego stopnia

- Pozostało przeanalizowanie wielomianu $2x^2 6$.
- Wyłączając 2 przed nawias i korzystając ze wzoru skróconego mnożenia na różnicę kwadratów mamy

$$W(x)=2ig(x-rac{1}{2}ig)(x+4)\Big(x-\sqrt{3}\Big)\Big(x+\sqrt{3}\Big).$$

Podsumowanie

Wielomian W(x) ma zatem cztery pierwiastki rzeczywiste: liczby $-4, \frac{1}{2}, \sqrt{3}$ oraz $-\sqrt{3}$.

Zauważmy, że twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych możemy wykorzystać również do wyszukania wszystkich pierwiastków wymiernych wielomianu o współczynnikach wymiernych.

Wystarczy zauważyć, że przemnożenie wielomianu przez stałą niezerową nie zmienia jego pierwiastków.

Każdy wielomian o współczynnikach wymiernych możemy zatem sprowadzić do wielomianu o współczynnikach całkowitych mnożąc go przez wspólną wielokrotność mianowników wszystkich współczynników wielomianu.

Pokażemy to w kolejnych dwóch przykładach.

Przykład 3

Wyznaczmy wszystkie pierwiastki rzeczywiste wielomianu

$$W(x) = \frac{1}{2}x^4 - \frac{2}{15}x^3 - \frac{19}{30}x^2 + \frac{2}{15}x + \frac{2}{15}.$$

• Zauważmy, że po przemnożeniu wielomianu W(x) przez 30 otrzymamy wielomian V(x) o współczynnikach całkowitych mający te same pierwiastki, co wielomian W(x)

•
$$V(x) = 15x^4 - 4x^3 - 19x^2 + 4x + 4$$

- Spróbujmy na początek wyszukać pierwiastki całkowite wielomianu V(x) analizując jego wartości dla liczb $\pm 1, \pm 2, \pm 4$ (dzielniki wyrazu wolnego).
- Łatwo zauważymy, że V(1)=V(-1)=0, więc wielomian V(x) jest podzielny przez $(x+1)(x-1)=x^2-1$.
- Wykonajmy dzielenie dowolnym sposobem (możemy np. użyć algorytmu dzielenia pisemnego lub dwukrotnie schematu Hornera). Uzyskamy zapis $V(x)=(x+1)(x-1)\big(15x^2-4x-4\big)$.
- Za pomocą wyróżnika Δ możemy wyznaczyć pierwiastki trójmianu kwadratowego $15x^2-4x-4$ są to liczby $-\frac25$ i $\frac23$.
- Podsumujmy: wielomian W(x) ma cztery pierwiastki rzeczywiste: $1, -1, -\frac{2}{5}$ i $\frac{2}{3}$.

Przykład 4

Wyznaczmy wszystkie pierwiastki rzeczywiste wielomianu

$$W(x) = \frac{1}{3}x^5 + \frac{1}{5}x^4 + \frac{4}{3}x^3 + \frac{4}{5}x^2 + x + \frac{3}{5}.$$

Współczynniki całkowite

Po przemnożeniu przez 15 uzyskamy wielomian mający te same pierwiastki, ale o współczynnikach całkowitych:

$$V(x) = 5x^5 + 3x^4 + 20x^3 + 12x^2 + 15x + 9.$$

Pierwiastki całkowite

Zauważmy, że wszystkie współczynniki wielomianu są liczbami dodatnimi, więc pierwiastek musi być liczbą ujemną. Sprawdźmy, czy wśród ujemnych dzielników wyrazu wolnego, czyli liczb-1, -3, -9, są pierwiastki wielomianu V(x).

Po wykonaniu obliczeń widzimy, że wielomian ten nie ma pierwiastków całkowitych.

Pierwiastki wymierne

Sprawdźmy, czy wielomian ma pierwiastki wymierne niecałkowite, analizując zgodnie z twierdzeniem liczby $-\frac{1}{5}, -\frac{3}{5}, -\frac{9}{5}$ (tu rachunki mogą być dość żmudne).

Po wykonaniu obliczeń znajdujemy pierwiastek wymierny $-\frac{3}{5}$.

Postać iloczynowa

Zgodnie z twierdzeniem Bézouta możemy zapisać

$$V(x) = (x + \frac{3}{5})(5x^4 + 20x^2 + 15).$$

Zauważmy, że wielomian $5x^4 + 20x^2 + 15$ nie ma pierwiastków rzeczywistych, bo jest sumą dwóch liczb nieujemnych (potęgi o wykładnikach parzystych) i liczby dodatniej 15.

Podsumowanie

Wielomian W(x) ma tylko jeden pierwiastek rzeczywisty – jest nim liczba $-\frac{3}{5}$.

Słownik

twierdzenie Bézouta

liczba a jest pierwiastkiem wielomianu W(x) wtedy i tylko wtedy, gdy wielomian W(x) dzieli się przez dwumian x-a bez reszty

twierdzenie o pierwiastkach całkowitych wielomianu o współczynnikach całkowitych

dany jest wielomian $W(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, w którym wszystkie współczynniki a_n,a_{n-1},\ldots,a_1 i a_0 są liczbami całkowitymi, przy czym $a_n\neq 0$ i $a_0\neq 0$. Jeżeli liczba całkowita p jest pierwiastkiem wielomianu W(x), to p jest dzielnikiem (dodatnim lub ujemnym) wyrazu wolnego a_0

twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych

dany jest wielomian $W(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$, w którym wszystkie współczynniki a_n,a_{n-1},\ldots,a_1 i a_0 są liczbami całkowitymi, przy czym $a_n\neq 0$ i $a_0\neq 0$. Jeżeli liczba wymierna $\frac{p}{q}$ zapisana w postaci ułamka nieskracalnego, w którym liczby p i q są całkowite jest pierwiastkiem wielomianu W(x), to p jest dzielnikiem (dodatnim lub ujemnym) wyrazu wolnego a_0 , zaś q jest dzielnikiem współczynnika a_n przy najwyższej potędze zmiennej

Animacja

Polecenie 1

Zapoznaj się z przedstawionym w animacji twierdzeniem o pierwiastkach wymiernych wielomianu mającego współczynniki całkowite i jego zastosowaniami.

Film dostępny na portalu epodreczniki.pl

Film nawiązujący do treści materiału

Polecenie 2

Posługując się metodami zaprezentowanymi w animacji wyznacz wszystkie pierwiastki wymierne podanych wielomianów:

•
$$F(x) = 4x^5 + 6x^4 + 5x^2 - 9x - 6$$
,

•
$$G(x) = x^4 - 6x^3 - 4x^2 - 18x - 21$$
,

•
$$H(x) = 4x^4 + 4x^3 + 3x^2 - 2x + 6$$
.

Polecenie 3

Nie wykonując dokładnych obliczeń uzasadnij, dlaczego poniższe wyrażenia nie są równe 0

1)
$$2 \cdot (-1)^4 - 2 \cdot (-1)^3 + 5 \cdot (-1)^2 - 6 \cdot (-1) + 1$$

2)
$$2 \cdot 2^4 - 3 \cdot 2^3 + 5 \cdot 2^2 - 13 \cdot 2 + 1$$

2)
$$2 \cdot 2^4 - 3 \cdot 2^3 + 5 \cdot 2^2 - 13 \cdot 2 + 1$$

3) $5 \cdot \left(\frac{1}{3}\right)^3 - \frac{9}{2}\left(\frac{1}{3}\right)^2 + 6 \cdot \frac{1}{3} + \frac{1}{2}$

Sprawdź się

Pokaż ćwiczenia: 🗘 🛈 🌘

Ćwiczenie 2 \bigcirc Wskaż wszystkie pierwiastki wymierne wielomianu $W(x) = 36x^3 + 12x^2 - 5x - 1$. $\boxed{\frac{1}{3}}$ $\boxed{\frac{1}{2}}$ $\boxed{-\frac{1}{2}}$ $\boxed{-\frac{1}{6}}$ $\boxed{\frac{1}{6}}$ $\boxed{\frac{1}{3}}$

Ćwiczenie 3

()

Oceń prawdziwość zdań.

- Każde zdanie prawdziwe zaznacz kolorem zielonym.
- Każde zdanie fałszywe zaznacz kolorem czerwonym.

Każdy wielomian o współczynnikach całkowitych ma przynajmniej jeden pierwiastek wymierny. Jeżeli wyrazem wolnym wielomianu o współczynnikach całkowitych jest liczba nieparzysta, to wielomian ten na pewno nie ma pierwiastków całkowitych parzystych.

Jeżeli wyrazem wolnym wielomianu o współczynnikach całkowitych jest liczba parzysta, to wielomian ten na pewno nie ma pierwiastków całkowitych nieparzystych.

Ćwiczenie 4

Każdy z podanych wielomianów ma dokładnie jeden pierwiastek wymierny. Dopasuj pierwiastki do wielomianów.

$$6x^4 + 2x^3 + 3x + 1$$

$$\frac{1}{3}$$

$$x^5 + 3x^4 + x^3 + 3x^2 + x + 3$$

$$-\frac{1}{3}$$

$$6x^4 - 2x^3 + 9x - 3$$

$$-3$$

$$3x^4 - 9x^3 + 2x - 6$$

Ćwiczenie 5

Wstaw współczynniki przy wyrazach wielomianu tak, by do zbioru pierwiastków tego wielomianu należały liczby -1 oraz 7:

5, 6, 14, 12

$$W(x) = x^4 - \dots x^3 - \dots x^2 - \dots x^2 - \dots x^3$$

Dane są wielomiany

- $F(x) = 2x^3 + 11x^2 + 17x + 6$,
- $G(x) = 2x^3 6x^2 2x + 6$,
- $H(x) = 2x^3 x^2 7x + 6$.

Każdy z nich ma dokładnie trzy pierwiastki wymierne. Wskaż liczby, które są pierwiastkami poszczególnych wielomianów.

	1	-1
2	-2	3
-3	6	-6
$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$
$-\frac{3}{2}$		
F(x)		
	þ	
	P	
	þ	
G(x)	D.	
	þ	
	P	

0		<u> </u>
H(x)		
	þ	
	 	-
	þ	
0		

Ćwiczenie 7

Wielomian $W(x)=x^5-10x^4+26x^3-22x^2+25x-12$ ma dokładnie jeden pierwiasek wymierny.

Pierwiastkiem tym jest liczba

Ćwiczenie 8

Wskaż wszystkie pierwiastki wymierne wielomianu $W(x)=x^4-\frac{1}{3}x^3-\frac{1}{2}x^2-\frac{1}{3}x+\frac{1}{6}$.

 $-\frac{1}{2}$

 $\frac{1}{6}$

 $\frac{1}{2}$

 $-\frac{1}{6}$

 $-\frac{1}{2}$

Dla nauczyciela

Autor: Michał Niedźwiedź

Przedmiot: Matematyka

Temat: Twierdzenie o pierwiastkach wymiernych wielomianu

Grupa docelowa:

III etap edukacyjny, liceum ogólnokształcące, technikum, zakres rozszerzony

Podstawa programowa:

II. Wyrażenia algebraiczne.

Zakres rozszerzony Uczeń spełnia wymagania określone dla zakresu podstawowego, a ponadto

1) znajduje pierwiastki całkowite i wymierne wielomianu o współczynnikach całkowitych;

Kształtowane kompetencje kluczowe:

- kompetencje w zakresie rozumienia i tworzenia informacji;
- kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych, technologii i inżynierii
- kompetencje cyfrowe
- kompetencje osobiste, społeczne i w zakresie umiejętności uczenia się

Cele operacyjne:

Uczeń:

- określa twierdzenia o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych i jego dowód;
- znajduje pierwiastki wymierne wielomianu o współczynnikach wymiernych;
- stosuje twierdzenie o pierwiastkach wymiernych wielomianu o współczynnikach całkowitych do znalezienia wszystkich pierwiastków wielomianu w niektórych przypadkach.

Strategie nauczania:

- konstruktywizm;
- konektywizm.

Metody i techniki nauczania:

- dyskusja;
- metoda tekstu przewodniego.

Formy pracy:

- praca indywidualna;
- praca w parach;
- praca w grupach.

Środki dydaktyczne:

- komputery z głośnikami, słuchawkami i dostępem do internetu;
- zasoby multimedialne zawarte w e-materiale;
- tablica interaktywna/tablica, pisak/kreda.

Przebieg lekcji

Faza wstępna:

1. Przedstawienie tematu zajęć: "Twierdzenie o pierwiastkach wymiernych wielomianu" oraz wspólne z uczniami ustalenie kryteriów sukcesu.

Faza realizacyjna:

- 1. Nauczyciel dzieli uczniów na 4-osobowe grupy. Uczniowie w grupach zapoznają się z informacjami w sekcji "Przeczytaj" oraz animacją. Analizują przedstawione przykłady i notują pytania. Następnie przedstawiają pytania na forum klasy. Odpowiadają na nie uczniowie z innych grup. Nauczyciel wyjaśnia ewentualne wątpliwości.
- 2. Uczniowie wykonują indywidualnie ćwiczenie nr 1-2, a następnie wybrany uczeń omawia ich wykonanie na forum krok po kroku.
- 3. Kolejne ćwiczenia (numer 3, 4 i 5) uczniowie wykonują w parach. Następnie konsultują swoje rozwiązania z inną parą uczniów i ustalają jedną wersję odpowiedzi.
- 4. Ćwiczenia numer 6, 7 i 8 uczniowie wykonują indywidualnie, a następnie omawia je nauczyciel.

Faza podsumowująca:

- 1. Omówienie ewentualnych problemów z rozwiązaniem ćwiczeń z sekcji "Sprawdź się".
- 2. Na koniec zajęć nauczyciel prosi uczniów o rozwinięcie zdania: Na dzisiejszych zajęciach nauczyłam / nauczyłem się...

Praca domowa:

1. Uczniowie wykonują polecenie 2 w sekcji "Animacja".

Materialy pomocnicze:

• Pierwiastki równań

Wskazówki metodyczne:

- Nauczyciel może wykorzystać animację do pracy przed lekcją. Uczniowie zapoznają się z jego treścią i przygotowują do pracy na zajęciach w ten sposób, żeby móc później samodzielnie rozwiązać zadania na lekcji.
- Nauczyciel może wykorzystać animację na lekcji poświęconej rozwiązywaniu równań wymiernych.