FOUNDATIONS OF HIGHER MATHEMATICS HOMEWORK 10

1. (a) f(x) = 3x - 5

Injective: Let f(x) = f(y). Then 3x - 5 = 3y - 5. It follows that:

$$3x = 3y$$
$$x = y$$

Surjective: Let y = f(x). It follows that y = 3x - 5. Thus:

$$y = 3x - 5$$
$$y - 5 = 3x$$
$$\frac{y - 5}{3} = x$$

So, $f(\frac{y-5}{3}) = y$ is a solution.

(b) $f(x) = x^2 + 5$

Not injective: Let a = 1 and b = -1. We can see that $a \neq b$, but $f(a) = 1^2 + 5 = 6 = f(b)$. Not surjective: Take f(x) = 0.

$$x^2 + 5 = 0$$
$$x^2 = -5$$

Since x has no solutions in \mathbb{R} , f is not a surjection.

(c) $f(x) = x^2 - 5x - 6$

Not injective: Let a = 6 and b = -1. Clearly $a \neq b$, but:

$$f(x) = x^2 - 5x - 6$$

= $(x - 6)(x + 1)$

Thus, f(6) = 0 = f(-1).

Not Surjective: Notice that f'(x) = 2x - 5. There is a critical point at $x = \frac{5}{2}$. (Minimum) It follows that $f(\frac{5}{2}) = -\frac{49}{4}$. Any y value less than this value is impossible, and hence does not have a corresponding x value. Thus, f is not surjective.

(d) $f(x) = x^3 - 5$

Injective: Let f(x) = f(y) it follows that:

$$x^3 - 5 = y^3 - 5$$
$$x^3 = y^3$$
$$x = y$$

Surjective: Let y = f(x). It follows that $y = x^3 - 5$, so a solution is $x = \sqrt[3]{y+5}$

(e) $f(x) = x^3 - x$

Not injective. Let x=1 and y=-1. We can see that $x \neq y$, but f(x)=1-1=0 and f(y)=-1+1=0. Thus, f is not an injection. Surjective?...

2. (F&P #4)

Proof. Assume f is strictly increasing. We want to show f is one-to-one. Take an arbitary x and y, $x \neq y$. Assume x is the smaller value. Since f is strictly increasing and x < y, it follows that f(x) < f(y). If y is the smaller value, swapping x and y in the previous argument we see that f(y) < f(x). Thus, $f(x) \neq f(y)$. So f is a one-to-one function.

Now we want to show that f^{-1} is strictly increasing. Let a and b be arbitrary elements of \mathbb{R} such that f(a) < f(b) It follows that a < b from the fact that f is strictly increasing. Assume $f^{-1}(c) < f^{-1}(d)$. We can see that $f(f^{-1}(c)) = c$, and $f(f^{-1}(d)) = d$. It follows that c < d, since f is strictly increasing. Therefore, f^{-1} is strictly increasing.

3. (F&P #7)

(a) One-to-one but not onto: f(n) = 5n

- (b) Onto but not one-to-one: $f(n) = \begin{cases} n & \text{if n is even} \\ n-1 & \text{if n is odd} \end{cases}$
- (c) Neither onto nor one-to-one: $f(n) = n \mod 2$
- (d) $X = \{1, 2, 3, 4\}$

There is not a function that is one-to-one that does not map X onto X because one-to-one implies a unique pairing of elements in the domain to the codomain. Since X is mapping to itself, every element will be mapped onto. There is not a function that maps X onto X that is not one-to-one from similar logic. Every element in the range must be mapped onto the same set.

4. (F&P #73)

(a) Prove that if $y \in B$, then $f^{-1}(y) \subseteq f^{-1}(B)$.

Proof. Assume $y \in B$. It follows that $y \in Y$ because $B \subseteq Y$. Also assume that $x \in f^{-1}(y)$. Want to show $x \in f^{-1}(B)$ (or $f(x) \in B$). It follows that $f(x) \in \{y\}$. Thus, f(x) = y. It follows that $f(x) = y \in B$, or $x \in f^{-1}(B)$.

(b) Prove that if $f(x) \in f(A)$ and f is a one-to-one map, then $x \in A$.

Proof. Assume $f(x) \in f(A)$ and f is injective. By Theorem 5.11 (part d), $A = f^{-1}(f(A))$, since f is one-to-one. It follows that $x \subseteq f^{-1}(f(x))$. So, since $f(x) \in f(A)$, and $A = f^{-1}(f(A))$, $x \in A$.

5 $Tr : M_2(\mathbb{R}) \to \mathbb{R}$

Non-Injective: Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. $A \neq B$ but Tr(A) = 2 = Tr(B) so Tr is not injective.

Surjective: Let y be an arbitrary element in \mathbb{R} such that y = Tr(A). It follows that $y = a_{11} + a_{22}$. One solution is, $A = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22} \end{bmatrix}$. So Tr is surjective.

6. Non-Injective: Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$. $A \neq B$ but Det(A) = 0 = Det(B) so Det is not injective.

Surjective: Assume $y \in \mathbb{R}$ such that, y = Det(A). By definition, a solution to y = Det(A) is

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Where $y = a_{11}a_{22} - a_{21}a_{12}$.

7. Not injective: Let $A = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 2 \\ -2 & 2 \end{bmatrix}$ $A \neq B$, but $Char(A) = x^2 - 0x + 0 = Char(B)$, so Char is not injective.

Surjective?: Take $p \in P_2$ such that $p = ax^2 + bx + c$. We want to see if every solution in P_2 has a corresponding element in $M_2(\mathbb{R})$.

$$ax^{2} + bx + c = x^{2} - Tr(A)x + Det(A)$$
$$(a-1)x^{2} + (b+Tr(A))x + c - Det(A) = 0$$

Then, to solve, we see if there are any solutions from part of the quadratic formula:

$$\sqrt{b^2 - 4ac}$$

= $\sqrt{(b + Tr(A))^2 - 4(a - 1)(c - Det(A))}$

I assume that for some A this works... I may have just overlooked a simple counter example.

8. Proof. Assume $g \circ f$ is injective. We want to show that f is injective. Assume an arbitrary $a, b \in X$ such that f(a) = f(b). Let's define y = f(a) = f(b). Now we want to show that a = b. We know that $g \circ f$ is injective, so g(f(a)) = g(f(b)). It follows that g(y) = g(y). Since $g \circ f$ in an injection, we can conclude a = b. Therefore, f is injective.