Feynman Rules - Yukawa theory

The Lagrangian density for a Yukawa theory of a spinor field and real scalar field is given by

$$\mathcal{L} = \frac{i}{2}\bar{\psi}\partial\!\!/\psi + \text{h.c.} + \frac{1}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi - M\bar{\psi}\psi - \frac{1}{2}m^{2}\varphi^{2} - g\varphi\bar{\psi}\Gamma\psi$$

where M is the mass of the fermion, m is the mass of the boson, and g is the boson-fermion coupling. Here Γ can be either I (the 4×4 identity) or γ^5 , depending on the parity of the scalar field φ . In the following α and β are the spinor indices.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M} ,

 $i\mathcal{M} = \text{sum of all connected, amputated diagrams,}$

where the diagrams are evaluated according to the following rules:

- Draw all topologically distinct diagrams at a given order;
- For each internal scalar line, attach a propagator

$$=\frac{i}{p^2-m^2+i\epsilon};$$

• For each internal spinor line, attach a propagator

$$\begin{array}{ccc} \alpha & & & \beta & & & \\ & & & \\ \hline p^* & & & & \\ \end{array} & = \frac{i(\not p + M)_{\alpha\beta}}{p^2 - M^2 + i\epsilon} \, ;$$

For each vertex, assign

$$=-ig\,\Gamma_{\beta\alpha} \text{ (either } \Gamma_{\beta\alpha}=\delta_{\beta\alpha} \text{ or } \gamma_{\beta\alpha}^5);$$

• For each external line, place the particle on the mass-shell $p^2=m^2$ and attach a wavefunction factor

"incoming scalar"
$$= 1;$$
"outgoing scalar"
$$= 1;$$
"incoming fermion"
$$= u_{\alpha}(p,s);$$
"outgoing fermion"
$$= \bar{u}_{\alpha}(p,s);$$
"incoming anti-fermion"
$$= \bar{v}_{\alpha}(p,s);$$
"outgoing anti-fermion"
$$= \bar{v}_{\alpha}(p,s);$$
"outgoing anti-fermion"
$$= \bar{v}_{\alpha}(p,s);$$

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^4 k}{(2\pi)^4}$;
- For each fermion loop, multiply the diagram by (-1);
- For each set of diagram which are only distinguished by interchanging two external fermion lines, multiply one of the diagrams by (-1);