Wielomiany I

Wielomianem stopnia k o współczynnikach $a_0, a_1, \ldots, a_k \in \mathbb{C}$, gdzie $a_k \neq 0$, nazywamy funkcje $w : \mathbb{C} \to \mathbb{C}$

$$w(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_k x^k.$$

Stopień wielomianu w oznaczamy deg w. Liczbę a_k nazywamy współczynnikiem wiodącym wielomianu w. Jeżeli $a_k=1$, to mówimy, że w jest wielomianem unormowanym lub monicznym.

Przyjmujemy, że stopień wielomianu zerowego $w_0(x) = 0$ jest równy $-\infty$.

Każdą liczbę $\alpha \in \mathbb{C}$ taką, że $w(\alpha) = 0$ nazywamy pierwiastkiem wielomianu w.

Zbiór wszystkich wielomianów o współczynnikach zespolonych oznaczamy $\mathbb{C}[x]$. Analogicznie definiujemy zbiory $\mathbb{R}[x]$, $\mathbb{Q}[x]$ i $\mathbb{Z}[x]$. Każdy z tych zbiorów jest zamknięty ze względu na operacje dodawania, odejmowania, mnożenia i składania wielomianów (zob. też zadanie 11).

Lemat. Niech $w(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{k-1}x^{k-1} + a_kx^k$, $a_j \in \mathbb{C}$, będzie wielomianem stopnia $k \ge 1$. Wówczas istnieje liczba rzeczywista M taka, że

$$|a_k x^k| > |w(x) - a_k x^k|, \quad \text{gdy } |x| > M.$$

Pierwsze twierdzenie o równości wielomianów. Załóżmy, że wielomiany

$$f(x) = a_0 + a_1 x + \dots + a_k x^k$$
 i $g(x) = b_0 + b_1 x + \dots + b_n x^n$

gdzie $a_j, b_j \in \mathbb{C}$ i $a_k, b_n \neq 0$, spełniają dla każdego $x \in \mathbb{C}$ równość f(x) = g(x). Wówczas k = n i $a_j = b_j$ dla $j = 0, 1, \dots, k$.

- 1. Znajdź wielomian dodatniego stopnia o współczynnikach całkowitych, którego pierwiastkiem jest liczba (a) $\sqrt{2}+\sqrt{3}$, (b) $\sqrt[5]{2}+\frac{1}{\sqrt[5]{2}}$
- **2.** Liczba zespolona x_0 jest pierwiastkiem wielomianu $P \in \mathbb{R}[x]$. Wykaż, że liczba $\overline{x_0}$ też jest pierwiastkiem tego wielomianu.
- **3.** Wielomian f ma współczynniki całkowite i liczby a,b są całkowite. Pokaż, że $a-b\mid f(a)-f(b).$
- **4.** Udowodnij, że wielomian $w(x) = ax^3 + bx^2 + cx + d$ (gdzie $a \neq 0$) przyjmuje dla każdej liczby całkowitej x wartość całkowitą wtedy i tylko wtedy, gdy liczby 6a, 2b, a + b + c oraz d są całkowite.
- 5. Wielomian P ma współczynniki całkowite. Udowodnij, że dla dowolnych liczb całkowitych a, b liczba $P(a + \sqrt{b}) + P(a \sqrt{b})$ jest całkowita.

- **6.** Wielomian W ma współczynniki wymierne, $p,q\in\mathbb{Q},\ q>0$ i \sqrt{q} jest liczbą niewymierną. Udowodnij, że liczba $p+\sqrt{q}$ jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy liczba $p-\sqrt{q}$ jest jego pierwiastkiem.
- 7. Wartości w(0) i w(1) wielomianu w stopnia 3 o współczynnikach całkowitych są nieparzyste. Udowodnij, że w nie ma pierwiastków całkowitych.
- 8. Zbadaj, czy istnieje wielomian w o współczynnikach całkowitych oraz liczba naturalna k takie, że w(k) = k + 1, w(k + 1) = k + 2, w(k + 2) = k.
- 9. Czy istnieje wielomian w stopnia 5 o współczynnikach całkowitych taki, że w(5)=2 i w(-5)=3?
- 10. Niech n > 1 i $n \in \mathbb{N}$. Udowodnij, że wielomian

$$w(x) = x^{2n} - x^{2n-1} + x^{2n-2} - x^{2n-3} + \dots + x^2 - x + \frac{n}{4}$$

nie ma pierwiastków rzeczywistych.

- 11. Udowodnij, że wielomian $w(x) = x^3 2x$ nie jest różnowartościowy na zbiorze liczb rzeczywistych i jest różnowartościowy na zbiorze liczb wymiernych.
- 12. Załóżmy, że f i g są wielomianami. Udowodnij, że
 - (i) funkcja f+g jest wielomianem i $\deg(f+g) \leq \max(\deg f, \deg g)$, oraz jeśli $\deg f > \deg g$, to $\deg(f+g) = \deg f$;
 - (ii) funkcja $f \cdot g$ jest wielomianem i $\deg(f \cdot g) = \deg f + \deg g$;
 - (iii) funkcja $f \circ g$ jest wielomianem i $\deg(f \circ g) = \deg f \cdot \deg g$.
- 13. Pokaż, że wielomian $w(x) = a_0 + a_1 x + \ldots + a_n x^n$ jest
 - (i) funkcją nieparzystą wtedy tylko wtedy, $a_k = 0$ dla parzystych k;
 - (ii) funkcją parzystą wtedy i tylko wtedy, gdy $a_k = 0$ dla nieparzystych k.
- 14. Udowodnij, że wielomian stopnia nieparzystego o współczynnikach rzeczywistych jest funkcją (określoną na \mathbb{R}) nieograniczoną z dołu i z góry.
- **15.** Udowodnij, że wielomian stopnia parzystego i dodatniego o współczynnikach rzeczywistych i dodatnim współczynniku wiodącym jest funkcją ograniczoną z dołu i nieograniczoną z góry.
- 16. Udowodnij, że funkcje $f(x)=\sin x,\,g(x)=\sqrt[3]{x}$ nie są wielomianami o rzeczywistych współczynnikach.

Zestaw 2.

15.9.2021

Wielomiany II

- 1. Funkcja $f(x) = (x^2 bx)^2 (ax^2 + x)^2 + 5(b+1)$ jest wielomianem stopnia 3 i f(1) = 0. Wyznacz a i b.
- **2.** Wyznacz współczynniki a i b wielomianu $w(x) = x^3 + ax^2 + bx + 1$, jeżeli dla każdej liczby rzeczywistej x zachodzi równość $w(x-1) w(x) = -3x^2 + 3x 6$.
- **3.** Wyznacz sumę współczynników wielomianu $3(x^4 3x^2 x + 5)^{2018} 2(-3x^3 18x^2 + 10x + 9)^{2017}$
- 4. Czy wielomian $x^4 + x^3 + x^2 + x + 1$ jest kwadratem innego wielomianu o współczynnikach rzeczywistych?
- **5.** Dla jakich a, b wielomian $w(x) = x^4 + ax^3 + bx^2 8x + 1$ jest kwadratem innego wielomianu?
- **6.** Znajdź współczynniki przy nieparzystych potegach x w wielomianie

$$f(x) = (1 - x + x^2 - \dots + x^{100})(1 + x + x^2 + \dots + x^{100}).$$

Twierdzenie o dzieleniu wielomianów. Dla każdej pary wielomianów f(x) i h(x), gdzie deg $h \ge 0$, istnieje dokładnie jedna para wielomianów q(x) i r(x) taka, że

$$f = h \cdot q + r$$
, i $\deg r < \deg h$.

Mówimy wówczas, że r jest resztq z dzielenia wielomianu f przez wielomian h. Jeżeli r = 0 (czyli $f = h \cdot q$), to mówimy, że h jest dzielnikiem f lub f jest podzielny przez h.

Twierdzenie Bézouta. Reszta z dzielenia wielomianu f przez dwumian x-c jest równa f(c). Inaczej mówiąc

$$f(x) = (x - c)q(x) + f(c)$$

dla pewnego wielomianu q takiego, że $\deg q = \deg f - 1$.

Wniosek z tw. Bézouta. Liczba c jest pierwiastkiem niezerowego wielomianu f wtedy i tylko wtedy, gdy dwumian x - c jest dzielnikiem wielomianu f.

- 7. Dla jakich wartośći a, b wielomian $x^3 + ax^2 + bx 6$ jest podzielny przez $x^2 3x + 2$?
- 8. Liczby c_1, c_2, \ldots, c_k są różnymi pierwiastkami niezerowego wielomianu f. Udowodnij, że wielomian $(x-c_1)(x-c_2)\cdot\ldots\cdot(x-c_k)$ jest dzielnikiem wielomianu f i deg $f\geqslant k$
- 9. Wielomian f daje resztę -1 przy dzieleniu przez x-1, resztę 2 przy dzieleniu przez x-2 i resztę 11 przy dzieleniu przez x-3. Wyznacz resztę z dzielenia f przez (x-1)(x-2)(x-3).

- 10. Wyznacz resztę z dzielenia wielomianu $x^{2018} 2017x^{1009} + x^2 5x + 2018$ przez $x^2 1$.
- 11. Liczba 1 jest pierwiastkiem wielomianu w. Pokaż, że wielomian $v(x) = w(x^n)$ jest podzielny przez wielomian $x^{n-1} + x^{n-2} + \ldots + x + 1$.
- 12. Dane są wielomiany f, g i liczba c takie, że dla każdego x

$$(x-c)f(x) = (x-c)g(x).$$

Udowodnij, że f = g.

- 13. Dla jakich wartości $a, b \in \mathbb{R}$ wielomian $ax^4 + bx^3 + 1$ jest podzielny przez $(x-1)^2$?
- **14.** Dla jakich $n \in \mathbb{N}$ wielomian (a) $(x-1)^n x^n 1$, (b) $(x+1)^n x^n 1$ jest podzielny przez $x^2 + x + 1$?
- **15.** Dla jakich liczb całkowitych a wielomian (x-a)(x-10)+1 jest iloczynem dwóch wielomianów stopnia 1 o współczynnikach całkowitych?
- 16. Wyznacz wszystkie wielomiany $f \in \mathbb{R}[x]$ takie, że dla każdego $x \in \mathbb{R}$

$$x \cdot f(x-1) = (x+1) \cdot f(1).$$

17. Wyznacz wszystkie wielomiany $f \in \mathbb{R}[x]$ takie, że dla każdego $x \in \mathbb{R}$

$$(x+1) \cdot f(x) = (x-10) \cdot f(x+1).$$

Zestaw 3.

29.9.2021

Wielomiany III

Tw. Niech $x_0, x_1, \ldots, x_n \in \mathbb{C}$ i $x_i \neq x_j$ dla $i \neq j, y_1, y_2, \ldots, y_n \in \mathbb{C}$. Wówczas istnieje dokładnie jeden wielomian p stopnia nie większego od n taki, że $p(x_j) = y_j$ dla $j = 0, 1, \ldots, n$.

Wniosek (Drugie tw. o równości wielomianów) Jeżeli wielomiany p,q stopnia nie większego niż n przyjmują te same wartości dla n+1 różnych argumentów, to p=q.

Schemat Hornera. Dla danego wielomianu $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ $(a_n \neq 0)$ i liczby c istnieje dokłądnie jeden wielomian $g(x) = b_{n-1} x^{n-1} + \ldots + b_1 x + b_0$ taki, że f(x) = (x-c)g(x) + f(c). Współczynniki b_k i wartość f(c) można sprawnie wyznaczyć za pomocą algorytmu zwanego $schematem\ Hornera$:

- 1. Udowodnij, że nie istnieje wielomian p taki, że $p(x) = \sin x$ dla każdego $x \in [0, \pi]$.
- 2. Definiujemy wielomiany

$$\begin{pmatrix} x \\ 0 \end{pmatrix} = 1, \qquad \begin{pmatrix} x \\ k \end{pmatrix} = \frac{x(x-1)\dots(x-k+1)}{k!} \quad \text{dla } k = 1, 2, 3 \dots$$

(a) Pokaż, że dla każdego $x \in \mathbb{R}$ i $k = 0, 1, 2, \dots$

$$\binom{x+1}{k+1} = \binom{x}{k} + \binom{x}{k+1}.$$

- (b) Pokaż, że $\binom{x}{k}$ jest liczbą całkowitą dla $x \in \mathbb{Z}$.
- (c) Niech w będzie wielomianem stopnia n. Pokaż, że $w(x) \in \mathbb{Z}$ dla każdego $x \in \mathbb{Z}$ wtedy i tylko wtedy, gdy istnieją liczby całkowite a_0, a_1, \ldots, a_n takie, że

$$w(x) = \sum_{k=0}^{n} a_k \binom{x}{k}.$$

- **3.** Niech p będzie wielomianem stopnia n takim, że $p(k) = \frac{k}{k+1}$ dla $k = 0, 1, 2, \ldots, n$. Oblicz p(n+1).
- 4. Wyznacz resztę z dzielenia wielomianu $x^{2021} 1$ przez wielomian $(x^2 + 1)(x^2 + x + 1)$.

- 5. Dane są różne liczby całkowite a i b. Pokaż, że wielomian $(x-a)^2(x-b)^2+1$ nie jest iloczynem dwóch wielomianów o współczynnikach całkowitych dodatniego stopnia.
- **6.** Liczby całkowite a_1, a_2, \ldots, a_n są różne. Pokaż, że wielomian

$$(x-a_1)(x-a_2)\dots(x-a_n)-1$$

nie jest iloczynem dwóch wielomianów o współczynnikach całkowitych dodatniego stopnia.

- 7. Stosując schemat Hornera oblicz iloraz i resztę z dzielenia wielomianu
 - (a) $f(x) = 3x^4 x^3 + 2x^2 + x 1$ przez x 1,
 - (b) $g(x) = 4x^5 + 3x^3 2x + 1$ przez x + 2,
 - (c) $h(x) = \frac{1}{2}x^4 3x^2 + \frac{2}{3}x 2$ przez $x + \frac{1}{3}$.
- 8. Zapisz wielomian f(x) jako sumę potęg $(x-c)^k$. Zastosuj schemat Hornera:
 - (a) $f(x) = x^4 8x^3 + 5x^2 10x 9, c = 2,$
 - (b) $f(x) = x^5, c = 1,$
 - (c) $f(x) = x^3 + x^2 + x + 1$, c = 3.
- **9.** Zapisz wielomian $3x^4 4x^2 + 7x 12$ jako sumę $\sum_{k=0}^{4} c_k \binom{x}{k}$.
- 10. Wyznacz najmniejszą wartość wielomianu $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = x^3(x^3 + 1)(x^3 + 2)(x^3 + 3).$$

Zestaw 4.

20.10.2021

Wielomiany IV

Algorytm dzielenia wielomianów z resztą: Dla danych wielomianów w i q, gdzie $\deg w \geqslant \deg q$, szukamy wielomianów v i r takich, że $w = p \cdot v + r$ i $\deg(r) < \deg(q)$:

Niech
$$w_0(x) = w(x), v_0(x) = 0.$$

Jeżeli mamy już wyznaczone wielomiany w_k i v_k , to v_{k+1} otrzymujemy dodając do v_k iloraz najwyższych stopniem wyrazów wielomianów w_k i p: $v_{k+1}(x) = v_k(x) + c_k x^{j_k}$. Następnie wyznaczamy $w_{k+1}(x) = w_k(x) - c_k x^{j_k} \cdot p(x)$. Wówczas $\deg(w_{k+1}) - \deg(w_k)$.

Powtarzamy tak długo, aż $deg(w_k) < deg(q)$. Wtedy $v = v_k$ i $r = w_k$.

Wyznaczanie pierwiastków wymiernych wielomianów o współczynnikach całkowitych:

Niech $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_n \neq 0$ będzie wielomianem o współczynnikach całkowitych.

I twierdzenie o pierwiastkach wymiernych. Jeżeli liczba wymierna $\frac{p}{q}$, gdzie $p, q \in \mathbb{Z}$ są względnie pierwsze, jest pierwiastkiem wielomianu f, to $p \mid a_0$ oraz $q \mid a_n$.

Wniosek. Każdy wymierny pierwiastek unormowanego wielomianu o współczynnikach całkowitych jest liczbą całkowitą.

II twierdzenie o pierwiastkach wymiernych. Jeżeli liczba wymierna $\frac{p}{q}$, gdzie $p,q\in\mathbb{Z}$ są względnie pierwsze, jest pierwiastkiem wielomianu f i b jest liczbą całkowitą taką, że $f(b)\neq 0$, to $p-bq\mid f(b)$.

- 1. Udowodnij, że iloraz z dzielenia wielomianu o współczynnikach całkowitych przez dwumian x-c, gdzie c jest liczbą całkowitą, jest wielomianem o współczynnikach całkowitych.
- 2. Wykonaj dzielenie wielomianu z resztą:
 - (a) $x^3 + 3x^2 2x 1$ przez $x^2 + 2x$,
 - (b) $x^6 + 1 \text{ przez } x^2 + x 2$
 - (c) $3x^7 x^6 + 2x^5 + 2x^4 3x^3 + x^2 4x 2$ przez $x^2 + 1$
 - (d) x^8 przez $x^4 x^3 x^2 x + 1$
- ${\bf 3.}\,$ Wyznacz wszystkie pierwiastki wymierne wielomianów:
 - (a) $x^3 6x^2 + 11x 6$.
 - (b) $x^4 + 4x^3 25x^2 16x + 84$.
 - (c) $11x^4 + 9x^3 35x^2 27x + 6$
 - (d) $15x^4 19x^3 + 16x^2 x 3$,

- (e) $18x^6 + 27x^5 5x^4 18x^2 27x + 5$,
- (f) $9x^4 48x^3 + 10x^2 + 24x + 5$,
- (g) $x^5 2x^4 13x^3 + 26x^2 + 36x 72$.
- 4. Udowodnij, że liczby $\sqrt{2} + \sqrt{3}$ i $\sqrt[3]{3} + \frac{1}{\sqrt[3]{3}}$ są niewymierne.
- 5. Wielomian o współczynnikach całkowitych przyjmuje wartości nieparzyste dla dwóch kolejnych liczb całkowitych. Udowodnij, że f nie ma pierwiastków całkowitych.
- **6.** Wielomian o współczynnikach całkowitych przyjmuje wartość 1 dla trzech różnych liczb całkowitych. Udowodnij, że nie ma on pierwiastków całkowitych.
- 7. Wielomian $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, $a_n \neq 0$, ma współczynniki całkowite. Załóżmy, że liczby a_n , a_0 i f(1) są nieparzyste. Udowodnij, że f nie ma pierwiastków wymiernych.
- **8.** Liczby 1 i 2 są pierwiastkami wielomianu f o współczynnikach całkowitych. Udowodnij, że pewien współczynnik wielomianu f jest mniejszy od -1.
- **9.** Niech $k, p \in \mathbb{N}$ i wielomian $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0$ ma współczynniki całkowite. Udowodnij, że jeżeli p+1 nie dzieli żadnej z liczb $f(k), f(k+1), \ldots, f(k+p)$, to wielomian f nie posiada pierwiastków wymiernych.
- 10. Udowodnij, że dla każdej liczby całkowitej k liczba $\sqrt[3]{3} + \frac{k}{\sqrt[3]{3}}$ jest niewymierna.
- 11. Niech $n \ge 2$. Udowodnij, że wielomian

$$p(x) = \frac{x^n}{n!} + \frac{x^{n-1}}{(n-1)!} + \dots + \frac{x^2}{2!} + \frac{x}{1!} + 1$$

nie ma pierwiastków wymiernych.

Wielomiany V

Zasadnicze twierdzenie algebry. Każdy wielomian o wspólczynnikach zesolonych dodatniego stopnia ma pierwiastek zespolony.

(Dowód tego twierdzenia pomijamy – na razie ...)

Wniosek 1. Każdy wielomian $p \in \mathbb{C}[z]$, $p(z) = a_n z^n + \ldots + a_1 z + a_0$ stopnia n > 1, ma dokładnie n pierwiastków zespolonych $z_0, z_1, \ldots, z_{n-1}$ (niekoniecznie różnych) i $p(z) = a_n(z - z_0)(z - z_1) \ldots (z - z_{n-1})$.

Wniosek 2. Każdy wielomian z $\mathbb{R}[x]$ dodatniego stopnia jest iloczynem wielomianów z $\mathbb{R}[x]$ stopnia 1 i wielomianów z $\mathbb{R}[x]$ stopnia 2 nie mających pierwiastków rzeczywistych.

Wniosek 3. Każdy wielomian o współczynnikach rzeczywistych nieparzystego stopnia ma pierwiastek rzeczywisty.

Twierdzenie (Wzory Viete'a). Liczby x_1, x_2, \ldots, x_n są wszystkimi zespolonymi pierwiastkami wielomianu $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, gdzie $a_i \in \mathbb{C}$ i $a_n \neq 0$, wtedy i tylko wtedy, gdy spełnione są równości

$$\sum_{i=1}^{n} x_{i} = -\frac{a_{n-1}}{a_{n}},$$

$$\sum_{1 \leq i < j \leq n} x_{i}x_{j} = \frac{a_{n-2}}{a_{n}},$$

$$\sum_{1 \leq i < j < k \leq n} x_{i}x_{j}x_{k} = -\frac{a_{n-3}}{a_{n}},$$

$$\dots$$

$$\sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} x_{i_{1}}x_{i_{2}} \dots x_{i_{k}} = (-1)^{k} \frac{a_{n-k}}{a_{n}},$$

$$\dots$$

$$x_{1}x_{2} \dots x_{n} = (-1)^{n} \frac{a_{0}}{a_{n}}.$$

Uwaga: W powyższym twierdzeniu nie zakładamy, że pierwiastki x_1, x_2, \ldots, x_n są różne.

- 1. Wielomian $w(x) = x^3 + px + q$ ma trzy pierwiastki rzeczywiste x_1, x_2, x_3 , przy czym $x_1 = x_2$ i $x_3 = x_1 6$. Wyznacz p i q.
- 2. Liczby 2 i 3 są pierwiastkami wielomianu $2x^3 + kx^2 13x + m$. Wyznacz współczynniki k i m oraz trzeci pierwiastek tego wielomianu.

3. Niech x_1, x_2, x_3 oznaczają pierwiastki wielomianu $ax^3 + bx^2 + cx + d$. Oblicz wartości wyrażeń

(a)
$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$$
,
(b) $x_1^2 + x_2^2 + x_3^2$,
(c) $(x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$,
(d) $(x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$,

(b)
$$x_1^2 + x_2^2 + x_3^3$$
,
(c) $x_1^3 + x_2^3 + x_3^3$,
(e) $\frac{1}{x_1 x_2} + \frac{1}{x_2 x_3} + \frac{1}{x_3 x_1}$.

- **4.** Liczby x_1, x_2, x_3 są pierwiastkami wielomianu $x^3 + 6x^2 + 11x 6$. Znajdź wielomian stopnia 3, którego pierwiastkami są liczby (a) x_1x_2, x_2x_3, x_3x_1 , (b) $x_1 + x_2, x_2 + x_3, x_3 + x_1$
- **5.** Znajdź pierwiastki wielomianu $x^4 10x^3 + 32x^2 34x + 7$, wiedząc, że suma pewnych dwóch jego pierwiastków jest równa 4.
- **6.** Wielomian $p(x) = x^5 10x^4 + ax^3 + bx^2 + cx 32$ ma pięć pierwiastków dodatnich. Wyznacz współczynniki a, b, c.
- 7. Wielomian $w(x) = ax^3 + bx^2 + cx + d \ (a \neq 0)$ ma trzy pierwiastki rzeczywiste. Udowodnij, że $b^2 \geqslant ac$ i $c^2 \geqslant bd$. Czy jest prawdziwe twierdzenie odwrotne?
- 8. Liczby x,y,z,u,v,w spełniają warunki $x+y+z=u+v+w,\quad xyz=uvw,\quad 0< u\leqslant x\leqslant y\leqslant z\leqslant w,\quad u\leqslant v\leqslant w.$ Udowodnij, że u=x,v=y,w=z.
- 9. Liczby dodatnie x,y,z spełniają warunki xyz>1 i $x+y+z<\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Udowodnij, że dokładniej jedna z liczb x,y,z jest mniejsza od 1.
- 10. Rozwiąż układ równań

$$\begin{cases} x + y + z = 2 \\ x^2 + y^2 + z^2 = 14 \\ x^3 + y^3 + z^3 = 20 \end{cases}$$

- **11.** Niech $a, b, c \in \mathbb{R}$ i załóżmy, że a+b+c>0, ab+bc+ca>0, abc>0. Udowodnij, że a>0, b>0, c>0.
- 12. Liczby x, y, z, a spełniają równości

$$x + y + z = a$$
, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{a}$.

Udowodnij, że jedna z liczb x, y, z jest równa a

13. Dane są liczby wymierne p,q,r takie, że każda z liczb

$$p+q+r$$
, $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}$, pqr

jest całkowita. Udowodnij, że liczby p, q, r są całkowite.

14. Dla danych liczb zespolonych a, b, c niech $A_k = a^k + b^k + c^k$. Zakładając, że $A_1 = 0$, udowodnij równości:

$$A_3 = 3abc$$
, $2A_4 = (A_2)^2$, $\frac{A_5}{5} = \frac{A_2}{2} \cdot \frac{A_3}{3}$, $\frac{A_7}{7} = \frac{A_2}{2} \cdot \frac{A_5}{5}$.

Zestaw 6.

10.11.2021

Wielomiany VI

Definicja. Mówimy, że wielomian $p \in \mathbb{K}[x]$ (gdzie $\mathbb{K} = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$) jest rozkładalny w $\mathbb{K}[x]$ (nad \mathbb{K}), jeżeli istnieją wielomiany $q, r \in \mathbb{K}[x]$ dodatnich stopni takie, że $p = q \cdot r$.

Kryterium Eisensteina nierozkładalności wielomianów w $\mathbb{Z}[x]$. Dany jest wielomian $f \in \mathbb{Z}[x]$, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ i $a_n \neq 0$. Załóżmy, że istnieje liczba pierwsza p taka, że

$$p \nmid a_n$$
, $p \mid a_k \text{ dla } k = 0, 1, \dots, n-1$, oraz $p^2 \nmid a_0$.

Wówczas wielomian f nie jest rozkładalny w $\mathbb{Z}[x]$.

- 1. Opisz wielomiany nierozkładalne w $\mathbb{R}[x]$ i $\mathbb{C}[x]$.
- **2.** Rozłóż wielomiany na czynniki w $\mathbb{Z}[x]$:

(a)
$$(x+1)^3 + (x-1)^3$$
,

(i)
$$x^4 - 3x^3 + 2x^2 + 9x - 15$$
.

(b)
$$x^6 + 1$$
,

(i)
$$x^5 + x^4 + x^3 - 1$$

(c)
$$x^9 + x^4 - x - 1$$
,

(k)
$$x^6 + 2x^4 + 2x^2 + 1$$

(d)
$$x^4 + 4$$
,

(1)
$$x^8 + x^4 + 1$$
,

(e)
$$8x^3 - 12x^2 + 6x - 1$$
,

(m)
$$x^10 + x^5 + 1$$
.

(f)
$$8x^3 - 5x^2 - 24x + 15$$
,

(n)
$$(x^2 + x + 1)^2 + 3(x^2 + x + 1) + 2$$

(g)
$$x^5 + x^3 - x^2 - 1$$
,

(o)
$$2x^5 - 5x^4 + 10x^3 - 10x^2 + 5x - 1$$

(h)
$$x^4 + 3x^3 + 4x^2 - 6x - 12$$
,

(p)
$$(x^5 + x^4 + x^3 + x^2 + x + 1)^2 - x^5$$

- 3. Niech $p \in \mathbb{Z}[x]$ i deg p > 1. Udowodnij, że wielomian f(x) = p(x + p(x)) jest rozkładalny w $\mathbb{Z}[x]$.
- 4. Udowodnij, że wielomian $2x^{17}-18x^{12}+24x^9+243x^6-30x^3-6$ jest nierozkładalny w $\mathbb{Z}[x]$.
- 5. Czy wielomian $P(x) = 2 + \sum_{k=0}^{n} 2^{n-k} x^k$ jest rozkładalny w $\mathbb{Z}[x]$?
- **6.** Udowodnij, że wielomian $x^6 + x^3 + 1$ nie jest rozkładalny w $\mathbb{Z}[x]$.
- 7. Niech $n \in \mathbb{N}$, $n \ge 2$ i $P(x) = x^{n-1} + x^{n-2} + \ldots + x + 1$. Pokaż, że wielomian P jest rozkładalny w $\mathbb{Z}[x]$ wtedy i tylko wtedy, gdy n jest liczbą złożoną.
 - Wskazówka: Dla (\Leftarrow) pokaż, że P(x+1) nie jest rozkładalny, stosując kryterium Eisensteina.
- 8. Udowodnij, że dla każdej liczby naturalnej n istnieje nieskończenie wiele **dwumianów** stopnia n o współczynnikach całkowitych nierozkładalnych w $\mathbb{Z}[x]$

- 9. Udowodnij, że wielomian $p(x) = x^{101} + 101x^{100} + 102$ nie jest rozkładalny w $\mathbb{Z}[x]$.
- **10.** Niech $n \in \mathbb{N}$. Udowodnij, że wielomian $x^{2^n} + 1$ jest nierozkładalny w $\mathbb{Z}[x]$.
- 11. Czy wielomian $x^{105} 9$ jest rozkładalny w $\mathbb{Z}[x]$.
- **12.** Niech $a \in \mathbb{Z}$ i $5 \nmid a$. Udowodnij, że wielomian $P(x) = x^5 x + a$ jest nierozkładalny nad \mathbb{Z} .
- 13. Niech $n \in \mathbb{N}$ i n > 1. Udowodnij, że wielomian $P(x) = x^n + 5x^{n-1} + 3$ jest nierozkładalny nad \mathbb{Z} .
- **14.** [Lemat Gaussa] Udowodnij, że jeśli wielomian $p \in \mathbb{Z}[x]$ jest rozkładalny w $\mathbb{Q}[x]$, to jest też rozkładalny w $\mathbb{Z}[x]$.

Wielomainy VII - Powtórzenie

Poniższe zadania proszę traktować jedynie jako uzupełnienie zestawów 1 - 6.

- 1. Uzadadnij, że zbiór wartości wielomianu $p \in \mathbb{C}[x]$ dodatniego stopnia jest nieskończony.
- 2. Czy istnieje wielomian $P \in \mathbb{Z}[x]$ i trzy różne liczby całkowite a,b,c takie, że

$$P(a) = b, \quad P(b) = c, \quad P(c) = a?$$

- 3. Wielomina $p(x) = x^5 + ax^4 + bx^3 + cx^2 + x 3$ po podzieleniu przez wielomian $x^3 + 2x^2 x 2$ daje resztę $2x^2 + x 3$. Wyznacz współczynniki a, b, c.
- 4. Wyznacz rzeczywiste rozwiązania układu równań

$$\begin{cases} x + y + z = 1\\ x^3 + y^3 + z^3 + xyz = x^4 + y^4 + z^4 + 1 \end{cases}$$

- **5.** Dla jakich wartości współczynnika $a \in \mathbb{R}$ pierwiastki zespolone x_1, x_2, x_3 wielomianu $x^3 + ax^2 3x 19$ spełniają warunek $x_1^3 + x_2^3 + x_3^3 = 3$?
- **6.** Dla danych liczb a, b, c wyznacz wielomian stopnia 3, którego pierwiastki są sześcianami pierwiastków wielomianu $x^3 + ax^2 + bx + c$.
- 7. Udowodnij, że wielomian $ax^3 + bx^2 + cx + d$, gdzie $a, b, c, d \in \mathbb{Z}$, $2 \nmid ad$ i $2 \mid bc$, nie może mnieć trzech pierwiastków wymiernych.
- 8. Wielomian $p(x) = ax^4 + bx^3 + cx^2 + dx + e$, $a \neq 0$, ma współczynniki całkowite i $7 \mid f(n)$ dla każdego $n \in \mathbb{Z}$. Udowodnij, że każda z liczb a, b, c, d, e jest podzielna przez 7.
- 9. Dany jest wielomian $f \in \mathbb{Z}[x]$ taki, że dla pewnej liczby całkowitej k każda z liczbf(k), f(k+1), f(k+2) jest podzielna przez 3. Udowodnij, że $3 \mid f(n)$ dla każdego $n \in \mathbb{Z}$.
- **10.** Dany jest wielomian $p \in \mathbb{Z}[x]$ stopnia 7, który dla 7 różnych całkowitych argumentów przyjmuje wartość 1 lub -1. Udowodnij, że wielomian p nie jest rozkładalny nad \mathbb{Z} .
- 11. Wyznacz wszystkie wielomiany $p \in \mathbb{C}[x]$ takie, że $p(p(x)) = p(x)^m$ dla każdego $x \in \mathbb{C}$ i pewnego $m \in \mathbb{N}$.
- 12. Rozłóż na czynniki wielomiany
 - (a) $9x^3 15x^2 + 4x + 4$,
 - (b) $x^6 + 2x^5 + x^4 x^2 + 2x 1$,
 - (c) $x^6 5x^2 2x + 2$.

Układy równań nieliniowych II

Rozwiąż układy równań:

1.
$$\begin{cases} x - y = 6 \\ x^3 - y^3 = 126 \end{cases}$$

2.
$$\begin{cases} xy + 24 = \frac{x^3}{y} \\ xy - 6 = \frac{y^3}{x} \end{cases}$$

3.
$$\begin{cases} (x-y)(y-1) = 6\\ (x+2)(y+2) = 24 \end{cases}$$

4.
$$\begin{cases} 7x^3 + 11xy^2 = 6\\ x^3 + x^2y + y^3 = 1 \end{cases}$$

5.
$$\begin{cases} (x^2 + x + 1)(y^2 + y + 1) = 3\\ (1 - x)(1 - y) = 6 \end{cases}$$

6.
$$\begin{cases} \frac{xy}{x+2y} + \frac{x+2y}{xy} = 2\\ \frac{xy}{x-2y} - 6\frac{x-2y}{xy} = 1 \end{cases}$$

7.
$$\begin{cases} x^3 + x^3 y^3 + y^3 = 17 \\ xy + x + y = 5 \end{cases}$$

8.
$$\begin{cases} x^3 + y^3 = 1 \\ x^4 + y^4 = 1 \end{cases}$$

9.
$$\begin{cases} (1+x)(1+x^2)(1+x^4) = 1+y^7\\ (1+y)(1+y^2)(1+y^4) = 1+x^7 \end{cases}$$

10.
$$\begin{cases} \frac{x^2}{y} + \frac{y^2}{x} = \frac{9}{2} \\ \frac{1}{x} + \frac{1}{y} = \frac{3}{2} \end{cases}$$

11.
$$\begin{cases} x^2 + y^2 = x + y \\ x^4 + y^4 = \frac{(x+y)^2}{2} \end{cases}$$

12.
$$\begin{cases} \frac{x+y}{xyz} = 3\\ \frac{y+z}{xyz} = 4\\ \frac{z+x}{xyz} = 5 \end{cases}$$

Kresy zbiorów

Definicje. Niech $A \subset \mathbb{R}$.

- Zbiór A jest ograniczony z góry wtedy i tylko wtedy, gdy istnieje liczba $b \in \mathbb{R}$ taka, że dla każdego $a \in A$ zachodzi nierówność $a \leq b$. Każdą taką liczbę b nazywamy ograniczeniem górnym zbioru A.
- Liczba $b \in \mathbb{R}$ jest kresem górnym (supremum) zbioru A wtedy i tylko wtedy, gdy spełnione są następujące warunki:
 - (i) b jest ograniczeniem górnym zbioru A;
 - (ii) jeżeli c jest ograniczeniem górnym zbioru A, to $b \leq c$.

Kres górny zbioru A oznaczamy sup A.

Analogicznie definujemy zbiór ograniczony z dołu, ograniczenie dolne i kres dolny (in-fimum) zbioru A, oznaczany inf A.

Jeżeli niepusty zbiór A nie jest ograniczony z góry, piszemy sup $A=+\infty$, jeżeli A nie jest ograniczony z dołu, to piszemy inf $A=-\infty$.

Przyjmujemy, że inf $\emptyset = +\infty$ i sup $\emptyset = -\infty$.

Jeżeli $a = \sup A$ i $a \in A$, to mówimy, że a jest elementem maksymalnym zbioru A i stosujemy oznaczenie $a = \max A$. Podobnie definiujemy element minimalny $\min A$.

Stw. Niech $A \subset \mathbb{R}$. Wówczas

(i) Liczba $b\in\mathbb{R}$ jest kresem górnym zbioru Awtedy i tylko wtedy, gdy bjest ograniczeniem górnym zbioru Aoraz

$$\forall_{\varepsilon > 0} \; \exists_{a \in A} \; b - \varepsilon < a.$$

(ii) Liczba $b\in\mathbb{R}$ jest kresem dolnym zbioru Awtedy i tylko wtedy, gdy bjest ograniczeniem dolnym zbioru Aoraz

$$\forall_{\varepsilon > 0} \; \exists_{a \in A} \; a < b + \varepsilon.$$

Aksjomat ciągłości (Dedekinda). Każdy niepusty i ograniczony z góry zbiór $A \subset \mathbb{R}$ ma kres górny.

 $\mathbf{Stw.}$ Każdy niepusty i ograniczony z dołu zbiór $A\subset\mathbb{R}$ ma kres dolny.

 $\mathbf{Stw.}$ Zbi
ór liczb naturalnych $\mathbb N$ jest nieograniczony z góry.

Stw. (istnienie pierwiastków z liczb nieujemnych). Jeżeli $a\geqslant 0$ i $n\in\mathbb{N}$, to istnieje dokładnie jedna liczba $b\geqslant 0$ taka, że $b^n=a$.

Tw. (Zasada Archimedesa) Dla każdej liczby rzeczywistej a istnieje liczba naturnalna n > a.

Tw. (o gęstości \mathbb{Q} w \mathbb{R}) Dla dowolnych liczb rzeczywistych a,b,a < b. istnieje liczba $x \in \mathbb{Q}$ taka, że a < x < b.

Definicja. Jeżeli zbiory $A, B \subset \mathbb{R}$ są niepuste, $\lambda \in \mathbb{R}$, to przyjmujemy, że

$$A+B=\{a+b:a\in A,b\in B\},\quad A-B=\{a-b:a\in A,b\in B\},\quad \lambda\cdot A=\{\lambda a:a\in A\}$$
 or
az $-A=(-1)\cdot A.$

- 1. Znajdź kresy zbiorów i zbadaj, czy zbiory mają elementy maksymalne i minimalne.
 - (a) $\left\{ (-1)^n + \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N} \right\};$ (d) $\left\{ \frac{x-1}{x+1} \in \mathbb{R} : x > -1 \right\};$
 - (b) $\left\{\frac{n^2+2n-3}{n+1} \in \mathbb{R} : n \in \mathbb{N}\right\};$ (e) $\left\{\frac{x}{1+x^2} \in \mathbb{R} : x \in \mathbb{R}\right\};$
 - (c) $\left\{ x + \frac{2}{x} \in \mathbb{R} : x > 0 \right\};$ (f) $\left\{ x \frac{1}{x} : 1 \leqslant x \leqslant 2022 \right\};$
- **2.** Niech $A, B \subset \mathbb{R}$ i dla dowolnych $a \in A$ i $b \in B$ zachodzi $a \leq b$. Udowodnij, że sup $A \leq \inf B$. Czy prawdziwe jest twierdzenie odwrotne?
- **3.** Udowodnij, że dla każdej liczby a < 0 i liczby nieparzystej n istnieje dokładnie jedna liczba b < 0 taka, że $b^n = a$.
- 4. Niech $x \in \mathbb{R} \setminus \mathbb{Q}$ i $a,b \in \mathbb{R},~a < b$. Udowodnij, że istnieje liczba wymierna q taka, że a < qx < b.
- 5. Wyznacz kresy zbiorów
 - (a) $\left\{ \frac{n-k}{n+k} \in \mathbb{R} : n, k \in \mathbb{N} \right\};$
 - (b) $\left\{ \frac{(-1)^n m}{n+m} \right\}$
 - (c) $\left\{ \left| \frac{1}{n} \frac{1}{m} \right| \in \mathbb{R} : m, n \in \mathbb{N}, n \neq m \right\}$;
 - (d) $\left\{ \frac{1}{k} + \frac{1}{l} \frac{1}{m} \in \mathbb{R} : k, l, m \in \mathbb{N} \right\}$;
- 6. Znajdź kresy zbiorów
 - (a) $\left\{ \frac{nm}{2n^2 + m^2} : n, m \in \mathbb{N} \right\}$ (b) $\left\{ \frac{xy}{2x^2 + y^2} : x, y > 0 \right\}$
- 7. Znajdź kresy zbiorów
 - (a) $\{xy : x + y = 4 \text{ i } 0 \le x, y \le 4\}$
 - (b) $\{xyz : x + y + z = 6 \text{ i } 0 \le x, y, z \le 6\}$
- 8. Niech A oznacza zbiór wszystkich liczb niewymiernych z przedziału (0,1). Udowodnij, że A+A=(0,2).

- 9. Niech $A \subset \mathbb{R}$ i $\lambda \in \mathbb{R}$, $b = \inf A$, $c = \sup A$. Wyznacz kresy zbioru $\lambda \cdot A$.
- 10. Zbiory $A,B\subset\mathbb{R}$ są niepuste. Udowodnij równości:
 - (i) $\sup(-A) = -\inf A$,
 - (ii) $\sup(A \cup B) = \max(\sup A, \sup B)$,
 - (iii) $\sup(A+B) = \sup A + \sup B$,
 - (iv) $\sup(A B) = \sup A \inf B$,
 - (v) $\sup(A \cdot B) = \max(\sup A \cdot \sup B, \sup A \cdot \inf B, \inf A \cdot \sup B, \inf A \cdot \inf B)$.
- 11. Wyznacz kresy zbioru $\{a^2 ab : a, b \in (0, 1)\}$.
- 12. Wyznacz kresy zbiorów

$$A = \left\{ \sin x \cdot \cos y : 0 \leqslant x, y \leqslant \frac{\pi}{2} \right\},$$

$$B = \left\{ \sin(x+y) + \cos(x-y) : 0 \leqslant x, y \leqslant \frac{\pi}{2} \right\}.$$

- **13.** Wyznacz kres górny zbioru $\left\{ \frac{x(1+\sqrt{y})}{x^2+y^2} : 0 < x \leqslant y < 1 \right\}$.
- 14. Wyznacz kres dolny zbioru

$$\left\{\frac{1}{\sqrt[n]{m}} + \frac{1}{\sqrt[m]{n}} : n, m \in \mathbb{N}\right\}.$$

15. Liczba x jest niewymierna. Udowodnij, że dla dowolnych liczb $a,b\in\mathbb{R}$ takich, że 0 < a < b < 1istnieje liczba naturalna ntaka, że $a < nx - \lfloor nx \rfloor < b$.

Zestaw 10.

19.1.2022

Granica ciągu I

Definicja granicy ciągu. Liczba g jest granicą ciągu liczbowego $(a_n)_n$, jeżeli dla każdej liczby rzeczywistej $\varepsilon>0$ istnieje liczba naturalna N taka, że dla wszystkich n>N spełniona jest nierówność

$$|a_n - g| < \varepsilon.$$

Piszemy wówczas $\lim_{n\to\infty} a_n = g$, $a_n \xrightarrow{n} g$ lub po prostu $a_n\to g$.

W zapisie z użyciem kwantyfikatorów, liczba g jest granicą ciągu $(a_n)_n$ wtedy i tylko wtedy, gdy

 $\forall_{\varepsilon>0} \,\exists_{N\in\mathbb{N}} \,\forall_{n>N} \,|a_n-g| < \varepsilon.$

Jeżeli liczba g jest granicą ciągu $(a_n)_n$, to mówimy, że ciąg $(a_n)_n$ jest zbieżny do g. Ciąg, który nie ma granicy, nazywamy ciągiem rozbieżnym.

Stw. 1 (jednoznaczność granicy). Ciąg liczbowy (a_n) ma nie więcej niż jedną granicę.

Stw. 2. Jeżeli $\lim_{n\to\infty} a_n = a$ i $\lim_{n\to\infty} b_n = b$, to:

- (i) $\lim_{n\to\infty} (ca_n) = ca$ dla dowolnego $c \in \mathbb{R}$.
- (ii) $\lim_{n \to \infty} (a_n + b_n) = a + b,$
- (iii) $\lim_{n \to \infty} (a_n b_n) = a b.$
- 1. Wykaż, korzystając z definicji granicy ciągu, że
 - (a) $\lim_{n \to \infty} \frac{1}{n} = 0,$
 - (b) $\lim_{n \to \infty} \frac{2n+1}{n+1} = 2$,
 - (c) $\lim_{n \to \infty} q^n = 0$, gdy |q| < 1,
 - (d) $\lim_{n\to\infty} n^k q^n = 0$, gdy $k \in \mathbb{N}$, |q| < 1.
- **2.** Zbadaj zbieżność ciągu $a_n = \sqrt{n+1} \sqrt{n}$.
- 3. Wykaż, że dla każdego $n \in \mathbb{N}$ i a > 1 prawdziwa jest nierówność

$$\sqrt[n]{a}-1<\frac{a-1}{n}$$
.

Następnie udowodnij, że $\lim_{n\to\infty} \sqrt[n]{a} = 1$.

4. Wykaż, że każdy ciąg zbieżny jest ograniczony.

- 5. Wykaż, że poniższe ciągi są rozbieżne:
 - (a) $a_n = n$,
 - (b) $b_n = (-1)^n$,
 - (c) $c_n = \frac{q^n}{n^k}$, gdzie |q| > 1, $k \in \mathbb{N}$,
 - (d) $a_n = \sum_{k=1}^n \frac{1}{k}$,
 - (e) $b_n = \frac{n^n}{n!}$.
- **6.** Załóżmy, że $\lim_{n\to\infty} a_n=g$. Co można powiedzieć o zbieżności (i granicach) ciągów $(a_{n+1}-a_n)_n$ oraz $(a_{n+1}+a_n)_n$?
- 7. Wykaż, że $\lim_{n\to\infty}a_n=g$ wtedy i tylko wtedy, gdy $\lim_{n\to\infty}|a_n-g|=0.$
- 8. Załóżmy, że $a_n \to a$. Wykaż, że $|a_n| \to |a|$. Podaj przykład, że nie zachodzi implikacja w drugą stronę.
- **9.** Ciąg $(a_n)_n$ jest zbieżny i $\lim_{n\to\infty} a_n > a$. Wykaż, że istnieje $N \in \mathbb{N}$ takie, że $a_n > a$ dla n > N.
- **10.** Ciągi $(a_n)_n$ i $(b_n)_n$ są zbieżne i $\lim_{n\to\infty} a_n > \lim_{n\to\infty} b_n$. Wykaż, że istnieje $N\in\mathbb{N}$ takie, że $a_n > b_n$ dla n > N.
- 11. Ciągi $(a_n)_n$ i $(b_n)_n$ są zbieżne i istnieje $N \in \mathbb{N}$ takie, że $a_n \leqslant b_n$ dla n > N. Wykaż, że

$$\lim_{n\to\infty} a_n \leqslant \lim_{n\to\infty} b_n.$$

Podaj przykład ciągów $(a_n)_n$ i $(b_n)_n$ takich, że $a_n < b_n$ dla wszystkich n oraz $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

12. Powiemy, że ciąg liczb zespolonych $(z_n)_n$ jest zbieżny do liczby zespolonej z wtedy i tylko wtedy, gdy $\lim_{n\to\infty}|z_n-z|=0$

Wykaż, że $\lim_{n\to\infty}z_n=z$ wtedy i tylko wtedy, gd
y $\lim_{n\to\infty}{\rm Re}z_n={\rm Re}z$ i $\lim_{n\to\infty}{\rm Im}z_n={\rm Im}z.$

13. Zbadaj zbieżność ciągu $z_n = \left(\frac{1+i}{2}\right)^n$.

Zestaw 11.

16.2.2022

Granica ciągu II

Stw. 1. Każdy ciąg zbieżny jest ograniczony. (zob. zad. 4 w zestawie 10)

Tw. o trzech ciągach. Dane są trzy ciagi liczbowe $(a_n)_n$, $(b_n)_n$ i $(c_n)_n$, przy czym $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=g$ oraz istnieje liczba N>0 taka, że dla każdego n>N spełniona jest nierówność

$$a_n \leqslant b_n \leqslant c_n$$
.

Wówczas ciąg $(b_n)_n$ jest zbiezny i $\lim_{n\to\infty} b_n = g$.

Stw. 2. Ciągi $(a_n)_n$ i $(b_n)_n$ są zbieżne i $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Wówczas ciąg $(a_nb_n)_n$ też jest zbieżny i $\lim_{n\to\infty} a_nb_n = ab$.

Stw. 3. Ciąg $(a_n)_n$ jest zbieżny, $a_n \neq 0$ i $\lim_{n \to \infty} a_n = g \neq 0$. Wówczas ciąg $\left(\frac{1}{a_n}\right)_n$ też jest zbieżny i $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{g}$.

Stw. 4. Niech $k \in \mathbb{N}$, ciąg $(a_n)_n$ jest zbieżny i $\lim_{n \to \infty} a_n = g$. Jeżeli $2 \mid k$ i $a_n \ge 0$ dla każdego n, lub $2 \nmid k$ to ciąg $(\sqrt[k]{a_n})_n$ jest zbieżny i $\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{g}$.

- **1.** Załóżmy, że $a_n \to g$. Wykaż, że ciąg $b_n = \frac{\lfloor na_n \rfloor}{n}$ też jest zbieżny do g.
- **2.** Wykaż, że $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- **3.** Ciąg $(a_n)_n$ jest ograniczony, a ciąg $(b_n)_n$ jest zbieżny do 0. Wykaż, że $\lim_{n\to\infty}a_nb_n=0.$
- 4. Oblicz granice ciągów:

(a)
$$\lim_{n \to \infty} \frac{5n-2}{2n+8},$$

(f)
$$\lim_{n\to\infty} \left(\sqrt{n^2+2n}-\sqrt{n^2-2n}\right)$$
,

(b)
$$\lim_{n \to \infty} \frac{(4n-3)^2}{3n^2 + 7n - 6},$$

(g)
$$\lim_{n \to \infty} \frac{1+3+5+\ldots+(2n-1)}{n^2}$$
,

(c)
$$\lim_{n \to \infty} \frac{4 \cdot 3^{n+1} - 2 \cdot 2^{2n}}{5 \cdot 3^n - 4^{n+2}}$$
,

(h)
$$\lim_{n \to \infty} \frac{1}{n^k} \binom{n+k}{n}, k \in \mathbb{N},$$

(i) $\lim_{n \to \infty} \frac{(n+1)! + (n-1)!}{(n+1)! - (n-1)!},$

(d)
$$\lim_{n \to \infty} \frac{n^2 + 2^n - 7 \cdot 3^n}{3^n + 2}$$
,

(e) $\lim_{n\to\infty} \frac{n^5 7^n + n^7 5^n}{n^7 7^n + n^5 5^n}$

(j)
$$\lim_{n \to \infty} \frac{\sqrt{n^2 + \sqrt{n}} - \sqrt{n^2 - \sqrt{n}}}{\sqrt{n+1} - \sqrt{n}}.$$

- 5. Ciąg $(a_n)_n$ jst zbieżny do g i $(n_k)_k$ jest rosnącym ciągiem liczb naturalnych. Wykaż, że ciąg $(a_{n_k})_k$ jest zbieżny do g.
- 6. Wykaż, że ciągi są zbieżne i znajdź ich granice.
 - (a) $\sqrt[n]{2 \cdot 3^n + 7 \cdot 8^n}$,

(e) $\sqrt[n+2]{n-2}, n \ge 2,$

(b) $\sqrt[n]{n+3^n}$,

(f) $\sqrt[n^2]{5^n-4}$,

(c) $\sqrt[n]{2n + \frac{(-1)^n}{n}}$,

(g) $\sin(\sqrt{n+1}) - \sin(\sqrt{n-1})$,

(d) $\sqrt[n^2]{n}$,

- (h) $\frac{n}{n^2 + 1} \sin(n!)$.
- 7. Wykaż, że dla dostatecznie dużych n wyrazy ciągów $(a_n)_n$ i $(b_n)_n$ są dodatnie:

$$a_n = 5^{n-1} - 7 \cdot 2^{2n} - 100, \qquad b_n = n^5 8^n - n^8 5^n.$$

Oblicz granice $\lim_{n\to\infty} \sqrt[n]{a_n}$ i $\lim_{n\to\infty} \sqrt[n]{b_n}$.

8. Oblicz granice:

(a)
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{k}{n^2 + k} \right)$$
,

(b)
$$\lim_{n \to \infty} \left(n \sum_{k=1}^{n} \frac{1}{n^2 + k} \right).$$

9. Niech a > 0. Oblicz granice:

(a)
$$\lim_{n \to \infty} \left(\frac{a}{n}\right)^n$$
, (b) $\lim_{n \to \infty} \frac{a^n}{1 + a^n}$, (c) $\lim_{n \to \infty} \frac{a^n}{1 + a^{2n}}$, (d) $\lim_{n \to \infty} \frac{a^n}{n!}$.

- **10.** Załóżmy, że $a_n > 0$ i $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$. Wykaż, że $\lim_{n \to \infty} a_n = 0$.
- 11. Załóżmy, że $a_n \geqslant 0$ i $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$. Wykaż, że $\lim_{n \to \infty} a_n = 0$.
- 12. Niech $(F_n)_n$ to ciąg Fibonacciego. Oblicz granice

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} \quad \text{i} \quad \lim_{n \to \infty} \sqrt[n]{F_n}.$$

13. Dla $n \in \mathbb{N}$ liczby naturalne a_n i b_n spełniają równość

$$a_n + b_n \sqrt{3} = (2 + \sqrt{3})^n$$
.

Oblicz $\lim_{n\to\infty} \frac{a_n}{b_n}$.

14. Ciag $(a_n)_n$ jest zbieżny do g. Wykaż, że

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = g.$$

15. Ciąg $(a_n)_n$ ma wyrazy dodatnie i jest zbieżny do g. Wykaż, że

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \dots a_n} = g.$$

Zestaw 12.

9.3.2022

Granica ciagu III (powtórzenie)

- 1. Udowodnij, że liczba rzeczywista a jest kresem górnym (dolnym) zbioru $A \subset \mathbb{R}$ wtedy i tylko wtedy, gdy a jest ograniczeniem górnym(dolnym) zbioru A i istnieje ciąg $a_n \in A$ taki, że $\lim_{n \to \infty} a_n = a$.
- 2. Wyznacz kresy zbiorów

(a)
$$A = \{ab + bc + ca : a, b, c \in \mathbb{R} \text{ i } a^2 + b^2 + c^2 = 1\},\$$

(b)
$$B = \left\{ \min\left(x, \frac{1}{y}, y + \frac{1}{x}\right) : x, y > 0 \right\},$$

(c)
$$C = \left\{ \frac{1}{1+x} + \frac{1}{1+y} : x, y > 0 \text{ i } x + y = 1 \right\},$$

(d)
$$D = \left\{ \frac{1-x}{1+x} + \frac{1-y}{1+y} + \frac{1-z}{1+z} : x, y, z > 0 \text{ i } x+y+z = 1 \right\},$$

(e)
$$E = \{\sqrt{n} - \lfloor \sqrt{n} \rfloor : n \in \mathbb{N}\}.$$

3. Wyznacz kresy zbioru wartości wyrażeń

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b},$$

gdzie a, b, c sa długościami boków trójkata.

4. Oblicz granice ciągów:

(a)
$$\frac{3n^4 - 10n^3 - 2n^2 + 7}{9n^4 - 5n^2 + 19n}$$

(h)
$$\sqrt[n+1]{\left(1+\frac{1}{n}\right)^n}$$
,

(b)
$$\frac{n^3 - 8n^2 + 12n}{10n^3 + 2^n - 5}$$

(i)
$$\left(1 + \frac{1}{n^2}\right)^n$$
,

(c)
$$\frac{2\sqrt{n} - 3\sqrt[3]{n}}{3\sqrt{n} - 2\sqrt[3]{n}}$$
,

(j)
$$\left(\frac{n}{n+1}\right)^{n^2}$$
,

(d)
$$\sqrt[3]{n^3 + 2n^2 + 4} - \sqrt[3]{n^3 + 1}$$
,

$$(k) \frac{n!}{2^{n^2}},$$

(e)
$$n^3 \left(\sqrt{n^2 + \sqrt{n^4 + 1}} - n\sqrt{2} \right)$$
,

(1)
$$\binom{2n}{n}^{-1}$$
,

(f)
$$\sqrt[n]{3^n + 6 \cdot 5^n + 8 \cdot 10^n}$$
,

(m)
$$\frac{2^n n!}{n^n}$$
.

(g)
$$\sqrt[n]{7^n - 3 \cdot 5^n - 12}$$
,

(m)
$$\frac{2^n n!}{n^n}$$
.

5. Dany jest ciąg liczb dodatnich $(a_n)_{n=1}^{\infty}$ taki, że $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = g$. Wykaż, że $\lim_{n\to\infty} \sqrt[n]{a_n} = g.$

6. Korzystając z poprzedniego zadania, oblicz granice ciągów:

(a)
$$\frac{1}{\sqrt[n]{n!}}$$
, (b) $\sqrt[n]{\binom{2n}{n}}$, (c) $\sqrt[n+2]{(n-3)^57^n - n^{10}3^{n+1}}$,

7. Dana jest liczba naturalna k oraz ciąg $(a_n)_{n=1}^{\infty}$ o wyrazach ze zbioru $\{0,1,\ldots,k\}$. Niech

$$b_n = \sqrt[n]{a_1^n + a_2^n + \ldots + a_n^n}, \quad \text{dla } n \in \mathbb{N}.$$

Załóżmy, że w ciągu (b_n) wystepuje nieskończenie wiele wyrazów całkowitych. Wykaż, że wszystkie wyrazy ciągu (b_n) sa całkowite.

Wskazówka: Skorzystaj z tw. o trzech ciągach.

Granica ciągu IV

Tw. 1. Niech $(a_n)_n$ będzie ciągiem liczb rzeczywistych, który jest

- (i) niemalejący i ograniczony z góry lub
- (ii) nierosnący i ograniczony z dołu.

Wówczas ciąg $(a_n)_n$ jest zbieżny.

Lemat 1. Dla $n \in \mathbb{N}, n \geq 2$

$$\left(1 + \frac{1}{n}\right)^n = 2 + \sum_{k=2}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right).$$

Lemat 2. (z pierwszej klasy) Jeśli $n \in \mathbb{N}$, to

$$2 \le \left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} \quad \text{oraz} \quad \left(1 + \frac{1}{n}\right)^n < 3 \cdot \frac{n+1}{n+2} < 3.$$

Tw. 2. (Stała Eulera) Ciąg $a_n = \left(1 + \frac{1}{n}\right)^n$ jest rosnący i ograniczony z góry, więc zbieżny. Jego granicę, czyli liczbę

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

nazywamy stałą Eulera.

Tw. 3.
$$e = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{k!}$$
.

Lemat 3. Dla każdego $n \in \mathbb{N}$ istnieje liczba $\theta_n \in (0,1)$ taka, że $e = \sum_{k=0}^n \frac{1}{k!} + \frac{\theta_n}{nn!}$.

Tw. 4. Liczba e jest niewymierna.

1. Wykaż zbieżność ciągów

(a)
$$a_n = \sum_{k=1}^n \frac{1}{k^2}$$
, (b) $b_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k}\right)$, (c) $c_n = \frac{(2n)!!}{(2n+1)!!}$.

2. Niech $x_1 > 0$ i $x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$. Wykaż, że ciąg $(x_n)_n$ jest zbieżny i znajdź jego granice.

3. Dany jest ciąg $(a_n)_n$ taki, że $a_1 > 0$ i

$$a_{n+1} = \frac{1}{a_1 + a_2 + \ldots + a_n}$$
 dla $n = 1, 2, 3 \ldots$

Wykaż, że ciąg $(a_n)_n$ jest zbieżny i znajdź jego granicę.

4. Niech $a_1 > b_1 > 0$ i

$$a_{n+1} = \frac{a_n + b_n}{2}$$
, $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$, dla $n = 1, 2, 3, \dots$

Wykaż, że ciągi $(a_n)_n$ i $(b_n)_n$ są zbieżne i wyznacz ich granice.

5. Niech $a_1 > b_1 > 0$ i

$$a_{n+1} = \frac{a_n + b_n}{2}, \quad b_{n+1} = \sqrt{a_n b_n}, \quad \text{dla } n = 1, 2, 3, \dots$$

Wykaż, że ciągi $(a_n)_n$ i $(b_n)_n$ są zbieżne do tej samej granicy (zwanej srednią arytmetyczno – geometryczną liczb a_1, b_1).

6. Ciąg $(a_n)_n$ spełnia warunki $0 < a_n < 1$ i $a_n(1 - a_{n+1}) > \frac{1}{4}$ dla $n \ge 1$. Wykaż, że ciąg ten jest zbieżny i znajdź jego granicę.

7. Niech $b_1=1,\ b_2=2$ i $b_{n+2}=\sqrt{b_n}+\sqrt{b_{n+1}}$ dla $n\in\mathbb{N}$. Wykaż, że ciąg ten jest zbieżny i znajdź jego granicę.

8. Wykaż, że
$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$
 dla $n \in \mathbb{N}$

9. Oblicz granice

(a)
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{n+1}$$
, (b) $\lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$, (c) $\lim_{n \to \infty} \frac{\sqrt[n]{n!}}{n}$, (d) $\lim_{n \to \infty} n(\sqrt[n]{e} - 1)$.

10. Wykaż, że $\lim_{n \to \infty} (2\sqrt[n]{a} - 1)^n = a^2$ dla $a \ge 1$, oraz $\lim_{n \to \infty} \frac{(2\sqrt[n]{n} - 1)^n}{n^2} = 1$.

11. Oblicz $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)(k+1)!}$.

12. Niech $x_n > 0$ i $\lim_{n \to \infty} x_n = 0$. Wykaż, że $\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1$. Wskazówka: $\sin x < x < \operatorname{tg} x$ dla $x \in (0, \frac{\pi}{2})$.

13. Niech $(\theta_n)_n$ to ciąg zdefiniowany w lemacie 3. Wykaż, że $\lim_{n\to\infty}\theta_n=1$.

14. Oblicz granicę $\lim_{n\to\infty} n \sin(2\pi e n!)$.

15. Ciąg $(a_n)_n$ jest ograniczony z góry i $a_{n+1} - a_n > -\frac{1}{n^2}$ dla każdego n. Wykaż, że ciąg $(a_n)_n$ jest zbieżny.

16. Niech $a_n = \frac{n+1}{2^{n+1}} \sum_{k=1}^n \frac{2^k}{k}$. Wykaż, że ciąg $(a_n)_n$ jest zbieżny i znajdź jego granicę.

Granica ciągu V – granice niewłaściwe

Definicja. Ciąg liczb rzeczywistych $(a_n)_n$ jest rozbieżny $do + \infty$ $(-\infty)$ wtedy i tylko wtedy, gdy

$$\forall_{M>0} \exists_{N\in\mathbb{N}} \forall_{n>N} \ a_n > M \quad (a_n < -M).$$

Piszemy wówczas $\lim_{n\to\infty} a_n = +\infty$ lub $a_n \to +\infty$ $(\lim_{n\to\infty} a_n = -\infty$ lub $a_n \to -\infty$).

Definicja. Mówimy, że ciąg $(a_n)_n$ ma granicę, jeżeli jest on zbieżny (wtedy ma granicę skończoną) lub rozbieżny do $\pm \infty$ (wtedy ma granicę nieskończoną).

Stw. Załóżmy, że $a_n \to +\infty$. Wówczas

- jeśli ciąg $(b_n)_n$ jest ograniczony z dołu, to $a_n + b_n \to +\infty$;
- jeśli $b_n \to b \in \mathbb{R}$, to $a_n + b_n \to +\infty$;
- jeśli istnieje stała c > 0 taka, że $b_n > c$ dla prawie wszystkich n, to $a_n b_n \to +\infty$;
- jeśli $b_n \to b \in (0, +\infty)$, to $a_n b_n \to +\infty$;
- jeśli istnieje stała c < 0 taka, że $b_n < c$ dla prawie wszystkich n, to $a_n b_n \to -\infty$;
- jeśli $b_n \to b \in (-\infty, 0)$, to $a_n b_n \to -\infty$;
- jeśli $b_n \to +\infty$, to $a_n + b_n \to +\infty$, $a_n b_n \to +\infty$;

Stw. Jeśli $a_n \to 0$ i $a_n > 0$ dla prawie wszystkich n, to $\frac{1}{a_n} \to +\infty$.

Stw. Jeżeli $a_n \to +\infty$ i $b_n \geqslant a_n$ dla prawie wszystkich n, to $b_n \to +\infty$.

Wyrażenia nieoznaczone:

- $\infty \infty$, np. (n+1) n, $n^2 n$, $\sqrt{n+1} \sqrt{n}$;
- $0 \cdot \infty$, np. $\frac{1}{n} \cdot n$, $\frac{1}{2^n} \cdot n^4$, $\frac{1}{2^n} \cdot n!$,
- $\frac{0}{0}$, np. $\frac{(\frac{1}{2})^n}{(\frac{1}{3})^n}$, $\frac{\frac{1}{n}}{(\frac{1}{2})^n}$,
- $\frac{\infty}{\infty}$, np. $\frac{n}{n+1}$, $\frac{2^n}{n}$, $\frac{n}{2^n}$
- 1^{∞} , np. $(\sqrt[n]{2})^n$, $(\sqrt[n]{2})^{n^2}$, $\left(1 + \frac{1}{n}\right)^n$,
- ∞^0 , np. $n^{1/n}$, $(2^n)^{1/n}$.

1. Oblicz granice lub wykaż, że nie istnieją:

(a)
$$\lim_{n \to \infty} \frac{n^4 - 5n^3 + 17n^2 - 9n - 2}{12n^3 - 5n^2 + 10n - 7}$$
,

(d)
$$\lim_{n \to \infty} \frac{\sqrt[3]{n+1} - \sqrt[3]{n}}{\sqrt{n+1} - \sqrt{n}}$$
,

(b)
$$\lim_{n \to \infty} \frac{2^{2n} - 3^n}{3^n - 2^n}$$
,

(e)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k},$$

(c)
$$\lim_{n\to\infty} \frac{5^n + n^3 - 5}{n^4 + 2^n \cdot n}$$
,

(f)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{\sqrt{k}},$$

- 2. Suma nieskończonego ciągu geometrycznego. W zależności od $q \in \mathbb{R} \setminus \{0\}$ wyznacz granicę $\lim_{n \to \infty} \sum_{k=0}^{n} q^k$.
- **3.** Niech $a_n \to +\infty$, $b_n = \frac{1}{n} (a_1 + \ldots + a_n)$, $c_n = \sqrt[n]{a_1 \ldots a_n}$ (gdy $a_k > 0$). Udowodnij, że $b_n \to +\infty$ i $c_n \to +\infty$.
- **4.** Dany jest ciąg $(a_n)_n$ taki, że $a_n > 0$ i $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = +\infty$. Udowodnij, że $\lim_{n \to \infty} \sqrt[n]{a_n} = +\infty$.
- 5. Znajdź granice

(a)
$$\lim_{n\to\infty} \sqrt[n]{n!}$$
,

(b)
$$\lim_{n \to \infty} \sqrt[n]{(2n)! - 2n!}$$
,

- **6.** Zbadaj zbieżność ciągów $\sqrt[n!]{n}$, $\left(1+\frac{1}{n}\right)^{n^2}$, $\left(1+\frac{1}{2^n}\right)^n$, $\left(1-\frac{1}{n}\right)^{2^n}$.
- 7. Wykaż, że poniższe granice istnieją i zbadaj, czy są one równe $0 \text{ lub } +\infty$.

(a)
$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{k}\right)$$
,

(c)
$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{2^k} \right),$$

(b)
$$\lim_{n \to \infty} \prod_{k=2}^{n} \left(1 - \frac{1}{k}\right),$$

(d)
$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 - \frac{1}{2^k} \right),$$

8. Niech p_n oznacza n-tą liczbę pierwszą. Wykaż, że

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 - \frac{1}{p_n} \right)^{-1} = +\infty.$$

Granica ciągu VI

Twierdzenie Bolzano - Weierstrassa. Z każdego ciągu ograniczonego liczb rzeczywistych można wybrać podciąg zbieżny.

Tw. (Warunek Cauchy'ego zbieżności ciągu) Ciąg liczb rzeczywistych $(a_n)_n$ jest zbieżny wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{m,n>N} |a_n - a_m| < \varepsilon.$$

1. Korzystając z warunku Cauchy'ego, zbadaj zbieżność ciągów:

(a)
$$a_n = \sum_{k=1}^n \frac{1}{\sqrt{k}},$$

(b)
$$b_n = \sum_{k=1}^n \frac{(-1)^k}{k}$$
,

(c)
$$c_n = \sum_{k=1}^n \frac{(-1)^{\lfloor k/2 \rfloor}}{k}$$
,

2. Dany jest nierosnący ciąg liczb dodatnich $(a_n)_n$ taki, że $\lim_{n\to\infty} a_n = 0$. Wykaż, że ciąg

$$b_n = \sum_{k=1}^{n} (-1)^k a_k$$

jest zbieżny.

3. Niech $(a_n)_n$ to ciąg liczb rzeczywistych. Załóżmy, że istnieje stała $\lambda \in (0,1)$ taka, że dla dowolnego $n \in \mathbb{N}$

$$|a_{n+2} - a_{n+1}| \le \lambda |a_{n+1} - a_n|.$$

Wykaż, że ciąg $(a_n)_n$ jest zbieżny.

4. Niech $k \in \mathbb{N}$ i k > 1. Ciąg liczb rzeczywistych $(a_n)_n$ spełnia warunki

$$\lim_{n \to \infty} (a_{n+1} - a_n) = 0,$$

oraz

$$\forall_{\varepsilon>0} \exists_{N\in\mathbb{N}} \forall_{n,m>N} |a_{kn} - a_{km}| < \varepsilon.$$

Wykaż, że ciąg $(a_n)_n$ jest zbieżny.

Podaj przykłady, że z żadnego z tych warunków osobno nie wynika zbieżność ciągu.

- 5. Granica górna i dolna ciągu. Dla danego ciągu liczb rzeczywistych $(a_n)_n$ niech $G \subset \mathbb{R} \cup \{-\infty, +\infty\}$ oznacza zbiór granic wszystkich podciągów ciągu $(a_n)_n$. Wówczas
 - $\sup G$ nazywamy granicą górną ciągu $(a_n)_n$ i oznaczamy $\limsup a_n$,
 - inf G nazywamy granicą dolną ciągu $(a_n)_n$ i oznaczamy $\liminf_{n\to\infty} a_n$.

Udowodnij, że każdy ciąg $(a_n)_n$ zawiera podciągi zbieżne do swej granicy górnej i dolnej.

- **6.** Udowodnij, że ciąg ograniczony $(a_n)_n$ jest rozbieżny wtedy i tylko wtedy, gdy zawiera podciągi zbieżne do różnych granic.
- 7. Ciąg liczb dodatnich $(a_n)_n$ spełnia dla dowolnych $n, m \in \mathbb{N}$ warunek

$$a_{m+n} \leqslant a_m + a_n$$
.

Wykaż, że ciąg $\left(\frac{a_n}{n}\right)_n$ jest zbieżny.

8. Dany jest ciąg liczb rzeczywistych $(a_n)_n$ taki, że ciąg $b_n = \sum_{k=1}^n a_k$ jest zbieżny. Niech $f: \mathbb{N} \to \mathbb{N}$ będzie bijekcją taką, że dla każdego $k \in \mathbb{N}$ zachodzi $|f(k) - k| \leq 2019$. Wykaż, że ciąg

$$c_n = \sum_{k=1}^n a_{f(k)}$$

jest zbieżny.

- 9. Wykaż, że każdy ciąg zbieżny zawiera wyraz najmniejszy lub największy.
- 10. Wykaż, że z każdego ograniczonego ciągu liczb zespolonych można wybrać podciąg zbieżny.
- 11. Udowodnij **Lemat Sierpińskiego:** Z każdego ciągu ograniczonego liczb rzeczywistych można wybrać podciąg monotoniczny.

Uwaga: Lemat Sierpińskiego można udowodnić, korzystając z tw. Bolzano – Weierstrassa. Ale można również najpierw udowodnić Lemat Sierpińskiego i za jego pomocą udowodnić tw. Bolzano – Weierstrassa.

Granica ciągu – zadania powtórzeniowe

1. Zbadaj zbieżność ciągu określonego w następujący sposób:

$$x_0 > 1$$
 oraz $x_{n+1} = \frac{2x_n}{1 + x_n}$.

2. Niech $a_1 = 1$, $a_{n+1} = \frac{2a_n + 1}{a_n + 1}$, $b_1 = 2$, $b_{n+1} = \frac{2b_n + 1}{b_n + 1}$. Udowodnij, że

$$\sup\{a_n:n\in\mathbb{N}\}=\inf\{b_n:n\in\mathbb{N}\}.$$

3. Dany jest ciąg $(a_n)_n$ taki, że $\lim_{n\to\infty}(a_{n+1}-a_n)=a$. Udowodnij, że

$$\lim_{n \to \infty} \frac{a_n}{n} = a.$$

4. Niech $x \in \mathbb{R}$. Wyznacz granicę

$$\lim_{n \to \infty} \frac{\lfloor x \rfloor + \lfloor 2x \rfloor + \ldots + \lfloor nx \rfloor}{n^2}.$$

- **5.** Udowodnij, że ciąg $(\sin n)_{n=1}^{\infty}$ nie ma granicy.
- 6. Oblicz granice ciągów

(a)
$$\left(\frac{3n-1}{3n+1}\right)^{n+4}$$
, (b) $\left(\frac{n^2+3}{n^2+1}\right)^{2n^2+5}$, (c) $\left(\frac{n^2+1}{n^2}\right)^{\binom{n}{2}}$.

- 7. Niech $k \in \mathbb{N}$. Udowodnij, że $\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k$ i $\lim_{n \to \infty} \left(1 \frac{k}{n} \right)^n = \frac{1}{e^k}$.
- 8. Oblicz granicę $\lim_{n\to\infty} \frac{\sqrt[n]{e} + \sqrt[n]{e^2} + \ldots + \sqrt[n]{e^n}}{n}$.
- 9. Ciąg $(a_n)_n$ jest zadany rekurencyjnie: $a_1=1,\ a_n=n(a_{n-1}+1)$. Oblicz $\lim_{n\to\infty}\prod\frac{a_k+1}{a_k}.$
- **10.** Ciąg $(x_n)_{n=0}^{\infty}$ jest zdefiniowany następująco $x_0 = 5$, $x_1 = 0$, $x_{n+2} = \frac{x_{n+1} + x_n}{6}$. Oblicz $\lim_{n \to \infty} \sum_{k=1}^{n} x_k$.

11. Dany jest ciąg $(a_n)_{n=1}^{\infty}$ liczb dodatnich taki, że $\lim_{n\to\infty}\sum_{k=1}^n a_k = +\infty$. Udowodnij, że

$$\lim_{n \to \infty} \prod_{k=1}^{n} (1 + a_k) = +\infty.$$

12. Zbadaj zbieżność ciągów

(a)
$$a_n = \sum_{k=1}^n \frac{k}{\sqrt{k+1}}$$
, (c) $c_n = \prod_{k=1}^n \left(1 + \frac{k}{3^k}\right)$,

(b)
$$b_n = \sum_{k=1}^n \frac{\sqrt{k+1} - \sqrt{k}}{k}$$
 (d) $d_n = \prod_{k=1}^n \left(1 + \frac{(-1)^k}{2^k}\right)$.

 $Wskaz \acute{o}wki$: (c): $\frac{k}{3^k} < \frac{1}{2^k}$ dla dostatecznie dużych k, (d): zbadaj ciągi $(d_{2n})_n$, $(d_{2n-1})_n$ i $(\frac{d_n}{d_{n+1}})_n$.

13. Oblicz granice

(a)
$$\lim_{n \to \infty} \left(\frac{n(n+1)}{(n+2)^2} \right)^{3n-2}$$
,

(b)
$$\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 - 1} \right)^{n^2}$$
,

(c)
$$\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 - 1} \right)^n,$$

(d)
$$\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 - 1} \right)^{n^3}$$

14. Zbadaj zbieżność ciągów zadanych przez warunki

(a)
$$a_0 = 3$$
, $a_{n+1} = \sqrt{3a_n + 4}$,

(b)
$$b_0 = 2$$
, $b_{n+1} = \frac{2b_n}{1+b_n}$,

(c)
$$c_0 = 5$$
, $c_{n+1} = \frac{(c_n - 2)^2}{5}$.

15. Zbadaj zbieżność ciągów

(a)
$$a_n = \sum_{k=1}^n \frac{1}{\sqrt[3]{(k+1)^2}},$$

(b)
$$b_n = \sum_{k=1}^n \left(\sqrt[3]{2k+1} - \sqrt[3]{2k} \right)$$

(c)
$$b_n = \sum_{k=1}^{n} (-1)^k \left(\sqrt[3]{2k+1} - \sqrt[3]{2k} \right)$$

(d)
$$b_n = \sum_{k=1}^n \left(\sqrt[3]{2k+1} - \sqrt[3]{2k}\right)^3$$

16. Znajdź granice

$$\lim_{n \to \infty} \frac{1}{n!} \binom{2n}{n}, \qquad \lim_{n \to \infty} \frac{\left(\sqrt[n+1]{(n+1)!}\right)^n}{n!}.$$

17. Niech $a \in (0,2)$. Ciąg $(x_n)_n$ spełnia zależność rekurencyjną

$$x_{n+2} = ax_{n+1} + (1-a)x_n.$$

Wyznacz granicę ciągu $(x_n)_n$ w zależności od x_0, x_1, a .

18. Wyznacz wszystkie liczby $a \ge 0$ takie, że ciąg

$$x_0 = 0,$$
 $x_{n+1} = a + x_n^2$

jest zbieżny.

19. Niech a, b będą dowolnymi liczbami rzeczywistymi,

$$a_1 = a$$
, $a_2 = b$, $a_{n+1} = \frac{n-1}{n}a_n + \frac{1}{n}a_{n-1}$ dla $n \ge 2$.

Oblicz $\lim_{n\to\infty} a_n$.

20. Ciąg $(a_n)_n$ jest określony w następujący sposób:

$$0 < a_1 < 1,$$
 $a_{n+1} = a_n(1 - a_n).$

Udowodnij, że $\lim_{n\to\infty} na_n = 1$.

Granica ciągu – zadania dodatkowe

- 1. Oblicz granice
 - (a) $\lim_{n \to \infty} \left(\frac{n(n+1)}{(n+2)^2} \right)^{3n-2}$,
 - (b) $\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 1} \right)^{n^2}$,
 - (c) $\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 1} \right)^n,$
 - (d) $\lim_{n \to \infty} \left(\frac{3n^2}{3n^2 1} \right)^{n^3}$
 - (e) $\lim_{n \to \infty} \left(\frac{n^2 + 1}{n^2 + 3} \right)^{2n^2 + 5}$
- 2. Zbadaj zbieżność ciągów zadanych przez warunki
 - (a) $a_0 = 3$, $a_{n+1} = \sqrt{3a_n + 4}$,
 - (b) $b_0 = 2$, $b_{n+1} = \frac{2b_n}{1+b_n}$,
 - (c) $c_0 = 5$, $c_{n+1} = \frac{(c_n 2)^2}{5}$.
- 3. Zbadaj zbieżność ciągów

(a)
$$a_n = \sum_{k=1}^n \frac{1}{\sqrt[3]{(k+1)^2}},$$

(b)
$$b_n = \sum_{k=1}^n \left(\sqrt[3]{2k+1} - \sqrt[3]{2k} \right)$$

(c)
$$b_n = \sum_{k=1}^{n} (-1)^k \left(\sqrt[3]{2k+1} - \sqrt[3]{2k} \right)$$

(d)
$$b_n = \sum_{k=1}^n \left(\sqrt[3]{2k+1} - \sqrt[3]{2k}\right)^3$$

4. Oblicz granicę

$$\lim_{n \to \infty} \frac{1}{n!} \binom{2n}{n}.$$

5. Oblicz granicę

$$\lim_{n\to\infty}\frac{10\cdot 11\cdot\ldots\cdot (n+9)}{1\cdot 3\cdot\ldots\cdot (2n-1)}.$$

6. Oblicz granicę

$$\lim_{n\to\infty}\frac{\Big(\sqrt[n+1]{(n+1)!}\Big)^n}{n!}.$$

7. Niech $a \in (0,2)$. Ciąg $(x_n)_n$ spełnia zależność rekurencyjną

$$x_{n+2} = ax_{n+1} + (1-a)x_n.$$

Wyznacz granicę ciągu $(x_n)_n$ w zależności od x_0, x_1, a .

8. Wyznacz wszystkie liczby $a\geqslant 0$ takie, że ciąg

$$x_0 = 0,$$
 $x_{n+1} = a + x_n^2$

jest zbieżny.

9. Ciąg $(a_n)_n$ jest określony w następujący sposób:

$$0 < a_1 < 1,$$
 $a_{n+1} = a_n(1 - a_n).$

Udowodnij, że $\lim_{n\to\infty} na_n = 1$.

Zestaw 18.

15.6.2022

Twierdzenie Stolza

Poniższe twierdzenie bywa przydatne do wyznaczania granic typu $\frac{0}{0}$ i $\frac{\infty}{\infty}$.

Twierdzenie Stolza. Ciągi liczb rzeczywistych $(a_n)_n$ i $(b_n)_n$ spełniają warunki

- (i) ciąg $(b_n)_n$ jest ściśle monotoniczny i $b_n \neq 0$ dla każdego n,
- (ii) istnieje granica $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n}=g,$
- (iii) $\lim_{n \to \infty} b_n = \pm \infty$ lub $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$.

Wówczas $\lim_{n \to \infty} \frac{a_n}{b_n} = g$.

- 1. Oblicz granice
 - (a) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{k},$
 - (b) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}},$
 - (c) $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \sum_{k=n}^{2n} \frac{1}{\sqrt{k}},$
- **2.** Niech $p \in \mathbb{N}$. Oblicz granice
 - (a) $\lim_{n \to \infty} \frac{1^p + 2^p + \dots + n^p}{n^{p+1}}$,
 - (b) $\lim_{n \to \infty} \left(\frac{1^p + 2^p + \dots + n^p}{n^p} \frac{n}{p+1} \right)$,
 - (c) $\lim_{n \to \infty} \frac{1}{n^{p+1}} \sum_{k=0}^{n} \frac{(p+k)!}{k!}$.
- **3.** Dane są ciągi zbieżne $(a_n)_n$ i $(b_n)_n$:

$$a_n = \prod_{k=1}^n \left(1 + \frac{1}{2^k} \right), \qquad b_n = \prod_{k=1}^n \left(1 - \frac{1}{2^k} \right), \qquad n \in \mathbb{N},$$

oraz $a = \lim_{n \to \infty} a_n$, $b = \lim_{n \to \infty} b_n$. Wykaż, że istnieje skończona granica

$$\lim_{n\to\infty}\frac{a-a_n}{b_n-b}.$$

4. Wykaż, że jeśli $\lim_{n\to\infty} a_n = g, b_n > 0$ dla $n\in\mathbb{N}$, oraz

$$\lim_{n\to\infty}(b_1+b_2+\ldots+b_n)=+\infty,$$

to

$$\lim_{n \to \infty} \frac{a_1 b_1 + a_2 b_2 + \ldots + a_n b_n}{b_1 + b_2 + \ldots + b_n} = g.$$

5. Dany jest ciąg liczb rzeczywistych $(x_n)_n$ taki, że

$$\lim_{n \to \infty} (x_{2n} + x_{2n+1}) = 2022, \qquad \lim_{n \to \infty} (x_{2n-1} + x_{2n}) = 117.$$

Wykaż, że ciąg $\left(\frac{x_{2n}}{x_{2n+1}}\right)_n$ jest zbieżny i znajdź jego granicę.

6. Dany jest ciąg liczb rzeczywistych $(a_n)_{n=1}^{\infty}$ taki, że

$$\lim_{n \to \infty} a_n \sum_{k=1}^n a_k^2 = 1.$$

Wykaż, że

$$\lim_{n \to \infty} a_n \sqrt[3]{3n} = 1.$$