Глава 6

Неравенства в теория на вероятностите. Теореми на Моавър-Лаплас и Бернули

6.1 Неравенство на Марков

Теорема 6.1 За произволна неотрицателна случайна величина X и произволна константа A е изпълнено

$$\mathbf{P}(X > A) \le \frac{\mathbf{E}X}{A}.$$

Доказателство: Ще извършим доказателството за дискретна сл. в. Нека да разгледаме стойностите на сл. в. X подредени по големина със съответните вероятности $p_i = \mathbf{P}(X=x_i)$, за $i=1,2,\ldots$, и нека да съществува константа A, такава че

$$x_1 < x_2 \dots x_k < A < x_{k+1} < \dots$$

Тогава

$$\mathbf{E}X = \sum p_i x_i \ge \sum_{i=k+1} p_i x_i \ge \sum_{i=k+1} A p_i = A \mathbf{P}(X > A),$$

откъдето непосредствено следва твърдението на теоремата.

6.2 Неравенство на Чебишев

Теорема 6.2 За произволна случайна величина X с крайни математическо очакване и дисперсия и произволно $\varepsilon > 0$ е изпълнено

$$\mathbf{P}(|X - \mathbf{E}X| \ge \varepsilon) \le \frac{\mathbf{D}X}{\varepsilon^2},$$

или което е еквивалентно

$$\mathbf{P}(|X - \mathbf{E}X| < \varepsilon) \ge 1 - \frac{\mathbf{D}X}{\varepsilon^2}.$$

Доказателство: Ще извършим доказателството за дискретна сл. в.

Без ограничение на общността можем да считаме, че съществува $\varepsilon > 0$, такова че първите k стойности на сл. в. $|X - \mathbf{E}X|$ са по-малки от това $\varepsilon > 0$, а останалите стойности са не по-малки от нея. Тогава

$$\mathbf{P}(|X - \mathbf{E}X| < \varepsilon) = 1 - \sum_{i=k+1}^{\infty} p_i,$$

където $p_i = \mathbf{P}(X = x_i)$. За да намерим $\sum_{i=k+1}^{\infty} p_i$ ще разгледаме дисперсията на сл. в. $|X - \mathbf{E}X|$:

$$\mathbf{D}X = \sum_{i=1}^{\infty} p_i (x_i - \mathbf{E}X)^2 = \sum_{i=1}^{k} p_i (x_i - \mathbf{E}X)^2 + \sum_{i=k+1}^{\infty} p_i (x_i - \mathbf{E}X)^2 \ge \sum_{i=k+1}^{\infty} p_i (x_i - \mathbf{E}X)^2$$

$$=\varepsilon^2 \sum_{i=k+1}^{\infty} p_i,$$

откъдето

$$\sum_{i=k+1}^{\infty} p_i \le \frac{\mathbf{D}X}{\varepsilon^2}.$$

Окончателно получаваме, че

$$\mathbf{P}(|X - \mathbf{E}X| < \varepsilon) \ge 1 - \frac{\mathbf{D}X}{\varepsilon^2}.$$

6.3 Неравенство на Коши - Буняковски - Шварц

Теорема 6.3 За произволни случайни величини X и Y е изпълнено

$$\mathbf{E}|XY| \le \sqrt{\mathbf{E}X^2\mathbf{E}Y^2}.$$

Доказателство: Съществено ще използваме неравенството на триъгълника: $2|ab| \le a^2 + b^2$, $a, b \in \mathbb{R}$.

Като положим в горното неравенство $a^2 = \frac{X^2}{\mathbf{E}X^2}; \quad b^2 = \frac{Y^2}{\mathbf{E}Y^2}$ получаваме:

$$2\left|\frac{XY}{\sqrt{\mathbf{E}X^2\mathbf{E}Y^2}}\right| \le \left\{\frac{X^2}{\mathbf{E}X^2} + \frac{Y^2}{\mathbf{E}Y^2}\right\}$$

и вземем математическо очакване от двете страни получаваме

$$\Rightarrow \quad \frac{2\mathbf{E}|XY|}{\sqrt{\mathbf{E}X^2\mathbf{E}Y^2}} \le 2,$$

с което доказателсвото е завършено.

6.4 Неравенство на Йенсен

Теорема 6.4 Нека f(x) е изпъкнала функция и X е случайна величина: $\mathbf{E}X = \mu < \infty$. Тогава

$$\mathbf{E}[f(x)] \ge f(\mathbf{E}X).$$

Доказателство: Функцията f(x) е изпъкнала и ще я развием около точката $\mu = \mathbf{E} X$ в ред на Тейлър:

$$f(x) = f(\mu) + f'(\mu)(x - \mu) + f''(\mu')(x - \mu)^2, \quad x \le \mu' \le \mu$$

и от изпъкналостта получаваме оценката

$$f(x) \ge f(\mu) + f'(\mu)(x - \mu).$$

В последното неравенство полагаме x = X и следователно

$$f(X) \ge f(\mu) + f'(\mu)(X - \mu).$$

Като вземем математическо очакване от двете страни, получаваме

$$\mathbf{E}(f(X)) \ge \underbrace{f(\mu)}_{f(\mathbf{E}X)} + f'(\mu) \underbrace{E(X - \mu)}_{0},$$

откъдето окончателно

$$\mathbf{E}(f(X)) \ge f(\mathbf{E}X).$$

Пример: При f(x) = |x|, получаваме $\mathbf{E}|X| \ge |\mathbf{E}X|$.

Определение 6.1 Момент на сл.в. X от ред $k, k = 1, 2, \ldots$, наричаме $\mathbf{E} X^k$, когато съществува.

Определение 6.2 Абсолютен момент на сл.в. X от ред $k, k = 1, 2, \ldots$, наричаме $\mathbf{E}|X|^k$, когато съществува.

Определение 6.3 Централен момент на сл.в. X от ред $k, k = 1, 2, \ldots$, наричаме $\mathbf{E}[X - \mathbf{E}X]^k$, когато съществува.

Да отбележим, че вторият централен момент на сл.в. е дисперсията, а първият начален е математическото очакване.

Определение 6.4 Факториален момент на сл.в. X от ред k, $k = 1, 2, \ldots$, наричаме $\mathbf{E}[X(X-1)\ldots(X-k+1)]$, когато съществува.

6.5 Неравенство на моментите (Ляпунов)

Теорема 6.5 За абсолютните моменти на една сл. в. X е в сила

$$(\mathbf{E}|X|^r)^{1/r} \le (\mathbf{E}|X|^k)^{1/k}, \quad r < k \ u \ \mathbf{E}|X|^k < \infty.$$

Доказателство: