

Rec'd PCT/PTO 24 JUL 2005
10/542911

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日
2004年8月5日 (05.08.2004)

PCT

(10) 国際公開番号
WO 2004/065427 A1

- (51) 国際特許分類: C08C 19/00, 19/10, C08L 101/00, C08F 36/04, C09D 109/00, 5/00
- (21) 国際出願番号: PCT/JP2004/000406
- (22) 国際出願日: 2004年1月20日 (20.01.2004)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2003-015394 2003年1月23日 (23.01.2003) JP
- (71) 出願人(米国を除く全ての指定国について): 日本ゼオン株式会社 (ZEON CORPORATION) [JP/JP]; 〒1008323 東京都千代田区丸の内二丁目6番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 北原 静夫 (KI-TAHARA, Shizuo) [JP/JP]; 〒1008323 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 Tokyo (JP). 加瀬 俊男 (KASE, Toshio) [JP/JP]; 〒1008323 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 Tokyo (JP).
- (74) 代理人: 山下 昭彦, 外 (YAMASHITA, Akihiko et al.); 〒1040031 東京都中央区京橋一丁目16番10号 オークビル京橋4階 東京セントラル特許事務所内 Tokyo (JP).
- (81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 國際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

WO 2004/065427 A1

(54) Title: POLAR GROUP-CONTAINING CYCLIZED RUBBER AND METHOD FOR PRODUCING SAME

(54) 発明の名称: 極性基含有環化ゴムおよびその製造方法

(57) Abstract: A polar group-containing cyclized rubber which greatly improves adhesion between a coating material and a formed body of a nonpolar polymer such as polypropylene or polyethylene is disclosed. A method for producing such a polar group-containing cyclized rubber is also disclosed. The polar group-containing cyclized rubber has a polar group at the end of the polymer chain and a weight-average molecular weight of 1,000-1,000,000. Such a polar group-containing cyclized rubber is obtained by cyclizing a conjugated diene polymer having a polar group at the end of the polymer chain.

(57) 要約: 本発明は、ポリプロピレン、ポリエチレンなどの非極性の重合体からなる成形体と塗料との密着性を著しく向上できる極性基含有環化ゴムおよびその製造方法を提供することを主目的とするものである。上記目的を達成するために、本発明は、重合体鎖末端に極性基を有する共役ジエン重合体を環化して得られる、重合体鎖の末端に極性基を有し、重量平均分子量が1,000~1,000,000である極性基含有環化ゴムを提供する。

明細書

極性基含有環化ゴムおよびその製造方法

5 技術分野

本発明は、極性基含有環化ゴムおよびその製造方法に関し、さらに詳しくは、ポリプロピレン、ポリエチレンなどの非極性の重合体からなる成形体と塗料との密着性を著しく向上できる極性基含有環化ゴムおよびその製造方法に関する。

10 背景技術

ポリエチレン、ポリプロピレンなどのポリオレフィンからなる成形体は、美粧性および耐久性などを向上させるために、その表面を塗料で塗装して使用されることが多い。しかしながら、ポリオレフィンは極性が低く、そのままでは塗料との密着性に劣るため、塗膜が剥離しやすいという問題がある。

15 ポリイソプレンなどの共役ジエン重合体の環化物を含有する塗料がポリオレフィンによく密着することは知られており（特開昭51-12827号公報）、さらに密着性を改良するために、シスー1、4結合量70%以上の低分子量の共役ジエン重合体に無水マレイン酸を付加させた後、環化反応を行って得られる変性共役ジエン重合体環化物を用いることが提案されている（特開昭57-145103号公報）。

しかしながら、上記のような共役ジエン重合体環化物を使用することで、ポリオレフィン成形体への密着性をある程度改良した塗料が得られるものの、その改良度合いは不十分であった。

25 発明の開示

本発明の目的は、ポリプロピレン、ポリエチレンなどの非極性の重合体からなる成形体と塗料との密着性を著しく向上できる極性基含有環化ゴムおよびその製造方法を提供することにある。

本発明者等は、上記課題を解決すべく銳意研究を重ねた結果、重合体鎖末端に

極性基を有する共役ジエン重合体を環化して得られる、特定範囲の重量平均分子量を有する環化ゴムを、原料ポリプロピレンに配合したり、ポリプロピレン成形体用プライマーの接着性成分として用いたりすれば、上記の目的を達成できることを見出し、この知見に基づき、本発明を完成するに至った。

- 5 かくして、本発明によれば、以下の発明 1～20 が提供される。
1. 重合体鎖の末端に極性基を有し、重量平均分子量が 1,000～1,000,000 である極性基含有環化ゴム。
 2. 重量平均分子量 (M_w) と数平均分子量 (M_n) との比 (M_w/M_n) が 4 以下である前記の極性基含有環化ゴム。
 - 10 3. 環化率が 10% 以上である前記の極性基含有環化ゴム。
 4. ガラス転移温度が -50～200°C である前記の極性基含有環化ゴム。
 5. ゲル量が 10 重量% 以下である前記の極性基含有環化ゴム。
 6. 極性基が、カルボキシル基、水酸基、アミノ基、チオール基、エステル基、シアノ基およびシリル基からなる群から選ばれる少なくとも 1 つの基である前記 15 の極性基含有環化ゴム。
 7. 極性基が、カルボキシル基または水酸基である前記の極性基含有環化ゴム。
 8. 共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、有機活性金属触媒を用いて重合して、重合体鎖末端に活性金属を有する活性共役ジエン重合体を形成する工程と、
 - 20 前記の活性共役ジエン重合体に、極性基含有化合物を反応させて、該化合物中の極性基に由来する極性基を重合体鎖末端に有する極性基含有共役ジエン重合体を形成する工程と、
前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する工程と、
 - 25 からなる極性基含有環化ゴムの製造方法。
 9. 共役ジエン単量体がイソプレンである前記の製造方法。
 10. 極性基含有化合物がエポキシ類または二酸化炭素である前記の製造方法。
 11. 共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、極性基を含有する有機活性金属触媒を用いて重合し

て、重合開始末端に極性基を有する極性基含有共役ジエン重合体を形成する工程と、

前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する工程と、

5 からなる極性基含有環化ゴムの製造方法。

1 2. 極性基を含有する有機活性金属触媒が有機アルカリ金属アミド化合物である前記の製造方法。

1 3. 共役ジエン単量体がイソプレンである前記の製造方法。

1 4. 前記の極性基含有環化ゴムを有効成分とするポリマー成形材料用改質剤。

10 1 5. ポリマー成形材料に前記のポリマー成形材料用改質剤を配合してなるポリマー組成物。

1 6. ポリマー成形材料用改質剤の配合量が、ポリマー成形材料中のポリマー 100重量部当たり、0.1～50重量部である前記のポリマー組成物。

1 7. ポリマー成形材料中のポリマーが炭化水素系熱可塑性樹脂である前記の

15 ポリマー組成物。

1 8. 前記の極性基含有環化ゴムを含有してなるコーティング剤。

1 9. 炭化水素系熱可塑性樹脂用である前記のコーティング剤。

2 0. プライマーである前記のコーティング剤。

本発明によれば、重合体鎖の末端に極性基を有し、重量平均分子量が1,00

20 0～1,000,000である極性基含有環化ゴムが提供され、該環化ゴムを、原料ポリプロピレンに配合したり、ポリプロピレン成形体用プライマーの接着性成分として用いたりすることにより、非極性のポリプロピレン成形体と塗料との密着性が著しく改善される。

25 発明を実施するための最良の形態

(極性基含有環化ゴム)

本発明の極性基含有環化ゴムは、重合体鎖の末端に極性基を有し、重量平均分子量が1,000～1,000,000のものである。

極性基としては、炭素原子および水素原子以外の原子を有する基であればよく、

例えば、カルボキシル基、水酸基、アミノ基、チオール基、エステル基、シアノ基、シリル基などが挙げられる。なかでも、カルボキシル基、水酸基およびアミノ基が好ましく、カルボキシル基および水酸基がより好ましく、カルボキシル基が特に好ましい。

5 極性基含有環化ゴムは、その重合体鎖の少なくともひとつの末端に極性基を有することが必須であり、2以上の複数の末端に有していてもよい。

10 極性基含有環化ゴムの重量平均分子量は1,000～1,000,000、好ましくは10,000～500,000、より好ましくは30,000～300,000である。重量平均分子量が低いと塗料の密着性に劣り、逆に高いと極性基含有環化ゴムの製造時や使用時に取り扱い難くなる。

15 極性基含有環化ゴムの重量平均分子量 (M_w) と数平均分子量 (M_n)との比 (M_w/M_n) は、特に限定されないが、通常、4以下、好ましくは3以下、より好ましくは2以下である。

20 極性基含有環化ゴムの環化率は、特に限定されないが、通常、10%以上、好ましくは40～95%、より好ましくは60～90%、特に好ましくは70～85%である。環化率が低すぎると塗料の密着性に劣り、逆に環化率が高い極性基含有環化ゴムを製造することは困難になると共に、ゲル化が進行してその溶液を調製することが困難になる場合がある。

25 なお、環化率は、¹H-NMR分析により、原料として用いた共役ジエン重合体の環化反応前後における二重結合由来のプロトンのピーク面積をそれぞれ測定し、環化反応前を100としたときの環化反応後の環化物に残存する二重結合の割合を求め、計算式= (100-環化物中に残存する二重結合の割合) により表される値(%)である。

30 極性基含有環化ゴムのガラス転移温度は、特に限定されず用途に応じて適宜選択できるが、通常、-50～200°C、好ましくは0～100°C、より好ましくは20～90°C、特に好ましくは30～70°Cである。

35 また、環化ゴムの環化度 (n)、すなわち環のつながりは、通常、 $n = 1 \sim 3$ の範囲である。極性基含有環化ゴムのゲル量は、通常、10重量%以下、好ましくは5重量%以下であるが、実質的にゲルを有しないものであることが特に好ま

しい。ゲル量が多いと、溶液状態での塗布工程に問題が生じる可能性がある。

(極性基含有環化ゴムの製造方法)

本発明の極性基含有環化ゴムは、以下の2つの方法で製造できる。

(1) 第一の製造方法

5 極性基含有環化ゴムの第一の製造方法は、共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、有機活性金属触媒を用いて重合して、重合体鎖末端に活性金属を有する活性共役ジエン重合体を形成する工程(1-1)と、

10 前記の活性共役ジエン重合体に、極性基含有化合物を反応させて、該化合物中の極性基に由来する極性基を重合体鎖末端に有する極性基含有共役ジエン重合体を形成する工程(1-2)と、

15 前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する工程(1-3)と、

からなる。

20 工程(1-1)では、共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、有機活性金属触媒を用いて重合して、重合体末端に活性金属を有する活性共役ジエン重合体を形成する。

25 共役ジエン単量体としては、例えば、1,3-ブタジエン、イソブレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどが挙げられる。なかでも、1,3-ブタジエンおよびイソブレンが好ましく、イソブレンがより好ましく使用できる。これらの単量体は、単独で用いても2種以上を併用してもよい。

30 共役ジエン単量体の使用量は、特に限定されないが、活性共役ジエン重合体中の共役ジエン単量体単位含量が、通常、40モル%以上、好ましくは60モル%以上、より好ましくは80モル%以上になるように適宜選択される。この含有量が少ないと、環化率を挙げることが困難になり、所期の物性改善効果が得にくい傾向にある。

共役ジエン単量体と共重合可能な単量体としては、例えば、スチレン、 α -メチルスチレン、p-イソプロピルスチレン、p-フェニルスチレン、p-メトキシスチレン、p-メトキシメチルスチレン、p-tert-ブロトキシスチレン、クロロメチルスチレン、2-フルオロスチレン、3-フルオロスチレン、ペンタフルオロスチレン、ビニルトルエン、ビニルナフタレン、ビニルアントラセンなどの芳香族ビニル単量体；エチレン、プロピレン、イソブチレンなどのオレフィン単量体；などが挙げられる。これらの中でも、芳香族ビニル単量体が好ましく、スチレンおよび α -メチルスチレンがより好ましく使用できる。

有機活性金属触媒としては、前記の単量体をリビング的に重合できる触媒であれば特に限定されない。具体例としては、例えば、有機アルカリ金属化合物、有機アルカリ土類金属化合物などが挙げられる。なかでも、有機アルカリ金属化合物が好ましく使用できる。

有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシリルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物；ジリチオメタン、1, 4-ジリチオブタン、1, 4-ジリチオ-2-エチルシクロヘキサン、1, 3, 5-トリリチオベンゼンなどの有機多価リチウム化合物；ナトリウムナフタレン、カリウムナフタレンなどが挙げられる。これらの中でも、有機リチウム化合物が好ましく、有機モノリチウム化合物がより好ましく使用できる。

有機アルカリ土類金属化合物としては、例えば、特開昭51-115590号公報、特開昭52-9090号公報、特開昭52-17591号公報、特開昭52-30543号公報、特開昭52-48910号公報、特開昭52-9807号公報、特開昭56-112916号公報、特開昭57-100146号公報等報に開示されているバリウム、ストロンチウム、カルシウム等の金属を有する化合物が例示される。具体例としては、例えば、n-ブチルマグネシウムプロミド、n-ヘキシリルマグネシウムプロミド、エトキシカルシウム、t-ブロトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブロトキシバリウム、フェノキシバリウム、エチルバリウムなどが挙げられる。

上記の有機活性金属触媒は、単独で、または2種以上を組み合わせて用いることができる。その使用量は、上記触媒の種類または要求される生成重合体の重量平均分子量によって適宜選択されるが、単量体100g当たり、通常、0.01～100ミリモル、好ましくは0.05～20ミリモル、より好ましくは0.1～5 10ミリモルの範囲である。

上記触媒を用いた重合は、通常、重合溶媒中で行われる。重合溶媒としては、重合を阻害しないものであれば特に限定されない。

重合溶媒としては、例えば、n-ブタン、n-ペンタン、i s o -ペンタン、n-ヘキサン、n-ヘプタン、i s o -オクタンなどの脂肪族飽和炭化水素；シ10 クロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環式飽和炭化水素；ベンゼン、トルエンなどの芳香族炭化水素；等が挙げられる。これらの中でも、n-ヘキサン、シクロヘキサン、トルエンなどが好ましい。また、必要に応じて、1-ブテン、シス-2-ブテン、2-ヘキセンなどの重合性が極めて低い不飽和炭化水素を併用することもできる。これらの重合溶媒は、単独でまたは215 種以上を組み合わせて用いることができる。

重合溶媒の使用量は、特に限定されないが、重合に使用する単量体の濃度が、通常、1～50重量%、好ましくは10～40重量%の範囲となる量である。

重合反応に際し、共役ジエン単量体単位の結合構造を調整するために、極性化合物を用いることができる。極性化合物としては、有機活性金属触媒を用いた通常のアニオン重合で使用されるものであれば、特に限定されない。

極性化合物としては、例えば、ジブチルエーテル、エチレングリコールジブチルエーテル、テトラヒドロフランなどのエーテル化合物；テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジンなどの3級アミン；カリウム-t-アミルオキシド、カリウム-t-ブチルオキシド25 などのアルカリ金属アルコキシド；トリフェニルホスフィンなどのホスフィン誘導体；などが挙げられる。これらの中でも、3級アミンおよびエーテル化合物が好ましく、3級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましく使用できる。これらの極性化合物は、単独で、または2種以上を組み合わせて用いることができる。

極性化合物を使用する場合、その使用量は、有機活性金属触媒 1 モルに対して、通常、200 モル以下、好ましくは 0.1～100 モル、より好ましくは 0.5～50 モル、特に好ましくは 0.8～20 モルである。

重合反応は、通常、−78～150°C の範囲で、回分式または連続式などの重合様式で行われる。

重合時間は、特に限定されないが、重合に用いた单量体がほぼ定量的に反応するまで重合反応を行なうことが好ましい。

以上のようにして、重合体鎖末端に活性金属を有する活性共役ジエン重合体を形成する。

工程（1－2）では、前記の活性共役ジエン重合体に、極性基含有化合物を反応させて、該化合物中の極性基に由来する極性基を重合体鎖末端に有する極性基含有共役ジエン重合体を形成する。

極性基含有化合物としては、前記の活性共役ジエン重合体と反応して、該化合物中の極性基に由来する極性基を重合体鎖末端に導入できるものであれば特に限定されない。

極性基含有化合物としては、例えば、>C=O 基、>C=S 基、アミノ基、アジリジン基およびエポキシ基から選ばれる少なくとも 1 種の極性基を分子内に含むものであることが好ましい。

極性基含有化合物の具体例としては、例えば、N-メチル- β -プロピオラクタム、N-フェニル- β -プロピオラクタム、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン、N-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン、N-メチル- ϵ -カプロラクタム、N-フェニル- ϵ -カプロラクタム、N-メチル- ω -ラウリロラクタム、N-ビニル- ω -ラウリロラクタムなどの N-置換環状アミド類；1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノンなどの N-置換環状尿素類；4-N, N-ジメチルアミノアセトフェノ

- ン、4-N, N-ジエチルアミノアセトフェノン、1, 3-ビス(ジフェニルアミノ)-2-プロパノン、1, 7-ビス(メチルエチルアミノ)-4-ヘプタン、4-N, N-ジメチルアミノベンゾフェノン、4-N, N-ジ-t-ブチルアミノベンゾフェノン、4-N, N-ジフェニルアミノベンゾフェノン、4, 4'-
5 一ビス(ジメチルアミノ)ベンゾフェノン、4, 4'-ビス(ジエチルアミノ)ベンゾフェノン、4, 4'-ビス(ジフェニルアミノ)ベンゾフェノンなどのN-置換アミノケトン類；4-N, N-ジメチルアミノベンズアルデヒド、4-N, N-ジフェニルアミノベンズアルデヒド、4-N, N-ジビニルアミノベンズアルデヒドなどのN-置換アミノアルデヒド類；フェニルイソシアネート、2, 4-
10 トリレンジイソシアネート、2, 6-トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート、及びこれらの2量体、3量体の芳香族ポリイソシアネートなどのイソシアネート類；
ジメチルカルボジイミド、ジエチルカルボジイミド、ジプロピルカルボジイミド、ジブチルカルボジイミド、ジヘキシルカロボジイミド、ジシクロヘキシルカルボジイミド、ジベンジルカルボジイミド、ジフェニルカルボジイミド、メチルプロピルカルボジイミド、ブチルシクロヘキシルカルボジイミド、エチルベンジルカルボジイミド、プロピルフェニルカルボジイミド、フェニルベンジルカルボジイミドなどのカルボジイミド類；エチレンイミン、プロピレンイミンなどのN-非置換のアジリジン化合物；
20 エチレンオキサイド、プロピレンオキサイド、1, 2-エポキシブタン、1, 2-エポキシ-i s o-ブタン、2, 3-エポキシブタン、1, 2-エポキシヘキサン、1, 2-エポキシオクタン、1, 2-エポキシデカン、1, 2-エポキシテトラデカン、1, 2-エポキシヘキサデカン、1, 2-エポキシオクタデカン、1, 2-エポキシエイコサン、1, 2-エポキシ-2-ペンチルプロパン、
25 3, 4-エポキシ-1-ブテン、1, 2-エポキシ-5-ヘキセン、1, 2-エポキシ-9-デセン、1, 2-エポキシクロペンタン、1, 2-エポキシシクロヘキサン、1, 2-エポキシシクロドデカン、1, 2-エポキシエチルベンゼン、1, 2-エポキシ-1-メトキシ-2-メチルプロパン、グリシジルメチルエーテル、グリシジルエチルエーテル、グリシジルイソプロピルエーテル、グリシジ

ルアリルエーテル、グリシジルフェニルエーテル、グリシジルブチルエーテル、
2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリ
シジルオキシプロピルトリメトキシシランなどのエポキシ類；二酸化炭素などが
挙げられる。なかでも、エポキシ類および二酸化炭素が好ましく、エチレンオキ
5 サイド、プロピレンオキサイドおよび二酸化炭素がより好ましく、二酸化炭素が
特に好ましく使用できる。

上記の極性基含有化合物は、単独で、または2種以上を組み合わせて使用する
ことができる。その使用量は、極性基含有化合物の種類および要求される特性に
よって適宜選択されるが、重合に使用した有機活性金属触媒中の金属に対して、
10 通常、0.1～50当量、好ましくは0.1～20当量、より好ましくは0.1
～10当量の範囲である。

前記の活性共役ジエン重合体と極性基含有化合物との反応は、活性共役ジエン
重合体と極性基含有化合物とを接触させれば、ほぼ定量的に進行する。

この反応の際の反応温度及び反応時間は、広範囲に選択できるが、通常、室温
15 ～120℃の反応温度で、数秒～数時間の反応時間である。

活性共役ジエン重合体に極性基含有化合物を反応させた後、重合停止剤を添加
して重合反応を停止する。

重合停止剤としては、例えば、メタノール、エタノール、イソプロパノール、
n-ブタノール、t-ブタノールなどのアルコール類；フェノール、メチルフェ
20 ノール、2,6-tert-ブチルヒドロキシトルエンなどのフェノール類；
水が挙げられる。なかでも、メタノール、t-ブタノール、2,6-tert-
ブチルヒドロキシトルエンが好ましく使用できる。

重合停止剤の使用量は、重合に使用した有機活性金属触媒中の金属に対して、
通常、0.1～100当量、好ましくは0.5～50当量、より好ましくは1～
25 10当量の範囲である。

以上のようにして、極性基含有化合物中の極性基に由来する極性基を重合体鎖
末端に有する極性基含有共役ジエン重合体を形成する。

ここで、例えば、極性基含有化合物として二酸化炭素を使用した場合、重合体
鎖末端にカルボキシル基を有する極性基含有共役ジエン重合体が形成される。

また、極性基含有化合物としてエポキシ類を使用した場合、重合体鎖末端に水酸基を有する極性基含有共役ジエン重合体が形成される。

上記極性基含有共役ジエン重合体の極性基導入率は、通常、10～100%の範囲内から適宜選択され、得られた全重合体中に、極性基を含有しない共役ジエン重合体を含んでいてもよい。

極性基導入率は、G P C の示差屈折計 (R I) と紫外分光光度計 (U V) で吸収強度を測定し、その比 (U V / R I) を求め、予め作成した検量線によって決定したり、酸価や水酸基価の測定により決定したりできる。

得られた極性基含有共役ジエン重合体は、常法により、重合溶媒を除去して固形状物として取得してもよいし、重合体溶液のまま、次の工程に移ってもよい。

工程 (1-3) では、前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する。

環化触媒としては、共役ジエン重合体の環化触媒として一般に公知のものが使用できる。

環化触媒としては、例えば、硫酸；モノフルオロメタンスルホン酸、ジフルオロメタンスルホン酸、p-トルエンスルホン酸、キシレンスルホン酸、炭素数2～16のアルキル基を有するアルキルベンゼンスルホン酸などの有機スルホン酸、その無水物又はアルキルエステルなど有機スルホン酸化合物；三フッ化ホウ素、三塩化ホウ素、四塩化スズ、四塩化チタン、塩化アルミニウム、ジエチルアルミニウムモノクロリド、臭化アルミニウム、五塩化アンチモン、六塩化タングステン、塩化鉄などの金属ハロゲン化物；などが挙げられる。これらの環化触媒は、単独で、または2種以上を組み合わせて用いることができる。

これらの環化触媒の中でも、有機スルホン酸化合物が好ましく、p-トルエンスルホン酸がより好ましく使用できる。

環化触媒の使用量は、環化触媒の種類や要求される環化率に応じて適宜選択されるが、極性基含有共役ジエン重合体100重量部に対して、通常、0.05～10重量部、好ましくは0.1～5重量部、より好ましくは0.3～2重量部である。

環化反応は、極性基含有共役ジエン重合体と環化触媒とを接触させれば進行す

るが、通常、不活性溶媒中で行なわれる。不活性溶媒としては、環化反応を阻害しないものであれば、特に限定されない。

不活性溶媒としては、重合溶媒として前記したものが使用できる。なかでも、沸点が70°C以上のものが好ましく使用できる。

5 不活性溶媒の使用量は、特に限定されないが、極性基含有共役ジエン重合体の濃度が好ましくは5～60重量%、より好ましくは20～40重量%となる量である。

10 環化反応における反応温度は、通常、50～150°C、好ましくは80～110°Cであり、反応時間は、通常、0.5～10時間、好ましくは2～5時間である。

以上のようにして、極性基含有化合物中の極性基に由来する極性基を重合体鎖末端に有する極性基含有環化ゴムが得られる。

得られた極性基含有環化ゴムは、通常、常法により、環化触媒を不活性化した後、環化触媒残渣を除去し、不活性溶媒を除去して、固形物として取得する。

15 (2) 第二の製造方法

極性基含有環化ゴムの第二の製造方法は、共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、極性基を含有する有機活性金属触媒を用いて重合して、重合体開始末端に極性基を有する極性基含有共役ジエン重合体を形成する工程(2-1)と、

20 前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する工程(2-2)とからなる。

工程(2-1)では、共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共に重合可能な単量体を、極性基を含有する有機活性金属触媒を用いて重合して、重合体開始末端に極性基を有する極性基含有共役ジエン重合体を形成する。

極性基を含有する有機活性金属触媒としては、前記の単量体を重合した際に、重合開始末端に該極性基を導入できるものであれば、特に限定されない。このような触媒としては、例えば、有機アルカリ金属アミド化合物が挙げられる。有機アルカリ金属アミド化合物は、前記の有機アルカリ金属化合物に2級アミンを反

応させて得られる化合物である。

- 2級アミンとしては、例えば、ジメチルアミン、メチルエチルアミン、メチルプロピルアミン、メチルブチルアミン、メチルアミルアミン、アミルヘキシルアミン、ジエチルアミン、エチルプロピルアミン、エチルブチルアミン、エチルヘキシルアミン、ジプロピルアミン、ジイソプロピルアミン、プロピルブチルアミン、ジブチルアミン、ジアミルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、メチルシクロペンチルアミン、エチルシクロペンチルアミン、メチルシクロヘキシルアミン、ジシクロペンチルアミン、ジシクロヘキシルアミンなどの脂肪族2級アミン；ジフェニルアミン、N-メチルアニリン、N-エチルアニリン、ジベンジルアミン、N-メチルベンジルアミン、N-エチルフェニルアミンなどの芳香族2級アミン；アジリジン、アセチジン、ピロリジン、ピペリジン、2-メチルピペリジン、3-メチルピペリジン、4-メチルピペリジン、3, 5-ジメチルピペリジン、2-エチルピペリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ドデカメチレンイミン、コニイン、モルホリン、オキサジン、ピロリン、ピロール、アゼピンなどの環状イミンが挙げられる。これらの2級アミンは、単独で、または2種以上を組み合わせて用いられる。

2級アミンの使用量は、有機アルカリ金属化合物中の金属に対して、通常、0.5～2当量、好ましくは0.8～1.5当量、より好ましくは1～1.2当量である。

- 20 極性基を含有する有機活性金属触媒の使用量は、単量体100g当たり、通常0.1～30mmol、好ましくは0.2～15mmol、より好ましくは0.3～10mmolの範囲である。

重合方法および条件は、工程(1-1)で記載したものと同様である。

- 25 以上のようにして、重合体の開始末端に極性基を有する極性基含有共役ジエン重合体を形成する。

例えば、ジブチルアミンとn-ブチルリチウムとを反応させて得られる触媒を使用して重合すると、ジブチルアミノ基を重合開始末端に有する極性基含有共役ジエン重合体が生成する。

得られた極性基含有共役ジエン重合体は、通常、重合停止剤を添加して重合反

応を停止した後、常法により、重合溶媒を除去して固形状物として取得してもよいし、重合体溶液のまま、次の工程に移ってもよい。

なお、重合停止剤を添加して重合反応を停止する前に、工程（1－2）と同様に、活性金属を有する共役ジエン重合体に極性基含有化合物を反応させることにより、重合体の重合終了末端にも、該化合物中の極性基に由来する極性基を有する極性基含有共役ジエン重合体を形成することもできる。

極性基含有共役ジエン重合体中の極性基導入率は、工程（1－2）と同様な方法で測定できる。

工程（2－2）では、工程（2－1）で得られた極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する。

この工程は、工程（1－3）と同様に行なうことができる。

以上のようにして、極性基を含有する有機活性金属触媒中の極性基を重合開始末端に有する極性基含有環化ゴムが得られる。

得られた極性基含有環化ゴムは、通常、常法により、環化触媒を不活性化した後、環化触媒残渣を除去し、不活性溶媒を除去して、固形物として取得する。

本発明の極性基含有環化ゴムは、必要に応じて、顔料、染料などの着色剤；老化防止剤、充填剤、軟化剤、ワックスなどの配合剤を添加して用いられる。配合剤は一般に使用されているものであればよい。

老化防止剤としては、例えば、2, 6-ジ-*t*-ブチルフェノール、2, 2'-メチレンビス(4-メチル-*t*-ブチルフェノール)、テトラキス[メチレン-3-(3', 5'-ジ-*t*-ブチル-4'-ヒドロキシフェニル)プロピオネート]メタンなどのフェノール系老化防止剤；フェニル- α -ナフチルアミン、ジフェニル-p-フェニレンジアミン、N-1, 3-ジメチルブチル-N'-フェニル-p-フェニレンジアミンなどのアミン系老化防止剤；トリス(ノニルフェニル)ホスファイトなどのリン系老化防止剤などが挙げられる。

充填剤としては、例えば、炭酸カルシウム、酸化カルシウム、酸化マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、炭酸マグネシウム、珪酸カルシウム、硫酸バリウム、マイカ、シリカ、カーボンブラック、タルク、クレー、二酸化チタン、酸化亜鉛、ガラス繊維、炭素繊維などが挙げら

れる。

配合剤の使用量は、配合の目的、配合剤の種類によって適宜選択することができる。

極性基含有環化ゴムの形状は、用途に応じて適宜選択できるが、通常はペレッ

トまたは粉末状である。粉末状とするには、固形状の極性基含有環化ゴムを、必要に応じて添加される上記配合剤と共に、冷却下にバンタムミル、ジェットミル、ディスクミル、ボールミル、コロイドミルなどの粉碎機を用いて粉碎すればよい。

このようにして得られる粉末粒子の平均粒子径は、通常、 $1 \mu\text{m} \sim 200 \mu\text{m}$ 、好ましくは $3 \mu\text{m} \sim 100 \mu\text{m}$ 、さらに好ましくは $5 \mu\text{m} \sim 50 \mu\text{m}$ である。こ

の平均粒子径は、レーザー回折・散乱法によって測定される、粒子径に対する個数基準積分曲線における、50%個数基準積算値に対応する粒子径である。

上記粉末粒子中の環化ゴムの含有量は、通常、5重量%以上、好ましくは10重量%、より好ましくは20重量%以上、特に好ましくは30重量%以上である。

粉末粒子の形状としては、特に限定されず、例えば、球状や不定形状が挙げら

れる。

本発明の極性基含有環化ゴムからなる粉末粒子は、例えば、樹脂や金属に対する優れた密着性を生かして、粉体塗料として用いることができる。粉体塗料とする場合には、着色剤を配合し、必要に応じて老化防止剤、充填剤、軟化剤、ワックスなどが常法に従って適宜配合される。

顔料を着色剤として用いる場合、イエロー着色にはベンジジン系、アゾ系、イソインドリン系顔料が、マゼンタ着色にはアゾレーキ系、ローダミンレーキ系、キナクリドン系、ナフトール系、ジケトピロロピロール系顔料が、シアン着色にはフタロシアニン系顔料、インダンスレン系顔料が好ましく用いられる。黒色着色には、カーボンブラックが通常使用される。カーボンブラックとしては、サーサマルブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック等が挙げられる。

染料を着色剤として用いる場合、イエロー着色にはアゾ系、ニトロ系、キノリン系、キノフタロン系、メチン系染料が、マゼンタ着色にはアントラキノン系、アゾ系、キサンテン系染料が、シアン着色にはアントラキノン系、フタロシアニ

ン系、インドアニリン系染料が好ましく用いられる。

着色剤の使用量は、求める色合い、濃さなどによって適宜選択すればよく、環化ゴム100重量部に対して、好ましくは0.1～50重量部、より好ましくは1～20重量部である。

- 5 粉体塗料は、通常、環化ゴム、着色剤および必要に応じて含有される添加剤を混合し、それを粉碎し、分級することによって得ることができる。

混合方法は、特に限定されず、例えば、バンバリーミキサー、ニーダー、ミキシングロール、一軸または二軸押出機等の混練機を用いて溶融混合する方法がある。

- 10 粉碎方法としては、前述の方法に従えばよい。

分級の方法としては、例えば、風力分級、遠心分級、篩分級などの方法が挙げられる。

- また、本発明の極性基含有環化ゴムは、ポリマー成形材料用改質剤として、熱可塑性樹脂、熱硬化性樹脂、エラストマーなどからなる各種ポリマー成形材料に配合することにより、ポリマー成形体と塗料との接着性を改善するのに好適である。さらに、ポリマー成形材料を構成する異種ポリマー同士の分散性やポリマー成形材料における充填剤、顔料などのごとき配合剤のポリマーへの分散性を改善するためのポリマー成形材料用改質剤としても有用である。

- 改質の対象となるポリマー成形材料に用いるポリマーとしては、以下のようなものが挙げられる。

1. 炭化水素系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリウレタン系樹脂、ポリエーテルイミド系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリエーテルエーテルケトン系樹脂、ポリカーボネート系樹脂、ポリビニルブチラート系樹脂、ポリアリレート系樹脂、フッ素系樹脂などの熱可塑性樹脂。
2. フェノール樹脂、クレゾール樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、フラン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂。
3. 天然ゴム、ポリブタジエンゴム、ステレン-ブタジエンゴム、アクリロニト

リループタジエンゴムなどの加硫ゴム；オレフィン系熱可塑性エラストマー、ステレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのエラストマー。

これらのなかでも、ポリエチレン、ポリプロピレン、ポリペンテーン-1などの鎖状オレフィン系樹脂；エチレンとノルボルネン類との付加共重合体、ノルボルネン類の開環重合体水素化物など環状オレフィン系樹脂；などの炭化水素系熱可塑性樹脂に配合すると、極性基含有環化ゴムによる改質効果が大きい。

上記のポリマーは単独で使用しても、2種以上を組み合わせて使用することもできる。また、必要に応じて、顔料、染料などの着色剤；老化防止剤、充填剤、軟化剤、ワックス、帶電防止剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、着色剤、光線遮断剤、紫外線吸収剤などの配合剤を適宜配合することもできる。

ポリマー成形材料に上記ポリマー成形材料用改質剤を配合してなるポリマー組成物において、上記ポリマー成形材料用改質剤の配合量は、ポリマー成形材料の種類や要求される性能に応じて適宜選択されるが、ポリマー成形材料中のポリマー-100重量部当たり、通常、0.1～50重量部、好ましくは0.5～20重量部、より好ましくは1～10重量部、特に好ましくは2～5重量部である。

さらに、本発明の極性基含有環化ゴムは、前述のポリマー成形材料用のプライマーや塗料などのコーティング剤における、プライマー用ビヒクル成分や塗料用バインダー成分などの接着性成分として用いることにより、該ポリマー成形材料と塗料との接着性を著しく改善できる。この場合、プライマーや塗料などのコーティング剤中の全固形分に対して、環化ゴムを2重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上含有することが好ましい。

コーティング剤として使用する場合には、環化ゴムに、必要に応じて、他の接着性成分および各種の添加剤を配合して用いられる。

他の接着性成分としては、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂、アルキッド樹脂、塩素化オレフィン系樹脂、シリコーン系ゴムなどが挙げられる。

他の接着性成分を配合する場合の比率は、その種類や配合目的に応じて適宜選択されるが、環化ゴムと他の接着性成分との重量比率で、通常、100：0～5：

95、好ましくは80：20～30：70、より好ましくは70：30～50：50である。

添加剤としては、改質剤の項で例示したポリマーの配合剤と同様のものが挙げられる。

- 5 極性基含有環化ゴムを含有してなるコーティング剤は、通常、極性基含有環化ゴムまたは極性基含有環化ゴムとその他の成分との混合物を、溶媒に溶解または分散させることによって得られる。使用される溶媒は適宜選択すればよく、例えば脂肪族炭化水素系溶媒、脂環族炭化水素系溶媒、芳香族炭化水素系溶媒、ケトン系溶媒、アルコール系溶媒、エーテル系溶媒、ハロゲン系溶媒、水系溶媒など
10 が挙げられる。溶媒の使用量は、コーティング剤の固形分濃度が、通常、1～95重量%、好ましくは5～60重量%となるような範囲である。

本発明の極性基含有環化ゴムを含有してなるコーティング剤を、各種の充填剤や顔料などの分散材料の表面処理剤として使用することもできる。分散材料を該コーティング剤で表面処理すると、各種のポリマーに対する分散材料の分散性が
15 改良される。

表面処理の対象となる充填剤や顔料としては、前述のものが使用できる。環化ゴムの使用量は、分散材料の種類やそれを分散させるポリマーの種類に応じて適宜選択されるが、分散材料100重量部当たり、通常、0.1～100重量部、好ましくは5～20重量部の割合で用いられる。

- 20 本発明の極性基含有環化ゴムは、異種材料同士を強固に接着させる接着剤として使用することもできる。この場合の異種材料の組み合わせとしては、例えば、O P P (延伸ポリプロピレン) / C P P (結晶性ポリプロピレン)、ポリプロピレン/ポリエチレンテレフタレート、ポリプロピレン/エチレン-酢酸ビニル共重合体、ポリプロピレン/アルミニウムなどが挙げられ、その形状は特に限定されないが、フィルム状、シート状のものが好適である。接着方法としては、例えば、予めフィルム状に成形した環化ゴムを異種材料間に挟みこんだ後、加熱接着させる方法や、一方の材料表面に、環化ゴムを含有するコーティング剤を塗布した後、他方の材料表面と貼り合わせる方法などが採用できる。

実施例

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。これらの例中の部および%は、特に断わりがない限り重量基準である。

5 (1) 重量平均分子量および分子量分布

重合体の重量平均分子量 (M_w) および数平均分子量 (M_n) を、ゲル・ペーミエーション・クロマトグラフィー (G P C) 測定により標準ポリスチレン換算値として求めた。分子量分布は、 M_w/M_n の数値で示す。

(2) 環化率

10 $^1\text{H-NMR}$ 分析により、共役ジエン重合体の環化反応前後における二重結合由来プロトンのピーク面積をそれぞれ測定し、環化反応前を 100 としたときの環化物中に残存する二重結合の割合を求めた。そして、計算式 = (100 - 環化物中に残存する二重結合の割合) により環化率 (%) を求めた。

(3) 極性基を含有する重合体の極性基含有量

15 カルボキシル基量および水酸基量を、それぞれ、酸価測定および水酸基価測定により求めた。

なお、酸価と水酸基価は、「基準油脂分析試験法（日本油化学協会）」2, 4, 1 - 83 に記載される方法に準じて測定した。 (mg KOH/g)

(4) ガラス転移温度

20 重合体のガラス転移温度を、示差走査熱量計（セイコー電子工業（株）社製：SSC5200）を用いて、開始温度 - 100°C、昇温速度 10°C/分の条件で測定した。

(5) 基盤目試験（密着性試験）

25 塗装試験片に、カッターを用いて、塗装面上に 2 mm 間隔で素地に達する切れ目を 11 本作り、それと直角に交わるように同様の切れ目を 11 本作り、2 mm 四方の基盤目を 100 個作成した。その基盤目上にセロファン粘着テープを密着させて手前 45° 方向に引き剥がし、塗装面が残存する基盤目の個数を調べ、以下の基準で示す。

◎：残存する基盤目数が 100 個

○：残存する碁盤目数が 95～99 個

△：残存する碁盤目数が 90～94 個

×：残存する碁盤目数が 89 個以下

(6) 平滑性

5 塗膜の平滑性を目視により、次の 2 段階で評価した。

○：塗膜に凹凸がほとんどなく平滑性が良好なもの。

×：塗膜に大きな凹凸があり平滑性がよくないもの。

(実施例 1)

攪拌機付きオートクレーブに、トルエン 6100 g、n-ブチルリチウム (1.

10 5.6 モル／リットル濃度のヘキサン溶液) 45.2 ミリモルを仕込み、内温を 6
0 °C に昇温した。その後、内温が 75 °C を超えないように制御しながら、イソブ
レン 2600 g を、60 分間に亘り、連続的に添加した。添加終了後、70 °C に
て 1 時間、さらに反応させて、重合転化率が 100 % になったことを確認した。

次いで、二酸化炭素を 67.8 ミリモル添加して、30 分間反応させた。反応
15 終了後、停止剤としてメタノールを 54 ミリモル添加して、重合体鎖末端にカル
ボキシル基を有する重合体 a を得た。

得られた重合体 a を一部サンプリングし、その物性を測定したところ、重量平
均分子量が 92,000、分子量分布が 1.11、酸価が 0.6 mg KOH/g で
あった。

20 続いて、オートクレーブ内を窒素置換した後、80 °C に昇温し、p-トルエン
スルホン酸 31.2 g を添加し、内温を 80 °C に維持しながら環化反応を行った。
3 時間反応後、炭酸ナトリウム 11.9 g を含む炭酸ナトリウム 25 % 水溶液を
添加して反応を停止し、80 °C で 30 分間攪拌後、溶液を孔径 1 μm のガラス織
維フィルターを用いて、ろ過して触媒残渣を除去した。

25 得られた溶液に、老化防止剤としてイルガノックス 1010 (チバ・スペシャ
リティー・ケミカルズ社製) 2.6 g を添加した後、160 °C のオイルバス中で
攪拌を行いながらトルエンを除去し、固体分濃度が 70～75 重量% になった時
点で、溶液を四フッ化エチレン樹脂でコーティングしたバットに流し込んだ。そ
れを、75 °C にて減圧乾燥して、変性環化ゴム A を得た。

変性環化ゴムAの物性を測定し、その結果を表1に示す。

(実施例2)

n-ブチルリチウムの添加量を88.9ミリモルに、二酸化炭素の添加量を133ミリモルに、メタノールの添加量を106ミリモルに変える以外は、実施例5と同様に重合を行い、重合体鎖末端にカルボキシル基を有する重合体bを得た。得られた重合体bの重量平均分子量は46,000、分子量分布が1.09、酸価が1.2mgKOH/gであった。

続いて、p-トルエンスルホン酸の添加量を41.6gに、炭酸ナトリウムの添加量を15.8gに変更する以外は、実施例1と同様に環化反応を行い、変性10環化ゴムBを得た。

変性環化ゴムBの物性を測定し、その結果を表1に示す。

(実施例3)

二酸化炭素の代わりに、エチレンオキサイドを54.2ミリモル添加する以外は実施例1と同様に重合を行い、重合体鎖末端に水酸基を有する重合体cを得た。得られた重合体cの重量平均分子量は91,000、分子量分布が1.06、水酸価が0.7mgKOH/gであった。

続いて、p-トルエンスルホン酸の添加量を33.2gに、炭酸ナトリウムの添加量を11.9gに変える以外は、実施例1と同様に環化反応を行い、変性環化ゴムCを得た。

20 変性環化ゴムCの物性を測定し、その結果を表1に示す。

(実施例4)

n-ブチルリチウムの添加量を88.5ミリモルに、エチレンオキサイドの添加量を106ミリモルに、メタノールの添加量を106ミリモルに変える以外は、実施例3と同様に重合を行い、重合体鎖末端に水酸基を有する重合体dを得た。得られた重合体dの重量平均分子量は46,000、分子量分布が1.05、水酸基価が1.5mgKOH/gであった。

続いて、p-トルエンスルホン酸の添加量を43.6gに、炭酸ナトリウムの添加量を15.8gに変える以外は、実施例3と同様に環化反応を行い、変性環化ゴムDを得た。変性環化ゴムDの物性を測定し、その結果を表1に示す。

(比較例 1)

本比較例は、特開昭57-145103号公報を参考にして行った。

攪拌機、温度計、還流冷却管、及び窒素ガス導入管を備えた四つ口フラスコに、
10 mm角に裁断したポリイソプレン(シス-1, 4-構造イソプレン単位73%、
5 トランス-1, 4-構造イソプレン単位22%および3, 4-構造イソプレン単
位5%からなり、重量平均分子量が107, 000、分子量分布が1. 15) 1
00部およびトルエン1570部を仕込んだ。フラスコ内を窒素置換した後、8
0°Cに昇温し、ポリイソプレンをトルエンに溶解した。その後、無水マレイン酸
2. 5部を添加し、180°Cで1時間、無水マレイン酸の付加反応を行った。得
10 られた反応液を、2, 6-ジ-tert-ブチルフェノール1%アセトン溶液3
000部に投入して析出物を回収し、それを減圧乾燥して、無水マレイン酸で変
性したポリイソプレンを得た。これは、ポリイソプレン主鎖に無水マレイン酸が付
加したものである。

変性したポリイソプレン100部をトルエン730部に溶解し、その溶液にp
15 -トルエンスルホン酸3. 6部を添加し、溶液温度を85°Cに維持しながら、5
時間環化反応を行った。室温まで、冷却後、イオン交換水400部を添加して環
化反応を停止し、30分間静置して分離した油層を分取した。この油層を400
部のイオン交換水で3回洗浄した。油層を2, 6-ジ-tert-ブチルフェノー
ル1%メタノール溶液1000部に投入して、析出物を回収し、それを減圧乾燥
20 して、変性環化ゴムEを得た。変性環化ゴムEの物性を測定し、その結果を表1に
示す。

表1

	実施例				比較例
	1	2	3	4	1
変性環化ゴム	A	B	C	D	E
重量平均分子量 M_w/M_n	73,000 1.21	34,000 1.15	74,000 1.09	33,000 1.08	80,200 1.31
環化率 (%)	74	76	73	75	76
酸価 (mg KOH/g)	0.6	1.2	—	—	5.6
水酸基価 (mg KOH/g)	—	—	0.7	1.5	—
ガラス転移温度 ($^{\circ}\text{C}$)	4.7	4.9	4.6	4.8	4.8

なお、変性環化ゴムA～Eは、いずれも、トルエンに対する不溶物（ゲル）を含まないものであった。

(実施例5)

変性環化ゴムA 15部をキシレン70部に溶解し、その溶液に酸化チタン15
5部を添加して、高速攪拌機（ディスパー）で10分間攪拌した。これを、JIS
K 5400に規定されたフォードカップNo. 4法に準じて、20°Cにおける
流下時間が13～14秒になるように、トルエンで希釈して、プライマーを調製
した。

表2に示す成形材料を用いて、射出成形により樹脂成形板X～Z（50mm×
10 80mm×3mm）を作製した。なお、成形材料Yとしては、表2に示す成分を
ヘンシェルミキサーで混合後、二軸押出機によって溶融混練してペレット化した
ものを用いた。

表2

成形材料	成形材料における原料樹脂および添加物
X	ポリプロピレン樹脂（J－3054HP：出光石油化学社製）
Y	①ポリプロピレン樹脂（J－3054HP：出光石油化学社製） ②エチレン／ブテンー1共重合体（EBM3021：ジェーエスアール社製） ③タルク（JM－209：浅田製粉社製） ①／②／③＝68／25／7（重量比）
Z	エチルテトラシクロドデセン単位15重量%およびジシクロペンタジエン単位85重量%からなる開環重合体の水素化物（Tg 103°C、水素添加率99%以上）

樹脂成形板X～Zを水でよく洗浄して乾燥した。口径1.0mm、スプレー圧3.5～5.0MPaのスプレーガンを用いて、樹脂成形板上に、膜厚が10μmになるように、前記のプライマーをスプレー塗装した。このプライマー層の平滑性を確認し、表3に示す。プライマーを塗装してから5分間後、二液硬化型ウレタン系メタリック塗料（日本ビーケミカル社製、商品名RB-212（ベース塗料）および商品名RB-288（クリアー塗料））を、塗料全体の膜厚が40μmになるように、上記と同じスプレーガンを用いて2コート塗装した。15分間、23℃で乾燥した後、80℃で30分間、非循環式乾燥器にて乾燥した。得られた塗装試験片を、3日間室温で放置した後、基盤目試験を行い、その結果を表3に示す。

表3

	実施例				比較例
	5	6	7	8	
変性環化ゴム	A	B	C	D	E
プライマー層の平滑性	○	○	○	○	×
塗膜物性（基盤目試験）					
樹脂成形体X	◎	◎	◎	○	×
樹脂成形体Y	◎	◎	○	◎	×
樹脂成形体Z	◎	◎	◎	○	×

(実施例 6～8 および比較例 2)

変性環化ゴム A の代わりに、それぞれ、表 3 に示す変性環化ゴム B～E を用いる以外は、実施例 5 と同様にプライマーを調製し、それらを用いて、塗装試験片を作製した。塗装したプライマー層の平滑性と塗装試験片の基盤目試験の結果を、

- 5 それぞれ、表 3 に示す。

表 3 から以下のようなことがわかる。

重合体の主鎖を無水マレイン酸で変性したポリイソプレンの環化物（変性環化ゴム E）を用いたプライマーは、酸化チタンの分散性に劣るために、プライマー層の平滑性に劣り、塗料との密着性も不十分である（比較例 2）。

- 10 上記比較例に対して、重合体鎖末端に極性基を有する共役ジエン系重合体の環化物（変性環化ゴム A～D）を用いたプライマーは、酸化チタンの分散性が良好なため、プライマー層の平滑性に優れており、さらに、塗料との密着性が著しく向上している（実施例 5～8）。

(実施例 9)

- 15 ポリプロピレン樹脂（J 3050 HP：出光石油化学社製）95 部、変性環化ゴム A 5 部およびテトラキス [メチレン-3-(3', 5'-ジ-*t*-ブチル-4'-ヒドロキシフェニル) プロピオネート] メタン（イルガノックス 1010：チバ・スペシャリティー・ケミカルズ社製）0.1 部を、ヘンシェルミキサーで混合後、二軸押出機を用いて、溶融温度 200°C で混練して、樹脂組成物のペレットを得た。このペレットを射出成形して、成形板（厚さ 3 mm × 幅 50 mm × 長さ 80 mm）を得た。

この成形板上に、口径 1.0 mm、スプレー圧 3.5～5.0 MPa のスプレーガンを用いて、二液硬化型ウレタン系メタリック塗料（日本ビー・ケミカル社製、商品名 RB-212（ベース塗料）および商品名 RB-288（クリアーアー塗料））を、塗料全体の膜厚が 40 μm になるように 2 コート塗装した。15 分間、23°C で乾燥した後、80°C で 30 分間、非循環式乾燥器にて乾燥した。得られた塗装試験片を、3 日間室温で放置した後、基盤目試験を行い、その結果を表 4 に示す。

(実施例 10～12 および比較例 3)

変性環化ゴム A の代わりに、それぞれ、表 4 に示す変性環化ゴム B～E を用い

る以外は、実施例 9 と同様に、成形板を調製し、それらを用いて、塗装試験片を作製した。塗装試験片の基盤目試験の結果を、それぞれ、表 4 に示す。

表4

	実施例				比較例 3
	9	10	11	12	
変性環化ゴム	A	B	C	D	E
基盤目試験	◎	◎	○	○	×

表 4 から以下のようなことがわかる。

15 重合体の主鎖を無水マレイン酸で変性したポリイソブレンの環化物（変性環化ゴム E）を配合した成形板は、塗料との密着性が不十分である（比較例 3）。

上記比較例に対して、重合体鎖末端に極性基を有する共役ジエン系重合体の環化物（変性環化ゴム A～D）を配合した成形板は、塗料との密着性が著しく改善されている（実施例 9～12）。

20

産業上の利用可能性

本発明の極性基含有環化ゴムは、ポリマー成形材料と塗料との接着性を改善する改質剤や、ポリマー成形材料用のプライマーや塗料などのコーティング剤に添加するプライマー用ビヒクル成分や塗料用バインダー成分などの接着性成分とし

25 て種々の用途に適用できる。特に非極性のポリマー成形材料と塗料との接着性を著しく改善できる点で有用である。

請求の範囲

1. 重合体鎖の末端に極性基を有し、重量平均分子量が 1,000～1,000,000 である極性基含有環化ゴム。
- 5 2. 重量平均分子量 (M_w) と数平均分子量 (M_n) との比 (M_w/M_n) が 4 以下である前記請求の範囲第 1 項記載の極性基含有環化ゴム。
3. 環化率が 10 % 以上である前記請求の範囲第 1 項または第 2 項記載の極性基含有環化ゴム。
4. ガラス転移温度が -50 ~ 200 °C である前記請求の範囲第 1 項～第 3 項の 10 いずれかに記載の極性基含有環化ゴム。
5. ゲル量が 10 重量% 以下である前記請求の範囲第 1 項～第 4 項のいずれかに記載の極性基含有環化ゴム。
6. 極性基が、カルボキシル基、水酸基、アミノ基、チオール基、エステル基、シアノ基およびシリル基からなる群から選ばれる少なくとも 1 つの基である前記 15 請求の範囲第 1 項～第 5 項のいずれかに記載の極性基含有環化ゴム。
7. 極性基が、カルボキシル基または水酸基である前記請求の範囲第 1 項～第 6 項のいずれかに記載の極性基含有環化ゴム。
8. 共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共重合可能な単量体を、有機活性金属触媒を用いて重合して、重合体鎖末端に活性金属を有する活性共役ジエン重合体を形成する工程と、
前記の活性共役ジエン重合体に、極性基含有化合物を反応させて、該化合物中の極性基に由来する極性基を重合体鎖末端に有する極性基含有共役ジエン重合体を形成する工程と、
- 20 前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基含有環化ゴムを形成する工程と、
からなる極性基含有環化ゴムの製造方法。
9. 共役ジエン単量体がイソプレンである前記請求の範囲第 8 項記載の製造方法。
10. 極性基含有化合物がエポキシ類または二酸化炭素である前記請求の範囲第 8 項または第 9 項記載の製造方法。

11. 共役ジエン単量体、または共役ジエン単量体および前記共役ジエン単量体と共重合可能な単量体を、極性基を含有する有機活性金属触媒を用いて重合して、重合開始末端に極性基を有する極性基含有共役ジエン重合体を形成する工程と、

前記の極性基含有共役ジエン重合体を、環化触媒を用いて環化させて、極性基

5 含有環化ゴムを形成する工程と、

からなる極性基含有環化ゴムの製造方法。

12. 極性基を含有する有機活性金属触媒が有機アルカリ金属アミド化合物である前記請求の範囲第11項記載の製造方法。

13. 共役ジエン単量体がイソプレンである前記請求の範囲第11項または第1
10項記載の製造方法。

14. 前記請求の範囲第1項～第7項までのいずれかに記載の極性基含有環化ゴムを有効成分とするポリマー成形材料用改質剤。

15. ポリマー成形材料に前記請求の範囲第14項記載のポリマー成形材料用改質剤を配合してなるポリマー組成物。

16. ポリマー成形材料用改質剤の配合量が、ポリマー成形材料中のポリマー100重量部当たり、0.1～50重量部である前記請求の範囲第15項記載のポリマー組成物。

17. ポリマー成形材料中のポリマーが炭化水素系熱可塑性樹脂である前記請求の範囲第15項または第16項記載のポリマー組成物。

18. 前記請求の範囲第1項～第7項までのいずれかに記載の極性基含有環化ゴムを含有してなるコーティング剤。

19. 炭化水素系熱可塑性樹脂用である前記請求の範囲第18項記載のコーティング剤。

20. プライマーである前記請求の範囲第18項または第19項記載のコーティング剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/000406

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl' C08C19/00, C08C19/10, C08L101/00, C08F36/04, C09D109/00,
C09D5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl' C08C19/00-19/44, C08F8/00-8/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WPI (L)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP 9-110928 A (Yasuhiro KOIKE), 28 April, 1997 (28.04.97), Claims; Par. Nos. [0031], [0065] (Family: none)	1-5
X	JP 7-268031 A (Asahi Glass Co., Ltd.), 17 October, 1995 (17.10.95), Claims; Par. Nos. [0009], [0012], [0014], [0030] & US 5498657 A Claims; examples 1 to 30	1-6
X	JP 61-163904 A (Kuraray Co., Ltd.), 24 July, 1986 (24.07.86), Claims; page 4, lower right column; examples 1 to 5 & US 4678841 A Claims; column 3; examples 1 to 15	1-5

Further documents are listed in the continuation of Box C.

See patent family annex.

- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
26 April, 2004 (26.04.04)

Date of mailing of the international search report
18 May, 2004 (18.05.04)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Faxsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/JP2004/000406**C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 1205230 A (Joseph Robert Spraul et al.), 16 September, 1970 (16.09.70), Pages 1 to 4 & DE 1645530 A	1-9, 13-16

国際調査報告

国際出願番号 PCT/JP2004/000406

A. 発明の属する分野の分類（国際特許分類（IPC））

Int: C1' C08C19/00、C08C19/10、C08L101/00、C08F36/04、
C09D109/00、C09D5/00

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. C1' C08C19/00-19/44、C08F8/00-8/50

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI (L)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 9-110928 A (小池康博) 1997. 04. 28、特許請求の範囲、【0031】、【0065】 (ファミリーなし)	1-5
X	JP 7-268031 A (旭硝子株式会社) 1995. 10. 17、特許請求の範囲、【0009】、【0012】、【0014】、【0030】 & US 5498657 A、特許請求の範囲、実施例1-30	1-6

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

26. 04. 2004

国際調査報告の発送日

18. 5. 2004

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

佐藤 邦彦

4 J 8215

電話番号 03-3581-1101 内線 6825

C(続き) . 関連すると認められる文献	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
引用文献の カテゴリー*		
X	JP 61-163904 A (株式会社クラレ) 1986. 07. 24、特許請求の範囲、第4頁右下欄、実施例1-5 & US 4678841 A、特許請求の範囲、第3欄、実施例1-15	1-5
X	GB 1205230 A (Joseph Robert Spraul et. al.) 1970. 09. 16、第1頁-第4頁 & DE 1645530 A	1-9,13-16