

Análise do desempenho e dos tempos de computação

Reunião 23/05/2024

Sara Caetano, Daniel Moraes e Manuel Campagnolo

Índi

ce

- Determinação de parâmetros e desempenho do PyCCD
- Tempo de computação:
 - o Leitura dos dados
 - o Processamento do CCD
 - o Componentes mais exigentes em recursos computacionais
- Estimativa do número de pixels a serem processados para Portugal Continental e extrapolação do tempo de computação
- Estratégias para reduzir o tempo de computação:
 - o Leitura de dados
 - o Regressão LASSO / otimização do algoritmo
 - o Reaproveitar os segmentos já calculados
- Conclusões

Parâmetros do

CCD

• **'PEEK_SIZE'**: 6

• 'MIN_YEARS': 1

• 'DETECTION_BANDS': NDVI, Green, SWIR2

• 'TMASK_BANDS': Green, SWIR2

• 'LASSO_MAX_ITER': 25000

• 'ALPHA': 200

• 'CHISQUAREPROB': 0.999

ÚLTIMA REUNIÃO (10 000

pixels):					
pikeis/.	F1-Score	Omission Error	Commission error		
	[%]	[%]	[%]		
PyCCD					
THEIA/MAJA	78.57	22.20	20.64		
GEE/s2cloudles	71.48	33.97	22.09		
s					
eeCCD					
U GEE/s2cloudles a Manuel	ra C &lano4 Dar Campagnolo	iel Mor 15.37	21.73		

Moraes, D., Barbosa, B., Costa, H., Moreira, F. D., Benevides, P., Caetano, M., & Campagnolo, M. (2024). Continuous forest loss monitoring in a dynamic landscape of Central Portugal with Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 130, 103913. https://doi.org/10.1016/j. jag.2024.103913

Desempenho do CCD sobre dados de

referência Para melhorar o desempenho do modelo, foi feito uma série de testes para determinar o valor ideal do parâmetro alpha, que desempenha um papel fundamental na regressão Lasso usada no PyCCD. THEIA/MAJA

DESEMPENHO ATUAL DO CCD (10 000

pixe.	Ls)	•	
-			

F1-	Omissio	Commissio		
Score	n Error	n error		
[%]	[%]	[%]		
PyCCD				
82.34	15.90	18.38		
83.36	15.32	17.92		
eeCCD				
(Theia)	: alpha	= 21.73		
20	-			
	Score [%] PyCC 82.34 83.36 eeCC	Score n Error [%] PyCCD 82.34 15.90 83.36 15.32 eeCCD (Theia): alpha		

PyCCD (GEE): alpha = 2

REUNIÃO 23/05/2024: Sara Caetano, Daniel Moraes e Manuel Campagnolo

Desempenho do CCD sobre dados de referência

30 "RUNS" DE 10 000 PIXELS (BDR = 241 941

	Intervalo de confiança	Valor médio
Omissão	(15.99, 16.54)	16.26
Comissão	(19.62, 20.23)	19.93
F1 Score	(81.61, 82.12)	81.86

Aspetos computacionais do PyCCD

PELA

Robust

DF.

de

do

TEMPO

Aspetos computacionais: tempo de leitura dos

ficheiros GeoTiff
Testes fealizados numa máquina equipada com processador i7-8700 3.20GHz 6
Core(s) e 64 GB de RAM, em que o PERÍODO DE PROCESSAMENTO DO PYCCD foi de 03/2017 a 12/2021.

	Número de pixels	Tempos de leitura dos Tiffs com Xarray	
+	10 000	~ 10 mins	
pixels	100 000	~ 38 mins	
•	240 000	~ 116 mins	

Aspetos computacionais: tempo de

computação CCD

Testes realizados numa máquina equipada com processador i7-8700 3.20GHz 6 Core(s) e 64 GB de RAM, em que o PERÍODO DE PROCESSAMENTO DO PYCCD foi de 03/2017 a 12/2021.

Regressão linear

Função LASSO

'ALPHA'	'LASSO_MAX _ITER'	processamento CCD (10 000 pixels)	Desempenho do CCD
0	1000	15.39 mins	F1-score = 80.24% Omission error = 16.59% Commission error = 22.69%
20	1000	17.55 mins	F1-score = 81.82% Omission error = 16.22% Commission error = 20.05%
20	25000	18.18 mins	F1-score = 81.82% Omission error = 16.22% Commission error = 20.05%

- tempo
- desempenho
- + tempo
- + desempenho
- + tempo
- = desempenho

Aspetos computacionais: Estimativa do tempo total para

Portugal Continental
Testes realizados numa máquina equipada com processador i7-8700 3.20GHz 6

Caralal a 64 CB da DAM Àrea que é simultaneamente Floresta ou Mato na COS 2018 e na COSc 2023 (intersecção)

= 352 milhões e 116

mil pixels

Máscara

EXCLUÍ-SE: Pixels com NDVI>0.7 e pixels em que o NDVI subiu ou é iqual ao mês anterior (esta regra foi aplicada aos compósitos mensais da DGT).

Tempo de

	Número de pixels	computação do CCD (*)
Outubro 2023	56.409.0	58 dias
Novembro 2023	45.207.0	47 dias
Dezembro 2023	00	56 dias
	01 010 0	
Janeiro 2024	1 0 1 . 0	85 dias

(*) Os tempos estimados foram calculados usando o valor de referência de 15.39 mins para 10000 pixels (excluindo a leitura dos dados).

Estratégias a explorar para reduzir o tempo de computação

ASPETOS A CONSIDERAR QUE AUMENTAM O TEMPO DO CCD

· Armazenamento dos dados dos pixels na memória: embora a leitura se torne mais rápida ao ler um maior número de pixels, durante o processamento do CCD, a memória pode ficar sobrecarregada com os dados, resultando num processamento mais lento.

SOLUCÕES A EXPLORAR:

1. Guardar os dados lidos num ficheiro temporário no disco e processar o CCD em "batchs" de 10 000 pixels para acelerar o processo.

Número de pixels	Tempo de execução com os dados em memória (*)	Tempo de execução com os dados guardados no disco (.npy) (*	Tempo de execução apenas para o CCD usando dados guardados no disco (.npy)	
100 000 (*) estes te	16 horas e 30 mins mpos incluem a lei	5 horas e 44 mins tura dos tiffs + pi		
do CCD c/ alfa = 20				

Estratégias a explorar para reduzir o tempo

de computação processos responsáveis pela maior parcela do tempo de computação:

- Regressão Robust Iteratively Reweighted Least Squares: TMask ~20% do tempo de processamento
- Regressão LASSO: $\sim 77\%$ do tempo de processamento do CCD (função principal do

Estratégias a explorar para reduzir o tempo de computação

I. ADAPTAÇÃO DO ALGORITMO PYCCD:

- Reduzir chamadas à função LASSO
- Adicionar grupos de observações ao invés de observação individual

II.IDENTIFICAÇÃO DE PIXELS COM TRAJETÓRIA SEMELHANTE UTILIZANDO MACHINE LEARNING

- "Protótipo" de estratégia requer testes
- Treinar um classificador para agrupar pixels com trajetórias semelhantes
- Correr PyCCD para apenas um pixel representativo do grupo
- Transmitir informação (data da quebra, magnitude etc) do pixel representativo para o grupo

Estratégias a explorar para reduzir o tempo

de computação III. REAPROVEITAR OS SEGMENTOS JÁ CALCULADOS

- Correr o PyCCD apenas a partir da última data de quebra
- Evita correr o algoritmo desde o princípio sempre que se pretenda estender a série temporal

Potenciais adaptações tecnológicas a implementar na cadeia de produção da DGT

- Pré-processamento da leitura dos dados
- Os testes realizados devem considerar as capacidades das máquinas, como o número de cores e a velocidade do processador.
- Criar versão melhorada do algoritmo de forma a correr de forma eficiente nas máquinas da DGT.