

IoT Protocol Stack

as defined in RFC 4944, 6282, 7049, 7252, and 8724!

Georgios Z. PAPADOPOULOS, PhD, HDR Professor at IMT Atlantique, campus of Rennes, France

What is the Internet Protocol Suite (or TCP/IP)?

What is the Internet Protocol Suite (or TCP/IP)?

"a framework for organizing the set of standardized communication protocols used on the Internet and computer networks"

* Source: "Requirements for Internet Hosts -- Communication Layers", RFC 1122.

TCP/IP*

Application

Transport

Internet

Link

Here is the original TCP/IP model!

TCP/IP

4 Application

Transport

2 Internet

1 Link

- It consists of Four Layers, Application, Transport, Internet and Link Layer.
- And It is numbered from the bottom up, ...

TCP/IP

4 Application

Transport

Internet

Link

• BUT the direction depends on if the device is *Transmitting* or *Receiving* a packet.

TCP/IP

4 Application

Transport

Internet

1 Link

• The Internet Protocol Suite evolved through research and development funded over a period of time.

* Source: "Data Communications and Networking Book by Behrouz", A. Forouzan, Originally Published: 2001.

TCP/IP*

5 Application
5 Transport
6 Internet
7 Data Link
1 Physical

- In this process, the *specifics of protocol components and their layering changed*.
- Thus, one of the evolved versions of the Internet Protocol Suite is the TCP/IP Protocol Suite, that comes with 5 Layers.

* Source: "Data Communications and Networking Book by Behrouz", A. Forouzan, Originally Published: 2001.

TCP/IP*

Application

5 Application

Transport

4 Transport

Internet

3 Network

Link

2 Data Link

1 Physical

• In this version, there is one Extra Layer, and one Renamed Layer.

• The original Link Layer has been split into Data Link and Physical Layers.

- The original Link Layer has been split into Data Link and Physical Layers.
- The Internet Layer has been renamed to Network Layer.

Now, if we compare the Five-Layer TCP/IP Protocol Suite to the OSI Model, which consists of 7 layers ...

... the Application, Presentation and Session Layers are illustrated as Application Layer in the TCP/IP Model.

TCP/IP

5 Application

Transport

Network

Data Link

Physical

In the rest of this video, we will focus on the Five-Layer TCPIP Protocol Suite.

TCP/IP

Protocols

5 Application

HTTP

4 Transport

Network

Data Link

1 Physical

TCP/IP

Protocols

5 Application

Transport

Network

Data Link

Physical

HTTP

TCP - UDP

TCP/IP

Protocols

5 Application

Transport

Network

2 Data Link

Physical

HTTP

TCP - UDP

IPv4 - IPv6

TCP/IP

Protocols

5 Application

Transport

Network

Data Link

Physical

HTTP

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

TCP/IP

Protocols

5 Application

Transport

Network

Data Link

Physical

HTTP

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

Cables / NIC

TCP/IP Protocols

5 **Application**

Transport

Network

Data Link

Physical

HTTP

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

Cables / NIC

IEEE 802.3

- IEEE 802.3 defines the Physical layer and Data Link layer's Media Access Control (MAC) protocols of wired Ethernet.
- IEEE 802.11 specifies the set of MAC and Physical Layer protocols for Wi-Fi.

TCP/IP **Protocols** XML/JSON **Application HTTP Transport** TCP - UDP Network IPv4 - IPv6 IEEE 802.3 IEEE 802.11 **Ethernet / Wi-Fi Data Link Physical** Cables / NIC

• On top of the HTTP, there is typically very verbose Web Representation Formats such as XML or JSON to structure the information.

- The Protocols at the two bottom Layers are being standardized at the IEEE.
- The protocols from Layer 3 and above are being standardized at the **IETF** standardization organization.

By employing this Five-Layer TCP/IP Protocol Suite, two or more typical computers may communicate to carry data from one to another.

Throughput: Gbit/s MTU: 1000s of bytes

TCP/IP

Application

4 Transport

5

Network

2 Data Link

1 Physical

XML/JSON

HTTP

®

П

EEE EEE

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

Cables / NIC

Fi IEEE 802.3
IEEE 802.11

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Throughput: Gbit/s MTU: 1000s of bytes

Throughput: ~ 100 Kbit/s MTU: 100s of bytes

TCP/IP Mesh XML/JSON **® Application HTTP 6LoWPAN** П **Transport** TCP - UDP Network IPv4 - IPv6 EEE EEE **Ethernet / Wi-Fi Data Link** Cables / NIC **Physical**

> Throughput: Gbit/s MTU: 1000s of bytes

5

Throughput: ~ 100 Kbit/s MTU: 100s of bytes

TCP/IP

Application 5

Transport

Network

Data Link

Physical

Mesh

XML/JSON

HTTP

®

П

EEE EEE

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

Cables / NIC

Throughput: Gbit/s MTU: 1000s of bytes

MTU: 100s of bytes

TCP/IP **® Application** 5

Transport

Network

Data Link

Physical

HTTP 6LoWPAN TCP - UDP IPv4 - IPv6 **Ethernet / Wi-Fi** Cables / NIC

Mesh

Throughput: Gbit/s MTU: 1000s of bytes

XML/JSON

П

EEE EEE

TCP/IP ® LL

Application 5

Transport

Network

Data Link

Physical

XML/JSON

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

HTTP

П

HEEE C

Throughput: Gbit/s MTU: 1000s of bytes

Cables / NIC

MTU: 100s of bytes

TCP/IP

Application

Transport

Network

Data Link

Physical

5

* CBOR stands for Concise Binary

CBOR is a binary data serialization

format loosely based on JSON.

Object Representation.

Mesh

Throughput: Gbit/s MTU: 1000s of bytes

© L

Ш

XML/JSON

TCP - UDP

IPv4 - IPv6

Cables / NIC

Ethernet / Wi-Fi

HTTP

TCP/IP

Application

Transport

Network

Data Link

Physical

Throughput: ~ 100 Kbit/s MTU: 100s of bytes

IEEE 802.15.4 MAC IEEE 802.15.4 PHY

> Throughput: ~ 10 Kbit/s MTU: 10s of bytes

Throughput: ~ 100 Kbit/s MTU: 100s of bytes

TCP/IP

Transport

Network

Data Link

Physical

® LL

XML/JSON

HTTP

Cables / NIC

6LoWPAN

TCP - UDP

IPv4 - IPv6

Ethernet / Wi-Fi

Throughput: Gbit/s MTU: 1000s of bytes H

e.g., LoRa

Mesh

6LoWPAN

XML/JSON

TCP - UDP

IPv4 - IPv6

Cables / NIC

Throughput: Gbit/s

MTU: 1000s of bytes

Ethernet / Wi-Fi

HTTP

® LL

Ш

TCP/IP

Application

Transport

Network

Data Link

Physical

LoRa **NB-IoT** LPWAN e.g., LoRaWAN e.g., LoRa Throughput: ~ 10 Kbit/s

MTU: 10s of bytes

- * SCHC stands for Static Context Header Compression.
- SCHC is packet-oriented (i.e., flow-independent) and a generic framework, since it can be applied to other protocols in addition to IPv6, UDP, & CoAP.

Throughput: Gbit/s MTU: 1000s of bytes Throughput: ~ 100 Kbit/s MTU: 100s of bytes

Throughput: ~ 10 Kbit/s

MTU: 10s of bytes

IoT Protocol Stack

as defined in RFC 4944, 6282, 7049, 7252, and 8724!

Georgios Z. PAPADOPOULOS, PhD, HDR Professor at IMT Atlantique, campus of Rennes, France

