Optimization 1 — Tutorial 11

January 7, 2021

Dual Problem

Consider the primal problem

$$(P) \quad \min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, m,$

$$h_j(\mathbf{x}) = 0, \quad j = 1, 2, \dots, p,$$

$$\mathbf{x} \in X,$$

where $f, g_i, h_j, : \mathbb{R}^n \to \mathbb{R}$ are functions and $X \subseteq \mathbb{R}^n$. We define the Lagrangian $L: X \times \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R}$ of problem (P) as

$$L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) = f\left(\mathbf{x}\right) + \sum_{i=1}^{m} \lambda_{i} g_{i}\left(\mathbf{x}\right) + \sum_{j=1}^{p} \mu_{j} h_{j}\left(\mathbf{x}\right).$$

The dual problem is

(D)
$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^{m}, \boldsymbol{\mu} \in \mathbb{R}^{p}} q(\boldsymbol{\lambda}, \boldsymbol{\mu})$$
s.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \text{dom}(q)$,

where $q: \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R} \cup \{-\infty\}$ is defined as $q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ and

$$\mathrm{dom}\left(q\right) = \left\{ (\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \colon q\left(\boldsymbol{\lambda}, \boldsymbol{\mu}\right) > -\infty \right\}.$$

Weak Duality

For f^* the optimal value of (P) and q^* the optimal value of (D) we have $q^* \leq f^*$.

Strong Duality

Suppose that

- 1. (P) is a convex problem.
- 2. $f^* > -\infty$.
- 3. Generalized Slater's condition: there exists $\tilde{\mathbf{x}} \in X$ such that $g_i(\tilde{\mathbf{x}}) < 0$ for all i = 1, 2, ..., m and $h_j(\tilde{\mathbf{x}}) = 0$ for all j = 1, 2, ..., p.

Then $f^* = q^*$ and q^* is attained.

Problem 1

Let $f: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{x}) = \sum_{i=1}^k \mathbf{x}_{[i]}$ for $1 \le k \le n$, where $\mathbf{x}_{[i]}$ is the *i*-th largest coordinate in the vector $\mathbf{x} \in \mathbb{R}^n$. It is easy to verify that the value $f(\mathbf{x})$ is the value of the optimization problem

$$\max_{\mathbf{y} \in \mathbb{R}^n} \quad \mathbf{x}^T \mathbf{y}$$
s.t.
$$\mathbf{e}^T \mathbf{y} = k$$

$$0 < \mathbf{v} < \mathbf{e}$$

- (a) For any $\alpha \in \mathbb{R}$, show that $f(\mathbf{x}) \leq \alpha$ if and only if there exist $\lambda \in \mathbb{R}^n_+$ and $\mu \in \mathbb{R}$ such that $k\mu + \lambda^T \mathbf{e} \leq \alpha$ and $\mu \mathbf{e} + \lambda \geq \mathbf{x}$.
- (b) Let $\mathbf{Q} \succ 0$. Find a dual to the problem

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad \mathbf{x}^T \mathbf{Q} \mathbf{x}$$
s.t. $f(\mathbf{x}) \le \alpha$.

Solution

- (a) We will use duality:
 - The primal is a maximization problem, so we look at the Lagrangian of $-f(\mathbf{x})$:

$$L(\mathbf{y}, \boldsymbol{\lambda}, \mu) = -\mathbf{x}^T \mathbf{y} + \mu (\mathbf{e}^T \mathbf{y} - k) + \boldsymbol{\lambda}^T (\mathbf{y} - \mathbf{e}), \quad \mathbf{y} \ge 0, \boldsymbol{\lambda} \ge 0.$$

• The dual function is

$$\begin{split} q\left(\boldsymbol{\lambda},\boldsymbol{\mu}\right) &= \min_{\mathbf{y} \geq 0} L\left(\mathbf{y},\boldsymbol{\lambda},\boldsymbol{\mu}\right) = \min_{\mathbf{y} \geq 0} \left\{ -\mathbf{x}^T\mathbf{y} + \boldsymbol{\mu} \left(\mathbf{e}^T\mathbf{y} - \boldsymbol{k}\right) + \boldsymbol{\lambda}^T \left(\mathbf{y} - \mathbf{e}\right) \right\} \\ &= \min_{\mathbf{y} \geq 0} \left\{ \left(-\mathbf{x} + \boldsymbol{\mu}\mathbf{e} + \boldsymbol{\lambda} \right)^T\mathbf{y} - \boldsymbol{\lambda}^T\mathbf{e} - \boldsymbol{k}\boldsymbol{\mu} \right\} = \begin{cases} -\boldsymbol{\lambda}^T\mathbf{e} - \boldsymbol{k}\boldsymbol{\mu}, & \boldsymbol{\mu}\mathbf{e} + \boldsymbol{\lambda} \geq \mathbf{x}, \\ -\infty, & \text{otherwise.} \end{cases} \end{split}$$

• Thus, the dual problem is

$$\max_{\boldsymbol{\lambda} \in \mathbb{R}^n, \mu \in \mathbb{R}} \quad -\boldsymbol{\lambda}^T \mathbf{e} - k\mu$$
s.t.
$$\mu \mathbf{e} + \boldsymbol{\lambda} \ge \mathbf{x},$$

$$\boldsymbol{\lambda} \ge 0.$$

 \Leftarrow : Assume that there exist $\lambda \in \mathbb{R}^n_+$ and $\mu \in \mathbb{R}$ such that $k\mu + \lambda^T \mathbf{e} \leq \alpha$ and $\mu \mathbf{e} + \lambda \geq \mathbf{x}$. So there is a feasible solution to the dual, and from weak duality $-\alpha \leq -\lambda^T \mathbf{e} - k\mu \leq -f(\mathbf{x})$.

- \implies : Assume that $f(\mathbf{x}) \leq \alpha$. Notice that strong duality holds:
 - 1. The primal problem is linear (thus convex).
 - 2. The optimal value is finite since it is attained (Weierstrass theorem).
 - 3. Generalized Slater's condition is satisfied (for example for $\mathbf{y}_i = 1$ for all $1 \le i \le k$ and 0 otherwise).

Therefore, there exist $\lambda \in \mathbb{R}^n_+$ and $\mu \in \mathbb{R}$ such that $-k\mu - \lambda^T \mathbf{e} = -f(\mathbf{x}) \ge -\alpha$ and $\mu \mathbf{e} + \lambda \ge \mathbf{x}$ (optimal of the dual is attained).

- **(b)** We use section (a):
 - The problem is equivalent to

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^n, \boldsymbol{\lambda} \in \mathbb{R}^n, \boldsymbol{\mu} \in \mathbb{R}} \quad \mathbf{x}^T \mathbf{Q} \mathbf{x} \\ \text{s.t.} \quad k \boldsymbol{\mu} + \boldsymbol{\lambda}^T \mathbf{e} &\leq \alpha, \\ \boldsymbol{\mu} \mathbf{e} + \boldsymbol{\lambda} &\geq \mathbf{x}, \\ \boldsymbol{\lambda} &\geq 0. \end{aligned}$$

• The Lagrangian is

$$L(\mathbf{x}, \boldsymbol{\lambda}, \mu, \mathbf{y}, \eta) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{y}^T (\mathbf{x} - \mu \mathbf{e} - \boldsymbol{\lambda}) + \eta (k\mu + \mathbf{e}^T \boldsymbol{\lambda} - \alpha), \quad \mathbf{y}, \boldsymbol{\lambda} > 0, \eta > 0.$$

• The dual objective is

$$\begin{split} q\left(\mathbf{y},\eta\right) &= \min_{\mathbf{x} \in \mathbb{R}^{n}, \boldsymbol{\lambda} \in \mathbb{R}^{n}_{+}, \mu \in \mathbb{R}} L\left(\mathbf{x}, \boldsymbol{\lambda}, \mu, \mathbf{y}, \eta\right) \\ &= \min_{\mathbf{x} \in \mathbb{R}^{n}, \boldsymbol{\lambda} \in \mathbb{R}^{n}_{+}, \mu \in \mathbb{R}} \left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{y}^{T} \left(\mathbf{x} - \mu \mathbf{e} - \boldsymbol{\lambda}\right) + \eta \left(k \mu + \mathbf{e}^{T} \boldsymbol{\lambda} - \alpha\right)\right\} \\ &= \min_{\mathbf{x} \in \mathbb{R}^{n}} \left\{\mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{y}^{T} \mathbf{x}\right\} + \min_{\boldsymbol{\lambda} \in \mathbb{R}^{n}_{+}} \left(\eta \mathbf{e} - \mathbf{y}\right)^{T} \boldsymbol{\lambda} + \min_{\mu \in \mathbb{R}} \mu \left(k \eta - \mathbf{y}^{T} \mathbf{e}\right) - \alpha \eta, \end{split}$$

where the last equality follows from separability w.r.t. the primal variables $\mathbf{x}, \boldsymbol{\lambda}, \mu$.

• We solve the above:

$$-\min_{\mathbf{x}\in\mathbb{R}^n} \left\{ \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{y}^T \mathbf{x} \right\} = \left(-\frac{1}{2} \mathbf{Q}^{-1} \mathbf{y} \right)^T \mathbf{Q} \left(-\frac{1}{2} \mathbf{Q}^{-1} \mathbf{y} \right) + \mathbf{y}^T \left(-\frac{1}{2} \mathbf{Q}^{-1} \mathbf{y} \right) = -\frac{1}{2} \mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y}$$
 (unconstrained minimization of a continuously differentiable convex function, thus any stationary point is a global minimizer).

$$- \min_{\boldsymbol{\lambda} \in \mathbb{R}_{+}^{n}} (\eta \mathbf{e} - \mathbf{y})^{T} \boldsymbol{\lambda} = \begin{cases} 0, & \eta \mathbf{e} - \mathbf{y} \ge 0, \\ -\infty, & \text{otherwise.} \end{cases}$$
$$- \min_{\mu \in \mathbb{R}} \mu \left(k \eta - \mathbf{y}^{T} \mathbf{e} \right) = \begin{cases} 0, & k \eta - \mathbf{y}^{T} \mathbf{e} = 0, \\ -\infty, & \text{otherwise.} \end{cases}$$

• Therefore, the dual is

$$\max_{\mathbf{y} \in \mathbb{R}^n, \eta \in \mathbb{R}} \quad -\frac{1}{2} \mathbf{y}^T \mathbf{Q}^{-1} \mathbf{y} - \alpha \eta$$
s.t.
$$\eta \mathbf{e} - \mathbf{y} \ge 0,$$

$$k \eta - \mathbf{y}^T \mathbf{e} = 0,$$

$$\mathbf{y} \ge 0,$$

$$\eta \ge 0.$$

Problem 2

Consider the primal optimization problem

$$\min_{x,y \in \mathbb{R}} \quad x^4 - 2y^2 - y$$
s.t.
$$x^2 + y^2 + y \le 0$$

- (a) Is the problem convex?
- (b) Does there exist an optimal solution to the problem?
- (c) Write a dual problem and solve the dual problem.
- (d) Is the optimal value of the dual problem equal to the optimal value of the primal problem? Find the optimal solution of the primal problem.

Solution

(a) The problem is non-convex:

$$\nabla^2 f\left(\mathbf{x}\right) = \begin{pmatrix} 12x^2 & 0 \\ 0 & -4 \end{pmatrix} \Longrightarrow \nabla^2 f\left(0,y\right) = \begin{pmatrix} 0 & 0 \\ 0 & -4 \end{pmatrix} \prec 0.$$

Since the line (0, y) is feasible when $y \in [-1, 0]$, we have that the problem is non-convex (there are feasible points with ND Hessian matrix).

- (b) We need to show that the feasible set is bounded. We have $x^2 + y^2 + y = x^2 + \left(y + \frac{1}{2}\right)^2 \frac{1}{4}$ and we get a non-empty ball constraint.
- (c) The Lagrangian is

$$L(\mathbf{x}, \lambda) = x^4 - 2y^2 - y + \lambda (x^2 + y^2 + y), \quad \lambda \ge 0.$$

• From separability w.r.t. the primal variables x, y we can write

$$q\left(\lambda\right)=\min_{\mathbf{x}\in\mathbb{R}^{n}}L\left(\mathbf{x},\lambda\right)=\min_{x\in\mathbb{R}}x^{2}\left(x^{2}+\lambda\right)+\min_{y\in\mathbb{R}}\left\{ \left(\lambda-2\right)y^{2}+\left(\lambda-1\right)y\right\} .$$

- Since $\lambda \geq 0$ we have $x^2(x^2 + \lambda) \geq 0$, and x = 0 is the optimal solution with value 0.
- The problem with respect to y is an unconstrained minimization problem. Therefore, if a global minimum exists, then it is attained in a stationary point.
 - We notice that if $\lambda \leq 2$ then this is a minimization of a concave function thus no global minimum exists: we can take $y \to -\infty$ or $y \to \infty$ and see that $(\lambda 2) y^2 + (\lambda 1) y \to -\infty$.
 - If $\lambda > 2$ then this is a strictly convex function with a unique stationary point $y = \frac{1-\lambda}{2(\lambda-2)}$ with an objective value $-\frac{(1-\lambda)^2}{4(\lambda-2)}$.
 - Ovewrall

$$\min_{y \in \mathbb{R}} \left\{ (\lambda - 2) y^2 + (\lambda - 1) y \right\} = \begin{cases} -\infty, & \lambda \le 2, \\ -\frac{(1 - \lambda)^2}{4(\lambda - 2)}, & \lambda > 2. \end{cases}$$

• Therefore, the dual is

$$\max_{\lambda \in \mathbb{R}} -\frac{(1-\lambda)^2}{4(\lambda-2)}$$
s.t. $\lambda > 2$.

- To solve the dual, we notice that it is a continuously differentiable concave function over an open domain therefore, stationarity is a sufficient condition for optimality. The two stationary points are $\lambda = 1$ and $\lambda = 3$, and therefore the solution is $\lambda = 3$ (the only feasible point), with objective value of -1.
- (d) Since the primal problem is non-convex, there is no guarantee for strong duality. So we need to solve the primal problem in order to check for strong duality.
 - The objective satisfies $x^4 2y^2 y \ge -2y^2 y$. Additionally

$$\left\{y\in\mathbb{R}\colon x^4+y^2+y\leq 0\right\}\subseteq \left\{y\in\mathbb{R}\colon y^2+y\leq 0\right\}.$$

• So the optimal solution (if exists) of

$$(P') \quad \min_{x,y \in \mathbb{R}} \quad -2y^2 - y$$
s.t. $y^2 + y \le 0$,

is a lower bound on the optimal solution of the primal. Meaning, if (P) attains the optimal value of (P'), then this is also an optimal value of (P).

- We solve (P')
 - Since $y^2 + y \le 0$ if and only if $y \in [-1, 0]$, then the solution is attained in a stationary point or on the boundary.
 - Since the objective is concave, the minimizer is attained at the boundary.
 - -f(0) = 0 > f(-1) = -1. Therefore, (P') attains a minimum at y = -1, and from separability (P) attains a minimum at (0, -1) with value -1.
- Strong duality indeed holds.

Problem 3 (HW9, Problem 5(a))

Consider the problem

$$(P_{\alpha})$$
 $\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$
s.t. $\mathbf{e}^T \mathbf{x} = \alpha$,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{e} = (1, 1, ..., 1)^T \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ is a parameter. Prove that (P_α) has a unique solution if and only if $\text{Ker}(\mathbf{A}) \cap \text{Ker}(\mathbf{e}^T) = \{\mathbf{0}_n\}$.

Solution

- The problem is a continuously differentiable, convex and generalized Slater's condition is satisfied. So {optimal solutions} = {KKT points}. It is enough to find a unique feasible KKT point.
- The Lagrangian is

$$L(\mathbf{x}, \mu) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \mu (\mathbf{e}^T \mathbf{x} - \alpha), \quad \mu \in \mathbb{R}.$$

• The KKT conditions are

$$\begin{cases} 2\mathbf{A}^T \mathbf{A} \mathbf{x} - 2\mathbf{A}^T \mathbf{b} + \mu \mathbf{e} = \mathbf{0}_n & (i) \\ \mathbf{e}^T \mathbf{x} = \alpha & (ii) \end{cases}$$

• Writing the conditions in matrix form

$$\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x} \\ \mu \end{pmatrix} = \begin{pmatrix} 2\mathbf{A}^T\mathbf{b} \\ \alpha \end{pmatrix}.$$

- There is a unique feasible point iff $\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix}$ is invertible.
- \Longrightarrow : Assume $\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix}$ is invertible.
 - If $\mathbf{v} \in \text{Ker}(\mathbf{A}) \cap \text{Ker}(\mathbf{e}^T)$ then $2\mathbf{A}^T \mathbf{A} \mathbf{v} = \mathbf{0}_n$ and $\mathbf{e}^T \mathbf{v} = 0$.
 - Meaning $\begin{pmatrix} 2\mathbf{A}^T \mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ 0 \end{pmatrix} = \mathbf{0}_{n+1}$ and we must have $\mathbf{v} = \mathbf{0}_n$.
- \Leftarrow : Assume $\operatorname{Ker}(\mathbf{A}) \cap \operatorname{Ker}(\mathbf{e}^T) = \mathbf{0}_n$. Assume on the contrary that $\begin{pmatrix} 2\mathbf{A}_0^T \mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix}$ is not invertible.
 - 1. It is not invertible iff there exists $(\mathbf{v},t) \neq \mathbf{0}_{n+1}$ such that $\begin{pmatrix} 2\mathbf{A}^T\mathbf{A} & \mathbf{e} \\ \mathbf{e}^T & 0 \end{pmatrix}\begin{pmatrix} \mathbf{v} \\ t \end{pmatrix} = \mathbf{0}_{n+1}$.

5

- 2. This implies $2\mathbf{A}^T \mathbf{A} \mathbf{v} + t \mathbf{e} = \mathbf{0}_n$ and $\mathbf{e}^T \mathbf{v} = 0$. So $\mathbf{v} \in \text{Ker}(\mathbf{e}^T)$.
- 3. From 2 we have $2\mathbf{v}^T\mathbf{A}^T\mathbf{A}\mathbf{v} + 2t\mathbf{e}^T\mathbf{v} = \mathbf{0}_n$ and therefore $\mathbf{v}^T\mathbf{A}^T\mathbf{A}\mathbf{v} = 0$ which means $\mathbf{v} \in \text{Ker}(\mathbf{A})$.
- 4. From the assumption $\mathbf{v} = \mathbf{0}_n$ and so $t \neq 0$.
- 5. From 1 we derive $t\mathbf{e} = \mathbf{0}_n$, so t = 0 which contradicts 4.