Algebra II, Sheet 4

Remarks and Solutions

Jendrik Stelzner

Exercise 1.

(a)

The main problem with this exercise is that it can be understood in two ways:

- 1) We need show that a polynomial map $f: W \to V$ is G-equivariant if and only if the induced algebra homomorphism $f^*: \mathcal{P}(V) \to \mathcal{P}(W)$ is G-invariant.
- 2) We need to show that an arbitrary map $f \colon W \to V$ is covariant (i.e. both polynomial and G-equivariant) if and only if $f^* \colon \mathcal{P}(V) \to \mathcal{P}(W)$, $h \mapsto h \circ f$ is a well-defined algebra homomorphism which is also G-invariant.

We start by showing that 1) and 2) are actually equivalent. For this we need to show that a map $f \colon W \to V$ is polynomial if and only if $f^* \colon \mathcal{P}(V) \to \mathcal{P}(W)$, $h \mapsto h \circ f$ is a well-defined algebra homomorphisms. We have already seen in the lecture that f^* is a well-defined algebra homomorphism if f is polynomial.

Suppose on the other hand f^* is well-defined. Let v_1, \ldots, v_n be a basis of V. Then there exist unique functions $f_1, \ldots, f_n \colon V \to k$ with

$$f(w) = f_1(w)v_1 + \dots + f_n(w)v_n$$

for every $w \in W$. If $\varphi_1, \ldots, \varphi_n \in \mathcal{P}(V)$ denote the coordinate functions with respect to the basis v_1, \ldots, v_n then

$$f_i(w) = \varphi_i(f(w)) = f^*(\varphi_i)(w)$$

for every $W \in W$ and hence

$$f_i = f^*(\varphi_i) \in \mathcal{P}(V)$$

for every $i=1,\ldots,n$. This shows that f_1,\ldots,f_n are polynomial, and hence that f is polynomial.

We now show 1). For this we calculate for all $g \in G$, $h \in \mathcal{P}(V)$ and $w \in W$ that

$$(g.f^*)(h)(w)$$

$$= (g.f^*(g^{-1}.h))(w)$$

$$= f^*(g^{-1}.h)(g^{-1}.w)$$

$$= ((g^{-1}.h) \circ f)(g^{-1}.w)$$

$$= (g^{-1}.h)(f(g^{-1}.w))$$

$$= h(g.f(g^{-1}.w))$$

$$= h((g.f)(w)).$$

We note that for every two elements $v,v'\in V$ with $v\neq v'$ there exist some polynomial function $h\in \mathcal{P}(V)$ with $h(v)\neq h(v')$. Indeed, if we choose again a basis v_1,\ldots,v_n of V then it holds for $v=\sum_{i=1}^n a_iv_i$ and $v'=\sum_{i=1}^n a_i'v_i$ with $a_i,a_i'\in k$ that $a_i\neq a_i'$ for some i. For the coordinate functions $\varphi_1,\ldots,\varphi_n\in \mathcal{P}(V)$ with respect to the basis v_1,\ldots,v_n we therefore have that $\varphi_i(v)=a_i\neq a_i'=\varphi_i(v')$. So we may choose $h=\varphi_i$. We now find that

$$f^*$$
 is G -invariant $\iff g.f^* = f^*$ $\iff (g.f^*)(h)(w) = f^*(h)(w)$ for all $h \in \mathcal{P}(V), w \in W$ $\iff h((g.f)(w)) = h(f(w))$ for all $h \in \mathcal{P}(V), w \in W$ $\iff (g.f)(w) = f(w)$ for all $w \in W$ $\iff g.f = f$ $\iff f$ is G -invariant $\iff f$ is G -equivariant,

where we use again (as seen in the lecture and in the tutorial) that a map $f: W \to V$ is G-invariant if and only if it is G-equivariant.

(b)

We know from the lecture that $\mathcal{P}(\mathcal{M}_n(k))^{\mathrm{SL}_n(k)} = k[\det]$, hence that $\mathcal{P}(\mathcal{M}_n(k))^{\mathrm{SL}_n(k)}$ has as a basis the determinant powers \det^p with $p \geq 0$. The grading of $\mathcal{P}(\mathcal{M}_n(k))^{\mathrm{SL}_n(k)}$ is inherited from $\mathcal{P}(\mathcal{M}_n(k))$, and the determinant det is homogeneous of degree n by the Leibniz formula

$$\det = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) x_{1\sigma(1)} \cdots x_{n\sigma(n)}.$$

We thus find that the determinant power \det^p has homogeneous degree pn for all $p \geq 0$. We can now pull back the grading of $\mathcal{P}(M_n(k))^{\mathrm{SL}_n(k)}$ via the isomorphism

$$k[t] \to \mathcal{P}(\mathcal{M}_n(k))^{\mathrm{SL}_n(k)}, \quad p(t) \mapsto p(\det)$$

to a grading of k[t]; the basis element \det^p of $\mathcal{P}(M_n(k))^{\mathrm{SL}_n(k)}$ corresponds to the basis element t^p of k[t], which is therefore of homogeneous degree pn. This shows that

$$k[t]_{pn} = \langle t^p \rangle_k$$

for all $p \ge 0$, and $k[t]_d = 0$ otherwise. It follows in particular that

$$\dim k[t]_{pn}=1$$

for all $p \ge 0$, and dim $k[t]_d = 0$ otherwise. The Hilbert series of k[t] (with the above grading) is therefore given by the power series (in the variable x) given by

$$\sum_{p=0}^{\infty} x^{pn} = \sum_{p=0}^{\infty} (x^n)^p = \frac{1}{1 - x^n}.$$