Generatorne funckije

1. Definicija generatorne funkcije

Generatorna funkcija je u matematici algebarski izraz ili funkcija koja se koristi za prikazivanje beskonačnih nizova brojeva na kompaktan način. Obično se koristi za analizu i manipulaciju sekvenci u različitim oblastima, kao što su kombinatorika, teorija brojeva i analiza algoritama. Postoje različite vrste generatornih funkcija, ali najčešće su obične i eksponencijalne generatorne funkcije.

• Obična generatorna funkcija (OGF) sekvence a_0, a_1, a_2, \ldots je definisana kao:

$$G(a_n;x)=a_0+a_1x+a_2x^2+\cdots=\sum_{n=0}^\infty a_nx^n$$

• Eksponencijalna generatorna funkcija (EGF) sekvence a_0, a_1, a_2, \ldots je definisana kao:

$$E(a_n;x) = a_0 + a_1 rac{x}{1!} + a_2 rac{x^2}{2!} + \dots = \sum_{n=0}^{\infty} a_n rac{x^n}{n!}$$

2. Uloga Generatornih Funkcija

Generatorne funkcije igraju ključnu ulogu u matematičkoj analizi sekvenci jer pružaju alate za proučavanje ponašanja nizova i rešenja diferencijalnih i rekurzivnih jednačina. Koriste se za:

- Analizu kombinatoričkih struktura: računanje broja kombinatoričkih objekata kao što su particije, permutacije i kombinacije.
- **Proučavanje nizova:** generatorne funkcije pojednostavljuju analizu rekurzivnih nizova, omogućavajući direktno pronalaženje obrazaca.
- Analizu algoritama: omogućavaju analitičko određivanje složenosti algoritama putem računanja asimptotskog ponašanja sekvenci.

3. Operacije nad Generatornim Funkcijama

Generatorne funkcije su izuzetno korisne zbog svojih algebarskih svojstava koja omogućavaju izvođenje različitih operacija. Najčešće operacije uključuju:

- **Skaliranje:** množenje svake komponente niza konstantom c.
- **Desno pomeranje:** pomeranje nizova udesno, dodavanjem ili oduzimanjem faktora x^k.

- **Sabiranje i množenje:** kombinovanje nizova sabiranjem i množenjem odgovarajućih generatornih funkcija.
- Diferenciranje: diferencijacija generatorne funkcije može da se koristi za manipulaciju sekvence brojeva.

3.1 Skaliranje

Skaliranje podrazumeva množenje svake komponente niza konstantom c, što odgovara množenju generatorne funkcije konstantom:

$$c\cdot G(a_n;x) = \sum_{n=0}^{\infty} (c\cdot a_n) x^n$$

3.2 Desno Pomeranje

Desno pomeranje sekvence za kkk mesta odgovara množenju generatorne funkcije sa x^k:

$$x^k \cdot G(a_n;x) = \sum_{n=0}^\infty a_n x^{n+k}$$

Ovo može biti korisno za dodavanje ili pomeranje članova u nizu.

3.3 Sabiranje i Množenje

Sabiranje generatornih funkcija odgovara sabiranju odgovarajućih sekvenci:

$$G(a_n;x)+G(b_n;x)=\sum_{n=0}^{\infty}(a_n+b_n)x^n$$

Množenje generatornih funkcija odgovara konvoluciji sekvenci:

$$G(a_n;x)\cdot G(b_n;x) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}
ight) x^n$$

3.4 Diferenciranje

Diferenciranjem obične generatorne funkcije $G(a_n;x)$ po x pomera svaki član sekvence unapred:

$$G'(a_n;x) = \sum_{n=1}^\infty n a_n x^{n-1}$$

Ova operacija može biti korisna za pronalaženje obrazaca u sekvencama.

4. Primer Primene Operacija nad Generatornim Funkcijama

Razmotrićemo primer sekvence koja predstavlja broj parnih i neparnih permutacija u skupu sa n elemenata. Recimo da su nam potrebne sledeće operacije:

- 1. **Formiranje sekvence:** Naša sekvenca je a_n = n za svaki n.
- 2. **Generatorna funkcija:** Generatorna funkcija sekvence a_n je:

$$G(a_n;x) = \sum_{n=0}^{\infty} n x^n$$

3. **Diferenciranje generatorne funkcije:** Koristeći diferenciranje, možemo odrediti sekvencu prvih razlika $b_n = a_{n+1} - a_n$ koja nam pomaže da pronađemo obrazac u sekvenci.

Koristeći različite operacije nad generatornim funkcijama, možemo efikasno analizirati ponašanje sekvenci, pronaći obrazac ili rekurzivnu relaciju koja opisuje niz, i to sa velikom preciznošću.

Uopštena Binomna Teorema

Binomna teorema pruža način da se izraz (1+x)^n razvije u niz, gdje je n prirodan broj. Ova teorema može se proširiti i za slučajeve kada n nije samo pozitivan cio broj, već i negativan, pa čak i realan broj. Ovaj proširen oblik naziva se **uopštena binomna teorema**.

1. Osnovna Binomna Teorema

U standardnom obliku, binomna teorema glasi:

$$(1+x)^n = \sum_{k=0}^n inom{n}{k} x^k$$

gdje je "n nad k" binomni koeficijent, koji se računa kao:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

i predstavlja broj načina na koje se može izabrati k elemenata iz skupa od n elemenata.

Ovaj izraz razvija (1+x)^n u niz monoma, gdje je eksponent n prirodan broj. Međutim, za mnoge primjene, potrebno je proširiti ovu teoremu i na slučajeve kada n nije prirodan broj.

2. Uopštena Binomna Teorema za Realne Eksponente

Kada n može biti proizvoljan realan broj, opšta binomna teorema se može izraziti kao beskonačan red:

$$(1+x)^k = \sum_{n=0}^\infty inom{k}{n} x^n$$

gde je "k nad n" generalizovani binomni koeficijent definisan kao:

$$egin{pmatrix} k \ n \end{pmatrix} = rac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$

Ovaj rezultat omogućava nam da razvijemo izraz za (1+x)^k čak i kada k nije pozitivan cio broj.

Primjer: Razvoj izraza za $(1 + x)^{-2}$:

Za eksponent -2, koristimo formulu:

Posmatrajmo razvoj izraza:

$$(1+x)^{-2}=\sum_{n=0}^{\infty}inom{-2}{n}x^n$$

Prema definiciji uopštenog binomnog koeficijenta, prvi nekoliko članova reda izgledaju ovako:

$$(1+x)^{-2} = 1 - 2x + 3x^2 - 4x^3 + \cdots$$

3. Primjena Uopštene Binomne Teoreme

Uopštena binomna teorema omogućava rešavanje različitih zadataka prebrojavanja i kombinatorike u situacijama kada imamo beskonačne nizove ili kada želimo da dobijemo formulu za izraze koji nisu jednostavni za eksplicitno množenje.

Primjer: Ekspanzija Izraza (1 - λx)^(-n)

Kada je potrebno razviti izraz poput $(1-\lambda x)^{\Lambda}(-n)$, gdje je λ realan broj, možemo koristiti prethodno navedenu formulu:

$$(1-\lambda x)^{-n}=\sum_{k=0}^{\infty} {-n \choose k} (-\lambda x)^k$$

Ova formula je korisna u primjeni u matematičkoj analizi i drugim oblastima koje uključuju beskonačne redove.

Uopštena binomna teorema može se koristiti u mnogim oblastima matematike, uključujući analizu funkcija, rješavanje diferencijalnih jednačina i teoriju vjerovatnoće.

Povezanost Uopštene Binomne Teoreme i Generatornih Funkcija

Konkretno, izraz (1+x)^n možemo posmatrati kao generatrisku funkciju koja generiše niz binomnih koeficijenata. Ako razvijemo (1+x)^n, dobijamo:

$$(1+x)^n=\sum_{k=0}^\infty inom{n}{k}x^k$$

Ovdje, svaka stepen funkcija x^k ima koeficijent "n nad k", koji predstavlja broj načina da se iz skupa od n elemenata izabere k elemenata. Tako, generatorna funkcija (1+x)ⁿ generiše sve binomne koeficijente za fiksni n, sa k koji varira kroz nenegativne brojeve.

Kada proširimo binomnu teoremu na slučaj kada n nije prirodan broj, dobijamo beskonačne nizove, što nam omogućava da generišemo dodatne nizove koji ne završavaju konačnim polinomom. Generatorna funkcija za negativne eksponente, na primjer, može izgledati ovako:

$$(1+x)^{-n}=\sum_{k=0}^{\infty}inom{-n}{k}x^k$$

Ovaj beskonačni stepeni red može se koristiti za generisanje svih potrebnih koeficijenata za razne vrijednosti k, pri čemu nam generatorna funkcija omogućava računanje koeficijenata u beskonačnom nizu. Ovo je naročito korisno za probleme u kojima tražimo koeficijent uz određeni stepen x^k, kao što je slučaj sa prebrojavanjem izbora ili rasporeda objekata u kombinatorici.

5. Zadaci

5.1 Zadatak 1

Rijesiti rekurentnu relaciju: $a_n = 2a_{n-1} + 1$ sa pocetnim uslovom pomocu generatornih funkcija.

Definisemo generatornu funkciju:
 Generatorna funkcija A(x) za niz {a_n} je definisana kao:

$$A(x) = \sum_{n=0}^{\infty} a_n x^n$$

• Izrazimo rekurentnu relaciju u smislu generatorne funkcije:

Pomnozimo obje strane rekurentne relacije sa x^n i sumiramo po svim vrijednostima $n \ge 1$:

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} (2a_{n-1} + 1)x^n$$

• Rastavimo izraz na desnoj strani:

Desna strana moze da se rastavi na dva dijela:

$$\sum_{n=1}^{\infty} a_n x^n = 2 \sum_{n=1}^{\infty} a_{n-1} x^n + \sum_{n=1}^{\infty} x^n$$

Pojednostavimo izraz:

Prvi dio na desnoj strani mozemo napisati kao:

$$2x\sum_{n=1}^{\infty}a_nx^n=2xA(x)$$

Drugi dio je geometrijski niz:

$$\sum_{n=1}^{\infty} x^n = \frac{x}{1-x}$$

Dakle imamo:

$$A(x) - a_0 = 2xA(x) + \frac{x}{1-x}$$

• Zamijenimo pocetni uslov:

Pocetni uslov je $a_0^{}=1$, pa dobijamo:

$$A(x) - 1 = 2xA(x) + \frac{x}{1-x}$$

• Izdvojimo A(x) i rjesavamo dalje za A(x):

$$A(x) - 2xA(x) = 1 + \frac{x}{1-x}$$

$$A(x) (1 - 2x) = 1 + \frac{x}{1-x}$$

$$A(x) = \frac{1 + \frac{x}{1-x}}{(1-2x)}$$

$$A(x) = \frac{1}{1-2x} + \frac{x}{(1-x)(1-2x)}$$

Rastavljanje izraza na parcijalne razlomke:

$$\frac{x}{(1-x)(1-2x)} = \frac{A}{1-x} + \frac{B}{1-2x}$$

Pomnozimo obje strane s (1-x)(1-2x) da dobijemo:

$$x = A(1 - 2x) + B(1 - x)$$

Dalje, poznatim postupkom dobijamo sistem:

$$A + B = 0$$
$$-2A - B = 1$$

Rjesavajuci ovaj sistem, dobijamo: A = -1, B = 1

Dakle:

$$\frac{x}{(1-x)(1-2x)} = \frac{-1}{1-x} + \frac{1}{1-2x}$$

Tako da je generatorna funkcija sada:

$$A(x) = \frac{1}{1-2x} + \frac{1}{1-2x} - \frac{1}{1-x}$$

$$A(x) = \frac{2}{1-2x} - \frac{1}{1-x}$$

Razvijamo u niz:

Sada mozemo koristiti poznati oblik generatornih funkcija da bismo dobili eksplicitnu formulu za a_n . Genereatorna funkcija A(x) moze se prosiriti tako sto oba clana razvijamo u niz:

Poznata suma za geometrijski niz pomocu koje cemo razvijati clanove generatorne funkcija A(x) jeste:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r} za |r| < 1$$

Izraz $\frac{1}{1-2x}$ razvija se kao geometrijski niz:

$$\frac{1}{1-2x} = \sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 2^n x^n$$

Izraz $\frac{1}{1-x}$ takodje se razvija kao geometrijski niz:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

Stoga mozemo zapisati A(x) kao:

$$A(x) = \sum_{n=0}^{\infty} (2 \cdot 2^{n} - 1)x^{n} = \sum_{n=0}^{\infty} (2^{n+1} - 1)x^{n}$$

Iz ovoga dobijamo da je:

$$a_n = 2^{n+1} - 1$$

• Zakljucak:

Eksplicitna formula za niz $\{a_n\}$ omogucava pronalazenje direktne vrijednosit za a_n za bilo koji indeks n bez potreve da racunamo sve prethodne clanove niza. Na primjer ako nam je potrebna vrijednost a_{1000} eksplicitna formula omogucava da odmah dobijemo rezultat, dok bi rekurentna relacija zahtijevala da izracunamo sve prethodne clanove, sto bi bilo vremenski zahtjevno.

Zadatak 2:

Data je rekurentna relacija $b_n = 2b_{n-1} + 5$

sa početnim uslovom $b_0 = 3$.

Korišćenjem generatorne funkcije odrediti zatvorenu formu za bn.

Postavljamo generatornu funkciju za niz bn:

$$B(x) = \sum_{n=0}^{\infty} b_n x^n.$$

Počinjemo od rekurentne relacije, pomnožimo je sa x_n I sumiramo za n >= 1:

$$\sum_{n=1}^{\infty} b_n x^n = \sum_{n=1}^{\infty} (2b_{n-1} + 5) x^n.$$

Desnu stranu rastavimo na 2 dijela:

$$\sum_{n=1}^{\infty} b_n x^n = 2 \sum_{n=1}^{\infty} b_{n-1} x^n + 5 \sum_{n=1}^{\infty} x^n.$$

Prvi zbir je:

$$2\sum_{n=1}^{\infty}b_{n-1}x^n=2xB(x).$$

Drugi zbir predstavlja geometrijski niz:

$$5\sum_{n=1}^{\infty}x^n=5\cdot\frac{x}{1-x}=\frac{5x}{1-x}.$$

Generatorna funkcija se dalje zapise kao:

$$B(x)-b_0=2xB(x)+rac{5x}{1-x}.$$

Posto je b0 = 3:

$$B(x)-3=2xB(x)+\frac{5x}{1-x}.$$

Kada izdvojimo B(x):

$$B(x)(1-2x) = 3 + \frac{5x}{1-x}$$

$$B(x) = \frac{3}{1-2x} + \frac{5x}{(1-x)(1-2x)}$$

Ovo predstavlja zatvorenu formu za B(x) u obliku razlomka. Dalje se za pojednostavljivanje drugog člana koriste parcijalne frakcije:

$$\frac{5x}{(1-x)(1-2x)} = \frac{A}{1-x} + \frac{B}{1-2x}$$

Računamo A I B:

$$5x = A(1-2x) + B(1-x)$$

$$5x = (A+B) + (-2A-B)x$$

Riješimo sisteme jednačina:

$$-2A - B = 5$$

$$A + B = 0$$

$$-2A - (-A) = 5$$

$$-A = 5 \Rightarrow A = -5$$

$$B = -(-5) = 5$$

Vrijednosti su A = -5 I B = 5 Sada B(X) glasi:

$$B(x) = \frac{3}{1 - 2x} + \frac{-5}{1 - x} + \frac{5}{1 - 2x}$$

$$B(x) = \left(\frac{3}{1-2x} + \frac{5}{1-2x}\right) - \frac{5}{1-x}$$

$$B(x)=\frac{8}{1-2x}-\frac{5}{1-x}$$

Sada ćemo razviti svaki član u geometrijski niz.

Prvi član:

$$rac{8}{1-2x} = 8\sum_{n=0}^{\infty} (2x)^n = \sum_{n=0}^{\infty} 8 \cdot 2^n x^n$$
 $rac{8}{1-2x} = \sum_{n=0}^{\infty} 8 \cdot 2^n x^n$

Drugi član:

$$rac{5}{1-x} = 5 \sum_{n=0}^{\infty} x^n = \sum_{n=0}^{\infty} 5 x^n$$

Konačno rješenje:

$$B(x) = \sum_{n=0}^\infty (8\cdot 2^n - 5) x^n$$

$$b_n = -5 + 8 \cdot 2^n.$$

5.2 Zadatak: Generisanje parnih brojeva i filtriranje

Napiši generator koji generiše niz prirodnih brojeva počevši od 0. Zatim napiši funkciju koja koristi ovaj generator da bi dobila samo prvih n parnih brojeva većih od 10.

Napravi generator funkciju *natural_numbers_generator()* koja generiše sve prirodne brojeve počevši od 0.

Napravi funkciju even_numbers_greater_than_10(n), koja:

 $Koristi\ generator\ natural_numbers_generator(),$

Filtrira i uzima samo brojeve veće od 10 koji su parni,

Vraća prvih n takvih brojeva.

Rešenje:

```
# 1. Generator koji generiše sve prirodne brojeve
lusage

def natural_numbers_generator():
    num = 0

while True:
    yield num
    num += 1

# 2. Funkcija koja uzima samo parne brojeve veće od 10
lusage

def even_numbers_greater_than_10(n):
    results = []

for number in natural_numbers_generator():
    if number > 10 and number % 2 == 0:
        results.append(number)
    if len(results) == n:
        break

return results

# Test primer

print(even_numbers_greater_than_10(5)) # Očekivani izlaz: [12, 14, 16, 18, 20]
```