MATH425 Assignment 1

Elliott Hughes

March 18, 2022

W3Q3

We wish to show that $\sum_{n=0}^{\infty} f_n(x)$, $f_n(x) = x^{2n}(1-x)^2$ converges uniformly on $x \in [0,1]$. For $x \in [0,1)$ this series is a geometric series with common ratio x^2 and initial term $(1-x)^2$. Since $|x^2| < 1$ on this interval this implies that the series converges to the sum

$$\frac{(1-x)^2}{1-x^2} = \frac{(1-x)(1-x)}{(1-x)(1+x)} = \frac{1-x}{1+x}$$

This function f(x) = (1-x)/(1+x) is continuous on [0,1). At x=1 every term of the series is zero and (1-1)/(1+1)=0, so the series converges pointwise to the limiting function f(x)=(1-x)/(1+x) for all $x \in [0,1]$. Note that $(1-x)x^{2n} \ge 0$ for all $x \in [0,1]$ and for all $n \in N$, so the sequence of partial sums of f_n is monotone. Then, since f is continuous on [0,1] and [0,1] is a compact subset, it follows that convergence of the series is uniform by the partial converse presented on page 11 of the notes.

W4Q3

(a)

Consider a convergent sequence $\{f_n\}_{n=1}^{\infty}$ in $\mathscr{C}[-T,T]$, with $f_n(T)=f_n(-T)=0$ for all $n\in\mathbb{N}$. Since convergence in $\mathscr{C}[-T,T]$ is equivalent to uniform convergence on this interval, it is clear that $\lim_{n\to\infty}f_n(T)=0$ as $f_n(T)=0$ $\forall n\in\mathbb{N}$. Therefore, since T is a limit point of [-T,T] it follows that $\lim_{x\to T}f(x)=0$ (by the result on page 9). By an identical argument it also follows that $\lim_{x\to T}f(x)=0$. Then since f is continuous on [-T,T] it follows that $f(-T)=\lim_{x\to T}f(x)=\lim_{x\to T}f(x)=f(T)=0$. Thus $f\in\mathscr{C}[-T,T]$ and f(-T)=f(T)=0.

Consider a sequence $\{f_n\}_{n=1}^{\infty} \subset V_T$ which is convergent in $\mathcal{C}(\mathbb{R})$. Then each f_n can be written

$$f_n(x) = \begin{cases} f_n^{V_T}(x), & x \in [-T, T] \\ 0 & x \notin [-T, T] \end{cases}$$

Where each $f_n^{V_T}(x)$ is a continuous and bounded function from [-T,T] to $\mathbb C$ and $f_n^{V_T}(-T)=f_n^{V_T}(T)=0$. Note this is required for continuity of f_n as if $f_n^{V_T}(T)\neq 0$ then clearly there exists some $\epsilon=|f_n^{V_T}(T)|$ such that for all $\delta>0$ there exists some $x_*>T$ with $|x_*-T|<\delta$ but $|f_n(x_*)-f_n(T)|=\epsilon$ (an identical argument requires that $f_n^{V_T}(-T)=0$). Since $\{f_n\}_{n=1}^\infty$ is uniformly convergent in $\mathcal C(\mathbb R)$ it is clear that $\{f_n^{V_T}\}_{n=1}^\infty$ must be uniformly convergent on [-T,T]. Then by the result above $\{f_n^{V_T}\}_{n=1}^\infty$ converges to some f^{V_T} with $f^{V_T}(-T)=f^{V_T}(T)=0$. Therefore the function

$$f(x) = \begin{cases} f^{V_T}(x), & x \in [-T, T] \\ 0 & x \notin [-T, T] \end{cases}$$

Is in V_T . Furthermore since $||f_n - f||_{\infty} = ||f_n^{V_T} - f^{V_T}||_{\infty}$ (as for $x \notin [-T, T]$, $|f_n(x) - f(x)| = 0$) and $f_n^{V_T}$ converges uniformly to f^{V_T} it follows that f_n converges uniformly to f. Thus for any sequence $f_n \in V_T$ it follows that this function converges in $\mathcal{C}(\mathbb{R})$ to $f \in V_T$. Therefore V_T is closed.

(b)

Consider the series $\sum_{n=1}^{\infty} f_n(x)$ on \mathbb{R} where

$$f_n(x) = \begin{cases} 0, & x < n \\ \frac{1}{n}x - 1, & n \le x < n + \frac{1}{2} \\ -\frac{1}{n}x + \frac{n+1}{n}, & n + \frac{1}{2} \le x < n + 1 \\ 0, & x \ge n + 1 \end{cases}$$

Note that the maxima of the absolute value of each f_n is clearly 1/2n. Then for $\forall \epsilon > 0$ there exists $N \in \mathbb{N}$ such that $1/N < \epsilon$ by the Archimedean property. For $k, m \geq N$ we have

$$\left\| \sum_{n=1}^{k} f_n(x) - \sum_{n=1}^{m} f_n(x) \right\|_{\infty} \le \frac{1}{2N} < \epsilon$$

So this series is Cauchy in $\mathcal{C}(\mathbb{R})$ and it consequently must converge as this space is complete. Note that each of these partial sums $\sum_{n=1}^m f_n(x)$ with $m \in \mathbb{N}$ is equal to zero for all x > m+1 so each term in this sequence is contained in $\bigcup_{T>0} V_T$. However for any V_T there exists some $m' \in \mathbb{N}$ such that m' > T and consequently $f_{m'} \notin V_T$. Therefore the limit of this series is not in $\bigcup_{T>0} V_T$ and so this space is not complete.