1 Векторная алгебра

1.1 Системы координат на плоскости и в пространстве.

Определение. Координатной осью называется ориентируемая прямая, имеющая начало отсчета 0 и снабженная масштабом E.

Определение. Система координат — прямоугольная, если угол между осями координат прямой.

Определение. **Декартова прямоугольная система координат** — система координат с одинаковым масштабом по всем осям.

Определение. Система координат на плоскости называется **полярной**, если положение каждой точки задаётся полярным углом φ и полярным радиусом ρ .

Связь прямоугольной и полярной систем:

$$\begin{split} x &= \rho \cos \varphi, \ \ y = \rho \sin \varphi \\ \rho &= \sqrt{x^2 + y^2}, \ \cos \varphi = \frac{x}{\rho}, \ \sin \varphi = \frac{y}{\rho} \end{split}$$

Определение. Система координат в пространстве называется **ц**или**ндрической**, если положение каждой точки задаётся полярным углом φ , полярным радиусом ρ и высотой над плоскостью z.

Связь прямоугольной и цилиндрической систем такая же, как прямоугольной и полярной.

Определение. Система координат называется сферической, если положение каждой точки определяется радиальным расстоянием ρ , азимутальным φ и зенитным Θ углами.

Связь прямоугольной и сферической систем:

$$x = \rho \cos \varphi \cos \Theta$$
, $y = \rho \sin \varphi \cos \Theta$, $z = \rho \sin \Theta$

1.2 Векторы и основные действия с ними *(сложение, умножение на чис- ло)*.

Определение. Направленные отрезки эквивалентны, если они:

- 1. Лежат на параллельных прямых
- 2. Сонаправлены
- 3. Имеют одинаковые длины

Определение. Вектор — класс эквивалентности направленных отрезков

Определение. Сумма двух векторов \vec{a} и \vec{b} — вектор $\vec{c} = \vec{a} + \vec{b}$, полученный по правилу треугольника или параллелограмма

Определение. Произведением вектора \vec{a} на число λ является вектор $\vec{b}=\lambda\vec{a}$, такой что:

1.
$$|\vec{b}| = |\lambda| |\vec{a}|$$

2.
$$\lambda > 0 \Rightarrow \vec{a} \uparrow \uparrow \vec{b}$$

3.
$$\lambda < 0 \Rightarrow \vec{a} \uparrow \downarrow \vec{b}$$

4.
$$\lambda = 0 \Rightarrow \vec{b} = \vec{0}$$

1.3 Векторное введение координат. Координаты вектора.

Для любого вектора \vec{a} , заданного на оси l существует единственное представление $\vec{a}=x_a\cdot\vec{e}$, где $x_a\in\mathbb{R}$ и $|\vec{e}|=1$. Тогда \vec{e} — базис и x_a — координата вектора \vec{a} в базисе $\{\vec{e}\}$

1.4 Свойства основных действий над векторами.

1.
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
 — коммутативность

2.
$$(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c}) = \vec{a} + \vec{b} + \vec{c}$$
 — ассоциативность

3.
$$\exists \vec{0} : \vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$$
 — нейтральный элемент

4.
$$\forall \vec{a} \ \exists (-\vec{a}) : \vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$$
 — наличие обратного элемента

5.
$$\alpha(\beta \vec{a}) = \beta(\alpha \vec{a}) = (\alpha \beta) \vec{a}$$
 — ассоциативность

6.
$$(\alpha + \beta)\vec{a} = \alpha\vec{a} + \beta\vec{a}$$
 — дистрибутивность

7.
$$\alpha(\vec{a}+\vec{b})=\alpha\vec{a}+\alpha\vec{b}$$
 — дистрибутивность

1.5 Скалярное произведение векторов и его свойства.

Определение. Угол между \vec{a} и \vec{b} — угол $\leq 180^\circ$, заключенный между представителями соответствующих классов эквивалентности, отложенных от одной точки.

Определение. Скалярное произведение — число, равное: $(\vec{a}, \vec{b}) = |\vec{a}| |\vec{b}| \cos \varphi$

Свойства скалярного произведения:

1.
$$(\vec{a}, \vec{b}) = (\vec{b}, \vec{a})$$

2.
$$(\vec{a}, \vec{b}) = 0 \Leftrightarrow \vec{a} \perp \vec{b}, \quad \vec{a}, \vec{b} \neq 0$$

3.
$$(\vec{a}, \vec{b}) = |\vec{a}| \cdot \Pi p_{\vec{a}}^{\perp} \vec{b} = |\vec{b}| \cdot \Pi p_{\vec{b}}^{\perp} \vec{a}$$

4.
$$(\lambda \vec{a} + \mu \vec{b}, \vec{c}) = (\lambda \vec{a}, \vec{c}) + (\mu \vec{b}, \vec{c})$$

1.6 Векторное произведение и его свойства.

Определение. Тройка $\{\vec{a}, \vec{b}, \vec{c}\}$ — **правая**, если если располагаясь по направлению вектора \vec{c} наблюдатель видит, что кратчайший поворот от \vec{a} к \vec{b} происходит по часовой стрелке.

Определение. Векторное произведение \vec{a} и \vec{b} — вектор \vec{c} , такой что:

- 1. $|\vec{c}| = |\vec{a}||\vec{b}|\sin\angle(\vec{a},\vec{b})$
- 2. $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- 3. $\{\vec{a}, \vec{b}, \vec{c}\}$ правая тройка

Свойства векторного произведения:

1.
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
, $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} \parallel \vec{b}$

2.
$$(\alpha \vec{a}) \times \vec{b} = \alpha (\vec{a} \times \vec{b}) = \vec{a} \times (\alpha \vec{b})$$

3.
$$(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$$

1.7 Смешанное произведение векторов и его свойства.

Определение. Смешанное произведение: $(\vec{a}, \vec{b}, \vec{c}) = \vec{a} \cdot (\vec{b} \times \vec{c})$

Векторы \vec{a}, \vec{b} и \vec{c} компланарны тогда и только тогда, когда их смешанное произведение равно нулю. Свойства смешанного произведения:

1.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$$

2.
$$\vec{a} \cdot (\vec{c} \times \vec{b}) = -\vec{a} \cdot (\vec{b} \times \vec{c})$$

3.
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

1.8 Двойное векторное произведение и его свойства.

1.9 Замена координат при переходе к новой системе отсчета. Матрица перехода.

Переход от одного базиса $\{\vec{e_1},\vec{e_2}\}$ к другому базису $\{\vec{f_1},\vec{f_2}\}$:

$$\begin{cases} \vec{f_1} = t_1^1 \vec{e_1} + t_1^2 \vec{e_2} \\ \vec{f_2} = t_2^1 \vec{e_1} + t_2^2 \vec{e_2} \end{cases}$$

$$\begin{pmatrix} \vec{f_1} & \vec{f_2} \end{pmatrix} = \begin{pmatrix} \vec{e_1} & \vec{e_2} \end{pmatrix} \begin{pmatrix} t_1^1 & t_1^2 \\ t_2^1 & t_2^2 \end{pmatrix}$$

Определение. T называется матрица перехода

С учётом переноса начала координат:

$$X = A + T \cdot X'$$

Парралельный перенос: $T=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A=\begin{pmatrix} \alpha^1 \\ \alpha^2 \end{pmatrix}$

Сжатие-растяжение: $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, $A = \vec{0}$

Поворот на угол $\varphi:T=\begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}, A=\vec{0}$

2 Аналитическая геометрия

3 Алгебраические структуры. СЛАУ

3.1 Алгебраические структуры: группа, кольцо, поле

Определение. **Полугруппа** — множество G с заданной на нём бинарной ассоциативной замкнутой операцией \circ , т.е.

$$(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$$

Определение. Группа — полугруппа, где выбран нейтральный элемент и для каждого элемента есть обратный:

- 1. Нейтральный элемент $e:e\circ g=g\circ e=g$
- 2. Обратный элемент: $\forall g \in G \ \exists g^{-1} \ g \circ g^{-1} = g^{-1} \circ g = e$

Определение. Абелева группа — группа с коммутативной операцией, т.е.

$$\forall g_1, g_2 \in G \ g_1 \circ g_2 = g_2 \circ g_1$$

Определение. Кольцо — множество с двумя бинарными операциями $\{R, `+`, `\cdot`\}$, которое является абелевой группой относительно сложения, полугруппой относительно умножения и эти операции согласованны (дистрибутивны):

$$r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3; \quad (r_2 + r_3) \cdot r_1 = r_2 \cdot r_1 + r_3 \cdot r_1$$

Определение. Поле — множество с двумя бинарными операциями $\{R, `+`, `\cdot`\}$, где эти операции согласованны и:

- 1. $\{K, `+`\}$ абелева группа
- 2. $\{K \setminus \{0\}, `\cdot`\}$ абелева группа

3.2 Алгебраические структуры: линейное пространство, алгебра

Определение. Модуль над кольцом R — абелева группа $\{G, `+`\}$ с операцией $R \times G \to G$, записываемой как rg и для которой выполняется следующее:

- 1. $(r_1 + r_2)g = r_1g + r_2g$
- 2. $r(g_1 + g_2) = rg_1 + rg_2$
- 3. $(r_1r_2)g = r_1(r_2g)$

Определение. Линейное пространство — модуль над кольцом, которое также является полем.

Определение. Вектор — элемент линейного пространства.

Определение. Алгебра — модуль над кольцом, где сам модуль также является кольцом.

3.3 Поле комплексных чисел

$$i^2 := -1$$

$$\mathbb{C} = \{a + bi : \forall a, b \in \mathbb{R}\}$$

Модуль комплексного числа c: $|c|=r=\sqrt{a^2+b^2}$, если c=a+bi

Аргумент комплексного числа c: $\varphi=\arg(c)=\arg(a+bi)=2\arctan\left(\frac{b}{\sqrt{a^2+b^2}+a}\right)$

Tогда $c = r(\cos \varphi + i \sin \varphi)$

Дополнение комплексного числа c записывается как $\bar{c} = \overline{a + bi} = a - bi$

3.4 Линейное пространство. Примеры линейных пространств.

Дано выше. *(3.2, стр. 5)*

Примеры:

1.
$$X = \{x = (\xi^1 \ldots \xi^n)^T, \xi^i \in \mathbb{R}\}$$
 (или \mathbb{C})

2.
$$\mathcal{P}_n = \{$$
многочлены $p(t) : \deg p(t) \leq n, n \in \mathbb{N} \}$

3.5 Линейная зависимость векторов. Основные леммы о линейной зависимости.

Определение. Линейной комбинацией называется следующее выражение:

$$\alpha_1 x_1 + \ldots + \alpha_n x_n$$

где $\{x_i\}_{i=1}^n$ — вектора, $\{\alpha_i\}_{i=1}^n$ — коэффициенты.

Определение. Набор векторов $\{x_i\}_{i=1}^n$ называется линейнонезависимым, если не существует его линейной комбинации, где не все коэффициенты равны 0, а сама комбинация равна 0_X :

Иначе набор называется линейно зависимым

Пемма 1. Любой набор, содержащий нулевой вектор, является линейнозависимым.

Лемма 2. Набор, содержащий линейнозависимый поднабор, является линейнозависимым.

Пемма 3. Любой поднабор линейнонезависимого набора также является линенйнонезависимым.

Пемма 4. Набор векторов линейнозависим тогда и только тогда, когда хотя бы один из векторов набора выражается линейной комбинацией остальных.

$$\exists k \in \{1 \dots n\} : x_k = \sum_{i=1, i \neq k}^n \alpha^i x_i \Leftrightarrow \{x_i\}_{i=1}^n - J3$$

3.6 Базис и размерность линейного пространства.

Определение. Набор векторов называется **полным** в линейном пространстве X, если любой вектор этого пространства можно выразить как линейную комбинацию этого набора:

$$\forall x \in X \quad \exists \{\alpha_i\}_{i=1}^n \quad x = \sum_{i=1}^n \alpha^i x_i$$

Определение. Набор векторов называется базисом пространства X, если он является полным и ЛНЗ.

Определение. Линейное пространство называется конечномерным, если в нём существует конечный полный набор векторов

Определение. **Размерность пространства** $\dim X$ — количество векторов в его базисе.

3.7 Изоморфизм линейных пространств.

Определение. Изоморфизм — биекция, сохраняющая линейность, установленная между двумя линейными пространствами над одним и тем же полем:

$$\begin{cases} x_1 \leftrightarrow y_1 \\ x_2 \leftrightarrow y_2 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 \leftrightarrow y_1 + y_2 \\ \alpha x_1 \leftrightarrow \alpha y_1 \end{cases}$$

3.8 Подпространства линейного пространства: определение, примеры, линейная оболочка, линейное многообразие.

Определение. Подпространство линейного пространства X — замкнутое множество $L \subset X$

Пример. 1. X и $\{0\}$ называются тривиальными подпространствами

- 2. Прямая и плоскость, содержащие начало координат подпространство E_3
- 3. $\mathbb{R}^{m < n}$ подпространство \mathbb{R}^n
- 4. Множество симметричных $n \times n$ матриц подпространство \mathbb{R}^n_n
- 5. Множество полиномов с членами только чётных степеней подпространство \mathcal{P}_n

Определение. Линейная оболочка набора векторов — множество всех линейных комбинаций этих векторов:

$$\mathcal{L}(x_1 \dots x_n) = \left\{ \sum_{i=1}^k \alpha^i x_i \mid \forall \alpha_1 \dots \alpha_n \right\}$$

Определение. Линейное многообразие, параллельное подпространству L линейного пространства X — множество M:

$$M = \{ y \in X : y = x_0 + x \quad \forall x \in L \}, \ x_0 \in X$$

3.9 Подпространства линейного пространства: сумма и пересечение подпространств, прямая сумма, дополнение.

Определение. Пересечение подпространств L_1 и L_2 — множество L', такое что:

$$L' = \{x \in X : x \in L_1 \text{ if } x \in L_2\}$$

Определение. Сумма подпространств L_1 и L_2 — множество L'', такое что:

$$L' = \{ x \in X : x = x_1 + x_2 \ \forall x_1 \in L_1, x_2 \in L_2 \}$$

Определение. Прямая сумма подпространств L_1 и L_2 — множество $L=L_1\dot{+}L_2$, такое что:

$$L = \{x \in X : x! = x_1 + x_2 \ \forall x_1 \in L_1, x_2 \in L_2\}$$

Определение. Если $X = L_1 \dot{+} L_2, L_1$ — дополнение L_2 до X

3.10 Линейные алгебраические системы. Геометрическое исследование систем. Теорема Крамера *(геометрическая формулировка)*.

Определение.

$$\begin{cases} \alpha_1^1 \xi^1 + \alpha_2^1 \xi^2 + \ldots + \alpha_n^1 \xi^n = \beta^1 \\ \alpha_1^2 \xi^1 + \alpha_2^2 \xi^2 + \ldots + \alpha_n^2 \xi^n = \beta^2 \\ \vdots \\ \alpha_1^m \xi^1 + \alpha_2^m \xi^2 + \ldots + \alpha_n^m \xi^n = \beta^m \end{cases}$$

— линейная алгебраическая система, α — коэффициенты, β — свободные члены, ξ — неизвестные

Определение. Решение системы — такой набор, при подстановке которого равенства становятся верными.

Определение. Совместная система — система, у которой есть решение.

Определение. Определенная система — совместная система, которая имеет единственное решение.

Определение. Однородная система — система, у которой все свободные члены равны 0.

Запишем в векторной форме: $\sum_{i=1}^{n} a_i \xi^i = b$

Теорема 1. Если m=n и $\{a_i\}_{i=1}^n-\Pi\!H\!3$, система совместна и определена, т.е. есть единственное решение.

3.11 Геометрическое исследование систем. Теорема Кронекера-Капелли *(геометрическая формулировка)* и ее следствия.

Рассм
торим случай, когда $\dim \mathcal{L}\{a_1\dots a_n\}=r\leq n$. Тогда можно занумеровать a так, что
 $\{a_i\}_{i=1}^r$ — ЛНЗ и переписать систему как:

$$a_1\xi^1 + \ldots + a_r\xi^r = b - a_{r+1}\xi^{r+1} - \ldots - a_n\xi^n$$

Теорема 2. $b \in \mathcal{L} \Leftrightarrow$ система совместна (можно все ξ справа занулить и представить b через левую часть). Если r = m, система определена, иначе — нет.

Следствие. Однородная система:

- 1. Всегда совместна, т.к. существует тривиальное решение
- 2. Имеет нетривиальные решения тогда и только тогда, когда r < m
- 3. Является неопределенной тогда и только тогда, когда m < n

3.12 Альтернатива Фредгольма для линейной системы уравнений.

Теорема 3. *Если* m = n, *mo*:

- 1. Или однородная система имеет только тривиальное решение, и неоднородная система совместна и определена для любого b
- 2. Или существуют нетривиальные решения однородной системы и неоднородная система совместна не при любых b

Пояснение: в первом случае $\{a_i\}$ ЛНЗ $\Rightarrow \forall b$ можно выразить как линейную комбинацию $\{a_i\}$ единственным образом. Во втором случае $\{a_i\}$ ЛЗ \Rightarrow не любой b можно выразить как линейную комбинацию $\{a_i\}$.

3.13 Фундаментальная система решений линейной однородной системы. Общее решение однородных и неоднородных систем.

Определение. Фундаментальной системой решений линейной однородной системы уравнений называется любая система из n-r линейнонезависимых решений этой системы, то есть базис пространтва решений однородной системы.

Любое решение можно представить в виде общего решения:

$$z = z' + \sum_{i=1}^{n} c_i x_i,$$

где $\{x_i\}_{i=1}^n - \Phi \mathrm{CP}.$

4 Полилинейные формы. Определители

4.1 Перестановки.

Определение. **Перестановкой** из a_1, a_2, \ldots, a_n из первых n чисел натурального ряда называется расположение их в некотором фиксированном порядке.

Определение. Перестановка 1, 2, ..., n — базовая.

Определение. Транспозиция перестановки t^p_q — обмен местами двух элементов этой перестановки.

Определение. **Беспорядок (инверсия)** в перестановке — когда большее число стоит перед меньшим.

Определение. Чётность числа беспорядков в перестановке 🖨 чётность перестановки

4.2 Отображения. Линейные формы. Сопряженное пространство.

Определение. Отображение из X в Y $(f:X\to Y)$ сопоставляет каждому $x\in X$ элемент $y\in Y$

Определение. Линейная форма — линейное отображение из линейного пространства X в линейное пространство Y:

$$f(x_1 + x_2) = f(x_1) + f(x_2), \quad f(\alpha x) = \alpha f(x)$$

Определение. $f = g \Leftrightarrow (f, x) = (g, x) \ \forall x \in X$

Определение. θ — нуль-форма, если $(\theta, x) = 0 \ \forall x \in X$

Определение. $h = f + g \Leftrightarrow (h, x) = (f, x) + (g, x) \ \forall x \in X$

Определение. $l = \alpha f \Leftrightarrow (l, x) = \alpha(f, x) \ \forall x \in X$

Определение. Пространство, сопряженное с X — пространство линейных форм, заданных на X и обозначаемое X^*

4.3 Полилинейные формы (ПЛФ): основные определения, тензор, эквивалентное задание ПЛФ.

Примечание. Т.к. в этом разделе много сумм, не будем их писать:

$$\sum_{j=1}^{n} \varphi_j \xi^j \equiv \varphi_j \xi^j$$

Определение. Полилинейная форма — функция от p векторов и q линейных форм, принимающая значения из поля K:

$$U: X^p \times X^{*^q} \to K,$$

линейная по всем аргументам:

$$U(x_1 \dots \alpha x_i' + x_i'' \dots x_n, y^1 \dots y^n) = \alpha U(x_1 \dots x_i' \dots x_n, y^1 \dots y^n) + U(x_1 \dots x_i'' \dots x_n, y^1 \dots y^n),$$
 такая ПЛФ имеет валентность (p,q)

Определение. Тензор ПЛФ W валентности (p,q) — набор из n^{p+q} чисел:

$$w_{i_1...i_q}^{j_1...j_q} = W(e_{i_1} \dots e_{i_p}, f^{j_1} \dots f^{j_q})$$

$$\forall t \in \{1 \dots p\} \ i_t \in \{1 \dots n\}; \quad \forall t \in \{1 \dots q\} \ j_t \in \{1 \dots n\},$$

ранг этого тензора (p,q).

 Π римечание. Для удобства можно писать так: $w_{i_1\dots i_q}^{j_1\dots j_q}=w_{\vec{i}}^{\vec{j}}$

Теорема 4. Задание $\Pi \Pi \Phi$ эквивалентно заданию ее тензора в паре базисов пространств X и X^*

4.4 Базис линейного пространства ПЛФ валентности (p, q).

Определение. U + V и λU заданы так же, как для линейных форм.

Теорема 5. Множество всех ПЛФ валентности (p,q) — линейное пространство Ω^p_q над полем K.

Рассмотрим набор ПЛФ ${s_1...s_n \brace t_1...t_n}W$, такой что:

$${}^{s_1 \dots s_p}_{t_1 \dots t_p} W(x_1 \dots x_p, y^1 \dots y^q) = \xi_1^{s_1} \xi_2^{s_2} \dots \xi_p^{s_p} \eta_{t_1}^1 \eta_{t_2}^2 \dots \eta_{t_q}^q,$$

т.е. $\vec{t}W$ — произведение s_i -ой координаты i-того вектора и t_i -ой координаты i-той формы. Запишем в виде тензора:

$$\vec{\vec{t}} \vec{w}_{\vec{i}}^{\vec{j}} = \delta_{i_1}^{s_1} \delta_{i_2}^{s_2} \cdots \delta_{i_p}^{s_p} \delta_{t_1}^{j_1} \delta_{t_2}^{j_2} \cdots \delta_{t_q}^{j_q},$$

т.е. $\vec{s}_{\vec{t}} w_{\vec{i}}^{\vec{j}} = 1$ только если $\vec{s} = \vec{i}$ и $\vec{t} = \vec{j}$, иначе 0.

Теорема 6. $\{\vec{\vec{s}}W\} - \mathit{fasuc}\,\Omega_q^p$

 $\dim\Omega_q^p=n^{p+q}$

4.5 Произведение полилинейных форм и его свойства.

$$W=U\cdot V\Leftrightarrow W(x_1\dots x_{p_1+p_2},y^1\dots y^{q_1+q_2})=U(x_1\dots x_{p_1},y^1\dots y^{q_1})\cdot V(x_1\dots x_{p_2},y^1\dots y^{q_2})$$
 Свойства:

1.
$$U \cdot V \neq V \cdot U$$

2.
$$U \cdot (V \cdot W) = (U \cdot V) \cdot W = U \cdot V \cdot W$$

3.
$$U \cdot \Theta_{\Omega_{q_2}^{p_2}} = \Theta_{\Omega_{q_1}^{p_1}} \cdot V = \Theta_{\Omega_{q_1+q_2}^{p_1+p_2}}$$

4.
$$U \cdot (V + W) = U \cdot V + U \cdot W$$

5.
$$(\alpha \cdot U) \cdot V = U \cdot (\alpha \cdot V)$$

6. Пусть $\{f^i\}_{i=1}^n$ — базис X^* . Тогда набор

$$s_1...s_pW = f^{s_1}\cdots f^{s_p}$$

образует базис в Ω_0^p :

$$^{s_1...s_p}W = f^{s_1}(x_1)\cdots f^{s_p}(x_p) = \xi_1^{s_1}\cdots \xi_p^{s_p}$$

7. Более общий случай: $\{f^i\}_{i=1}^n$ — базис X^* , $\{\hat{x}^i\}_{i=1}^n$ — базис X^{**} , тогда в Ω_q^p базис:

$$_{t_1\dots t_q}^{s_1\dots s_p}W=f^{s_1}\cdots f^{s_p}\cdot \hat{x}_{t_1}\cdots \hat{x}_{t_q}$$

4.6 Симметричные и антисимметричные ПЛФ. Операции симметризации и антисимметризации.

Определение. ПЛФ $U\in\Omega^p_0$ симметричная, если порядок аргументов не влияет на значение U:

$$\forall (j_1 \dots j_p)$$
 — перестановки $U(x_1 \dots x_p) = U(x_{j_1} \dots x_{j_p})$

Определение. ПЛФ $U\in\Omega_0^p$ антисимметричная, если любая транспозиция её аргументов меняет знак значения U, т.е. произвольная перестановка меняет знак столько раз, сколько в ней транспозиций:

$$\forall (j_1 \dots j_p) -$$
 перестановки $U(x_1 \dots x_p) = (-1)^{[j_1 \dots j_p]U(x_{j_1} \dots x_{j_p})},$

где $[j_1 \dots j_p]$ — чётность перестановки.

Примечание. Пространство симметричных ПЛФ — подпространство Ω^p_0 и обозначается Σ^p Примечание. Пространство антисимметричных ПЛФ — подпространство Ω^p_0 и обозначается Λ^p

Определение. Симметризация — операция получения симметричной ПЛФ из произвольной ПЛФ, называется Sym и выполняется следующим образом:

Sym
$$W = U$$
, $U(x_1 \dots x_p) = \frac{1}{p!} \sum_{(j_1 \dots j_p)} W(x_{j_1} \dots x_{j_p})$

Определение. Антисимметризация — операция получения антисимметричной ПЛФ из произвольной ПЛФ, называется Asym и выполняется следующим образом:

Sym
$$W = V$$
, $V(x_1 \dots x_p) = \frac{1}{p!} \sum_{(j_1 \dots j_p)} (-1)^{[j_1 \dots j_p]} W(x_{j_1} \dots x_{j_p})$

Свойства Sym и Asym:

- 1. Линейность
- 2. Дистрибутивность
- 3. Композиция:

$$Sym Sym = Sym$$
, $Asym Asym = Asym$, $Sym Asym = 0$, $Asym Sym = 0$

4.7 Базис линейного пространства антисимметричных $\Pi \Pi \Phi$ валентности (p,0).