La deliberación como método

PASOS GENERALES DEL MÉTODO¹

M.O.S.I.S

M.O.S.I.S UI 2.0

Analysis Ético

Fabio J. Matos Nieves Eduardo Miranda Figueroa

PASOS ADAPTADOS AL DISEÑO EN INGENIERÍA

I Primera etapa del diseño: identificación del problema/oportunidades.

1. Los hechos

1a. Hechos: ¿Quiénes son los interesados y quiénes los afectados?

Interesados o agentes	Afectados positivamente	Afectados negativamente
1. Cliente	1. Cliente	1. Cliente
2. Ingenieros	2. Ingenieros	2. Ingenieros
3. Investigadores	3. Investigadores	3.

1b. Hechos: ¿Qué se propone? ¿Cuáles son las especificaciones, limitaciones, necesidades e intereses de los interesados (manifiestan sus valores)².

Crear un nuevo interfaz de usuario para el microscopio M.O.S.I.S lo cual ultiliza los botones del sistema y refleja las especificaciones actuales del microscopio.

2. Los valores

2a. Identificación del valor

¿Cuál es el valor o valores que busca el cliente-ciudadano, o la comunidad en el proyecto? ¿Qué valores ve el ingeniero en el proyecto? ¿Son valores intrínsecos (fin) o valores instrumentales?

¹ Adaptación de Diego Gracia, en Juan Pablo Faúndez Allier, La bioética de Diego Gracia, Triascastela, 2013, p. 283. Y de Jorge José Ferrer, *Deber y Deliberación: Una Invitación a la Bioética*, CEP, Mayagüez, 2007, pp. 109-110.

² Dym, Little, Orwin, Engineering Design: p. 21.

Valores del cliente-ciudadano, jefe o comunidad		Valores que encuentra el ingeniero (tomando en cuenta posibles afectados)	
Valores intrínsecos	Valores instrumentales	Valores intrínsecos	Valores instrumentales
1. Conocimiento	1. Desarrollo Económico	1. Conocimiento	1. Preservación del Medio Ambiente
2. Honestidad	2. Eficiencia	2. Creatividad	2. Sostenibilidad
3. Objetividad	3. Réplicabilidad	3. Rigor	3.
4. Responsabilidad	4. Automatización	4. Confianza	4.

2b. Identificación de valores en conflicto

Conflictos entre valores intrínsecos (fin en sí mismos)		
Valor intrínseco 1: Rigor	Valor intrínseco 2: Creatividad	
Valor intrínseco 1:	Valor intrínseco 2:	
Valor intrínseco 1:	Valor intrínseco 2:	

Conflictos entre valores intrínsecos (fin en sí mismos) e instrumentales		
Valor intrínseco: Honestidad	Valor instrumental: Desarrollo Económico	
Valor intrínseco:	Valor instrumental:	
Valor intrínseco:	Valor instrumental:	

Conflictos entre valores instrumentales			
Valor instrumental 1: Imparciabilidad	Valor instrumental 2: Desarrollo Economico		
Valor instrumental 1:	Valor instrumental 2:		
Valor instrumental 1:	Valor instrumental 2:		

3. Identificación de posibles cursos de acción

3a. Identificación de curso extremos

Extremo A	Extremo B
Hacerlo un interfaz de usuario nuevo	No hacer el proyecto
Valores lacerados: Honestidad	Valores lacerados: Rigor

3b. Identificación de cursos intermedios

Solución intermedia A
Recrear el interfaz de usuario y arreglar los módulos que se puedan transferir.

Ventajas (consecuencias)	Desventajas (consecuencias)	
1. La cantidad de tiempo de familiarizarse con	1. Todo el progreso actual del interfaz actual se	
el código fuente ya creado disminuye	pierde	
2. Integrar los botones del sistema con el	2. El código actual se tiene que modificar para	
interfaz de usuario se facilita	poder implementar el interfaz nuevo.	
3. Las limitaciones del diseño actual se limitan.	3. El sistema nuevo puede tener limitaciones lo	
	cual interfaz actual no tiene	

Solución intermedia B			
Arreglar el interfaz de usuario existente y alinearlo con el estatus actual del proyecto.			
Ventajas (consecuencias) Desventajas (consecuencias)			
1. La cantidad de código lo cual se tiene que	1. Limitaciones del interfaz actual puedan		
escribir disminuye drásticamente	persistir		
2. Aspectos que funcionan bien del interfaz	2. El periodo de tiempo para familiarizarse con		
actual siguen funcionando	el código existente es mucho más alto.		
3.	3.		

Solución intermedia C		
No hacer el projecto		
Ventajas (consecuencias) Desventajas (consecuencias)		
1. El interfaz actual sigue funcionando cómo	1. El microscopio es inoperable bajo el agua	
está.		
2.	2. Funcionalidad incompleto en términos de	
	los requisitos para poder ser usado para	
	investigación	
3.	3.	

4. Curso de acción

Entre los buenos (intermedios) escoger el mejor, que podría ser una combinación de ellos. Lesiona menos los valores. Pone los valores instrumentales al servicio de los valores intrínsecos.

_		
	Solución optima	
	Solucion optima	
	Solucion Intermedia A	
	Solucion Intermedia A	

5. Evaluación de la óptima con las pruebas éticas

Prueba (HARM)

¿Hay algún daño? ¿Hace menor daño que las alternativas? ¿Es el remedio peor que la enfermedad?

La alternativa seleccionada no tiene daño hacerla ni alternativa intermedia B. Pero alternativa C previene que el microscopio se complete y por ende el estudio de corales y otras especies marinas no se estudiarán con el mismo nivel de eficiencia que con el microscopio hecho.

Prueba (REVERSIBILITY)

¿Pensaría que es una buena opción si yo estuviera entre los afectados?

"Ponerse en los zapatos de los otros"

El interfaz de usuario original se puede restaurar y por ende es completamente reversible.

Prueba (PUBLICITY)

¿Mi decisión afirmaría o negaría mi integridad personal y los valores/virtudes en los que creo? ¿Discutiría y defendería la opción en un foro público?

Es defendible ya que el estado actual es no funcional.

Prueba (TIME)

¿Tomaría la misma decisión si pudiera retrasarla unas horas o unos días?3

Quisas cambiaría a la alternativa intermedia B pero siempre haría el proyecto.

Prueba (LEGALITY)

¿Es legal este curso de acción?⁴

Crear un interfaz de usuario para un proyecto de investigación es legal.

Prueba (Códigos de ética profesional)

¿Cumple con los cánones de ética profesional que rigen la ingeniería? IEEE, CIAPR, etc.

Si cumple con los cánones de ética de la IEEE.

³ Gracia, en Faúndez Allier, p. 284

⁴ Gracia, en Faúndez Allier, p. 284.

II Segunda etapa del diseño: invención y desarrollo de la solución/producto.

1. Los hechos

1a. Hechos: ¿Quiénes son los interesados y quiénes los afectados?

Interesados o agentes	Afectados positivamente	Afectados negativamente
1. Cliente	1. Cliente	1. Cliente
2. Ingenieros	2. Ingenieros	2. Ingenieros
3. Investigadores	3. Investigadores	3.

1b. Hechos: Lista de especificaciónes técnicas⁵: costos, tiempo (eficiencia), tecnología disponible, materiales, seguridad, sostenibilidad, asuntos ambientales, etc.

- Costo
- Tiempo
- Asuntos Ambientales
- Consumo de Energia

2. Los valores

2(a). Identificar valores detrás de las especificaciones especificaciones técnicas

Especificación técnica	Valores
Tiempo	Eficiencia
Costo	Software de código abierto
Asuntos Ambientales	Medio Ambiente
Consumo de Energía	Medio Ambiente

2(b). Identificación de conflictos de valores: los llamados "trade-offs".

Ejemplos:

Software de código abierto vs Eficiencia

2(c). Identificar otros valores en juego:

⁵ A. Van Gorp, "Ethical considerations in engineering design processes," IEEE Technology and Society Magazine, Vol. 20, No. 3, 2001, p. 16. R. Devon and I. Van de Poel, "Design ethics: the social ethics paradigm," International Journal of Engineering Education, Vol. 20, No. 3, 2004, pp. 461-462, 465.

3. Identificación de posibles cursos de acción

3a. Identificación de curso extremos

Extremo A	Extremo B
Hacer el código completamente propietario	Hacer el código completamente abierto
Valores Lacerados: Software de código abierto	Valores lacerados: Eficiencia

3b. Identificación de cursos intermedios

Solución intermedia A		
Interfaz de usuario usando PyQt6		
Ventajas (consecuencias)	Desventajas (consecuencias)	
1. Nativo	1. Partes del código fuente es propietario	
2. Establecido y frecuentemente actualizado	2. Versión bastante reciente de Qt. Puede ser problemática para el Hardware.	
3. Fácil de modificar el tema de color	3.	

Solución intermedia B		
Interfaz de usuario web		
Ventajas (consecuencias)	Desventajas (consecuencias)	
1. Mas fácil para crear el interfaz de usuario	1. Consume más potencia que ser nativo	
2. Abstrayé aspectos de crear un interfaz nativo	2. Ambiente segregado hace difícil controlar el	
	hardware	
3.	3. Consume más recursos del hardware.	

Solución intermedia C		
Interfaz de usuario usando "Electron" o "React Native"		
Ventajas (consecuencias)	Desventajas (consecuencias)	
1. Mas fácil para crear el interfaz de usuario	1. Consume muchos más recursos que el	
	alternativo nativo	
2. Mas cerca al hardware.	2. Todavia abstraye hardware, necesitando	
	interfaces para usar el hardware.	
3. Consume menos recursos que la	3. Consume más potencia que el alternativo	
implementación web	nativo.	

4. Curso de acción

Entre los buenos (intermedios) escoger el mejor, que podría ser una combinación de ellos. Lesiona menos los valores. Pone los valores instrumentales al servicio de los valores intrínsecos.

Solución optima	
Solucion intermedia A	

5. Evaluación de la óptima con las pruebas éticas

Prueba (HARM)

¿Hay algún daño? ¿Hace menor daño que las alternativas?

¿Es el remedio peor que la enfermedad?

Minimiza el consumo de potencia, pero sacrifica un poco el principio de código abierto.

Prueba (REVERSIBILITY)

¿Pensaría que es una buena opción si yo estuviera entre los afectados?

"Ponerse en los zapatos de los otros"

El código se puede revertir a la implementación original completamente.

Prueba (PUBLICITY)

¿Mi decisión afirmaría o negaría mi integridad personal y los valores/virtudes en los que creo? ¿Discutiría y defendería la opción en un foro público?

Mi decisión afirmará mi integridad personal en su mayoría y la negaría un poco. Esta decisión es defendible en un foro público.

Prueba (TIME)

¿Tomaría la misma decisión si pudiera retrasarla unas horas o unos días?6

Si tomaría la misma decisión.

Prueba (LEGALITY)

¿Es legal este curso de acción?⁷

Crear un interfaz de usuario para una tesis de doctorado es legal.

Prueba (Códigos de ética profesional)

¿Cumple con los cánones de ética profesional que rigen la ingeniería? IEEE, CIAPR, etc.

Cumple con los cánones de la IEEE.

⁶ Gracia, en Faúndez Allier, p. 284

⁷ Gracia, en Faúndez Allier, p. 284.