西南交通大学 2018-2019 学年第 2 学期期末试卷

课程代码_1272005 课程名称_高等数学 BII _ 考试时间___120 分钟__

注意:本试卷共四大题,17小题。答案请一律写在答题卡上的指定位置,在 本试卷上作答视为无效。考试结束后请将试卷和答题卡一并交回。

一、选择题(每小题4分,共24分)

- 1、 直线 $L_1: \frac{x-1}{1} = \frac{y-1}{-2} = \frac{z+8}{1}$ $L_2: \begin{cases} x-y=6, \\ 2y+z=3 \end{cases}$ 的夹角为().
- (A) $\frac{\pi}{6}$; (B) $\frac{\pi}{4}$; (C) $\frac{\pi}{3}$; (D) $\frac{\pi}{2}$.

2、二元函数 $f(x,y)=x^1-y^3+3x^2+3y^2-9x$ 的极小值点是 ().

- (A) (I,0); (B) (I,2);
- (C) (-3.0);
- (D) (-3,2).

3、设平面区域 $D = \{(x,y) | x \le y \le 1, x \ge -1\}$,则二重积分 $\iint x(x + \sin y) dx dy = ($).

- (A) 1; (B) -1; (C) $\frac{2}{3}$; (D) $\frac{3}{2}$.

4、下列级数条件收敛的是()

(A) $\sum_{k=0}^{\infty} \frac{(-5)^k}{7^k + 4^k}$;

(B) $\sum_{i=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$;

- (C) $\sum_{n=0}^{\infty} (-1)^n \sqrt{\frac{1+n}{n}}$; (D) $\sum_{n=0}^{\infty} (-1)^n \left(\frac{\sqrt{1+n} \sqrt{n}}{n}\right)$

5、设曲线 L 是以 O(0.0), A(1.0), B(0.1) 为顶点的三角形的边界, 则曲线积分

 $\oint (x+y)ds = () .$

- (A) $\sqrt{2}-1$; (B) $1+\sqrt{2}$; (C) $\sqrt{3}-1$; (D) $1+\sqrt{3}$.

6、设 f(x,y) 和 $\varphi(x,y)$ 均为可微函数,且 $\varphi(x,y) \neq 0$,已知 (x_0,y_0) 是 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的一个极值点,下列选项正确的是(

- (A) $\text{ if } f_s(x_0, y_0) = 0$, $\text{ if } f_s(x_0, y_0) = 0$. (B) $\text{ if } f_s(x_0, y_0) = 0$, $\text{ if } f_s(x_0, y_0) \neq 0$.
- (C) 若 $f_i(x_0, y_0) \neq 0$,则 $f_i'(x_0, y_0) = 0$. (D) 若 $f_i(x_0, y_0) \neq 0$,则 $f_i'(x_0, y_0) \neq 0$.

二、填空题(每小题5分,共25分)

7、设z=z(x,y) 是由方程F(xy,z-2x)=0确定的隐函数,F(u,y) 具有一阶连续偏导数。

則
$$x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} =$$

8、函数u=x+y+z在球面 $x^1+y^1+z^1=3$ 上点(1.1.1)处沿球面在该点的外法线方向的方向 导数为____

10、将 $f(x) = x(x \in [0, \pi])$ 展开成正弦级数 $\sum b_n \sin nx$, 则 $b_2 =$ _______

11、向量场 $A = (x^2 - xy)I + (y^2 - yz)J + (z^2 - zx)k$ 在点(1,2,-2) 处的旋度rotA =______.

三、计算题(12、13、14题每题8分、15题9分、共33分)

12、计算积分 $\iiint xy | dxdy$, D 是由曲线 $x^2 + y^2 = 2$ 所围成的闭区域

13、计算积分 $\iiint \sqrt{x^2+y^2} \, dx dy dz$,其中 Ω 是由曲面 $x^2+y^2=z^2$ 和 z=1 所围成的闭区域.

14、计算曲面积分 $\iint (x+y+z) dS$,其中 Σ 为球面 $x^2+y^2+z^2=a^2$ 上 $z \geq h(0 < h < a)$ 的部分.

15、计算曲面积分 $\iint_Y \frac{xzdydz + yzdzdx + z^2dxdy}{\sqrt{x^2 + y^2 + z^2}}$, Σ 为半球面 $z = \sqrt{R^2 - x^2 - y^2}$ 的上侧.

四、解答题(每小题9分,共18分)

16、求幂级数 $\sum [1-(-2)^n]x^n$ 的收敛域与和函数.

17、设L是y>0的半平面上的一条光滑曲线,

(1) 证明: 积分 $I = \int_{I} \frac{1+y^2 \sin(xy)}{y} dx + \frac{x}{y^2} [y^2 \sin(xy) - 1] dy$ 在 y > 0 的半平面上积分 与路径无关.

(2) 计算此积分当 L 从点 $A(\pi, \frac{1}{2})$ 到点 $B(\frac{\pi}{3}, \frac{3}{2})$ 时的值.