# Комбинаторная вероятность

### 1 Определение

Вы еще не изучали курс «Теории вероятностей», поэтому забудьте всё, что вы знаете о теории вероятности. Для решения задач нам будет достаточно только одного определения комбинаторной вероятности.

Чтобы было проще понять определение, начнем с простейших задач.

- 1. Если бросить кубик, с какой вероятностью на нем выпадет единица?
- 2. Если бросить кубик, с какой вероятностью на нем выпадет простое число?
- 3. Если бросить два кубика, с какой вероятностью на них в сумме выпадет 7?

Для решения нужно понять, какой мы совершаем эксперимент, и определиться с множеством возможных исходных эксперимента. В первых двух задачах мы бросаем один кубик, и в результате это эксперимента может получиться один из шести исходов:  $\{1,2,3,4,5,6\}$ .

В третьей задаче мы бросаем два кубика. Каждый исход — это пара значений, выпавших на кубиках. Первое значение это число, выпавшее на первом кубике, и оно имеет шесть вариантов. Второе значение, аналогично, это число, выпавшее на втором кубике, и у него тоже есть шесть вариантов. Отсюда  $6 \times 6 = 36$  возможных исходов эксперимента.

Дальше, из всех возможных исходов нужно выделить те, про которые спрашивается в задаче. В первой задаче интересен только один исход  $\{1\}$ . Во второй задаче — три:  $\{2,3,5\}$ . В последней задаче — семь:

$$\{(1,6),\ (2,5),\ (3,4),\ (4,3),\ (5,2),\ (6,1)\}.$$

#### 1.1 Определение комбинаторной вероятности

Вероятность события в эксперименте — это дробь, где в знаменателе находится количество всех возможных исходов эксперимента, а в числителе — количество исходов, при которых событие наступило.

Таким образом, ответ в первой задаче:

 $\frac{1}{6}$ .

Во второй:

 $\frac{3}{6}$ .

В третьей:

 $\frac{7}{36}$ 

Как и в других задачах по комбинаторике, рекомендуется не упрощать, не вычислять и не сокращать ответ. Т.е. лучше оставьте ответ  $\frac{3}{6}$ , и не приводите его к  $\frac{1}{2}$ , чтобы по ответу можно было понять, как вы решали.

### 2 Носки в ящике

В ящике лежат 10 чистых синих носок и 20 чистых красных носков. С какой вероятностью два случайно вытащенных носка будут разного цвета?

Для решения вначале нужно определиться с тем, какой мы проводим эксперимент. В этой задаче эксперимент можно проводить по-разному, и нужно явно выбрать один из нескольких вариантов. Мы можем либо достать два носка одновременно, либо мы можем достать сначала один, а потом второй. Решение в обоих случаях будет разным, но, к счастью, ответы в обоих случаях совпадут.

#### 2.1 Достаём два носка одновременно

Сколько есть способов вытащить два носка из 10+20=30? Это, фактически, вопрос, сколькими способами можно выбрать 2 объекта из 30. Т.е. ответ  $C_{30}^2$ . Это будет знаменатель в ответе. А числитель? Нужно разобраться, в каких случаях мы получаем два носка разных цветов. Нас не интересует порядок, в котором мы доставали носки, мы только знаем, что у нас должен быть один синий (10 вариантов) и один красный (20 вариантов). Т.е. мы всего имеем  $10\times 20$  комбинаций того, какие носки можно было достать. Это приводит к ответу:

 $\frac{10 \cdot 20}{C_{30}^2}$ 

#### 2.2 Достаём два носка по очереди

Знаменатель дроби — это  $30 \times 29$ , потому что мы сначала достаем один носок из 30, потом один из 29 оставшихся.

Для числителя нужно посчитать, в скольких случаях мы получаем два носка разных цветов. Мы достаем носки по очереди, поэтому нам подходят ситуации, когда мы сначала достаем синий носок, а потом красный. И когда мы сначала достаем красный, а потом синий. Вариантов синего-потом-красного будет  $10 \times 20$ , а вариантов красного-потом-синего будет  $20 \times 10$ . Итого, ответ в задаче:

$$\frac{10\cdot 20+20\cdot 10}{30\cdot 29}.$$

Убедитесь, что численно ответы в обоих случаях совпадают. Самая распространенная ошибка при решении подобной задачи, это взять числитель из одного вида эксперимента, а знаменатель из другого. Получается что-то  $\frac{10 \cdot 20}{30 \cdot 29}$ , что неправильно. Поэтому однозначно определяйтесь вначале, достаете вы одновременно или по очереди.

## 3 Переход к дополнению

В ящике лежат 10 чистых синих носок и 20 чистых красных носков. С какой вероятностью два случайно вытащенных носка будут **одного** цвета?

В условии задачи эксперимент не изменился, но изменились те исходы, которые мы считаем успешными, т.е. те, которые нужно посчитать для числителя. Эту задачу можно свести к предыдущей. Все возможные исходы эксперимента делятся на те, в которых мы достали носки одинаковых цветов, и те, в которых мы достали носки разных цветов.

Для определенности считаем, что достаем носки одновременно. Всего исходов  $C_{30}^2$ , и из них  $10\cdot 20$  это исходы с носками разного цвета. Поэтому, исходов с носками одного цвета будет  $C_{30}^2-10\cdot 20$ , и окончательный ответ:

$$\frac{C_{30}^2 - 10 \cdot 20}{C_{30}^2}.$$

Этот ответ соответствует экспериментам с одновременным доставанием носок. А какой будет ответ, если доставать носки по очереди?

Обычно, к дополнению нужно переходить, если не удается решить задачу напрямую. Но эту задачу можно было бы решить и без перехода к дополнению. Тогда ответами было бы:

$$\frac{C_{20}^2 + C_{10}^2}{C_{30}^2},$$

если считать, что носки достаются одновременно (надо либо два синих, либо два красных), или

$$\frac{20\cdot 19 + 10\cdot 9}{30\cdot 29},$$

если считать, что носки достаются по очереди. Здесь опять в числителе разбираются случаи того, что два носка синих или два носка красных. Проверьте, что все три ответа в задаче численно совпадают.