차원 축소란? 그럼 2학기에는? 선형 회귀

Dimension Reduction

차원 축소

이규민

ESC 2021 summer

차원 축소란?

그럼 2학기에는? 선형 회귀

21 Summer 학술주제

21 Summer Topic:

High Dimensional Reduction

TextBook: An Introduction to Statistical Learning(G. James, 외) 외 두 권

Recommendation:

선형대수 및 미분적분학, 수리통계학, 회귀분석 통계 관련 지식 R 및 Python 활용 능력

Goal:

회귀분석을 기반으로 한 차원축소 방법론들을 배운 후, 이어지는 2학기에 머신러닝을 체계적으로 배워 활용하고자 한다.

차원 축소란?

그럼 2학기에는? 선형 회귀

그럼 2학기에는?

선형 회귀

Dimension Reduction

: the process of reducing the dimension of your feature set

Table 5.1 Parameter estimates in Main effects model

Parameter	Estimate	SE
Intercept	-9.273	3.838
Color(1)	1.609	0.936
Color(2)	1.506	0.567
Color(3)	1.120	0.593
Spine(1)	-0.400	0.503
Spine(2)	-0.496	0.629
Weight	0.826	0.704
Width	0.263	0.195

Table 5.2 Backward (Color:4,Spine:3,Width)

Model	Prediction	Model df	Deviance	df	AIC	Models Compared	Deviance Difference
0	Saturated	173	0				
0a	CSW	24					
1	CS + CW +SW	18	173.7	155	209.7		
2	C+S+W	7	186.6	166	200.6	(2)-(1)	12.9(df=11)
3a	C + S	6	208.8	167	220.8	(3a)-(2)	22.2(df=1)
3b	S+W	4	194.4	169	202.4	(3b)-(2)	7.8(df=3)
3c	C+W	5	187.5	168	197.5	(3c)-(2)	0.9(df=2)
4a	С	4	212.1	169	220.1	(4a)-(3c)	24.6(df=1)
4b	W	2	194.5	171	198.5	(4b)-(3c)	7.0(df=3)
5	(C = dark) + W	3	188.0	170	194.0	(5)-(3c)	0.5(df=2)
6	None (Constant)	1	225.8	172	227.8	(6)-(5)	37.8(df=1)

그럼 2학기에는?

선형 회귀

Dimension Reduction

: the process of reducing the dimension of your feature set

그럼 2학기에는?

선형 회귀

Dimension Reduction

: the process of reducing the dimension of your feature set

그럼 2학기에는? 선형 회귀

Why? Avoids the curse of dimensionality

그럼 2학기에는?

선형 회귀

Why?

Removes Multicollinearity(when predictor variables are highly correlated)

: improves the interpretation of the parameters

Computational issues

: less computing \rightarrow faster training!

: less data \rightarrow less storage needed!

Easier to visualize

Parame	ter Estima	tes		
Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	-152.9983	68.47747	-2.23	0.0264 *
Weight	-0.380969	0.190594	-2.00	0.0467 *
Height	1.7995873	0.982061	1.83	0.0681
BMI	31.511739	9.293593	3.39	0.0008 *

Parame	ter Estima	tes		
Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	76.780999	10.04121	7.65	<.0001 *
Weight	0.263259	0.015363	17.14	<.0001 *
Height	-1.488292	0.158734	-9.38	<.0001 *

그럼 2학기에는? 선형 회귀

Feature Selection

- : Likelihood based methods (AIC, BIC, ...)
- : Statistical tests (ANOVA, chi square test, ...)
- : Variance threshold

Feature Extraction

- : Principal Component Analysis
- : Factor Analysis
- : Linear Discriminant Analysis

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

그럼 2학기에는?

선형 회귀

그럼 2학기에는.....?

Springer Series in Statistics Trevor Hastie Robert Tibshirani Jerome Friedman The Elements of **Statistical Learning** Data Mining, Inference, and Prediction Second Edition

그럼 2학기에는?

선형 회귀

그럼 2학기에는.....?

Springer Series in Statistics

Trevor Hastie Robert Tibshirani Jerome Friedman

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Second Edition

- 4. Classification
- 5. Basis expansion and regularization
- 6. Kernel smoothing methods
- 7. Model assessment
- 8. Model inference and averaging
- 9. Additive models, trees, and related methods
- 10. Boosting and additive trees
- 12. Support vector machines and flexible discriminants
- 14. Unsupervised learning
- 15. Random forest
- 16. Ensemble learning

중 일부!

차원 축소란? 그럼 2학기에는? 선형 회귀

Linear Regression 선형 회귀

이규민

차원 축소란? 그럼 2학기에는?

선형 회귀

Linear Regression

: want to find relation between Y(dependent variable, response variable) and X(independent variable, explanatory variable, predictor)

: 회귀 계수들이 linear한 것!

$$Y = f(X) + \epsilon$$

= $\beta_0 + \beta_1 X + \epsilon$

$$\epsilon \sim iid~N(0,\sigma^2)$$

선형 회귀

True line

: 알 수 없다.....

$$Y = \beta_0 + \beta_1 X$$

Fitted line

: data를 이용하여 true line을 추정한 것

$$\hat{Y} = \hat{eta_0} + \hat{eta_1} X$$

그럼 2학기에는?

선형 회귀

Estimating coefficients

1. Least Square Estimator

: 잔차 제곱 합을 최소화하는 coefficient를 구하자!

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

$$rac{\partial Q}{\partial eta_0}=0, rac{\partial Q}{\partial eta_1}=0$$
 을 만족하는 $eta_0=b_0, eta_1=b_1$ 을 구하면

$$\Rightarrow$$
 $b_1=rac{\sum_{i=1}^n{(y_i-ar{y})(x_i-ar{x})}}{\sum_{i=1}^n{(x_i-ar{x})}^2}$, $b_0=ar{y}-b_1ar{x}$

$$egin{align} S_{xx} &= \sum_{i=1}^n \, (x_i - ar{x})^2 \ S_{yy} &= \sum_{i=1}^n \, (y_i - ar{y})^2 \ S_{xy} &= \sum_{i=1}^n \, (x_i - ar{x})(y_i - ar{y}) \ \end{array} \qquad egin{align} b_1 &= S_{xy}/S_{xx} \ b_0 &= ar{y} - b_1 ar{x} \ \end{array}$$

차원 축소란? 그럼 2학기에는?

선형 회귀

Estimating coefficients

2. Maximum Likelihood Estimator

: (log) likelihood를 최대화하는 coefficient를 구하자!

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$$
을 바탕으로 pdf를 구하면

$$f(y_i) = rac{1}{\sqrt{2\pi}\sigma} exp(-rac{1}{2}(rac{y_i-eta_0-eta_1x_i}{\sigma})^2)$$

$$L(\beta_0, \beta_1, \sigma^2) = \prod_{i=1}^n f(y_i)$$

$$logL(eta_0,eta_1,\sigma^2) = \sum_{i=1}^n logf(y_i) = rac{-n}{2}log(2\pi) - rac{n}{2}log(\sigma^2) - rac{1}{2\sigma^2}\sum (y_i - eta_0 - eta_1x_i)^2$$

LSE와 같은 방법으로 미분해서 0이 되는 값을 구하면 된다!

$$\Rightarrow b_1 = rac{\sum_{i=1}^n{(y_i - ar{y})(x_i - ar{x})}}{\sum_{i=1}^n{(x_i - ar{x})^2}}$$
 , $b_0 = ar{y} - b_1ar{x}$

차원 축소란? 그럼 2학기에는? 선형 회귀

Properties of coefficients (Gauss-Markov thm)

- 1. Linear in Y
- 2. Unbiased estimators
- 3. Minimum variance (later.....)
- ⇒ Best Linear Unbiased Estimator(BLUE)

그럼 2학기에는?

선형 회귀

What about σ^2 ?

SSE (Error Sum of Squares)

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

MSE (Error Mean Square)

$$\sum_{i=1}^{n} e_i^2/(n-2) = SSE/(n-2)$$

$$\hat{\sigma^2}$$
 = MSE

₩ By MLE,

$$\hat{\sigma_{MLE}^2} = SSE/n = rac{n-2}{n}\hat{\hat{\sigma^2}}$$

선형 회귀

Inference

$$E(b_1) = \beta_1$$

$$Var(b_1) = \sigma^2/S_{xx}$$

$$s^2(b_1)=\hat{\sigma^2}/S_{xx}$$

$SSE/\sigma^2 \sim \chi^2(n-2)$

$$rac{b_1-eta_1}{\sigma/\sqrt{S_{xx}}}\sim N(0,1)$$

$$rac{b_1-eta_1}{\hat{\sigma}/\sqrt{S_{xx}}}\sim t(n-2)$$

Confidence interval

$$b_1 \pm s(b_1) imes t(1-lpha/2,n-2)$$

Hypotheses test

$$ightarrow \ H_0: \ eta_1=0$$
 test statistic $\ t^*=rac{b_1}{\hat{\sigma}\sqrt{(1/n+ar{X}^2/S_{xx})}}\sim t(n-2)$

$$H_1:~eta_1
eq 0$$
 reject if $~t^*>t(1-lpha/2,n-2)$

그럼 2학기에는?

선형 회귀

Inference

$$egin{split} E(b_0) &= eta_0 \ Var(b_0) &= \sigma^2(1/n + ar{X}^2/S_{xx}) \ s^2(b_0) &= \hat{\sigma^2}(1/n + ar{X}^2/S_{xx}) \end{split}$$

$$SSE/\sigma^2 \sim \chi^2(n-2)$$

$$rac{b_0 - eta_0}{\sigma \sqrt{(1/n + ar{X}^2/S_{xx})}} \sim N(0,1) \ rac{b_1 - eta_1}{\hat{\sigma} \sqrt{(1/n + ar{X}^2/S_{xx})}} \sim t(n-2)$$

$$b_0 \pm s(b_0) \times t(1-\alpha/2,n-2)$$

and tests also.....

차원 축소란? 그럼 2학기에는?

선형 회귀

ANOVA approach

SSTO

: total deviance

$$\sum (Y_i - \bar{Y})^2$$

SSE

: deviance of true value from fitted value

$$\sum{(Y_i-\hat{Y_i})^2}$$

SSR

: deviation of fitted value from mean

$$\sum (\hat{Y_i} - \bar{Y})^2$$

$$\sum (Y_i - ar{Y})^2 = \sum (\hat{Y}_i - ar{Y})^2 + \sum (Y_i - \hat{Y}_i)^2$$

그럼 2학기에는?

선형 회귀

ANOVA approach

SSTO = SSE + SSR 을 이용해 Coefficient of determination (R^2) 정의

$$R^2 = SSR/SSTO = 1 - SSE/SSTO$$

차워 축소라?

그럼 2학기에는?

ANOVA approach

선형 회귀

MSE

$$\sum_{i=1}^{n} e_i^2/(n-2) = SSE/(n-2)$$

ANOVA table:

Sum of Squares Mean Square E{MS} Source of Variation (SS) (MS) $MSR = \frac{SSR}{I}$ $\sigma^2 + \beta_1^2 \sum (X_i - \bar{X})^2$ $SSR = \sum (\hat{Y}_i - \bar{Y})^2$ 1 Regression $SSE = \sum (Y_i - \hat{Y}_i)^2$ n-2 $MSE = \frac{SSE}{n-2}$ Error Total $SSTO = \sum (Y_i - \bar{Y})^2 \quad n-1$

MSR

SSR/1

$$H_0: \beta_1 = 0$$

$$F^* = MSR/MSE \sim F(1,n-2)$$
 under H_0

$$H_1: \beta_1 \neq 0$$

reject
$$H_0$$
 if

reject
$$H_0$$
 if $F^* > F(1-\alpha,1,n-2)$

그럼 2학기에는?

선형 회귀

그래서 이번 방학에는?

		ESC-21 SUMMER 커리큘럼	
WEEK	날짜	Session contents	참고 자료
1	7/8	OT (주제 소개)	ISL 3.1,
2	7/15	Linear Regression	ISL 3.2, 3.3
			ESL 3.1, 3.2
3	7/22	Variable Selection	ISL 3.3, 6.1
			ESL 3.3
4	7/29	Multicollinearity & Ridge, LASSO	ISL 6.2
			ESL 3.4
5	8/5	Principal Component Analysis	ISL 6.3
			ESL 3.5
			AMSA 11
6	8/12	Factor Analysis	ESL 14.7
			AMSA 12
7	8/19	Linear Discriminant Analysis	ISL 4.4
			ESL 4.3
			AMSA 13
		한 주 쉬고!	
1	9/2	21-2 가을 첫 세션 시작!	

^{*} ISL, ESL, AMSA는 각각 "An Introduction to Statistical Learning(G. James, 외)", "The Elements of Statistical Learning(T. Hastie 외)", 그리고 "Applied Multivariate Statistical Analysis(W. Hardle 외)"입니다.

^{*} 빅콘 대회 참여 후 토요일 격주 세션을 진행할 것입니다.

감사합니다

