آغاز پروژه، مدیریت و تعیین نیازمندیها

Website: ataghinezhad@gmail.com

اهداف یادگیری

- ارتباط سیستمهای اطلاعاتی با نیازهای کسبوکار را درک کنید.
- نحوه ایجاد یک درخواست سیستم (System Request) را بیاموزید.
 - ارزیابی امکانسنجی فنی، اقتصادی و سازمانی را تمرین کنید.
 - روشهای انتخاب پروژه در سازمانها را تحلیل کنید.

پروژه های موفق چه ویژگیهایی دارند؟

.هزينه

- مثال: توسعه نسخه اولیه اسلک (Slack) با بودجه کمتر از ۱ میلیون دلار. ۲ رمانبندی
- مثال : اسپاتیفای (Spotify) با استفاده از روش چابک (Agile) ، ویژگیهای جدید را هر ۳ ماه منتشر میکند.
 - ۳ .عملکرد
 - مثال :سیستم خودران تسلا با تستهای مکرر، الزامات ایمنی را برآورده کرد.

چرا آغاز درست پروژه مهم است؟

Would **you** buy a car that only had a 28% chance of driving off the lot with **no** problems?

چرا آغاز درست پروژه مهم است؟

نمونههای شکستهای بزرگ

- سیستم IT بهداشت بریتانیا :(NHS) ۱۰ میلیارد پوند هزینه اضافه، لغو بهدلیل نیازمندیهای مبهم.
 - تارگت کانادا) ۲۰۱۵: (خطای سیستم انبارداری منجر به ضرر ۵٫۴ میلیارد دلاری شد.
 - شرکت سرمایهگذاری نایت) ۲۰۱۲: (یک باگ نرمافزاری در ۴۵ دقیقه ۴۶۰ میلیون دلار ضرر ایجاد کرد!

Recent Significant IT Failures

Company	Year	Outcome
Hudson Bay (Canada)	2005	Inventory system problems lead to \$33.3 million loss.
UK Inland Revenue	2004/ 5	\$3.45 billion tax-credit overpayment caused by software errors.
Avis Europe PLC (UK)	2004	Enterprise resource planning (ERP) system cancelled after \$54.5 million spent.
Ford Motor Co.	2004	Purchasing system abandoned after deployment costing approximately \$400 M
Hewlett-Packard Co.	2004	ERP system problems contribute to \$160 million loss.
AT&T Wireless	2004	Customer relations management system upgrade problems lead to \$100M loss

چگونه پروژههای نرمافزاری شناسایی میشوند؟

Dr. A. Taghinezhad

St. A. Taghinezhad

چگونه پروژههای نرمافزاری شناسایی میشوند؟

منشأ پروژه ها

نیازهای کسب وکار:

مثال: والمارت برای مدیریت زنجیره تأمین، از فناوری RFIDاستفاده کرد.

• همکاری تیم فنی و کسب وکار:

مثال: تیمهای ترکیبی مهندسی و بازاریابی در نتفلیکس برای توسعه سیستم پیشنهاد فیلم.

. حامي پروژه:(Sponsor)

مثال: مدیر ارشد فناوری (CTO) شرکت ادوبی، مهاجرت به ابر را رهبری کرد.

نکته اجرایی: برای جلب حمایت ذینفعان، همیشه ارزشهای ملموس (مثل صرفهجویی هزینه) را اولویتبندی کنید، اما تاثیرات ناملموس (مثل رضایت کاربر) را نادیده نگیرید

چگونه یک درخواست سیستم (System Request) بنویسیم؟

قالب پیشنهادی

- حامى پروژه :معاون عمليات شركت فدكس.
- نیاز کسبوکار: سیستم رهگیری قدیمی باعث تأخیر در تحویل مرسولات شده است.
- **ارزش پیشبینی شده :**تحویل ۱۵٪ سریعتر، صرفهجویی ۲ میلیون دلاری در سال.
 - **مسائل خاص**:یکپارچهسازی با سیستمهای قدیمی.

درخواست سیستم (System Request) برای پروژه –اپلیکیشن رزرو غذای خوابگاه

.حامى پروژه:(Project Sponsor)

- نام/سمت :مدیر امور دانشجویی دانشگاه تهران
- نقش: تأمین بودجه، هماهنگی با بخش فنی و نظارت بر اجرا.

(Business Need): نیاز کسبوکار. ۲

- مشكل فعلى:
- صفهای طولانی در سلف غذا.
- هدررفت غذا بهدلیل برنامهریزی نامناسب.
- عدم شفافیت در منوی روزانه و نظرسنجی از دانشجویان.
 - هدف پروژه:
- کاهش اتلاف وقت دانشجویان و بهبود تجربه غذاخوری.
 - کاهش ۴۰٪ ضایعات غذا با پیشبینی دقیق تقاضا.

درخواست سیستم (System Request) برای پروژه –اپلیکیشن رزرو غذای خوابگاه– ادامه

(Business Requirements):نیازمندیهای کسبوکار

- امکانات اصلی سیستم:
- نمایش منوی روزانه با عکس و مواد تشکیلدهنده.
 - امکان رزرو وعده غذایی تا ۲۴ ساعت قبل.
- میستم پرداخت آنلاین (اتصال به درگاه دانشگاه).
- o ارسال نوتیفیکیشن برای یادآوری زمان تحویل غذا.
- امکان نظرسنجی از دانشجویان درباره کیفیت غذا.

(Business Value):ارزش پیشبینیشده. ۴

- ملموس:(Tangible)•
- صرفهجویی سالانه ۱۵۰ میلیون تومان از کاهش ضایعات غذا.
 - ۰ کاهش ۵۰٪ نیروی انسانی موردنیاز برای مدیریت سلف.
 - ناملموس:(Intangible)
 - افزایش رضایت دانشجویان.
- بهبود تصویر دانشگاه بهعنوان یک مؤسسه پیشرو در فناوری.

امکانسنجی فنی: آیا از پس فناوری برمیآییم؟

مطالعه موردی: هوش مصنوعی در Airbnb

- . **چالش** : کمبود تخصص در یادگیری ماشین.
- . راهکار: همکاری با سرویسهای ابری (مثل گوگل کلاد).
- نتیجه : توسعه الگوریتمهای پیشنهاد مقصد با تست مرحلهای.

چالش فنی پروژه:

Airbnbمیخواست یک سیستم پیشنهاد مقصد هوشمند توسعه دهد تا به کاربران پیشنهادات شخصیسازیشده براساس سابقه جستجو، موقعیت جغرافیایی و علایقشان ارائه کند.

موانع اصلى:

- تیم داخلی تجربه محدودی در توسعه مدلهای پیچیده یادگیری ماشین (ML)داشت.
- یکپارچهسازی مدلها با زیرساختهای موجود (مثل سیستم رزرو و پرداخت) چالش برانگیز بود.
- · نیاز به پردازش حجم عظیمی از دادههای کاربران در زمان واقعی Real-time). Processing).

چالش فنی پروژه:

نتيجه	راهكار	مشكل
کاهش زمان توسعه و هزینههای آموزش تیم.	همکاری با Google Cloudبرای استفاده از ابزارهای آماده ML مثل TensorFlowو،BigQuery	کمبود تخصصML
عدم اختلال در عملکرد سیستم موجود.	استفاده از APIهای RESTful برای ارتباط امن بین مدلهای ML و پلتفرم اصلی.	یکپارچه سازی با سیستم فعلی
پاسخگویی زیر ۱ ثانیه به درخواستهای کاربران.	استفاده از Apache Kafkaبرای مدیریت جریان دادهها و Sparkبرای پردازش موازی.	پردازش داده های بلادرنگ

چالش فنی پروژه:

. درسهای کلیدی

- استفاده از ابزارهای ابری:(Cloud)
- نیازی نیست همه چیز را از صفر بسازید! سرویسهایی مثل AWS SageMakerیا Google Al Platformمدلهای ازپیشآموزش دیده و زیرساخت های مقیاسپذیر ارائه می دهند.
- توسعه مرحله ای:(Incremental Development) Airbnbابتدا یک مدل ساده (مثلاً پیشنهاد براساس تاریخچه جستجو) را تست کرد و سپس بهتدریج آن را پیچیدهتر کرد.
 - تست یکپارچگی:(Integration Testing) قبل از راه اندازی نهایی، مدل را با دادههای واقعی اما در محیط آزمایشی Staging) (Environmentتست کنید.

محاسبه سود و زیان

- **هزینه توسعه :۵۰۰،۰۰۰** دلار (مثلاً برای یک سیستم اتوماسیون حقوق).
 - صرفهجویی سالانه: ۲۰۰،۰۰۰ دلار (کاهش خطای دستی).
 - · نقطه سربهسر :۲٫۵ سال.

ابزارها

محاسبه ارزش خالص فعلى (NPV) و نرخ بازده داخلي. (IRR)

نقطه سربه سر(Break-Even Point)نقطه

فرمول ساده: نقطه سربهسر

$$(سال)$$
 سال $\frac{500,000}{200,000} = \frac{8$ هزينه توسعه مغرينه توسعه ميالانه $\frac{500,000}{200,000} = 2.5$

این روش ساده، ارزش زمانی پول (سود بانکی یا تورم) را در نظر نمیگیرد.

(Net Present Value - NPV)ارزش خالص فعلى.

تعریف:

ارزش فعلى تمام جريانهاى نقدى آينده (صرفه جوييها) منهاى هزينه توسعه.

• محاسبه با نرخ تنزیل ۱۰٪ (فرضی):

سال	جريان نقدى	ضريب تنزيل	ارزش فعلى
	-0••,•••	1	-Q••,•••
١	+ [• • , • • •	$\frac{1}{1.10}$	۱۸۱,۸۱۸
Γ	+ [• • , • • •	$\frac{1}{(1.10)^2}$	180,ΓΛ9
٣	+ \(\cdot \),	$\frac{1}{(1.10)^3}$	۱۵•,۲۶۳
۴	+ [• • , • • •	$\frac{1}{(1.10)^4}$	185,5.8
۵	+ [• • , • • •	$\frac{1}{(1.10)^5}$	154,174

- مجموع ارزش فعلى جريانهاى نقدى:
- - NPV: •
 - ٠٠٠٠٠ ۵-۲۵۱،۸۵۷ = ۲۵۱،۸۵۲ دلار

نتىجە:

پروژه سود آور است، زیرا NPV مثبت است.

نرخ بازده داخلی(Internal Rate of Return – IRR).

تعریف:

نرخ بهرهای که در آن NPVبرابر صفر میشود. هرچه IRR بالاتر باشد، پروژه جذابتر است.

- براساس آزمون خطا تقریبا IRR برابر ۲۸ درصد است.
 - o مجموع ارزش فعلی جریانهای نقدی:

سال	جريان نقدى	ضریب تنزیل	ارزش فعلى
	-0••,•••	1	-0••,•••
١	+ \(\cdot \), * * *	$\frac{1}{1.28}$	۱۵۶,۲۵۰
Γ	+ \(\cdot \), * * *	$\frac{1}{(1.28)^2}$	1FF,•V•
٣	+ \(\cdot \), * * *	$\frac{1}{(1.28)^3}$	۹۵,۳۶۷
۴	+ [• • , • • •	$\frac{1}{(1.28)^4}$	VF,QII
۵	+ [,	$\frac{1}{(1.28)^5}$	۵۸٫۲۱۱

- 1 Δρ. ΤΔ + 1 ΤΤ. · Υ · + 9 Δ. « γρ Υ + Υ Υ · Δ 1 1 + Δ Δ. Τ 1 1 ·
 - ۵،۴۰۹≈NPV **دلار** (نزدیک به صفر).
 - IRRاین پروژه حدود ٪۲۸ است
- □ که از نرخ تنزیل فرضی (٪۱۰) بسیار بالاتر است 🗲 پروژه بسیار جذاب!

• IRRنرخ تنزیلی است که ارزش فعلی خالص (NPV) یک پروژه را صفر میکند .این شاخص به تعیین سودآوری یک سرمایه گذاری کمک میکند.

درک جریانهای نقدی

یک پروژه شامل:

- سرمایه گذاری اولیه (خروج نقدی، مقدار منفی)
 - ورودیهای نقدی آینده (مقادیر مثبت)

سال	جریان نقدی
•	۵۰۰,۰۰۰ -تومان (سـرمايه اوليه)
١	۲۰۰,۰۰۰ تومان
۲	۲۰۰,۰۰۰ تومان
٣	۲۰۰,۰۰۰ تومان
۴	۲۰۰,۰۰۰ تومان
۵	۲۰۰,۰۰۰ تومان

$$NPV = \sum \left(rac{e^{-2t}}{(1+r)^t}
ight) - سرمایه اولیه$$

NPVبه این صورت محاسبه میشود:

جایی که:

- NPV = 0نرخ تنزیل IRR نرخی است که در آن=r

 - معادله را حل میکنیم

$$0 = \frac{200,000}{(1+IRR)^1} + \frac{200,000}{(1+IRR)^2} + \dots + \frac{200,000}{(1+IRR)^5} - 500,000$$

روش آزمون و خطا (محاسبه دستی)

• از آنجا که IRR را نمی توان مستقیماً به صورت جبری حل کرد، با حدس زدن نرخهای مختلف تا زمانی که 0 ≈ NPV شود، آن را پیدا می کنیم.

(r) حدس	NPV محاسبه	نتيجه
1•%	$\frac{200k}{1.1} + \frac{200k}{1.1^2} + \dots - 500k$	تومان (خیلی بالا) ۲۵۸٫۱۵۷+
Γ•%	$\frac{200k}{1.2} + \frac{200k}{1.2^2} + \dots - 500k$	تومان (هنوز بالا) ۹۹,۰۸۱ +
ΓΩ%	$\frac{200k}{1.25} + \frac{200k}{1.25^2} + \dots - 500k$	تومان (نزدیکتر) ۲۱٫۵۰۴
ΓΛ.%	$\frac{200k}{1.28} + \frac{200k}{1.28^2} + \dots - 500k$	تومان (نزدیک به صفر) ۵٫۴۰۹≈
Γ9%	$\frac{200k}{1.29} + \frac{200k}{1.29^2} + \dots - 500k$	تومان (حالا منفی) -۸٫۲۱۷≈

IRRبین ٪۲۸ تا ٪۲۹ است جایی که NPV از مثبت به منفی تغییر می کند.

نتيجه:

گام ۴: درون یابی یا محاسبه دقیق تر IRR

از آنجا که:

- NPV در ٪۲۸، + =۹۰۴،۵ تومان
 - NPVدر ٪۲۹، =۸،۲۱۷ -تومان
- مى توانيم IRR را دقيق تر تخمين بزنيم:

$$IRR = 28\% + \left(\frac{5,409}{5,409+8,217}\right) \times (29\% - 28\%)$$
 =%28.4 .

گام ۵: استفاده از اکسل یا ماشین حساب بجای محاسبه دستی

• اگر هزینه توسعه یک اپلیکیشن ۱۰۰ میلیون تومان باشد و ماهانه ۵ میلیون درآمد ایجاد کند، نقطه سربهسر چند ماه است؟"

• NPV=
$$\frac{100000000}{50000000} = 20$$
 ماه

اپلیکیشن پس از ۲۰ ماه (۱ سال و ۸ ماه) به نقطه سربهسر میرسد، یعنی جایی که کل درآمدهای کسبشده با هزینههای توسعه برابر میشود.

• مثال:

اگر هزینه های عملیاتی ماهانه ۲ میلیون تومان باشد، سود خالص ماهانه میشود:

5,000,000-2,000,000=3,000,000

- o در این حالت نقطه سربهسر جدید:
- $rac{10000000}{3000000} = 33.3$ ماه ۹ و سال $_{\circ}$
- برای تحلیل دقیقتر، میتوانید ارزش زمانی پول (نرخ بهره) و رشد در آمد در طول زمان را نیز محاسبه
 کنید.

امكانسنجي سازماني: آيا حمايت لازم وجود دارد؟

نمونههای موفق و شکست خورده

- شکست :راه اندازی ۲۰۱۳ Healthcare.gov بهدلیل عدم هماهنگی ذینفعان.
- **موفقیت :**مایکروسافت ۱۰۰۰+ مهندس را برای انتقال به Azure آموزش داد.

انتخاب پروژه: اولویتبندی هوشمندانه

روشهای صحیح

مدیریت پورتفولیو: اپل پروژههایی مانند AirTag را برای یکپارچگی اکوسیستم انتخاب میکند.

روشهای نادرست

• انتخاب پروژهها براساس «فریاد بلندترین فرد» (مثل برخی استارتآپ های شتاب دهی نشده).

جمع بندي

نكات كليدي

- پروژه را با استراتژی کسبوکار همسو کنید (مثال: توسعه زیرساختهای زوم در پاندمی).
 - امکانسنجی را جدی بگیرید مثال: محاسبات ROI گیگافکتوری تسلا
 - پروژهها را براساس معیارهای استراتژیک انتخاب کنید، نه فشار سیاسی.

• یادداشت پایانی

"به یاد داشته باشید: حتی بهترین ایدهها بدون تحلیل امکانسنجی و حمایت سازمانی محکوم به شکست هستند. پروژه بعدی خود را هوشمندانه آغاز کنید"!

Cost-Benefit Analysis

بازده سرمایه گذاری:(ROI)

نقطه سربهسر

منافع انباشته با هزینههای

ارزش فعلى

رخ بهره به ارزش امروز تبدیل

ارزش فعلى خالص

	Performance Measure	Formula			
?	Return on Investment (ROI)	$\frac{\text{Total benefits } - \text{ total costs} 629421 * 100}{\text{Total costs}} = 24.44\%$			
	Break-Even Point	Yearly Net Cash Flow — Cumulative Net Cash Flow Yearly Net Cash Flow			
من	مدت زمانی که طول میکشد تا	Use the yearly net cash flow amount from the first year in which the project has a positive cash flow.			
	انباشته برابر شود.	Add the above amount to the year in which the project has a positive cash flow minus one.			
	Present Value (PV)	Cash flow amount (1 + interest rate) ⁿ			
ر	جریانهای نقدی آینده را با استفاده از میکند:	n = number of years in the future			
	Net Present Value (NPV)	Σ PV Benefits $ \Sigma$ PV Costs			

	2008	2009	2010	2011	2012	Total
Increased sales	500,000	530,000	561,800	595,508	631,238	
Reduction in customer complaint calls	70,000	70,000	70,000	70,000	70,000	
Reduced inventory costs	68,000	68,000	68,000	68,000	68,000	
TOTAL BENEFITS:	638,000	668,000	699,800	733,508	769,238	
PV OF BENEFITS:	619,417	629,654	640,416	651,712	663,552	3,204,752
PV OF ALL BENEFITS:	619,417	1,249,072	1,889,488	2,541,200	3,204,752	
2 Servers @ \$125,000	250,000	0	0	0	0	
Printer	100,000	0	0	0	0	
Software licenses	34,825	0	0	0	0	
Server software	10,945	0	0	0	0	
Development labor	1,236,525	0	0	0	0	
TOTAL DEVELOPMENT COSTS:	1,632,295	0	0	0	0	
Hardware	54,000	81,261	81,261	81,261	81,261	
Software	20,000	20,000	20,000	20,000	20,000	
Operational labor	111,788	116,260	120,910	125,746	130,776	
TOTAL OPERATIONAL COSTS:	185,788	217,521	222,171	227,007	232,037	
TOTAL COSTS:	1,818,083	217,521	222,171	227,007	232,037	
PV OF COSTS:	1,765,129	205,034	203,318	201,693	200,157	<u>2,575,331</u>
PV OF ALL COSTS:	1,765,129	1,970,163	2,173,481	2,375,174	2,575,331	
TOTAL PROJECT BENEFITS – COSTS:	(1,180,083)	450,479	477,629	506,501	537,201	
YEARLY NPV:	(1,145,712)	424,620	437,098	450,019	463,395	629,421
CUMULATIVE NPV:	(1,145,712)	(721,091)	(283,993)	166,026	629,421	
RETURN ON INVESTMENT:	<u>24.44%</u> (629,421/2,575,331)					
BREAK-EVEN POINT:	EAK-EVEN POINT: 3.63 years [break-even occurs in year 4; (450,019 - 166,026)/450,019 = 0.63]					= 0.63]
INTANGIBLE BENEFITS:	INTANGIBLE BENEFITS: This service is currently provided by competitors Improved customer satisfaction					

Break-Even Point

نمایش بصری **هزینهها در مقابل منافع** در طول ۵ سال، که نقطه سربهسر (جایی که منافع از هزینهها پیشی میگیرد) را نشان میدهد.

اهمیت این تحلیلها در آغاز پروژه

- ۱ .بررسی امکان پذیری :تعیین میکند آیا منافع پروژه توجیهکننده هزینههاست.
- ۲ .ارزیابی ریسک :ریسکهای مالی (مثلاً هزینههای اولیه بالا) را مشخص میکند. ۳ .ارتباط با ذینفعان :معیارهای شفافی مثلNPV ، ROlبرای تأیید پروژه ارائه میدهد.
 - ۴ .تصمیم گیری :اولویت بندی پروژهها بر اساس سودآوری را ممکن میسازد.