TMUA Practice - Algebra & Functions

1. Given that
$$p$$
 and q are non-zero integers, the expression
$$\frac{(36^{p-q})(3^q)}{(12^{2p-q})(6^p)}$$

is an integer if:

2. Given that $m = 7^8$ and $n = 8^7$ which expression represents 56^{56}

A
$$mn$$

B $(mn)^{56}$
C $m^{7}n^{8}$
D $8m^{7} + 7n^{8}$
E $(8m)^{7}(7n)^{8}$
 $7^{56} = m^{7} + 8^{56} = n^{8}$
 $7^{56} = m^{7} + 8^{56} = n^{8}$
 $7^{56} = m^{7} + 8^{56} = n^{8}$

3. Find the set of values of x that satisfy both the following inequalities:

$$\frac{4x+1}{x-1} < 3 \qquad (x+2)(x-4) > 0$$

A $x < -4$

B $x > -4$

C $-2 < x < 1$

D $-4 < x < 4$

E $\frac{4x+1}{x-1} < 0$
 $\frac{x+4}{x-1} < 0$
 $\frac{x+4}{x-1$

4. Find the set of values of x that satisfy the following inequality: -ve que Lic M

$$\frac{3}{x+3} > \frac{x-4}{x}$$

$$(x+3)x(3x-(x-1))>0$$

A
$$-3 < x < 6$$

6
$$(x+3)x(12+4x-x^2)>0$$

6 $(x+3)x(6-x)(x+2)>0$

B
$$-2 < x < 6$$

$$\bigcirc$$
 -3 < x < -2 and 0 < x < 6

D
$$0 < x < 2$$
 and $3 < x < 6$

E
$$2 < x < 3$$
 and $5 < x < 6$

$$\frac{3}{3x+3} - \frac{x-4}{x} > 0$$

$$\frac{3x-x^2+x+12}{x(x+3)} > 0$$

$$\frac{x^2-4x-12}{x(x+3)} < 0$$

$$\frac{x^2-4x-12}{x(x+3)} < 0$$

$$\frac{-3}{-3} - 2 = 0 = 6$$

5. Find the set of values of x that satisfy the following inequality, where p is a positive constant:

$$\frac{x+p}{x+4p} < \frac{p}{x}$$

$$A \qquad -2p < x < 2p$$

B
$$0 < x < 2p$$

$$C \qquad x < -4p \; , \; x > 0$$

$$\widehat{(D)}$$
 $-4p < x < -2p$, $0 < x < 2p$

$$\stackrel{\smile}{E} \qquad -4p < x < 0 \ , \ x > 2p$$

$$\frac{x^2+px-px-4p^2}{x(x,4p)} < 0$$

 $\frac{3C+P}{3C+4p} - \frac{P}{3C} < 0$ $\frac{-4p}{-4p} - \frac{2p}{-2p} = 2p$ $\frac{-4p}{3C+4p} - \frac{2p}{3C} < 0$ $\frac{-4p}{3C+2p} - \frac{2p}{3C} < 0$ $\frac{-4p}{3C+2p} - \frac{2p}{3C} < 0$ $\frac{-4p}{3C} < < 0$

A cubic curve has equation $y = x^3 + kx - 2$ where k is a constant. 6. What value of k gives this curve exactly two distinct real roots

$$\begin{array}{ccc}
A & -3 \\
B & -2
\end{array}$$

2 district rooks => repeated not (A) and single root (B)
$$(x-A)^2(x-B) = (x^2 - 2Ax + A^2)(x-B)$$

= $x^3 - x^2(2A+B) + x(A^2 + 2AB) - A^2B$

Comparing coefficients:

3

Ε

(i)
$$in(3) - 2A^3 = 2$$

 $A^3 = -1$
 $A = -1$ $6 = 2$
 $(x+1)^2 (x-2)$

$$A = -1 \quad B = 3$$

$$(x+1)^{2}(x-2)$$

$$(2) k=1+2(-1)(2)=-3$$

The equation $2x^2 + 9x - k = 0$ where k is a constant has two distinct real roots. 7.

One root is 4 more than the other root.

The value of k is

A
$$\frac{55}{8}$$

$$B = \frac{9}{2}$$

$$\bigcirc -\frac{17}{8}$$

D
$$-\frac{17}{4}$$

A
$$\frac{55}{8}$$
 B $\frac{9}{2}$ \bigcirc \bigcirc $-\frac{17}{8}$ D $-\frac{17}{4}$ E $-\frac{55}{8}$

Let roots =
$$a$$
, $a+4$
 $(x-a)(x-a-4)=0$
 $x^2-(a+a+u)x+a(a+u)=0$
 $2x^2-(4a+8)x+2a(a+u)=0$
 $4a+8=-9$
 $a=-17$
 $k=-\frac{17}{2}(-\frac{1}{4})$
 $k=-\frac{17}{8}$

$$4a+8=-17$$
 $a=-17$

$$-k = -\frac{17}{2} \left(-\frac{1}{4}\right)$$

$$k = -\frac{17}{8}$$

Find the minimum value of $2(2^{sinx}) - 4^{sinx} + \frac{10}{2}$ 8.

$$\bigcirc A = \frac{10}{3}$$

$$\frac{13}{3}$$

$$\widehat{A}$$
 $\frac{10}{3}$ B $\frac{13}{3}$ C $\frac{49}{12}$ D $\frac{20}{3}$ E 0

D
$$\frac{20}{3}$$

$$\frac{2y-y^2+3}{3}$$
 $\frac{10}{3}-(y^2-2y)$

Let
$$y = 2^{\sin x}$$
 $2y - y^2 + \frac{10}{3}$
 $-1 \le \sin x \le 1$ $\frac{10}{3} - (y^2 - 2y)$
 $\frac{1}{2} \le y \le 2$ $\frac{10}{3} - [(y - 1)^2 - 1]$ $\frac{12}{2}$ $\frac{13}{3} - 1 = \frac{10}{3}$

Ain at
$$y = 2$$
 $\frac{13}{3} - 1 = \frac{10}{3}$

When $(2x^2 + 6x - 3)$ is multiplied by (px - 1) and the resulting product is divided by 9. (x + 1) the remainder is 28.

The value of p is

$$C \frac{7}{4}$$

$$D = \frac{3}{2}$$

B 2 C
$$\frac{7}{4}$$
 D $\frac{3}{2}$ E $\frac{28}{5}$

$$(2-6-3)(-p-1) = 28$$

 $7(p+1) = 28$

10. The simultaneous equations below have two distinct real solutions

$$3x^2 - xy = 4$$
 and $2x - y = p$ where p is a real constant

What are the values that p can take

there are no possible values for pΑ

B
$$p < -4, p > 4$$

C
$$-4$$

p can take any value D

$$3x^{2} - 2x^{2} + xp = 4$$

 $\Delta^{2} + px - 4 = 0$
 $\Delta > 0$

$$b_{5} + 19 > 0$$
 $b_{5} + 4(\pi) > 0$
 $9 > 0$

11. What is the sum of the solutions of the following equation

$$|x| - 3 = |2x + 12|$$

$$C = 0$$

$$-x-3 = 2x+12$$
 $-x-3 = -2x-12$
 $3x = -15$ $x = -9$

12. How many solutions are there to the following equation:

$$|x| + |x - 1| = |x^3|$$

$$|x-1| = |x^3| - |x|$$

$$\stackrel{\text{B}}{\text{C}}$$
 2

$$\propto$$

$$x > 0$$
 $|x_3| - |x| = x_3 - x$

3

$$= -\pi (x_{-1})(x_{+1})$$

$$= -\pi (\pi_{5}^{-1})$$

$$\pi < 0 |\pi_{3}| - |\pi| = -\pi_{3}^{2} + \pi$$

13. Given that
$$\left(a^3 + \frac{3}{b^3}\right)\left(b^3 - \frac{3}{a^3}\right) = 2\sqrt{3}$$
 where a, b are real numbers,

then the least value of ab is

$$a^3b^3 + 3 - 3 - \frac{9}{a^3b^3} = 2\sqrt{3}$$

A
$$-\sqrt{3}$$

$$\alpha = ab \quad \alpha^3 - \frac{9}{7^3} = 2\sqrt{3}$$

B
$$\sqrt{3}$$

C
$$-3\sqrt{3}$$

$$y = (ab)^3$$
 $y^2 - 2\sqrt{3}y - 9 = 0$

D
$$3\sqrt{3}$$

$$y=x^{3}$$

$$y = (ab)^{3}$$

$$y^{2} - 2\sqrt{3}y - 9 = 0$$

$$(y - 3\sqrt{3})(y + \sqrt{3}) = 0$$

$$y = 3\sqrt{3}$$

$$x = \sqrt{3}$$

$$x = \sqrt{3}$$

$$-3^{\frac{1}{6}}$$

$$y = 3\sqrt{3}$$
 $y = -\sqrt{3}$
 $x = \sqrt{3}$ $y = -\sqrt{3}$

F
$$3^{\frac{1}{6}}$$

$$x = 18$$

$$x = 18$$

$$x = -3$$

$$x = -3$$

14. The function f is defined such that
$$3f(x) + 2f(-x) = 5x - 10$$
 find the value of $f(1)$

A 0
$$3f(x) + 2f(-x) = 5x - 10$$
 $9f(x) + 6f(-x) = 15x - 30$
B 1 $3f(-x) + 2f(x) = -5x - 10$ $4f(x) + 6f(-x) = -10x - 20$
C 2 $5f(x) = 25x - 10$

$$\begin{cases}
f(x) = 5x - 2 \\
f(t) = 3
\end{cases}$$

15. The function
$$f$$
 satisfies $2f(x) - f(\frac{2x+3}{x-2}) = 2x-2$, $x \in \mathbb{R}$
What is the value of $f(9)$

A 16
B 12
$$x=9$$
 $2 + (9) - (3) = 16$ 0

C 8
D -12
E -16
 $x=3$ $x=3$

C 8
$$x=3$$
 $z + (3) = 32$

$$-16$$

$$3(3) = 36$$

$$6(3) = 12$$

$$6(3) = 8$$