Probability & Statistics

Problem set №14. Week starting on June, 1st

- $\Phi(\cdot)$ means from now until revocation cdf of N(0,1) distribution. Additionally: exercises 1–8 are classes exercises (1 point each), while exercises 9–16 are of **(E0.5)** each.
- 1. Rejection area is defined by $\Phi > 2$. Significance level α equals: a) 0.2280 b) 0.0228 c) 0.0500 d) 0.1000
- 2. Significance level α which corresponds rejection area $|\Phi| > 1.55$ equals: a) 0.5500 b) 0.0606 c) 0.1211 d) 0.1234
- 3. Level of significance $\alpha = 0.075$. Rejection area of the left-tailed hypothesis is given by: a) $\Phi < -1.34$ b) $\Phi < -1.38$ c) $\Phi < -1.40$ d) $\Phi < -1.44$.
- 4. Find p-value when $\Phi = 2.34$ and $H_a: \mu \neq \mu_0$: a) 0.0096 b) 0.0101 c) 0.0193 d) 0.0202
- 5. Find p-value when $\Phi = -3.05$, $H_a: \mu < \mu_0$: a) 0.0011 b) 0.0111 c) 0.0038 d) 0.0001
- 6. Give p-value when $\Phi = 1.89, H_a: \mu > \mu_0$: a) 0.0588 b) 0.1234 c) 0.0249 d) 0.0669
- 7. Tested hypothesis $H_0: \mu = 10$, alternative hypothesis $H_a: \mu \neq 10$, significance level $\alpha = 0.01$. For which of the following 99% confidence interval μ initial hypothesis is rejected? a) (12.1, 15.3) b) (8.8 12.5) c) (5.5, 15.5) d) (9.9 10.5)
- 8. Hypothesis about expected value is tested, based on a large sample.

Which of the following are true? a) Hypothesis H_0 is one-tailed. b) Value of the test statistics equals -22.59. c) Sample size is n = 500. d) Tested value of μ_0 equals 5.51912.

9. During the experiment, the response time to the neurological stimulus was measured.

Which of the following are true? a) Tested hypothesis is two-tailed. b) Complement to 1 of t(14) cdf in point t=3.30 is equal 0.005. c) We have no reason to reject H_0 hypothesis, with significance level $\alpha=0.05$, because 1.5 does not fit with 95% confidence interval (1.665, 2.277). d) 15 is the size of the sample.

10. Below are results of YES-NO question.

```
Test of p = 0.4 vs p not = 0.4  
Sample X N Sample p 95%CI Z-Value P-Value 1 180 400 0.450000 (0.401247,0.498753) 2.04 0.041
```

Which of the following are true? a) 400 persons were surveyed, 180 answers is YES. b) Tested hypothesis was one-sided. c) Significance level is $\alpha = 0.05$. d) cdf in point 2.04, has the value 0.041.

	Α	В	C ** * ** **
1	0.25	Procent odpowiedzi TAK	=125/500
2	0.0194	błąd standardowy wskaźnika struktury	=PIERWIASTEK(C1*(1-C1)/500)
3	1.96	kwantyl rozkładu normalnego	=ROZKŁAD.NORMALNY.ODW(0.975;0;1)
4			
5	0.212	lewy kraniec 95% przedziału ufności	=C1-C2*C3
6	0.288	prawy kraniec 95% przedziału ufności	=C1+C2*C3
7			
8	2.7951	wartość statystyki testowej	=(C1-0.2)/PIERWIASTEK(0.2*0.8/500)
9	0.0052	p-value	=2*(1-ROZKŁAD.NORMALNY(C8;0;1;PRAWDA))

- 11. 500 people were questioned, the question was of YES-NO type. Which of the following are true? a) Tested parameters has the value $p_0 = 0.20$ b) 0.0052 is one-sidedp-value. c) Tested p_0 does not fit in 95% confidence interval. d) Because n is large, $np_0 \ge 5$, $nq_0 \ge 5$, we can approximate binomial distribution by normal distribution.
- 12. We hypothesize that the standard deviation of the variable is less than 5.

	Α	В	С	D	E	F	G			
1	70	3.437758	Odchylenie	Odchylenie standardowe = ODCH.STANDARDOWE(A1:A12)						
2	73	5.2	Wartość sta	Vartość statystyki testowej =11*B1^2/25						
3	70									
4	72	0.078905	8905 p-value =1-ROZKŁAD.CHI(B2;11)							
5	74									
6	70	p-value > 0.05, nie odrzucamy hipotezy zerowej								
7	74									
8	76									
9	75									
10	80									
11	74									
12	80									
12										

Which of the following are true? a) Sample S^2 has the value 3.43776. b) If significance level is $\alpha = 0.05$ we accept hypothesis H_0 . c) Area under density of $\chi^2(11)$ distribution is 0.078905. d) Test is right-tailed.

13. The speed of 100 cars was measured. The 95% confidence interval for standard deviation is determined below.

10	75	75	50	60	80	60	50	75		
11										
12	10.64818	Odchylenie st	lchylenie standardowe =ODCH.STANDARDOWE(A1:J10)							
13	113.3838	Wariancja =A	riancja =A12^2							
14		100								
15	73.3611	Chi-kwadrat,	ni-kwadrat, 0.975 na prawo od tego punktu =ROZKŁAD.CHI.ODW(0.9							
16	128.4219	Chi-kwadrat,	hi-kwadrat, 0.025 na prawo od tego punktu =ROZKŁAD.CHI.ODW(0.025;99)							
17										
18	87.40719	Lewy kraniec	ewy kraniec 95% CI dla wariancji =99*A13/A16							
19	153.0102	Prawy kranied	rawy kraniec 95% CI dla wariancji =99*A13/A15							
20										
21	9.349181	Lewy kraniec	Lewy kraniec dla odchylenia standardowego =PIERWIASTEK(A18)							
22	12.36973	Prawy kranied	Prawy kraniec dla odchylenia standardowego =PIERWIASTEK(A19)							
23										

Which of the following are true? a) $S^2=10.64818$ b) Confidence interval of σ^2 is (87.40710, 153.0102) c) Confidence interval of σ is equal (9.349181, 12.36973) d) Area under the density function of $\chi^2(99)$ distribution on the interval (73.3611, 128.4219) equals 0.99.

- 14. Significance level of tested hypothesis $\alpha = 0.05$. Which **p-value** results in rejecting initial hypothesis: a) p-value= 0.05 b) p-value= 0.14 c) p-value= 0.024 d) p-value= 0.34.
- 15. The goal of testing hypotheses is a) describing samples, b) describing the population, c) inferring about the population based on samples, d) inferring about samples based on the population.
- 16. We perform t-test about two means. With this, we assume that: a) samples are independent b) samples come from population of normal distribution c) samples come from $t(n_1 + n_2 2)$ distribution d) samples are of the same distribution.

Hereby – I revoke the assumption that $\Phi(\cdot)$ means cdf of N(0, 1) distribution.

Witold Karczewski