

DEDAN KIMATHI UNIVERSITY OF TECHNOLOGY UNIVERSITY EXAMINATION 2019/2020

BACHELOR OF SCIENCE IN CIVIL / MECHATRONIC/INDUSTRIAL CHEMISTRY/MECHANICAL /ELECTRICAL & ELECTRONIC ENGINEERING / GEGIS / GIS,BED ELECTRICAL,BED MECHANICAL,BED CIVIL ENGINEERING, COMPUTER SCIENCE/INFORMATION TECHNOLOGY, CHEMICAL ENGINEERING, T.I.E.

SMA 2119 CALCULUS III

Date: 17th NOVEMBER, 2020 TIME: 8.30AM-10.30AM

Answer QUESTION ONE and Any Other Two Questions

Question One (30marks)

a) Show that the series $\sum_{0}^{\infty} 3^{\frac{1}{\frac{1}{n+1}}}$ diverges (2marks)

- b) Find a power series representation for $f(x) = \frac{1}{x+2}$ (4marks)
- c) Find the centre of mass of the system of objects that has masses 5, 4,6 at the points (1,-3), (-2, 2) and (3,4) respectively (5marks)
- d) Evaluate the double integral $\int_{0}^{2} \int_{0}^{1-x} x(y-1) dy dx$ (4marks)
- e) Determine whether the improper integral $\int_{0}^{\infty} \frac{dx}{1+x^2}$ converges or diverges (4marks)
- f) Test the convergence of the series $\sum_{n=1}^{\infty} n^2 e^{-n^3}$ using the integral test(4 marks)
- g) Find the total derivative $\frac{dz}{dt}$ given that $z = x^2 + 3xy + 7y^4$, $x = \cos 2t$, $y = \sin t$ (4marks)
- h) Use the alternating series test to show that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n^2}{5n^2 + 8}$ diverges (3 marks)

Question2 (20marks)

a) Find the Maclaurin series for $f(x) = \ln(2+x)$ up to the term containing x^3 . Hence evaluate $\ln 2.2$ correct to 3 decimal places (6marks)

- b) Find the value of the double integral $\iint_R (6x+2y^2)dA$ where R is the region bounded by the parabolas $x=y^2$ and x+y=2 (6marks)
 - c) Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x+2)^n}{2^n(n)}$ (5 marks)
- d) Use double integration to find the volume under the plane $z = 5x^2 3y$ and over the rectangle defined by $0 \le x \le 3, -1 \le y \le 2$ (3marks)

Question 3(20marks)

- a) By reversing the order of integration evaluate $\int_{0}^{1} \int_{y}^{\sqrt{y}} 3y dx dy$ (5marks)
- b) Use differentials to approximate the change in $f(x, y) = x^2y + 2xy^3$ if (x, y) changes from (1,2) to (1.2,2.1) (5marks)
- c) Using the method of partial sums, determine if the series $\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$ converges. (5marks)
- d) Show that if x^4 and higher powers of x are neglected, then $f(x) = e^x \cos x = 1 + x \frac{x^3}{3}$ (5marks)

Question 4(20marks)

- a) Use the ratio test to determine if the series $\sum_{n=1}^{\infty} \frac{-10^n}{4^{n+2}(n+1)}$ converges or diverges (5 marks)
- b) Using double integrals, find the area of the region bounded by y = x and $y = x^2$ in the first quadrant. (5marks)
- c) Use the limit comparison test to determine the convergence of the series $\sum_{n=1}^{\infty} \frac{2n+1}{5n^4+7}$ (4marks)
- d) Use the change of variable $x=u^2-v^2$, y=2uv to evaluate $\iint_R dA$ where R is the region bounded by the $\iint_R dA$ x axis and the parabolas $y^2=4-4x$ and $y^2=4+4x$, $y\geq 0$ (6marks)

Question 5(20marks)

- a) Find the centre of mass of the region bounded by $y = x^2$ and the line $y \ge 0$ with density ...(x, y) = x + y (8marks)
- b) Show that if $z = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ then $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$ (6marks)
- c) Find the Taylor series for $f(x) = e^{-2x}$ about x = -4 (6marks)