数季电路与逻辑设计

Digital circuit and logic design

● 第一章 基本知识

主讲教师 于俊清

■提纲

数字信号与系统

数制及其转换

带符号二进制数的代码表示

几种常用的编码

数制及其转换

数制是人们对数量计数的 一种统计规律

数字系统中使用的是二进制

■进位计数制

▶十进制编码特点

0123456789十种状态,状态过多

运算组合状态过多

加法组合数=C₁₀²+10=10*9/2+10=55

0+0	0+1	0+2	0+3	0+4	0+5	0+6	0+7	0+8	0+9
	1+1	1+2	1+3	1+4	1+5	1+6	1+7	1+8	1+9
	-	2+2	2+3	2+4	2+5	2+6	2+7	2+8	2+9
			3+3	3+4	3+5	3+6	3+7	3+8	3+9
				4+4	4+5	4+6	4+7	4+8	4+9
					5+5	5+6	5+7	5+8	5+9
						6+6	6+7	6+8	6+9
							7+7	7+8	7+9
								8+8	8+9
									9+9

■其他进制的运算组合数

二进制的特点

只使用两个基本

符号:1 ()

符号个数最少,物理上容易实现

用数字电路的两 个状态表示(如 电压的高低) 与二值逻辑状态 真假对应 用二进制编码表示数值, 运算规则简单

$$0+0=0$$

$$1+1=0$$

用一个异或门可以实现

■进位计数制

■ 进制表示法: 对于R进制, 逢R进一

$$N = \sum_{i=-m}^{n-1} K_i \times R^i$$

- R 是数制的基(Radix)
- i 表示这个符号排列的位号
- \bigcirc K_i 表示位号为 i 位上的一个数字符号
- \bigcirc R^i 表示位号为 i 位上的一个1代表的实际数值,即**位权**

■举例说明

$$(8168)_{10} = 8 \times 10^3 + 1 \times 10^2 + 6 \times 10^1 + 8 \times 10^0$$

$$(8168)_{16} = 8 \times 16^3 + 1 \times 16^2 + 6 \times 16^1 + 8 \times 16^0$$

$$(10110)_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

数制转换

二进制转十六进制

一十进制转二进制

整数部分:除2取余

除尽为止:1011

小数部分:乘2取整

🔣 求得位数满足要求为止

0.0

二进制转十进制

🚇 从二进制求十进制数,逐位码权累加求和

$$N = \sum_{i=-m}^{n-1} K_i \times R^i$$

$$(10110110)_2 = 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3$$

$$+1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

$$=182$$

二到八或十六进制的转换

二进制转八进制

小数点为界,向两边三位—组变为—位 八进制数

如:

$$(10\ 011\ 100\ .01)_2 = (234.2)_8$$

$$010$$

二进制转十六进制

小数点小数点为界,向两边四位一组变为 一位十六进制数

$$(1001\ 1100\ .\ 01)_2 = (9C.4)_{16}$$

$$0100$$

■常用的2的幂

$$2^5=32$$
, $2^6=64$, $2^7=128$, $2^8=256$, $2^9=512$

$$2^{13}$$
=8192, 2^{14} =16384, 2^{15} =32768

数制的快速转换算法

$$=2^{12} - 1 - 1 = 4094$$

$$= 0.0010001$$

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

