MINORS OF TREE DISTANCE MATRICES

HARRY RICHMAN, FARBOD SHOKRIEH, AND CHENXI WU

ABSTRACT. We prove an identity that relates the principal minors of the distance matrix of a tree, on one hand, to a combinatorial expression involving counts of rooted spanning forests of the underlying tree. This generalizes a result of Graham and Pollak. A variant of this identity applies to the case of edge-weighted trees.

Contents

1.	Introduction	1
2.	Graphs and matrices	3
3.	Proofs	6
4.	Optimization: quadratic programming	11
5.	Physical interpretation	12
6.	Examples	13
7.	Further work	14
Acknowledgements		15
References		15

1. Introduction

Suppose G = (V, E) is a tree with n vertices. Let D denote the distance matrix of G. In [4], Graham and Pollak proved that

eq:full-det

(1)
$$\det D = (-1)^{n-1} 2^{n-2} (n-1).$$

This identity is remarkable in that the result does not depend on the tree structure, beyond the number of vertices. The identity (\blacksquare) was motivated by a problem in data communication, and inspired much further research on distance matrices. The main result of this paper is to generalize (\blacksquare) by replacing det D with any of its principal

The main result of this paper is to generalize ($\overline{|I|}$ by replacing det D with any of its principal minors. For a subset $S \subset V(G)$, let D[S] denote the submatrix consisting of the S-indexed rows and columns of D.

thm:main

Theorem 1. Suppose G is a tree with n vertices, and distance matrix D. Let $S \subset V(G)$ be a nonempty subset of vertices. Then

eq:main

(2)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left((n-1) \kappa(G; S) - \sum_{\mathcal{F}_2(G; S)} (\deg^o(F, *) - 2)^2 \right),$$

where $\kappa(G; S)$ is the number of S-rooted spanning forests of G, $\mathcal{F}_2(G; S)$ is the set of (S, *)-rooted spanning forests of G, and $\deg^o(F, *)$ denotes the outdegree of the *-component of F.

For definitions of (S,*)-rooted spanning forests and other terminology, see Section 2. Note that the quantity $\deg^o(F,*)$ satisfies the bounds

$$1 \le \deg^o(F, *) \le |S|.$$

When S = V is the full vertex set, the set of V-rooted spanning forests is a singleton, consisting of the subgraph with no edges, so $\kappa(G; V) = 1$; and moreover the set $\mathcal{F}_2(G; V)$ of (V, *)-rooted spanning forests is empty. Thus (2) recovers the Graham–Pollak identity (II) when S = V.

1.1. Weighted trees. If $\{\alpha_e : e \in E\}$ is a collection of positive edge weights, the α -distance matrix D_{α} is defined by setting the (u, v)-entry to the sum of the weights α_e along the unique path from u to v. The following weighted version of (II) is satisfied by the weighted distance matrix,

eq:w-full-det

(3)
$$\det D_{\alpha} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e$$

 $(3) \qquad \det D_{\alpha} = (-1)^{n-1} 2^{n-2} \sum_{e \in E} \alpha_e \prod_{e \in E} \alpha_e,$ which was proved by Bapat–Kirkland–Neumann [I]. The weighted identity (3) reduces to (II) when taking all unit weights, $\alpha_e = 1$. We also prove the following weighted version of our main theorem.

thm:w-main

Theorem 2. Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : e \in E\}$, and corresponding weighted distance matrix $D = D_{\alpha}$. For any nonempty subset $S \subset V$, we have

eq:w-main

(4)
$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(F) \right).$$

where $\mathcal{F}_1(G;S)$ is the set of S-rooted spanning forests of G, $\mathcal{F}_2(G;S)$ is the set of (S,*)-rooted spanning forests of G, $w(\overline{T})$ and w(F) denote the α -weights of the forests T and F, and $\deg^o(F,*)$ is the outdegree of the *-component of F, as above.

Theorem $\frac{\text{thm:w-main}}{2 \text{ reduces}}$ to Theorem $\frac{\text{thm:main}}{1 \text{ when}}$ taking all unit weights, $\alpha_e = 1$.

1.2. Applications. Suppose we fix a tree distance matrix D. It is natural to ask, how do the expressions det D[S] vary as we vary the vertex subset S? To our knowledge there is no nice behavior to answer this question, but as S varies there is nice behavior of the ratios $\det D[S]/\cot D[S]$ which we describe here.

Given a matrix A, let cof A denote the sum of cofactors of A, i.e.

$$\operatorname{cof} A = \sum_{i=1}^{|S|} \sum_{j=1}^{|S|} (-1)^{i+j} \det A_{ij}.$$

If A is invertible, then cof A is related to the sum of entries of the matrix inverse A^{-1} by a factor of det A, i.e. cof $A = (\det A)(\mathbf{1}^{\mathsf{T}}A^{-1}\mathbf{1})$. In [2], Bapat and Sivasubramanian showed the following identity for the sum of cofactors of a distance submatrix D[S] of a tree.

eq:cof-trees

(5)
$$\operatorname{cof} D[S] = (-2)^{|S|-1} \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}).$$

Using the Bapat–Sivasubramanian identity (b), an immediate corollary to Theorem 2 is the following result: Suppose G = (V, E) is a finite, weighted tree with edge weights $\{\alpha_e : e \in E\}$. Let $D = D_{\alpha}$ denote the weighted distance matrix of G. For any nonempty subset $S \subset V$, we have

eq:det-cof

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\sum_{F \in \mathcal{F}_2(G;S)} w(F) k(F,*)^2}{\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})} \right)$$

where $k(F,*) = \deg^o(F,*) - 2$. The expression (??) satisfies a monotonicity condition as we vary the vertex set $S \subset V(G)$.

thm:monotonic

Theorem 3 (Monotonicity of normalized principal minors). If $A, B \subset V(G)$ are nonempty subsets with $A \subset B$, then

$$\frac{\det D[A]}{\cot D[A]} \leq \frac{\det D[B]}{\cot D[B]}.$$

We remark that the calculation of $\det D[S]$ is related to the following quadratic optimization problem: for all vectors $\mathbf{m} \in \mathbb{R}^S$,

optimize objective function: $\mathbf{m}^{\intercal}D[S]\mathbf{m}$

with constraint: $\mathbf{1}^{\intercal}\mathbf{m} = 1$.

This result can be shown using Lagrange multipliers; for details, see Section $\overset{\mathtt{sec:optimization}}{4}$

Theorem 4 (Bounds on principal minor ratios). Suppose G = (V, E) is a finite, weighted tree with distance matrix D.

(1) If $S \subset V(G)$ is nonempty,

$$0 \le \frac{\det D[S]}{\cot D[S]} \le \frac{1}{2} \sum_{E(G)} \alpha_e.$$

(2) If conv(S,G) denotes the subtree of G consisting of all paths between points of $S \subset V(G)$,

$$\frac{\det D[S]}{\operatorname{cof} D[S]} \le \frac{1}{2} \sum_{E(\operatorname{conv}(S,G))} \alpha_e.$$

(3) If γ is a simple path between vertices $s_0, s_1 \in S$, then

$$\frac{1}{2} \sum_{e \in \gamma} \alpha_e \le \frac{\det D[S]}{\cot D[S]}$$

Corollary 5 (Nonsingular minors). Let G be a finite tree with (weighted) distance matrix D, and let $S \subset V(G)$ be a subset of vertices. If $|S| \ge 2$ then $\det D[S] \ne 0$.

1.3. Previous work. A formula for the inverse matrix D^{-1} was found by Graham and Lovász in [3].

1.4. **Notation.** G a finite graph, loops and parallel edges allowed, possibly disconnected

E(G) edge set of G

V(G) vertex set of G

 $\mathcal{F}_1(G;S)$ the set of S-rooted spanning forests of G

 $\mathcal{F}_2(G;S)$ the set of (S,*)-rooted spanning forests of G

2. Graphs and matrices

For background on enumeration problems for graphs and trees, see Moon $\begin{bmatrix} \frac{poon}{5} \end{bmatrix}$. \diamondsuit choose other reference? \diamondsuit

Given a graph G=(V,E) with edge weights $\{\alpha_e:e\in E\}$, for any edge subset $A\subset E$ we define the weight of A as

$$w(A) = \prod_{e \in A} \alpha_e.$$

We define the co-weight of A as

$$w(\overline{A}) = \prod_{e \notin A} \alpha_e.$$

By abuse of notation, if H is a subgraph of G, we use H to also denote its subset of edges E(H), so e.g. $w(\overline{H}) = w(\overline{E(H)})$.

:graphs-matrices

2.1. **Spanning trees and forests.** A spanning tree of a graph G is a subgraph which is connected, has no cycles, and contains all vertices of G. A spanning forest of a graph G is a subgraph which has no cycles and contains all vertices of G. Let $\kappa(G)$ denote the number of spanning forests of G, and let $\kappa_T(G)$ denote the number of r-component spanning forests.

Given a set of vertices $S = \{v_1, v_2, \dots, v_k\}$, an S-rooted spanning forest of G is a spanning forest which has exactly one vertex v_i in each connected component. An (S, *)-rooted spanning forest of G is a spanning forest which has |S| + 1 components, where |S| components each contain one vertex of S, and the additional component is disjoint from S. We call the component disjoint from S the floating component, following terminology in [?].

Let $\mathcal{F}_1(G; S)$ denote the set of S-rooted spanning forests of G, and let $\mathcal{F}_2(G; S)$ denote the set of (S, *)-rooted spanning forests of G.

Let

$$\kappa_k(v_1|v_2|\cdots|v_k)$$

denote the number of k-component spanning trees which have a vertex v_i in each component. If $S = \{v_1, \ldots, v_k\}$, then $\kappa_k(v_1|\cdots|v_k) = \kappa(G/S)$.

If u, v, w are vertices, then let

$$\kappa_2(uv|w)$$

denote the number of two-forests which have u, v in one component and w in the other component.

Example 6. Suppose G is the tree with unit edge lengths shown below.

Let S be the set of three leaf vertices. Then $\mathcal{F}_1(G;S)$ contains 11 forests, while $\mathcal{F}_2(G;S)$ contains 19 forests. These are shown in Figures 1 and 2, respectively.

FIGURE 1. Forests in $\mathcal{F}_1(G; S)$.

fig:1-forests

2.2. **Laplacian matrix.** Given a graph G = (V, E), let $L \in \mathbb{R}^{V \times V}$ denote the *Laplacian matrix* of G. If G is a weighted graph with edge weights $\alpha_e \in \mathbb{R}_{>0}$ for $e \in E$, let L denote the weighted Laplacian matrix of G.

Definition 7 (Weighted Laplacian matrix). Given a graph G = (V, E) and edge weights $\{\alpha_e : e \in E\}$, the weighted Laplacian matrix $L_{\alpha} \in \mathbb{R}^{V \times V}$ is defined by

$$(L_{\alpha})_{v,w} = \begin{cases} 0 & \text{if } v \neq w \text{ and } (v,w) \notin E \\ -\alpha_e^{-1} & \text{if } v \neq w \text{ and } (v,w) = e \in E \\ \sum_{e \in N(v)} \alpha_e^{-1} & \text{if } v = w. \end{cases}$$

Given $S \subset V$, let $L[\overline{S}]$ denote the matrix obtained from L by removing the rows and columns indexed by S. For any graph G, let $\kappa(G)$ denote the number of spanning trees of G. The following theorem is due to Kirchhoff.

FIGURE 2. Forests in $\mathcal{F}_2(G;S)$.

fig:2-forests

thm:matrix-tree

Theorem 8 (All-minors matrix tree theorem). Let G = (V, E) be a finite graph.

(a) and let L denote the Laplacian matrix of G. Then for any nonempty vertex set $S \subset V$,

$$\det L[\overline{S}] = \kappa(G; S).$$

(b) Let L_{α} denote the weighted Laplacian matrix of G, for edge weights $\{\alpha_e\}$. Then for any nonempty vertex set $S \subset V$,

$$\det L[\overline{S}] = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})^{-1} = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \prod_{e \in E} \alpha_e^{-1}.$$

Note that $\kappa(G; S)$ is also the number of spanning trees of the quotient graph G/S, which "glues together" all vertices in S as a single vertex.

The following result is due to Bapat–Sivasubramanian. Recall that cof M denotes the *sum of cofactors* of M, i.e.

$$cof M = \sum_{i=1}^{n} \sum_{j=1}^{n} (-1)^{i+j} \det M[\overline{i}, \overline{j}].$$

Theorem 9 (Distance matrix cofactor sums [2]). Given a tree G, let D be the distance matrix of G, and L the Laplacian matrix. Let $S \subset V(G)$ be a nonempty subset of vertices of G. Then

$$\operatorname{cof} D[S] = (-2)^{|S|-1} \det L[\overline{S}].$$

sec:tree-splits

2.3. Tree splits and tree distance. In this section we describe the tree splits associated to a tree, and use their associated indicator functions to give an expression for the tree distance.

Given a tree G=(V,E) and an edge $e\in E$, the edge deletion $G\setminus e$ contains two connected components. Using the implicit orientation on $e=(e^+,e^-)$, we let $(G\setminus e)^+$ denote the component that contains endpoint e^+ , and let $(G\setminus e)^-$ denote the other component. For any $e\in E$ and $v\in V$, we let $(G\setminus e)^v$ denote the component of $G\setminus e$ containing v, respectively $(G\setminus e)^{\overline{v}}$ for the component not containing v.

Tree splits can be used to express the path distance between vertices in a tree. Given an edge $e \in E$ and vertices $v, w \in V$, let

$$\delta(e; v, w) = \begin{cases} 1 & \text{if } e \text{ separates } v \text{ from } w, \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\delta(e; v, w) = 1$ if the vertices are in different components of the split $G \setminus e$, and $\delta(e; v, w) = 0$ if they are in the same component. Note that $\delta(e; v, v) = 0$ for any e and v.

We have the following perspectives on the function $\delta(e; v, w)$:

- If we fix e and v, then $\delta(e; v, -) : V(G) \to \{0, 1\}$ is the indicator function for the component $(G \setminus e)^{\overline{v}}$ of the tree split $G \setminus e$ not containing v.
- On the other hand if we fix v and w, then $\delta(-; v, w) : E(G) \to \{0, 1\}$ is the indicator function for the unique $v \sim w$ path in G.

Proposition 10 (Weighted tree distance). For a tree G = (V, E) with weights $\{\alpha_e : e \in E\}$, the weighted distance function satisfies

$$d_{\alpha}(v, w) = \sum_{e \in E} \alpha_e \, \delta(e; v, w).$$

For an unweighted tree, we can express the tree distance d(v, w) as the unweighted sum

$$d(v,w) = \sum_{e \in E(G)} \delta(e; v, w).$$

2.4. Outdegree of rooted forest. Given a rooted forest F in $\mathcal{F}_1(G; S)$ and $s \in S$, let F(s) denote the s-component of F. We define the outdegree $\deg^o(F, s)$ as the number of edges which join F(s) to a different component; i.e.

eq:outdeg

(6)
$$\deg^{o}(F,s) = \#\{e = (a,b) \in E : a \in F(s), b \notin F(s)\}.$$

If F is a forest in $\mathcal{F}_2(G; S)$, let $\deg^o(F, *)$ denote the outdegree of the floating component.

lem:outdeg-sum

rop:distance-sum

Lemma 11. Suppose G is a tree and $H \subset G$ is a (nonempty) connected subgraph. Then

$$\sum_{v \in V(H)} (2 - \deg(v)) = 2 - \deg^{o}(H).$$

Proof. This is straightforward to check by induction on |V(H)|, with base case |V(H)| = 1: if $H = \{v\}$ consists of a single vertex, then $\deg^o(H) = \deg(v)$.

2.5. Miscellaneous. We use the fact that the submatrix D[S] has nonzero determinant.

Lemma 12 (Bapat [?, Lemma 8.15]). Suppose D is the (weighted) distance matrix of a tree with n vertices. Then D has one positive eigenvalue and n-1 negative eigenvalues.

Cauchy interlacing, c.f. Horn–Johnson 7, Theorem 4.3.17

Proposition 13 (Cauchy interlacing). Suppose M is a symmetric real matrix and M[i] is a principal submatrix. Then the eigenvalues of M_i interlace the eigenvalues of M.

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \mu_{n-1} \le \lambda_n$$
.

Proposition 14. Suppose D is the distance matrix of a tree G = (V, E) and $S \subset V$ is a subset of size $|S| \geq 2$. Then

- (i) D[S] has one positive and |S|-1 negative eigenvalues;
- (ii) $\det D[S] \neq 0$.

 \square

Remark 15. A key step in the main proof is the use of the map

$$E(G) \times \mathcal{F}_1(G; S) \mapsto S \sqcup \{\text{error}\}$$

defined by

$$(e,T)\mapsto \begin{cases} s & \text{if } e\in T(s),\\ \text{error} & \text{if } e\not\in T. \end{cases}$$

Remark 16. For a given spanning forest $F \in \mathcal{F}_2(G; S)$, there are exactly $\deg^o(F, *)$ -many choices of pairs $(T, e) \in \mathcal{F}_1(G; S) \times E(G)$ such that $F = T \setminus e$. Consider the "deletion" map

$$E(G) \times \mathcal{F}_1(G;S) \to \mathcal{F}_2(G;S) \sqcup \mathcal{F}_1(G;S)$$

defined by

$$(e,T) \mapsto \begin{cases} T \setminus e & \text{if } e \in T, \\ T & \text{if } e \notin T. \end{cases}$$

For a forest F in $\mathcal{F}_2(G; S)$, the preimage under this map has $\deg^o(F, *)$ elements. There is an associated "union" map

$$E(G) \times \mathcal{F}_2(G;S) \longrightarrow \mathcal{F}_1(G;S) \sqcup \mathcal{F}_2(G;S)$$

defined by

$$(e,F) \mapsto \begin{cases} F \cup e & \text{if } e \in \partial F, \\ F & \text{if } e \notin \partial F \end{cases}$$

For a forest T in $\mathcal{F}_1(G;S)$, the preimage under this map has |E(T)|-many elements.

3. Optimization: Quadratic programming

Proposition 17. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\cot D[S]} = \max\{\mathbf{m}^{\intercal}D[S]\mathbf{m} : \mathbf{m} \in \mathbb{R}^{S}, \ \mathbf{1}^{\intercal}\mathbf{m} = 1\}$$

where $\operatorname{cof} D[S]$ denotes the sum of cofactors of D[S].

Proposition 18. If D[S] is a principal submatrix of a distance matrix indexed by S, then

$$\frac{\det D[S]}{\operatorname{cof} D[S]} = \max\{\mathbf{m}^{\mathsf{T}} D\mathbf{m} : \mathbf{m} \in \mathbb{R}^{V}, \, \mathbf{1}^{\mathsf{T}} \mathbf{m} = 1, \, \mathbf{m}_{v} = 0 \, \text{if } v \notin S\}$$

where cof D[S] denotes the sum of cofactors of D[S].

The gradient of the objective function is $2D[S]\mathbf{m}$, and the gradient of the constraint is 1. By the theory of Lagrange multipliers, the optimal solution \mathbf{m}^* is a vector satisfying

$$D[S]\mathbf{m}^* = \lambda \mathbf{1}$$
 for some $\lambda \in \mathbb{R}$.

The constant λ is in fact the optimal objective value, since

$$(\mathbf{m}^*)^{\mathsf{T}}D[S]\mathbf{m}^* = (D[S]\mathbf{m}^*)^{\mathsf{T}}\mathbf{m}^* = \lambda(\mathbf{1}^{\mathsf{T}}\mathbf{m}^*) = \lambda.$$

The above computation uses the fact that D[S] is a symmetric matrix, and the given constraint $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 1$.

On the other hand, assuming D[S] is invertible we have $\mathbf{m}^* = \lambda(D[S]^{-1}\mathbf{1})$, so that

$$1 = \mathbf{1}^{\mathsf{T}} \mathbf{m}^* = \lambda (\mathbf{1}^{\mathsf{T}} D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

Thus the optimal objective value is $\lambda = \frac{\det D[S]}{\cot D[S]}$.

sec:optimization

4. Proofs

In this section we prove our main result, Theorem 2. Theorem I follows by setting all edge weights to one.

Outline of proof: given a subset $S \subset V$ and distance submatrix D[S], we will

- (i) Find vector $\mathbf{m} \in \mathbb{R}^S$ such that $D[S]\mathbf{m} = \lambda \mathbf{1} \in \mathbb{R}^S$.
- (ii) Compute the sum of entries of \mathbf{m} , i.e. $\mathbf{1}^{\mathsf{T}}\mathbf{m}$.
- (iii) Using (i), relate the sum $\mathbf{1}^{\mathsf{T}}\mathbf{m}$ to the sum of entries of the inverse matrix $D[S]^{-1}$:

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \lambda(\mathbf{1}^{\mathsf{T}}D[S]^{-1}\mathbf{1}) = \lambda \frac{\operatorname{cof}D[S]}{\det D[S]}.$$

where $\operatorname{cof} D[S]$ is the sum of cofactors of D[S].

(iv) Use known expression for cof D[S] to compute

$$\det D[S] = \lambda(\operatorname{cof} D[S]) \left(\mathbf{1}^{\mathsf{T}} \mathbf{m}\right)^{-1}.$$

The interesting part of this expression will turn out to be in the constant λ .

Example 19. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding submatrix of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}.$$

Following the steps outlined above:

- (i) The vector $\mathbf{m} = \begin{bmatrix} -1\\1\\1\\1 \end{bmatrix}$ satisfies $D[S]\mathbf{m} = (a+b+c)\mathbf{1}$
- (ii) The sum of entries of **m** is $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2$.
- (iii) We have

$$2 = \mathbf{1}^\intercal \mathbf{m} = \lambda (\mathbf{1}^\intercal D[S]^{-1} \mathbf{1}) = \lambda \frac{\operatorname{cof} D[S]}{\det D[S]}.$$

(iv) The cofactor sum cof D[S] is -8abc, so the determinant is

$$\det D[S] = \lambda \frac{\cot A}{\mathbf{1}^{\mathsf{T}} \mathbf{m}} = (a+b+c)(-8abc)\frac{1}{2} = -4(a+b+c)abc.$$

4.1. Warmup case: S = V.

Proposition 20. Let G = (V, E) a tree, and consider the vector $\mathbf{m} \in \mathbb{R}^V$ defined by

$$\mathbf{m}_v = 2 - \deg v$$
 for each $v \in V$.

Then $\mathbf{1}^{T}\mathbf{m} = \sum_{v \in V} (2 - \deg v) = 2.$

Proof. For any graph, $\sum_{v \in V} \deg v = 2|E|$. Since G is a tree, |E| = |V| - 1.

Proposition 21. Let **m** be the vector defined above, and let D be the distance matrix of G. Then $D\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. It suffices to show that for each edge e, with endpoints (e^+, e^-) , we have

$$(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}.$$

-distance-warmup

We compute

$$(D\mathbf{m})_{(e^{+})} - (D\mathbf{m})_{(e^{-})} = \sum_{v \in V} (d(v, e^{+}) - d(v, e^{-}))(2 - \deg v)$$

$$= \sum_{v \in (G \setminus e)^{-}} \alpha_{e}(2 - \deg v) - \sum_{v \in (G \setminus e)^{+}} \alpha_{e}(2 - \deg v)$$

$$= \alpha_{e} \left(\sum_{v \in (G \setminus e)^{-}} (2 - \deg v) - \sum_{v \in (G \setminus e)^{+}} (2 - \deg v) \right)$$

since

(7)

eq:12-1

since
$$d(v,e^+) - d(v,e^-) = \begin{cases} \alpha_e & \text{if } v \text{ is closer to } e^- \text{ than } e^+, \\ -\alpha_e & \text{if } v \text{ is closer to } e^+ \text{ than } e^-. \end{cases}$$
 For each sum in (|\frac{\text{eq:12-1}}{\text{7}}, \text{ we apply Lemma} |\frac{\text{lem:outdeg-sum}}{\text{13 to obtain}}|

$$\sum_{v \in (G \setminus e)^-} (2 - \deg v) = (2 - \deg^o((G \setminus e)^-) = 1,$$

since each component of $(G \setminus e)$ has outdegree one. The same identity applies to the sum over $(G \setminus e)^+$, so $(D\mathbf{m})_{(e^+)} = (D\mathbf{m})_{(e^-)}$ as desired.

4.2. General case: $S \subset V$. Fix a tree G = (V, E) and a nonempty subset $S \subset V$.

dfn:m-vector

Definition 22. Let $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ be defined by

eq:m-vector

(8)
$$\mathbf{m}_{v} = \sum_{T \in \mathcal{F}_{1}(G;S)} (2 - \deg^{o}(T,v)) w(\overline{T}) \quad \text{for each } v \in S.$$

where $\deg^o(T,v)$ is the outdegree of the v-component of T, (6).

Let 1 denote the all-ones vector.

Proposition 23. For **m** defined above, $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})$.

Proof. We have

$$\mathbf{1}^{\mathsf{T}}\mathbf{m} = \sum_{s \in S} \mathbf{m}_s = \sum_{s \in S} \left(\sum_{T \in \mathcal{F}_1(G;S)} (2 - \deg^o(T,s)) w(\overline{T}) \right)$$
$$= \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \left(\sum_{s \in S} \sum_{v \in T(s)} 2 - \deg(v) \right)$$
$$= \sum_{T \in \mathcal{F}_1} w(\overline{T}) \left(\sum_{v \in V} 2 - \deg(v) \right) = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \cdot 2.$$

In the second line we apply Lemma 13 and exchange the outer summations. To obtain the third line, we observe that the vertex sets of T(s) for $s \in S$ form a partition of V, since T is an S-rooted spanning forest. Finally we again apply Lemma 13 for the last equality, as $\deg^o(G) = 0$.

Corollary 24. If G is a graph with unit edge weights $\alpha_e = 1$, then the vector \mathbf{m} defined in (8)satisfies $\mathbf{1}^{\mathsf{T}}\mathbf{m} = 2 \kappa(G; S)$.

Theorem 25. With $\mathbf{m} = \mathbf{m}(G; S)$ defined as in (8), $D[S]\mathbf{m} = \lambda \mathbf{1}$ for the constant

$$\lambda = \sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (2 - \deg^o(F,*))^2 w(F).$$

Proof. For $e \in E$ and $v, w \in V$, let $\delta(e; v, w)$ denote the function defined in Section ??. \diamond check section \diamondsuit For any $v \in S$, we have

$$(D[S]\mathbf{m})_{v} = \sum_{s \in S} d(v, s)\mathbf{m}_{s}$$

$$= \sum_{s \in S} \left(\sum_{e \in E(G)} \alpha_{e} \,\delta(e; v, s)\right) \left(\sum_{T \in \mathcal{F}_{1}(G; S)} (2 - \deg^{o}(T, s))w(\overline{T})\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(\overline{T}) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s)(2 - \deg^{o}(T, s))\right)$$

$$= \sum_{T \in \mathcal{F}_{1}} w(\overline{T}) \sum_{e \in E} \alpha_{e} \left(\sum_{s \in S} \delta(e; v, s) \sum_{u \in T(s)} (2 - \deg(u))\right).$$
(9)

where in the last equality, we apply Lemma 13 to the subgraph H = T(s).

We introduce additional notation to handle the double sum in parentheses in (9). Each S-rooted spanning tree T naturally induces a surjection $\pi_T: V \to S$, defined by

$$\pi_T(u) = s$$
 if and only if $u \in T(s)$.

Using this notation,

$$(D[S]\mathbf{m})_v = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \left(\sum_{u \in V} (2 - \deg(u)) \delta(e; v, \pi_T(u)) \right)$$

We will compare the above expression with the one obtained after replacing $\delta(e; v, \pi_T(u))$ with $\delta(e; v, u)$. From Lemma II3 again, for any $v \in V$ and $e \in E$ we have

$$\sum_{u \in V} (2 - \deg(u))\delta(e; v, u) = 2 - \deg^{o}((G \setminus e)^{\overline{v}}) = 1.$$

Thus

$$\sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \left(\sum_{u \in V} (2 - \deg(u)) \delta(e; v, u) \right)$$

After subtracting equation (??) from (??).

$$(D[S]\mathbf{m})_v - \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \sum_{u \in V} (2 - \deg(u)) \left(\delta(e; v, \pi_T(u)) - \delta(e; v, u)\right)$$

When $e \in E$ and $v \in V$ are fixed, $u \mapsto \delta(e; v, u)$ is the indicator function of one component of the principal cut $G \setminus e$. We have

$$\delta(e; v, \pi_T(u)) - \delta(e; v, u) = \begin{cases} 0 & \text{if } \delta(e; \pi_T(u), u) = 0\\ 1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 1\\ -1 & \text{if } \delta(e; \pi_T(u), u) = 1 \text{ and } \delta(e; v, \pi_T(u)) = 0 \end{cases}$$

Now consider varying u over all vertices, when e, T, and v are fixed. We have the following three

Case 1: if $e \notin T$, then u and $\pi_T(u)$ are on the same side of the principal cut $G \setminus e$, for every vertex u. In this case $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot) = 0$.

Case 2: if $e \in T(s_0)$ and s_0 is separated from v by e, then $\delta(e; v, \pi_T(\cdot)) - \delta(e; v, \cdot)$ is the indicator function for the floating component of $T \setminus e$. See Figure ??, left

Case 3: if $e \in T(s_0)$ and s_0 is on the same component as v from e, then $\delta(e; v, \pi_T(\cdot)) = \delta(e; v, \cdot)$ is the negative of the indicator function for the floating component of $T \setminus e$. See Figure ??, right

eq:14-1

eq:delta-diff

FIGURE 3. Edge $e \in T(s_0)$ with $\delta(e; v, s_0) = 1$ (left) and $\delta(e; v, s_0) = 0$ (right). The floating component of $T \setminus e$ is highlighted.

fig:e-delete-fro

Thus when multiplying the term ([??]) by $(2-\deg(u))$ and summing over all vertices u, we obtain

$$\sum_{u \in V} (2 - \deg(u)) (\delta(e; v, \pi_T(u)) - \delta(e; v, u)) = \begin{cases} 0 & \text{if } e \not\in T, \\ 2 - \deg^o(T \setminus e, *) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 1, \\ -(2 - \deg^o(T \setminus e, *)) & \text{if } e \in T(s_0) \text{ and } \delta(e; v, s_0) = 0. \end{cases}$$

Thus

$$\begin{array}{ll} \overline{\mathbf{eq:1}} & (10) & (D[S]\mathbf{m})(v) - \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in E} \alpha_e \\ \\ & = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{s_0 \in S} \left(\sum_{\substack{e \in T(s_0) \\ \delta(e;v,s_0) = 1}} \alpha_e(2 - \deg^o(T \setminus e, *)) - \sum_{\substack{e \in T(s_0) \\ \delta(e;v,s_0) = 0}} \alpha_e(2 - \deg^o(T \setminus e, *)) \right) \\ \\ & = \sum_{T \in \mathcal{F}_1} w(\overline{T}) \sum_{e \in T} \alpha_e(2 - \deg^o(T \setminus e, *)) \left(\sum_{\substack{e \in T(s_0) \\ e \in T(s_0)}} 1 - \sum_{\substack{e \in T(s_0) \\ e \in T(s_0)}} 1 \right).$$

We now rewrite the above expression in terms of $\mathcal{F}_2(G; S)$, observing that the deletion $T \setminus e$ is an (S, *)-rooted spanning forest of G, if $e \in T$, and that the corresponding weights satisfy

$$w(F) = \alpha_e \cdot w(\overline{T})$$
 if $F = T \setminus e$.

Thus

$$\begin{pmatrix}
|eq:1\\ |T|| = \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \sum_{T \in \mathcal{F}_1} \sum_{s_0 \in S} \left(\sum_{\substack{e \in T(s_0)\\ \delta(e; v, s_0) = 1}} \mathbb{1}(F = T \setminus e) - \sum_{\substack{e \in T(s_0)\\ \delta(e; v, s_0) = 0}} \mathbb{1}(F = T \setminus e) \right)$$

$$= \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \left(\#\{T \in \mathcal{F}_1 : F = T \setminus e \text{ for some } e \in T(s_0), \ \delta(e; v, s_0) = 1\} \right)$$

$$- \#\{T \in \mathcal{F}_1 : F = T \setminus e \text{ for some } e \in T(s_0), \ \delta(e; v, s_0) = 0\} \right)$$

Next, we note that $F = T \setminus e$ is equivalent to $T = F \cup e$, and in particular this only occurs when we choose the edge e to be in the floating boundary $\partial F(*)$:

FIGURE 4. Edge $e \in \partial F(*)$ with $\delta(e; v, F(*)) = 0$ (left) and $\delta(e; v, F(*)) = 1$ (right). The floating component F(*) is highlighted.

Now for any $e \notin F$, let $\delta(e; v, F(*)) = \delta(e; v, x)$ for any $x \in F(*)$, i.e.

$$\delta(e; v, F(*)) = \begin{cases} 1 & \text{if } e \text{ lies on path from } v \text{ to } F(*), \\ 0 & \text{otherwise.} \end{cases}$$

The condition $F = T \setminus e$ for some $e \in T(s_0)$ with $\delta(e; v, s_0) = 1$ (resp. $\delta(e; v, s_0) = 0$) is equivalent to $T = F \cup e$ for some $e \in \partial F(*)$ with $\delta(e; v, F(*)) = 0$ (resp. $\delta(e; v, F(*)) = 1$). Thus

$$(\stackrel{\text{leq}:1}{\text{IO}}) = \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \Bigg(\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 0\}$$

$$- \#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} \Bigg).$$

Finally, we observe that for any forest F in $\mathcal{F}_2(G;S)$, there is exactly one edge e in the boundary $\partial F(*)$ of the floating component which satisfies $\delta(e;v,F(*))=1$, namely the unique boundary edge on the path from the floating component F(*) to v. The previous expression ($\overline{10}$) simplifies as

$$\#\{e \in \partial F(*) : \delta(e; v, F(*)) = 1\} = 1$$
 and $\#\{e \in \partial(F, *) : \delta(e; v, F(*)) = 0\} = \deg^{o}(F, *) - 1.$

Thus

$$(\stackrel{\text{leq}: 1}{\text{IO}}) = \sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *)) \Big((\deg^o(F, *) - 1) - (1) \Big)$$

$$= -\sum_{F \in \mathcal{F}_2} w(F)(2 - \deg^o(F, *))^2.$$

as desired.

Figure 5. Components rooted in $S(G \setminus e)^{\overline{v}}$.

Finally we can prove our main theorem.

Proof of Theorem
$$2. \overline{\text{Since}}$$
.

Remark 26. It is worth observing that depending on the chosen subset $S \subset V$, the distances appearing in the submatrix D[S] may ignore a large part of the ambient tree G. We could instead replace G by the subtree $\operatorname{conv}(S,G)$ consisting of the union of all paths between vertices in S, which we call the *convex hull* of $S \subset G$. To apply formula (2) or (4) "efficiently," we should replace G on the right-hand side with the subtree $\operatorname{conv}(S,G)$. However, the formulas as stated are true even without this replacement due to cancellation of terms.

5. Physical interpretation

If we consider G as a network of wires with each edge containing a unit resistor, which is grounded at all nodes in S, then \mathbf{m}_S has an interpretation as current flow: it records the currents flowing to S when current is added on $V \setminus S$ in the amount $2 - \deg v$ for each $v \notin S$.

5.1. Alternate proof. Let 1 denote the all-ones vector. When we choose a subset $S \subset V(G)$, we no longer have a single "obvious" replacement for \mathbf{m} inside \mathbb{R}^S . Instead, we can take an average over S-rooted spanning forests.

In the outline above, our first goal is to find a "special" vector $\mathbf{m} \in \mathbb{R}^S$ satisfying $D[S]\mathbf{m} = \lambda \mathbf{1}$. We can approach this first goal as follows: consider \mathbb{R}^S inside the larger vector space $\mathbb{R}^V = \mathbb{R}^S \oplus \mathbb{R}^{V \setminus S}$, and let π_S denote the projection from \mathbb{R}^V to \mathbb{R}^S . We wish to find vectors $\mathbf{n}_i \in \mathbb{R}^V$ satisfying $\pi_S(D\mathbf{n}_i) = \lambda_i \mathbf{1}$. OR, $D\mathbf{n}_i = \lambda_i \mathbf{1}^S \oplus (-)$. By finding sufficiently many such vectors \mathbf{n}_i , we can hope to find a linear combination that lies inside $\mathbb{R}^S \oplus \{0\}$.

prop:n-vector

Proposition 27. Suppose $v \in V \setminus S$. For each $s_j \in S$, let $\mu(v, s_j) = current$ flowing to s_j when G is grounded at S and one unit of current enters G at v. Explicitly,

$$\begin{split} \mu(v,s) &= \frac{\# \ of \ S\text{-}rooted \ spanning forests of } G \ whose \ s_{j}\text{-}component \ contains } v}{\# \ of \ S\text{-}rooted \ spanning forests of } G \\ &= \frac{\sum_{\mathcal{F}_{1}(G/S)} \mathbb{1}(v \in T(s))}{\kappa(G/S)} \\ &= \frac{\kappa_{r}(s_{1}|\cdots|s_{j}v|\cdots|s_{r})}{\kappa_{r}(s_{1}|\cdots|s_{r})} \end{split}$$

Consider the vector $\mathbf{n} = \mathbf{n}(G; S, v) \in \mathbb{R}^V$ defined by

$$\mathbf{n}_v = 1, \quad \mathbf{n}_s = -\mu(v, s) \text{ if } s \in S, \quad \mathbf{n}_w = 0 \text{ if } w \notin S \cup v$$

Then $D\mathbf{n}$ is constant on S, i.e. $\pi_S(D\mathbf{n}) = \lambda \mathbf{1}$ for some λ .

Proof sketch. For any $s, s' \in S$, consider tracking the value of $D\mathbf{n}$ along path from s to s'. The value of $D\mathbf{n}$ changes according to current flow in the corresponding network, i.e. $D\mathbf{n}$ records electrical potential. By assumption S is grounded, so $D\mathbf{n}$ takes the same value at s and s'.

Theorem 28. Let G be a tree, S a nonempty subset of vertices, and D[S] the corresponding submatrix of the distance matrix. Suppose $\mathbf{m} = \mathbf{m}(G; S) \in \mathbb{R}^S$ is defined by (8);

$$\mathbf{m}(G;S)_v = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) \sum_{u \in T(v)} (2 - \deg u) = \sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T}) (2 - \deg^o(T,v)).$$

Then $D[S]\mathbf{m} = \lambda \mathbf{1}$ for some constant λ .

Proof. The vector $\mathbf{m} = \mathbf{m}(G; S)$ can be expressed as a linear combination

$$\mathbf{m}(G; S) = \kappa(G; S) \left(\sum_{v \in V} (2 - \deg v) \delta(v) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v) \right)$$
$$= \kappa(G; S) \left(\mathbf{m}(G; V) - \sum_{v \in V \setminus S} (2 - \deg v) \mathbf{n}(G; S, v) \right)$$

♦ TODO: elaborate on this equation of the equation of the property of the pr

Proposition 29. Let G = (V, E) be a tree, and $S \subset V$. Suppose we label $S = \{s_1, \ldots, s_r\}$ and $V \setminus S = \{t_1, \ldots, t_{n-r}\}$. For each $t_i \in V \setminus S$, consider $\mathbf{f}_i \in \mathbb{R}^V$ defined by

Example 30. If

$$D[S \cup t] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix}$$

then

$$\begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \begin{bmatrix} ab+ac+bc \\ -bc \\ -ac \\ -ab \end{bmatrix} = \begin{bmatrix} -3abc \\ -abc \\ -abc \\ -abc \end{bmatrix}$$

6. Examples

Example 31. Suppose G is a tree consisting of three paths joined at a central vertex. Let S consist of the central vertex, and the three endpoints of the paths. The corresponding minor of the distance matrix is

$$D[S] = \begin{bmatrix} 0 & a & b & c \\ a & 0 & a+b & a+c \\ b & a+b & 0 & b+c \\ c & a+c & b+c & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -a & a & a \\ b & b & -b & b \\ c & c & c & c & -c \end{bmatrix} \sim \begin{bmatrix} 0 & a & b & c \\ a & -2a & 0 & 0 \\ b & 0 & -2b & 0 \\ c & 0 & 0 & -2c \end{bmatrix}.$$

The determinant is

$$\det D[S] = -4(a+b+c)abc.$$

Example 32. Suppose Γ is a tripod with lengths a, b, c and corresponding leaf vertices u, v, w.

Let $S = \{u, v, w\}$. Then

$$D[S] = \begin{bmatrix} 0 & a+b & a+c \\ a+b & 0 & b+c \\ a+c & b+c & 0 \end{bmatrix}.$$

and

$$\det D[S] = 2(a+b)(a+c)(b+c) = 2((a+b+c)(ab+ac+bc) - abc).$$

The "special vector" that satisfies $D[S]\mathbf{m} = \lambda \mathbf{1}$ in this example is

$$\mathbf{m} = \begin{bmatrix} a(b+c) & b(a+c) & c(a+b) \end{bmatrix}^{\mathsf{T}}.$$

Example 33. Suppose G is the tree with unit edge lengths shown below, with five leaf vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 3 & 3 \\ 2 & 0 & 3 & 3 & 3 \\ 3 & 3 & 0 & 2 & 2 \\ 3 & 3 & 2 & 0 & 2 \\ 3 & 3 & 2 & 2 & 0 \end{bmatrix}.$$

There are 11 forests in $\mathcal{F}_1(G;S)$:

There are 6 forests in $\mathcal{F}_2(G;S)$:

and

$$\det D[S] = 368 = (-1)^4 2^3 \left(6 \cdot 11 - \left(3 \cdot 1^2 + 2 \cdot 2^2 + 1 \cdot 3^2 \right) \right)$$

Example 34. Suppose G is the tree with unit edge lengths shown below, with five leaf vertices and three internal vertices.

Let S denote the set of five leaf vertices. Then

$$D[S] = \begin{bmatrix} 0 & 2 & 3 & 4 & 4 \\ 2 & 0 & 3 & 4 & 4 \\ 3 & 3 & 0 & 3 & 3 \\ 4 & 4 & 3 & 0 & 2 \\ 4 & 4 & 3 & 2 & 0 \end{bmatrix}$$

and

$$\det D[S] = 864 = (-1)^4 2^3 \left(7 \cdot 21 - (14 \cdot 1^2 + 4 \cdot 2^2 + 1 \cdot 3^2)\right)$$

7. Further work

It is natural to ask whether these results for trees may be generalized to arbitrary finite graphs. See [6], [?].

7.1. **Symanzik polynomials.** We note that the expression in the main theorem \Diamond cite \Diamond is related to Symanzik polynomials, which we recall here.

Given a graph G=(V,E), the first Symanzik polynomial is the homogeneous polynomial in $\underline{x}=\{x_e:e\in E\}$

$$\psi_G(\underline{x}) = \sum_{T \in \mathcal{F}_1(G)} \prod_{e \notin T} x_e.$$

while the second Symanzik polynomial is

$$\varphi_G(p; \underline{x}) = \sum_{F \in \mathcal{F}_2(G)} \left(\sum_{v \in F_1} p(v) \right)^2 \prod_{e \notin F} x_e.$$

Theorem statement:

$$\det D[S] = (-1)^{|S|-1} 2^{|S|-2} \left(\sum_{E(G)} \alpha_e \sum_{\mathcal{F}_1(G;S)} w(\overline{T}) - \sum_{\mathcal{F}_2(G;S)} (\deg^o(F,*) - 2)^2 w(F) \right).$$

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\sum_{F \in \mathcal{F}_2(G;S)} w(F) (\deg^o(F,*) - 2)^2}{\sum_{T \in \mathcal{F}_1(G;S)} w(\overline{T})} \right)$$

In terms of Symanzik polynomials, let ψ and φ denote the first and second Symanzik polynomials of the quotient graph G/S.

$$\frac{\det D[S]}{\cot D[S]} = \frac{1}{2} \left(\sum_{e \in E} \alpha_e - \frac{\varphi_{G/S}(p; \underline{\alpha})}{\psi_{G/S}(\underline{\alpha})} \right)$$

with momentum function $p(v) = \deg^{o}(v) - 2$ for $v \notin S$.

ACKNOWLEDGEMENTS

The authors would like to thank Ravindra Bapat for helpful discussion.

References

kirkland-neumann

-sivasubramanian

graham-lovasz graham-pollak

moon

hman-shokrieh-wu

- R. Bapat, S. J. Kirkland, and M. Neumann. On distance matrices and Laplacians. Linear Algebra Appl., 401:193– 209, 2005.
- [2] R. B. Bapat and S. Sivasubramanian. Identities for minors of the Laplacian, resistance and distance matrices. Linear Algebra Appl., 435(6):1479–1489, 2011.
- [3] R. L. Graham and L. Lovász. Distance matrix polynomials of trees. Adv. in Math., 29(1):60-88, 1978.
- [4] R. L. Graham and H. O. Pollak. On the addressing problem for loop switching. Bell System Tech. J., 50:2495–2519, 1971.
- [5] J. W. Moon. Counting labelled trees. Canadian Mathematical Monographs, No. 1. Canadian Mathematical Congress, Montreal, Que., 1970. From lectures delivered to the Twelfth Biennial Seminar of the Canadian Mathematical Congress (Vancouver, 1969).
- [6] D. H. Richman, F. Shokrieh, and C. Wu. Capacity on metric graphs, 2022. in preparation.