5.

Algorytm:

Dodatkowo mamy tablicę K, gdzie każdy wierzchołek ma przypisane sąsiednie wierzchołki, do których można wykonać ruch.

```
S \leftarrow \{s\}, d(s) \leftarrow 0
dla każdego sąsiada v \neq K wierzchołka s: t(v) \leftarrow c(s, v)
dla pozostałych wierzchołków: t(v) \leftarrow \infty
dopóki S \neq V wykonaj:
u \leftarrow argmin\{t(u): u \notin S\}
dodaj u do S
zaktualizuj wartości t(v):
dla każdego sąsiada v \notin S \neq K wierzchołka u:
t(v) \leftarrow min\{t(v), d(u) + c(u, v)\}
```

8. Weźmy najdłuższą ścieżkę P w grafie i niech przechodzi ona kolejno przez wierzchołki v_0, v_1, \dots, v_n . Wiemy, że każdy wierzchołek ma 3. stopień, dlatego dla v_o muszą istnieć takie i oraz j, że $2 \le i < j \le n$ takie, gdzie v_0v_i oraz v_ov_j są krawędziami grafu. Wiemy również, że $v_i, v_j \in P$, bo w przeciwnym razie P nie byłaby najdłuższą ścieżką, gdyż moglibyśmy dodać do P odpowiednio v_i lub v_j otrzymując ścieżkę dłuższą od P.

Mamy 3 przypadki:

- a) Załóżmy, że i jest nieparzyste. Wówczas możemy utworzyć cykl biorąc ścieżkę od $v_0, v_1, ..., v_i$ z P (ma nieparzystą długość) i dodając do niej krawędź v_0v_1 . Ten cykl jest parzystej długości.
- b) Analogicznie dla nieparzystego j.
- c) Załóżmy, że i oraz j są parzyste. Wówczas możemy utworzyć cykl biorąc ścieżkę od $v_i, v_{i+1}, ..., v_j$ z P (ma parzystą długość) i dodając do niej krawędzie v_0v_i oraz v_0v_i . Ten cykl jest parzystej długości.

10. Niech $G=(K\cup L,E)$ będzie grafem dwudzielnym, gdzie $K=\{k_1,k_2,\dots,k_n\}$ to zbiór kolumn, a $L=\{l_1,l_2,\dots,l_n\}$ to zbiór liczb. Krawędź $k_il_j\in E$, tylko jeśli w kolumnie k_i nie znajduje się liczba l_j .

Chcemy dodać kolejny wiersz do prostokąta łacińskiego. Aby to ucznić, musimy znaleźć skojarzenie doskonałe tego grafu, a następnie do każdej kolumny należy dodać skojarzoną z nią liczbę.

Skojarzenie doskonałe zawsze będzie istnieć w tym grafie, ponieważ każdy wierzchołek ma n-m krawędzi, czyli dla każdego $K'\subseteq K$, jeśli |K'|=x, to $|N(K')|\geq x=|K'|$ oraz dla każdego $L'\subseteq L$, jeśli |L'|=y, to $|N(L')|\geq y=|L'|$, czyli spełniony jest warunek Halla.