Transformers

План

- 1. NLP, работа с последовательностями
- 2. Обзор более ранних архитектур
- 3. Attention is all you need
- 4. Особенности тренировки
- 5. Vision Transformer (ViT)

Обработка естественного языка (Natural Language Processing, NLP)

Основными тремя направлениями являются:

- 1. Распознавание речи (Speech Recognition)
- 2. Понимание естественного языка (Natural Language Understanding)
- 3. Генерация естественного языка (Natural Language Generation)

Основные задачи при работе с текстом

- 1. Классификация текстов (Выставление оценок, Эмоциональная окраска)
- 2. Перевод текстов
- 3. Распознавание именованных сущностей (классификация слов на части речи или выделение имен людей, компаний, даты и тд)
- 4. Продолжение последовательностей (Дать ответ продолжить предложение)

Текст в вектора (one-hot encoding)

Feature (Color)
Red
Green
Yellow
Green
Red

One Hot Encoded Vector
[1,00]
[0,1,0]
[0,0,1]
[0,1,0]
[1,00]

Red	Green	Yellow	
1	0	0	
0	1	0	
0	0	1	
0	1	0	
1	0	0	

Матрица W (NxV)

N - размер вектора

V - длина словаря

вектор і - строка матрицы W вектор ј - колонка матрицы W'

на выходе получаем скалярное произведение векторов softmax(i*i)

Задача чтобы скалярное произведение было как можно больше

loss - Cross Entropy

https://mohitmayank.com/a lazy data science guide/natural_language_processing/word2vec/

https://www.youtube.com/watch?v=WbtQzAvhnR

Недостатки:

- фиксированный набор словаря
- для редких слов эмбеддинги получаются не оптимальные
- нужны серьезные предобработки т.к слова с разными окончаниями будут разными (Лемматизация, стемминг)

Стемминг – это грубый эвристический процесс, который отрезает «лишнее» от корня слов, часто это приводит к потере словообразовательных суффиксов.

Лемматизация – это более тонкий процесс, который использует словарь и морфологический анализ, чтобы в итоге привести слово к его канонической форме – лемме.

Материалы

https://jramkiss.github.io/2019/08/21/word-embeddings/

https://arxiv.org/pdf/1301.3781.pdf https://habr.com/ru/articles/446530/

https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

https://www.youtube.com/watch?v=WbtQzAvhnRI

https://mohitmayank.com/a_lazy_data_science_guide/natural_language_processing/word2vec/

Tokenization

https://platform.openai.com/tokenizer_tokenizer_gpt
https://huggingface.co/docs/transformers/tokenizer_summary_tokenizer_summary_https://youtu.be/iOrNbK2T92M?si=j7L2c_EiCqtxEuho_lgor_Kotenkov_https://youtu.be/zduSFxRajkE?si=i-63AmBDb1aZ-mhH_Andrej_Karpathy

Recurrent neural network (RNN)

Рекуррентный слой принимает текущее состояние + вектор состояния с предыдущего шага

Типы рекуррентных сетей

- Many to Many для перевода текстов
- Many to One для анализа окраски текста (на входе текст на выходе категории положительный нейтральный отрицательный)
- One to Many для генерации текста для изображений или автодополнение
- One to One относительно редкая архитектура для вычисление нелинейных реккурентных вычислений

Основным недостатком простых рекуррентных сетей является забывание начала предложения

Recurrent neural network (RNN)

Рекуррентный слой

Рекуррентный слой развернутый во времени

Вариации слоев

http://vbystricky.ru/2021/05/rnn_lstm_gru_etc.html https://youtu.be/3OljkWQ2Uc0?si=K_JzNqXz0ToSFSfb

Attention is all you need

- Feed Forward
- Multi-Head Attention
- Masked Multi-Head Attention
- 4. Add & Norm
- 5. Positional Encoding

https://jalammar.github.io/illustrated-transformer/https://arxiv.org/abs/1706.03762

Figure 1: The Transformer - model architecture.

Transformer

Архитектура взялась из задачи перевода текста

Transformer

- Так как у нас 6 блоков энкодеров это значит что размерность выхода каждого каждого энкодера должна соответствовать входу
- Выход и энкодеров далее подается в декодеры
- На вход подается тензор размера [b, l, Edim]
- b batch size
- І длина предложения
- Edim размерность эмбединга слова

Encoder block

В каждом слое – слой self-attention и feedforward layer, который независимо применяется к каждой позиции входа

Feed forward layer

Feed-forward layer eats 2/3 of the model params! Embedding_dim -> D_ff -> Embedding_dim

D_ff (x4) от Embedding_dim

$$Z_3 = \sum_{i=1}^4 a_i * v_i$$
; $\sum_{i=1}^4 a_i = 1$

 χ_4

$$Z_3 = \sum_{i=1}^4 a_i * v_i$$
; $\sum_{i=1}^4 a_i = 1$

$$\left\{\widehat{a}_{i}\right\}^{4} \xrightarrow[i=1]{\operatorname{Softmax}} \left\{a_{i}\right\}^{4}_{i=1}$$

$$\widehat{a}_i = f(x_3, x_i)$$

$$Z_3 = \sum_{i=1}^4 a_i * v_i$$
; $\sum_{i=1}^4 a_i = 1$

$$\left\{\widehat{a}_{i}\right\}_{i=1}^{4} \xrightarrow{\text{Softmax}} \left\{a_{i}\right\}_{i=1}^{4}$$

$$\widehat{a}_i = f(x_3, x_i)$$

$$Z_3 = \sum_{i=1}^4 a_i * v_i$$
; $\sum_{i=1}^4 a_i = 1$

$$\left\{\widehat{a}_{i}\right\}_{i=1}^{4} \xrightarrow{\text{Softmax}} \left\{a_{i}\right\}_{i=1}^{4}$$

$$\widehat{a}_i = f(x_3, x_i) \qquad \widehat{a}_i = \langle q_3, k_i \rangle$$

	Input	Thinking	Machines
	Embedding	X1	X2
$Z_{1} = a_{1} * v_{1} + a_{2} * v_{2}$	Queries	q ₁	q ₂
	Keys	k ₁	k ₂
$Z_1 = < q_1 * k_1 > * v_1 + < q_1 * k_2 > * v_2$	Values	V ₁	V ₂
П	Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Делим на квадратный корень из размерности чтобы не увеличивать	Divide by 8 ($\sqrt{d_k}$)	14	12
дисперсию	Softmax	0.88	0.12
	Softmax X Value	V ₁	V ₂
	Sum	z ₁	Z ₂

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Attention visualization

(a)

Визуализация разных голов

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting Z matrices, input sentence* each word* We multiply X or using the resulting then multiply with weight matrix Wo to R with weight matrices Q/K/V matrices produce the output of the layer WoQ Thinking Machines Wo W₁Q * In all encoders other than #0. we don't need embedding. We start directly with the output of the encoder right below this one ... W7Q

W₇V

Add & Norm

- Residual connections
- 2. Normalize to N(0,1) к нулевой мат ожиданием и дисперсией
- 3. В Layer norm нормализация по фичам

Cross Attention

Если в качестве примера размер эмбединга будет равен 4 то то positional вектор будет выглядеть следующим образом

Простой пример с двоичным кодированием

Мы можем определить скорость изменения между различными битами.

0:	0 0 0 0	8:	1 0 0 0
1:	0 0 0 1	9:	1 0 0 1
2:	0 0 1 0	10:	1 0 1 0
3:	0 0 1 1	11:	1 0 1 1
4:	0 1 0 0	12:	1 1 0 0
5:	0 1 0 1	13:	1 1 0 1
6:	0 1 1 0	14:	1 1 1 0
7:	0 1 1 1	15:	1 1 1 1

t - номер слова

 ω_k частота

Главный плюс этого кодирования что норма этого вектора всегда постоянная независимо от t

Masked Multi-Head Attention

Figure 1: The Transformer - model architecture.

https://github.com/hyunwoongko/transformer Code

Masked Multi-Head Attention

Loss function

Loss function

Target Model Outputs

Trained Model Outputs

Training

warmup time

Одна из особенностей это увеличенный learning rate в начале обучения

и плавное снижение в процессе обучения

Training

Figure 8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0 with the default batch size (1500) and learning rate (0.20).

Vision Transformer (ViT)

Vision Transformer (ViT)

Vision Transformer (ViT)

