CS 1555 / 2055 – Database Management Systems (Fall 2020) Dept. of Computer Science, University of Pittsburgh

Assignment #6: Database Design - Normalization (Solution)

Release: Nov. 3, 2020 Due: 8:00 PM, Nov. 12, 2020.

1. [30 points] Consider the relation R(A,B,C,D,E,F). Use **synthesis method** to construct a set of 3NF relations from the following functional dependencies. Indicate the primary key for each relation in the result.

$$AB \rightarrow E$$

 $\mathrm{B} \to \mathrm{ED}$

 $\mathrm{E} \to \mathrm{D}$

 $\mathrm{DF} \to \mathrm{A}$

 $C \to F$

 $\mathrm{DC} \to \mathrm{A}$

Solution:

(a) Find the canonical cover of F:

i. Transform all FDs to canonical form (i.e., one attributes on the right):

 $\mathrm{AB} \to \mathrm{E}$

 $\mathrm{B} \to \mathrm{E}$

 $B \to D$

 $E \to D$

 $\mathrm{DF} \to \mathrm{A}$

 $\mathrm{C} \to \mathrm{F}$

 $DC \to A$

ii. Drop extraneous attributes: A in AB \to E is extraneous, since we have B \to E. The complete proof is as follows:

Considering the minimality of LHS of AB \rightarrow E

First we need to compute: A+ using minimal cover

A+=A (Initialization)

= A

Done.

=> E is not subset of A+. So attr B is necessary.

Then, we need to compute: B+ using minimal cover

B+=B (Initialization)

 $= BD (B \rightarrow D)$

 $= BDE (B \rightarrow E)$

•••

Done.

=> E is a subset of (AB - A)+. So A is NOT necessary

The set of FDs becomes:

 $\mathrm{B} \to \mathrm{E}$

 $\mathrm{B} \to \mathrm{D}$

 $E \to D$

 $\mathrm{DF} \to \mathrm{A}$

 $C \to F$

 $DC \to A$

iii. Drop (transitive) redundant FDs:

 $B \to E$ and $E \to D$ implies $B \to D$, so we drop $B \to D$.

 $C \to F$ implies $CD \to FD$. We also have $DF \to A$, so we drop $DC \to A$.

The set of FDs becomes:

 $B \to E$

 $\mathrm{E} \to \mathrm{D}$

 $\mathrm{DF} \to \mathrm{A}$

 $C \to F$

which is the canonical cover of F.

- (b) Find the primary key of R: Observations:
 - i. B and C do not appear on the right hand side of any FD, so they have to appear in all keys of R.
 - ii. BC+ : BC \rightarrow BCE (since B \rightarrow E) \rightarrow BCED (since E \rightarrow D) \rightarrow BCEDF (since C \rightarrow F) \rightarrow BCEDFA (since DF \rightarrow A). So BC is a key of R.

In this case, we do not need to consider any other combination, because any other combination containing BC (e.g., BCD) is a super key and not minimal.

- (c) We do not need to group the FDs in the canonical cover because all the determinants on the left side are unique.
- (d) Construct a relation for each group:

 $R1 (\underline{B}, E)$

 $R2 (\underline{E}, D)$

R3 (D, F, A)

 $R4 (\underline{C}, F)$

(e) If none of the relations contain the key for the original relation, add a relation with the key:

R1, R2, R3, R4, and R5 are in 3NF and in BCNF.

2. [30 points] Consider the relation R(A,B,C,D) and the following set of functional dependencies F. Apply the **decomposition method** on R to end up with BCNF relations and dependency preserving. Indicate the primary key for each relation in the result.

$$\mathbf{A} \to \mathbf{B}$$

 $\mathrm{B} \to \mathrm{CD}$

 $A \to D$

 $B \to C$

 $AB \to CD$

Solution:

(a) Find the canonical cover of F:

$$A \to B$$

$$B \to D$$

$$B \to C$$

- (b) Apply the decomposition method on R to end up with BCNF relations:
 - i. Using $A \to B$ to decompose R, we can get:

$$R1'$$
 (A, C, D) in BCNF

$$R2'$$
 (\underline{A} , B) in BCNF

Note that this decomposition does not preserve dependencies $B \to D$ and $B \to C$, so we choose another dependency and try again from the start.

ii. Using $B \to D$ to decompose R, we can get:

$$R1 (\underline{A}, B, C)$$
 in $2NF$

$$R2 (\underline{B}, D)$$
 in BCNF

iii. Using $B \to C$ to decompose R1, we can get:

R11 (
$$\underline{A}$$
, B) in BCNF

$$R12 (\underline{B}, C)$$
 in BCNF

A correct decomposition would be R2, R11 and R12. R2, R11 and R12 are in BCNF and dependency preserving. An efficient one that eliminates an unnecessary join is .

$$T1 (\underline{A}, B)$$

where we group R2 and R12 since they share the same primary key. T1 and T2 are in BCNF and dependency preserving.

- 3. [40 points] Using the table method, check if the following decomposition is good, bad or ugly. Show all steps.
 - R1: (<u>ProductID</u>, Length, Width, Height, Weight, <u>OrderID</u>, OrderDate, CustomerID, Total-Price)

R2: (CustomerID, Address, City, State, ZipCode, PhoneNumber)

R3: (ProductID, OrderID, ProductQuantity)

Assume the functional dependency set to be:

FD1: ProductID \rightarrow Length, Width, Height, Weight

FD2: OrderID \rightarrow OrderDate, CustomerID, TotalPrice

FD3: CustomerID \rightarrow Address, City, State, ZipCode, PhoneNumber

FD4: ProductID, OrderID \rightarrow ProductQuantity

Hint: bad decomposition is a lossy one, while ugly decomposition is lossless but does not preserve some dependencies.

Solution:

Let the attributes be sorted in the following order:

- (1) ProductID, (2) Length, (3) Width, (4) Height, (5) Weight, (6) OrderID, (7) OrderDate,
- (8) CustomerID, (9) TotalPrice, (10) Address, (11) City, (12) State, (13) ZipCode, (14) PhoneNumber, (15) ProductQuantity

Initially the table looks like the following. Note that the table uses simplified marks. "k" means known cell, and empty cell means "U".

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R1	k	k	k	k	k	k	k	k	k						
R2								k		k	k	k	k	k	
R3	k					k									k

Using FD1, we can add more "k" marks in the table. New marks are in italic uppercase.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R1	k	k	k	k	k	k	k	k	k						
R2								k		k	k	k	k	k	
R3	k	K	K	K	K	k									k

Then we use FD2 to update the table. New marks are in italic uppercase.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R1	k	k	k	k	k	k	k	k	k						
R2								k		k	k	k	k	k	
R3	k	k	k	k	k	k	K	K	K						k

Next, we use FD3 to update the table. New marks are in italic uppercase.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R1	k	k	k	k	k	k	k	k	k	K	K	K	K	K	
R2								k		k	k	k	k	k	
R3	k	k	k	k	k	k	k	k	k	K	K	K	K	K	k

Finally we use FD4 to update the table. New marks are in italic uppercase.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R1	k	k	k	k	k	k	k	k	k	k	k	k	k	k	K
R2								k		k	k	k	k	k	
R3	k	k	k	k	k	k	k	k	k	k	k	k	k	k	k

Now we have 2 rows filled with mark "k", so it is a lossless decomposition. Since it preserves all FDs, it is a good decomposition.