Introduction to Neural Networks

- Handwritten digit recognition (MNIST dataset)
 - The intensity of each pixel is considered an input element
 - Output is the class of the digit

Introduction to Neural Networks

Introduction to Neural Networks

• Handwritten digit recognition

The function f is represented by a neural network

- NNs consist of hidden layers with neurons (i.e., computational units)
- A single neuron maps a set of inputs into an output number, or $f: \mathbb{R}^K \to \mathbb{R}$

Introduction to Neural Networks

A NN with one hidden layer and one output layer

$$4 + 2 = 6$$
 neurons (not counting inputs)
 $[3 \times 4] + [4 \times 2] = 20$ weights
 $4 + 2 = 6$ biases

26 learnable parameters

Introduction to Neural Networks

• A neural network playground <u>link</u>

- Deep NNs have many hidden layers
 - Fully-connected (dense) layers (a.k.a. Multi-Layer Perceptron or MLP)
 - Each neuron is connected to all neurons in the succeeding layer

Introduction to Neural Networks

• A simple network, toy example

- A simple network, toy example (cont'd)
 - For an input vector $\begin{bmatrix} 1 & -1 \end{bmatrix}^T$, the output is $\begin{bmatrix} 0.62 & 0.83 \end{bmatrix}^T$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 0.62 \\ 0.83 \end{bmatrix}$$

Introduction to Neural Networks

• Matrix operations are helpful when working with multidimensional inputs and outputs

- Multilayer NN, matrix calculations for the first layer
 - Input vector x, weights matrix W^1 , bias vector b^1 , output vector a^1

Introduction to Neural Networks

• Multilayer NN, matrix calculations for all layers

Slide credit: Hung-yi Lee – Deep Learning Tutorial

Introduction to Neural Networks

• Multilayer NN, function f maps inputs x to outputs y, i.e., y = f(x)

$$\mathbf{y} = f(\mathbf{x}) = \sigma(\mathbf{W}^{\mathsf{L}}) \dots \sigma(\mathbf{$$

Softmax Layer

Introduction to Neural Networks

- In multi-class classification tasks, the output layer is typically a *softmax layer*
 - I.e., it employs a softmax activation function
 - If a layer with a sigmoid activation function is used as the output layer instead, the predictions by the NN may not be easy to interpret
 - Note that an output layer with sigmoid activations can still be used for binary classification

A Layer with Sigmoid Activations

$$z_{1} \xrightarrow{3} \sigma \xrightarrow{0.95} y_{1} = \sigma(z_{1})$$

$$z_{2} \xrightarrow{1} \sigma \xrightarrow{0.73} y_{2} = \sigma(z_{2})$$

$$z_{3} \xrightarrow{-3} \sigma \xrightarrow{0.05} y_{3} = \sigma(z_{3})$$

Softmax Layer

Introduction to Neural Networks

- The softmax layer applies softmax activations to output a probability value in the range [0, 1]
 - The values z inputted to the softmax layer are referred to as logits

Probability:

- $0 < y_i < 1$

A Softmax Layer

Activation Functions

- Non-linear activations are needed to learn complex (non-linear) data representations
 - Otherwise, NNs would be just a linear function (such as $W_1W_2x = Wx$)
 - NNs with large number of layers (and neurons) can approximate more complex functions
 - o Figure: more neurons improve representation (but, may overfit)

Activation: Sigmoid

- *Sigmoid function* σ: takes a real-valued number and "squashes" it into the range between 0 and 1
 - The output can be interpreted as the firing rate of a biological neuron
 - Not firing = 0; Fully firing = 1
 - When the neuron's activation are 0 or 1, sigmoid neurons saturate
 - o Gradients at these regions are almost zero (almost no signal will flow)
 - Sigmoid activations are less common in modern NNs

Activation: Tanh

- Tanh function: takes a real-valued number and "squashes" it into range between -1 and 1
 - Like sigmoid, tanh neurons saturate
 - Unlike sigmoid, the output is zero-centered
 - o It is therefore preferred than sigmoid
 - Tanh is a scaled sigmoid: $tanh(x) = 2 \cdot \sigma(2x) 1$

$$\mathbb{R}^n \to [-1,1]$$

Activation: ReLU

Introduction to Neural Networks

• ReLU (Rectified Linear Unit): takes a real-valued number and thresholds it at zero

$$f(x) = \max(0, x)$$

- Most modern deep NNs use ReLU activations
- ReLU is fast to compute
 - o Compared to sigmoid, tanh
 - o Simply threshold a matrix at zero
- Accelerates the convergence of gradient descent
 - o Due to linear, non-saturating form
- Prevents the gradient vanishing problem

Activation: Leaky ReLU

- The problem of ReLU activations: they can "die"
 - ReLU could cause weights to update in a way that the gradients can become zero and the neuron will not activate again on any data
 - E.g., when a large learning rate is used
- Leaky ReLU activation function is a variant of ReLU
 - Instead of the function being 0 when x < 0, a leaky ReLU has a small negative slope (e.g., $\alpha = 0.01$, or similar)
 - This resolves the dying ReLU problem
 - Most current works still use ReLU
 - With a proper setting of the learning rate, the problem of dying ReLU can be avoided

Activation: Linear Function

- *Linear function* means that the output signal is proportional to the input signal to the neuron
 - If the value of the constant *c* is 1, it is also called identity activation function
 - This activation type is used in regression problems
 - E.g., the last layer can have linear activation function, in order to output a real number (and not a class membership)

Training Neural Networks

• The network *parameters* θ include the weight matrices and bias vectors from all layers

$$\theta = \{W^1, b^1, W^2, b^2, \cdots W^L, b^L\}$$

- Often, the model parameters θ are referred to as weights
- Training a model to learn a set of parameters θ that are optimal (according to a criterion) is one of the greatest challenges in ML

Training Neural Networks

- Data preprocessing helps convergence during training
 - Mean subtraction, to obtain zero-centered data
 - Subtract the mean for each individual data dimension (feature)
 - Normalization
 - o Divide each feature by its standard deviation
 - To obtain standard deviation of 1 for each data dimension (feature)
 - \circ Or, scale the data within the range [0,1] or [-1, 1]
 - E.g., image pixel intensities are divided by 255 to be scaled in the [0,1] range

Training Neural Networks

• To train a NN, set the parameters θ such that for a training subset of images, the corresponding elements in the predicted output have maximum values

Training Neural Networks

- Define a *loss function*/objective function/cost function $\mathcal{L}(\theta)$ that calculates the difference (error) between the model prediction and the true label
 - E.g., $\mathcal{L}(\theta)$ can be mean-squared error, cross-entropy, etc.

Training Neural Networks

- For a training set of *N* images, calculate the total loss overall all images: $\mathcal{L}(\theta) = \sum_{n=1}^{N} \mathcal{L}_n(\theta)$
- Find the optimal parameters θ^* that minimize the total loss $\mathcal{L}(\theta)$

Slide credit: Hung-yi Lee – Deep Learning Tutorial

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

We can write

$$f(x, y, z) = g(h(x, y), z)$$

Where
$$h(x, y) = x + y$$
, and $g(a, b) = a * b$

By the chain rule,
$$\frac{df}{dx} = \frac{dg}{dh} \frac{dh}{dx}$$
 and $\frac{df}{dy} = \frac{dg}{dh} \frac{dh}{dy}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x,y,z) = (x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- We got approval to extend the course.
- Everyone who requested admission and has the prereqs, should be admitted soon. Please be patient.
- No new requests will be processed.
- Will try to get late add fees waived.

VM image available for testing your assignment 1. Assignemnt
 1 is due Weds night

- Course project handout will be coming soon.
- Project can be:
 - A state-of-the-art deep network addressing and important challenge, ideally with Tensorflow.
 - A suggested project from a group on campus.
 - Your own project: see also ImageNet, Yelp and Kaggle challenges

Single Layer Network- Single Output with nonlinearity

Back Propagation Learning:- Single Layer Multiple Output

$$o_j = \frac{1}{1 + e^{-\theta_j}} \qquad \theta_j = \sum_{i=1}^D W_{ij} x_i$$

$$E = \frac{1}{2} \sum_{j=1}^{M} \left(o_j - t_j \right)$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial E}{\partial o_j} \cdot \frac{\partial o_j}{\partial \theta_j} \cdot \frac{\partial \theta_j}{\partial W_{ij}}$$
$$= (o_j - t_j)o_j(1 - o_j)x_i$$

Weight updation rule ⇒

$$W_{ij} \leftarrow W_{ij} - \eta(o_j - t_j)o_j(1 - o_j)x_i$$

Perceptron x_1 x_2 x_d K0 $M_k \to \text{No. of nodes in } k^{th} \text{ layer}$

Back Propagation Learning: - Output Layer

$$O_{j}^{K} = \frac{1}{1 + e^{-\theta_{j}^{K}}} \qquad \theta_{j}^{K} = \sum_{i=1}^{M_{K-1}} W_{ij}^{K} x_{i}^{K-1}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_{K}} (O_{j}^{K} - t_{j})^{2}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} \left(O_j^K - t_j \right)^2$$

Back Propagation Learning: Output Layer

Find
$$W_{ij}^{K}$$
 that minimizes $E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$

Gradient Descent
$$\frac{\partial E}{\partial W_{ii}^{K}}$$

Back Propagation Learning:- Output Layer

$$\frac{\partial E}{\partial W_{ij}^{K}} = \frac{\partial E}{\partial O_{j}^{K}} \cdot \frac{\partial O_{j}^{K}}{\partial \theta_{j}^{K}} \cdot \frac{\partial \theta_{j}^{K}}{\partial W_{ij}^{K}}$$

$$= (O_{j}^{K} - t_{j})O_{j}^{K} (1 - O_{j}^{K})O_{i}^{K-1}$$
Let $\delta_{j}^{K} = O_{j}^{K} (1 - O_{j}^{K})(O_{j}^{K} - t_{j})$

$$\Rightarrow \frac{\partial E}{\partial W_{ij}^{K}} = \delta_{j}^{K} O_{i}^{K-1}$$

$$O_{j}^{K} = \frac{1}{1 + e^{-\theta_{j}^{K}}} \qquad \theta_{j}^{K} = \sum_{i=1}^{M_{K-1}} W_{ij}^{K} O_{i}^{K-1}$$

Weight updation rule
Output Layer

$$W_{ij}^{K} \leftarrow W_{ij}^{K} - \eta \delta_{j}^{K} O_{i}^{K-1}$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$$

Find
$$W_{pi}^{K-1}$$
 that minimizes $E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$

Gradient Descent
$$\Rightarrow \frac{CE}{\partial W_{pi}^{K-1}}$$

Layer

$$O_i^{K-1} = \frac{1}{1 + e^{-\theta_i^{K-1}}}$$

$$\theta_i^{K-1} = \sum_{p=1}^{M_{K-2}} W_{pi}^{K-1} O_p^{K-2}$$

$$\frac{\partial E}{\partial W_{pi}^{K-1}} = \frac{\partial E}{\partial O_i^{K-1}} \cdot \frac{\partial O_i^{K-1}}{\partial W_{pi}^{K-1}}$$

$$= \frac{\partial E}{\partial O_i^{K-1}} \cdot \frac{\partial O_i^{K-1}}{\partial \theta_i^{K-1}} \cdot \frac{\partial \theta_i^{K-1}}{\partial W_{pi}^{K-1}}$$

$$= \frac{\partial E}{\partial O_i^{K-1}} \cdot O_i^{K-1} (1 - O_i^{K-1}) \cdot O_p^{K-2}$$

$$O_i^{K-1} = \frac{1}{1 + e^{-\theta_i^{K-1}}}$$

$$\theta_i^{K-1} = \sum_{p=1}^{M_{K-2}} W_{pi}^{K-1} O_p^{K-2}$$

$$\frac{\partial E}{\partial O_i^{K-1}} = \frac{\partial E}{\partial O_j^K} \cdot \frac{\partial O_j^K}{\partial \theta_j^K} \cdot \frac{\partial \theta_j^K}{\partial O_i^{K-1}}$$

$$= \sum_{j=1}^{M_K} (O_j^k - t_j) O_j^K (1 - O_j^K) W_{ij}^K$$

$$= \sum_{j=1}^{M_K} \partial_j^K W_{ij}^K$$

$$E = \frac{1}{2} \sum_{j=1}^{M_K} (O_j^K - t_j)^2$$

$$O_j^K = \frac{1}{1 + e^{-\theta_j^K}} \qquad \theta_j^K = \sum_{i=1}^{M_{K-1}} W_{ij}^K O_i^{K-1}$$

$$\delta_j^K = O_j^K (1 - O_j^K) (O_j^K - t_j)$$

$$\frac{\partial E}{\partial W_{pi}^{K-1}} = \frac{\partial E}{\partial x_i^{K-1}} \cdot O_i^{K-1} (1 - O_i^{K-1}) \cdot O_p^{K-2} = O_i^{K-1} (1 - O_i^{K-1}) \cdot O_p^{K-2} \sum_{j=1}^{M_K} \partial_j^K W_{ij}^K$$

Putting
$$\delta_i^{K-1} = O_i^{K-1} (1 - O_i^{K-1}) \sum_{j=1}^{M_K} \partial_j^K W_{ij}^K$$

Weight updation rule Last but Output Layer

$$W_{pi}^{K-1} \leftarrow W_{pi}^{K-1} - \eta \delta_i^{K-1} O_p^{K-2}$$

For any hidden layer weight W_{ij}^{k}

Putting
$$\delta_i^k = O_i^k (1 - O_i^k) \sum_{j=1}^{M_{k+1}} \partial_j^{k+1} W_{ij}^{k+1}$$

Weight updation rule

$$W_{ij}^k \leftarrow W_{ij}^k - \eta \delta_j^k O_i^{k-1}$$