0.1 2002 数学専門

① (1)F の階数が 1 であるから, $0 \neq v_1 \in V$, $f(v) \neq 0$ なる v_1 が存在する. $\ker F$ は 3 次元部分空間であるから基底 $\{v_2,v_3,v_4\}$ がとれる. $\sum c_iv_i=0$ とすると $F(\sum c_iv_i)=c_1f(v_1)=0$ より $c_1=0$. したがって $\{v_2,v_3,v_4\}$ は一次独立であるから $c_i=0$ (i=2,3,4) である. $S=\{v_1,v_2,v_3,v_4\}$ とすれば一次独立.よって 4 つ元からなる一次独立な集合が得られたから,V の次元が 4 であることより,S は基底.

この
$$S$$
 に関する表現行列は $F(v_i)=0$ $(i=2,3,4)$ であるから $\begin{pmatrix} lpha_1 & 0 & 0 & 0 \\ lpha_2 & 0 & 0 & 0 \\ lpha_3 & 0 & 0 & 0 \\ lpha_4 & 0 & 0 & 0 \end{pmatrix}$ となる.

 $(2)F(v_1) = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4$ としたときに、 $\alpha_1 = 0$ だとする.このとき、 $F^2(v_1) = 0$ であるから、

 $\alpha_1 \neq 0$ のとき, $u_1 = \frac{1}{\alpha_1}(\alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 + \alpha_4 v_4) \neq 0$ とすれば $F(u_1) = F(v_1) = \alpha_1 u_1$ より u_1 が固有値

2 (1) 略.

 $(2)\varphi\colon H\to K; A=[a_{ij}]\mapsto \mathrm{diag}[a_{11},a_{22},a_{33}]$ とすれば φ は全射準同型である. よって $N=\ker\varphi$ とすれば $H/N\cong K$ である. N は対角成分が全て 1 であるような上三角行列全体である.

③ (1) \bar{R} において $f \in R$ の剰余類を \bar{f} で表す。 $S = \{\bar{1}, \bar{x}, \bar{x}^2\}$ が基底である。 $c_0\bar{1} + c_1\bar{x} + c_2\bar{x}^2 = 0$ とすると, $c_0 + c_1x + c_2x^2 \in (x^3 - 2)$ である。よって $c_0 + c_1x + c_2x^2 = (x^3 - 2)f(x)$ なる $f(x) \in R$ が存在する。次数を比較すれば左辺は 2 以下で右辺は 0 か 3 以上かであるから,f = 0. よって $c_0 + c_1x + c_2x^2 = 0$ より $c_0 = c_1 = 0$ である。すなわちい一次独立.

任意の $f(x) \in R$ は $f(x) = (x^3-2)g(x) + c_2x^2 + c_1x + c_0 \quad (g(x) \in R, c_i \in K)$ と表せる. したがって $\bar{f} = c_2\bar{x}^2 + c_1\bar{x} + c_0$ より \bar{R} を生成する. よって S は基底.

 $(2)X^3-2$ は素数 2 に着目すれば $\mathbb{Z}[X]$ 上でアイゼンシュタインの既約判定法から既約である. X^3-2 は原始多項式であるから $\mathbb{Z}[X]$ 上既約であるなら $\mathbb{Q}[X]$ 上既約である. $\mathbb{Q}[X]$ は PID であるから既約元は素元であり、素イデアル (X^3-2) は極大イデアルである. よって \bar{R} は体.

 $(3)X^3-2=(X-\sqrt[3]{2})(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ である. $(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2),(X-\sqrt[3]{2})$ は互いに素なイデアルであるから中国剰余定理より, $\bar{R}\cong\mathbb{R}[X]/(X-\sqrt[3]{2})\times\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ である. $\mathbb{R}[X]/(X-\sqrt[3]{2})\cong\mathbb{R}$ である.

 $X^2+\sqrt[3]{2}X+\sqrt[3]{2}$ は $\mathbb{R}[X]$ 上既約であるから, $\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)$ は \mathbb{R} の代数拡大体となる. \mathbb{C} は代数閉包で \mathbb{C}/\mathbb{R} の拡大次数は 2 であるから, $\mathbb{R}[X]/(X^2+\sqrt[3]{2}X+\sqrt[3]{2}^2)\cong\mathbb{C}$ である.

よって $\bar{R} \cong \mathbb{R} \times \mathbb{C}$ である.

$$\sqrt{\frac{1+\sqrt{-3}}{2}}\sqrt{\frac{1-\sqrt{-3}}{2}}=1$$
 である. したがって $\mathbb{Q}(\sqrt{\frac{1+\sqrt{-3}}{2}})$ は $\pm\sqrt{\frac{1\pm\sqrt{-3}}{2}}$ を全て含む. よって $K=\mathbb{Q}(\sqrt{\frac{1+\sqrt{-3}}{2}})$ であり, $[K:\mathbb{Q}]=4$ である. また基底は $\{1,\sqrt{\frac{1+\sqrt{-3}}{2}},\frac{1+\sqrt{-3}}{2},\frac{1+\sqrt{-3}}{2},\frac{1+\sqrt{-3}}{2}\}$ である. これは

次のようにしてわかる.一次従属なら $\sqrt{\frac{1+\sqrt{-3}}{2}}$ の最小多項式を 3 次以下でとれる. $P(X)=X^4-X^2+1$ と すれば P(X) が $\mathbb{Z}[x]$ 上可約であると分かる.

 $q(X) \mid P(X)$ なら $q(-X) \mid P(X)$ である.

(i) q(X)=q(-X) のとき、 $q(X)=X^2-a$ とかける.よって $P(X)=(X^2-a)(X^2-b)$ である.係数比較をすれば a+b=1、ab=1 であるから、 $(x-a)(x-b)=x^2-x+1$ である.しかし x^2-x+1 は $\mathbb{Z}[x]$ 上既約であるから矛盾.

(ii) $q(X) \neq q(-X)$ のとき、 $q(X) = X^2 - aX + b$ とかける。 $P(X) = (X^2 - aX + b)(X^2 + aX + b)$ である。係数比較をすれば $b^2 = 1$, $a^2 + 2b = 0$ である。よって $b = \pm 1$ である。b = 1 なら $a^2 + 2 = 0$ であるから、矛盾。b = -1 なら $a^2 - 2 = 0$ であるから、 $a^2 = 2$ であるがこれは $a \in \mathbb{Q}$ より矛盾。

以上より P(X) は $\mathbb{Z}[X]$ 上既約である。よって $\mathbb{Q}[X]$ 上既約であるから,これは一次従属でないことを意味する.よって一次独立であるから基底であるとわかる.

 $(2)\sigma \in \operatorname{Gal}(K/\mathbb{Q}) \ \mbox{ について } \sigma(\sqrt{\frac{1+\sqrt{-3}}{2}}) = \sqrt{\frac{1-\sqrt{-3}}{2}} \ \mbox{ とする. } \ \mbox{ このとき } \sigma^2(\sqrt{\frac{1+\sqrt{-3}}{2}}) = \sigma(\sqrt{\frac{1-\sqrt{-3}}{2}}) = \sigma(\sqrt{\frac{1-\sqrt{-3}}{2}}) = \sigma(1/\sqrt{\frac{1+\sqrt{-3}}{2}}) = \frac{1}{\sqrt{\frac{1-\sqrt{-3}}{2}}} = \sqrt{\frac{1+\sqrt{-3}}{2}} \ \mbox{ である. } \ \mbox{ よって } \sigma^2 = \operatorname{id} \ \mbox{ である. } \ \mbox{ また } \tau \in \operatorname{Gal}(K/\mathbb{Q}) \ \mbox{ につい }$

て $\tau(\sqrt{\frac{1+\sqrt{-3}}{2}}) = -\sqrt{\frac{1+\sqrt{-3}}{2}}$ とする. このとき $\tau^2 = \mathrm{id}$ である. $\mathrm{Gal}(K/\mathbb{Q})$ 位数 4 の群であるから, $(\mathbb{Z}/2\mathbb{Z})^2, \mathbb{Z}/4\mathbb{Z}$ のいずれかである. 位数 2 の元を 2 つ以上含むことから $\mathrm{Gal}(K/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ である. また σ, τ によって生成されると分かる. (3) $\mathrm{Gal}(K/\mathbb{Q})$ の非自明な部分群は $\langle \sigma \rangle, \langle \tau \rangle, \langle \sigma \circ \tau \rangle$ である.

 σ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}} + \sqrt{\frac{1-\sqrt{-3}}{2}} = \alpha$ とすれば $\alpha^2 = 3$ であるから, α は $\pm\sqrt{3}$ のいずれかである. τ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}}(-\sqrt{\frac{1+\sqrt{-3}}{2}}) = -\frac{1+\sqrt{-3}}{2}$ である.

 $\sigma \circ \tau$ で不変な元 $\sqrt{\frac{1+\sqrt{-3}}{2}} - \sqrt{\frac{1-\sqrt{-3}}{2}} = \beta$ とすれば $\beta^2 = -1$ であるから, β は $\pm i$ のいずれかである.

以上より非自明な中間体は $\mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-3})$ である.これに K, \mathbb{Q} を加えれば全ての中間体が得られる.