```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
         using SSBR
 In [2]: function getPos(ped,IDs)
             posAi = Array(Int64, size(IDs, 1))
             for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
             end
             return posAi
         end
Out[2]: getPos (generic function with 1 method)
 In [3]: | ; cd Data/0.5/Q/8
         /home/nicole/Jupyter/JG3/Data/0.5/Q/8
 In [4]:
         ;ls
         PedAll.txt
         Phe.txt
         PheAll.txt
         OTLNF.txt
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' QTLNF.txt | sort -b > genotype.ID
In [7]:
         ; join -v1 all.ID genotype.ID > noGenotype.ID
In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [9]:
In [10]: ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [13]:
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
```

```
;join G1.ID genotype.ID > G1.Genotype.ID
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [18]:
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [22]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [23]:
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
          7800
                7800 46800 GO.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
                = read genotypes("QTLNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped,center=true);
                                                                                  # wit
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J Vecs = make JVecs(numSSBayes, A Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                  # wit
         nothing
```

```
In [31]:
         vRes
                = 0.627
                = 0.627
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,J_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         4053.768258 seconds (23.01 G allocations: 723.586 GB, 8.76% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          16.1979
           8.31924
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.915
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.969
Out[35]: 0.9152820682341619
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: -5.042217113979608
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.995
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 1.048
Out[37]: 0.9945832907691649
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: -3.9045873681506045
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.874
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.956
Out[39]: 0.8742405118268816
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: -5.304747055324764
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.698
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.848
Out[41]: 0.6976677162425401
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: -6.321522773326015
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.774
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.980
Out[43]: 0.7740170344689569
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -5.755112867726926
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with e;
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.773
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 1.004
Out[45]: 0.772555761861057
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -5.245122325248715
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.773
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.982
Out[47]: 0.7734319240007524
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -4.763205525169078
```

```
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.795
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 0.999
Out[49]: 0.794740724294098
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -4.310272600037393
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with e;
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.994
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 1.047
Out[51]: 0.993749711018619
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: -3.8580665923695223
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.994
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 1.055
Out[53]: 0.9936688182544536
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: -5.166729949545895
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.992
         SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = 1.056
Out[55]: 0.991542040099421
In [56]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[56]: -4.686621232562071
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.994
         SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = 1.047
Out[57]: 0.9939220077396594
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: -4.234444099855961
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation = 0.992
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 1.050
Out[59]: 0.9916126678161407
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: -3.844107909079002
```

```
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.992
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 1.059
Out[61]: 0.991565951911124
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: -3.451864680953347
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.994
         SSBRJC from Gibbs - G5.Genotype.ID: regression of TBV on GEBV = 1.047
Out[63]: 0.993749711018619
In [64]: writedlm("Correlation.G5.Q.JC.txt",cor13)
In [65]: writedlm("Regression.G5.Q.JC.txt",reg13)
In [66]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[66]: -3.8580665923695223
In [67]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.677
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.844
Out[67]: 0.6771777469890872
```

```
In [68]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[68]: -6.351132845730632
In [69]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.757
         SSBRJC from Gibbs - G1.noGenotype.ID: regression of TBV on GEBV = 0.981
Out[69]: 0.7570323517763102
In [70]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[70]: -5.782510089141411
In [71]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.754
         SSBRJC from Gibbs - G2.noGenotype.ID: regression of TBV on GEBV = 1.004
Out[71]: 0.7542220162616506
In [72]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[72]: -5.271037151540837
In [73]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.757
         SSBRJC from Gibbs - G3.noGenotype.ID: regression of TBV on GEBV = 0.980
Out[73]: 0.7572770103440961
```

```
GEBV = aHat1[posAi]
In [74]:
         mean (GEBV)
Out[74]: -4.786772130709849
In [75]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
          @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", corl
          @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.781
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.997
Out[75]: 0.7810458340233514
In [76]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[76]: -4.332283059501086
In [77]: numSSBayes
Out[77]: SSBR.NumSSBayes(54971,45971,9000,40000,39000,1000,50)
In [78]: J1 = sortrows(J Vecs.J1)
Out[78]: 45971x1 Array{Float64,2}:
          -0.987719
          -0.98594
          -0.98576
          -0.985627
          -0.985599
          -0.98553
          -0.985326
          -0.985309
          -0.985242
          -0.984632
          -0.984502
          -0.984372
          -0.983764
           7.44482e-17
           7.56223e-17
           7.72039e-17
           7.92431e-17
           8.89064e-17
           8.9058e-17
           9.10725e-17
           9.40848e-17
           1.02917e-16
           1.03764e-16
           1.07511e-16
           1.117e-16
```

```
In [79]: | J1[J1 .< 0.0,:]
Out[79]: 43929x1 Array{Float64,2}:
          -0.987719
          -0.98594
          -0.98576
          -0.985627
          -0.985599
           -0.98553
          -0.985326
          -0.985309
          -0.985242
          -0.984632
          -0.984502
          -0.984372
           -0.983764
           -7.23354e-36
           -7.22719e-36
          -7.22591e-36
          -7.22591e-36
          -7.2166e-36
          -7.16402e-36
          -5.41807e-36
          -4.91411e-36
          -8.72921e-51
          -7.61204e-65
           -3.80602e-65
          -1.77903e-67
```

```
In [80]: J1[J1 .> 0.0,:]
Out[80]: 1313x1 Array{Float64,2}:
          8.45106e-81
          8.01203e-52
           8.02238e-52
           1.20305e-51
           1.53665e-51
           1.59073e-51
           1.60241e-51
           1.60448e-51
           1.60476e-51
           1.60617e-51
           1.61185e-51
           3.07329e-51
           3.21189e-51
           7.44482e-17
           7.56223e-17
          7.72039e-17
           7.92431e-17
           8.89064e-17
           8.9058e-17
          9.10725e-17
          9.40848e-17
           1.02917e-16
           1.03764e-16
           1.07511e-16
           1.117e-16
```