Summary of OCS Slides

Philipp Gabler

Contents

1 Introduction	2
1.1 General Form	. 2
1.2 Types of Optimization Problems	. 2
1.3 Convexity	. 2
1.4 Convex Functions	
1.5 Level Sets	
1.6 Definiteness	
1.7 Local and Global Minima.	
1.8 First Order Neccessary Condition for Optimality	
1.9 Second Order Neccessary Condition for Optimality	
1.10 Sufficient Condition for Optimality	
1.11 Minima of Convex Functions	
2 Gradient Methods	4
2.1 Basic Idea	. 4
2.2 Matrix-Scaled Gradients	
2.3 Step Size Selection	
2.4 Armijo Rule	
2.5 Termination of Gradient Methods	
3 Convergence Analysis	7
3.1 Gradient Related Condition	•
3.2 Lipschitz continuity	
3.3 Descent Lemma	
3.4 Interpretation of Descent Lemma	
3.5 Convergence with Constant Step Size	

First of all, the material by the course of Dimitri P. Bertsekas cover pretty much the same material. What a coincidence.

1 Introduction

1.1 General Form. A general minimization problem has the form

$$\min_{x} f(x)$$
 s.t. $x \in X$,

for a constraint set $X \subseteq \mathbb{R}^n$ (often given by some constraint functions and an objective function $f: X \to \mathbb{R}$. We want to find an optimal value or minimizer $x^* \in X$ such that

$$f(x^*) \le f(x), \quad \forall x \in X.$$

1.2 Types of Optimization Problems.

- 1. (a) Discrete: X is a discrete set, also called interger programming.
 - (b) Continuous: X is continuous (ie. uncountable)
- 2. (a) Linear: Objective functions and constraints are all linear:

$$\min_{x} c^{\top} x$$
, s.t. $Ax \le b$, $x \ge 0$.

Constraints describe a polyhedron. Efficiently solvable.

(b) Quadratic: Objective function is quadratic, constraints linear:

$$\min_{x} \frac{1}{2} x^{\top} Q x + c^{\top} x, \quad \text{s.t. } A x \leq b, \ E x = d.$$

If Q is positive semidefinite, the objective is convex and the problem is polynomially solvable.

- (c) Nonlinear: no further constraints.
- 3. (a) Unconstrained: Optimal solution searched in full \mathbb{R}^n . Easier to characterize, and usually to solve.
 - (b) Constrained: Optimal solution in an admissible region, usually more difficult to setup/characterize.
- **1.3 Convexity.** A set X is convex, if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$\alpha x + (1 - \alpha)y \in X$$
.

This means that X contains all convex combinations of points from it.

1.4 Convex Functions. If X is a convex set, then $f : \mathbb{R} \to \mathbb{R}$ is called convex if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

This means that no points lie below any tangent.

1.5 Level Sets. For an objective function $f: X \to \mathbb{R}$, and $c \in \mathbb{R}$, the sets

$$S_c(f) = \{x \in X : f(x) = c\}$$

are called *level sets* of f. They can be convex even if f is not!

- **1.6 Definiteness.** A matrix Q is called *positive semidefinite* if $x^{\top}Qx \geq 0$ for all x. Q is called *positive definite* if $x^{\top}Qx > 0$ for all $x \neq 0$. Sometimes this is written as $Q \succeq 0$ and $Q \succ 0$.
- **1.7 Local and Global Minima.** A point x^* is called an *unconstrained global minimum* of f if for all x

$$f(x^*) \le f(x)$$
.

 x^* is called an *unconstrained local minimum* of f if it is minimal in some neighbourhood; i.e., there is an $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \text{ with } ||x^* - x|| \le \epsilon.$$

For constrained minima, we just require additionally that $x \in X \subset \mathbb{R}^n$.

1.8 First Order Neccessary Condition for Optimality. In a small neighbourhood of x^* , we can by Taylor expansion write f as

$$f(x) = f(x^* + \Delta x) = f(x^*) + \nabla f(x^*)^{\top} \Delta x + o(\|\Delta x\|).$$

Since x^* is a local minimum, $f(x^* + \Delta x) - f(x^*) \ge 0$, and we have

$$f(x^*) + \nabla f(x^*)^{\top} \Delta x - f(x^*) = \nabla f(x^*)^{\top} \Delta x \ge 0.$$

Since wlog, we can choose Δx to have the opposite sign, it holds also that

$$\nabla f(x^*)^{\top} \Delta x \le 0,$$

so $\nabla f(x^*)^{\top} \Delta x = 0$, which, since Δx is arbitrary, implies that $\nabla f(x^*) = 0$.

https://en.wikipedia.org/wiki/Positive-definite_matrix

1.9 Second Order Neccessary Condition for Optimality. By second order Taylor expansion, we get

$$0 \le f(x^* + \Delta x) - f(x^*)$$

$$= f(x^*) + \underbrace{\nabla f(x^*)^{\top} \Delta x}_{=0} + \frac{1}{2} \Delta x^{\top} \nabla^2 f(x^*) \Delta x + o(\|\Delta x\|^2) - f(x^*)$$

$$= \frac{1}{2} \Delta x^{\top} \nabla^2 f(x^*) \Delta x + o(\|\Delta x\|^2).$$

From this follows that $\Delta x^{\top} \nabla^2 f(x^*) \Delta x \geq 0$. Since Δx is arbitrary, this means that $\nabla^2 f(x^*)$ must be positive semidefinite.

A point which has this property is called a *stationary point*. In "normal" cases, it is either a local optimum or a saddle point.

- **1.10 Sufficient Condition for Optimality.** If for a point x^* we have $\nabla f(x^*)^{\top} = 0$ and $\nabla^2 f(x^*)$ positive *definite* (no "semi-"!), then x^* is a strict unconstrained local minimum of f.
- **1.11 Minima of Convex Functions.** For a convex function f, local minima are also global minima: suppose x* were a local, but not global minimum. Then there must be some $y^* \neq x^*$ with $f(y^*) < f(x^*)$. By convexity, we have for all $\alpha \in [0,1)$:

$$f(\alpha x^* + (1 - \alpha)y^*) < \alpha f(x^*) + (1 - \alpha)f(y^*) < f(x^*),$$

which contradicts the assumption, so x^* must also be a global minimum.

Furthermore, the neccessary condition for minima, $\nabla f(x^*) = 0$, for convex functions becomes a sufficient condition.

why this?

2 Gradient Methods

2.1 Basic Idea. To find a minimum of f, we construct a sequence $x^{(k)}$ such that for all k, $f(x^{(k+1)}) < f(x^{(k)})$. To do that, we choose an initial $x^{(0)}$ and then set

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}.$$

Here $\alpha^{(k)}$ is some step size, and $d^{(k)}$ is a descent direction which must satisfy

$$\frac{\partial f}{\partial d^{(k)}}(\boldsymbol{x}^{(k)}) = \nabla f(\boldsymbol{x}^{(k)})^{\top} d^{(k)} < 0,$$

where $\frac{\partial f}{\partial d^{(k)}}$ is the directional derivative in direction $d^{(k)}$.

2.2 Matrix-Scaled Gradients. Given the above form, one can choose $d^{(k)} = -D^{(k)}\nabla f(x^{(k)})$ for a positive definite $D^{(k)}$:

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} D^{(k)} \nabla f(x^{(k)}) < 0,$$

by the definition of positive definiteness.

- 1. Steepest descent: $D^{(k)} = I$. Simple, but slow convergence.
- 2. Newton's method: $D^{(k)} = (\nabla^2 f(x^{(k)}))^{-1}$. Fast convergence, but $\nabla^2 f(x^{(k)})$ needs to be positive definite to be invertible. Corresponds to local approximation by a quadratic surface (see below).
- 3. Levenberg-Marquart method: $D^{(k)} = (\nabla^2 f(x^{(k)}) + \lambda I)^{-1}$. Tries to fix problems with Newton's method by regularization.
- 4. Diagonal scaling: $D^{(k)} = \text{diag}(d_1^{(k)}, \dots, d_n^{(k)})$. E.g. approximating Newton's method with

$$d_i^{(k)} = \left(\frac{\partial^2 f}{\partial x_i^2}(x^{(k)})\right)^{-1}.$$

- 5. Gauss-Newton method: For a nonlinear least-squares problem $f(x) = \frac{1}{2} \|g(x)\|^2$, we can choose $D^{(k)} = (\nabla g(x^{(k)} \nabla g(x^{(k)})^\top)^{-1}$. This is related to the pseudo-inverse.
- **2.3 Step Size Selection.** To ensure convergence and performance, $\alpha^{(k)}$ needs to be chosen with care. Theoretically, it is not enough set it such that $f(x^{(k+1)}) < f(x^{(k)})$; there are counterexamples for which this holds, but $\lim_{n\to\infty} f(x^{(k)}) > f(x^*)$, e.g., when the step sequence in the limit oscillates between two values on the opposite sides of a "bowl".

Some usual approaches to choosing the step size are:

1. Minimization rule: choose $\alpha^{(k)}$ such that the minimum in the descent direction is taken, i.e.

$$f(x^{(k)} + \alpha^{(k)}d^{(k)}) = \min_{\alpha > 0} f(x^{(k)} + \alpha d^{(k)}).$$

- 2. Limited minimization rule: "heuristically" search the best $\alpha^{(k)}$ in some set, like in an interval [0, s] or among some values $\{\beta^0 s, \beta^1 s, \ldots\}$ for some fixed $\beta \in (0, 1)$ and s > 0.
- 3. Constant step size: sometimes, an optimal (or good enough) value $\alpha^{(k)} = s$ can be computed from the objective function in advance.
- 4. Diminishing step size: choose a decreasing sequence with $\lim_{k\to\infty} \alpha^{(k)} = 0$ and $\sum_{k=0}^{\infty} \alpha^{(k)} = \infty$. The latter is sufficient to ensure convergence (we can never "run out of space" before the optimum is reached). This has good theoretical properties for some setups, but the convergence rate can be quite slow.

references to later sections **2.4 Armijo Rule.** This is a special method for step size selection, which has nice theoretical properties (e.g. using it, the $x^{(k)}$ always converge to a stationary point). To apply it, we fix scalars s, $0 < \beta < 1$, and $0 < \sigma < 1$, and set $\alpha^{(k)} = \beta^{m_k} s$, where we choose m_k as the first nonnegative integer for which

$$f(x^{(k)} + \beta^{m_k} sd^{(k)}) - f(x^{(k)}) \le \sigma \beta^{m_k} s \nabla f(x^{(k)})^{\top} d^{(k)}.$$

The interpretation of this is that we try out the step sizes $\beta^{m_k}s$ in decreasing order, until we find one for which the decrease in the objective is sufficiently large (see Fig. 1).

Figure 1: Graphical interpretation of Armijo rule.

2.5 Termination of Gradient Methods. Gradient methods are not automatically convergent, so we need some stopping criterion. The standard approach is to terminate iteration based on the norm of the gradient:

$$\|\nabla f(x^{(k)})\| \le \epsilon,$$

for some reasonable $\epsilon > 0$. Since the absolute sizes of the gradients are not neccessarily meaningful, a better criterion is

$$\frac{\|\nabla f(x^{(k)})\|}{\|\nabla f(x^{(0)})\|} \le \epsilon.$$

Assuming we have diagonal scaling, we can also use $||D^{(k)}\nabla f(x^{(0)})|| \le \epsilon$.

If $\nabla^2 f(x)$ is positive definite, we have a strongly convex problem, and the norm of the gradient actually bounds the distance to a local minimum $||x - x^*||$.

3 Convergence Analysis

3.1 Gradient Related Condition. A sequence of descent directions $\{d^{(k)}\}$ is called *gradient related* to a step sequence $\{x^{(k)}\}_{k\in\mathcal{K}}$ converging to a nonstationary point, the corresponding subsequence $\{d^{(k)}\}_{k\in\mathcal{K}}$ is bounded and satisfies

$$\limsup_{k \in \mathcal{K} \to \infty} \nabla f(x^{(k)})^{\top} d^{(k)} < 0.$$

The interpretation of this is that in the limit, $d^{(k)}$ is still a descent direction (see Summary 2.1).

This is, for example, satisfied for $d^{(k)} = -D^{(k)}\nabla f(x^{(k)})$, when the eigenvalues of $D^{(k)}$ are bounded between zero and a positive constant. It fails if the directions get more and more orthogonal to the gradient; a counterexample would be a sequence which oscillates in the limit, due to a badly chosen step size (there, all finite directions are descent directions, but they get "worse" in the limit).

3.2 Lipschitz continuity. A continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ is called *Lipschitz continuous*, if there is value $L \geq 0$, called *Lipschitz constant*, such that for all $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$:

$$\left\|\nabla f(x+ty) - \nabla f(x)\right\| \le Lt\|y\|.$$

Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a Lipschitz constant such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this constant.²

A function $\mathbb{R} \to \mathbb{R}$ is Lipschitz continuous with $L = \sup_x |g'(x)|$ if and only if it has bounded first derivative.

3.3 Descent Lemma. Let $f: \mathbb{R}^n \to \mathbb{R}$ be Lipschitz continuous with Lipschitz constant L. Then for all x, y, we have the following quadratic upper bound on the objective function at x:

$$f(x+y) \le f(x) + \nabla f(x)^{\top} y + \frac{L}{2} ||y||^{2}.$$

 $^{^2 \}verb|https://en.wikipedia.org/wiki/Lipschitz_continuity|$

Derivation: let g(t) = f(x + ty) for $t \in [0, 1]$.

$$f(x+y) - f(x) = g(1) - g(0)$$

$$= \int_0^1 \frac{\mathrm{d}g}{\mathrm{d}t} (t) \, \mathrm{d}t$$

$$= \int_0^1 \nabla f(x+ty)^\top y \, \mathrm{d}t$$

$$= \int_0^1 \nabla f(x)^\top y \, \mathrm{d}t + \int_0^1 \left(\nabla f(x+ty)^\top - \nabla f(x)^\top \right) \cdot y \, \mathrm{d}t$$

$$\stackrel{(*)}{\leq} \int_0^1 \nabla f(x)^\top y \, \mathrm{d}t + \int_0^1 \left\| \nabla f(x+ty) - \nabla f(x) \right\| \cdot \|y\| \, \mathrm{d}t$$

$$\leq \nabla f(x)^\top y + \|y\| \int_0^1 Lt \|y\| \, \mathrm{d}t$$

$$= \nabla f(x)^\top y + \frac{L}{2} \|y\|^2,$$

where (1) is an application of the Cauchy-Schwarz theorem $\langle x, y \rangle \leq ||x|| \cdot ||y||$, and (2) follows from Lipschitz continuity.

3.4 Interpretation of Descent Lemma. We can express the lemma in terms of a step sequence $\{x^{(k)}\}$ by substituting $\{x \mapsto x^{(k)}, y \mapsto (x - x^{(k)})\}$:

$$f(x) \leq f(x^{(k)}) + \nabla f(x^{(k)})^{\top} (x - x^{(k)}) + \frac{L}{2} \|x - x^{(k)}\|^{2}.$$

This is actually a local upper bound of f at x by a quadratic function, which we can optimize analytically by derivation:

$$\nabla f(x^{(k)}) + L(x - x^{(k)}) \stackrel{!}{=} 0$$
$$\Rightarrow x = x^{(k)} - \frac{1}{L} \nabla f(x^{(k)})$$

Convergent step size methods relate to this fact.

3.5 Convergence with Constant Step Size. Derivation: by Lipschitz continuity we have

$$f(x^{(k)} + \alpha^{(k)}d^{(k)}) - f(x^{(k)}) \le \overbrace{\nabla f(x^{(k)})^{\top}d^{(k)}}^{<0} \alpha^{(k)} + \frac{1}{2}(\alpha^{(k)})^{2}L \|d^{(k)}\|^{2}$$

$$= \underbrace{\alpha^{(k)} \left(\frac{1}{2}\alpha^{(k)}L \|d^{(k)}\|^{2} - |\nabla f(x^{(k)})d^{(k)}|\right)}_{A}$$