BUILDING CHANGE DETECTION USING CNN MODEL ON AERIAL IMAGES: A COMPARATIVE ANALYSIS OF 2012 AND 2016 DATASETS

Jingheng Huan Luyao Wang Fanbin Xu



#### MOTIVATION

- 1. Importance of detecting changes in built environment for urban planning
- 2. Facilitate data-driven decisionmaking for sustainable urbanization
- 3. Satellite image analysis: Real-time, precise, comprehensive data on urban transformation
- 4. Improve efficiency of urban planning processes

### APPLICATION PROSPECTS

Urban planning: Calculate urbanization rates, monitor growth and transformation of urban structures

Disaster response: Detect demolished buildings, allocate resources efficiently

**Environmental monitoring: Changes in lakes, glaciers, forests** 

#### **DATASET**

2012 2016

- 1. Aerial images taken in April 2012 and 2016
- 2. Covers area affected by a 6.3-magnitude earthquake in February 2011
- 3. 12,796 buildings in 20.5 km2 (2012) and 16,077 buildings in the same area (2016)
- 4. Ideal for studying urban changes in a post-disaster rebuilding context



#### CLEANING THE DATASET



**.** 

The whole image

piece with 500X500 pixels

We manually crop the whole image to get the corresponding change label images.

#### **DEVELOPMENT TREND**

Evolution from image differencing to semantic segmentation and CNNs

Fully convolutional networks (FCNs) for pixel-wise classification

Integration of complex methodologies (e.g., Siamese neural networks, U-Net, attention mechanisms, transformers, transfer learning)

## MACHINE LEARNING MODEL - SEMANTIC SEGMENTATION

Semantic segmentation based on fully connected neural network (FCN)

a computer vision task in which the goal is to categorize each pixel in an image



Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

J. Long, E. Shelhamer, and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," arXiv.org, 2014. https://arxiv.org/abs/1411.4038

#### MACHINE LEARNING MODEL - SIAMESE NETWORK

A Siamese neural network (sometimes called a twin neural network) is an artificial neural network that uses the same weights while working in tandem on two different input vectors to compute comparable output vectors.

**Application:** face recognition



https://www.baeldung.com/cs/siamese-networks https://en.wikipedia.org/wiki/Siamese\_neural\_network

#### MACHINE LEARNING MODEL - SATELLITE IMAGE CHANGE DETECTION

How we combine semantic segmentation and siamese network



Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.



https://www.mdpi.com/2072-4292/11/11/1292

# CRITICAL SCIENTIFIC PROBLEMS TO BE SOLVED



1. Minimizing false positives: To ensure the accuracy of our model, it is crucial to minimize false positives, such as misidentifying vehicles or other objects as buildings.



2. Satellite image alignment: We must develop algorithms capable of aligning images for precise comparison and quantification of changes in the built environment.



3. Scalability and adaptability: Our proposed system must be scalable and adaptable to various satellite images and time periods, ensuring its applicability across different urban environments and diverse applications.

