Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Depto. de Ciencias de la Computación CC5208 - Visualización de Información

Tarea 3 Layout del proyecto

Integrantes : Américo Ferrada

Gabriel Sanhueza

Profesor : Javier Bustos Ayudante : Diego Madariaga

${\rm \acute{I}ndice}$

1.	Análisis	3
2.	Planteamiento de preguntas	4
3.	Mapeo datos a gráficos	5
4.	Diseño	6

BORRAR ESTO

En esta tarea debe enviar el diseño del layout para los datos de su proyecto. Es la última oportunidad que tiene para cambiar su dataset.

Se espera que usted:

- 1. ** DONE: Haga un análisis de los tipos de datos que posee (ordinales, categóricos, cuantitativos, etc) y sus relaciones. **
- 2. Plantee las preguntas que desea su visualización responda.
- 3. Haga un mapeo de sus datos a los distintos gráficos que servirán para responder 2.
- 4. Diseñe (usando lápiz/papel, paint, d3, tableau, lo que le sea más fácil) el layout de su visualización, textos de apoyo, y su paleta de colores, justificando sus decisiones de diseño desde el punto de vista cognitivo y con los fundamentos de información visual.

Recuerde que hoy en clases se informó que sus datos y visualizaciones deben quedar en un repositorio de GitHub. Si usted no tiene uno propio debe avisarle al profesor para que le cree un repositorio.

1. Análisis

Existen 10 columnas de datos en total:

■ Nombre: Aleatorio

■ Id: Ordinal

 \blacksquare Tipo: Categórico

■ Clase: Categórico

■ Masa: Ordinal

■ Caído/Encontrado: Categórico

■ Año: Ordinal

Latitud: Ordinal

■ Longitud: Ordinal

■ Geolocalización: Ordinal (Tupla)

Nuestros datos se relacionan de la siguiente manera:

- Tamaño y tipo del meteorito: Cada tipo de meteorito depende de su tamaño.
- Cantidad de meteoritos y año encontrado: Entre más reciente, mayor es la cantidad de meteoritos encontrados.
- Tamaño de los meteoritos y geolocalización: Se encuentra mayor cantidad de meteoritos pequeños en los polos.
- Nombre propio y tamaño del meteorito: Los meteoritos de tamaño no-despreciable tienen nombre propio (Ej.: Alessandria) v/s los más pequeños (Ej.: Yamato 983824)

2. Planteamiento de preguntas

Preguntas que esperamos responder con nuestra visualización:

- 1. ¿Dónde se encuentran más meteoritos en función del peso?
- 2. ¿Cuál es el tipo de meteoritos más frecuente?
- 3. Respecto al peso, ¿cuáles son los tipos de meteoritos encontrados?
- 4. ¿Cuál es el peso de meteorito más frecuente?
- 5. ¿Cuáles son los 10 meteoritos más pesados encontrados?
- 6. ¿Cuáles son los 10 meteoritos más livianos encontrados?
- 7. ¿En qué año se encontraron más meteoritos?
- 8. ¿En qué pais se han encontrado más meteoritos?
- 9. ¿Cuál es el tipo de meteorito más frecuente en función de su geolocalización?

3. Mapeo datos a gráficos

Como relacionar los datos para responder las preguntas anteriores:

- 1. Basta mapear los datos (geolocalización) en un mapa mundial, agregando un filtro en función del peso y usando distintos colores para cada segmento.
- 2. En un gráfico de barra, por cada tipo contar sus apariciones.
- 3. En un gráfico de barra, tomando solo un segmento de los datos en función del peso.
- 4. En un grafico de barra, ordenar los meteoritos en función del peso y contar sus ocurrencias.
- 5. Se usa gráfico anterior.
- 6. Se usa gráfico anterior.
- 7. En un grafico de barra, contar apariciones de meteoritos en función del año.
- 8. Dado un mapa mundial, utilizar un gradiente de color en función del número de meteoritos caídos por país.
- 9. Dado un mapa mundial, utilizar un gradiente de color en función del número de meteoritos caídos por tipo.

4. Diseño

TODO