

Introduction to SPICE

07/02/2016

Contents

- 1. What is SPICE?
- 2. Why do we need SPICE?
- 3. A Simple Example using SPICE.
- 4. Analysis options is SPICE.

Operating point

DC Analysis

AC Analysis

Transient Analysis

5. References

What is SPICE?

SPICE is an Acronym of

Simulation

Program with

Integrated

Circuit

Emphasis

Introduction

- Developed in 1970 by UCLA, Berkeley.
- Ronald Rohrer and Nagel developed CANCER program.

CANCER – Computer Analysis of Non-Linear Circuits.

- SPICE1 was derived from CANCER program.
- SPICE uses nodal analysis to solve the circuits.

Introduction

- HSPICE
- PSPICE Microsim (first PC version)
- LT-SPICE Linear Technology (free version)
- NG-SPICE (free and trusted)

Introduction

- SPICE is an interpreter based language.
- The input file is called "netlist"
- It is also referred as "DECK"
- Each line in the SPICE netlist is called "CARD"
- The input file comes with an extension ".cir" / (.sp .ckt)
- Such file can be written using any text editor.
- Key to make any SPICE simulation is the "model library"
- Model libraries are very costly.
- Certain free libraries are also available.
 - Ex: Stanford PMT model files

Structure of SPICE File

• Each file should have .cir extension

TITLE

ELEMENT DESCRIPTIONS

.MODEL STATEMENTS

ANALYSIS COMMANDS

OUTPUT COMMANDS

.END

- Single Line Comments are indicated by "*"
- Following line comments can be indicated using ";"
- Two or more lines can be combined using "+"

Circuit Description

Elements and Representation –

R – Resistor Default Unit "Ohm"

C – Capacitor Default Unit "Farad"

L – Inductor Default Unit "Henry"

- Both upper case and lower case letters are equivalent
- Element is identified by first character only.

Circuit Description

Symbol	Prefix	Value
Т	Tera	10 ¹²
G	Giga	10 ⁹
MEG	Mega	10 ⁶
K	Kilo	10 ³
F	Femto	10 ⁻¹⁵
N	Nano	10 ⁻⁹
Р	Pico	10 ⁻¹²
U	Micro	10 ⁻⁶
M	Milli	10-3

Table.1.List of pre-defined suffixes in SPICE

Circuit Description Example

- Nodes is associated with a number.
- Ground is to be always denoted by "node-0"

Examples -

R1	5	0	20K
C 1	Vin	Gnd	25pF
C_{load}	Vout	Gnd	0.30 UF
L	1	2	0.5 UH

• The data that follows valid suffix is ignored by the SPICE Simulation

Rules for Naming in SPICE

- Can start with a number/alphabet.
- But once the first character is number then the following part should have only numbers. Ex. 2A is invalid node name.
- Model name can't start with a number.
- All the letters that follow a number (Value) are neglected unless they are a part of standard pre-fix table.

Independent Sources

- V Independent Voltage Source
- I Independent Current Source

Examples:

VDD 3 0 5V
IBIAS 10 0 DC 100A
ISS 5 0 DC 10mA

Current flows from node5 to node-0

Dependent Sources

- VCVS (E)—Voltage Controlled Voltage Source
- VCCS (G)— Voltage Controlled Current Source
- CCCS (F)— Current Controlled Current Source
- CCVS(H) Current Controlled Voltage Source

Dependent Sources

<u>VCVS</u> –

$$v_5 - v_2 = 10 (v_3 - v_1)$$

E1
$$\frac{5}{1}$$
 $\frac{2}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ 10 \longrightarrow Gain

Output node pair input node pair

G1 2 1 (5,8) 50m

Dependent Sources

<u>CCCS</u> –

FA2 11 9 Vsupply 1.25

<u>CCVS</u> –

Hsup 2 3 V1 10K

• To sense the current sometimes we need to use a "0v" voltage-source (DC) in series.

Semiconductor Devices

X – SUBCIRCUITS

- All semiconductor devices can have their own model definitions and parameters.
- All the parameters need not be specified since SPICE can call default values for thr unspecified values.

.Model ModName Type <parameters>

Diode Model Declaration

- **Is-** Saturation Current (10fA)
- N- Emission Coefficient (1)
- **Rs** Series Resistance (0 ohm)
- **Cjo-** Junction Capacitance (0 F)
- **TT** Transit Time (0 sec)
- **BV** Reverse Bias Breakdown Voltage (infinite)
- **IBV** Reverse Bias Breakdown Current (1 e⁻¹⁰)
- **VJ** Built in Junction Potential (0.6V/0.7V)

Diode Model Declaration

Example:

.MODEL DIN4007 D Is =
$$7.0276N + N = 1.88$$
 Rs = 0.0345 CJO = $10p + TT = 0.10$ BV=1K IBV = $50N$ VJ = 0.7

• D1 12 15 DIN4007

Bipolar Transistors (BJT)

- **BF** Forward Active Current Gain (100)
- **Is** Saturation Current (.1 fA)
- **Vaf** Early Voltage (infinite)

Qname C B E BJT_modelName

MOSFETS

Mname D G S B ModelName L= W=

(L & W in "m")

- VT0 Threshold Voltage when VSB = 0
- $U0 Mobility (cm^2/V-s)$
- **KP** Transconductance Parameter (A/V^2) (2 e⁻⁵)
- **GAMMA** Body Effect Parameter (V^{0.5})
- LAMBDA— Channel Length Modulation (V-1)
- **TOX** Oxide Thickness (m)
- Level no. is the most crucial data for MOSFET modelling.

Voltage Sources (AC)

Sinusoidal Source:-

Ex:- V_{car} N1 N2 Sin(0.50m.1k)

- Defines 1kHz sinewave of $V_{peak} = 50 \text{mV}$
- By default TD=0, Θ =0, Φ =0
- Θ is for exponential damping sinewave

Piece-Wise Linear (PWL)

Vname N1 N2 PWL (T1 V1 T2 V2...)

• Ti –Vi = Voltage Value at a given time Ti

Pulse Waveform (clock waveform)

Vpulse N1 N2 Pulse (V1 V2 TD TR TF PW PER)

Ex:- Square Waveform 33% Duty Cycle 10kHz

Vsquare N1 N2 Pulse (0 5 10p 10p 10p 33u 0.1m)

• Specify Rise Time and Fall Time in ps if they are of no specific importance.

Sub-Circuits (letter X is reserved for them)

.SUBCKT subckt_name nodes_externally

Element Statements

.ENDS subckt_name

- Node 0 still remains ground
- Node name can't be node 0
- Internal node names are always local
- Opamps are always modelled as subcircuits

DC Operating Point - .op

- Voltages at the nodes
- Current in each voltage source
- Operating point for each element
- Automatically done before AC or Transient Analysis

DC Analysis - .dc

- Better understood as dc sweep analysis
- Can be done on any (one or more) independent sources

.DC source_name Start Stop Step

Ex: .DC Vapplied 0 1.2 .01

Nesting of dc sweep is allowed and done often

Ex: .DC Vds 0 3.3 0.1 Vgs 0 1.8 0.6

Transient Analysis - .tran

- Time varying signals used to plot Vs time
- Internally operating points are always calculated

```
.tran tstep tstop tstart (default zero)
```

Note. Used in general to observe the time response of the circuits.

AC analysis - .ac

- Used to perform frequency analysis
- Filters, Amplifiers and Resonant Circuits

- Plots frequency response from 1 Hz to 10Khz with each decade having 10 sample points.
- In general decade sweep is used for frequency response.

Transfer function - .tf

• Plots the transfer function (small signal)

.tf output_variable source

- Can be used to calculate the thevenin equivalent
- Output also contains: a) Resistance with respective input source
 b) Resistance with respective output source

Ex:-.tf vout vin

Sensitivity Analysis - .sens

• Plots the sensitivity of the variable with respect to every circuit parameter (small signal values)

.sens variable

 Can be used to calculate power supply dependencies, resistance tolerance etc

A Presentation By –
Mr. K. Babu Ravi Teja, M.Tech. (VLSI Design)
Lecturer, Dept. of EEE, BITS Pilani (Pilani)
email – baburaviteja.k@pilani.bits-pilani.ac.in