Principal Surrogate Evaluation with **pseval**

Basics

pseval is designed to analyze data from a randomized clinical trial in order to asses the surrogate value of a post-randomization measurement. Start by describing the study design, including augmentations.

```
p1 <- psdesign(data = data,
  Z = Z, Y = Y.obs, S = S.obs,
  BIP = BIP, CPV = CPV)
```

design

The counterfactual **surrogate** S.1 is missing for many subjects, thus we need to define a model to **integrate** over the missing values.

integration

The **risk model** describes the relationship between the **outcome** Y, the **surrogate** S.1, and the **treatment** Z. Use the risk model that is most appropriate for your outcome type, binary, count, or time-to-event.

```
p1 <- p1 +
    risk_binary(Y ~ S.1 * Z,
    D=500, risk.logit)</pre>
```

risk model

Estimation and **bootstrap** inference are done in separate steps. The main method is estimated maximum likelihood, but pseudoscore is available for a subset of models.

```
p1 <- p1 + ps_estimate() +
    ps_bootstrap()</pre>
```

estimation

Specifics combine model components together with the '+' sign

Study Design specification and mapping

psdesign controls the dataset that is being used, and how to map variables to their roles in the analysis. The "keys" to the left of "=" map to variables in data

data frame treatment a <- psdesign(data = data, Z = Z, Y = Y.obs, S = S.obs, BIP = W) clinical outcome surrogate augmentation

survival outcome

other mappings

```
b <- psdesign(data = data, Z = Z,
Y = Surv(time.obs, event.obs),
tau = .25, S = S.obs,
BIP = W, CPV = CPV, BSM = V1,
weights = p, covariate = X)</pre>
```

Risk Model distribution of the outcome

risk_* functions define the assumed
relationship between Y, S.1, and Z. The
default formula is Y ~ S.1 * Z

binary outcome

- a + risk_binary(risk = risk.logit)
- a + risk_binary(risk = risk.probit)

time to event outcome

- a + risk_exponential()
- a + risk_weibull()

count outcome

a + risk_poisson()

Options

flexible spline

- a + risk_binary(Y ~ bs(S.1, df = 2) * Z) a + risk_exponential(D = 200)
- $a + risk_{poisson}(Y \sim S.1 * Z + offset(t))$

Integration over the missing counterfactuals

integrate_* functions control how the
missing counterfactual variables are handled

Parametric: Assumes normal distribution conditional on a BIP + other variables a + integrate_parametric(S.1 ~ BIP)

Semiparametric: Assumes location and scale vary as functions of BIP + other variables, no assumption about distribution of S a + integrate_semiparametric(
formula.location = S.1 ~ BIP,
formula.scale = S.1 ~ 1)

Nonparametric: Totally empirical, requires categorical S and W a + integrate_nonparametric(S.1 ~ BIP)

Estimation post-estimation and plotting

```
est <- a + ps_estimate(method = "BFGS")
a + ps_estimate(method = "pseudo-score")
boot <- est + ps_bootstrap(n.boots = 50,
    start = binary.est$estimates$par)</pre>
```

Post estimation

summary of parameters

see ?optim for options

```
summary(boot)
calc_risk(boot, contrast = "VE")
calc_STG(boot) # total gain statistic
```

```
calc_risk(boot,
contrast = function(R0, R1) 1 - R1/R0)
```