

FWAM Session B: Function Approximation and Differential Equations

Alex Barnett¹ and Keaton Burns^{1,2}

Wed, 10/30/19

¹Center for Computational Mathematics, Flatiron Institute

²Center for Computational Mathematics, Flatiron Institute, and Department of Mathematics, MIT

LECTURE 1: interpolation, integration, spectral methods

Motivations

exact func. f(x) described by ∞ number of points how handle approximately (but accurately) in computer, using least cost (bytes)?

• Interpolation: cheap but accurate look-up table for expensive f(x) data fitting: given non-noisy data $f(x_i)$ at some x_i , model f(x) at other points x?

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

- (Numerical) integration:
 eg computing expectation values given a pdf
 - Contrast: Monte Carlo (random, high-dim.) integration, Thurs am
- Differentiation: get gradient ∇f in order to optimize or
- Spectral (often Fourier) methods: If f(x) is smooth, handle very accurately without much extra cost

Deterministic (non-random) methods.

Integr/diff crucial for numerical ODEs and PDEs topic of LECTURE FLATIRON INTEGRAL PROPERTY OF THE PROPERTY OF

Goals LECTURE I

TODO

teach range of practical methods focusing on 1D pointers to dimensions d>1 concepts:

convergence order how does your accuracy improve vs number of discretization points spectral methods

global (one expansion formula for the whole domain)

vs local (different expansions for x in different regions)

adaptivity automatically placing degrees of freedom only where they need to be rounding error

interpolation = func. representation, key to all else

Say $y_j = f(x_j)$ known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

Say $y_j = f(x_j)$ known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ N-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

"snap to grid"

Error $\max_x |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$ as $h \to 0$

The typ. spread

holds if f' bounded; can be nonsmooth but not crazy

Recall notation " $\mathcal{O}(h)$ ": exists $C, h_0 > 0$ s.t. error $\leq Ch$ for all $h < h_0$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

Error
$$\max_{x} |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$$
 as $h \to 0$ holds if f' bounded; can be nonsmooth but not crazy

Recall notation "
$$\mathcal{O}(h)$$
": exists $C, h_0 > 0$ s.t. error $\leq Ch$ for all $h < h_0$

Piecewise linear:

"connect the dots"

max error
$$=\mathcal{O}(h^2)$$
 as $h o 0$

$$x \in \mathcal{O}(n)$$
 as $n \to 0$

needs f'' bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points $= 1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error $= \mathcal{O}(N^{-p})$, for order p = 1, 2 Is only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2 Is only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p=1,2 Is only one graph in numerical analysis: "relative error vs effort"

Note how spectral gets many digits for small ${\it N}$

crucial for eg 3D prob.

"spectral" = "superalgebraic", $O(N^{-k})$ for any k

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
What is the prefactor C in error < Ch^k ? Has asymp, rate even kicked in yet? :)

Higher-order interpolation for smooth f: the local idea

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do **not** eval poly outside its central region!

• error $\mathcal{O}(h^k)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

Higher-order interpolation for smooth f: the local idea

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do not eval poly outside its central region!

• error $\mathcal{O}(h^k)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

How to find the degree-(k-1) poly?

1) Crafty: solve square lin sys for coeffs
$$\sum_{k < p} x_j^k c_k = y_j$$
 $j = 1, ..., p$ ie $V \mathbf{c} = \mathbf{y}$ $V = \text{"Vandermonde" matrix, is ill-cond. but works}$

Traditional: barycentric formula
$$\tilde{f}(x) = \frac{\sum_{j=1}^{p} \frac{y_j}{x - x_j} w_j}{\sum_{j=1}^{p} \frac{1}{x - x_j} w_j}$$
 $w_j = \frac{1}{\prod_{i \neq j} (x_j - x_i)}$ [Tre13, Ch. 5]

Either way, $\tilde{f}(x) = \sum_{j=1}^{p} y_j \ell_j(x)$ where $\ell_j(x)$ is ℓ th Lagrange basis func:

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

warning: unif. grid, global interp. fails → only use locally in central region

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p = N? "global" p = N = 32, smooth (analytic) $f(x) = \frac{1}{1+9x^2}$ on [-1, 1]:

warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes...

ho > 1 "radius" of largest ellipse in which f analytic

"Chebychev": means non-unif. grid density $\sim \frac{1}{\sqrt{1-x^2}}$

our first spectral method max err = $\mathcal{O}(\rho^{-N})$

exponential conv!

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (eg splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc) use local poly (central region only!), or something stable (eg splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, structured in a few

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (eg splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Adaptivity idea

global is inefficient if f smooth in most places, structured in a few

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_i\}_{i=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc) use local poly (central region only!), or something stable (eg splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

automatically split (recursively) panels until max err $< \epsilon$

via tests for local error

1D adaptive interpolator codes to try:

- github/dbstein/function_generator py+numba, fast (Stein '19)
- chebfun for MATLAB big-p Cheb. grids can exploit FFTs! (Trefethen et al.)

App.: replace nasty expensive f(x) by cheap one!

optimal "look-up table"

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi) = f(x)$ for all x, $f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_k e^{ikx}$ Fourier series

Just did f on intervals [a,b]. global interp. (& integr., etc.) of smooth periodic f differs! Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

What's best you can do? get N coeffs right $c_k = \hat{f}_k$ error \sim size of tail $\{\hat{f}_k\}_{|k| \geq N/2}$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi) = f(x)$ for all x, $f(x) = \sum_{n \in \mathbb{Z}} \hat{f}_k e^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x) = \sum_{|k| < N/2} c_k e^{ikx}$ "trig. poly"

What's best you can do? That's best you can do? get N coeffs right $c_k = \hat{f}_k$ (cannot explain) error \sim size of tail $\{\hat{f}_k\}_{|k|>N/2}$

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow $\mathcal{O}(N^3)$ effort

Uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow
$$\mathcal{O}(N^3)$$
 effort Uniform grid $x_j = \frac{2\pi j}{N}$, set $c_k = \frac{1}{N} \sum_{j=1}^{N} e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic:
$$f(x+2\pi)=f(x)$$
 for all x , $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

What's best you can do?

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow $\mathcal{O}(N^3)$ effort

Uniform grid
$$x_j = \frac{2\pi j}{N}$$
, set $c_k = \frac{1}{N} \sum_{j=1}^{N} e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$ easy to show $c_k = \cdots + \hat{f}_{k-N} + \hat{f}_k + \hat{f}_{k+N} + \hat{f}_{k+2N} + \cdots$

$$= \hat{f}_k \text{ desired } + \sum_{m \neq 0} \hat{f}_{k+mN} \text{ aliasing error, small if tail small}$$

Just did f on intervals [a, b]. global interp. (& integr., etc.) of smooth periodic f differs!

Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series Instead of poly's, use truncated series $\tilde{f}(x) = \sum_{|k| < N/2} c_k e^{ikx}$ "trig. poly"

What's best you can do? get N coeffs right $c_k = \hat{f}_k$ error \sim size of tail $\{\hat{f}_k\}_{|k|>N/2}$

How read off c_k from samples of f on a grid?

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow $\mathcal{O}(N^3)$ effort

uniform grid best (unlike for poly's!); non-uniform needs linear solve, slow
$$\mathcal{O}(N^3)$$
 effort Uniform grid $x_j = \frac{2\pi j}{N}$, set $c_k = \frac{1}{N} \sum_{j=1}^N e^{ikx_j} f(x_j)$ simply $\mathbf{c} = \mathit{FFT}[\mathbf{f}]$ easy to show $c_k = \cdots + \hat{f}_{k-N} + \hat{f}_k + \hat{f}_{k+N} + \hat{f}_{k+2N} + \ldots$ = \hat{f}_k desired $+ \sum_{m \neq 0} \hat{f}_{k+mN}$ aliasing error, small if tail small

Summary: given N samples $f(x_i)$, interp. error = truncation + aliasing

a crude bound is
$$\max_{x \in [0,2\pi)} |\tilde{f}(x) - f(x)| \le 2 \sum_{|k| > N/2} |\hat{f}_k|$$

ie error controlled by size of tail

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \geq N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(-ik)^p} dx$$
 integr. by parts p times

So for a periodic
$$f \in C^p$$
, recall means first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p}) = \mathcal{O}(h^{p-1})$ at least $(p-1)$ th order acc.

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(-ik)^p} dx$$
 integr. by parts p times

So for a periodic
$$f \in C^p$$
, recall means first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p}) = \mathcal{O}(h^{p-1})$ at least $(p-1)$ th order acc.

Example of:
$$f$$
 smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{t}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(-ik)^p} dx$$
 integr. by parts p times

So for a periodic $f \in C^p$, recall means first p derivs of f bounded

$$\hat{f}_k=\mathcal{O}(k^{-p})$$
, tail sum $\mathcal{O}(N^{1-p})=\mathcal{O}(h^{p-1})$ at least $(p-1)$ th order acc.

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip $|\operatorname{Im} x| \leq \alpha$ then $\hat{f}_k = \mathcal{O}(e^{-\alpha|k|})$, exponential conv in N (fun proof: shift the contour) as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

As grow grid N, how accurate is it? just derived err \sim sum of $|\hat{f}_k|$ in tail $|k| \ge N/2$

Now
$$\hat{f}_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-ikx} dx = \frac{1}{2\pi} \int_0^{2\pi} f^{(p)}(x) \frac{e^{-ikx}}{(-ik)^p} dx$$
 integr. by parts p times

So for a periodic
$$f \in C^p$$
, recall means first p derivs of f bounded $\hat{f}_k = \mathcal{O}(k^{-p})$, tail sum $\mathcal{O}(N^{1-p}) = \mathcal{O}(h^{p-1})$ at least $(p-1)$ th order acc.

Example of: f smoother \leftrightarrow faster \hat{f}_k tail decay \leftrightarrow faster convergence

Even smoother case: f analytic, so f(x) analytic in some complex strip $|\operatorname{Im} x| \leq \alpha$ then $\hat{f}_k = \mathcal{O}(e^{-\alpha|k|})$, exponential conv in N (fun proof: shift the contour) as with Bernstein ellipse, to get exp. conv. rate need understand f off its real axis (wild!)

Smoothest case: "band-limited" f with $\hat{f}_k = 0$, $|k| > k_{\text{max}}$, then interpolant exact once $N > 2k_{\text{max}}$

That's theory. In real life you always measure your conv. order/rate!

Take-home: for f smooth & periodic, unif. grid global spectral acc.

• use FFTs, cost $\mathcal{O}(N \log N)$, to go between $f(x_j)$ grid & \hat{f}_k Fourier coeffs

Flavor of interpolation in higher dims d > 1

If you can choose the nodes: products of 1D interpolants either global or adaptively refined boxes

Flavor of interpolation in higher dims d > 1

If you can choose the nodes: products of 1D interpolants either global or adaptively refined boxes

If cannot choose the nodes: interp. $f(\mathbf{x})$ from scattered data $\{\mathbf{x}_i\}$ is hard

Eg google terrain: f(x) rough \rightarrow v. low ord are amusing jumps in node grids:

Or if know f smooth

fit local multivariate polynomial

If f noisy and smooth, many methods kriging, kernels, ***

interp from unstructured points in 2D, kernel method

height f(x)

pock-marks!

interp from Cartesian grid, more accurate

Numerical integration

Usually the user gets to choose the nodes x_j Once have interpolant \tilde{f} from data $f(x_j)$, can integrate it exactly "intepolatory quadrature"

Eg: piecewise linear gives composite trap rule $\mathcal{O}(N^{-2})$ periodic spectral gives periodic trap rule $\mathcal{O}(c^{-N})$ if analytic

Differentiation

As w/ integration: once have interpolant, differentiate it exactly

TO DO extrapolation Rounding error [GC12, Ch. 5–6]

LECTURE II: numerical differential equations

For now we start with "elliptic": time-independent problems Motivations eg steady-state (equilibrium) diffusion of a chemical eg what electric potential caused by bunch of charges surrounded by H₂O ? (protein electrostatics) Find u solving $\Delta u = f$, f = volume source term Δ means Laplacian $\partial^2/\partial x^2 + \partial^2/\partial y^2 + \dots$ Δu is curvature of uplus some BCs on u eg viscous fluid flow: **u** is velocity field, sat Stokes egns eg what is ground state of quantum system, solving $\Delta u = Eu$ Mike will in next talk overview this and 2 other flavors of PDE

References

- A Greenbaum and T P Chartier, Numerical methods, Princeton University Press, 2012.
- L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013, http://www.maths.ox.ac.uk/chebfun/ATAP.

