Modeling the learning of the Person Case Constraint

Adam Liter¹ Naomi H. Feldman^{1,2}

¹Department of Linguistics, University of Maryland ²UMIACS, University of Maryland

> SCiL January 2, 2020

(1) * Me le recommendó
1.SG.ACC 3.SG.DAT recommend.PST
'S/he recommended me to her/him'

Η

Н

 H_1

 H_2

 H_1

 H_2

 H_1 H_2

 H_1 H_2

Parsimony and acquisition implications

- "this kind of learnability evaluation [...] does not care about whether a [...] theory is appropriately restrictive or economical" (Pearl et al. 2017: 312).
- For other similar approaches, see also Pearl & Sprouse (2013), Rasin & Katzir (2017), Pearl & Sprouse (2019).

Roadmap

- 1. Introduction
- 2. The Person Case Constraint (PCC)
- 3. Learning implications
- 4. Evaluating two theories of the PCC
- 4.1 A simple theory of the PCC
- 4.2 A feature-based theory of the PCC
- 5. The learning model
- 6. Simulations

Clitics

- Clitics are bound morphemes (i.e., affixal morphemes).
- (2) Me lo cuentas 1.SG.DAT 3.SG.ACC tell '(You) tell it to me'
- ▶ Direct object = lo, indirect object = me

Restrictions on clitics

- When two arguments are realized as clitics, not all combinations are possible.
- (1) * Me le recommendó 1.SG.ACC 3.SG.DAT recommend.PST 'S/he recommended me to her/him'
- Direct object = me, indirect object = le

► These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

IO↓/DO→	1	2	3
1	NA	\checkmark	√
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

Table: Me-First PCC (Romanian, Spanish, etc.)

These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

IO↓/DO→	1	2	3
1	NA	\checkmark	\checkmark
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

Table: Me-First PCC (Romanian, Spanish, etc.)

(2) Me lo cuentas 1.SG.DAT 3.SG.ACC tell '(You) tell it to me'

► These sorts of restrictions are part of a broader phenomenon called the PCC (Bonet 1991, 1994).

IO↓/DO→	1	2	3
1	NA	\checkmark	\checkmark
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

Table: Me-First PCC (Romanian, Spanish, etc.)

(1) * Me le recommendó
1.SG.ACC 3.SG.DAT recommend.PST
'S/he recommended me to her/him'

104/100	ı	2	3	IO↓/DO→	1	2	3
1	NA	*	√	1	NA	√	√
2	*	NA	\checkmark	2	*	NA	\checkmark
3	*	*	\checkmark	3	*	*	\checkmark

- (a) Strong PCC (Greek, Spanish, etc.)
- (b) Ultrastrong PCC (Classical Arabic, Spanish, etc.)

IO↓/DO→	1	2	3
1	NA	\checkmark	\checkmark
2	\checkmark	NA	\checkmark
3	*	*	\checkmark

- IO↓/DO→
 1
 2
 3

 1
 NA
 √
 √

 2
 *
 NA
 √

 3
 *
 √
 √
- (c) Weak PCC (French, Catalan, Spanish, etc.)
- (d) Me-First PCC (Romanian, Spanish, etc.)

Learning evaluation

Proof of concept that learning implications are useful for telling apart theories and their representations.

H1

 H_2

Evaluating two theories of the PCC

Simple theory

(3) a.
$$1 = 1$$
 b. $2 = 2$

c.
$$3 = 3$$

Feature-based theory

(4) a.
$$1 = \begin{bmatrix} +Auth \\ +Part \end{bmatrix}$$

b.
$$2 = \begin{bmatrix} -Auth \\ +Part \end{bmatrix}$$

c.
$$3 = \begin{bmatrix} -Auth \\ -Part \end{bmatrix}$$

A simple theory of the PCC

	Grammar	12	13	2 1	2 3	3 1	3 2	3 3
	SG ₁	√	√	√	√	√	√	√
	SG_2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	*
	SG_3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark
	SG_4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	*	*
	SG ₅	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	\checkmark
	SG_6	\checkmark	\checkmark	\checkmark	\checkmark	*	\checkmark	*
Weak PCC —	—►SG ₇	\checkmark	\checkmark	\checkmark	\checkmark	*	*	\checkmark
	SG ₈	\checkmark	\checkmark	\checkmark	\checkmark	*	*	*
	•••	•••	•••	•••	•••	•••		•••
Me-First PCC —	\longrightarrow SG ₂₁	\checkmark	\checkmark	*	\checkmark	*	\checkmark	\checkmark
	SG_{22}	\checkmark	\checkmark	*	\checkmark	*	\checkmark	*
Ultrastrong PCC —	→ SG ₂₃	\checkmark	\checkmark	*	\checkmark	*	*	\checkmark
Strong PCC —	→ SG ₅₅	*	\checkmark	*	\checkmark	*	*	\checkmark
	•••							
	SG ₈₅	*	\checkmark	*	\checkmark	*	\checkmark	\checkmark
	SG ₈₆	*	✓	*	\checkmark	*	✓	*
	SG ₈₇	*	\checkmark	*	\checkmark	*	*	\checkmark
		•••	•••	•••	•••	•••	•••	•••
	SG ₁₂₈	*	*	*	*	*	*	*

A feature-based theory of the PCC

Nevins (2007)

Person features are feature bundles, consisting of two binary feature values.

(5) a.
$$1 = \begin{bmatrix} +Auth \\ +Part \end{bmatrix}$$
b.
$$2 = \begin{bmatrix} -Auth \\ +Part \end{bmatrix}$$
c.
$$3 = \begin{bmatrix} -Auth \\ -Part \end{bmatrix}$$

 PCC variants arise based on searching hierarchical syntactic representation for these features and restrictions on this search.

A feature-based theory of the PCC

Nevins (2007)

	Grammar	12	13	2 1	2 3	3 1	3 2	3 3
	FG ₁	✓	✓	✓	✓	✓	✓	√
Weak PCC —	FG ₂	\checkmark	\checkmark	\checkmark	\checkmark	*	*	\checkmark
Me-First PCC —	— ► FG ₃	\checkmark	\checkmark	*	\checkmark	*	\checkmark	\checkmark
Ultrastrong PCC —	→ FG ₄	\checkmark	\checkmark	*	\checkmark	*	*	\checkmark
3 · · ·	FG ₅	*	*	*	*	*	*	\checkmark
Strong PCC	FG ₆	*	\checkmark	*	✓	*	*	\checkmark
5	►FG ₇	*	\checkmark	*	\checkmark	*	*	\checkmark
	FG ₈	*	*	\checkmark	*	✓	*	\checkmark
	FG ₉	*	*	*	*	*	*	\checkmark

Evaluating two theories of the PCC

Simple theory

(6) a.
$$1 = 1$$
 b. $2 = 2$

c. 3 = 3

Feature-based theory

(7) a.
$$1 = \begin{bmatrix} +Auth \\ +Part \end{bmatrix}$$

b. $2 = \begin{bmatrix} -Auth \\ +Part \end{bmatrix}$

c.
$$3 = \begin{bmatrix} -Auth \\ -Part \end{bmatrix}$$

The generative model

IO↓/DO→	1	2	3
1	NA	✓	✓
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

The generative model

IO↓/DO→	1	2	3
1	NA	✓	√
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

IO↓/DO→	1	2	3
1	NA	0.0004	0.1852
2	0	NA	0.5475
3	0	0.0152	0.2518

The generative model

IO↓/DO→	1	2	3
1	NA	✓	✓
2	*	NA	\checkmark
3	*	\checkmark	\checkmark

IO↓/DO→	1	2	3
1	NA	0.0004	0.1852
2	0	NA	0.5475
3	0	0.0152	0.2518

IO↓/DO→	1	2	3
1	NA	0	50
2	0	NA	148
3	0	4	68

Inferring the grammar

- Given \vec{s} , our learning model uses Bayes' rule to infer $p(g \mid \vec{s})$.
- In doing so, we integrate over $\vec{\theta}$; importantly, this leads to higher likelihoods for grammars that allow fewer clitic combinations (cf. Tenenbaum & Griffiths 2001).

Data for simulations

Aguirre (2003)

- ► Using the Aguirre Corpus (Aguirre 2003) from CHILDES (MacWhinney 2000), we estimated the frequency of clitic combinations in child-directed speech for a dialect of Spanish from Spain.
- ► 13,411 child-directed utterances extracted with PyLangAcq (Lee et al. 2016).
- Utterances parsed with spaCy (Honnibal & Montani 2017).
- 2% of utterances contained two clitics.
- Smoothing was applied to estimate $\vec{\theta}$ for simulations.

Data for simulations

Aguirre (2003)

► These are speakers of a Me-First PCC language.

IO↓/DO→	1	2	3
1	NA	0	50
2	0*	NA	148
3	0*	4	68

Data for simulations

Aguirre (2003)

► With smoothing:

IO↓/DO→	1	2	3
1	NA	0.0004	0.1852
2	0	NA	0.5475
3	0	0.0152	0.2518

Simulations

- ► Hart & Risley (1995) estimate that children hear 1 million utterances in first 3 years of life, and ≈ 2% of utterances contain two clitics.
- The extracted counts, with smoothing, were used to simulate corpora with n PCC constructions for n = 66, n = 666, and n = 6, 666.
- We trained Simple learning models and Feature-based learning models with 1,000 replications for each corpus size.

red = target grammar; black = non-target grammar

Grammar

Corpuse size: 6,666

red = target grammar; black = non-target grammar

Corpuse size: 666

red = target grammar; black = non-target grammar

Corpuse size: 66

red = target grammar; black = non-target grammar

Discussion

- Both class of hypotheses learn the target grammar, but the simple model is led astray when there is less data.
- Simple theory does have larger hypothesis space, but even with only 66 data points, each theory is only assigning probability to a few grammars (i.e., not just about size of hypothesis space).

Discussion

- ▶ Both class of hypotheses learn the target grammar, but the simple model is led astray when there is less data.
- ➤ Simple theory does have larger hypothesis space, but even with only 66 data points, each theory is only assigning probability to a few grammars (i.e., not just about size of hypothesis space).
- Modeling learning in this way can therefore be informative for telling apart theories and their representations.
- Especially true with information on age of acquisition and/or patterns of variation across dialects.

Discussion

Age of acquisition

- Unfortunately little is known about PCC age of acquisition.
- ► Tsakali & Wexler (2010) report that 5-year-old Greek-acquiring children know the PCC.
- Blasco (2000) show that Spanish-acquiring children were correctly producing accusative and dative clitics by 2;2.

Discussion

Key takeaways

Proof of concept for using learning considerations to tell apart different theoretical and representational assumptions in domain of person features and PCC.

Discussion

Key takeaways

- Proof of concept for using learning considerations to tell apart different theoretical and representational assumptions in domain of person features and PCC.
- ➤ Similar learning models can be run for other more restrictive theories of the PCC (e.g., Béjar & Rezac 2003, Pancheva & Zubizarreta 2018, Graf 2019) and for other PCC variants.
- Would want to see if other restrictive theories are ever led astray toward unattested variants.

Acknowledgments

Thanks to:

- Norbert Hornstein, Jeff Lidz, and Omer Preminger for helpful discussion;
- the University of Marylnad CNL Lab for helpful discussion; and
- support from the NSF NRT grant (NSF: #1449815).

References I

- Aguirre, Carmen. 2003. Early verb development in one Spanish-speaking child. In Dagmar Bittner, Wolfgang U. Dressler & Marianne Kilani-Schoch (eds.), Development of verb inflection in first language acquisition: A cross-linguistic perspective (Studies on Language Acquisition 21), 1–26. Berlin, Germany: Mouton de Gruyter. DOI: 10.1515/9783110899832.1.
- Béjar, Susana & Milan Rezac. 2003. Person licensing and the derivation of PCC effects. In Ana Teresa Pérez-Leroux & Yves Roberge (eds.), Romance linguistics: Theory and acquisition (Current Issues in Linguistic Theory 244), 49–62. Amsterdam, The Netherlands: John Benjamins Publishing Company. DOI: 10.1075/cilt.244.07bej.
- Blasco, Maria. 2000. The acquisition of pronominal object clitics in Spanish. New York, NY: The City University of New York dissertation.

References II

- Bonet, M. Eulàlia. 1991. Morphology after syntax: Pronominal clitics in Romance. Cambridge, MA: Massachusetts Institute of Technology dissertation.
- Bonet, M. Eulàlia. 1994. The person-case constraint: A morphological approach. In Heidi Harley & Colin Phillips (eds.), *The morphology-syntax connection* (MIT Working Papers in Linguistics 22), 33–52. Cambridge, MA.
- Graf, Thomas. 2019. Monotonicity as an effective theory of morphosyntactic variation. *Journal of Language Modelling* 7(2). 3-47. DOI: 10.15398/jlm.v7i2.211.
- Hart, Betty & Todd R. Risley. 1995. Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes Publishing Co., Inc.
- Honnibal, Matthew & Ines Montani. 2017. spaCy 2: natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. To appear.

References III

- Lee, Jackson L., Ross Burkholder, Gallagher B. Flinn & Emily R. Coppess. 2016. Working with CHAT transcripts in Python. Tech. rep. TR-2016-02. Department of Computer Science, University of Chicago.
- MacWhinney, Brian. 2000. The CHILDES project: tools for analyzing talk. 3rd. Mahwah, NJ: Lawrence Erlbaum Associates.
- Nevins, Andrew. 2007. The representation of third person and its consequences for person-case effects. *Natural Language & Linguistic Theory* 25(2). 273–313. DOI: 10.1007/s11049-006-9017-2.
- Pancheva, Roumyana & Maria Luisa Zubizarreta. 2018. The person case constraint: The syntactic encoding of perspective. *Natural Language & Linguistic Theory* 36(4). 1291–1337. DOI: 10.1007/s11049-017-9395-7.

References IV

- Pearl, Lisa, Timothy Ho & Zephyr Detrano. 2017. An argument from acquisition: Comparing English metrical stress representations by how learnable they are from child-directed speech. *Language Acquisition* 24(4). 307–342. DOI: 10.1080/10489223.2016.1194422.
- Pearl, Lisa & Jon Sprouse. 2013. Syntactic islands and learning biases: Combining experimental syntax and computational modeling to investigate the language acquisition problem. Language Acquisition 20(1). 23–68. DOI: 10.1080/10489223.2012.738742.
- Pearl, Lisa & Jon Sprouse. 2019. The acquisition of linking theories: A tolerance principle approach to learning UTAH and rUTATH. Ms., University of California, Irvine, CA and University of Connecticut, Storrs, CT. https://ling.auf.net/lingbuzz/004088.
- Rasin, Ezer & Roni Katzir. 2017. A learnability argument for constraints on underlying representations. Ms., Leipzig University and Tel Aviv University. Available at https://ling.auf.net/lingbuzz/002260.

References V

- Tenenbaum, Joshua B. & Thomas L. Griffiths. 2001. Generalization, similarity, and Bayesian inference. *Behavioral and Brain Sciences* 24(4). 629–640. DOI: 10.1017/S0140525X01000061.
- Tsakali, Vina & Kenneth Wexler. 2010. The acquisition of Person Case Constraint in Greek. Paper presented at the 19th International Symposium on Theoretical and Applied Linguistics, Thessaloniki, Greece.

(8)
$$FG_1 = [$$

(9)
$$FG_2 = [+Part]$$

(10)
$$FG_3 = [+Auth]$$

(11)
$$FG_4 = \begin{bmatrix} +Part \\ +Auth \end{bmatrix}$$

(12)
$$FG_5 = \begin{bmatrix} Auth/[+Part] \\ Part/[-Auth] \end{bmatrix}$$

(13)
$$FG_6 = [Auth/[+Part]]$$

(14)
$$FG_7 = \begin{bmatrix} Auth/[+Part] \\ +Part \end{bmatrix}$$

(15)
$$FG_8 = [Part/[-Auth]]$$

(16)
$$FG_9 = \begin{bmatrix} Part/[-Auth] \\ +Auth \end{bmatrix}$$

- Search is subject to two conditions:
 - Any argument that occurs in between the probe that initiates the search and the target of the search must itself also be a target.
 - 2. All arguments in the domain of the search must share the same value (+ or -).

- ► Consider the grammar $FG_2 = v[$ +Part] (i.e., the Weak PCC) and *3 1.
- This violates the first condition.

- ► Consider the grammar $FG_6 = v[$ Auth/[+Part]] (i.e., the Strong PCC) and *1 2.
- ► This violates the second condition.

Aguirre corpus parsing

- se was treated as a third person pronoun.
- ► The case information assigned by spaCy to each clitic was the main basis for classifying the clitic as the direct or indirect object.

Aguirre corpus examples

- ightharpoonup 13 (n = 50)
- (19) ésta me la he comprado yo.
- (20) oye, ese pez luego nos lo podemos subir para la bañera, vale?
- (21) bueno nos la ponemos, vale?
 - •••
 - \triangleright 23 (n = 148)
- (22) esto te lo has mojado.
- (23) te la vas a comer a la gallina?
- (24) a bañar, que en el baño te lo pasas muy bien también.
 - ...

- \triangleright 3 2 (n = 4)
- (25) ahora te le pongo.
- (26) ése te le pongo mañana.
- (27) te le vas a llevar el hipopótamo a la oficina.
- (28) te le vas a meter el cepillo en el agua?
 - \triangleright 3 3 (n = 68)
- (29) se la has comprado tú?
- (30) a dónde se la has dado?
- (31) a ver como se lo dices tú.

...