Gradient Boost Part 1...

...Regression Main Ideas!!!

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc

In contrast, **Gradient Boost** starts by making a single leaf, instead of a tree or stump.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc

This leaf represents an initial guess for the **Weights** of all of the samples.

Height (m)	Favorite Color		
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc

Also like AdaBoost, Gradient
Boost scales the trees. However,
Gradient Boost scales all trees by
the same amount.

Height (m)		Cander		
1.6	Blue	Male	88	
1.6	Green	Female	76	
etc	etc	etc	etc	
	73		anoth	n Gradient Boost builds er tree based on the errors de by the previous tree

etc. etc. etc.

Height (m)	Favorite Color			
1.6	Blue	Male	88	
1.6	Green	Female	76	
etc	etc	etc	etc	
	73	1.3		d 4h '4l 4h - 4u
	K	X	an	d then it scales the tree

etc. etc. etc.

Height (m)		Gender	
1.6	Blue	Male	88
1.6	Green	Female	76
etc	etc	etc	etc
			1

etc. etc. etc.

...let's see how the most common Gradient Boost configuration would use this Training Data to Predict Weight.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Average Weight

71.2

			Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The first thing we do is calculate the average **Weight.**

Average Weight

71.2

	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

In other words, if we stopped right now, we would predict that everyone **Weighed 71.2** kg.

However, **Gradient Boost** doesn't stop here.

	Favorite Golor		
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

71.2

		Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

The errors that the previous tree made are the differences between the Observed Weights and the Predicted Weight, 71.2.

(Observed Weight - Predicted Weight)

Average Weight

71.2

			Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

So let's start by plugging in **71.2** for the **Predicted Weight...**

(Observed Weight - 71.2)

Average Weight

71.2

			Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Average Weight 71.2

NOTE: The term Pseudo Residual is based on Linear Regression, where the difference between the Observed values and the Predicted values results in Residuals.

			Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Now we will build a **Tree**, using **Height**, **Favorite Color** and **Gender**...

Į į	ravont ↓	e Coloi	and G	_
Height	Favorite	Gender	Weight	Res

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

	Favorite Color		
1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

So, setting aside the reason why we are building a tree to **Predict** the **Residuals** for the time being, here's the tree!

1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

Remember, in this example we are only allowing up to four leaves...

...but when using a larger dataset, it is common to allow anywhere from 8 to 32.

	Favorite Color	Gender
1.6	Blue	Male
1.6	Green	Female
1.5	Blue	Female
1.8	Red	Male
1.5	Green	Male
1.4	Blue	Female

By restricting the total number of leaves, we get fewer leaves than **Residuals**.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male		16.8
1.6	Green	Female		4.8
1.5	Blue	Female		-15.2
1.8	Red	Male		1.8
1.5	Green	Male		5.8
1.4	Blue	Female		-14.2

So we replace these residuals with their average.

$$\left(\frac{-14.2 + -15.2}{2}\right) = -14.7$$

Height (m)	Favorite Color	Gender	Residual
1.6	Blue	Male	16.8
1.6	Green	Female	4.8
1.5	Blue	Female	-15.2
1.8	Red	Male	1.8
1.5	Green	Male	5.8
1.4	Blue	Female	-14.2

Now we can now combine the original leaf. ...with the new tree...

Height	Favorite	Gender	Weight
(m)	Color		(kg)
1.6	Blue	Male	88

Prediction of an individual's Weight from the Training Data.

We start with the initial **Prediction**, **71.2**...

1.6	Blue	Male	88

Height	Favorite	Gender	Weight
(m)	Color		(kg)
1.6	Blue	Male	88

...which is the same as the **Observed Weight**.

Predicted Weight =
$$71.2 + 16.8 = 88$$

Height (m)	Favorite Color	Gender (k	Weight (kg)	
1.6	Blue Male		88	

In other words, we have low **Bias**, but probably very high **Variance**.

1.6	Blue	Male	88

Gradient Boost deals with this problem by using a Learning Rate to scale the contribution from the new tree.

Now the **Predicted Weight** = $71.2 + (0.1 \times 16.8) = 72.9$

1.6	Blue	Male	88

			(kg)	
1.6	Blue	Male	88	With the Learning Rate set to 0.1, the new Prediction isn't as good as as it was before

			Weight (kg)	
1.6	Blue	Male		

...but it's a little bit better than the **Prediction** made with just the original leaf, which predicted that all samples would weigh **71.2**.

(i)

In other words, scaling the tree by the **Learning Rate** results in a small step in the right direction.

According to the dude that invented
Gradient Boost, Jerome Friedman,
empirical evidence shows that taking lots of
small steps in the right direction results in
better Predictions with a Testing Dataset,
i.e. lower Variance.

(1

So let's build another tree so we can take another small step in the right direction.

			Weight (kg)	Residual
1.6	Blue	Male	88	
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Just like before, we calculate the Pseudo Residuals, the difference between the Observed Weights and our latest Predictions.

Height (m)	Favorite Color	Gender	Weight (kg)	
1.6	Blue	Male	88	
1.6	Green	Female	76	
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Residual =
$$(88 - (71.2 + 0.1 \times 16.8))$$

= 15.1

...and we get **15.1**...

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	K
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Residual = $(88 - (71.2 + 0.1 \times 16.8))$

...and we save that in the column for Pseudo Residuals.

(i)

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Residual =
$$(76 - 71.2 + (0.1 \times 4.8))$$

Then we repeat for the all of the other individuals in the **Training Dataset**.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	
1.5	Green	Male	77	
1.4	Blue	Female	57	

Average Weight

_		

			Gend	der=F	
0.1	X		1	7	S. SHAMES A.
				Color not	Blue
		1	1	1	A
				3.8	

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	1.4
1.5	Green	Male	77	
1.4	Blue	Female	57	

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.6	Red	Male	73	1.4
1.5	Green	Male	77	5.4
1.4	Blue	Female	57	

	Gend	ler=F	
0.1 X		7	
~	Height<1.6		Blue
		1	71
-14	4.8		

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	1.4
1.5	Green	Male	77	5.4
1.4	Blue	Female	57	-12.7

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	1.4
1.5	Green	Male	77	5.4
1.4	Blue	Female	57	-12.7

	Favorite Color		
1.6	Blue	Male	15.1
1.6	Green	Female	4.3
1.5	Blue	Female	-13.7
1.8	Red	Male	1.4
1.5	Green	Male	5.4
1.4	Blue	Female	-12.7

1.6	Blue	Male	15.1
1.6	Green	Female	4.3
1.5	Blue	Female	-13.7
1.8	Red	Male	1.4
1.5	Green	Male	5.4
1.4	Blue	Female	-12.7

NOTE: In this simple example the branches are the same as before. However, in practice, the trees can be different each time.

Now we're ready to make a new **Prediction** from the **Training Data**.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88

Which is another small step closer to the **Observed Weight**.

$$71.2 + (0.1 \times 16.8) + (0.1 \times 15.1)$$

= 74.4

1.6

71.2

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	13.6
1.6	Green	Female	76	3.9
1.5	Blue	Female	56	-12.4
1.8	Red	Male	73	1.1
1.5	Green	Male	77	5.1
1.4	Blue	Female	57	-11.4

...to calculate new **Residuals**.

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	13.6
1.6	Green	Female	76	3.9
1.5	Blue	Female	56	-12.4
1.8	Red	Male	73	1.1
1.5	Green	Male	77	5.1
1.4	Blue	Female	57	-11.4

Now we build a another tree to predict the new **Residuals...**

...and we keep making trees until we reach the maximum specified, or adding additional trees does not significantly reduce the size of the **Residuals**.

...etc...etc...etc...

+ 0.1 **X**

...etc...etc...etc...

Height Favorite (m) Color		Gender	
1.7	Green	Female	777

+ 0.1 X

...etc...etc...etc...

In this case, we predicted that this person **Weighed 70** kg.

Height	Favorite	Gender	Weight
(m)	Color		(kg)
1.7	Green	Female	70

+ 0.1 **X**

...etc...etc...etc...

