VERMES MIKLÓS Fizikaverseny 2018. április 28. III. forduló

Vermes Miklós (1905-1990) Kossuth-díjas középiskolai fizika-, kémia- és matematikatanár, kiváló tankönyvíró és kísérletező.

IX. osztály

I. feladat

- 1) Ugyanazon magasságból, de ellentétes irányba $v_1 = 3 \text{ m/s}$, illetve $v_2 = 4 \text{ m/s}$ sebességgel egyszerre hajítunk el vízszintesen két labdát. Határozzuk meg a köztük levő távolságot, amikor sebességeik irányai egymással 90 fokos szöget zárnak be.

 4p
- 2) A vízszintessel α szöget bezáró lejtőre M tömegű, elcsúsztatható lapot helyezünk.
 - A lejtő és a lap közötti súrlódási együttható μ_2 .
 - a) Milyen gyorsulással kell mozogjon lefelé a lapon egy *m* tömegű test, hogy a lap a lejtőn felfelé csússzon?

Tentere education.	
A test és a lap felülete közötti súrlódási együttható μ_1 .	4 p
b) Milyen feltétel mellett valósítható meg a mozgás?	2 p

II. feladat

Deac, a CFR labdarúgója, a FCSB elleni mérkőzésen szabadrúgást végez 35 m távolságról a 2,45 m magas kapura. A 450 g-os focilabdát F = 90 N-os erővel rúgja meg. A rúgás időtartama 0,1 s. A labda pályájának legmagasabb pontja a talajtól h = 12,8 m-re van.

a) Milyen távol van a labda pályájának csúcspontja a kirúgás helyétől?	5 p
b) Mekkora a labda legkisebb mozgási energiája mozgása során?	2 p
c) Milyen szög alatt indul el a labda?	1 p
d) Eltalálja-e a játékos a kaput?	2 p
(A légellenállást elhanyagoljuk, $g = 10 \text{ m/s}^2$)	-

III. feladat

- 1) Egy 45 fokos hajlásszögű lejtő tetejéről és aljáról egyszerre indítunk egy-egy kisméretű testet a lejtőn csúsztatva, egymás felé, egyaránt 10 m/s kezdősebességgel. A testek és a lejtő között a súrlódási együttható $\mu = 0,2$. A testek találkozásánál az egyik test sebessége kétszer akkora, mint a másiké. Milyen magas a lejtő?
- 2) Ismert az ábrán látható kúpinga fonalának l hossza és 2α nyílásszöge. Határozzuk meg:
 - a) a kúpinga egy teljes forgásának idejét;
 b) pálya menti sebességét!
 3 p
 1 p

