

Wydział Mechaniczno-Energetyczny

Kierunek studiów: **Odnawialne Źródła Energii** Specjalność: **Przemysłowe Instalacje OZE**

PODSTAWY KONSTRUKCJI URZĄDZEŃ ENERGETYCZNYCH

Koncepcja projektu: Rurowy wymiennik ciepła typu: Rura w rurze-rury gięte

Grzegorz Wyborski

Prowadzący: Dr. inż. Beata Anwajler

Wrocław 2022

Spis treści

1	Wstęp	
	1.1 Opis wymiennika	,
	1.2 Założenia projektu	,
	1.3 Wybór materiałów oraz technologii	•
	1.4 Rysunki	
2	Charakterystyka techniczna	ļ
	2.1 Dane wejściowe	ļ
	2.2 Dokładne parametry materiałów	,

1 Wstęp

1.1 Opis wymiennika

Projektowany będzie wymiennik typu "Rura w rurze-rury gięte", jest to modyfikacja wymiennika typu "Rura w rurze-rury proste". Stosowany jest w sytuacjach, kiedy nie mamy wystarczającej ilości miejsca na zbudowanie klasycznego wymiennika z rurami prostymi. Dzięki swoim stosunkowo małym rozmiarom wymiennik ten znalazł zastosowanie w urządzeniach chłodniczych takich jak lodówki. Przestrzeń wewnątrz wymiennika może być z łatwością zagospodarowana przez umieszczenie wewnątrz zbiornika na czynnik, sprężarki lub innego urządzenia. Jego największą wadą jest to, że w trakcie procesu zginania wewnętrzna rura może wejść kontakt z rurą zewnętrzną od strony gięcia. Taka sytuacja tworzy przestrzeń, w której nie zachodzi wymiana ciepła między czynnikami. Problem ten rozwiązuje się poprzez umieszczenie pomiędzy rurami różnego rodzaju dystansów.

1.2 Założenia projektu

- Odbieranie ciepła od toluenu w temperaturze $75^{\circ}C$
- Czynnikiem chłodzącym jest woda o temperaturze $10^{\circ}C$
- Przepływ czynnika chłodzącego ma zawierać się w przedziale 0.5 $1\frac{kg}{s}$
- Zapobiec stykaniu się ścianek wymiennika
- Całkowite wymiary wymiennika mają być jak najmniejsze
- Zminimalizować koszta materiału i wykonania

1.3 Wybór materiałów oraz technologii

Jako główny materiał wymiennika planuję wykorzystać aluminiowe rury gładkie. Rury zewnętrzna i wewnętrzna zostaną rozdzielone poprzez nawinięcie spirali z drutu aluminiowego. Z uwagi na łatwopalność toluenu króćce przyłączeniowe powinny zostać wykonane z mosiądzu, gdyż jest metalem nieiskrzącym. Nie ma potrzeby produkowania wewnętrznej rury ze stali nierdzewnej, ponieważ toluen nie reaguje z aluminium lub miedzią.

Elementy wymiennika zostaną połączone przy pomocy lutu miękkiego cynowo-ołowiowego z antymonem S-Pb58Sn40Sb2 (wg normy DIN EN 29453). Końce rury zewnętrznej zostaną uformowane na zimno tak, aby dokładnie przylegały do rury wewnętrznej. Wymiennik zostanie uformowany w spiralę na planie koła w procesie gięcia na zimno.

W wypadku kiedy nie zostaną osiągnięte odpowiednie temperatury na wylocie czynnika chłodzonego, zastosuję rury żebrowane zamiast spirali z drutu, w celu zwiększenia powierzchni wymiany ciepła. Ze wzgląd na bardzo wysokie koszty chciałbym uniknąć wykorzystani miedzi w wymienniku.

1.4 Rysunki

Rysunek 1: Uproszczony schemat wymiennika "Rura w rurze" w układzie przepływu przeciw-prądowego oraz wykres przedstawiający temperaturę czynników dla takiego układu.

Rysunek 2: Poglądowy rysunek wymiennika typu "Rura w rurze-rury gięte".

2 Charakterystyka techniczna

2.1 Dane wejściowe

- 1. Parametry cieczy schładzanej
 - Toluen
 - $\bullet\,$ Temperatura wejściowa $T_{1we}=75^{\circ}C$
 - $\bullet\,$ Temperatura wyjściowa $T_{1wy}=55^{\circ}C$
 - Strumień przepływu $Q_1 = 0.5 1 \frac{m^3}{s}$
 - $\bullet\,$ Dodatkowe parametry czynnika

							_			_
t	р	ρ	V	h	5	Cp	λ	η	v	Pr
С	bar	kg/m³	m³/kg	kJ/kg	kJ/kg·K	kJ/kg·K	W/m·K	μPa·s	m²/s	-
10	0,0789	848,1	0,001179	-132,4			0,126	466,0	5,495E-07	6,45
	0,0826	847,2	0,001180		-0,374		0,126	461,0		6,41
42	0,0865	846,2	0,001182	-128,9			0,126	456,1	5,390E-07	6,37
43	0,0905	845,3	0,001183	-127,1			0,125	451,3	•	6,334
44	0,0946	844,4	0,001184	-125,3			0,125	446,6		6,29
45	0,0989	843,4	0,001186		-0,352		0,125	442,0		6,25
16	0,1034	842,5	0,001187	-121,8			0,125	437,4		6,21
47	0,1080	841,5	0,001188	-120,0	-0,341	1,774	0,124	432,9	5,144E-07	6,179
48	0,1128	840,6	0,001190	-118,2	-0,335	1,777	0,124	428,5	5,097E-07	6,142
19	0,1177	839,6	0,001191	-116,5	-0,330	1,780	0,124	424,1	5,051E-07	6,10
50	0,1229	838,7	0,001192	-114,7	-0,324	1,784	0,123	419,8	5,006E-07	6,07
51	0,1282	837,7	0,001194	-112,9	-0,319	1,787	0,123	415,6	4,961E-07	6,03
52	0,1337	836,8	0,001195	-111,1	-0,313	1,791	0,123	411,5	4,917E-07	5,999
53	0,1395	835,8	0,001196	-109,3	-0,308	1,794	0,123	407,4	4,874E-07	5,969
54	0,1454	834,9	0,001198	-107,5	-0,302	1,798	0,122	403,4	4,831E-07	5,93
55	0,1515	833,9	0,001199	-105,7	-0,297	1,801	0,122	399,4	4,789E-07	5,898
56	0,1578	833,0	0,001201	-103,9	-0,291	1,805	0,122	395,5	4,748E-07	5,86
57	0,1644	832,0	0,001202	-102,1	-0,286	1,808	0,121	391,7	4,707E-07	5,833
58	0,1712	831,1	0,001203	-100,3	-0,280	1,811	0,121	387,9	4,667E-07	5,802
59	0,1782	830,1	0,001205	-98,5	-0,275	1,815	0,121	384,1	4,628E-07	5,77
50	0,1854	829,2	0,001206	-96,7	-0,270	1,818	0,121	380,5	4,589E-07	5,740
51	0,1929	828,2	0,001208	-94,8	-0,264	1,822	0,120	376,9	4,550E-07	5,710
52	0,2006	827,2	0,001209	-93,0	-0,259	1,825	0,120	373,3	4,513E-07	5,680
53	0,2086	826,3	0,001210	-91,2	-0,253	1,829	0,120	369,8	4,475E-07	5,651
54	0,2168	825,3	0,001212	-89,4	-0,248	1,832	0,119	366,3	4,439E-07	5,622
55	0,2253	824,4	0,001213	-87,5		1,836	0,119	362,9	4,402E-07	5,59
56	0,2340	823,4	0,001215	-85,7	-0,237	1,840	0,119	359,6	4,367E-07	5,56
57	0,2431	822,4	0,001216	-83,8	-0,231		0,119	356,2	4,332E-07	5,539
58	0,2524	821,5	0,001217	-82,0	-0,226	1,847	0,118	353,0	4,297E-07	5,51
59	0,2620	820,5	0,001219	-80,2		1,850	0,118	349,8	4,263E-07	5,48
70	0,2719	819,5	0,001220	-78,3			0,118	346,6		5,459
71	0,2821	818,6	0,001222	-76,4			0,117	343,5	4,196E-07	5,43
72	0,2926	817,6	0,001223	-74,6	-		0,117	340,4	4,163E-07	5,40
73	0,3035	816,6	0,001225	-72,7			0,117	337,3	4,131E-07	5,38
74	0,3146	815,7	0,001226	-70,9			0,117	334,3	4,099E-07	5,35
75	0,3261	814,7	0,001228	-69,0			0,116	331,4	4,068E-07	5,334
76	0,3379	813,7	0,001229	-67,1			0,116	328,5	4,037E-07	5,310
_	0,3501	812,7	0,001223	-65,2			0,116	325,6	1,007 € 07	2,011

2. Parametry cieczy chłodzącej

- Woda
- $\bullet\,$ Temperatura wejściowa $T_{2we}=10^{\circ}C$
- $\bullet\,$ Temperatura wyjściowa $T_{2wy}=30^{\circ}C$
- $\bullet \,$ Strumień przepływu $Q_2=3\frac{m^3}{s}$
- Dodatkowe parametry czynnika

woda - właściwości cieczy											
t	р	ρ	v	h	s	Cp	λ	η	v	Pr	
°C	bar	kg/m³	m³/kg	kJ/kg	kJ/kg·K	kJ/kg·K	W/m-K	μPa-s	m²/s	-	
1	0,0066	999,9	0,001000	4,2	0,015	4,217	0,563	1731,2	1,732E-06	12,968	
2	0,0071	999,9	0,001000	8,4	0,031	4,214	0,565	1673,7	1,674E-06	12,486	
3	0,0076	999,9	0,001000	12,6	0,046	4,211	0,567	1619,2	1,619E-06	12,030	
4	0,0081	999,9	0,001000	16,8	0,061	4,208	0,569	1567,4	1,568E-06	11,600	
5	0,0087	999,9	0,001000	21,0	0,076	4,206	0,571	1518,3	1,518E-06	11,192	
6	0,0094	999,9	0,001000	25,2	0,091	4,203	0,572	1471,6	1,472E-06	10,806	
7	0,0100	999,9	0,001000	29,4	0,106	4,201	0,574	1427,2	1,427E-06	10,439	
8	0,0107	999,8	0,001000	33,6	0,121	4,199	0,576	1384,8	1,385E-06	10,092	
9	0,0115	999,7	0,001000	37,8	0,136	4,197	0,578	1344,5	1,345E-06	9,761	
10	0,0123	999,7	0,001000	42,0	0,151	4,196	0,580	1306,0	1,306E-06	9,447	
11	0,0131	999,6	0,001000	46,2	0,166	4,194	0,582	1269,2	1,270E-06	9,148	
12	0,0140	999,5	0,001001	50,4	0,181	4,193	0,584	1234,1	1,235E-06	8,863	
13	0,0150	999,3	0,001001	54,6	0,195	4,191	0,586	1200,5	1,201E-06	8,592	
14	0,0160	999,2	0,001001	58,8	0,210	4,190	0,587	1168,4	1,169E-06	8,333	
15	0,0171	999,1	0,001001	63,0	0,224	4,189	0,589	1137,6	1,139E-06	8,086	
16	0,0182	998,9	0,001001	67,2	0,239	4,188	0,591	1108,1	1,109E-06	7,850	
17	0,0194	998,7	0,001001	71,4	0,253	4,187	0,593	1079,8	1,081E-06	7,624	
18	0,0206	998,6	0,001001	75,5	0,268	4,186	0,595	1052,7	1,054E-06	7,408	
19	0,0220	998,4	0,001002	79,7	0,282	4,185	0,597	1026,7	1,028E-06	7,202	
20	0,0234	998,2	0,001002	83,9	0,296	4,184	0,598	1001,6	1,004E-06	7,004	
21	0,0249	998,0	0,001002	88,1	0,311	4,184	0,600	977,6	9,796E-07	6,814	
22	0,0265	997,7	0,001002	92,3	0,325	4,183	0,602	954,4	9,566E-07	6,632	
23	0,0281	997,5	0,001003	96,5	0,339	4,183	0,604	932,2	9,345E-07	6,458	
24	0,0299	997,3	0,001003	100,7	0,353	4,182	0,605	910,7	9,132E-07	6,291	
25	0,0317	997,0	0,001003	104,8	0,367	4,182	0,607	890,0	8,927E-07	6,130	
26	0,0336	996,7	0,001003	109,0	0,381	4,181	0,609	870,1	8,730E-07	5,976	
27	0,0357	996,5	0,001004	113,2	0,395	4,181	0,611	850,9	8,539E-07	5,827	
28	0,0378	996,2	0,001004	117,4	0,409	4,181	0,612	832,4	8,356E-07	5,684	
29	0,0401	995,9	0,001004	121,6	0,423	4,180	0,614	814,5	8,179E-07	5,547	
30	0,0425	995,6	0,001004	125,7	0,437	4,180	0,615	797,2	8,007E-07	5,415	
31	0,0450	995,3	0,001005	129,9	0,451	4,180	0,617	780,5	7,842E-07	5,287	
32	0,0476	995,0	0,001005	134,1	0,464	4,180	0,619	764,4	7,683E-07	5,165	
33	0,0504	994,7	0,001005	138,3	0,478	4,180	0,620	748,8	7,528E-07	5,046	
34	0,0533	994,3	0,001006	142,5	0,492	4,180	0,622	733,7	7,379E-07	4,932	
35	0,0563	994,0	0,001006	146,6	0,505	4,180	0,623	719,1	7,235E-07	4,822	

2.2 Dokładne parametry materiałów

- Główny materiał wymiennika: Aluminium AW-1050 Własności wytrzymałościowe materiału wg normy DIN EN 755-2 Parametry termodynamiczne materiału wg artykułu Amuminium 1050
- Materiał króćców: Mosiądz CW501L Własności wytrzymałościowe materiału wg normy DIN EN 12163