Ejercicios de Geometría Diferencial de Curvas y Superficies

Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

Doble Grado en Matemáticas e Ingeniería Informática

Javier Pellejero Curso 2017-2018

El propio Dios geometriza.

Platón

Prefacio

Aquí va el prefacio, evidentemente

Índice general

1. Curvas parametrizadas y longitud de un arco de curva

1

Capítulo 1

Curvas parametrizadas y longitud de un arco de curva

Ejercicio 1. Hallar una curva parametrizada α cuya traza es el círculo $x^2 + y^2 = 1$, con $\alpha(t)$ recorriéndolo en el sentido de las agujas del reloj y con $\alpha(0) = (0, 1)$.

Una solución a este ejercicio $\alpha(t)=(\sin t,\cos t)$. Es claro que $\alpha(0)=(\sin 0,\cos 0)=(0,1)$ y que al avanzar, por ejemplo a $\alpha(\frac{\pi}{2})=(\sin\frac{\pi}{2},\cos\frac{\pi}{2})=(1,0)$ es en el sentido de las agujas del reloj.

Ejercicio 2. Sea $\alpha(t)$ una curva que no pasa por el origen. Si $\alpha(t_0)$ es el punto de la traza de α más cercano al origen y $\alpha'(t_0) \neq 0$, demostrar que el vector posición $\alpha(t_0)$ es ortogonal a $\alpha'(t_0)$.

Definimos la función $D(t) := \alpha^2(t) = \alpha(t)\alpha(t) = ||\alpha(t)||^2$ que mide el cuadrado de la distancia de los puntos de la curva al origen.

 t_0 es un punto relativo de dicha función por ser el punto más cercano al origen, entonces $D'(t_0) = 0 \implies 2\alpha(t_0)\alpha'(t_0) = 0 \implies \alpha(t_0) \perp \alpha'(t_0)$.

Ejercicio 3. Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva y $v \in \mathbb{R}^3$ un vector dado. Si $\alpha'(t)$ es ortogonal a v para todo $t \in I$, y si $\alpha(0)$ también lo es, demuestre que $\alpha(t)$ es ortogonal a v para todo $t \in I$.

Definimos $f(t) := \alpha(t)v = \alpha_1(t)v_1 + \alpha_2(t)v_2 + \alpha_3(t)v_3$. Tenemos que $f'(t) = \alpha'(t)v = 0 \ \forall t \in I$. Luego $f(t) = c \in \mathbb{R}$, $\forall t \in I$. Como en particular $f(0) = \alpha(0)v = 0 \implies c = 0 \implies \alpha(t) \perp v$.

Ejercicio 4. Si $\alpha \colon I \longrightarrow \mathbb{R}^3$ es una curva regular, demuestre que $||\alpha(t)||$ es constante (diferente de cero) si y sólo si $\alpha(t) \perp \alpha'(t)$ para todo $t \in I$.

•
$$(\Longrightarrow)$$
. $||\alpha(t)||^2 = \alpha(t)\alpha(t) = c^2$. Derivando, $2\alpha(t)\alpha'(t) = 0 \implies \alpha(t) \perp \alpha'(t)$.

CAPÍTULO 1. CURVAS PARAMETRIZADAS Y LONGITUD DE UN ARCO DE CURVA2

$$\bullet \quad (\Longleftrightarrow).\alpha(t)\alpha'(t) = 0 \implies \frac{1}{2}(\alpha(t)\alpha(t))' = 0 \stackrel{\text{Integrando}}{\Longrightarrow} \alpha(t)\alpha(t) = c \implies ||\alpha(t)||^2 = c \implies ||\alpha(t)|| \text{ es constante.}$$

Ejercicio 5. Si $\alpha \colon I \longrightarrow \mathbb{R}^3$ es una curva, y $M \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ es un movimiento rígido, demostrar que las longitudes de α y $M \circ \alpha$ entre a y b coinciden.

$$L_a^b M \circ \alpha(t) = \int_a^b \left| \left| (M \circ \alpha)' \right| \right| = \int_a^b \left| \left| M'(\alpha(s))\alpha'(s) \right| \right| ds = \int_a^b \left| \left| \overrightarrow{M}\alpha'(s) \right| \right| ds \text{ por ser mov. rigido}$$

$$= \int_a^b \left| \left| \alpha'(s) \right| \right| ds = L_a^b \alpha.$$

Ejercicio 6. Demuestre que las líneas tangentes a la curva $\alpha(t) = (3t, 3t^2, 2t^3)$ forman un ángulo constante con la recta y = 0, z = x.

Tenemos que $\alpha'(t)=(3,6t,6t^2)$. La recta $r\equiv \left\{ \begin{array}{l} y=0\\ x=z \end{array} \right.$ tiene como vector director v:=(1,0,1). El ángulo θ que forman v y $\alpha'(t)$ viene determinado por $\theta= \displaystyle \arccos \frac{\alpha'(t)v}{||\alpha'(t)|| \, ||v||} = \\ = \displaystyle \arccos \frac{3+6t^2}{\sqrt{9+36t^2+36t^4}\sqrt{2}} = \displaystyle \arccos \frac{3+6t^2}{(3+6t^2)\sqrt{2}} = \displaystyle \arccos \frac{\sqrt{2}}{2} \text{ que es constante.}$