BAB III

KONSEP UMUM CONTINUOUS INTEGRATION SECARA MANUAL DAN MENGGUNAKAN TOOLSET

Bab ini berisi penjelasan tentang analisis dari konsep umum pembangunan perangkat lunak dengan metode *continuous integration* yang dilakukan secara manual dan menggunakan *toolset*. Analisis dilakukan untuk menunjukkan perbedaan konsep *continuous integration* yang dilakukan secara manual dan menggunakan *toolset*. Konsep umum pembangunan perangkat lunak dengan metode *continuous integration* secara manual mencakup konsep penyimpanan versi secara manual, pengujian kode program secara manual, eksekusi *build* secara manual, dan pengintegrasian modul secara manual. Sedangkan konsep umum dari pembangunan perangkat lunak dengan *continuous integration* menggunakan *toolset* mencakup penyimpanan versi dengan *tool version control system*, pengujian kode program dengan *tool automated testing*, eksekusi *build* dengan *tool automated build*, dan pengintegrasian modul dengan *tool continuous integration*.

3.1. Konsep umum continuous integration secara manual

Continuous integration adalah praktik pembangunan perangkat lunak yang dilakukan secara tim dengan membagi pekerjaan berdasarkan modul pada perangkat lunak. Praktik tersebut mengharuskan setiap anggota tim untuk mengintegrasikan modul hasil pekerjaan mereka secara rutin. Tim yang membangun perangkat lunak dengan continuous integration secara manual, umumnya tidak menggunakan bantuan toolset. Kegiatan manual yang dilakukan tim tersebut mencakup penyimpanan versi, pengujian kode program, eksekusi build, dan pengintegrasian modul.

3.1.1. Konsep penyimpanan versi secara manual

Pada sub bab ini akan dijelaskan tentang konsep penyimpanan versi yang umum dilakukan tim pada praktik continuous integration

tanpa menggunakan bantuan *tool* dari *version control system*. Penyimpanan versi dilakukan tim untuk menyimpan *history* dari setiap perubahan modul. Tim yang tidak menggunakan bantuan *tool* dari *version control system* umumnya akan menduplikasi modul sebelum mengubah modul tersebut. Hasil duplikasi modul digunakan tim sebagai *backup* untuk melakukan *rollback* terhadap modul yang telah diubah. Untuk membedakan hasil dari setiap duplikasi modul, umumnya tim akan melakukan penamaan versi dan penambahan informasi tentang detil perubahan yang telah dilakukan pada modul tersebut.

[GAMBAR]

Gambar 3-1. Penyimpanan versi dengan cara manual

3.1.2. Konsep pengujian kode program secara manual

Modul yang dikerjakan setiap anggota tim akan ditambahi unitunit kode program. Setiap unit yang ditambahi ke dalam modul harus diuji. Pengujian unit tersebut dilakukan setiap anggota tim untuk memastikan bahwa *functional requirement* dari modul yang telah dibuat dapat dieksekusi serta minim dari kesalahan.

Untuk menguji setiap unit dari modul tersebut, tim memerlukan kode pengujian unit. Pada setiap kode pengujian, anggota tim akan menambahkan satu atau lebih kasus uji untuk menguji satu unit kode program. Umumnya, tim yang tidak menggunakan bantuan *tool automated testing* akan membuat *driver* pengujian pada setiap kode pengujian. *Driver* pengujian digunakan setiap anggota tim untuk mengeksekusi kode pengujian tersebut. Ketika terjadi kesalahan pada satu atau lebih hasil pengujian, anggota tim akan memperbaikinya dan mengeksekusi kembali semua *driver* pengujian dari awal.

[GAMBAR]

Gambar 3-2. Pengujian unit dengan cara manual

Modul-modul hasil pekerjaan setiap anggota tim yang telah dilakukan pengujian unit, umumnya akan diintegrasikan oleh salah satu anggota tim yang bertugas sebagai *integrator*. Modul dari hasil pengintegrasian modul setiap anggota tim, harus diuji. Pengujian integrasi tersebut akan dilakukan *integrator* untuk memastikan bahwa *functional requirement* dari modul hasil integrasi, dapat dieksekusi serta minim dari kesalahan.

Sebelum *integrator* melakukan pengintegrasian modul, umumnya tim akan menentukan strategi pengintegrasian modul terlebih dahulu. Strategi pengintegrasian modul yang dilakukan secara rutin, diklasifikasikan menjadi tiga cara, yaitu *top-down*, *bottom-up*, dan *sandwich*. Pada strategi *top-down*, *integrator* akan mengintegrasikan modul perangkat lunak dari tingkat atas ke tingkat bawah. Strategi pengintegrasian *top-down* umumnya digunakan ketika modul pada tingkat atas tidak memiliki banyak dependensi terhadap modul tingkat bawah. Tim yang menggunakan strategi *top-down*, perlu membuat *stubs* sebagai pengganti modul-modul tingkat bawah yang belum dibuat. *Stubs* tersebut akan digunakan *integrator* untuk menguji hasil pengintegrasian modul-modul pada tingkat atas. Ketika tim telah selesai membuat modul-modul pada tingkat bawah, *stubs* tersebut tidak akan digunakan kembali.

[GAMBAR]

Gambar 3-3. Pengujian integrasi dengan strategi top-down

Pada strategi *bottom-up*, *integrator* akan mengintegrasikan modul perangkat lunak dari tingkat bawah ke tingkat atas. Strategi *bottom-up* umumnya digunakan ketika modul pada tingkat atas memiliki banyak dependensi terhadap modul pada tingkat bawah. Tim yang menggunakan strategi *bottom-up* tidak lagi memerlukan *stubs*, karena modul-modul pada tingkat bawah telah dibuat sejak awal. Untuk menguji hasil pengintegrasian modul-modul pada tingkat bawah, tim

memerlukan *driver* sebagai pengganti modul tingkat atas yang belum dibuat. *Driver* tersebut akan digunakan *integrator* untuk memanggil modul hasil pengintegrasian modul pada tingkat bawah.

[GAMBAR]

Gambar 3-4. Pengujian integrasi dengan strategi bottom-up

Pada strategi *sandwich*, *integrator* akan mengintegrasikan modul dengan dua cara, yaitu *top-down* dan *bottom-up*. Anggota tim yang bekerja dari modul tingkat atas, akan membuat *stubs* untuk menggantikan modul-modul tingkat bawah yang belum selesai dikerjakan. Sedangkan anggota tim yang bekerja dari modul tingkat bawah akan membuat *driver* untuk menggantikan modul-modul tingkat atas yang belum selesai dikerjakan.

[GAMBAR]

Gambar 3-5. Pengujian integrasi dengan strategi sandwich

3.1.3. Konsep eksekusi build secara manual

Setelah *integrator* melakukan pengujian integrasi dari hasil penggabungan modul setiap anggota tim, *integrator* akan mengeksekusi *build* untuk mendapatkan paket aplikasi. Paket aplikasi tersebut berisi *file executable* atau *file* yang siap dipakai oleh *user*. Umumnya, *integrator* yang tidak menggunakan bantuan *tool automated build* akan melakukan proses *build* secara manual. Proses *build* tersebut diantaranya inisialisasi *path* kode program, penghapusan *file* hasil kompilasi, kompilasi kode program, pembuatan paket aplikasi yang siap pakai, dan *deploy* paket aplikasi ke *customer*. Rangkaian proses tersebut dilakukan *integrator* secara berulang kali setiap menggabungkan modul dari para anggota tim.

[GAMBAR]

Gambar 3-6. Eksekusi build dengan cara manual

3.1.4. Konsep pengintegrasian modul secara manual

Tim yang mengintegrasikan modul tanpa bantuan *tool continuous integration*, umumnya akan membutuhkan seorang *integrator* pada mesin integrasi. Untuk melakukan integrasi modul, *integrator* perlu melengkapi semua modul yang benar dari setiap anggota tim. Setelah semua modul tersebut lengkap, *integrator* akan melakukan pengujian terhadap integrasi modul dan mengeksekusi *build*. Ketika terjadi kesalahan pada satu atau lebih hasil pengujian, *integrator* akan membatalkan proses eksekusi *build* dan menginformasikan kesalahan tersebut kepada para anggota tim untuk segera diperbaiki.

[GAMBAR]

Gambar 3-7. Pemberian notifikasi kesalahan secara manual oleh *integrator*

Pengintegrasian modul yang telah lulus dari pengujian, akan dijadikan paket aplikasi yang berisi *file* siap pakai dan di-*deploy* ke *customer* oleh seorang *integrator*. Untuk mendapatkan *history* dari semua paket aplikasi yang telah dibuat, paket aplikasi perlu diarsipkan. Tim yang tidak menggunakan *tool continuous integration* umumnya akan membutuhkan seorang *integrator* untuk mengarsipkan paket aplikasi pada mesin integrasi.

[GAMBAR]

Gambar 3-8. Pengarsipan paket aplikasi secara manual oleh integrator

Arsip dari paket aplikasi tersebut, dapat dijadikan *milestone* dari kemajuan proses pembangunan perangkat lunak. Untuk mendapatkan informasi tentang kemajuan proses pembangunan perangkat lunak, tim yang tidak menggunakan *tool continuous integration* umumnya akan memerlukan seorang *integrator* untuk membuat *report* kemajuan proses pembangunan perangkat lunak pada mesin integrasi.

[GAMBAR]

Gambar 3-9. Pembuatan *report* kemajuan proses pembangunan perangkat lunak oleh *integrator*

3.2. Konsep umum continuous integration menggunakan toolset

Kegiatan-kegiatan yang dilakukan para anggota tim pada praktik continuous integration secara manual, membutuhkan effort yang besar. Selain itu, para anggota tim memiliki tingkat ketelitian yang terbatas, sehingga kegiatan manual tersebut sangat rentan terhadap kesalahan. Dengan menggunakan bantuan toolset, kegiatan-kegiatan manual yang mencakup penyimpanan versi, pengujian kode program, eksekusi build, dan pengintegrasian modul akan diotomasi, sehingga praktik continuous integration dapat lebih efisien.

3.2.1. Konsep penyimpanan versi dengan tool version control system

Pada sub bab ini akan dijelaskan tentang konsep penyimpanan versi pada praktik continuous integration dengan bantuan tool dari version control system. Tim yang telah menggunakan tool dari version control system tidak perlu lagi menduplikasi modul sebelum melakukan perubahan. Semua jejak perubahan modul yang dilakukan para anggota tim akan disimpan di dalam gudang penyimpanan yang disebut repository, sehingga mereka dapat melakukan rollback terhadap modul tanpa melakukan duplikasi terlebih dahulu. Para anggota tim tidak perlu lagi menambahkan informasi tentang detil perubahan yang dilakukan terhadap modul secara manual, karena tool dari praktik version control system akan mencatat waktu dan isi perubahan secara otomatis ketika mereka menyimpan perubahan modul ke repository.

Waktu dan isi dari perubahan modul akan dicatat secara otomatis oleh tool dari version control system, sehingga mereka tidak perlu lagi menambahkan informasi tentang detil perubahan yang dilakukan terhadap modul secara manual. Tool dari version control system akan mencatat waktu perubahan dan isi dari perubahan modul secara otomatis ketika para anggota tim menyimpan perubahan modul ke

dalam *repository*, sehingga mereka tidak perlu lagi menambahkan informasi tentang perubahan yang dilakukan terhadap modul secara manual. Setiap waktu perubahan dan isi dari perubahan modul akan dicatat secara otomatis oleh tool dari version control system. Di dalam repository tersebut berisi waktu perubahan modul dan isi dari perubhan modul yang dicatat secara otomatis oleh tool version control system. Setiap jejak perubahan tersebut berisi daftar catatan waktu dari sehingga para anggota tim dapat melakukan *rollback* terhadap modul tanpa melakukan duplikasi dan menambahkan informasi perubahan modul terlebih dahulu.

[GAMBAR]

Gambar 3-10. Penyimpanan versi modul ke dalam *repository*

Umumnya, cara penggunaan repository untuk menerapkan praktik version control system adalah distributed. Dengan menggunakan cara distributed, setiap anggota tim akan memiliki repository pada mesin lokal masing-masing. Repository dari setiap anggota tim tersebut, umumnya akan dihubungkan dengan sebuah repository pusat, agar para anggota tim tidak salah dalam memahami versi modul yang telah mereka simpan. Penggunaan repository dengan cara distributed dan dihubungkan pada sebuah repository pusat, disebut centralized workflow.

[GAMBAR]

Gambar 3-11. Centralized workflow

Setiap anggota tim akan melakukan perubahan pada modul. Untuk mendapatkan *history* dari perubahan modul, para anggota tim harus menyimpan perubahan modul ke dalam *repository*. History tersebut berisi daftar catatan waktu dari setiap perubahan yang dilakukan anggota tim da nisi dari perubahan modul. Dengan adanya

history tersebut, anggota tim tidak perlu lagi mencatat perubahan tersebut secara manual.

Pada sub bab ini akan dijelaskan tentang detil penyimpanan versi yang umum dilakukan tim tanpa menggunakan bantuan *tool version control*. Penyimpanan versi dilakukan tim untuk menyimpan *history* dari setiap perubahan modul.

- 3.2.2. Konsep pengujian kode program dengan tool automated testing
- 3.2.3. Konsep eksekusi build dengan tool automated build
- 3.2.4. Konsep pengintegrasian modul dengan tool continuous integration