IX - Variables aléatoires à densité

I - Variable aléatoire à densité

I.1 - Densité

Définition 1 - Densité de probabilité

Une fonction $f: \mathbb{R} \to \mathbb{R}$ est une densité de probabilité si :

- f est positive sur \mathbb{R} ,
- f est continue sur \mathbb{R} sauf éventuellement en un nombre fini de points en lesquels elle admet des limites finies à droite et à gauche,
- $\bullet \int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 1.$

Exemple 1 - Densités

 \bullet Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \begin{cases} \frac{1}{2} & \text{si } x \in [1, 3] \\ 0 & \text{sinon} \end{cases}$$

On remarque que :

- \star f est à valeurs positives.
- \star f est continue sur $\mathbb R$ sauf en 1 et en 3 où elle admet des limites finies à gauche et à droite.

$$\star \int_{-\infty}^{+\infty} f(t) dt = \int_{1}^{3} \frac{dt}{2} = \frac{1}{2}(3-1) = 1.$$

Ainsi, f est une densité de probabilité.

 $\bullet\,$ Soit g la fonction définie sur $\mathbb R$ par

$$g(x) = \begin{cases} 0 & \text{si } x < 0 \\ 2e^{-2x} & \text{sinon} \end{cases}$$

On remarque que :

- \star g est à valeurs positives.
- \star g est continue sur $\mathbb R$ sauf en 0 où elle admet des limites finies à gauche et à droite.
- \star Si x > 0, alors

$$\int_{-\infty}^{x} g(t) dt = \int_{0}^{x} 2 e^{-2t} dt = \left[-e^{-2t} \right]_{0}^{x} = -e^{-2x} + 1.$$

soit
$$\int_{-\infty}^{+\infty} g(t) \, \mathrm{d}t = 1.$$

Ainsi, g est une densité de probabilité.

Définition 2 - Variable aléatoire à densité

Une variable aléatoire réelle X admet une densité de probabilité f si, pour tout réel x, sa fonction de répartition F_X est égale à :

$$F_X(x) = \mathbf{P}([X \leqslant x]) = \int_{-\infty}^x f(t) dt.$$

 \mathbf{a}

Exemple 2 - Calcul de fonction de répartition

Soit X une variable aléatoire de densité g définie sur $\mathbb R$ par

$$g(x) = \begin{cases} 0 & \text{si } x < 0 \\ 2e^{-2x} & \text{sinon} \end{cases}$$

 $\bullet\,$ La fonction de répartition de X est égale à

$$F(x) = \int_{-\infty}^{x} g(t) \, \mathrm{d}t.$$

Ainsi.

$$F(x) = \begin{cases} 0 & \text{si } x \leq 0, \\ 1 - e^{-2x} & \text{si } x \geq 0. \end{cases}$$

Théorème 1 - Fonction de répartition & Densité

Soit X une variable aléatoire de densité f et de fonction de répartition F. Alors, F est continue sur \mathbb{R} et \mathscr{C}^1 sauf éventuellement en un nombre fini de points. De plus, f ne diffère de F' qu'en un nombre fini de points.

Théorème 2 - Fonction de répartition & Loi

Si X et Y sont deux variables aléatoires à densité qui admettent une même fonction de répartition, alors X et Y sont de même loi.

I.2 - Calculs

Proposition 1 - Calculs de probabilités

Soit X une variable aléatoire admettant une densité de probabilité f, une fonction de répartition F et a < b deux réels. Alors,

$$\mathbf{P}(X < a) = \mathbf{P}(X \leqslant a) = F(a)$$

$$\mathbf{P}(X \geqslant a) = 1 - F(a)$$

$$\mathbf{P}(a \leqslant X \leqslant b) = \int_{a}^{b} f(t) dt = F(b) - F(a)$$

Exemple 3 - Du continu au discret

Soit X une variable aléatoire de densité f définie par

$$f(x) = \begin{cases} 0 & \text{si } x \notin [0, 1] \\ 1 & \text{sinon} \end{cases}.$$

Ainsi, la fonction de répartition F de X vaut :

$$F(x) = \begin{cases} 0 & \text{si } x < 0 \\ x & \text{si } x \in [0, 1] \\ 1 & \text{si } x > 1 \end{cases}$$

On note Y la variable aléatoire qui vaut :

- $0 \text{ si } X < \frac{1}{2}$
- $1 \text{ si } X \in \left[\frac{2}{2}, \frac{2}{3}\right],$ $2 \text{ si } X > \frac{2}{3}.$

Ainsi, $Y(\Omega) = \{0, 1, 2\}$ et

$$\mathbf{P}([Y=0]) = \mathbf{P}\left(\left[X < \frac{1}{2}\right]\right)$$

$$= F(1/2) = \frac{1}{2},$$

$$\mathbf{P}([Y=1]) = \mathbf{P}\left(\left[\frac{1}{2} \leqslant X \leqslant \frac{2}{3}\right]\right)$$

$$= F(2/3) - F(1/2) = \frac{2}{3} - \frac{1}{2} = \frac{1}{6},$$

$$\mathbf{P}([Y=2]) = \mathbf{P}\left(\left[X > \frac{2}{3}\right]\right)$$

$$= 1 - F(2/3) = 1 - \frac{2}{3} = \frac{1}{3}.$$

La loi de Y est résumée dans le tableau suivant :

$$\begin{array}{c|c|c} x & 0 & 1 & 2 \\ \hline \mathbf{P}([Y=x]) & \frac{1}{2} & \frac{1}{6} & \frac{1}{3} \end{array}$$

On constate que toute loi discrète peut être ainsi définie à partir d'une loi de densité f.

Définition 3 - Espérance

La variable aléatoire X de densité f admet une espérance si l'intégrale $\int_{-\infty}^{+\infty} |t| f(t) dt$ converge. Alors,

$$\mathbf{E}[X] = \int_{-\infty}^{+\infty} t f(t) \, \mathrm{d}t.$$

Exemple 4 - Un calcul d'espérance

Soit X une variable aléatoire de densité f définie par

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ 2e^{-2x} & \text{si } x \geqslant 0 \end{cases}$$

Soit x > 0. En posant u(t) = t, $v'(t) = 2e^{-2t}$, alors u'(t) = 1, $v(t) = -e^{-2t}$. Les fonctions u et v sont de classe \mathscr{C}^1 sur [0, x] et d'après la formule d'intégration par parties,

$$\int_{-\infty}^{x} t f(t) dt = \int_{0}^{x} t 2 e^{-2t} dt$$

$$= \left[-t e^{-2t} \right]_{0}^{x} - \int_{0}^{x} 1(-e^{-2t}) dt$$

$$= -x e^{-2x} + \left[-\frac{e^{-2t}}{2} \right]_{0}^{x}$$

$$= -x e^{-2x} - \frac{e^{-2x}}{2} + \frac{1}{2}$$

$$\lim_{x \to +\infty} \int_{-\infty}^{x} t f(t) \, \mathrm{d}t = \frac{1}{2}.$$

Ainsi, $\int_{-\infty}^{+\infty} t e^{-2t} dt$ converge et $\mathbf{E}[X] = \frac{1}{2}$.

Théorème 3 - Théorème de transfert

Soit X une variable aléatoire de densité f à valeurs dans I et g une fonction définie sur I. Si $\int_{-\infty}^{+\infty} |g(t)| f(t) dt$ converge, alors

$$\mathbf{E}[g(X)] = \int_{-\infty}^{+\infty} g(t)f(t) dt.$$

Définition 4 - Variance

La variable aléatoire X de densité f admet une variance si l'intégrale $\int_{-\infty}^{+\infty} t^2 f(t) dt$ converge. Alors, $\mathbf{E}\left[X^2\right] = \int_{-\infty}^{+\infty} t^2 f(t) dt$ et

$$\mathbf{V}\left(X\right) = \mathbf{E}\left[X^{2}\right] - \mathbf{E}\left[X\right]^{2}$$

L'écart-type de X est défini par $\sigma(X) = \sqrt{\mathbf{V}(X)}$.

Exemple 5 - Un calcul de variance

Soit X une variable aléatoire de densité f définie par

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ 2e^{-2x} & \text{si } x \geqslant 0 \end{cases}$$

Nous avons vu précédemment que $\mathbf{E}[X] = \frac{1}{2}$. Soit x > 0. En posant $u(t) = t^2$ et $v(t) = -e^{-2t}$, les fonctions u et v sont de classe \mathscr{C}^1 sur [0,x]. D'après la formule d'intégration par parties,

$$\int_{-\infty}^{x} t^{2} f(t) dt = \int_{0}^{x} t^{2} 2 e^{-2t} dt$$

$$= \left[-t^{2} e^{-2t} \right]_{0}^{x} - \int_{0}^{x} 2t (-e^{-2t}) dt$$

$$= -x^{2} e^{-2x} + \int_{0}^{x} t (2 e^{-2t}) dt$$

$$\lim_{x \to +\infty} \int_{-\infty}^{x} t^{2} f(t) dt = \int_{0}^{+\infty} t 2 e^{-2t} dt = \frac{1}{2}.$$

Ainsi, $\int_{-\infty}^{+\infty} t^2 e^{-2t} dt$ converge et $\mathbf{E}[X^2] = \frac{1}{2}$. Alors,

$$\mathbf{V}(X) = \mathbf{E}[X^2] - \mathbf{E}[X]^2 = \frac{1}{2} - \left(\frac{1}{2}\right)^2 = \frac{1}{4}.$$

Proposition 2 - Propriétés de l'espérance et de la variance

Soit a,b deux réels et X,Y des variables aléatoires à densité admettant une espérance. Alors,

$$\mathbf{E} [aX + b] = a\mathbf{E} [X] + b$$
$$\mathbf{E} [aX + bY] = a\mathbf{E} [X] + b\mathbf{E} [Y].$$

Si X admet une variance, alors $\mathbf{V}(aX + b) = a^2\mathbf{V}(X)$.

II - Lois usuelles

II.1 - Loi uniforme sur [a, b]

Définition 5 - Loi uniforme

Soit a < b. La variable aléatoire X suit la loi uniforme sur [a,b], noté $X \hookrightarrow \mathcal{U}([a,b])$, si elle admet la densité

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{si } x \in [a, b] \\ 0 & \text{sinon} \end{cases}$$

Exemple 6 - Modélisation

La loi uniforme permet de modéliser le choix d'un réel au hasard entre a et b sans privilégier aucun des résultats.

Les langages de programmation sont dotés d'un générateur de nombres pseudo-aléatoires qui simulent une loi uniforme. On peut, à l'aide de la technique utilisée précédemment, simuler aisément les lois discrètes.

Proposition 3 - Propriétés de la loi uniforme

Soit a < b et X qui suit une loi uniforme sur [a, b].

ullet La fonction de répartition F de X est définie par :

$$F(x) = \begin{cases} 0 & \text{si } x \leqslant a \\ \frac{x-a}{b-a} & \text{si } x \in [a,b] \\ 1 & \text{si } x \geqslant b \end{cases}$$

- L'espérance de X est $\mathbf{E}[X] = \frac{a+b}{2}$.
- La variance de X est $\mathbf{V}(X) = \frac{(b-a)^2}{12}$.

Exemple 7 - Modifications d'une loi uniforme

Soit $X \hookrightarrow \mathcal{U}([1,2])$ de fonction de répartition F_X .

• On pose $Y = \frac{X-1}{2}$. La fonction de répartition de Y, notée F_Y , est égale à :

$$F_Y(y) = \mathbf{P}\left([Y \leqslant y]\right) = \mathbf{P}\left(\left[\frac{X-1}{2} \leqslant y\right]\right)$$
$$= \mathbf{P}\left([X \leqslant 2y+1]\right) = F_X(2y+1).$$

Ainsi,

- \star Si $2y + 1 \leq 1$, i.e. $y \leq 0$, alors $F_Y(y) = 0$.
- * Si $1 \le 2y + 1 \le 2$, i.e. $y \in [0, 1/2]$, alors

$$F_Y(y) = \frac{2y+1-1}{2-1} = 2y.$$

- * Si $2y + 1 \ge 2$, i.e. $y \ge 1/2$, alors $F_Y(y) = 1$. Finalement, $Y \hookrightarrow \mathcal{U}([0, 1/2])$.
- On pose $Z = X^2$. La fonction de répartition de Z, notée F_Z , vaut

$$F_Z(z) = \mathbf{P}([Z \leqslant z]) = \mathbf{P}([X^2 \leqslant z]).$$

* Si $z \leq 0$, alors $[Z \leq z]$ est impossible et $F_Z(z) = 0$.

 $\star\,$ Si $z\geqslant 0,$ comme la fonction racine carrée est croissante et bijective, alors

$$F_Z(z) = \mathbf{P}\left([|X| \leqslant \sqrt{z}]\right) = \mathbf{P}\left([-\sqrt{z} \leqslant X \leqslant \sqrt{z}]\right)$$

= $F_X(\sqrt{z}) - F_X(-\sqrt{z}) = F_X(\sqrt{z}).$

Ainsi,

— Si $\sqrt{z} \leq 1$, i.e. $z \leq 1$, alors $F_Z(z) = 0$.

— Si $\sqrt{z} \ge 2$, i.e. $z \ge 4$, alors $F_Z(z) = 1$.

— Si $\sqrt{z} \in [1, 2]$, i.e. $z \in [1, 4]$, alors

$$F_Z(z) = \frac{\sqrt{z} - 1}{2 - 1} = \sqrt{z} - 1.$$

Finalement,

$$F_Z(z) = \begin{cases} 0 & \text{si } z \leqslant 1\\ \sqrt{z} - 1 & \text{si } 1 \leqslant z \leqslant 4\\ 1 & \text{si } z \geqslant 4 \end{cases}.$$

Ainsi, une densité g de Z est définie par :

$$g(z) = \begin{cases} 0 & \text{si } z \leqslant 1\\ \frac{1}{2\sqrt{z}} & \text{si } z \in [1, 4]\\ 0 & \text{si } z > 4 \end{cases}$$

II.2 - Loi exponentielle

Définition 6 - Loi exponentielle

Soit $\lambda > 0$. La variable aléatoire X suit la loi exponentielle de paramètre λ , noté $X \hookrightarrow \mathcal{E}(\lambda)$, si elle admet la densité

$$f(x) = \begin{cases} 0 & \text{si } x < 0\\ \lambda e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$$

Exemple 8 - Modélisation

La loi exponentielle modélise la durée de vie d'un phénomène sans mémoire ou sans vieillissement d'usure. Il est utilisé pour modéliser la durée de vie d'un atome radioactif, le temps d'attente dans une file, la durée de vie d'un composant électronique,...

Proposition 4 - Propriétés de la loi exponentielle

Soit $\lambda > 0$ et X qui suit une loi exponentielle de paramètre λ .

 $\bullet\,$ La fonction de répartition F de X est définie par :

$$F(x) = \begin{cases} 0 & \text{si } x < 0\\ 1 - e^{-\lambda x} & \text{si } x \geqslant 0 \end{cases}$$

- L'espérance de X est $\mathbf{E}[X] = \frac{1}{\lambda}$.
- La variance de X est $\mathbf{V}(X) = \frac{1}{\lambda^2}$.

Exemple 9 - Minimum de lois exponentielles

Soit $X \hookrightarrow \mathcal{E}(\lambda)$ et $Y \hookrightarrow \mathcal{E}(\mu)$ deux variables aléatoires indépendantes de fonctions de répartitions respectives notées F_X et F_Y . On note $Z = \min\{X, Y\}$. Alors, la fonction de répartition de Z,

notée F_Z , est égale à :

$$F_{Z}(z) = \mathbf{P}\left([Z \leqslant z]\right) = 1 - \mathbf{P}\left([\min\left\{X, Y\right\} > z]\right)$$

$$= 1 - \mathbf{P}\left([X > z] \cap [Y > z]\right)$$

$$= 1 - \mathbf{P}\left([X > z]\right) \times \mathbf{P}\left([Y > z]\right)$$

$$= 1 - \left(1 - \mathbf{P}\left([X \leqslant z]\right)\right) \times \left(1 - \mathbf{P}\left([Y \leqslant z]\right)\right)$$

$$= 1 - \left(1 - F_{X}(z)\right)\left(1 - F_{Y}(z)\right).$$

Ainsi,

- Si $z \leq 0$, alors $F_Z(z) = 0$.
- Si z > 0, alors

$$F_Z(z) = 1 - e^{-\lambda z} \times e^{-\mu z} = 1 - e^{-(\lambda + \mu)z}$$
.

Finalement, $Z \hookrightarrow \mathscr{E}(\lambda + \mu)$.

Théorème 4 - Absence de mémoire

Soit $X \hookrightarrow \mathcal{E}(\lambda)$. Alors, pour tous x, y positifs,

$$\mathbf{P}_{[X>u]}([X>x+y]) = \mathbf{P}([X>x]).$$

II.3 - Loi normale

Définition 7 - Loi normale

Soit m un réel et σ un réel strictement positif. La variable aléatoire X suit la loi normale (ou de Laplace-Gauss) de paramètres m et σ^2 , noté $X \hookrightarrow \mathcal{N}(m, \sigma^2)$, si elle admet la densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}.$$

Exemple 10 - Modélisation

La loi normale sert à modéliser les résultats d'expériences qui sont le fait de multiples facteurs. Par exemple, la taille d'individus de même âge, la taille des becs d'une population d'oiseaux, les résultats d'une mesure physique, le prix de denrées côtées en bourse,...

Proposition 5 - Propriétés de la loi normale

Soit $m \in \mathbb{R}$, $\sigma > 0$ et X qui suit une loi normale de paramètres m et σ^2 .

- L'espérance de X est $\mathbf{E}[X] = m$.
- La variance de X est $\mathbf{V}(X) = \sigma^2$.

Définition 8 - Loi normale centrée réduite

La variable aléatoire à densité X suit la loi normale centrée réduite si $X \hookrightarrow \mathcal{N}(0,1)$.

Exemple 11 - Lecture de table

Soit $X \hookrightarrow \mathcal{N}(0,1)$. La fonction de répartition de la loi normale centrée réduite est tabulée et, en utilisant cette table,

$$\begin{split} \mathbf{P} \left([X \leqslant 2.57] \right) &\simeq 0.9949 \\ \mathbf{P} \left([X \leqslant 1.45] \right) &\simeq 0.9265 \\ \mathbf{P} \left([0.25 \leqslant X \leqslant 1.45] \right) &= \mathbf{P} \left([X \leqslant 1.45] \right) - \mathbf{P} \left([X \leqslant 0.25] \right) \\ &\simeq 0.9265 - 0.5987 \simeq 0.3278. \end{split}$$

Proposition 6 - Fonction de répartition

Soit Φ la fonction de répartition de la loi normale centrée réduite. Alors,

$$\forall x \in \mathbb{R}, \ \Phi(-x) = 1 - \Phi(x).$$

Chapitre IX - Variables aléatoires à densité

Exemple 12 - Utilisation de la table

Soit $X \hookrightarrow \mathcal{N}(0,1)$. En utilisant la table de la loi normale centrée réduite,

$$\mathbf{P}([X \le -2.34]) = 1 - \mathbf{P}([X \le 2.34]) \simeq 1 - 0.9901 \simeq 0.0099.$$

Proposition 7 - Lien entre lois normales

Soit $m \in \mathbb{R}$ et $\sigma > 0$. Si $X \hookrightarrow \mathcal{N}(m, \sigma^2)$ et $X^* = \frac{X-m}{\sigma}$, alors $X^* \hookrightarrow \mathcal{N}(0, 1)$.

Exemple 13 - Utilisation de la table

Soit $X \hookrightarrow \mathcal{N}(3,25)$. Alors, $\frac{X-3}{5} \hookrightarrow \mathcal{N}(0,1)$, soit

$$\mathbf{P}([X \le 2]) = \mathbf{P}([X - 3 \le 2 - 3]) = \mathbf{P}\left(\left[\frac{X - 3}{5} \le -\frac{1}{5}\right]\right)$$
$$= \mathbf{P}([X \le -0.2]) = 1 - \mathbf{P}([X \le 0.2])$$
$$\approx 1 - 0.5793 \approx 0.4207.$$

Théorème 5 - Stabilité de la loi normale

Soit $m_1, m_2, \sigma_1, \sigma_2$ quatre réels, $X \hookrightarrow \mathcal{N}(m_1, \sigma_1^2)$ et $Y \hookrightarrow \mathcal{N}(m_2, \sigma_2^2)$. Si X et Y sont indépendantes, alors

$$X + Y \hookrightarrow \mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2).$$

II.4 - Table de la loi normale centrée réduite

D 2

0 0.5 0,5034 0,5080 0,5120 0,5159 0,5199 0,5239 0,5279 0,5319 0,5 0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5 0,2 0,5793 0,5832 0,5871 0,5909 0,5948 0,5987 0,6026 0,6044 0,6103 0,6 0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6440 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6 0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7 0,6 0,7257 0,7291 0,7332 0,7673 0,7703 0,7734 0,7764 0,7783 0,7517 0,7 0,7 0,7580 0,7611 0,7642 0,7673 0,7703 0,7734 0,7764 <th></th> <th>0</th> <th>0.01</th> <th>0.02</th> <th>0.03</th> <th>0.04</th> <th>0.05</th> <th>0.06</th> <th>0.07</th> <th>0.08</th> <th>0.09</th>		0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0,1 0,5398 0,5438 0,5478 0,5517 0,5557 0,5596 0,5636 0,5675 0,5714 0,5 0,2 0,5793 0,5832 0,5871 0,5909 0,5948 0,5987 0,6026 0,6064 0,6103 0,6 0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6 0,5 0,6915 0,6695 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7 0,6 0,7257 0,7291 0,7324 0,7356 0,7389 0,7421 0,7486 0,7517 0,7 0,7 0,7580 0,7611 0,7642 0,7673 0,7703 0,7734 0,7764 0,7784 0,7784 0,7784 0,7784 0,7783 0,7713 0,7734 0,7764 0,7783 0,7714 0,7763 0,7734 0,7764 0,7783 0,7764 0,7783 0,7673 0,7734 0,7764 0,7783 0,7664			,	- , -	- ,	,	- ,	- ,	- ,	- ,	-)
0,2 0,5793 0,5832 0,5871 0,5909 0,5948 0,5987 0,6026 0,6044 0,6103 0,6480 0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6 0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6 0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7 0,6 0,7257 0,7291 0,7324 0,7356 0,7389 0,7421 0,7484 0,7486 0,7517 0,7 0,7 0,7580 0,7611 0,7642 0,7673 0,7733 0,7734 0,7764 0,7793 0,7823 0,7 0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8033 0,8015 0,8086 0,8106 0,8212 0,8238 0,8264 0,8289 0,8315 0		,	,		,	,	,				0,5359
0,3 0,6179 0,6217 0,6255 0,6293 0,6331 0,6368 0,6406 0,6443 0,6480 0,6480 0,4 0,6554 0,6591 0,6628 0,6664 0,6700 0,6736 0,6772 0,6808 0,6844 0,6 0,5 0,6915 0,6950 0,6985 0,7019 0,7054 0,7088 0,7123 0,7157 0,7190 0,7 0,6 0,7257 0,7291 0,7324 0,7356 0,7389 0,7421 0,7444 0,7486 0,7517 0,7 0,7 0,7580 0,7611 0,7622 0,7673 0,7703 0,7734 0,7764 0,7793 0,7823 0,7 0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8166 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,868 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8 1,1 0,		,	,	,	,	,	,		,		0,5753
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,	,	,			,		0,6141
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,	,	,			,		0,6517
0,6 0,7257 0,7291 0,7324 0,7356 0,7389 0,7421 0,7454 0,7486 0,7517 0,7 0,7 0,7580 0,7611 0,7642 0,7673 0,7703 0,7734 0,7764 0,7793 0,7823 0,7 0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8166 0,8 0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8561 1,0 0,8413 0,8437 0,8461 0,8485 0,8508 0,8554 0,8577 0,8599 0,8 1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8 1,2 0,8849 0,8888 0,8906 0,8925 0,8943 0,8962 0,8980 0,8997 0,9 1,4 0,9192 0,9207 0,9222 0,9236 0,9255		,	,	,	,	,	,	,	,		0,6879
0,7 0,7580 0,7611 0,7642 0,7673 0,7703 0,7734 0,7764 0,7793 0,7823 0,7 0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8 0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8 1,0 0,8413 0,8467 0,8461 0,8485 0,8508 0,8531 0,8577 0,8599 0,8 1,1 0,8643 0,8665 0,8666 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8 1,2 0,8849 0,8869 0,8888 0,8906 0,8925 0,8943 0,8960 0,8981 0,8901 0,9 1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9111 0,9147 0,9162 0,9 1,4 0,9192 0,9207 0,9222 0,9236		/	,	,	,		,	,	,	,	0,7224
0,8 0,7881 0,7910 0,7939 0,7967 0,7995 0,8023 0,8051 0,8078 0,8106 0,8 0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8 1,0 0,8413 0,8467 0,8461 0,8485 0,8508 0,8531 0,8577 0,8599 0,8 1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8 1,2 0,8849 0,8869 0,8888 0,8906 0,8925 0,8943 0,8962 0,8980 0,8997 0,9 1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,9 1,4 0,9192 0,9207 0,9222 0,9236 0,9256 0,9279 0,9292 0,9306 0,9 1,5 0,9332 0,9463 0,9474 0,9484 0,9495		,	,	,	,	,	,		,		0,7549
0,9 0,8159 0,8186 0,8212 0,8238 0,8264 0,8289 0,8315 0,8340 0,8365 0,8 1,0 0,8413 0,8437 0,8461 0,8485 0,8508 0,8531 0,8554 0,8577 0,8599 0,8 1,1 0,8643 0,8665 0,8686 0,8708 0,8729 0,8749 0,8770 0,8790 0,8810 0,8 1,2 0,8849 0,8869 0,8888 0,8906 0,8925 0,8943 0,8962 0,8980 0,8997 0,9 1,3 0,9032 0,9049 0,9066 0,9082 0,9099 0,9115 0,9131 0,9147 0,9162 0,99 1,4 0,9192 0,9305 0,9227 0,9226 0,9279 0,9292 0,9306 0,9 1,5 0,9332 0,9345 0,9357 0,9370 0,9382 0,9394 0,9468 0,9429 0,9 1,6 0,9452 0,9463 0,9474 0,9484 0,9495 0,9555		,	,	,	,						0,7852
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	,	,	,	,	,	,	,	0,8133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0	0,8413	0,8437	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2	0,8849	0,8869	0,8888	0,8906	0,8925	0,8943	0,8962	0,8980	0,8997	0,9015
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,8	0,9641	0,9648	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,980	0,9808	0,9812	0,9817
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,2	0,9861	0,9864	0,9868	0,9871	0,9874	0,9878	0,9881	0,9884	0,9887	0,9890
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,4	0,9918	0,9920	0,9922	0,9924	0,9927	0,9929	0,9930	0,9932	0,9934	0,9936
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
	2,6	0,9953	0,9955	0,996	0,9957	0,9958	0,9960	0,9961	0,9962	0,9963	0,9964
$\mid 2.8 \mid 0.9974 \mid 0.9975 \mid 0.9976 \mid 0.9977 \mid 0.9977 \mid 0.9978 \mid 0.9979 \mid 0.9979 \mid 0.9980 \mid 0.$	2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,997	0,9973	0,9974
	2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9 0,9981 0,9982 0,9982 0,9983 0,9984 0,9984 0,9985 0,9985 0,9986 0,9	2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

III - Couples de variables aléatoires

Théorème 6 - Somme de v.a. indépendantes

Soit X,Y deux variables aléatoires indépendantes de densités respectives f et g. Alors, Z=X+Y est une variable aléatoire de densité f_Z définie pour tout x réel par

$$f_Z(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt.$$

Exemple 14 - Lois usuelles

Dans chacun des exemples, on note f_X (resp. f_Y) une densité de la variable aléatoire X (resp. Y) et Z = X + Y de densité f_Z .

• Soit $\lambda \neq \mu$, $X \hookrightarrow \mathcal{E}(\lambda)$, $Y \hookrightarrow \mathcal{E}(\mu)$ indépendantes.

$$f_Z(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x - t) dt$$

$$= \int_0^{+\infty} \lambda e^{-\lambda t} \mu e^{-\mu(x - t)} \mathbb{1}_{x - t \ge 0} dt$$

$$= \lambda \mu \int_0^x e^{-(\lambda - \mu)t} dt = \frac{\lambda \mu}{\lambda - \mu} \left(1 - e^{-(\lambda - \mu)x} \right).$$

$$f_Z(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x - t) dt$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2} - (t^2 - xt)} dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2} - (t - \frac{x}{2})^2 + \frac{x^2}{4}} dt$$

$$= \frac{e^{-\frac{x^2}{4}}}{2\pi} \int_{-\infty}^{+\infty} e^{-u^2} du = \frac{e^{-\frac{x^2}{4}}}{2\pi} \cdot \frac{\sqrt{2\pi}}{\sqrt{2}}$$

$$= \frac{1}{2\sqrt{\pi}} e^{-\frac{x^2}{4}}.$$

Ainsi, $Z \hookrightarrow \mathcal{N}(0,2)$.