Introduction to Machine Learning

Decision Trees

Ashley Gao

William & Mary

October 11, 2023

William & Mary CSCI 416 October 11, 2023 1/3

Overview

- Decision Tree
 - Simple but powerful learning algorithm
 - Used widely in Kaggle competitions
 - Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Bias-variance decomposition
 - Lets us motivate methods for combining different classifiers.

Decision Tree

• Make predictions by splitting features according to a tree structure.

Decision Tree

• Make predictions by splitting features according to a tree structure.

Decision Trees — Continuous Features

- Split continuous features by checking whether that feature is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.

Decision Trees — Continuous Features

- Internal nodes test a feature
- Branching is determined by the feature value
- Leaf nodes are outputs (predictions)

Decision Trees — Continuous Features

- Each path from the root to a leaf defines a region R_m of input space
- Let $\{(x^{(m_1)}, t^{(m_1)}), ..., (x^{(m_k)}, t^{(m_k)})\}$ be the training examples that fall into R_m
- Classification tree (we will focus on this):
 - Discrete output
 - Leaf value y^m typically set to the most common value in $\{t^{(m_1)}, ..., t^{(m_k)}\}$

William & Mary CSCI 416 October 11, 2023 7/2

Decision Trees — Discrete Features

• Will I eat at this restaurant?

Decision Trees — Discrete Features

• Split discrete features into a partition of possible values.

Example	Input Attributes										
Litampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWa
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Y$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = 1$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Y$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Y$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = I$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Y$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_7 = I$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = Y$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = I$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = I$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = I$
X 12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12} = '$

,	,	,	,	,				Danger	00 0		
1.	Alterna	te: wheth	er there is	s a suitable a	alternative	restauran	it nearby.				
2.	Bar: whether the restaurant has a comfortable bar area to wait in.										
3.	Fri/Sat: true on Fridays and Saturdays.										
4.	Hungry: whether we are hungry.										
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).										
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).										
7.	Raining: whether it is raining outside.										
8.	Reservation: whether we made a reservation.										
9.	Type: tl	Type: the kind of restaurant (French, Italian, Thai or Burger).									
10.	WaitEst	imate: th	e wait est	imated by th	ne host (0-	10 minute	es. 10-30.	30-60, >60).			

Learning Decision Trees

- For any training set we can construct a decision tree that has exactly one leaf for every training point, but it probably won't generalize.
 - Decision trees are universal function approximators.
- But, finding the smallest decision tree that correctly classifies a training set is NP-complete.
 - If you are interested, check: Hyafil & Rivest'76.
- So, how do we construct a useful decision tree?

10/37

Learning Decision Trees

- Resort to a greedy heuristic:
 - Start with the whole training set and an empty decision tree
 - Pick a feature and candidate split that would most reduce the loss
 - Split on that feature and recurse on subpartitions
- Which loss should we use?
 - Let's see if the misclassification rate is a good loss.

• Consider the following data. Let's split on width

• Recall: classify by majority.

• A and B have the same misclassification rate, so which is the best split? Vote!

• A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.

• Can we quantify this?

- How can we quantify uncertainty in prediction for a given leaf node?
 - If all examples in the leaf have the same class: good, low uncertainty
 - If each class has the same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

15/37

- The entropy of a discrete random variable is a number that quantifies the uncertainty inherent in its possible outcomes.
- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated.
 - If you're interested, check: Information Theory by Robert Ash.
- To explain entropy, consider flipping two different coins...

16/37

We Flip Two Different Coins

```
Sequence 1:
000100000000000100...?
Sequence 2:
010101110100110101...?
    16
                          10
             versus
```

Quantifying Uncertainty

• The entropy of a loaded coin with probability p of heads is given by:

$$-p\log_2(p) - (1-p)\log_2(1-p) \tag{1}$$

- Notice: the coin whose outcomes are more certain has a lower entropy.
- In the extreme case p = 0 or p = 1, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Quantifying Uncertainty

• Can also think of entropy as the expected information content of a random draw from a probability distribution.

• Units of entropy are bits; a fair coin flip has 1 bit of entropy

• More generally, the entropy of a discrete random variable *Y* is given by:

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$
 (2)

- "High Entropy":
 - Variable has a uniform like distribution over many outcomes
 - Flat histogram
 - Values sampled from it are less predictable
- "Low Entropy":
 - Distribution is concentrated on only a few outcomes
 - Histogram is concentrated in a few areas
 - Values sampled from it are more predictable

20/37

Entropy

- Suppose we observe partial information *X* about a random variable *Y*
 - For example, X = sign(Y)
- We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.
 - Or equivalently, the expected reduction in our uncertainty about *Y* after observing *X*.

21/37

Entropy of a Joint Distribution

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(x,y)$$
 (3)

$$H(X,Y) = -\frac{24}{100}\log_2\frac{24}{100} - -\frac{1}{100}\log_2\frac{1}{100} - \frac{25}{100}\log_2\frac{25}{100} - \frac{50}{100}\log_2\frac{50}{100}$$

$$H(X,Y) \approx 1.56 \text{bits}$$
 (5)

Specific Conditional Entropy

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining (X = raining)?

$$H(Y|X=x) = -\sum_{y \in Y} p(y|x)\log_2 p(y|x) \tag{6}$$

$$H(Y|X=x) = -\frac{24}{25}\log_2\frac{24}{25} - \frac{1}{25}\log_2\frac{1}{25} \approx 0.24$$
bits (7)

• We used $p(y|x) = \frac{p(x,y)}{p(x)}$ and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

William & Mary CSCI 416 October 11, 2023 23/37

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- What is the entropy of cloudiness *Y*, given the variable *X*?
- The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X=x)$$
 (8)

$$H(Y|X) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(y|x)$$
(9)

Conditional Entropy

• Example: $X = \{\text{Raining, Not raining}\}, Y = \{\text{Cloudy, Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness *Y*, given the variable *X*?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X=x)$$
 (10)

$$H(Y|X) = \frac{1}{4}H(\text{cloudy}|\text{raining}) + \frac{3}{4}H(\text{cloudy}|\text{not raining}) \approx 0.75 \text{bits}$$

(11)

Conditional Entropy

- Some useful properties:
 - *H* is always non-negative
 - Chain rule: H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - if X and Y are independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - By knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - By knowing X, we can decrease the uncertainty about Y: $H(Y|X) \le H(Y)$

26/37

Information Gain

• Example: $X = \{\text{Raining}, \text{Not raining}\}, Y = \{\text{Cloudy}, \text{Not cloudy}\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much more certain am I about whether it's cloudy if I'm told whether it is raining? My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.
- This is called the information gain IG(Y|X) in Y due to X, or the mutual information of Y and X

$$IG(Y|X) = H(Y) - H(Y|X)$$
(12)

- if X is completely uninformative about Y: IG(Y|X) = 0
- if X is completely informative about Y: IG(Y|X) = H(Y)CSCI 416

27/37

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label Y is gained by knowing which side of a split you're on.

28/37

Revisiting Our Original Example

• What is the information gain of split B? Not terribly informative...

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2\frac{2}{7} \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|\text{left}) \approx 0.81$, $H(Y|\text{right}) \approx 0.92$
- $IG(\text{split}) \approx 0.86 (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$

29/37

Revisiting Our Original Example

• What is the information gain of split A? Very informative!

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2\frac{2}{7} \frac{5}{7}\log_2\frac{5}{7} \approx 0.86$
- Leaf conditional entropy of class outcome: H(Y|left) = 0, $h(Y|\text{right}) \approx 0.97$
- $IG(\text{split}) \approx 0.86 (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!$

30/37

Constructing Decision Trees

- At each level, one must choose:
 - Which particular feature to split
 - Possibly where to split it
- Choose them based on how much information we would gain from the decision! (choose the feature that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node
 - pick a feature to split at a non-terminal node
 - split examples into groups based on a feature value
 - for each group:
 - if all examples in the same class return class
 - else loop to step 1
- Terminates when all leaves contain only examples in the same class or are empty

32/37

Back to Our Example

Example					Input	Attribu	ites				Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = \mathit{No}$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_8 = \textit{Yes}$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = \mathit{Yes}$

Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-		
1.	Alternat	e: whethe	er there is	a suitable a	Iternative	restaurant	t nearby.				
2.	Bar: wh	ether the	restaurant	has a comf	ortable ba	r area to	wait in.				
3.	Fri/Sat:	Fri/Sat: true on Fridays and Saturdays.									
4.	Hungry:	Hungry: whether we are hungry.									
5.	Patrons	Patrons: how many people are in the restaurant (values are None, Some, and Full).									
6.	Price: th	Price: the restaurant's price range (\$, \$\$, \$\$\$).									
7.	Raining:	Raining: whether it is raining outside.									
8.	Reserva	tion: whe	ther we ma	ade a reserv	ation.						
9.	Type: th	Type: the kind of restaurant (French, Italian, Thai or Burger).									
10	WaitEstimate: the wait estimated by the best (0.10 minutes, 10.20, 20.60, >60)										

Features:

Feature Selection

$$IG(\text{Type}) = 1 - \left[\frac{2}{12} H(Y|\text{Fr.}) + \frac{2}{12} H(Y|\text{It.}) + \frac{4}{12} H(Y|\text{Thai}) \frac{4}{12} H(Y|\text{Bur.}) \right] = 0$$
(13)

$$IG(Patron) = 1 - \left[\frac{2}{12}H(Y|None) + \frac{4}{12}H(Y|Some) + \frac{6}{12}H(Y|Full)\right] \approx 0.541$$

William & Mary CSCI 416 October 11, 2023 34,

Which Tree is Better? Vote!

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- Occam's Razor": find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

What Makes a Good Tree?

- Problems:
 - You have exponentially less data at lower levels
 - Too big of a tree can overfit the data
 - Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs.
 Choose splits to minimize squared error, rather than maximize information gain.

37 / 37