Complex Data - final project outline

Anna Zaleska, Stanisław Wilczyński 21.05.2018

In our project we would like to examine **kidney** dataset from R package **PBImisc**. In this dataset we can find information about 334 patients' kidney condition after kidney transplant surgery. The condition is measured at 8 different time points after the transplant. For each patient we have a set of additional features like donor's age, recipient's age, if the patient is diabetic and the type of therapy that each patient underwent. Here we present the first 5 rows of the dataset divided to time measurements and mentioned additional features.

	MDRD7	MDRD30	MDRD3	MDRD6	MDRD12	MDRD24	MDRD36	MDRD60
1	46.00	71.00	65.00	71.00	65.00	70.00	76.00	72.00
2	44.00	58.00	20.00	78.00	62.00	87.00	72.00	47.00
3	6.00	36.00	37.80	42.00	45.00	46.00	46.00	33.00
4	8.00	39.00	55.70	52.00	60.00	73.00	75.00	91.00
_5	36.00	79.00	64.20	64.00	64.00	79.00	70.00	63.00

Table 1: Time measurements

	recipient.age	donor.age	CIT	discrepancy.AB	discrepancy.DR	therapy	diabetes	bpl.drugs
1	26	40	25.00	2	1	tc	0	3
2	52	62	31.00	4	1	cm	1	4
3	50	50	20.00	2	1	cm	0	2
4	56	47	38.00	3	0	tc	0	3
5	67	18	26.00	1	1	ca	0	1

Table 2: Other features

In our analysis we would like to find and test some potential dependencies between kidney condition, time and the additional features eg.:

- 1. Are there any global trends of the condition in time?
- 2. Can we split the data using some factors (therapy, diabetes) and see different trends within each group (test for parallelism)?
- 3. We would like to find out which covariates impact the kidney condition (test for main effects).
- 4. We will test different levels of models complexity (eg. different covariance classes).
- 5. We will try to fit other models than linear (maybe quadratic curves).
- 6. Possibly some other things that will be covered within following weeks during the lecture.