CPL של סמנטיקות סמנטיקות ללוגיקה, מבוא ללוגיקה \ref{cpl}

שרון מלטר, אתגר 17 2024 בספטמבר 13

תוכן עניינים

3																																									3	7	11:	<u>۱</u> ۲	ת		1
3														 					 	 														?1	٦î	יכ	וג'	5	>	וה	מ			1	.1		
3																																			- c	CF	$^{ m p}L$	1	ָר נָה	יע	נב	הו	1	דס	יו	2	2
4																																					:	רנ	גי	לו	3	ור.	יל	יקי	ש		3
4																																					η,	פו	ס	נוי	3	ור	7	גד	ה	4	4
4																													. :	ת	ייו	۲į.	יכ	יפ	ס	۱و	ס	ל	שי	1	ות	כי	שי	מי	ה	!	5
5																																										ליו	, ייי	רג	ת	(6
5													 	 					 	 																								6	.1		
5													 	 					 	 																								6	.2		
5														 					 	 		. 1	٦١	"	בי)	ס	חי	,	-	7	٦-	11:	5 C	ת				6	.2.	1						

1 תזכורת

1.1 מהי לוגיקה?

- . שפה פורמלית \mathcal{L} בעזרתה בונים נוסחאות.
 - $\mathcal{L}-formulas$ ביעה בין 2.

 $(well\ formed\ formulas)\ wff$ בעזרת השפה אנחנו בונים נוסחאות

\vdash_{CPL} יחס הנביעה 2

 $v(\psi)=t$ אם"ם איווליואציה א היא מודל של $\psi\in F_d$ אם מודל של איווליואציה איווליואציה א ער היא מודל של היא מודל של הוא מודל של כל $\Gamma\subseteq F_d$ אם"ם הוא מודל של היא מודל של היא מודל של היא מודל של איווליואציה איווליואניואציה איווליואציה איווליואציה איווליואציה איווליואציה איווליואציה איווליואציה אי

טאוטולוגיה!

 ψ או שול שול של v היא היא טאוטולוגיה, אם"ם כל איוולציואציה שהיא מודל של ψ היא אם ψ שם"ם כל איווליואציה שהיא מודל של רומה, ψ אם"ם כל איווליואציה שהיא מודל של רומה, ψ אם"ם כל איווליואציה שהיא מודל של של רומה, שהיא גם מודל של של היא גם מודל של של רומה.

תרגיל!

הוכיחו ש־ $((p \land q) \to r), \ (p \land \neg r) \vdash_{CPL} \neg q$ הוכיחו ש־ הוכיחו ש־ הוכיח שבכל מקרה בו $(p \land \neg r)$, מקבל $(p \land \neg r)$, מקבל $(p \land \neg r)$, מקבל מקרה בו

p	q	r	$(p \wedge q)$	$\neg r$	$(p \land \neg r)$	$(p \land q) \rightarrow r$	$\neg q$
f	f	f	f	t	f	t	t
f	f	t	f	f	f	t	t
f	t	f	f	t	f	t	f
f	t	t	f	f	f	t	f
t	f	f	f	t	t	t	t
t	f	t	f	f	f	t	t
t	t	f	t	t	t	f	f
t	t	t	t	f	f	t	f

עשינו זאת :)

 $T \cup \{A\} \vdash_{CPL} B$ ולתרגיל הקשה הבא־ הוכיחו כי $T \vdash_{CPL} A \to B$ ולתרגיל

 $T \cup \{A\} \vdash_{CPL} B$ נניח שי $T \vdash_{CPL} A \to B$ ונראה כי כיוון ראשון: נניח שי

A שהיא מודל של $T \cup \{A\}$ שהיא מודל שהיא מודל של v איווליואציה ונניח שהיא מודל של

לפי טבלת האמת של \rightarrow v היא מודל של $\stackrel{\cdot}{A}$ ושל $\stackrel{\cdot}{A}$ מכאן נקבל ש־ v מודל של e (לפי ההנחה הראשונה) ושוב לפי הטבלה של e נקבל ש־ e מודל של e מודל של e כנדרש.

 $T \vdash_{CPL} A \to B$ ניון שני: נניח ש־ $T \cup \{A\} \vdash_{CPL} B$ ניון שני: נניח ש

נוכיח באמצעות הקונטרפוזיטיב, כלומר נראה שאם $B \to T
ot T_{CPL} B$ אז $T
ot T_{CPL} B$ קיימת איווליואציה נוכיח באמצעות הקונטרפוזיטיב, כלומר נראה שאם $B \to T$ אז T
ot T אז T
ot T קיימת איווליואציה כלשהי T
ot T כלומר של T
ot T אבל לא מודל של T
ot T הוא גם מודל של T
ot T

3 שקילות לוגית

דוגמאות:

- $(A \wedge B) \equiv (B \wedge A) \bullet$
 - $(A \wedge A) \equiv A \bullet$
- $((A \land (B \land C)) \equiv ((A \land B) \land C) \bullet$
- $((A \lor (B \lor C)) \equiv ((A \lor B) \lor C) \bullet$

4 הגדרות נוספות

- $v(\psi)=t$ מתקיים מתקיים לכל איווליואציה ψ
- $v(\psi)=t$ ע כך עד כלשהי כלשהי פיימת איווליואציה קיימת ψ
 - $v(\psi)=f$ מתקיים v מתקיים לכל איווליואציה ψ

5 המשכיות של ספסיפיקציות

להלן דוגמה בטקסט, שנמיר אותה לטענות מתמטיות;

- .1 המסר המאבחן שמור בבאפר או משודר שוב.
 - 2. המסר המאבחן לא נמצא בבאפר.
- 3. אם המסר המאבחן שמור בבאפר, אז הוא משודר מחדש.

נכתוב את הטענות שקיבלנו כך;

 $s \vee r, \ \neg s, \ s \rightarrow r$

מכל הטענות, נקבל ש־-r (המסר לא משודר מחדש)

תרגילים

6.1

יהיו פורמלות מעל $\{\wedge, \vee, \neg\}$. נסמן כפולה של פורמולה A^* ב־ A^* ומוגדרת אינדוקטיבית כך;

$$p^* = \neg p$$

$$(A \vee B)^* = A^* \wedge B^*$$

$$(A \wedge B)^* = A^* \vee B^*$$

$$(\neg A)^* = \neg A^*$$

 $A^* \equiv \neg A$ מתקיים A מרכל פורמולת

נוכיח זאת באינדוקציה.

- .1 בסיס האינדוקציה: A = p כך ש־ $A^* = \neg p$ כך בסיס האינדוקציה: 1.
 - 2. צעד האינדוקציה:
- $X^*\equiv \neg X,\ Y^*\equiv \neg Y$ ולכן $A^*=X^*\wedge Y^*$ לפי הנחת האינדוקציה מתקיים $A^*=X^*\wedge Y^*$ (א)
 - $A^* \equiv \neg A$ ש' אמת ש' בעזרת בעזרת (ב)
 - (ג) מכאן נקבל שעבור $A= \neg X$ נקבל

$$A^* = \neg(\neg X) = \neg X^* \equiv \neg A$$

כנדרש.

ניתן כמובן גם להוכיח עבור המקרה $X \lor A = X \lor Y$, אך עוד לא הוכחנו את משפט דה־מורגן (בקורס הזה)

6.2

(יחס נביעה) $consequence\ relation$ הוכיחו ש־ \vdash_{CPL}

6.2.1 תזכורת - יחס נביעה

יחס נביעה לשפה \mathcal{L} הוא יחס בינארי $F_{\mathcal{L}} imes F_{\mathcal{L}} imes F_{\mathcal{L}}$ יחס נביעה לשפה את התכונות הבאות;

• רפלקסיביות:

if $\psi \in \Gamma$ then $\Gamma \vdash \psi$

כלומר, סדרה של אקסיומות Γ שכוללת את ψ , צריכה כמובן גם לגרור את ψ (כאשר היא נכונה) לפי יחס הנביעה אם היא מתקיימת.

• מונוטוניות:

if $\Gamma \vdash \psi$ and $\Gamma \subseteq \Gamma'$, then $\Gamma' \vdash \psi$

 ψ גוררת את Γ' אזי בהכרח Γ' אזי גוררת את היא תת־סדרה של אזי בהכרח בהכרח על גוררת את ψ

:טרנזיטיביות

if $\Gamma \vdash \psi$ and $\Gamma, \psi \vdash \phi$ then $\Gamma \vdash \phi$

כלומר, אם סדרת אקסיומות Γ גוררת את אח שתיהן עם שתיהן עם ע ψ ובחיתוד אזי רק Γ גוררת אקסיומות סדרת אקסיומות גוררת את ψ גוררת את לובחיתוד גוררת את לובחיתוד אוררת את לובחית את לוב