```
import pandas as pd
# Load the dataset
file_path = 'kamrup_rice_cleaned_data.csv'
rice_data = pd.read_csv(file_path)
# Display the first few rows of the dataset
rice_data.head(), rice_data.info()
RangeIndex: 23 entries, 0 to 22
    Data columns (total 2 columns):
                                Non-Null Count Dtype
    # Column
     0 Year
                                23 non-null
                                                object
     1 Yield (Tonnes/Hectare) 23 non-null
                                                float64
    dtypes: float64(1), object(1)
    memory usage: 496.0+ bytes
(Year Yield (Tonnes/Hectare)
     0 1997-01-01
                                 0.980326
     1 1998-01-01
                                 1.295593
     2 1999-01-01
                                 1.419327
     3 2000-01-01
                                 1.505253
     4 2001-01-01
                                 1.536712,
     None)
# Data Preprocessing
# Convert the "Year" column to datetime format
rice_data['Year'] = pd.to_datetime(rice_data['Year'])
# Set the "Year" column as the index
rice_data.set_index('Year', inplace=True)
# Normalize the yield data
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
rice_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(rice_data[['Yield (Tonnes/Hectare)']])
# Display the first few rows of the preprocessed data
rice_data.head()
```

→ Yield (Tonnes/Hectare)

Year	
1997-01-01	0.000000
1998-01-01	0.189116
1999-01-01	0.263338
2000-01-01	0.314881
2001-01-01	0.333752

```
import numpy as np
# Create sequences
def create_sequences(data, seq_length):
   xs = []
   ys = []
    for i in range(len(data)-seq_length):
       x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
       ys.append(y)
    return np.array(xs), np.array(ys)
# Define sequence length
seq_length = 3
# Convert the dataframe to a numpy array
data = rice_data['Yield (Tonnes/Hectare)'].values
# Create sequences
X, y = create_sequences(data, seq_length)
# Split the data into training and testing sets (70% train, 30% test)
split_idx = int(0.8 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
X_train.shape, X_test.shape, y_train.shape, y_test.shape
```

 \rightarrow ((16, 3), (4, 3), (16,), (4,))

```
from keras.models import Sequential
from keras.layers import LSTM, Dense

# Define the LSTM model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(seq_length, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

# Reshape the data to fit the model's input shape
X_train_reshaped = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))

# Train the model
history = model.fit(X_train_reshaped, y_train, epochs=200, validation_data=(X_test_reshaped, y_test), verbose=1)

# Summarize the model
model.summary()
```

₹

```
EDOCU 132/500
1/1 [==========] - 0s 37ms/step - loss: 0.0089 - val_loss: 0.0054
Epoch 196/200
1/1 [===
                  =======] - 0s 39ms/step - loss: 0.0089 - val_loss: 0.0055
Epoch 197/200
1/1 [============ ] - 0s 40ms/step - loss: 0.0089 - val_loss: 0.0056
Epoch 198/200
1/1 [====
                    =======] - 0s 42ms/step - loss: 0.0089 - val_loss: 0.0057
Epoch 199/200
                  =======] - 0s 61ms/step - loss: 0.0088 - val_loss: 0.0058
1/1 [=====
Epoch 200/200
Model: "sequential"
```

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 50)	10400
dense (Dense)	(None, 1)	51

Total params: 10451 (40.82 KB) Trainable params: 10451 (40.82 KB) Non-trainable params: 0 (0.00 Byte)

```
y_pred = model.predict(X_test_reshaped)
```

```
→ 1/1 [=======] - 0s 336ms/step
```

```
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
```

```
from sklearn.metrics import mean_squared_error

mse = mean_squared_error(y_test_inverse, y_pred_inverse)
print(f'Mean Squared Error: {mse}')
```

→ Mean Squared Error: 0.016492609036593355

```
# Get the years corresponding to the test dataset
import matplotlib.pyplot as plt
test_years = rice_data.index[split_idx+seq_length:]

# Plot the results based on years
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
plt.ylabel('Year')
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
plt.show()
```


Actual vs Predicted Yield


```
# Save the model
model.save('rice_yield_lstm_model.h5')
```

/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an saving_api.save_model(

```
# Plot training history
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.title('Training and Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
```


model.summary()

 $\overline{\mathcal{F}}$

→ Model: "sequential"

Layer (type)	Output	Shape	Param #
lstm (LSTM)	(None,	50)	10400
dense (Dense)	(None,	1)	51

Total params: 10451 (40.82 KB) Trainable params: 10451 (40.82 KB) Non-trainable params: 0 (0.00 Byte)

Transfer Learning Nagaon

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model
import matplotlib.pyplot as plt
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
model1 = load_model(saved_model_path)
# Load your new dataset
new_file_path = 'Nagaon_rice_cleaned_data.csv'
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
```

new_data

Yield (Tonnes/Hectare)

Year	
1997-01-01	0.000000
1998-01-01	0.367798
1999-01-01	0.534952
2000-01-01	0.500367
2001-01-01	0.494395
2002-01-01	0.446928
2003-01-01	0.500155
2004-01-01	0.473107
2005-01-01	0.363544
2006-01-01	0.376288
2007-01-01	0.402433
2008-01-01	0.378269
2009-01-01	0.697636
2010-01-01	0.580383
2011-01-01	0.430779
2012-01-01	0.682824
2013-01-01	0.778547
2014-01-01	0.658777
2015-01-01	0.835853
2016-01-01	0.857179
2017-01-01	0.962274
2018-01-01	1.000000
2019-01-01	0.775903

```
# Create sequences
def create_sequences(data, seq_length):
   xs = []
   ys = []
   for i in range(len(data)-seq_length):
      x = data[i:i+seq_length]
      y = data[i+seq_length]
      xs.append(x)
      ys.append(y)
   return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.7 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_train_reshaped = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Continue training the model (fine-tuning)
\label{eq:history} \textbf{history = model1.fit}(X\_train\_reshaped, y\_train, epochs=30, validation\_data=(X\_test\_reshaped, y\_test), verbose=1)
Epoch 2/30
                    ========] - 0s 36ms/step - loss: 0.0161 - val_loss: 0.0142
    1/1 [===
    Epoch 3/30
                        ========] - 0s 36ms/step - loss: 0.0159 - val_loss: 0.0141
    1/1 [=====
    Epoch 4/30
                 1/1 [=====
    Epoch 5/30
                       =======] - 0s 36ms/step - loss: 0.0154 - val_loss: 0.0141
    1/1 [=====
    Epoch 6/30
    1/1 [=====
                   =========] - 0s 42ms/step - loss: 0.0152 - val_loss: 0.0142
    Epoch 7/30
    1/1 [=====
                    =========] - 0s 35ms/step - loss: 0.0150 - val_loss: 0.0145
    Epoch 8/30
    1/1 [=====
                 Epoch 9/30
                   1/1 [======
    Epoch 10/30
    1/1 [======
                    ========] - 0s 36ms/step - loss: 0.0148 - val_loss: 0.0156
    Epoch 11/30
    Epoch 12/30
                            ======] - 0s 38ms/step - loss: 0.0149 - val_loss: 0.0164
    1/1 [==
    Epoch 13/30
    1/1 [======
               Epoch 14/30
                               ===] - 0s 44ms/step - loss: 0.0150 - val_loss: 0.0169
    1/1 [==
    Epoch 15/30
                1/1 [=======
    Epoch 16/30
    1/1 [=====
                             =====] - 0s 37ms/step - loss: 0.0150 - val_loss: 0.0168
    Epoch 17/30
    1/1 [==:
                          =======] - 0s 37ms/step - loss: 0.0150 - val_loss: 0.0167
    Epoch 18/30
    1/1 [======
                    =========] - 0s 38ms/step - loss: 0.0150 - val_loss: 0.0165
    Epoch 19/30
                           ======] - 0s 35ms/step - loss: 0.0149 - val_loss: 0.0162
    1/1 [===
    Epoch 20/30
                  1/1 [======
    Epoch 21/30
    1/1 [===
                           ======] - 0s 36ms/step - loss: 0.0148 - val_loss: 0.0157
    Epoch 22/30
    1/1 [=====
                     ========] - 0s 39ms/step - loss: 0.0148 - val_loss: 0.0155
    Epoch 23/30
    1/1 [=====
                            =====] - 0s 38ms/step - loss: 0.0148 - val_loss: 0.0152
    Epoch 24/30
    1/1 [==
                             =====] - 0s 37ms/step - loss: 0.0147 - val_loss: 0.0150
    Epoch 25/30
                    ========] - 0s 38ms/step - loss: 0.0147 - val_loss: 0.0149
    1/1 [======
    Epoch 26/30
                               ===] - 0s 34ms/step - loss: 0.0147 - val_loss: 0.0148
    1/1 [==
    Epoch 27/30
    1/1 [=====
                      ========] - 0s 41ms/step - loss: 0.0147 - val_loss: 0.0147
    Epoch 28/30
                               ==] - 0s 35ms/step - loss: 0.0147 - val_loss: 0.0146
    1/1 [==
    Epoch 29/30
                       =======] - 0s 35ms/step - loss: 0.0147 - val_loss: 0.0146
    1/1 [======
    Epoch 30/30
    1/1 [=====
                        =======] - 0s 36ms/step - loss: 0.0147 - val loss: 0.0146
```

```
1/1 [-----] - 03 105m3/3tep
```

```
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))

# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt_figure(figsize=(10, 6))
```

```
test_years = new_data.index[split_idx+seq_length:]

plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.title('Actual vs Predicted Yield')
plt.ticgend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
plt.show()
```


2026

Year

Transfer learning 2

2.0

2015

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model, Sequential
from keras.layers import LSTM, Dense
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
base_model = load_model(saved_model_path)
# Freeze all layers except the last one
for layer in base_model.layers[:]:
    layer.trainable = True
# Create a new model and add layers on top of the base model
model_2 = Sequential()
model_2.add(base_model)
model_2.add(Dense(200, activation='relu'))
model_2.add(Dense(200, activation='relu'))
model_2.add(Dense(1))
# Compile the new model
model_2.compile(optimizer='adam', loss='mse')
# Load your new dataset
new_file_path = 'Nagaon_rice_cleaned_data.csv' # Replace with your new dataset file path
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
# Create sequences
def create_sequences(data, seq_length):
    xs = []
    ys = []
    for i in range(len(data)-seq_length):
        x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
        ys.append(y)
    return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.7 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_{\text{train\_reshaped}} = X_{\text{train\_reshape}}((X_{\text{train\_shape}}[0], X_{\text{train\_shape}}[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Train the new model (fine-tuning)
history = model_2.fit(X_train_reshaped, y_train, epochs=50, validation_data=(X_test_reshaped, y_test), verbose=1)
# Make predictions
y_pred = model_2.predict(X_test_reshaped)
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
```

plt.show()

```
==] - 2s 2s/step - loss: 0.2345 - val_loss: 0.5049
   Epoch 2/50
   1/1 [=====
                     =========] - 0s 39ms/step - loss: 0.1838 - val_loss: 0.3947
   Epoch 3/50
                                ==] - 0s 40ms/step - loss: 0.1402 - val_loss: 0.3002
   1/1 [===
   Epoch 4/50
   1/1 [=
                                 == 1 - 0s 41ms/step - loss: 0.1040 - val loss: 0.2202
   Epoch 5/50
                                   - 0s 40ms/step - loss: 0.0744 - val loss: 0.1532
   1/1 [===
   Epoch 6/50
   1/1 [==
                                ===] - 0s 44ms/step - loss: 0.0507 - val_loss: 0.0994
   Epoch 7/50
   1/1 [======
                   -----] - 0s 39ms/step - loss: 0.0328 - val_loss: 0.0578
   Epoch 8/50
   1/1 [=====
                      ========] - 0s 40ms/step - loss: 0.0208 - val_loss: 0.0297
   Epoch 9/50
   1/1 [=====
                      ========] - 0s 39ms/step - loss: 0.0150 - val_loss: 0.0152
   Epoch 10/50
                                ==] - 0s 38ms/step - loss: 0.0152 - val_loss: 0.0124
   1/1 [=====
   Epoch 11/50
   1/1 [=====
                      ========] - 0s 38ms/step - loss: 0.0202 - val_loss: 0.0168
   Epoch 12/50
   1/1 [======
                                ==] - 0s 44ms/step - loss: 0.0273 - val_loss: 0.0225
   Epoch 13/50
   1/1 [======
                    =========] - 0s 40ms/step - loss: 0.0331 - val_loss: 0.0255
   Epoch 14/50
   1/1 [======
                      ========] - 0s 39ms/step - loss: 0.0358 - val_loss: 0.0247
   Epoch 15/50
   Epoch 16/50
   1/1 [============ ] - 0s 42ms/step - loss: 0.0318 - val loss: 0.0167
   Epoch 17/50
   1/1 [=====
                          =======] - 0s 41ms/step - loss: 0.0272 - val_loss: 0.0134
   Epoch 18/50
                     ========] - 0s 42ms/step - loss: 0.0226 - val_loss: 0.0122
   1/1 [======
   Epoch 19/50
   1/1 [=====
                          =======] - 0s 39ms/step - loss: 0.0187 - val_loss: 0.0137
   Epoch 20/50
   1/1 [======
                 =============== ] - 0s 38ms/step - loss: 0.0160 - val_loss: 0.0176
   Epoch 21/50
   1/1 [======
                  ========== ] - 0s 38ms/step - loss: 0.0146 - val_loss: 0.0233
   Epoch 22/50
   Epoch 23/50
   1/1 [=====
                       ========] - 0s 39ms/step - loss: 0.0150 - val_loss: 0.0365
   Epoch 24/50
   1/1 [=====
                         =======] - 0s 43ms/step - loss: 0.0160 - val_loss: 0.0424
   Epoch 25/50
   1/1 [=====
                     Epoch 26/50
                                ==] - 0s 40ms/step - loss: 0.0181 - val loss: 0.0501
   1/1 [==
   Epoch 27/50
   Epoch 28/50
                                ==] - 0s 36ms/step - loss: 0.0191 - val_loss: 0.0510
   1/1 [=
   Epoch 29/50
   1/1 [======
                   =========] - 0s 39ms/step - loss: 0.0189 - val_loss: 0.0490
   Epoch 30/50
   1/1 [==
                                ==] - 0s 40ms/step - loss: 0.0184 - val_loss: 0.0458
   Epoch 31/50
                                ==] - 0s 41ms/step - loss: 0.0177 - val_loss: 0.0418
   1/1 [==
   Epoch 32/50
   1/1 [======
                      ========] - 0s 39ms/step - loss: 0.0168 - val_loss: 0.0373
   Epoch 33/50
   1/1 [===
                              =====] - 0s 37ms/step - loss: 0.0159 - val loss: 0.0327
   Epoch 34/50
   1/1 [=====
                       =======] - 0s 38ms/step - loss: 0.0152 - val_loss: 0.0283
   Epoch 35/50
   1/1 [==
                                ==] - 0s 40ms/step - loss: 0.0146 - val_loss: 0.0245
   Epoch 36/50
                                   - 0s 41ms/step - loss: 0.0144 - val loss: 0.0214
   1/1 [==:
   Epoch 37/50
   1/1 [=
                                 ≔] - 0s 40ms/step - loss: 0.0143 - val_loss: 0.0189
   Epoch 38/50
   1/1 [===
                              Epoch 39/50
   1/1 [======
                     ========] - 0s 39ms/step - loss: 0.0148 - val_loss: 0.0160
   Epoch 40/50
                                   - 0s 40ms/step - loss: 0.0151 - val_loss: 0.0153
   1/1 [=
   Epoch 41/50
   1/1 [=====
                       ========] - 0s 50ms/step - loss: 0.0154 - val_loss: 0.0151
   Epoch 42/50
                                 =] - 0s 39ms/step - loss: 0.0155 - val loss: 0.0152
   1/1 [=
   Epoch 43/50
                          =======] - 0s 37ms/step - loss: 0.0154 - val_loss: 0.0157
   1/1 [====
   Epoch 44/50
   1/1 [==
                              =====] - 0s 40ms/step - loss: 0.0152 - val_loss: 0.0165
   Epoch 45/50
                     =========] - 0s 42ms/step - loss: 0.0150 - val_loss: 0.0176
   1/1 [=====
```

```
Epoch 46/50
1/1 [==:
                       =======] - 0s 39ms/step - loss: 0.0147 - val_loss: 0.0190
Epoch 47/50
                                - 0s 39ms/step - loss: 0.0145 - val_loss: 0.0207
1/1 [===
Epoch 48/50
                             ==] - 0s 38ms/step - loss: 0.0144 - val_loss: 0.0224
1/1 [=
Epoch 49/50
               1/1 [======
Epoch 50/50
                                - 0s 40ms/step - loss: 0.0143 - val_loss: 0.0259
- 0s 200ms/step
1/1 [=
1/1 [===
```


model_2.summary()

→ Model: "sequential_1"

Layer (type)	Output Shape	Param #
sequential (Sequential)	(None, 1)	10451
dense_1 (Dense)	(None, 200)	400
dense_2 (Dense)	(None, 200)	40200
dense_3 (Dense)	(None, 1)	201
=======================================		==========

Total params: 51252 (200.20 KB) Trainable params: 51252 (200.20 KB) Non-trainable params: 0 (0.00 Byte)

model.summary()

→ Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 50)	10400
dense (Dense)	(None, 1)	51

Total params: 10451 (40.82 KB)

Trainable params: 10451 (40.82 KB) Non-trainable params: 0 (0.00 Byte)

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model, Model, Sequential
from keras.layers import Dense, Input
import matplotlib.pyplot as plt
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
base_model = load_model(saved_model_path)
# Remove the output layer of the base model
base_model_output = base_model.layers[-2].output
# Create a new model by adding new layers on top of the base model (excluding the last layer)
x = Dense(200, activation='relu')(base_model_output)
x = Dense(200, activation='relu')(x)
output = Dense(1)(x)
model_2 = Model(inputs=base_model.input, outputs=output)
# Freeze all layers in the base model except the second-to-last layer
for layer in base_model.layers[:-2]:
    layer.trainable = False
# Compile the new model
model_2.compile(optimizer='adam', loss='mse')
# Load your new dataset
new_file_path = 'Nagaon_rice_cleaned_data.csv' # Replace with your new dataset file path
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
# Create sequences
def create_sequences(data, seq_length):
    xs = []
    ys = []
    for i in range(len(data)-seq_length):
        x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
        ys.append(y)
    return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.8 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_{\text{train\_reshaped}} = X_{\text{train\_reshape}}((X_{\text{train\_shape}}[0], X_{\text{train\_shape}}[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Train the new model (fine-tuning)
history = model_2.fit(X_train_reshaped, y_train, epochs=100, validation_data=(X_test_reshaped, y_test), verbose=1)
# Make predictions
y_pred = model_2.predict(X_test_reshaped)
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
```

plt.show()

```
→ Epoch 1/100
  Epoch 2/100
                       =====] - 0s 67ms/step - loss: 0.1933 - val loss
  1/1 [==:
  Epoch 3/100
  1/1 [=====
                     :======] - 0s 62ms/step - loss: 0.1389 - val loss
  Epoch 4/100
  1/1 [========== ] - 0s 82ms/step - loss: 0.0957 - val_loss
  Epoch 5/100
                         ==] - 0s 85ms/step - loss: 0.0617 - val_loss
  Epoch 6/100
  1/1 [=====
               ========= ] - 0s 79ms/step - loss: 0.0364 - val_loss
  Epoch 7/100
  1/1 [=====
                       =====] - 0s 87ms/step - loss: 0.0204 - val loss
  Epoch 8/100
  Epoch 9/100
  1/1 [=====
                    =======] - 0s 74ms/step - loss: 0.0162 - val_loss
  Epoch 10/100
  1/1 [======
              Epoch 11/100
  1/1 [======
              ========= ] - 0s 70ms/step - loss: 0.0324 - val_loss
  Epoch 12/100
  Epoch 13/100
  Epoch 14/100
  1/1 [======
                   =======] - 0s 80ms/step - loss: 0.0345 - val_loss
  Epoch 15/100
  1/1 [======
                =========] - 0s 72ms/step - loss: 0.0291 - val_loss
  Epoch 16/100
  1/1 [=====
                  ========] - 0s 68ms/step - loss: 0.0233 - val_loss
  Epoch 17/100
  1/1 [=======
               Epoch 18/100
  1/1 [=======
               Epoch 19/100
  Epoch 20/100
  1/1 [======
                  ========] - 0s 76ms/step - loss: 0.0140 - val_loss
  Epoch 21/100
  1/1 [=====
                    =======] - 0s 79ms/step - loss: 0.0151 - val_loss
  Epoch 22/100
  1/1 [======
                =========] - 0s 79ms/step - loss: 0.0166 - val_loss
  Epoch 23/100
                    =======] - 0s 74ms/step - loss: 0.0180 - val loss
  1/1 [======
  Epoch 24/100
  Epoch 25/100
  1/1 [==
                        ====] - 0s 79ms/step - loss: 0.0195 - val_loss
  Epoch 26/100
  1/1 [======
               =========] - 0s 68ms/step - loss: 0.0194 - val_loss
  Epoch 27/100
  1/1 [==
                         ===] - 0s 69ms/step - loss: 0.0188 - val_loss
  Epoch 28/100
                        ====] - 0s 71ms/step - loss: 0.0178 - val_loss
  1/1 [=====
  Epoch 29/100
```

model_2.summary()

→ Model: "model"

Layer (type)	Output Shape	Param #
lstm_input (InputLayer)	[(None, 3, 1)]	0
lstm (LSTM)	(None, 50)	10400
dense_4 (Dense)	(None, 200)	10200
dense_5 (Dense)	(None, 200)	40200
dense_6 (Dense)	(None, 1)	201

Total params: 61001 (238.29 KB) Trainable params: 61001 (238.29 KB) Non-trainable params: 0 (0.00 Byte)

model_2.save('rice_yield_lstm_model_2.h5')

^{🚁 /}usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an saving_api.save_model(

```
# Compute MAE on the test set
mae = np.mean(np.abs(y_test_inverse - y_pred_inverse))
print(f'Mean Absolute Error on the test set: {mae:.4f}')

The Mean Absolute Error on the test set: 0.2067
```

Transfer Learning Nagaon Original

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model, Model
from keras.layers import Dense
{\tt import\ matplotlib.pyplot\ as\ plt}
from keras.metrics import MeanAbsoluteError
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
base_model = load_model(saved_model_path)
# Remove the output layer of the base model
base_model_output = base_model.layers[-2].output
# Create a new model by adding new layers on top of the base model (excluding the last layer)
x = Dense(200, activation='relu')(base_model_output)
x = Dense(200, activation='relu')(x)
output = Dense(1)(x)
model_2 = Model(inputs=base_model.input, outputs=output)
# Freeze all layers in the base model except the second-to-last layer
for layer in base_model.layers[:-2]:
    layer.trainable = False
# Compile the new model with MAE metric
model_2.compile(optimizer='adam', loss='mse', metrics=[MeanAbsoluteError()])
# Load your new dataset
new_file_path = 'Nagaon_rice_cleaned_data.csv' # Replace with your new dataset file path
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
# Create sequences
def create_sequences(data, seq_length):
    xs = []
    ys = []
    for i in range(len(data)-seq_length):
       x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
        vs.append(v)
    return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.7 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_train_reshaped = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Train the new model (fine-tuning)
history = model_2.fit(X_train_reshaped, y_train, epochs=8, validation_data=(X_test_reshaped, y_test), verbose=1)
# Make predictions
y_pred = model_2.predict(X_test_reshaped)
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
# Compute MAE on the test set
mae = np.mean(np.abs(y_test_inverse - y_pred_inverse))
print(f'Mean Absolute Error on the test set: {mae:.4f}')
# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
```

```
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
plt.show()
# Plot training & validation loss and MAE
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
ax1.plot(history.history['loss'], label='Training Loss')
ax1.plot(history.history['val_loss'], label='Validation Loss')
ax1.set_title('Training and Validation Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss (MSE)')
ax1.legend()
# MAE plot
ax2.plot(history.history['mean_absolute_error'], label='Training MAE')
ax2.plot(history.history['val_mean_absolute_error'], label='Validation MAE')
ax2.set_title('Training and Validation MAE')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Mean Absolute Error')
ax2.legend()
plt.tight_layout()
plt.show()
```


model_2.save('model_3.h5')

/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py:3103: UserWarning: You are saving your model as an saving_api.save_model(

Preprocessing

load the data
raw_df = pd.read_excel("udaipur_rice.xls")
raw_df.to_csv('udaipur.csv', index=False)
raw_df

→ WARNING *** file size (16320) not 512 + multiple of sector size (512)

WAIN	Crop Production Statistics	Unnamed:	Unnamed:	Unnamed:	Unnamed:	Unnamed: 5
0	NaN	NaN	NaN	NaN	NaN	NaN
1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
2	Rajasthan	NaN	NaN	NaN	NaN	NaN
3	Rice	NaN	NaN	NaN	NaN	NaN
4	1.UDAIPUR	1997-98	Kharif	10200	8700	0.852941
5	NaN	1998-99	Kharif	8444	5257	0.622572
6	NaN	1999-00	Kharif	6452	2877	0.445908
7	NaN	2000-01	Kharif	5879	1663	0.282871
8	NaN	2001-02	Kharif	6272	7038	1.12213
9	NaN	2002-03	Kharif	3683	880	0.238936
10	NaN	2003-04	Kharif	5141	6070	1.180704
11	NaN	2004-05	Kharif	5564	4165	0.748562
12	NaN	2005-06	Kharif	5785	4477	0.773898
13	NaN	2006-07	Kharif	6175	5725	0.927126
14	NaN	2007-08	Kharif	5759	4256	0.739017
15	NaN	2008-09	Kharif	3689	2013	0.545676
16	NaN	2009-10	Kharif	4253	2594	0.609922
17	NaN	2010-11	Kharif	4881	5269	1.079492
18	NaN	2011-12	Kharif	5436	5676	1.04415
19	NaN	2012-13	Kharif	4710	4876	1.035244
20	NaN	2013-14	Kharif	4881	5596	1.146486
21	NaN	2014-15	Kharif	4855	5221	1.075386
22	NaN	2015-16	Kharif	4868	4667	0.95871
23	NaN	2016-17	Kharif	4864	5488	1.128289
24	NaN	2017-18	Kharif	5202	5937	1.141292
25	NaN	2018-19	Kharif	4641	4629	0.997414
26	NaN	2019-20	Kharif	4692	4721	1.006181

raw_df.columns = raw_df.iloc[1]
raw_df

		_
÷	→	÷

1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
0	NaN	NaN	NaN	NaN	NaN	NaN
1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
2	Rajasthan	NaN	NaN	NaN	NaN	NaN
3	Rice	NaN	NaN	NaN	NaN	NaN
4	1.UDAIPUR	1997- 98	Kharif	10200	8700	0.852941
5	NaN	1998- 99	Kharif	8444	5257	0.622572
6	NaN	1999- 00	Kharif	6452	2877	0.445908
7	NaN	2000- 01	Kharif	5879	1663	0.282871
8	NaN	2001- 02	Kharif	6272	7038	1.12213
9	NaN	2002- 03	Kharif	3683	880	0.238936
10	NaN	2003- 04	Kharif	5141	6070	1.180704
11	NaN	2004- 05	Kharif	5564	4165	0.748562
12	NaN	2005- 06	Kharif	5785	4477	0.773898
13	NaN	2006- 07	Kharif	6175	5725	0.927126
14	NaN	2007- 08	Kharif	5759	4256	0.739017
15	NaN	2008- 09	Kharif	3689	2013	0.545676
16	NaN	2009- 10	Kharif	4253	2594	0.609922
17	NaN	2010- 11	Kharif	4881	5269	1.079492
18	NaN	2011- 12	Kharif	5436	5676	1.04415

raw_df.dropna(subset=['Yield (Tonnes/Hectare)'], inplace=True)
raw_df

-	-	_
-	→	$\overline{}$

1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
4	1.UDAIPUR	1997- 98	Kharif	10200	8700	0.852941
5	NaN	1998- 99	Kharif	8444	5257	0.622572
6	NaN	1999- 00	Kharif	6452	2877	0.445908
7	NaN	2000- 01	Kharif	5879	1663	0.282871
8	NaN	2001- 02	Kharif	6272	7038	1.12213
9	NaN	2002- 03	Kharif	3683	880	0.238936
10	NaN	2003- 04	Kharif	5141	6070	1.180704
11	NaN	2004- 05	Kharif	5564	4165	0.748562
12	NaN	2005- 06	Kharif	5785	4477	0.773898
13	NaN	2006- 07	Kharif	6175	5725	0.927126
14	NaN	2007- 08	Kharif	5759	4256	0.739017
15	NaN	2008- 09	Kharif	3689	2013	0.545676
16	NaN	2009- 10	Kharif	4253	2594	0.609922
17	NaN	2010- 11	Kharif	4881	5269	1.079492
18	NaN	2011- 12	Kharif	5436	5676	1.04415

 $df = raw_df_drop(index = 1)$

df

	_		.,		Area	Production	Yield
	1	State/Crop/District	Year	Season	(Hectare)	(Tonnes)	
	4	1.UDAIPUR	1997- 98	Kharif	10200	8700	0.852941
	5	NaN	1998- 99	Kharif	8444	5257	0.622572
	6	NaN	1999- 00	Kharif	6452	2877	0.445908
	7	NaN	2000- 01	Kharif	5879	1663	0.282871
	8	NaN	2001- 02	Kharif	6272	7038	1.12213
	9	NaN	2002- 03	Kharif	3683	880	0.238936
	10	NaN	2003- 04	Kharif	5141	6070	1.180704
	11	NaN	2004- 05	Kharif	5564	4165	0.748562
	12	NaN	2005- 06	Kharif	5785	4477	0.773898
	13	NaN	2006- 07	Kharif	6175	5725	0.927126
	14	NaN	2007- 08	Kharif	5759	4256	0.739017
	15	NaN	2008- 09	Kharif	3689	2013	0.545676
	16	NaN	2009- 10	Kharif	4253	2594	0.609922
	17	NaN	2010- 11	Kharif	4881	5269	1.079492
	18	NaN	2011- 12	Kharif	5436	5676	1.04415
			0010				

df = df.drop(index = 27) df

_	1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
	4	1.UDAIPUR	1997- 98	Kharif	10200	8700	0.852941
	5	NaN	1998- 99	Kharif	8444	5257	0.622572
	6	NaN	1999- 00	Kharif	6452	2877	0.445908
	7	NaN	2000- 01	Kharif	5879	1663	0.282871
	8	NaN	2001- 02	Kharif	6272	7038	1.12213
	9	NaN	2002- 03	Kharif	3683	880	0.238936
	10	NaN	2003- 04	Kharif	5141	6070	1.180704
	11	NaN	2004- 05	Kharif	5564	4165	0.748562
	12	NaN	2005- 06	Kharif	5785	4477	0.773898
	13	NaN	2006- 07	Kharif	6175	5725	0.927126
	14	NaN	2007- 08	Kharif	5759	4256	0.739017
	15	NaN	2008- 09	Kharif	3689	2013	0.545676
	16	NaN	2009- 10	Kharif	4253	2594	0.609922
	17	NaN	2010- 11	Kharif	4881	5269	1.079492
	18	NaN	2011-	Kharif	5436	5676	1.04415

df['Year'] = df['Year'].fillna(method='ffill')
df

	_	_
-	۷	÷
-	7	J.

1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
4	1.VILLUPURAM	1998- 99	Kharif	156618	539236	3.443001
5	NaN	1999- 00	Kharif	142737	488497	3.422357
6	NaN	2000- 01	Kharif	141767	498417	3.515748
7	NaN	2001- 02	Kharif	155555	561130	3.607277
8	NaN	2002- 03	Kharif	80630	241287	2.992521
9	NaN	2003- 04	Kharif	75279	234750	3.1184
10	NaN	2004- 05	Kharif	163696	525850	3.212357
11	NaN	2005- 06	Kharif	168435	511931	3.039339
12	NaN	2006- 07	Kharif	144783	496113	3.426597
13	NaN	2007- 08	Kharif	145403	480329	3.303433
14	NaN	2008- 09	Kharif	146641	451139	3.076486
15	NaN	2009- 10	Kharif	148454	467831	3.151353
16	NaN	2010- 11	Kharif	149929	512013	3.415036
17	NaN	2011- 12	Kharif	129858	471615	3.631775
18	NaN	2012- 13	Kharif	115591	396530	3.430457
19	NaN	2013- 14	Kharif	170443	796608	4.67375
20	NaN	2014- 15	Kharif	171478	832585	4.855346
21	NaN	2015- 16	Kharif	182303	773313	4.24191
22	NaN	2016- 17	Kharif	95560	354198	3.706551
		2017-				

```
df = df.drop(index = 23)
df = df.drop(index = 24)
df = df.drop(index = 25)
df = df.drop(index = 27)
df = df.drop(index = 28)
df = df.drop(index = 29)
df = df.drop(index = 31)
df = df.drop(index = 32)
df = df.drop(index = 33)
df
```

1	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	Yield (Tonnes/Hectare)
4	1.VILLUPURAM	1998- 99	Kharif	156618	539236	3.443001
5	NaN	1999- 00	Kharif	142737	488497	3.422357
6	NaN	2000- 01	Kharif	141767	498417	3.515748
7	NaN	2001- 02	Kharif	155555	561130	3.607277
8	NaN	2002- 03	Kharif	80630	241287	2.992521
9	NaN	2003- 04	Kharif	75279	234750	3.1184
10	NaN	2004- 05	Kharif	163696	525850	3.212357
11	NaN	2005- 06	Kharif	168435	511931	3.039339
12	NaN	2006- 07	Kharif	144783	496113	3.426597
13	NaN	2007- 08	Kharif	145403	480329	3.303433
14	NaN	2008- 09	Kharif	146641	451139	3.076486
15	NaN	2009- 10	Kharif	148454	467831	3.151353
16	NaN	2010- 11	Kharif	149929	512013	3.415036
17	NaN	2011- 12	Kharif	129858	471615	3.631775

newdf = df.reset_index()
newdf

	⇁	_
-	→	$\overline{}$

1	index	State/Crop/District	Year	Season	Area (Hectare)	Production (Tonnes)	(Tonnes/He
0	4	1.UDAIPUR	1997- 98	Kharif	10200	8700	
1	5	NaN	1998- 99	Kharif	8444	5257	t
2	6	NaN	1999- 00	Kharif	6452	2877	t
3	7	NaN	2000- 01	Kharif	5879	1663	t
4	8	NaN	2001- 02	Kharif	6272	7038	
5	9	NaN	2002- 03	Kharif	3683	880	t
6	10	NaN	2003- 04	Kharif	5141	6070	
7	11	NaN	2004- 05	Kharif	5564	4165	ı
8	12	NaN	2005- 06	Kharif	5785	4477	t
9	13	NaN	2006- 07	Kharif	6175	5725	(
10	14	NaN	2007- 08	Kharif	5759	4256	(
11	15	NaN	2008- 09	Kharif	3689	2013	ı
12	16	NaN	2009- 10	Kharif	4253	2594	t
13	17	NaN	2010- 11	Kharif	4881	5269	
14	18	NaN	2011-	Kharif	5436	5676	

df = newdf.drop(['index', 'Season', 'Area (Hectare)', 'Production (Tonnes)', 'State/Crop/District'], axis=1) # df.columns i
df

	_	_		
		٠,		

1	Year	Yield	(Tonnes/Hectare)
0	1997-98		0.852941
1	1998-99		0.622572
2	1999-00		0.445908
3	2000-01		0.282871
4	2001-02		1.12213
5	2002-03		0.238936
6	2003-04		1.180704
7	2004-05		0.748562
8	2005-06		0.773898
9	2006-07		0.927126
10	2007-08		0.739017
11	2008-09		0.545676
12	2009-10		0.609922
13	2010-11		1.079492
14	2011-12		1.04415
15	2012-13		1.035244
16	2013-14		1.146486
17	2014-15		1.075386
18	2015-16		0.95871
19	2016-17		1.128289
20	2017-18		1.141292
21	2018-19		0.997414
22	2019-20		1.006181

```
df['Year'] = (pd.to_datetime(df['Year'].str.split('-', expand=True)[0])).dt.year
df.set_index('Year', inplace=True)
df = df.astype('float32')
df
```

<ipython-input-132-e51455692f2a>:1: UserWarning: Could not infer format, so e
 df['Year'] = (pd.to_datetime(df['Year'].str.split('-', expand=True)[0])).dt

1 Yield (Tonnes/Hectare)

Year	
1997	0.852941
1998	0.622572
1999	0.445908
2000	0.282871
2001	1.122130
2002	0.238936
2003	1.180704
2004	0.748562
2005	0.773898
2006	0.927126
2007	0.739017
2008	0.545676
2009	0.609922
2010	1.079492
2011	1.044150
2012	1.035244
2013	1.146486
2014	1.075386
2015	0.958710
2016	1.128289
2017	1.141292
2018	0.997414
2019	1.006181

```
# preprocessing
raw_df.columns = raw_df.iloc[1]
raw_df.dropna(subset=['Yield (Tonnes/Hectare)'], inplace=True)
raw_df['Year'] = raw_df['Year'].fillna(method='ffill')
df = raw_df.drop(index = 1)
df = df.drop(index = 35)
filtered_df = df[df['Season'].str.contains('Total')]
newdf = filtered_df.reset_index()
df = newdf.drop(['index', 'Season', 'Area (Hectare)', 'Production (Tonnes)'], axis=1) # df.columns is zero-based pd.Index
df['Year'] = (pd.to_datetime(df['Year'].str.split('-', expand=True)[0])).dt.year
df.set_index('Year', inplace=True)
df = df.astype('float32')
df = df.drop(['State/Crop/District'], axis = 1)
df
```

<ipython-input-77-03c743d1bb2b>:10: UserWarning: Could not infer format, so e
 df['Year'] = (pd.to_datetime(df['Year'].str.split('-', expand=True)[0])).dt

1 Yield (Tonnes/Hectare)

Year	
2017	4.297967
2018	4.489400
2019	4.175825

```
df.plot(figsize=(12, 6))
```


df.to_csv('udaipur_rice_cleaned_data.csv')

Transfer Learning for Marigaon

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model, Model
from keras.layers import Dense
import matplotlib.pyplot as plt
from keras.metrics import MeanAbsoluteError
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
base_model = load_model(saved_model_path)
# Remove the output layer of the base model
base_model_output = base_model.layers[-2].output
# Create a new model by adding new layers on top of the base model (excluding the last layer)
x = Dense(200, activation='relu')(base_model_output)
x = Dense(200, activation='relu')(x)
output = Dense(1)(x)
model_2 = Model(inputs=base_model.input, outputs=output)
# Freeze all layers in the base model except the second-to-last layer
for layer in base_model.layers[:-2]:
    layer.trainable = False
# Compile the new model with MAE metric
model_2.compile(optimizer='adam', loss='mse', metrics=[MeanAbsoluteError()])
# Load your new dataset
new_file_path = 'Marigaon_rice_cleaned_data.csv' # Replace with your new dataset file path
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
# Create sequences
def create_sequences(data, seq_length):
    xs = []
    ys = []
    for i in range(len(data)-seq_length):
       x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
        vs.append(v)
    return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.7 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_train_reshaped = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Train the new model (fine-tuning)
history = model_2.fit(X_train_reshaped, y_train, epochs=8, validation_data=(X_test_reshaped, y_test), verbose=1)
# Make predictions
y_pred = model_2.predict(X_test_reshaped)
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
# Compute MAE on the test set
mae = np.mean(np.abs(y_test_inverse - y_pred_inverse))
print(f'Mean Absolute Error on the test set: {mae:.4f}')
# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
```

```
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
plt.show()
# Plot training & validation loss and MAE
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
ax1.plot(history.history['loss'], label='Training Loss')
ax1.plot(history.history['val_loss'], label='Validation Loss')
ax1.set_title('Training and Validation Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss (MSE)')
ax1.legend()
# MAE plot
ax2.plot(history.history['mean_absolute_error'], label='Training MAE')
ax2.plot(history.history['val_mean_absolute_error'], label='Validation MAE')
ax2.set_title('Training and Validation MAE')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Mean Absolute Error')
ax2.legend()
plt.tight_layout()
plt.show()
```


× ⁻	Transfer	Learning	for	Jorhat
----------------	----------	----------	-----	---------------

```
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model, Model
from keras.layers import Dense
{\tt import\ matplotlib.pyplot\ as\ plt}
from keras.metrics import MeanAbsoluteError
# Load the saved model
saved_model_path = 'rice_yield_lstm_model.h5'
base_model = load_model(saved_model_path)
# Remove the output layer of the base model
base_model_output = base_model.layers[-2].output
# Create a new model by adding new layers on top of the base model (excluding the last layer)
x = Dense(200, activation='relu')(base_model_output)
x = Dense(200, activation='relu')(x)
output = Dense(1)(x)
model_2 = Model(inputs=base_model.input, outputs=output)
# Freeze all layers in the base model except the second-to-last layer
for layer in base_model.layers[:-2]:
    layer.trainable = False
# Compile the new model with MAE metric
model_2.compile(optimizer='adam', loss='mse', metrics=[MeanAbsoluteError()])
# Load your new dataset
new_file_path = 'Jorhat_rice_cleaned_data.csv' # Replace with your new dataset file path
new_data = pd.read_csv(new_file_path)
# Data Preprocessing
new_data['Year'] = pd.to_datetime(new_data['Year'])
new_data.set_index('Year', inplace=True)
scaler = MinMaxScaler(feature_range=(0, 1))
new_data['Yield (Tonnes/Hectare)'] = scaler.fit_transform(new_data[['Yield (Tonnes/Hectare)']])
# Create sequences
def create_sequences(data, seq_length):
    xs = []
    ys = []
    for i in range(len(data)-seq_length):
       x = data[i:i+seq_length]
        y = data[i+seq_length]
        xs.append(x)
        vs.append(v)
    return np.array(xs), np.array(ys)
seq_length = 3
data = new_data['Yield (Tonnes/Hectare)'].values
X, y = create_sequences(data, seq_length)
split_idx = int(0.7 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
# Reshape the data
X_train_reshaped = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_reshaped = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# Train the new model (fine-tuning)
history = model_2.fit(X_train_reshaped, y_train, epochs=8, validation_data=(X_test_reshaped, y_test), verbose=1)
# Make predictions
y_pred = model_2.predict(X_test_reshaped)
# Inverse transform the predictions and the true values
y_pred_inverse = scaler.inverse_transform(y_pred)
y_test_inverse = scaler.inverse_transform(y_test.reshape(-1, 1))
# Compute MAE on the test set
mae = np.mean(np.abs(y_test_inverse - y_pred_inverse))
print(f'Mean Absolute Error on the test set: {mae:.4f}')
# Plot the results based on years
test_years = new_data.index[split_idx+seq_length:]
plt.figure(figsize=(10, 6))
plt.plot(test_years, y_test_inverse, color='blue', label='Actual Yield')
plt.plot(test_years, y_pred_inverse, color='red', linestyle='dashed', label='Predicted Yield')
plt.xlabel('Year')
```

```
plt.ylabel('Yield (Tonnes/Hectare)')
plt.title('Actual vs Predicted Yield')
plt.legend()
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.tight_layout() # Adjust layout to prevent clipping of labels
plt.show()
# Plot training & validation loss and MAE
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
ax1.plot(history.history['loss'], label='Training Loss')
ax1.plot(history.history['val_loss'], label='Validation Loss')
ax1.set_title('Training and Validation Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss (MSE)')
ax1.legend()
# MAE plot
ax2.plot(history.history['mean_absolute_error'], label='Training MAE')
ax2.plot(history.history['val_mean_absolute_error'], label='Validation MAE')
ax2.set_title('Training and Validation MAE')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Mean Absolute Error')
ax2.legend()
plt.tight_layout()
plt.show()
```


