Übungen zur Einführung in die Geometrie und Topologie - Blatt 3

Uni Bonn, SS 2023

Aufgabe 9. Versehe $\mathbb{Q} \subseteq \mathbb{R}$ mit der Teilraumtopologie. Beweise oder widerlege:

- (a) Q ist lokal kompakt;
- (b) Q ist lokal zusammenhängend;
- (c) Jede Komponente von \mathbb{Q} besteht aus genau einem Punkt;
- (d) Die obige Topologie auf \mathbb{Q} ist diskret.

Aufgabe 10. Beweise oder widerlege, dass S^1 und S^n genau dann homöomorph sind, wenn n = 1 gilt.

Aufgabe 11. Sei $i: S^1 \to D^2$ die Inklusion und $p: S^1 \to \{*\}$ die Projektion. Konstruiere stetige Abbildungen $f: D^2 \to S^2$ und $j: \{*\} \to S^2$ derart, dass folgendes

Diagramm

$$S^{1} \xrightarrow{i} D^{2}$$

$$\downarrow f$$

$$\{*\} \xrightarrow{j} S^{2}$$

ein Pushout ist.

Aufgabe 12. Beweise oder widerlege, dass es in der Kategorie der endlich-dimensionalen Vektorräume sowohl Pushouts als auch Pullbacks gibt.