Logic for Computer Science - Week 2 The Syntax of Propositional Logic Tutorial Exercises

October 21, 2018

1. Recall the definition of the PL set from the lecture notes.

2. Consider the set $A = \{p, q, r, p_1, p', ...\}$ of propositional variables. Show that the following words are *propositional formulae* (i.e., element of PL), by explaining which are the construction steps (base case, respectively one of the three inductive steps):

(a)
$$\neg q$$
; (b) $(p_1 \land q)$; (c) $\neg (p \lor q)$; (d) $(\neg p \lor \neg q)$; (e) $\neg (\neg p \lor (q \land \neg q))$.

3. Show that the following words over the alphabet L are not elements of PL (hint: show that none of the four construction rules applies):

(a)
$$((\neg)q)$$
; (b) $q \land \neg$; (c) pq ; (d) $p \land q$; (e) $(p\neg q)$; (f) $(p) \land (q)$.

4. Which of the following are formulae (in PL) and which are not?

(a)
$$p_1$$
; (b) $p_1 \vee q_1$; (c) $(p_1 \vee q_1)$; (d) $(\neg p_1 \vee q_1)$; (e) $((\neg p_1) \vee q_1)$; (f) $(\neg p)$?

5. Recall the recursive definition of the function $subf: PL \to 2^{PL}$, which computes all subformulae of a formula.

6. Compute, using the function above, the set of subformulae of the following formulae:

(a)
$$((p \land \neg q) \land r)$$
; (b) $((p \lor \neg q) \land r)$; (c) $\neg ((p \lor \neg q) \land r)$.

7. Recall the recursive definition of the function $ast: PL \rightarrow Trees$, which computes the abstract syntax tree of a formula.

8. Compute the abstract syntax trees of the following formulae:

(a)
$$((p \land \neg q) \land r)$$
; (b) $((p \lor \neg q) \land r)$; (c) $\neg ((p \lor \neg q) \land r)$; (d) $(\neg (p \lor \neg q) \land r)$.

9. Recall the recursive definition of the function $height: PL \to \mathbb{N}$, which computes, given a formula, the height of its abstract syntax tree. Compute the height of the formulae above.

10. Recall the recursive definition of the function $size: PL \to \mathbb{N}$, which computes, given a formula, the number of nodes of its abstract syntax tree. Compute the size of the formulae above.

11. Recall the recursive definition of the function $prop: PL \to 2^A$, which computes, given a formula, the set of propositional variables occurring in the formula. Compute the set of propositional variables occurring in the formulae above.

12. Show by structural induction that
$$|prop(\varphi)| \leq size(\varphi)$$
 for any formula $\varphi \in PL$.