LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING OPTIMERING 2014-08-28 kl 14-19

Students may use the formula sheet and a pocket calculator. All solutions should be properly justified.

1. a) Find out whether the following system of inequalities has a solution (0.5)

$$\begin{cases} x_1 - 3x_2 + 2x_3 & \leq 0, \\ x_1 - 2x_2 + 4x_3 & \leq 0, \\ x_1 + 3x_2 - 3x_3 & \leq 0, \\ 6x_1 + x_2 - x_3 & > 0. \end{cases}$$

- b) Let f be a differentiable function on \mathbf{R}^n and $x, d \in \mathbf{R}^n$ be given vectors. Prove that if $\lambda_0 \in \mathbf{R}$ is a stationary point of $F(\lambda) = f(x + \lambda d)$ then the gradient $\nabla f(x + \lambda_0 d)$ is orthogonal to the vector d. (0.5)
- **2.** a) Let H be a positive definite 2×2 real matrix and $f(x) = x^T H x$. Which of the

following three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} at the point x_0 on the level curve (see Fig. 1) could be search directions for

- the Steepest Descent method?
- Newton's method?
- $\bullet\,$ the Conjugate Direction method?

(0.6)

- b) Which two of the vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are H-conjugate? (0.4)
- 3. a) Make a proper guess of a basic feasible solution to the LP problem

$$\min(3x_1 + 2x_2 - x_3) \quad \text{subject to} \begin{cases} 2x_1 + 3x_2 & \leq 5, \\ x_1 + 2x_2 - x_3 & \geq 1, \\ 2x_1 + 5x_2 - 3x_3 & = 2, \\ & \text{all } x_k \geq 0. \end{cases}$$

and solve it by the Simplex method (without Phase I). (0.5)

b) State the dual problem and solve it by the CSP^1 . (0.5)

Please, turn over

 $^{^1}$ Complementary Slackness Principle

- **4.** a) Is the set $\{(x, y, z) : |x^2 + y^2 z| \le 1\}$ convex? (0.3)
 - b) Is the set $\{(x, y, z): \max\{x^2 + y^2 z, x^2 + y^2 + z\} \le 1\}$ convex? (0.3)
 - c) For what values of $\alpha \in \mathbf{R}$ is the function $f(x,y) = x^{\alpha}y$ convex on $\{(x,y)\colon x>0,y>0\}$? (0.4)
- 5. Solve the following problem by KKT method

min
$$2xy + 2yz + 2zx$$
 subject to $x^2 + y^2 \le 2$, $2x + 2y + z = 0$.

- **6.** a) Calculate the dual function for the Problem 5 using the set $X = \mathbb{R}^3$, solve the dual problem and explain how to solve the Problem 5 by duality. (0.6)
 - b) Let A be a $m \times n$ matrix with rank n and $b \in \mathbf{R}^m$. Prove that the minimum for f(x) = ||Ax b|| is given by the normal equation. (0.4)

GOOD LUCK!