Laboratório de Sistemas Digitais Aula Teórico-Prática 1

Ano Letivo 2020/21

Introdução às FPGA, ferramentas de projeto e *kit* de desenvolvimento

Conteúdo

- Breve introdução às FPGA
 - Arquitetura básica
 - Fluxo e ferramentas de projeto
 - Placas de desenvolvimento
 - kit Terasic DE2-115 (usado nas aulas práticas)

FPGA – Field Programmable Gate Array

- De uma forma muito resumida é uma matriz de blocos lógicos interligados de modo inteligente.
- Podem ser reprogramados para a aplicação desejada.

FPGA – Field Programmable Gate Array

A arquitetura consiste em

- Blocos lógicos configuráveis
- Blocos de entrada/saída (I/O)
- Blocos de Comutação programáveis

LUT = Lookup table – Tabela de verdade: saída é determinada pela combinação das entradas.

Neste caso, a tabela contém 16 valores, pois existem 4 entradas (A, B, C, D)

FPGA – Field Programmable Gate Array

- Blocos lógicos configuráveis
 - Constituídos por blocos de memória LUT (Look-Up Table), que implementa uma função lógica, por flip-flops e lógica combinatória.
- Blocos de entrada/saída (I/O)
 - São basicamente buffers, que funcionarão como um pino bidirecional de entrada e saída da FPGA
- Blocos de Comutação programáveis
 - Trilhas/linhas utilizadas para conectar os CLBS e blocos I/O. O processo de escolha das interligações é chamado de roteamento.

Um circuito pode ser constituído por vários blocos lógicos, blocos de comutação/interligação e blocos de entrada/saída

Circuitos Combinatórios com LUTs

Exemplo: somador de 2 bits com detecção de soma nula (S1=0 e S0=0) Z = S1'. S0'

A٥

B٥

1-bit

Adder

A1 B1

1-bit

Adder

Adaptação do Circuito para Implementação com LUTs

Por vezes é necessário "replicar" lógica (absorvida pela LUT). Porquê?

Circuitos Combinatórios com LUTs

LUT1 (3 variáveis)

Α	В	Cin	S	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

LUT2 (3 variáveis)

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

LUT3 (2 entradas)

S1	S0	Z
0	0	1
0	1	0
1	0	0
1	1	0

Mapeamento em LUTs realizado pela ferramentas de implementação

Como implementar uma LUT de 2 ou 3 entradas a partir de uma de 4 entradas?

Posicionamento e Interligação de LUTs (e Logic Blocks) nas FPGAs

FPGA Design Flow

- Design entry baseado em:
 - Linguagens de descrição de hardware
 - Diagramas esquemáticos
 - Diagramas de estado

Síntese Lógica (Synthesis)

- Resulta numa netlist (i.e. nos componentes de hardware e suas interconexões) que implementam o comportamento e a estrutura modeladas
- Resultado
 - Netlist
 - Estimativas de desempenho do circuito e recursos lógicos necessários

Implementação (Fit / Place and Route)

- Mapeia a netlist em primitivas da FPGA
- Posiciona as primitivas em localizações específicas da FPGA
- Realiza (encaminha) as interconexões entre as primitivas
- Resultados
 - Ficheiro de configuração da FPGA
 - Relatório sobre os recursos utilizados da FPGA, tempos de atraso e outras métricas (consumo energético, ...)

Programação do Dispositivo (FPGA)

- Transfere o ficheiro de configuração para a FPGA
 - Realizada através de software e de um cabo de programação adequado
 - FPGA
 normalmente
 baseada em SRAM
 (configuração
 volátil)
 - Existem também soluções não voláteis baseadas em memórias FLASH

Placas de Desenvolvimento com FPGAs

O Kit Terasic DE2-115

Diagrama de Blocos do Kit

Alguns Dispositivos do Kit (botões, interruptores e LEDs)

Comentários Finais

- No final da primeira semana de aulas de LSD, deverá ser capaz de:
 - Saber o que é uma FPGA, conhecer em traços gerais a sua arquitetura interna típica e descrever os passos principais do fluxo de projeto
- Mais informação sobre as aulas práticas, kit com FPGA e ferramentas de projeto no site da UC
 - elearning.ua.pt