Naloga 2.2: Kompleksni diagram I

Izračunane vektorje tokov in fluksov iz naloge 1.1 nariši v kompleksnem diagramu.

- 1. Izris boste opravili v **Matlab**-u. Napisali boste skripto, ki bo samodejno izračunala zahtevane vrednosti.
 - ☐ V zavihku **Editor** kliknite na **New**.
 - □ Datoteko shranite v svoj direktorij preko zavihka **Editor** in gumba **Save**.
 - ☐ Ime skripte naj bo naloga_1_2.
- Izris boste opravili na podlagi rezultatov iz naloge 1.1, zato takoj na začetek skripte dodamo ukaz naloga_1_1, ki samodejno požene omenjeno skripto.

Naloga 2.2: Kompleksni diagram II

3. Kljub temu, da govorimo o fazorjih, bomo pravzaprav izrisali vektorje zamrznjene v trenutku t=0. Ker želimo imeti vse vektorje dobro vidne na istem grafu, jih najprej normiramo. Tako bodo vsi imeli amplitudo blizu 1.

\sqsupset Vektor napetosti normiramo z amplitudo samega sebe $ \underline{\it U}$	s			
---	---	--	--	--

- \supset Vse vektorje toka normiramo z amplitudo $|\underline{I}_s|.$
- \square Vse vektorje fluksov normiramo z amplitudo $|\underline{\Psi}_s|$.

Naloga 2.2: Kompleksni diagram III

4.	Vektorje bomo izrisali s funkcijo compass().
	□ V ukazno vrstico vpišite help compass in preverite način uporabe funkcije.
	☐ Izrišite napetostni vektor v rdeči barvi.
	☐ Na konec vrstice dodajte ukaz hold on, ki bo poskrbel, da bo naslednji vektor izrisan na isti graf.
	☐ Ponovite postopek še za vektorje toka in fluksa.

Naloga 2.2: Kompleksni diagram IV

5.	Podrobno si oglejte vektorski diagram.
	\square Vsi magnetni sklepi so približno enako veliki in zaostajajo za $\underline{\mathcal{U}}_s$ za $pprox 90^\circ$.
	\square Vektorja \underline{I}_m in $\underline{\Psi}_m$ sta kolinerna.
	\square Računsko določite kot $arphi_r$ med $\underline{\Psi}_r$ in \underline{I}_r $arphi_r=$
	\square V skripti naloga_1_1 povečajte vrednosti L_{ss} in L_{sr} za
	10-krat. Ali se kot $arphi_r$ spremeni?
	\square Pri regulaciji koordinatah polja je referenčna koordinatna os d
	poravnana s $\underline{\Psi}_r$. S katerim tokom $(\underline{I}_s$ ali $\underline{I}_r)$ lahko vplivamo na
	magnetilno komponento stroja v stacionarnem stanju?

Naloga 2.2: Kompleksni diagram V

