Nar	me: Student ID:
PRO	BLEM SHEET 2 FOR ADVANCED MACHINE LEARNING (COMP6208)
is ea reada make	problem sheet asks you to prove some well known results. Although the algebra say the proofs are not entirely straightforward. There are marks assigned to the ability of the solution and also how well laid out and explained the steps you are. (A good proof needs to be easy to follow: you need not comment on trivial ora, but there should not be steps that are difficult to follow).
	looks very mathematical, but it helps to develop the tools and language that is to describe machine learning.
1	
(a)	Starting from the definition of a convex function
	$f(ax + (1-a)y) \le af(x) + (1-a)f(y), \text{ a \in [0, 1]}$ (1)
	Let $a = \epsilon/(x-y)$ and rearrange the inequality to give
	$(x-y)\left(rac{f(y+\epsilon)-f(y)}{\epsilon} ight)$
	on the left-hand side. Taking the limit $\epsilon \to 0$ show that the function $f(x)$ lies above the tangent line $t(x) = f(y) + (x-y)f'(y)$ going through the point y . [4 marks]

(b) Sketch the tangent line, t(x), at the point y in the graph shown below. [1 marks]

 $\overline{1}$

(c) Starting from the inequality for a convex function f

$$f(x) \ge f(y) + (x - y)f'(y) \tag{2}$$

consider the case $y=x+\epsilon$, then by Taylor expanding $f(x+\epsilon)$ and $f'(x+\epsilon)$ around x and keeping all terms up to order ϵ^2 show that for a convex function $f''(x) \geq 0$. [4 marks]

 $\overline{4}$

 $\overline{1}$

(d) Prove that x^4 is convex.

[1 marks]

__|

End of question 1

(a)
$$\frac{}{4}$$
 (b) $\frac{}{1}$ (c) $\frac{}{4}$ (d) $\frac{}{1}$ Total $\frac{}{10}$

(a)			It for that ${ m tr}{f A}{f B}={ m tr}{f E}$		
	(i.e. the trace of	a matrix is equal	to the sum of terms d	lown the diago	
				_	[2 marks]

(c) Consider the matrix $\mathbf{X}=(x_1,x_2,...,x_n)$ where the i^{th} column of \mathbf{X} is the vector x_i . Compute $\mathrm{tr}\,\mathbf{X}^\mathsf{T}\mathbf{X}$. [2 marks]

(d) The Frobenius norm, $\|\mathbf{X}\|_{F_{\bullet}}$ for a matrix \mathbf{X} is given by

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i,j} X_{ij}^2}$$

where $X_{\{i,j\}}$ is the (i,j) entry of X.

 $\overline{2}$

 $\overline{2}$

Using the previous result show that $\ \mathbf{X}\ _F^2 = \operatorname{tr} \mathbf{X}^T \mathbf{X}$	[2 marks]
D : II OVD V 11CV ^T I C 11 (S_1	<u> </u>
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, \frac{\mathbf{S_{-1}}}{x_n})$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	i (i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, \overset{\mathbf{S_{-1}}}{x_n})$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	i (i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, \frac{\mathbf{S}_i}{x_n})$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	i (i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, \overset{\mathbf{S}_{-1}}{x_n})$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	(i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, x_n)$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	(i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, x_n)$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	(i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, \overset{\mathbf{S}}{x_n})$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	(i.e. a diagonal e previous results [2 marks]
By using the SVD $\mathbf{X} = \mathbf{USV}^T$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, x_n)$ matrix where $S_{ii} = s_i$ —the i^{th} singular value) show using the that $\ \mathbf{X}\ _F^2 = \sum_i s_i^2$.	(i.e. a diagonal e previous results [2 marks]

End of question 2

(a)
$$\frac{}{2}$$
 (b) $\frac{}{2}$ (c) $\frac{}{2}$ (d) $\frac{}{2}$ (e) $\frac{}{2}$ Total $\frac{}{10}$

$$\|\mathbf{M}\|_{p} = \max_{x \neq 0} \frac{\|\mathbf{M}x\|_{p}}{\|x\|_{p}}$$
 (3)

$$= \max_{\boldsymbol{x}:\|\boldsymbol{x}\|_p=1} \|\mathbf{M}\boldsymbol{x}\|_p \tag{4}$$

where $\|x\|_p$ is the p norm of a vector defined by

$$\|\boldsymbol{x}\|_p = \left(\sum_i |x_i|^p\right)^{1/p}.$$

Note that with this definition $\|\mathbf{M}\boldsymbol{x}\|_p \leq \|\mathbf{M}\|_p \|\boldsymbol{x}\|_p$ (where the inequality is tight, i.e. there exists a vector where the inequality becomes an equality).

(a)	If U is an orthogonal matrix show that for any vector $oldsymbol{v}$ that $\ \mathbf{U} oldsymbol{v} \ _2 = \ \mathbf{U} oldsymbol{v} \ _2$	$\ oldsymbol{v}\ _2$. Use
		[2 marks]

	-

- (b) If V is an orthogonal matrix show that $\|\mathbf{A}\mathbf{V}^\mathsf{T}\|_2 = \|\mathbf{A}\|_2$. [2 marks]
- (c) Using the SVD $\mathbf{M} = \mathbf{USV}^\mathsf{T}$ and the results of part (a) and part (b) show that $\|\mathbf{M}\|_2 = \|\mathbf{S}\|_2$.

 $\overline{2}$

 $\overline{2}$

Page 5 of 8

$x = (x_1, x_2, \lambda, x_n)$ and

(d) Compute $\ \mathbf{S}x\ _2^2$ where $\mathbf{S} = \mathrm{diag}(s_1, s_2,, s_n)$ is the diagonal matrix of singular values $\mathbf{s_i}$. [1 marks]	
	1
(e) Write down the Lagrangian to maximise $\ \mathbf{S}x\ _2^2$ subject to $\ x\ _2^2=1$. Compute the extremum conditions given by $\partial L/\partial x_i=0$. Let $(s_{\alpha} \alpha=1,2,)$ be the set of unique singular values and I_{α} the set of indices, i such that $s_i=s_{\alpha}$. Using the extremum condition and the constraint write down the set of extremum values for $\ \mathbf{S}x\ $ and hence show that $\ \mathbf{M}\ _2=s_{max}$ where s_{max} is the maximum singular value and note that $\mathbf{M}=\mathbf{USV}^{\wedge}\mathbf{T}$ [4 marks]	
	$\overline{4}$

End of question 3

(a)
$$\frac{}{2}$$
 (b) $\frac{}{2}$ (c) $\frac{}{1}$ (d) $\frac{}{1}$ (e) $\frac{}{4}$ Total $\frac{}{10}$

4 \\epsilon is boldface. \\ \text{where s_{max} follows the substitution in O2 (x)}	
(a) We consider the mapping $y = \mathbf{M}x$ where \mathbf{M} is an $n \times n$ matrix. Suppose there is some noise in x so that $x' = x + \epsilon$ so that under the mapping $y' = \mathbf{M}x'$. Compute an upper bound $\ y' - y\ _2$ in terms of $\ \epsilon\ _2$ and s_{max} [2 marks]	
	$\frac{1}{2}$
(b) For a matrix $\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^{T}$ show that	
$\ \mathbf{M}oldsymbol{x}\ _2 = \ \mathbf{S}oldsymbol{a}\ _2 \ oldsymbol{w}\ _2$	
where $a=\mathbf{V}^{\rm T}x/\ x\ _2$ so that $\ a\ _2$. Show that we can lower bound $\ \mathbf{S}a\ _2^2$ by s_{min}^2 hence prove	
$\ \mathbf{M}oldsymbol{x}\ _2 \geq s_{min}\ oldsymbol{x}\ _2.$	
where s_{\min} is the minimum non-zero singular value analogous to the definition of s_{\max} . [3 marks]	
	$\frac{1}{3}$
	3
(c) Using the previous results obtain an upper bound for the relative error $\ y'-y\ _2$	
$rac{\ oldsymbol{y}'-oldsymbol{y}\ _2}{\ oldsymbol{y}\ _2}$	
in terms of $s_{max},s_{min},\ \epsilon\ _2$ and $\ x\ _2$ [1 marks]	
	$\frac{1}{1}$

(d) The condition number for an invertible square matrix \mathbf{M} is given by $\kappa_2(\mathbf{M}) = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ (there are different condition numbers for different norms.) Write down done the condition number in terms of s_{max} and s_{min} . [1 marks]

M

<u>1</u>

(e) In linear regression we make predictions $\hat{y} = x^\mathsf{T} w$ given an input x where $w = \mathbf{X}^+ y$ where $\mathbf{X}^+ = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T}$ is the pseudo inverse of the design matrix \mathbf{X} and y is a vector of training examples. There are bounds on the accuracy of linear regression depending on $\mathbb{E}\left[s_{max}/s_{min}\right]$ where s_{max} and s_{min} are the maximum and minimum no-zero singular value of the design matrix. Consider randomly drawn feature vectors

$$x_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

Using python generate the $m \times p$ dimensional design matrix \mathbf{X} with rows $\boldsymbol{x}_i^\mathsf{T}$. By computing the singular values for \mathbf{X} for $m = i \times p$ where $i = 1, 2, \dots, 10$ find s_{max}/s_{min} . Repeat this 10 times to obtain an estimate of $\mathbb{E}\left[s_{max}/s_{min}\right]$ Plot a graph of you estimate for $\mathbb{E}\left[s_{max}/s_{min}\right]$ (on a log-axis) versus m/p for p = 10, 50 and 100. [3 marks]

for X of the same size

End of question 4

(a)
$$\frac{}{2}$$
 (b) $\frac{}{3}$ (c) $\frac{}{1}$ (d) $\frac{}{1}$ (e) $\frac{}{3}$ Total $\frac{}{10}$