

Otimização Aplicada à Engenharia de Processos

Aula 7: Programação não-linear

Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo

Programa de Pós-Graduação em Engenharia Elétrica

Belo Horizonte Abril de 2013

Programação não-linear

Quando o objetivo ou as restrições do problema precisam ser representados por funções não-lineares, temos um problema de programação não-linear.

Esta classe de problemas pode conter problemas irrestritos ou, mais frequentemente, problemas com estruturas de restrições.

Técnicas para a solução de problemas com restrições usualmente funcionam através da transformação do problema restrito em um irrestrito - funções de penalização, etc..

Introdução

Programação não-linear

Alguns exemplos de problemas tratados através de otimização não-linear:

- Otimização de antenas de superfície;
- Maximização de lucros em sistemas de produção;
- Minimização de volume em dispositivos eletromagnéticos;
- Planejamento de portfolios;
- Otimização estrutural de aviões;

Considerações iniciais

Nesta primeira parte discutiremos a caracterização das funções objetivo e de restrição em problema de otimização não linear.

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} \ f(\mathbf{x})$$
 sujeito a:
$$\left\{ egin{array}{l} g_i(\mathbf{x}) \leq 0; i=1,\ldots,p \\ h_j(\mathbf{x}) = 0; j=1,\ldots,q \end{array} \right.$$

 $\mathsf{com}\;\mathbf{x}\in\mathbb{R}^n,\,f(\cdot):\mathbb{R}^n\mapsto\mathbb{R},\,g_i(\cdot):\mathbb{R}^n\mapsto\mathbb{R},\,\mathsf{e}\;h_j(\cdot):\mathbb{R}^n\mapsto\mathbb{R}.$

Introdução

Considerações iniciais

A escolha de técnicas adequadas para tratar este problema depende da natureza das funções $f(\mathbf{x})$, $g_i(\mathbf{x})$, $h_i(\mathbf{x})$.

Não há uma técnica de otimização que seja universal, no sentido de ser a melhor técnica para otimizar quaisquer funções. A escolha das técnicas frequentemente baseia-se em informações sobre o problema em questão.

Considerações iniciais

Para nos orientar nessa caracterização, apresentaremos os seguintes pontos, relacionados com a questão de *o quê são* as soluções do problema de programação não-linear:

- Dado o funcional f(·), o que são os pontos de mínimo desse funcional, ou seja, o que são as soluções do problema de otimização?
- O que são os pontos de mínimo local desse funcional, se são dadas também as restrições g_i(x) ≤ 0 e h_j(x) = 0 ?
- Dado um ponto $\mathbf{x} \in \mathbb{R}^n$, que tipo de testes podem ser realizados para determinar se esse ponto é ou não um ponto de mínimo de $f(\cdot)$, nos dois casos anteriores?

Superfície de Nível e Região Subnível

Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$. A superfície de nível $S(f, \alpha)$, associada ao nível α , é definida como:

$$S(f,\alpha) = \{ \mathbf{x} \in C \mid f(\mathbf{x}) = \alpha \}$$

Superfície de Nível e Região Subnível

A **região subnível** $R(f, \alpha)$, associada ao nível α , é definida como:

$$R(f, \alpha) = \{ \mathbf{x} \in C \mid f(\mathbf{x}) \le \alpha \}$$

Superfície de Nível e Região Subnível

Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$. As regiões de sub-nível dessa função obedecem a:

$$R(f, \alpha_1) \supset R(f, \alpha_2) \Leftrightarrow \alpha_1 > \alpha_2$$

Pode-se pensar os problemas de otimização como sendo equivalentes a um problema de determinar pontos que estejam sucessivamente no interior de regiões de sub-nível cada vez menores.

Unimodalidade e Multimodalidade

Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$. Diz-se que $f(\cdot)$ é unimodal se $R(f,\alpha)$ é conexo para todo $\alpha \in \mathbb{R}$, e multimodal se existe $\alpha \in \mathbb{R}$ tal que $R(f,\alpha)$ não é conexo.

Unimodalidade e Multimodalidade

Note-se que uma função unimodal pode possuir múltiplos mínimos, desde que o conjunto deste seja conexo. Por exemplo:

$$f(\mathbf{x}) = \left[\begin{array}{cc} x_1 & x_2 \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]$$

Mínimo Local e Mínimo Global

Mínimo Local: Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$. Um ponto \mathbf{x}^* é um mínimo local de $f(\cdot)$ sobre C se existe $\epsilon > 0$ tal que

$$f(\mathbf{x}^*) \le f(\mathbf{x}) \ , \ \forall \ \mathbf{x} \in V(\mathbf{x}^*, \epsilon) \cap C$$
 (1)

onde $V(\mathbf{x}^*, \epsilon) \triangleq \{\mathbf{x} : \|\mathbf{x} - \mathbf{x}^*\| < \epsilon\}$. O ponto $\mathbf{x}^* \in C$ é um mínimo local estrito se vale a desigualdade estrita.

Mínimo global: Se for possível escolher $\epsilon > 0$ tal que $V(\mathbf{x}^*, \epsilon) \cap C = C$, então \mathbf{x}^* é um mínimo global de $f(\cdot)$ sobre C. O mínimo global é ainda estrito se a desigualdade for satisfeita de modo estrito.

Bacias de Atração

Região Conexa de Sub-Nível: Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$, seja a região de sub-nível $R(f,\alpha)$, associada ao nível α , e seja um ponto $\mathbf{x}_0 \in R(f,\alpha)$. A região conexa de sub-nível $R(f,\alpha,\mathbf{x}_0)$ é definida como o maior subconjunto conexo de $R(f,\alpha)$ que contém \mathbf{x}_0 .

Bacias de Atração

Bacia de Atração: Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$, e seja $\mathbf{x}^* \in C$ um mínimo local de $f(\cdot)$. A bacia de atração de \mathbf{x}^* é definida como a maior região conexa de sub-nível associada a \mathbf{x}^* , sendo α^* o nível correspondente, tal que a função restrita a essa região

$$f(\cdot): R_c(f, \alpha^*, \mathbf{x}^*) \mapsto \mathbb{R}$$
 (2)

é unimodal. A bacia de atração é dita estrita se nessa região a função é estritamente unimodal.

Continuidade e Diferenciabilidade

Uma **função contínua** é aquela para a qual uma pequena variação na entrada gera uma pequena variação no resultado da função.

Uma função $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$ é contínua se $\forall \mathbf{x}_0 \in C$:

- $\mathbf{1}$ $f(\mathbf{x}_0)$ é definido;
- $2 \lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).$

Continuidade e Diferenciabilidade

Função diferenciável: Uma função $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$ é diferenciável se $\forall \mathbf{x}_0 \in C$ existe o vetor gradiente:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$
(3)

Continuidade e Diferenciabilidade

Seja $f(\cdot): C \subset \mathbb{R}^n \mapsto \mathbb{R}$ uma função diferenciável no domínio C, seja \mathbf{x}_0 um ponto pertencente à superfície de nível $S(f,\alpha)$, e seja $\nabla f(\mathbf{x}_0)$ o gradiente de $f(\cdot)$ no ponto \mathbf{x}_0 . Seja ainda um vetor $\mathbf{d} \in \mathbb{R}^n$. Então, se

$$\mathbf{d} \cdot \nabla f(\mathbf{x}_0) < 0 \tag{4}$$

então existe $\epsilon > 0$ tal que:

$$f(\mathbf{x}_0 + \epsilon \mathbf{d}) < f(\mathbf{x}_0) \tag{5}$$

Convexidade e Quasi-Convexidade

Conjunto Convexo: Diz-se que um conjunto $C \in \mathbb{R}^n$ é convexo se para quaisquer $\mathbf{x}, \mathbf{y} \in C$,

$$\alpha \mathbf{x} + (\mathbf{1} - \alpha)\mathbf{y} \in C \tag{6}$$

para todo $\alpha \in [0, 1]$.

Figure: Representação: (a) Conjunto convexo, (b) Conjunto não convexo

Convexidade e Quasi-Convexidade

Função Convexa: Diz-se que uma função $f(\cdot): \mathcal{X} \subset \mathbb{R}^n \mapsto \mathbb{R}$ definida sobre um conjunto convexo \mathcal{X} é convexa se para quaisquer $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) \tag{7}$$

para todo $\alpha \in [0,1]$. Se para quaisquer $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, sendo $\mathbf{x} \neq \mathbf{y}$ e $0 < \alpha < 1$, a desigualdade é estrita, então $f(\cdot)$ é estritamente convexa.

Convexidade e Quasi-Convexidade

A convexidade de funções pode ser relacionada com as regiões de sub-nível, superfícies de nível e bacias de atração.

- 1) Todas as regiões de sub-nível de uma função convexa num domínio convexo são conjuntos convexos.
- 2) Uma função convexa em um domínio convexo possui uma única bacia de atração, a qual é um conjunto convexo.

Perguntas e comentários?