

Introduction to HPC

Interacting with High Performance Computing Systems

PRESENTED BY:

Virginia Trueheart, MSIS
Texas Advanced Computing Center
vtrueheart@tacc.utexas.edu

An Overview of HPC: What is it?

- High Performance Computing
 - Parallel processing for advanced computation
 - A "Supercomputer", "Large Scale System", or "Cluster"
- The same parts as your laptop
 - Processors, coprocessors, memory, operating system, etc.
 - Specialized for scale & efficiency
- Scale and Speed
 - Thousands of nodes
 - High bandwidth, low latency network for large scale I/O

An Overview of HPC: Stampede2

- Peak performance: 18 PF, rank 12 in Top 500 (2017)
- 4,200 68-core Knights Landing (KNL) nodes
- 1,736 48-core Skylake (SKX) nodes
- 368,928 cores and 736,512GB memory in total
- Interconnect: Intel's Omni-Path Fabric Network
- Three Lustre Filesystems
- Funded by NSF through grant #ACI-1134872

An Overview of HPC: Architecture

Ex: SKX Compute Node

Model	Intel Xeon Platinum 8160 ("Skylake")
Cores Per Node	48 cores on two sockets (24 cores/socket)
Hardware Threads per Core	2
Hardware Threads per Node	96
Clock Rate	2.1Ghz
RAM	192GB
Cache	57MB per socket
Local Storage	144GB /tmp partition

Ex: Physical Layout

KNL Node (68 cores per node)

SKX Node (24 cores/socket * 2)

An Overview of HPC: Using a System

- Why would I use HPC resources?
 - Large scale problems
 - Parallelization and Efficiency
 - Collaboration
- How do I find an HPC resource?
 - Check with your institution
 - Check with national scientific groups (NSF in the US)

Overview: What Can I Find on a System

Modules and Software

- Basic compilers and libraries
- Popular packages
- Licensed software

Build Your Own!

- github or other direct sources
- pip, wget, curl, etc
- You won't have sudo access

What Do I Need to Get Started?

User Account

Allocation & Project

Two Factor Authentication

SSH Protocols

Secure Shell

- Encrypted network protocol to access a secure system over an unsecured network
- automatically generated public-private key pairs
- Your Wi-Fi

 Stampede2 or other secure machine
- File transfers (scp & rsync)

Options

- .ssh/config
- Host & Username
- Make connecting easier
- Passwordless Login

Where am I?

- Login Nodes
 - Manage files
 - Build software
 - Submit, monitor and manage jobs
- Compute Nodes
 - Running jobs
 - Testing applications

Allocations

Active Project with a Project Instructor attached

- Service Units (SUs)
 - SUs billed (node-hrs) = (# nodes) x (wall clock hours) x (charge rate per node-hour)
- Shared Systems
 - Be a good citizen

Filesystems

Division of Labor

- Linux Cluster (Lustre) system that look like a single hard disk space
- Small I/O is hard on the system
- Striping large data (OST, MDS)

Partitions

- \$HOME: 10GB, \$WORK: 1TB, \$SCRATCH: Unlimited
- Shared system

\$HOME Smallest Filesystem 6 Servers

- Small therefore possible to backup
- Low performance

\$WORK Large Filesystem 64 Servers

- Shared center-wide therefore not all servers provide to Stampede2
- Convenient
- Persistent

\$SCRATCH Large Filesystem 70 Servers

- Most performance
- No space limitations
- Admins purge the least valuable files periodically

Performance

Has Quota Is backed up

Has Quota Not backed up No Quota Not backed up

Filesystems: Cont.

- Where am I?
 - pwd print working directory
 - cd change directory
 - cd .. move up one directory
- New Files
 - mkdir make directory
 - Editors vi(m), nano, emacs
 - mv move a file to another location

Types of Code

Serial Code

- Albeit a very, very small one
- Single tasks, one after the other
- Single node/single core

Parallel Code

- Array or "embarrassingly parallel" jobs
- Many node/many core
- Uses MPI
- Hybrid codes

Message Passing Interface

- ibrun is TACC specific
 - "Wrapper" for mpirun
 - Execute serial and parallel jobs across the entire node

MPI Functions

- Allows communication between all cores and all nodes
- Move data between parts of the job that need it
- Point-to-Point or Collective Communication

Ex: MPI Communication

Submitting a Job

- Why submit?
 - Larger jobs, more nodes
 - You don't have to watch it in real time
 - Run multiple jobs simultaneously
- Queues
 - Pick the queues that suit your needs
 - Don't request more resources than you need
 - Remember this is a shared resource

Never run on a login node!

Queue Name	Node Type	Max Nodes per Job	Max Duration	Max Jobs in Queue	Charge Rate
development	KNL cache-quad	16 nodes	2hrs	1	1SU
normal	KNL cache-quad	256 nodes	48hrs	50	1SU
large**	KNL cache-quad	2048 nodes	48hrs	5	1SU
long	KNL cache-quad	32 nodes	96hrs	2	1SU
flat- quadrant	KNL flat-quad	24 nodes	48hrs	2	1SU
skx-dev	SKX	4 nodes	2hrs	1	1SU
skx-normal	SKX	128 nodes	48hrs	25	1SU
skx-large**	SKX	868 nodes	48hrs	3	1SU

6/7/18 20

Submitting a Job cont.

• sbatch

- Simple Linux Utility for Resource Management (SLURM)
- Linux/Unix workload manager
- Allocates resources
- Executes and monitors jobs
- Evaluates and manages pending jobs
- Using a Scheduler
 - Gets you off of the login nodes (shared resource)
 - Means you can walk away and do other things

Submission Options

Option	Argument	Comments
-p	queue_name	Submits to queue (partition) designated by queue_name
- J	job_name	Job Name
-N	total_nodes	Required. Define the resources you need by specifying either: (1) " $-N$ " and " $-n$ "; or (2) " $-N$ " and " $-n$ tasks $-per-node$ ".
-n	total_tasks	This is total MPI tasks in this job. When using this option in a non-MPI job, it is usually best to set it to the same value as " $-N$ ".
-t	hh:mm:ss	Required. Wall clock time for job.
-0	output_file	Direct job standard output to <i>output_file</i> (without -e option error goes to this file)
-e	error_file	Direct job error output to error_file
-d=	afterok:jobid	Dependency: this run will start only after the specified job successfully finishes
-A	projectnumber	Charge job to the specified project/allocation number.

Managing Your Jobs

- qlimits all queues restrictions
- sinfo monitor queues in real time
- squeue monitor jobs in real time
- showq similar output to squeue
- scancel manually cancel a job
- scontrol detailed information about the configuration of a job
- sacct accounting data about your jobs

```
staff.stampede2(1009)$ squeue -u vtrue
     JOBID
             PARTITION
                                    USER ST
                           NAME
                                                 TIME NODES NODELIST (REASON)
     1604426 development idv20717 vtrue R
                                                  16:57
                                                             1 c455-001
• staff.stampede2(1010)$ scontrol show job=1604426
• JobId=1604426 JobName=idv20717
    UserId=vtrue(829572) GroupId=G-815499(815499) MCS label=N/A
    Priority=400 Nice=0 Account=A-ccsc QOS=normal
    JobState=RUNNING Reason=None Dependency=(null)
    Requeue=0 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
    RunTime=00:18:08 TimeLimit=00:30:00 TimeMin=N/A
    SubmitTime=2018-06-09T21:27:33 EligibleTime=2018-06-09T21:27:33
    StartTime=2018-06-09T21:27:36 EndTime=2018-06-09T21:57:36 Deadline=N/A
    PreemptTime=None SuspendTime=None SecsPreSuspend=0
```

6/7/18

LastSchedEval=2018-06-09T21:27:36

On Node Monitoring

- cat /proc/cpuinfo
 - Follow a read out of the cpu info on the node
- top
 - See all of the processes running and which are consuming the most resources
- free —g
 - Basic print out of memory consumption
- Remora
 - This is an open source tool developed by TACC that can help you track memory, cpu usage, I/O activity, and other options

Modules

Modules

- TACC uses a tool called Lmod
- Add, remove, and swap software packages
- Saves you from having to build your own

Commands

- module spider <package> search for a package
- module list see currently loaded modules
- module avail list all available packages
- module load <package> load a specific package or version

Q&A

Questions Answered and Demonstrations Provided

Further Information

Main Website: www.tacc.utexas.edu

User Support: www.portal.tacc.utexas.edu

Email: info@tacc.utexas.edu