Geometric Patterns and Microstructures in the study of Material Defects and Composites

Silvio Fanzon

supervised by Mariapia Palombaro

University of Sussex
Department of Mathematics

1 Geometric Patterns of Dislocations

- 1 Geometric Patterns of Dislocations
 - Dislocations

- 1 Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces (Chapter 3)
 F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces.
 Journal of Nonlinear Science (2017)

Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces (Chapter 3)
 F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces.
 Journal of Nonlinear Science (2017)
- ► Linearised polycrystals (Chapter 4)

 F., Palombaro, Ponsiglione. Linearized Polycrystals from a 2D System of Edge Dislocations.

 Preprint (2017)
- Microstructures in Composites

Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces (Chapter 3)
 F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces.
 Journal of Nonlinear Science (2017)
- Linearised polycrystals (Chapter 4)
 F., Palombaro, Ponsiglione. Linearized Polycrystals from a 2D System of Edge Dislocations.
 Preprint (2017)

Microstructures in Composites

► Critical lower integrability (Chapter 5)

F., Palombaro. Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions.

Calculus of Variations and Partial Differential Equations (2017)

Geometric Patterns of Dislocations

Journal of Nonlinear Science (2017)

- Dislocations
- Semi-coherent interfaces (Chapter 3)
 F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces.
- Linearised polycrystals (Chapter 4)

 F., Palombaro, Ponsiglione. Linearized Polycrystals from a 2D System of Edge Dislocations.

 Preprint (2017)

- ► Critical lower integrability (Chapter 5)
 - F., Palombaro. Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions.

 Calculus of Variations and Partial Differential Equations (2017)
- Convex integration

Geometric Patterns of Dislocations

- Dislocations
- ► Semi-coherent interfaces (Chapter 3)

F., Palombaro, Ponsiglione. A Variational Model for Dislocations at Semi-coherent Interfaces. Journal of Nonlinear Science (2017)

Linearised polycrystals (Chapter 4)

F., Palombaro, Ponsiglione. Linearized Polycrystals from a 2D System of Edge Dislocations. Preprint (2017)

- ► Critical lower integrability (Chapter 5)
 - F., Palombaro. Optimal lower exponent for the higher gradient integrability of solutions to two-phase elliptic equations in two dimensions.

 Calculus of Variations and Partial Differential Equations (2017)
- Convex integration
- Proof of the main theorem

- 1 Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Dislocations: topological defects in the otherwise periodic structure of a crystal.

Dislocations: topological defects in the otherwise periodic structure of a crystal.

Screw dislocations

Screw dislocation: pair (γ, ξ) of dislocation line and Burgers vector, with $\xi /\!\!/ \gamma$.

Screw dislocations

Screw dislocation: pair (γ, ξ) of dislocation line and Burgers vector, with $\xi /\!\!/ \gamma$.

Mixed type dislocations

Mixed dislocations: Burgers vector ξ is constant and γ is curved.

Mixed type dislocations

Mixed dislocations: Burgers vector ξ is constant and γ is curved.

Dislocation type: given by the angle between ξ and $\dot{\gamma}$.

Mixed type dislocations

Mixed dislocations: Burgers vector ξ is constant and γ is curved.

Dislocation type: given by the angle between ξ and $\dot{\gamma}$.

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v \colon \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v \colon \Omega \to \mathbb{M}^{3 \times 3}$

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v \colon \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Energy: associated to a deformation strain β

$$E(\beta) := \int_{\Omega} W(\beta) dx$$
.

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v \colon \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Energy: associated to a deformation strain β

$$E(\beta) := \int_{\Omega} W(\beta) dx$$
.

Energy Density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ s.t.

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v \colon \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v \colon \Omega \to \mathbb{M}^{3 \times 3}$

Energy: associated to a deformation strain β

$$E(\beta) := \int_{\Omega} W(\beta) dx$$
.

Energy Density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ s.t.

▶ *W* is continuous

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Energy: associated to a deformation strain β

$$E(\beta) := \int_{\Omega} W(\beta) dx$$
.

Energy Density: $W: \mathbb{M}^{3\times 3} \to [0, \infty)$ s.t.

- W is continuous
- ► W(F) = W(RF), $\forall R \in SO(3), F \in \mathbb{M}^{3\times3}$ (frame indifferent).

Reference configuration: $\Omega \subset \mathbb{R}^3$ open bounded

Deformations: regular maps $v: \Omega \to \mathbb{R}^3$

Deformation strain: $\beta := \nabla v : \Omega \to \mathbb{M}^{3 \times 3}$

Energy: associated to a deformation strain β

$$E(\beta) := \int_{\Omega} W(\beta) dx$$
.

Energy Density: $W: \mathbb{M}^{3\times 3} \to [0, \infty)$ s.t.

- W is continuous
- ► W(F) = W(RF), $\forall R \in SO(3), F \in \mathbb{M}^{3\times3}$ (frame indifferent),
- \blacktriangleright $W(F) \sim \operatorname{dist}(F, SO(3))^2 \implies W(I) = 0.$

Dislocation lines: Lipschitz curves $\gamma\subset\Omega$ such that $\Omega\setminus\gamma$ is not simply connected

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \setminus \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \setminus \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions

Strain generating (γ, ξ) : map $\beta \colon \Omega \to \mathbb{M}^{3 \times 3}$ s.t.

$$\operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \, \mathcal{H}^1 \, \bot \, \gamma \iff \int_{\mathcal{C}} \beta \cdot t \, d\mathcal{H}^1 = \xi \, .$$

Dislocation lines: Lipschitz curves $\gamma \subset \Omega$ such that $\Omega \setminus \gamma$ is not simply connected

Burgers vector: $\xi \in \mathcal{S}$ set of slip directions

Strain generating (γ, ξ) : map $\beta \colon \Omega \to \mathbb{M}^{3\times 3}$ s.t.

$$\operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \, \mathcal{H}^1 \, \bot \, \gamma \iff \int_C \beta \cdot t \, d\mathcal{H}^1 = \xi \, .$$

Geometric interpretation: if D encloses γ , there exists a deformation $v \in SBV(\Omega; \mathbb{R}^3)$ s.t.

$$Dv = \nabla v \, dx + \xi \otimes n \, \mathcal{H}^2 \, \Box \, D \,, \quad \beta = \nabla v \,.$$

v has constant jump ξ across the slip region D.

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)}$$
 in $I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$$

$$\int_{I_{\sigma}\setminus I_{\varepsilon}}|\beta|^{2}=L\int_{\varepsilon}^{\sigma}\int_{\partial B_{\rho}(\gamma(s))}|\beta|^{2}\,d\mathcal{H}^{1}\,d\rho$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)}$$
 in $I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$

$$\begin{split} &\int_{I_{\sigma}\backslash I_{\varepsilon}} |\beta|^2 = L \int_{\varepsilon}^{\sigma} \int_{\partial B_{\rho}(\gamma(s))} |\beta|^2 \, d\mathcal{H}^1 \, d\rho \\ & \text{(Jensen)} \geq L \int_{\varepsilon}^{\sigma} \frac{1}{2\pi\rho} \bigg| \int_{\partial B_{\rho}(\gamma(s))} \beta \cdot t \, d\mathcal{H}^1 \bigg|^2 \, d\rho \end{split}$$

Let β generate (γ, ξ) . Consider $\varepsilon > 0$ and

$$I_{\varepsilon}(\gamma) := \{x \in \mathbb{R}^3 : \operatorname{dist}(x, \gamma) < \varepsilon\}.$$

Then we have

$$|\beta(x)| \sim \frac{1}{\operatorname{dist}(x,\gamma)} \text{ in } I_{\varepsilon}(\gamma) \implies \beta \notin L^{2}(I_{\varepsilon}(\gamma))$$

$$\begin{split} \int_{I_{\sigma} \setminus I_{\varepsilon}} |\beta|^2 &= L \int_{\varepsilon}^{\sigma} \int_{\partial B_{\rho}(\gamma(s))} |\beta|^2 \, d\mathcal{H}^1 \, d\rho \\ & \text{(Jensen)} \geq L \int_{\varepsilon}^{\sigma} \frac{1}{2\pi\rho} \bigg| \int_{\partial B_{\rho}(\gamma(s))} \beta \cdot t \, d\mathcal{H}^1 \bigg|^2 \, d\rho \\ &= L \frac{|\xi|^2}{2\pi} \log \frac{\sigma}{\varepsilon} \to \infty \ \text{as} \ \varepsilon \to 0 \end{split}$$

Regularise the problem

Energy Truncation. Fix $p \in (1,2)$ and assume

$$W(F) \sim \operatorname{dist}(F, SO(3))^2 \wedge (|F|^p + 1).$$

Strains are maps $\beta \in L^2(\Omega; \mathbb{M}^{3 \times 3})$ such that

$$\operatorname{Curl}\beta = -\xi \otimes \dot{\gamma} \,\mathcal{H}^1 \, \bot \, \gamma \,.$$

Regularise the problem

Energy Truncation. Fix $p \in (1, 2)$ and assume

$$W(F) \sim \operatorname{dist}(F, SO(3))^2 \wedge (|F|^p + 1).$$

Strains are maps $\beta \in L^2(\Omega; \mathbb{M}^{3\times 3})$ such that

$$\operatorname{Curl}\beta = -\xi \otimes \dot{\gamma} \,\mathcal{H}^1 \, \bot \, \gamma \,.$$

Core Radius Approach. Assume

$$W(F) \sim \operatorname{dist}(F, SO(3))^2$$
.

Let $\varepsilon > 0$ (\propto atomic distance) and consider

$$\Omega_{\varepsilon}(\gamma) := \Omega \setminus I_{\varepsilon}(\gamma).$$

Strains are maps $\beta \in L^2(\Omega_{\varepsilon}(\gamma); \mathbb{M}^{3\times 3})$ such that

$$\operatorname{\mathsf{Curl}} \beta \, \llcorner \, \Omega_\varepsilon(\gamma) = 0 \,, \quad \int_{\mathcal{C}} \beta \cdot t \, d\mathcal{H}^1 = \xi \,.$$

Presentation Plan

- 1 Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Two different crystalline materials joined at a flat interface:

Silvio Fanzon

Two different crystalline materials joined at a flat interface:

▶ Underlayer: cubic lattice Λ^- , spacing b > 0 (equilibrium I),

Two different crystalline materials joined at a flat interface:

- ▶ Underlayer: cubic lattice Λ^- , spacing b > 0 (equilibrium I),
- Overlayer: lattice $\Lambda^+ = \alpha \Lambda^-$, with $\alpha > 1$ (not in equilibrium).

Two different crystalline materials joined at a flat interface:

- ▶ Underlayer: cubic lattice Λ^- , spacing b > 0 (equilibrium I),
- Overlayer: lattice $\Lambda^+ = \alpha \Lambda^-$, with $\alpha > 1$ (not in equilibrium).

Semi-coherent interface: small dilation $\alpha \approx 1$.

Silvio Fanzon

Two different crystalline materials joined at a flat interface:

- ▶ **Underlayer:** cubic lattice Λ^- , spacing b > 0 (equilibrium I),
- Overlayer: lattice $\Lambda^+ = \alpha \Lambda^-$, with $\alpha > 1$ (not in equilibrium).

Semi-coherent interface: small dilation $\alpha \approx 1$.

Equilibrium: Λ^+ has lower density than $\Lambda^- \implies \text{edge dislocations}$ at interface.

Network of dislocations

Experimentally observed phenomena:

Network of dislocations

Experimentally observed phenomena:

• two non-parallel sets of edge dislocations with spacing $\delta = \frac{b}{\alpha - 1}$,

D.A. Porter, K.E. Easterling. Phase transformations in metals and alloys. CRC Press (2009)
 G. Gottstein. Physical foundations of materials science. Springer (2013)

Network of dislocations

Experimentally observed phenomena:

- two non-parallel sets of edge dislocations with spacing $\delta = \frac{b}{\alpha 1}$,
- ▶ far field stress is completely relieved.

D.A. Porter, K.E. Easterling. *Phase transformations in metals and alloys.* CRC Press (2009)

G. Gottstein. *Physical foundations of materials science*. Springer (2013)

R is the size of the interface.

R is the size of the interface.

Goal: define a continuum model such that

▶ \exists critical size R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$,

R is the size of the interface.

Goal: define a continuum model such that

- ▶ \exists critical size R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$,
- ightharpoonup as $R \to \infty$ the far field stress is relieved,

R is the size of the interface.

Goal: define a continuum model such that

- ▶ \exists critical size R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$,
- ightharpoonup as $R \to \infty$ the far field stress is relieved,
- the dislocation spacing tends to $\delta = \frac{b}{\alpha 1}$.

R is the size of the interface.

Goal: define a continuum model such that

- ▶ \exists critical size R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$,
- ightharpoonup as $R \to \infty$ the far field stress is relieved,
- the dislocation spacing tends to $\delta = \frac{b}{\alpha 1}$.

Plan:

analysis of a semi-discrete model where dislocations are line defects,

R is the size of the interface.

Goal: define a continuum model such that

- ▶ \exists critical size R^* such that nucleation of dislocations is energetically more favorable for $R > R^*$,
- ightharpoonup as $R \to \infty$ the far field stress is relieved,
- the dislocation spacing tends to $\delta = \frac{b}{\alpha 1}$.

Plan:

- analysis of a semi-discrete model where dislocations are line defects,
- derive the simplified (dislocation density) continuum model.

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W : \mathbb{M}^{3 \times 3} \to [0, \infty)$ continuous, s.t.

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3\times 3} \to [0, \infty)$ continuous, s.t.

▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+$, r > 0,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ continuous, s.t.

- ▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),
- ▶ $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ for 1 .

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ continuous, s.t.

- ▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),
- ► $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ for 1 .

Admissible dislocations: compatible with cubic lattice. $(\Gamma, B) \in \mathcal{AD}$ if $\Gamma = \{\gamma_i\}, B = \{\xi_i\}$ with

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $\triangleright \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W : \mathbb{M}^{3 \times 3} \to [0, \infty)$ continuous, s.t.

- ▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),
- ▶ $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ for 1 .

Admissible dislocations: compatible with cubic lattice. $(\Gamma, B) \in \mathcal{AD}$ if $\Gamma = \{\gamma_i\}$, $B = \{\xi_i\}$ with

▶ dislocation line $\gamma_i \subset \mathcal{G}$ relatively closed,

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+$, r > 0,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ continuous, s.t.

- ▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),
- ▶ $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ for 1 .

Admissible dislocations: compatible with cubic lattice. $(\Gamma, B) \in \mathcal{AD}$ if $\Gamma = \{\gamma_i\}$, $B = \{\xi_i\}$ with

- ▶ dislocation line $\gamma_i \subset \mathcal{G}$ relatively closed,
- ▶ Burgers vector $\xi_i \in b(\mathbb{Z} \oplus \mathbb{Z})$.

Reference configuration: $\Omega_r := \Omega_r^- \cup S_r \cup \Omega_r^+, \ r > 0$,

- $ightharpoonup \Omega_r^+$ overlayer (equilibrium αI),
- $ightharpoonup \Omega_r^-$ underlayer (in equilibrium and rigid).

Energy density: $W: \mathbb{M}^{3\times 3} \to [0,\infty)$ continuous, s.t.

- ▶ W(F) = W(RF), $\forall R \in SO(3)$ (frame indifference),
- ▶ $W(F) \sim \text{dist}(F, \alpha SO(3))^2 \wedge (|F|^p + 1)$ for 1 .

Admissible dislocations: compatible with cubic lattice. $(\Gamma, B) \in \mathcal{AD}$ if $\Gamma = \{\gamma_i\}$, $B = \{\xi_i\}$ with

- ▶ dislocation line $\gamma_i \subset \mathcal{G}$ relatively closed,
- ▶ Burgers vector $\xi_i \in b(\mathbb{Z} \oplus \mathbb{Z})$.

Admissible strains: for a dislocation (Γ, B) are the maps $\beta \in AS(\Gamma, B)$, such that $\beta \in L^p(\Omega_r; \mathbb{M}^{3\times 3})$ and

$$\beta = I$$
 in Ω_r^- , $\operatorname{Curl} \beta = -\xi \otimes \dot{\gamma} \mathcal{H}^1 \sqcup \Gamma$.

Energies: induced by the misfit

Energies: induced by the misfit

$$E_{lpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(eta) \, dx : \, \operatorname{\mathsf{Curl}} eta = 0
ight\}$$

(Elastic energy)

Energies: induced by the misfit

$$\begin{split} E_{\alpha,r}(\emptyset) &:= \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \; \operatorname{Curl} \beta = 0 \right\} \\ E_{\alpha,r} &:= \min_{(\Gamma,B) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \beta \in \mathcal{AS}(\Gamma,B) \right\} \end{split} \tag{Elastic energy)}$$

Energies: induced by the misfit

$$E_{\alpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \, \operatorname{Curl} \beta = 0 \right\} \tag{Elastic energy}$$

$$E_{\alpha,r} := \min_{(\Gamma,B) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \beta \in \mathcal{AS}(\Gamma,B) \right\} \tag{Plastic energy}$$

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r^3 : we have $E_{\alpha,1}(\emptyset) > 0$ and

$$E_{\alpha,r}(\emptyset) = r^3 E_{\alpha,1}(\emptyset)$$
.

Scaling properties of the energy

Energies: induced by the misfit

$$E_{\alpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \text{ Curl } \beta = 0 \right\}$$
 (Elastic energy)
$$E_{\alpha,r} := \min_{(\Gamma,B) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \beta \in \mathcal{AS}(\Gamma,B) \right\}$$
 (Plastic energy)

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r^3 : we have $E_{\alpha,1}(\emptyset)>0$ and

$$E_{\alpha,r}(\emptyset) = r^3 E_{\alpha,1}(\emptyset)$$
.

The plastic energy scales like r^2 : there exists $0 < E_{\alpha} < +\infty$ such that

$$E_{\alpha,r}=r^2\,E_\alpha+o(r^2)\,.$$

Scaling properties of the energy

Energies: induced by the misfit

$$E_{\alpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \, \operatorname{Curl} \beta = 0 \right\}$$
 (Elastic energy)
$$E_{\alpha,r} := \min_{(\Gamma,B) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \, \beta \in \mathcal{AS}(\Gamma,B) \right\}$$
 (Plastic energy)

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r^3 : we have $E_{\alpha,1}(\emptyset) > 0$ and

$$E_{\alpha,r}(\emptyset) = r^3 E_{\alpha,1}(\emptyset)$$
.

The plastic energy scales like r^2 : there exists $0 < E_{\alpha} < +\infty$ such that

$$E_{\alpha,r}=r^2\,E_\alpha+o(r^2)\,.$$

Large $r \implies$ dislocations are energetically favourable.

Scaling properties of the energy

Energies: induced by the misfit

$$E_{\alpha,r}(\emptyset) := \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \, \operatorname{Curl} \beta = 0 \right\}$$
 (Elastic energy)
$$E_{\alpha,r} := \min_{(\Gamma,B) \in \mathcal{AD}} \inf \left\{ \int_{\Omega_r^+} W(\beta) \, dx : \beta \in \mathcal{AS}(\Gamma,B) \right\}$$
 (Plastic energy)

Theorem (F., Palombaro, Ponsiglione '15)

The dislocation-free elastic energy scales like r^3 : we have $E_{\alpha,1}(\emptyset)>0$ and

$$E_{\alpha,r}(\emptyset) = r^3 E_{\alpha,1}(\emptyset)$$
.

The plastic energy scales like r^2 : there exists $0 < E_{\alpha} < +\infty$ such that

$$E_{\alpha,r}=r^2\,E_\alpha+o(r^2)\,.$$

Large $r \implies$ dislocations are energetically favourable.

Müller, Palombaro. Calculus of Variations and Partial Differential Equations (2008, 2013).

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

▶ Divide S_r into $(r/\delta)^2$ squares of side δ .

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

- ▶ Divide S_r into $(r/\delta)^2$ squares of side δ .
- Above each Q_i define pyramids C_i^1 (height $\delta/2$) and C_i^2 (height δ).

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

- ▶ Divide S_r into $(r/\delta)^2$ squares of side δ .
- Above each Q_i define pyramids C_i^1 (height $\delta/2$) and C_i^2 (height δ).
- ▶ Define deformation $v \in SBV(\Omega_r; \mathbb{R}^3)$, and strain $\beta := \nabla v$ (a.c. part of Dv).

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

- ▶ Divide S_r into $(r/\delta)^2$ squares of side δ .
- ▶ Above each Q_i define pyramids C_i^1 (height $\delta/2$) and C_i^2 (height δ).
- ▶ Define deformation $v \in SBV(\Omega_r; \mathbb{R}^3)$, and strain $\beta := \nabla v$ (a.c. part of Dv).

Induced dislocations: Curl $\beta = -\sum_{i,j} \xi_{ij} \otimes \dot{\gamma}_{ij} d\mathcal{H}^1 \, \Box \, \gamma_{ij}$ with

- $ightharpoonup \gamma_{ij}:=Q_i\cap Q_j$ admissible dislocation curve $(\alpha=1+1/n\implies \delta=nb)$
- $\blacktriangleright \xi_{ii} := (\alpha 1)(x_i x_i) \in \pm b\{e_1, e_2\}$ Burgers vector

Goal: define a square array of edge dislocations with spacing $\delta := \frac{b}{\alpha - 1}$.

- ▶ Divide S_r into $(r/\delta)^2$ squares of side δ .
- ▶ Above each Q_i define pyramids C_i^1 (height $\delta/2$) and C_i^2 (height δ).
- ▶ Define deformation $v \in SBV(\Omega_r; \mathbb{R}^3)$, and strain $\beta := \nabla v$ (a.c. part of Dv).

Induced dislocations: Curl $\beta = -\sum_{i,j} \xi_{ij} \otimes \dot{\gamma}_{ij} d\mathcal{H}^1 \, \Box \, \gamma_{ij}$ with

- $ightharpoonup \gamma_{ij} := Q_i \cap Q_j$ admissible dislocation curve $(\alpha = 1 + 1/n \implies \delta = nb)$
- $\xi_{ij} := (\alpha 1)(x_j x_i) \in \pm b\{e_1, e_2\}$ Burgers vector

Energy: in each pyramid is $c = c(\alpha, b, p) \implies E_{\alpha, r} \le c \frac{r^2}{\delta^2}$ (as $W(\alpha I) = 0$).

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Limitations of the considered model:

 \triangleright $v(S_r)$ does not match $S_r \implies$ not appropriate for semi-coherent interfaces,

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Limitations of the considered model:

- \triangleright $v(S_r)$ does not match $S_r \implies$ not appropriate for semi-coherent interfaces,
- \blacktriangleright expected dislocation geometry with spacing $\frac{b}{\alpha-1}$ is only optimal in scaling.

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Limitations of the considered model:

- \triangleright $v(S_r)$ does not match $S_r \implies$ not appropriate for semi-coherent interfaces,
- lacktriangle expected dislocation geometry with spacing $\frac{b}{\alpha-1}$ is only optimal in scaling.

What we do now:

take a smaller overlayer and enforce match at the interface,

Deformed configuration: $v(S_R)$ with v from the upper bound construction

Limitations of the considered model:

- \triangleright $v(S_r)$ does not match $S_r \implies$ not appropriate for semi-coherent interfaces,
- lacktriangle expected dislocation geometry with spacing $\frac{b}{\alpha-1}$ is only optimal in scaling.

What we do now:

- take a smaller overlayer and enforce match at the interface,
- introduce a simplified continuum (dislocation density) model to better describe true minimisers.

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1}$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

$$L = 2R\frac{r}{\delta} = \frac{2r^2}{b}(\theta^{-2} - \theta^{-1}) \stackrel{(\theta^{-1} \approx 1)}{\approx} \frac{r^2}{b}(\theta^{-2} - 1) = \frac{1}{b}(R^2 - r^2) = \frac{1}{b} \text{ Area Gap}$$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

Dislocation Length $pprox rac{1}{b}$ Area Gap

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

Dislocation Length $pprox rac{1}{b}$ Area Gap

$$E_{\alpha,r} \approx r^2 E_{\alpha}$$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

Dislocation Length $\approx \frac{1}{b}$ Area Gap

$$E_{\alpha,r} \approx r^2 E_{\alpha} = \sigma \operatorname{Area Gap}$$
 with $\sigma := \frac{E_{\alpha}}{\theta^{-2} - 1}$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$ Upper bound construction: with $\theta = \alpha^{-1}$ and $\delta = \frac{b}{\theta^{-1} - 1} \implies$ perfect match

Dislocation Length $\approx \frac{1}{b}$ Area Gap

$$E_{\alpha,r} \approx r^2 E_{\alpha} = \sigma$$
 Area Gap with $\sigma := \frac{E_{\alpha}}{\theta^{-2} - 1}$

Hypothesis: Dislocation Energy \propto Dislocation Length. Then optimise over θ .

Reference configuration:
$$\Omega_{R,r}:=\Omega_R^-\cup S_r\cup\Omega_r^+$$
, with $r:=\theta R$, $\theta\in[\alpha^{-1},1]$

Reference configuration: $\Omega_{R,r}:=\Omega_R^-\cup S_r\cup\Omega_r^+$, with $r:=\theta R$, $\theta\in[\alpha^{-1},1]$

Deformations: $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Reference configuration: $\Omega_{R,r}:=\Omega_R^-\cup S_r\cup\Omega_r^+$, with $r:=\theta R$, $\theta\in[\alpha^{-1},1]$

Deformations: $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density: $W(F) \sim \text{dist}(F, \alpha SO(3))^2$

Reference configuration: $\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$

Deformations: $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density: $W(F) \sim \text{dist}(F, \alpha SO(3))^2$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Reference configuration:
$$\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$$
, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$

Deformations:
$$v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$$
 such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density:
$$W(F) \sim \text{dist}(F, \alpha SO(3))^2$$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \operatorname{Area} \operatorname{\mathsf{Gap}} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Reference configuration: $\Omega_{R,r}:=\Omega_R^-\cup S_r\cup \Omega_r^+$, with $r:=\theta R$, $\theta\in [\alpha^{-1},1]$

Deformations: $v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$ such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density: $W(F) \sim \text{dist}(F, \alpha SO(3))^2$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \text{ Area Gap} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Total Energy:
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left(E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Reference configuration:
$$\Omega_{R,r} := \Omega_R^- \cup S_r \cup \Omega_r^+$$
, with $r := \theta R$, $\theta \in [\alpha^{-1}, 1]$

Deformations:
$$v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$$
 such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density:
$$W(F) \sim \text{dist}(F, \alpha SO(3))^2$$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \text{ Area Gap} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Total Energy:
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left(E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Question: behaviour of $E_{\alpha,R}^{tot}(\theta)$ as $R \to \infty$?

Reference configuration:
$$\Omega_{R,r}:=\Omega_R^-\cup S_r\cup \Omega_r^+$$
, with $r:=\theta R$, $\theta\in [\alpha^{-1},1]$

Deformations:
$$v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$$
 such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density:
$$W(F) \sim \text{dist}(F, \alpha SO(3))^2$$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \text{ Area Gap} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Total Energy:
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left(E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Energy competition:

 $ightharpoonup heta = 1 \implies$ no dislocation energy

Reference configuration:
$$\Omega_{R,r}:=\Omega_R^-\cup S_r\cup\Omega_r^+$$
, with $r:=\theta R$, $\theta\in[\alpha^{-1},1]$

Deformations:
$$v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$$
 such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density:
$$W(F) \sim \text{dist}(F, \alpha SO(3))^2$$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \text{ Area Gap} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Total Energy:
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left(E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Energy competition:

 $ightharpoonup heta = 1 \implies$ no dislocation energy

$$\bullet$$
 $\theta = \alpha^{-1} \implies$ no elastic energy

 $(v := \alpha x, W(\alpha I) = 0)$

 Ω_R^-

Reference configuration:
$$\Omega_{R,r}:=\Omega_R^-\cup S_r\cup \Omega_r^+$$
, with $r:=\theta R$, $\theta\in [\alpha^{-1},1]$

Deformations:
$$v \in W^{1,2}(\Omega_r^+; \mathbb{R}^3)$$
 such that $v = \frac{x}{\theta}$ on $S_r \implies v(S_r) = S_R$ (interface match)

Energy density:
$$W(F) \sim \text{dist}(F, \alpha SO(3))^2$$

Elastic:
$$E_{\alpha,R}^{el}(\theta) := \inf \left\{ \int_{\Omega_r^+} W(\nabla v) \, dx : v = x/\theta \text{ on } S_r \right\}$$

Plastic:
$$E_R^{pl}(\theta) := \sigma \text{ Area Gap} = \sigma R^2 (1 - \theta^2), \ \sigma > 0$$

Total Energy:
$$E_{\alpha,R}^{tot}(\theta) := \min_{\theta} \left(E_{\alpha,R}^{el}(\theta) + E_{R}^{pl}(\theta) \right)$$

Energy competition:

$$ightharpoonup heta = 1 \implies$$
 no dislocation energy

$$\bullet$$
 $\theta = \alpha^{-1} \implies$ no elastic energy

$$\bullet$$
 $\theta \in (\alpha^{-1}, 1) \Longrightarrow \text{ both present}$

 $(v := \alpha x, W(\alpha I) = 0)$

Asymptotic for $E_{\alpha,R}^{tot}$

Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser for $E_{\alpha, R}^{tot}$ and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} R, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2}\right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R.$$

Asymptotic for $E_{\alpha,R}^{tot}$

Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser for $E^{tot}_{\alpha, R}$ and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} R, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2} \right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R.$$

Theorem (F., Palombaro, Ponsiglione '15)

As $R \to +\infty$ we have

$$E_{\alpha,R}^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R),$$

and therefore

$$E_{\alpha,R}^{tot} = \mathcal{E}^{el}(R) + \mathcal{E}^{pl}(R) + o(R).$$

Asymptotic for $E_{\alpha,R}^{tot}$

Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser for $E^{tot}_{\alpha, R}$ and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} R, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2}\right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R.$$

Theorem (F., Palombaro, Ponsiglione '15)

As $R \to +\infty$ we have

$$E_{\alpha,R}^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R),$$

and therefore

$$E_{\alpha,R}^{tot} = \mathcal{E}^{el}(R) + \mathcal{E}^{pl}(R) + o(R).$$

In particular, for large R:

dislocations are energetically more favourable,

Asymptotic for $E_{\alpha,R}^{tot}$

Let $\theta_R \in [\alpha^{-1},1]$ be a minimiser for $E^{tot}_{\alpha,R}$ and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} \, R \,, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2}\right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R \,.$$

Theorem (F., Palombaro, Ponsiglione '15)

As $R \to +\infty$ we have

$$E_{\alpha,R}^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R),$$

and therefore

$$E_{\alpha,R}^{tot} = \mathcal{E}^{el}(R) + \mathcal{E}^{pl}(R) + o(R).$$

In particular, for large R:

- dislocations are energetically more favourable,
- dislocation spacing (density) tends to $\delta = \frac{b}{\alpha 1}$,

Asymptotic for $E_{\alpha,R}^{tot}$

Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser for $E^{tot}_{\alpha, R}$ and define

$$\mathcal{E}^{el}(R) := \frac{\sigma^2}{\alpha^3 C^{el}} \, R \,, \qquad \mathcal{E}^{pl}(R) := \sigma R^2 \left(1 - \frac{1}{\alpha^2} \right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R \,.$$

Theorem (F., Palombaro, Ponsiglione '15)

As $R \to +\infty$ we have

$$E_{\alpha,R}^{el}(\theta_R) = \mathcal{E}^{el}(R) + O(R), \qquad E_R^{pl}(\theta_R) = \mathcal{E}^{pl}(R) + O(R),$$

and therefore

$$E_{\alpha,R}^{tot} = \mathcal{E}^{el}(R) + \mathcal{E}^{pl}(R) + o(R).$$

In particular, for large R:

- dislocations are energetically more favourable,
- dislocation spacing (density) tends to $\delta = \frac{b}{\alpha 1}$,
- ► far field stress is relieved.

Step 1. Rescale the elastic energy

$$E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$$

Step 1. Rescale the elastic energy

$$E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$$

Step 2. Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser of $E_{\alpha, R}^{tot}$. Then, as $R \to \infty$

$$E_{\alpha,1}^{el}(\theta_R) o 0$$
, $\theta_R o \alpha^{-1}$

Step 1. Rescale the elastic energy

$$E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$$

Step 2. Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser of $E_{\alpha, R}^{tot}$. Then, as $R \to \infty$

$$E_{\alpha,1}^{el}(\theta_R) o 0$$
, $\theta_R o \alpha^{-1} \implies \text{Linearisation (about } \alpha I)$

Step 1. Rescale the elastic energy

$$E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$$

Step 2. Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser of $E_{\alpha, R}^{tot}$. Then, as $R \to \infty$

$$E_{\alpha,1}^{el}(\theta_R) o 0$$
, $\theta_R o \alpha^{-1} \implies \text{Linearisation (about } \alpha I)$

Step 3. There exists $C^{el} > 0$ such that, as $R \to \infty$,

$$rac{1}{(heta_R^{-1}-lpha)^2} {\sf E}^{\sf el}_{lpha,1}(heta_R)
ightarrow {\sf C}^{\sf el}$$

Dal Maso, Negri, Percivale. Set-Valued Analysis (2002).

Step 1. Rescale the elastic energy

$$E_{\alpha,R}^{el}(\theta) = R^3 \theta^3 E_{\alpha,1}^{el}(\theta)$$

Step 2. Let $\theta_R \in [\alpha^{-1}, 1]$ be a minimiser of $E_{\alpha, R}^{tot}$. Then, as $R \to \infty$

$$E_{\alpha,1}^{el}(\theta_R) o 0$$
, $\theta_R o \alpha^{-1} \implies \text{Linearisation (about } \alpha I)$

Step 3. There exists $C^{el} > 0$ such that, as $R \to \infty$,

$$rac{1}{(heta_R^{-1}-lpha)^2} {\sf E}^{\it el}_{lpha,1}(heta_R)
ightarrow {\sf C}^{\it el}$$

Step 4. Write the elastic energy as a polynomial

$$E_{\alpha,R}^{el}(\theta_R) = R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 \frac{1}{(\theta_R^{-1} - \alpha)^2} E_{\alpha,1}^{el}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2$$

where $k_R^{el} := C^{el} + \varepsilon_R > 0$ and $k_R^{el} \to C^{el}$.

Dal Maso, Negri, Percivale. Set-Valued Analysis (2002).

Step 5. The total energy computed along θ_R is equal to

$$E_{\alpha,R}^{tot}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta_R^2)$$
 (1.1)

with $\theta_R \to \alpha^{-1}$ minimisers and $k_R^{el} \to C^{el}$.

Step 5. The total energy computed along θ_R is equal to

$$E_{\alpha,R}^{tot}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta_R^2)$$
 (1.1)

with $\theta_R \to \alpha^{-1}$ minimisers and $k_R^{el} \to C^{el}$.

Step 6. For a fixed parameter k > 0, introduce the family of polynomials

$$P_{R,k}(\theta) := k R^3 \theta^3 (\theta^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta^2)$$

Step 5. The total energy computed along θ_R is equal to

$$E_{\alpha,R}^{tot}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta_R^2)$$
 (1.1)

with $\theta_R \to \alpha^{-1}$ minimisers and $k_R^{el} \to C^{el}$.

Step 6. For a fixed parameter k > 0, introduce the family of polynomials

$$P_{R,k}(\theta) := k R^3 \theta^3 (\theta^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta^2)$$

Step 7. Show that for $R \gg 0$ there exists a unique minimiser θ_R^m to

$$P_{R,k}(\theta_R^m) = \min_{\theta \in [\alpha^{-1},1]} P_{R,k}(\theta).$$

Moreover $\theta_R^m \to \alpha^{-1}$.

Step 5. The total energy computed along θ_R is equal to

$$E_{\alpha,R}^{tot}(\theta_R) = k_R^{el} R^3 \theta_R^3 (\theta_R^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta_R^2)$$
 (1.1)

with $\theta_R \to \alpha^{-1}$ minimisers and $k_R^{el} \to C^{el}$.

Step 6. For a fixed parameter k > 0, introduce the family of polynomials

$$P_{R,k}(\theta) := k R^3 \theta^3 (\theta^{-1} - \alpha)^2 + \sigma R^2 (1 - \theta^2)$$

Step 7. Show that for $R \gg 0$ there exists a unique minimiser θ_R^m to

$$P_{R,k}(\theta_R^m) = \min_{\theta \in [\alpha^{-1},1]} P_{R,k}(\theta).$$

Moreover $\theta_R^m \to \alpha^{-1}$.

Step 8. Since $\theta_R - \theta_R^m \to 0$, by using (1.1), minimality, and computing $P_{R,k}(\theta_R^m)$, we have the thesis

$$E_{\alpha,R}^{tot}(\theta_R) = \underbrace{\frac{\sigma^2}{\alpha^3 C^{el}} R}_{\text{Elastic}} + \underbrace{\sigma R^2 \left(1 - \alpha^{-2}\right) - 2 \frac{\sigma^2}{\alpha^3 C^{el}} R}_{\text{Plastic}} + O(R).$$

Conclusions:

A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.

Conclusions:

- ▶ A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- ▶ The size of the overlayer is a free parameter \implies free boundary problem, but only through the scalar parameter θ .

Conclusions:

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter \implies free boundary problem, but only through the scalar parameter θ .

Perspectives:

Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.

Read, Shockley (1950) - Hirth, Carnahan (1992)

Conclusions:

- A basic variational model describing the competition between the plastic energy spent at interfaces, and the corresponding release of bulk energy.
- The size of the overlayer is a free parameter \implies free boundary problem, but only through the scalar parameter θ .

Perspectives:

Grain boundaries, the misfit between the crystal lattices are described by rotations rather than dilations.

Read, Shockley (1950) - Hirth, Carnahan (1992)

Optimal geometry for the dislocation net (square vs hexagonal)
 Koslowski, Ortiz (2004)

Presentation Plan

- Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Polycrystals

Polycrystal: formed by many grains, having the **same** lattice structure, mutually rotated ⇒ interface misfit at **grain boundaries**.

Polycrystals

Polycrystal: formed by many grains, having the **same** lattice structure, mutually rotated ⇒ interface misfit at **grain boundaries**.

Goal: obtain polycrystalline structures as minimisers of some energy functional.

F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations. Preprint (2017)

Tilt boundary: small angle rotation θ between grains

Tilt boundary: small angle rotation θ between grains \implies edge dislocations.

Tilt boundary: small angle rotation θ between grains \implies edge dislocations. ε

Boundary structure: periodic array of edge dislocations with spacing $\delta = \frac{\varepsilon}{\theta}$.

Tilt boundary: small angle rotation θ between grains \implies edge dislocations.

Boundary structure: periodic array of edge dislocations with spacing $\delta = \frac{\varepsilon}{\theta}$.

Porter, Easterling. CRC Press (2009) - Gottstein. Springer (2013)

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon>0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad ext{ as } \quad arepsilon
ightarrow 0 \, .$$

Let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon>0$ is the lattice spacing and

$${\it N}_{arepsilon}
ightarrow +\infty \quad {\it as} \quad arepsilon
ightarrow 0 \, .$$

Let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

Plan:

▶ compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad ext{ as } \quad arepsilon
ightarrow 0 \, .$$

Let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

Plan:

- ▶ compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,
- **>** show that under suitable boundary conditions ${\cal F}$ is minimised by polycrystals.

Setting: consider a 2D system of N_{ε} edge dislocations, where $\varepsilon > 0$ is the lattice spacing and

$$N_{arepsilon}
ightarrow +\infty \quad ext{ as } \quad arepsilon
ightarrow 0 \, .$$

Let $\mathcal{F}_{\varepsilon}$ be the energy of such system.

Plan:

- ▶ compute \mathcal{F} , the Γ-limit of $\mathcal{F}_{\varepsilon}$ as $\varepsilon \to 0$,
- lacktriangle show that under suitable boundary conditions ${\cal F}$ is minimised by polycrystals.

Linearised polycrystals: our energy regime will imply

$$N_{arepsilon} \ll rac{1}{arepsilon}$$

 \implies we have less dislocations than tilt grain boundaries. However we still obtain polycrystalline minimisers, but with grains rotated by an infinitesimal angle $\theta \approx 0$.

Reference configuration: $\Omega\subset\mathbb{R}^2$ open bounded.

Reference configuration: $\Omega\subset\mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $\mathcal{S} := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $\mathcal{S} := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Strains: inducing μ are maps $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ s.t.

Curl
$$\beta \sqcup \Omega_{\varepsilon}(\mu) = 0$$
, $\int_{\partial B_{\varepsilon}(x_i)} \beta \cdot t \, ds = \xi_i$.

Reference configuration: $\Omega \subset \mathbb{R}^2$ open bounded.

Dislocation lines: points $x_0 \in \Omega$ separated by 2ε .

Burgers vectors: finite set $S := \{b_1, \dots, b_s\} \subset \mathbb{R}^2$.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^N \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathcal{S} \,.$$

Core radius approach: $\Omega_{\varepsilon}(\mu) := \Omega \setminus \cup B_{\varepsilon}(x_i)$.

Strains: inducing μ are maps $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ s.t.

Curl
$$\beta \sqcup \Omega_{\varepsilon}(\mu) = 0$$
, $\int_{\partial B_{\varepsilon}(x_i)} \beta \cdot t \, ds = \xi_i$.

Linearised Energy: $\mathbb{C}F : F \sim |F^{\mathrm{sym}}|^2$, then

$$E_{\varepsilon}(\mu,\beta) := \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx = \int_{\Omega} \mathbb{C}\beta : \beta \, dx.$$

Self-energy of a single dislocation core

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

Self-energy of a single dislocation core

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 dx$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 dx \ge \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 ds d\rho$$

•

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot t|^2 \, d\mathsf{s} \, d\rho \geq \, (\mathsf{Jensen}) \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \left| \int_{\partial B_{\rho}} \beta \cdot t \, d\mathsf{s} \right|^2 d\rho \end{split}$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathsf{t}|^2 \, d\mathsf{s} \, d\rho \geq \, (\mathsf{Jensen}) \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot \mathsf{t} \, d\mathsf{s} \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathsf{t}|^2 \, d\mathsf{s} \, d\rho \geq \, (\mathsf{Jensen}) \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot \mathsf{t} \, d\mathsf{s} \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of} \ \ \frac{\pi}{2} \,.$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathsf{t}|^2 \, d\mathsf{s} \, d\rho \geq \, (\mathsf{Jensen}) \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot \mathsf{t} \, d\mathsf{s} \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of} \ \ \frac{\pi}{2} \,.$$

Remark: let $s \in (0,1)$, then

$$\int_{B_{\varepsilon^s}\setminus B_{\varepsilon}} |\beta|^2 dx \ge \frac{(1-s)^{\frac{|\xi|^2}{2\pi}} |\log \varepsilon|}{2\pi}$$

Let β generate $\xi \, \delta_0$, that is "Curl $\beta = \xi \, \delta_0$ "

$$\begin{split} \int_{B_1 \setminus B_{\varepsilon}} |\beta|^2 \, d\mathsf{x} &\geq \int_{\varepsilon}^1 \int_{\partial B_{\rho}} |\beta \cdot \mathsf{t}|^2 \, d\mathsf{s} \, d\rho \geq \, \mathsf{(Jensen)} \\ &\geq \frac{1}{2\pi} \int_{\varepsilon}^1 \frac{1}{\rho} \bigg| \int_{\partial B_{\rho}} \beta \cdot \mathsf{t} \, d\mathsf{s} \bigg|^2 \, d\rho = \frac{|\xi|^2}{2\pi} |\log \varepsilon| \, . \end{split}$$

The reverse inequality can be obtained by computing the energy of

$$\beta(x) := \frac{1}{2\pi} \, \xi \otimes J \frac{x}{|x|^2} \,, \quad J := \text{clock-wise rotation of } \frac{\pi}{2} \,.$$

Remark: let $s \in (0,1)$, then

$$\int_{B_{\varepsilon^s}\setminus B_{\varepsilon}} |\beta|^2 dx \ge (1-s) \frac{|\xi|^2}{2\pi} |\log \varepsilon|$$

Self-energy: is of order $|\log \varepsilon|$ and concentrated in a small region around B_{ε} .

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $\mathbb{S} := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $\mathbb{S} := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Hypothesis on HC Radius: as $\varepsilon \to 0$

 $ightharpoonup
ho_{\varepsilon}/\varepsilon^{s}
ightarrow \infty$, $\forall s \in (0,1)$,

(HC contains almost all the self-energy)

HC Radius: fixed scale $\rho_{\varepsilon} \gg \varepsilon$.

Clusters of dislocations at scale ρ_{ε} are identified with a single **multiple dislocation**.

Admissible dislocations: finite sums of Dirac masses

$$\mu := \sum_{i=1}^{N} \xi_i \, \delta_{\mathsf{x}_i} \,, \quad \xi_i \in \mathbb{S} \,,$$

with $\mathbb{S} := \operatorname{\mathsf{Span}}_{\mathbb{Z}} \mathcal{S}$ set of multiple Burgers vectors, and

$$|x_i - x_j| > 2\rho_{\varepsilon}$$
, $\operatorname{dist}(x_k, \partial\Omega) > \rho_{\varepsilon}$.

Hypothesis on HC Radius: as $\varepsilon \to 0$

- $ightharpoonup
 ho_{\varepsilon}/\varepsilon^{s}
 ightarrow \infty$, $\forall s \in (0,1)$,
- $ightharpoonup N_{\varepsilon} \rho_{\varepsilon}^2 o 0$.

(HC contains almost all the self-energy)

(Measure of HC region vanishes)

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
,

Energy scaling: each dislocation accounts for $|\log arepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
,

Rescaled energy functionals:

$$\mathcal{F}_{\varepsilon}(\mu,\beta) := \frac{1}{\mathit{N}_{\varepsilon}|\log\varepsilon|} \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, \mathit{dx} \, .$$

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
,

Rescaled energy functionals:

$$\mathcal{F}_{\varepsilon}(\mu, \beta) := rac{1}{N_{\varepsilon} |\log arepsilon|} \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C} \beta : \beta \ dx \,.$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

▶ $N_{\varepsilon} \ll |\log \varepsilon| \rightsquigarrow \text{Dilute dislocations}$

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
,

Rescaled energy functionals:

$$\mathcal{F}_{\varepsilon}(\mu,\beta) := rac{1}{N_{\varepsilon}|\log \varepsilon|} \int_{\Omega_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \ dx \,.$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- ▶ $N_{\varepsilon} \ll |\log \varepsilon| \sim \text{Dilute dislocations}$
- ▶ $N_{\varepsilon} \approx |\log \varepsilon| \sim$ Critical regime

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.

J. Eur. Math. Soc. (JEMS) (2010)

Energy scaling: each dislocation accounts for $|\log \varepsilon| \implies$ relevant scaling is

$$E_{\varepsilon} \approx N_{\varepsilon} |\log \varepsilon|$$
,

Rescaled energy functionals:

$$\mathcal{F}_{arepsilon}(\mu,eta) := rac{1}{ extstyle extsty$$

Energy regimes: the behaviour of N_{ε} determines three different regimes:

- ▶ $N_{\varepsilon} \ll |\log \varepsilon| \sim \text{Dilute dislocations}$
- ▶ $N_{\varepsilon} \approx |\log \varepsilon| \sim \text{Critical regime}$

Garroni, Leoni, Ponsiglione. Gradient theory for plasticity via homogenization of discrete dislocations.

- J. Eur. Math. Soc. (JEMS) (2010)
- ▶ $N_{\varepsilon} \gg |\log \varepsilon| \sim \text{Super-critical regime}$

F., Palombaro, Ponsiglione. Linearised Polycrystals from a 2D System of Edge Dislocations.

Preprint (2017)

Let (μ, β) with $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Let (μ, β) with $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu):=\cup_{i=1}^N B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx \, .$$

Let (μ, β) with $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu):=\cup_{i=1}^N B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx.$$

Γ-limit: $S \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{sym})$, $A \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{skew})$, $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2)$ with Curl $A = \mu$,

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

Let (μ, β) with $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu):=\cup_{i=1}^N B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx.$$

Γ-limit: $S \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{sym})$, $A \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{skew})$, $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2)$ with Curl $A = \mu$,

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

Density φ : the self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{arepsilon o 0} rac{1}{|\log arepsilon|} \min_eta \left\{ \int_{B_1 \setminus B_arepsilon} \mathbb{C}eta : eta \, dx : \text{ ``Curl } eta = \xi \delta_0 \text{''}
ight\} \, .$$

Let (μ, β) with $\mu = \sum_{i=1}^{N} \xi_i \, \delta_{x_i}$ be such that "Curl $\beta = \mu$ ".

Energy decomposition: let $HC_{\varepsilon}(\mu):=\cup_{i=1}^N B_{\rho_{\varepsilon}}(x_i)$ be the HC region

$$E_{\varepsilon}(\mu,\beta) = \int_{\Omega \setminus \mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx + \int_{\mathrm{HC}_{\varepsilon}(\mu)} \mathbb{C}\beta : \beta \, dx.$$

Γ-limit: $S \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{sym})$, $A \in L^2(\Omega; \mathbb{M}^{2 \times 2}_{skew})$, $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2)$ with Curl $A = \mu$,

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| \, .$$

Density φ : the self-energy for a single dislocation core $\xi \delta_0$ is

$$\psi(\xi) := \lim_{arepsilon o 0} rac{1}{|\log arepsilon|} \min_eta \left\{ \int_{B_1 \setminus B_arepsilon} \mathbb{C}eta : eta \, dx : \text{ ``Curl } eta = \xi \delta_0 \text{''}
ight\} \, .$$

Define $\varphi \colon \mathbb{R}^2 \to [0, \infty)$ as the relaxation of ψ (splitting multiple dislocations)

$$\varphi(\xi) := \min \left\{ \sum_{i=1}^{M} \lambda_i \psi(\xi_i) : \ \xi = \sum_{i=1}^{M} \lambda_i \xi_i, \ M \in \mathbb{N}, \ \lambda_i \geq 0, \ \xi_i \in \mathbb{S} \right\}.$$

Γ -convergence result for $N_{\varepsilon}\gg |\log arepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

$$\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \text{ in } L^{2}(\Omega; \mathbb{M}^{2\times 2}),$$

Γ -convergence result for $N_{\varepsilon}\gg |\log arepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

- $\blacktriangleright \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$

Γ-convergence result for $N_ε \gg |\log ε|$

Theorem (F., Palombaro, Ponsiglione '17)

- $\blacktriangleright \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- $\blacktriangleright \ \mu \in H^{-1}(\Omega; \mathbb{R}^2)$ and $\operatorname{Curl} A = \mu$.

Γ -convergence result for $N_{\varepsilon}\gg |\log arepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \quad \text{in} \quad L^{2}(\Omega; \mathbb{M}^{2\times 2}),$
- $\blacktriangleright \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- $\blacktriangleright \mu \in H^{-1}(\Omega; \mathbb{R}^2)$ and $\operatorname{Curl} A = \mu$.

 Γ -convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|}\right) \, d|\mu|, \quad \text{with } \operatorname{Curl} A = \mu.$$

Γ -convergence result for $N_{\varepsilon} \gg |\log \varepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

- $\blacktriangleright \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- $\blacktriangleright \mu \in H^{-1}(\Omega; \mathbb{R}^2)$ and $\operatorname{Curl} A = \mu$.

 Γ -convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|}\right) \, d|\mu|, \quad \text{with } \operatorname{Curl} A = \mu.$$

Remark:

▶ S and A live on two different scales with $S \ll A \implies$ terms in $\mathcal F$ decoupled.

Γ -convergence result for $N_{\varepsilon}\gg |\log arepsilon|$

Theorem (F., Palombaro, Ponsiglione '17)

Compactness: consider $(\mu_{\varepsilon}, \beta_{\varepsilon})$ s.t. "Curl $\beta_{\varepsilon} = \mu_{\varepsilon}$ " and $\mathcal{F}_{\varepsilon}(\mu_{\varepsilon}, \beta_{\varepsilon}) \leq C \implies$

$$\blacktriangleright \frac{\beta_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup S, \quad \frac{\beta_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup A \quad \text{in} \quad L^{2}(\Omega; \mathbb{M}^{2\times 2}),$$

- $\blacktriangleright \frac{\mu_{\varepsilon}}{N_{\varepsilon}} \stackrel{*}{\rightharpoonup} \mu \text{ in } \mathcal{M}(\Omega; \mathbb{R}^2),$
- $\blacktriangleright \mu \in H^{-1}(\Omega; \mathbb{R}^2)$ and $\operatorname{Curl} A = \mu$.

\Gamma-convergence: the functionals $\mathcal{F}_{\varepsilon}$ Γ -converge to

$$\mathcal{F}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|}\right) \, d|\mu|, \quad \text{with } \operatorname{Curl} A = \mu.$$

Remark:

- ▶ S and A live on two different scales with $S \ll A \implies$ terms in $\mathcal F$ decoupled.
- ▶ In the critical regime $N_{\varepsilon} \approx |\log \varepsilon|$ we have $S \approx A$ and $Curl(S + A) = \mu$.

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

$$C \geq \mathcal{F}_{\varepsilon_n}(\mu_n, \beta_n)$$

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

$$C \geq \mathcal{F}_{\varepsilon_n}(\mu_n, \beta_n) \geq \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} \frac{1}{|\log \varepsilon_n|} \int_{B_{\rho_{\varepsilon_n}}(x_{n,i}) \setminus B_{\varepsilon_n(x_{n,i})}} W(\beta_n) dx$$

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

$$C \geq \mathcal{F}_{\varepsilon_n}(\mu_n, \beta_n) \geq \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} \frac{1}{|\log \varepsilon_n|} \int_{B_{\rho_{\varepsilon_n}}(x_{n,i}) \setminus B_{\varepsilon_n}(x_{n,i})} W(\beta_n) dx$$

$$\geq \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} \psi_{\varepsilon_n}(\xi_{n,i})$$

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

$$C \geq \mathcal{F}_{\varepsilon_n}(\mu_n, \beta_n) \geq \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} \frac{1}{|\log \varepsilon_n|} \int_{B_{\rho_{\varepsilon_n}}(x_{n,i}) \setminus B_{\varepsilon_n}(x_{n,i})} W(\beta_n) dx$$

$$\geq \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} \psi_{\varepsilon_n}(\xi_{n,i}) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}|^2 \psi_{\varepsilon_n} \left(\frac{\xi_{n,i}}{|\xi_{n,i}|}\right)$$

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

$$C \geq \mathcal{F}_{\varepsilon_{n}}(\mu_{n}, \beta_{n}) \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \frac{1}{|\log \varepsilon_{n}|} \int_{B_{\rho_{\varepsilon_{n}}}(x_{n,i}) \setminus B_{\varepsilon_{n}}(x_{n,i})} W(\beta_{n}) dx$$

$$\geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \psi_{\varepsilon_{n}}(\xi_{n,i}) = \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n,i}|^{2} \psi_{\varepsilon_{n}} \left(\frac{\xi_{n,i}}{|\xi_{n,i}|}\right) \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n,i}|^{2}$$

Compactness of the measures

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

so that $\frac{\mu_n}{N_{\epsilon_n}} \stackrel{*}{\rightharpoonup} \nu$.

$$C \geq \mathcal{F}_{\varepsilon_{n}}(\mu_{n}, \beta_{n}) \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \frac{1}{|\log \varepsilon_{n}|} \int_{B_{\rho_{\varepsilon_{n}}}(\mathsf{x}_{n}, i) \setminus B_{\varepsilon_{n}}(\mathsf{x}_{n, i})} W(\beta_{n}) d\mathsf{x}$$

$$\geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \psi_{\varepsilon_{n}}(\xi_{n, i}) = \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}|^{2} \psi_{\varepsilon_{n}} \left(\frac{\xi_{n, i}}{|\xi_{n, i}|}\right) \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}|^{2}$$

$$\geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}|$$

Compactness of the measures

Let $\mu_n := \sum_{i=1}^{M_n} \xi_{n,i} \delta_{x_{n,i}}$ and "Curl $\beta_n = \mu_n$ ". We show that

$$\frac{1}{N_{\varepsilon_n}}|\mu_n|(\Omega) = \frac{1}{N_{\varepsilon_n}} \sum_{i=1}^{M_n} |\xi_{n,i}| \le C, \qquad (1.2)$$

so that $\frac{\mu_n}{N_{\epsilon_n}} \stackrel{*}{\rightharpoonup} \nu$.

$$C \geq \mathcal{F}_{\varepsilon_{n}}(\mu_{n}, \beta_{n}) \geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \frac{1}{|\log \varepsilon_{n}|} \int_{B_{\rho_{\varepsilon_{n}}}(\mathsf{x}_{n}, i) \setminus B_{\varepsilon_{n}}(\mathsf{x}_{n, i})} W(\beta_{n}) d\mathsf{x}$$

$$\geq \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} \psi_{\varepsilon_{n}}(\xi_{n, i}) = \frac{1}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}|^{2} \psi_{\varepsilon_{n}} \left(\frac{\xi_{n, i}}{|\xi_{n, i}|}\right) \geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}|^{2}$$

$$\geq \frac{c}{N_{\varepsilon_{n}}} \sum_{i=1}^{M_{n}} |\xi_{n, i}| = c \frac{|\mu_{n}|(\Omega)}{N_{\varepsilon_{n}}} \implies (1.2)$$

Symmetric Part:

$$|CN_{\varepsilon_n}|\log \varepsilon_n| \geq CE_{\varepsilon_n}(\mu_n, \beta_n) \geq C\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx$$

Symmetric Part:

$$|CN_{\varepsilon_n}|\log \varepsilon_n| \geq CE_{\varepsilon_n}(\mu_n, \beta_n) \geq C\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx \implies \frac{\beta_n^{\mathrm{sym}}}{\sqrt{N_{\varepsilon_n}|\log \varepsilon_n|}} \rightharpoonup S.$$

Symmetric Part:

$$|CN_{\varepsilon_n}|\log \varepsilon_n| \geq CE_{\varepsilon_n}(\mu_n, \beta_n) \geq C\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx \implies \frac{\beta_n^{\mathrm{sym}}}{\sqrt{N_{\varepsilon_n}|\log \varepsilon_n|}} \rightharpoonup S.$$

Skew Part: since "Curl $\beta_n = \mu_n$ " we can apply the generalised Korn inequality:

$$\int_{\Omega} |\beta_n^{\rm skew}|^2 dx \le C \left(\int_{\Omega} |\beta_n^{\rm sym}|^2 dx + \left(|\mu_n|(\Omega) \right)^2 \right) \tag{Gen. Korn}$$

$$(N_{\varepsilon} \gg |\log \varepsilon|)$$

Garroni, Leoni, Ponsiglione. *Gradient theory for plasticity via homogenization of discrete dislocations.*J. Eur. Math. Soc. (JEMS) (2010)

Symmetric Part:

$$|CN_{\varepsilon_n}|\log \varepsilon_n| \geq CE_{\varepsilon_n}(\mu_n, \beta_n) \geq C\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx \implies \frac{\beta_n^{\mathrm{sym}}}{\sqrt{N_{\varepsilon_n}|\log \varepsilon_n|}} \rightharpoonup S.$$

Skew Part: since "Curl $\beta_n = \mu_n$ " we can apply the generalised Korn inequality:

$$\begin{split} \int_{\Omega} |\beta_n^{\rm skew}|^2 \, dx &\leq C \left(\int_{\Omega} |\beta_n^{\rm sym}|^2 \, dx + \left(|\mu_n|(\Omega) \right)^2 \right) \\ &\leq C \left(\sqrt{N_{\varepsilon_n} |\log \varepsilon_n|} + N_{\varepsilon_n}^2 \right) \leq C N_{\varepsilon_n}^2 \end{split} \tag{$N_{\varepsilon} \gg |\log \varepsilon|$}$$

Garroni, Leoni, Ponsiglione. *Gradient theory for plasticity via homogenization of discrete dislocations.*J. Eur. Math. Soc. (JEMS) (2010)

Symmetric Part:

$$|CN_{\varepsilon_n}|\log \varepsilon_n| \geq CE_{\varepsilon_n}(\mu_n, \beta_n) \geq C\int_{\Omega} |\beta_n^{\mathrm{sym}}|^2 dx \implies \frac{\beta_n^{\mathrm{sym}}}{\sqrt{N_{\varepsilon_n}|\log \varepsilon_n|}} \rightharpoonup S.$$

Skew Part: since "Curl $\beta_n = \mu_n$ " we can apply the generalised Korn inequality:

$$\begin{split} \int_{\Omega} |\beta_n^{\rm skew}|^2 \, dx &\leq C \left(\int_{\Omega} |\beta_n^{\rm sym}|^2 \, dx + \left(|\mu_n|(\Omega) \right)^2 \right) \\ &\leq C \left(\sqrt{N_{\varepsilon_n} |\log \varepsilon_n|} + N_{\varepsilon_n}^2 \right) \leq C N_{\varepsilon_n}^2 & \qquad (N_{\varepsilon} \gg |\log \varepsilon|) \end{split}$$

so that
$$\frac{\beta_n^{\text{skew}}}{N_{\epsilon}} \rightarrow A$$
.

Garroni, Leoni, Ponsiglione. *Gradient theory for plasticity via homogenization of discrete dislocations.*J. Eur. Math. Soc. (JEMS) (2010)

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_\varepsilon^{\mathrm{sym}}}{\sqrt{N_\varepsilon |\log \varepsilon|}} \rightharpoonup g_S \,, \qquad \frac{g_\varepsilon^{\mathrm{skew}}}{N_\varepsilon} \rightharpoonup g_A \,.$$

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S}, \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{A}.$$

Admissible dislocations: measures μ satisfying

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,.$$
 (GND)

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S}, \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{A}.$$

Admissible dislocations: measures μ satisfying

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,.$$
 (GND)

Admissible strains: $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ such that "Curl $\beta = \mu$ " and

$$\beta \cdot t = g_{\varepsilon} \cdot t$$
 on $\partial \Omega$.

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} \colon \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S}, \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{A}.$$

Admissible dislocations: measures μ satisfying

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,. \tag{GND}$$

Admissible strains: $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ such that "Curl $\beta = \mu$ " and

$$\beta \cdot t = g_{\varepsilon} \cdot t$$
 on $\partial \Omega$.

Γ-limit: the usual energy $\mathcal{F}_{\varepsilon}$ Γ-converges to

$$\mathcal{F}_{\mathrm{BC}}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) \, ds \,,$$

such that $\operatorname{Curl} A = \mu$, with $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Dirichlet type BC: at level $\varepsilon > 0$ fix a boundary condition $g_{\varepsilon} : \Omega \to \mathbb{M}^{2 \times 2}$ s.t.

$$\frac{g_{\varepsilon}^{\mathrm{sym}}}{\sqrt{N_{\varepsilon}|\log \varepsilon|}} \rightharpoonup g_{S} , \qquad \frac{g_{\varepsilon}^{\mathrm{skew}}}{N_{\varepsilon}} \rightharpoonup g_{A} .$$

Admissible dislocations: measures μ satisfying

$$\mu(\Omega) = \int_{\partial\Omega} g_{\varepsilon} \cdot t \, ds \,. \tag{GND}$$

Admissible strains: $\beta \colon \Omega_{\varepsilon}(\mu) \to \mathbb{M}^{2 \times 2}$ such that "Curl $\beta = \mu$ " and

$$\beta \cdot t = g_{\varepsilon} \cdot t$$
 on $\partial \Omega$.

Γ-limit: the usual energy $\mathcal{F}_{\varepsilon}$ Γ-converges to

$$\mathcal{F}_{\mathrm{BC}}(\mu, S, A) := \int_{\Omega} \mathbb{C}S : S \, dx + \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial\Omega} \varphi((g_A - A) \cdot t) \, ds \,,$$

such that $\operatorname{Curl} A = \mu$, with $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Remark: $\beta_{\varepsilon}^{\text{sym}} \ll \beta_{\varepsilon}^{\text{skew}} \implies \text{BC pass to the limit only for } A.$

Minimising \mathcal{F}_{BC} with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Minimising $\mathcal{F}_{\mathrm{BC}}$ with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Piecewise constant BC: Fix a piecewise constant BC

$$g_A := \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \, \chi_{U_k} \,,$$

with $m_k < m_{k+1}$ and $\{U_k\}_{k=1}^M$ Caccioppoli partition of Ω .

Minimising $\mathcal{F}_{\mathrm{BC}}$ with piecewise constant BC

Remark: there are no BC on $S \implies$ we can neglect elastic energy.

Piecewise constant BC: Fix a piecewise constant BC

$$g_A := \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}, \quad a := \sum_{k=1}^M m_k \, \chi_{U_k} \,,$$

with $m_k < m_{k+1}$ and $\{U_k\}_{k=1}^M$ Caccioppoli partition of Ω .

Problem

Minimise

$$\mathcal{F}_{\mathrm{BC}}(\mu,0,A) = \int_{\Omega} arphi\left(rac{d\mu}{d|\mu|}
ight) \, d|\mu| + \int_{\partial\Omega} arphi((g_A-A)\cdot t) \, ds \, ,$$

with Curl $A = \mu$ and $\mu \in \mathcal{M}(\Omega; \mathbb{R}^2) \cap H^{-1}(\Omega; \mathbb{R}^2)$.

Polycrystals as energy minimisers

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mu,0,A)$

$$A = \sum_{k=1}^{M} A_k \chi_{E_k} \,,$$

with $A_k \in \mathbb{M}^{2 \times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Polycrystals as energy minimisers

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mu,0,A)$

$$A = \sum_{k=1}^{M} A_k \chi_{E_k} \,,$$

with $A_k \in \mathbb{M}^{2 \times 2}_{\mathrm{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Open Question: Are all minimisers piecewise constant? Uniqueness?

Polycrystals as energy minimisers

Theorem (F., Palombaro, Ponsiglione '17)

Given a piecewise constant boundary condition g_A , there exists a piecewise constant minimiser of $\mathcal{F}_{\mathrm{BC}}(\mu,0,A)$

$$A=\sum_{k=1}^M A_k \chi_{E_k},$$

with $A_k \in \mathbb{M}^{2 \times 2}_{\text{skew}}$ and $\{E_k\}_{k=1}^M$ Caccioppoli partition of Ω . We interpret A as a linearised polycrystal.

Open Question: Are all minimisers piecewise constant? Uniqueness? Essential: that the boundary condition is piecewise affine on the whole $\partial\Omega$.

Problem: given a piecewise constant BC g_A , consider

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \ d|\mu| + \int_{\partial \Omega} \varphi ((g_A - A) \cdot t) \ ds : \ \operatorname{Curl} A = \mu \in \mathcal{M} \cap H^{-1} \right\} \ .$$

Problem: given a piecewise constant BC g_A , consider

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial \Omega} \varphi ((g_A - A) \cdot t) \, ds : \, \operatorname{\mathsf{Curl}} A = \mu \in \mathcal{M} \cap H^{-1} \right\} \, .$$

Since A and g_A are antisymmetric, $\exists u, a \in L^2(\Omega)$ s.t.

$$A = \begin{pmatrix} 0 & u \\ -u & 0 \end{pmatrix}$$
, $g_A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$.

Problem: given a piecewise constant BC g_A , consider

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial \Omega} \varphi ((g_A - A) \cdot t) \, ds : \, \operatorname{Curl} A = \mu \in \mathcal{M} \cap H^{-1} \right\} \, .$$

Since A and g_A are antisymmetric, $\exists u, a \in L^2(\Omega)$ s.t.

$$A = \begin{pmatrix} 0 & u \\ -u & 0 \end{pmatrix}$$
, $g_A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$.

Note: Curl $A = Du \in \mathcal{M}(\Omega; \mathbb{R}^2) \implies u \in BV(\Omega)$

Problem: given a piecewise constant BC g_A , consider

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial \Omega} \varphi ((g_A - A) \cdot t) \, ds : \, \operatorname{Curl} A = \mu \in \mathcal{M} \cap H^{-1} \right\} \, .$$

Since A and g_A are antisymmetric, $\exists u, a \in L^2(\Omega)$ s.t.

$$A = \begin{pmatrix} 0 & u \\ -u & 0 \end{pmatrix}, \quad g_A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}.$$

Note: Curl $A = Du \in \mathcal{M}(\Omega; \mathbb{R}^2) \implies u \in BV(\Omega) \implies$ **Equivalent Problem**:

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{dDu}{d|Du|} \right) d|Du| + \int_{\partial \Omega} \varphi((u-a)\nu) ds : u \in BV(\Omega) \right\}. \tag{1.3}$$

Problem: given a piecewise constant BC g_A , consider

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{d\mu}{d|\mu|} \right) \, d|\mu| + \int_{\partial \Omega} \varphi ((g_A - A) \cdot t) \, ds : \, \operatorname{\mathsf{Curl}} A = \mu \in \mathcal{M} \cap H^{-1} \right\} \, .$$

Since A and g_A are antisymmetric, $\exists u, a \in L^2(\Omega)$ s.t.

$$A = \begin{pmatrix} 0 & u \\ -u & 0 \end{pmatrix}$$
, $g_A = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$.

Note: Curl $A = Du \in \mathcal{M}(\Omega; \mathbb{R}^2) \implies u \in BV(\Omega) \implies$ **Equivalent Problem**:

$$\inf \left\{ \int_{\Omega} \varphi \left(\frac{dDu}{d|Du|} \right) \ d|Du| + \int_{\partial \Omega} \varphi((u-a)\nu) \ ds : \ u \in BV(\Omega) \right\}. \tag{1.3}$$

Proof: let \tilde{u} be a minimiser for (1.3). By anisotropic Coarea Formula

$$\int_{\Omega} \varphi\left(\frac{dD\tilde{u}}{d|D\tilde{u}|}\right) \, d|D\tilde{u}| = \int_{\mathbb{R}} \mathsf{Per}_{\varphi}\big(\{x \in \Omega: \, \tilde{u}(x) > t\}\big) \, dt \,,$$

we can select the levels with minimal perimeter. This defines the Caccioppoli partition.

Read-Shockley formula: Elastic energy= $E_0\theta(1 + |\log \theta|)$.

ightharpoonup This energy corresponds to small rotations heta between grains: small rotations but larger than linearised rotations.

Read-Shockley formula: Elastic energy= $E_0\theta(1 + |\log \theta|)$.

- ightharpoonup This energy corresponds to small rotations θ between grains: small rotations but larger than linearised rotations.
- lt is a nonlinear formula that corresponds to a higher energy regime.

Read-Shockley formula: Elastic energy= $E_0\theta(1 + |\log \theta|)$.

- ightharpoonup This energy corresponds to small rotations θ between grains: small rotations but larger than linearised rotations.
- It is a nonlinear formula that corresponds to a higher energy regime.
- The density of dislocations to obtain small rotations is

Density
$$pprox rac{1}{arepsilon} \gg extstyle extsty$$

Read-Shockley formula: Elastic energy= $E_0\theta(1+|\log\theta|)$.

- ightharpoonup This energy corresponds to small rotations θ between grains: small rotations but larger than linearised rotations.
- ▶ It is a nonlinear formula that corresponds to a higher energy regime.
- ▶ The density of dislocations to obtain small rotations is

Density
$$pprox rac{1}{arepsilon} \gg extstyle extsty$$

Question: Γ -convergence analysis of the Read-Shockley formula?

Lauteri, Luckhaus. An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity. Preprint (2017)

Read-Shockley formula: Elastic energy= $E_0\theta(1 + |\log \theta|)$.

- ightharpoonup This energy corresponds to small rotations θ between grains: small rotations but larger than linearised rotations.
- ▶ It is a nonlinear formula that corresponds to a higher energy regime.
- ▶ The density of dislocations to obtain small rotations is

Density
$$pprox rac{1}{arepsilon} \gg extstyle extsty$$

Question: \(\Gamma\)-convergence analysis of the Read-Shockley formula?

Lauteri, Luckhaus. An energy estimate for dislocation configurations and the emergence of Cosserat-type structures in metal plasticity. Preprint (2017)

Question: Are there some relevant energy regimes in between?

Conclusions:

A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Perspectives:

► Uniqueness of piecewise constant minimisers?

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Perspectives:

- ▶ Uniqueness of piecewise constant minimisers?
- Comparison with the Read-Shockley formula? Lauteri, Luckhaus. Preprint (2017).

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Perspectives:

- ▶ Uniqueness of piecewise constant minimisers?
- Comparison with the Read-Shockley formula? Lauteri, Luckhaus. Preprint (2017).
- Dynamics for linearised polycrystals?
 - Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (1978).
 - Chambolle, Morini, Ponsiglione. *Existence and Uniqueness for a Crystalline Mean Curvature Flow.* Comm. Pure Appl. Math (2017).

Conclusions:

- A variational model for linearised polycrystals with infinitesimal rotations between the grains, deduced by Γ-convergence.
- ► Networks of dislocations are obtained as the result of energy minimisation, under suitable boundary conditions.

Perspectives:

- ▶ Uniqueness of piecewise constant minimisers?
- Comparison with the Read-Shockley formula? Lauteri, Luckhaus. Preprint (2017).
- Dynamics for linearised polycrystals?
 Taylor. Crystalline variational problems. Bull. Amer. Math. Soc. (1978).
 - Chambolle, Morini, Ponsiglione. Existence and Uniqueness for a Crystalline Mean
 - Curvature Flow. Comm. Pure Appl. Math (2017).
- Supercritical regime analysis starting from a non-linear energy?
 Müller, Scardia, Zeppieri. Geometric rigidity for incompatible fields and an application to strain-gradient plasticity. Indiana University Mathematics Journal (2014).

Presentation Plan

- 1 Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Presentation Plan

- Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Gradient integrability for solutions to elliptic equations

$$\Omega\subset\mathbb{R}^2$$
 bounded open domain. A map $\sigma\in L^\infty(\Omega;\mathbb{M}^{2 imes2})$ is **uniformly elliptic** if
$$\sigma\xi\cdot\xi\geq\lambda|\xi|^2\,,\qquad\forall\,\xi\in\mathbb{R}^2,\,x\in\Omega\,.$$

Gradient integrability for solutions to elliptic equations

 $\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^\infty(\Omega; \mathbb{M}^{2 \times 2})$ is **uniformly elliptic** if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2 \,, \qquad \forall \, \xi \in \mathbb{R}^2, \, x \in \Omega \,.$

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$\operatorname{div}(\sigma \nabla u) = 0, \qquad (2.1)$$

when

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} \,,$$

with $\sigma_1,\sigma_2\in\mathbb{M}^{2\times 2}$ constant elliptic matrices, $\{E_1,E_2\}$ measurable partition of Ω .

Gradient integrability for solutions to elliptic equations

 $\Omega \subset \mathbb{R}^2$ bounded open domain. A map $\sigma \in L^\infty(\Omega; \mathbb{M}^{2 \times 2})$ is **uniformly elliptic** if $\sigma \xi \cdot \xi \geq \lambda |\xi|^2 \,, \qquad \forall \, \xi \in \mathbb{R}^2, \, x \in \Omega \,.$

Problem

Study the gradient integrability of distributional solutions $u \in W^{1,1}(\Omega)$ to

$$\operatorname{div}(\sigma \nabla u) = 0, \qquad (2.1)$$

when

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} \,,$$

with $\sigma_1,\sigma_2\in\mathbb{M}^{2\times 2}$ constant elliptic matrices, $\{E_1,E_2\}$ measurable partition of Ω .

Application to composites:

- $ightharpoonup \Omega$ is a section of a composite conductor obtained by mixing two materials with conductivities σ_1 and σ_2 ,
- ▶ the electric field ∇u solves (2.1),
- \blacktriangleright concentration of ∇u in relation to the geometry $\{E_1, E_2\}$.

Astala's Theorem

Theorem (Astala '94)

Let $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2 \times 2})$ be uniformly elliptic. There exists exponents 1 < q < 2 < p such that if $u \in W^{1,q}(\Omega)$ solves

$$\operatorname{div}(\sigma\nabla u)=0\,,$$

then
$$\nabla u \in L^{\mathbf{p}}_{\mathrm{weak}}(\Omega; \mathbb{R}^2)$$
.

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

Astala's Theorem

1 q 2 p

Theorem (Astala '94)

Let $\sigma \in L^{\infty}(\Omega; \mathbb{M}^{2\times 2})$ be uniformly elliptic. There exists exponents 1 < q < 2 < p such that if $u \in W^{1,q}(\Omega)$ solves

$$\operatorname{div}(\sigma\nabla u)=0\,,$$

then $\nabla u \in L^{\mathbf{p}}_{\mathrm{weak}}(\Omega; \mathbb{R}^2)$.

Question

Are the exponents q and p optimal among two-phase elliptic conductivities

$$\sigma = \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2} ?$$

Astala. Area distortion of quasiconformal mappings. Acta Mathematica (1994)

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix},$$

where

$${\cal K}>1 \qquad {\sf and} \qquad rac{1}{{\cal K}} \le {\it S}_j \le {\it K} \,, \quad j=1,2 \,.$$

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix} \,,$$

where

$${\cal K}>1 \qquad {\sf and} \qquad rac{1}{{\cal K}} \le {\it S}_j \le {\it K} \,, \quad j=1,2 \,.$$

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2} = \frac{2K}{K+1}, \quad p_{\sigma_1,\sigma_2} = \frac{2K}{K-1}.$$

For two-phase conductivities Astala's exponents $q=q_{\sigma_1,\sigma_2}$ and $p=p_{\sigma_1,\sigma_2}$ have been characterised.

Remark: it is sufficient to prove optimality in the case

$$\sigma_1 = \begin{pmatrix} 1/K & 0 \\ 0 & 1/S_1 \end{pmatrix} \,, \qquad \sigma_2 = \begin{pmatrix} K & 0 \\ 0 & S_2 \end{pmatrix} \,,$$

where

$${\cal K}>1 \qquad {\sf and} \qquad rac{1}{{\cal K}} \le {\it S}_j \le {\it K} \,, \quad j=1,2 \,.$$

The corresponding critical exponents for Astala's theorem are

$$q_{\sigma_1,\sigma_2} = \frac{2K}{K+1}, \quad p_{\sigma_1,\sigma_2} = \frac{2K}{K-1}.$$

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$.

(f) If $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and $u \in W^{1, \frac{2K}{K+1}}(\Omega)$ solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{2.2}$$

then $\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$.

f There exists $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (2.2) with $\sigma = \bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$.

Upper exponent optimality

Theorem (Nesi, Palombaro, Ponsiglione '14)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$.

(f) If $\sigma \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and $u \in W^{1, \frac{2K}{K+1}}(\Omega)$ solves

$$\operatorname{div}(\sigma \nabla u) = 0 \tag{2.2}$$

then
$$\nabla u \in L^{\frac{2K}{K-1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$$
.

fi There exists $\bar{\sigma} \in L^{\infty}(\Omega; \{\sigma_1, \sigma_2\})$ and a weak solution $\bar{u} \in W^{1,2}(\Omega)$ to (2.2) with $\sigma = \bar{\sigma}$, satisfying affine boundary conditions and such that $\nabla \bar{u} \notin L^{\frac{2K}{K-1}}(\Omega; \mathbb{R}^2)$.

Question we address

Is the lower exponent $\frac{2K}{K+1}$ optimal?

Lower exponent optimality

Theorem (F., Palombaro '17)

Let $\sigma_1 = \text{diag}(1/K, 1/S_1), \sigma_2 = \text{diag}(K, S_2)$ with K > 1 and $S_1, S_2 \in [1/K, K]$. There exist

- coefficients $\sigma_n \in L^{\infty}(\Omega; \{\sigma_1; \sigma_2\})$,
- ightharpoonup exponents $p_n \in \left[1, \frac{2K}{K+1}\right]$,
- functions $u_n \in W^{1,1}(\Omega)$ such that $u_n(x) = x_1$ on $\partial \Omega$,

such that

$$\begin{split} \operatorname{\mathsf{div}}(\sigma_n \nabla u_n) &= 0\,, \\ \nabla u_n \in L^{\rho_n}_{\operatorname{weak}}(\Omega;\mathbb{R}^2), \quad \rho_n &\to \frac{2K}{K+1}, \quad \nabla u_n \notin L^{\frac{2K}{K+1}}(\Omega;\mathbb{R}^2)\,. \end{split}$$

F., Palombaro. Calculus of Variations and Partial Differential Equations (2017)

Presentation Plan

- 1 Geometric Patterns of Dislocations
 - Dislocations
 - Semi-coherent interfaces
 - Linearised polycrystals
- 2 Microgeometries in Composites
 - Critical lower integrability
 - Convex integration
 - Proof of our main result

Theorem (Approximate solutions for two phases)

Let
$$A,B\in \mathbb{M}^{2 imes 2}$$
, $C:=\lambda A+(1-\lambda)B$ with $\lambda\in [0,1]$, and $\delta>0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that $B - A = a \otimes n$ for some $a \in \mathbb{R}^2$, $n \in S^1$. (Rank-one connection)

$$\exists$$
 piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that $f(x) = Cx$ on $\partial\Omega$ and $\operatorname{dist}(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that $B - A = a \otimes n$ for some $a \in \mathbb{R}^2$, $n \in S^1$. (Rank-one connection)

$$\exists$$
 piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that $f(x) = Cx$ on $\partial\Omega$ and $\operatorname{dist}(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Solutions: built through simple laminates

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that $B - A = a \otimes n$ for some $a \in \mathbb{R}^2$, $n \in S^1$. (Rank-one connection)

$$\exists$$
 piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that $f(x) = Cx$ on $\partial\Omega$ and $\operatorname{dist}(\nabla f, \{A, B\}) < \delta$ a.e. in Ω .

Solutions: built through simple laminates

► rank-one connection allows to laminate in direction *n*,

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n,
- ▶ ∇f oscillates in δ -neighbourhoods of A and B,

Theorem (Approximate solutions for two phases)

Let
$$A, B \in \mathbb{M}^{2 \times 2}$$
, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n,
- ▶ ∇f oscillates in δ -neighbourhoods of A and B,
- ▶ λ proportion for A, 1λ proportion for B,

Theorem (Approximate solutions for two phases)

Let $A, B \in \mathbb{M}^{2 \times 2}$, $C := \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$, and $\delta > 0$. Assume that

$$B-A=a\otimes n$$
 for some $a\in\mathbb{R}^2, n\in S^1$. (Rank-one connection)

 \exists piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$ and

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Solutions: built through simple laminates

- rank-one connection allows to laminate in direction n.
- $\triangleright \nabla f$ oscillates in δ -neighbourhoods of A and B,
- this allows to recover boundary data C.

 \blacktriangleright λ proportion for A, $1-\lambda$ proportion for B, Müller. Variational models for microstructure and phase transitions.

 $\mathcal{L}^2_{\Omega} \text{ is the normalised Lebesgue measure restricted to } \Omega \leadsto \mathcal{L}^2_{\Omega}(B) := |B \cap \Omega|/|\Omega|.$

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

$$\nabla f_{\#}(\mathcal{L}^{2}_{\Omega})(V) := \mathcal{L}^{2}_{\Omega}((\nabla f)^{-1}(V)), \quad \forall \text{ Borel set } V \subset \mathbb{M}^{2 \times 2}.$$

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

$$abla f_\#(\mathcal{L}^2_\Omega)(V) := \mathcal{L}^2_\Omega((\nabla f)^{-1}(V)) \,, \quad orall \ \ \, \text{Borel set} \ \ V \subset \mathbb{M}^{2 imes 2} \,.$$

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

Oscillations of ∇f_{δ} about $\{A, B\}$ and their proportions.

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

$$abla f_\#(\mathcal{L}^2_\Omega)(V) := \mathcal{L}^2_\Omega((\nabla f)^{-1}(V)) \,, \quad orall \ \ \, \text{Borel set} \ \ V \subset \mathbb{M}^{2 imes 2} \,.$$

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

- **Oscillations** of ∇f_{δ} about $\{A, B\}$ and their proportions.
- **Boundary condition** since the barycentre of ν is $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$.

 \mathcal{L}^2_Ω is the normalised Lebesgue measure restricted to $\Omega \leadsto \mathcal{L}^2_\Omega(B) := |B \cap \Omega|/|\Omega|$.

Gradient distribution

Let $f: \Omega \to \mathbb{R}^2$ be Lipschitz. The **gradient distribution** of f is the Radon measure $\nabla f_\#(\mathcal{L}^2_\Omega)$ on $\mathbb{M}^{2\times 2}$ defined by

Let f_{δ} be the map given by the previous Theorem. Then as $\delta \to 0$,

$$\nu_{\delta} := (\nabla f_{\delta})_{\#}(\mathcal{L}_{\Omega}^{2}) \stackrel{*}{\rightharpoonup} \nu := \lambda \delta_{\mathcal{A}} + (1 - \lambda)\delta_{\mathcal{B}} \quad \text{in} \quad \mathcal{M}(\mathbb{M}^{2 \times 2}).$$

The measure ν is called a **laminate of first order**, and it encodes:

- **Oscillations** of ∇f_{δ} about $\{A, B\}$ and their proportions.
- ▶ Boundary condition since the barycentre of ν is $\overline{\nu} := \int_{\mathbb{M}^{2\times 2}} M \, d\nu(M) = C$.
- ► Integrability since for p > 1 we have

$$\frac{1}{|\Omega|} \int_{\Omega} |\nabla f_{\delta}|^p dx = \int_{\mathbb{M}^{2\times 2}} |M|^p d\nu_{\delta}(M).$$

Iterating the Proposition

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Iterating the Proposition

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

Iterating the Proposition

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

New gradient: apply previous Proposition to the set $\{x \in \Omega \colon \nabla f \sim B\}$ to obtain $\tilde{f} \colon \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$,

$$\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$$
 a.e. in Ω .

Let $C = \lambda A + (1 - \lambda)B$ with $\lambda \in [0, 1]$ and $\operatorname{rank}(B - A) = 1$. Let $f: \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial\Omega$,

$$\operatorname{dist}(\nabla f, \{A, B\}) < \delta$$
 a.e. in Ω .

Further splitting: $B = \mu B_1 + (1 - \mu)B_2$ with $\mu \in [0, 1]$, rank $(B_2 - B_1) = 1$.

New gradient: apply previous Proposition to the set $\{x \in \Omega \colon \nabla f \sim B\}$ to obtain $\tilde{f} \colon \Omega \to \mathbb{R}^2$ such that f(x) = Cx on $\partial \Omega$,

$$\operatorname{dist}(\nabla \tilde{f}, \{A, B_1, B_2\}) < \delta$$
 a.e. in Ω .

The gradient distribution of \tilde{f} is given by

$$\nu = \lambda \, \delta_{A} + (1 - \lambda) \mu \, \delta_{B_1} + (1 - \lambda) (1 - \mu) \, \delta_{B_2}.$$

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

▶ dist(∇f , supp ν) < δ a.e. in Ω ,

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

- ► dist(∇f , supp ν) < δ a.e. in Ω ,
- ▶ f(x) = Ax on $\partial \Omega$,

Laminates of finite order

Laminates of finite order: laminates obtained iteratively through the splitting procedure in the previous slide.

Proposition (Convex integration)

Let $\nu = \sum_{i=1}^{N} \lambda_i \delta_{A_i}$ be a laminate of finite order, s.t.

- ightharpoonup $\overline{\nu} = A$,
- $A = \sum_{i=1}^{N} \lambda_i A_i \text{ with } \sum_{i=1}^{N} \lambda_i = 1.$

Fix $\delta > 0$. \exists a piecewise affine Lipschitz map $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$, that is,

- ▶ $\operatorname{dist}(\nabla f, \operatorname{supp} \nu) < \delta$ a.e. in Ω ,
- ▶ f(x) = Ax on $\partial \Omega$,
- $|\{x \in \Omega : |\nabla f(x) A_i| < \delta\}| = \lambda_i |\Omega|.$

Presentation Plan

1 Geometric Patterns of Dislocations

- Dislocations
- Semi-coherent interfaces
- Linearised polycrystals

2 Microgeometries in Composites

- Critical lower integrability
- Convex integration
- Proof of our main result

Strategy: explicit construction of u_n by **convex integration methods**.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (2.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$. Note: u and f have the same integrability.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (2.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$. Note: u and f have the same integrability.

2 Construct a laminate ν with supp $\nu \subset T$ and the right integrability.

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (2.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.

Note: *u* and *f* have the **same** integrability.

- **2** Construct a laminate ν with supp $\nu \subset T$ and the right integrability.
- **3** Convex integration Proposition \implies construct $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$. In this way f solves (2.3) and

$$abla f \in L^q_{ ext{weak}}(\Omega; \mathbb{R}^2) \,, \ \ q \in \left(rac{2K}{K+1} - rac{\pmb{\delta}}{\pmb{\delta}}, rac{2K}{K+1}
ight] \,, \qquad
abla f
otin L^q_{ ext{K+1}}(\Omega; \mathbb{R}^2) \,.$$

Strategy: explicit construction of u_n by **convex integration methods**.

1 Rewrite the equation $\operatorname{div}(\sigma \nabla u) = 0$ as a differential inclusion

$$\nabla f(x) \in T$$
, for a.e. $x \in \Omega$ (2.3)

for $f: \Omega \to \mathbb{R}^2$ and an appropriate target set $T \subset \mathbb{M}^{2 \times 2}$.

Note: *u* and *f* have the **same** integrability.

- **2** Construct a laminate ν with supp $\nu \subset T$ and the right integrability.
- **3** Convex integration Proposition \implies construct $f: \Omega \to \mathbb{R}^2$ s.t. $\nabla f \sim \nu$. In this way f solves (2.3) and

$$abla f \in L^q_{\mathrm{weak}}(\Omega; \mathbb{R}^2) \,, \ \ q \in \left(rac{2K}{K+1} - rac{\delta}{\delta}, rac{2K}{K+1}
ight] \,, \qquad
abla f
otin L^{rac{2K}{K+1}}(\Omega; \mathbb{R}^2) \,.$$

These methods were developed for isotropic conductivities $\sigma \in L^{\infty}(\Omega; \{KI, \frac{1}{K}I\})$. The adaptation to our case is non-trivial because of the lack of symmetry of the target set T, due to the anisotropy of σ_1 and σ_2 .

Astala, Faraco, Székelyhidi. Convex integration and the L^p theory of elliptic equations.

Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2008)

Rewriting the PDE as a differential inclusion

Let K > 1, $S_1, S_2 \in [1/K, K]$ and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}\big(1/K, 1/S_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(K, S_2\big)\,, \qquad \sigma := \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2}\,, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ S_1^{-1} y & K^{-1} x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ S_2 y & K x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Rewriting the PDE as a differential inclusion

Let K > 1, $S_1, S_2 \in [1/K, K]$ and define

$$\begin{split} &\sigma_1 := \mathsf{diag}\big(1/K, 1/S_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(K, S_2\big)\,, \qquad \sigma := \sigma_1 \chi_{E_1} + \sigma_2 \chi_{E_2}\,, \\ &T_1 := \left\{ \begin{pmatrix} x & -y \\ S_1^{-1} y & K^{-1} x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ S_2 y & K x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$\operatorname{div}(\sigma \nabla u) = 0$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f = (u,v) \colon \Omega \to \mathbb{R}^2$ satisfies

$$\nabla f(x) \in T_1 \cup T_2$$
 in Ω .

Moreover $E_1 = \{x \in \Omega \colon \nabla f(x) \in T_1\}$ and $E_2 = \{x \in \Omega \colon \nabla f(x) \in T_2\}.$

Rewriting the PDE as a differential inclusion

Let K > 1, $S_1, S_2 \in [1/K, K]$ and define

$$\begin{split} \sigma_1 &:= \mathsf{diag}\big(1/\mathsf{K}, 1/\mathsf{S}_1\big)\,, \quad \sigma_2 := \mathsf{diag}\big(\mathsf{K}, \mathsf{S}_2\big)\,, \qquad \sigma := \sigma_1 \chi_{\mathsf{E}_1} + \sigma_2 \chi_{\mathsf{E}_2}\,, \\ T_1 &:= \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_1^{-1} \, y & \mathsf{K}^{-1} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}\,, \quad T_2 := \left\{ \begin{pmatrix} x & -y \\ \mathsf{S}_2 \, y & \mathsf{K} \, x \end{pmatrix} \,:\, x, y \in \mathbb{R} \right\}. \end{split}$$

Lemma (F., Palombaro '17)

A function $u \in W^{1,1}(\Omega)$ is solution to

$$\operatorname{div}(\sigma \nabla u) = 0$$

iff there exists $v \in W^{1,1}(\Omega)$ such that $f = (u,v) \colon \Omega \to \mathbb{R}^2$ satisfies

$$\nabla f(x) \in T_1 \cup T_2$$
 in Ω .

Moreover $E_1 = \{x \in \Omega \colon \nabla f(x) \in T_1\}$ and $E_2 = \{x \in \Omega \colon \nabla f(x) \in T_2\}.$

Key Remark: u and f enjoy the same integrability properties.

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_- \overline{w}, \quad \forall w \in \mathbb{C}.$$

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2\times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_-\overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$E_0:=\{(z,0): z\in\mathbb{C}\}$$
 (Conformal maps) $E_\infty:=\{(0,z): z\in\mathbb{C}\}$ (Anti-conformal maps)

Targets in conformal coordinates

Conformal coordinates: Let $A \in \mathbb{M}^{2 \times 2}$. Then $A = (a_+, a_-)$ for $a_+, a_- \in \mathbb{C}$, defined by

$$Aw = a_+w + a_-\overline{w}, \quad \forall w \in \mathbb{C}.$$

The sets of conformal linear maps and anti-conformal linear maps are

$$E_0:=\{(z,0): z\in\mathbb{C}\}$$
 (Conformal maps) $E_\infty:=\{(0,z): z\in\mathbb{C}\}$ (Anti-conformal maps)

Target sets in conformal coordinates are

$$T_1 = \{(a, d_1(\overline{a})) : a \in \mathbb{C}\}, \qquad T_2 = \{(a, -d_2(\overline{a})) : a \in \mathbb{C}\},$$

where the operators $d_j \colon \mathbb{C} \to \mathbb{C}$ are defined as

$$d_j(a) := k \operatorname{\mathsf{Re}} a + i \, s_j \operatorname{\mathsf{Im}} a \,, \quad \text{with} \quad k := rac{K-1}{K+1} \quad \text{and} \quad s_j := rac{S_j-1}{S_j+1} \,.$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} =$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$\frac{\mathsf{JR}_{\theta}}{\mathsf{JR}_{\theta}} = \lambda_1 \mathsf{A}_1 + (1 - \lambda_1) \mathsf{P}_1$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_2 A_2 + (1 - \lambda_2)P_2$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1) P_1
= \lambda_1 A_1 + (1 - \lambda_1) (\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})
\sim \nu_1$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_{\infty}$
- $ightharpoonup \overline{\nu}_n = JR_\theta$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_{1}A_{1} + (1 - \lambda_{1})P_{1}
= \lambda_{1}A_{1} + (1 - \lambda_{1})(\mu_{1}B_{1} + (1 - \mu_{1})2JR_{\theta})
\sim \nu_{1}$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$

Let
$$\theta \in [0, 2\pi]$$
, $JR_{\theta} = (0, e^{i\theta})$.

$$JR_{\theta} = \lambda_1 A_1 + (1 - \lambda_1) P_1
= \lambda_1 A_1 + (1 - \lambda_1) (\mu_1 B_1 + (1 - \mu_1) 2JR_{\theta})
\sim \nu_1$$

$$2JR_{\theta} = \lambda_{2}A_{2} + (1 - \lambda_{2})P_{2}$$

$$= \lambda_{2}A_{2} + (1 - \lambda_{2})(\mu_{2}B_{2} + (1 - \mu_{2})3JR_{\theta})$$

$$\sim \nu_{2}$$

Lemma: $\exists p(\theta) \in \left[\frac{2S}{S+1}, \frac{2K}{K+1}\right]$ continuous, with $p(0) = \frac{2K}{K+1}$ and a sequence ν_n of laminates s.t.

- ▶ supp $\nu_n \subset T_1 \cup T_2 \cup E_\infty$
- $ightharpoonup \overline{\nu}_n = JR_{\theta}$
- $lacksquare \int_{\mathbb{M}^{2 imes2}} |M|^{p(heta)}\, d
 u_n(M) o\infty ext{ as } n o\infty$

Remark: barycentre J gives the right growth.

We want to construct $f:\Omega\to\mathbb{R}^2$ such that

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

- ▶ dist(∇f , $T_1 \cup T_2$) < ε a.e. in Ω ,
- f = Jx on $\partial \Omega$.

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- f = Jx on $\partial \Omega$.

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- $ightharpoonup f = Jx \text{ on } \partial\Omega.$
- $\triangleright \nabla f \notin L^{\frac{2K}{K+1}}$.

We want to construct $f: \Omega \to \mathbb{R}^2$ such that

- ▶ $\operatorname{dist}(\nabla f, T_1 \cup T_2) < \varepsilon$ a.e. in Ω ,
- f = Jx on $\partial \Omega$.
- $\triangleright \nabla f \notin L^{\frac{2K}{K+1}}$.

Idea: alternate one step of the staircase laminate with the convex integration Proposition.

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$. Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$. Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \rightsquigarrow \text{growth } p_1$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$. Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \rightsquigarrow \text{growth } p_1$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall $I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$. Step A. Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$ Step B. Laminate ν_1 from J to $2J \rightsquigarrow \text{growth } p_1$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_δ

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to 2J \sim growth ρ_1
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- ▶ Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to 2J \sim growth ρ_1
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- ▶ Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- ▶ Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$

Silvio Fanzon

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, \rho_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Silvio Fanzon

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- ► Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$

 E_{∞}

 $3JR_{\theta_2}$

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } p_2$

Silvio Fanzon

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \delta, \frac{2K}{K+1}\right]$$
.

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Silvio Fanzon

Geometric Patterns and Microstructures

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from **J** to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim$ Laminate ν_3 with growth $p_3 \in I_\delta$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial\Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } \rho_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- Split W_1 . Since $W_1 \sim 2J \implies \text{point}$ $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ightharpoonup ightharpoonup Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim$ Laminate ν_3 with growth $p_3 \in I_\delta$

Recall
$$I_{\delta} := \left(\frac{2K}{K+1} - \frac{\delta}{\delta}, \frac{2K}{K+1}\right].$$

- **Step A.** Define $f_1(x) := Jx \implies \theta_1 = 0, p_1 = \frac{2K}{K+1}$
- **Step B.** Laminate ν_1 from J to $2J \sim \text{growth } \rho_1$
- Step C. Proposition $\implies \exists \text{ map } f_2 \text{ s.t. } f_2 = Jx \text{ on } \partial \Omega$ and $\nabla f_2 \sim \text{supp } \nu_1 \implies \nabla f_2 \text{ grows like } p_1$

This determines the exponent range I_{δ}

Step 1. One step of the staircase

- ► Split W_1 . Since $W_1 \sim 2J \implies$ point $(2+\rho)JR_{\theta_2}$ with θ_2 , ρ small. $\implies p_2 \in I_{\delta}$
- ► Climb from $(2 + \rho)JR_{\theta_2}$ to $3JR_{\theta_2}$
- ▶ \sim Laminate ν_2 with $\overline{\nu}_2 = W_1$ and growth ρ_2

Step 2. Define map f_3 by modifying f_2

- ▶ Proposition $\implies \exists \text{ map } g \text{ s.t. } g = W_1 x \text{ on } \partial \Omega$ and $\nabla g \sim \text{supp } \nu_2 \implies \nabla g \text{ grows like } \rho_2$
- ▶ Set $f_3 := g$ in the set $\{\nabla f_2 \sim W_1\}$ and $f_3 := f_2$ otherwise $\implies \nabla f_3$ grows like p_2

Step 1. Split $W_2 \sim \text{Laminate } \nu_3 \text{ with growth } p_3 \in I_{\delta}$ **Iterating:** $\sim f_n$ obtained by successive modifications on nested sets going to zero in measure $\implies f_n \rightarrow f$

 $(2+\rho)JR_{\theta}$

Silvio Fanzon

 T_1

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\sigma_1, \sigma_2}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

▶ Optimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

► Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (2.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

Poptimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.

Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).

• We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

- ▶ Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (2.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?
- ▶ Extend these results to three-phase conductivities $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$.

Conclusions: analysis of critical integrability of distributional solutions to

$$\operatorname{div}(\sigma \nabla u) = 0, \quad \text{in } \Omega, \tag{2.4}$$

when $\sigma \in {\{\sigma_1, \sigma_2\}}$ for $\sigma_1, \sigma_2 \in \mathbb{M}^{2 \times 2}$ elliptic.

- Poptimal exponents q_{σ_1,σ_2} and p_{σ_1,σ_2} were already characterised and the upper exponent p_{σ_1,σ_2} was proved to be optimal.
 - Nesi, Palombaro, Ponsiglione. Ann. Inst. H. Poincaré Anal. Non Linéaire (2014).
- We proved the optimality of the lower critical exponent q_{σ_1,σ_2} .

Perspectives:

- ▶ Stronger result for lower critical exponent: showing $\exists u \in W^{1,1}(\Omega)$ solution to (2.4) and s.t. $\nabla u \in L^{\frac{2K}{K+1}}_{\text{weak}}(\Omega; \mathbb{R}^2)$ but $\nabla u \notin L^{\frac{2K}{K+1}}(B; \mathbb{R}^2)$, \forall ball $B \subset \Omega$. Modifying staircase laminate?
- ▶ Extend these results to three-phase conductivities $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$.
- ▶ Dimension $d \ge 3$? Even only in the isotropic case $\sigma \in \{KI, K^{-1}I\}$ for K > 1. Main difficulty: Astala's Theorem is missing in higher dimensions.

