解:

- (I) 1,3,5,6;1,3,5,9;1,3,6,9;1,3,7,9;1,5,6,9;
- (II) 不妨记 $\{a_n\}$ 的一个长度为 q 末项为 a_{m_0} 的递增字列为 $\{b_q\}$ 则 $b_1, b_2, \cdots b_p$ 为 $\{a_n\}$ 的一个长度为 p 的递增字列。 则长度为 p 的递增字列的末项的最小值 $a_{n_0} \leq b_p$ 由 $p < q \Rightarrow b_p < b_q = a_{m_0}$,则 $a_{n_0} < a_{m_0}$
- (III) 记 A_s^t 为 $\{a_n\}$ 的长度为 s, 末项为 t 的递增子列的集合 显然 $\{a_n\}$ 包含正奇数 $1,3,5,7,\cdots$ s=2 时: A_2^3 中的元素只可能是 $\{1,3\},\{2,3\}$ 则 $\{a_n\}$ 没有子列 $\{1,2\}$, 必有子列 $\{2,1,3\}$ s=3 时 $|A_3^5|=4$: 若 $\{a_n\}$ 有子列 $\{2,1,5,3\}$,则 A_3^5 中至多有 $\{2,4,5\},\{1,4,5\}$ 两个元素 矛盾, 故 $\{a_n\}$ 有子列 $\{2,1,3,5\}$ 此时 A_3^5 中必有 $\{1,3,5\},\{2,3,5\}$, 故其剩余 2 个元素必然都含有 4. 考察 A_3^5 中的含 4 元素: 若 $\{a_n\}$ 有子列 $\{2,1,3,4,5\}$, 则 $\{1,3,4\} \in A_3^4$, 矛盾 若 $\{a_n\}$ 有子列 $\{2,1,4,3,5\},\{1,4,5\}$ 和 $\{2,4,5\} \in A_3^5$ 若 $\{a_n\}$ 有子列 $\{2,4,1,3,5\}$, 则仅有 $\{2,4,5\} \in A_3^5$, 矛盾 若 $\{a_n\}$ 有子列 $\{4,2,1,3,5\}$, 没有含 4 元素, 矛盾 故 $\{a_n\}$ 必有子列 $\{2,1,4,3,5\}$ 记 A_k 为 $\{a_n\}$ 的末项最小的递增子列的集合 则 $|A_{k+1}| = 2^k$, 其中元素的末项均为 2k + 1假设 $\exists k \in N_+$, 使 $\{a_n\}$ 有子列 $\{2k+1, 2k-1\}$: 去除 A_{k+1} 中各个元素的末项, 得到 $\{a_n\}$ 的 k 项递增字列集 C 去掉共同末项后这些子列依然两两不同,故 $|C|=2^k$ 由其递增,这些子列末项均 < 2k + 1又 $\{a_n\}$ 的长度为 k 的递增字列的末项的最小值为 2k-1且 $\{a_n\}$ 任意两项不等, 这些子列中均不含 2k-1又 $\{a_n\}$ 为整数数列,故这些子列末项均为 2k考察 C 中各个元素的到数第二项, 显然 < 2k

又不能 = 2k-1 故倒数第二项 < 2k-1

则可用 2k-1 替换 C 中每个元素的末项 2k 后, 得到 2^k 个 $\{a_n\}$ 的项数为 k 的递增字列集, 其末项均为 2k-1, 与 $|A_k|=2^{k-1}$ 矛盾

因此 $\forall k \in N_+, \{a_n\}$ 有子列 $\{2k-1, 2k+1\}$.

考察 $A_k, |A_k| = 2^{k-1}, \{a_n\}$ 有子列 $\{2k-1, 2k+1\}$

显然 $\forall a \in A_k$, 在 a 末尾添加 2k+1 项后, 是 A_{k+1} 的元素

则 A_{k+1} 中至少有 2^{k-1} 个倒数第二项为 2k-1 的元素

去除 A_{k+1} 中各个元素的末项, 得到 $\{a_n\}$ 的 k 项递增字列集 D

则 D 中元素的末项必然 $\geq 2k-1$

且 D 中至多有 2^{k-1} 个末项为 2k-1 的元素

即 A_{k+1} 中有且仅有 2^{k-1} 个倒数第二项为 2k-1 元素

故 A_{k+1} 中有且仅有 2^{k-1} 个倒数第二项为 2k 的元素

故 $\{a_n\}$ 必有子列 $\{2k, 2k+1\}$

但 $\{a_n\}$ 不能有子列 $\{2k-1,2k\}$

否则在 A_k 的元素后加上 2k 得到 A_{k+1}^{2k} 的元素, 矛盾

故 $\{a_n\}$ 必有子列 $\{2k, 2k-1\}$

且 $\{a_n\}$ 必有子列 $\{2k-3,2k\}$:

将 A_k 中各个元素的末项替换为 2k, 再添加 2k+1 为末项, 得到 2^{k-1}

个, 倒数第二项为 2k 的 A_{k+1} 中的元素, 恰好满足题设

否则 A_k 中各个元素的末项替换为 2k 后不一定为递增子列

综上 $\{a_n\}$ 为 $\{2,1,4,3,6,5,8,7,10,9,\cdots\}$

即
$$\{a_n\}$$
 =
$$\begin{cases} n+1, n$$
为奇数 $n-1, n$ 为偶数