Departamento de Análisis Matemático, Universidad de Granada

Variable Compleja I, Grado en Ingeniería Informática y Matemáticas

Convcatoria ordinaria

Ejercicio 1. (2.5 puntos) Integrando una conveniente función sobre la poligonal $[-R, R, R + i\pi, -R + i\pi, -R]$, con $R \in \mathbb{R}^+$, calcular la integral

$$\int_{-\infty}^{+\infty} \frac{\cos(x)}{e^x + e^{-x}} dx.$$

Ejercicio 2. (2.5 + 1.5 puntos) Sea $f \in \mathcal{H}(\mathbb{C}^*)$ y supongamos que f diverge en 0 y en ∞ . Probar que f se anula en algún punto de \mathbb{C}^* . (Extra. 1.5 puntos) Demostrar que, de hecho, f se anula al menos dos veces (contando multiplicidad) y que tiene un número finito de ceros.

Ejercicio 3. (2.5 puntos) Para cada $n \in \mathbb{N} \cup \{0\}$, sea $f_n : \mathbb{C} \to \mathbb{C}$ la función dada por

$$f_n(z) = \int_n^{n+1} \frac{\cos(t+z^2) + \sin(t^2 - z)}{1 + t^4} dt \qquad \forall z \in \mathbb{C}.$$

- a) Probar que $f_n \in \mathcal{H}(\mathbb{C})$.
- b) Probar que la serie de funciones $\sum_{n\geqslant 0} f_n$ converge en \mathbb{C} y que su suma es una función entera.

Ejercicio 4. (2.5 puntos) Sean $f, g \in \mathcal{H}(\mathbb{C})$ de modo que

$$f(g(1/n)) = \frac{1}{n^3}$$

para todo $n \in \mathbb{N}$. Probar que una de las funciones es un polinomio de grado uno y que la otra es un polinomio de grado tres.