

ТЕСТВАНЕ С КОНТРОЛНИ СПИСЪЦИ И КЛАСОВЕ НА ЕКВИВАЛЕНТНОСТ

доц. д-р Десислава Петрова-Антонова

Съдържание

- Тестване с контролни списъци
- Тестване с класове на еквивалентност
- Тестване, базирано на употреба с оперативни профили
- Разработване на оперативен профил: процедури и примери

Тестов контролен списък

- ❖ "ad hoc" тестване (случайно тестване)
 - Стартиране на софтуера, наблюдение на поведението и идентифициране на <u>специфични</u> проблеми
- ❖ Проследяване на "ad hoc" тестването и създаване на неформални "to do" списъци
 - Физически списъци
 - Онлайн списъци
 - Мисловен списък
- ❖ Систематизиране на "ad hoc" тестването
 - Създаване на контролни списъци за проследяване на изтестваните елементи

Тестване с контролен сисък

- Условие за спиране на тестването
 - Изчерпване на елементите в списъка
 - ✓ Изпълнение на тестов сценарий и отстраняване на дефекти
- Често използвани контролни списъци
 - Функционални контролни списъци с различно ниво на абстракция и гранулярност
 - Контролни списъци със системни елементи с различно ниво на гранулярност (подсистеми, модули, изрази, елементи с данни и др.)
 - Контролни списъци със структури или характеристики, които се споделят от различни елементи (модули, ресурси, данни и др.)
 - Контролни списъци за определени свойства (специфични за системата елементи, стандарти)

Примерен функционален контролен списък

- ☑ Abnormal termination
- ☑ Backup and restore
- ☑ Communication
- ☑ Co-existence
- ☑ File I/O
- ☑ Gateway
- **☑** Index management
- ✓ Installation
- ✓ Logging and recovery
- ✓ Locking
- ☑ Migration
- **☑** Stress

Типове контролни списъци

Базови списъци

• Включват набор от елементи, които се тестват

Йерархични списъци

 Всеки елемент от контролен списък на по-горно ниво съдържа контролен списък от по-ниско ниво, като нивото на детайлност се определя спрямо избран критерий

Комбинирани списъци

 Създаване на многомерни списъци, при които всеки контролен списък се обхожда за всички елементи от останалите контролни списъци

Смесени списъци

- Съчетават йерархичните и комбинираните списъци
- Използват се с повишено внимание

Типове контролни списъци: пример

Баз	вов списък
$\overline{\checkmark}$	Abnormal termination
$\overline{\checkmark}$	Backup and restore
$\overline{\checkmark}$	Communication
$\overline{\checkmark}$	Co-existance
$\overline{\checkmark}$	File I/O
$\overline{\checkmark}$	Gateway
$\overline{\checkmark}$	Index management
$\overline{\checkmark}$	Installation
$\overline{\checkmark}$	Logging and recovery
$\overline{\checkmark}$	Locking
$\overline{\checkmark}$	Migration
V	Stress

Комбиниран списък				
Component	Standards Items			
Component	S ₁	s ₂	•••	S _n
c ₁	$\overline{\checkmark}$	$\overline{\checkmark}$		V
C ₂	$\overline{\checkmark}$	$\overline{\checkmark}$		$\overline{\checkmark}$
C _n	V	$\overline{\checkmark}$		V

Проблеми и ограничения при контролните списъци

- Структурната и функционалната сложност на съвременните системи ограничава използването на контролните списъци
 - Липса на детайлна информация относно елементите в списъка
 - Трудности при създаването и изпълнението на тестови сценарии от контролния списък
 - Съхраняване на информация за средата извън контролния списък
 - Трудности при диагностиката и отстраняването на дефекти

Проблеми и ограничения при контролните списъци

- Трудности при покриване на всички функционални или структурни компоненти от различни гледни точки и при различни нива на гранулярност
 - Опасност от пропуски в осигуряването на тестово покритие
- Опасност от припокриване на елементи в различните контролни списъци
 - Опасност от излишни тестови усилия
- Трудности при описание на сложни взаимодействия между различните системни компоненти или между главните системни функции
- Алтернативи
 - Тестване с покритие на класове (проблеми 1 и 2)
 - ✓ По-прецизно дефиниране на тестови сценарии
 - Тестване с машина на крайните състояния (проблем 3)

ТЕСТВАНЕ С КЛАСОВЕ НА ЕКВИВАЛЕНТНОСТ

Предимства на класовете на еквивалентност

По-добро покритие

Изчерпателност

Липса на припокриване

Инициализация на тестовите сценарии: мотивация

- Инициализиране на тестови сценарии при <u>елементарни</u> входно-изходни взаимовръзки
- Пример 1: Система с булеви входни променливи
 - Броят на входните комбинации е 2ⁿ за n на брой променливи

TC	Вход		
	а	b	
1	True	False	
2	True	True	
3	False	True	
4	False	False	

Инициализация на тестовите сценарии: мотивация

Пример 2: Система, изчисляваща квадратно уравнение

$$ax^{2} + bx + c = 0$$
, $r = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

- Представянето на променливите a, b и c с 32-битово число с плаваща запетая: броят на входните комбинации е 2^{32} х 2^{32} х 2^{32} = 2^{96}
- Разделяне на входния домейн и дефиниране на тестови сценарии посредством използване на зависимостта между корена r и дискриминантата d

TC	Условие	Вход		
	$d = b^2 - 4ac$	а	b	С
1	d > 0	1	2	-1
2	d = 0	1	2	1
3	d < 0	1	2	3

Домейн —> Контролен списък Поддомейн —> Елемент на контролен списък

Тестване с разделяне на класове

Дефиниране на класове на еквивалентност

Избор на един тестов сценарии за всеки клас на еквивалентност

Постигане на пълно покритие на класовете на еквивалентност

Разделяне на класове: концепции и дефиниции

- Формално представяне на клас на еквивалентност
 - Множество S с подмножества G_1 , G_2 , ..., G_n , със следните свойства
 - ✓ Подмножествата са взаимно изключващи се, т.е. не споделят общи елементи $\forall \ i,j,i\neq j \Rightarrow G_i \cap G_i = 0$
 - ✓ Помножествата са взаимно изчерпателни, т.е. покриват всички елементи на оригиналното множество

$$\bigcup_{i=1}^{n} G_i = S$$

- ✓ Елементите на всяко подмножество са еднакви от гледна точка на специфично свойство или релация, използвано за дефинирането му
- Релации между елементите в клас на еквивалентност
 - Симетрична релация: запазва се, ако редът на елементите се промени ("=")

$$\checkmark R(a,b) \Rightarrow R(b,a)$$

- Транзитивна релация: запазва се в релационна верига (">")
 - \checkmark $R(a,b) \land R(b,c) \Rightarrow R(a,c)$
- Рефлексивна релация: запазва се върху всеки елемент сам по себе си $("=", "\geq")$ $\checkmark R(a,a)$

Типове разделяне на класове

- Разделяне, базирано на софтуерни елементи, като например външни функции или системни компоненти
 - Подмножествата покриват напълно елементите на оригиналното множество и не се припокриват
 - Пример: Разделяне на компоненти по подсистеми $(x \in S)$
- Разделяне, базирано на определени свойства, релации и логически условия
 - Директно използване на логически предикати: логически променливи (T/F), свързани с логически оператори AND, OR или NOT
 - Сравнение на **числови стойности**: оператори за сравнение като "<", ">", "=", " \neq ", " \geq " и " \leq ", например $S_1 \equiv \{x: x < 0\}$ и $S_2 \equiv \{x: x \geq 0\}$
- Комбинации от представените типове
 - Пример: поддомейн на положителните цели числа по-малки от 21 се специфицира като $(x \in I) \land (x \ge 0) \land (x < 21)$
- Дефиниране на тестови сценарии
 - Покритие на всички софтуерни елементи (аналогично на контролен списък)
 - Инициализация на входните променливи и покритие на всеки клас с един тестов сценарий

Дърво и таблици за вземане на решения 1/3

Представяне на класовете на еквивалентност с елементарни решения в продуктовата спецификация или последователност от решения в програмната реализация на системата

Спецификация: Изискване за тип на данните (int или float)

Продуктов код: Предотвратяване на нежелан вход (деление на 0)

Дърво и таблици за вземане на решения 2/3

- Тестването, базирано на решения като част тестването с разделяне на класове
 - Представяне на изпълнението на програмата като последователност от взимане на решения, започваща от начално решение и приключваща с крайно решение за изход
 - Организация на решенията във фази
 - ✓ Еднородни дървета
 - ✓ Нееднородни дървета
- Приложение на таблиците и дърветата за взимане на решения при тестване с класове на еквивалентност
 - Тестване, базирано на решения
 - Тестване, базирано на предикати

Дърво и таблици за вземане на решения 3/3

- Генериране на тестови сценарии от дърво за взимане на решение
 - Тълкуване на дървото като йерархичен контролен списък
 - ✓ Всеки път в дървото се тълкува като под-домейн
- Постигане на тестово покритие за всички решения
 - Пример: Покритие при решения, базирани на логически променливи

```
\checkmark P ∧ Q (TT), P = True and Q = True
```

- ✓ $P \land \neg Q$ (TF), P = True and Q = False
- \checkmark ¬P ∧ Q (FT), P = False and Q = True
- \checkmark ¬P ∧ ¬Q (FF), P = False and Q = False
- Пример: Покритие при решения, базирани на целочислени променливи $(x \ge 0) \land (x < 21) \longrightarrow x = 10$
 - ✓ Удовлетворяван на първо условие: {1, 10, 100, ...}
 - ✓ Удовлетворяване на второ условие: {1, 10}
 - ✓ Избор на стойност: x = 10

СТАТИСТИЧЕСКО ТЕСТВАНЕ, БАЗИРАНО НА УПОТРЕБА

Надеждност

Надеждност: Вероятност за отсъствие на повреди в операциите на системата за определен период от време или специфично входно множество

Статистическо тестване, базирано на употреба

- Тестване на продукта по начин, наподобяващ използването му от крайните потребители
- Тестването, базирано на употреба, може да започне на по-късните тестови фази
 - Създаване на оперативен профил на ниво продуктово планиране или събиране на изискванията към системата
 - Извършване на тестване спрямо оперативния профил след реализацията на повечето софтуерни компоненти

Оперативен профил на Муса: Основна идея

- Определение за оперативен профил
 - Списък, съдържащ множество от операции и вероятности за тяхното използване
 - Количествена характеристика за начина, по който системата се използва
- Всяка <u>операция</u> се асоциира с множество тестови сценарии или тестови серии
- Всяка операция представя отделен клас на еквивалентност

Създаването на оперативни профили с фина гранулярност е

непрактично

File type	Hits	% of total
.gif	438536	57,47
.html	128869	16,89
directory	87067	11,41
.pdf	65876	8,63
.class	10784	1,41
.ps	10055	1,32
.ppt	2737	0,36
.jpg	2510	0,33
.css	2008	0,26
.txt	1597	0,21
.doc	1567	0,21
.ico	1254	0,16
.c	849	0,11

Ключови моменти, свързани с оперативния профил

- Сортиране на операциите в намаляващ ред на вероятността да бъдат използвани
- Неравномерно разпределение на вероятностите за използване на операциите
 - Пример: 13 типа файла формират 98% от посетените типове файлове в сайта
- Дефиниране на вероятностен праг в оперативния профил
 - Премахване на операциите с много малка вероятност да бъдат използвани
- Препоръчително представяне на оперативния профил с диаграма

Приложение на оперативния профил 1/3

Статистическо тестване с оперативен профил

- Вероятностите за използване на операциите определят минималния брой тестови сценарии, които трябва да бъдат създадени или избрани
- Броят на тестовите серии за всяка операция е пропорционален на нейната вероятност за използване
- Изпълнение на тестовите сценарии
 - Следване на предварително дефинирана тестова процедура
 - Динамичен избор на тестови сценарии за изпълнение
 - ✓ Недостатък: влияние върху производителността на тестовете и системата, която се тества
 - Допълнително усилие за избор на тестови сценарии
 - Въздействие върху "нормалното" поведение на системата при крайния потребител

• Прогресивно тестване с оперативен профил

 Повишаване на вероятностния праг в оперативния профил и избор на най-често използваните операции за тестване в началото на тестовия процес

Приложение на оперативния профил 2/3

- Количествена оценка на надеждността с оперативен профил
 - Данните от тестването могат да се анализират с модели за надеждност
 - ✓ Оценка на готовността на продукта
 - ✓ Прогнозиране на време и ресурси за достигане на готовност
 - ✓ Идентифициране на проблемни области за подобрение
- Подобряване на продуктивността и намаляване на разходите
 - Намаляване на разходите за системно тестване с 56% (11.5% от общите разходи)
 - ✓ Редуцира тестване на компоненти и функции с ниска степен на използване

Приложение на оперативния профил 3/3

- Ускорено представяне на нов продукт
 - Приоритетно реализиране на най-често използваната функционалност
 - Комбиниране със спирален процес на разработка или разработване на софтуерни прототипи
- Подобрена комуникация и връзка с потребителите на софтуера
 - Включване на потребителите при разработването на профила
 - Прецизиране на продуктовите изисквания и спецификация
 - По-фокусирано обучение на потребителите
- Висока възвръщаемост на инвестициите
 - Разработването на оперативен профил за продукт с 100 KLOC реда програмен код, който се изработва от 10 разработчика за 18 месеца, изисква разход за 1 човеко-месец
 - Възвръщаемостта от гледна точка на цена-полза е 1:10

Брой на оперативните профили за даден продукт

Методи за създаване на оперативен профил

❖ Действително измерване на използваемостта при потребителите

- Висока точност на създадения оперативен профил
- Трудности при нови продукти и нови приложения на продукта
 - ✓ Използват се подобни продукти или предходни версии на продукта за различни приложения
- Наличие на ограничения при използване на корпоративни и лични данни
 - ✓ Извършване на тестове от избрани потребители: късно създаване на оперативен профил и липса на представителност
- Висока цена на действителното измерване

Проучване сред целевите потребители

- При комерсиалните продукти и продуктите за масовия пазар е необходимо да се балансира между цената и точността на проучването
- Точността на проучването се влияе от познанията на потребителите за функционалността на продукта

Експертна оценка на използваемостта

- Ниска цена на създаване за сметка на точността, която може да бъде валидирана на по-късен етап с действително измерване или проучване
- Източници на информация са продуктовата и системна документация (документи, свързани с архитектурата и проектирането на системата, продуктовата спецификация, технически бележки, стандарти и др.)

Участници в създаването на оперативен профил

Потребители (Участват имплицитно като източник на информация)

Тестери (Координират създаването и използват профила) Отдел по планиране и маркетинг Системни инженери Проектанти на високо ниво Оперативен профил

Метод на Муса за създаване на оперативен профил

Служители в отдел по планиране и маркетинг

- Осигуряват отчитане на потребителските гледни точки в оперативния профил
- Инициализират събирането на изискванията към продукта, които се отчитат в оперативния профил

Системни инжинери

- Отговорни са за дефиниране на потребителските изисквания и спецификацията на продукта
- Осигуряват адекватно представяне на системата чрез оперативен профил

Проектанти на високо ниво

- Проектират продукта въз основа на спецификацията
- Подпомагат свързването на външните функции на продукта, очаквани от потребителите, с вътрешните компоненти, модули и подсистеми на продукта, които се тестват

Процедура за разработване: Муса-1

- Подходяща за големи системи с хетерогенни потребители
- Стъпки на разработване
 - Определяне на клиентски профил
 - ✓ Дефиниране на цялостно множество от клиентски категории с теглови коефициенти, определен от фактор на използване
 - Създаване на потребителски профил
 - ✓ Дефиниране на потребителски типове с теглови коефициенти, съответстващи на клиентските групи и относителните степени на използване
 - Дефиниране на системни режими и съответстващ профил
 - ✓ Идентифициране на множества от операции, които се използват съвместно и определяне на съответстващите им теглови коефициенти
 - Създаване на функционален профил
 - Идентифициране на индивидуалните функции от високо ниво и определяне на съответстващите им теглови коефициенти въз основа на анализ на системните режими и променливи на средата
 - Създаване на оперативен профил
 - ✓ Преобразуване на функциите от високо ниво в детайлни операции и определяне на тяхната вероятност за използване

ПРИМЕР: Муса-1 профил

Клиентски профил

Customer Type	Weight
corporation	0,5
government	0,4
education	0,05
other	0,05

Потребителски профил

	User profile by customer type				user profile
	Customer type				er G
User type	com	gov	edu	etc	
	Weight				Overall
	0,5	0,4	0,05	0,05	б
end user	0,8	0,9	0,9	0,7	0,84
dba	0,02	0,02	0,02	0,02	0,02
programmer	0,18	-	-	0,28	0,104
third party	-	0,08	0,08	-	0,036

End user: 0.8×0.5 (com) + 0.9×0.4 (gov) + 0.9×0.05 (edu) + 0.7×0.05 (etc) = 0.84

Клиентски групи

- Организации, за които е предназначен продукта
- Тегловите коефициенти се определят в зависимост от броя на организициите във всяка група и тяхното значение за доставчика на продукта
- Потребителски групи
 - Потенциалните потребители на продукта
- Системни режими
 - Нормален режим на работа
 - Режим на поддръжка: операции за архивиране на база от данни и диагностика
- Функционален профил
 - Функции (задачи от високо ниво, специфицирани в изискванията към системата)
- Оперативен профил
 - Опрации от ниско ново, реализирани в системата
- Типове профили
 - Експлицитен: Сумата от вероятностите за използване на операциите е 1
 - Имплицитен: Профилът за опериране на две фази A и B се изчислява като $p_{ij} = prob(A = A_i, B = B_i) = p_i \times p_i$

Процедура за разработване: Муса-2

- 💠 Подходяща за малки системи с хомогенни потребители
- За всеки оперативен режим се разработва по един профил
- Стъпки на разработване
 - Идентифициране на инициаторите на операциите
 - ✓ Потребители, друг софтуер, хардуер, мрежа и др.
 - Избор на таблично или графично представяне
 - Създаване на списък с операции
 - ✓ Създават се списъци за всеки тип инициатор, след което списъците се обединяват: {A, B, C} и {B, D} → {A, B, C, D}
 - Определяне на честотата на използване на операциите (за час)
 - ✓ Обикновено се използва действително измерване
 - Определяне на вероятността за използване на операциите
 - ✓ При липса на действителни измервания се използват проучвания, експертни оценки и др., при което предходната стъпка може да се пропусне

$$0 \le p_i \le 1, \quad \sum_i p_i = 1$$

Представяне на оперативен профил с дърво

- Конструиране на дървото
 - Последователността на операциите се разделя на фази с фиксиран брой възможности за избор
 - Възлите се асоциират с точки за взимане на решение
 - Дъгите представят честотата и вероятността за взимане на решения
 - Пътищата съответстват на завършени операции
- Пример: моделиране на използването на уеб браузър с двуфазен процес
 - Фаза 1. Стартиране на браузър с две възможности: (1) отваряне на страница по подразбиране или (2) отваряне на страница, зададена от потребителя
 - Фаза 2. Последващо използване с три възможности: (1) отваряне на линкове в посетени страници, (2) отваряне на запаметени страници или (3) комбинация от двете

Авиационна електроника

CASE STUDY

Контекст на софтуерния продукт

• Предназначение на софтуера

- Графичен потребителски интерфейс за планиране на пилотни мисии с персонален компютър
- Зареждане на информация за планирани мисии върху устройство за четене и запис
- Прехвърляне на данни в авионика (авиационна електроника в самолетите)

Разработчици на оперативния профил

- Софтуерен продуктов мениджър
 - ✓ Продуктово планиране и маркетингова дейност
- Софтуерни инженери по тестване
 - ✓ Осигуряване на информация за тестовите входни състояния за типичните операции
- Системни инженери
 - ✓ Специфициране на системните изисквания, проектиране на високо ниво и осигуряване на функции, които се верифицират по време на тестване

Потребителски профил и системни режими

- Клиентският профил не е релевантен
 - Всички клиенти използват софтуера по еднотипен начин
- Потребители на софтуера
 - Самолетни пилоти: основни потребители
 - Тестери на полети: подпомагат самолетните пилоти при планиране на пилотни мисии
 - Тестери на авионика: извършват системни тестове
 - Системни администратори: дейностите от тази група се извършват от самолетните пилоти
- Системни режими
 - Планиране на мисия преди полет
 - Системно тестване на авиониката
 - Администриране на системата
- Обединяване на функционалния и оперативния профили

Потребителски профил

User group	Маркетингови съображения	Честота на използване	Общ теглови фактор
Air force pilot	0,85	0,05	0,45
Flight Test support	0,10	0,80	0,45
Avionic system test	0,05	0,15	0,10

Оперативен профил*

- Прилага се имплицитен функционален профил Муса-1
 - Всяка дейност се асоциира със собствен диалогов прозорец или екран
 - Потребителят извършва една или повече дейности и приключва сесията
 - Редът на дейностите не е фиксиран (имплицитен профил)
- Създават се индивидуални оперативни профили за потребителските групи, които се обединяват в общ оперативен профил
- Операциите се разпределят в категории според използваемостта им

High	Medium-high	Medium-low	Low
DTC Load Inventory Save Route Planning Print	DTC Read Delete Retrieve Route	Wpn Prof Hot Keys Comm Retr/Save SCL Help Base Default FCR Mstr Mode	Retr Canned Save Canned DTC Test
High usage = 100% - 75%	Medium-high usage = 74,9% - 50%	Medium-low usage = 49,9% - 25%	Low usage = 24,9% - 0%

^{*}Стъпките по разработване на функционален и оперативен профил се обединяват поради незначителната разлика между проектираните функции на високо ниво и реализираните операции на ниско ниво

Метрики, вадидация на резултати и изводи

- Интервюта с продуктовия мениджър
 - Събиране на информация за изискванията към потребителския и функционалния профил
- ❖ Консултации със системните инженери и инженерите по тестване
 - Подготовка на проучване сред потребителите за получаване на количествени данни
- Провеждане на проучване
 - Очаквани участници 30-50, действителни участници 12
- Индивидуални интервюта със софтуерния екип за интерпретиране на оперативния профил
 - Съпоставяне на текущите тестови стратегии с идентифицираните нужди на клиентите
- Преглед и оценка на оперативния профил от продуктовия мениджър, системните инженери и инженерите по тестване
 - Резултатите за "high" операциите са очаквани
 - Класификацията на операцията "Hot Keys" като "medium-low" и на операцията "Help" като "medium-low" е неочакван резултат
- Резултати
 - Подобряване на контактите с клиентите и тестовата стратегия
 - Влияние върху системното проектиране и проектирането на високо ниво
 - Подпомагане на взимането на решения и следващите дейности

