Exercice 1.

Ecriture de n on beze 2:	
0000	000 -0
1:001	100 - 4
2=010	010 _ 2
5 - 011	110 - 6
4 = 100	001-1
5 - 101	101 - 5
6 - 110	011 - 3
7 = 111	111 = 7

Milloir

On vent mother que
$$\forall (a_{n})_{a \in N}$$
, $T(T(a)) = a$.

$$T(T(a))_{n} = \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} T(a)_{k}$$

$$= \sum_{k=0}^{n} (-1)^{k} C_{n}^{k} C_{n}^{k} C_{n}^{k} C_{n}^{k} C_{n}^{k} a_{j}$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{k} (-1)^{k+j} C_{n}^{k} C_{n}^{k} a_{j}$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{k} (-1)^{k+j} C_{n}^{k} C_{n}^{k} a_{j}$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{k} (-1)^{k+j} C_{n}^{k} C_{n}^{k} a_{j}$$

$$= \sum_{j=0}^{n} \frac{a_{j}}{j!} \sum_{k=j}^{n} (-1)^{k+j} \frac{n!}{(n-k)!} (k-j)!$$

$$= \sum_{j=0}^{n} \frac{n!}{j!} a_{j} \sum_{k=j}^{n} \frac{(-1)^{k+j}}{(n-k)!} (k-j)!$$

$$\frac{1}{1} = \frac{1}{1} = \frac{1}$$

$$S: j=n, S_n=\Lambda$$

Si
$$j \neq n$$
, Si $= \frac{1}{(n-j)!} \sum_{i=0}^{n-j} \frac{(n-j)!}{(n-j-i)!} (-n)^{i} (n)^{n-j-i}$

$$=\frac{1}{(n-j)!}\frac{(-1+1)^{n-j}}{\sqrt{n-j}}$$
 par la forme de Newhon

$$\frac{E+donc}{T(T(a))_{n}=\sum_{j=0}^{n}\frac{n!}{j!}S;}$$

$$= \underbrace{x^{\prime} a_{n}}_{xx^{\prime}} = a_{n}$$