Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»				
КАФЕДРА	АФЕДРА «Программное обеспечение ЭВМ и информационные технологии				
НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»					

ОТЧЕТ по лабораторной работе №2

Название:	Алгоритм Е	Винограда	
Дисциплина:		Анализ алгоритмов	
Студент	<u>ИУ7-56Б</u> Группа	Подпись, дата	Ковель А.Д. И. О. Фамилия
Преподаватель			Волкова Л.Л.
Преподаватель		Подпись, дата	и. о. Фамилия Строганов Ю.В.
		Подпись, дата	И. О. Фамилия

Москва, 2022 г.

Оглавление

1	Ана	алитический раздел	
	1.1	Применение математического подхода	
	1.2	Алгоритм Винограда	
2	Кон	нструкторский раздел	
	2.1	Трудоемкость алгоритмов	
		2.1.1 Классический алгоритм	
		2.1.2 Алгоритм Винограда	
		2.1.3 Оптимизированный алгоритм Винограда	
	2.2	Разработка алгоритмов	
3	Tex	кнологический раздел	
	3.1	Требования к ПО	
	3.2	Средства реализации	
	3.3	Средства замера времени	
	3.4	Реализация алгоритмов	
	3.5	Тестовые данные	
1	Исс	следовательская часть	
	4.1	Технические характеристики	
	4.2	Демонстрация работы программы	
	4.3	Процессорное время выполнения реализации алгоритмов	
	4.4	Результаты замеров времени выполнения реализаций алго-	
		ритмов	
_		очение	

Введение

Цель лабораторной работы— изучение и анализ алгоритмов умножения матриц.

Задачи данной лабораторной следующее:

- 1) изучение алгоритмов перемножения матриц, измерение трудоемкости различных алгоритмов умножения матриц, применение оптимизации при реализации алгоритма умножения матриц Винограда;
- 2) проведение сравнительного анализа трудоемкости алгоритмов умножения матриц на основе теоретических вычислений;
- 3) получение экспериментального подтверждения различий по временной эффективности алгоритмов умножения матрица, путем измерения процессорного время с помощью разработанного программного обеспечения;
- 4) описание и обоснование полученных результатов в отчете о выполненной лабораторной работе, выполненного как расчетно-пояснительная записка к работе.

1 Аналитический раздел

В этом разделе будут представлены описания алгоритмов умножения матриц и алгоритм Винограда.

1.1 Применение математического подхода

Даны матрицы, $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, произведение матриц, $C = A \times B$, каждый элемент которой вычисляется согласно формуле

$$c_{i,j} = \sum_{n=1}^{k=1} a_{i,k} \cdot b_{k,j}, \text{ где } i = \overline{1,m}, j = \overline{1,p}$$
 (1.1)

Стандартный алгоритм умножения матриц реализует формулу (1.1).

Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором.

1.2 Алгоритм Винограда

Алгоритм Винограда [1] — алгоритм умножения матриц. Рассмотрим два вектора $U=(u_1,u_2,u_3,u_4),\,W=(w_1,w_2,w_3,w_4).$ Их скалярное произведение равно $U\cdot W=u1w1+u2w2+u3w3+u4w4,$ что эквивалентно:

$$U \cdot W = (u_1 + w_2)(w_1 + u_2) + (u_4 + w_3)(w_4 + u_3) - u_1u_2 - u_3u_4 - w_1w_2 - w_3w_4$$

За счет предварительной обработки последних 4 слагаемых можно получить прирост производительности.

Стоит упомянуть, что при нечетном количестве столбцов матриц нужно дополнительно добавить произведение последних элементов соответствующих строки и столбца к скалярному произведению строки и столбца.

Вывод

Была выявлена основная особенность подхода Винограда — идея предварительной обработки данных. Разница во времени выполнения реализаций этих двух алгоритмов будет экспериментально вычислена в исследовательском разделе.

2 Конструкторский раздел

В данном разделе представлены схемы алгоритмов умножений матриц и их модификации.

2.1 Трудоемкость алгоритмов

Для получения функции трудоемкости алгоритма необходимо ввести модель оценки трудоемкости. Трудоемкость "элементарных" операций оценивается следующим образом.

1. Трудоемкость 1 имеют операции:

$$+, -, =, <, >, <=, >=, ==, +=, -=, ++, --, [], \&\&, |], >>, <<$$

2. Трудоемкость 2 имеют операции:

3. Трудоемкость конструкции ветвления определяется как

$$f_{if} = f_{\text{условие}} + \begin{bmatrix} min(f_{\text{истина}}, f_{\text{ложь}}) & \text{в лучшем случае,} \\ max(f_{\text{истина}}, f_{\text{ложь}}) & \text{в худшем случае.} \end{bmatrix}$$
 (2.1)

4. Трудоемкость цикла расчитывается как

$$f_{\text{пикл}} = f_{\text{инициал.}} + f_{\text{сравн.}} + N \left(f_{\text{тело}} + f_{\text{инкремент}} + f_{\text{сравн.}} \right)$$
 (2.2)

5. Трудоемкость вызова функции равна 0.

2.1.1 Классический алгоритм

Пусть на вход алгоритму поступают матрицы M_{left} и M_{right} с размерностью $n \times m$ и $m \times q$. Тогда трудоемкость классического алгоритма равна

$$f_{alg} = 2 + n \left(2 + f_i\right) \approx 14mnq = 14MNQ$$
 (2.3)

2.1.2 Алгоритм Винограда

Трудоёмкость алгоритма Винограда состоит из следующих этапов:

• создания и инициализации массивов МН и MV, трудоёмкость которого равна

$$f = M + N; (2.4)$$

• заполнения массива МН, трудоёмкость заполнения равна

$$f_{MH} = \frac{19}{2}MN + 6M + 2; (2.5)$$

• заполнения массива MV, трудоёмкость заполнения которого равна

$$f_{MV} = \frac{19}{2}QN + 6Q + 2); (2.6)$$

• цикла заполнения матрицы для чётного N, его трудоёмкость равна

$$f_{\text{щикл}} = 16MQN + 13MQ + 4M + 2; \tag{2.7}$$

• цикла для дополнения умножения суммой последних элементов перемножаемых строки и столбца, если линейная размерность N нечётная, трудоемкость этого цикла равна

$$f_{\text{последний}} = 3 + \begin{cases} 0, & \text{чётная}, \\ 16MQ + 4M + 2, & \text{иначе}. \end{cases}$$
 (2.8)

Итого, для худшего случая (нечётный размер матриц N) трудоемкость равна

$$f = f_{MH} + f_{MV} + f_{cucle} + f_{last} \approx 16 \cdot MNQ \tag{2.9}$$

Для лучшего случая (чётный размер матриц N) трудоемкость равна

$$f = f_{MH} + f_{MV} + f_{cycle} + f_{last} \approx 16 \cdot MNQ \tag{2.10}$$

2.1.3 Оптимизированный алгоритм Винограда

Оптимизированный алгоритм Винограда представляет собой обычный алгоритм Винограда с добавлением следующих оптимизаций:

- вычисление ряда величин происходит заранее;
- используется побитовый сдвиг, вместо деления на 2;
- используется побитовый сдвиг, вместо умножения на 2.

Трудоёмкость улучшенного алгоритма Винограда состоит из:

• создания и инициализации массивов МН и MV, трудоёмкость которого равна

$$f = M + N; (2.11)$$

• заполнения массива МН, трудоёмкость которого равна

$$f_{MH} = \frac{13}{2}MN + 4M + 5; (2.12)$$

• заполнения массива MV, трудоёмкость которого равна

$$f_{MV} = \frac{13}{2}QN + 4Q + 5; (2.13)$$

• цикла заполнения для чётных размеров, трудоёмкость которого равна

$$f_{\text{щикл}} = 2 + M \cdot (4 + N \cdot (11 + \frac{Q}{2} \cdot 21));$$
 (2.14)

• условие, для дополнения умножения суммой последних нечётных строки и столбца, если общий размер нечётный, трудоемкость которого равна

$$f_{\text{последний}} = 3 + \begin{cases} 0, & \text{чётная}, \\ 13MQ + 4M + 2, & \text{иначе.} \end{cases}$$
 (2.15)

Итого, для худшего случая (нечётный размер матриц N) трудоемкость равна

$$f = f_{MH} + f_{MV} + f_{\text{цикл}} + f_{\text{последний}} \approx 10.5 MNK$$
 (2.16)

Для лучшего случая (чётный размер матриц N) трудоемкость равна

$$f = f_{MH} + f_{MV} + f_{\text{цикл}} + f_{\text{последний}} \approx 10.5 MNK$$
 (2.17)

2.2 Разработка алгоритмов

На рисунке 2.1 приведена схема классического алгоритма умножения матриц. На рисунке 2.2 приведена схема алгоритма Винограда. Рисунок 2.3 демонстрируют схему реализации оптимизированного алгоритма Винограда.

Рисунок 2.1 – Схема классического алгоритма умножения матриц

Рисунок 2.2 – Схема алгоритма умножения матриц Винограда

Рисунок 2.3 — Схема оптимизированного алгоритма умножения матриц Винограда

Вывод

Алгоритмы были проанализированы с точки зрения временных затрат. Было выявлено, что оптимизированный алгоритм Винограда имеет трудоемкость в 1.5 раза меньше, чем классический алгоритм Винограда.

Были построены схемы алгоритмов. Были выделены способы оптимизации алгоритма Винограда. Было получено достаточно теоретических сведений для разработки ПО, решающего поставленную задачу.

3 Технологический раздел

В данном разделе будут приведены требования к программному обеспечению, средства реализации и листинга кода.

3.1 Требования к ПО

Программное обеспечение должно удовлетворять следующим требованиям:

- программа получает на вход с клавиатуры две матрицы размеров в пределах 10000×10000 либо получает два числа размерности матрицы в пределах 10000;
- программа выдает матрицу произведение двух полученных матриц;
- в программе возможно измерение процессорного времени.

3.2 Средства реализации

Для реализации ΠO был выбран язык программирования Python [2].

В данном языке есть все требующиеся инструменты для данной лабораторной работы.

В качестве среды разработки была выбрана среда VS Code [3], запуск происходил через команду python main.py.

3.3 Средства замера времени

Замеры времени выполнения реализаций алгоритма будут проводиться при помощи функции process_time [4] библиотеки time. Данная команда возвращает значения процессорного времени типа int в наносекундах.

Замеры времени для каждой реализации алгоритма и для каждого комплекта входных данных проводились 100 раз.

Листинг 3.1 – Пример замера затраченного времени

```
def test_simple_mult(A, B):
    # Start the stopwatch / counter

t1_start = process_time()

for i in range(N_TEST):
    simple_mult(A, M, B, N, M)

# Stop the stopwatch / counter

t1_stop = process_time()
```

3.4 Реализация алгоритмов

Листинг 3.2 демонстрирует реализацию классического алгоритма умножения.

Листинг 3.2 – Классический алгоритм умножения

```
def simple_mult(mat1, m, mat2, n, q):
    res = np.zeros([m, q])
    for i in range(m):
        for j in range(q):
             for k in range(n):
             res[i][j] = res[i][j] + mat1[i][k] * mat2[k][j]
    return res
```

Листинг 3.3 демонстрирует умножение матриц реализации алгоритмом Винограда.

Листинг 3.3 – Алгоритм умнложения Виноградом

```
1 def precompile \ rows \ win(mat, n, m):
2
    mh = np.zeros([n])
     for i in range(n):
3
       for j in range (m // 2):
4
         mh[i] = mh[i] + mat[i][j * 2] * mat[i][j * 2 + 1]
5
6
     return mh
7
  def precompile\ cols\ win(mat, n, m):
9
    mv = np.zeros([m])
10
11
     for i in range(m):
       for j in range (n // 2):
12
         mv[i] = mv[i] + mat[j * 2][i] * mat[j * 2 + 1][i]
13
14
     return mv
15
16 \mid def \text{ winograd} \setminus mult(A, m, B, n, q):
17
     res = np.zeros([m, q])
    mh = precompile \setminus rows \setminus win(A, m, n)
18
     mv = precompile \setminus cols \setminus win(B, n, q)
19
     for i in range(m):
20
       for j in range(q):
21
       res[i][j] = -mh[i] - mv[j]
22
       for k in range(n // 2):
23
         res[i][j] = res[i][j] + (A[i][k*2] +
24
            B[k*2+1][j])*(A[i][k*2+1] + B[k*2][j])
     if n \ \% \ 2 != 0:
25
       for i in range(n):
26
27
         for j in range(m):
            res[i][j] = res[i][j] + A[i][n-1]*B[n-1][j]
28
29
     return res
```

Листинг 3.4 демонстрирует умножение реализации оптимизированным алгоритмом Винограда.

Листинг 3.4 – Оптимизированный алгоритм умножения Виноградом

```
1 def precompile rows win opt(mat, n, m):
2
    mh = np.zeros([n])
    opt = m // 2
3
    for i in range(n):
4
      for j in range(opt):
5
        t = j << 1
6
7
        mh[i] += mat[i][t] * mat[i][t + 1]
8
    return mh
9
  def precompile cols win(mat, n, m):
11
    mv = np.zeros([m])
12
    opt = n // 2
13
    for i in range(m):
14
       for j in range(opt):
15
         t = i << 1
16
17
        mv[i] += mat[t][i] * mat[t + 1][i]
18
    return mv
19
20 def winograd mult opt(A, m, B, n, q):
    res = np.zeros([m, q])
21
    mh = precompile_rows_win(A, m, n)
22
    mv = precompile cols win(B, n, q)
23
24
    opt = n // 2
25
    for i in range(m):
26
       for j in range(q):
27
         res[i][j] = -mh[i] - mv[j]
28
         for k in range (n // 2):
29
           t = k << 1
30
           res[i][j] += (A[i][t] + B[t+1][j])*(A[i][t+1] + B[t][j])
31
    if n \% 2 != 0:
32
      for i in range(n):
33
         for j in range(m):
34
           res[i][j] += A[i][n-1]*B[n-1][j]
35
36
     return res
```

3.5 Тестовые данные

В таблице 3.1 представлены тестовые данные. Применена методология черного ящика. Все тесты пройдены успешно.

Таблица 3.1 – Функциональные тесты

1-ая матрица	2-ая матрица	Ожидаемый результат
	()	Сообщение об ошибке
()	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	Сообщение об ошибке
$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	Сообщение об ошибке
(5)	(5)	(25)
123	123	$\int 30 \ 36 \ 42 \$
$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	66 81 96
789	789	102 126 150
43	$(1 \ 2)$	$\begin{pmatrix} 13 & 20 \end{pmatrix}$
$\begin{pmatrix} 2 & 1 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \end{pmatrix}$	(5 8)
(1 2 3)	$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	(14)
123	$\begin{pmatrix} 1 & 4 \end{pmatrix}$	$\begin{pmatrix} 14 & 32 \end{pmatrix}$
$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 2 & 5 \end{bmatrix}$	$\begin{bmatrix} 32 & 77 \end{bmatrix}$
789	$\sqrt{3} \ 6$	\50 122/

Вывод

Было написано и протестировано программное обеспечение для решения поставленной задачи.

4 Исследовательская часть

В исследовательской части будут представлены время работы алгоритмов умножения матриц.

4.1 Технические характеристики

Замеры времени выполнялись на устройстве со следующими техническими характеристиками:

- операционная система Pop! OS 22.04 LTS [5] Linux [6];
- оперативная память 16 Гб;
- процессор AMD® Ryzen 7 2700 eight-core processor × 16 [7].

Во время выполнения замеров времени устройство было подключено к блоку питания и не нагружено никакими приложениями, кроме встроенных приложений окружения, окружением и системой тестирования.

4.2 Демонстрация работы программы

На рисунке 4.1 представлен результат работы программы. Во время запуска генерируется матрица в размерах заданных внутри кода. В данном примере матрица размером 3 на 3 и выводится три матрицы, которые являются результатом умножением матриц алгоритмами: классическим, Винограда, оптимизированным алгоритмом Винограда.

```
python-app git:(main) x python main.py
7 82 7
60 26 35
3 29 63
27 21 49
27 64 50
34 74 54
2641.0 5913.0 4821.0
3512.0 5514.0 6130.0
3006.0 6581.0 4999.0
2641.0 5913.0 4821.0
3512.0 5514.0 6130.0
3006.0 6581.0 4999.0
2641.0 5913.0 4821.0
3512.0 5514.0 6130.0
3006.0 6581.0 4999.0
```

Рисунок 4.1 – Пример работы программы

4.3 Процессорное время выполнения реализации алгоритмов

Результаты профилирования реализации алгоритмов приведены в таблицах:

Таблица 4.1.1 – Время выполнения реализации алгоритмов при четной размерности матриц

Таблица 4.1.2 – Время выполнения реализации алгоритмов при нечетном размерности матриц

				1 П			
$\ $ n	Время, п	S			n	Время, п	ıs
	Класс.	Виноград	Вин. опт.		11	Класс.	Е
10	4.49e-06	3.91e-06	4.01e-06		11	5.17e-06	4
20	2.74e-05	2.24e-05	2.30e-05		21	3.25e-05	2
30	8.84e-05	6.72e-05	7.01e-05		31	9.63e-05	7
40	2.09e-04	1.49e-04	1.58e-04		41	2.14e-04	1
50	3.96e-04	2.98e-04	3.14e-04		51	4.10e-04	3
60	6.58e-04	4.95e-04	5.15e-04		61	7.13e-04	5
70	1.07e-03	7.95e-04	8.43e-04		71	1.11e-03	8
80	1.60e-03	1.20e-03	1.22e-03		81	1.67e-03	1
90	2.26e-03	1.68e-03	1.77e-03		91	2.33e-03	1
100	3.14e-03	2.25e-03	2.38e-03		101	3.23e-03	2
150	1.06e-02	7.88e-03	8.33e-03		151	1.08e-02	8
200	2.84e-02	2.20e-02	2.34e-02		201	2.74e-02	2
250	6.73e-02	5.34e-02	5.74e-02		251	6.80e-02	5
300	1.14e-01	8.97e-02	9.60e-02		301	1.16e-01	9
350	1.80e-01	1.39e-01	1.50e-01		351	1.82e-01	1
400	2.67e-01	2.05e-01	2.21e-01		401	2.58e-01	1
450	4.17e-01	3.23e-01	3.48e-01		451	4.21e-01	3
500	5.71e-01	4.42e-01	4.75e-01		501	5.74e-01	4

n	Время, ns				
	Класс.	Виноград	Вин. опт.		
11	5.17e-06	4.56e-06	5.05e-06		
21	3.25e-05	2.58e-05	2.59e-05		
31	9.63e-05	7.23e-05	7.69e-05		
41	2.14e-04	1.64e-04	1.73e-04		
51	4.10e-04	3.15e-04	3.38e-04		
61	7.13e-04	5.37e-04	5.70e-04		
71	1.11e-03	8.36e-04	8.79e-04		
81	1.67e-03	1.28e-03	1.35e-03		
91	2.33e-03	1.73e-03	1.85e-03		
101	3.23e-03	2.36e-03	2.49e-03		
151	1.08e-02	8.03e-03	8.50e-03		
201	2.74e-02	2.13e-02	2.29e-02		
251	6.80e-02	5.27e-02	5.66e-02		
301	1.16e-01	9.13e-02	9.82e-02		
351	1.82e-01	1.40e-01	1.52e-01		
401	2.58e-01	1.99e-01	2.14e-01		
451	4.21e-01	3.26e-01	3.50e-01		
501	5.74e-01	4.43e-01	4.76e-01		

4.4 Результаты замеров времени выполнения реализаций алгоритмов

На рисунке 4.2 представлено время выполнения программы умножения квадратных матриц с четной линейной размерностью. На рисунке 4.3 представлено время выполнения программы умножения квадратных матриц с нечетной линейной размерностью.

Рисунок 4.2 – Время выполнения (четная размерность матрицы)

Рисунок 4.3 – Время выполнения (нечетная размерность матрицы)

Вывод

В данном разделе были сравнены реализации алгоритмов по затрачиваемому времени. Оптимизированный алгоритм Винограда является самым быстрым, за счет проведенных изменений в стандартном алгоритме Винограда.

Заключение

В ходе выполнения лабораторной работы были решены следующие задачи:

- были изучены и реализованы 3 алгоритма перемножения матриц: обычный, Винограда, модифицированный Винограда;
- был произведен анализ трудоёмкости алгоритмов на основе теоретических расчетов и выбранной модели вычислений;
- был сделан сравнительный анализ алгоритмов на основе экспериментальных данных;
- подготовлен отчет о лабораторной работе.

Оптимизированный алгоритм Винограда быстрее обычного на 5 процентов (на 0.1 нс) при размерах двух матриц 500 на 500.

Поставленная цель достигнута: алгоритмы умножения матриц изучены и проанализированы.

Список использованных источников

- [1] Анисимов Н.С., Строганов Ю.В. Реализация алгоритма умножения матриц по Винограду на языке Haskell // Новые информационные технологии в автоматизированных системах: материалы двадцать первого научно-практического семинара. М.: ИПМ им. М.В. Келдыша, 2018. С. 390–395.
- [2] Python Документация[Электронный ресурс]. Режим доступа: https://docs.python.org/3/ (дата обращения: 24.09.2022).
- [3] Vscode Документация[Электронный ресурс]. Режим доступа: https://code.visualstudio.com/docs (дата обращения: 24.09.2022).
- [4] Функция process_time модуля time python [Электронный ресурс]. Режим доступа: https://docs-python.ru/standart-library/modul-time-python/funktsija-process-time-modulja-time/ (дата обращения: 04.09.2022).
- [5] Pop OS 22.04 LTS [Электронный ресурс]. Режим доступа: https://pop.system76.com (дата обращения: 04.09.2022).
- [6] Linux Документация [Электронный ресурс]. Режим доступа: https://docs.kernel.org (дата обращения: 24.09.2022).
- [7] Процессор AMD® Ryzen 7 2700 eight-core processor × 16 [Электронный ресурс]. Режим доступа: https://www.amd.com/en/products/cpu/amd-ryzen-7-2700 (дата обращения: 04.09.2022).