

Empowering Data Analytics
Ecosystem

https://www.facebook.com/diceanalytics

https://www.linkedin.com/company/13294896

Introduction

Name
Education
Organization
Experience
Expectations?

Documentaries

https://www.youtube.com/watch?v=l6oKriR-Rj <u>M</u>

https://www.youtube.com/watch?v=en2ix9f8ceM&list=PLBE30C2B39FE4BD1C

https://www.youtube.com/watch?v=I-SVN3txo

Big Data

What is Big Data?

- Big Data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them.
- Big Data challenges include capturing data, data storage, processing, data analysis, search, sharing, transfer, visualization, querying, updating and information privacy/security.

We will look at all these aspects in this course!

Can you identify these trend lines in the field of data?

Big Data

Process A lot of Data

High Speed

With Less Cost

Problem Statement

What is Big Data?

- We often use the concept of 4 V-s to describe
 Big Data:
- 1. Volume Amount of Data (Petabytes, Zetabytes)
- 2. Variety Forms of Data (Structured, Unstructured)
- 3. Velocity Speed of Data (GBs/sec)
- 4. Veracity Uncertainty of Data (Accuracy)

What is Big Data?

data encompasses information from multiple mobile devices. Companies can leverage data to

As a leader in the sector, IBM data scientists break big data into four dimensions. Volume,

infrastructure, and find new sources of revenue.

4.4 MILLION IT JOBS

Velocity, Variety and Veracity

Poor data quality costs the US

\$3.1 TRILLION A YEAR

economy around

What is Big Data

https://www.youtube.com/watch?v=tkOwIXUaGM <u>M</u>

https://www.youtube.com/watch?v=xTVmK22ugj
0

https://www.youtube.com/watch?v=Hv397JnNWY

What is your big data challenge?

http://www.evariant.com/blog/big-data-analytics-in-healthcar

1. Volume

Transaction-based data stored through years.

Unstructured data streaming from social media.

Sensor and machine-to-machine data.

2 Variety • Structured data in traditional

databases

• Semi-structured data like YMII or ISON.

```
"firstName": "John",
"lastName": "Smith",
"age": 25,
"address": {
    "streetAddress": "21 2nd 5
    "city": "New York",
    "state": "NY",
    "postalCode": 10021
},
"phoneNumbers": [
    {
        "type": "home",
```

```
<title>XML test</title>
- <text type="test">
- <body>
- 
Though this is a very pared
<|b />
down XML document, it nonetheless
<|b />
provides an example of how an XML
<|b />
document displays on the web without
<|b />
the intercession of a stylesheet or
<|b />
other conversion program.

</pody>
</text>
</mi>
```

Unstructured data like emails, images click-stream

STATUS	monitor	2012/11/11	00:51:23	> Monitor
STATUS	monitor	2012/11/11	00:51:23	Launching a
INFO	buserver	2012/11/11	00:51:24	
INFO	buserver	2012/11/11	00:52:09	Nov 11, 281
INFO	buserver	2012/11/11	00:52:09	INFO: Start
INFO	buserver	2012/11/11	00:52:09	Nov 11, 281
INFO	buserver	2012/11/11	00:52:09	INFO: Start
INFO	buserver	2012/11/11	00:52:09	Nov 11, 281
INFO	buserver	2012/11/11	00:52:09	WARNING: Co
2 1.xsd				
INFO	buserver	2012/11/11	00:52:10	Nov 11. 281
INFO	buserver	2012/11/11	00:52:10	WARNING: Co
2 1.xsd				
INFO	buserver	2012/11/11	00:52:12	Nov 11, 281
onfin				

2. Variety (cont.)

Structural Variety
Formats & Models

Semantic Variety
How to interpret and
operate on data

Media Variety
Medium in which
data is delivered

Availability Variety
Real-time? batch?
Intermittent?

3. Velocity

Megabytes per second, Gigabytes per second.

Data needs to be dealt with in timely manner.

• Inconsistent data flows with periodic peaks.

Speed of Creating Data
Speed of Storing Data
Speed of Processing Data
Speed of Analyzing Data

3. Velocity (cont.)

Batch Processing

Real-Time Processing

Big Data enables real-time decision pipelines!

3. Velocity (cont.)

Speed of Data Generation

Speed of Data Processing

Which path to choose in what scenario?

4. Veracity

Untrusted and Unreliable.

Data Inconsistency and Incompleteness.

Biased, Unclean and Ambiguous Data

4. Veracity (cont.)

OUT IN

Which of the Following Organization is Facing Big Data Problem?

Does Every Organization Faces Big Data Problem

Big Data Problem & Big Data Big Data Platforms

We Buy Machines

Storage

Processing

A Big Data Platform

A Big Data Platform

Hadoop is one of the platform to Solve Big Data Problem

Distributed Storage

Parallel Processing

CLOUDERA

Why Big Data Platforms?

Scalable

Cost Effective

Flexible

Fast

Resilient

1. Scalable

- It can store and distribute very large data sets across hundreds of inexpensive servers that operate in parallel.
- It enables businesses to run applications on thousands of nodes involving thousands of terabytes of data.
- It manages horizontal scalability seamlessly.

2. Cost Effective

- A scale-out architecture (as seen in previous slide) that can *affordably* store all of a company's data for later use.
- In the past, many companies would have had to down-sample data, in an effort to reduce costs.
- The raw data would be deleted in relational DBs, as it would be too cost-prohibitive to keep.

The cost savings are staggering!

3. Flexible

- Enables businesses to easily access new data sources and tap into different types of data (structured, unstructured, semistructured).
- A single system deriving valuable business insights from data sources as variable as social media, email conversations or clickstream data.
- A single system used for a wide variety of purposes, such as log processing, recommendation systems, data warehousing, market campaign analysis and fraud detection.

4. Fast

- Storage method is based on a distributed file system that basically 'maps' data wherever it is located on a cluster.
- The tools for data processing are often on the same servers where the data is located, resulting in much faster data processing.
- If you're dealing with large volumes of unstructured data, it is able to efficiently process terabytes of data in just minutes, and petabytes in hours.

5. Resilient

 Data is replicated to many nodes in the cluster, which means that in the event of failure, there is another copy available for use.

Sources of Big Data

Machines

People

Organizations

1. Machines

 Machine generated data is the biggest source of Big Data.

A Boeing 787 produces 1/2 Terabytes per flight!

Internet of Things, Smart
 Devices - phones & sensors.

Enable real-time decisions, like Fraud Detection.

'A lot of smart devices' x 'A lot of data capture' = Big Data

2. People

 Mostly unstructured and text-heavy.

 80-90% of data the total data in the world is unstructured.

75% of total data on internet is images/videos.
 It's called the Dark Matter of web.

3. Organizations

Most data is Structured Commercial Transactions, Govt. Open Data, Banking Stock Records, Medical Health Records, E-Commerce, etc.

- At least as important as unstructured data.
- It often gets 'compartmentalised' into isolated information islands called **Data Silos**.
- Benefits can generated only by linking with other structured and non-structured data. Walmart
- Walmart collects 2.5 petabytes of data per hour!

Intelligent Companies

COMPANIES ARE SPENDING BIG ON BIG DATA

Growth

The Key: Integration

 The key to success is integration of diverse data! Bringing together data from diverse sources and turning them into coherent and useful information, called knowledge.

Reduced data complexity & Increased data availability.

Applications of Big Data

Personalized Marketing.

amazon.com

NETFLIX

Recommendation Engines.

Sentiment Analysis.

Mobile Advertising.

Biomedical Applications.

Smart Cities.

Traditional Data Warehouse

Modern Data Warehouse

Modern Data Pipelines

How to Get Value Out of Big Data?

Data Science

Data Science vs Big Data

Questio Acquir e Ingest/ETL Wrangling Visualiz e

Modellin g

3)

5 P's of Data Science

What is Apache Hadoop?

- Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models.
- It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
- Rather than rely on hardware to deliver
 high-availability, the library itself is designed to
 detect and handle failures at the application
 layer.

Open Enterprise Hadoop

Hadoop Composition

Ambari

Provisioning, Managing and Monitoring Hadooop Clusters

Data Exchange

Machine Learning R Connectors

Sqoop

Coordination Zookeepe

YARN Map Reduce v2

Statistics

Distributed Processing Framework

Hadoop Distributed File System

Data Management Frameworks

HDFS

Hadoop Distributed File System.

A Java-based, distributed file system that provides scalable, reliable, high-throughput access to application data stored across commodity servers.

YARN

Yet Another Resource Negotiator.

A framework for cluster resource management and job scheduling.

Operations Frameworks

Ambari

A web-based framework for provisioning, managing and monitoring Hadoop Clusters.

Zookeeper

A high-performance coordination service for distributed applications.

Cloudbreak

A tool for provisioning and managing Hadoop Clusters in the cloud.

Oozie

A server-based workflow engine used to execute Hadoop Jobs

Data Access Frameworks

Pig

A high-level platform for extracting, transforming, analyzing large datasets.

Hive

A data warehouse infrastructure that supports ad hoc SQL queries.

HCatalog

A table information, schema and metadata management layer supporting Hive, Pig, MapReduce, and Tez Processing.

Cascading

Application development framework for building data applications, abstracting details of complex MapReduce programing.

HBase

A scalable distributed NoSQL database that supports structured data storage for large tables.

Data Access Frameworks

Phoenix

A client-side SQL layer over HBase that provides low latency access to HBase data.

Accumulo

A low latency, large table data storage and retrieval system with cell-level security.

Storm

A distributed computation system for processing continuous stream of real-time data.

Solr

A distributed search platform capable of indexing petabytes of data.

Spark

A fast, general purpose processing engine used to build and run sophisticated SQL, streaming, machine learning or graphics.

Governance and Integration Frameworks

Falcon

A data governance tool providing workflow orchestration, data lifecycle management, and data replication services.

WebHDFS

WebHDFS

A REST API that uses standard HTTP verbs to access, operate, manage HDFS.

HDFS NFS Gateway

HDFS NFS Gateway

A gateway that enables access to HDFS as an NFS mounted file system.

Flume

A distributed, reliable and highly available service that efficiently collects, aggregates and moves streaming data.

Governance and Integration Frameworks

Sqoop

A set of tools for importing and exporting data between Hadoop and RDBM systems.

Kafka

A fast, scalable, durable, and faut-tolerant publish-subscribe messaging system.

Atlas

A scalable and extensible set of core governance services enabling enterprises to meet compliance and data integration requirements.

Security Frameworks

HDFS

A storage management service providing file and directory permissions, even more granular file and directory access control lists, and transparent data encryption.

YARN

A resource management service with access control lists controlling access to compute resources and YARN administrative functions.

Hive

A data warehouse infrastructure service providing granular access controls to table columns and rows.

Security Frameworks

Falcon

A data governance tool providing access control lists that limit who may submit Hadoop Jobs.

Knox

A gateway providing perimeter security to a Hadoop Cluster.

Apache Ranger

Ranger

A centralized security framework offering fine-grained policy controls for HDFS, Hive, Hbase, Knox, Storm, Kafka and Solr

Hadoop as +1 Architecture

 Though it has the potential to replace all others, it can also be used to complement existing systems if they can't be removed due to any constraints.

