FAILURE, FRACTURE, AND FATIGUE

Basic Structures Problem

Given an arbitrary body —

Propose

Part P3

Part P3

Desplace Desplacement u = un En In Tensor Notation Equas of Equilib $\longrightarrow \frac{\partial \sigma_{mn}}{\partial x_{m}} + f_{n} = 0$ (3 Eqs) Strain-Displacement Ego -> Emn = \frac{1}{2} (\frac{\partial u_m}{\partial x_n} + \frac{\partial u_n}{\partial x_m}) (6 Ego) Stress-Strain Egs -> Emn = function of omn (6 Egs) Shear straw E12 = 2xy
Shear straw E12 = 2xxx

Given the Applied Loads.

Find:

- a) Internal Stresses
- b) Deflections
- e) Does it Fail?

Failure, Fracture and Fatigue

Failure	das	tru du	e mean	st	Can
no longer	meet	its on	erational	require	ments
0		- 7	30.000		1)

Modes of structural failure—

a) Material Failure (yielding, fractura)

b) Buckling

c) Loss of Stiffness (divergence, flutter, controls)

d) Fatigue (repeated loads, cracks)

e) Creep (long times at high temperature)

f) Wear, Rubbing, Corrosion, Material Aging of

Material Failure

(Consider isotropic materials)

For box in tension

Ox

Ox

Ox

Out

Only ox present

(uniaxial stress)

Ale.002

Ex

Material yields @ 5 yills

Permanent set for stresses above of

Grief defined as o for .2% permanent set

(For Metals)

For general 3-dimensional body —
present at any point
present at any point
(Combined Strees)
How adapt uniaxial test results to Combined Stress state? Several Theories proposed.
to Combined Stress state? Several
Theories proposed.
(a) Maximum Normal Stress Theory (Lame)
"If max normal stress > GULT, material breaks
normal sines / Oult, martine breaks
Max normal stress -> largest of
Max normal stress -> largest of the 3 principal stresses.
On
Principal Stresses are when:
(Max Normal Stressea,
Max Normal Stresses, Zero Shear Stresses
For combined stress ox ty to Txy Tyz Tzx,
principal stresses found from condition,
$(\sigma_{x}-\sigma), C_{xy} \qquad C_{x7}$
T_{xy} (c_y-c) $C_{yz} = 0$
Cx2 Cy2 (C2-C)

Expanding gives cubic equa in 5.

The 3 roots are $\sigma_{\rm I}$, $\sigma_{\rm II}$, $\sigma_{\rm III}$ = Princip Stress Material breaks if, either GI > Tuit Max Normal on GI > GULT Stress Condition on GIT > GULT For 2-Dimensional plane stress state -(52 , Txz , Tyz = 0) $\left\{ \begin{array}{c}
\sigma_{\text{I}} \\
\sigma_{\text{II}}
\end{array} \right\} = \frac{\sigma_{\text{X}} + \sigma_{\text{Y}}}{2} + \left(\frac{\sigma_{\text{X}} - \sigma_{\text{Y}}}{2}\right)^{2} + \mathcal{D}_{\text{XY}}$ Om = 0 Mohr's Circle · Find general state of stress, Ox Gy Gz Txy Tyz Tzx · Determine Principal Stresses 5, 5, 5, 5 · Failure of GI, GE, GE > GULT

Max Normal Stress Theory good for Brittle Materials only Very little plastie range: (glass, ceramic, concrete, metals below To, epopes, fibero) Often brittle materials have (TULT) Tension (OULT) compress Check both tension & compression Max Normal Stress Theory not good for Duetile Materials

——————————————————————————————————————	Maximum	n Shear	Stress The	iony (Tresca)
	If max of	hear stress:	> 6	sterial yields"
	Max she	an stress	-> la	ngest of the
	σ ₁ -0	T , G = 2	<u></u>	- 5 ₁
What is a?	where of	fore.	are the	grincipal stresses
A	occurs i	when $G_X = G_1 = G_2$	System o	sent only), yielding $m = \sigma_m = 0$
is ,	Max Shan	$s+rand = \frac{G_{I}}{2}$	VE = 54 ->	OA = Oright
Hen	re, gene	ral yield	my occur	s if
-	either	$ \sigma_{\rm I} - \sigma_{\rm II} $		Max Shear
6	on	GT - GT	7 Fijeld	Max Shear Stress Condition
	or	$ \sigma_{\mathbf{m}} - \sigma_{\mathbf{x}} $	> Tyield	(Treaca Cond.)

Max Shear Stress Theory good for Ductile Materials Gives onset of yield. (aluminum, steel, etc.) Note: For hydrostatie pressure, GI = GI = OI = - P Max Shear Cond count give yielding $|\sigma_{\rm I} - \sigma_{\rm II}| = 0$ etc This agrees with experimental evidence. Dudle materials can support hydrostation pressures of 1,000,000 psi without yelding (Bridgeman experiments, Harvard, 1906) Yielding caused by shearing action. (dislocations) See CDL 5.1, 5.2, 5.14

(c) Mises - Hendry Theory (~1913) If, (62-64) + (04-04) + (04-05) > 08, material yields For uniapial stress, yielding occurs when $C_{\times} = C_{\pm} = C_{yield}$. Placing into above gives, V2 Cried = 0B or 0B = V2 Cried Hence general yielding if, $\sqrt{\frac{1}{2}}\left\{\left(\sigma_{\mathbf{I}} - \sigma_{\mathbf{H}}\right)^{2} + \left(\sigma_{\mathbf{H}} - \sigma_{\mathbf{H}}\right)^{2} + \left(\sigma_{\mathbf{H}} - \sigma_{\mathbf{I}}\right)^{2}\right\} > \sigma_{\text{yield}}$ or, in terms of actual stresses, 1 = {(0x-0y)2+(0y-02)2+(02-0x)2}+37xy+372+372x > 0yell Mises - Henchy Condition

Good for <u>Ductile Materials</u>. Predicts onset of yield slightly better than May Shear Stress Theory.

For Orthotropic Materials, Typed not same in all directions. wood > E different strengthis Can generalize Mises-Hendry to F (Gy - Gz) 2 + G (Gz - Gx) 2 + H (Gx - Gy) 1 + ZL 2 + ZM 2 + ZN 2 > 1 "Hill Criterion" where F, G, H, L, M, N -> empirical fitted However, Hill criterion has equal compressive and tensile strengths. For more generality, use C1 (Gy-Gz)2 + C2 (Gz-Gx)2 + C3 (Gx-Gy)2 + C4 Gx + C5. Gy + C6. Gz + C7 Cyz + C8 Czx + C9 Cxy > 1 R "Hoffman Criterion"

9 Terms = 3 tensile for each direction
3 compressive " " "
3 shear interaction

General Failure Analysis Procedure 1. Analyse structure for stresses tis strains &; and diffections u; 2. Obtain yield stresses types, two from handbooks (MIL-HDBK-5, etc.) 3. Choose failure criterion 4. Use stresses or strains in failure criteria with typice, trutt

Application to Pressure Tonks
C.O. D. O to O . O . O . O . O .
in the content while the content of
Cylindrical tank, closed @ ende, under internal pressure p; What p; will
cause tank to yield?
y
1 Rodins R
thickenses t
D X
R Radius R Thickenses t
internal pressure p: (165/in2)
To find stresses in wall, cut I to x axis,
$C_{x} = \frac{1}{11} \frac{1}{1} = \frac{1}{1}$
Pi 3 Hom
$\delta_{x} = \frac{P_{i}R}{2+}$
Also cut II to X axis,
640 69 - 1 N 1-11
EFVENT STRATERY
D D
No Shean stress C_{xy} "Hoop stress"
No Shear stress Txy "Hoop stress"
100 - STREE
Also Gz = pi to o
To measlighte compared to $0 \times 0 $
5 20 Cx \$ 5y fr 82>30

Plane Stress State $G_{I} = G_{x} = \frac{R_{i}R}{2t}$ OH = Gy = PiR t $G_{\overline{m}} = C_2 = 0$ Apply Max Shear Condition Yield when | PiR | 7 typeld or | RiR > Eyele or | RiR > cycle = oritical! Hence, for Pi = Gyille Tomber yield Apply Mises Hendry Condition

Yield when $\left\{\frac{1}{2}\left\{\left(\frac{PiR}{2t}\right)^2 + \left(\frac{PiR}{2t}\right)^2 + \left(-\frac{PiR}{2t}\right)^2\right\} = Cyield$ or $\frac{13}{2}$ $\frac{PiR}{t} = Cyield$ Touch yields

Hence, for $P_i = \frac{2}{\sqrt{3}} c_{ijkl} \frac{t}{R} = 1.15 c_{ijkl} \frac{t}{R}$

¥	V Disease of	e: 2	^		#1 E
Not	e: Thi	èù	los	wall o	nlıs
1000					
-		0	16	2 a	lso, look
A LANGE CONTRACTOR				X-liere	a end
	9		-/(1	
	*				
Latin 1-1 (- w	:1	0.	K-liere	
				5	
Fon	External F	ress	ure_	70 -	
				•	· · · · · · · · · · · · · · · · · · ·
	111	1		foils by	Buckling
-			\		
			<i></i>		
	1 1 9	11	e "		
			0		
			F		
		la .			6
,					
,					-
	17	·.		to the second	

Fracture Mechanics

"Inflawed" materials, Look now at effects of "cracks" in materials (due to manufacture, handling, fatigue, etc)

Consider plate under tension with crack

applied stress 50

Can show from Plane Stress Theory,

 $G_{\chi} = \frac{K}{\sqrt{2\pi r}} \cos \frac{\theta}{z} \left[1 + \sin \frac{\theta}{z} \cos \frac{3\theta}{z} \right]$

Cy = K CR = [1- sin = coz 3+]

Cxy= Koot int on ?

Where K = 50 Tra > "Stress intensity factor"

Note Stress concentration et crack tip
Ox ∫ for crade, σx ∝ ; → > ∞
for cracle, $\sigma_{\chi} \propto \uparrow_{\Gamma} \rightarrow \infty$ for cracle, $\sigma_{\chi} \propto \uparrow_{\Gamma} \rightarrow \infty$ for hole, $\sigma_{\chi} \rightarrow 3\sigma_{0}$
Fracture occurs when K = Kc Conticol strange interesting the when K = Kc Conticol strange interesting the strange of the start of the s
Mode I - opening FJ KI
Mode II - shearing Z KI
Mode II - tearing € KI
For this problem, have Mode I
$K = K_{\mathbf{L}} \equiv G_0 / \mathbf{T} \mathbf{a}'$
For Fracture: On Tha = Kte
Griffith Equa.
KIC > "Fratture Toughness" (a material)
Failure chors

crack levath

failure stress of Can use to estimate given a cracle size, za Fast Fracture" GF = KIC 一号 √20 Also use to find zac for failure, critical cracle size 2 a c + a c $2 a_{c} = \frac{2}{\pi} \left(\frac{K_{IC}}{\sigma_{F}} \right)$ Important for Inspection technique Typical Values Gr = Guar GTY KIC 20cm Material OVET Ksi Jim (in) (KSI) (Ksi) 64 45 -31. 47 Al 2024-T3 69 .10 Al 7075-T 77 30 Ti 6A-4V 130 .11 55 120 4340 Stel ,02 51 260 215 D6 ac .05 220 185 60

Fatigne Failure Repeated loadings on structure $AAATGA = S = \frac{P}{A}$ "S-N Curve" GULT X Fail

OK X X Lower trans for Some materials have asymptote 103 104 105 106 107 log N ~ cycles Te - "endurance livit" or "fatigue" Much scatter in data

Fatigue = "Tendency of a material
to break under repeated
loading"

More generally, include effect of mean stress, OM Smin Sm K=

Smin Sm

Smin time, t R = Smin Smax S-N Dragram becomes, SA Increase SM log N Effects better summarized in Goodman Diagram" Altern, SA = 1 (5 max - Smin) Mean, $S_M = \frac{1}{2} \left(S_{max} + S_{min} \right)$ R = 4 See MIL-HDBK-5C etc. (TL699)

Goodman Diagram often printed like this,

$$R = \frac{\sigma_{\text{min}}}{\sigma_{\text{max}}}$$

For Comp - Comp -> little damage to material

6 ...

Cumulative Damage

For a given arrivalt flight, wing stress to may look like

(Bottom Surface) WW - Landing

Break up into M components. Two ways to estimate fatigue life, a) Miner's Rule

b) Crack Growth Mechanics

a) Miner's Rule (~1945)

Damage, D = 0 to 1

For given cycle type #1,

 $D = \frac{N_1}{N_1}$

N. = actual cycles at stress 5,

N. = cycles for failure at stress 5,

For M different cycle types,

$$D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \cdots = \sum_{i=1}^{M} \frac{n_i}{N_i}$$

Failure when,

$$\sum_{i=1}^{M} \frac{n_i}{N_i} = 1$$

Miner's Rule

For Safety, compute 4 x actual life, "Scatter factor" = 4. Set D=.25 not 1

For Example,

$$D = \frac{5000}{10,000} + \frac{300,000}{1,000,000} = .80 - Not good$$
(D should be < .25)

(b) Crach Growth Fracture Mechanics

Look at crack growth,

$$\frac{da}{dN} = f(a, \sigma)$$
integrale assume init

assume initial $a = .050^{11}$ N

When crack size, a > acr; crack propagates catastrophically

Recall,

KIC =
$$\propto$$
 Or / π Originally,

"Fracture Shape Critical Critical a measure of toughness of toug

Introduce, Stress Intensity Factor Range AK, $\Delta K = K_{mex} - K_{min} = \propto (\sigma_{max} - \sigma_{min}) \sqrt{\pi} \alpha$ Note: if $\sigma_{min} < 0$, set $K_{min} = D = compress$

Can plot crack growth rate da/dN versus stress intensity factor range DK

Middle region is straight line on log-log plot

Paris Law for Stable Crack Growth,

$$\frac{da}{dN} = C \left(\Delta K\right)^{m}$$

 $\Delta K = \alpha \Delta \sigma \sqrt{\pi a}$

C, m -> constants

-1-a

m ≈ 3 for steel ≈ 3 - 4 for alum

N = Cycles

Obtain cycles to failure Nr by integrating Paris Law

$$\frac{da}{dN} = C \left(\propto \Delta \sigma \sqrt{\pi a} \right)^{m}$$

$$N_{F} = \int_{0}^{N_{F}} dN = \frac{1}{c \pi^{m/2} \Delta \sigma^{m}} \int_{\alpha_{0}}^{\alpha_{cr}} \frac{d\alpha}{\alpha^{m} \alpha^{m/2}}$$

If assume & independent of a, then

$$N_{F} = \frac{\alpha_{cr}^{(-\frac{m}{2}+1)} - \alpha_{o}^{(-\frac{m}{2}+1)}}{c \pi^{\frac{m}{2}} \alpha^{\frac{m}{2}} \Delta \sigma^{\frac{m}{2}} (-\frac{m}{2}+1)}$$

where,
$$a_{cr} = \frac{1}{11} \left(\frac{K_{IC}}{\alpha \sigma_{max}} \right)^2$$

Here, Nx depends on assumed as (choose biggest estimate).

Can also modely Paris Law for mean stress effects -

$$\frac{da}{dN} = \frac{c(\Delta K)^{M}}{(1-R)K_{c}-\Delta K} - \frac{1}{Law}$$

Inspect periodically for crack sizes in critical locations.

Fracture Mechanics Vs. S-N conve See Ashby & Jones, "Eng'g Materials 1" Chape 13-16

For Overall Structure, recall also other modes of Failure -

Buckling, Loss of Stiffness, Creep, Wear, Corrosion, Aging, etc.

Design Approaches to Longevity

Infinite Life Design (Use T < Tendurance limit) (buildings, values).

Safe - Life Design (Estimate life, and throw away after) (helicopter blake) turbines notes

Fail-Safe Design (Vse redundant paths, so failus is not cotastrophic) (alternate controls)

4. Damage Tolerant Design (chech that cracks don't grow to a critical size. Inspection!)

5. Empirical Test

(Make part and test several cyclidy

to failure). (testing land gran)

For Aircraft Structural Design,

A nalysis + Test together.

Later, continue inspection

for cracks in outical locations

(rivel holes, corners, --) and for

conosion, coear, etc

Ease of inspection \$ replacement.

(Automobile examples.)

Aircraft -> Comet, DC-10 Pylon,

THE REPORT AND THE RESERVE OF STREET