Week 3: Data Visualization

{ggplot2}

Joe Nese

University of Oregon

Fall 2021

Data Visualization with

Week 3

Agenda

Finalize Groups

{ggplot2}

- syntax
- continuous data visualizations
- categorical data visualizations
- options
 - color/fill
 - transparency
 - labels
 - facets

Learning Objectives

- Understand the basic syntax requirements for {ggplot2}
- · Recognize various options for displaying continuous and categorical data
- Familiarity with various {ggplot2} options
 - color/fill
 - transparency
 - labels
 - facets

Share!

{datapasta}

- Copy and paste data to and from R
- VERY handy!
- Good for reprex
 - posting questions on Rstudio Community or stackoverflow

[demo]

Providing grammar for:

Graphics

 {ggplot2}

 Data manipulations

 {dplyr}
 {tidyr}

 Expanding area of specialized topics

 {lubridate}
 {glue}
 {tidymodels}

Many more...

Providing grammar for:

- Graphics
 - {ggplot2}
- Data manipulations
 - {dplyr}
 {tidyr}
- Expanding area of specialized topics
 - o {lubridate}
 - o {glue}
 - o {tidymodels}
- Many more...

The {ggplot2} package

gg stands for the "grammar of graphics"

Resources

The {ggplot2} package is one of the most popular R packages, and there are many resources to learn the syntax

- ggplot2 book (email me for digital copy)
- RStudio cheat sheet
 - Can be helpful, perhaps more so after a little experience
- R Graphics Cookbook
- R Graph Gallery

Components

Every ggplot plot has three components

- 1. data
 - the data used to produce the plot
- 2. aesthetic mappings (aes)
 - between variables and visual properties
- 3. layer(s)
 - usually through the geom_*() function to produce geometric shapes to be rendered

{ggplot} always takes a data frame (tibble) as the first argument

Basic syntax

```
+ = note the + and NOT the %>%
```

{ggplot2} template

Some data for today

penguins from {palmerpenguins}

[run the following]

#排 排 A tibble: 6 x 8						22
<i>‡‡‡</i>	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mas
<i>4⊧4⊧</i>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<int></int>	<i< td=""></i<>
## 1	Adelie	Torgersen	39.1	18.7	181	3'
## 2	Adelie	Torgersen	39.5	17.4	186	3
## 3	Adelie	Torgersen	40.3	18	195	3:
## 4	Adelie	Torgersen	NA	NA	NA	
<i>##</i> 5	Adelie	Torgersen	36.7	19.3	193	34
## 6	Adelie	Torgersen	39.3	20.6	190	3

Continuous Data

Setting up a plot

Run the following code. What do you see?

It's ready for you to add some geometric <u>layers</u>...what should we add?

How about points?

Adding layers

- In the previous slide, we added a layer of points
- The geom_point() layer is a function, complete with it's own arguments

Let's change the color of the points

How would you change the color of the points?

<u>or</u>

How would you find out about changing the color of the points?

Color

Add another layer

Let's add a smoothed line with geom_smooth()

You try

You probably got the **message** below when you ran (defaults)

```
## `geom_smooth()` using method = 'loess' and formula 'y \sim x' Change the method to "lm"
```

Let's do this together

Look at the help page - ?geom_smooth

- 1. Remove the confidence interval around the line
- 2. Now change the SE band to reflect a 68% confidence interval

color: global vs. conditional

Prior examples changed colors globally

```
• geom_point(color = "magenta")
```

Use aes() to access variables, and color according to a specific variable

• We use variable names within aes()

Let's check the data again (head ()) and the "species" variable (table ())

[let's do this together]

color: global vs. conditional

- When we did geom_point(color = "magenta") we put quotes around the color
- Why now is "species" not in quotes?
 - color names/hex codes are in quotes NOT in the aes ()
 - variable names are in the aes() NOT in quotes
 - aes() is where you map to your data!

Conditional flow through layers

If we use something like color = "x" in the first aesthetic, it will carry on through all additional layers

- These two codes are the same:
- But these two are not...why? [run to find out]

Be mindful with aes()

Using aes() when you don't need it

What is happening here?

Be mindful with aes()

Not using aes() when you need it

What is happening here?

```
## Error in layer(data = data, mapping = mapping, stat = stat, geom = GeomPoin
```

Kind of helpful message here.

Themes

Let's talk themes

- The default is theme_gray
 - I don't like it
- But there are a lot of build-in alternative in {ggplot2}
 - theme_minimal is my favorite
- Check out the {ggthemes} package for a lot of alternatives
 - These days I nearly always use the colorblind theme for discrete values in my plots
- Check out the {ggthemeassist} add-in

More themes

- The {hrbrthemes} are nice
- Consider building your own theme!
- · Or Google around
- Set the theme globally
 - One of the first lines in your .Rmd file could be:

```
theme_set(theme_minimal())
```

• I put this in the setup chunk

Get a little fancy

- You can use geom_point() for more than one layer
- You can also use a different data source on a layer
- Use these two properties to highlight points
 - How about penguins from Torgersen Island?

Another option

{gghighlight} varying flexibility

Line plots

- When should you use line plots instead of smooths?
 - usually when time is involved
- What are some good candidate data for line plots?
 - observed versus model-implied (estimated)

geom_line()

Classic time series example

economics data from {ggplot2}

```
## # A tibble: 574 x 6
###
     date
                         pop psavert uempmed unemploy
                  рсе
     <date>
              <dbl> <dbl>
                               <fdb>>
                                       <fdb>>
                                               <fdb>
###
   1 1967-07-01 507. 198712
                                12.6
                                        4.5
                                                2944
###
   2 1967-08-01 510. 198911
                               12.6
                                        4.7
                                                2945
###
   3 1967-09-01 516, 199113
                                11.9
                                        4.6
                                                2958
###
   4 1967-10-01 512.
##F
                      199311
                                12.9
                                        4.9
                                                3143
   5 1967-11-01 517, 199498
                                12.8
###
                                        4.7
                                                3066
   6 1967-12-01 525. 199657
                                11.8
##F
                                        4.8
                                                3018
   7 1968-01-01 531, 199808
                                11.7
                                         5.1
###
                                                2878
                                12.3
                                        4.5
###
   8 1968-02-01 534. 199920
                                                3001
###
   9 1968-03-01 544.
                      200056
                                11.7
                                        4.1
                                                2877
                                12.3
                                        4.6
## 10 1968-04-01 544
                      200208
                                                2709
## # ... with 564 more rows
```

Let's try it

How do you think we'd fit a line plot to these data, showing unemployment ("unemploy") over time?

Layers

What happens when we layer geom_line and geom_point?

try it!

Not the best instance of this It would work better on a plot with fewer time points, but you get the idea

Labels

Axis Labels

Title

Subtitle

Caption

Tag

Legend (one way)

Facets

Faceting

- One of the most powerful features of {ggplot}
- Produce *n* plots by a specific variable
- facet_wrap()
 - wrap a sequence of panels into two dimensions
 - based on variables(s)

Faceting

Careful about the ~

Error in validate_facets(x): object 'species' not found

Faceting

two variables (like a matrix)

Alternative specification (vars())

Heatmaps

A heatmap is a literal way of visualizing a table of numbers, where you substitute the numbers with colored cells. -- Nathan Yau

- Useful for finding highs and lows and sometimes patterns
- They don't always work well

Example with correlations

```
## # A tibble: 6 x 3

## row col cor

## 1 mpg mpg 1

## 2 mpg cyl -0.852

## 3 mpg disp -0.848

## 4 mpg hp -0.776

## 5 mpg drat 0.681

## 6 mpg wt -0.868
```


Categorical Data

Data

{fivethirtyeight} package

college_grad_students

```
## # A tibble: 173 x 22
##
      major code major major category grad total grad sample size grad employe
###
           <int> <chr> <chr>
                                             <int>
                                                               <int>
                                                                              <int
            5601 Cons~ Industrial Ar~
                                              9173
                                                                               709
4F4F
   1
                                                                 200
            6004 Comm~ Arts
                                             53864
                                                                 882
                                                                              4049
###
    3
                                                                              1836
##
            6211 Hosp~ Business
                                             24417
                                                                 437
            2201 Cosm~ Industrial Ar~
                                              5411
                                                                  72
                                                                               359
##
###
            2001 Comm~ Computers & M~
                                              9109
                                                                 171
                                                                               751
            3201 Cour~ Law & Public ~
                                              1542
##F
                                                                   22
                                                                               100
            6206 Mark~ Business
                                                                             15157
###
                                            190996
                                                                3738
            1101 Agri~ Agriculture &~
###
                                             17488
                                                                 386
                                                                              1310
###
            2101 Comp~ Computers & M~
                                              5611
                                                                               471
                                                                   98
## 10
            1904 Adve~ Communication~
                                             33928
                                                                 688
                                                                              2851
     ... with 163 more rows, and 11 more variables: grad_p75th <int>, nongrad_
## #
       nongrad_employed_fulltime_yearround <int>, nongrad_unemployed <int>, no
### ##
       nongrad p75th <dbl>, grad share <dbl>, grad premium <dbl>
## #
```

Histogram

Histogram of "grad_total"

Transparency - alpha

Add some transparency - perhaps this looks nicer

color vs. fill

In general

- color defines the color a geom is outlined
- fill defines the color a geom is filled

For example:

- geom_point() default has only has a color and NO fill because they're just points
- Point shapes 21–24 include both a color and a fill

How would we change the color of this plot?

How would we change the color of this plot?

How would we change the color fill of this plot?

Color by variable

What if we wanted different colors by a variable

major_category

Density plot

Alternative representation of distribution

- Think of it as a smoothed histogram (uses kernel smoothing)
- The depiction of the distribution is **NOT** determined by the number of the bins you use, as are histograms

Density plot

geom_density()

Density plot

Now let's fill by major_category

Not a good plot, just an example

Possible alternative? facet_wrap

Even better

density ridges

Density Ridges

fill

Add transparency for clarity

Viridis

- easier to read by those with colorblindness
- prints well in gray scale

Same fill function, different option

Candy rankings {fivethirtyeight}

```
## # A tibble: 197 x 5
###
      competitorname sugarpercent pricepercent winpercent type
###
      <chr>
                            <fdb>
                                          <fdh>>
                                                     <dhl> <chr>
## 1 100 Grand
                            0.732
                                          0.860
                                                      67.0 chocolate
## 2 100 Grand
                            0.732
                                          0.860
                                                      67.0 caramel
   3 100 Grand
                            0.732
                                          0.860
##
                                                      67.0 crispedricewafer
## 4 100 Grand
                            0.732
                                          0.860
                                                      67.0 bar
## 5 3 Musketeers
                                          0.511
                            0.604
                                                      67.6 chocolate
## 6 3 Musketeers
                            0.604
                                          0.511
                                                      67.6 nougat
   7 3 Musketeers
                                          0.511
4£4£
                            0.604
                                                      67.6 bar
## 8 Air Heads
                            0.906
                                          0.511
                                                      52.3 fruity
##F
  9 Almond Joy
                            0.465
                                          0.767
                                                      50.3 chocolate
排 10 Almond Jov
                            0.465
                                          0.767
                                                      50.3 peanutyalmondy
## # ... with 187 more rows
```

Boxplot

Violin plots

Bar Charts

```
## # A tibble: 6 x 11
###
     manufacturer model displ year
                                       cvl trans
                                                        drv
                                                                ctv
                                                                       hwy fl
                   <chr> <dbl> <int> <int> <chr>
                                                        <chr> <int> <int> <chr>
###
     <chr>
## 1 audi
                           1.8
                                1999
                                          4 auto(15)
                                                        f
                                                                  18
                                                                        29 p
                   a4
                                                                                 С
排 2 audi
                           1.8
                                1999
                                          4 manual(m5)
                                                                 21
                                                                        29 p
                   a4
## 3 audi
                           2
                                2008
                                          4 manual(m6) f
                                                                        31 p
                   a4
                                                                 20
                                                                                 С
## 4 audi
                           2
                                2008
                                          4 auto(av)
                                                                 21
                                                                        30 p
                   a4
                                                                                 С
排 5 audi
                                1999
                                          6 auto(15)
                                                                        26 p
                   a4
                           2.8
                                                                 16
## 6 audi
                           2.8
                                1999
                                          6 manual(m5) f
                                                                 18
                                                                        26 p
                   a4
```

Bar Charts

```
## # A tibble: 6 x 2
## # Groups: class [6]
4F4F
   class
                   n
               <int>
##
   <chr>
## 1 2seater
                    5
                   47
排 2 compact
## 3 midsize
                   41
## 4 minivan
                   11
#排 5 pickup
                  33
排 6 subcompact
                   35
```

Bar/Col Charts

geom_bar()

- expects x OR y
- counts rows
- if you want to count the number of cases at each x or y position
- makes the height of the bar proportional to the number of cases in each group
- uses stat_count() by default

geom_col()

- expects x AND y
- · expects numbers in your data
- if you want the heights of the bars to represent values in the data
- leaves the data as is
- uses stat_identity() by default

geom_bar()

mpg data

geom_col()

summarized_mpg data

geom_bar() default

geom_bar(stat = "identity")

geom_bar() default

geom_col() default

geom_bar() default

geom_bar() uh-oh

What happened?

Let's look at our data again

```
## # A tibble: 7 x 2
#排 # Groups:
               class [7]
     class
###
                     n
     <chr>
###
                <int>
排 1 2seater
                     5
排 2 compact
                    47
## 3 midsize
                    41
## 4 minivan
                    11
#排 5 pickup
                    33
                    35
## 6 subcompact
排 7 suv
                    62
```


Change the order of the x-axis

- We'll talk about automated methods more later
- Basically define x-axis variable as a factor with levels in the order you want

```
## # A tibble: 7 x 2
###
  class mean hwy
###
  <chr>
                <dbl>
## 1 2seater
                24.8
排 2 compact
              28.3
## 3 midsize 27.3
## 4 minivan 22.4
           16.9
排 5 pickup
## 6 subcompact 28.1
排 7 suv
                18.1
```


More bar plot options

Data

```
## # A tibble: 16 x 3
## # Groups: k type [2]
     k type ethnic
###
                                                       t1r mean
## <chr> <chr>
                                                          <fdb>>
                                                           17.5
## 1 full-day AMERICAN INDIAN OR ALASKA NATIVE
## 2 full-day ASIAN
                                                           31.8
   3 full-day BLACK OR AFRICAN AMERICAN, NON-HISPANIC
                                                           21.1
## 4 full-day HISPANIC, RACE NOT SPECIFIED
                                                           20.3
##
   5 full-day HISPANIC, RACE SPECIFIED
                                                           22.3
## 6 full-day MORE THAN ONE RACE, NON HISPANIC
                                                           20.8
## 7 full-day NATIVE HAWAIIAN, OTHER PACIFIC ISLANDER
                                                           23.2
## 8 full-day WHITE, NON-HISPANIC
                                                           25.5
   9 half-day AMERICAN INDIAN OR ALASKA NATIVE
##
                                                           30.0
排 10 half-day ASIAN
                                                           25.1
## 11 half-day BLACK OR AFRICAN AMERICAN, NON-HISPANIC
                                                           18.6
## 12 half-day HISPANIC, RACE NOT SPECIFIED
                                                           18.7
## 13 half-day HISPANIC, RACE SPECIFIED
                                                           20.0
## 14 half-day MORE THAN ONE RACE, NON HISPANIC
                                                           20.3
## 15 half-day NATIVE HAWAIIAN, OTHER PACIFIC ISLANDER
                                                           19.7
                                                           23.7
## 16 half-day WHITE, NON-HISPANIC
```

Stacked bar plot

Look for effects in "ethnicity" by "k_type" (full/half day K)

Grouped bar plot

Rotating Labels

I have to look this up every time

Flip the coordinates

coord_flip()

Alternatively

facet_wrap()

Sometimes some redundancy works well

geom_*() Review

```
• geom_point()
• geom_smooth()
• geom_line()
• geom_tile()
• geom_histogram()
• geom_density()
• ggridges::geom_density_ridges()
• geom_boxplot()
• geom_violin()
• geom_bar()
• geom_col()
```

Challenge

- Start a new R project
- Create a new script, save it as "practice-plots.R"
- Load the {tidyverse}
- Print the msleep dataset to see it's structure (it's from {ggplot2})

For each of the following, produce a separate plot

- 1. Plot the relation between "sleep_total" and "brainwt" (with "brainwt" as the DV) scatter plot
- 2. Overlay a smooth on the previous plot
- 3. Color the points by "vore", but fit a single smooth
- 4. Fit separate smooths by "vore", but with all points being gray
- 5. Omit the standard error of the smooths
- 6. Use ylim() as an additional layer to restrict the y-axis to range from 0 to 5

Next time

Before next class

- Reading
 - R4DS 5
- Supplemental Learning
 - RStudio Primer: Working with Tibbles
 - Rbootcamp: Ch 3
 - Codecademy: Aggregates in R
- Homework
 - Homework 2
 - Homework 3