XenGT Setup Guide

April 10, 2015

Contents

1	Introd	luction4		
2	Syster	n Requiren	nents	6
	2.1	Operati	ng System Requirements	6
	2.2	Hardwa	re Requirements	6
	2.3	Softwar	e Requirements	6
		2.3.1	Proxy Configuration Setup	6
		2.3.2	Install Basic Packages in Ubuntu	6
3	Build a	and Install	Instructions	8
	3.1	Source I	Repositories	8
	3.2	Building	Kernel	8
	3.3	Building	Xen and Qemu	8
	3.4	Grub Se	tup	9
	3.5	Dom0 S	ystem Config Setup for XenGT	10
		3.5.1	Starting Xen Services by Default	10
		3.5.2	Configuring Xen Bridge	10
		3.5.3	Configuring Remote Control	10
	3.6	Guest S	etup	11
		3.6.1	General Setup	11
		3.6.2	Guest Config File	12
		3.6.3	Linux Guest Setup for XenGT	13
		3.6.4	Windows Guest Setup for XenGT	14
4	VM Lif	e Cycle Ma	anagement	15
	4.1	Guest C	reation	15
	4.2	Listing I	nformation about Domains	15
	4.3	Guest Destroy		
	4.4	Indirect	Display Mode	15
5	XenGT	「Control Ir	nterfaces	17

	5.1	Display S	vitch	.17
	5.2	Xen API .		.17
	5.3	Virtual Ho	tplug(Indirect display mode)	.17
6	Feature	s Supporte	d	.19
	6.1	Per-VM F	eatures	.19
	6.2	Virtualiza	tion Features	.19
7	Known	lssues		.20
8	Append	lix		.21
	8.1	Licenses		.21
		8.1.1	General Statement	.21
		8.1.2	Licenses of the Newly-created Files	.21

1 Introduction

The Graphics Processing Unit (GPU) has become a fundamental building block in today's computing environment, accelerating tasks ranging from entertaining (gaming, video playback, etc.), GUI acceleration, office applications (such as CAD, photoshop) and high performance computing. Recently, there observes a trend toward adding GPU accelerations to virtual machines provided by popular desktop virtualization. In the meantime, there are also demands for buying GPU computing resources from the cloud. GPU virtualization is becoming a demanding and challenging industry asking.

Intel has brought its answer to this challenge with **XenGT**, which is a mediated pass-through solution based on Intel Gen Graphics hardware using the well-known Xen hypervisor. As illustrated below, XenGT allows running a native graphics driver

in VMs to achieve high performance. Each VM is allowed to access a partial performance critical resource without hypervisor intervention. Privileged operations are trapped and forwarded to the mediator for emulation. The mediator creates a virtual GPU context for each VM and schedules one of them to run on physical Gen graphics hardware. In our implementation, the mediator is a separate driver residing in Dom0 kernel, called *vgt driver*.

Currently, XenGT supports 4 accelerated VMs (Dom0 + 3 HVM DomU) running

together. We've verified XenGT's functionality using the 64-bit version of Ubuntu 14.04.

2 System Requirements

2.1 Operating System Requirements

The build and install environment has been validated in using x86_64 Ubuntu 14.04 as host.

2.2 Hardware Requirements

4th or 5th Generation Intel® Core™ Processor Graphics is required.

2.3 Software Requirements

2.3.1 Proxy Configuration Setup

If you building package behind firewall, you would need to setup following proxies in order to download needed libraries

```
# export http_proxy=<proxy_server>:<proxy_port>
# export https_proxy=<proxy_server>:<proxy_port>
# export ftp_proxy=<proxy_server>:<proxy_port>
```

To configure the Proxy for apt, you need add following lines into /etc/apt/apt.conf

```
Acquire::http::proxy "<proxy_server>:<proxy_port>";
Acquire::https::proxy "<proxy_server>:<proxy_port>";
Acquire::ftp::proxy "<proxy_server>:<proxy_port>";
```

2.3.2 Install Basic Packages in Ubuntu

```
# apt-get update
# apt-get install libarchive-dev libghc-bzlib-dev libpci-dev\
zlib1g-dev mercurial gettext bcc iasl uuid-dev libncurses5-dev kpartx bc \
libperl-dev libgtk2.0-dev libc6-dev-i386 libaio-dev libsdl1.2-dev \
nfs-common libyajl-dev libx11-dev autoconf libtool xsltproc bison flex \
```

xutils-dev xserver-xorg-dev x11proto-gl-dev libx11-xcb-dev vncviewer \
libxcb-glx0 libxcb-glx0-dev libxcb-dri2-0-dev libxcb-xfixes0-dev bridge-utils \
python-dev bin86 git vim libssl-dev tightvncserver ssh texinfo \ -y

3 Build and Install Instructions

3.1 Source Repositories

Xen: https://github.com/01org/XenGT-Preview-xen Linux: https://github.com/01org/XenGT-Preview-kernel Qemu: https://github.com/01org/XenGT-Preview-qemu

3.2 Building Kernel

git clone https://github.com/01org/XenGT-Preview-kernel.git

cd XenGT-Preview-kernel/

git checkout master-2015Q1-3.18.0

cp config-3.18.0-dom0 .config

make -j8 && make modules_install

mkinitramfs -o /boot/initrd-vgt-3.18.0-rc7-vgt.img 3.18.0-rc7-vgt+

cp arch/x86/boot/bzImage /boot/vmlinuz-vgt-3.18.0-rc7-vgt

cp vgt.rules /etc/udev/rules.d

chmod a+x vgt mgr

cp vgt mgr /usr/bin

Bear in mind, the above listed module name "3.18.0-rc7-vgt+" matches the one under

/lib/modules/ directory.

3.3 Building Xen and Qemu

git clone https://github.com/01org/XenGT-Preview-xen.git

cd XenGT-Preview-xen/

git checkout master-2015Q1-4.5

git clone https://github.com/01org/XenGT-Preview-qemu.git

git clone git://git.qemu-project.org/qemu.git qemu-xen

cd gemu-xen

git checkout -b v1.3.0 v1.3.0

patch -p1 < ../XenGT-Preview-qemu/qemu-vgt.patch

```
# cp -r ../qemu-xen ../tools/
# cd ..
# sed -i
'/QEMU_UPSTREAM_URL/s:http\://xenbits.xen.org/git-http/qemu-upstream-4.5-testing.git:$(XEN_ROOT)/tools/qemu-xen:'Config.mk
# sed -i
'/QEMU_UPSTREAM_URL/s:git\://xenbits.xen.org/qemu-upstream-4.5-testing.git:$(XEN_ROOT)/t
ools/qemu-xen:' Config.mk
# ./autogen.sh
# ./configure --prefix=/usr # XEN4.5 changes the default path to /usr/local
# make -j8 xen tools
# cp xen/xen.gz /boot/xen-vgt.gz
# make install-tools PYTHON_PREFIX_ARG=
# rm -f /etc/ld.so.conf.d/lib64.conf # the file may not exist on some Ubuntu distribution
# ldconfig
```

3.4 Grub Setup

You need manually add a new grub entry in /boot/grub/grub.cfg and make the entry as the default one when booting. Below is a reference grub entry for you. UUID (2e01a442-d848-4695-b031-9296ce3105b1) and root partition (hd0, msdos1) below are just reference which should be updated according to the user's environment.

```
menuentry 'Xen-VGT 3.18.0-rc7' --class ubuntu --class gnu-linux --class gnu --class os {
    insmod part_msdos
    insmod ext2
    set root='(hd0,msdos1)'
    search --no-floppy --fs-uuid --set=root 2e01a442-d848-4695-b031-9296ce3105b1
    multiboot /boot/xen-vgt.gz dom0_mem=2048M loglvl=all guest_loglvl=all
conring_size=4M noreboot
```

```
module /boot/vmlinuz-vgt-3.18.0-rc7-vgt
root=UUID=2e01a442-d848-4695-b031-9296ce3105b1 rw rd_NO_LUKS rd_NO_LVM
LANG=en_US.UTF-8 rd_NO_MD SYSFONT=latarcyrheb-sun16 rhgb crashkernel=auto
```

KEYBOARDTYPE=pc KEYTABLE=us rd_NO_DM ignore_loglevel console=tty0 console=hvc0 consoleblank=0 log_buf_len=4M xen_vgt.hvm_boot_foreground=1 module /boot/initrd-vgt-3.18.0-rc7-vgt.img

Description of suggested parameters for grub

Configuration option	Description	
xen_vgt.hvm_boot_foreground	Make VM immediately visible on the screen,	
	after creation	
xen_vgt.vgt	Option to enable/disable vgt for Dom0. 0 to	
	disable vgt, 1 to enable vgt(default value)	
xen_vgt. propagate_monitor_to_guest	Option to use direct/indirect display	
	mode(default true, direct display mode)	

3.5 Dom0 System Config Setup for XenGT

3.5.1 Starting Xen Services by Default

update-rc.d xencommons defaults

3.5.2 Configuring Xen Bridge

After Dom0 reboots, run following commands to make a bridge "xenbr0" for guest network. (Assume the IP address of system could be acquired via DHCP and the default network interface with network connection is "eth0")

brctl addbr xenbr0

brctl addif xenbr0 eth0

ifconfig eth0 0

dhclient xenbr0

3.5.3 Configuring Remote Control

Sometimes we want to do some remote control by VNC, but we cannot create terminal on Ubuntu in vncviewer by default. To allow create terminal by vncviewer, we need install the package as below:

apt-get install gnome-panel gnome-settings-daemon metacity nautilus gnome-terminal -y

And we could setup the vncserver configuration file /root/.vnc/xstartup as an example:

#!/bin/sh

export XKL XMODMAP DISABLE=1

unset SESSION MANAGER

unset DBUS SESSION BUS ADDRESS

[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup

[-r \$HOME/.Xresources] && xrdb \$HOME/.Xresources

xsetroot -solid grey

vncconfig -iconic &

gnome-panel &

gnome-settings-daemon &

metacity &

nautilus &

gnome-terminal &

Then we could launch an X server for VNC by the command as below:

vncserver -geometry 1440x900

Then you can use ip:port to remote control the Dom0 by vncviewer.

3.6 Guest Setup

Guest Setup describes how user can prepare their own guest OS: Ubuntu or Window that work on XenGT.

3.6.1 General Setup

You need create an empty image with at least 10GB for guest. Here we take Ubuntu 14.04 guest image as example.

dd if=/dev/zero of=system-10G.img bs=1M seek=10000 count=0

After you get the installation ISO for Ubuntu 14.04 guest, you could set the xlexample.hvm by following section 3.6.2 with 3 changes and start the guest with the config file.

disk = [/path/to/system-10G.img,raw,hda,w', 'path/to/ubuntu/iso,raw,hdc,cdrom']

boot="d"

vgt=0

Then you could follow the normal procedure to finish the Ubuntu installation.

Note: XenGT now have also supported Windows VM, so here the iso can be substitute with Windows iso.

3.6.2 Guest Config File

You could copy the xlexample.hvm from dom0's /etc/xen and modify the parameters as following.

```
Kernel = "hvmloader"
builder = 'hvm'
memory = 2048
name = "vgtHVMDomain"
vif = [ 'type=ioemu, bridge=xenbr0' ]
disk = ['/path/to/system-10G.img,raw,hda,w']
#device_model = 'qemu-dm'
device model version='qemu-xen'
device_model_override='/usr/lib/xen/bin/qemu-system-i386'
sdl=1
opengl=1
vnc=0
vncpasswd="
serial='pty'
tsc mode=0
stdvga = 0
usb=1
usbdevice='tablet'
keymap='en-us'
vgt=1
vgt_low_gm_sz=128
vgt high gm sz=384
vgt_fence_sz=4
vgt_monitor_config_file='/path/to/monitor.config' #only valid for indirect display mode
```

The description of the XenGT-specific parameters (don't set them before you upgrade the vgt kernels of DomO and DomU, or else, the HVM DomU creation will fail):

Configuration option	Description		
vgt	Enable virtual graphics		
vgt_low_gm_sz	The low gm size which is CPU visible.		
	For linux guest, it should be at least 64MB		
	For windows guest, it should be at least 128MB		
vgt_high_gm_sz	The high gm size which is CPU invisible		
vgt_fence_sz	The number of the fence registers, default is 4		
vgt_monitor_config_file	Only valid for indirect display mode. Specify		
	the path to monitor configuration file		

3.6.3 Linux Guest Setup for XenGT

3.6.3.1 Kernel and Modules Update

Assume that you have an Ubuntu $x86_6414.04$ image. You could update the kernel and user mode drivers in guest image with following commands:

kpartx -a -v /path/to/system-10G.img

The output will be something like below:

add map loop0p1 (253:0): 0 29638656 linear /dev/loop0 2048

add map loop0p2 (253:1): 0 1075202 linear /dev/loop0 29642750

add map loop0p5 : 0 1075200 linear 253:1 2

Mount loop0p1 to /mnt:

mount /dev/mapper/loop0p1 /mnt/

Follow the steps in Section 3.2 to build Dom0 kernel and modules in guest with "chroot".

chroot /mnt/

exit

Alternatively, you could copy the kernel/initrd and modules from Dom0 to guest directly:

cp /boot/vmlinuz-vgt-3.18.0-rc7-vgt /mnt/boot/

cp /boot/initrd-vgt-3.18.0-rc7-vgt.img /mnt/boot/

cp -r /lib/modules/3.18.0-rc7-vgt+ /mnt/lib/modules

Then you could run commands as below to fresh the guest image:

umount /mnt

kpartx -d -v /path/to/system-10G.img

Then you should add one new entry in "/boot/grub/grub.cfg" for the new kernel and initrd. Now, the image is ready for XenGT. You need set "vgt=1" in the xlexample.hvm and start the guest.

3.6.4 Windows Guest Setup for XenGT

According to the 3.6.1, assume you have already setup the Windows Guest. You need to set "vgt=1" in the xlexample.hvm to start the Windows Guest. You can get the Windows driver from Intel website:

Windows driver version: 15.36.4156

32-bits/64-bits:

https://downloadcenter.intel.com/download/24785 this driver support both 4th Gen and 5th Gen.

After installing the driver, a system reboot is required.

4 VM Life Cycle Management

4.1 Guest Creation

To create a Guest, you need a configure file mentioned in section 3.6.2 and use the command:

xl create xlexample.hvm

4.2 Listing Information about Domains

To get the information (ID, name, vCPU, Mem, etc) of all domains, you could use "xl list".

#	χl	list	

Name	ID	Mem	VCPUs	State	Time(s)
Domain-0	0	730	8	r	1139.2
ExampleHVMDomain	7	2048	1	r	1.0

4.3 Guest Destroy

Shutting down a Guest should be triggered in Guest and follow the normal procedure for Linux. To destroy a Guest, you could use "xl destroy" with Domain ID or Name, as below:

xl destroy ExampleHVMDomain

4.4 Indirect Display Mode

XenGT offers two modes for display, direct display mode which is enabled by default and indirect display mode. In indirect display mode, all display resources are virtualized and virtual port presented to Guest could be different from the physical one.

To enable indirect display mode, you need to add xen_vgt.propagate_monitor_to_guest=0 as kernel boot parameter and prepare a monitor.config as following.

monitor.config file.

first bit 1 for text mode, and second bit 2 for number of ports in the config 11

04 for PORT_E; and 01 for PORT_B to be override(virtual VGA on physical DP) 0401

Virtual VGA monitor EDID

00fffffffff000469b1232df80000

0f16010381331d782a5ea5a2554da026

115054bfef00d1c095008140818081c0

950fb300714f023a801871382d40582c

4500fd1e1100001e000000ff0043344c

4d54463036333533330a000000fd0032

4b185311000a202020202020000000fc

00415355532050413233380a202000e0

Note that we support virtual DP, virtual HDMI and virtual VGA for now.

Add vgt_monitor_config_file='/path/to/monitor.config' to the xlexample.hvm and then use xl create xlexample.hvm to boot the Guest.

5 XenGT Control Interfaces

5.1 Display Switch

When a Guest is created successfully with vgt enabled, the monitor display will be switched to the Guest with xen_vgt.hvm_boot_foreground set. A sys interface is provided to switch display between domains:

#	χl	list

Name	ID	MemVCP	Us	State	Time(s)
Domain-0	0	730	8	r	3263.5
ExampleHVMDomain	11	2048	1	r	4.7

cat /sys/kernel/vgt/control/foreground_vm

11

You could change the display by echo Domain ID into the sys interface:

echo 0 > /sys/kernel/vgt/control/foreground_vm

cat /sys/kernel/vgt/control/foreground_vm

0

5.2 Xen API

Refer to XenGT-API.txt under xen-vgt on how to use XenGT API interfaces.

5.3 Virtual Hotplug(Indirect display mode)

In indirect display mode, we support virtual display hotplug for Guest.

Plug-out:

echo disconnect > /sys/kernel/vgt/vm#/PORT_#/connection (PORT_# refers to virtual port)

Plug-in:

echo –n \$edid > /sys/kernel/vgt/vm#/PORT_#/edid_text (\$edid refers to the information of the monitor you want Guest to recognize. PORT # refers to virtual port)

echo "PORT_#" > /sys/kernel/vgt/vm#/PORT_#/port_override (The first is physical port, the second is virtual port)

echo \$port_type > /sys/kernel/vgt/vm#/PORT_#/type (virtual port; for example: 3 = VGT_DP_C, 6 = VGT_HDMI_C)

echo connect > /sys/kernel/vgt/vm#/PORT_#/connection (PORT_# refers to virtual port)

6 Features Supported

6.1 Per-VM Features

Features or Areas	Status
SMP Dom0 and Guest	Supported
2D Blitter	Supported
3D Rendering (Direct3D/OpenGL)	Supported
Single Monitor (HDMI/VGA/eDP/DP)	Supported
Multiple Monitors (HDMI/VGA/eDP/DP)	Supported
PPGTT	Supported
Dom0 S3	Supported
Indirect display	Supported
Windows 7/8.1	Supported
Media Decoding Hardware Acceleration	Supported

6.2 Virtualization Features

Features or Areas	Status		
Up to 3 vGT Guests	3 Guests, each with 128MB low graphics		
	memory.		
Render Context Switch	Supported		
Display Switch	Supported		
VM Life Cycle	Supported		
XenGT Interfaces (APIs)	Refer to the API document.		
Monitor Hotplug	Supported		
Different Monitor Resolutions	Supported		
GPU recovery	Preliminarily supported		

7 Known Issues

- At least 2GB memory is suggested for VM to run most 3D workloads.
- keymap might be incorrect in guest config file may need to explicitly specify "keymap='en-us". Although it looks like the default value, earlier we saw the problem of wrong keymap code if it is not explicitly set.
- When using three monitors, doing hotplug between Guest pause/unpause may not be able to lightup all monitors automatically.
- Some specific monitor issues.
- Cannot move mouse pointer smoothly in guest by default launched by VNC mode. Configuration file need to explicitly specify "usb=1" to enable a USB bus, and "usbdevice='tablet'" to add pointer device using absolute coordinates.

8 Appendix

8.1 Licenses

8.1.1 General Statement

Only newly-created files are explicitly specified with a license here. Any changes to existing files of Xen/Linux/Qemu are subject to the licenses of the files.

8.1.2 Licenses of the Newly-created Files

8.1.2.1 Xen Side

All the newly-created files are under GPLv2:

tools/firmware/hvmloader/vgt.h

8.1.2.2 Linux Side

These newly-created files are under GPLv2:

drivers/gpu/drm/i915/vgt/debugfs.c

drivers/gpu/drm/i915/vgt/dev.c

drivers/gpu/drm/i915/vgt/hypercall.h

drivers/gpu/drm/i915/vgt/klog.c

drivers/gpu/drm/i915/vgt/Makefile

drivers/gpu/drm/i915/vgt/sysfs.c

drivers/gpu/drm/i915/vgt/trace.h

drivers/xen/xengt.c

tools/vgt/klog.c

tools/vgt/Makefile

tools/vgt/README

tools/vgt/vgt_report

tools/vgt/vgt_perf

vgt.rules

vgt_mgr

XenGT-API.txt

These newly-created files are under dual GPLv2/MIT:

drivers/gpu/drm/i915/i915_gem_vgtbuffer.c

drivers/gpu/drm/i915/vgt/aperture_gm.c

drivers/gpu/drm/i915/vgt/cfg_space.c

drivers/gpu/drm/i915/vgt/cmd_parser.c

drivers/gpu/drm/i915/vgt/cmd parser.h

drivers/gpu/drm/i915/vgt/devtable.h

drivers/gpu/drm/i915/vgt/display.c

drivers/gpu/drm/i915/vgt/edid.c

drivers/gpu/drm/i915/vgt/edid.h

drivers/gpu/drm/i915/vgt/execlists.c

drivers/gpu/drm/i915/vgt/execlists.h

drivers/gpu/drm/i915/vgt/fb_decoder.c

drivers/gpu/drm/i915/vgt/fb_decoder.h

drivers/gpu/drm/i915/vgt/gtt.c

drivers/gpu/drm/i915/vgt/handlers.c

drivers/gpu/drm/i915/vgt/host.c

drivers/gpu/drm/i915/vgt/host.h

drivers/gpu/drm/i915/vgt/instance.c

drivers/gpu/drm/i915/vgt/interrupt.c

drivers/gpu/drm/i915/vgt/mmio.c

drivers/gpu/drm/i915/vgt/reg.h

drivers/gpu/drm/i915/vgt/render.c

drivers/gpu/drm/i915/vgt/sched.c

drivers/gpu/drm/i915/vgt/utility.c

drivers/gpu/drm/i915/vgt/vbios.c

drivers/gpu/drm/i915/vgt/vbios.h

drivers/gpu/drm/i915/vgt/vgt.c

drivers/gpu/drm/i915/vgt/vgt.h

drivers/gpu/drm/i915/vgt/vgt-if.h

8.1.2.3 **Qemu Side**

There are 2 newly-created files, which are under dual GPLv2/MIT:

hw/vga-xengt.c hw/vga-xengt.h