Lecture 12

The Bipolar Junction Transistor as an Amplifier

Three-Basic Configurations for BJT amplifier

(b) Common-Base (CB)

(c) Common-Collector (CC) or Emitter Follower

Of three configurations, the CE amplifier is most widely used.

Common emitter amplifier

- Similar strategy to MOSFET amplifier by using BJT as VCCS
- Voltage transfer characteristic (VTC): Relation between output and input voltages
- Appropriate biasing is important to ensure linear gain, and appropriate input voltage swing.

Small-signal model is employed to model the amp's operation.

VTC of common emitter amplifier

Figure 6.31 (a) Simple BJT amplifier with input v_{BE} and output v_{CE} . (b) The voltage transfer characteristic (VTC) of the amplifier in (a). The three segments of the VTC correspond to the three modes of operation of the BJT.

Biasing of common emitter amplifier

Figure 6.32: Biasing the BJT amplifier at a point Q located on the active-mode segment of the VTC.

Load line analysis

Input loadline

Output loadline

Principle of signal amplification

Figure 6.33 BJT amplifier biased at a point Q, with a small voltage signal v_{be} superimposed on the dc bias voltage V_{BE} . The resulting output signal v_{ce} appears superimposed on the dc collector voltage V_{CE} . The amplitude of v_{ce} is larger than that of v_{be} by the voltage gain A_{v} .

Low-fre BJT small signal "circuit" model

- signal course (v_{siq})
- source resistance (R_{sig})
- input resistance (R_{in})
- gain (A_{vo})
- output resistance (R_o)
- transconductance (G_ν)

The CE amplifier circuit with the BJT replaced with its hybrid-pi model.

Characteristic Parameters of the CE Amplifier

 Replacing BJT with hybrid-pi model yields the expressions to right...

```
input resistance: R_{in} = r_{\pi}

output voltage: v_o = -(g_m v_{\pi})(R_c \mid \mid r_o)

open-circuit voltage gain: A_{vo} = -g_m(R_c \mid \mid r_o)

oper-circuit voltage gain: A_{vo} = -g_m R_c

with r_o neglected
```

output resistance: $A_{vo} = -g_m R_c$

Three Observations

The input resistance $R_{in} = r_p = b/g_m$ is moderate to low in value.

The output resistance $R_o = R_C$ is moderate to high in value.

The open-circuit voltage gain (A_{vo}) can be high – making the CE configuration the workhorse in BJT amplifier design.

Overall Voltage Gain

amplifier input voltage:
$$R_{in}v_i = v_{sig} \frac{r_{\pi}}{r_{\pi} + R_{sig}} = r_{\pi}$$

voltage gain:
$$A_{v} = -g_{m}(R_{c} | | R_{L} | | r_{o})$$

overall voltage gain: $G_v = \frac{v_o}{v_{sia}} = \frac{-r_\pi}{r_\pi + R_{sia}} g_m (R_C | | R_L | | r_o)$

- The CE configuration is one of the best suited for realizing the bulk of the gain required in an amplifier. Depending on the magnitude of the gain required, either a single stage o a cascade of two or three stages may be used.
- Including a resistor R_e in the emitter lead of the CE stage provides a number of performance improvements at the expense of gain reduction.

Characteristic summary of BJT amplifier

	R_{in}	A_{vo}	R_o	A_v	G_v
Common emitter (Fig. 6.50)	$(\beta+1)r_s$	$-g_mR_C$	R_C	$-g_m(R_C \parallel R_L)$ $-\alpha \frac{R_C \parallel R_L}{r_c}$	$-\beta \frac{R_C \parallel R_L}{R_{\text{sig}} + (\beta + 1)r_e}$
Common emitter with R_e (Fig. 6.52)	$(\beta+1)(r_s+R_e)$	$-\frac{g_m R_C}{1 + g_m R_c}$	R_C	$\frac{-g_m(R_C \parallel R_L)}{1 + g_m R_e}$ $-\alpha \frac{R_C \parallel R_L}{r_e + R_e}$	$-\beta \frac{R_C \parallel R_L}{R_{\text{sig}} + (\beta + 1)(r_e + R_e)}$
Common base (Fig. 6.53)	r _e .	$g_m R_C$	R_C	$g_m(R_C \parallel R_L)$ $\alpha \frac{R_C \parallel R_L}{r_e}$	$\alpha \frac{R_C \parallel R_L}{R_{\rm sig} + r_e}$
Emitter follower (Fig. 6.55)	$(\beta+1)(r_e+R_L)$	1	r_c	$\frac{R_L}{R_L + r_e}$	$\frac{R_L}{R_L + r_e + R_{\text{sig}}/(\beta + 1)}$ $G_{vo} = 1$

 $[\]frac{a}{b}$ For the interpretation of R_{av} , A_{vo} and R_{a} refer to Fig. 6.49.

The BIT output resistance r_{a} has been neglected, which is permitted in the discrete-circuit amplifiers studied in this chapter. For integrated-circuit amplifiers fiers (Chapter 7), r_c must always be taken into account.

Setting $\beta = \infty$ ($\alpha = 1$) and replacing r_c with $1/g_{cc}$, R_c with R_c and R_c with R_c results in the corresponding formulas for MOSFET amplifiers (Table 5.4).

Small signal analysis- an example

(b) Small-signal ac equivalent circuit

(c) Equivalent circuit used to find Z_o

$$R_L' = R_L || R_C = \frac{1}{1/R_L + 1/R_C}$$

$$A_{v} = \frac{v_{o}}{v_{\rm in}} = -\frac{R_L' \beta}{r_{\pi}}$$

$$A_{vo} = \frac{v_o}{v_{in}} = -\frac{R_C \beta}{r_{\pi}}$$

$$Z_{\rm in} \frac{v_{\rm in}}{i_{\rm in}} = \frac{1}{1/R_B + 1/r_{\pi}}$$

$$A_i = rac{i_o}{i_{
m in}} = A_{\scriptscriptstyle V} \, rac{Z_{
m in}}{R_{\scriptscriptstyle L}}$$

$$G = A_i A_i$$

$$Z_o = R_C$$

Summary

□ Depending on the bias condition on its two junctions, the BJT can operate in one of three possible modes:

```
cut-off (both junctions reverse biased)active (the EBJ forward-biased and CBJ reversed)saturation (both junctions forward biased)
```

- □ For amplifier applications, the BJT is operated in the active mode. Switching applications make use of the cutoff and saturation modes.
- □ A BJT operating in the active mode provides a collector current $i_C = I_S \exp\{v_{BE}/V_T\}$. The base current $i_B = i_C/b$, and emitter current $i_E = i_C + i_B$.

Summary (cont'd)

- □ To ensure operation in the active mode, the collector voltage of an *npn*-transistor must be kept higher than approximately 0.4 *V* below the base voltage. For a *pnp*-transistor, the collector voltage must be lower than approximately 0.4 *V* above the base voltage. Otherwise, the CBJ becomes forward-biased and the transistor will enter saturation.
- At a constant collector current, the magnitude of the base emitter voltage decreases by about 2mV for every 1°C rise in temperature.
- □ The BJT will be at the edge of saturation when $|v_{CE}|$ is reduced to about 0.3 V.

Summary (cont'd)

- In the active mode, i_C shows a slight dependence on v_{CE} . This phenomenon, known as the Early Effect, is modeled by ascribing a finite output resistance to the BJT: $r_o = |V_A|/I_C$ where V_A is the Early Voltage and I_C is the dc collector current without the Early Effect taken into account.
- □ The dc analysis of transistor circuits is generally simplified by assuming $|V_{RF}| = 0.7 V$.
- □ To operate as a linear amplifier, the BJT is biased in the active region and the signal v_{be} is kept small ($v_{be} << V_T$).
- \square Bias design seeks to establish a dc collector current that is as independent of β as possible.

Summary (cont'd)

- □ For small signals, the BJT functions as a linear voltage-controlled current source with transconductance $g_m = I_C/V_T$. The input resistance between base and emitter, looking into the base, is $r_\pi = \beta/g_m$. The input resistance between bae and emitter, looking into the emitter is $r_e = 1/g_m$.
- The common-emitter amplifier is inverting and has large voltage gain magnitude, large current gain, and large power gain.

Acknowledgments

- □ Lecture slides are based on lecture materials from various sources, including book "Microelectronic Circuits" by Sedra and Smith (Oxford Publishing), Ali (AIKTC), Farrokh Najmabadi (UCSD), Ching-Yuan Yang (NCHU), EMT 451 Advanced IC Design (via portal.unimap.edu.my).
- □ Credit is acknowledged where credit is due. Please refer to the full list of references.