1 Hoare triples

Triple assertion, usually writen as:

$$(\phi)P(\psi)$$

Which (roughly) means:

If the program P is run in a stat that satisfies ϕ , then the state resulting from P's execution will satisfy ψ .

 ϕ - Is called precondition of P and ψ is called postcondition

Often, we do not want to put any constraints on the initial state; we simply wish to say that, no matter what state we start the program in, the resulting state should satisfy ψ . In that case the precondition can be set to \top .

$$(\top)P(\psi)$$

We need a way of remembering the initial value of x, to cope with the fact that it is modified by the program. Logical variables achieve just that: in the specification

$$(x = x_0 \land x > 0) Fac2 (y = x_0!)$$

The x_0 is a logical variable and we read it as being universally quantified in the precondition. Therefore, this specification reads: for all integers x_0 , if x equals x_0 , $x \ge 0$ and we run the program such that it terminates, then the resulting state will satisfy y equals x_0 !.

1.1 Proof rules

Composition given specifications for the program fragments C_1 and C_2 say

$$(\!(\phi)\!)\ C_1\ (\!(\eta)\!)$$
 and $(\!(\eta)\!)\ C_1\ (\!(\psi)\!)$

where the postcondition of C_1 is also precondition of C_2 , the proof rule allows us to derive a specification for C_1 ; C_2

$$(\phi) C_1; C_2 (\psi)$$

Reference section

 $\begin{array}{c} \textbf{placeholder} \\ \textbf{placeholder} \end{array}$