November 24, 2020 CS 3600

Student: Vicente Blat

Project 4

Q5:

Iteration	Pen Results Accuracy	Car Results Accuracy
1	0.906232133	0.97
2	0.889365352	0.98
3	0.905088622	0.975
4	0.902229846	0.975
5	0.906232133	0.975

	Pen Results Accuracy	Car Results Accuracy
AVERAGE	0.901829617	0.975
STDV	0.007157225	0.003535534
MAX	0.906232133	0.98

Hidden Layers	Iteration	Pen Results Accuracy	Car Results Accuracy
0	1	0	0.66
0	2	0	0.66
0	3	0	0.66
0	4	0	0.66
0	5	0	0.66
5	1	0.849628359	0.98
5	2	0.847913093	0.96
5	3	0.810463122	0.975
5	4	0.830188679	0.965
5	5	0.846483705	0.97
10	1	0.880503145	0.965
10	2	0.882790166	0.975
10	3	0.878502001	0.97
10	4	0.929674099	0.965
10	5	0.883361921	0.97
15	1	0.905088622	0.975
15	2	0.905088622	0.97
15	3	0.899085192	0.975
15	4	0.901372213	0.96
15	5	0.90651801	0.96
20	1	0.905660377	0.965
20	2	0.889365352	0.95
20	3	0.900800457	0.975
20	4	0.905946255	0.965
20	5	0.889937107	0.99
25	1	0.906232133	0.96
25	2	0.897941681	0.955
25	3	0.905946255	0.965
25	4	0.901372213	0.965
25	5	0.907375643	0.97
30	1	0.907375643	0.965
30	2	0.904802744	0.965
30	3	0.909376787	0.96
30	4	0.901943968	0.945
30	5	0.908519154	0.97
35	1	0.905946255	0.965
35	2	0.904230989	0.955
35	3	0.901943968	0.95
35	4	0.902801601	0.96
35	5	0.884219554	0.965
40	1	0.904802744	0.95
40	2	0.889365352	0.97
40	3	0.903659234	0.965
40	4	0.905088622	0.965

Pen Results Accuracy				
Hidden Layers	AVERAGE	STDV	MAX	
0	0	0	0	
5	0.836935	0.0167	0.8496	
10	0.890966	0.0217	0.9297	
15	0.903431	0.0031	0.9065	
20	0.898342	0.0082	0.9059	
25	0.903774	0.004	0.9074	
30	0.906404	0.003	0.9094	
35	0.899828	0.0089	0.9059	
40	0.900743	0.0066	0.9051	

Car Results Accuracy				
Hidden Layers	AVERAGE	STDV	MAX	
0	0.66	0	0.66	
5	0.97	0.0079	0.98	
10	0.969	0.0042	0.975	
15	0.968	0.0076	0.975	
20	0.969	0.0147	0.99	
25	0.963	0.0057	0.97	
30	0.961	0.0096	0.97	
35	0.959	0.0065	0.965	
40	0.965	0.0094	0.975	

Discussion:

From the graph above we can notice that for both data sets there is big positive correlation between number of hidden layers and accuracy of the model when we first start increasing the number of layers (starting from zero). But we can also notice that after a certain amount of hidden layers our accuracy hits a plateau (in this case at 5 hidden layers for Car data set and 10 for Pen data set). We could say that the above mentioned numbers of hidden layers are the most optimal for each model respectively.