Análisis de Huaicos en Ancash, Perú

September 29, 2023

1 Análisis de huaics en Ancash, Perú

Autor: David Duran rsa

1.1 Resumen

Este cuaderno presenta un análisis detallado de diversos eventos ocurridos en la región de Ancash, Perú. Utilizando datos extraídos de SIGRID (CENEPRED) y técnicas de visualización geoespacial, se identifican los tipos de eventos y las áreas más afectadas dentro de la región.

1.2 Introducción

Este cuaderno de Jupyter analiza datos relacionados con diversos eventos en la región de Ancash, Perú. El objetivo es presentar los resultados de una manera clara y visual para una audiencia diversa.

```
[1]: %%capture
[!pip install jupyterthemes geopandas seaborn

import pandas as pd
import geopandas as gpd
import matplotlib.pyplot as plt
from IPython.display import display, HTML
from sigrid_data_extractor import extractor

from jupyterthemes import get_themes
import jupyterthemes as jt
import seaborn as sns
from jupyterthemes.stylefx import set_nb_theme
set_nb_theme('monokai')
plt.style.use('seaborn-v0_8-muted')

plt.rcParams['text.usetex'] = True
```

Vamos a obtener los datos del siguiente URL, que contiene información sobre diferentes eventos en Ancash.

```
[2]:
```

```
url = "https://sigrid.cenepred.gob.pe/arcgis/rest/services/Cartografia_Peligros/

MapServer/5020100/query?

f=json&where=1%3D1&returnGeometry=true&spatialRel=esriSpatialRelIntersects&geometry=%7B%22r

539643947%2C-1375988.8655829763%5D%2C%5B-8989295.539643947%2C-808520.

3675939788%5D%2C%5B-8363123.403931949%2C-808520.3675939788%5D%2C%5B-8363123.

403931949%2C-1375988.8655829763%5D%2C%5B-8989295.539643947%2C-1375988.

58655829763%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%2C%22latestWkid%22%3Adata = extractor.extract_data(url)
```

Datos guardados en output.csv y output.xlsx.

Aquí, filtramos los datos para la región de Ancash y mostramos las primeras filas de este conjunto de datos filtrado.

```
[3]: ancash_data = pd.DataFrame([datum for datum in data if datum['dpto'] ==_

        'Ancash'])
     ancash_data.head()
[3]:
        objectid_1 objectid
                                muestra
                        238.0
     0
                  3
                               Peligros
                 4
     1
                        239.0
                               Peligros
     2
                 5
                        240.0
                               Peligros
     3
                  6
                               Peligros
                        241.0
     4
                 7
                               Peligros
                        242.0
                                               proyecto proyecto_c
                                                                         norte
     O Estudio Riesgos Geológicos -
                                       Franjas 1,2,3,4
                                                             F-1234
                                                                     8851736.0
     1 Estudio Riesgos Geológicos -
                                        Franjas 1,2,3,4
                                                             F-1234
                                                                     8865339.0
     2 Estudio Riesgos Geológicos -
                                        Franjas 1,2,3,4
                                                             F-1234
                                                                     8876181.0
     3 Estudio Riesgos Geológicos -
                                        Franjas 1,2,3,4
                                                             F-1234
                                                                     8878636.0
     4 Estudio Riesgos Geológicos -
                                                             F-1234
                                        Franjas 1,2,3,4
                                                                     8878974.0
            este
                    longitud
                                latitud
                                            dpto
                                                  ... observ fecha_act reclasif
     0 237613.0 -77.396309 -10.378625
                                          Ancash
                                                       None
                                                                  NaN
                                                                           None
     1 228528.0 -77.478265 -10.255080
                                          Ancash
                                                      None
                                                                  NaN
                                                                           None
     2 244999.0 -77.327277 -10.158214
                                          Ancash ...
                                                      None
                                                                  NaN
                                                                           None
     3 261613.0 -77.175577 -10.137067
                                                      None
                                          Ancash
                                                                  NaN
                                                                           None
     4 262288.0 -77.169400 -10.134053
                                          Ancash ...
                                                      None
                                                                  NaN
                                                                          None
       fuente fuente_log url url_img id_entidad id_documento
                                                                 id_documento1
     0
                INGEMMET
                                             None
                                                           None
                                                                           None
     1
                 INGEMMET
                                             None
                                                           None
                                                                           None
     2
                INGEMMET
                                             None
                                                           None
                                                                           None
     3
                INGEMMET
                                             None
                                                           None
                                                                           None
                INGEMMET
                                             None
                                                           None
                                                                           None
```

[5 rows x 30 columns]

En esta celda, identificaremos el tipo de evento y la provincia más afectada para cada evento.

```
[4]: event_types = ancash_data['peligro_es'].unique()
    results = {}
    for event in event_types:
        event_data = ancash_data[ancash_data['peligro_es'] == event]
        most_affected_province = event_data['prov'].value_counts().idxmax()
        results[event] = most_affected_province

results_df = pd.DataFrame(list(results.items()), columns=['Evento', 'Provincia_u omás afectada'])
    results_df.head()
```

[4]: Evento Provincia más afectada

0 Reptación de Suelo Mariscal Luzuriaga
1 Erosión en Cárcavas Bolognesi
2 Caída de Roca Bolognesi
3 Deslizamiento Bolognesi
4 Derrumbe Bolognesi

Agrupamos los datos por tipo de evento y provincia, y calculamos la cantidad de cada grupo.

```
[5]: Evento Provincia Cantidad
0 12
1 Aija 8
2 Antonio Raymondi 7
3 Asuncion 4
4 Bolognesi 82
```

A continuación, visualizamos la distribución de eventos en Ancash por provincia.

plt.grid(True, alpha=0.3)

sns.despine()
plt.show()

Mostramos las estadísticas descriptivas del conjunto de datos ancash_data.

Aquí, visualizamos la distribución de diferentes tipos de eventos en Ancash.

```
[7]: event_distribution = ancash_data['peligro_es'].value_counts()

threshold = 16

mask = event_distribution < threshold
tail = event_distribution.loc[mask]
event_distribution = event_distribution.loc[-mask]
event_distribution['Other'] = tail.sum()

plt.figure(figsize=(10,6))
event_distribution.plot(kind='bar', zorder=2)
plt.title('Distribución de diferentes tipos de peligros en Ancash')
plt.xlabel('Tipo de evento')
plt.ylabel('Número de ocurrencias')
plt.xticks(rotation=45)
plt.grid(True, alpha=0.3)
plt.show()</pre>
```


Leemos los datos GeoJSON que representan las regiones de Perú.

```
[8]: url_geojson = "peru_provincial_simple.geojson"
region_geojson = gpd.read_file(url_geojson)
display(region_geojson.head())
```

0 1 2	COUNT FIRST 9 8 7	_IDPR 0301 0902 0802	NOMBPROV ABANCAY ACOBAMBA ACOMAYO	FIRST_NOMB APURIMAC HUANCAVELICA CUSCO	LEY	LAST_LEY S/N 5292 S/N	\
3	5	0202	AIJA	ANCASH		8188	
4	6	1602 ALTO	AMAZONAS	LORETO	LEY	S/N	
0 1 2 3 4	FIRST_FECH 28/12/1961 23/11/1925 11/11/1964 21/12/1907 08/09/1964	LAST_FECHA 21/11/1893 23/11/1925 02/01/1857 05/03/1936 02/01/1857	3.4582736 9.2636746 9.3285816 6.9639636	e+05 345827. e+04 92636. e+04 93285.	.74 .81 .63		

geometry

```
O POLYGON ((-72.77286 -13.44888, -72.74545 -13.4...

POLYGON ((-74.32362 -12.83251, -74.31945 -12.8...

POLYGON ((-71.51688 -13.96722, -71.44034 -14.1...

POLYGON ((-77.96140 -9.78024, -77.86786 -9.763...

POLYGON ((-76.28970 -3.69122, -76.24529 -3.751...
```

Ahora, combinamos los dos conjuntos de datos basándonos en los nombres de las provincias.

```
[9]: ancash_data['prov'] = ancash_data['prov'].str.upper()

events_per_province = ancash_data['prov'].value_counts().reset_index()

events_per_province.columns = ['prov', 'num_events']

region_geojson = region_geojson.merge(events_per_province, left_on='NOMBPROV', useright_on='prov', how='left')

region_geojson['num_events'].fillna(0, inplace=True)
```

Finalmente, visualizamos el número de eventos en las provincias de Ancash junto con las ubicaciones de los eventos.

```
[10]: fig, ax = plt.subplots(figsize=(15, 15))
      ancash_geojson = region_geojson[region_geojson['NOMBPROV'].
       →isin(ancash_data['prov'].unique())]
      ancash_geojson.plot(column='num_events', ax=ax, legend=True, edgecolor=u'gray',_
       legend_kwds={'label': "Número de peligros por provincia", __
       ⇔'orientation': "horizontal"})
      gdf = gpd.GeoDataFrame(ancash_data, geometry=gpd.points_from_xy(ancash_data.
       →longitud, ancash_data.latitud))
      gdf.plot(ax=ax, marker='o', color='blue', markersize=5)
      xlim = (ancash_geojson.bounds.minx.min(), ancash_geojson.bounds.maxx.max())
      ylim = (ancash_geojson.bounds.miny.min(), ancash_geojson.bounds.maxy.max())
      ax.set_xlim(xlim)
      ax.set_ylim(ylim)
      for idx, row in ancash_geojson.iterrows():
          if row['num_events'] > 0:
              ax.text(row['geometry'].centroid.x, row['geometry'].centroid.y,__

str(int(row['num_events'])),
                      fontsize=12, ha='center', va='center')
      plt.title('Peligros registrados en provincias de Ancash')
      plt.show()
```


