

HCC/HCF4042B

QUAD CLOCKED "D" LATCH

- CLOCK POLARITY CONTROL
- Q AND Q OUTPUTS
- COMMON CLOCK
- LOW POWER TTL COMPATIBLE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD N° 13A, "STANDARD SPE-CIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4042B** (extended temperature range) and **HCF4042B** (intermediate temperature range) are monolithic integrated circuit, available in 16-lead dual in-line plastic or ceramic package and plastic micro package.

The **HCC/HCF4042B** types contain four latch circuits, each strobed by a common clock. Complementary buffered outputs are available from each circuit. The impedance of the n- and p-channel output devices is balanced and all outputs are electrically identical.

Information present at the data input is transferred to outputs Q and \overline{Q} during the CLOCK level which is programmed by the POLARITY input. For POLARITY = 0 the transfer occurs during the 0 CLOCK level and for POLARITY = 1 the transfer occurs during the 1 CLOCK level. The outputs follow the data input providing the CLOCK and POLARITY levels defined above are present. When a CLOCK transition occurs (positive for POLARITY = 0 and negative for POLARITY = 1) the information present at the input during the CLOCK transition is retained at the outputs until an opposite CLOCK transition occurs.

June 1989 1/13

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for Top = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C
T _{stg}	Storage Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage HCC Types : HCF Types	3 to 18 3 to 15	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C

LOGIC BLOCK DIAGRAM AND TRUTH TABLE

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s				Value				
Symbol	Symbol Parameter		Vı	۷o	I ₀	V _{DD}	ΤL	o w*		25°C		T _{Hi}	gh*	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/ 5			5		1		0.02	1		30	
	Current	HCC	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	μΑ
			0/20			20		20		0.04	20		600	
			0/5			5		4		0.02	4		30	
		HCF Types	0/10			10		8		0.02	8		60	
		1,7,000	0/15			15		16		0.02	16		120	
V _{OH}	Output High	h	0/ 5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V_{OL}	Output Low	ı	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High Voltage			0.5/4.5	< 1	5	3.5		3.5			3.5		
				1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

STATIC ELECTRICAL CHARACTERISTICS (continued)

			Т	est Con	dition	s				Value				
Symbol	Parame	eter	٧ı	٧o	I ₀	V_{DD}	TL	o w*		25°C		T _{Hi}	igh [*]	Unit
			(V)	(V)	(μA)	(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
V_{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	
	Voltage			9/1	< 1	10		3			3		3	V
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/ 5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	нсс	0/ 5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Current Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
	HCF		0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
		0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		1117 (
		0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36			
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/ 5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	1 7 000	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/ 5	0.4		5	0.52		0.44	1		0.36		ША
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		1,700	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC leakage Types	0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	Δ.	
	Curent	urent HCF Types	0/15	Ally III	Put	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μΑ
Cı	Input Capa	citance		Any In	put					5	7.5			pF

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all V_{DD} values is $0.3\%/^{\circ}C$, all input rise and fall times = 20ns)

0	B	1	Test Conditions		Value			Unit
Symbol	Parame	ter	V	V _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL}	Propagation Delay	Data in to Q		5		110	220	
	Time			10		55	110	
				15		40	80	
		Data in to Q		5		150	300	
				10		75	150	
				15		50	100	
		Clock to Q		5		225	450	ns
				10		100	200	
				15		80	160	
		Clock to Q		5		250	500	
				10		115	230	
				15		90	180	

^{*} $T_{Low} = -55^{\circ}\text{C}$ for HCC device : -40°C for HCF device. * $T_{High} = +125^{\circ}\text{C}$ for HCC device : $+85^{\circ}\text{C}$ for HCF device. The Noise Margin for both "1" and "0" level is : 1V min. with $V_{DD} = 5V$, 2V min. with $V_{DD} = 10V$, 2.5V min. with $V_{DD} = 15V$.

DYNAMIC ELECTRICAL CHARACTERISTICS (continued)

0	Parameter	Test Conditions			Value			
Symbol	Parameter		$V_{DD}(V)$	Min.	Тур.	Max.	Unit	
t _{THL} , t _{TLH}	Transition Time		5		100	200		
			10		50	100	ns	
			15		40	80		
t _W	Clock Pulse Width		5	200	100			
			10	100	50		ns	
			15	60	30			
t _{setup}	Setup Time		5	50	0			
			10	30	0		ns	
			15	25	0			
thold	Hold Time		5	120	60			
			10	60	30		ns	
			15	50	25			
t _r ,t _f	Clock Input Rise or Fall Time		5		Б.			
			10		Rise or ne Sensi		μs	
			15					

Typical Output Low (sink) Current Characteristics.

Minimum Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Typical Transition Time vs. Load Capacitance.

Typical Propagation Delay Time vs. Load Capacitance (data to $\overline{\mathbb{Q}}$).

Minimum Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (data to Q).

Typical Propagation Delay Time vs. Load Capacitance (clock to Q).

Typical Propagation Delay Time vs. Load Capacitance (clock to $\overline{\mathbf{Q}}$).

Typical Power Dissipation/device vs. Frequency.

Dynamic Test Parameters.

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP16 (0.25) MECHANICAL DATA

DIM.		mm		inch					
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78			0.700				
F			7.1			0.280			
I			5.1			0.201			
L		3.3			0.130				
Z			1.27			0.050			

Ceramic DIP16/1 MECHANICAL DATA

DIM.		mm		inch				
Dilli.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			20			0.787		
В			7			0.276		
D		3.3			0.130			
Е	0.38			0.015				
e3		17.78			0.700			
F	2.29		2.79	0.090		0.110		
G	0.4		0.55	0.016		0.022		
Н	1.17		1.52	0.046		0.060		
L	0.22		0.31	0.009		0.012		
М	0.51		1.27	0.020		0.050		
N			10.3			0.406		
Р	7.8		8.05	0.307		0.317		
Q			5.08			0.200		

SO16 (Narrow) MECHANICAL DATA

DIM.		mm		inch				
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.004		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019			
c1			45°	(typ.)				
D	9.8		10	0.385		0.393		
Е	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		8.89			0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			8° (ı	max.)				

PLCC20 MECHANICAL DATA

DIM.		mm		inch				
Diiii.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	9.78		10.03	0.385		0.395		
В	8.89		9.04	0.350		0.356		
D	4.2		4.57	0.165		0.180		
d1		2.54			0.100			
d2		0.56			0.022			
E	7.37		8.38	0.290		0.330		
е		1.27			0.050			
e3		5.08			0.200			
F		0.38			0.015			
G			0.101			0.004		
М		1.27			0.050			
M1		1.14			0.045			

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

