Fiche méthode : Fonctions de référence

I. Fonction carré

Application 1: Image

a.
$$8^2 = 64$$

b.
$$(-6)^2 = 36$$

c.
$$0^2 = 0$$

d.
$$0.4^2 = 0.16$$

e.
$$(-1,5)^2 = 2,25$$

$$(-\frac{3}{2})^2 = \frac{9}{2}$$

g.
$$\left(\frac{1}{7}\right)^2 = \frac{1}{4}$$

La fonction carré est définie sur ${\mathbb R}$ par :

$$f(x) = x^2$$

Un carré est toujours **positif** dans \mathbb{R} .

Tableau de variations :

Application 2: Tableau de variations et encadrement

h. $(\sqrt{3})^2 = 3$

i. $(5\sqrt{2})^2 = 25 \times 2 = 50$

k. $(2 \times 10^3)^2 = 4 \times 10^6$ l. $(3^5)^2 = 3^{5 \times 2} = 3^{10}$

j. $(10^{-4})^2 = 10^{-4 \times 2} = 10^{-8}$

1. Sachant que $-2 \le x \le 4$, encadrer x^2 .

Le **minimum** de la fonction carré sur [-2; 4] est $\mathbf{0}$ atteint en x = 0.

Le maximum de la fonction carré sur [-2; 4] est 16 atteint en x = 4.

 $\frac{\mathbf{0}}{\mathbf{0}} \le x^2 \le \mathbf{16}$ Attention au piège : Le minimum est 0. $x^2 \in [\mathbf{0}; \mathbf{16}]$

2. Sachant que 3 < x < 5, encadrer x^2 ., encadrer x^2 .

Le minimum de la fonction carré sur l'intervalle]3 ; 5 [est 9 atteint en x=3

Le **maximum** de la fonction carré sur l'intervalle]3 ; 5[est **25** atteint en x = 5

$$9 < x^2 < 25$$

 $x^2 \in]9; 25[$

3. Sachant que $-8 < x < -\frac{2}{2}$, encadrer x^2 .

Le **minimum** de la fonction carré sur l'intervalle

$$]-8; -\frac{2}{3}[$$
 est $\frac{4}{9}$ atteint en $x=-\frac{2}{3}$

Le maximum de la fonction carré sur l'intervalle

$$]-8$$
; $-\frac{2}{3}$ [est **64** atteint en $x=-8$

 $\frac{4}{9} < x^2 < 64$ Attention au piège : minimum en 1^{er} !!! $x^2 \in]\frac{4}{5}$; 64

Extremums:

Pour chercher des extremums d'une fonction, il est conseillé de dresser le tableau de variation de la fonction sur l'intervalle voulu.

Attention:

Il y a par exemple ici des pièges. Quand l'intervalle contient un nombre négatif et un nombre positif, le minimum pour la fonction carré sera toujours 0.

Encadrement:

Pour encadrer une fonction sur un intervalle donné, il suffit de trouver le minimum et le maximum sur cet intervalle.

Courbe : Parabole

Application 3 : Représentation graphique de la fonction carré, images et antécédents

- Dans un repère orthogonal (unité graphique : 3 cm sur l'axe des abscisses, 1 cm sur l'axe des ordonnées), représenter graphiquement la fonction carré sur [-3;3].
- 2. En laissant apparaître les traits de construction, indiquer graphiquement :
 - a. comment déterminer l'image de $\frac{4}{2}$
 - b. comment déterminer les antécédents de 3,5

3. a. Quelles sont les valeurs exactes des antécédents de 3,5 ?

Les antécédents de 3,5 sont $-\sqrt{3,5}$ et $\sqrt{3,5}$.

b. De quelle équation ces nombres sont-ils solutions ?

Chercher des antécédents par la fonction f c'est résoudre l'équation f(x) = k Ces nombres sont solutions de l'équation $x^2 = 3.5$.

Application 4 : Antécédents et équations

Résoudre les équations suivantes et en déduire les antécédents éventuels par la fonction carré.

$$x^2 = 36 > 0$$

 $x = -\sqrt{36}$ ou $x = \sqrt{36}$
 $x = -6$ ou $x = 6$
Les antécédents de 36
par la fonction carré
sont : -0.6 et 0.6 .

$$x^2 = -5 < 0$$

Il n'y a pas d'antécédent de -5 par la fonction carré.

Application 5 : Antécédents et équations

$$\begin{aligned}
 & (2x-1)^2 = 25 \\
 & 2x-1 = -\sqrt{25} & \text{ou} & 2x-1 = \sqrt{25} \\
 & 2x-1 = -5 & \text{ou} & 2x-1 = 5 \\
 & 2x = -5 + 1 & \text{ou} & 2x = 5 + 1 \\
 & 2x = -4 & \text{ou} & 2x = 6 \\
 & x = -\frac{4}{2} & \text{ou} & x = 3 \\
 & x = -2 & \text{ou} & x = 3 \\
 & S = \{-2; 3\} \end{aligned}$$

Equations:

- Si a > 0, $x^2 = a$ admet deux solutions réelles : $S = \{-\sqrt{a}; \sqrt{a}\}$
- Si a = 0, $x^2 = a$ admet une unique solution : $S = \{0\}$
- Si a < 0, $x^2 = a$ n'admet pas de solution : $\mathbf{S} = \emptyset$

Méthode:

 $(Expression)^2 = a$

Expression= $-\sqrt{a}$ ou Expression= \sqrt{a}

Puis on résout les équations et on conclut par $S=% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right)$

<u>Application 6 :</u> Dans chacun des cas suivants, à <u>l'aide de la représentation graphique de la fonction carré</u>, déterminer pour quelles valeurs de x on a :

II. Fonction cube

Application 7 : Image et antécédent

- L'image de 3 par la fonction cube est : 27
- L'image de 0 par la fonction cube est : 0
- L'image de -6 par la fonction cube est : -216
- L'image de $\sqrt{2}$ par la fonction cube est : $2\sqrt{2}$
- L'antécédent de 2 par la fonction cube est : ³√2
- L'antécédent de 125 par la fonction cube est : 5
- L'antécédent de -8 par la fonction cube est : −2
- L'antécédent de -5 par la fonction cube est : $-\sqrt[3]{5}$

Application 8 : Tableau de variations et encadrement

Fonction cube :

La fonction cube est définie sur $\mathbb R$ par :

$$f(x) = x^3$$

Tableau de variations :

Courbe:

Application 9 : Antécédents et équations

Résoudre les équations suivantes :

1) $x^3 = 8$	2) $x^3 = 5$
x = 2	$x = \sqrt[3]{5} \approx 1,71$
$S = \{2\}$	$x = \sqrt[3]{5} \approx 1,71$ $S = \left\{\sqrt[3]{5}\right\}$
4) $x^3 = -10$	5) $x^3 = -27$
$r = -\sqrt[3]{10} \approx -2.15$	x = -3

Equation et inéquation :

Soit k un réel.

- L'équation $x^3 = k$ admet une unique solution : $S = {\sqrt[3]{k}}$
- L'inéquation $x^3 < k$ a pour ensemble de solution l'intervalle : $S =]-\infty$; $\sqrt[3]{k}$

Application 10 : Résoudre, en faisant un schéma et une lecture graphique si besoin :

 $S = \{-\sqrt[3]{10}\}$

 $S = \{-3\}$

$$S = \left[-\sqrt[3]{5}; +\infty\right[$$

$$S =]0; +\infty[$$

Fonction inverse

Application 11 : Image et antécédent

Application 11: mage et antecedent								
x	2	200	2,5	5	3	1		
	9		5	4	4	$\overline{100}$		
			$=\frac{1}{2}$	= 1,25	= 0,75	= 0,01		
1	9	1	2	0,8	4	100		
$\frac{1}{x}$	2	200	5	4	3			
		= 0,005	= 0, 4	- 5				

Application 12: Tableau de variations et encadrement

1. A quel domaine appartient $\frac{1}{x}$ lorsque $x \ge 2$?

2. A quel domaine appartient $\frac{1}{2}$ lorsque x < -4?

 $\frac{1}{x} \in]-\frac{1}{4};0[$

Fonction inverse:

La fonction inverse est définie sur \mathbb{R}^* par :

$$f(x) = \frac{1}{x}$$

Tableau de variations :

Courbe: **Hyperbole**

Application 13: Inéquations avec la fonction inverse

En s'aidant, de l'hyperbole représentative de la fonction inverse, résoudre chacune des inéquation (déterminer à quel intervalle ou réunion d'intervalle appartient x):

Fonction racine carrée

Application 14 : Image								
х	0	3	9	-5	$\frac{4}{9}$	8		
\sqrt{x}	0	$\sqrt{3}$	3		$\frac{2}{3}$	$2\sqrt{2}$		

Application 15 : Equations et inéquations

a)
$$\sqrt{x} = 0$$

$$S = \{0\}$$

b)
$$\sqrt{x} = 7$$

$$S = \{49\}$$

c)
$$2\sqrt{x} = 8 \Leftrightarrow \sqrt{x} = 4$$

$$S = \{16\}$$

d)
$$\sqrt{x} = -1$$

$$S = \emptyset$$

e)
$$\sqrt{x} < 2$$

$$S = [0; 4]$$

f)
$$\sqrt{x} > 5$$

$$S =]25; +\infty[$$

 $S = [0; 36]$

g)
$$\sqrt{x} \le 6$$

h) $\sqrt{x} \ge -2$

$$S = [0; +\infty[$$

Fonction racine carrée :

La fonction racine carré est définie sur 10; $+\infty$ par: $f(x) = \sqrt{x}$

Tableau de Courbe: variations:

Equations:

- Si $k \ge 0$, $\sqrt{x} = k$ a pour solution : $S = \{k^2\}$
- Si k < 0, $\sqrt{x} = k$ n'a pas de solution : $S = \emptyset$