1. Relacje

1 Uwagi ogólne

Celem ćwiczenia jest zapoznanie się z operacjami na strukturach i tablicach struktur.

Oprócz zadań opisanych w kolejnych sekcjach, program należy dodatkowo uzupełnic o funkcje:

- 1. add_to_relation(), która dodaje parę liczb do relacji, jeżeli ta para jeszcze w tej relacji nie występuje,
- 2. read_relation(), która czyta liczbę par relacji (n), a następnie n par liczb całkowitych definiujących relację,
- 3. $print_int_array()$, która wypisuje długość tablicy całkowitej (n), a następnie n wartości tej tablicy.

2 Zadania

2.1 Własności relacji

Szablon programu należy uzupełnić o definicję funkcji:

- 1. is_reflexive(), która sprawdza, czy relacja jest zwrotna
- 2. is_irreflexive(), która sprawdza, czy relacja jest przeciwzwrotna
- 3. is_symmetric(), która sprawdza, czy relacja jest symetryczna
- 4. is_antisymmetric(), która sprawdza, czy relacja jest antysymetryczna
- 5. is_asymmetric(), która sprawdza, czy relacja jest asymetryczna
- 6. is_transitive(), która sprawdza, czy relacja jest przechodnia

Użyteczny link:

https://en.wikipedia.org/wiki/Homogeneous_relation.

- Wejście
 - $1\ n$ (liczba elementów relacji)
 - n linii składających się z par liczb naturalnych (first, second)
- Wyjście

Sześć wartości 0 lub 1 reprezentujących własności zadanej relacji

• Przykład:

Wejście:

- 1 10
- 2 3
- 2 4
- 3 4
- 0 1 0 2
- 0 3
- 0 4
- 1 3
- 1 2
- 1 4

Wyjście:

0 1 0 1 1 1

2.2 Porządki, wartości minimalne i maksymalne

Szablon programu należy uzupełnić o definicję funkcji:

- 1. is_partial_order(), która sprawdza, czy relacja jest relacją częściowego porządku
- 2. is_total_order(), która sprawdza, czy relacją jest relacją całkowitego porządku
- 3. find_max_elements(), która dla relacji porządku znajduje elementy maksymalne
- 4. find_min_elements(), która dla relacji porządku znajduje elementy minimalne
- 5. $find_domain()$, która znajduje dziedzinę relacji R (zbiór X, na iloczynie kartezjańskim którego opisana jest relacja)

Relacja $R\subseteq X\times X$ jest relacją częściowego porządku jeżeli jest zwrotna, antysymetryczna i przechodnia.

Element $g \in X$ jest elementem maksymalnym jeżeli nie istnieje element $x \in X$, taki że $x \neq g$ i gRx. Podobnie element $m \in X$ jest elementem minimalnym jeżeli nie istnieje element $x \in X$ taki, że $x \neq m$ i xRm.

Zbiór X częściowo uporządkowany przez relację R może zawierać kilka elementów maksymalnych / minimalnych.

Relacja $R \subseteq X \times X$ jest spójna jeżeli dla każdych $x, y \in X$ zachodzi xRy lub yRx (lub jedno i drugie).

Jeżeli relacja $R\subseteq X\times X$ jest relacją częściowego porządku oraz jest spójna, to zbiór X jest liniowo (całkowicie) uporządkowany przez R.

Dziedzinę (zbiór X) wyznaczamy jako unikalną tablicę poprzedników i następników par należących do relacji.

Pomocne linki:

- 1. https://en.wikipedia.org/wiki/Partially_ordered_set.
- 2. https://en.wikipedia.org/wiki/Total_order
- 3. https://www.bookofproofs.org/branches/total-order/

• Wejście

```
2 n (liczba elementów relacji)
n linii składających się z par liczb naturalnych (first, second)
```

• Wyjście

Dwie wartości 1 lub 0 (relacja jest / nie jest relacją częściowego / całkowitego porządku) d (liczność domeny relacji)

d liczb całkowitych (domena relacji)

max (liczba wartości maksymalnych)

max liczb całkowitych (wartości maksymalne)

min (liczba wartości minimalnych)

min liczb całkowitych (wartości minimalne)

Uwaga: Wszystkie trzy tablice wyjściowe powinny zawierać unikalne liczby całkowite w porządku rosnącym.

• Przykład: Wejście:

2

12

1 4

1 1

1 5

1 6

2 4

2 2

2 6

3 4

3 3

4 4

6 6

5 5

Wyjście:

1 0

1 2 3 4 5 6

4 5 6

3

1 2 3

2.3 Złożenie relacji

Szablon programu należy uzupełnić o definicję funkcji composition(), która wyznacza złożenie dwóch zadanych relacji.

Użyteczny link:

https://en.wikipedia.org/wiki/Composition_of_relations

• Wejście

```
3n<br/>1 relacja R-n<br/>1 par liczb całkowitych n<br/>2 relacja S-n<br/>2 par liczb całkowitych
```

• Wyjście

n3 – liczba elementów relacji złożonej R o S

• Przykład:

Wejście:

3

7

1 2

2 3

3 4

3 2

2 5

1 5

2 4

6

2 41 3

5 4

- -

3 5

Wyjście:

5