LISTA DE EXERCÍCIOS

3.5 - Coeficiente de Correlação e 3.6 - Regressão Linear Simples – Lista β

1. Uma pesquisa foi realizada com o objetivo de verificar se existe associação entre a falta de sono e a capacidade de as pessoas resolverem problemas simples. Foram testadas 10 pessoas, mantendo-se sem dormir por um determinado número de horas. Após cada um destes períodos, cada pessoa teve de resolver um teste com adições simples, anotando-se então os erros cometidos. Os dados resultantes são os seguintes:

Número de erros	6	8	6	10	8	14	12	14	12	16
Número de horas sem dormir	8	8	12	12	16	16	20	20	24	24

- **a)** Calcule o coeficiente de correlação linear de Pearson, interprete e teste sua significância a 5%.
- b) Ajuste, teste e interprete o modelo de regressão linear simples.
- 2. Um experimento mediu o rendimento de trigo em sete diferentes níveis de Nitrogênio, com os seguintes resultados.
- **a)** Calcule o coeficiente de correlação linear de Pearson, interprete e teste sua significância a 5%.
- **b)** Ajuste, teste e interprete o modelo de regressão linear simples.

Unidades (Kg de N/ha)	40	60	80	100	120	140	160
Rendimento (t/ha)	15,9	18,8	21,6	25,2	28,7	30,4	30,7

3. Em mercadologia é importante conhecer as ferramentas existentes para estimação dos custos de produção. A análise de regressão representa um instrumento valioso para a realização dessa tarefa. Assim, utilizando os dados abaixo, verificou-se que a reta de regressão adequada é:

Quantidade (X)	Custo (Y)
10	100,00
11	112,00
12	119,00
13	130,00
14	139,00
15	142,00

A)
$$Y = -15,79 + 8,63x$$

B) Y = 15,79 - 8,63x

C) Y = 35,79 - 8,63x

D) Y = 15,79 + 8,63x

E) Y = 35,79 - 8,63x

Para os cálculos dos exercícios 4, 5, 6, 7, 8, 9 e 10 utilize um software de sua preferência.

4. O gerente de uma indústria localizada em um país tropical suspeita que há uma correlação entre temperatura do dia e produtividade. Dados coletados aleatoriamente ao longo de um período de seis meses revelaram o seguinte:

Obs.	1	2	3	4	5	6	7	8	9	10	11	12
Temperatura	21,2	20,3	22,7	22	22,3	23,5	24,8	24,2	25,5	25,2	25,5	25,8
Produtividade	142	148	131	132	145	138	144	136	141	124	133	128
Obs.	13	14	15	16	17	18	19	20	21	22	23	24
Temperatura	27,5	26,3	28,2	28,6	29	29,7	30,7	30,3	30,2	31,4	32,5	32,7
Produtividade	132	137	124	117	122	131	124	111	119	129	123	116

- **a)** Calcule o coeficiente de correlação entre temperatura e a produtividade, interprete-o e teste sua significância a 5%.
- **b)** Ajuste, teste e interprete o modelo de regressão linear simples.

5. Na tabela a seguir estão os dados de diâmetro (mm) e peso (kg) de 10 amostras de rochas.

Diâmetro (X)	Peso (Y)
49	24,0
65	40,0
45	25,0
40	23,5
55	33,5
45	22,0
44	22,5
47	23,5
50	25,0
56	35,0

Dados:

$$m\'ediaX = 49,6$$
 $m\'ediaY = 27,4$ $\sum_{i=1}^{18} X_i^2 = 25082$ $\sum_{i=1}^{18} Y_i^2 = 7868$ $\sum_{i=1}^{18} X_i^{\square} Y_i = 13978$

O coeficiente de determinação e a reta de ajuste de regressão linear são respectivamente:

A) $r^2 = 0.9315$; Y = -12.627 + 0.807xB) $r^2 = 0.8677$; Y = -12.627 + 0.807xC) $r^2 = -0.8677$; Y = -12.627 - 0.807xD) r = 0.8677; Y = -12.627 + 0.807xE) $r^2 = 0.8677$; Y = 12.627 + 0.807x **6.** Os dados a seguir correspondem à variável renda familiar e gasto com alimentação (em unidades monetárias) para uma amostra de 25 famílias.

Renda Familiar (X)	Gasto com Alimentação (Y)
3	1,5
5	2,0
10	6,0
10	7,0
20	10,0
20	12,0
20	15,0
30	8,0
40	10,0
50	20,0
60	20,0
70	25,0
70	30,0
80	25,0
100	40,0
100	35,0
100	40,0
120	30,0
120	40,0
140	40,0
150	50,0
180	40,0
180	50,0
200	60,0
200	50,0

- **a)** Interprete o gráfico de dispersão e diga se o coeficiente de relação deve ser maior, igual ou menor do que zero.
- **b)** Calcule o coeficiente de correlação linear entre Renda Familiar(X) e Gasto com Alimentação(Y).

Dados:

média
$$X=83,12$$
 média $Y=26,66$ $\sum_{i=1}^{25} X_i^2 = 271934 \sum_{i=1}^{25} Y_i^2 = 24899,25 \sum_{i=1}^{25} X_i^{\square} Y_i = 80774,5$

- c) Ajuste uma reta de regressão para a relação entre as variáveis Massa Muscular(Y) e Idade(X).
- d) Qual o significado prático do valor da inclinação da reta de regressão do item (c)?
- **7.** Um sofisticado simulador estocástico de tráfego fornece a velocidade média em avenidas de uma metrópole em função do volume de automóveis. O resultado de 14 simulações revelou o seguinte:

Volume de tráfego	3	3	5	5	10	10	15	15	20	20	25	25	30	30
Velocidade média	95,6	93, 8	74, 4	74, 8	50, 5	51, 5	44, 6	42, 4	35, 8	38, 7	32,0	3,2	30,1	29, 1

- **a)** Calcule o coeficiente de correlação linear de Pearson, interprete e teste sua significância a 5%.
- b) Ajuste, teste e interprete o modelo de regressão linear simples.
- **8.** Os dados abaixo referem-se aos pesos iniciais e ganhos de peso (em gramas) de 15 ratos fêmeas entre 24 a 84 dias de idade, submetidas a uma dieta com altos teores de proteína. O objetivo deste estudo é verificar se o ganho de peso está relacionado com o peso inicial. Sendo assim, experimentos de alimentação podem ser mais precisos, levando-se em conta o peso inicial dos ratos, ou fazendo-se o pareamento ou ainda por ajustes de diferenças no peso inicial.
- a) Calcule o coeficiente de correlação linear de Pearson, interprete e teste sua significância a
- **b)** Ajuste, teste e interprete o modelo de regressão linear simples.

Ratos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Peso inicial	50	64	76	64	74	60	69	68	56	48	57	59	46	45	65
Ganho de peso	12	15	15	11	13	11	96	12	13	11	10	10	82	10	10
	8	9	8	9	3	2		6	2	8	7	6		3	4

- **9.** Em geral, experimentos afirmam que a percentagem de frutos atacados por larvas de mariposa é maior em macieiras anãs. Aparentemente, a densidade de mariposas não tem relação com o tamanho do pomar ou porte da planta, de modo que os riscos de ataque em um fruto em particular seriam aumentados quando o número de frutos ou plantas for pequeno. Os dados abaixo se referem aos resultados de um experimento contendo evidências sobre esse fenômeno.
- a) Calcule o coeficiente de correlação linear de Pearson, interprete e teste sua significância.
- b) Ajuste, teste e interprete o modelo de regressão linear simples.

Plantas	1	2	3	4	5	6	7	8	9	10	11	12
Tamanho da colheita (centenas de frutos)	8	6	11	22	14	17	18	24	19	23	26	40
Percentagem de frutos atacados	59	58	56	53	50	45	43	42	39	38	30	27

10. É esperado que a massa muscular de uma pessoa diminua com a idade. Para estudar essa relação, uma nutricionista selecionou 18 mulheres, com idade entre 40 e 79 anos, e observou em cada uma delas a idade (X) e a massa muscular (Y).

Massa muscular (Y)	Idade (X)
100.0	43
116.0	45
97.0	45
105.0	49
100.0	53
87.0	56
80.0	56
76.0	58
91.0	64
84.0	65
68.0	67
78.0	68
78.0	68
82.0	71
73.0	73
73.0	73
65.0	76
77.0	78

Dados:

$$\begin{array}{l} m\acute{e}diaX = 61{,}556 \quad m\acute{e}diaY = 85 \\ \sum_{i=1}^{18} X_i^2 = 70362 \sum_{i=1}^{18} Y_i^2 = 133300 \sum_{i=1}^{18} X_i^{\square} Y_i = 91964 \end{array}$$

O coeficiente de correlação linear e a reta linear que melhor se ajusta ao modelo é:

- A) r = 0.837; Y = -148,218 1.027x;
- B) r = -0.837; Y = 148.218 + 1.027x;
- C) $r^2 = -0.837$; Y = 148.218 1.027x;
- D) r = 0.837; Y = 148,218 1.027x;
- E) r = -0.837; Y = 148.218 1.027x;

RESPOSTAS

- **1. a)** r = 0.8015; $t_{calc} = 3.791$; $t_{0.025} = 2.306$; Rejeita-se H₀. **b)** Y = 3 + 0.475 X
- **2. a)** r = 0.9830; $t_{calc} = 11.978$; $t_{0.025} = 2.571$; Rejeita-se H₀. **b)** Y = 11.13 + 0.13 X
- 3. Letra D
- **4. a)** r = -0.7732; $t_{calc} = -5.718$; $t_{0.025} = 2.074$; Rejeita-se H₀. **b)** Y = 185.96 2.09 X
- 5. Letra B
- **6. a)** r>0;
 - **b)** r = 0.954;
 - **c)** Y = 5.38 + 0.256x;
- **d)** O valor 0,256 significa que estima-se que para cada aumento de uma unidade monetária da renda familiar ocorre um acréscimo em média de 0,256 unidades no gasto com alimentação.
- **7. a)** r = -0.8893; $t_{calc} = -6.735$; $t_{0.025} = 2.179$; Rejeita-se H₀. **b)** Y = 86.73 2.40 X
- **8. a)** r = 0.4894; $t_{calc} = 2.024$; $t_{0.025} = 2.160$; Não se rejeita H_0 . **b)** Y = 54.95 + 1.06 X
- **9. a)** r = -0.8809; $t_{calc} = -5.884$; $t_{0.05} = 2.228$; Rejeita-se H₀. **b)** Y = 64.25 1.01 X
- 10. Letra E