GStreamer-integrated HLS-based JPEG Encoder for Edge FPGA SoCs

Yuri Guimaraes Pereira Primo da Silva¹, Shinya Honda¹, Sugako Otani¹², Masato Edahiro¹, Abraham Monrroy Cano³

¹Nagoya University, ²Renesas Electronics, ³Map IV Inc.

E-mail: yuri gpps1@ertl.jp

Motivation Context Importance of Edge Image Compression **Real-time** Data Faster **Transmission** Storage Transmission Storage Device Center Develop with High-Level Synthesis Problem: High Resource Usage Accelerator **Vitis Libraries** Cards JXL Lepton **Embedded** Lack of Boards

Approach

System Design

Contributions

- HW JPEG Encoder implemented in High-level Synthesis.
- GStreamer plugin interfaces with encoder.
 - Allows for mix and matching of pipeline elements for arbitrary media processing.
 - Easy usage of DMA capabilities.

Hardware Architecture

- Conventional JPEG algorithm design implemented C++ HLS
- Streaming design:
 - Data is packed into MCU streams at input processing
 - o Each MCU in a stream goes through **DCT** and **RLE** pipelined, and sequential Huffman
 - MCUs are packed into the expected JPEG bitstream format at the end.

Send each plane to the encoder via AXI Avoid memory copy in case of DMA

Top-level Hardware Design

- Camera accessed through V4L2
 - Accesses must go through AXI bus

Experiments

Memory Stress Testing Slowdown Comparison under Memory Stress **Stress Configuration** Which CPU cores were used for memory stress Configurations C_{23} c_{012} c_{0123} c_{123} FPGA3 CPU3 libjpeg **JPEG GStreamer** GStreamer Encoder **FPGA** FPGA* JPEG libjpeg GStreamer GStreamer Encoder 0 1 2 3 0 1 2 3 FPGA **FPGA**: less affected by stress on AXI bus 1.20 1.10 1.05 1.00 FPGA3 FPGA*

Discussion and Conclusions

- 1. Suitability for Edge
- Low resource usage
- Realtime performance
- 2. Usability
- GStreamer integration
 - Easy composition of media pipelines
- 3. Increased Predictability
- Resilience against memory stress

