■ 확률화 블록 계획법 (randomized complete block design)

- 확률화 완비(complete) 블록 계획법
- 쌍을 이룬 비교의 일반화
- 블록(block) : 요인의 처리효과 비교의 정확도를 높이기 위해 예비지식을 활용하여 나눈 동질적인 실험단위

○ 실험 설계

- \circ p개의 수준(처리)과 b개의 블록가 있다고 가정
- 각 블록 안에 처리에 대해 관측값은 하나
- 각 블록 안에 처리의 배열은 확률적으로 결정

○ 통계적 모형

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \quad i = 1, ..., p, \ j = 1, ..., b.$$

- \circ μ : 전체 평균, τ_i : 처리효과, β_i : 블록 효과
- \circ $\varepsilon_{ij} \sim \mathsf{iid} \ N(0,\sigma^2)$
- \circ 제약조건: $\sum_{i=1}^{p} \tau_i = 0$, $\sum_{j=1}^{b} \beta_j = 0$.

○ 가설 검정

- 처리효과의 동일성 검정
 - $H_0: au_1=\cdots= au_p=0$ vs $H_1:$ 최소한 하나 이상의 au_i 는 0이 아님
- 변동분해: SSTO=SSA+SSBL+SSE

-
$$SSTO = \sum_{i=1}^{p} \sum_{j=1}^{b} (Y_{ij} - \overline{Y}_{..})^2 = \sum_{i=1}^{p} \sum_{j=1}^{b} Y_{ij}^2 - \frac{Y_{..}^2}{N}$$
 : 자유도= $N-1$

-
$$SSA = b \sum_{i=1}^{p} (\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum_{i=1}^{p} \frac{Y_{i.}^2}{b} - \frac{Y_{..}^2}{N}$$
 : 자유도= $p-1$

-
$$SSBL = p \sum_{j=1}^{b} (\overline{Y}_{.j} - \overline{Y}_{..})^2 = \sum_{j=1}^{b} \frac{Y_{.j}^2}{p} - \frac{Y_{..}^2}{N}$$
 : 자유도= $b-1$

-
$$SSE = \sum_{i=1}^{p} \sum_{j=1}^{b} (Y_{ij} - \overline{Y_{i.}} - \overline{Y_{.j}} + \overline{Y_{..}})^2$$
 :
자유도= $N - (p-1) - (b-1) - 1 = (p-1)(b-1)$

- 블록효과의 동일성 검정
 - 계획에 있어 pb개의 처리 조합은 실험 단위의 집합에 대해 확률적으로 배치된 것이 아님
 - 블록은 실험단위이고 확률화는 각 단위안에서 제한되어짐
 - 만약 두 개의 요인에 대해 관심이 있는 경우에는 다른 계획법을 설계

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
모형(처리A)	p-1	SSA	MSA = SSA/(p-1)	MSA/MSE
블록	b-1	SSBL	MSBL = SSBL/(b-1)	MSBL/MSE
오차	(p-1)(b-1)	SSE	MSE = SSE/((p-1)(b-1))	
전체	N-1	SSTO		

○ 처리효과에 대한 다중비교

- $H_0: \mu_{i.} = \mu_{k.}$ vs $H_1: \mu_{i.} \neq \mu_{k.}$ 또는 $\mu_{i.} \mu_{k.}$ 의 신뢰구간
- \overline{Y}_{i} \overline{Y}_{k} $\pm c\sqrt{MSE}\sqrt{2/b}$
 - \circ 최소유의차: $c = t_{\alpha/2,(p-1)(b-1)}$
 - \circ Bonferroni: $c=t_{lpha/(2a),(p-1)(b-1)}$, a= 비교검정의 경우의 수
 - \circ Scheffe: $c = \sqrt{(p-1)F_{\alpha,p-1,(p-1)(b-1)}}$
 - $\circ \quad \text{Tukey: } \frac{1}{\sqrt{2}} q_{\alpha,p,(p-1)(b-1)}$

■ 다원 배치법(multi-factor design)

- 관심의 요인이 3개 이상인 경우, 모든 요인의 수준조합에 대해 확률화를 적용하여 실험
- 요인의 수가 늘어나면, 실험횟수가 많아지고 이에 대해 랜덤화가 어려워짐
- 실험전체를 비슷한 관리 상태 하에서 수행하는데 여러 가지 어려움이 따름

 □ 요인에 대한 충분한 기술적 검토를 거쳐 불필요한 요인라고 판단되면

 과감히 요인의 수를 줄임

□ 반복이 없는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 l, m, n 개의 수준을 가짐
- *lmn*개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		$A_1 A_2 \cdots A_l$
	C_1	Y_{111} Y_{211} \cdots Y_{l11}
B_1	•	
	$igcap_n$	$Y_{11n} \; Y_{21n} \cdots Y_{l1n}$
•	•	: : : :
	C_1	$oxed{Y_{1m1} Y_{2m1} \cdots Y_{lm1}}$
$B_{\!m}$	•	
	C_n	$Y_{1mn} \; Y_{2mn} \cdots \; Y_{lmn}$

○ 모형의 구조식

$$Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \varepsilon_{ijk}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}$, $(\alpha\gamma)_{ik}$, $(\beta\gamma)_{jk}$: 두 요인의 교호작용
- \circ $\varepsilon_{ijk} \sim \text{iid } N(0,\sigma^2)$
- \circ 3요인의 교호작용 $(\alpha\beta\gamma)_{ijk}$ 는 오차항 ε_{ijk} 에 교락되어 있어 별도로 검정할 수 없음

○ 변동 분해

$$\begin{split} &(Y_{ijk} - \overline{Y}_{...}) = (\overline{Y}_{i..} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (\overline{Y}_{i.k} - \overline{Y}_{i..} - \overline{Y}_{..k} + \overline{Y}_{...}) + (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}) \\ &+ (Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{..k} - \overline{Y}_{...}) \\ &\circ SSTO = \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} Y_{ijk}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{lmn} \\ &\circ SSA = \frac{1}{mn} \sum_{i=1}^{l} Y_{i..}^{2} - CT, \quad SSB = \frac{1}{ln} \sum_{j=1}^{m} Y_{.j}^{2} - CT, \quad SSC = \frac{1}{lm} \sum_{k=1}^{n} Y_{..k}^{2} - CT \\ &\circ SSAB = \frac{1}{n} \sum_{i=1}^{l} \sum_{j=1}^{m} Y_{ij.}^{2} - CT, \quad SSAC = \frac{1}{m} \sum_{i=1}^{l} \sum_{k=1}^{n} Y_{i.k}^{2} - CT, \\ SSBC = \frac{1}{l} \sum_{i=1}^{m} \sum_{k=1}^{n} Y_{.jk}^{2} - CT \end{split}$$

$$\circ SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$\circ SSE = SSTO - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

○ 분산분석표

변인		자유도	제곱합	평균제곱	F
	Α	l-1	SSA	MSA	MSA/MSE
주효과	В	m-1	SSB	MSB	MSB/MSE
	С	n-1	SSC	MSC	MSC/MSE
교호	(AB)	(l-1)(m-1)	SS(AB)	MS(AB)	MS(AB)/MSE
	(AC)	(l-1)(n-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(m-1)(n-1)	SS(BC)	MS(BC)	MS(BC)/MSE
오ㅊ	}	(l-1)(m-1)(n-1)	SSE	MSE	
전처		lmn-1	SSTO		

○ 분산 분석후 추정

- 일차적으로 분산분석표에 의한 F-검정이 끝나면, 유의하지 않은 교호작용은 오차항에 흡수시켜 다시 F-검정을 실시
- 주효과만 유의한 경우
 - 각 요인수준에서의 모평균 추정
 - 점추정 : $\hat{\mu}(A_i) = \overline{Y}_{i..}$
 - 구간추정 : $\overline{Y}_{i..} \pm t_{lpha/2,
 u} \sqrt{MSE^*}/\sqrt{mn}$
 - 수준조합에 대한 모평균 추정
 - 점추정 : $\hat{\mu}(A_iB_jC_k)=\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{...}$
 - 구간추정 : $\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{..}\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$

$$- \frac{1}{n_e} = \frac{1}{mn} + \frac{1}{ln} + \frac{1}{lm} - \frac{2}{lmn} \to n_e = \frac{lmn}{l+m+n-2}$$

- 주효과와 일부 교호작용만 유의한 경우
 (예) A, B, C, (AC) 만 유의하다면,
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_j} + \hat{\gamma_k} + (\widehat{\alpha\gamma})_{ik}$$
$$= \hat{\mu} + \hat{\alpha_i} + \hat{\gamma_k} + (\widehat{\alpha\gamma})_{ik} + \hat{\beta_j} = \overline{Y}_{i.k} + \overline{Y}_{.j.} - \overline{Y}_{...}$$

- 구간추정 :
$$\overline{Y}_{i.k}+\overline{Y}_{.j.}-\overline{Y}_{...}\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$$

$$- \ \, \frac{1}{n_e} = \frac{1}{m} + \frac{1}{l\,n} - \frac{1}{lmn} \to n_e = \frac{lmn}{lm + m - 1}$$

- 모든 요인이 유의한 경우
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \hat{\mu} + \hat{\alpha_i} + \hat{\beta_j} + (\widehat{\alpha\beta})_{ij} + \hat{\mu} + \hat{\alpha_i} + \hat{\gamma_k} + (\widehat{\alpha\gamma})_{ik}$$

$$+ \hat{\mu} + \hat{\beta_i} + \hat{\gamma_k} + (\widehat{\beta\gamma})_{ik} - (\hat{\mu} + \hat{\alpha_i} + \hat{\mu} + \hat{\beta_j} + \hat{\mu} + \hat{\gamma_k}) + \hat{\mu}$$

$$= \overline{Y}_{ij} + \overline{Y}_{i\cdot k} + \overline{Y}_{\cdot jk} - \overline{Y}_{i\cdot \cdot} - \overline{Y}_{\cdot j\cdot} - \overline{Y}_{\cdot \cdot k} + \overline{Y}_{\cdot \cdot \cdot}$$

- 구간추정 :
$$\hat{\mu}(A_iB_jC_k)\pm t_{\alpha/2,\nu}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$$

-
$$n_e = \frac{lmn}{lm+ln+mn-l-m-n+1}$$

□ 반복이 있는 삼원배치법 (고정효과모형)

- 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- \circ 반복수가 r일 때 N=abcr개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	• • •	A_a
B_1	•	$\begin{array}{c} Y_{1111}\cdots Y_{111r} \\ \vdots \\ Y_{11c1}\cdots Y_{11cr} \end{array}$	•••	•
•	•	•	:	:
B_{b}	•	$egin{array}{c} Y_{1b11}\cdots Y_{1b1r} \ dots \ Y_{1bc1}\cdots Y_{1bcr} \end{array}$	••.	•

○ 모형의 구조식

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \varepsilon_{ijkl}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}, (\alpha\gamma)_{ik}, (\beta\gamma)_{jk}$: 두 요인의 교호작용
- \circ $(\alpha\beta\gamma)_{ijk}$: 세 요인의 교호작용
- \circ $\varepsilon_{ijk} \sim$ iid $N(0,\sigma^2)$

○ 변동 분해

$$\begin{split} (Y_{ijkl} - \overline{Y}_{...}) &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j..} - \overline{Y}_{...}) + (\overline{Y}_{..k.} - \overline{Y}_{...}) + (\overline{Y}_{ij..} - \overline{Y}_{i...} - \overline{Y}_{.j..} + \overline{Y}_{...}) \\ &+ (\overline{Y}_{i.k.} - \overline{Y}_{i...} - \overline{Y}_{..k.} + \overline{Y}_{...}) + (\overline{Y}_{.jk.} - \overline{Y}_{.j..} - \overline{Y}_{..k.} + \overline{Y}_{...}) \\ &+ (Y_{ijk.} - \overline{Y}_{ij..} - \overline{Y}_{i.k.} - \overline{Y}_{.jk.} + \overline{Y}_{i...} + \overline{Y}_{.j..} + \overline{Y}_{..k.} - \overline{Y}_{...}) + e_{ijkl} \\ & \circ \quad SSTO = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{r} Y_{ijkl}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{N} \\ & \circ \quad SSA = \frac{1}{bcr} \sum_{i=1}^{a} Y_{i...}^{2} - CT, \quad SSB = \frac{1}{acr} \sum_{j=1}^{b} Y_{.j..}^{2} - CT, \\ & SSC = \frac{1}{abr} \sum_{k=1}^{c} Y_{..k.}^{2} - CT \\ & \circ \quad SSAB = \frac{1}{cr} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij..}^{2} - CT, \quad SSAC = \frac{1}{br} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i.k.}^{2} - CT, \end{split}$$

$$SSBC = \frac{1}{ar} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk.}^{2} - CT$$

$$\circ SSABC = \frac{1}{r} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT$$

$$\circ \quad SS(AB) = SSAB - SSA - SSB, \quad SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

$$\circ SS(ABC) = SSABC - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

$$\circ$$
 $SSE = SSTO - SSABC$

○ 분산분석표

변인		자유도	제곱합	평균제곱	F
	Α	a-1	SSA	MSA	MSA/MSE
주효과	В	b-1	SSB	MSB	MSB/MSE
	С	c-1	SSC	MSC	MSC/MSE
	(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE
교호	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE
작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE
	(ABC)	(a-1)(b-1)(c-1)	SS(ABC)	MS(ABC)	MS(ABC)/MSE
오차	구	abc(r-1)	SSE	MSE	
전치	#	abcr-1	SSTO		

■ 변량효과모형과 혼합효과(mixed effect)모형

- 모든 요인이 고정수준을 가지면 고정효과모형
- 모든 요인이 변량수준을 가지면 변량효과모형
- 일부 요인은 고정수준, 나머지는 변량수준을 가지면 혼합효과모형

□ 1요인 변량효과 모형

- 두 단계 추출
 - ① 수준 추출
 - \circ 수준들의 모집단 Ω 에서 p개의 수준을 무작위 추출
 - \circ μ_i : i 번째 추출되는 수준들의 평균반응

$$\Rightarrow \mu_i \sim \text{ iid } N(\mu, \sigma_\mu^2)$$

- ② 관측단위 추출
 - \circ 추출되는 각 수준에서 n_i 개의 관측단위를 무작위로 추출(배정)

$$\circ N = \sum_{i=1}^{p} n_i$$

○ 1요인 변량효과 분산분석 모형

• Y_{ij} : i 번째 추출 수준(학교)에서 j 번째 추출하는 관측단위(학생)의 반응변수

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, ..., p, j = 1, ..., n_i$$

- \circ $\mu_i \sim \mathsf{iid} \ N(\mu, \sigma_\mu^2)$: i 번째 추출수준의 수준평균
- \circ $\varepsilon_{ij} \sim \text{iid } N(0, \sigma^2)$
- \circ $au_i = \mu_i \mu$ 라고 하면

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \quad i = 1, ..., p, j = 1, ..., n_i$$

- $au_i \sim {\sf iid} \ N(0,\sigma_\mu^2)$
- 모든 au_i 와 $arepsilon_{ij}$ 는 서로 독립

● 모형의 특징

- $\circ \quad E(Y_{ij}) = E(\mu_i + \varepsilon_{ij}) = \mu$
- $\circ \quad Var(Y_{ij}) = Var(\mu_i + \varepsilon_{ij}) = \sigma_{\mu}^2 + \sigma^2$
- $\circ Y_{ij} \sim N(\mu, \sigma_{\mu}^2 + \sigma^2)$
- $\circ \quad Cov(Y_{ij}, Y_{ik}) = Cov(\mu_i + \varepsilon_{ij}, \mu_i + \varepsilon_{ik}) = Var(\mu_i) = \sigma_\mu^2 \geq 0$
- \circ 분산 σ_{μ}^2 와 σ^2 를 variance components라고 함
 - ⇒ components of variance 또는 random effects 모형이라고 부름

○ 관심문제

- σ_{μ}^2 의 추정
- μ의 추정
- σ^2 의 추정
- $\rho = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$ 의 추정
 - \circ ρ 가 크다는 것은
 - 전체분산 중 수준평균의 분산이 차지하는 비율이 높음
 - 한 수준의 두 관측값의 상관관계가 높음

○ 분산분석

 \circ 가정: $arepsilon_{ij}\sim N(0,\sigma^2)$, $au_i\sim N(0,\sigma_{ au}^2)$, au_i 와 $arepsilon_{ij}$ 는 독립

- $\circ \ H_0 : \ \sigma_{\tau}^2 = 0 \ \text{VS} \ H_1 : \ \sigma_{\tau}^2 > 0$
 - $\sigma_{\tau}^2 = 0$ 이라면, 모든 처리는 동일
 - $\sigma_{\tau}^{2} > 0$ 이라면, 처리들 간에 변동이 있다는 것을 의미
- 제곱합 등식 SSTO=SSTR+SSE는 계속 사용

변인	자유도	제곱합(SS)	평균제곱(MS)	F
처리(모형)	p-1	SSTR	MSTR	MSTR/MSE
오차	N-p	SSE	MSE	
전체	N-1	SSTO		

$$\circ \quad E(MSTR) = \sigma^2 + n'\sigma_{\mu}^2, \quad n' = (N - \sum n_i^2/N)/(p-1)$$

- 모든 $n_i = n$ 이면 n' = n
- $n'\sigma_{\mu}^2 = E(MSTR) E(MSE)$

$$- \ \sigma_{\mu}^2 = \frac{E(MSTR) - E(MSE)}{n'} \ \ \Leftrightarrow \ \hat{\sigma}_{\mu}^2 = \frac{MSTR - MSE}{n'}$$

-
$$MSTR < MSE$$
이면 $\hat{\sigma}_{\mu}^2 < 0$ \Rightarrow $\hat{\sigma}_{\mu}^2 = 0$ 으로 고쳐 사용

μ의 추정

$$\circ \quad \mu = E(\mu_i)$$

-
$$\hat{\mu}_i = \overline{Y}_i$$

-
$$\hat{\mu}=\overline{Y}_{i.}$$
의 평균 \Rightarrow 균형 자료이므로 $\hat{\mu}=\overline{Y}_{i.}$

• σ^2 와 σ^2_{μ} 의 추정

$$\circ \hat{\sigma}^2 = MSE$$

$$\circ$$
 $\hat{\sigma}_{\mu}^{2} = \frac{MSTR - MSE}{n'}$

•
$$\frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma^2}$$
의 추정 $\leftrightarrows \frac{\widehat{\sigma_{\mu}^2}}{\widehat{\sigma_{\mu}^2} + \widehat{\sigma^2}}$

□ 2요인 변량효과 모형과 혼합효과 모형

- 2요인 변량효과 모형에서의 관심문제
 - \circ 교호작용이 있는가? \Rightarrow $\sigma^2_{(lphaeta)}>0$
 - \circ A요인의 주효과가 있는가? $\Rightarrow \sigma_{\alpha}^2 > 0$
 - \circ B요인의 주효과가 있는가? \Rightarrow $\sigma_{eta}^2>0$
 - \circ 분산요소 $\sigma_{\alpha}^2, \sigma_{\beta}^2, \sigma_{(\alpha\beta)}^2, \sigma^2$ 의 추정

- 2요인 혼합효과 모형에서의 관심문제
 - \circ 교호작용이 있는가? \Rightarrow $\sigma^2_{(lphaeta)}>0$
 - \circ A요인의 주효과가 있는가? \Rightarrow 하나 이상의 α_i 가 0이 아니다.
 - \circ B요인의 주효과가 있는가? $\sigma_{\beta}^2>0$
 - \circ 분산요소 $\sigma_{\beta}^2, \, \sigma_{(\alpha\beta)}^2, \, \sigma^2$ 의 추정
 - 고정수준 요인의 효과 추정과 비교

● 분산분석표

- 변량효과모형과 혼합효과모형의 제곱합, 자유도, 평균제곱은 고정효과모형의 경우와 같음
- EMS는 고정수준의 경우와 다르고 이에 따라 검정통계량도 달라짐

① 교호작용

- $\circ \ H_0: \sigma^2_{(\alpha\beta)} = 0 \ \text{vs} \ H_1: \sigma^2_{(\alpha\beta)} > 0$
- $\circ F = MS(AB)/MSE \sim F_{(a-1)(b-1),ab(n-1)}$
- 교호작용의 강약
 - $Var[(\widehat{\alpha eta})_{ij}] > \widehat{\sigma}^2$ 이면 강한 것으로 보고 아니면 약한 것으로 봄

② 주효과 검정

- 교호작용이 강한 경우 검정하지 않음
- \circ $H_0:\sigma_{\alpha}^2=0$ vs $H_1:\sigma_{\alpha}^2>0$ (변량효과모형)
- \circ $H_0: \alpha_1 = \cdots = \alpha_a = 0$ vs $H_1:$ not H_0 (혼합모형)

변인	자유도	SS	EMS
A	a-1	$nb\sum (\overline{Y}_{i}-\overline{Y}_{})^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2 + nb\sigma_\alpha^2$
В	b-1	$na\sum (\overline{Y}_{.j.} - \overline{Y}_{})^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2 + na\sigma_{\beta}^2$
(AB)	(a-1)(b-1)	$n\sum\sum(\overline{Y}_{ij.}-\overline{Y}_{i}-\overline{Y}_{.j.}+\overline{Y}_{})^2$	$\sigma^2 + n\sigma_{(\alpha\beta)}^2$
오차	ab(n-1)	$\sum\sum\sum\sum(Y_{ijk}-\overline{Y}_{ij.})^2$	σ^2

가설	검정통계량
$H_0:\sigma_{lpha}^2=0$ vs $H_1:\sigma_{lpha}^2>0$	
$H_0:\sigma_{\beta}^2=0$ vs $H_1:\sigma_{\beta}^2>0$	
$H_0:\sigma^2_{(lphaeta)}=0$ vs $H_1:\sigma^2_{(lphaeta)}>0$	