Vp140 Recitation VII

Haomeng ZHANG

SJTU Joint Institute zhanghaomeng@sjtu.edu.cn

July 18, 2019

Overview

- Basic kinematic quantities in rotational motion
- 2 Moment of inertia
- 3 Dynamics for Rigid Body Rotation
- Work and Power in rotational motion
- angular momentum

Angular velocity

Formula

$$\overline{\omega} = \frac{\mathrm{d}\overline{\theta}}{\mathrm{d}t} \, [\mathrm{rad/s}]$$

Angular acceleration

Formula

$$\overline{\varepsilon} = \frac{\mathrm{d}\overline{\omega}}{\mathrm{d}t}$$

Figure

rotates slower and slower

rotates faster and faster

Velocity in a rotational motion

Formula

$$\overline{\mathbf{v}} = \overline{\omega} \times \overline{\mathbf{r}}$$

Acceleration in a rotational motion

Formula

$$\overline{a} = \overline{\varepsilon} \times \overline{r} + \overline{\omega} \times (\overline{\omega} \times \overline{r})$$

Magnitude

$$|\overline{a}_{\mathsf{tan}}| = |\overline{\varepsilon}| \cdot |\overline{r}_{\perp}|$$

$$|\overline{a}_{centr}| = |\overline{\omega} \times (\overline{\omega} \times \overline{r}_{\perp})| = |\overline{\omega}| |\overline{\omega} \times \overline{r}_{\perp}| = \omega^2 |\overline{r}_{\perp}|$$

Total Kinetic Energy

Formula

$$K = \sum_{i=1}^{N} \frac{1}{2} m_i \omega^2 r_{i\perp}^2 = \frac{1}{2} \left(\sum_{i=1}^{N} m_i r_{i\perp}^2 \right) \omega^2 = \frac{1}{2} I \omega^2$$

Moment of Inertia

Formula

$$I = \sum_{i=1}^{N} m_i r_{i\perp}^2$$
 $I_{\mathcal{A}} = \int_{ ext{object}} r_{\perp}^2 \mathrm{d} m$

Calculate the Moment of Inertia

Figure

286 CHAPTER 9 Rotation of Rigid Bodies

Exercise I

Calculate the moment of inertia

Calculate the moment of inertia of a uniform solid cone about an axis through its center. The cone has mass M and altitude h. The radius of its circular base is R.

Exercise II

Moment of Inertial Application

A 12.0-kg mass is released from rest and falls, causing the uniform 10.0-kg cylinder of diameter 30.0 cm to turn about a frictionless axle through its center. How far will the mass have to descend to give the cylinder 480 J of kinetic energy?

Parallel axis theorem (Steiner's theorem)

Formula

$$I_{A'} = I_A + mb^2$$

Torque

Formula

$$\begin{split} \overline{\tau} &= \overline{r} \times \overline{F} \\ |\overline{\tau}| &= |\overline{r}_{\perp}| \, |\overline{F}| \\ |\overline{\tau}| &= |\overline{r}| |\overline{F}| \sin \angle (\overline{r}, \overline{F}) = |\overline{r}_{\perp}| \, |\overline{F}| = |\overline{r}| \, |\overline{F}_{\perp}| \end{split}$$

Figure

right-hand rule

units: N·m (=joule)

The Second Law of Dynamics for a Rigid Body Rotating about a Fixed Axis

Formula

$$au_z = I_z \varepsilon_z$$

Compares with Particle Motion

Compare with the 2^{nd} law of dynamics for (1D) motion of a particle

- particle: net force \Rightarrow acceleration which is \propto force, and $\propto \frac{1}{mass}$
- rigid body: net torque along axis of rotation \Rightarrow angular acceleration which is \propto torque, and $\propto \frac{1}{moment\ of\ inertia}$

Application of the Second Law of Dynamics

Examples from the lecture

The cylinder has mass M, radius R, can rotate about its axis of symmetry. Find the acceleration of the block a_y and the tension T in the string as it unwinds from the cylinder.

Rigid body rotation about a moving axis

Formula

$$K = \frac{1}{2}Mv_{cm}^2 + \frac{1}{2}I_{cm}\omega^2$$

Conclusion

The rigid body's kinetic energy is the sum of $\frac{1}{2}Mv_{\rm cm}^2$, associated with the translational motion of the center of mass, and $\frac{1}{2}I_{\rm cm}\omega^2$ associated with rotation about an axis through the center of mass.

Rolling Without Slipping

Relationship

$$v_{cm} = \omega R$$

Rigid body race -(Example from slides)

Figure

Conclusion

$$v_{cm} = \sqrt{\frac{2gh}{1+C}}$$

Work and power in rotational motion

Work

$$W_{\theta_1 \to \theta_2} = \int_{\theta_1}^{\theta_2} \tau_z \mathrm{d}\theta$$

Power

$$P = \tau_Z \omega_Z$$

Angular Momentum

Definition

$$\overline{L} = \overline{r} \times \overline{p}$$

Relation with torque

$$\overline{\tau} = \frac{\mathrm{d}\overline{L}}{\mathrm{d}t}$$

Angular Momentum Conservation

Formula

$$\frac{dL_z}{dt} = \tau_z^{\text{ext}}$$

Conclusion

When the net external torque on a system is zero, then the total angular momentum of the system is conserved.

The End

- Office hour: Wed 8:00-10:00 (Discussion Room 326I)
- Email: zhanghaomeng@sjtu.edu.cn