Analysis of Voltage Sag on Transmission System Under Fault Conditions

Presented by Team no: 7

Anurag Nagpure and Sneha Guchhait

Instructor:

Dr. Bruce Mork

EE5200: Advanced Methods in Power System Analysis

Outline

Introduction

Background

Concept

Simulink Model and Analysis

Results

Conclusion

Recommendation for Future Work

Problem Description

- Load equipment are sensitive to power quality variation.
- Voltage Sag is the most important problem in transmission and distribution systems
- Growth of devices to improve the efficiency of the power system

Motivation for the project

- Consumers not only require reliability and also power quality.
- Location of the fault plays an important role.
- Voltage variation leads to failure/disconnection of load equipment or entire plant.

Project Overview

- Determination of voltage sag, phase voltage of various types of faults.
- Key aspects of voltage sag characteristics.
- Factors affecting the characteristics of the voltage sag.

Background

- Power Quality Problems
- What is voltage sag and its importance
- Voltage sag characteristics

Power Quality problems and its causes

Broad Categories	Specific Categories	Methods of Characterization	Typical Causes
Transients	Impulsive	Peak magnitude, rise time and duration	Lightning strike, transformer energization, capacitor switching
	Oscillatory	Peak Magnitude, frequency components	Line or capacitor or load switching
Short duration voltage variation	Sag	Magnitude, duration	Ferro-resonant transformers, single line-to-ground faults
	Swell	Magnitude, duration	Ferro-resonant transformers, single line-to-ground faults
	Interruption	Duration	Temporary (self- clearing) faults
Long duration voltage variation	Undervoltage	Magnitude, duration	Switching on loads, capacitor de- energization
	Overvoltage	Magnitude, duration	Switching on loads, capacitor energization
	Sustained	Duration	Faults
Voltage Imbalance		Symmetrical Components	Single-phase loads, single-phasing condition
Waveform Distortion	Harmonics	THD, Harmonic spectrum	Adjustable speed drives and other non- linear loads
	Notching	THD, Harmonic spectrum	Power electronics Converter
	DC Offset	Volts, Amps	Geo-magnetic disturbance, half wave rectification
Voltage Flicker		Frequency of occurrence, modulating frequency	Arc furnace, arc lamps

Theoretical Calculation for Voltage Sag

Distribution Network with load positions and fault positions

Concept

Voltage Divider Model for determination of Voltage Sag

$$ar{V}_{sag} = ar{E} rac{ar{Z}_f}{ar{Z}_f + ar{Z}_s}$$
 (1)

$$ar{V}_{sag} = rac{ar{Z}_f}{ar{Z}_f + ar{Z}_s}$$
 (2)

$$ar{V}_{sag} = rac{ar{z}ar{l}}{ar{z}ar{l} + ar{Z}_s}$$
 (3)

$$[V_{sag}] = \frac{|zl|}{|zl| + |Z_s|} \tag{4}$$

$$\Delta \emptyset = \arctan \frac{X_f}{R_f} - \arctan \frac{X_s + X_f}{R_s + R_f}$$
 (5)

System Under Study

System Under Study

Voltage Sag Analysis for different Unsymmetrical Faults

Positive, negative and zero sequence networks for the voltage divider for unsymmetrical faults

Single Line to Ground Fault

Equivalent circuit for a single line to Ground fault

Sequence component of voltages at PCC

$$V_1 = \frac{Z_{F1} + Z_{S2} + Z_{F2} + Z_{S0} + Z_{F0}}{(Z_{F1} + Z_{F2} + Z_{F0}) + (Z_{S1} + Z_{S2} + Z_{S0})}$$

$$V_2 = \frac{Z_{S2}}{(Z_{F1} + Z_{F2} + Z_{F0}) + (Z_{S1} + Z_{S2} + Z_{S0})}$$

$$V_0 = \frac{Z_{S0}}{(Z_{F1} + Z_{F2} + Z_{F0}) + (Z_{S1} + Z_{S2} + Z_{S0})}$$

Line to Line Fault

Equivalent circuit for a line-line fault

Sequence component of voltages at PCC

$$V_1 = E - E \frac{Z_{S1}}{(Z_{S1} + Z_{S2}) + (Z_{F1} + Z_{F2})}$$

$$V_2 = \frac{Z_{S2}}{(Z_{S1} + Z_{S2}) + (Z_{F1} + Z_{F2})}$$

$$V_0 = 0$$

Line to Line to Ground Fault

Sequence component of voltages at PCC

$$V_1 = 1 - \frac{Z_{S1}(Z_{S0} + Z_{F0} + Z_{S2} + Z_{F2})}{D}$$

$$V_2 = \frac{Z_{S2}(Z_{S0} + Z_{F0})}{D}$$

$$V_0 = \frac{Z_{S0}(Z_{S2} + Z_{F2})}{D}$$

where,

$$D = (Z_{S0} + Z_{F0})(Z_{S1} + Z_{F1} + Z_{S2} + Z_{F2}) + (Z_{S1} + Z_{F1})(Z_{S2} + Z_{F2})$$

Equivalent circuit for a line to line to ground fault

Results

Three Phase to Ground Fault

Voltages at node 9 for ABC-G fault in line 8-9

Current at node 9 for ABC-G fault in line 8-9.

Single Phase to Ground Fault

Fault voltages for a, b and c for A-G fault

Fault current for a, b and c for A-G fault

Line to Line Fault

Fault voltages for a, b and c for B-C fault

Fault current for a, b and c for B-C fault

Line to Line to Ground Fault

Fault voltages for a, b and c for BC-G fault

Fault currents for a, b and c for BC-G fault

Analysis of Voltage Sag with Respect to line Length(L)

Voltage at node 9 when distance is 50 Kms

Voltage at node 9 when distance is 250 Kms

Sag Magnitude with respect to Line Length

Distance in	Sag
Kms(L)	Magnitude(kV)
50	15.473
100	17.118
150	17.823
200	18.119
250	18.528
300	18.857
350	19.045
400	19.092
450	19.233
500	19.327

Voltage at Line 7-9 (KV)

Sag magnitude versus variation in line length

Analysis of Voltage Sag with Respect to Fault Impedance (Z_F)

Sag Magnitude with respect to Fault Impedance

Voltage at node 9 when the fault resistance is 2Ω

Voltage at node 9 when the fault resistance is 8Ω

Sag magnitude versus time for variation in fault impedance

Analysis of Voltage Sag with Respect to X/R Ratio

Voltage at node 9 when the X/R ratio is 3

Voltage at node 9 when the X/R ratio is 7

Sag Magnitude with respect to X/R ratio

X/R ratio	Sag	
	Magnitude(kV)	
1	14.063	
2	16.718	
3	17.635	
4	18.105	
5	18.387	
6	18.692	
7	18.810	
8	18.927	
9	19.045	
10	19.162	

Sag Magnitude(in KV)

Sag magnitude versus time for variation in X/R ratio

Conclusion

- Different power quality problems arising in distribution system is discussed.
- Analysis of voltage sag in terms of power system parameters are analyzed.
- The effect of symmetrical and unsymmetrical on double circuit transmission line is been evaluated mathematically.
- All the above proposals are verified through an extensive digital simulation in MATLAB/ Simulink

Recommendation for Future Work

- This work successfully demonstrates the analysis of voltage sag in terms of different power system parameters using symmetrical and unsymmetrical faults. However, further it also creates some space for future investigations using new and modified algorithms.
- The work analyses the effect of unsymmetrical faults in terms of sequence components. Since, the different types of voltage sag are already proposed, further investigations can be extended towards the unbalance sag analysis for these various types of voltage sag.
- Also, a critical analysis can be done in terms of different sag indices and few more parameters like phase angle jump, conductor area with overhead and underground cables.
- Moreover, the mitigation techniques can also be implemented, and new proposal can be put forward to improve the dynamic performance of the system.

References

- 1. Patne N.R and Thakre K.L, "Factor affecting characteristic of voltage sag due to fault in the power system," Serbian Journal of Electrical Engineering, 2008, 5(1),pp. 171-182.
- 2. M.H.J. Bollen, "Understanding Power Quality Problems Voltage sags & Interruptions," New York, IEEE Press, 2000.
- 3. R.C. Dugan, F. McGranaghan and Beaty H.W, "Electrical Power System Quality, McGraw-Hill," 1996
- 4. A. Ghosh and G. Ledwich, "Power Quality Enhancement using Custom Power Devices," Kluwer Academic Publishers, 2002.
- 5. Martinez. J. A and Martim-Aenedo. J, "Voltage sag studies in Distribution Networks—Part I: System Modeling," *IEEE Trans. Power Delivery*, 2006,21 (3), pp.338-345.
- 6. Martinez. J. A and Martim-Aenedo. J, "Voltage sag studies in Distribution Networks—Part II: Voltage Sag Assessment," *IEEE Trans. Power Delivery*, 2006, 21(3), pp. 1679-1688.
- 7. Hochgraf. C and Lasseter. R," Statcom control for operation with unbalanced voltages," *IEEE Trans. On Power Delivery*, 1998, 13(2), pp.538-544.

- 8. Aeloíza. E. C and Enjeti. P.N, "Analysis and Design of New Voltage Sag Compensator for Critical Loads in Electrical Power Distribution Systems," *IEEE Trans. On Industrial Application*, 2003, 39(4), pp.1143-1149
- 9. Nasiraghdam. H and Jalilian. A, "Balanced and Unbalanced voltage sag mitigation using DSTATCOM with linear & nonlinear loads", World Academy of Science, Engineering & Technology, 2007, pp.20-25.
- 10. Moschakis M.N., and Hatziargyriou N.C., "Analytical Calculation and Stochastic Assessment of Voltage Sags," *IEEE Transactions on Power Delivery*, 2006, 21(3), pp. 1727-1734
- 11. Zhang L, Bollen M.H.J, "Characteristics of Voltage Dips (Sags) in Power Systems," *IEEE Transactions on Power Delivery*, 2000, 15(2), pp. 827-832.
- 12. P.M. Anderson, "Analysis of Faulted power systems," IEEE press, New York, 1995.

Thank You