Departamento de Engenharia Informática e de Sistemas

Instituto Superior de Engenharia de Coimbra

Licenciatura em Engenharia Informática

- Conhecimento e Raciocínio -

2018/2019 Trabalho Prático

Trabalho realizado por:

Gabriel Pinheiro nº21260736

Guilherme Silva nº 2126031

O CBR (*Case Based Reasoning*) é um modelo utilizado em diversos sistemas periciais. Tem como base a utilização de diversos casos/experiências passadas em que cada um destes casos é composto por uma descrição e a respetiva solução. A resolução de novos casos é feita ao encontrar um ou mais casos semelhantes ao atual e apresentar uma solução adaptada ao novo contexto.

O Nosso Problema

O problema apresentado neste trabalho é o de perceber se uma pessoa tem tendência futura para contrair diabetes. Foi-nos fornecido um *dataset* com 768 exemplos de indivíduos com e sem diabetes. Os atributos têm o seguinte significado:

- PregnanciesNumber of times pregnant
- GlucosePlasma glucose concentration a 2 hours in an oral glucose tolerance test
- BloodPressureDiastolic blood pressure (mm Hg)
- SkinThicknessTriceps skin fold thickness (mm)
- Insulin2-Hour serum insulin (mu U/ml)
- BMIBody mass index (weight in kg/(height in m)^2)
- DiabetesPedigreeFunction: Diabetes pedigree function
- AgeAge (years)
- OutcomeClass variable (0 or 1) 268 of 768 are 1, the others are 0

CBR APLICADO AO NOSSO PROBLEMA

Inicialmente, após ler e guardar todos os casos do dataset disponibilizado, entramos na fase de *retrieve*, onde tivemos que atribuir *weighting factors* para os diferentes atributos, sendo que, ao pedir a opinião de pessoas que estão ativamente envolvidas no campo da medicina e enfermagem, chegamos à conclusão que iríamos usar uma escala de 1 a 5 do menos relevante ao mais relevante respetivamente. Estes são os valores que foram utilizados em todo o decorrer da experiência:

- Pregnancies 1
- Glucose 3
- BloodPressure 2
- SkinThicknessTriceps 1
- Insulin 3
- BMI 5
- DiabetesPedigreeFunction 1
- Age 3

Após esta atribuição ser feita já se pode comparar o novo caso com os casos já existentes e perceber quais as suas similaridades ou disparidades. Este processo é feito a partir do cálculo das distâncias absolutas entre os diferentes atributos e fazendo o cálculo da semelhança final entre os casos analisados, como podemos ver nos seguintes pedaços de código:

Como podemos ver, todas as similaridades e todos os índices dos casos semelhantes são guardados se a semelhança for maior que o *similarity threshold* que neste caso será de 0.75.

Depois disto segue-se para a fase de *reuse*, que consiste em reutilizar a informação dos casos obtidos de forma a resolver o problema. Para isso vamos utilizar os atributos dos casos semelhantes e através desta fórmula calcular o *Outcome*:

```
x1 = retrieved_cases{:,1}; % Pregnancies
x2 = retrieved_cases{:,2}; % Glucose
x3 = retrieved_cases{:,3}; % BloodPressure
x4 = retrieved_cases{:,4}; % SkinThickness
x5 = retrieved_cases{:,5}; % Insulin
x6 = retrieved_cases{:,6}; % BMI
x7 = retrieved_cases{:,7}; % DiabetesPedigreeFunction
x8 = retrieved_cases{:,8}; % Age

y = retrieved_cases{:,9}; %Outcome
X = [ones(size(x1)) x1 x2 x3 x4 x5 x6 x7 x8];
b = X\y;
outcome = b(1) + b(2) * new_case.Pregnancies + b(3) * new_case.Glucose + ...
b(4) * new_case.BloodPressure + b(5) * new_case.SkinThickness + ...
b(6) * new_case.Insulin + b(7) * new_case.BMI + ...
b(8) * new_case.DiabetesPedigreeFunction + b(9)*new_case.Age;
```

Depois destas contas serem feitas vamos obter um valor entre 0 e 1 e a partir desse momento já temos o nosso *Outcome* (se for maior que 0.5 vai ser 1 e 0 caso contrário)

No *revise* apenas damos a escolher ao utilizador se ele deseja guardar o *Outcome* obtido ou não, dado que já sabemos que o valor vai ser válido antes de entrar nesta função, logo não é necessário fazer essa verificação.

Aplicação de Lógica Fuzzy ao Nosso Problema

Para além de utilizar um modelo de CBR isolado, também recorremos à Lógica *Fuzzy* para ter uma maior aproximação de valores e um sistema mais coerente com aquilo que é a realidade. No nosso caso, definiram-se variáveis linguísticas para cada atributo (pregnancies, glucose, insulin, etc.).

```
pedigree low = [];
                         glucose low = [];
                                                  Outcome = [];
pedigree med = [];
                        glucose med = [];
pedigree high = [];
                         glucose high = [];
pregnan low = [];
                         thick low = [];
pregnan_med = [];
pregnan high = [];
                         thick high = [];
press_low = [];
                        Age_young = [];
                         Age_youngadult = [];
press_med = [];
press high = [];
                         Age adult = [];
                         Age\_elder = [];
press crit = [];
                         BMI low = [];
insulin low = [];
                        BMI med = [];
insulin med = [];
insulin_high = [];
                         BMI_high = [];
```

Após esta definição, os valores da biblioteca são passados por funções gaussianas com os seguintes parâmetros para cada atributo (recorreu-se ao *Fuzzy Toolbox* para ter uma melhor noção do comportamento dos valores em cada função de pertença):

```
if case library{i,'SkinThickness'} <= 0</pre>
            fuzified thick = [0 0];
        else
            fuzified thick = [gaussmf(case library{i, 'SkinThickness'), [10
17.5]) ...
                               gaussmf(case library{i, 'SkinThickness'},[10
50])];
        end
if case library{i,'DiabetesPedigreeFunction'} <= 0</pre>
            fuzified pedigree = [0 0 0];
else
            fuzified pedigree =
[gaussmf(case_library{i,'DiabetesPedigreeFunction'},[0.2 0.275]) ...
gaussmf(case library{i,'DiabetesPedigreeFunction'},[0.2 1]) ...
gaussmf(case library{i, 'DiabetesPedigreeFunction'}, [0.2 2])];
        end
fuzified preg = [gaussmf(case library{i,'Pregnancies'},[1.5 2.5]) ...
                 gaussmf(case library{i, 'Pregnancies'}, [1.5 7.5]) ...
                 gaussmf(case library{i, 'Pregnancies'}, [1.5 15])];
```

Após passar pela função de pertença, cada atributo fica dividido em N parâmetros, sendo N o número de variáveis linguísticas definidas por atributo.

Face à fuzificação dos valores existentes, agora é necessário fazer o mesmo para o novo caso a ser testado. Aplicam-se as mesmas variáveis linguísticas para cada atributo do novo caso, juntamente com a passagem desses valores pelas mesmas funções gaussianas que a biblioteca de testes teve efeito.

Dado estes valore, o sistema CBR funciona da mesma forma, porém com mais atributos que anteriormente. Assim sendo, existe mais termos de comparação entre a biblioteca de casos e o novo caso, calculando as distâncias/semelhanças entre cada atributo.

TESTES E CONCLUSÕES

Preg	Gluc	BPressure	SThickness	Insuli	in	BMI		DPI	F	Age	Ou	tcome	CBR + Fuzzy	CBR
0	78	88	29		40		36.9)	0.43	4 21	Ĺ	0	-0.05	0.014
0	113	76	0		0	;	33.3		0.27	8 23	3	1	0.186	0.124
0	117	66	31		188	;	30.8	;	0.49	3 22	2	0	0.252	0.209
0	180	78	63		14		59.4		2.42	25	5	1	0.81	1.156
0	189	104	25		0	;	34.3	1	0.43	5 41	L	1	0.882	0.615
1	97	64	19		82		18.2		0.29	9 21	L	0	0.044	-0.09
1	112	80	45		132	:	34.8	3	0.21	7 24	1	0	0.162	0.185
1	122	90	51		220	,	49.7		0.32	5 31	L	1	0.390	0.429
1	139	62	41		480	4	40.7	,	0.53	6 21	L	0	0.477	0.428
1	155	84	44		545	;	38.7	'	0.61	9 34	1	0	0.75	0.574
2	56	56	28		45	:	24.2		0.33	2 22	2	0	-0.225	-0.211
2	102	86	36		120	4	45.5	,	0.12	7 23	3	1	0.05	0.244
2	125	60	20		140	;	33.8	;	0.08	8 31	L	0	0.39	0.313
2	142	82	18		64	:	24.7	'	0.76	1 21	L	0	0.220	0.299
2	155	52	27		540	;	38.7	'	0.24	25	5	1	0.276	0.499
2	175	88	0		0	:	22.9)	0.32	6 22	2	0	0.534	0.410
3	78	50	32		88	:	31		0.24	8 26	5	1	-0.5	0.040
3	80	82	31		70	:	34.2		1.29	2 27	7	1	0.092	0.216
3	107	62	13		48	:	22.9)	0.67	8 23	3	1	0.003	0.144
3	163	70	18		105	;	31.6	,	0.26	8 28	3	1	0.558	0.508
3	171	72	33		135	:	33.3	3 0.199		9 24	1	1	0.566	0.522
4	76	62	0		0	:	34		0.39	1 25	5	0	-0.004	0.090
4	103	60	33		192		24		0.96	6 33	3	0	0.308	0.219
4	183	0	0		0		28.4		0.21	2 36	5	1	0.983	0.787
4	197	70	39		744		36.7	,	2.32	9 31	L	0	0.743	1.136
5	189	60	23		846	;	30.1		0.39	8 59)	1	0.647	1.135
7	81	78	40		48		46.7	,	0.26	1 42	2	0	0.107	0.338

TOTAL Correct:		CBR: 27	CBR + Fuzzy: 25				<u> </u>			
12	165	76	43	255	47.9	0.259	26	0	0.622	0.806
12	92	62	7	258	27.6	0.926	44	1	0.26	0.374
10	148	84	48	237	37.6	1.001	51	1	0.728	0.772
10	101	76	48	180	32.9	0.171	63	0	0.167	0.366
9	154	78	30	100	30.9	0.164	45	0	0.621	0.558
9	134	74	33	60	25.9	0.46	81	0	-0.813	0.559
9	123	100	35	240	57.3	0.88	22	0	0.466	0.624
8	186	90	35	225	34.5	0.423	37	1	0.991	0.791
7	195	70	33	145	25.1	0.163	55	1	0.87	0.737
7	160	54	32	175	30.5	0.588	39	1	0.835	0.682
7	148	60	27	318	30.9	0.15	29	1	0.509	0.432
7	136	74	26	135	26	0.647	51	0	0.571	0.490
7	83	78	26	71	29.3	0.767	36	0	0.283	0.180

Dado os 40 testes efetuados, chegou-se à conclusão existe uma taxa de correção de por volta de 67.5% para o algoritmo de CBR *standalone*, e 62,5% para o modelo CBR com lógica *Fuzzy*.

Com isto, podemos concluir que por haver uma fuzificação dos valores, existem mais termos de comparação entre os valores da biblioteca de casos e os casos de teste. Isto poderia dar uma ideia de que com mais valores existiria uma maior eficácia em termos de previsão, porém, neste caso isso não se verificou.