Decision Tree for Regression

Vinh Dinh Nguyen PhD in Computer Science 1

Outline

- Motivation for Regression Tree
- Regression Tree
- > Overfitting in Regression Tree
- Case study

Classification Tree: Review

Classification Tree: Review

Love Math	Love Art	Age	Love AI
Yes	Yes	7	No
Yes	No	12	No
No	Yes	18	Yes
No	Yes	35	Yes
Yes	Yes	38	Yes
Yes	No	50	No
No	No	83	No
	γ		γ
	Features	I	abels

Classification Tree: Review

Metric Evaluation Review

When should I use Gini Impurity as opposed to Information Gain (Entropy)

Entropy – Information Gain

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{i}}{n_{i}} Entropy(i)\right)$$

GNI IMPURITY

$$Gini=1-\sum_{i=1}^{C} (p_i)^2$$

Gini Vs. Entropy

Laura Elena Raileanu and Kilian Stoffel compared both in "Theoretical comparison between the gini index and information gain criteria". The most important remarks were:

- •It only matters in 2% of the cases whether you use gini impurity or entropy.
- •Entropy might be a little slower to compute (because it makes use of the logarithm).

Study the behavior of the Gini Index and Information Gain, to give an exact mathematical description of the situations when they are choosing the same test to split on and when they are choosing different tests.

Found that they disagree only in 2% of all cases, which explains why most previously published empirical results concluded that it is not possible to decide which one of the two tests performs better

Published: May 2004

Theoretical Comparison between the Gini Index and Information Gain Criteria

Laura Elena Raileanu & Kilian Stoffe

Annals of Mathematics and Artificial Intelligence 41, 77–93 (2004) | Cite this article

2960 Accesses 395 Citations Metrics

Abstract

Knowledge Discovery in Databases (KDD) is an active and important research area with the promise for a high payoff in many business and scientific applications. One of the main tasks in KDD is classification. A particular efficient method for classification is decision tree induction. The selection of the attribute used at each node of the tree to split the data (split criterion) is crucial in order to correctly classify objects. Different split criteria were proposed in the literature (Information Gain, Gini Index, etc.). It is not obvious which of them will produce the best decision tree for a given data set. A large amount of empirical tests were conducted in order to answer this question. No conclusive results were found. In this paper we introduce a formal methodology, which allows us to compare multiple split criteria. This permits us to present fundamental insights into the decision process. Furthermore, we are

Classification Tree Review

	Sepal length	Sepal width	Petal length	Petal width	Class
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
:	:	•	:	:	:
150	5.9	3.0	5.1	1.8	virginica

Iris Flower Classification (Entropy)

Iris Flower Classification (Entropy)

Iris Flower Classification (Gini)

Các bạn có thấy điều gì bất thường ở đây không?

Iris Flower Classification (Gini)

Outline

- > Motivation for Regression Tree
- Regression Tree
- > Overfitting in Regression Tree
- Case study

Motivation

Time to Study AI

Motivation

Motivation

Case study

Supposing that, you want to research and develop a new vaccine to cure the Covid-19

Case study

Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0
35	54	Female	100
5	12	Male	44
	•••	•••	•••

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với liều lượng dùng cố định (unit), tuổi (age) và giới tính (sex) của bệnh nhân.

Tiêm 5 đơn vị vaccine, 12 tuổi, giới tính nam

Can we use Decision Tree for solving this research?

Outline

- > Motivation for Regression Tree
- **Regression Tree**
- > Overfitting in Regression Tree
- Case study

Which node is root?

Unit(đơn vị)	Effect (hiệu quả) (%)
10	98
20	0
35	100
5	44
	•••

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với từng liều lượng (unit) dùng trên bệnh nhân.

Tiêm 5 đơn vị vaccine

Which node is root?

Age	Effect (hiệu quả) (%)
25	98
73	0
54	100
12	44
	•••

Khi có l vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với tuổi (age) của bệnh nhân.

12 tuổi

Which node is root?

Sex	Effect (hiệu quả) (%)
Female	98
Male	0
Female	100
Male	44
	•••

Khi có l vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với giới tính (sex) của bệnh nhân.

Giới tính Male

Unit is a root node

Unit(đơn vị)	Effect (hiệu quả) (%)
10	98
20	0
35	100
5	44
	•••

Khi có l vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với từng liều lượng (unit) dùng trên bệnh nhân.

Tiêm 5 đơn vị vaccine

Tiêm 5 đơn vị vaccine

Overfitting Problem

Unit is a root node

48

Unit is a root node

51

Case study

Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0
35	54	Female	100
5	12	Male	44
•••	•••		•••

Tiêm 5 đơn vị vaccine, 12 tuổi, giới tính nam

Hiệu quả vaccine: 44%

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với liều lượng dùng cố định, tuổi và giới tính của bệnh nhân.

Age node is a root?

Age	Effect (hiệu quả) (%)
25	98
73	0
54	100
12	44

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với tuổi (age) của bệnh nhân.

12 tuổi

Hiệu quả vaccine: 44%

Age is a root node

Case study

Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0
35	54	Female	100
5	12	Male	44
			•••

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với liều lượng dùng cố định, tuổi và giới tính của bệnh nhân.

Giới tính nam

Hiệu quả vaccine: 44%

Sex node is a root?

Sex	Effect (hiệu quả) (%)
Female	98
Male	0
Female	100
Male	44

Khi có 1 vaccine ra đời, chúng ta muốn dự đoán xem nó hiệu quả bao nhiêu % ứng với giới tính (sex) của bệnh nhân.

Giới tính Male

Hiệu quả vaccine: 44%

Sex is a root node

Case study

Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0
35	54	Female	100
5	12	Male	44
7	80	Male	5
•••	•••	•••	•••

Tiếp tục mở rộng cho trường hợp Age < 50 **Unit** hoặc **Sex** là node kế tiếp???

Case study

Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0
35	54	Female	100
5	12	Male	44
7	80	Male	5
•••			

Predict effect: 100%

Sex is Female

Final Tree

Outline

- Motivation for Regression Tree
- Regression Tree
- Overfitting in Regression Tree
- Case study

Overfitting Problem

63

Overfitting Problem

Prunning Solution

Prunning Solution

How to select an optimal Tree

How to select an optimal Tree

Total SSR = 320 + 75 + 5099 = 5498

How to select an optimal Tree

Total SSR = 320 + 18.923 = 19243

Predict effect: 50.5

SSR = 28.897

How do we compare these trees?

The sum of squared residual is relatively small for the original, full sized tree. But each time we remove a leaf, the sum of squared residual gets larger.

Predict effect: 50.5

Decision Tree-Pruning-Cost Complexity Method

Tree complexity penalty

The tree complexity penalty compensates for the difference in the number of leaves.

Tree Score = sum of squared residual + α T

 α (alpha) is a tuning parameter that we finding using cross validation.

T is the total number of terminal nodes/the total number of leaves

For now, let's let $\alpha = 10,000$ and calculate tree score for each tree.

Tree Score

Total SSR = 320 + 75 + 148.8 + 0 = 543.8

 $\alpha = 10000, T = 4$

Tree Score = Total SSR+ α T

Tree Score = $543 + \alpha T = 40.543$

Tree Score

 $\alpha = 10.000$

The sum of squared residual is relatively small for the original, full sized tree. But each time we remove a leaf, the sum of squared residual gets larger.

Predict effect: 50.5

Tree Score = 38.897

SSR = 28.897

Prunning Solution

Tree Score

 $\alpha = 20.000$

The sum of squared residual is relatively small for the original, full sized tree. But each time we remove a leaf, the sum of squared residual gets larger.

Total SSR = 320 + 18.923 = 19243

 $\frac{\text{Tree Score}}{\text{Tree Score}} = 59.243$

Predict effect: 50.5

Tree Score = 48.897

SSR = 28.897

1

Entire dataset				
Unit	Age	Sex	Effect (%)	
10	25	Female	98	
20	73	Male	0	
35	54	Female	100	
5	12	Male	44	
7	80	Male	5	

Tree Score = sum of squared residual + α T

This full size tree has lowest Tree Score when $\alpha = ??$

2

Tree Score = sum of squared residual + α T

Prunning Tree

Total SSR = 320 + 75 + 5099 = 5498

 $\alpha = 10.000$

Increase untill pruning leaves will give us a lower
Tree Score

___i

3

Total SSR = 320 + 75 + 5099 = 5498

 $\alpha = 10.000$

Prunning Tree

Total SSR = 320 + 18.923 = 19243

 $\alpha = 15.000$

Tree Score = sum of squared residual + α T

Increase untill pruning leaves will give us a lower Tree Score

3

Predict effect: 50.5

Total SSR =
$$320 + 18.923 = 19243$$

 $\alpha = 20.000$

$$\alpha = 15.000$$

Tree Score = sum of squared residual + α T

Increase untill pruning leaves will give us a lower Tree Score

How to select a

For each Split				
Entire dataset				
Unit	Age	Sex	Effect (%)	
10	25	Female	98	
20	73	Male	0	
35	54	Female	100	
5	12	Male	44	
7	80	Male	5	

Training dataset			
Unit	Age	Sex	Effect (%)
10	25	Female	98
20	73	Male	0

Build Tree with $\alpha=0$, $\alpha=10000$, $\alpha=15000$, $\alpha=20{,}000$

Testing dataset					
Unit Age Sex Effect (%					
5	12	Male	44		
7	80	Male	5		

Tree Score with $\alpha = 0$, $\alpha = 10000$, $\alpha = 15000$, $\alpha = 20,000$

	$\alpha = 0$	$\alpha = 10,000$	$\alpha = 15000$	$\alpha = 20,000$
Split 1	•••	•••	•••	
Split 2	•••		•••	
Split 3				
Split 4	•••			
Split 5	•••			
Average	50,000	5000	11,000	30,000

In this case, the optimal trees built with $\alpha=10,000$ had, on average, the lowest sum of square residuals. So $\alpha=10,000$ is our final value.

Outline

- > Motivation for Regression Tree
- Regression Tree
- > Overfitting in Regression Tree
- Case study

Case study

Position_Salaries

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

http://www.webgraphviz.com/


```
export_graphviz(regressor, out_file ='tree.dot',
feature_names =["Level"])
```

Case study

Position_Salaries

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

Case study

Position_Salaries

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

regressor = DecisionTreeRegressor(random_state=0,
max_depth=3)

Case study

Position_Salaries

Position	Level	Salary
Business Analyst	1	45000
Junior Consultant	2	50000
Senior Consultant	3	60000
Manager	4	80000
Country Manager	5	110000
Region Manager	6	150000
Partner	7	200000
Senior Partner	8	300000
C-level	9	500000
CEO	10	1000000

regressor = DecisionTreeRegressor(random_state=0,
min_samples_leaf=4)

Case study


```
Visualising the Decision Tree Regression
results
plt.scatter(X, y, color = 'red')
plt.plot(X, regressor.predict(X), color
= 'blue')
plt.title('Check It (Regression Model)')
plt.xlabel('Position level')
plt.ylabel('Salary')
plt.show()
```

Case study

