第三章 一阶微分方程的 解的存在定理

- § 3.2 解的延拓定理
- § 3.3 解对初值的连续性和可微性
- § 3.4 奇解

§3.1解的存在唯一性定理是局部的,它只肯定了解

至少在区间
$$|x-x_0| \le h, h = \min\left(a, \frac{b}{M}\right)$$
上存在。

可能随着ƒ(x,y)定义域的增大,解的存在区域反而缩小。

例如: § 3.1例题1

定义域 $R:-1 \le x \le 1, -1 \le y \le 1$ 时,h=1/2

定义域 $R:-2 \le x \le 2, -2 \le y \le 2$ 时,h=1/4

局部结果

解的延拓一适用于较大的范围

 $\frac{dy}{dx} = f(x,y)$ 右端函数f(x,y)在某一有界区域 G 中有意义。

局部利普希兹条件

如果称f(x,y)在G内满足局部利普希兹条件,即对 区域G内的每一点,存在以其为中心的完全含于G内 的矩形域 R, 在 R 上 f(x, y) 满足利普希兹条件。 (注意:点不同,域R大小和常数L可能不同)

解的延拓

设 $y = \varphi(x), x \in [a,b]$ 是

$$\begin{cases} \frac{dy}{dx} = f(x, y)....(3.1) \\ \varphi(x_0) = y_0...(3.2) \end{cases}$$

的解, 若 $y = \psi(x)$, $x \in [a_1, b_1]$ 也是初值问题的解,

[a,b] \subset $[a_1,b_1]$,且当 $x \in [a,b]$ 时, $\varphi(x) \equiv \psi(x)$,

则称解 $\psi(x)$ 是解 $\varphi(x)$ 在区间 [a,b] 上的延拓。

延拓方法

设方程(3.1)的解 $y = \varphi(x)$ 已定义在区间 $|x - x_0| \le h$ 上,现取 $x_1 = x_0 + h$, $y_1 = \varphi(x_1) = \varphi(x_0 + h)$ 然后以 $Q_1(x_1, y_1)$ 中心,作一小矩形,使它连同其边界都含在区域 G 的内部,再用解的存在唯一性定理, y 存在 $h_1 > 0$ 使得在区间 $|x - x_1| \le h_1$ 上,方程(3.1)有过 (x_1, y_1) 的解 $y = \psi(x)$,且在 $x = x_1$ 处有 $\psi(x_1) = \varphi(x_1)$

由于唯一性,显然解 $y = \psi(x)$ 和解 $y = \varphi(x)$

都在定义的区间 $x_1 - h_1 \le x \le x_1$ 上, $\psi(x) \equiv \varphi(x)$

但是在区间 $x_1 \le x \le x_1 + h_1$ 上,解 $y = \psi(x)$ 仍有定义,我们把它看成是原来定义在区间 $|x - x_0| \le h$ 上的解 $y = \varphi(x)$ 向右方的延拓。

在区间 $x_0 - h \le x \le x_0 + h + h_1$ 上确定方程的一个解

$$y = \begin{cases} \varphi(x), & x_0 - h \le x \le x_0 + h \\ \psi(x), & x_0 + h \le x \le x_0 + h + h_1 \end{cases}$$

即将解延拓到较大的区间 $x_0 - h \le x \le x_0 + h + h_1$

再令 $x_2 = x_1 + h_1$, $y_2 = \psi(x_1 + h_1)$ 如果, $(x_2, y_2) \in G$,我们又可以取 (x_2, y_2) 为中心,作一小矩形,使它连同其边界都含在区域G 内。仿前,又可以将解延拓到更大的区间

$$x_0 - h \le x \le x_0 + h + h_1 = x_0 + h + h_1 + h_2$$

上, 其中 h, 是某一个正常数。

对于 x 值减小的一边可以进行同样讨论, 使解向左方延拓。

就是在原来的积分曲线 $y = \varphi(x)$ 左右端个接上一个积分的曲线段。

上述解的延拓的方法还可继续进行。

那么, $y = \varphi(x)$ 向两边延拓的最终情况如何呢?

 $y = \tilde{\varphi}(x)$ 饱和解

解的延拓定理

如果方程(3.1)右端的函数f(x,y)在有界区域 G中连续,且在 G 内满足局部利普希兹条件,那么 方程(3.1)通过G 内任何一点 (x_0, y_0) 的解 $y = \varphi(x)$ 可以延拓,直到点 $(x,\varphi(x))$ 任意接近区域G的边界。 以向 x 增大的一方的延拓来说,如果 $y = \varphi(x)$ 只能延拓到区间 $x_0 \le x < m$ 上,则当 $x \to m$ 时, $(x, \varphi(x))$ 趋近于区域 G 的边界。

推论

如果 G 是无界区域,在上面解的延拓定理的条件下, 方程(3.1)的通过点 (x_0, y_0) 的解 $y = \varphi(x)$ 可以延拓, 以向 x 增大的一方的延拓来说,有下面的两种情况:

- (1) 解 $y = \varphi(x)$ 可以延拓到区间 $[x_0, +\infty)$
- (2) 解 $y = \varphi(x)$ 只可以延拓到区间 $[x_0, m)$

其中m为有限数,则当 $x \to m$ 时,或者 $y = \varphi(x)$ 无界,或者 $(x,\varphi(x))$ 趋于区域G的边界。

- 例1 讨论方程 $\frac{dy}{dx} = \frac{y^2 1}{2}$ 的通过点(0,0)的解以及通过点 (ln2,-3) 的解的存在区间。
 - 解 方程右端函数在整个 x y 平面上满足 解的存在唯一性定理及解的延拓定理的条件。

方程的通解为
$$y = \frac{1+ce^x}{1-ce^x}$$
 通过点(0,0)的解为 $y = \frac{1-e^x}{1+e^x}$ 其存在区间为 $(-\infty,+\infty)$ 通过点($\ln 2$,-3)的解为 $y = \frac{1+e^x}{1-e^x}$ 其存在区间为 $0 < x < +\infty$

注意: 过点(ln2,-3)的解 $y = \frac{1+e^x}{1-e^x}$ 向右可以延拓到 $+\infty$ 但向左方只能延拓到 0,因为当 $x \to 0_+$ 时, $y \to -\infty$ (无界) 这相当于解的延拓定理推论中(2)的第一种情况。

例2 讨论方程 $\frac{dy}{dx} = 1 + \ln x$ 满足条件y(1) = 0的解的存在区间。

解 方程右端函数右半平面 x > 0 上定义且满足

解的存在唯一性定理及解的延拓定理的条件。

通过点(1,0)的解为 $y = x \ln x$ 其存在区间为(0,+ ∞)

向右可以延拓到 + ∞,但向左方只能延拓到 0,

因为当 $x \to 0_+$ 时, $y = x \ln x \to 0$ (趋于G的边界 y=0)

这相当于解的延拓定理推论中(2)的第二种情况。

内容提要

- > 解对初值的连续性
- > 解对初值的可微性

本节要求:

- 1 了解解对初值及参数的连续依赖性定理;
- 2 了解解对初值及参数的可微性定理。

3.3.1 解对初值的对称性定理

设f(x,y)于域D内连续且关于y满足利普希茨条件,

$$(x_0, y_0) \in G, \quad y = \varphi(x, x_0, y_0)$$

是初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), \\ y(x_0) = y_0 \end{cases}$$

的唯一解,则在此表达式中,(x₀,y₀)与(x,y)可以调换其相对位置,即在解的存在范围内成立着关系式

$$y_0 = \varphi(x_0, x, y)$$

3.3.2 解对初值的连续依赖性定理

假设f(x,y)于域G内连续且关于y满足局部利普希茨条件, $(x_0,y_0) \in G$, $y = \varphi(x,x_0,y_0)$ 是初值问题

$$\begin{cases} \frac{dy}{dx} = f(x, y), & y(x_0) = y_0 \end{cases}$$

的解,它于区间 $a \le x \le b$ 有定义 $(a \le x_0 \le b)$,那么,对任意给定的 $\varepsilon > 0$,必存在正数 $\delta = \delta(\varepsilon, a, b)$ 使得当

$$(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 \le \delta^2$$

时,方程满足条件 $y(\bar{x}_0) = \bar{y}_0$ 的解 $y = \varphi(x, \bar{x}_0, \bar{y}_0)$ 在 $a \le x \le b$ 也有定义,并且 $|\varphi(x, \bar{x}_0, \bar{y}_0) - \varphi(x, x_0, y_0)| < \varepsilon$, $a \le x \le b$

3.3.3 解对初值的连续性定理

假设f(x,y)于域G内连续且关于y满足局部利普希茨条件,则方程

$$\frac{dy}{dx} = f(x, y),$$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在 它的存在范围内是连续的。

含参数的一阶方程表示

$$\frac{dy}{dx} = f(x, y, \lambda) \cdots (E_{\lambda})$$

$$G_{\lambda} : (x, y) \in G, \ \alpha < \lambda < \beta$$

一致利普希兹条件

设函数 $f(x,y,\lambda)$ 在 G_{λ} 内连续,且在 G_{λ} 内一致地关于 y满足局部利普希兹 (Lipschitz)条件,即对 G_{λ} 内的每一点 (x,y,λ) 都存在以 (x,y,λ) 为中心的球 $C \subset G_{\lambda}$,使得对任何 (x,y_1,λ) , (x,y_2,λ) 成立不等式

$$|f(x, y_1, \lambda) - f(x, y_2, \lambda)| \le L|y_1 - y_2|$$

其中L是与λ无关的正数。

3.3.4 解对初值和参数的连续依赖性定理

假设 $f(x,y,\lambda)$ 于域G,内连续,且在G,内关于y一 致地满足局部利普希茨条件, $(x_0, y_0, \lambda_0) \in G_{\lambda}, y = \varphi(x, x_0, y_0, \lambda_0)$ 是方程 E_{λ} 通过点 (x_0, y_0) 的解, 在区间 $a \le x \le b$ 有定义 其中 $a \le x_0 \le b$, 那么,对任意给定的 $\varepsilon > 0$,必存在正数 $\delta = \delta(\varepsilon, a, b)$ 使得当 $(\overline{x}_0 - x_0)^2 + (\overline{y}_0 - y_0)^2 + (\lambda - \lambda_0)^2 \le \delta^2$ 时, 方程满足条件 $y(\overline{x_0}) = \overline{y_0}$ 的解 $y = \varphi(x, \overline{x_0}, \overline{y_0}, \lambda)$ 在区间 $a \le x \le b$ 也有定义,并且

 $\left| \varphi(x, \overline{x}_0, \overline{y}_0, \lambda) - \varphi(x, x_0, y_0, \lambda_0) \right| < \varepsilon, \quad a \le x \le b$

3.3.5 解对初值和参数的连续性定理

假设 $f(x,y,\lambda)$ 于域 G_{λ} 内连续,且在 G_{λ} 内关于y一致地满足局部利普希茨条件,则方程

$$\frac{dy}{dx} = f(x, y, \lambda),$$

的解 $y = \varphi(x, x_0, y_0, \lambda)$ 作为 x, x_0, y_0, λ 的函数在它的存在范围内是连续的。

3.3.6 解对初值的可微性定理

若函数f(x,y) 以及 $\frac{\partial f}{\partial y}$ 都在区域G 内连续,则方程 $\frac{dy}{dx} = f(x,y),$

的解 $y = \varphi(x, x_0, y_0)$ 作为 x, x_0, y_0 的函数在它的存在范围内是连续可微的。

§ 3.4 奇解

内容提要

- > 奇解
- > 数值解

本节要求:

- 1 了解包络、奇解的基本概念;
- 2 了解克莱罗微分方程

§ 3.4 奇解

存在一条特殊的积分曲线,它并不属于微分方程的积分曲线族,但在这条特殊曲线上的每一点处,都有积分曲线族中的一条曲线和它在此点相切。

在几何学上,这条特殊积分曲线称为上述积分曲线族的包络 在微分方程里,这条特殊积分曲线所对应的解称为方程的奇解

§ 2.4中例1

$$y = \frac{x^2}{4}$$
 \Rightarrow $y = \frac{x^2}{2} + cx + c^2$

中的每一条积分曲线均相切(如图)

§ 3.4 奇解

形如

$$y = xp + f(p)$$

的方程, 称为**克莱罗**(Clairaut) 微分方程 这里 $p = \frac{dy}{dx}$, f(p)是 p 的连续可微函数。

例

$$y = xp + \frac{1}{p}$$

$$y = cx + \frac{1}{c}$$