

Why data systems?

What about data structures from algorithms class?

Spreadsheets? Text files?

Why so many design choices?

SQL? Big data? (MapReduce, Hadoop, Spark)

Learning systems? (TensorFlow, deep learning)

What's exciting for future?

Shiva@stanford.edu -- "Shiva" Shivakumar

Interests

Peta scale data systems (from cs145 -> Infolab -> now)

Building new data systems, products (and teams)

- Scaled to billions of consumers, billions of ad \$s, millions of web publishers, trillions of data rows, million QPS systems
- E.g., AdSense, Search, Dremel/BigQuery, Gmail/Google Apps, Sitemaps, Warp, Google Maps, etc.
- VP @Google, Founder of 2 startups (Urban Engines,
 Gigabeat), angel investor/advisor in more data/Al startups

THE COMING FLOOD OF DATA IN AUTONOMOUS VEHICLES

RADAR ~10-100 KB
PER SECOND

SONAR
~10-100 KB
PER SECOND

GPS ~50KB PER SECOND

CAMERAS ~20-40 MB PER SECOND 4.000 GB
PER DAY... EACH DAY

~10-70 MB PER SECOND

Example Unpack Cars DB

Unpack ATM DB:

Transaction

VS

Read Balance
Give money
Update Balance

Read Balance Update Balance Give money

Connect one/many DBs for custom system

Goals of

Data systems

Store current data (e.g., lot of reads)

Optimize historical data (e.g., logs)

Run batch Workloads (e.g. training)

Example Game App

Real-Time
User Events

Real-Time
DBMS
DB

DB v0

Q1: 1000 users/sec?

Q2: Offline?

Q3: Support v1, v1' versions?

Q7: How to model/evolve game data?

Q8: How to scale to millions of users?

Q9: When machines die, restore game state gracefully?

Q4: Which user cohorts? Q5: Next features to build?

Experiments to run?

Q6: Predict ads demand?

App designer

Systems designer

Product/Biz designer

Example Game App

Data system "v1" on Cloud

1 Log user actions
3 Run queries in a peta scale analytics system
2 Store in DB, after
Extract-Transform-Load
4 Visualize query results

How?

Example Game App

Data system

"v2" Cloud + Local

Course Summary

We'll learn...

 How to query a database? With concurrent users and crashes / aborts? 1. Intro

2-3. SQL

4. ER Diagrams

5-6. DB Design

7-8. TXNs

11-12. IO Cost

14-15. Joins

16. Rel. Algebra

Course Summary

1. Intro

2-3. SQL

We'll learn...

4. ER Diagrams

How to query a database? With concurrent users and crashes / aborts?

5-6. DB Design

How to design a database?

7-8. TXNs

11-12. IO Cost

14-15. Joins

16. Rel. Algebra

Course Summary

We'll learn...

- How to query a database? With concurrent users and crashes / aborts?
- How to design a database?
- How to optimize performance?

1. Intro

2-3. SQL

4. ER Diagrams

5-6. DB Design

7-8. TXNs

11-12. IO Cost

14-15. Joins

16. Rel. Algebra

Logistics

cs145.stanford.edu

Assessment Projects: 35% (5 + 10 + 20), Midterm Exam: 25%, Final Exam: 40%. We will be offering extra credit for (a) insightful in-class and OH participation (b) high quality answers to fellow student questions in piazza.

Exam dates

- Midderm: 1 hr in class midterm on Nov 1st(Thurs)
- Final: Friday, Dec 14th from 3:30-6:30 p.m. No alternate times, plan ahead.
- Accommodations Students who may need an academic accommodation based on the impact of a disability must initiate the request with the Office of Accessible Education (OAE) and notify us at least 7 days (ONE week) prior to the Midterm and/or Final Exam.

Homeworks/Suggested reading

 Posted on cs145 webpage. We'll use Gradiance. It's an auto-grader to help reinforce concepts AS-You-GO. Strongly encouraged for prepping materials for exams.