CS 189 Introduction to Machine Learning Spring 2021 Jonathan Shewchuk

Exam Prep 2

This exam-prep discussion section covers anisotropic normal distributions, Quadratic and Linear Discriminant Analyses, and some of their extensions.

1 Multiple Choice

(m) [3 pts] In LDA/QDA, what are the effects of modifying the $0 < \lambda < 1$?	sample covariance matrix as $\tilde{\Sigma} = (1 - \lambda)\Sigma + \lambda I$, where
\bigcirc $\tilde{\Sigma}$ is positive definite	\bigcirc $\tilde{\Sigma}$ is invertible
\bigcirc Increases the eigenvalues of Σ by λ	\bigcirc The isocontours of the quadratic form of $\tilde{\Sigma}$ are closer to spherical
(h) [3 pts] We are using linear discriminant analysis to classify p of points in \mathbb{R}^d that our trained model classifies as belonging to	
\bigcirc The decision boundary of S is always a hyperplane	\bigcirc S can be the whole space \mathbb{R}^d
\bigcirc The decision boundary of S is always a subset of a union of hyperplanes	\bigcirc S is always connected (that is, every pair of points in S is connected by a path in S)
 (o) [3 pts] Suppose you have a multivariate normal distribution second multivariate Gaussian distribution whose covariance m statements are true about the ellipsoidal isocontours of the second continuous of the second continuous of the second continuous distribution whose covariance m statements are true about the ellipsoidal isocontours of the second continuous distribution whose covariance m statements are true about the ellipsoids would be rotated by θ The principal axes (radii) of the ellipsoids will be 	entrix is $\kappa \Sigma$, where $\kappa = \cos \theta > 0$. Which of the following
scaled by κ (s) [3 pts] Suppose you have a sample in which each point has a conditional distributions are $(X_i y_i=C)\sim N(\mu_C,\sigma_C^2)$ and $(X_i y_i=C)\sim N(\mu_C,\sigma_C^2)$	
\bigcirc If $\pi_C = \pi_D$ and $\sigma_C = \sigma_D$, then the Bayes decision rule assigns a test point z to the class whose mean is closest to z .	\bigcirc If $\sigma_C = \sigma_D$, then the Bayes decision boundary is always linear.
\bigcirc If $\pi_C = \pi_D$, then the Bayes decision rule is $r^*(z) = \operatorname{argmin}_{A \in \{C,D\}} \left(z - \mu_A ^2 / (2\sigma_A^2) + d \ln \sigma_A \right)$	\bigcirc If $\sigma_C = \sigma_D$, then QDA will always produce a linear decision boundary when you fit it to your sample.

2 Quadratics and Gaussian Isocontours (Spring 2016)

- (a) [4 pts] Write the 2×2 matrix Σ whose unit eigenvectors are $\begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$ with eigenvalue 1 and $\begin{bmatrix} -2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$ with eigenvalue 4. Write out **both** the eigendecomposition of Σ and the final 2×2 matrix Σ .
- (b) [3 pts] Write the symmetric square root $\Sigma^{1/2}$ of Σ . (The eigendecomposition is optional, but it might earn you partial credit if you get $\Sigma^{1/2}$ wrong.)
- (c) [3 pts] Consider the bivariate Gaussian distribution $X \sim \mathcal{N}(\mu, \Sigma)$. Let $P(X = \mathbf{x})$ be its probability distribution function (PDF). Write the formula for the isocontour $P(\mathbf{x}) = e^{-\sqrt{5}/2}/(4\pi)$, substitute in the value of the determinant $|\Sigma|$ from part (a) (but leave μ and Σ^{-1} as variables), and simplify the formula as much as you can.
- (d) [5 pts] Draw the isocontour $P(\mathbf{x}) = e^{-\sqrt{5}/2}/(4\pi)$ where $\mu = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$ and Σ is given in part (a).

3 Discriminant Analysis (Spring 2016)

Let's derive the decision boundary when one class is Gaussian and the other class is exponential. Our feature space is one-dimensional (d = 1), so the decision boundary is a small set of points.

We have two classes, named N for normal and E for exponential. For the former class (Y = N), the prior probability is $\pi_N = P(Y = N) = \frac{\sqrt{2\pi}}{1+\sqrt{2\pi}}$ and the class conditional P(X|Y = N) has the normal distribution $\mathcal{N}(0, \sigma^2)$. For the latter, the prior probability is $\pi_E = P(Y = E) = \frac{1}{1+\sqrt{2\pi}}$ and the class conditional has the exponential distribution

$$P(X = x | Y = E) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0, \\ 0 & \text{if } x < 0. \end{cases}$$

Write an equation in x for the decision boundary. (Only the positive solutions of your equation will be relevant; ignore all x < 0.) Use the 0-1 loss function. Simplify the equation until it is quadratic in x. (You don't need to solve the quadratic equation. It should contain the constants σ and λ . Ignore the fact that 0 might or might not also be a point in the decision boundary.) **Show your work**, starting from the posterior probabilities.