Metody numeryczne – laboratorium nr 7

Całkowanie

Zadanie 1

- 1) Oblicz pole powierzchni kształtu z zajęć z interpolacji (ryba) następującymi metodami:
 - metodą prostokątów,
 - metodą Monte Carlo (wersja z losowaniem dwóch liczb).

Skrypt, poza wynikiem liczbowym, ma generować wykres, na którym będzie zaznaczony kształt oraz elementy działania metody. Odpowiednio: prostokąty dla metody prostokątów oraz strzały dla metody MC. W metodzie MC strzały celne oraz 'pudła' oznacz różnymi znacznikami.

Tu wklej wykresy (w sumie 4) działania skryptu dla następujących parametrów:

- Metoda prostokątów: krok = 1, krok = 10
- Metoda Monte Carlo: liczba strzałów = 100, liczba strzałów = 500

Zadanie 2

Oblicz całkę dla funkcji sin(x) w przedziale $<-\pi,\pi>$. Zastosuj metodę trapezów oraz metodę Monte Carlo. Wykonaj odpowiednie badania i odpowiedz na pytania. Odpowiedzi umieść na końcu skryptu.

- Czy wielkość kroku całkowania wpływa na wynik? Określ tę zależność.
- Czy liczba strzałów wypływa na wynik w metodzie Monte Carlo? Określ tę zależność.

Uwaga: badania przeprowadź przynajmniej dla czterech różnych wartości korku całkowania i czterech różnych liczb strzałów.

Przyda się:

definiowanie funkcji: f=@(x) sin(x)

całkowanie w Matlabie (do ewentualnego sprawdzenia wyników): quad (f,a,b)

rysowanie linii: line([x_start, x_koniec],[y_start, y_koniec])

zaokrąglanie w dół: floor

losowanie: x = rand - uwaga! Tylko liczby z zakresu <0,1>

zaznaczanie punktu na wykresie – tu czerwona gwiazdka: plot(x,y,'r*')

CAŁKOWANIE

- Chcemy obliczyć całkę oznaczoną: $\int_a^b f(x)dx$
- Założenia:

Dzielimy przedział całkowania na n równych części o długości $h=\frac{b-a}{n}$

Wyznaczamy punkty $x_1, x_2, \dots x_{n-1}$

$$x_0 = a, x_n = b$$

Obliczamy wartość funkcji podcałkowej w wyznaczonych punktach i na krańcach przedziału całkowania

$$y_0 = f(a), y_1 = f(x_1), y_2 = f(x_2), \dots, y_{n-1} = f(x_{n-1}), y_n = f(b),$$

CAŁKOWANIE – METODA PROSTOKĄTÓW

$$I = h \cdot \sum_{i=0}^{n-1} y_i$$

 $I = h \cdot \sum_{i=1}^{n} y_i$

CAŁKOWANIE

ZADANIE: Oblicz całkę $\int_0^4 (x^2+2x)dx$ w przedziale (0,4) z krokiem h=1 metodą prostokątów (wszystkie warianty).

x	0	I	2	3	4
f(x)	0	3	8	15	24

×	0.5	1.5	2.5	3.5
f(x)	1.25	5.25	11.25	19.25

$$I = 26$$

I = 50

CAŁKOWANIE – METODA TRAPEZÓW

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right)$$

CAŁKOWANIE

ZADANIE: Oblicz całkę $\int_0^4 (x^2+2x) dx$ w przedziale (0,4) z krokiem h=1 metodą trapezów.

×	0	I	2	3	4
f(x)	0	3	8	15	24

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right)$$

$$I = 1 \cdot \left(\frac{0 + 24}{2} + 3 + 8 + 15\right) = 38$$

CAŁKOWANIE – METODA PARABOL (SIMPSONA)

$$I = \frac{h}{3} \cdot \left(y_0 + y_n + 4 \cdot \sum_{i=1}^{n-1} y_{2i-1} + 2 \cdot \sum_{i=1}^{n-2} y_{2i} \right)$$

CAŁKOWANIE – METODA MONTE CARLO

 $I = \frac{strzały \; celne}{liczba \; strzałów} \cdot pole \; obszaru$

wynik dokładny = 2.9744