PX2FMU - Flight Management Unit

QUICK START - HARDWARE VERSION 0.3 DEV

Description

PX2FMU is an onboard management unit for micro air vehicles. It combines autopilot and inertial measurement unit and allows to control an aircraft using a single-board solution. The 30-pin expansion bus allows to combine it with other modules to provide additional I/O.

http://github.com/qgc/hardware

Features

- 120 Mhz Cortex-M3 CPU (128 KB RAM, 1 MB Flash)
- 50 mW power consumption
- 3D Gyro, ACC and Magnetometer (16 bit)
- Barometric pressure (16 bit)CAN/SPI/I2C/4x UART interfaces
- PX2 Expansion bus (PX2IO: Servo and solid state relay outputs)
- USB Serial Port (Virtual COM Port / VCP) USB Bootloader
 50x35x6 mm (1.38x1.97x0.24"), 8g, 30x35 mm mounting holes
- 4.3-6 V wide supply input range (incl. USB power)
- Selectable 3.3 V or 5 V IO

Connectors, Jumpers and Dimensions

Pinout and absolute maximum Ratings

- Input: 4.3-6 V, 10 mA onboard use, max. 800 mA peripheral
- Output: 5 V/3.3 V, fuse-limited 500 mA EXT, 5 V/3.3 V, fuselimited 200 mA GPS
- VDD_5V: 5 V input, VCC 3V3: 3.3 V output

VDD_GPS (3.3 or 5V) GPS USART6_RX USART6_TX GND NOT CONNECTED (NC)

VDD 5V GND CAN2_RX USART1_RX_EXT I2C3_SDA SPI3_MOSI SPI3_NSS UART5_RX I2C2_SDA USART2_RTS USART2_RX GPIO_EXT1 PC8 ADC123_IN11 ADC123_IN13

VDD 5V GND CAN2_TX USART1_TX_EXT I2C3_SCL SPI3_SCK SPI3_MISO UART5_TX I2C2_SCL USART2_CTS USART2_TX PPM_INPUT GPIO_EXT2 GND

ADC123_IN12

VDD 5V VDD_5V VDD_3V3 I2C1_SCL I2C1_SDA USART2_TX USART2_CTS USART2_RTS UART2_RX USART1_TX_EXT USART1_TX_EXT PPM_INPUT (3-5V) GPIO EXT2 GPIO EXT1 BATTERY_MONITOR (3-18V)

EXTERNAL

Mates housing: "JST SH SHR-06V-S-B", Contacts: JST SH "SSH-003T-P0.2", AWG 28

Mates 2 mm header: 3M "951230-2520-AR-PR"

Mates housing: Molex PicoBlade "51021-1500", contacts: "50058-8000", AWG 28

Additional connectors (bottom side)

The footprints on the bottom side of the connector can be used by advanced users to interface additional boards or sensors.

Software Tools / Getting Started

Please follow the steps below to get started with PX2FMU.

- Download the QGroundControl GUI (Windows / Linux / Mac) from http://www.qgroundcontrol.org/downloads
- Install the application
- Connect PX2FMU with an USB-A to Micro USB-B cable to your computer (cellphone usb data cable type)
- Your operating system might display a message indicating that new hardware was found
- Start QGroundControl from your application menu
- Go to Communication > Add new Link
- Leave the default settings, except for these values:
- Baud rate: 115200 baud, data bits: 8 bits, stop bits: 1 bit, no parity, no hardware f ow control
- QGroundControl will display the heartbeat of MAV001. The displayed attitude will change if you move PX2FMU.

Upgrading Firmware / Developing Custom Code

After the steps in the getting started guide have been completed, follow these instructions to upgrade your f rmware:

- Start QGroundControl, select from the "Widget" menu the item "PX2 Firmware"
- In the PX2Firmware widget, click on "Check for Updates"
- Select the f rmware revision to f ash usually the newest one at the top of the list, but the tool also allows to downgrade to older versions.

To develop custom code, please follow the developer instructions at: http://www.example.com/developers_guide

Contact, Copyleft and further Information

PX2FMU is an open hardware design, following the XXX open hardware license. You can do XXX with it. PX2FMU was created by XXX. The XXX project contributed XXX.

THIS IS THEN A DISCLAIMER IN CAPS LOCK THIS IS THEN A DISCLAIMER IN CAPS LOCK

Further information is available here:

- PX2FMU website
- Appropriate mailing list 1
- Appropriate community 1