LOGISTIC REGRESSION

Classification

Two-class (binary) classification problem

 $y: \{0,1\}$

0: negative class

1: positive class

Example: Yes/No; Benign/Malignant; Click/No click

Multi-class classification problem

Example: Grades (A, B, C); color (red, blue, green)

Two Class Classification

Classification: y = 0 or y = 1

Decision rules: $h_{\theta}(x) \ge 0.5$; y = 1 $h_{\theta}(x) < 0.5$; y = 0

If we use linear regression on classification problem, we may observed

- Shift the decision rule line
- $h_{\theta}(x)$ can be > 1 or < 0

Logistic Regression

More reasonable function use for two-class classification problem.

Sigmoid Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Hypothesis interpretation

Estimated probability that y=1 on x input

$$P(y=1|x;\theta_j)$$

Because probabilities should sum to 1

$$P(y=0|x; \theta_i) = 1 - P(y=1|x; \theta_i)$$

Sigmoid Function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$y = 1 \text{ if } h_{\theta}(x) \ge 0.5$$

y= 0 if
$$h_{\theta}(x) < 0.5$$

0 asymptote for $x \longrightarrow -\infty$

1 asymptote for $x \longrightarrow \infty$

Cost Function for Logistic Regression

Average cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost Function for Logistic Regression

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If we predict $h_{\theta}(x) = 1$ and y = 1

Cost function — zero

If we predict $h_{\theta}(x) = 0$ and y = 1

Cost function \longrightarrow - ∞

Cost Function for Logistic Regression

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

If we predict $h_{\theta}(x) = 0$ and y = 0

Cost function — zero

If we predict $h_{\theta}(x) = 1$ and y = 0

Cost function $\longrightarrow \infty$

Cost Function for logistic regression

Average cost function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Simplified cost function, given we only have either y=0 or y=1

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Cost Function: Recap

Hypothesis:
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Cost Function:
$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Parameters: θ_i

Goal:
$$\underset{\theta}{argmin} J(\theta)$$

Gradient Descent Algorithm

- We want to learn the values of θ that minimize $J(\theta)$
- Use a search algorithm that starts with an initial guess for θ and then changes θ to make $J(\theta)$ smaller
- Gradient descent starts with some initial θ and then performs an update for each value θ_i

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$

Minimizing The Cost Function $J(\theta)$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta).$$
 After derivative
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 Repeat until converged
$$\theta := \begin{bmatrix} tmp_0 \\ \vdots \\ tmp \end{bmatrix}$$

Decision Boundary: Linear

If
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

And
$$\theta = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$

Prediction y = 1 whenever

$$\begin{array}{ccc} \theta^T x & \geq & 0 \\ \Leftrightarrow & -3 + x_1 + x_2 & \geq & 0 \\ \Leftrightarrow & x_1 + x_2 & \geq & 3 \end{array}$$

Decision Boundary: Non-Linear

If
$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

And
$$\theta = \begin{bmatrix} -2 & 0 & 0 & 1 & 1 \end{bmatrix}^T$$

Prediction y = 1 whenever

$$x_1^2 + x_2^2 \ge 2$$

Example: Handwritten Digit Recognition

Questions?

