Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

Definition 7: Simple difference in mean outcomes (SDO)

A simple difference in mean outcomes (SDO) can be approximated by the sample averages:

$$SDO = E[Y^{1}|D=1] - E[Y^{0}|D=0]$$

= $E_{N}[Y|D=1] - E_{N}[Y|D=0]$

in large samples. I'll usually use expectation operators but we use samples for estimation.

SDO vs. ATE

Notice the subtle difference between the SDO and ATE notation:

$$E[Y|D=1] - E[Y|D=0] \le E[Y^1] - E[Y^0]$$

- The SDO is an estimate, whereas ATE is a parameter
- SDO is a crank that turns data into numbers
- ATE is a parameter that is unknowable because of the fundamental problem of causal inference
- SDO might line up with the ATE but also might not
- Under what situations is SDO a biased estimate of the ATE?

Potentially biased comparisons

Decomposition of the SDO

The SDO can be decomposed into the sum of three parts:

$$E[Y^{1}|D=1] - E[Y^{0}|D=0] = ATE$$

$$+E[Y^{0}|D=1] - E[Y^{0}|D=0] + (1-\pi)(ATT - ATU)$$

Seeing is believing so let's work through this identity!

Decomposition of SDO

Use LIE to decompose ATE into the sum of four conditional average expectations

$$\begin{array}{lll} \text{ATE} & = & E[Y^1] - E[Y^0] \\ & = & \{\pi E[Y^1|D=1] + (1-\pi)E[Y^1|D=0]\} \\ & & - \{\pi E[Y^0|D=1] + (1-\pi)E[Y^0|D=0]\} \end{array}$$

Substitute letters for expectations

$$\begin{split} E[Y^1|D=1] &= a \\ E[Y^1|D=0] &= b \\ E[Y^0|D=1] &= c \\ E[Y^0|D=0] &= d \\ \text{ATE} &= e \end{split}$$

Rewrite ATE

$$e = \{\pi a + (1-\pi)b\} - \{\pi c + (1-\pi)d\}$$

Move SDO terms to LHS

$$\begin{array}{rcl} e &=& \{\pi a + (1-\pi)b\} - \{\pi c + (1-\pi)d\} \\ e &=& \pi a + b - \pi b - \pi c - d + \pi d \\ e &=& \pi a + b - \pi b - \pi c - d + \pi d + (\mathbf{a} - \mathbf{a}) + (\mathbf{c} - \mathbf{c}) + (\mathbf{d} - \mathbf{d}) \\ 0 &=& e - \pi a - b + \pi b + \pi c + d - \pi d - \mathbf{a} + \mathbf{a} - \mathbf{c} + \mathbf{c} - \mathbf{d} + \mathbf{d} \\ \mathbf{a} - \mathbf{d} &=& e - \pi a - b + \pi b + \pi c + d - \pi d + \mathbf{a} - \mathbf{c} + \mathbf{c} - \mathbf{d} \\ \mathbf{a} - \mathbf{d} &=& e + (\mathbf{c} - \mathbf{d}) + \mathbf{a} - \pi a - b + \pi b - \mathbf{c} + \pi c + d - \pi d \\ \mathbf{a} - \mathbf{d} &=& e + (\mathbf{c} - \mathbf{d}) + (1 - \pi)a - (1 - \pi)b + (1 - \pi)d - (1 - \pi)c \\ \mathbf{a} - \mathbf{d} &=& e + (\mathbf{c} - \mathbf{d}) + (1 - \pi)(a - c) - (1 - \pi)(b - d) \end{array}$$

Substitute conditional means

$$\begin{split} E[Y^1|D=1] - E[Y^0|D=0] &= \text{ATE} \\ &+ (E[Y^0|D=1] - E[Y^0|D=0]) \\ &+ (1-\pi)(\{E[Y^1|D=1] - E[Y^0|D=1]\} \\ &- (1-\pi)\{E[Y^1|D=0] - E[Y^0|D=0]\}) \\ E[Y^1|D=1] - E[Y^0|D=0] &= ATE \\ &+ (E[Y^0|D=1] - E[Y^0|D=0]) \\ &+ (1-\pi)(ATT - ATU) \end{split}$$

Decomposition of difference in means

$$\underbrace{E_N[y_i|d_i=1]-E_N[y_i|d_i=0]}_{\text{SDO}} = \underbrace{E[Y^1]-E[Y^0]}_{\text{Average Treatment Effect}} \\ + \underbrace{E[Y^0|D=1]-E[Y^0|D=0]}_{\text{Selection bias}} \\ + \underbrace{(1-\pi)(ATT-ATU)}_{\text{Heterogenous treatment effect bias}}$$

where $E_N[Y|D=1] \to E[Y^1|D=1]$, $E_N[Y|D=0] \to E[Y^0|D=0]$ and $(1-\pi)$ is the share of the population in the control group.