Fault tolerant spanners

July 1, 2021

1 Introduction

Let \mathcal{F} be a family of regions in the plane, which we call the fault regions. For a fault region $F \in \mathcal{F}$ and a geometric graph G on a point set P, we define $G \ominus F$ to be the part of G that remains after the points from P inside F and all edges that intersect F have been removed from the graph. For simplicity, we assume that a region fault F does not contain its boundary, i.e., only vertices and edges intersecting the interior of F will be affected.

Let \mathcal{L} be a family of regions in the plane, which we call the local regions. For a fault region $L \in \mathcal{L}$ and a geometric graph G on a point set P, we define $G \mid_F$ to be the part of G contained in the interior of F, meaning only the vertices and edges that are fully contained in the interior of F.

The problem: Given a set P of points in \mathbb{R}^2 , and a family \mathcal{F} of regions, compute a graph G that is a t-spanner of P under any fault $F \in \mathcal{F}$.

2 Complement of disk faults / disk local spanners

Let \mathcal{L} be the set of disks, we can use the algorithm of Abam et al. [?], and replace the set of edges between every pair (A_i, B_i) in the SSPD with the edges of the Delaunay triangulation $\mathcal{DT}(P)$ with one end in A_i and the other in B_i . We only need to prove that for any disk $d \in \mathcal{L}$, and for any set P' of points we have that $\mathcal{DT}(P')|_d$ is connected, as that will imply that for every pair (A_i, B_i) of the SSPD, if $A_i \cap d$ and $B_i \cap d$ are not empty, there exists an edge between them in the constructed graph G.

Claim 1. For a set of points $P \subseteq \mathbb{R}^2$ and for any disk d, $\mathcal{DT}(P)|_d$ is connected.

Proof. We prove a different claim that immediately implies the desired one. Let d be a disk with two points $p, q \in P$ on its boundary. Then there is a path between p and q in $\mathcal{DT}(P)|_d$.

We prove by induction over the number points in the interior of d.

 $|d \cap (P \setminus \partial d)| = 0$: Then by construction of the Delaunay triangulation the edge $\{p,q\}$ is in $\mathcal{DT}(P)$ and is contained in the interior of D.

 $|d\cap (P\setminus\partial d)|>0$: Let $x\in P$ be a point in the interior of d. We move the center of d in the direction of p, shrinking d in the process, until we get a disk $d'\subseteq d$ such that x is on the boundary of d'. By induction there is a path between p and x in $\mathcal{DT}\mid_{d'}$, and since $\mathcal{DT}\mid_{d'}\subseteq \mathcal{DT}\mid_{d}$ we have that the same path exists in $\mathcal{DT}\mid_{d}$. The same proof gives us a path between x and q and thus we are done.

3 Complement of square faults / square local spanners

For the same reasons, if we can prove that for a square s we have that $\mathcal{DT}_{\infty}|_{s}$, where \mathcal{DT}_{∞} is the L_{∞} norm Delaunay triangulation, is connected, we would be able to use the same algorithm almost verbatim. Fortunately, the same proof works just as well when replacing disks with squares.

4 ε -shadow

2