Correction

d'après ENSAIS 2002

1.ab Considérons $\mathcal{R}=(A,\vec{i},\vec{j},\vec{k})$ avec $\vec{i}=\frac{1}{a}\overrightarrow{AD}$, $\vec{j}=\frac{1}{a}\overrightarrow{AB}$ et \vec{k} unitaire dirgeant et orientant \mathcal{D} .

 \mathcal{R} est un repère orthonormé dans lequel A(0,0,0), D(a,0,0),

B(0,a,0), C(a,a,0), M(0,0,d).

 \overrightarrow{MR} est colinéaire à $\overrightarrow{MB} \wedge \overrightarrow{MC}(0, -ad, -a^2)$

or
$$R = M + \lambda \overrightarrow{MR}$$
 donc $R(0, -\lambda ad, d - \lambda a^2)$

Puisque $R \in \mathcal{P}$, $\lambda = d/a^2$ puis

$$R(0, -d^2/a, 0) \in (AB)$$
.

- 2.b La réflexion proposée transforme (AB) en (AD) donc $S \in (AD)$. De plus, par isométrie AS = AR donc (ARS) est isocèle en A.
- 2.c La droite (MC) est orthogonale à (MR) et (MS) donc (MC) est orthogonale au plan du triangle (MRS).

Lorsque M décrit $\mathcal{D}\backslash\{a\}$, K décrit la demi-droite d'origine ouverte A et dirigée par \overrightarrow{CA} .

$$\overrightarrow{SH} \cdot \overrightarrow{MR} = \overrightarrow{SA} \cdot \overrightarrow{MR} + \overrightarrow{AH} \cdot \overrightarrow{MR}$$

Or $\overrightarrow{AH} \cdot \overrightarrow{MR} = 0$ en vertu de 3.b et $\overrightarrow{SA} \cdot \overrightarrow{MR} = 0$ car \overrightarrow{SA} est un vecteur de la droite (AD), \overrightarrow{MR} un vecteur du plan (MAB) et cette droite et ce plan sont orthogonaux.

Ainsi (SH) est une hauteur de (MRS), aussi (MH) = (MK) et donc H est l'orthocentre de (MRS).

D

A

 \mathcal{D}

R