MA 515 Homework 3

Zheming Gao

October 2, 2017

Problem 1

- (a) It is not a norm because it violates property (ii). Let a = -1, x = 1. Then ||ax|| = ||-1|| = 2. However, |a|||x|| = 1.
- (b) It is a norm.

Proof. Check the first one. If ||f|| = 0, then $\sup_{t \ge 0} e^{\lambda t} |f(t)| = 0$. Since for any $t \ge 0$, $e^{\lambda t} |f(t)| \ge 0$ and $e^{\lambda t} > 0$, we have $|f(t)| = 0, \forall t \ge 0$. This is to say $f \equiv 0$ on its domain. For the other direction, ||f|| = 0 is true when f = 0.

For (ii), $\forall \alpha \in \mathbb{R}$,

$$||\alpha x|| = \sup_{t \geqslant 0} e^{\lambda t} |\alpha f(t)| = \sup_{t \geqslant 0} e^{\lambda t} |\alpha| \cdot |f(t)| = |\alpha| \sup_{t \geqslant 0} e^{\lambda t} |f(t)| = |\alpha| \cdot ||x||.$$

To check the triangle inequality, we pick $f, g \in X$,

$$||f + g|| = \sup_{t \ge 0} e^{\lambda t} |f(t) + g(t)| \le \sup_{t \ge 0} e^{\lambda t} (|f(t)| + |g(t)|)$$

$$\le \sup_{t \ge 0} e^{\lambda t} |f(t)| + \sup_{t \ge 0} e^{\lambda t} |g(t)| = ||f|| + ||g||.$$

In conclusion, it is a norm.

(c) It is a norm.

Proof. We have shown that for ℓ^p space, $||x||_p = (\sum_{i=1}^{+\infty} |x_i|^p)^{1/p}$ is a norm for $1 \le p \le +\infty$. Then, truncate it for only first two entries. Consider set $S = \{x \in \ell^p || x = (x_1, x_2, 0, \dots), x_1, x_2 \in \mathbb{R}\}$. We have $||x||_p = ||x||, \forall x \in S$. Since $||\cdot||_p$ is a norm on ℓ^p , it must be a norm on $S \subset \ell^p$ as $0 \in S$. Then we conclude that $||\cdot||$ is a norm on \mathbb{R}^2 .

(d) It is not a norm. Consider x = (1,0), y = (0,1). Then $||x+y|| = ||(1,1)|| = 2^{1/p} > 2$. However, ||x|| + ||y|| = 2 < ||x+y||. This breaks the triangle inequality.

Problem 2

Proof.

Step 1 We are going to show $||(\cdot,\cdot)||$ is a norm on $X\times Y$.

If ||(x,y)|| = 0, then $\max\{||x||_X, ||y||_Y\} = 0$, which implies that $||x||_X = ||y||_Y = 0$. Hence, x = y = 0. The other direction is obvious.

To check the second property, take arbitrarily $\alpha \in \mathbb{R}$ and we have

$$\begin{aligned} ||\alpha(x,y)|| &= ||(\alpha x, \alpha y)|| = \max\{||\alpha x||_X, ||\alpha y||_Y\} \\ &= \max\{|\alpha| \cdot ||x||_X, |\alpha| \cdot ||y||_Y\} \\ &= |\alpha| \max\{||x||_X, ||y||_Y\} = |\alpha| \cdot ||(x,y)||. \end{aligned}$$

For triangle inequality, take arbitrarily $(x,y),(z,w) \in X \times Y$, we have

$$\begin{split} ||(x,y)+(z,w)|| &= ||(x+z,y+w)|| = \max\{||x+z||_X,||y+w||_Y\} \\ &\leqslant \max\{||x||_X+||z||_X,||y||_Y+||w||_Y\} \\ &= \max\{||x+||_X,||y||_Y\} + \max\{||z||_X,||w||_Y\} \\ &= ||(x,y)|| + ||(z,w)||. \end{split}$$

Hence, $||(\cdot, \cdot)||$ is a norm on $X \times Y$.

Step 2 We need to prove that $X \times Y$ is complete. Take any Cauchy sequence $\{z_n = (x_n, y_n)\}_{n \in \mathbb{N}} \subset X \times Y$. $\forall \epsilon > 0$, there exists N > 0 such that

$$||z_n - z_m|| = ||(x_n, y_n) - (x_m, y_m)|| < \epsilon, \quad \forall n, m > N.$$

This is equivalent to $\max\{||x_n - x_m||_X, ||y_n - y_m||_Y\} < \epsilon \forall n, m > N$ and also implies that

$$||x_n - x_m||_X < \epsilon, \quad ||y_n - y_m||_Y < \epsilon, \forall n, m > N.$$

Hence we conclude that $\{x_n\}$ and $\{y_n\}$ are both Cauchy sequences on X and Y respectively. Since $(X, ||\cdot||_X)$ and $(Y, ||\cdot||_Y)$ are Banach spaces, $\{x_n\}$ converges on X and $\{y_n\}$ converges on Y. Let $\lim_{n\to+\infty} x_n = x$, $\lim_{n\to+\infty} y_n = y$, and $z = (x,y) \in X \times Y$. Then,

$$||z_n - z|| = ||(x_n, y_n) - (x, y)|| = \max\{||x_n - x||_X, ||y_n - y||_Y\} < \epsilon, \quad \forall n > N.$$

Hence, $\{z_n\}$ converges to on $z \in X \times Y$. This proves the claim.

Problem 3

(a) Proof. Firstly, we need to show that d_f is a metric on X. $\forall x, y \in X$, $d_f(x, y) = f(||x - y||_X) \ge 0$ holds due to the property of f. And $d_f(x, x) = f(0) = 0$. Also, $d_f(x, y) = d_f(y, x)$ is obvious since $||x - y||_X = ||y - x||_X$. For triangle inequality, we need to use the facts that f is increasing and ii,

$$d_f(x,y) + d_f(y,z) = f(||x-y||_X) + f(||y-z||_X) \geqslant f(||x-y||_X + ||y-z||_X)$$

$$\geqslant f(||x-y+y-z||_X) = f(||x-z||_X) = d_f(x,z).$$

Hence, d_f is a metric well-defined on X.

Next, we need to show (X, d_f) is complete. Take any Cauchy sequence $\{x_n\}_n \in \mathbb{N}$ from (X, d_f) and it is enough to show it converges in X. $\forall \epsilon > 0$, there exists N > 0 such that $d_f(x_n, x_m) = f(||x_n - x_m||_X) < \epsilon$, for all n, m > N. Since f is an increasing continuous function from \mathbb{R}_+ to \mathbb{R}_+ , then there exists an increasing continuous inverse function f^{-1} of f such that $f^{-1}(d_f(x, y)) = ||x - y||_X$. Hence,

$$||x_m - x_n||_X = f^{-1}(d_f(x_m, x_n)) < f^{-1}(\epsilon) \to 0$$
, as $\epsilon \to 0, \forall n, m > N$

Hence, $\{x_n\}$ is also a Cauchy sequence on $(X, ||\cdot||_X)$ and so it converges in X in norm $||\cdot||_X$. Let $x_n \to x \in X$ in $||\cdot||_X$. Then we have $\lim_{n\to+\infty} ||x_n-x||_X = 0$. With the continuity of f, we know $\lim_{n\to+\infty} f(||x_n-x||_X) = 0$. And this improves that $x_n \to x$ in distance d_f . Hence $\{x_n\}$ is convergent on (X, d_f) .

In conclusion, (X, d_f) is a complete metric space.

(b) *Proof.* Take arbitrarily $x, y \in B_f(0, 1)$ and $\alpha \in (0, 1)$. Then $z = \alpha x + (1 - \alpha)y \in X$. It is enough to show that $d_f(0, z) < 1$. Use property (ii) and the property given in (b), we have the following,

$$d_f(0,z) = f(||z||_X) \leqslant f(\alpha||x||_X + (1-\alpha)||y||_X)$$

$$\leqslant f(\alpha||x||_X) + f((1-\alpha)||y||_X)$$

$$\alpha f(||x||_X) + (1-\alpha)f(||y||_X)$$

$$= \alpha d_f(0,x) + (1-\alpha)d_f(0,y) < \alpha + 1 - \alpha = 1.$$

This proves that $z \in B_f(0,1)$ and then $B_f(0,1)$ is convex.

Problem 4

Problem 9

Proof. let $g(x) = \frac{1}{4}e^{f(x)}$. We need to show that $g: \mathbb{R} \to \mathbb{R}$ is a contraction map. If so, then there exists a unique $x_0 \in \mathbb{R}$ such that $g(x_0) = x_0$, which is the unique solution to the equation.

For any $x \in \mathbb{R}$, $f(x) \in [0,1]$. And also, let $h(z) = e^z$, $z \in [0,1]$ and the derivative of h is in [1,e]. Thus, there exists 0 < c < 1, such that

$$|g(x) - g(y)| = \frac{1}{4}|e^{f(x)} - e^{f(y)}| \leqslant \frac{1}{4}\max|h'| \cdot |f(x) - f(y)| \leqslant \frac{e}{4}c|x - y|.$$

Let $c' = \frac{e}{4}c$ and note that $c' \in (0,1)$. Hence, g is a contraction map.

Problem 10

1. Proof. If $\alpha_1 = \alpha_2 = 0$, then the claim is trivial. If not, then we only need to show that there exists a positive β such that

$$\frac{||\alpha_1 e_1 + \alpha_2 e_2||}{|\alpha_1| + |\alpha_2|} \geqslant \beta.$$

Let function $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(c_1, c_2) = ||c_1e_1 + c_2e_2||$ and $\text{dom} f = \{(c_1, c_2) \in \mathbb{R}^2 | |c_1| + |c_2| = 1\}$. It is clear that f is continuous on \mathbb{R}^2 and dom f is compact. So f reaches its minimum $K \ge 0$ on dom f. Also, K > 0, because if K = 0 then $c_1 = c_2 = 0$, which leads to a contradiction that $(c_1, c_2) \notin \text{dom} f$. Hence, we have

$$\frac{||\alpha_1 e_1 + \alpha_2 e_2||}{|\alpha_1| + |\alpha_2|} = \left\| \frac{\alpha_1}{|\alpha_1| + |\alpha_2|} e_1 + \frac{\alpha_2}{|\alpha_1| + |\alpha_2|} e_2 \right\| \geqslant K.$$

And this proves the claim.

2. Proof. Similar to the previous one, only need to show that there exists $\beta > 0$ such that

$$\frac{\left|\left|\sum_{i=1}^{n} \alpha_{i} x_{i}\right|\right|}{\sum_{i=1}^{n} \left|\alpha_{i}\right|} \geqslant \beta.$$

Let function $g: \mathbb{R}^n \to \mathbb{R}$ be $g(c) = ||\sum_{i=1}^n c_i e_i||$ and $\mathrm{dom} g = \{c \in \mathbb{R}^n | \sum_{i=1}^n |c_i| = 1\}$. It is clear that g is continuous on \mathbb{R}^n and $\mathrm{dom} g$ is compact. So g reaches its minimum $\kappa \geqslant 0$ on $\mathrm{dom} g$. Also, $\kappa \notin 0$ with the same reason above. Hence, we have

$$\frac{\left\|\sum_{i=1}^{n} \alpha_{i} e_{i}\right\|}{\sum_{i=1}^{n} \left|\alpha_{i}\right|} = \left\|\frac{\sum_{i=1}^{n} \alpha_{i}}{\sum_{i=1}^{n} \left|\alpha_{i}\right|} e_{i}\right\| \geqslant \kappa.$$

And this proves the claim.