1

Control Systems

G V V Sharma*

1

CONTENTS

1	Routh	Hurwitz	Criterion	

- 2 Bode Plot 1
- 3 Compensators 2
- 4 Nyquist Plot 2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 ROUTH HURWITZ CRITERION

2 Bode Plot

2.1. For an LTI system, the Bode plot for its gain is as illustrated in the Fig. ?? The number of system poles N_p and number of system zeros N_z in the frequency range 1 Hz \leq f \leq 10⁷ Hz is

Solution:-

Let us consider a generalized transfer gain

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

$$H(s) = k \frac{(s-z_1)(s-z_2)...(s-z_{m-1})(s-z_m)}{(s-p_1)(s-p_2)...(s-p_{n-1})(s-p_n)}$$

Gain =
$$20\log |H(s)| = 20\log |k| + 20\log |s - z_1|$$

+ $20\log |s - z_2| + \dots + 20\log |s - z_m| - 20\log |s - p_1|$
- $20\log |s - p_2| - \dots - 20\log |s - z_n|$ (2.1.1)

Let us consider a $20 \log |s - z_1|$ Let $s = j\omega$

$$20\log|s - z_1| = 20\log\left|\sqrt{\omega^2 + z_1^2}\right|$$

Based on log scale plot approximations, to the left of z_1 $\omega \ll z_1$ and towards right $\omega \gg z_1$

For
$$\omega < z_1$$

 $20 \log |s - z_1| = 20 \log \left| \sqrt{\omega^2 + z_1^2} \right| = 20 \log |z_1|$
= constant i.e. Slope = 0

For
$$\omega > z_1$$

 $20 \log |s - z_1| = 20 \log \left| \sqrt{\omega^2 + z_1^2} \right| = 20 \log |\omega|$
i.e Slope = 20

When a zero is encountered the slope always increases by 20 dB/decade

Doing similar analysis for $-20 \log |s - p_1|$ We conclude

When a pole is encountered the slope always decreases by 20 dB/decade

$$Slope = \frac{d(20 \log H(f))}{df}$$

$$Slope = \begin{cases} 0 & 0 < f < 10^{1} \\ -20 & 10 < f < 10^{2} \\ -60 & 10^{2} < f < 10^{3} \\ -40 & 10^{3} < f < 10^{4} \\ 0 & 10^{4} < f < 10^{5} \\ -40 & 10^{5} < f < 10^{6} \\ -60 & 10^{6} < f < 10^{7} \end{cases}$$

 $\Delta S lope$ = Change in slope at f

$$\Delta S \, lope = \begin{cases} -20 & f = 10^1 \\ -40 & f = 10^2 \\ +20 & f = 10^3 \\ +40 & f = 10^4 \\ -40 & f = 10^5 \\ -20 & f = 10^6 \end{cases}$$

$$N_p = 6 N_z = 3$$

- 3 Compensators
- 4 NYQUIST PLOT