CS 5683: Big Data Analytics

Recommender Systems: Content-based Systems & Collaborative Filtering

Arunkumar Bagavathi
Department of Computer Science
Oklahoma State university

Topics Overview

High. Dim. Data

Data Features

Dimension ality Reduction

Application Rec. Systems **Text Data**

Clustering

Non-linear Dim. Reduction

<u>Application</u> IR **Graph Data**

PageRank

ML for Graphs

Community Detection

Others

Data Streams Mining

Intro. to Apache Spark

Example Recommender Systems

Customer X

- Buys the book "Origin"
- Buys the audio book "Inferno"

Customer Y

- Does search on "Origin"
- Recommender system suggests Inferno from data collected about customer X

Recommendations

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

■ Top 10, Most Popular, Recent Uploads

Tailored to individual users

- Amazon, Netflix, ...
- Focus in this course

Formal Recommender Model

- ■X = set of Customers
- **S** = set of **Items**
- •Utility function $u: X \times S \rightarrow R$
 - **R** = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

(1) Gathering "known" ratings for matrix

How to collect the data in the utility matrix?

(2) Extrapolate unknown ratings from the known ones

- Mainly interested in unknown ratings
 - We are not interested in knowing what you don't like but what you like

(3) Evaluating extrapolation methods

• How to measure success/performance of recommendation methods?

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - **2)** Collaborative
 - **3)** Latent factors

(1) Content-based Recommender Systems

Main idea: Recommend items to customer x which are similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features one entry per feature and each entry could be Boolean or real valued
 - Movies: author, title, actor, director,...
 - **Text:** Set of "important" words in document
 - People: Set of friends
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

User Profiles and Prediction

User profile possibilities:

- (Weighted) average of rated item profiles $i_1,...,i_n$
- Variation: weight by difference from average rating for item

• ...

Prediction heuristic:

• Given user profile **x** and item profile **i**, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Pros: Content-based Approach

- +: No need for data on other users
 - No sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

(2) Collaborative Filtering

Harness quality judgement of other users

- Consider user X
- Find a set **N** of other users whose ratings are "similar" to **X**'s ratings

Estimate X's ratings based on ratings of users in N

Finding "Similar" Users

$$r_x = [*, _, *, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure

$$\bullet sim(x,y) = \frac{|r_x \cap r_y|}{|r_x \cup r_y|}$$

- Problem: Ignores the value of the rating
- Cosine similarity measure

$$= sim(\boldsymbol{x}, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$$

- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - Scale the rating r_{xs} of user x by the user's average rating
 - Low ratings to negative values and empty ratings to zeros

$$r_{xs} = r_{xs} - \overline{r_x}$$

$$r_x$$
, r_y as sets:
 $r_x = \{1, 4, 5\}$
 $r_y = \{1, 3, 4, 2\}$

$$r_x$$
, r_y as points:
 $r_x = \{1, 0, 0, 1, 3\}$
 $r_y = \{1, 0, 2, 2, 0\}$

$$\overline{r_x}$$
 = avg. rating of x

Similarity Metric

$$sim(x,y) = \frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^{2}} \cdot \sqrt{\sum_{i} r_{yi}^{2}}}$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- **Cosine similarity:** 0.386 > 0.322
 - Considers missing ratings as "negative" Problem!
 - Solution: normalize by subtracting the (row) mean centered cosine similarity
 / pearson correlation

	I		HP3	TW	SW1	SW2	SW3
\overline{A}	2/3	1/3		5/3	-7/3		
B	1/3	1/3	-2/3				
C		-		-5/3	1/3	4/3	
D		0		•	•		0

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

User-User Collaborative Filtering

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

1.
$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

2. $r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$ Shorthand:

$$s_{xy} = sim(x, y)$$

Item-Item Collaborative Filtering

So far: User-user collaborative filtering

Another view: Item-item

- For item *i*, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

```
s_{ij}... similarity of items i and j r_{xj}...rating of user x on item j N(i;x)... set items rated by x similar to i
```


- unknown rating

- rating between 1 to 5

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- Estimate rating of movie 1 by user 5

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

, , , , , , , , , , users , , , , , , , , ,														
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		?	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
W	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

 $s_{1.3}$ =0.41, $s_{1.6}$ =0.59

	, , , , , , , , , users , , , , , , , , , , , , , , , , , , ,													
		1	2	3	4	5	6	7	8	9	10	11	12	sim(1,m)
	1	1		3		2.6	5			5		4		1.00
	2			5	4			4			2	1	3	-0.18
movies	<u>3</u>	2	4		1	2		3		4	3	5		<u>0.41</u>
Ë	4		2	4		5			4			2		-0.10
	5			4	3	4	2					2	5	-0.31
	<u>6</u>	1		3		3			2			4		<u>0.59</u>

Predict by taking weighted average:

$$r_{1.5} = (0.41*2 + 0.59*3) / (0.41+0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Item-Item Vs. user-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- Theory: User-user and item-item should perform equally
- In practice, it has been observed that item-item often works better than user-user
- Why? Items are simpler, users have multiple tastes

Collaborative Filtering: Complexity

- **Expensive** step is finding k most similar customers (or items): O(|U|)
 - |U| = size of the utility matrix
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(n · | U |)
 - n ... set of customers (items)
- We already know how to do this!
 - Clustering
 - Dimensionality reduction

Collaborative Filtering: Complexity

Leverage all the data

- Don't try to reduce data size in an effort to make fancy algorithms work
- Simple methods on large data do best

Add more data

■ e.g., add IMDB data on genres

• More data beats better algorithms

http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Pros/Cons of Collaborative Filtering

+: Works for any kind of items

No feature selection is required

-: Cold start

- Cannot recommend an item that has not been previously rated
- New items

-: Sparsity

- User/ratings matrix is sparse
- Hard to find users that have rated same items

■ –: Popularity bias

- Cannot recommend an item to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Modelling Local and Global Effects

Global:

- Mean movie rating: 3.7 stars
- *The Sixth Sense* is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

 Joe will rate The Sixth Sense 4 stars

Local neighborhood (CF/NN):

- Joe didn't like related movie Signs
- ⇒ Final estimate:

 Joe will rate The Sixth Sense 3.8 stars

Collaborative Filtering: Common Practice

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to *i*, that were rated by *x*
- Estimate rating \mathbf{r}_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

Global baseline estimate for r_{xi}

$$\boldsymbol{b}_{xi} = \boldsymbol{\mu} + \boldsymbol{b}_x + \boldsymbol{b}_i$$

• μ = overall mean movie rating

• b_x = rating deviation of user x = $(avg. rating of user x) - \mu$

• b_i = rating deviation of movie i

Before:
$$x_{ii} = \frac{\sum_{j \in N(i;x)} S_{ij} r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

(3) Evaluation – Practical Tips

Evaluation – Practical Tips

Common Practice

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $\sqrt{\frac{1}{R^*}\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Precision/Recall at top n:
 - % of those in top 10
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problem with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

Questions???

Acknowledgements

Most of this lecture slides are obtained from the Mining Massive

Datasets course: http://www.mmds.org/