0. (- 00.474		
COMP2	261 Lecture 6	
39 F	Dillocation I Allocatian	
	Dijkstra's Algorithm	
(0)		Victoria
		Te Where Witnessys or to Opoleo a te Sta a Mittal
		CAPITAL CITY UNIVERSITY
Connectedne	SS	
. le this court -	nosted or not0	
 Is this graph conr 	nected or not?	
	(D)	
A FF C	(BB)	JU
3	H D	
	B F (K)	(x)
(Y) (R)	G	(6)
P		
(DD)	(66)	(0)
Connectedne	ess: Recursive D	FS
Traverse the graph from on	ne node (eg, depth first search: DF	=8)
count nodes as you go		3)
Check whether you got to a	all the nodes.	
DFS of trees is easy, espe		
call DFS on the root no		
DFS (node):	A	
count ++ for each child of	inode	F)
DFS(child)	N)	ζ _
Graphs are more tricky	\smile	G
	e and count it multiple times!	9
	when we visit the first time and ave	and an administration and

Connectedness: Recursive DFS

Traverse the graph from one node (eg, depth first search), mark nodes as you go
Check whether all the nodes have been marked.

DFS, recording when visited: (mark the nodes)

Initialise: count ← 0, for all nodes, node.visited ← false recDFS(start)

return (count = N)

recDFS (node):

if not node.visited then

count ++, node.visited ← true,
for each neighbour of node

if not neighbour.visited

recDFS(neighbour)

Connectedness: Recursive DFS

Traverse the graph from one node (eg, depth first search), mark nodes as you go

Check whether all the nodes have been marked.

DFS, recording when visited: (explicit set of visited nodes)

Initialise: count ← 0, for all nodes, visited ← {}
recDFS(start)
return (count = N)

recDFS (node):
 if node not in visited then
 count++, add node to visited
 for each neighbour of node
 if neighbour not in visited
 recDFS(neighbour)

Connectedness: DFS

Using iteration and an explicit stack

Fringe is a stack of nodes that have been seen, but not visited.

Initialise: count ← 0, for all nodes, node.visited ← false
push start onto fringe // fringe is a stack
repeat until fringe is empty:
node ← pop from fringe
if not node.visited then
node.visited ← true,
count ++
for each neighbour of node
if not neighbour.visited
push neighbour onto fringe
return (count = N)

A General Graph Search strategy:	
Start a "fringe" with one node Repeat:	
Choose a fringe node to visit; add its neighbours to fringe.	
Stack: DFS	
0000	
	_
A General Graph Search strategy	
Choices:	
How is the fringe managed? stack? queue? priority queue? If priority queue, what is the priority?	-
Can the fringe be pruned? How are the neighbours determined? When do you stop?	
DFS Connectedness:	
 fringe = stack. neighbours = follow edges out of node stop when all nodes visited. 	
BFS connectedness:	-
 fringe = queue. neighbours = follow edges out of node stop when all nodes visited. 	
Suppliment an induce visited.	
	_
Shortest paths problems	
Find the shortest path from start node to goal node	
"shortest path" - truncated Dijkstra's algorithm (Best-first search)	
- A*	
Find the shortest paths from start node to each other node "Single source shortest paths"	
– Dijkstra's algorithm	
Find the shortest paths between every pair of nodes "All pairs shortest paths"	
- Floyd-Warshall algorithm	
I	

Dijkstra's algorithm

 Idea: Grow the paths from the start node, always choosing the next node with the shortest path from the start

Dijkstra's algorithm

- Given: a graph with weighted edges.
- Initialise fringe to be a set containing start node start.pathlength ← 0
- Initialise path length of all other nodes to ∞
- · Repeat until visited contains all nodes:
 - Choose an unvisited node from the fringe with minimum path length (ie, length from start to node)
 - Record the path to the current node
 - Add unvisited neighbours of current node to fringe
 - Add the current node to visited

More questions and design issues

- What to store for each node in the fringe
- How to store the paths (or find the paths)
- How to store the visited nodes
- How to represent the
- graph
 - Node
 - Edge
- Search node (element of fringe)

Refining Dijkstra's algorithm

- Given: a weighted graph of N nodes and a *start* node nodes have an adjacency list of edges

 - nodes have a visited flag and pathFrom and pathLength fields
 - fringe is a priority queue of search nodes $\langle \underline{\textit{length}}, \textit{node}, \textit{from} \rangle$

Initialise: for all nodes *node.visited* \leftarrow false, $count \leftarrow 0$ fringe.enqueue((0, start, null)),

Repeat until fringe is empty or count = N:

⟨costToHere, node, from⟩ ← fringe.dequeue()

If not node.visited then

 $node.visited \leftarrow true, node.pathFrom \leftarrow from,$

for each edge out of node to neighbour

if not neighbour.visited

 $costToNeighbour \leftarrow costToHere + edge.weight$

 $\textit{fringe}. enqueue(\,\langle \textit{costToNeighbour}\,,\,\textit{neighbour},\,\textit{node}\,\rangle\,)$

Illustrating Dijkstra's algorithm label, visited, parent, pathlength fringe nodes node, from, length 0 G nd

Analysing Dijkstra's algorithm

- A node may be added to the fringe lots of times!
- What's the cost?
- How big could the fringe get?
- Finds shortest paths to every node

Note:

- All the paths are represented as a linked list from the node back to the start
 - shared list structure.
- To print/follow path to a node, have to reverse the path.

Shortest path start → goal

- To find best path to a particular node:
 - Can use Djikstra's algorithm and stop when we get to the goal:

Initialise: for all nodes $\textit{visited} \leftarrow \textit{false}, \quad \textit{count} \leftarrow 0$ $\textit{fringe}.enqueue(\,\langle 0, \textit{start}, \textit{null} \,\rangle\,),$

Repeat until fringe is empty or count = N:

 $\langle \textit{length, nd, from,} \rangle \leftarrow \textit{fringe.dequeue()}$ If not nd.visited then

 $nd.visited \leftarrow true, nd.pathFrom \leftarrow from, nd.pathLength \leftarrow length$

If nd = goal then exit

 $\textit{count} \leftarrow \textit{count} \, + 1$

Only check when dequeued. Why?

for each edge to neighbour out of node

if neighbour.visited = false
 fringe.enqueue(\(\left(\left(\text{length} + \text{edge.weight, neighbour, nd }\right)\)

Shortest path using Dijkstra's alg

- it explores lots of paths that aren't on the final path.
 - ⇒ it is really doing a search
- dynamic programming
 - it never revisits nodes
 - it builds on optimal solutions to partial problems

