TECHNICAL DATA MQ-9 GAS SENSOR

FEATURES

- * High sensitivity to carbon monoxide and CH₄, LPG.
- * Stable and long life

APPLICATION

They are used in gas detecting equipment for carbon monoxide and CH₄, LPG in family and industry or car.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	technical condition	Remark
Vc	circuit voltage	5V±0. 1	AC or DC
V _H (H)	Heating voltage (high)	5V±0. 1	AC or DC
V _H (L)	Heating voltage (low)	1. 4V± 0. 1	AC or DC
RL	Load resistance	Can adjust	
Rн	Heating resistance	33 Ω ± 5%	Room temperature
TH (H)	Heating time (high)	60±1 seconds	
TH(L)	Heating time (low)	90±1 seconds	
Ps	Heating consumption	Less than 340mw	

b. Environment conditions

Symbol	Parameters	Technical conditions	Remark
Tao	Using temperature	-20°C -50 °C	
Tas	Storage temperature	- 20 °C- 50 °C	Advice using scope
RH	Relative humidity	Less than 95%RH	
O ₂	Oxygen concentration	21%(stand condition)	Minimum value is over 2%
		the oxygen concentration can	
		affect the sensitivity	
		characteristic	

c. Sensitivity characteristic

symbol	Parameters	Technical parameters	Remark
Rs	Surface resistance		In 100ppm
	Of sensitive body	2-20k	Carbon Monoxide
a (300/100ppm)	Concentration slope rate	Less than 0.5	Rs (300ppm)/Rs(100ppm)
Standard working	Temperature $-20^{\circ}\text{C} \pm 2^{\circ}\text{C}$	relative humidity 65°	%±5% FL : 10 K Ω ±5%
condition	Vc: 5V± 0. 1V VH 5	V \pm 0. 1V VH 1. 4V \pm 0.	1V
Preheat time	No less than 48 hours	500ppm	2000ppm carbon monoxide h-10000ppm CH ₄ m-10000ppm LPG

D. Structure and configuration, basic measuring circuit

Structure and configuration of MQ-9 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-9 have

TEL: 86-371- 67169070 67169080 FAX: 86-371-67169090 E-mail: sales@hwsensor.com

6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

	Parts	Materials
1	Gas sensing layer	SnO ₂
2	Electrode	Au
3	Electrode line	Pt
4	Heater coil	Ni-Cr alloy
5	Tubular ceramic	Al_2O_3
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)
7	Clamp ring	Copper plating Ni
8	Resin base	Bakelite
9	Tube Pin	Copper plating Ni

Fig.1

Heating voltage 5v (High) 60s

Electric parameter measurement circuit is shown as

E. Sensitivity characteristic curve

Fig.3 sensitivity characteristics of the MQ-9

Standard circuit:

Fig.2

As shown in Fig 2, standard measuring circuit of MQ-9 sensitive components consists of 2 parts. one is heating circuit having time control function (the high voltage and the low voltage work circularly). The second is the signal output circuit, it can accurately respond changes of surface resistance of the sensor.

Fig.3 is shows the typical sensitivity characteristics of the MQ-9 for several gases.

O₂ concentration 21%

RL= $10k \Omega$

Ro: sensor resistance at 1000ppm

LPG in the clean air.

Rs: sensor resistance at various concentrations of gases.

Fig.4 is shows the typical dependence of the MQ-9 on temperature and humidity.

Ro: sensor resistance at 1000ppm LPG in air at 33%RH and 20degree.

Rs: sensor resistance at 1000ppm LPG at different temperatures and humidities.

OPERATION PRINCIPLE

. The surface resistance of the sensor Rs is obtained through effected voltage signal output of the load resistance RL which series-wound. The relationship between them is described:

$$Rs\RL = (Vc-VRL) / VRL$$

Fig. 5 shows alterable situation of RL signal output measured by using Fig. 2 circuit output signal when the sensor is shifted from clean air to carbon monoxide (CO) or CH_4 , output signal measurement is made within one or two complete heating period (2.5 minute from high voltage to low voltage).

Sensitive layer of MQ-9 gas sensitive components is made of SnO₂ with stability, So, it has excellent long term stability. Its service life can reach 5 years under using condition.

SENSITVITY ADJUSTMENT

Resistance value of MQ-9 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 200ppm and 5000ppm CH₄ or 1000ppm LPG concentration in air and use value of Load resistance that (R_L) about 20 K Ω (10K Ω to 47 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

The sensitivity adjusting program:

- a. Connect the sensor to the application circuit.
- b. Turn on the power, keep time of preheating through electricity is over 48 hours.
- c. Adjust the load resistance RL until you get a signal value which is respond to a certain carbon monoxide concentration at the end point of 90 seconds.
- d. Adjust the another load resistance RL until you get a signal value which is respond to a CH_4 or LPG concentration at the end point of 60 seconds .