Math 174E Lecture 12

Moritz Voss

August 25, 2022

References

Chapter 13.1, 13.2

One-Step Binomial Model 5/11

Computing V_0, Δ_0 :

Find
$$V_0$$
, Δ_0 s.t.: $V_T = (V_0 - \Delta_0 S_0) e^{kT} + \Delta_0 S_T = (S_T - K)^{\frac{1}{2}}$ (*)

Two possible scenarios: $S_T^u = 22$ or $S_T^A = 18$

=) (*) yields two equations:

(i) $(V_0 - \Delta_0 20) e^{(0.04) \frac{3}{2} k_2} + \Delta_0 22 = 1$

(ii) $(V_0 - \Delta_0 20) e^{(0.04) \frac{3}{2} k_2} + \Delta_0 18 = 0$

Solution:
$$V_0 = 0.545$$
 $\Delta_0 = 1/4$

One-Step Binomial Model 6/11

Interpreting V_0, Δ_0 :

- $ightharpoonup V_0 =$ value of the replicating portfolio of the call option
- $ightharpoonup \Delta_0 =$ replication strategy (also called delta strategy)

One-Step Binomial Model 7/11

Observe following equivalence:

```
\begin{array}{lll} \text{long call} &=& \text{long replicating portfolio} \\ \text{(buy $\Delta_0=1/4$ shares } + \text{borrow $4.455$)} \\ \\ \text{short call} &=& \text{short replicating portfolio} \\ \text{(sell 1 call)} && \text{(short sell $\Delta_0=1/4$ shares } + \text{invest $4.455$)} \\ \end{array}
```

One-Step Binomial Model 8/11

Perfect hedging strategy for the seller:

- seller is short 1 call option
- seller should take a long position in the replicating portfolio in order to be perfectly hedged against the financial risk of paying the payoff to the option holder at maturity T
 - indeed, at maturity T her short position in the call is cancelled out by her long position in the replicating portfolio
- ▶ also note that the premium $C_0 = \$0.545$ the seller receives from selling the call option is *exactly* the amount needed to set up the long position in the replicating portfolio at time 0
- $ightharpoonup \Delta_0$ is the seller's **hedging strategy** (**delta hedging**)
 - ightharpoonup call option: Δ_0 is positive
 - selling a call: long position in Δ_0 shares
 - ▶ put option: Δ_0 is negative (see Example 13.2 below)
 - selling a put: short position in Δ_0 shares

One-Step Binomial Model 9/11

Arbitrage-free price of one call option: \$0.545

Arbitrage opportunity if call price is *higher*. $C_0 = 0.6 > 0.545$

	t=0	t = T	
		$S_T = 18$	$S_T = 22$
sell call (short)	-0.6	0	$\overline{-1}$
$\begin{array}{l} \text{buy replicating strategy (long)} \\ \rightarrow \text{ buy } \Delta_0 = 1/4 \text{ shares} \\ \rightarrow \text{ borrow money} \end{array}$	+5 -4.4	+4.5 -4	+5.5 44
net value	0	+0.06	

Note: The arbitrage gain at time T is exactly

$$(0.6 - 0.545) \cdot e^{0.04 \cdot 3/12} = 0.06$$

One-Step Binomial Model 10/11

Arbitrage-free price of one call option: \$0.545

Arbitrage opportunity if call price is *lower*: $C_0 = 0.5 < 0.545$

	t=0	$\begin{vmatrix} t = T \\ S_T = 18 & S_T = 22 \end{vmatrix}$	
		$S_T = 18$	$S_T = 22$
buy call (long)	+0.5	0	+1
sell replicating strategy (short) $ ightarrow$ short sell $\Delta_0=1/4$ shares $ ightarrow$ invest money	-5 +4.5	-4.5 +4	-5.5 .55
net value	0	+0.05	

Note: The arbitrage gain at time T is exactly

$$(0.545 - 0.5) \cdot e^{0.04 \cdot 3/12} = 0.05$$

One-Step Binomial Model 11/11

Example 13.2

In the above considered one-step binomial model of Example 13.1 the price $P_0(K, T)$ of a **European put option** written on the same stock with strike price K = \$19 and maturity T = 3/12 is

$$P_0(K,T) = 0.445.$$

The replicating strategy is

$$\Delta_0 = -\frac{1}{4}$$
.

One-Step Binomial Model: Notation

- ▶ T = maturity (in years)
- ightharpoonup r = risk-free interest rate p.a. (continuously compounded)
- ightharpoonup only one time step: today (t=0) and maturity (t=T)
- $S_0 = \text{current stock price (today at time } t = 0)$
- $ightharpoonup S_T = ext{stock price at maturity } T$, takes only two values
 - $S_0 \cdot u = \text{one-step price upward move } (u > 1)$
 - $S_0 \cdot d = ext{one-step price downward move } (d < 1)$
- u-1 = percentage increase
- ▶ 1 d = percentage decrease
- $f_0 = (\text{stock})$ option price (today at time t = 0)
- $f_T = (\text{stock})$ option payoff at maturity T, takes also only two values
 - $f^u = (\text{stock})$ option's payoff if stock price moved up
 - $f^d = (\text{stock})$ option's payoff if stock price moved down

One-Step Binomial Model: Illustration

One-Step Binomial Model: Replication Argument 1/4

Replication argument from above:

$$(V_0 - \Delta_0 S_0) e^{tT} + \Delta_0 S_0 N = \int^N \left| e^{-tT} \right|$$

$$(V_0 - \Delta_0 S_0) e^{tT} + \Delta_0 S_0 N = \int^N \left| e^{-tT} \right|$$

Subtracting both equations and solving for Do:

$$\Delta_0 = \frac{f'' - f''}{s_0 - s_0 d}$$

One-Step Binomial Model: Replication Argument 2/4

Introduce auxiliary variable
$$p^{4} \in (0,1)$$
:

$$V_{0} + \Delta_{0} \left(e^{-\nu T} S_{0} U - S_{0}\right) = e^{-\nu T} \int_{0}^{\infty} \left| \cdot p^{4} \right|$$

$$V_{0} + \Delta_{0} \left(e^{-\nu T} S_{0} U - S_{0}\right) = e^{-\nu T} \int_{0}^{\infty} \left| \cdot (1-p^{4}) \right|$$

Adding up both equations:

$$V_{0} + \Delta_{0} \left[e^{-kT} \left(S_{0} w \cdot \rho^{*} + S_{0} w \cdot (1-\rho^{*}) \right) - S_{0} \right] = e^{-kT} \left(f^{*} \cdot \rho^{*} + f^{*} \cdot (1-\rho^{*}) \right)$$

One-Step Binomial Model: Replication Argument 3/4

Choose
$$p^*$$
 5.4. (*)=0:
 $e^{-rT}(S_0 u \cdot p^* + S_0 d \cdot (1-p^*)) - S_0 = 0$

(=) $S_0 e^{rT} = S_0 u p^* + S_0 d \cdot (1-p^*)$

(=) $p^* = \frac{e^{rT} - d}{u - d}$

Hence, we obtain for V_0 the formula:
 $V_0 = e^{-rT}(f^u p^* + f^d (1-p^*))$

One-Step Binomial Model: Replication Argument 4/4

Interpretation:

(i) Arbitrage-free option premium at <=0:

(ii) Probability pt is chosen such that

$$\iff \mathbb{E}^*\left[\frac{S_T}{S_0}\right] = e^{vT}$$

expected teturn of St under p* is just the hisk-free rate r