Strong guessing models

Boban Velickovic

IMJ-PRG Université de Paris

CUNY Set Theory Seminar New York, June 19 2020

Outline

Background and motivation

This is joint work with my PhD student **R. Mohammadpour**.

General form of forcing axioms. Let K be a class of forcing notions and κ an uncountable cardinal.

$FA_{\kappa}(\mathcal{K})$

For every $\mathcal{P} \in \mathcal{K}$ and a family \mathcal{D} of κ dense subsets of \mathcal{P} there is a filter G in \mathcal{P} such that $G \cap D \neq \emptyset$, for all $D \in \mathcal{D}$.

- $\bullet \ \mathrm{MA}_{\kappa} \equiv \mathrm{FA}_{\kappa}(\mathrm{ccc})$
- PFA \equiv FA_{\aleph_1} (proper)
- $MM \equiv FA_{\aleph_1}$ (stationary preserving)

Remark

 \mathcal{K} cannot be the class of all posets or even all posets preserving \aleph_1 .

PFA implies

- $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$
- Singular Cardinal Hypothesis
- The tree property at \aleph_2
- the failure of $\Box(\kappa)$, for regular $\kappa > \aleph_1$.

MM implies

- NS_{ω_1} is \aleph_2 -saturated
- Chang's conjecture $(\aleph_2, \aleph_1) \rightarrow (\aleph_1, \aleph_0)$

We are looking for higher forcing axioms that have similar structural consequences. In particular we want to have $2^{\aleph_0} > \aleph_2$.

Guessing models

We first search for some principles that follow from PFA, imply most of its structural properties, but are consistent with 2^{\aleph_0} being bigger than ω_2 . The key notion is that of a **guessing model**.

Definition (Viale)

Let R be a model of a fragment of set theory and M < R. Let γ be a cardinal. Let $Z \in M$ and $f: Z \to 2$ be a function.

- ① f is γ -approximated in M if $f \upharpoonright C \in M$, for all $C \in \mathcal{P}_{\gamma}(Z) \cap M$.
- ② f is **guessed** in M if there is $\overline{f} \in M$ such that $f \upharpoonright M = \overline{f} \upharpoonright M$.

We say that M is a γ -guessing model if every $f \in R$ which is γ -approximated in M is guessed in M.

Remark

 $M < H_{\theta}$ is a γ -guessing model iff the transitive collapse \bar{M} of M has the γ -approximation property in the sense of Hamkins.

Write $\mathcal{P}_{\kappa}^{*}(R)$ for the set of all $M \prec R$ such that $M \cap \kappa \in \kappa$. For $\gamma \leq \kappa$ we let

$$\mathfrak{G}_{\kappa,\gamma}(R) = \{ M \in \mathcal{P}_{\kappa}^*(R) : M \text{ is } \gamma\text{-guessing} \}.$$

Definition (Viale)

 $GM(\kappa, \gamma)$ is the statement that $\mathfrak{G}_{\kappa, \gamma}(H_{\theta})$ is stationary, for all sufficiently large θ .

We are primarily interested in $\gamma = \omega_1$ and $\kappa = \omega_2$, i.e. ω_1 -guessing models of size ω_1 .

Lemma (Viale)

- ① If M is \aleph_0 -guessing then $\kappa_M = M \cap \kappa$ and κ are inaccessible.
- ② $M < V_{\delta}$ is \aleph_0 -guessing iff $\bar{M} = V_{\bar{\delta}}$, for some $\bar{\delta}$, where \bar{M} is the transitive collapse of M.

The following is a reformulation of Magidor's characterization of supercompactness in terms of \aleph_0 -guessing models.

Theorem (Magidor)

 κ is supercompact iff $GM(\kappa, \aleph_0)$ holds.

Remark

For this reason we use the term **Magidor models** for \aleph_0 -guessing models.

Theorem (Viale, Weiss)

PFA implies $GM(\omega_2, \omega_1)$.

Theorem (Weiss)

 $GM(\omega_2,\omega_1)$ implies

- **1** *the failure of* $\Box(\lambda)$ *, for all regular* $\lambda \geq \omega_2$.
- ② $TP(\omega_2)$, in fact, $TP(\omega_2, \lambda)$, for $\lambda \geq \omega_2$.

Theorem (Viale, Krueger)

 $GM(\omega_2, \omega_1)$ implies SCH.

Theorem (Cox, Krueger)

 $GM(\omega_2, \omega_1)$ is consistent with 2^{\aleph_0} arbitrarily large.

Definition

Let $\theta > \omega_1$ be a regular cardinal. Let $N < H_\theta$ be of size \aleph_1 .

- We say that N is internally unbounded (I.U.) if there is an ϵ -chain of countable models $(N_{\xi} : \xi < \omega_1)$ such that $N = \bigcup_{\xi} N_{\xi}$.
- We say that N is internally club (I.C.) if the above sequence can be taken to be continuous.

Definition

Let $M < H_{\theta}$ be of size \aleph_1 . We say that M is locally internally unbounded if $\mathcal{P}_{\omega_1}(X) \cap M$ is cofinal in $\mathcal{P}_{\omega_1}(X \cap M)$, for every $X \in M$.

Fact

Suppose $\theta_0 < \theta_1$ are regular and $M < H_{\theta_1}$ is locally internally unbounded with $\theta_0 \in M$. Then $M \cap H_{\theta_0}$ is internally unbounded.

Theorem (Krueger)

If $M < H_{\theta}$ is an ω_1 -guessing model of size \aleph_1 , then M is locally internally unbounded.

Proof.

Let $X \in M$ and $x \in \mathcal{P}_{\omega_1}(X \cap M)$. We need to find a countable $y \in M$ with $x \subseteq y$.

Let $f: \omega \to x$ be a bijection, and set $x_n = f$ "n, hence $x_n \subseteq x_{n+1}$.

Let $A = \{x_n : n \in \omega\}$. Then $A \subseteq [X]^{<\omega} \in M$.

- If A is countably approximated in M, since M is an ω_1 -guessing model, $A \in M$, and hence $x = \bigcup A \in M$. Set y = x.
- Otherwise there is a countable $Y \subseteq [X]^{<\omega}$ in M such that $A \cap Y \notin M$, but then $A \cap Y$ is infinite, and $x = \bigcup (A \cap Y) \subseteq \bigcup Y \in M$. Set $y = \bigcup Y$.

Definition (Viale)

Let λ be singular of cofinality ω . $\mathscr{A} = (A(n, \alpha) : n < \omega, \alpha < \lambda^+)$ is a strong covering matrix for λ^+ if:

- \bigcirc $\bigcup_n A(n,\alpha) = \alpha$, for all α ,
- **4** for all $\alpha < \beta$ there is n such that $A(m, \alpha) \subseteq A(m, \beta)$, for all $m \ge n$,
- § for all $x \in \mathcal{P}_{\omega_1}(\lambda^+)$ there is $\gamma_x < \lambda^+$ such that for all $\alpha \ge \gamma_x$ there is n such that $A(m,\alpha) \cap x = A(m,\gamma_x) \cap x$, for all $m \ge n$.

Proposition

Assume $\lambda > 2^{\aleph_0}$ is of countable cofinality. Then there is a strong covering matrix \mathscr{A} for λ^+ .

Proposition (Viale)

Assume for all $\lambda > 2^{\aleph_0}$ of countable cofinality and a strong covering matrix \mathscr{A} for λ^+ , there is an unbounded set $B \subseteq \lambda^+$ such that $\mathcal{P}_{\omega_1}(B)$ is covered by \mathscr{A} . Then SCH holds.

Remark

 $\mathcal{P}_{\omega_1}(B)$ is **covered** by \mathscr{A} if, for every $x \in \mathcal{P}_{\omega_1}(B)$, there are n, α such that $x \subseteq A(n, \alpha)$.

Lemma

Suppose $\operatorname{cof}(\lambda) = \omega$ and \mathscr{A} is a strong covering matrix for λ^+ . Let θ be sufficiently large regular cardinal. Let $M < H_{\theta}$ be an ω_1 -guessing internally unbounded model of size \aleph_1 . Let $\delta_M = \sup(M \cap \lambda^+)$. Then there is n such that $A(m, \delta_M) \cap x \in M$, for all $x \in \mathcal{P}_{\omega_1}(\lambda^+) \cap M$ and $m \geq n$.

Proof.

Otherwise, for each n, pick $x_n \in \mathcal{P}_{\omega_1}(\lambda^+) \cap M$ with $A(n, \delta_M) \cap x_n \notin M$.

By internal unboundedness of M find countable $x \in M$ such that $\bigcup_n x_n \subseteq x$. By elementarity of M, $\gamma_x \in M$.

By definition of γ_x there is n_0 such that for all $n \ge n_0$

$$A(n, \delta_M) \cap x = A(n, \gamma_x) \cap x \in M$$
.

Given $n \ge n_0$ we have $A(n, \delta_M) \cap x = A(n, \gamma_x) \cap x \in M$, and hence:

$$A(n, \delta_M) \cap x_n = A(n, \delta_M) \cap x \cap x_n \in M.$$

This is a contradiction.

Theorem (Viale, Krueger)

Assume $GM(\omega_2, \omega_1)$. Then SCH holds.

Proof.

Let $\lambda > 2^{\aleph_0}$ be of countable cofinality and let $\mathscr A$ be a strong covering matrix for λ^+ . We find an unbounded $B \subseteq \lambda^+$ such that $\mathcal P_{\omega_1}(B)$ is covered by $\mathscr A$.

Fix θ large enough and an I.U. ω_1 -guessing model $M < H_{\theta}$ of size \aleph_1 with $\mathscr{A} \in M$. We may assume $\operatorname{cof}(\delta_M) = \omega_1$. By previous lemma there is n_0 such that $A(m, \delta_M) \cap x \in M$, for all $x \in \mathcal{P}_{\omega_1}(\lambda^+) \cap M$, and all $m \ge n_0$.

Since M is an ω_1 -guessing model we can find, for each $m \ge n_0$, $A_m \in M$ such that $A(m, \delta_M) \cap M = A_m \cap M$. Since $\operatorname{cof}(\delta_M) = \omega_1$ we can find $m \ge n_0$ such that $A(m, \delta_M) \cap M$ is unbounded in δ_M , but since $A_m \in M$ and $A(m, \delta_M) \cap M = A_m \cap M$, it follows that A_m is unbounded in λ^+ .

If $x \in \mathcal{P}_{\omega_1}(A_m) \cap M$ then x is covered by $A(m, \delta_M)$. By elementarity of M it follows that every $x \in \mathcal{P}_{\omega_1}(A_m)$ is covered by some member of \mathscr{A} . Hence, we can set $B = A_m$.

J-PRG athématique

Approachability ideal

Guessing models are closely related to the approachability ideal $I[\lambda]$.

Definition

Let λ be a regular cardinal and $\bar{a} = (a_{\xi} : \xi < \lambda)$ a sequence of bounded subsets of λ . We let $B(\bar{a})$ denote the set of all $\delta < \lambda$ such that there is a cofinal $c \subseteq \delta$ such that:

- ① $\operatorname{otp}(c) < \delta$, in particular δ is singular,
- ② for all $\gamma < \delta$, there is $\eta < \delta$ such that $c \cap \gamma = a_{\eta}$.

Definition (Shelah)

Suppose λ is regular. $I[\lambda]$ is the ideal generated by the sets $B(\bar{a})$, for sequences \bar{a} as above, and the non stationary ideal NS_{λ} .

Approachability ideal

This ideal was defined by Shelah in the late 1970s. $I[\lambda]$ and its variations have been extensively studied over the past 40 years.

For regular $\kappa < \lambda$ we let $S_{\lambda}^{\kappa} = \{ \alpha < \lambda : \operatorname{cof}(\alpha) = \kappa \}.$

Theorem (Shelah)

Suppose λ is a regular cardinal.

- 1 Then $S_{\lambda^+}^{<\lambda} \in I[\lambda^+]$.
- ② Suppose κ is regular and $\kappa^+ < \lambda$. Then there is a stationary subset of S_{λ}^{κ} which belongs to $I[\lambda]$.

The approachability property AP_{κ^+} states that $\kappa^+ \in I[\kappa^+]$. For a regular cardinal κ the issue is to understand $I[\kappa^+] \upharpoonright S_{\kappa^+}^{\kappa}$.

Approachability ideal

Proposition

Assume $GM(\kappa^+, \kappa)$. Then $\kappa^+ \notin I[\kappa^+]$.

Proof.

Let $\vec{a} = (a_{\xi} : \xi < \kappa^+)$ be a sequence of bounded subsets of κ^+ .

Fix $M < H_{\kappa^{++}}$ a κ -guessing model of size κ with $\vec{a} \in M$.

Let $\delta = M \cap \kappa^+$. We claim that $\delta \notin B(\vec{a})$.

Suppose $\delta \in B(\vec{a})$, and let $c \subseteq \delta$ witness this. Thus $\mu = \text{o.t.}(c) < \delta$.

For $\gamma < \delta$ there is $\eta < \delta$ such that $c \cap \gamma = a_{\eta} \in M$.

So c is κ -approximated in M.

Since M is κ -guessing model, there is $c^* \in M$ with $c = c^* \cap M$.

Then c is an initial segment of c^* , and $c = c^*(\mu) \cap \kappa^+$, where $c^*(\mu)$ is the μ -th element of c^* .

It follows that $c \in M$, and hence also $\delta = \sup(c) \in M$, a contradiction!

Question (Shelah)

Can $I[\omega_2] \upharpoonright S_{\omega_2}^{\omega_1}$ consistently be the nonstationary ideal on $S_{\omega_2}^{\omega_1}$?

Theorem (Mitchell)

Suppose κ is κ^+ -Mahlo. Then there is a generic extension in which $\kappa = \omega_2$ and $I[\omega_2] \upharpoonright S_{\omega_2}^{\omega_1}$ is the non stationary ideal on $S_{\omega_2}^{\omega_1}$.

Definition (Mitchell Property)

For λ regular, $MP(\lambda^+)$ denotes the statement that $I[\lambda^+] \upharpoonright S_{\lambda^+}^{\lambda}$ is the nonstationary ideal on $S_{\lambda^+}^{\lambda}$.

Remark

 $MP(\omega_2)$ implies $2^{\aleph_0} \ge \aleph_3$.

Some questions

Some questions:

- ① Does $GM(\omega_2, \omega_1)$ imply $MP(\omega_2)$?
- **2** What about $GM(\omega_3, \omega_2)$?
- 3 Does $GM(\omega_2, \omega_1)$ bound the continuum?

Some answers:

- No! GM($ω_2, ω_1$) is consistent with $\mathfrak{c} = \aleph_2$. (Viale–Weiss)
- ② $GM(\omega_3, \omega_2)$ is consistent with CH. (Trang)
- 3 GM(ω_2, ω_1) is consistent with continuum large.(Cox– Krueger)

Strong guessing models

Idea: combine $GM(\omega_2, \omega_1)$, $GM(\omega_3, \omega_2)$ and $MP(\omega_2)$.

Definition

Let R be a model of a fragment of ZFC. We say that M < R is a **strong** ω_1 -guessing model if M can be written as the union of an increasing ω_1 -continuous \in -chain $(M_{\xi}: \xi < \omega_2)$ of ω_1 -guessing models of size ω_1 .

Remark

Every strongly ω_1 -guessing model is also an ω_1 -guessing model.

$$\mathfrak{G}^+_{\omega_3,\omega_1}(R) = \{ M \in [R]^{\omega_2} : M \text{ is a strong } \omega_1\text{-guessing model} \}.$$

Definition

 $\mathrm{GM}^+(\omega_3,\omega_1)$ states that $\mathfrak{G}^+_{\omega_3,\omega_1}(H_\theta)$ is stationary, for all large enough θ .

Strong guessing models

Theorem

 $GM^+(\omega_3,\omega_1)$ implies the following:

- ① $GM(\omega_3, \omega_2)$ and $GM(\omega_2, \omega_1)$.
- ② MP(ω_2) and hence $2^{\aleph_0} \ge \aleph_3$.
- 3 there are no weak ω_1 -Kurepa trees nor weak ω_2 -Kurepa trees.
- **4** the tree property at ω_2 and ω_3 .
- **⑤** the failure of $\Box(\lambda)$, for all $\lambda \ge \omega_2$.
- Singular Cardinal Hypothesis.

Theorem (Mohammadpour, V.)

Assume there are two supercompact cardinals. There there is a generic extension in which $GM^+(\omega_3, \omega_1)$ holds.

Special guessing models

Definition

Suppose (T, <) a tree of size and height \aleph_1 . T is **weakly special** if there is a function $\sigma: T \to \omega$ such that if $\sigma(r) = \sigma(s) = \sigma(t)$ with r < s, t, then s and t are comparable.

Proposition

If T is a tree of height and size ω_1 and is weakly special then T has at most \aleph_1 many cofinal branches.

Proof.

Let f be a weak specializing map of T. If b is a cofinal branch there is an integer n_b such that $|f^{-1}(n_b) \cap b| = \aleph_1$. Let t_b be the least element of $f^{-1}(n_b) \cap b$. Then the map $b \mapsto t_b$ is injective from the set of cofinal branches to T.

Let *X* be a set.

$$T_X = \{(Z, f) : Z \in X \text{ is uncountable and } f : Z \cap X \to 2\}.$$

Definition

Suppose that M is an ω_1 -guessing model. Let $(M_{\xi}: \xi < \omega_1)$ be an IU-sequence. Let

$$T(M) = \bigcup_{\xi < \omega_1} (T_{M_{\xi}} \cap M).$$

Define the order \leq on T(M) be letting $(Z, f) \leq (W, g)$ if and only if Z = W and $f \subseteq g$.

Remark

Suppose that M is an ω_1 -guessing model of size \aleph_1 . Then $(T(M), \leq)$ is a tree of size and height ω_1 with at most \aleph_1 cofinal branches.

Definition

We say that M is a special guessing model if T(M) is weakly special.

I-PRG

de

Proposition

If M is a special ω_1 -guessing model of size ω_1 then M remains ω_1 -guessing in any outer universe W of V with $\omega_1^W = \omega_1^V$.

Proof.

Suppose W is an outer universe with $\omega_1^W = \omega_1^V$. Let $X \in M$ and suppose $f: X \to 2$ with $f \in W$ is ω_1 -approximated in M. Then f gives a branch through T(M). But all the branches of T(M) are in V, hence $f \in V$. Since M is ω_1 -guessing model in V, it follows that $f \in M$.

Definition (SGM(ω_2, ω_1))

 $\operatorname{SGM}(\omega_2, \omega_1)$ denotes the statement that the set of special ω_1 -guessing models of size \aleph_1 is stationary in $[H_{\theta}]^{\aleph_1}$, for all sufficiently large regular θ .

Theorem (Cox-Krueger)

- $SGM(\omega_2, \omega_1)$ is consistent with continuum arbitrary large, modulo the existence of a supercompact cardinal.
- Assume $SGM(\omega_2, \omega_1)$. Then Souslin's Hypothesis holds.
- Assume $SGM(\omega_2, \omega_1)$ and $2^{\aleph_0} < \aleph_{\omega_1}$. Then the principle $AMP(\omega_1)$ holds: every forcing that adds a new subset of ω_1 either adds a real or collapsing some cardinal below 2^{\aleph_0} .

Definition

A model M of cardinality ω_2 is **special strongly** ω_1 -**guessing** if it is the union of an ϵ -increasing chain $(M_{\xi}: \xi < \omega_2)$ which is continuous at cofinality ω_1 of special ω_1 -guessing models of cardinality ω_1 .

Definition (SGM⁺(ω_3, ω_1))

 $\operatorname{SGM}^+(\omega_3,\omega_1)$ states that the set of special strongly ω_1 -guessing models is stationary in $[H_{\theta}]^{\omega_2}$, for all large enough regular θ .

Theorem (Mohammadpour, V.)

Assume there are two supercompact cardinals. There there is a generic extension in which $SGM^+(\omega_3, \omega_1)$ holds.

Theorem (Mohammadpour, V.)

Assume $SGM^+(\omega_3, \omega_1)$, $2^{\aleph_0} < \aleph_{\omega_1}$ and $2^{\aleph_1} < \aleph_{\omega_2}$. Then $AMP(\omega_2)$ holds: every poset that adss a new subset of ω_2 either adds a real or collapses some cardinal.

