UM 204 : INTRODUCTION TO BASIC ANALYSIS SPRING 2022 HOMEWORK 3

Instructor: GAUTAM BHARALI Assigned: JANUARY 25, 2022

1. Consider the set

$$A := \{ x \in \mathbb{Q}^+ : x^2 < 2 \}.$$

In Chapter 1 of Rudin's book, there is an informal discussion of the fact that A has no least upper bound in \mathbb{Q} ("informal" in the sense that it relies on the relationships between the arithmetic operations and the ususal order \leq on \mathbb{Q} that we take for granted). With this discussion as a guide,

- Using the **formal** definition of the order \leq on \mathbb{Q} , and
- Quoting the relevant propositions from the section entitled *Fields* in Chapter 1 of Rudin's book in support of your arguments,

give a full and formal proof of the statement: A has no least upper bound in \mathbb{Q} .

2. If α is a positive cut, then we define

$$\alpha^{-1} := \{ x \in \mathbb{Q} : \exists r \in \mathbb{Q} \text{ such that } r < 1/x \text{ and } r \notin \alpha \} \cup 0^* \cup \{0\}.$$

- (a) Show that α^{-1} as defined is a cut for any $\alpha \neq 0^*$.
- (b) Show that α^{-1} as defined is the multiplicative inverse of α .
- **3.** Given any $a \in \mathbb{Q}$, let $a^* := \{x \in \mathbb{Q} : x < a\}$. Prove that

$$a^*b^* = (ab)^* \quad \forall a, b \in \mathbb{Q}^+ \tag{1}$$

Remark. The above statement can be extended to all $a, b \in \mathbb{Q}$, but doing so is cumbersome, and (1) is the key to the latter. It is easy to show that $a^* + b^* = (a+b)^*$ for all $a, b \in \mathbb{Q}$. The last two statements form the analogue of Problem 6 in Homework 1 showing, this time, that the arithmetic operations between **cuts** extend the arithmetic operations on \mathbb{Q} .

- **4.** Let (S, \leq) be an ordered set.
 - (a) Let $A \subseteq S$. Formulate definitions, analogous to those given in class, for "lower bound of A", "A is bounded below", "greatest lower bound of A", and "greatest lower bound property".
 - (b) Show that if (S, \leq) has the least upper bound property, then it has the greatest lower bound property.
 - (c) Recall, from Problem 5 in Homework 2, that if A is a non-empty subset of an ordered set (S, \leq) that is bounded above, and (S, \leq) has the least upper bound property, then A has a unique least upper bound. Denote this element as $\sup A$. Thus, by (b) (with the same assumptions on S), if $A \subseteq S$ is non-empty and bounded below, then A has a unique greatest lower bound. Denote this element as $\inf A$. Now, let A be a non-empty subset of $\mathbb R$ that is

bounded below and let $-A := \{-x \in \mathbb{R} : x \in A\}$. Argue that $\sup(-A)$ exists, and show that

$$\inf A = -\sup(-A).$$

The following anticipates material to be introduced in the lecture on January 28.

5. Using the Archimedean property of \mathbb{R} , prove that if $x, y \in \mathbb{R}$ and x < y, then there exists $q \in \mathbb{Q}$ such that x < q < y.