Investigación de operaciones

Caso de como elaborar un plan agregado

Plan agregado

 Es planificar un proceso cuyo objetivo es determinar de manera anticipada los requerimientos de producción optimizando los recursos de un Sistema productivo

Introduccion del caso

- Una fabrica de aspiradoras trata de planificar el futuro con el fin de abordar eficazmente la variacion estacional de la demanda anual de sus productos.
- Se utiliza un horizonte de planificacion de 6 meses. La previcion de la demanda para los proximos seis meses a lo largo de el numero de dias de trabajo son los siguientes.

Demanda de los proximos seis meses

Meses	demanda	dias de trabajo
Jan.	1,800	22
Febr.	1,500	19
March	1,100	21
April	900	21
May	1,100	22
June	1,600	20
	Total: 8,000 unidades	Total: 125 Dias

Costos

Costo de objeto	Costos(\$)
Material	\$100 por unidad
costo por inventario	\$5 por unidad por mes
costo por stockout	\$10 por unidad por mes
costo de subcontratacion	\$20 por unidad
costo de contratacion	\$1000 por trabajdor
costo de despido	\$1500 por trabajador
costo de hora regular	\$15 por empleado por hora
costo por horas extra	\$20 por empleado por hora

Condiciones de operacion de trabajo

inventario inicial
de trabajadores inicialmente
horas de trabajo por unidad
horas de trabajo regular por dia
inventaria al final de cada mes

400 units
38 workers
5 employee-hours/unit
8 hours
25% of coresp. demand

Programacion lineal

- Variables de decision-.
- P: Numero de productos o unidades por mes
- W: Numero de trabajadores por mes
- O: Numero de horas extra
- H: Numero de trabajadores contratados por mes
- F: Numero de trabajadores despedidos por mes
- S: Numero de subcontratos por mes
- I: Invetario de unidades por mes
- B: Stockout por mes
- WD: Numero de dias de trabajo por mes
- D: Demanda por mes

Minimizar costos de produccion(función objetivo)

- costo de produccion por productos fabricados + costo de horas trabajadas totales +costo de horas extra totales + costo de contratos + costo de despidos+ costo de subcontratos +costo de inventario+costo de stockout.
- $min=@sum(months(t):pc*P(t)+15*8*WD(t)*W(t)+oc*O(t)+hc*H(t)+fc\\ *F(t)+sc*S(t)+ic*I(t)+bc*B(t));$

Condiciones del caso(restricciones)

- productos por mes + mas diferencia de inventario + subcontratos del mes + stockout del mes es igual a demanda del mes;
- P(t)+I(t-1)+S(t)+B(t)-I(t)-B(t-1) = D(t);
- P(1)+Io+S(1)+B(1)-I(1)-Bo = D(1);

Restricciones de trabajadores

- Trabajadores por mes menos los trabajadores del siguiente mas trabajadores despedidos es igual contratados.
- W(t)-W(t-1)-H(t)+F(t) = 0
- Trabajadores del primer mes siguiente menos el mes anterior mas despedidos es igual a contratados.
- W(1)-Wo-H(1)+F(1)=o

Restriccion de produccion por mes

- Las horas de produccion deben ser menor a lashoras trabajadas mas las horas extra.
- 5*P(t)-8*WD(t)*W(t)-O(t) < 0

Restricción de inventario y stockout

- Inventario al final del mes mayor al 25% dela demanda.
- I(t) > 0.25*D(t)
- Sexto mes stockout cero el siguiente mes no esta pronosticado.
- B(6) = 0