Ensembling of Models

Friday, October 11, 2019 3:17 PM

- Neural networks are non-linear models which learn complex relationships via a stochastic training algorithm
- This stochastic nature makes the network sensitive to the specifics of the training data and it may find a different set of weights each time it is trained
- This results in different predictions each time and creates difficulty in obtaining a reliable and reproducible prediction from the final model
- In order to reduce this high variance, one way is to train multiple models and combine their predictions
- The idea is to combine the predictions from multiple good but different models
- A good model has skill, meaning that its predictions are better than random chance. Importantly, the models must be good in different ways; they must make different prediction errors.
- Since each model makes a different error, the correlation of error between different models is very low.
 Thus when these models are combined, the overall error normalize and the ensemble model is more geenralized
- How to ensemble?
 - o 3 elements of the model can be varied when creating ensemble
 - Training data vary the choice of data used to train each model
 - Ensemble models- vary the choice of the models used in the ensemble
 - Combinations vary the choice of the ways the outcomes are combined
 - Vary training data
 - K-fold CV
 - Training dataset with replacement called bootstrap aggregation or bagging
 - Random training subset ensemble
 - Vary models
 - Multiple training run ensemble
 - Hyperparameter tuning ensemble, eg learning rate, number of epochs
 - Snapshot ensemble
 - Horizontal voting ensemble
 - Vary combinations
 - Model averaging: Average of predictions from the ensemble members
 - Model Blending: Weighted average of predictions
 - Stacked generalization (Stacking): Using a new model to best combine the predictions from each ensemble member.
 - Boosting: A more sophisticated method for stacking models where members are added one at a time in order to correct the mistakes of the prior model. Due to its complexity, not much used with large neural networks
 - Model weight averaging: Averaging the weights of multiple neural networks with the same structure.
- References

https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/

Ensemble Learning techniques

Complexity	Method	Key point	Use-case	Simplest Code
Basic	Max Voting	The prediction with maximum number of votes is selected	Classification where output is a class	<pre>finalpred = np.append(finalpred, mode([pred1[i], pred2[i], pred3[i]]))</pre>

	Averaging	Predictions of all models are averaged	Regression Classification where output is a probability	<pre>finalpred=(pred1+pred2 +pred3)/3</pre>
	Weighted Average	Weighted average of predictions based on importance of respective models	Regression Classification where output is a probability	<pre>finalpred=(pred1*0.3 +pred2*0.3+pred3*0.4)</pre>
Advanced	Stacking			
	Blending			