LEVEL 1: The Basics

Q1: Write each number in scientific notation

Q2: Write the number in standard form.

•
$$6 \times 10^3 =$$

♦
$$5 \times 10^{-1} =$$

$$4.5 \times 10^5 =$$

$$3.9 \times 10^{-5} =$$

•
$$9.2 \times 10^7 =$$

$$4.0 \times 10^{-3} =$$

$$3 \times 10^2 =$$

♦
$$2.5 \times 10^{-7} =$$

$$• 7.8 \times 10^6 =$$

$$4 \times 6 \times 10^{-2} =$$

Q3: Which expression is equivalent to 6.02×10^{23} ?

a)
$$0.602 \times 10^{21}$$

c)
$$602 \times 10^{21}$$

b)
$$60.2 \times 10^{21}$$

d)
$$6020 \times 10^{21}$$

Q4: What is the value of n if the number 0.0000082 is written in the form 8.2×10^{n} ?

a)
$$-6$$

Q5: A movie earned \$1,845,000,000 at the box office. What is the dollar amount written in scientific notation?

LEVEL 2: Dive Deeper

Q1: Fill in the Blank

$$4 \cdot 1.6 \times 10^2 =$$

$$\bullet$$
 0.009 = ____ × 10⁻³

Q2: Which is greater: 4.5×10^5 or 5.2×10^4 ?

Q3: Order from least to greatest:

$$3.1 \times 10^{-2}$$
, 0.002, 2.5×10^{-3}

Q4: True or False: $1.2 \times 10^3 = 120$

Q5: Which is closer to 1,000,000:

A) 9.8×10^{5} or B) 1.01×10^{6}

LEVEL 3: Mastering the Concept

Q1: The mass of an atom is too small to measure grams or milligrams.

 $1 g \approx 6.022 \times 10^{23} amu$ $1.661 \times 10^{-24} g \approx 1 amu$

Scientists use atomic mass units (amu) to describe the mass of an atom.

The number of atomic mass units in one gram is a constant known as Avogadro's number.

PART 1: Complete the table.

Element	Chemical Symbol	Mass (amu)	Mass (g)
Silver	Ag	1.26×10^{25}	
Oxygen	0		28
Platinum	Pt	9.64×10^{24}	
Helium	He	3.01×10^{22}	
Nitrogen	N		34

PART 2: Arrange the chemical symbols in order of increasing mass. What word do the symbols spell?

Q2: A computer can perform 5.0×10^9 calculations per second. How many calculations can it perform in 1.5 minutes?

Word problems / Real application:

- 1) The Sun is approximately 1.496×10^8 km from Earth. Express this in standard form.
- 2) A bacteria is 4.6×10^{-6} meters wide. Express in standard form.
- 3) A telescope views a galaxy 3.2×10^{10} km away. Write that in expanded form.
- 4) The mass of a dust particle is 3×10^{-9} g. If there are 100 particles, what is the total mass?
- 5) A factory produces 2.5 × 10⁵ cans per day. How many cans in 10 days?
- 6) A student says $0.0034 = 3.4 \times 10^{-3}$. Is this correct? Explain.
- 7) Rewrite 62,000 in two different forms of scientific notation.
- 8) A rocket travels 7.5×10^4 km per hour. How far will it travel in 1.2×10^2 hours?