Tutorial: Sampling, Weighting and Estimation Day 1

Stefan Zins, Matthias Sand and Jan-Philipp Kolb

GESIS - Leibniz Institute for the Social Sciences

GESIS Summer School

Cologne, Germany

August 24th, 2015

WHY R?

- Open Source
- You can work with several datasets at the same time
- You can create your own objects, functions and packages
- Over 5,000 packages contributed by users available on CRAN
- → Rapid implementation of new (scientific) developments
- ightarrow Quick development of new tools that fit the user's demand

GETTING STARTED - DOWNLOAD R

https://www.r-project.org

R Basic


```
교환 X
                                                                                                                                                                                                                                                                                                                                                            ald al
R vection 3.1.3 (2015-02-09) -- "Smooth Sidewalk"
Copyright (c) 2015 The R Foundation for Statistical Computing
                                                                                                                              illinery(plyr)
illinery(plyr)
illinery(ggplot2)
deta'-73: Nork/Statistik/Sami/Sobilfunkanovahl 2015/*
dena'-73: Nork/Statistik/Sami/Sobilfunkanovahl 2015/*
dena'-71: Nork/Statistik/Sami/Sobilfunkanovahl
B set frese Software and bosset OME JEGLICHE GARANTIE.
Sie sind eingeleden, en unter bestimmten Hedingungen weiter zu verkeelten.
Tippen Sie 'license')' or 'license')' für Details daen.
R ist ein Gemeinschaftsprojekt mit vielen Beitragenden.
                                                                                                                               ANDANGAN road data
                                                                                                                               Numwahi<-read.table("b_mobili51.txt",header="f)
Tel.buch<-read.table(parte(data)."DDE_DDE_cov",sep=""),header=T)
um zu erfehren, wie R oder R perkapes in Fublikationen zitiert werden können.
Tippen Sie 'demo()' für einige Demos, 'help()' für on-line Hilfe, oder 'bels, start()' für eine HTML Brownerschnittstelle zur Hilfe.
                                                                                                                              ac-which(ncher(as.character(Auswahl(,1)))==6)
Auswahlnsuc-parte(rep(Auswahl(s,),sach=10),rep(0:9,n=10001),sep=**)
(Vorker gestcherter Workspace wiederhergestellt)
🌅 Start 📗 👙 🐞 🕕 colora latex - Geogle-Sux... 🔟 Parbeingung - Melthias.S... 🚺 PStudo
                                                                                                                          III *(Unbersent) 1.1 (NO) ... R RGul (64-bit)
                                                                                                                                                                                                                                                                                                                   pc (% 6) O O N U to % 0 O D p
```

• most R-user prefer the graphical user interface (GUI) RStudio

R STUDIO

https://www.rstudio.com

BASIC R COMMANDS

- <- assignment operator
- # can be used to comment your script
- x<-rnorm(10,0,1) creates a vector with ten standardnormal-distributed values
- mean(x) calculates the mean of variable x; length(x) returns the number of observations in x

```
mean(x)
[1] -0.2370126
length(x)
[1] 10
```

GETTING HELP

• ?command

- CRAN
- Quick-R
- stackoverflow.com

Types of Data


```
numeric x<-c(1,2)
logical x<-c(T,F)
character x<-c("A","B")
factor x<-as.factor(c("White","Black"))
str() returns the type of your data
  x<-as.factor(c("White","Black"))
  str(x)
Factor w/ 2 levels "Black","White": 2 1</pre>
```

INDEXING I

Indexing a Vector:

A1<-c(1,2,3,4) A1[1]

111 [1]

[1] 1

A1[1:3]

[1] 1 2 3

A1[-2]

[1] 1 3 4

Indexing II

Indexing a data frame:

```
A2 < -4:1
 AA \leftarrow cbind(A1, A2)
 AA[1,]
A1 A2
 1 4
 AA[,1]
[1] 1 2 3 4
 AA[1:3,2]
[1] 4 3 2
 AA[,-1]
[1] 4 3 2 1
```

Indexing III

Indexing an array

```
A3<-array(1:8,c(2,2,2))
АЗ
, , 1
    [,1] [,2]
[1,]
[2,] 2 4
, , 2
    [,1] [,2]
[1,] 5 7
[2,]
A3[,,2]
    [,1] [,2]
[1,]
[2,]
```

Indexing IV

Indexing a list

```
A4<-list(A1,c("Summer","Winter"))
A4
[[1]]
[1] 1 2 3 4
[[2]]
[1] "Summer" "Winter"
A4[[1]]
[1] 1 2 3 4
```

SEQUENCES


```
1:5
[1] 1 2 3 4 5
rep("A", times=10)
[1] "A" "A" "A" "A" "A" "A" "A" "A" "A"
rep(1:3, times=2, each=3)
[1] 1 1 1 2 2 2 3 3 3 1 1 1 2 2 2 3 3 3
seq(-5,5,by=2.5)
[1] -5.0 -2.5 0.0 2.5 5.0
```

RANDOM NUMBERS

Function	Distribution	Important parameter
runif()	Uniform distribution	n, min, max
rnorm()	Normal distribution	n, mean, sd
rpois()	Poisson distribution	n, lambda

IMPORTANT FUNCTIONS

OF THE {BASE}-PACKAGE

Function	Meaning	Example
length()	Length	length(x)
max()	Maximum	max(x)
min()	Minimum	min(x)
sd()	Standard deviation	sd(x)
<pre>var()</pre>	Variance	var(x)
mean()	Mean	mean(x)
<pre>median()</pre>	Median	median(x)

These functions do only need one argument Other functions need to be specified by further arguments:

quantile()	90% Quantile	quantile(x,.9)
<pre>sample()</pre>	Draw a sample	sample(x,1)

IMPORTANT FUNCTIONS

Function	Meaning	Example
length()	Length	length(x)
max()	Maximum	max(x)
min()	Minimum	min(x)
sd()	Standard deviation	sd(x)
<pre>var()</pre>	Variance	<pre>var(x)</pre>
mean()	Mean	mean(x)
<pre>median()</pre>	Median	median(x)

These functions do only need one argument Other functions need to be specified by further arguments:

```
quantile() 90% Quantile quantile(x,.9)
sample() Draw a sample sample(x,1)
```

R is a modular program with many functions included in basic
 R

IMPORTANT FUNCTIONS

Function	Meaning	Example
length()	Length	length(x)
max()	Maximum	max(x)
min()	Minimum	min(x)
sd()	Standard deviation	sd(x)
<pre>var()</pre>	Variance	var(x)
mean()	Mean	mean(x)
median()	Median	median(x)

These functions do only need one argument Other functions need to be specified by further arguments:

```
quantile() 90% Quantile quantile(x,.9)
sample() Draw a sample sample(x,1)
```

- R is a modular program with many functions included in basic
 R
- more specific functions are embedded in further packages

INSTALLING AND LOADING PACKAGES

install.package("sampling")

library(sampling) or require(sampling)

USEFUL PACKAGES

Library	Subject
foreign	reading and writing of data in
	numerous formats (e.gdta, .sav)
sampling	drawing and weighting samples
survey	analysis of complex survey samples
xlsx	read and write data in Excell-Format
xtable	export tables to LaTex and HTML
mice	multiple imputation by chain equation
reshape	alter structure of datasets
car	applied regressions
VIM	visualization and imputation of Missing Values
lattice	high-level data visualization
ggplot2	grammar for graphics in R

Basic Graphics

set.seed() is used to specify a
starting point

hist(x)

 \Rightarrow we will use 42 as seed-value for future exercises to obtain comparable results

THE BASIC sample FUNCTION

sample {base}

R Documentation

Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of ${\bf x}$ using either with or without replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

x: From what do we want to sample ?

sample (x=1:10, n=1, replace=T)

THE BASIC sample FUNCTION

sample {base}

R Documentation

Random Samples and Permutations

Description

 \mathtt{sample} takes a sample of the specified size from the elements of $\mathbf x$ using either with or without replacement.

Usage

 $\mathtt{sample}\,(\mathtt{x},\ \mathtt{size},\ \mathtt{replace}\ \mathtt{=}\ \mathtt{FALSE},\ \mathtt{prob}\ \mathtt{=}\ \mathtt{NULL})$

n: How many elements do we want to draw?

THE BASIC sample FUNCTION

sample {base}

R Documentation

Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of ${\bf x}$ using either with or without replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

Do we want to draw with or without replacement?


```
id <- 1:10000
 set_seed(42)
 education <- sample(c("none", "low", "average", "high"), 10000,
                      replace = T, prob = c(.072, .356, .289, .283))
gender <- sample(c("male", "female"), 10000,</pre>
                   replace = T, prob = c(.488, .512)
 iq <- rnorm(10000,100,20)
my.pop <- data.frame(id,gender,education,iq)</pre>
head(my.pop)
  id gender education
  1
       male
                 high 123.26218
2 2 male
                 none 96.19531
3
  3
       male
                  low 94.21088
                 high 92.02308
4 4 female
5
  5 male average 114.18485
6 6 male
              average 67.54705
```

SUMMARY OF THE DATASET


```
summary(my.pop)
      id
                  gender
                               education
                                                 iq
Min.
            1 female:5125
                             average:2851
                                            Min.
                                                  : 30.93
1st Qu.: 2501 male :4875
                             high
                                    :2820
                                            1st Qu.: 86.50
Median: 5000
                             low :3588
                                            Median :100.08
Mean
       : 5000
                             none : 741
                                                  :100.02
                                            Mean
3rd Qu.: 7500
                                            3rd Qu.:113.60
Max.
       :10000
                                            Max.
                                                  :173.26
prop.table(table(my.pop$gender,my.pop$education))
        average high
                         low
                               none
 female 0.1449 0.1465 0.1844 0.0367
 male 0.1402 0.1355 0.1744 0.0374
var(my.pop$iq)*(nrow(my.pop)-1)/nrow(my.pop)
[1] 406.1684
```



```
set.seed(42)
s.SRS <- sample(1:nrow(my.pop),500,replace=T)
s.SRSWOR <- sample(1:nrow(my.pop),500,replace=F)
my.samp.SRS <- my.pop[s.SRS,]
my.samp.SRSWOR <- my.pop[s.SRSWOR,]
summary(my.samp.SRS)</pre>
```

```
id
                gender
                          education
                                           iq
Min.
    : 3 female:257
                         average:132 Min. : 45.95
1st Qu.:2322 male :243
                         high :134
                                     1st Qu.: 85.38
Median:4804
                         low :192 Median :100.00
Mean
      :4896
                         none : 42 Mean
                                            : 99.60
3rd Qu.:7434
                                     3rd Qu.:113.20
                                     Max.
                                            :165.63
Max.
      :9966
nrow(unique(my.samp.SRS))
```

[1] 487


```
plot(density(my.pop$iq),main = "My first density plot"
+ , xlab = "IQ")
abline(v=mean(my.pop$iq), col = "black")
lines(density(my.samp.SRS$iq),col = "red",lwd=2)
lines(density(my.samp.SRSWOR$iq),col = "blue",lwd=2)
```

My first density plot

THE SAMPLING PACKAGE

THE SAMPLING PACKAGE

par(mfrow=c(1,2))

dev.off()

THE SAMPLING PACKAGE

par(mfrow=c(1,2))

dev.off()

- should yield same results
- ⇒ routine differs in "starting point"

WORKING DIRECTORY AND WORKSPACE

Declaring a working directory

```
path<-"H:/Sand_ Summerschool/Data Day1/"
setwd(path)</pre>
```

- It is always useful to define and set your working directory at the beginning of each script
- getwd() displays you your current working directory
- dir() shows you all objects in a specific directory
- ls() lists all objects in your workspace
- rm() removes a object from your workspace

Example:

```
rm(list = ls())
```

READING AND WRITING DATA

Writing/ saving data and results

```
write.table(my.pop,"Synthetic Data Day1.csv",
row.names = F, quote = F, dec = ".",sep = ",")
OR:
save(my.samp.SRS,s.SRS,my.samp.SRSWOR1,file = "Day1.Rdata")

$\Rightarrow$ See also: write.csv and write.csv2 (sep = ";")
```

Reading/ loading data and results

```
d1 <- read.table("Synthetic Data Day1.csv",
header = F, dec = ".",sep = ",")
OR:
load("Day1.Rdata")</pre>
```

Exercise 1

SAMPLE SIZES

- 1 Generate 1000 numbers from a exponential distribution
- 2 Draw three samples(n1=2,n2=10,n3=100)
- 3 Plot the density and add the means of the three samples as vertical lines

BELGIAN MUNICIPALITIES/ VARIANCE DECOMPOSITION

- 1 Load the dataset "belgianmunicipalities" from the sample-package using the data()-command
- 2 Inspect the structure of the dataset
- 3 Calculate mean and variance of the variable averageincome
- 4 Calculate the mean of each province for that variable, plot your results and add the mean of 3
- 5 Recalculate the mean of averageincome based on the means by province and compare your results
- 6 Make a boxplot of the variable averageincome for each province
- 7 Calculate the variance of averageincome using variance decomposition and compare it with 3
 - Advice: consider the dataset as the aggregates for the whole population and use the formula for the population variance