

Problem Description

Classify the Apple tree leaf whether the leaf is healthy or not?

Dataset Description

- The datasets have four classes. Healthy, multi-diseases,
 Scab, Rush
- Below is the class distribution bar chart

Sample Data

Chosen Model

- We chose an <u>open source model</u> which offer the state of the art performance in the leaderboard.
- Their proposed model was PyramidNet-200 & PreAct-ResNet18.
- They used Fmix augmentation method which bright them Remarkable performance.

Fmix Augmentation

Figure 1: Example mask and mixed images from ImageNet for FMix with $\delta = 3$ and $\lambda = 0.5$.

Training

- Trained the model for all four classes of the datasets.
- The performance was not good. It generated only 43% accuracy.
- Did some fine-tuning but it wasn't improved the performance.

Improvement

- Kato-san suggested me that we can consider all datasets into two classes.
- Healthy vs other three classes. It generated good performance but result was one sided biased.
- healthy vs other one. It generated 64.93% accuracy.

Evaluation Stats

Predicted

Actual

	Р	N
Р	95(TP)	70(FP)
N	46(FN)	77(TN)

- Accuracy = 64.93%
- Precision = TP/(TP+FP) = 0.67
- Recall = TP/(TP+FN) = 0.57

Sample Prediction

