Лекция 12

Корреляционный анализ, часть II: таблицы сопряжённости, критерий независимости хи-квадрат и коэффициент Крамера.

В прошлый раз

Мы рассмотрели коэффициенты корреляции Пирсона и Спирмена и научились с их помощью проверять гипотезу о независимости.

- ▶ коэффициент Пирсона измеряет тесноту линейной связи между количественными признаками;
- ▶ коэффициент Спирмена измеряет тесноту монотонной связи между количественными или порядковыми признаками.

Вопросы

- ▶ Как измерить тесноту связи между номинальными признаками?
- ▶ Как измерить тесноту немонотонной связи?

Напоминалка: независимость дискретных случайных величин

Дискретные с.в. X и Y независимы тогда и только тогда, когда

$$P(\lbrace X=x\rbrace \cap \lbrace Y=y\rbrace) = P(X=x)P(Y=y) \quad \forall x, y \in R$$

Пример. Проверим независимость с.в. X и Y , совместное распределение которых задано таблицей:

$X \setminus Y$	-1	0	1
0	0.1	0.2	0.2
2	0.1	0.3	0.1

Напоминалка: независимость дискретных случайных величин

Дискретные с.в. X и Y независимы тогда и только тогда, когда

$$P(\lbrace X=x\rbrace \cap \lbrace Y=y\rbrace) = P(X=x)P(Y=y) \quad \forall x, y \in R$$

Пример. Проверим независимость с.в. X и Y , совместное распределение которых задано таблицей:

$X \setminus Y$	-1	0	1	
0	0.1	0.2	0.2	→ 0.5
2	0.1	0.3	0.1	
	∀ 0.2			-

Проверим первую клетку (x=0, y=-1):

$$P({X=0} \cap {Y=-1}) = 0.1 = 0.5 \times 0.2$$
 => выполнено

Напоминалка: независимость дискретных случайных величин

Дискретные с.в. X и Y независимы тогда и только тогда, когда

$$P(\lbrace X=x\rbrace \cap \lbrace Y=y\rbrace) = P(X=x)P(Y=y) \quad \forall x, y \in R$$

Пример. Проверим независимость с.в. X и Y , совместное распределение которых задано таблицей:

$X \setminus Y$	-1	0	1	
0	0.1	0.2	0.2	→ 0.5
2	0.1	0.3	0.1	
	V	V		
	0.2	0.5		

Проверим первую клетку (x=0, y=-1):

$$P({X=0} \cap {Y=-1}) = 0.1 = 0.5 \times 0.2$$
 => выполнено.

Идём дальше (x=0, y=0):

$$P(\{X=0\}\cap \{Y=0\}) = 0.2 \neq 0.5 \times 0.5$$
 => не выполнено.

Значит, X и Y не независимы.

Таблица сопряжённости

Выборка
$$(X_1, Y_1), ..., (X_n, Y_n)$$
.

Конечное число возможных значений:

$$X_i \sim \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ p_1 & p_2 & \dots & p_r \end{pmatrix}; \quad Y_i \sim \begin{pmatrix} y_1 & y_2 & \dots & y_s \\ q_1 & q_2 & \dots & q_s \end{pmatrix}.$$

Совместное распределение в выборке можно представить в виде таблицы:

$X \setminus Y$	y_1	y ₂	•••	y_s	Σ
<i>X</i> ₁	O_{11}	O_{12}	•••	O_{1s}	R_1
<i>X</i> ₂	O_{21}	O_{22}	•••	O_{2s}	R_2
•••			•••	•••	
X _r	O_{r1}	O_{r2}	•••	O_{rs}	R_r
Σ	C_1	C_2	•••	C_{s}	n

 O_{ij} — наблюдаемые частоты

Таблица сопряжённости

Выборка
$$(X_1, Y_1), ..., (X_n, Y_n)$$
.

Конечное число возможных значений:

$$X_i \sim \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ p_1 & p_2 & \dots & p_r \end{pmatrix}; \quad Y_i \sim \begin{pmatrix} y_1 & y_2 & \dots & y_s \\ q_1 & q_2 & \dots & q_s \end{pmatrix}.$$

Совместное распределение в выборке можно представить в виде таблицы:

$X \setminus Y$	y_1	y ₂	•••	y_s	Σ
<i>X</i> ₁	O_{11}	O_{12}	•••	O_{1s}	R_1
<i>X</i> ₂	O_{21}	O_{22}	•••	O_{2s}	R_2
•••			•••	•••	
X _r	O_{r1}	O_{r2}	•••	O_{rs}	R_r
Σ	C_1	C_2	•••	C_{s}	n

 O_{ij} — наблюдаемые частоты

Пример: распределение шведских призывников 1926 г по цвету волос и бровей:

цвет бровей \ цвет волос	светлые или рыжие	темные	Σ
светлые или рыжие	30 472	3 238	33 710
темные	3 364	9 468	12 832
Σ	33 836	12 706	46 542

Критерий независимости хи-квадрат

Выборка из i.i.d. пар $(X_1, Y_1), ..., (X_n, Y_n)$ с распределением

$$X_i \sim \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ p_1 & p_2 & \dots & p_r \end{pmatrix}; \quad Y_i \sim \begin{pmatrix} y_1 & y_2 & \dots & y_s \\ q_1 & q_2 & \dots & q_s \end{pmatrix}.$$

Гипотезы:

 H_0 : X_i и Y_i независимы

 $\mathbf{H}_{\mathbf{A}}$: X_i и Y_i зависимы

Идея критерия: сравнивать наблюдаемые и ожидаемые частоты.

наблюдаемые частоты

$X \setminus Y$	<i>y</i> ₁	y ₂	•••	y_s	Σ
<i>X</i> ₁	O_{11}	O_{12}		O_{1s}	R_1
<i>X</i> ₂	O_{21}	O_{22}		O_{2s}	R_2
•••					
X_r	O_{r1}	O_{r2}	•••	O_{rs}	R_r
Σ	C_1	C_2	•••	C_{s}	n

ожидаемые частоты

$X \setminus Y$	y_1	y ₂	•••	y_s	Σ
<i>X</i> ₁					R_1
<i>X</i> ₂		23))		R_2
•••					
X_r					R_r
Σ	C_1	C_2		C_{s}	n

Ожидаемые частоты в критерии независимости

$X \setminus Y$	y_1	y ₂	•••	y s	Σ
<i>X</i> ₁					R_1
<i>X</i> ₂		23))		R_2
•••					
X_r					R_r
Σ	C_1	C_2	•••	C_{s}	n

Оценим частные распределения X и Y:

$$\hat{p}_i = \hat{P}(X = x_i) = \frac{R_i}{n}$$

$$\hat{q}_j = \hat{P}(Y = y_j) = \frac{C_j}{n}$$

Оценка вероятности попасть в отдельную клетку:

$$\hat{P}(\{X=x_i\}\cap\{Y=y_j\}) = \hat{p}_i\hat{q}_j = \frac{R_iC_j}{n^2}$$

Ожидаемая частота:

$$E_{ij} = n \cdot \frac{R_i C_j}{n^2} = \frac{R_i C_j}{n}$$

Критерий независимости хи-квадрат

Выборка из i.i.d. пар $(X_1, Y_1), ..., (X_n, Y_n)$ с распределением

$$X_i \sim \begin{pmatrix} x_1 & x_2 & \dots & x_r \\ p_1 & p_2 & \dots & p_r \end{pmatrix}; \quad Y_i \sim \begin{pmatrix} y_1 & y_2 & \dots & y_s \\ q_1 & q_2 & \dots & q_s \end{pmatrix}. \quad p_i > 0, \quad i = 1, \dots, r$$

Гипотезы:

 H_0 : X_i и Y_i независимы

 H_{Δ} : X_i и Y_i зависимы

Статистика:

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} \underset{\text{asy}}{\overset{\mathrm{H}_{0}}{\approx}} \chi^{2}_{(r-1)(s-1)}$$

Решающее правило:

$$\chi^2 > \chi^2_{(r-1)(s-1),\alpha} \,$$
 => H_0 отвергается в пользу H_A , выявлена связь между признаками

$$\chi^2 < \chi^2_{(r-1)(s-1),\alpha} =>$$
 нет оснований отвергнуть H_0 , связь не выявлена.

это разные і

Результаты обследования стоп у 40 мужчин и 87 женщин правшей*:

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

Проверим гипотезу о независимости пола и соотношения размеров стоп на уровне 1%.

^{*} Levy J., Levy J.M. (1978). Human Lateralization from Head to Foot: Sex-Related Factors. *Science*, 200(4347): 1291–1292.

Результаты обследования стоп у 40 мужчин и 87 женщин правшей*:

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

Проверим гипотезу о независимости пола и соотношения размеров стоп на уровне 1%.

Ожидаемые частоты:

$$E_{11} = \frac{40 \times 57}{127} = 17.95;$$
 $E_{12} = \frac{40 \times 28}{127} = 8.82;...$

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	17.95	8.82	13.23	40
Женский	39.05	19.18	28.77	87
Σ	57	28	42	127

^{*} Levy J., Levy J.M. (1978). Human Lateralization from Head to Foot: Sex-Related Factors. *Science*, 200(4347): 1291–1292.

Результаты обследования стоп у 40 мужчин и 87 женщин правшей*:

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

Проверим гипотезу о независимости пола и соотношения размеров стоп на уровне 1%.

Ожидаемые частоты:

$$E_{11} = \frac{40 \times 57}{127} = 17.95;$$
 $E_{12} = \frac{40 \times 28}{127} = 8.82; ...$

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	17.95	8.82	13.23	40
Женский	39.05	19.18	28.77	87
Σ	57	28	42	127

Статистика:
$$\chi^2 = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = \frac{(2 - 17.95)^2}{17.95} + \frac{(10 - 8.82)^2}{8.82} + \dots + \frac{(14 - 28.77)^2}{28.77} = 45$$

Результаты обследования стоп у 40 мужчин и 87 женщин правшей*:

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

Проверим гипотезу о независимости пола и соотношения размеров стоп на уровне 1%.

Ожидаемые частоты:

$$E_{11} = \frac{40 \times 57}{127} = 17.95; \quad E_{12} = \frac{40 \times 28}{127} = 8.82; \dots$$

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	17.95	8.82	13.23	40
Женский	39.05	19.18	28.77	87
Σ	57	28	42	127

Статистика:
$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = \frac{(2 - 17.95)^2}{17.95} + \frac{(10 - 8.82)^2}{8.82} + ... + \frac{(14 - 28.77)^2}{28.77} = 45$$

$$\chi^2_{(r-1)(s-1),\alpha} = \chi^2_{(2-1)(3-1),0.01} = 9.21$$

Вывод: $\chi^2 > 9.21$ => гипотеза о независимости отвергается, связь есть.

Заметьте

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

Проверим гипотезу о независимости пола и соотношения размеров стоп на уровне 1%.

Основную гипотезу (независимость пола и соотношения стоп) можно было сформулировать иначе:

- ▶ Распределение правшей по соотношению стоп одинаково среди мужчин и женщин.
- ► Доли женщин среди «левоногих», «равноногих» и «правоногих» совпадают.

Критерием хи-квадрат можно проверять совпадение распределений в разных выборках!

Остатки

«Сырые» остатки (raw residuals): $e_{\it ij} = O_{\it ij} - E_{\it ij}$

Пол \ соотношение стоп	L > R	L = R	L < R
Мужской	-15.95	1.18	14.77
Женский	15.95	-1.18	-14.77

Остатки

«Сырые» остатки (raw residuals): $e_{ij} = O_{ij} - E_{ij}$

Пол \ соотношение стоп	L > R	L = R	L < R
Мужской	-15.95	1.18	14.77
Женский	15.95	-1.18	-14.77

Стандартизованные остатки, или остатки Пирсона: $e_{ij}^* = -\frac{C}{C}$ (standardized residuals, Pearson residuals)

Женский

Пол \ соотношение стоп

$$L > R$$
 $L = R$
 $L < R$

 Мужской
 -3.76
 0.40
 4.06

2.55

-0.27

-2.75

Иногда стандартизованным остатком называют чуть более сложную штуку.

Коэффициент Крамера

$$V = \sqrt{\frac{\chi^2}{n \min(r-1, s-1)}}$$

Пол \ соотношение стоп	L > R	L = R	L < R	Σ
Мужской	2	10	28	40
Женский	55	18	14	87
Σ	57	28	42	127

$$V = \sqrt{\frac{45}{127 \times \min(2-1, 3-1)}} = 0.595$$

Коэффициент Крамера для шведских призывников

$$V = \sqrt{\frac{\chi^2}{n \min(r-1, s-1)}}$$

цвет бровей \ цвет волос	светлые или рыжие	темные	Σ
светлые или рыжие	30 472	3 238	33 710
темные	3 364	9 468	12 832
Σ	33 836	12 706	46 542

$$V = 0.644$$

Когда
$$V = 1$$
?

Либо каждому значению X соответствует только оно значение Y, либо наоборот:

$X \setminus Y$	y_1	y_2
x_1	0	100
x_2	50	0

$X \setminus Y$	y_1	y_2	y_3
x_1	0	100	50
x_2	50	0	0

A тут
$$V = 0$$
:

$X \setminus Y$	y_1	y_2
x_1	10	50
x_2	40	200

Критерий независимости хи-квадрат и коэффициент Крамера пригодны для выявления любого вида статистической связи.

Зачем тогда нужно что-то ещё?

Применимость коэффициентов корреляции к разным типам признаков

	количественные	порядковые	номинальные
<i>r</i> Пирсона	да	нет	нет
<i>r</i> ^s Спирмена	да	да	нет
V Крамера	да	да	да

Тут стоит сделать уточнение...

Уточнение: двоичные признаки

$X \setminus Y$	y_1	y_2
x_1	a	b
x_2	С	d

Упражнение 1. Докажите равенства:

$$r_{X,Y} = r_{X,Y}^{S}$$
 $V = |r_{X,Y}| = |r_{X,Y}^{S}|$

Упражнение 2 (разогрев). Докажите, что

$$r_{X,Y} = \frac{ad - bc}{\sqrt{(a+b)(b+d)(a+c)(c+d)}}.$$

Мораль: для двоичных признаков имеет смысл обычный коэффициент корреляции.

В отличие от V Крамера, он показывает направление связи.

Тест на равенство медиан

Независимые выборки:

$$\left. egin{array}{c} X_1, X_2, \ldots, X_{n_{\scriptscriptstyle X}} \ Y_1, Y_2, \ldots, Y_{n_{\scriptscriptstyle Y}} \end{array}
ight.
ight.$$
 все независимы

У всех X_i совпадают медианы, и у всех Y_i совпадают медианы.

Гипотезы:

$$H_0: \operatorname{Med}(X_i) = \operatorname{Med}(Y_i)$$

$$H_A: \operatorname{Med}(X_i) \neq \operatorname{Med}(Y_i)$$

Тест на равенство медиан

Независимые выборки:

$$\left. egin{array}{c} X_1, X_2, \ldots, X_{n_X} \ Y_1, Y_2, \ldots, Y_{n_Y} \end{array}
ight.
ight.$$
 все независимы

У всех X_i совпадают медианы, и у всех Y_i совпадают медианы.

Гипотезы:

$$H_0$$
: Med (X_i) = Med (Y_i)
 H_A : Med (X_i) \neq Med (Y_i)

- Алгоритм. 1) Ищем выборочную медиану по объединённым данным $X_1, \dots, X_{n_{\scriptscriptstyle X}}, Y_1, \dots, Y_{n_{\scriptscriptstyle Y}}$
 - 2) Составляем таблицу:

Выборка \ Значение	< общей медианы	> общей медианы
Выборка Х	O_{11}	O_{12}
Выборка Ү	O_{21}	O_{22}

3) Применяем критерий независимости хи-квадрат.

Пример

Оценки за контрольную по статистике: 95 юношей и 20 девушек.

Проверим гипотезу о равенстве медиан для юношей и девушек.

Общая медиана: 23 балла из 36.

Таблица сопряжённости:

Пол \ Оценка	< 23	≥23	Σ
девушки	7	13	20
юноши	49	46	95
Σ	56	59	115

Пример

Оценки за контрольную по статистике: 95 юношей и 20 девушек.

Проверим гипотезу о равенстве медиан для юношей и девушек.

Общая медиана: 23 балла из 36.

Таблица сопряжённости:

Пол \ Оценка	< 23	≥ 23	Σ
девушки	7	13	20
юноши	49	46	95
Σ	56	59	115

Статистика: $\chi^2 = 1.82$.

Критическое значение: $\chi^2_{1,0.05} = 3.84$.

Вывод: $\chi^2 < 3.84$ => нет оснований отвергнуть гипотезу о равенстве медиан.

Пример

Оценки за контрольную по статистике: 95 юношей и 20 девушек.

Проверим гипотезу о равенстве медиан для юношей и девушек.

Общая медиана: 23 балла из 36.

Таблица сопряжённости:

Пол \ Оценка	< 23	≥ 23	Σ
девушки	7	13	20
юноши	49	46	95
Σ	56	59	115

Статистика: $\chi^2 = 1.82$.

Критическое значение: $\chi^2_{1,0.05} = 3.84$.

Вывод: $\chi^2 < 3.84$ => нет оснований отвергнуть гипотезу о равенстве медиан.

Замечание. Критерий можно использовать для:

▶ сравнения более двух выборок;

▶ сравнения различных квантилей.

Подытожим

- ► Совместное распределение дискретных признаков представимо в виде таблицы сопряжённости.
- ► Проверить гипотезу о независимости можно критерием χ^2 .
- ightharpoons Измерить тесноту связи можно коэффициентом Крамера V.

- ▶ Критерием хи-квадрат можно проверить
 - совпадение распределений в нескольких совокупностях;
 - совпадение квантилей в нескольких совокупностях.

Следующая лекция

Регрессионный анализ. Ядерная оценка регрессии. Метод наименьших квадратов.