Text Mining and Language Analytics

Lecture 4

Word embeddings I

Dr Stamos Katsigiannis 2023-24

What do words mean?

We can check a dictionary!

- Sense/concept
 - The meaning component of a word

Senses

 There are relations between senses across different words

Word relations in terms of sense

- Synonymy → Same meaning in some or all contexts
 - couch/sofa, automobile/car, bike/bicycle
- Antonymy → Opposites with respect to one feature of meaning
 - Define binary opposition or be at opposite ends of a scale
 - Be reversives

University

- long/short, fast/slow, dark/light, rise/fall, up/down
- Similarity → Similar meanings. Not synonyms but sharing some element of meaning
 - car/bicycle, cow/horse, pencil/pen
- Relatedness → Related in any way, perhaps via a semantic frame or field
 - car/gasoline, hospital/doctor
- Connotation → Words have affective meanings
 - Positive connotations (e.g. happy), Negative connotations (e.g. sad)

Word relations: Semantic field

语意领域

- Words belong to the same semantic field when they:
 - Cover a particular semantic domain
 - Bear structured relations with each other
- Examples:
 - Universities
 - Lecturer, professor, student, college, university, faculty
 - Restaurants
 - Waiter, menu, food, dish, chef, plate, table, order
 - Houses
 - Bed, door, window, kitchen, family, garden, roof
 - Hospitals
 - Nurse, doctor, bed, surgeon, anaesthetic, hospital

Word relations: Superordinate/Subordinate (I)

上级/下级

- A sense is subordinate of another if the first sense is more specific, denoting a subclass of the other
 - horse is a subordinate of animal
 - train is a subordinate of vehicle
- A sense is superordinate of another if the first is more broad, denoting a superclass of the other
 - animal is superordinate of horse
 - vehicle is superordinate of train

Example:

Superordinate	animal	vehicle	furniture	fruit	tool	material	colour
Subordinate	horse	train	table	apple	wrench	metal	red

Word relations: Superordinate/Subordinate (II)

- Levels are not symmetric!
- One level of category is distinguished from the others → Basic level

Word relations: Superordinate/Subordinate (III)

- Basic level things are "human-sized"
 - Distinctive actions
 - Learned earliest in childhood
 - Names are shorter
 - Names are most frequent
- For example, consider chairs:
 - We know how to interact with a chair (sit/stand up)
 - Not so clear for superordinate categories like furniture
 - Try to imagine a furniture without thinking of a basic level category (e.g. bed, table, chair, sofa, etc.)

Senses/Concepts

Concepts or Word Senses

- Have a complex many-to-many association with words
 - Multiple senses per word
 - Multiple words with the same sense
- Have relations with each other
 - Synonymy
 - Antonymy
 - Similarity
 - Relatedness
 - Connotation
 - Superordinate/subordinate

How to define a sense/concept?

- Word meaning → A concept defined by necessary and sufficient conditions 必要条件
- Necessary condition for being X → Condition C that X must satisfy in order to be an X
 - If not C then not X 充分条件
- Sufficient condition for being $X \to Condition C$ that if something satisfies it then it must be an X
 - If and only if C, then X

正方形

- Think about conditions for X being a square:
 - "X has four sides" is necessary to be square
 - The following necessary conditions jointly are sufficient to be square
 - "X has exactly four sides"
 - "Each of X's sides is straight"
 - "X is a closed figure"
 - "X lies in a plane"
 - "Each of X's sides is equal in length to each of the others"
 - "Each of X's interior angles is equal to the others"
 - "The sides of X are joined only at their ends"

Features

Consider conditions as features that describe a word

Problem:

- Features are complex
- Features may be context-dependent

A cup is used for tea and is smaller. A Mug is used for coffee or chocolate and is thicker.

Category depends on complex features

When does a cup start being a bowl?

Category depends on the context

When does a cup start being a bowl?

Word representation

- We can represent words as numerical vectors
- Consider a vocabulary $V=\{w_1, w_2, w_3, ...\}$
- w_i can be represented by a vector of |V| elements, with all elements being 0 and the ith element being 1
- Words are now represented by a vector in a | V | -dimensional space
- Such vector is called an embedding because it's embedded into a space $$_{\mbox{\tiny \BM}\lambda}$$

Embeddings and word relations (I)

- Do word embeddings encode relations between words?
- <u>Ideally</u>, similar and related words should be closer in space than unrelated words

Embeddings and word relations (II)

Male-Female

Verb tense

Country-Capital

Ideally:

vector[king] - vector[queen] ≈ vector(man) - vector(woman)

vector[walking] - vector[walked] ≈ vector[swimming] - vector[swam]

vector[UK] - vector[London] ≈ vector[Japan] - vector[Tokyo]

Similarity between embeddings

- How to measure similarity between embeddings?
- Distance between vectors can be used!
- Cosine distance typically used for word similarity
 - Calculates the cosine of the angle between two vectors

$$\cos(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{\sum_{i=1}^{N} a_i b_i}{\sqrt{\sum_{i=1}^{N} a_i^2} \cdot \sqrt{\sum_{i=1}^{N} b_i^2}}$$

Cosine similarity metric

- Remember from linear algebra
 - Dot-product of $(\vec{a}, \vec{b}) \rightarrow \vec{a} \cdot \vec{b} = \sum_{i=1}^{N} a_i b_i = a_1 b_1 + a_2 b_2 + \ldots + a_N b_N$
 - Vector length of $\vec{a} \rightarrow |\vec{a}| = \sqrt{\sum_{i=1}^N a_i^2}$
- Cosine value:
 - -1 → Vectors point in opposite directions
 - 1 → Vectors point in same direction
 - 0 → Vectors are orthogonal

For word vectors:

The closer to +1 the more similar the words

Embeddings: One-Hot encoding

- Problem with One-Hot encoding: Distance between words always the same
- Vocabulary: {car, dog, aeroplane, test}:

```
car
dog
aeroplane
test
(1,0,0,0)
(0,1,0,0)
(0,0,1,0)
(0,0,0,1)
```

```
Example
```

- All vectors are orthogonal $\rightarrow \cos(\vec{a}, \vec{b}) = 0$
 - cos(car, dog) = 0, cos(dog, aeroplane) = 0, cos(dog, test) = 0, ...
- What if we use a different distance metric?
 - Euclidean distance \rightarrow Always equal to $\sqrt{2}$ Manhattan distance \rightarrow Always equal to 2

Euclidean distance
$$Euclidean(\vec{a},\vec{b}) = \sqrt{(a_1-b_1)^2 + (a_2-b_2)^2 + \ldots + (a_N-b_N)^2}$$

Manhattan distance $Manhattan(\vec{a}, \vec{b}) = |a_1 - b_1| + |a_2 - b_2| + ... + |a_N - b_N|$

Embeddings: Word context

单词上下文

• "You shall know a word by the company it keeps" (J.R. Firth, 1957)

John R. Firth 1890-1960

- Words typically exist within a context
 - e.g. The probability of the word dog appearing within a text about animals is much higher than the probability of the word transistor appearing in the same text
 - e.g. The probability that the word bed would be close to the word sleep is higher than being close to the word stadium
- Context can be:
 - A text
 - A sentence
 - Neighbouring words

Embeddings: Word-Word matrix

- Consider the following text: I like playing football. I enjoy sports. Do I enjoy football?
- Consider the context of a word as the 1 previous and the 1 following word within a sentence

Context

- Word-Word matrix → Frequency (TF) of each pair of words within the context
 - Usually TF-IDF used to avoid bias of very frequent words (e.g. I, the, it, ...)

Also known as:
Co-occurrence matrix

W	0	r	d

	1	like	playing	football	enjoy	sports	Do
1	0	1	0	0	2	0	1
like	1	0	1	0	0	0	0
playing	0	1	0	1	0	0	0
football	0	0	1	0	1	0	0
enjoy	2	0	0	1	0	1	0
sports	0	0	0	0	1	0	0
Do	1	0	0	0	0	0	0

	WOIG VCCIOI
I	\rightarrow (0, 1, 0, 0, 2, 0, 1)
like	\rightarrow (1,0,1,0,0,0,0)
playing	\rightarrow (0, 1, 0, 1, 0, 0, 0)
football	\rightarrow (0,0,1,0,1,0,0)
enjoy	\rightarrow (2,0,0,1,0,1,0)
sports	\rightarrow (0,0,0,0,1,0,0)
Do	\rightarrow (1,0,0,0,0,0,0)

Word vector

Embeddings: TF

Words cherry, information and digital projected on the computer and pie dimensions:

cosine (information, digital) < cosine (information, cherry)

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Co-occurrence matrix for four words in the Wikipedia corpus

Dimension 2: 'computer'

Questions?

