Sipsor 63-65

base
$$\begin{cases} \alpha \in \mathbb{Z} & \text{(short for } \{a\}) \\ \varepsilon & \text{(short for } \{E\}) \end{cases}$$
cases $\begin{cases} \mathcal{E} & \text{(short for } \{E\}) \\ \text{(short for } \{\}\} \end{cases}$
inductive $\begin{cases} R_1 \cup R_2 \\ R_1 R_2 \quad \text{(short for } R_1 \circ R_2) \\ R_1 \end{cases}$

inductive
$$\begin{cases} R_1 & Q & R_2 \\ R_1 & R_2 \end{cases}$$
 (short for $R_1 \circ R_2$)

and:
$$R^{+} := RR^{+}$$

If $S = \{a,b,c\}$, S (as a seg exp) $:= (a \cup b \cup c)$
 $R^{+} = RRR ...R$
 $K + times$
 $K = \{a,b,c\}$, $K = \{a,b,c\}$

= (0U1)(0U1)(0U1)*

$$0 \times 10^{*}$$

$$0 \times$$

$$(O \cup E)(1 \cup E)$$

= $\{01, 06, E1, EE\}$
= $\{01, 0, 1, E\}$

$$\frac{(O \cup 1) \varnothing = \varnothing}{\text{pick something concateul}} = \frac{\varnothing^* = \{\epsilon\}.}{\text{ton catenate zero or more things}}$$
in $\{0,1\}$ something in the set $\{\}$