NMR – Nukleární Magnetická Rezonance

Chemický posun a intenzita, počet signálů

Úvod

- Cílem prezentace není výklad principů NMR, ale pouze pokrýt rozsah učiva probíraného na semináři C1605.
- Principy NMR můžete najít např. v prezentacích na následujících odkazech:
 - C5965 Vybrané analytické metody v chemii konzervování-restaurování
 - C7998 Základy experimentální NMR spektroskopie

Úvod

- NMR studuje interakci atomových jader s radiofrekvenčním zářením v magnetickém poli.
- Aby bylo jádro NMR aktivní, musí mít nenulový jaderný spin.
- Jaderný spin získáme jako součet spinů nukleonů v jádře.
- \bullet Jádra s nulovým spinem, např. $^{12}\mathrm{C},~^{16}\mathrm{O},~^{32}\mathrm{S}$ jsou pro NMR nepoužitelná.
- Nejvhodnější jsou jádra se spinem $\frac{1}{2}$, např. 1 H, 13 C, 19 F a 31 P.
- Jádra s větším spinem lze také měřit, ale zpravidla poskytují výrazně širší signály, jde např. o ¹⁴N, ²⁷Al nebo ³⁵Cl.

Chemický posun a intenzita

- Izolovaná jádra stejného izotopu budou v magnetickém poli rezonovat při stejné frekvenci.
- Pokud uvažujeme molekuly, je každé jádro ovlivněno také lokálními magnetickými poli, které jsou generovány vazebnými elektrony. Tím dochází ke změně rezonanční frekvence daného jádra.
- ullet Změna je dána tzv. *chemickým okolím* pozorovaného jádra a nazývá se *chemický posun*. Označuje se δ a je dán vztahem:

$$\delta = \frac{\nu - \nu_{TMS}}{\nu}$$

- Chemický posun je bezrozměrný, jelikož se jedná o velmi malé hodnoty, udává se v ppm.
- Chemický posun je, na rozdíl od rezonanční frekvence, nezávislý na hodnotě vnějšího magnetického pole.

4 / 12

Chemický posun a intenzita

- Intenzita (přesněji integrální intenzita) je přímo úměrná zastoupení jader ve vzorku.
- Např. spektrum ethanolu (CH₃-CH₂-OH) bude obsahovat tři signály v poměru intenzit 3:2:1.
- Na obrázku vidíme tři skupiny signálů, štěpení je způsobeno tzv. spin-spinovou interakcí, kterou ale v tomtu kurzu nebudeme řešit.

- Během NMR experimentu měříme signály zvoleného jádra.
- Počet signálů odpovídá počtu chemicky neekvivalentních jader ve studovaném vzorku.
- Pro ¹H NMR spektrum ethanolu to tedy budou tři signály:
 - CH₃
 - CH₂
 - OH

Butan

- Chemicky neekvivalentní jsou jádra, jejichž chemické okolí se liší.
- To znamená, že uspořádání chemických vazeb a okolních atomů/skupin je různé.
- Pokud je možné jádra zaměnit některou z operací symetrie, jde o jádra chemicky ekvivalentní.
- Např. v molekule butanu máme dva typy vodíků: CH₃ a CH₂.
- Vazbu mezi CH₂ skupinami půlí zrcadlová rovina a dvojčetná rotační osa, díky kterým jsou obě CH₃ a CH₂ skupiny ekvivalentní.
- Butan tedy poskytne v ¹H i ¹³C NMR dvojici signálů.

$$H_3C$$
 — CH_2 — CH_2 — CH_3

Počet signálů Diethylether

- V případě diethyletheru je situace prakticky stejná.
- Molekula má zrcadlovou rovinu i rotační osu, která nám opět ztotožňuje CH₃ a CH₂ skupiny.
- Diethylether tedy poskytne v ¹H i ¹³C NMR dvojici signálů.
- V případě ¹H NMR bude poměr integrálních intenzit 6:4 neboli 3:2.

$$H_3C-CH_2-O-CH_2-CH_3$$

Ethylester kyseliny octové

- V případě ethylesteru kyseliny octové je situace odlišná.
- V molekule máme tři typy protonů: dvě CH₃ skupiny a jednu CH₂
 a čtyři typy uhlíků, kromě dříve zmíněných ještě uhlík esterové skupiny.
- Jelikož molekula nemá žádnou operaci symetrie, která by skupiny ztotožňovala bude obsahovat ¹H NMR spektrum tři signály a ¹³C NMR čtyři signály.
- Poměr intenzit signálů v ¹H NMR spektru bude 3:2:3.

1,2,3-trifluorbenzen

- Molekula má zrcadlovou rovinu, která zaměňuje červené fluory a vodíky v poloze meta.
- ¹H NMR spektrum bude tedy obsahovat dva signály v poměru intenzit 2:1.
- ¹⁹F NMR spektrum bude obsahovat také dva signál v poměru intenzit 2:1.
- ¹³C NMR spektrum bude obsahovat čtyři signály, jeden od CF skupiny (černé), jeden od červených CF skupin, třetí od CH skupin v poloze meta a čtvrtý od CH skupiny v poloze para.

1-chlor-3,5-difluorbenzen

- ¹H NMR spektrum bude obsahovat dva signály v poměru 2:1, intenzivnější signál od protonů v *ortho* poloze vůči chloru a druhý od protonu v *para* poloze.
- ¹³C NMR spektrum bude obsahovat celkem čtyři signály, první od uhlíku nesoucího Cl atom, a další od uhlíků v polohách ortho, meta a para.
- ¹⁹F NMR spektrum bude obsahovat jeden signál.

11 / 12

K procvičení

Vaše řešení mi můžete zaslat na mail ke kontrole – hugo@chemi.muni.cz. Určete počet a intenzity signálů v 1 H, 13 C, 19 F a 31 P NMR spektrech.