LDA QDA-Exercises

December 6, 2018

0.1 Exercise 1

- Try lda with all Lag variables.
- Make a quick comparison between logistic regression and lda.
- Try with qda and compare all three methods. Plot the results.

Probaremos a ejecutar lda con todos los lag, aunque en primer lugar haremos un estudio para probar la normalidad de las muestras y si tienen varianzas similares.

qqnorm(y = Smarket\$Lag5)
qqline(y = Smarket\$Lag5)

Más o menos podemos apreciar que todos siguen una distribución normal. Ahora comprobaremos las varianzas.

1.29664442448359 1.29680562160128 1.31687148397502

Como podemos observamos tienen una varianza similar los distintos predictores, aunque el Lag5 es el predictor en el que más difiere la varianza. Ahora aplicaremos LDA.

```
Prior probabilities of groups:
Down Up
0.491984 0.508016
```

Group means:

 Lag1
 Lag2
 Lag3
 Lag4
 Lag5

 Down
 0.04279022
 0.03389409
 -0.009806517
 -0.010598778
 0.0043665988

 Up
 -0.03954635
 -0.03132544
 0.005834320
 0.003110454
 -0.0006508876

Coefficients of linear discriminants:

LD1

Lag1 -0.63046918

Lag2 -0.50221745

Lag3 0.10142974

Lag4 0.09725317

Lag5 -0.03685767

In [17]: plot(lda.fit, type="both", xlab = "LD1", ylab = "Normalizedc frequency") # xlab and ylab and ylab # xlab and ylab # xlab # xlab

Ahora predeciremos los datos a partir del modelo ajustado.

'list'

\$class 1. Up 2. Up 3. Up 4. Up 5. Up 6. Up 7. Up 8. Up 9. Up 10. Up 11. Up 12. Down 13. Up 14. Up 15. Up 16. Up 17. Up 18. Down 19. Up 20. Up 21. Up 22. Down 23. Down 24. Up 25. Down 26. Down 27. Up 28. Up 29. Up 30. Down 31. Down 32. Up 33. Up 34. Up 35. Up 36. Up 37. Up 38. Down 39. Down 40. Up 41. Up 42. Up 43. Up 44. Down 45. Down 46. Up 47. Up 48. Up 49. Up 50. Up 51. Up 52. Up 53. Up 54. Up 55. Up 56. Up 57. Up 58. Up 59. Up 60. Up 61. Down

62. Down 63. Up 64. Up 65. Down 66. Down 67. Down 68. Up 69. Up 70. Down 71. Up 72. Up 73. Up 74. Up 75. Down 76. Up 77. Down 78. Down 79. Up 80. Up 81. Up 82. Up 83. Up 84. Down 85. Up 86. Down 87. Down 88. Up 89. Up 90. Up 91. Up 92. Up 93. Up 94. Down 95. Down 96. Down 97. Down 98. Up 99. Up 100. Up 101. Up 102. Up 103. Down 104. Up 105. Up 106. Down 107. Up 108. Up 109. Up 110. Up 111. Up 112. Up 113. Up 114. Up 115. Up 116. Up 117. Down 118. Up 119. Up 120. Up 121. Up 122. Up 123. Up 124. Down 125. Down 126. Up 127. Up 128. Down 129. Up 130. Up 131. Down 132. Down 133. Up 134. Up 135. Up 136. Up 137. Up 138. Up 139. Down 140. Up 141. Up 142. Up 143. Up 144. Up 145. Down 146. Up 147. Up 148. Down 149. Down 150. Up 151. Up 152. Up 153. Down 154. Up 155. Up 156. Up 157. Up 158. Up 159. Up 160. Up 161. Up 162. Up 163. Up 164. Up 165. Up 166. Up 167. Up 168. Up 169. Down 170. Down 171. Up 172. Down 173. Down 174. Up 175. Up 176. Down 177. Up 178. Up 179. Up 180. Down 181. Up 182. Up 183. Up 184. Up 185. Up 186. Up 187. Up 188. Up 189. Down 190. Down 191. Up 192. Up 193. Up 194. Up 195. Up 196. Up 197. Up 198. Up 199. Up 200. Down 201. Down 202. Up 203. Up 204. Up 205. Up 206. Down 207. Down 208. Up 209. Up 210. Down 211. Down 212. Up 213. Up 214. Down 215. Up 216. Up 217. Up 218. Up 219. Down 220. Down 221. Up 222. Up 223. Up 224. Down 225. Down 226. Down 227. Down 228. Down 229. Up 230. Up 231. Up 232. Up 233. Down 234. Down 235. Up 236. Up 237. Up 238. Up 239. Up 240. Up 241. Up 242. Down 243. Up 244. Up 245. Up 246. Up 247. Up 248. Down 249. Up 250. Up 251. Up 252. Up

Levels: 1. 'Down' 2. 'Up'

		Down	Up
	999	0.4883105	0.5116895
	1000	0.4798093	0.5201907
	1001	0.4671632	0.5328368
	1002	0.4761685	0.5238315
	1003	0.4970100	0.5029900
	1004	0.4964641	0.5035359
	1005	0.4941381	0.5058619
	1006	0.4865417	0.5134583
	1007	0.4905456	0.5094544
	1008	0.4848967	0.5151033
	1009	0.4914164	0.5085836
	1010	0.5124976	0.4875024
	1011	0.4902899	0.5097101
	1012	0.4666312	0.5333688
	1013	0.4750463	0.5249537
	1014	0.4845293	0.5154707
	1015	0.4958958	0.5041042
	1016	0.5045606	0.4954394
	1017	0.4971783	0.5028217
	1018	0.4864088	0.5135912
	1019	0.4998384	0.5001616
	1020	0.5116944	0.4883056
	1021	0.5026554	0.4973446
	1022	0.4880486	0.5119514
	1023	0.5026592	0.4973408
	1024	0.5030859	0.4969141
	1025	0.4897883	0.5102117
	1026	0.4782685	0.5217315
	1027	0.4893221	0.5106779
	1028	0.5078775	0.4921225
\$posterior			
	1221	0.4903737	0.5096263
	1222	0.5081924	0.4918076
	1223	0.5087487	0.4912513
	1224	0.5012844	0.4987156
	1225	0.5019254	0.4980746
	1226	0.5009805	0.4990195
	1227	0.4967487	0.5032513
	1228	0.4810421	0.5189579
	1229	0.4817958	0.5182042
	1230	0.4848896	0.5151104
	1231	0.5037268	0.4962732
	1232	0.5064982	0.4935018
	1233	0.4876756	0.5123244
	1234	0.4879247	0.5120753
	1235	0.4878553	0.5121447
	1236	0.4849732	0.5150268
	1237	0.4951269	0.5048731
	1238	0.4976356	0.5023644
	1239	0.4997661	0.5002339
	1240	0.5029600	0.4970400
		i	

1241 | 0.4934127 | 0.5065873

		LD1
	999	0.16677488
	1000	0.55461363
	1001	1.13260064
	1002	0.72085843
	1003	-0.22979082
	1004	-0.20490817
	1005	-0.09889344
	1006	0.24743666
	1007	0.06486872
	1008	0.32246953
	1009	0.02516951
	1010	-0.93574001
	1011	0.07652807
	1012	1.15695011
	1013	0.77212640
	1014	0.33922812
	1015	-0.17900833
	1016	-0.57390470
	1017	-0.23745710
	1018	0.25349881
	1019	-0.35868961
	1020	-0.89911177
	1021	-0.48707341
	1022	0.17871946
	1023	-0.48724516
	1024	-0.50669331
	1025	0.09939583
	1026	0.62495544
	1027	0.12065029
\$x	1028	-0.72509169
Ψ/1		
	1221	0.07270378
	1222	-0.73944813
	1223	-0.76480663
	1224	-0.42459094
	1225	-0.45380206
	1226	-0.41073939
	1227	-0.21787808
	1228	0.49834065
	1229	0.46394617
	1230	0.32279164
	1231	-0.53590499
	1232	-0.66222229
	1233	0.19572969
	1234	0.18436844
	1235	0.18753506
	1236	0.31897808
	1237	-0.14396271
	1238	-0.25830048
	1239	-0.35539601
	1240	-0.50095431

-0.06582911

	class	posterior.Down	posterior.Up	LD1
999	Up	0.4883105	0.5116895	0.16677488
1000	Up	0.4798093	0.5201907	0.55461363
1001	Up	0.4671632	0.5328368	1.13260064
1002	Up	0.4761685	0.5238315	0.72085843
1003	Up	0.4970100	0.5029900	-0.22979082
1004	Up	0.4964641	0.5035359	-0.20490817
1005	Up	0.4941381	0.5058619	-0.09889344
1006	Up	0.4865417	0.5134583	0.24743666
1007	Up	0.4905456	0.5094544	0.06486872
1008	Up	0.4848967	0.5151033	0.32246953
1009	Up	0.4914164	0.5085836	0.02516951
1010	Down	0.5124976	0.4875024	-0.93574001
1011	Up	0.4902899	0.5097101	0.07652807
1012	Up	0.4666312	0.5333688	1.15695011
1013	Up	0.4750463	0.5249537	0.77212640
1014	Up	0.4845293	0.5154707	0.33922812
1015	Up	0.4958958	0.5041042	-0.17900833
1016	Down	0.5045606	0.4954394	-0.57390470
1017	Up	0.4971783	0.5028217	-0.23745710
1018	Up	0.4864088	0.5135912	0.25349881
1019	Up	0.4998384	0.5001616	-0.35868961
1020	Down	0.5116944	0.4883056	-0.89911177
1021	Down	0.5026554	0.4973446	-0.48707341
1022	Up	0.4880486	0.5119514	0.17871946
1023	Down	0.5026592	0.4973408	-0.48724516
1024	Down	0.5030859	0.4969141	-0.50669331
1025	Up	0.4897883	0.5102117	0.09939583
1026	Up	0.4782685	0.5217315	0.62495544
1027	Up	0.4893221	0.5106779	0.12065029
1028	Down	0.5078775	0.4921225	-0.72509169
1221	Up	0.4903737	0.5096263	0.07270378
1222	Down	0.5081924	0.4918076	-0.73944813
1223	Down	0.5087487	0.4912513	-0.76480663
1224	Down	0.5012844	0.4987156	-0.42459094
1225	Down	0.5019254	0.4980746	-0.45380206
1226	Down	0.5009805	0.4990195	-0.41073939
1227	Up	0.4967487	0.5032513	-0.21787808
1228	Up	0.4810421	0.5189579	0.49834065
1229	Up	0.4817958	0.5182042	0.46394617
1230	Up	0.4848896	0.5151104	0.32279164
1231	Down	0.5037268	0.4962732	-0.53590499
1232	Down	0.5064982	0.4935018	-0.66222229
1233	Up	0.4876756	0.5123244	0.19572969
1234	Up	0.4879247	0.5120753	0.18436844
1235	Up	0.4878553	0.5121447	0.18753506
1236	Up	0.4849732	0.5150268	0.31897808
1237	Up	0.4951269	0.5048731	-0.14396271
1238	Up	0.4976356	0.5023644 ₁₅	-0.25830048
1239	Up	0.4997661	0.5002339	-0.35539601
1240	Down	0.5029600	0.4970400	-0.50095431
1241	Up	0.4934127	0.5065873	-0.06582911

Down Up
Down 37 30
Up 74 111

0.587301587301587

Aquí podemos observar la matriz de confusión la media de aciertos, con lo que fijándonos en el lda usando solo los predictores Lag1 y Lag2 vemos que ha mejorado un poco. Ahora procederemos a pintar los resultados.

0.2 Comparación LDA con Regresión Logística

Ahora vamos a comparar los resultados con los de regresión logística, la matriz de confusión y la media de acierto que habíamos obtenido fueron los siguientes:

Con lo cual podemos concluir que en este caso lda se comporta un poco mejor que regresión logística para este caso, ya que los predictores tienen una varianza similar y los datos siguen aproximadamente una distribución normal.

0.2.1 QDA

En primer lugar vamos a comprobar que la varianza es similar pero esta vez para cada clase

```
In [11]: var(Smarket[Smarket$Direction == "Up",]$Lag1)
         var(Smarket[Smarket$Direction == "Up",]$Lag2)
         var(Smarket[Smarket$Direction == "Up",]$Lag3)
         var(Smarket[Smarket$Direction == "Up",]$Lag4)
         var(Smarket[Smarket$Direction == "Up",]$Lag5)
         var(Smarket[Smarket$Direction == "Down",]$Lag1)
         var(Smarket[Smarket$Direction == "Down",]$Lag2)
         var(Smarket[Smarket$Direction == "Down",]$Lag3)
         var(Smarket[Smarket$Direction == "Down",]$Lag4)
         var(Smarket[Smarket$Direction == "Down",]$Lag5)
   1.27913706688038
   1.24717074806801
   1.27785074789389
   1.22092377886303
   1.36348271540061
   1.30204143704291
   1.33905195969342
   1.31893272233984
   1.38060525375758
   1.26880333331491
```

Todos los Lag tienen varianza similar para la clase Up y para la clase Down, excepto de nuevo para el Lag5. Aplicaremos ahora QDA.

Ahora predeciremos siguiendo el modelo ajustado y a continuación mostraremos los resultados de la matriz de confusión y la media de acierto.

	class	posterior.Down	posterior.Up
999	Up	0.4940099	0.5059901
1000	Up	0.4592991	0.5407009
1000	Up	0.4611609	0.5388391
1001	Up	0.4685393	0.5314607
1002	Down	0.5157051	0.4842949
1003		0.4923885	0.5076115
1004	Up	0.4673655	0.5326345
1003	Up	0.4882192	0.5320345
1007	Up		0.5117608
	Up	0.4893342	
1008	Up	0.4736901	0.5263099
1009	Up	0.4941605	0.5058395
1010	Down	0.5112872	0.4887128
1011	Up	0.4936002	0.5063998
1012	Down	0.5170779	0.4829221
1013	Up	0.4325890	0.5674110
1014	Up	0.4985044	0.5014956
1015	Up	0.4772451	0.5227549
1016	Up	0.4861023	0.5138977
1017	Up	0.4886557	0.5113443
1018	Up	0.4958629	0.5041371
1019	Down	0.5061148	0.4938852
1020	Down	0.5243518	0.4756482
1021	Up	0.4897090	0.5102910
1022	Down	0.5093799	0.4906201
1023	Down	0.5091812	0.4908188
1024	Down	0.5028376	0.4971624
1025	Up	0.4817993	0.5182007
1026	Up	0.4855008	0.5144992
1027	Up	0.4869710	0.5130290
1028	Down	0.5183652	0.4816348
1221	T T	0.4022400	0.5167511
	Up	0.4832489	
1222	Down	0.5218038	0.4781962
1223	Down	0.5024929	0.4975071
1224	Up	0.4896412	0.5103588
1225	Down	0.5132830	0.4867170
1226	Up	0.4903046	0.5096954
1227	Up	0.4953512	0.5046488
1228	Up	0.4694407	0.5305593
1229	Up	0.4768343	0.5231657
1230	Up	0.4658755	0.5341245
1231	Down	0.5131627	0.4868373
1232	Up	0.4970743	0.5029257
1233	Up	0.4881669	0.5118331
1234	Down	0.5033895	0.4966105
1235	Up	0.4580498	0.5419502
1236	Up	0.4861135	0.5138865
1237	Up	0.4932770	0.5067230
1238	Down	0.5001412	0.49985889
1239	Up	0.4862707	0.5137293
1240	Down	0.5030516	0.4969484
1241	Up	0.4904194	0.5095806

Down Up
Down 37 35
Up 74 106

0.567460317460317

Como podemos observar QDA nos da peor resultado que LDA pero mejor que regresión logística para este dataset, sin embargo sigue sin ser demasiado bueno. Además, usando solo los predictores L1 Y L2 nos da una mejor tasa de acierto que usando todas los predictores.

In [21]: partimat(Direction~Lag1+Lag2+Lag3+Lag4+Lag5, data=Smarket ,method="qda")

Observando las gráficas y los resultados podemos deducir que nos encontramos ante una clasificación que no es para nada lineal, de ahí que tanto regresión logística como LDA no funcionen bien. Además, tampoco podríamos aplicar QDA por lo que podemos ver en la distribución de las muestras y en los resultados, por lo que podemos deducir que el método de clasificación de los vistos hasta ahora que mejor resultado nos podría dar a priori sería kNN.

0.3 Exercise 2

tablatst

Using only the information in file clasif_train_alumnos.csv: * Compare Ida and qda using Wilcoxon. * Perform a multiple comparison using Friedman. * Using Holm see if there is a winning algorithm (even if Friedman says there is no chance...).

	out_train_knn	out_train_lda	out_train_qda
appendicitis	0.8834602	0.8815461	0.8690241
australian	0.7277419	0.8605475	0.8072464
balance	0.9072122	0.8791122	0.9167999
bupa	0.7405521	0.7024224	0.6447628
contraceptive	0.6168944	0.5236485	0.5314180
haberman	0.7795116	0.7519934	0.7567115
hayes-roth	0.6475524	0.5604167	0.7361111
heart	0.7342975	0.8576132	0.8777778
iris	0.9791045	0.9800000	0.9814815
led7digit	0.7636971	0.7635556	0.7680556
mammographic	0.8160856	0.8274465	0.8196843
monk-2	0.9793684	0.7821826	0.9303010
newthyroid	0.9158409	0.9183457	0.9700283
pima	0.7791914	0.7792266	0.7633125
tae	0.5263460	0.5584858	0.5688072
titanic	0.7892319	0.7760111	0.7732851
vehicle	0.7213300	0.7989229	0.9123989
vowel	0.8378652	0.6457912	0.9701459
wine	0.7745126	1.0000000	0.9956250
wisconsin	0.9739304	0.9614471	0.9588436

0.3.1 Wilcoxon test

Wilcoxon ordena por las diferencias para los rankings. En clasificación los errores están en el mismo rango, así que no tenemos que normalizar el error. Realizaremos la comparativa por pares:

```
In [2]: LdavsQdatst <- wilcox.test(tablatst$out_train_lda, tablatst$out_train_qda,</pre>
                                     alternative = "two.sided", paired=TRUE)
        Rmas <- LdavsQdatst$statistic</pre>
        pvalue <- LdavsQdatst$p.value</pre>
        LdavsQdatst <- wilcox.test(tablatst$out_train_qda, tablatst$out_train_lda,
                                     alternative = "two.sided", paired=TRUE)
        Rmenos <- LdavsQdatst$statistic</pre>
        Rmas
        Rmenos
        pvalue
   V: 68
   V: 142
   0.176853179931641
   Podemos deducir que si hay diferencias significativas entre ambos algoritmos:
In [18]: confianza = (1-pvalue) * 100
         confianza
   82.3146820068359
   Tenemos un 82.3% de confianza de que ambos algoritmos sean distintos.
0.3.2 Friedman
In [19]: test_friedman <- friedman.test(as.matrix(tablatst))</pre>
         test_friedman
Friedman rank sum test
data: as.matrix(tablatst)
Friedman chi-squared = 1.3, df = 2, p-value = 0.522
```

No podemos decir según Friedman si existe un ganador claro ya que la confianza de que existan diferencias significativas es del 48%, lo cual no es un porcentaje muy alto.

0.3.3 Holm

```
In [20]: tam <- dim(tablatst)
        groups <- rep(1:tam[2], each=tam[1])
        pairwise.wilcox.test(as.matrix(tablatst), groups, p.adjust = "holm", paired = TRUE)

Pairwise comparisons using Wilcoxon signed rank test

data: as.matrix(tablatst) and groups</pre>
```

```
1 2
2 0.65 -
3 0.59 0.53
```

P value adjustment method: holm

Según Holm podemos decir que los 3 métodos pueden ser considerados equivalentes para este conjunto y que no existe un ganador claro.