

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

الشعبة: تقنى رياضي

دورة: 2022

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 7 إلى الصفحة 4 من 7)

التمرين الأول: (07 نقاط)

1) نجري على المركبين العضويين (A) و (B) التفاعلين الآتيين:

2 (A)
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 CH₃-CH₂-O-CH₂-CH₃ + H₂O

(B) $\xrightarrow{\text{Cu}}$ CH₃-C-CH₃ + H₂

- جد الصيغة نصف المفصلة للمركب (A) وللمركب (B).

2) لتحضير مركب (H) نجرى التفاعلات التالية:

1) (A) +
$$H_2SO_4$$
 (C) + H_2O

2) (C) +
$$Cl_2 \xrightarrow{UV}$$
 (D) + HCl

3) (D) + Mg
$$\stackrel{\text{R-O-R}}{\longrightarrow}$$
 (E)

4) (E) +
$$CO_2 \xrightarrow{H_2O}$$
 (F) + MgCl(OH)

5) (B) +
$$PCl_5$$
 \longrightarrow (G) + $POCl_3$ + HCl

6) (F) + (G)
$$\xrightarrow{\text{AlCl}_3}$$
 CH₃-CH- $\xrightarrow{\text{CH}_3}$ CH₃ CH₃

أ- جد الصيغ نصف المفصلة للمركبات: (C) ، (D) ، (E) ، (E) ، (D) و (G).

 NH_3 و (G) ، (D) و (X) باستعمال المركبات (G) ، (D) و (X) و (X) باستعمال المركبات (D) ، (D) و

اختبار في مادة: التكنولوجيا (هندسة الطرائق). الشعبة: تقني رياضي. بكالوريا 2022

(A) يمكن تحضير البوليمير (P) انطلاقا من المركب (A) وفق ما يلي:

1) (A)
$$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4}$$
 (K)

2) (K) +
$$PCl_5$$
 \longrightarrow (L) + $POCl_3$ + HCl

3) (L) + (M)
$$\xrightarrow{\text{AlCl}_3}$$
 (N) + HCl

4) (N)
$$\frac{1) \text{LiAlH}_4}{2) \text{H}_2\text{O}} \rightarrow \text{(Q)}$$

5) (Q)
$$\frac{\text{Al}_2\text{O}_3}{400 \,^{\circ}\text{C}}$$
 (R) + H₂O

6)
$$n(R)$$
 \longrightarrow CH_2 CH_2 CH_1 $DOINT Polymère (P)$

أ- جد الصيغ نصف المفصلة للمركبات: (X) ، (N) ، (M) ، (M) ، (Q) و (Q). - أعط مقطعا من البوليمبر (P) يحتوى على وحدتين بنائيتين.

التمرين الثاني: (07 نقاط)

I- يدخل في تركيب ثلاثي غليسريد (TG) الأحماض الدهنية الممثلة في الجدول التالي:

Ia = 200	$Cn: 2\Delta^{9,12}$	الموقع α	الحمض الدهني (A)
نسبة الأوكسجين فيه %18,6	لا يتفاعل مع اليود	الموقع β	الحمض الدهني (B)
H ₃ C	COOH	الموقع α'	الحمض الدهني (C)

- (1) ، (B) ، (A) جد الصيغ نصف المفصلة للأحماض الدهنية (B) ، (B)
 - 2) استنتج الصيغة نصف المفصلة لثلاثي الغليسريد (TG).
 - (TG) احسب قرينة اليود (I_i) لثلاثي الغليسريد (TG).

 $M_{\rm H} = 1 {\rm g.mol^{-1}} \; ; \; M_{\rm C} = 12 {\rm g.mol^{-1}} \; ; \; M_{\rm O} = 16 {\rm g.mol^{-1}} \; ; \; M_{\rm K} = 39 {\rm g.mol^{-1}} \; ; \; M_{\rm I} = 127 {\rm g.$

4) اكتب الصيغ نصف المفصلة الممكنة لثنائي غليسريد يتكون من الغليسرول والحمضين الدهنيين (B) و (C).

II- التحليل المائي الحامضي لرباعي الببتيد يعطي الأحماض الأمينية المبيّنة في الجدول التالي:

الليزين (Lys)	الغليسين (Gly)	السيستيين (Cys)
H ₂ N-CH-COOH (CH ₂) ₄ NH ₂	H ₂ N-CH-COOH H	H ₂ N-CH-COOH CH ₂ SH
pH _i =9,74	$pH_i = 5,97$	$pH_i = $?

- 1) صنّف الأحماض الأمينية السابقة.
- 2) يتأين الحمض الأميني السيستيين (Cys) عند تغير قيم الـ pH.
- أ- اكتب الصيغ الأيونية للحمض الأميني السيستيين (Cys) عند تغير قيمة الـ pH من 1 إلى 12.

$$pKa_1 = 1,96$$
 ; $pKa_2 = 10,28$; $pKa_R = 8,18$ علما أنّ

- ب- استنتج قيمة الـ pH_i للحمض الأميني السيستيين.
- ج- أعط الصيغ الأيونية للحمض الأميني السيستيين عند pH=6,5 مبيّنا الصيغة السائدة.
 - د- ماهي الصيغة الأيونية التي يهجر بها الحمض الأميني السيستيين عند pH=6,5 ؟
- 3) يوضع مزيجا من الأحماض الأمينية السابقة في جهاز الهجرة الكهربائية عند 5,97 pH= وبعد الفصل تحصلنا على مايلى:

- أ- استنتج الأحماض الأمينية السابقة (A) ، (B) و (C).
- A B B C الببتيد الصيغة نصف المفصلة لرباعي الببتيد
- ج- أعط الصيغة الأيونية لرباعي الببتيد عند pH=12 وعند pH=12.

التمرين الثالث: (06 نقاط)

1atm عند $^{\circ}$ C وتحت ضغط HO-CH $_2$ -CH $_2$ -OH احتراقا تاما عند $^{\circ}$ C وتحت ضغط وفق المعادلة التالية:

$$C_2H_6O_{2(\ell)} + \ O_{2(g)} \longrightarrow \quad CO_{2(g)} + \ H_2O_{(\ell)}$$

1) وإزن معادلة الاحتراق.

اختبار في مادة: التكنولوجيا (هندسة الطرائق). الشعبة: تقني رياضي. بكالوريا 2022

استنتج أنطالبي احتراق الإيثان
$$-2.1$$
- ديول السائل ($C_2H_6O_{2(\ell)}$) باستخدام المعادلات التالية: (2 استنتج أنطالبي احتراق الإيثان

$$\begin{split} 2C_{(s)}^{} + 3H_{2(g)}^{} + O_{2(g)}^{} &\longrightarrow C_{2}H_{6}O_{2(\ell)} & \Delta H_{1}^{\circ} = -454,80 \text{ kJ.mol}^{-1} \\ H_{2(g)}^{} + \frac{1}{2}O_{2(g)}^{} &\longrightarrow H_{2}O_{(g)}^{} & \Delta H_{2}^{\circ} = -242 \text{ kJ.mol}^{-1} \\ C_{(s)}^{} + 2H_{2}O_{(g)}^{} &\longrightarrow CO_{2(g)}^{} + 2H_{2(g)}^{} & \Delta H_{3}^{\circ} = 91 \text{ kJ.mol}^{-1} \\ H_{2}O_{(\ell)}^{} &\longrightarrow H_{2}O_{(g)}^{} & \Delta H_{4}^{\circ} = 40,7 \text{ kJ.mol}^{-1} \end{split}$$

. بد التغير في الطاقة الداخلية ΔU لتفاعل الاحتراق السابق.

- 49) ما هي قيمة كمية الحرارة الناتجة عن الاحتراق التام لـ g 49, 12 من الإيثان $-2\cdot1$ ديول السائل؟ $M_{\rm H}=1~{\rm g.mol^{-1}}$; $M_{\rm C}=12~{\rm g.mol^{-1}}$; $M_{\rm O}=16~{\rm g.mol^{-1}}$
- .110°C عند $\Delta H_{comb}(C_2H_6O_{2(\ell)})$ احسب أنطالبي تفاعل احتراق الإيثان -2.1- ديول السائل (5 عند عطى:

$$\Delta H_{vap(H_2O)} = 40,7 \text{ kJ.mol}^{-1} \text{ J} \quad T_{eb(C_2H_6O_2)} = 197,3^{\circ}C \text{ ; } T_{eb(H_2O)} = 100^{\circ}C$$

المركب	$H_2O_{(\ell)}$	$H_2O_{(g)}$	$CO_{2(g)}$	$O_{2(g)}$	$C_2H_6O_{2(\ell)}$
$C_p(J.mol^{-1}.k^{-1})$	75,29	33,58	37,58	29,37	149,33

الموضوع الثاني الموضوع على (03) صفحات (من الصفحة 5 من 7 إلى الصفحة 7 من 7)

التمرين الأول: (07 نقاط)

مركّب عضوي أكسيجيني (A) صيغته العامة من الشكل $C_nH_{2n}O$ كتلته المولية B6 g.mol-1 عضوي أكسيجيني DNPH ولا يرجع كاشف فهلنغ.

1) أ- ما طبيعة المركب (A)؟

ب- جد صيغته المجملة.

ج- أعط الصيغ نصف المفصلة الممكنة لـ (A).

$$M_C = 12 \text{ g.mol}^{-1}$$
; $M_H = 1 \text{ g.mol}^{-1}$; $M_O = 16 \text{ g.mol}^{-1}$

2) نجرى انطلاقا من المركب (A) التفاعلات الكيميائية التالية:

1) (A) +
$$H_2 \longrightarrow Ni \longrightarrow (B)$$

2) (B)
$$\frac{\text{Al}_2\text{O}_3}{400 \, ^{\circ}\text{C}}$$
 (C) + H₂O

3) (C)
$$\xrightarrow{O_3}$$
 (D) \xrightarrow{O} O
4) (D) + H_2O $\xrightarrow{\longrightarrow}$ CH_3 - C - CH_3 + CH_3 - C - H + H_2O_2

- جد الصيغ نصف المفصلة للمركبات: (A) ، (B) ، (D) و (D).

. المركز (B) المركز (B) من حمض الإيثانويك مع $0.5~\mathrm{mol}$ من المركب ($0.5~\mathrm{mol}$ المركز (3

أ- اكتب معادلة التفاعل الحادث.

ب- استنتج مردود هذا التفاعل.

ج- احسب كتلة الأستر الناتج عند التوازن.

II - لتحضير البوليمير (P) نجري التفاعلات التالية:

- نزع الماء من حلقي الهكسانول صيغته OH- في وسط حمضي مع التسخين يؤدي إلى المركب (E).

– أكسدة المركب (E) بواسطة $KMnO_4$ المركز في وجود H_2SO_4 مع التسخين تعطي المركب (F).

- بلمرة المركبين (F) و (G) تعطى البوليمير (P) ذو الصيغة:

$$\begin{bmatrix}
O & O & O \\
- C - (CH_2)_4 - C - NH - (CH_2)_6 - NH
\end{bmatrix}_{\mathbf{n}}$$

1) جد الصيغ نصف المفصلة للمركبات: (F) ، (E) ، و (G).

.n=140 احسب الكتلة المولية المتوسطة للبوليمير (P) علما أنّ درجة بلمرته $M_N=14~{
m g.mol^{-1}}$ يعطى:

التمرين الثاني: (07 نقاط)

I - لديك الأحماض الدهنية التالية:

- $C_{14}H_{28}O_{2}$ المجملة (A) فو الصيغة المجملة حمض الميرستيك
 - $C16:1\Delta^9$ الذي رمزه (B) البالميتوأولييك حمض البالميتوأولييك
- $I_{\rm S} = 197,18$ حمض دهني مشبع قرينة تصبنه (C) حمض الستياريك
 - 1) جد الصيغ نصف المفصلة للمركبات (A) ، (B) و (D).
- (2) اكتب معادلة تفاعل أكسدة الحمض (B) بواسطة (B) المركز في وجود حمض الكبريت (B)
 - 3) تدخل الأحماض الدهنية (B) ، (B) و (C) في تركيب ثلاثي الغليسريد (TG).
 - أ- أعط الصيغ نصف المفصلة الممكنة لثلاثي الغليسريد (TG).
 - ب- احسب قيمة قرينة اليود له (TG).

 $\mathbf{M_{H}} = 1 \text{g.mol}^{-1}; \ \mathbf{M_{O}} = 16 \ \text{g.mol}^{-1}; \ \mathbf{M_{C}} = 12 \ \text{g.mol}^{-1}; \ \mathbf{M_{I}} = 127 \ \text{g.mol}^{-1}; \ \mathbf{M_{K}} = 39 \ \text{g.mol}^{-1}$

II - لديك الجدول التالي:

pH _i	pKa _R	pKa ₂	pKa ₁	الجذر R	رمزه	الحمض الأميني
3,22	?	9,67	2,19	−(CH ₂) ₂ -COOH	Glu	حمض الغلوتاميك
ç	10,46	9,11	2,20	-СН2-ОН	Tyr	التيروزين
5,60	//////	?	2,09	−CH-CH ₃ OH	Thr	الثريونين

- 1) أكمل الجدول مبررا إجابتك.
- 2) اكتب الصيغ الأيونية للحمض الأميني Tyr عند تغير قيمة الـ pH من 1 إلى 12.
 - .pH = 5,60 علّل صعوبة الفصل بالهجرة الكهربائية بين Thr و Tyr عند (3
- D E D F يتكون رباعي ببتيد من الأحماض الأمينية الموجودة في الجدول السابق على الشكل التالي: $pH_i = 3,22$. علما أنّ: D E D F .
 - أ- أعط الصيغة نصف المفصلة لرباعي الببتيد.
 - ب- اكتب الصيغة الأيونية للببتيد السابق عند pH = 12.

التمرين الثالث: (06 نقاط)

- $T=23.7^{\circ}$ C من الماء درجة حرارته V=100mL على $C_{cal}=100$ J.K $^{-1}$ على -I $=53.8^{\circ}$ C من الماء درجة حرارة $C_{6}H_{12}O_{6\,(s)}$ فنسجّل عند التوازن درجة حرارة m=1g نحرق بداخله كتلة m=1g
 - الناتجة عن احتراق الغلوكوز Q $_{
 m Comb}$ الناتجة عن احتراق الغلوكوز ${f Q}$

 $c_{eau}\!=\!4,\!185\;J.g^{\text{--}1}.K^{\text{--}1}\;;\;\rho_{\text{H}_2\text{O}}\!=\!1g.\text{mL}^{\text{--}1}\;\;;\\ M_{\text{C}}\!=\!12g.\text{mol}^{\text{--}1}\;;\\ M_{\text{O}}\!=\!16g.\text{mol}^{\text{--}1};\\ M_{\text{H}}\!=\!1g.\text{mol}^{\text{--}1}\;;\\ M_{\text{H}}\!=\!1g.\text{mol}^{\text{--}1}\;;\\\\ M_{\text{H}}\!=\!1$

- . ΔH_1° استنتج أنطالبي تفاعل احتراق الغلوكوز (2
 - نطانبی التفاعل التالی: ΔH_r°

$$C_3H_6O_{3(\ell)} + \frac{3}{2}O_{2(g)} \longrightarrow 3CO_{(g)} + 3H_2O_{(\ell)} \quad \Delta H_r^{\circ} = ?$$

علما أنّ:

$$\begin{split} &C_6H_{12}O_{6(s)}+6O_{2(g)}\longrightarrow 6CO_{2(g)}+6H_2O_{(\ell)} &\Delta H_1^\circ\\ &C_6H_{12}O_{6(s)}\longrightarrow 2C_3H_6O_{3(\ell)} &\Delta H_2^\circ=-84,6~kJ.mol^{-1}\\ &CO_{(g)}+\frac{1}{2}O_{2(g)}\longrightarrow CO_{2(g)} &\Delta H_3^\circ=-284~kJ.mol^{-1} \end{split}$$

II- يخضع 0,5 mol من غاز مثالي إلى التحولات الموضّحة في المخطط التالي:

1) أكمل الجدول الآتى:

T(K)	V(L)	P(atm)	الحالة
298	••••	••••	1
••••	••••	••••	2
298	••••	••••	3

- 2) ما نوع التحول من الحالة 3 إلى الحالة 1؟
 - 3) احسب قيمة كل من:

$$W_{3
ightarrow 1}$$
 , $W_{1
ightarrow 2}$ -1

$$Q_{3\rightarrow 1}$$
 و $Q_{2\rightarrow 3}$ ، $Q_{1\rightarrow 2}$ -ب

$$\Delta U_{2
ightarrow 3}$$
 و $\Delta U_{1
ightarrow 2}$ -ج

$$R = 8,314 \text{ J.mol}^{-1}.\text{K}^{-1}$$
 ; $C_V = \frac{3R}{2}$; $1 \text{atm} = 1,01325.10^5 \text{ Pa}$.

العلامة		/ 1 Ext - 10 T 1 Nu 10-
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
00,50	2 x 0,25	التمرين الأول: (07 نقاط) (B) و (B): (A): (A): (CH ₃ -CH ₂ -OH , (B): CH ₃ -CH-CH ₃ (A) (B): CH ₃ -CH-CH ₃
03,00	5 x 0,50 2 x 0,25	(C) (E) (C) (C) (C) و (C) و (C)
03,50	6 x 0,50	(R) (Q) (N) (M) (L) (K) (K) (O (C

		التمرين الثاني: (07 نقاط)
		1-I) الصيغ نصف المفصلة للأحماض الدهنية: (A) ، (B) ، (C):
		· ايجاد الصيغة نصف المفصلة لـ (A):
		$1 \text{mol}(A) \longrightarrow 1 \text{mol}(KOH)$
	0,25	$ \begin{array}{c c} M_{\text{(A)}} & \longrightarrow 56g \\ 1g & \longrightarrow 200 \times 10^{-3}g \end{array} \Rightarrow M_{\text{(A)}} = \frac{56}{200 \times 10^{-3}} = 280\text{g.mol}^{-1} $
		$1g \longrightarrow 200 \times 10^{-3} g$ $\rightarrow W_{(A)} - \frac{1}{200 \times 10^{-3}} - 200 g. \text{mor}$
	0,25	$14n-4+32 = 280 \implies n = 18$
	0,23	(A): $CH_3 - (CH_2)_4 - CH = CH - CH_2 - CH = CH - (CH_2)_7 - COOH$
01,75		- إيجاد الصيغة نصف المفصلة لـ (B): - إيجاد الصيغة نصف المفصلة لـ (B):
	0.25	$I_{i} = 0 \Rightarrow C_{n}H_{2n}O_{2}$ $M \longrightarrow 100\%$
	0,25	$ \frac{M_{(B)} \longrightarrow 100\%}{32g \longrightarrow 18,6\%} \Rightarrow M_{(B)} = \frac{3200}{18,6} = 172g.mol^{-1} $
	0,25	$14n + 32 = 172 \Rightarrow n = 10$
	0,25	(B): $CH_3 - (CH_2)_8 - COOH$
		- إيجاد الصبيغة نصف المفصلة لـ (C):
	0,25	$(C): CH_3 - (CH_2)_7 - CH = CH - (CH_2)_7 - COOH$
		2) الصيغة نصف المفصلة لثلاثي الغليسيريد (TG):
		O
		$CH_2-O-\ddot{C}-(CH_2)_7-CH=CH-CH_2-CH=CH-(CH_2)_4-CH_3$
00,25	0,25	$CH \longrightarrow CH \longrightarrow CH_{2}_{8} \longrightarrow CH_{3}$
		$CH_2-O-C-(CH_2)_7-CH=CH-(CH_2)_7-CH_3$
		(3) حساب قرينة اليود ((I_i) لثلاثي الغليسيريد ((TG) :
		$TG + 3H_2O \longrightarrow Glycérole + A + B + C$
	0,25	$M_{(TG)} + 3M_{(H_2O)} = M_{(Glyc\acute{e}role)} + M_{(A)} + M_{(B)} + M_{(C)}$
00.75		$M_{(TG)} + (3 \times 18) = 92 + 280 + 172 + 282$
00,75		$M_{(TG)} = 92 + 280 + 172 + 282 - (3 \times 18)$ $M_{(TG)} = 772 \text{ g.mol}^{-1}$
	0.50	$M_{(TG)} \longrightarrow 3 \times 254 \mathrm{g}$ $3 \times 254 \times 100$
		$ \begin{vmatrix} \mathbf{M}_{(TG)} & \longrightarrow & 3 \times 254 \text{ g} \\ 100\text{g} & \longrightarrow & \mathbf{I}_{i} \end{vmatrix} \Rightarrow \mathbf{I}_{i} = \frac{3 \times 254 \times 100}{772} \qquad \boxed{\mathbf{I}_{i} = 98,7} $
		M_{TG} ملاحظة : تقبل طريقة اخرى لحساب
		1.210

00,75	3 x 0,25	(C) و (B) الصيغ نصف المفصلة الممكنة لثنائي الغليسيريد يتكون من الحمضين الدهنيين (B) و (CH ₂ —O—C—C—(CH ₂) ₇ —CH=CH—(CH ₂) ₇ —CH ₃
0,375	3 x 0,125 4 x 0,25	: Lys بسيط الأمينية: Gly عند تغير الله بسيط : Lys بسيط (1 - II الصيغ الأيونية المحمض الأمينية : Gly عند تغير الله بسيط : 12 عند تغير الله عند الأميني السيستيين والميني السيستيين والميني السيستيين والميني السيستيين والميني السيستيين والميني السيستيين والميني الله والميني
	0,25	$pH_{i} = \frac{pKa_{1} + pKa_{R}}{2} \Rightarrow pH_{i} = \frac{1,96 + 8,18}{2}$ $pH_{i} = 5,07$ $pH = 6,5 \text{all phi} = 5,07$
02,00	2 x 0,125	H ₃ N [±] -CH-COO
	0,25	H ₃ N ⁺ -CH-COO ⁻ CH ₂ SH
	0,25	د- الصيغة الأيونية التي يهجر بها السيستيين عند pH=6,5 . H_3N^{+} -CH—COO CH_2 S S

	3	3) أ- استنتج الأحماض الأمينية السابقة (A) ، (B) و(C).
	X	(A): Gly ; (B): Cys ; (C): Lys
	0,125	
		$\overline{A-B-B-C}$ الصيغة نصف المفصلة لرباعي الببتيد .
	0,25	O O O O O O O O O O O O O O O O O O O
	0,23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		SH SH NH ₂
		- ج- الصيغة الأيونية لرباعي الببتيد عند pH=12 و pH=12.
		*
01,125	0,25	$pH=1 ; H_{3}N^{+}-CH-C-HN-CH-C-HN-CH-C-HN-CH-COOH \\ H CH_{2} CH_{2} (CH_{2})_{4} \\ \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots $
01,120		$egin{array}{ccccc} H & CH_2 & CH_2 & (CH_2)_4 \ & & & & & & & & & & & & \\ & & & & & &$
		11113
	0,25	$pH=12 \; ; \; \; H_2N-CH-C-HN-CH-C-HN-CH-C-HN-CH-COO^{-1} \\ \; H \; \; \; CH_2 \; \; CH_2 \; (CH_2)_4 \\ \; \vdots \; \; $
		$\overset{\cdot}{H}$ $\overset{\cdot}{CH}_2$ $\overset{\cdot}{CH}_2$ $\overset{\cdot}{CH}_2)_4$
		S S NH ₂
		(1-13: 06)
		التمرين الثالث: (06 نقاط)
		1) موازنة معادلة الاحتراق التام للإيثان-2،1- ديول السائل:
00 ==	0,75	$C_2H_6O_{2(\ell)} + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_2O_{(\ell)}$
00,75		\mathcal{L}
		$:\Delta ext{H}^{\circ}_{\mathrm{comb}(\mathrm{C}_{2}\mathrm{H}_{6}\mathrm{O}_{2(\ell)})}$ استنتاج (2
	3	$C_2H_6O_{2(\ell)} \longrightarrow 2C_{(S)} + 3H_{2(g)} + O_{2(g)} - \Delta H_1^\circ$
	0,25	$7 \times \left(H_{2(g)} + \frac{1}{2} O_{2(g)} \longrightarrow H_2 O_{(g)} \longrightarrow \Delta H_2^{\circ} \right)$
	0,20	$2 \times \left(C_{(s)} + 2H_2O_{(g)} \longrightarrow CO_{2(g)} + 2H_{2(g)} \Delta H_3^{\circ}\right)$
		$3 \times \left(\mathbf{H}_{2} \mathbf{O}_{(g)} \right) \longrightarrow \mathbf{H}_{2} \mathbf{O}_{(\ell)} \qquad -\Delta \mathbf{H}_{4}^{\circ} \right)$
	0.25	$C_{2}H_{6}O_{2(\ell)} + \frac{5}{2}O_{2(g)} \longrightarrow 2CO_{2(g)} + 3H_{2}O_{(\ell)}$
01,50	0,25	$\Delta H_{comb}^{\circ} = -\Delta H_{1}^{\circ} + 7 \Delta H_{2}^{\circ} + 2 \Delta H_{3}^{\circ} - 3 \Delta H_{4}^{\circ}$
		= -(-454,80) + 7(-242) + 2(91) - 3(40,7)
	0,50	
		$\Delta H_{comb}^{\circ} = -1179,3 \text{ kJ.mol}^{-1}$
		ملاحظة: تقبل الإجابة في حالة حساب الأنطلبي $\Delta H_{\mathrm{comb}}^{\circ}$ بطريقة آخرى

$$\begin{array}{c} \textbf{01,00} \\ \textbf{0,25} \\ \textbf{0,25} \\ \textbf{0} \\ \textbf{0,25} \\ \textbf{0} \\ \textbf$$

الإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقني رياضي/ بكالوريا 2022

	0,25	$\Delta Cp_{_{1}} = 2Cp_{_{(CO_{_{2}})_{(g)}}} + 3Cp_{_{(H_{_{2}}O)_{(\ell)}}} - Cp_{_{(C_{_{2}H_{_{6}}O_{_{2}})_{(\ell)}}}} - \frac{5}{2}Cp_{_{(O_{_{2}})_{(g)}}}$
01,75	0,25	$= (2 \times 37, 58) + (3 \times 75, 29) - 149, 33 - (2, 5 \times 29, 37)$ $\boxed{\Delta Cp_1 = 78, 275 \left(J.mol^{-1}.K^{-1} \right)}$
	0,25	$\Delta Cp_{2} = 2Cp_{(CO_{2})_{(g)}} + 3Cp_{(H_{2}O)_{(g)}} - Cp_{(C_{2}H_{6}O_{2})_{(\ell)}} - \frac{5}{2}Cp_{(O_{2})_{(g)}}$ $= (2 \times 37,58) + (3 \times 33,58) - 149,33 - (2,5 \times 29,37)$ $\Delta Cp_{2} = -46,855 (J.mol^{-1}.K^{-1})$
	0,50	$\Delta H_{383} = -1179, 3 + 78, 275 \times (373 - 298) \times 10^{-3} + (3 \times 40, 7) + (-46, 855) \times (383 - 373) \times 10^{-3}$ $\Delta H_{383} = -1051, 79 \text{ kJ.mol}^{-1}$

رمة	العا	/ state a settle to the teacher
مجموعة	مجزأة	عناصر الإجابة (الموضوع الثاني)
	0,25	التمرين الأول: (07 نقاط) (1 التمرين الأول: (A) نقاط) أ– طبيعة المركب (A): سيتون (A) الصيغة المجملة للمركب (A): $(A_n, H_{2n}, H_{2n}) = 14n + 16 = 86 \Rightarrow n = \frac{70}{14} = 5$
01,25	0,25 3 x 0,25	${\rm C_5H_{10}O}:({\rm A})$ ومنه الصيغة المجملة للمركب $({\rm A}):$ (A). ${\bf A}:$ (A). ${\bf C}:$ (A) ومنه المفصلة الممكنة لـ (A). ${\bf C}:$ (B) ${\bf C}:$ (CH ₃ -CH ₂ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ${\bf C}:$ (CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ${\bf C}:$ (CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ${\bf C}:$ (CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ${\bf C}:$ (CH ₃ -CH ₂ -CH ₃ ; CH ₃ -CH ₂ -CH ₃ ${\bf C}:$ (CH ₃ -CH ₃ -C
02,00	4 x 0,50	:D و C ، B ، A و C . C . B . C . C . C . C . C . C . C .
	0,50 0,25	CH_3 -COOH + CH_3 - CH - CH - CH_3 = CH_3 - CH_3 - CH_3 - CH_3 - CH_3 CH3 CH_3 - C
02,00	0,25	$R = \frac{n_{ester}}{n_{acide}}.100 \Rightarrow n_{ester} = \frac{R \times n_{(B)}}{100}$ $n_{(B)} = \frac{60 \times 0.5}{100} = 0.3 \text{mol}$ $M_{ester} = (7 \times 12) + (14 \times 1) + (2 \times 16) = 130 \text{ g.mol}^{-1}$ $n = \frac{m_{ester}}{M_{ester}} \Rightarrow m_{ester} = n \times M_{ester}$
	0,50	$m_{\text{ester}} = 0.3 \times 130$ $m_{\text{ester}} = 39g$

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقنى رياضي/ بكالوريا 2022

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقنى رياضي/ بكالوريا 2022

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقنى رياضي/ بكالوريا 2022

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقني رياضي/ بكالوريا 2022

		فابع قارِ جابه الممود جيه موضوع احتبار شاده. فحقو توجيا هذا الطراق المسعبة. فقي رياضي ابت توري
		$\Delta ext{H}_{ m r}^{\circ}$ حساب $\Delta ext{H}_{ m r}^{\circ}$ أنطالبي التفاعل:
	0,25	$\frac{1}{2} \times \left(C_6 H_{12} O_{6(s)} + 6 O_{2(g)} \longrightarrow 6 C O_{2(g)} + 6 H_2 O_{(l)} \Delta H_1^{\circ} \right)$
	0,23	$-\frac{1}{2} \times \left(C_6 H_{12} O_{6(s)} \longrightarrow 2C_3 H_6 O_{3(\ell)} \qquad \Delta H_2^{\circ} = -84.6 \text{ kJ.mol}^{-1} \right)$
		$-3\times \left(CO_{(g)} + \frac{1}{2}O_{2(g)} \longrightarrow CO_{2(g)} \Delta H_3^\circ = -284 \text{ kJ.mol}^{-1}\right)$
01,00		
	0.25	$C_3H_6O_{3(\ell)} + \frac{3}{2}O_{2(g)} \longrightarrow 3CO_{(g)} + 3H_2O_{(\ell)}$
	0,25	$\Delta H_{r}^{\circ} = \frac{1}{2} \Delta H_{1}^{\circ} - \frac{1}{2} \Delta H_{2}^{\circ} - 3 \Delta H_{3}^{\circ}$
	0,50	$\Delta H_{r} = \frac{1}{2} (-2809,057) - \frac{1}{2} (-84,6) - 3(-284)$ $\Delta H_{r}^{\circ} = -510,22 \text{ kJ.mol}^{-1}$
		II- 1) اكمال الجدول:
	7	T(K) V(L) P(atm) الحالة
00,875	X 0,125	298 12,23 1 1 596 24,46 1 2
		596 24,46 1 2 298 24,46 0,5 3
		حساب درجة الحرارة T ₂ :
		$P_1 = P_2 = P$ التحول من الحالة 1 الى الحالة 2 هو تحول تحت ضغط ثابت: $\frac{V_1}{V_2} = \frac{T_1}{T_2} \Rightarrow T_2 = \frac{V_2.T_1}{V_1} = \frac{24,46 \times 298}{12.23}$ $\boxed{T_2 = 596 \text{ K}}$
		$\frac{1}{V_2} = \frac{1}{T_2} \Rightarrow I_2 = \frac{1}{V_1} = \frac{1}{12,23}$ $I_2 = \frac{1}{396 \text{ K}}$
		ملاحظة : تقبل الإجابة باستعمال قانون الغازات المثالية
		$T_2 = \frac{P_2 V_2}{nR} = \frac{1 \times 1,01325 \times 10^5 \times 24,46 \times 10^{-3}}{0,5 \times 8,314} \qquad \boxed{T_2 = 596,2 \text{ K}}$
00,125	<u>0,125</u>	نوع التحول $3 ightarrow 1$: تحول عند درجة حرارة ثابتة.
		3) احسب قیمة کل من:
		$\cdot \mathbf{W}_{2}$, \mathbf{W}_{1} , -1
	0,25	$W_{1\to 2} = -P(V_2 - V_1)$ $W_{1\to 2} = -1.01325 \times 10^5 \times (24.46 \times 10^{-3} - 12.23 \times 10^{-3}) = -1239.2 \boxed{W_{1\to 2} = -1239.2 \text{ J}}$
		$N_{1\rightarrow 2}$ 3,000 (1,10) $N_{1\rightarrow 2}$ 3.00 (2,10)
	0,25	$W_{3\rightarrow 1} = -nRTLn\frac{V_1}{V_3} = nRTLn\frac{V_3}{V_1}$
	, -	$W_{3\to 1} = 0.5 \times 8.314 \times 298 \times Ln \frac{24.46}{12.23}$ $W_{3\to 1} = 858.66 J$

تابع للإجابة النموذجية لموضوع اختبار مادة: تكنولوجيا هـ. الطرائق/ الشعبة: تقني رياضي/ بكالوريا 2022

$$\begin{array}{c} Q_{3\rightarrow 1} \ \ J \ \ Q_{2\rightarrow 3} \ \ , \ Q_{1\rightarrow 2} \ - \psi \\ Q_{1\rightarrow 2} = Q_p = nCp\Delta T = nCp(T_2 - T_1) \\ Cp - Cv = nR \Rightarrow Cp = Cv + nR = \frac{3}{2}R + nR = 2R \\ Q_{1\rightarrow 2} = 2nR(T_2 - T_1) = 2nR(T_2 - T_1) \\ 0.25 \ \ Q_{1\rightarrow 2} = 2\times 0.5 \times 8.314 \times (596 - 298) = 2477.57J \\ 0.25 \ \ Q_{2\rightarrow 3} = Q_v = nC_v\Delta T = nC_v(T_3 - T_2) = \frac{3}{2}nR(T_3 - T_2) \\ 0.25 \ \ Q_{2\rightarrow 3} = \frac{3}{2} \times 0.5 \times 8.314 \times (298 - 596) = -1858.18 \\ \Delta U_{3\rightarrow 1} = Q_{3\rightarrow 1} + W_{3\rightarrow 1} \quad \Delta U_{3\rightarrow 1} = 0 \\ 0.25 \ \ Q_{3\rightarrow 1} + W_{3\rightarrow 1} = 0 \Rightarrow Q_{3\rightarrow 1} = -W_{3\rightarrow 1} \\ Q_{3\rightarrow 1} = -858.66 \, J \\ \Delta U_{1\rightarrow 2} = Q_{1\rightarrow 2} + W_{1\rightarrow 2} \\ 0.25 \ \ \Delta U_{1\rightarrow 2} = -1239.2 + 2477.57 = 1238.37 \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ Q_{2\rightarrow 3} = -1858.18 \, J \\ \Delta U_{2\rightarrow 3} = -1858.18 \, J \\ \Delta U_{1\rightarrow 2} = -1239.2 + 2477.57 = 1238.37 \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = Q_{2\rightarrow 3} + W_{2\rightarrow 3} \\ \Delta U_{2\rightarrow 3} = -1858.18 \, J \\ \Delta U_{2\rightarrow 3}$$