# Лингвистические основы информатики (ЛОИ)

12.02.2019

### Орг. вопросы

- годовой курс: зачёт+экзамен;
- Петрова Елена Александровна, elena.petrova@urfu.ru;
- консультации по понедельникам в 16:10 на кафедре алгебры и фундаментальной информатики.

#### Рекомендуемая литература

- Языки, грамматики, распознаватели (Шур, Замятин) основной учебник (много багов!)
- Ахо, Лам, Сети, Ульман "Компиляторы. Принципы, технологии, инструменты" (Dragon book)
- Ахо, Ульман "Теория синтаксического анализа, перевода и компиляции"
- Cooper K. Engineering a Compiler.

<u>репозиторий с .djvu книгами</u>

### Чем будем заниматься?

- Теорией компиляции. Узнаем:
  - что такое язык;
  - что такое компилятор;
  - что делает компилятор с языком.

В итоге будем знать, как работают и как написать (в теории) компиляторы.

### Немного комментариев и истории:

Даже разбор формулы в Экселе использует какие-то приёмы компиляции!

В 50-х годах людям надоело писать на ассемблере, и они начали думать. К 60-м придумали.

Дейкстра - двигатель прогресса, потому что придумал <u>теорию</u>, а не какое-то специфичное для задачи решение.

# Что такое компилятор?

По-простому – переводчик с языка на язык. Можно рассматривать как чёрный ящик с каким-то входом, выходом и магией внутри.

Принято разделять его работу на 2 фазы:

↓ исходный текст

фронтенд: анализ исходного текста. Если есть ошибки, то останавливаемся.

↓ промежуточное представление

бэкенд: **синтез** - генерация программы, которая нам нужна вместе с какими-то <u>оптимизациями</u>. ↓ *целевой код* 

Заниматься будем фронтендом!

### Блок анализа

↓ исходный текст

лексический анализ: разбиваем текст на токены – знаки, переменные, идентификаторы.

↓ токены

синтаксический анализ (парсер): определяем, как можно получить такую терминальную строку

↓ синтаксическое дерево

семантический анализ: проверка типов.

↓ промежуточное представление

### Язык

- 1. Лексика слова
- 2. Синтаксис правила построения предложений
- 3. Семантика типы и подходящие им операции

**Таблица символов** - информация о переменных, константах, функциях. Используется на всех шагах анализа.

#### Заполнение:

- лексика (?): встречаем новый символ записываем имя переменной и указываем место первого появления.
- семантика: тип, место хранения, время объявления

Написанию компилятора предшествует описание языка.

Рассмотрим язык с условным оператором. Что есть условный оператор с точки зрения синтаксиса? Опишем это с помощью **форм Бэкуса–Наура** <sup>1</sup> .

#### Обозначения

```
| {} — альтернатива
<> — синтаксическая категория
::== — выводимость
```

### Грамматика

[Порождающая] грамматика - объект математический. Основной способ описания синтаксиса и лексики (частный случай синтаксиса).

<u>Опр</u>. Грамматика  $G = \langle \Sigma, \Gamma, P, S \rangle$ , где

- $\Sigma$  терминальный алфавит (выходной);
- $\Gamma$  нетерминальный алфавит (вспомогательный);
- P множество правил вывода;
- $S \in \Gamma$  выделенный нетерминал аксиома (<u>одна</u>).

#### Соглашения

- $a,b,c,\ldots$  терминальные символы (if терминал);
- $x, y, z, \ldots$  терминальные слова (последовательности терминальных символов);
- $A, B, C, \ldots$  нетерминальные символы;
- $X, Y, Z, \ldots$  слова из любых символов;
- $\alpha, \beta, \gamma, \ldots$  совокупные слова, содержащие как терминальные, так и нетерминальные символы.
- $\lambda$  пустое слово.

### Выводимость

```
Правило вывода: \alpha \to \beta, \alpha, \beta \in (\Sigma \cup \Gamma)^*, точнее \alpha \in (\Sigma \cup \Gamma)^*\Gamma(\Sigma \cup \Gamma)^*
```

↑ в альфе должен быть хотя бы 1 нетерминал!

Таким образом, терминальные символы стоит понимать как символы, из цепочек которых ничего нельзя вывести.

Основная функция этого правила - порождение языка.

<u>Опр</u>. Цепочка  $\gamma$  *непосредственно* выводима из цепочки  $\sigma$ , если  $\gamma=\delta_1\beta\delta_2$ ,  $\sigma=\delta_1\alpha\delta_2$  и  $(\alpha\to\beta)\in P$ 

Обозначается как  $\sigma \Rightarrow \gamma$  (или, при необходимости,  $\gamma \Leftarrow \sigma$ ).

В цепочке сигма есть подпоследовательность альфа, которую можно заменить бетой

Выводимость - отношение на множестве цепочек. Рефлексивно-транзитивное замыкание —  $\sigma \Rightarrow^* \gamma$  — возможность вывести одну цепочку из другой за некоторое число шагов

<u>Опр</u>.  $\gamma$  **выводима** из  $\sigma$  если существует последовательность цепочек  $\eta_0,\ldots,\eta_n,n\geq 0$  такая, что  $\eta_0=\sigma,\eta_n=\gamma,\eta_{i-1}\Rightarrow \eta_i\;(\sigma\Rightarrow^*\gamma)$ 

Последовательность  $\eta_0,\ldots,\eta_n$  – вывод

Получается, что грамматика для нас — просто набор правил вывода. Потому что всё остальное мы зафиксировали в обозначениях.

<u>Опр</u>. **Язык**, порождённый грамматикой  $G = <\Sigma, \Gamma, P, S>$  :  $\{w \in \Sigma^* | S \Rightarrow^* w\}$  — множество терминальных цепочек таких, что их можно вывести из аксиомы.

Опр. 
$$\eta_0,\dots,\eta_n:\eta_0=s,\eta_n=w,\eta_{i-1}\Rightarrow\eta_i$$
,  $\eta_i$  – форма (шаг)

#### Пример

Убедимся в том, что язык  $L = \{a^nb^n|n\in\mathbb{N}_0\}$  порождается грамматикой G = < S, a, b, P, S>, в которой Р состоит из следующих правил вывода:

- $S \rightarrow aSb$
- ullet  $S o\lambda$

Рассмотрим вывод терминальной цепочки:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

ab - терминалы (см. соглашения)

Но тогда и слова  $a^nb^n$  могут быть получены после n применений первого правила вывода к аксиоме S и затем однократным применением второго правила.

### Ещё пример

$$S o ABS | \lambda \: S o SS | a | b | \lambda$$

$$A \rightarrow a$$

$$S \Rightarrow ABS \Rightarrow ABABS \Rightarrow^* (AB)^n S \Rightarrow (AB)^n$$

Можем перейти к терминалам

$$S \Rightarrow^* ABABAB \Rightarrow ABBAAB \Rightarrow abbaab$$

Хотим загнать буквы А в конец, а В в начало. Будем менять местами буквы по второму правилу.

### 19.02.2019

```
1 pos = init + rate * 60;
 3 // после лескического анализа превращается в...
 4 id,15 <=> <id,2><+><id,3><*><const><;>
   // синтаксическому анализу всё равно, как называется переменная
 6
7
   // после ситанксического анализа превращается в...
8
9
     /\
10 id,1 +
11
        /\
     id,2 *
12
13
           /\
14
       id,3 const
15 //после семантического добавятся какие-то атрибуты
```

На каждой стадии – новый язык. Значит, нужны новые способы порождения\описания. А этот способ порождает распознаватель.

# Иерархия Хомского-Шютценберже

|   | Вид грамматики                                                               | Распознаватель                          | Класс языков               |  |
|---|------------------------------------------------------------------------------|-----------------------------------------|----------------------------|--|
| 0 | Грамматика<br>обычного вида                                                  | MT                                      | Рекурсивно<br>перечислимые |  |
| 1 | Контекстно-<br>зависимые                                                     | МТ с линейно ограниченной памятью (LBA) | КЗЯ                        |  |
| 2 | Контекстно- Недетерминированный автомат с свободные магазинной памятью (PDA) |                                         | КСЯ                        |  |
| 3 | Праволинейные                                                                | ДКА                                     | Регулярные языки           |  |

<u>Опр</u>. **Контекстно-зависимая** грамматика — все правила имеют вид  $\alpha A \gamma \to \alpha \beta \gamma$  (у терминала имеется контекст, который сохраняется при его раскрытии) .

<u>Опр</u>. Язык обладает свойством P, если  $\exists$  грамматика со свойством P, его порождающая.

<u>Опр</u>. **Контекстно-свободная** грамматика — все правила имеют вид  $A o \beta$  (частный случай КЗГ, когда оба контекста пусты).

<u>Опр</u>. **Праволинейные** грамматики — все правила имеют вид A o aB или  $A o \lambda$  справа либо лямбда, либо терминал+нетерминал.

Вспомним пример. Кажется, что это грамматика обычного вида.

$$S o ABS | \lambda \: S o SS | a | b | \lambda$$

Построим КСГ, которая породит язык выше. Порождаем цепочки, где букв B на одну больше, чем a.

Из  ${\tt A}$  должны выводиться строчки, где на одну a больше

$$abba:\ S 
ightarrow aB 
ightarrow abS 
ightarrow abbA 
ightarrow abba$$

Иерархия: регулярные  $\subset$  КСЯ  $\subset$  КЗЯ  $\subset$  Rec  $\subset$  RecEn  $^2$  .

# Контекстно-свободные грамматики и языки

## Деревья вывода

<u>Опр</u>. **Упорядоченное дерево** — дерево с заданным линейным порядком со следующими свойствами:

- 1. Если x сын узла y, то  $x \geq y$
- 2. Если  $x \leq y$  и они братья, то для всех сыновей z узла x:  $z \leq y$

Порядок, возникающий при обходе в глубину слева направо

### Пример:

$$S o SS|(s)|\lambda$$

(())

<u>Опр</u>. **Дерево вывода** цепочки  $\omega$  в  $G=<\Sigma,\Gamma,P,S>$  — упорядоченное дерево со следующими свойствами:

- 1. Узлы нетерминалы, корень аксиома, листья терминалы или  $\lambda$ , причём у листьев, помеченных пустым словом нет братьев.
  - Если у узла есть братья, то  $\lambda a$  схлопывается до a
- 2. Если у узла x все сыновья это некоторый набор  $y_1, \ldots y_n$ , таких, что  $y_1 \leq \ldots \leq y_n$ , и узлы x,  $y_1, \ldots y_n$  помечены символами  $X, Y_1, \ldots Y_n$ , то  $(X \to Y_1, \ldots Y_n) \in P$ .
  - Применили правило, в дереве появился куст вывода
- 3. Если все листья дерева имеют метки  $a_1 \leq a_2 \leq \ldots \leq a_n$ , то  $\omega = a_1 \ldots a_n$ .
  - Крона дерева задаёт цепочку  $\omega$

 $\underline{\text{Опр}}$ . Вывод цепочки  $\omega(S\Rightarrow \alpha_1\Rightarrow \ldots\Rightarrow \alpha_n=\omega)$  в  $G=<\Sigma,\Gamma,P,S>$  представлен деревом вывода T, если  $\exists$  набор стандартных поддеревьев  $T_1,\ldots T_n$  таких, что на упорядоченных листьях дерева  $T_i$  написана форма  $\alpha_i$ .

Крона поддерева  $T_i$  задаёт форму  $\alpha_i$ 

<u>Опр</u>. Стандартное поддерево T' дерева T, если:

- 1. корень  $T^\prime$  корень T
- 2. Если узел x дерева T  $\in$  T' , то либо x лист в этом поддереве, либо все сыновья x в T  $\in$  T'
  - Если с узлом лежит хотя бы один его сын, то и все его сыновья тоже лежат.

### Пример по последнему языку:



Основная роль дерева вывода — связь *синтаксиса* и *семантики* выводимой цепочки. Например, семантика компьютерной программы — *алгоритм* решения задачи, а дерево вывода описывает структуру программы, т.е. порядок выполнения машинных операций, необходимых для реализации алгоритма.

Наша любимая грамматика, которая порождает арифметику:

$$E \rightarrow E + E|E*E|(E)|x$$

$$x + x * x$$

```
      1
      E

      2
      /|\

      3
      E + E - этот куст можно передвинуть влево, получится два разных дерева

      4
      | /|\
      для одного и того же. Плохо.

      5
      X E * E

      6
      | |

      7
      X X
```

<u>Опр</u>. Грамматика **однозначна**, если  $\forall \omega$ , выводимой в грамматике,  $\exists !$  дерево вывода.

Следующая грамматика однозначна и эквивалентна предыдущей

$$E \rightarrow E + T|T$$

$$T \to T * F|F$$

$$F \rightarrow (E)|x$$

1. Правосторонний вывод и г-формы:

$$E \rightarrow E + T \rightarrow E + T*F \rightarrow E + T*x \rightarrow E + F*x \rightarrow E + x*x \rightarrow T + x*x \rightarrow F + x*x \rightarrow x + x*x$$

2. Левосторонний вывод и І-формы:

$$E \rightarrow E + T \rightarrow T + T \rightarrow F + T \rightarrow x + T \rightarrow x + T * F \rightarrow x + F * F \rightarrow x + x * F \rightarrow x + x * x$$

Плата за однозначность - увеличение длины вывода.

26.02.19

Теорема. Праволинейная грамматика порождает регулярный язык.

Д-во:

Суть: построим автомат и по теореме Клини  $^3$  — готово.

$$G = \langle \Sigma, \Gamma, P, S \rangle$$

Конечный автомат:  $A = (\Sigma, \Gamma, \delta, S, F)$ ,

 $F = \{A \in \Gamma | (A o \lambda) \in P\}$  — терминальные состояния — такие нетерминалы, из которых выводится пустое слово

 $\delta(A,a)=B\iff (A o aB)\in P$  — переход возможен, если есть такое правило вывода

$$\omega = a_1 \dots a_n \colon S \to a_1 A_1 \to a_1 a_2 A_2 \to \dots \to a_1 \dots a_n A_n \to a_1 \dots a_n$$

 $a(b+cc)^*$  — чтобы построить грамматику, проще сначала нарисовать автомат, распознающий этот язык. Обозначим все состояния нетерминальными символами. А дальше - как в теореме выше, только в обратную сторону.

$$A o bA|cB|\lambda$$

$$B \to cA$$

# Преобразования грамматик

Хотим научиться удалять лишние вещи, которые не несут никакой пользы.

# Приведённые грамматики

 ${\hbox{\it O}{\it n}{\it p}}$ . Нетерминал  $A\in \Gamma$  называется **производящим**, если  $A\Rightarrow_G^*\omega$  .

== из него можно получить терминальную цепочку.

 ${\underline{\sf Onp}}$ . Нетерминал  $A\in\Gamma$  называется **достижимым**, если  $S\Rightarrow_G^*\alpha Aeta$ 

== его можно получить из аксиомы.

<u>Опр</u>. Грамматика **приведённая**, если все её нетерминалы достижимые и производящие.

### Пример

S o bAc|AcB

 $A \rightarrow abC$ 

 $B \rightarrow Ea$ 

C o BD

D o CCa

E o Fbb

F o a

Производящие (**p**roducing):  $\Gamma_p = \{F, E, B\}$ .

Если среди производящих нетерминалов нет аксиомы, то язык пустой.

Достижимые (reachable):  $\Gamma_r = \{S, A, B, C, E, D, F\}$ 

### **Нахождение** $\Gamma_r$ :

- $\Gamma^1_r \leftarrow S$ :
- $\Gamma_r^n = \Gamma_r^{n-1} \cup \{A | (B \to \alpha A \beta) \in P, \beta \in \Gamma_r^{n-1}\}$ .

смотрим, какие нетерминалы есть справа и добавляем те, которых ещё нет в  $\Gamma_r$ 

### **Нахождение** $\Gamma_p$ :

•  $\Gamma^1_p \leftarrow \{A | (A \rightarrow \omega) \in P\};$ 

•  $\Gamma_p^n = \Gamma_p^{n-1} \cup \{A | (A \to \gamma) \in P, \gamma \in (\Sigma \cup \Gamma_p^{n-1})\}.$ 

смотрим на достижимые из  $\Gamma_p^{n-1}$  нетерминалы;

<u>Теорема</u>. Для любой КСГ G существует эквивалентная  $^4$  ей приведённая грамматика.

Д-во:

KCF 
$$G = \langle \Sigma, \Gamma, P, S \rangle$$

Находим  $\Gamma_p$ :

ullet если  $S
ot\in\Gamma_p$ , то  $G'=(\Sigma,\emptyset,\emptyset,\emptyset)$ 

$$ullet$$
 иначе  $ilde{G}=(\Sigma,\Gamma_p, ilde{P},S)$   $ilde{P}=\{(A o\gamma)\in P|A,\gamma\in(\Sigma\cup\Gamma_p)^*\}$ 

Находим  $(\Gamma_p)_r$ 

 $(\Gamma_p)_r$  - достижимы в ilde G, G', производящие в ilde G, G

$$A\in (\Gamma_p)_r\colon S\Rightarrow_{ ilde{G}}^*lpha Aeta\Rightarrow_{ ilde{G}}^*uwv$$

Выкинули правила вывода, которые и так не могли участвовать в выводе терминальных цепочек.

Пример

S o ab|bAc

 $A \to CB$ 

B o aSA

C o bC|d

$$\Gamma_p = \{C, S\}$$

$$(\Gamma_p)_r = \{S\}$$

$$G' = \{S o ab\}$$

Больше не будем рассматривать неприведённые грамматики

# $\lambda$ -свободные грамматики

<u>Опр</u>.  $A \in G$  — аннулирующий, если  $A \Rightarrow^* \lambda$ .

 $\underline{\mathsf{Onp}}.\ Ann(G)$  — множество аннулирующих нетерминалов.

Хотим, чтобы это множество было пустым. Ну или хотя бы только с аксиомой. Потому что тогда нам жить станет прощею

Чтобы от аннулирующих нетерминалов избавиться, нужно их найти

### Пример

S o aBC|AE

 $A o bC | \lambda$ 

 $B \to ACA$ 

 $C o \lambda$ 

 $E \to CA$ 

D o bE|c

Ann(G):

- 1.  $\{A, C\}$
- 2.  $\{A, C, B, E\}$
- 3.  $\{A, C, B, E, S\}$

<u>Опр</u>.  $\lambda$ -свободная грамматика — грамматика, которая либо не содержит аннулирующих правил вида  $(A o \lambda)$ , либо содержит единственное такое правило  $(S o \lambda)$  и S не встречается в правых частях правил вывода.

 $\overline{\text{Теорема}}$ . Любая грамматика эквивалентна  $\lambda$ -свободной грамматике

Д-во:

Сначала построим, потом всё покажем

$$G = \langle \Sigma, \Gamma, P, S \rangle$$

0. Если 
$$\lambda\in L(G)$$
, то  $\Gamma'=\Gamma\cup S'$ ,  $P'=P\cup\{(S' o\lambda),(S' o S))\}$   
Иначе  $\Gamma=\Gamma'$  ,  $S=S'$  ,  $P=P'$ 

Смысл: добавим аксиому, которая справа встречаться нигде не будет???

- 1. Построим Ann(G).
- 2. Рассмотрим бинарное отношение на множестве форм:

 $\beta \leq \gamma$ , если  $\beta$  — подпоследовательность  $\gamma$  и все символы  $\gamma$ , которых нет в  $\beta$ , аннулирующие.

Условие  $eta \preceq \gamma$  влечёт  $\gamma \Rightarrow_G^* eta$ 

$$P' = \{(A o eta) | (A o \gamma) \in P, eta \leq \gamma, eta 
eq \lambda\}$$

Взяли все исходные правила. В новую грамматику положили их "части"-подстроки, в которых либо присутствует, либо удалён каждый из аннулирующих нетерминалов.

3. Видно, что аннулирующие правила мы не взяли, поэтому она  $\lambda$ -свободная по определению.

$$L(G) = L(G')$$
?

1. 
$$w \in L(G')$$

$$S \Rightarrow_{G'} \alpha_i \Rightarrow_{G'} \ldots \Rightarrow_{G'} \alpha_n = w$$

$$lpha_i \Rightarrow_{G'} lpha_{i+1}(A o eta) \in P'$$
, значит, в  $G \; \exists (A o \gamma) \in P, eta extcolor{d} \leq \gamma.$ 

Тогда  $\gamma \Rightarrow_G^* \beta$ , следовательно,  $A \Rightarrow_G^* \beta$ , и это верно для любых цепочек.

как построить такую же цепочку, используя другие правила? Непонятно.

### 2. $w \in L(G)$

Что означает этот треугольник????



## Нормальная форма Хомского

Нужна для доказательства важной теоремы, понадобится для алгоритма разбора.

<u>Опр.</u> Грамматика находится в ХНФ, если все её не аннулирующие правила вывода имеют вид  $A \to BC$  (справа ровно 2 нетерминала) или  $A \to a$ .

Теорема. Любая КС грамматика эквивалентна некоторой грамматике в ХНФ.

Д-во. Конструктивное.

$$G = \langle \Sigma, \Gamma, P, S \rangle$$

Пусть G — исходная грамматика ( $\lambda$ -свободная)

1. Для всех правил грамматики, у которых в правой части хотя бы 2 символа сделаем следующее:

$$orall A o X_1\ldots X_n$$
 ,  $n>=2$ 

- $\circ$  если  $X_i$  терминал, добавим новый нетерминал  $X_i'$  и правило  $X_i' o X_i$ . Затем заменим вхождение терминала во всех правых частях на новый нетерминал.
- Избавляемся от правил, где справа много терминалов.
- 2. A o B **цепные** правила. Что делать с ними? Заменим правую часть на всё, что выводится из B. Но что, если есть цепочка  $A o B o \ldots o A$  (цикл)? Сначала нужно от них избавиться.

<u>Опр</u>. Грамматика **циклическая**, если существует такой нетерминал A , что за какое-то ненулевое количество шагов из него выводится он сам. В противном случае — **ациклическая** .

<u>Лемма</u>. Любая грамматика эквивалентна некоторой ацикличной.

Д-во. Пусть 
$$A_1 \Rightarrow A_2 \Rightarrow \ldots \Rightarrow A_n \Rightarrow A_1$$

Мы рассматриваем только цепные правила, так как грамматика  $\lambda$ -свободная, то есть не возникнет ситуации  $A \to BC \to AC \to A$  (если из C выводится  $\lambda$ )

Заменим все  $A_i$  на A и удалим правила  $A\Rightarrow A$ . Получилась G'. Готово.

Почему работает:  $w \in L(G) \iff w \in L(G')$ 

- $\Rightarrow$  Вывод в G' получается стиранием индексов.
- $\Leftarrow$  Пусть A участвовал в выводе w. Пусть нетерминал A появлялся в какой-то правой части: B o lpha Aeta,  $A o \gamma$ . Если такие правила были в G', то в G существуют правила вывода  $(B o lpha A_ieta)$ ,  $(A_j o \gamma)$ . Но мы знаем, что из  $A_i \Rightarrow_G^* A_j$  (Если не совпадает с гаммой, то крутимся по циклу).
- 3. Пока в правых частях есть хотя бы 3 нетерминала, заменим два идущих подряд нетерминала на новый.

S o AB|aAb

 $A o bB|aBC|\lambda$ 

 $B \to AS|bA|a$ 

C o b

Выведем  $\lambda$ -свободную грамматику.  $Ann(G) = \{A\}$ .

 $S o AB|B|\_aAb\_|\_ab\_$ 

 $A 
ightarrow \_bB\_|\_aBC\_$ 

 $B \rightarrow AS|S|\_bA\_|b|a$ 

C o b

Приведём к ХНФ. Добавим A' o a и B' o b:

 $S \to AB|B|A'AB'|A'B'$ 

 $A \to B'B|A'BC$ 

 $B \to AS|S|B'A|b|a$ 

C o b

Найдём цикл: S o B o S. Заменяем B на S, и подставляем в S всё, что выводится из B

 $S \to AS|A'AB'|A'B'|B'A|b|a$ 

 $A \rightarrow B'S|A'SC$ 

C o b

Заменим тройные нетерминалы на двойные, добавим D o AB' и E o SC

 $S \rightarrow AS|A'D|A'B'|B'A|b|a$ 

 $A \rightarrow B'S|A'E$ 

C o b

# Свойства КСЯ

### Лемма Огдена

Пусть есть L — КСЯ. Тогда  $\exists m \in \mathbb{N}: \ \forall w \in L$  в которых помечено не менее m позиций, представимо в виде w = uxzyv, причём:

- 1. xy содержит хотя бы одну помеченную позицию;
- 2. xzy содержит не более m помеченных;
- 3.  $ux^nzy^nv\in L\ \forall n\in\mathbb{N}_0$  (накачка).

Помечено - выбираем какие-то символы

Д-во.  $G = <\Sigma, \Gamma, P, S>$  , L = L(G)

Пусть L порождается грамматикой в ХНФ,  $m=2^{|\Gamma|+1}$ . Рассмотрим такое слово  $w\in L$ , что  $|w|\geq m$  и пометим в нём не менее m позиций. Рассмотрим дерево вывода слова w (треугольник). Построим путь вывода слова w в G:

- Корень (вершина треугольника) аксиома. Принадлежит пути.
- Из двух (потому что ХНФ) потомков выберем того, из которого выводится больше выделенных позиций.

**Точка ветвления** — узел, у которого из обоих потомков выводится подслова w с помеченными позициями

ВАЖНО: каждая следующая точка ветвления порождает не менее половины помеченных позиций w от тех, что порождает предыдущая точка. Доказать можно по индукции.

в pw (nymь) не менее  $|\Gamma|+1$  точек ветвления. Среди всех точек ветвления рассмотрим последние точки. Но у нас всего  $|\Gamma|$  нетерминалов, значит, хотя бы 2 узла совпали – имеют одинаковую метку. Назовём её A. (Находится близко к листьям! Иначе не можем что-то гарантировать)

 $w_1$  — точка ветвления  $\Rightarrow x$  или y содержит хотя бы одну помеченную позицию. (x, y - nodслова)

 $A \Rightarrow^* z, A \Rightarrow^* xzy$ 

Тут ещё какие-то правила

Рандомный комментарий: для всех слов высота дерева вывода одинаковая! Для ХНФ.

### Пример

 $S \to AB$ 

A o AB|a

 $B\to BS|b$ 



#### Лемма о накачке

следствие леммы Огдена

 $L-\mathsf{KCS}\Rightarrow\exists n,m\in\mathbb{N}\ :\ \forall w\in L:|w|\geq n$  : w представимо как uxzyv, причём:

- 1.  $xy \neq \lambda$
- 2.  $|xzy| \leq m$
- 3.  $ux^kzy^kv\in L, \forall k\in\mathbb{N}_0$

Суть: для любого КСЯ существуют натуральные константы такие, что любое слово определённой длины соответствует свойствам. Отсутствуют слова про выделенные позиции! То есть все символы выделены.

Приравнять n к m и все позиции сделать выделенными.

### Следствия леммы о накачке

На экзамене будет вопрос про лемму о накачке и её следствия! Лемму доказывать не надо! Лемму Огдена надо. А следствия те, что ниже!

<u>Сл. 1</u>. Язык  $\{a^nb^nc^n|n\in\mathbb{N}\}$  не КСЯ

Если не можем накачать слово, то это точно не КСЯ

Д-во: О.П: пусть язык L – контекстно свободный, следовательно выполняется лемма о накачке. Возьмём слово  $a^lb^lc^l, l\geq m, 3l\geq n$ . Попробуем впихнуть туда xzy. Переберём все варианты. Если ни один не подойдёт - получим противоречие.

$$|aa \dots aa|b \dots b|c \dots c|$$

xzy расположены в одном блоке, либо на границе двух (т.к. длина блока больше, чем длина строки xzy)

- 1. Накачиваться будет одна буква:  $a^{l+r}b^lc^l 
  otin L$
- 2. Если x будет и в a, и в b, получиться a после b, такое слово  $\not\in L$ . Значит, x лежит целиком в блоке a, y целиком в блоке b. Накачаем:  $a^{l+r}b^{l+s}c^l\not\in L$ .

\_

Сл. 2. Язык 
$$L=\{ww|w\in\Sigma^*, |\Sigma|\geq 2\}$$
 — не КСЯ (язык квадратов)

Д-во: О.П. 
$$\Sigma=\{a_1,\ldots,a_{n'}\}$$
. Должно накачиваться  $a_1^l\ldots a_k^la_1^l\ldots a_k^l \cdot l\geq m, 2|w|\geq n$ 

Давайте накачаем одну из половинок или что-то посередине

|w|w|

1. Накачаем вторую половину. Значит, найдётся 1 или 2 буквы, которые мы накачали. В итоге тоже должно получиться "квадратное" слово.  $w^2=uxzyv$ . Поделим пополам слово  $ww'=ux^2zy^2v$ . Новая граница точно не вышла за предел блока  $a_1$ 

$$|w|a_1^l$$
][.... $w'$ ... $a_k$ ]

↑ новая граница

2. Качаем посерединке

$$a_1^l \dots a_k^{l+r} a_1^{l+s} \dots a_k^l r + s \leq m$$
 Б.О.О.  $r \geq s$ 

- $\circ \ \ r = s \Rightarrow$  в новом слове правая половина кончается на большее кол-во  $a_k$
- $\circ \;\; r > s$  первая половина начинается на  $a_1$ , вторая на  $a_k$

Лемма о накачке не всесильна:  $a^nb^nv^k, k\geq n$ 

Пример унарного языка:  $a^{n^r}$ 

### Теорема об унарных языках

Для языка  $L\subseteq\{a\}^*$ :

- 1. *L* регулярный;
- 2. *L* КСЯ;
- 3. мн-во длин слов из L периодическое.

м 
$$\subseteq \mathbb{N}$$
 — периодическое, если  $\exists n_0, d \in \mathbb{N}: orall n > n_0 \ (n \in M) \Rightarrow (n+d \in M)$ 

Д-во:

1. **2** ⇒ **3** 

$$\exists n, m : \forall a^n a^{n+r} \ (r \leq m)$$
:

$$a^n=$$
[по лемме о накачке] $=uxzyv=$ [потому что язык унарный] $=uvzxy$ 

$$uvz(xu)^k \in L$$

Положим  $n_0 = n$  (из леммы о накачке), d = m!

m! делится на все  $r \in \{1,\ldots,m\}$ , значит,  $a^{n+lm!} \in L$ .

2. **3** ⇒ **1** 

построим автомат

М — периодическое множество длин слов.

 $\forall i: 0 \leq i < d$  найдём минимальное  $k_i: k_i \in M, k_i \equiv i \ mod \ d$ . Если для какого-то  $i \ k_i$  не существует, положим его равным нулю.

М — бесконечное  $\Rightarrow \exists i: \, k_i > 0$ 

Рисунок мухоловки с ручкой длины k, обода длины d

 $\forall j \in \{0,\ldots,k\}$  сост.  $q_j$  – заключительное  $\iff a^j \in L$ 

Для остальных  $q_s$  – заключительное  $\iff a^{s+rd} \in L$ 

3. **1**  $\Rightarrow$  **2** — очевидно.

# Подстановки

<u>Опр</u>. Подстановка  $au: 2^{\Sigma^*} o 2^{\Delta^*}$ 

```
1. \tau(\lambda)=\lambda;
2. \tau(a)\subseteq \Delta^*,\ a\in \Sigma; если a - слово, то это гомоморфизм
3. \tau(a_1\dots a_n)=\tau(a_1)\cdot\dots\cdot \tau(a_n);
4. \tau(L)=\bigcup_{=}^{}\tau(w).
```

Гомоморфизм — частный случай подстановки (  $\forall a \in \Sigma : \tau(a) = w \in \Delta^*$  )

TODO: переписать

Введем еще одну операцию над языками, которую будем называть подстановкой. Пусть  $\Sigma = \{a_1, \ldots, a_n\}$  и  $\Delta$  – два алфавита,  $\tau$  – отображение, которое каждому элементу  $b \in \Sigma$  ставит в соответствие язык над  $\Delta$ , т.е.  $\tau(b) \subseteq \Delta^*$ . Рассмотрим два расширения отображения  $\tau$ . Сначала расширим это отображение на  $\Sigma^*$ , положив  $\tau(b_1b_2...b_k) = \tau(b_1)\tau(b_2)...\tau(b_k)$  и  $\tau(\varepsilon) = \{\varepsilon\}$ . Далее расширим полученное отображение на множество языков над  $\Sigma$ . Если L – язык над  $\Sigma$ , то определим  $\tau(L) = \bigcup_{w \in L} \tau(w)$ . Язык  $\tau(L)$  будет языком над

 $\Delta$ , он является результатом действия подстановки  $\tau$  на язык L.

### Пример.

Пусть  $\Sigma = \{a_1, a_2\}$ 

$$au(a_1) = L_1 \subseteq \Delta^*$$

$$au(a_2) = L_2 \subset \Delta^*$$

- $L = \{a_1 a_2\}$  $\tau(L) = \tau(a_1) \cdot \tau(a_2) = L_1 \cdot L_2$
- $L = \{a_1\}^*$

$$au(L) = au(\{a_1\}^*) = au(igcup_{i=0}^\infty a_1^i) = igcup_{i=0}^\infty au(a_1^i) = igcup_{i=0}^\infty au(a_1)^i = igcup_{i=0}^\infty L_1^i = L_1^*$$

### Теорема о подстановке.

Пусть 
$$L\subseteq \Sigma^*$$
 — КСЯ,  $au:2^{\Sigma^*} o 2^{\Delta^*}$  – подстановка:  $orall a\in \Sigma: au(a)$  – КСЯ.

Тогда 
$$\tau(L)$$
 – КСЯ

#### Д-во:

$$L$$
 порождает  $G = <\Sigma, \Gamma, P, S>$ ,  $\Sigma = \{a_1, \ldots, a_n\}$ 

$$G_i = <\Delta, \Gamma_i, P_i, S_i>, L(G_i) = au(a_i), orall i=1..n$$

Б.о.о. 
$$\Gamma \cap \Gamma_i = \emptyset$$
,  $orall i$ ,  $\Gamma \cup \Gamma_i = \emptyset$ ,  $i 
eq j$ 

Грамматика 
$$H = <\Delta, ar{\Gamma}, ar{P}, S>$$

$$ar{\Gamma} = \Gamma \cup igcup_{i=0}^n \Gamma_i$$

 $ar{P} = P' \cup igcup_{i=0}^n P_i$ , P' - из P значений всех терминалов  $a_i$  на соотв.  $S_i$ 

$$L(H) = \tau(L)$$
?

1.  $w \in L(H)$ 

Построим дерево вывода для w. T' – стандартное поддерево: все внутренние узлы из  $\Gamma$ , листья из  $\bigcup_{i=1}^n \Gamma_i \cup \Delta$ . Если  $\exists (A \to \alpha B \beta) \in \bar{P}: \ A \in \Gamma, B \not\in \Gamma$ , то  $\alpha, \beta = \lambda$ .



$$B = S_{i_j}$$
 , r.e.  $S \Rightarrow_H^* S_{i_1} \ldots S_{i_k} \Rightarrow_H^* w_{i_1} \ldots w_{i_k} = w$ 

$$egin{aligned} w_{i_j} &\in au(a_{i_j}) \ &w \in au(a_{i_1}) \dots au(a_{i_k}) = au(a_{i_1} \dots a_{i_k}), \ a_{i_1} \dots a_{i_k} \in L \ &S \Rightarrow_G^* a_{i_1} \dots a_{i_k} \Rightarrow \pitchfork \ &w \in au(L). \ &2. \ w \in au(L) \ &3. \ \exists u \in L: w \in au(u) \Rightarrow S \Rightarrow_G^+ u = a_{i_1} \dots a_{i_k} \iff S \Rightarrow_H^+ S_{i_1} \dots S_{i_k} \Rightarrow^+ w_{i_1} \dots w_{i_k}, w_{i_j} \in au(a_{i_j}) \end{aligned}$$

 $u=a_{i_1}\ldots a_{i_k}\Rightarrow w\in au(a_{i_1}\ldots a_{i_k})= au(a_{i_1})\ldots au(a_{i_k})\ w=w_{i_1}\ldots w_{i_k}$ 

19.03.2019

### Следствия теоремы о подстановке

<u>Сл. 1</u>. Класс КСЯ замкнут относительно регулярных операций  $(*,\cdot,\cup)$ .

$$\{a_1, a_2\}$$

$$L_1 = \tau(a_1), L_2 = \tau(a_2)$$
 — КСЯ

$$au(\{a_1,a_2\}(\mathsf{кся})) = L_1 \cup L_2$$

Сл. 2. Класс КСЯ замкнут относительно перехода к гомоморфным образам.

Гомоморфизм — частный случай подстановки. Применение подстановки к одному символу даёт язык из одного слова

подстановка:  $au(a)\subseteq \Sigma^*$  гомоморфизм:  $\phi(a)\in \Sigma^*$  , т.е.  $\phi(a)=L, |L|=1$ 

Предложение. Класс КСЯ не замкнут относительно пересечения и дополнения.

Д-во:

Пересечение: 
$$L_1=\{a^nb^na^m|n,m\in\mathbb{N}_0\}$$
  $L_1=\{a^nb^n|n\in\mathbb{N}_0\}\cdot\{a^*\}$  — КСЯ по лемме  $L_2=\{a^mb^na^n|n,m\in\mathbb{N}_0\}$   $L_2=\{a^*\}\cdot\{a^nb^n|n\in\mathbb{N}_0\}$   $L_1\cap L_2=\{a^nb^na^n|n\in N_0\}$   $L_1\cap L_2=\phi(L_3),L_3=\{a^nb^nc^n|n\in N_0\}$  — не КСЯ по лемме о накачке  $\phi(a)=a,\phi(b)=b,\phi(c)=a$ 

Дополнение:  $A \, ar \cap \, B = ar A \cup ar B \, A \cap B = ar A \, ar \cup \, ar B$ 

### Теорема о пересечении КСЯ с РЯ

Пересечение КСЯ с регулярным языком — КСЯ <u>Д-во</u>:  $L=L(G), G=<\Sigma, \Gamma, P, S>$  — КСЯ

$$A = (\Sigma, \Gamma, \delta, q_0, F), M = L(A)$$

Что можно сказать про  $L \cap M$ ?

Достаточно рассмотреть автоматы с единственным заключительным состоянием:

$$egin{aligned} A = \ (\Sigma, \Gamma, \delta, q_0, f_i), f_i \in F \ \ M = igcup_{f_i \in F} L(A_{f_i}) \end{aligned}$$

$$L\cap M=L\cap igcap_{f_i\in F}L(A_{f_i})=igcap_{f_i\in F}L\cap L(A_{f_i})$$

$$A = (\Sigma, \Gamma, \delta, q_0, f)$$

$$H = (\Sigma, \bar{\Gamma}, \bar{P}, \bar{S})$$

$$\bar{\Gamma} = Q \times (\Gamma \cup \Sigma) \times Q$$

$$\bar{S} = (q_0, S, f)$$

Правила вывода состоят из правил двух типов:

- 1. Те, что получаются из грамматики: Если  $A \to X_1, \dots, X_n \in P$ , то  $\forall$  набора состояний  $p,q,r_1,\dots,r_{n-1}$ :  $(P,A,q) \to (p,X_1,r_1)(r_1,X_2,r_2)\dots(r_{n-1},X_n,q) \in ar{P}$
- 2. Те, по которым есть правила перехода в автомате: Если  $\delta(p,a)=q$ , то  $(p,a,q) o a\in ar{P}$

$$L(A) = L \cap M$$
?

$$w \in L(H)$$

Вывод w: сначала правила вывода (1) из ХНФ

$$w = a_1 \dots a_n$$

$$\bar{S} \Rightarrow_H^* (1)(q, a_1, r_1)(r_1, a_2, r_2) \dots (r_{n-1}, a_n, f) \Rightarrow^+ (2)a_1 \dots a_n$$

$$(q_0, S, f), q = q_0, p = f$$

$$w \in L \cap M$$

### Распознаватели КСЯ

Мы знаем, что регулярный язык можно распознать за линейное время. Про КСЯ пока ничего не знаем. Но, есть теорема, которая отвечает на этот вопрос. Попытаемся определить вхождение слова в КСЯ.

### Алгоритм Кока-Янгера-Касами

$$G = \langle \Sigma, \Gamma, P, S \rangle$$
 — в ХНФ.

Сначала нужно построить табличку. Пусть есть слово, которое мы проверяем:

$$w \in L(G) \Rightarrow \forall i,j,i \neq j: \exists A \in \Gamma: (A \rightarrow BC) \in P: A \rightarrow w[i\mathinner{\ldotp\ldotp} j] \text{, } B \rightarrow w[i\mathinner{\ldotp\ldotp} k] \text{, } C \rightarrow w[k+1\mathinner{\ldotp\ldotp} j], i \leq k \leq j$$

Таблица — верхнетреугольная матрица размера n imes n, |w| = n

| $T_{ij}$ | Столбец - длина                                                     |
|----------|---------------------------------------------------------------------|
| Строка - | Нетерминалы, из которых можно вывести подстроку из данной позиции с |
| позиция  | заданной длиной.                                                    |

 $T_{ij} = \{A | A \Rightarrow_G^+ w[i.\,.\,i+j-1]\}$  — в ячейке храним нетерминалы, из которых выводится подстрока с позиции i длины j.

Первый столбец заполняется по правилам ХНФ (2):

$$T_{i1} = \{A | (A \rightarrow w[i]) \in P\}.$$

Остальные столбцы заполним, перебрав все возможные "распилы" строки на 2 части:

$$T_{ij} = \{A | \exists (A o BC) \in P, B \in T_{ik}, C \in T_{i+k-1,j-k}, i \le k < j-1\}$$

Если в  $T_{1,n}$  есть S, то  $w \in L(G)$ .

Если в  $T_{ij}$  есть S, то в строке есть подстрока, принадлежащая L(G) длины j с позиции i

### Пример

$$S o A'A|BB'|SS \ A o A'A|A'D|c \ D o CB' \ B o BB'|A'D|c \ C o A'D|c \ A' o a \ B' o b$$
  $w=aacbcb$ 

|   | 1     | 2                             | 3             | 4    | 5 | 6 |
|---|-------|-------------------------------|---------------|------|---|---|
| 1 | A'    | -                             | S, A          | S, A | - | S |
| 2 | A'    | S, A                          | A, B, C (acb) | -    | - |   |
| 3 | A,B,C | S, B, D                       | - (cbc)       | S    |   |   |
| 4 | B'    | - (с В' ничего не начинается) | - (bcb)       |      |   |   |
| 5 | A,B,C | S, B, D                       |               |      |   |   |
| 6 | B'    |                               |               |      |   |   |

w[1,2]=w[1,1]w[2,2] — всего один способ поделить на 2 части w[1,3]=w[1,1]w[2,3]=w[1,2]w[3,3] — можно поделить двумя способами:

- с позиции 1 длины 1 + с позиции 2 длины 2;
- с позиции 1 длины 2 + с позиции 3 длины 1.

**Смысл**: берём значение из ячейки слева (X), из ячейки справа (Y), и ищем нетерминал (Z), из которого выводится последовательность XY ( $Z \to XY$ ). Если нашли такой терминал, то записываем.

**Сложность**: n\*n — таблица, n — распилы и поиск, итого  $O(n^3)$ 

26.03.2019

 $a^nb^n$  — не распознаётся ДКА.

 $S o aSb|\lambda$ 

### МП-автоматы

Автоматы с магазинной памятью — стеком, PDA — push-down automaton.

 $|c|_{\Lambda}|_{0}|_{B}|_{0}|_{...}|_{H}$  — входная лента  $\uparrow\uparrow c\leftarrow|yy|$  конец слова т состояния е к ...

 $\nabla$ 

Можем остаться на месте, или сдвинуться вправо  $\downarrow (q,a,B) o (q',\{\_,\to\},\gamma)$  —  $(\cdot)$ 

Автомат закончит работу, когда дочитает строку и остановится в заключительном состоянии.

<u>Опр</u>. МП-автомат  $M=(\Sigma,\Gamma,Q,\delta,i_0,F,\gamma)$ 

- $\Sigma$  входной алфавит;
- $\Gamma$  стековый алфавит;
- Q множество состояний;
- $\delta$  множество команд вида (·);
- $i_0$  начальное состояние;
- F множество заключительных состояний;
- ullet  $\gamma \in \Gamma^*$  начальное состояние для стека.

Нарисуем какую-то табличку: по столбцам — символ, который читаем, по строкам — элемент на верхушке стека



Сколько мест в стеке, столько строк на каждое состояние

На каждом шаге обязательно надо читать из стека! Элемент при этом оттуда исчезает.

### Скобочный язык

в стеке будет лежать только открывающая скобка

При разборе — в левом префиксе открывающих скобок не меньше чем закрывающих



Варианты распознавания МП-автомата:

- $(q,\dashv,B) o \checkmark$  команда допуска, слово читается.
- пустота стека (можно добавить переходов, которые просто очищают стек).

<u>Опр</u>. **Конфигурация** автомата — снимок его состояния  $[q, w, \gamma]$ 

- ullet q текущее состояние;
- w необработанная часть входной строки;
- $\gamma$  текущее содержимое стека.

Вершина стека пишется слева! (пока)

На множестве конфигурация можно построить отношение: возможность перехода из одной конфигурации в другую.

$$[q,w,\gamma] \models [q',w',\gamma']$$
 — переход за 1 ход.

<u>Опр</u>. МПА **распознаёт** цепочку, если он дочитал её до конца и:

- оказался в заключительном состоянии ИЛИ
- выполнил команду допуска ИЛИ
- закончил работу с пустым стеком

<u>Опр</u>. МПА распознаёт w, если  $[i_0w,\gamma_0]\models^*[t,\lambda,\gamma]$ ,  $t\in F$ .

Введение дополнительных стековых символов позволяет сократить количество состояний

$$L(M) = \{w | [i_0 w, \gamma_0] \models^* [t, \lambda, \gamma] \}$$

### Пример

 $a^n b^n$ 

Нужно следить, чтобы после b не появилось a. Для этого добавим 2 состояния: b ещё не было, b уже была.



Когда будем пошагово воспроизводить работу МП-автомата, стек будем писать в правой колонке!

02.04.2019

# НМПА и ДМПА

ДМПА:  $(q,a,B) o (q',\{\_,\to\},\gamma)$  — не более одной команды с такой левой частью

НМПА:  $(q,a,B) o 2^{(Q imes \{\_, o\} imes \Gamma^*)_{fin}}$ 

<u>Теорема</u>. Класс языков, распознаваемых НМПА, строго больше класса языков, распознаваемых ДМПА.

### Д-во:

 $\overleftarrow{w}$  — слово w, развёрнутое задом наперёд.

 $\{w \overset{\longleftarrow}{w} | w \in \Sigma^*, |\Sigma| \geq 2\}$  — множество палиндромов.

 $M = (\Sigma, \Gamma, \delta, X)$  — НМПА. X — символ, указывающий, что перехода к сравнению ещё не было.

 $\Gamma = \Sigma \cup \{X\}$  — стековый алфавит.

 $x,y\in \Sigma$ 



Что значит, что НМПА распознаёт символ?

Автомат с пустым стеком продолжать работу не может, так как на каждом шаге он что нибудь берёт из стека.

**О.П**.  $\exists$  ДМПА, распознающий  $\{w\overleftarrow{w}|w\in\Sigma^*, |\Sigma|\geq 2\}.$   $x\in\Sigma$ ,  $w\in\Sigma^*$ 

 $wxx \overleftarrow{w}$  — распознаётся автоматом, потому что тоже палиндром. После прочтения wx автомат начнёт доставать элементы из стека и сравнивать.

Давайте подадим ему на вход  $wxxxx \overleftarrow{w}$  . Тут он к сравнению тоже перейдёт после wx и не распознает это слово.

### МПА и КСЯ

<u>Теорема</u>. Любой КСЯ распознаётся НМПА с одним состоянием и одной командой допуска.

### Д-во:

$$L$$
 — КСЯ,  $G=<\Sigma,\Gamma,P,S>$ ,  $G$  — КСГ,  $L(G)=L$ 

Если состояние одно, то нигде про него говорить не будем. Поэтому тройки станут двойками.

$$M = (\Sigma \cup \{\exists\}, \Sigma \cup \Gamma \cup \{\nabla\}, \delta, S)$$
, S — начальное значение стека.

У нас остаётся входной и стековый алфавит

Команды бывают трёх видов:

1. 
$$orall a \in \Sigma: (B,a) o (\gamma,\_)$$
  $orall (B o \gamma) \in P$ 

Для любого входного символа и любого правила для данного нетерминала мы добавляем команду. Команд будет столько, сколько разных правых частей есть для этого нетерминала.

2. 
$$orall a \in \Sigma: (a,a) o (\lambda, o)$$

3. 
$$(\nabla, \dashv) \rightarrow \checkmark$$

$$L = L(M)$$
?

1. ⇒

 $w \in L$ 

 $\exists$  левосторонний вывод w в G

$$S \Rightarrow u_1 B_1 \gamma_1 \Rightarrow u_1 u_2 B_2 \gamma_2 \Rightarrow \ldots \Rightarrow u_1 \ldots u_{n-1} B_{n-1} \gamma_{n-1} \Rightarrow u_1 \ldots u_n$$

Тогда в M реализуема следующая последовательность конфигурация

$$[w, S] = [u_1 \dots u_n, S] \models [u_1 \dots u_n, u_1 B_1 \gamma_1] \models^* [u_2 \dots u_n, B_1 \gamma_1] \models [u_2 \dots u_n, u_2 B_2 \gamma_2] \models^*$$
  
 $\models^* [u_n, B_{n-1} \gamma_{n-1}] \models [u_n, u_n] \models^* [\lambda, \lambda]$ 

 $u_1$  — цепочка из терминалов

 $\gamma_i$  — цепочка из терминалов и нетерминалов

Пока мы не дойдём до нетерминала мы продолжим чтение входной строки

 $B_{n-1}$  его правая часть — это какое-то правило, а левое — конец цепочки  $\gamma_n$ 

2. ⇐

 $w \in L(M)$ 

Есть оракул, который говорит, что данная последовательность реализуема

$$[w,S] \models^* [\lambda,\lambda]$$

 $\uparrow$  — конечное число тактов m

$$w = a_1 \dots a_m$$
,  $a_i \in \Sigma \cup \{\lambda\}$ 

С помощью этой последовательности закодировали типы применяющихся команд. Если там лямбда, то мы применяли команду типа 1 и не сдвигались по входной строке.

$$[w,S] \models [a_1 \dots a_m,S] \models [a_1 \dots a_m,a_i,B_1\gamma_1] \models [a_{i_1+1} \dots a_m,B_1\gamma_1] \models \dots \models [\lambda,\lambda]$$

<u>Вспомогательная лемма</u>. Произведение обработанной части входной строки на содержимое стека — левая форма G.

**Левая форма** — всё, что может возникнуть в процессе левостороннего вывода.

Д-во. По индукции.

Нулевой шаг: в прочитанном —  $\lambda$ , в стеке — аксиома.  $\beta_0 = \lambda \cdot S = S$ . Аксиома — это левая и правая форма.

ПИ: обработанная часть:  $a_1 \dots a_{n-1}$ . В стеке  $\gamma_{n-1}$ . Произведение — левая форма.

ШИ:

• 
$$a_n \in \Sigma \Rightarrow \gamma_{n-1} = a_n \gamma_n$$
.

$$\beta_{n-1} = \beta_n$$

если  $a_n$  это символ, то формы равны

• 
$$a_n = \lambda \Rightarrow \gamma_{n-1} = B_{n-1}\gamma'_{n-1}$$

$$\beta_{n-1} = a_1 \dots a_{n-1} B_{n-1} \gamma'_{n-1}$$

$$\beta_n = a_1 \dots a_{n-1} \gamma \gamma'_{n-1}$$

$$(eta_{n-1} o\gamma)\in P$$

применялась команда вида 1. Значит, на вершине стека лежит нетерминал. Тогда применим правило и снова получим левую форму

Вернёмся к доказательству теоремы.

 $w\cdot \lambda$  — левая форма (по лемме). Т.к. w — всё, что мы обработали и  $\lambda$  — то, что осталось в стеке, то  $w\in L(G)$ 

Что даёт теорема? Есть КСЯ, можем построить НМПА, его распознающий.

<u>Теорема</u>. Класс КСЯ и класс языков, распознающихся НМПА, совпадают.

Следствие. ДМПА распознаёт собственный подкласс КСЯ.

### Пример

$$S o (S)S|\lambda$$

Стековый алфавит — все терминалы, нетерминалы и дно стека.



Прочитаем (())  $\dashv$ 

Слева — прочитанное, справа — стек. Наша цель — получить дерево

| Прочитанное | Стек     |
|-------------|----------|
| λ           | S        |
| λ           | (S)S     |
| (           | S)S      |
| (           | (S)S)S   |
| ((          | S)S)S    |
| ((          | )S)S     |
| (()         | S)S      |
| (()         | )S       |
| (())        | S        |
| (())        | $\nabla$ |

# Сноски

<sup>1.</sup> Будем их использовать, чтобы не терять связь грамматики и компиляции. $\underline{\,arphi\,}$ 

<sup>2.</sup> Recursively Enumerable<u>←</u>

<sup>3.</sup> Классы регулярных и автоматных языков совпадают $\underline{\ensuremath{arphi}}$ 

<sup>4.</sup> с таким же деревом вывода $\underline{\hookleftarrow}$