What is claimed is:

1. A compound of formula (I) or pharmaceutically acceptable salts thereof:

wherein

5

10

15

20

25

 R^{F1} and R^{F2} are independently electron-withdrawing groups;

Z is selected from O= and S=;

R¹ is selected from C₁₋₁₀ alkyl; C₁₋₁₀alkyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; C₂₋₁₀alkenyl; C₂₋₁₀alkenyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; C₂₋₁₀alkynyl; C₂₋₁₀alkynyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; R³R⁴N-C₁₋₆alkyl; R³C(=O)-C₁₋₆alkyl; R³O-C₁₋₆alkyl; R³OC(=O)-C₁₋₆alkyl; R³C(=O)-C₁₋₆alkyl; R³C(=O)-C₁₋₆alkyl; R³C(=O)NR³-C₁₋₆alkyl; R³R⁴NSO₂-C₁₋₆alkyl; R³CSO₂N(R⁴)-C₁₋₆alkyl; R³R⁴NC(=O)N(R⁵)-C₁₋₆alkyl; R³R⁴NSO₂N(R⁵)-C₁₋₆alkyl; aryl-C₁₋₆alkyl; aryl-C(=O)-C₁₋₆alkyl; heterocyclyl-C(=O)-C₁₋₆alkyl; substituted aryl-C(=O)-C₁₋₆alkyl; substituted aryl-C(=O)-C₁₋₆alkyl; substituted heterocyclyl-C(=O)-C₁₋₆alkyl;

 $C_{1\text{-}6}$ alkyl; substituted aryl-C(=O)- $C_{1\text{-}6}$ alkyl; substituted heterocyclyl- $C_{1\text{-}6}$ alkyl; substituted heterocyclyl-C(=O)- $C_{1\text{-}6}$ alkyl; and $C_{1\text{-}10}$ hydrocarbylamino;

 R^2 is selected from C_{1-6} alkyl, substituted C_{1-6} alkyl, C_{2-6} alkenyl, substituted C_{2-6} alkenyl, C_{2-6} alkynyl, substituted C_{2-6} alkynyl, C_{3-6} cycloalkyl, substituted C_{3-6} cycloalkyl, aryl, substituted aryl, and C_{5-6} heteroaryl, and substituted C_{5-6} heteroaryl;

 R^3 , R^4 and R^5 are independently selected from -H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, and a divalent C_{1-6} group that together with another divalent C_{1-6} group

X is a C₁₋₁₀ divalent group that separates groups connected thereto by one or two atoms;

Ar is a C₄₋₁₂ divalent aromatic group; and Y is selected from –CH= and –N=.

forms a portion of a ring;

2. The compound as claimed in claim 1, wherein

 R^{F1} and R^{F2} are independently C_{1-6} alkyl substituted by one or more groups selected from -F, -Cl, -Br, -NO₂, -CN, -OH, -CHO, -C(=O)-R' and -OR', wherein R' is a C_{1-3} alkyl.

- 5 3. The compound as claimed in claim 1, wherein R^{F1} and R^{F2} are independently selected from -CF₃, -CH₂CF₃, -CH₂CHF₂, -CHFCF₃, -CHFCHF₂, -CF₂CF₃, -CF₂CH₃, -CF₂CH₂F, -CF₂CHF₂, -CF₃, -CH₂CCl₃, -CH₂CHCl₂, -CH₂CBr₃, -CH₂CHBr₂, -CH₂NO₂, -CH₂CH₂NO₂, -CH₂CN, -CH₂CH₂CN, and -CH₂CH₂OCH₃.
- The compound as claimed in claim 1, wherein R^{F1} and R^{F2} are independently C₁₋₆ groups that comprise at least 30% fluorine by weight and Z is O=.
- 5. The compound as claimed in claim 1, wherein R¹ is selected from C₁-10 alkyl;
 C₁-10 alkyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro;
 C₂-10 alkenyl; C₂-10 alkenyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; C₂-10 alkynyl; C₂-10 alkynyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; R³R⁴N-C₁-6 alkyl; R³R⁴NC(=O)-C₁-6 alkyl; R³O-C₁-6 alkyl; R³O-C₁-6 alkyl; R³O-C₁-6 alkyl; R³O-C₁-6 alkyl; R³C(=O)-C₁-6 alkyl; R³C(=O)-C₁-6 alkyl; R³C(=O)N(R⁵)-C₁-6 alkyl; R³R⁴NSO₂N(R⁵)20 C₁-6 alkyl; R³CSO₂N(R⁴)-C₁-6 alkyl; R³R⁴NC(=O)N(R⁵)-C₁-6 alkyl; R³R⁴NSO₂N(R⁵)-
 - C_{1-6} alkyl; aryl- C_{1-6} alkyl; aryl-C(=O)- C_{1-6} alkyl; heterocyclyl- C_{1-6} alkyl; heterocyclyl- C_{1-6} alkyl; substituted aryl- C_{1-6} alkyl; substituted aryl-C(=O)- C_{1-6} alkyl; substituted heterocyclyl- C_{1-6} alkyl; substituted heterocyclyl-C(=O)- C_{1-6} alkyl; and C_{1-10} hydrocarbylamino;
- R² is selected from C₁₋₆alkyl, C₁₋₆alkyl substituted by at least one fluorine, C₂₋₆alkenyl, C₂₋₆alkenyl substituted by at least one fluorine, C₂₋₆alkynyl, C₂₋₆alkynyl substituted by at least one fluorine, C₃₋₆cycloalkyl, substituted C₃₋₆cycloalkyl, aryl, substituted aryl, and C₅₋₆heteroaryl, and substituted C₅₋₆heteroaryl;
- R³, R⁴ and R⁵ are independently selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl,

 C₂₋₆alkynyl, and a divalent C₁₋₆group that together with another divalent C₁₋₆group forms a portion of a ring; and

X is selected from $-NR^6$ -, -C(=O)-, $-CH_2$ - $-CH_2$ -, -CH=CH-, -O-, $-C(R^6)(R^7)$ -, and $-S(O)_n$ -, wherein n is 0, 1 or 2, wherein R^6 and R^7 are independently C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -OH, or -H.

5 6. A compound according to Claim 1, wherein:

10

15

20

25

30

R¹ is selected from C₁₋₈alkyl; C₂₋₈alkenyl; C₂₋₈ alkynyl; aryl-C₁₋₆alkyl; aryl-C₁₋₆alkyl with the aryl substituted by at least one group selected from C₁₋₆alkyl, acetoxymethyl, nitro and halogen; R⁸R⁹NC₁₋₆alkyl; R⁸OC₁₋₆alkyl; cycloalkyl-C₁₋₆alkyl; heterocycloalkyl-C₁₋₆alkyl; heterocycloalkyl-C₁₋₆alkyl with the heterocycloalkyl thereof substituted by at least one group selected from C₁₋₈alkyl,

neterocylcoalkyl thereof substituted by at least one group selected from C_{1-8} alkyl, acetoxymethyl, nitro and halogen; C_{1-6} alkylaryl; C_{1-6} alkyl-C(=O)-; C_{6-8} aryl-C(=O)-; heteroaryl- C_{1-6} alkyl; heteroaryl- C_{1-6} alkyl with the heteroaryl thereof substituted by at least one group selected from C_{1-6} alkyl, acetoxymethyl, nitro and halogen; and R^NC_{1-6} alkyl;

 R^2 is selected from -CH₃, -CH₂CH₃, -CH(CH₃)₂, C₃₋₆cycloalkyl, -CH₂CF₃, -CHF₂, -CF₃ and aryl;

 R^N is an oxidized pyridyl wherein the nitrogen atom on the pyridyl ring is in an oxidized state (N^+ -O $^-$);

Ar is selected from an arylene; an heteroarylene; an arylene substituted by at least one group selected from C_{1-6} alkyl, halogen, trifluoromethyl, cyano, nitro, hydroxy and C_{1-6} alkoxy; and an heteroarylene substituted by at least one group selected from C_{1-6} alkyl, halogen, trifluoromethyl, cyano, nitro, hydroxy and C_{1-6} alkoxy; and

R⁸ and R⁹ are independently selected from -H and C₁₋₆alkyl.

7. The compound according to claim 6,

wherein the arylene is *para*-arylene; and the heteroarylene is selected from six-membered ring *para*-heteroarylene and five-membered ring *meta*-heteroarylene.

8. A compound according to Claim 1, wherein:

R¹ is selected from ethyl, propyl, allyl, isopentyl, benzyl, dimethylaminoethyl, 4-pyridylmethyl, 2-pyridylmethyl, 1-pyrrolylethyl, cyclopropylmethyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-pyrrolidylmethyl, 3-pyrrolidylmethyl, N-methyl-3-pyrrolidylmethyl, 2-piperidylmethyl, 3-piperidylmethyl, 4-piperidylmethyl, N-methyl-2-piperidylmethyl, N-methyl-3-piperidylmethyl, N-methyl-4-piperidylmethyl, 3-thienylmethyl, 2-tetrahydrofuranylmethyl, 3-tetrahydrofuranylmethyl, 2-tetrahydropyranylmethyl, 3-tetrahydropyranylmethyl, (2-nitrothiophene-5-yl)methyl, (1-methyl-1H-imidazole-2-yl)methyl, (5-(acetoxymethyl)-2-

furanyl)methyl, (2,3-dihydro-1H-isoindole-1-yl)methyl, and 5-(2-methylthiazolyl);

R² is selected from -CH₃, -CH₂CH₃, -CH₍CH₃)₂, -CH₂CF₃, CF₃, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and phenyl;

$$R^{F1}$$
 and R^{F2} are $-CH_2CF_3$ and Z is $O=$;

Ar is selected from a *para*-arylene; a *para*-arylene substituted with C₁₋₆alkyl,

halogen, trifluoromethyl, cyano, nitro, hydroxy and C₁₋₆alkoxy; a six-membered ring

para-heteroarylene; and a six-membered ring para-heteroarylene substituted with a

group selected from C₁₋₆alkyl, halogen, trifluoromethyl, cyano, nitro, hydroxy and

C₁₋₆alkoxy.

20 9. A compound according to Claim 1, wherein:

25

X is selected from -CH₂- and -CH(CH₃)-.

- 10. A compound according to claim 1, wherein said compound is selected from:
- 2-[(4-Ethoxyphenyl)methyl]-1-(3-methylbutyl)-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-30 benzimidazole-5-carboxamide;
 - 1-(Cyclopropylmethyl)-2-[(4-ethoxyphenyl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;

1-(Cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;

- 2-[(4-Ethoxyphenyl)methyl]-1-(2-furanylmethyl)-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 5 2-[(4-Ethoxyphenyl)methyl]-1-[(2S)-2-pyrrolidinylmethyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 2-[(4-Ethoxyphenyl)methyl]-1-[(2R)-2-pyrrolidinylmethyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
- 2-[(4-ethoxyphenyl)methyl]-1-(4-pyridinylmethyl)-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 2-[1-(4-Ethoxyphenyl)ethyl]-1-(4-pyridinylmethyl)-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 2-[(4-Ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 2-[(4-Ethoxyphenyl)methyl]-1-[[(2*R*)-tetrahydro-2-furanyl]methyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 2-[(4-Ethoxyphenyl)methyl]-1-[[(2S)-tetrahydro-2-furanyl]methyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
- 2-[(4-Ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-2-yl)methyl]-*N*,*N*-bis(2,2,2-20 trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 2-[(4-Ethoxyphenyl)methyl]-1-[(2R)-2-piperidinylmethyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 2-[(5-Ethoxy-2-pyridyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 25 2-[(5-Ethoxy-2-pyridinyl)methyl]-1-(3-methylbutyl)-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;

2-[(4-Ethoxyphenyl)methyl]-1-[[(2R)-1-methyl-2-pyrrolidinyl]methyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;

- 2-[(4-Ethoxyphenyl)methyl]-1-[[(2R)-1-methyl-2-piperidinyl]methyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
- 5 2-[(5-Ethoxy-2-pyridinyl)methyl]-1-[(2*R*)-2-pyrrolidinylmethyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 2-[1-(4-Ethoxyphenyl)-1-[(2R)-2-pyrrolidinylmethyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
- 2-[(5-Ethoxy-2-pyridinyl)methyl]-1-[[(2R)-1-methyl-2-piperidinyl]methyl]-N,Nbis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 2-[(5-Ethoxy-2-pyridinyl)methyl]-1-[[(2R)-1-methyl-2-pyrrolidinyl]methyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 1-(Cyclobutylmethyl)-2-(4-ethoxybenzyl)-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 15 1-(Cyclobutylmethyl)-2-[(5-ethoxypyridin-2-yl)methyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 1-(Cyclopentylmethyl)-2-[(5-ethoxypyridin-2-yl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 2-(4-Ethoxybenzyl)-1-[(2S)-piperidin-2-ylmethyl]-N,N-bis(2,2,2-trifluoroethyl)-1H-20 benzimidazole-5-carboxamide;
 - 2-[(5-Ethoxypyridin-2-yl)methyl]-1-(3-furylmethyl)-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;
 - 2-[(5-Ethoxypyridin-2-yl)methyl]-1-(3-thienylmethyl)-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 25 1-(Cyclohexylmethyl)-2-[(5-ethoxypyridin-2-yl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;

1-(Cyclohexylmethyl)-2-[(5-isopropoxypyridin-2-yl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;

- 2-(4-Ethoxybenzyl)-1-[(4-methylmorpholin-3-yl)methyl]-*N*,*N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
- 5 2-[(5-Ethoxypyridin-2-yl)methyl]-1-[(4-methylmorpholin-3-yl)methyl]-*N,N*-bis(2,2,2-trifluoroethyl)-1*H*-benzimidazole-5-carboxamide;
 - 2-(4-Ethoxybenzyl)-1- $\{[(2S)-1-methylpiperidin-2-yl]methyl\}-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;$
- 2-(4-Isopropoxybenzyl)-1-{[(2R)-1-methylpiperidin-2-yl]methyl}-N,N-bis(2,2,2-trifluoroethyl)-1H-benzimidazole-5-carboxamide;

and pharmaceutically acceptable salts thereof.

- 11. A compound according to any one of above claims for use as a medicament.
- 12. The use of a compound according to any one of claims 1-10 in the manufacture of a medicament for the therapy of pain.
 - 13. The use of a compound according to any one of claims 1-10 in the manufacture of a medicament for the treatment of cancers.
- 20 14. The use of a compound according to any one of claims 1-10 in the manufacture of a medicament for the treatment of multiple sclerosis, Parkinson's disease, Huntington's chorea, transplant rejection or Alzheimer's disease.
- 15. A pharmaceutical composition comprising a compound according to any one
 of claims 1-10 and a pharmaceutically acceptable carrier.
 - 16. A method for the therapy of pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to any one of claims 1-10.

17. A method of producing a compound comprising the step of reacting a compound represented by formula (II) with R²OArXCOA:

wherein

5

10

15

20

 R^{F1} and R^{F2} are independently electron-withdrawing groups;

Z is selected from O= and S=;

 R^1 is selected from C_{1-10} alkyl; C_{1-10} alkyl; C_{1-10} alkyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; C_{2-10} alkenyl; C_{2-10} alkenyl; substituted by at least one of halogen, cyano, acetoxymethyl and nitro; C_{2-10} alkynyl; C_{2-10} alkynyl substituted by at least one of halogen, cyano, acetoxymethyl and nitro; R^3R^4N - C_{1-6} alkyl; $R^3R^4NC(=O)$ - C_{1-6} alkyl; R^3O - C_{1-6} alkyl; $R^3OC(=O)$ - C_{1-6} alkyl; $R^3C(=O)$ - C_{1-6} alkyl; $R^3C(=O)$ - C_{1-6} alkyl; $R^3C(=O)$ - C_{1-6} alkyl; $R^3C^4NC(=O)$ - C_{1-6} alkyl; $R^3R^4NSO_2N(R^5)$ - C_{1-6} alkyl; aryl- C_{1-6} alkyl; aryl- C_{1-6} alkyl; heterocyclyl- C_{1-6} alkyl; substituted aryl- C_{1-6} alkyl; substituted heterocyclyl- C_{1-6} alkyl; substituted heterocyclyl- C_{1-6} alkyl; and C_{1-10} hydrocarbylamino;

 R^2 is selected from C_{1-6} alkyl, substituted C_{1-6} alkyl, C_{2-6} alkenyl, substituted C_{2-6} alkenyl, C_{2-6} alkynyl, substituted C_{2-6} alkynyl, C_{3-6} cycloalkyl, substituted C_{3-6} cycloalkyl, aryl, substituted aryl, and C_{5-6} heteroaryl, and substituted C_{5-6} heteroaryl;

 $m R^3$, $m R^4$ and $m R^5$ are independently selected from -H, $m C_{1-6}$ alkyl, $m C_{2-6}$ alkenyl, $m C_{2-6}$ alkynyl, and a divalent $m C_{1-6}$ group that together with another divalent $m C_{1-6}$ group forms a portion of a ring;

X is a C_{1-10} divalent group that separates groups connected thereto by one or two atoms;

A is selected from -OH, -Cl, -Br, and -I; Ar is a C₄₋₁₂ divalent aromatic group; and Y is selected from -CH= and -N=.

18. A method of producing a compound comprising the step of reacting a compound represented by formula (III) with formaldehyde:

$$\begin{array}{c|c}
R^{F1} & O & \\
N & X & X \\
N & X & X \\
N & Ar-OR^2
\end{array}$$

$$\begin{array}{c}
N & X & X \\
N & Ar-OR^2 & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y & Y & Y & Y \\
N & Y &$$

wherein

5 r and s are selected from 0, 1 and 2;

 R^{10} is selected from C_{1-6} alkylene, -O-, and -NR¹¹-, wherein R^{11} is a C_{1-6} alkyl; R^{F1} and R^{F2} are independently electron-withdrawing groups;

X is a C_{1-10} divalent group that separates groups connected thereto by one or two atoms;

Ar is a C₄₋₁₂divalent aromatic group;

 R^2 is selected from C_{1-6} alkyl, substituted C_{1-6} alkyl, C_{2-6} alkenyl, substituted C_{2-6} alkenyl, C_{2-6} alkynyl, substituted C_{2-6} alkynyl, C_{3-6} cycloalkyl, substituted C_{3-6} cycloalkyl, aryl, substituted aryl, and C_{5-6} heteroaryl, and substituted C_{5-6} heteroaryl; and

15 Y is selected from -CH= and -N=.