Zad 1.

Jesli zrobimy brutalny manewr i wezmiemy A, to bedzie jednoczesnie otwarte i domkniete $\stackrel{\frown}{\mathbb{S}}$ W takim razie wezmy $Y=[0,\infty)$

Zad 2.

Zad 3.

a. Jesli A otwarty w Y, to A otwarty w X?

NIET.

 $(\mathbb{R}^2, d_{euklid}) = X$

 $\overline{(\mathbb{R}_{\alpha}, d_{\text{euklid}})} = Y$

odcineczek w Y

b.

TAK.

$$U' := \{Y \cap U : U \in \mathcal{U}\}$$

no to skoro A jest otwarte w X i ten przekroj jest otwarty w Y, to A jest otwarte w Y?? bedzie robiona lista

c. jesli A jest gesty w Y i Y jest gesty w X, to A jest gesty w X?

 $B_{\frac{r}{2}}(x) \cap Y \neq \emptyset$

 $\mathtt{niech}\ y \in Y$

 $B_{\frac{r}{2}}(y) \cap A \neq \emptyset$

czyli

 $a \in B_{\frac{r}{2}}(y)$

chcemy pokazac, ze $a \in B_r(X)$

Z nierownosci trojkata:

d(a, x) < r

czyli

 $B_r(x) \cap A \neq \emptyset$

chociaz to nie przejdzie w topologii

Zad 4

Zad 5.

zaroweczka i cien na kuli?