Digitaltechnik Wintersemester 2017/2018 3. Vorlesung

Inhalt

- 1. Einleitung
- 2. XOR Gatter als Paritätsfunktion
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moor'sches Gesetz
- 8. Zusammenfassung

Einleitung

00111100011111	00111100110001101	111000011
01100011100001	00011011000111010	100100000
01101000101001	10010010100111110	111110100
11011110001101	01000000111110110	111110110
00101010110111	10101000001001000	101011101
10100111100110	00000101101101101	010100011
	00001110001110001	
01101111011011	0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1	001011110
01110111000101	11111010110010101	010010000
00011111010001	00001001000010000	100001000
11110111100110	01100001000011001	110011001
01000111100011	11010111101111010	0001100000
00011110101100	01110001000101000	011011100
11101000101000	01011011111000011	111100110
01100000101001	01000111111110001	00000100
01000101000100	11100000111010110	101100101

- ► Erste Übungswoche abgeschlossen
 - bisher 750 Anmeldungen im Moodle
 - 660 Zuordnungen zu Übungsgruppen
 - G22 auf Mo 15:20-17:00 verlegt

- ► Erste Übungswoche abgeschlossen
 - bisher 750 Anmeldungen im Moodle
 - 660 Zuordnungen zu Übungsgruppen
 - G22 auf Mo 15:20-17:00 verlegt
- Lösungsvorschläge für Übungsblatt Freitag ca. 16:00

- ► Erste Übungswoche abgeschlossen
 - bisher 750 Anmeldungen im Moodle
 - 660 Zuordnungen zu Übungsgruppen
 - G22 auf Mo 15:20-17:00 verlegt
- Lösungsvorschläge für Übungsblatt Freitag ca. 16:00
- Übungen möglichst direkt auf Aufgabenblatt lösen ("Klausurmodus")

- ► Erste Übungswoche abgeschlossen
 - bisher 750 Anmeldungen im Moodle
 - 660 Zuordnungen zu Übungsgruppen
 - G22 auf Mo 15:20-17:00 verlegt
- Lösungsvorschläge für Übungsblatt Freitag ca. 16:00
- Übungen möglichst direkt auf Aufgabenblatt lösen ("Klausurmodus")
- das "richtige" Moodle-Forum verwenden

Rückblick auf letzte Vorlesung

- Zahlensysteme
 - vorzeichenlos u_{b.k}
 - vorzeichenbehaftet bv_{b,k} und s_k
 - Addition
 - Negieren durch Komplement und Inkrement
 - Bitbreitenerweiterung

Rückblick auf letzte Vorlesung

- Zahlensysteme
 - vorzeichenlos u_{b.k}
 - vorzeichenbehaftet bv_{b,k} und s_k
 - Addition
 - Negieren durch Komplement und Inkrement
 - Bitbreitenerweiterung
- ▶ Logikgatter $\mathbb{B}^n \to \mathbb{B}$
 - Symbole
 - Wahrheitswertetabellen

$\textbf{Dezimal} \leftrightarrow \textbf{Zweierkompliment, Addition}$

▶ 7 Bit Zweierkomplement von 15₁₀ =

- 050 1111
- ► 6 Bit Zweierkomplement von $-20_{10} =$
- binär addieren:

Überlauf?

4 +1

Ergebnis hexadezimal:

$\textbf{Dezimal} \leftrightarrow \textbf{Zweierkompliment, Addition}$

- ▶ 7 Bit Zweierkomplement von 15₁₀ = 000 1111₂
- ▶ 6 Bit Zweierkomplement von $-20_{10} = 101100_2$
- ▶ binär addieren: $000\ 1111_2 + 110\ 1100_2 = 111\ 1011_2 = -(000\ 0100_2 + 1) = -5_{10}$
- ▶ Überlauf? Nein
- ► Ergebnis hexadezimal: FB₁₆ (Vorzeichenexpansion auf 8 bit nötig)

Überblick der heutigen Vorlesung

- XOR Gatter als Paritätsfunktion
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

Seite 22 - 35

XOR Gatter als Paritätsfunktion

0010111011110011011110101001111111000101
100101111011000011011011010001101011110
0111000001010011111011110011110111101011
0001000101110010110000011110011001000011
000010011100010111000010110111101101101
1100111001101111010011011110000000100111
0000010000011001101000111111110001001111
011000110101001011001000001111011101101
1111100101011110111010111000001101110010
1111011101111111011010100001110000010101
0100010110101110001110001010000100101100
11000101111111110100000111010110111111011
00000100111000110100010011001001001001
111001011011000010110001000100001000100
1000111100001010001101111111111110101001
1010100001011101001110101001001110000011

Logikgatter: XOR : $\mathbb{B}^2 \to \mathbb{B}$

Logikgatter: XOR3 : $\mathbb{B}^3 \to \mathbb{B}$

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

XOR mit mehreren Eingängen

- "Zählt" Einsen in Eingängen
- \Rightarrow Paritätsfunktion p : $(a_{k-1} ... a_0) \in \mathbb{B}^k \mapsto a_{k-1} \oplus ... \oplus a_0 \in \mathbb{B}$
 - ▶ $p(a) = 0 \Rightarrow$ Quersumme von a ist gerade
 - ▶ $p(a) = 1 \Rightarrow$ Quersumme von a ist ungerade

Logikgatter: XOR3 : $\mathbb{B}^3 \to \mathbb{B}$

Fehlerhafte Datenübertragung

- ► (Gerades) Paritätsbit PB = p(a) vor der Übertragung von a anhängen
- Gesamtparität (Nachricht und Paritätsbit) nach der Übertragung berechnen
 - ▶ $p(a, PB) = 0 \Rightarrow$ gerade Anzahl von Übertragungsfehlern
 - ► p(a, PB) = 1 ⇒ ungerade Anzahl von Übertragungsfehlern

- ► (Gerades) Paritätsbit PB = p(a) vor der Übertragung von a anhängen
- Gesamtparität (Nachricht und Paritätsbit) nach der Übertragung berechnen
 - ▶ $p(a, PB) = 0 \Rightarrow$ gerade Anzahl von Übertragungsfehlern
 - ▶ $p(a, PB) = 1 \Rightarrow$ ungerade Anzahl von Übertragungsfehlern
- ⇒ einzelnes Paritätsbit ist
 - 1-fehlererkennend
 - 0-fehlerkorrigierend

- ► (Gerades) Paritätsbit *PB* = p(*a*) vor der Übertragung von *a* anhängen
- Gesamtparität (Nachricht und Paritätsbit) nach der Übertragung berechnen
 - ▶ $p(a, PB) = 0 \Rightarrow$ gerade Anzahl von Übertragungsfehlern
 - ▶ $p(a, PB) = 1 \Rightarrow$ ungerade Anzahl von Übertragungsfehlern
- ⇒ einzelnes Paritätsbit ist
 - 1-fehlererkennend
 - 0-fehlerkorrigierend
 - verschiedene Typen von Paritätsbits
 - gerade: PB = p(a)
 - ungerade: $PB = \overline{p(a)}$

Fehlerkorrektur mit Paritätsfunktion

- mehrere Paritätsbits pro Nachricht für Fehlerkorrektur notwendig
- bspw. Längs- und Querparität:

Fehlerkorrektur mit Paritätsfunktion

- mehrere Paritätsbits pro Nachricht für Fehlerkorrektur notwendig
- bspw. Längs- und Querparität:

1	1	0	
0	1	1	
1	0		

Übertragung

Fehlerkorrektur mit Paritätsfunktion

- mehrere Paritätsbits pro Nachricht für Fehlerkorrektur notwendig
- bspw. Längs- und Querparität:

⇒ Verhältnis von Nutzdaten zu Paritätsbits wird schlechter

Spannungen als Logikpegel

0001111001101010000010110001101101000001
1011101100010111111111111000011101110000
000011001111111011110101010111111110011
11010111110000111010000110011111111111010
0101101100100000111101110001111101000010
1001100001011110001011000110000101011001
00101110101011110111101001101001101001101
01110110010101111110011000110101000011100
011001111010100000010000010101010111010
1011010111000000001110010100110100100000
100110110011011010000100001101010101001000
001110110000101001100010101011101100011
00001101111000111000000100111001001100
1110001001111111111001101011111001010000
0110010111111011111000101101010001101001
1110110100010011010101111000000010011011

Schichtenmodell eines Computers

Binärwerten als Spannungenpegel

- Definiere Spannungspegel f
 ür die Werte 0 und 1
 - Logikpegel (logic levels)

Binärwerten als Spannungenpegel

- Definiere Spannungspegel f
 ür die Werte 0 und 1
 - Logikpegel (logic levels)
- Beispiel:
 - ▶ $0 \text{ V} \mapsto 0 \text{ (Erde, GND, V}_{SS})$
 - ▶ $5 V \mapsto 1$ (Versorgungsspannung, V_{DD})

Binärwerten als Spannungenpegel

- Definiere Spannungspegel f
 ür die Werte 0 und 1
 - Logikpegel (logic levels)
- Beispiel:
 - 0 V → 0 (Erde, GND, V_{SS})
 - 5 V → 1 (Versorgungsspannung, VDD)
- Aber: Reale Spannungspegel unterliegen Rauschen
 - ► Temperaturabhängige Widerstände
 - Übersprechen zwischen benachbarten Leitungen
 - Instabile Betriebsspannungen

Beispiel für Rauschen

- Treiber gibt 5 V aus
- Lange Leitung hat hohen Widerstand
- Spannungsabfall 0,5 V
- ► Empfänger sieht nur 4,5 V
- ► Ist das noch eine "Eins"?

Binärwerte als Spannungsbereiche

- Definiere Spannungsbereiche für die Werte 0 und 1
- Steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - ν_μ: größte Spannung, die Empfänger als 0 interpretiert
 - V_{IH}: kleinste Spannung, die Empfänger als 1 interpretiert
 - V_{OL}: größte Spannung, die Treiber als 0 ausgibt
 - V_{OH}: kleinste Spannung, die Treiber als 1 interpretiert

Binärwerte als Spannungsbereiche

- Definiere Spannungsbereiche für die Werte 0 und 1
- Steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - V_{IL}: größte Spannung, die Empfänger als 0 interpretiert
 - V_{IH}: kleinste Spannung, die Empfänger als 1 interpretiert
 - V_{OL}: größte Spannung, die Treiber als 0 ausgibt
 - V_{OH}: kleinste Spannung, die Treiber als 1 interpretiert
- lacktriangle gültiger Logikpegel am Eingang o gültiger Logikpegel am Ausgang

Binärwerte als Spannungsbereiche

- Definiere Spannungsbereiche für die Werte 0 und 1
- Steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - V_{IC}: größte Spannung, die Empfänger als 0 interpretiert
 - V_{IH}: kleinste Spannung, die Empfänger als 1 interpretiert
 - V_{OL}: größte Spannung, die Treiber als 0 ausgibt
 - V_{OH}: kleinste Spannung, die Treiber als 1 interpretiert
- lacktriangle gültiger Logikpegel am Ausgang ightarrow gültiger Logikpegel am Ausgang
- idR. Einheitliche Spannungsbereiche für Logikpegel in gesamter Schaltung

Störabstände

- ▶ Unterer Störabstand: $NM_L = V_{IL} V_{OL}$
- ▶ Oberer Störabstand: NM_H = V_{OH} V_{IH}

Gleichstrom-Transferkurve (DC transfer characteristics)

Gleichstrom-Transferkurve

Absenken der Versorgungsspannung V_{DD}

- $V_{DD} = 5 \text{ V in 70er-80er Jahren}$
- Verbesserte Chip-Fertigungstechnologie erforderten/ermöglicht Absenkung
 - Hohe Spannungen würden immer kleinere Transistoren beschädigen
 - Energiebedarf reduzieren
 - **3**,3 V → 2,5 V → 1,8 V → 1,5 V → 1,2 V → 1,0 V

Absenken der Versorgungsspannung V_{DD}

- $V_{DD} = 5 \text{ V in 70er-80er Jahren}$
- Verbesserte Chip-Fertigungstechnologie erforderten/ermöglicht Absenkung
 - ► Hohe Spannungen würden immer kleinere Transistoren beschädigen
 - Energiebedarf reduzieren
 - ightharpoonup 3,3 V ightharpoonup 2,5 V ightharpoonup 1,8 V ightharpoonup 1,5 V ightharpoonup 1,0 V
- ⇒ Vorsicht beim Verbinden von Chips mit unterschiedlichen Versorgungsspannungen!

Logikfamilien mit kompatiblen Spannungspegel

Logikfamilie	TTL	CMOS	LVTTL	LVCMOS
min V _{DD}	4,75 V	4,5 V	3 V	3 V
typ V_{DD}	5 V	5 V	3,3 V	3,3 V
$\max V_{DD}$	5,25 V	6 V	3,6 V	3,6 V
V _{IL}	0,8 V	1,35 V	0,8 V	0,9 V
V_{IH}	2,0 V	3,15 V	2,0 V	1,8 V
V_{OL}	0,4 V	0,33 V	0,4 V	0,36 V
V_{OH}	2,4 V	3,84 V	2,4 V	2,7 V

Feldeffekt-Transistoren

11010100001101010011101011	00011010111101
00101101110100000001111000	01000101000010
001111010101010111111000010	01100100100011
10000101010101000010110110	00000010011101
00100111110000001110000111	00010100000100
11000001000101011100011011	11010100001011
01010111000110101111001111	11011010111101
00101010000100000001001000	10010010111000
01010000110000001010010101	00011011111101
11111100100010110001110100	00111001111111
11111000011010010001101001	11101111010101
10000000010010011011011110	11011001000111
0011100001111011101101111	10000111010001
11000000010010010110110000	00011010011001
011000011111100101001010010	10111000101101
101011011100100111110110011	11111011000011

Transistoren

- Logikgatter werden üblicherweise aus Transistoren aufgebaut
 - Heute überwiegend Feldeffekttransistoren (FET)
 - Bipolartransistoren (BJTs) in dieser Vorlesung nicht relevant
- Transistoren sind spannungsgesteuerte Schalter
 - Zwei Anschlüsse werden je nach Spannung am dritten Eingang verbunden oder getrennt

Der Feldeffekt Prinzip des spannungsgesteuerten Widerstands

- Zwei metallischen Streifen mit dünner isolierender Zwischenlage
- Streifen bilden Plattenkondensator (Kapazität C)
- Gleichspannung U an Kondensator lädt diesen auf
- ⇒ Jeweils Ladung Q = C · U auf beiden Streifen (gegensätzliche Ladung)
- → U beeinflußt Menge der freien Ladungsträger, also Widerstand R

Der Feldeffekt

- Etwa 10¹⁴ zu atzliche freie Ladungsträger pro Kubikzentimeter bei 1 V
 Steuerspannung
- Etwa 10²² freie Ladungsträger pro Kubikzentimeter in Metallen
- ⇒ Ladungeträgeranreicherung durch Feldeffekt in Metallen unerheblich.
- ► Etwa 10²² freie Ladungsträger pro Kubikzentimeter in Halbleitern
- erst mit Halbleitern wird Feldeffekt technisch nutzbar

Silizium-basierte Halbleiter

- Reines Silizium ist schlechter Leiter (keine freien Ladungsträger)
- Dotierung ermöglicht gezieltes einbringen freier Ladungsträger)

Тур	freie Ladungsträger	dotierte Elemente	Bezeichnung
n	Elektronen (-)	Arsen (As), Phosphor (P)	Donator
p	Defektelektronen (+)	Bor (B), Gallium (Ga)	Akzeptor

MOS Feldeffekttransistoren (MOSFETs)

- Metalloxid-Halbleiter (MOS) Transistoren
 - Undotiertes Silizium (früher Metallschicht) als Gate
 - Oxid (Siliziumdioxid = Glas) als Isolator
 - Dotiertes Silizium als Substrat und Anschlüsse (Source, Drain)

MOSFET Schaltverhalten

- ► nMOS
 - Gate = 0, ausgeschaltet (keine Source-Drain Verbindung)
 - ► Gate = 1, eingeschaltet (leitfähiger Source-Drain Kanal)
- pMOS
 - Gate = 1, ausgeschaltet (keine Source-Drain Verbindung)
 - ► Gate = 0, eingeschaltet (leitfähiger Source-Drain Kanal)

MOSFET Schaltverhalten

pMOS

Grundschaltungen eines MOSFET Inverters

Nachteil: Betriebszustände mit statischen Leistungsumsatz

CMOS-Gatter

1001111001010011000101010110100000101	000
1001110001011111011011011001000001000	011
10111111111011001011010011001100110000011	000
10010100101010101001100101100110011011101	101
01110110111111111101100010111000000111	011
0111100111111111010110011100010000010	011
010001000001100101001010100010001010	011
001101001100010000001011101001011010	101
1111011000101000101100111100100110110	111
10111101111110011111101010010000011010	010
1101111110111101100110110100101001111	101
1001011000100110001100001000101011010	010
0001001011101100111011100000110110111	100
1001001000100111110111110010110010000	110
00010110110100110101011010101111110111	100
0010000110010010100100111000010011100	011

Kombinieren von komplementären Transistoren

- nMOS Transistoren leiten 0'en "gut" zwischen source und drain weiter
 - 1'en werden abgeschwächt ⇒ source an GND anschließen
- pMOS Transistoren leiten 1'en "gut" zwischen source und drain weiter
 - ▶ 0'en werden abgeschwächt ⇒ drain an V_{DD} anschließen
- → Complementary Metal-Oxide-Semiconductor (CMOS) Logik

CMOS Gatter: NOT

CMOS Gatter: NAND

Α	В	P1	P2	N1	N2	Υ
0	0	EIN	EIN	AUS	AUS	1
0	1	EIN	AUS	AUS	EIN	1
1	0	AUS	EIN	EIN	AUS	1
1	1	EIN EIN AUS	AUS	EIN	EIN	0

Struktur eines CMOS Gatters

Aufbau eines NOR-Gatters mit drei Eingängen

Pseudo-nMOS Gatter

- ersetzen das Pull-Up Netz durch schwachen, immer eingeschalteten pMOS
- ⇒ Pull-Up kann durch das Pull-Down Netz "überstimmt" werden
- Nützlich, um lange Reihen von Transistoren zu vermeiden

Beispiel für Pseudo-nMOS Gatter

- Pseudo-nMOS NOR4
- Verbraucht aber mehr Energie: Schwacher Dauerkurzschluss bei Y=0

Transmissionsgatter (transmission gates)

- ▶ nMOS leiten 1'en "schlecht" weiter
- ▶ pMOS leiten 0'en "schlecht" weiter
- Transmissionsgatter ist ein besserer Schalter
 - Leitet 0 und 1 gut weiter
- Wenn EN = 1, Schalter ist EIN:
 - $ightharpoonup \overline{EN} = 0$
 - A ist verbunden mit B
- Wenn EN = 0, Schalter ist AUS:
 - ► *EN* = 1
 - A ist nicht verbunden mit B

Leistungsaufnahme

110000100010101111100111101000001111	0110
1101100101100110011110011001111111000	0101
110101100010101111001001110101000000	1001
1001000010111001111111101001101100010	1111
01000011101010010001101010111001100	1011
110000101101111100111110111000101000	1100
1011011110010100011100011010011111111	1110
000001101100011101 0110 111110010011001	0101
101100001100010010101101010000001001	0111
101000011001101000001110001100001010	1010
100110111011011100001001010110010101	1010
1111010010001011101110010010101011010	1100
101011011001011011110100100000101101	0100
0101001110111100101010011111010001100	1111
00101001000110010110001001001100011	1110
010111110000001101011010000010110110	1110

Vergleich des Inverters mit einem Feldeffekttransistoren und dem CMOS Gatter

Die Funktion des Inverters leisten beide Schaltungen

Leistungsaufnahme

- Leistungsaufnahme/Leistungsumsatz/Leistungsverbrauch (verschiedene Begriffe für eine Sache)
- Leistung = Energieumsatz/Energieverbrauch pro Zeiteinheit
- Zwei Arten der Leistungsaufnahme:
 - Statische Leistungsaufnahme
 - Dynamische Leistungsaufnahme

Statische Leistungsaufnahme

- Leistungsbedarf wenn kein Gatter schaltet
- Wird verursacht durch Schaltung selbst (vgl. Inverter mit Feldeffekttransistor)
- Wird verursacht durch den Leckstrom ID
 - Immer kleinere Transistoren schalten nicht mehr vollständig ab
 - Pseudo-nMOS, ...
- Statische Leistungsaufnahme ist also P_{static} = I_{DD} · V_{DD}

Dynamische Leistungsaufnahme

- Leistung um Gates der Transistoren umzuladen
 - Wirken als Kondensator
- ▶ Ladungen auf einen Kondensator der Kapazität C auf V_{DD}:
 - $Q = C \cdot V_{DD}$
- Schaltung wird mit Frequenz f betrieben
 - ► Transistoren schalten f-mal pro Sekunde
 - $I = Q/t = Q \cdot f = C \cdot V_{DD} \cdot f$
- Leistungsaufnahme ist: $P = I \cdot V = (C \cdot V_{DD}\dot{f})(V_{DD}) = C \cdot V_{DD}^2 \cdot f$
- Aber aufladen kostet (0-1), entladen (1-0) kostet nichts
 - Hälfte der Zeit schalten die Gatter von 0 bis 1
- ▶ Die dynamische Leistungsaufnahme ist also: $P = \frac{1}{2} \cdot C \cdot V_{DD}^2 \cdot f$

Beispielrechnung Leistungsaufnahme

- Abschätzen der Leistungsaufnahme für einen Netbook-Prozessor
- Parameter
 - ► Versorgungsspannung $V_{DD} = 1,2V$
 - Transistorkapazität C = 20nF
 - ► Taktfrequenz *f* = 1*GHz*
 - ▶ Leckstrom I_{DD} = 20mA

$$P = \frac{1}{2} \cdot C \cdot V_{DD}^2 \cdot f + I_{DD} \cdot V_{DD}$$

$$P = \frac{1}{2} (20nF)(1, 2V)^2 (1 GHz) + (20mA)(1, 2V)$$

$$P = (14, 4 + 0, 024)W$$

$$P = 14, 4W$$

CMOS-Logik Funktion des Inverters

Funktionsweise des Inverters

CMOS-Logik Stromfluß beim Inverter

- Nur beim Umschalten fließt kurzeitig ein Strom
- Im Wesentlichen: Dynamische Leistungsaufnahme

Moor'sches Gesetz

1111101111	1110	101010	1100100101110001001
1000100001	0000	011010)1100010100010111010
0010010000	1111	100111	0001101011100111101
1110001110	1110	110110)1101000101110110010
1000111010	1111	101001	0110000110000111101
0111101010	1011	010110)1111110011000001010
1110010100	1011	010011	1101110010000010110
0000110110	1111	100011	1000100001011000100
1110100101	1001	01010	1100000111111001100
1100110101	0000	011000)1111111011010011110
0110100000	0100	110011	0100000010001000110
1101011011	00000	00001	11100111010010011000
0000011001	1000	00001	0101101110011100000
1010101011	1001	100100	00111000111100100110
0000000000	1011	010010	01000110111111000110
1101000110	0110	010010	00011111100110001110

Moore's Gesetz - Exponentielles Wachstum

Alle 18 Monate verdoppelt sich die Anzahl der Transistoren auf einem Chip. Dies ist allerdings eine abgewandelte Auslegung. Der Originalbeitrag von Gordon Moore ist im Moodle zu finden.

Prozessoren

Verbesserung der Fertigungsprozesse Auswirkungen - Transistoren schrumpfen um 13% jährlich

▶ pro Flächeneinheit 1/0,87² = 33% mehr Elemente

Chip-Größen

Nicht nur kleinere Strukturen, auch größere Chip-Flächen

Ausbeute Effekte der Chip-Größe

Abbildung: Quelle: J. Rabaey, Digital Integrated Circuits

Heute zuverlässig erreichbar: Nur ca. 1 Fehler pro cm².

Beispiel Cell-Prozessor - Layout

Abbildung: Layout (Die) des Cell-Prozessors, Quelle: IBM

In der PlayStation 3 werden nur sechs SPEs verwendet.

Taktfrequenz - Entwicklung

Taktfrequenz - Bedeutung und Grenzen

- Leistungssteigerung wurde lange Zeit, durch erhöhen der Taktfrequenz erreicht. Aktuell liegt der Prozessortakt vieler Mikroprozessoren bei 3.x GHz.
 - Intel Pentium 4 EE, 3,8 GHz Takt, 11,5 SPECint2006
 - Intel Montecito 9050, 1,6 GHz Takt, 14,5 SPECint2006
- ▶ Bedingt durch die Technologie (CMOS-Technologie) steigt der Leistungsumsatz der Prozessoren mit dem Takt (P ≈ U² · f · C_L).
- Die entstehende Wärme ist nur mit großem Aufwand abzutransportieren.
- Parallelrechner:
 - Integration mehrerer CPUs auf einem Chip (aktuell: 2-12 CPU-Kerne von Intel und AMD verfügbar), Cell B. E. Prozessor von IBM
 - Massiv parallele Systeme mit mehreren tausend Prozessoren,
 Spezialarchitekturen z. B. Vektorrechner

Zusammenfassung

0011101010000110011100100010001001	111010
1001011011100011010001000100110101	011001
1011010110001001001110111010110010	100011
1011110100111000100110100011100100	000100
00010010101111001011100010010010010	100001
011000101101101100001010101011110	100001
1011100000001000010111011010111111	000000
110011110100110101 1000 010011000101	100100
1111010100101110011011001110001100	111000
1001001000000011111001000111011110	110000
10100101111000101011110111100000011	010000
010011001111000010001010101010000011	010111
1110111011000010010011001011011110	110110
1111111010011000011110000100111011	100101
0010100000101101111110110010000110	100101
0000001010001100001010010011110111	010111

Zusammenfassung und Ausblick

- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - ► Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

Zusammenfassung und Ausblick

- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - ► Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moor'sches Gesetz

- Nächste Vorlesung behandelt
 - Boolsche Algebra