Weight-knn using Gradient descent

this method works in three steps

- 1 the chi-square score between each attribute and the class must be defined using the whole dataset
- 2 based on a weighting criterion, a vector containing the weights of each attribute is create
- 3 the weights of each attribute are used in the KNN classification task

Weight-knn using Gradient descent

Training data			
#	class	x1	y1
1	1	1.5	2.4
2	1	2.4	2.1
3	2	3.2	1.8
4	2	4.2	2.8
5	1	1.8	0.8
6	2	3.1	2.5
7	2	2.5	3.2
8	3	3.5	4.2
9	3	4.1	3.6
10	3	3.8	4

Test data			
#	class	x1	y1
1	1	0.5	2.1
2	1	2.3	1.8
3	2	3.3	2.1
4	2	4.2	2.8
5	3	3.6	4.5
6	3	4.5	3.8

learning rate (alpha)	0.2
No. of class	3
K	3

random	weight_k1	0.02
	weight_k2	0.50
	weight_k3	0.10

Scale data Value = value / (1+value)

Training data			
#	class	x1	y1
1	1	0.60	0.71
2	1	0.71	0.68
3	2	0.76	0.64
4	2	0.81	0.74
5	1	0.64	0.44
6	2	0.76	0.71
7	2	0.71	0.76
8	3	0.78	0.81
9	3	0.80	0.78
10	3	0.79	0.80

#	class	x1	y1
1	1	0.33	0.68
2	1	0.70	0.64
3	2	0.77	0.68
4	2	0.81	0.74
5	3	0.78	0.82
6	3	0.82	0.79

#	Rank	distance	class
1	1	0.27	1
2	2	0.37	1
3	6	0.43	2
4	9	0.48	2
5	3	0.39	1
6	5	0.42	2
7	4	0.39	2

Rank	Cl	ass
1		1
2		1
3		1
		2
5		2
6		2 2
7		3

8	7	0.46	3
9	10	0.48	3
10	8	0 <i>4</i> 7	3

8	3
9	2
10	3

random	weight_k1	0.02
	weight_k2	0.50
	weight_k3	0.10

weight (k1:k3)	0.62

applying gradient descent	
w1	0.096
w2	0.576
w3	0.176

Gradient descent = $w_{(i)}$ + (learning rate * $(1 - weight_{(k1:k3)})$)

	predict class	actual class	error
class of xq	0.848	1	0.152

learning rate = alpha

in the weight	(update weig
w1	0.1264
w2	0.6064
w3	0.2064

w' = w + (learning rate * error)

# round 2 test data	# 1	round	2	test	data
---------------------	-----	-------	---	------	------

#	class	x1	y1
2	1	0.70	0.64

#	Rank	distance	class
1	4	0.12	1
2	1	0.04	1
3	2	0.06	2
4	6	0.15	2
5	10	0.21	1
6	3	0.09	2
7	5	0.12	2
8	9	0.18	3
9	7	0.18	3
10	8	0.18	3

Rank		Class	
1	L	1	L
2	2	2	2
3	3	2	2
	1	1	L
5	5	2	2
6	6	2	2
7	7	3	3
8		3	3
ç)		3
10)		L

use previous weight_k1	0.126
weight_k2	0.606
weight_k3	0.206

weight_(k1:k3)	1.752
----------------	-------

applying gradient descent		
w1	-0.024	
w2	0.456	
w3	0.056	

Gradient descent = $w_(i)$ + (learning rate * $(1 - weight_k1:k3)$))

	predict class	actual class	error
class of xq	1.000	1	0.000

learning rate = alpha

in the weight	(update weigl
w1	0.024
w2	0.456
w3	0.056

w' = w + (learning rate * error)

round 3 test data

;	#	class	x1	y1
	3	2	0.77	0.68

#	Rank	distance	class
1	9	0.17	1
2	3	0.06	1
3	1	0.04	2
4	4	0.07	2
5	10	0.26	1
6	2	0.04	2
7	5	0.10	2
8	8	0.13	3
9	6	0.11	3
10	7	0.12	3

Rank	Class
1	. 2
3	
3	1
4	. 2
5	2
6	3
7	3 3
8	3
9	1
10	1

use previous weight_k1	0.024
weight_k2	0.456
weight_k3	0.056

weight_(k1:k3)	1.016
----------------	-------

applying gradient descent w1

0.021 0.453 w2 0.053 w3

Gradient descent = w_(i) + (learning rate * (1 – weight_(k1:k3)))

	predict class	actual class	error
class of xq	1.000	2	1.000

learning rate = alpha

in the weight	(update weig
w1	0.2208
w2	0.6528
w3	0.2528

w' = w + (learning rate * error)

round 4 test data

#	class	x1	y1
4	2	0.81	0.74

#	Rank	distance	class
1	9	0.21	1
2	8	0.12	1
3	7	0.10	2
4	1	0.00	2
5	10	0.34	1
6	3	0.06	2
7	6	0.10	2
8	5	0.08	3
9	2	0.05	3
10	4	0.07	3

Rank		Class
	1	2
	2	3
	3	2
	4	
	5	3
	5 6	3 3 2
	7	2
	8	1
	9	1
	10	1

use previous weight_k1	0.221
weight_k2	0.653
weight_k3	0.253

weight_(k1:k3)	2.906
----------------	-------

applying gradient descent	
w1	0.160
w2	0.272
w3	0.128

Gradient descent = w_(i) + (learnin	g rate * (1 – weight	(k1:k3)))
-------------------------------------	----------------------	-----------

	predict class	actual class	error
class of xq	1.392	2	0.608

learning rate = alpha

in the weight (update weig	
w1	0.282
w2	0.393
w3	0.250

W' = W + (learning	rate *	error)

#	round	15	test da	ıta
$\boldsymbol{\pi}$	IOUIIC		LESL UE	ua

#	class	x1	y1
5	3	0.78	0.82

#	Rank	distance	class
1	9	0.21	1
2	7	0.16	1
3	8	0.18	2
4	4	0.09	2
5	10	0.40	1
6	6	0.11	2
7	5	0.09	2
8	1	0.01	3
9	3	0.04	3
10	2	0.02	3

Rank	Class
1	3
2	3
3	3
4	3 3 3 2 2 2 2
5	2
6	2
7	1
8	2
9	1
10	1

use previous weight_k1	0.282
weight_k2	0.393
weight_k3	0.250

weight_(k1:k3)	2.775
----------------	-------

applying gradient descent	
w1	0.073
w2	0.038
w3	0.105

Gradient descent = w_(i) + (learning rate * (1 – weight_(k1:k3)))

	predict class	actual class	error
class of xq	0.649	3	2.351

learning rate = alpha

in the weight	(update weig
w1	0.5432
w2	0.5084
w3	0.5752

w' = w + (learning rate * error)

round 6 test data

#	class	x1	y1
6	3	0.82	0.79

#	Rank	distance	class
1	7	0.81	1
2	3	0.74	1

Rank		Class	
	1		1
	2		2

3	2	0.69	2
4	5	0.76	2
5	1	0.57	1
6	4	0.75	2
7	8	0.81	2
8	10	0.84	3
9	6	0.81	3
10	9	0.83	3

3	1
4	2
5	2 2 3
6	3
7	1
8	2
9	3
10	3

use previous weight_k1	0.543
weight_k2	0.508
weight_k3	0.575

weight_(k1:k3)	2.135
----------------	-------

applying gradient descent		
w1	0.316	
w2	0.281	
w3	0.348	

Gradient descent = $w_{(i)}$ + (learning rate * $(1 - weight_{(k1:k3)})$)

	predict class	actual class	error
class of xq	1.227	3	1.773

learning rate = alpha

in the weight	(update weig
w1	0.6708
w2	0.6359
w3	0.7028

w' = w + (learning rate * error)

Mean Square Error (MSE)

round	predict class	actual class	error	quare Erro
1	0.85	1.00	-0.15	0.023
2	1.00	1.00	0.00	0.000
3	1.00	2.00	-1.00	1.000
4	1.39	2.00	-0.61	0.369
5	0.65	3.00	-2.35	5.525
6	1.23	3.00	-1.77	3.143
			MSE	1.677

What does the Mean Squared Error Tell You?

The smaller the means squared error, the closer you are to finding the line of best fit.

Depending on your data, it may be impossible to get a very small value for the mean squared error.

Mean Absolute Error (MAE)

What is Absolute Error?

round	predict class	actual class	error	solute eri
1	0.85	1.00	-0.15	0.152
2	1.00	1.00	0.00	0.000
3	1.00	2.00	-1.00	1.000
4	1.39	2.00	-0.61	0.608
5	0.65	3.00	-2.35	2.351
6	1 23	3.00	-1 77	1 773

Absolute Error is the amount of error in your measurements. It is the difference between the measured value and "true" value. For example, if a scale states 90 pounds but you know your true weight is 89 pounds, then the scale has an absolute error of 90 lbs – 89 lbs = 1 lbs.

The Mean Absolute Error(MAE) is the average of all absolute errors. The formula is:

| 1.773 | Sum | 5.883255 | Where: $MAE = \frac{1}{n} \sum_{i=1}^{n} |x_i - x|$ | MAE | 1.176651 | n = the number of errors,

 Σ = summation symbol (which means "add them all up"), |xi-x| = the absolute errors.

	1
sum	5

Epoch #2

ш.	round	 	
77	raiina	test d	

#	class	x1	y1
1	1	0.33	0.68

#	Rank	distance	class
1	7	0.81	1
2	3	0.74	1
3	2	0.69	2
4	5	0.76	2
5	1	0.57	1
6	4	0.75	2
7	8	0.81	2
8	10	0.84	3
9	6	0.81	3
10	9	0.83	3

Rank	Class
1	1
3	2
3	1
4	2
5	2
6	3
7	1
8	2
9	3
10	3

use previous weight_k1	0.67
weight_k2	0.64
weight_k3	0.70

weight_(k1:k3)	2.645
----------------	-------

applying gradient descent		
w1 0.342		
w2	0.307	
w3	0.374	

Gradient descent = w_(i) + (learning rate * (1 – weight_(k1:k3)))

	predict class	actual class	error
class of xq	1.329	1	0.329

learning rate = alpha

in the weight (update weig		
w1	0.408	
w2	0.373	
w3	0.440	

w' = w + (learning rate * error)

round 2 test data

#	class	x1	y1
2	1	0.70	0.64

#	Rank	distance	class
1	4	0.12	1
2	1	0.04	1
3	2	0.06	2
4	6	0.15	2
5	10	0.21	1
6	3	0.09	2
7	5	0.12	2
8	9	0.18	3
9	7	0.18	3
10	8	0.18	3

Rank	Class
1	1
2	2
3	2
4	1
5	2 2 3 3 3
6	2
7	3
8	3
9	3
10	1

use previous wei	ght k1	0.41
------------------	--------	------

weight_	(k1:k3)	2.032
---------	---------	-------

weight_k2	0.37
weight_k3	0.44

applying grad	applying gradient descent		
w1	0.201		
w2	0.166		
w3	U 333		

Gradient descent = $w_{(i)}$ + (learning rate * $(1 - weight_{(k1:k3)})$)

	predict class	actual class	error
class of xq	1.000	1	0.000

learning rate = alpha

in the weight (update wei		
w1	0.201	
w2	0.166	
w3	0.233	

w' = w + (learning rate * error)

-11	round	 test data
$\boldsymbol{\pi}$	IVUII	 icsi uaia

#		x1	y1
3	2	0.77	0.68

#	Rank	distance	class
1	7	0.81	1
2	3	0.74	1
3	2	0.69	2
4	5	0.76	2
5	1	0.57	1
6	4	0.75	2
7	8	0.81	2
8	10	0.84	3
9	6	0.81	3
10	9	0.83	3

Rank	Class
1	1
3	2
3	1
4	2
5	2 2
6	3
7	1
8	2
9	3
10	3

use previous weight_k1	0.201
weight_k2	0.166
weight_k3	0.233

weight_(k1:k3) 0.767

applying gradient descent	
w1	0.248
w2	0.213
w3	0.280

Gradient descent = w_(i) + (learning rate * (1 – weight_(k1:k3)))

	predict class	actual class	error
class of xq	0.953	2	1.047

learning rate = alpha

in the weight (update weig	
w1	0.457
w2	0.422
w3	0.489

w' = w + (learning rate * error)

round 4 test data

#	class	x1	y1
4	2	0.81	0.74

# Rank	distance	class	Rank	Class
--------	----------	-------	------	-------

1	9	0.210	1
2	8	0.118	1
3	7	0.105	2
4	1	0.000	2
5	10	0.336	1
6	3	0.056	2
7	6	0.097	2
8	5	0.077	3
9	2	0.046	3
10	4	0.065	3

1	2
3	2
3	1
4	2
5	2
6	3
7	1
8	2
9	3
10	3

use previous weight_k1	0.457
weight_k2	0.422
weight_k3	0.489

weight_(k1:k3)	2.248

applying gradient descent	
w1	0.208
w2	0.173
w3	0.240

Gradient descent = $w_(i)$ + (learning rate * $(1 - weight_(k1:k3))$)

	predict class	actual class	error
class of xq	1.000	2	1.000

learning rate = alpha

in the weight	(update weigl
w1	0.408
w2	0.373
w3	0.440

w' = w + (learning rate * error)

# round 5	test data
-----------	-----------

#		x1	y1
5	3	0.78	0.82

#	Rank	distance	class
1	9	0.214	1
2	7	0.160	1
3	8	0.177	2
4	4	0.085	2
5	10	0.399	1
6	6	0.107	2
7	5	0.089	2
8	1	0.012	3
9	3	0.041	3
10	2	0.020	3

Rank	Class
1	3
3	3 3
3	3
4	2 2
5	2
6	2
7	1
8	2
9	1
10	1

use previous weight_k1	0.408
weight_k2	0.373
weight_k3	0.440

weight_(k1:k3)	3.659

 applying gradient descent

 w1
 0.124

 w2
 0.159

 w3
 0.092

 $Gradient\ descent = w_(i) + (learning\ rate\ *\ (1 - weight_(k1:k3)))$

predict class actual class error

	class of xq	1.127	3	1.87
--	-------------	-------	---	------

learning rate = alpha

in the weight	(update weig
w1	0.499
w2	0.534
w3	0.467

w' = w + (learning rate * e	rror)
-----------------------------	-------

roun	test data

#	class	x1	y1
6	3	0.82	0.79

#	Rank	distance	class
1	9	0.234	1
2	8	0.160	1
3	7	0.159	2
4	4	0.056	2
5	10	0.389	1
6	5	0.099	2
7	6	0.108	2
8	3	0.043	3
9	1	0.017	3
10	2	0.028	3

Rank	Class
1	3
2	3
3	3
4	2
5	3 3 3 2 2
6	2
7	2
8	1
9	1
10	1

use previous weight_k1	0.499
weight_k2	0.534
weight_k3	0.467

weight_(k1:k3)	4.498
----------------	-------

w1 0.201 w2 0.166 w3 0.233

Gradient descent = w_(i) + (learning rate * (1 – weight_(k1:k3)))

	predict class	actual class	error
class of xq	1.798	3	1.202

learning rate = alpha

in the weight	(update weigl
w1	0.441
w2	0.406
w3	0.473

w' = w + (learning rate * error)

Mean Square Error (MSE)

round	predict class	actual class	error	quare Erro
1	1.33	1.00	0.33	0.108
2	1.00	1.00	0.00	0.000
3	0.95	2.00	-1.05	1.095
4	1.00	2.00	-1.00	1.000
5	1.13	3.00	-1.87	3.506
6	1.80	3.00	-1.20	1.444
			MSE	1.192

Mean Absolute Error (MAE)

round	predict class	actual class	error	<mark>solute err</mark> or
1	1.33	1.00	0.33	0.329
2	1.00	1.00	0.00	0.000
3	0.95	2.00	-1.05	1.047
4	1.00	2.00	-1.00	1.000
5	1.13	3.00	-1.87	1.873
6	1.80	3.00	-1.20	1.202

sum	5.449829	
MΔF	1 089966	

	n
	1
	0
	1
	1
	1
	1
sum	5

Epoch	MSE	MAE
1	1.677	1.177
2	1.192	1.090

