Exercise 1

Exercises for Algorithms by Nengjun Zhu.

答案 AI 含量声明: 第四题将 c++ 代码转换为伪代码, 第五题步骤 e

1. Suppose $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ for $k \ge 3$. Use strong principle of mathematical induction to prove that $a_n \le 2^n$ for all integers $n \ge 0$.

Proof: When $0 \le n \le 4$, the conclusion is obviously true.

Induction Step: For $k \ge 5$, assume $a_k \le 2^k$, then we have:

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$

$$\leq 2^k + 2^{k-1} + 2^{k-2}$$

$$= 2^{k-2}(4+2+1)$$

$$\leq 2^{k+1}.$$

Conclusion: Therefore, the conclusion holds.

- 2. Consider the sorting algorithm shown in Alg.1, which is called BUBBLESORT.
 - (a) What is the minimum number of element comparisons? When is this minimum achieved?

Answer: The minimum number of comparisons is n-1 when the elements are already in ascending order.

(b) What is the maximum number of element comparisons? When is this maximum achieved?

Answer: The maximum number of comparisons is $\frac{n(n+1)}{2}$ when the elements are in descending order.

(c) Express the running time of Alg.1 in terms of the O and Ω notations.

Answer: Let g(n) = n - 1, $h(n) = \frac{n(n+1)}{2}$, thus f(n) = O(h(n)), $f(n) = \Omega(g(n))$. The time complexity is $O(n^2)$ and $\Omega(n)$.

(d) Can the running time of the algorithm be expressed in terms of the Θ notation? Explain.

Answer: In the average case, the elements are randomly ordered, requiring about half the swaps, so the time complexity remains $\Theta(n^2)$. Both the worst-case and average-case complexities are $\Theta(n^2)$, making this notation suitable.

3. Fill in the blanks with either true (T) or false (F):

f(n)	g(n)	f = O(g)	$f = \Omega(g)$	$f = \Theta(g)$
$2n^3 + 3n$	$100n^2 + 2n + 100$	F	Т	F
$50n + \log n$	$10n + \log \log n$	Т	Т	Т
$50n \log n$	$10n \log \log n$	F	Т	F
$\log n$	$\log^2 n$	Т	F	F
n!	5^n	F	T	F

- 4. Design a divide-and-conquer algorithm to determine whether two given binary trees T_1 and T_2 are identical.
 - 1: **Input:** Two binary trees, *root1* and *root2*
 - 2: Output: Boolean value indicating whether the trees are identical
 - 3: function isSameTree(root1, root2)
 - 4: **if** root1 = NULL and root2 = NULL **then**
 - 5: **return** true
 - 6: end if
 - 7: **if** root1 = NULL or root2 = NULL **then**
 - 8: **return** false
 - 9: end if
 - if root1.val \neq root2.val then
 - 11: **return** false
 - 12: end if
 - return isSameTree(root1.left, root2.left) and isSameTree(root1.right, root2.right)
 - 14: end function
- 5. You are given two sorted lists of size m and n in ascending order. Give an $O(\log m + \log n)$ time algorithm for computing the k-th smallest element in the union of the two lists.

Algorithm Idea

1. Base Case Handling:

- If one of the lists is empty, the k-th smallest element is simply the k-th element of the other list.
- If k = 1, return the smaller of the first elements of the two lists.

2. Recursive Strategy:

- Assume the length of list A is always less than or equal to the length of list B (swap if necessary). This
 ensures the first list is never longer than the second, optimizing recursive calls.
- Choose $i = \min(\frac{k}{2}, m)$ and $j = \min(\frac{k}{2}, n)$ as the midpoints to split the lists A and B.
- Compare A[i-1] and B[j-1]:
 - * If A[i-1] < B[j-1], it means that the k-th smallest element cannot be in the first i elements of A. Recursively search for the (k-i)-th smallest element in the remaining part of A and the entire B.

* Otherwise, the k-th smallest element cannot be in the first j elements of B. Recursively search for the (k-j)-th smallest element in A and the remaining part of B.

3. Time Complexity:

- The algorithm halves the search space in each recursive step, achieving a time complexity of $O(\log m + \log n)$.

Detailed Steps

- 1. **Input:** Two sorted lists A of size m and B of size n, and an integer k.
- 2. **Output:** The k-th smallest element in the union of A and B.
- 3. Procedure:
 - (a) If m > n, swap A and B to ensure A is the smaller list.
 - (b) If m = 0, return B[k-1].
 - (c) If k = 1, return min(A[0], B[0]).
 - (d) Set $i = \min(\frac{k}{2}, m)$ and $j = \min(\frac{k}{2}, n)$.
 - (e) Compare A[i-1] and B[j-1]:
 - If A[i-1] < B[j-1], recursively find the (k-i)-th smallest element in A[i:] and B.
 - If $A[i-1] \ge B[j-1]$, recursively find the (k-j)-th smallest element in A and B[j:].