Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

News

Homework #2

- Due <u>Thursday</u> by 11:59 PM
- Submit via canvas

Coding Assignment #1

- Due <u>Thursday</u> by 11:59 PM
- Submit via canvas
 - Submit answers as a PDF
 - Submit code as .m files

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

Consider the system defined by the input-output relationship

$$y[n] = \sum_{m=-\infty}^{n} x[m]$$

• Compute the output for input $x[n] = \delta[n-1] - 3\delta[n-3]$

Consider the system defined by the input-output relationship

$$y[n] = \sum_{m = -\infty}^{n} x[m]$$

• Compute the output for input $x[n] = \delta[n-1] - 3\delta[n-3]$

Consider the system defined by the input-output relationship

$$y[n] = \sum_{m = -\infty}^{n} x[m]$$

• Compute the output for input $x[n] = \delta[n-1] - 3\delta[n-3]$

Consider the system defined by the input-output relationship

$$y[n] = \sum_{m=-\infty}^{n} x[m]$$

• Compute the output for input x[n] = u[n]

Consider the system defined by the input-output relationship

$$y[n] = \sum_{m=-\infty}^{n} x[m]$$

• Compute the output for input x[n] = u[n]

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

Definition of convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Definition of convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

$$\text{Shift that Domain corresponds that we to the final multiply point and sum over}$$

- Plotting x[3-n]
- We follow this procedure

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$
Shift Time left 3 reverse

- Plotting x[3-n]
- We follow this procedure

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$
Shift Time left 3 reverse

- Plotting x[3-n]
- We follow this procedure

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$
Shift Time left 3 reverse

- Plotting x[3-n]
- We follow this procedure

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$
Shift Time left 3 reverse

Consider this

- Plotting x[3-n]
- We follow this procedure

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$

$$x[n] \rightarrow x[n+3] \rightarrow x[-n+3] = x[3-n]$$
Shift Time
$$\underline{left \ 3}$$
 reverse

Consider this

• Plotting x[3-n]

$$x[n] \rightarrow x[-n] \rightarrow x[-(n-3)] = x[-n+3] = x[3-n]$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Time Shift reverse right 3

Consider this

• Plotting x[3-n]

$$x[n] \rightarrow x[-n] \rightarrow x[-(n-3)] = x[-n+3] = x[3-n]$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
Time Shift reverse right 3

Consider this

• Plotting x[3-n]

Consider this

• Plotting x[3-n]

Convolution Illustration

0.5

0.5 0

Example Problem #1

- Linear and Time-Invariant (LTI) System
 - Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Compute response of the system to input of

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Linear and Time-Invariant (LTI) System

Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Compute response of the system to input of

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Solution:

$$y[n] = \frac{1}{2} (2 \delta[n-1] + 2 \delta[n-2] + 2 \delta[n-2] + 2 \delta[n-3])$$

$$= \frac{1}{2} (2 \delta[n-1] + 4 \delta[n-2] + 2 \delta[n-3])$$

$$= \delta[n-1] + 2 \delta[n-2] + \delta[n-3]$$

Linear and Time-Invariant (LTI) System

Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Compute response of the system to input of

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Solution:

$$y[n] = \frac{1}{2} (2 \delta[n-1] + 2 \delta[n-2] + 2 \delta[n-2] + 2 \delta[n-3])$$

$$= \frac{1}{2} (2 \delta[n-1] + 4 \delta[n-2] + 2 \delta[n-3])$$

$$= \delta[n-1] + 2 \delta[n-2] + \delta[n-3]$$
Output $y[n]$

$$= \delta[n-1] + 2 \delta[n-2] + \delta[n-3]$$

Linear and Time-Invariant (LTI) System

Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

• Compute the impulse response h[n] of the system

Linear and Time-Invariant (LTI) System

Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

- Compute the impulse response h[n] of the system
- Solution:

$$x[n] = \delta[n]$$

$$h[n] = \frac{1}{2} \left(\delta[n] + \delta[n-1] \right)$$

- Linear and Time-Invariant (LTI) System
 - Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

What do you think this system does?

Linear and Time-Invariant (LTI) System

Consider the system with input-output relationship:

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to *y*[*n*] for shift *n*

Compute the convolution of:

$$y[n] = h[n] * x[n]$$

$$h[n] = (1/2)(\delta[n] + \delta[n-1])$$

$$x[n] = 2 \delta[n-1] + 2 \delta[n-2]$$

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Step 5: Repeat for all shifts $-\infty < n < \infty$

$$y[n] = \delta[n-1] + 2\delta[n-2] + \delta[n-3]$$

Same as our first result!

We can compute the system output via convolution!

Example Problem #2

- Linear and Time-Invariant (LTI) System
 - Consider the system with impulse response h[n]

• Compute response of the system to input x[n] below

- Linear and Time-Invariant (LTI) System
 - Solution:

Example Problem #3: Correlation

Definition of convolution

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Definition of correlation

$$y[n] = x[-n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n+m]$$

Linear and Time-Invariant (LTI) System

• Consider h[n] and x[n] below. Compute their <u>correlation</u>.

$$y[n] = x[-n] * h[n]$$

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Compute the correlation:

$$y[n] = x[-n] * h[n]$$

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Convolution / Correlation

■ What does this achieve?

Step 1: Time-reverse a signal

Step 2: Shift that signal by *n*

Step 3: Multiply the signals & sum the result

Step 4: Assign the sum to y[n] for shift n

Step 5: Repeat for all shifts $-\infty < n < \infty$

Convolution / Correlation

Question: What are applications of correlation?

More Examples on Course Website

Convolution

- Go to the notes on the course website!
 - http://smartdata.ece.ufl.edu/eee5502/lecture.html?lecture=03

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

Convolution Properties

Definition of convolution

$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Property #1: Commutativity

Property #2: Associativity

$$x[n] * (h[n] * g[n]) = (x[n] * h[n]) * g[n]$$

Property #3: Distributivity

$$x[n] * (h[n] + g[n]) = (x[n] * h[n]) + (x[n] * g[n])$$

Property #4: Multiplicative identity

$$\diamond x[n] * \delta[n] = x[n]$$

Convolution Properties

Definition of convolution

$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Property #5: Shifting property

Convolution Properties

Problem: Let's prove property #1:

$$x[n] * h[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Show that:

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

Basic System Block Diagram

Basic System Block Diagram

Cascading System (Systems in Series)

Basic System Block Diagram

Systems in Parallel

Problem: Compute the impulse response of the system below:

■
$$h[n] = \delta[n-2]$$
, $g[n] = \delta[n-1]$, $r[n] = \delta[n-1]$

Problem: Compute the impulse response of the system below:

■
$$h[n] = \delta[n-2]$$
, $g[n] = \delta[n-1]$, $r[n] = \delta[n-1]$

Solution

•
$$y[n] = \delta[n] * (\delta[n-2] + \delta[n-1]) * \delta[n-1]$$

•
$$y[n] = \delta[n-2] + \delta[n-1]$$

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

- Let an LTI system be defined by an impulse response h[n]
 - Property #1: A system is memoryless if
 - $h[n] = A \delta[n]$ for some scalar A

- Property #2: A system is causal if
 - h[n] = 0 for n < 0
 - \diamond That is, h[n] is causal

- Property #3: A system is BIBO stable is

Linear and Time-Invariant (LTI) System

$$y[n] = \sum_{m = -\infty}^{\infty} x[m] h[n - m]$$
 Convolution!

• Show that if $h[n] = A\delta[n]$, then the system is memoryless.

Linear and Time-Invariant (LTI) System

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$
 Convolution!

• Show that if h[n] is causal, then the system is causal

Linear and Time-Invariant (LTI) System

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$
 Convolution!

• Show that if $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$, then the system is BIBO stable

Linear and Time-Invariant (LTI) System

$$y[n] = \sum_{m=-\infty}^{\infty} x[m] h[n-m]$$

Convolution!

- Show that if $\sum_{n=-\infty}^{\infty} |h[n]| < \infty$, then the system is BIBO stable
- Solution:

Triangle Inequality

|y[n]| =
$$\left|\sum_{m=-\infty}^{\infty} x[m] h[n-m]\right| \le \sum_{m=-\infty}^{\infty} |x[m]h[n-m]|$$

 $\le \sum_{m=-\infty}^{\infty} |x[m]| |h[n-m]|$
 $\le \sum_{m=-\infty}^{\infty} B_x |h[n-m]| \le B_x B_h$
| x[n] is bounded | Absolute sum of h[n] is bounded

Linear and Time-Invariant (LTI) System

• Consider the system with impulse response h[n]

- Is the system memoryless?
- Is the system causal?
- Is the system BIBO stable?

Linear and Time-Invariant (LTI) System

Consider the system with impulse response h[n]

- Is the system memoryless?
- Is the system causal?
- Is the system BIBO stable?
- What does this system do?

Linear and Time-Invariant (LTI) System

Consider the system with impulse response

$$h[n] = u[n]$$

- Is the system memoryless?
- Is the system causal?
- Is the system BIBO stable?
- What does this system do?

Linear and Time-Invariant (LTI) System

Consider the system with impulse response

$$h[n] = u[n]$$

• Consider an example input $x[n] = \delta[n-1] - 3\delta[n-3]$

Linear and Time-Invariant (LTI) System

Consider the system with impulse response

$$h[n] = u[n]$$

• Consider an example input $x[n] = \delta[n-1] - 3\delta[n-3]$

Linear and Time-Invariant (LTI) System

Consider the system with impulse response

$$h[n] = u[n]$$

• Consider an example input $x[n] = \delta[n-1] - 3\delta[n-3]$

- Linear and Time-Invariant (LTI) System
 - Consider the system with impulse response

$$h[n] = u[n]$$

Hence, a system with this impulse response is equivalent to

$$y[n] = \sum_{m=-\infty}^{n} x[m]$$

Lecture 4: Discrete -Time LTI Systems

Foundations of Digital Signal Processing

Outline

- Input-Output Representation Review
- Discrete-Time Convolution
- Properties of Discrete-Time Convolution
- Combining Systems
- Properties of the Impulse Response
- General Form for LTI Systems

General LTI System

- Is there a general way to express LTI systems?
 - Yes, with difference equations.

General form for an LTI system is:

$$\sum_{m=-\infty}^{\infty} a[m]y[n-m] = \sum_{m=-\infty}^{\infty} b[m]x[n-m]$$
$$a[n] * y[n] = b[n] * x[n]$$

General LTI System

General form for an LTI system is:

$$\sum_{m=-\infty}^{\infty} a[m]y[n-m] = \sum_{m=-\infty}^{\infty} b[m]x[n-m]$$
$$a[n] * y[n] = b[n] * x[n]$$

- Example system: What does this system do?
 - y[n] + (-1.1)y[n-1] = x[n]
 - Or... y[n] = (1.1)y[n-1] + x[n]

General LTI System

General form for an LTI system is:

$$\sum_{m=-\infty}^{\infty} a[m]y[n-m] = \sum_{m=-\infty}^{\infty} b[m]x[n-m]$$
$$a[n] * y[n] = b[n] * x[n]$$

- Example system: How can we analyze these recursive systems?
 - y[n] + (-1.1)y[n-1] = x[n]
 - Or... y[n] = (1.1)y[n-1] + x[n]