# University of Michigan

# 21 Query Planning - Part II



Database Management Systems

**EECS 484** 

Fall 2024



Lin Ma
Computer Science and
Engineering Division

# QUERY OPTIMIZATION

# **Heuristics / Rules**

- → Rewrite the query to remove stupid / inefficient things.
- → These techniques may need to examine catalog, but they do <u>not</u> need to examine data.

#### **Cost-based Search**

- $\rightarrow$  Use a model to estimate the cost of executing a plan.
- → Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

# QUERY OPTIMIZATION

# **Heuristics / Rules**

- → Rewrite the query to remove stupid / inefficient things.
- → These techniques may need to examine catalog, but they do <u>not</u> need to examine data.

#### **Cost-based Search**

- $\rightarrow$  Use a model to estimate the cost of executing a plan.
- → Evaluate multiple equivalent plans for a query and pick the one with the lowest cost.

# TODAY'S AGENDA

Moe Cost Estimation (Statistics)
Plan Enumeration



# STATISTICS

The DBMS stores internal statistics about tables, attributes, and indexes in its internal catalog. Different systems update them at different times.

#### Manual invocations:

- → Postgres/SQLite: ANALYZE
- → Oracle/MySQL: ANALYZE TABLE
- → SQL Server: **UPDATE STATISTICS**
- → DB2: RUNSTATS



# STATISTICS

For each relation R, the DBMS maintains the following information:

- $\rightarrow$  N<sub>R</sub>: Number of tuples in R.
- $\rightarrow$  V(A,R): Number of distinct values for attribute A.



#### DERIVABLE STATISTICS

The <u>selection cardinality</u> SC(A,R) is the average number of records with a value for an attribute  $A: N_R / V(A,R)$ 



#### DERIVABLE STATISTICS

The <u>selection cardinality</u> SC(A,R) is the average number of records with a value for an attribute A:  $N_R / V(A,R)$ 

Note that this formula assumes *data uniformity* where every value has the same frequency as all other values.

→ Example: 10,000 students, 10 departments – how many students in EECS?



#### LOGICAL COSTS

Estimate the result size of every operator in the query plan

Use the estimated result size from the child operator as the input size for the parent's cost estimation



# RESULT SIZE ESTIMATION

Equality predicates on unique keys are easy to estimate.



#### RESULT SIZE ESTIMATION

Equality predicates on unique keys are easy to estimate.

```
SELECT * FROM people
WHERE id = 123
```

```
CREATE TABLE people (
  id INT PRIMARY KEY,
  val INT NOT NULL,
  age INT NOT NULL,
  status VARCHAR(16)
);
```

#### RESULT SIZE ESTIMATION

Equality predicates on unique keys are easy to estimate.

```
SELECT * FROM people
WHERE id = 123
```

id INT PRIMARY KEY,
 val INT NOT NULL,
 age INT NOT NULL,
 status VARCHAR(16)
);

Computing the logical cost of complex predicates is more difficult...

```
SELECT * FROM people WHERE val > 1000
```

```
SELECT * FROM people
WHERE age = 30
AND status = 'yes'
AND age+id IN (1,2,3)
```

#### COMPLEX PREDICATES

The <u>selectivity</u> (sel) of a predicate P is the fraction of tuples that qualify.

Formula depends on type of predicate:

- → Equality
- → Range
- → Negation
- → Conjunction
- → Disjunction



#### COMPLEX PREDICATES

The <u>selectivity</u> (sel) of a predicate P is the fraction of tuples that qualify.

Formula depends on type of predicate:

- → Equality
- → Range
- → Negation
- → Conjunction
- → Disjunction



Assume that V(age, people) has five distinct values (0–4) and  $N_R = 5$ 

**Equality Predicate: A=constant** 

 $\rightarrow$  sel(A=constant) = SC(A,R) / N<sub>R</sub>

Assume that V(age, people) has five distinct values (0–4) and  $N_R = 5$ 

**Equality Predicate: A=constant** 

- $\rightarrow$  sel(A=constant) = SC(A,R) / N<sub>R</sub>
- $\rightarrow$  Example: sel(age=2) =

Assume that V(age, people) has five distinct values (0–4) and  $N_R = 5$ 

**Equality Predicate: A=constant** 

- $\rightarrow$  sel(A=constant) = SC(A,R) / N<sub>R</sub>
- $\rightarrow$  Example: sel(age=2) =

SELECT \* FROM people WHERE age = 2



age

Assume that V(age, people) has five distinct values (0–4) and  $N_R = 5$ 

**Equality Predicate: A=constant** 

- $\rightarrow$  sel(A=constant) = SC(A,R) / N<sub>R</sub>
- $\rightarrow$  Example: sel(age=2) =



Assume that V(age, people) has five distinct values (0–4) and  $N_R = 5$ 

**Equality Predicate: A=constant** 

- $\rightarrow$  sel(A=constant) = SC(A,R) / N<sub>R</sub>
- $\rightarrow$  Example: sel(age=2) = 1/5



# **Range Predicate:**

- $\rightarrow$  sel(A>=a) = (A<sub>max</sub>-a+1) / (A<sub>max</sub>-A<sub>min</sub>+1)
- → Example: sel(age>=2)



# **Range Predicate:**

- $\rightarrow$  sel(A>=a) = (A<sub>max</sub>-a+1) / (A<sub>max</sub>-A<sub>min</sub>+1)
- → Example: sel(age>=2)



# **Range Predicate:**

- $\rightarrow$  sel(A>=a) = (A<sub>max</sub>-a+1) / (A<sub>max</sub>-A<sub>min</sub>+1)
- → Example: sel(age>=2)



# **Range Predicate:**

```
\rightarrow sel(A>=a) = (A<sub>max</sub>-a+1) / (A<sub>max</sub>-A<sub>min</sub>+1)
```

→ Example: sel(age>=2)  $\approx$  (4-2+1) / (4-0+1)  $\approx$  3/5



# **Negation Query:**

- $\rightarrow$  sel(not P) = 1 sel(P)
- → Example: sel(age != 2)





# **Negation Query:**

```
\rightarrow sel(not P) = 1 - sel(P)
```

→ Example: sel(age != 2)



# **Negation Query:**

- $\rightarrow$  sel(not P) = 1 sel(P)
- → Example: sel(age != 2)



# **Negation Query:**

```
\rightarrow sel(not P) = 1 - sel(P)
```

 $\rightarrow$  Example: sel(age != 2) = 1 - (1/5) = 4/5





# **Negation Query:**

- $\rightarrow$  sel(not P) = 1 sel(P)
- $\rightarrow$  Example: sel(age != 2) = 1 (1/5) = 4/5

SELECT \* FROM people
WHERE age != 2

# Observation: Selectivity ≈ Probability



# **Conjunction:**

- $\rightarrow$  sel(P1  $\land$  P2) = sel(P1) sel(P2)
- $\rightarrow$  sel(age=2  $\land$  name LIKE 'A%')

This assumes that the predicates are **independent**.

SELECT \* FROM people
WHERE age = 2
AND name LIKE 'A%'



# **Conjunction:**

- $\rightarrow$  sel(P1  $\land$  P2) = sel(P1) sel(P2)
- $\rightarrow$  sel(age=2  $\land$  name LIKE 'A%')

This assumes that the predicates are **independent**.

SELECT \* FROM people
WHERE age = 2
AND name LIKE 'A%'



# **Conjunction:**

- $\rightarrow$  sel(P1  $\land$  P2) = sel(P1) sel(P2)
- $\rightarrow$  sel(age=2  $\land$  name LIKE 'A%')

This assumes that the predicates are **independent**.

SELECT \* FROM people
WHERE age = 2
AND name LIKE 'A%'



# **Disjunction:**

```
\rightarrow sel(P1 V P2)
= sel(P1) + sel(P2) - sel(P1\landP2)
= sel(P1) + sel(P2) - sel(P1) • sel(P2)
\rightarrow sel(age=2 OR name LIKE 'A%')
```

This again assumes that the selectivities are **independent**.

```
SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'
```



# **Disjunction:**

```
\rightarrow sel(P1 V P2)
= sel(P1) + sel(P2) - sel(P1\landP2)
= sel(P1) + sel(P2) - sel(P1) • sel(P2)
\rightarrow sel(age=2 OR name LIKE 'A%')
```

This again assumes that the selectivities are **independent**.

```
SELECT * FROM people
WHERE age = 2
OR name LIKE 'A%'
```



#### RESULT SIZE ESTIMATION FOR JOINS

Given a join of R and S, what is the range of possible result sizes in # of tuples?

In other words, for a given tuple of R, how many tuples of S will it match?

Assume each key in the inner relation will exist in the outer table



#### RESULT SIZE ESTIMATION FOR JOINS

General case:  $R_{cols} \cap S_{cols} = \{A\}$  where A is not a primary key for either table.

→ Match each R-tuple with S-tuples:

estSize 
$$\approx N_R \cdot SC(A, S) = N_R \cdot N_S / V(A,S)$$

→ Symmetrically, for S:

```
estSize \approx N_s \cdot SC(A, R) = N_R \cdot N_S / V(A,R)
```

#### Overall:

```
\rightarrow estSize \approx N<sub>R</sub> \cdot N<sub>S</sub> / max({V(A,S), V(A,R)})
```



#### SELECTIVITY ESTIMATION

# **Assumption #1: Uniform Data**

 $\rightarrow$  The distribution of values is the same.

# **Assumption #2: Independent Predicates**

→ The predicates on attributes are independent

# **Assumption #3: Inclusion Principle**

→ The domain of join keys overlap such that each key in the inner relation will also exist in the outer table.

### CORRELATED ATTRIBUTES

Consider a database of automobiles:

 $\rightarrow$  # of Makes = 10, # of Models = 100

And the following query:

→ (make="Honda" AND model="Accord")





### CORRELATED ATTRIBUTES

Consider a database of automobiles:

 $\rightarrow$  # of Makes = 10, # of Models = 100

And the following query:

→ (make="Honda" AND model="Accord")

With the independence and uniformity assumptions, the selectivity is:

 $\rightarrow$  1/10 × 1/100 = 0.001

But since only Honda makes Accords the real selectivity is 1/100 = 0.01

Our formulas are nice, but we assume that data values are uniformly distributed.

### **Uniform Approximation**





Our formulas are nice, but we assume that data values are uniformly distributed.

### **Uniform Approximation**





Our formulas are nice, but we assume that data values are uniformly distributed.

### **Non-Uniform Approximation**





Our formulas are nice, but we assume that data values are uniformly distributed.

### **Non-Uniform Approximation**



15 Keys × 32-bits = 60 bytes

## EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same number of values).

### **Non-Uniform Approximation**





## EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same number of values).

### **Non-Uniform Approximation**





## EQUI-WIDTH HISTOGRAM

All buckets have the same width (i.e., the same number of values).





Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.

### Histogram (Quantiles)





Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.







Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.







Vary the width of buckets so that the total number of occurrences for each bucket is roughly the same.







Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

SELECT AVG(age)
 FROM people
 WHERE age > 50

| id   | name  | age | status |
|------|-------|-----|--------|
| 1001 | Andy  | 59  | yes    |
| 1002 | Bob   | 41  | no     |
| 1003 | Cathy | 25  | yes    |
| 1004 | Dave  | 26  | no     |
| 1005 | Eve   | 39  | yes    |
| 1006 | Frank | 57  | yes    |



Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

SELECT AVG(age)
FROM people
WHERE age > 50







Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

### Table Sample

| 1001 | Andy  | 59 | yes |
|------|-------|----|-----|
| 1003 | Cathy | 25 | yes |
| 1005 | Eve   | 39 | yes |

SELECT AVG(age) FROM people WHERE age > 50

name





|      | Hame  | 90 | o ca cao |
|------|-------|----|----------|
| 1001 | Andy  | 59 | yes      |
| 1002 | Bob   | 41 | no       |
| 1003 | Cathy | 25 | yes      |
| 1004 | Dave  | 26 | no       |
| 1005 | Eve   | 39 | yes      |
| 1006 | Frank | 57 | ves      |

status



Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

### Table Sample

| 1001 | Andy  | 59 | yes |
|------|-------|----|-----|
| 1003 | Cathy | 25 | yes |
| 1005 | Eve   | 39 | yes |

SELECT AVG(age) FROM people WHERE age > 50

name

| ſ |
|---|



| 1001 | Andy  | 59 | yes |
|------|-------|----|-----|
| 1002 | Bob   | 41 | no  |
| 1003 | Cathy | 25 | yes |
| 1004 | Dave  | 26 | no  |
| 1005 | Eve   | 39 | yes |
| 1006 | Frank | 57 | yes |

age

status





Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

Table Sample

| 1001 | Andy  | 59 | yes |
|------|-------|----|-----|
| 1003 | Cathy | 25 | yes |
| 1005 | Eve   | 39 | yes |

SELECT AVG(age) FROM people WHERE age > 50



| Id   | Hallie | age | Status |
|------|--------|-----|--------|
| 1001 | Andy   | 59  | yes    |
| 1002 | Bob    | 41  | no     |
| 1003 | Cathy  | 25  | yes    |
| 1004 | Dave   | 26  | no     |
| 1005 | Eve    | 39  | yes    |
| 1006 | Frank  | 57  | ves    |



sel(age>50) =

Modern DBMSs also collect samples from tables to estimate selectivities.

Update samples when the underlying tables changes significantly.

Table Sample

sel(age>50) = 1/3

| 1001 | Andy  | 59 | yes |  |
|------|-------|----|-----|--|
| 1003 | Cathy | 25 | yes |  |
| 1005 | Eve   | 39 | yes |  |

SELECT AVG(age)
 FROM people
WHERE age > 50



| id   | name  | age | status |
|------|-------|-----|--------|
| 1001 | Andy  | 59  | yes    |
| 1002 | Bob   | 41  | no     |
| 1003 | Cathy | 25  | yes    |
| 1004 | Dave  | 26  | no     |
| 1005 | Eve   | 39  | yes    |
| 1006 | Frank | 57  | ves    |



#### SKETCHES

Probabilistic data structures that generate approximate statistics about a data set.

Cost-model can replace histograms with sketches to improve its selectivity estimate accuracy.

### Most common examples:

- → Count-Min Sketch (1988): Approximate frequency count of elements in a set.
- → <u>HyperLogLog</u> (2007): Approximate the number of distinct elements in a set.



### **OBSERVATION**

Now that we can (roughly) estimate the selectivity of predicates, and subsequently the cost of query plans, what can we do with them?



## QUERY OPTIMIZATION

After performing rule-based rewriting, the DBMS will enumerate different plans for the query and estimate their costs.

- $\rightarrow$  Single relation.
- $\rightarrow$  Multiple relations.
- → Nested sub-queries.

It chooses the best plan it has seen for the query after exhausting all plans or some timeout.

## SINGLE-RELATION QUERY PLANNING

Pick the best access method.

- → Sequential Scan
- → Binary Search (clustered indexes)
- → Index Scan

Predicate evaluation ordering.

Simple heuristics are often good enough for this.

OLTP queries are especially easy...



## MULTI-RELATION QUERY PLANNING

As number of joins increases, number of alternative plans grows rapidly

 $\rightarrow$  We need to restrict search space.



## MULTI-RELATION QUERY PLANNING

Fundamental decision in **System R**: Only consider left-deep join trees.

→ Many modern DBMSs still make this assumption.







## MULTI-RELATION QUERY PLANNING

Fundamental decision in **System R**: Only consider left-deep join trees.

→ Many modern DBMSs still make this assumption.







#### BRUTE-FORCE SEARCH

## Enumerate the orderings

→ Example: Left-deep tree #1, Left-deep tree #2...

Enumerate the plans for each operator

→ Example: Hash, Sort-Merge, Nested Loop...

Enumerate the access paths for each table

→ Example: Index #1, Index #2, Seq Scan...

Estimate the cost of every possible plan and return the best



SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b



SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b



SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b













SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b













**Step #2: Enumerate join algorithm choices** 





**Step #2: Enumerate join algorithm choices** 



# **Step #2: Enumerate join algorithm choices**



**Step #2: Enumerate join algorithm choices** 



# **Step #3: Enumerate access method choices**





## BRUTE-FORCE

## **Step #3: Enumerate access method choices**





#### BRUTE-FORCE

## **Step #3: Enumerate access method choices**





R ⋈ S T SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b

R S T

 $R \bowtie S \bowtie T$ 

T ⋈ S R





SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b

 $R \bowtie S \bowtie T$ 





**SELECT** \* **FROM** R, S, T **WHERE** R.a = S.a **AND** S.b = T.b

 $R \bowtie S \bowtie T$ 





SELECT \* FROM R, S, T WHERE R.a = S.a AND S.b = T.b

 $R \bowtie S \bowtie T$ 









#### POSTGRES OPTIMIZER

## Examines all types of join trees

→ Left-deep, Right-deep, bushy

## Two optimizer implementations:

- → Traditional Dynamic Programming Approach
- → Genetic Query Optimizer (GEQO)

Postgres uses the traditional algorithm when # of tables in query is <u>less</u> than 12 and switches to GEQO when there are 12 or more.

## **1st Generation**









#### 1st Generation







Cost:





Best:100

#### **1st Generation**



Cost: 300



Cost: 200







#### **1st Generation**



Cost: 300



Cost: 200





Best:100

#### **1st Generation**



Cost: 300



Cost: 200

















# Best:80



# 7 F D

Best:80



## T HJ S R



#### CONCLUSION

Filter early as possible.

Selectivity estimations

- → Uniformity
- → Independence
- → Inclusion
- $\rightarrow$  Histograms
- → Join selectivity

Dynamic programming for join orderings



## **NEXT CLASS**

**Transactions!** 

