LOAN DOCUMENT

	PHOTOGRAPH TE	IIS SHEET
DTIC ACCESSION NUMBER	RIA-80-21023 DOCUMENT IDENTIFICATION	INVENTORY
E ·	DISTRIBUTION ST Approved for Pub Distribution U	
	DISTRIBU	JTION STATEMENT]
ACCESSION FOR NTIS GRAM DTIC TRAC UNANNOUNCEP JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL		DATE ACCESSIONED
DISTRIBUTION STAMP		
199905	07 148	DATE RETURNED
	EIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC	REGISTERED OR CERTIFIED NUMBER
DTIC FORM 70A	DOCUMENT PROCESSING SHEET	PREVIOUS EXTRONS MAY BE USED UNTIL

LOAN DOCUMENT

TECHNICAL

80

OCT

PROGRAM ACCOMPLISHMENTS

MATERIEL DEVELOPMENT AND READINESS COMMAND

U S ARMY

MANUFACTURING

METHODS

જ

T ECHNOLOGY

U S ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY MANUFACTURING TECHNOLOGY DIVISION PREPARED BY

ROCK ISLAND, ILLINOIS 61299

LIBRARY

US ARMY INDUSTRIAL BASE ENGINEERING ACTIVITY DEPARTMENT OF THE ARMY ROCK ISLAND, ILLINOIS 61299

DRXIB-MT

SUBJECT: MM&T Program Accomplishments

SEE DISTRIBUTION

- 1. Reference AR 700-90, Cl, Para 3-8e(2), Logistics, Army Industrial Preparedness Program, dated 10 March 1977.
- 2. This brochure illustrates some of DARCCM's MM&T Program Accomplishments. It implementation. Projects that have anticipated benefits and implemented efforts tration of the types of projects pursued. The format of this brochure has been presents the achievements by Major Subordinate Commands with emphasis on illusdistinction between them. A summary has been provided as the first section of somewhat modified for this issue in accordance with the increased emphasis on with actual benefits have been placed in separate sections to provide a clear the document to provide an overview.
- 3. Further information on the projects illustrated in this brochure should be obtained from the MM&T representatives, project officers shown, or from Mr. James Carstens, Chief, Manufacturing Technology Division, AV 793-5113.

J. R. GALLAUGHER

Director

Industrial Base Engineering Activity

TABLE OF CONTENTS

	PAGE
INTRODUCTION	H
MMT POINTS OF CONTACT	7
MAT PROJECT INDEX	7
SECTION I - SUMMARY OF BENEFITS	6
SECTION II - RECENTLY COMPLETED PROJECTS	15
SECTION III - IMPLEMENTED EFFORTS	77

INTRODUCTION

cesses that can be applied to the production of Army items. Over the years in 1964. The purpose of the program is to develop new manufacturing pro-The Army Manufacturing Methods and Technology (MMT) Program was begun hundreds of these projects have been funded and used to develop new technology. This brochure records the results of some of those projects.

from the "laboratory" to actual production. It is often difficult to make Much literature has been written concerning the transfer of technology of accomplishing this transfer are through end of project demonstrations; brochure is widely distributed throughout the Army in order to publicize the results and disseminate knowledge to potential users. Other methods preparation of technical reports, project summary reports, and technical notes; and, through inclusion of technology information in bulletins and this transition; however, the full benefits of new technology can be ob-The Army is placing more Real benefits can only accrue once the new technology journals. All of these techniques, however; serve only to disseminate emphasis on technology transfer to attain greater project benefits. tained only if this transition has been made. the information. is implemented.

MMT POINTS OF CONTACT

PHONE	AV 698-6476 (314) 268-6476	AV 995-4017 (201) 544-4017	AV 995-4258 (201) 544-4258	AV 746-1835 (205) 876-1835	AV 273-2065 (313) 573-2065
REPRESENTATIVE	Mr. Robert Vollmer US Army Aviation R&D Command ATTN: DRDAV-EXT 12th & Spruce Streets St. Louis, MO 63166	Mr. Al Feddeler US Army Communications R&D Command ATTN: DRDCO-PPA-TP Building 2700 Fort Monmouth, NJ 07703	Mr. Joseph Key US Army Electronics R&D Command ATTN: DELET-DS Fort Mormouth, NJ 07703	Mr. Ray Farison US Army Missile Command ATTN: DRSMI-ET Redstone Arsenal, AL 35898	Dr. James Chevalier US Army Tank-Automotive R&D Command ATTN: DRDTA-RCK Warren, MI 48090
COMMAND CODE	H	2 or F	2 or H	3 or R	4 or T

MMT POINTS OF CONTACT

PHONE	AV 880 6714 (201) 328 6714	AV 880 6708 (201) 328 6708	AV 793 4485/3730 1 (309) 794 4485/3730	AV 354 5530 1 (703) 664 5530	AV 283 3677 (301) 278 3677
REPRESENTATIVE	Mr. Donald Fischer US Army Armament R&D Command Attn: DRDAR-PML Dover, NJ 07801	Mr. Joseph Tagliarino US Army Munitions Production Base Modernization Agency Attn: SARPM-PBM Dover, NJ 07801	Mr. August Zahatko US Armament Materiel Readiness Command Attn: DRSAR-IRB Rock Island Arsenal Rock Island, IL 61299	Mr. Sydney Newman US Army Mobility Equipment R&D Command Attn: DRDME-UPE Ft. Belvoir, VA 22060	Mr. Grover Shelton US Army Test & Evaluation Command Attn: DRSTE-AD-M Aberdeen Proving Ground, MD 21005
COMMAND CODE	2		9	7 or E	0

MMT PROJECT INDEX

PROJECT NO	PROJECT TITLE	PAGE
MERADCOM		
772 3501	Complex Steel Weldment NDT Residual Stress Measurement	16
77x 3524	Modular Synthetic Light Weight Camouflage Screens	78
774 3567	Test Equipment, AN/PRS-7 Mine Detector	17
CORADCOM		
276 9773	Computer Aid F/PREP of Auto Analog Circuit Prodn Test Prog	18
ERADCOM		
274 9523	Production of Infrared Filters	19
275 9525	Hot Pressing Piezo-Ceramic Elements for HV Transformers	20
275 9665	Measurement of Electrical Components Under Dynamic Stress	21
275 9738	Epitaxial + Metallization Processes for Impatt Diodes	22
273 9741	CAD/CAM Auto Production Engineering Drawing Symbol Library	23
274 9744	Fabrication of Universal Detector Modules	79
274 9750	Fabrication of 18mm Image Intensifier Tubes by Batch Technirues	80
275 9836	QC for Fabrication of 18mm + 25mm Etched Core Microchannel Plates	81
TARADCOM		
T7x 4329	Joining of Steel Armor Intermix	82
475 4561	Closed Die Forging of Track Shoes and Links	77
T77 4589	Metrication	25
477 5019	Tactical Vehicle Storage Battery	56

PROJECT NO	PROJECT TITLE	PAGE
AVRADCOM		
176 7055	Ultrasonic Welding of Helicoptor Fuselage Structures	27
1xx 7103	Blisk and Impeller MFG by Automatic Multi Spindle Machining	83
177 7112	Composite Improved Main Rotor Blades	84
172 8036	Control Grain Size in Thin Walled Turbine Blades	28
17x 8046	Axial Turbine Blade Disk/Cooling Plate Fabrication	85
174 8091	Advanced Adhesives for Transparent Armor	29
174,75,76,8109	Fluidic Devices for Aircraft Stability Augmentation Systems	30
175 8154	Cadam for Extrusion of Aluminum, TI and Steel Structural Parts	98
MICOM		
376 3147	Additive Process of Processing Printed Circuits	31
375 3157	QTY Prod Technology for Diode Phase Shifter Elements	87
R77 3168	Production of Circuit Board Heat Pipes	32
R7x 3170	Replacement of TPH-8156 and TPH-8159 Propellant	88
376 3224	Screening of Electronic Components	33
376 3225	Prod Method for Mounting Non-Axial Lead Components	34
376&7T 3228	Production Methods for Extrudable HTPB Propellant	35
37x 3232	Computerized Production Process Planning	88
ARRADCOM/ARRCOM AMMO		
573 1139	Appl of Fluid Logic Control Circuitry to Pyrotechnic Loading	36

PROJECT NO

PAGE

PROJECT TITLE

ARRADCOM/ARRCOM AMMO		
573&75 1248	Evaluation of Exhaust Filter Systems	37
57x 1248	Evaluation of Exhaust Filter Systems	06
57x 1260	Prototype Equipment for Forming and Filling Grenade Starter	91
574 1261	Prototype Eruipment for Level Determination of WP in Tanks	38
57x 1277	Fast Response Contaminant Monitors for Industrial Operations	92
57I&77 1337	Adapt Transfer of UK Technology - LCHR + RP BUTYL Grenade	39
574 3049,376 3141	Fluidic Manufacture and Assembly Process	07
573 3051	Proximity Fuze Test Eruipment	41
57x 4032	Automated Equipment for Fuze Assembly	93
571&74 4041	Automated Eruipment for Assy of Mortar Ammunition	27
5xx 4114 P06	Methods to Minumize Environmental Contamination	. 76
57x 4134	Development of Detonation Traps for Improved Safety	95
573,74,77,78,4139	Appl of Radar to Ballistic ACC Test of Ammo (ARBAT)	43
574 4162	Automated Line for Melt-Pour Process of High Explosives	* **
571,72 4171	Investigation of Parameters Affecting Nitrolysis of Hexamine	57
574 4205	Proc Spent Acid from RDX/HMX for Recovery of Explosive + Acid	96
572,73 4220	Continuous RDX Recrystallization Prototype Facility	97
574 4255	Proto Eruip for Production Control of Accel Sensing Devices	74
576,77 4280	Auto Zero Setting Prototype Eruipment for M577 Fuze	48

PAGE PROJECT TITLE PROJECT NO

ARRADCOM/ARRCOM AMMO

67	20	51	52	53	54	55	99	57	46	58		59	09	61	62	63	79	65	99	29	86
Explosive Safe Separation and Sensitivity Criteria	Explosive Safe Separation and Sensitivity Criteria	Explosive Safe Separation and Sensitivity Criteria	Blast Effects in the Munitions Plant Environment	Improved Nitrocellulose Purification	MFG of Safe + Arming Device Housing for GEMSS Mines	Multi-Tooled Iowa Detonator Loading Machine	High Strength Aluminum Alloy Shapes by Powder Metallurgy	High Density Tungsten Preforms for Warheads	Computer Monitor of Artillery Shell Band Welding	Engineering in Support of Artillery Metal Parts MOD Program		Appl of Filament Winding to Cannon and Cannon Components	Auto of Gun Barrel Bore Chromium Plating Process	MFG Simplification and Cost Reduct Non-Metal Components	Dewar Materials and Manufacture	Effect of Electroless Nickel Process VAR on Qual RQMTS	Gen Purpose Mach Tool Mini-Computer Directed NC	Dev/Prep of Mult-Purpose Laser Qual Insp Applications	Rapid Heat Treating For Cannon Tubes	Gun Tube Manufacture by Automation	Improved MFG Control Through Data Automation-CAM
57T 4288	576 4288	577 4288	576 4291	577 4341	577 4416	57T 4457	572 6335	571 6388	573 6522	573 6550	ARRADCOM/ARRCOM WEAPONS	672,73 6681	672 6786	672 6838	673 7056	673 7124	672 7220	672 7226	676 7236	673 7242	67x 7248

PROJECT TITLE

PROJECT NO	PROJECT TITLE	PAGE
ARRADCOM/ARRCOM WEAPONS		
673 7261	Plastic Replica Component Manufacturing	89
673 7265	Computer Control in Engraving Optical Reticles	69
673 7305	Resin Bonded Mold + Die Production Technology	66
674 7411	Establish Heat Setting Procedures for Helical Coiled Spring	70
674,75,7419	Low-Cost Reciprocating Screw Molding of Thermosetting Plastic	71
674 7481	Horizontal Spray Quench to Heat Treat of Gun Tubes	100
674 7484	Application of Automatic Drafting Machine	101
674 7495	Closed Die Forging of Powder Metal Preforms	72
674 7524	Ultra Hard Boride Coating to Reduce Tool Wear	73
674,75 7550	Prototype of Production Electro-Slag Refining Facilities	74
675 7571	Shock Test Simulation for Fire Control Instruments	75
675 7572	3-Axis DYN. SIM. of Helicopter Angular Motion for Testing FC	76

SECTION I

SUMMARY OF BENEFITS

ACCOMPLISHMENTS SUMMARY

PROJECT NUMBER	ANTICIPATED BENEFITS \$ SAVINGS	NEFITS OTHER	ACTUAL BENEFITS \$ SAVINGS	EFITS OTHER	REMARKS
7 72 3501		INCREASED CAPABILITY			AVAILABLE FOR IMPLEMENTATION
7 74 3567		REDUCED TEST TIME			TWO PROTOTYPE SIMULATORS WERE BUILT
2 76 9773	\$2 MILLION				SOFTWARE IS AVAILABLE FOR IMPLEMENTATION
2 74 9523	\$175/UNIT	INCREASED LIFE & PERFORMANCE			
2 75 9525		REDUCED LABOR & INCREASED PROCESS YIELD			A PRODUCTION RATE OF 200/MONTH WAS ACHIEVED
н 75 9665	\$700,000/YEAR				LASER TRIMMING FOR FINAL TUNING
2 75 9738	\$1.7 MILLION				IMPROVED PROCESSING
2 73 9741		REDUCED DESIGN VERIFICATION TIME .			AVAILABLE FOR IMPLEMENTATION
4 75 4561		REDUCED DIE DESIGN TIME			INTERACTIVE COMPUTER ASSIST
т 77 4589		ASSURES INTEGRITY OF DESIGNS			COMMAND CONVERSION PLAN WILL IMPLEMENT
4 77 5019	\$3.0 MILLION	LOWER MAINTENANCE			FOLLOW-ON PROJECT IS COMPLETING THIS EFFORT
1 76 7055	\$225,000	LIGHTER & LESS EXPENSIVE UNIT			FOLLOW-ON PROJECT IS COMPLETING THIS EFFORT
1 72 8036	NONE				UNDESIRABLE SIDE EFFECTS
1 74 8091		80% REDUCTION IN PROCESSING COSTS			
1 74,75,76 8109	\$14 MILLION	MORE ENVIRONMENTALLY TOLERANT UNIT			
3 76 3147	\$4.7 MILLION	REDUCES UNDESIRABLE CHEMICAL DISCHARGES			FOLLOW-ON PROJECT IS COMPLETING THIS EFFORT
R 77 3168	\$10 MILLION	INCREASED PERFORMANCE			PRODUCTION RATE OF 50/HOUR ACHIEVED
3 76 3224	\$1.5 MILLION	REDUCED FIELD FAILURES			ADDITIONAL EFFORT IS PROPOSED
3 76 3225	\$760,000/YEAR				FOLLOW-ON EFFORTS ARE REQUIRED
3 76,7T 3228		ELIMINATES BATCH OPERATIONS			FOLLOW-ON PROJECT IS COMPLETING THIS EFFORT

ACCOMPLISHMENTS SUMMARY (CONT)

PROJECT NUMBER	ANTICIPATED BENEFITS \$ SAVINGS	EFITS OTHER	\$ SAVINGS OTHER	REMARKS
5 73 1139		REDUCED EXPLOSIVE HAZARD		TWO MACHINES WERE FITTED WITH FLUIDIC CONTROLS
5 73,75 1248		SAFETY ENHANCEMENT		AIR VENTILATION SYSTEMS DESIGN CRITERIA
5 74 1261		INCREASED CAPABILITY		PROTOTYPE SYSTEMS ARE IN USE
5 71,77 1337		PROVIDED PRODUCTION CAPABILITY		PILOT PLANT WAS CONSTRUCTED
5 74 3049 & 3 76 3141	\$200,000/YEAR			LAMINATED FLUIDIC DEVICE
5 73 3051	\$250,000/YEAR	INCREASED TESTING CAPABILITY		
5 71,74 4041		AUTOMATED LINE		FOLLOW-ON PROJECTS ARE COMPLETING THIS EFFORT
5 73,74,77,78 4139	\$2.9 MILLION/YR	INCREASED CAPABILITY		FOLLOW-ON PROJECTS ARE ENHANCING CAPABILITIES
5 74 4162	\$1.29 MILLION/YR			CONTINUOUS AUTOMATED PROCESSING
5 71,72 4171	\$2.0 MILLION/YEAR			MINI PILOT PLANT WAS CONSTRUCTED
5 72,73 4220		INCREASED PRODUCTION CAPABILITY		AUTOMATED BATCH EQUIPMENT WAS CONSTRUCTED
5 74 4255		INCREASED PRODUCTION & TEST CAPABILITY		INSUFFICIENT PRODUCTION REQUIREMENTS
5 76,77 4280		AUTOMATED FINAL ASSY & CALIBRA- TION		MACHINES ARE BEING INTEGRATED INTO PRODUCTION
5 7 <u>r</u> 4288		SAFETY STANDARDS		WILL BE INCORPORATED INTO SAFETY REGULATIONS
5 76 4288		SAFETY STANDARDS		WILL BE INCORPORATED INTO SAFETY REGULATIONS
5 77 4288		SAFETY STANDARDS		WILL BE INCORPORATED INTO SAFETY REGULATIONS
5 76 4291		EXPLOSION RESISTANT STRUCTURES		WILL BE INCORPORATED INTO SAFETY REGULATIONS
5 77 4341	\$1.2 MILLION/YR			CONTINUOUS PURIFICATION PROCESS
5 77 4416	\$1.6 MILLION/YR			SIMPLER AND LESS EXPENSIVE FABRICATION

ACCOMPLISHMENTS SUMMARY (CONT)

PROJECT NUMBER	ANTICIPATED BENEFITS \$ SAVINGS	NEFITS OTHER	ACTUAL BENEFITS \$ SAVINGS	S OTHER	REMARKS
5 7T 4457	\$1.5 MILLION/YEAR	α.			INCREASED THE CAPABILITY OF EXISTING HARDWARE
5 72 6335		IMPROVED MATERIAL PROPERTIES			COMMERCIAL EFFORTS ARE IMPLEMENTING
5 71 6388		PURCHASE DESCRIPTION			ADDITIONAL EFFORTS ARE NEEDED
5 73 6550		REDUCED PERSONNEL & ELECTRICAL POWER REQUIREMENTS			
6 72,73 6681		LIGHTER CANNON TUBE			no requirement
6 72 6786	\$450,000/100K BBI	\$450,000/100K BBLS REDUCED OPERATOR REQUIREMENTS			INSUFFICIENT PRODUCTION REQUIREMENTS
6 72 6838		IMPROVED PROPERTIES & DECREASED COST			IMPLEMENTATION WILL BE UNDER PROJECTS 6 XX 7419
6 73 7056		DOUBLED THE OPERATIONAL LIFE			UNIT IS NOW A REPAIRABLE ITEM
6 73 7124		IMPROVED & MORE CONSISTENT PROPERTIES			PROCESS SPECIFICATIONS ARE AVAILABLE
6 72 7220		REDUCED TAPE PREPARATION COSTS			USED PRIMARILY FOR PROTOTYPING
6 72 7226		INCREASED MEASURING CAPABILITY			LASER OPTICAL SYSTEM
6 76 7236	\$57/TUBE	REDUCED FURNACE TIME FROM 70 TO 20 HOURS			
6 73 7242			\$110,000/YEAR P	ARTIAL IMPLEMENTATION	PARTIAL IMPLEMENTATION ADDITIONAL IMPLEMENTATION IN PROCESS
6 73 7261		LOW COST MIRRORS			INSUFFICIENT REQUIREMENTS
6 73 7265			\$19,000		FACILITY CLOSURE TERMINATED INPLEMENTATION
6 74 7411		INCREASE PERFORMANCE UNIFORMITY			PROCESS DATA IS AVALLABLE
6 74,75 7419	\$85,000/YEAR				INSUFFICIENT REQUIREMENTS
6 74 7495		PROCESS INFORMATION			END ITEM NO LONGER IN PRODUCTION
6 74 7524		7% SAVINGS IN LABOR & TOOL COST			BORIDE COATED TOOLS
6 74,75 7550	\$500/TUBE				no reguirement
6 75 7571		50% REDUCTION IN REQUIRED TESTS			SHOCK TEST METHODS & SPECIFICATIONS
6 75 7572		50% REDUCTION IN PRODUCTION TESTS	c		DETAILED ENG. SPECIFICATIONS

IMPLEMENTATION SUMMARY

PROJECT NUMBER	ANTICIPATED BENEFITS \$ SAVINGS OTHER	ACTUAL BENEFITS \$ SAVINGS	TS OTHER	REMARKS .
7 7x 3524		\$13.28 MILLION/YR		EQUIPMENT AT USE IN TWO FACILITIES
2 74 9744			PROVIDED PRODUCTION CAPABILITY	REPLACED HAND PRODUCED ITEMS
2 74 9750	\$3.2 MILLION			EQUIPMENT UPGRADING
2 75 9836	\$2,45 MILLION		PRODUCT QUALITY IMPROVEMENT	QUALITY ASSURANCE POLICIES AND PROCEDURES
T 7X 4329			NEW PRODUCTION CAPABILITY	JOINING OF DIFFERENT TYPES & HARDNESSES OF ARMOR
1 xx 7103		\$60 MILLION	PROVIDED PRODUCTION CAPABILLITY	TURBINE ENGINE MACHINING
1 77 7112			IMPROVED PERFORMANCE	KAMAN AEROSPACE CORP IS IMPLEMENTING
1 7x 8046		\$2.0 MILLION/YR	REDUCED CRITICAL MATL USEAGE	IMPLEMENTED AT GE
1 75 8154		\$10,000/YR (AIR FORCE APPLICATION)	RCE APPLICATION)	INTERACTIVE COMPUTER SYSTEM
3 75 3157	\$10.24 MILLION		REDUCED WT & INCR RELIABILITY	HIGH RATE PRODUCTION CAPABILITY
R 7X 3170			PROVIDED PRODUCTION CAPABILITY	IMPLEMENTED AT LONGHORN
3 7x 3232			39% REDUCTION IN PROCESS PLANNING	COMPUTERIZED PROCESS PLANNING
5 7x 1248			REDUCED EMISSIONS	INSTALLED AT SEVERAL LOCATIONS
5 7X 1260		\$0.056/GRENADE	IMPROVED SAFETY	IMPLEMENTATION AT PINE BLUFF ARSENAL
5 7X 1277			IMPROVED SAFETY	IMPLEMENTED AT TOOELE ARMY DEPOT
5 7x 4032			TWO MILLION FUZES PRODUCED	IMPLEMENTED AT HONEYWELL FOR THE M739
5 XX 4114-P06			REDUCES POLLUTANTS	INSTALLED AT RADFORD, OTHERS PLANNED
5 74 4205		\$11,000/YEAR	PROCESS IMPROVEMENT	IMPLEMENTED AT HOLSTON
5 73 6522			INCREASED YIELD & REDUCED OPERATOR REQUIREMENTS	SEVERAL APPLICATIONS
6 7x 7248	\$176,000/YEAR		INCREASED EFFICIENCY	IMPLEMENTED AT WATERVLIET ARSENAL
6 73 7305		\$21,000/YEAR		IMPLEMENTED AT ROCK ISLAND ARSENAL

IMPLEMENTATION SUMMARY (CONT)

PROJECT NUMBER	ANTICIPATED BENEFITS \$ SAVINGS OTHER	ACTUAL BENEFITS \$ SAVINGS OTHER	REMARKS
6 74 7481		6 74 7481 \$1.3 MILLION	IMPLEMENTED AT WATERVLIET ARSENAL
6 74 7484		FASTER & LESS EXPENSIVE N/C TAPE VERIFICATION	

SECTION II

RECENTLY COMPLETED OR ACTIVE PROJECTS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT RESIDUAL STRESS MEASUREMENT

PROJECT NO: 772 3501

LE: DEVELOP TECHNOLOGY TO NON-DESTRUCTIVELY MEASURE RESIDUAL STRESSES IN LARGE COMPLEX STEEL WELDMENTS VIA THE MOSS BAUER EFFECT.

COST: \$161,000

RESULTS

RESIDUAL STRESS MEASURING EQUIPMENT FOR USE IN TESTING RIBBON BRIDGE COMPONENTS WAS FABRICATED.

A PRECISION LEVEL OF ± 5 KSI WAS ACHIEVED WHICH IS ACCEPTABLE AND EXCEEDS THE CAPABILITIES OF OTHER TECHNIQUES.

THE EQUIPMENT DESIGN IS AVAILABLE FOR APPLICATION.

STRESS ANALYZER EQUIPMENT

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT MINE DETECTOR TEST SET

PROJECT NO: 7 74 3567

TITLE: TEST EQUIPMENT, AN/PRS-7 MINE DETECTOR

COST: \$180,000

RESULTS

FOR PRECISE ADJUSTMENT OF THE TARGET TARGET AND INCORPORATES CONTROLS CYLINDRICAL SECTION CONTAINS THE WERE DESIGNED AND FABRICATED. A TWO PROTOTYPE TEST SIMULATORS POSITION RELATIVE TO THE MINE DETECTOR UNDER TEST

IMPLEMENTATION OF THIS METHODOLOGY ACCURATE AND REPRODUCIBLE TESTING. IS ESTIMATED TO REDUCE TEST TIME USE OF THIS EQUIPMENT PROVIDES FROM ONE HOUR TO 20 MINUTES

TEST SET SCHEMATIC

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **AUTOMATED TEST EQUIPMENT**

SPECIFICATION

SPECIFICATION

LIST 1

THOUT

LIST 2

SOURCE

AMPAR

CRT

INPUT

LIST 2

SOURCE

AMPAR

COMPLET

SOURCE

AMPAR

PROGRAM

PR

PROJECT NO: 2 76 9773

TITLE: MMT COMPUTER PROGRAM AID
FOR PREPARATION OF AUTOMATIC
ANALOG CIRCUIT PRODUCTION
TEST PROGRAM

COST: \$193,313

RESULTS

AN OVERALL SOFTWARE SYSTEM WAS DESIGNED FOR AUTOMATICALLY GENERATING TEST PROGRAMS FOR LINEAR ANALOG CIRCUITS. THE SOFTWARE WAS PROVEN BY GENERATING PROGRAMS FOR TWELVE CIRCUIT CHARACTERISTICS AND DEMONSTRATED ON THE AUTOMATIC TEST EQUIPMENT.

ESTIMATED SAVINGS UPON IMPLEMEN-TATION OF THIS PROJECT ARE \$2 MILLION.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT INFRARED FILTERS

INFRARED FILTER FOR AN/VSS 3A SEARCHLIGHT

PROJECT NO: 274 9523

TITLE: MANUFACTURING METHODS FOR THE PRODUCTION OF INFRARED FILTERS

COST: \$43,552

RESULTS

THE CONTRACTOR, METAVAC.
DEVELOPED A MANUFACTURING
PROCESS THAT SUBSTANTIALLY
REDUCED THE NUMBER OF PINHOLES
IN THE FILTER COATING FOR
SEARCHLIGHTS. REDUCTION IN PINHOLES REDUCES THE CHANCE OF
DETECTION BY THE ENEMY.

PRODUCTION YIELD WAS INCREASED CONSIDERABLY AND FILTER LIFE WAS INCREASED FROM 300 TO 800 HOURS.

UNIT PRICE WAS REDUCED FROM \$400 TO \$225.

INSTALLATION

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT PIEZOELECTRIC TRANSFORMERS

Figure 1 - 18MM ELEMENT

Figure 2 18MM PACKAGE CASE

PROJECT NO: 2 75 9525

TITLE: HOT PRESSING OF PIEZOELECTRIC ELEMENTS FOR HIGH VOLTAGE TRANSFORMERS

COST: \$229,000

RESULTS

- HONEYWELL INC. ESTABLISHED IMPROVED PRODUCTION TECHNIQUES FOR PIEZOELECTRIC TRANSFORMERS (PET) USED IN OPERATING 18MM NIGHT VISION IMAGE INTENSIFIER TIBES.
- A DOUBLE ACTION HOT PRESS DIE PRODUCED SLUGS THREE TIMES THE INITIAL LENGTH, REDUCED HOT PRESSING LABOR BY 60 PERCENT AND INCREASED SLICED ELEMENT YIELD FROM 90 PERCENT TO 96 PERCENT.
- SEMIAUTOMATIC SILK SCREENING OF DISK ELECTRODES, SEMIAUTOMATIC DISK POLARIZATION AND INJECTION MOLDING OF DISK PACKAGE WERE OPTIMIZED.
- A PRODUCTION LINE RATE OF 200 PER MONTH WAS ACHIEVED.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **AUTOMATED TESTING**

PROJECT NO. H 75 9665

TITLE: MANUFACTURING METHODS FOR THE PRODUCTION OF ELECTRONIC COMPONENTS UNDER DYNAMIC STRESS

COST: \$735K

RESULTS

THIS PROJECT DEVELOPED A PRO-CESS FOR LASER TRIMMING OF COMPONENTS FOR FINAL TUNING OF FUZES. LASER TRIMMING IS PRESENTLY BEING USED ON THE THICK FILM RATIOMETER IN THE M732 AND ON THE AMPLIFIER SECTION OF THE M734.

ESTIMATED YEARLY SAVINGS AS A RESULT OF IMPLEMENTATION OF THIS PROJECT ARE \$700,000 PER YEAR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT GALLIUM ARSENIDE (Ga As) IMPATT DIODES

PROJECTION TO THE TIME TO THE

PROJECT NO: 275 9738

TITLE: EPITAXIAL AND METALLIZATION PROCESS FOR Ga As READ IMPATT

DIODE.

COST: \$503,000

RESULTS

READ WAFERS WERE PRODUCED BY
EPITAXIAL DEPOSITION OF SUITABLY
DOPED Ga As LAYERS ON A HIGHLY
CONDUCTIVE SINGLE CRYSTAL
Ga As SUBSTRATE.

THE SCHOTTKY METALLIZATION BARRIER WAS CREATED BY SEQUENTIALLY SPUTTERING PLATINUM, TITANIUM, AND GOLD.

IMPLEMENTATION OF THIS PROJECT WILL RESULT IN AN ESTIMATED SAVINGS OF \$1.7 MILLION.

READ IMPATT CHIP

PLATED HEAT SINK DESIGN

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT COMPUTER AIDED ELECTRONICS DESIGN

PROJECT NO: 2 73 9741

TITLE: MMT ENGINEERING MEASURE FOR

CAD/CAM SYSTEM: DRAWING

SYMBOL LIBRARY

COST: \$167,794

RESULTS

THIS SOFTWARE WAS DEVELOPED FOR DESIGN VERIFICATION OF AN INTEGRATED PRINTED CIRCUIT SYSTEM AND VALIDATION OF MASTER PLATES FOR SEVERAL PRINTED CIRCUIT BOARDS. THE SYSTEM WAS DESIGNED AS A LOW COST ALTERNATE TO A STAND-ALONE CAD/CAM SYSTEM.

THE SOFTWARE IS AVAILABLE FOR USE IN A DESIGN SYMBOL LIBRARY.

DRAWING SYMBOL LIBRARY

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT COMPUTER AIDED DIE DESIGN

PROCEDURAL OUTLINE OF THE TRACK SYSTEM

PROJECT NO: 4 75 4561

TITLE: COMPUTER AIDED DIE DESIGN AND COMPUTER AIDED MAN-UFACTURING FOR FORGING OF TRACK SHOES AND LINKS

COST: \$135,000

RESULTS

A COMPUTERIZED SYSTEM FOR DESIGNING AND MANUFACTURING TRACK SHOE DIES. THIS SYSTEM, KNOWN AS "TRACKS," IS A TOTALLY INTERACTIVE SYSTEM TO ASSIST DIE DESIGNERS.

THE SYSTEM CALCULATES GEOMETRIC PROPERTIES, PERFORMS STRESS CALCULATIONS, AND PREPARES AN NC TAPE FOR MACHINING A MODEL OR EDM ELECTRODE. IMPLEMENTATION OF THIS PROJECT WILL SPEED UP THE DIE MANUFACTURING PROCESS AND ENSURE

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

METRICATION

PROJECT NO: T77 4589

TITLE: METRICATION

STANDARD INTERNATIONAL (SI) UNITS

METRE PER SECOND SQUARED ACCELERATION

KILOGRAM PER CUBIC METRE SQUARE METRE DENSITY, MASS

COST: \$271,000

CANDELA PER SQUARE METRE **VOLT PER METRE** ELECTRIC FIELD MOLAR ENERGY

STRENGTH LUMINANCE

WATT PER SQUARE METRE STERADIAN JOULE PER MOLE NEWTON METRE MOMENT OF FORCE

RADIANCE

JOULE PER KILOGRAM KELVIN CUBIC METRE PER KILOGRAM JOULE PER KILOGRAM SPECIFIC VOLUME S PECIFIC ENERGY S PECIFIC HEAT CAPACITY

WATT PER METRE KELVIN METRE PER SECOND THERMAL CONDUC-TIVITY VELOCITY VOLUME

RESULTS

THIS PROJECT PREPARED PRODUCTION AND PROCUREMENT PLANS TO ASSURE VEHICLE HARDWARE SYSTEMS UNDER INTERNATIONAL METRIC STANDARDS. INTEGRITY OF COMPONENTS AND

GUIDE MANUAL AND AN EXPERIMENTAL IMPLEMENTED AS PART OF THE TOTAL A METRICATION ENGINEERING/DESIGN FABRICATION CONVERSION PLAN WAS PUBLISHED. THIS PROJECT WILL BE COMMAND CONVERSION PLAN.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **LOW MAINTENANCE BATTERY**

STORAGE BATTERY

PROJECT NO: 477 5019

TITLE: STORAGE BATTERY, MAINTENANCE FREE (DRY-CHARGED, CALCIUM ALLOY GRID, PLASTIC CONTAINER)

COST: \$139,000

RESULTS

A CALCIUM ALLOY GRID BATTERY WAS DEVELOPED AS A LOW MAINTENANCE REPLACEMENT FOR THE STANDARD LEAD-ANTIMONY GRID BATTERY.

THE BATTERY PROVIDED SOME OF THE FEATURES NECESSARY TO MEET MIL REQUIREMENTS AND A FOLLOW-ON PROJECT WILL COMPLETE THE EFFORT.

COMPLETION AND IMPLEMENTATION OF THIS EFFORT WILL RESULT IN AN ESTIMATED \$3.0 MILLION SAVINGS.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **ULTRASONIC WELDING**

PROJECT NO: 176 7055

TITLE: ULTRASONIC WELDING OF

HELICOPTER SECONDARY FUSELAGE STRUCTURE

CCC CCC + HO

COST: \$180,000

RESULTS

• TENSILE SHEAR STRENGTH OF SAMPLE ULTRASONIC SPOT WELDS WERE 2.5 TIMES THOSE OF RESISTANCE SPOT WELDS AND ABOUT 4 TIMES THE MINIMUM AVERAGE REQUIRED.

•FOUR PORT SIDE ELECTRONICS ACCESS
DOORS WERE ULTRASONICALLY WELDED
RESULTING IN A LIGHTER AND LESS
EXPENSIVE UNIT.

• IMPLEMENTATION OF THIS PROJECT WILL RESULT IN AN ESTIMATED SAVINGS OF \$225,000.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT CONTROLLED GRAIN TURBINE BLADES

PROJECT NO: 172 8036

TITLE: PROCESS FOR CONTROLLED

GRAIN SIZE IN THIN WALLED

TURBINE BLADES

COST: \$185,000

RESULTS

CHANGES WERE MADE IN THE CASTING
PROCESS FOR TURBINE ROTORS IN
ORDER TO ALTER THE GRAIN REFINEMENT.
THE GRAIN REFINED ROTORS SHOWED
SUPERIOR FATIGUE PROPERTIES AND
RETAINED ADEQUATE STRESS
PROPERTIES; HOWEVER, THE YIELD AND
CREEP STRENGTH WERE DEGRADED
AND PROCESSING TIME WAS INCREASED.

TURBINE ROTOR INDICATING INITIATING CRACKS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT IMPROVED PERFORMANCE WINDSHIELD

FIBERGLASS LAMINATE
EDGE ATTACHMENT
SPLY 181 VOLAN "A"

SPLY 181 VOLAN "A"

HELICOPTER OML

ADDRESIVE
GEORGO ATTACHMENT
GOODOVEAR AEROSPACE
GEORGO ATTACHMENT
GOODOVEAR AEROSPACE
ABRASION-RESISTANT COATING

Prototype UH-1 Windshield Designs.

PROJECT NO: 1 74 8091

TITLE: ADVANCED ADHESIVES FOR TRANSPARENT ARMOR FOR ARMY AIRCRAFT

COST: \$202,000

RESULTS

THIS PROJECT DEVELOPED A METHOD OF PRODUCING TRANSPARENT ARMOR USING FILM ADHESIVES RATHER THAN THE CURRENTLY USED CAST-IN-PLACE ADHESIVES. THE LRP-366 INTERLAYER PROVIDED LIGHT TRANSMISSION THAT WAS WELL WITHIN THE REQUIREMENTS FOR GLASS/PLASTIC COMPOSITES.

IMPLEMENTATION OF THIS TECHNIQUE WILL RESULT IN AN ESTIMATED 80% REDUCTION IN THE PROCESSING COST OF TRANSPARENT ARMOR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT FLUIDIC DEVICE

PROJECT NO: 174 8109, 175 8109 & 176 8109

TITLE: FLUIDIC DEVICES FOR AIRCRAFT STABILITY AUGMENTATION

SYSTEM

COST: \$574,000

RESULTS

- YAW CONTROLLERS WERE SUCCESSFULLY PRODUCED USING THE ELECTROFORM CONDUCTIVE WAX (ECW) PROCESS IN CONJUNCTION WITH CONVENTIONAL PROCESSING.
- A PILOT PRODUCTION LINE USING THE ECW PROCESS WAS DEFINED.
- PRODUCTION YIELDS OF 95% SHOULD BE POSSIBLE IN LARGE QUANTITIES.

FLUIDIC YAW CONTROLLER

MILL RESULT IN AN ESTIMATED COST SAVINGS OF \$14 MILLION.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT PRINTED WIRING BOARD ADDITIVE PROCESS

* ULTRA-THIN COPPER CLAD

**PROPER TOLE

**PROPER T

TYPES OF LAMINATES

PROJECT NO: 376 3147

TITLE: ADDITIVE PROCESS FUR

FABRICATION OF PRINTED

CIRCUIT BOARDS.

COST: \$250,000

RESULTS

DEVELOPED THE DESIGN FOR AN AUTOMATED FABRICATING 90 BOARDS USING THE ULTRA CIRCUIT BOARDS. THE PROCESS WAS VERIFIED IN A PILOT PRODUCTION LINE BY PROCESS FOR FABRICATION OF PRINTED PRODUCTION LINE USING THE ADDITIVE THIN COPPER CLAD PROCESS.

WHEN IMPLEMENTED, AN ESTIMATED SAVINGS OF \$2.7 MILLION WILL RESULT.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT HEAT PIPES FOR CIRCUIT CARDS

HEAT PIPE CARD WITH DIPS INSTALLED

PROJECT NO: R77 3168

TITLE: METHODS FOR MANUFACTURING HEAT PIPES FOR CIRCUIT CARDS

COST: \$172,000

RESULTS

A PRODUCTION TECHNIQUE WAS DEVELOPED FOR FABRICATING INTEGRATED HEAT PIPES FOR PRINTED CIRCUIT BOARDS. A RATE OF TECHNIQUE IS APPLICABLE TO A VARIETY **50 PER HOUR WAS ACHIEVED. THE** OF HEAT PIPE CONFIGURATIONS.

IMPLEMENTATION OF THIS PROJECT COULD RESULT IN ESTIMATED BENEFITS OF OVER \$10 MILLION.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT COMPONENT SCREENING

PROJECT NO: 3 76 3224

TITLE: SCREENING OF ELECTRONIC COMPONENTS

COST: \$299,234

RESULTS

MIL-STD-883 SCREENING TESTS ARE INADEQUATE TO DETECT MARGINAL BONDING. THREE NEW TESTS WERE IDENTIFIED AND EVALUATED. NO CORRELATION WAS FOUND BETWEEN DEVICE FAILURES AND MOISTURE CONTENT WITHIN THE DEVICE. ADDITIONAL EFFORT IS REQUIRED TO EXPLAIN THIS UNEXPECTED RESULT.

SEVERAL OTHER SCREENING TESTS WERE DEVELOPED FOR MOS/LSI DEVICES.IMPLEMENTATION OF THIS PROJECT WILL RESULT IN ESTIMATED SAVINGS OF \$1.5 MILLION.

OVER BONDED LEAD

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

LOCASERTS

Figure 1
COMPONENTS IN LOCASERTS

Figure 2 - INSERTION MACHINE

PROJECT NO: 3 76 3225

TITLE: PRODUCTION METHODS FOR MOUNTING NON-AXIAL LEAD COMPONENTS

COST: \$195,000

RESULTS

- MARTIN-MARIETTA CORP. ENHANCED AUTO MATIC INSERTION METHODS FOR NON-AXIAL LEAD ELECTRONIC PACKAGES: DUAL-IN-LINE, (DIP), PIN THROUGH HYBRIDS, AND TO-TYPE CANS.
- THEY DEVELOPED A PLASTIC, INJECTION MOLDED, LOCATOR-INSERTER (LOCASERT)
 PAD AND A COMPONENT INSERTION MACHINE TO POSITION THIS PAD.
- ► LOCASERTS REDUCE PRINTED CIRCUIT BOARD (PCB) ASSEMBLY TIME AND COST ON ALL LEVELS FROM MANUAL TO COMPLETE AUTOMATION.
- RESULT IN AN ESTIMATED SAVINGS OF \$760,000 PER YEAR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **EXTRUSION OF PROPELLANTS**

PROJECT NO: 376 3228 AND 37T 3228
TITLE: PRODUCTION METHODS FOR
EXTRUDABLE HTPB PROPELLANT

COST: \$95,000

RESULTS

AN AUTOMATED MISSILE PROPELLANT LOADING AND ASSEMBLY SYSTEM WAS DEVELOPED. TEMPERATURE AND CATALYST LEVELS WERE DETERMINED TO OPTIMIZE THE PROPELLANT QUICK CURE. NO PRODUCT QUALITY DEGRADATION WAS NOTED.

ANTICIPATED BENEFITS INCLUDE
LOWER PRODUCTION COSTS THROUGH
THE ELIMINATION OF BATCH OPERATIONS. A FOLLOW-ON PROJECT WILL
LOAD 50 VIPER MOTORS BY THE NEW
MANUFACTURING METHODS.

PREDICTED AND MEASURED

PRESSURE TRACES

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT FLUIDIC CONTROLS

PROJECT NO: 5 73 1139

TITLE: APPLICATION OF FLUID LOGIC

CONTROL CIRCUITRY TO PYROTECHNIC LOADING

COST: \$100,000

RESULTS

TWO MACHINES WERE SUCCESSFULLY INSTRUMENTED WITH THE FLUIDIC LOGIC CONTROL CIRCUITRY. THEY WERE THE BINARY FILLING AND CLOSING MACHINE AND THE NOSE CLOSURE REMOVAL AND BURSTER SENSING MACHINE.

THE PRIMARY ADVANTAGE OF FLUIDIC DEVICES IS THAT THEY DO NOT PRODUCE SPARKS THAT ARE HAZARDOUS IN AN EXPLOSIVE ENVIRONMENT.

FLUIDIC CONTROLLED CARTRIDGE INSPECTION

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

GAS FILTERING

PROJECT NO: 573 1248 AND 575 1248

TITLE: EVALUATION OF EXHAUST FILTER

SYSTEMS TO ESTABLISH DESIGN

CRITERIA TO MEET AIR POLLUTION

STANDARDS

COST: \$444,000

RESULTS

A TEST APPARATUS FOR DETERMINING THE PERFORMANCES OF GAS FILTERS WAS DEVELOPED. SIX GAS FILTERS WERE TESTED AND ALL WERE DETERMINED TO PERFORM SATISFACTORILY WHEN USED TO FILTER NERVE GAS SIMULANT, NERVE AGENT, PHOSGENE AND CYANOGEN CHLORIDE.

SAFETY WILL BE ENHANCED WITH THE APPLICATION OF THIS EFFORT IN ENGINEERING DESIGN REQUIREMENTS FOR FUTURE AIR VENTILATION SYSTEMS.

TEST APPARATUS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT LEVEL AND FLOW MEASUREMENTS

PROJECT NO: 5 74 1261

TITLE: PROVISION OF PROTOTYPE

EQUIPMENT FOR DETERMINATION OF LEVEL IN

WHITE PHOSPHORUS

STORAGE TANKS

COST: \$40,000

RESULTS

TWO PROTOTYPE SYSTEMS WERE DEVELOPED TO SOLVE THE WHITE PHOSPHORUS MEASURING PROBLEMS.ONE SYSTEM MEASURES THE LEVEL IN THE TANKS AND THE OTHER MEASURES THE FLOW RATE AND TOTAL PUMPAGE.

THE LEVEL MEASURING SYSTEM UTILIZES MAGNETIC COUPLING BETWEEN THE FLOAT AND THE REACTANT TO MINIMIZE CONTACT WITH THE CORROSIVE MATERIALS.

THE FLOWMETER UTILIZES ULTRA SONIC WAVES AGAIN MINIMIZING THE AMOUNT OF EQUIPMENT IN CONTACT WITH THE CORROSIVE MATERIALS.

LEVEL GAUGING SYSTEM

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT RED PHOSPHOROUS GRENADES

PROJECT NO: 5 7T 1337 & 5 77 1337

TITLE: ENGINEERING STUDIES FOR ADAPTIVE TRANSFER OF UNITED KINGDOM TECHNOLOGY: RP/BUTYL GRENADES

COST: \$604,000

RESULTS

THIS PROJECT PROVIDED THE
TECHNOLOGY REQUIRED TO PRODUCE
THE UNITED KINGDOM'S RED
PHOSPHOROUS GRENADE IN THE US.
A PILOT PLANT WAS CONSTRUCTED
AND THE PROCESSES WERE
DEVELOPED. GRENADES WERE
PRODUCED AND FIELD TESTED
SUCCESSFULLY, THEREBY VERIFYING
THE PROCESSES. THE TECHNICAL
DATA PACKAGE WAS COMPLETED;
THE FACILITIES PROJECT TO
IMPLEMENT THIS EFFORT IS PENDING.

M239 LAUNCHER/LBA1 GRENADE

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

COMPLETED PDM UNIT

TYPICAL ACTIVE ELEMENT SHIM

FLUIDICS

PROJECT NO: 574 3049 AND 376 3141 TITLE: FLUIDIC MANUFACTURING AND

ASSEMBLY PROCESSES

COST: \$440,000

RESULTS

FLUIDIC PULSE DURATION MODULATORS (PDM) WERE FABRICATED USING AN ALUMINUM STRUCTURE.

THE ETCHING PROCESS PRODUCED HIGH QUALITY LAMINATES WITH CONSISTENT REPRODUCIBLE RESULTS FOR STOCK THICKNESSES TO 15 MILS.

DIFFUSION BONDING OF UNCOATED ALUMINUM ALLOY SHIMS WAS OBTAINED WITH HIGHLY CONSISTENT RESULTS.

IMPLEMENTATION OF THIS PROJECT WOULD RESULT IN ESTIMATED SAVINGS OF \$200,000 PER YEAR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **AUTOMATED FUZE TESTING**

PROJECT NO: 5 73 3051

TITLE: ENGINEERING AND FABRICATION
OF ELECTRONIC AND ELECTROMECHANICAL INSPECTION TEST
EQUIPMENT FOR FUZE
PROCUREMENT PROGRAMS

COST: \$250,000

RESULTS

THE FUZE ACCEPTANCE TESTER WAS MODERNIZED WITH THE LATEST CIRCUITRY FOR HIGH VOLUME PRODUCTION OF M732 FUZES.

THE USABLE LIFE OF THE TARGET SIGNAL SIMULATOR WAS INCREASED BY TEN YEARS.

THE IMPROVED POWER SUPPLY
TELEMETRY SYSTEM IS BEING USED IN
SUPPORT OF THE M728 AND M732
PROGRAM.

COST SAVINGS ARE ESTIMATED TO BE \$250,000 PER YEAR.

M732 CIRCUIT BOARD

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **AUTOMATED ASSEMBLY**

TITLE: DEVELOPMENT OF AUTOMATED EQUIPMENT FOR ASSEMBLY OF MORTAR COMPONENTS

COST: \$260,000

RESULTS

THESE PROJECT YEARS OF EFFORT ESTABLISHED THE OPTIMUM SEQUENCE OF OPERATIONS FOR THE AUTOMATED EQUIPMENT REQUIRED TO LOAD, ASSEMBLE, AND PACK THE 60MM AND 81MM PROPELLING CHARGES AND IGNITION CARTRIDGES. THE FINAL PLANS FROM THESE PROJECTS WERE USED FOR THE FOLLOW-ON PROJECTS.

UPON COMPLETION AND IMPLEMEN-TATION OF THE ENTIRE EFFORT, AN AUTOMATED LINE WILL BE AVAILABLE.

PICK C R & PLACE FOR TRANSFER TO BLDG 913 LINER & EXPAND INSERT INSPECT CLEAN KANSAS AAP-PROJECT 5722163 INSPECT & GAUGE CAVITY & HEIGHT GAUGE ALIGNMENT CHAMBER CLEAN THREADS & VACUUM 81MM HE M374A2E1 AUTOMATEN ASSEMBLY & PACKING LINE PLAN ASSEMBLE FUZE TOROUF & CHECK TOROUF PETTMAN CEMENT & RUN UP FIN FACE FUZE WELL APPLY CAVITY PROJECTILES 빞 IN PALLE MANUAL OPERATION BAYS G&H COOLING & STORAGE OF PROJECTILES ...U.... FROM MELT POUR

81MM HE M374A2E1 AUTOMATED ASSEMBLY AND PACKING LINE PLAN.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT ARTILLERY ACCEPTANCE TESTING

PROJECT NO: 573 4139, 574 4139, 577 4139,

AND 578 4139

APPLICATION OF RADAR TO BALLISTIC TESTING OF AMMUNITION (ARBAT) TITLE

COST: \$3,022,000

RESULTS

A PHASED ARRAY RADAR SYSTEM WAS DEVELOPED AND CONSTRUCTED THAT CAN POSITION, TRUE VELOCITY, ACCELERATION, ACCURATELY TRACK ARTILLERY ROUNDS, OF THIS SYSTEM ARE BEING DEVELOPED NOW AVAILABLE IN REAL OR NEAR REAL MORTAR ROUNDS, AND ROCKETS FROM LAUNCH TO IMPACT. VITAL DRAG, AND RADAR CROSS SECTION IS CHARACTERISTICS SUCH AS SPACE TIME. FURTHER ENHANCEMENTS UNDER FOLLOW-ON PROJECTS.

COMPLETION AND IMPLEMENTATION OF THESE PROJECTS WILL RESULT IN ESTIMATED ANNUAL SAVINGS OF \$2.9 MILLION.

SYSTEM CONFIGURATION

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT MELT POUR OF HIGH EXPLOSIVES

PROJECT NO: 574 4162

TITLE: AUTOMATED LINE FOR THE

MELT-POUR PROCESSING OF

HIGH EXPLOSIVES

COST: \$1,759,400

RESULTS

- A MELT METHOD CAPABLE OF SUSTAINING CONTINUOUS OPERATION WAS DEMONSTRATED.
- A 1/10th SCALE AUTOMATED CONTINUOUS MELT POUR PILOT PLANT WAS CONSTRUCTED.
- SYSTEM WAS FABRICATED AND TESTED.
 IMPLEMENTATION OF THIS PROJECT
 WILL RESULT IN ESTIMATED ANNUAL
 SAVINGS OF \$1,290,000.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **NITROLYSIS OF HEXAMINE**

CONTINUOUS HMX
REACTOR SYSTEM

TITLE: INVESTIGATION OF PARAMETERS

AFFECTING THE NITROLYSIS

OF HEXAMINE

COST: \$348,907

RESULTS

A MINI PILOT PLANT WAS CONSTRUCTED FOR THE CONTINUOUS PRODUCTION OF HMX.

FEATURES OF THE PLANT INCLUDED:

A VARIABLE FEED SYSTEM

TEMPERATURE CONTROLS FOR EACH REACTOR.

SMALL REACTORS THAT MAINTAINED THE PROPER HEAT TRANSFER RATES.

FEED RATES ADEQUATE TO CONDUCT MATERIAL BALANCES AND DETERMINE YIELDS.

IMPLEMENTATION OF THIS PROJECT WILL RESULT IN AN ESTIMATED SAVINGS OF \$2 MILLION PER YEAR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT RECRYSTALLIZATION

PROJECT NO: 572 4220 & 573 4220

TITLE: CONTINUOUS RDX RECRYSTALLIZATION PROTOTYPE FACILITY

COST: \$1,560,000

RESULTS

PRODUCE SMALL AMOUNTS OF ALPHA HMX. THE CONTINUOUS RDX RECRYSTALLIZATION SAFELY HANDLE; THEREFORE, THE PROJECT BATCH PROCESS. THE AUTOMATED BATCH START OF THIS PROJECT WAS FOUND TO PROCESS THAT WAS DEVELOPED AT THE EQUIPMENT WAS DESIGNED, INSTALLED, THIS MATERIAL IS TOO SENSITIVE TO WAS REDIRECTED TO AUTOMATE THE AND PROVEN OUT.

IMPLEMENTATION OF THIS PROCESS WILL CAPABILITY OF 7.5 MILLION POUNDS OF RESULT IN AN ESTIMATED PRODUCTION COMP B PER MONTH.

AUTOMATED BATCH PROCESS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT COMPUTER AIDED MANUFACTURING

PROJECT NO: 5 74 4255

TITLE: MMT PRODUCTION CONTROL OF ACCELERATION SENSING DEVICES

(CAM RELATED)

COST: \$50,000

RESULTS

A CONCEPT WAS DEVELOPED FOR LINKING A CENTRIFUGE TEST WITH THE SPRING WINDER IN FUZES. THE NEXT STEP WILL BE FABRICATION OF A FULLY AUTOMATIC LOAD TESTER AND A MINICOMPUTER CONTROLLED SPRING WINDER.

ECONOMIC FEASIBILITY OF THIS CONCEPT IS DEPENDENT ON PRODUCTION REQUIREMENTS, AND DESIGN CONSIDERATIONS FOR FUZES, SPRINGS AND AUTOMATIC FUZE ASSEMBLY EQUIPMENT.

WORK FLOW FOR PROCESS CONTROL OF SPRING WINDERS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT FUZE ASSEMBLY

PROJECT NO: 576 4280 & 577 4280

TITLE: M577 FUZE AUTOMATIC PROCESS

CONTROL PROTOTYPE EQUIPMENT

COST: \$1,108,000

RESULTS

AND ADJUST THE BEAT RATE OF THE TIMER. BALANCE THE BALANCE WHEEL ASSEMBLY TWO MACHINES WERE DEVELOPED UNDER THESE PROJECTS THAT AUTOMATICALLY

THE BALANCING MACHINE AUTOMATICALLY **DETERMINES THE POINT OF UNBALANCE** AND, BY MEANS OF A LASER, REMOVES MATERIAL

ADJUSTED BY SEQUENTIALLY SHORTENING WELDING) UNTIL SPECIFICATIONS ARE MET. THE MACHINES HAVE BEEN FURNISHED A SUPPLIER FOR INTEGRATION INTO THE THE HAIR SPRING (USING ULTRASONIC THE BEAT RATE IS AUTOMATICALLY FUZE MANUFACTURING.

AUTOMATIC REGULATION MACHINE

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **EXPLOSIVES SAFE SEPARATION**

PROJECT NO: 57T 4288

TITLE: EXPLOSIVE SAFE SEPARATION AND

SENSITIVITY CRITERIA

COST: \$139,261

RESULTS

A MINIMUM NON-PROPAGATING DISTANCE FOR 8-INCH M106 HE PROJECTILES IS ONE FOOT IF 3 INCH DIAMETER ALUMINUM SHIELDING RODS THE SAME HEIGHT AS THE PROJECTILES ARE POSITIONED VERTICALLY BETWEEN THE PROJECTILES.

THIS INFORMATION WILL BE INCORPOR-ATED INTO SAFETY REGULATORY DOCUMENTS.

SHIELDED CONFIRMATORY TEST SET-UP

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **EXPLOSIVES SAFE SEPARATIONS**

PROJECT NO: 576 4288

TITLE: EXPLOSIVE SAFE SEPARATION AND

SENSITIVITY

COST: \$592,814

RESULTS

THE PROJECT ANALYZED AND IDENTIFIED APPROPRIATE SEPARATION DISTANCE FOR SAFE LOADING AND HANDLING OF AMMUNITION. A VARIETY OF PROJECTILES WERE CONSIDERED. AS AN EXAMPLE, THE SAFE DISTANCE FOR LOADING SEPARATE 81MM PROJECTILES WAS 18 INCHES AND FOR A PALLET OF LOADED 81MM PROJECTILES WAS 30 FEET.

TEST CONFIGURATION PRIOR TO IGNITION

THE RESULTS WILL BE INCORPORATED INTO THE APPROPRIATE SAFETY REGULATIONS.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT SAFETY

PROJECT NO: 5 77 4288

TITLE: EXPLOSIVE SAFE SEPARATION AND SENSITIVITY

CRITERIA

COST: \$566,669

RESULTS

THIS PROJECT DETERMINED THE SAFE SEPARATION DISTANCES BETWEEN 105MM M1 PROJECTILE COMPOSITION BRISER SCRAP.

ACCEPTOR

DISTANCE

- TEST SERIES WERE PERFORMED WITH THE ZAMAC FUNNELS AND WITHOUT THE FUNNELS FOR TWO AND FOUR RISER UNITS.
- WERE APPLIED TO THE MOD WERE APPLIED TO THE MOD ERNIZATION OF THE LONE STAR ARMY AMMUNITION PLANT

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **BLAST EFFECTS**

LOADING CONDITIONS FOR BI-AXIAL BENDING

PROJECT NO: 5 76 4291

TITLE: BLAST EFFECTS IN THE MUNITION PLANT ENVIRONMENT

COST: \$699,619

RESULTS

SEVERAL AREAS OF CONCERN WERE COVERED BY THIS PROJECT. THEY INCLUDED BLAST CAPACITY EVALUATION OF BARRICADES, EFFECTS OF SIMULTANEOUS DETONATIONS, BLAST CAPACITY OF WINDOWS AND FROM EXPLOSIONS, AND A COMPUTER PROGRAM THAT CAN SIMULATE THE EFFECTS OF BLAST OVERPRESSURES ON FRAME STRUCTURES.

THE RESULTS OF THIS PROJECT WILL BE INTEGRATED INTO SAFETY REG-ULATORY DOCUMENTS.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT NITROCELLULOSE (NC) PURIFICATION

PROJECT NO: 5 77 4341

TITLE: IMPROVED NITROCELLULOSE

PURIFICATION PROCESS

COST: \$165,000

RESULTS

THIS PROJECT INVESTIGATED EXISTING METHODS FOR APPLICATION TO NITROCELLULOSE PURIFICATION. THE "CONICELL" SYSTEM MANUFACTURED BY MOSER PROCESSING WAS SELECTED FOR THE CONTINUOUS PURIFICATION DESIGN. THE DESIGN ALLOWS FOR ACID BOILING FOLLOWED BY SODA-ASH INJECTION AND POACHING. THE UNIT WILL CARRY A 10% NC SLURRY WITH A RESIDENCE TIME OF 45 MINUTES AT A RATE OF 2000 POUNDS PER HOUR. COMPLETION AND IMPLEMENTATION OF THIS PROCESS CAN RESULT IN ESTIMATED SAVINGS OF UP TO \$1.2 MILLION PER YEAR.

PRINCIPAL OPERATIONS
IN THE BATCH PROCESS
FOR NC PURIFICATION

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT DIE CAST HOUSINGS

PROJECT NO: 5 77 4416

TITLE: DEVELOP AND PROVEOUT OF ALTERNATE MANUFACTURING

PROCESSES FOR S + A

COST: \$120,000

RESULTS

THIS PROJECT PROVIDED THE FAB-RICATION AND VERIFICATION TESTING OF AN ALTERNATE SAFE AND ARMING HOUSING FOR USE IN THE GEMSS MINE SYSTEM. OTHER APPLICATIONS OF THIS HOUSING ARE GATOR AND MOPMS. THIS DIE CAST PART IS CONSIDERABLY SIMPLER AND LESS EXPENSIVE THAN THE BAR STOCK FABRICATED PART.

IMPLEMENTATION OF THIS PROJECT WILL RESULT IN ESTIMATED SAVINGS OF \$1.6 MILLION PER YEAR.

TWO-PIECE GEMSS S&A DIE-CAST HOUSING

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT DETONATOR LOADING

PROJECT NO: 5 7T 4457

TITLE: MULTI-TOOLED IOWA DETONATOR LOADING

MACHINE

COST: \$332,000

RESULTS

THE OBJECTIVE OF THIS PROJECT WAS TO INCREASE THE OUTPUT OF AN IOWA DETONATOR LOADER TO 150 UNITS/MINUTE. THE GOAL WAS ACCOMPLISHED BY RETROFITTING AN EXISTING LOADER WITH A SET OF MULTIPLE LEVEL TOOLING. QUAD TOOLING WAS DETERMINED TO BE OPTIMUM.

IMPLEMENTATION OF THIS PROJECT WILL RESULT IN AN ESTIMATED COST SAVINGS OF \$1.5 MILLION DOLLARS AT THE PEACETIME RATE.

X4 SERIES IOWA LOADER

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **ALUMINUM ALLOY POWDER METALLURGY**

PROJECT NO: 572 6335

TITLE: HIGH STRENGTH ALUMINUM ALLOY SHAPES BY POWDER METALLURGY

COST: \$440,000

RESULTS

COMMERCIAL INGOT METALLURGY ALLOYS. AND SHOWED HIGHER TENSILE STRENGTH POWDERED METAL PLATE WAS PRODUCED SUPERIOR CORROSION CRACKING RESIS-TANCE, AND TOUGHNESS EQUAL TO AND NOTCHED FATIGUE STRENGTH,

POWDERED METAL EXTRUSIONS AND DIE FORGINGS EXPERIENCED SIMILAR IM-PROVEMENTS IN PROPERTIES.

THIS PROCESS HAS RESULTED IN SEVERAL THE IMPROVEMENT IN PROPERTIES FROM COMMERCIAL EFFORTS BEING UNDER TAKEN TO MORE FULLY EXPLOIT THE DEVELOPMENT.

POWDERED METAL **PROCESS**

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **TUNGSTEN FRAGMENTS**

PROJECT NO: 5 71 6388

TITLE: PRODUCTION OF HIGH DENSITY TUNGSTEN BASE PREFORMED FRAGMENTS

COST: \$88,000

RESULTS

THIS PROJECT RESULTED IN A PURCHASE DESCRIPTION FOR THE MANUFACTURE OF TUNGSTEN BASED PREFORMED

FRAGMENTS. THE DESCRIPTION WAS
VERIFIED BY PROCURING 250,000 CUBE
PENETRATORS. THE INITIAL PURCHASE
POINTED OUT A NEED FOR MORE
TECHNICAL GUIDANCE TO OBTAIN

Composition by weight:

Nickel - 5.0 ± 0.2% Iron - 5.0 ± 0.2% Impurity Elements - 0.005% max each

0.1% max total

Tungsten - remainder

Density: 17.00 ± 0.10 gm/cc

Mechanical Properties:

Compressive Yield Strength

80,000 psi at 0.2% offset with no visable cracks after testing.

ardnes

Average Rockwell C 24 to 26.

Ultimate Tensile Strength

123,000 psi Min

Elongation

15% min in one inch

MAJOR REQUIREMENTS

ACCEPTABLE FRAGMENTS.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT METAL PARTS

PROJECT NO: 5 73 6550

ENGINEERING IN SUPPORT MODERNIZATION PROGRAM **ARTILLERY METAL PARTS** TITLE

\$480,187 COST:

RESULTS

WERE SURVEYED FOR MANUFACTURING **AMMUNITION METAL PARTS PLANTS** IMPROVEMENTS. TYPICAL FINDINGS RESULTED IN:

REDUCING PERSONNEL REQUIREMENTS **DEVELOPING AN AUTOMATIC LOADER** FOR FORGING PRESSES, THEREBY FROM 8 TO 1.5.

DEVELOPING INDIVIDUAL HYDRAULIC CONSTANT HEAD SYSTEM THEREBY TRANSFER UNITS TO REPLACE A REDUCING THE HORSEPOWER REQUIREMENT BY 1650.

× DRAW × × X PIERCE × \otimes CABBAGE × ×

Transfer Man - Load & Unload (X) Press Operator

X Relicf Man

(X) Operator

X Relicf Man Part Time

IMPROVED METHOD - 1 1/2 PERSONS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT FILAMENT WOUND CANNON TUBE

PROJECT NO: 672 6681 AND 673 6681

TITLE: APPLICATION OF FILAMENT WINDING TO CANNON AND CANNON COMPONENTS

COST: \$200,000

RESULTS

A FILAMENT WINDING MACHINE WAS PURCHASED THAT HAS THE FLEXIBILITY FOR HANDLING A VARIETY OF GEOMETRIC SHAPES.

NUMEROUS LINERS FOR 106MM TEST CYLINDERS WERE FABRICATED AND THEN WOUND WITH A STEEL FILA-MENT/EPOXY JACKET. THE COMPOSITE TUBE 30% LIGHTER THAN A CONVENTIONAL TUBE.

WINDER AND WOUND COMPOSITE TUBE

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT BARREL PLATING

PROJECT NO: 6 72 6786

TITLE: AUTOMATION OF GUN BARREL BORE CHROMIUM PLATING

PROCESS

COST: \$70,000

RESULTS

• AN AUTOMATED PLATING SYSTEM WAS PURCHASED AND THE PROCESSES TO PLATE 5.56MM BARRELS WERE DEVELOPED. A ROTATING ELECTRODE IS USED IN THE PLATING PROCESS TO ELIMINATE THE REAUGHMENT FOR OPERATOR

- THE EQUIPMENT CAN BE SWITCHED TO A MANUAL MODE OF OPERATION FOR SPECIAL PROCESSING.
- IMPLEMENTATION OF THIS PROCESS WILL RESULT IN AN ESTIMATED \$250,000 SAVINGS FOR EACH 100,000 BARRELS.

AUTOMATED PLATING LINE OPERATION

(7) HOME STATION FOR START --- HOIST

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT SMALL ARMS PARTS MOLDING

PROJECT NO: 6 72 6838

TITLE: MANUFACTURING SIMPLIFICA-TION AND COST REDUCTION IN THE MANUFACTURE OF PLASTIC COMPONENTS OF SMALL ARMS AND AIRCRAFT ARMAMENT

COST: \$50,000

RESULTS

THE PROCESSES DEVELOPED UNDER THIS PROJECT WILL SIMPLIFY MANUFACTURING TECHNIQUES, LOWER COSTS, AND IMPROVE THE PROPERTIES OF SMALL ARMS NON-METALLIC PARTS. INJECTION MOLDING IS APPROXIMATELY SIX MOLDING.

THIS PROJECT WILL BE IMPLEMENTED UNDER PROJECT'S 6XX 7419.

(J)
SE SE
山
H
Ш
Σ
4
α
₹
0
_
۵
Ш
F
Ö
ы
二
Ш
ī

eo sec

 Epoxies

 CM
 IM

 3159F
 330°F

 2Kpst
 15kpst

 6 min
 75 sec

90 sec

6 min

Molding Pressure Total Cycle Time * CM - Compression Molding

** IM - Injection Molding

Polyesters CM IM 280°F 280°F

2Kps1

3Kpsi 18Kpsi

Phenolics CM* IM** 315°F 330°F

Mold Temperature

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT DEWAR PROCESS IMPROVEMENTS

PROJECT NO: 6 73 7056

TITLE: DEWAR MATERIALS AND MANUFACTURE

COST: \$195,000

RESULTS

A METAL DEWAR THAT CAN BE REPAIRED AND RESEALED WAS DESIGNED TO HOUSE THE LINEAR ARRAY.

A HIGH VACUUM CAN NOW BE MAINTAINED FOR OVER A YEAR WITHOUT ACTIVE PUMPING.

THIS DESIGN DOUBLED THE OPERATIONAL LIFE OF THE ASSEMBLY.

SEALED METAL DEWAR

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT ELECTROLESS NICKEL PLATING

PROJECT NO: 673 7124

TITLE: EFFECT OF ELECTROLESS
NICKEL PROCESS VARIABLES
ON QUALITY REQUIREMENTS

COST: \$40,000

RESULTS

PROCEDURES FOR PLATING GUN BORES WITH ELECTROLESS NICKEL WERE DETERMINED. A RANGE OF HARDNESSES CAN BE PREDICTED BY TAKING INTO CONSIDERATION THE PHOSPHORUS CONTENT AND USING THE PROPER THERMAL TREATMENT ON THE ITEM.

FOR HEAVY BUILDUP, CONSTANT MONITORING OF THE BATH PARAMETERS IS NECESSARY. PROCESS SPECIFICATIONS ARE AVAILABLE.

BRASS BOLT PLATED WITH ELECTROLESS NICKEL AND OVERPLATED WITH NICKEL

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT NUMERICAL CONTROL PART PROGRAMMING

PROJECT NO: 6 72 7220

TITLE: MMT APPLICATION AND UTILIZATION

NUMERICAL CONTROL FOR GENERAL OF MINI-COMPUTERS TO DIRECT

PURPOSE MACHINE TOOLS

COST: \$140,000

RESULTS

INTERFACED WITH THE "TRIDEA" DRAFTING SIONAL CONTOURING WAS OBTAINED FOR LABOR SAVINGS IN TAPE PREPARATION TION. A COMPUTER NUMERICAL CONTROL "WADELL" LATHE WAS LINKED WITH THE A "UNIAPT" MINICOMPUTER BASED PART **-OCATION PATH DISPLAY AND VERIFICA-**PROGRAMMING SYSTEM WITH 3-DIMEN-NC LATHES AND MACHINING CENTERS. COMPUTER SYSTEM TO ALLOW DIRECT AND DIGITIZING SYSTEM FOR CUTTER NC TAPE PREPARATION SYSTEM WAS TRANSMISSION OF PART PROGRAMS. AND INCREASE IN THE WORKLOAD HANDLING CAPABILITY OF THE NC MACHINE TOOLS WERE ACHIEVED.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT INSPECTION USING LASERS

PROJECT NO: 672 7226

TITLE: DEVELOPMENT AND PREPARATION OF MULTI-PURPOSE ULTRA-HIGH PRECISION LASER QUALITY INSPECTION APPLICATIONS

COST: \$150,000

RESULTS

A LASER THREAD MEASURING SYSTEM WAS DEVELOPED TO INSPECT THREAD PITCH, LEAD, AND DEVIATION FROM TRUE HELICAL PATH OF LARGE THREAD PLUG GAGES.

A LASER OPTICAL MEASURING SYSTEM WAS DEVELOPED WITH THE CAPABILITY TO DETERMINE OPTICAL GLASS DENSITY, GRADE, CURVATURE, FLATNESS, AND SCRATCH AND DIG CHARACTERISTICS.

THREAD MEASURING SYSTEM

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT CANNON TUBE PROCESSING

PROJECT NO: 676 7236

TITLE: APPLICATION OF RAPID HEAT

TREATING TO CANNON TUBES

COST: \$190,000

RESULTS

EIGHT CANNON TUBES WERE SUBJECTED TO SHORTENED AUSTENITIZING CYCLES. TESTING OF TENSILE AND CHARPY IMPACT SAMPLES DEMONSTRATED THAT ACCEPTABLE PROPERTIES COULD BE OBTAINED.

FURNACE TIME HAS BEEN REDUCED FROM 70 TO 20 HOURS WITH SAVINGS AVERAGING \$57 PER TUBE. USE OF FOSSIL FUEL HAS ALSO BEEN REDUCED.

ECHANICAL PROPERTY SAMPLING PLAN

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

GUN TUBE IMPROVEMENTS

TUBE LOADING ASSEMBLY TO THE POWDER CHAMBER GRINDER

PROJECT NO: 673 7242

TITLE: GUN TUBE MANUFACTURE BY

AUTOMATION

COST: \$195,000

RESULTS

SEVERAL IMPROVEMENTS TO THE MACHINING OPERATIONS WERE MADE INCLUDING:

- CONSOLIDATING THE M68 AND M185 PROCESSING.
- APPLYING A 3-AXIS N/C MACHIN ING CENTER TO THE BREECH FACE EXTRACTOR DETAIL.
- GRINDING THE POWDER CHAMBER FOR THE M68 TUBE.

IMPLEMENTATION OF THIS PROJECT HAS RESULTED IN ESTIMATED SAVINGS OF \$110,000 PER YEAR.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT OPTICAL REPLICATION

PROJECT NO: 6 73 7261

TITLE: THE IMPROVEMENT OF PRO-CESSES INVOLVED IN PLASTIC

REPLICA COMPONENT

MANUFACTURE

COST: \$79,718

RESULTS

AN IMPROVED PROCEDURE FOR THE MANUFACTURE OF SPHERICAL AND ASPHERIC MIRRORS BY THE DOUBLE REPLICATION PROCESS USING THIN FILM CAST EPOXY RESINS AS THE REPLICA WAS DEVELOPED.

WHILE THE PROCESS WILL NOT PROVIDE MIRRORS OF THE SAME OPTICAL
QUALITY AS PRECISION GLASS
MIRRORS, IT WILL PRODUCE LOW COST
MIRRORS OF ACCEPTABLE QUALITY FOR
MANY APPLICATIONS. IMPLEMENTATION
IS DEPENDENT UPON SUFFICIENT
QUANTITY REQUIREMENTS TO JUSTIFY
SET UP OF A REPLICATION FACILITY.

DOUBLE REPLICATION PROCESS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT NUMERICAL CONTROL

PROJECT NO: 6 73 7265

TITLE: COMPUTER CONTROLLED

RETICLE ENGRAVING

COST: \$150,000

RESULTS

A COMPUTER CONTROLLED SCRIBING MACHINE WAS DEVELOPED THAT CAN SCRIBE 10 RETICLES AT ONCE.

SCRIBING TIME WAS REDUCED BY 60% AND SCRIBING DEFECTS REDUCED.

THE NEW METHOD WAS IMPLEMENTED AT FRANKFORD ARSENAL AND HAD ACCUMULATED \$19,000 IN SAVINGS WHEN THE FACILITY WAS CLOSED.

NO FURTHER PRODUCTION WORK IS PLANNED FOR THIS MACHINE.

TEN-POSITION COMPUTER CONTROLLED OPTICAL SCRIBING MACHINE

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **HEAT SETTING SPRINGS**

PROJECT NO: 6 74 7411

TITLE: HEAT SETTING PROCEDURES FOR HELICAL COILED SPRINGS

COST: \$50,000

RESULTS

SMALL ARMS APPLICATIONS. HOT SETTING THIS PROJECT INVESTIGATED A SERIES OF SUCH AS SPRINGS LOCATED ON OR NEAR HEAT SETTING PARAMETERS FOR USE IN OPERATING TEMPERATURE IS ELEVATED THE BARREL OR BOLT OF AN AUTOMATIC REPEATABLE PERFORMANCE WHERE THE OF SPRINGS WILL RESULT IN MORE

THE THREE MATERIALS TESTED WERE MUSIC WIRE, STAINLESS STEEL, AND CHROME VANADIUM WHICH ARE THE MATERIALS SPECIFIED IN 95% OF WEAPON APPLICATIONS.

PROCESS DATA IS NOW AVAILABLE TO SMALL ARMS DESIGNERS.

HEAT SET SPRING INSTALLED ON ENDURANCE TESTER.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT MOLDED MIG HANDGUARD

TITLE: LOW COST RECIPROCATING
SCREW MOLDING OF
THERMOSETTING PLASTIC
WEAPONS COMPONENTS

COST: \$110,000

RESULTS

A RECIPROCATING SCREW INJECTION MOLDING MACHINE WAS PURCHASED TO PRODUCE LOW-COST THERMOSETTING PLASTIC HANDGUARDS FOR THE M16 RIFLE.

A HOT RUNNER MOLDING PROCESS
WAS CHOSEN FOR THIS ITEM SINCE
THE MOLD FABRICATION AND DEBUG
TIME ARE CONSIDERABLY LESS
THAN FOR THE WARM MANIFOLD
METHOD. FIFTY HANDGUARDS WERE
PRODUCED AND SUBMITTED FOR
EVALUATION TESTING.

IMPLEMENTATION OF THIS PROJECT WILL RESULT IN ESTIMATED COST SAVINGS OF \$85,000 PER YEAR.

M16 HANDGUARD

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

POWDER METAL PARTS

PROJECT NO: 674 7495

TITLE: CLOSED DIE FORGING OF POWDER METAL PREFORMS

COST: \$115,000

RESULTS

THIS PROJECT ESTABLISHED THE POTENTIAL USEFULNESS OF EXISTING FORGE SHOP EQUIPMENT FOR PRODUCING PRECISION POWDER METAL FORGINGS.

THE MECHANICAL PRESS WAS FOUND TO BE SUPERIOR TO EITHER THE HYDRAULIC PRESS OR DROP HAMMER.

MILITARY WEAPON DESIGNERS HAVE MORE INFOR MATION WITH WHICH TO SPECIFY P/M FORGED PARTS.

SINTERED PREFORMS

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **BORIDE COATED TOOLS**

PROJECT NO: 674 7524

TITLE: ULTRA HARD BORIDE COATING TO REDUCE TOOL WEAR

COST: \$105,000

RESULTS

A 0.3 MIL LAYER OF T I B 2 COATING WAS APPLIED TO STEEL TO FORM A TOUGH, VERY HARD, ADHERENT LAYER THAT IS RESISTANT TO SPALLING AND SURFACE WEAR.

THE COATING INCREASED TOOL LIFE,
PARTICULARLY WHEN DRILLING
FIBERGLASS. UP TO A 7% LABOR AND
TOOL COST SAVINGS CAN BE ACHIEVED.

PLATING CELL SCHEMATIC

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT **ARTILLERY TUBE PRODUCTION**

HOLLOW ESR PROCESS WITH SOLID ELECTRODE & BOTTOM MANDREL

PROJECT NO: 674 7550 & 675 7550

TITLE: DEVELOPMENT OF PROTOTYPE PRODUCTION ESR FACILITIES.

COST: \$670,000

RESULTS

HOLLOW ELECTRO-SLAG REMELT
INGOTS WERE PRODUCED BY CABOT
CORPORATION. THE HOLLOWS WERE
THEN SATISFACTORILY FORGED INTO
GUN TUBES.

THE USE OF HOLLOWS ELIMINATED
TREPANNING AS A PRODUCTION
OPERATION. UPON IMPLEMENTATION;
SAVINGS OF \$500 OR MORE PER TUBE
IS ANTICIPATED.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT SIMULATED SHOCK TESTS

PROJECT NO: 675 7571

TITLE: SHOCK TEST SIMULATION FOR

FIRE CONTROL INSTRUMENTS

COST: \$148,000

RESULTS

ACCEPTABLE SIMULATED PRODUCTION
TESTS WERE DEVELOPED FROM VALIDATION TEST PROCEDURES. THESE TESTS
WERE PERFORMED ON COMMERCIALLY
AVAILABLE SHOCK MACHINES WHICH DID
NOT REQUIRE EXOTIC PREPARATION.

THE WORK RESULTED IN IMPROVED SHOCK TEST METHODS AND SPECS.

UPON IMPLEMENTATION IT IS ESTIMATED THAT THE NUMBER OF SHOCK TESTS REQUIRED FOR QUALIFICATION WILL BE REDUCED BY 50%.

Half-Sine Shock Pulse 0.5 & 공 Vertical (45⁰ to the dovetail axis in both directions) Transverse (pulling the dovetail away from the sight) Vertical (up and down) Longitudinal (forward) Longitudinal (forward) Transverse (outward) Vertical (down) Longitudinal (aft) Longitudinal (aft) Vertical (up) Weapon System | Fire Control Instrument Indirect Fire Control M127 Telescope and M149 Mount Direct Fire Control XM44 Periscope M102 Howitzer M551 Sheridan M29 Mortar

Each instrument is to be shocked a total of 18 times, 6 times in each of the above directions.

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT

FIRE CONTROL TESTING

PROJECT NO: 675 7572

TITLE: THREE-AXIS DYNAMICS SIMULA-

TION OF HELICOPTER ANGULAR

MOTION FOR TESTING FIRE

ROLL AXIS RATE - TABLE '
10/SEC./DIV. (. 1 INCH)

CONTROL MATERIEL

MMMMMMMMMMMMMMMM COST: \$128,000

RESULTS

- WANTED THE THREE-AXIS FLIGHT MOTION SIMULA-TOR (FMS) WAS FOUND TO BE ABLE TO **ACCURATELY SIMULATE FLIGHT TEST** DATA TAKEN ON AN AH-I COBRA HELICOPTER.
- THE RESULTS ARE BEING INCORPORATED INTO DETAILED ENGINEERING SPECIFICATIONS.
- THE COST OF HELICOPTER FIRE CONTROL COULD RESULT IN A 50% REDUCTION IN • IT IS ESTIMATED THAT THIS PROJECT PRODUCTION TESTING.

IMPLEMENTED EFFORTS

SECTION III

DARCOM PRIOR YEAR MM&T IMPLEMENTATION CAMOUFLAGE

CAMOUFLAGE

REPAIR KIT

EFFORT NO: 7 7X 3524

TITLE: MODULAR SYNTHETIC CAMOUFLAGE SCREENS

COST: \$2,605,000

BENEFITS

PROJECT DEVELOPED MANUFACTURING METHODS AND EQUIPMENT FOR MASS PRODUCTION OF A NEW CAMOUFLAGE SCREEN. THE EQUIPMENT PRODUCES A RADAR SCATTERING GARNISH AND APPLIES THE GARNISH TO THE NETTING IN A PRESCRIBED PATTERN.

THE EQUIPMENT IS IN USE AT TWO CAMOUFLAGE MANUFACTURING FACILITIES:

(1) BRUNSWICK CORP IN DELAND, FL, AND (2) DEVILS LAKE SIOUX MFG CO IN DEVILS LAKE, ND. SAVINGS PER UNIT FROM USING THE AUTOMATED EQUIPMENT IN LIEU OF HAND METHODS IS \$332/UNIT. WITH 40K SCREENS BEING PRODUCED EACH YEAR, YEARLY SAVINGS TOTAL \$13,280,000.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION

DETECTOR MODULES

UNIVERSAL DETECTOR MODULE

EFFORT NO: 2 74 9744

TITLE: FABRICATION OF UNIVERSAL DETECTOR MODULES

COST: \$895,000

BENEFITS

PROJECT ESTABLISHED A PILOT
PRODUCTION CAPABILITY TO PRODUCE
UNIVERSAL DETECTOR DEWAR MODULES
FOR HG-CD-TE PHOTODETECTOR ARRAYS.
PRIOR TO THIS PROJECT THE MODULES
WERE HAND PRODUCED.

TEXAS INSTRUMENTS IS USING THIS PILOT LINE TO PRODUCE DETECTOR MODULES FOR THE ARMY'S AN/VSG-2 TANK THERMAL SIGHT. THE MMT PILOT LINE IS THE ONLY EQUIPMENT ON WHICH THIS COMPONENT CAN BE MASS PRODUCED.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION IMAGE TUBES

EFFORT NO: 2 74 9750

TITLE: FABRICATION OF 18MM WAFER IMAGE TUBE BY BATCH

PROCESSING

COST: \$700,000

BENEFITS

LITTON HAD PREVIOUSLY DEVELOPED A 5-PORT VACUUM PROCESSOR FOR PRODUCING 18MM IMAGE TUBES. THIS PROJECT UPGRADED THIS EQUIPMENT TO INCLUDE ELECTRON GUNS FOR OUT-GASSING AND THE CAPABILITY TO MAKE AN INDIUM SEAL OF THE PHOSPHOR SCREEN TO THE TUBE WALL.

LITTON IS USING THIS TYPE EQUIPMENT IN PRODUCTION OF IMAGE TUBES FOR AN/PVS-5, NIGHT VISION GOGGLE.
SAVINGS IS ESTIMATED TO BE \$3.2
MILLIONS ON TUBES PRODUCED DURING THE 1976-81 TIME FRAME.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION QUALITY CONTROL TECHNIQUES

EFFORT NO: 275 9836

TITLE: ESTABLISHMENT OF QC

(THE VARIAN BIVISION

TECHNIQUES FOR PDN OF

ETCHED CORE MICROCHANNEL

PLATES

COST: \$276,000

BENEFITS

THIS PROJECT DEVELOPED QUALITY ASSURANCE POLICY AND PROCEDURES FOR MANUFACTURE OF 18MM AND 25MM MICROCHANNEL PLATES.

VARIAN ASSOCIATES, PALO ALTO, CA, ADOPTED THESE POLICIES AND PROCEDURES IN PRODUCTION OF MICROCHANNEL PLATES FOR IMAGE INTENSIFIER TUBES. IN ADDITION TO AN IMPROVEMENT IN PRODUCT QUALITY, THE YIELD OF THE PRODUCTION LINE HAS ALSO INCREASED. ESTIMATED SAVINGS FROM 1978-83 WILL BE \$2.45

October 20, 1976

QUALITY ASSURANCE

POLICY MANUAL

I. Maitzer, General Manager Ident Sensing Emitting Divis Varian Associates varian associates, 611 hansen way, palo alto, california 94303

DARCOM PRIOR YEAR MM&T IMPLEMENTATION JOINING ARMOR

EFFORT NO: T 7X 4329

TITLE: JOINING OF STEEL ARMOR-

INTERMIX

COST: \$276,000

BENEFITS

PROJECT DEVELOPED PRODUCTION METHODOLOGY TO JOIN ARMORS OF DIFFERENT TYPES AND HARDNESS. THIS ALLOWS A MORE IMPACT RESISTANT ARMOR TO BE APPLIED TO AREAS PREVIOUSLY CONSIDERED VULNERABLE.

THE ARMOR WELDING SPEC, MIL-SPEC-W46086, WAS REVISED TO INCLUDE THE PROCESSES DEVELOPED IN THIS EFFORT. CHRYSLER IS USING THIS SPEC AND THESE PROCESSES FOR WELDING ARMOR ON THE XM1 TANK. THIS INCREASES THE BALLISTIC PROTECTION OF THE TANK.

MOCK TANK HULL BEING WELDED

PRIOR YEAR MM&T IMPLEMENTATION **TURBINE ENGINE COMPONENTS** DARCOM

EFFORT NO: 1 XX 7103

TITLE: IMPROVED MANUFACTURE OF TURBINE **ENGINE COMPRESSOR COMPONENTS**

COST: \$740,000

BENEFITS

ENGINE COMPRESSOR COMPONENTS THAT HAD THIS PROJECT DEVELOPED MACHINERY AND PROCESSES FOR PRODUCTION OF TURBINE APPLICATION WAS SHOWN ON THE BLISK **NEVER BEFORE BEEN MANUFACTURED** AND IMPELLER FOR THE T700 ENGINE

COST \$14 MILLION, BUT WILL SAVE \$16,000 PER ENGINE OR \$60 MILLION AT THE SCHEDULED IMPLEMENTATION ON THE T700 PRODUCTION LINE AT THE GENERAL ELECTRIC PLANT WILL PRODUCTION RATE

IMPLEMENTATION COST: \$14M

DARCOM PRIOR YEAR MM&T IMPLEMENTATION ROTOR BLADES

EFFORT NO: 177 7112

TITLE: COMPOSITE IMPROVED MAIN ROTOR BLADES

COST: \$3,846,000

BENEFITS

PROJECT DEVELOPED AND TESTED A TDP FOR MASS PRODUCTION OF FILAMENT-WOUND ROTOR BLADES. IN ADDITION TO THE TDP, THE PROJECT PROVIDED TOOLING FOR FUTURE FABRICATION OF BLADES.

KAMAN AEROSPACE CORP. IS
IMPLEMENTING THIS PROJECT
THROUGH THEIR CONTRACT TO
RETROFIT THE ENTIRE FLEET OF
COBRA HELICOPTERS WITH
COMPOSITE MAIN ROTOR BLADES.
BENEFITS ARE COMBAT ORIENTED
IMPROVEMENTS IN AIRCRAFT
PERFORMANCE, SURVIVABILITY,
MAINTAINABILITY, AND RELIABILITY

COBRA HELICOPTER WITH FILAMENT WOUND MAIN ROTOR BLADE

DARCOM PRIOR YEAR MM&T IMPLEMENTATION HOT ISOSTATIC PRESSING

EFFORT NO: 17X 8046

TITLE: SMALL COOLED AXIAL TURBINE

BLADE, VANE AND DISK

FABRICATION

COST: \$1,525,000

GENERAL ELECTRIC APPLIED HOT ISOSTATIC PRESSING (HIP) TO FORM TURBINE DISCS AND COOLING PLATES THAT REQUIRED A MINIMUM OF MACHINING.

HIPING ELIMINATES FORGING OF TURBINE DISKS AND COOLING PLATES

IT REDUCES SUPERALLOY POWDER METAL QUANTITY BY 50 PERCENT.

THE AS-HIP RENE 95 PROCESS FOR TURBINE DISKS AND COOLING PLATES IS IN FULL PRODUCTION AT GENERAL ELECTRIC.

BASED ON CURRENT SAVINGS FROM USING THE PROCESS, GE ANTICIPATES AN AVERAGE SAVING OF APPROXIMATELY \$2 MILLIONS PER YEAR ON THE CURRENT T700 PRODUCTION ORDER.

T700 DISKS AND COOLING PLATES MACHINED FROM AS-HIP PREFORMS

DARCOM PRIOR YEAR MM&T IMPLEMENTATION **EXTRUSION DIES**

EFFORT NO: 175 8154

TITLE: CADCAM OF EXTRUSION DIES FOR

ALUMINUM, TI, AND STEEL PARTS

COST: \$182,000

COMPUTER PROGRAMS FOR DESIGN AND MFG SYSTEM PROVIDES FASTER DESIGN & MFG OF OF EXTRUSION DIES. UTILIZATION OF THIS IMPROVED YIELD VIA OPTIMUM EXTRUSION DEVELOPED AN INTERACTIVE SYSTEM OF DIES, IMPROVED DIE TOLERANCES, AND VARIABLES.

NUMEROUS CONTRACTORS, OTHER IMPLEMEN-SYSTEM TO DESIGN AND GENERATE NC TAPES REPORT A \$10K PER YEAR SAVINGS. BECAUSE THE AIR FORCE MATERIALS LAB IS USING THE COPIES OF THE PROGRAMS WERE FURNISHED TATION IS HIGHLY POSSIBLE BUT DIFFICULT TO TRACK. FOR ALL THEIR AL EXTRUSION DIES. THEY

EXTRUSION DIE

DARCOM PRIOR YEAR MM&T IMPLEMENTATION

EFFORT NO: 3753157

TITLE: PDN TECH FOR DIODE PHASE

SHIFTER ELEMENTS

COST: \$650,000

BENEFITS

PROJECT DEVELOPED A HIGH RATE PRODUCTION METHOD FOR MANU-FACTURING DIODE PHASE SHIFTER-RADIATOR ELEMENTS BY A THICK FILM PROCESS IN LIEU OF A THIN FILM PROCESS IT ALSO INCORPORATED A DUAL INTEGRATED ELEMENT MODULE CONCEPT

THE MMT CONTRACTOR, HUGHES
AIRCRAFT, TRANSFERRED THE
TECHNOLOGY TO THEIR NEWPORT
BEACH, CA DIVISION WHERE THE
METHOD IS BEING USED IN PRODUCTION OF THE AN/TPQ37 FIRE
FINDER RADAR. HUGHES ESTIMATES
A \$10,241K SAVINGS DURING THE
1978-82 TIMEFRAME. OTHER BENEFIT!
INCLUDE REDUCED WEIGHT AND
INCREASED RELIABILITY.

64 ELEMENT INTEGRATED SUBARRAY MODULE

DARCOM PRIOR YEAR MM&T IMPLEMENTATION ROCKET MOTOR PROPELLANTS

EFFORT NO: R 7X 3170

TITLE: REPLACEMENT OF TPH-8156

AND TPH-8159 PROPELLANT

COST: \$375,000

BENEFITS

IN 1974. COMMERCIAL SOURCES
STOPPED PRODUCING TWO CURING
AGENTS USED IN PROPELLANT FOR
THE PERSHING ROCKET MOTORS.
THIS PROJECT DETERMINED MIXING
PROCEDURES FOR MANUFACTURING
OF THE PROPELLANTS USING
ALTERNATE CURING AGENTS.

LONGHORN AAP IS USING THE
DEVELOPED PROCEDURES TO
MANUFACTURE THE NEW
PROPELLANTS FOR THE PERSHING
MISSILE ALTHOUGH THE NEW
PROPELLANTS EXHIBIT IMPROVED
PERFORMANCE AND RELIABILITY,
THE PRIMARY BENEFIT IS THE
ABILITY TO PRODUCE A
PROPELLANT FOR THE PERSHING.

PERSHING MISSILES

DARCOM PRIOR YEAR MM&T IMPLEMENTATION PROCESS PLANNING COMPUTERIZED

EFFORT NO: 3 7X 3232

TITLE: COMPUTERIZED PRODUCTION

PROCESS PLANNING

COST: \$345,000

BENEFITS

PROJECT DEVELOPED A COMPUTERIZED PRODUCTION PROCESS PLANNING SYSTEM (CPPP) TO ASSIST PROCESS PLANNERS IN PLANNING THE FABRICATION OF CYLINDRICAL PARTS.

MANHOURS. OTHER BENEFITS INCLUDE **AGENCIES** THE CPPP SYSTEM IS BEING USED BY 50% OF THESE COMPANIES WORK-A 39% REDUCTION IN PROCESS PLANNING SUBSIDIARIES OF UNITED PROCESS STANDARDIZATION AND **APPROXIMATELY** AND SIKORSKY. WHICH HAMILTON STANDARD, PRATT & LOAD IS FOR GOVERNMENT HAMILTON STD ESTIMATES MACHINE OPTIMIZATION TECHNOLOGIES. WHITNEY ARE ALL

CPPP SOFTWARE COMPONENTS

DARCOM PRIOR YEAR MM&T IMPLEMENTATION TOXIC HAZARDS

M10 GAS FILTER

DUAL FILTER SYSTEM SCHEMATIC

EFFORT NO: 5 7X 1248

TITLE: EVALUATION OF EXHAUST FILTER SYSTEM

COST: \$444,000

BENEFITS

THIS PROJECT EVALUATED SIX GAS FILTERS AND FOUND THEM SUITABLE FOR USE IN REDUCING TOXIC HAZARDS. THE PROJECT ALSO DETERMINED THAT A DUAL FILTER SYSTEM WITH AN AGENT DETECTOR BETWEEN THE FILTERS CAN INSURE THAT STACK EMISSIONS DO NOT EXCEED EPA REGULATIONS.

THE DUAL FILTER CONCEPT HAS BEEN INSTALLED AT THE CHEMICAL AGENT MUNITIONS DISPOSAL SYSTEM AT TOOELE ARMY DEPOT AND SEVERAL SMALL SCALE DEMIL OPERATIONS THROUGHOUT THE COUNTRY.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION GRENADE FILLING

EFFORT NO: 5 7X 1260

OF STARTER CUP FOR M8 GRENADE AUTOMATED FORMING AND FILLING TITLE

COST: \$105,000

BENEFITS

IS ALSO BEING UTILIZED TO MANUFACTURE THIS EFFORT EVALUATED THE PRODUCTION STARTER MIX SLUGS FOR THE 105MM AND PINE BLUFF ARSENAL IN THE PRODUCTION OF M8 GRENADE STARTER MIX SLUGS. IT SLUG USING A TABLETING PRESS. THIS OF A PREFORMED M8 GRENADE STARTER METHOD IS CURRENTLY BEING USED AT 155MM SMOKE CANISTERS.

\$0.056 PER GRENADE. THE PROCESS ALSO IMPROVES SAFETY BY GREATLY REDUCING WHICH REDUCES MANPOWER BY 47% AND THE BENEFIT IS AN IMPROVED PROCESS THE NUMBER OF PERSONNEL IN DIRECT CONTACT WITH A PYROTECHNIC MIX. REDUCES COST OF THE END ITEM BY

M8 GRENADE

DARCOM PRIOR YEAR MM&T IMPLEMENTATION CONTAMINANT MONITORS

REAL TIME MONITOR

EFFORT NO: 5 7X 1277

TITLE: HIGHLY SENSITIVE AND FAST

RESPONSE CONTAMINANT

MONITORS

COST: \$1,686,000

BENEFITS

THIS PROJECT DEVELOPED A REAL TIME MONITOR ALARM FOR NERVE AGENTS AND MODIFIED A COMMERCIAL SULFUR ANALYZER TO MONITOR THE EMISSIONS DURING THE DEMIL OF MUSTARD AGENT.

THESE MONITORS WERE INSTALLED IN
THE CHEMICAL DEMIL FACILITY AT
TOOELE ARMY DEPOT. THE MONITORS
PROVIDE IMPROVED SAFETY FOR PLANT
OPERATORS AND ASSIST PLANT
OPERATORS IN LOCATING FAILURES
OR MALFUNCTIONS.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION FUZE ASSEMBLY AND INSPECTION

EFFORT NO: 57X 4032

TITLE: AUTOMATED EQUIP FOR ASSEMBLY OF M739 FUZE

COST: \$1,365,000

BENEFITS

PROJECT DEVELOPED A PROTOTYPE PRODUC-TION LINE FOR AUTOMATED ASSEMBLY AND INSPECTION OF THE M739 FUZE.

UNDER A FACILITIES PROJECT. THIS PRODUC-SUPPLEMENTED BY EQUIPMENT PURCHASED MILLION M739 FUZES WITH A MINIMUM OF DEPENDENCE ON HUMAN JUDGEMENT AND HONEYWELL AND HAS PRODUCED OVER 2 THE PROTOTYPE PRODUCTION LINE WAS TION LINE WAS PUT INTO USE AT SKILLED OPERATORS.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION WASTE INCINERATION

EFFORT NO: 5 XX 4114/P06

TITLE: PROPELLANT & EXPLOSIVE

WASTE INCINERATION

COST: \$2,450K

BENEFITS

THIS TASK DEVELOPED TWO ACCEPTABLE P&E INCINERATORS (ROTARY KILN & FLUIDIZED BED) TO REPLACE OPEN AIR BURNING. A ROTARY KILN IS INSTALLED AND OPERATING AT RADFORD AAP. INCINERATORS OF BOTH TYPES ARE SCHEDULED FOR INSTALLATION AT NUMEROUS AMMO PLANTS AND DEMIL FACILITIES.

UTILIZATION OF THESE INCINERATORS
HAS/WILL PROVIDE A SAFE METHOD FOR
DISPOSAL OF P&E WASTE WITH A
SIGNIFICANT REDUCTION IN POLLUTANTS.

ROTARY KILN SCHEMATIC

DARCOM PRIOR YEAR MM&T IMPLEMENTATION **DETONATION TRAPS**

EFFORT NO: 5 7X 4134

TITLE: DETONATION TRAPS FOR

IMPROVED SAFETY IN MUNITIONS PLANTS

COST: \$623,000

BENEFITS

THIS PROJECT DEVELOPED DETONATION TRAPS WHICH CAN BE INSTALLED IN PIPELINES TO STOP PROPAGATION OF EXPLOSIVE DETONATIONS.

THESE TRAPS WERE INSTALLED IN THE ARRADCOM MELT-POUR PILOT PLANT BETWEEN THE MELT BUILDING AND THE LOADING BUILDING. IN THE EVENT OF AN EXPLOSION, THESE TRAPS WILL MINIMIZE THE LOSSES BY PREVENTING PROPAGATION FROM ONE BUILDING TO ANOTHER THROUGH THE PIPELINES.

DETONATION TRAP CONCEPT

DARCOM PRIOR YEAR MM&T IMPLEMENTATION **EXPLOSIVE RECOVERY**

EFFORT NO: 5 74 4205

TITLE: PROCESSING SPENT ACID FROM RDX/HMX REACTION FOR

RECOVERY OF EXPLOSIVES

COST: \$70,000

BENEFITS

THIS PROJECT INSTALLED A HEATING AND CIRCULATING LOOP ONTO THE PRIMARY EVAPORATOR FEED TANK IN THE SPENT ACID RECOVERY PROCESS AT HOLSTON AAP.

SAVINGS FROM RECOVERING CONDENSATE. ACID, THUS DECREASING THE EXPLOSIVE LOAD LIMIT OF THE LINE. ADDED BENEFITS ALSO, THE HOT FEED PREVENTS BUILDUP SOLUBILITY OF RDX/HMX IN THE SPENT THIS HEAT EXCHANGER INCREASED THE OF CRYSTALLIZED RDX ON PIPE WALLS. INCLUDE \$11,000/YEAR STEAM COST

PRIMARY EVAPORATOR FEED TANK

DARCOM PRIOR YEAR MM&T ACCOMPLISHMENT ARTILLERY SHELL BANDING

IMPLEMENTATION

ITEMS SUPPORTED				M509, M549	
ITEMS	M509	M483	M329	M483,	M483
LOCATION	SCRANTON APP CHAMBERLAIN MFG	New Bedford, MA	Waterloo, IA	NORRIS INDUSTRIES	LOUISIANNA AAP

NEW WELDING EQUIPMENT

EFFORT NO: 573 6522

TITLE: COMPUTER MONITOR OF ARTILLERY SHELL BAND WELDING BY CLOSED LOOP TECHNIQUES

COST: \$358,000

BENEFITS

EQUIPMENT FOR DEPOSITING NONFERROUS PROJECT ADAPTED A MINICOMPUTER AND VARIOUS SENSING DEVICES TO WELDING OVERLAYS

THIS EQUIPMENT PLUS FUTURE GENERA-TIONS OF THIS EQUIPMENT HAS BEEN USED AT VARIOUS METAL PARTS FACILITIES. BENEFITS ARE AS FOLLOWS:

- REQUIRES LESS SKILLED OPERATORS
- ◆ 50% INCREASE IN YIELD OVER PRIOR METHODS
- REDUCED REJECT RATE FROM 11% TO 2%

DARCOM PRIOR YEAR MM&T IMPLEMENTATION SHOP DATA COLLECTION

EFFORT NO: 6 7X 7248

TITLE: IMPROVED MFG CONTROL

THROUGH DATA AUTOMATION

COST: \$396,000

BENEFITS

SDC SYSTEM FLOW

THIS PROJECT DEVELOPED, INSTALLED, AND IMPLEMENTED AN AUTOMATED SHOP DATA COLLECTION (SDC)
SYSTEM AT WATERVLIET ARSENAL.
ALL PRODUCTION REPORTING BY SHOP LABOR IS ACCOMPLISHED THE PROJECT DEVELOPED A WORKLOAD FORECASTING SYSTEM AND ESTABLISHED A COMMON COMPUTER DATA BASE FOR BILL OF MATERIALS AND PRODUCTION ROUTING.

USING THIS SYSTEM HAS INCREASED PRODUCTIVITY BY PROVIDING MORE ACCURATE AND TIMELY REPORTS TO SHOP MANAGERS. IN ADDITION, HARD SAVINGS WERE OBTAINED FROM THE ELIMINATION OF TIME CLERKS AND KEYPUNCH REQUIREMENTS. SAVINGS ESTIMATED AT \$176K PER YEAR.

DARCOM PRIOR YEAR MM&T IMPLEMENTATION

EPOXY RESIN MOLDS

EFFORT NO: 673 7305

TITLE: RESIN BONDED MOLD & DIE . PRODUCTION TECHNOLOGY

COST: \$35,000

THIS PROJECT INVESTIGATED THE TECHNOLOGY REQUIRED TO PRODUCE EPOXY RESIN MOLDS FOR SHORT PRODUCTION RUNS OF (1) WAX INVESTMENT PATTERNS, (2) PLASTIC PARTS, AND (3) RUBBER PARTS.

RESIN BONDED MOLDS FOR PRODUCING SMALL INVESTMENT CASTING WAX MOLDS WAS INTRODUCED AT ROCK ISLAND ARSENAL AN AVERAGE SAVINGS OF \$21,000 PER YEAR HAS ACCRUED FROM USING THIS PROCESS.

EPOXY MOLD, INVESTMENT WAX PATTERN AND CAST COMPONENT FOR BUTTON (M219)

DARCOM PRIOR YEAR MM&T IMPLEMENTATION HORIZONTAL QUENCHING

EFFORT NO: 6 74 7481

TITLE: HORIZONTAL SPRAY QUENCHING FOR HEAT TREATMENT OF CANNON TUBES

COST: \$100,000

BENEFITS

MENT FOR LARGE VERTICLE QUENCH TANKS SPRAY METHOD FOR QUENCHING CANNON TUBES. THIS ELIMINATED THE REQUIRE-THIS PROJECT DEVELOPED A HORIZONTAL WHICH COULD ONLY BE CONSTRUCTED WITH DEEP PITS OR HIGH BAYS

A PRODUCTION SIZE HORIZONTAL SPRAY QUENCHING SYSTEM WAS PURCHASED UNDER A MODERNIZATION EFFORT AT WATERVLIET ARSENAL. THIS EQUIPMENT INCREASES GUN TUBE QUALITY BY REDUCING THE VARIABILITY OF YIELD STRENGTH IN THE TUBE. THE SYSTEM SAVES OVER \$1.3M PER YEAR DUE TO INCREASED PRODUCTIVITY IN THE HEAT TREAT CYCLE.

HORIZONTAL QUENCHING SYSTEM

DARCOM PRIOR YEAR MM&T IMPLEMENTATION **AUTOMATIC DRAFTING**

EFFORT NO: 6 74 7484

TITLE: APPLICATION OF AUTOMATIC DRAFTING MACHINE

COST: \$100,000

BENEFITS

THIS PROJECT EXPANDED THE CAPABILITIES OF A PREVIOUSLY PURCHASED AUTOMATIC DRAFTING MACHINE.

THE PRIMARY BENEFIT WAS THE ABILITY TO VERIFY AND CORRECT N/C TAPES BY SIMULATION ON THE DRAFTING MACHINE RATHER THAN USING THE ACTUAL N/C MACHINE. THE SIMULATION IS A CONSIDERABLY FASTER AND LESS EXPENSIVE METHOD. REDUCTIONS IN ENGINEERING DESIGN, PROGRAMMING, DIRECT LABOR, AND N/C MACHINE TIME HAVE BEEN EXPERIENCED.

N/C VERIFICATION - CENTERLINE OF CUTTING TOOL PATH.

DISTRIBUTION:

Defense Technical Information Center:

Document Processing Division, Attn: DDC-DDA-2, Mr. Richard Matthews (12 cys)

Department of Defense:

DIRSO, Attn: Mr. Charles Downer (3 cys)

OUSD (R&D), The Pentagon, Attn: Dr.Lloyd L. Lehn (2 cys)

Department of the Army:

HQDA, OASARDA, The Pentagon, Attn: Mr. Eugene S. Davidson

HQDA, ODCSRDA, The Pentagon, Attn: DAMA-PPM-P, Mr. Rod Vawter

DCSRDA, Attn: DAMA-WSA, LTC Jay B. Bisbey

DCSRDA, Attn: DAMA-WSM-A, Mr. John Doyle

DCSRDA, Attn: DAMA-WSW, MAJ Gordon Winder

DCSRDA, Attn: DAMA-CSC-BU, COL Higgins

DCSRDA, Attn: DAMA-CSS-P, LTC L. R. Hawkins, LTC P. K. Linscott

DCSRDA, Attn: DAMA-CSM-P, Mr. John Mytryshyn

DCSRDA, Attn: DAMA-CSM-DA, COL Jack King

HQ DARCOM:

Cdr, DARCOM, Attn: DRCCG

Cdr, DARCOM, Attn: DRCDMD

Cdr, DARCOM, Attn: DRCDMR

Cdr, DARCOM, Attn: DRCPP

Cdr, DARCOM, Attn: DRCPP-I (3 cys)

Cdr, DARCOM, Attn: DRCDE

Cdr, DARCOM, Attn: DRCMT (20 cys)

Technical Library, Attn: DRXAM-L

AVRADCOM:

PM, Advanced Attack Helicopter, Attn: DRCPM-AAH

PM, Blackhawk, Attn: DRCPM-BH

PM, CH-47, Mod. Program, Attn: DRCPM-CH47M

Cdr, Attn: DRDAV

Cdr, Attn: DRDAV-EXT, Mr. Robert Vollmer

Technical Library, St. Louis, MO

Cdr, AMRDL, Attn: SAVDL-EU-TAS, Mr. L. Thomas Mazza

ARRADCOM:

PM, Cannon Artillery Weapons Systems, Attn: DRCPM-CAWS

PM, Division Air Defense (DIVAD) Gun, Attn: DRCPM-ADG

PM, Nuclear Munitions, Attn: DRCPM-NUG

PM, Selected Ammunition, Attn: DRCPM-SA

Cdr, Attn: DRDAR

Cdr, Attn: DRDAR-PML, Mr. Donald J. Fischer (7 cys)

Cdr, Benet Wpns Lab, Attn: DRDAR-LCB-S, Mr. Slawsky

Chemical Systems Lab, Technical Library, Attn: DRDAR-CLY-T

DISTRIBUTION (Cont'd):

Aberdeen Proving Ground:

PM, Chemical Demilitarization & Installation Restoration, Attn: DRCPM-DR

PM, Smoke/Obscurants (SMOKE), Attn: DRCPM-SMK

Cdr. Attn: STEAP-MT-M, Mr. J. L. Sanders

ARRCOM:

PM, M110E2 Weapon System, Attn: DRSAR=HA

Cdr, Attn: DRSAR-CG

Cdr, Attn: DRSAR-IRB, Mr. August Zahatko (5 cys)

Cdr, Attn: DRSAR-IRW, Mr. Arne Madsen

Cdr, Attn: DRSAR-LEP, Mr. R. F. Tumasonis (6 cys)

Technical Library, Attn: DRSAR-LEP-L

AMMRC;

Dir, Attn: DRXMR-PMT, Mr. Raymond Farrow

Dir, Attn: DRXMR-EO, Dr. Morton Kliman

Dir, Attn: DRXMR, DRXMR-M (3 cys ea)

CERCOM:

PM, Signal Intelligence/Electronic Warfare (SIGINT/EW), Attn: DRCPM-SIEW

Cdr, Attn: DRSEL

Cdr, Attn: DRSEL-LE-R, Mr. Martin Ides

CORADCOM:

PM, Army Tactical Communications Systems (ATACS), Attn: DRCPM-ATC

PM, Automatic Test Support Systems, Attn: DRCPM-ATSS

Cdr, Attn: DRDCO

Cdr, Attn: DRDCO-PPA-TP, Messrs. Feddeler, Esposito, Resnic (1 cy ea)

RD&E Technical Documents Ctr, Ft. Monmouth, NJ

DESCOM:

Cdr, Attn: DRSDS

Cdr, Attn: DRSDS-PE, Mr. Jim Shindle

ERADCOM:

PM, FIREFINDER, Attn: DRCPM-FF

PM, Remotely Monitored Battlefield Sensor Systems (REMBASS), Attn: DRCPM-RBS

PM, Stand-off Target Acquisition System, Attn: DRCPM-STA

Cdr, Attn: DRDEL

Cdr, Attn: DELET-R, Messrs Key, Reich (1 cy ea)

Cdr, Attn: DRDEL-ED, Mr. Harold Garson

MERADCOM:

PM, Mobile Electric Power, Attn: DRCPM-MEP (Springfield, VA)

Cdr, Attn: DRDME

Cdr, Attn: DRDME-UPE, Mr. R. Goehner

Technical Library, Ft. Belvoir, VA

DISTRIBUTION (Cont'd):

MICOM:

PM, General Support Rocket System, Attn: DRCPM-RS

PM, Ground Laser Designators, Attn: DRCPM-LD

PM, HAWK, Attn: DRCPM-HA

PM, Heliborne Laser Fire and Forget (HELLFIRE) Missile System, Attn: DRCPM-HE

PM, High Energy Laser System, Attn: DRCPM-HEL

PM, PATRIOT, Attn: DRCPM-MD

PM, 2.75 Rocket System, Attn: DRCPM-RK

PM, STINGER, Attn: DRCPM-MP

PM, TOW-DRAGON, Attn: DRCPM-DT

PM, US ROLAND, Attn: DRCPM-ROL

PM, VIPER, Attn: DRCPM-VI

Cdr, Attn: DRSMI

Cdr, Attn: DRDMI-ET, Mr. Ray Farison

Cdr, Attn: DRCMI-EAT, Mr. Austin

Magazine Room, Attn: RSIC

NARADCOM:

Cdr, Attn: DRDNA

Cdr, Attn: DRDNA-EAM, Mr. Frank Civilikas

Technical Library, Attn: DRXTM-TRL

TARCOM:

PM, Heavy Equipment Transporter (HET), Attn: DRCPM-HT

Cdr, Attn: DRSTA

Cdr, Attn: DRSTA-EB, Ms Vivian Buarkhalter

TECOM:

Cdr, Attn: DRSTE

Cdr, Attn: DRSTE-AD-M, Mr. Glover Shelton

TSARCOM:

PM, COBRA, Attn: DRCPM-CO

Cdr, Attn: DRSTS

Cdr, Attn: DRSTS-PLEP(2), Mr. Don G. Doll

TARADCOM:

PM, Armored Combat Vehicle Technology (ACVT), Attn: DRCPM-CVT

PM, Fighting Vehicle Armament, Attn: DRCPM-FVA

PM, Fighting Vehicle Systems, Attn: DRCPM-FVS

PM, Improved TOW Vehicle, Attn: DRCPM-ITV

PM, XM-1 Tank System, Attn: DRCPM-GCM

Cdr, Attn: DRDTA

Cdr, Attn: DRDTA-KP, DRDTA-RCK, Mr. J. Chevalier

Technical Library, Warren, MI

DRXIB-MT DISTRIBUTION (Cont'd):

Arsenals:

- Cdr, Pine Bluff Arsenal (PBA), Attn: SARPB
- Cdr, Rocky Mountain Arsenal (RMA), Attn: SARRM-IS
- Cdr, Rock Island Arsenal (RIA), Attn: SARRI-CO
- Cdr, RIA, Attn: SARRI-ENM, Mr. Joseph DiBenedetto
- Cdr, Watervliet Arsenal (WVA), Attn: SARWV
- Cdr, WVA, Attn: SARWV-PPI, Mr. L. A. Jette
- Cdr, Benet Wpns Tech Library, Watervliet, NY

Munitions Production Base Modernization Agency:

Cdr, MPBMA, Attn: SARPM-PBM-PB, Mr. Joseph Taglairino

Army Ammo Plants:

- Cdr, Crane AAA, Attn: SARCN
- Cdr, Hawthrone AAP, Attn: SARHW
- Cdr, Holston AAP, Attn: SARHO
- Cdr, Indiana AAP, Attn: SARIN
- Cdr, Iowa AAP, Attn: SARIO
- Cdr, Kansas AAP, Attn: SARKA
- Cdr, Lake City AAP, Attn: SARLC
- Cdr, Lone Star AAP, Attn: SARLS
- Cdr, Longhorn AAP, Attn: SARLO
- Cdr, Louisiana AAP, Attn: SARLA
- Cdr, McAlester AAP, Attn: SARMC-FD
- Cdr, Milan AAP, Attn: SARMI
- Cdr, Mississippi AAP, Attn: SARMS
- Cdr, Radford AAP, Attn: SARRA
- Cdr, Riverbank AAP, Attn: SARRB
- Cdr, Scranton AAP, Attn: SARSC

Depots:

- Cdr, Anniston Army Depot, Attn: SDSAN-MD
- Cdr, Corpus Christi Army Depot, Attn: SDSCC-MPI
- Cdr, Letterkenny Army Depot, Attn: SDSLE-MM
- Cdr, New Cumberland Army Depot, Attn: SDSNC-ME
- Cdr, Red River Army Depot, Attn: SDSRR-MO
- Cdr, Sacramento Army Depot, Attn: SDSSA-MPE
- Cdr, Seneca Army Depot, Attn: SDSSE-OP
- Cdr, Sharpe Army Depot, Attn: SDSSH-R
- Cdr, Sierra Army Depot, Attn: SDSSI-EM
- Cdr, Tobyhanna Army Depot, Attn: SDSTO-M
- Cdr, Tooele Army Depot, Attn: SDSTE-MAN

DISTRIBUTION (Cont'd):

Army Organizations:

- Cdr, Army Logistics Management Ctr, (ALMC), Attn: DRXMD
- Cdr, Army Research Office (ARO), Attn: DRXRO-AO
- Cdr, Army Ballistic Research Labs (BRL), Attn: DRDAR-BL
- Cdr, HDL, Attn: DELHD-PP, Mr. Julius Hoke
- Cdr, Ballistic Research Lab, Attn: DRXBR-TSB-S
- Cdr, Foreign Science and Technology Ctr (FSTC), Attn: DRXST-MT1, Mr. James Wamsley
- Dir, Installations and Services Activity (I&SA), Attn: DRCIS
- Dir, Army Management Engineering Training Acty (AMETA), Attn: DRXOM-SE,
 - Dr. Shallman (3 cys)
- Cdr, Night Vision Labs (VNL), Attn: DRSEL-NV-PA/IO
- US Army Research Office, Research Triangle Park, NC
- Plastics Technical Evaluation Ctr., Attn: Mr. Harry Pebly
- Scientific & Technical Information Div., Attn: DRXMC-ITG-AL
- Metcut Research Associates, Inc., Attn: Mr. John F. Kahles

Navy Organizations:

- Cdr, NAVMAT, Attn: CPT F. B. Hollick, Code 064
- Cdr, NAVSEA, Attn: T. E. Draschil, Code C-0354
- Cdr, NAVAIR, Attn: D. S. Henderson, Code ESA-824
- Cdr, NAVELEX, Attn: C. A. Rigdon, Code ELEX-504512
- Cdr, Naval Surface Wpns Ctr/White Oak Lab, Attn: Code E345, Mr. Chas McFann
- Cdr, Naval Surface Wpns Ctr/Dahlgren Lab, Attn: Code CM-51
- Cdr, Naval Weapons Ctr, Attn: D. M. Bullat, Code 36804
- Dir, NMCIRD, Bldg 75-2, Naval Base

Air Force:

- Cdr, HQ, USAF/RDXI, The Pentagon, Attn: MAJ D. Mackintosh
- Cdr, AFSC/DLF, Andrew AFB
- Cdr, AFSC/PPD, Andrew AFB
- Cdr, AFML/LT, WPAFB
- Cdr, AFML/LTE, /LTM, /LTN, WPAFB (1 cy ea)
- Cdr, AFML/MX, WPAFB
- Cdr, San Antonio Air Logistics Ctr, Kelly AFB, Attn: E. Boisvert, MMEWA

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION F	READ INSTRUCTIONS BEFORE COMPLETING FORM				
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
,		NONE			
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED				
MANUFACTURING METHODS AND TECHN	PERIODIC				
PROGRAM ACCOMPLISHMENTS	,				
TROCKET ROCOTT LISINENTS	6. PERFORMING ORG. REPORT NUMBER				
	NONE				
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)				
Hal E. Wei d ner	N/A				
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT TASK				
US Army Industrial Base Engineerin	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
ATTN: DRXIB-MT	N/A				
Rock Island, IL 61299					
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE				
US Army Industrial Base Engineering	October 1980				
ATTN: DRXIB-MT	13. NUMBER OF PAGES				
Rock Island, IL 61299 14. MONITORING AGENCY NAME & ADDRESS(if different					
US Army Materiel Development & Read		15. SECURITY CLASS. (of this report)			
ATTN: DRCMT, Office of Manufactur	iness Command	Non-classified			
5001 Eisenhower Avenue	15a. DECLASSIFICATION/DOWNGRADING				
Alexandria, VA 22333	SCHEDULE N/A				
DISTRIBUTION UNLIMITED					
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different fro	m Report)			
DISTRIBUTION UNLIMITED					
18. SUPPLEMENTARY NOTES					
N/A					
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)					
Manufacturing Methods	logy Utilization				
Manufacturing Technology	ccomplishments				
Manufacturing Methods and Technology Technology Transfer					
20. ABSTRACT (Continue on reverse side if necessary and i	dentify by block number)				
This document contains pictorial in project accomplishments. Each page obtained, and illustrates the processing the process of	llustrations an e lists a proje	ct title, funding, results			

DD 1 JAN 73 1473