▼ TEAM ID PNT2022TMID21264

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import stats
import seaborn as sns

df=pd.read_csv("abalone.csv")

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	1
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.
4							•

df.isnull().sum()

Sex 0
Length 0
Diameter 0

Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

Univariate analysis

```
df['Rings'].value counts()
df.hist()
     array([[<AxesSubplot:title={'center':'Length'}>,
              <AxesSubplot:title={'center':'Diameter'}>,
              <AxesSubplot:title={'center':'Height'}>],
             [<AxesSubplot:title={'center':'Whole weight'}>,
              <AxesSubplot:title={'center':'Shucked weight'}>,
              <AxesSubplot:title={'center':'Viscera weight'}>],
             [<AxesSubplot:title={'center':'Shell weight'}>,
              <AxesSubplot:title={'center':'Rings'}>, <AxesSubplot:>]],
            dtype=object)
              Length
                               Diameter
                                                 Height
                        1000
      1000
                                         2000
                        500
       500
            Wholeoweights
                                             ი.Visceტგ weight
                            Shugked weight
                                         1000
                        1000
       500
                        500
                                          500
           Shell weight
                                Rings
                                             0.0
                                                     0.5
      1000
                       1000
       500
         0
                      1.0
                            Ó
          0.0
                0.5
```

sns.pairplot(data=df,hue='Rings')

▼ Bi-variate analysis

sns.scatterplot(data=df,x='Length',y='Shucked weight',hue='Rings')

<AxesSubplot:xlabel='Length', ylabel='Shucked weight'>

sns.boxplot(data=df,x='Whole weight',y='Shucked weight')

<AxesSubplot:xlabel='Whole weight', ylabel='Shucked weight'>

sns.boxplot(data=df,x='Sex',y='Whole weight')

<AxesSubplot:xlabel='Sex', ylabel='Whole weight'>

sns.boxplot(data=df,x='Sex',y='Shell weight')

▼ Multi-variate analysis

sns.heatmap(df.corr(),annot=True)

Outliers

sns.boxplot(x=df['Length'])

<AxesSubplot:xlabel='Length'>

▶ Handling the outliers

[] 45 cells hidden

▼ Check for Categorical columns and perform encoding

from sklearn.preprocessing import LabelEncoder le = LabelEncoder() df["Sex"] = le.fit_transform(df["Sex"]) df["Sex"] 0 2 2 1 2 0 3 2 1 4172 0 4173 2 4174 2 4175 4176 2

Name: Sex, Length: 4177, dtype: int32

▼ Split the data into dependent and independent variables

```
x=df.iloc[:,0:8].values
y=df.iloc[:,8:9].values
x,y
     (array([[2.
                    , 0.455 , 0.365 , ..., 0.2245, 0.101 , 0.15
                   , 0.355 , 0.265 , ..., 0.0995, 0.0485, 0.07
                    , 0.53 , 0.42 , ..., 0.2565, 0.1415, 0.21
             [0.
             [2.
                    , 0.6 , 0.475 , ..., 0.5255, 0.2875, 0.308 ],
                    , 0.625 , 0.485 , ..., 0.531 , 0.261 , 0.296 ],
                    , 0.66 , 0.555 , ..., 0.647 , 0.3765, 0.495 ]]),
             [2.
      array([[15],
             [7],
             [9],
             . . . ,
             [ 9],
             [10],
             [12]], dtype=int64))
```

Split the data into training and testing

▼ Build the Model

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

Train the Model

```
lr.fit(x_train, y_train)
LinearRegression()
```

▼ Test the Model

```
y_pred = lr.predict(x_test)
print((y_test)[0:6])
print((y_pred)[0:6])

[[13]
       [ 8]
       [11]
       [ 5]
       [12]
       [11]]
       [[13.09114191]
       [ 9.88567356]
       [ 9.85523183]
       [ 5.27773184]
       [10.03324002]
       [11.98903078]]
```

▼ Measure the performance using Metrics

```
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import cross_val_score
cv_scores = cross_val_score(lr, x, y, cv=5)
sco=cv_scores.round(4)
print(cv_scores.round(4))
print("Average",sco.sum()/5)

      [0.3577 0.0399 0.4503 0.5076 0.3998]
      Average 0.351060000000000004

print(r2_score( y_test,y_pred))
      0.47569319658142517

print(mean_absolute_error( y_test, y_pred))
print(mean_squared_error(y_test, y_pred))
      1.6823028820553498
      5.527771900464179
```

Colab paid products - Cancel contracts here