Q1. Which of the following is the correct electronic configuration of Boron?
(a) 1s ² 2s ² 2p ¹
(b) 1s ² 2s ¹ 2p ²
(c) 1s ² 2s ² 2p ²
(d) 1s ² 2s ² 2p ³
Answer: (a)
Explanation: Boron has atomic number $5 \rightarrow 1s^2 2s^2 2p^1$.
Q2. Which of the following elements shows the most pronounced anomalous behavior in Group 13?
(a) Al
(b) Ga
(c) In
(d) B
Answer: (d)
Explanation: Boron (first element) shows anomalous properties due to small size, high ionization enthalpy,
absence of d-orbitals.
Q3. Down the group (Group 13), the atomic size:
(a) Increases
(b) Decreases
(c) Remains constant
(d) First decreases then increases
Answer: (a)
Explanation: Atomic radius generally increases down the group due to the addition of new shells.
Q4. Which oxidation states are most stable for Group 13 elements?
(a) +1 only
(b) +2 and +4
(c) +3 and +1
(d) +4 and +2

Answer: (c) Explanation: +3 is common; +1 becomes more stable down the group due to inert pair effect.
Q5. The ionization enthalpy from B \rightarrow Al shows:
(a) A regular increase(b) A regular decrease(c) Anomalous increase at Ga(d) Remains constant
Answer: (c) Explanation: Ga shows slightly higher ionization enthalpy due to poor shielding by 3d and 10 electrons.
Q6. Which of the following is NOT a characteristic of Boron?
 (a) High ionization enthalpy (b) Forms stable BF₃ molecule (c) Acts as a metal (d) Exists only as covalent compounds
Answer: (c) Explanation: Boron is a metalloid, not a typical metal.
Q7. The stable oxidation state of Thallium (TI) is:
(a) +3 (b) +2 (c) +1 (d) 0
Answer: (c) Explanation: Due to strong inert pair effect, TI(+1) is most stable.
Q8. Which property increases irregularly down Group 13 due to d- and f-block contraction?
(a) Ionization enthalpy (b) Atomic radius

(c) Electronegativity (d) Oxidation potential
Answer: (a)
Explanation: Because of d- and f-block contraction, Ga has almost the same radius as Al, causing irregularity.
Q9. Which element of Group 13 has maximum electronegativity?
(a) B
(b) Al
(c) Ga
(d) In
Answer: (a)
Explanation: Small size and high effective nuclear charge make Boron highly electronegative in its group.
Q10. Which element does NOT show a +3 oxidation state?
(a) B
(b) Al
(c) In
(d) TI
Answer: (d)
Explanation: TI predominantly shows +1 due to inert pair effect.
Q11. The first member of Group 14 shows anomalous properties because:
(a) It has maximum size
(b) It lacks p-orbitals
(c) It lacks d-orbitals
(d) It is radioactive
Answer: (c)
Explanation: Carbon lacks d-orbitals, so it cannot expand its octet.
Q12. Which is the most stable oxidation state of lead (Pb)?

(a) +4 (b) +2 (c) +3 (d) +1
Answer: (b) Explanation: Due to inert pair effect, +2 is more stable than +4 in Pb.
Q13. The decreasing order of ionization enthalpy among Group 14 elements is:
(a) C > Si > Ge > Sn > Pb (b) Pb > Sn > Ge > Si > C (c) Si > C > Ge > Sn > Pb (d) C > Si > Pb > Ge > Sn
Answer: (a) Explanation: Ionization enthalpy decreases down the group with increase in size.
Q14. Which of the following is NOT an allotrope of carbon?
(a) Graphite(b) Fullerene(c) Silicones(d) Graphene
Answer: (c) Explanation: Silicones are polymers of silicon, not carbon allotropes.
Q15. Diamond is a bad conductor of electricity because:
(a) It has free electrons (b) It has localized covalent bonds (c) It is metallic in nature (d) It has delocalized π electrons

Answer: (b)

Explanation: In diamond, all four valencies of carbon are satisfied by strong covalent bonds → no free electrons. Q16. Which of the following has the maximum ionization enthalpy among Group 13 elements? A.B B. Al C. Ga D. TI Answer: A. B Explanation: Ionization enthalpy decreases down the group due to increasing atomic size and shielding effect. Hence, Boron has the maximum ionization enthalpy. Q17. Which Group 14 element forms a stable cation with +2 oxidation state due to inert pair effect? A. Carbon B. Silicon C. Tin D. Lead Answer: D. Lead Explanation: Inert pair effect is significant in heavier elements. Pb shows stability of +2 oxidation state more than +4. Q18. Which of the following shows anomalous behavior in Group 13 due to its small size and high electronegativity? A. Al B. Ga C. B D. In

Answer: C. B

Explanation: Boron differs from other group members in forming covalent bonds, non-availability of d-orbitals, and high ionization enthalpy.

Q19. The maximum covalency of Boron is limited to:
A. 2 B. 3
C. 4 D. 6
Answer: B. 3 Explanation: Boron does not have d-orbitals in its valence shell, so its maximum covalency is restricted to 3.
Q20. Which of the following oxides of Group 14 is amphoteric?
A. CO2 B. SiO2 C. SnO2 D. PbO
Answer: C. SnO2 Explanation: SnO2 reacts with both acids and bases, hence it is amphoteric.
Q21. Which Group 13 element has the lowest melting point?
A. B B. Al
C. Ga D. In
Answer: C. Ga Explanation: Gallium has an unusually low melting point (≈ 29.7 °C) due to weak metallic bonding.
Q22. The stability order of +1 oxidation state among Group 13 elements is:
A. B < Al < Ga < In < Tl B. Tl < In < Ga < Al < B C. Ga < B < Al < Tl < In
D. Al < B < Ga < In < Tl

Answer: A. B < Al < Ga < In < Tl

Explanation: +1 oxidation state stability increases down the group due to inert pair effect.

Q23. Which of the following is a covalent hydride of Group 14?

- A. CH4
- B. SnH4
- C. PbH4
- D. All of the above

Answer: D. All of the above

Explanation: All hydrides of Group 14 elements (tetrahydrides) are covalent in nature, though stability

decreases down the group.

Q24. The anomalous behavior of Carbon in Group 14 is due to:

- A. Absence of d-orbitals
- B. Small size and high ionization enthalpy
- C. High electronegativity
- D. All of the above

Answer: D. All of the above

Explanation: Carbon shows unique properties (catenation, multiple bonding) because of its small size, high electronegativity, and lack of d-orbitals.

Q25. Which of the following is used as a semiconductor from Group 14?

- A. Carbon
- B. Silicon
- C. Lead
- D. Tin

Answer: B. Silicon

Explanation: Silicon is widely used in semiconductors due to its suitable band gap and availability.

Q26. Which of the following oxides is amphoteric in nature?

A. B2O3

B. Al2O3
C. Ga2O3
D. All of the above
Answer: D. All of the above
Explanation: Boron oxide is weakly acidic, but Al2O3 and Ga2O3 are amphoteric, showing dual behavior.
Q27. Which property decreases regularly from B \rightarrow Tl in Group 13?
A. Atomic size
B. Ionization enthalpy
C. Electronegativity
D. Metallic character
Answer: B. Ionization enthalpy
Explanation: Ionization enthalpy decreases down the group due to increase in atomic size and shielding effect.
Q28. Which pair of Group 14 oxides is most acidic?
Q26. Which pair of Group 14 Oxides is most acidic:
A. CO2, SiO2
B. SnO2, PbO2
C. PbO, SnO
D. SiO2, SnO2
Answer: A. CO2, SiO2
Explanation: Acidic character decreases down the group; CO2 and SiO2 are acidic, while SnO2 is amphoteric
and PbO is basic.
Q29. Which Group 13 halide acts as a strong Lewis acid?
A DCI2
A. BCl3
B. AICI3
C. GaCl3

Answer: A. BCl3

D. InCl3

Explanation: Boron trihalides are strong Lewis acids due to electron deficiency and absence of d-orbitals.

Q30. The decreasing order of catenation tendency in Group 14 is	Q30.	The	decreasing	order of	catenation	tendency	y in Grou	p 14 is:
---	------	-----	------------	----------	------------	----------	-----------	----------

Answer: B. C > Si > Ge > Sn > Pb

Explanation: Catenation decreases down the group due to decreasing bond enthalpy of M-M bonds.

Q31. Which of the following forms electron-deficient compounds?

- A. Boron
- B. Aluminium
- C. Gallium
- D. All of the above

Answer: D. All of the above

Explanation: Group 13 elements often form electron-deficient compounds (e.g., BCl3, AlCl3) with incomplete

octet.

Q32. Which of the following is a correct statement about CO and CO2?

- A. CO is neutral, CO2 is acidic
- B. Both are acidic
- C. Both are basic
- D. CO is basic, CO2 is neutral

Answer: A. CO is neutral, CO2 is acidic

Explanation: CO is neutral, while CO2 dissolves in water to form carbonic acid.

Q33. Which Group 14 compound is used as a reducing agent in the manufacture of ammonia?

- A. CCI4
- B. SiCl4
- C. CO
- D. PbO

Answer: C. CO

Explanation: CO acts as a reducing agent in the Bosch process for the manufacture of ammonia.

Q34. Which Group 13 element has the highest density?

- A. Al
- B. Ga
- C. In
- D. TI

Answer: D. Tl

Explanation: Density generally increases down the group; thallium has the maximum density among Group 13.

Q35. The correct order of acidic character of Group 13 oxides is:

- A. B2O3 > Al2O3 > Ga2O3 > In2O3 > Tl2O3
- B. Tl2O3 > In2O3 > Ga2O3 > Al2O3 > B2O3
- C. Al2O3 > Ga2O3 > In2O3 > Tl2O3 > B2O3
- D. Ga2O3 > Tl2O3 > In2O3 > Al2O3 > B2O3

Answer: A. B2O3 > Al2O3 > Ga2O3 > In2O3 > Tl2O3

Explanation: Acidic character decreases down the group; basicity increases.

Q36. Which of the following is not a correct property of Boron?

- A. Boron is a metalloid
- B. Boron shows maximum covalency of 4
- C. Boron forms electron-deficient compounds
- D. Boron does not form B3+ ions in aqueous solution

Answer: B. Boron shows maximum covalency of 4

Explanation: Boron has no d-orbitals, so its maximum covalency is only 3.

Q37. Which Group 14 element shows anomalous behavior similar to Boron in Group 13?

A. Silicon

B. Germanium
C. Tin
D. Lead
Answer: A. Silicon
Explanation: Both B and Si are small, have high ionization enthalpy and electronegativity, and form covalent
compounds.
Q38. Which Group 14 hydride is least stable?
A. CH4
B. SiH4
C. SnH4
D. PbH4
Answer: D. PbH4
Explanation: Stability decreases down the group due to decreasing bond enthalpy.
Q39. Which of the following forms the maximum number of allotropes?
A. Carbon
B. Silicon
C. Tin
D. Lead
Answer: A. Carbon
Explanation: Due to strong catenation ability and multiple bond formation, carbon has many allotropes
(diamond, graphite, fullerenes, nanotubes).
Q40. Which is the most stable oxidation state of Tin?
A. +1
B. +2
C. +3
D. +4
Annuary D. 14
Answer: D. +4 Evaluation: Sp. shows +2 and +4 evidation states, but +4 is more stable than +2 for Sp.

Q41. Which of the following has the maximum metallic character?
A. B B. Al C. In D. TI
Answer: D. Tl Explanation: Metallic character increases down the group due to decrease in ionization enthalpy.
Q42. Which is the strongest reducing agent among the following Group 14 hydrides?
A. CH4 B. SiH4 C. SnH4 D. PbH4
Answer: D. PbH4 Explanation: Reducing power increases as stability decreases; PbH4 is least stable and most reducing.
Q43. The maximum covalency of Aluminium is:
A. 2 B. 3 C. 4 D. 6
Answer: D. 6 Explanation: Aluminium can expand its octet using vacant d-orbitals and show covalency up to 6.
Q44. Which of the following elements has abnormal high melting point due to strong covalent bonding in a network solid?
A. B B. C C. Si

D. All of the above

Answer: D. All of the above

Explanation: B, C, and Si form giant covalent structures leading to abnormally high melting points.

Q45. Which of the following is NOT correct about Group 14 elements?

- A. Carbon shows maximum catenation tendency
- B. Down the group, metallic character increases
- C. Stability of +4 oxidation state increases down the group
- D. Pb shows +2 oxidation state more stable than +4

Answer: C. Stability of +4 oxidation state increases down the group

Explanation: Actually, +4 is stable for lighter elements (C, Si), while +2 becomes more stable for heavier (Pb)

due to inert pair effect.