# Sample title

Brandon Hosley

University of Illinois - Springfield

September 27, 2020

## Overview

- 1 Q1A: What is a Naïve-Bayes classifier?
- Q1B: What are the evaluation metrics for classification in machine learning?
- 3 Q2: Hastie and Tibshirani Summary

• Based on Bayes' Theorem

# Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

# Naïve-Bayes

- Based on Bayes' Theorem
- By comparing a series of known probabilities one may infer the probability of an associated outcome/event/attribute

#### Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(C_k|x_1,\ldots,x_n)=P(C_k)\prod_{i=1}^n\frac{P(x_i|C_k)}{P(x_i)}$$

# Naïve-Bayes

- Based on Bayes' Theorem
- By comparing a series of known probabilities one may infer the probability of an associated outcome/event/attribute
- Naïve means that the known variables are being treated as independent

#### Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$P(C_k|x_1,\ldots,x_n)=P(C_k)\prod_{i=1}^n\frac{P(x_i|C_k)}{P(x_i)}$$

# Naïve-Bayes classification

• From training data we can build our classifier

$$P(C_k|x_1,\ldots,x_n)=P(C_k)\prod_{i=1}^n\frac{P(x_i|C_k)}{P(x_i)}$$

## Naïve-Bayes classification

- From training data we can build our classifier
- From the data set we can estimate P(x) and  $P(C_k)$  for all of our attributes

  If these values are not similar in the test set it warns of a poor sample

$$P(C_k|x_1,\ldots,x_n)=P(C_k)\prod_{i=1}^n\frac{P(x_i|C_k)}{P(x_i)}$$

## Naïve-Bayes classification

- From training data we can build our classifier
- From the data set we can estimate P(x) and  $P(C_k)$  for all of our attributes

  If these values are not similar in the test set it warns of a poor sample
- $P(x_i|C_k)$  is determined from the sample data and is the resource intensive aspect of developing a classifier in this method.

$$P(C_k|x_1,\ldots,x_n)=P(C_k)\prod_{i=1}^n\frac{P(x_i|C_k)}{P(x_i)}$$

## Common Evaluation Metrics

Confusion Matrix

| Example:       |          |          |          |       |
|----------------|----------|----------|----------|-------|
| True diagnosis |          |          |          |       |
|                |          | Positive | Negative | Total |
| Screening test | Positive | а        | b        | a + b |
|                | Negative | С        | d        | c + d |
|                | Total    | a + c    | b+d      | Ν     |

### Common Evaluation Metrics

- Confusion Matrix
- F1 Score

#### Example:

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

#### Note:

This is the Harmonic mean of Precision and Recall

### Common Evaluation Metrics

- Confusion Matrix
- F1 Score
- Binary Cross Entropy

#### Example:

$$BCE = -(y \log(p) + (1 - y) \log(1 - p))$$

#### Note:

This method works well examining results given as probabilities of each classification

Using available data to predict a future or current qualitative feature on a variable.

# Example:

Predicting if an account will go into credit card default



- Linear Regression
  - Qualitative nature of classification limits usefulness
  - Capable of being used as linear discriminant analysis

- Linear Regression
  - Qualitative nature of classification limits usefulness
  - Capable of being used as linear discriminant analysis
- Logistic Regression
  - Typically better than Linear as it favors bimodal bias
  - Multiple Logical Regression is capable of identifying underlying relationships



Q2

Q1B

## Tibshirani Lecture: Classification

- Bayes' Theorem
  - Covered in earlier slides

- Bayes' Theorem
  - Covered in earlier slides
- Classifying to the highest density
  - Calculating decision boundaries based on their density
  - Predictions made by which side of boundaries new data falls on



