# Formal Syntax and Semantics

# 1 Syntax of first-order logic

Every (well formed) formula of first order logic is constructed from **atoms** (or **atomic formula**). We completely define the **syntax** of first-order logic by defining what we mean by atoms and the constructions we are allowed to use.

#### 1.1 Atoms

- If P is a relation symbol of arity r and  $y_1, ..., y_r$  are (not necessarily distinct) variables or constant symbols, then  $P(y_1, ..., y_r)$  is an **atom** with free variables from  $y_1, ..., y_r$  (this sequence can also contain constants and repeated items)
- If C and D are constant symbols and x and y are variables then C=D, C=x and x=y are all **atoms** with, respectively, set of free variables  $\emptyset$ ,  $\{x\}$ ,  $\{x, y\}$

The **signature** of formula is its finite set of predicate (relation) and constant symbols

#### 1.2 Constructions

• If  $\phi$  and  $\psi$  are formulae, with free variables free( $\phi$ ) and free( $\psi$ ), then

$$\phi \lor \psi, \phi \land \psi, \neg \phi$$

are formulae, with, respectively, free variables  $free(\phi) \cup free(\psi)$ ,  $free(\phi) \cup free(\psi)$  and  $free(\phi)$ 

• If  $\phi$  is a formula with free variables  $free(\phi)$  then

$$\exists x(\phi), \forall x(\phi)$$

are formulae, both with free variables  $free(\phi)\setminus\{x\}$ . The occurrence of x in both formulae is a bound occurrence

If a formula has no free variables then it is called a sentence

#### 2 Parse trees

We can check that a formula is well formed using a parse tree (if the tree cannot be made then the formula is not well formed). We can illustrate with

$$\forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C))$$



Note that here  $p \Leftrightarrow q$  has been replaced with  $(p \land q) \lor (\neg p \land \neg q)$ 

# 3 Semantics for first-order logic

An interpretation or structure for a first order formula  $\phi$  is:

- The domain of discourse D
- A value from D for every free variables of  $\phi$
- A relation over D for every relation symbol involved in  $\phi$
- A value from D for every constant symbol involved in  $\phi$

The semantics of a first order formula in some interpretation is as follows:

- We interpret atoms as propositional variables
- We interpret  $\land$ ,  $\lor$  and  $\neg$  as propositional logic
- We interpret  $\forall x \phi$  as true if  $\phi$  is true for all values for x
- We interpret  $\exists x \phi$  as true if there is at least one value for x making  $\phi$  true

#### 4 An illustration

Consider a **signature** consisting of two binary relation symbols P and Q and one constant symbol C. Let  $\phi$  be defined as:

$$\forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C))$$

In order to decide whether  $\phi$  evaluates to true or not we need an **interpretation** Consider the interpretation:

$$\phi = \forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C))$$

where:

- The domain of discourse is the set of natural numbers N
- The relation  $P = \{(u, v) : u, v \in \mathbb{N}, u \le v\}$
- The relation  $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- The constant  $C = 0 \in \mathbb{N}$

So

- $(\mathbb{N}, p, Q, 0) \models \phi$  if and only if  $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$  and  $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$
- if and only if for every  $x, y \in \mathbb{N}, x \le y \Leftrightarrow x \ne y$  and there exists  $x \in \mathbb{N}$  such that  $0 \le x$  and  $x \ne 0$

Both conjuncts are true. Thus  $(\mathbb{N}, P, Q, 0)$  is a model of  $\phi$ , i.e.,  $(\mathbb{N}, P, Q, 0) \models \phi$ 

### 4.1 Secondary interpretation

Now consider a **signature** consisting of two binary relation symbols P and Q and one constant symbol C. Let  $\phi$  be defined as:

$$\forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C))$$

In order to decide whether  $\phi$  evaluates to true or not we need an **interpretation** Consider the interpretation:

$$\phi = \forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists x (P(C, x) \land \neg Q(x, C))$$

where:

- The domain of discourse is the set of natural numbers N
- The relation  $P = \{(u, v) : u, v \in \mathbb{N}, u < v\}$

- The relation  $Q = \{(u, v) : u, v \in \mathbb{N}, u > v\}$
- The constant  $C = 0 \in \mathbb{N}$

So

- $(\mathbb{N}, p, Q, 0) \models \phi$  if and only if  $(\mathbb{N}, P, Q, 0) \models \forall x \forall y (P(x, y) \Leftrightarrow \neg Q(x, y))$  and  $(\mathbb{N}, P, Q, 0) \models \exists x (P(C, x) \land \neg Q(x, C))$
- if and only if for every  $x, y \in \mathbb{N}, x < y \Leftrightarrow x \not> y$  and there exists  $x \in \mathbb{N}$  such that 0 < x and  $x \not> 0$

Both conjuncts are false. Thus  $(\mathbb{N}, P, Q, 0)$  is not a model of  $\phi$ , i.e.,  $(\mathbb{N}, P, Q, 0) \models \neg \phi$ 

# 5 A subtlety

Consider a signature consisting of two binary relation symbols P and Q and one constant symbol C. Let  $\phi$  be defined as

$$\forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists z (P(z, x) \land \neg Q(x, C))$$

This is a perfectly legal formula of first order logic, even though the variable x appears "differently" in the formula

- x appears bound in the first conjunct
- x appears free in the second conjunct

Consequently, it is more precise to speak of "free occurrences" or "bound occurrences" of variables rather than free or bound variables

# 6 Another subtlety

Consider the formula  $\chi$  defined as

$$\forall x (\forall y (P(x, y) \Leftrightarrow \neg Q(x, y))) \land \exists y (P(y, x) \land \neg Q(x, y))$$

and the interpretation I for  $\chi$  where:

- The domain D={1,2,3}
- $P = \{(1,3), (2,3), (3,1)\}$  and  $Q = \{(1,1), (1,2), (2,1), (2,2), (3,2), (3,3)\}$
- x=3

Not only does x appear both free and bound but y appears bound but within the scopes of two different quantifications. We clearly have  $I \models \chi$  as

- For every  $(x, y) \in D \times D$ ,  $(x, y) \in P$  if and only if  $(x, y) \notin Q$
- There exists a  $y \in D$  such that  $(y,3) \in P$  and  $(3,y) \notin Q$ , namely y=1 (only need to show it for one value in this case as  $\exists$ )

If we amend the interpretation so that x is interpreted as x=2 then we have that  $I \models \neg \chi$ 

#### 7 More illustrations

Consider the well formed formula  $\phi$  defined as  $\forall x \exists y P(x, y)$ And consider the interpretation of  $\phi$  where:

- The domain of discourse is the set  $\mathbb{Z}$  of integers
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}$

So,

•  $(\mathbb{Z}, P) = \forall x \exists y P(x, y)$ if and only if for every  $x \in \mathbb{Z}$ ,  $(\mathbb{Z}, P) \models \exists y P(x, y)$ if and only if for every  $x \in \mathbb{Z}$ , there exists  $y \in \mathbb{Z}$  with x > y

For any  $x \in \mathbb{Z}$ , if we take y = x - 1 then this value of y witnesses that x > y; hence,  $(\mathbb{Z}, P) \models \phi$ . If we restrict the domain to the natural numbers  $\mathbb{N}$  and where  $P = \{(u, v) : u, v \in \mathbb{N}, u > v\}$ , i.e. we have the restriction of  $(\mathbb{Z}, p)$  to  $\mathbb{N}$  then  $(\mathbb{N}, p) \models \neg \phi$ . This fails for example when a value is 0 as there is not a natural number smaller than it

Consider the well formed formula  $\phi$  defined as  $\exists y \forall x P(x, y)$ And consider the interpretation of  $\phi$  where

- The domain of discourse if the set  $\mathbb{Z}$  of integers
- $P = \{(u, v) : u, v \in \mathbb{Z}, u > v\}$

So,

•  $(\mathbb{Z}, P) = \exists y \forall x P(x, y)$  if and only if there exists  $y \in \mathbb{Z}$  such that  $(\mathbb{Z}, P) \models \forall x P(x, y)$  if and only if there exists  $y \in \mathbb{Z}$  such that for all  $x \in \mathbb{Z}, x > y$ 

No matter which  $y \in \mathbb{Z}$  we choose, putting x = y - 1 results in  $x \le y$ Hence  $(\mathbb{Z}, P) \models \neg \exists y \forall x P(x, y)$ 

Take care with the **order** of quantifiers