

App Store Fake Review Detection

Hande Gulbagci Dede, PhD

Online Reviews

- Online reviews are an important and inevitable aspect of e-commerce.
- Similar to online reviews, before downloading an app, users often read through the reviews.

The Problem

- Positive reviews promote the download and sales of applications.
- Some app developers mislead users by posting fake and high-rating reviews.
 - Misguide users into making wrong decisions
 - Cause economic damage to other application owners
- Goal: Build a classifier that can accurately classify the App Store review as genuine and fake

Data

 The Apple App Store reviews dataset is created by Martens and Maalej (2019).

Features Data

- 19 features
- 8696 unique users
- 5624 unique apps
- Review labels as fake and real

Reviews Data

- 31 features
- 16000 reviews (8000 fake & 8000 real)
- 10 features related to reviews such as review body, title, posting time

Applications Data

- 31 features
- Meta-data of apps
- 5563 unique apps
- 61 apps info is missing

Data Wrangling

Labeling criteria: If an app/user has at least one fake review, this app/user is unreliable.

Users' Total Reviews

Fake users (\overline{X} = 31.6) have posted more reviews than real users (\overline{X} = 6.85). This difference is statistically significant (t = -29.3, p < .05).

Users' with Just One Review

- 1734 users (19.9%) out of total users
- Important indicator of not being fake

Distribution of Reviews According to Years

Rating of Reviews

Unreliable apps can get fake reviews for two reasons:

- Promote their application, or
- Sabotage rival applications.

Length of Reviews

- The review body length is longer in fake reviews (\overline{X} =121.18) than in real ones (\overline{X} =111.83).
- 35.1% of real reviews' review length is 40 or less.
- The 3.15% of fake reviews' lengths are 40 or less.
- Fake reviews may be written longer to be more convincing, but in real life, reviews are shorter.

Feature Importances

- Features related to users, reviews, and apps play a significant role in detecting fake reviews.
- Models with just review text gave worse metrics than models with all features.
- As expected, BERT works better than GloVe.
- Assuming we do not have any data about reviews, users, and apps, we have just reviews.
- Optimize models with review text (BERT).

Hypermeter Optimization

Model	Optimization Type	Mean AUC	Performance on Unseen Test
Logistic Regression	Grid Search	.901	.824
XGBoost Classifier		.884	.811
Gradient Boosting	Random Search	.879	0.811
Random Forest		.858	.784

Conclusion

- XGBoost classifier identifies fake reviews with an AUC/ROC value of 98%.
- Information about users, applications, and reviews should be considered in fake review detection.
- Factors such as the business problem, the aim of the model, and text type should be considered when deciding which vectorization method to use.

For questions, suggestions and feedback

Contact info:

handegulbagci@gmail.com

https://github.com/hangulde