

Pathological Speech Intelligibility Assessment based on the Short-Time Objective Intelligibility Measure

Parvaneh Janbakhshi^{1,2}, Ina Kodrasi¹, Hervé Bourlard^{1,2}

¹Idiap Research Institute, Speech and Audio Processing Group, Martigny, Switzerland ²École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland {parvaneh.janbakhshi, ina.kodrasi, herve.bourlard}@idiap.ch

Motivation

- ▶ Objective pathological speech intelligibility assessment can be crucial for the management of speech disorders
- Short-Time Objective Intelligibility (STOI) and Extended STOI (ESTOI) are successful objective intelligibility measures used in speech enhancement

Aim

▶ Develop reliable measures to automatically assess pathological speech intelligibility based on STOI and ESTOI

Challenge

- \blacktriangleright Enhancement objective measures \rightarrow comparing time-aligned noisy and reference (clean) signals
- ► A time-aligned fully intelligible (reference) version of the patients' speech signal is not available

Proposed method

- 1 Time alignment using Dynamic Time Warping (DTW)
- 2 Creating utterance-dependent reference representations from multiple healthy speakers
- 3 Intelligibility assessment
- ▶ P-STOI and P-ESTOI computed based on the temporal or spectral cross-correlation of the aligned pathological and reference signals

P-STOI and P-ESTOI

- ▶ $H_j(t)$ and $P_j(t)$: time-frequency units of the aligned healthy reference and pathological test representations
- $\triangleright j$: octave band index, t: frame index
- $\overline{H_j(i)} = \frac{1}{I} \sum_{i=t}^{t+I-1} H_j(i)$ and $\overline{P_j(i)}$ is similarly defined

$$\mathbf{P-STOI} = \frac{1}{(T - I + 1)J} \sum_{j,t} d_{j}^{S}(t),$$

$$d_{j}^{S}(t) = \frac{\sum_{i=t}^{t+I-1} (H_{j}(i) - \overline{H_{j}(i)}) (P_{j}(i) - \overline{P_{j}(i)})}{\sqrt{\sum_{i=t}^{t+I-1} (H_{j}(i) - \overline{H_{j}(i)})^{2} \sum_{i=t}^{t+I-1} (P_{j}(i) - \overline{P_{j}(i)})^{2}}}$$

 $\overline{H_j(i)} = \frac{1}{J} \sum_{j=1}^J H_j(i)$ and $\overline{P_j(i)}$ is similarly defined

$$\mathbf{P\text{-}ESTOI} = \frac{1}{(T - I + 1)} \sum_{t} d^{E}(t),$$

$$d^{E}(t) = \frac{1}{I} \sum_{i=t}^{t+I-1} \frac{\sum_{j=1}^{J} \left(H_{j}(i) - \overline{H_{j}(i)}\right) \left(P_{j}(i) - \overline{P_{j}(i)}\right)}{\sqrt{\sum_{j=1}^{J} \left(H_{j}(i) - \overline{H_{j}(i)}\right)^{2} \sum_{j=1}^{J} \left(P_{j}(i) - \overline{P_{j}(i)}\right)^{2}}}$$

Evaluation

Databases

- ▶ 10 English-speaking Cerebral Palsy (CP) patients and 13 healthy speakers
- ▶ 10 French-speaking (Amyotrophic Lateral Sclerosis) ALS patients and 41 healthy speakers

Criteria

Pearson (R) and Spearman rank (R_s) correlation coefficients between estimated scores and the subjective intelligibility scores (along with p-values)

Comparison

State-of-the-art feature-based measures such as Low-to-High Modulation energy Ratio (LHMR) and standard deviation of the zeroth order delta coefficient σ_{Δ}

Results

Measures	R	p	R_S	p
	I	English CP dat	abase	
P-STOI	0.90	5e-4	0.82	7e-3
P-ESTOI	$\boldsymbol{0.95}$	4.3e - 5	0.91	2e-4
σ_{Δ}	0.45	0.20	0.51	0.13
LHMR	-0.55	0.09	-0.54	0.10
	F	Trench ALS dat	tabase	
P-STOI	0.87	2e-3	0.37	0.33
P-ESTOI	$\boldsymbol{0.95}$	5.6e - 5	0.43	0.32
σ_{Δ}	0.76	0.01	0.48	0.16
LHMR	-0.69	0.03	-0.46	0.18

- ▶ P-STOI and P-ESTOI achieve a high and significant Pearson correlation
- ▶ P-ESTOI yields the best performance on both databases (capturing impact of spectral distortions is more important than temporal distortions)

Conclusion

▶ P-STOI and P-ESTOI can be used as reliable objective intelligibility measures for pathological speech, independently of the language or of the disease