

## FOUNDATIONAL COURSE

December 6, 2018

**Satellite Foundational Course for JPSS (SatFC-J)** 



Introduction to Microwave Remote Sensing (with a focus on passive sensing)



# **Learning Objectives**



- Provide a general introduction to microwave remote sensing that covers imagers vs. sounders, passive vs. active sensors, and microwave frequency channels
- Understand how microwave remote sensing complements visible and infrared observation and why this is important
- Briefly examine how absorption/emission, transmission, and 3. scattering influences the usage and interpretation of microwave measurements

### **Product Preview**





 A combination of channels are used to create products

- total precipitable water
- cloud liquid water
- rain rate
- wind speed
- sea surface temperature
- soil moisture



NOAA MiRS Products: https://www.star.nesdis.noaa.gov/jpss/EDRs/products MiRS.php

# **Types of Microwave Instrumentation**





| Imager                                                                 | Sounder                                                                                        |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| <ul><li>Horizontal detail</li><li>2-D view</li></ul>                   | <ul> <li>Vertical detail</li> <li>"3-D view"</li> <li>Provides atmospheric profiles</li> </ul> |
| Ex: Advanced Microwave Scanning Radiometer-2 (AMSR-2)  • 7 channels vs | Ex: Advanced Technology Microwave Sounder (ATMS)  • 22 channels                                |
|                                                                        |                                                                                                |

# **Types of Microwave Sensors**



# **Passive**

- **Detects natural emission**
- Used to measure atmospheric profiles
- Radiometers and scanners



#### **Active**

- Provides source of radiation and measures backscattered signal
- Influence of other sources complicates interpretation



# **Global Coverage 2x Daily**





#### Suomi National Polar-orbiting Partnership (S-NPP) Orbit Tracks



# **Electromagnetic Spectrum**



Microwave wavelength = 0.1-30 cm (300-1 GHz)





Additional Resource: SatFC-G Basic Principles of Radiation

https://www.meted.ucar.edu/training\_module.php?id=1239#.WEcPZfkrKUI

# Microwave Spectrum







## **Measured Brightness Temperature**



## **Absorption Regions**

Clear Sky or Non-Precipitating Clouds

- Temperature profiles
- Moisture profiles

absorption / emission



transmission



### **Window Regions**

Clear Sky or Non-Precipitating Clouds

- Land surface temp.
- Sea surface temp.
- Sea ice
- Soil moisture
- Cloud droplets (< .1 mm radius)



Ice particles

scattering



Ocean winds



- Precipitation type
- Rain rate

## Window View of Surface Features





#### Ocean

Low emissivity (~0.5) provides a uniform, cold background

#### Land

Variable emissivity  $(\sim 0.95)$ 



# "Dirty" Window View



- Non-precipitating clouds are transparent
- Total atmospheric column can be observed



# **Water Vapor Absorption**



Used to sense the moisture at various levels in the atmosphere



# **Oxygen Absorption**



Used to sense the temperature at various levels in the atmosphere

Small temperature variation across the image (~300 mb level)



### **Vertical Profiles**





- Displayed in AWIPS as **NUCAPS** soundings
- NUCAPS = NOAA Unique Combined **A**tmospheric Processing System



# **Assimilation into Numerical Models**





 Microwave and infrared sounders have huge impacts in forecasts through assimilation into numerical weather prediction models



# **Advantages and Limitations**



#### **Microwave Advantages**

- Non-precipitating clouds are transparent
- Precipitation rate estimation, ocean winds, soil moisture
- Atmospheric temperature and moisture profiles
- Blended with other high resolution measurements in products and assimilated into models

#### **Microwave Limitations**

- Longer wavelength limits spatial resolution
- Variations in surface emissivity complicate interpretation
- Infrequent observations: 2x daily passes per satellite

### Resources



- Microwave Remote Sensing: Overview (2<sup>nd</sup> Edition) https://www.meted.ucar.edu/training\_module.php?id=979
- A First Course in Atmospheric Radiation, 2<sup>nd</sup> Ed. (Petty 2006)
- Satellite Meteorology: An Introduction (Kidder and Vonder Haar 1995)
- Basics of Visible and Infrared Remote Sensing https://www.meted.ucar.edu/training\_module.php?id=1096#.WEmPA\_krKUk
- SatFC-G Basic Principles of Radiation https://www.meted.ucar.edu/training\_module.php?id=1239#.WEcPZfkrKUI

Questions? Email: Bernie.Connell@colostate.edu

Narrator: Bernie Connell

Editors: Erin Dagg, Bernie Connell Other Contributors: John Forsythe

