Trabalho de Matemática Discreta Matchings e ciclos hamiltonianos em grafos de hipercubos

Amanda Perez Juan Belieni

FGV/EMAp 25 de novembro de 2023

1 Introdução

Desde o início dos tempos, os seres humanos empreendem grandes esforços para responder algumas perguntas fundamentais: quem somos nós? por que estamos aqui? há vida após a morte? Por não termos os meios de responder nenhuma dessas perguntas, vamos apresentar neste trabalho a demonstração da conjectura de que todo *matching* perfeito em grafos de hipercubo pode ser estendido em um ciclo hamiltoniano.

Este problema, resolvido apenas em 2007 [1], é uma versão mais fraca de uma conjectura que permanece sem solução, que afirma que qualquer *matching* em um hipercubo consegue ser estendido em um ciclo hamiltoniano.

Ao longo das próximas seções, buscamos apresentar as principais definições envolvidas nesse problema, bem como provar propriedades relevantes. O objetivo é que este material possa ser tanto uma introdução ao tópico quanto um sumário de definições e teoremas.

2 Grafos de hipercubos

Nesta seção, definimos grafos de hipercubos e suas principais propriedades. Um grafo de hipercubo pode ser entendido intuitivamente como um grafo construído sobre um hipercubo d-dimensional (ou d-cubo), onde os vértices e arestas do grafo representam, respectivamente, os vértices e arestas do hipercubo.

Definição 2.1 (Definição de grafo de hipercubo I). *O* **grafo de hipercubo** *d-dimensional* $Q_d = (V, E)$ é o grafo onde V são todas as sequências $(p_i)_{i=1}^d$, onde $p_i \in \{0, 1\}$, $e \{u, v\} \in E$ se, e somente se, u e v diferem em exatamente uma posição dessa sequência [2, p. 97].

Apesar de ser bem intuitiva, a definição 2.1 pode não ser tão prática quando utilizada em algumas demonstrações ou mesmo em implementações computacionais. Dessa forma, apresentamos a seguir uma definição alternativa que se utiliza do conceito de produto cartesiano em grafos para definir hipercubos recursivamente. Antes disso, contudo, definamos a operação de produto cartesiano em grafos.

Figura 1: Representação gráfica de um cubo (Q_3) , exemplificando a definição 2.1.

Definição 2.2. Sejam $G = (V_G, E_G)$ e $H = (V_H, E_H)$ dois grafos quaisquer. O produto cartesiano $G \times H$ [3, p. 22] é o grafo $G \times H = (V', E')$, onde $V' = V_G \times V_H$ (produto cartesiano entre os conjuntos de vértices) e E' é definido de modo que dois vértices (v_G, v_H) , $(u_G, u_H) \in V'$ são adjacentes se, e somente se, vale exatamente uma das seguintes afirmações:

- $u_G = v_G$, e v_H e u_H são adjacentes em H; ou
- $u_H = v_H$, $e v_G e u_G$ são adjacentes em G.

Utilizando a operação definida em 2.2, temos a seguinte definição alternativa para o grafo de hipercubo:

Definição 2.3 (Definição de grafo de hipercubo II). O **grafo de hipercubo** *d-dimensional* Q_d *pode ser definido recursivamente como* $Q_d = Q_{d-1} \times K_2$, *onde* $Q_1 = K_2$ [4].

A partir de agora, chamaremos todos os grafos de hipercubo apenas de hipercubos e vamos considerar apenas os hipercubos com dimensão $d \ge 2$. Além disso, vamos demonstrar que as duas definições dadas são equivalentes.

Lema 2.1. As definições 2.1 e 2.3 são equivalentes.

Demonstração. A prova é por indução em d. O lema vale para d=2.1

Considerando o hipercubo Q_{d+1} , temos que o lema é verdadeiro para Q_d por hipótese indutiva. Ou seja, os vértices de Q_d são as sequências $(p_i)_{i=1}^d$, onde $p_i \in \{0,1\}$, e suas arestas incidem em vértices que diferem em exatamente uma posição.

A partir da definição 2.3, é possível observar que os vértices de Q_d podem ser divididos em dois conjuntos $V_k(Q_{d+1}) = \{(v,k)\}_{v \in V(Q_d)}, k \in \{0,1\}.^2$ Pela definição 2.2, $\{(u,i),(v,j)\} \in E(Q_{d+1}), \forall \{u,v\} \in E(Q_d) \text{ e } \forall i,j \in \{0,1\}, \text{ se, e somente se,}$

• u = v e $i \neq j$, onde todos os elementos da sequência são iguais a não ser pelo último; ou

• $u \neq v$ e i = j, onde u e v já diferem em exatamente uma única posição.

Portanto, ambas as definições são equivalentes.

Figura 2: Grafos de hipercubo de 1 a 6 dimensões, construídos a partir da definição 2.3. Eles foram gerados em Python com a ajuda da biblioteca networkx, que tem implementada a operação de produto cartesiano entre grafos. O código utilizado está disponível em: https://shorturl.at/berK2.

A partir dessas definições, podemos enunciar e demonstrar algumas propriedades úteis de hipercubos.

Teorema 2.1. *Todo hipercubo* Q_d *é bipartido.*

Demonstração. Da teoria de grafos, é conhecido que um grafo G é bipartido se, e somente se, todo caminho fechado em G possui tamanho par. Por contradição, vamos assumir que existe um caminho fechado $p = (p_1, p_2, \ldots, p_n, p_1)$ em Q_d , onde n é um inteiro ímpar não negativo.

Pela definição 2.1, conclui-se que o vértice p_i , com i ímpar, difere de p_1 em um número par de posições. No entanto, p_n é vizinho de p_1 e deveria diferir em apenas uma posição de p_1 , acarretando uma contradição. Portanto, todo hipercubo é bipartido.

Uma prova alternativa (e mais extensa) para este teorema, utilizando apenas a definição 2.3, está apresentada no apêndice A.1. Ela foi omitida do texto principal por ser mais complicada em comparação com a demonstração apresentada acima, contudo sua construção será utilizada como base para demonstrar o próximo teorema.

Teorema 2.2. *Todo hipercubo* Q_d *é hamiltoniano.*

Demonstração. A prova será por indução em d. Para d=2, trivialmente podemos construir um ciclo hamiltoniano formado por todas as arestas de Q_2 .

¹Para verificar isso, basta notar que construindo $Q_2 = K_2 \times K_2$, com os vértices de K_2 nomeados como 0 e 1, obtemos o mesmo grafo que seria construído pela definição 2.1.

²Observação sobre a notação: aqui e em outros momentos ao longo deste trabalho, utilizaremos V(G) e E(G) para referenciar, respectivamente, os conjuntos de vértices e arestas do grafo G.

Suponha que Q_d é hamiltoniano. Então, para $Q_{d+1} = Q_d \times K_2$, podemos utilizar mesma construção apresentada na prova alternativa do teorema 2.1 no apêndice A.1: considerando os subgrafos Q' e Q'' expressos em (1), temos que ambos são isomorfos a Q_d . Logo, pela hipótese de indução, existe ciclo hamiltoniano em cada um deles, digamos c_1 e c_2 , respectivamente; podemos escolher esses ciclos a partir de um mesmo ciclo hamiltoniano de Q_d , mapeando-o nos subgrafos. Nomeando os vértices de Q_d de modo que $c = (v_1, v_2, \cdots, v_n, v_1)$ seja um ciclo hamiltoniano, podemos tomar $c_1 = ((v_1, 0), \cdots, (v_n, 0), (v_1, 0))$ e $c_2 = ((v_1, 1), \cdots, (v_n, 1), (v_1, 1))$.

Excluindo exatamente uma aresta arbitrária de c_1 (digamos $\{(v_1,0),(v_n,0)\}$) e a equivalente em c_2 , obtemos um caminho hamiltoniano em cada subgrafo com extremos em dois vértices vizinhos $((v_1,0) e (v_n,0) \text{ para } Q', e (v_1,1) e (v_n,1) \text{ em } Q'')$. Por construção de Q_{d+1} , temos que existe uma aresta entre $(v_1,0) e (v_1,1)$, bem como entre $(v_n,0) e (v_n,1)$. Assim, podemos conectar os dois caminhos derivados de c_1 e c_2 , formando o ciclo:

$$c_{\star} = ((v_1, 0), (v_2, 0), \cdots, (v_n, 0), (v_n, 1), (v_{n-1}, 1), \cdots, (v_1, 1), (v_1, 0)).$$

Por c_1 e c_2 serem ciclos hamiltonianos em Q' e Q'' e $V(Q_{d+1}) = V(Q') \cup V(Q'')$, temos que c_{\star} também é ciclo hamiltoniano. Portanto, Q_{d+1} é hamiltoniano e, por consequência, todo hipercubo com $d \geq 2$.

3 *Matchings* perfeitos

O matching (ou emparelhamento) de um grafo é entendido como um conjunto formado por arestas não adjacentes entre si³. Além disso, um matching pode ser classificado como maximal, completo, máximo ou perfeito. Neste trabalho, iremos trabalhar principalmente com o conceito de matching perfeito (definido em 3.3), não apresentando, por essa razão, as definições das demais classificações citadas.

Figura 3: *Matching* perfeito em um cubo (Q_3). Nessa figura, as arestas destacadas em vermelho formam um dos possíveis *matchings* perfeitos de Q_3 .

Definição 3.1. *Um matching* de um grafo G = (V, E) é um conjunto de arestas $M \subseteq E$ tal que, $\forall x, y \in M$, $x \in Y$ não são adjacentes entre si [2, p. 237].

Definição 3.2. Seja um matching M de um grafo G = (V, E) e um vértice $v \in V$. Dizemos que v é coberto por M se $\exists e \in M$ tal que e incide em v.

³Algumas definições de *matching* tem como foco principal grafos bipartidos direcionados, contudo o enfoque do trabalho não será nessa definição.

Definição 3.3. *Um matching perfeito de um grafo* G = (V, E) *é um matching* P *tal que,* $\forall v \in V$, v *é coberto por* P.

Uma consequência direta da definição 3.3 é que não é possível construir *matchings* perfeitos em grafos com uma quantidade ímpar de vértices. De fato, cada aresta do *matching* incide sobre exatamente dois vértices e não é possível que mais de uma aresta incida sobre um mesmo vértice; sendo assim, um *matching* cobre uma quantidade par de vértices e como não podem sobrar vértices para que ele seja perfeito, é necessário que |V| seja par para que um grafo G = (V, E) tenha *matching* perfeito. Em particular, um hipercubo Q_d tem 2^d vértices no total, então não é necessário considerar esse tipo de restrição ao lidarmos com hipercubos.

4 Estendendo *matchings* perfeitos de hipercubos em ciclos hamiltonianos

Nessa seção, vamos mostrar que todo *matching* perfeito de um hipercubo pode ser estendido em um ciclo hamiltoniano, o que ficou conhecido como conjectura de Kreweras [5] e era um problema em aberto até 2007. Para isso, vamos nos basear fortemente na demonstração presente no artigo de Fink [1].

A intuição por trás dessa conjectura é dada pelo fato de que todo ciclo hamiltoniano em um hipercubo é composto por dois *matchings* perfeitos. Isso pode ser facilmente demonstrado se consideramos que todo hipercubo é bipartido e que, consequentemente, todo caminho fechado possui tamanho par. A partir disso, podemos definir a seguinte propriedade de grafos:

Definição 4.1. *Um grafo G tem a propriedade Perfect-Matching-Hamiltonian (PMH) se, para cada um de seus matchings perfeitos* P, *existe outro matching perfeito de* P' *tal que a* $P \cup P'$ *produz um ciclo hamiltoniano em G* [6].

Para provar que todo hipercubo possui essa propriedade, vamos primeiro enunciar um lema que servirá de passo intermediário para a demonstração final.

Definição 4.2. *Uma floresta linear é uma floresta (ou conjunto disjunto) de árvores lineares.*

Lema 4.1. Seja M um matching não perfeito de um hipercubo Q_d . Então existe um matching perfeito P de Q_d tal que $M \cap P = \emptyset$ e $M \cup P$ é uma floresta linear.

Demonstração. A prova é por indução em d. O lema vale para d=2.

Por M não ser perfeito, então devem existir dois vértices $q_1, q_2 \in V(Q_d)$ que não são cobertos por ele. Dessa forma, é possível dividir o hipercubo Q_d em dois (d-1)-cubos $Q^{(1)}$ e $Q^{(2)}$ tal que $q_i \in V(Q^{(i)})$, $i \in \{1,2\}$.

Seja $M^{(i)} = M \cap E(Q^{(i)})$, $i = \{1,2\}$, é possível concluir que $M^{(i)}$ não é perfeito, já que q_1 não é coberto por ele. Dessa forma, pela hipótese indutiva, existe um *matching* perfeito $P^{(1)}$ de $Q^{(1)}$ tal que $M^{(1)} \cup P^{(1)}$ é uma floresta linear. Para terminar a demonstração, é necessário encontrar um *matching* perfeito $P^{(2)}$ em $Q^{(2)}$ tal que $M \cup P^{(1)} \cup P^{(2)}$ também seja uma floresta linear.

Para que isso seja possível, $P^{(2)}$ não poderá conter certas arestas a fim de garantir que P seja acíclico. Seja $O^{(i)}=M^{(i)}\cup P^{(i)}$, o conjunto dessas arestas proibidas é

$$S = \left\{ \{x, y\} \in E(Q^{(2)}) \mid \exists x', y' \in V(Q^{(1)}) \text{ tal que} \\ \{x, x'\}, \{y, y'\} \in M \text{ e } (x', \dots, y') \in \mathcal{P}(O^{(1)}) \right\},$$

onde $\mathcal{P}(G)$ denota todos os caminhos em G. Nota-se que todo vértice v do grafo $(V(Q^{(1)}), O^{(1)})$ tem grau 1 se, e somente se, v não for coberto por $M^{(1)}$ (considerando que $M^{(1)}$ não é perfeito). Ou seja, se $\{x,x'\},\{y,y'\}\in M,(x',\ldots,y')\in \mathcal{P}(O^{(1)})$ e $\{x,y\}\in E(Q^{(2)})$, então x' e y' são os vértices terminais de um caminho em $O^{(1)}$.

Dessa forma, S é um matching de $Q^{(2)}$ e, além disso, $M^{(2)} \cup S$ é um matching não perfeito de $Q^{(2)}$, dado que q_2 , não é coberto por ele. Logo, pela hipótese indutiva, deve existir um matching perfeito $P^{(2)}$ de $Q^{(2)}$ tal que $P^{(2)} \cap (M^{(2)} \cup S) = \emptyset$ e $P^{(2)} \cup M^{(2)} \cup S$ seja uma floresta linear. Com isso, conclui-se que $P = P^{(1)} \cup P^{(2)}$ e que o lema é válido.

Teorema 4.1. *Todo hipercubo* Q_d *possui a propriedade PMH*.

Demonstração. Seja P um matching perfeito de Q_d e um vértice arbitrário $e = (u, v) \in P$. Para o matching não perfeito $M = P \setminus \{e\}$, existe outro matching perfeito P' tal que $M \cap P' = \emptyset$ e $M \cup P'$ é uma floresta linear (visto no lema 4.1). No entanto, se $e \in P'$, todo vértice incidido pelas arestas de $M \cup P'$ teria grau par, o que seria uma contradição, já que $M \cup P'$ é uma floresta. Ou seja, $e \notin P'$. Com isso, é possível concluir que $M \cup P'$ é um caminho hamiltoniano de u a v e que, por consequência, $P \cup P'$ é um ciclo hamiltoniano em Q_d . □

5 Conclusão

Nesse trabalho, enunciamos e demonstramos alguns teoremas interessantes sobre hipercubos. Mais especificamente, demonstramos que todo hipercubo possui a propriedade PMH, provando a conjectura de Kreweras. Nossa demonstração buscou apresentar, de maneira mais simples, a prova original proposta por Fink [1], com pequenas alterações autorais.

Em trabalhos futuros, um enfoque mais computacional pode ser relevante, buscando, por exemplo, implementar algum algoritmo que consiga, de fato, estender um *matching* perfeito de um hipercubo em um ciclo hamiltoniano, como proposto em um artigo mais recente de Fink [7]. Além disso, também seria interessante explorar a propriedade PMH em outros tipos de grafos, como acontece no artigo de Abreu et al. [6].

Referências

- [1] Jiří Fink. Perfect matchings extend to Hamilton cycles in hypercubes. *Journal of Combinatorial Theory, Series B*, 97(6):1074–1076, November 2007. ISSN 00958956. doi: 10.1016/j.jctb.2007. 02.007. URL https://linkinghub.elsevier.com/retrieve/pii/S0095895607000354.
- [2] Socorro Rangel, Valeriano A. de Oliveira, and Silvio A. Araujo. *Elementos de Teoria dos Grafos: Notas de Aula*. IBILCE, Unesp, September 2018. URL https://www.ibilce.unesp.br/Home/Departamentos/MatematicaAplicada/docentes/socorro/grafos---notas-de-aula_set2018.pdf.
- [3] Frank Harary. *Graph theory*. Perseus Books, Cambridge, Mass, 15. print. edition, 2001. ISBN 978-0-201-41033-4. URL https://users.metu.edu.tr/aldoks/341/Book%201%20(Harary).pdf.
- [4] Frank Harary, John P. Hayes, and Horng-Jyh Wu. A survey of the theory of hypercube graphs. *Computers & Mathematics with Applications*, 15(4):277–289, 1988. ISSN 08981221.

- doi: 10.1016/0898-1221(88)90213-1. URL https://linkinghub.elsevier.com/retrieve/pii/0898122188902131.
- [5] G. Kreweras. Matchings and Hamiltonian cycles on hypercubes. *Bulletin of the Institute of Combinatorics and its Applications*, 16, January 1996.
- [6] Marién Abreu, John Baptist Gauci, Domenico Labbate, Federico Romaniello, and Jean Paul Zerafa. Perfect matchings, Hamiltonian cycles and edge-colourings in a class of cubic graphs. *Ars Mathematica Contemporanea*, 23(3), October 2022. ISSN 1855-3974, 1855-3966. doi: 10.26493/1855-3974.23_3. URL http://arxiv.org/abs/2106.00513. arXiv:2106.00513 [math].
- [7] Jiří Fink. Two algorithms extending a perfect matching of the hypercube into a Hamiltonian cycle. *European Journal of Combinatorics*, 88:103111, August 2020. ISSN 0195-6698. doi: 10.1016/j.ejc.2020.103111. URL https://www.sciencedirect.com/science/article/pii/S0195669820300329.

A Apêndice

A.1 Prova alternativa do teorema 2.1

Apresentamos a seguir uma demonstração alternativa do teorema 2.1, utilizando apenas a definição 2.3.

Demonstração. A prova é por indução no número de dimensões *d*.

Para d=1, temos que $Q_d=K_2$, então podemos encontrar uma coloração que atribui uma cor para cada vértice e, trivialmente, nenhum par de vértices vizinhos terão a mesma cor. Logo, Q_1 é 2-colorível e, por consequência, bipartido.

Suponha que $Q_d = (V_d, E_d)$ é bipartido e que seus vértices são descritos pelo conjunto $\{v_i\}_{i=1}^n$, onde n é sua quantidade de vértices. Da definição 2.3, temos $Q_{d+1} = Q_d \times K_2$; isso significa que os vértices de Q_{d+1} são o conjunto $V_{d+1} = \bigcup_{i=1}^n \{(v_i, 0), (v_i, 1)\}$ e, pela definição da operação de produto cartesiano, seu conjunto de arestas é:

$$E_{d+1} = \left(\bigcup_{\substack{i \neq j \\ \{v_i, v_j\} \in E_d}} \{(v_i, 0), (v_j, 0)\}\right) \cup \left(\bigcup_{\substack{i \neq j \\ \{v_i, v_j\} \in E_d}} \{(v_i, 1), (v_j, 1)\}\right) \cup \left\{\{(v_i, 0), (v_i, 1)\}\}_{i=1}^n.$$

Considerando o conjunto de arestas acima, podemos definir os seguintes subgrafos:

$$\begin{cases}
Q' = (V', E') = \left(\{(v_i, 0)\}_{i=1}^n, \bigcup_{\substack{i \neq j \\ \{v_i, v_j\} \in E_d}} \{(v_i, 0), (v_j, 0)\} \right); \\
Q'' = (V'', E'') = \left(\{(v_i, 1)\}_{i=1}^n, \bigcup_{\substack{i \neq j \\ \{v_i, v_j\} \in E_d}} \{(v_i, 1), (v_j, 1)\} \right).
\end{cases} \tag{1}$$

Note que ambos são de fato subgrafos de Q_{d+1} pois seus vértices são subconjuntos dos vértices de Q_{d+1} e suas arestas envolvem apenas seus próprios vértices e estão presentes também em Q_{d+1} .

Além disso, tanto Q' quanto Q'' são isomorfos a Q_d . Para o caso de Q', por exemplo, podemos definir as bijeções:

$$f: V' \to V_d,$$

 $g: E' \to E_d,$

tais que $f((v_i, 0)) = v_i$, $\forall i = 1, \dots, n$, e $g(\{(v_i, 0), (v_j, 0)\}) = \{v_i, v_j\}$, $\forall i \neq j$, com $i, j = 1, \dots, n$. Para Q'', a construção das bijeções é análoga.

Pela hipótese de indução, Q_d é bipartido, então possui uma 2-coloração, que pode ser mapeada para Q' e para Q'', já que são isomorfos a Q_d . Em especial, seja $\mathcal{C} = \{C_1, C_2\}$ o conjunto de cores, podemos fixar uma 2-coloração para Q' e "inverter" suas cores para colorir Q''. Assim, para todo i, se $(v_i, 0)$ for C_1 , então $(v_i, 1)$ será C_2 , e vice-versa. Como essa inversão de cores não gera conflitos, as duas são colorações válidas.

Utilizando as colorações para Q' e Q'' propostas acima para colorir Q_{d+1} , podemos notar, primeiramente, que todos os vértices de Q_{d+1} são coloridos, afinal $V' \cup V'' = V_{d+1}$. Além

disso, por construção, essas colorações já respeitam as arestas $\left(\bigcup_{\substack{i \neq j \\ \{v_i,v_j\} \in E_d}} \{(v_i,0),(v_j,0)\}\right) \cup \left(\bigcup_{\substack{i \neq j \\ \{v_i,v_j\} \in E_d}} \{(v_i,1),(v_j,1)\}\right)$, pois elas já estão presentes em Q' e Q'', restando apenas verificar para as arestas entre os dois subgrafos, ou seja, o conjunto $\left\{\{(v_i,0),(v_i,1)\}\right\}_{i=1}^n$. De fato, com a escolha inverter as cores para colorir Q'', temos que para todo i, se $(v_i,0)$ é C_1 , então $(v_i,1)$ é C_2 , mas se $(v_i,0)$ for C_2 , então $(v_i,1)$ é C_1 , de modo que a coloração continua válida. Portanto, Q_{d+1} é 2-colorível e, por consequência, bipartido.