

UNIVERSITÄT BERN

Towards continuous domain models in Spatial Epidemiology

Garyfallos Konstantinoudis; Dominic Schuhmacher; Haavard Rue; Ben Spycher

Institute of Social and Preventive Medicine ISPM University of Bern

29 August 2018

Geographical Analysis in Spatial Epidemiology

b UNIVERSITÄT BERN

1999-2003

UTM Easting (km)

Cervix cancer incidence in Thailand

1994-1998

- > Generate hypotheses
- > Identify hotspots of environmental contamination
- > Target areas for health interventions

Snow's Cholera Map of London

1989-1993

Konstantinoudis et al 2018 Cancer Causes and Control

Motivation

UNIVERSITÄT BERN

- > Childhood leukaemia: 5.4 per 100,000 person years
- > Leukaemia clusters: Sellafield, Woburn Fallon
- > Putative environmental risk factors

Fallon, Nevada's deadly legacy

In a small town once plagued by childhood cancer, some families still search for answers.

Sierra Crane-Murdoch | March 9, 2014 | From the print edition

One night in May 2008, in a modest ranch house in central Nevada, Ryan Brune woke with a headache. He had complained about the pain earlier that week, but his doctor said it was migraines. This time, he couldn't sleep, and so his mother,

Previous studies

UNIVERSITÄT BERN

- > Areal data: Besag York Mollié (BYM) model
 - Besag Ann Inst Statist Math 1991
 - Acute Leukaemia in France (Faure Eur J Cancer Prev 2009), Childhood leukaemia and Type 1 Diabetes in Yorkshire (Manda et al. Eur J Epidemiol 2009)
- Precise data: Log Gaussian Cox process (LGCP)
 - Møller et al. Scand J Stat 1998
 - Cancer mapping: Lung cancer in Spain (Diggle et al. Stat Sci 2013), Colon and rectum in Minesota (Liang et al. Ann Appl Stat 2008)
 - none for childhood cancers.
- > Simulation studies:
 - Lung and stomach cancer (Li et al. J R Stat Soc C-Appl 2012)
 - Syphilis (Li et al. Methods in Medical Research 2012)

UNIVERSITÄT BERN

Does LGCP on point data provide additional benefit over the BYM model on areal data when:

- Aim 1: Quantifying the risk in space
- Aim 2: Identify high-risk areas

UNIVERSITÄT Bern

- > Cases
 - Swiss Childhood Cancer Registry (SCCR)
 - >90% coverage since 1985
 - Precise location
- > Population
 - Census (1990, 2000, 2010 onwards)
 - Precise location
 - > Geographical units in Switzerland
 - 26 Cantons
 - 2353 municipalities

Figure. Geographical units in Switzerland

b UNIVERSITÄT BERN

> BYM model on municipalities

$$\log(Y_i) = \log(M_i) + \beta_0 + u_i + v_i,$$

$$u_{i|-i} \sim N(\frac{\sum w_{ij}u_j}{\sum w_{ij}}, \frac{\sigma_1^2}{\sum w_{ij}}), v_i \sim N(0, \sigma_2^2), i = 1, ..., m$$

> LGCP model

$$\log[Y(s)] = \log[M(s)] + \beta_0 + u(s)$$

$$u(s) \sim GRF(0, \kappa), \kappa(|h|) = \sigma^2 \rho_{\nu}(|h|/\phi), \rho_{\nu}(\cdot) \text{ is Matèrn}$$

Inference with Integrated Nested Laplace Approximation (INLA)

UNIVERSITÄT BERN

- > Canton of ZH (168 municipalities)
- > N = 205,242 (15%) children
- Leukaemia incidence 1985-2015 (n = 334)

Radius	RR	Times n	decay
1km	2	1	Step
5km	5	5	Smooth
10km	-	10	Flat

Figure. Quintiles of population density

Simulation Metrics

b UNIVERSITÄT BERN

> Root mean integrated square error (RMISE):

$$RMISE = \left\{ E\left[\int w(s) \left(\widehat{R}(s) - R(s)\right)^2 ds \right] \right\}^{1/2}$$

- > ROC curves
 - Exceedance probabilities, i.e $\Pr\left[Y(s)>\frac{n}{N}\right]>\alpha$, for $\alpha=0,0.05,\dots,1$
 - area based sensitivity and Specificity

UNIVERSITÄT Bern

	Step function		Smooth function	
Model	BYM	LGCP	BYM	LGCP
Radius = 1km				
RR=2	4.47 (3.17, 6.81)	6.62 (4.24, 9.88)	4.48 (3.1, 6.88)	6.51 (4.27, 9.9)
RR=5	10.4 (8.77, 12.5)	14.8 (13.1, 17.1)	10.8 (8.82, 12.5)	14.8 (13, 16.8)
Radius = 5km				
RR=2	11.6 (10.6, 13.1)	12.2 (10.8, 14.7)	10.4 (9.32, 12)	11 (9.33, 14.3)
RR=5	22.8 (21.4, 24.5)	21.5 (19.6, 24.6)	19.2 (18, 20.6)	16.8 (14.8, 19.9)
Radius = 10km				
RR=2	14.9 (14.3, 15.8)	12.1 (11, 14.4)	12.3 (11.5, 13.4)	10.1 (8.57, 12.7)
RR=5	28.4 (27.3, 29.8)	22.3 (20.8, 24.6)	21.8 (21, 22.8)	13.9 (12.7, 17)

Results: ROC-curves, Step-function, 5n

UNIVERSITÄT BERN

Example: Childhood leukaemia in Zurich

b UNIVERSITÄT BERN

>
$$\Pr\left(Y(s) > \frac{n}{N}\right) > 0.50$$
 (red solid line)

- > $\Pr\left(Y(s) > \frac{n}{N}\right) > 0.80 \text{ (red dotted line)}$
- > 95% CI 1.11 (0.89, 1.38)

Discussion

UNIVERSITÄT BERN

- > Overall LGCPs preform better compared to BYM models in almost all scenarios considered
- > Our results are consistent with the literature
- > We identified an area of higher leukaemia risk in the canton of Zurich
- > Possible explanations: Failure to correct for population density or environmental risk factors such as air pollution

Our study suggests that LGCPs are preferable over the widely used BYM models.

Thank you for your attention!

Funded by:

- Swiss cancer research (4012–08-2016)
- Swiss national science foundation (PZ00P3_147987)

Garyfallos.konstantinoudis@ispm.unibe.ch

Konstantinoudis G, Schuhmacher D, Rue H, Spycher B. Continuous versus discrete models for disease mapping. *ArXiv preprint arXiv:180804765v1* 2018.

