Project

Amith Ananthram (aa4461) December 5, 2020

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \boldsymbol{x}) = \prod_{k}^{K} p(\mu_{k}) p(\Sigma_{k}) \prod_{i}^{N} (p(\theta_{i}) \prod_{j}^{M} (p(\zeta_{ij}|\theta_{i}) p(x_{ij}|\zeta_{ij}, \mu_{\zeta_{ij}}, \Sigma_{\zeta_{ij}}))$$

1 Appendix

1.1 Derivation of complete conditionals for μ_k and Σ_k

Below is the derivation of the complete conditionals for μ_k and Σ_k , the parameters of our multivariate Gaussian distribution (with Gaussian and inverse-Wishart priors, respectively). Note that these complete conditionals are the same for both variants of our model (embeddings only and embeddings + named entities) as the bag of word embeddings is modeled independently from the bag of words.

 W_k is the set of words across all documents assigned to topic k with size n_{W_k} . $\bar{w}_k = (1/n_{W_k}) \sum_l^{n_{W_k}} w_l$. Updated parameters for the conjugate complete conditionals are highlight in green. Normalizing factors (that is, factors that are constant with respect to the random variable being modeled) which are dropped from the exponents (or in rare cases raised into the exponent) are highlighted in yellow.

$$\begin{split} p(\mu_{k}|\mu_{-k}, \mathbf{\Sigma}, \boldsymbol{\theta}, \boldsymbol{\zeta}, \mathbf{x}) &\propto p(\mu_{k}) \prod_{w \in W_{k}} p(w|\mu_{k}, \Sigma_{k}) \\ &\propto \exp{-\frac{1}{2}(\mu_{k} - m_{k})^{T} S_{k}^{-1}(\mu_{k} - m_{k})} \prod_{w \in W_{k}} \exp{-\frac{1}{2}(w - \mu_{k})^{T} \Sigma_{k}^{-1}(w - \mu_{k})} \\ &\propto \exp{-\frac{1}{2}(\mu_{k} - m_{k})^{T} S_{k}^{-1}(\mu_{k} - m_{k})} \exp{\sum_{w \in W_{k}} -\frac{1}{2}(w - \mu_{k})^{T} \Sigma_{k}^{-1}(w - \mu_{k})} \\ &\propto \exp{-\frac{1}{2}((\mu_{k} - m_{k})^{T} S_{k}^{-1}(\mu_{k} - m_{k}) + \sum_{w \in W_{k}} (w - \mu_{k})^{T} \Sigma_{k}^{-1}(w - \mu_{k}))} \\ &\propto \exp{-\frac{1}{2}((\mu_{k} - m_{k})^{T} S_{k}^{-1}(\mu_{k} - m_{k}) + \sum_{w \in W_{k}} (w^{T} \Sigma_{k}^{-1} w - 2\mu_{k}^{T} \Sigma_{k}^{-1} w + \mu_{k}^{T} \Sigma^{-1} \mu_{k}))} \\ &\propto \exp{-\frac{1}{2}((\mu_{k} - m_{k})^{T} S_{k}^{-1}(\mu_{k} - m_{k}) - 2\mu_{k}^{T} \Sigma_{k}^{-1} n_{W_{k}} \bar{w}_{k} + n_{W_{k}} \mu_{k}^{T} \Sigma^{-1} \mu_{k})} \\ &\propto \exp{-\frac{1}{2}(\mu_{k}^{T} (S_{k}^{-1} + n_{W_{k}} \Sigma^{-1}) \mu_{k} - 2\mu_{k}^{T} (S_{k}^{-1} m_{k} + \Sigma_{k}^{-1} n_{W_{k}} \bar{w}_{k}) + m_{k}^{T} S_{k}^{-1} m_{k}})} \\ &\propto \exp{-\frac{1}{2}(\mu_{k}^{T} \hat{S}_{k}^{-1} \mu_{k} - 2\mu_{k}^{T} \hat{S}_{k}^{-1} \hat{S}_{k} (S_{k}^{-1} m_{k} + \Sigma_{k}^{-1} n_{W_{k}} \bar{w}_{k}))} \\ &\propto \exp{-\frac{1}{2}(\mu_{k}^{T} \hat{S}_{k}^{-1} \mu_{k} - 2\mu_{k}^{T} \hat{S}_{k}^{-1} \hat{m}_{k} + \sum_{k}^{-1} n_{W_{k}} \bar{w}_{k}))} \\ &\sim \exp{-\frac{1}{2}(\mu_{k}^{T} \hat{S}_{k}^{-1} \mu_{k} - 2\mu_{k}^{T} \hat{S}_{k}^{-1} \hat{m}_{k} + \sum_{k}^{-1} n_{W_{k}} \bar{w}_{k}))} \\ &\sim \exp{-\frac{1}{2}(\mu_{k}^{T} \hat{S}_{k}^{-1} \mu_{k} - 2\mu_{k}^{T} \hat{S}_{k}^{-1} \hat{m}_{k} + \sum_{k}^{-1} n_{W_{k}} \bar{w}_{k}))} \\ &\sim \exp{-\frac{1}{2}(\mu_{k}^{T} \hat{S}_{k}^{-1} \mu_{k} - 2\mu_{k}^{T} \hat{S}_{k}^{-1} \hat{m}_{k} + \sum_{k}^{-1} n_{W_{k}} \bar{w}_{k}))} \\ &= \mathcal{N}(\hat{m}_{k}, \hat{S}_{k}), \hat{m}_{k} = \hat{S}_{k}(S_{k}^{-1} m_{k} + \Sigma_{k}^{-1} n_{W_{k}} \bar{w}_{k}), \hat{S}_{k}^{-1} = S_{k}^{-1} + n_{W_{k}} \Sigma^{-1} \end{split}$$

$$\begin{split} p(\Sigma_{k}|\pmb{\mu},\Sigma_{-k},\pmb{\theta},\pmb{\zeta},\pmb{x}) &\propto p(\Sigma_{k}) \prod_{w \in W_{k}} p(w|\mu_{k},\Sigma_{k}) \\ &\propto |\Sigma_{k}|^{-(\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} \operatorname{Tr}(\Psi_{k}\Sigma_{k}^{-1}) \prod_{w \in W_{k}} |\Sigma_{k}|^{-1/2} \exp{-\frac{1}{2}}(w-\mu_{k})^{T} \Sigma_{k}^{-1}(w-\mu_{k}) \\ &\propto |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}(\Psi_{k}\Sigma_{k}^{-1}) + \sum_{w \in W_{k}} (w-\mu_{k})^{T} \Sigma_{k}^{-1}(w-\mu_{k})) \\ &\propto |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}(\Psi_{k}\Sigma_{k}^{-1}) + \sum_{w \in W_{k}} \operatorname{Tr}((w-\mu_{k})^{T} \Sigma_{k}^{-1}(w-\mu_{k}))) \\ &\propto |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}(\Psi_{k}\Sigma_{k}^{-1}) + \sum_{w \in W_{k}} \operatorname{Tr}((w-\mu_{k})^{T}(w-\mu_{k})\Sigma_{k}^{-1})) \\ &\propto |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}(\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k})\Sigma_{k}^{-1})) \\ &\propto |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1})) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1}) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k})^{T}(w-\mu_{k}))\Sigma_{k}^{-1}) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k}))\Sigma_{k}^{-1}) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname{Tr}((\Psi_{k}\Sigma_{k}^{-1} + \sum_{w \in W_{k}} (w-\mu_{k}))\Sigma_{k}^{-1}) \\ &= |\Sigma_{k}|^{-(n_{W_{k}}+\nu_{k}+d+1)/2} \exp{-\frac{1}{2}} (\operatorname$$