概率统计习题

方兴

浙江工业大学

习题

习题 1

设 A, B, C 为随机事件,则()

- A) 若 $AB \subseteq C$, 则 $A \subseteq C$ 或 $B \subseteq C$ B) 若 $AB \subseteq C$, 则 $A \subseteq C$ 且 $B \subseteq C$
- C) 若 A ⊂ C 或 B ⊂ C, 则 A ∪ B ⊂ C
- C) $A \cap C$ $A \cap C$ $A \cap B \cap C$, $M \cap A \cap B \cap C$

习题 1

设 A, B, C 为随机事件,则()

- A) 若 $AB \subseteq C$, 则 $A \subseteq C$ 或 $B \subseteq C$ B) 若 $AB \subseteq C$, 则 $A \subseteq C$ 且 $B \subseteq C$
- C) 若 A ⊂ C 或 B ⊂ C, 则 A ∪ B ⊂ C
- D) 若 $A \subseteq C$ 且 $B \subseteq C$, 则 $A \cup B \subseteq C$

解答

(D).

习题 2

设随机事件 A 表示"甲获胜或乙获胜", B 表示"甲获胜且乙获胜",则"甲、乙中恰有一人获胜"是()

A) AB B) $A \cup B$ C) $A\overline{B}$ D) $\overline{A}B$

习题 2

设随机事件 A 表示"甲获胜或乙获胜", B 表示"甲获胜且乙获胜",则"甲、乙中恰有一人获胜"是()

A) AB B) $A \cup B$ C) $A\overline{B}$ D) $\overline{A}B$

解答

(C).

习题 3

设 A, B, C 为随机事件, 若 $A \cup C = B \cup C$, 则 () A) A = B B) AC = BC C) $A\overline{C} = B\overline{C}$ D) $\overline{A}C = \overline{B}C$

习题 3

设 A, B, C 为随机事件, 若 $A \cup C = B \cup C$, 则() A) A = B B) AC = BC C) $A\overline{C} = B\overline{C}$

D) $\overline{A}C = \overline{B}C$

解答

(C).

习题 4

随机事件 AB∪C 的逆事件是(

A) $\overline{A} \overline{B} \cup \overline{C}$ B) $\overline{AB} \cup \overline{C}$ C) $\overline{A} \overline{B} \overline{C}$

D) $\overline{AB} \overline{C}$

解答

(D).

习题 5

投掷一枚硬币, 若正面, 再投掷一枚硬币; 若反面, 再投掷一枚骰子。用 Z,F 表示"正面"、"反面", 用 1,2,3,4,5,6 表示点数, 写出样本空间。

习题 5

投掷一枚硬币,若正面,再投掷一枚硬币;若反面,再投掷一枚骰子。用 Z,F 表示"正面"、"反面",用 1,2,3,4,5,6 表示点数,写出样本空间。

解答

 $\Omega = \{ZZ, ZF, F1, F2, F3, F4, F5, F6\}$

习题 6

投掷一枚骰子, 取样本空间 $\Omega = \{1, 3, 5, V\}$, 则随机事件"点数为单且

小" = ____; "点数为双" = _____。

习题 6

投掷一枚骰子,取样本空间 $\Omega = \{1,3,5,V\}$,则随机事件"点数为单且小" = _____; "点数为双" = _____。

解答

 $\{1,3\}, \{V\}_{\circ}$

习题 7

投掷三枚骰子。考虑投掷的次序,并用 Z,F 表示正反,写出样本空间。

习题 7

投掷三枚骰子。考虑投掷的次序,并用 Z,F 表示正反,写出样本空间。

解答

 $\Omega = \{\textit{ZZZ}, \textit{ZZF}, \textit{ZFZ}, \textit{ZFF}, \textit{FZZ}, \textit{FZF}, \textit{FFZ}, \textit{FFF}\}.$

习题 1

从标号从 1 到 10 的卡片中随机抽出 3 张,所得最大号码为 5 的概率 是 ()

A) $\frac{1}{60}$ B) $\frac{1}{48}$ C) $\frac{1}{20}$ D) $\frac{1}{12}$

习题 1

从标号从 1 到 10 的卡片中随机抽出 3 张,所得最大号码为 5 的概率 是 ()

A) $\frac{1}{60}$ B) $\frac{1}{48}$ C) $\frac{1}{20}$ D) $\frac{1}{12}$

解答

(C).

习题 2

将 3 本语文书、3 本数学书和 2 本英语书随机排成一行,则 3 本数学书排在一起,且 2 本英语书排在一起的概率是。

习题 2

将3本语文书、3本数学书和2本英语书随机排成一行,则3本数学书排在一起,且2本英语书排在一起的概率是____。

解答

 $\frac{1}{28}$.

习题 3

10 把钥匙中有 2 把能打开门,从这 10 把钥匙中随机选取 3 把,能用 这 3 把钥匙开门的概率是。

习题 3

10 把钥匙中有 2 把能打开门,从这 10 把钥匙中随机选取 3 把,能用这 3 把钥匙开门的概率是。

解答

 $\frac{8}{15}$.

习题 4

有5名男同学和3名女同学随机排成一行,所有女同学都不相邻的概率是____。

习题 4

有 5 名男同学和 3 名女同学随机排成一行,所有女同学都不相邻的概率 是 _____。

解答

 $\frac{5}{14}$.

习题 5

从装有3个红球和4个蓝球的盒中随机选出3个球,所得蓝球比红球 多的概率是 。

习题 5

从装有 3 个红球和 4 个蓝球的盒中随机选出 3 个球, 所得蓝球比红球 多的概率是 。

解答

 $\frac{22}{35}$.

习题 5

投掷 11 枚均匀的硬币,正面朝上的数目比反面朝上的数目多的概率 是。

习题 5

投掷 11 枚均匀的硬币,正面朝上的数目比反面朝上的数目多的概率 是。

解答

 $\frac{1}{2}$.

习题 1

已知
$$0 < P(A) < 1, 0 < P(B) < 1$$
。若 $P(A|B) + P(\overline{A}|\overline{B}) > 1$,则 () A) $P(A|B) > \frac{1}{2}$ B) $P(A|B) < \frac{1}{2}$ C) $P(A|B) > P(A)$ D) $P(A|B) < P(A)$

习题 1

已知
$$0 < P(A) < 1, 0 < P(B) < 1$$
。若 $P(A|B) + P(\overline{A}|\overline{B}) > 1$,则 () A) $P(A|B) > \frac{1}{2}$ B) $P(A|B) < \frac{1}{2}$ C) $P(A|B) > P(A)$ D) $P(A|B) < P(A)$

解答

(C).

习题 2

已知
$$0 < P(A) < 1, 0 < P(B) < 1$$
。若 $P(A|B) > P(B|A)$,则() A) $P(A|\overline{B}) > P(B|\overline{A})$ B) $P(A|\overline{B}) < P(B|\overline{A})$ C) $P(\overline{A}|\overline{B}) > P(\overline{B}|\overline{A})$ D) $P(\overline{A}|\overline{B}) < P(\overline{B}|\overline{A})$

习题 2

已知
$$0 < P(A) < 1, 0 < P(B) < 1$$
。若 $P(A|B) > P(B|A)$,则 () A) $P(A|\overline{B}) > P(B|\overline{A})$ B) $P(A|\overline{B}) < P(B|\overline{A})$

C)
$$P(\overline{A}|\overline{B}) > P(\overline{B}|\overline{A})$$
 D) $P(\overline{A}|\overline{B}) < P(\overline{B}|\overline{A})$

解答

(D).

习题 3

设 P(A) = 2P(B) = 3P(AB) > 0,则 $P(A|A \cup B) =$ ______

习题 3

设
$$P(A) = 2P(B) = 3P(AB) > 0$$
,则 $P(A|A \cup B) =$ _____。

解答

 $\frac{6}{7}$.

习题 4

己知
$$P(A) = 0.5$$
, $P(A \cup \overline{B}) = 0.8$, 则 $P(A \cup B) =$ ______。

习题 4

已知
$$P(A) = 0.5$$
, $P(A \cup \overline{B}) = 0.8$, 则 $P(A \cup B) =$ _____。

解答

0.7.

习题 5

盒中装有 4 红 4 蓝共 8 个球,从中随机选取 4 个,所得红球数不超过 2 的概率是。

习题 5

盒中装有 4 红 4 蓝共 8 个球,从中随机选取 4 个,所得红球数不超过 2 的概率是。

解答

 $\frac{53}{70}$.

习题 6

己知
$$P(A \cup B) = 0.8, P(A) = 0.5, P(AB) = 0.1,$$
则 $P(B|A \cup B) =$ _____。

习题 6

己知
$$P(A \cup B) = 0.8, P(A) = 0.5, P(AB) = 0.1,$$
则 $P(B|A \cup B) =$ _____。

解答

 $\frac{1}{2}$.

习题 7

习题 7

解答

_ 6 ·

习题 1

判断对错。

- 若 A 与 B 独立, AB 与 C 独立, 则 P(ABC) = P(A)P(B)P(C)。()
 - ② 若 A 与 B 独立, A 与 BC 独立,则 P(ABC) = P(A)P(B)P(C)。
 ()
- ③ 若 A, B, C 两两独立,则 $\overline{A}, \overline{B}, \overline{C}$ 两两独立。 ()

习题 1

判断对错。

- 若 A 与 B 独立, AB 与 C 独立, 则 P(ABC) = P(A)P(B)P(C)。()
 - ② 若 A 与 B 独立, A 与 BC 独立,则 P(ABC) = P(A)P(B)P(C)。
 ()
- () ⑤ 若 A, B, C 两两独立,则 Ā, B, C 两两独立。 ()
- 解答
 - **●** ✓

 - **③** ✓

习题 2

甲盒中5红3蓝共8个球, 乙盒中有3红3蓝共6个球。

- 从所有球中随机选一个。取到的球为红球的概率是 _____; 若取到的球是红球,该球从甲盒中抽取的概率是 _____。
- ② 从甲乙两盒中随机选一个,再从选中的盒中随机选一个球。取到的球为红球的概率是 _____;若取到的球是红球,该球从甲盒中抽取的概率是 。

习题 2

甲盒中5红3蓝共8个球,乙盒中有3红3蓝共6个球。

- 从所有球中随机选一个。取到的球为红球的概率是 _____; 若取到的球是红球,该球从甲盒中抽取的概率是 _____。
- ② 从甲乙两盒中随机选一个,再从选中的盒中随机选一个球。取到的球为红球的概率是 _____;若取到的球是红球,该球从甲盒中抽取的概率是 ____。

- $\frac{4}{7}$; $\frac{5}{8}$.
- $\frac{9}{16}$; $\frac{5}{9}$.

习题 3

盒中有2红3蓝共5个球,从中随机抽取一个,将该球放回,并放回同颜色的球2个;再从盒中随机取出2个球,恰有1个红球的概率是____。

习题 3

盒中有2红3蓝共5个球,从中随机抽取一个,将该球放回,并放回同颜色的球2个;再从盒中随机取出2个球,恰有1个红球的概率是____。

解答

 $\frac{18}{35}$.

习题 4

设一箱产品有5件,其中有0,1,2件次品的概率分别为2/3,1/6,1/6。从一箱产品中随机抽取1件检验,若检验为合格品则该箱产品通过检验。若1件合格品一定检验合格,而1件次品检验合格的概率为1/6。若一箱产品通过检验,则该箱中全是合格品的概率是____。

习题 4

设一箱产品有5件,其中有0,1,2件次品的概率分别为2/3,1/6,1/6。从一箱产品中随机抽取1件检验,若检验为合格品则该箱产品通过检验。若1件合格品一定检验合格,而1件次品检验合格的概率为1/6。若一箱产品通过检验,则该箱中全是合格品的概率是____。

解答

 $\frac{8}{11}$.

习题 1

设 X 的分布列为 $P(X = i) = \frac{C}{i(i+1)}$, i = 1, 2, 3, 4, 5, 则 $C = _____$; $P(X 为 奇 数) = _____$ 。

解答

 $\frac{6}{5}$, $\frac{37}{50}$.

习题 2

从标号 $1 \le 6$ 的卡片中随机选取两张,所得号码的最大值记为 X,求 X 的分布列。

X	2	3	4	5	6
Р	$\frac{1}{15}$	2 15	3 15	4 15	5 15

习题 3

设离散型变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1, \\ 0.3, & -1 \le x < 1, \\ 0.7, & 1 \le x < 2, \\ 1, & 2 \le x. \end{cases}$$

求 X 的分布列。

,	4	77	
- 7	11/2	똗	
- /	4		

Х	-1	1	2
Р	0.3	0.4	0.3

习题 4

设 $X \sim P(\lambda)$, 若

$$P(X = 4) + P(X = 3) = 5P(X = 2),$$

则 $\lambda =$ _____.

解答

<u>6</u>.

习题 5

设 $X \sim B(n,p)$, 若

P(X = 2) = 4P(X = 1) = 40P(X = 0),

-5, $-\frac{2}{3}$.

习题 1

设连续型随机变量 X 的密度函数

$$f(x) = \begin{cases} \frac{1}{x}, & \text{e } < x < A, \\ 0, & \text{#.e.} \end{cases}$$

解答

 $\underline{e^2}$; $\underline{1 - \ln 2}$.

习题 2

设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 1, & x \ge 0, \\ Ae^x, & x < 0. \end{cases}$$

若
$$P(X=0)=\frac{1}{2}$$
,则常数 $A=$ ______, $P(|X|<1)=$ _____。

$$\frac{1}{2}$$
, $1 - \frac{1}{2e}$.

习题 3

设
$$X \sim P(\lambda)$$
, $Y \sim E(\lambda)$, 若 $P(X \le 1) = 4P(Y \ge 1)$, 则 $\lambda =$ _____。

解答

3.

习题 4

设 $X_1 \sim N(1, \sigma^2)$, $X_2 \sim N(1, 2\sigma^2)$, $X_3 \sim N(0, \sigma^2)$, 令

$$p_i = P(|X_i| < 1).$$

A) $p_1 < p_2 < p_3$ B) $p_2 < p_3 < p_1$

C)
$$p_2 < p_1 < p_3$$
 D) $p_3 < p_2 < p_1$

解答

C.

习题 5

设
$$X \sim U(a,b)$$
,若 $P(X < 2|X > 1) = \frac{1}{3}$, $P(X < 0) = \frac{1}{3}$,则 $a = _____$, $b = _____$ 。

解答

习题 6

假设一零件的规格(单位: cm)服从正态分布 $N(12,0.4^2)$,则其规格在 (11.6,12.8) 范围内的概率是 ____。 (已知 $\Phi(1)=0.8413, \Phi(2)=0.9772$)

解答

<u>0.8185</u>.

习题 1

设 X 的分布表为

X	-2	0	1	3
Р	0.4	0.2	0.3	0.1

求
$$Y = |X - 3| + X^2$$
 的分布列。

Υ	3	9
Р	0.5	0.5

习题 2

设X的密度函数为

$$f_X(x) = \begin{cases} 4xe^{-2x}, & x > 0, \\ 0, & x < 0. \end{cases}$$

则 $Y = \operatorname{arctan}(X)$ 的密度函数 $f_Y(y) =$ ______。

$$\begin{cases} 4\tan(y)\sec^2(y)e^{-2\tan(y)}, & 0 < y < \frac{\pi}{2}, \\ 0, & 其他. \end{cases}$$

习题 3

设X的密度函数

$$f_X(x) = \begin{cases} 1 - |X|, & -1 < x < 1, \\ 0, & \text{ #.w.} \end{cases}$$

则
$$Y = X^2$$
 的密度函数 $f_Y(y) =$ ______。

$$\begin{cases} \frac{1}{\sqrt{y}} - 1, & \quad 0 < y < 1, \\ 0, & \quad \mbox{ \sharp \mathfrak{t}.} \end{cases}$$

习题 4

设X的密度函数

$$f_X(x) = Ce^{-\frac{x^2-2x}{4}},$$

则
$$Y = 2X + 1$$
 的密度函数 $f_Y(y) =$ _____。(表达式不含 C)

$$\frac{1}{4\sqrt{\pi}}e^{-\frac{(y-3)^2}{16}}$$
.

习题 5

设X的分布函数

$$F_X(x) = \begin{cases} 1 - \frac{1}{2}e^{-2x^2}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

则
$$Y = X^2 + 1$$
 的分布函数 $F_Y(y) =$ ______。

$$\begin{cases} 1 - \frac{1}{2}e^{-2(y-1)}, & y \ge 1, \\ 0, & y < 1. \end{cases}$$

习题 1

设 X 的分布列为

Χ	-2	0	1	2
Р	0.2	0.3	0.4	0.1

则 EX =____。

解答

0.2, 1.56.

习题 2

设X的密度函数

$$f(x) = \begin{cases} 2x^2 + \frac{1}{3}, & 0 < x < 1, \\ 0, & \text{#.e.} \end{cases}$$

 $\frac{2}{3}$, $\frac{1}{15}$.

习题 3

设X的密度函数

$$f(x) = \begin{cases} A, & 1 < x < 2, \\ B, & 3 < x < 4, \\ 0, & \sharp \text{ th.} \end{cases}$$

且
$$EX = 2$$
,则 $A = _____$, $B = _____$; $Var(X) = _____$ 。

$$\frac{3}{4}$$
, $\frac{1}{4}$; $\frac{5}{6}$ °

习题 4

设
$$X \sim U(0,\pi), Y = \sin X$$
,则 $EY = _____, E(Y^2) = _____$ 。

$$\frac{2}{\pi}$$
, $\frac{1}{2}$ °

习题 5

设
$$X, Y$$
 的密度函数分别为 f_X, f_Y ,且 $EX = 1, Var(X) = 2^2$, $EY = 0$, $Var(Y) = 3^2$ 。若 Z 的密度函数为 $\frac{1}{2}(f_X + f_Y)$,则 $EZ = _____$, $Var(Z) = _____$ 。

解答

 $\frac{1}{2}$, $\frac{27}{4}$ \circ

3.2 常见分布的期望和方差

习题 1

设 $X \sim U(-a, 2a)$, EX = 1, 则 Var(X) =_____。

解答

3.

习题 2

解答

习题 3

假设某人每周 1 次去银行办业务,每次的等待时间(单位:小时)服从指数分布 E(3)。若等待时间超过 20 分钟,则其不再等待而离开。记 X 为其 4 周内未办成业务的次数,

则 EX =______,Var(X) =_____。

解答

 $\frac{4}{e}$, $\frac{4}{e}(1-\frac{1}{e})$.

习题 4

投掷 3 枚均匀硬币, 直到 3 枚硬币的正反相同。记 X 为投掷次数,则 $EX = ______, Var(X) = _______。$

解答

<u>4</u>, <u>12</u>.

习题 5

设 X 的密度函数

$$f(x) = Ce^{-(x^2+2x)},$$

其中 C 为常数,则 EX = _____, Var(X) = _____。

 $\underline{}$ -1 , $\underline{}$.

习题 1

盒中有 3 红 2 蓝共 5 个球,从中随机抽取 2 个,抽到的红球数记为 X,则 $\nu_3(X) =$ _____。

解答

习题 2

设
$$X \sim P(\lambda)$$
, $E(X^2) = 6$, 则 $E[X(X-1)(X-2)] = ____$ 。

解答

习题 3

设X的密度函数

$$f(x) = \begin{cases} \frac{2}{5} + \frac{3}{10}x, & 0 < x < 1, \\ \frac{3}{10}x, & 1 < x < 2, \\ 0, & \sharp \text{ th.} \end{cases}$$

解答

 $\frac{101}{50}$, $\frac{1}{50}$

习题 4

设X的密度函数

$$f(x) = \begin{cases} 4xe^{-2x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

则
$$\nu_4(X) =$$
_____。

解答 _6_.

习题 5

设义的分布表为

X	0	1	2
Р	0.3	0.4	0.3

则 X 的峰度系数 $K(X) = _____$ 。

解答

 $-\frac{4}{3}$

习题 6

已知 $X \sim N(\mu, \sigma^2)$, $\nu_4(X) = 12$, 则 $\sigma^2 =$ _____。

解答

习题 4.1 (1)

设(X,Y)的联合分布表为

Y	-1	0	1	2
1	0.2	а	0.05	b
2	0.15	0.1	0.05	0.15

满足
$$P(X + Y > 2) = 0.3$$
, 则

- $\mathbf{0} \ a =$;
- ② b = ____;
- Y 的边缘概率函数是 ____。

解答 4.1 (1)

- 0.2;
- <u>0.1</u>;
- X
 -1
 0
 1
 2

 P
 0.35
 0.3
 0.1
 0.25
- Y 1 2P 0.55 0.45

习题 4.1 (2)

设X,Y的联合密度函数

$$f(x,y) = \begin{cases} A(x+2y), & 0 < x < 1-y < 1, \\ 0, & \sharp \text{ i.e.} \end{cases}$$

- 常数 A = ____;
- $P(X < Y) = _{;}$
- ③ X 的边缘密度函数 $f_X(x) = _____;$
- Y 的边缘密度函数 f_Y(y) = _____。

解答 4.1 (2) ① $\frac{2}{12}$; ② $\frac{7}{12}$; ③ $\left\{ \begin{array}{l} 2(1-x), & 0 < x < 1, \\ 0, & \pm w. \end{array} \right.$; ④ $\left\{ \begin{array}{l} 1+2y-3y^2, & 0 < y < 1, \\ 0, & \pm w. \end{array} \right.$;

习题 4.1 (3)

设X,Y的联合分布函数

$$F(x,y) = \begin{cases} A(B + \arctan(x))(C - e^{-y}), & y > 0, \\ 0, & y \le 0. \end{cases}$$

- **1** A =____;
- ② B = ____;
- $C = _{::};$
- Y 的边缘分布函数 F_Y(y) = ____。

- 1 $\frac{1}{\pi}$; $\frac{\pi}{2}$;
- **3** <u>1</u>;

习题 4.2 (1)

设 $(X,Y) \sim U(\Omega)$, 其中 $\Omega = \{(x,y): x^2 + y^2 < 1\}$, 则 P(X+Y>1) =______, X 的密度函数 $f_X(x) =$ ______。

设
$$(X,Y) \sim U(\Omega)$$
, 其中 $\Omega = \{(x,y) : x^2 + y^2 < 1\}$, 则 $P(X+Y>1) =$ ______, X 的密度函数 $f_X(x) =$ ______。

$$\frac{\pi-2}{4\pi}$$
; $\begin{cases} \frac{2}{\pi}\sqrt{1-x^2}, & -1 < x < 1, \\ 0, &$ 其他.

习题 4.2 (2)

设 $(X,Y) \sim N(1,2;2^2,3^2;-0.5),$

则 EX =______, EY =______, Var(X) =______。

设 $(X,Y) \sim N(1,2;2^2,3^2;-0.5)$,则 EX =______,EY =_____,Var(X) =_____。

<u>1</u>; <u>2</u>; <u>4</u>。

习题 4.2 (3)

设X,Y的联合分布表

Y	-1	1	2
0	0.2	0.1	0.2
1	0.1	0.3	0.1

求给定 Y 条件下 X 的条件分布。

解答 4.2 (3)

X	-1	1	2
$P_{X Y}(\cdot 0)$	0.4	0.2	0.4
$P_{X Y}(\cdot 1)$	0.2	0.6	0.2

习题 4.2 (4)

设X,Y的联合分布表

Y	-1	1	2
0	<u>1</u> 3	<u>1</u>	<u>1</u>
1	а	b	С

若 X, Y 独立, 则 a = _____, b = _____, c = _____.

习题 4.2 (4)

设X,Y的联合分布表

若 X, Y 独立,则 a = _____, b = _____, c = _____

解答 4.2 (4)

 $\frac{1}{6}$; $\frac{1}{12}$; $\frac{1}{12}$.

习题 4.2 (5)

根据联合密度函数, 判断两个边缘分布是否独立。

1

$$f(x,y) = \begin{cases} \frac{1}{2}xy, & 0 < x < y < 2, \\ 0, & \text{ i.e.} \end{cases}$$

2

$$f(x,y) = \begin{cases} \frac{1}{\pi e^{x}(1+y^{2})}, & 0 < x < \infty, \\ 0, &$$
其他.

习题 4.2 (5)

根据联合密度函数, 判断两个边缘分布是否独立。

3

$$f(x,y) = \begin{cases} xy + \frac{1}{4}(x+y+1), & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ i.e.} \end{cases}$$

4

$$f(x,y) = \begin{cases} \frac{1}{2}e^{-(|x|+2|y|)}, & x > 0, \\ e^{-(2|x|+2|y|)}, & x \le 0. \end{cases}$$

解答 4.2 (5)

- 不独立
- ② 独立
- ◎ 独立
- 独立

习题 4.3 (1)

设X,Y的联合分布表

Y	-1	1	2
-1	0.05	0.1	0.1
0	0.2	0	0.25
1	0	0.1	0.2

则 Z = |X| + |Y| 的分布列是 _____。

习题 4.3 (2)

设 X, Y 的联合密度函数

$$f(x,y) = \begin{cases} 3x, & 0 < y < x < 1, \\ 0, & \sharp \text{ i.e.} \end{cases}$$

则 Z = X + Y 的密度函数 $f_Z(z) =$ _____。

习题 4.3 (2)

设 X, Y 的联合密度函数

$$f(x,y) = \begin{cases} 3x, & 0 < y < x < 1, \\ 0, & \sharp \mathfrak{A}. \end{cases}$$

则 Z = X + Y 的密度函数 $f_Z(z) =$ _____。

$$\begin{cases} \frac{9}{8}z^2, & 0 < z < 1, \\ \frac{3}{2} - \frac{3}{8}z^2, & 1 < z < 2, \\ 0, & 其他. \end{cases}$$

习题 4.3 (3)

设 X, Y 相互独立, $X \sim U(0,1)$, $Y \sim E(1)$, 则 Z = X + Y 的密度函数是 。

习题 4.3 (3)

设 X, Y 相互独立, $X \sim U(0,1)$, $Y \sim E(1)$, 则 Z = X + Y 的密度函数是 _____。

解答 4.3 (3)

$$\begin{cases} 0, & z < 0, \\ 1 - e^{-z}, & 0 < z < 1, \\ e^{-z}(e - 1), & z > 1. \end{cases}$$

习题 4.3 (4)

设 X,Y 相互独立, $X \sim U(0,1)$, $Y \sim E(1)$, 则 $Z_{max} = max\{X,Y\}$ 的密度函数是

习题 4.3 (4)

设 X, Y 相互独立, $X \sim U(0,1)$, $Y \sim E(1)$, 则 $Z_{max} = max\{X, Y\}$ 的密度函数是 _____。

解答 4.3 (4)

$$\begin{cases} 0, & z < 0, \\ 1 - e^{-z} + z e^{-z}, & 0 < z < 1, \\ e^{-z}, & z > 1. \end{cases}$$

习题 4.3 (5)

设连续型变量 X_1, X_2, \cdots, X_n 独立同分布, 共同的分布函数

$$F(x) = \begin{cases} \frac{x}{1+x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

则
$$Z_{\mathsf{min}} = \mathsf{min}\{X_1, X_2, \cdots, X_n\}$$
 的密度函数是 _____。

4.3多维随机变量的函数

习题 4.3 (5)

设连续型变量 X_1, X_2, \cdots, X_n 独立同分布,共同的分布函数

$$F(x) = \begin{cases} \frac{x}{1+x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

则 $Z_{\min} = \min\{X_1, X_2, \cdots, X_n\}$ 的密度函数是 _____。

$$\begin{cases} \frac{n}{(1+z)^{n+1}}, & 0 < z < 1, \\ 0, & z < 0. \end{cases}$$

习题 4.4 (1)

设X,Y的联合分布表为

Y	-1	1	2
1	0.1	0.3	0.2
2	0.2	0.1	0.1

则 X, Y 的协方差 Cov(X, Y) =_____。

习题 4.4 (1)

设 X, Y 的联合分布表为

Y	-1	1	2
1	0.1	0.3	0.2
2	0.2	0.1	0.1

则 X, Y 的协方差 Cov(X, Y) =_____。

解答 4.4 (1)

习题 4.4 (2)

设 X, Y 的联合密度函数

$$f(x,y) = \begin{cases} \frac{1}{2}(x+y+1), & 0 < x < 1, 0 < y < 1, \\ 0, & \text{ 其他.} \end{cases}$$

则相关系数 $\rho(X,Y) =$ _____。

习题 4.4 (2)

设 X, Y 的联合密度函数

$$f(x,y) = \begin{cases} \frac{1}{2}(x+y+1), & 0 < x < 1, 0 < y < 1, \\ 0, & \text{#$te}. \end{cases}$$

则相关系数 $\rho(X,Y) =$ _____。

$$-\frac{1}{47}$$
.

设
$$Var(X) = 1$$
, $Var(Y) = 4$, $\rho(X, Y) = -\frac{1}{2}$, 则 $\rho(X + Y, X - Y) =$ _______。

$$-\sqrt{\frac{3}{7}}$$
.

习题 4.4 (4)

设 $(X,Y) \sim N(1,2;2^2,3^2;\frac{1}{2})$,则 Z = 3X - 2Y + 2 的密度函数 是

习题 4.4 (4)

设 $(X,Y) \sim N(1,2;2^2,3^2;\frac{1}{2})$,则 Z = 3X - 2Y + 2 的密度函数 是

解答 4.4 (4)

$$\frac{1}{6\sqrt{2\pi}}e^{-\frac{(x-1)^2}{72}}$$

5.1极限定理

习题 5.1 (1)

设随机变量 X 满足 EX=3, $E(X^2)=10$, 则由切比雪夫不等式,

$$P(0 < X < 6) \ge _{---}$$
.

解答 5.1 (1)

<u>8</u> .

5.1极限定理

习题 5.1 (2)

设 X_1,X_2,X_3,\cdots 独立同分布,共同的分布为 U(-1,5),对任意 $\epsilon>0$,

$$\lim_{n \to \infty} P(|\frac{1}{n}(X_1X_2 + X_3X_4 + \dots + X_{2n-1}X_{2n}) - A| < \epsilon) = 1,$$

解答 5.1 (2)

<u>4</u>.

5.1极限定理

习题 5.1 (3)

设车间内有 600 台机器,每台机器处于工作状态时需要 20 kW 的电力。假设每台机器是否处于工作状态相互独立,且处于工作状态的概率均为 0.4。根据中心极限定理估算,至少应提供该车间多少 kW 电力,才能使电力不足的概率不高于 1%.

解答 5.1 (3)

<u>5360</u>.

6.1 数理统计基本概念、卡方分布

习题 6.1 (1)

设总体 X 的一组样本观测值为

10.2, 11.3, 9.7, 10.5, 10.3

则样本均值 \overline{x} = _____,样本方差 s^2 = _____。

解答 6.1 (1)

10.4; 0.34.

6.1 数理统计基本概念、卡方分布

习题 6.1 (2)

设总体 $X \sim U(a-1,a+1)$, 其中 a 为未知参数。 X_1,X_2,X_3 是 X 的样本,判断下列样本函数是否为统计量。

- $(X_1-a)^2+(X_2-a)^2;$

解答 6.1 (2)

- 是
- ② 不是
- ❸ 是

6.1 数理统计基本概念、卡方分布

习题 6.1 (3)

设总体 $X \sim N(2,2^2)$, X_1,X_2,X_3 是 X 的样本, 若

$$A(X_1-X_2)^2+B(X_3-c)^2$$

服从 χ^2 分布,则自由度为 ______; A = _______, B = _______, c = _______,

 $\underline{2}$; $\underline{\frac{1}{8}}$; $\underline{\frac{1}{4}}$; $\underline{2}$.

习题 6.2 (1)

设总体 $X \sim N(0, \sigma^2)$, X_1, X_2, X_3, X_4, X_5 是 X 的样本。若

$$\frac{C(X_1-X_2)}{\sqrt{X_3^2+X_4^2+X_5^2}}$$

习题 6.2 (1)

设总体 $X \sim N(0, \sigma^2)$, X_1, X_2, X_3, X_4, X_5 是 X 的样本。若

$$\frac{C(X_1-X_2)}{\sqrt{X_3^2+X_4^2+X_5^2}}$$

服从 t 分布,则 $C = _____$ 。

习题 6.2 (2)

设总体 $X \sim N(0, \sigma^2)$, $X_1, X_2, X_3, X_4, X_5, X_6$ 是 X 的样本。若

$$\frac{C(X_1-X_2)^2}{X_3^2+X_4^2+X_5^2+X_6^2}$$

服从 F 分布,则自由度为 _____, C = _____。

习题 6.2 (2)

设总体 $X \sim N(0, \sigma^2)$, $X_1, X_2, X_3, X_4, X_5, X_6$ 是 X 的样本。若

$$\frac{C(X_1 - X_2)^2}{X_3^2 + X_4^2 + X_5^2 + X_6^2}$$

服从 F 分布,则自由度为 _____,C = _____。

(1,2), 2.

习题 6.2 (3)

设总体 $X \sim N(1,2^2)$, $X_1, X_2, X_3, X_4, X_5, X_6$ 是 X 的样本。 令 $\overline{X} = \frac{1}{2}(X_1 + X_2 + X_3)$,

$$\frac{C[(X_1-\bar{X})^2+(X_2-\bar{X})^2+(X_3-\bar{X})^2]}{(X_4+X_5+X_6-a)^2}$$

服从 F 分布,则自由度为 _____, C = _____, a = _____。

习题 6.2 (3)

设总体 $X \sim N(1,2^2)$, $X_1, X_2, X_3, X_4, X_5, X_6$ 是 X 的样本。 令 $\overline{X} = \frac{1}{3}(X_1 + X_2 + X_3)$,

$$\frac{C[(X_1-\bar{X})^2+(X_2-\bar{X})^2+(X_3-\bar{X})^2]}{(X_4+X_5+X_6-a)^2}$$

服从 F 分布,则自由度为 _____, C = _____, a = _____。

(2,1), $\frac{3}{2}$, 3.

7.1 点估计的评价标准

习题 7.1 (1)

设X的密度函数

$$f(x;\theta) = egin{cases} heta + 2x - 2 heta x, & 0 \leq x \leq 1, \ 0, &$$
其他.

其中 $0 < \theta < 1$ 为未知参数。设 X_1, X_2, \dots, X_n 是 X 的样本, $\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n)$,若 $A + B\overline{X}$ 是 θ 的无偏估计,则 A = , B = 。

解答 7.1 (1)

<u>4</u>; <u>-6</u>.

7.1 点估计的评价标准

习题 7.1 (2)

设总体 $X \sim P(\lambda)$, $Y \sim P(2\lambda)$ 相互独立, X_1, X_2, X_3 是 X 的样本, Y_1, Y_2, Y_3 是 Y 的样本, 则当 $A = _$ ______ 时,

$$A(X_1 + X_2 + X_3) + B(Y_1 + Y_2 + Y_3)$$

是 λ 的最有效的无偏估计。

解答 7.1 (2)

$$\frac{1}{9}$$
; $\frac{1}{9}$.

7.2 矩估计和最大似然估计

习题 7.2 (1)

已知总体 $X \sim B(n, \frac{1}{\sqrt{n}})$, 一组样本观测值为

3, 4, 4, 5, 3, 6, 1, 2,

则 n 的矩估计值 $\hat{n} =$ _____。

解答 7.2 (1)

 $\frac{49}{4}$

7.2 矩估计和最大似然估计

习题 7.2 (2)

设总体 X 的密度函数

$$f(x; \theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x \ge 1, \\ 0, & \sharp \ell e. \end{cases}$$

其中 $\theta > 1$ 为未知参数,则 θ 的矩估计 $\hat{\theta} =$ ______; θ 的最大似然估计 $\tilde{\theta} =$ ______。

\overline{X}		n		
\overline{X} -1	,	$\sum_{i=1}^{n}$	In xi	٠

7.2 矩估计和最大似然估计

习题 7.2 (3)

设 $X \sim U(\theta, 2\theta)$, 其中 $\theta > 0$ 为未知参数, 一组样本观测值为 9,11,8,7,9,10

则
$$heta$$
 的矩估计 $\hat{ heta}=$ ______; 最大似然估计 $\tilde{ heta}=$ ______。

解答 7.2 (3)

7.3 区间估计

习题 7.3 (1)

设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知。现有 X 的一组 样本观测值

24, 28, 31, 35, 27, 34, 27, 31, 24,

其样本均值的观测值 $\bar{x}=$ ______,样本方差的观测值 $s^2=$ _____。根据该组观测值,均值 μ 的置信水平为 0.95 的双侧置信上限

是 ____。

解答 7.3 (1)

<u>29</u>; <u>16</u>; <u>32.07</u>.

7.3 区间估计

习题 7.3 (2)

设 $X \sim N(\mu, \sigma^2)$, μ, σ^2 均未知, 现有一组 9 个样本, 测得样本均值 $\overline{x} = 10.2$, 样本标准差 s = 0.3, 则 μ 的置信水平为 0.05 的双侧置信上限为 ______; σ^2 的置信水平为 0.95 的单侧置信上限

是 _____。

解答 7.3 (2)

<u>10.43</u>; <u>0.2635</u>.

习题 8.1 (1)

从一批鱼中选取 16 条,测得其重量的样本均值为 991 克,样本方差为 20 克。假设鱼的重量服从正态分布,取显著水平 $\alpha=0.05$,能否认为这批鱼的平均重量是 1000 克?($t_{0.05}(15)=1.7531, t_{0.05}(16)=1.7459, t_{0.025}(15)=2.1315, t_{0.025}(16)=2.1199$)

解答 8.1 (1)

```
H_0: \mu = \mu_0 = 1000, \ H_1: \mu \neq \mu_0; t = \frac{\sqrt{n(\bar{x} - \mu_0)}}{s} = -1.8; 拒绝域为 \{t_0 \in (-\infty, -2.1315) \cup (2.1315, \infty)\}; 不在拒绝域中,可以认为这批鱼的平均重量为 1000 克。
```

习题 8.1 (2)

某种农作物的亩产量服从正态分布 $N(900,\sigma^2)$ (单位: 千克) ,现在使用一种新的肥料,测得 10 亩农作物产量的样本均值为 $\bar{x}=980$,样本标准差 s=50,取显著水平 $\alpha=0.05$,该种肥料是否显著地提高了农作物的产量? ($t_{0.025}(9)=2.2622$, $t_{0.025}(10)=2.2281$, $t_{0.05}(9)=1.8331$, $t_{0.05}(10)=1.8125$)

解答 8.1 (2)

$$H_0: \mu = (\leq)\mu_0 = 900, \ H_1: \mu > \mu_0$$

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \approx 5.06$$

拒绝域为 $\{t_0 \in (1.8331, \infty)\}$,

在拒绝域中, 拒绝原假设, 该肥料显著地提高了农作物的产量。