Results Section: Public Sequencing Metrics

```
library(staphopia)
library(ggplot2)
library(reshape2)
USE_DEV = TRUE
```

Aggregating Data For Public Samples

First we'll get all publicly available S. aureus samples.

```
ps <- get_public_samples()</pre>
```

We will also get information pertaining to submissions and ranks by year.

```
submissions <- get_submission_by_year()
ranks <- get_rank_by_year()</pre>
```

We now have 42949 samples to work with. Next we will acquire metadata, sequencing stats and assembly stats associated with each sample.

```
metrics <- merge(
    ps,
    merge(
        get_assembly_stats(ps$sample_id),
        merge(
            get_metadata(ps$sample_id),
            get_sequence_quality(ps$sample_id, stage='cleanup'),
            by='sample_id'
    ),
    by='sample_id'
),
    by='sample_id'
)</pre>
```

We are now going to add two columns rank_name and year.

```
metrics$year <- sapply(
    metrics$first_public,
    function(x) {
        strsplit(x, "-")[[1]][1]
    }
)

metrics$rank_name <- ifelse(
    metrics$rank.x == 3,
    'Gold',
    ifelse(
        metrics$rank.x == 2,
        'Silver',
        'Bronze'
    )
)</pre>
```

Visualizing Metrics

The following sections will be plots to visualize relationships in the data.

By Year Plots

Submissions Per Year

```
p <- ggplot(data=submissions, aes(x=year, y=count)) +</pre>
    xlab("Year") +
    ylab("Count") +
    geom bar(stat='identity') +
    geom_text(aes(label=count), vjust = -0.5) +
    scale_x_continuous(breaks = round(seq(min(submissions$year), max(submissions$year), by = 1),1)) +
    theme_bw() +
    theme(axis.text=element_text(size=12),
          axis.title=element_text(size=14,face="bold"))
p
  10000
                                                       9682
                                                                  8389
  7500
                                                                                       6715
                                             5829
                                  5590
                                                                            4924
  5000
  2500
                        1528
              292
```

Overall Submissions

2010

2011

2012

2013

Year

2014

2015

2016

2017


```
# Output plot to PDF and PNG
staphopia::write_plot(p, paste0(getwd(), '/images/figure-x-submissions-per-year'))
```

Submission Ranks

```
melted <- melt(ranks, id=c('year'),</pre>
               measure.vars = c('bronze', 'silver', 'gold'))
melted$title <- ifelse(melted$variable == 'gold', 'Gold',</pre>
                        ifelse(melted$variable == 'silver', 'Silver', 'Bronze'))
melted$rank <- ifelse(melted$variable == 'gold', 3,</pre>
                      ifelse(melted$variable == 'silver', 2, 1))
p <- ggplot(data=melted, aes(x=year, y=value, fill=title, group=rank, label=title)) +</pre>
    xlab("Year") +
    ylab("Count") +
    geom_bar(stat='identity', position='dodge') +
    geom_text(aes(label=value), vjust = -0.5, position = position_dodge(.9)) +
    scale_fill_manual(values=c("#CD7F32", "#D4AF37", "#COCOCO")) +
    scale_x_continuous(breaks = round(seq(min(ranks$year), max(ranks$year), by = 1),1)) +
    theme bw() +
    theme(axis.text=element_text(size=12),
          axis.title=element_text(size=14,face="bold"),
          legend.title = element_blank())
p
```



```
# Output plot to PDF and PNG
staphopia::write_plot(p, paste0(getwd(), '/images/figure-x-rank-per-year'))
```

Assembly Size

```
p <- ggplot(metrics, aes(x = year, y = total_contig_length)) +
    geom_boxplot()
p</pre>
```


Total Contigs (smaller is better)

```
p <- ggplot(metrics, aes(x = year, y = total_contig)) +
    geom_boxplot()</pre>
```


N50

```
p <- ggplot(metrics, aes(x = year, y = n50_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Contig Length

```
p <- ggplot(metrics, aes(x = year, y = mean_contig_length)) +
     geom_boxplot()
p</pre>
```


Max Contig Length

```
p <- ggplot(metrics, aes(x = year, y = max_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Read Length

```
p <- ggplot(metrics, aes(x = year, y = read_mean)) +
    geom_boxplot()
p</pre>
```


Mean Per-Read Quality Score

Assembly Size Grouped By Rank

10-

year

Total Contigs Grouped By Rank

N50 Grouped By Rank

Mean Contig Length Grouped By Rank

Max Contig Length Grouped By Rank

Mean Read Length Grouped By Rank

Mean Per-Read Quality Score Grouped By Rank

By Rank Plots

Assembly Size

```
p <- ggplot(metrics, aes(x = rank_name, y = total_contig_length)) +
    geom_boxplot()
p</pre>
```


Total Contigs (smaller is better)

```
p <- ggplot(metrics, aes(x = rank_name, y = total_contig)) +
    geom_boxplot()
p</pre>
```


N50

```
p <- ggplot(metrics, aes(x = rank_name, y = n50_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Contig Length

```
p <- ggplot(metrics, aes(x = rank_name, y = mean_contig_length)) +
geom_boxplot()

p

150000-
Bronze

Gold rank_name

Sher
```

Max Contig Length

Mean Read Length

```
p <- ggplot(metrics, aes(x = rank_name, y = read_mean)) +
geom_boxplot()
p

ageom_boxplot()

beautiful additional action of the second of
```

Mean Per-Read Quality Score

```
p <- ggplot(metrics, aes(x = rank_name, y = qual_mean)) +
    geom_boxplot()
p</pre>
```


${\bf Coverage}$

```
p <- ggplot(metrics, aes(x = rank_name, y = coverage)) +
geom_boxplot()

p

100

80

40

Bronze

Gold
Frank_name
```

Bronze Data

Coverage By Quality

Coverage By Read Length

Session Info

sessionInfo()

```
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
##
  [1] LC_CTYPE=en_US.UTF-8
                                   LC_NUMERIC=C
##
   [3] LC_TIME=en_US.UTF-8
                                   LC_COLLATE=en_US.UTF-8
   [5] LC_MONETARY=en_US.UTF-8
                                   LC_MESSAGES=en_US.UTF-8
##
   [7] LC_PAPER=en_US.UTF-8
                                   LC_NAME=C
   [9] LC ADDRESS=C
                                   LC TELEPHONE=C
##
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats
                 graphics grDevices utils
                                               datasets methods
##
## other attached packages:
  [1] reshape2_1.4.3 ggplot2_2.2.1
                                       staphopia_0.1.9
## loaded via a namespace (and not attached):
```

##	[1]	Rcpp_0.12.15	knitr_1.20	magrittr_1.5
##	[4]	munsell_0.4.3	colorspace_1.3-2	R6_2.2.2
##	[7]	rlang_0.1.6	stringr_1.2.0	httr_1.3.1
##	[10]	plyr_1.8.4	tools_3.4.3	grid_3.4.3
##	[13]	${\tt data.table_1.10.4-3}$	gtable_0.2.0	htmltools_0.3.6
##	[16]	yaml_2.1.18	lazyeval_0.2.1	rprojroot_1.3-2
##	[19]	digest_0.6.15	tibble_1.4.2	curl_3.1
##	[22]	evaluate_0.10.1	rmarkdown_1.9	labeling_0.3
##	[25]	stringi_1.1.6	compiler_3.4.3	pillar_1.1.0
##	[28]	scales_0.5.0	backports_1.1.2	jsonlite_1.5