Quiz on Section 3 Results for SevdanurGenc

① Correct answers are hidden.

Score for this attempt: 10.67 out of 12

Submitted Jun 22 at 7:07pm This attempt took 37 minutes.

Question 1	1 / 1 pts
How do you create a simulated annealing sampler in D-Wave assur have the following statement? <pre>from neal import SimulatedAnnealingSampler</pre>	ming we
sampler = SimulatedAnnealler	
sampler = SimulatedAnnealingSampler	
o sampler = Simulated	
sampler = SimulatedAnnealingSampler()	

Question 2	1 / 1 pts
Which one is not a valid parameter for the sample function?	
ising model	
onumber of reads	
binary quadratic model	
O beta schedule	

Suppose we created a simulated annealing sampler named sampler. By using which function can you sample directly from an Ising model without creating a bqm? sample_ising sing_sample sing_sample sample

Incorrect

Question 4 0 / 1 pts

for i in range(N):
 if sum(sample[f"x_{i}_{t}"] for t in range(N))!=1:
 return False

Given that $x_i_t=1$ if node i is visited at time t and 0 otherwise and a sample obtained as a result of solving a TSP instance with N cities using simulated annealing, what is the above code performing?

- It returns false if no node is visited at a time point.
- It returns false if more than one node is visited at a time.
- It returns false if a node is not visited exactly once.
- It returns false if a node is visited more than once.

Partial

Question 5 0.67 / 1 pts

p = []

for t in range(N):

 for i in range(N):

 if sample[f"x_{i}_{t}"] == 1:

 p.append(i)

Given that $x_i_t=1$ if node i is visited at time t and 0 otherwise and a sample obtained as a result of solving a TSP instance with N cities using simulated annealing, suppose we execute the above piece of code. Which one of the following(s) is(are) true about p?

- p may contain more than N integers
- p may contain less than N integers
- p is always a permutation of integers between 0,..N-1
- ✓ If the sample is feasible, p contains the list of visited cities.

Question 6

Which one of the following parameters is not optional when you add a linear inequality constraint using the function add_linear_inequality_constraint?

- lagrange_multiplier
- O lb
- O ub

label

Question 7

Suppose that we have a binary quadratic model named bqm.

Which function do you use to add a linear inequality constraint?

- bqm.add_linear_inequality
- bqm.add_inequality_constraint
- bqm.add_linear_inequality_constraint
- bqm.add_constraint

Question 8 1/1 pts

Consider the following time-dependent Hamiltonian $H\left(t\right)$

$$H(t)=(1-rac{t}{ au})H_0+rac{t}{ au}H_p$$

Which one of the following(s) is(are) true?

If the system is initialized with the ground state of H_p, it always remains in the ground state throughout the evolution

- The goal is to find the ground state of H p
- ✓ At t=0, only H_0 acts on the system
- The goal is to find thr ground state of H_0

Question 9	1 / 1 pts
In D-Wave, interactions of the form $J_{ijk}s_is_js_k$ can be implemented.	Ş
O True	
False	

Question 10	1 / 1 pts
How do you create a sampler to sample from D-Wave default QPU?	
o sampler = DWave()	
sampler = DWaveSampler()	
sampler = DWaveQPU()	
sampler = DWaveSampler("default"))	

How do you create a sampler to sample from D-Wave QPU with built-in minor embedding? sampler = MinorEmbedding() sampler = EmbeddingComposite(DWaveSampler()) sampler = MinorEmbedding(DWaveSampler())

sampler = EmbeddingComposite()

Question 12	1 / 1 pts
Select the true statement(s).	
Chain break fraction is same for all samples in a sampleset	
chain_strength paraemeter determines the coupling coefficient between on a chain.	qubits
Chains are needed because not all qubits are connected in D-Wave QPL	Js.
One should set the chain_strength as high as possible to obtain good res	sults.

Quiz Score: 10.67 out of 12