The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links Jiahao Cao, Qi Li, Renjie Xie, Kun Sun,

Guofei Gu, Mingwei Xu, and Yuan Yang

Outlin

- e
- 1)Background
- 2)Motivation
- 3)Overview of the CrossPath Attack
- 4)Challenges
- 5) Adversarial Path Reconnaissance
- 6)Evaluation
- 7)Possible Defense
- 8)Pros and Cons
- 9)Conclusion

Software-Defined Networking (SDN)

1)Software-Defined
Networking
separate control and data
planes
take centralized network
control
enable network

1)SDN Control Channels deliver all control traffic failure results in serious

programmability

Three-Layer SDN Architecture

Motivation

1)Software Defined Networks control and data channel security issues.

1)Control channel is susceptible to DoS attacks.

1)The impact of DoS on control channel is huge.

1)Existing studies focus on various other security issues in the Software Defined

CrossPath Attack

1)We uncover a new attack to disrupt SDN control channels

leverage **shared links** between paths of control and data traffic

allow data traffic to disrupt control traffic disrupt a wide range of SDN functionalities

1)Threat Model

an attacker compromises a host inside the target SDN the target SDN applies **in-band** control

Example

A malicious host sends data traffic to congest shared links delivering control traffic

Challeng

es

How to find a data path that contains shared links?

Randomly choose a data path to attack?

low success ratio due to only a few

Applyrexisting scanning tools to find such a

dataerath?eness due to unique SDN

Assume m switches in total,

- $O(m^2)$ total links
- O(m) shared links connecting them with the controller

SD

- N No IP addresses in switch ports
- No TTL decrease for packets passin SDN switches

Adversarial Path

Reconnaissance

Key Observation: control path delays can be an indicator on whether a data path contains shared links

Control Path Delay between S₂ and C:

 $T_{S_2,C}$

- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \ ms$ due to congestion

Adversarial Path

Reconnaissance

Key Observation: control path delays can be an indicator on whether a data path contains shared links

 Control Path Delay between S₂ and C:

 $T_{S_2,C}$

- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \ ms$ due to
- Case 2ng data npath contains no shared links
 - $T_{S_2,C} = 10 \text{ ms}$

Adversarial Path

Reconnaissance

Key Observation: control path delays can be an indicator on whether a data path contains shared links

 Control Path Delay between S₂ and C:

 $T_{S_2,C}$

- Case 1: a data path contains shared links
 - $T_{S_2,C} = 100 \ ms$ due to
- Case²ngestianpath contains no shared links
 - $T_{S_2,C} = 10 \text{ ms}$

Proba Instri

9

Control Path Delay

Measurement

How to measure control path delays with an end host?

Leverage side effects of dynamic flow rule installation to

Control path delays can be calculated based on the first two packets of a new flow

Reconnaissance Algorithm

Algorith

m

Optimization

Improve the accuracy of reconnaissance e.g., reduce the impacts of network jitters e.g., enable concurrent reconnaissance

Experiment Setup

A real SDN testbed consists of commercial hardware SDN switches an open source controller, Floodlight physical hosts connecting to switches

We replay five types of real traffic trace

traffic of two data centers traffic of one university traffic of one internet backbone traffic of one computer lab

We evaluate

the accuracy of adversarial path reconnaissance the degradation ratio of control traffic

Accuracy and Effectiveness

reconnaissance accuracy degradation

control traffic

DC: datacenter traffic, **IB**: internet backbone traffic, **UNIV**: university traffic, **LAB**: our computer laboratory traffic

Attack Impacts on Network

Functionalities

Almost all SDN applications depend on control messages delivered in control channels to enable network functionalities

We measure the impacts on popul SDN APPs:

ARP Proxy
Learning Switch
Reactive Routing
Load Balancer

ARP Proxy

The performance of ARP Proxy significantly

degrades

ARP throughput

ARP query delay

Reactive

Routing

Reactive Routing generates various anomalies

success ratio of rule installation

host migration time

Reactive

Routing

Reactive Routing generates various anomalies

```
17:37:46.344 INFO [n.f.t.TopologyInstance] Route [id=RouteId [src=1c:48:cc:37:ab:a0:a8:41 dst=9d:54:cc:37:ab:a0:a8:41], switchPorts=[[id=1c:48:cc:37:ab:a0:a8:41, port=37], [id=9d:54:cc:37:ab:a0:a8:41, port=31]]]
17:38:01.62 INFO [n.f.l.i.LinkDiscoveryManager] Inter-switch link removed: Link [src=a4:e7:cc:37:ab:a0:a8:41 outPort=38, dst=9d:54:cc:37:ab:a0:a8:41, inPort=42, latency=6]
17:38:01.95 INFO [n.f.t.TopologyManager] Recomputing topology due to: link-discovery-updates
17:38:01.345 INFO [n.f.t.TopologyInstance] Route [id=RouteId [src=1c:48:cc:37:ab:a0:a8:41 dst=9d:54:cc:37:ab:a0:a8:41], switchPorts=[[id=1c:48:cc:37:ab:a0:a8:41, port=32], [id=a4:e7:cc:37:ab:a0:a8:41, port=36], [id=a4:e7:cc:37:ab:a0:a8:41, port=38], [id=9d:54:cc:37:ab:a0:a8:41, port=42]]]
```

A routing path is evicted due to a deactivated link

Load

Balancer

Load balancer incorrectly balances traffic among servers

without the attack

with the attack

Possible

Defense

Deliver control traffic with a high priority implementation with priority queue or weighted round robin queue

Proactively reserve bandwidth for control traffic implementation with meter tables

Defense Strategy	Rule	Match	Actions
Control traffic delivery with high priority ¹	#1	control flows	OutPort(x),, SetQueue(ID=highPriQueue)
	#2	data flows	OutPort(x),, SetQueue(ID=lowPriQueue)
Proactive bandwidth reservation for control traffic ²	#1	data flows	OutPort(x),, SetMeter(ID=RateLimit)

¹ It requires SDN switches to support PQ or WRR queuing mechanism.

² It is used when SDN switches fail to enable PQ or WRR mechanism.

Pros and

Cons

Pros:

Adversarial Path Reconnaissance LDoS: The low rate targeted TCP Impact of congesting the network with LDoS over shared links The paper is based on theoretical study supported with a strong experimental setup along with performance analysis of major SDN application.

They have not supposed a network which is vulnerable – i.e. without any network security

Cons:

The attacker needs to have control of one of the hosts in the SDN The solution proposed is an implementation scheduling algorithm – might create an overhead.

If an attacker is trying to disrupt the entire SDN network by compromising more than 1 hosts to send the packets – there might be a possibility of the attacking host being compromised based on how

Conclusi

on

Data traffic passing shared links can congest control traffic to disrupt SDN control channels

A data path containing shared links can be found by measuring control path delays and leveraging side effects of dynamic rule installation

Network administrators should enable priority queue or reserve bandwidth for SDN control traffic to protect control channels

Thank you! Slides by:- Jiahao Cao

Backup: Theoretical Analysis

The number of explored data paths to find a target data path containing a shared link

$$E(X) = \sum_{k=1}^{n-\gamma} \frac{k\gamma}{n-k} \prod_{j=0}^{k-2} \left(1 - \frac{\gamma}{n-1-j}\right)$$

n: The total number of hosts in SDN

y: The total number of data paths containing shared links,

depending on the topology and the routing decision

Backup:

Coverage

Simulation among 261 real network topologies

Connections between the controller and switches

