KOLOKVIJUM 1

Prezime, ime, br. indeksa:

18.05.2021.

PREDISPITNE OBAVEZE 1

•
$$\lim_{n \to \infty} \frac{\arctan(6n+2)}{3n+1} = \underline{0} \qquad \lim_{n \to \infty} \left(n - \sqrt{4n^2 + 1}\right) = \underline{-\infty}$$

•
$$\lim_{x \to 1} \frac{\sin(x-1)}{3x-3} = \frac{\frac{1}{3}}{x^2+x+1} = \frac{1}{x^2+x+1} = \frac{1}{x^2$$

• Napisati jednačinu tangente na grafik funkcije $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x + 1$ u tački $x_0 = \frac{\pi}{3}$:

$$y = \frac{1}{2}x + \frac{\sqrt{3}}{2} + 1 - \frac{\pi}{6}$$

• Ako je niz realnih brojeva monotono rastući, mogući broj njegovih tačaka nagomilavanja u R je:

$$1) 0 2) 1 3) 2 4) 3 5) \infty$$

- Funkcija $f(x) = \begin{cases} \frac{\sin(x-1)}{\ln x}, & x \neq 1 \\ A, & x = 1 \end{cases}$ je neprekidna u na svojoj oblasti definisanosti za $A \in \underline{\{1\}}$
- Desna kosa asimptota funkcije $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{2x^2 + 4}{x 2}$ je y = 2x + 4
- Napisati jedna jednačine vertikalnih asimptota, ako postoje, funkcije $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x^2 1}{(x 1)(x 2)}$: x=2
- Napisati prve izvode datih funkcija

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^{\sqrt{2x}}, \quad f'(x) = \underbrace{-\frac{e^{\sqrt{2x}}}{\sqrt{2x}}}_{}$$

$$g: \mathbb{R} \to \mathbb{R}, \ g(x) = \frac{\cos(1-3x^2)}{\sqrt{2x-1}}, \quad g'(x) = \frac{6x\sin(1-3x^2)\sqrt{2x-1} - \frac{\cos(1-3x^2)}{\sqrt{2x-1}}}{2x-1}$$
$$g: \mathbb{R} \to \mathbb{R}, \ g(x) = x\sin^2 x, \quad g'(x) = \frac{\sin^2 x + 2x\sin x\cos x}{2x-1}$$

- Stacionarne tačke funkcije $f: \mathbb{R} \to \mathbb{R}$, $f(x) = xe^x$ su: -1
- Napisati Lagranžovu funkciju za nalaženje uslovnih (vezanih) ekstrema funkcije $f: \mathbb{R}^2 \to \mathbb{R}$ $f(x,y) = \frac{xy}{x^2 + e^{xy} + y^2}$ uz uslove $\sqrt{x^2 + y^2} = 3$ i x + 2y = 5:

$$L(x, y; \lambda, \theta) = \frac{xy}{x^2 + e^{xy} + y^2} + \lambda \left(\sqrt{x^2 + y^2} - 3\right) + \theta(x + 2y - 5)$$

• Prvi parcijalni izvodi funkcije $f: \mathbb{R}^2 \to \mathbb{R}, \, f(x,y) = \frac{xy^3}{x^2 - 5x} - 4y$ su

$$f_x(x,y) = \frac{y^3(x^2 - 5x) - y^3(2x^2 - 5x)}{(x^2 - 5x)^2}$$
 $f_y(x,y) = \frac{3xy^2}{x^2 - 5x} - 4$

ZADACI

- 1. Razviti u stepeni red funkciju $f(x) = \ln \sqrt{\frac{1+x}{1-x}}$ i odrediti oblast konvergencije tog reda.
- 2. Neka je funkcija $f: \mathbb{R} \to \mathbb{R}$ definisana sa $f(x) = \begin{cases} x^2 \ln^2 x &, x > 0 \\ (A x)^2 9 &, x < 0 \end{cases}$. Ispitati za koje $A \in \mathbb{R}$ je funkcija f neprekidna na \mathbb{R} .
- 3. Ispitati funkciju $f(x) = \frac{2x-1}{x^2-1}$, bez ispitivanja konveksnosti i konkavnosti. Izračunati drugi izvod funkcije.
- 4. Odrediti ekstreme funkcije $f: \mathbb{R}^2 \to \mathbb{R}^2, z = f(x,y) = x + 2ey e^x e^{2y}$

REŠENJA ZADATAKA - KOLOKVIJUM 1

1. Razviti u stepeni red funkciju $f(x) = \ln \sqrt{\frac{1+x}{1-x}}$ i odrediti oblast konvergencije tog reda.

Rešenje: Kako je

$$f(x) = \ln \sqrt{\frac{1+x}{1-x}} = \frac{1}{2} \ln \frac{1+x}{1-x} = \frac{1}{2} (\ln (1+x) - \ln (1-x)),$$

koristeći razvoje funkcija $\ln(1+x)$ i $\ln(1-x)$ dobijamo

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, x \in (-1, 1],$$

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}, x \in [-1, 1),$$

te je

$$f(x) = \frac{1}{2}(\ln(1+x) - \ln(1-x)) = \frac{1}{2}\left(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} + \sum_{n=1}^{\infty} \frac{x^n}{n}\right)$$
$$= \frac{1}{2}\sum_{n=1}^{\infty} \left((-1)^{n-1} + 1\right) \frac{x^n}{n}$$

na oblasti konvergencije $x \in (-1,1) = (-1,1] \cap (-1,1]$. Za parne brojeve n=2m je $(-1)^{n-1}+1=0$ a za neparne n=2m-1 je $(-1)^{n-1}+1=2$. Sledi

$$f(x) = \frac{1}{2} \sum_{n=1}^{\infty} 2 \frac{x^{2m-1}}{2m-1} = \sum_{n=1}^{\infty} \frac{1}{2m-1} x^{2m-1}.$$

2. Neka je funkcija $f: \mathbb{R} \to \mathbb{R}$ definisana sa $f(x) = \begin{cases} x^2 \ln^2 x &, x > 0 \\ (A - x)^2 - 9 &, x \leq 0 \end{cases}$. Ispitati za koje $A \in \mathbb{R}$ je funkcija f neprekidna na \mathbb{R} .

Rešenje: Kvadratna funkcija $f_1(x) = (A-x)^2 - 9$, $x \le 0$ je neprekidna na $(-\infty, 0]$, i pri tome je $f_1(0) = A^2 - 9$. Funkcija $f_2(x) = x^2 \ln^2 x$, x > 0 je, kao kompozicija neprekidnih funkcija, neprekidna na $(0, \infty)$, i pri tome je

$$\lim_{x \to 0^+} f_2(x) = \lim_{x \to 0^+} x^2 \ln^2 x = 0 \cdot (-\infty),$$

što je neodređen izraz. Primenom Lopitalovog pravila (2 puta) dobijamo

$$\lim_{x \to 0^{+}} f_{2}(x) = \lim_{x \to 0^{+}} \frac{\ln^{2} x}{x^{-2}} = \lim_{x \to 0^{+}} \frac{\left(\ln^{2} x\right)'}{\left(x^{-2}\right)'} = \lim_{x \to 0^{+}} \frac{2\ln x \cdot \frac{1}{x}}{-2x^{-3}} = -\lim_{x \to 0^{+}} \frac{\ln x}{x^{-2}}$$
$$= -\frac{-\infty}{\infty} = -\lim_{x \to 0^{+}} \frac{\left(\ln x\right)'}{\left(x^{-2}\right)'} = -\lim_{x \to 0^{+}} \frac{\frac{1}{x}}{-2x^{-3}} = \frac{1}{2}\lim_{x \to 0^{+}} x^{2} = 0.$$

Funkcija f je neprekidna ako i samo ako je $f_1(0) = \lim_{x\to 0^+} f_2(x)$ odnosno $A^2 - 9 = 0$, dakle za $A \in \{-3,3\}$.

3. Ispitati funkciju $f(x) = \frac{2x-1}{x^2-1}$, bez ispitivanja konveksnosti i konkavnosti. Izračunati drugi izvod funkcije.

Rešenje:

- (a) Domen funkcije je skup $\mathcal{D} = \mathbb{R} \setminus \{-1, 1\}$.
- (b) Nule funkcije:

$$f(x) = 0 \quad \Leftrightarrow \quad 2x - 1 = 0 \quad \Leftrightarrow \quad x = \frac{1}{2}$$

(c) Znak funkcije: imamo da je

$$2x - 1 > 0 \quad \Leftrightarrow \quad x > \frac{1}{2},$$

$$x^2 - 1 > 0 \quad \Leftrightarrow \quad x^2 > 1 \quad \Leftrightarrow \quad x \in (-\infty, -1) \cup (1, \infty),$$

te dobijamo

	-	1 -	1/2	1
2x-1	_	_	+	+
$x^2 - 1$	+	_	_	+
f(x)	_	+	_	+

Dakle,

$$f(x) > 0 \quad \Leftrightarrow \quad x \in \left(-1, \frac{1}{2}\right) \cup (1, \infty),$$

$$f(x) < 0 \quad \Leftrightarrow \quad \ln x \in (-\infty, -1) \cup \left(\frac{1}{2}, 1\right).$$

- (d) Funkcija nije ni parna ni neparna jer je npr. $f(-2) = \frac{-5}{3} \neq f(2) = 1$ i $f(-2) = \frac{-5}{3} \neq -f(2) = -1$.
- (e) Monotonost i lokalni ekstremi funkcije

$$f'(x) = \left(\frac{2x-1}{x^2-1}\right)' = \frac{2(x^2-1) - (2x-1) \cdot 2x}{(x^2-1)^2} = -2\frac{x^2-x+1}{(x^2-1)^2};$$

$$f'(x) = 0 \quad \Leftrightarrow \quad x^2 - x + 1 = 0 \quad \Leftrightarrow \quad x_{1,2} = \frac{1 \pm \sqrt{1 - 4}}{2} \notin \mathbb{R},$$

te je i $x^2 - x + 1 > 0$ (konveksna kvadratna funkcija koja nema realnih korena) i $(x^2 - 1)^2 > 0$ za sve $x \in \mathcal{D}$. Sledi da je $f'(x) = -2\frac{x^2 - x + 1}{(x^2 - 1)^2} < 0$ za sve $x \in \mathcal{D}$, što znači da je funkcija f monotono opadajuća na celom domenu $\mathcal{D} = \mathbb{R} \setminus \{-1, 1\}$, i nema ekstremnih tačaka.

(f) Drugi izvod funkcije:

$$f''(x) = \left(-2\frac{x^2 - x + 1}{(x^2 - 1)^2}\right)' =$$

$$= -2\frac{(2x - 1)(x^2 - 1)^2 - (x^2 - x + 1)2(x^2 - 1) \cdot 2x}{(x^2 - 1)^4} =$$

$$= -2\frac{(x^2 - 1)((2x - 1)(x^2 - 1) - (x^2 - x + 1) \cdot 4x)}{(x^2 - 1)^4} =$$

$$= -2\frac{-2x^3 + 3x^2 - 6x + 1}{(x^2 - 1)^3}.$$

- (g) Vertikalne asimptote funkcije: s obzirom na domen $\mathcal{D}=\mathbb{R}\setminus\{-1,1\}$ funkcije f, moguće vertikalne asimptote su prave x=-1 i x=1. Kako je $\lim_{x\to -1^-}f(x)=\frac{-3}{0^+}=-\infty$ i $\lim_{x\to -1^+}f(x)=\frac{-3}{0^-}=\infty$, sledi da je prava x=-1 i leva i desna vertikalna asimptota funkcije f. Iz $\lim_{x\to 1^-}f(x)=\frac{1}{0^-}=-\infty$ i $\lim_{x\to 1^+}f(x)=\frac{1}{0^+}=\infty$ sledi da je prava x=1 takođe i leva i desna vertikalna asimptota funkcije f.
- (h) Horizontalna / kosa asimptota funkcije: kako je

$$\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{2x - 1}{x^2 - 1} : x^2 = \lim_{x \to \pm \infty} \frac{\frac{2}{x} - \frac{1}{x^2}}{1 - \frac{1}{x^2}} = \frac{0}{1 - 0} = 0,$$

sledi da je prava y = 0 (x-osa) i leva i desna horizontalna asimptota funkcije f.

(i) Grafik funkcije:

4. Odrediti ekstreme funkcije $f: \mathbb{R}^2 \to \mathbb{R}^2, z = f(x,y) = x + 2ey - e^x - e^{2y}$.

Rešenje: Prvi i drugi parcijalni izvodi funkcije f su redom

$$f_x(x,y) = 1 - e^x,$$
 $f_y(x,y) = 2e - 2e^{2y},$
 $f_{xx}(x,y) = -e^x,$ $f_{yy}(x,y) = -4e^{2y},$ $f_{xy}(x,y) = 0.$

Nalazimo stacionarne tačke.

$$\begin{array}{lll} f_x\left(x,y\right) = 1 - e^x = 0 \\ f_y\left(x,y\right) = 2e - 2e^{2y} = 0 \end{array} \quad \Leftrightarrow \quad \begin{array}{lll} e^x = 1 \\ e^{2y} = e \end{array} \quad \Leftrightarrow \quad \begin{array}{lll} x = 0 \\ 2y = 1 \end{array} \quad \Leftrightarrow \quad \begin{array}{lll} x = 0 \\ y = \frac{1}{2} \end{array}.$$

Dakle, jedina stacionarna tačka je $T\left(0,\frac{1}{2}\right)$. Za nju je

$$r = f_{xx}\left(0, \frac{1}{2}\right) = -1, \quad t = f_{yy}\left(0, \frac{1}{2}\right) = -4e, \quad s = f_{xy}\left(0, \frac{1}{2}\right) = 0,$$

te je $rt-s^2=4e>0$, pri čemu je t=-1<0, što znači da funkcija f u tački T ima lokalni maksimum, i ta maksimalna vrednost funkcije iznosi

$$z_{max} = f\left(0, \frac{1}{2}\right) = 0 + 2e^{\frac{1}{2}} - e^{0} - e^{2\frac{1}{2}} = f\left(0, \frac{1}{2}\right) = e - 1 - e = -1.$$