G1 de Álgebra Linear I-2008.2

Gabarito

- 1) Decida se cada afirmação a seguir é verdadeira ou falsa.
- \bullet Existem vetores não nulos \overrightarrow{u} , \overrightarrow{w} de \mathbb{R}^3 tais que vale a relação

$$\overrightarrow{u} \times \overrightarrow{w} = 2 \overrightarrow{w}$$
.

Resposta: Falso. Se \overrightarrow{u} , \overrightarrow{w} são paralelos então $\overrightarrow{u} \times \overrightarrow{w} = \overrightarrow{0} \neq 2 \overrightarrow{w}$. Se os vetores não são paralelos então $\overrightarrow{u} \times \overrightarrow{w}$ é um vetor não nulo ortogonal a \overrightarrow{w} . Portanto, $\overrightarrow{u} \times \overrightarrow{w} \neq 2 \overrightarrow{w}$.

• Para todo par de vetores não nulos \overrightarrow{u} , \overrightarrow{w} de \mathbb{R}^3 ortogonais entre si, isto é $\overrightarrow{u} \cdot \overrightarrow{w} = 0$, existe um vetor \overrightarrow{n} tal que

$$\overrightarrow{n} \times \overrightarrow{u} = \overrightarrow{w}$$
.

Resposta: Verdadeiro. Considere um vetor \overrightarrow{m} ortogonal a \overrightarrow{u} e \overrightarrow{w} (por exemplo, $\overrightarrow{m} = \overrightarrow{u} \times \overrightarrow{w}$). Neste caso os vetores \overrightarrow{m} , \overrightarrow{u} e \overrightarrow{w} são ortogonais entre si. Portanto

$$\overrightarrow{m} \times \overrightarrow{u} = \kappa \, \overrightarrow{w},$$

para certo $\kappa \in \mathbb{R}$ diferente de zero, de fato, $\kappa = \pm \frac{|\overrightarrow{m}| |\overrightarrow{u}|}{|\overrightarrow{w}|}$. Agora é suficiente escolher

$$\overrightarrow{m} = \frac{1}{\kappa} \overrightarrow{m}$$
.

 \bullet Considere vetores \overrightarrow{u} e \overrightarrow{w} de \mathbb{R}^3 tais que

$$(\overrightarrow{u} + \overrightarrow{w}) \cdot (\overrightarrow{u} - \overrightarrow{w}) = 0.$$

Então os vetores \overrightarrow{u} e \overrightarrow{w} têm o mesmo módulo (norma).

Resposta: Verdadeiro. Observe que se verifica

$$(\overrightarrow{u} + \overrightarrow{w}) \cdot (\overrightarrow{u} - \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} - \overrightarrow{w} \cdot \overrightarrow{w} =$$

$$= \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{u} \cdot \overrightarrow{w} - \overrightarrow{w} \cdot \overrightarrow{w} =$$

$$= |\overrightarrow{u}|^2 - |\overrightarrow{w}|^2 = 0.$$

Portanto,

$$|\overrightarrow{u}|^2 - |\overrightarrow{w}|^2 = 0, \qquad |\overrightarrow{u}| = |\overrightarrow{w}|,$$

e a afirmação é verdadeira.

ullet Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 tais que seus módulos (normas) verificam

$$|\overrightarrow{w}| = 1$$
, $|\overrightarrow{v}| = 4$, e $|\overrightarrow{w} \times \overrightarrow{v}| = 4$.

Então $\overrightarrow{w} \cdot \overrightarrow{v} = 0$

Resposta: Verdadeiro. Observe que se θ é o ângulo formado pelos vetorer \overrightarrow{w} e \overrightarrow{v} temos

$$4 = |\overrightarrow{w} \times \overrightarrow{v}| = |\overrightarrow{w}| |\overrightarrow{v}| |\sin \theta| = 4 |\sin \theta|.$$

Logo $\sin \theta = \pm 1$ e $\cos \theta = 0$. Portanto,

$$\overrightarrow{w} \cdot \overrightarrow{v} = |\overrightarrow{w}| |\overrightarrow{v}| \cos \theta = 0.$$

• Considere os pontos A=(1,3,1) e B=(1,2,2) e qualquer ponto C na reta (1,3,2)+t(0,1,-1). A área do triângulo de vértices A,B e C é 1/2.

Resposta: Verdadeiro. Dado um ponto C=(1,3+t,2-t) da reta considere os vetores

$$\overline{AC} = (0, t, 1 - t), \qquad \overline{BA} = (0, 1, -1)$$

Das propriedades dos determinantes

$$\overline{AC} \times \overline{BA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & t & 1 - t \\ 0 & 1 & -1 \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 0 & 1 \\ 0 & 1 & -1 \end{vmatrix} = (-1, 0, 0).$$

Como a área do triângulo é $\frac{|\overline{AC} \times \overline{BA}|}{2} = \frac{1}{2}$ obtemos a veracidade da afirmação.

Prova A

Itens	V	F	N
1.a		X	
1.b	X		
1.c	X		
1.d	X		
1.e	X		

Prova B

Itens	\mathbf{V}	\mathbf{F}	N
1.a	X		
1.b	X		
1.c	X		
1.d	X		
1.e		X	

Prova C

Itens	V	\mathbf{F}	N
1.a	X		
1.b	X		
1.c	X		
1.d		X	
1.e	X		

Prova D

Itens	V	\mathbf{F}	N
1.a	X		
1.b	X		
1.c		X	
1.d	X		
1.e	X		

2) Respostas:

(a)

prova A P = (9, -7, 2).

prova B P = (-7, 9, 2).

prova C P = (2, -7, 9).

prova D P = (9, 2, -7).

(b)

prova A c = 9.

prova B c = 8.

 $\mathbf{prova} \ \mathbf{C} \qquad \quad c = 10.$

prova D c = 5.

(c)

prova A a=5.

prova B a=1.

prova C a = -11.

prova D a = 10.

(d)

prova A
$$\overrightarrow{v} = (1, 0, -1).$$

prova B
$$\overrightarrow{v} = (1, 0, -1).$$

prova C
$$\overrightarrow{v} = (1,4,3).$$

prova D
$$\overrightarrow{v} = (1,4,3).$$

(e)

prova A
$$k=7$$
.

prova B
$$k = 6$$
.

prova C
$$k = 10$$
.

prova D
$$k=3$$
.

3) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1-t), t \in \mathbb{R},$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 1$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Determine a posição relativa das retas r_1 e r_2 reversas, paralelas ou concorrentes (se interceptam).
- d) Considere o ponto P = (0, 1, -1) da reta r_1 . Encontre <u>todos</u> os pontos Q da reta r_1 tal que a distância entre P e Q seja $2\sqrt{6}$ (isto é, de forma que o comprimento do segmento PQ seja $2\sqrt{6}$).

Resposta:

3.a) O plano π é paralelo ao vetor diretor da reta, (2,1,-1), e ao vetor $\mathbf{i} = (1,0,0)$. Logo seu vetor normal \overrightarrow{n} é paralelo a

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 1 & 0 & 0 \end{vmatrix} = (0, -1, -1).$$

Portanto, a equação cartesiana do plano π é da forma

$$y + z = d$$
.

Como o ponto (0,1,-1) pertence ao plano π , d=0. Logo

$$\pi$$
: $y + z = 0$.

Analogamente, o plano ρ é paralelo ao vetor diretor da reta, (2, 1, -1), e ao vetor $\mathbf{k} = (0, 0, 1)$. Logo seu vetor normal \overrightarrow{m} é paralelo a

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = (1, -2, 0).$$

Portanto, a equação cartesiana do plano ρ é da forma

$$x-2y=e$$
.

Como o ponto (0,1,-1) pertende ao plano, e=-2. Logo

$$\rho: x - 2y = -2.$$

3.b) Escolhemos y como parâmetro, y = t, e temos x = 2 + t. Portanto

$$2z = -1 + x + 2y = -1 + 2 + t + 2t = 1 + 3t$$
, $z = 1/2 + 3t/2$.

Portanto,

$$(2+t, t, 1/2 + 3t/2), t \in \mathbb{R}.$$

3.c) Devemos estudar se o sistema a seguir tem solução

$$2+s=2t$$
, $s=1+t$, $1/2+3s/2=-1-t$.

Das duas primeiras equações obtemos

$$2 + 1 + t = 2t$$
, $t = 3$.

Portanto, s=4. Estas soluções são incompatíveis com a última equação $(13/2 \neq -4)$. Portanto, o sistema não tem solução e as retas não se interceptam.

Finalmente, os vetores diretores das retas são (2,2,3) e (2,1,-1). Estes vetores não são paralelos. Logo as retas são reversas.

3.d) Dado um ponto $Q=(2\,t,1+t,-1-t)$ de r_1 temos que $\overline{PQ}=(2\,t,t,-t)$. Este vetor tem módulo $|t|\sqrt{6}$. Queremos que $|t|\sqrt{6}=2\sqrt{6}$. Logo |t|=2 e portanto $t=\pm 2$. Existem duas soluções:

$$Q = (4, 3, -3), (t = 2),$$
 $Q = (-4, -1, 1), (t = -2).$

4)

a) Considere os planos

$$\pi: 2x - 3y + 2z = 1,$$
 $\tau = ax - 12y + cz = d.$

Se possível, determine a, c e d para que a interseção dos planos seja:

- i) o conjunto vazio (ou seja, os planos não se interceptam), isto é $\pi \cap \tau = \emptyset$,
- ii) um ponto P (ou seja, a intereseção dos planos é exatamente em um ponto), isto é, $\pi \cap \tau = \{P\}$,
- iii) uma reta r.

Considere agora os pontos A = (1, 0, 1), B = (0, 2, 2) e C = (2, 1, 2).

- b) Determine uma equação cartesiana do plano ρ que contém os pontos A,B e C.
- c) Determine um ponto D tal que os pontos A, B, C e D formem um paralelogramo P.

Resposta:

4.a)

(i) Para que a interseção seja o conjunto vazio (isto é, os planos não se interceptam) os planos devem ser paralelos. Logo os vetores normais devem ser paralelos:

$$(a, -12, c) = \lambda (2, -3, 2).$$

Logo $\lambda=4$ e a=c=8. Finalmente, os planos devem ser diferentes, logo é suficiente escolher $d\neq 4$ (pois se d=4 os planos coincidem).

(ii) A opção um ponto é impossível: a interseção de dois planos é ou o conjunto vazio (planos paralelos e diferentes), ou um plano (planos iguais), ou uma reta (planos não paralelos).

(iii) Para que a interseção seja uma reta é suficiente escolher $a \neq 8$ ou $c \neq 8$. Nestes casos, não há restrições para d.

4.b) Considere os vetores $\overline{AB} = (-1, 2, 1)$ e $\overline{AC} = (1, 1, 1)$. Um vetor normal \overrightarrow{n} do plano é

$$\overrightarrow{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} = (1, 2, -3).$$

A equação cartesiana do plano é da forma

$$x + 2y - 3z = d,$$

onde d é determinado pela condição dos pontos A,B e C pertencer a π , ou seja: 1+0-3=d=-2. Portanto,

$$x + 2y - 3z = -2$$
.

4.c) Existem as seguintes possibilidades para o ponto D:

- \overline{AB} paralelo a \overline{CD} , isto é, $\overline{AB} = \pm \overline{CD}$,
- \bullet $\,\overline{AC}$ paralelo a $\,\overline{BD},$ isto é $\,\overline{AC}=\pm\overline{BD}$

O caso \overline{AD} paralelo a \overline{BC} caimos em casos precedentes, faça uma figura.

No primeiro caso podemos ter

$$\overline{AB} = \overline{CD}, \quad B - A = D - C, \quad D = B + C - A,$$

 $D = (0, 2, 2) + (2, 1, 2) - (1, 0, 1) = (1, 3, 3),$

$$\overline{AB} = \overline{DC}, \quad B - A = C - D, \quad D = C + A - B$$

 $D = (2, 1, 2) + (1, 0, 1) - (0, 2, 2) = (3, -1, 1).$

No segundo caso podemos ter

$$\overline{AC} = \overline{BD}, \quad C - A = D - B, \quad D = C + B - A,$$

 $D = (2, 1, 2) + (0, 2, 2) - (1, 0, 1) = (1, 3, 3),$

$$\overline{AC} = \overline{DB}, \quad C - A = B - D, \quad D = A + B - C,$$

 $D = (1, 0, 1) + (0, 2, 2) - (2, 1, 2) = (-1, 1, 1).$