MATB42: Assignment #8

1. (a) Let 
$$f, g : \mathbb{R}^n \to \mathbb{R}$$
;  $\mathbf{F}, \mathbf{G} : \mathbb{R}^n \to \mathbb{R}$ ; and define  $\Delta$ , the Laplacian, by  $\Delta f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$ .

Verify the following identities

- (i)  $\operatorname{div}(\mathbf{F} + \mathbf{G}) = \operatorname{div} \mathbf{F} + \operatorname{div} \mathbf{G}$ .
- (ii)  $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \operatorname{grad} f$ .
- (iii)  $\Delta(fg) = f\Delta g + g\Delta f + 2(\operatorname{grad} f) \cdot (\operatorname{grad} g)$ .
- (b) Let  $f, g: D \subset \mathbb{R}^3 \to \mathbb{R}$  be of class  $C^1$ . If R is a solid region contained in D then

$$\iiint_R \nabla f \cdot \nabla g \, dV = \iint_{\partial R} f \nabla g \cdot \boldsymbol{n} \, dS - \iiint_R f \nabla^2 g \, dV$$

$$(\nabla^2 g = \operatorname{div}(\nabla g)).$$

- 2. Use the Divergence Theorem to verify your asswer to question 7 on assignment 8.
- 3. Let  $\mathbf{F}(x, y, z) = (x, y^2, e^{yz})$  and let R be a cube centered at the origin with sides of length 2. Evaluate  $\int_S \operatorname{div} \mathbf{F} dV$  directly and by using the Divergence Theorem.
- 4. Let B be the pyramid with top vertex (0,0,1) and base vertices (0,0,0), (1,0,0), (0,1,0) and (1,1,0). Let S be the 2-dim closed surface bounding B, oriented in the outward direction. Use Gauss' theorem to calculate  $\int_S \mathbf{F} \cdot d\mathbf{S}$ , where  $\mathbf{F}(x,y,z) = (x^2y,3y^2z,9z^2x)$ .