

Práctica 7

2do cuatrimestre 2021 Álgebra I

Integrante	LU	Correo electrónico
Yago Pajariño	546/21	ypajarino@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

 $\rm http://www.exactas.uba.ar$

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

$\acute{\mathbf{I}}\mathbf{ndice}$

7.	Prá	ctica 7	2
	7.1.	Ejercicio 1	2
	7.2.	Ejercicio 2	2
	7.3.	Ejercicio 3	•

7. Práctica 7

7.1. Ejercicio 1

Rdo. propiedades del producto y suma de polinomios:

- Grado de un producto de polinomios gr(ab) = gr(a) + gr(b)
- Coeficiente principal de un produto de polinomios $cp(ab) = ca(a) \cdot cd(b)$

7.1.A. Pregunta i

- $qr(p) = 77.qr(4x^6 2x^5 + 3x^2 2x + 7) = 77.6 = 462$
- $cp(p) = 4^{77}$

7.1.B. Pregunta ii

Sea
$$p = a^4 - b^7$$
 con $a = -3x^7 + 5x^3 + x^2 - x + 5$ y $b = 6x^4 + 2x^3 + x - 2$
$$gp(p) = max(gr(a^4); gr(b^7)) \iff gr(a^4) \neq gr(b^7) \vee cp(a^4) \neq cp(b^7)$$
$$= max(7.4; 4.7) \iff cp(a^4) \neq cp(b^7)$$
$$= 28 \iff (-3)^4 \neq 6^7$$
$$= 28 \iff 81 \neq 279936$$

- gr(p) = 28
- $cp(p) = 81 6^7$

7.1.C. Pregunta iii

Sea
$$p = a - b + c$$
 con
$$\begin{cases} a = (-3x^5 + x^4 - x + 5)^4 \\ b = 82x^{20} \\ c = 19x^{19} \end{cases}$$

Luego $p = 81x^{20} + (...) - 81x^{20} + 19x^{19} \implies gr(p) = 19$ pues se cancelan los termino con x^{20}

Entonces busco el coeficiente para \boldsymbol{x}^{19}

$$cp(p) = a_{19} + b_{19} + c_{19}$$

$$= (-3. -3. -3.1) + 0 + 19$$

$$= -27 + 0 + 19$$

$$= -8$$

- gr(p) = 19
- -cp(p) = -8

7.2. Ejercicio 2

- 1. a) En $\mathbb{Q}[x] = 2$
 - b) En $\frac{\mathbb{Z}}{2\mathbb{Z}}[x] = 2$

2. Usando bin de Newton, $c(20) = {133 \choose 20}(3i)^{113}$

3. Usando bin de Newton cuatro veces,

$$a_1 = \binom{4}{1}x^1(-1)^3 \cdot \binom{19}{19}x^{19}5^0 = -4x^{20}$$

$$a_2 = \binom{4}{2}x^2(-1)^2 \cdot \binom{19}{18}x^{18}5^1 = 570x^{20}$$

$$a_3 = \binom{4}{3}x^3(-1)^1 \cdot \binom{19}{17}x^{17}5^2 = -17100x^{20}$$

$$a_4 = \binom{4}{4}x^4(-1)^0 \cdot \binom{19}{16}x^{16}5^3 = 121125x^{20}$$

Luego
$$c(20) = a_1 + a_2 + a_3 + a_4 - 5 = -4 + 570 - 17100 + 121125 - 5 = 104586$$

4.
$$c(20) = 21504$$

7.3. Ejercicio 3

7.3.A. Pregunta i

Reescribo el polinomio que me dan,

$$f^{2} = xf + x + 1 \iff f^{2} - xf = x + 1$$
$$\iff f(f - x) = x + 1$$
$$\iff f \neq 0 \land f - x \neq 0$$

Tomo grado a ambos lados,

$$gr(f) + gr(f - x) = gr(x + 1)$$

$$gr(f) + gr(f - x) = 1$$

Luego el grado de f tiene que se menor a 2.

Caso gr(f) = 1

Si $gr(f) = 1 \implies gr(f - x) = 0$ para cumplir la igualdad de grados.

Luego f es de la forma f = ax + b con a = 1

Entonces,

$$\begin{split} f(f-x) &= x+1 \iff (x+b)(x+b-x) = x+1 \\ &\iff xb+b^2 = x+1 \\ &\iff \text{Por igualdad de polinomios} \begin{cases} b=1 \\ b^2 = 1 \end{cases} \iff b=1 \end{split}$$

Así, $f_1 = x + 1$

Caso gr(f) = 0

Que el grado del polinomio sea igual a cero implica que f = c con c una constante.

Entonces,

$$\begin{split} f(f-x) &= x+1 \iff c(c-x) = x+1 \\ &\iff c^2 - cx = x+1 \\ &\iff \text{Por igualdad de polinomios} \begin{cases} -c = 1 \\ c^2 = 1 \end{cases} \implies c = -1 \end{split}$$

Así, $f_2 = -1$

Rta.:
$$f = x + 1 \text{ y } f = -1$$

7.3.B. Pregunta ii

Reescribo el polinomio que me dan,

$$f^2 - xf = x^2 + 1 \iff f(f - x) = -x^2 + 1$$

Tomo grado a ambos lados de la igualdad.

$$gr(f) + gr(f - x) = gr(-x^2 + 1)$$

 $0 + 2 = 2$ No puede ser
 $1 + 1 = 2$
 $2 + 0 = 2$ No puede ser

Así, el único caso posible es que gr(f) = 1 y que gr(f - x) = 1Sea f = ax + b,

$$f(f-x) = -x^2 + 1 \iff (ax+b)(ax+b-x) = -x^2 + 1$$

$$\iff (ax+b)((a-1)x+b) = -x^2 + 1$$

$$\iff a(a-1)x^2 + abx + b(a-1)x + b^2 = -x^2 + 1$$

$$\iff a(a-1)x^2 + (ab+b(a-1))x + b^2 = -x^2 + 1$$

$$\iff \text{Por igualdad de polinomios} \begin{cases} a(a-1) = -1 \\ ab+b(a-1) = 0 \\ b^2 = -1 \end{cases}$$

Busco soluciones para el sistema de tres ecuaciones que resultó.

De la tercera, se que $b=\pm 1$

$$b = 1 \implies a + a + 1 = 0 \iff 2a = 1 \iff a = \frac{1}{2}$$

Pero con $a = \frac{1}{2} \land b = 1 \implies \frac{1}{2} (\frac{1}{2} - 1) = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \neq -1$

Luego b = 1 NO sirve.

$$b=-1 \implies -a-a+1=0 \implies -2a=-1 \implies a=\frac{1}{2}$$

Se llega al mismo valor de a que con b=1 y ya se probó que no sirve.

Por lo tanto, $\not\exists f \in \mathbb{C}[x]$ que cumpla lo pedido.

7.3.C. Pregunta iii

Reescribo el polinomio que me dan,

$$(x+1)f^2 = x^6 + xf \iff (x+1)f^2 - xf = x^6$$

 $\iff f((x+1)f - x) = x^6$

Aplico grado a ambos lados de la igualdad.

$$gr(f) + gr((x+1)f - x) = gr(x^{6})$$

$$0 + 6 = 6$$

$$1 + 5 = 6$$

$$2 + 4 = 6$$

$$3 + 3 = 6$$

$$4 + 2 = 6$$

$$5 + 1 = 6$$

$$6 + 0 = 6$$

Luego de dar todos los posibles valores a gr(f), se puede ver que no existe gr((x+1)f-x) que cumpla lo pedido. Por lo tanto, $\exists f \in \mathbb{C}[x]$ que cumpla lo pedido.

7.3.D. Pregunta iv

Dado que por enunciado se que $f \neq 0$, puedo reescribir la igualdad como,

$$f^3 = gr(f) \cdot x^2 f \iff f^2 = gr(f) \cdot x^2$$

Aplico grado a ambos lados de la igualdad.

$$gr(f^2) = gr(gr(f) \cdot x^2)$$
$$gr(f^2) = 2$$
$$gr(f \cdot f) = 2$$
$$2gr(f) = 2$$
$$gr(f) = 1$$

Luego, con f = ax + b,

$$f^{2} = gr(f) \cdot x^{2} \iff (ax+b)^{2} = x^{2}$$

$$\iff a^{2}x^{2} + 2abx + b^{2} = x^{2}$$

$$\iff \text{Por igualdad de polinomios} \begin{cases} a^{2} = 1\\ 2ab = 0\\ b = 0 \end{cases}$$

Entonces, $a=\pm 1$ y b=0 son las soluciones del sistema.

Rta.: $f_1 = x$ y $f_2 = -x$ son los únicos polinomios que cumplen lo pedido.