IN THE CLAIMS:

2 3

Please amend claim 1 as follows:

4 5

6

7

8

9

10

11

12

13

14

15

1. (Amended) A method [for] of using Si-Ge-C in selective etch applications [in conjunction with a silicon substrate], comprising:

growing one or more epitaxial layers [sequentially, starting at the silicon substrate, wherein at least one of the epitaxial layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is about 4.5 atomic percent] on a single crystal silicon substrate, at least one of which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is an amount sufficient to exhibit etch selectivity with respect to the single crystal silicon substrate and/or one or more of the epitaxial layers adjacent the SI-Ge-C layer, and

[selectively etching the one or more layers adjacent to the Si-Ge-C layer and/or the Si-Ge-C layer wherein the selective etching includes applying a KOH etchant to the Si-Ge-C layer] etching the Si-Ge-C layer, and the single crystal silicon substrate and/or one or more of the epitaxial layers adjacent the Si-Ge-C layer.

18 19

17

Please add claims 2-20 as follows:

20 21

2. The method of claim 1, wherein the Si-Ge-C layer etches slower than the one or more adjacent epitaxial layers.

22

50.

23 24

2. The method of claim 1, wherein the Si-Ge-C layer etches slower than the single crystal silicon substrate.

25 26

4. The method of claim 1, wherein the Si-Ge-C layer etches faster than the one or more adjacent epitaxial layers.

28

27

The method of claim 1, wherein the Si-Ge-C layer etches faster than the 29 30 single crystal silicon substrate.

	1	53,
M	2	The method of claim 1, wherein the etching includes applying an etchant
	3	selected from the group of KOH and HNA.
	4	sak
	150	method of using Si-Ge-C in selective etch applications in conjunction with a
		single crystal substrate, comprising:
	7	growing one or more epitaxial layers sequentially, starting at the single crystal
	8	substrate surface, wherein at least one of the epitaxial layers comprises Si-Ge-C,
	9	wherein the carbon of the Si-Ge-C layer is up to 5 atomic percent; and
	10	etching the Si-Ge-C layer, and the single crystal substrate and/or one or more of
	11	the epitaxial layers adjacent the Si-Ge-C layer.
	12	55,
	13	\$. The method of claim 7, wherein the Si-Ge-C layer etches slower than the one
	14	or more adjacent epitaxial layers.
	15	54
	16	56, The method of claim #, wherein the Si-Ge-C layer etches slower than the
3 mt	17	single crystal substrate.
	18	57. 54
	19	70. The method of claim 7, wherein the Si-Ge-C layer etches faster than the one
	20	or more adjacent epitaxial layers.
	21	55, 54
	22	The method of claim #, wherein the Si-Ge-C layer etches faster than the
	23	single crystal substrate.
	_2J	54 55 51 57 58 12. The method of claim 7, 8, 9, 10, or 11, wherein the single crystal substrate is
	25	The method of claim \$1, \$1, \$0, or \$1, wherein the single crystal substrate is
		a material selected from the group of silicon, silicon-germanium, and germanium.
	26 07	60, 54
	27	13. The method of claim 1, wherein the etching includes applying an eleman
	28	selected from the group of KOH and HNA.
	29	
	30	

A method of using SI-Ge-C in selective etch applications in conjunction with a substrate, comprising: growing doe or more layers sequentially, starting at the substrate, wherein at 3 least one of the layers comprises Si-Ge-C, wherein the carbon of the Si-Ge-C layer is up to 10 atomic percent, and 5 etching the Si-Ge-C layer and one or more layers adjacent to the Si-Ge-C layer 6 and/or the substrate. 7 8 18. The method of claim 14, wherein the Si-Ge-C layer etches slower than the 9 one or more adjacent layers. 10 11 6. The method of claim 14, wherein the Si-Ge-C layer etches slower than the 12 substrate. 13 14 The method of claim 14, wherein the Si-Ge-C layer etches faster than the 15 one or more adjacent layers. 17 18. The method of claim 14, wherein the Si-Ge-C layer etches faster than the 18 substrate. 19 20 19. The method of claim 14, 18, 16, 17, or 18, wherein the substrate is a 21 material selected from the group of silicon, silicon-germanium, and germanium. 22 61 20. The method of claim 14, wherein the etching includes applying an etchant selected from the group of KOH and HNA.--25 26 27 28 29 30

Please enter claim 1 in clean form as follows:

1. A method of using Si-Ge-C in selective etch applications, comprising: growing one or more epitaxial layers on a single crystal silicon substrate, at least one of which is a Si-Ge-C layer, wherein the carbon of the Si-Ge-C layer is an amount sufficient to exhibit etch selectivity with respect to the single crystal silicon substrate and/or one or more of the epitaxial layers adjacent to the Si-Ge-C layer; and

sufficient to exhibit etch selectivity with respect to the single crystal silicon substrate and/or one or more of the epitaxial layers adjacent to the Si-Ge-C layer; and etching the Si-Ge-C layer, and the single crystal silicon substrate and/or one or more of the epitaxial layers adjacent to the Si-Ge-C layer.