Homework 1

神经影像与神经记录方法

生 51 陈旭鹏 学号: 2014012882

2018年3月20日

1 MRI 大脑结构分析

1.1 大脑占比

利用网站 http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation 的相关注释,找到数据中每个 voxel 的编号所对应的脑区,可以观察到大脑皮层的脑区数据编号为 1000 2000,且左脑为 1000 开头,右脑为 2000 开头。在对应时也把 Cingulate 考虑了进去。将四个脑区的左右脑对应的 voxel 分别重新赋值为 1~8 方便计数,可视化结果如下。

利用逐层统计的方法可以计算两个大脑四个脑区分别的面积占比:

	Frontal lobe	Temporal lobe	Parietal lobe	Occipital lobe
Brain1	0.384	0.283	0.226	0.105
Brain2	0.398	0.286	0.225	0.089

这里的统计面积占比的方法似乎不够科学,如果要统计真正表面积的话,应该做的是对大脑皮层重新建模,然后获得各个脑区的表面积。我设想了一种计算的方法,但是由于比较麻烦没有实现,思路如下:找到每层的同一脑区的曲线并连接(但不连通),可以利用膨胀腐蚀等算法,并用图像处理算法找到曲线的坐标。然后逐层如此处理,获得同一脑区的曲线的逐层坐标。然后利用最近邻算法找到相邻层的应该连接的点,但是这里可能有一些对应上的问题需要处理。然后计算相邻层的小三角形的面积以逼近表面积。

图 1: 可视化部分层重新编号的四个脑区

1.2 对称性

1.2.1 只考虑左右脑面积比的方法

总的大脑皮层的右脑与左脑关系:

	right brain region	left brain region	left vs right region ratio
Brain1	244742	249244	1.0183
Brain2	210662	206534	0.9804

分别考虑四个脑区左脑与右脑的面积差的比例:

	Frontal lobe	Temporal lobe	Parietal lobe	Occipital lobe
Brain1	-0.022	-0.0133	-0.037	0.027
Brain2	-0.006	0.038	0.017	0.0932

1.2.2 先使左右脑重合再考虑相关性的方法

这里我们想用更科学的方法考虑对称性,考虑到人脸识别领域,有方法可以先把两个人脸尽可能的重合,然后再去算对应位置的坐标的相关系数,来衡量相关性,本解法考虑了这种方法。具体做法如下:

- 对右脑或左脑做镜像对称
- 统计两侧脑区的 voxel 数量,将多的一边随机删除一些值保持两边坐标点一致
- 使用 ICP 算法 (iterative closest points) 对齐左右脑,获得变换需要的矩阵
- 注意左右脑的坐标并不是一一对应的,必须用最近邻算法先将对应点对应起来,再用变换矩阵将左右脑对齐
- 计算对齐后的 r^2

最终利用 ICP 和 Nearest Neighbor 算法对齐,计算左右脑的 r^2 为 0.99893 和 0.9987,可以认为两个大脑的对称性都相当好。

2 功能磁共振 fMRI 数据分析练习

2.1 主要规律

可以发现异侧大脑的 BOLD 信号在某侧手的刺激几秒后信号出现峰值。

图 2: 绘制 BOLD 信号与左右手刺激的关系 layer30

2.2 用软件绘制 peristimulus plot

图 3: mricron 绘制 peristimulus plot

我认为就是 modeled rather than observed data 这句话包含的意思,同时回归多个自变量,比如 $y \sim \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2$ 回归,回归之后,把 $\beta_1 \cdot x_1 + \beta_2 \cdot x_2$ 两部分提取出来,就没有噪声了。

2.3 自己编程绘制 peristimulus plot

图 4: 编程绘制 peristimulus plot

2.4 自己寻找显著激活区域

这里使用 GLM 模型对刺激信号 X 和响应值 y 进行回归,并对每个 voxel 的线性模型的结果 检验并计算 p 值,通过筛选修改后的 p 值挑选显著激活区域。步骤如下:

- 先对左右手的刺激信号进行卷积,使刺激信号的离散化程度降低,作为自变量。
- 对每层有信号值的 voxel, 获得其信号随时间的变化。
- 建立 GLM 模型,用最小二乘法获得 β_0, β_1 ,并做 t 检验,分别获得 p value
- 与修正后的 p 值比较,获得显著激活区域,修正后的 p 值计算方法为 0.05 处以全脑的有信号的 voxel 数目

3 听觉神经细胞的频率选择性

3.1 绘制 tuning curve

绘制方法: 分别统计两个数据在刺激后 0.05 秒内的 spike 数目, 获得 firing rate, 绘制不同强度下的 tuning curve。两个细胞的响应最强的频率和强度分别是: neuron1: 35 dB, 30 kHz, neuron2: 25dB, 27 kHz.

3.2 绘制 FRA

特征频率分别为 42kHz 和 46kHz。

(a) neuron1 tuning curve under different sound level

(a) neuron1 Frequency Response Area

(b) neuron2 Frequency Response Area