Precision-based sampling with missing observations

Philipp Hauber^{1,2}

 1 JMU Würzburg 2 Kiel Institute for the World Economy (IfW)

Kiel Institute Research Seminar March 22nd, 2022

This presentation

Mash-up of two papers in my dissertation!

Method:

Hauber, P and C. Schumacher (2021). *Precision-based sampling with missing observations: A factor model application*, **Bundesbank Discussion Paper 11/2021**.

Application:

Hauber, P. (2021) How useful is external information from professional forecasters? Conditional forecasts in large factor models

Motivation

Essential task in the Bayesian estimation of state space models: drawing from $p(\eta|\mathbf{y},\Theta)$ where η is an unobserved component, \mathbf{y} is data and Θ parameters

Precision-based samplers (Chan and Jeliazkov 2009, IJMMNO; McCausland 2012, JEcmtrics) exploit the fact the precision matrix of η is banded in many macroeconomic application \rightarrow alternative to simulation smoothers that rely on the Kalman filter

Applications in macroeconomics (with complete data) include models of trend inflation (Chan et al. 2013, JBES), time-varying Bayesian vector autoregressions (Chan 2020, JBES) and factor models (Kaufmann and Schumacher 2017, JAE)

Missing observations arise frequently in macroeconomic applications/datasets: different starting dates, different release patterns ("ragged edge"), outliers or mixed frequencies

In our paper, we propose a precision-sampler that can handle (most of these) applications!

Precision-based sampling

Simple example: AR(2)

Precision-based sampling

Computational advantages of a banded precision matrix

The fact that $Q=\Sigma^{-1}$ is banded leads to several numerical advantages that can be exploited wh:

- factoring
- the Cholesky factor L such that Q = LL' "inherits" the bandedness of Q
- solving triangular systems of the form Lx = b

```
for i = n:-1:1 % do something
```

```
\begin{array}{lll} \text{for } i &= n\!:\!-1\!:\!1 \\ & \text{for } j &= 1\!:\!i \\ & \text{\% do something} \\ & \text{end} \end{array}
```

Precision-based sampling

Drawing from $p(\eta|\mathbf{y}, \Theta)$

Ladidadida Ladidadida

```
double x, y;
double z, w;
main();
return 0;
```

Ladidadida Ladidadida

Precision-based sampling with missing observations

Drawing from $p(\eta, y^m | y^o, \Theta)$

References I