Module 23: Functional Connectivity

Brain Connectivity

Functional Connectivity

- Undirected association between two or more fMRI time series and/or performance and physiological variables.
- Makes statements about the structure of relationships among brain regions.
- Usually makes no assumptions about the underlying biology.

Functional Connectivity

Methods include:

- Seed analysis
- Inverse covariance methods
- Multivariate decomposition methods
 - Principle Components Analysis
 - Independent Components Analysis
 - Partial Least Squares

Bivariate Connectivity

Simple functional connectivity

- Region A is related to Region B.
- Provides information about relationships among regions.
- Can be performed on time series data within a subject, or individual differences (contrast maps, one per subject).

Time Series Connectivity

 Calculate the cross-correlation between time series from two separate brain regions.

Group Analysis

Seed Analysis

 In seed analysis the cross-correlation is computed between the time course from a predetermined region (seed region) and all other voxels.

 This allows researchers to find regions correlated with the activity in the seed region.

 The seed time course can also be a performance or physiological variable

Correlations between brain activity and heart-rate

Issues

- One of the main problems with time series connectivity is the fact that there may be different hemodynamic lags in different regions:
 - Time series from different regions may not match up, even if neural activity patterns match up.
 - If lags are estimated from data, temporal order may be caused by vascular (uninteresting) or neural (interesting) response.

Beta Series

 The beta series approach can be used to minimize issues of inter-region neurovascular coupling.

Procedure:

- Fit a GLM to obtain separate parameter estimates for each individual trial.
- Compute the correlation between these estimates across voxels.

Beta Series

Group Analysis

Individual Differences

- One way of studying differences between groups of subjects is to use some trait as a covariate in between-subject analysis.
- These types of analysis of individual differences allow researchers to study relationships between brain and behavior.

Individual Differences

Seed Value Group Results

Partial Correlation

Partial Correlation

- Correlation between two regions, after the effect of all other regions have been removed.
- Helps protect against 'illusory' correlations between regions (e.g., A and C uncorrelated after controlling for B).

Inverse Covariance Methods

- For multivariate normal data there exists a duality between the inverse covariance (precision) matrix and the graph representing relationships between regions.
 - Conditional independence between variables (regions) corresponds to zero entries in the precision matrix.
 - Graphical lasso (GLASSO) can be used to estimate sparse precision matrices and graphs.

End of Module

