Introducción a la computación cuántica

Día 1: ∼ Conceptos básicos ∽

Alejandro Díaz-Caro

Universidad Nacional de Quilmes

XIII Jornadas de Ciencias de la Computación Rosario – 21 al 23 de octubre de 2015

Un poco de historia

Richard Feynman

First Conference on the Physics of Computation, MIT, 1981 Simulación

- ▶ Física clásica ⇒ computación clásica
- ► Física cuántica ⇒ ¿computación clásica?

Necesidad de una computadora cuántica para simular física cuántica

Un poco de historia

Richard Feynman

First Conference on the Physics of Computation, MIT, 1981 Simulación

- ► Física clásica ⇒ computación clásica
- ► Física cuántica ⇒ ¿computación clásica?

Necesidad de una computadora cuántica para simular física cuántica

R. P. Poplavskii

Uspekhi Fizicheskikh Nauk, 115:3, 465–501, 1975

 Inviabilidad computacional de simular sistemas cuánticos (debido al ppio de superposición)

Yuri I. Manin

Moscow, Sovetskoye Radio, 1980

- Uso del número exponencial de estados de base
- Propuesta de teoría de computación cuántica

Un poco de historia (continuación)

Paul Benioff

Journal of Statistical Physics 29 (3):515–546, 1982

 Primer framework teórico para computación cuántica

Charles Bennett y Gilles Brassard

Int. Conference on Computers, Systems and Signal Processing, EE.UU., 1984

▶ BB84: Método de distribuciónd de claves para criptografía

David Deutsch

Proceedings of the Royal Society A 400 (1818):97–117, 1985

Máquina de Turing Cuántica: máquina cuántica universal ... Varios hitos históricos omitidos ...

Peter Shor

35th Annual Symposium on Foundations of Computer Science, EE.UU., 1994

 Algoritmo cuántico para factorizar números primos

Lov Grover

28th Annual ACM Symposium on the Theory of Computing, EE.UU., 1996

 Algoritmo de búsqueda (con ganancia cuadrática)

Contenido del curso

Día 1: Introducción a computación cuántica

- Álgebra
- Bits cuánticos y operadores
- ► Teorema de no-clonado
- Estados de Bell
- ► Codificación superdensa y teleportación cuántica
- Paralelismo cuántico

Día 2: Aplicaciones

- Algoritmo de Deutsch
- Algoritmo de Deutsch-Jotza
- Algoritmo de Grover
- Protocolo cuántico de distribución de claves criptográficas BB84

Álgebra

EN EL PIZARRÓN

- Espacio de Hilbert
- Producto tensorial
- Notación bra-ket

Bits cuánticos

Un qubit es...

(para un físico)

... un sistema cuántico con dos niveles de energía y que puede ser manipulado arbitrariamente

Bits cuánticos

Un qubit es...

(para un físico)

... un sistema cuántico con dos niveles de energía y que puede ser manipulado arbitrariamente

pero nosotros no somos físicos...

(para un matemático o informático)

 \dots un vector normalizado del espacio de Hilbert \mathbb{C}^2

Bits cuánticos

Un qubit es...

(para un físico)

... un sistema cuántico con dos niveles de energía y que puede ser manipulado arbitrariamente

pero nosotros no somos físicos...

(para un matemático o informático)

 \ldots un vector normalizado del espacio de Hilbert \mathbb{C}^2

n-qubits: un vector de $\bigotimes_{i=1}^n \mathbb{C}^2 = \mathbb{C}^{2^n}$

Operadores

EN EL PIZARRÓN

- Operador
- Adjunto y propiedades
- Proyector
- Operador hermítico

- Operador unitario
- Operador de medición
- Compuertas cuánticas
- Evolución

Compuertas más comunes y operadores de Pauli

 $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$ $H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

J|0
angle=|0
angle J|1
angle=|1
angle $J=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$

 $X|0
angle = |1
angle \ X|1
angle = |0
angle \ X= egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$

 $Z|0
angle = |0
angle \ Z|1
angle = -|1
angle \ Z=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$

Out of the control o

Matrices de Pauli X

Teorema de no-clonado

Teorema (No clonado)

No existe ninguna compuerta cuántica U tal que para algún $|\phi\rangle\in\mathbb{C}^N$ y para todo $|\psi\rangle\in\mathbb{C}^N$ se cumpla

$$U|\psi\phi\rangle = |\psi\psi\rangle$$

Es decir...

No existe una máquina universal de clonado

Teorema de no-clonado

Teorema (No clonado)

No existe ninguna compuerta cuántica U tal que para algún $|\phi\rangle\in\mathbb{C}^N$ y para todo $|\psi\rangle\in\mathbb{C}^N$ se cumpla

$$U|\psi\phi\rangle = |\psi\psi\rangle$$

Es decir...

No existe una máquina universal de clonado

o más simplemente

No se puede copiar un qubit desconocido

Estados de Bell

Entrada	Salida
00⟩	$\beta_{00} = \frac{1}{\sqrt{2}}(00\rangle + 11\rangle)$
01⟩	$eta_{01} = rac{1}{\sqrt{2}}(01\rangle + 10\rangle)$
10⟩	$\beta_{10} = \frac{1}{\sqrt{2}}(00\rangle - 11\rangle)$
$ 11\rangle$	$\beta_{11} = \frac{1}{\sqrt{2}}(01\rangle - 10\rangle)$

Estados de Bell

	Entrada	Salida
Ī	00⟩	$\beta_{00} = \frac{1}{\sqrt{2}}(00\rangle + 11\rangle)$
	$ 01\rangle$	$eta_{01} = \frac{1}{\sqrt{2}} (01\rangle + 10\rangle)$
	$ 10\rangle$	$eta_{10} = \frac{1}{\sqrt{2}}(00\rangle - 11\rangle)$
	$ 11\rangle$	$eta_{11}=rac{1}{\sqrt{2}}(\ket{01}-\ket{10})$

Ejemplo:

$$M = \left\{ egin{array}{lll} M_0 &=& |0\rangle\langle 0| \ M_1 &=& |1\rangle\langle 1| \end{array}
ight\}$$

Entonces

$$(M\otimes I)\beta_{00}$$

Codificación superdensa

Objetivo:

Transmitir 2 bits clásicos enviando tan sólo 1 qubit

Codificación superdensa

Objetivo:

Transmitir 2 bits clásicos enviando tan sólo 1 qubit

- 1. A y B preparan β_{00}
- 2. Se llevan cada uno un qubit
- 3. A aplica $Z^{b_1}X^{b_2}$ a su qubit
- 4. A envía su qubit a B
- 5. B aplica CNOT y H a ambos
- 6. B mide

Teleportación cuántica

Objetivo:

Transmitir 1 qubit enviando 2 bits clásicos

Teleportación cuántica

Objetivo:

Transmitir 1 qubit enviando 2 bits clásicos

- 1. A y B preparan β_{00}
- 2. Se llevan cada uno un qubit
- 3. A aplica *CNOT* y *H* al qubit a transmitir y el suyo del par
- 4. A mide y envía el resultado a B
- 5. B aplica $Z^{b_1}X^{b_2}$ (b_1 y b_2 de A)

Paralelismo cuántico

Primera intuición

$$f: \{0,1\} \to \{0,1\}$$

Resultados posibles: 2

Cantidad de evaluaciones para obtenerlos: 2

Paralelismo cuántico

Primera intuición

$$f: \{0,1\} \to \{0,1\}$$

Resultados posibles: 2

Cantidad de evaluaciones para obtenerlos: 2

Supongamos que existe la siguiente compuerta:

$$U_f|x,0\rangle=|x,f(x)\rangle$$

Paralelismo cuántico

Primera intuición

$$f: \{0,1\} \to \{0,1\}$$

Resultados posibles: 2

Cantidad de evaluaciones para obtenerlos: 2

Supongamos que existe la siguiente compuerta:

$$U_f|x,0\rangle = |x,f(x)\rangle$$

Es decir:

$$|00\rangle \xrightarrow{\textit{H}(1)} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle) \xrightarrow{\textit{U}_{\textit{f}}} \frac{1}{\sqrt{2}}(|0,\textit{f}(0)\rangle + |1,\textit{f}(1)\rangle)$$

Cantidad de evaluaciones de U_f para obtener los dos resultados: 1