A. Studi Kasus

i	y_i (hours)	X_{i1} (rpm)	Tool Type	\hat{y}_i	e_i
1	18.73	610	A	20.7552	-2.0252
2	14.52	950	A	11.7087	2.8113
3	17.43	720	Α	17.8284	-0.3984
4	14.54	840	A	14.6355	-0.0955
5	13.44	980	A	10.9105	2.5295
6	24.39	530	A	22.8838	1.5062
7	13.34	680	A	18.8927	-5.5527
8	22.71	540	A	22.6177	0.0923
9	12.68	890	A	13.3052	-0.6252
10	19.32	730	A	17.5623	1.7577
11	30.16	670	В	34.1630	-4.0030
12	27.09	770	В	31.5023	-4.4123
13	25.40	880	В	28.5755	-3.1755
14	26.05	1000	В	25.3826	0.6674
15	33.49	760	В	31.7684	1.7216
16	35.62	590	В	36.2916	-0.6716
17	26.07	910	В	27.7773	-1.7073
18	36.78	650	В	34.6952	2.0848
19	34.95	810	В	30.4380	4.5120
20	43.67	500	В	38.6862	4.9838

Table 8.1 The Tool Life Data

Pada pembahasan penugasan ini dibahas mengenai studi kasus yang terdapat pada "Example 8.1 The Tool Life Data". Di pergunakan data data "The Tool Life" atau "Umur Alat" yang merepresentasikan dua puluh observasi antara masa pakai alat y_i dan kecepatan mesin x_{1i} . Lalu, akan dibahasa dengan menerapkan proses perhitungan "Dummy Regression" seperti dibawah ini.

B. Pembahasan

Untuk melakukan proses perhitungan pada *Dummy Regression* secara manual, dipergunakan Excell sebagai *tools* yang tepat untuk melakukan proses analisis regresi dummy. Di mana pada pembahasan dari studi kasus "The Tool Life Data" dilakukan proses perhitungan untuk menampilkan output yang sesuai dengan penjabaran, sebagai berikut.

Langkah awal untuk melakukan perhitungan *dummy regression* adalah membangun model regresi dengan menggunakan estimasi beta, pembuatan *scatter plot* dari data yang ada, di lanjutkan dengan melakukan proses perhitungan estimasi sigma, uji F, *R-Square*,

uji T. Di mana nilai-nilai yang telah di peroleh dari proses perhitungan tersebut akan di bandingkan dengan hasil perhitungan dari tabel yang terdapat di *example* 8.1 apakah memiliki hasil perbandingan yang sama atau tidak.

1. Membangun Model Regresi Dengan Estimasi Beta

Dengan menggunakan estimasi beta, di lakukan proses membangun model regresi dummy. Di mana untuk membangun model regresi tersebut, di perlukan pembuatan tabel yang menunjukkan nilai variabel x_{i1} dengan variabel y_i .

				REGRESSION	MODELS				
i	yi (hours)	xi1 (rpm)	Tool Type	Tool Type (Numerik)		Х		Y_Topi	Error
1	18.73	610	Α	0	1	610	0	20.755191	-2.0251906
2	14.52	950	Α	0	1	950	0	11.708732	2.8112678
3	17.43	720	Α	0	1	720	0	17.828395	-0.3983952
4	14.54	840	Α	0	1	840	0	14.635528	-0.0955276
5	13.44	980	Α	0	1	980	0	10.910515	2.5294847
6	24.39	530	Α	0	1	530	0	22.883769	1.506231
7	13.34	680	Α	0	1	680	0	18.892684	-5.5526844
8	22.71	540	Α	0	1	540	0	22.617697	0.0923033
9	12.68	890	Α	0	1	890	0	13.305166	-0.625166
10	19.32	730	Α	0	1	730	0	17.562323	1.7576771
11	30.16	670	В	1	1	670	1	34.163007	-4.0030074
12	27.09	770	В	1	1	770	1	31.502284	-4.4122843
13	25.4	880	В	1	1	880	1	28.575489	-3.175489
14	26.05	1000	В	1	1	1000	1	25.382621	0.6673787
15	33.49	760	В	1	1	760	1	31.768357	1.7216434
17	26.07	910	В	1	1	910	1	27.777272	-1.707272
18	36.78	650	В	1	1	650	1	34.695152	2.084848
19	34.95	810	В	1	1	810	1	30.437995	4.5120049
20	43.67	500	В	1	1	500	1	38.686237	4.9837634

Untuk mendapatkan model regresi dummy ini, diperlukan adanya 3 kolom X, yakni yang pertama adalah kolom X yang berisi nilai sebesar 1, yang kedua adalah kolom X yang berisi nilai dari data x_{i1} (rpm), dan yang ketiga adalah kolom X yang berisi nilai dari konversi data di kolom $tool\ type$ yang di numerikan, dengan A=0 dan B=1. Kemudian nilai-nilai tersebut akan di proses untuk mendapatkan nilai model regresi dummy.

									X°										
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
610	950	720	840	980	530	680	540	890	730	670	770	880	1000	760	590	910	650	810	500
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	X'X			Χ°Y															
20	15010	10		490.38															
15010	11717500	7540		356515.7															
10	7540	10		319.28															
	X'X Inverse			Hasil Beta															
1.3338507	-0.001651741	-0.088437811		36.985601	Beta 0														
-0.0016517	2.21117E-06	-1.54782E-05		-0.0266072	Beta 1														
-0.0884378	-1.54782E-05	0.200108347		15.004251	Beta 2														

Lalu, langkah selanjutnya di lakukan proses transformasi dari ke nilai X yang terdapat di kolom tersebut, di lanjutkan dengan proses perkalian nilai

transformasi *X* di kali nilai *X*, kemudian di lakukan proses perhitungan *inverse* dari nilai tersebut, dan di lakukan proses perkalian *X'* dengan *Y*.

Untuk nilai-nilai dari beta tersebut, di peroleh dari proses perhitungan perkalian dari nilai *inverse* X'X di kali X'Y. Sehingga, di peroleh nilai $\widehat{\beta_0} = 36,986$, $\widehat{\beta_1} = -0,027$, dan $\widehat{\beta_2} = 15,004$. Dan, di peroleh model prediksi :

$$\hat{y} = 36,986 + (-0,027)x_1 + 15,004x_2$$

Setelah memperoleh model prediksi, selanjutnya dilakukan proses perhitungan y_topi (y_prediksi) dengan melakukan subtitusi ke persamaan yang di peroleh pada model prediksi. Kemudian di lakukan perhitungan *error* dengan menggunakan rumus $e = yi - \hat{y}$.

Interpretasi:

Model tersebut menggambarkan hubungan antara variabel input (x) dan variabel output (y topi) dalam bentuk model regresi. Model ini memiliki tiga parameter utama, yaitu 36,986, -0,027, dan 15,004. Jadi, model tersebut dapat memperkirakan nilai y topi berdasarkan nilai x yang diberikan.

Interpretasi

Model tersebut menggambarkan hubungan antara variabel input (x) dan variabel output (y topi) dalam bentuk model regresi. Model ini memiliki tiga parameter utama, yaitu 36,986, -0,027, dan 15,004. Jadi, model tersebut dapat memperkirakan nilai y topi berdasarkan nilai xyang diberikan.

2. Scatter Plot Of Data "Plot Of Tool Life y Versus Speed x_1 For Tool Type A And B"

Pada tahapan ini dilakukan proses perhitungan dan visualisasi *scatter plot* dari data "Tool Life". Dengan menggunakan kolom-kolom yang diperhitungkan dengan penjabaran yang akan dijelaskan lebih lanjut, sebagai berikut.

Untuk pembuatan scatter plot dari data "Plot Of Tool Life y Versus Speed x_1 For Tool Type A And B" dipergunakan kolom x_{1i} , y_i , dan tool type (numerik). Lalu, dihasilkan visualisasi scatter plot dengan titik-titik data yang di plotkan berdasarkan nilai dari kolom kecepatan mesin x_{1i} (rpm) di sumbu x dan nilai tool life y_i disumbu y.

Kemudian, diperoleh visualisasi scatter plot dengan titik-titik data yang dikelompokkan berdasarkan jenis perkakas, tipe A dan B. Dan, diperlihatkan bahwa pada visualisasi titik-titik data tersebut memiliki hubungan positif antara kecepatan mesin x_{1i} (rpm) dan nilai tool life y_i dengan artian semakin tinggi kecepatan mesin, maka semakin rendah umur alat. Hubungan positif antara kecepatan bubut dengan tool life ini lebih kuat untuk perkakas tipe A daripada untuk perkakas tipe B, hal tersebut dapat diperlihatkan dari jarak antar titik-titik data yang lebih dekat untuk perkakas tipe A.

Interpretasi:

Berdasarkan perhitungan dan visualisasi dari *scatter plot* yang diperoleh, dapat diambil kesimpulan bahwa terdapat hubungan positif anatara kecepatan mesin dengan *tool life* atau umur alat. Hubungan ini lebih kuat untuk perkakas dengan tipe A disbanding untuk perkakakas tipe B.

3. Setter Plot Of Data "Plot Of Externally Studentized Resdiuals t Versus Fittes Values y_i "

Pada tahapan ini dilakukan proses perhitungan dan visualisasi *scatter plot* dari data "Tool Life". Dengan menggunakan kolom-kolom yang diperhitungkan dengan penjabaran yang akan dijelaskan lebih lanjut, sebagai berikut.

Diot of a	xternally studentized residu	ale twareur fittad val	une u^l	i											_			
Plot of es	A ternany studentized residu	iais t versus litted val	ues y 1															
	xi1 (rpm)	yi (hours)	Y_Topi	Sxx	Residual	Studentised Residuals		PLOT	OE EV	TEDI	MALLY	STIID	ENIT	1750	DEC	IDIIA	16	
	610	18.73	20.75519058	19740.25	-2.02519058	-0.699860051		PLOT									LS	
	950	14.52	11.70873221	39800.25	2.811267794	0.996178162			T VE	RSUS	FITT	ED VA	LUES	SYIS	LOP	E		
	720	17.43	17.82839522	930.25	-0.398395224	-0.134623824						◆ A ■ B						
	840	14.54	14.63552756	8010.25	-0.095527562	-0.03254997						-11						
	980	13.44	10.91051529	52670.25	2.52948471	0.911490803	2.5											
	530	24.39	22.88376902	48620.25	1.506230978	0.539874387	2											
	680	13.34	18.89268444	4970.25	-5.552684444	-1.885235905	1.5										-	
	540	22.71	22.61769672	44310.25	0.092303284	0.032898587												
	890	12.68	13.30516604	19460.25	-0.625166036	-0.21596953	1			••								
	730	19.32	17.56232292	420.25	1.757677081	0.593593123	0.5					•						
	670	30.16	34.16300736	6480.25	-4.003007363	-1.361514169	ES1						-					
	770	27.09	31.50228431	380.25	-4.412284312	-1.490023217	-0.5	0 5	1	•	15	20	25	30		35 =	40	4.5
	880	25.4	28.57548896	16770.25	-3.175488955	-1.093425212						•		•				
	1000	26.05	25.38262129	62250.25	0.667378706	0.243600881	-1											
	760	33.49	31.76835662	90.25	1.721643383	0.581200757	-1.5											
	590	35.62	36.2915858	25760.25	-0.671585804	-0.233807147						•						
	910	26.07	27.77727204	25440.25	-1.70727204	-0.594137714												
	650	36.78	34.69515197	10100.25	2.084848027	0.712155412	-2.5					FITS						
	810	34.95	30.43799509	3540.25	4.512004909	1.529335222												
	500	43.67	38.68623655	62750.25	4.983763449	1.820369175												
Jumlah	15010	490.38	490.38	452495	2.1334E-12	0.219549768												
Rata-Rata	750.5	24.519																
MSRes	9.238503668																	

Untuk pembuatan scatter plot dari data "Plot Of Externally Studentized Resdiuals t Versus Fittes Values y_i " dipergunakan kolom x_{1i} (rpm), y_i (hours), dan residual untuk melakukan perhitungan pada kolom Sxx, $(x_i - \overline{x})^2$, dan nilai studentised residuals. Untuk rumus-rumus yang dipergunakan untuk mendapatkan nilai-nilai tersebut, akan dijabarkan lebih lanjut seperti berikut.

Sxx
 Untuk mendapatkan nilai Sxx ini diperoleh dengan menggunakan rumus.

$$Sxx = (x_i - \overline{x})^2$$

• Studentised Residuals

$$Studentised\ Residuals = \frac{ei}{\sqrt{MSR_{es}\left(1-\left(\frac{1}{n}+\frac{Sxx}{\sum Sxx}\right)\right)}}$$

Setelah mendapatkan nilai-nilai tersebut, selanjutnya dilanjutkan dengan pembuatan visualisasi *scatter plot*. Dan dapat direpresentasikan berdasarkan hasil dari visualisasi tersebut menunjukkan nilai antara nilai y_topi dengan studentised residuals dimana pada warna biru merepresentasikan nilai y_topi dengan studentised residuals dari data 1-10 selanjutnya pada warna oren merepresentasikan nilai y_topi dengan studentised residuals dari data 11-20. Dapat diambil kesimpulan bahwa berdasarkan hasil representasi tersebut menunjukkan bahwa model regresi yang diperoleh sudah

cukup baik dalam memprediksi nilai aktual. Hal ini dapat diperlihatkan dari, penyebaran nilai residual yang dinormalisasi secara acak disekitar garis nol.

Interpretasi:

Berdasarkan perhitungan dan visualisasi dari *scatter plot* yang diperoleh, dapat diambil kesimpulan bahwa model regresi yang diperoleh sudah cukup baik dalam memprediksi nilai aktual. Hal tersebut dapat diperlihatkan dari, penyebaran nilai residual yang dinormalisasi secara acak disekitar garis nol.

4. yg plote blm nemu...

5. Melakukan Perhitungan SSRes, MSRes, DFRes Dengan Menggunakan Estimasi Sigma

Dengan menggunakan estimasi sigma, di lakukan proses perhitungan nilai y prediksi, error, *sum of squares* residual, *mean square* redisual, *degrees of reedom* residual, dan *standar error* estimasi beta.

Dilakukan proses transformasi dari nilai *error*, *Y*, dan beta topi. Di mana nilai-nilai tersebut akan di pergunakan untuk menghitung *sum of squares* residual, *mean square* redisual, dan *degrees of reedom* residual. Sebelumnya perlu di lakukan inisiasi nilai n (jumlah data) sebesar 20, k (variabel prediktor) sebesar 2, dan p (variabel prediktor + 1) sebesar 3.

	Inisiasi Nilai Dan Perhitun	gan
	20	
n k	20	
p	3	
SSRes	157.0545624	
MSRes	9.238503668	
DFRes	17	

Kemudian dari, nilai-nilai tersebut di lakukan beberapa perhitungan, yakni :

• Sum Squares Residual

$$SSR_{es} = \sum_{i=1}^{n} e_i^2 = e'.e = 157,055.$$

• Mean Square Residual

$$MSR_{es} = \frac{SSR_{es}}{n-p} = \frac{157,054}{20-3} = 9,239.$$

• Degrees Of Reedom Residual

$$DFR_{es} = n - k - 1 = 20 - 2 - 1 = 17.$$

	Inisiasi Nilai Dan Perhitung	gan		
n	20			
k	2			
р	3			
SSRes	157.0545624			
MSRes	9.238503668			
DFRes	17			
	X'X Inverse		Standar error	
1.333850746	-0.001651741	-0.088437811	3.51038246	
-0.001651741	2.21117E-06	-1.54782E-05	0.00451972	SE Beta 1
-0.088437811	-1.54782E-05	0.200108347	1.359669702	SE Beta 2

Setelah mendapatkan nilai-nilai tersebut selanjutnya adalah melakukan perhitungan nilai $standar\ error$ estimasi beta dengan menggunakan nilai MSR_{es} di kali dengan diagonal nilai pada matriks $inverse\ X'X$. Dengan perhitungan :

• $SE(\widehat{\beta_0})$

$$SE(\widehat{\beta_0}) = \sqrt{\frac{9,238}{1,334}} = 3,510.$$

• $SE(\widehat{\beta_1})$

$$SE(\widehat{\beta_1}) = \sqrt{\frac{9,238}{2,211}} = 0,005.$$

•
$$SE(\widehat{\beta_2})$$

$$SE(\widehat{\beta_2}) = \sqrt{\frac{9,238}{0,200}} = 1,360.$$

6. Melakukan Perhitungan SSReg, MSReg, DFReg, F-Hitung, F-Tabel Dengan Menggunakan Uji F

Dengan menggunakan uji-F, di lakukan proses perhitungan nila
i $SSR_{eg}, \\ MSR_{eg}, \ DFR_{eg},$ F-hitung, dan F-Tabel.

	UJI F															
	BetaTopi'															
36,98560119	-0,026607231	15,00425061														
)									
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
610	950	720	840	980	530	680	540	890	730	670	770	880	1000	760	590	910
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
							BetaT	opi'X'								
20,75519058	11,70873221	17,82839522	14,6355276	10,91051529	22,88376902	18,8926844	22,61769672	13,3052	17,5623	34,163	31,5023	28,5755	25,3826	31,76835662	36,2915858	27,7773

Dilakukan proses transformasi dari nilai-nilai beta topi dan X. Kemudian, hasil tranasformasi tersebut dilakukan proses perkalian.

	yi (hours)	
	18,73	
	14,52	
	17,43	
	14,54	
	13,44	
	24,39	
	13,34	
	22,71	
	12,68	
	19,32	
	30,16	
	27,09	
	25,4	
	26,05	
	33,49	
	35,62	
	26,07	
	36,78	
	34,95	
	43,67	
Jumlah	490,38	
Kuadrat/n	12023,62722	
BetaTopi'X'Y	13441,66084	

Selanjutnya, di lakukan proses perhitungan jumlah dari nilai y dan di peroleh hasil sebesar 490,38, perhitungan nilai kuadrat/n dengan $\frac{490,38^2}{n}$ dan di peroleh hasil sebesar 12023,627. Kemudian di lanjutkan melakukan proses perkalian dari betatopi'X' di kali dengan Y dan di peroleh hasil sebesar 13441,660.

Ini	isiasi Nilai Dan Perhitungan		
l _e	2	SSRes	157,0545624
SSReg	1418,033618	MSRes	9,238503668
MSReg	709,0168088		·
DFReg	2		
F-Hitung	76,74584914		
F-Tabel	3,591530568		

Untuk melakukan proses perhitungan SSR_{eg} , MSR_{eg} , dan DFR_{eg} di perlukan inisiasi nilai k sebesar 2. Kemudian, dari nilai-nilai tersebut dapat di lakukan beberapa perhitungan, yakni :

• Sum Squares Regression

$$SSR_{eg} = \hat{\beta}' X' y - \frac{(\sum_{i=1}^{n} yi)^2}{n} = 1418,033.$$

Mean Square Regression

$$MSR_{eg} = \frac{SSR_{eg}}{k} = \frac{1418,033}{2} = 709,016.$$

• Degrees Of Reedom Regression

$$DFR_{eg} = k = 2.$$

Kemudian, di lanjutkan dengan melakukan proses perhitungan F-Hitung dan F-Tabel.

F-Hitung

$$F - Hitung = \frac{MSR_{eg}}{MSR_{eg}} = \frac{709,016}{9.239} = 76,745.$$

F-Tabel

$$F - Tabel = f(\alpha, k, (n-p)) = f(0.05, 2(20-3)) = 3.591.$$

Interpretasi Uji-F:

Dari uji-F yang telah di lakukan, dapat di tarik kesimpulkan bahwa H0 di tolak. H0 ditolak jika F-Hitung > F-Tabel, pada hasil analisis di atas, diperoleh F-Hitung = 76,745 > F-tabel = 3,591 maka dapat disimpulkan bahwa H0 ditolak yang artinya bahwa ada minimal satu variabel independen yang berpengaruh terhadap variabel dependen.

_	
ı	Kesimpulan dan Interpretasi
l	HO ditolak jika F-hitung > F-tabel, pada analisis di atas, diperoleh F-hitung = 76,7458 > F-tabel = 3,5915 maka dapat disimpulkan
ı	bahwa Ho ditolak yang artinya bahwa ada minimal satu variabel independen yang berpengaruh terhadap variabel dependen.

7. Melakukan Perhitungan R-Square, SST, DFT Dengan Menggunakan R-Square

Dengan menggunakan perhitungan R-SquaredR di lakukan proses perhitungan SST. DFT, R-Square dan R^2 _{Adj}.

	R-Square			
SSRes	157,0545624	n	20	
SSReg	1418,033618			
k	2			
р	3			
SST	1575,08818			
DFT	19			

Di lakukan proses perhitungan SST dan DFT.

• Sum Squares Total

$$SST = \sum_{i=1}^{n} (yi - \bar{y})^2 = 1575,088.$$

• Degrees Of Reedom Total

$$DFT = n - 1 = 20 - 1 = 19.$$

Lalu, di lanjutkan dengan proses perhitungan R-Squared dan R^2_{Adj} beserta sisa masing-masing perhitungan.

	Perhitungan Nilai R-	Square	
		o quan c	
SSRes/(n-p)	9,238503668		
SST/(n-1)	82,89937789		
R-squared	0,9002884	R-Squared %	90,03%
Sisa	0,0997116	Sisa %	9,97%
R^2(Adj)	0,888557624	R^2(Adj) %	88,86%
Sisa	0,111442376	Sisa %	11,14%

R-Squared

$$R^2 = \frac{SSR_{eg}}{SST_{otal}} = \frac{1418,033}{1575,088} = 0,90028 = 90,03 \%.$$

Sisa R-Squared

$$Sisa = 1 - R^2 = 1 - 0.90028 = 0.09771 = 9.97\%.$$

• R^2_{Adj}

$$R^{2}_{Adj} = 1 - \frac{\frac{SSR_{es}}{n-p}}{\frac{SST}{n-1}} = 1 - \frac{\frac{157,055}{20-3}}{\frac{0,90028}{20-1}} = 0,88855 = 88,86\%.$$

• $Sisa R^2_{Adj}$

$$Sisa = 1 - R^2_{Adi} = 1 - 0.88855 = 0.11144 = 11.14\%.$$

Interpretasi R-Squared:

Nilai *R-Squared* sebesar 0,90028 artinya sekitar 90,03 %, dari total variasi dalam variabel dependen dapat dijelaskan oleh variabel independen dalam model, dan sisanya sekitar 9,97% dari total variasi dalam variabel dependen tidak dapat dijelaskan dalam model

Kesimpulan dan Interpretasi

Nilai R-squared adalah 0.9002, artinya sekitar 90,03% dari total variasi dalam variabel dependen dapat dijelaskan oleh variabel independen dalam model, dan sisanya sekitar 9,97% dari total variasi dalam variabel dependen tidak dapat dijelaskan dalam model

8. Melakukan Perhitungan T-Hitung Dan T-Tabel Dengan Menggunakan Uji T

Dengan menggunakan uji T, di lakukan proses perhitungan T-Hitung untuk $\widehat{\beta}_1$ dan $\widehat{\beta}_2$. Sebelumnya, di perlukan inisiasi nilai beta dan *standar error* estimasi beta.

	T ILU	
Hasil Beta		Standar error
36,98560119		3,51038246
-0,02660723		0,00451972
15,00425061		1,359669702

• Uji T Untuk Beta Topi 1 $(\widehat{\beta_1})$

Uji T untuk Beta Topi 1		
-5,88692011	5,88692011	
4,30265273		
H0 ditolak		
Variabel X1		
berpengaruh		
terhadap variabel Y-		
nya		
֡	-5,88692011 4,30265273 H0 ditolak Variabel X1 berpengaruh terhadap variabel Y-	

Di lakukan proses perhitungan T-Hitung dan T-Tabel.

$$T - Hitung = \frac{\widehat{\beta_1}}{SE(\widehat{\beta_1})} = \frac{-0,02660}{0,00451} = -5,88692 = 5,88692.$$

$$T - Tabel = t \frac{\alpha}{2}, k = t \frac{0,05}{2}, 2 = 4,30265.$$

Interpretasi Uji T Untuk Beta Topi 1 $(\widehat{\beta_1})$:

H0 di tolak, artinya variabel X1 berpengaruh terhadap variabel Y-nya.

• Uji T Untuk Beta Topi 2 $(\widehat{\beta_2})$

Uji T unti	Uji T untuk Beta Topi 2				
T-Hitung	11,0352173				
T-Tabel	4,30265273				
Kesimpulan	H0 ditolak				
	Variabel X2				
Interpretes	berpengaruh				
Interpretasi	terhadap variabel				
	Y-nya				

Di lakukan proses perhitungan T-Hitung dan T-Tabel.

$$T - Hitung = \frac{\widehat{\beta_2}}{SE(\widehat{\beta_2})} = \frac{15,00425}{1,35966} = 11,03521.$$

$$T - Tabel = t \frac{\alpha}{2}, k = t \frac{0,05}{2}, 2 = 4,30265.$$

Interpretasi Uji T Untuk Beta Topi 1 $(\widehat{oldsymbol{eta}_2})$:

H0 di tolak, artinya variabel X1 berpengaruh terhadap variabel Y-nya.

Interpretasi Uji-T:

Dengan menolak H0, pada kedua uji-T tersebut menunjukkan bahwa kedua variabel independen (X1) memiliki pengaruh yang signifikan terhadap variabel dependen (Y).

Interpretasi	Dengan menolak H0, kedua uji T menunjukkan bahwa kedua variabel independen (X1) memiliki
Akhir	pengaruh yang signifikan terhadap variabel dependen (Y).

9. Interpretasi Dan Perbandingan Tabel Perhitungan

				PERBAN	N TABEL				
	Tabe	l Analisis Secara Ma	nual			Tabel A	nalisis Sesuai Tabe	1 8.2	
Source of	Sum of	Degrees of	Mean		TABLE 8.2	Summary Statist	ics for the Regre	ssion Model in	Example 8.1
Variation	Squares	Freedom	Square	F0	Source of	Sum of	Degrees of	Mean	
Regression	1418,033618	2	709,016809	76,74584914	Variation	Squares	Freedom	Square	F_0
Residual	157,0545624	17	9,23850367		Regression	1418.034	2	709.017	76.75
Total	1575,08818	19			Residual	157.055	17	9.239	
					Total	1575.089	19		
Coefficient	Estimate	Standard Error	t0		Coefficient	Estimate	Standa	Standard Error	
bO	36,98560119	3,51038246			8	36.986			
b1	-0,026607231	0,00451972	-5,8869201		ρ ₀ β.	-0.027	0	.005	-5.887
b2	15,00425061	1,359669702	11,0352173		β_2	15.004		.360	11.035
	R^2 = 0.90028				F*	$R^2 = 0.9003$	3		

Di mana di setelah melakukan serangkaian perhitungan di atas, nilai-nilai *SSReg, SSRes, SST, MSReg, MSRes, DFReg, DFRes, DFT, dan F0*. Di masukkan kedalam tabel anova "Tabel Analisis Secara Manual" . Kemudian, di lakukan perbandingan antara "Tabel Analisis Secara Manual" dengan "Tabel Analisis Sesuai Tabel 8.2". Dapat di perlihatkan bahwa tidak terdapat perbedaan signifikan antar hasil kedua perhitungan tersebut, hanya saja untuk di "Tabel Analisis Secara Manual" menggunakan 5-6 angka di belakang koma, sedangkan di Tabel Analisis Sesuai Tabel 8.2" menggunakan 3 angka di belakang koma. Ini berarti bahwa kedua tabel tersebut memiliki nilai yang sama.