

TRABALHO - IDENTIFICAÇÃO DE SISTEMAS

Raphael Timbó Silva

Professor: Daniel Castello

Rio de Janeiro Janeiro de 2017

Sumário

Li	sta de Figuras	b			
Li	ista de Tabelas				
Li	sista de Símbolos				
Li	sta de Abreviaturas	e			
1	Introdução	1			
	1.1 Sistema utilizado	1			
	1.2 Resposta do sistema	2			
2	Revisão Bibliográfica	5			
3	Método Proposto	6			
4	Resultados e Discussões	7			
5	Conclusões	8			
Re	eferências Bibliográficas	9			
A	Algumas Demonstrações	10			

Lista de Figuras

1.1	Sistema utilizado na análise	1
1.2	FRF para o sistema em análise	
1.3	Aplicação de força e medição na massa m_2	•
1.4	FRF para input em m_2 e medição em m_2	4

Lista de Tabelas

2.1	Exemplos de citações utilizando o comando padrão \cite do LATEX e	
	o comando \citet, fornecido pelo pacote natbib	1

Lista de Símbolos

- \emptyset Conjunto vazio, p. 2

Lista de Abreviaturas

FIR Finite Impulse Response, p. 1

FRF Função de Resposta em Frequência, p. 2

Introdução

O presente trabalho tem por objetivo apresentar os resultados e conclusões referentes ao projeto final da disciplina Identificação de Sistemas.

O trabalho consiste na análise de um sistema através do projeto de um filtro adaptativo FIR (Finite Impulse Response).

1.1 Sistema utilizado

O sistema utilizado é mostrado na fig. 1.1.

Figura 1.1: Sistema utilizado na análise.

Para este sistema temos que a energia cinética é:

$$T = \frac{1}{2} [m_0 \dot{q}_0(t)^2 + m_1 \dot{q}_1(t)^2 + m_2 \dot{q}_2(t)^2] = \frac{1}{2} \dot{\mathbf{q}}^T(t) M \dot{\mathbf{q}}(t)$$
(1.1)

onde

$$\mathbf{q}(\mathbf{t}) = [q_0(t) \ q_1(t) \ q_2(t)]^T$$

é o vetor de configuração e

$$M = \begin{bmatrix} m_0 & 0 & 0 \\ 0 & m_1 & 0 \\ 0 & 0 & m_2 \end{bmatrix}$$

é a matriz de massa do sistema.

A energia potencial tem a expressão:

$$V = \frac{1}{2} [k_0 q_0(t)^2 + k_1 (q_1(t) - q_0(t))^2 + k_2 q_2(t)^2]$$

$$= \frac{1}{2} [(k_0 + k_1) q_0(t)^2 + (k_1 + k_2) q_1(t)^2 + (k_2) q_2(t)^2 - 2k_1 q_0(t) q_1(t) - 2k_2 q_2(t)$$

$$= \frac{1}{2} \dot{\mathbf{q}}^T(t) K \dot{\mathbf{q}}(t)$$
(1.2)

onde

$$K = \begin{bmatrix} k_0 + k_1 & -k_1 & 0\\ -k_1 & k_1 + k_2 & -k_2\\ 0 & -k_2 & k_2 \end{bmatrix}$$

é a matriz de rigidez do sistema.

Para o sistema utilizado temos que $m_i = 1 \ kg \ e \ k_i = 1600 \ N/m$.

O amortecimento utilizado será o proporcional: $C=\alpha M+\beta K$. Iremos analisar o caso em que $\alpha=10^{-3}$ e $\beta=10^{-3}$.

1.2 Resposta do sistema

O sistema em questão possui a resposta FRF (Função de Resposta em Frequência) apresentada na Figure 1.2

Para nossa análise iremos considerar uma força aplicada na massa 2 (m_2) e a medição nesta mesma massa, conforme ilustrado na Figure 1.3. A aplicação da força nessa massa corresponde à FRF que pode ser visualizada no canto inferior direito (input=2 e output=2). A FRF em questão é também mostrada na Figure 1.4

Figura 1.2: FRF para o sistema em análise.

Figura 1.3: Aplicação de força e medição na massa m_2 .

Figura 1.4: FRF para input em m_2 e medição em m_2 .

Revisão Bibliográfica

Para a análise foram observados os seguintes casos:

Forçamento:

•

Para ilustrar a completa adesão ao estilo de citações e listagem de referências bibliográficas, a Tabela 2.1 apresenta citações de alguns dos trabalhos contidos na norma fornecida pela CPGP da COPPE, utilizando o estilo numérico.

Tabela 2.1: Exemplos de citações utilizando o comando padrão \cite do LaTEX e o comando \citet, fornecido pelo pacote natbib.

, 1		
Tipo da Publicação	\cite	\citet
Livro	[1]	ABRAHAM et al. [1]
Artigo	[2]	IESAN [2]
Relatório	[3]	MAESTRELLO [3]
Relatório	[4]	GARRET [4]
Anais de Congresso	[5]	GURTIN [5]
Séries	[6]	COWIN [6]
Em Livro	[7]	EDWARDS [7]
Dissertação de mestrado	[8]	TUNTOMO [8]
Tese de doutorado	[9]	PAES JUNIOR [9]

Método Proposto

Resultados e Discussões

Conclusões

Referências Bibliográficas

- ABRAHAM, R., MARSDEN, J. E., RATIU, T. Manifolds, Tensor Analysis, and Applications. 2 ed. New York, Springer-Verlag, 1988.
- [2] IESAN, D. "Existence Theorems in the Theory of Mixtures", Journal of Elasticity, v. 42, n. 2, pp. 145–163, fev. 1996.
- [3] MAESTRELLO, L. Two-Point Correlations of Sound Pressure in the Far Field of a Jet: Experiment. NASA TM X-72835, 1976.
- [4] GARRET, D. A. The Microscopic Detection of Corrosion in Aluminum Aircraft Structures with Thermal Neutron Beams and Film Imaging Methods. In: Report NBSIR 78-1434, National Bureau of Standards, Washington, D.C., 1977.
- [5] GURTIN, M. E. "On the nonlinear theory of elasticity". In: Proceedings of the International Symposium on Continuum Mechanics and Partial Differential Equations: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, pp. 237–253, Rio de Janeiro, ago. 1977.
- [6] COWIN, S. C. "Adaptive Anisotropy: An Example in Living Bone". In: Non-Classical Continuum Mechanics, v. 122, London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 174–186, 1987.
- [7] EDWARDS, D. K. "Thermal Radiation Measurements". In: Eckert, E. R. G., Goldstein, R. J. (Eds.), Measurements in Heat Transfer, 2 ed., cap. 10, New York, USA, Hemisphere Publishing Corporation, 1976.
- [8] TUNTOMO, A. Transport Phenomena in a Small Particle with Internal Radiant Absorption. Ph.D. dissertation, University of California at Berkeley, Berkeley, California, USA, 1990.
- [9] PAES JUNIOR, H. R. Influência da Espessura da Camada Intrínseca e Energia do Foton na Degradação de Células Solares de Silício Amorfo Hidrogenado. Tese de D.Sc., COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1994.

Apêndice A

Algumas Demonstrações