R computing for Business Data Analytics

Homework 3 (Due date: November 14, 2014)

Please e-mail your homework (.pdf) and the associated R code (.R) to hchuang.om@gmail.com.

The email title must be R_HW3_GroupName. NO late homework will be accepted.

Q1. (20%) The probability density P(X=k) of a random variable $X \sim$ Poisson-Tweedie family (α, β, γ) can be calculated through a *double recursion algorithm*.

The first recursion exists in p_k :

$$\begin{aligned} p_0 &= \begin{pmatrix} e^{\beta[(1-\gamma)^{\alpha}-1]/\alpha}, \alpha \neq 0 \\ (1-\gamma)^{\beta}, \alpha &= 0 \end{pmatrix}, \ p_1 &= \beta \gamma * p_0, \\ p_{k+1} &= \frac{1}{k+1} \left(\beta \gamma * p_k + \sum_{j=1}^k j * r_{k+1-j} p_j \right), \ k=1,2,... \end{aligned}$$

The second recursion exists in r_i :

$$r_1 = (1 - \alpha)\gamma$$
, $r_{j+1} = \left(\frac{j-1+\alpha}{j+1}\right)\gamma * r_j$, $j=1,2,...$

where
$$\alpha \in (-\infty,1]$$
, $\beta \in (0,+\infty]$, $\gamma \in [0,1]$

Write a function *PTF* that has four inputs (k, a, b, g) (a for α , b for β , and g for γ) and returns p_k . Use the function to calculate PTF(9, -3, 2, 0.5) (The answer should be close to 0.04235).

Q2. (20%) MLE and Simulation

(a) For the Bernoulli distribution $P(X = x_i \mid p) = p^{x_i} (1-p)^{1-x_i}$, derive \hat{p}_{MLE} .

(Hint: Solve *p* for
$$\ell'(p) = 0$$
 where $\ell(p) = \log(\prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i})$)

- (b) Continuing (a), given p=0.5, simulate n=50, n=5000, n=500,000 Bernoulli random numbers. For each simulated sample of size n, calculate \hat{p}_{MLE} from the sample and compare \hat{p}_{MLE} to the TRUE p=0.5, what have you observed?
- (c) For the exponential distribution $f(x_i) = \lambda e^{-\lambda x_i}$, derive $\hat{\lambda}_{MLE}$ and prove the Markov Property: $P(X > s + t \mid X > s) = P(X > t)$ (Hint: $F(x) = 1 e^{-\lambda x}$)
- (d) Continuing (c), given λ =0.5, simulate n=50, n=5000, n=500,000 exponential random numbers. For each simulated sample of size n, calculate $\hat{\lambda}_{MLE}$ from the sample and compare $\hat{\lambda}_{MLE}$ to the TRUE λ =0.5, what have you observed?

Q3. (20%) Binomial and Poisson Distributions

- (a) The table below records the historical number of car accidents/week in a district. Create a vector called *car.accident* that stores 109 zeros, 65 ones, 22 twos, 3 threes, and 1 four.
- (b) Apply the *fitdistr*() function in R (load the MASS library first) to fit the car.accident data with the Poisson distribution. What is the value of estimated λ ? What is the log-likelihood?
- (c) Given the estimated λ , use R to do the computation and finish the 3^{rd} column of table below. Are the predicted frequencies close to the actual frequency?
- (d) Given the estimated λ , finish the 4th column of table below using R.

Car Accidents	Frequency	Poisson(λ=???)	Binomial($n=200, p=\lambda/200$)
0	109	$200*P(X=0 \lambda)=$	200*P(X=0 n,p)=
1	65	$200*P(X=1 \lambda)=$	200*P(X=1 n,p)=
2	22	$200*P(X=2 \lambda)=$	200*P(X=2 n,p)=
3	3	$200*P(X=3 \lambda)=$	200*P(X=3 n,p)=
4	1	$200*P(X=4 \lambda)=$	200*P(X=4 n,p)=
>4	0	$200*P(X>4 \lambda)=$	200*P(X>4 n,p)=

Q4. (20%) Binomial, Poisson, and Normal Distributions

- (a) Finish the second, third, and fourth column of the table below using R.
- (b) Based on the probability densities you calculate, generate a plot in which the x-axis is 0:8 and the y-axis lies between [0, 0.25]. The plot should have three lines with *different* width and colors. (red thin line for Binomial, green thick line for Poisson, blue thicker line for Normal).

Defectives	Binomial(<i>n</i> =20, <i>p</i> =0.2)	Poisson(λ=4)	Normal $(\mu = 4, \sigma^2 = 4)$
(x)	P(X=x)	P(X=x)	$P(x-0.5 \le X \le x+0.5)$
0			
1			
2			
3			
4			
5			
6			
7			
8			

- Q5. (20%) Random Numbers and Monte-Carlo Simulation
- (a) Implement the algorithm in the bottom of page 10 in lecture 6. Write a function *runi.congru* that has five arguments (N, A, B, m, seed) (N is the number of random variates to be simulated). After that, generate five uniform random numbers using A=1217, B=0, m=32767, and seed=1. Save the five numbers as a vector u in *R* and show me the five numbers.
- (b) Implement the *inverse transformation* method in the bottom of page 11 in lecture 6. Write a function *rbinom.invtran* that has four arguments (N, n, p, uni) and returns N binomial random numbers. Set n=3, p=0.5, and use the vector u in part (a) as inputs to uni to generate five binom random variates. Show me the simulated numbers too.
- (c) Now, use the function *runi.congru* in (a) to simulate another 50 numbers by setting seed=2 (A=1217, B=0, m=32767 still) and store the 50 numbers in a vector U.
- (d) For the zero-truncated Poission distribution

$$P(X = x \mid \lambda, x > 0) = \frac{\lambda^{x} e^{-\lambda}}{x!(1 - e^{-\lambda})}$$

Following the logic of inverse transformation, write a function *rztpois.invtran* that has three arguments (N, lambda, uni) (lambda for λ) and returns N zero-truncated Poisson random numbers. Set lambda=4 and use the vector U (part (c)) as inputs to uni to generate 50 non-zero Poisson random variates. Show me the simulated numbers too.

(e) Assume the simulated numbers $(x_1, x_2, ..., x_{50})$ are *counts of arrived customers per group* for a restaurant. Let's say all $x_i \le 2$ will be assigned to two-people tables, all $2 < x_i \le 4$ will be assigned to four-people tables, $4 < x_i \le 6$ will be assigned to six-people tables, and finally, all $6 < x_i$ will be put into private rooms.

Now, based on the simulated 50 groups $(x_1, x_2, ..., x_{50})$, how many groups of customers will be seated in two-people tables, four-people tables, six-people tables, and private rooms respectively?