USN										
-----	--	--	--	--	--	--	--	--	--	--

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution Affiliated to VTU) V Semester B. E. Examinations April/May -2024

Computer Science and Engineering THEORY OF COMPUTATION

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2 is compulsory. Answer any one full question from 3 and 4, 5 and 6, 7 and 8, 9 and 10.

PART-A M BT CO

1	1.1	If the DFA $A1 = (\{q_0, q_1, q_2\}, \sum, \delta, \{q_0, q_1\}, q_0)$ and DFA			
		$A2 = (\{p_0, p_1, p_2, p_3\}, \sum, \delta, \{p_3\}, p_0), \text{ then } DFA \text{ of } (L(A1) \cap L(A2))^R$ has final state(s).	01	1	3
	1.2	Let x be a positive integer represented using unary notation. Identify the function $f(x)$ computed by Turing machine shown in Fig 1.2. Note $x \in 1^*$.			
		90 1/B,R 92 1/B,R 93 B 1,L B 1,L B 1,L B 8,R 1/B,R			
		Fig 1.2	01	3	4
	1.3	Consider the machine $M = (Q = \{q_0, q_1, q_2, q_3, q_4\}, \Sigma = \{a_1, a_2, a_3\}, \Gamma = \{a_1, a_2, a_3\}, \delta, q_0, B, F = \{q_4\}\}$. A universal Turing machine Mu is an automaton that, given as input the description of any Turing machine M and a string w, can simulate the computation of M on w. For the transition			
		$\delta(q_1, a_1) = (q_2, a_3, R)$, the encoding is	01	2	4
	1.4	Construct the grammar or the given regular expression $a(a + b) * b$.	02	2	3
	1.5	Consider the Turing machine $M = (Q = \{q_0, q_1\}, \Sigma = \{a, b\}, \Gamma = \{A, B\}, \delta, q_0, B, F = q\}$ with one of the transition (δ) defined by			
		$\delta(q, a, b) = (q, A, B, L)$. Then the Turing machine is a	01	1	1
	1.6	Identify the nullable variable and eliminate all λ –productions			
		from $S \to AaB \mid aaB$, $A \to \lambda$, $B \to bbA \mid \lambda$.	02	3	3
	1.7	Define <i>GNF</i> . Convert the grammar $S \rightarrow abSb aa$ into <i>GNF</i> .	02	2	3
	1.8	State any one decidable property of context free language.	01	1	1
	1.9	Consider the regular expression $ab^*(a+b)$. Construct the finite		0	
	1 10	automata for this regular expression.	02	2	2
	1.10	Show that the following grammar is ambiguous: $S \rightarrow AB \mid aaB, A \rightarrow a \mid Aa, B \rightarrow b$	02	3	3
	1.11	Distinguish between recursive and recursively enumerable language.	02	2	2

PART-B

2	a	Show that the language $L = \{awa: w \in \{a, b\}^*\}$ is regular using			
	а	deterministic automata.	03	2	3
	b	Convert the following NFA to DFA and minimize the converted			
		DFA.			
		Ů			
		Fig 2b	08	3	2
	С	Discuss the algebraic properties of regular expressions.	05	2	1
		2300000 care disposition properties of regular captions.	0.0		
3	а	Define CFG. Construct CFG for the following languages.			
		i) $L = \{a^i b^j c^k : i! = j\}$			
		ii) $L = \{a^i b^j c^k : j = i + k\}$	04	2	2
	b	Define left linear grammar. Find all left linear grammar for the language accepted by the finite automata in Fig 3b.			
		language accepted by the finite automata in Fig 5b.			
		0 (91) (93) (43)			
		$\rightarrow (90)$ $0(1)$			
		1 902 1 904			
		Fig 3b	07	3	3
	c	Transform the grammar with productions into Chomsky normal			
		form: $S \to abAB$, $A \to bAB \mid \lambda$, $B \to BAa \mid A \mid \lambda$	05	3	4
		OR			
4	a	Construct a finite automaton that accepts the language			
		generated by the right linear grammar. $S \rightarrow cA baS$, $A \rightarrow bB aC \epsilon$, $B \rightarrow aA bbC \epsilon$, $C \rightarrow abA baC$	04	2	3
	b	Let M1 and M2 be the FA's as shown in Fig 4b, accepting	0-	4	3
	~	languages $L1$ and $L2$ respectively. Draw FA 's accepting the			
		following languages.			
		i) $L_1 \cup L_2$			
		$L_2 - L_1$			
		$\begin{array}{ccc} & \text{iii)} & L_1^R \\ & \text{iv)} & \overline{L}_1 \end{array}$			
		a M2			
		M1 a,b x			
		40 h (q2)			
		Fig 4b	08	3	2

	С	Eliminate the useless productions form the productions listed below and justify your answer. $S \rightarrow c aA B C$, $A \rightarrow aB \lambda$, $B \rightarrow Aa$, $C \rightarrow cCD$, $D \rightarrow ddd$	04	3	3
5	a b	State and prove pumping lemma for <i>CFL</i> 's. Show that the language $L = \{a^n b^n c^n : n \ge 0\}$ is not context free. Construct an <i>NPDA</i> that accepts the language $L = \{a^n b^m : n \ge 0, n \ne m\}$. Give the graphical representation for	08	2	2
		PDA obtained. Show the moves made by the PDA for the string $aabbb$.	08	3	3
6	a b	Show that <i>CFL's</i> are closed under union and concatenation. Give an algorithm to convert <i>PDA</i> to <i>CFG</i> . Convert the following Push Down Automata transitions to <i>CFG</i> . $\delta(q_0, a, z) = \{(q_0, A_z)\}$ $\delta(q_0, a, A) = \{(q_0, A)\}$ $\delta(q_0, b, A) = \{(q_1, \lambda)\}$	04	2	1
	С	$\delta(q_0, \lambda, z) = \{(q_2, \lambda)\}$ Discuss and elaborate on the languages accepted by <i>PDA</i> .	08 04	3 3	2 1
7	a	Define Turing machine. Let x and y are two positive integers			
,	a	represented using unary notation. Design a Turing machine that computes the function. i) $f(x,y) = x + y$ where $W(x), W(y) \in 1 +$ and $q \circ W(x) \circ W(y) \vdash qfW(x+y)0$ ii) $f(x) = x \mod 4, x \in 1^+$	07	4	4
	b	Write a note on the following: i) Semi-infinite Tape Turing machine ii) Multi-stack Turing machine iii) Offline Turing machine.	09	2	1
		OR			
8	a	Design Turing machine to compute the function $f(w) = w^R$ where $w \in \{a, b\}^*$. Using instantaneous descriptions, show operation on $w = abb$.	06	3	4
	b	Define multitape TM. Explain how multitape TM can be			
	c	simulated using single tape TM . If L_1 and L_2 are recursively enumerable languages over \sum , then	06	2	1
		prove that $L_1 \cap L_2$ and $L_1 \cup L_2$ are recursively enumerable.	04	1	2
9	а	Define post correspondence problem. Identify whether it is possible to solve the <i>PCP</i> given below. i) $A = \{1,10111,10\}$ and $B = \{111,10,0\}$			
	b	ii) $A = \{100, 101, 110\}$ and $B = \{10, 01, 1010\}$	08	3	4
	IJ	With the help of a neat diagram, discuss the relationship between the families of languages. OR	08	1	2
10	a	Define context sensitive grammar. Design CSG for the language $L = \{a^n b^n c^n \mid n \ge 1\}$. Derive the string $a^3 b^3 c^3$ from the constructed CSG .	08	3	2
	Ъ	Discuss the following: i) Halting problem of a TM ii) Unrestricted grammar.	08	2	1