

Practical Relative Order Attack in Deep Ranking

Mo Zhou, Le Wang, Zhenxing Niu, Qilin Zhang, Yinghui Xu, Nanning Zheng, Gang Hua

 Deep ranking (deep metric learning) models are vulnerable to adversarial attacks (the ranking result can be dramatically changed).

^{*} Zhou, et al., Adversarial Ranking Attack and Defense, ECCV 2020.

Insight

- Previous attacks focus on absolute rank
- · Attack on relative order remains under-explored

$$L_{\text{QA+}} \text{ Absolute Rank Loss}$$

$$I: [\circ, \circ, C, B, A] \quad II: [\circ, \circ, A, B, C] \text{ Relative Order Loss}$$

$$IV: [C, B, A, \circ, \circ] \quad III: [A, B, C, \circ, \circ] \quad L_{\text{ReO}}$$

Absolute rank: the absolute positions of selected candidates Relative order: the relative positions among selected candidates

Contributions

- Order Attack (OA), which alters the <u>relative order</u> among selected candidates through adversarial attack.
- White-Box OA: a triplet-style implementation
- <u>Black-Box OA</u>: a Short-range Ranking Correlation (SRC) metric as a surrogate objective approximating the triplet-style formulation.
- Real-world attack demo: including a major online retailing e-commerce platform and a major search-by-image platform.

Order Attack (OA)

Original
Query
Image

Adversarially
Perturbed
Query
Image

Deep Ranking Model

Original Ranking Result

 $A \prec B \prec C \prec D \prec E \prec \dots$

Top-1 Result

Ranking Result w.r.t. Perturbed Query

 \Rightarrow A < E < D < C < B <

Changed the relative order into the specified permutation [1, 5, 4, 3, 2].

Impacts the Click-Through Rate (CTR) hence indirectly influence the sales.

White-Box OA Formulation

Order Attack finds an adversarial perturbation

 $m{r} \ (\|m{r}\|_{\infty} \leqslant arepsilon \ ext{and} \ ilde{q} = m{q} + m{r} \in \mathcal{I})$, so that the adversarial query $\ ilde{m{q}} \ ext{results}$ in $m{c}_{p_1} \prec m{c}_{p_2} \prec \cdots \prec m{c}_{p_k}$ based on the attacker-specified permutation $\ m{p} = [p_1, p_2, \ldots, p_k]$

S ICC VIRTUAL

White-Box OA

Implementation

▶ The inequality chain prescribed by the permutation

$$f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_1}) < f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_2}) < \cdots < f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_k})$$

can be decomposed into a series of inequalities, i.e.,

$$f(\tilde{q}, c_{p_i}) < f(\tilde{q}, c_{p_i}), i, j=1, 2, ..., k, i < j.$$

Reformulation of the inequalities into triplet loss form leads to the

relative order loss function *k*

$$L_{\text{ReO}}(\tilde{\boldsymbol{q}}; \mathbb{C}, \mathbf{p}) = \sum_{i=1} \sum_{j=i} \left[f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_i}) - f(\tilde{\boldsymbol{q}}, \boldsymbol{c}_{p_j}) \right]_+.$$

which can be combined with a previously proposed semantics-preserving loss term to keep the selected candidates within the topmost part of ranking.

White-Box Experiments

	k = 5					k = 10				k = 25					
ε	0	$\frac{2}{255}$	$\frac{4}{255}$	$\frac{8}{255}$	$\frac{16}{255}$	0	$\frac{2}{255}$	$\frac{4}{255}$	$\frac{8}{255}$	$\frac{16}{255}$	0	$\frac{2}{255}$	$\frac{4}{255}$	$\frac{8}{255}$	$\frac{16}{255}$
		Fashion-MNIST $N =$							$T=\infty$						
$ au_{\mathcal{S}}$	0.000	0.286	0.412	0.548	0.599	0.000	0.184	0.282	0.362	0.399	0.000	0.063	0.108	0.136	0.149
mR	2.0	4.5	9.1	12.7	13.4	4.5	7.4	10.9	15.2	17.4	12.0	16.1	17.6	18.9	19.4
		Stanford Online Products						$N = \infty$							
$ au_{\mathcal{S}}$	0.000	0.396	0.448	0.476	0.481	0.000	0.263	0.348	0.387	0.398	0.000	0.125	0.169	0.193	0.200
mR	2.0	5.6	4.9	4.2	4.1	4.5	12.4	11.2	9.9	9.6	12.0	31.2	28.2	25.5	25.4

Table 1: White-box order attack on Fashion-MNIST and SOP datasets with various settings.

k: number of selected candidates

тs: Kendal's ranking correlation

ε: perturbation budget

mR: mean rank of selected candidates

^{*} Ts is equivalent to Kendall's ranking correlation in white-box scenario.

Black-Box OA

- Short-range Ranking Correlation (SRC) as a surrogate objective.
- Measures the alignment between the specified permutation and the actual ranking result.
- Inspired by Kendall's tau.


```
Algorithm 1: Short-range Ranking Correlation \tau_S.
```

```
Input: Selected candidates \mathbb{C} = \{c_1, c_2, \dots, c_k\},\
            permutation vector \mathbf{p} = [p_1, p_2, \dots, p_k],
            top-N retrieval \mathbb{X} = \{x_1, x_2, \dots, x_N\} for \tilde{q}.
            Note that \mathbb{C} \subset \mathbb{D}, \mathbb{X} \subset \mathbb{D}, and N \geq k.
Output: SRC coefficient \tau_S.
Permute candidates as \mathbb{C}_{\mathbf{p}} = \{c_{p_1}, c_{p_2}, \dots, c_{p_k}\};
Initialize score matrix S = 0 of size k \times k;
for i \leftarrow 1, 2, \ldots, k do
     for i \leftarrow 1, 2, ..., i - 1 do
          if c_i \notin \mathbb{X}^1 or c_i \notin \mathbb{X} then
                S_{i,j} = -1 // out-of-range
           else if [R_{\mathbb{C}_{\mathbf{p}}}(c_i) > R_{\mathbb{C}_{\mathbf{p}}}(c_j) and R_{\mathbb{X}}(c_i) > R_{\mathbb{X}}(c_j)]
             or \left[ R_{\mathbb{C}_{\mathbf{p}}}(c_i) < R_{\mathbb{C}_{\mathbf{p}}}(c_j) \right] and R_{\mathbb{X}}(c_i) < R_{\mathbb{X}}(c_j)
             then
                S_{i,j} = +1 // concordant
           else if [R_{\mathbb{C}_{\mathbf{p}}}(c_i) > R_{\mathbb{C}_{\mathbf{p}}}(c_i) and R_{\mathbb{X}}(c_i) < R_{\mathbb{X}}(c_i)]
             or [R_{\mathbb{C}_{\mathbf{p}}}(c_i) < R_{\mathbb{C}_{\mathbf{p}}}(c_j) and R_{\mathbb{X}}(c_i) > R_{\mathbb{X}}(c_j)]
             then
               S_{i,j} = -1 // discordant
return \tau_{\mathcal{S}} = \sum_{i,j} S_{i,j}/\binom{k}{2}
```

NO CONTROLL NO CON

Black-Box Experiments

Fashion-MNIST Dataset

Algorithm		k	= 5			k	= 10		k = 25			
Aigorithm	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$
None	0.0, 2.0	0.0, 2.0	0.0, 2.0	0.0, 2.0	0.0, 4.5	0.0, 4.5	0.0, 4.5	0.0, 4.5	0.0, 12.0	0.0, 12.0	0.0, 12.0	0.0, 12.0
Fasion-MNIST $N=\infty$												
Rand	0.211, 2.1	0.309, 2.3	0.425, 3.0	0.508, 7.7	0.172, 4.6	0.242, 5.0	0.322, 6.4	0.392, 12.7	0.084, 12.3	0.123, 13.1	0.173, 15.8	0.218, 25.8
Beta	0.241, 2.1	0.360, 2.6	0.478, 4.6	0.580, 19.3	0.210, 4.8	0.323, 5.7	0.430, 9.6	0.510, 30.3	0.102, 12.4	0.163, 13.8	0.237, 19.7	0.291, 42.7
PSO	0.265, 2.1	0.381, 2.3	0.477, 4.4	0.580, 21.1	0.239, 4.8	0.337, 5.7	0.424, 9.7	0.484, 34.0	0.131, 12.7	0.190, 14.6	0.248, 21.7	0.286, 54.2
NES	0.297, 2.3	0.416, 3.1	0.520, 8.7	0.630, 46.3	0.261, 5.0	0.377, 6.6	0.473, 14.3	0.518, 55.6	0.142, 13.0	0.217, 15.9	0.286, 28.3	0.312, 74.3
SPSA	0.300, 2.3	0.407, 3.2	0.465, 7.1	0.492, 16.3	0.249, 5.0	0.400, 6.6	0.507, 12.8	0.558, 27.5	0.135, 12.9	0.236, 16.3	0.319, 27.1	0.363, 46.4
Fashion-MNIST $N=50$												
Rand	0.207	0.316	0.424	0.501	0.167	0.242	0.321	0.378	0.083	0.123	0.165	0.172
Beta	0.240	0.359	0.470	0.564	0.204	0.323	0.429	0.487	0.103	0.160	0.216	0.211
PSO	0.266	0.377	0.484	0.557	0.239	0.332	0.420	0.458	0.134	0.183	0.220	0.203
NES	0.297	0.426	0.515	0.584	0.262	0.378	0.463	0.458	0.141	0.199	0.223	0.185
SPSA	0.292	0.407	0.468	0.490	0.253	0.397	0.499	0.537	0.131	0.214	0.260	0.275
					Fashio	on-MNIST	N = k					
Rand	0.204	0.289	0.346	0.302	0.146	0.181	0.186	0.124	0.053	0.062	0.049	0.021
Beta	0.237	0.342	0.372	0.275	0.183	0.236	0.218	0.106	0.072	0.079	0.058	0.020
PSO	0.252	0.342	0.388	0.284	0.198	0.240	0.219	0.081	0.080	0.082	0.046	0.013
NES	0.274	0.360	0.381	0.282	0.198	0.234	0.213	0.113	0.071	0.076	0.055	0.016
SPSA	0.274	0.360	0.412	0.427	0.188	0.251	0.287	0.298	0.067	0.086	0.091	0.095

Table 3: Black-box OA on Fashion-MNIST dataset. In the $N=\infty$ experiments, (τ_S, mR) are reported in each cell, while only τ_S is reported in the cells when N equals 50 or k. A larger k and a smaller N make the attack harder.

NO CONTROLL NO CON

Black-Box Experiments

Stanford Online Products Dataset

Algorithm		i	k = 5			k	:= 10		k = 25					
Algorithm	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$	$\varepsilon = \frac{2}{255}$	$\varepsilon = \frac{4}{255}$	$\varepsilon = \frac{8}{255}$	$\varepsilon = \frac{16}{255}$		
None	0.0, 2.0	0.0, 2.0	0.0, 2.0	0.0, 2.0	0.0, 4.5	0.0, 4.5	0.0, 4.5	0.0, 4.5	0.0, 12.0	0.0, 12.0	0.0, 12.0	0.0, 12.0		
	Stanford Online Product $N=\infty$													
Rand	0.187, 2.6	0.229, 8.5	0.253, 85.8	0.291, 649.7	0.167, 5.6	0.197, 13.2	0.208, 92.6	0.222, 716.4	0.093, 14.1	0.110, 27.6	0.125, 146.7	0.134, 903.7		
Beta	0.192, 3.3	0.239, 15.3	0.265, 176.7	0.300, 1257.7	0.158, 6.2	0.186, 19.9	0.207, 139.0	0.219, 992.5	0.099, 15.5	0.119, 37.1	0.119, 206.5	0.132, 1208.5		
PSO	0.122, 2.1	0.170, 3.0	0.208, 13.3	0.259, 121.4	0.135, 4.8	0.177, 6.5	0.206, 22.8	0.222, 166.5	0.104, 12.7	0.122, 16.7	0.137, 49.5	0.140, 264.2		
NES	0.254, 3.4	0.283, 15.6	0.325, 163.0	0.368, 1278.7	0.312, 7.2	0.351, 26.3	0.339, 227.1	0.332, 1486.7	0.242, 18.0	0.259, 51.5	0.250, 324.1	0.225, 1790.8		
SPSA	0.237, 3.5	0.284, 11.9	0.293, 75.2	0.318, 245.1	0.241, 7.8	0.325, 22.2	0.362, 112.7	0.383, 389.0	0.155, 18.1	0.229, 41.9	0.286, 185.6	0.306, 557.8		
Stanford Online Product $N=50$														
Rand	0.180	0.216	0.190	0.126	0.163	0.166	0.119	0.055	0.092	0.055	0.016	0.003		
Beta	0.181	0.233	0.204	0.119	0.153	0.168	0.116	0.054	0.084	0.057	0.021	0.003		
PSO	0.122	0.173	0.183	0.153	0.135	0.164	0.137	0.081	0.093	0.083	0.042	0.011		
NES	0.247	0.283	0.246	0.152	0.314	0.295	0.195	0.077	0.211	0.136	0.054	0.013		
SPSA	0.241	0.287	0.297	0.303	0.233	0.298	0.298	0.292	0.125	0.130	0.114	0.103		
					Stanford	Online Prod	uct N =	k						
Rand	0.148	0.100	0.087	0.026	0.094	0.044	0.018	0.001	0.023	0.009	0.002	0.001		
Beta	0.136	0.106	0.053	0.025	0.076	0.040	0.010	0.004	0.021	0.004	0.001	0.001		
PSO	0.102	0.098	0.059	0.031	0.088	0.049	0.022	0.007	0.040	0.015	0.006	0.001		
NES	0.185	0.139	0.076	0.030	0.173	0.097	0.036	0.008	0.071	0.027	0.007	0.005		
SPSA	0.172	0.154	0.141	0.144	0.107	0.104	0.085	0.069	0.026	0.025	0.017	0.016		

Table 5: Black-box OA on Stanford Online Product dataset. In the $N=\infty$ experiments, (τ_S, mR) are reported in each cell, while only τ_S is reported in the cells when N equals 50 or k. A larger k and a smaller N make the attack harder.

A major e-commerce platform: JD Snapshop

Quantitative Results on JD Snapshop

Algorithm	ε	$\mid k \mid$	Q	T	Mean $ au_{\mathcal{S}}$	Stdev $\tau_{\mathcal{S}}$	$ $ Max $ au_{\mathcal{S}}$	$\min au_{\mathcal{S}}$	Median $ au_{\mathcal{S}}$
SPSA	1/255	5	100	204	0.390 0.187	0.373	1.000	-0.600	0.400
SPSA	1/255	10	100	200	0.187	0.245	0.822	-0.511	0.200
SPSA	1/255	25	100	153	0.039	0.137	0.346	-0.346	0.033

Table 6: Quantitative (k, 50)-OA Results on JD Snapshop.

Quantitative Results on Bing Visual Search API

Algorithm	ε	$\mid k \mid$	Q	T	Mean $\tau_{\mathcal{S}}$	Stdev $\tau_{\mathcal{S}}$	$\operatorname{Max} \tau_{\mathcal{S}}$	$\min au_{\mathcal{S}}$	Median $\tau_{\mathcal{S}}$
						0.379			
						0.217			
SPSA	8/255	25	100	93	0.001	0.141	0.360	-0.406	0.010

Table 7: (k, 50)-OA Results on Bing Visual Search API.

• Thanks!

