Optimization Last episode

Mei-Chen Yeh

Numerical Methods (Fall 2022)

14 programming practices!

Solving equations

- Nested multiplication
- Bisection / Fixed-point iteration
- Newton / Secant's method

Interpolating data

- Lagrange interpolation
- Newton's divided difference

Optimization

Gradient descent

Solving systems

- Gaussian elimination
- Partial pivoting
- Jacobi / Gauss-Seidel / SOR
- Multivariate Newton

Least squares

- Normal equations
- QR factorization
- Gauss-Newton method

Announcements

- We will have the final next Friday (Dec. 23), starting at 14:20.
 - Programming problems
 - Written problems
- A cheat sheet (A5) is allowed.

Optimization

Optimization

• Finds the values of n-variables $(x_1, x_2, x_3, \dots, x_n)$ that minimize (or maximize) some objective function $f(\underline{x})$

$$\underline{x}^* = \operatorname{argmin} f(\underline{x})$$

- Assumptions
 - We have a single objective function.
 - No constraint is applied.

Example (one variable)

How do I adjust a to lower f(x)?

How do I adjust b to lower f(x)?

How do I adjust a to lower f(x)?

How do I adjust b to lower f(x)?

"Fine-tuning"

- $x_{\text{new}} = x_{\text{old}} \eta f'(x_{\text{old}})$
- η: learning rate
- When do we stop?

Algorithm:

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

where η is the step size (sometimes called learning rate)

When do we stop?

Algorithm:

- Pick an initial point x_0
- Iterate until convergence

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

where η is the step size (sometimes called learning rate) iterate until $\|\nabla f(x_t)\| \le \epsilon$ for some $\epsilon > 0$

Multivariate

- x scalar $\rightarrow \underline{x}$ vector
- Do partial derivative of f(x) of each variable

$$f(x) = x^{2}$$
Step size: 0.8
$$x^{(0)} = -4$$

$$40$$

$$20$$

$$-10 \quad -8 \quad -6 \quad -4 \quad -2 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10$$

Step size: 0.9

Step size: 0.2

Gradient descent is a greedy method! It may return a local minimum!

程式練習(最終回)

And, please upload your program on moodle.

• Find x that minimizes

$$f(x) = x^4 - 2x^3 + 2$$

Closing remarks

- Thank you for your participation in this course.
- The final exam is scheduled on 14:20, Dec. 23.
 Please be prepared.