Income Segregation and Intergenerational Mobility Across Colleges in the United States

Jacob Sharadin

Paper Background

Main idea: Investigating how higher education shapes mobility in the US.

How could changes in the distributions of students from different backgrounds in college affect segregation by parental income and intergenerational mobility?

Paper Background

Paper Outline - Three Main Sections:

- Constructing statistics on parent income at different colleges
- Earning outcomes of students at each college
- Changes in income segregation if students were allocated to colleges evenly

Paper Findings

Four Key Findings:

- Low and middle income students attend selective schools at much lower rates than students from higher income
- Very low middle class representation at most selective schools (Ivy-Plus)
- 3. Would need to raise attendance rates for low income students from ~7% to ~26%
 - Low-income students would need to attend all schools at rates similar to those with 160 point higher SAT scores
- By equalizing attendance rates for students with the same test scores, outcome gap would be decreased by 15%

Main takeaway: By changing how students are allocated to colleges, segregation could be decreased and intergenerational mobility increased

The Dataset

- College attendance: federal tax records,
 Department of Education records 1999-2013
- Incomes: federal income tax 1996-2014, information returns (like W-2)
- Parent Income: total pre-tax income at the household level
 - Averaged over the five years when child aged 15-19
 - Parents then assigned income percentiles through ranking with other parents w/ children in same birth cohort
- Child Income: pre-tax individual earnings 2014
 - Ranked relative to other children in same birth cohort
- ~2200 observations

Predicting k_rank

```
Number of categories in k_rank: 2199
Number of categories in count: 1773
Number of categories in female: 2160
Number of categories in par_mean: 2199
Number of categories in par_median: 910
Number of categories in par_rank: 2199
Number of categories in type: 3
Number of categories in tier_name: 12
Number of categories in iclevel: 3
Number of categories in region: 4
```

Numerical variables

- k_rank (Dependent Variable)
- o count
- o female
- o par_mean
- par_median
- par_rank

Categorical variables

- o type
- o tier_name
- iclevel
- region

Handling Categorical Variables

type	Type :
	1 = public
	2 = private non-profit
	3 = for-profit
tier	Selectivity and type combination (see Table 6 for more
	detailed descriptions of these groups):
	1 = Ivy Plus
	2 = Other elite schools (public and private)
	3 = Highly selective public
	4 = Highly selective private
	5 = Selective public
	6 = Selective private
	7 = Nonselective 4-year public
	8 = Nonselective 4-year private not-for-profit
	9 = Two-year (public and private not-for-profit)
	10 = Four-year for-profit
	11 = Two-year for-profit
	12 = Less than two year schools of any type
	13 = Attending college with insufficient data
	14 = Not in college between the ages of 19-22
tier name	Name of college tier

One-hot encoding

type_for- profit	type_private non-profit	type_public	tier_name_Four- year for-profit	tier_name_Highly selective private	tier_name_Highly selective public	
1.0	0.0	0.0	0.0	0.0	0.0	
0.0	1.0	0.0	0.0	0.0	0.0	
0.0	0.0	1.0	0.0	0.0	0.0	•••
1.0	0.0	0.0	1.0	0.0	0.0	
0.0	0.0	1.0	0.0	0.0	0.0	

Data Cleaning

```
k rank
count
female
               19
par_mean
par median
par_rank
type
tier name
iclevel
region
dtype: int64
```

Only 19 missing values

Summary Statistics and Boxplots

	k_rank	count	female	par_mean	par_median	par_rank
count	2202.000000	2202.000000	2183.000000	2202.000000	2202.000000	2202.000000
mean	0.567720	1714.291023	0.555279	107432.511713	77695.458674	0.572805
std	0.086629	23243.749136	0.139493	67386.449844	28463.280143	0.117411
min	0.340474	50.000000	0.003306	33202.243485	21200.000000	0.252361
25%	0.506592	232.000000	0.504596	69841.513082	59100.000000	0.489515
50%	0.554700	467.583333	0.550342	88621.716206	74300.000000	0.574253
75%	0.626928	1038.333333	0.599742	118488.889985	91700.000000	0.655498
max	0.906024	955065.333333	1.000000	551968.154148	226700.000000	0.887999
0.8 -	e6	0 0		(00)(-0)(-0)(-0)(-0)(-0)(-0)(-0)(-0)(-0)		
0.0 -						

female

count

par median

par_rank

par_mean

k rank

Identifying Highly Correlated Variables

- Multicollinearity between variables

Pairplot Visualization ± 15000

Regression Analysis

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	k_rank OLS Least Squares Wed, 26 Jun 2024 22:36:44 2180 2162 17 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic) Log-Likelihood: AIC: BIC:	:	0.727 0.725 338.5 0.00 3657.5 -7279. -7177.				
			coef	std err	t	P> t	[0.025	0.975]
tien_name_Nonselect: tier_name_Nonselect: tier_name_Other_eli: tier_name_Selective tier_name_Selective tier_name_Two_year_i tier_name_Two_year_i clevel_Less_than_Ti iclevel_Two_year region_Northeast region_South region_West	lective_private lective_public _two_year_schools_of ive_four_year_public te_schools_public_an _private _public public_profit	e_not_for_profit : id_private	0.3555 0.3147 0.0434 0.0456 0.0459 0.0990 0.1075 -0.0384 0.0753 0.02045 -0.0245 -0.0245 -0.0381 -0.0136 -0.0136 -0.0136	0.008 0.012 0.021 0.023 0.023 0.026 0.005 0.023 0.022 0.023 0.022 0.023 0.022 0.023 0.025 0.003 0.008 0.008 0.003 0.003	43.226 26.522 2.045 2.248 1.975 3.913 4.158 -8.463 -2.016 -1.404 3.317 0.926 1.160 -1.987 1.129 -8.463 -2.365 4.707 -5.357 -3.943	0.000 0.000 0.041 0.025 0.048 0.000 0.000 0.000 0.044 0.160 0.001 0.355 0.246 0.047 0.259 0.000 0.000	0.339 0.291 0.002 0.006 0.006 0.045 0.057 -0.047 -0.073 0.031 -0.032 -0.017 -0.055 -0.007 -0.047 -0.047 -0.049 -0.018	0.372 0.338 0.085 0.085 0.090 0.135 0.158 -0.029 -0.012 0.064 0.064 0.064 0.024 -0.029 -0.003 0.019 -0.009
Omnibus: Prob(Omnibus): Skew: Kurtosis:	392.534 0.000 0.734 7.649	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.814 2159.379 0.00 3.08e+16				
[2] The smallest eight	assume that the cov genvalue is 5.48e–30	. This might indica	ite that th	ere are	specified.			

- - This result suggests that this model is not valid

Prediction with the use of ML algorithms

Model #1: Include all features to get initial results

Model #1 Feature Importances

Prediction Model #2

Model #2: Drop par_mean and par_median

Model #2 Feature Importances

Ridge Regression Feature Importances

Absolute value taken for each feature importance value

Prediction Model #3

Model #3: Keeping the 10 most important features

Interpretations

Results for Train-Test Split:	R-squared	Mean Squared Error	Root Mean Squared Error
		0.0021	0.0453
Linear Regression (Train-Test			
	-0.0002	0.0068	0.0822
ElasticNet (Train-Test Split)		0.0068	0.0822
Decision Tree (Train-Test Spli		0.0041	0.0643
XGBoost (Train-Test Split)	0.6052	0.0027	0.0516
Ridge (Train-Test Split)	0.6947	0.0021	0.0454
SVM (Train-Test Split)	0.6325	0.0025	0.0498
Random Forest (Train-Test Spli	t) 0.6569	0.0023	0.0481
Results for Whole Data:			
Model	R-squared	Mean Squared Error	Root Mean Squared Error
Linear Regression (Whole Data)	0.6669	0.0025	0.0499
Lasso (Whole Data)	0.0000	0.0075	0.0865
ElasticNet (Whole Data)	0.0000	0.0075	0.0865
Decision Tree (Whole Data)	1.0000	0.0000	0.0000
XGBoost (Whole Data)	0.9363	0.0005	0.0218
Ridge (Whole Data)	0.6664	0.0025	0.0500
SVM (Whole Data)	0.6287	0.0028	0.0527
Random Forest (Whole Data)	0.9501	0.0004	0.0193

- While the Random Forest model has an r squared value of 0.9501 and decision tree of 1.0000. Ridge model performs best on new data.
- Ridge Regression is the model we selected to characterize our dataset.
- Feature importance (top 10)
- Results from OLS regression with top 10 features
- Scatterplot of ridge regression model with line of best fit

Final Results

Dep. Variable:	k_rank	R-squared:		0.667				
Model:	OLS	Adj. R-squared:		0.666				
Method:	Least Squares	F-statistic:		434.8				
Date:	Thu, 27 Jun 2024	Prob (F-statistic)		0.00				
Time:	08:15:02	Log-Likelihood:		3441.9				
No. Observations:	2180			-6862.				
Df Residuals:	2169			-6799.				
Df Model:	10							
Covariance Type:	nonrobust							
			coef	std err		P> t	[0.025	0.975]
Intercept			0.3576	0.009	41.749	0.000	0.341	0.374
female			-0.1148	0.008	-14.503	0.000	-0.130	-0.099
par_rank			0.4077	0.012	34.424	0.000	0.384	0.431
type private non pr	rofit		0.0679	0.005	14.745	0.000	0.059	0.077
type_public			0.0277	0.004	6.809	0.000	0.020	0.036
tier_name_Highly_se			0.0130	0.006	2.013	0.044	0.000	0.026
tier_name_Highly_so	elective_public		0.0937	0.010	9.252	0.000	0.074	0.114
tier_name_Ivy_Plus			0.0695	0.015	4.711	0.000	0.041	0.098
	tive_four_year_privat		-0.0686	0.006	-11.243	0.000	-0.081	-0.057
	tive_four_year_public		-0.0135	0.006	-2.214	0.027	-0.025	-0.002
tier_name_Other_el:	ite_schools_public_an	d_private 	0.0418	0.007	6.122	0.000	0.028	0.055
Omnibus:	256.542	Durbin-Watson:		1.698				
Prob(Omnibus):	0.000	Jarque-Bera (JB):		901.434				
Skew:	0.561	Prob(JB):		1.80e-196				
Kurtosis:	5.943	Cond. No.		20.9				

Notes:

Standard Errors assume that the covariance matrix of the errors is correctly specified

- Regression results

- Using top 10 features from Ridge

ep. Variable:	k rank	R-squared:		0.771				
lodel:	OLS	Adj. R-squared:		0.769				
tethod:	Least Squares	F-statistic:		345.6				
ate:	Thu, 27 Jun 2024	Prob (F-statistic		0.00				
ime:	08:14:54	Log-Likelihood:		3848.4				
lo. Observations:	2180	ATC:		-7653.				
f Residuals:	2158	BIC:		-7528.				
of Model:								
ovariance Type:	nonrobust							
				std err			[0.025	0.975
intercept			0.4673	0.011	41.208	0.000	0.445	0.49
ount			1.604e-06	6.78e-07	2.366	0.018	2.75e-07	2.93e-0
emale			-0.1292	0.007	-19.024	0.000	-0.143	-0.11
ar_mean			3.139e-07	4.64e-08	-6.760	0.000	-4.05e-07	-2.23e-0
ar_median			1.271e-06	2.19e-07	5.805	0.000	8.42e-07	1.7e-0
ar_rank			0.1187	0.037	3.187	0.001	0.046	0.19
ype_private_non_pr	ofit		0.0079	0.020	0.402	0.688	-0.031	0.04
ype_public			0.0115	0.019	0.613	0.540	-0.025	0.04
ier_name_Highly_se			0.0984	0.021	4.666	0.000	0.057	0.14
ier_name_Highly_se	elective_public		0.1115	0.021	5.242	0.000	0.070	0.15
ier_name_Ivy_Plus			0.1609	0.025	6.502	0.000	0.112	0.20
	_two_year_schools_o		-0.0237	0.004	-5.653	0.000	-0.032	-0.01
	ive_four_year_privat ive_four_year_public		-0.0056	0.021 0.020	-0.270	0.787 0.956	-0.046 -0.040	0.03 0.03
	te schools public ar		-0.0011 0.1200	0.020	-0.055 5.651	0.000	0.078	0.16
ier name Selective		iu_pi ivace	0.0695	0.021	3.403	0.001	0.029	0.10
ier name Selective			0.0581	0.019	2.980	0.003	0.029	0.09
	_public and private r	ot for profit	-0.0081	0.013	-0.634	0.526	-0.033	0.01
ier name Two year		oc_ror_profite	-0.0010	0.007	-0.139	0.889	-0.015	0.01
clevel Less than T			-0.0010	0.004	-5.653	0.000	-0.032	-0.01
clevel Two year			-0.0091	0.007	-1.263	0.207	-0.023	0.00
region Northeast			0.0158	0.003	5,926	0.000	0.011	0.02
egion South			-0.0105	0.002	-4.241	0.000	-0.015	-0.00
egion_West			-0.0070	0.003		0.017	-0.013	-0.00
mnibus:	375.416	Durbin-Watson:		1.770				
rob(Omnibus):	0.000	Jarque-Bera (JB):		3193.556				
kew:	0.556	Prob(JB):		0.00				
(urtosis:	8.824	Cond. No.		3.79e+21				
lotes:		cond. No.						

Some Drawbacks and Improvements

- More extensive hyperparameter tuning could've been done
 - Used alpha value = 0.1
- Selection of top 10 features
 - Ex. In model 3, choose top 10 features
 - Somewhat arbitrary, could've chosen 9, 11, etc.

Conclusion

Works Cited

1. Raj Chetty, John N Friedman, Emmanuel Saez, Nicholas Turner, Danny Yagan, Income Segregation and Intergenerational Mobility Across Colleges in the United States, *The Quarterly Journal of Economics*, Volume 135, Issue 3, August 2020, Pages 1567–1633, https://doi.org/10.1093/qje/qjaa005