Příklad 1 - lineární regrese

V experimentu byla změřena závislost síly, napínající pružinu, na její délce. Pro velikost síly, působící na pružinu, platí lineární vztah

$$F = k \cdot \Delta y$$

kde k je tuhost pružiny a Δy je prodloužení pružiny v důsledku síly F.

Naměřená závislost byla proložena obecnou přímkou danou rovnicí $\lambda(x)=ax+b$ s následujícími parametry: $a=0.3354,\ \sigma_a=0.0014,\ b=-7.2931,\ \sigma_b=0.0603,\ {\rm cov}(a,b)=-0.000084.$

Určete tuhost pružiny a její délku v nezatíženém stavu.

Poznámky k řešení:

- (a) Jaké jsou jednotky veličin a, σ_a , b, σ_b a cov(a, b)?
- (b) Jaký je vztah mezi tuhostí pružiny k, délkou nezatížené pružiny y_0 a nafitovanými parametry a, b? Pro výpočet chyb k a y_0 použijte tyto vztahy a metodu přenosu chyb.
- (c) Výsledky zapište ve správném tvaru a se správnou jednotkou!

(10 bodů)

Příklad 2 - odhady parametrů

V tabulce je uvedeno 10 hodnot měření tloušťky tenké hliníkové vrstvy pomocí kontaktního profilometru.

Jaká je tloušťka tenké vrstvy?

n	d (nm)
1	211
2	213
3	212
4	212
5	218
6	205
7	215
8	220
9	225
10	228

Poznámky k řešení:

- (a) Předpokládáme, že d je náhodná proměnná s normálním rozdělením $N(\mu, \sigma)$. Určete parametry μ a σ jako nejlepší odhady těchto parametrů.
- (b) Jaký typ neurčitosti (typ A nebo B) je standardní odchylka σ ?
- (c) Vypočítejte chybu odhadu očekávané hodnoty $\mu.$
- (d) Výsledek zapište ve správném tvaru!

(5 bodů)