Math 591 Lecture 25

Thomas Cohn

10/30/20

Thm: If M is compact, then every $X \in \mathfrak{X}(M)$ is complete.

Proof: We know (by the existence of local flows) that $\forall p \in M$, there exists a neighborhood V of p, with $\varepsilon_p > 0$, such that the flow of X is defined on $(-\varepsilon_p, \varepsilon_p) \times V_p \to M$. We can extract a finite subcover of $\{V_p \mid p \in M\}$, say $\{V_{p_1}, \ldots, V_{p_k}\}$. Let $\varepsilon = \min\{\varepsilon_{p_1}, \ldots, \varepsilon_{p_k}\}$. Then the flow of X is defined on $(-\varepsilon, \varepsilon) \times M$, $\forall p$. So by the uniform time lemma, X is complete. \square

Question: How do vector fields relate with smooth maps? The answer is "not well".

In general, vector fields cannot be pushed forward or pulled back. Let $F:M\to N$ smooth. We can certainly push forward single tangent vectors: $F_{*,p}:T_pM\to T_{F(p)}N$. But F may not be injective or surjective. If F is not injective, we have $F(p_1)=F(p_2)$ for some $p_1,p_2\in M$. If F is not injective, there's a $q\in N$ such that $F(p)\neq q, \forall p\in M$. In either case, it's not clear what the vector field should be at that point.

Observe: If F is a diffeomorphism, then given $X \in \mathfrak{X}(M)$, we can define $(F_*X)_q$ by $\forall q \in N$, $(F_*X)_q = F_{*,F^{-1}(q)}(X_{F^{-1}(q)})$.

Defn: Given $F: M \to N, X \in \mathfrak{X}(M), Y \in \mathfrak{X}(N)$, we say X and Y are <u>F-related</u> iff $\forall p \in M, F_{*,p}(X_p) = Y_{F(p)}$.

Ex: Let $F: \mathbb{R}^2 \to \mathbb{R}$, F(x,y) = x. Take $X \in \mathfrak{X}(\mathbb{R}^2)$ to be $X = f \frac{\partial}{\partial x} + g \frac{\partial}{\partial y}$, $f,g \in C^{\infty}(\mathbb{R}^2)$. When is X F-related to some $Y \in \mathfrak{X}(\mathbb{R})$?

Well, $F_{*,(x,y)}(X_{(x,y)}) = f(x,y)\frac{\partial}{\partial x}$. So only when f doesn't depend on y.

Prop: Let $F: M \to N$ be smooth, $X \in \mathfrak{X}(M)$, $Y \in \mathfrak{X}(N)$. X and Y are F-related iff (1) $\forall c$, an integral curve of X, $F \circ c$ is an integral curve of Y (if there are no domain issues) iff (2) the following diagram commutes:

$$C^{\infty}(M) \xleftarrow{F^*} C^{\infty}(N)$$

$$\downarrow X \qquad \qquad \downarrow Y$$

$$C^{\infty}(M) \xleftarrow{F^*} C^{\infty}(N)$$

where $F^*(q) = q \circ F$, i.e., $\forall q \in C^{\infty}(N)$, $X(q \circ F) = Y(q) \circ F$.

Proof: (1) essentially follows directly from the definition, and uniqueness of integral curves.

For (2), recall how fields act as operators.

$$X(g \circ F)(p) = d(g \circ F)(X_p) = dg(F_{*,p}(X_p))$$
$$(Y(g) \circ F)(p) = Y(g)(F(p)) = dg(Y_{F(p)})$$

These are equal $\forall g \text{ iff } F_{*,p}(X_p) = Y_{F(p)}$, which is precisely the condition that X and Y are F-related. \square

Prop: Given $F: M \to N$ smooth, $X_1, X_2 \in \mathfrak{X}(M), Y_1, Y_2 \in \mathfrak{X}(N)$, if X_1 is F-related to Y_1 and X_2 is F-related to Y_2 , then $[X_1, X_2]$ is F-related to $[Y_1, Y_2]$.

Proof: Left as an exercise. Use condition (2) from the previous proposition.

Cor: If $X_1, X_2 \in \mathfrak{X}(G)$, G a Lie group, and X_1 and X_2 are left-invariant, then $[X_1, X_2]$ is left-invariant.

Proof: $\forall g \in G$, we know X_1 and X_2 are L_g -related to themselves. Therefore, $[X_1, X_2]$ is L_g -related to itself, i.e., $[X_1, X_2]$ is left-invariant. \square

Question: Given $X, Y \in \mathfrak{X}(M)$, we defined [X, Y] regarding X and Y as operators. What is the dynamical interpretation/meaning of the commutator?

Thm: Let $p \in M$, let ϕ be the flow of X. Form the curve in T_pM :

$$(-\varepsilon,\varepsilon)\ni t\mapsto (d(\phi_t)_p)^{-1}(Y_{\phi_t(p)})\stackrel{\mathrm{def}}{=} v_t$$

(with $d(\phi_t)_p: T_pM \to T_{\phi_t(p)}M$). Then $\frac{d}{dt}v_t = d(\phi_t)_p^{-1}([X,Y]_{\phi_t(p)})$ (the derivative of a curve in a vector space). At t = 0, $\frac{d}{dt}v_t = [X,Y]_p$.

Proof: Next time.

Cor: If $[X,Y] \equiv 0$ (everywhere), then $\forall t, s, \phi_t \circ \phi_s = \phi_s \circ \phi_t$, where ϕ is the flow of X and ψ is the flow of Y.

$$p \xrightarrow{\phi} \phi_t(p)$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\psi}$$

$$\psi_s(p) \longrightarrow \phi_t(\psi_s(p)) = \psi_s(\phi_t(p))$$

Proof: The assumption [X,Y]=0 implies the curves v_t from above are constant. So $\forall t, d(\phi_t)^{-1}(Y_{\phi_t(p)})=Y_p$. Thus, Y is ϕ_t -related to itself, $\forall t$. So ϕ_t maps integral curves of Y to integral curves of Y. This is equivalent to the commutativity we're trying to show. \square