Matrix representation

Matrix $n \times n$ where n = |V|adjacency matrix of G (= matrix of paths of length 1)

adjacency matrix of H (= matrix of paths of H)

$B_2 = I + A + A^2$ = $I + B_1 \cdot A =$ 000100 100100 000110 000011

$$= I + A + A^{2}$$
 $+ B_{1} \cdot A =$

$$B_3 = I + A + A^2 + A^3$$

$$= I + B_2 \cdot A =$$

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 $B_4 = I + A + A^2 + A^3 + A^4$ = $I + B_3 \cdot A = B$

3 matrix products overall

Transitive closure (accessibility)

G = (V, E) (unweighted) directed graph Compute H = (V, B) where B is the reflexive and transitive closure of E.

Remark: $(s,t) \in B$ iff there exists a path from s to t in G

Closure by matrix multiplication

there exists a path from i to j without cycle (simple path) \Leftrightarrow there exists a path from i to j of length $\leq n-1$ there exists path from i to j in $G \Leftrightarrow$

B[i,j] = 1iff $\exists k$, $0 \le k \le n-1$ $A^k[i,j] = 1$

therefore $B = I + A + A^2 + ... + A^{n-1}$

Computation of B using Horner's rule: $B_i = I + B_{i+1}A$ for i=1..n-1. Then $B = B_{n-1}$

Transitive closure of graphs and allpairs shortest paths

Notation A_k

= matrix of paths of length k in G

Closure by matrix multiplication

= I (identity matrix)= A (matrix of paths of length 1)

Proof:

For all $k \ge 0$, $A_k = A^k$ (boolean matrix multiplication)

$$\begin{split} &A_{n}[i,j]=1 \text{ iff there exists } s \in V; \ A_{k-1}[i,s]=1 \text{ and } A[s,j]=1 \\ &\text{ let } \qquad A_{n}[i,j]=V_{s}\ A_{k-1}[i,s]\cdot A[s,j] \text{ where } V \text{ boolean sum (OR)}. \end{split}$$
that is, $A_k = A_{k-1} \cdot A$ and $A_0 = I$

then $A_k = A^k$

Time complexity

n-1 additions and n-1 products of boolean matrices $n \times n$ => $O(n \cdot M(n))$

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2\delta})$ (now improved to $O(n^{2\beta7})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3/\log^2(n))$ (now improved to $O(n^3/\log^4(n))$)

B[i,j]=1 iff j is reachable from i Running time $O(n \cdot (n+m))=O(n^3)$ For each node i, run BFS with source node i $O(n^4)$ is too much! can be done better with BFS:

Time complexity

n-1 additions and n-1 products of boolean matrices $n \times n$ => $O(n \cdot M(n))$

each product is done in $O(n^3)$ operations => $O(n^4)$

there exist matrix multiplication algorithms running in time $o(n^3)$: Strassen 1969: $O(n^{2\delta})$ (now improved to $O(n^{2\beta7})$)

Four russians (Арлазаров, Диниц, Кронрод, Фарадзев) 1970: $O(n^3log^2(n))$ (now improved to $O(n^3log^4(n))$)

Exercise

Compute the transitive closure for the following graph

Warshall's (Roy-Warshall) algorithm (~1962)

G = (V, E) with $V = \{1, 2, ..., n\}$

Paths in $G: i \rightarrow s_1 \rightarrow s_2 \dots \rightarrow s_l \rightarrow j$

Intermediate nodes : s_1, s_2, \dots, s_l

Notation:

intermediate nodes ≤ k = / + A= matrix of paths in G with

ဂ္ဂင္ = matrix of paths in G = *B*

$C_0 = I + A$, $C_k[i,j] = 1$ iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1$ and $C_{k-1}[k,j] = 1)$

A =

 $C_0 = C_1 = C_2 =$

င္ပ

 $B = C_4 = C_5 =$

~1 matrix product

Computing C_k from C_{k-1}

$$= \int_{i}^{j} C_{k,l} = \int_{k}^{k} \frac{k}{k} \int_{k}^{j} C_{k,l}$$

What we have so far

$$C_{k,l} = \frac{k}{l} \left(\frac{k}{l} \right)$$

Roy-Warshall algorithm : O(n³)

• matrix power: $O(\log n \cdot M(n)) = O(\log n \cdot n^3)$ • matrix polynomial: $O(n \cdot M(n)) = O(n^4)$ Three algorithms to compute the transitive closure:

 $C_{k}[i,j] \leftarrow C_{k-1}[i,j] \vee (C_{k-1}[i,k] \& C_{k-1}[k,j])$

We now generalize these ideas to compute all-pairs shortest paths in a weighted graph

Speeding up

2 matrix products

 $B = B_4 =$

B₂ =

B₁ =

A =

Notation

= matrix of paths of length $\leq k$ in G

= I (identity matrix) = matrix of paths of length $\leq 1 = I + A$

°± °± °E = matrix of simple paths

Lemma: $B_k = B_{k-1} \cdot (I + A)$

 \Rightarrow For all $k \ge 1$, $B_k = (I + A)^k$ and then $B_{2k} = B_k \cdot B_k$

Compute B as an n-1 power in time $O(\log(n) \cdot M(n)) = O(\log(n) \cdot n^3)$

Recurrence

Lemma For all $k \ge 1$,

$$C_k[i,j] = 1$$
 iff $C_{k-1}[i,j] = 1$ or $(C_{k-1}[i,k] = 1 \text{ and } C_{k-1}[k,j] = 1)$

Computation of C_k from C_{k-1} in time $O(n^2)$ of $B = C_n$ in time $O(n^3)$

function closure (graph G = (V, E)) : matrix;

n ↑ | | .

for
$$i \leftarrow 1$$
 to n do for $j \leftarrow 1$ to n do if $i = j$ or $A[i,j] = 1$ then $C_0[i,j] \leftarrow 1$; else $C_0[i,j] \leftarrow 0$; for $k \leftarrow 1$ to n do for $j \leftarrow 1$ to n do for $j \leftarrow 1$ to n do $C_k[i,j] \leftarrow C_{k-1}[i,j] + C_{k-1}[i,k] \cdot C_{k-1}[k,j]$;

return C_n ;

+ is the boolean sum; running time $O(n^3)$