Azzolini Riccardo 2019-12-11

Elaborazione delle immagini a colori

1 Pseudocolore

Quando si deve effettuare l'ispezione visuale di un'immagine a scala di grigi, può essere utile assegnare dei colori ai vari livelli di grigio (dato che l'occhio umano è in grado di distinguere simultaneamente numerosi colori, ma solo pochi grigi). L'immagine risultante si dice in **pseudocolore** (o falso colore), per differenziarla dalle immagini acquisite direttamente a colori (cioè misurando l'intensità della radiazione in più bande dello spettro elettromagnetico), che sono invece dette **full/true color**.

1.1 Intensity slicing

Una tecnica per assegnare i colori a un'immagine è l'**intensity slicing** (o **color co-ding**):

- 1. si definisce un valore di soglia per l'intervallo dei livelli di grigio;
- 2. si assegna un colore a tutti i valori sotto la soglia, e un altro a tutti i valori sopra la soglia.

Geometricamente, se si raffigura l'immagine nello spazio cartesiano tridimensionale, come una funzione di due variabili, f(x,y), ciascun valore di soglia corrisponde a un piano perpendicolare all'asse delle intensità (e quindi parallelo al piano xy) che "taglia" l'immagine, associando un colore diverso a ciascun lato del piano.

Definendo due soglie, si possono assegnare tre colori, e così via.

In generale:

- Sia [0, L-1] la scala di grigi.
- Siano l_0 il nero e l_{L-1} il bianco.
- Si definiscono P piani perpendicolari all'asse delle intensità, ai livelli l_1, \ldots, l_P , e con 0 < P < L 1.
- I P piani partizionano la scala di grigi in P+1 intervalli, V_1, \ldots, V_{P+1} .
- L'assegnamento di un colore a un pixel, in base al suo livello di grigio, è dato dalla relazione

$$f(x,y) = c_k$$
 se $f(x,y) \in V_k$

dove c_k è il colore assegnato al k-esimo intervallo, V_k .

2 Elaborazione di immagini full color

Per l'elaborazione di un'immagine a colori, supponendo che essa sia codificata in RGB, la finestra viaggiante diventa un "cubo viaggiante", poiché ogni pixel è definito in termini di tre componenti, situati sui piani R, G, e B.

In senso stretto, sarebbe necessario trattare i valori dei pixel come vettori a tre componenti. Solitamente, in pratica, si assume (semplificando) che i tre piani siano indipendenti, e si opera separatamente sui tre piani.

2.1 Operatori puntuali

Gli operatori puntuali lavorano sui valori delle componenti di un singolo pixel:

$$s_i = T_i(r_1, \dots, r_n)$$
 con $i = 1, \dots, n$

• n è il numero delle componenti colore (RGB ha n = 3, CMYK ha n = 4, ecc.);

- r_i e s_i denotano le componenti colore di un pixel, rispettivamente dell'immagine originale e di quella risultante;
- la trasformazione T_i riceve in input tutte le componenti colore del pixel, e produce in output il nuovo valore dell'*i*-esima componente;
- l'insieme delle trasformazioni T_1,\ldots,T_n definisce l'operatore puntuale.

Il modo di effettuare una stessa operazione cambia a seconda della codifica. Ad esempio, per scurire un'immagine:

- in RGB, è necessario diminuire i valori di tutti e tre i piani;
- in CMY, si *aumentano* i valori dei tre piani (ciò corrisponde a un aumento della quantità di pigmento, quindi viene assorbita più luce);
- in HSI, bisogna diminuire solo i valori del piano intensità (I), lasciando tinta (H) e saturazione (S) inalterate, per evitare di alterare i colori.

Un altro esempio è la sostituzione di ciascun colore con il suo complementare:

• in RGB, si effettua il negativo dei tre piani;

- in HSI, è necessario:
 - "ruotare" la tinta di 180° (o di 0.5, se essa è rappresentata con valori nel range [0,1]);

- fare il negativo dell'intensità;
- lasciare inalterata la saturazione.

Invece, agendo individualmente sui vari piani colore, si può effettuare un'operazione di color balancing.

2.2 Trasformazioni spaziali

Le trasformazioni spaziali, ad esempio di smoothing e sharpening, si applicano solitamente in modo separato sui tre piani dell'immagine RGB.

In HSI, invece, queste trasformazioni lavorano solo sul piano dell'intensità, perché non si vogliono cambiare i colori presenti nell'immagine.

I risultati dell'applicazione di una stessa trasformazione in RGB e HSI non sono, però, perfettamente identici (perché la conversione tra i due spazi colore può comportare qualche approssimazione, e perché in HSI si lavora, appunto, solo sull'intensità, invece che indipendentemente su ciascun piano colore).

2.2.1 Smoothing con filtro di media

Sia c(x,y) un pixel di un'immagine RGB, con componenti R(x,y), G(x,y), e B(x,y),

$$c(x,y) = \begin{bmatrix} R(x,y) \\ G(x,y) \\ B(x,y) \end{bmatrix}$$

e sia $S_{x,y}$ un insieme di coordinate che definiscono un intorno di tale pixel. L'operazione di smoothing con filtro di media sull'intorno $S_{x,y}$ è definita come:

$$\bar{c}(x,y) = \frac{1}{k} \sum_{(s,t) \in S_{x,y}} c(s,t) = \begin{bmatrix} \frac{1}{k} \sum_{(s,t) \in S_{x,y}} R(s,t) \\ \frac{1}{k} \sum_{(s,t) \in S_{x,y}} G(s,t) \\ \frac{1}{k} \sum_{(s,t) \in S_{x,y}} B(s,t) \end{bmatrix}$$

In pratica, essa corrisponde a operazioni di smoothing separate sui tre piani RGB.

2.2.2 Operatore Laplaciano

Come lo smoothing, anche il Laplaciano di un'immagine RGB (utile, ad esempio, per lo sharpening) è calcolato lavorando separatamente sui tre piani:

$$\nabla^2 c(x,y) = \begin{bmatrix} \nabla^2 R(x,y) \\ \nabla^2 G(x,y) \\ \nabla^2 B(x,y) \end{bmatrix}$$