Definition of Laplace Transform: $\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = F(s)$

1st shifting theorem(L.T.): if $\mathcal{L}\{f(t)\} = F(s)$, then $\mathcal{L}\{e^{at}f(t)\} = F(s-a)$ 1st shifting theorem(I.L.T.): if $\mathcal{L}^{-1}\{F(s)\} = f(t)$, then $\mathcal{L}^{-1}\{F(s-a)\} = e^{at}f(t)$

	Laplace Transform Formulae	Inverse Laplace Transform Formulae	1st Shifting Laplace Transform Formulae	1st Shifting Inverse Laplace Transform Formulae
1	$\mathcal{L}\{K\} = \frac{K}{s}$	$\mathcal{L}^{-1}\left\{\frac{K}{\mathcal{S}}\right\} = K$	$\mathcal{L}\{e^{at}K\} = \frac{K}{(s-a)}$	$\mathcal{L}^{-1}\left\{\frac{K}{(s-a)}\right\} = e^{at}K$
2	$\mathcal{L}\{e^{kt}\} = \frac{1}{s-k}$	$\mathcal{L}^{-1}\left\{\frac{1}{s-k}\right\} = e^{kt}$	$\mathcal{L}\lbrace e^{at}e^{kt}\rbrace = \frac{1}{(s-a)-k}$	$\mathcal{L}^{-1}\left\{\frac{1}{(s-a)-k}\right\} = e^{at}e^{kt}$
3	$\mathcal{L}\{\sin kt\} = \frac{k}{s^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{s^2 + k^2}\right\} = \sin kt$	$\mathcal{L}\{e^{at}\sin kt\} = \frac{k}{(s-a)^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{(s-a)^2+k^2}\right\} = e^{at}\sin kt$
4	$\mathcal{L}\{\cos kt\} = \frac{s}{s^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{s}{s^2+k^2}\right\} = \cos kt$	$\mathcal{L}\lbrace e^{at}\cos kt\rbrace = \frac{s-a}{(s-a)^2 + k^2}$	$\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2+k^2}\right\} = e^{at}\cos kt$
5	$\mathcal{L}\{\sinh kt\} = \frac{k}{s^2 - k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{s^2 - k^2}\right\} = \sinh kt$	$\mathcal{L}\left\{e^{at}\sinh kt\right\} = \frac{k}{(s-a)^2 - k^2}$	$\mathcal{L}^{-1}\left\{\frac{k}{(s-a)^2-k^2}\right\} = e^{at}\sinh kt$
6	$\mathcal{L}\{\cosh kt\} = \frac{s}{s^2 - k^2}$		$\mathcal{L}\lbrace e^{at} \cosh kt \rbrace = \frac{s-a}{(s-a)^2 - k^2}$	$\mathcal{L}^{-1}\left\{\frac{s-a}{(s-a)^2-k^2}\right\} = e^{at}\cosh kt$
7	$\mathcal{L}\{t^{\mathrm{n}}\} = \begin{cases} \frac{\Gamma(n+1)}{s^{n+1}} \text{ ; n is non integer} \\ \frac{n!}{s^{n+1}} \text{ ; n is integer} \end{cases}$	$\mathcal{L}^{-1}\left\{\frac{\Gamma(n+1)}{s^{n+1}}\right\}; n \text{ is non integer}$ $\mathcal{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}; n \text{ is integer}$	$\mathcal{L}\lbrace e^{at} \mathbf{t}^{n} \rbrace = \begin{cases} \frac{\Gamma(n+1)}{(s-a)^{n+1}} ; n \text{ is non integer} \\ \frac{n!}{(s-a)^{n+1}} ; n \text{ is integer} \end{cases}$	$\mathcal{L}^{-1}\left\{\frac{\Gamma(n+1)}{(s-a)^{n+1}}\right\}; n \text{ is non integer}$ $\mathcal{L}^{-1}\left\{\frac{n!}{(s-a)^{n+1}}\right\}; n \text{ is integer}$ $= e^{at}t^{n}$

Theorems:
$$\mathcal{L}\{f(t)\} = F(s) \Rightarrow \mathcal{L}\{f(bt)\} = \frac{1}{b}F\left(\frac{s}{b}\right)$$

Theorems: $\mathcal{L}^{-1}\{F(s)\} = f(t) \Rightarrow \mathcal{L}^{-1}\{F(ks)\} \stackrel{t}{=} \frac{1}{k}f\left(\frac{t}{k}\right)$