

Ditto: Fair and Robust Federated Learning Through Personalization

Ditto: 通过个性化实现公平和鲁棒的联邦学习

CONTENT

算法介绍

实验

PART 01 背景介绍

"个性化" 及 Fair and Robust

两种类型的"个性化"

Personalization

之前读的一些文章: 在某些场景下, 提升全局模型的准确率

- 资源受限[2]: 自适应epoch, 在资源受限的情况下得到acc高的全局模型
- FedNova[4]: 对异构的local epoch做归一化,使得算力异构的 client能够训练出一个acc高的全局模型

Ditto: 在某些场景下,既考虑本地模型的准确率,又考虑全局模型的准确率

- 因为在数据异质的情况下,即使全局模型的准确率高,把训练好的模型拿过来给本地客户端用,效果(acc)不一定很好。
- pFedLA[3]:引入超网络对权重进行管理,实现分层聚合,让重要的层得到更高的权重,在数据异构的场景下得到个性化模型

公平和鲁棒的定义

Fair and Robust

Fair (评价指标: 良性节点测试准确率方差)

- 如果 w_1 在网络上的测试性能分布比 w_2 的更均匀,即 $\mathrm{std}\{F_k(w_1)\}_{k\in[K]}<\mathrm{std}\{F_k(w_2)\}_{k\in[K]}$,则模型 w_1 比 w_2 更公平
- · 其中,F k指设备k上的测试损失
- std指标准差: $std{F_k(w)}_{k\in[K]} = \sqrt{\frac{1}{|K|}\sum_{k=1}^K (F_k(w) \bar{F})^2}$
- 有敌手的时候,只在善意的节点上衡量Fair

Robust (评价指标: 良性节点的准确率)

- 我们在概念上对**拜占庭鲁棒性**感兴趣(Lamport et al., 2019)
 - 在拜占庭鲁棒性中,恶意设备可以向服务器发送任意更新,以破坏训练。
 - 为了测量鲁棒性,我们评估良性设备上的平均测试性能,即,如果在使用攻击进行训练后, 良性设备上模型w1的平均测试表现高于w2,则我们认为模型w1对特定攻击的鲁棒性高于w2
- 攻击种类
 - 标签中毒
 - 随机更新
 - 模型替换

PART 02 算法介绍

简单得一批,就只有一个正则化项

联邦多任务学习

这篇论文原来的标题就是叫Federated Multi-Task Learning for Competing Constraints

联邦学习有三大约束:公平性、鲁棒性、隐私性。目前的方法很难同时满足这三个约束,本文主要关注联邦学习的公平性和鲁棒性。

而统计异构性(即不相同的分布数据, Non-IID)是限制这三个约束不能同时上升的根本原因。作者认为**个性化**联邦学习的方法(通过学习每个设备的不同模型来适应联邦设置中的异构性)可能有助于提升公平性和鲁棒性。而**多任务学习**本身提供了内在的鲁棒性和公平性好处,并探索了试图同时满足这两个约束时存在的挑战。

$$egin{aligned} \min_{v_k} & h_k\left(v_k; w^*
ight) := F_k\left(v_k
ight) + rac{\lambda}{2} \|v_k - w^*\|^2 \ ext{s.t.} & w^* \in rg \min_w G\left(F_1(w), \ldots F_K(w)
ight) \end{aligned} \qquad (Ditto)$$

第一个目标: min hk, 就是去找使得local model好的模型第二个目标: min G, 就是去找使得global model好的模型

怎样就变成无中心化的场景,怎样就变成FedAVG

$$egin{aligned} \min_{v_k} & h_k\left(v_k; w^*
ight) := F_k\left(v_k
ight) + rac{\lambda}{2} \|v_k - w^*\|^2 \ ext{s.t.} & w^* \in rg\min_{w} G\left(F_1(w), \dots F_K(w)
ight) \end{aligned} \qquad (Ditto)$$

- ✓ 如果λ=0,则hk的优化问题等价于Fk的优化问题,hk就是纯在优化本地model vk, vk的优化只跟自己的梯度下降有关系,跟全局模型w没关系(w的优化不受vk的影响)
- ✓ 如果λ=∞,则vk=w*,则两个目标都变成了去找全局最优模型w*

$$egin{aligned} \min_{v_k} & h_k\left(v_k; w^*
ight) := F_k\left(v_k
ight) + rac{\lambda}{2} \|v_k - w^*\|^2 \ ext{s.t.} & w^* \in rg\min_w G\left(F_1(w), \dots F_K(w)
ight) \end{aligned} \qquad (Ditto)$$

Algorithm 1: Ditto for Personalized FL

- 1 **Input:** $K, T, s, \lambda, \eta, w^0, \{v_k^0\}_{k \in [K]}$
- 2 for $t = 0, \dots, T 1$ do
- Server randomly selects a subset of devices S_t , and sends w^t to them
- 4 **for** device $k \in S_t$ in parallel **do**
 - Solve the local sub-problem of $G(\cdot)$ inexactly starting from w^t to obtain w_k^t :

$$w_k^t \leftarrow \text{UPDATE_GLOBAL}(w^t, \nabla F_k(w^t))$$

$$/\star$$
 Solve $h_k(v_k;w^t)$ $\star/$

Update v_k for s local iterations:

$$v_k = v_k - \eta(\nabla F_k(v_k) + \lambda(v_k - w^t))$$

Send $\Delta_k^t := w_k^t - w^t$ back

Server aggregates $\{\Delta_k^t\}$:

7

$$w^{t+1} \leftarrow \text{AGGREGATE}\left(w^t, \{\Delta_k^t\}_{k \in \{S_t\}}\right)$$

return $\{v_k\}_{k\in[K]}$ (personalized), w^T (global)

- ②这里是本地更新,如果是 FedAvg 的话,就是 $w_k^t = w_k^t \eta_g \nabla F_k(w_k^t)$
- ③第6行在解hk,梯度由hk求导得到,算法十分简单

①注意他返回的是俩,一个是vk,一个是wT

PART 03 λ的取值

怎么通过改变λ的取值,做到Fair和Robust的trade-off呢?

PART 04 实验

鲁棒性实验、公平性实验

鲁棒性实验

- ➤ global: learning a global model, 按我的理解就是FedAvg
- ➤ clipping: "弱"差分隐私[5],加噪没有严格按照DP来,加了"少量足以抵御(后门)攻击的噪声量"
- ➤ 其他的是一些strong defense mechanisms
- ➤ A1、A2、A3是攻击种类 (标签中毒、随机更新、模型替换)

这里Robust实验的结果就是, Ditto在大多数情况都是best

Fashion		A1 (ratio of adversaries)			A2 (ratio of adversaries)			A3 (ratio of adversaries)		
Methods	clean	20%	50%	80%	20%	50%	80%	10%	20%	50%
global	.911 (.08)	.897 (.08)	.855 (.10)	.753 (.13)	.900 (.08)	.882 (.09)	.857 (.10)	.753 (.10)	.551 (.13)	.275 (.12)
local	.876 (.10)	.874 (.10)	.876 (.11)	.879 (.10)	.874 (.10)	.876 (.11)	.879 (.10)	.877 (.10)	.874 (.10)	.876 (.11)
fair (TERM, $t=1$)	.909 (.07)	.751 (.12)	.637 (.13)	.547 (.11)	.731 (.13)	.637 (.14)	.635 (.14)	.653 (.13)	.601 (.12)	.131 (.16)
Ditto	.943 (.06)	.944 (.07)	.937 (.07)	.907 (.10)	.938 (.07)	.930 (.08)	.913 (.09)	.921 (.09)	.902 (.09)	.873 (.11)
FEMNIST		A1 (ratio of adversaries)			A2 (ratio of adversaries)			A3 (ratio of adversaries)		
Methods	clean	20%	50%	80%	20%	50%	80%	10%	15%	20%
Methods global	clean .804 (.11)		50% .727 (.12)	300 OS 1 1 1						
			.727 (.12)	.574 (.15)		.703 (.14)	.636 (.15)	.517 (.14)	.487 (.14)	
global	.804 (.11)	.773 (.11) .620 (.14)	.727 (.12)	.574 (.15) .607 (.14)	.774 (.11) .620 (.14)	.703 (.14) .627 (.14)	.636 (.15) .607 (.14)	.517 (.14) .622 (.14)	.487 (.14) .621 (.14)	.314 (.13)

两个浮点数的含义是:准确率、准确率的标准差

这里t是TERM(倾斜经验风险最小化)算法里的一个超参数,用来调控解决经验风险最小化问题 这个TERM下面也叫fair 方法

跟公平性方法TERM对比

fair方法的鲁棒性不行,恶意节点增加,则准 确率下降得很多

感谢您的观看

Bilibili-丸一口