Лабораторная работа №2

Исследование протокола TCP и алгоритма управления очередью RED

Кадров Виктор Максимович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
	3.1 Пример с дисциплиной RED	. 6
	3.2 Изменения в модели на узле s1 типа протокола TCP с Reno н	a
	NewReno, затем на Vegas	. 8
	3.3 Изменения при отображении окон с графиками (изменить цве	T
	фона, цвет траекторий, подписи к осям, подпись траектории	
	легенде)	. 10
4	Выводы	13
Сг	писок литературы	14

Список иллюстраций

3.1	Скрипт модели с дисциплиной RED	7
3.2	Скрипт модели с дисциплиной RED	7
3.3	График динамики размера окна ТСР(сверху) и график динамики	
	длины очереди и среденей длины очереди(снизу) при типе	
	протокола TCP Reno на узле s1	8
3.4	Скрипт изменений на узле s1 типа протокола TCP c Reno на Newreno	8
3.5	График динамики размера окна ТСР(сверху) и график динамики	
	длины очереди и среденей длины очереди(снизу) при типе	
	протокола TCP NewReno на узле s1	9
3.6	Скрипт изменений на узле s1 типа протокола TCP с Reno на Vegas .	9
3.7	График динамики размера окна ТСР(сверху) и график динамики	
	длины очереди и среденей длины очереди(снизу) при типе	
	протокола TCP Vegas на узле s1	10
3.8	Изменение процедуры finish	11
3.9	Изменение мониторинга размера окна ТСР	11
3.10	Результаты изменений отображения окон с графиками	12

1 Цель работы

Исследовать протокол TCP и алгоритм управления очередью RED[1].

2 Задание

- 1. Рассмотреть пример с дисциплиной RED.
- 2. Изменить в модели на узле s1 тип протокола TCP с Reno на NewReno, затем на Vegas. Сравнить и пояснить результаты.
- 3. Внести изменения при отображении окон с графиками (изменить цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

3 Выполнение лабораторной работы

3.1 Пример с дисциплиной RED.

Постановка задачи. Описание моделируемой сети: — сеть состоит из 6 узлов; — между всеми узлами установлено дуплексное соединение с различными пропускной способностью и задержкой 10 мс; — узел r1 использует очередь с дисциплиной RED для накопления пакетов, максимальный размер которой составляет 25; — TCP-источники на узлах s1 и s2 подключаются к TCP-приёмнику на узле s3; — генераторы трафика FTP прикреплены к TCP-агентам.

Первая часть скрипта модели с дисциплиной RED. (рис. 3.1)

Рис. 3.1: Скрипт модели с дисциплиной RED

Вторая часть скрипта модели с дисциплиной RED. (рис. 3.2)

Рис. 3.2: Скрипт модели с дисциплиной RED

График динамики размера окна TCP(сверху) и график динамики длины очереди и среденей длины очереди(снизу) при типе протокола TCP Reno на узле s1. (рис. 3.3).

Рис. 3.3: График динамики размера окна TCP(сверху) и график динамики длины очереди и среденей длины очереди(снизу) при типе протокола TCP Reno на узле s1

3.2 Изменения в модели на узле s1 типа протокола TCP с Reno на NewReno, затем на Vegas.

Скрипт изменений на узле s1 типа протокола TCP с Reno на Newreno. (рис. 3.4).

```
set tcp1 [$ns create-connection TCP/Newreno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
```

Рис. 3.4: Скрипт изменений на узле s1 типа протокола TCP с Reno на Newreno

График динамики размера окна ТСР(сверху) и график динамики длины

очереди и среденей длины очереди(снизу) при типе протокола TCP NewReno на узле s1. (рис. 3.5).

Рис. 3.5: График динамики размера окна TCP(сверху) и график динамики длины очереди и среденей длины очереди(снизу) при типе протокола TCP NewReno на узле s1

TCP NewReno: Улучшенная версия Reno, устраняющая его недостатки:

- Улучшенный Fast Recovery. TCP NewReno остается в режиме восстановления после первой потери пакета и корректно обрабатывает несколько потерянных пакетов за один цикл передачи.
- Более точный механизм обнаружения потерь и адаптации скорости. Скрипт изменений на узле s1 типа протокола TCP с Reno на Vegas. (рис. 3.6).

```
set tcp1 [$ns create-connection TCP/Vegas $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
set windowVsTime [open WindowVsTimeVegas w]
```

Рис. 3.6: Скрипт изменений на узле s1 типа протокола TCP с Reno на Vegas

График динамики размера окна ТСР(сверху) и график динамики длины

очереди и среденей длины очереди(снизу) при типе протокола TCP Vegas на узле s1. (рис. 3.7).

Рис. 3.7: График динамики размера окна TCP(сверху) и график динамики длины очереди и среденей длины очереди(снизу) при типе протокола TCP Vegas на узле s1

TCP Vegas: TCP Vegas использует другой подход:

- Оценивает задержку пакетов вместо того, чтобы просто реагировать на потери.
- Контролирует перегрузку до ее возникновения, измеряя разницу между ожидаемой и реальной скоростью передачи.
- Более гладкая регулировка CWND, без резких изменений, как в Reno/NewReno.

3.3 Изменения при отображении окон с графиками (изменить цвет фона, цвет траекторий, подписи к осям, подпись траектории в легенде).

Изменение процедуры finish. (рис. 3.8).

Рис. 3.8: Изменение процедуры finish

Изменение мониторинга размера окна ТСР. (рис. 3.9).

```
set windowVsTime [open WindowVsTimeVegas w]
puts $windowVsTime "0.Color: Blue"
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
        [$ns link $node_(r1) $node_(r2)] queue-sample-timeout;

# Monitopuhr ovepequi:
```

Рис. 3.9: Изменение мониторинга размера окна ТСР

Результаты изменений отображения окон с графиками. (рис. 3.10).

Рис. 3.10: Результаты изменений отображения окон с графиками

4 Выводы

Мы исследовали протокол TCP и алгоритм управления очередью RED.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 2. Исследование протокола ТСР и алгоритма управления очередью RED [Электронный ресурс].