

JUNE 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Theory 2 (Structured Questions)

Page 1	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	4

1 (a) The EMF of a cell made up of the test electrode and a standard hydrogen electrode. [1]

EMF measured under standard conditions of T, P and concentration [1]

2

(b) (i)
$$E_{left} = E_{right} - E_{cell} = 0.34 - 0.76 = -0.42 (V)$$
 [1]

(iii) I pink/red solid/ppt *or* copper will be formed *or* blue solution fades *or* M dissolves/corrodes [1]

$$Cu^{2+} + M \rightarrow Cu + M^{2+}$$
 [1]

II hydrogen/gas evolved *or* M dissolves (do not allow "M dissolves" for [2] marks in both I and II) [1]

$$M + 2H^{+} \rightarrow M^{2+} + H_{2}$$
 [1]

6

(c) (i) polarity of d. c. source: \ominus is on the left, \oplus is on the right [1] electrolyte is $Cu^{2+}(aq)/CuSO_4/CuCl_2/Cu(NO_3)_2$ etc. or name [1]

(ii) moles of Cu = 0.5/63.5 = 7.87×10^{-3} [1]

moles of $e^{-} = 2 \times 7.87 \times 10^{-3} = 1.57 \times 10^{-2}$

no. of coulombs = $96500 \times 1.57 \times 10^{-2} = 1517$ (C) [1] ecf in n(e⁻)

time = 1520/0.5 = 5034 seconds = 50.7 min [1] ecf in coulombs

.

5

Total 13

Page 2	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	4

2 (a) (i)
$$K_{sp} = [Ba^{2+}][SO4^{2-}]$$
 [1] units: mol²dm⁻⁶ [1] ecf

(ii)
$$[Ba^{2+}] = \sqrt{(1.3 \times 10^{-10})} = 1.14 \times 10^{-5} \text{ (mol dm}^{-3})$$
 [1]

(iii) BaCO₃ can react with/dissolve in the acid/HC
$$l$$
 in the stomach [1] (or unbalanced equation showing, e.g. BaCO₃ + HC $l \rightarrow$)

(b) (i)
$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$
 [1] units: mol³dm⁻⁹ [1] ecf

(ii) calling [Mg²⁺] = x, then
$$K_{sp} = x(2x)^2 = 4x^3 \Rightarrow x = \sqrt[3]{(K_{sp}/4)}$$
 [1]

$$\therefore [Mg^{2+}] = \sqrt[3]{-(2 \times 10^{-11}/4)} = 1.7 \times 10^{-4} \text{ (mol dm}^{-3})$$
 [1] allow ecf for use of $\sqrt[3]{-}$

(c) (i)
$$\Delta H_r = \Delta H_f^{\circ}(Mg^{2+}) + 2\Delta H_f^{\circ}(CI) - \Delta H_f^{\circ}(MgCl_2)$$

= -467 + 2(-167) - (-641)
= -160 (kJ mol⁻¹) [1]

(ii) highly exothermic enthalpy change of solution
$$or \Delta H_{sol}$$
 is very negative [1]

hydration enthalpy decreases more than does lattice enthalpy enthalpy change of solution or ΔH_{sol} becomes less negative/more positive [1]

Total: 13, max 12

4

5

2

2

Page 3	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	4

3 (a) (i) simple/discrete covalent/molecular [1]
(ii) giant/macro covalent/molecular (NOT atomic) [1]
(iii) (giant) ionic [1]
a general statement that strong attraction means high m.pt. and weak means low [1]

4

(b) (i)
$$CO_2 + 2NaOH \rightarrow Na_2CO_3 + H_2O$$

or $CO_2 + NaOH \rightarrow NaHCO_3$ [1]
(this mark is negated if candidate states that SiO₂ dissolves/reacts)

$$SnO_2 + 2NaOH \rightarrow Na_2SnO_3 + H_2O$$

or $SnO_2 + 2NaOH + H_2O \rightarrow Na_2Sn(OH)_4$ etc [1]

(if neither of the above marks can be awarded, allow CO_2 and SnO_2 dissolve/react but SiO_2 does not, for [1])

(ii)
$$CO_2$$
 and SiO_2 - no reaction [1]

$$SnO_2 + 4HCl \rightarrow SnCl_4 (or Sn^{4+} + 4CI) + 2H_2O$$
 [1]

4

(c)
$$PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2$$
 [1]

$$E_{cell}$$
 = 1.47 -- 1.36
= **0.11** (V) [for 1 M HC I] [1]

or

$$Pb^{4+} + 2Cl \rightarrow Pb^{2+} + Cl_2$$
 [1]

$$E_{cell}$$
 = 1.69 -- 1.36
= **0.33** (V) [for 1 M HC \bar{l}] [1]

2

Total: 10, max 9

Page 4	Mark Scheme	Syllabus	Paper
	A/AS LEVEL EXAMINATIONS – JUNE 2003	9701	4

4 (a)
$$Cl_2$$
 + light/heat (aq negates) [1]

1

(b)
$$Cl_2$$
+ $AlCl_3$ /Fe Cl_3 /Fe etc. (aq negates) [1]

1

(c)

C: (pale) yellow ppt.

[1]

1

(d) NaOH +
$$I_2$$
(+ aq) (or I^- + OC I^- + aq) [1]

D: no reaction (both) [1]

2

(e) mass of
$$CN$$
 needed = 0.03 x 60 = 1.8g [1]

 $M_r = 154.5$, \therefore amount = 1.8/154.5 = **0.0117** (mol) (allow **0.012**) ecf [1]

2

- (f) (i) increasing ease: H < D < G [1]
 - (ii) chlorine on the aryl ring is very inert or strong C-Cl bond or overlap between Cl lone pair and π bond on ring (OWTTE) [1]

chlorine on C=O is reactive because of highly δ + carbon atom bonded to electronegative O and Cl (OWTTE) [1]

3

Total 10

			707.00 ELVEL E70 (111110710 10110 2011 2000 1010 1	•
5	(a)	(i)	$SOC_{l_2}/PC_{l_5}/PC_{l_3}/P + C_{l_2}$ (aq negates)	[1]
		(ii)	$C_6H_5OH + NaOH \rightarrow C_6H_5O^-Na^+ (or C_6H_5ONa) + H_2O$	[1]
		(iii)	$\mathbf{J} = C_6 H_5 O C O C H_3$	[1]
			$\mathbf{K} = \mathrm{CH_3CONH_2}$	[1]
				4
	(b)	(i)	condensation	[1]
		(ii)	Cl COCH ₂ CH ₂ COC l + 2HOCH ₂ CH ₂ OH \rightarrow	[1]
			HOCH ₂ CH ₂ OCOCH ₂ CH ₂ CO ₂ CH ₂ CH ₂ OH (+ H ₂ O)	[1]
				3
	(c)	(i)	polyamide <i>or</i> nylon (allow condensation) [NOT peptide <i>or</i> protein]	[1]
		(ii)		
			HO_2C $(Or dichloride)$ $NH_2(CH_2)4NH_2$	
				[1] + [1]
				3
				Total 10
_			. 20 20 60 20 6 . 20 2	
6	(a)	(i)	$1s^22s^22p^63s^23p^6 + 4s^23d^2 $ or [Ar] $4s^23d^2$ (or vice versa)	[1]
		(ii)	two of TiC l_2 , TiC l_3 , TiC l_4	[1]
				2
	(b)	(i)	blue solution is formed	[1]
			containing $[Cu(H_2O)_6]^{2+}$	[1]
		(ii)	NH_3 replaces H_2O ligands <i>or</i> forms $[Cu(NH_3)_4]^{2+}$ (or $[Cu(NH_3)_4(H_2O)_2]^{2+}$	[1]
			which is deep blue/purple	[1]
				4

Mark Scheme
A/AS LEVEL EXAMINATIONS – JUNE 2003

Page 5

Syllabus 9701

Paper 4

Total 6