Dimensionamento de Lotes e Programação em Fundições

Otimização 2025.1

Pedro Saito Marcos Silva Milton Salgado 122149392 122133854 122169279

Resumo

Este texto foi apresentado como relatório do primeiro trabalho da disciplina de Otimização, oferecida pelo Instituto de Computação da UFRJ no primeiro semestre de 2025. O objetivo é abordar o problema de dimensionamento de lotes e programação de produção em fundições de médio porte. A análise considera restrições operacionais como capacidade de produção, custos de preparação e possibilidade de atrasos na entrega. O trabalho discute a modelagem matemática do problema, detalha as variáveis e restrições envolvidas e heurísticas utilizadas.

1. Introdução

A Programação Linear é uma das ferramentas científicas mais fundamentais da pesquisa operacional, devido a sua capacidade de modelar uma ampla gama de problemas reais por meio de estruturas simples, isto é, funções e restrições lineares [2]. Neste trabalho, escolhemos estudar um problema integrado de **dimensionamento de lotes** e **programação da produção**, inspirado em um cenário real encontrado em fundições de pequeno e médio porte.

O caso envolve uma fundição que opera com um único forno, que representa o principal gargalo do processo produtivo, e diversas máquinas de moldagem paralelas. A produção exige que diferentes itens, cada um com demanda conhecida, sejam fabricados a partir de ligas metálicas específicas. A cada período, duas decisões, estas são:

- 1. Qual liga será fundida no forno?
- 2. Como alocar a produção dos itens entre as máquinas disponíveis?

Tais decisões devem considerar restrições de capacidade, custos de preparação para troca de liga, e penalidades por atrasos na entrega.

Apresentamos um modelo de **programação linear mista** que representa o processo produtivo em fundições, incluindo a seleção de ligas, a alocação do tempo de cada máquina para produzir cada item e o controle de estoques e atrasos. Analisamos suas principais restrições operacionais e estruturais, assim como o impacto dessas restrições na qualidade da solução. Este relatório detalha a modelagem proposta, destaca seus aspectos fundamentais e avalia estratégias de solução fundamentadas na literatura.

1.1. Objetivos

O presente estudo tem como objetivo modelar um problema de dimensionamento de lotes e programação da produção em fundições, em um ambiente com máquinas de moldagem paralelas e restrições operacionais.

Especificamente, estamos interessados em:

- Formular e interpretar a função objetivo do problema.
- Definir as variáveis de decisão e as restrições do modelo.
- Avaliar as estratégias de relaxação e heurísticas aplicáveis.

2. Modelagem

A fundição opera com um único forno e M máquinas de moldagem paralelas, responsáveis pela produção de diferentes moldes com demandas conhecidas. A produção é dividida em T períodos, os quais podem variar quanto à duração e às demandas de cada item.

O forno tem uma capacidade limitada de produção de liga por hora em cada período, sendo que cada liga pode atender um ou mais itens. Uma vez fundida a liga, os itens compatíveis podem ser produzidos nas máquinas de moldagem, cada uma com uma taxa produtiva de a_{im} , que indica a quantidade do item i que a máquina m é capaz de produzir por hora.

Além disso, produção pode ser adiantada ou atrasada em relação ao período de demanda, mas isso gera penalidades: Estocar tem custo, e atrasar resulta em multa proporcional ao atraso.

Figura 1: Fluxograma simplificado do processo produtivo.

Onde:

- Matéria-prima: Refere-se a conjuntos de materiais compostos pela mesma liga metálica, incluindo sucatas, lingotes fundidos (provenientes de refino de minérios), e outros insumos.
- Forno: Equipamento único do processo produtivo, responsável pela fusão da matéria-prima e pela produção das ligas metálicas. Representa o principal **gargalo**, opera sob restrições a cada período.
- **Molde**: Estrutura de areia onde a liga fundida é vertida para adquirir a forma final do item. Cada molde corresponde ao formato específico do produto.
- **Máquina de Moldagem**: Equipamentos responsáveis pela conformação dos itens a partir da liga fundida, conforme a demanda e capacidade produtiva.
- **Produto final**: Resultado final do processo, obtido após a moldagem e solidificação da liga no molde correspondente.

Índices e dados gerais para resolução do problema:

Índices e Dados	Definição
m = 1,, M	Máquinas de moldagem.
t=1,,T	Períodos de tempo.
i=1,,N	Tipos de itens.
k=1,,K	Tipos de ligas.
a_{im}	Quantidade de itens i produzidos pela máquina por hora.
Cap_t	Quantidade máxima de liga produzida pelo forno por hora no
	período t .
d_{it}	Demanda de itens do tipo i no período t .
h_t	Número de horas no período t .
H_i^+	Custo de estocar uma unidade do item i de um período para o
	próximo.
H_i^-	Penalidade por atrasar uma unidade do item i de um período
	para o próximo.
cs_k	Penalidade por preparar a liga k .
S_k	Conjunto de itens utilizados na liga k .
G	Um número grande.

Tabela 1: Índices e dados fornecidos pelo problema.

Variáveis de decisão utilizadas:

Variáveis	Definição
X_{imt}	Tempo usado no período t para produzir o item i na máquina m ;
I_{it}^+	Estoque do item i no final do período $t(I_{i0}^+=0)$;
I_{it}^-	Quantidade atrasada do item i no final do período $t\left(I_{i0}^{-}=0\right)$;
Y_t^k	Variável binária que indica se a liga k é produzida no período t ;
Z^k_t	Variável binária que indica se há custo de preparação para a liga
	k no período t .

Tabela 2: Variáveis de decisão.

O problema de programação linear (PPL) pode ser descrito da forma:

$$\min \ \, \sum_{m=1}^{N} \sum_{t=1}^{T} (H_{i}^{-}I_{it}^{-} + H_{i}^{+}I_{it}^{+}) + \sum_{k=1}^{K} \sum_{t=1}^{T} (cs_{k}Z_{t}^{k}) \qquad \qquad (1.1)$$
 s.a:
$$\sum_{m=1}^{M} a_{im}h_{t}X_{imt} - I_{it}^{+}I_{it}^{-} + I_{i(t-1)}^{+} - I_{i(t-1)}^{-} = d_{it} \qquad \qquad i = 1, ..., N \quad t = 1, ..., T \ (1.2)$$

$$\sum_{i=1}^{N} \sum_{m=1}^{M} h_{t}a_{im}X_{imt} \leq Cap_{t}h_{t} \qquad \qquad t = 1, ..., K \quad m = 1, ..., M \quad t = 1, ..., T \ (1.3)$$

$$\sum_{i \in S_{k}} X_{imt} \leq (1 - Y_{t}^{k})G + 1 \qquad \qquad k = 1, ..., K \quad m = 1, ..., M \quad t = 1, ..., T \ (1.4)$$

$$\sum_{i \notin S_{k}} X_{imt} \leq (1 - Y_{t}^{k})G \qquad \qquad k = 1, ..., K \quad m = 1, ..., M \quad t = 1, ..., T \ (1.5)$$

$$\sum_{i \notin S_{k}} Y_{t}^{k} = 1 \qquad \qquad t = 1, ..., K \quad m = 1, ..., M \quad t = 1, ..., T \ (1.6)$$

$$\sum_{k=1}^{K} Y_{t}^{k} = 1 \qquad \qquad t = 1, ..., K \quad t = 1, ..., T \ (1.7)$$

$$X_{imt} \geq 0 \qquad \qquad i = 1, ..., K \quad t = 1, ..., T \ (1.8)$$

$$I_{it}^{+} \in I_{it}^{-} \geq 0 \qquad \qquad i = 1, ..., K \quad t = 1, ..., T \ (1.9)$$

$$Y_{t}^{k} \in \{0,1\} \quad (Y_{0}^{k} = 0) \qquad \qquad k = 1, ..., K \quad t = 1, ..., T \ (1.10)$$

$$Z_{t}^{k} \geq 0 \qquad \qquad k = 1, ..., K \quad t = 1, ..., T \ (1.11)$$

A função objetivo, definida na Equação 1.1, é composta por:

- Custos de Estoque: $H_i^+ I_{it}^+$ manter estoque implica em custo.
- Penalidades por Atraso: $H_i^- I_{it}^-$ atrasos são penalizados com maior intensidade.
- Custo de Preparação de Ligas: $cs_k Z_t^k$ cada troca de liga acarreta um custo adicional.

O modelo favorece a produção sem atrasos e com menos trocas de ligas, contribuindo para a eficiência da produção.

2.1. Restrição

Restrição	Explicação
Função objetivo Equação 1.1	Minimiza os custos de estoque, atrasos e trocas de ligas. O primeiro termo contabiliza o custo de manter estoque e penalidades por atraso, o segundo, os custos de preparação das ligas.
Balanço de Estoque Equação 1.2	Garante a coerência em um período de tempo, para cada item, de sua produção, sua quantidade já em estoque, sua demanda atrasada de períodos anteriores e sua demanda do período atual. Ou seja, garante que não se produza a mais quando um item já está em estoque e que se produza a mais quando há demanda atrasada.
Capacidade do Forno Equação 1.3	Limita a quantidade de itens produzidos em cada período pela quantidade de ligas produzidas no mesmo período.
Compatibilidade da Liga Equação 1.4 e Equação 1.5	Garante que apenas itens compatíveis com a liga produzida no período possam ser fabricados.
Escolha de Liga Única Equação 1.6	Apenas uma liga k pode ser produzida por período t .
Controle de Troca de Liga Equação 1.7	Define a variável de troca de liga Z_t^k , que penaliza a troca da liga a ser produzida entre períodos.
Não Negatividade - Tempo Equação 1.8	Não é possível produzir quantidades em uma fração de tempo negativa.
Não Negatividade - Estoques Equação 1.9	Os estoques e atrasos não podem assumir valores negativos.
Variáveis Binárias - Liga Equação 1.10	Define a natureza binária da variável de escolha de liga Y_t^k
Não Negatividade - Trocas Equação 1.11	A variável de troca de ligas Z^k_t

Tabela 3: Explicação das restrições usadas na modelagem.

3. Relaxação

Antes de aplicar a heurística para escolher a liga a ser produzida, podemos simplificar o problema removendo temporariamente as restrições sobre a escolha de ligas. Assim, obtemos uma solução inicial com mais facilidade.

3.1. Restrições relaxadas

Na versão *relaxada* do modelo, as seguintes simplificações são aplicadas:

Restrições	Descrição
Equação 1.1	Remove o componente de custo de troca de liga $(cs_k Z_k^t)$.
Equação 1.4	Remove a restrição de produção vinculada à escolha da liga k no período $t.$
Equação 1.5	Não se exige mais a escolha de apenas uma liga por período.
Equação 1.6	Elimina o controle de custos de troca de liga entre períodos.
Equação 1.7	Elimina a necessidade de decidir se a liga será, removendo a variável Y_t^k .
Equação 1.8	A variável de troca de liga Z_t^k é eliminada do modelo relaxado.

Tabela 4: Modificações em função do relaxamento.

3.2. Criação de uma nova variável

Com a remoção temporária das restrições relacionadas à seleção de ligas, iremos introduzir uma variável auxiliar que simplifique o controle da produção dos itens. Para isso, define-se a variável:

$$P_{it} = \sum_{m=1}^{M} h_t a_{im} X_{imt} \tag{2}$$

onde:

- P_{it} : Quantidade total do item i planejada para ser produzida no período t.
- h_t : Número de horas disponíveis no período t.
- a_{im} : Taxa de produção do item i na máquina m (quantidade de itens por hora).
- X_{imt} : Fração de tempo da máquina m alocada para a produção do item i no período t.

A variável P_{it} consolida a produção de cada item em um único valor agregado por período, independentemente da distribuição entre as máquinas. Isso simplifica o modelo relaxado, permitindo tratar diretamente as quantidades a serem produzidas, sem a necessidade de considerar, neste momento, a alocação detalhada de recursos produtivos ou a restrição de compatibilidade com ligas.

3.3. Modelo relaxado resultante

Como foi dito, podemos desconsiderar as restrições da Equação 1.4 até Equação 1.7 e as da Equação 1.10 e Equação 1.11. Desse modo, teremos a seguinte PPL:

$$\min \sum_{i=1}^{N} \sum_{t=1}^{T} (H_i^- I_{it}^- + H_i^+ I_{it}^+)$$
(3.1)

s.a:
$$I_{it-1}^+ - I_{it-1}^- + P_{it} - I_{it}^+ + I_{it}^- = d_{it}$$
 $i = 1, ..., N$ $t = 1, ..., T$ (3.2)

$$\sum_{i=1}^{N} P_{it} \le Cap_t h_t \qquad t = 1, ..., T \quad (3.3)$$

$$P_{it} \ge 0$$
 $i = 1, ..., N \quad t = 1, ..., T \quad (3.4)$

Equação 3.5

$$I_{it}^+ \in I_{it}^- \ge 0$$
 $i = 1, ..., N \quad t = 1, ..., T \quad (3.5)$

A função objetivo, definida na Equação 3.1, é composta exclusivamente pelos custos de estoque e penalidades por atraso, eliminando, neste estágio, os custos associados à preparação e troca de ligas.

Restrição	Explicação
Função Objetivo Relaxada Equação 3.1	Minimiza apenas os custos de manutenção de estoque e as pena- lidades por atraso no atendimento das demandas. Os custos de troca de ligas são desconsiderados neste modelo simplificado.
Balanço de Estoque e Atrasos Equação 3.2	Garante que, para cada item e período, a quantidade produzida e o estoque existente sejam suficientes para atender à demanda, contabilizando possíveis atrasos acumulados.
Capacidade do Forno Equação 3.3	Limita a quantidade total de produção no período à capacidade máxima do forno, considerada em termos de horas disponíveis.
Não Negatividade - Produção Equação 3.4	As quantidades planejadas para produção não podem ser negativas, refletindo a realidade física do sistema produtivo.
Não Negatividade - Estoques	Os estoques finais e os atrasos de cada item devem ser não nega-

Tabela 5: Explicação das restrições utilizadas no modelo relaxado.

3.4. Heurística - Escolha das Ligas

Após resolver o problema relaxado, é necessário definir qual liga será produzida em cada período. Como nem sempre uma única liga pode atender a todos os itens demandados, utiliza-se a seguinte heurística estruturada em três passos principais:

Passo 1: Determinar Itens Já Atendidos

$$A_{t-1} = S_{k_1} \cup S_{k_2} \cup \ldots \cup S_{k_{t-1}} \tag{4}$$

tivos, garantindo consistência nos cálculos de estoque e atrasos.

Interpretação: Este conjunto representa todos os itens que já podem ser atendidos com as ligas produzidas até o período t-1. Evita-se considerar novamente esses itens na seleção da próxima liga.

Passo 2: Identificar Itens Críticos para o Período Atual

$$B_t = \{i \mid i \notin A_{t-1} \ \text{e} \ d_{i\tau} > 0, \tau = 1, 2, ..., t\}$$
 (5)

• Interpretação: São os itens os quais nenhuma liga que os atende foi produzida até o período t. Esses itens devem ser priorizados na escolha da liga a ser produzida.

Passo 3: Escolha da Liga a Produzir

Caso 1: Se $B_t \neq \emptyset$ e existe uma liga capaz de produzir todos os itens de B_t :

$$k_t = \arg\max_{k=1,\dots,L} \left\{ \left(\sum_{i \in S_k} P_{it} \right)^{|B_t \cap S_k|} - cs_k Z_t^k \right\} \tag{6}$$

Escolhe-se a liga k que maximiza a produção ponderada pelos custos de troca.

Caso 2: Se $B_t \neq \emptyset$ e nenhuma liga produz todos os itens de B_t :

$$k_t = \arg\max \sum_{k=1,\dots,L} \left(P_{it} - cs_k Z_t^k \right) \tag{7}$$

Seleciona-se a liga que oferece a maior cobertura possível dos itens críticos, mesmo que não atenda a todos.

Caso 3: Se $B_t = \emptyset$:

$$k_t = \arg\max_{k=1,\dots,L} \left\{ \sum_{i \in S_k} \left(P_i t - c s_k Z_t^k \right) \right\} \tag{8}$$

Neste caso, não há itens críticos. A escolha da liga visa maximizar a produção futura, considerando os custos de troca.

Critérios de Desempate:

Prioriza-se a liga com maior número de itens compatíveis (maior cardinalidade de S_k).

Caso permaneça o empate, pode-se considerar o menor custo de troca cs_k .

3.5. Programação das Máquinas de Moldagem

Com as ligas definidas na etapa anterior, o próximo passo é planejar de forma eficiente a utilização das máquinas de moldagem, de modo a atender às quantidades P_{it} de cada item previamente determinadas. Esse planejamento visa equilibrar a carga de trabalho entre as máquinas, evitando sobrecarga e maximizando a eficiência do processo produtivo.

3.5.1. Variável de Controle

Precisaremos definir a seguinte variável:

$$X_{imt}$$
: Fração de tempo que a máquina m dedica ao item i no período t. (9)

Interpretação: Representa o percentual do tempo disponível da máquina m que será utilizado na produção do item i durante o período t. Esta variável permite a flexibilidade de alocar a produção de um mesmo item em diferentes máquinas.

3.5.2. Função Objetivo

$$\min\left(F_t = \max\left\{\sum_{i=1}^N X_{imt}\right\}\right), \quad m = 1, ..., M$$

$$\tag{10}$$

Interpretação: A função objetivo busca minimizar a maior fração de tempo utilizada por qualquer máquina no período t, promovendo o balanceamento da produção entre as máquinas disponíveis. Esse critério é conhecido como minimização do tempo de máquina mais carregada, sendo uma forma de reduzir gargalos no sistema produtivo.

3.5.3. Restrições

1. Capacidade Máxima da Máquina:

$$\sum_{i=1}^{N} X_{imt} \le F_t, \quad m = 1, ..., M \tag{11}$$

Garante que nenhuma máquina ultrapasse a fração de tempo F_t definida na função objetivo.

2. Atendimento da Quantidade Definida para Cada Item:

$$\sum_{m=1}^{M} h_t a_{im} X_{imt} = P_{it}, \quad i = 1, ..., N$$
 (12)

Assegura que a produção planejada P_{it} de cada item i no período t seja integralmente realizada, considerando a capacidade produtiva das máquinas e o tempo disponível.

3. Não Negatividade das Variáveis de Produção:

$$X_{imt} \ge 0, \quad m = 1, ..., M, \quad i \in S_{k_*}$$
 (13)

Garante que a fração de tempo alocada a cada máquina seja não negativa, ou seja, não é possível utilizar tempo "negativo" de máquina para a produção de qualquer item.

4. Compatibilidade da Liga Produzida:

$$X_{imt} = 0 \text{ se } i \notin S_k. \tag{14}$$

Impede que máquinas sejam alocadas para produzir itens cuja produção não é compatível com a liga escolhida para o período t. Essa restrição respeita as decisões tomadas na etapa de escolha de ligas.

3.5.4. Observações Adicionais

- O modelo de alocação das máquinas é análogo a um problema de transporte generalizado, em que se busca alocar recursos de forma ótima para atender à demanda.
- A solução deste modelo pode ser obtida de forma eficiente utilizando pacotes de otimização como AMPL/CPLEX, mesmo para instâncias de maior porte.

Além da função objetivo apresentada, outras métricas de balanceamento da carga de trabalho podem ser utilizadas conforme as necessidades operacionais, como a minimização da soma dos tempos das máquinas ou a minimização da variância da utilização das máquinas.

• Este planejamento eficiente das máquinas é fundamental para garantir o cumprimento dos prazos de produção com o menor custo operacional possível, evitando a ociosidade excessiva ou a sobrecarga de determinados recursos produtivos.

3.6. Conclusão sobre o Algoritmo Geral

O algoritmo geral integra as etapas de relaxação, heurística de seleção de ligas e programação da produção nas máquinas de moldagem. Embora não garanta a obtenção de soluções ótimas globais, o método proposto é eficiente, de baixo custo computacional e apresenta resultados bastante satisfatórios na prática, principalmente em cenários com grande número de itens e restrições de capacidade.

· Etapas do Algoritmo

1. Inicialização:

Defina o período inicial t = 1.

2. Resolução do Modelo Relaxado:

Resolva o modelo relaxado apresentado na Seção 4.1 para determinar os valores de P_{it} , que indicam a quantidade ideal de cada item a ser produzida em cada período, sem considerar as restrições de liga.

3. Heurística de Escolha das Ligas (Seção 4.2):

Com base nos valores de P_{it} , aplique a heurística para definir qual liga k_t será produzida no período t. Se for possível atender toda a produção planejada P_{it} com a liga escolhida, avance

para o próximo período. Caso contrário, ajuste P_{it} eliminando as quantidades dos itens que não podem ser produzidos com a liga selecionada e reavalie a escolha da liga.

4. Iteração ao Longo do Horizonte de Planejamento:

Repita os passos 2 e 3 para todos os períodos t=1,2,...,T, garantindo que todas as ligas sejam escolhidas de forma coerente ao longo do horizonte de planejamento.

5. Programação das Máquinas de Moldagem (Seção 4.3):

Após definir as ligas a serem produzidas em cada período, resolva o problema de alocação de produção entre as máquinas, garantindo o atendimento das quantidades $P_{\{it\}}$ por meio da definição das variáveis X_{imt} . Esta etapa busca minimizar o tempo máximo de utilização das máquinas em cada período, balanceando a carga de trabalho entre elas.

Bibliografia

- 1. Corrêa HL, Gianesi IGN (2006) Planejamento, Programação e Controle da Produção: uma abordagem prática. Polímeros: Ciência e Tecnologia 16:188–189
- 2. Trick M (1998) Linear Programming.