Nome e cognome:	Classe:	Data:	_Griglia
rionie e cognome.	Classe.	Data.	_Grigii

Risposte (variante 65)

1	2	3	4	5	6	7	8	9	10
1.1	10								
11	12	13	14	15	16	17	18	19	20

- 1. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) L'attività del campione al tempo t.
 - (b) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t = 0.
 - (c) Il tempo di dimezzamento del campione.
 - (d) Il numero di nuclei decaduti al tempo t.
- 2. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (c) $\Delta m \approx 2.0141 \,\mathrm{u}$
- (b) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- 3. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (b) Lo stato "gatto morto".
 - (c) Lo stato "gatto vivo".
 - (d) Uno stato indeterminato che non è né vivo né morto.
- 4. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio (⁴He)?
 - (a) Decadimento Beta più (β^+)

(c) Decadimento Beta meno (β^{-})

(b) Emissione Gamma (γ)

- (d) Decadimento Alfa (α)
- 5. La "catastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:
 - (a) Che l'energia emessa fosse quantizzata fin dall'inizio.
 - (b) Un'intensità energetica nulla per lunghezze d'onda molto piccole.
 - (c) Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.
 - (d) Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).
- 6. Nel range di energie tipico della radiodiagnostica (es. 30-150 keV), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?

(a) Effetto Compton.

(c) Scattering di Rayleigh (coerente).

(b) Produzione di coppie (e^+/e^-) .

(d) Effetto fotoelettrico.

- 7. Completare la seguente reazione di decadimento beta meno (β^-) : ${}_{6}^{14}C \rightarrow ? + e^- + \bar{\nu}_e$
 - (a) ${}_{6}^{14}C$

(b) ${}_{5}^{14}B$

(c) ${}_{6}^{13}$ C

- (d) $^{14}_{7}N$
- 8. In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?
 - (a) Quando l'angolo di diffusione è $\theta = 180^{\circ}$ (diffusione all'indietro).
 - (b) Quando l'angolo di diffusione è $\theta = 90^{\circ}$.

	(b) Il decadimento dell'atomo radioattivo all'interno della scatola.								
	(c)	La volontà del gatto.							
	(d)	L'atto di osservazione o misurazione (apertura della scatola).							
11.	11. Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?								
	(a)	Il nucleo atomico vibra emettendo fotoni.							
	(b)	L'elettrone emette un fotone di energia definita $(E=hf)$ quando salta da un'orbita permessa a energia superiore a una a energia inferiore.							
	(c)	Gli urti tra atomi eccitati producono lo spettro.							
	(d)	L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.							
12.	12. Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2}=5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, quanti milligrammi rimarranno dopo 20 giorni?								
	(a)	$2\mathrm{mg}$	(b)	$8\mathrm{mg}$	(c)	$1\mathrm{mg}$	(d)	$4\mathrm{mg}$	
13.	13. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $\binom{18}{9}$ F) può decadere β^+ : $\frac{18}{9}$ F \rightarrow ? $+ e^+ + \nu_e$								
	(a)	$^{17}_{9}\mathrm{F}$	(b)	$^{18}_{10}{ m Ne}$	(c)	$^{19}_{9}{ m F}$	(d)	¹⁸ O	
14.	14. Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}\mathrm{U} \to X + \alpha$								
	(a)	$X = ^{238}_{90}$ Th (Torio-238)	(b)	$X = {}^{234}_{92}$ U (Uranio-234)	(c)	$X = {}^{234}_{90}$ Th (Torio-234)	(d)	$X=^{234}_{88}$ Ra (Radio-234)	
15.	Nell'effe	etto Compton, un fotone X	inte	ragisce con un elettrone lib	ero (o debolmente legato). Cos	a suc	cede al fotone?	
	(a)								
	(b)	Viene assorbito completar	nent	e dall'elettrone.					
	(c)	Passa attraverso l'elettron	e sei	nza interagire.					
	(d) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).								
16.	16. Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?								
	(a)	$E_B = (\Delta m)c^2.$	(b)	$E_B = m_{nucleo}c^2.$	(c)	$E_B = (\Delta m)/c^2.$	(d)	$E_B = (\sum m_{costituenti})c^2.$	
17. Una radiazione di frequenza $f=1.0\times 10^{15}\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\mathrm{eV}$. Sapendo che $h\approx 6.63\times 10^{-34}\mathrm{J\cdot s}$ e 1 eV $\approx 1.6\times 10^{-19}\mathrm{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV, $hf\approx 4.14\mathrm{eV}$)									

(d) Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo

10. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno

(c) La variazione è indipendente dall'angolo θ .

(b) Del modello atomico di Bohr.

quantistico.

stato definito (vivo o morto)?

(c) Della teoria della relatività di Einstein.

(a) Il tempo trascorso dall'inizio dell'esperimento.

Il principio di indeterminazione è una conseguenza fondamentale:

(d) Quando l'angolo di diffusione è $\theta=0^\circ$ (nessuna diffusione).

(a) Degli errori sperimentali inevitabili negli strumenti di misura.

- (a) $K_{max} \approx 2.0 \,\text{eV}$
- (b) $K_{max} \approx 2.14 \,\text{eV}$
- (c) $K_{max} \approx 6.14 \,\text{eV}$
- (d) $K_{max} \approx 4.14 \,\text{eV}$
- 18. Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
 - (b) Un atomo emette radiazione solo quando viene ionizzato.
 - (c) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (d) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
- 19. Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale non vengono emessi elettroni, indipendentemente dall'intensità della luce?
 - (a) Perché l'interazione tra luce e materia richiede un tempo minimo che dipende dalla frequenza.
 - (b) Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.
 - (c) Perché l'energia del singolo fotone (hf) deve essere almeno pari al lavoro di estrazione (W) per liberare un elettrone.
 - (d) Perché a basse frequenze la luce si comporta solo come un'onda.
- 20. Cosa dimostra in modo sorprendente l'esperimento della doppia fenditura con elettroni singoli?
 - (a) Che il principio di indeterminazione non è valido.
 - (b) Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.
 - (c) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.
 - (d) Che la luce è composta da particelle (fotoni).