Lecture 6 notes

Lex Gallon

March 20, 2020

Contents

Sequences §7.2	1
Limits of sequences §7.5, 7.5.1	2
Properties of limits §7.5.2	2
Non-existence of limits	3
Series §7.6	3
Convergence and divergence of a series	4
Geometric Series §7.3.2	4

Sequences §7.2

Definition

A sequence is a countably infinite collection of numbers

$${a_n}_{n=1}^{\infty} = {a_1, a_2, a_3, \dots}$$

Example

$$a_n = \frac{1}{n}, n \in \mathbb{N}$$

Limits of sequences §7.5, 7.5.1

A sequence $\{a_n\}_{n=1}^{\infty}$ is said to converge to a limit l, denoted if for any $\varepsilon > 0$, there exists $N = N(\varepsilon), \varepsilon \in \mathbb{N}$ such that $|a_n - l| < \varepsilon|$ for n > N.

Example

Show that

$$\lim_{n \to \infty} \frac{1}{n} = 0$$

Solution

Fix $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $N > \frac{1}{\varepsilon}$.

Then

$$n \ge N \Rightarrow \frac{1}{n} \le \frac{1}{N} < \varepsilon$$

and so

$$|\frac{1}{n} - 0| = \frac{1}{n} = \frac{1}{n} < \varepsilon$$

Properties of limits §7.5.2

Theorem

Suppose $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} b_n = m$, then

1.

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2.

$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n$$

3.

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \text{ provided that } m\neq 0$$

Theorem (Uniqueness of limit

Suppose $\lim_{n\to\infty} a_n = l$ and $\lim_{n\to\infty} a_n = l'$. Then l=l'. Moreover, if $\{a_{n_j}\}_{j=1}^{\infty}$ is my sub-sequence of $\{a_n\}_{n=1}^{\infty}$. Then

$$\lim_{n\to\infty} (a_{n_j}) = \lim_{n\to\infty} (a_n) = l$$

For example, if you took the limit of every second term in the sequence, it would still be the same as the limit of every term.

Theorem

Suppose $\lim_{x\to x_0} f(x) = l$ and $\lim_{n\to\infty} a_n = x_0$. Then

$$\lim_{n \to \infty} f(a_n) = l$$

Conversely, if $\lim_{n\to\infty} f(a_n) = l$ for all sequences $\{a_n\}_{n=1}^{\infty}$ satisfying $\lim_{n\to\infty} a_n = x_0$, then $\lim_{x\to x_0} f(x) = l$.

Non-existence of limits

There can be many reasons why limits of sequences do not exist. The two most common are:

- 1. Oscillation The limit $\lim_{n\to\infty} (-1)^n$ DNE.
- 2. Unboundedness The limit $\lim_{n'\to\infty} ln(n)$ DNE.

Series §7.6

Definition

A sum of the elements of a sequence $\{a_n\}_{n=1}^{\infty}$, i.e.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$$

is called a series.

Examples

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots$$

$$(-1)^n = 1 + (-1) + 1 + (-1) + \dots$$

Definition

Given a sequence $\{a_n\}_{n=1}^{\infty}$ and $N \in \mathbb{N}$, the Nth partial sum is defined by

$$S_N = \sum_{n=1}^N a_n = a_1 + a_2 + a_3 + \dots + a_N$$

Convergence and divergence of a series

Definition

A series $\sum_{n=1}^{\infty} a_n$ is said to converge (diverge) if the limit $\lim_{N\to\infty} S_N$ of partial sums exists (does not exist).

If $\lim_{N\to\infty} S_N$ converges, then we define

$$\sum_{n=1}^{\infty} a_n := \lim_{N \to \infty} S_N$$

Geometric Series §7.3.2

Definition

$$\sum_{n=0}^{\infty} a^n = 1 + a + a^2 + \dots$$

Note: this could be multiplied by a constant and still be a geometric series. Consider the partial sums

$$S_N = \sum_{n=0}^{N} a^n = 1 + a + a^2 + \dots + a^N$$

Multiply by a to get

$$aS_N = \sum_{n=0}^{N} a^n = a + a^2 + \dots + a^N + a^{N+1}$$

So

$$aS_N = S_{N-1} + a^{N+1}$$

This gives

$$(a-1)S_N = -1 + a^{N+1}$$

$$S_N = \frac{1}{1-a} - \frac{a^{N+1}}{1-a}$$

Taking the limit $N \to \infty$, we find that

$$\lim_{N \to \infty} S_N = \frac{1}{1-a} - \lim_{N \to \infty} \frac{a^{N+1}}{1-a} \qquad \qquad = \begin{cases} \frac{1}{1-a} & \text{if } |a| < 1\\ \text{DNE} & \text{if } |a| \ge 1 \end{cases}$$

Thus

$$\sum_{n=0}^{N} a^n = \frac{1}{1-a} \text{ for } |a| < 1$$

and

$$\sum_{n=0}^{N} a^n \text{ diverges for } |a| \ge 1$$