Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

Первая неделя. Вероятностное пространство
Вероятностное пространство
Равновероятные исходы
Условная вероятность и независимые события
Независимые события
Совместная независимость

Первая неделя. Вероятностное пространство

Вероятностное пространство

Вероятностное пространство это тройка (Ω, F, P) , где

- 1. Ω это любое множество. Оно называется *множеством элементарных исходов*, а его элементы *элементарными исходами*. Мы пока будем заниматься только случаем, когда Ω это конечное множество. Оставшаяся часть определения написана только для этого случая.
- 2. Все подмножества Ω называются *событиями*. Множество событий обозначается F и называется *алгеброй событий*.

Обозначение. Для обозначения событий мы будем использовать заглавные буквы из начала латинского алфавита: A, B, C, и так далее.

3. Вероятность P это функция из F в [0,1]. Другими словами, P каждому событию сопоставляет число от 0 до 1. Это число называется вероятностью соответствующего события. Вероятность каждого события должна быть равна сумме вероятностей элементарных исходов, из которых состоит это событие. Сумма вероятностей всех элементарных исходов должна быть равна 1.

Обозначение. Если A это конечное множество, то мы обозначаем число элементов A через |A|. Если число исходов в Ω равно k, то число событий равно 2^k , то есть $|\Omega| = k, k \in \mathbb{N} \implies |F| = 2^k$.

Пусть дано событие A. Тогда событием \bar{A} называется событие, состоящие из всех элементарных исходов, которые не входят в A. Можно произносить \bar{A} как "не A."Верно следующее равенство: $P(\bar{A}) = 1 - P(A)$.

Равновероятные исходы

Если вероятности всех элементарных исходов равны, то есть P(a) = P(b) для всех $a, b \in \Omega$, то в этом случае мы говорим, что все элементарные исходы равновероятны.

Если все исходы равновероятны, то для любого события A выполнено $P(A) = \frac{|A|}{|\Omega|}$. В частности, вероятность каждого элементарного исхода равна $\frac{1}{k}$.

Условная вероятность и независимые события

Так как события являются множествами (состоящими из элементарных исходов), к ним можно применять все стандартные операции над множествами. В частности, события можно пересекать (символ \cap) и объединять (символ \cup).

Если $P(B) \neq 0$, то условной вероятностью события A при условии события B называется дробь $\frac{P(A \cap B)}{P(B)}$. Обозначение:

$$P(A|B) := \frac{P(A \cap B)}{P(B)}.$$

Формула полной вероятности для двух событий:

$$P(B)=P(B\cap A)+P(B\cap \bar{A})$$
или, равносильно,
$$P(B)=P(B|A)\cdot P(A)+P(B|\bar{A})\cdot P(\bar{A})$$

Независимые события

Пусть $P(B) \neq 0$. Событие A называется независимым от события B, если и только если P(A) = P(A|B). Пусть $P(A) \neq 0$ и $P(B) \neq 0$. Тогда верна следующая цепочка эквивалентных утверждений:

События
$$A$$
 и B независимы $\Leftrightarrow P(A) = P(A|B) \Leftrightarrow P(B) = P(B|A) \Leftrightarrow P(A \cap B) = P(A) \cdot P(B)$

Два события, которые не являются независимыми, называют зависимыми.

Совместная независимость

События A_1, \dots, A_n называются cosmecmno независимыми, если для любого k и любого набора индексов $1 \le i_1 < i_2 < \dots < i_k \le n$ выполнено

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot \dots \cdot P(A_{i_k}).$$

События называются попарно независимыми, если любые два из них независимы.

Из совместной независимости событий следует их попарная независимость. Но в общем случае из попарной независимости событий не следует совместная независимость.