Bluff Bot

Alec Yu Jason You Arshan Ghanbari

¹ Defining the Problem

- ^{2.} Exploring the Problem through a Game
- 3. Obtaining a Baseline
- 4. Comments on Baseline
- 5. Approach + Results + Conclusion

Deep reinforcement learning (DRL) has achieved remarkable success in perfect information games (i.e., AlphaZero, Chess, 2017), yet applying these techniques to environments with hidden/incomplete information and strategic deception remains an open challenge.

Defining the Problem

The Reinforced Learners

Information Types

Complete

Everything about the game is known (players, actions, sequences, etc.)

<u>Incomplete</u>

Lacking knowledge about some relevant aspect of the game (player playing habits)

- ¹ Defining the Problem
- ^{2.} Exploring the Problem through a Game
- 3. Obtaining a Baseline
- 4. Comments on Baseline
- 5. Approach + Results + Conclusion

Exploring the Problem through a Game Reinforced Learners

Bluff Game

Simple adaptations to traditional Texas Hold'em to emphasize the importance of learning incomplete information

Information Type	Details
Complete Information	Player Card/Value
	Each Player's Chip Bet for the Round
Incomplete Information	Adversarial Card/Value
	Adversarial Betting Patterns
	Adversarial Bluffing Patterns

- ¹ Defining the Problem
- ^{2.} Exploring the Problem through a Game
- ^{3.} Obtaining a Baseline
- 4. Comments on Baseline
- 5. Approach + Results + Conclusion

Deep Q-Learning Network

Obtaining a Baseline Reinforced Learners

Baseline Outcome

Rewards are measured in big blinds per hand

0.5 (-0.5) indicates that the player wins (loses) 0.5 times the big blind amount

- ¹ Defining the Problem
- ^{2.} Exploring the Problem through a Game
- 3. Obtaining a Baseline
- 4. Comments on Baseline
- 5. Approach + Results + Conclusion

Comments on Baseline Reinforced Learners

Areas of Improvement

Noam Brown and Tuomas Sandholm. Depth-limited solving for imperfect-information games. Advances in Neural Information Processing Systems (NeurIPS), 2018.

Lacks probabilistic action selection
 → no mixed strategies

2. RL generally inefficient→ amplified by combinatorial explosion

- ¹ Defining the Problem
- ^{2.} Exploring the Problem through a Game
- 3. Obtaining a Baseline
- 4. Comments on Baseline
- 5. Approach + Results + Conclusion

Approach Reinforced Learners

Our Approach

Inductive Biases

Use VAE+LSTM

Intermediate Reward Signals (akin to custom loss function)

Experiment Results (Line Chart)

Science Presentation

Model Outcomes

Currently, when we increase game length, model converges a bit slower but gets better performance.

Still haven't fully implemented the model freezing and intermediate reward signal

Drawing a Conclusion Science Presentation

Reflection

Focus on the problem, learn the problem. That's the work of an ML engineer and data science.