Isogeny graphs in cryptography

Luca De Feo

Université Paris Saclay, UVSQ

July 29, 2019 Cryptography meets Graph Theory Würzburg, Germany

Plan

- Elliptic curves, isogenies, complex multiplication
- Isogeny graphs
- Key exchange
- Signatures and whatnot

Projective space

Definition (Projective space)

Let \bar{k} an algebraically closed field, the projective space $\mathbb{P}^n(\bar{k})$ is the set of non-null (n+1)-tuples $(x_0,\ldots,x_n)\in \bar{k}^n$ modulo the equivalence relation

$$(x_0,\ldots,x_n)\sim (\lambda x_0,\ldots,\lambda x_n) \qquad ext{with } \lambda\in ar k\setminus\{0\}.$$

A class is denoted by $(x_0 : \cdots : x_n)$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

• $\mathcal{O} = (0:1:0)$ is the point at infinity;

Weierstrass equations

Let k be a field of characteristic $\neq 2, 3$. An elliptic curve defined over k is the locus in $\mathbb{P}^2(\bar{k})$ of an equation

$$Y^2Z = X^3 + aXZ^2 + bZ^3,$$

where $a, b \in k$ and $4a^3 + 27b^2 \neq 0$.

- $\mathcal{O} = (0:1:0)$ is the point at infinity;
- $y^2 = x^3 + ax + b$ is the affine equation.

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

The group law

Bezout's theorem

Every line cuts *E* in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

 The law is algebraic (it has formulas);

The group law

Bezout's theorem

Every line cuts E in exactly three points (counted with multiplicity).

Define a group law such that any three colinear points add up to zero.

- The law is algebraic (it has formulas);
- The law is commutative;
- O is the group identity;
- Opposite points have the same *x*-value.

Group structure

Torsion structure

Let E be defined over an algebraically closed field \bar{k} of characteristic p.

$$E[m] \simeq ~~ \mathbb{Z}/m\mathbb{Z} imes \mathbb{Z}/m\mathbb{Z}$$
 $E[p^e] \simeq egin{cases} \mathbb{Z}/p^e\mathbb{Z} \ \{\mathcal{O}\} \end{cases}$ su

supersingular case.

ordinary case,

if $p \nmid m$,

Free part

Let E be defined over a number field k, the group of k-rational points E(k) is finitely generated.

Maps: isomorphisms

Isomorphisms

The only invertible algebraic maps between elliptic curves are of the form

$$(x,y)\mapsto (u^2x,u^3y)$$

for some $u \in \overline{k}$.

They are group isomorphisms.

j-Invariant

Let $E: y^2 = x^3 + ax + b$, its j-invariant is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Two elliptic curves E, E' are isomorphic if and only if j(E) = j(E').

Maps: isogenies

Theorem

Let $\phi: E \to E'$ be a map between elliptic curves. These conditions are equivalent:

- ϕ is a surjective group morphism,
- ϕ is a group morphism with finite kernel,
- ϕ is a non-constant algebraic map of projective varieties sending the point at infinity of E onto the point at infinity of E'.

If they hold ϕ is called an isogeny.

Two curves are called isogenous if there exists an isogeny between them.

Example: Multiplication-by-m

On any curve, an isogeny from E to itself (i.e., an endomorphism):

$$egin{array}{ll} [m] \; : \; E
ightarrow E, \ P \mapsto [m]P. \end{array}$$

$$E': y^2 = x^3 - 4x$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

$$E: y^2 = x^3 + x$$
 $E': y^2 = x^3 - 4x$

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

• Kernel generator in red.

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.

$$\phi(x,y)=\left(rac{x^2+1}{x},\quad yrac{x^2-1}{x^2}
ight)$$

- Kernel generator in red.
- This is a degree 2 map.
- ullet Analogous to $x\mapsto x^2$ in \mathbb{F}_q^* .

Curves over finite fields

Frobenius endomorphism

Let E be defined over \mathbb{F}_q . The Frobenius endomorphism of E is the map

$$\pi : (X : Y : Z) \mapsto (X^q : Y^q : Z^q).$$

Hasse's theorem

Let E be defined over \mathbb{F}_q , then

$$|\#E(k)-q-1|\leq 2\sqrt{q}.$$

Serre-Tate theorem

Two elliptic curves E, E' defined over a finite field k are isogenous over k if and only if #E(k) = #E'(k).

Let $\omega_1, \omega_2 \in \mathbb{C}$ be linearly independent complex numbers. Set

 $\Lambda = \omega_1 \mathbb{Z} \oplus \omega_2 \mathbb{Z}$

 \mathbb{C}/Λ is a complex torus.

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha\Lambda_1=\Lambda_2$

$$\alpha\Lambda_1=\Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $\alpha\Lambda_1=\Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$\alpha\Lambda_1=\Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $lpha \Lambda_1 = \Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

Two lattices are homothetic if there exist $\alpha \in \mathbb{C}$ such that

 $lpha \Lambda_1 = \Lambda_2$

$$lpha \Lambda_1 = \Lambda_2$$

$$lpha \Lambda_1 = \Lambda_2$$

The *j*-invariant

We want to classify complex lattices/tori up to homothety.

Eisenstein series

Let Λ be a complex lattice. For any integer k>0 define

$$G_{2k}(\Lambda) = \sum_{\omega \in \Lambda \setminus \{0\}} \omega^{-2k}.$$

Also set

$$g_2(\Lambda) = 60 G_4(\Lambda), \qquad g_3(\Lambda) = 140 G_6(\Lambda).$$

Modular j-invariant

Let Λ be a complex lattice, the modular j-invariant is

$$j(\Lambda) = 1728 \frac{g_2(\Lambda)^3}{g_2(\Lambda)^3 - 27g_3(\Lambda)^2}.$$

Two lattices Λ , Λ' are homothetic if and only if $j(\Lambda) = j(\Lambda')$.

Elliptic curves over $\mathbb C$

Weierstrass p function

Let Λ be a complex lattice, the Weierstrass \wp function associated to Λ is the series

$$\wp(z;\Lambda) = rac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight).$$

Fix a lattice Λ , then \wp and its derivative \wp' are elliptic functions:

$$\wp(z+\omega)=\wp(z), \qquad \wp'(z+\omega)=\wp'(z)$$

for all $\omega \in \Lambda$.

Uniformization theorem

Let Λ be a complex lattice. The curve

$$E: y^2 = 4x^3 - g_2(\Lambda)x - g_3(\Lambda)$$

is an elliptic curve over \mathbb{C} . The map

$$egin{aligned} \mathbb{C}/\Lambda &
ightarrow E(\mathbb{C}), \ 0 &\mapsto (0:1:0), \ z &\mapsto (\wp(z):\wp'(z):1) \end{aligned}$$

is an isomorphism of Riemann surfaces and a group morphism.

Conversely, for any elliptic curve

$$E: y^2 = x^3 + ax + b$$

there is a unique complex lattice Λ such that

$$g_2(\Lambda) = -4a, \qquad g_3(\Lambda) = -4b.$$

Moreover $j(\Lambda) = j(E)$.

Multiplication

Multiplication

Torsion subgroups

The ℓ-torsion subgroup is made up by the points

$$\left(rac{i\omega_1}{\ell},rac{j\omega_2}{\ell}
ight)$$

It is a group of rank two

$$egin{aligned} E[oldsymbol{\ell}] &= \langle \, a, \, b
angle \ &\simeq (\mathbb{Z}/oldsymbol{\ell}\mathbb{Z})^2 \end{aligned}$$

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1\subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1 \subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Let $\mathbf{a} \in \mathbb{C}/\Lambda_1$ be an ℓ -torsion point, and let

$$\Lambda_2 = a\mathbb{Z} \oplus \Lambda_1$$

Then $\Lambda_1\subset \Lambda_2$ and we define a degree ℓ cover

$$\phi: \mathbb{C}/\Lambda_1 \to \mathbb{C}/\Lambda_2$$

φ is a morphism of complex Lie groups and is called an isogeny.

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Taking a point $\frac{b}{b}$ not in the kernel of ϕ , we obtain a new degree ℓ cover

 $\hat{\phi}: \mathbb{C}/\Lambda_2 \to \mathbb{C}/\Lambda_3$

The composition $\hat{\phi} \circ \phi$ has degree ℓ^2 and is homothetic to the multiplication by ℓ map.

 $\hat{\phi}$ is called the dual isogeny of ϕ .

Isogenies: back to algebra

Let $\phi: E \to E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- ϕ is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then $\ker \phi = \{\mathcal{O}\}$ and $\deg \phi$ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: back to algebra

Let $\phi: E o E'$ be an isogeny defined over a field k of characteristic p.

- k(E) is the field of all rational functions from E to k;
- $\phi^* k(E')$ is the subfield of k(E) defined as

$$\phi^*k(E')=\{f\circ\phi\mid f\in k(E')\}.$$

Degree, separability

- The degree of ϕ is deg $\phi = [k(E) : \phi^* k(E')]$. It is always finite.
- \bullet is said to be separable, inseparable, or purely inseparable if the extension of function fields is.
- **3** If ϕ is separable, then deg $\phi = \# \ker \phi$.
- If ϕ is purely inseparable, then $\ker \phi = \{\mathcal{O}\}$ and $\deg \phi$ is a power of p.
- Any isogeny can be decomposed as a product of a separable and a purely inseparable isogeny.

Isogenies: separable vs inseparable

Purely inseparable isogenies

Examples:

- The Frobenius endomorphism is purely inseparable of degree q.
- All purely inseparable maps in characteristic p are of the form $(X:Y:Z)\mapsto (X^{p^e}:Y^{p^e}:Z^{p^e}).$

Separable isogenies

Let E be an elliptic curve, and let G be a finite subgroup of E. There are a unique elliptic curve E' and a unique separable isogeny ϕ , such that $\ker \phi = G$ and $\phi : E \to E'$.

The curve E' is called the quotient of E by G and is denoted by E/G.

The dual isogeny

Let $\phi:E o E'$ be an isogeny of degree m. There is a unique isogeny $\hat{\phi}:E' o E$ such that

$$\hat{\phi}\circ\phi=[m]_E,\quad \phi\circ\hat{\phi}=[m]_{E'}.$$

 $\hat{\phi}$ is called the dual isogeny of ϕ ; it has the following properties:

- \bullet $\hat{\phi}$ is defined over k if and only if ϕ is;
- ② $\widehat{\psi \circ \phi} = \hat{\phi} \circ \hat{\psi}$ for any isogeny $\psi : E' \to E''$;
- $oldsymbol{\widehat{\psi}+\phi}=\widehat{\psi}+\widehat{\phi}$ for any isogeny $\psi:E o E'$;
- $\hat{\hat{\phi}}=\phi.$

Algebras, orders

- A quadratic imaginary number field is an extension of \mathbb{Q} of the form $Q[\sqrt{-D}]$ for some non-square D>0.
- A quaternion algebra is an algebra of the form $\mathbb{Q} + \alpha \mathbb{Q} + \beta \mathbb{Q} + \alpha \beta \mathbb{Q}$, where the generators satisfy the relations

$$lpha^2, eta^2 \in \mathbb{Q}, \quad lpha^2 < 0, \quad eta^2 < 0, \quad etalpha = -lphaeta.$$

Orders

Let K be a finitely generated \mathbb{Q} -algebra. An order $\mathcal{O} \subset K$ is a subring of K that is a finitely generated \mathbb{Z} -module of maximal dimension. An order that is not contained in any other order of K is called a maximal order.

Examples:

- \mathbb{Z} is the only order contained in \mathbb{Q} ,
- $\mathbb{Z}[i]$ is the only maximal order of $\mathbb{Q}(i)$,
- $\mathbb{Z}[\sqrt{5}]$ is a non-maximal order of $\mathbb{Q}(\sqrt{5})$,
- The ring of integers of a number field is its only maximal order,
- In general, maximal orders in quaternion algebras are not unique.

The endomorphism ring

The endomorphism ring $\mathrm{End}(E)$ of an elliptic curve E is the ring of all isogenies $E \to E$ (plus the null map) with addition and composition.

Theorem (Deuring)

Let E be an elliptic curve defined over a field k of characteristic p. End(E) is isomorphic to one of the following:

• \mathbb{Z} , only if p=0

E is ordinary.

 \bullet An order ${\cal O}$ in a quadratic imaginary field:

E is ordinary with complex multiplication by \mathcal{O} .

• Only if p > 0, a maximal order in a quaternion algebra^a:

E is supersingular.

 a (ramified at p and ∞)

The finite field case

Theorem (Hasse)

Let E be defined over a finite field. Its Frobenius endomorphism π satisfies a quadratic equation

$$\pi^2 - t\pi + q = 0$$

in $\operatorname{End}(E)$ for some $|t| \leq 2\sqrt{q}$, called the trace of π . The trace t is coprime to q if and only if E is ordinary.

Suppose E is ordinary, then $D_{\pi}=t^2-4q<0$ is the discriminant of $\mathbb{Z}[\pi]$.

- $K = \mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{D_{\pi}})$ is the endomorphism algebra of E.
- Denote by \mathcal{O}_K its ring of integers, then

$$\mathbb{Z}
eq \mathbb{Z}[\pi] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$$

In the supersingular case, π may or may not be in \mathbb{Z} , depending on q.

Endomorphism rings of ordinary curves

Classifying quadratic orders

Let K be a quadratic number field, and let \mathcal{O}_K be its ring of integers.

- Any order $\mathcal{O} \subset K$ can be written as $\mathcal{O} = \mathbb{Z} + f\mathcal{O}_K$ for an integer f, called the conductor of \mathcal{O} , denoted by $[\mathcal{O}_k : \mathcal{O}]$.
- If d_K is the discriminant of K, the discriminant of \mathcal{O} is f^2d_K .
- If \mathcal{O} , \mathcal{O}' are two orders with discriminants d, d', then $\mathcal{O} \subset \mathcal{O}'$ iff d'|d.

Ideal lattices

Fractional ideals

Let \mathcal{O} be an order of a number field K. A (fractional) \mathcal{O} -ideal \mathfrak{a} is a finitely generated non-zero \mathcal{O} -submodule of K.

When K is imaginary quadratic:

- Fractional ideals are complex lattices,
- Any lattice $\Lambda \subset K$ is a fractional ideal,
- The order of a lattice Λ is

$$\mathcal{O}_{\Lambda} = \{ lpha \in K \mid lpha \Lambda \subset \Lambda \}$$

Complex multiplication

Let $\Lambda \subset K$, the elliptic curve associated to \mathbb{C}/Λ has complex multiplication by \mathcal{O}_{Λ} .

The class group

Let
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- \bullet $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of \mathcal{O} is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

Fundamental theorem of CM

Let \mathcal{O} be an order of a number field K, and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_{h(\mathcal{O})}$ be representatives of $\mathrm{Cl}(\mathcal{O})$. Then:

- $K(j(\mathfrak{a}_i))$ is an Abelian extension of K;
- The $j(\mathfrak{a}_i)$ are all conjugate over K;
- The Galois group of $K(j(\mathfrak{a}_i))$ is isomorphic to $Cl(\mathcal{O})$;
- $[\mathbb{Q}(j(\mathfrak{a}_i)):\mathbb{Q}] = [K(j(\mathfrak{a}_i)):K] = h(\mathcal{O});$
- The $j(\mathfrak{a}_i)$ are integral, their minimal polynomial is called the Hilbert class polynomial of \mathcal{O} .

Lifting

Deuring's lifting theorem

Let E_0 be an elliptic curve in characteristic p, with an endomorphism ω_o which is not trivial. Then there exists an elliptic curve E defined over a number field L, an endomorphism ω of E, and a non-singular reduction of E at a place $\mathfrak p$ of L lying above p, such that E_0 is isomorphic to $E(\mathfrak p)$, and ω_0 corresponds to $\omega(\mathfrak p)$ under the isomorphism.

Executive summary

- Elliptic curves are algebraic groups;
- Isogenies are the natural notion of morphism for EC: both group and projective variety morphism;
- We can understand most things about isogenies by looking only at endomorphisms;
- Isogenies of curves over $\mathbb C$ are especially simple to describe;
- It is easy to construct curves over
 \(\mathbb{C} \) with prescribed complex multiplication;
- Most of what happens in positive characteristic can be understood by:
 - looking at the Frobenius endomorphism, and/or
 - looking at reductions of curves in characteristic 0.

Plan

- Elliptic curves, isogenies, complex multiplication
- Isogeny graphs
- Key exchange
- Signatures and whatnot

Isogeny graphs

Serre-Tate theorem reloaded

Two elliptic curves E, E' defined over a finite field are isogenous iff their endomorphism algebras $\operatorname{End}(E) \otimes \mathbb{Q}$ and $\operatorname{End}(E') \otimes \mathbb{Q}$ are isomorphic.

Isogeny graphs

- Vertices are curves up to isomorphism,
- Edges are isogenies up to isomorphism.

Isogeny volcanoes

- Curves are ordinary,
- Isogenies all have degree a prime \(\ell\).

What do isogeny graphs look like?

Torsion subgroups (ℓ prime)

In an algebraically closed field:

$$E[\ell] = \langle P, Q
angle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$
 \Downarrow

There are exactly $\ell+1$ cyclic subgroups $H\subset E$ of order ℓ :

$$\langle P+Q\rangle, \langle P+2Q\rangle, \dots, \langle P\rangle, \langle Q\rangle$$
 \Downarrow

There are exactly $\ell + 1$ distinct isogenies of degree ℓ .

(non-CM) 2-isogeny graph over $\ensuremath{\mathbb{C}}$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\pi(P) = aP + bQ$$

$$\pi(Q) = cP + dQ$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$aP + bQ$$

$$cP + dQ$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\begin{pmatrix} aP + bQ \\ cP + dQ \end{pmatrix}$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\bar{\mathbb{F}}_p$.

$$\pi:\begin{pmatrix} a & b \\ c & d \end{pmatrix} \bmod \ell$$

Rational isogenies $(\ell \neq p)$

In the algebraic closure $\bar{\mathbb{F}}_p$

$$E[\ell] = \langle P, Q \rangle \simeq (\mathbb{Z}/\ell\mathbb{Z})^2$$

However, an isogeny is defined over \mathbb{F}_p only if its kernel is Galois invariant.

Enter the Frobenius map

$$\pi: E \longrightarrow E \ (x,y) \longmapsto (x^p,y^p)$$

E is seen here as a curve over $\overline{\mathbb{F}}_p$.

The Frobenius action on $E[\ell]$

$$\pi: \left(egin{array}{ccc} a & & b & \ & & \ c & & d \end{array}
ight) mod \ell$$

We identify $\pi | E[\ell]$ to a conjugacy class in $GL(\mathbb{Z}/\ell\mathbb{Z})$.

```
Galois invariant subgroups of E[\ell] = eigenspaces of \pi \in \mathrm{GL}(\mathbb{Z}/\ell\mathbb{Z}) = rational isogenies of degree \ell
```

Galois invariant subgroups of
$$E[\ell]$$
=
eigenspaces of $\pi \in \mathrm{GL}(\mathbb{Z}/\ell\mathbb{Z})$
=
rational isogenies of degree ℓ

How many Galois invariant subgroups?

- \bullet $\pi | E[\ell] \sim \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$
- ullet $\pi|E[\ell]\sim\left(egin{smallmatrix}\lambda&0\0&\mu\end{smallmatrix}
 ight)$ with $\lambda
 eq\mu$
- ullet $\pi|E[\ell]\sim \left(egin{smallmatrix}\lambda & * \ 0 & \lambda\end{smallmatrix}
 ight)$
- $\pi | E[\ell]$ is not diagonalizable over $\mathbb{Z}/\ell\mathbb{Z}$

- $\rightarrow \ell + 1$ isogenies
 - $\rightarrow \text{two isogenies}$
 - \rightarrow one isogeny
 - \rightarrow no isogeny

Let E, E' be curves with respective endomorphism rings \mathcal{O} , $\mathcal{O}' \subset K$. Let $\phi: E \to E'$ be an isogeny of prime degree ℓ , then:

$$\begin{split} &\text{if } \mathcal{O} = \mathcal{O}', & \phi \text{ is horizontal;} \\ &\text{if } [\mathcal{O}':\mathcal{O}] = \ell, & \phi \text{ is ascending;} \\ &\text{if } [\mathcal{O}:\mathcal{O}'] = \ell, & \phi \text{ is descending.} \end{split}$$

Ordinary isogeny volcano of degree $\ell=3$.

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
$oldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$ig \; oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\stackrel{\circ}{\ell}$
$oldsymbol{\ell} \mid [\mathcal{O}_K:\mathcal{O}]]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

$$\mathsf{Height} = \textit{v}_{\ell}([\mathcal{O}_{K}:\mathbb{Z}[\pi]]).$$

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K:\mathcal{O} ight]$	$oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$ig oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$ig \; m{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{\ell}$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} mid [\mathcal{O}:\mathbb{Z}[\pi]]$		1	

Let E be ordinary, $\operatorname{End}(E) \subset K$.

 \mathcal{O}_K : maximal order of K, \mathcal{D}_K : discriminant of K.

$$\mathsf{Height} = \textit{v}_{\ell}([\mathcal{O}_K : \mathbb{Z}[\pi]]).$$

How large is the crater?

		Horizontal	Ascending	Descending
$oldsymbol{\ell} mid \left[\mathcal{O}_K : \mathcal{O} ight] ight]$	$oldsymbol{\ell} mid [\mathcal{O}:\mathbb{Z}[\pi]]$	$1 + \left(\frac{D_K}{\ell}\right)$		
$\boldsymbol{\ell} \nmid [\mathcal{O}_K : \mathcal{O}]]$	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$	$1+\left(\frac{D_K}{\ell}\right)$		$oldsymbol{\ell} - \left(rac{D_K}{oldsymbol{\ell}} ight)$
	$oldsymbol{\ell} \mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	$\hat{m{\ell}}$
$\boldsymbol{\ell} \mid [\mathcal{O}_K : \mathcal{O}]]$	$ig oldsymbol{\ell} mid [\mathcal{O}: \mathbb{Z}[\pi]]$		1	

How large is the crater of a volcano?

Let
$$\operatorname{End}(E) = \mathcal{O} \subset \mathbb{Q}(\sqrt{-D})$$
. Define

- $\mathcal{I}(\mathcal{O})$, the group of invertible fractional ideals,
- $\mathcal{P}(\mathcal{O})$, the group of principal ideals,

The class group

The class group of \mathcal{O} is

$$Cl(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O}).$$

- It is a finite abelian group.
- Its order $h(\mathcal{O})$ is called the class number of \mathcal{O} .
- It arises as the Galois group of an abelian extension of $\mathbb{Q}(\sqrt{-D})$.

Complex multiplication

The a-torsion

- Let $\mathfrak{a} \subset \mathcal{O}$ be an (integral invertible) ideal of \mathcal{O} ;
- Let $E[\mathfrak{a}]$ be the subgroup of E annihilated by \mathfrak{a} :

$$E[\mathfrak{a}] = \{ P \in E \mid \alpha(P) = 0 \text{ for all } \alpha \in \mathfrak{a} \};$$

ullet Let $\phi: E
ightarrow E_{\mathfrak{a}}$, where $E_{\mathfrak{a}} = E/E[\mathfrak{a}]$.

Then $\operatorname{End}(E_{\mathfrak a})=\mathcal O$ (i.e., ϕ is horizontal).

Theorem (Complex multiplication)

The action on the set of elliptic curves with complex multiplication by \mathcal{O} defined by $\mathfrak{a}*j(E)=j(E_{\mathfrak{a}})$ factors through $\mathrm{Cl}(\mathcal{O})$, is faithful and transitive.

Corollary

Let $\operatorname{End}(E)$ have discriminant D. Assume that $\left(\frac{D}{\ell}\right)=1$, then E is on a crater of size N of an ℓ -volcano, and $N|h(\operatorname{End}(E))$

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal isogenies of bounded

isogenies of bounded prime degree.

— degree 2

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$). Edges are horizontal

isogenies of bounded

— degree 2

prime degree.

degree 3

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
- degree 5

Vertices are elliptic curves with complex multiplication by \mathcal{O}_K (i.e., $\operatorname{End}(E) \simeq \mathcal{O}_K \subset \mathbb{Q}(\sqrt{-D})$).

Edges are horizontal isogenies of bounded prime degree.

- degree 2
- degree 3
- degree 5

Isomorphic to a Cayley graph of $Cl(\mathcal{O}_K)$.

Supersingular endomorphisms

Recall, a curve E over a field \mathbb{F}_q of characteristic p is supersingular iff

$$\pi^2 - t\pi + q = 0$$

with $t = 0 \mod p$.

Case:
$$t=0$$
 \Rightarrow $D_{\pi}=-4q$

- Only possibility for E/\mathbb{F}_p ,
- ullet E/\mathbb{F}_p has CM by an order of $\mathbb{Q}(\sqrt{-p})$, similar to the ordinary case.

Case:
$$t=\pm 2\sqrt{q}$$
 \Rightarrow $D_{\pi}=0$

- General case for E/\mathbb{F}_q , when q is an even power.
- $\pi = \pm \sqrt{q}$, hence no complex multiplication.

We will ignore marginal cases: $t = \pm \sqrt{q}, \pm \sqrt{2q}, \pm \sqrt{3q}$.

Supersingular complex multiplication

Let E/\mathbb{F}_p be a supersingular curve, then $\pi^2=-p$, and

$$\pi = \left(egin{smallmatrix} \sqrt{-p} & 0 \ 0 & -\sqrt{-p} \end{matrix}
ight) \mod oldsymbol{\ell}$$

for any ℓ s.t. $\left(\frac{-p}{\ell}\right)=1$.

Theorem (Delfs and Galbraith 2016)

Let $\operatorname{End}_{\mathbb{F}_p}(E)$ denote the ring of \mathbb{F}_p -rational endomorphisms of E. Then

$$\mathbb{Z}[\pi] \subset \operatorname{End}_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p}).$$

Orders of $\mathbb{Q}(\sqrt{-p})$

- If $p=1 \bmod 4$, then $\mathbb{Z}[\pi]$ is the maximal order.
- If $p=-1 \mod 4$, then $\mathbb{Z}[\frac{\pi+1}{2}]$ is the maximal order, and $[\mathbb{Z}[\frac{\pi+1}{2}]:\mathbb{Z}[\pi]]=2$.

Supersingular CM graphs

All other ℓ -graphs are cycles of horizontal isogenies iff $\left(\frac{-p}{\ell}\right)=1$.

The full endomorphism ring

Theorem (Deuring)

Let E be a supersingular elliptic curve, then

- E is isomorphic to a curve defined over \mathbb{F}_{p^2} ;
- Every isogeny of E is defined over \mathbb{F}_{p^2} ;
- Every endomorphism of E is defined over \mathbb{F}_{p^2} ;
- End(E) is isomorphic to a maximal order in a quaternion algebra ramified at p and ∞ .

In particular:

- If E is defined over \mathbb{F}_p , then $\operatorname{End}_{\mathbb{F}_p}(E)$ is strictly contained in $\operatorname{End}(E)$.
- Some endomorphisms do not commute!

An example

The curve of j-invariant 1728

$$E: y^2 = x^3 + x$$

is supersingular over \mathbb{F}_p iff $p=-1 \mod 4$.

Endomorphisms

 $\operatorname{End}(E)=\mathbb{Z}\langle\iota,\pi\rangle$, with:

- π the Frobenius endomorphism, s.t. $\pi^2 = -p$;
- ι the map

$$\iota(x,y)=(-x,iy),$$

where $i \in \mathbb{F}_{p^2}$ is a 4-th root of unity. Clearly, $\iota^2 = -1$.

And $\iota \pi = -\pi \iota$.

•
$$j = 1728$$

Quaternion algebra?! WTF?²

The quaternion algebra $B_{p,\infty}$ is:

- A 4-dimensional \mathbb{Q} -vector space with basis (1, i, j, k).
- A non-commutative division algebra $^1B_{p,\infty}=\mathbb{Q}\langle i,j\rangle$ with the relations:

$$i^2=a$$
, $j^2=-p$, $ij=-ji=k$,

for some a < 0 (depending on p).

- All elements of $B_{p,\infty}$ are quadratic algebraic numbers.
- $B_{p,\infty} \otimes \mathbb{Q}_{\ell} \simeq \mathcal{M}_{2 \times 2}(\mathbb{Q}_{\ell})$ for all $\ell \neq p$. I.e., endomorphisms restricted to $E[\ell^e]$ are just 2×2 matrices $\text{mod} \ell^e$.
- $B_{p,\infty}\otimes\mathbb{R}$ is isomorphic to Hamilton's quaternions.
- $B_{p,\infty} \otimes \mathbb{Q}_p$ is a division algebra.

¹All elements have inverses.

²What The Field?

Supersingular graphs

- Quaternion algebras have many maximal orders.
- For every maximal order type of $B_{p,\infty}$ there are 1 or 2 curves over \mathbb{F}_{p^2} having endomorphism ring isomorphic to it.
- There is a unique isogeny class of supersingular curves over $\overline{\mathbb{F}}_p$ of size $\approx p/12$.
- Left ideals act on the set of maximal orders like isogenies.
- The graph of ℓ -isogenies is $(\ell+1)$ -regular.

Figure: 3-isogeny graph on \mathbb{F}_{97^2} .

Graphs lexicon

Degree: Number of (outgoing/ingoing) edges.

k-regular: All vertices have degree k.

Connected: There is a path between any two vertices.

Distance: The length of the shortest path between two vertices.

Diamater: The longest distance between two vertices.

 $\lambda_1 \ge \cdots \ge \lambda_n$: The (ordered) eigenvalues of the adjacency matrix.

Expander graphs

Proposition

If G is a k-regular graph, its largest and smallest eigenvalues satisfy

$$k = \lambda_1 \ge \lambda_n \ge -k$$
.

Expander families

An infinite family of connected k-regular graphs on n vertices is an expander family if there exists an $\epsilon>0$ such that all non-trivial eigenvalues satisfy $|\lambda|\leq (1-\epsilon)k$ for n large enough.

- Expander graphs have short diameter $(O(\log n))$;
- Random walks mix rapidly (after $O(\log n)$ steps, the induced distribution on the vertices is close to uniform).

Expander graphs from isogenies

Theorem (Pizer 1990, 1998)

Let ℓ be fixed. The family of graphs of supersingular curves over \mathbb{F}_{p^2} with ℓ -isogenies, as $p \to \infty$, is an expander family^a.

^aEven better, it has the Ramanujan property.

Theorem (Jao, Miller, and Venkatesan 2009)

Let $\mathcal{O}\subset\mathbb{Q}(\sqrt{-D})$ be an order in a quadratic imaginary field. The graphs of all curves over \mathbb{F}_q with complex multiplication by \mathcal{O} , with isogenies of prime degree bounded^a by $(\log q)^{2+\delta}$, are expanders.

^aMay contain traces of GRH.

Plan

- Elliptic curves, isogenies, complex multiplication
- Isogeny graphs
- Key exchange
- Signatures and whatnot

Isogeny graphs taxonomy

Complex Multiplication (CM) graphs

- Ordinary / Supersingular (\mathbb{F}_p)
- Superposition of isogeny cycles (one color per degree)
- Isomorphic to Cayley graph of a quadratic class group
- Large automorphism group
- Typical size $O(\sqrt{p})$
- Used in: CSIDH

Full supersingular graphs

- Supersingular (\mathbb{F}_{p^2})
- One isogeny degree
- $(\ell + 1)$ -regular
- Tiny automorphism group
- Size $\approx p/12$
- Used in: SIDH

Plan

- Elliptic curves, isogenies, complex multiplication
- Isogeny graphs
- Key exchange
- Signatures and whatnot