Statistical Data Analysis Exercise Session 3

- 1. (a) Generate several times n=20 data points from a normal distribution with mean $\mu=2$, and standard deviation $\sigma=3$. Make a normal QQ plot and view the variation in the results.
 - (b) Compare with the situation n = 100 and n = 500.
- 2. (a) Generate several times n=20 data points from a 4-variate normal distribution with mean $\mu=\mathbf{0_4}$ and $\Sigma=\mathbf{I_4}$. Make a χ^2 QQ plot of the Mahalanobis distances and view the variation in the results
 - (b) Compare with the situation n = 100 and n = 500.
- 3. (a) Load the ces.csv dataset.
 - (b) Create the matrix FDHOFDAW which contains values of the variables FDHO and FDAW for all data points for which both observations are strictly greater than 0.
 - (c) For each of the variables in FDHOFDAW:
 - i. Investigate the normality of the original variable.
 - ii. Determine the optimal Box-Cox transformation. Which transformation would you implement in practice?
 - iii. Investigate the normality of the transformed variable.
 - (d) For both variables in FDHOFDAW together:
 - i. Investigate the bivariate normality of the original variables.
 - ii. Investigate the bivariate normality of the transformed variables.
- 4. (a) Load the hills data set from the MASS library.
 - (b) Make a scatter plot of the variables dist and climb. Add the tolerance ellipse to this, based on the classic average and the classic covariance matrix. Also add the MCD-based tolerance ellipse. Compare the robust distances with the Mahalanobis distances. Do this for alpha = 0.5 and alpha = 0.75 and compare the results.
- 5. (a) Generate n=100 data points from an exponential distribution with $\lambda=4$. Define a function that calculates the negative log likelihood of lambda, given the data. Calculate a numerical approximation for the MLE estimate for λ with the mle function in package stats4.
 - (b) Generate n=100 data points from a normal distribution with $\mu=3$ and $\sigma=2$. Define a function that calculates the negative log likelihood of (μ,σ) given the data. Calculate a numerical approach for the MLE estimates for (μ,σ) .
 - (c) Generate n = 100 data points from a bivariate normal distribution with $\mu = (3,4)^t$ and

$$\Sigma = \begin{bmatrix} 2 & -0.5 \\ -0.5 & 1 \end{bmatrix}.$$

Define a function that calculates the negative log likelihood of (μ, Σ) , given the data. Calculate a numerical approach for the MLE estimates for (μ, Σ) .

Some useful functions:

- 1. qqplot() and qqline()
- 2. read.csv() and read.table()
- 3. which()
- 4. shapito.test()
- $5.\,$ bcPower in package car and boxcox in package MASS
- 6. covMcd() in the robustbase library.
- 7. rmvnorm and dmvnorm in package mvtnorm