摘要

人工智慧盛行在我們的時代,啟能悄悄從它身邊走過,偶 然的接觸到人工智慧,竟然完全無招架之力的被那科技深深 吸引,開啟短暫但我相信還有續集的探索之旅。

- 一、卷積神經網路(Convolutional Neural Network, CNN):一種用於圖像辨識和分類的深度學習模型。MNIST 手寫數字辨識和 Cifar-10 圖片判斷都是基於卷積神經網路實現的。
- 二、YOLO技術:這是一種物件檢測技術,可以實現快速而準確地檢測圖像中的物體。可製作判別貓狗位址和自動瞄準外掛都是基於YOLO實現的。
- 三、3D虛擬人物控制: MediaPipe 是 Google Research 開發的一個跨平台的機器學習框架,可以實現從相機、影像等輸入中擷取關鍵信息並進行處理。進一步使用 MediaPipe 模型操控3D虛擬人物。
- 四、神經風格轉換(Neural Style Transfer):將一張圖像的風格轉 移到另一張圖像上的技術。
- 五、生成對抗網路(Generative Adversarial Network, GAN):這是一種利用兩個神經網路模型相互競爭來生成逼真的圖像的技術。GAN 的變體 CycleGAN 可以更加快速地實現風格轉換, GAN 這種技術在許多領域都有廣泛的應用。

前言

一、研究動機

世代的轉換代表的是成長、變動,更是恐慌。農業時代進階到工業時代、工業時代進階到AI時代,都代表著一群企業及人的沒落,同時也創造了另一批企業及人的興起,而現在正值AI時代要進階到人工智慧的時代,不想被這波洪流淹沒,則要加緊腳步迎頭趕上,也正是時機讓我們有個創造的舞台!處在這樣的時間及轉捩點,對我來說是非常興奮的。

二、研究目的

- (一) 研究人工智慧所擁有的有趣技術
- (二)辨識系統的應用
- (三) 虛擬人物的控制
- (四) AI繪圖原理

三、人工智慧 (Artificial Intelligence, AI)

1956年,人工智慧被確立為一門學科,半世紀間經過許多起起落落。如今電腦的運算能力約為30年前的100萬倍,且近10幾年大數據的快速發展,人工智慧重新過來,許多先進的機器學習技術成功應用於社會中的許多問題。

四、機器學習 (Machine Learning, ML)

而在AI底下有個分支,也就是這次的主題機器學習。從 1980 開始蓬勃興起。機器學習之所以能興起,也歸功於硬體儲存成本下降、運算能力增強、大數據的發展。而機器學習中又有4類的學習方式,分別為監督學習、半監督學習、無監督學習、強化學習。

五、深度學習 (Deep Learning, DL)

深度學習又是機器學習的分支,深度學習能自動提取資料特徵,其能力遠遠甩開其它演算法。深度學習參考人腦神經概念,用程式還原神經網路的構造,人工神經網路架構分為輸入層(input layer)、隱藏層(hidden layer)、輸出層(output layer)。輸入層是資料進入系統的入口,而隱藏層是處理資訊的地方,隱藏層從輸入層或其他隱藏層取得輸入。人工神經網路可以有大量的隱藏層。每個隱藏層分析前一層的輸出,進一步處理,並將其傳遞給下一層,重複直到輸出層,而最終的計算結果就會顯現在輸出層,也就是預測結果。

六、神經網路種類

- (一) 前饋神經網路 (Feedforward Neural Network, FNN) 是最古老的神經網路之一,最簡單的神經網路模型,資料經由輸入層通過隱藏層到輸出層,神經元之間沒有連接迴路存在。
- (二) 卷積神經網路 (Convolutional Neural Network, CNN) 卷積神經網路通常用於圖片辨識,模仿人類大腦的認知方式,觀察由細微的事物到整體特色。卷積層 (Convolution Layer) 使權重的減少、池化層 (Pooling layer) 壓縮圖片,以此更高效率的判斷圖片。

1. 卷積層 (Convolution Layer)

將輸入的圖像劃分為若干個矩形區域,對每個子區域以相同權重運算,最後加上激勵函數。神經元運算中無須每個輸入都要一個權重,我們稱共享權值(Shared weights),可大幅減少權重數量,藉此減少運算時間。

2. 池化層 (Pooling Layer)

一個壓縮圖片並保留重要資訊的方法,取圖片範圍內最高或平均當做輸出,常用的有最大池化 (Max pooling)與平均池化 (Average pooling)。

3. 扁平層 (Flatten Layer)

將多維的輸入壓扁為一維輸出,常用在從卷積層到全連接層的過渡。

4. 全連接層 (Fully Connected Layer) 連接最基本的神經網絡。

圖1 卷積神經網路架構

- (三) 遞迴神經網路 (Recurrent Neural Network, RNN) 最常被用來處理時間和序列相關的問題。與使 用前饋類神經網路不同的是,循環類神經網路具備 前一層事件的「記憶」,並附加到目前層的輸出內容。
- (四) 長短期記憶網路 (Long Short-Term Memory, LSTM) 是進階的遞迴神經網路,解決許多問題。長短期記憶網路會透過三個控制閥(輸入閥、遺忘閥、輸出閥)來決定將什麼資料保存(記憶)下來,而什麼記憶又該捨棄(遺忘)。看似不錯但也因為家入了許多內容導致參數變多,訓練難度提升了不少。
- (五) 生成對抗網絡 (Generative Adversarial Network, GAN) 生成對抗網路是種非監督式學習,主要是兩個相互競爭的神經網路生成網路 (Generative Network) 與判別網路 (Discriminative Network)。生成網路生成圖片,目標騙過判別網路,判別網路判斷是否與資料相同,目標提升鑑定水準,這樣一來一回的對抗促使兩邊互相成長。

七、YOLOv8

YOLO (You Only Look Once) 是一種物件偵測方法,目前共推出8個版本。YOLO 的主要優勢是其快速的運算速度,能夠及時處理圖像。YOLOv8剛好在2023登陸,既然是最新版本,運算成本應該較低,因此選用 YOLOv8。

圖2 YOLOv8 架構

研究設備及器材

一、硬體設備

(一) 桌上型電腦

作業系統: Windows 10 CPU: Intel Core i7-12700K GPU: NVIDIA GeForce RTX 3060

記憶體:32 GB

(二) Logitech C310 HD 網路攝影機

二、軟體工具

(一) Python 3.9: 程式語言

(二) C#:程式語言

(三) Unity:遊戲引擎

(四) CSGO:射擊遊戲(測試用) (五) Anaconda:虛擬環境

(六) Kaggle:數據建模和數據分析競賽平台 (七) Roboflow:線上圖片標註

3D虛擬人物

藉由程式設計,我創造出自己的虛擬人物,這個虛擬人物就可以隨我控制,一個人體結構,就可以有40個控制點,著實令人興奮 不已,過去在虛擬實境(Virtual Reality, VR)的遊戲裡,控制虛擬人物大多都以VR穿戴裝置實現,總是需要手把或其他工具來操作這個 虛擬人物。使用 MediaPipe 後,發現是否只用一台攝影機,我個人的任何動作都可控制這個虛擬人物,不需任何的手把或工具。並且我 相信仍有更多使用的空間。

(一) MediaPipe

MediaPipe 是 Google Research 發表的開源專案,可 支援多種語言,擁有許多辨識功能,這次實驗主要使用 臉部網路 (Face Mesh)、人體偵測 (Pose)、手部偵測 (Hands)。這些偵測模型可抓出身體各部位,只使用一個 鏡頭,並且輸出三維位置。人體偵測原理是訓練時以三 維當標籤,臉部網路則是偵測幾個點後再將3D圖形套上。

圖15 MediaPipe專案類別

(二) 人體動作偵測

只能控制虛擬人物太無聊了,因此設計動作偵測, 創造互動式小遊戲。希望做出特定動作,角色就可發射 子彈,攻擊目標。

1. 資料集

使用 MediaPipe 偵測點位,而動作是需要時間完 成的,所以需要在相同時間內完成動作,並將時間內 所有偵測到的點當作資料集。

收集的資料集為,發射動作與無動作。

圖16 發射資料

圖17無動作資料

2. 模型製作

剛好動作與時間序相關,正好可使用長短期記憶 網路,可記憶以前重點事件並輸出給下個神經元,最 後以密集層連接。

3. 實際執行

圖18 發射偵測

圖19無動作偵測

(三) 歐拉角 (Euler angles)

物體在三維空間旋轉的方法,三個旋轉軸分別為翻 滾(Roll)、俯仰(Pitch)、偏擺(Yaw)。運用臉部網路偵測 點,

推算頭部翻滾、俯仰、偏擺。

圖20翻滾、俯仰、偏擺示意圖

(四)卡爾曼濾波器 (Kalman Filter)

是一種高效率的遞歸濾波器,能夠從包含雜訊的測 量中,排除雜訊。MediaPipe 偵測中很難完全無雜訊, 卡爾曼濾波器這時就可很好的發揮其作用。

(五) 傳輸控制協定 (Transmission Control Protocol, TCP)

將 MediaPipe 偵測完人體位置後,Python 傳送至 Unity 中的所需工具。傳輸控制協定會在兩個端點間建 立連線確保雙方的溝通順暢,其中要求位置(IP)、連接 埠(Port)。

(六) Unity

最初不知要使用何種方式呈現虛擬人物,一度嘗試 用 Python 建3D模型,但難以執行,後來發現 Unity,簡 直與我的需求完全符合。Unity 為2D和3D的遊戲引擎, 語言為 C#(完全沒碰過 全部重頭學起)。

(七) 3D虛擬人物模型

大部分虛擬人物皆需要錢,Unity 官方有免費釋出 一個人物模型 Unity-Chan,有免費肯定用啊。

圖21 Unity-Chan

(八) 物理骨 (PhysBones)

由 VRChat 開發,在 Unity 中模擬頭髮、衣物、配 件物理飄動功能。

(九)製作過程

版本1: 先在 Python 中使用 MediaPipe 人體偵測, 再用傳輸控制協定將偵測資料傳給 Unity, 使每個傳輸 資料控制小方塊,完成後就可簡單看出人體架構了。

圖22 Unity影像

圖23 現實影像

版本2:將 Unity-Chan 人物模型套入,但3維位置 無法控制角色關節活動的, Unity 中有指令可使一個3維 位置指向另一個,藉此完成角色控制,最後推算並套 用頭部角度。實測發現全身有嚴重震動,卡爾曼濾波 器加入後優化許多,但移動速度就相對慢一拍。

圖24 Unity影像

圖25 現實影像

版本3:只有控制角色就稍微無趣些,因此加入第 一人稱視角的小型射擊遊戲,遠處放上些許目標物, 偵測人體動作判斷是否射擊,藉此擊倒目標物。手指 可以表達許多事物,因此也將手指偵測位置套入,但 手指相對精細,距離稍遠可能偵測不完全。

圖26 Unity影像

圖27 現實影像

(九)實際執行

第一人稱射擊小遊戲展示。

圖28 Unity影像

圖29 現實影像

總結

真的很訝異我能夠做出控制虛擬人物程式,以前以為遙 不可及的,現在卻在我手中。過程中訪查了上百上千個網站 來學習,為了達到這個功能,為此還特別學了一種程式語言。 雖然這技術還有需多可改進的地方,像是偵測的準確度,可 以使用雙攝影機加上自己設計的模型,也許就可判斷更加準 確。

這種技術的應用對多個領域帶來了實際的改進。從VR到 元宇宙,這種精確控制的程式為人們提供了更方便、更簡單、 更直觀的虛擬體驗。隨著這些技術的進一步發展和普及,可 以期待看到更多的人從中受益。