

Learning Robust Joint Representations for Multimodal Sentiment Analysis

Presenter: Paul Pu Liang

Hai Pham*, Paul Pu Liang*, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos

Progress of Artificial Intelligence

Multimedia Content

Intelligent Personal Assistants

Robots and Virtual Agents

Multimodal Language Modalities

Language

- > Lexicon
- > Syntax
- > Pragmatics

Visual

- > Gestures
- **>** Body language
- > Eye contact
- > Facial expressions

Acoustic

- > Prosody
- > Vocal expressions

Multimodal Language Modalities

Language

- > Lexicon
- > Syntax
- > Pragmatics

Acoustic

- > Prosody
- > Vocal expressions

Visual

- > Gestures
- > Body language
- > Eye contact
- > Facial expressions

Sentiment

- > Positive
- Negative

Emotion

- ➤ Anger
- ➤ Disgust
- > Fear
- > Happiness
- > Sadness
- > Surprise

Personality

- > Confidence
- > Persuasion
- > Passion

Challenge 1: Intra-modal Interactions

a) Temporal sequences

Intra-modal

Challenge 2: Cross-modal Interactions

- Multiple co-occurring interactions
- Different weighted combinations

"This movie is great" Smile Loud voice time

Sentiment Intensity

Cross-modal

Learning Joint Representations: 2 modalities

Traditional Methods

Language Modality

Today was a great day!

Learning Joint Representations: 2 modalities

Both modalities required at test time! Sensitive to missing/noisy visual modality.

Learning Robust Joint Representations: 2 modalities

Only language modality required at test time!

Learning Robust Joint Representations: 3 modalities

Only language modality required at test time!

Cyclic Translations

[Zhu*, Park*, Isola, and Efros, ICCV 2017]

Multimodal Cyclic Translation Network

Target \mathbf{X}^T

Source \mathbf{X}^S

Coupled Translation-Prediction Objective

Coupled Translation-Prediction Objective

Coupled Translation-Prediction Objective

Hierarchical Multimodal Cyclic Translation Network

Target2 \mathbf{X}^{T_2}

Target1

Hierarchical Multimodal Cyclic Translation Network

Target2 \mathbf{X}^{T_2}

Hierarchical Multimodal Cyclic Translation Network

Target2 \mathbf{X}^{T_2}

Hierarchical Multimodal Cyclic Translation Network

Hierarchical Multimodal Cyclic Translation Network

Hierarchical Multimodal Cyclic Translation Network

Baseline Models

- 1. Non-temporal models: SVM (Cortes and Vapnik, 1995), DF (Nojavanasghari et al., 2016)
- 2. Early fusion: EF-LSTM (Hochreiter and Schmidhuber, 1997), EF-RHN (Zilly et al., 2016)
- 3. Late fusion: LMF (Liu et al., 2018), TFN (Zadeh et al., 2017), BC-LSTM (Poria et al., 2017)
- 4. Multi-view learning: MV-LSTM (Rajagopalan et al., 2016)
- 5. Memory-based models: MARN, MFN (Zadeh et al., 2018)
- 6. Multi-stage model: RMFN (Liang et al., 2018)

State-of-the-art Results: CMU-MOSI

Dataset	1 1	CMU-MOSI					
Model	Test Inputs	Acc(†)	F1(↑)	$MAE(\downarrow)$	Corr(↑)		
RF	$\{\ell,v,a\}$	56.4	56.3	-	-		
SVM	$\mid \{\ell, v, a\} \mid$	71.6	72.3	1.100	0.559		
THMM	$\{\ell,v,a\}$	50.7	45.4	. 	-		
EF-HCRF	$\{\ell,v,a\}$	65.3	65.4	-	-		
MV-HCRF	$\{\ell,v,a\}$	65.6	65.7	-	-		
DF	$\mid \{\ell, v, a\} \mid$	74.2	74.2	1.143	0.518		
EF-LSTM	$\mid \{\ell,v,a\} \mid$	74.3	74.3	1.023	0.622		
MV-LSTM	$\{\ell,v,a\}$	73.9	74.0	1.019	0.601		
BC-LSTM	$\{\ell,v,a\}$	75.2	75.3	1.079	0.614		
TFN	$\mid \{\ell,v,a\} \mid$	74.6	74.5	1.040	0.587		
GME-LSTM(A)	$\mid \{\ell, v, a\} \mid$	76.5	73.4	0.955	•		
MARN	$\{\ell,v,a\}$	77.1	77.0	0.968	0.625		
MFN	$\{\ell,v,a\}$	77.4	77.3	0.965	0.632		
LMF	$\{\ell,v,a\}$	76.4	75.7	0.912	0.668		
RMFN	$\mid \{\ell, v, a\} \mid$	78.4	78.0	0.922	0.681		
MCTN	$\{\ell\}$	79.3	79.1	0.909	0.676		

State-of-the-art Results: ICT-MMMO and YouTube

Dataset	T I	ICT-MMMO		YouTube		
Model	Test Inputs	Acc(↑)	F1(↑)	Acc(†)	F1(↑)	
RF	$\mid \{\ell, v, a\} \mid$	70.0	69.8	33.3	32.3	
SVM	$\vdash \{\ell, v, a\} \vdash$	68.8	68.7	42.4	37.9	
THMM	$^{+}\left\{ \ell,v,a\right\} ^{+}$	53.8	53.0	42.4	27.9	
EF-HCRF	$\{\ell,v,a\}$	73.8	73.1	45.8	45.0	
MV-HCRI	$F_1^1\left\{\ell,v,a ight\}_1^1$	68.8	67.1	44.1	44.0	
DF	$\{\ell,v,a\}$	65.0	58.7	45.8	32.0	
EF-LSTM	$\vdash \{\ell, v, a\} \vdash$	72.5	70.9	44.1	43.6	
MV-LSTM	$\mathbf{I}^{ }\{\ell,v,a\}^{ }$	72.5	72.3	45.8	43.3	
BC-LSTM	$\left[\begin{smallmatrix}1&\{\ell,v,a\}\end{smallmatrix} ight]$	70.0	70.1	45.0	45.1	
TFN	$\left\{\ell,v,a ight\}$	72.5	72.6	45.0	41.0	
MARN	$\{\ell,v,a\}$	71.3	70.2	48.3	44.9	
MFN	$\vdash \{\ell, v, a\} \vdash$	73.8	73.1	51.7	51.6	
MCTN	$\{\ell\}$	81.3	80.8	51.7	52.4	

Bimodal Variations

MCTN Bi

Simple Bi

No-Cycle Bi

Double Bi

Bimodal Variations Results

Dataset	CMU-MOSI				
Model	Translation	Acc(†)	F1(†)	$MAE(\downarrow)$	Corr(↑)
	$V \leftrightarrows A$	53.1	53.2	1.420	0.034
MCTN Bi (Fig. 4a)	$T \leftrightarrows A$	76.4	76.4	0.977	0.636
	$T \leftrightarrows V$	76.8	76.8	1.034	0.592
Simple Bi (Fig. 4b)	$V \to A$	55.4	55.5	1.422	0.119
	$T \to A$	74.2	74.2	0.988	0.616
	$T \to V$	75.7	75.6	1.002	0.617
	$V \to A, A \to V$	55.4	55.5	1.422	0.119
No cycle Bi (Fig. 4c) $T \rightarrow A, A \rightarrow$		75.5	75.6	0.971	0.629
	$T \to V, V \to T$	75.2	75.3	0.972	0.627
	$[V \to A, A \to V]$	57.0	57.1	1.502	0.168
Double Bi (Fig. 4d)	$[T \to A, A \to T]$	72.3	72.3	1.035	0.578
	$[T \to V, V \to T]$	73.3	73.4	1.020	0.570

Trimodal Variations

Trimodal Variations Results

Dataset	CMU-MOSI					
Model	Translation	Acc(†)	F1(↑)	MAE(↓)	Corr(†)	
MCTN Tri (Fig. 4e)	$(V \leftrightarrows A) \to T$	56.4	56.3	1.455	0.151	
	$(T \leftrightarrows A) \to V$	78.7	78.8	0.960	0.650	
	$(T \leftrightarrows V) \to A$	79.3	79.1	0.909	0.676	
	$(V \to T) \to A$	54.1	52.9	1.408	0.040	
1	$(V \to A) \to T$	52.0	51.9	1.439	0.015	
Simple Tri (Fig. 4f)	$(A \to V) \to T$	56.6	56.7	1.593	0.067	
Simple Tri (Fig. 4f)	$(A \to T) \to V$	54.1	54.2	1.577	0.028	
1	$(T \to A) \to V$	74.3	74.4	1.001	0.609	
i	$(T \to V) \to A$	74.3	74.4	0.997	0.596	
Double Tri (Fig. 4g) [$T \to V, V \to T] \to A$	73.3	73.1	1.058	0.578	
	$[V,A] \to T$	55.0	54.6	1.535	0.176	
ï	$[A,T] \to V$	73.3	73.4	1.060	0.561	
1	$[T,V] \to A$	72.3	72.3	1.068	0.576	
Concat Tri (Fig. 4h)	$A \to [T, V]$	55.5	55.6	1.617	0.056	
	$T \to [A, V]$	75.7	75.7	0.958	0.634	
	$[T,A] \to [T,V]$	73.2	73.2	1.008	0.591	
	$[T,V] \to [T,A]$	74.1	74.1	0.999	0.607	
Paired Tri (Fig. 4i)	$\big[T\to A, T\to V\big]$	73.8	73.8	1.022	0.611	

Adding More Modalities

Dataset	CMU-MOSI					
Model	Translation	Acc	F1	MAE	Corr	
MCTN Bi (Fig. 4a)	$V \leftrightarrows A$	53.1	53.2	1.420	0.034	
	$T \leftrightarrows A$	76.4	76.4	0.977	0.636	
	$T \leftrightarrows V$	76.8	76.8	1.034	0.592	
	$(V \leftrightarrows A) \to T$	56.4	56.3	1.455	0.151	
MCTN Tri (Fig. 4e)	$(T \leftrightarrows A) \to V$	78.7	78.8	0.960	0.650	
	$(T \leftrightarrows V) \to A$	79.3	79.1	0.909	0.676	

Adding More Modalities

Bimodal MCTN without cyclic translation

Bimodal MCTN with cyclic translation

Trimodal MCTN *with* cyclic translation

Thank you for your attention!

Email: htpham@cs.cmu.edu

Twitter: @hai_t_pham

Email: pliang@cs.cmu.edu

Twitter: @pliang279