

Торіс	DATA PREPROCESSING						
Class Description	Students will review the data collected in the previous classes, download more data and merge the datasets into one.						
Class	PRO C129	PRO C129					
Class time	45 mins						
Goal	 Understanding and reviewing data Merging multiple datasets and pre-processing the data 						
Resources Required	 Teacher Resources: Laptop with internet connectivity Earphones with mic Notebook and pen Smartphone Student Resources: Laptop with internet connectivity Earphones with mic Notebook and pen 						
Class structure	Warm-Up Teacher-Led Activity 1 Student-Led Activity 1 Wrap-Up 5 mins 15 mins 20 mins 05 mins						
Credit & Permissions:	Exoplanet Exploration by NASA						

WARM-UP SESSION - 10 mins

Teacher Starts Slideshow Slide # to

< Note: Only Applicable for Classes with VA> Refer to speaker notes and follow the instructions on each slide.

Teacher Action	Student Action
Hey <student's name="">. How are you? It's great to see you! Are you excited to learn something new today?</student's>	ESR: Hi, thanks! Yes, I am excited about it!
 Following are the WARM-UP session deliverables: Greet the student. Revision of previous class activities. Quizzes. 	Click on the slide show tab and present the slides.

WARM-UP QUIZ

Click on In-Class Quiz

Continue WARM-UP Session

Slide # to #

< Note: Only Applicable for Classes with VA>

Activity Details

Following are the session deliverables:

- Appreciate the student.
- Narrate the story by using hand gestures and voice modulation methods to bring in more interest in students.

Teacher Action	Student Action
In the last class, we completed scraping data from NASA's exoplanet catalog web page. We scraped data from exoplanets. Teacher Activity 2: Exoplanet Exploration Do you remember what exoplanets are?	ESR:
Note: NASA's exoplanet catalog web page keeps updating as per the new planet discoveries. At the time of writing this document, the web page had 201 Pages with 25 Planets per page showing a total of 5009 planets data.	Exoplanets are those planets that we have found outside of our own solar system.

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

After scraping data from each page, the CSV below has **5009**(**id column 0-5008**) **planets data** with planet_type

Α	В	С	D	Е	F	G	Н	1	J	K	L	М
4993	WTS-1 b	7653	4.01 Jupit€	16.644	2012	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/5162/	wts-1-b/	
4994	WTS-2 b	3362	1.12 Jupite	15.954	2014	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/5222/	wts-2-b/	
4995	Xi Aquilae	183	2.8 Jupiter	4.70964	2007	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7060/	xi-aquilae-l	o/
4996	XO-1 b	534	0.83 Jupite	11.251	2006	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/5164/	xo-1-b/	
4997	XO-2 N b	503	0.566 Jupit	11.246	2007	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7153/	xo-2-n-b/	
4998	XO-2 S b	494	0.26 Jupite	11.196	2014	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7154/	xo-2-s-b/	
4999	XO-2 S c	494	1.37 Jupit€	11.196	2014	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7155/	xo-2-s-c/	
5000	XO-3 b	695	7.29 Jupite	9.854	2007	https://ex	coplanets.na	asa.gov/ex	oplanet-c <mark>a</mark> t	talog/5460/	xo-3-b/	
5001	XO-4 b	889	1.42 Jupite	10.814	2008	https://ex	oplanets.na	asa.gov/ex	oplanet-cat	talog/5223/	xo-4-b/	
5002	XO-5 b	901	1.19 Jupit€	12.198	2008	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/5461/	xo-5-b/	
5003	XO-6 b	768	4.4 Jupiter	10.247	2016	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/3441/	xo-6-b/	
5004	XO-7 b	764	0.709 Jupit	10.521	2019	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7546/	xo-7-b/	
5005	YSES 2 b	357	6.3 Jupiter	10.885	2021	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7867/	yses-2-b/	
5006	YZ Ceti b	12	0.7 Earths	12.074	2017	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7181/	yz-ceti-b/	
5007	YZ Ceti c	12	1.14 Earth	12.074	2017	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	alog/7182/	yz-ceti-c/	
5008	YZ Ceti d	12	1.09 Earth	12.074	2017	https://ex	coplanets.na	asa.gov/ex	oplanet-cat	talog/7183/	yz-ceti-d/	
									93			
} u	pdated_sc	raped_da	ta (+)									

Note: NASA's exoplanet catalog web page keeps updating as per the new planet discoveries. At the time of writing this document, the web page had 201 Pages with 25 Planets per page showing a total of 5009 planets data. Each planet's more data can be found by clicking on the planet name link. Teacher Activity 3:11 Comae Berenices b

PLANET TYPE Gas Giant	DISCOVERY DATE 2007
MASS 19.4 Jupiters	PLANET RADIUS 1.08 x Jupiter (estimate)
ORBITAL RADIUS 1.29 AU	ORBITAL PERIOD 326 days
ECCENTRICITY 0.23	Radial Velocity

Console output after scraping data from each planet hyperlink.

Note: Scraping data from each hyperlink for 5009 planets takes around 2-3 hours. Hence data has been scraped beforehand for teachers and students convenience.

```
Data Scraping at hyperlink 5006 completed https://exoplanets.nasa.gov/exoplanet-catalog/7181/yz-ceti-b/Data Scraping at hyperlink 5007 completed https://exoplanets.nasa.gov/exoplanet-catalog/7182/yz-ceti-c/Data Scraping at hyperlink 5008 completed https://exoplanets.nasa.gov/exoplanet-catalog/7183/yz-ceti-d/Data Scraping at hyperlink 5009 completed
```

After scraping data from each planet **hyperlink**, the CSV below has **5009**(**id column 0-5008**) **planets data** with planet_type, discovery_rate, mass, planet_radius, orbital_radius, orbital_period, eccentricity, detection_method

	Α	В	С	D	E	F	G	Н	1
996	4994	Gas Giant	2014	1.12 Jupite	1.363 x Jup	0. 01 855 Al	1 days	0	
997	4995	Gas Giant	2007	2.8 Jupiter	1.18 x Jupi	0.68 AU	136.8 days	0	
998	4996	Gas Giant	2006	0.83 Jupite	1.14 x Jupi	0.0488 AU	3.9 days	0	
999	4997	Gas Giant	2007	0.566 Jupit	0.993 x Jup	0.0368 AU	2.6 days	0.03	
000	4998	Gas Giant	2014	0.26 Jupite	0.971 x Jup	0.13 AU	18.2 days	0.18	
001	4999	Gas Giant	2014	1.37 Jupite	1.21 x Jupi	0.4756 AU	120.8 days	0.15	
002	5000	Gas Giant	2007	7.29 Jupite	1.41 x Jupi	0.0476 AU	3.2 days	0.29	
003	5001	Gas Giant	2008	1.42 Jupite	1.25 x Jupi	0.05524 AI	4.1 days	0	
004	5002	Gas Giant	2008	1.19 Jupite	1.14 x Jupi	0.0515 AU	4.2 days	0	
005	5003	Gas Giant	2016	4.4 Jupiter	2.07 x Jupi	0.0815 AU	3.8 days	0	
006	5004	Gas Giant	2019	0.709 Jupit	1.373 x Jup	0.04421 A	2.9 days	0.04	
007	5005	Gas Giant	2021	6.3 Jupiter	1.14 x Jupi	115.0 AU	1176.5 yea	0	
800	5006	Terrestrial	2017	0.7 Earths	0.913 x Ea	0.01634 AI	2 days	0.06	
009	5007	Super Eart	2017	1.14 Earth	1.05 x Eart	0.02156 A	3.1 days	0	
010	5008	Super Eart	2017	1.09 Earth	1.03 x Eart	0.02851 A	4.7 days	0.07	
4	→ r	iew_scrape	ed_data	+					1

Now in today's class, we will combine the data we just scraped in the last class. We will also download some more data from an existing website and finally, we will merge the data as we pre-process it.

Isn't it interesting?

ESR: Yes!

Ok so let's start coding.

Teacher Ends Slideshow

TEACHER-LED ACTIVITY - 10 mins

Teacher Initiates Screen Share

ACTIVITY

- Looking at the previous data
- Downloading more data from the internet and then merging the data

Teacher Action	Student Action
We have two CSV files. 1. updated_scraped_data.csv has the following headers.	ling
["name", "light_years_from_earth", "planet_mass", "stellar_magnitude", "discovery_date", "hyperlink"]	
2. New_scraped_data.csv has following headers:	
["planet_type","discovery_date", "mass", "planet_radius", "orbital_radius", "orbital_period", "eccentricity", "detection_method"]	
We'll be merging the data with the new data that we have downloaded.	
Let's start by loading the scraped data from the link. Clone the data using the lgit clone command.	

!git clone https://github.com/procodingclass/PRO-NASA-Exoplanet-Scraped-Data

Cloning into 'PRO-NASA-Exoplanet-Scraped-Data'...

remote: Enumerating objects: 23, done.

remote: Counting objects: 100% (23/23), done. remote: Compressing objects: 100% (18/18), done.

remote: Total 23 (delta 8), reused 15 (delta 3), pack-reused 0

Unpacking objects: 100% (23/23), done.

To analyze the data, read both the CSV as pandas
DataFrames. Store the updated scraped data in
planet df 1 and new scraped data into new plane df 1.

import pandas as pd

Let's check both the DataFrames by using the **head() method.** All the headers are present along with the id.

Similarly, we'll print **new_planet_df_1** using the **head()** method.

nev	ew_planet_df_1.head()								
	id	planet_type	discovery_date	mass	planet_radius	orbital_radius	orbital_period	eccentricity	detection_metho
0	0	Gas Giant	2007	19.4 Jupiters	1.08 x Jupiter	1.29 AU	326 days	0.23	Nai
1	1	Gas Giant	2009	14.74 Jupiters	1.09 x Jupiter	1.53 AU	1.4 years	0.08	Nai
2	2	Gas Giant	2008	4.8 Jupiters	1.15 x Jupiter	0.83 AU	185.8 days	0.0	Nai
3	3	Gas Giant	2002	4.66 Jupiters	1.15 x Jupiter	2.93 AU	4.9 years	0.37	Nai
4	4	Gas Giant	1996	1.78 Jupiters	1.2 x Jupiter	1.66 AU	2.2 years	0.68	Nat

Now, we have to merge the data. If we look closely we have two repetitive columns.

let's remove a column from DataFrame. The discovery date and mass are repeated in both the data frames.

Also, the detection method column was empty, so NAN is written. This column has to be removed.

	id	planet_type	discovery_date	mass	planet_radius	orbital_radius	orbital_period	eccentricity	detection_method
0	0	Gas Giant	2007	19.4 Jupiters	1.08 x Jupiter	1.29 AU	326 days	0.23	NaN
1	1	Gas Giant	2009	14.74 Jupiters	1.09 x Jupiter	1.53 AU	1.4 years	0.08	NaN
2	2	Gas Giant	2008	4.8 Jupiters	1.15 x Jupiter	0.83 AU	185.8 days	0.0	NaN
3	3	Gas Giant	2002	4.66 Jupiters	1.15 x Jupiter	2.93 AU	4.9 years	0.37	Nat
4	4	Gas Giant	1996	1.78 Jupiters	1.2 x Jupiter	1.66 AU	2.2 years	0.68	Nat

Use the **drop()** method to remove the columns. **inplace= True** updates the same DataFrame.

```
new_planet_df_1.drop(columns=['discovery_date', 'mass', 'detection_method'], inplace=True)
new planet df 1.head()
    id planet_type planet_radius orbital_radius
                                                       orbital_period eccentricity
           Gas Giant
                                               1.29 AU
                                                               326 days
                        1.08 x Jupiter
                                                                                   0.23
                                               1.53 AU
           Gas Giant
                                                               1.4 years
                        1.09 x Jupiter
                                                                                   80.0
           Gas Giant
                        1.15 x Jupiter
                                               0.83 AU
                                                              185.8 days
                                                                                    0.0
           Gas Giant
                                              2.93 AU
                        1.15 x Jupiter
                                                               4.9 years
                                                                                   0.37
           Gas Giant
                         1.2 x Jupiter
                                               1.66 AU
                                                                                   0.68
                                                               2.2 years
```

To merge the DataFrames and store them, define headers and create a new DataFrame final_planet_df with these headers. The headers are in the sequence of the DataFrames to be merged.

Use the **merge()** method to combine the two DataFrames.

	_	planet_df = p planet_df.hea	od.merge(planet_df_1,new_			
	id	name	light_years_from_earth	planet_mass	stellar_magnitude	discovery_date
0	0	11 Comae Berenices b	304.0	19.4 Jupiters	4.72307	2007
1	1	11 Ursae Minoris b	409.0	14.74 Jupiters	5.01300	2009
2	2	14 Andromedae b	246.0	4.8 Jupiters	5. <mark>2313</mark> 3	2008
3	3	14 Herculis b	58.0	4.66 Jupiters	6.61935	2002
4	4	16 Cygni B b	69.0	1.78 Jupiters	6.21500	1996

Convert the final DataFrame to csv.

final_planet_df.to_csv('final_scraped_data.csv')

Great!

Now our dataset is combined.

Next, we have another website that has even more data. We will download the data in CSV format from there and then we will merge the two datasets.

For this, we will go to the following link:

The teacher opens the link <u>Teacher Activity 4</u> to check the dataset.

Go to:

Data >> Planetary Systems Composite Data

Now you can see that the data of exoplanets is present here.

This table has a lot of data that will help us analyze a lot of data about our universe, which planets are habitable and which ones are not.

Note: The teacher can use the <u>link</u> directly to go to the table. The link may change due to the timely updation of data.

Let's download this data!

For downloading it, we will click on the **Download Table** on the Menu bar button at the top of the table and select

CSV Format and then click on the **Download Table** option with a green arrow.

Note: Download the dataset.

Next we'll read this dataset using Pandas DataFrame and print it.

	<pre>archive_planet_df["pl_name"] = archive_planet_df["pl_name"].str.lower() archive_planet_df.head()</pre>									
	id	pl_name	hostname	sy_snum	sy_pnum	discoverymethod	disc_year	disc_facility		
0	0	11 com b	11 Com	2	1	Radial Velocity	2007	Xinglong Station		
1	1	11 umi b	11 UMi	1	1	Radial Velocity	2009	Thueringer Landessternwarte Tautenburg		
2	2	14 and b	14 And	1	1	Radial Velocity	2008	Okayama Astrophysical Observatory		
3	3	14 her b	14 Her	1	2	Radial Velocity	2002	W. M. Keck Observatory		

It has header names in short form and also 85 columns are present.

We can check the number of rows and columns using the **shape()** method.

final_planet_df.shape

(5009, 12)

archive planet df.shape

(5009, 85)

Great! Now, we need to merge the data. For this, you are provided with both datasets. Let's write the code to merge them.

Teacher Stops Screen Share

So now it's your turn.

Please share your screen with me.

Teacher Starts Slideshow

Slide # to #

< Note: Only Applicable for Classes with VA> Refer to speaker notes and follow the instructions on each slide.

We have one more class challenge for you.

Can you solve it?

Let's try. I will guide you through it.

Teacher Ends Slideshow

STUDENT-LED ACTIVITY - 20 mins

- Ask the student to press the ESC key to come back to the panel.
- Guide the student to start Screen Share.
- The teacher gets into Full Screen.

Student Initiates Screen Share

ACTIVITY

- The student tries to find patterns between the data
- The student writes some code to merge 2 datasets

Teacher Action	Student Action
Open <u>Student Activity 2</u> to download the datasets. This contains the dataset we merged (final_scraped_data) and the dataset that I have just downloaded from Planetary Systems Composite data. (PSCompPars.csv).	Lide
Note: Guide the student to open Student Activity 2 and download the dataset.	O got

NASA's EXOPLANET EXPLORATION

Note: At the scrapping data from this website, this web page had 5009 planets across 201 page(with 25 planets per page)

- 1. updated_scraped_data.csv : ["name", "light_years_from_earth", "planet_mass", "stellar_magnitude", "discovery_date", "hyperlink"]
- 2. new_scraped_data.csv : ["planet_type","discovery_date", "mass", "planet_radius", "orbital_radius", "orbital_period", "eccentricity", "detection_method"]

NASA's EXOPLANET ARCHIVE

PSCompPars.csv

Okay, now the first thing that we have to do is that we need to look at the data and try to identify a pattern within the data.

If we look at the names of these planets in both the datasets, we can see that the data we scraped earlier i.e. **final_planet_df** has a full version of the names while the planet data we downloaded has a shorter version of the names.

fi	<pre>final_planet_df.head()</pre>							
	id	name	light_years_from_earth	planet_mass	stellar_magnitude	discovery_date		
0	0	11 Comae Berenices b	304.0	19.4 Jupiters	4.72307	2007		
1	1	11 Ursae Minoris b	409.0	14.74 Jupiters	5.01300	2009		
2	2	14 Andromedae b	246.0	4.8 Jupiters	5.23133	2008		
3	3	14 Herculis b	58.0	4.66 Jupiters	6.61935	2002		
4	4	16 Cygni B b	69.0	1.78 Jupiters	6.21500	1996		

ard	chive	e_planet_d	df.head()		*	1000		
	id	pl_name	hostname	sy_snum	sy_pnum	discoverymethod	disc_year	disc_facility
0	0	11 Com b	11 Com	2	1	Radial Velocity	2007	Xinglong Station
1	1	11 UMi b	11 UMi	1	JIV ⁰	Radial Velocity	2009	Thueringer Landessternwarte Tautenburg
2	2	14 And b	14 And	1	1	Radial Velocity	2008	Okayama Astrophysical Observatory
3	3	14 Her b	14 Her	1	2	Radial Velocity	2002	W. M. Keck Observatory
4	4	16 Cyg B b	16 Cyg B	3	1	Radial Velocity	1996	Multiple Observatories

The name **11 Comae Berenices b** from the data we scraped is written as **11 Com b** in the data we downloaded. Similarly, all the names are different.

The student tries to find a pattern for a couple of minutes.

Therefore we cannot use the names of these data points as a metric to merge the two datasets.

Can you think of any patterns that both of the datasets follow?

That's great!

4972

4973

4974

4975

4976

4977

4970 alf Tau b

4971 b Cen AB l b Cen A

4972 bet Cnc b bet Cnc

4973 bet Pic b bet Pic

4974 bet Pic c bet Pic

4975 bet UMi b bet UMi

alf Tau

But there is one thing we need to be careful about. Both the datasets are in alphabetical order, however, the second dataset (with tables) has the planet names that start with a lower case alphabet in the bottom, segregated separately in alphabetical order while the data we scraped is in perfect alphabetical order.

ESR:

The names are in alphabetical order.

1 Radial Velo

1 Radial Velo

2 Radial Velo

1 Radial Velo

1 Imaging

2 Imaging

Here, we can see the dataset has all the planet names until alphabet Y in alphabetical order. After it, the planet names with lower case alphabet are below it. These are also present in alphabetical order.

2

2

2

1

ESR:

0

0

0

0

0

628.96

605.2

7665

1200

522.3

0 1790000

0.9

4

7300

2.7

830000

-0.9

-4

-730

-2.7

-830000

2015 Multiple C

2021 Paranal Ol

2014 Bohyunsa

2008 Paranal Ol

2019 La Silla Ob

2014 Bohyunsa

We need to arrange the second dataset in alphabetical order irrespective of if the name is

© 2021 - WhiteHat Education Technology Private Limited.

Note: This document is the original copyright of WhiteHat Education Technology Private Limited.

What do you think we need to do first to merge the two datasets?

uppercase or lower case.

That's right! Let's write a code that can quickly do that.

arc	archive_planet_df["pl_name"] = archive_planet_df["pl_name"].str.lower()							
arc	archive_planet_df.head()							
	id	pl_name	hostname	sy_snum	sy_pnum	discoverymethod	disc_year	disc_facility
0	0	11 com b	11 Com	2	1	Radial Velocity	2007	Xinglong Station
1	1	11 umi b	11 UMi	1	1	Radial Velocity	2009	Thueringer Landessternwarte Tautenburg
2	2	14 and b	14 And	1	1	Radial Velocity	2008	Okayama Astrophysical Observatory
3	3	14 her b	14 Her	1	2	Radial Velocity	2002	W. M. Keck Observatory
4	4	16 cyg b	16 Cyg B	3	1	Radial Velocity	1996	Multiple Observatories

To sort the names by alphabetical order we'll use the **sort_values()** method of pandas to arrange them in alphabetical order.

Also, use the tail() method to check the data present at the bottom of the dataset.

archi							
archi							
	id	pl_name	hostname	sy_snum	sy_pnum	discoverymetho	od disc_year
4959	4959	xo-2 s c	XO-2 S	2	3	Radial Veloci	ty 2014
4960	4960	xo-3 b	XO-3	1	1	Trans	sit 200
4961	4961	xo-4 b	XO-4	1	1	Trans	sit 2008
4962	4962	xo-5 b	XO-5	1	1	Trans	sit 2008
4963	4963	xo-6 b	XO-6	1	1	Trans	sit 2016
4964	4964	xo-7 b	XO-7	1	1	Trans	sit 2019
4965	4965	yses 2 b	YSES 2	1	1	lmagir	ng 202

Also, print the same for final_planet_df.

final_	final_planet_df.tail(10)						
	id	name	light_years_from_earth	planet_mass	stellar_magnitude	discovery_date	
4999	4999	XO-2 S c	494.0	1.37 Jupiters	11.196	2014	
5000	5000	XO-3 b	695.0	7.29 Jupiters	9.854	2007	
5001	5001	XO-4 b	889.0	1.42 Jupiters	10.814	2008	
5002	5002	XO-5 b	901.0	1.19 Jupiters	12.198	2008	
5003	5003	XO-6 b	768.0	4.4 Jupiters	10.247	2016	

Merge these two datasets using the **merge()** method of pandas. Also, check the dimensions of the resultant DataFrame using the **shape()** method.


```
merge_planets_df = pd.merge(final_planet_df, archive_planet_df, on="id" )
merge_planets_df.shape
(5009, 96)
```

We got 96 which is the addition of the number of columns for final and archive datasets. Since id is the common column it is considered once only.

Convert the DataFrame into csv. Use the download method to download the merged CSV file.


```
# Convert to CSV
merge_planets_df.to_csv('merge_planets.csv')

## Download CSV
from google.colab import files
files.download('merge_planets.csv')
```

Let's check the **merge_planets.csv** file.

So, as you can see we have successfully performed the preprocessing of data on the given datasets. This is useful to analyze the data and get insights from data.

Teacher Guides Student to Stop Screen Share

WRAP-UP SESSION - 05 mins

Teacher Starts Slideshow Slide # to

< Note: Only Applicable for Classes with VA>

Activity details

Following are the WRAP-UP session deliverables:

- Appreciate the student.
- Revise the current class activities.
- Discuss the quizzes.

WRAP-UP QUIZ

Click on In-Class Quiz

Continue WRAP-UP Session

Slide # to #

< Note: Only Applicable for Classes with VA>

Activity Details

Following are the session deliverables:

- Explain the facts and trivia
- Next class challenge
- Project for the day
- Additional Activity (Optional)

FEEDBACK

- Appreciate and compliment the student for trying to learn a difficult concept.
- Get to know how they are feeling after the session.
- Review and check their understanding.

Teacher Action	Student Action
You get "hats-off" for your excellent work!	Make sure you have given at least 2 hats-off during the class for:

ACTIVITY LINKS						
Activity Name	Description	Links				
Teacher Activity 1	Boilerplate Code	https://colab.research.google.com/drive/1CCJOl8fn8WirjJ-DeqFwGewDLJeKGogU?usp=sharing				
Teacher Activity 2	Exoplanet Exploration	https://exoplanets.nasa.gov/discovery/ exoplanet-catalog/				
Teacher Activity 3	11 Comae Berenices b	https://exoplanets.nasa.gov/exoplanet -catalog/6988/11-comae-berenices-b/				
Teacher Activity 4	NASA Exoplanet Archive	https://exoplanetarchive.ipac.caltech.e du/docs/table-redirect.html				
Teacher Activity 5	Dataset	https://github.com/procodingclass/PR O-NASA-Exoplanet-Scraped-Data				
Teacher Activity 6	Reference Code	https://colab.research.google.com/drive/1ilGwmFoTz44f8x1oyHwFJBPmoE2-S99K?usp=sharing				
Teacher Reference 1	Project	https://s3-whjr-curriculum-uploads.whj r.online/6479d832-9780-4e43-ba73-af 1a226b078c.pdf				
Teacher Reference 2	Project Solution	https://colab.research.google.com/driv e/1mMOhmdKx-q40ZbbDoNG1jTBJ2 RKMecMo?usp=sharing				
Teacher Reference 3	<mark>Vis</mark> ual-Aid	Will be added after VA creation				
Teacher Reference 4	In-Class Quiz	https://s3-whjr-curriculum-uploads.whj r.online/c704493f-5bfa-4707-9425-18c 3d69ee258.pdf				
Student Activity 1	Dataset	https://github.com/procodingclass/PR O-NASA-Exoplanet-Scraped-Data				
Student Activity 2	Boilerplate code	https://colab.research.google.com/drive/ e/10G98up218Tg8UG-NCetB2IHO9ByhpBo8?usp=sharing				

