ELECTRON CONFIGURATION

In 1913 Niels Bohr proposed that electrons had orbits around the nucleus at a given distance. The electrons had a circular orbit at a fixed energy level. It was possible to add energy to an atom and an electron could absorb this energy and move to a higher energy level. This idea is used to explain fireworks and flame tests.

ELEMENT	NUMBER OF e	e CONFIGURATION
Я		
Ве		
N		
Ne		
Al		
S		
K		

<u>IONISATION ENERGY</u>

When atoms lose electrons to form ______ ions, the atoms are said to have been ionised. This process requires energy. Why?

The ionisation energy is the amount of energy needed to remove 1 mole of electrons from 1 mole of atoms or ions in their <u>gaseous</u> state.

Which of the following equations corresponds to the correct definition of ionisation energy?

a)
$$\mathcal{N}a(g) \rightarrow \mathcal{N}a^{+}(g) + e^{-}$$

$$\mathcal{N}a(s) \rightarrow \mathcal{N}a^+(s) + e^-$$

c)
$$\mathcal{N}a(s) \rightarrow \mathcal{N}a^{+}(g) + e^{-}$$

d)
$$\mathcal{C}l_2(g) + 2e^{-} \rightarrow 2\mathcal{C}l^2(g)$$

e)
$$Cl(g) + e \rightarrow Cl(g)$$

$$f)$$
 $Cl(g) \rightarrow Cl^+(g) + e^-$

Give equations, including state symbols, which represent the first ionisation energy process for:

$$c)$$
 B_1

Draw a sodium and chlorine atom. Which atom is bigger? Why?_____

Why is Group XVIII always higher than Group XVII? (Hint: write the electron configurations of neon and fluorine)

Why does the ionisation energy for each group decrease as the period increases? Explain using group I.
Is the ionisation energy for boron higher or lower than fluorine?
The 3 factors that influence the ionisation energy of an atom are: 1
Explain how each of these factors influences ionisation energy. 1.
2.
3.
As electrons are moved further from the nucleus more energy is required. For example the second shell electrons have more energy than the first. The second shell electrons are said to have a <u>higher energy level</u> . Think about this as gravitational potential energy, the further you are from the ground the higher your energy.
Look at the "Successive ionisation energies for chlorine". Explain the changes, trying to use the phrase energy level.

How many valence electrons in each of the following elements?

	1 ST E _I	2 ND E _I	3 RD E _I	4 TH E _I	$5^{TH} E_{I}$	$6^{TH} E_{I}$	7 [™] E _I	8 TH E _I	VALENCE
Α	1313.9	3388.3	5300.5	7469.2	10989	13326	71330	84078	
В	418.8	3052	4420	5877	7975	9590	11343	14944	
С	495.8	4562	6910.3	9543	13354	16613	20117	25496	

IONIC BONDING (Metal + Non-metal)

Draw a crystal (ionic lattice) of NaCl.

*	The lattice is made of positive a	attraction of the		
	and	charges.		
*	Each positive ion is surrounded For each Na ⁺ there is one Cl ⁺ , th			
*	In the reaction between Na and			
What i	is the electron configuration of	sodium atoms?	and	
		sodium ions?_		
What i	is the electron configuration of	chlorine atoms?	and	
		chloride ions?_		
PROP:	ERTIES OF ION <u>IC C</u> OMPOUT	<u>VDS</u>		

PROPERTY	EXPLANATION
1. High melting and boiling point	
2. Hard	
3. Brittle	
4. Non-conductors of electricity as	
Solids	
5. Conductors of electricity as liquids and in	
solution	
Bonding between elements in [Groups I or II] and [Group VII or oxygen or sulfur] is the purest form of ionic
bonding.	
S	
ELECTRON DOT DIAGRAMS	
<u> </u>	
These diagrams show only valence electrons and how	v theu are involved in bondina.
eg: 1) $\mathcal{N}_{\mathbf{q}}$ $\mathcal{C}_{\mathbf{l}}$ \rightarrow	Na ⁺ Cl
-0: -/ -/ -/ -/ -/	- 0

5

Mg

eg: 2)

0

eg: 3)		K	S			
eg: 4)		Na	N			
Draw ti	he electro calcium	on dot diagrams f ion	for:		ii)	bromide ion
iii)	phosphi	de ion		iv)	alumini	ium ion
v)	caesium	ion			vi)	carbide ion

STRUCTURE OF METALS

Metals are metal ions that have freed electrons. These electrons are not fixed in one place and are called delocalised electrons. Or metals can be described as metal ions in a "sea of electrons". The metal ions are attracted to the delocalised electrons and this very strong force is called a metallic bond.

PROPERTY	EXPLANATION	
1. High melting and boiling point		
2. Hard		

3. Malleable and ductile	
4. Conductors of electricity, as solids and liquids	

STRUCTURE OF COVALENT NETWORKS (Non-metal + Non-metal)

These substances giant molecules made of <u>atoms</u> that are joined by continuous covalent bonding to other atoms. The main covalent networks are diamond, graphite, silicon and silica (silicon dioxide). Drawn below is each of the covalent networks.

PROPERTY	EXPLANATION
1. High melting and boiling point	
2. Hard	
3. Insoluble in water and other solvents	
4. Non-conductors of electricity	
5. Graphite is a conductor of electricity	

STRUCTURE OF COVALENT MOLECULES (Non-metal + Non-metal)

These substances compete equally for electrons. So instead of losing and gaining, they <u>share</u> electrons. When electrons are shared by atoms this is called a <u>covalent bond</u>.

A molecule is a group of atoms which are bonded to each other. They have no bonds to other atoms, just weak forces of attraction. Therefore covalent molecular substances exist as separate (discrete) molecules with <u>strong bonds in the molecule but with weak forces between molecules</u>.

PROPERTIES OF COVALENT MOLECULES

PROPERTY	EXPLANATION
1. Low melting and boiling point	
2. Soft	
3. Non-conductors of electricity	
4. Conductors of electricity when the	
molecules react to make ions in the	
solution.	
the covalent bond as a line as two electrons. How do you know the number of bonds fit what Group of the Periodic Table ii) How many e has the element? iii) How many more e does the element of bonds the element of bo	formed by a non-metal? Ask yourself the following questions: Sole is the element? The ent need to have a stable e' configuration?
eg: 3) Cl ₂	eg: 4) NH3

eg: 5)	$\mathcal{H}_2 \mathcal{O}$	eg: 6)	$C\mathcal{H}_4$		
eg: 7)	O_2	eg: 8)	$C_2\mathcal{H}_6$		
eg: 9)	\mathcal{N}_2	eg: 10) CO ₂			
eg: 11)	$\mathcal{C}_2\mathcal{H}_4$	eg: 12) CCl ₄			
In the above mo	lecules, what are the number of electrons sh	iared in a:			
	ond b) double bond		c) triple bond		
VALENCE ELECTRON PAIR REPULSION THEORY					

This theory assumes that the electron pairs in the valence shells of the atoms will repel one another and try to get as far apart as possible. The different number of pairs of electrons gives molecules different angles between the atoms and different shapes. Make models of the molecules above and assign a shape to each molecule. The choices are; linear, bent, trigonal planar, pyramidal and tetrahedral. Sketch these shapes.

NUMBER OF ATOMS	POSSIBLE SHAPES	EXAMPLES
2		
3		

	4				
	5				
	yatomic ions there are covalent bo n dot diagram and predict the sho	U	toms together in the io	n. For each of the	following draw the
1)	nitrite ion (N O_2^+)	2)	ammonium ion		
3)	amide ion (N \mathcal{H}_{2}^{+})	4)	sulfite ion (SO3 ²⁻)		
,	, G 27	,	, , , , , , , , , , , , , , , , ,		
<u>ELE(</u>	<u>TRONEGATIVITY</u>				
Electr	onegativity is the measure of an a	itom's tendency to	attract an electron.		
electro	l atoms attract electrons with the negativity. As different atoms sho ns closer. The result is a	are electrons the a	tom with the greatest	electronegativity a	
-	er bond is one that has 2 poles or c the given electronegativities, for		•	ther. This other is	more positive.
i) ii)	Draw the electron dot diagram. Compare the electronegativities		the hand is notar		
iii)	If polar show the positive and		-		
Electro H = 2	onegativity:				
$\mathcal{H} = \mathcal{L}$	$\mathcal{B}=2$ $\mathcal{C}=2$	-			
	Si = i	$1.7 \mathcal{P} = 2.1$	S = 2.4 $Cl = 2.8$	$\mathcal{B}r = 2.7$	
- ((6 (6)		I = 2.2	
Label	the polarity on the following ator	ns (ð+ and ð-):			
С-Н	0-Н	Н-У	Cl	-Cl	N-0
What	is the pattern in the electronegati	vities as you move	e horizontally? Why?		

What is the pattern in the electronegativities as you move vertically? Why? 3 AB CHEMISTRY **SECTION 3 NOTES**

Metals have electronegativity. Why are they not considered important in this section?

INTERMOLECULAR FORCES

Water and iodine are liquid and solid respectively at room temperature. If they are both covalent molecular substances and not gases they must have reasonable forces of attraction between the molecules. If covalent molecular substances have no bonds between molecules then what causes these forces between molecules? These forces are called van der Waals' forces. There are of 3 types.

1) DIPOLE-DIPOLE FORCES

In NO above, the molecule has a polar bond. If the ends of the molecule have a partial charge what do you think happens when lots of these molecules are together? Draw a diagram to show how this happens.

The prefix di means . So dipole-dipole forces are forces between

Molecules will have dipole-dipole forces between them when they

- i) Contain polar bonds.
- ii) Are asymmetrical.

Which of the 12 molecules from pages 12 will have dipole-dipole attractions between their molecules?

The molecules with dipole-dipole attractions draw the molecule showing the separation of charge.

2) HYDROGEN BONDING

A hydrogen bond is a much stronger type of dipole-dipole force. It only occurs when hydrogen is directly bonded to N, O or F. These 3 elements are the most electronegative and will strongly attract the electrons in the covalent bond. This causes an extreme separation of charge and a much stronger force of attraction to neighbouring molecules. Show how hydrogen bonding occurs between water molecules.

For each of the following substances indicate the molecular shape, note whether the molecule is polar or non-polar and whether the molecule will contain hydrogen bonding.

name	melting point (°C)	molecular shape	polarity	hydrogen bonding
$\mathcal{H}_{2}O$	0			
HCl	-115			
\mathcal{NH}_3	-77			
$\mathcal{H}_{2}\mathcal{S}$	-85			
$P\mathcal{H}_3$	-133			
HF	-83			

Compare the melting points of the Period 2 hydrides with its corresponding Period 3 hydride (eg: HF with HCl). What general pattern do you recognise? Why do you think this occurs?

3) DISPERSION FORCES

Every substance has dispersion forces, the weakest of attractions between atoms. In covalent networks, ionic and metallic substances the dispersion forces are so small compared to the covalent, ionic and metallic bond that the dispersion force is ignored but it still exists.

a tem	porary dipole. This then at	tracts and repels electro	es when the electrons may be on one side of the atom, causing as in neighbouring atoms, inducing dipoles in these atoms. The rsion forces are sometimes called temporary dipole forces.
A che	mical like HCl has dipole-d	ipole forces and	forces. Again the dominant force is the
. Ther	e are substances that have	only dispersion forces. I	Which 8 from page 12 have only dispersion forces?
The cl	hemicals with only dispersi	on forces are:	
1)	noble gases	eg	
2)	elemental gases	eg	
3)	alkanes	eg	
4)	symmetrical molecules	eg	

In general the more electrons a particle has the stronger the dispersion force.

As the formula mass increases so does the strength of the dispersion force.

What are the names and molecular formulae for first 8 alkanes?

number of carbons	пате	molecular formulae	melting point
			(°C)
1			-182
2			-183
3			-190
4			-138
5			-130
6			-95
7			-91
8			-57

What happens to the melting point as the number of carbon atoms increases?

Explain why.

There are 3 types intermolecular force. What is the ascending order of relative strengths?

MELTING AND BOILING POINTS OF THE NON-METAL HYDRIDES

(b) Boiling Point curves of hydrides of IV, V VI and VII group elements.

13

http://knowledgebin.org/kb/entry/ChemicalBonding-2_21 In general what happens to the melting point of all the hydrides as you down the Group? Explain why.				
Which 3 compounds are anomalous with regards to th	ie statement above? Why?			
What are the bonding capacities of Group XVI	, Group XVII	and Group XVIII		

SOLVENTS AND SOLUBILITY

When a solvent and solute are mixed to try and form a solution, several things must occur. A force of attraction exists between solvent molecules. So there must be a force of attraction between the solute and solvent molecules that is strong enough to

- i) Separate the solvent molecules and
- ii) Separate the solute molecules.

To achieve this there must be similar intermolecular forces and/or bonding between the solvent and solute particles. The phrase "like dissolves like" is used as memory tool but cannot be used as an explanation of why something dissolves in a solvent.

Explain the following: (as an answer to the following you must state the forces between the solute particles, the forces between the solvent molecules and then explain {or draw} how the forces are/are not strong enough to break each other)

- 1) Ammonia is very soluble in water
- 2) Octane is not soluble in water
- *3) Oil is soluble in petrol*
- 4) Magnesium oxide is not soluble in water

REVISION

CHEMISTRY FOR WA - STAGE 3

Review Exercise	Pages	Questions	
1.1	6	2	
1.2	11	1-5	
1.3	15	1-3	
1.4	23	1-5	
2.1	33	1-5	
2.2	38	1-7	
2.3	44	1-9	
2.4	46	1-4	
3.1	58	1-3	
3.2	63	1-5	
3.3	66	1-3	
3.4	72	1-4	
3.5	74	1-3	
3.6	79	1-6	
3.7	84	1-6	
3.8	85	1-2	
3.9	87	1	
4.1	100	1-4	
4.2	103	1-3	

End of Chapter Questions	Pages	Questions
Chapter One	25	1-18
Chapter Two	51	1-19
Chapter Three	88	1-24
Chapter Four	118	

EXPLORING CHEMISTRY - STAGE 3

Sets 9, 10 and 11.

KEYWORDS

2. lattice 1. ionisation energy electron configuration 3. 4. ionic bonding valence electrons delocalised electrons 5. 6. 7. malleable ductile covalent bond 9. silica 10. VSEPR Theory 11. 12. linear 13. bent 14. trigonal planar

15.	pyramidal		16. tetrahedra
17.	polyatomic ion	18.	electronegativity
19.	van der Waals' forces	20.	dipole-dipole forces
21.	asymmetrical	22.	polar bond
23.	polar molecule	24.	hydrogen bonding
25.	dispersion force	26.	temporary dipole
27.	solvent	28.	Solute