Họ tên	MSSV
Nguyễn Thanh Hoàng	22520470

LAB 4: SIMPLE DATAPATH

Đề bài:

Thiết kế một Simple DATAPATH để thực hiện bài toán: "Đếm số bit 1 trong một chuỗi"

I. Giải thuật để thực hiện bài toán:

- Khai báo thanh ghi:

Thanh ghi	Biến	Mã hóa
R1	Data	00
R2	Mask	01
R3	Count	10
R4	Temp	11

- Từ điều khiển (control word) mạch đếm tổng bit 1:

Control Words	IE	Write Address	Read Address A	Read Address B	ALU Ope	Shifter Ope	OE
1	1	R1	Х	Х	X	X	0
2	0	R3	R1	R1	SUB	Pass	0
3	0	R2	R3	Х	Increment	Pass	0
4	0	R4	R1	R2	AND	Pass	0
5	0	R3	R3	R4	ADD	Pass	0
6	0	R1	R1	R1	AND	Shift right	0
7	0	None	R3	R3	AND	Pass	1

Lặp lại nếu Data ≠ 0

II. Biểu diễn FSM của mạch:

- Sơ đồ chuyển trạng thái:

III. Thiếu kế các khối trong mạch:

- 1) Khối Register Files:
 - a) RFC Registe file Cells:
 - Mỗi RFC sẽ có 1 input dữ liệu và 2 output A và B. Tùy vào ta gán hay đọc dữ liệu cho địa chỉ A hay B mà ta sẽ enble output tương ứng.
 - Register-file Cells:

- Đóng gói RFC:

b) RF - Register Files:

- Vì bài toán cần 4 thanh ghi để chứa dữ liệu đại diện cho 4 biến "Data, Mask, Count, Temp" nên ta sẽ cần 2 bit địa chỉ để mã hóa từ địa chỉ 00 đến địa chỉ 11.
- ALU sử dụng trong bài toán này sẽ là ALU 4 bit nên các thanh ghi cũng sẽ là các thanh ghi 4 bit.
- Vì có 4 thanh ghi và mỗi thanh ghi là 4 bit nên ta sẽ có 16 Register-file Cells.
- Ta sẽ có 3 khối Decoder để mã hóa 4 địa chỉ của 4 thanh ghi. Hai khối cho việc **Read** và một khối cho việc **Write**.
- RF:

- Đóng gói RF:

2) Khối ALU 4 bit (Đã thiết kế ở bài LAB 3):

- Opcode của mạch ALU:

S[2]	S[1]	S[0]	ALU Operations
0	0	0	A'
0	0	1	A AND B
0	1	0	A XOR B
0	1	1	A OR B
1	0	0	A
1	0	1	A+B
1	1	0	A-B
1	1	1	A++

3) Bộ dịch phải:

- Trong phạm vi bài toán đếm bit số 1 thì chỉ cần dịch phải:

Shift	Operation		
0	Pass		
1	Shift right		

- Mạch dịch phải:

- Đóng gói:

IV. Mạch DATAPATH hoàn chỉnh:

V. Mô phỏng:

- Mô phỏng sẽ dựa vào control word như ở **phần I** sau khi mã hóa:

Control Words	IE	Write Address	Read Address A	Read Address B	ALU Ope	Shifter Ope	OE
1	1	00	X	X	X	X	0
2	0	10	00	00	SUB	Pass	0
3	0	01	10	Х	Increment	Pass	0
4	0	11	00	01	AND	Pass	0
5	0	10	10	11	ADD	Pass	0
6	0	00	00	00	AND	Shift right	0
7	0	None	10	10	AND	Pass	1

Ví dụ:

- Số 7: 0111 -> 3 bit số 1:

- Số 12: 1100 -> 2 bit số 1:

- Số 15: 1111 -> 4 bit số 1:

- □ Ta thấy **RESULT** cho ra kết quả đúng của từng ví dụ. Vậy là đã thiết kế thành công mạch đếm bit 1.