חישוביות וקוגניציה - תרגיל 8

להגשה עד: 30/12/2021

שימו לב: שאלה 1 היא שאלה שמערבת חישובים אנליטיים וסימולציות נומריות. הגישו קובץ ובו תשובות מילוליות, גרפים, וחישובים שנתבקשתם לערוך, וכן את קבצי הקוד שכתבתם.

שאלה 1

נתון Markov Decision Process (MDP) ובו שני מצבים המעברים אוא שני מצבים המעברים ובו Markov Decision Process (MDP) מוגדרים באופן הבא:

Stay	H	O
H	1	0
O	0	1

Switch	Н	О
Н	0.2	1
O	0.8	0

כאשר כל תא בטבלה מתאר את סיכויי המעבר מהמצב שמצויין בעמודה למצב שמצויין בשורה, כאשר לוקחים את הפעולה הרלבנטית. למשל, ההסתברות להגיע החוצה אם נמצאים בבית ובוחרים להחליף, היא:

$$P[O|H, Switch] = 0.8$$

וכו'.

הגמול מוגדר באופן הבא (בצורה דטרמיניסטית):

$$r(H, \text{Stay}) = 0$$

 $r(H, \text{Switch}) = 1$
 $r(O, \text{Stay}) = 2$
 $r(O, \text{Switch}) = 0$

 $\gamma=0.5$ הוא discounting פרמטר ה

שימו לב: השאלות מתחילות בעמוד הבא.

חלק א' - שיטות מבוססות מודל ומשוואות בלמן

- 1. נתון סוכן אשר מקבל החלטות באקראי, כלומר בכל מצב בוחר כל אחת מהפעולות בסיכוי שווה של 0.5. כתבו את משוואות בלמן עבור פונקציית הערך V^π של הסוכן, ופתרו אותן כדי למצוא את הפונקציה V^π .
 - 2. מבלי לבצע חישובים, מהי לדעתכם המדיניות (Policy) האופטימלית?
 - 3. וודאו שה Policy שניחשתם בסעיף 2 מקיימת את משוואות האופטימליות של בלמן.
- הנתון. מהי MDP והשתמשו בה כדי לפתור את אלגוריתם Value Iteration הנתון. מהי 4. כתבו פונקציה שממשת את אלגוריתם V^* שמצאתם בעזרת הפונקציה זהה לזו שמצאתם בסעיף 2?

:הערות

- באלגוריתם ה Value Iteration, אתחלו את האלגוריתם לפונקציית ערך אקראית (s) לכל v), ובצעו ערך אקראית (s), איטרציות כל עוד יש s עבור s עבור s), וכל עוד מספר איטרציות כל עוד יש s עבור s עבור t0 עבור t1 עבור t2 עבור t3 עבור בפועל ההתכנסות צפויה להיות האיטרציות קטן מt3 עבור t4 עבור t6 עבור t6 עבור t7 עבור בהרבה).
- השתמשו בכלל עדכון סינכרוני, כלומר חשבו את הערכים החדשים $V^{(t+1)}$ של כל המצבים בהתבסס על הערכים הוכחיים $V^{(t+1)}$.

חלק ב' - שיטות Model-Free ולמידת הפרשים זמניים

- a ופעולה s ופעולה שמקבלת מצב s ופעולה שתאפשר לכם להריץ סימולציה של סוכן בסביבה כלומר, פונקציה שמקבלת מצב s ופעולה $R\left(s,a\right)$ את המצב המצב הבא s', ואת הגמול שהתקבל מהמעבר (כלומר s') את המצב הבא שימו לב שבמקרה שלנו הגמול הוא דטרמיניסטי)
- 2. השתמשו באלגוריתם TD-Learning ע'מ ללמוד את V^π עבור הסוכן האקראי מסעיף 1 בחלק א'. אתחלו את לכל $\hat{V}(s)=0$ בצורה שרירותית (למשל לכל $\hat{V}(s)=0$ לכל לכל $\hat{V}(s)$, ובצעו סימולציה של הסוכן בסביבה כאשר בחירת הפעולות נעשית לפי המדיניות שהוגדרה לעיל (בכל מצב, כל פעולה נבחרת באקראי בהסתברות שווה של s0.5). כאשר לפי כלל הלימוד:

$$\hat{V}\left(s\right) \leftarrow \hat{V}\left(s\right) + \eta\left(r + \gamma\hat{V}\left(s'\right) - \hat{V}\left(s\right)\right)$$

כאשר η קצב הלימוד (השתמשו ב 0.01 הריצו את הלמידה עד T=3000 צעדים. הציגו גרף של הריצו את הלמידה לפונקציה של מספר הצעדים בסביבה שביצע הסוכן. סמנו בקווים מקווקווים על אותו \hat{V} (Home) כפונקציה של מספר הצעדים בסביף 1 של חלק א'. האם הלמידה מתכנסת לערך הנכון? מהי הרף את הערכים האמיתיים של V^π שמצאתם בסעיף 1 של חלק א'. האם הלמידה מתכנסת לערך הנכון? ההשפעה של קצב הלימוד על ההתכנסות?

3. השתמשו באלגוריתם על (C-Learning ע'מ ללמוד את המדיניות האופטימלית באופן על בהתבסס על ע'ג הערכסס ע'ג השתמשו באלגוריתם ע'ג ללמוד את ע'ג אתחלו את \hat{Q} בצורה באירותית (למשל $\hat{Q}(s,a)=0$ לכל האקראי. אתחלו את עדכנו את $\hat{Q}(s,a)$ ההתנהגות של אותו סוכן. כאשר הסוכן במצב s, בוחר פעולה s, מקבל גמול t ועבור למצב t עדכנו את כלל הלמידה הבא:

$$\hat{Q}\left(s,a\right) \leftarrow \hat{Q}\left(s,a\right) + \eta \left(r + \gamma \max_{a'} \hat{Q}\left(s',a'\right) - \hat{Q}\left(s,a\right)\right)$$

כאשר η קצב הלימוד (השתמשו ב 0.1 היצו את הלמידה עד 3000 עדים. הציגו גרף של \hat{V}^* (s) בקווים בסביבה שביצע הסוכן. סמנו בקווים על עבור שני המצבים כפונקציה של מספר הצעדים בסביבה שביצע הסוכן. סמנו בקווים מקווקווים על אותו גרף את הערכים האמיתיים של V^* שמצאתם בסעיף 4 של חלק א'. האם הלמידה מתכנסת לערך הנכון?