PREDIKAT DAN QUANTIFIER

Bab 1 Sub Bab 1.4

Tujuan Instruksional Khusus

- Memahami tentang konsep predikat dan fungsi proposisi
- Memahami tentang proses quantification (penggunanaan quantifier pada proposisi)

Predikat dan Fungsi Proposisi

- Perhatikan pernyataan P(x), notasi simbolik dari x > 5
 - "> 5" disebut predikat
 - P disebut predikat
 - P(x) belum mempunyai nilai kebenaran selama x belum diketahui; disebut fungsi proposisi P untuk x
 - P(x) akan menjadi proposisi jika kepada x telah diberikan nilai tertentu kepadanya

- Akan menjadi proposisi jika x telah diberi nilai tertentu (x telah diikat dengan nilai tertentu)
- Nilai yang diberikan kepada x diambil dari himpunan nilai yang disebut semesta (universe of discourse) atau domain
- Dalam contoh di atas domain dapat berupa himpunan bilangan bulat

Quantifier

- Selain mengikat x dengan suatu nilai dari domain tertentu, x dapat juga diikat dengan quantifier
- Prosesnya disebut quantification
- Ada 3 macam quantifiers:
 - Universal quantifier (∀)
 - Existential quantifier (∃)
 - Unique quantifier (∃!)

Universal Quantifier

- $\forall x P(x) di-bahasa-kan demikian: "untuk semua nilai x dalam domain, <math>x > 5$ "
- ∀x P(x) bernilai benar jika dan hanya jika P(x) bernilai benar untuk tiap x
- ∀x P(x) bernilai salah jika dan hanya jika ada nilai x yang membuat P(x) bernilai salah
- Apakah nilai kebenaran dari ∀x P(x) jika domain adalah

```
{ 6, 7, 8, 9 }
{ 1..10 }
{ ... -3, -2, -1, 0, 1, 2, 3, ... }
```

Existential Quantifier

- ▶ $\exists x P(x)$ di-bahasa-kan demikian: "untuk suatu nilai x dalam domain, x > 5"
- ∃ x P(x) bernilai salah jika dan hanya jika P(x) salah untuk tiap x.
- Apakah nilai kebenaran dari ∃ x P(x) jika domain adalah

```
• { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
```

- { 1..10 }
- \circ { ... -3, -2, -1, 0, 1, 2, 3}

Unique Quantifier

- $\exists ! x P(x) di-bahasa-kan demikian: "untuk tepat satu nilai x dalam domain, <math>x > 5$ "
- Apakah nilai kebenaran dari ∃! x P(x) jika domain adalah

```
{ 1, 2, 3, 4, 5, 6 }
{ 1..10 }
{ ... -3, -2, -1, 0, 1, 2, 3, ... }
```

Variabel Terikat, Variabel Bebas, Scope

- Contoh 1: P(x) : x > 5
 - dalam proposisi P(4), $\forall x P(x), \exists x P(x)$
 - variabel x disebut variabel terikat
- Contoh 2: P(x, y) : x + y > 5
 - dalam P(4, y)
 y disebut variabel bebas
 - dalam ∀y P(x, y) x disebut variabel bebas
 - dalam ∃x P(x, y) y disebut variabel bebas
- ► Contoh 3: $\exists x [P(x) \lor Q(x)] \land \forall x R(x)$
 - *scope* dari $\exists x$ adalah $[P(x) \lor Q(x)]$
 - scope dari ∀x adalah R(x)

Negasi Dari Proposisi dengan Quantifier

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x

Negasi Dari Proposisi Dengan *Quantifier*

- Contoh 1 :
 - ~ ∃x P(x) Tidak ada mobil berwarna merah
 - ⋄ ∀x ~P(x) Semua mobil tidak berwarna merah
- Contoh2 :
 - ~∀x P(x) Tidak semua anak nakal
 - ∃x ~P(x) Ada anak yang tidak nakal

Proposisi dengan *Quantifier* yang lebih kompleks

- Anggap domain adalah himpunan bilangan nyata (real numbers)
 - $\circ \quad \forall x \ \forall y \ (x + y = y + x)$

 - $\forall x \ \forall y \ ((x > y) \land (y < 0) \rightarrow xy < 0)$

Quantification pada dua variabel

Proposisi	TRUE	FALSE
∀x ∀y P(x, y) ∀y ∀x P(x, y)	P(x, y) benar untuk semua pasangan x dan y	Ada pasangan x dan y yang membuat P(x, y) salah
∀x ∃y P(x, y)	Untuk tiap x ada suatu y yang membuat P(x, y) benar	Ada x yang membuat P(x, y) salah untuk tiap y
∃x ∀y P(x, y)	Ada x yang membuat P(x, y) benar untuk tiap y	Untuk tiap x ada suatu y yang membuat P(x, y) salah
∃x ∃y P(x, y)	Ada pasangan x dan y yang membuat P(x, y) benar	P(x, y) salah untuk semua pasangan x dan y

PR Exercise 1.4 (Latihan)

- Tentukan nilai kebenaran jika domain adalah semua bilangan integer dari statement berikut :
 - $\circ \forall n(n+1 > n)$
 - ∘ \exists n(n = -n)
 - \circ \exists n(2n = 3n)
 - \forall n(n² \geq n)
- 2. Terjemahkan statement berikut ini ke bhs inggris, dimana C(x) adalah "x is a comedian" dan F(x) adalah "x is funny", dan domainnya adalah semua orang.
 - $\lor \forall x(C(x) \rightarrow F(x))$
 - $\circ \exists x(C(x) \to F(x))$
 - $\forall x(C(x) \land F(x))$
 - $\searrow \exists x (C(x) \land F(x))$

PR Exercise 1.4 (Latihan)

- Terjemahkan tiap statement berikut ke bentuk ekspresi logika menggunakan predikat, quantifier dan konektif.
 - No one is perfect
 - Not everyone is perfect
 - All your friends are perfect
 - One of your friends is perfect
 - Everyone is friend and is perfect
 - Not everybody is your friend or someone is not perfect

PR Exercise 1.4 (Latihan)

- 4. Tentukan nilai kebenaran dari tiap statement ini jika domain dari tiap variabel adalah semua bilangan real.
 - $\lor \forall x \exists y (x^2 = y)$
 - $\circ \exists y \forall x(xy = 0)$
 - $\circ \ \forall x(x \neq 0 \rightarrow \exists y(xy = 1))$
 - $\lor \forall x \exists y (x + y = 1)$
 - $\circ \ \forall x \forall y \exists z (z = (x + y)/2)$

Pekerjaan Rumah

- Pada Buku Teks: Discrete Mathematics and Its Applications, Kenneth H Rossen, McGraw-Hill 7th edition
 - Exercise 1.4: No. 15, 25
 - Exercise 1.5: No. 27, 28