8085 Pin Configuration

The descriptions of various pins are as follows:

Address Bus and Data Bus

A₈ -A₁₅ (Output):

These are **address bus** and are used for the most significant bits of the memory address or 8-bits of I/O address.

AD₀ -AD₇ (Input/output):

These are time multiplexed **address/data bus** i.e. they serve dual purpose. They are used for the least significant 8 bits of the memory address or I/O address during the first cycle. Again they are used for data during 2nd and 3rd clock cycles.

Control and Status Signals

ALE (Output):

ALE stands for **Address Latch Enable** signal. ALE goes high during first clock cycle of a machine cycle and enables the lower 8-bits of the address to be latched either into the memory or external latch.

IO/M (Output):

It is a **status signal** which distinguishes whether the address is for memory or I/O device.

S_0 , S_1 (Output):

These are **status signals** sent by the microprocessors to distinguish the various types of operation given in table below:

Status codes for Intel 8085

s_1	s_0	Operations
0	0	HALT
0	1	WRITE
1	0	READ
1	1	FETCH

RD (Output):

RD is a signal to control READ operation. When it goes low, the selected I/O device or memory is read.

WR (Output):

WR is a signal to control WRITE operation. When it goes low, the data bus' data is written into the selected memory or I/O location.

READY (Input):

It is used by the microprocessor to sense whether a peripheral is ready to transfer a data or not. If READY is high, the peripheral is ready. If it is low the micro processor waits till it goes high.

Interrupts and Externally Initiated Signals

HOLD (**INPUT**): HOLD indicates that another device is requesting for the use of the address and data bus.

HLDA (**OUTPUT**): HLDA is a signal for HOLD acknowledgement which indicates that the HOLD request has been received. After the removal of this request the HLDA goes low.

INTR (**Input**): INTR is an Interrupt Request Signal. Among interrupts it has the lowest priority. The INTR is enabled or disabled by software.

INTA (**Output**): INTA is an interrupt acknowledgement sent by the microprocessor after INTR is received.

RST 5.5, 6.5, 7.5 and TRAP (Inputs): These all are interrupts. When any interrupt is recognized the next instruction is executed from a fixed location in the memory as given below:

Line	Location from which next instruction is picked up	
TRAP	0024	
RST 5.5	002C	
RST 6.5	0034	
RST 7.5	003C	

Reset Signals

RESET IN (Input):

It resets the program counter (PC) to 0. It also resets interrupt enable and HLDA flip-flops. The CPU is held in reset condition till RESET is not applied.

RESET OUT (Output):

RESET OUT indicates that the CPU is being reset.

Clock Signals

X1, X2 (**Input**): X1 and X2 are terminals to be connected to an external crystal oscillator which drives an internal circuitry of the microprocessor. It is used to produce a suitable clock for the operation of microprocessor.

CLK (**Output**): CLK is a clock output for user, which can be used for other digital ICs. Its frequency is same at which processor operates.

Serial I/O Signals

SID (**Input**): SID is data line for serial input. The data on this line is loaded into the seventh bit of the accumulator when RIM instruction is executed.

SOD (Output): SOD is a data line for serial output. The seventh bit of the accumulator is output on SOD line when SIM instruction is executed.

Power Supply

Vcc: +5 Vlots supply

Vss: ground reference