Data Mining & Machine Learning

CS37300 Purdue University

November 6, 2017

Kaggle Competition Update (extra credit)

	Public L	eaderboa	rd Private Leaderb	oard				
	This leaderboard is calculated with approximately 30% of the test data. The final results will be based on the other 70%, so the final standings may be different.					≛ Raw Data		
>	#	∆1w	Team Name	Kernel	Team Members	Score ?	Entries	Last
Students with > 0.6 accuracy in Public Leaderboard*	1	▲ 9	General Grievous			0.87980	6	4d
	2	new	Captain Rex			0.83447	4	4d
	3	▼ 2	Revan		•	0.83407	12	9d
	4	▼ 2	Luke Skywalker			0.83286	9	4d
	5	▼ 2	Cad Bane		0	0.81991	18	13d
i ≪it	6	^ 6	Count Dooku			0.81262	3	2d
uts ubli	7	new	Dengar			0.81222	4	2d
der P	8	new	Darth Vader			0.81019	10	13h
Stu F	9	▼ 5	Yoda		3	0.80979	17	6d
	10	▼ 2	Bossk			0.80291	7	1d
	11	new	Anakin Solo		•	0.76851	1	2d
21 students so far	12	▼ 7	Ki-Adi-Mundi			0.76811	2	14d
	13	▼ 7	Kyp Durron		· J	0.73613	4	1mo
	14	▼ 7	Shaak Ti			0.70133	2	1mo
*Extra credit based on	15	▼ 6	Admiral Thrawn			0.65520	2	14d
Private Leaderboard	16	new	Clone Commander C	Cody		0.63334	4	2d

Neural Networks - Generative Models

Overview

- Classification Tasks
- Generative Tasks
 - Boltzmann Machine
 - Restricted Boltzmann Machine (RBM)
 - Generative Adversarial Network (GANs)

Classification Task

• And outputs the most likely label: f(x)

Generative Task

by fiat (out of the blue)

Learns to generate examples: (x, y)

is tanned
employs a
captain

pays high
property taxes
employs a
cook

Easier and Harder Tasks

- Classification/regression/discriminative tasks are easier
 - Input is given
 - Just need to learn function (classifier) that maps input to desired (given) output
 - A.k.a. supervised learning (because we are given part of the answer)
- Generative tasks are harder (and closer to what we consider "intelligence")
 - Must learn how to generate examples not given in the training data
 - A.k.a. unsupervised learning (because we are NOT given part of the answer)
 - Create a movie script, develop a new drug, generate an image, create new software,...
 - Harder to evaluate quality: how good is a generated example?
 - E.g.: are the images really generated or just remembered from the training data?

Generative example (anonymous submission to ICLR 2018)

What is the Difference Between Classification and Generation Tasks?

(statistically)

Statistical Difference Between Classification and Generation Tasks

With probabilistic models it is easy to explain:

Classification task

• Given an example (x_i, y_i)

- e.g.: $x_i = 0$, $y_i = \log 1$
- Wants to learn conditional probability $p(y_i|x_i)$
- To use it, we need x_i and the output is the predicted class: $\hat{y}_i = \argmax_y p(y|x_i)$

Generation task

- Given an example (x_i, y_i)
- Wants to learn joint probability $p(y_i, x_i)$
- To use it, we sample another example from p(y,x), the output is an entirely new example

Are Generative Models More Powerful?

- Suppose we have p(y,x)
- Can we perform classification $\hat{y}_i = \underset{y}{\operatorname{arg max}} p(y|x_i)$ of example x_i ?
- Yes! Using Bayes rule

but also harder to learn

$$p(y|x_i) = \frac{p(y, x_i)}{\sum_{y} p(y, x_i)}$$

 $\sum_{y} p(y, x_i)$ • Generative models are more powerful in this sense...

e.g.: x_i

 Because generative models are harder to learn, more specialized models (classifiers) will do better in real-world classification tasks

How Generative Models Work in Practice

 Function takes one or more pseudo-random number as input

e.g.:
$$\mathbf{x} = \left[egin{array}{c} & & & \\ & & & \\ & & & \end{array} \right]$$

Outputs an example

Examples of Generative Neural Network Models

- This week we will see two types of generative models:
 - Boltzmann machine-type models

Adversarial network-type models

Restricted Boltzmann Machines

Restricted Boltzmann Machines

Visible units

- Need to learn a good joint probability $p(\mathbf{v}_i, \mathbf{h}_i)$
- We will define the joint probability as

$$p(\mathbf{v}_i, \mathbf{h}_i; \mathbf{W}) = \frac{\exp(\mathbf{v}_i \mathbf{W} \mathbf{h}_i)}{\sum_{\forall \mathbf{v}, \mathbf{h}} \exp(\mathbf{v} \mathbf{W} \mathbf{h})}$$

- What is the model space?
 - i.e., what are we searching over?
- What is the score function?
- How can we do the search?

Restricted Boltzmann Machines

Visible units

Model space:
 The set of all possible joint probability distributions given by all possible weights W

$$p(\mathbf{v}_i, \mathbf{h}_i; \mathbf{W}) = \frac{\exp(\mathbf{v}_i \mathbf{W} \mathbf{h}_i)}{\sum_{\forall \mathbf{v}, \mathbf{h}} \exp(\mathbf{v} \mathbf{W} \mathbf{h})}$$

- What is the score function?
 - Not easy.... topic of Friday's class
- How can we do the search?
 - Not easy.... topic of Friday's class