Project Development Phase Model Performance Test

Team ID	PNT2022TMID35524
Project Name	Project – Web Phishing Detection

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot In [31] accepting the clossification report of the model print(merical about fination-reports), test, _test_utes) print(merical about fination-reports), _test_utes)		
1.	Metrics	Random forest			
		Accuray Score- 96.9	-1 0.09 0.50 0.57 376 a.c. 2.00 0.57 3.c. 2.00 0.5		
2.	Tune the Model	Hyperparameter Tuning - 96.9 Validation Method – KFOLレ ∝ Cross Validation Method	Wilconon signed-rank lead is (36) with an of cross spinisher man for stage of the meet volume for the meet volume the meet volume		

1. METRICS:

CLASSIFICATION REPORT:

In [40]:

#computing the classification report of the model

print(metrics.classification_report(y_test, y_test_forest))

	precision	recall	f1-score	support
-1	0.97	0.96	0.96	956
1	0.97	0.98	0.97	1255
accuracy			0.97	2211
macro avg	0.97	0.97	0.97	2211
weighted avg	0.97	0.97	0.97	2211

PERFORMANCE:

In [46]:

dispalying total result
sorted_result

Out[46]:

	ML Model	Accuracy	f1_score	Recall	Precision
0	Random Forest	0.969	0.973	0.994	0.988
1	Decision Tree	0.960	0.965	0.992	0.991
2	Support Vector Machine	0.957	0.963	0.982	0.966
3	K-Nearest Neighbors	0.953	0.959	0.990	0.989
4	Logistic Regression	0.924	0.933	0.947	0.927

TUNE THE MODEL - HYPERPARAMETER TUNING

```
In [51]: from sklearn.ensemble import RandomForestRegressor
         rf = RandomForestRegressor(random_state = 42)
         from pprint import pprint
         # Look at parameters used by our current forest
         print('Parameters currently in use:\n')
         pprint(rf.get_params())
         Parameters currently in use:
         {'bootstrap': True,
           'ccp alpha': 0.0,
           'criterion': 'squared_error',
           'max_depth': None,
           'max_features': 'auto',
           'max_leaf_nodes': None,
           'max samples': None,
           'min_impurity_decrease': 0.0,
           'min samples leaf': 1,
           'min_samples_split': 2,
           'min_weight_fraction_leaf': 0.0,
           'n_estimators': 100,
           'n_jobs': None,
           'oob_score': False,
           'random_state': 42,
           'verbose': 0,
           'warm_start': False}
```

VALIDATION METHODS: KFOLD & Cross Folding

```
In [52]: rf = RandomForestClassifier(n estimators=40)
          rf.fit(X_train, y_train)
          rf.score(X test, y test)
Out[52]: 0.966078697421981
In [57]: from sklearn.model_selection import cross val score
          score rf=cross val score(RandomForestClassifier(n estimators=40),X, y,cv=3)
          print(score_rf)
          print(np.average(score_rf))
          [0.96933514 0.97313433 0.92510176]
          0.9558570782451379
In [62]: scores1 = cross_val_score(RandomForestClassifier(n_estimators=5),X, y, cv=10)
          print('Avg Score for Estimators=5 and CV=10 :')
          print(np.average(scores1))
          Avg Score for Estimators=5 and CV=10 :
          0.9660735764607693
In [63]: scores2 = cross_val_score(RandomForestClassifier(n_estimators=20),X, y, cv=10)
          print('Avg Score for Estimators=20 and CV=10 :')
          print(np.average(scores2))
          Avg Score for Estimators=20 and CV=10 :
           AVE SCOTE TOT ESCENIACOUS - S and CV-10 .
            0.9660735764607693
   In [63]: scores2 = cross_val_score(RandomForestClassifier(n_estimators=20),X, y, cv=10)
            print('Avg Score for Estimators=20 and CV=10 :')
            print(np.average(scores2))
            Avg Score for Estimators=20 and CV=10 :
            0.972134879268163
   In [64]: scores3 = cross_val_score(RandomForestClassifier(n_estimators=30),X, y, cv=10)
            print('Avg Score for Estimators=30 and CV=10 :')
            print(np.average(scores3))
            Avg Score for Estimators=30 and CV=10 :
            0.972859106641683
   In [65]: scores4 = cross_val_score(RandomForestClassifier(n_estimators=40),X, y, cv=10)
            print('Avg Score for Estimators=40 and CV=10 :')
            print(np.average(scores4))
            Avg Score for Estimators=40 and CV=10 :
            0 9727681179579915
```