Классическая дифференциальная геометрия

Пшеничный Никита*

Весна 2025 г.

Аннотация

В основу этих записок легли лекции О.И. Мохова и семинары А.А. Гайфуллина на мехмате МГУ, а также курс А.В. Пенского в НМУ.

При написании файла я во многом ориентировался на конспект И. А. Дынникова по дифференциальной геометрии. Некоторые из разобранных задач взяты из классического «Сборника задач по дифференциальной геометрии» А. С. Мищенко, Ю. П. Соловьёва, А. Т. Фоменко, а также из листков А. В. Пенского.

Содержание

1	Пре	едварительные сведения и напоминания	
2	Теория кривых		
	2.1	Базовые определения	
	2.2	Способы задания кривой	
	2.3	Касательная в точке регулярной кривой	
	2.4	Натуральный параметр и кривизна	
	2.5	Соприкасающаяся окружность	
	2.6	Кривые на плоскости и в пространстве	
		Эволюта и эвольвента плоской кривой	
	2.8	Лополнительные залачи	

 $^{^*}$ Последняя компилляция: 14 марта 2025 г.

Обозначения

 \mathbb{R} — поле (топологическое пространство) вещественных чисел

 $oldsymbol{x}=(x^1,\ldots,x^n)$ — вектор (точка) из \mathbb{R}^n

 $(oldsymbol{e}_1,oldsymbol{e}_2,\ldots,oldsymbol{e}_n)$ — стандартный базис в \mathbb{R}^n

 $\operatorname{span}(oldsymbol{v}_1,\dots,oldsymbol{v}_n)$ — линейная оболочка векторов $oldsymbol{v}_1,\dots,oldsymbol{v}_n$

 $S_{\text{or}}(\boldsymbol{u}, \boldsymbol{v})$ — ориентированная площадь параллелограмма, натянутого на векторы \boldsymbol{u} и \boldsymbol{v} , $\operatorname{Vol}_{\text{or}}(\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$ — ориентированный объём n-мерного параллелепипеда, натянутого на векторы $\boldsymbol{v}_1, \dots, \boldsymbol{v}_n$.

I — связное подмножество \mathbb{R}

 $\operatorname{Int} U$ — внутренность подмножества $U \subset \mathbb{R}^n$

 $\langle oldsymbol{x}, oldsymbol{y}
angle$ — скалярное произведение векторов $oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n$

 $oldsymbol{x} imesoldsymbol{y}$ — векторное произведение векторов $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^3$

 $ho(oldsymbol{x},oldsymbol{y})$ — расстояние между точками $oldsymbol{x}$ и $oldsymbol{y}$ из \mathbb{R}^n

 $m{r}(t) = (x^1(t), \dots, x^n(t))$ — радиус-вектор точки $m{x} \in \mathbb{R}^n$

 $\dot{\boldsymbol{r}}(t), \ddot{\boldsymbol{r}}(t)\dots$ векторы скорости, ускорения и т. д. точки $\boldsymbol{x} \in \mathbb{R}^n$

Нотация Эйнштейна. По дважды повторяющимся индексам, один из которых верхний, а другой нижний, подразумевается суммирование в пределах, устанавливаемых из контекста, а сам такой индекс называется *слепым*. Верхний индекс переменной, появляющейся в знаменателе, считается для выражения нижним, и наоборот.

1. Предварительные сведения и напоминания

Сначала вы подумаете, что я сумасшедший, а потом вам понравится, и вы сами будете делать так же.

А.В. Пенской

Математический анализ

Отображение $f: \mathbb{R}^n \to \mathbb{R}^m$ называется дифференцируемым в точке x_0 , если существует линейное отображение \mathcal{L}_{x_0} , для которого выполнено

$$f(x) = f(x_0) + \mathcal{L}_{x_0}(x - x_0) + \overline{o}(\|x - x_0\|)$$
 при $x o x_0$.

При этом отображение f не обязано быть определено всюду. Нам будет достаточно, чтобы в область определения отображения f входило замыкание некоторой выпуклой открытой области, содержащее точку x_0 . Однозначно определённое линейное отображение $\mathcal{L}_{x_0} =: df|_{x_0}$ называют $\partial u \phi \phi e penuuanom$ отображения f в точке x.

Матрица $J_{\boldsymbol{f}}(\boldsymbol{x}_0)$ линейного отображения $d\boldsymbol{f}|_{\boldsymbol{x}_0}$ называется матрицей Якоби отображения \boldsymbol{f} в точке \boldsymbol{x}_0 и состоит из частных производных:

$$J_{\boldsymbol{f}}(\boldsymbol{x}_0) = \begin{pmatrix} \frac{\partial f^1}{\partial x^1} \Big|_{\boldsymbol{x}_0} & \cdots & \frac{\partial f^1}{\partial x^n} \Big|_{\boldsymbol{x}_0} \\ \vdots & \ddots & \vdots \\ \frac{\partial f^m}{\partial x^1} \Big|_{\boldsymbol{x}_0} & \cdots & \frac{\partial f^m}{\partial x^n} \Big|_{\boldsymbol{x}_0} \end{pmatrix} = \begin{pmatrix} \nabla f^1 \Big|_{\boldsymbol{x}_0} \\ \vdots \\ \nabla f^m \Big|_{\boldsymbol{x}_0} \end{pmatrix}.$$

Дифференцируемое отображение f определяет новое отображение $\partial f/\partial x \colon \mathbb{R}^n \to \mathbb{R}^m$. Если последнее также дифференцируемо, то f называется ∂e ажды $\partial u \phi \phi$ еренцируемым, и

далее индуктивно: если $\partial f/\partial x$ дифференцируемо k раз, то f дифференцируемо k+1 раз. Если отображение f дифференцируемо k раз и при k-кратном дифференцировании получается непрерывное отображение, то говорят, что f k раз непрерывно дифференцируемо или является отображением класса C^k . В дальнейшем под гладким отображением мы будем подразумевать отображение класса C^k для достаточно большого k.

Теорема 1.1 (О производной сложной функции). Если отображения $f: \mathbb{R}^n \to \mathbb{R}^m$ и $g: \mathbb{R}^m \to \mathbb{R}^k$ дифференцируемы, то дифференцируема и композиция $g \circ f$, причём

$$|d(\boldsymbol{g} \circ \boldsymbol{f})|_{\boldsymbol{x}_0} = d\boldsymbol{g}|_{\boldsymbol{f}(\boldsymbol{x}_0)} \circ d\boldsymbol{f}|_{\boldsymbol{x}_0}$$

Теорема 1.2 (Об обратном отображении). Гладкое отображение $f: \mathbb{R}^n \to \mathbb{R}^n$, матрица Якоби которого невырожденна в точке x_0 , локально обратимо в некоторой окрестности точки x_0 , причём обратное отображение также гладкое.

Теорема 1.3 (О неявном отображении). Пусть $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \leqslant n$, — гладкое отображение, матрица Якоби которого в точке x_0 имеет ранг m. Тогда множество решений уравнения $f(x) = f(x_0)$ в окрестности точки x_0 выглядит как график гладкого отображения, выражающего некоторые m координат через оставшиеся n-m, причём эти m координат можно выбрать те, которым соответствуют линейно независимые столбцы в матрице Якоби.

Аналитическая геометрия и линейная алгебра

Пусть в \mathbb{R}^n есть некоторая поверхность, задаваемая уравнением $F(x^1,\dots,x^n)=0$, а по ней движется точка, радиус-вектор которой есть $\boldsymbol{x}=\boldsymbol{r}(t)$. Тогда можем продифференцировать тождество $F(r^1(t),\dots,r^n(t))=0$ в каждой точке, получив по теореме о сложной функции

$$\frac{\partial F}{\partial r^1} \cdot \frac{dr^1}{dt} + \ldots + \frac{\partial F}{\partial r^n} \cdot \frac{dr^n}{dt} = 0$$

или, что то же, $\langle \nabla F, \dot{\boldsymbol{r}} \rangle = 0$.

Из правила Лейбинца сразу следует важная формула дифференцирования скалярного произведения:

$$rac{d}{dt}\langle m{x}(t),m{y}(t)
angle = \langle \dot{m{x}}(t),m{y}(t)
angle + \langle m{x}(t),\dot{m{y}}(t)
angle.$$

Важный частный случай: если $\boldsymbol{x}(t) \perp \boldsymbol{y}(t)$, то $\langle \boldsymbol{x}(t), \dot{\boldsymbol{y}}(t) \rangle = -\langle \dot{\boldsymbol{x}}(t), \boldsymbol{y}(t) \rangle$. Аналогичная формула верна и для векторного произведения:

$$rac{d}{dt}(m{x}(t) imesm{y}(t)) = (\dot{m{x}}(t) imesm{y}(t)) + (m{x}(t) imes\dot{m{y}}(t)).$$

Пусть $r: \mathbb{R} \to \mathbb{R}^n$. Тогда |r| = const тогда и только тогда, когда $\langle r, \dot{r} \rangle = 0$. Доказательство простое — надо продифференцировать тождество $\langle r(t), r(t) \rangle = \text{const}$.

Проекция вектора u на вектор v вычисляется по формуле

$$\operatorname{proj}_{\boldsymbol{v}} \boldsymbol{u} = \frac{\langle \boldsymbol{u}, \boldsymbol{v} \rangle}{\langle \boldsymbol{v}, \boldsymbol{v} \rangle} \cdot \boldsymbol{v}.$$

Oртогонализацией $\Gamma рамма — Шмидта$ называется процедура перехода от линейно независимого набора векторов a_1, \ldots, a_k к набору попарно ортогональных векторов b_1, \ldots, b_k такому, что $\mathrm{span}(a_1, \ldots, a_k) = \mathrm{span}(b_1, \ldots, b_k)$. Этот процесс описывается индуктивными формулами $b_1 := a_1$,

$$\boldsymbol{b}_{i+1} := \boldsymbol{a}_{i+1} - \operatorname{proj}_{\boldsymbol{b}_1} \boldsymbol{a}_{i+1} - \ldots - \operatorname{proj}_{\boldsymbol{b}_i} \boldsymbol{a}_{i+1}.$$

2. Теория кривых

Рубины шлифуют алмазами.

А. А. Гайфуллин

Базовые определения

Определение 2.1. Простой дугой γ в \mathbb{R}^n называется любое подмножество \mathbb{R}^n , гомеоморфное отрезку [0;1]. Параметризацией простой дуги называется гомеоморфизм $r \colon [0;1] \to \gamma$.

Определение 2.2. Параметризация $r: [0;1] \to \mathbb{R}^n$ простой дуги называется регулярной класса C^k , если для всех $i=1,\ldots,n$ функция $r^i(t)$ является отображением класса C^k и

$$\frac{d\mathbf{r}}{dt} > 0$$

в каждой точке (для концов отрезка 0 и 1 в качестве производной берётся производная справа и слева соответственно). Простая дуга называется *регулярной*, если существует её регулярная параметризация.

Параметризация простой дуги естественным образом задаёт на ней ориентацию. Условие на знак производной в данной точке необходимо, чтобы сохранять эту ориентацию при замене параметра.

Определение 2.3. Параметризованной кривой в \mathbb{R}^n называется непрерывное отображение $r\colon I\to\mathbb{R}$ такое, что существует не более чем счётное покрытие промежутка I отрезками $[a_i;b_i]$ такое, что для каждого i ограничение $r|_{[a_i;b_i]}$ есть параметризация простой дуги.

Определение 2.4. Кривой в \mathbb{R}^n называется класс эквивалентности параметризованных кривых, где $r_1\colon I_1\to\mathbb{R}^n$ и $r_2\colon I_2\to\mathbb{R}^n$ эквивалентны, если существует такой гомеоморфизм $I_1\to I_2$, что следующая диаграмма коммутативна:

Любое вложение из данного класса будем называть параметризацией кривой.

Мы будем рассматривать только регулярные кривые. Условие регулярности необходимо добавить для соответствия интуитивному пониманию гладкости как отсутствия изломов. Например, мы не хотим рассматривать кривые вроде $r(t)=(t^2,t^3)$ (рис. 2.1), хотя обе координатные функции $x(t)=t^2$ и $y(t)=t^3$ гладкие класса C^{∞} .

Предложение 2.5. Если $r_1(t)$ и $r_2(s)$ — регулярные эквивалентные параметризации, то t(s) и s(t) являются гладкими функциями.

Доказательство. Рассмотрим параметризацию t. Так как обе параметризации регулярны, то $\dot{r}(t) \neq 0$ в каждой точке t_0 . Тогда найдётся номер i_0 такой, что $\dot{x}^{i_0}(t_0) \neq 0$. Тогда по теореме об обратной функции в некоторой окрестности точки t_0 можно выразить параметр t через x^{i_0} , то есть $t(x^{i_0})$ — гладкая функция в некоторой окрестности данной точки. А x^{i_0} , в свою очередь, является гладкой функцией от s. Таким образом, функция $t(s) = t(x^{i_0}(s))$ гладкая как композиция гладких функций (теорема о сложной функции).

Важно подчеркнуть, что при доказательстве использовалось рассуждение, которое можно сформулировать так: на регулярной кривой в некоторой окрестности любой точки можно

Рис. 2.1: Полукубическая парабола

в качестве параметра выбрать одну из координат евклидова пространства. Отсюда, например, можно сразу получить нерегулярность полукубической параболы — легко видеть, что в окрестности точки (0,0) её нельзя параметризовать ни одной переменной x или y.

Способы задания кривой

На практике часто приходится иметь дело с кривыми, заданными с помощью уравнений. С глобальной точки зрения данный подход не эквивалентнен параметрическому заданию. Однако, если наложить на систему уравнений некоторые ограничения, то мы получим объекты, локально устроенные так же, как кривые.

Определение 2.6. Пусть f — гладкая функция из некоторого подмножества $U \subset \mathbb{R}^n$ в \mathbb{R}^{n-1} . Мы говорим, что точка $x_0 \in U$ является для неё регулярной, если $x_0 \in \operatorname{Int} U$ и $\operatorname{rk} J_{\mathbf{f}}(x_0) = n-1$.

Теорема 2.7. Пусть f^1, \ldots, f^{n-1} — набор гладких функций из некоторого подмножества $U \subset \mathbb{R}^n$ в \mathbb{R} , а точка $\boldsymbol{x}_0 \in U$ является регулярной точкой отображения $\boldsymbol{f} = (f^1, \ldots, f^{n-1})$ и решением системы уравнений

$$\begin{cases} f^1(\mathbf{x}) = 0, \\ \dots \\ f^{n-1}(\mathbf{x}) = 0, \end{cases}$$

то есть $f(x_0) = 0$. Тогда существует окрестность точки x_0 , в которой пространство решений этой системы представляет собой гладкую регулярную кривую.

Верно и обратное: в окрестности любой точки регулярной кривой её можно задать системой уравнений, которая регулярна в этой точке.

Доказательство. Без ограничения общности, можем считать, что первые n-1 столбцов матрицы $J_{\boldsymbol{f}}(\boldsymbol{x}_0)$ линейно независимы (иначе перенумеруем координаты). Тогда по теореме о неявной функции решение этой системы в некоторой окрестности точки \boldsymbol{x}_0 задаётся гладкими функциями $x^1(x^n),\dots,x^{n-1}(x^n)$. Но это и означает, что локально решения представляют собой регулярную кривую, так как радиус-вектор параметризован последней координатой: $\boldsymbol{r}(x^n)=(x^1(x^n),\dots,x^{n-1}(x^n),x^n)$. Эта параметризация регулярна, так как последней компоненой вектора скорости будет 1.

Докажем обратное утверждение. Как упоминалось в предложении 2.5, в качестве параметра локально можно взять одну из координат. Не теряя общности, будем считать, что эта координата x^n : $\mathbf{r}(x^n) = (\varphi^1(x^n), \dots, \varphi^{n-1}(x^n), x^n)$. Теперь запишем систему уравнений $\mathbf{r} - \mathbf{\varphi}(x^n) = \mathbf{0}$. Первые n-1 столбец матрицы Якоби $J_{\mathbf{r}-\mathbf{\varphi}(x^n)}$ в рассматриваемой точки составляют единичную матрицу.

Касательная в точке регулярной кривой

Определение 2.8. Пусть регулярная кривая задана радиус-вектором r(t). *Касательная прямая* к этой кривой в точке t_0 задаётся рядом Тейлора функции r с отбрасыванием всех членов более высокого порядка, чем $t-t_0$:

$$\boldsymbol{\ell}(t) := \boldsymbol{r}(t_0) + \left. \frac{d\boldsymbol{r}}{dt} \right|_{t_0} (t - t_0).$$

Нужно проверить корректность данного определения, ведь оно сформулировано для конкретной параметризации кривой. Здесь корректность сразу следует из теоремы о сложной функции и предложения 2.5:

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}}{ds}\frac{ds}{dt}.$$

Теорема 2.9.

(1) Пусть γ — регулярная кривая, $x_0 \in \gamma$ — некоторая её точка, ℓ — касательная прямая в точке x. Тогда для $x_1 \in \gamma$, $x_1 \neq x_0$ выполнено

$$ho(oldsymbol{x}_1,\ell) = \overline{o}(|oldsymbol{x}_1 - oldsymbol{x}_0|)$$
 при $oldsymbol{x}_1 o oldsymbol{x}_0.$

(2) Для каждой точки $x_0 \in \gamma$ касательная прямая является единственной прямой с указанным свойством.

Доказательство. Пусть на γ выбрана регулярная параметризация $\boldsymbol{r}(t)$, в которой $\boldsymbol{x}_0 = \boldsymbol{r}(0)$. В качестве точки \boldsymbol{x}_1 будем брать $\boldsymbol{r}(t)$, где t пробегает окрестность нуля. Условие $\boldsymbol{r}(t) \to \boldsymbol{x}_0$ можно заменить на $t \to 0$ (по определению кривой). Обозначим $\boldsymbol{v}_0 := \dot{\boldsymbol{r}}(0)$. По условию, $\boldsymbol{v}_0 \neq 0$.

(1) По формуле Тейлора имеем

$$r(t) = x_0 + v_0 t + \overline{o}(t) = x_0 + (v_0 + \overline{o}(1))t$$
 при $t \to 0$.

Расстояние от r(t) до прямой ℓ равно $\rho(r(t),\ell) = |r(t) - x_0| \sin \alpha(t)$, где $\alpha(t)$ — угол между векторами v_0 и $r(t) - x_0$. Поскольку $r(t) - x_0 = (v_0 + \overline{o}(1))t$, этот угол равен $\overline{o}(1)$ при $t \to 0$. Получаем

$$\rho(\boldsymbol{r}(t), \ell) = |\boldsymbol{r}(t) - \boldsymbol{x}_0| \, \overline{o}(1) = \overline{o}(|\boldsymbol{r}(t) - \boldsymbol{x}_0|).$$

Рис. 2.2

(2) Пусть теперь ℓ' — другая прямая, проходящая через точку \boldsymbol{x}_0 , и пусть \boldsymbol{u} — её направляющий вектор. Тогда

$$\rho(\mathbf{r}(t), \ell') = |\mathbf{r}(t) - \mathbf{x}_0| \sin \beta(t),$$

где $\beta(t)$ — угол между векторами \boldsymbol{u} и $\boldsymbol{r}(t) - \boldsymbol{x}_0 = (\boldsymbol{v}_0 + \overline{o}(1))t$. При $t \to 0$ угол $\beta(t)$ стремится к углу между векторами \boldsymbol{u} и \boldsymbol{v}_0 , который по предположению отличен от 0 и π . Отсюда $\rho(\boldsymbol{r}(t), \ell') = |\boldsymbol{r}(t) - \boldsymbol{x}_0|$ (const $+ \overline{o}(1)$), где const $\neq 0$.

Предложение 2.10. Если кривая в \mathbb{R}^n задана системой уравнений f(x) = 0, то касательная к ней в регулярной точке x_0 задаётся системой уравнений $J_f(x_0) \cdot (x - x_0) = 0$.

Доказательство. Точка x_0 регулярна для отображения f, значит, $\operatorname{rk} J_f(x_0) = n-1$, поэтому пространство решений системы с этой матрицей одномерно, то есть задаёт прямую в пространстве \mathbb{R}^n . Остаётся проверить, что она параллельна вектору скорости касательной прямой в точке $x_0 = r(t_0)$ для какой-либо регулярной параметризации.

Пусть r(t) — регулярная параметризация данной кривой, $r(t) = x_0$. Это означает, что f(r(t)) = 0 для всех t. По теореме о производной сложной функции имеет место равенство

$$\frac{d}{dt}\mathbf{f}(\mathbf{r}(t)) = \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{r}(t)} \dot{\mathbf{r}}(t).$$

Подставляя $t = t_0$, получаем

$$\left. \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right|_{\boldsymbol{x}_0} \boldsymbol{v}_0 = 0,$$

где v_0 — вектор скорости при $t=t_0$.

Натуральный параметр и кривизна

Определение 2.11. Длиной кривой, заметаемой при изменении значения параметра от t_0 до t, называется число

$$l = \int\limits_{t_0}^t |\dot{m{r}}(t)| \, dt.$$

Здесь опять нужно проверить корректность, то есть независимость от параметризации. Пусть мы перешли к другому регулярному параметру s, причём dt/ds > 0. Тогда имеем

$$\int_{s_0}^{s} \left| \frac{d\mathbf{r}}{ds} \right| ds = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \frac{dt}{ds} \right| \frac{ds}{dt} dt = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \right| \frac{dt}{ds} \frac{ds}{dt} dt = \int_{t_0}^{t} \left| \frac{d\mathbf{r}}{dt} \right| dt = l.$$

Определение 2.12. Регулярный параметр s называется натуральным параметром регулярной кривой, если $d\mathbf{r}/ds=1$ для всех s.

Предложение 2.13.

- (1) Длина кривой l(t) является натуральным параметром.
- (2) Если s некоторый натуральный параметр, то s = l + const.

Доказательство.

(1) dl/dt = |dr/dt| > 0. Значит, по теореме об обратной функции можем локально выразить t = t(l), и при этом

$$\left|\frac{d\boldsymbol{r}}{dl}\right| = \left|\frac{d\boldsymbol{r}}{dt}\frac{dt}{dl}\right| = \frac{dt}{dl}\left|\frac{d\boldsymbol{r}}{dt}\right| = \frac{|dr/dt|}{|dr/dt|} = 1.$$

(2) Если s — натуральный параметр, то $|\dot{\boldsymbol{r}}(s)|=1$ для каждого s. Отсюда,

$$l(s) = \int_{s_0}^{s} |\dot{\boldsymbol{r}}(s)| \, ds = s - s_0,$$

то есть $s = l + s_0$, что и требовалось.

Далее, если не указано иное, через s мы будем всегда обозначать натуральный параметр, а через \dot{r} — производную по натуральному параметру.

Предложение 2.13 говорит нам о том, что натуральный параметр на любой кривой можно выписать явно по формуле длины кривой. Наличие такой формулы говорит нам о том, что у кривых тривиальная внутренняя геометрия. Всё, что можно делать на кривой — мерять длины, и мы (теоретически) можем это делать в любой параметризации.

Определение 2.14. *Кривизной* кривой в точке s называется $k(s) := |\ddot{r}(s)|$. (Легко видеть, что от выбора натурального параметра s ничего не зависит.)

Предложение 2.15. Кривизна регулярной кривой на некотором участке равна нулю тогда и только тогда, когда этот участок является частью прямой.

Доказательство. \Rightarrow . Если k(s)=0, то $\ddot{\boldsymbol{r}}(s)=0$. Тогда $\boldsymbol{r}(s)$ должен быть линеен по s, то есть быть уравнением прямой.

 \Leftarrow . Рассмотрим прямую $r(t) = x_0 + vt$. Перейдём к натуральному параметру, воспользовавшись результатами предложения 2.13:

$$s(t) = \int\limits_0^t |\dot{m{r}}(t)| \, dt = \int\limits_0^t |m{v}| \, dt = |m{v}| \, t.$$

Подставляя найденное, легко убеждаемся, что r(s) линейно, значит, $\ddot{r}(s) = 0$.

Результат последнего предложения согласуется с нашим интуитивным представлением о кривизне — кривизна прямой должна быть равна нулю, а чего-то кроме прямой — не равна нулю.

Определение 2.16. Регулярная кривая называется *бирегулярной* на некотором интервале, если кривизна не равна нулю на этом интервале.

Полезно также посчитать кривизну окружности. В натуральном параметре уравнение окружности радиуса R имеет следующий вид:

$$r(s) = \left(R\cos\frac{s}{R}, R\sin\frac{s}{R}\right)$$

Кривизна равна $k(s) = |\ddot{r}(s)| = \frac{1}{R}$, что тоже соответствует нашему интуитивному представлению: кривизна во всех точках окружности одинакова и уменьшается с увеличением радиуса.

В натуральном параметре $|\dot{\boldsymbol{r}}(s)|=1$, значит, $\dot{\boldsymbol{r}}(s)\perp\ddot{\boldsymbol{r}}(s)=0$. Таким образом, в каждой точке $\boldsymbol{r}(s)$ кривой имеем свой ортонормированный базис из вектора скорости $\boldsymbol{v}(s)\coloneqq\dot{\boldsymbol{r}}(s)$ и вектора главной нормали $\boldsymbol{n}(s)\coloneqq\ddot{\boldsymbol{r}}(s)/|\ddot{\boldsymbol{r}}(s)|$. (Для корректности этого определения считаем кривую бирегулярной.) Плоскость span $(\boldsymbol{v}(s),\boldsymbol{n}(s))$ называется соприкасающейся плоскостью кривой в точке s.

Лемма 2.17. В любой параметризации линейная оболочка векторов скорости и ускорения лежит в соприкасающейся плоскости.

Доказательство. Перейдём от некоторого регулярного параметра t к натуральному параметру s:

$$\frac{d\boldsymbol{r}(t)}{dt} = \frac{d\boldsymbol{r}(s)}{ds}\frac{ds}{dt}, \quad \frac{d^2\boldsymbol{r}(s)}{ds^2} = \frac{d^2\boldsymbol{r}(s)}{ds^2}\left(\frac{ds}{dt}\right)^2 + \frac{d\boldsymbol{r}(s)}{ds}\frac{d^2s}{dt^2}.$$

Из первого видно, что все вектора скорости коллинеарны. А из последнего — что вектор ускорения в любой регулярной параметризации является линейной комбинацией векторов скорости и ускорения в натуральной параметризации, а значит, принадлежит соприкасающейся плоскости.

Выведем формулу кривизны в произвольной параметризации. Заметим, что

$$|S_{\mathrm{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))| = k(s) \cdot \underbrace{|S_{\mathrm{or}}(\boldsymbol{v}(s), \boldsymbol{n}(s))|}_{1} = k(s).$$

Теперь выразим производные по s через произвольный параметр t (производные по t будем обозначать штрихом). Сразу из определения натурального параметра имеем $\frac{ds}{dt} = |\mathbf{r}'(t)|, \dot{\mathbf{r}}(s) = \mathbf{r}'(t)/|\mathbf{r}'(t)|$. Считаем вторую производную:

$$\ddot{\boldsymbol{r}}(s) = \frac{d}{ds} \left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|} \right) = \left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|} \right)' \frac{dt}{ds} = \frac{\boldsymbol{r}''(t) |\boldsymbol{r}'(t)| - \frac{d}{dt} |\boldsymbol{r}'(t)| |\boldsymbol{r}'(t)|}{|\boldsymbol{r}'(t)|^3}.$$

Подставляем в формулу, выведенную для натуральной параметризации:

(2.1)
$$k(t) = |S_{\text{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))| = \left|S_{\text{or}}\left(\frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|}, \frac{\boldsymbol{r}''(t)}{|\boldsymbol{r}'(t)|^2}\right)\right| = \frac{|S_{\text{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t))|}{|\boldsymbol{r}'(t)|^3}.$$

Смогли отбросить второе слагаемое в выражении r''(s), так как вектор в этом слагаемом был коллинеарен r'(t), поэтому при подстановке в ориентированную площадь давал 0.

Соприкасающаяся окружность

Определение 2.18. Говорят, что две гладкие кривые *имеют в точке* x_0 *соприкосновение* $nop n \partial k a \ k$, где $k \geqslant 1$, если для некоторых их регулярных параметризаций и некоторого t_0 выполнено

(2.2)
$$r_1(t_0) = r_2(t_0) = x_0, \quad |r_1(t) - r_2(t)| = \overline{o}((t - t_0)^k)$$
 при $t \to t_0$.

Из формулы Тейлора следует, что условие (2.2) равносильно следующему:

$$m{r}_1 = m{r}_2(t_0), \quad m{r}_1'(t_0) = m{r}_2'(t_0), \quad \dots, \quad \left(rac{d^km{r}_1}{dt^k}
ight)(t_0) = \left(rac{d^km{r}_2}{dt^k}
ight)(t_0).$$

Касательная прямая к кривой имеет в точке касания первый порядок соприкосновения с этой кривой. Однако может иметь и больший порядок соприкосновения.

Определение 2.19. Точка x кривой γ называется *точкой спрямления*, если в ней кривая γ имеет со своей касательной прямой соприкосновение порядка два.

Предложение 2.20. Пусть дана кривая с регулярной парамеризацией r(t). Точка, соответствующая значению параметра $t=t_0$ является точкой спрямления тогда и только тогда, когда векторы скорости $r'(t_0)$ и $r''(t_0)$ коллинеарны.

Доказательство. \Rightarrow . Пусть $\ell(t)$ — параметризация касательной в точке спрямления. Тогда имеем $\mathbf{r}'(t) = \ell'(t)$ и $\mathbf{r}''(t) = \ell''(t)$, а вектора ℓ' и ℓ'' коллинеарны, так как они сонаправлены одной и той же касательной прямой.

 \Leftarrow . Параметризуем отрезок касательной прямой возле точки ${m r}(t_0)$ следующим образом:

$$\boldsymbol{\ell}(t_0) = \boldsymbol{r}(t_0) + \dot{\boldsymbol{r}}(t_0)t + \frac{\ddot{\boldsymbol{r}}(t_0)}{2}t^2, \ t \in [t_0 - \varepsilon; t_0 + \varepsilon].$$

При достаточно малом ε эта параметризация регулярна, так как по условию $\dot{\boldsymbol{r}}(t_0) \neq 0$.

Отметим, что из доказанного предложения следует, что точки спрямления — ровно те точки, в которых кривизна кривой равна нулю. Действительно, в регулярной параметризации $|\dot{\pmb{r}}|=\mathrm{const}\neq 0$, так что $\dot{\pmb{r}}\perp\ddot{\pmb{r}}$, но в точках спрямления $\dot{\pmb{r}}\parallel\ddot{\pmb{r}}$. Так что остаётся единственная возможность $\ddot{\pmb{r}}=\pmb{0}$.

Определение 2.21. Соприкасающейся окружностью с данной кривой r(t) в точке x_0 называется окружность, которая имеет соприкосновение второго порядка с этой кривой в точке x_0 .

Теорема 2.22. Если точка x_0 некоторой гладкой кривой γ не является точкой спрямления, то существует ровно одна окружность, имеющая в x_0 соприкосновение второго порядка с γ .

Доказательство. Пусть r(t) — некоторая регулярная параметризация кривой γ с условием $r(0) = x_0$. Соприкосновение второго порядка в точке x_0 с какой-либо другой кривой определяется векторами скорости $v = \dot{r}(0)$ и ускорения $a = \ddot{r}(0)$. Поэтому для доказательства теоремы достаточно взять любую другую кривую с теми же векторами скорости и ускорения в точке x_0 . Таким образом, без ограничения общности мы можем считать, что наша кривая имеет следующую параметризацию:

$$\boldsymbol{r}(t) = \boldsymbol{x}_0 + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2.$$

Так как x_0 — не точка спрямления, векторы v и a линейно независимы (см. предложение 2.20).

Пусть C — окружность, проходящая через x_0 . При любой её параметризации векторы скорости и ускорения лежат в той же плоскости, что и она сама. Поэтому необходимым условием её соприкосновения с γ в точке x_0 является то, что она лежит в соприкасающейся плоскости span(v, a), что мы дальше и предполагаем.

Пусть O — центр окружности C. Тогда вектор $u = \overrightarrow{Ox_0}$ является линейной комбинацией векторов v и a: $u = \lambda v + \mu a$. Расстояние от произвольной точки $x \in \text{span}(v, a)$ до C равно

$$\rho(\boldsymbol{x}, C) = \left| \left| \overrightarrow{Ox} \right| - R \right|,$$

где R — радиус окружности C. Отсюда условие соприкосновения окружности C и γ можно записать так:

$$|\overrightarrow{Or(t)}| - R = \overline{o}(t^2),$$

что равносильно

$$|\overrightarrow{Or(t)}|^2 = R^2 + \overline{o}(t^2).$$

Подставляя $\overrightarrow{Or(t)} = \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2$, получаем

$$\left\langle \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2, \boldsymbol{u} + \boldsymbol{v}t + \frac{\boldsymbol{a}}{2}t^2 \right\rangle = R^2 + \overline{o}(t^2).$$

Раскрывая скобки в левой части и отбрасывая члены порядка $\overline{o}(t^2)$, получаем

$$\langle \boldsymbol{u}, \boldsymbol{u} \rangle + 2 \langle \boldsymbol{u}, \boldsymbol{v} \rangle t + (\langle \boldsymbol{u}, \boldsymbol{a} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle) t^2 = R^2.$$

Учитывая равенство R = |u|, мы приходим к следующему условию соприкосновения второго порядка окружности C и кривой γ :

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 0, \quad \langle \boldsymbol{u}, \boldsymbol{a} \rangle + \langle \boldsymbol{v}, \boldsymbol{v} \rangle = 0.$$

Подставляя $\boldsymbol{u} = \lambda \boldsymbol{v} + \mu \boldsymbol{a}$, получаем систему линейных уравнений на λ и μ :

$$\left(\begin{array}{cc|c} \langle \boldsymbol{v}, \boldsymbol{v} \rangle & \langle \boldsymbol{v}, \boldsymbol{a} \rangle & 0 \\ \langle \boldsymbol{a}, \boldsymbol{v} \rangle & \langle \boldsymbol{a}, \boldsymbol{a} \rangle & -\langle \boldsymbol{v}, \boldsymbol{v} \rangle \end{array}\right),$$

матрица которой есть матрица Грама пары векторов (v,a), которая невырождена по предположению о линейной независимости этих векторов. Поэтому эта система имеет единственное решение.

Соприкосновение кривых второго порядка (или более) влечёт равенство кривизн кривых в точке соприкосновения. Значит, радиус соприкасающейся окружности равен R=1/k, где k — кривизна в точке соприкосновения. Таким образом, соприкасающаяся окружность даёт геометрический смысл понятия кривизны, так что её центр часто называют центром кривизны, а радиус — радиусом кривизны.

Кривые на плоскости и в пространстве

Определение 2.23. Точка r(s) и базис (v(s), n(s)) называются penepom $\Phi pene$ плоской кривой.

В каждой точке кривой введён свой локальный базис. Поэтому и векторы, связанные с точками на кривых, будут задаваться в этих локальных базисах. Чтобы дифференцировать такие векторы, нам нужно научиться дифференцировать векторы \boldsymbol{v} и \boldsymbol{n} .

Теорема 2.24 (Формулы Френе для плоской кривой). Для плоской кривой выполнено

(2.3)
$$\begin{pmatrix} \dot{\boldsymbol{v}}(s) \\ \dot{\boldsymbol{n}}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) \\ -k(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{v}(s) \\ \boldsymbol{n}(s) \end{pmatrix}.$$

Доказательство. Из определения кривизны, $\dot{\boldsymbol{v}} = k\boldsymbol{n}$, что даёт первое уравнение. Известно, что $|\boldsymbol{n}| = 1$, отсюда $\boldsymbol{n} \perp \dot{\boldsymbol{n}}$, так что $\dot{\boldsymbol{n}} = \lambda \boldsymbol{v}$. Тогда

$$0 = \frac{d}{ds} \underbrace{\langle \boldsymbol{v}(s), \boldsymbol{n}(s) \rangle}_{0} = \underbrace{\langle k\boldsymbol{n}, \boldsymbol{n} \rangle}_{k} + \underbrace{\langle \boldsymbol{v}, \lambda \boldsymbol{v} \rangle}_{\lambda} \Rightarrow \lambda = -k,$$

что даёт и второе уравнение $\dot{\boldsymbol{n}} = -k\boldsymbol{v}$.

Вектор главной нормали кривой n задаёт векторное поле на кривой. Однако в точках с нулевой кривизной этот вектор оказывается не определён, и поле выходит разрывным. В \mathbb{R}^n эту проблему никак не решить. Но в плоскости это можно сделать.

Вместо репера Френе можно взять ортонормированный положительно ориентированный базис (v, v^{\perp}) , при этом вновь имеем $\dot{v} \parallel v^{\perp}$. Можем определить «кривизну со знаком» как коэффициент пропорциональности этих векторов.

Определение 2.25. *Ориентированной кривизной* плоской кривой в точке s будем называть величину $k_{\text{or}}(s) := \langle \dot{\boldsymbol{v}}(s), \boldsymbol{v}^{\perp}(s) \rangle$.

Сам знак кривизны геометрического смысла не имеет (он очевидным образом зависит от параметризации), имеют геометрический смысл точки, в которых происходит перемена знака $k_{\rm or}$. Это точки спрямления, где поле главных нормалей терпит разрыв. Формулу (2.1) легко модифицировать для нахождения ориентированной кривизны:

(2.4)
$$k_{\text{or}}(t) = \frac{S_{\text{or}}(\dot{\boldsymbol{r}}(t), \ddot{\boldsymbol{r}}(t))}{|\dot{\boldsymbol{r}}(t)|^3}.$$

Из формул Френе (2.3) видно, что по кривизне можно восстановить кривую. Поэтому соотношение на натуральный параметр и кривизну задаёт кривую однозначно с точностью до движений плоскости. Такие соотношения называются *натуральными уравнениями* и их замечательное свойство состоит в том, что такое задание не зависит от системы координат.

Чтобы восстановить кривую, можно решить линейную систему дифференциальных уравнений (2.3) из четырёх переменных (две координаты вектора \boldsymbol{v} и две координаты вектора \boldsymbol{n}) и проинтегрировать затем вектор $\boldsymbol{v}(s)$. Однако это неоптимальный метод — мы задаём ортонормированный базис $(\boldsymbol{v},\boldsymbol{n})$ на плоскости четырьмя параметрами. Если рассматривать ортонормированный базис $(\boldsymbol{v},\boldsymbol{v}^{\perp})$, то достаточно всего одного параметра — угла $\alpha(s)$ между базисным вектором \boldsymbol{e}_1 и вектором скорости \boldsymbol{v} . Тогда $\boldsymbol{v}=(\cos\alpha(s),\sin\alpha(s))$, $\boldsymbol{v}^{\perp}=(-\sin\alpha(s),\cos\alpha(s))$. Подставляя в определение ориентированной кривизны, получим:

$$k_{\rm or} = \langle (-\dot{\alpha}\sin\alpha, \dot{\alpha}\cos\alpha), (-\sin\alpha, \cos\alpha) \rangle = \dot{\alpha}(\sin^2\alpha + \cos^2\alpha) = \dot{\alpha}.$$

Таким образом, угол поворота вектора скорости естественно выражается через ориентированную кривизну следующим образом:

(2.5)
$$\alpha(s) = \int_{s_0}^{s} k_{\rm or}(s) ds.$$

Потом пишем вектор скорости $v(s) = (\cos \alpha(s), \sin \alpha(s))$ и интегрируем (при этом можем выбрать любую первообразную).

Задача 2.26. Восстановить кривую по натуральному уравнению $R^2 = 2as$ (здесь имеется в виду R = 1/k — радиус кривизны).

Решение. Выражаем кривизну через натуральный параметр:

$$k = \frac{1}{\sqrt{2as}}.$$

Мы извлекли корень, не заботясь о знаке, потому что выбора знака соответствует просто отражению кривой относительно некоторой прямой. Теперь находим угол поворота ортонормированного базиса в каждой точке:

$$\alpha(s) = \int_{0}^{s} \frac{ds}{\sqrt{2as}} = \frac{2}{\sqrt{2a}} \int_{0}^{s} \frac{ds}{2\sqrt{s}} = \sqrt{\frac{2s}{a}}.$$

Здесь (неявно) мы выбрали конкретную первообразную, потому что разные первообразные отвечают одной и той же кривой с точностью до поворота. Выражаем вектор скорости $\boldsymbol{v}(s) = \left(\cos\sqrt{\frac{2s}{a}},\sin\sqrt{\frac{2s}{a}}\right)$ и интегрируем его:

$$\int_{0}^{s} \cos \sqrt{\frac{2s}{a}} ds = \begin{cases} \sqrt{\frac{2s}{a}} =: t & s = \frac{at^2}{2} \\ dt = \frac{ds}{\sqrt{2as}} & ds = a \cdot t dt \end{cases} = a \int_{0}^{t} t \cos t dt = a \int_{0}^{s} t d(\sin t) = at \sin t - a \int_{0}^{t} \sin t dt = a(t \sin t + \cos t).$$

При этом нам не нужно делать обратную замену, потому что сделанная замена соответствует просто смене параметра. Однако надо следить за тем, что при подсчёте второго интеграла мы сделаем ту же самую замену (здесь это, конечно, так). Аналогично,

$$\int_{0}^{s} \cos \sqrt{\frac{2s}{a}} ds = \dots = a(\sin t - t \cos t).$$

Итак, получаем $r(t) = a(\cos t + t \sin t, \sin t - t \cos t)$.

Полученная кривая является эвольвентой окружности радиуса a (см. раздел 2.7), что легко видеть из формулы (2.10).

Помимо практических приложений, формула (2.5) даёт важное приложение в топологии. Из неё легко видеть, что для замкнутой кривой γ имеет место формула

(2.6)
$$\oint_{\gamma} k_{\rm or}(s)ds = 2\pi m, \quad m \in \mathbb{Z},$$

Число m называется vucлом epaweния кривой γ . Число вращения интересно тем, что оно не меняется при деформациях кривой в классе гладких замкнутых кривых (регулярных гомотопиях). Иными словами, число вращения является топологическим инвариантом регулярной замкнутой кривой.

Решим обратную задачу к задаче 2.26.

Задача 2.27. Найти натуральное уравнение для кривой $r(t) = (a\cos^3 t, a\sin^3 t)$.

Решение. Сначала поймём, как выглядит эта кривая. Найдём направление вектора скорости, например, в точке r(0) = (a, 0):

$$\mathbf{v}(t) = a(-3\cos^2 t \sin t, 3\sin^2 t \cos t),$$

В интересующей точке имеем v(0) = (0,0), и понять ничего нельзя. Можем попробовать найти предел при $t \to 0$ нормированного вектора скорости:

$$\lim_{t \to 0+} \frac{\boldsymbol{v}(t)}{|\boldsymbol{v}(t)|} = \lim_{t \to 0+} \frac{a(-3\cos^2t\sin t, 3\sin^2t\cos t)}{3a\cos t\sin t} = \lim_{t \to 0+} (-\cos t, \sin t) = (-1, 0).$$

Аналогично можно повторить для оставшихся трёх точек нерегулярности и затем нарисовать график (рис. 2.3). Эта кривая называется acmpoudoŭ и иногда возникает в физических задачах.

Рис. 2.3: Астроида

Приступим к решению задачи. Сначала посчитаем ориентированную кривизну по формуле (2.4). Для этого найдём производные $\dot{\boldsymbol{r}}(t)$ (а она уже найдена) и $\ddot{\boldsymbol{r}}(t)$:

$$\ddot{\mathbf{r}}(t) = 3a(2\cos t \sin^2 t - \cos^3 t, 2\cos^2 t \sin t - \sin^3 t).$$

Теперь находим ориентированую площадь:

$$S_{\text{or}}(\dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}) = a^2 \cdot \det \begin{pmatrix} -3\cos^2 t \sin t & 3\sin^2 t \cos t \\ 2\cos t \sin^2 t - \cos^3 t & 2\cos^2 t \sin t - \sin^3 t \end{pmatrix} =$$

$$= a^2 \cdot (-6\cos^4 t \sin^2 t + 3\cos^2 t \sin^4 t - 6\cos^2 t \sin^4 t + 3\cos^4 t \sin^2 t) = -3a^2\sin^2 t \cos^2 t.$$

И, наконец, находим ориентированную кривизну:

$$k_{\rm or}(t) = \frac{-3a^2 \sin^2 t \cos^2 t}{27a^3 \cos^3 t \sin^3 t} = -\frac{1}{9a \cos t \sin t}.$$

Мы хотим выразить $k_{\rm or}$ через натуральный параметр, так что сначала надо найти натуральный параметр:

$$s(t) = \int_{0}^{t} |\dot{\boldsymbol{r}}(t)| dt = 3a \int_{0}^{t} \sin t \cos t dt = \frac{3a}{4} \int_{0}^{t} \sin(2t) d(2t) = -\frac{3a}{4} \cos(2t).$$

Итого получаем (здесь уже записываем через радиус кривизны $R=1/k_{
m or}$)

$$R^{2} = -9a^{2}\cos^{2}t\sin^{2}t = -\frac{9a^{2}}{4}\sin^{2}(2t) = \frac{9}{4}\cos^{2}t - \frac{9a}{4} = 4s^{2} - \frac{9a}{4}.$$

Отметим, что натуральное уравнение не единственное в том смысле, что можно брать натуральный параметр со сдвигом. Здесь, например, немного удобнее взять

$$s(t) = -\frac{3a}{4}\cos(2t) + \frac{3a}{4}.$$

(Это обусловлено тем, что теперь s(0) = 0.) Новое уравнение будет выглядеть так:

$$R^2 - 6as - 4s^2 = 0.$$

(Именно в такой форме ответ приведён в задачнике. Алгебраически мы могли его получить просто выделив полный квадрат в старом выражении.)

В пространстве помимо векторов скорости $\boldsymbol{v} \coloneqq \dot{\boldsymbol{r}}$ и главной нормали $\boldsymbol{n} \coloneqq \ddot{\boldsymbol{r}}/\left|\ddot{\boldsymbol{r}}\right|$ определяется вектор бинормали $\boldsymbol{b} \coloneqq \boldsymbol{v} \times \boldsymbol{n}$.

Определение 2.28. Точка r(s) и базис (v(s), n(s), b(s)) называются $penepom\ \Phi pene$ пространственной кривой.

Для этого репера есть аналоги формул (2.3).

Теорема 2.29 (Формулы Френе для пространственных кривых). Для пространственных кривых выполнено

(2.7)
$$\begin{pmatrix} \dot{\boldsymbol{v}}(s) \\ \dot{\boldsymbol{n}}(s) \\ \dot{\boldsymbol{b}}(s) \end{pmatrix} = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & \varkappa(s) \\ 0 & -\varkappa(s) & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{v}(s) \\ \boldsymbol{n}(s) \\ \boldsymbol{b}(s) \end{pmatrix},$$

где $\varkappa(s)$ — некоторая гладкая функция.

Доказательство. Аналогично формулам для плоских кривых, $\dot{\boldsymbol{v}}=k\boldsymbol{n}$. Из определения, $|\boldsymbol{n}|=1$, значит, $\boldsymbol{n}\perp\dot{\boldsymbol{n}}$, так что $\dot{\boldsymbol{n}}=\alpha\boldsymbol{v}+\beta\boldsymbol{b}$. Здесь $\alpha=\langle\boldsymbol{v},\dot{\boldsymbol{n}}\rangle=-\langle\dot{\boldsymbol{v}},\boldsymbol{n}\rangle=-k$, $\beta=\langle\dot{\boldsymbol{n}},\boldsymbol{b}\rangle$. $|\boldsymbol{b}|=|\boldsymbol{v}\times\boldsymbol{n}|=1$, значит, $\dot{\boldsymbol{b}}\perp\boldsymbol{b}$, отсюда $\dot{\boldsymbol{b}}=\alpha\boldsymbol{v}+\beta\boldsymbol{n}$. Находим коэффициенты: $\alpha=\langle\dot{\boldsymbol{b}},\boldsymbol{v}\rangle=-\langle\dot{\boldsymbol{b}},\dot{\boldsymbol{v}}\rangle=0$, $\beta=\langle\dot{\boldsymbol{b}},\boldsymbol{n}\rangle=-\langle\boldsymbol{b},\dot{\boldsymbol{n}}\rangle$. Обозначив $\boldsymbol{\varkappa}:=\langle\dot{\boldsymbol{n}},\boldsymbol{b}\rangle$, получим формулы (2.7).

Геометрический смысл кручения видел из третьего уравнения в (2.7): это скорость вращения соприкасающейся плоскости кривой в данной точке. Выведем удобную формулу для кручения в натуральной параметризации:

$$\dot{\boldsymbol{r}} = \boldsymbol{v}, \quad \ddot{\boldsymbol{r}} = \dot{\boldsymbol{v}} = k\boldsymbol{n}, \quad \dddot{\boldsymbol{r}} = \frac{d}{ds}(k\boldsymbol{n}) = \dot{k}\boldsymbol{n} + k\dot{\boldsymbol{n}} = \dot{k}\boldsymbol{n} - k^2\boldsymbol{v} + \varkappa k\boldsymbol{b}.$$

Заметим, что

$$\operatorname{Vol}_{\operatorname{or}}(\dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}) = \operatorname{Vol}_{\operatorname{or}}(\boldsymbol{v}, k\boldsymbol{n}, \varkappa k\boldsymbol{b}) = k^2 \varkappa \underbrace{\operatorname{Vol}_{\operatorname{or}}(\boldsymbol{v}, \boldsymbol{n}, \boldsymbol{b})}_{1} = k^2 \varkappa.$$

Отсюда, $\varkappa(s) = \mathrm{Vol}_{\mathrm{or}}(\dot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s), \ddot{\boldsymbol{r}}(s))/k(s)^2$. Теперь перейдём в произвольную параметризацию. Для этого нужно будет выразить производные по s через производные по t, как мы это делали при выводе формулы (2.1):

$$\dot{\boldsymbol{r}}(s) = \frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|}, \quad \ddot{\boldsymbol{r}}(s) = \frac{\boldsymbol{r}''(t)}{|\boldsymbol{r}'(t)|^2} + \dots, \quad \ddot{\boldsymbol{r}}'(s) = \frac{\boldsymbol{r}'''(t)}{|\boldsymbol{r}'(t)|^3} + \dots$$

Подставляем в формулу для натуральной параметризации:

$$(2.8) \quad \varkappa(t) = \frac{1}{k(s)^2} \operatorname{Vol}_{\operatorname{or}}(\dot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}, \ddot{\boldsymbol{r}}') = \frac{|\boldsymbol{r}'(t)|^6}{|S_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t))|} \cdot \frac{1}{|\boldsymbol{r}'(t)|^6} \operatorname{Vol}_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}'''(t), \boldsymbol{r}'''(t)) = \frac{\operatorname{Vol}_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}'''(t), \boldsymbol{r}'''(t))}{|S_{\operatorname{or}}(\boldsymbol{r}'(t), \boldsymbol{r}''(t), \boldsymbol{r}''(t))|}.$$

Отметим, что из доказательства последней формулы видно, что базис Френе получается из базиса $(\mathbf{r}'(t), \mathbf{r}''(t), \mathbf{r}'''(t))$, который пишется в произвольной параметризации, ортогонализацией Грама — Шмидта.

Предложение 2.30. Бирегулярная кривая является плоской тогда и только тогда, когда $\varkappa = 0$ (в каждой точке).

Доказательство. Легко видеть, что кривая плоская тогда и только тогда, когда $\boldsymbol{b}(s) = \boldsymbol{v}(s) \times \boldsymbol{n}(s) = \text{const.}$ Действительно, вектор \boldsymbol{b} является просто единичной нормалью плоскости, в которой лежит кривая. А третья формула из (2.7) влечёт, что $\boldsymbol{b} = \text{const.}$ если и только если $\boldsymbol{\varkappa} = 0$.

Задача 2.31. Дана кривая $r(t) = (\operatorname{ch} t, \operatorname{sh} t, t)$.

- (1) Привести её к натуральному параметру.
- (2) Найти репер Френе в каждой точке.
- (3) Найти кривизну и кручение в каждой точке.

Решение. У этой кривой легко пишутся производные всех порядков:

$$\dot{\boldsymbol{r}}(t) = (\operatorname{sh} t, \operatorname{ch} t, 1),
\ddot{\boldsymbol{r}}(t) = (\operatorname{ch} t, \operatorname{sh} t, 0),
\ddot{\boldsymbol{r}}(t) = (\operatorname{sh} t, \operatorname{ch} t, 0).$$

(1) Ищем натуральный параметр по формуле длины кривой:

$$s(t) = \int_{0}^{t} |\dot{\boldsymbol{r}}(t)| dt = \int_{0}^{t} \sqrt{\sinh^{2} t + \cosh^{2} t + 1} dt = \sqrt{2} \int_{0}^{t} \cosh t \, dt = \sinh t \sqrt{2}.$$

Теперь надо каждую координату вектора r(t) выразить через натуральный параметр. Для первых двух координат это делается очевидно, а для последней надо решить квадратное уравнение относительно e^t :

$$s = \sqrt{2} \cdot \frac{e^t - e^{-t}}{2},$$

$$e^{2t} - s\sqrt{2} \cdot e^t - 1 = 0,$$

$$e^t = \frac{s\sqrt{2} + \sqrt{2s^2 + 4}}{2} = \frac{s}{\sqrt{2}} + \sqrt{s^2 + 2},$$

$$t = \ln\left(\frac{s}{\sqrt{2}} + \sqrt{s^2 + 2}\right).$$

Здесь выбрали положительный корень квадратного уравнения, так как $e^t>0$ для всех t. Итого, получаем

$$r(s) = \left(\frac{s}{\sqrt{2}}, \sqrt{s^2 + 2}, \ln\left(\frac{s}{\sqrt{2}} + \sqrt{s^2 + 2}\right)\right).$$

(2) Воспользуемся ортогонализацией Грама — Шмидта:

$$\boldsymbol{v}(t) = \frac{\dot{\boldsymbol{r}}(t)}{|\dot{\boldsymbol{r}}(t)|} = \frac{1}{\operatorname{ch} t \sqrt{2}} (\operatorname{sh} t, \operatorname{ch} t, 1) = \frac{1}{\sqrt{2}} \left(\operatorname{th} t, 1, \frac{1}{\operatorname{ch} t} \right),$$

теперь найдём вектор, совпадающий по направлению с $\boldsymbol{n}(t)$:

$$\ddot{\boldsymbol{r}}(t) - \frac{\langle \boldsymbol{v}(t), \ddot{\boldsymbol{r}}(t) \rangle}{\langle \boldsymbol{v}(t), \boldsymbol{v}(t) \rangle} \boldsymbol{v}(t) = (\operatorname{ch} t, \operatorname{sh} t, 0) - \operatorname{sh} t \sqrt{2} \cdot \frac{1}{\sqrt{2}} \left(\operatorname{th} t, 1, \frac{1}{\operatorname{ch} t} \right) = \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Осталось его нормировать, для этого вычислим квадрат его длины:

$$\frac{1}{\cosh^2 t} + \sinh^2 t = \frac{1 + \sinh^2 t}{\cosh^2 t} = 1.$$

Таким образом, нормировать ничего не надо, и $n(t) = (1/\cosh t, 0, - \th t)$. Осталось только найти вектор бинормали, это проще делать уже не по Граму — Шмидту, а просто по определению:

$$m{b} = m{v} imes m{n} = rac{1}{\sqrt{2}} \det egin{pmatrix} m{e}_1 & m{e}_2 & m{e}_3 \ h t & 1 & rac{1}{\cosh t} \ rac{1}{\cosh t} & 0 & - h t \end{pmatrix} = rac{1}{\sqrt{2}} \left(- h t, 1, -rac{1}{\cosh t}
ight).$$

(3) Так как мы уже нашли репер Френе, нам проще не пользоваться формулами (2.1) и (2.8) (и тем более не расписывать через натуральный параметр), а исходить из формул Френе. Мы знаем, что $\dot{\boldsymbol{v}}=k\boldsymbol{n}$. Можем просто «подобрать коэффициент пропорциональности» между нужными векторами.

$$\dot{\boldsymbol{v}}(t) = \frac{1}{\sqrt{2}} \left(\frac{1}{\operatorname{ch}^2 t}, 0, -\frac{\operatorname{sh} t}{\operatorname{ch}^2 t} \right) = k(t) \cdot \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Отсюда сразу видно, что $k(t) = 1/(\operatorname{ch} t\sqrt{2})$. Можно так же поступить и для кручения, ведь мы знаем, что $\dot{\boldsymbol{b}} = -\varkappa \boldsymbol{n}$:

$$\dot{\boldsymbol{b}}(t) = \frac{1}{\sqrt{2}} \left(-\frac{1}{\operatorname{ch}^2 t}, 0, \frac{\operatorname{sh} t}{\operatorname{ch}^2 t} \right) = -\varkappa(t) \cdot \left(\frac{1}{\operatorname{ch} t}, 0, -\operatorname{th} t \right).$$

Получаем $\varkappa(t) = 1/(\operatorname{ch} t\sqrt{2}).$

Решим задачу нахождения кривизны и кручения кривой, которая задана не параметрически, а системой уравнений.

Задача 2.32. Найти кривизну и кручение кривой, заданной уравнениями

$$\begin{cases} x^2 + z^2 - y^2 = 1, \\ y^2 - 2x + z = 0 \end{cases}$$

в точке (1, 1, 1).

Решение. Сначала проверим, что в окрестности этой точки пересечение данных поверхностей представляет собой гладкую кривую. Для этого, согласно теореме 2.7, достаточно проверить, что точка (1,1,1) является регулярной для отображения $\boldsymbol{f}=(\boldsymbol{f}_1,\boldsymbol{f}_2)$, где $\boldsymbol{f}_1(x,y,z)=x^2-y^2+z^2-1$, $\boldsymbol{f}_2(x,y,z)=-2x+y^2+z$.

$$\begin{split} \nabla \boldsymbol{f}_1|_{(1,1,1)} &= (2x, -2y, 2z)|_{(1,1,1)} = (2, -2, 2), \\ \nabla \boldsymbol{f}_2|_{(1,1,1)} &= (-2, 2y, 1)|_{(1,1,1)} = (-2, 2, 1). \end{split}$$

Видим, что градиенты в интересующих нас точках действительно линейно независимы, то есть $\mathrm{rk}\,J_f(1,1,1)=2$. Далее мы хотим, воспользовавшись теоремой о неявной функции, параметризовать данную кривую в окрестности нашей точки. И мы уже знаем, что в качестве параметра нам точно подойдёт какая-то из координат (замечание после доказательства предложения 2.5), однако нам нужно точно понять, какая именно. Нужно посмотреть на матрицу Якоби (которая на самом деле уже выписана сверху) и увидеть два линейно независимых столбца. Подойдут, например, последние два, так что будем выражать переменные y и z через x. Целиком выразить y и z из данной нам системы можно, но

проблематично. Тем более, позднее мы собираемся пользоваться формулами (2.1) и (2.8), нам нужно знать их производные вплоть до третьего порядка. Однако можно смотреть на это по-другому — кроме первых трёх производных нам больше ничего не нужно, так что их и будем искать. Напишем ряды Тейлора с неопределёнными коэффициентами вблизи точки x=1, но чтобы избавиться от обилия возникающих скобок, сделаем замену $\tilde{x}=x-1$:

$$y(\widetilde{x}) = 1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3),$$

$$z(\widetilde{x}) = 1 + b_1 \widetilde{x} + b_2 \widetilde{x}^2 + b_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3).$$

Найдём коэффициенты подстановкой в данную нам систему. Для упрощения вычислений можно сложить два уравнения, получив новое уравнение

$$x^{2} + z^{2} - 2x + z = 1,$$
$$(x - 1)^{2} + \left(z + \frac{1}{2}\right)^{2} - \frac{9}{4} = 0,$$

которое связывает z и x. В нём надо сделать нашу замену и подставить разложение $z(\widetilde{x})$:

$$\left(z + \frac{1}{2}\right)^2 = \frac{9}{4} - \widetilde{x}^2,$$

$$\left(\frac{3}{2} + b_1\widetilde{x} + b_2\widetilde{x}^2 + b_3\widetilde{x}^3 + \overline{o}(\widetilde{x}^3)\right)^2 = \frac{9}{4} - \widetilde{x}^2.$$

Раскрываем скобки, отбрасывая члены порядка малости $\overline{o}(\widetilde{x}^3)$, и пишем систему на равенство коэффициентов получившихся многочленов в левой и правой части:

$$\begin{cases} 3b_3 + 2b_1b_2 = 0, \\ b_1^2 + 3b_2 = -1, \\ 3b_1 = 0. \end{cases}$$

Отсюда получаем $b_1 = 0$, $b_2 = -\frac{1}{3}$, $b_3 = 0$. Подставляя, получаем $z(\widetilde{x}) = 1 - \frac{1}{3}\widetilde{x}^2 + \overline{o}(\widetilde{x}^3)$. Теперь можем подставить найденное во второе уравнение системы и выразить $y(\widetilde{x})$.

$$(1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3))^2 - 2(\widetilde{x} + 1) + 1 - \frac{1}{3} \widetilde{x}^2 = 0,$$

$$(1 + a_1 \widetilde{x} + a_2 \widetilde{x}^2 + a_3 \widetilde{x}^3 + \overline{o}(\widetilde{x}^3))^2 = 1 + 2\widetilde{x} + \frac{1}{3} \widetilde{x}^2.$$

Получаем систему:

$$\begin{cases} 2a_3 + 2a_1a_2 = 0, \\ a_1^2 + 2a_2 = \frac{1}{3}, \\ 2a_1 = 2. \end{cases}$$

Отсюда $a_1=1,\,a_2=-\frac{1}{3},\,a_3=\frac{1}{3}.$ Таким образом, $y(\widetilde{x})=1+\widetilde{x}-\frac{1}{3}\widetilde{x}^2+\frac{1}{3}\widetilde{x}^3+\overline{o}(\widetilde{x}^3).$ Теперь совершим обратную замену:

$$y(x) = 1 + (x - 1) - \frac{1}{3}(x - 1)^2 + \frac{1}{3}(x - 1)^3 + \overline{o}((x - 1)^3),$$
$$z(x) = 1 - \frac{1}{3}(x - 1)^2 + \overline{o}((x - 1)^3).$$

Из найденного разложения находим: $y'(1)=1,\ y''(1)=-\frac{1}{3}\cdot 2!=-\frac{2}{3},\ y'''(1)=\frac{1}{3}\cdot 3!=2$ и $z'(1)=0,\ z''(1)=-\frac{1}{3}\cdot 2!=-\frac{2}{3},\ z'''(1)=0.$ По формуле кривизны (2.1) имеем

$$k(1) = \frac{\left| (1, 1, 0) \times (0, -\frac{2}{3}, -\frac{2}{3}) \right|}{\left| (1, 1, 0) \right|^3} = \frac{1}{\sqrt{6}}.$$

А по формуле кручения (2.8)

$$\varkappa(1) = \frac{\operatorname{Vol}_{or}\left((1,1,0), (0, -\frac{2}{3}, -\frac{2}{3}), (0,2,0)\right)}{\left|(1,1,0) \times (0, -\frac{2}{3}, -\frac{2}{3})\right|^2} = 1.$$

Эволюта и эвольвента плоской кривой

Определение 2.33. Эволютой плоской бирегулярной кривой γ называется кривая, которую описывает центр кривизны этой кривой.

Пусть r(s) — натуральная параметризация кривой γ , тогда имеем параметризацию (уже не обязательно натуральную) эволюты:

(2.9)
$$\widetilde{\boldsymbol{r}}(s) = \boldsymbol{r}(s) + \frac{1}{k(s)}\boldsymbol{n}(s).$$

Предложение 2.34. Кривая $\widetilde{\gamma}$ является эволютой плоской бирегулярной кривой γ тогда и только тогда, когда $\widetilde{\gamma}$ является огибающей семейства нормалей к γ .

Доказательство. Пусть r(s) — натуральная параметризация кривой γ .

 \Rightarrow . Параметризация эволюты $\widetilde{\gamma}$ имеет вид (2.9). В каждой точке можем вычислить вектор скорости:

$$\widetilde{\boldsymbol{r}}' = \dot{\boldsymbol{r}} + \frac{1}{k}\dot{\boldsymbol{n}} - \frac{k'}{k^2}\boldsymbol{n} = -\frac{k'}{k^2}\boldsymbol{n}.$$

(Во втором равенстве воспользовались формулой Френе для плоской кривой γ .) Таким образом, в каждой точке вектор скорости эволюты $\widetilde{\gamma}$ сонаправлен с вектором некоторой нормали кривой γ , что сразу влечёт требуемое.

 \Leftarrow . Можем записать параметризацию $\widetilde{\gamma}$ в виде

$$\widetilde{\boldsymbol{r}}(s) = \boldsymbol{r}(s) + \lambda(s)\boldsymbol{n}(s).$$

Кривая $\widetilde{\gamma}$ является огибающей поля нормалей к γ . Это значит, что в каждой точке s вектор скорости $\widetilde{r}'(s)$ кривой $\widetilde{\gamma}$ должен быть коллинеарен вектору главной нормали n(s) кривой γ , это задаёт условие на коэффициент λ :

$$\widetilde{r}' = (1 - k\lambda)v + \lambda' n.$$

Отсюда сразу получаем $\lambda = 1/k$, что и требовалось.

Определение 2.35. Эвольвентой плоской бирегулярной кривой γ называется кривая, которую описывает неподвижная точка прямой, катящейся без проскальзывания по кривой.

Эвольвента (в отличие от эволюты) не определена однозначно, ведь можно выбрать любую точку на катящейся прямой. Так что у бирегулярной плоской кривой имеется однопараметрическое семейство эвольвент. Если r(s) — натуральная параметризация кривой γ , то легко получить (опять же, необязательно натуральную) параметризацию эвольвенты:

(2.10)
$$\widehat{\boldsymbol{r}}(s) = \boldsymbol{r}(s) - (s - s_0)\dot{\boldsymbol{r}}(s).$$

Константа s_0 как раз соответствует изначальному смещению точки по скользящей прямой, её выбор соответствует выбору эвольвенты. Иногда мы можем полагать $s_0=0$, не указывая это явно.

Теорема 2.36. Пусть γ и $\widehat{\gamma}$ — регулярные кривые. Следующие условия равносильны:

 $^{^1}$ Здесь производные берутся по одному и тому же параметру s, но обозначены по-разному (точками и штрихами), потому что для кривой γ этот параметр натуральный, а для кривой $\tilde{\gamma}$ — нет.

- (1) кривая $\hat{\gamma}$ является эвольвентой кривой γ ;
- (2) кривая γ является огибающей поля нормалей к $\hat{\gamma}$;
- (3) кривая γ является эволютой кривой $\widehat{\gamma}$.

Доказательство. Пусть r(s) — регулярная параметризация кривой γ .

 $(1) \Rightarrow (2)$. Кривая $\hat{\gamma}$ имеет параметризацию (2.10). Вычисляем вектор скорости:

$$\hat{\boldsymbol{r}}' = \dot{\boldsymbol{r}} - \dot{\boldsymbol{r}} - (s - s_0)\ddot{\boldsymbol{r}}$$

и видим, что он перпендикулярен вектору \dot{r} .

(2) \Leftarrow (1). Если кривая $\hat{\gamma}$ ортогональна касательным к γ , то её параметризация имеет вид $\hat{r}(s) = r(s) + \lambda(s)\dot{r}(s)$. При этом должно быть выполнено $\langle \hat{r}', \dot{r} \rangle = 0$:

$$0 = \langle (1 + \lambda')\dot{\mathbf{r}} + \lambda \ddot{\mathbf{r}}, \dot{\mathbf{r}} \rangle = 1 + \lambda'.$$

Отсюда $\lambda(s) = -(s-s_0),$ то есть данная кривая является эвольвентой кривой $\gamma.$

 $(2) \Leftrightarrow (3)$. См. предложение 2.34.

Дополнительные задачи

Задача 2.37. Пусть r(s) — натуральная параметризация бирегулярной кривой γ в \mathbb{R}^3 с ненулевым кручением. Кривая γ лежит на сфере тогда и только тогда, когда

$$\frac{\varkappa}{k} = \frac{d}{ds} \left(\frac{dk/ds}{\varkappa k^2} \right).$$

Задача 2.38. Построить гладкую замкнутую плоскую кривую с числом вращения 0.

Задача 2.39. Доказать, что для замкнутой регулярной кривой в \mathbb{R}^3 выполняется

$$\oint_{\gamma} k(s)ds \geqslant 2\pi.$$

Задача 2.40. Пусть γ — гладкая регулярная замкнутая кривая. Доказать, что

$$\oint_{\gamma} (\mathbf{r} \, dk + \varkappa \mathbf{b} \, ds) = \mathbf{0}.$$