modell_dummy

February 5, 2018

1 Modell zur Bachelorarbeit

1.0.1 Einrichtung

```
In [1]: from __future__ import print_function, division
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from datetime import datetime
    import math

    import pypsa
    import pypsa.plot as bmplot

%matplotlib inline
```

1.1 Setup

Einrichtung aller wichtigen Kompnenten und Einlesen der Daten

Die jeweiligen Daten sind rein fiktiv und dienen lediglich dem Testen der einzelnen Code-Abschnitte. Später werden reale Daten aus einer anderen Bachelorarbeit verwendet.

1.1.1 Variablen

1.1.2 Einlesen der Datenbanken

Einlesen der als *.csv gespeicherten Daten in ein pandas DataFrame, alle NaN werden durch 0 ersetzt

Umbenennung aller Spaltennamen, die nicht dem von PyPSA vorgegebenen Namen entsprechen

Das eigentliche Erstellen der Komponenten des Modells. Dies geschieht über die von PyPSA dafür vorgesehene Methode "import_components_from_dataframe"

Aus der genannten Datei werden die zeitlichen Veränderungen der Lasten nach Zeitintervallen eingelesen

```
In [9]: # dates = pd.date_range("20170101", periods=6, freq="4H")

df = pd.DataFrame(pd.read_csv(cur_path + "load_dist2" + ".csv"))
    df.index = dates
    nw.import_series_from_dataframe(df, "Load", "p_set")
```

1.2 Optimierung

```
In [10]: nw.lopf()
INFO:pypsa.pf:Slack bus for sub-network 0 is 3
INFO:pypsa.opf:Performed preliminary steps
INFO:pypsa.opf:Building pyomo model using `angles` formulation
INFO:pypsa.opf:Solving model using glpk
INFO:pypsa.opf:Optimization successful
# = Solver Results
# -----
  Problem Information
# -----
Problem:
- Name: unknown
 Lower bound: 52175.0
 Upper bound: 52175.0
```

```
Number of objectives: 1
 Number of constraints: 151
 Number of variables: 97
 Number of nonzeros: 293
 Sense: minimize
# -----
  Solver Information
# -----
Solver:
- Status: ok
 Termination condition: optimal
 Statistics:
   Branch and bound:
    Number of bounded subproblems: 5
    Number of created subproblems: 5
 Error rc: 0
 Time: 0.036023855209350586
   Solution Information
# -----
Solution:
- number of solutions: 0
 number of solutions displayed: 0
Out[10]: ('ok', 'optimal')
```

1.3 Aufbereitung der Daten

Das Berechnen und Vorbereiten einiger Variablen, um diese später eleganter in Diagrammen darstellen zu können

1.4 Visualisierung

Diagramm, das die eingespeiste Energie je Kraftwerk nach Zeitabschnitten anzeigt.

Simple Darstellung des Netzaufbaus unter Verwendung der von PyPSA eigens bereitgestellten Methode

Out[13]: (0, 120)

