

ME54B-0920: Investigating the Effects of Variable Water Type for VIIRS Calibration

ACKNOWLEDGEMENTS: We apply Bowers to St. Latiners, Pull and their teams for providing the coastal AFRONET-OC data. Satellite data was provided by NOAA CLASS.

ABSTRACT: The Naval Research color products. NRL-SSC utilizes the NASA Ocean Biology Processing Group (ORPG) methodology for op-orbit vicarious calibration with in situ data collected in

(VIIRS) satellite ocean color products. NRL-SSC utilizes the NASA Ocean Biology Processing Group (OBPG) methodology for on-orbit vicarious calibration with *in situ* data collected in blue ocean water by the Marine Optical Buoy (MOBY). An acceptable calibration consists of 20-40 satellite to in situ matchups that establish the radiance correlation at specific points within the operating range of the VIIRS instrument. While the current method improves the VIIRS performance, the MOBY data alone does not represent the full range of radiance values seen in the coastal oceans. We will utilize data from the AERONET-OC coastal sites to expand our calibration matchups to cover a more realistic range of continuous values

(nLw) particularly in the green and red spectral regions of the sensor. Improved calibration will provide more accurate data to support daily operation and red spectral regions of the sensor. Improved calibration will provide more accurate data to support daily operation and statistics of the sensor of the se

Werdell et al 2007).

Extensively published by NASA's Ocean Biology Program Group (OBPG), the vicarious calibration is an inversion of the forward processing algorithm resulting in a ratio of predicted (vLt) to observed TOA radiance (Lt).

gain
$$(\lambda) = vLt(\lambda) / Lt(\lambda)$$

Satellite constraints: within ±3 hours of over pass and **no** flags allowed on satellite imagery Exclusion criteria: wind speed must be less than 8 m/s, the maximum aerosol optical thickness (AOT) must be less than 0.2, the nLw values must be between 0.001 and 3.0, the maximum solar zenith

STEP 1: Following the NASA OBPG orbit calibration technique derive calibration coefficients using satellite: in situ matchups:

 The blue gain is comprised of 23 matchups from the MOBY site collected between June 2014 and Feb 2015.

 The green gain is derived from 24 matchups from the Venice (18) and Gulf of Mexico (6) AERONET-Ocean Color sites between June 2014 and August Ca2015n

The blended gain defiled from 4 Monatchips from UnityOBY (23), Vehice (18) and Gulf of Mexico (6).

STEP 2: Use NRL Automated Processing System (APS) to process satellite imagery collected between June 2014 and December 2015 (post Delta-c) at the blue water MOBY site and the green water AERONET sites: WCIS (Gulf of Mexico) and Venise (Italy).

STEP 3: Aggregate satellite and in situ matchups within 3 hours of satellite overpass, with a solar zenith angle <70, and sensor zenith angle <56 degrees. Remove matchings with atmospheric

For the MOBY site, all calibrations produce more accurate retrievals than using the unity gain, (note the general closeness to the 1:1 line)

At the WCIS site, all vicarious calibration sets also are an improvement over the unity (native sensor) calibration.

The results hold true at the Venise site as well, with all vicarious gain sets providing an improvement over the unity calibration.

Venise site spectral nLw VIIRS vs in situ

June 2014 - Dec 2015 using various calibration coefficients

VIIRS nLw (μW/cm2/sr)

The statistics are comparable for all 3 sites with slight performance variations between the calibration coefficients

	MOBY, n= 52		VIIRS range	range	Slope, r ²	ratio	Abs%diff	KIVISE	120%	MOE
									100%	
		M1	(1.366, 3.015)	(1.271, 2.445)	(1.2, 0.993)	1.182	18.2	0.193	80% -	
	YTINO	M2	(1.156, 2.321)	(1.136, 1.971)	(1.13, 0.994)	1.111	11.1	0.1433	60% =	7
		M3	(0.999, 1.63)	(0.945, 1.334)	(1.166, 0.994)	1.164	16.4	0.103	40% - 20% -	
		M4	(0.319 ,0.539)	(0.223, 0.304)	(1.557, 0.982)	1.566	56.6	0.057	0% -	
		M5	(0.041, 0.102)	(0.014, 0.02)	(3.969, 0.942)	3.761	276.1	0.0173	L S	<5% <10% <2
	BLUE WATER CALIBRATION	M1	(1.047, 2.65)	(1.271, 2.445)	(1.04, 0.99)	1.032	7.1	0.2009	data	MOE
		M2	(1.044, 2.147)	(1.136, 1.971)	(1.046, 0.993)	1.03	7.1	0.1418	□ 120% -	
		M3	(0.875, 1.459)	(0.945, 1.334)	(1.035, 0.994)	1.024	5.9	0.0917	<u> 100% </u>	
		M4	(0.129, 0.375)	(0.223, 0.304)	(1.005, 0.974)	1	8.8	0.0449) 80% - 60% -	
		M5	(-0.004, 0.038)	(0.014, 0.02)	(0.921, 0.715)	0.807	46.1	0.0102	Freduency 20%	
	GREEN WATER CALIBRATION	M1	(0.99, 2.615)	(1.271, 2.445)	(1.021, 0.989)	1.012	8.5	0.2037	Fre 50% -	-
		M2	(0.966, 2.087)	(1.136, 1.971)	(1.006, 0.992)	0.995	6.8	0.1439	II 0% -	<5% <10% <2
		M3		(0.945, 1.334)		1.01	4.9	0.0912	xix	
		M4	(0.187, 0.408)	(0.223, 0.304)	(1.131, 0.979)	1.131	13.3	0.0457		MOE
		M5	(0.005, 0.048)			1.39	47.6	0.0109	120% - 100% -	
	H Z	M1	(1.019, 2.632)	(1.271, 2.445)	(1.03, 0.989)	1.022	7.9	0.2023	80% -	
	MAT	M2	(1.016, 2.116)			1.011	7.7	0.1427	60% -	
	BLENDED WATER CALIBRATION	M3	(0.867, 1.449)			1.017	5.4	0.0913	40% -	
		M4	(0.159, 0.389)			1.058	10.3	0.0451	20% -	1
	BLE C	M5	(0.001, 0.043)			1.118	38.5	0.0106	■ 0% -	<5% <10% <2
							MAN			

Blue and blended calibration coefficients

Venise Cumulative % error distribution Me

produce the best results over all

wavelengths.

• N = 52

X-axis = Abs.%

WCIS,	n= 81	VIIRS range	In situ range	Slope, r ²	Median ratio	Median Abs%diff	RMSE		
	M1	(0.161, 1.636)	(0.078, 0.985)	(1.774, 0.805)	2.419	141.9	0.3204	ì	
>	M2	(0.251, 1.712)	(0.149, 1.387)	(1.369, 0.898)	1.622	62.2	0.2403		
UNITY	M3	(0.377, 2.38)	(0.241, 2.011)	(1.284, 0.957)	1.497	49.7	0.2027	ı	
ر	M4	(0.43, 2.478)	(0.264, 2.239)	(1.228, 0.974)	1.366	36.6	0.1757		
	M5	(0.101, 0.729)	(0.022, 0.528)	(1.496, 0.929)	1.772	77.2	0.0802		Se
œ Z	M1	(0.064, 1.244)	(0.078, 0.985)	(1.07, 0.806)	1.14	33.8	0.1955		
BLUE WATER CALIBRATION	M2	(0.147, 1.538)	(0.149, 1.387)	(1.057, 0.898)	1.155	22.9	0.1937		% in data
E W. BRA	M3	(0.22, 2.198)	(0.241, 2.011)	(1.078, 0.975)	1.14	16.5	0.1304		
3LUE	M4	(0.282, 2.262)	(0.264, 2.239)	(1.032, 0.986)	1.047	9.4	0.1075	١	Frequency
шО	M5	(0.04, 0.565)	(0.022, 0.528)	(1.084, 0.957)	1.12	17.3	0.0462	H	ənbə
# Z	M1	(0.071, 1.223)	(0.078, 0.985)	(1.075, 0.815)	1.155	30.9	0.1889		프
GREEN WATER CALIBRATION	M2	(0.131, 1.501)	(0.149, 1.387)	(1.061, 0.924)	1.103	20.8	0.1596	i	
N W BRA	M3	(0.225, 2.185)	(0.241, 2.011)	(1.081, 0.975)	1.15	16.5	0.1286		y -axis
3REE CALII	M4	(0.31, 2.307)	(0.264, 2.239)	(1.079, 0.984)	1.11	11.8	0.1207	7	
₀	M5	(0.055, 0.581)	(0.022, 0.528)	(1.194, 0.959)	1.227	22.7	0.0479		1
ZER N	M1	(0.067, 1.233)	(0.078, 0.985)	(1.07, 0.811)	1.148	33	0.1923		1
WA TIO	M2	(0.137, 1.519)	(0.149, 1.387)	(1.033, 0.9)	1.112	20.1	0.1871	j	
BLENDED WATER CALIBRATION	M3	(0.222, 2.191)	(0.241, 2.011)	(1.077, 0.975)	1.13	15.6	0.1297		
END	M4	(0.296, 2.285)	(0.264, 2.239)	(1.055, 0.986)	1.075	8.5	0.1136		
BLI	M5	(0.047, 0.574)	(0.022, 0.528)	(1.123, 0.954)	1.164	18.6	0.0496		T

VENISE, n= 157 VIIRS range In situ Slope, r² Median Median RMSE

Venise Cumulative % error distribution M1

			range		ratio	Abs%diff		^ 1	.20% _				alative /0 ciror distribution i	1417
			J						.00%			20%		
	M1	(0.323, 3.467)	(0.19, 2.61)	(1.418, 0.897)	1.596	59.558	0.3961		80%		unity	80%		— unity
>	M2	(0.361, 3.563)	(0.222, 3.5)	(1.223, 0.952)	1.327	32.736	0.2961		60%		−blue −green	50%		blue
UNITY	M3	(0.488, 4.521)	(0.379, 4.601)	(1.138, 0.979)	1.201	20.068	0.238		40% +		- blended	40%	green	
⊃ ⊃	M4	(0.463, 4.809)	(0.414, 4.817)	(1.118, 0.985)	1.21	20.974	0.1957		0%		•	0%		
	M5	(0.042, 1.708)	(0.024, 1.171)	(1.284, 0.937)	1.51	50.966	0.0864	U U		<5% <10% <20% <30% <40% <50% <75% <100% More		<5% <10% <20% <	30% <40% <50% <75% <100% More	
ωZ	M1	(0.112, 2.749)	(0.19, 2.61)	(1.002, 0.895)	1.048	20.327	0.2823	data s		Venise Cumulative % error distribution M2		Venise Cum	ulative % error distribution I	M5
BLUE WATER CALIBRATION	M2	(0.245, 3.213)	(0.222, 3.5)	(1.049, 0.96)	1.082	14.995	0.2293	ep ui	20%			120% 100% 80%		
E W BR⁄	M3	(0.353, 4.173)	(0.379, 4.601)	(0.996, 0.986)	0.996	9.628	0.1719	%	80%					→ unitv
3LU ALI	M4	(0.331, 4.421)	(0.414, 4.817)	(0.965, 0.991)	0.965	7.911	0.1272	رن ان	60%	blue		50%		blue
	M5	(-0.037, 1.465)	(0.024, 1.171)	(0.967, 0.951)	0.864	23.48	0.057	edne	40%			40%		green
Z Z	M1	(0.146, 2.713)	(0.19, 2.61)	(0.996, 0.9)	1.037	21.195	0.2725	느	20%	*	- blended	20%		blended
VAT	M2	(0.242, 3.161)	(0.222, 3.5)	(1.016, 0.962)	1.03	14.83	0.2167	Xis	0% +	<5% <10% <20% <30% <40% <50% <75% <100% More		<5% <10% <20%	6 <30% <40% <50% <75% <100% More	
SREEN WATER	M3	(0.345, 4.155)	(0.379, 4.601)	(0.992, 0.986)	0.993	9.384	0.1686	g		Venise Cumulative % error distribution M3				
REE 'ALI	M4	(0.356, 4.498)	(0.414, 4.817)	(0.999, 0.991)	1.015	7.514	0.1341	1	.20% —			. A	: : . h	/:t\
0 0	M5	(-0.013, 1.502)	(0.024, 1.171)	(1.029, 0.957)	0.975	19.881	0.0566	1	.00%			 Any calibration is better than none (unity). Green and blended calibration coefficients 		
Z Z	M1	(0.128, 2.731)	(0.19, 2.61)	(0.998, 0.898)	1.042	20.593	0.2769		80%		-unity			licients
WA	M2	(0.242, 3.186)	(0.222, 3.5)	(1.031, 0.961)	1.056	14.302	0.2223		60% + 40% +	→ blue → green → blended		produce the best results over all wavelengths.		
DED BR/	M3	(0.352, 4.163)	(0.379, 4.601)	(0.993, 0.986)	0.996	9.889	0.1698		20%		_			
BLENDED WATER CALIBRATION	M4	(0.345, 4.46)	(0.414, 4.817)	(0.983, 0.991)	0.994	7.365	0.1298		0% +			• N = 157		
BL	M5	(-0.026, 1.485)	(0.024, 1.171)	(0.999, 0.955)	0.905	19.773	0.0563			<5% <10% <20% <30% <40% <50% <75% <100% More	X-axis	= Abs.%		->
											error			

CONCLUSIONS:

- The OBPG standard methodology using MOBY data provides the most stable calibration (note, lowest stdev).
- In the absence of sufficient quality MOBY matchups we can supplement the blue water matchups with <u>high quality</u> AERONET-OC green water matchups without significantly affecting the error distribution of nLw retrievals.

REFERENCES Methodology can be used to support real-time operations and speed up the transition [1] Arnone, R., Fargion, G., Lawson, A., Martinolich, P., Lee, Z., Davis, C., Ladner, S., Bowers, J., Zibordi, G., "Monitoring and Validation of Ocean Water Leaving Radiance and inter-satellite continuity," 2012 propring SMF0019, propring on line. [2] Clark D., et al., "MOBY: A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurements and Data Analyses Protocols," NASA Tech. Memo.

2003-210004/Rev 4./Vol. VI, NASA Goddard Space Flight, Greenbelt, Maryland, 3-34, (2003).
[3] Fargion, G., R. Arnone, et al, "Real Time VIIRS Cal/Val With Satellite Validation Navy Tool (SAVANT)," 2012 Ocean Sciences Meeting, Session 121, B1294, (2012).
[4] Franz, B. S. Bailey, P. Werdell, C. McClain, "Sensor - independent approach to the vicarious calibration of satellite ocean color radiometry," Applied Optics 46 (22), 5068-5082, (2007).
[5] Gordon, H. R. and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Applied Optics 33, 443-452 (1994).

[6] Hooker S.H., C McClain and A. Mannino, "A Comprehensive Plan for the Long-Term Calibration and Validation of Oceanic Biogeochemical Satellite Data," NASA/SP-2007-214152, 1-40pp. (2007).

[7] Werdell, P.I., S.W. Bailey, B.A. Franz, A. Morel, and C.R. McClain, "On-orbit vicarious calibration of ocean color sensors using an ocean surface reflectance model," Applied Optics 46 (23), (2007)