Microeconometrics Module

Lecture 6: Regression

Swapnil Singh

Lietuvos Bankas and KTU Course Link

Introduction

- Running randomized control experiments require time, and more importantly, money
- We generally have time, but not so much money
- There are other tools, in the absence of randomization, which can help us for causal identification
- For now we focus on regression

Regression: Mathematical Details

Population Model

- Random sample of (y,x) from the population
- **Objective:** Understand how *y* changes with *x*?
- Linear model: $y = \beta_0 + \beta_1 x + u$
- Note that this model specification is an assumption
- What we mean by writing this type of specification?
 - x is affecting y linearly, but
 - A host of other factors, captured by u are also affecting

Population Model: Assumption 1

Assumption

In population, $\mathbb{E}(u) = 0$.

• This is an innocuous assumption

$$y = \beta_0 + \beta_1 x + u$$

$$\equiv \beta_0 + \alpha_0 + \beta_1 x + u - \alpha_0$$

• Note that changing intercept has no effect on β_1

Population Model: Assumption 2

Assumption

 $\mathbb{E}(u|x) = \mathbb{E}(u)$ for all values of x

- Crucial assumption
- Not verifiable. Why?

Example

Let's say y is wage, and x is years of schooling. What we don't observe is the ability of a person, which is subsumed in u. Essentially, with Assumption 2 we are saying:

$$\mathbb{E}(u|x=1) = \mathbb{E}(u|x=16)$$

Population Model: Assumption 2

Assumption

 $\mathbb{E}(u|x) = \mathbb{E}(u)$ for all values of x

- Crucial assumption
- Not verifiable. Why?

Example

Let's say y is wage, and x is years of schooling. What we don't observe is the ability of a person, which is subsumed in u. Essentially, with Assumption 2 we are saying:

$$\mathbb{E}(u|x=1) = \mathbb{E}(u|x=16)$$

• If both assumptions hold,

$$\mathbb{E}(u|x) = \mathbb{E}(u) = 0$$

Conditional expectation function [Very important concept.
 Coming back to it later.]

$$\mathbb{E}(y|x) = \beta_0 + \beta_1 x + \beta_$$

Ordinary Least Squares (OLS)

- **Question:** We have data on x and y. How can we estimate β_0 and β_1 ?
- We have the following model

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = \{1, \dots, n\}$$

 $\mathbb{E}(u) = 0$
 $\mathbb{E}(u|x) = 0$

We observe y's and x's, but u is never going to be observed

Lemma

$$\mathbb{E}(u \mid x) = 0$$
 implies $\mathbb{E}(ux) = 0$

Proof.

$$\mathbb{E}(ux) = \mathbb{E}[\mathbb{E}(ux \mid x)]$$
$$= \mathbb{E}[x\mathbb{E}(u \mid x)]$$
$$= 0$$

Ordinary Least Squares (OLS)

• We have two unknowns – β_0 , β_1 – and two equations

$$\mathbb{E}(u) = 0$$
$$\mathbb{E}(ux) = 0$$

We can further write

$$\mathbb{E}(y - \beta_0 - \beta_1 x) = 0$$

$$\mathbb{E}(x[y - \beta_0 - \beta_1 x]) = 0$$

- Let's say we have n observations, indexed by i, (y_i, x_i)
- Sample counterpart of two conditions is

$$\frac{1}{n} \sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) = 0$$

$$\frac{1}{n} \sum_{i=1}^{n} \left(x_i \left[y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right] \right) = 0$$

• Notice the switch from β_0,β_1 to $\widehat{\beta}_0,\widehat{\beta}_1$

Ordinary Least Squares

Solution of two equations will give

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x}$$

$$\widehat{\beta_1} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

- You cannot identify $\widetilde{\beta}_1$ if $\sum_{i=1}^n (x_i \overline{x})^2 = 0$
 - When will this be the case?

- CEF is given as $\mathbb{E}[Y_i|X_i]$ where X_i is a $K \times 1$ vector of covariates
- Interpretation: population average of Y_i keeping X_i fixed
- Population average: mean in an infinitely large sample
- Note that expectation is a population concept.
 - What is the difference between population and sample?

• CEF at $X_i = x$ is given as

$$\mathbb{E}[Y_i|X_i=x]=\int tf_y(t|X_i=x)dt$$

 Using the law of iterated expectations, the unconditional average of Y_i can be derived as the unconditional average of CEF

$$\mathbb{E}[Y_i] = \mathbb{E}\left\{\mathbb{E}[Y_i|X_i]\right\}$$

where the outer expectation is on the distribution of X_i

Proof.

Assume (X_i, Y_i) are continuously distributed with $f_{xy}(u, t)$ where $f_y(t|X_i=u)$ is the conditional distribution of Y_i given $X_i=u$ and $g_y(t)$ and $g_x(u)$ are marginal densities

$$\mathbb{E}\left\{\mathbb{E}[Y_i|X_i]\right\} = \int \mathbb{E}[Y_i|X_i = u]g_X(u) \, \mathrm{d} \, u$$

$$= \int \left[\int tf_y(t|X_i = u) \, \mathrm{d} \, t\right] g_X(u) \, \mathrm{d} \, u$$

$$= \int \int tf_y(t|X_i = u)g_X(u) \, \mathrm{d} \, u$$

$$= \int t \left[\int f_y(t|X_i = u)g_X(u) \, \mathrm{d} \, u\right] \, \mathrm{d} \, t$$

$$= \int t \left[f_{xy}(u, t) \, \mathrm{d} \, u\right] \, \mathrm{d} \, t$$

$$= \int tg_y(t) \, \mathrm{d} \, t$$

$$= \mathbb{E}[Y_i]$$

1. The CEF Decomposition Property.

$$Y_i = \mathbb{E}[Y_i|X_i] + \varepsilon_i$$

where (i) ε_i is mean dependent of X_i i.e. $\mathbb{E}[\varepsilon_i|X_i] = 0$, and (ii) ε_i is uncorrelated with any function of X_i

Proof.

For the first point:

$$\mathbb{E}[\varepsilon_i|X_i] = \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i]|X_i]$$
$$= \mathbb{E}[Y_i|X_i] - \mathbb{E}[Y_i|X_i] = 0$$

For the second point let $h(X_i)$ be any function of X_i . Then

 $\mathbb{E}[h(X_i)\varepsilon_i] = \mathbb{E}\left\{\mathbb{E}[h(X_i)\varepsilon_i|X_i]\right\}$

$$= \mathbb{E}\left\{\mathbb{E}[h(X_i)]\mathbb{E}(\varepsilon_i|X_i)\right\}$$

$$= 0$$

- Intuitively, Theorem 1 says that any random variable Y_i can be decomposed into two parts
 - 1. one which is explained by X_i i.e. $\mathbb{E}[Y_i|X_i]$
 - 2. and the left over piece which is orthogonal to X_i by construction

2. The CEF Prediction Property. Let $m(X_i)$ be any function of X_i . The CEF solves

$$\mathbb{E}[Y_i|X_i] = \arg\min_{m(X_i)} \mathbb{E}[(Y_i - m(X_i))^2]$$

Hence CEF is the minimum mean square estimator of Y_i given X_i Proof.

$$[Y_{i} - m(X_{i})]^{2} = ([Y_{i} - \mathbb{E}(Y_{i}|X_{i})] + [\mathbb{E}(Y_{i}|X_{i}) - m(X_{i})])^{2}$$

$$= (Y_{i} - \mathbb{E}[Y_{i}|X_{i}])^{2} + 2(\mathbb{E}[Y_{i}|X_{i}] - m(X_{i}))(Y_{i} - \mathbb{E}[Y_{i}|X_{i}]) + (\mathbb{E}[Y_{i}|X_{i}] - m(X_{i}))^{2}$$

The second term can be written as $h(X_i)\varepsilon_i$ where $h(X_i)=2(\mathbb{E}[Y_i|X_i]-m(X_i))$ which will have expectation zero by Theorem 1. The last term is zero when $m(X_i)=\mathbb{E}[Y_i|X_i]$

3. ANOVA Theorem.

$$var[Y_i] = var[\mathbb{E}(Y_i|X_i)] + \mathbb{E}[var(Y_i|X_i)]$$

Proof.

By theorem 1:

$$Y_i = \mathbb{E}[Y_i|X_i] + \varepsilon_i$$

 $var(Y_i) = var(\mathbb{E}[y_i|X_i]) + var(\varepsilon_i)$

Now $var(\varepsilon_i)$ can be written as

 $\operatorname{var}(\varepsilon_i) = \mathbb{E}[\varepsilon_i^2]$

$$= \mathbb{E}[\mathbb{E}(\varepsilon_i^2|X_i)]$$

$$= \mathbb{E}[\mathbb{E}([Y_i - \mathbb{E}(Y_i|X_i)]^2|X_i)] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}(Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i)]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i]^2] \longrightarrow \mathbb{E}[Y_i - \mathbb{E}[Y_i|X_i]^2] \longrightarrow$$

Regression and CEF

- Regression function: the best fitting line generated by minimizing expected square errors
- So what is the relationship between the regression function (which has a restricted functional form) and the CEF (which does not)

Regression Anatomy

• Let β be a $K \times 1$ vector of regression coefficients obtained by solving

$$\beta = \underset{b}{\operatorname{arg\,min}} \quad \mathbb{E}[(Y_i - X_i'b)^2] \tag{1}$$

• The first order condition for this problem is

$$\mathbb{E}[X_i(Y_i-X_i'b)]=0$$

which gives $\beta = \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[X_i Y_i]$

- In a simple bivariate case i.e. K=1, slope coefficient is $\beta_1 = \frac{\text{cov}(Y_i X_i)}{\text{var}(X_i)}$ and constant is given as $\alpha = \mathbb{E}[Y_i] \beta_1 \mathbb{E}[X_i]$
- For K > 1, the k^{th} coefficient is given as

$$\beta_k = \frac{\operatorname{var}(Y_i, \widetilde{x}_{ki})}{\operatorname{var}(\widetilde{x}_{ki})} \tag{2}$$

where \widetilde{x}_{ki} is the residual from a regression of x_{ki} on all other covariates

Regression Anatomy

- Regression anatomy formula (2) is more intuitive than matrix notation (1)
 - Each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor after partialling out all other covariates
- Now we move onto the point which Mostly Harmless Econometrics captures very nicely you should be interested in the regression parameters if you are interested in the CEF

Three theorems (without proofs)

- 1. The Linear CEF Theorem [Regression Justification 1]. Suppose the CEF is linear. Then the population regression function is it.
 - This means if the CEF is linear then it will be captured by the regression function.
 - Question is: when CEF is linear?
 - 1. When vector (Y_i, X_i') has a multivariate normal distribution
 - 2. When regression is saturated:
 - a saturated regression model has a separated parameter for every possible combination of values that the set of regressors take on

Three Theorems (without proofs)

2. The Best Linear Predictor Theorem [Regression Justification 2].

The function $X_i^t \beta$ is the best linear predictor of Y_i given X_i in a MMSE sense.

- Among all functions, CEF E[Y_i|X_i] is the best predictor of Y_i given X_i
- Among **linear** functions, the regression function $X'_i\beta$ is the best predictor of Y_i given X_i

Three Theorems (without proofs)

3. The Regression CEF Theorem [Regression Justification 3]. The regression function provides minimum mean square error (MMSE) approximation to $\mathbb{E}[Y_i|X_i]$, that is,

$$\beta = \arg\min_{b} \mathbb{E}[(E[Y_i|X_i] - X_i'b)^2]$$

 This theorem says that even if actual CEF is non-linear, regression provides the best linear approximation to it

CEF and Regression

Sample is limited to white men, age 40-49. Data is from Census IPUMS 1980, 5% sample.

Regression and Causality

- From previous discussion: regression gives the best MMSE linear approximation to the CEF
- However, we still don't know when regression has a causal interpretation
- Let's go to the example of earnings and education
- Assume that the schooling is a binary decision:
 - Going to the college, $C_i = 1$
 - Not going to the college, $C_i = 0$
- Potential outcome

$$= \left\{ \begin{array}{ll} Y_{1i} & \text{if} \ C_i = 1 \\ Y_{0i} & \text{if} \ C_i = 0 \end{array} \right.$$

Regression and Causality

 Blind comparison of earnings of college goers (not-goers) will lead to

$$\begin{split} \mathbb{E}[Y_i|C_i = 1] - \mathbb{E}[Y_i|C_i = 0] &= \mathbb{E}[Y_{1i}|C_i = 1] - \mathbb{E}[Y_{0i}|C_i = 0] \\ &= \underbrace{\mathbb{E}[Y_{1i}|C_i = 1] - \mathbb{E}[Y_{0i}|C_i = 1]}_{\text{ATET}} + \\ &\underbrace{\mathbb{E}[Y_{0i}|C_i = 1] - \mathbb{E}[Y_{0i}|C_i = 0]}_{\text{selection bias}} \end{split}$$

Here selection bias is positive, why?

Conditional Independence Assumption (CIA)

- How can we eliminate the selection bias?
- Invoke the conditional independence assumption (CIA)
- CIA asserts that conditional on observed characteristics X_i, selection bias disappears

$$\{Y_{0i},Y_{1i}\} \perp \!\!\! \perp C_i|X_i$$

Hence,

$$\begin{split} \mathbb{E}[Y_i|X_i, \, C_i = 1] - \mathbb{E}[Y_i|X_i, \, C_i = 0] &= \mathbb{E}[Y_{1i}|X_i, \, C_i = 1] - \mathbb{E}[Y_{0i}|X_i, \, C_i = 0] \\ &= \mathbb{E}[Y_{1i} - Y_{0i}|X_i] \end{split}$$

Causal Interpretation under continuous variable

- Denote $Y_{si} = f_i(s)$ as the **potential** earnings that person i would receive for s years of education
- The CIA will become

$$Y_{si} \perp s_i | X_i$$

Hence

$$\Rightarrow \mathbb{E}[Y_i|X_i, s_i = s] - \mathbb{E}[Y_i|X_i, s_i = s - 1]$$

$$\Rightarrow \mathbb{E}[Y_{si}|X_i, s_i = s] - \mathbb{E}[Y_{(s-1)i}|X_i, s_i = s - 1]$$

$$\Rightarrow \mathbb{E}[f_i(s) - f_i(s - 1)|X_i]$$

Regression and CIA

- Regression provides a way to turn CIA into causal estimate
- For now, assume, f_i(s) is both linear in s and same for everyone except for an additive error term
- In this case, linear constant effects causal model is given as

$$f_i(s) = \alpha + \rho s + \eta_i$$

- Two points to note:
 - 1. functional relationship is same for everyone, except for η_i
 - 2. this equation is a causal model in the sense that it is relating *s* to potential outcomes
- If we replace s with observed value we will get

$$Y_i = \alpha + \rho s_i + \eta_i$$

• Due to selection bias, s_i and η_i may be correlated

Regression and CIA

- Suppose CIA holds given a vector of observed co-variates X_i
- Decompose the random part of potential earnings η_i into a linear function of observable characteristics X_i and an error term ν_i

$$\eta_i = X_i' \gamma + \nu_i$$

such that $\mathbb{E}[\eta_i|X_i] = X_i'\gamma$

Then

$$\mathbb{E}[f_i(s)|X_i, s_i] = \mathbb{E}[f_i(s)|X_i]$$

$$= \alpha + \rho s + \mathbb{E}[\eta_i|X_i]$$

$$= \alpha + \rho s + X_i' \gamma$$

Regression and CIA

• Hence, residual in the linear causal model,

$$Y_i = \alpha + \rho s + X_i' \gamma + \nu_i$$

is uncorrelated with s_i and X_i and ρ is the causal effect of interest

- Take a note of an important assumption: X_i is the reason why s_i and η_i are uncorrelated
- What if some observable characteristics are missing?
 - If missing characteristic correlated with inlcuded $X_i \Rightarrow$ omitted variable bias