Ejercicios Tema 7

Percepción

Curso 2021/2022

1. Dado un problema de clasificación en dos clases $\{+1, -1\}$ con el siguiente conjunto de entrenamiento $X = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$, donde $\mathbf{x}_1 = (0, 2) \in \{-1\}$, $\mathbf{x}_2 = (1, 0) \in \{+1\}$, $\mathbf{x}_3 = (2, 1) \in \{-1\}$, $\mathbf{x}_4 = (3, 3) \in \{+1\}$. Se dispone de los siguientes 8 clasificadores débiles $g_0, ..., g_7$ definidos como sigue:

$$g_i(\mathbf{z}) = \begin{cases} s & \text{si } z_1 > t \\ -s & \text{en otro caso} \end{cases} \# z_1 \text{ es la primera componente de } \mathbf{z}$$

donde el punto de corte t = |i/2| + 1/2, y

$$s = \begin{cases} 1 & \text{si } i \text{ es par} \\ -1 & \text{en otro caso} \end{cases}$$

Realiza una traza del algoritmo Adaboost para m=3

2. Sean las siguientes muestras y clasificadores:

$$\mathbf{x}_1 = (0,0) \in +1$$
 $\mathbf{x}_2 = (2,2) \in -1$ $\mathbf{x}_3 = (1,2) \in +1$ $\mathbf{x}_4 = (0,1) \in -1$ $\mathbf{x}_5 = (-1,1) \in +1$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 > 0 \\ -1 & z_1 \leq 0 \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 > 1 \\ -1 & z_2 \leq 1 \end{cases} \qquad g_3(\mathbf{z}) = \begin{cases} +1 & z_2 - z_1 > 0 \\ -1 & z_2 - z_1 \leq 0 \end{cases} \qquad g_4(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 \leq 3 \\ -1 & z_1 + z_2 > 3 \end{cases}$$

Aplica una iteración de AdaBoost para ese conjunto de datos y clasificadores indicando:

- a) Clasificador escogido C_1
- b) Valor de ϵ_1
- c) Valor de α_1
- d) Actualización de los pesos para la siguiente iteración $(w^{(2)})$
- 3. Sean las siguientes muestras y clasificadores:

$$\mathbf{x}_1 = (1,1) \in +1$$
 $\mathbf{x}_2 = (2,1) \in -1$ $\mathbf{x}_3 = (2,2) \in +1$ $\mathbf{x}_4 = (1,3) \in -1$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 \le 1.5 \\ -1 & z_1 > 1.5 \end{cases} \quad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 \le 1.5 \\ -1 & z_2 > 1.5 \end{cases} \quad g_3(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 > 4 \\ -1 & z_1 + z_2 \le 4 \end{cases} \quad g_4(\mathbf{z}) = \begin{cases} +1 & z_2 - z_1 \le 1 \\ -1 & z_2 - z_1 > 1 \end{cases}$$

Aplicar una iteración de AdaBoost para ese conjunto de datos y clasificadores indicando:

- a) Clasificador escogido C_1
- b) Valor de ϵ_1
- c) Valor de α_1
- d) Actualización de los pesos para la siguiente iteración $(w^{(2)})$
- 4. Sean las siguientes muestras y clasificadores:

$$\mathbf{x}_1 = (1,2) \in +1$$
 $\mathbf{x}_2 = (-1,-1) \in +1$ $\mathbf{x}_3 = (2,0) \in -1$ $\mathbf{x}_4 = (-2,1) \in -1$

$$g_1(\mathbf{z}) = \begin{cases} +1 & z_1 \ge 0 \\ -1 & z_1 < 0 \end{cases} \quad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 \ge 0 \\ -1 & z_2 < 0 \end{cases} \quad g_3(\mathbf{z}) = \begin{cases} +1 & z_1 + z_2 > 2 \\ -1 & z_1 + z_2 \le 2 \end{cases} \quad g_4(\mathbf{z}) = \begin{cases} +1 & z_2 - z_1 \ge 0 \\ -1 & z_2 - z_1 < 0 \end{cases}$$

Tras aplicar una primera iteración de AdaBoost se elige $C_1 = g_3$, con $\alpha_1 = \frac{1}{2} \ln 3$, y los pesos se actualizan a $w^{(2)} = \left(\frac{1}{6}, \frac{3}{6}, \frac{1}{6}, \frac{1}{6}\right)$. Se pide aplicar una segunda iteración de AdaBoost para ese conjunto de datos y clasificadores indicando:

- a) Clasificador escogido C_2 .
- b) Valor de ϵ_2 .
- c) Valor de α_2 .
- d) Actualización de los pesos para la siguiente iteración $(w^{(3)})$.
- 5. Sean las siguientes muestras y clasificadores:

$$\mathbf{x}_1 = (0,0) \in -1$$
 $\mathbf{x}_2 = (0,1) \in -1$ $\mathbf{x}_3 = (1,0) \in -1$ $\mathbf{x}_4 = (1,1) \in +1$

$$g_0(\mathbf{z}) = \begin{cases} +1 & z_1 \ge 0.5 \\ -1 & z_1 < 0.5 \end{cases} \qquad g_1(\mathbf{z}) = \begin{cases} -1 & z_1 \ge 0.5 \\ +1 & z_1 < 0.5 \end{cases} \qquad g_2(\mathbf{z}) = \begin{cases} +1 & z_2 \ge 0.5 \\ -1 & z_2 < 0.5 \end{cases} \qquad g_3(\mathbf{z}) = \begin{cases} -1 & z_2 \ge 0.5 \\ +1 & z_2 < 0.5 \end{cases}$$

Tras aplicar una primera iteración de AdaBoost se elige $C_1 = g_3$, con $\alpha_1 = \frac{1}{2} \ln 3$, y los pesos se actualizan a $w^{(2)} = \left(\frac{1}{6}, \frac{3}{6}, \frac{1}{6}, \frac{1}{6}\right)$. Se pide aplicar una segunda iteración de AdaBoost para ese conjunto de datos y clasificadores indicando:

- a) Clasificador escogido C_2 .
- b) Valor de ϵ_2 .
- c) Valor de α_2 .
- d) Actualización de los pesos para la siguiente iteración $(w^{(3)})$.

Soluciones

1. La representación gráfica de los clasificadores débiles definidos es la siguiente:

Primeramente, se realiza la inicialización con pesos iguales para cada muestra:

	$ w^{(1)} $
\mathbf{x}_1	$\frac{1}{4}$
\mathbf{x}_2	$\frac{1}{4}$
\mathbf{x}_3	$\frac{1}{4}$
\mathbf{x}_4	$\frac{1}{4}$

1ª iteración Se calcula el error de cada clasificador débil teniendo el peso de cada muestra:

	$\epsilon^{(1)}$
	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
g_0	$0 + 0 + \frac{1}{4} + 0 = \frac{1}{4}$
g_1	$\frac{1}{4} + \frac{1}{4} + 0 + \frac{1}{4} = \frac{3}{4}$
g_2	$0 + \frac{1}{4} + \frac{1}{4} + 0 = \frac{2}{4}$
g_3	$\frac{1}{4} + 0 + 0 + \frac{1}{4} = \frac{2}{4}$
g_4	$0 + \frac{1}{4} + 0 + 0 = \frac{1}{4}$
g_5	$\frac{1}{4} + 0 + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$
g_6	$0 + \frac{1}{4} + 0 + \frac{1}{4} = \frac{2}{4}$
g_7	$\frac{1}{4} + 0 + \frac{1}{4} + 0 = \frac{2}{4}$

Observamos que hay un empate en error entre el clasificador g_0 y g_4 , seleccionamos el clasificador $C_1=g_0$ de manera arbitrárea, y calculamos su peso en esta iteración α_1

$$m = 1 \to C_1 = g_0$$
 $\epsilon_1 = \frac{1}{4}$ $\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \frac{1}{4}}{\frac{1}{4}} \right) = 0,5493$

Empezamos a construir el clasificador resultante, ponderando el clasificador débil $C_1 = g_0$ por su peso α_1 y también podemos calcular el error de este clasificador resultante sobre el conjunto de entrenamiento.

$$G(\mathbf{x}) = \alpha_1 C_1(\mathbf{x}) = 0.5493 \cdot g_0(\mathbf{x}) \rightarrow \text{Error} = 0.25$$

Actualizamos el peso de cada muestra para la siguiente iteración:

	$ w^{(1)} $	$w^{(2)}$
\mathbf{x}_1	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$
\mathbf{x}_2	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$
\mathbf{x}_3	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{0.5493} \approx \frac{3}{6}$
\mathbf{x}_4	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$

2ª iteración Calculamos el error de cada clasificador teniendo en cuenta los nuevos pesos de cada muestra:

	$\epsilon^{(1)}$	$\epsilon^{(2)}$
	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
g_0	$0 + 0 + \frac{1}{4} + 0 = \frac{1}{4}$	$0 + 0 + \frac{3}{6} + 0 = \frac{3}{6}$
g_1	$\frac{1}{4} + \frac{1}{4} + 0 + \frac{1}{4} = \frac{3}{4}$	$\frac{1}{6} + \frac{1}{6} + 0 + \frac{1}{6} = \frac{3}{6}$
g_2	$0 + \frac{1}{4} + \frac{1}{4} + 0 = \frac{2}{4}$	$0 + \frac{1}{6} + \frac{3}{6} + 0 = \frac{4}{6}$
g_3	$\frac{1}{4} + 0 + 0 + \frac{1}{4} = \frac{2}{4}$	$\frac{1}{6} + 0 + 0 + \frac{1}{6} = \frac{2}{6}$
g_4	$0 + \frac{1}{4} + 0 + 0 = \frac{1}{4}$	$0 + \frac{1}{6} + 0 + 0 = \frac{1}{6}$
g_5	$\frac{1}{4} + 0 + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$	$\frac{1}{6} + 0 + \frac{3}{6} + \frac{1}{6} = \frac{5}{6}$
g_6	$0 + \frac{1}{4} + 0 + \frac{1}{4} = \frac{2}{4}$	$0 + \frac{1}{6} + 0 + \frac{1}{6} = \frac{2}{6}$
g_7	$\frac{1}{4} + 0 + \frac{1}{4} + 0 = \frac{2}{4}$	$\frac{1}{6} + 0 + \frac{3}{6} + 0 = \frac{4}{6}$

El clasificador de mínimo de error con los nuevos pesos es $C_2=g_4$ y calculamos su peso α_2 :

$$m = 2 \to C_2 = g_4$$
 $\epsilon_2 = \frac{1}{6}$ $\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - \frac{1}{6}}{\frac{1}{6}} \right) = 0.8047$

Añadimos un nuevo término $0.8047 \cdot g_4(\mathbf{x})$ al clasificador resultante $G(\mathbf{x})$ y estimamos su error en el conjunto de entrenamiento:

$$G(\mathbf{x}) = \alpha_1 C_1(\mathbf{x}) + \alpha_2 C_2(\mathbf{x}) = 0.5493 \cdot g_0(\mathbf{x}) + 0.8047 \cdot g_4(\mathbf{x}) \rightarrow \text{Error} = 0.25$$

Actualizamos el peso de cada muestra para la siguiente iteración:

	$w^{(1)}$	$w^{(2)}$	$w^{(3)}$
\mathbf{x}_1	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$	$\frac{1}{6} \cdot e^{-0.8047} \approx \frac{1}{10}$
\mathbf{x}_2	$\frac{1}{4}$		$\frac{1}{6} \cdot e^{0,8047} \approx \frac{5}{10}$
\mathbf{x}_3	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{0.5493} \approx \frac{3}{6}$	$\frac{3}{6} \cdot e^{-0.8047} \approx \frac{3}{10}$
\mathbf{x}_4	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$	$\frac{1}{6} \cdot e^{-0.8047} \approx \frac{1}{10}$

3ª iteración Calculamos el error de cada clasificador teniendo en cuenta los nuevos pesos de cada muestra:

	$\epsilon^{(1)}$	$\epsilon^{(2)}$	$\epsilon^{(3)}$
	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$	$\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4$
g_0	$0 + 0 + \frac{1}{4} + 0 = \frac{1}{4}$	$0 + 0 + \frac{3}{6} + 0 = \frac{3}{6}$	$0 + 0 + \frac{3}{10} + 0 = \frac{3}{10}$
g_1	$\frac{1}{4} + \frac{1}{4} + 0 + \frac{1}{4} = \frac{3}{4}$	$\frac{1}{6} + \frac{1}{6} + 0 + \frac{1}{6} = \frac{3}{6}$	$\frac{1}{10} + \frac{5}{10} + 0 + \frac{1}{10} = \frac{6}{10}$
g_2	$0 + \frac{1}{4} + \frac{1}{4} + 0 = \frac{2}{4}$	$0 + \frac{1}{6} + \frac{3}{6} + 0 = \frac{4}{6}$	$0 + \frac{5}{10} + \frac{3}{10} + 0 = \frac{8}{10}$
g_3	$\frac{1}{4} + 0 + 0 + \frac{1}{4} = \frac{2}{4}$	$\frac{1}{6} + 0 + 0 + \frac{1}{6} = \frac{2}{6}$	$\frac{1}{10} + 0 + 0 + \frac{1}{10} = \frac{2}{10}$
g_4	$0 + \frac{1}{4} + 0 + 0 = \frac{1}{4}$	$0 + \frac{1}{6} + 0 + 0 = \frac{1}{6}$	$0 + \frac{5}{10} + 0 + 0 = \frac{5}{10}$
g_5	$\frac{1}{4} + 0 + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$	$\frac{1}{6} + 0 + \frac{3}{6} + \frac{1}{6} = \frac{5}{6}$	$\frac{1}{10} + 0 + \frac{3}{10} + \frac{1}{10} = \frac{5}{10}$
g_6	$0 + \frac{1}{4} + 0 + \frac{1}{4} = \frac{2}{4}$	$0 + \frac{1}{6} + 0 + \frac{1}{6} = \frac{2}{6}$	$0 + \frac{5}{10} + 0 + \frac{1}{10} = \frac{6}{10}$
g_7	$\frac{1}{4} + 0 + \frac{1}{4} + 0 = \frac{2}{4}$	$\frac{1}{6} + 0 + \frac{3}{6} + 0 = \frac{4}{6}$	$\frac{1}{10} + 0 + \frac{3}{10} + 0 = \frac{4}{10}$

El clasificador de mínimo de error con los nuevos pesos es $C_2=g_3$ y calculamos su peso α_3 :

$$m = 3 \rightarrow C_2 = g_3$$
 $\epsilon_2 = \frac{2}{10}$ $\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - \frac{2}{10}}{\frac{2}{10}} \right) = 0,6931$

Añadimos un nuevo término al clasificador resultante y el error en el conjunto de entrenamiento es cero:

$$G(\mathbf{x}) = 0.5493 \cdot g_0(\mathbf{x}) + 0.8047 \cdot g_4(\mathbf{x}) + 0.6931 \cdot g_3(\mathbf{x}) \rightarrow \text{Error} = 0.0$$

Aunque ya no sería necesario, actualizamos el peso de cada muestra:

	$ w^{(1)} $	$w^{(2)}$	$w^{(3)}$	$w^{(4)}$
\mathbf{x}_1	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$	$\frac{1}{6} \cdot e^{-0.8047} \approx \frac{1}{10}$	$\frac{1}{10} \cdot e^{0.6931} \approx 0.25$
\mathbf{x}_2	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$	$\frac{1}{6} \cdot e^{0.8047} \approx \frac{5}{10}$	$\frac{5}{10} \cdot e^{-0.6931} \approx 0.3125$
\mathbf{x}_3	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{0,5493} \approx \frac{3}{6}$	$\frac{3}{6} \cdot e^{-0.8047} \approx \frac{3}{10}$	$\frac{3}{10} \cdot e^{-0.6931} \approx 0.1875$
\mathbf{x}_4	$\frac{1}{4}$	$\frac{1}{4} \cdot e^{-0.5493} \approx \frac{1}{6}$	$\frac{1}{6} \cdot e^{-0.8047} \approx \frac{1}{10}$	$\frac{1}{10} \cdot e^{0.6931} \approx 0.25$

2. (Examen Recuperación Junio 2017)

Tabla de acierto/fallo:

	g_1	g_2	g_3	g_4
\mathbf{x}_1	X	X	X	√
\mathbf{x}_2	X	X	√	√
\mathbf{x}_3	√	√	√	√
\mathbf{x}_4	√	√	X	X
\mathbf{x}_5	X	X	√	√

Error de clasificación
$$g_1$$
 g_2 g_3 g_4 $\frac{3}{5}$ $\frac{3}{5}$ $\frac{2}{5}$ $\frac{1}{5}$

$$C_1 = g_4$$

$$\epsilon_1 = \frac{1}{5}$$

$$\alpha_1 = \frac{1}{2} \ln 4 = \ln 2$$

	$w^{(1)} \exp(-y_i \alpha_1 C_1(\mathbf{x}_i))$
\mathbf{x}_1	$\frac{1}{10}$
\mathbf{x}_2	$\frac{1}{10}$
\mathbf{x}_3	$\frac{1}{10}$
\mathbf{x}_4	$\frac{2}{5} = \frac{4}{10}$
\mathbf{x}_5	$\frac{1}{10}$
Suma total	$\frac{4}{5} = \frac{8}{10}$

$$w^{(2)} = (\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}, \frac{1}{8})$$

3. (Examen Junio 2017)

Tabla de acierto/fallo:

	g_1	g_2	g_3	g_4
\mathbf{x}_1	\checkmark	✓	X	✓
\mathbf{x}_2	√	X	√	X
\mathbf{x}_3	X	X	X	√
\mathbf{x}_4	X	√	√	√

Pesos iniciales:
$$w^{(1)} = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$$

$$C_1 = g_4$$

$$\epsilon_1 = \frac{1}{4}$$

$$\alpha_1 = \frac{1}{2} \ln 3$$

	$w^{(1)} \exp(-y_i \alpha_1 C_1(\mathbf{x}_i))$
\mathbf{x}_1	$\frac{1}{4\sqrt{3}}$
\mathbf{x}_2	$\frac{\sqrt{3}}{4}$
\mathbf{x}_3	$\frac{1}{4\sqrt{3}}$
\mathbf{x}_4	$\frac{1}{4\sqrt{3}}$
Suma total	$\frac{\sqrt{3}}{2}$

$$w^{(2)} = (\frac{1}{6}, \frac{1}{2}, \frac{1}{6}, \frac{1}{6})$$

4. (Examen Junio 2018)

Tabla de acierto/fallo:

	g_1	g_2	g_3	g_4
\mathbf{x}_1	√	√	√	√
\mathbf{x}_2	X	X	X	√
\mathbf{x}_3	X	X	√	√
\mathbf{x}_4	√	X	√	X

Pesos:
$$w^{(2)} = (\frac{1}{6}, \frac{3}{6}, \frac{1}{6}, \frac{1}{6})$$

Pesos: $w^{(2)} = (\frac{1}{6}, \frac{3}{6}, \frac{1}{6}, \frac{1}{6})$ Error de clasificación ponderado por $w^{(2)}$:

g_1	g_2	g_3	g_4
$\frac{4}{6}$	$\frac{5}{6}$	$\frac{3}{6}$	$\frac{1}{6}$

$C_2 = g_4$
$\epsilon_2 = \frac{1}{6}$
$\alpha_2 = \frac{1}{2} \ln 5$

	$w^{(1)}\exp(-y_i\alpha_2C_2(x_i))$
\mathbf{x}_1	$\frac{1}{6\sqrt{5}}$
\mathbf{x}_2	$\frac{3}{6\sqrt{5}}$
\mathbf{x}_3	$\frac{1}{6\sqrt{5}}$
\mathbf{x}_4	$\frac{\sqrt{5}}{6}$
Suma total	$\frac{\sqrt{5}}{3}$

$$w^{(3)} = (\frac{1}{10}, \frac{3}{10}, \frac{1}{10}, \frac{5}{10})$$

5. (Examen Recuperación P2 Junio 2018)

	$\epsilon^{(2)}$
	$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4$
g_0	$0 + 0 + \frac{1}{6} + 0 = \frac{1}{6}$
g_1	$\frac{1}{6} + \frac{3}{6} + 0 + \frac{1}{6} = \frac{5}{6}$
g_2	$0 + \frac{3}{6} + 0 + 0 = \frac{3}{6}$
g_3	$\frac{1}{6} + 0 + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$

$$m = 2 \to C_2 = g_0$$
 $\epsilon_2 = \frac{1}{6}$ $\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - \frac{1}{6}}{\frac{1}{6}} \right) = \frac{1}{2} \ln 5$

$$G(\mathbf{x}) = \alpha_1 C_1(\mathbf{x}) + \alpha_2 C_2(\mathbf{x}) = \frac{1}{2} \ln 3 \cdot g_3(\mathbf{x}) + \frac{1}{2} \ln 5 \cdot g_0(\mathbf{x}) \rightarrow \text{Error} = 0.25$$

	$w^{(2)} \cdot \exp(-y_i \alpha_2 C_2(x_i))$	$w^{(3)}$
\mathbf{x}_1	$\frac{1}{6} \cdot e^{-\frac{1}{2} \ln 5} = \frac{1}{6\sqrt{5}}$	$\frac{1}{18}$
\mathbf{x}_2	$\frac{3}{6} \cdot e^{\frac{1}{2} \ln 5} = \frac{15}{6\sqrt{5}}$	$\frac{15}{18}$
\mathbf{x}_3	$\frac{1}{6} \cdot e^{-\frac{1}{2} \ln 5} = \frac{1}{6\sqrt{5}}$	$\frac{1}{18}$
\mathbf{x}_4	$\frac{1}{6} \cdot e^{-\frac{1}{2} \ln 5} = \frac{1}{6\sqrt{5}}$	$\frac{1}{18}$
Suma	$\frac{18}{6\sqrt{5}}$	