IMS Projekt

Epidemiologické modely pomocí celulárních automatů

1 Úvod

Tato práce se zabývá řešením implementace celulárního automatu [strana 208], který bude použit pro modelování [strana 8] šíření epidemie. Cílem tohoto modelu [strana 7] je přiblížit různé varianty růstu počtu infikovaných při použití parametrů jako infekčnost epidemie, počáteční počet infikovaných a jiných. Smyslem projektu bude vytvořit model, kterého experimenty budou schopny se přiblížit výsledkům z vědeckých prací.

1.1 Autoři a informace

Projekt vypracovali Mark A. Menzyński a Tomáš Dvořáček z FIT VUT v Brně. Jako zdroj obecných informací o celulárních automatech sloužili slidy z přednášek IMS [1] a pro získání informací relevantních k vypracování tohoto projektu sloužil článek "Influence of infection rate and migration on extinction of disease in spatial epidemics" [2]. Z tohoto článku byly převzaty výpočty pravděpodobností nakažení a rozmnožování zdravých jedinců. Dále byly převzaty stavy, kterých může buňka celulárního automatu nabývat.

1.2 Ověření validity modelu

Konceptuální model [strana 48] je převzat z "Influence of infection rate and migration on extinction of disease in spatial epidemics" [2], který model validoval [strana 37] podle "Infectious Disease of Humans: Dynamics and Control" [3].

2 Rozbor tématu a použitých metod/technologí

Simulační model [strana 44], kterým se tento projekt zabývá je založen na stochastickém celulárním automatu. Celulální automat je pro takový model vhodný, protože nám umožňuje sledovat šíření nemoci v mnohem větším měřítku. V takovém případě zanedbáváme přesnost modelu při šíření z jednoho jedince na druhého, a zaměřujeme se na to, jaké chování bude probíhat při šíření nemoci v populaci. Jaké vzory se při šíření objevují a jestli neprobíhá nějaké inteligentnější chování.

2.1 Použité postupy

Jednotlivé buňky v celulárním automatu použitým v tomto projektu můžou nabývat třech stavů:

- o stav S (susceptible) Zdravé, nenakažené buňky.
- stav I (infected) Infikované buňky
- o stav E (empty) Prázdné buňky. Vznikají tak, že infikovaná buňka zemře

Jako alternativu těchto stavů nás napadlo simulovat v buňce infikovanou populaci a populaci celkovou. V takovém případě nakažení buňky by byla udávána poměrem infikované populace vůči populace celkové. Stav infikovanosti buňky by tedy nenabývala dvou logických hodnot 0 (zdravý) a 1 (infikovaný), ale čísla mezi 0 a 1. U vědeckých prací jsme ale toto nepotkali, a proto dále tento způsob nerozebírali.

Přechody používají na výpočty sousedů Moorovo sousedství. To označuje sousedství 8 buněk okolo dané buňky tvořící čtverec 3x3.

Stav buňky (nepočítaje počátečním nastavením) se může změnit přechody:

- a) $S + I \rightarrow^{\beta} I + I$
 - o Buňka ve stavu S přejde do stavu I, tedy se nakazí s pravděpodobností:

$$P = 1 - (1 - \beta)^{N_1}$$

- β Určuje infekčnost nemoci
- ∘ N₁ Součet infikovaných buněk v Moorově sousedství
- *P* Pravděpodobnost nakažení
- b) $I \rightarrow^d E$
 - o Buňka ve stavu I přejde do stavu E, tedy zemře, v případě, že: $\frac{i}{d} \ge 1$
 - i Počet iterací, po které buňka se nachází ve stavu I
 - *d* Určuje míru smrti infikovaných buněk
- c) $E + S \rightarrow b S + S$
 - O Buňka ve stavu E přejde do stavu S, tedy se narodí s pravděpodobností: $P = 1 (1 b)^{N_1}$
 - *b* Určuje míru replikace buněk
 - $\circ \quad N_1$ Součet buněk živých buněk v Moorově sousedství
 - \circ P Pravděpodobnost replikace

Jakékoliv změny v buňkách ovlivňují výpočty dalších přechodů až v následující iteraci.

2.2 Původ postupů

Přechody buněk byly převzaty z "Influence of infection rate and migration on extinction of disease in spatial epidemics" [2].

3 Koncepce - implementační témata

Simulační model vytvořený v tomto projektu používá pro simulaci šíření epidemie vliv okolních buněk, kdy s rostoucím počtem nakažených okolních buněk vzrůstá pravděpodobnost nakažení aktuálně zpracováváné buňky. Smrt nakažené buňky je implementována zcela jednoduše, a sice že každá buňka si pamatuje jak dlouho je nakažená a po určitém počtu iterací, který je dán parametrem d, se z infikované buňky stane prázdná. Podobně je simulováno i rozmnožování buněk, tedy s rostoucím počtem okolních zdravých buněk roste pravděpodobnost zaplnění prázdné buňky.

Jednotlivé buňky celulárního automatu jsou implementovány jako struktury jazyka C:

```
State state;
uint8_t iters_unchanged = 0;
```

kde proměnná **state** výčtového dat. typu může nabývat hodnot Susceptible, Infected, Empty a proměnná **iters_unchanged** říká, před kolika iteracemi se naposled změnila hodnota proměnné state.

3.1 Formy konceptuálního modelu

Přechod mezi stavy celulárního automatu, symbol **ß** reprezentuje infekčnost, **d** rychlost umírání a **b** rychlost rozmnožování:

Obrázek 1: Vizualizace přechodů mezi jednotlivými stavy

4 Architektura simulačního modelu/simulátoru

Program je napsán v jazyce C++, ale z naprosté většiny využívá vlastností jazyka C.

Popis vstupních parametrů

- o -i (parametr ß) Určuje infekčnost nemoci (tedy jak rychle se nemoc šíří)
- -d Určuje jak rychle nakažení jedinci zemřou
- o -b Určuje jak rychle se zdraví jedinci mohou rozmnožovat
- -I Určuje počáteční hustotu počtu nakažených v mřížce
- -s Určuje velikost generované mřížky (délku hrany čtverce)
- -l Určuje celkový počet provedených iterací
- -h Nápověda k rozhraní programu
- o -p Vizualizace celulálního automatu

V případě, že některé parametry pro model nebyly zadány, použijí se hodnoty výchozí.

A to:
$$b = 0.5$$
, $d = 0.5$, $\beta = 0.1$, $s = 50 \times 50$, $I = 0.1$, $l = 100$

Generování dat

Simulační model data zapisuje do souboru "data.dat". Tyto hodnoty jdou dále použít nástrojem pro vykreslování grafů, ten ale není součástí projektu.

Příklad volání simulačního modelu

Vizualizace modelu

Simulační model má volitelně možnost vizualizace simulace při argumentu "-v":

- o "-" značí buňku ve stavu S (susceptible)
- o "X" značí buňku ve stavu I (infected)
- o prázdná buňka značí stav E (empty)

4.1 Mapování konceptuálního modelu na model simulační

Koncept imunity po vyléčení je mapován do procesu umírání buněk, který omezuje možnosti šíření nemoci v buňkách, které již byly infikovány. Koncept vyléčení buňky z nemoci je mapován do procesu replikace buněk, kde buňky, které si nemocí přešly, přechází do zdravého stavu. Jedna iterace simulace odpovídá jednomu dni konceptuálního modelu.

5 Podstata simulačních experimentů a jejich průběh

Provádění experimentů má za cíl napodobit výsledky studie, podle které byl vytvářen simulační model tohoto projektu

5.1 Postup experimentování

Experimenty (nalevo) budou probíhat použitím stejných parametrů jako vzorový model (napravo). A následné porovnání hustoty infikované populace v závislosti na čase.

5.2 Experimenty

5.2.1 Experiment 1

Vstupní podmínky:

$$b = 0.5$$
, $d = 0.5$, $\beta = 0.3$, $s = 200 \times 200$, $I = 0.01$

5.2.2 Experiment 2:

Vstupní podmínky:

$$b = 0.5$$
, $d = 0.5$, $\beta = 2$, $s = 200 \times 200$, $I = 0.01$

5.2.3 Experiment **3**:

Vstupní podmínky:

$$b = 0.5$$
, $d = 0.5$, $\beta = 5$, $s = 200 \times 200$, $I = 0.01$

5.3 Závěry experimentů

Výsledky experimentů nejsou shodné s výsledky referenčního modelu, ale konvergují ke stejnému výsledku.

6 Shrnutí simulačních experimentů a závěr

Podle výsledků model zcela jistě není bezchybný a nachází se v něm problém, který se nepodařilo identifikovat. Chyba by se mohla nacházet v implementaci počátečního rozmístění infikovaných buněk a též ve vymírání infikovaných buněk. Obě záležitosti jsou popsány v používané studii [2] jen velice vágně. Avšak celulární automat pracuje, a byť jeho výsledky jistě nejsou zcela validní, pro částečné přiblížení růstu počtu nakažených jsou minimálně použitelné.

Reference

- [1] PERINGER Petr, Hrubý Martin, Přednášky IMS, Vysoké učení technické v Brně, Fakulta informačních technologií, 2019
- [2] SUN, Gui-quan, Quan-xing LIU, Zhen JIN, Amit CHAKRABORTY a Bai-lian LI. Influence of infection rate and migration on extinction of disease in spatial epidemics. *Journal of theoretical biology* [online]. Elsevier, 2010, **48**(1), 95-103. ISSN 0022-5193. Dostupné z: doi:10.1016/j.jtbi.2010.01.006
- [3] KOFF, Raymond S. Infectious diseases of humans: Dynamics and control. By R.M. Anderson and R.M. May, 757 pp. Oxford. *Hepatology* [online]. Philadelphia, PA: W.B. Saunders, 1992, **37**(1), 169-169. ISSN 0270-9139. Dostupné z: doi:10.1002/hep.1840150131