Neural Networks

Matt R

$March\ 1,\ 2022$

Contents

1	Log	sistic Regression	2
	1.1	The Gradient	3
		1.1.1 Vectorization in Python	4
2	Net	ıral Networks: A Single Hidden Layer	9
	2.1	Backpropagation	11
	2.2	Activation Functions	15
		2.2.1 The Sigmoid Function	15
		2.2.2 The Hyperbolic Tangent Function	16
		2.2.3 The Rectified Linear Function	16
		2.2.4 The Softmax Function	17
	2.3	Binary Classification - An Example	18
		2.3.1 Vectorization in Python	19
3	Dee	ep Neural Networks	28

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{m \times n}$ with binary labels $y \in \{0,1\}^{1 \times n}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^m$, $b \in \mathbb{R}$, and let

$$a = \sigma(w^T x + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize the error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y=1|x) = a, \qquad \mathbb{P}(y=0|x) = 1 - a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$,

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(a_j, y_j)
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(\sigma(w^T x_j + b)) + (1 - y_j) \log(1 - \sigma(w^T x_j + b)) \right].$$

1.1 The Gradient

To compute the gradient of our cost function \mathbb{J} , we first write \mathbb{J} as a sum of compositions as follows: We have the log-loss function considered as a map $\mathbb{L}:(0,1)\times\mathbb{R}\to\mathbb{R}$,

$$\mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)],$$

we have the sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = a$ and $\sigma'(z) = a(1-a)$, and we have the collection of affine-functionals $\phi_x: \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$\phi_x(w,b) = w^T x + b,$$

for which we fix an arbitrary $x \in \mathbb{R}^m$ and write $\phi = \phi_x$, and set $z = \phi(w, b)$. Finally, we introduce the auxiliary function $\mathcal{L} : \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}$ given by

$$\mathcal{L}(w,b) = \mathbb{L}(\sigma(\phi(w,b)), y).$$

Then by the chain rule, we have that

$$d\mathcal{L} = d_a \mathbb{L}(a, y) \circ d\sigma(z) \circ d_w \phi(w, b)$$

$$= \left[-\frac{y}{a} + \frac{1 - y}{1 - a} \right] \cdot a(1 - a) \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= \left[-y(1 - a) + a(1 - y) \right] \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= (a - y) \begin{bmatrix} x^T & 1 \end{bmatrix}$$

Composition turns into matrix multiplication in the tangent space. Moreover, since in Euclidean space, we have that $\nabla f = (df)^T$, and hence that

$$\nabla \mathcal{L}(w, b) = (a - y) \begin{bmatrix} x \\ 1 \end{bmatrix},$$

or rather

$$\partial_w \mathbb{L}(a, y) = (a - y)x, \qquad \partial_b \mathbb{L}(a, y) = a - y.$$

Finally, since our cost function $\mathbb J$ is the sum-log-loss, we have by linearity that

$$\partial_w \mathbb{J}(w, b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j) x_j$$
$$= \frac{1}{n} ((a - y) \cdot x^T)^T$$
$$= \frac{1}{n} x \cdot (a - y)^T$$

and

$$\partial_b \mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j).$$

1.1.1 Vectorization in Python

Here we include the general code to train a model using logistic regression without regularization and without tuning on a cross-validation set.

```
1 import copy
з import numpy as np
5 def sigmoid(z):
      Parameters
       z : array_like
10
      Returns
11
12
       sigma : array_like
13
14
15
       sigma = (1 / (1 + np.exp(-z)))
16
       return sigma
17
18
```

```
19 def cost_function(x, y, w, b):
      Parameters
21
      _____
22
      x : array_like
23
          x.shape = (m, n) with m-features and n-examples
24
      y : array_like
25
          y.shape = (1, n)
26
27
      w : array_like
          w.shape = (m, 1)
28
      b : float
30
      Returns
31
       -----
32
      J : float
33
          The value of the cost function evaluated at (w, b)
34
      dw : array_like
35
          dw.shape = w.shape = (m, 1)
36
          The gradient of J with respect to w
37
      db : float
38
          The partial derivative of J with respect to b
39
40
41
      # Auxiliary assignments
42
      m, n = x.shape
43
      z = w.T @ x + b
      assert z.size == n
45
      a = sigmoid(z).reshape(1, n)
      dz = a - y
47
      # Compute cost J
49
      J = (-1 / n) * (np.log(a) @ y.T + np.log(1 - a) @ (1 - y).T)
50
51
      # Compute dw and db
      dw = (x @ dz.T) / m
53
      assert dw.shape == w.shape
54
      db = np.sum(dz) / m
55
56
      return J, dw, db
57
58
  def grad_descent(x, y, w, b, alpha=0.001, num_iters=2000, print_cost=False):
59
60
61
      Parameters
      ------
62
      x, y, w, b : See cost_function above for specifics.
63
          w and b are chosen to initialize the descent (likely all components 0)
64
      alpha : float
```

```
The learning rate of gradient descent
66
       num_iters : int
67
           The number of times we wish to perform gradient descent
68
69
       Returns
70
       _____
71
       costs : List[float]
72
           For each iteration we record the cost-values associated to (w, b)
73
       params : Dict[w : array_like, b : float]
74
           w : array_like
75
                Optimized weight parameter w after iterating through grad descent
76
           b : float
77
                Optimized bias parameter b after iterating through grad descent
78
       grads : Dict[dw : array_like, db : float]
79
           dw : array_like
80
                The optimized gradient with repsect to w
81
           db : float
82
                The optimized derivative with respect to b
83
       ,, ,, ,,
84
85
       costs = []
86
       w = copy.deepcopy(w)
       b = copy.deepcopy(b)
88
       for i in range(num_iters):
89
           J, dw, db = cost_function(x, y, w, b)
90
           w = w - alpha * dw
           b = b - alpha * db
92
           if i % 100 == 0:
94
                costs.append(J)
95
                if print_cost:
96
                    idx = int(i / 100) - 1
97
                    print(f'Cost_after_iteration_{i}:_{costs[idx]}')
98
99
       params = \{'w' : w, 'b' : b\}
100
       grads = {'dw' : dw, 'db' : db}
101
102
103
       return costs, params, grads
104
105 def predict(w, b, x):
106
       Parameters
107
108
       w : array_like
109
           w.shape = (m, 1)
110
       b : float
111
       x : array_like
112
```

```
x.shape = (m, n)
113
114
       Returns
115
       _____
116
       y_predict : array_like
117
            y_pred.shape = (1, n)
118
            An array containing the prediction of our model applied to training
119
            data x, i.e., y_pred = 1 or y_pred = 0.
120
       ,, ,, ,,
121
122
       m, n = x.shape
123
       # Get probability array
124
       a = sigmoid(w.T @ x + b)
125
       \# Get boolean array with False given by a < 0.5
126
       pseudo_predict = \sim (a < 0.5)
127
       # Convert to binary to get predictions
128
129
       y_predict = pseudo_predict.astype(int)
130
       return y_predict
131
132
133 def model(x_train, y_train, x_test, y_test, alpha=0.001, num_iters=2000, accuracy=T
134
       Parameters:
135
136
       x_train, y_train, x_test, y_test : array_like
137
            x_train.shape = (m, n_train)
138
            y_{train.shape} = (1, n_{train})
139
            x_{test.shape} = (m, n_{test})
140
            y_{test.shape} = (1, n_{test})
141
       alpha : float
142
            The learning rate for gradient descent
143
       num_iters : int
144
            The number of times we wish to perform gradient descent
145
       accuracy : Boolean
146
            Use True to print the accuracy of the model
147
148
       Returns:
149
       d : Dict
150
            d['costs'] : array_like
151
                The costs evaluated every 100 iterations
152
            d['y_train_preds'] : array_like
153
                Predicted values on the training set
154
            d['y_test_preds'] : array_like
155
                Predicted values on the test set
156
            d['w'] : array_like
157
                Optimized parameter w
158
            d['b'] : float
159
```

```
Optimized parameter b
160
           d['learning_rate'] : float
161
                The learning rate alpha
162
           d['num_iters'] : int
163
                The number of iterations with which gradient descent was performed
164
165
       ,, ,, ,,
167
       m = x_{train.shape[0]}
168
       # initialize parameters
169
       w = np.zeros((m, 1))
170
       b = 0.0
171
       # optimize parameters
172
       costs, params, grads = grad_descent(x_train, y_train, w, b, alpha, num_iters)
173
       w = params['w']
174
       b = params['b']
175
       # record predictions
176
       y_train_preds = predict(w, b, x_train)
177
       y_test_preds = predict(w, b, x_test)
178
       # group results into dictionary for return
179
       d = {'costs' : costs,
180
             'y_train_preds' : y_train_preds,
             'y_test_preds' : y_test_preds,
182
             'W' : W,
183
             'b' : b,
184
             'learning_rate' : alpha,
             'num_iters' : num_iters}
186
187
       if accuracy:
188
           train_acc = 100 - np.mean(np.abs(y_train_preds - y_train)) * 100
189
           test_acc = 100 - np.mean(np.abs(y_test_preds - y_test)) * 100
190
           print(f'Training_Accuracy:_{train_acc}%')
191
           print(f'Test_Accuracy:_{test_acc}%')
192
193
194
       return d
```

195

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{s_0 \times n}$ and $y \in \{0, 1\}^{1 \times n}$. Usually with logistic regression we have the following type of structure:

$$[x^1, ..., x^{s_0}] \xrightarrow{\varphi} [z] \xrightarrow{g} [a] \xrightarrow{=} \hat{y},$$

where

$$z = \varphi(x) = w^T x + b,$$

is our affine-linear transformation, and

$$a = q(z) = \sigma(z)$$

is our sigmoid function. Such a structure will be called a *network*, and the [a] is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\begin{bmatrix}
x^{1} \\
\vdots \\
x^{s_{0}}
\end{bmatrix} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix}
z^{[1]1} \\
\vdots \\
z^{[1]s_{1}}
\end{bmatrix}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix}
a^{[1]1} \\
\vdots \\
a^{[1]s_{1}}
\end{bmatrix}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix}
z^{[2]}\end{bmatrix} \xrightarrow{g^{[2]}} \begin{bmatrix}
a^{[2]}\end{bmatrix}} \xrightarrow{=} \hat{y},$$
Layer 0

Layer 1

where

$$\begin{split} \varphi^{[1]} : \mathbb{R}^{s_0} &\to \mathbb{R}^{s_1}, \qquad \varphi^{[1]}(x) = W^{[1]}x + b^{[1]}, \\ \varphi^{[2]} : \mathbb{R}^{s_1} &\to \mathbb{R}, \qquad \varphi^{[2]}(x) = W^{[2]}x + b^{[2]}, \end{split}$$

and $W^{[1]} \in \mathbb{R}^{s_1 \times s_0}$, $W^{[2]} \in \mathbb{R}^{1 \times s_1}$, $b^{[1]} \in \mathbb{R}^{s_1}$, $b^{[2]} \in \mathbb{R}$, and $g^{[\ell]}$ is a broadcasted activator function (e.g., the sigmoid function $\sigma(z)$, or $\tanh(z)$, or $\operatorname{ReLU}(z)$). Such a network is called a 2-layer neural network where x is the input layer (called layer-0), $a^{[1]}$ is a hidden layer (called layer-1), and $a^{[2]}$ is the output layer (called layer-2).

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^m \to \mathbb{R}^m$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^m if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^m$ and $\{e_i : 1 \le i \le m\}$ is the standard basis for \mathbb{R}^m . In practice, we will write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^m . Then the differential $dG_z: T_z\mathbb{R}^m \to T_{G(z)}\mathbb{R}^m$ is given by

$$dG_z(v) = [g'(z^i)] \odot [v^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

Proof: We calculate

$$dG_z(v) = \frac{d}{dt}\Big|_{t=0} G(z+tv)$$

$$= \frac{d}{dt}\Big|_{t=0} (g(z^i+tv^i))$$

$$= (g'(z^i)v^i)$$

$$= [g'(z^i)] \odot [v^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Let us lay out all of these functions explicitly (in the Smooth Category) as to facilitate our later computations for our cost function and our gradients. To this end:

$$\varphi^{[1]}: \mathbb{R}^{s_0} \to \mathbb{R}^{s_1}, \qquad d\varphi^{[1]}: T\mathbb{R}^{s_0} \to T\mathbb{R}^{s_1},$$

$$z^{[1]} = \varphi^{[1]}(x) = W^{[1]}x + b^{[1]}, \qquad d\varphi^{[1]}_x(v) = W^{[1]}v;$$

$$\begin{split} g^{[1]} : \mathbb{R}^{s_1} &\to \mathbb{R}^{s_1}, & dg^{[1]} : T\mathbb{R}^{s_1} \to T\mathbb{R}^{s_1}, \\ a^{[1]} &= g^{[1]}(z^{[1]}), & \frac{\partial a^{[1]\mu}}{\partial z^{[1]\nu}} = \delta^{\mu}_{\nu} g^{[1]\prime}(z^{[1]\mu}); \\ \varphi^{[2]} : \mathbb{R}^{s_1} &\to \mathbb{R}^{s_2}, & d\varphi^{[2]} : T\mathbb{R}^{s_1} \to T\mathbb{R}^{s_2}, \\ z^{[2]} &= \varphi^{[2]}(a^{[1]}) = W^{[2]}a^{[1]} + b^{[2]}, & d\varphi^{[2]}_{a^{[2]}}(v) = W^{[2]}v; \\ g^{[2]} : \mathbb{R}^{s_2} &\to \mathbb{R}^{s_2}, & dg^{[2]} : T\mathbb{R}^{s_2} \to T\mathbb{R}^{s_2}, \\ a^{[2]} &= g^{[2]}(z^{[2]}), & \frac{\partial a^{[2]\mu}}{\partial z^{[2]\nu}} = \delta^{\mu}_{\nu} g^{[2]\prime}(z^{[2]\mu}). \end{split}$$

That is, given an input $x \in \mathbb{R}^{s_0}$, we get a predicted value $\hat{y} \in \mathbb{R}^{s_2}$ of the form

$$\hat{y} = g^{[2]} \circ \varphi^{[2]} \circ g^{[1]} \circ \varphi^{[1]}(x).$$

This compositional function is known as forward propagation.

2.1 Backpropagation

Since we wish to optimize our model with respect to our parameter $W^{[\ell]}$ and $b^{[\ell]}$, we consider a generic loss function $\mathbb{L}: \mathbb{R}^{s_2} \times \mathbb{R}^{s_2} \to \mathbb{R}$, $\mathbb{L}(\hat{y}, y)$, and by acknowledging the potential abuse of notation, we assume y is fixed, and consider the aforementioned as a function of a single-variable

$$\mathbb{L}_y: \mathbb{R}^{s_2} \to \mathbb{R}, \qquad \mathbb{L}_y(\hat{y}) = \mathbb{L}(\hat{y}, y).$$

We also define the function

$$\Phi(A, u, \xi) = A\xi + u,$$

and note that we're suppressing a dependence on the layer ℓ which only affects our domain and range of Φ (and not the actual calculations involving the derivatives). Moreover, in coordinates we see that

$$\frac{\partial \Phi^{i}}{\partial A^{\mu}_{\nu}} = \frac{\partial}{\partial A^{\mu}_{\nu}} (A^{i}_{j} \xi^{j} + u^{i})$$
$$= (\delta^{i}_{\mu} \delta^{\nu}_{j} \xi^{j})$$
$$= \delta^{i}_{\mu} \xi^{\nu};$$

$$\frac{\partial \Phi^i}{\partial u^{\mu}} = \frac{\partial}{\partial u^{\mu}} (A_j^i \xi^j + u^i)$$
$$= \delta^i_{\mu};$$

and

$$\frac{\partial \Phi^{i}}{\xi^{\mu}} = \frac{\partial}{\partial \xi^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= A_{j}^{i} \delta_{\mu}^{j}$$
$$= A_{\mu}^{i}.$$

We now define the compositional function

$$F: \mathbb{R}^{s_2 \times s_1} \times \mathbb{R}^{s_2} \times \mathbb{R}^{s_1 \times s_0} \times \mathbb{R}^{s_1} \times \mathbb{R}^{s_0} \to \mathbb{R}$$

given by

$$F(C,c,B,b,x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi \circ (\mathbb{1} \times \mathbb{1} \times (g^{[1]} \circ \Phi))(C,c,B,b,x).$$

We first introduce an error term $\delta^{[2]} \in \mathbb{R}^{s_2}$ defined by

$$\delta^{[2]} := \nabla (\mathbb{L}_y \circ g^{[2]})(z^{[2]})$$
$$= (d\mathbb{L}_y \circ g^{[2]})_{z^{[2]}})^T.$$

Now we calculate the gradient $\frac{\partial F}{\partial C}$ in coordinates by

$$\frac{\partial F}{\partial C_{\nu}^{\mu}} = \frac{\partial}{\partial C_{\nu}^{\mu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, a^{[1]}) \right]
= \sum_{j=1}^{s_{2}} \delta^{[2]j} \frac{\partial}{\partial C_{\nu}^{\mu}} (C_{i}^{j} a^{[1]i} + c^{j})
= \sum_{j=1}^{s_{2}} \delta^{[2]j} \delta_{\mu}^{j} a^{[1]\nu}
= \delta^{[2]}{}_{\mu} a^{[1]\nu}
= [a^{[1]} \delta^{[2]T}]_{\mu}^{\nu}$$

and hence that

$$\frac{\partial F}{\partial C} = \left[\frac{\partial F}{\partial C^{\mu}_{\nu}}\right]^{T}$$
$$= \left[\delta^{[2]}_{\mu} a^{[1]\nu}\right]^{T}$$
$$= \delta^{[2]} a^{[1]T}.$$

Moreover, we also calculate

$$\frac{\partial F}{\partial c^{\mu}} = \sum_{i=1}^{s_2} \delta^{[2]j} \delta^j_{\mu},$$

and hence that

$$\frac{\partial F}{\partial c} = \delta^{[2]}.$$

Next we introduce another error term $\delta^{[1]} \in \mathbb{R}^{s_1}$ defined by

$$\delta^{[1]} = [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}$$

with coordinates

$$\begin{split} (\delta^{[1]\mu})^T &= \sum_{i=1}^{s_2} \sum_{j=1}^{s_1} \delta^{[2]i} C^i_j g^{[1]\prime}(z^{[1]j}) \delta^j_\mu \\ &= \sum_{i=1}^{s_2} \delta^{[2]i} C^i_\mu g^{[1]\prime}(z^{[1]\mu}) \end{split}$$

 $d_{z^{[1]}}F$

and now calculate the gradient $\frac{\partial F}{\partial B}$ in coordinates by

$$\begin{split} \frac{\partial F}{\partial B^{\mu}_{\nu}} &= \frac{\partial}{B^{\mu}_{\nu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, g^{[1]}(Bx + b)) \right] \\ &= \sum_{j=1}^{s_{2}} \delta^{[2]j} \sum_{\rho=1}^{s_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{s_{1}} \frac{\partial a^{[1]\rho}}{\partial z^{[1]\lambda}} \frac{\partial \Phi^{\lambda}}{\partial B^{\mu}_{\nu}} \\ &= \sum_{j=1}^{s_{2}} \delta^{[2]j} \sum_{\rho=1}^{s_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{s_{1}} \delta^{\rho}_{\lambda} g^{[1]'}(z^{[1]\rho}) \delta^{\lambda}_{\mu} x^{\nu} \\ &= \sum_{j=1}^{s_{2}} \delta^{[2]j} \sum_{\rho=1}^{s_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{s_{2}} \delta^{[2]j} \sum_{\rho=1}^{s_{1}} C^{j}_{\rho} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{s_{2}} \delta^{[2]j} C^{j}_{\mu} g^{[1]'}(z^{[1]\mu}) x^{\nu} \\ &= \delta^{[1]}_{\mu} x^{\nu} \\ &= \left[x \delta^{[1]T} \right]^{\nu}_{\mu}, \end{split}$$

and hence that

$$\frac{\partial F}{\partial B} = \left[\frac{\partial F}{\partial B^{\mu}_{\nu}}\right]^{T}$$
$$= \delta^{[2]} x^{T}.$$

Moreover, from the above calculation, we immediately see that

$$\frac{\partial F}{\partial b^{\mu}} = \delta^{[1]}.$$

In summary, we've computed the following gradients

$$\frac{\partial F}{\partial W^{[2]}} = \delta^{[2]} a^{[1]T}$$
$$\frac{\partial F}{\partial b^{[2]}} = \delta^{[2]}$$
$$\frac{\partial F}{\partial W^{[1]}} = \delta^{[1]} x^{T}$$
$$\frac{\partial F}{\partial b^{[1]}} = \delta^{[1]},$$

where

$$\begin{split} \delta^{[2]} &= [d(\mathbb{L}_y \circ g^{[2]})_{z^{[2]}}]^T \\ \delta^{[1]} &= [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}. \end{split}$$

Finally, we recall that our cost function \mathbb{J} is the average sum of our loss function \mathbb{L} over our training set, we get that

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{1}{n} \sum_{i=1}^{n} F(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}, x_j),$$

and hence that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} a^{[1]}{}_{j}{}^{T} = \frac{1}{n} \delta^{[2]} a^{[1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[2]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} \\ \frac{\partial \mathbb{J}}{\partial W^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} x_{j}^{T} = \frac{1}{n} \delta^{[1]} x^{T} \\ \frac{\partial \mathbb{J}}{\partial b^{[1]}} &= \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} \end{split}$$

2.2 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions.

2.2.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma: \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1+e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

Moreover, suppose that $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of σ from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\sigma(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = \frac{d}{dt} \Big|_{t=0} g(z + tv)$$

$$= \frac{d}{dt} \Big|_{t=0} (\sigma(z^i + tv^i))$$

$$= (\sigma'(z^i)v^i)$$

$$= (\sigma(z^i)(1 - \sigma(z^i))v^i)$$

$$= g(z) \odot (1 - g(z)) \odot v,$$

where \odot represents the Hadamard product (or component-wise multiplication); or rather, as as a matrix in $\mathbb{R}^{m \times m}$,

$$[dg_z]^{\mu}_{\nu} = \delta^{\mu}_{\nu} \sigma(z^{\mu}) (1 - \sigma(z^{\mu})).$$

2.2.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of tanh from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\tanh(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\tanh'(z^i)] \odot [v^i]$$

= $[1 - \tanh^2(z^i)] \odot [v^i]$
= $\delta_i^i (1 - \tanh^2(z^i)) v^j$.

2.2.3 The Rectified Linear Function

We have the leaky-ReLU function $ReLU(z;\beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},\$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0\\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of ReLU from \mathbb{R} to \mathbb{R}^m . Then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = \text{ReLU}(z^i; \beta),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\operatorname{ReLU}'(z^i; \beta)] \odot [v^i]$$

= $\delta_j^i(\beta \chi_{(-\infty,0)}(z^i) + \chi_{[0,\infty)}(z^i))v^j$.

2.2.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use on our outer-layer to obtain a probability distribution over our predicted labels. We then calculate for $z=(z^1,...,z^m)\in\mathbb{R}^m$ that $d(\operatorname{softmax})_z:T_z\mathbb{R}^m\to T_{\operatorname{softmax}(z)}\mathbb{R}^m$

$$d(\operatorname{softmax})_{z}(v) = \frac{d}{dt}\Big|_{t=0} \operatorname{softmax}(z+tv)$$

$$= \frac{d}{dt}\Big|_{t=0} \frac{1}{\sum_{j=1}^{m} e^{z^{j}+tv^{j}}} \begin{pmatrix} e^{z^{1}+tv^{1}} \\ e^{z^{2}+tv^{2}} \\ \vdots \\ e^{z^{m}+tv^{m}} \end{pmatrix}$$

$$= \frac{-1}{\left(\sum_{j=1}^{m} e^{z^{j}}\right)^{2}} \left(\sum_{j=1}^{m} e^{z^{j}}v^{j}\right) \begin{pmatrix} e^{z^{1}} \\ \vdots \\ e^{z^{m}} \end{pmatrix} + \frac{1}{\sum_{j=1}^{m} e^{z^{j}}} \begin{pmatrix} e^{z^{1}}v^{1} \\ \vdots \\ e^{z^{m}}v^{m} \end{pmatrix}$$

$$= -\langle \operatorname{softmax}(z), v \rangle \operatorname{softmax}(z) + \operatorname{softmax}(z) \odot v,$$

or rather in coordinates

$$[d(\operatorname{softmax})_z]_j^i = S^i(\delta_j^i + \delta_{\rho j} S^{\rho}),$$

where

$$S^{\mu} = x^{\mu} \circ \operatorname{softmax}(z).$$

2.3 Binary Classification - An Example

We return the network given by

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{s_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]s_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]s_1} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

and show how such a model would be trained using python below. We assume layer-2 has the sigmoid function (since it's binary classification) as an activator and our hidden layer has the ReLU function as activators.

We note that $s_2=1$ since we're dealing with a single activator in this layer, and

$$a^{[2]} = g^{[2]}(z^{[2]}) = \sigma(z^{[2]}),$$

with

$$d(g^{[2]})_{z^{[2]}} = \sigma'(z^{[2]}) = \sigma(z^{[2]})(1 - \sigma(z^{[2]})) = a^{[2]}(1 - a^{[2]}).$$

In layer-1, we have that

$$a^{[1]} = g^{[1]}(z^{[1]}) = \text{ReLU}(z^{[1]}),$$

with

$$d(g^{[1]})_{z^{[1]}} = \left[\delta^{\mu}_{\nu} \chi_{[0,\infty)}(z^{[1]\mu})\right]^{\mu}_{\nu}.$$

Finally, we choose our loss function $\mathbb{L}(\hat{y}, y)$ to be the log-loss function (since we're using the sigmoid activator on the outer-layer), i.e.,

$$\mathbb{L}(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}),$$

or rather

$$\mathbb{L}(x,y) = -y\log(a^{[2]}) - (1-y)\log(1-a^{[2]}).$$

We then have the cost function \mathbb{J} given by

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{-1}{n} \sum_{j=1}^{n} \left(y_j \log(a^{[2]}_j) + (1 - y_j) \log(1 - a^{[2]}_j) \right) \\
= \frac{-1}{n} \left(\left\langle y, \log(a^{[2]}) \right\rangle + \left\langle 1 - y, \log(1 - a^{[2]}) \right\rangle \right)$$

Moreover, when using backpropagation, we see that

$$\delta^{[2]}_{j}^{T} = d(\mathbb{L}_{y_{j}})_{a^{[2]}} \cdot d(g^{[2]})_{z^{[2]}_{j}}$$

$$= \left(-\frac{y_{j}}{a^{[2]}_{j}} + \frac{1 - y_{j}}{1 - a^{[2]}_{j}}\right) \cdot (a^{[2]}_{j}(1 - a^{[2]}_{j}))$$

$$= a^{[2]}_{j} - y_{j},$$

or rather

$$\delta^{[2]} = a^{[2]} - y.$$

Similarly, we compute

$$\begin{split} \delta^{[1]}{}_{j}^{T} &= \delta^{[2]}{}_{j}^{T} W^{[2]} [dg^{[1]}_{z^{[1]}{}_{j}}] \\ &= \delta^{[2]}{}_{i}^{T} W^{[2]} [\delta^{\mu}_{\nu} \cdot \chi_{[0,\infty)}(z^{[1]}{}_{i}^{\mu})] \end{split}$$

2.3.1 Vectorization in Python

```
1 import copy
з import numpy as np
   Activator functions
  def sigmoid(z):
      Parameters
10
      z : array_like
11
      Returns
13
      sigma : array_like
15
          The value of the sigmoid function evaluated at z
16
      ds : array_like
17
           The differential of the sigmoid function evaluate at z
```

```
11 11 11
19
      # Compute value of sigmoid
20
      sigma = (1 / (1 + np.exp(-z)))
21
      # Compute differential of sigmoid
22
      ds = sigma * (1 - sigma)
23
      return sigma, ds
24
   Preliminary functions for our model
  def layer_shapes(x, y, hidden_layer_size):
28
      Parameters
29
       -----
30
      x : array_like
31
           x.shape = (m_x, n)
32
      y : array_like
33
           y.shape = (m_y, n)
34
35
      hidden_layer_size : int
           The number nodes in the hidden layer
36
      Returns
37
38
      n : int
39
           The number of training examples
40
      m_x : int
41
          The number of input features
42
      m_h : The number of nodes in the hidden layer
43
      m_y: The number of nodes in the output layer
45
      m_x, n = x.shape
      assert(y.shape[1] == n)
47
      m_y = y.shape[0]
48
      m_h = hidden_layer_size
49
      return n, m_x, m_h, m_y
50
51
52
53
54 def initialize_parameters(m_x, m_h, m_y):
       11 11 11
55
56
      Parameters
       -----
57
      m_x : int
58
           The number of input features
59
      m_h : int
60
          The number of nodes in the hidden layer
61
      m_y : int
62
           The number of nodes in the output layer
63
64
      Returns
```

```
66
       params : Dict
67
            w1 : array_like
68
                w1.shape = (m_h, m_x)
69
            b1 : array_like
70
                b1.shape = (m_h, 1)
71
            w2 : array_like
72
                w2.shape=(m_y, m_h)
73
74
            b2 : array_like
                b2.shape = (m_y, 1)
75
       11 11 11
76
       w1 = np.random.randn(m_h, m_x) * 0.01
77
       b1 = np.zeros((m_h, 1))
78
       w2 = np.random.randn(m_y, m_h) * 0.01
79
       b2 = np.zeros((m_y, 1))
80
81
       params = \{'w1': w1,
82
                   'b1' : b1,
83
                   'w2' : w2,
84
                   'b2' : b2}
85
86
       return params
87
88
89 def forward_propagation(x, params):
90
       Parameters
91
       _____
92
93
       x : array_like
            x.shape = (m_x, n)
94
       params : Dict
95
            params['w1'] : array_like
96
                w1.shape = (m_h, m_x)
97
            params['b1'] : array_like
98
                b1.shape = (m_h, 1)
99
            params['w2'] : array_like
100
                w2.shape = (m_y, m_h)
101
            params['b2'] : array_like
102
103
                b2.shape = (m_y, 1)
       Returns
104
       _____
105
       a2 : array_like
106
            a2.shape = (m_y, n)
107
       cache : Dict
108
109
            cache['z1'] : array_like
                z1.shape = (m_h, n)
110
            cache['a1'] : array_like
111
                a1.shape = (m_h, n)
112
```

```
cache['z2'] : array_like
113
                z2.shape = (m_y, n)
114
            cache['a2'] = a2
115
116
117
       # Retrieve parameters
118
       w1 = params['w1']
119
       b1 = params['b1']
120
       w2 = params['w2']
121
       b2 = params['b2']
122
123
       # Auxiliary computations
124
       z1 = w1 @ x + b1
125
       a1 = np.tanh(z1)
126
       z2 = w2 @ a1 + b2
127
       a2 = sigmoid(z2)
128
129
       assert(a1.shape == (w1.shape[0], x.shape[1]))
130
       assert(a2.shape == (w2.shape[0], a1.shape[1]))
131
132
       cache = {'z1' : z1},
133
                 'a1' : a1,
134
                  'z2' : z2,
135
                  'a2' : a2}
136
137
       return a2, cache
138
139
140 def compute_cost(a2, y):
141
       Parameters
142
        -----
143
       a2 : array_like
144
           a2.shape = (m_y, n)
145
       y : array_like
146
            y.shape = (m_y, n)
147
       Returns
148
149
       cost : float
150
            The cost evaluated at y and a2
151
152
       n = y.shape[1]
153
       cost = (-1 / n) * (np.sum(y * np.log(a2)) + np.sum((1 - y) * np.log(1 - a2)))
154
       cost = float(np.squeeze(cost)) # Makes sure we return a float
155
156
       return cost
157
158
159 def backward_propagation(params, cache, x, y):
```

```
11 11 11
160
       Parameters
161
        -----
162
       params : Dict
163
            params['w2'] : array_like
164
                w2.shape = (m_y, m_h)
165
            params['b2'] : array_like
166
                b2.shape = (m_y, 1)
167
            params['w1'] : array_like
168
                w1.shape = (m_h, m_x)
169
            params['b1'] : array_like
170
                b1.shape = (m_h, 1)
171
        cache : Dict
172
            cache['z1'] : array_like
173
                z1.shape = (m_h, n)
174
            cache['a1'] : array_like
175
176
                a1.shape = (m_h, n)
            cache['z2'] : array_like
177
                z2.shape = (m_y, n)
178
            cache['a2'] = a2
179
       x : array_like
180
            x.shape = (m_x, n)
       y : array_like
182
            y.shape = (m_y, n)
183
       Returns
184
        _____
185
       grads : Dict
186
            grads['dw2'] : array_like
187
                dw2.shape = (m_y, m_h)
188
            grads['db2'] : array_like
189
                db2.shape = (m_y, 1)
190
            grads['dw1'] : array_like
191
                dw1.shape = (m_h, m_x)
192
            grads['db1'] : array_like
193
                db1.shape = (m_h, 1)
194
195
       # Retrieve parameters
196
197
       w1 = params['w1']
       w2 = params['w2']
198
199
       # Set dimensional constants
200
       m_x, n = x.shape
201
       m_y, m_h = w2.shape
202
203
       # Retrieve node outputs
204
       a1 = cache['a1']
205
       a2 = cache['a2']
206
```

```
207
       # Auxiliary Computations
208
       delta2 = a2 - y
209
       assert(delta2.shape ==(m_y, n))
210
       d_{tanh} = 1 - (a1 * a1)
211
       assert(d_tanh.shape == (m_h, n))
212
       delta1 = (w2.T @ delta1) * d_tanh
213
       assert(delta1.shape == (m_h, n))
214
215
       # Gradient computations
216
       dw2 = (1 / n) * delta2 @ a1.T
217
       db2 = (1 / n) * np.sum(delta2, axis=1, keepdims=True)
218
       dw1 = (1 / n) * delta1 @ x.T
219
       db1 = (1 / n) * np.sum(delta1, axis=1, keepdims=True)
220
221
       # Combine and return dict
222
       grads = {'dw2' : dw2,}
223
                  'db2' : db2,
224
                 'dw1': dw1,
225
                 'db1' : db1}
226
       return grads
227
228
229 def
       update_parameters(params, grads, learning_rate=1.2):
230
       Parameters
231
       -----
232
       params : Dict
233
            params['w2'] : array_like
^{234}
                w2.shape = (m_y, m_h)
235
            params['b2'] : array_like
236
                b2.shape = (m_y, 1)
237
            params['w1'] : array_like
238
                w1.shape = (m_h, m_x)
239
            params['b1'] : array_like
240
                b1.shape = (m_h, 1)
241
       grads : Dict
242
            grads['dw2'] : array_like
243
                dw2.shape = (m_y, m_h)
244
            grads['db2'] : array_like
^{245}
                db2.shape = (m_y, 1)
246
            grads['dw1'] : array_like
^{247}
                dw1.shape = (m_h, m_x)
248
            grads['db1'] : array_like
249
                db1.shape = (m_h, 1)
250
       learning_rate : float
251
            Default = 1.2
252
       Returns
253
```

```
254
       params : Dict
255
            params['w2'] : array_like
256
                w2.shape = (m_y, m_h)
257
            params['b2'] : array_like
258
                b2.shape = (m_y, 1)
259
            params['w1'] : array_like
260
                w1.shape = (m_h, m_x)
261
            params['b1'] : array_like
262
                b1.shape = (m_h, 1)
263
       ,, ,, ,,
^{264}
       # Retrieve parameters
265
       w2 = copy.deepcopy(params['w2'])
266
       b2 = params['b2']
267
       w1 = copy.deepcopy(params['w1'])
268
       b1 = params['b1']
269
270
       # Retrieve gradients
271
       dw2 = grads['dw2']
272
       db2 = grads['db2']
273
       dw1 = grads['dw1']
274
       db1 = grads['db1']
275
276
       # Perform update
277
       w2 = w2 - learning_rate * dw2
278
       b2 = b2 - learning_rate * db2
279
       w1 = w1 - learning_rate * dw1
280
       b1 = b1 - learning_rate * db1
281
282
       # Combine and return dict
283
       params = \{'w2': w2,
284
                   'b2' : b2,
285
                   'w1' : w1,
286
                   'b1' : b1}
287
       return params
288
289
290
291 # The main neural network training model
292 def model(x, y, num_hidden_layer, num_iters=10000, print_cost=False):
293
       Parameters
294
       -----
295
296
       x : array_like
            x.shape = (m_x, n)
297
       y : array_like
298
            y.shape = (m_y. n)
299
       num_hidden_layer : int
300
```

```
Number of nodes in the single hidden layer
301
       num_iters : int
302
           Number of iterations with which our model performs gradient descent
303
       print_cost : Boolean
304
            If True, print the cost every 1000 iterations
305
       Returns
306
       -----
       params : Dict
308
            params['w2'] : array_like
309
                w2.shape = (m_y, m_h)
310
            params['b2'] : array_like
311
                b2.shape = (m_y, 1)
312
            params['w1'] : array_like
313
                w1.shape = (m_h, m_x)
314
            params['b1'] : array_like
315
                b1.shape = (m_h, 1)
316
       ,, ,, ,,
317
       # Set dimensional constants
318
       n, m_x, m_h, m_y = layer_shapes(x, y, num_hidden_layer)
319
       # initialize parameters
320
       params = initialize_parameters(m_x, m_h, m_y)
321
322
       # main loop for gradient descent
323
       for i in range(num_iters):
324
            a2, cache = forward_propagation(X, params)
325
            cost = compute_cost(a2, y)
326
            grads = backward_propagation(params, cache, x, y)
327
            params = update_parameters(params, grads)
328
329
            if print_cost and i % 1000 == 0:
330
                print(f'Cost_after_iteration_{i}:_{cost}')
331
332
       return params
333
334
335 # Using our model to obtain predictions
336 def predict(params, x):
       11 11 11
337
338
       Parameters
339
       params : Dict
340
            params['w2'] : array_like
341
                w2.shape = (m_y, m_h)
342
343
            params['b2'] : array_like
                b2.shape = (m_y, 1)
344
            params['w1'] : array_like
345
                w1.shape = (m_h, m_x)
346
            params['b1'] : array_like
347
```

```
b1.shape = (m_h, 1)
348
       x : array_like
349
           x.shape = (m_x, n)
350
351
       Returns
352
353
       predictions : array_like
354
           predictions.shape = (m_y, n)
355
356
       a2, _ = forward_propagation(x, params)
357
       predictions = np.zeros(a2.shape)
358
       predictions[~(a2 < 0.5)] = 1
359
360
       return predictions
361
```

3 Deep Neural Networks

Sup