НАВЧАЛЬНО-НАУКОВИЙ КОМПЛЕКС "ІНСТИТУТ ПРИКЛАДНОГО СИСТЕМНОГО АНАЛІЗУ" НАЦІОНАЛЬНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА МАТЕМАТИЧНИХ МЕТОДІВ СИСТЕМНОГО АНАЛІЗУ

РОЗРАХУНКОВА РОБОТА з предмету "Математична статистика"

Виконав студент групи КА-81 Фордуй Нікіта Перевірила Каніовська І.Ю.

1 Завдання

Дана конкретна реалізація вибірки об'ємом n = 100:

2	0	8	0	15	1	1	1	7	1	0	0	3	1	1	1	0	0	3	1
2	4	10	6	1	0	1	0	0	2	0	1	5	0	1	9	4	2	11	3
2	0	8	1	6	3	0	1	1	4	0	9	5	3	3	0	0	10	2	0
3	11	0	9	0	1	4	1	0	2	0	1	1	3	4	7	1	3	3	0
4	7	6	0	3	0	1	15	11	1	2	4	0	2	0	0	0	26	4	0

2 Побудова варіаційного ряду вибірки

Маємо невелику кількість різних значень - тому побудуємо дискретний варіаційний ряд. Підрахувавши кількість варіант (14) та їх частоти і знаючи об'єм вибірки отримаємо дискретний варіаційний ряд :

x_i^*	0	1	2	3	4	5	6	7	8	9	10	11	15	26
n_i	29	22	9	11	8	2	3	3	2	3	2	3	2	1
$\omega_i = \frac{n_i}{n}$	$\frac{29}{100}$	$\frac{22}{100}$	$\frac{9}{100}$	$\frac{11}{100}$	$\frac{8}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{3}{100}$	$\frac{2}{100}$	$\frac{1}{100}$
ω_i^H	$\frac{29}{100}$	$\frac{51}{100}$	$\frac{60}{100}$	$\frac{71}{100}$	$\frac{79}{100}$	$\frac{81}{100}$	$\frac{84}{100}$	$\frac{87}{100}$	$\frac{89}{100}$	$\frac{92}{100}$	$\frac{94}{100}$	$\frac{97}{100}$	$\frac{99}{100}$	1

де x_i^* - варіанти реалізації вибірки, n_i - частота варіанти, $\omega_i = \frac{n_i}{n}$ - частість варіанти або відносна частота, ω_i^H - накопичена частість.

За дискретним варіаційним рядом побудуємо його геометричну інтерпретацію - полігон відносних частот (частостей):

Порівняємо полігон частостей нашої реалізації виборки із полігоном ймовірностей закону Паскаля при різних значеннях його параметра.

Можна побачити, що полігон ймовірностей закону Паскаля при певних значеннях його параметра $(a=1,\ 2,\ 3,\ 4)$ дуже схожий на полігон частостей нашої реалізації вибірки.

3 Емпірична функція розподілу

Побудуємо емпіричну функцію розподілу за вже побудованим дискретним варіаційним рядом:

$$F_n^*(x) = \begin{cases} 0, & x \le 0 \\ \frac{29}{100}, & 0 < x \le 1 \\ \frac{29+22}{100} = \frac{51}{100}, & 1 < x \le 2 \\ \frac{51}{100} + \frac{9}{100} = \frac{60}{100}, & 2 < x \le 3 \\ \frac{60}{100} + \frac{11}{100} = \frac{71}{100}, & 3 < x \le 4 \\ \frac{71}{100} + \frac{8}{100} = \frac{79}{100}, & 4 < x \le 5 \\ \frac{79}{100} + \frac{2}{100} = \frac{81}{100}, & 5 < x \le 6 \\ \frac{81}{100} + \frac{3}{100} = \frac{87}{100}, & 7 < x \le 8 \\ \frac{87}{100} + \frac{2}{100} = \frac{89}{100}, & 8 < x \le 9 \\ \frac{89}{100} + \frac{3}{100} = \frac{92}{100}, & 9 < x \le 10 \\ \frac{92}{100} + \frac{2}{100} = \frac{94}{100}, & 10 < x \le 11 \\ \frac{94}{100} + \frac{3}{100} = \frac{97}{100}, & 11 < x \le 15 \\ \frac{97}{100} + \frac{2}{100} = \frac{99}{100}, & 15 < x \le 26 \\ \frac{99}{100} + \frac{1}{100} = 1, & x > 26 \end{cases}$$

Зобразимо емпіричну функцію розподілу геометрично:

Порівняємо графік емпіричної функції розподілу варіаційного ряду з графіком функції розподілу закону Паскаля при різних параметрах $(a=1,\,2,\,3)$:

З рисунків вище можна побачити що графік емпіричної функції розподілу нашої реалізації вибірки схожий при певних значеннях параметра а на функцію розподілу закону Паскаля.

4 Обчислення вибіркових характеристик генеральної сукупності (медіана, мода, ассиметрія)

Для початку знайдемо $(Mo_{\xi}^*)_{\text{знач.}}$ - значення вибіркової моди (тієї варіанти, якій відповідає найбільша частість). Для знаходження цієї варіанти використаємо вже побудований дискретний варіаційний ряд (див. ст. 1 пункт 2). Проаналізувавши варіаційний ряд побачимо, що:

$$(Mo_{\xi}^*)_{\text{3Haq.}} = x_1^* = 0$$

Зауважимо, що випадкова величина μ , розподілена за законом Паскаля при будь-яких значеннях параметра а має моду $Mo_{\mu}=0$.

Знайдемо значення вибіркової медіани $(Me_{\xi}^*)_{\text{знач.}}$ для нашої реалізації виборки. З варіаційного ряду (див. ст. 1 пункт 2), враховуючи те, що кількість варіант - парна, знайдемо:

$$(Me_{\xi}^*)_{\text{3Haq.}} = \frac{x_7^* + x_8^*}{2} = 6.5$$

Для знаходження значення вибіркової ассиметрія спочатку потрібно знайти значення вибіркової дисперсії, а тому й вибіркового середнього:

$$\overline{x} = (E_{\xi}^*)_{\text{3Haq.}} = \frac{1}{100} \sum_{k=1}^{14} x_k^* n_k = 3.06$$

За допомогою цього знайдемо значення вибіркової дисперсії:

$$(D_{\xi}^*)_{\text{3Haq.}} = \frac{1}{100} \sum_{k=1}^{100} (x_k - 3.06)^2 = 17.136400000000002$$

Отримавши значення вибіркової дисперсії, можна отримати значення вибіркової ассиметрії для даної реалізації вибірки:

$$(As_{\xi}^*)_{\text{\tiny 3Haq.}} = \frac{\frac{1}{100} \sum_{k=1}^{100} (x_k - 3.06)^3}{(17.1364000000000000)^{\frac{3}{2}}} = 2.504088773053977$$

5 Незміщені оцінки математичного сподівання та дисперсії

 ξ - генеральна сукупність, $\vec{\xi}=(\xi_1,\xi_2,\ldots,\xi_n)$ - випадкова вибірка, n=100 - об'єм вибірки.

За точкову оцінку математичного сподівання візьмемо вибіркове середнє:

$$E_{\xi}^* = \frac{1}{n} \sum_{k=1}^{n} \xi_k$$

Перевіримо незміщенність цієї точкової оцінки:

$$E(E_{\xi}^*) = E(\frac{1}{n} \sum_{k=1}^{n} \xi_k) = \frac{1}{n} \sum_{k=1}^{n} E_{\xi_k} = \frac{1}{n} n E_{\xi} = E_{\xi}$$
 (2)

Відповідно, ця точкова оцінка матсподівання є незміщеною. За точкову оцінку дисперсії візьмемо:

$$D_{\xi}^* = \frac{1}{n} \sum_{k=1}^n (\xi_k - \overline{\xi})^2 = \frac{1}{n} \sum_{k=1}^n ((\xi_k - E_{\xi}) - (\overline{\xi} - E_{\xi}))^2 =$$

$$= \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi})^2 - 2(\overline{\xi} - E_{\xi}) \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi}) + (\overline{\xi} - E_{\xi})^2 =$$

$$= \frac{1}{n} \sum_{k=1}^n (\xi_k - E_{\xi})^2 - (\overline{\xi} - E_{\xi})^2$$

Порахуємо матсподівання цієї оцінки:

$$E(D_{\xi}^*) = \frac{1}{n} \sum_{k=1}^n E(\xi_k - E_{\xi})^2 - E(\overline{\xi} - E_{\xi})^2 = D_{\xi} - D_{\overline{\xi}}$$

Бачимо, що ця оцінка - зміщена. Знайдемо $D_{\overline{\xi}} = \frac{1}{n} \sum_{k=1}^n D_{\xi_k} = \frac{D_{\xi}}{n}$.

$$E(D_{\xi}^*) = D_{\xi} - \frac{D_{\xi}}{n} = \frac{n-1}{n}D_{\xi}$$

Тоді оцінка $D_{\xi}^{**} = \frac{n}{n-1} D_{\xi}^{*}$ буде незміщеною оцінкою дисперсії.

$$D_{\xi}^{**} = \frac{n}{n-1} \frac{1}{n} \sum_{k=1}^{n} (\xi_k - \overline{\xi})^2 = \frac{1}{n-1} \sum_{k=1}^{n} (\xi_k - \overline{\xi})^2$$

Обчислимо значення цих точкових оцінок на данній реалізації виборки:

$$(E_{\xi}^*)_{{}_{3\mathrm{Haq.}}} = \frac{1}{100} \sum_{k=1}^{14} x_k^* n_k = 3.06$$

де x_k^* - к-та варіанта, n_k - частота вибірки.

$$(D_{\xi}^{**})_{\text{3HaV.}} = \frac{1}{99} \sum_{k=1}^{100} (x_k - 3.06)^2 = 17.30949494949495$$

6 Гіпотеза про розподіл, за яким отримано вибірку

Виходячи з того що:

- полігон частостей реалізації вибірки схожий на полігон ймовірностей закону Паскаля (див. с. 3-4)
- емпірична функцію розподілу реалізації вибірки схожа на функцію розподілу закону Паскаля (див. с. 6-7)
- мода випадкової величини, розподіленої за законом Паскаля дорівнює 0 при будь-яких параметрах закону; в той же самий час значення вибіркової медіани для нашої реалізації виборки також дорівнює 0.
- в наступному параграфі буде показано, що оцінка математичного сподівання закона Паскаля $E_{\xi}^* = \frac{1}{n} \sum_{k=1}^n \xi_k$ є не тільки незміщенною, а й конзистентною та ефективною. Тоді, якщо порівняти полігон частостей даної вибірки та полігон ймовірностей, графік емпіричної функції розподілу та графік функції розподілу закона Паскаля з відповідним параметром, то вони будуть дуже схожі (див. наступні рис.)

Таким чином висувається гіпотеза, що генеральна сукупність, якою породжена данна вибірка, розподілена за законом Паскаля.

7 Точкові оцінки параметру гіпотетичного закону розподілу

Спочатку скористаємось методом моментів для знаходження точкової оцінки параметра а закона Паскаля ($\mu \sim Pas(a)$). Прирівняємо емпіричний початковий момент 1-го порядку та математичне сподівання випадкової величини, розподіленої за законом Паскаля; отримаємо рівняння Пірсона:

$$E_{\mu} = E_{\mu}^{*}$$

$$E_{\mu} = a, E_{\mu}^{*} = \frac{1}{n} \sum_{k=1}^{n} \xi_{k}$$

$$(a^{*})_{\text{MM}} = \frac{1}{n} \sum_{k=1}^{n} \xi_{k}$$
(3)

Отримали статистику - точкову оцінку параметра а закону Π аскаля.

Тепер отримаємо точкову оцінку параметра а за допомогою методу максимальної правдоподібності (Фішера). Спочатку знайдемо функцію правдоподібності закона Паскаля:

$$\mathcal{L}(\vec{x}, a) = \prod_{k=1}^{n} \mathbb{P}\{\xi = x_k\} = \prod_{k=1}^{n} \frac{a^{x_k}}{(1+a)^{x_k+1}} = \frac{a^{\sum_{k=1}^{n} x^k}}{(1+a)^{\sum_{k=1}^{n} x^k + n}}$$

$$\ln \mathcal{L}(\vec{x}, a) = (\sum_{k=1}^{n} x_k) \ln a - ((\sum_{k=1}^{n} x_k) + n) \ln(1+a)$$

$$\frac{\partial \ln \mathcal{L}(\vec{x}, a)}{\partial a} = \frac{1}{a(1+a)} \sum_{k=1}^{n} x_k - \frac{n}{1+a} = 0$$
(4)

$$\frac{1}{a(1+a)} \sum_{k=1}^{n} x_k = \frac{n}{1+a}$$
$$a = \frac{1}{n} \sum_{k=1}^{n} x_k$$

Отримали оцінку параметра а закона Паскаля методом максимальної правдоподібності:

$$(a^*)_{\text{MII}} = \frac{1}{n} \sum_{k=1}^n \xi_k \tag{5}$$

Перевіримо виконання достатньої умови:

$$\frac{\partial^2 \ln \mathcal{L}(\vec{x}, a)}{\partial^2 a} = -\frac{1 + 2a}{a^2 (1 + a)^2} \sum_{k=1}^n x^k + \frac{n}{(1 + a)^2}$$

$$\frac{\partial^2 \ln \mathcal{L}(\vec{x}, a)}{\partial^2 a} \bigg|_{a = a^*} = -\frac{n^2}{(1 + a^*)^2} (\frac{1}{a^*} + 1) < 0 \tag{6}$$

Достатня умова виконана.

Обома методами отримали однакову оцінку параметра а:

$$(a^*)_{\text{MM}} = (a^*)_{\text{MII}} = a^* = \frac{1}{n} \sum_{k=1}^n \xi_k = \overline{\xi}$$

Перевіримо властивості цієї оцінки:

- 1. Незміщенність. Вже доведена раніше (див. 2 стор.9)
- 2. **Конзистентність.** Так як $\{\xi_k\}$ i.i.d¹ , для $\forall \xi_k : E_{\xi_k} = a < \infty, D_{\xi_k} = a^2 + a$ рівномірно обмежені, то за ЗВЧ $a^* \xrightarrow[n \to \infty]{\mathbb{P}} E_{a^*} = a$. А це і означає що оцінка конзистентна.

 $^{^1}$ i.i.d. - Independent and identically distributed random variables - незалежні та одна-ково розподілені випадкові величини

3. **Ефективність.** Розглянемо вираз $\frac{\partial \ln \mathcal{L}(\vec{x}, a)}{\partial a}$. Його вже було знайдено раніше (див. 4 стор. 12).

$$\frac{\partial \ln \mathcal{L}(\vec{x}, a)}{\partial a} = \frac{1}{a(1+a)} \sum_{k=1}^{n} x_k - \frac{n}{1+a} =$$

$$= \frac{n}{a(1+a)} \left(\frac{1}{n} \sum_{k=1}^{n} x_k - a\right) =$$

$$= C(n, a)(a^* - a)$$

Таким чином, за наслідком з нерівності Рао-Крамера, оцінка $a^* = \frac{1}{n} \sum_{k=1}^n \xi_k$ є ефективною.

Таким чином, маємо незміщенну, конзистентну та еффективну оцінку параметра а закона Паскаля.

8 Перевірка гіпотези про розподіл

Перевірка гіпотези про розподіл генеральної сукупності буде здійснюватись за допомогою критерію χ^2 (Пірсона) з рівнем значущості $\alpha=0.05$.

Висунемо гіпотезу $H_0: \xi \sim Pas(3.06)$. Згідно нашої гіпотези, генеральна сукупність може приймати такі значення: $\{0,1,2,\dots\}$. Розіб'ємо цю множину на такі підмножини X_i , $i=\overline{0,5}$:

•
$$X_0 = \{0\}$$

•
$$X_3 = \{3\}$$

•
$$X_1 = \{1\}$$

•
$$X_4 = \{4, 5\}$$

•
$$X_2 = \{2\}$$

•
$$X_5 = \{6, 7, \dots\}$$

Обчислимо ймовірності $p_i = \mathbb{P}(\xi \in X_i/H_0)$ та n_i - кількість значень реалізації вибірки, що потрапили в X_i .

X_i	{0}	{1}	{2}	{3}	$\{4,5\}$	$\{6,7,\dots\}$
p_i	0.2463	0.1856	0.1399	0.1055	0.1394	0.1833
$n \cdot p_i$	24.63	18.56	13.99	10.55	13.94	18.33
n_i	29	22	9	11	10	19

Бачимо, що $\sum_{i=0}^{5} p_i = 1$, r = 6, і виконується умова $\forall i : np_i \geq 10$. Обчислимо значення статистики:

$$\eta = \sum_{i=1}^{r} \frac{(n_i - np_i)^2}{np_i}$$

$$\eta_{\text{3Haq.}} = \frac{(29 - 24.63)^2}{24.63} + \frac{(22 - 18.56)^2}{18.56} + \frac{(9 - 13.99)^2}{13.99} + \frac{(11 - 10.55)^2}{10.55} + \frac{(10 - 13.94)^2}{13.94} + \frac{(19 - 18.33)^2}{18.33} \approx 4.35007$$

 $r-s-1=6-1-1=4, \alpha=0.05$, тому за таблицею розподілу Пірсона знайдемо значення $t_{0.05,4}=9.5$. Бачимо, що $\mu_{\text{знач.}} < t_{0.05,4}$. Робимо висновок, що на рівні значущості 0.05 дані не суперечать висунутій гіпотезі про те, що генеральна сукупність розподілена за законом Паскаля $(\xi \sim Pas(3.06))$.