Digitaalitekniikan alkeiskurssi

Logiikkaperheet

- Nastajärjestyksen mukaiset perheet:
 - Standardoi mikropiirien nastajärjestykset
 - Kaksi pääperhettä:
 - 74-sarja
 - 4000-sarja
- Sähköisten ominaisuuksien mukaiset perheet:
 - Standardoi piirien sähköiset ominaisuudet
 - Useita perheitä:
 - TTL: 7400, 74LS, 74F, 74S, ...
 - CMOS: 4000, 74HC, 74HCT, ...
- Teollisuusstandardeja, ei minkään virallisen tahon aikaansaannoksia

- Alkujaan vain TTL-piireille, levinnyt siitä myös CMOS-puolelle
- Tyyppimerkintä muotoa 74yyxx
 - yy = perheen tunnus kirjamina (LS,F,HC,HCT,...)
 - xx = piirin tunnusnumero, 2...3 numeroa
 - tunnusnumerot mielivaltaisia, katsottava datalehdestä
 - tyyppimerkinnän alussa voi olla valmistajan tunnus
 - tyyppimerkinnän lopussa on yleensä kotelointitunnus
- TTL-pohjaisia perheitä:
 - 74xx, 74LSxx, 74ALSxx, 74Fxx
- CMOS-pohjaisia perheitä:
 - 74Cxx, 74HCxx, 74HCTxx, 74LVCxx

74-sarja, esimerkkejä

- SN74LS139N
 - SN = valmistaja Texas Instruments
 - LS = sähköisesti LS-TTL
 - 139 = dual 2-to-4 line decoder
 - N = kotelointi plastic DIP
- MM74HC02M
 - MM = valmistaja National Semiconductor
 - HC = sähköisesti HCMOS
 - 02 = quad 2-input NOR
 - M = kotelointi plastic SOIC

- Vain CMOS-piireille
- Tyyppimerkintä neljä numeroa, muotoa 40xx tai 45xx
 - xx = piirin tunnusnumero, 2...3 numeroa
 - tunnusnumerot mielivaltaisia, katsottava datalehdestä
 - tyyppimerkinnän alussa voi olla valmistajan tunnus
 - tyyppimerkinnän lopussa on yleensä kotelointitunnus
- Puskuroituja (B) ja puskuroimattomia (UB) versioita, nykyään vain joitakin tyyppejä saatavissa puskuroimattomana
- Myös sähköisesti 74-sarjan mukaisia CMOS-piirejä valmistetaan 4000-sarjan nastajärjestyksillä!
 - tyyppimerkintä on muotoa 74yy40xx tai 74yy45xx
 - esim. 74HC4060

4000-sarja, esimerkkejä

- HCF4093BE
 - HCF = valmistaja STMicroelectronics
 - 4093 = quad 2-input NAND schmitt
 - B = puskuroitu
 - E = kotelointi plastic DIP
- MC14511BCP
 - MC1 = valmistaja Motorola (tai joku muu...)
 - 4511 = BCD to 7-segment decoder
 - B = puskuroitu
 - CP = kotelointi plastic DIP

- Kun kytketään kahden eri logiikkaperheen piirejä yhteen, ei ole itsestään selvää, että yhdistelmä toimii. Toimivuus on tarkistettava datalehdistä tapauskohtaisesti.
- Suurin syy toimimattomuuteen on logiikkatasojen rajojen erot perheiden välillä.
- Datalehdissä määritellään mm. tällaisia rajoja
 - V_{OH} (min) = pienin jännite, joka voi esiintyä piirin lähdössä sen ollessa H-tilassa
 - V_{OL} (max) = suurin jännite, joka voi esiintyä piirin lähdössä sen ollessa L-tilassa
 - V_{IH} (min) = pienin jännite, jonka piirin otto tulkitsee H-tilaksi
 - V_{II} (max) = suurin jännite, jonka piirin otto tulkitsee L-tilaksi

Esimerkki: kytketään 74LS-piiri ohjaamaan 74HC-piiriä:

Perusasioita digitaalipiireistä

Logiikkaperheet

- Nastajärjestyksen mukaiset perheet:
 - Standardoi mikropiirien nastajärjestykset
 - Kaksi pääperhettä:
 - 74-sarja
 - 4000-sarja
- Sähköisten ominaisuuksien mukaiset perheet:
 - Standardoi piirien sähköiset ominaisuudet
 - Useita perheitä:
 - TTL: 7400, 74LS, 74F, 74S, ...
 - CMOS: 4000, 74HC, 74HCT, ...
- Teollisuusstandardeja, ei minkään virallisen tahon aikaansaannoksia

- Alkujaan vain TTL-piireille, levinnyt siitä myös CMOS-puolelle
- Tyyppimerkintä muotoa 74yyxx
 - yy = perheen tunnus kirjamina (LS,F,HC,HCT,...)
 - xx = piirin tunnusnumero, 2...3 numeroa
 - tunnusnumerot mielivaltaisia, katsottava datalehdestä
 - tyyppimerkinnän alussa voi olla valmistajan tunnus
 - tyyppimerkinnän lopussa on yleensä kotelointitunnus
- TTL-pohjaisia perheitä:
 - 74xx, 74LSxx, 74ALSxx, 74Fxx
- CMOS-pohjaisia perheitä:
 - 74Cxx, 74HCxx, 74HCTxx, 74LVCxx

Nimeämisesimerkeissä kannattaa punaisiin teksteihin suhtautua varauksella, ne voivat vaihdella.

- Vain CMOS-piireille
- Tyyppimerkintä neljä numeroa, muotoa 40xx tai 45xx
 - xx = piirin tunnusnumero, 2...3 numeroa
 - 💌 tunnusnumerot mielivaltaisia, katsottava datalehdestä
 - tyyppimerkinnän alussa voi olla valmistajan tunnus
 - tyyppimerkinnän lopussa on yleensä kotelointitunnus
- Puskuroituja (B) ja puskuroimattomia (UB) versioita, nykyään vain joitakin tyyppejä saatavissa puskuroimattomana
- Myös sähköisesti 74-sarjan mukaisia CMOS-piirejä valmistetaan 4000-sarjan nastajärjestyksillä!
 - tyyppimerkintä on muotoa 74yy40xx tai 74yy45xx
 - esim. 74HC4060

Nimeämisesimerkeissä kannattaa punaisiin teksteihin suhtautua varauksella, ne voivat vaihdella.

- Kun kytketään kahden eri logiikkaperheen piirejä yhteen, ei ole itsestään selvää, että yhdistelmä toimii. Toimivuus on tarkistettava datalehdistä tapauskohtaisesti.
- Suurin syy toimimattomuuteen on logiikkatasojen rajojen erot perheiden välillä.
- Datalehdissä määritellään mm. tällaisia rajoja
 - V_{OH} (min) = pienin jännite, joka voi esiintyä piirin lähdössä sen ollessa H-tilassa
 - V_{OL} (max) = suurin jännite, joka voi esiintyä piirin lähdössä sen ollessa L-tilassa
 - V_{IH} (min) = pienin jännite, jonka piirin otto tulkitsee H-tilaksi
 - V_{II} (max) = suurin jännite, jonka piirin otto tulkitsee L-tilaksi

Kun piirin lähtö kytketään toisen piirin tuloon, rajajännitteet pitää olla niin päin kuin kuvassa:

lähdön
$$V_{OH}(min) > tulon V_{IH}(min)$$

ja

lähdön
$$V_{OL}(max) < tulon V_{IL}(max)$$

Huomaa, että lähdön V_{OH} ja tulon V_{IH} eivät ole yhteensopivat:

lähdön
$$V_{OH}(min) < tulon V_{IH}(min)$$

Edellisen sivun ongelma ratkaistaan yleensä ylösvetovastuksella, joka nostaa lähdön jännitettä H-tilassa oltaessa.

Toinen tapa ratkaista tämä olisi käyttää 74HC04:n sijasta 74HCT04:ää, jonka ottojännitetasot vastaavat LS-TTL:ää.