

YC31xx ROM BOOT

v1.4

Yichip Microelectronics

©2014

Revision History

Versi on	Date	Author	Description
V1.0	2018-7-19	Kiven	Initial version
V1.1	2018-12-19	Kiven	修改通讯协议
V1.2	2019-12-19	Kiven	优化描述
V1.3	2020-03-16	Kiven	完善生命周期描述
V1.4	2020-04-15	Kiven	添加签名文件说明

Confidentiality Level:

Confidential

第1章 ROM BOOT 说明

ROM BOOT 提供用户应用程序的下载、验签及启动等功能,具有安全机制来确保用户的应用程序不被窥视和篡改。

第2章 芯片生命周期划分

芯片的生命周期划分为 4 个阶段,每一个阶段只能向下一个阶段升级,不可回退。此安全不可逆生命周期依靠分阶段向 OTP 写入特定信息来实现。

2.1 测试阶段:

用于芯片厂商对芯片进行测试,此阶段不设保护,芯片厂商可以下载测试程序对芯片外围接口及模块进行测试,电路和性能测试 OK 之后,在 OTP 中打入质检测试标记、注入 SN(芯片唯一序号) , 芯片进入调试阶段。

2.2 调试阶段:

设备厂商进行软硬件调试用,此阶段只对芯片基本身份信息(SN 号及测试标记)做保护,设备厂商可下载调试固件进行调试,当调试完成后,设备厂商向OTP中注入用于验签应用的RSA公钥之后,芯片调试接口将被永久禁用,芯片进入产品阶段;出厂的设备必须注入公钥升级到产品阶段。

2.3 产品阶段:

以终端产品形式提供给用户使用,此阶段芯片工作于实际产品环境中,所以该阶段芯片信息及用户固件都将受到保护。在该阶段,调试功能将被禁用,且应用固件更新及启动都需要验证签名。

2.4 报废:

芯片损坏或达到使用寿命时进入到报废阶段,芯片将不能再使用。

第3章 安全存储说明

3.1 app 信息区(512B[0x1000000-0x10001ff])

app info

App Valid (1byte): app 程序有效性,每次下载或升级时由 ROM BOOT 程序根据对 app 程序的验证结

果填写, 0x55 为可用, 其余为不可用, 当标记为不可用时将不会启动 app 程序。

sha type (1byte): hash 算法选择, 1: sha256, 2: sha512, 其他值错误

App version (2byte): app 程序版本号

App start addr (4byte): 下载程序的起始地址。

App len (4byte): app 程序长度

En hash (256byte): app 程序 hash 值

App info CRC32 (4byte): 由 APP_Valid 域到 hash 域(含)的 Crc32 校验值

3.2 app 程序区[0x1000200-0x1xxxxxx]

用户 app 程序存储区起始地址 0x1000200

3.3 用户区 (固件之后的区域)

用户自由使用

3.4 OTP 参数区 (1kbyte)

参数区用于存放芯片质检标记、CSN、boot 信息

质检标记: 芯片通过检测后写入

CSN: 记录芯片序列号,通过检测后按规则写入

boot 信息: boot 配置信息

3.5 OTP 用户区 (7Kbyte)

用户自由使用

第4章 ROM BOOT 下载流程

4.1 ROM BOOT 安全启动流程

ROM BOOT 安全流程图

4.2 ROM BOOT 安全启动流程说明

4.2.1 上电自检及初始化

芯片上电后首先进行算法模块、安全报警模块自检,自检 OK,后加载配置信息检查芯片生命周期,生命周期处于可用周期则初始化芯片。

4.2.2 应用程序下载

提供用户应用程序下载及升级功能,详细下载流程见后面的"rom boot下载流程"。

4.2.3 签名认证

当芯片生命周期处于产品阶段时,必须通过签名认证才能启动应用程序,签名认证机制如下:

- A、 计算 flash 中应用程序的哈希值 (sha512);
- B、 使用 OTP 中的 RSA 公钥对 flash 中的经过私钥加密(签名)过的哈希值进行解密(验签)
- C、 对比计算出的哈希值与解密出的哈希值,相同则签名认证通过,启动应用程序,否则复位芯片

4.3 ROM BOOT 下载流程

ROM BOOT 下载流程分为以下 5 个步骤:

4.3.1 STEP1: 握手及获取 boot 信息

PC (泛指下载程序者) 连续发送 0x99, 芯片接收到连续 10 个 0x99 后回复 boot 信息,格式如下:

字段	长度(byte)	说明
Type	1	值为 0xAA
Step	1	0x01下(载交互步骤编号)

Length	2	36 (Stage 到 CRC16 字段长度)
Stage	2	表示芯片当前所处阶段(调试阶段为 0x1111、产品阶段为 0x7777)
CSN	6	表示芯片唯一序列号
CTime	2	调试阶段下载等待时间(芯片 ROMBOOT 运行,完成通讯口初始化 后等待下载信号的时间,单位为毫秒): 低字节为下载信号 sync 超时时间 高字节*低字节为中间通讯超时时间
CInfo	2	质检信息
ESN	16	表示设备唯一序列号
ETime	2	设备阶段(即产品阶段)下载等待时间(芯片 ROMBOOT 运行,完成通讯口初始化后等待下载信号的时间,单位为毫秒): 低字节为下载信号 sync 超时时间 高字节*低字节为中间通讯超时时间
EInfo	2	用户自定义,可用于 RSA 密钥号等
App version	2	当前芯片中的 App 版本号
CRC16	2	校验范围为 Type 到 Ever 字段

4.3.2 STEP2: 密钥下载 (芯片升级)

PC 接收到芯片上传的 step1 boot 信息后,根据需要下发芯片升级信息,格式如下:

字段	长度(byte)	说明
Туре	1	值为 0x55
Step	1	0x02 下(载交互步骤编号)
Length	2	289 (Stage 到 CRC16 字段长度)

Stage	2	表示芯片当前所处阶段(调试阶段为 0x1111、产品阶段为 0x7777)
upgrade	1	是否升级到产品阶段(即是否要将公钥信息写入 OTP),如果芯片已处于产品阶段则忽略, 0x55 表示写入,其他之为不写入
ESN	16	表示要写入的设备唯一序列号
ETime	2	设备阶段(产品阶段)等待时间(芯片 ROMBOOT 运行,完成通讯口初始化后等待下载信号的时间,单位为毫秒): 低字节为下载信号 sync 超时时间 高字节*低字节为中间通讯超时时间
EInfo	2	设备阶段参数的信息(可用于 RSA 密钥号等)
RSAKEY	264	RSA 公钥(N:256byte, E:8 byte)
CRC16	2	校验范围为 Type 到 RSAKEY 字段

芯片成功接收到升级信息后回复

字段	长度 (byte)	说明
Туре	1	值为 OxAA
Step	1	0x02 下(载交互步骤编号)
Length	2	03(Status 到 CRC16 字段长度)
Status	1	Status, 00: 成功; 01: CRC 校验失败; 02: 长度错误; 03: 校验错误; 04: 重传
CRC16	2	校验范围为 Type 到 Status 字段

4.3.3 STEP3: 下发 app 信息头

PC 接收到芯片上传的 step2 成功 ACK 信息后,下发 app 程序信息头信息,格式如下:

字段	长度 (byte)	说明
Туре	1	值为 0x55
Step	1	0x03 下(载交互步骤编号)
Length	2	274 (App Valid 到 CRC16 字段长度)
App Valid	1	表示 app 信息头是否有效,芯片的 ROM BOOT 验证程序之后,会根据实际验证结果修改此值
sha type	1	hash 算法选择,1: sha256,2: sha512,其他值错误
App version	2	App 程序版本号
App start addr	4	App 程序开始地址(固定为 0x1000200)
App len	4	App 程序文件长度
En_hash	256	App 程序文件的 hash 值密文
		1.计算 app 程序文件的 hash 值. 2.私钥加密上一步 hash 值,得到结果为该处需要填写的数据
CRC32	4	校验范围为 App Valid 到 hash 字段
CRC16	2	校验范围为 Type 到 CRC32 字段

芯片成功接收到 app 信息头后回复

字段	长度 (byte)	说明
Туре	1	值为 0xAA
Step	1	0x03 下(载交互步骤编号)

Length	2	03(Status 到 CRC16 字段长度)
Status	1	Status, 00: 成功; 01: CRC 校验失败; 02: 长度错误; 03: 校验错误; 04: 重传
CRC16	2	校验范围为 Type 到 Status 字段

4.3.4 STEP4: 下发 app 程序

PC 接收到芯片上传的 step3 成功 ACK 信息后,下发 app 程序数据,格式如下:

字段	长度 (byte)	说明
Туре	1	值为 0x55
Step	1	0x04 下(载交互步骤编号)
Length	2	OxYY Ox YY (App Data 到 CRC16 字段长度) (App Data 长度大于 1k 时分包下发)
App Data	XX	App 程序数据
CRC16	2	校验范围为 Type 到 App Data 字段

注: 下载程序数据时用总长度计算是否有后续数据

芯片成功接收到 app 程序数据后回复

字段	长度 (byte)	说明
Туре	1	值为 0xAA
Step	1	0x04 下(载交互步骤编号)
Length	2	03(Status 到 CRC16 字段长度)

Status	1	Status, 00: 成功; 01: CRC 校验失败; 02: 长度错误; 03: 校验错误; 04: 重传
CRC16	2	校验范围为 Type 到 Status 字段

4.3.5 STEP5: 上传验证结果

芯片成功接收完 app 程序数据后进行验证并回复结果

字段	长度 (byte)	说明		
Туре	1	值为 OxAA		
Step	1	0x05 下(载交互步骤编号)		
Length	2	03 (Status 到 CRC16 字段长度)		
Status	1	Status, 00: 成功; 03: 验证失败;		
CRC16	2	校验范围为 Type 到 Status 字段	を設范围为 Type 到 Status 字段	

第5章 签名文件格式说明

签名文件采用以下格式存放:

7	Гуре(1byte)	Cmd(1byte)	Len(4byte)	Data
(Oxaa		Data 长度	

签名文件中存有 公钥信息、应用信息及应用数据三部分,见下图及注释

1、 公钥信息

公钥信息头为: AA 01, 紧跟后面 4 个字节(1D 01 00 00)为公钥信息长度,之后是公钥信息内容,与 "4.3.2 STEP2:密钥下载(芯片升级)"章节包格中的 upgrade-- RSA KEY 字段对应

2、应用信息

应用信息头为: AA 02, 紧跟后面 4 个字节(10 01 00 00)为应用信息长度,之后是应用信息内容,与 "4.3.3 STEP3:下发 app 信息头"章节包格中的 App Valid -- CRC32 字段对应

3、 应用数据

应用数据头为: AA 03, 紧跟后面 4 个字节(50 51 00 00)为应用数据长度, 之后的数据就是 "4.3.4 STEP4: 下发 app 程序"步骤中所要下发的 app data