Nombre: Josue Alejandro Sauca Pucha

Fecha: 12-07-2023

Evaluación Unidad 2 July 12, 2023 1 Evaluación Unidad 2 Parte1

- 1. Descargue el archivo Breast Cancer Wisconsin (Diagnostic) ubicado en el repositorio UCI
- 2. Lea la descripción del archivo

```
In [42]: import pandas as pd
from sklearn.model_selection import train_test_split

#Leemos el archivo descargado con extension .data
data1 = pd.read_csv('wdbc.data',delimiter=',',header=None)
data1.head()
```

Out[42]:

	0	1	2	3	4	5	6	7	8	9	 22	23
)	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	 25.38	17.33
I	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	 24.99	23.41
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	 23.57	25.53
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	 14.91	26.50
1	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	 22.54	16.67

rows × 32 columns

3. Divida el archivo de dos partes que ocupen el 95% para entrenamiento y el 5% para test

In [184]: test_data

Out[184]:

nmetry1	fractal_dimension1	 radius3	texture3	perimeter3	area3	smoothness3	compactness
0.1925	0.06373	 14.97	24.64	96.05	677.9	0.14260	0.23780
0.1582	0.05461	 24.86	26.58	165.90	1866.0	0.11930	0.23360
0.1931	0.05796	 19.26	26.00	124.90	1156.0	0.15460	0.23940
0.1811	0.07102	 12.88	22.91	89.61	515.8	0.14500	0.26290
0.1818	0.06782	 12.26	19.68	78.78	457.8	0.13450	0.21180
0.2397	0.07016	 25.74	39.42	184.60	1821.0	0.16500	0.86810
0.1824	0.06140	 27.66	25.80	195.00	2227.0	0.12940	0.38850
0.1739	0.06149	 20.01	19.52	134.90	1227.0	0.12550	0.28120
0.1942	0.06902	 15.53	23.19	96.66	614.9	0.15360	0.47910
0.1813	0.05536	 15.14	21.80	101.20	718.9	0.09384	0.20060
0.1619	0.05584	 14.35	34.23	91.29	632.9	0.12890	0.10630
0.1893	0.05534	 20.05	26.30	130.70	1260.0	0.11680	0.21190
0.1515	0.05266	 15.98	25.82	102.30	782.1	0.10450	0.0999
0.1869	0.06532	 17.73	25.21	113.70	975.2	0.14260	0.21160
0.1689	0.05808	 13.61	19.27	87.22	564.9	0.12920	0.20740
0.1634	0.07224	 20.33	32.72	141.30	1298.0	0.13920	0.28170
0.1659	0.05348	 15.61	17.58	101.70	760.2	0.11390	0.1011(
0.1791	0.06331	 10.65	22.88	67.88	347.3	0.12650	0.12000
0.1930	0.07818	 7.93	19.54	50.41	185.2	0.15840	0.12020
0.2127	0.06251	 24.30	25.48	160.20	1809.0	0.12680	0.31350
0.1662	0.06566	 16.57	20.86	110.30	812.4	0.14110	0.35420
0.1937	0.06161	 13.56	25.80	88.33	559.5	0.14320	0.17730
0.2162	0.06606	 26.23	28.74	172.00	2081.0	0.15020	0.57170
0.1630	0.06439	 11.11	28.94	69.92	376.3	0.11260	0.07094
0.1935	0.05878	 12.44	31.62	81.39	476.5	0.09545	0.13610
0.2403	0.06641	 14.08	12.49	91.36	605.5	0.14510	0.13790
0.1617	0.05594	 14.24	17.37	96.59	623.7	0.11660	0.26850
0.1593	0.06127	 10.84	34.91	69.57	357.6	0.13840	0.17100
0.1759	0.06183	 13.75	25.99	87.82	579.7	0.12980	0.1839(

```
In [225]: # Con la funcion train_test_split dividimos en dos parte el datase,
    #la primera parte para entrenamiento y la segunda para test, en este caso el t
    #y lo demas queda para entrenamiento el 95%

X = data1.iloc[:, 2:] # La variable X contiene los datos desde el radio hasta
    y = data1.iloc[:, 1] # Contiene todos los datos del diagnostico

train_data, test_data, train_labels, test_labels = train_test_split(X, y, test

print("Training set:")
    print(train_data.head())

print("Test set:")
    print(test_data.head())
```

```
Training set:
     radius1 texture1 perimeter1 area1 smoothness1 compactness1 \
72
      17.200
                 24.52
                            114.20 929.4
                                                0.10710
                                                              0.18300
551
                 22.44
                             71.49 378.4
                                                              0.08194
      11.130
                                                0.09566
                             76.84 448.6
158
                 12.74
      12.060
                                                0.09311
                                                              0.05241
424
      9.742
                 19.12
                             61.93 289.7
                                                0.10750
                                                              0.08333
532
      13.680
                 16.33
                             87.76 575.5
                                                0.09277
                                                              0.07255
     concavity1
                 concave_points1 symmetry1 fractal_dimension1
72
       0.169200
                         0.07944
                                      0.1927
                                                         0.06487
                                                                  . . .
551
       0.048240
                         0.02257
                                      0.2030
                                                         0.06552
158
                                      0.1590
       0.019720
                         0.01963
                                                         0.05907
                                                                   . . .
424
       0.008934
                         0.01967
                                      0.2538
                                                         0.07029
                                                                   . . .
532
                         0.01880
       0.017520
                                      0.1631
                                                         0.06155
                                                                  . . .
     texture3 perimeter3
                            area3 smoothness3 compactness3
                                                               concavity3
72
                                                       0.7394
        33.82
                   151.60 1681.0
                                         0.1585
                                                                  0.65660
551
        28.26
                    77.80
                            436.6
                                         0.1087
                                                       0.1782
                                                                  0.15640
158
        18.41
                    84.08
                            532.8
                                         0.1275
                                                       0.1232
                                                                  0.08636
424
        23.17
                    71.79
                            380.9
                                         0.1398
                                                       0.1352
                                                                  0.02085
532
        20.20
                   101.60
                            773.4
                                         0.1264
                                                       0.1564
                                                                  0.12060
     concave points3 symmetry3 fractal dimension3 Naive Bayes Predicion
72
                         0.3313
                                             0.13390
             0.18990
551
                         0.3169
             0.06413
                                             0.08032
158
             0.07025
                         0.2514
                                             0.07898
424
             0.04589
                         0.3196
                                             0.08009
532
             0.08704
                         0.2806
                                             0.07782
[5 rows x 31 columns]
Test set:
     radius1 texture1 perimeter1
                                     areal smoothness1 compactness1 \
204
       12.47
                 18.60
                             81.09
                                      481.9
                                                 0.09965
                                                                0.1058
70
       18.94
                 21.31
                            123.60 1130.0
                                                 0.09009
                                                                0.1029
131
       15.46
                 19.48
                            101.70
                                     748.9
                                                                0.1223
                                                 0.10920
431
       12.40
                 17.68
                             81.47
                                     467.8
                                                 0.10540
                                                                0.1316
540
       11.54
                 14.44
                             74.65
                                      402.9
                                                 0.09984
                                                                0.1120
     concavity1
                 concave_points1 symmetry1 fractal_dimension1
204
        0.08005
                         0.03821
                                      0.1925
                                                         0.06373
70
        0.10800
                         0.07951
                                      0.1582
                                                         0.05461
                                                                   . . .
131
                         0.08087
                                      0.1931
                                                         0.05796
        0.14660
                                                                   . . .
431
        0.07741
                         0.02799
                                      0.1811
                                                         0.07102
                                                                  . . .
540
        0.06737
                         0.02594
                                      0.1818
                                                         0.06782
                                                                  . . .
     texture3
               perimeter3
                            area3 smoothness3 compactness3
                                                               concavity3 \
204
        24.64
                    96.05
                            677.9
                                         0.1426
                                                       0.2378
                                                                   0.2671
70
        26.58
                   165.90 1866.0
                                         0.1193
                                                       0.2336
                                                                   0.2687
131
        26.00
                   124.90 1156.0
                                         0.1546
                                                       0.2394
                                                                   0.3791
431
        22.91
                    89.61
                            515.8
                                         0.1450
                                                       0.2629
                                                                   0.2403
540
        19.68
                    78.78
                            457.8
                                         0.1345
                                                       0.2118
                                                                   0.1797
     concave_points3 symmetry3 fractal_dimension3 Naive_Bayes_Predicion
204
             0.10150
                         0.3014
                                             0.08750
70
                         0.2551
                                             0.06589
             0.17890
131
             0.15140
                         0.2837
                                             0.08019
431
                         0.2556
                                             0.09359
             0.07370
```

540 0.06918 0.2329 0.08134

[5 rows x 31 columns]

```
In [209]: X
```

Out[209]:

	radius1	texture1	perimeter1	area1	smoothness1	compactness1	concavity1	concave_pc
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.′
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.0
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.′
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.′
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.′
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.′
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.0
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.0
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.′
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.0

569 rows × 31 columns

4 M
...
564 M
565 M
566 M
567 M
568 B

Name: diagnosis, Length: 569, dtype: object

- 4. Utilice el archivo para aplicar los siguientes algoritmos de clasificaicón supervisada: NB, SVM, DT, pude utilizar weka o python.
- 5. Con el archivo de test realice la predicción de los datos con los 3 modelos

```
In [51]: from sklearn.model selection import train test split
         from sklearn.naive bayes import GaussianNB
         from sklearn import svm
         from sklearn.tree import DecisionTreeClassifier
         A continuacion se va a entrenar con Naive Bayes, para lo cual se envia los dat
         nb = GaussianNB()
         nb.fit(train_data, train_labels) #con esta funcion se ajusta el modelo a los d
         nb_score = nb.score(test_data, test_labels)#con esta funcion se compara las pr
         print("Naive Bayes porcentaje:", nb_score)
         A continuacion se va a entrenar con Naive Bayes, para lo cual se envia los dat
         svm clf = svm.SVC(kernel='linear')
         svm_clf.fit(train_data, train_labels)
         svm_score = svm_clf.score(test_data, test_labels)
         print("SVM porcentaje:", svm score)
         # Entrenar y probar el clasificador Decision Tree
         dt = DecisionTreeClassifier()
         dt.fit(train_data, train_labels)
         dt_score = dt.score(test_data, test_labels)
         print("Decision Tree porcentaje:", dt score)
```

Naive Bayes porcentaje: 0.9655172413793104

SVM porcentaje: 0.9655172413793104

Decision Tree porcentaje: 0.896551724137931

6. Agregue una columna por cada modelo denominada predicciones al archivo de test y súbalo al eva

In [111]: test_data

Out[111]:

	radius1	texture1	perimeter1	area1	smoothness1	compactness1	concavity1	concave_pc
204	12.470	18.60	81.09	481.9	0.09965	0.10580	0.080050	0.00
70	18.940	21.31	123.60	1130.0	0.09009	0.10290	0.108000	0.07
131	15.460	19.48	101.70	748.9	0.10920	0.12230	0.146600	30.0
431	12.400	17.68	81.47	467.8	0.10540	0.13160	0.077410	0.02
540	11.540	14.44	74.65	402.9	0.09984	0.11200	0.067370	0.02
567	20.600	29.33	140.10	1265.0	0.11780	0.27700	0.351400	0.1
369	22.010	21.90	147.20	1482.0	0.10630	0.19540	0.244800	0.1
29	17.570	15.05	115.00	955.1	0.09847	0.11570	0.098750	0.07
81	13.340	15.86	86.49	520.0	0.10780	0.15350	0.116900	0.06
477	13.900	16.62	88.97	599.4	0.06828	0.05319	0.022240	0.0
457	13.210	25.25	84.10	537.9	0.08791	0.05205	0.027720	0.02
167	16.780	18.80	109.30	886.3	0.08865	0.09182	0.084220	0.06
165	14.970	19.76	95.50	690.2	0.08421	0.05352	0.019470	0.0
329	16.260	21.88	107.50	826.8	0.11650	0.12830	0.179900	0.07
527	12.340	12.27	78.94	468.5	0.09003	0.06307	0.029580	0.02
83	19.100	26.29	129.10	1132.0	0.12150	0.17910	0.193700	0.14
511	14.810	14.70	94.66	680.7	0.08472	0.05016	0.034160	0.02
556	10.160	19.59	64.73	311.7	0.10030	0.07504	0.005025	0.0
101	6.981	13.43	43.79	143.5	0.11700	0.07568	0.000000	0.00
535	20.550	20.86	137.80	1308.0	0.10460	0.17390	0.208500	0.10
73	13.800	15.79	90.43	584.1	0.10070	0.12800	0.077890	0.0
394	12.100	17.72	78.07	446.2	0.10290	0.09758	0.047830	0.00
393	21.610	22.28	144.40	1407.0	0.11670	0.20870	0.281000	0.1
425	10.030	21.28	63.19	307.3	0.08117	0.03912	0.002470	0.00
305	11.600	24.49	74.23	417.2	0.07474	0.05688	0.019740	0.0
76	13.530	10.94	87.91	559.2	0.12910	0.10470	0.068770	0.06
384	13.280	13.72	85.79	541.8	0.08363	0.08575	0.050770	0.02
555	10.290	27.61	65.67	321.4	0.09030	0.07658	0.059990	0.02
362	12.760	18.84	81.87	496.6	0.09676	0.07952	0.026880	0.0
20	20							

In [172]: test_data

Out[172]:

	radius1	texture1	perimeter1	area1	smoothness1	compactness1	concavity1	concave_pc
204	12.470	18.60	81.09	481.9	0.09965	0.10580	0.080050	0.00
70	18.940	21.31	123.60	1130.0	0.09009	0.10290	0.108000	0.07
131	15.460	19.48	101.70	748.9	0.10920	0.12230	0.146600	30.0
431	12.400	17.68	81.47	467.8	0.10540	0.13160	0.077410	0.02
540	11.540	14.44	74.65	402.9	0.09984	0.11200	0.067370	0.02
567	20.600	29.33	140.10	1265.0	0.11780	0.27700	0.351400	0.1
369	22.010	21.90	147.20	1482.0	0.10630	0.19540	0.244800	0.1
29	17.570	15.05	115.00	955.1	0.09847	0.11570	0.098750	0.07
81	13.340	15.86	86.49	520.0	0.10780	0.15350	0.116900	0.06
477	13.900	16.62	88.97	599.4	0.06828	0.05319	0.022240	0.0
457	13.210	25.25	84.10	537.9	0.08791	0.05205	0.027720	0.02
167	16.780	18.80	109.30	886.3	0.08865	0.09182	0.084220	0.06
165	14.970	19.76	95.50	690.2	0.08421	0.05352	0.019470	0.0′
329	16.260	21.88	107.50	826.8	0.11650	0.12830	0.179900	0.07
527	12.340	12.27	78.94	468.5	0.09003	0.06307	0.029580	0.02
83	19.100	26.29	129.10	1132.0	0.12150	0.17910	0.193700	0.14
511	14.810	14.70	94.66	680.7	0.08472	0.05016	0.034160	0.02
556	10.160	19.59	64.73	311.7	0.10030	0.07504	0.005025	0.0
101	6.981	13.43	43.79	143.5	0.11700	0.07568	0.000000	0.00
535	20.550	20.86	137.80	1308.0	0.10460	0.17390	0.208500	0.10
73	13.800	15.79	90.43	584.1	0.10070	0.12800	0.077890	0.0
394	12.100	17.72	78.07	446.2	0.10290	0.09758	0.047830	0.00
393	21.610	22.28	144.40	1407.0	0.11670	0.20870	0.281000	0.1
425	10.030	21.28	63.19	307.3	0.08117	0.03912	0.002470	0.00
305	11.600	24.49	74.23	417.2	0.07474	0.05688	0.019740	0.0
76	13.530	10.94	87.91	559.2	0.12910	0.10470	0.068770	0.06
384	13.280	13.72	85.79	541.8	0.08363	0.08575	0.050770	20.0
555	10.290	27.61	65.67	321.4	0.09030	0.07658	0.059990	20.0
362	12.760	18.84	81.87	496.6	0.09676	0.07952	0.026880	0.0

```
In [174]: test_data.to_csv("test.csv", index=False)
```

```
In [175]: #Leemos el archivo descargado con extension .data
datos_test = pd.read_csv('test.csv',delimiter=',')
datos_test
```

Out[175]:

nmetry1	fractal_dimension1	 radius3	texture3	perimeter3	area3	smoothness3	compactness:
0.1925	0.06373	 14.97	24.64	96.05	677.9	0.14260	0.23780
0.1582	0.05461	 24.86	26.58	165.90	1866.0	0.11930	0.23360
0.1931	0.05796	 19.26	26.00	124.90	1156.0	0.15460	0.23940
0.1811	0.07102	 12.88	22.91	89.61	515.8	0.14500	0.26290
0.1818	0.06782	 12.26	19.68	78.78	457.8	0.13450	0.2118(
0.2397	0.07016	 25.74	39.42	184.60	1821.0	0.16500	0.86810
0.1824	0.06140	 27.66	25.80	195.00	2227.0	0.12940	0.38850
0.1739	0.06149	 20.01	19.52	134.90	1227.0	0.12550	0.28120
0.1942	0.06902	 15.53	23.19	96.66	614.9	0.15360	0.4791(
0.1813	0.05536	 15.14	21.80	101.20	718.9	0.09384	0.20060
0.1619	0.05584	 14.35	34.23	91.29	632.9	0.12890	0.10630
0.1893	0.05534	 20.05	26.30	130.70	1260.0	0.11680	0.21190
0.1515	0.05266	 15.98	25.82	102.30	782.1	0.10450	0.0999
0.1869	0.06532	 17.73	25.21	113.70	975.2	0.14260	0.2116(
0.1689	0.05808	 13.61	19.27	87.22	564.9	0.12920	0.2074(
0.1634	0.07224	 20.33	32.72	141.30	1298.0	0.13920	0.2817(
0.1659	0.05348	 15.61	17.58	101.70	760.2	0.11390	0.1011(
0.1791	0.06331	 10.65	22.88	67.88	347.3	0.12650	0.12000
0.1930	0.07818	 7.93	19.54	50.41	185.2	0.15840	0.12020
0.2127	0.06251	 24.30	25.48	160.20	1809.0	0.12680	0.31350
0.1662	0.06566	 16.57	20.86	110.30	812.4	0.14110	0.35420
0.1937	0.06161	 13.56	25.80	88.33	559.5	0.14320	0.1773(
0.2162	0.06606	 26.23	28.74	172.00	2081.0	0.15020	0.5717(
0.1630	0.06439	 11.11	28.94	69.92	376.3	0.11260	0.07094
0.1935	0.05878	 12.44	31.62	81.39	476.5	0.09545	0.1361(
0.2403	0.06641	 14.08	12.49	91.36	605.5	0.14510	0.1379(
0.1617	0.05594	 14.24	17.37	96.59	623.7	0.11660	0.2685(
0.1593	0.06127	 10.84	34.91	69.57	357.6	0.13840	0.1710(
0.1759	0.06183	 13.75	25.99	87.82	579.7	0.12980	0.1839(

```
In [176]: datos_test['SVM_Predicion'] = dt.predict(test_data)
In [177]: datos_test['Naive_Bayes_Predicion'] = nb.predict(test_data)
In [178]: datos_test["Decision_Tree_Predicion"] = svm_clf.predict(test_data)
In [179]: datos_test.to_csv("test.csv", index=False)
```

Parte 2

- 1. Realice una análisis de correlación de las varibles del archivo completo descargado.
- 2. Utilice las 5 variables que más se correlacionan con el diagnóstico de cancer.
- 3. Con los registros de las 5 features aplique nuevamente los algoritmos NB, SVM, DT, en weka o python. Debe utilizar el archivo de train.
- 4. Ahora realice la predicción con los 3 modelos generados y el archivo de test.
- 5. Agregue una columna por cada modelo denominada predicciones al archivo de test y súbalo al eva.

```
In [156]: #Leemos el archivo descargado con extension .data
data2 = pd.read_csv('wdbc.data',delimiter=',',header=None)
data2.head()
```

Out[156]:

	0	1	2	3	4	5	6	7	8	9	 22	23
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	 25.38	17.33
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	 24.99	23.4
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	 23.57	25.53
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	 14.91	26.50
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	 22.54	16.67

5 rows × 32 columns

	perimeter3	radius3	perimeter1	area1	concave_points1
0	184.60	25.380	122.80	1001.0	0.14710
1	158.80	24.990	132.90	1326.0	0.07017
2	152.50	23.570	130.00	1203.0	0.12790
3	98.87	14.910	77.58	386.1	0.10520
4	152.20	22.540	135.10	1297.0	0.10430
564	166.10	25.450	142.00	1479.0	0.13890
565	155.00	23.690	131.20	1261.0	0.09791
566	126.70	18.980	108.30	858.1	0.05302
567	184.60	25.740	140.10	1265.0	0.15200
568	59.16	9.456	47.92	181.0	0.00000

569 rows × 5 columns

```
In [227]: X = data2.iloc[:, :] # La variable X contiene los datos desde el radio hasta
```

```
In [226]: y
Out[226]: 0
                  Μ
          1
                  Μ
          2
                  Μ
          3
                  Μ
          4
                  Μ
          564
                 Μ
          565
                  Μ
          566
                  Μ
          567
                  Μ
          568
```

Name: diagnosis, Length: 569, dtype: object

```
In [228]: X
```

Out[228]:

	perimeter3	radius3	perimeter1	area1	concave_points1
0	184.60	25.380	122.80	1001.0	0.14710
1	158.80	24.990	132.90	1326.0	0.07017
2	152.50	23.570	130.00	1203.0	0.12790
3	98.87	14.910	77.58	386.1	0.10520
4	152.20	22.540	135.10	1297.0	0.10430
564	166.10	25.450	142.00	1479.0	0.13890
565	155.00	23.690	131.20	1261.0	0.09791
566	126.70	18.980	108.30	858.1	0.05302
567	184.60	25.740	140.10	1265.0	0.15200
568	59.16	9.456	47.92	181.0	0.00000

569 rows × 5 columns

```
In [229]: train_data1, test_data1, train_labels1, test_labels1 = train_test_split(X, y,
```

```
In [231]: from sklearn.model selection import train test split
          from sklearn.naive bayes import GaussianNB
          from sklearn import svm
          from sklearn.tree import DecisionTreeClassifier
          nb = GaussianNB()
          nb.fit(train_data1, train_labels1)
          nb score = nb.score(test data1, test labels1)
          print("Naive Bayes porcentaje:", nb_score)
          svm_clf = svm.SVC(kernel='linear')
          svm_clf.fit(train_data1, train_labels1)
          svm score = svm clf.score(test data1, test labels1)
          print("SVM porcentaje:", svm_score)
          # Entrenar y probar el clasificador Decision Tree
          dt = DecisionTreeClassifier()
          dt.fit(train_data1, train_labels1)
          dt score = dt.score(test data1, test labels1)
          print("Decision Tree porcentaje:", dt_score)
```

Naive Bayes porcentaje: 0.8275862068965517

SVM porcentaje: 0.8620689655172413

Decision Tree porcentaje: 0.896551724137931

```
In [236]: datos_test1 = pd.read_csv('test1.csv',delimiter=',')
    datos_test1
```

Out[236]:

	perimeter3	radius3	perimeter1	area1	concave_points1
0	67.03	10.410	60.11	269.4	0.015040
1	75.79	12.020	59.82	278.6	0.014060
2	96.05	14.970	81.09	481.9	0.038210
3	94.17	14.670	88.06	582.7	0.019170
4	76.43	11.620	70.79	365.6	0.027880
5	95.78	14.960	87.76	571.1	0.031600
6	108.60	16.990	88.05	582.7	0.044890
7	184.60	25.380	122.80	1001.0	0.147100
8	58.08	9.092	53.27	203.9	0.021680
9	171.10	25.300	135.90	1264.0	0.150400
10	91.88	14.240	83.19	506.3	0.023150
11	127.10	19.820	114.60	992.1	0.041780
12	106.00	16.010	92.33	595.9	0.067590
13	129.10	19.760	117.40	1024.0	0.057780
14	114.60	17.310	97.40	668.3	0.090290
15	92.80	14.040	82.82	504.8	0.034000
16	78.44	12.360	70.79	386.8	0.006434
17	97.90	15.270	88.37	585.9	0.009937
18	91.11	13.750	78.01	457.9	0.016920
19	115.90	17.710	104.30	800.0	0.045280
20	86.65	13.350	78.83	463.7	0.016540
21	114.10	16.460	98.22	656.1	0.063000
22	96.08	14.670	87.21	571.8	0.017230
23	57.17	9.077	47.98	178.8	0.000000
24	82.74	13.070	76.09	446.0	0.005592
25	86.82	13.720	79.42	491.9	0.005449
26	87.54	13.670	76.53	438.6	0.020080
27	202.40	30.670	155.10	1747.0	0.141000
28	72.42	11.370	69.14	363.7	0.013690

```
In [237]: datos_test1['SVM_Predicion'] = dt.predict(test_data1)
```

```
In [238]: datos_test1['Naive_Bayes_Predicion'] = nb.predict(test_data1)
In [239]: datos_test1["Decision_Tree_Predicion"] = svm_clf.predict(test_data1)
In [240]: datos_test1.to_csv("test1.csv", index=False)
```

Parte 3

 Realice una análisis de la ejecución de los algoritmos aplicados en las dos partes anteriores y elija cuál de las dos partes es la mejor para aplicar en este caso. Para la explicación debe realizar una comparación de los algoritmos y argumentar porque elije la opción.

En el caso aplicado se pudo evidenciar el uso de los dos algoritmos pero yo personalmente me quedaria con el primero y es porque:

- * El primero tiene mas argumentos respecto a la variables para determ inar de mejor manera la detección de cancer.
- * Para determinar el diagnostico si se aplica el segundo algoritmo se ra mas reducido ya que tiene menos datos a tomar en cuenta a diferenc ia del primero que tiene mas argumento y no segmenta cierta informaci on
- * Se puede ver que la tendencia del segundo clasifica con mayor frecu encia los casos benignos a diferencia de los malignos, esto no es del todo cierto ya que el dataset original tiene mayor casos malignos que benignos y esto puede dar a malas interpretaciones
- * El dataset del primero obtiene mejores relaciones con el dataset or iginal a diferencia del segundo.