

Figure 1

TOGICERY ITTIME

52 to: from: 1 ; GAP of: W0h051-7.Seq check: 6926

seq of dicamba induced band w0c0 51.7

to: Cjlpi81r.Seg check: 2737 from: 1 to: 714

Symbol comparison table: Gencoredisk:[Gcgcore.Data.Rundata]Nwsgapdna.Cmp CompCheck: 8760

Average Match: 10.000 50 Gap Weight:

Average Mismatch: 0.000 $^{\circ}$ Length Weight:

714 Length: 520 Quality:

Percent Identity: 100.000 Percent Similarity: 100.000 Ratio: 10.000

Gaps:

Match display thresholds for the alignment (s):

= IDENTITY

Н 2 11

W0h051-7.Seq x Cjlpi81r.Seq..

26 50gctagctgcgccgtgaccacgcacat 1 CGATCGAAGTGGGTGTGTCAGCTAGCTAGCTGCGCGTGACCACGCACAT

52

GACCGCAGTGCGCGCGGGCTGATCAAGGGAAAGTGATCGGATGGAGCTG 100 51

I Dicamba treated whorl leaf I Dicamba treated tassel I Non-treated anthers I Dichlormid treated anthers I Dicamba treated anthers 2 I Dicamba treated anthers 1

🖟 I Dicamba treated tassel

Figure 4

PS-IAA4/5

ZmAxig1

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

GAP of: Czaal47.Seq check: 446 from: 1 to: 1214 to: Axig1complete.Con check: 928 from: 1 to: 3123	
Symbol comparison table: Gencoredisk:[Gcgcore.Data.Rundata]Nwsgapdna.Cmp CompCheck: 8760	
Gap Weight: 50 Average Match: 10.000 Length Weight: 3 Average Mismatch: 0.000	
Quality: 10871 Length: 3123 Ratio: 8.955 Gaps: 3 Percent Similarity: 100.000 Percent Identity: 100.000	
<pre>Match display thresholds for the alignment(s):</pre>	
Czaal47.Seq x Axiglcomplete.Con May 11, 2000 12:05	
1	12
 1101 CGCGTCACTCACGGGTAGCTCATGGTCGAGCGTAGCATGCAGGAACTTAT	1150
	62
1151 TTGCCGTGCGCTCCCAGGTCTCCGCTCGCGTGCCTTCCAGTCTGTCT	1200
63 ACTAGCTGCTGTGGGACGATCGAAGTGGGTGTGTCAGCTAGCT	
	162
1251 CCGTGACCACGCACATGACCGCAGTGCGCGCGGGGCTGATCAAGGGAAAG	1300
163 TGATCGGATGGAGCTGGAGCTCGCGCCGCCGCAACCCGCATCAGC	212
1301 TGATCGGATGGAGCTGGAGCTCGCGCCCGCAACCCGCATCAGC	
213 CGCTGGCTGCCGCCGAGTTCGTCGGTCTCCTCAGCAGCTCGGCTGGC	
1351 CGCTGGCTGCCGCCGAGTTCGTCGGTCTCCTCAGCAGCTCGGCTGGC	
263 TCGTGCGGGAACAAGAGGGTTCTCGGCGACGCGTTCGGGGCCGCCAAGGC	
313 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGCGCGC	362
1451 GGCCACGCTTCCGCTCTTCGTCTGCGAGGATGGCGACGGAGGCGGCGCG	1500

363	ACCGCGACCGCGACGCGTCGACCATGAACAGCAAAGCAA	408
1501	ACCGCGACCGCGACGGCGTCGTCGACCATGAACAGCAAAGCAACAAGTGA	1550
	• •	
400		431
	TGGGGTGGCCGCGGTGAAGTGCGCGCGTAGCCTAGCCGCGGCGGGGGG	
	TGGGGTGGCCGCGTGAAGTGCGCGCGTAGCCGCGGCGGG	
482	TACGTGAAGGTGAAGCTGGAAGGGGTGCCCATCGGGCGGAAGGTGGACGT	531
1701	TACGTGAAGGTGAAGCTGGAAGGTGCCCATCGGGCGGAAGGTGGACGT	1750
532	GTCCATCCACGGCTCGTACCAGGAGCTGCTCCGCACGCTCGAGAGCATGT	581
1751		1800
582	TCCCTTCGGGTAACCAACA	600
1801		1850
	• •	
601		602
1951	CTCCCGGCACTTAACTTGGTCGCATATACTATTCCTGTAACCTCTGGCAG	2000
603	ATCATGCAGAAGACGAGGTGGTGGTCTCGCACGAGCGCCGCCGTCGCCAT	652
2001	ATCATGCAGAAGACGAGGTGGTCGCCACGAGCGCCGCCGTCGCCAT	2050
653	CCTTATGTAGTCACCTACGAGGACGGCGAAGGGGACTGGTTGCTCGTCGG	702
2051		2100
703	AGATGATGTGCCGTGGGA	720
2101		2150
	• •	
721		739
2201	GAACTTAAAAACGACGTTGATTTCCTTGCAGGGTCTTTGTCAAGTCAGTG	2250
740	AAGCGGCTCAAGATACTTGCGTAGCCGACGGTCGGCGCCTCAGAGACGTC	789
2251		2300

790	GTGTGGTCCGTCTCACCAGGATCGGAGCAGTGTAGTACTCCTGGGCGTCA	839
2301	GTGTGGTCCGTCTCACCAGGATCGGAGCAGTGTAGTACTCCTGGGCGTCA	2350
840	TCTGCGTAATAACGTTGTTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	889
2351	TCTGCGTAATAACGTTGTTTCTGTCCTGTGTGCCCGTAGCAGTACGTAC	2400
890	GTCCTATAGTAAGCTAGCTTTATGGGGTGCTTCAGCTTTCAGAGCATGAC	939
2401	GTCCTATAGTAAGCTAGCTTTATGGGGTGCTTCAGCTTTCAGAGCATGAC	2450
940	GAAAGCACTGATTAGCTGCTGTCATCACATTTGGTTCGTCTTTGTGTCGT	989
2451	GAAAGCACTGATTAGCTGCTGTCATCACATTTGGTTCGTCTTTGTGTCGT	2500
990	ACGGTATCGCTGGCGTCAGTGTCGCGGCAGCCTAGGTGATCTAAGCATAC	1039
2501	ACGGTATCGCTGGCGTCAGTGTCGCGGCAGCCTAGGTGATCTAAGCATAC	2550
1040	TTACTATCTCAAGTTACTTTTGGTTTCCTGAGCTTGCATGGTAATTCATA	1089
2551	TTACTATCTCAAGTTACTTTTGGTTTCCTGAGCTTGCATGGTAATTCATA	2600
1090	TACCGTATACGTGTGTGACTCAGGGGCGAAGCTGCCTTAAGGCACAGGGG	1139
2601	TACCGTATACGTGTGACTCAGGGGCGAAGCTGCCTTAAGGCACAGGGG	2650
1140	TCACCGGACCGATGGAATTTATCAAATCCAGTGTAAAATACTATTTAAC	1189
2651	TCACCGGACCCGATGGAATTTATCAAATCCAGTGTAAAATACTATTTAAC	2700
1190	ACTGTTCATCAATATATTTGATTTC	1214
2701	ACTGTTCATCAATATTTGATTTCAATAATTCATGGAGCTGACCTTGTG	2750

Sequence Name	SEQ ID NO:	ATCC Deposit
Pioneer clone CZAAL47	1	PTA-2426
ZmAxig1 polypeptide	2	
Native ZmAxig1 promoter region	3	
Modified ZmAxig1 promoter region	4	PTA-2427
A632 full-length ZmAxig1, including SEQ ID No. 3	5	PTA-2426
		PTA-2427
Primer 1, used for isolation of 5'flanking region	6	
Primer 2, used for isolation of 5'flanking region	7	
Primer 3, used for isolation of region spanning start	8	
codon		
Primer 4, used for isolation of region spanning start	9	
codon		
Primer 5, used for isolation of 5' region	10	
Oligonucleotide designed to remove clones having a	11	
poly-A tail but no cDNA		
Pioneer clone Cjlpi81	12	
CuraGen fragment w0h051.7	13	
Primer 6, used to isolate the coding sequence and 3'	14	
region		
Primer 7, used to isolate the coding sequence and 3'	15	
region		
Modified ZmAxig1 promoter region with single-		DT 4 0 107
base deletion	16	PTA-2427
LEC1 transcriptional activator element	17	
LEC1 polynucleotides	18-20	
LEC1 polypeptide consensus sequence	21	

Figure 10. Representative polynucleotides and polypeptides of the present invention.

Experiment	Control	Ubi:LEC1	Axig1:LEC1
#1 3938.37	15%	63%	44%
#2 3938.79	4%	17%	20%
#3 3938.78	16%	17%	38%
#4 3938.34	2%	14%	13%

Figure 11. Transformation frequencies by LEC1 with two different promoters. Transformation frequencies were based on the percentage of plated embryos with one or more GFP positive/Bialaphos resistant colonies. All embryos were shot with Ubi:moPAT~GFP (a construct conferring Bialaphos resistance and GFP fluorescence) along with a LEC1 construct or a control DNA.