宽带光源干涉特性的研究

时 间: 2023.09.11-2023.10.09

地 点:中科院半导体所1号楼115

实验人员: 徐团伟 邓棣珉

一、实验目的

测试 ASE 光源的噪声特性, 宽带光源的干涉特性, 宽带光源偏振对噪声和干涉特性的影响, 论证基于宽带光源等臂干涉结构 DAS 的可行性。

二、实验内容

- 1. 不同带宽和偏振态的宽带光源噪声特性
- 2. 宽带光源的等臂干涉的验证
- 3. 基于相位调制的等臂干涉解调的可行性

三、 实验器材

EDFA (SN: 2222272 和 2122582), 非平坦 ASE 光源 (Lightcomm), 80MHz 探测器 (SN:2201002), 光功率计 (FPM-300), RIO 激光器 (805407), 声光调制器 (T21B0576), 综合偏振分析仪 (GP PSY-201), 泰克信号发生器 (AFG3252C), 泰克示波器 (MDO4104B-3), 横河光谱仪 (AQ6370C), 相位 调制器, 光耦合器, 光隔离器, 在线起偏器, 可调衰减器, 光纤跳线, 法兰盘。

四、理论分析

4.1 ASE 的自拍噪声

根据ASE自拍噪声理论(Derickson, D., Fiber optic test and measurement. 1998: Prentice Hall.),对于具有矩形形状的非偏振ASE而言,其自拍功率谱密度 $S_{sv-sv}(f)$ 表达式如下

$$S_{sp-sp}(f) = 4\Re^2 \rho_{ASE}^2 B_0 \Lambda(f/B_0)$$
(1.1)

其中, \mathfrak{R} 为光电转换系数, ρ_{ASE} 为单偏振态自发辐射功率密度, B_0 为 ASE 带宽(单位 Hz), $\Lambda(\bullet)$ 为三角函数,因此其相对强度噪声可简化为

$$RIN_{sp-sp}(f) = \frac{S_{sp-sp}(f)}{\overline{I}_{ASE}^{2}} = \frac{4\Re^{2}\rho_{ASE}^{2}B_{0}}{4\Re^{2}\rho_{ASE}^{2}B_{0}^{2}} = \frac{\Lambda(f/B_{0})}{B_{0}}$$
(1.2)

当光电探测器带宽 BW 远小于ASE带宽($BW \ll B_0$)时,相位强度噪声可简 化为 $RIN_{sp-sp}(f)=1/B_0$ 。由其成白噪声特性,因此我们可以通过计算平均值和 方差的比值来简化分析过程

$$\frac{\overline{I}_{ASE}}{I_{std}} = \frac{2\Re \rho_{ASE} B_0}{\sqrt{\int_{0+}^{BW} S_{sp-sp}(f) df}} \approx \sqrt{\frac{B_0}{BW}}$$
(1.3)

当 ASE 是单偏振光时,其相位强度噪声变为原来的两倍($2/B_0$),这时平均值和方差的比值变为原来的 $1/\sqrt{2}$ 倍($\sqrt{B_0/2BW}$)。此外需要注意的是,上述表达式的前提是宽带光源的光谱形状为矩形,当偏离矩形光谱时,光谱带宽 B_0 会减小,根据不同的形状需要进行修正。

4.2 基于 Sagnec 结构的干涉条纹

采用下图所示的Sagnac结构,在接近耦合器位置增加一相位调制器,采用两个3dB耦合器组成互易光路,用于对等臂干涉进行相位调制,其等效的等臂MZI干涉结构也同样给出。

在等效光路中,上臂和下臂施加相同的相位调制信号 $C\cos(2\pi f_c t)$,因存在时延 $\tau = n(L_2 - L_1)/c$,因此存在时变的相位差(张敏杰,"开环Sagnac干涉仪的数字信号处理," 硕士, 浙江大学, 2016)

$$\Delta\phi(t) = C\Big[\sin(2\pi f_c t) - \sin(2\pi f_c (t - \tau))\Big] = 2C\sin(\pi f_c \tau)\cos(2\pi f_c (t - \tau/2)) \tag{1.4}$$
 因此,探测器的干涉条纹表达式为

$$I(t) = I_0 \left[1 + \cos\left(\phi_s + \Delta\phi(t)\right) \right]$$

$$= I_0 \left\{ 1 + \cos\left[\phi_s + 2C\sin\left(\pi f_c \tau\right)\cos\left(2\pi f_c\left(t - \tau/2\right)\right) \right] \right\}$$

$$= I_0 \left\{ 1 + \cos\left[\phi_s + C' \cdot \cos\left(2\pi f_c\left(t - \tau/2\right)\right) \right] \right\}$$
(1.5)

其中 ϕ_s 为待测相位, $C'=2C\sin(\pi f_c\tau)$ 为相位调制幅度。要获得有效的相位调制,需要保证 $f_c\tau\approx 0.5$,因此对调制频率和时延有所要求(例如干涉仪的臂长 $10\mathrm{km}$,调制频率 $10\mathrm{kHz}$),这跟传统的MZI干涉仪不同。

如果采用非互易光路,既通过第二耦合器的旁通臂输出时,因为理想3dB耦合器的直通臂和旁通臂存在附加90度相移,顺时针光路经两次直通臂,逆时针光路经两次旁通臂(附加180度相移),因此在无外接扰动时,干涉光强输出为0。

如果再考虑OC2的分光比不是理想1:1的情况,对于互易光路而言,其干涉

的双路信号信号强度不受分光比的影响(输出/输入(dB)=直通臂插损+旁通臂插损),可见度接近1。而非互易光路则受分光比的影响(一干涉光强输出/输入(dB)=直通臂插损+直通臂插损,另一干涉光强输出/输入(dB)=旁通臂插损+旁通臂插损),可见度与分光比有关。

五、 实验步骤

1. 不同带宽和偏振态的宽带光源噪声特性

- a) 按照上图进行光路连接, 其中 ASE 采用窄带 EDFA 或非平坦 ASE 光源。
- b) 调节 ATT, 在不适用起偏器 (POL) 时,通过光谱仪记录具有不同带宽的 ASE 光源的光谱。
- c) 调节 ATT, 使其功率满足 PD 探测要求, 更换不同带宽的 ASE 光源, 使用或者不用 POL 时, 通过 PD 分别记录功率波动。考虑到 PD 探测器的带宽在 100MHz, 示波器参数设置如下: 采样率选择 500MS/s, 采样点数为 100kS, 50 欧姆阻抗, 直流耦合, 50mV/格。

2. 基于 Sagnac 结构的干涉条纹

- a) 按照上图进行光路连接,采用宽带非平坦 ASE 作为光源,引入 10km 的延长光纤。
- b) 通过任意函数发生器施加正弦调制信号(调制频率 10kHz),调制电压可适当调整产生大于 pi 相位调制(试验中采用了 1Vpp),能够同时实现最大值和最小值。通过使用或者不使用在线起偏器来验证干涉条纹的可见度。

说明: 该实验目的是获取有效的干涉信号,验证基于 Sagnac 结构获取有效干涉条纹的可行性,以及互异光路和非互易光路的干涉特性。

3. 基于近似等臂 MZI 结构的干涉条纹

采用宽带 ASE 作为光源,其相干长度取决于光源的带宽 $L_c \approx \lambda^2/\Delta\lambda$ 。对于带宽为 0.4nm 的 EDFA 而言,其相干长度在 6mm,而对于 40nm 的宽带光源而言,其相干长度只有 0.06mm(超出了人为可控臂长差的要求),因此我们采用 EDFA 以及通过窄带光纤光栅进一步滤波作为光源。人工熔接两个 3dB 耦合器获得近似等臂干涉仪(臂长差控制在 1mm 左右),因为无法在其中一臂施加相

位调制器获得可控相位调制信号,因此我们采用加热方式来验证基于宽带光源 获取等臂干涉的干涉条纹的有效性。

六、 实验数据与处理结果

1. 不同带宽和偏振态的宽带光源噪声特性

在无光强输入下,对 PD 的底噪进行测量(目的是为了修正 ASE 数据)

	Vmean/mV	Vpp/mV	Vstd/mV	Vpp/Vstd
PD (BW~100MHz)	12.2	16	1.8	8.89

由于 PD+OSC 的底噪成正态分布,因此我们可以通过示波器的 Vpp 可以推断 Vstd 大小,关于 Vpp 和 Vstd 之间的比例系数,跟采样点数有关(偏离概率),传统上采用+/-3σ(偏离概率约为 0.3%),但由于我们采样点数为 100kS (对应偏离概率 0.001%),因此系数更大,达到了+/-4.44σ。

不同带宽 ASE 光源的光谱如下图所示, EDFA 的 3dB 带宽为 0.5nm (62.5GHz), 非平坦 ASE 光源的 3dB 带宽为 4.54nm (576.5GHz), 等效功率带 宽约为 9nm (1125GHz), 平坦 C+L 波段 ASE 光源, 3dB 带宽 75nm。

下表为不同带宽和不同偏振态的测量结果和理论结果对比,

ASE 光源		Vmean	Vpp	Vstd	修正后	修正后	修正后 Vmean/Vstd	
带宽	偏振态	/mV	/mV	/mV	Vmean	Vstd	实测值	理论值
0.4nm	非偏	388.6	124	14.5	376.4	12.7	29.6	25
0.4nm	单偏	376.4	172	19.5	364.2	17.7	20.6	17.7
9nm?	非偏	445.3	34	3.9	433.1	2.1	206.2	106.1
9nm?	单偏	427.9	50	5.1	415.7	3.2	129.7	75
75nm	非偏	447	20	2.2	435	0.3	1107	316

从上表可以看出:

A. 由于 EDFA 采用了接近矩形的滤波器,修正后的 Vmean/Vstd 和理论预期基本吻合(最大偏差不超过 15%)。但非平坦 ASE 光源采用等效功率带宽得到的结果明显有偏差,因此不能采用等效噪声带宽作为理论估计值,根据实测结果反推的非平坦 ASE 等效带宽在 20nm 左右。采用超宽带平坦 ASE,由于Vstd 接近于 PD+OSC 噪声水平,因此结果不准确,但这也说明选择平坦 ASE 光源对于降低 RIN 很重要,后续考虑平坦化 EDFA(带宽在 40nm 左右)作为光源。

- B. 修正后非偏振与单偏振的 Vmean/Vstd 比值,对于两个不同带宽而言,分别 1.437 和 1.590,跟理论值 $\sqrt{2}$ 偏差不大。
- C. 采用任意一组数据计算 Vpp/Vstd 的值,都在 8.5-9.1 之间波动,跟之前 PD 正态白噪声相似。通过上述结果,在通过 Vpp 计算 Vstd 时应该选择合适的 系数,而非直接采用传统的 6 倍,这对于正确评估功率密度谱和幅度密度谱之

间的关系很重要。

2. 基于 Sagnac 结构的干涉条纹

● 互易光路的干涉条纹

● 非互易光路的干涉条纹

从上图可以看出:

A. 对于互易光路在无调制时,干涉条纹处在干涉加强的状态,因此输出光强为最大(见顶图的 R2 曲线),可见度约为 1 (Vmax=322mV,Vmin=offset=10mV, V= (Vmax-Vmin) / (Vmax-Vmin-2*Voffset));而对于非互易光路而言,由于干涉信号存在 pi 相移,因此处于干涉相消的状态,因此输出光强最小(见底图的 R3 曲线),可能由于分光比可能偏离 1:1 或者跟偏振有关,导致干涉信号最小输出光强存在直流项,可见度约为 0.83 (Vmax=330mV,Vmin=40mV,Voffset=10mV),但后续实测分光比接近 1:1,通过使用偏振控制器的扰偏可以获得更低直流项,因此应该是偏振态不一致导致的。

B. 无论是互易光路, 还是非互易光路, 当施加大于 pi 弧度的相位调制信号时, 两者都具有良好的干涉条纹, 表明了等臂干涉的可行性。另外通过对比互易光路和非互易光路的干涉条纹, 发现两者是反相的, 这与两者干涉光存在

pi 相位差有关。

3. 基于近似等臂 MZI 结构的干涉条纹

在保证单臂 ASE 光功率相同的情况下,对比 EDFA(蓝色)和窄带 FBG 滤波(黑色)的干涉条纹,主要目的观察光源相干长度对可见度的影响。从结果中可以看出: 1.带宽越窄对应的白噪声幅度越大,这符合之前的试验预期。2.通过引入扰动,形成强度变化,但可见度约为 0.43,采用滤波后 ASE 可见度有所提升,但远小于预期(接近 1),因此可以推断出基于近似等臂的 MZI 臂长差远小于 ASE 的相干长度成立。

为了查找可见度低的原因,通过对 MZI 的两臂分别打弯,消除干涉效应,并通过偏振分析仪对其偏振态进行了测量,发现两者偏振度在 17%左右(这是由于光器件的偏振相关性导致的部分退偏)。但由于打弯过程可能会影响另一臂的偏振态,因此无法根据折射率椭球来反映实际干涉时两者的真实偏振状态。假设非偏振光的可见度为 1,偏振光可见度 0 或者 1 的组合下,根据两臂偏振度计算,两者干涉的可见度在 0.83 与 1 之间。

左上图为了采用 EDFA 在不同状态下的干涉条纹(其中黑直线为单臂光强,在实际操作过程中,通过调整衰减器来保证单臂光强的一致)。通过改变偏振态发现可见度出现了明显变化(手动调节时采集得到最大值可达 0.86),因此可以判断偏振态对部分退偏 EDFA 光源的可见度有着重要的影响(符合理论预期)。

为了查找最大可见度不为 1 的原因,将 EDFA 光源替代为了窄带 RIO 激光器,干涉条纹如右上图所示。当手动调节两臂状态时,采集得到最大值也可达 0.86。因此可以得出一个重要结论:对于光源而言,在相干长度远大于臂长差时,在合理控制偏振态时,可以形成有效的干涉,进而可相位调制和解调。

在实验过程中发现另外一问题,无论采用窄线宽光源还是 EDFA 作为光源,随意调整光纤状态,都存在可见度非常小的状态,由此我们可以得到另外一重要认识:偏振态和相位是互相独立的物理量,并非白光 MZI 都能有效干涉,有效干涉的存在一个重要前提—"偏振态一致",既信号光偏振度为 0 的两正交偏振光,仍要跟自己才能干涉,正交偏振分量不能形成有效干涉条纹,这和窄线宽光源是一致的。

六、结论

- 1. ASE 光源的噪声符合理论, 选择宽带光源时, 光源自拍噪声高, 影响系统噪声水平, 选择平坦 ASE 光源对于降低 RIN 很重要, 建议采用平坦化 EDFA (带宽在 40nm 左右) 作为光源。
- 2. 采用宽带光源在满足: "相干长度远大于臂长差"和"偏振态一致"下可以形成有效的干涉,可用于相位调制和解调。
- 3. 基于 ASE 宽带光源用于 DAS 系统具有可行性。

附录:

1. 示波器采用率对测试结果的影响

对于 EDFA 光源分别采用 500MS/s 和 50MS/s 采样率进行采样的数据,从下图中可以确认: 1. 功率谱的计算结果是正确的; 2.探测器的 3dB 带宽在100MHz 左右; 3. 当采样率不够是,出现了频率混叠,噪声谱平坦化了,更加符合白噪声特性。

