Содержание

Обязатель	ные задачи	2
Задача А.	Умножение многочленов [0.3 sec, 256 mb]	2
Задача В.	Деление многочленов [0.3 sec, 256 mb]	3
Задача С.	Умножение чисел [1.5 sec, 256 mb]	4
Задача D.	Раздвоение [1.5 sec, 256 mb]	5
Задача Е.	Дуэль [1.5 sec, 256 mb]	6
Бонус		7
Задача F.	Длинная арифметика [? sec, 256 mb]	7
Задача G .	Длинное деление [? sec, 256 mb]	8
Задача Н.	Длинный наибольший общий делитель [? sec, 256 mb]	9
Задача I.	Длинный корень [? sec, 256 mb]	10
Задача J.	Умножение четырех чисел [1.5 sec, 256 mb]	11
Задача К.	Уравнение [5 sec, 256 mb]	12
Задача L.	АВЛ-деревья [0.3 sec, 256 mb]	13
Задача М.	ДНК роботов [1 sec, 256 mb]	14

В некоторых задачах большой ввод и вывод. Имеет смысл пользоваться супер быстрым вводом-выводом:

http://acm.math.spbu.ru/~sk1/algo/input-output/fread_write.cpp.html

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу: http://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

Обязательные задачи

Задача А. Умножение многочленов [0.3 sec, 256 mb]

Даны многочлены P(x) и Q(x), найдите P(x)Q(x). $Q(x)=x^k-1$. У P(x) все коэффициенты — случайные целые числа от 0 до m-1. Все вычисления происходят по модулю m, m — простое от 2 до 10^9+7 .

Формат входных данных

Первая строка содержит целые числа n, k, m. $1 \le n, k \le 10^5$. Следующая строка содержит n чисел $p_0, p_1, \ldots, p_{n-1}, P(x) = \sum p_i x^i$.

Формат выходных данных

Выведите n+k целых чисел от 0 до m-1: $b_0,b_1,\ldots,b_{n+k-1},$ такие, что $P(x)Q(x)=\sum b_ix^i\mod m.$

mulp.in	mulp.out
4 1 7	6 6 6 6 4
1 2 3 4	

Задача В. Деление многочленов [0.3 sec, 256 mb]

Даны многочлены P(x) и Q(x), найдите такие A(x) и R(x), что P(x) = A(x)Q(x) + R(x) и degR < degQ. $Q(x) = x^k - 1$. У P(x) все коэффициенты — случайные целые числа от 0 до m-1. Все вычисления происходят по модулю m, m— простое от 2 до $10^9 + 7$.

Формат входных данных

Первая строка содержит целые числа n, k, m. $1 \le n, k \le 10^5$. Следующая строка содержит n чисел $p_0, p_1, \ldots, p_{n-1}, P(x) = \sum p_i x^i$.

Формат выходных данных

На первой строке выведите $t = \max(n-k,1)$ целых чисел от 0 до m-1: a_0,a_1,\ldots,a_{t-1} . На второй строке k целых чисел от 0 до m-1: r_0,r_1,\ldots,r_{k-1} . Все эти числа должны обладать свойством, что $P(x) = Q(x)(\sum a_i x^i) + \sum r_i x^i \mod m$.

divp.in	divp.out
3 1 7	6 1
1 5 1	0
3 1 7	5 1
2 4 1	0
3 1 7	5 1
0 4 1	5

Задача С. Умножение чисел [1.5 sec, 256 mb]

Требуется перемножить два целых неотрицательных числа.

Формат входных данных

В двух строках даны два целых неотрицательных числа в 10-чной системе счисления. Максимальная длина числа $=2^{18}$.

Формат выходных данных

Выведите в выходной файл произведение.

Пример

mul.in	mul.out
13	1300
100	

Подсказка по решению

Почти любое Фурье зайдёт. Пожалуйста, не сдавайте Карацубу. Авторское не самое оптимальное Фурье работает 0.140 секунд.

Задача D. Раздвоение [1.5 sec, 256 mb]

Обозначим две последовательности действительных чисел x(k) и y(k). Определим последовательность комплексных чисел z(k): z(k) = x(k) + iy(k).

Пусть $FFT_N(k,z) = \sum_{n=0}^{N-1} z_n e^{2\pi i k n/N}$. Аналогичным образом определяются $FFT_N(k,x)$ и $FFT_N(k,y)$.

Требуется по вычисленным значениям $FFT_N(k,z)$ восстановить значения $FFT_N(k,x)$ и $FFT_N(k,y)$.

Формат входных данных

В первой строке входного файла записано целое число N ($1 \leq N \leq 2^{30}$, N является степенью двойки). Далее следуют целые неотрицательные числа A, B, C, D, E, F, не превосходящие 1000. Для экономии времени ввода значения $FFT_N(k,z)$ нужно будет вычислять по следующим формулам:

$$FFT_N(k, z).real = ((A + B \cdot k) xor (C \cdot k)) \cdot 10^{-3},$$

 $FFT_N(k, z).imag = ((D + E \cdot k) xor (F \cdot k)) \cdot 10^{-3},$

где $FFT_N(k,z).real$ и $FFT_N(k,z).imag$ — действительная и мнимая части соответственно. Затем дано число M — количество запросов $(1 \leq M \leq 10^5)$. Далее следуют M целых чисел q_i $(0 \leq q_i < N)$.

Формат выходных данных

В выходной файл выведите M строк. В j-ой строке — значения $FFT_N(q_j,x)$ и $FFT_N(q_j,y)$. Значения должны отличаться от правильных не более, чем на 10^{-4} .

лимеры 	
real.in	real.out
2	1.0 0.0 0.0 0.0
1000 0 0 0 0 0	1.0 0.0 0.0 0.0
2	
0 1	
4	0.000 0.000 0.500 0.000
0 100 300 500 100 200	0.504 0.140 0.516 0.176
4	0.656 0.000 0.812 0.000
0 1 2 3	0.504 -0.140 0.516 -0.176
1048576	540.737 -1587.741 1589.778 539.689
999 998 997 996 995 994	2404.809 531.421 1359.578 1569.751
3	3678.277 -523.243 526.382 3664.887
17 239239 2011	

Задача Е. Дуэль [1.5 sec, 256 mb]

Двое дуэлянтов решили выбрать в качестве места проведения поединка тёмную аллею. Вдоль этой аллеи растёт n деревьев и кустов. Расстояние между соседними объектами равно одному метру. Дуэль решили проводить по следующим правилам. Некоторое дерево выбирается в качестве стартовой точки. Затем два дерева, находящихся на одинаковом расстоянии от исходного, отмечаются как места для стрельбы. Дуэлянты начинают движение от стартовой точки в противоположных направлениях. Когда соперники достигают отмеченных деревьев, они разворачиваются и начинают стрелять друг в друга.

Дана схема расположения деревьев вдоль аллеи. Требуется определить количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Формат входных данных

Во входном файле содержится одна строка, состоящая из символов '0' и '1' — схема аллеи. Деревья обозначаются символом '1', кусты — символом '0'. Длина строки не превосходит 100000 символов.

Формат выходных данных

Выведите количество способов выбрать стартовую точку и места для стрельбы согласно правилам дуэли.

Примеры

duel.in	duel.out
101010101	4
101001	0

В первом примере возможны следующие конфигурации дуэли (стартовое дерево и деревья для стрельбы выделены жирным шрифтом): 101010101, 101010101, 101010101 и 101010101.

Бонус

Задача F. Длинная арифметика [? sec, 256 mb]

Даны несколько операций в обратной польской записи. Допустимы операции "+", "-", "*". Посчитайте результат.

Формат входных данных

Не более 200 строк. На каждой строке или операция, или число. Все числа неотрицательные, не более 10^{18} .

Формат выходных данных

Выведите результат вычислений.

Примеры

${\tt asign.in}$	asign.out
-	-10
*	
+	
2	
3	
10	
+	
20	
40	

Замечание

Пожалуйста, сдавайте на С++.

Задача G. Длинное деление [? sec, 256 mb]

Даны два целых положительных числа. Найти частное и остаток от деления.

Формат входных данных

Мультитест. Каждый тест задаётся двумя строками. Суммарная длина чисел до 50 000.

Формат выходных данных

Для каждого теста выведите две строки – частное и остаток

Примеры

adiv.in	adiv.out
10	3
3	1
17	0
100	17
100	5
17	15

Подсказка по решению

Решение за $\mathcal{O}(\frac{n^2}{k^2})$ зайдёт по времени. Система счисления равна 10^k . Пожалуйста, сдавайте на C++.

Задача Н. Длинный наибольший общий делитель [? sec, 256 mb]

Даны два целых положительных числа. Найти их наибольший общий делитель.

Формат входных данных

Мультитест. Каждый тест задаётся двумя строками. Суммарная длина чисел до 50 000.

Формат выходных данных

Для каждого теста выведите одну строку – наибольший общий делитель.

Примеры

agcd.in	agcd.out
10	5
15	262144
100000000000000000	1
1152921504606846976	
17	
100	

Подсказка по решению

Решение за $\mathcal{O}(\frac{n^2}{k^2})$ зайдёт по времени. Система счисления равна 10^k . Пожалуйста, сдавайте на C++.

Задача І. Длинный корень [? sec, 256 mb]

Дан целое положительное число x. Найти максимальное целое $y \colon y^2 \leqslant x$.

Формат входных данных

Мультитест. Каждый тест задаётся одной строкой. Суммарная длина чисел до 50 000.

Формат выходных данных

Для каждого x выведите одну строку – y.

Примеры

asqrt.in	asqrt.out
15	3
16	4
17	4

Подсказка по решению

Решение за $\mathcal{O}(\frac{n^2}{k^2})$ зайдёт по времени. Система счисления равна 10^k . Пожалуйста, сдавайте на C++.

Задача J. Умножение четырех чисел [1.5 sec, 256 mb]

Требуется перемножить четыре целых положительных числа.

Формат входных данных

В четырех строках даны четыре целых положительных числа в десятичной системе счисления. Числа даны без ведущих нулей. Суммарная длина всех чисел не превосходит 2^{20} цифр.

Формат выходных данных

Выведите в выходной файл произведение данных чисел.

Пример

mul3.in	mul3.out
13	13000
13 100	
5	
2	

Замечание

Нужно очень быстрое Фурье. Придётся попихать.

Решение жюри на С++ работает 0.204 секунды.

Задача К. Уравнение [5 sec, 256 mb]

Дано уравнение вида $X^N + Y^N \equiv Z^N \mod M$.

Требуется для фиксированных N и M найти количество различных решений этого уравнения. Решением назовём такую тройку натуральных чисел (X,Y,Z), что выполняется:

- $1 \leqslant X \leqslant Y < M$
- $1 \leqslant Z < M$
- $\bullet \ X^N + Y^N \equiv Z^N \mod M$

Формат входных данных

В единственной строке входного файла записаны числа N и M ($1 \le N \le 7^7$, $1 \le M \le 7^7$).

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

equation.in	equation.out
1 3	2
2 4	5
3 5	8

Задача L. АВЛ-деревья [0.3 sec, 256 mb]

АВЛ-дерево — сбалансированное по высоте двоичное дерево поиска: для каждой его вершины высота её двух поддеревьев различается не более чем на 1. АВЛ-деревья названы по первым буквам фамилий их изобретателей, Г. М. Адельсона-Вельского и Е. М. Ландиса.

Для фиксированного количества вершин может существовать несколько ABЛ-деревьев. Например, существует шесть ABЛ-деревьев, состоящих из пяти вершин.

Также деревья с одинаковым количеством вершин могут иметь различную высоту. Например, существуют деревья из семи вершин с высотами 2 и 3 соответственно.

Требуется по заданным n и h найти количество ABЛ-деревьев, состоящих из n вершин и имеющих высоту h. Так как ответ может быть очень большим, требуется найти остаток от деления искомого количества на 786433.

Формат входных данных

Во входном файле даны числа n и h ($1 \le n \le 65535$, $0 \le h \le 15$).

Формат выходных данных

Выведите одно число — остаток от деления количества АВЛ-деревьев, состоящих из n вершин и имеющих высоту h, на 786433.

Пример

avl.in	avl.out
7 3	16

786433 — простое число, $786433 = 3 \cdot 2^{18} + 1$.

Задача М. ДНК роботов [1 sec, 256 mb]

Последние достижения в технологии синтеза ДНК позволили провести эксперимент по созданию биороботов.

Для облегчения задачи создания ПО для управления роботами было принято решение, что их ДНК будет состоять из $M=2^n$ символов для некоторого $n\geqslant 2$. Кроме этого, по техническим причинам это будет не обычная строка, а циклическая, то есть её можно начинать читать с любой позиции.

Одной из целей эксперимента является изучение мутаций биороботов. В результате продолжительных наблюдений было найдено много различных видов роботов. Для понимания процесса мутации учёным необходимо решить следующую задачу. Для ДНК двух роботов требуется определить коэффициент их похожести. Он вычисляется, как максимальное количество совпадающих символов при наилучшем совмещении этих ДНК. Чем больше символов совпадает, тем лучше совмещение.

Требуется написать программу, которая найдёт наилучшее совмещение двух ДНК.

Формат входных данных

В первой строке входного файла записано одно число M ($4 \le M \le 131072$). В следующих двух строках записаны ДНК двух роботов. Обе ДНК — строки, состоящие ровно из M символов из множества {'A', 'C', 'G', 'T'}.

Формат выходных данных

В выходной файл выведите два числа — максимальное количество совпадающих символов и значение оптимального сдвига — неотрицательное количество символов второй ДНК, которые необходимо перенести из конца строки в её начало для достижения наилучшего совмещения.

robots.in	robots.out
16	15 1
ACGTACGTACGT	
CGTACGTACGTC	