Estudio y análisis espectral de los polinomios discretos de Legendre

Amélie Bernès, Moises Soto y Javier Herrera Benemerita Universidad Autonoma de Puebla

Motivación

Fijado un entero $n \geq 2$, representaremos señales de dimensión n con vectores $x = (x_m)_{m=0}^{n-1}$ de \mathbb{R}^n . Buscamos una base

 $\mathcal{L}^n := \{\mathcal{L}^{n,k}: 0 \le k \le n-1\}$

de \mathbb{R}^n

▶ (Tamaño) que sea ortonormal, pues así se cumplirá que, para toda señal $x \in \mathbb{R}^n$,

$$x = \sum_{k=0}^{n-1} \langle x, \mathcal{L}^{n,k} \rangle \mathcal{L}^{n,k} y ||x||^2 = \sum_{k=0}^{n-1} \langle x, \mathcal{L}^{n,k} \rangle^2,$$

ightharpoonup (Forma) para la que sea posible establecer criterios sencillos sobre la forma de la gráfica de una señal x en términos de la representación de esta respecto a la base \mathcal{L}^n .

Construcción

Espacios de polinomios discretos

n—dimensionales

Noción de grado para señales

Results: Unaligned Faces

► Automatically aligned by Viola & Jones

Descriptor	Error Rates [%]	
	AR-Face	CMU-PIE
SURF-64	5.97	15.32
SURF-128	5.71	11.42
SIFT	5.45	8.32
U-SURF-64	5.32	5.52
U-SURF-128	5.71	4.86
U-SIFT	4.15	8.99

Manually aligned faces Gráficas de $\mathcal{L}^{4,0}, \mathcal{L}^{4,1}$ y algunos elementos de $W_{4,2}$ Gráficas de $\mathcal{L}^{4,0}, \mathcal{L}^{4,1} y \mathcal{L}^{4,2}$

Construcción

Espacios de polinomios discretos

n—dimensionales

Noción de grado para señales