Fermeture transitive d'un graphe orienté -Obtention d'un graphe minimal équivalent

Dehu - Moreau - Tite-gres

Sommaire

- Introduction
- Solutions
 - Par fermeture transitive
 - Par les prédécesseurs
- Application
 - Langages de programmation
 - Modélisation UML
 - Présentation
- Conclusion

Introduction

Ordonnancement:

- Supprimer les transitivités
- Obtenir le graphe minimal équivalent

Solutions proposées

- Une solution se base sur la fermeture transitive du graphe et retire pas à pas chaque transitivité trouvée lors de la construction de la fermeture.
- Une seconde solution consiste à parcourir les prédécesseurs de chaque sommet et de supprimer chaque transitivité trouvée.

Par fermeture transitive - Obtenir la fermeture

Par fermeture transitive - Obtenir le graphe minimal

1) Comparaison M-H²

$$\Rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
Transitivité à enlever

e) Comparaison à M³

$$\Rightarrow \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Par fermeture transitive - Obtenir la Fermeture

Par les prédécesseurs - Théorie

S	Pr	Pr/Pr	Pr/A/Pr
A	Ø		
B	A	Ø	
C	В	A	Ø
\mathcal{D}	BC	AB	Ø

Par les prédécesseurs - Algorigramme

Application

Langage de programmation

Modélisation UML

Présentation application

Conclusion

Fermeture transitive

Graphe minimal

Transitivité présente

Transitivité ajoutée

Toutes les transitivités