Principes et méthodes statistiques

William SCHMITT

2018-2019

Table des matières

1	Introduction		
	1.1	Exemples	1
	1.2	Rappel des concepts abordés l'an dernier	1
	1.3	Les deux dés	3
2 Les statistiques		4	
	2.1	Indicateurs et notations	4
	2.2	Histogrammes	5

1 Introduction

1.1 Exemples

Studio de musique Mesures de bruits pour construire un studio, la rue est au maximum à 74 dB, après 20 mesures. 74 dB est le seuil dérangeant les enregistrements. On peut calculer à la fin de ce cours la probabilité de subir des nuisances > 74 dB.

Sondage Suite à un sondage (51/49), on peut estimer le risque à prendre pour pouvoir affirmer que le candidat annoncé gagnant sera effectivement élu.

1.2 Rappel des concepts abordés l'an dernier

— Lois de probabilité

- continues
 - Normale
 - Poisson
- discrètes
 - Bernoulli
 - Binomiale
 - Géométrique
- Indicateurs
 - espérance
 - variance
 - écart-type
- Fonctions génératrices (des moments)
- Fonction de répartition
- Fonction de densité
- Loi des grands nombres
- Théorème central limite
- Indépendance de variables aléatoires

1.3 Les deux dés

Expérience aléatoire : on lance deux dés, un rouge et un bleu, à six faces et équilibrés. On introduit les variables aléatoires suivantes :

- B : valeur du dé bleu
- R : valeur du dé rouge
- S : somme des deux valeurs

1.3.1 Question

Les variables aléatoires B et R sont égales?

- Vrai
- Faux
- Autre

1.3.2 Retours

La variable aléatoire est une fonction, qui à chaque probabilité fait correspondre une valeur.

$$B: \Omega \to \{1, 2, 3, 4, 5, 6\}$$
$$\omega \mapsto B(\omega)$$
$$(b, r) \mapsto b$$

Il manque un bout ici.

$$\omega = (b, r)$$
$$S \mapsto b + r$$

avec b : valeur du dé bleu, r : valeur du dé rouge.

Elles ne sont pas égales: sinon les valeurs prises seraient toujours égales. C'est-à-dire que si elles étaient égales, si le dé rouge tombait sur 1, le dé bleu tomberait également sur 1.

Elles ont néanmoins la même loi.

Indépendance 1.3.3

Soient deux évènements, sont-ils indépendants?

Exemple 1

- $--A = \{Somme = 3\}$
- $-B = \{Dé rouge = 4\}$

Les évènements ne sont pas indépendants, trivialement.

Exemple 2

- $-C = \{\text{Somme est paire}\}\$
- $D = \{\text{D\'e rouge pair}\}$

C, comme D, sont de probabilité $\frac{1}{2}$. La réponse est complexe car D a une influence sur C. Néanmoins, les probabilités ne sont pas affectées : les évènements C et D sont donc bel et bien indépendants.

2 Les statistiques

2.1 Indicateurs et notations

Notations

- --n: nombre de données
- x_i $(1 \le i \le n)$: les données
- x_i^* $(1 \le i \le n)$: les données triées dans l'ordre croissant

Indicateurs de localisation

- $\overline{x_n} = \frac{1}{n} \sum_{i=1}^{n} x_i$: moyenne empirique Médiane empirique

Indicateurs de dispersion — variance empirique : $s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x_n})^2$

2.2Histogrammes

Fréquence d'une classe :

 $\frac{\text{nombre de } x_i \text{ dans la classe}}{n}$