Facultad de Ingeniería, UNCuyo	Alumno:
Ingeniería Mecatrónica	
MECÁNICA VIBRATORIA	
Examen Final 15/09/2020	Legajo:
Alumnos Regulares TEMA 4	D.N.I.:

Ejercicio 1

- 1) Derivar la ecuación de movimiento en términos de la coordenada X, y determinar los parámetros equivalentes del sistema mostrado en la Figura 1. Evaluar numéricamente cada uno de ellos considerando que: a = 1m, b = 2.5 m, $m_1 = 10 kg$, $m_2 = 20 kg$, $J_0 = 5 kg.m^2$, $k_1 = 1000 N/m$, $k_2 = 1500 N/m$, y $k_t = 0 N.m/rad$,
- 2) Admitiendo hipotéticamente una relación de amortiguamiento crítica del sistema igual a ξ =0.05, determine la amplitud de la respuesta permanente del sistema bajo una carga armónica, P(t) = 1000 N seno(w_c.t) aplicada sobre la masa m₂, con f_c = 2 Hz.
- 3) ¿Cuánto debería valer la longitud "a" de la barra para que el sistema esté en resonancia?. Admita que no hay cambios en J_o.

Ejercicio 2

- 1) Derivar la ecuación de movimiento del sistema de la Figura 2 mediante la ec. de Lagrange.
- 2) Considerando que, $c_1=c_2=0$, $k_1=k_2$, $m_1=m_2$ y $J_o=m^*r^2$, determinar analíticamente las frecuencias naturales y formas modales en función de los parámetros del sistema. Admita el primer elemento de cada forma modal unitario.

Figura 2.