

Agenda

- Ausgangslage
- Lösungsansatz
- Implementation
- Lessons learned
- Kurzer Ausblick

Was ist lezzgo?

Einsteigen

Mit einem Klick hast du dein gültiges Ticket in der Tasche

Reisen

Du musst dich nicht mehr mit verschiedenen Tarifen auskennen, kannst beliebig reisen und spontan umsteigen.

Aussteigen

Am Ende des Tages bezahlst du den optimalen Preis für die Strecke, die du gefahren bist.

Markttest automatisches Ticketing

Um mit lezzgo schweizweit Tickets zu verkaufen...

...müssen wir Vorgaben einhalten und rapportieren.

Missbrauchsfälle öV im Vergleich

Missbrauchsszenarien	Ticketart	Risikobeurteilung	Beispiel
Out of Service-Ausrede	Papier		Automat defekt
	Prepaid-E-Ticket		Batterie leer
	lezzgo		Keine GPS Verbindung
Ticket nicht für gesamte Strecke gelöst	Papier		Teilstrecke lösen
	Prepaid-E-Ticket		Abschnittsweise lösen
	lezzgo		Später Check-In Früher Check-out
Manipulation des Trägermediums	Papier		Korrektur Gültigkeitsdatum
	Prepaid-E-Ticket		Screenshot
	lezzgo		Screenshot

Idee der BLS

Mehrere 100 bis 1000 Reisen täglich

Idee der BLS

- Mehrere 100 bis 1000 Reisen täglich
- Manuelle Bewertung jeder Reise unmöglich

Idee der BLS

- Mehrere 100 bis 1000 Reisen täglich
- Manuelle Bewertung jeder Reise unmöglich

Relevante Kennzahlen zu jeder Reise sammeln

Relevante Kennzahlen zu jeder Reise sammeln

Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?

- Relevante Kennzahlen zu jeder Reise sammeln
- Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?
- Wie schnell bewegte sich der Kunde während dem Check-Out fort?

- Relevante Kennzahlen zu jeder Reise sammeln
- Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?
- Wie schnell bewegte sich der Kunde während dem Check-Out fort?
- Passen mehrere Reisen eines Kunden am gleichen Tag zusammen? (keine Haltestellen übersprungen, Rückfahrt ähnlich wie Hinfahrt)

- Relevante Kennzahlen zu jeder Reise sammeln (~20)
- Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?
- Wie schnell bewegte sich der Kunde während dem Check-Out fort?
- Passen mehrere Reisen eines Kunden am gleichen Tag zusammen? (keine Haltestellen übersprungen, Rückfahrt ähnlich wie Hinfahrt)

Relevante Kennzahlen zu jeder Reise sammeln (~20)

Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?

Wie schnell bewegte sich der Kunde während dem Check-Out fort?

Passen mehrere Reisen eines Kunden am gleichen Tag zusammen? (keine Haltestellen übersprungen, Rückfahrt ähnlich wie Hinfahrt)

. . .

Viele der normalen Reisen werden ähnliche Kennzahlen aufweisen

Relevante Kennzahlen zu jeder Reise sammeln (~20)

Wie viel Zeit verging zwischen letzter Ticketkontrolle und Check-Out?

Wie schnell bewegte sich der Kunde während dem Check-Out fort?

Passen mehrere Reisen eines Kunden am gleichen Tag zusammen? (keine Haltestellen übersprungen, Rückfahrt ähnlich wie Hinfahrt)

Viele der normalen Reisen werden ähnliche Kennzahlen aufweisen

Reisen mit auffälligen / ungewöhnlichen Kennzahl-Kombinationen automatisch erkennen (anomaly detection)

Isolation forest

Isolation forest

Idee: Wenn man die Fläche (den Raum) zufällig unterteilt, werden isolierte Punkte schneller alleine dastehen

(>) Isolation forest

Idee: Wenn man die Fläche (den Raum) zufällig unterteilt, werden isolierte Punkte schneller alleine dastehen

Also ist die Anzahl Unterteilungen bis zur Isolation ein Indikator für "Normalität"

(>) Isolation forest

ldee: Wenn man die Fläche (den Raum) zufällig unterteilt, werden isolierte Punkte schneller alleine dastehen

Also ist die Anzahl Unterteilungen bis zur Isolation ein Indikator für "Normalität"

Durchschnitt vieler zufälliger Unterteilungen gibt eine zuverlässigere Bewertung

Reisen aus der App

Kennzahlen

Anomalie-Bewertung

Azure ML Studi

Azure ML Studiu

1. Daten-Pipelines per click-and-drag zusammenstellen

(>) Azure ML Studi

- 1. Daten-Pipelines per click-and-drag zusammenstellen
 - Eingebaute
 Bausteine
 (Normalisierung,
 Daten aufteilen,
 einfache ML
 Algorithmen) oder
 custom Python
 Blöcke

Azure ML Studiu

- 1. Daten-Pipelines per click-and-drag zusammenstellen
 - Eingebaute Bausteine (Normalisierung, Daten aufteilen, einfache ML Algorithmen) oder custom Python Blöcke
- 2. Mit CSV-Daten trainieren

(>) Azure ML Studi

- 1. Daten-Pipelines per clickand-drag zusammenstellen
 - Eingebaute Bausteine (Normalisierung, Daten aufteilen, einfache ML Algorithmen) oder custom Python Blöcke
- 2. Mit CSV-Daten trainieren
- 3. Als Web Service veröffentlichen

Azure ML Studiu

- 1. Daten-Pipelines per click-and-drag zusammenstellen
 - Eingebaute Bausteine (Normalisierung, Daten aufteilen, einfache ML Algorithmen) oder custom Python Blöcke
- 2. Mit CSV-Daten trainieren
- 3. Als Web Service veröffentlichen
- 4. Anomalie-Bewertung für neue Reisen abfragen

Testfahrer der BLS begehen absichtlich Missbrauch

Optimieren der Parameter der Pipeline sodass die bekannten Missbrauchsfälle als möglichst auffällig bewertet werden

Später alle bekannten Missbrauchsfälle vom Trainings-Datenset ausschliessen

Testfahrer der BLS begehen absichtlich Missbrauch

(>) Qualitätskontrolle

- Testfahrer der BLS begehen absichtlich Missbrauch
- Optimieren der Parameter der Pipeline sodass die bekannten Missbrauchsfälle als möglichst auffällig bewertet werden

Testfahrer der BLS begehen absichtlich Missbrauch

Optimieren der Parameter der Pipeline sodass die bekannten Missbrauchsfälle als möglichst auffällig bewertet werden

Später alle bekannten Missbrauchsfälle vom Trainings-Datenset ausschliessen

Machine Learning

- Erklärbarkeit der Resultate
- Datenqualität ist wichtig
- Datenschutz ist aufwändig

Azure ML Studio

Gut für schnelle und flexible Experimente

Gebaut für grosse Big Data Applikationen, Web Service klingt einfacher als es ist

Als Betriebsplattform wegen fehlendem Versioning und Environment management noch nicht sehr ausgereift

Missbrauch:
Neue Anforderungen
AT Standard &
Zertifizierung

Einsteigen, fahren, fahren, fahren,... bezahlen!