1 Motywacja

Motywacją do rozważania równań różniczkowych będzie zagadnienie rozpadu promieniotwórczego. Eksperymentalnie sprawdzono, że tempo rozpadu jest wprost proporcjonalne do masy pierwiastka promieniotwórczego. Czyli dla pewnej k>0 mamy x'(t)=-kx(t), gdzie x(t) to masa pierwiastka w chwili t. Szukamy funkcji m, pomijać będziemy oznaczenie argumentu, oraz będziemy pisać $\dot{x}:=m'$.

Zgadnąć możemy, że rozwiązaniem są funkcje postaci $x(t) = e^{-kt} \cdot x(0)$. Powstaje naturalne pytanie – czy wszystkie rozwiązania są takiej postaci? W tym przypadku możemy wykonać przejścia równoważne:

$$\dot{x} + kx = 0$$

$$\dot{x}e^{kt} + ke^{kt}x = 0$$

$$\left(xe^{kt}\right)^{\cdot} = 0.$$

Zatem xe^{kt} jest stałą, więc $x(t) = c \cdot e^{-kt}$.

2 Definicja

Układem równań równiczkowych zwyczajnych *m*-tego rzędu nazywamy wyrażenie:

$$F\left(t,x,\dot{x},\ddot{x},\ldots,x^{(m)}\right)=0,$$

gdzie

$$x: \mathbb{R} \supseteq I \to \mathbb{R}^n$$

 $F: \mathbb{R}^{1+(m+1)n} \to \mathbb{R}^k.$

Zazwyczaj udaje się wyrazić najmniejszą pochodną w postaci rozwikłanej: $x^{(m)} = f(t, \dot{x}, \dots, x^{(m-1)})$. Zwykle zakłąda się różniczkowalność lub lipschitzowskość funkcji f.

3 Redukcja do układu równań pierwszego rzędu

Jeżeli mamy $x^{(m)} = f(t, \dot{x}, \dots, x^{(m-1)})$, to położywszy $y_k = x^{(k)}$, otrzymamy

$$\dot{y_0} = y_1, \dots, \quad \dot{y_{m-2}} = y_{m-1}, \quad \dot{y_{m-1}} = y_m = x^{(m)} = f(t, y)$$

dla $y = (y_0, ..., y_{m-1}) \in \mathbb{R}^m$. A zatem mamy $\dot{y} = g(t, y)$.

4 Badanie roztworów nasyconych

Kolejny przykład zastosowania równań różniczkowych. Stwierdzono, że w cieczy można rozpuścić ilość soli, która zwiększa się proporcjonalnie do zmiany temperatur: $\Delta s = k\Delta T$, a więc $\frac{\Delta s}{\Delta T} = kS$, czyli w granicy $\frac{dS}{dt} = kS$. Znamy rozwiązanie tego równania, S(T) = S(0). Biorąc $S_0 = S(T_0)$, $S_1 = S(T_1)$, dostaniemy

5 Metoda rozdzielania zmiennych

Załóżmy, że mamy do czynienia z równaniem postaci x'(t) = g(t)f(x(t)), albo pisząc zwięźlej: x' = g(t)f(x), gdzie $x : \mathbb{R} \supseteq I \to \mathbb{R}$, $f : x[I] \to \mathbb{R}$. Załóżmy też, że $f(x) \ne 0$ dla każdego $x \in I$. Ponadto, niech dany będzie nam warunek początkowy: $x(t_0) = x_0$. Wprowadźmy następujące oznaczenia:

$$G(t) = \int_{t_0}^{t} g(s)ds$$
$$F(x) = \int_{x_0}^{x(t)} \frac{1}{f(s)} ds$$

Wówczas równanie G(t) = F(x) zadaje zależność między x(t) a t, będącą rozwiązaniem równania. Nie zawsze z takiej zależności możemy ódczytać" jawny wzór, ale z twierdzenia o funkcji uwikłanej wnioskujemy, że rozwiązanie istnieje. Równania postaci x' = f(x)g(t) nazywamy równaniami **o rozdzielonych zmiennych**.

Przykład. Rozważmy równanie $e^{-x}(1+x')=1$. Prostymi przekształceniami algebraicznymi sprowadzamy równanie do postaci $x'=\frac{1-e^{-x}}{e^{-x}}=e^x-1$. W tym przypadku $f(x)=e^x-1$, g(t)=1. Stąd wynika, że:

$$G(t) = \int_{t_0}^{t} 1 ds = t - t_0 + c_1$$

$$F(x) = \int_{x_0}^{x(t)} \frac{1}{e^s - 1} ds = \log|e^{-s} - 1| \Big|_{x_0}^{x(t)} = \log\left|\frac{e^{-x(t)} - 1}{e^{-x_0} - 1}\right| + c_2$$

Zatem x(t) możemy zapisać jako funkcję uwikłaną za pomocą następującego równania:

$$t - t_0 + C = \log \left| \frac{e^{-x(t)} - 1}{e^{-x_0} - 1} \right|$$

Stała $C = c_1 - c_2$ jest dowolna, natomiast zadając stałe t_0 oraz x_0 sprawiamy, że tak otrzymane rozwiązanie równania różniczkowego będzie spełniać równość $f(t_0) = x_0$.