Mintys apie reliatyvumo teoriją

Julius Ruseckas

Teorinės fizikos ir astronomijos institutas, Vilniaus universitetas

Liepos 19, 2016

Pradžia

Tikslas: aprašyti judėjimą

Pradžia

Atskaitos sistema

Atskaitos sistemos

Atskaitos sitemos yra:

Inercinės

Neinercinės

Klausimas

Kas yra laikas?

Kas yra laikas?

Unit of time (second)

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.

Kada įvykiai įvyksta tuo pačiu metu?

Atskaitos sistema

Perėjimas tarp atskaitos sistemų

Eksperimentinis faktas

Visose inercinėse atskaitos sistemos šviesos greitis vakuume yra tas pats.

Erdvėlaikis

$$s^2 = r^2 - c^2 t^2$$

Judančiuose kūnuose laikas eina lėčiau

Video https://youtu.be/jXZuD8LgZNg

Kelionė į ateitį! (Dvynių paradoksas)

- Vienalaikiškumas yra reliatyvus
- Bet: priežastiniai ryšiai yra išlaikomi

- Vienalaikiškumas yra reliatyvus
- Bet: priežastiniai ryšiai yra išlaikomi

$E = mc^2$

$$\frac{di}{\ell} \frac{NL}{\ell} \frac{V2}{V} = \frac{NL}{2\pi r m_{e}} \frac{\varphi \in \frac{\ell}{k_{e}} = \frac{\rho}{\rho}}{N_{e}} \frac{\varphi}{N_{e}} \frac{\varphi}{N_{e}} \frac{M_{m}}{N_{e}} = \frac{C}{N_{e}} \frac{r^{2}}{N_{e}} \frac{k_{e}}{N_{e}} = \frac{\rho}{N_{e}} \frac{\varphi}{N_{e}} \frac{M_{m}}{N_{e}} = \frac{E}{N_{e}} \int_{0}^{\infty} \frac{s_{e}}{N_{e}} \frac{M_{m}}{N_{e}} = \frac{E}{N_{e}} \int_{0}^{\infty} \frac{s_{e}}{N_{e}} \frac{M_{e}}{N_{e}} = \frac{1}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} = \frac{1}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} = \frac{1}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} = \frac{1}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} = \frac{C}{N_{e}} \frac{2m}{N_{e}} \frac{2m}{N_{e}} = \frac{C}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} = \frac{C}{N_{e}} \frac{1}{N_{e}} \frac{2m}{N_{e}} \frac{2m}{N_{e}} = \frac{C}{N_{e}} \frac{2m}{N_{e}} \frac{2m}{N_{e}} \frac{2m}{N_{e}} = \frac{C}{N_{e}} \frac{2m}{N_{e}} \frac{$$

$$E = \sqrt{mc^4 + p^2c^2}$$

Pasiskaitymui

E. F. Taylor and J. A. Wheeler, Spacetime Physics, (1992).

Ačiū už dėmesi!