Einführung in Visual Computing

Wiederholung und Übung

Werner Purgathofer

Lehrveranstaltungsbewertung

Studierende werden ersucht, besuchte Lehrveranstaltungen zu bewerten (in TISS).

ich wurde gebeten meine Studierenden daran zu erinnern, sich aktiv an der Lehrveranstaltungsbewertung zu beteiligen.

Danke!

Hinweise zum 2. Test

- Montag 19.6. 18 Uhr
- Hörsaaleinteilung ab 16.6. auf Webseite
- keine Unterlagen erlaubt:
 - kein Skriptum, keine Folienkopien
 - kein Computer, Tablet, Handy
 - kein programmierbarer Taschenrechner
 - kein Nachbar!
- *einfache* Taschenrechner erlaubt
- Bewertung der wahr/falsch-Fragen:
 - Pluspunkte wenn richtig
 - Minuspunkte wenn falsch
 - aber nie weniger als Null pro Fragenblock

2 Punkte

richtig falsch richtig k.A.

1 Punkt

richtig falsch falsch k.A.

0 Punkte

Reminder: Product of Vectors

$$\mathbf{V_1} = \begin{pmatrix} \mathbf{a_1} \\ \mathbf{b_1} \\ \mathbf{c_1} \end{pmatrix} \qquad \mathbf{V_2} = \begin{pmatrix} \mathbf{a_2} \\ \mathbf{b_2} \\ \mathbf{c_2} \end{pmatrix}$$

scalar product:

$$V_1 \cdot V_2 = ?$$

cross product (vector product):

$$V_1 \times V_2 = ?$$

Reminder: Product of Vectors

scalar product:

$$V_1 \cdot V_2 = \begin{pmatrix} a_1 \\ b_1 \\ c_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 \\ b_2 \\ c_2 \end{pmatrix} = a_1 a_2 + b_1 b_2 + c_1 c_2$$

cross product (vector product):

$$V_{1} \times V_{2} = \begin{pmatrix} a_{1} \\ b_{1} \\ c_{1} \end{pmatrix} \times \begin{pmatrix} a_{2} \\ b_{2} \\ c_{2} \end{pmatrix} = \begin{pmatrix} b_{1} c_{2} - c_{1} b_{2} \\ c_{1} a_{2} - a_{1} c_{2} \\ a_{1} b_{2} - b_{1} a_{2} \end{pmatrix}$$

$$|V_1 \times V_2| = |V_1||V_2|\sin\phi$$

Polygon Surfaces: Plane Equation

$$\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y} + \mathbf{C}\mathbf{z} + \mathbf{D} = \mathbf{0}$$

- plane parameters A,B,C,D
- \blacksquare normal (**A,B,C**)

Front and Back Polygon Faces

$$Ax + By + Cz + D = 0$$
 for points on the surface
 < 0 for points behind
 > 0 for points in front

if (1) right-handed coordinate system(2) polygon points areordered counterclockwise

$$V_1,\,V_2,\,V_3$$
 counterclockwise \Rightarrow normal vector $N=(V_2-V_1)$ x (V_3-V_2)

Beispiel Dreiecksnormale

Wie lautet für ein Dreieck mit den Eckpunkten A(0, 2, 3), B(4, 5, 4), C(5, 4, 3) der normalisierte Normalvektor $\bf n$?

$$\mathbf{a} = \mathbf{B} - \mathbf{A} = (4, 5, 4) - (0, 2, 3) = (4, 3, 1)$$

$$\mathbf{b} = \mathbf{C} - \mathbf{A} = (5, 4, 3) - (0, 2, 3) = (5, 2, 0)$$

$$\mathbf{n}^* = \mathbf{a} \times \mathbf{b} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix} \times \begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \cdot 0 - 1 \cdot 2 \\ 1 \cdot 5 - 4 \cdot 0 \\ 4 \cdot 2 - 3 \cdot 5 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \\ -7 \end{bmatrix}$$

$$|\mathbf{n}^*| = \sqrt{4 + 25 + 49} = \sqrt{78} = 8.83$$

$$\mathbf{n} = \mathbf{n}^*/|\mathbf{n}^*| = (-2, 5, -7)/8.83 = (-0.23, 0.57, -0.79)$$

Beispiel Schattierung

Ein diffus reflektierendes Polygon mit der Trägerebene 2x - 4y + 4z = 1 wird aus der Richtung (-2, -2, 1) von parallelem Licht der Stärke 7 getroffen. Das Albedo des Polygons ist 0.6. Wie hell erscheint das Polygon?

Oberflächennormale
$$\mathbf{n}^* = (2, -4, 4)$$

$$\mathbf{n} = \mathbf{n}^*/|\mathbf{n}^*| = \mathbf{n}^*/6 = (1/3, -2/3, 2/3)$$

Richtung zur Lichtquelle =
$$(-2, -2, 1)$$

$$\ell = (-2, -2, 1)/3 = (-2/3, -2/3, 1/3)$$

$$L_{diff} = k_d \cdot I \cdot (\mathbf{n} \cdot \boldsymbol{\ell})$$

$$L_{diff} = 0.6 \cdot 7 \cdot (-2/9 + 4/9 + 2/9) = 4.2 \cdot 4/9 = \underline{1.867}$$

Beispiel Schattierung

Gegeben sind drei diffuse Dreiecke mit den Oberflächennormalen ($\sqrt{3}$, 0, 1), (-3, 3, 3), (1, -1, -2) und parallel einfallendes Licht aus der Richtung (0, 0, 1) mit der Intensität $I_L=128$. Der diffuse Reflexionskoeffizient des 1. Dreieckes ist k_d =0.75, der des 2. und 3. ist k_d =0.25 . Das ambiente Licht hat die Stärke 12. Berechnen Sie die Intensitäten I_i des reflektierten Lichtes, das ein Beobachter aus der Richtung (1, 0, 0) von den 3 Dreiecken sieht.

Skizze zum Schattierungsbeispiel

$$\alpha < 90^{\circ} \rightarrow \text{ nicht sichtbar } [(-v) \cdot n > 0 \text{ oder } v \cdot n < 0]$$

$$\alpha < 90^{\circ} \rightarrow \text{ nicht sichtbar } [(-v) \cdot n > 0 \text{ oder } v \cdot n < 0]$$
 $\alpha > 90^{\circ} \rightarrow \text{ sichtbar } [(-v) \cdot n < 0 \text{ oder } v \cdot n > 0]$

Beispiel Schattierung

Gegeben sind drei diffuse Dreiecke mit den Oberflächennormalen ($\sqrt{3}$, 0, 1), (-3, 3, 3), (1, -1, -2) und parallel einfallendes Licht aus der Richtung (0, 0, 1) mit der Intensität $I_L=128$. Der diffuse Reflexionskoeffizient des 1. Dreieckes ist k_d =0.75, der des 2. und 3. ist k_d =0.25 . Das ambiente Licht hat die Stärke 12. Berechnen Sie die Intensitäten I_i des reflektierten Lichtes, das ein Beobachter aus der Richtung (1, 0, 0) von den 3 Dreiecken sieht.

 $\cos \text{ (Normale, Lichtrichtung)} = \\ (\sqrt{3}, 0, 1)/2 \cdot (0, 0, 1) = \frac{1}{2} \qquad \text{daher } I_1 = 12 \cdot 0.75 + 128 \cdot 0.75 \cdot 0.5 = \underline{57} \\ (-3, 3, 3) \cdot (1, 0, 0) = -3 < 0$

Skizze zum Schattierungsbeispiel

$$\alpha < 90^{\circ} \rightarrow \text{ nicht sichtbar } [(-v) \cdot n > 0 \text{ oder } v \cdot n < 0]$$

 $\alpha > 90^{\circ} \rightarrow \text{ sichtbar } [(-v) \cdot n < 0 \text{ oder } v \cdot n > 0]$

$$\alpha > 90^{\circ} \rightarrow$$
 sichtbar $[(-v) \cdot n < 0 \text{ oder } v \cdot n > 0]$

Beispiel Schattierung

Gegeben sind drei diffuse Dreiecke mit den Oberflächennormalen ($\sqrt{3}$, 0, 1), (-3, 3, 3), (1, -1, -2) und parallel einfallendes Licht aus der Richtung (0, 0, 1) mit der Intensität $I_L=128$. Der diffuse Reflexionskoeffizient des 1. Dreieckes ist k_d =0.75, der des 2. und 3. ist k_d =0.25 . Das ambiente Licht hat die Stärke 12. Berechnen Sie die Intensitäten I_i des reflektierten Lichtes, das ein Beobachter aus der Richtung (1, 0, 0) von den 3 Dreiecken sieht.

```
cos (Normale, Lichtrichtung) = (\sqrt{3}, 0, 1)/2 \cdot (0, 0, 1) = \frac{1}{2} daher I_1 = 12 \cdot 0.75 + 128 \cdot 0.75 \cdot 0.5 = \underline{57} (-3, 3, 3) \cdot (1, 0, 0) = -3 < 0 \rightarrow (-3, 3, 3) ist aus (1, 0, 0) nicht sichtbar! (1, -1, -2) \cdot (0, 0, 1) = -2 < 0
```


Fragen zu Ray Tracing

- Mit dem Ray-Tracing-Verfahren ist es nicht möglich, einfache Schatten zu berechnen.
- Lässt man alle Blickstrahlen von einem Punkt ausgehen, so wird das Bild in Perspektive gerendert.
- Die Basisidee beim Ray-Tracing besteht darin, Licht, welches auf einen Bildpunkt trifft, zurückzuverfolgen und daraus auf das Aussehen (Farbe) dieses Bildpunktes zu schließen.
- Ray-Tracing kann zum Beispiel Spiegelungen und Lichtbrechung simulieren.

Beispiel Ray-Tracing

Ein Strahl $\mathbf{p}(t) = (1, -2, -6) + t \cdot (1, 2, 3)$ trifft die Kugel K mit Mittelpunkt (6, 0, 0) und Radius r = 5. Berechnen Sie den **Normalvektor im Schnittpunkt**.

Beispiel Ray-Tracing - Fortsetzung

Ein Strahl $\mathbf{p}(t) = (1, -2, -6) + t \cdot (1, 2, 3)$ trifft die Kugel K mit Mittelpunkt (6, 0, 0) und Radius r = 5. Berechnen Sie den **Reflexionsstrahl**.

$$\mathbf{r} = (2\mathbf{n} \cdot \mathbf{v}) \cdot \mathbf{n} - \mathbf{v}$$

Strahl: $(1, -2, -6) + t \cdot (1, 2, 3)$ also $\mathbf{v} = (-1, -2, -3)/\sqrt{14} = (-0.27, -0.53, -0.80)$

Schnittpunkt: (2, 0, -3)

Normalvektor: $\mathbf{n} = (-4/5, 0, -3/5)$

$$\mathbf{r} = (2 \cdot (4/5 + 0 + 9/5)/\sqrt{14}) \cdot \mathbf{n} - \mathbf{v} = 1.39 \cdot \mathbf{n} - \mathbf{v} = (-0.84, 0.53, -0.03)$$

$$R(t) = (2, 0, -3) + t \cdot (-0.84, 0.53, -0.03)$$

Fragen zu Radiosity

- Die Radiosity-Methode eignet sich sehr gut dazu, Objekte mit diffusen und spiegelnden Oberflächen darzustellen.
- Beim Southwell-Verfahren (Shooting-Verfahren) wird in einem Schritt die Energie des hellsten Patches auf alle anderen verteilt, weshalb es schneller konvergiert als das Gauß-Seidel-Verfahren.
- Die Formfaktoren sind rein geometrische Größen, also unabhängig von Lichtquellen und Radiositywerten.
- Radiosity ist eine blickpunktabhängige Methode zur Berechnung der Helligkeit der einzelnen Patches.

Beispiel Radiosity

Gegeben ist eine Szene mit 2 Lichtquellenpatches L_1 und L_2 . Berechnen Sie für das nicht selbstleuchtende Patch P die Radiosity nach einem Shooting-Schritt.

Flächen: $A_1 = 20$, $A_2 = 25$, $A_P = 30$

Eigenemissionen: $E_1 = 125, \ E_2 = 83, \ E_P = 0$

Formfaktoren: $F_{12} = 0.02$, $F_{1P} = 0.03$, $F_{2P} = 0.04$

Reflexionskoeffizienten: $\rho_1 = 0.6$, $\rho_2 = 0.4$, $\rho_P = 0.8$

Diese 3 Patches stehen jeweils um 30° geneigt zueinander.

 $L_1 \text{ ist die hellere Lichtquelle weil } E_1 \cdot A_1 > E_2 \cdot A_2$ also $i=1, \ j=P$

$$B_{j \text{ due to } B_i} = \rho_j B_i F_{ij} \frac{A_i}{A_j}$$

$$B = 0.8 \cdot 125 \cdot 0.03 \cdot 20/30 = \underline{2}$$

Beispiel Natural Cubic Splines

Gesucht: Natural Cubic Spline-Segment mit den Stützpunkten: P_1 (0,0), P_2 (2,–4). Weiters ist gegeben: Anstieg in P_2 ist 4, die zweite Ableitung am Punkt P_2 ist 2. Wie lautet die explizite Form des Polynoms, d.h. die Form $p(x) = ax^3 + bx^2 + cx + d$ mit 4 Koeffizienten pro Segment?

$$p(x) = ax^{3} + bx^{2} + cx + d p'(x) = 3ax^{2} + 2bx + c p''(x) = 6ax + 2b$$

$$p(0) = 0 0 = d$$

$$p(2) = -4 -4 = 8a + 4b + 2c (+ d)$$

$$4 = 12a + 4b + c$$

$$p''(2) = 4$$

$$p''(2) = 2$$

$$2 = 12a + 2b$$

$$2 = -12 + 2b$$

$$14 = 2b$$

$$7 = b$$

$$2 = -12 + 28 + c$$

$$-12 = c$$

$$p(x) = -x^{3} + 7x^{2} - 12x$$

Beispiel Hermite Spline

Gesucht ist die parametrische Form eines Hermite Spline Segmentes. Die parametrische Form ist eine Vektorgleichung $\mathbf{P}(\mathbf{u}) = \mathbf{a}\mathbf{u}^3 + \mathbf{b}\mathbf{u}^2 + \mathbf{c}\mathbf{u} + \mathbf{d}$ mit 4 Koeffizientenvektoren pro Segment. Gegeben sind die folgenden Stützpunkte: P_1 (-3,7), P_2 (2,4), und folgende Tangentensteigungen: in P_1 : (1,1), in P_2 : (6,-2).

$$\begin{bmatrix} \boldsymbol{a}_k \\ \boldsymbol{b}_k \\ \boldsymbol{c}_k \\ \boldsymbol{d}_k \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_{k+1} \\ \boldsymbol{D}\boldsymbol{p}_k \\ \boldsymbol{D}\boldsymbol{p}_{k+1} \end{bmatrix} = \begin{bmatrix} 2-2 & 1 & 1 \\ -3 & 3-2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{p}_k \\ \boldsymbol{p}_{k+1} \\ \boldsymbol{D}\boldsymbol{p}_k \\ \boldsymbol{D}\boldsymbol{p}_{k+1} \end{bmatrix}$$

$$\begin{array}{lll} {\bf a_k} = & 2{\bf p_k} - 2{\bf p_{k+1}} + {\bf Dp_k} + {\bf Dp_{k+1}} & {\bf a_k} = & (-3,5) \\ {\bf b_k} = & -3{\bf p_k} + 3{\bf p_{k+1}} - 2{\bf Dp_k} - {\bf Dp_{k+1}} & {\bf b_k} = & (7,-9) \\ {\bf c_k} = & {\bf Dp_k} & {\bf c_k} = & (1,1) \\ {\bf d_k} = & {\bf p_k} & {\bf d_k} = & (-3,7) \end{array}$$

$$\mathbf{P}(\mathbf{u}) = (-3, 5)\mathbf{u}^3 + (7, -9)\mathbf{u}^2 + (1, 1)\mathbf{u} + (-3, 7)$$

Beispiel CSG

- Skizzieren Sie einen 2D-CSG-Baum, der die angegebene Fläche mit möglichst wenigen Endknoten repräsentiert.
- Endknoten = ausschließlich Fig. A, B, C, nicht rotiert oder skaliert, nur verschoben, durch die 3 CSG-Operationen verbunden
- Geben Sie im CSG-Baum die Platzierung der Teile in Koordinaten der linken oberen Ecke an

Fragen zu Antialiasing

- Aliasing-Artefakte sind Fehler, die bei der Umwandlung (Diskretisierung) von digitalen in analoge Informationen auftreten können.
- Eine zu geringe Auflösung bei der Rasterisierung kann zu Aliasing-Artefakten führen.
- Numerische Fehler können zu Aliasing-Artefakten führen.
- Die Abtastfrequenz muss mindestens doppelt so hoch sein wie die höchste zu übertragende Informationsfrequenz um die Information des abgetasteten Signals korrekt rekonstruieren zu können.
- Unter Antialiasing versteht man die Reduktion unerwünschter Aliasing-Artefakte.
- Supersampling/Oversampling ist eine zentrale Strategie beim Vorfiltern.

Fragen zu Sichtbarkeit

- ✓ Beim Backface-Culling wird ein Polygon entfernt, wenn sein Oberflächennormalvektor vom Betrachter wegzeigt.
- Mittels Backface-Culling können alle nicht sichtbaren Polygone einer Szene entfernt werden (meist etwa 50% aller Polygone).
- Mittels Backface-Culling können im Schnitt in etwa die Hälfte aller Polygone einer Szene als unsichtbar identifiziert werden.
- Der Z-Puffer speichert für jedes Pixel stets die Tiefe des am fernsten liegenden Polygons, das dieses Pixel überdeckt.

Fragen zu Sichtbarkeit - Fortsetzung

- Beim Ray-Casting wird durch jedes Pixel ein Strahl in Blickrichtung in die Szene gelegt und mit allen Objekten geschnitten.
- Beim z-Buffering wird im Framebuffer ein Pixel eines Polygons nur gezeichnet, wenn sein z-Wert näher zum Betrachter liegt als der im z-Puffer gespeicherte Wert.
- Ein Nachteil von Ray-Casting ist der hohe Speicherbedarf, der durch die vielen Rays (bis zu mehreren Millionen) entsteht.

Klassifizierung von Sichtbarkeitsverfahren

Welche der folgenden Sichtbarkeitsverfahren arbeiten im Objektraum, welche im Bildraum?

Objektraumverfahren

Bildraumverfahren

Fragen zu Kurven und Flächen

- Bei Bézier-Kurven haben die Stützpunkte globalen Einfluss auf die Kurve.
- Bei B-Spline-Kurven haben die Stützpunkte lokalen Einfluss auf die Kurve.
- Freiformflächen/-kurven, deren Stützpunkte auf der Fläche/Kurve liegen, nennt man <u>interpolierend</u>.
- Freiformflächen/-kurven, deren Stützpunkte nicht (alle) auf der Fläche/Kurve liegen, sondern die Fläche nur durch ihre Lage beeinflussen, nennt man <u>approximierend</u>.
- Die Hermite-Interpolation erfolgt mit Polynomen 3. Grades.

Fragen zu Kurven und Flächen

- Bei Bézier-Kurven haben die Stützpunkte lokalen Einfluss auf die Kurve.
- Freiformflächen, deren Stützpunkte auf der Fläche liegen, nennt man interpolierend.
- Bei B-Spline-Kurven haben die Stützpunkte lokalen Einfluss auf die Kurve.
- Freiformflächen, deren Stützpunkte nicht alle auf der Fläche liegen, sondern die Fläche/Kurve nur durch ihre Lage beeinflussen, nennt man approximierend.

Beispiel Phong Interpolation + Schattierung

Normalvektoren: **a**: (-0.5, -0.5, 2.0)

c: (1.0, 1.2, 1.8)

b: (0.8, -0.2, 2.6)

d: (-1.3, 1.2, 2.0)

- Richtung zur Lichtquelle: (0, 3, 4)
- Blickvektor: (0, 0, -1)
- Intensität der Lichtquelle = 2.4
- $k_d = 0.6, k_s = 0.4, p = 10$
- Berechnen Sie die Schattierung an der Stelle * mit Phong-Interpolation und Phong-Schattierung

Beispiel Phong Interpolation + Schattierung

Schattierung =
$$k_d \cdot I \cdot (\mathbf{n} \cdot \boldsymbol{\ell}) + k_s \cdot I \cdot (\mathbf{n} \cdot \mathbf{h})^p$$

$$= 0.6 \cdot 2.4 \cdot (\mathbf{n} \cdot \boldsymbol{\ell}) + 0.4 \cdot 2.4 \cdot (\mathbf{n} \cdot \mathbf{h})^{10}$$

$$\mathbf{n_1} = 1/5 \cdot \mathbf{a}/||\mathbf{a}|| + 4/5 \cdot \mathbf{d}/||\mathbf{d}||$$

$$\mathbf{n} \cdot \mathbf{\ell} = 0.943$$
 $(\mathbf{n} \cdot \mathbf{h})^{10} = 0.929^{10} = 0.479$

$$\mathbf{n_2} = 2/8 \cdot \mathbf{b} / ||\mathbf{b}|| + 6/8 \cdot \mathbf{c} / ||\mathbf{c}||$$

Schattierung = 1.818

$$\mathbf{n}^* = 1/5 \cdot \mathbf{n}_1 / ||\mathbf{n}_1|| + 4/5 \cdot \mathbf{n}_2 / ||\mathbf{n}_2||$$

$$\mathbf{n} = \mathbf{n} / ||\mathbf{n}|| = (0.246, 0.388, 0.888)$$

$$\ell = (0, 3, 4)/||(0, 3, 4)|| = (0, 0.6, 0.8)$$

$$\mathbf{v} = (0, 0, 1)$$

$$\mathbf{h} = \frac{\ell + \mathbf{v}}{\|\ell + \mathbf{v}\|} = \underline{(0, 0.304, 0.913)}$$

Richtung zur Lichtquelle: (0, 3, 4)

Blickvektor: (0, 0, -1)

Intensität der Lichtquelle = 2.4

$$k_d = 0.6, k_s = 0.4, p = 10$$