Multi-View Generative Models for Breast Cancer Screening

Neural Network - Project

Francesca Andreotti - 1696976

Sapienza University of Rome

September 2025

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Motivations and Aim

Motivation

- Breast cancer is the most common malignancy in women
- Mammography is a gold standard
- Main challenges:
 - * Limited data availability
 - * Inter-view variability
 - → Cranio-caudal **CC**
 - \rightarrow Mediolateral oblique **MLO**

Idea

Develop **multi-view generative models** to synthesize realistic and coherent CC/MLO mammograms, handling the trade-off between **breast shape preservation** and **image sharpness**.

Method - Radiomics-Conditioned cGAN

Task

Perform **multi-view mammogram synthesis**, generating complementary views (e.g., MLO from CC) conditioned on radiomic features.

Conditional GAN model (cGAN)

UNet-based Generator with residual connections, conditioned on radiomic features

PatchGAN-style Discriminator with dual heads for real/fake discrimination and view classification

Input

- * Real CC view
- * Lesion mask of real CC view
- * Radiomic feature vector

Output

Synthetic MLO view

$$\mathcal{L}_{G} = \lambda_{GAN}\mathcal{L}_{GAN} + \mathcal{L}_{view} + \lambda_{L1}\mathcal{L}_{L1} + \lambda_{percep}\mathcal{L}_{percep} + \lambda_{SSIM}\mathcal{L}_{SSIM} + \lambda_{rad}\mathcal{L}_{rad}$$

$$\mathcal{L}_D = \mathcal{L}_{D,GAN} + \mathcal{L}_{D,view}$$

Implementation

Generative Framework

- CBIS-DDSM and INbreast datasets, containing high-resolution mammograms and radiomic features.
- Pre-processing stage for converting, analysing and loading mammogram images and metadata
- Radiomic features extraction through cropped ROIs and metadata for generating radiomic vectors

Training setup

- * **Optimizer:** Adam (Ir = 2e-4 for generator/discriminator)
- * Batch size: 4 with gradient accumulation to handle memory limits.
- * **Stability measures:** Gradient clipping and Early stopping based on validation SSIM.
- Evaluation metrics: L1, SSIM, PSNR; qualitative inspection of generated MLO images.

Results Analysis - Quantitative metrics

Evaluation Metrics

L1 (Mean Absolute Error)

SSIM (Structural Similarity Index Measure)

PSNR (Peak Signal-to-Noise Ratio)

Metric	L1	SSIM	PSNR
Val	9444.5792	0.6268	17.07 dB
Test	8831.1843	0.6285	17.27 dB

loss_G	1.8945	
$loss_D$	0.0549	
$loss_GAN$	0.3795	
loss_L1	0.1342	
loss_percep	0.7779	
loss_rad	0.5557	

Value

Loss

Results Analysis - Qualitative Metrics

Visualizations

MLO output from training

MLO output from test

- Global Relations
 Breast shape well preserved.
 Contours anatomically consistent.
- Local Relations
 Lesions transferred across views.
 Masses reasonably preserved, calcifications lose fine details.
 Slight blurring.
- Background plausible but smoother than real images

Training image retain better lesion alignment and detail **Test** image maintain global consistency but weaker local fidelity

Limitations and Future Works

Main Limitations

- Dataset Size and Diversity: Limited training data reduce generalization capability.
- Metric Limitations: SSIM, PSNR, and L1 measure image similarity but do not fully reflect clinical relevance or lesion-level fidelity.
- Computational and memory requirements: the extension to more advanced models (e.g., diffusion models) results impractical for current setup

Future Works

- * Feed in **Multi-View Classification Systems** the generated output.
- Extend to Multi-View Analysis, enabling double comparison across ipsilateral and bilateral views.
- Investigate the use of Hypercomplex Neural Networks to better capture inter-view correlations and multimodal relations.
- * Explore **Diffusion Models** for higher fidelity synthesis

Thank you for listening!

Multi-View Generative Learning for Mammography

Neural Network - Project