#### KONGJU NATIONAL UNIVERSITY

CAPSTONE DESIGN PROJECT

## 가정 내 전력 사용 최적화를 위한 스마트 홈 스케줄링 시스템

컴퓨터공학부 소프트웨어전공

이 세 현

전 건 우

TEAM DL

#### **CONTENTS**

01

프로젝트 개요

- 배경
- <del>목</del>적

02

기능 설계

- 시스템 구성도
- 검증 시뮬레이션
- ER Diagram
- Activity Diagram
- 서비스 흐름도

03

조직구성, 작업기술

- 조직 구성
- 개발절차
- 작업기술

04

일정, 자원 예측

- CPM 임계경로
  - Gant Chart
  - Pert Chart
- 인력 및 비용

05

기술 관리

- 리스크 분석
- 리스크 완화 전략

프로젝트 개요



가전기기 다양화 및 전력 사용 증가



수요 증가에 따른 공급의 한계





사용자 전력사용 패턴 미적용



- 다양한 가전기기의 사용 증가에 따른 에너지 사용량 증가 ▶ 기존 전력 공급 위주의 에너지 수급 정책은 수요 증가에 대한 대응 한계
- 기존 전력망에 IT를 접목한 스마트 그리드 적용 ▶ 수요반응의 핵심인 실시간 요금제를 통하여 자발적 전력 사용 이전 및 절약 유도
- 사용자의 전력 사용 패턴을 고려하지 않아 불편을 초래하거나 효율적인 전력 사용 유도에 한계 ▶ 효율적인 전력 요금 절감 방법 필요



[실제 가정의 전력 사용 데이터 분석]



[전력 요금 절감 스케줄링]

- 실제 가정의 가전기기별/요일별 전력 사용 패턴을 분석 ▶ **사용자의 불편 최소화** 및 효율적인 전력 사용 유도 방안 제시
- 실시간 요금제하에서 전력 요금 절감 스케줄링 방법의 적용에 따른 <mark>전력 요금 절감</mark> 효과 확인

기능 설계



## Smart\* Project의 Umass 전력 데이터

| 기기명칭        | 보일러    | 냉장고   | 전자<br>레인지 | 난로    | 식기<br>세척기 | 세탁기  | 건조기   |
|-------------|--------|-------|-----------|-------|-----------|------|-------|
| 총전력 (kW)    | 17,693 | 2,163 | 319       | 2,643 | 567       | 351  | 5,257 |
| 시간당전력(kW/h) | 5.1    | 0.13  | 0.18      | 0.35  | 0.61      | 0.25 | 3.19  |
| 비율 (%)      | 61.0   | 7.5   | 1.1       | 9.1   | 2.0       | 1.2  | 18.1  |







## 건조기에 대한 요일별 사용 패턴 분석









조직구성, 작업기술

#### SWAT(Skilled With Advanced Tools) 팀 구성

소규모 팀이기 때문에 소규모 팀의 강점인 의사교환이 용이 원활한 커뮤니케이션은 팀 구성원의 사기와 작업 만족도 상승 팀 구성원 사이의 의사 교류를 활성화시키므로 복잡한 문제가 생길 경우, 특별한 지연사항 없이 해결 가능



(A) 이세현

- 프로젝트 관리
- loT 환경 설계 및 구축
- 모바일 어플리케이션 개발



(B) 전건우

- 전력 사용 데이터 수집
- 패턴 학습 딥러닝 모델 설계

폭포수 모델 (Waterfall Model)



QA

03

요구분석

서비스 주안점 및 제약 정의 사용자 요구사항 파악 SW개발 모델 분석 및 방법론 제시 요구분석 명세서 작성 loT 환경 설계 패턴 학습 및 예측 모델 설계 UX/UI 디자인 설계 상세설계

설계

구현 -----

프로그래밍

테스트 디자인 설계 테스트 케이스 설계 및 수행 성능테스트

작업 선행 작업 소요시간(일) 1.1 서비스 주안점 및 제약 정의 10 1.2 사용자 요구사항 파악 7 1.3 SW개발 모델 분석 및 방법론 제시 1.1, 1.2 5 1.4 요구 분석 명세서 작성 1.3 14 2.1 loT 환경 설계 1.4 7 2.2 패턴 학습 및 예측 모델 설계 14 1.4 2.3 UX/UI 디자인 설계 1.4 7 2.4 상세설계 2.1, 2.2, 2.3 28 3. 구현 2.4 28 4.1 테스트 디자인 설계 3 11 4.2 테스트 케이스 설계 및 수행 4.1 7 4.3 성능 테스트 4.1, 4.2 7

일정, 자원 예측



| 가능 경로                                                                                                                                             | 소요 기간 (일) |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| S→1.1→1.3→1.4→2.1→2.4→3→4.1→4.3→END                                                                                                               | 110일      |
| S→1.1→1.3→1.4→2.2→2.4→3→4.2→4.3→END                                                                                                               | 113일      |
| S→1.2→1.3→1.4→2.1→2.4→3→4.1→4.3→END                                                                                                               | 107일      |
| $S \rightarrow 1.2 \rightarrow 1.3 \rightarrow 1.4 \rightarrow 2.2 \rightarrow 2.4 \rightarrow 3 \rightarrow 4.2 \rightarrow 4.3 \rightarrow END$ | 110일      |



|     | 8월 |   |   |    |   |   |    |   | 9월 |    |   |   |    |   |   |    |    |     |    |    | 10월 |   |    |    |   |   |   |   |   |   |   |   |  |   |    |    |     |   |    |    |    |   |     |    |    |     |    |   |     |   |    |    |   |   |   |   |                |   |  |
|-----|----|---|---|----|---|---|----|---|----|----|---|---|----|---|---|----|----|-----|----|----|-----|---|----|----|---|---|---|---|---|---|---|---|--|---|----|----|-----|---|----|----|----|---|-----|----|----|-----|----|---|-----|---|----|----|---|---|---|---|----------------|---|--|
|     |    | 6 | 9 | 10 | 1 | 1 | 12 | 1 | 3  | 16 | 1 | 7 | 18 | 1 | 9 | 20 | 23 | 2   | 4  | 25 | 26  | 2 | 30 | 31 |   | 1 | 2 | 3 | 6 |   | 7 | 8 |  | 9 | 10 | 13 | 3 1 | 4 | 15 | 16 | 17 | 2 | и . | 21 | 22 | 23  | 24 | 2 | 7 2 | 8 | 29 | 30 | 1 | 4 | 5 | 6 | 7              | 8 |  |
| 2.4 |    |   |   |    |   |   |    |   |    |    |   |   |    |   |   |    | (A | . ( | В) |    |     |   |    |    | Ė |   |   |   |   | ۰ |   |   |  |   |    |    |     |   |    |    |    | ı |     |    |    |     |    | ı |     |   |    |    |   | 1 |   |   |                |   |  |
| 3   |    |   |   |    |   |   |    |   | Ī  |    | 1 |   |    | 1 |   |    |    |     |    |    |     | 1 |    |    |   |   |   |   |   | l |   |   |  |   |    |    |     |   |    |    | ļ  |   | į   |    |    | (A) | (B | ) |     |   |    |    |   |   |   |   | . <del>.</del> |   |  |





- 추정 코드수 : 5000라인 = 5 KDSI
- MM =  $2.4 \times (5)^{1.05} = 13$  Man-Months
- TDEV(개발 기간) = 2.5 × (13)^0.38 ≒ 6.6 months
- FSP(적정 투입 인원) = 13/6.6 ≒ 1.96
- 팀 구성원(1달 = 21일로 계산)
- 중급기술자 : 239,748 × 21 × 6.6 = 33,229,073
- 초급기술자 : 215,681 × 21 × 6.6 = 29,893,387
- 총 인건비: 63,122,460

#### Team 구성원 2인



#### 직책에 따른 월 평균 임금

- 2018년 소프트웨어 노임단가 기준
- 중급기술자 일급 : 239,748 원
- 초급기술자 일급 : 215,681 원

[출처: KOSA (한국소프트웨어산업협회)]

#### COCOMO 유형

| 구분                   | 설 명                                          | MM (Man-Month)      |
|----------------------|----------------------------------------------|---------------------|
| 조직형(Organic)         | 일반 응용프로그램 (50KDSI 이하)                        | 2.4 * (KDSI) ^ 1.05 |
| 준분리형 (semi-detached) | 개발지원도구(50 ~ 300KDSI)<br>(예: 컴파일러, 워드프로세서)    | 3.0 * (KDSI) ^ 1.12 |
| 내재형 (embedded)       | 시스템 소프트웨어 (300KDSI~)<br>(예: OS, DBMS, 통신모니터) | 3.6 * (KDSI) ^ 1.20 |

- 클라우드 플랫폼 사용료

· g3s.xlarge(Linux): 0.225 USD/hour 사용시간: 24(시간) × 30(일) × 6(개월) = 4,320시간 사용 요금: 4,320 \* 0.255 = 1,101.6USD ≒ 1,244,155원

- 인쇄비

·개발 관련 문서 10,000원/권 × 6권 = 60,000원

- 참고 문헌비

·참고서적 30,000원/권 × 3권 = 90,000원

- 재료비

Printer Ink
50,000/개 × 2개 = 100,000원
Print용지
250/매 × 10원 × 5권 = 10,000원
실험 phone
600,000원/개 × 1개 = 600,000원

- 회의비 30,000원/회 × 8회 = 240,000원

- 사무실 임대료 350,000원/1개월 x 6 = 2,100,000원

- 기타 경비

· 다과류, 음료, 사무용품 등 = 1,000,000원 총 5,444,155원 ※ 총 비용

인건비

추가 비용

63,122,460 + 5,444,155

68,566,615 원

기술 관리

| 리스크 요소           | 발생 가능성(P) | 심각성(E) | Risk 평가 |
|------------------|-----------|--------|---------|
| 인력 부족            | 0.2       | 0.4    | 0.52    |
| 비현실적 일정과 예산      | 0.1       | 0.2    | 0.28    |
| 잘못된 소프트웨어 기능 개발  | 0.2       | 0.6    | 0.68    |
| 잘못된 사용자 인터페이스 개발 | 0.1       | 0.2    | 0.28    |
| 과대 포장            | 0.2       | 0.2    | 0.36    |
| 지속적 요구사항 변동      | 0.3       | 0.4    | 0.58    |
| 외부 작업의 부족        | 0.1       | 0.4    | 0.46    |
| 외부 기능의 부족        | 0.1       | 0.2    | 0.28    |
| 실시간 성능 문제점       | 0.4       | 0.6    | 0.76    |
| 기술적 취약           | 0.2       | 0.8    | 0.84    |

| 매우 낮음 | 낮음  | 중간  | 음   | 매우 높음 |
|-------|-----|-----|-----|-------|
| 0.2   | 0.4 | 0.6 | 0.8 | 1     |

| 리스크 요소          | Risk 평가 | 완화 전략 | 관리 기법             |  |  |  |  |  |  |  |
|-----------------|---------|-------|-------------------|--|--|--|--|--|--|--|
| 잘못된 소프트웨어 기능 개발 | 0.68    | 이동    | 프로토타이핑, 사용자 요구 분석 |  |  |  |  |  |  |  |
| 실시간 성능 문제점      | 0.76    | 회피    | 프로토타이핑, 벤치마킹      |  |  |  |  |  |  |  |
| 기술적 취약          | 0.84    | 이동    | 프로토타이핑, 비용-수익 분석  |  |  |  |  |  |  |  |

06 시연

# THANK YOU

**TEAM DL**