Project 1: Robust Deep-learning-based Side-Channel Attacks

Channing Smith, College of Charleston Joel Ward, Cedarville University

Chenggang Wang, University of Cincinnati

Mentors: Dr. Boyang Wang, Dr. Marty Emmert

Side-Channel Attacks (SCA)

- An attacker analyzes power or electromagnetic (EM) signals of a target (microcontroller or FGPA) when it runs encryption algorithm (e.g., AES) and recover encryption keys
- Why? power consumption is correlated with the value processed by target
 - 0x00 requires less power than 0xFF

Arm STM32F3

Attack Window [1800, 2800]

0.2

0.1

0.0

-0.1

-0.2

-0.3

-0.4

Dower Pattern of AES

Deep-Learning SCA

- Advantages compared to traditional SCA attacks
 - No need to pre-process traces
 - Can defeat existing countermeasures (masking & random delays)
- High accuracy (>90%) in the same-device setting
 - Train with device A, test with device A

RHEST

Large number of traces

Challenge:
Limited number of traces

RHEST

- Poor performance (<10% accuracy or fail to recover keys) in cross-device setting (a real-world attacker)
 - Train with device A, test with device B
- Challenges: (1) Limited traces from Device B; (2) unknown key from Device B;
 (3) complex discrepancies caused by hardware and software

Objectives

- Task 1: Collect EM traces on microcontrollers and test results with our existing ML code
- Task 2: Study instruction rewriting in assembly on AVR XMEGA and ARM STM32 as well as examine the impact of instructions rewriting in deep learning side channel attacks
- Task 3: Collect EM traces of AES encryption compiled with different optimizations and study the optimizations' effects

EM Data Collection Setup

EM Data Collection

XMEGA	STM32
 50k unmasked AES, PC1 50k unmasked AES, PC2 50k masked AES, PC1 50k masked AES, PC2 	50k unmasked AES, PC150k unmasked AES, PC2

EM Data Analysis

Performed Normal Inter-Class Variance (NICV)

EM Data Analysis

Performed Signal to Noise Ratio (SNR)

SNR results from XMEGA masked, PC1

SNR results from XMEGA masked, PC2

Ran CPA attack

Key guess: 0xc6

Correlation: 0.25582897783658465

Correct Key: 0xc6

Key guess: 0x70

Correlation: 0.11420753433103399

Correct Key: 0x70

EM Data Convolutional Neural Network (CNN) Results

- Train and test data using Convolutional Neural Network (CNN)
 - For cross-device scenario, use 40k for training (PC1) and 10k for testing (PC2)

Working with EM Data

- Collecting EM data is much more difficult than power traces. (And results produced by CNN are not always promising even with same-device)
- Improved data collection process would benefit the data, as it is easy for the EM probe to move positions during the collection.
- Although CNN did not always show us the results we were hoping for, we did
 get a lot of promising pics from NICV and from the CPA attack which was able
 to recover most keys.

Instruction Rewriting

- Causes software discrepancy
- Train with masked AES, test with rewritten AES
- Rewrote lines of assembly code with 1-3 comparable lines
- Focused on SubBytes and addRoundKey routines
- 24 lines rewritten

Power Trace Data Collection

- Collect 50k masked AES power traces
- Collect 50k rewritten masked AES power traces
 - 40k traces for training
 - 10k traces for testing
- Run NICV and CPA

Key guess: 0x2b

Correlation: 0.9446525225032248

Correct Key: 0x2b

CPA results for masked AES dataset

Did not recover key

attack window: [1600,4500]

Recovered key

attack window: [1900,4800]

EM Data Collection with Optimization

- Optimization → software discrepancy
- Compiled with either o1, o2, or o3 optimization in gcc

Gcc command before optimization:

make PLATFORM=CWLITEXMEGA CRYPTO_TARGET= TINYAES128C

Gcc command after optimization (o1):

make PLATFORM=CWLITEXMEGA CRYPTO_TARGET= TINYAES128C OPT=1

EM Data Collection with Optimization

- Collected 4 50k EM datasets:
 - XMEGA masked, (modified with instruction rewriting), PC2
 - XMEGA unmasked, (compiled with o1 optimization in gcc), PC2
 - XMEGA unmasked, (compiled with o2 optimization in gcc), PC2
 - XMEGA unmasked, (compiled with o3 optimization in gcc), PC2

First 5,000 traces from dataset compiled with o1 optimization

EM Data with Optimization Analysis

 Performed Normal Inter-Class Variance (NICV), Signal to Noise Ratio (SNR), and CPA attack on XMEGA unmasked EM dataset compiled with o1, o2, and o3 optimization in gcc.

EM Data with Optimization Results (CNN)

- Trained (40k) and tested (10k) EM dataset compiled with o1 optimization in gcc on Convolutional Neural Network (CNN) on same-device scenario.

Limitations & Challenges

- Pre-Data Collection (being able to run required scripts).
- ChipWhisperer has a limited number of integrated AES implementations.
- EM datasets are noisy, which oftentimes doesn't show promising results.

Future Direction

- Instruction rewriting STM32
- Analyzing Trojans on FPGA's
- Transfer learning with datasets
- Improving data collection process of EM data
- EM data collection and analysis of STM32 masked

Thank you!

- Collected 10 EM datasets and 2 power datasets used for instruction rewriting
 - 700k power and EM traces
 - 52 gb of data
- GitHub link: https://github.com/UCdasec/CrossSide

This work is supported by National Science Foundation (NSF), CNS-2150086, RHEST: NSF REU Site In Hardware and Embedded Systems Security and Trust