

That which is claimed is:

1. A carbazolyl-functional linear polysiloxane comprising from 30 to 99 mol% of units having the formula I, from 1 to 70 mol% of units having the formula II, and units having the formula III:

wherein R^1 is C_1 to C_{10} hydrocarbyl free of aliphatic unsaturation; R^2 is $-\text{CH}_2\text{-CHR}^3-$ or $-\text{CH}_2\text{-CHR}^3\text{-Y}-$, wherein Y is a divalent organic group and R^3 is R^1 or -H; R^4 is R^1 , $-(\text{CH}_2)_m\text{-Cz}$, $-\text{CH}_2\text{-CHR}^3\text{-SiR}^1_n\text{Z}_{3-n}$, or $-\text{CH}_2\text{-CHR}^3\text{-Y-SiR}^1_n\text{Z}_{3-n}$, wherein Cz is N-carbazolyl; Z is a hydrolysable group; m is an integer from 2 to 10; and n is 0, 1, or 2.

2. The carbazolyl-functional linear polysiloxane according to claim 1, wherein the polysiloxane comprises from 75 to 99 mol% of units having the formula (I) and from 5 to 50 mol% of units having the formula (II).

3. The carbazolyl-functional linear polysiloxane according to claim 1, wherein the polysiloxane contains up to 15 mol% of siloxane units having formulae selected from $\text{R}^1\text{HSiO}_{2/2}$, $\text{HR}^1_2\text{SiO}_{1/2}$, $\text{R}^1_2\text{SiO}_{2/2}$, and combinations thereof, wherein R^1 is C_1 to C_{10} hydrocarbyl free of aliphatic unsaturation.

4. A carbazolyl-functional linear polysiloxane comprising at least 30 mol% of units having the formula I and units having the formula IV:

wherein R^1 is C_1 to C_{10} hydrocarbyl free of aliphatic unsaturation; Z is a hydrolysable group; m is an integer from 2 to 10; and p is 0, 1, or 2.

5. The carbazolyl-functional linear polysiloxane according to claim 4, wherein the polysiloxane contains at least 70 mol% of units having formula I.

6. The carbazolyl-functional linear polysiloxane according to claim 4, wherein the polysiloxane contains up to 15 mol% of siloxane units having formulae selected from $R^1\text{HSiO}_{2/2}$, $HR^1\text{SiO}_{1/2}$, $R^1\text{SiO}_{2/2}$, and combinations thereof, wherein R^1 is C_1 to C_{10} hydrocarbyl free of aliphatic unsaturation.

7. A silicone composition comprising:

(A) a polysiloxane selected from (i) at least one carbazolyl-functional linear polysiloxane comprising from 30 to 99 mol% of units having the formula I, from 1 to 70 mol% of units having the formula II, and units having the formula III:

wherein R^1 is C_1 to C_{10} hydrocarbyl free of aliphatic unsaturation, R^2 is $-\text{CH}_2\text{-CHR}^3-$ or $-\text{CH}_2\text{-CHR}^3\text{-Y-}$, wherein Y is a divalent organic group and R^3 is R^1 or $-H$, R^4 is R^1 , $-\text{(CH}_2)_m\text{-Cz}$, $-\text{CH}_2\text{-CHR}^3\text{-SiR}^1_n\text{Z}_{3-n}$, or $-\text{CH}_2\text{-CHR}^3\text{-Y-SiR}^1_n\text{Z}_{3-n}$, wherein Cz is N -

carbazolyl, Z is a hydrolysable group, m is an integer from 2 to 10, and n is 0, 1, or 2, and (ii) at least one carbazolyl-functional linear polysiloxane comprising at least 30 mol% of units having the formula I and units having the formula IV:

wherein R¹ is C₁ to C₁₀ hydrocarbyl free of aliphatic unsaturation, Z is a hydrolysable group, m is an integer from 2 to 10, and p is 0, 1, or 2, and (iii) a mixture comprising (i) and (ii); and

(B) an organic solvent.

8. The silicone composition according to claim 7, wherein the polysiloxane (A) is (A)(ii) wherein p has a value of 2, and further comprising a cross-linking agent having the formula R⁵_qSiZ_{4-q}, wherein R⁵ is C₁ to C₈ hydrocarbyl or halogen-substituted hydrocarbyl, Z is a hydrolysable group, and q is 0 or 1.

9. An organic light-emitting diode comprising:
 a substrate having a first opposing surface and a second opposing surface;
 a first electrode layer overlying the first opposing surface;
 a light-emitting element overlying the first electrode layer, the light emitting element comprising
 a hole-transport layer and
 an electron-transport layer, wherein the hole-transport layer and the electron-transport layer lie directly on one another, and one of the hole-transport layer and the electron-transport layer comprises a carbazolyl-functional polysiloxane selected from
 a cured carbazolyl-functional polysiloxane prepared by curing a silicone composition comprising (A) a polysiloxane selected from (i) at least one carbazolyl-functional linear polysiloxane comprising from 30 to 99 mol% of units having the

formula I, from 1 to 70 mol% of units having the formula II, and units having the formula III:

(I)

(II)

wherein R¹ is C₁ to C₁₀ hydrocarbyl free of aliphatic unsaturation, R² is -CH₂-CHR³- or -CH₂-CHR³-Y-, wherein Y is a divalent organic group and R³ is R¹ or -H, R⁴ is R¹, -(CH₂)_m-Cz, -CH₂-CHR³-SiR¹_nZ_{3-n}, or -CH₂-CHR³-Y-SiR¹_nZ_{3-n}, wherein Cz is N-carbazolyl, Z is a hydrolysable group, m is an integer from 2 to 10, and n is 0, 1, or 2, (ii) at least one carbazolyl-functional linear polysiloxane comprising at least 30 mol% of units having the formula I and units having the formula IV:

(I)

wherein R¹ is C₁ to C₁₀ hydrocarbyl free of aliphatic unsaturation, Z is a hydrolysable group, m is an integer from 2 to 10, and p is 0, 1, or 2, and (iii) a mixture comprising (i) and (ii), and (B) an organic solvent, and

at least one carbazolyl-functional linear polysiloxane comprising at least 50 mol% of units having the formula I, and units having the formula V:

wherein R^1 is C₁ to C₁₀ hydrocarbyl free of aliphatic unsaturation, m is from 2 to 10, and R^6 is R^1 or -(CH₂)_m-Cz, wherein Cz is N-carbazolyl; and a second electrode layer overlying the light-emitting element.

10. The organic light-emitting diode according to claim 9, wherein the hole-transport layer is a carbazolyl-functional polysiloxane.

11. The organic light-emitting diode according to claim 9, wherein the electron-transport layer is a carbazolyl-functional polysiloxane.