The real-time application of grammatical constraints to prediction: Timecourse evidence from eye tracking

Kate Stone, Elise Oltrogge, Shravan Vasishth, and Sol Lago

People predict upcoming words

People predict upcoming words

People predict upcoming words

But where are predictions stored?

But where are predictions stored?

• The same system that supports comprehension may also support prediction

Ness et al., 2018; Lewis & Vasishth, 2005; Lau, Holcomb, & Kuperberg 2013; Gibson 1998; Gibson 2000

- The same system that supports comprehension may also support prediction
 Ness et al., 2018; Lewis & Vasishth, 2005; Lau, Holcomb, & Kuperberg 2013; Gibson 1998;
 Gibson 2000
- For example, antecedent retrieval involves very similar operations:

- The same system that supports comprehension may also support prediction
 Ness et al., 2018; Lewis & Vasishth, 2005; Lau, Holcomb, & Kuperberg 2013; Gibson 1998;
 Gibson 2000
- For example, antecedent retrieval involves very similar operations:

The bodybuilder who worked with the trainer injured himself...

Dillon et al. (2013), Jäger et al. (2020)

- The same system that supports comprehension may also support prediction
 Ness et al., 2018; Lewis & Vasishth, 2005; Lau, Holcomb, & Kuperberg 2013; Gibson 1998;
 Gibson 2000
- For example, **antecedent retrieval** involves very similar operations:

```
+ singular
+ c-com
```

The **bodybuilder** who worked with the **trainer** injured **himself**...

Dillon et al. (2013), Jäger et al. (2020)

- The same system that supports comprehension may also support prediction
 Ness et al., 2018; Lewis & Vasishth, 2005; Lau, Holcomb, & Kuperberg 2013; Gibson 1998;
 Gibson 2000
- For example, **antecedent retrieval** involves very similar operations:

The bodybuilder who worked with the trainer injured himself...

Dillon et al. (2013), Jäger et al. (2020)

A unified memory store

- Previously encountered words and predicted words held in the same memory store
- Consistent with unified models of memory
 - One set of memory representations
 - Activation level determined by recency and frequency of use

- Retrieval and predictions have separate memory stores
- Separate unit specialised for each process
- Consistent with models of multiple memory stores

Zogg et al., 2012

Two possible scenarios

Unified memory store

Two possible scenarios

Unified memory store **INTERACTION** Retrieval Prediction + singular + c-com + singular + masc

Does antecedent retrieval interact with word prediction?

English: Martin asks Sarah to sew his button on.

English: Martin asks Sarah to sew his button on.

[+ masc]

German: Martin bittet Sarah, **seinen** Knopf anzunähen.

German: Martin bittet Sarah, seinen Knopf anzunähen.

Does noun prediction interact with antecedent retrieval in German?

German possessive pronouns:

A visual world experiment

German possessive pronouns:

A visual world experiment

"Click on his blue button"

"Klicke auf seinen blauen Knopf"

"Click on his blue button"

"Klicke auf seinen blauen Knopf"

die Flasche.fem COMPETITOR

der Knopf.masc
TARGET

Critical window

die Flasche.fem COMPETITOR

der Knopf.masc TARGET

"Klicke auf seinen blauen Knopf"

Two conditions

Two conditions

Two conditions

Two conditions

N = 72 native German speakers

N = 72 native German speakers

N = 72 native German speakers

N = 72 native German speakers

Adapted from Sheridan & Reingold 2012; Reingold & Sheridan, 2014

Steps:

Adapted from Sheridan & Reingold 2012; Reingold & Sheridan, 2014

Steps:

1. Test between curves at each timepoint

Adapted from Sheridan & Reingold 2012; Reingold & Sheridan, 2014

Steps:

- 1. Test between curves at each timepoint
- 2. Find the **first** significant test statistic in a run of five

Adapted from Sheridan & Reingold 2012; Reingold & Sheridan, 2014

Steps:

- 1. Test between curves at each timepoint
- 2. Find the **first** significant test statistic in a run of five
- 3. Resample the data, repeat 2000 times

Previous experiment: 4 objects

N = 74 native German speakers

Previous experiment: 4 objects

N = 74 native German speakers

Discussion

Discussion

Multiple memory stores

Activation level:

Activation level:

- Computational modelling
 - Can an existing model of retrieval explain the interaction with prediction?
 (ACT-R; Anderson et al., 2004; Lewis & Vasishth, 2005)

- Computational modelling
 - Can an existing model of retrieval explain the interaction with prediction?
 (ACT-R; Anderson et al., 2004; Lewis & Vasishth, 2005)
- Is it really the (mis)retrieval that's influencing the prediction?

(Mis)retrieval?

retrieval prediction
[+ masc]

[+ masc]

seinen

his

(Mis)retrieval? Priming? A Stroop-like effect?

[+ masc]

[+ masc]

[+ masc]

seinen

his

his

A Stroop-like effect?

Determiner patterns with mismatch = Mismatch is the "default"

Thank you!

Elise Oltrogge

Shravan Vasishth