Tema 4 (II) - Aplicaciones lineales (2^a parte)

- 1. Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ la aplicación lineal definida por T(x,y) = (x+3y,0,2x-4y).
 - a) Hallar la matriz de T cuando consideramos en \mathbb{R}^2 y \mathbb{R}^3 sus respectivas bases canónicas.
 - b) Hallar la matriz de T cuando consideramos en \mathbb{R}^3 la base $\mathcal{B} = \{(0,1,0), (0,0,1), (1,0,0)\}.$
- **2.** Sea $S: \mathbb{P}^2[x] \longmapsto \mathbb{P}^3[x]$ definida por $S(ax^2 + bx + c) = \int_0^x (at^2 + bt + c) dt$.
 - a) Probar que S es es una aplicación lineal y hallar su matriz referida a las bases $\mathcal{B}_2 = \{x^2, x, 1\}$ de $\mathbb{P}^2[x]$ y $\mathcal{B}_3 = \{x^3, x^2, x, 1\}$ de $\mathbb{P}^3[x]$.
 - b) ¿Es S invectiva? ¿Es sobrevectiva?
- 3. El endomorfismo G de \mathbb{R}^2 viene dado por un giro positivo de 60° y R por la reflexión respecto del eje OX (por ejemplo, R(1,1)=(1,-1)). Hallar las matrices de $G\circ R$ y $R\circ G$ respecto de la base canónica.
- **4.** De la aplicación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ se sabe que T(1, -1, 1) = (5, -5, -1), T(0, 1, -1) = (0, 2, -2) y T(0,0,1) = (3,-3,-1). Hallar la matriz de f en la base canónica.
- 5. De la aplicación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ se sabe que $T(1-2,-1)=(-1,0,2),\ T(0,-1,1)=(0,-5,3)$ y T(2,-1,1)=(5-1,3). Hallar la matriz de T en la base canónica.
- **6.** De la aplicación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ se sabe que T(1,1,0) = (0,2,2) y $\ker(T) = \{(x,y,z) \mid x+y+z=0\}$. Hallar la matriz de T en la base canónica.
- Hallar la matriz de T en la pase canonica. 7. La matriz de la aplicación lineal $T: \mathbb{R}^4 \longmapsto \mathbb{R}^3$ respecto de las bases canónicas es $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 2 \end{pmatrix}$
 - a) Hallar unas ecuaciones implícitas de ker(T) y de Im(T).
 - b) Hallar unas ecuaciones implícitas de $T(\langle (1,-1,0,0), (1,0,-1,0), (1,0,0,-1) \rangle)$.
 - c) Hallar unas ecuaciones implícitas de $T^{-1}(\langle (1,2,-1), (-2,1,0) \rangle)$.
- 8. Hallar $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ lineal tal que $\operatorname{Im}(T) \equiv x y + z = 0$ y $\ker(T) \equiv \begin{cases} x + 2y + 2z = 0 \\ 2x + y + z = 0 \end{cases}$
- 9. Dada la aplicación lineal $T: \mathbb{R}^3 \longmapsto \mathbb{R}^3$ definida por T(x,y,z) = (x, x-2y, x+y+z) y los subespacios $U = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}$ y $V = \langle (1,1,-1), (0,1,2) \rangle$, hallar unas ecuaciones implícitas y una base de los subespacios siguientes:
 - a) T(U), T(V), $T^{-1}(U)$ v $T^{-1}(V)$.
 - b) $T(U+V), T(U)+T(V), T(U\cap V)$ y $T(U)\cap T(V)$.
- 10. La aplicación lineal $T: \mathbb{R}^3 \longmapsto \mathbb{R}^3$ está representada en la base canónica por la matriz $\begin{pmatrix} \lambda & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -3 & 0 \end{pmatrix}$
 - a) Hallar λ y una base de $\ker(T)$ sabiendo que dim $(\ker(T)) = 1$.
 - b) Dado el subespacio $H \equiv \begin{cases} x 2y + 3z = 0 \\ -3x + y + z = 0 \end{cases}$, hallar unas ecuaciones implícitas de T(H).
- **11.** Dada la aplicación lineal $T: \mathbb{R}^2 \longmapsto \mathbb{R}^2$ definida por T(x,y) = (-7x 15y, 6x + 12y), encontrar una base de \mathbb{R}^2 de modo que respecto de esa base la matriz de T sea $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$.
- 12. Dadas las aplicaciones lineales $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ y $G: \mathbb{R}^4 \longmapsto \mathbb{R}^3$, definidas, respectivamente, por T(x, y, z) = (x + y, y - z, x + y + z, 2x + 3y) y G(x, y, z, t) = (x - y, z + t, x + z), se pide:
 - a) Hallar unas ecuaciones implícitas de Im(T) y una base de ker(G).
 - b) Hallar la matriz de $T \circ G$ y la matriz de $G \circ T$.
 - c) Probar que $\ker(G) \subseteq \ker(T \circ G)$. Respecto de la inclusión anterior, ¿se trata de un hecho general?