and the projection onto  $\mathbf{Skew}(n)$  is given by

$$\pi_2(A) = S(A) = \frac{A - A^{\top}}{2}.$$

Clearly, H(A) + S(A) = A, H(H(A)) = H(A), S(S(A)) = S(A), and H(S(A)) = S(H(A)) = 0.

A function f such that  $f \circ f = f$  is said to be *idempotent*. Thus, the projections  $\pi_i$  are idempotent. Conversely, the following proposition can be shown:

**Proposition 6.8.** Let E be a vector space. For any  $p \geq 2$  linear maps  $f_i : E \rightarrow E$ , if

$$f_j \circ f_i = \begin{cases} f_i & \text{if } i = j \\ 0 & \text{if } i \neq j, \end{cases}$$

$$f_1 + \dots + f_p = \mathrm{id}_E,$$

then if we let  $U_i = f_i(E)$ , we have a direct sum

$$E = U_1 \oplus \cdots \oplus U_p.$$

We also have the following proposition characterizing idempotent linear maps whose proof is also left as an exercise.

**Proposition 6.9.** For every vector space E, if  $f: E \to E$  is an idempotent linear map, i.e.,  $f \circ f = f$ , then we have a direct sum

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$
,

so that f is the projection onto its image Im f.

We now give the definition of a direct sum for any arbitrary nonempty index set I. First, let us recall the notion of the product of a family  $(E_i)_{i\in I}$ . Given a family of sets  $(E_i)_{i\in I}$ , its product  $\prod_{i\in I} E_i$ , is the set of all functions  $f\colon I\to\bigcup_{i\in I} E_i$ , such that,  $f(i)\in E_i$ , for every  $i\in I$ . It is one of the many versions of the axiom of choice, that, if  $E_i\neq\emptyset$  for every  $i\in I$ , then  $\prod_{i\in I} E_i\neq\emptyset$ . A member  $f\in\prod_{i\in I} E_i$ , is often denoted as  $(f_i)_{i\in I}$ . For every  $i\in I$ , we have the projection  $\pi_i\colon\prod_{i\in I} E_i\to E_i$ , defined such that,  $\pi_i((f_i)_{i\in I})=f_i$ . We now define direct sums.

**Definition 6.5.** Let I be any nonempty set, and let  $(E_i)_{i \in I}$  be a family of vector spaces. The (external) direct sum  $\coprod_{i \in I} E_i$  (or coproduct) of the family  $(E_i)_{i \in I}$  is defined as follows:

 $\coprod_{i \in I} E_i$  consists of all  $f \in \prod_{i \in I} E_i$ , which have finite support, and addition and multiplication by a scalar are defined as follows:

$$(f_i)_{i \in I} + (g_i)_{i \in I} = (f_i + g_i)_{i \in I},$$
  
 $\lambda(f_i)_{i \in I} = (\lambda f_i)_{i \in I}.$ 

We also have injection maps  $in_i: E_i \to \coprod_{i \in I} E_i$ , defined such that,  $in_i(x) = (f_i)_{i \in I}$ , where  $f_i = x$ , and  $f_j = 0$ , for all  $j \in (I - \{i\})$ .