Cálculo Diferencial (Derivadas)

Definição da derivada

Seja y = f(x) definida num certo intervalo.

Suponhamos que dá-se ao x um acréscimo Δx e ao y um acréscimo Δy . Deste modo, teremos que

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} \text{ e ao } \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \text{ chamamos derivada da função no ponto } x, \text{ e representa-se por } f'(x) \text{ ou } y' \text{ ou } \frac{d_y}{d_x}.$$

Assim, a derivada de uma função por definição do limite, é calculada usando a expressão $y' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$.

Regras:

1º Determinar o valor de $x + \Delta x$, substituindo na função dada.

2º Aplicar a definição da derivada a partir do limite

Exemplos:

- a) Calcule a derivada por definição, da função $f(x) = x^2$
- b) Calcule a derivada da função $f(x) = x^2 4$ nos pontos $x_1 = 2$ e $x_2 = 3$.

Interpretação gráfica da derivada

$$tg\alpha = \frac{\Delta y}{\Delta x}$$
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = tg\alpha$$

Isto é, a derivada de uma função f num ponto x_0 é numericamente igual ao declive (coeficiente a) da recta.

Derivabilidade de uma função e sinal da derivada

1ª Derivada

2ª Derivada

Exemplo:

- $f'_{(A)} > 0$ e $f'_{(D)} > 0$ quando a recta tangente no ponto dado é crescente, a derivada é positiva
- $f'_{(B)} = 0$ e f'no ponto de inflex $ilde{a}o$ quando a recta tangente no ponto dado é constante, a derivada é zero
- $oldsymbol{f}'_{(\mathcal{C})} < oldsymbol{0}$ quando a recta tangente no ponto dado é decrescente, a derivada é negativa
- Quando o ponto esta numa posição que forma bico, não existe derivada.

Exercícios

1. Calcule a derivada aplicando a definição:

a)
$$y = sen x$$

b)
$$y = \sqrt[3]{x}$$

2. Usando a definição da derivada, determine as derivadas nos pontos $x=a, \ x=2 \ e \ x=-3$ das funções:

a)
$$y = 2x^2$$

b)
$$y = x^3$$

c)
$$y = x^3 - 3x^2 + 6$$

d)
$$y = \sqrt{x}$$

e)
$$y = \frac{x-2}{x}$$

3. Dada a função real de variável real y = -2x + 3:

- a) Determine $f_{(x_0)}^{\prime}$, sendo x_0 um número real qualquer
- b) Caracterize a função f', derivada da função f.

4. Seja $y = \frac{1}{4}x^2$.

- a) Determine $f(2 + \Delta x)$
- b) Determine a derivada da função
- c) Determine o valor da derivada para x = 2.

5. Seja dada a função $y = x^2 - x$.

- a) Determine a derivada
- b) Determine o ponto em que a derivada é :

ii.
$$\frac{1}{2}$$

iii.
$$-2$$

6. Seja $y = x + \frac{4}{x}$

- a) Determine a derivada
- b) Determine os pontos em que a derivada é:

i.
$$\frac{3}{4}$$

Fórmulas e regras de derivação

As formulas de derivação ajudam a calcular as derivadas sem que seja necessário usar a definição por limite. Cada função tem a sua própria fórmula.

As derivadas podem ser simples ou compostas. São compostas quando a variável apresenta uma operação.

1º Derivada de constante	$y=k \implies y'=0$		
2º Derivada de uma variável de expoente 1	$y=x \implies y'=1$		
3º Derivada do produto entre uma constante e uma variável	$y = ax \implies y' = a \cdot x'$		
4º Derivada de uma soma			
 Se a função for simples 	$y = a \pm b \Rightarrow y' = a' \pm b'$ $y = f(x) \pm g(x) \Rightarrow y' = f'(x) \pm g'(x)$		
 Se a função for composta 	$y - f(x) \perp g(x) \rightarrow y - f(x) \perp g(x)$		

5º Derivada de um produto	
Se a função for simples	$y = a \cdot b \Longrightarrow y' = a' \cdot b + b' \cdot a$
Se a função for composta	$y = f(x) \cdot g(x) \Rightarrow y' = f'(x) \cdot g(x) + g'(x) \cdot f(x)$
6º Derivada de um quociente	
Se a função for simples:	$y = \frac{a}{b} \Longrightarrow y' = \frac{a' \cdot b - b' \cdot a}{b^2}$
Se a função for composta:	$y = \frac{f(x)}{g(x)} \Longrightarrow y' = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{[g(x)]^2}$

1. Calcule a derivada de:

a)
$$y = 3x - 1$$

b)
$$y = 2x + 3$$

c)
$$y = -6x + 8$$

d)
$$y = -\frac{1}{3}x - 1$$
 e) $y = \frac{1}{3}x$

e)
$$y = \frac{1}{3}x$$

f)
$$y = \frac{3x-2}{4}$$

- 2. Seja f(x) = 2x + 3 e(g(x)) = 5x. Determine (f + g)' e(f g)'.
- 3. Seja $f(x) = x + 1 \ e \ g(x) = x^2 + 2$. Determine $(f \cdot g)'$.
- 4. Determine a derivada de:

a)
$$y = x(8x + 1)$$

b)
$$y = (x - 1)^2$$

c)
$$y = (5x + 1)(2x - 4)$$

d)
$$y = (2 - 3x)(5 + 8x)$$

- 5. Sendo f(x) = x + 1 e(g(x)) = x 3, determine $\left(\frac{f}{g}\right)^2$
- 6. Calcule a derivada aplicando as regras da divisão:

a)
$$y = \frac{x-2}{10}$$

b)
$$y = \frac{3x-2}{x}$$

c)
$$y = \frac{2}{x} - \frac{5}{x}$$

d)
$$y = \frac{2x-3}{5x}$$

e)
$$y = \frac{1}{x+3}$$

f)
$$y = \frac{2x + \pi}{2 - \frac{x}{2}}$$

7º Derivada de uma potência	
Se a função for simplesSe a função for composta	$y = x^{n} \Rightarrow y' = n \cdot x^{n-1}$ $y = f(x)^{n} \Rightarrow y' = n \cdot f(x)^{n-1} \cdot [f(x)]'$
8º Derivada da raiz quadrada	_ 1
Se a função for simples	$y = \sqrt{x} \Longrightarrow y' = \frac{1}{2\sqrt{x}}$
 Se a função for composta 	$y = \sqrt{x} \Longrightarrow y' = \frac{1}{2\sqrt{x}}$ $y = \sqrt{f(x)} \Longrightarrow y' = \frac{1}{2\sqrt{f(x)}} \cdot [f(x)]'$
9º Derivada de raiz de índice n	_ 1
 Se a função for simples 	$y = \sqrt[n]{x} \Longrightarrow y' = \frac{1}{n\sqrt[n]{x^{n-1}}}$
 Se a função for composta 	$y = \sqrt[n]{f(x)} \Longrightarrow y' = \frac{1}{2\sqrt[n]{f(x)^{n-1}}} \cdot [f(x)]'$

1. Calcule a derivada de:

a)
$$y = x^2 + 4x + 1$$

b)
$$y = 3x^2$$

c)
$$y = \frac{1}{2}x^3$$

d)
$$y = -2x^2 + 3\pi$$

e)
$$y = x^{-9}$$

f)
$$y = \frac{1}{2}x^3 - \frac{3}{4}x^2 + 5x$$

g)
$$y = -6x^2 + 2x + 7$$
 h) $y = (x^2 - 1)^2$

h)
$$y = (x^2 - 1)^2$$

i)
$$y = (x - 2)^3$$

i)
$$v = 5x^3 + x^2$$

k)
$$y = x^7$$

I)
$$y = x^{12}$$

m)
$$y = (3x^2 - 5x + 8)^4$$

n)
$$y = -\frac{x^3}{3} + \frac{x^2}{2} + x + 1$$

2. Calcule, aplicando as regras da derivação:

a)
$$y = \frac{x^4 - 2}{10}$$

$$b) \quad y = \left(\frac{3x-2}{x}\right)^2$$

c)
$$y = \frac{2}{x^2} - \frac{5}{x^5}$$

d)
$$y = \frac{2x^2 - 3}{x^3}$$

e)
$$y = \frac{1}{x^2}$$

f)
$$y = \frac{1}{x^4}$$

g)
$$y = \frac{x}{2x^2 + 1}$$

h)
$$y = \frac{2x+3}{x^2-1}$$

$$i) \quad y = \frac{x}{x^2 + 2x + 1}$$

$$j) \quad y = \frac{x^2 + 1}{1 - 3x^3}$$

k)
$$y = -\frac{5}{(2x^5 - x^3)^2}$$

$$1) \quad y = \frac{x^2 - 5}{x^3 + 1}$$

m)
$$y = \frac{1}{x^2 - 4x - 5}$$

n)
$$y = \frac{1}{(2x+1)^3}$$

o)
$$y = \left[\frac{1}{(x-1)^2} + x\right]^2$$

p)
$$y = x^{\sqrt{3}} - 1$$

q)
$$y = \frac{(2x+5)^3}{x}$$

$$r) \quad y = \left(\frac{2x+3}{x-1}\right)^2$$

3. Calcule a derivada das funções seguintes:

a)
$$y = \sqrt{x^2 - 1}$$

b)
$$v = \sqrt{3x + 2}$$

c)
$$v = \sqrt{x^2 - 3}$$

d)
$$y = \sqrt[3]{x+1}$$

e)
$$v = \sqrt[3]{x^3 - 2}$$

f)
$$y = \sqrt[3]{x}$$

g)
$$y = \left(\frac{\sqrt{x+1}}{x}\right)^2$$

$$h) \quad y = \frac{1}{\sqrt[3]{x}}$$

i)
$$y = \sqrt{\frac{x-2}{x+2}}$$

j)
$$y = \frac{1}{\sqrt{x}}$$

k)
$$y = x^{\frac{2}{3}}$$

$$1) \quad y = \frac{1}{2\sqrt{x}}$$

4. Determine a derivada das funções seguintes:

a)
$$y = x \left(\sqrt{x} + \frac{x}{\sqrt{x}} \right)$$

b)
$$y = 3x^2 + \frac{3}{\sqrt{x}} - 2x^{-1}$$

c)
$$y = \frac{x^2 + \sqrt{x} + 1}{x}$$

d)
$$y = \frac{x^3 + x^2 + 1}{x^4}$$

e)
$$y = (-x^2 + 3)^{\frac{1}{2}}$$

f)
$$y = (-2x + 1)^5$$

g)
$$y = \frac{(x-2)^2}{x}$$

h)
$$y = \sqrt[3]{-x^3 + 2}$$

i)
$$y = \frac{(x-3)^2}{x+3}$$

$$j) \quad y = x^3 \sqrt[3]{x}$$

k)
$$y = \left(\frac{x-1}{x-2}\right)^3$$

$$1) \quad y = x^2 \sqrt{x}$$

$$m) \ \ y = \frac{\sqrt{x^5}}{x\sqrt{x}}$$

n)
$$y = \sqrt[3]{\left(\frac{1}{2}x - 3\right)^2}$$

o)
$$y = \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$

10º Derivada da função exponencial

- Se a função for simples
- Se a função for composta

$$y = a^x \Longrightarrow y' = a^x \cdot lna$$

$$y = a^{f(x)} \Longrightarrow y' = a^{f(x)} \cdot lna \cdot f(x)'$$

11º Derivada da função de base e (número de Neper)

- Se a função for simples
- Se a função for composta

$$y = e^x \Longrightarrow y' = e^x$$

$$y = e^{f(x)} \Longrightarrow y' = e^{[f(x)]} \cdot f(x)'$$

12º Derivada da função logarítmica

- Se a função for simples
- Se a função for composta

$$y = log_a^x \Rightarrow y' = \frac{1}{vlna}$$

$$y = log_a^{[f(x)]} \Rightarrow y' = \frac{1}{f(x)lna} \cdot f(x)'$$

13º Derivada do logaritmo natural

- Se a função for simples
- Se a função for composta

$$y = \ln x \Rightarrow y' = \frac{1}{x}$$

$y = ln[f(x)] \Rightarrow y' = \frac{1}{f(x)} \cdot f(x)'$

Exercícios

1. Calcule, aplicando as regras da derivação:

a)
$$y = e^{4x}$$

b)
$$y = 10^{2x-3}$$

c)
$$y = 2xe^{4x}$$

d)
$$y = \frac{e^x}{x}$$

e)
$$y = 5^{x^2}$$

f)
$$y = e^{-x + \frac{1}{3}}$$

g)
$$y = 3^{-\frac{1}{x}}$$

h)
$$y = \left(\frac{1}{3}\right)^x$$

i)
$$y = e^{x^2 + 8x - 1}$$

$$j) \quad y = \left(\sqrt{2}\right)^{3x+1}$$

k)
$$y = 2^x$$

$$1) \quad y = 2^{\sqrt{x+1}}$$

m)
$$y = 3^{2x}$$

n)
$$y = \frac{3^x}{x}$$

o)
$$y = x^2 e^{-x}$$

p)
$$y = e^{-\frac{x}{3}}$$

q)
$$y = 5^x$$

r)
$$y = 2^{3x}$$

s)
$$y = e^{\sqrt{x}}$$

t)
$$y = 3^{senx}$$

u)
$$y = 2^{-x^{2+\frac{1}{x}}}$$

v)
$$y = (\frac{2}{3})^{-x+7}$$

w)
$$y = \frac{1}{e^{x^3 + 3x - 5}}$$

x)
$$y = \sqrt{e^{3x+5}}$$

2. Calcule a derivada das funções seguintes:

a)
$$y = ln (x - 1)$$

b)
$$y = ln \sqrt{x}$$

c)
$$y = log_2^{(x^2-1)}$$

d)
$$y = \frac{\ln x}{x}$$

e)
$$y = log_2^{(2x-1)}$$

$$f) \quad y = x^2 log_2^x$$

g)
$$y = ln(2x^2 + 3x + 5)$$

h)
$$y = log_3^{(x^2-3)}$$

i)
$$y = log_2^{\sqrt{x}}$$

$$j) \quad y = ln3x$$

k)
$$y = log_{\frac{1}{2}}^{(\frac{-3}{x^2 - 1})}$$

$$l) \quad log_{\frac{1}{2}}^{\left(\frac{1}{x}+3\right)}$$

$$m) y = ln(-3x)$$

n)
$$y = ln\sqrt{2x}$$

o)
$$y = lg \frac{x}{x+3}$$

p)
$$y = log_5^{\sqrt{4x+7}}$$

q)
$$y = [log_3^{(3x+8)}]^2$$

r)
$$y = \frac{1}{\ln(-2x+5)}$$

14º Derivadas trigonométricas

_	
 Função seno Se a função for simples Se a função for composta 	$y = sen x \Rightarrow y' = cos x$ $y = sen f(x) \Rightarrow y' = cos f(x) \cdot f'(x)$
Função co - seno • Se a função for simples	$y = \cos x \Rightarrow y' = -\sin x$ $y = \cos f(x) \Rightarrow y' = -\sin f(x) \cdot f'(x)$
 Se a função for composta Função tangente Se a função for simples Se a função for composta 	$y = tgx \Rightarrow y' = \frac{1}{\cos^2 x} = sec^2 x$ $y = tgf(x) \Rightarrow y' = \frac{1}{\cos^2 f(x)} \cdot f(x)' = sec^2 f(x) \cdot f'(x)$
Função co - tangenteSe a função for simplesSe a função for composta	$y = ctgx \Rightarrow y' = -\frac{1}{sen^2x} = -cosec^2x$ $y = ctgf(x) \Rightarrow y' = -\frac{1}{sen^2f(x)} \cdot f(x)' = -cosec^2f(x) \cdot f'(x)$
 Função arco-seno Se a função for simples Se a função for composta 	$y = arcsen \ x \Rightarrow y' = \frac{1}{\sqrt{1-x^2}}$ $y = arcsenf(x) \Rightarrow y' = \frac{1}{\sqrt{1-(f(x))^2}} \cdot f(x)'$
 Função arco-coseno Se a função for simples Se a função for composta 	$y = \arccos x \Rightarrow y' = -\frac{1}{\sqrt{1 - x^2}}$ $y = \arccos f(x) \Rightarrow y' = -\frac{1}{\sqrt{1 - (f(x))^2}} \cdot f(x)'$
Função arco-tangenteSe a função for simples:Se a função for composta:	$y = arctgx \Rightarrow y' = \frac{1}{1+x^2}$ $y = arctgf(x) \Rightarrow y' = \frac{1}{1+[f(x)]^2}f(x)'$
 Função arco – cotangente Se a função for simples: Se a função for composta: 	$y = arctgx \Rightarrow y' = -\frac{1}{1+x^2}$ $y = arctgf(x) \Rightarrow y' = -\frac{1}{1+[f(x)]^2}f(x)'$

1. Calcule, aplicando as regras da derivação:

a)
$$y = sen x$$

b)
$$y = sen e^{2-x}$$

c)
$$y = sen x + cos x$$

d)
$$y = sen 3x$$

e)
$$y = \ln(senx)$$

f)
$$y = \cos 5x$$

g)
$$y = sen 2x$$

h)
$$y = sen^2(5x + 1)$$

i)
$$y = cos^2(3x - 1)$$

j)
$$y = sen(-3x + 1)$$

k)
$$y = sen^{5}(3x)$$

1)
$$y = cos(5x^2 - 7)$$

m)
$$y = 3sen^2(x+1)$$

$$n) \quad y = xsenx^3 + 2sen3x$$

o)
$$y = \frac{2}{\cos 3x}$$

p)
$$y = 3sen(x+1)^2$$

q)
$$y = 4sen(2x - 5)$$

$$r) \quad y = \frac{1}{tgx}$$

s)
$$y = sen^3 \frac{1}{x^3}$$

t)
$$y = \frac{1}{2} sen\left(\frac{\pi}{4} - 2x\right)$$

$$u) \quad y = tg3x$$

$$v) \quad y = \frac{1}{sen2x}$$

w)
$$y = \ln(\cos x)$$

x)
$$y = \frac{1}{tax^2}$$

y)
$$y = cos2x$$

z)
$$y = tg e^{3x-1}$$

aa)
$$y = tg(-5x)$$

bb)
$$y = cosx^2$$

cc)
$$y = -\cos(-6x + 3)$$

dd)
$$y = senx \cdot cosx$$

$$ee) y = cos(x^2 - 1)$$

$$ff) \quad y = \cos\left(\frac{1}{2}x^2 + 5x\right)$$

$$gg) y = 5tg^2(x+1)$$

$$hh) y = -cos^2 x$$

ii)
$$y = -3tg(-x + \pi)$$

$$jj) \quad y = arcsen \ 2x$$

$$kk) y = -cos^3 x^3$$

II)
$$y = \frac{2}{ctg \ 2x}$$

mm)
$$y = 2acrsenx$$

nn)
$$y = tg 5x$$

oo)
$$y = ctg \ 3x$$

pp)
$$y = arccos3x$$

$$qq) y = cos^2(3x - 1)$$

rr)
$$y = arccos2x$$

ss)
$$y = arccos(x + 5)$$

tt)
$$y = tg \frac{1}{x}$$

uu)
$$y = arcsen 5x$$

vv)
$$y = arcsen x^2$$

ww)
$$y = arccos\sqrt{x}$$

$$xx) y = arcsen^4(x-7)$$

$$yy) y = arctg(2x - x^2)$$

2. Calcule a derivada das funções seguintes:

a)
$$y = 2x\cos(5x - 1)$$

b)
$$y = \pi cos\pi x + 3\pi$$

c)
$$y = 5x\sqrt{3x - 1}$$

d)
$$y = 3x + sen 2x$$

e)
$$y = 3x + \sqrt{5x + 3}$$

f)
$$v = \sqrt{sen^2x + cos^2x}$$

g)
$$y = cos3x \cdot sen3x$$

$$h) \quad y = (senx)^{3x}$$

i)
$$y = \frac{3^{2x} - 4}{3^{2x} + 4}$$

$$j) \quad y = \frac{2x}{3sen \ ax}$$

$$k) \quad y = 3x\sqrt{3x} + x\sqrt{3}$$

$$1) \quad y = (x^2 + 3) \cdot 2^{3-x}$$

m)
$$y = \sqrt{xsenx}$$

n)
$$y = log_3^x \cdot senx$$

o)
$$y = x \ln x$$

$$p) \quad y = 3xln(2x - 7)$$

q)
$$y = e^{\frac{1}{x}} \cdot arctg(-2x)$$

r)
$$y = \frac{\log_3^{(x^2-1)}}{3x}$$

s)
$$y = lnx^2 \cdot log_3^8$$

t)
$$y = sen(3x - \pi) \cdot e^{\frac{x}{3}}$$
 u) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

u)
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$y = \sqrt{sen \ e^x} + sen \ e^{\sqrt{x}}$$

$$w) y = \frac{\left(\frac{1}{2}\right)^{x^2 + 3x - 1}}{2x + 3}$$

x)
$$y = (2x - 3)^2 \cdot sen(-x)$$

Estudo completo de funções

Em classes anteriores, foram dadas vários tipos de funções cujos gráficos eram construídos seguindo regras específicas para cada um dos casos. Por isso, construía-se o gráfico e depois efectuava-se o estudo completo.

No entanto, existe uma forma de tratar todas as funções de igual forma, as derivadas.

Essa forma consiste em fazer o estudo completo e depois esboçar o gráfico.

Regras:

1º Calcular o domínio da função

2º Calcular a assimptota vertical

$$\lim_{x\to a} f(x) = \infty \Longrightarrow AV: x = a$$

- Onde "a" é o valor que não faz parte do domínio calculado
- O resultado do limite deve ser ∞

3º Calcular a assimptota horizontal

$$\lim_{x\to\infty} f(x) = b \Longrightarrow AH: y = b$$

O resultado do limite não pode ser igual a ∞

4º Calcular a 1ª derivada da função

5º Calcular os zeros da 1º derivada da função

6º Preencher a tabela de modo a identificar os extremos e estudar a variação da função (Monotonia)

x	-∞	x_1'		x_2'	+∞
y '	Sinal	0	Sinal	0	Sinal
у	Direcção	A	Direcção	В	Direcção

- A e B são valores da função nos zeros da derivada
- $(x_1' e A) e (x_2' e B)$ são pontos Máximos ou Mínimos.

6º Calcular os pontos de intersecção do gráfico com os eixos (zeros da função e ordenada na origem)

- Zero da função é o valor de x quando y é zero.
- Ordenada na origem é o valor de y quando x é zero.

7º Calcular a 2ª derivada e o(s) seu(s) zero(s), de modo a determinar o(s) ponto(s) de inflexão.

8º Esboçar o gráfico

9º Determinar o contradomínio

Outros:

• Equação da recta tangente dado um ponto

$$y - y_0 = f'(x_0)(x - x_0)$$

• Condição de paralelismo

Se
$$r//t \implies a_r = a_t$$

• Condição de perpendicularidade

Se
$$r\perp t\Longrightarrow a_r=-rac{1}{a_t}$$

1. Aplicando a derivada, construa o gráfico das seguintes funções:

a)
$$y = x + 3$$

b)
$$y = \frac{2}{x}$$

c)
$$y = 3x^2 - 4x + 1$$

d)
$$y = x^2 - 4$$

e)
$$y = sen x$$

f)
$$y = x^4 - 2x^2 - 3$$

g)
$$y = 3x^3 - 4x$$

h)
$$y = -3x + 12$$

i)
$$y = \frac{3x-6}{-2x+2}$$

2. Estude a monotonia das seguintes funções:

a)
$$y = 5 - 6x^2 - 2x$$

b)
$$y = 1 - x^{\frac{2}{3}}$$

c)
$$y = xe^{-x}$$

d)
$$y = x \ln x$$

3. Determine os extremos de cada uma das seguintes funções:

a)
$$y = -x^2 + 3x + 1$$

b)
$$y = 4 - 20x + x^2 + 2x^3$$

c)
$$y = x^3(x-2)$$

d)
$$y = x^2 e^{-2x}$$

4. Nas seguintes funções, determine os pontos máximos e mínimos e faça um esboço do gráfico:

a)
$$y = -2x^2 + 7x - 3$$

b)
$$y = \frac{1}{3}x^3 + x^2 - 3x$$

5. A partir das tabelas, esboce os gráficos:

a)	х	-∞	-3		5	+∞
	y'	_	0	+	0	_
	у	7	-2	7	4	7

b)	х	-∞	1		3	+∞
	y'	_	0	+	0	_
	у	7	_	7	∄	7

6. Dada a função $g(x) = \frac{x-1}{x+2}$.

- a) Indique o domínio de g
- b) Calcule os zeros de g
- c) Determine as equações das assimptotas de \boldsymbol{g}
- d) Faça o estudo da variação da função e determine os extremos de g
- e) Esboce o gráfico de ${\it g}$

7. Considere as funções $f(x) = \frac{4x}{x^2+1} e g(x) = a^x$

- a) Determine $(f \circ g)(0)$
- b) Determine a inversa de g, caso exista
- c) Indique o domínio de f
- d) Determine os zeros da função de f
- e) Determine os intervalos de variação e os extremos de f
- f) Esboce o gráfico de f
- g) Estude a paridade de f

8. Dada a função $f(x) = 2x^3 - 6x$

- a) Determine os zeros da função
- b) Estude a variação da função e indique os extremos 3
- c) Esboce o gráfico de *f*

9. Considere a função $f(x) = x^2(x+2)$.

- a) Indique o domínio de f
- b) Determine os zeros da função
- c) Estude a variação e indique os extremos
- d) Esboce o gráfico de f

10. Dadas as funções $f(x) = \frac{x}{4-x^2} e g(x) = \frac{2x+1}{x}$

- a) Determine o domínio de f e g
- b) Determine $(f \circ g)(-1)$
- c) Determine as equações das assimptotas de f
- d) Determine os intervalos de variação da função
- e) Esboce o gráfico de f
- f) Estude a injectividade de f

11. Dadas as funções $f(x) = x^3 - 2x^2 + x \ e \ g(x) = e^x + 1$

- a) Indique o domínio de g
- b) Determine a expressão inversa de *g*
- c) Determine a expressão inversa de (gof)(1)
- d) Determine os zeros da função *f*
- e) Faça o estudo da variação e determine os extremos da função f
- f) Esboce o gráfico de f

12. Seja $f(x) = 2x^3 + 2$.

- a) Determine os pontos de intersecção do gráfico com os eixos
- b) Determine f'(x)
- c) Calcule as equações das tangentes nos pontos referidos na alínea a.

13. Determine a equação da recta tangente ao gráfico, para o valor de x indicado:

- a) y = ln(x 3) se x = 7
- b) $y = e^{3x} \ se \ x = \frac{1}{3}$
- c) $v = lnx^2 \text{ se } x = 2 \land x = -2$