

Homework 2

Semantic Image Segmentation with Convolutional Neural Networks

Artificial Neural Networks and Deep Learning

Authors

Ali Arslan - CP: 10807090

Sorrentino Alessandro - CP: 10746269

Menta Andrea - CP: 10636205

General approach: Our team concentrated on the *BipBip* dataset, both *mais* and *haricot*. We started by creating a fully customized CNN and moved to transfer learning after. Once obtained satisfying results on both, we moved to a new kind of net called *waterfall* model which bases its main idea on subdividing a multi class segmentation in a set of binary segmentations. Since the dataset was highly unbalanced (in favour of crop wrt. weed), we gave different weights to the two classes in the metrics evaluation. The *mean IoU* metric was weighted in order to obtained a weighted average on IoU of different classes.

Dataset: The dataset has been divided 3 sets: training, validation and test with a 80% - 20% relation. Each class in training and validation roughly contains the same amount of images in order to avoid imbalances. Our python script extracts a certain number of images and saves the names into the two files val.txt and train.txt. Please place this script inside the BipBip folder.

```
python3 custom_script.py
```

The file directories.txt includes all the directories to evaluate all the sub-datasets and produce the final json.

Data augmentation was used in all the experiments with: shifting, rotation, flipping, height and width shift (reflect fill mode), zooming and horizontal flip.

1 Basic custom CNN

Model A (test accuracy: $\approx 60\%$ haricot, $\approx 72\%$ mais)¹ As custom model, we used a simple encoder/decoder structure with total depth of 10. A single convolutional block is composed by

Encoder:	Decoder:
- Conv2D (3x3, ϕ)	- UpSampling2D
- BatchNormalization	1 1
- Relu Activation Function	- Conv2D (3x3, ϕ)
- Dropout (0.2)	- BatchNormalization
- Conv2D (3x3, ϕ)	
- Relu Activation Function	- Relu Activation Function
- MaxPooling2D	- Dropout (0.2)
\	
- Output Conv2D (1x1, Softmax)	

¹First model delivered

Where ϕ is the number of filters. Starting from 32 filters in the first block, the number of filters was scaled by a factor of 2 during the up-phase and down-phase. After a few tests we found a good set of hyperparameters: Batch size \rightarrow 2, lr \rightarrow 1e-4, early stopping to mitigate overfitting, reduceLrOnPlateu callback to adjust lr accordingly when near optima, images size \rightarrow 1024x1024.

2 Transfer Learning

Model B (test accuracy: $\approx 48\%$ haricot, $\approx 63\%$ mais)² After reaching good results in the first phase, in which we focused on *custom model*, we decided to try *Transfer Learning*. We started by choosing 2 pre-trained candidate models for the CNN part in order to choose the fittest:

- Xception
- VGG19

We used the same base configuration for all: batch size of 2, same data augmentation (except for the preprocessing function, proper of each model), fine tuning, same decoder layers, learning rate of 1e-4, reduceLrOnPlateu and early stopping with patience 10 to avoid overfitting.

The decoder part is structured with the following layers:

- Upsampling
- Conv2D (3x3, ϕ)
- BatchNormalization
- ReLU Activation Function
- Dropout (0.2)
- Output Conv2D (1x1, Softmax)

As in the **Model A**, ϕ is the number of filters. Starting from 256 filters in the first block, the number of filters was scaled by a factor of 2 during the up-phase and down-phase.

3 Waterfall Model

Model C (test accuracy: $\approx 54\%$ haricot, $\approx 78\%$ mais)³ The basis of this idea is the "Divide et Impera" principle. In particular we decided to split our model on two levels:

²Second model delivered

³Third model delivered

- Preliminary Level: with two parallel CNN that perform a binary segmentation between background and respectively weed or crop.
- Merging Level: one CNN that performs 3-class segmentation, taking as input an enriched image, composed by the concatenation of the RGB image and the 2 output masks of the Preliminary Level, for a total of 5 layers.

As basis of our CNNs we took into account both *UNet*, *Residual-UNet* and *VGG19*, and after some tests we decided to choose the first one because it gave us better performances. We also tried to apply *Tiling*, but it was not successful, probably because of the unbalancing of the Dataset. At the end we got the following results:

- Crop-Preliminary Net $71\%~\mathrm{IoU}$
- Weed-Preliminary Net $46\%~\mathrm{IoU}$
- Merging Net 69% mean IoU

Figure 1: Waterfall model structure

Please, consult the notebooks comments for further specifications.