2nd order conditions 1

Theorem 1.1. If x^* is a local minimizer of $f: \mathbb{R}^n \to \mathbb{R}$ and $\nabla^2 f(x)$ exists and is continuous in neighbourhood of x^* , then $\nabla f(x^*) = \text{and } \nabla^2 f(x^*)$ is symmetric positive semi-definite.

Proof. By contrdiction.

Note from previous theorem $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is symmetric. So contrdiction must be $\nabla^2 f(x^*)$ is not PSD: $(\exists p) p^T \nabla^2 f(x^*) p < 0$.

By continuity of $\nabla^2 f(x)$ must have that there is an $\alpha > 0$ such that:

$$\phi(t) = p^T \nabla^2 f(x^* + t\alpha p) p < 0$$

for all $t \in (0, 1)$.

$$\phi(t) = \nabla f(x^* + t\alpha p)^T p < 0$$

$$f(x^* + \alpha p) = f(x^*) + \alpha \nabla f(x^*)^T p + \frac{\alpha^2}{2} p^T \nabla^2 f(x^* + t) p \text{ for some } t \in (0, 1)$$

$$\nabla f(x^*)^T = 0, \ \frac{\alpha^2}{2} p^T \nabla^2 f(x^* + t) p < 0$$

 $\nabla f(x^*)^T = 0, \frac{\alpha^2}{2} p^T \nabla^2 f(x^* + t) p < 0$ We can always choose α small enough such that $x^* + \alpha p \in B(x^*, r)$

Theorem 1.2. 2nd order Sufficient condition for a minimizer.

if $\nabla^2 f(x)$ exists and is continuous in a neighbourhood of x^* and $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*)$ is symmetric positive definite, then x^* is a local minimizer of f.

Proof. Since $\nabla^2 f(x^*)$ is symmetric postiive definite and $\nabla^2 f(x)$ is continuous in a neighbourhood of x^* there exists a $\delta > 0$ s.t. $\nabla^2 f(x^* + p)$ is SPD for all $||p|| < \delta$.

$$u^T\nabla^2 f(x^*+p)u>0, \forall u\in\mathbb{R}^n, u\neq 0$$

Choose any point $x \in B(x^*, \delta), x \neq x^*$

Let
$$p = x - x^*$$
, $||p|| < \delta$

So
$$f(x) = f(x^* + p) = f(x^*) + \nabla f(x^*)^T p + \frac{1}{2} p^T \nabla^2 f(x^* + tp) p, t \in (0, 1)$$

 $\nabla f(x^*)^T = 0, \frac{1}{2} p^T \nabla f(x^*)^T p > 0$, so:

$$\nabla f(x^*)^T = 0, \frac{1}{2}p^T \nabla f(x^*)^T p > 0, \text{ so:}$$

 $f(x) > f(x^* + p)$

Theorem 1.3. Then if f is convex, any loval minimer is a global minizer (does not imply a local minimizer is unique).

Proof. By contradiction.

Suppose x^* is a local minimizer and there is some y^* s.t. $f(y^*) < f(x^*)$

$$f(\alpha x^*) + (1 - \alpha)y^*) \le \alpha f(x^*) + (1 - \alpha)f(y^*)$$

$$< \alpha f(x^*) + (1 - \alpha)f(x^*) = f(x^*), \alpha < 1$$

$$z = \alpha x^* + (1 - \alpha)y^*$$

$$f(z) < f(x^*)$$

For any $B(x^*, r), r > 0$, we can choose $\alpha < 1$ s.t. $z \in B(x^*, r)$

Theorem 1.4. If f is convex, then any local minimizer is a global minimizer. In addition, if f is continuously differentiable in a neighbourhood of x^* and $\nabla f(x^*) = 0$ then x^* is a global minimizer of f(x).