Predicting Traffic Accident Severity using KNN

By: Jasmine Ly

Table of Contents

01 02 03

Introduction Methodology Results

04 05

Challenges and Conclusion Lessons Learned

Introduction

Objective: Develop a KNN model to predict traffic accident severity using key features (distance, weather conditions, and visibility)

Dataset: US Accidents (2016–2023) from Kaggle.

• Weather-related and numerical features

Why?

- Identify patterns in severity across accidents in the US
- Better understanding will allow for creating better prevention and response

Methodology

Target Variable: Severity

Features Used

- Distance (mi)
- Wind Speed (mph)
- Precipitation (in)

- Visibility (mi)
- Temperature (F)
- Humidity (%)

Process

- Quantitative, predicts accident severity
- Used 5% of dataset for the model to prevent errors
- Split the data 80/20 training/testing
- **for** loop tested different k values and created an elbow graph of the results for analysis
- Highest accuracy was 0.67 for k=59

Challenges

Extremely Large Data Set

- Original dataset contains 7.7 million records and 3.06 GB in size
- This lead to extremely long processing times and memory errors

Data Quality Issues

- Columns with mixed data types created preprocessing challenges
- Missing/incomplete data needed cleaning, which could potentially lead to a loss of valuable information.

Feature Selection

- Due to scale of project, we had to narrow down to only 6 factors
- Broadly applicable across regions

Lessons Learned

Limitations of KNN

 While KNN is a straightforward model that is easy to implement, it struggles to compute large multidimensional datasets due to its simplicity

Importance of Data Quality

 Data cleaning and preprocessing are critical steps of building a reliable model.

Value of Hyperparameter Tuning

 Experimenting with different values of K and plotting the results showed how tuning hyperparameters can optimize model performance.

Results

Trained on 7.7 million records

Performance Measures

Accuracy: 86.7%Precision: 79%Recall: 86.7%

Largest Mutual Coefficients

Distance: 0.123Visibility: 0.225Wind Speed: 0.018

Conclusion

• **Project Objective**: Developed a K-Nearest Neighbors (KNN) model to predict the severity of traffic accidents based on critical features like time of distance, weather conditions, and visibility.

Key Processes:

- Data Preprocessing: Cleaned and prepared the dataset, including handling missing values and encoding categorical features.
- Exploratory Data Analysis (EDA): Identified key patterns and relationships in the data.
- Model Tuning: Optimized hyperparameters to improve accuracy and performance.
- Evaluation: Assessed the model using relevant metrics to validate predictions.

Results & Impact:

- Identified factors correlating with high accident severity.
- Demonstrated the potential to inform road safety policies and improve emergency response.
- Showcased how predictive analytics can enhance public safety.

Thank you

