

CS-3002: Information Security

Lecture # 6: Public Key Encryption

Prof. Dr. Sufian Hameed
Department of Computer Science
FAST-NUCES

Overview

- What will you learn today
 - Public Key Encryption
 - *Definition and Security*
 - RSA Trapdoor
 - ISO Standard for RSA public key encryption

Key Exchange

• Symmetric cryptosystems secure and efficient, but ...

- Precondition: secure exchange of keys in advance
 - Paradox situation at a first glance
 - secure communication depends on secure key exchange

Multi-party Key Exchange

- Involved multi-party key exchange with symmetric keys
 - Quadratic growths: $n \ parties \rightarrow (n2 n) / 2 \ keys$

• Problem rooted in symmetry (shared keys). Alternatives?

Asymmetric Keys

- Solution: Two types of keys
 - public key pk (K+) = enables encryption but no decryption
 - Private/secret key sk (K–) = used for decryption only
- Hard to deduce secret from public key
- ... similar to a classic mailbox

Asymmetric Cryptosystem

- Asymmetric cryptosystems
 - Asymmetric encryption and decryption
 - K+ (pk) = public key of Bob K- (sk) = secret key of Bob

Key Exchange with Public Keys

- Scalable communication with multiple parties
 - Linear number of exchanges: n parties \rightarrow n public keys
 - Real-world systems with millions of keys (e.g. PGP)
 - ... for the moment everything is fine

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Hard Problems

Integer factorization

Given an integer *n*, find its *m* prime factors

$$n = p_1 \cdot p_2 \cdots p_l$$
 with $p_i \in \mathbb{P}$

Examples: $12 = 2 \cdot 2 \cdot 3$ and $4711 = 7 \cdot 673$

• Discrete logarithm

Given integers a and b, find exponent x such that

$$a^x \equiv b \pmod{n}$$
 with $x \in \mathbb{N}$

Example: $2^6 \equiv 1 \pmod{7}$

• Hardness: No polynomial-time algorithms known yet

Trapdoor One-way Functions

- One-way function F(x) = y based on hard problem
 - Given input x: F(x) easy to compute
 - Given output y: hard to find input x with F(x) = y
 - Basis for asymmetry of public-key algorithms
- Trapdoor one-way function F(x) = y
 - Given y and some secret: easy to find x with F(x) = y
 - Examples of secrets: prime factors, discrete logarithm
 - Basis for private key and decryption

Public Key Encryption

<u>Def</u>: a public-key encryption system is a triple of algs.(G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: $\forall (pk, sk)$ output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Trapdoor functions (TDF)

<u>Def</u>: a trapdoor func. $X \rightarrow Y$ is a triplet of efficient algs. (G, F, F⁻¹)

- G(): randomized alg. outputs a key pair (pk, sk)
- $F(pk,\cdot)$: det. alg. that defines a function $X \to Y$
- F⁻¹(sk,·): defines a function $Y \rightarrow X$ that inverts $F(pk,\cdot)$

More precisely: ∀(pk, sk) output by G

$$\forall x \in X$$
: $F^{-1}(sk, F(pk, x)) = x$

(G, F, F⁻¹) is secure if $F(pk, \cdot)$ is a "one-way" function: can be evaluated, but cannot be inverted without sk

Review: arithmetic mod composites

Let $N = p \cdot q$ where p,q are prime $Z_N = \{0,1,2,\ldots,N-1\} \quad ; \quad (Z_N)^* = \{\text{invertible elements in } Z_N \}$

Facts:
$$x \in Z_N$$
 is invertible \Leftrightarrow $gcd(x,N) = 1$

• Number of elements in $(Z_N)^*$ is $\varphi(N) = (p-1)(q-1) = N-p-q+1$

Euler's thm:
$$\forall x \in (Z_N)^* : x^{\varphi(N)} = 1$$

The RSA trapdoor permutation

First published: Scientific American, Aug. 1977.

Very widely used:

- SSL/TLS: certificates and key-exchange
- Secure e-mail and file systems

... many others

The RSA trapdoor permutation

- Choose random primes p, q (\approx 1024 bits) and compute N = p.q
 - Compute Euler function $\varphi(N) = (p-1)(q-1)$
 - Choose random encryption key e with gcd (e, $\varphi(N)$) = 1
 - Compute decryption key $\mathbf{d} = \mathbf{e}^{-1} \mod \varphi(\mathbf{N})$
 - s.t. $\mathbf{e} \cdot \mathbf{d} = 1 \pmod{\varphi(\mathbf{N})}$

output
$$pk = (N, e)$$
 , $sk = (N, d)$

$$F(pk, x)$$
: $RSA(x) = x^e \text{ (in } Z_N) = y$

$$\mathbf{F^{-1}(sk, y)} = y^{d};$$
 $y^{d} = \mathbf{RSA(x)}^{d} = x^{ed} = x^{k\phi(N)+1} = (x^{\phi(N)})^{k} \cdot x = x$

The RSA Algorithm Example

- Choose p = 3 and q = 11
- Compute n = p * q = 3 * 11 = 33
- Compute $\varphi(n) = (p 1) * (q 1) = 2 * 10 = 20$
- Choose e such that $1 < e < \varphi(n)$. Let e = 7
- Compute a value for d such that $(d * e) \% \varphi(n) = 1$. One solution is d = 3 [(3 * 7) % 20 = 1]
- Public key is (e, n) => (7, 33)
- Private key is (d, n) => (3, 33)
- The encryption of m = 2 is $c = 2^7 \% 33 = 29$
- The decryption of c = 29 is $m = 29^3 \% 33 = 2$

Security of RSA

- Main attack vectors against RSA
 - Decrypting ciphertext c directly: $c = m^e \mod n$
 - → Difficulty of computing roots in modular arithmetic
 - Deriving private key d: $d = e^{-1} \mod \varphi(n)$ $\longleftarrow (\varphi-1) \cdot (q-1)$
 - \rightarrow Difficulty of computing prime factors from n
- Security (difficulty) depends on size of prime numbers
 - Factorization of numbers up to 768 bits feasible
 - Keys with 2048 and more bits deemed secure
 - (that is, ~600 decimal digits)

Textbook RSA is insecure

Textbook RSA encryption:

- public key: (N,e) Encrypt: $\mathbf{c} \leftarrow \mathbf{m}^e$ (in Z_N)
- secret key: (N,d) Decrypt: $c^d \rightarrow m$

Insecure cryptosystem!!

- Is not semantically secure and many attacks exist
- ⇒ The RSA trapdoor permutation is not an encryption scheme!

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

We construct a pub-key enc. system (G, E, D):

Key generation G: same as G for TDF

Public-key encryption from TDFs

- (G, F, F⁻¹): secure TDF $X \rightarrow Y$
- (E_s, D_s) : symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

E(pk, m): $x \stackrel{R}{\leftarrow} X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ output (y, c)

```
\frac{\mathbf{D}(\mathbf{sk}, (\mathbf{y,c})):}{\mathbf{x} \leftarrow \mathbf{F}^{-1}(\mathbf{sk}, \mathbf{y}),}\mathbf{k} \leftarrow \mathbf{H}(\mathbf{x}), \quad \mathbf{m} \leftarrow \mathbf{D_s}(\mathbf{k}, \mathbf{c})output m
```


In pictures:

$$E_{s}(H(x), m)$$
header body

Security Theorem:

If (G, F, F^{-1}) is a secure TDF, (E_s, D_s) provides auth. enc.

and $\mathbf{H}: X \to K$ is a "random oracle" then $(\mathbf{G}, \mathbf{E}, \mathbf{D})$ is CCA^{ro} secure.

Incorrect use of a Trapdoor Function (TDF)

Never encrypt by applying F directly to plaintext:

E(pk, m):
output
$$c \leftarrow F(pk, m)$$

$$\frac{\mathbf{D}(\mathbf{sk}, \mathbf{c})}{\text{output}} :$$

Problems:

- Deterministic: cannot be semantically secure!!
- Many attacks exist

Review: RSA pub-key encryption (Iso std)

 (E_s, D_s) : symmetric enc. scheme providing auth. encryption.

H: $x \to K$ where K is key space of (E_s, D_s)

- G(): generate RSA params: pk = (N,e), sk = (N,d)
- $\mathbf{E}(pk, m)$: (1) choose random x in \mathbf{Z}_{N}

(2)
$$y \leftarrow RSA(x) = x^e$$
, $k \leftarrow H(x)$

(3) output $(y, E_s(k,m))$

• $\mathbf{D}(sk, (y, c))$: output $D_s(H(RSA^{-1}(y)), c)$

Key lengths

Security of public key system should be comparable to security of symmetric cipher:

	RSA
Cipher key-size	Modulus size
80 bits	1024 bits
128 bits	3072 bits
256 bits (AES)	15360 bits

Implementation attacks

Timing attack: [Kocher et al. 1997] , [BB'04] The time it takes to compute $c^d \pmod{N}$ can expose d

Power attack: [Kocher et al. 1999)

The power consumption of a smartcard while it is computing $c^d \pmod{N}$ can expose d.

Faults attack: [BDL'97]

A computer error during $c^d \pmod{N}$ can expose d.

A common defense: check output. 10% slowdown.

Key Exchange with Public Key Encryption

Public key encryption

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: $\forall (pk, sk)$ output by G:

 $\forall m \in M$: D(sk, E(pk, m)) = m

Establishing a shared secret

Alice

Bob

$$(pk, sk) \leftarrow G()$$

"Alice", pk

choose random $x \in \{0,1\}^{128}$

D(SK,C) -> X

X: shared secret

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants $x \in M$

Semantic security \Rightarrow adversary cannot distinguish $\{ pk, E(pk, x), x \}$ from $\{ pk, E(pk, x), rand \in M \}$

 \Rightarrow can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle

Insecure against man in the middle

As described, the protocol is insecure against active attacks

Public key encryption: constructions

Constructions generally rely on hard problems from number theory and algebra

Next module:

• Brief detour to catch up on the relevant background

Acknowledgements

Material in this lecture are taken from the slides prepared by:

- Prof. Dan Boneh (Standford)
- Prof. Dr. Konrad Rieck (Uni-Göttingen)

