270A - Homework 1

1. (a) Let \mathcal{F} be the family of all finite subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?

Solution. If Ω is finite then \mathcal{F} is simply the power set of Ω , which is definitely a σ -algebra. However, if \mathcal{F} is infinite, then \mathcal{F} is never a σ -algebra. To see this, let (x_n) be a countable sequence of distinct elements in Ω and consider the set of even-indexed terms

$$F = \{x_n : n = 2k, \ k \in \mathbb{N}\}.$$

This set is a countable union of singletons and all singletons belong to \mathcal{F} . F is clearly infinite, but so is its complement, which contains the (infinite) set of odd-indexed terms. We conclude that F is neither finite nor co-finite, so \mathcal{F} is not closed under countable unions when Ω is an infinite set.

(b) Let \mathcal{F} be the family of all countable subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?

Solution. \mathcal{F} is indeed a σ -algebra. The empty set is clearly countable, and $\Omega^C = \emptyset$. Let F_n be a countable collection of sets in \mathcal{F} and consider their union, $F = \bigcup_{n=1}^{\infty} F_n$. If each F_n is countable, then F is just a countable union of countable sets: countable. If one of the F_n 's, say F_k , were co-countable, then $F^C \subseteq F_k^C$, which is countable, so F is co-countable. Since \mathcal{F} contains the empty set and Ω and is closed under countable unions and complements, it is a σ -algebra.

(c) Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cap \mathcal{G}$ always a σ -algebra?

Solution. \mathcal{F} is a σ -algebra. Since \mathcal{F} and \mathcal{G} both contain \emptyset and Ω , so does their intersection. Let E_n be a countable collection of sets in $\mathcal{F} \cap \mathcal{G}$. Since \mathcal{F} and \mathcal{G} are both σ -algebras, the union $E = \bigcup_{n=1}^{\infty} E_n$ is in both \mathcal{F} and \mathcal{G} and each E_n^C is in both \mathcal{F} and \mathcal{G} as well.

(d) Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cup \mathcal{G}$ always a σ -algebra?

Solution. The union need not be a σ -algebra. Let $\Omega = \{1, 2, 3, 4\}$, $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$, and $\mathcal{G} = \{\emptyset, \Omega, \{2\}, \{1, 3, 4\}\}$. \mathcal{F} and \mathcal{G} are σ -algebras, but the set $\{1\} \cup \{2\} = \{1, 2\}$ is not in their union.

2. A subset $A \subset \mathbb{N}$ is said to have asymptotic density if

$$\lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$$

exists. Let \mathcal{F} be the collection of subsets of \mathbb{N} for which the asymptotic density exists. Is \mathcal{F} a σ -algebra?

Solution.