Санкт-Петербургский государственный университет Математико-механический факультет Кафедра физической механики

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ Отчёт по лабораторной работе №1.г

«Многократные прямое измерение физический величин и обработка результатов наблюдений»

Выполнил студент:

Жабина Мария Дмитриевна группа: 23.Б12-мм

Проверил:

1 Введение

1.1 Цель работы

Основными задачами данной лабораторной работы являются:

- Освоение методики использования измерительного прибора для многократного прямого измерения физической величины
- Выполнение элементарной статистической обработки серии результатов наблюдений при прямых измерениях

1.2 Решаемые задачи

Главной задачей, которую нам необходимо решить, является сбор результатов измерений частоты следования импульса электронным частометром Ч3-32 и вычисление погрешности этих измерений.

2 Основная часть

2.1 Теоретическая часть

Рис. 1. Схема установки

Основная относительная погрешность измерения частоты прибором в процентах не должна превышать суммарной:

$$\Delta f = \pm \left(\Delta_0 + \frac{1}{f_{\text{M3M}} t_{\text{CP}}}\right) (1)$$

где Δ_0 - основная относительная погрешность частоты внутреннего кварцевого генератора или внешнего источника опорной частоты

 $f_{\mbox{\tiny H3M}}$ - измеряемая частота в Γ ц

Грубые измерения

Грйбой шкалой измерим 10 величин для получения выборки. Вычисление погрешности прибора: $\Delta f_{\rm приб} = 0.221$

Таблица 1. Результаты грубых измерений

№ 1.г.	Диапазон показаний использованной шка- лы прибора	Результаты отдельных наблюдений (f_i)	Погрешность прибора на данной шкале $(\Delta f_{\text{приб}})$
	кΓц	кΓц	кΓц
1	0-100	4.53	0.221
2	0-100	4.54	0.220
3	0-100	4.54	0.220
4	0-100	4.52	0.221
5	0-100	4.52	0.221
6	0-100	4.54	0.220
7	0-100	4.52	0.221
8	0-100	4.54	0.220
9	0-100	4.54	0.220
10	0-100	4.55	0.219

Точные измерения

Перейдём на более точную шкалу прибора и измерим 50 величин для получения выборки:

Диапазон показаний прибора: 0 - 1000 к Γ ц Погрешность прибора по формуле ранее: $\Delta f_{\rm приб} = 0.0220$ к Γ ц

Таблица 2. Результаты точных измерений

34	D	Случайные откло-	Квадратичная
$N_{\overline{0}}$	Результаты отдельных	нения от среднего	погрешность
1.г.	наблюдений (f_i)	$(d_i = f_i - f_{\rm cp})$	$(d_i^2 = (f_i - f_{\rm cp})^2)$
	кГц	кГц	кΓц
1	4.552	0.009	$8.1 * 10^{-5}$
2	4.546	0.003	$0.9 * 10^{-5}$
3	4.554	0.011	$0.121 * 10^{-5}$
4	4.566	0.023	$5.29 * 10^{-4}$
5	4.562	0.019	$3.61 * 10^{-6}$
6	4.556	0.013	$1.69 * 10^{-4}$
7	4.544	0.001	$0.1 * 10^{-5}$
8	4.548	0.005	$2.5 * 10^{-5}$
9	4.558	0.015	$2.25 * 10^{-4}$
10	4.554	0.011	$1.21 * 10^{-4}$
11	4.550	0.007	$4.9 * 10^{-5}$
12	4.550	0.007	$4.9 * 10^{-5}$
13	4.544	0.001	$0.1 * 10^{-5}$
14	4.558	0.015	$2.25 * 10^{-4}$
15	4.550	0.007	$4.9 * 10^{-5}$
16	4.574	0.031	$9.61 * 10^{-4}$
17	4.562	0.019	$3.61 * 10^{-4}$
18	4.572	0.029	$8.41 * 10^{-4}$
19	4.558	0.015	$2.25 * 10^{-4}$
20	4.557	0.014	$1.96* 10^{-4}$
21	4.556	0.013	$1.69 * 10^{-4}$
22	4.542	-0.001	$0.1 * 10^{-5}$
23	4.534	-0.009	$8.1 * 10^{-5}$
24	4.536	-0.007	$4.9 * 10^{-5}$

	_	Случайные откло-	Квадратичная
$N_{\overline{0}}$	Результаты отдельных	нения от среднего	погрешность
п.п.	наблюдений (f_i)	$\left \left(d_i = f_i - f_{ m cp} \right) \right $	$(d_i^2 = (f_i - f_{\rm cp})^2)$
	кΓц	кГц	кГц
27	4.536	-0.007	$4.9 * 10^{-5}$
28	4.536	-0.007	$4.9 * 10^{-5}$
29	4.540	-0.003	$0.9 * 10^{-5}$
30	4.542	-0.001	$0.1 * 10^{-5}$
31	4.542	-0.001	$0.1 * 10^{-5}$
32	4.542	-0.001	$0.1 * 10^{-5}$
33	4.540	-0.003	$0.9 * 10^{-5}$
34	4.534	-0.009	$8.1 * 10^{-5}$
35	4.544	0.001	$0.1 * 10^{-5}$
36	4.548	0.005	$2.5 * 10^{-5}$
37	4.544	0.001	$0.1 * 10^{-5}$
38	4.536	-0.007	$4.9 * 10^{-5}$
39	4.530	-0.013	$1.69 * 10^{-4}$
40	4.536	-0.007	$4.9 * 10^{-5}$
41	4.530	-0.013	$1.69 * 10^{-4}$
42	4.532	-0.011	$1.21 * 10^{-4}$
43	4.530	-0.013	$1.69 * 10^{-4}$
44	4.515	-0.028	$7.84 * 10^{-4}$
45	4.516	-0.027	$7.29 * 10^{-4}$
46	4.522	-0.021	$4.41 * 10^{-4}$
47	4.518	-0.025	$6.25 * 10^{-4}$
48	4.524	-0.019	$3.61 * 10^{-4}$
49	4.536	-0.007	$4.9 * 10^{-5}$
50	4.506	-0.037	$1.369 * 10^{-3}$

Графики

3 Выводы

В результате прроделанной работы я ознакомилась с методами использования измерительного прибора частотомер электронносчетный ЧЗ-326 а так же выполнила простую статистическую обработку.

Список литературы

[1] https://github.com (дата обращения: 14.04.2018)