WF3002 无磁计量模块产品规格书

产品名称: 无磁计量模块

产品型号: WF3002

文档版本: V1.01

更新日期: 2020-03-19

杭州为峰智能科技有限公司

更改纪录

版本	修改内容
V1.01	新建文档

名词解释

名词	内容及含义		
小板、本模块、无磁模块	指无磁计量模块(本文档主要描述该模块特性)		
主板	指与无磁计量模块通讯的主控板		

目 录

目	录	4
_	概述	
=	主要技术参数	5
Ξ	功能说明	5
四	接口说明	<i>6</i>
	4.1 接口概述	6 7 7
五	结构尺寸	
六	联系方式	8
附氢	录一 通讯协议	8
	1 帧格式	9
附表	录二 主板设计注意事项	
附長	录三 计量注章事项	12

一 概述

本模块采用金属探测原理,可检测旋转运动的金属状态,应用于水表中,可将机械 读数转换为脉冲信号,完全抗磁,功耗低,抗干扰性强。

二 主要技术参数

参数	内容
数据采集方式	无磁计量
信号输出方式	脉冲输出
模块供电电压	3.0V-7V(注 1)
工作温度范围	-15~55℃
静态功耗	小于 5.5UA
动态功耗	小于 8.5UA
最大计量频率	2.2 圈/秒(注 2)

注1: 模块默认内置3V输出LDO, LDO输入电压范围为3V--7V, 模块最低正常工作电压可为2.5V, 如果客户有要求,可按客户要求调整LDO。

注2: 对于水表而言, DN15口径表过载流量是3125L/H, DN20是5000L/H, DN25是7875L/H; 根据此数据最大转速为2.2圈/秒(即7920L/H), 本产品可满足2.2L/秒计量要求,即三种表型流速都满足。

三 功能说明

- (1) 含信号强度输出,用于指示本模块与基表指针的间距。
 - 便于生产时检测模块的好坏和一致性。
 - 可用于检测成表组装时,是否装配到位,基表指针与模块间隙是否达到最小。
- (2) 含累计正、负脉冲输出。模块内可读出累计正负脉冲:
 - 便于验证主板与本模块电子读数的累加是否同步。
 - 一旦出现机电不相符时,便于快速区分、定位问题。
- (3) 完全抗磁。测试采用1万高斯磁铁靠近本模块,也可正常计量。
- (4) 抗电磁干扰性能强。
 - 内含特定滤波算法,对无线干扰的抑制力强,对于 NB-IoT 信号,即使在 覆盖等级 2 下频繁数据上报,也可正常计量。

四 接口说明

4.1 接口概述

模块对外接口电路如图1所示。

图1 模块实物(注3)

标识	接口定义					
VCC	电源正极					
P	正向脉冲引脚					
G	电源地					
D	反向脉冲引脚					
T	控制引脚					

注 3: 本模块尺寸可以根据客户要求进行定制

4.2 引脚详细描述

1 电源正极

- (1) 电源由外部提供,本模块额定工作电压范围为 3.0V-7V。
- (2) 主板可提供的最大电流应不小于 10mA。

2 正向脉冲引脚

图 4 正向脉冲引脚电平输出时序

- (1) 模块的脉冲引脚为漏极开路输出。
- (2) 输出低电平 64MS。

3 电源地

主板和小板共地。

4 反向脉冲引脚

同正向脉冲引脚。

5 控制引脚

- (1) 默认本模块内部下拉,置输入。主板内部下拉,置输入。(主板:指与无磁模块通讯的主控板。小板:指无磁模块)
- (2) 需要通讯时, 主板做以下操作:
 - 给高电平,持续时间 T,然后转为串口输入状态,等待接收小板的数据
 - 接收完毕后,主板内部下拉,置输入
- (3) 需要通讯时,小板做以下操作:
 - 收到高电平后,检测高电平的持续时间 T,直到收到低电平。
 - 收到低电平后,70MS 内开始发送串口数据。
 - 发送完毕后,内部下拉,置输入
- (4) 数据采用串口通讯,波特率 2400,8 个数据位,无校验,1 个停止位。(2400_8N1)
- (5) 注意, 小板根据时间 T 的长度, 应回复不同的内容, 详见: 附录一 通讯协议。
- (6) 本通信脚只供生产和异常时提供相关参考数据用,在实际运行中不得作为计量数据来源用;通常主板和计量传感器是不同的电压体系,鉴于本通信口只提供了 TTL 电平接口,频繁通信有可能影响计量。

五 结构尺寸

图 3 结构尺寸

注意事项:

- (1) PCB 加工时会有正负 0.1mm 的误差,结构设计时请考虑。
- (2) 本尺寸为 PCB 设计尺寸, 不包含 PCB 制板误差。
- (3) PCB 板厚默认为 1.6MM

六 联系方式

联系电话: 王先生 18511837558 张先生 15606511058

邮箱: weifengzhineng@163.com

地址: 浙江省杭州市余杭区仓前街道余杭塘路 2636 号 1 幢 4 层 401 室为峰智能

附录一 通讯协议

通讯时,主板会发出持续时间为 T 的高电平脉宽,小板根据 T 的时间,来计算相应的控制码,根据不同的控制码,回复不同的内容。

T 的单位长度是 125ms, 若 T 的值为 250ms,则对应控制码值为 2,依次类推。

1 帧格式

字节偏移	内容	描述						
0	0x68	起始标志 固定为 0x68						
1	Lengt	帧长,表示 控制码 和 数据域的字节数,从 CtrlCode (含)开始,						
	h	到 Data(含)结束						
2	CtrlC	BIT0-6 控制码(对应时间 T 的长度)						
	ode	BIT7 0 表示由小板往主板发送据						
		1 表示由主板往小板发送据						
3	Data	数据域 (N 字节)						
3+N	CS	校验 = (从 CtrlCode 到 Data 累加和) 模 256						
4+N	0x16	结束标志 固定为 0x16						

2 数据域说明

控制码	数据域说明					
	小板收到控制码为4时,则依次返回以下内容:					
	字节偏移	长度	名称	描述		
	0	1	主版本号	计量模块主版本号		
\	1	1	子版本号	计量模块子版本号		
4	2	1	信号强度	信号强度共9位,范围0-511,此处为低8位,第9位见"信号指示"(下一字节)。 信号强度指示金属片与计量模块间距离,该值越大,说明距离越近。 每个通道都有对应的信号强度,此处是指这些通道中最小的信号强度。 (参考:计量模块与直径为17MM的半圆不锈钢片距离为8.5MM时,信号强度为25-30)		
	3	1	信号指示	BITO-6 多个通道中,信号强度最大值与最小信号强度的差值。 超过 127,仍以 127 表示 BIT7 信号强度第 9 位。		
	4	4	净正向脉冲 数	有符号数 ,累计净正向脉冲数,复位后清 0。该值 = 正向脉冲数 减 反向脉冲数		

	8 4 反向脉冲数 无符号数 ,累计反向脉冲数,复位后清 0							
			状态字	BIT0	当前是否校准失败	0 校准成功	1 校准失败	
				BIT1	当前采样模式	0 默认	1 快采样状态	
	12	1		BIT2	拆表标志	0 默认	1 模块被拆	
	12			BIT3	异物插入标志	0 默认	1 异物插入	
				BIT4	当前信号强度是否	有效 0 否	1 是	
				BIT5-7	保留			
	13	1	调试字节	保留				
6	保留							
	小板收:	到控制码为	78时,则所有	数据复位	立,回到刚上电的	默认状态,累	状认返回以下内容:	
8	8 第1字节: 计量模块主版本号						1	
	第2字节: 计量模块子版本号							
收到控制码 0x0A 后,输出 1 个正脉冲和 1 个负脉冲。并按如下格式返回数据							返回数据	
10	第1字节: 计量模块主版本号							
	第2字节: 计量模块子版本号							

附录二 主板设计注意事项

推荐的主板与小板的接口电路如下:

图 5 推荐接口电路图

- (1) 电源正极。小板内含 3. 0V 的线性稳压器,建议主板输出电源电压大于 3. 0V(采用锂电池供电的系统,可直接用电池供电),并**采用二极管(SS14)+大电容(220UF 铝电解电容)的方式稳压**,以防止主板电源瞬间跌落导致小板电源受影响。
- (2) 地。主板的地可直接与小板的地相连接。
- (3) 正脉冲引脚。主板脉冲引脚可采用 100K 上拉电阻,这样默认 I0 口可作为输入 状态,采用中断或扫描方式来检测脉宽。注意:
 - 若采用中断方式,此 IO 口应具有中断能力。
- (4) 负脉冲引脚。同正脉冲引脚。
- (5) 控制引脚。主板控制引脚可采用 100K 下拉电阻,这样默认 I0 口可作为输入状态,需要读取小板参数时,可直接输出相应的时间的高电平。注意:
 - 此端口需接收来自小板的数据,应具有串口接收功能。
 - 此引脚需要进行电平匹配才能使用,电压最高不大于 3.3V,否则通信时会对计量造成影响。

附录三 计量注意事项

(1) 本产品对湿度比较敏感,建议在生产和运行中做好干燥和防水处理,否则有可能影响计量。

- (2) 所有模块都需要校准
 - 金属片旋转几圈后,系统才能获得信号强度;
 - 旋转圈数越多,信号强度修正越准确;
 - 校准时基表转速不能太快,**建议不超过 0.9 圈/秒**;校准成功后,则不受此条件限制。
- (3) 模块动态功耗:
 - 正常流水计量时: <= 8.5uA;
 - 受到异常干扰时(比如:强无线干扰)会进入滤波模式,滤波模式功耗 <= 0.35mA,干扰消失后1秒退出。
- (4) 信号强度:
 - 正常计量信号强度范围:大于20;
 - 计量易受干扰信号强度范围: 12--20;
 - 计量模块刚上电时信号强度: 14 (默认校准成功,校准后会修正为实际信号强度):
 - 信号强度是否有效以状态字为准,信号强度刷新成功信号强度有效,信号 强度刷新失败信号强度无效;
 - 三个通道信号强度最大值和最小值之差如果过大,则表示基表金属托盘晃 动太厉害,需要查找原因。
- (5) 拆表功能需要根据具体表型进行测试确认。