Wärme- und Stoffübertragung I

Wärmeleitung in einer mehrschichtigen Rohrwand mit Konvektion

Prof. Dr.-Ing. Reinhold Kneer

Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

Temperaturprofil in einer mehrschichtigen Rohrwand mit Konvektion

- Wie ändert sich die Fläche in einer mehrschichtigen Rohrwand?
- Wie ist das Temperaturprofil in einer mehrschichtigen Rohrwand?

Wärmestrom in einer mehrschichtigen Rohrwand mit Konvektion

- Wie wird der thermische Gesamtwiderstand in einer mehrschichtigen Rohrwand berechnet?
- Wie wird der Wärmestrom in einer mehrschichtigen Rohrwand berechnet?

Mehrschichtige Rohrwand mit Konvektion

Annahmen:

- Stationär
- Eindimensional
- Konstante Materialeigenschaften

$$\mathbf{0} = \dot{\mathbf{Q}}_{\text{ein}} - \dot{\mathbf{Q}}_{\text{aus}}$$

Achtung!

$$\dot{q}_{ein}^{"}\neq\dot{q}_{aus}^{"}$$

Mit zunehmendem Radius von innen nach außen wird die Oberfläche größer!

$$\dot{Q} = \dot{q}$$
" · A

Da:
$$A_{aus} > A_{ein}$$
 \Rightarrow $\dot{q}_{aus}^{"} < \dot{q}_{ein}^{"}$

Temperaturprofil in einer mehrschichtigen Rohrwand mit Konvektion

Konvektiver Widerstand:

$$W_{kA} = \frac{1}{\alpha_A \cdot A_A}$$

$$A_A = 2\pi r_i \cdot L$$

$$W_{kB} = \frac{1}{\alpha_B \cdot A_B}$$

$$A_B = 2\pi r_{n+1} \cdot L$$

Konvektiver Widerstand:

$$W_{kA} = \frac{1}{\alpha_A \cdot A_A}$$

$$A_A = 2\pi r_i \cdot L$$

$$W_{kB} = \frac{1}{\alpha_B \cdot A_B}$$

$$A_B = 2\pi r_{n+1} \cdot L$$

Wiederholung:

Wärmeleitung in Rohrwand

$$\dot{Q}_r = -\lambda_1 \cdot 2 \cdot \pi \cdot L \cdot \frac{T_2 - T_1}{\ln \frac{r_2}{r_1}}$$

Konvektiver Widerstand:

$$W_{kA} = \frac{1}{\alpha_A \cdot A_A}$$

$$A_A = 2\pi r_i \cdot L$$

$$W_{kB} = \frac{1}{\alpha_B \cdot A_B}$$

$$A_B = 2\pi r_{n+1} \cdot L$$

Wärmeleitung in mehrschichtiger Rohrwand

$$\dot{Q}_{r,i} = \lambda_i \cdot 2 \cdot \pi \cdot L \cdot \frac{T_i - T_{i+1}}{\ln \frac{r_{i+1}}{r_i}} \qquad i = 1, 2, 3$$

$$i = 1, 2, 3$$

Temperaturunterschied Wärmewiderstand

Konvektiver Widerstand:

$$W_{kA} = \frac{1}{\alpha_A \cdot A_A}$$

$$A_A = 2\pi r_i \cdot L$$

$$W_{kB} = \frac{1}{\alpha_B \cdot A_B}$$

$$A_B = 2\pi r_{n+1} \cdot L$$

Widerstand durch Wärmeleitung:

$$W_{L} = \frac{1}{\lambda_{i}} \cdot \frac{1}{2\pi L} \cdot \ln \frac{r_{i+1}}{r_{i}}$$

$$\sum_{i} W_{L} = \frac{1}{2\pi L} \cdot \sum_{i=1}^{n} \frac{1}{\lambda_{i}} \cdot \ln \frac{r_{i+1}}{r_{i}}$$

$$\dot{Q} = \frac{T_A - T_B}{W_{K,A} + \sum W_L + W_{K,B}}$$

$$\dot{Q} = k \cdot A^* \cdot (T_A - T_B)$$

Vorlesung Wärme- und Stoffübertragung

$$k \cdot A^* = \frac{1}{\sum W} = \frac{1}{\frac{1}{\alpha_A \pi d_i L} + \frac{1}{2\pi L} \cdot \sum_{i=1}^{n} \frac{1}{\lambda_i} \ln \frac{d_{i+1}}{d_i} + \frac{1}{\alpha_B \pi d_{n+1} L}}$$

Gesamtwiderstand Reihenschaltung

$$\frac{1}{k} = \frac{d^*}{\alpha_1 d_1} + \frac{d^*}{2} \sum_{i=1}^{n} \frac{1}{\lambda_i} \ln \frac{d_{i+1}}{d_i} + \frac{d^*}{\alpha_B d_{n+1}}$$

Annahmen:

- Stationärer Zustand
- **Eindimensional**
- **Konstante Materialeigenschaften**

Mantelfläche des Zylinders: $2\pi L \cdot r_i$

$$\dot{Q}_{i} = \frac{2\pi L}{\frac{1}{\alpha_{A} r_{1}} + \sum_{i=1}^{n} \frac{1}{\lambda_{i}} \ln \frac{r_{i+1}}{r_{i}} + \frac{1}{\alpha_{B} r_{n}+1}} (T_{A} - T_{B})$$

Gleichung in Formelsammlung

Verständnisfragen

Wie beeinflusst die gekrümmte Oberfläche eines Rohres den Temperaturgradienten bei konstantem Wärmestrom und konstanter Wärmeleitfähigkeit?

Wie ändert sich die Wärmestromdichte innerhalb einer mehrschichtigen Rohrwand im stationären Zustand?

