ELEC6234 Embedded Processor Synthesis

Coursework

"SystemVerilog Design of an Application Specific Embedded Processor"

Introduction

- This exercise is done individually and the assessment is:
 - By formal report describing the final design, its development, implementation and testing.
 - By a laboratory demonstration of the final design on an Altera FPGA development system
- Assessment 50% of the module

Design cost competition

- The design should be as small as possible in terms of FPGA resources but sufficient to implement the specified affine transformation algorithm.
- Cost = number of Adaptive Logic Modules (ALMs) used + max(0,number of embedded multipliers used – 2) +30 x Kbits of RAM used
- Each ALM has 2 flip-flops hence flip-flops are included in the above cost figure.
- The cost figure should be calculated for an Altera Cyclone V SoC 5CSEMA5F31C6 device and should be as low as possible.
- Altera Cyclone V has 174 18x18 bit (or 348 9x9 bit) embedded hardware multipliers.
- To demonstrate the cost figure of your design show in your report Altera Quartus synthesis statistics for Cyclone V SoC 5CSEMA5F31C6.

Design structure

Use provided code for picoMIPS4test and Counter

picoMIPS

You are free to modify and adapt the picoMIPS architecture

NISC (No Instruction Set Computer) Architecture

Affine transformation applied to a single pixel

- An affine transformation is a geometrical transformation that preserves co-linearity, i.e. all points lying on a line will also lie on a line after the transformation and distance ratios are preserved.
- For two-dimensional images, the general affine transformation can be expressed as

$$\left| egin{array}{c} x_2 \\ y_2 \end{array}
ight| = A imes \left| egin{array}{c} x_1 \\ y_1 \end{array}
ight| + B$$

• For example, a pure translation of pixels occurs if:

$$A = \left| egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight|, B = \left| egin{array}{cc} b_1 \ b_2 \end{array}
ight|$$

The following coefficients implement pure scaling:

$$A = \left| \begin{array}{cc} a_{11} & 0 \\ 0 & a_{22} \end{array} \right|, B = \left| \begin{array}{c} 0 \\ 0 \end{array} \right|$$

Two sets of affine transformation coefficients to chose from

• In your implementation, choose one of the two following data sets

$$A = \begin{bmatrix} 0.75 & 0.5 \\ -0.5 & 0.75 \end{bmatrix} \qquad B = \begin{bmatrix} 20 \\ -20 \end{bmatrix}$$

$$A = \begin{bmatrix} 0.5 & -0.875 \\ -0.875 & 0.75 \end{bmatrix} \qquad B = \begin{bmatrix} 5 \\ 12 \end{bmatrix}$$

• They both represent rotation, scaling and translation combined into a single affine transformation.

picoMIPS Implementation

Pixel coordinates must be read from the switches SW0-SW7 on the FPGA development system and the
resulting pixel coordinates after the transformation displayed on the LEDS LED0-LED7. Switch SW8
provides handshaking functionality as described in the pseudocode below. Switch SW9 should act as an
active low reset.

Pseudocode:

- Wait for coordinate x1 by polling switch SW8. Wait while SW8=0. When SW8 becomes 1 (SW8=1) read the coordinate x1 from SW0-SW7.
- Wait for switch SW8 to become 0
- Wait for coordinate y1 as specified in step 1.
- Wait for SW8 to become 0
- Execute the affine transformation algorithm and display coordinate x2 on LED0-LED7.
- Wait until SW8 becomes 1
- Display coordinate *y2* on LED0-LED7.
- Wait until SW8 becomes 0
- Go to step 1.

Input/Output

- The input/output functionality can be implemented in several different ways.
- For example, you can design your own IN and OUT instructions for reading/writing data using external ports.
- To use fewer hardware resources, you can consider connecting the ALU output, or a register output directly to the LEDs.
- You could consider dedicating a specific register number, e.g. register 1 to the input port.
 - In this way, an ADD instruction can be used to read data, e.g. ADD %5, %0, %1 would store the input data in register %5. Be creative and use your imagination!

Suggested data formats

- Coefficient of matrix A or input samples [x1,y1] and results [x2,y2] are 2's complement signed integers. Coefficients of A are fixed-point fractions in the range $0 .. +1 2^{-4} 2^{-4} = 2^{-4}$
- Therefore the weights of the individual bits are:

Bit position	Weight
7 (MSB)	- 2^0
6	2^(-1)
5	2^(-2)
4	2^(-3)
3	2^(-4)
2	2^(-5)
1	2^(-6)
0 (LSB)	2(-7)

• When fractional numbers above are multiplied by 2's complement integers, a double-length 16-bit product is obtained which is a 2's complement number with the radix point positioned after the 9-th bit. Note however that the output results must be 8-bit 2's complement whole numbers.

Binary multiplication examples

- Binary multiplication of 2's complement 8-bit numbers yields a 16-bit result. As one of the numbers is represented in the range -1..+1-2⁻⁷ and the other in the range -128..127, it is important to determine correctly which 8-bits of the 16-bit result represent the integer part which should be used for further calculations. The following examples illustrate which result bits represent the integer part.
- Example 1. Multiply 0.75 x 6.

weights:	-2 ⁰	2-1	2-2	2-3	2-4	2-5	2-6	2-7
0.75 =	0.	1	1	0	0	0	0	0
weights:	-27	2 ⁶	25	24	2 ³	2 ²	2 ¹	20
6 =	0	0	0	0	0	1	1	0.

The 16-bit result is:

-2 ⁸	27	2 ⁶	25	24	23	2 ²	21	20	2-1	2-2	2-3	2-4	2-5	2-6	2-7
0	0	0	0	0	0	1	0	0.	1	0	0	0	0	0	0

- which represents the value of 4.5. The shaded area shows which bits need to be extracted when the representation is truncated to 8 bits.
- Note that the fraction part is discarded entirely, so the 8-bit result is now 4.
- Also note that when the leading bit is discarded, the weight of the new leading bit must now change from 2^7 to -2^7 . Why?

Binary multiplication examples...

- The importance of the correct interpretation of the leading bit's weight is evident in the following example, where the result is negative.
- Example 2. Multiply -0.25 x 20.

weights:	-2 ⁰	2-1	2-2	2-3	2-4	2-5	2-6	2-7
-0.25 =	1.	1	1	0	0	0	0	0
weights:	-27	26	25	24	23	2 ²	21	20
20 -	0	^	^	4	0	4	0	0

The 16-bit result is:

-28	27	2 ⁶	25	24	2 ³	2 ²	2 ¹	2º	2-1	2-2	2-3	2-4	2-5	2-6	2-7
1	1	1	1	1	1	0	1	1.	0	0	0	0	0	0	0

which is -5 in decimal representation.

- Again, the shaded area shows which 8 bits to extract when the result is truncated from 16 to 8 bits for further calculations.
- The truncated 8-bit result has the weight of -2⁷ on the most significant bit so that it still correctly represents -5:

-27	26	25	24	2 ³	22	21	20	
1	1	1	1	1	0	1	1.	

Design strategy

- Develop SystemVerilog code and a separate testbench for each module in your design.
- Simulate each module in Modelsim.
- Synthesise each module in Altera Quartus and carefully analyse the synthesis warnings, statistics and RTL diagrams.
- When you are satisfied that all your modules are correct, write a testbench for the whole design and simulate.
- Synthesise the whole design and again, carefully analyse the warnings, statistics and RTL diagrams.
- You will be able to take an FPGA Development System on loan
 - Test your design either at home or in the laboratory.
- After the Easter Break you will be asked to demonstrate your design in the Electronics Laboratory.

Formal report

- Submit an electronic copy of your report through the electronic handin system, and a printed copy to the ECS front office by the deadline specified on the ELEC6234 notes website.
- The report should follow the report template provided
- It must contain a description of your design, including the final circuit diagrams, your instruction set and your program.
- Source files must be packaged in a zip file and submitted electronically as a separate file at the same time.
- 20% of the marks are allocated to the report, its style and organisation, 80% for the technical content.
- Bonus marks are awarded for implementation of novel concepts.