Logic (PHIL 2080, COMP 2620, COMP 6262) Chapter: First-Order Logic Properties of Proof Systems and Semantic Tableaux

1.31

Recap: Predicate Logics

Introduction

- We now (since week 5) know Predicate Logics as a means to express properties of and relationships between objects.
- For example:
 - If everyone plays football, and everyone is a goat, then everyone is a football-playing goat
 - $\forall x \ Fx, \forall x \ Gx \vdash \forall x \ (Fx \land Gx)$
- We know how to prove sequents involving Predicate Logic using Natural Deduction.
 - We "only" needed additional elimination and introduction rules for the exists (∃) and universal (∀) quantifiers.
 - Other than that we just re-used the rules for Propositional Logic.

Introduction

- Today, we cover Semantic Tableau for Predicate Logic.
- But first a recap on Semantic Tableau for Propositional Logic!
- If we want to prove $X \vdash A$ (with $X = \{A_1, \dots, A_n\}$), then, we:
 - Label each assumption A_1, \ldots, A_n as being *true* (**T**),
 - Label A as being false (F),
 - Simplify each formula (according to the connectives corresponding to truth tables) thus eventually obtaining:
 - a contradiction in all the branches, or
 - 2 ≥ 1 open branch (i.e., none of its formulae can be simplified further and there's no contradiction).

In case 11 the sequent is *valid*.

In case 2 the sequent is *invalid*, and we can construct an interpretation that makes all formulae in X true, but A false (which is a witness for invalidity).

Properties of Logics:

- What does it mean to decide validity?
- Is that always possible for sequents in Propositional Logic?
 What about Predicate Logic?

Properties of Proof Systems:

- Are all proofs correct? (Soundness)
- Can we always prove validity? (Completeness)

Introduction

simplify

- We still use the same rules as we had in the propositional case.
- But now we introduce four additional rules, namely for:
 - ∃-formulae which are labeled true
 - false
 - ∀-formulae which are labeled true
 - ... false

00000

Properties

Recap on our Symbols and their Meanings

We differentiate between validity and provability:

- $X \models A$ (A follows logically from X)
 - \rightarrow Every interpretation that makes X true also makes A true.
- $X \vdash_{ND} A (X \vdash A \text{ can be proved via Natural Deduction})$
 - \rightarrow A can be derived from X. (Syntax manipulation.)
- $X \vdash_{ST} A (X \vdash A \text{ can be proved via } Semantic Tableau)$
 - → We can't find an interpretation that makes X true but not A. (Exploits validity definition.)
- There are many more proof systems!

semantics syntax

- So, what's the relation between $X \models A$ and $X \vdash A$?
- A desirable situation would be $X \models A$ iff $X \vdash A$.
- Our proof systems could do anything! So what could happen?
- Let \mathcal{X} be *some* proof system (like, e.g., ND).
 - $X \vdash_{\mathcal{X}} A$, but not $X \models A$
 - → The proof system is wrong! (I.e., not sound.)
 - $X \models A$, but not $X \vdash_{\mathcal{X}} A$
 - → The proof system is incomplete! (I.e., not complete.)
- What we want:
 - Soundness Every provable sequent is valid. (Cf. above's 1)
 - Completeness Every valid sequent is provable. (Cf. above's 2)

Properties of Proof Systems:

- Are all proofs correct? (Soundness)
- Can we always prove validity? (Completeness)

- Let \mathcal{X} be some proof system that's sound and complete.
- So, can we also *decide* validity of each sequent with \mathcal{X} ?
- I.e., we want to know whether $X \models A$ holds, by using \mathcal{X} . Can we find out?
- ullet Again, ${\mathcal X}$ is sound and complete, so we can check validity, right?
- No, not necessarily! Both just mention validity, not invalidity!
- We only know: $X \models A$ iff $X \vdash A$

Decidability of Logics:

- Decidability of a Logic means determining for an arbitrary sequent whether it's valid or not.
- Propositional Logic: Yes, decidable.
- Predicate Logic: No, undecidable. No such algorithm can exist.

Soundness and Completeness of Proof Systems:

- Natural Deduction:
 - → Sound and complete for Propositional and Predicate Logic
- Semantic Tableau:
 - → Also Sound and complete for Propositional and Predicate Logic

Semantic Tableau Rules

Simplifying a *true* ∃ Quantifier (Intuition)

$$\frac{\mathsf{T} \colon \exists x \ Fx}{\mathsf{T} \colon F_2}$$

provided a is new to the branch

- Why does a need to be new?
- Think of the triangle ABC! If a would exist already in the branch it
 would not be general (e.g., we could "accidentally" assume that
 our triangle is rectangular).

provided a is new to the branch

- This corresponds to the true existential quantifier!
- Recall $\neg \forall x \ Fx \equiv \exists x \ \neg Fx$

Rules For *true* \exists and *false* \forall , formally

 $\frac{\mathbf{T:} \ \exists x \ Fx}{\mathbf{T:} \ Fa}$

if a is new to the branch

• The *X* represents all other lines we have in that branch.

 \equiv

$$X, T: \exists x A$$

 $X, \mathbf{T}: A_x^a$

for a not in X or A

Rules For *true* \exists and *false* \forall , formally

T: ∃*x Fx*

T: Fa

if a is new to

 \equiv

X, **T:** ∃*x A*

 $X, T: A_x^a$

for a not in X or A

 $\mathbf{F}: \forall x \ Fx$

F: Fa

if a is new to the branch

≡

 $X, \mathbf{F}: \forall x A$

 $X, \mathbf{F} : A_{\mathbf{r}}^{a}$

for a not in X or A

Simplifying a *true* \forall Quantifier (Intuition)

T: $\forall x \ Fx$ for all a, b, \ldots in the branch (present and future!) **T:** Fa. **T:** Fb. . . .

- This rule will continue being available for new constants/terms produced later on. (Then we have to apply the rule again!)
- If we already obtained a contradiction, we are clearly done. But if we want to show that a branch is open we need to have applied this rule to *all* constants! (I.e., also those that get created after we already applied the rule to all constants that existed until then.)

Simplifying a *false* ∃ Quantifier (Intuition)

F: $\exists x \ Fx$ for all a, b, \ldots in the branch (present and future!) **F**: Fa. **F**: Fb. . . .

- Again, this rule will never be finished! If a new constant/term gets introduced we need to apply the rule again!
- Recall from last week that $\neg \exists x \ Fx \equiv \forall x \ \neg Fx$

Rules for *true* \forall and *false* \exists , formally

T: $\forall x \ Fx$

T: Fa, **T:** Fb, . . .

for all a, b, . . . in the branch – present and future!

 \equiv

 $X, T: \forall x A$

 $\overline{X, T: \forall x A, T: A_x^a}$

for a in X or A

F: ∃*x Fx*

F: *Fa*, **F:** *Fb*, . . .

for all a, b, . . . in the branch – present and future!

 \equiv

 $X, \mathbf{F}: \exists x A$

 $X, F: \exists x A, F: A_x^a$

for a in X or A

Special case for false Existential and true Universal

Recall the rules for false existentials and true universals:

T:
$$\forall x \ Fx$$
T: Fa, T: Fb, ...

for all a, b, ...

in the branch –

present and future!

- They state that you only "use" constants which are already there.
- Sometimes, however, there one no such constants! Then, you are also allowed to create a new one.

Examples

Example 1

$$\forall x (Fx \vee Gx) \vdash^? \forall x Fx \vee \forall x Gx$$

(1) **T:** $\forall x (Fx \vee Gx)$

(2) **F**: $\forall x \ Fx \lor \forall x \ Gx \checkmark$

(3) **F**: $\forall x \ Fx$ from (2)

(4) **F:** $\forall x \ Gx$ from (2)

Note that we did not apply the rule for false universal quantifier here because the formula is actually a false *disjunction*, not a false universally quantified formula.

T: $\forall x \ Fx$

T: *Fa*, **T:** *Fb*, . . .

for all a, b, . . . in the branch – present and future!

F: $\forall x \ Fx$

F: *F*a

if a is new to the branch

 $\forall x (Fx \vee Gx) \vdash^? \forall x Fx \vee \forall x Gx$

- **T**: $\forall x (Fx \vee Gx)$
- $\forall x \ Fx \lor \forall x \ Gx$ (2)
- (3) $\forall x \, Fx \, \checkmark$ from (2)
- (4) $\forall x \ Gx \ \checkmark$ from (2)
- (5)F: from (3) Fa
- (6) Gb from (4)
- Fa∨ Ga from (1)
- $Fb \lor Gb$ from (1) (8)

(10) **T:** Ga from (7) (9)Fa 4 from (7)

T: $\forall x \ Fx$

T: *Fa*, **T**: *Fb*, . . .

for all a, b, \ldots in the branch present and future!

 $\mathbf{F} : \forall x \ Fx$

F: *Fa*

if a is new to the branch

(11)Fb open! from (8) (12)Gb 5 from (8)

Extracted interpretation: see next slide.

Example 1 (cont'd)

So? Is $\forall x (Fx \lor Gx) \vdash \forall x \ Fx \lor \forall x \ Gx \ \text{valid}$?

- Let's see... Not all branches are contradictory.
- Thus, there is an open branch:
 - (5) **F:** Fa from (3)
 - (6) **F:** *Gb* from (4)
 - (10) **T:** *Ga* from (7)
 - (11) **T:** Fb from (8)
- We can, as usual, extract an interpretation I that answers for which objects F and G is true:
 - Informally: $I(Fa) = \bot$ and $I(Fb) = \top$ The formal definition will
 - Informally: $I(Ga) = \top$ and $I(Gb) = \bot$ be provided in week 7
 - Thus, showing that there is an interpretation that makes the assumption true, but the formula false!
 - \rightarrow So the sequent is invalid!

Example 2

 $\exists x \ Fx, \exists x \ Gx \vdash^? \exists x \ (Fx \land Gx)$

- (1) $\exists x \ Fx$
- (2)∃x Gx ✓
- √a,b $\exists x (Fx \land Gx)$ (3)
- T: from (1) (4) Fa
- (5)from (2) T: Gb
- from (3) (6)Fa ∧ Ga
- $Fb \wedge Gb$ from (3)
- (8) **F**: (9) **F**: *Ga* from (6) from (6)

T: $\exists x \ Fx$ T: Fa

if a is new to the branch

 $\mathbf{F}: \exists x \ Fx$

F: Fa, **F:** Fb, . . .

for all a, b, . . . in the branch present and future!

F: *Fb* from (7) (10)open!

(11)**F**: *Gb* from (7)

Extracted interpretation: see next slide.

0000

So? Is $\exists x \ Fx, \exists x \ Gx \vdash^? \exists x \ (Fx \land Gx) \ valid?$

- Let's see... Not all branches are contradictory.
- Thus, there is an open branch:
 - (4) **T:** Fa from (1)
 - (5) **T:** Gb from (2)
 - (9) **F:** *Ga* from (6)
 - (10) **F:** Fb from (7)
- Again we can design an interpretation that answers for which objects F and G become true:
 - F is true for exactly a
 - G is true for exactly b
 - Thus, showing that there is an interpretation that makes the assumption true, but the formula false!
 - \rightarrow So the sequent is invalid!

Invalid Sequents

Advanced Remarks: Sequent is invalid, so?

- There are some invalid sequents for which you can't find a proof that shows invalidity.
- (We were however still able to find invalidity proofs for some invalid sequents as above.)
- In some cases, however, we could prove invalidity by modifying rules in a suitable way.
- Even with such rules, though, we still can't always prove invalidity.
 (Since Predicate Logic is undecidable.)

Assume we are deep within some branch:

(n) **T:**
$$\forall x \exists y \ Rxy \ \sqrt{a,b,c} \ \text{from (k$$

(n+1) **T**:
$$\exists y \ Ray \ \checkmark$$
 from (n)

(n+3) **T**:
$$\exists y \ Rby \ \checkmark$$
 from (n)

(n+5) **T**:
$$\exists y \ Rcy \ \sqrt{}$$
 from (n)

- So we have an infinite branch!
- We will *never* be able to show that it is open.

$$\frac{X,\mathsf{T}:\forall x\;A}{X,\mathsf{T}:\forall x\;A,\mathsf{T}:A_{\star}^{a}}$$

for a in X or A

$$\frac{X, \mathbf{T} : \exists x \ A}{X, \mathbf{T} : A^{a}_{y}}$$

for a not in X or A

Summary

- Properties of Logics and Proof Systems (soundness, completeness, decidability)
- Semantic Tableau for Predicate Logics
 - We added several additional rules, but kept using the old ones.
 - We can prove validity and invalidity. (If you are interested, there is another complex example given below.)
 - Invalidity cannot always be proved, which shows an essential difference between propositional and predicate logics.
- This week covered the following sections in the Logic Notes:
 - 5: More about first order logic
 - Quantifiers in semantic tableaux

For propositional logic, the validity/invalidity is always provable. For predicate logic, the validity/invalidity is NOT always provable.

Consider the following argument:

- All horses are animals.
- Therefore, any horse's head is an animal head!

We formalize this in terms of Predicate Logic.

- Instead of: "any horse's head is an animal head"
- We formalize that as: "each part of a horse is part of an animal" $\forall x (\exists y (Hy \land Pxy) \rightarrow \exists y (Ay \land Pxy))$

Thus we get:

$$\forall x \; Hx \rightarrow Ax \vdash \forall x (\exists y (Hy \land Pxy) \rightarrow \exists y (Ay \land Pxy))$$

Example 3

$$\forall x \; Hx \to Ax \vdash \forall x (\exists y (Hy \land Pxy) \to \exists y (Ay \land Pxy))$$

- (1) **T:** $\forall x \ Hx \rightarrow Ax$
- (2) **F**: $\forall x(\exists y(Hy \land Pxy) \rightarrow \exists y(Ay \land Pxy))$
- (3) **F**: $\exists y(Hy \land Pay) \rightarrow \exists y(Ay \land Pay) \checkmark$
- (4) **T**: $\exists y (Hy \land Pay) \checkmark$
- (5) **F**: $\exists y (Ay \land Pay)$
- (6) **T**: *Hb* ∧ *Pab* ✓
- (7) **T:** Hb
- (8) **T:** Pab

F: ∀*x Fx*

F: Fa

if a is new to the branch

F: ∃*x Fx*

F: *Fa*, **F:** *Fb*, . . .

for all a, b, . . . in the branch – present and future! from (4) from (6)

from (2)

from (3)

from (3)

from (6)

T: ∃*x Fx*

T: Fa

if a is new to the branch

 $\frac{\mathsf{T:}\ \forall x\ Fx}{\mathsf{T:}\ Fa,\mathsf{T:}\ Fb,\ldots}$

for all a, b, . . . in the branch – present and future!

Example 3

$$\forall x \ Hx \rightarrow Ax \vdash \forall x (\exists y (Hy \land Pxy) \rightarrow \exists y (Ay \land Pxy))$$

$$(1) \quad \mathbf{T}: \quad \forall x \ Hx \rightarrow Ax \quad \checkmark^{b}$$

$$(2) \quad \mathbf{F}: \quad \forall x (\exists y (Hy \land Pxy) \rightarrow \exists y (Ay \land Pxy)) \quad \checkmark$$

$$(3) \quad \mathbf{F}: \quad \exists y (Hy \land Pay) \rightarrow \exists y (Ay \land Pay) \quad \checkmark \qquad \text{from (2)}$$

$$(4) \quad \mathbf{T}: \quad \exists y (Hy \land Pay) \quad \checkmark \qquad \text{from (3)}$$

$$(5) \quad \mathbf{F}: \quad \exists y (Ay \land Pay) \quad \checkmark^{b} \qquad \text{from (3)}$$

$$(6) \quad \mathbf{T}: \quad Hb \land Pab \quad \checkmark \qquad \text{from (4)}$$

$$(7) \quad \mathbf{T}: \quad Hb \qquad \text{from (6)}$$

$$(8) \quad \mathbf{T}: \quad Pab \qquad \text{from (6)}$$

$$(9) \quad \mathbf{T}: \quad Hb \rightarrow Ab \quad \checkmark \qquad \text{from (1)}$$

(10) **F:** *Hb* ½ from (9)

(11) **T**: Ab

from (9)

(12) **F:** *Ab* ∧ *Pab* √ from (5)

(13) **F:** Ab ½ from (12)

(14) **F:** Pab $\frac{1}{2}$ from (12)

All branches are contradictory. Sequent is *valid*!

Example 3 (Again with a different Order)

$$\forall x \ Hx \to Ax \vdash \forall x (\exists y (Hy \land Pxy) \to \exists y (Ay \land Pxy))$$

- (1) **T**: $\forall x \ Hx \rightarrow Ax \ \sqrt{b}$
- (2) **F**: $\forall x(\exists y(Hy \land Pxy) \rightarrow \exists y(Ay \land Pxy)) \checkmark$
- (3) **F:** $\exists y(Hy \land Pay) \rightarrow \exists y(Ay \land Pay) \checkmark$ from (2)
- (4) **T:** $\exists y (Hy \land Pay) \checkmark$ from (3)
- (5) **F**: $\exists y (Ay \land Pay) \lor b$ from (3)
- (6) **T:** $Hb \wedge Pab \checkmark$ from (4)
- (7) **T:** *Hb* from (6)
- (8) **T:** *Pab* from (6)
- (9) **F**: $Ab \wedge Pab \checkmark$ from (5)
- (10) **F**: *Ab* from (9) (11) **F**: *Pab* from (9)
- (12) **T:** $Hb \rightarrow Ab \sqrt{\text{from (1)}}$

(13) **F**: Hb ½ from (12) (14) **T**: Ab ½ from (12)

All branches are contradictory. Sequent is valid!

