本试卷适应范围
计科、网工、环科、环
工、食工、食安、信科、
产几 4 7 年

课程号	2320210	
DX 1 + 1	2020210	

			姓名		功以	_
_	学号 <u></u>				签名	
֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֓֓֡֓	题号	<u> </u>		 16.71		
	得分					

- 一、选择题 (每题 2 分, 共 20 分)

(A) 0

(B) $ilde{F}$

(C) \vec{F}/q_0

(D) 不能确定

- 2、下列说法正确的是()
- (A) 带正电的物体电势一定是正的
- (B) 电场强度为零的地方电势一定为零
- (C) 等势面与电场线处处正交
- (D) 等势面上的电场强度处处相等
- 3、有一个点电荷 q, 附近有一个不带电的导体 A 处于静电平衡态时, 导体 A 内部 P 点的电场强度 () (D) 无法确定
- (A) 等于零
- (B) 不为零
- (C) 与 q 相对 A 的位置有关
- 4、如图所示,在以圆形电流 I 的平面内,选取一个同心圆闭合回路 L。由安培环路定律可知()
- (A) $\oint_I \vec{B} \cdot d\vec{l} = 0$,且环路上任意一点 B=0
- (B) $\oint_L \vec{B} \cdot d\vec{l} = 0$,但环路上任意一点 B $\neq 0$
- (C) $\oint_{l} \bar{B} \cdot d\bar{l} \neq 0$,且环路上任意一点 $B \neq 0$
- (D) $\oint_L \bar{B} \cdot d\bar{l} \neq 0$,环路上任意一点 B=0

选择题4

选择题7

5、一个质点作简谐运动,振幅为 A, 在起始时刻质点的位移为-A/2, 且向 x 轴正方向运动, 代表此简谐运动 的旋转矢量为(

(B).

相同均为 I, 若 R=2r, 螺线管中的磁感应强度大小 B_R与 B_r满足(

(A) $B_R=4B_r$ (B) $B_R=B_r$ (C) $B_R=2B_r$ (D) $2B_R=B_r$ 7、一横波以速度 u $u u u u u u u u u$
(A) 紫光 (B) 黄光 (C) 蓝光 (D) 红光 10、若星光的波长按 550nm 计算,孔径为 127cm 的大型望远镜所能分辨的两颗星的最小角距离θ(从地上一点 看两星的视线间来角)是 (
(A) 3.2×10^{-3} rad (B) 1.8×10^{-4} rad (C) 5.3×10^{-5} rad (D) 5.3×10^{-7} rad
二、填空题(每空 2 分,共 30 分)
1、如图所示,在直角三角形 ABC 中,AB=0.03m,BC=0.04m。A 点有电荷 $q_1 = 1.8 \times 10^{-9} C$,B 点有电荷
$q_2 = -4.8 \times 10^{-9} C$,已知 $k = \frac{1}{4\pi\varepsilon_0} = 9.0 \times 10^9 N \cdot m^2 / C^2$ 。则 C 点的电场强度 E=
方向(用与 AC 的夹角描述)。
2、如图所示,在点电荷+q的电场中,若取无穷远处为电势零点,P点的电势等于;若取图中 M
点为电势零点,则 P 点的电势等于。 ldl
Λ
+q P M
+q P M
填空题 2
填空题 1
/ / / / / / / / / / / / / / / / / / /
3、 一无限长直导线,通有电流 I ,导线的中部被弯成半径为 R 半圆形状,如图所示。则半圆圆心 O 处的磁
感应强度大小 B=。
4、电子在磁感应强度为 B 的均匀磁场中做半径为 R 的圆周运动,电子运动周期等于; 电子运动
所形成的等效圆电流强度 I=;等效圆电流的磁矩 Pm=(已知电子电量的大小为 e,
电子的质量为 m)。
5、一个质点作简谐振动,周期为 T ,某一时刻,质点由平衡位置向 x 轴正方向运动,则该质点运动到二分之
一最大位移所需要的最短时间为。
6、在垂直照射的劈尖干涉实验中,当劈尖的夹角变大时,相邻条纹间距离将变。
7 、一束自然光从折射率 n_1 的介质向折射率为 n_2 的介质入射,在两种介质的交界面上,发生反射和折射,已
知反射光是完全线偏振光,此时折射角为 γ ,则 $\tan \gamma =$ 。
8、真空中波长为 λ 的单色光, 在折射率为 n 的透明介质中从 A 沿某路径传播到 B, 若 A 和 B 两点相位差为
3π, 则此路径 AB 的光程为。
9、一个平凸透镜, 凸面朝下放在平玻璃板上, 之间形成空气膜。用波长分别为 λ_i =600nm 和 λ_2 =500nm 的两

种单色光垂直入射,观察反射光形成的牛顿环。从中心向外数的两种光的第五个明环所对应的空气膜厚度之

- 10、用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。若屏上点 P 处为第二级暗纹,则相应的单缝 波阵面可分成_____个半波带。
- 11、波长为 400nm 的光垂直投射到每厘米 6000 条刻线的光栅上,则最多能观察到的级次是_____级。
- 三、计算题 (每题 10 分, 共 50 分)
- 1、如图所示,真空中有半径为 R_1 和 R_2 的两个同心球壳均匀带电,小球壳带有电量+q,大球壳内表面带有 电量一q,外表面带有电量十q。
- 求:(1)小球壳内,两球壳间及大球壳外任一点的电势;
- (2) 两球壳的电势差。

2、在一半径 R=1.0cm 的无限长半圆柱形金属薄片中,自上而下地有电流 I=5.0 A通过,电流分布均匀, 如示意图a所示,图b为从下往上看到的截面示意图。试求圆柱轴线任一点P处的磁感应强度。

- 3、一简谐波在介质中沿x轴正方向传播,振幅 A=0.2m ,周期 T=0.2s ,波长 $\lambda=5m$. 当 t=0 时刻,波 源振动的位移为正方向的最大值。把波源的位置取为坐标原点,求
- (1) 这个简谐波的波函数; (2) $t_1 = T/2$ 时刻, $x_1 = \lambda/4$ 处质元的位移。

4、空气(n=1)中垂直入射的白光,从均匀的薄膜表面反射,发生了对波长 680nm 的光有一个干涉极大, 对波长 510nm 的光有一个干涉极小,对其他波长的光没有干涉极大或极小现象。求此薄膜的厚度(设薄 膜折射率 n=1.33)。

5、用白光垂直照射到每厘米刻有 5000 条缝的光棚上,已知红光波长为 760nm,紫光波长为 400nm.求: (1) 第二级光谱的张角(2) 能看到几级完整的光谱。

系主任 将夕平