Python 数据分析

班级:2017211314

学号:2017213508

学生:蒋雪枫

一. 任务

数据处理是学习 Python 必须掌握的一门技能,本次课堂中杨老师给我们简单介绍了以下有关的知识与技术,并布置了如下任务:

作业1:

- 1.在链家官网上,找一个你感兴趣的城市,将其二手房数据爬取下来(取前100页3000个数据,如果不够3000个则取全部),并进行清洗整理(去掉不必要的空格,算出单价,房屋建成年份用整数表示等);
- 2.查看总价和均价的统计量分析;
- 3.完成总价和单价的分布分析:要求画出直方图;
- 4.进行帕累托分析:看看是否符合二八定律。

二. 网站爬虫(深圳市)

Item 定义:

```
import scrapy

class XinfangItem(scrapy.Item):
name = scrapy.Field()
information = scrapy.Field()
totalprice = scrapy.Field()
unitprice = scrapy.Field()
```

网页数据获取:

```
class xinfangSpider(scrapy.spiders.Spider):
    name = "fuck"
    allowed_domains = ["sz.lianjia.com/"]

start_urls = []
    for page in range(1,100):
        url = "https://sz.lianjia.com/ershoufang/pg{}/".format(page)

start_urls.append(url)

def parse(self,response):
    item = XinfangItem()
```

```
for i in range(1,30):
    item['name'] =
response.xpath('//*[@id="content"]/div[1]/ul/li[{}]/div[1]/div[1]/a/text()'.format(i)).extract()
    item['information'] =
response.xpath('//*[@id="content"]/div[1]/ul/li[{}]/div[1]/div[3]/div/text()'.format(i)).extract()
    item['totalprice'] =
response.xpath('//*[@id="content"]/div[1]/ul/li[{}]/div[6]/div[1]/span/text()'.format(i)).e
xtract()
    item['unitprice'] =
response.xpath('//*[@id="content"]/div[1]/ul/li[{}]/div[1]/div[6]/div[2]/span/text()'.format(i)).e
xtract()
    if(item['name'] and item['information'] and item['totalprice'] and
item['unitprice']):
        yield (item)
```

获取了数据之后再统一处理:

```
#打开 csv 文件
fileNameStr = 'dealsecondhand.csv'
orig_df = pd.read_csv(fileNameStr,encoding='utf-8',dtype=str)
#1.将 name,information,totalprice,unitprice 列去掉空格
orig_df['name'] = orig_df['name'].str.strip()
orig_df['information'] = orig_df['information'].str.strip()
orig_df['totalprice'] = orig_df['totalprice'].str.strip()
orig_df['unitprice'] = orig_df['unitprice'].str.strip()
#2.处理 unitprice 中的字
orig_df['unitprice'] = orig_df['unitprice'].str.replace("单价","")
orig_df['unitprice'] = orig_df['unitprice'].str.replace("元/平米","")
#3.将后两列转为整数,总价乘 10000
orig_df['unitprice'] = orig_df['unitprice'].astype(np.int)
orig_df['totalprice'] = orig_df['totalprice'].astype(np.float)
orig_df['totalprice'] = orig_df['totalprice'].astype(np.int)
orig_df['totalprice'] = orig_df['totalprice'] * 10000
#4.输出到文件
orig_df.to_csv("dealsecondhand.csv",encoding = 'gbk')
```

部分数据展示:

- 4	A B	C	D	E
13	11 交通方便,实用三房,满五唯一税少	3室2厅 79.83平米 西南 简装 中楼层(共12层) 2004年建 塔楼	5950000	74534
14	12 信和自由广场 经典小两房 满五年唯一	2室1万 50.27平米 东北 精装 中楼层(共26层) 2006年建 塔楼	4380000	87130
15	13 深业东城国际 3室1厅 280万	3室1厅 80.96平米 南 精装 低楼层(共33层) 2013年建 塔楼	2800000	34585
16	14 海富花园 精装两房 高楼层 居家舒适	2室1厅 72.54平米 东北 精装 高楼层(共32层) 1991年建 板塔结合	3180000	43838
17	15 此房是满二,正规一房一厅,翠竹地铁	1室1厅 41.9平米 南 简装 高楼层(共32层) 2005年建 板塔结合	2950000	70406
18	16 前海东岸 三室二厅一卫 精装修 全部	33室2厅 88.4平米 东南 精装 低楼层(共38层) 2018年建 塔楼	8500000	96154
19	17 和兴花园 厅出阳台中装3房 户型方正	3室2厅 92.61平米 南 精装 中楼层(共7层) 2002年建 板塔结合	3450000	37253
20	18 金地上塘道一期 2室1厅 410万	2室1厅 64.8平米 东南 精装 高楼层(共25层) 2010年建 塔楼	4100000	63272
21	19 满五年 户型方正 朝南向 安静舒适 5	¥2室1厅 83.52平米 东南 简装 高楼层(共7层) 1999年建 板塔结合	3800000	45499
22	20 这套房子正南客厅出阳台,双阳台视野	2室1万 81.49平米 东南 毛坯 高楼层(共25层) 2007年建 板楼	2300000	28225
23	21 楼下壹方天地,楼上你的温馨有爱之家	3室1万 78.8平米 西南 西 南 简装 低楼层(共49层) 2017年建 板塔结合	5200000	65990
24	22 本大厦少有客厅带阳台, 主卧有阳台 7	3室2厅 95.6平米 西南 精装 低楼层(共24层) 1996年建 塔楼	5300000	55440
25	23 近地铁物业,满五年,红本在手看房有	3室2万 101.77平米 北 简装 中楼层(共12层) 2002年建 塔楼	2750000	27022
26	24 高楼层 东南向 复式两房 不算一层面积	9 2室2厅 43.9平米 西北 简装 低楼层(共15层) 2004年建 板塔结合	3150000	71754
27	25 星海名城一起方正大三房、安静看花园	3室2厅 92平米 东北 精装 低楼层(共9层) 2001年建 板塔结合	6800000	73914
28	26 阳光两房满五唯一本在手 交通便利 生	2室1万 72.44平米 东北 精装 中楼层(共11层) 2005年建 板塔结合	2980000	41138
29	27 红本在手,业主性格好,诚意出售,拎	2室1万 47.6平米 西南 简装 高楼层(共32层) 2006年建 板塔结合	3250000	68278
30	28 桃源居十一区 3室2厅 508万	3室2厅 85平米 东南 精装 低楼层(共18层) 2008年建 塔楼	5080000	59765
31	29 公务员社区,户型通透,采光好,业主	2室1万 72.6平米 东南 简装 中楼层(共8层) 1997年建 板塔结合	4200000	57852
32	30 海月社区顶楼复式,品牌精装,带私家	4室2斤 149.14平米 南 精装 高楼层(共6层) 2002年建 板塔结合	16800000	112646
33	31 鸿翔花园精装两房 , 满两年, 地铁9号	2室1厅 73.68平米 西南 西北 简装 中楼层(共32层) 2006年建 塔楼	5400000	73290
34	32 满五年红本,装修保养好,看房方便,	1室1万 45.37平米 西南 精装 低楼层(共31层) 2000年建 板塔结合	2400000	52899
35	33 宝安碧海,高尔夫球场碧海湾公园边上	. 3室2厅 88.01平米 东南 精装 低楼层(共30层) 2012年建 塔楼	6000000	68175
36	34 地铁口物业花园小区, 满五年红本诚心	23室1厅 80.02平米 南 简装 中楼层(共18层) 2007年建 板楼	6500000	81230
37	35 精装修大两房, 南北通, 通风采光, 好	2室1厅 72.79平米 东南 精装 中楼层(共29层) 1999年建 板塔结合	2800000	38467

三. 统计量数据分析与箱线图

	Unnamed: 0	totalprice	unitprice
count	1300.000000	1.300000e+03	1300.000000
mean	649.500000	5.263023e+06	62607.080769
std	375.421985	3.333603e+06	22653.136360
min	0.000000	6.500000e+05	25000.000000
25%	324.750000	3.300000e+06	44957.000000
50%	649.500000	4.500000e+06	59579.000000
75%	974.250000	6.300000e+06	75289.500000
max	1299.000000	4.800000e+07	169645.000000

四. 总价与单价分布分析

以下两个子任务均在一份 py 代码中完成:

```
#生成2个子图
fig = plt.figure()
ax1 = fig.add_subplot(121) #展示总价信息
ax2 = fig.add_subplot(122) #展示单价信息
#打开 CSV 文件
fileNameStr = 'dealsecondhand.csv'
df = pd.read_csv(fileNameStr,encoding='gbk')
def count_elements(scores): #定义转换函数,统计每个数值对应多少个
    scorescount = {} #定义一个字典对象
    for i in scores:
        scorescount[int(i)] = scorescount.get(int(i), 0) + 1 #累加每个整数数值的个数
    return scorescount
#part1 展示总价和单价的分布直方图
df['totalprice'] = df['totalprice'] / 1000000
counted1 = count_elements(df["totalprice"])
ax1.set_title("Total_Price")
ax1.bar(counted1.keys(),counted1.values(),0.8,alpha=0.5,color='b')
df['unitprice'] = df['unitprice'] / 10000
counted2 = count_elements(df["unitprice"])
ax2.set_title("Unit_Price")
ax2.bar(counted2.keys(),counted2.values(),0.8,alpha=0.5,color='r')
```

```
#part2,对总价信息进行区间化的处理
ax1.set_title("Total_Price")
sections = list(np.arange(0,2900,50))
print(len(sections))
mylabels = list(np.arange(25,2850,50)) #生成 x 轴上的标签
print(len(mylabels))
#result1 = pd.cut(df.totalprice,sections) #使用 cut 函数分组汇总
df['totalprice'] = df['totalprice'] / 10000
result1 = pd.cut(df.totalprice,sections,labels=mylabels) #使用 cut 函数分组汇总
print("-----")
print(result1)
print(type(result1))
print("-----result1.value_counts-----")
print(result1.value_counts())
result2=result1.value_counts().sort_index() #按照索引值进行排序
print("-----")
print(result2)
ax1.set_xlim(0,2800) #设定 x 轴的起止范围
ax1.bar(result2.index,result2.values,40,alpha=0.5,color='b') #40 表示取值宽度 50*0.8
df['unitprice'] = df['unitprice'] / 10000
counted2 = count_elements(df["unitprice"])
ax2.set_title("Unit_Price")
ax2.bar(counted2.keys(),counted2.values(),0.8,alpha=0.5,color='r')
plt.show()
#part3: 二八定律
plt.figure()
df_counts = pd.Series(result2.values) #频数,每个区间中房子的个数
print("-----df_counts-----")
print(df_counts)
df_freq = df_counts/df_counts.sum()  #频率,每个区间的房子个数/总个数,即每个区间
的占比
print("-----")
print(df_freq)
```

```
#累计频率,累计百分比
cum_ratio = df_freq.cumsum()
print("-----df_cum_freq-----")
print(cum_ratio)
df_counts.plot(kind = 'bar', color = 'b', alpha = 0.8, width = 0.6) #频数的直方图
key = cum_ratio[cum_ratio>0.8].index[0] #找到大于 80%的累计频率对应的索引号
key_num = df_counts.index.tolist().index(key) #找到对应的索引序号
print('超过 80%累计占比的节点值: ' ,(key+1)*50)
print('超过 80%累计占比的节点值索引位置为: ',key_num)
print('----')
cum_ratio.plot(style = '--ko', secondary_y=True) #累计频率的曲线图
plt.axvline(key_num, color = 'r', linestyle = '--', alpha = 0.8) #把 80%占比的参考线画出来,
直接是 key_num,因为它是 X 轴的索引值
plt.text(key_num+1,cum_ratio[key],'cumsum is: %.3f%%' % (cum_ratio[key]*100), color = 'r') #
文字提示信息
plt.show()
```


五. 帕累托分析

实现代码如上,结论一目了然.

