Research Proposal

Research Statement: The AI research field is evolving rapidly, and researchers struggle to keep up with emerging trends.

Similar studies have been done before. A study published in *Nature Machine Intelligence* introduced a graph-based benchmark utilizing real-world data to forecast AI research directions. Another study employed machine learning to analyze semantic networks, enabling predictions about future research trends within specific disciplines. A study examined AI's role in healthcare by analyzing research articles to pinpoint hot topics and unresolved issues. Similarly, another analysis focused on AI's integration into the Internet of Medical Things (IoMT), outlining the overall structure and general applications of AI in this domain. The first two studies revolved around natural language processing and the last two were about bibliometric analyses.

Data:

The data for this research paper would come from multiple sources.

Data Source	Data Use	
ArXiv	Pre-prints of AI research papers	
Semantic Scholar	AI search for academic papers	
Microsoft Academic Graph	Metadata and citation data	
Google Scholar	Citation trends and influential papers	
Scopus / Web of Science	Reviewed AI papers and citation analysis	
ACL Anthology	NLP and computational linguistics research	
IEEE Xplore	AI research in engineering and science	

Knowledge Mining Methods:

Method	Purpose	Use
Topic Modeling	Identifies trending AI topics	Finding research trends
Citation Network Analysis	Finds influential papers	Mapping AI knowledge flow
Time-Series Forecasting	Predicts future research	Forecasting AI subfields
	trends	-
Knowledge Graphs	Structures research	Linking AI concepts over
	knowledge	time

Citations:

Krenn, M., Buffoni, L., Coutinho, B. *et al.* Forecasting the future of artificial intelligence with machine learning-based link prediction in an exponentially growing knowledge network. *Nat Mach Intell* **5**, 1326–1335 (2023). https://doi.org/10.1038/s42256-023-00735-0

Krenn, M., & Zeilinger, A. (2020). Predicting research trends with semantic and neural networks with an application in quantum physics. *Proceedings of the National Academy of Sciences*, 117(4), 1910-1916.

Senthil, R., Anand, T., Somala, C. S., & Saravanan, K. M. (2024). Bibliometric analysis of artificial intelligence in healthcare research: Trends and future directions. *Future healthcare journal*, *11*(3), 100182. https://doi.org/10.1016/j.fhj.2024.100182

Chiroma H, Hashem IAT and Maray M (2024) Bibliometric analysis for artificial intelligence in the internet of medical things: mapping and performance analysis. *Front. Artif. Intell.* 7:1347815. doi: 10.3389/frai.2024.1347815