1 Mathematical formulism of quantum mechanics

Definition 1.1. We define a *Hilbert space* \mathcal{H} as a vector space over the field \mathbb{C} where there is an inner product \langle,\rangle that has the properties of

- 1. Linearity: $\langle \phi | (a | \psi_1 \rangle + b | \psi_2 \rangle) = a \langle \phi | \psi_1 \rangle + b \langle \phi | \psi_2 \rangle$,
- 2. Positivity: $\langle \psi | \psi \rangle > 0, \forall \psi \neq 0$,
- 3. Hermiticity: $\langle \psi | \phi \rangle = \overline{\langle \phi | \psi \rangle}$,

and such that is complete in the norm $||\psi\rangle|| := \sqrt{\langle \psi | \psi \rangle}$.

Definition 1.2. Let \mathcal{H} be a Hilbert space. We define an *orthonormal basis* $\mathcal{B} = (|e_i\rangle)$ as a collection of vectors that satisfy the following conditions

- 1. $\forall |\psi\rangle \in \mathcal{H} \quad \exists !(\alpha_1, \dots, \alpha_n) \text{ such tat } |\psi\rangle = \sum_{i=1}^n \alpha_i |e_i\rangle,$
- 2. $\forall i, j \leq n \ \langle e_i | e_j \rangle = \delta_{ij}$.

Proposition 1.1. Let $\mathcal{H}be$ a Hilbert space, $|\psi\rangle \in \mathcal{H}$ a vector and $\mathcal{B} = (|e_i\rangle)$ a basis. Then,

$$|\psi\rangle = \sum_{i=1}^{n} \alpha_i |e_i\rangle, \text{ with } \alpha_i = \langle e_i | \psi \rangle.$$
 (1)

Definition 1.3. Let \mathcal{H} be a Hilbert space, $|\psi\rangle \in \mathcal{H}$ a vector and $\mathcal{B} = (|e_i\rangle)$ a basis. We define the *representation of* $|\psi\rangle$ *in the basis* \mathcal{B} as

$$|\psi\rangle_{\mathcal{B}} \coloneqq \begin{pmatrix} \alpha_i \\ \vdots \\ \alpha_n \end{pmatrix}_{(|e_i\rangle)} .$$
 (2)

Definition 1.4. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in \mathcal{H}$ a vector. We define a bra as

$$\langle \psi | := |\psi \rangle^{\dagger} \in \mathcal{H}.$$
 (3)

Proposition 1.2. Let $\mathcal{H}be$ a Hilbert space, $|\psi\rangle \in \mathcal{H}$ a vector and $\mathcal{B} = (|e_i\rangle)$ a basis. If $|\psi\rangle = \sum \alpha_i i |e_i\rangle$, then

$$\langle \psi | = \sum_{i=1}^{n} \overline{\alpha_i} \langle e_i | .$$
 (4)

Definition 1.5. Let \mathcal{H} be a Hilbert space. we define the *inner product* as the function $f_{in}: \mathcal{H} \times \mathcal{H} \longrightarrow \mathbb{C}$ that acts as follows

$$f_{in}\left(\langle\psi|,\langle\phi|\right) := \langle\psi|\phi\rangle = |\psi\rangle^{\dagger}|\phi\rangle =$$
 (5)

$$(\overline{\alpha_1} \quad \dots \quad \overline{\alpha_n}) \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} = \sum_{i=1}^n \overline{\alpha_i} \beta_i.$$
 (6)

Proposition 1.3. The inner product satisfies the conditions of hermitic product for a Hilbert space.

Of Definition 1.6. Let \mathcal{H} be a Hilbert space and $|\psi\rangle, |\phi\rangle \in \mathcal{H}$ two vectors. We say they are *orthogonal* if and only if $\langle\psi|\phi\rangle = 0$.

Definition 1.7. Let \mathcal{H} be a Hilbert space and $|\psi\rangle \in \mathcal{H}$ a vector. We say it is normalized if and only if $\langle \psi | \psi \rangle = 1$.

Definition 1.8. Let \mathcal{H} be a Hilbert space. We dfien the *exterior product* as the function $f_{ext}: \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H}_{2\times 2}$ that acts as follows

$$f_{ext}(|\psi\rangle, |\phi\rangle) := |\psi\rangle\langle\phi| = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} (\overline{\beta_1} \quad \dots \quad \overline{\beta_n}) =$$
(7)

$$\begin{pmatrix} \alpha_1 \overline{\beta_1} & \dots & \alpha_1 \overline{\beta_n} \\ \vdots & \ddots & \vdots \\ \alpha_n \overline{\beta_1} & \dots & \alpha_n \overline{\beta_n} \end{pmatrix}. \tag{8}$$

Definition 1.9. Let \mathcal{H} be a Hilbert space. we define a *linear operator* as an application $A: \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H}$ such that if $a, b \in \mathbb{C}$ and $\psi_1, \psi_2 \in \mathcal{H}$, then

$$A(a|\psi_1\rangle + b|b_2\rangle) = aA(|\psi_1\rangle) + bA(|\psi_2\rangle).$$
 (9)

We denote the matrix form of A as \hat{A} .

Proposition 1.4. Let \mathcal{H} be a Hilbert space, A an operator and $B = (|e_i\rangle)$ a basis. If $|\psi\rangle = \sum \alpha_i |e_i\rangle$, then $\hat{A} |\psi\rangle$ is uniquely determined by the elements $|f_i\rangle = |f(e_i)\rangle$ as follows

$$A(|\psi\rangle) = \sum_{i=1}^{n} \alpha_i |f_i\rangle.$$
 (10)

Proposition 1.5. Let \mathcal{H} be a Hilbert space, $A : \mathcal{H} \longrightarrow \mathcal{H}$ an operator and $\mathcal{B} = (|e_i\rangle)$ a basis. Then,

$$\hat{A} = \sum_{i=1}^{n} |f_i\rangle\langle e_i|. \tag{11}$$

Proposition 1.6. Let \mathcal{H} be a Hilbert space, $A : \mathcal{H} \longrightarrow \mathcal{H}$ an operator and $\mathcal{B} = (|e_i\rangle)$ a basis. Then,

$$\hat{A} = \sum_{i=1}^{n} A_{ij} |e_i\rangle\langle e_j|, \text{ with } A_{ij} = f_i^{(j)} = \langle e_i | \hat{A} | e_j \rangle.$$
 (12)

Proposition 1.7. Let \mathcal{H} be a Hilbert space, $A : \mathcal{H} \longrightarrow \mathcal{H}$ an operator and $\mathcal{B} = (|e_i\rangle)$ a basis. Then,

$$\hat{A}|e_k\rangle = \sum_{l=1}^n \hat{a}_{lk}|e_l\rangle. \tag{13}$$

Proposition 1.8. Let \mathcal{H} be a Hilbert space, $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator, $\mathcal{B} = (|e_i\rangle)$ a basis and $|\psi\rangle \in \mathcal{H}$ a vector. If $|\psi\rangle = \sum \alpha_i |e_i\rangle$ and $|\phi\rangle = \hat{A} |\psi\rangle = \sum \beta_i |e_i\rangle$, then

$$\beta_j = \langle e_j | \phi \rangle = \sum_{k=1}^j \hat{A}_{jk} \alpha_k. \tag{14}$$

Definition 1.10. Let \mathcal{H} be a Hilbert space and A: $\mathcal{H} \longrightarrow \mathcal{H}$ an operatorr. We define the *action by the right* of as the following way.

$$\left(\left\langle\phi\right|\hat{A}\right)\left|\psi\right\rangle := \left\langle\phi\right|\left(\hat{A}\left|\psi\right\rangle\right), \ \forall\left|\psi\right\rangle, \left|\phi\right\rangle \in \mathcal{H}$$
 (15)

Definition 1.11. Let \mathcal{H} be a Hilbert space, $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator that transforms $|\psi\rangle$ in $|\phi\rangle = \hat{A} |\psi\rangle$. We define the *adjoint operator* A^{\dagger} as the operator that transforms $|\psi\rangle$ to $|\psi\rangle$

Proposition 1.9. Let \mathcal{H} be a Hilbert space, $A, B: \mathcal{H} \longrightarrow \mathcal{H}$ two operators and $|\psi\rangle, |\phi\rangle \in \mathcal{H}$ two vectors. Then,

- 1. $|\psi\rangle^{\dagger} = \langle \psi|,$
- 2. $(|\phi\rangle\langle\psi|)^{\dagger} = |\psi\rangle\langle\phi|,$
- 3. $(\lambda \hat{A})^{\dagger} = \overline{\lambda} \hat{A}^{\dagger}$,
- 4. $\left(\hat{A}\left|\psi\right\rangle\right)^{\dagger} = \left\langle\psi\right|\hat{A}^{\dagger},$
- $5. \left(\hat{A}\hat{B}\right)^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}.$

Proposition 1.10. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator. Then,

$$\hat{A}^{\dagger} = \hat{A}^{\dagger}, \ [A^{\dagger}]_{ij} = [A]_{ij}^{*}.$$
 (16)

Definition 1.12. Let \mathcal{H} be a Hilbert space. We define the *identity operator* $I:\mathcal{H}\longrightarrow\mathcal{H}$ as the operator that satisies

$$\hat{I}|\psi\rangle = |\psi\rangle, \ \forall |\psi\rangle \in \mathcal{H}.$$
 (17)

Proposition 1.11. Let \mathcal{H} be a Hilbert space and $B = (|e_i\rangle)$ an orthonormal basis. Then,

$$\hat{I} = \sum_{i=1}^{n} |e_i\rangle\langle e_i|. \tag{18}$$

Proposition 1.12. Let \mathcal{H} be a Hilbert space. Then, \hat{I} is independent of the orthonormal basis.

Definition 1.13. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator. We define the *trace of* A as the trac of its matrix \hat{A} , that is,

$$\operatorname{tr} A := \operatorname{tr} \hat{A} = \sum_{i=1}^{n} \langle e_i | \hat{A} | e_i \rangle.$$
 (19)

Definition 1.14. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator. Then, $\operatorname{tr} A$ is independent of the orthonormal basis.

Proposition 1.13. Let \mathcal{H} be a Hilbert space and $A, B : \mathcal{H} \longrightarrow \mathcal{H}$ two operators. Then,

$$\operatorname{tr}(\hat{A}\hat{B}) = \operatorname{tr}(\hat{B}\hat{A}).$$
 (20)

Corollary 1.14. Let \mathcal{H} be a Hilbert space and $A, B, C: \mathcal{H} \longrightarrow \mathcal{H}$ three operators. Then,

$$\operatorname{tr}\left(\hat{A}\hat{B}\hat{C}\right) = \operatorname{tr}\left(\hat{C}\hat{A}\hat{B}\right) = \operatorname{tr}\left(\hat{B}\hat{C}\hat{A}\right). \tag{21}$$

Proposition 1.15. Let \mathcal{H} be a Hilbert space, $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator and $|\psi\rangle, |\phi\rangle \in \mathcal{H}$ two vectors. Then,

$$\operatorname{tr}\left(\hat{A}|\psi\rangle\langle\phi|\right) = \langle\phi|\,\hat{A}\,|\psi\rangle\,.$$
 (22)

Definition 1.15. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an operator. We say A is hermitian or autoadjoint if and only if $A = A^{\dagger}$.

Proposition 1.16. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an hermitian operator. Then, \hat{A} is diagonalizable and there exists an orthonormal basis $\mathcal{B} = (|e_i\rangle)$ such that

$$\hat{A} = \sum_{i=1}^{n} \lambda_i |e_i\rangle\langle e_i|, \qquad (23)$$

where $\lambda_i s$ are the eigenvalues and $|e_i\rangle s$ the eigenvectors of \hat{A} .

Theorem 1.17. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ a hermitian operator. Then,

- 1. The eigenvalues λ_i are all real.
- 2. The eigenvectors with different eigenvalues are orthogonal, that is, $\langle e_i | e_j \rangle = 0$.

Definition 1.16. Let \mathcal{H} be a Hilbert space, $A: \mathcal{H} \longrightarrow \mathcal{H}$ a hermitian operator and $|e_1\rangle, \ldots, |e_r\rangle$ the eigenvectors of \hat{A} . We say $|e_i\rangle$, $|e_j\rangle$ are degenerate if and only if they have the same eigenvalue. In this case, we define the degree of the egeneration of an eigenvalue λ as dim E_{λ} .

Definition 1.17. Let \mathcal{H} be a Hilbert space, $G \subseteq \mathcal{H}$ a subspace of dimensioni m and $\mathcal{B} = (|g_i\rangle)$ an orthonormal basis of G. We define the *projector to the subspace* G as the operator $P: \mathcal{H} \longrightarrow G$ determined by

$$\hat{P} = \sum_{i=1}^{r} |g_i\rangle\langle g_i|. \tag{24}$$

Proposition 1.18. Let \mathcal{H} be a Hilbert space, $V_1, \ldots, V_m \subseteq \mathcal{H}$ subspaces and $P_1 : \mathcal{H} \longrightarrow G_1, \ldots, P_m : \longrightarrow G_m$ the projectors to these spaces. Then,

$$\hat{P}_i \hat{P}_i = \delta_{ij} \hat{P}_i. \tag{25}$$

Proposition 1.19. Let \mathcal{H} be a Hilbert space and $A: \mathcal{H} \longrightarrow \mathcal{H}$ an hermitian operator. Let $\lambda_1, \ldots, \lambda$ be the different eigenvalues of \hat{A} with their subspaces V_1, \ldots, V_m of diensions d_1, \ldots, d_m and $P_1: \mathcal{H} \longrightarrow V_1, \ldots, P_m: \mathcal{H} \longrightarrow V_m$ the projectors to these subspaces. Then,

$$\hat{A} = \sum_{i=1}^{m} \lambda_i \hat{P}_i. \tag{26}$$

We call this expression the spectral decomposition.