Deadlocks (1)

Dr. Jun Zheng
CSE325 Principles of Operating
Systems
10/7/2019

Deadlock

- ☐ The permanent blocking of a set of processes that either compete for system resources or communicate with each other
- ☐ A set of processes is deadlocked when each process in the set is blocked awaiting an event that can only be triggered by another blocked process in the set
- Permanent
- ☐ No efficient solution

Traffic Deadlock

Example 1: Reusable Resources

Process	P
---------	---

Process	Q
----------------	---

Step	Action
p_0	Request (D)
p_1	Lock (D)
p_2	Request (T)
p_3	Lock (T)
p_4	Perform function
p_5	Unlock (D)
p_6	Unlock (T)

Step	Action
q_0	Request (T)
q_1	Lock (T)
q_2	Request (D)
q_3	Lock (D)
q_4	Perform function
q_5	Unlock (T)
q_6	Unlock (D)

Example 2: Memory Request

☐ Space is available for allocation of 200Kbytes, and the following sequence of events occur:

```
P1
...
Request 80 Kbytes;
...
Request 60 Kbytes;
```

```
P2
...
Request 70 Kbytes;
...
Request 80 Kbytes;
```

☐ Deadlock occurs if both processes progress to their second request

