Теорія категорії І курс магістратура, 2 семестр

17 лютого 2024 р.

0.1 Основні означення

Definition 0.1.1 Категорія C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за X, Y, Z, \ldots , а набір позначають за Ob(C);
- із набору **морфізмів**; морфізми позначають за f, g, h, \ldots , а набір позначають за $\operatorname{Hom}(C)$;
- кожний морфізм має область визначення та область значень; позначається зазвичай як $f \colon X \to Y$, де об'єкт X область визначення, об'єкт Y область значень;
- кожний об'єкт X має **тотожний морфізм** $1_X: X \to X$;
- для кожних морфізмів $f\colon X\to Y,\ g\colon Y\to Z$ існуватиме **композиція морфізмів** $g\circ f\colon X\to Z.$ При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів $f\colon X\to Y$ виконано $1_Y\circ f=f\circ 1_X=f;$
- 2) для кожних трьох морфізмів $f \colon W \to X, g \colon X \to Y, h \colon Y \to Z$ виконується асоціативність композиції, тобто $f \circ (g \circ h) = (f \circ g) \circ h$.

Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

Example 0.1.3 Розглянемо Set – це буде категорія, яка складається з наступного:

- − Ob(Set) набір всіх множин;
- Hom(Set) набір всіх відображень;
- тотожне відображення $1_X: X \to X$ задається як $x \mapsto x$;
- композиція між $f: X \to Y$ та $g: Y \to Z$ задається $g \circ f$ таким чином: $x \mapsto f(x) \mapsto g(f(x))$. Ясно, що всі ці дві аксіоми виконані.

Важливо, що Ob(Set) – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі, Set(X,Y) – набір всіх відображень $f\colon X\to Y$ – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку $X\times Y$. Коли ми беремо дві довільні множини X,Y, то звідси $X\times Y$ теж буде множиною.

Example 0.1.4 Розглянемо стисло ще приклади категорій:

- 1) Grp об'єктами будуть групи; стрілками будуть гомоморфізми груп;
- 2) Ring об'єктами будуть кільця; стрілками будуть гомоморфізмами кілець;
- 3) Тор об'єктами будуть топологічні простори; стрілочками будуть неперервні відображення;
- 4) Мап об'єктами будуть гладкі многовиди; стрілочками будуть гладкі відображення.

Example 0.1.5 Розглянемо моноїд M. Ми можемо утворити категорію \mathcal{M} , яка містить єдиний об'єкт — це моноїд.

Example 0.1.6 Розглянемо так званий посет (P, \prec) (partially ordered set). Скажемо, що $\mathrm{Ob}(P) = P$ та P(i,j) – це будуть тільки ті стрілки, для яких $i \prec j$. Композиція тут існує, оскільки \prec є транзитивним відношенням. Також існує тотожне відображення, оскільки \prec є рефлексивним відношенням.

Навіть не обов'язково тут вимагати, щоб для (P, \prec) відношення \prec було антисиметричним.

Definition 0.1.7 Задано C – категорія.

Стрілочка $f\colon X\to Y$ називається ізоморфізмом, якщо існує стрілка $g\colon Y\to X$, для якої

$$f \circ g = 1_Y$$
 $g \circ f = 1_X$

У свою чергу об'єкти X,Y даної категорії називаються **ізоморфними**.

Позначення: $X \cong Y$.

Definition 0.1.8 Ендоморфізмом назвемо стрілочку $f: X \to X$. Тобто це стрілка між двома однаковими об'єктами.

Автоморфізмом назвемо ізоморфім f, який є ендоморфізмом.

Definition 0.1.9 Категорія C називається дискретною, якщо

$$C(A,B) = \begin{cases} \emptyset, & A \neq B \\ \{1_A\}, & A = B \end{cases}$$

Тобто існують лише стрілки $A \to A$, і тільки тотожні.

Definition 0.1.10 Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок $A \to B$ в D міститься в наборі стрілок $A \to B$ в C для довільних об'єктів A,B із D композиція двох морфізмів в D задається так само, як і в C

Definition 0.1.11 Підкатегорія D категорії C називається **повною**, якщо

набір стрілок A, B в D збігається з набором стрілок A, B в C, для довільних об'єктів A, B із D

0.2 Узагальнення ін'єкції та сюр'єкції

0.2.1 Монік

Definition 0.2.1 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається **моніком**, якщо

$$\alpha\beta_1 = \alpha\beta_2 \implies \beta_1 = \beta_2$$

Тобто морфізм - монік, якщо можна завжди скоротити зліва.

$$z \xrightarrow{\beta_2} x \xrightarrow{\alpha} y$$

Theorem 0.2.2 У конкретній категорії кожний ін'єктивний морфізм – монік.

Proof

Нехай C — конкретна категорія та $\alpha\colon X\to Y$ — ін'єктивний морфізм. Нехай $\beta_1,\beta_2\colon Z\to X$ — морфізми C та припустимо, що $\alpha\beta_1=\alpha\beta_2$. Для всіх $z\in Z$ ми маємо $\alpha(\beta_1(z))=\alpha\beta_1(z)=\alpha\beta_2(z)=\alpha(\beta_2(z))$, тому за ін'єктивністю, $\beta_1(z)=\beta_2(z)$. Отже, $\beta_1=\beta_2$.