UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT-INF 1100 — Modellering og

beregninger.

Eksamensdag: Onsdag 7. oktober 2015.

Tid for eksamen: 15:00-17:00.

Oppgavesettet er på 5 sider.

Vedlegg: Formelark.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Svarene føres på eget svarark.

De 10 første oppgavene teller 2 poeng hver, de siste 10 teller 3 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer for hvert spørsmål, men det er bare ett av disse som er riktig. Dersom du svarer feil eller lar være å krysse av på et spørsmål, får du null poeng. Du blir altså ikke "straffet" med minuspoeng for å svare feil. Lykke til!

NB. Husk å sjekke at du har ført inn svarene riktig på svararket!

Oppgaveark

Oppgave 1. Det desimale tallet 231 representeres i totallssystemet som

A: 1111 0111₂

B: 1100 1011₂

C: 1101 1010₂

D: 1110 0111₂

E: 1110 1011₂

Oppgave 2. I 16-tallsystemet blir det binære tallet 1010 1110.1101 $\mathbf{1}_2$ skrevet som

A: $ae.d8_{16}$

B: $ad.e8_{16}$

C: $af.b3_{16}$

D: $bd.c6_{16}$

E: *c*4.*cd*₁₆

Oppgave 3. Tallet 1201₃ i 3-tallsystemet representerer det desimale tallet

A: 44

B: 48

C: 43

D: 47

E: 46

Oppgave 4. Det rasjonale tallet 9/20 kan skrives i 2-tallsystemet som

A: $0.0111\ 0011\ 0011\cdots_2$ der sifrene 0011 gjentas uendelig mange ganger

B: $0.0101\ 0011\ 0011\ \cdots$ der sifrene 0011 gjentas uendelig mange ganger

C: $0.0101\ 1011\ 1011\ \cdots$ der sifrene 1011 gjentas uendelig mange ganger

D: 0.0111 1011 $1011 \cdot \cdot \cdot_2$ der sifrene 1011 gjentas uendelig mange ganger

E: 0.0111 0101₂

Oppgave 5. Tallet 7312₈ i 8-tallsystemet skrives i 2-tallsystemet som

A: 0111 1100 1010₂

B: 1110 1100 1010₂

C: 1111 1100 1010₂

D: 1110 1111 1010₂

E: 1010 1100 1011₂

Oppgave 6. Kun ett av følgende utsagn er sant, hvilket?

A: Alle rasjonale tall med nevner større enn 1 og mindre enn 11 kan representeres med en endelig sifferutvikling i 105-tallsystemet

B: Det rasjonale tallet 5/14 kan representeres med en endelig sifferutvikling i 6-tallsystemet

 $\mathbf{C} \colon$ Det rasjonale tallet 3/7 kan representeres med en endelig sifferutvikling i 14-tallsystemet

 $\mathbf{D}\text{:}$ Både 1/6 og 1/20 kan representeres med endelige sifferutviklinger i 6-tallsystemet

 $\mathbf{E} \text{:}\ \mathrm{Det}\ \mathrm{rasjonale}\ \mathrm{tallet}\ 5/12\ \mathrm{kan}\ \mathrm{representeres}\ \mathrm{med}\ \mathrm{en}\ \mathrm{endelig}\ \mathrm{sifferutvikling}$ i 3-tallsystemet

Oppgave 7. Tallet

$$\frac{2+\sqrt{2}}{1+\sqrt{2}}$$

er

A: 0

B: 1

C: 1/2

D: 2

E: irrasjonalt

Oppgave 8. Hva er minste øvre skranke for mengden

$${x \in \mathbb{R} \mid 0 < x < 1 \text{ og } \sin x < 1/2}$$
?

A: 0

B: $\pi/2$

C: $\pi/4$

D: $\pi/6$

E: 1

Oppgave 9. For hvilken verdi av β har vi $3_{\beta} \cdot 3_{\beta} = 12_{\beta}$ (der alle tallene er representert i β -tallsystemet)?

A: $\beta = 2$

B: $\beta = 5$

C: $\beta = 6$

D: $\beta = 7$

E: $\beta = 8$

Oppgave 10. Multiplikasjonen $a1_{16} \cdot b2_{16}$ (der begge tallene er representert i 16-tallsystemet) gir som resultat

A: $6ff2_{16}$

B: $6fb2_{16}$

C: $6ef2e2_{16}$

D: $6ee2_{16}$

E: $6fe2_{16}$

Oppgave 11. En tekst som inneholder 3 tegn er lagret med 9 bytes, hvilken enkoding er den da lagret med?

A: ASCII

B: ISO Latin 1

C: UTF-8

D: UTF-16

E: UTF-32

Oppgave 12. Vi tilnærmer et tall a med et tall \tilde{a} og den relative feilen blir 0.00134. Omtrent hvor mange sifre vil i så fall a og \tilde{a} ha felles?

A: 1

B: 3

C: 5

D: 7

E: Ingen

Oppgave 13. Hvilket av følgende uttrykk vil gi stor relativ feil om det evalueres for negative flyttall med stor absoluttverdi?

A:
$$x^2 + x^4$$

$$\mathbf{B} \colon x + e^x$$

C:
$$x + \sin x$$

D:
$$1 + x^2$$

E:
$$\sqrt{x^2 + 2} + x$$

Oppgave 14. Hvilken av følgende differensligninger er lineær, inhomogen og av andre orden?

A:
$$x_{n+1} + 2x_n = 3$$

B:
$$x_{n+2} + x_{n+1}x_n = 1$$

C:
$$x_{n+2} + 3x_{n+1} - nx_n = \cos n$$

D:
$$x_{n+3} + nx_{n+1} - x_n = 4$$

E:
$$x_{n+2} + 4x_{n+1} - x_n = 0$$

Oppgave 15. Differensligningen

$$x_{n+1} - 3x_n = 3^n, \ n \ge 0$$

med startverdi $x_0 = 1$ har løsningen

A:
$$x_n = 3n + 1$$

B:
$$x_n = 3^n$$

C:
$$x_n = (n+1)3^n$$

D:
$$x_n = (n/9 + 3)3^{n-1}$$

E:
$$x_n = (n/3 + 1)3^n$$

Oppgave 16. Differensligningen

$$x_{n+1} - x_n/(n+1) = 0, \ n \ge 0$$

med startverdi $x_0 = 1$ har løsningen

A:
$$x_n = 1/(n+1)$$

B:
$$x_n = 1/n$$

C:
$$x_n = 1/n!$$

D:
$$x_n = 1/(n+1)!$$

E:
$$x_n = 1/(n+1) + n/(n+2)$$

Oppgave 17. Vi har gitt en differensligning med tilhørende startverdier,

$$x_{n+2} - 2x_{n+1} + 4x_n = 2$$
, $n \ge 0$, $x_0 = 2/3$, $x_1 = 1$.

Hva er løsningen?

A:
$$x_n = 2/3 + n/3$$

B:
$$x_n = 2/3 + 2\sin(n\pi/3)/\sqrt{3}$$

C:
$$x_n = 2\cos(n\pi/3)/3 + 1/2$$

D:
$$x_n = 2\cos(n\pi/3)/3 + \sin(n\pi/3)$$

E:
$$x_n = 2/3 + 2^n \sin(n\pi/3)/(3\sqrt{3})$$

(Fortsettes på side 5.)

Oppgave 18. Vi har differensligningen

$$x_{n+2} - \frac{7}{3}x_{n+1} + \frac{2}{3}x_n = 0, \quad n \ge 0, \quad x_0 = 1, x_1 = 1/3$$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: $1/3^n$ og så underflow (0)

B: $C2^n$ og så overflow. Her er C en passende konstant

C: $1/3^n$

D: 2

E: 1

Oppgave 19. Vi har differensligningen

$$x_{n+2} - \frac{4}{3}x_{n+1} + \frac{1}{3}x_n = 1$$
, $n \ge 0$, $x_0 = -3/2, x_1 = -1$

og simulerer denne med 64-bits flyttall på datamaskin. For tilstrekkelig store n vil da den beregnede løsningen \bar{x}_n gi som resultat

A: $\bar{x}_n = 0$

B: $\bar{x}_n = 3n/2$ og deretter overflow

C: $\bar{x}_n = 3^n$ og deretter overflow

D: $\bar{x}_n = 3^{1-n}/2 + 3n/2 - 3$

E: $\bar{x}_n = 3^{1-n}/2$ og deretter underflow

Oppgave 20. Vi har differensligningen

$$x_{n+2} - x_{n+1} - x_n = 0$$
, for $n \ge 1$, $x_0 = x_1 = 2$.

For hvert naturlig tall n lar vi P_n betegne påstanden

$$P_n: x_n \text{ er et partall}$$

For å bevise dette vil vi bruke induksjonsbevis. Hvilken framgangsmåte er riktig?

A: Vi sjekker om P_0 er riktig og viser deretter at om P_n holder for n=k så vil den også holde for n=k+1

B: Vi sjekker om P_0 og P_1 er riktige og viser deretter at om P_n holder for n = k så vil den også holde for n = k + 1

C: Vi sjekker om P_0 og P_1 er riktige og viser deretter at om P_n holder for n=k-1 og n=k så vil den også holde for n=k+1

D: Vi sjekker om P_0 , P_1 og P_3 er riktige og viser deretter at om P_n holder for n = k - 2, n = k - 1 og n = k så vil den også holde for n = k + 1

E: Påstanden kan ikke bevises ved induksjon