

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(19) SU (11) 1659556 A2

(51)5 D 21 B 1/36

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(61) 1180428
(21) 4699497/12
(22) 01.06.89
(46) 30.06.91. Бюл. № 24
(71) Украинский научно-исследовательский институт целлюлозно-бумажной промышленности
(72) Р.А. Солоницын, В.В. Кучинский и А.Г. Фумбарев
(53) 676.1.021.7(088.8)
(56) Авторское свидетельство СССР № 1180428, кл. D 21 B 1/36, 1984.
(54) СПОСОБ ОБРАБОТКИ ВОЛОКНИСТОЙ МАССЫ
(57) Изобретение относится к технике обработки волокнистой массы в гидродинамическом кавитационном поле, может быть использовано в целлюлозно-бумажной, строительной и других отраслях промыш-

2

ленности для дороспуска и размола макулатурной и целлюлозной массы и является усовершенствованием способа обработки волокнистой массы по авт. св. № 1180428. Цель изобретения – снижение затрат электроэнергии на процесс за счет повышения эффективности кавитационного воздействия на волокно. Сущность изобретения состоит в том, что в способе обработки волокнистой массы путем фибрillирования ее в гидродинамическом кавитационном поле, образуемом при движении потока волокнистой массы в кавитационном реакторе при давлении потока на входе в реактор 125–190 м.вод.ст. и на выходе 35–60 м.вод.ст., волокнистую массу перед фибрillированием нагревают до 40–60°C, причем фибрillирование осуществляют при массовой доле волокон 5,0–7,2%. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к технике обработки волокнистой массы в гидродинамическом кавитационном поле, может быть использовано в целлюлозно-бумажной, строительной и других отраслях промышленности для дороспуска и размола макулатурной и целлюлозной массы.

Цель изобретения – снижение затрат электроэнергии на процесс за счет повышения эффективности кавитационного воздействия на волокно.

Сущность изобретения состоит в том, что в способе обработки волокнистой массы путем фибрillирования ее в гидродинамическом кавитационном поле, образуемом

при движении потока волокнистой массы в кавитационном реакторе при давлении потока на входе в реактор 125–190 м.в.ст. и на выходе 35–60 м.в.ст., волокнистую массу перед фибрillированием нагревают до 40–60°C, причем фибрillирование осуществляют при массовой доле волокон 5,0–7,2%.

П р и м е р 1. Макулатурный картон марки Г распускают в гидроразбивателе при концентрации 3 % до размера лепестков 5–9 мм и направляют на гидродинамическую обработку, которую осуществляют на установке, схема которой представлена на чертеже.

(19) SU (11) 1659556 A2

Распущенную макулатурную массу из бака 1 неразмолотой массы, оснащенного подогревателем 2, с температурой 40°С и массовой долей волокон 3,0%, насосом 3 непрерывно подают в кавитационный аппарат 4. Рабочим насосом 5 установки массу многократно прогоняют через кавитационный реактор 6, при этом часть массы постоянно отводят в бак 7 для размолотой массы, где осуществляют контроль степени помола обработанной массы. Давление массы на входе в реактор 6, определяемое суммой напоров рабочего 5 и подающего 3 насосов, поддерживают в пределах 125 м вод.ст., а на выходе из реактора 6-35 м вод.ст. Последнее определяется напором подающего насоса.

Фибрillирование макулатурной массы в кавитационном поле осуществляют до степени помола 34°ШР. Из обработанной массы изготавливают отливки поверхностной плотностью 300 г/м² и испытывают их.

П р и м е р ы 2-8. Все операции обработки макулатурной массы осуществляют по примеру 1, но варьируют температуру массы перед фибролизом, массовую долю волокон в ней, давление на входе и выходе кавитационного реактора и степень помола.

Пример 9-10. Все операции осуществляют по примеру 1, но в режимах известного способа.

Основные параметры обработки волокнистой массы по предложенному способу и по способу-прототипу и результаты испытаний отливок, изготовленных из обработанной массы по примерам 1-10, представлены в таблице.

Анализ представленных в таблице данных показывает, что при фибрillировании волокнистой массы в кавитационном поле по предлагаемому способу достигается зна-

5 Из предлагаемому способу достигается значительное сокращение затрат электроэнергии на процесс без ухудшения качества массы. Такое положение обусловливается увеличением эффективности кавитационного воздействия на волокна в интервале температур 40–60°C в силу уменьшения вязкости воды, повышения скорости движения супензии, в результате этого при одинаковом, например, с прототипом перепаде давлений на входе и выходе кавитационного реактора и, соответственно, повышения кратности кавитационного воздействия на волокна за время нахождения массы в кавитационном аппарате массовая доля волокон поддерживается в пределах 5,0–7,2% в мас-

10 се при ее кавитационной обработке, эффект снижения энергоемкости процесса усиливается за счет большего количества волокон в зоне эрозионного воздействия ударной волны, возникающей при схлопывании кавитационного пузырька.

15

20

25

30

35

Ф о р м у л а изобретения.

1. Способ обработки волокнистой массы по авт.св. № 1180428, отличающийся тем, что, с целью снижения затрат электроэнергии путем повышения эффективности кавитационного воздействия на волокна, перед фибрillированием, волокнистую массу нагревают до 40–60°C.

2. Способ по п.1, отличающийся тем, что фибрillирование осуществляют при массовой доле волокон 5,0–7,2%.

Формулирование

Формула изобретения.

- Способ обработки волокнистой массы по авт.св. № 1180428, отличающийся тем, что, с целью снижения затрат электроэнергии путем повышения эффективности кавитационного воздействия на волокна, перед фибрillированием волокнистую массу нагревают до 40–60°C.
- Способ по п.1, отличающийся тем, что фибрillирование осуществляют при массовой доле волокон 5,0–7,2%.

Показатели	Примеры									
	1	2	3	4	5	6	7	8	9	10
Давление массы на входе в реактор, м.вон.ст.	125	190	125	190	125	150	150	190	125	190
Давление массы на выходе из реактора, м.вон.ст.	35	60	35	35	40	40	60	60	35	60
Массовая доля волокна, %	3,0	3,0	5,0	6,0	7,2	7,6	4,5	6,0	3,0	3,0
Температура массы, °С	40	60	40	50	60	50	30	70	20	18
Степень помола, ШР	34	33	35	34	35	35	33	34	34	34
Расход электроэнергии, кВт. ч/т	73,6	72,4	65,5	58,0	66,0	76,2	89,4	93,0	94,0	297
Масса отливок, г/м ²	302	298	295	298	296	302	300	304	301	297
Предел прочности, МПА·10 ⁻⁴	1,5	1,5	1,5	1,6	1,5	1,4	1,4	1,5	1,5	1,6
Сопротивление излому, ч.д.п.	210	200	230	200	210	200	190	210	180	200
Сопротивление продавливанию, кг/см ²	5,1	5,2	5,0	5,3	4,9	5,1	5,0	4,9	4,5	4,9

Редактор О. Спесивых

Составитель Е. Васильев
Техред М.Моргентал

Корректор Т.Малец

Заказ 1824

Тираж 254

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101