

X3-Class HiPerFET™ **Power MOSFET**

IXFT100N30X3HV IXFH100N30X3

N-Channel Enhancement Mode Avalanche Rated

$\begin{array}{lll} \textbf{V}_{\text{DSS}} & \textbf{T}_{\text{J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C} \\ \textbf{V}_{\text{DGR}} & \textbf{T}_{\text{J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, \textbf{R}_{\text{GS}} = 1\text{M}\Omega \\ \\ \textbf{V}_{\text{GSS}} & \text{Continuous} \\ \textbf{V}_{\text{GSM}} & \text{Transient} \\ \\ \textbf{I}_{\text{D25}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{DM}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C}, \text{Pulse Width Limited by T}_{\text{JM}} \\ \\ \textbf{I}_{\text{A}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{E}_{\text{AS}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{dv/dt} & \textbf{I}_{\text{S}} \leq \textbf{I}_{\text{DM}}, \textbf{V}_{\text{DD}} \leq \textbf{V}_{\text{DSS}}, \textbf{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \\ \textbf{P}_{\text{D}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{T}_{\text{J}} & & -55 \\ \\ \end{array}$	300 300 ±20 ±30	V V V
$\begin{array}{lll} \textbf{V}_{\text{DGR}} & \textbf{T}_{\text{J}} = 25^{\circ}\text{C to } 150^{\circ}\text{C}, \textbf{R}_{\text{GS}} = 1\text{M}\Omega \\ \\ \textbf{V}_{\text{GSS}} & \text{Continuous} \\ \textbf{V}_{\text{GSM}} & \text{Transient} \\ \\ \textbf{I}_{\text{D25}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{DM}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C}, \text{Pulse Width Limited by T}_{\text{JM}} \\ \\ \textbf{I}_{\text{A}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{E}_{\text{AS}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{dv/dt} & \textbf{I}_{\text{S}} \leq \textbf{I}_{\text{DM}}, \textbf{V}_{\text{DD}} \leq \textbf{V}_{\text{DSS}}, \textbf{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \\ \textbf{P}_{\text{D}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \end{array}$	±20 ±30	V
$\begin{array}{lll} \textbf{V}_{\text{GSS}} & \textbf{Continuous} \\ \textbf{V}_{\text{GSM}} & \textbf{Transient} \\ \\ \textbf{I}_{\text{D25}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{DM}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C}, \text{Pulse Width Limited by T}_{\text{JM}} \\ \\ \textbf{I}_{\text{A}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{E}_{\text{AS}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{dv/dt} & \textbf{I}_{\text{S}} \leq \textbf{I}_{\text{DM}}, \textbf{V}_{\text{DD}} \leq \textbf{V}_{\text{DSS}}, \textbf{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \\ \textbf{P}_{\text{D}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \end{array}$	±30	-
$\begin{array}{lll} \textbf{V}_{\text{GSM}} & & \text{Transient} \\ \textbf{I}_{\text{D25}} & & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{DM}} & & \textbf{T}_{\text{C}} = 25^{\circ}\text{C}, \text{Pulse Width Limited by T}_{\text{JM}} \\ \\ \textbf{I}_{\text{A}} & & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{E}_{\text{AS}} & & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{dv/dt} & & \textbf{I}_{\text{S}} \leq \textbf{I}_{\text{DM}}, \textbf{V}_{\text{DD}} \leq \textbf{V}_{\text{DSS}}, \textbf{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \\ \textbf{P}_{\text{D}} & & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \end{array}$		V
$\begin{array}{lll} \textbf{I}_{\text{D25}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \textbf{I}_{\text{DM}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C}, \text{Pulse Width Limited by T}_{\text{JM}} \\ \\ \textbf{I}_{\text{A}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{E}_{\text{AS}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \textbf{dv/dt} & \textbf{I}_{\text{S}} \leq \textbf{I}_{\text{DM}}, \textbf{V}_{\text{DD}} \leq \textbf{V}_{\text{DSS}}, \textbf{T}_{\text{J}} \leq 150^{\circ}\text{C} \\ \\ \textbf{P}_{\text{D}} & \textbf{T}_{\text{C}} = 25^{\circ}\text{C} \\ \\ \end{array}$	100	
$ \begin{split} & \overset{\bullet}{\textbf{E}_{AS}} & & & T_{C} = 25^{\circ}\text{C} \\ & & \frac{\text{dv/dt}}{\text{dt}} & & I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}\text{C} \\ & \overset{\bullet}{\textbf{P}_{D}} & & T_{C} = 25^{\circ}\text{C} \end{split} $	200	A A
dv/dt $I_{s} \le I_{DM}$, $V_{DD} \le V_{DSS}$, $T_{J} \le 150^{\circ}C$ P_{D} $T_{C} = 25^{\circ}C$	50	A
P_{D} $T_{C} = 25^{\circ}C$	1.5	J
	20	V/ns
T _J -55	480	W
	+150	°C
T_{JM}	150	°C
T _{stg} -55	+150	°C
T _L Maximum Lead Temperature for Soldering	300	°C
T _{SOLD} 1.6 mm (0.062in.) from Case for 10s	260	°C
	.13 / 10	Nm/lb.in
Weight TO-268HV TO-247	4 6	g g

			teristic Values Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	300			V
$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
l _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			10 750	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		10.6	13.5	mΩ

300V 100A I_{D25} $13.5 \text{m}\Omega$ \leq

TO-268HV (IXFT)

G = Gate D = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		acteristic Values		
		Тур.	Max	
g _{fs}	$V_{DS} = 10V, I_{D} = 50A, Note 1$	48	80	S
R_{Gi}	Gate Input Resistance		1.8	Ω
C _{iss}			7660	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1140	pF
C _{rss}			3	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		430	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		1950	pF
t _{d(on)}	Resistive Switching Times		29	ns
t,	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		30	ns
t _{d(off)}	$\mathbf{R}_{\rm GS} = 10\mathbf{V}, \mathbf{V}_{\rm DS} = 0.33 \mathbf{V}_{\rm DSS}, \mathbf{I}_{\rm D} = 0.33 \mathbf{I}_{\rm D25}$ $\mathbf{R}_{\rm G} = 5\Omega \text{ (External)}$		114	ns
\mathbf{t}_{f}	H _G = 352 (External)		14	ns
$Q_{g(on)}$			122	nC
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		35	nC
Q_{gd}			36	nC
R _{thJC}				0.26 °C/W
R _{thCS}	TO-247		0.21	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			100	Α
SM	Repetitive, pulse Width Limited by T_{JM}			400	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	٧
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 50A$, $-di/dt = 100A/\mu s$ $V_R = 100V$		130 720 11		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

ADVANCE TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 2. Extended Output Characteristics @ T_J = 25°C $V_{GS} = 10V$ 200 200 150 7V 6V -5V V_{DS} - Volts

I_D - Amperes

Fig. 7. Maximum Drain Current vs. Case Temperature

Fig. 8. Input Admittance

Fig. 9. Transconductance

Fig. 10. Forward Voltage Drop of Intrinsic Diode

Fig. 11. Gate Charge

Fig. 12. Capacitance

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

SYM	INCHES		MILLIMETER		
STM	MIN	MAX	MIN	MAX	
Α	.193	.201	4.90	5.10	
A1	.106	.114	2.70	2.90	
A2	.001	.010	0.02	0.25	
Ь	.045	.057	1.15	1.45	
C C2	.016	.026	0.40	0.65	
C2	.057	.063	1.45	1.60	
D	.543	.551	13.80	14.00	
D1	.465	.476	11.80	12.10	
D2	.295	.307	7.50	7.80	
D3	.114	.126	2.90	3.20	
E	.624	.632	15.85	16.05	
E1	.524	.535	13.30	13.60	
е	.215 BSC		5.45 BSC		
(e2)	.374	.386	9.50	9.80	
Н	.736	.752	18.70	19.10	
L	.067	.079	1.70	2.00	
L2	.039	.0 4 5	1.00	1.15	
L3	.010	BSC	0.25 BSC		
L4	.150	.161	3.80	4 .10	

