- 1 Find geodesics on sphere and cylinder
- a) using straightforwardly equations for geodesics,
- b *) using the fact that geodesic is shortest.
- 2 Great circle is a geodesic. Every geodesic is a great circle.

Are these statements correct?

Make on the base of these statements correct statements and justify them.

- **3**) Show that vertical lines x=a are geodesics (un-parameterised) on the Lobachevsky plane $^{1)}$.
- * Show that upper arcs of semicircles $(x-a)^2+y^2=R^2, y>0$ are (non-parametersied) geodesics.
- 4 Consider a vertical ray $C: x(t) = 1, y(t) = 1 + t, 0 \le t < \infty$ on the Lobachevsky plane.

Find the parallel transport $\mathbf{X}(t)$ of the vector $\mathbf{X}_0 = \partial_y$ attached at the initial point (1,1) along the ray C at an arbitrary point of the ray.

Find the parallel transport $\mathbf{Y}(t)$ of the vector $\mathbf{Y}_0 = \partial_x + \partial_y$ attached at the same initial point (1,1) along the ray C at an arbitrary point of the ray. (Exam question, 2013.)

- **5** Find a parameterisation of vertical lines in the Lobachevsky plane such that they become parameterised geodesics.
 - $\bf 6$ Consider the plane ${\bf R}^2$ with Cartesian coordinates and with Riemannian metric

$$G = \frac{4R^2(du^2 + dv^2)}{(R^2 + u^2 + v^2)^2}.$$

Show that all lines passing through the origin (u = v = 0) and only these lines are geodesics of the Levi-Civita connection of this metric.

Give examples of other geodesics.

† Find all geodesics of this metric.

(You may use the fact that this Rimeannian manifold is isometric to the sphere without North pole.)

7 Find parallel transport of vector $\frac{\partial}{\partial y}$ attached attached at the point (0,1) of Lobachevsky plane along curve $C: x = t, y = \sqrt{1-t^2}, 0 \le t < 1$.

(You may use the facts about geodesics in Lobachevsky plane.)

¹⁾ As usual we consider here a realisation of the Lobachevsky plane (hyperbolic plane) as upper half of Euclidean plane $\{(x,y): y>0\}$ with the metric $G=\frac{dx^2+dy^2}{y^2}$. The line x=0 is called *absolute*.

 $\mathbf{8}^*$ Let $\mathbf{X}(t)$ be parallel transport of the vector \mathbf{X} along the curve on the surface M embedded in \mathbf{E}^3 , i.e. $\nabla_{\mathbf{v}}\mathbf{X}=0$, where \mathbf{v} is a velocity vector of the curve C and ∇ Levi-Civita connection of the metric induced on the surface. Compare the condition $\nabla_{\mathbf{v}}\mathbf{X}=0$ (this is condition of parallel transport for internal observer) with the condition that for the vector $\mathbf{X}(t)$, the derivative $\frac{d\mathbf{X}(t)}{dt}$ is orthogonal to the surface (this is condition of parallel transport for external observer)²⁾.

Do these two conditions coincide, i.e. do they imply the same parallel transport?

²⁾ We defined parallel transport in Geometry course using this condition