(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90151 A2

(51) International Patent Classification7:

C07K 14/00

(21) International Application Number: PCT/US01/16766

(22) International Filing Date: 23 May 2001 (23.05.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/207,558

25 May 2000 (25.05.2000) U

- (71) Applicant: SCHERING CORPORATION [US/US]; 2000 Galloping Hill Road, Kenilworth, NJ 07033-0530 (US).
- (72) Inventors: HARDIMAN, Gerard, T.; 11276 Woodrush Lane, San Diego, CA 92128 (US). ROCK, Fernando, L.; 125 Cuesta Real, La Honda, CA 94020 (US). BAZAN, J., Fernando; 426 Waverley St., # 6, Palo Alto, CA 94301 (US). KASTELEIN, Robert, A.; 463 Summit Drive, Redwood City, CA 94062 (US). HO, Stephen, W. K.; 745 South Bernardo Ave., #A206, Sunnyvale, CA 94087 (US). LIU, Yong-Jun; 4010 Villa Vista, Palo Alto, CA 94306 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KR, KZ, LC, LK, LR, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, PL, PT, RO, RU, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UZ, VN, YU, ZA.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

 as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/90151 A

HUMAN RECEPTOR PROTEINS; RELATED REAGENTS AND METHODS

FIELD OF THE INVENTION

The present invention relates to compositions and methods for affecting mammalian physiology, including morphogenesis or immune system function. In particular, it provides nucleic acids, proteins, and antibodies which regulate development and/or the immune system. Diagnostic and therapeutic uses of these materials are also disclosed.

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to techniques of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the "immune network". research has provided new insights into the inner workings of this network. While it remains clear that much of the 5 immune response does, in fact, revolve around the networklike interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play critical roles 10 in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of 15 numerous medical abnormalities, e.g., immune system disorders.

Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the 20 proliferation, growth, and/or differentiation of pluripotential hematopoietic stem cells into vast numbers of progenitors comprising diverse cellular lineages which make up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-

30

cells) making up the immune network. These lymphocytes interact with many other cell types.

Another important cell lineage is the mast cell (which has not been positively identified in all mammalian species), which is a granule-containing connective tissue 5 cell located proximal to capillaries throughout the body. These cells are found in especially high concentrations in the lungs, skin, and gastrointestinal and genitourinary tracts. Mast cells play a central role in allergy-related disorders, particularly anaphylaxis as follows: when 10 selected antigens crosslink one class of immunoglobulins bound to receptors on the mast cell surface, the mast cell degranulates and releases mediators, e.g., histamine, serotonin, heparin, and prostaglandins, which cause allergic reactions, e.g., anaphylaxis. 15

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing many of these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

20

25

The interleukin-1 family of proteins includes the IL-1 α , the IL-1 β , the IL-1RA, and recently the IL-1 γ (also designated Interferon-Gamma Inducing Factor, IGIF). This related family of genes have been implicated in a broad range of biological functions. See Dinarello (1994) FASEB J. 8:1314-1325; Dinarello (1991) Blood 77:1627-1652; and Okamura, et al. (1995) Nature 378:88-91.

In addition, various growth and regulatory factors exist which modulate morphogenetic development. This includes, e.g., the Toll ligands, which signal through binding to receptors which share structural, and mechanistic, features characteristic of the IL-1 receptors. See, e.g., Lemaitre, et al. (1996) Cell

86:973-983; and Belvin and Anderson (1996) <u>Ann. Rev. Cell</u> & Devel. Biol. 12:393-416.

From the foregoing, it is evident that the discovery and development of new soluble proteins and their receptors, including ones similar to lymphokines, should contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve development, differentiation, or function, e.g., of the immune system and/or hematopoietic cells. In particular, the discovery and understanding of novel receptors for lymphokine-like molecules which enhance or potentiate the beneficial activities of other lymphokines would be highly advantageous. The present invention provides new receptors for ligands exhibiting similarity to interleukin-1 like compositions and related compounds, and methods for their use.

10

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a schematic comparison of the protein architectures of Drosophila, Caenorabditis, and human DTLRs, and their relationship to vertebrate IL-1 receptors and plant disease resistance proteins. Three Drosophila 5 (Dm) DTLRs (Toli, 18w, and the Mst ORF fragment) (Morisato and Anderson (1995) Ann. Rev. Genet. 29:371-399; Chiang and Beachy (1994) Mech. Develop. 47:225-239; Mitcham, et al. (1996) J. Biol. Chem. 271:5777-5783; and Eldon, et al. (1994) Develop. 120:885-899) are arrayed beside four 10 complete (DTLRs 1-4) and one partial (DTLR5) human (Hu) Individual LRRs in the receptor ectodomains that are flagged by PRINTS (Attwood, et al. (1997) Nucleic Acids Res. 25:212-217) are explicitly noted by boxes; 'top' and 'bottom' Cys-rich clusters that flank the C- or 15 N-terminal ends of LRR arrays are respectively drawn by opposed half-circles. The loss of the internal Cys-rich region in DTLRs 1-5 largely accounts for their smaller ectodomains (558, 570, 690, and 652 aa, respectively) when compared to the 784 and 977 aa extensions of Toll and 18w. 20 The incomplete chains of DmMst and HuDTLR5 (about 519 and 153 aa ectodomains, respectively) are represented by dashed lines. The intracellular signaling module common to DTLRs, IL-1-type receptors (IL-1Rs), the intracellular protein Myd88, and the tobacco disease resistance gene N 25 product (DRqN) is indicated below the membrane. See, Hardiman, et al. (1996) Oncogene 13:2467-2475; and Rock, et al. (1998) Proc. Nat'l Acad. Sci. USA 95:588-. Additional domains include the trio of Ig-like modules in IL-1Rs (disulfide-linked loops); the DRgN protein features 30 an NTPase domain (box) and Myd88 has a death domain (black oval).

Figures 2A-2C show conserved structural patterns in the signaling domains of Toll- and IL-1-like cytokine receptors, and two divergent modular proteins. Figures 2A-2B show a sequence alignment of the common TH domain.

DTLRs are labeled as in Figure 1; the human (Hu) or mouse (Mo) IL-1 family receptors (IL-1R1-6) are sequentially numbered as earlier proposed (Hardiman, et al. (1996) Oncogene 13:2467-2475); Myd88 and the sequences from tobacco (To) and flax, L. usitatissimum (Lu), represent Cand N-terminal domains, respectively, of larger, multidomain molecules. Ungapped blocks of sequence (numbered 1-10) are boxed. Triangles indicate deleterious mutations, while truncations N-terminal of the arrow eliminate bioactivity in human IL-1R1 (Heguy, et al. 10 (1992) J. Biol. Chem. 267:2605-2609). PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310) secondary structure predictions of $\alpha\text{-helix}$ (H), $\beta\text{-strand}$ (E), or coil (L) are marked. The amino acid shading scheme 15 depicts chemically similar residues: hydrophobic, acidic, basic, Cys, aromatic, structure-breaking, and tiny. Diagnostic sequence patterns for IL-1Rs, DTLRs, and full alignment (ALL) were derived by Consensus at a stringency of 75%. Symbols for amino acid subsets are (see internet 20 site for detail): o, alcohol; l, aliphatic; ., any amino acid; a, aromatic; c, charged; h, hydrophobic; -, negative; p, polar; +, positive; s, small; u, tiny; t, turnlike. Figure 2C shows a topology diagram of the proposed TH β/α domain fold. The parallel β -sheet (with 25 β -strands A-E as yellow triangles) is seen at its Cterminal end; α -helices (circles labeled 1-5) link the β strands; chain connections are to the front (visible) or back (hidden). Conserved, charged residues at the C-end of the $\beta\text{--sheet}$ are noted in gray (Asp) or as a lone black 30 (Arg) residue (see text).

Figure 3 shows evolution of a signaling domain superfamily. The multiple TH module alignment of Figures 2A-2B was used to derive a phylogenetic tree by the Neighbor-Joining method (Thompson, et al. (1994) Nucleic

5

10

Acids Res. 22:4673-4680). Proteins labeled as in the alignment; the tree was rendered with TreeView.

Figures 4A-4D depict FISH chromosomal mapping of human DTLR genes. Denatured chromosomes from synchronous cultures of human lymphocytes were hybridized to biotinylated DTLR cDNA probes for localization. The assignment of the FISH mapping data (left, Figures 4A, DTLR2; 4B, DTLR3; 4C, DTLR4; 4D, DTLR5) with chromosomal bands was achieved by superimposing FISH signals with DAPI banded chromosomes (center panels). Heng and Tsui (1994) Meth. Molec. Biol. 33:109-122. Analyses are summarized in the form of human chromosome ideograms (right panels).

Figures 5A-5F depict mRNA blot analyses of Human DTLRs. Human multiple tissue blots (He, heart; Br, brain; 15 Pl, placenta; Lu, lung; Li, liver; Mu, muscle; Ki, kidney; Pn, Pancreas; Sp, spleen; Th, thymus; Pr, prostate; Te, testis; Ov, ovary, SI, small intestine; Co, colon; PBL, peripheral blood lymphocytes) and cancer cell line (promyelocytic leukemia, HL60; cervical cancer, HELAS3; 20 chronic myelogenous leukemia, K562; lymphoblastic leukemia, Molt4; colorectal adenocarcinoma, SW480; melanoma, G361; Burkitt's Lymphoma Raji, Burkitt's; colorectal adenocarcinoma, SW480; lung carcinoma, A549) containing approximately 2 µg of poly(A)+ RNA per lane 25 were probed with radiolabeled cDNAs encoding DTLR1 (Figures 5A-5C), DTLR2 (Figure 5D), DTLR3 (Figure 5E), and DTLR4 (Figure 5F) as described. Blots were exposed to Xray film for 2 days (Figures 5A-5C) or one week (Figure 5D-5F) at -70° C with intensifying screens. An anomalous 30 0.3 kB species appears in some lanes; hybridization experiments exclude a message encoding a DTLR cytoplasmic fragment.

SUMMARY OF THE INVENTION

The present invention is directed to nine novel related mammalian receptors, e.g., primate, human, DNAX Toll receptor like molecular structures, designated DTLR2, DTLR3, DTLR4, DTLR5, DTLR7, DTLR8, DTLR9, and DTLR10, and their biological activities. It includes nucleic acids coding for the polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein.

10

In certain embodiments, the invention provides a composition of matter selected from the group of: a substantially pure or recombinant DTLR2 protein or peptide 15 exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 4; a natural sequence DTLR2 of SEQ ID NO: 4; a fusion protein comprising DTLR2 sequence; a substantially pure or recombinant DTLR3 protein or peptide exhibiting identity over a length of at least 20 about 12 amino acids to SEQ ID NO: 6; a natural sequence DTLR3 of SEQ ID NO: 6; a fusion protein comprising DTLR3 sequence; a substantially pure or recombinant DTLR4 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 26; a natural 25 sequence DTLR4 of SEQ ID NO: 26; a fusion protein comprising DTLR4 sequence; a substantially pure or recombinant DTLR5 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 10; a natural sequence DTLR5 of SEQ ID NO: 10; a 30 fusion protein comprising DTLR5 sequence; a substantially pure or recombinant DTLR6 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 12, 28, or 30; a natural sequence DTLR6 of SEQ ID NO: 12, 28, or 30; a fusion protein comprising DTLR6 35 sequence; a substantially pure or recombinant DTLR7

protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 16, 18, or 37; a natural sequence DTLR7 of SEQ ID NO: 16, 18, or 37; a fusion protein comprising DTLR7 sequence; a substantially pure or recombinant DTLR8 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 32 or 39; a natural sequence DTLR8 of SEQ ID NO: 32 or 39; a fusion protein comprising DTLR8 sequence; a substantially pure or recombinant DTLR9 protein or peptide exhibiting identity over a length of at least 10 about 12 amino acids to SEQ ID NO: 22 or 41; a natural sequence DTLR9 of SEQ ID NO: 22 or 41; a fusion protein comprising DTLR9 sequence; a substantially pure or recombinant DTLR10 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID 15 NO: 34, 43, or 45; a natural sequence DTLR10 of SEQ ID NO: 34, 43, or 45; and a fusion protein comprising DTLR10 sequence. Preferably, the substantially pure or isolated protein comprises a segment exhibiting sequence identity to a corresponding portion of a DTLR2, DTLR3, DTLR4, 20 DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10, wherein said identity is over at least about 15 amino acids; preferably about 19 amino acids; or more preferably about 25 amino acids. In specific embodiments, the composition of matter: is DTLR2, which comprises a mature sequence of 25 Table 2; or lacks a post-translational modification; is DTLR3, which comprises a mature sequence of Table 3; or lacks a post-translational modification; is DTLR4, which: comprises a mature sequence of Table 4; or lacks a posttranslational modification; is DTLR5, which: comprises the 30 complete sequence of Table 5; or lacks a posttranslational; is DTLR6, which comprises a mature sequence of Table 6; or lacks a post-translational modification; is DTLR7, which comprises a mature sequence of Table 7; or lacks a post-translational modification; is DTLR8, which: 35 comprises a mature sequence of Table 8; or lacks a post-

translational modification; is DTLR9, which: comprises the complete sequence of Table 9; or lacks a posttranslational; is DTLR10, which comprises a mature sequence of Table 10; or lacks a post-translational modification; or the composition of matter may be a 5 protein or peptide which: is from a warm blooded animal selected from a mammal, including a primate, such as a human; comprises at least one polypeptide segment of SEQ ID NO: 4, 6, 26, 10, 12, 28, 30, 16, 18, 32, 22, or 34; exhibits a plurality of portions exhibiting said identity; 10 is a natural allelic variant of DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; has a length. at least about 30 amino acids; exhibits at least two nonoverlapping epitopes which are specific for a primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or 15 DTLR10; exhibits sequence identity over a length of at least about 35 amino acids to a primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9. or DTLR10; further exhibits at least two non-overlapping epitopes which are specific for a primate DTLR2, DTLR3, DTLR4, 20 DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; exhibits identity over a length of at least about 20 amino acids to a rodent DTLR6; is glycosylated; has a molecular weight of at least 100 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is 25 conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence.

Other embodiments include a composition comprising: a sterile DTLR2 protein or peptide; or the DTLR2 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; a sterile DTLR3 protein or peptide; or the DTLR3 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline,

30

and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; a sterile DTLR4 protein or peptide; or the DTLR4 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated 5 for oral, rectal, nasal, topical, or parenteral administration; a sterile DTLR5 protein or peptide; or the DTLR5 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, 10 topical, or parenteral administration; a sterile DTLR6 protein or peptide; or the DTLR6 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral 15 administration; a sterile DTLR7 protein or peptide; or the DTLR7 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, 20 topical, or parenteral administration; a sterile DTLR8 protein or peptide; or the DTLR8 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; a sterile DTLR9 protein or peptide; or the 25 DTLR9 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration; a sterile DTLR10 protein or peptide; or the DTLR10 protein or peptide and a 30 carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

In certain fusion protein embodiments, the invention provides a fusion protein comprising: mature protein

5

35

sequence of Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; a detection or purification tag, including a FLAG, His6, or Ig sequence; or sequence of another receptor protein.

Various kit embodiments include a kit comprising a DTLR protein or polypeptide, and: a compartment comprising the protein or polypeptide; and/or instructions for use or disposal of reagents in the kit.

Binding compound embodiments include those comprising an antigen binding site from an antibody, which specifically binds to a natural DTLR2, DTLR3, DTLR4, 10 DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10 protein, wherein: the protein is a primate protein; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature 15 polypeptide of Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; is raised against a mature DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; is raised to a purified human DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; is immunoselected; is a polyclonal 20 antibody; binds to a denatured DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; exhibits a Kd to antigen of at least 30 μ M; is attached to a solid substrate, including a bead or plastic membrane; is in a 25 sterile composition; or is detectably labeled, including a radioactive or fluorescent label. A binding composition kit often comprises the binding compound, and: a compartment comprising said binding compound; and/or instructions for use or disposal of reagents in the kit. Often the kit is capable of making a qualitative or 30 quantitative analysis.

Methods are provided, e.g., of making an antibody, comprising immunizing an immune system with an immunogenic amount of a primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10, thereby causing said antibody to be produced; or producing an antigen:antibody

5

10

complex, comprising contacting such an antibody with a mammalian DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10 protein or peptide, thereby allowing said complex to form.

Other compositions include a composition comprising: a sterile binding compound, or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid embodiments include an isolated or recombinant nucleic acid encoding a DTLR2-10 protein or peptide or fusion protein, wherein: the DTLR is from a mammal; or the nucleic acid: encodes an antigenic peptide sequence of Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; encodes a 15 plurality of antigenic peptide sequences of Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; comprises at least 17 contiguous nucleotides from Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; exhibits at least about 80% identity to a natural cDNA encoding said segment; is an expression vector; further 20 comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a mammal, including a primate; comprises a natural full length coding sequence; is a 25 hybridization probe for a gene encoding said DTLR; or is a PCR primer, PCR product, or mutagenesis primer. A cell, tissue, or organ comprising such a recombinant nucleic acid is also provided. Preferably, the cell is: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a 30 yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell. Kits are provided comprising such nucleic acids, and: a compartment comprising said nucleic acid; a compartment further comprising a primate DTLR2, DTLR3, DTLR4, or DTLR5 protein 35 or polypeptide; and/or instructions for use or disposal of

reagents in the kit. Often, the kit is capable of making a qualitative or quantitative analysis.

Other embodiments include a nucleic acid which: hybridizes under wash conditions of 30°C and less than 2M salt to SEQ ID NO: 3; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 5; hybridizes under wash conditions of 30° C and less than 2M salt to SEQ ID NO: 7; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 9; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID 10 NO: 11, 13, 27, or 29; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 15, 17, or 36; hybridizes under wash conditions of $30\,^{\circ}$ C and less than 2M salt to SEQ ID NO: 19, 31, or 38; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 15 21 or 40; hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 23, 33, 42, or 44; exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR2; exhibits at 20 least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR3; exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR4; or exhibits at least about 85% identity over a stretch of at least about 30 25 nucleotides to a primate DTLR5. Preferably, such nucleic acid will have such properties, wherein: wash conditions are at 45° C and/or 500 mM salt; or the identity is at least 90% and/or the stretch is at least 55 nucleotides.

More preferably, the wash conditions are at 55°C and/or 150 mM salt; or the identity is at least 95% and/or the stretch is at least 75 nucleotides.

Also provided are methods of producing a ligand:receptor complex, comprising contacting a substantially pure primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10, including a recombinant or synthetically produced protein, with

30

candidate Toll ligand; thereby allowing said complex to form.

The invention also provides a method of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a mammalian DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10. Preferably, the cell is a pDC2 cell with the agonist or antagonist of DTLR10.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

OUTLINE

- I. General
- 5 II. Activities
 - III. Nucleic acids
 - A. encoding fragments, sequence, probes
 - B. mutations, chimeras, fusions
 - C. making nucleic acids
- D. vectors, cells comprising
 - IV. Proteins, Peptides
 - A. fragments, sequence, immunogens, antigens
 - B. muteins
 - C. agonists/antagonists, functional equivalents
- D. making proteins
 - V. Making nucleic acids, proteins
 - A. synthetic
 - B. recombinant
 - C. natural sources
- 20 VI. Antibodies
 - A. polyclonals
 - B. monoclonal
 - C. fragments; Kd
 - D. anti-idiotypic antibodies
- 25 E. hybridoma cell lines
 - VII. Kits and Methods to quantify DTLRs 2-10
 - A. ELISA
 - B. assay mRNA encoding
 - C. qualitative/quantitative
- 30 D. kits
 - VIII. Therapeutic compositions, methods
 - A. combination compositions
 - B. unit dose
 - C. administration
- 35 IX. Ligands

I. General

The present invention provides the amino acid sequence and DNA sequence of mammalian, herein primate

40 DNAX Toll like receptor molecules (DTLR) having particular defined properties, both structural and biological. These have been designated herein as DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, and DTLR10, respectively, and increase the number of members of the human Toll like

receptor family from 1 to 10. Various cDNAs encoding these molecules were obtained from primate, e.g., human, cDNA sequence libraries. Other primate or other mammalian counterparts would also be desired.

Some of the standard methods applicable are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et al. (1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York; each of which is incorporated herein by reference.

A complete nucleotide (SEQ ID NO: 1) and 15 corresponding amino acid sequence (SEQ ID NO: 2) of a human DTLR1 coding segment is shown in Table 1. See also Nomura, et al. (1994) DNA Res. 1:27-35. A complete nucleotide (SEQ ID NO: 3) and corresponding amino acid sequence (SEQ ID NO: 4) of a human DTLR2 coding segment is 20 shown in Table 2. A complete nucleotide (SEQ ID NO: 5) and corresponding amino acid sequence (SEQ ID NO: 6) of a human DTLR3 coding segment is shown in Table 3. A complete nucleotide (SEQ ID NO: 7) and corresponding amino acid sequence (SEQ ID NO: 8) of a human DTLR4 coding 25 segment is shown in Table 4; see also SEQ ID NO: 25 and A partial nucleotide (SEQ ID NO: 9) and corresponding amino acid sequence (SEQ ID NO: 10) of a human DTLR5 coding segment is shown in Table 5. A complete nucleotide (SEQ ID NO: 11) and corresponding amino acid sequence (SEQ 30 ID NO: 12) of a human DTLR6 coding segment is shown in Table 6, along with partial sequence of a mouse DTLR6 (SEQ ID NO: 13, 14, 27, 28, 29, and 30). Partial nucleotide (SEQ ID NO: 15 and 17) and corresponding amino acid sequence (SEQ ID NO: 16 and 18) of a human DTLR7 coding 35 segment is shown in Table 7; full length sequence is

provided in SEQ ID NO: 36 and 37. Partial nucleotide (SEQ ID NO: 19) and corresponding amino acid sequence (SEQ ID NO: 20) of a human DTLR8 coding segment is shown in Table 8, with supplementary sequence (SEQ ID NO: 31, 32, 38, and 39). Partial nucleotide (SEQ ID NO: 21) and corresponding amino acid sequence (SEQ ID NO: 22) of a human DTLR9 coding segment is shown in Table 9; see also SEQ ID NO: 40 and 41. Partial nucleotide (SEQ ID NO: 23) and corresponding amino acid sequence (SEQ ID NO: 24) of a human DTLR10 coding segment is shown in Table 10, along with supplementary sequence (SEQ ID NO: 33, 34, 42, and 43) and rodent, e.g., mouse, sequence (SEQ ID NO: 35, 44, and 45).

								seq roll					
5								ATC Ile					48
10			_			Glu		GAA Glu					96
15								GAC Asp 20					144
								TCT Ser					192
20								TTG Leu					240
25								AAA Lys					288
30								GTG Val					336
35								TCA Ser 100				-	384
		Ile	Lys	Glu	Phe	Gly	Asn	ATG Met	Gln	Leu	Phe		432
40								TCT Ser					<u>4</u> 80
45								GTC Val				-	528
50								GAC Asp					576
55								TTC Phe 180				•	624

	GTC Val			•		•					672
	GAA Glu					Phe					720
10	ACA Thr 220										768
15	TGG Trp				Arg						816
20	TGG Trp										864
	AGA Arg										912
25	CAA Gln								Tyr		960
30	ATC Ile 300										1008
35	ATG Met	•									105€
40	 GAT Asp		_								1104
	CAC His										1152
45	GAA Glu										1200
50	CAA Gln 380										124
55	GAC Asp										129

							AGG Arg	_		1344
5	 						AAA Lys 440			1392
10							AAT Asn			1440
15							GTA Val			1488
20							TTC Phe			1536
25							TTC Phe			1584
23							GTA Val 520			1632
30							TAC Tyr		GAA Glu	1680
35							GAA Glu			1728
40							ATG Met			1776
45			•				CTG Leu			1824
47							AGG Arg 600			1872
50							CAT His			1920

				AGT Ser													1968
5				GAG Glu													2016
10				GGC Gly													2064
15				AAG Lys 670													2112
20				CAT His													2160
				AAT Asn													2208
25				CCT Pro													2256
30				TTG Leu													2304
35				TTA Leu 750													2352
	AAG Lys		TAG	rcta(GA								•			٠	2367
40	ISH LEK	NRIQY SSVLI	LDIS PIAHI	EVFKI LNISI	FNQEI KVLLV	LEYLI /LGE1	OLSHI TYGER	KLVI KEDPI	KISCH EGLQI	IPTVI OFNTI	VLKHI ESLHI	LDLSE [VFP]	NAFI NKE	OALPI HFII	CKE	LWTSDILSL: FGNMSQLKF! /KTVANLEL: FQLDFRDFD	LGLSTTH SNIKCVL
45	ALS: TLII DLHS FQC	LCEPC ENKII TÓWNÓ IHÓAA	VSDVI QLKEI KSIPI GEFVI	FGFP(LSKI KQVVI KNID(OSYIY AEMT KLEAI OVSSI	EIF: COMK: LOELI EVLEC	ENMN: SLQQI IVAF1 EWPD:	KNF? LDIS(NSLTI SYKCI	TVSGT QNSVS OLPGC OYPES	TRMVI SYDEI CGSF! SYRG!	HMLCI KKGD(SSLS\	PSKIS CSWTH /LIII OFHMS	SPFLI (SLL) OHNS SELS	HLDFS SLNMS /SHPS CNITI	ENNLI ESNII EADFI LLIV	LTDTVFENC LTDTIFRCL PQSCQKMRS PIVATMLVL	SHLTELE PPRIKVL IKAGDNP AVTVTSL
50								_	•	-	-					EKEGMQICL POYSTPSSY	

ARRTYLEWPKEKSKRGLFWANLRAAINIKLTEQAKK

						_): 3 LR2).		
5		CAT His -20							_			48
10		AAG Lys										96
15		ATC Ile										144
		ACA Thr										192
20		ATT Ile 45										240
25		CTG Leu										288
30		CTG Leu										336
35		TTA Leu									·	384
		TTA Leu										432
40		CAT His 125										480
45		ACT Thr										528
50		CTT Leu		Ala								576
55		AAG Lys					Leu			Lys		624
											•	

	CAG	CAT	ATT	TTA	CTG	CTG	GAG	ATT	TTT	GTA	GAT	GTT	ACA	AGT	TCC	GTG		672
	Gln	His	Ile	Leu 190	Leu	Leu	Glu	Ile	Phe 195	Val	Asp	Val	Thr	Ser 200	Ser	Val		
5						-				TTG Leu	_							720
10						•				TTG Leu								768
15										TTG Leu								816
										TTA Leu 260								864
20										TCT Ser						_		912
25										ATC Ile								960
30										ACT Thr	•		Ser					1008
35										AGT Ser							-sac ·	1056
										TTA Leu 340								1104
40										AAA Lys								1152
45										TTA Leu							٠	1200
50						Gly				CTC Leu								1248
55										CAT								1296

5			AAG Lys 415						1344
J			GGC Gly						1392
10			CTC Leu						1440
15			TCC Ser						1488
20			TTA Leu						1536
25			GAG Glu 495						1584
			AAT Asn						1632
30			CAA Gln						1680
35			GAC Asp				Gln		1728
40			TCG Ser						1776
45			GCT Ala 575						1824
			CAT His						1872
50		Lys	AGG Arg		Lys				1920

	TAT Tyr	GAT Asp 620	GCA Ala	TTT Phe	GTT Val	TCT Ser	TAC Tyr 625	AGT Ser	GAG Glu	CGG Arg	GAT Asp	GCC Ala 630	TAC Tyr	TGG Trp	GTG Val	GAG Glu	1968
. 5	AAC Asn 635	CTT Leu	ATG Met	GTC Val	CAG Gln	GAG Glu 640	CTG Leu	GAG Glu	AAC Asn	TTC Phe	AAT Asn 645	·CCC Pro	CCC Pro	TTC Phe	AAG Lys	TTG Leu 650	2016
10	TGT Cys	CTT Leu	CAT His	AAG Lys	CGG Arg 655	GAC Asp	TTC Phe	ATT Ile	CCT Pro	GGC Gly 660	AAG Lys	TGG Trp	ATC Ile	ATT Ile	GAC Asp 665	AAT Asn	2064
15														GTG Val 680			2112
20														GAC Asp			2160
20														CTC Leu			2208
25														TGC Cys			2256
30														ATG Met			2304
35														ATA Ile 760			2352
	TAG	•															2355
	мрнт	'LWMT	WVL	ZIIV	SLSKE	EESSN	IQASI	SCDF	NGIC	KGSS	GSLN	ISIPS	GLTE	AVKS	SLDLS	NNRITYIS	NSDLQRO

MPHTLWMVWULGVIISLSKEESSNQASLSCDRNGICKGSSGSLNSIPSGLTEAVKSLDLSNNRITYISNSDLQRC

40 VNLQALVLTSNGINTIEEDSFSSLGSLEHLDLSYNYLSNLSSSWFKPLSSLTFLNLLGNPYKTLGETSLFSHLTK
LQILRVGNMDTFTKIQRKDFAGLTFLEELEIDASDLQSYEPKSLKSIQNVSHLILHMKQHILLLEIFVDVTSSVE
CLELRDTDLDTFHFSELSTGETNSLIKKFTFRNVKITDESLFQVMKLLNQISGLLELEFDDCTLNGVGNFRASDN
DRVIDPGKVETLTIRRLHIPRFYLFYDLSTLYSLTERVKRITVENSKVFLVPCLLSQHLKSLEYLDLSENLMVEE
YLKNSACEDAWPSLQTLILRQNHLASLEKTGETLLTLKNLTNIDISKNSFHSMPETCQWPEKMKYLNLSSTRIHS
VTGCIPKTLEILDVSNNNLNLFSLNLPQLKELYISRNKLMTLPDASLLPMLLVLKISRNAITTFSKEQLDSFHTL
KTLEAGGNNFICSCEFLSFTQEQQALAKVLIDWPANYLCDSPSHVRGQQVQDVRLSVSECHRTALVSGMCCALFL
LILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRKAPSRNICYDAFVSYSERDAYWVENLMVQELENFNPPFKLCLH
KRDFIPGKWIIDNIIDSIEKSHKTVFVLSENFVKSEWCKYELDFSHFRLFEENNDAAILILLEPIEKKAIPQRFC
KLRKIMNTKTYLEWPMDEAQREGFWVNLRAAIKS

Table 3: Nucleotide and amino acid sequences (see SEQ ID NO: 5 and 6) of a

mammalian, e.g., human, Toll like Receptor 3 (DTLR3). ATG AGA CAG ACT TTG CCT TGT ATC TAC TTT TGG GGG GGC CTT TTG CCC 48 Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro -21 -20 -15 TTT GGG ATG CTG TGT GCA TCC TCC ACC ACC AAG TGC ACT GTT AGC CAT 96 Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His 10 GAA GTT GCT GAC TGC AGC CAC CTG AAG TTG ACT CAG GTA CCC GAT GAT 144 Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp 15 20 15 CTA CCC ACA AAC ATA ACA GTG TTG AAC CTT ACC CAT AAT CAA CTC AGA 192 Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg 30 35 20 AGA TTA CCA GCC GCC AAC TTC ACA AGG TAT AGC CAG CTA ACT AGC TTG 240 Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu 45 50 GAT GTA GGA TTT AAC ACC ATC TCA AAA CTG GAG CCA GAA TTG TGC CAG 288 25 Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln AAA CTT CCC ATG TTA AAA GTT TTG AAC CTC CAG CAC AAT GAG CTA TCT Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser 30 85 CAA CTT TCT GAT AAA ACC TTT GCC TTC TGC ACG AAT TTG ACT GAA CTC 384 Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu 100 35 CAT CTC ATG TCC AAC TCA ATC CAG AAA ATT AAA AAT AAT CCC TTT GTC 432 His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val 110 115

AAG CAG AAG AAT TTA ATC ACA TTA GAT CTG TCT CAT AAT GGC TTG TCA 480 Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser 125 130 TCT ACA AAA TTA GGA ACT CAG GTT CAG CTG GAA AAT CTC CAA GAG CTT 528 Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu 140 145 150 CTA TTA TCA AAC AAT AAA ATT.CAA GCG CTA AAA AGT GAA GAA CTG GAT 576 Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp 160 165 ATC TTT GCC AAT TCA TCT TTA AAA AAA TTA GAG TTG TCA TCG AAT CAA 624 Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln 175 180

40

45

50

		GAG Glu 190							672
5		TTT Phe							720
10	Cys	TTG Leu							768
15		CAG Gln							816
20		AAT Asn							864
		AAC Asn 270							912
25		TAT Tyr							960
30		AAT Asn						Lys	1008
35		TCC Ser							. 1056
40		AAA Lys							1104
		AAA Lys 350							1152
45		TCC Ser							1200
50		TCA Ser							1248
55		ATC Ile							1296

5		CTT Leu 415									1344
J		TGG Trp									1392
10	 	TAC Tyr									1440
15		CGA Arg									1488
20		TCA Ser									1536
25		AAC Asn 495									1584
		CTA Leu									1632
30		CAC His								<u>~</u>	1680
35		CTC Leu									1728
40		GAG Glu									1776
45		AAT Asn 575									1824
		CTA Leu		Leu					TCC _ Ser		1872
50		AAG Lys									1920

						ACG Thr				1968
5			_			ACC Thr 645		Glu		2016
10						CAC His				2064
15						GAC Asp				2112
20						TTG Leu				2160
						ATA Ile				2208
25 -						GAA Glu 725				2256
30 -	CAG Gln					CAT His				2304
35						GAA Glu				2352
40						GAG Glu				2400
						AGC Ser				2448
45						TTA Leu 805			Val	2496
50						CAA Gln				2544
55				Ile		TAT Tyr				2592

E		CGA Arg							2640
Э		AAA Lys							2688
10		TCC Ser		• .	 TAA				2715

MRQTLPCIYFWGGLLPFGMLCASSTTKCTVSHEVADCSHLKLTQVPDDLPTNITVLNLTHNQLRRLPAANFTRYS 15 QLTSLDVGFNTISKLEPELCQKLPMLKVLNLQHNELSQLSDKTFAFCTNLTELHLMSNSIQKIKNNPFVKQKNLI TLDLSHNGLSSTKLGTQVQLENLQELLLSNNKIQALKSEELDIFANSSLKKLELSSNQIKEFSPGCFHAIGRLFG LFLNNVQLGPSLTEKLCLELANTSIRNLSLSNSQLSTTSNTTFLGLKWTNLTMLDLSYNNLNVVGNDSFAWLPQL EYFFLEYNNIQHLFSHSLHGLFNVRYLNLKRSFTKQSISLASLPKIDDFSFQWLKCLEHLNMEDNDIPGIKSNMF TGLINLKYLSLSNSFTSLRTLTNETFVSLAHSPLHILNLTKNKISKIESDAFSWLGHLEVLDLGLNEIGQELTGO 20 EWRGLENIFEIYLSYNKYLQLTRNSFALVPSLQRLMLRRVALKNVDSSPSPFQPLRNLTILDLSNNNIANINDDM LEGLEKLEILDLQHNNLARLWKHANPGGPIYFLKGLSHLHILNLESNGFDEIPVEVFKDLFELKIIDLGLNNLNT LPASVFNNQVSLKSLNLQKNLITSVEKKVFGPAFRNLTELDMRFNPFDCTCESIAWFVNWINETHTNIPELSSHY LCNTPPHYHGFPVRLFDTSSCKDSAPFELFFMINTSILLIFIFIVLLIHFEGWRISFYWNVSVHRVLGFKEIDRQ TEQFEYAAYIIHAYKDKDWVWEHFSSMEKEDQSLKFCLEERDFEAGVFELEAIVNSIKRSRKIIFVITHHLLKDP 25 LCKRFKVHHAVQQAIEQNLDSIILVFLEEIPDYKLNHALCLRRGMFKSHCILNWPVQKERIGAFRHKLQVALGSK NSVH

	Table 4: Nucleotide and amino acid sequences (see SEQ ID NO: 7 and 8) of mammalian, e.g., primate, human, DNAX Toll like Receptor 4 (DTLR4).																a	
5		GAG Glu															48	
10		AAC Asn															96	
15	AGC Ser	TTC Phe	TTC Phe 35	AGT Ser	TTC Phe	CCA Pro	GAA Glu	CTG Leu 40	CAG Gln	GTG Val	CTG Leu	GAT Asp	TTA Leu 45	TCC Ser	AGG Arg	TGT Cys	144	
		ATC Ile 50															192	
20		ACC Thr															240	
25		TTT Phe															288	
30		CTA Leu															336	
35		GAA Glu															384	
		TAT Tyr 130															432	
40		AAG Lys															480	
45		CCC Pro															528	
50		ATC Ile															576	
55		AGA Arg															624	

					CGT Arg					672
5					GAC Asp	Lys	•			720
10					CGA Arg					768
15					AAT Asn 265					816
20					GAA Glu					864
					TTA Leu					912
25					CTC Leu					960
30					GAA Glu					1008
35					TTG Leu 345					1056
40					CTA Leu					1104
					AAC Asn					1152
45					AAT Asn	Leu				1200
50					CTC Leu					1248
55					GGC Gly 425					1296

								TTC Phe			1344
5								CTC Leu			1392
10								CTC Leu			1440
15								TTG Leu 495			1488
20								TAC Tyr			1536
25								TTT Phe			1584
								TGT Cys			1632
30								CAG Gln		å	1680
35								AAG Lys 575		•	1728
40								AAG Lys			1776
45								GTA Val			1824
4	GTT .Val								TGC Cys	•	1872
50	ATA Ile 625							ATC Ile		•	1920

		AGC Ser							_								1968
5		GAA Glu															2016
10		CCC Pro			-												2064
15		AGC Ser 690															2112
20		TGG Trp						_									2160
		AGT Ser															2208
25		CTG Leu															2256
30		TAC Tyr						-				_					2304
35		CGA Arg 770															2352
		ACA Thr															2397
40	TGA					•											2400
45	IQS:	LALG IYCT	AFSG: DLRV:	LSSL LHQM	PLLN:	AVET LSLD:	NLAS: LSLN:	LENF: PMNF:	PIGH: IQPG	LKTL: AFKE	KELN' IRLHI	/AHN! KLTL!	LIQS! RNNF!	OSTV. EKT51	EYFSI VMKT(SLSHLSTI NLTNLEHI CIQGLAGI FIERVKDE	DLSSNK EVHRLV

MELNFYKIPDNLPFSTKNLDLSFNPLRHLGSYSFFSFPELQVLDLSRCEIQTIEDGAYQSLSHLSTLILTGNP
IQSLALGAFSGLSSLQKLVAVETNLASLENFPIGHLKTLKELNVAHNLIQSFKLPEYFSNLTNLEHLDLSSNK
IQSIYCTDLRVLHQMPLLNLSLDLSLNPMNFIQPGAFKEIRLHKLTLRNNFDSLNVMKTCIQGLAGLEVHRLV
LGEFRNEGNLEKFDKSALEGLCNLTIEEFRLAYLDYYLDDIIDLFNCLTNVSSFSLVSVTIERVKDFSYNFGW
QHLELVNCKFGQFPTLKLKSLKRLTFTSNKGGNAFSEVDLPSLEFLDLSRNGLSFKGCCSQSDFGTTSLKYLD
LSFNGVITMSSNFLGLEQLEHLDFQHSNLKQMSEFSVFLSLRNLIYLDISHTHTRVAFNGIFNGLSSLEVLKM
AGNSFQENFLPDIFTELRNLTFLDLSQCQLEQLSPTAFNSLSSLQVLNMSHNNFFSLDTFPYKCLNSLQVLDY
50 SLNHIMTSKKQELQHFPSSLAFLNLTQNDFACTCEHQSFLQWIKDQRQLLVEVERMECATPSDKQGMPVLSLN
ITCQMNKTIIGVSVLSVLVVSVVAVLVYKFYFHLMLLAGCIKYGRGENIYDAFVIYSSQDEDWVRNELVKNLE
EGVPPFQLCLHYRDFIPGVAIAANIIHEGFHKSRKVIVVVSQHFIQSRWCIFEYEIAQTWQFLSSRAGIIFIV
LQKVEKTLLRQQVELYRLLSRNTYLEWEDSVLGRHIFWRRLRKALLDGKSWNPEGTVGTGCNWQEATSI

5	supplements of the supplement	at n , or G or	ucle T; T;	otid nucl nucl	es 8: eoti eoti	1, 3 des de 3	144, 3132 638 (320 35 desi	5, a 32, gnat	nd 3 3538 ed A	563 , an , ma	desi d 35 y be	gnat 53 d A o	ed A esig r T;	, eac nated and	h may G, ea	be
	AAAATAC	TCC	CTTG	CCTC	AA AA	AACT	GCTC	G GT	CAAA	CGGT	GAT	AGCA	AAC (CACG	CATTC	A	60
10	CAGGGCC	CACT	GCTG(CTCÅ	CA A	AACC	AGTG	A GG	ATGA'	TGCC	AGG	i	ATG ' Met ' -22	Ser .			115
15	TCG CGC Ser Arg																163
20	GTG AGA Val Arg	CCA Pro	GAA Glu 1	AGC Ser	TGG Trp	GAG Glu	CCC Pro 5	TGC Cys	GTG Val	GAG Glu	GTT Val	CCT Pro 10	AAT Asn	ATT Ile	ACT Thr		211
20	TAT CAA Tyr Gln 15	Cys															259
25	TTC TCA Phe Ser 30																307
30	GGC AGC Gly Ser	TAT Tyr	AGC Ser	TTC Phe 50	TTC Phe	AGT Ser	TTC Phe	CCA Pro	GAA Glu 55	Leu	CAG Gln	GTG Val	CTG Leu	GAT Asp 60	TTA Leu	•	355
35	TCC AGG Ser Arg	TGT Cys	GAA Glu 65	ATC Ile	CAG Gln	ACA Thr	ATT Ile	GAA Glu 70	GAT Asp	GGG Gly	GCA Ala	TAT Tyr	CAG Gln 75	AGC Ser	CTA Leu	•	403
40	AGC CAC Ser His	CTC Leu 80	TCT Ser	ACC Thr	TTA Leu	ATA Ile	TTG Leu 85	ACA Thr	GGA Gly	AAC Asn	CCC Pro	ATC Ile 90	CAG Gln	AGT Ser	TTA Leu		451
	GCC CTG Ala Leu 95	Gly	GCC Ala	TTT Phe	TCT Ser	GGA Gly 100	CTA Leu	TCA Ser	AGT Ser	TTA Leu	CAG Gln 105	AAG Lys	CTG Leu	GTG Val	GCT Ala		499
45	GTG GÀG Val Glu 110															:	547
50	AAA ACT Lys Thr															,	595
55	AAA TTA Lys Leu																643

5																GTT Val	691
5																AAC Asn	739
10						CAA Gln 195											78 7
15						AAT Asn											835
20						GCT Ala											883
25						GGA Gly											931
20	GAG Glu	GGC Gly 255	CTG Leu	TGC Cys	AAT Asn	TTG Leu	ACC Thr 260	ATT Ile	GAA Glu	GAA Glu	TTC Phe	CGA Arg 265	TTA Leu	GCA Ala	TAC Tyr	TTA Leu	979
30						GAT Asp 275											1:027
35	GTT Val	TCT Ser	TĊA Ser	TTT Phe	TCC Ser 290	CTG Leu	GTG Val	AGT Ser	GTG Val	ACT Thr 295	ATT Ile	GAA Glu	AGG Arg	GTA Val	AAA Lys 300	GAC Asp	1075
40	TTT Phe	TCT Ser	TAT Tyr	AAT Asn 305	TTC Phe	GGA Gly	TGG Trp	CAA Gln	CAT His 310	TTA Leu	GAA Glu	TTA Leu	GTT Val	AAC Asn 315	TGT Cys	AAA Lys	1123
45	TTT Phe	GGA Gly	CAG Gln 320	TTT Phe	CCC Pro	ACA Thr	TTG Leu	AAA Lys 325	CTC Leu	AAA Lys	TCT Ser	CTC Leu	AAA Lys 330	AGG Arg	CTT Leu	ACT Thr	1171
						GGT Gly		Asn									. 1219
50	AGC Ser 350	CTT Leu	GAG Glu	TTT Phe	CTA Leu	GAT Asp 355	CTC Leu	AGT Ser	AGA Arg	AAT Asn	GGC Gly 360	TTG Leu	AGT Ser	TTC Phe	AAA Lys	GGT Gly 365	1267

			AGT Ser 370						1315
5			GGT Gly						1363
10			CAT His						1411
. 15			GTA Val						1459
20			CAC His						1507
			GAA Glu 450						1555
25			GAT Asp						1603
30			TGT Cys						1651
35			CTT Leu						.1699
40			TTT Phe						1747
			AAT Asn 530						1795
45			AGT Ser						1843
50			GAA Glu						1891
55			GTG Val						1939

5					ATG Met													1987
					ATT Ile 610													2035
10					CTG Leu													2083
15					AAG Lys													2131
20	Val	ATC Ile 655	TAC Tyr	TCA Ser	AGC Ser	CAG Gln	GAT Asp 660	GAG Glu	GAC Asp	TGG Trp	GTA Val	AGG Arg 665	AAT Asn	GAG Glu	CTA Leu	GTA Val		2179
25					GAA Glu													2227
					CCC Pro 690													2275
30					AGC Ser												~	2323
35					TGG Trp													2371
40					AGT Ser													2419
45	GTG Val 750	GAG Glu	AAG Lys	ACC Thr	CTG Leu	CTC Leu 755	AGG Arg	CAG Gln	CAG Gln	GTG Val	GAG Glu 760	CTG Leu	TAC Tyr	CGC Arg	CTT Leu	CTC Leu 765		2467
20					TAC Tyr 770									Gly		CAC_ His		2515
50					CGA Arg												•	2563

	AAT CCA GAA GGA ACA GTG GGT ACA GGA TGC AAT TGG CAG GAA GCA ACA Asn Pro Glu Gly Thr Val Gly Thr Gly Cys Asn Trp Gln Glu Ala Thr 800 805 810	2611
5	TCT ATC TGAAGAGGAA AAATAAAAAC CTCCTGAGGC ATTTCTTGCC CAGCTGGGTC Ser Ile 815	2667
10	CAACACTTGT TCAGTTAATA AGTATTAAAT GCTGCCACAT GTCAGGCCTT ATGCTAAGGG	2727
10	TGAGTAATTC CATGGTGCAC TAGATATGCA GGGCTGCTAA TCTCAAGGAG CTTCCAGTGC	2787
	AGAGGGAATA AATGCTAGAC TAAAATACAG AGTCTTCCAG GTGGGCATTT CAACCAACTC	2847
15	AGTCAAGGAA CCCATGACAA AGAAAGTCAT TTCAACTCTT ACCTCATCAA GTTGAATAAA	2907
	GACAGAGAAA ACAGAAAGAG ACATTGTTCT TTTCCTGAGT CTTTTGAATG GAAATTGTAT	2967
20	TATGTTATAG CCATCATAAA ACCATTTTGG TAGTTTTGAC TGAACTGGGT GTTCACTTTT	3027
20	TCCTTTTTGA TTGAATACAA TTTAAATTCT ACTTGATGAC TGCAGTCGTC AAGGGGCTCC	3087
	TGATGCAAGA TGCCCCTTCC ATTTTAAGTC TGTCTCCTTA CAGAGGTTAA AGTCTAATGG	3147
25	CTAATTCCTA AGGAAACCTG ATTAACACAT GCTCACAACC ATCCTGGTCA TTCTCGAACA	3207
	TGTTCTATTT TTTAACTAAT CACCCCTGAT ATATTTTTAT TTTTATATAT CCAGTTTTCA	3267
30	TTTTTTTACG TCTTGCCTAT AAGCTAATAT CATAAATAAG GTTGTTTAAG ACGTGCTTCA	3327
30	AATATCCATA TTAACCACTA TTTTTCAAGG AAGTATGGAA AAGTACACTC TGTCACTTTG	3387
	TCACTCGATG TCATTCCAAA GTTATTGCCT ACTAAGTAAT GACTGTCATG AAAGCAGCAT	3447
35	TGAAATAATT TGTTTAAAGG GGGCACTCTT TTAAACGGGA AGAAAATTTC CGCTTCCTGG	3507
	TCTTATCATG GACAATTTGG GCTAGAGGCA GGAAGGAAGT GGGATGACCT CAGGAAGTCA	3567
40	CCTTTTCTTG ATTCCAGAAA CATATGGGCT GATAAACCCG GGGTGACCTC ATGAAATGAG	3627
40	TTGCAGCAGA AGTTTATTTT TTTCAGAACA AGTGATGTTT GATGGACCTC TGAATCTCTT	3687
	TAGGGAGACA CAGATGGCTG GGATCCCTCC CCTGTACCCT TCTCACTGCC AGGAGAACTA	3747
45	CGTGTGAAGG TATTCAAGGC AGGGAGTATA CATTGCTGTT TCCTGTTGGG CAATGCTCCT	3807
	TGACCACATT TTGGGAAGAG TGGATGTTAT CATTGAGAAA ACAATGTGTC TGGAATTAAT	3867
	GGGGTTCTTA TAAAGAAGGT TCCCAGAAAA GAATGTTCAT TCCAGCTTCT TCAGGAAACA	3927
50	GGAACATTCA AGGAAAAGGA CAATCAGGAT GTCATCAGGG AAATGAAAAT AAAAACCACA	3987
	ATGAGATATC ACCTTATACC AGGTAGATGG CTACTATAAA AAAATGAAGT GTCATCAAGG	4047
55	ATATAGAGAA ATTGGAACCC TTCTTCACTG CTGGAGGGAA TGGAAAATGG TGTAGCCGTT	4107

	ATGAAAAACA	GTACGGAGGT	TTCTCAAAAA	TTAAAAATAG	AACTGCTATA	TGATCCAGCA	4167
5	ATCTCACTTC	TGTATATATA	CCCAAAATAA	TTGAAATCAG	AATTTCAAGA	AAATATTTAC	4227
•	ACTCCCATGT	TCATTGTGGC	ACTCTTCACA	ATCACTGTTT	CCAAAGTTAT	GGAAACAACC '	4287
	CAAATTTCCA	TTGGAAAATA	AATGGACAAA	GGAAATGTGC	ATATAACGTA	CAATGGGGAT	4347
LO	ATTATTCAGC	CTAAAAAAAG	GGGGGATCCT	GTTATTTATG	ACAACATGAA	TAAACCCGGA	4407
	GGCCATTATG	CTATGTAAAA	TGAGCAAGTA	ACAGAAAGAC	AAATACTGCC	TGATTTCATT	4467
L5	TATATGAGGT	TCTAAAATAG	TCAAACTCAT	AGAAGCAGAG	AATAGAACAG	TGGTTCCTAG	4527
	GGAAAAGGAG	GAAGGGAGAA	ATGAGGAAAT	AGGGAGTTGT	CTAATTGGTA	ATATTAAAAT	4587
	GTATGCAAGA	TGAATTAGCT	CTAAAGATCA	GCTGTATAGC	AGAGTTCGTA	TAATGAACAA	4647
20	TACTGTATTA	TGCACTTAAC	ATTTTGTTAA	GAGGGTACCT	CTCATGTTAA	GTGTTCTTAC	4707
	CATATACATA	TACACAAGGA	AGCTTTTGGA	GGTGATGGAT	ATATTTATTA	CCTTGATTGT	4767
25	GGTGATGGTT	TGACAGGTAT	GTGACTATGT	CTAAACTCAT	CAAATTGTAT	ACATTAAATA	4827
-	TATGCAGTTT	TATAATATCA	АААААААА	ААААААА			4865
	MSASRLAGTLI	PAMAFLSCVRF	ESWEPCVEVEN	TTYOCMET.NEV	KT PONT. DESTR	NI.DI.SENDI.DHI.GS	YSEES

MSASRLAGTLIPAMAFLSCVRPESWEPCVEVPNITYQCMELNFYKIPDNLPFSTKNLDLSFNPLRHLGSYSFFSF
PELQVLDLSRCEIQTIEDGAYQSLSHLSTLILTGNPIQSLALGAFSGLSSLQKLVAVETNLASLENFPIGHLKTL

KELNVAHNLIQSFKLPEYFSNLTNLEHLDLSSNKIQSIYCTDLRVLHQMPLLNLSLDLSLNPMNFIQPGAFKEIR
LHKLTLRNNFDSLNVMKTCIQGLAGLEVHRLVLGEFRNEGNLEKFDKSALEGLCNLTIEEFRLAYLDYYLDDIID
LFNCLTNVSSFSLVSVTIERVKDFSYNFGWQHLELVNCKFGQFPTLKLKSLKRLTFTSNKGGNAFSEVDLPSLEF
LDLSRNGLSFKGCCSQSDFGTTSLKYLDLSFNGVITMSSNFLGLEQLEHLDFQHSNLKQMSEFSVFLSLRNLIYL
DISHTHTRVAFNGIFNGLSSLEVLKMAGNSFQENFLPDIFTELRNLTFLDLSQCQLEQLSPTAFNSLSSLQVLNM
SHNNFFSLDTFPYKCLNSLQVLDYSLNHIMTSKKQELQHFPSSLAFLNLTQNDFACTCEHQSFLQWIKDQRQLLV
EVERMECATPSDKQGMPVLSLNITCQMNKTIIGVSVLSVLVVSVVAVLVYKFYFHLMLLAGCIKYGRGENIYDAF
VIYSSQDEDWVRNELVKNLEEGVPPFQLCLHYRDFIPGVAIAANIIHEGFHKSRKVIVVVSQHFIQSRWCIFEYE
IAQTWQFLSSRAGIIFIVLQKVEKTLLRQQVELYRLLSRNTYLEWEDSVLGRHIFWRRLRKALLDGKSWNPEGTV
GTGCNWQEATSI

Table 5: Partial nucleotide and amino acid sequences (see SEQ ID NO: 9 and 10) of a mammalian, e.g., primate, human, DNAX Toll like Receptor 5 (DTLR5). TGT TGG GAT GTT TTT GAG GGA CTT TCT CAT CTT CAA GTT CTG TAT TTG 48 Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu 10 96 Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu ACT GCA TTA AGG GGA CTA AGC CTC AAC TCC AAC AGG CTG ACA GTT CTT 144 Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu 15 TCT CAC AAT GAT TTA CCT GCT AAT TTA GAG ATC CTG GAC ATA TCC AGG 192 Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg 20 AAC CAG CTC CTA GCT CCT AAT CCT GAT GTA TTT GTA TCA CTT AGT GTC 240 Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val 70 TTG GAT ATA ACT CAT AAC AAG TTC ATT TGT GAA TGT GAA CTT AGC ACT 25 288 Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr TTT ATC AAT TGG CTT AAT CAC ACC AAT GTC ACT ATA GCT GGG CCT CCT 336 30 Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro 100 110 GCA GAC ATA TAT TGT GTG TAC CCT GAC TCG TTC TCT GGG GTT TCC CTC -384 Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu 35 115 TTC TCT CTT TCC ACG GAA GGT TGT GAT GAA GAG GAA GTC TTA AAG TCC 432 Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser 135 40 CTA AAG TTC TCC CTT TTC ATT GTA TGC ACT GTC ACT CTG ACT CTG TTC 480 Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe 150 155 CTC ATG ACC ATC CTC ACA GTC ACA AAG TTC CGG GGC TTC TGT TTT ATC 528 Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile 165 TGT TAT AAG ACA GCC CAG AGA CTG GTG TTC AAG GAC CAT CCC CAG GGC 576 Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly 50 180 ACA GAA CCT GAT ATG TAC AAA TAT GAT GCC TAT TTG TGC TTC AGC AGC 624 Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser 55 195

F	AAA Lys	GAC Asp 210	TTC Phe	ACA Thr	TGG Trp	GTG Val	CAG Gln 215	AAT Asn	GCT Ala	TTG Leu	CTC Leu	AAA Lys 220	CAC His	CTG Leu	GAC Asp	ACT Thr	672
5	CAA Gln 225	TAC Tyr	AGT Ser	GAC Asp	Gln	AAC Asn 230	AGA Arg	TTC Phe	AAC Asn	CTG Leu	TGC Cys 235	TTT Phe	GAA Glu	GAA Glu	AGA Arg	GAC Asp 240	720
10	TTT Phe	GTC Val	CCA Pro	GGA Gly	GAA Glu 245	AAC Asn	CGC Arg	ATT Ile	GCC Ala	AAT Asn 250	ATC Ile	CAG Gln	GAT Asp	GCC Ala	ATC Ile 255	TGG Trp	768
15	AAC Asn	AGT Ser	AGA Arg	AAG Lys 260	ATC Ile	GTT Val	TGT Cys	CTT Leu	GTG Val 265	AGC Ser	AGA Arg	CAC	TTC Phe	CTT Leu 270	AGA Arg	GAT Asp	816
20	GGC Gly	TGG Trp	TGC Cys 275	CTT Leu	GAA Glu	GCC Ala	TTC Phe	AGT Ser 280	TAT Tyr	GCC Ala	CAG Gln	GGC Gly	AGG Arg 285	TGC Cys	TTA Leu	TCT Ser	864
	GAC Asp	CTT Leu 290	AAC Asn	AGT Ser	GCT Ala	CTC Leu	ATC Ile 295	ATG Met	GTG Val	GTG Val	GTT Val	GGG Gly 300	TCC Ser	TTG Leu	TCC Ser	CAG Gln	912
25	TAC Tyr 305	Gln	TTG Leu	ATG Met	AAA Lys	CAT His 310	CAA Gln	TCC Ser	ATC Ile	AGA Arg	GGC Gly 315	TTT Phe	GTA Val	CAG Gln	AAA Lys	CAG Gln 320	960
30	CAG Gln	TAT Tyr	TTG Leu	AGG Arg	TGG Trp 325	Pro	GAG Glu	GAT Asp	CTC Leu	CAG Gln 330	Asp	GTT Val	GGC Gly	TGG Trp	TTT Phe 335	CTT Leu	1008
35	CAT His	AAA Lys	CTC Leu	TCT Ser	Gln	CAG Gln	ATA Ile	CTA Leu	AAG Lys 345	Lys	GAA Glu	AAG Lys	GAA Glu	AAG Lys 350	Lys	AAA Lys	1056
40	GAC Asp	AAT Asn	AAC Asn 355	Ile	CCG Pro	TTG Leu	CAA Gln	ACT Thr 360	Val	GCA Ala	ACC Thr	ATC	TCC Ser 365		TCAA	AGG	1105
	AGC	:AAT	TCC	AACI	TATC	CTC A	AGCC	ACAA	A TA	ACTO	TTCA	CTI	TGTA	TTT	GCAC	CAAGTT	1165
	ATC	CTTA	TGG	GGT	CTCI	CT G	GAGG	TTTT	т т	TTTC	TTTI	TGC	CTACT	ATG	AAAA	ACAACAT	1225
45	AAA	ATCT(CTCA	ATTI	TCGT	TAT (CAAAA	AAAA	A A	AAAI	AAA	A TGO	CGGC	CCGC			1275
50	VSI IV(YSI	SVLI CTVTI CONRI	DITHN LTLF1 FNLC1	NKFI(LMTI) FEER!	CECEI LTVTI DEVP(LSTF! KFRG! GENR!	INWLN FCFIC IANIC	IHTNV CYKTA QDAIV	TIA(AQRL) NSRI	SPPAI /FKDI KIVCI	DIYC\ HPQGT LVSRI	/YPD: repdi HFLR!	SFSG\ MYKY! DGWC!	/SLFS DAYLO LEAFS	SLSTI CFSSI SYAQO	EGCDEEE' KDFTWVQI	OLLAPNPDVI VLKSLKFSLI NALLKHLDT(NSALIMVVV(

Table 6: Nucleotide and amino acid sequences of mammalian, e.g., primate or rodent DNAX Toll like Receptor 6 (DTLR6). SEQ ID NO: 11 and 12 are from primate, e.g., human; SEQ ID NO: 13 and 14 are from rodent, e.g., mouse.

	-						_					
5	pri	nate	:					•				
10				AAG Lys								48
				CTT Leu								96
15				GAT Asp 15							1	44
20				ACA Thr							1	.92
25				ACC Thr							2	40
2.0				GAC Asp							2	88
30				CTG Leu							3	36
35				AGA Arg 95							3	84
40				AAC Asn							. 4	32
45				CTC Leu							4	80
50				ACA Thr							5	28

CAA AAC TGT TAT TAT CGA AAT CCT TGT TAT GTT TCA TAT TCA ATA GAG

Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile Glu

160

576

170

50

155

	AAA Lys	GAT Asp	GCC Ala	TTC Phe	CTA Leu 175	AAC Asn	TTG Leu	ACA Thr	AAG Lys	TTA Leu 180	AAA Lys	GTG Val	CTC Leu	TCC Ser	CTG Leu 185	AAA Lys	624
. 5			AAT Asn														672
10			TAT Tyr 205														720
15	Phe	Asn 220	AAC Asn	Leu	Asn	Gln	Leu 225	Gln	Ile	Leu	Asp	Leu 230	Ser	Gly	Asn	Суз	768
20	Pro 235	Arg	TGT Cys	Tyr	Asn	Ala 240	Pro	Phe	Pro	Суѕ	Ala 245	Pro	Cys	Lys	Asn	Asn 250	816
	Ser	Pro	CTA Leu	Gln	Ile 255	Pro	Val	Asn	Ala	Phe 260	Asp	Ala	Leu	Thr	Glu 265	Leu	864
25	Lys	Val	TTA	Arg 270	Leu	His	Ser	Asn	Ser 275	Leu	Gln	His	Val	Pro 280	Pro	Arg	912
30	Trp	Phe	AAG Lys 285	Asn	Ile	Asn		Leu 290	Gln	Glu	Leu	Asp	Leu 295	Ser	Gln	Asn	960
35	Phe	Leu 300	GCC Ala	Lys	Glü	Ile	Gly 305	Asp	Ala	Lys	Phe	Leu 310	His	Phe	Leu	Pro	1008
40	Ser 315	Leu	ATC Ile	Gln	Leu	Asp 320	Leu	Ser	Phe	Asn	Phe 325	Glu	Leu	Gln	Val	Tyr 330	1056
	CGT	GCA Ala	TCT	ATG Met	AAT Asn 335	CTA Leu	TCA Ser	CAA Gln	GCA Ala	TTT Phe 340	TCT Ser	TCA Ser	CTG Leu	AAA Lys	AGC Ser 345	CTG Leu	1104
45			CTG Leu													TTT Phe	1152
50			TCG Ser 365														1200
55			AAC Asn														1248

5														TCA Ser			1296
-														ACT Thr			1344
10														TTC Phe 440			1392
15	Asp	Lys	Tyr 445	Ala	Arg	Ser	Суѕ	Arg 450	Phe	Lys	Asn	Lys	Glu 455	GCT Ala	Ser	Phe	1440
20	Met	Ser 460	Val	Asn	Glu	Ser	Cys 465	Tyr	Lys	Tyr	Gly	Gln 470	Thr	TTG Leu	Asp	Leu	1488
25														CAG Gln			1536
														AGC Ser			1584
30														TAT Tyr 520			1632
35														TTT Phe			1680
40														CAT His			1728
45														AAC Asn			1776
														TCC Ser			1824
50														TTC Phe 600			1872

					GTT Val													1920
5					CTG Leu						Leu	•						1968
10					TTG Leu													2016
15					TCT Ser 655													2064
20	Lys	Lys	Leu	Gln 670	TGT Cys	Leu	Lys	Asn	Leu 675	Glu	Thr	Leu	Asp	Leu 680	Ser	His		2112
					ACT Thr													2160
25	Leu	Lys 700	Asn	Leu	ATT Ile	Leu	Lys 705	Asn	Asn	Gln	Ile	Arg 710	Ser	Leu	Thr	Lys		2208
30	Tyr 715	Phe	Leu	Gln	GAT Asp	Ala 720	Phe	Gln	Leu	Arg	Tyr 725	Leu	Asp	Leu	Ser	Ser 730	, ,	2256
35	Asn	Lys	Ile	Gln	ATG Met 735	Ile	Gln	Lys	Thr	Ser 740	Phe	Pro	Glu	Asn	Val 745	Leu		,
40	·	Asn	Leu	Lys 750	Met	Leu	Leu	Leu	His 755	His	Asn	Arg	Phe	Leu 760	Cys	Thr		2352
	Cys	Asp	Ala 765	Val	TGG	Phe	Val	Trp 770	Trp	Val	Asn	His	Thr 775	Glu	Val	Thr		2400
45	Ile	Pro 780	Tyr	Leu	GCC Ala	Thr	Asp 785	Val	Thr	Cys	Val	Gly 790	Pro	Gly	Ala	His	- .	2448
50	Lys 795	Gly	Gln	Ser	GTG Val	Ile 800	Ser	Leu	Asp	Leu	Tyr 805	Thr	Cys	Glu	Leu	Asp 810		2496
55					ATT Ile 815													2544

														GAT Asp 840				2592
5																		
														CAG				2640
	Tyr	Ile	_	His	Phe	Cys	Lys		ĻУs	Ile	Lys	Gly	Tyr	Gln	Arg	Leu		
			845					850					855					
10	א ידי א	መሮሽ	CCN	CAC	m C m	ጥርር	ጥለጥ	_C አ ጥ	CCT	መመመ	መመ ለ	CTC	ar v ar	GAC	n cm	2 2 2		2600
10														Asp				2688
		860			Ų, D	0,70	865	пор		1110	110	870	131	nop	711 -	Lys		
														GCC				2736
15		Pro	Ala	Val	Thr		Trp	Val	Leu	Ala		Leu	Val	Ala	Lys			
	875			•		880					885					890		
	GAA	GAC	CCA	AGA	GAG	AAA	САТ	արդուր	ידעע	ጥጥΔ	ጥርጥ	CTC	GAG	GAA	AGG	GAC		2784
														Glu				2101
20		•			895	-				900			-		905			
														AGC				2832
	Trp	Leu	Pro	910 GTÀ	GIn	Pro	Val	Leu		Asn	Leu	Ser	Gln	Ser	Ile	Gln		
25				310					915					920				
23	CTT	AGC	AAA	AAG	ACA	GTG	TTT	GTG	ATG	ACA	GAC	AAG	TAT	GCA	AAG	ACT		2880
														Ala				
			925					930					935					
2.0		3300					-											0.000
30														CTC Leu				2928
	Giu	940	1110	Lyo	116	nia	945	ıyı	neu	Ser	urs	950	ALG	пеп	Het	нэр		
-														CCC			•	2976
35		Lys	Val	Asp	Val		Ile	Leu	Ile	Phe		Glu	Lys	Pro	Phe			
	955					960		•			965					970		
	AAG	TCC	AAG	TTC	CTC	CAG	CTC	CGG	AAA	AGG	СТС	ጥርጥ	GGG	AGT	тст	GTC		3024
														Ser				-
40	_				975			_	-	980		•			985			
														•				
														TGG				3072
	rea	GIU	Trp	990	Inr	ASI	Pro	Gin	995	His	Pro	Tyr	Pne	Trp		Cys		
45				990					333					1000	,			
	CTA	AAG	AAC	GCC	CTG	GCC	ACA	GAC	ÄAT	CAT	GTG	GCC	TAT	AGT	CAG	GTG		3120
														Ser				
			100	5				1010)				101	5				
E 0	mme		C7 7	7 C C	CMC	መጽሮ												2120
50				ACG	GTC Val	TAG												3138
	EIIG	1020		7117	Val													
			-															
•	MWT	LKRL	LLIL	FNII	LISK	LLGA	RWFPI	(TLP	CDVTI	LDVP	KNHV	TVDC	rdkh:	LTEI	PGGI	PTNTT	4LTLT	INHIP
55	DTC	ום פעכ	ים זסנ	37.37E	TUEDO	NCV	TOTO	CEVAN	IMOTI	ZDIA	מחעז	20001	י דעית	CCT VI	ת חראות	TT TT1	OCT.P	PST.OT.

55

DISPASFHRLDHLVEIDFRCNCVPIPLGSKNNMCIKRLQIKPRSFSGLTYLKSLYLDGNQLLEIPQGLPPSLQL

LSLEANNIFSIRKENLTELANIEILYLGQNCYYRNPCYVSYSIEKDAFLNLTKLKVLSLKDNNVTAVPTVLPST
LTELYLYNNMIAKIQEDDFNNLNQLQILDLSGNCPRCYNAPFPCAPCKNNSPLQIPVNAFDALTELKVLRLHSN
SLQHVPPRWFKNINKLQELDLSQNFLAKEIGDAKFLHFLPSLIQLDLSFNFELQVYRASMNLSQAFSSLKSLKI
LRIRGYVFKELKSFNLSPLHNLQNLEVLDLGTNFIKIANLSMFKQFKRLKVIDLSVNKISPSGDSSEVGFCSNA
TRSVESYEPQVLEQLHYFRYDKYARSCRFKNKEASFMSVNESCYKYGQTLDLSKNSIFFVKSSDFQHLSFLKCL
NLSGNLISQTLNGSEFQPLAELRYLDFSNNRLDLLHSTAFEELHKLEVLDISSNSHYFQSEGITHMLNFTKNLK
VLQKLMMNDNDISSSTSRTMESESLRTLEFRGNHLDVLWREGDNRYLQLFKNLLKLEELDISKNSLSFLPSGVF
DGMPPNLKNLSLAKNGLKSFSWKKLQCLKNLETLDLSHNQLTTVPERLSNCSRSLKNLILKNNQIRSLTKYFLQ
DAFQLRYLDLSSNKIQMIQKTSFPENVLNNLKMLLLHHNRFLCTCDAVWFVWWVNHTEVTIPYLATDVTCVGPG
AHKGQSVISLDLYTCELDLTNLILFSLSISVSLFLMVMMTASHLYFWDVWYIYHFCKAKIKGYQRLISPDCCYD
AFIVYDTKDPAVTEWVLAELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVFVMTDKYAKTEN
FKIAFYLSHQRLMDEKVDVIILIFLEKPFQKSKFLQLRKRLCGSSVLEWPTNPQAHPYFWQCLKNALATDNHVA
YSQVFKETV

rodent (SEQ ID NO: 13 and 14): CTT GGA AAA CCT CTT CAG AAG TCT AAG TTT CTT CAG CTC AGG AAG AGA 48 Leu Gly Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg 5 CTC TGC AGG AGC TCT GTC CTT GAG TGG CCT GCA AAT CCA CAG GCT CAC 96 Leu Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His 10 CCA TAC TTC TGG CAG TGC CTG AAA AAT GCC CTG ACC ACA GAC AAT CAT 144 Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn His 40 GTG GCT TAT AGT CAA ATG TTC AAG GAA ACA GTC TAG 15 180 Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val 50 ${\tt LGKPLQKSKFLQLRKRLCRSSVLEWPANPQAHPYFWQCLKALTTDNHVAYSQMFKETV}$ 20 additional rodent, e.g., mouse sequences: upstream (SEQ ID NO: 27 and 28); nucleotides 186, 196, 217, 276, and 300 25 designated C, each may be A, C, G, or T: TCC TAT TCT ATG GAA AAA GAT GCT TTC CTA TTT ATG AGA AAT TTG AAG 48 Ser Tyr Ser Met Glu Lys Asp Ala Phe Leu Phe Met Arg Asn Leu Lys . 5 10 30 GTT CTC TCA CTA AAA GAT AAC AAT GTC ACA GCT GTC CCC ACC ACT TTG 96 Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu CCA CCT AAT TTA CTA GAG CTC TAT CTT TAT AAC AAT ATC ATT AAG AAA 144 Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys ATC CAA GAA AAT GAT TTC AAT AAC CTC AAT GAG TTG CAA GTC CTT GAC 192 Ile Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Val Leu Asp 50 • 55 CTA CGT GGA AAT TGC CCT CGA TGT CAT AAT GTC CCA TAT CCG TGT ACA 240 Leu Arg Gly Asn Cys Pro Arg Cys His Asn Val Pro Tyr Pro Cys Thr 45 65 70 CCG TGT GAA AAT AAT TCC CCC TTA CAG ATC CAT GAC AAT GCT TTC AAT 288 Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Asp Asn Ala Phe Asn 85 50 TCA TCG ACA GAC 300 Ser Ser Thr Asp

100

 ${\tt SYSMEKDAFLFMRNLKVLSLKDNNVTAVPTTLPPNLLELYLYNNIIKKIQENDFNNLNELQXLDLXGNCPRCXNVPYPCTPCENNSPLQIHXNAFNSSTX}$

5	or G; nucle and 1735 de	otide 1664 designated G,	esignated C, may be G or	may be A, C,	43 designated A, G, or T; nucleo 1719 designated A, G, or T:	tides 1680
10					GTT TTT GAG GGT Val Phe Glu Gly 15	48
15					AAT GGG CTC AAA Asn Gly Leu Lys 30	96
20		Trp Asp Arg			TTG GAA ATT TTG Leu Glu Ile Leu 45	144
25					AGA TTG GCC AAC Arg Leu Ala Asn	192
			Thr Leu Ile		AAT CAA ATC AGG Asn Gln Ile Arg 80	240
30					TTG CGC TAT CTA Leu Arg Tyr Leu 95	288
35					ACT AGC TTC CCA Thr Ser Phe Pro 110	336
40		Leu Asn Asn		Leu Val Leu	CAT CAC AAT CGC His His Asn Arg 125	384
45	Phe Leu Cys	Asn Cys Asp	Ala Val Trp		TGG GTT AAC CAT Trp Val Asn His	432
			Tyr Leu Ala		ACT TGT GTA GGT Thr Cys Val Gly 160	480
50					GAT CTG TAT ACG Asp Leu Tyr Thr 175	528

		GAT Asp 180											576
5		TTT Phe				,	,						624
10		TGG Trp						Lys					672
15		TCT											720
20		ACT Thr											768
		AAA Lys 260											816
25		AGA Arg											864
30		ATA Ile											912
35		AAG Lys									CAT His 320	*Came*	960
40		CTG Leu											1008
		CTT Leu 340											1056
45		TCT									CCA Pro	-	1104
50		CAG Gln											1152
55		CAA Gln				TAG	CTCT	CTG 2	AAGA/	ATGT(CA		1202

	CCACCTAGGA	CATGCCTTGG	TACCTGAAGT	TTTCATAAAG	GTTTCCATAA	ATGAAGGTCT	1262
5	GAATTTTTCC	TAACAGTTGT	CATGGCTCAG	ATTGGTGGGA	AATCATCAAT	ATATGGCTAA	1322
J	GAAATTAAGA	AGGGGAGACT	GATAGAAGAT	AATTTCTTTC	TTCATGTGCC	ATGCTCAGTT	1382
	AAATATTTCC	CCTAGCTCAA	ATCTGAAAAA	CTGTGCCTAG	GAGACAACAC	AAGGCTTTGA	1442
10	TTTATCTGCA	TACAATTGAT	AAGAGCCACA	CATCTGCCCT	GAAGAAGTAC	TAGTAGTTTT	1502
	AGTAGTAGGG	TAAAAATTAC	ACAAGCTTTC	TCTCTCTCTG	ATACTGAACT	GTACCAGAGT	1562
15	TCAATGAAAT	AAAAGCCCAG	AGAACTTCTC	AGTAAATGGT	TTCATTATCA	TGTAGTATCC	1622
	ACCATGCAAT	ATGCCACAAA	ACCGCTACTG	GTACAGGACA	GCTGGTAGCT	GCTTCAAGGC	1682
	CTCTTATCAT	TTTCTTGGGG	CCCATGGAGG	GGTTCTCTGG	GAAAAAGGGA	AGGTTTTTT	1742
20	TGGCCATCCA	TGAA					1756

SPEIPWNSLPPEVFEGMPPNLKNLSLAKNGLKSFFWDRLQLLKHLEILDLSHNQLTKVPERLANCSKSLTTLILK HNQIRQLTKYFLEDALQLRYLDISSNKIQVIQKTSFPENVLNNLEMLVLHHNRFLCNCDAVWFVWWVNHTDVTIP YLATDVTCVGPGAHKGQSVISLDLYTCELDLTNLILFSVSISSVLFLMVVMTTSHLFFWDMWYIYYFWKAKIKGY PASAIPWSPCYDAFIVYDTKNSAVTEWVLQELVAKLEDPREKHFNLCLEERDWLPGQPVLENLSQSIQLSKKTVF VMTQKYAKTESFKMAFYLSHQRLLDEKVDVIILIFLERPLQKSKFLQLRKRLCRSSVLEWPANPQAHPYFWQCLK NALTTDNHVAYSQMFKETV

25

	Tabl prim	e 7: ate,	Nu hum	cleo an,	tide DNAX	and Tol	ami 1 li	no a ke R	cid lecep	sequ	ence 7 (D	s of	aπ').	amma	lian	ı, e.g	.,	
5	upst	ream	(SE	Q ID	NO:	15	and	16):			,	•						
J	G AA	T TC n Se 1	C AG	A CT	T AT u Il	A AA e As 5	C TT n Le	G AA	A AA 's As	n Le	C TÁ u Ťy .0	T TI	G GC u Al	C TG	p As	AC sn .5		46
10			TTT Phe															94
15			ACG Thr														,	142
20			CAT His 50															190.
	CTG Leu	AGC Ser 65	AAC Asn	ACC Thr	CAG Gln	ATC Ile	AAA Lys 70	TAC Tyr	ATT Ile	AGT Ser	GAA Glu	GAA Glu 75	GAT Asp	TTC Phe	AAG Lys	GGA Gly		238
25			AAT Asn															286
30	TTC Phe	AAT Asn	GCC Ala	CCA Pro	TTT Phe 100	CCA Pro	TGC Cys	GTG Val	CCT Pro	TGT Cys 105	GAT Asp	GGT Gly	GGT Gly	GCT Ala	TCA Ser 110	ATT Ile		334
35			GAT Asp															382
.40		Leu	TCT Ser 130	Ser	Thr	Ser	Leu	Arg	Lys		Asn	Ala	Ala	Trp		AAA Lys		430
45	Asn		CCT Pro					Leu										478
45	GGA	Glu	ATA Ile	GCC Ala	TCT Ser	GGG Gly 165	Ala	TTT Phe	TTA Leu	ACG Thr	ATG Met 170	Leu	CCC Pro	CGC Arg	TTA Leu	GAA Glu 175		526
50	ATA Ile	CTT Leu	GAC Asp	TTG Leu	TCT Ser 180	Phe	AAC Asn	TAT	ATA	AAG Lys 185	Gly	AGT Ser	TAT Tyr	CCA Pro	CAG Gln 190	CAT		574

																TTG Leu	622
. 5	CAT His	TTA Leu	AGA Arg 210	GGT Gly	TAT Tyr	GTG Val	TTC Phe	CAG Gln 215	GAA Glu	CTC Leu	AGA Arg	GAA Glu	GAT Asp 220	GAT Asp	TTC. Phe	.CAG Gln	670
10	CCC Pro	CTG Leu 225	ATG Met	CAG Gln	CTT Leu	CCA Pro	AAC Asn 230	TTA Leu	TCG Ser	ACT Thr	ATC Ile	AAC Asn 235	TTG Leu	GGT Gly	ATT Ile	AAT Asn	718
15	TTT Phe 240	ATT Ile	AAG Lys	CAA Gln	ATC Ile	GAT Asp 245	TTC Phe	AAA Lys	CTT Leu	TTC Phe	CAA Gln 250	AAT Asn	TTC Phe	TCC Ser	AAT Asn	CTG Leu 255	766
20	GAA Glu	ATT Ile	ATT Ile	TAC Tyr	TTG Leu 260	TCA Ser	GAA Glu	AAC Asn	AGA Arg	ATA Ile 265	TCA Ser	CCG Pro	TTG Leu	GTA Val	AAA Lys 270	GAT Asp	814
20	ACC Thr	CGG Arg	CAG Gln	AGT Ser 275	TAT Tyr	GCA Ala	AAT Asn	AGT Ser	TCC Ser 280	TCT Ser	TTT Phe	CAA Gln	CGT Arg	CAT His 285	ATC Ile	CGG Arg	862
25	AAA Lys	CGA Arg	CGC Arg 290	TCA Ser	ACA Thr	GAT Asp	TTT Phe	GAG Glu 295	TTT Phe	GAC Asp	CCA Pro	CAT His	TCG Ser 300	AAC Asn	TTT Phe	TAT Tyr	910
30	CAT His	TTC Phe 305	ACC Thr	CGT Arg	CCT Pro	TTA Leu	ATA Ile 310	AAG Lys	CCA Pro	CAA Gln	TGT Cys	GCT Ala 315	GCT Ala	TAT Tyr	GGA Gly	AAA Lys	958
35				TTA Leu							TT						990
40	EDF!	(GLI) DLEF1 1QLP1	VLTLI VYLVO VLSTI	DLSC	NCPI GAFI NFI	RCFNA LTMLE KQIDE	PFP(RLE) KLF(VPCI LDLS NFSN	GGAS FNYI ILEII	INIE KGSY	ORFAE (PQHI	ONL:	TQLRY RNFSK	LNLS LLSI	STSI RALH	RKLFLSNTQ LRKINAAWF HLRGYVFQE FQRHIRKRR	KNMPHL LREDDF
45	dowr	stre	eam (SEQ	ID N	10: 1	.7 ar	nd 18	3):								
				TCC Ser													48
50				GAT Asp 20													96

				GAA Glu													144
5				TGG Trp													192
10		Ile		CAA Gln													240
15				TGG Trp													288
20				GAG Glu 100													336
20				CAT His													384
25				CTC Leu													432
30				CTG Leu											Arg		480
35				TAT Tyr								TAAC	CTGAC	GT '	raagi	CATGA	. 533
	TTTC	CGCGC	CCA 1	TAAT	\AAG?	AT GO	CAAAC	GAAT	GAC	CATTI	CCG	TATI	PAGT:	TAT	CTATI	TGCTAC	593
40	GGT	AACC	AAA :	TACT	CCCZ	AA AA	AACCI	PTACO	TC	GTTT	CAA	AAC	AACC	ACA '	TTCT	SCTGGC	653
40	CCC	ACAGI	TT :	TTGAC	GGT	CA ·GO	SAGTO	CCAGO	cco	CAGCA	AATA	CTG	GTC	TTC 1	IGCT	CAGGG	713
	TGT	CTCC	AGA (GGCT	CAAT	G T	AGGT	STTC	A CCA	AGAGI	ACAT	AGGO	CATC	ACT (GGGG	CACAC	773
45	TCC	ATGTO	GT :	rgtti	TCTC	GG AT	TCAI	ATTCO	TCC	CTGGC	CTA	TTG	CCAI	AAG (GCTAT	TACTCA	833
	TGT	AAGCO	CAT	GCGAC	CCT	AT CO	CCAC	AACGO	G CAC	SCTT	SCTT	CATO	CAGA	GCT I	AGCAZ	AAAAAG	893
50	AGA	GGTTC	GCT A	AGCAZ	AGAT	GA AC	GTCAC	CAATO	C TT	rtgt?	AATC	GAA!	CAA	AAA .	AGTG	ATATCT	953
50	CATO	CACT	TG (GCCAT	TTAT	CT A	TTG	TAGA	A AGT)AAA1	CCAC	AGG	rccci	ACC .	AGCT	CCATGG	1013
	GAG	rgaco	CAC (CTCAC	TCC#	AG G	SAAA	ACAGO	C TG	AAGA	CAA	GATO	GTG	AGC '	TCTG/	ATTGCT	1073
55	TCAC	STTGO	STC 2	ATCA	CTA	T T	rccc1	TGA	TG	CTGT(CCTG	GGAT	rggc	CGG	CTAT	CTTGAT	1133

	GGAT	'AGA'I	TG :	rgaat	TATCE	AG GA	AGGCC	CAGGG	ATC	CACTO	STGG	ACC	ATCTT	'AG (CAGT	rgac(CT	1193
5	AACA	CATO	CTT (CTTTI	CAAT	'A TO	CTAAC	SAACT	TTI	rgcci	ACTG	TGAC	CTAAT	GG 1	CCT	ATA	TT	1253
5	AAGO	CTGTI	GT :	TAT!	ATTTA	T C	TATE	ATCTA	A TGO	CTAC	CATG	GTTA	TAT	TA!	GCTG:	rggt'	TG	1313
	CGTT	CGGT	TTT !	TTTAT	CACAG	T TO	CTTI	TACA	CAA A	TATT	CCT	GTA	CATI	TG P	CTT	CTAA	GG	1373
10	TTTA	GAT	SCC I	ATTT <i>F</i>	AGAA	C T	SAGAI	GGAI	' AGC	CTTTI	CAAA	GCAT	CTTI	TA (CTTC	TAC	CA	1433
	TTTI	TATT	AAA	GTATO	CAGO	T A	TTA	GAAG	cr1	rttgo	STCT	ATA	TGT	AA :	TGC	CATT	GC	1493
15	TGTA	AATC	CTT A	LAAA A	GAAT	G A	AAAT	TAA	TT1	CATI	ATT	AAA	LAAA	AA A	AAA	AAAA	AA	1553
15	AAAA	À																1557
20	LTKE	(YAKS	SWNF		(LGLÇ	RLM												SKKTVFV FWQTLRN
	Furt	her	pri	mate,	e.c	, hi	ıman,	DTI	5R7 s	seque	ence	(SEÇ) ID	NO:	36 .	and :	37).	
25				tgc Cys													48	
30				aat Asn														
35				gtt Val													144	1
40				gtg Val 35														2
	ttc Phe	atc Ile	aca Thr 50	cac His	ata Ile	acg Thr	aat Asn	gaa Glu 55	tca Ser	ttt Phe	caa Gln	Gly ggg	ctg Leu 60	caa Gln	aat Asn	ctc Leu	240	-
45				aat Asn														3
50				ata Ile													33	6
55				aaa Lys														4

	ccc caa Pro Gln															432
5	att caa Ile Gln															480
10	ata aac Ile Asn 145	Leu														528
15	gtt tgc Val Cys 160															576
20	aat ttg Asn Leu															624
20	ccc aaa Pro Lys															672
25	atc aaa Ile Lys															720
30	tta cta Leu Leu 225	Asp														768
35	cca tgc Pro Cys 240															816
40	gct ttt Ala Phe															864
40	tcc ctc Ser Leu	agg Arg	aag Lys 275	att Ile	aat Asn	gct Ala	gcc Ala	tgg Trp 280	ttt Phe	aaa Lys	aat Asn	atg Met	cct Pro 285	cat His	ctg Leu	912
45	aag gtg Lys Val															960
50	ggg gca Gly Ala 305	Phe					Pro									1008
55	ttt aac Phe Asn 320															1056

				aaa Lys													1104
5				gaa Glu 355													1152
10				tcg Ser													1200
15				ctt Leu													1248
20				aga Arg													1296
20				tcc Ser													1344
25				ttt Phe 435													1392
30				cca Pro													1440
35				att Ile													1488
40				tgt Cys													1536
±0	agt Ser	gga Gly	act Thr	gaa Glu	ttt Phe 500	tca Ser	gcc Ala	att Ile	cct Pro	cat His 505	gtc Val	aaa Lys	tat Tyr	ttg Leu	gat Asp 510	ttg Leu	1584
45				aga Arg 515													1632
50				gaa Glu													1680
55				gta Val													1728
				tta Leu													1776

aag tat aac ctg gaa agc aag tcc ctg gta gaa tta gtt ttc agt ggc lags Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe Ser Gly 580 585 585 590

aat cgc ctt gac att ttg tgg aat gat gat gac aac agg tat atc tcc lags aga at cgc leu Asp Ile Leu Trp Asn Asp Asp Asp Asp Asp Arg Tyr Ile Ser 595 600 605

10

	att Ile	ttc Phe	aaa Lys 610	ggt Gly	ctc Leu	aag Lys	aat Asn	ctg Leu 615	aca Thr	cgt Arg	ctg Leu	gat Asp	tta Leu 620	Ser	ctt Leu	aat Asn	1920
5	agg Arg	ctc Leu 625	aag Lys	cac His	atc Ile	cca Pro	aat Asn 630	gaa Glu	gca Ala	ttc Phe	Leu	aat Asn 635	ttg Leu	cca Pro	gcg Ala	agt Ser	1968
10	ctc Leu 640	act Thr	gaa Glu	cta Leu	cat [.] His	ata Ile 645	aat Asn	gat Asp	aat Asn	atg Met	tta Leu 650	aag Lys	ttt Phe	ttt Phe	aac Asn	tgg Trp 655	2016
15	Thr	Leu	Leu	Gln	cag Gln 660	Phe	Pro	Arg	Leu	Glu 665	Leu	Leu	Asp	Leu	Arg 670	Gly	2064
20	aac Asn	aaa Lys	cta Leu	ctc Leu 675	ttt Phe	tta Leu	act Thr	gat Asp	agc Ser 680	cta Leu	tct Ser	gac Asp	ttt Phe	aca Thr 685	tct Ser	tcc Ser	2112
	ctt Leu	cgg Arg	aca Thr 690	ctg Leu	ctg Leu	ctg Leu	agt Ser	cat His 695	aac Asn	agg Arg	att Ile	tcc Ser	cac His 700	cta Leu	ccc Pro	tct Ser	2160
25	ggc Gly	ttt Phe 705	ctt Leu	tct Ser	gaa Glu	gtc Val	agt Ser 710	agt Ser	ctg Leu	aag Lys	cac His	ctc Leu 715	gat Asp	tta Leu	agt Ser	tcc Ser	2208
30	aat Asn 720	ctg Leu	cta Leu	aaa Lys	aca Thr	atm Xaa 725	aac Asn	aaa Lys	tcc Ser	gca Ala	ctt Leu 730	gaa Glu	act Thr	aag Lys	acc Thr	acc Thr 735	2256
35	acc Thr	aaa Lys	tta Leu	tct Ser	atg Met 740	ttg Leu	gaa Glu	cta Leu	cac His	gga Gly 745	aac Asn	ccc Pro	ttt Phe	gaa Glu	tgc Cys 750	acc Thr	2304
40	tgt Cys	gac Asp	att Ile	gga Gly 755	gat Asp	ttc Phe	cga Arg	aga Arg	tgg Trp 760	atg Met	gat Asp	gaa Glu	cat His	ctg Leu 765	aat Asn	gtc Val	2352
	aaa Lys	att Ile	ccc Pro 770	aga Arg	ctg Leu	gta Val	gat Asp	gtc Val 775	att Ile	tgt Cys	gcc Ala	agt Ser	cct Pro 780	gly ggg	gat Asp	caa Gln	2400
45	aga Arg	999 Gly 785	aag Lys	agt Ser	att Ile	gtg Val	agt Ser 790	ctg Leu	gag Glu	cta Leu	aca Thr	act Thr 795	tgt Cys	gtt Val	tca Ser	gat Asp	2448
50	gtc Val 800	act Thr	gca Ala	gtg Val	ata Ile	tta Leu 805	ttt Phe	ttc Phe	ttc Phe	acg Thr	ttc Phe 810	ttt Phe	atc Ile	acc Thr	acc Thr	atg Met 815	2496
55	gtt Val	atg Met	ttg Leu	gct Ala	gcc Ala 820	ctg Leu	gct Ala	cac His	His	ttg Leu 825	ttt Phe	tac Tyr	tgg Trp	gat Asp	gtt Val 830	tgg Trp	2544

	ttt Phe	ata Ile	tat Tyr	aat Asn 835	gtg Val	tgt Cys	tta Leu	gct Ala	aag Lys 840	tta Leu	aaa Lys	ggc Gly	tac Tyr	agg Arg 845	tct Ser	ctt Leu	2592
5	tcc Ser	aca Thr	tcc Ser 850	caa Gln	act [.] Thr	ttc Phe	tat Tyr	gat Asp 855	gct Ala	tac Tyr	att Ile'	tct Ser	tat Tyr 860	gac Asp	acc Thr	aaa Lys	2640
10	gat Asp	gcc Ala 865	tct Ser	gtt Val	act. Thr	gac Asp	tgg Trp 870	gtg Val	ata Ile	aat Asn	gag Glu	ctg Leu 875	cgc Arg	tac Tyr	cac His	ctt Leu	2688
15	gaa Glu 880	gag Glu	agc Ser	cga Arg	gac Asp	aaa Lys 885	aac Asn	gtt Val	ctc Leu	ctt Leu	tgt Cys 890	cta Leu	gag Glu	gag Glu	agg Arg	gat Asp 895	2736
0.0	tgg Trp	gac Asp	ccg Pro	gga Gly	ttg Leu 900	gcc Ala	atc Ile	atc Ile	gac Asp	aac Asn 905	ctc Leu	atg Met	cag Gln	agc Ser	atc Ile 910	aac Asn	2784
20	caa Gln	agc Ser	aag Lys	aaa Lys 915	aca Thr	gta Val	ttt Phe	gtt Val	tta Leu 920	acc Thr	aaa Lys	aaa Lys	tat Tyr	gca Ala 925	aaa Lys	agc Ser	2832
25	tgg Trp	aac Asn	ttt Phe 930	aaa Lys	aca Thr	gct Ala	ttt Phe	tac Tyr 935	ttg Leu	gcc Ala	ttg Leu	cag Gln	agg Arg 940	cta Leu	atg Met	ggt Gly	2880
30	gag Glu	aac Asn 945	Met	gat Asp	gtg Val	att Ile	ata Ile 950	Phe	atc Ile	ctg Leu	ctg Leu	gag Glu 955	Pro	gtg Val	tta Leu	cag Gln	2928
35	cat His 960	Ser	ccg Pro	tat Tyr	ttg Leu	agg Arg 965	cta Leu	cgg Arg	cag Gln	cgg Arg	atc Ile 970	Cys	aag Lys	agc Ser	tcc Ser	Ile 975	2976 -
4.0	ctc Leu	cag Gln	tgg Trp	cct	gac Asp 980	Asn	ccg Pro	aag Lys	gca Ala	gaa Glu 985	Gly	ttg Leu	ttt Phe	tgg	caa Gln 990	Thr	3024
40	ctg Leu	aga Arg	aat Asn	gtg Val 995	Val	ttg Leu	act Thr	gaa Glu	aat Asn 1000	Asp	tca Ser	cgg Arg	tat Tyr	aac Asn 1005	Asn	atg Met	3072
45	tat Tyr	gtc Val	gat Asp 1010	Ser	att Ile	aag Lys	caa Gln	tac Tyr 1015	:	L							3099

MLTCIFLLISGSCELCAEENFSRSYPCDEKKQNDSVIAECSNRRLQEVPQTVGKYVTELDLSDNFITHI TNESFQGLQNLTKINLNHNPNVQHQNGNPGIQSNGLNITDGAFLNLKNLRELLLEDNQLPQIPSGLPES LTELSLIQNNIYNITKEGISRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLSFNSLSHV PPKLPSSLRKLFLSNTQIKYISEEDFKGLINLTLLDLSGNCPRCFNAPFPCVPCDGGASINIDRFAFQN LTQLRYLNLSSTSLRKINAAWFKNMPHLKVLDLEFNYLVGEIASGAFLTMLPRLEILDLSFNYIKGSYP 5 OHINISRNFSKLLSLRALHLRGYVFQELREDDFQPLMQLPNLSTINLGINFIKQIDFKLFQNFSNLEII YLSENRISPLVKDTRQSYANSSSFQRHIRKRRSTDFEFDPHSNFYHFTRPLIKPQCAAYGKALDLSLNS IFFIGPNQFENLPDIACLNLSANSNAQVLSGTEFSAIPHVKYLDLTNNRLDFDNASALTELSDLEVLDL SYNSHYFRIAGVTHHLEFIQNFTNLKVLNLSHNNIYTLTDKYNLESKSLVELVFSGNRLDILWNDDDNR YISIFKGLKNLTRLDLSLNRLKHIPNEAFLNLPASLTELHINDNMLKFFNWTLLQQFPRLELLDLRGNK 10 LLFLTDSLSDFTSSLRTLLLSHNRISHLPSGFLSEVSSLKHLDLSSNLLKTINKSALETKTTTKLSMLE LHGNPFECTCDIGDFRRWMDEHLNVKIPRLVDVICASPGDQRGKSIVSLELTTCVSDVTAVILFFFTFF ITTMVMLAALAHHLFYWDVWFIYNVCLAKLKGYRSLSTSQTFYDAYISYDTKDASVTDWVINELRYHLE ESRDKNVLLCLEERDWDPGLAIIDNLMQSINQSKKTVFVLTKKYAKSWNFKTAFYLALQRLMGENMDVI IFILLEPVLQHSPYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTENDSRYNNMYVDSIKQY 15

	and	e 8: 20) R8).	of a	rtia mam	ıl nu umali	clec .an,	tide e.g.	and,	l ami imat	no a e, h	icid numan	sequ	ence IAX I	s (s Coll	ee S like	EQ ID NO: Receptor	19 8
5	AAT Asn 1	GAA Glu	TTG Leu	ATC Ile	CCC Pro 5	AAT Asn	CTA Leu	GAG Glu	AAG Lys	GAA Glu 10	GAT, Asp	GGT Gly	TCT Ser	ATC Ile	TTG Leu 15	ATT Ile	48
10	TGC Cys	CTT Leu	TAT Tyr	GAA Glu 20	AGC Ser	TAC Tyr	TTT Phe	GAC Asp	CCT Pro .25	GGC Gly	AAA Lys	AGC Ser	ATT Ile	AGT Ser 30	GAA Glu	AAT Asn	96
15	ATT	GTA Val	AGC Ser 35	TTC Phe	ATT Ile	GAG Glu	AAA Lys	AGC Ser 40	TAT Tyr	AAG Lys	TCC Ser	ATC Ile	TTT Phe 45	GTT Val	TTG Leu	TCC Ser	144
0.0	CCC	AAC Asn 50	TTT Phe	GTC Val	CAG Gln	AAT Asn	GAG Glu 55	TGG Trp	TGC Cys	CAT His	TAT Tyr	GAA Glu 60	TTC Phe	TAC Tyr	TTT Phe	GCC Ala	192
20			AAT Asn														240
25	CTG Leu	GAA Glu	CCC Pro	ATT Ile	CCA Pro 85	TTC Phe	TAT Tyr	TGC Cys	ATT Ile	CCC Pro 90	ACC Thr	AGG Arg	TAT Tyr	CAT His	AAA Lys 95	CTG Leu	288
30	GAA Glu	GCT Ala	CTC Leu	CTG Leu 100	Glu	AAA Lys	AAA Lys	GCA Ala	TAC Tyr 105	TTG Leu	GAA Glu	TGG Trp	CCC Pro	AAG Lys 110	GAT Asp	AGG Arg	336
35	CGT Arg	AAA Lys	TGT Cys 115	GGG Gly	CTT Leu	TTC Phe	TGG Trp	GCA Ala 120	AAC Asn	CTT Leu	CGA Arg	GCT Ala	GCT Ala 125	GTT Val	AAT Asn	GTT Val	384
	AAT Asn	GTA Val 130	TTA Leu	GCC Ala	ACC Thr	AGA Arg	GAA Glu 135	ATG Met	TAT Tyr	GAA Glu	CTG Leu	CAG Gln 140	Thr	TTC Phe	ACA Thr	GAG Glu	432
40	TTA Leu 145	Asn	GAA Glu	GAG Glu	TCT	CGA Arg 150	Gly	TCT Ser	ACA Thr	ATC Ile	TCT Ser 155	Leu	ATG Met	AGA Arg	ACA Thr	GAC Asp 160	480
45		CTA	TAA	AATC	CCA	CAGT	CCTT	GG G	AAGT	TGGG	G AC	CACA	TACA	CTG	TTGG	GAT	536
	GTA	CATI	GAT	ACAA	CCTI	TA I	GATG	GCAP	TT T	'GACA	LATAL	TTA	AATTA	TAAL	AAAA	AATGGT	596
50	TAT	TCCC	CTTC	AAAA	LAAAJ	AAA A	AAAA	AAA	AA AA	A							629
55	HII	[LILI	EKEC LEPIE SLMRI	FYCI	ICL)	(ESYI	FDPGK EALLE	SISE KKA)	NIVS (LEWE	FIEF	KSYKS RKCGI	SIFVI LFWAN	SPNE ILRA	TVQNE AVNVA	WCHY VLA1	EFYFAHHNL REMYELQTF	FHENS FELNE

additional primate, e.g., human sequence (SEQ ID NO: 31 and 32); nucleotides 4 and 23 designated C, may be A, C, G, or T; nucleotide 845 designated C, may be C or T:

	designated C, may be C or T:																	
5	C TCC GAT GCC AAG ATT CGG CAC CAG GCA TAT TCA GAG GTC ATG ATG Ser Asp Ala Lys Ile Arg His Gln Ala Tyr Ser Glu Val Met Met 1 5 10 15 GTT GGA TGG TCA GAT TCA TAC ACC TGT GAA TAC CCT TTA AAC CTA AGG																46	
10	GTT (GGA '	TGG Trp	TCA Ser	GAT Asp 20	TCA Ser	TAC . Tyr	ACC Thr	TGT Cys	GAA Glu 25.	TAC Tyr	CCT Pro	TTA . Leu .	AAC Asn	CTA Leu 30	AGG Arg		94
15	GGA A	ACT Thr	AGG Arg	TTA Leu 35	AAA Lys	GAC Asp	GTT Val	CAT His	CTC Leu 40	CAC His	GAA Glu	TTA Leu	TCT Ser	TGC Cys 45	AAC Asn	ACA Thr		142
	GCT Ala	CTG Leu	TTG Leu 50	ATT Ile	GTC Val	ACC Thr	ATT Ile	GTG Val 55	GTT Val	ATT Ile	ATG Met	CTA Leu	GTT Val 60	CTG Leu	GGG Gly	TTG Leu		190
20	GCT Ala	GTG Val 65	GCC Ala	TTC Phe	TGC	TGT Cys	CTC Leu 70	CAC His	TTT Phe	GAT Asp	CTG Leu	CCC Pro 75	TGG Trp	TAT Tyr	CTC Leu	AGG Arg		238
25	ATG Met 80	CTA Leu	GGT Gly	CAA Gln	TGC Cys	ACA Thr 85	CAA Gln	ACA Thr	TGG Trp	CAC His	AGG Arg 90	GTT Val	AGG Arg	AAA Lys	ACA Thr	ACC Thr 95		286
30	CAA Gln	GAA Glu	CAA Gln	CTC Leu	AAG Lys 100	AGA Arg	AAT Asn	GTC Val	CGA Arg	TTC Phe 105	CAC His	GCA Ala	TTT Phe	ATT Ile	TCA Ser 110	TAC Tyr		334
35	AGT Ser	GAA Glu	CAT His	GAT Asp 115	TCT Ser	CTG Leu	TGG Trp	GTG Val	AAG Lys 120	Asn	GAA Glu	TTG Leu	ATC Ile	CCC Pro 125	AAT Asn	CTA Leu		382
	GAG Glu	AAG Lys	GAA Glu 130	Asp	GGT Gly	TCT	ATC Ile	TTG Leu 135	Ile	TGC Cys	CTT Leu	TAT Tyr	GAA Glu 140	AGC Ser	TAC Tyr	TTT Phe		430
40	GAC Asp	CCT Pro 145	Gly	AAA Lys	AGC Ser	ATT Ile	AGT Ser 150	Glu	AAT Asn	ATT Ile	GTA Val	AGC Ser 155	Phe	ATT	GAG Glu	AAA Lys		478
45	AGC Ser 160	TAT Tyr	AAG Lys	TCC	: ATC	TTT Phe	· Val	TTG Leu	TCT	CCC Pro	AAC Asn 170	Phe	GTC Val	CAG Gln	AAT Asn	GAG Glu 175		52€
50	TGG Trp	TGC Cys	CAT His	TAI	GAA Glu 180	ı Phe	TAC Tyr	TTT Phe	GCC Ala	C CAC A His 185	His	: AAT : Asr	CTC Leu	TTC Phe	CAT His	GAA Glu		574
55	AAT Asn	TCT Ser	GAT Asp	CAC His	s Ile	A ATT	CTI E Lev	ATC	200	ı Lev	G GAP	CCC Pro	C ATT	CCF Pro) Phe	TAT		62;

_	TGC Cys	ATT Ile	CCC Pro 210	ACC Thr	AGG Arg	TAT Tyr	CAT His	AAA Lys 215	CTG Leu	GAA Glu	GCT Ala	CTC Leu	CTG Leu 220	GAA Glu	AAA Lys	AAA Lys		670
5	GCA Ala	TAC Tyr 225	TTG Leu	GAA Glu	TGG Trp	CCC Pro	AAG Lys 230	GAT Asp	AGG Arg	CGT Arg	AAA Lys	TGT Cys 235	GGG Gly	CTT Leu	TTC Phe	TGG Trp		718
10													GCC Ala					766
15													GAG Glu					814
20									GAC Asp 280			TAA	AATCC	CA C	AGTO	CTTGG		867
	GAA	STTG	GGG A	ACCAC	CATAC	CA CI	rgtto	GGAI	GT?	CAT	rgat	ACA	ACCTI	TA T	GATO	GCAAT		927
25	TTG	ACAA!	rat :	TAT	(AAA	AT A	\AAA/	ATGGT	TAT	TCC	CTTC	AAA	AAAA	AA A	AAAA	AAAAA		987
23	AAA	AAAA	AAA A	A.A														999
30	ENI'	RMLG VSFI	QCTQ' EKSYI	rwhr' Ksif'	VRKT' VLSPI	rqeqi Nevqi	LKRN' NEWCI	VRFHI HYEF	AFIS YFAHI	YSEH! HNLF!	OSLW\ HENSI	VKNE:	LIPNI	EKEI	OGSII FYCII	/LGLAVA LICLYES PTRYHKI	YFDE	GKS:
35	•		_										38 a			gagete	60	
	atc	ttca	tca	ttca	tatg	ag g	aaat	aagt	g gt	aaaa	tcct	tgg	aaata	aca a	atg a	aga Arg	116	
40	ctc Leu	atc Ile	aga Arg -15	aac Asn	att	tac Tyr	ata Ile	ttt Phe -10	tgt Cys	agt Ser	att Ile	gtt Val	atg Met -5	aca Thr	gca Ala	gag Glu	164	
45	ggt Gly -1	Asp	Ala	cca Pro	gag Glu	ctg Leu 5	Pro	gaa Glu	gaa Glu	agg Arg	gaa Glu 10	Leu	atg Met	acc Thr	aac Asn	tgc Cys 15	212	
50	tcc Ser	aac Asn	atg Met	tct Ser	cta Leu 20	Arg	aag Lys	gtt Val	ccc	gca Ala 25	Asp	ttg Leu	acc Thr	cca Pro	gcc Ala 30	aca Thr	260	
55	acg Thr	aca Thr	ctg Leu	gat Asp 35	Leu	tcc Ser	tat Tyr	aac Asn	ctc Leu 40	Leu	ttt Phe	caa Gln	ctc Leu	cag Gln 45	Ser	tca Ser	308	

	gat Asp	ttt Phe	cat His 50	tct Ser	gtc Val	tcc Ser	aaa Lys	ctg Leu 55	aga Arg	gtt Val	ttg Leu	att Ile	cta Leu 60	tgc Cys	cat His	aac Asn		356
5	aga Arg	att Ile 65	caa Gln	cag Gln	ctg Leu	gạt Asp	ctc Leu 70	aaa Lys	acc Thr	ttt Phe	gaa, Glú	ttc Phe 75	aac Asn	aag Lys	gag Glu	tta Leu		404
10	aga Arg 80	tat Tyr	tta Leu	gat Asp	ttg Leu	tct Ser 85	aat Asn	aac Asn	aga Arg	ctg Leu	aag Lys 90	agt Ser	gta Val	act Thr	tgg Trp	tat Tyr 95		452
15	tta Leu	ctg Leu	gca Ala	ggt Gly	ctc Leu 100	agg Arg	tat Tyr	tta Leu	gat Asp	ctt Leu 105	tct Ser	ttt Phe	aat Asn	gac Asp	ttt Phe 110	gac Asp		500
20	acc Thr	atg Met	cct Pro	atc Ile 115	tgt Cys	gag Glu	gaa Glu	gct Ala	ggc Gly 120	aac Asn	atg Met	tca Șer	cac His	ctg Leu 125	gaa Glu	atc Ile		548
20	cta Leu	ggt Gly	ttg Leu 130	agt Ser	ggg Gly	gca Ala	aaa Lys	ata Ile 135	caa Gln	aaa Lys	tca Ser	gat Asp	ttc Phe 140	cag Gln	aaa Lys	att Ile		596
25	gct Ala	cat His 145	ctg Leu	cat His	cta Leu	aat Asn	act Thr 150	gtc Val	ttc Phe	tta Leu	gga Gly	ttc Phe 155	aga Arg	act Thr	ctt Leu	cct Pro		644
30	cat His 160	tat Tyr	gaa Glu	gaa Glu	ggt Gly	agc Ser 165	ctg Leu	ccc Pro	atc Ile	tta Leu	aac Asn 170	aca Thr	aca Thr	aaa Lys	ctg Leu	cac His 175		692
35	att Ile	gtt Val	tta Leu	cca Pro	atg Met 180	gac Asp	aca Thr	aat Asn	ttc Phe	tgg Trp 185	gtt Val	ctt Leu	ttg Leu	cgt Arg	gat Asp 190	gga Gly		740
40	atc Ile	aag Lys	act Thr	tca Ser 195	aaa Lys	ata Ile	tta Leu	gaa Glu	atg Met 200	aca Thr	aat Asn	ata Ile	gat Asp	ggc Gly 205	Lys	agc Ser		788
40	caa Gln	ttt Phe	gta Val 210	agt Ser	tat Tyr	gaa Glu	atg Met	caa Gln 215	cga Arg	aat Asn	ctt Leu	agt Ser	tta Leu 220	gaa Glu	aat Asn	gct Ala		836
45	aag Lys	aca Thr 225	Ser	gtt Val	cta Leu	ttg Leu	ctt Leu 230	Asn	aaa Lys	gtt Val	gat Asp	tta Leu 235	Leu	tgg Trp	gac Asp	gac Asp		884
50	ctt Leu 240	Phe	ctt Leu	atc Ile	tta Leu	caa Gln 245	Phe	gtt Val	tgg Trp	cat His	aca Thr 250	Ser	gtg Val	gaa Glu	cac His	ttt Phe 255	-	932
55	cag Gln	ato	cga Arg	aat Asn	gtg Val 260	Thr	ttt Phe	ggt Gly	ggt Gly	aag Lys 265	Ala	tat Tyr	ctt Leu	gac Asp	cac His 270	aat Asn		980

	tca Ser	ttt Phe	Asp	tac Tyr 275	tca Ser	aat Asn	act Thr	Val	atg Met 280	aga Arg	act Thr	ata Ile	гàг	ttg Leu 285	gag Glu	cat His	1028
5	gta Val	cat His	ttc Phe 290	aga Arg	gtg Val	ttt Phe	tac Tyr	att Ile 295	caa Gln	cag Gln	gat , Asp	Lys	atc Ile 300	tat Tyr	ttg Leu	ctt Leu	1076
10	ttg Leu	acc Thr 305	aaa Lys	atg Met	gac Asp	Ile	gaa Glu 310	aac Asn	ctg Leu	aca Thr	ata Ile	tca Ser 315	aat Asn	gca Ala	caa Gln	atg Met	1124
15	cca Pro 320	cac His	atg Met	ctt Leu	ttc Phe	ccg Pro 325	aat Asn	tat Tyr	cct Pro	acg Thr	aaa Lys 330	ttc Phe	caa Gln	tat Tyr	tta Leu	aat Asn 335	1172
. 20	ttt Phe	gcc Ala	aat Asn	aat Asn	atc Ile 340	tta Leu	aca Thr	gac Asp	gag Glu	ttg Leu 345	ttt Phe	aaa Lys	aga Arg	act Thr	atc Ile 350	caa Gln	1220
20	ctg Leu	cct Pro	cac His	ttg Leu 355	aaa Lys	act Thr	ctc Leu	att Ile	ttg Leu 360	aat Asn	ggc Gly	aat Asn	aaa Lys	ctg Leu 365	gag Glu	aca Thr	1268
25	ctt Leu	tct Ser	tta Leu 370	gta Val	agt Ser	tgc Cys	ttt	gct Ala 375	aac Asn	aac Asn	aca Thr	ccc Pro	ttg Leu 380	gaa Glu	cac His	ttg Leu	1316
30	gat Asp	ctg Leu 385	Ser	caa Gln	aat Asn	cta Leu	tta Leu 390	caa Gln	cat	aaa Lys	aat Asn	gat Asp 395	gaa Glu	aat Asn	tgc Cys	tca Ser	1364
35	tgg Trp 400	Pro	gaa Glu	act Thr	gtg Val	gtc Val 405	Asn	atg Met	aat Asn	ctg Leu	tca Ser 410	Tyr	aat Asn	aaa Lys	ttg Leu	tct Ser 415	1412
4.0	gat Asp	tct Ser	gtc Val	ttc Phe	agg Arg 420	Cys	ttg Leu	ccc Pro	aaa Lys	agt Ser 425	Ile	caa Gln	ata Ile	ctt Leu	gac Asp 430	ьeu	1460
40	aat Asn	aat Asr	aac Asn	caa Glr 435	Ile	caa Gln	act Thr	gta Val	cct Pro	Lys	gag Glu	act Thr	att Ile	cat His	ctg Leu	atg Met	1508
45	gco Ala	tta Lei	a cga a Arg 450	g Glu	cta Lev	a aat 1 Asr	att lle	gca Ala 455	a Phe	aat Asr	ttt Phe	cta Leu	act Thr 460	ASI	cto Leu	cct Pro	1556
50	gga Gl	tgo y Cy: 46	s Se	cat r His	t tto	e Sei	aga Arq 470	g Lei	t tca u Se:	a gtt r Vai	cto L Lev	g aac 1 Asr 475	J TT6	gaa Glu	a atç ı Met	aac : Asn	1604
55	tte Pho 48	e Il	t cto	c age	c cc	a tci o Se: 48:	r Le	g ga ^s u As _i	t tt p Ph	t gt [.] e Va:	t cad 1 Gl: 49	n Sei	c tgo	c cae	g gaa n Glu	gtt Val 495	1652

	aaa Lys	act Thr	cta Leu	Asn	gcg Ala 500	gga Gly	aga Arg	aat Asn	cca Pro	ttc Phe 505	cgg Arg	tgt Cys	acc Thr	tgt Cys	gaa Glu 510	tta Leu	1700
5	aaa Lys	aat Asn	ttc Phe	att Ile 515	cag Gln	ctt Leu	gaa Glu	aca Thr	tat Tyr 520	tca Ser	gag, Glu	.gtc Val	atg Met	atg Met 525	gtt Val	gga Gly	1748
10	tgg Trp	tca Ser	gat Asp 530	tca Ser	tac Tyr	acc Thr	tgt Cys	gaa Glu 535	tac Tyr	cct Pro	tta Leu	aac Asn	cta Leu 540	agg Arg	gga Gly	act Thr	1796
15	agg Arg	tta Leu 545	aaa Lys	gac Asp	gtt Val	cat His	ctc Leu 550	cac His	gaa Glu	tta Leu	tct Ser	tgc Cys 555	aac Asn	aca Thr	gct Ala	ctg Leu	1844
20	ttg Leu 560	att Ile	gtc Val	acc Thr	att Ile	gtg Val 565	gtt Val	att Ile	atg Met	cta Leu	gtt Val 570	ctg Leu	Gly	ttg Leu	gct Ala	gtg Val 575	1892
20	gcc Ala	ttc Phe	tgc Cys	tgt Cys	ctc Leu 580	cac His	ttt Phe	gat Asp	ctg Leu	ccc Pro 585	tgg Trp	tat Tyr	ctc Leu	agg Arg	atg Met 590	cta Leu	1940
25	ggt Gly	caa Gln	tġc Cys	aca Thr 595	caa Gln	aca Thr	tgg Trp	cac His	agg Arg 600	gtt Val	agg Arg	aaa Lys	aca Thr	acc Thr 605	caa Gln	gaa Glu	1988
30	caa Gln	ctc Leu	aag Lys 610	Arg	aat Asn	gtc Val	cga Arg	ttc Phe 615	cac His	gca Ala	ttt Phe	att Ile	tca Ser 620	tac Tyr	agt Ser	gaa Glu	2036
35	cat His	gat Asp 625	Ser	ctg Leu	tgg Trp	gtg Val	aag Lys 630	Asn	gaa Glu	ttg Leu	atc Ile	ccc Pro 635	Asn	cta Leu	gag Glu	aag Lys	2084
40	gaa Glu 640	Asp	ggt Gly	tct Ser	atc Ile	ttg Leu 645	Ile	tgc Cys	ctt Leu	tat Tyr	gaa Glu 650	Ser	tac Tyr	ttt Phe	gac Asp	cct Pro - 655	2132
40	Gly	aaa Lys	agc Ser	att Ile	agt Ser 660	Glu	aat Asn	att	gta Val	agc Ser 665	Phe	att Ile	gag Glu	aaa Lys	ago Ser 670	tat	2180
45	aag Lys	tcc Ser	ato	ttt Phe 675	. Val	ttg Leu	tct Ser	ccc Pro	aac Asn 680	Phe	gto Val	caç Glr	, aat Asn	gag Glu 685	rrp	tgc Cys	2228
50	cat His	tat Tyr	gaa Glu 690	ı Ph∈	tac Tyr	ttt Phe	gco Ala	cac His	His	aat Asn	cto Leu	tto Phe	cat His 700	GI	a aat 1 Asr	tct Ser	2276
55	gat As <u>r</u>	cat His	s Ile	a att	ctt Lei	ato Ile	tta Lei 710	ı Leı	g gaa ı Glı	a cco	atto Ile	e Pro	o Phe	tate Ty	t tgo	att s Ile	2324

	ccc acc agg tat cat aaa ctg aaa gct ctc ctg gaa aaa aaa gca tac 2372 Pro Thr Arg Tyr His Lys Leu Lys Ala Leu Leu Glu Lys Lys Ala Tyr 720 735	
5	ttg gaa tgg ccc aag gat agg cgt aaa tgt ggg ctt ttc tgg gca aac 2420 Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly Leu Phe Trp Ala Asn 740 745 745	
10	ctt cga gct gct att aat gtt aat gta tta gcc acc aga gaa atg tat 2468 Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu Met Tyr 755 760 765	
15	gaa ctg cag aca ttc aca gag tta aat gaa gag tct cga ggt tct aca 2516 Glu Leu Gln Thr Phe Thr Glu Leu Asn Glu Glu Ser Arg Gly Ser Thr 770 775 780	
	atc tct ctg atg aga aca gat tgt cta taaaatccca cagtccttgg 2563 Ile Ser Leu Met Arg Thr Asp Cys Leu 785 790	
20	gaagttgggg accacataca ctgttgggat gtacattgat acaaccttta tgatggcaat 2623	i
	ttgacaatat ttattaaaat aaaaaatggt tattcccttc atatcagttt ctagaaggat 2683	į.
25	ttctaagaat gtatcctata gaaacacctt cacaagttta taagggctta tggaaaaagg 2743	
	tgttcatccc aggattgttt ataatcatga aaaatgtggc caggtgcagt ggctcactct 2803	
	tgtaatccca gcactatggg aggccaaggt gggtgaccca cgaggtcaag agatggagac 286	
30	catcctggcc aacatggtga aaccctgtct ctactaaaaa tacaaaaatt agctgggcgt 292	3
	gatggtgcac gcctgtagtc ccagctactt gggaggctga ggcaggagaa tcgcttgaac 298	
35	cegggaggtg geagttgeag tgagetgaga tegageeact geactecage etggtgaeag 304	3
33	304	
40	MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCSNMSLRKVPADLTPATTTLDLSYNLLFQLQSSDFH SVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDLSFNDFDTMPICEEA GNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLPILNTTKLHIVLPMDTNFWVLI RDGIKTSKILEMTNIDGKSQFVSYEMQRNLSLENAKTSVLLLNKVDLLWDDLFLILQFVWHTSVEHFQI RNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFRVFYIQQDKIYLLLTKMDIENLTISNAQMPHMLFPN YPTKFQYLNFANNILTDELFKRTIQLPHLKTLILNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNI YPTKFQYLNFANNILTDELFKRTIQLPHLKTLILNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNI ENCSWPETVVNMNLSYNKLSDSVFRCLPKSIQILDLNNNQIQTVPKETIHLMALRELNIAFNFLTDLPC CSHFSRLSVLNIEMNFILSPSLDFVQSCQEVKTLNAGRNPFRCTCELKNFIQLETYSEVMMVGWSDSYT CEYPLNLRGTRLKDVHLHELSCNTALLIVTIVVIMLVLGLAVAFCCLHFDLPWYLRMLGQCTQTWHRVI KTTQEQLKRNVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENIVSFIEKST KSIFVLSPNFVQNEWCHYEFFFAHHNLFHENSDHIILILLEPIPFYCIPTRYHKLKALLEKKAYLEWPI	1
50		

	Table 9: Partial nucleotide and amino acid sequences (see SEQ ID NO: 21 and 22) of a mammalian, e.g., primate, human, DNAX Toll like Receptor 9 (DTLR9).																	
5	AAG A	AAC Asn	TCC Ser	AAA Lys	GAA Glu 5	AAC Asn	CTC Leu	CAG Gln	TTT Phe	CAT His 10	GCT Ala	TTT Phe	ATT Ile	TCA Ser	TAT Tyr 15	AGT Ser	٠	48
10	GAA Glu	CAT His	GAT Asp	TCT Ser 20	GCC Ala	TGG Trp	GTG Val	AAA Lys	AGT Ser 25	GAA Glu	TTG Leu	GTA Val	CCT Pro	TAC Tyr 30	CTA Leu	GAA Glu		96
15	AAA Lys	GAA Glu	GAT Asp 35	ATA Ile	CAG Gln	ATT Ile	TGT Cys	CTT Leu 40	CAT His	GAG Glu	AGA Arg	AAC Asn	TTT Phe 45	GTC Val	CCT Pro	GGC Gly		144
	AAG Lys	AGC Ser 50	ATT Ile	GTG Val	GAA Glu	AAT Asn	ATC Ile 55	ATC Ile	AAC Asn	TGC Cys	ATT Ile	GAG Glu 60	AAG Lys	AGT Ser	TAC Tyr	AAG Lys		192
20	TCC Ser 65	ATC Ile	TTT Phe	GTT Val	TTG Leu	TCT Ser 70	CCC Pro	AAC Asn	TTT Phe	GTC Val	CAG Gln 75	AGT Ser	GAG Glu	TGG Trp	TGC Cys	CAT His 80		240
25	TAC Tyr	GAA Glu	CTC Leu	TAT Tyr	TTT Phe 85	Ala	CAT His	CAC His	AAT Asn	CTC Leu 90	Phe	CAT His	GAA Glu	GGA Gly	TCT Ser 95	ASI		288
30	AAC Asn	TTA Leu	ATC	CTC Leu 100	Ile	: TTA : Leu	CTG Leu	GAA Glu	CCC Pro	Ile	CCA Pro	CAG Gln	AAC Asn	AGC Ser 110	TTE	CCC		336
35	AAC Asn	AAG Lys	TAC Tyr 115	His	: AAC	CTC Lev	AAG Lys	GCT Ala 120	Leu	ATG Met	ACG Thr	CAG Gln	CGG Arg 125	Thr	TAT	TTG Leu		384
	CAG Gln	TGG Trp	CCC Pro	AAC Lys	G GAC	AAA 1 Lys	A AGO Ser 135	Lys	CGT Arç	GGG GLy	CTC	TTT Phe 140	Trp	GCT Ala	! !			426
40	A																	427

KNSKENLQFHAFISYSEHDSAWVKSELVPYLEKEDIQICLHERNFVPGKSIVENIINCIEKSYKSIFVLSPNF SEWCHYELYFAHHNLFHEGSNNLILILLEPIPQNSIPNKYHKLKALMTQRTYLQWPKEKSKRGLFWA

Further primate, e.g., human DTLR9 (SEQ ID NO: 40 and 41): aagaatttgg actcatatca agatgctctg aagaagaaca accctttagg atagccactg 60 caacatc atg acc aaa gac aaa gaa cct att gtt aaa agc ttc cat ttt 109 5 Met Thr Lys Asp Lys Glu Pro Ile Val'Lys Ser Phe His Phe -25 gtt tgc ctt atg atc. ata ata gtt gga acc aga atc cag ttc tcc gac 157 Val Cys Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp 10 -10 gga aat gaa ttt gca gta gac aag tca aaa aga ggt ctt att cat gtt 205 Gly Asn Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val 1 -1 15 cca aaa gac cta ccg ctg aaa acc aaa gtc tta gat atg tct cag aac 253 Pro Lys Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn 20 20 tac atc gct gag ctt cag gtc tct gac atg agc ttt cta tca gag ttg 301 Tyr Ile Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu 35 aca gtt ttg aga ctt tcc cat aac aga atc cag cta ctt gat tta agt 349 25 Thr Val Leu Arg Leu Ser His Asn Arg Ile Gln Leu Leu Asp Leu Ser gtt ttc aag ttc aac cag gat tta gaa tat ttg gat tta tct cat aat 397 Val Phe Lys Phe Asn Gln Asp Leu Glu Tyr Leu Asp Leu Ser His Asn 30 cag ttg caa aag ata tcc tgc cat cct att gtg agt ttc agg cat tta 445 Gln Leu Gln Lys Ile Ser Cys His Pro Ile Val Ser Phe Arg His Leu 35 gat ctc tca ttc aat gat ttc aag gcc ctg ccc atc tgt aag gaa ttt 493 Asp Leu Ser Phe Asn Asp Phe Lys Ala Leu Pro Ile Cys Lys Glu Phe 100 40 ggc aac tta tca caa ctg aat ttc ttg gga ttg agt gct atg aag ctg 541 Gly Asn Leu Ser Gln Leu Asn Phe Leu Gly Leu Ser Ala Met Lys Leu 120 115 caa aaa tta gat ttg ctg cca att gct cac ttg cat cta agt tat atc 589 45 Gln Lys Leu Asp Leu Leu Pro Ile Ala His Leu His Leu Ser Tyr Ile 130 135 637 ctt ctg gat tta aga aat tat tat ata aaa gaa aat gag aca gaa agt Leu Leu Asp Leu Arg Asn Tyr Tyr Ile Lys Glu Asn Glu Thr Glu Ser 50 150 145 685 cta caa att ctg aat gca aaa acc ctt cac ctt gtt ttt cac cca act Leu Gln Ile Leu Asn Ala Lys Thr Leu His Leu Val Phe His Pro Thr 175 170 165 55

	agt Ser	tta Leu	ttc Phe	Ala	atc Ile 180	caa Gln	gtg Val	aac Asn	ata Ile	tca Ser 185	gtt Val	aat Asn	act Thr	tta Leu	ggg Gly 190	tgc Cys	733
5	tta Leu	caa Gln	ctg Leu	act Thr 195	aat Asn	att Ile	aaa Lys	ttg Leu	aat Asn 200	gat Asp	gac Aspʻ	aac Asn	tgt Cys	caa Gln 205	gtt Val	ttc Phe	781
10	att Ile	aaa Lys	ttt Phe 210	tta Leu	tca. Ser	gaa Glu	ctc Leu	acc Thr 215	aga Arg	ggt Gly	cca Pro	acc Thr	tta Leu 220	ctg Leu	aat Asn	ttt Phe	829
15	acc Thr	ctc Leu 225	aac Asn	cac His	ata Ile	gaa Glu	acg Thr 230	act Thr	tgg Trp	aaa Lys	tgc Cys	ctg Leu 235	gtc Val	aga Arg	gtc Val	ttt Phe	877
20	caa Gln 240	ttt Phe	ctt Leu	tgg Trp	ccc Pro	aaa Lys 245	cct Pro	gtg Val	gaa Glu	tat Tyr	ctc Leu 250	aat Asn	att Ile	tac Tyr	aat Asn	tta Leu 255	925
20	aca Thr	ata Ile	att Ile	gaa Glu	agc Ser 260	att Ile	cgt Arg	gaa Glu	gaa Glu	gat Asp 265	ttt Phe	act Thr	tat Tyr	tct Ser	aaa Lys 270	acg Thr	973
25	aca Thr	ttg Leu	aaa Lys	gca Ala 275	ttg Leu	aca Thr	ata Ile	gaa Glu	cat His 280	atc Ile	acg Thr	aac Asn	caa Gln	gtt Val 285	ttt Phe	ctg Leu	1021
30	ttt Phe	tca Ser	cag Gln 290	aca Thr	gct Ala	ttg Leu	tac Tyr	acc Thr 295	Val	ttt Phe	tct Ser	gag Glu	atg Met 300	aac ·Asn	att Ile	atg Met	1069
35	atg Met	tta Leu 305	acc Thr	att Ile	tca Ser	gat Asp	aca Thr 310	Pro	ttt Phe	ata Ile	cac	Met 315	Leu	tgt Cys	cct Pro	cat His	
4.0	gca Ala 320	Pro	agc Ser	aca Thr	ttc Phe	aag Lys 325	Phe	ttg Lev	aac Asn	ttt Phe	acc Thr 330	Gln	aac Asn	gtt Val	ttc Phe	aca Thr 335	1165
40	gat Asp	agt Ser	att : Ile	ttt Phe	gaa Glu 340	Lys	tgt Cys	tco Ser	aco Thr	tta Leu 345	Val	aaa Lys	ttg Leu	gag Glu	aca Thr 350	ctt Leu	1213
45	ato Ile	tta Lev	caa Glr	aag Lys 355	Asr	gga Gly	tta Leu	aaa Lys	a gad s Asp 360) Let	tto Phe	c aaa e Lys	a gta s Val	ggt Gl ₃ 365	, rer	atg Met	1261
50	acç Thi	g aaq	g gat s Asp 370	Met	g cct Pro	tct Sei	tto Lev	g gaa 1 Gli .37!	u Ile	a cto e Lev	g gat 1 Asj	t gti p Vai	ago l Ser 380	rr	g aat o Asr	tct Ser	1309
55	tt: Le:	g gaa u Glu 38!	ı Sei	ggt Gly	z aga y Arg	a cat g Hi:	aaa s Ly:	s Gl	a aa u Asi	c tge n Cy:	c ac	t tg r Tr 39	p val	gaq L Gl	g agt u Se:	ata Ile	1357

	gtg Val 400	gtg Val	tta Leu	aat Asn	ttg Leu	tct Ser 405	tca Ser	aat Asn	atg Met	ctt Leu	act Thr 410	gac Asp	tct Ser	gtt Val	ttc Phe	aga Arg 415	1405
5	tgt Cys	tta Leu	cct Pro	ccc Pro	agg Arg 420	atc Ile	aag Lys	gta Val	ctt Leu	gat Asp 425	ctt Leu	cac His	agc Ser	aat Asn	aaa Lys 430	ata Ile	1453
- 10	aag Lys	agc Ser	gtt Val	cct Pro 435	aaa [.] Lys	caa Gln	gtc Val	gta Val	aaa Lys 440	ctg Leu	gaa Glu	gct Ala	ttg Leu	caa Gln 445		ctc Leu	1501
15	aat Asn	gtt Val	gct Ala 450	ttc Phe	aat Asn	tct Ser	tta Leu	act Thr 455	gac Asp	ctt Leu	cct Pro	gga Gly	tgt Cys 460	023	ago Ser	ttt Phe	1549
	agc Ser	agc Ser 465	Leu	tct Ser	gta Val	ttg Leu	atc Ile 470	att Ile	gat Asp	cac	aat Asn	tca Ser 475	. vai	tcc Ser	: cac	cca Pro	1597
20	tcg Ser 480			ttc Phe	ttc Phe	cag Gln 485	Ser	tgc Cys	cag Gln	aag Lys	ato Met 490	- WI	g tca g Sei	ata : Ile	a aaa e Lys	gca Ala 495	1645
25	ggg Gly	gac Asp	aat Asr	cca Pro	tto Phe 500	Gln	tgt Cys	acc Thr	tgt Cys	gaç Glu 505	т пес	a aga	a gaa g Glu	a tti ı Ph	t gto e Val 51	c aaa l Lys O	1693
30	aat Asn	ata Ile	a gad e Asp	caa Glr 515	ı Val	tca L Ser	agt Ser	gaa Glu	gtq 1 Va: 520	r re	a gaq u Gl	g gg u Gl	c tg y Tr	g cc p Pr 52	•	t tct p Ser	1741
35	tat Tyr	aa Ly	g tg s Cy 53	s Ası	c tac p Ty:	c cca r Pro	a gaa o Glu	a agʻ u Se: 53	r Ty	t ag r Ar	a gg g Gl	a ag y Se	c cc r Pr 54		a aa u Ly	g gac s Asp	1789
	tt: Phe	с са в Ні 54	s Me	g tc t Se	t ga r Gl	a tta u Le	a tc u Se 55	r Cy	c aa s As	c at n Il	a ac e Th	t ct r Le 55	:u be	g at u Il	c gt e Va	c acc	: 1837
40	at 11 56	e Gl	rt go y Al	c ac a Th	c at r Me	g ct t Le 56	u Va	g tt l Le	g go u Al	t gt a Va	g ac 11 Th 57	IT A	g ac	c to	c ct er Le	c tgo eu Cys 575	
45	at Il	c ta e Ty	ac tt /r Le	g ga eu As	t ct p Le 58	u Pr	c tg	g ta p Ty	it ct /r Le	eu Ai	gg at cg Me 35	et V	tg to	gc ca ys G		gg aco rp Thi	2 1933 r
50	ca Gl	g ac n Tì	et co	gg cg cg Ar 59	g Ar	gg gc	c aç	gg aa cg As	sn I.	a co le P: 00	cc t ro L	ta g eu G	aa g lu G		tc c eu G 05	aa ag ln Ar	a 1981 g
. 55	As	sn L	eu G	ag tt ln Pl 10	tt ca ne H:	at go is Al	ct ti la Pl	ne 1	tt to le S 15	ca t er T	at a yr S	gt g er G	11 u 11	at g is A 20	at t sp S	ct gc er Al	c 2029 a

	Trp	Val 625	aaa Lys	Ser	Glu	Leu	630	Pro	туг	Dea	GIU	635	0.20				
5	att Ile 640	tgt Cys	ctt Leu	cat His	gag Glu	agg Arg 645	aac Asn	ttt Phe	gtc Val	cct Pro	ggc Gly 650	aag Lys	agc Ser	att Ile	gtg Val	gaa Glu 655	2125
10	aat Asn	atc Ile	atc Ile	aac Asn	tgc Cys 660	att	gag Glu	aag Lys	agt Ser	tac Tyr 665	aag Lys	tcc Ser	atc Ile	ttt Phe	gtt Val 670	ttg Leu	2173
15	tct Ser	ccc Pro	aac Asn	ttt Phe 675	gtc Val	cag Gln	agt Ser	gag Glu	tgg Trp 680	tgc Cys	cat His	tac Tyr	gaa Glu	ctc Leu 685	tat Tyr	ttt Phe	2221
	gcc Ala	cat His	cac His	Asn	ctc Leu	ttt Phe	cat His	gaa Glu 695	GTA	tct Ser	aat Asn	aac Asn	tta Leu 700		ctc Leu	atc Ile	2269
20	tta Lev	cto Leu 705	ı Glu	ccc Pro	att Ile	cca Pro	cag Gln 710	AST	agc Ser	att Ile	ccc	aac Asn 715	Lys	tac Tyr	cac His	aag Lys	2317
25	cto Let 720	ı Lys	g gct s Ala	cto Lev	atg Met	acg Thr 725	GIT	g cgg	g act g Thr	tat Tyr	tto Lev 730	GI	tgg Trp	ccc Pro	aag Lys	gag Glu 735	2365
30	aa: Ly:	a age	c aaa r Lys	a cgt s Arq	gg9 Gly 740	, re	ttt 1 Phe	tgq Tr	g gct o Ala	a ac a Asr 749	1 116	aga Arq	a gco g Ala	gct Ala	ttt Phe 750	aat Asn)	2413
35	Me	t Ly	a tt: s Le	u Th:	r Lei 5	u Va	l Th	r GI	u As:	n Ası	n As	p va.	r ny.	76	5		2455
																tgaataq	
	ta	cagt	cgta	agt	nact	gtc	tgga	ggtg	cc t	ccat	tatc	c tic	atgc	cttc	agg	aaagact	2575
40	_ta	acaa	aaac	aat	gttt	cat	ctgg	ggaa	ct g	agct	aggo	g gt	.gagg	ttag	cct	gccagti	2635
	ag	gagac	agco	cag	tctc	ttc	tggt	ttaa	itc a	ttat	gttt	c aa	attg	aaac	agt	ctcttt	t 2695
45	ga	gtaa	aatgo	tca	gttt	ttc	agct	cct	ctc c	acto	tgct	t to	ccaa	atgg	att	ctgttg	g 2755
		gaag															2760

MTKDKEPIVKSFHFVCLMIIIVGTRIQFSDGNEFÄVDKSKRGLIHVPKDLPLKTKVLDMSQNYIAELQV
SDMSFLSELTVLRLSHNRIQLLDLSVFKFNQDLEYLDLSHNQLQKISCHPIVSFRHLDLSFNDFKALPI
CKEFGNLSQLNFLGLSAMKLQKLDLLPIAHLHLSYILLDLRNYYIKENETESLQILNAKTLHLVFHPTS
LFAIQVNISVNTLGCLQLTNIKLNDDNCQVFIKFLSELTRGPTLLNFTLNHIETTWKCLVRVFQFLWPK
PVEYLNIYNLTIIESIREEDFTYSKTTLKALTIEHITNQVFLFSQTALYTVFSEMNIMMLTISDTPFIH
MLCPHAPSTFKFLNFTQNVFTDSIFEKCSTLVKLETLILQKNGLKDLFKVGLMTKDMPSLEILDVSWNS
LESGRHKENCTWVESIVVLNLSSNMLTDSVFRCLPPRIKVLDLHSNKIKSVPKQVVKLEALQELNVAFN
SLTDLPGCGSFSSLSVLIIDHNSVSHPSADFFQSCQKMRSIKAGDNPFQCTCELREFVKNIDQVSSEVL
EGWPDSYKCDYPESYRGSPLKDFHMSELSCNITLLIVTIGATMLVLAVTVTSLCIYLDLPWYLRMVCQW
TQTRRRARNIPLEELQRNLQFHAFISYSEHDSAWVKSELVPYLEKEDIQICLHERNFVPGKSIVENIIN
CIEKSYKSIFVLSPNFVQSEWCHYELYFAHHNLFHEGSNNLILILLEPIPQNSIPNKYHKLKALMTQRT
YLQWPKEKSKRGLFWANIRAAFNMKLTLVTENNDVKS

5	of Nuc nuc	a ma leot leot	mmal ides	ian, 54, 313	e.g 103 desi	., p , an gnat	rima d 34 ed G	te, 5 ar , ma	huma e de y be	n, D sign G o	NAX ated r T;	Toll A; and	lik each nuc	e Re	cept be	or 10 A or	3 and (DTL) G; 380,	R10).
10	GCT Ala 1	TCC Ser	ACC Thr	TGT Cys	GCC Ala 5	TGG Trp	CCT Pro	GGC	TTC Phe	CCT Pro 10	Gly	GGG Gly	GGC Gly	GGC Gly	AAA Lys 15	GTG Val		48
	GGC Gly	GAA Glu	ATG Met	AGG Arg 20	ATG Met	CCC Pro.	TGC Cys	CCT Pro	ACG Thr 25	ATG Met	CCT Pro	TCG Ser	TGG Trp	TCT Ser 30	TCG Ser	ACA Thr		96
15	AAA Lys	CGC Arg	AGA Arg 35	GCG Ala	CAG Gln	TGG Trp	CAG Gln	ACT Thr 40	GGG Gly	TGT Cys	ACA Thr	ACG Thr	AGC Ser 45	TTC Phe	GGG Gly	GGC Gly		144
20	AGC Ser	TGG Trp 50	AGG Arg	AGT Ser	GCC Ala	GTG Val	GGC Gly 55	GCT Ala	GGG Gly	CAC His	TCC Ser	GCC Ala 60	TGT Cys	GCC Ala	TGG Trp	AGG Arg		192
25	AAC Asn 65	GCG Ala	ACT Thr	GGC Gly	TGC Cys	CTG Leu 70	GCA Ala	AAA Lys	CCC Pro	TCT Ser	TTG Leu 75	AGA Arg	ACC Thr	TGT Cys	GGĞ G1 Y	CCT Pro 80		240
30	CGG Arg	TCT Ser	ATG Met	GCA Ala	GCC Ala 85	GCA Ala	AGA Arg	CGC Arg	TGT Cyș	TTG Leu 90	TGC Cys	TGG Trp	CCC Pro	ACA Thr	CGG Arg 95	ACC Thr		288
	GGG Gly	TCA Ser	GTG Val	GTC Val 100	TCT Ser	TGC Cys	GCG Ala	CCA Pro	GTT Val 105	CTC Leu	CTG Leu	CTG Leu	GCC Ala	CAG Gln 110	CAG Gln	CGC Arg	.	336
35	CTG Leu	CTG Leu	GAA Glu 115	GAC Asp	CGC Arg	AAG Lys	GAC Asp	GTC Val 120	GTG Val	GTG Val	CTG Leu	GTG Val	ATC Ile 125	CTA Leu	ACG Thr	CCT Pro		384
40	GAC Asp	GGC Gly 130	CAA Gln	GCC Ala	TCC Ser	CGA Arg	CTA Leu 135	CCC Pro	GAT Asp	GCG Ala	CTG Leu	ACC Thr 140	AGC Ser	GCC Ala	TCT Ser	GCC Ala	· · ·	432
4 5	GCC Ala 145	AGA Arg	GTG Val	TCC Ser	TCC Ser	TCT Ser 150	G] À	CCC Pro	ACC Thr	AGC Ser	CCA Pro 155	GTG Val	GTC Val	GCG Ala	CAG Gln	CTT Leu 160		480
50	CTG Leu	AGG Arg	CCA Pro	GCA Ala	TGC Cys 165	ATG Met	GCC Ala	CTG Leu	ACC Thr	AGG Arg 170	GAC Asp	AAC Asn	CAC His	His	TTC Phe 175	TAT Tyr		528
	AAC Asn	CGG Arg	AAC Asn	TTC Phe 180	TGC Cys	CAG Gln	GGA Gly	ACC Thr	CAC His 185	GJ Y	CGA Arg	ATA Ile	GCC Ala	GTG Val 190	AGC Ser	CGG Arg	•	576

		CGG TGC CAC Arg Cys His				
5	ATC TGACCAAC	CAC ATGCTCGCC	CA CCCTCACCAC	C ACACC		662
10	RTCGPRSMAAAI		/VSCAPVLLLAQQ	ORLLEDRKDVVVL	VILTPDGQASRI	CAWRNATGCLAKPSL PDALTSASAARVSSS
15	nucleotide (primate, e.g. 854 designate C, each may b	ed A, may be	A or T; and		33 and 34); 1171 and 1172
		GGC ACC CGG Gly Thr Arg 5				
20		GTG GCC CCC Val Ala Pro 20				
25		CTT AGC GCC Leu Ser Ala				
30		CTG GCG AGT Leu Ala Ser				
35	-	TGC GCC TGT Cys Ala Cys 70				
		GCC GTG CCC Ala Val Pro 85				
40		CTC CAG GGC Leu Gln Gly 100				
45		GAG GCC CTC Glu Ala Leu				
50		CTG GGC CTG Leu Gly Leu				Gly
55		TGG TAC TGC Trp Tyr Cys 150	Phe His Leu			

					AGT												528
	Arg	Gly	Arg	Gln	Ser 165	Gly	Arg	Asp	Glu	Asp 170	Ala	Leu	Pro	Tyr	Asp 175	Ala	
5											,	•					
					GAC												576
	Phe	Val	Val	Phe 180	Asp	Lys	Thr	Gln	Ser 185	Ala	Val	Ala	Asp	Trp 190	Val	Tyr	
10	AAC	GAG	CTT	CGG	GGG	CAG	CTG	GAG	GAG	TGC	CGT	GGG	CGC	TGG	GCA	CTC	624
	Asn	Glu	Leu 195	Arg	Gly	Gln	Leu	Glu 200	Glu	Cys	Arg	Gly	Arg 205	Trp	Ala	Leu	
	CGC	CTG	TGC	CTG	GAG	GAA	CGC	GAC	TGG	CTG	CCT	GGC	AAA	ACC	CTC	TTT	672
15	Arg	Leu 210	Cys	Leu	Glu	Glu	Arg 215	Asp	Trp	Leu	Pro	Gly 220	Lys	Thr	Leu	Phe	
	GAG	AAC	CTG	TGG	GCC	TCG	GTC	TAT	GGC	AGC	CGC	AAG	ACG	CTG	TTT	GTG	720
					Ala												
20	225			•		230		•			235					240	
	CTG	GCC	CAC	ACG	GAC	CGG	GTC	AGT	GGT	CTC	TTG	CGC	GCC	AGC	TTC	CTG	768
0.5	Leu	Ala	His	Thr	Asp 245	Arg	Val	Ser	Gly	Leu 250	Leu	Arg	Ala	Ser	Phe 255	Leu	
25	cmc	ccc	CNC	CNC	CCC	Cm C	CTC	CNC	C7.C	CCC	7 7 C	C 7 C	CE C	cmc	CTIC	CTIC	016
					CGC Arg												816
	Ded	Y70	GIII	260	Arg	Deu	пец	Gru	265		пуз	ASP	vai	270	Val	Deu	
30	GTG	ATC	CTG	AGC	CCT	GAC	GGC	CGC	CGC	TCC	CGC	TAC	GAG	CGG	CTG	CGC	864
	Val	Ile	Leu 275	Ser	Pro	Asp	Gly	Arg 280	Arg	Ser	Arg	Tyr	Glu 285	Arg	Leu	Arg	
	CAG	CGC	CTC	TGC	CGC	CAG	AGT	GTC	СТС	СТС	TGG	CCC	CAC	CAG	ccc	AGT	912
35					Arg												
		290		•	_	•	295				•	300			•		
	GGT	CAG	CGC	AGC	TTC	TGG	GCC	CAG	CTG	GGC	ATG	GCC	CTG	ACC	AGG	GAC	960
40	Gly 305	Gln	Arg	Ser	Phe	Trp 310	Ala	Gln	Leu	Gly	Met 315	Ala	Leu	Thr	Arg	Asp 320	•. 9
	AAC	CAC	CAC	TTC	TAT	AAC	CGG	AAC	TTC	TGC	CAG	GGA	CCC	ACG	GCC	GAA	1008
45					Tyr 325												
I.J	TAG	CCGT	SAG (CCGGI	AATC	CT GO	CACGO	GTGC	CAC	CTCC	ACAC	TCA	CTC	ACC 1	CTG	CCTGCC	1068
	TGGT	CTG!	ACC (CTCC	CTG	CT CO	CCT	CCTC	CACC	CCAC	CACC	TGAG	CACAC	GAG (CAGG	CACTCA	1128
50 ·	ATA	ATG	CTA (CCGA	AGGC?	IA AI	LAAA	AAA A	AA A	LAAA A	AAAA	AAC	CA				1173

LPAGTRLRRLDVSCNSISFVAPGFFSKAKELRELNLSANALKTVDHSWFGPLASALQILDVSANPLHCACGAAFM DFLLEVQAAVPGLPSRVKCGSPGQLQGLSIFAQDLRLCLDEALSWDCFALSLLAVALGLGVPMLHHLCGWDLWYC FHLCLAWLPWRGRQSGRDEDALPYDAFVVFDKTQSAVADWVYNELRGQLEECRGRWALRLCLEERDWLPGKTLFE NLWASVYGSRKTLFVLAHTDRVSGLLRASFLLAQQRLLEDRKDVVVLVILSPDGRRSRY.RLRQRLCRQSVLLWP HQPSGQRSFWAQLGMALTRDNHHFYNRNFCQGPTAE

5

	Furt	her	prim	ate,	e.g	,., h	uman	, DI	LR10	(SE	Q II	NO:	42	and	43):		
10	atg Met	ccc Pro	atg Met	aag Lys -45	tgg Trp	agt Ser	GJA GGA	tgg Trp	agg Arg -40	tgg Trp	agc Ser	tgg Trp	ggg Gly	ccg Pro -35	gcc Ala	act Thr	48
15	cac His	aca Thr	gcc Ala -30	ctc Leu	cca Pro	ccc Pro	cca Pro	cag Gln -25	ggt Gly	ttc Phe	tgc Cys	cgc Arg	agc Ser -20	gcc Ala	ctg Leu	cac His	96
20	ccg Pro	ctg Leu -15	tct Ser	ctc Leu	ctg Leu	gtg Val	cag Gln -10	gcc Ala	atc Ile	atg Met	ctg Leu	gcc Ala -5	atg Met	acc Thr	ctg Leu	gcc Ala -1	144
25	ctg Leu 1	ggt Gly	acc Thr	ttg Leu	cct Pro 5	gcc Ala	ttc Phe	cta Leu	ccc Pro	tgt Cys 10	gag Glu	ctc Leu	cag Gln	ccc Pro	cac His 15	Gl Y ggc	192
23	ctg Leu	gtg Val	aac Asn	tgc Cys 20	aac Asn	tgg Trp	ctg Leu	ttc Phe	ctg Leu 25	aag Lys	tct Ser	gtg Val	ccc Pro	cac His 30	ttc Phe	tcc Ser	240
30	atg Met	gca Ala	gca Ala 35	ccc Pro	cgt Arg	ggc Gly	aat Asn	gtc Val 40	acc Thr	agc Ser	ctt Leu	tcc Ser	ttg Leu 45	tcc Ser	tcc Ser	aac Asn	288
35	cgc Arg	atc Ile 50	cac His	cac His	ctc Leu	cat His	gat Asp 55	tct Ser	gac Asp	ttt Phe	gcc Ala	cac His 60	ctg Leu	ccc Pro	agc Ser	ctg Leu	336
40	cgg Arg 65	cat His	ctc Leu	aac Asn	ctc Leu	aag Lys 70	tgg Trp	aac Asn	tgc Cys	ccg Pro	ccg Pro 75	gtt Val	ggc Gly	ctc Leu	agc Ser	ccc Pro 80	.384
45	atg Met	cac	ttc Phe	ccc Pro	tgc Cys 85	cac His	atg Met	acc Thr	atc Ile	gag Glu 90	ccc Pro	agc Ser	acc Thr	ttc Phe	ttg Leu 95	gct Ala	432
43	gtg Val	ccc Pro	acc Thr	ctg Leu 100	gaa Glu	gag Glu	cta Leu	aac Asn	ctg Leu 105	agc Ser	tac Tyr	aac Asn	aac Asn	atc Ile 110	atg Met	act Thr	480
50	gtg Val	cct	gcg Ala 115	Leu	ccc Pro	aaa Lys	tcc Ser	ctc Leu 120	Ile	tcc Ser	ctg Leu	tcc Ser	ctc Leu 125	Ser	cat .His	acc Thr	528
55	aac Asn	atc Ile 130	Leu	atg Met	cta Leu	gac Asp	tct Ser 135	Ala	agc Ser	ctc Leu	gcc	ggc Gly 140	Leu	cat His	gcc Ala	ctg Leu	576

	cgc Arg 145	ttc Phe	cta Leu	ttc Phe	atg Met	gac Asp 150	ggc Gly	aac Asn	tgt Cys	tat Tyr	tac Tyr 155	aag Lys	aac Asn	ccc Pro	tgc Cys	agg Arg 160	624
5	cag Gln	gca Ala	ctg Leu	gag Glu	gtg Val 165	gcc Ala	ccg Pro	ggt Gly	gcc Ala	ctc Leu 170	ctt Leu,	ggc	ctg Leu	ggc Gly	aac Asn 175	ctc Leu	672
10	acc Thr	cac His	ctg Leu	tca Ser 180	ctc Leu'	aag Lys	tac Tyr	aac Asn	aac Asn 185	ctc Leu	act Thr	gtg Val	gtg Val	ccc Pro 190	cgc Arg	aac Asn	720
15	ctg Leu	cct Pro	tcc Ser 195	agc Ser	ctg Leu	gag Glu	tat Tyr	ctg Leu 200	ctg Leu	ttg Leu	tcc Ser	tac Tyr	aac Asn 205	cgc Arg	atc Ile	gtc Val	768
20	aaa Lys	ctg Leu 210	gcg Ala	cct Pro	gag Glu	gac Asp	ctg Leu 215	gcc Ala	aat Asn	ctg Leu	acc Thr	gcc Ala 220	ctg Leu	cgt Arg	gtg Val	ctc Leu	816
20	gat Asp 225	gtg Val	ggc Gly	gga Gly	aat Asn	tgc Cys 230	cgc Arg	cgc Arg	tgc Cys	gac Asp	cac His 235	gct Ala	ccc Pro	aac Asn	ccc Pro	tgc Cys 240	864
25	atg Met	gag Glu	tgc Cys	cct Pro	cgt Arg 245	cac His	ttc Phe	ccc Pro	cag Gln	cta Leu 250	cat His	ccc Pro	gat Asp	acc Thr	ttc Phe 255	agc Ser	912
30	cac His	ctg Leu	agc Ser	cgt Arg 260	ctt Leu	gaa Glu	ggc Gly	ctg Leu	gtg Val 265	ttg Leu	aag Lys	gac Asp	agt Ser	tct Ser 270	ctc Leu	tcc Ser	960
35	tgg Trp	ctg Leu	aat Asn 275	gcc Ala	agt Ser	tgg Trp	ttc Phe	cgt Arg 280	ggg Gly	ctg Leu	gga Gly	aac Asn	ctc Leu 285	cga Arg	gtg Val	ctg Leu	1008
40	gac Asp	ctg Leu 290	agt Ser	gag Glu	aac Asn	ttc Phe	ctc Leu 295	Tyr	aaa Lys	tgc Cys	atc Ile	act Thr 300	aaa Lys	acc Thr	aag Lys	gcc Ala	1056
10	ttc Phe 305	Gln	Gly	cta Leu	aca Thr	cag Gln 310	ctg Leu	cgc	aag Lys	ctt	aac Asn 315	ctg Leu	tcc Ser	ttc Phe	aat Asn	tac Tyr 320	1104
45	caa Gln	aag Lys	agg Arg	gtg Val	tcc Ser 325	Phe	gcc Ala	Cac	cţg Leu	tct Ser 330	Leu	gcc Ala	cct	tcc Ser	ttc Phe 335	G]À aàa	1152
50	agc Ser	ctg Leu	gtc Val	gcc Ala 340	Leu	aag Lys	gag Glu	ctg Leu	gac Asp 345	Met	cac His	ggc	atc Ile	ttc Phe 350	Phe	cgc Arg	1200
55	tca Ser	ctc Leu	gat Asp 355	Glu	acc Thr	acg Thr	ctc Leu	cgc Arc 360	Pro	ctg Leu	gcc Ala	cgc Arg	ctg Leu 365	Pro	atg Met	ctc Leu	1248

	cag Gln	act Thr 370	ctg Leu	cgt Arg	ctg Leu	cag Gln	atg Met 375	aac Asn	ttc Phe	atc Ile	aac Asn	cag Gln 380	gcc Ala	cag Gln	ctc Leu	ggc Gly	1296
5	atc Ile 385	ttc Phe	agg Arg	gcc Ala	ttc Phe	cct Pro 390	ggc Gly	ctg Leu	cgc Arg	tac Tyr	gtg Val 395	gac Asp	ctg Leu	tcg Ser	gac Asp	aac Asn 400	1344
10	cgc Arg	atc Ile	agc Ser	gga Gly	gct Ala 405	tcg Ser	gag Glu	ctg Leu	aca Thr	gcc Ala 410	acc Thr	atg Met	G] À āāā	gag Glu	gca Ala 415	gat Asp	1392
15	gga Gly	Gly ggg	gag Glu	aag Lys 420	gtc Val	tgg Trp	ctg Leu	cag Gln	cct Pro 425	Gly	gac Asp	ctt Leu	gct Ala	ccg Pro 430	gcc Ala	cca Pro	1440
	gtg Val	gac Asp	act Thr 435	ccc Pro	agc Ser	tct Ser	gaa Glu	gac Asp 440	ttc Phe	agg Arg	ccc Pro	aac Asn	tgc Cys 445	agc Ser	acc Thr	ctc Leu	1488
20	aac Asn	ttc Phe 450	acc Thr	ttg Leu	gat Asp	ctg Leu	tca Ser 455	cgg Arg	aac Asn	aac Asn	ctg Leu	gtg Val 460	acc Thr	gtg Val	cag Gln	ccg Pro	1536
25	gag Glu 465	atg Met	ttt Phe	gcc Ala	cag Gln	ctc Leu 470	tcg Ser	cac His	ctg Leu	cag Gln	tgc Cys 475	ctg Leu	cgc Arg	ctg Leu	agç Ser	cac His 480	1584
30	aac Asn	tgc Cys	atc Ile	tcg Ser	cag Gln 485	gca Ala	gtc Val	aat Asn	ggc	tcc Ser 490	cag Gln	ttc Phe	ctg Leu	ccg Pro	ctg Leu 495	acc Thr.	1632
35	ggt Gly	ctg Leu	cag Gln	gtg Val 500	Leu	gac Asp	ctg Leu	tcc Ser	cac His 505	Asn	aag Lys	ctg Leu	gac Asp	ctc Leu 510	tac Tyr	cac His	1680
	gag Glu	cac	tca Ser 515	ttc Phe	acg Thr	gag Glu	cta Leu	cca Pro 520	Arg	ctg Leu	gag Glu	gcc Ala	ctg Leu 525	gac Asp	ctc Leu	agc Ser	1728
40	tac Tyr	aac Asn 530	Ser	cag Gln	ccc Pro	ttt Phe	ggc Gly 535	Met	cag Gln	ggc Gly	gtg Val	ggc Gly 540	His	aac Asn	ttc Phe	agc Ser	1776 -
45	tto Phe 545	val	gct Ala	cac His	cto Lev	g cgc Arc 550	Thi	cto Lei	g cgc	cac His	cto Lev 555	ı Ser	ctg Leu	gcc	cac His	aac Asn 560	1824
50	aac Asr	ato n Ile	cac His	ago s Ser	caa Glr 565	ı Val	s tco Sea	c caq	g cag n Glr	g cto Leu 570	з Суз	agt Ser	acg Thr	tcg Ser	ctg Leu 575	cgg Cgg	1872
55	gco Ala	c cto	g gad 1 Asp	tto Phe 580	e Se	c ggd c Gly	aat Asi	t gca n Ala	a cto a Leo 585	ı Gl	e cat y His	t ato s Met	g tgg	g gco Ala 590	a GIU	gga Gly	1920

	gac Asp	ctc Leu	tat Tyr 595	ctg Leu	cac His	ttc Phe	ttc Phe	caa Gln 600	ggc Gly	ctg Leu	agc Ser	ggt Gly	ttg Leu 605	atc Ile	tgg Trp	ctg Leu	1968
5	gac Asp	ttg Leu 610	tcc Ser	cag Gln	aac Asn	cgc Arg	ctg Leu 615	cac His	acc Thr	ctc Leu	ctg Leu	ccc Pro 620	caa Gln	acc Thr	ctg Leu	cgc Arg	2016
10	aac Asn 625	ctc Leu	ccc Pro	aag Lys	agc Ser	cta Leu 630	cag Gln	gtg Val	ċtg Leu	cgt Arg	ctc Leu 635	cgt Arg	gac Asp	aat Asn	tac Tyr	ctg Leu 640	2064
15	Ala	Phe	Phe	Lys	tgg Trp 645	Trp	Ser	Leu	His	Phe 650	Leu	Pro	ГЛS	Leu	Glu 655	Val	2112
20	Leu	Asp	Leu	Ala 660	gga Gly	Asn	Gln	Leu	Lys 665	Ala	Leu	Thr	Asn	Gly 670	Ser	Leu	2160
-	Pro	Ala	Gly 675	Thr	cgg Arg	Leu	Arg	Arg 680	Leu	Asp	Val	Ser	Cys 685	Asn	Ser	Ile	2208
25	Ser	Phe 690	Val	Ala	ccc Pro	Gly	Phe 695	Phe	Ser	Lys	Ala	Lys 700	Glu	Leu	Arg	Glu	2256
30	Leu 705	Asn	Leu	Ser	gcc Ala	Asn 710	Ala	Leu	Lys	Thr	Val 715	Asp	His	Ser	Trp	Phe 720	2304
35	Gly	Pro	Leu	Ala	agt Ser 725	Ala	Leu	Gln	Ile	Leu 730	Asp	Val	Ser	Ala	Asn 735	Pro	2352
40	Leu	His	Cys	Ala 740	tgt Cys	Gly	Ala	Ala	Phe 745	Met	Asp	Phe	Leu	Leu 750	Glu	Val	2400
	Gln	Ala	Ala 755	Val	ccc Pro	Gly	Leu	Pro 760	Ser	Arg	Val	Lys	Cys 765	Gly	Ser	Pro	2448
45	ggc Gly	cag Gln 770	ctc Leu	cag Gln	Gly	ctc Leu	agc Ser 775	atc Ile	ttt Phe	gca Ala	cag Gln	gac Asp 780	ctg Leu	cgc Arg	ctc Leu	tgc Cys	2496
50	ctg Leu 785	gat Asp	gag Glu	gcc Ala	ctc Leu	tcc Ser 790	tgg Trp	gac Asp	tgt Cys	ttc Phe	gcc Ala 795	ctc Leu	tcg Ser	ctg Leu	ctg Leu	gct Ala 800	2544
55	gtg Val	gct Ala	ctg Leu	ggc Gly	ctg Leu 805	ggt Gly	gtg Val	ccc Pro	atg Met	ctg Leu 810	cat His	cac His	ctc Leu	tgt Cys	ggc Gly 815	tgg Trp	2592

	gac c Asp L	ctc Leu	tgg Trp	tac Tyr 820	tgc Cys	ttc Phe	cac His	ctg Leu	tgc Cys 825	ctg Leu	gcc Ala	tgg Trp	ctt Leu	ccc Pro 830	tgg Trp	cgg Arg	2640
5	ggg c	Arg															2688
10	gtg g Val V 8	gtc /al 850	ttc Phe	gac Asp	aaa Lys'	acg Thr	cag Gln 855	agc Ser	gca Ala	gtg Val	gca Ala	gac Asp 860	tgg Trp	gtg Val	tac Tyr	aac Asn	2736
15	gag c Glu L 865																2784
20	ctg t Leu C																2832
	aac c Asn L																2880
25	gcc c Ala H	lis	acg Thr 915	gac Asp	cgg Arg	gtc Val	agt Ser	ggt Gly 920	ctc Leu	ttg Leu	cgc Arg	gcc Ala	agc Ser 925	ttc Phe	ctg Leu	ctg Leu	2928
30	gcc c Ala G 9																2976
35	atc c Ile L 945																3024
40	cgc c	etc Leu	tgc Cys	cgc Arg	cag Gln 965	agt Ser	gtc Val	ctc Leu	ctc Leu	tgg Trp 970	ccc Pro	cac	cag Gln	ccc Pro	agt Ser 975	ggt Gly	3072
	cag c Gln A	egc Arg	agc Ser	ttc Phe 980	tgg Trp	gcc Ala	cag Gln	ctg Leu	ggc Gly 985	atg Met	gcc Ala	ctg Leu	acc Thr	agg Arg 990	gac Asp	aac Asn	3120
45	cac c His H	lis	ttc Phe 995	tat Tyr	aac Asn	cgg Arg	Asn	ttc Phe .000	tgc Cys	cag Gln	gga Gly	Pro	acg Thr .005	gcc Ala	gaa Glu	tag	3168

MPMKWSGWRWSWGPATHTALPPPQGFCRSALHPLSLLVQAIMLAMTLALGTLPAFLPCELQPHGLVNCN WLFLKSVPHFSMAAPRGNVTSLSLSSNRIHHLHDSDFAHLPSLRHLNLKWNCPPVGLSPMHFPCHMTIE PSTFLAVPTLEELNLSYNNIMTVPALPKSLISLSHTNILMLDSASLAGLHALRFLFMDGNCYYKNPC RQALEVAPGALLGLGNLTHLSLKYNNLTVVPRNLPSSLEYLLLSYNRIVKLAPEDLANLTALRVLDVGG NCRRCDHAPNPCMECPRHFPQLHPDTFSHLSRLEGLVLKDSSLSWLNASWFRGLGNLRVLDLSENFLYK CITKTKAFQGLTQLRKLNLSFNYQKRVSFAHLSLAPSFGSLVALKELDMHGIFFRSLDETTLRPLARLP MLQTLRLQMNFINQAQLGIFRAFPGLRYVDLSDNRISGASELTATMGEADGGEKVWLQPGDLAPAPVDT PSSEDFRPNCSTLNFTLDLSRNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQVLDLS HNKLDLYHEHSFTELPRLEALDLSYNSQPFGMQGVGHNFSFVAHLRTLRHLSLAHNNIHSQVSQQLCST 10 SLRALDFSGNALGHMWAEGDLYLHFFQGLSGLIWLDLSQNRLHTLLPQTLRNLPKSLQVLRLRDNYLAF FKWWSLHFLPKLEVLDLAGNQLKALTNGSLPAGTRLRRLDVSCNSISFVAPGFFSKAKELRELNLSANA LKTVDHSWFGPLASALQILDVSANPLHCACGAAFMDFLLEVQAAVPGLPSRVKCGSPGQLQGLSIFAQD LRLCLDEALSWDCFALSLLAVALGLGVPMLHHLCGWDLWYCFHLCLAWLPWRGRQSGRDEDALPYDAFV VFDKTOSAVADWVYNELRGQLEECRGRWALRLCLEERDWLPGKTLFENLWASVYGSRKTLFVLAHTDRV 15. SGLLRASFLLAQORLLEDRKDVVVLVILSPDGRRSRYVRLRORLCRQSVLLWPHQPSGQRSFWAQLGMA LTRONHHFYNRNFCOGPTAE

20	partial	rodent	e.g.,	mouse	DTLR	10 nuc	cleotic	de sequ	ence	(SEQ	ID NO:	35)	:
20	TGGCCCAC	AC GGA	CCGCGTC	AGTGG	CCTCC	TGCGC	CACCAG	CTTCCT	GCTG	GCTC	AGCAGC		60
	GCCTGTTG	GA AGA	CCGCAAG	GACGT	GTGG	TGTTC	GTGAT	CCTGCG	STCCG	GATGO	CCCAC		120
25	CGTCCCGC	TA TGT	SCGACTO	CGCCA	CGTC	TCTG	CGCCA	GAGTGT	GCTC '	TTCTC	GCCCC		180
	AGCGACCC	AA CGG	GCAGGGG	GGCTT	CTGGG	CCCAC	CTGAG	TACAGO	CCTG	ACTAG	GGACA		240
30	ACCGCCAC	TT CTA	TAACCAG	AACTT	CTGCC	GGGG <i>I</i>	CCTAC	AGCAGA	ATAG	CTCAG	AGCAA		300
30	CAGCTGGA	AA CAG	CTGCATO	TTCAT	STCTG	GTTC	CGAGT	TGCTCI	GCCT (GCCTI	GCTCT		360
	GTCTTACT	AC ACC	GCTATTI	GGCAA	STGCG	CAATA	TATGC	TACCAP	GCCA	CCAGG	CCCAC		420
35	GGAGCAAA	GG TTG	GCTGTAA	AGGGT	AGTTT	TCTT	CCATG	CATCTI	TCAG	GAGAG	TGAAG		480
	ATAGACAC	CA AAC	CCAC										497
40	Further	rodent	, e.g.,	mouse	, DTL	R10 (S	SEQ ID	NO: 44	and	45):		•	
45	aac ctg Asn Leu 1					Lys Va						48	
40	ctg gca Leu Ala		r Phe I							Asn		96	
50	aac ggc Asn Gly	atc tt Ile Ph 35	c ttc c e Phe <i>F</i>	gc ttg rg Leu	ctc Leu 7	aac aa Asn L	ag tac ys Tyr	Thr Le	c aga au Arg 15	tgg Trp	ctg Leu	144	
55	gcc gat Ala Asp 50											192	

	aac Asn 65	cag Gln	gca Ala	cag Gln	ct <i>c</i> Leu	agc Ser 70	atc Ile	ttt Phe	ggt Gly	acc Thr	ttc Phe 75	Arg	gcc Ala	ctt Leu	cgc Arg	ttt Phe 80	240
5	gtg Val	gac Asp	ttg Leu	tca Ser	gac Asp 85	aat Asn	cgc Arg	atc Ile	agt Ser	ggg Gly 90	cct Pro	tca .Ser	acg Thr	ctg Leu	tca Ser 95	gaa Glu	288
10	gcc Ala	acc Thr	cct Pro	gaa Glu 100	gag Glu	gca Ala	gat Asp	gat Asp	gca Ala 105	gag Glu	cag Gln	gag Glu	gag Glu	ctg Leu 110	ttg Leu	tct Ser	336
15	gcg Ala	gat Asp	cct Pro 115	cac His	cca Pro	gct Ala	ccg Pro	ctg Leu 120	agc Ser	acc Thr	cct Pro	gct Ala	tct Ser 125	aag Lys	aac Asn	ttc Phe	384
20	atg Met	gac Asp 130	agg Arg	tgt Cys	aag Lys	aac Asn	ttc Phe 135	aag Lys	ttc Phe	aac Asn	atg Met	gac Asp 140	ctg Leu	tct Ser	cgg Arg	aac Asn	432
	aac Asn 145	ctg Leu	gtg Val	act Thr	atc Ile	aca Thr 150	gca Ala	gag Glu	atg Met	ttt Phe	gta Val 155	aat Asn	ctc Leu	tca Ser	cgc Arg	ctc Leu 160	480
25	cag Gln	tgt Cys	ctt Leu	agc Ser	ctg Leu 165	agc Ser	cac His	aac Asn	tca Ser	att Ile 170	gca Ala	cag Gln	gct Ala	gtc Val	aat Asn 175	ggc Gly	528
30			ttc Phe														576
35	aat Asn	aag Lys	ctg Leu 195	gac Asp	ctc Leu	tac Tyr	cac His	gag Glu 200	cac His	tca Ser	ttc Phe	acg Thr	gag Glu 205	cta Leu	cca Pro	cga Arg	624
40	ctg Leu	gag Glu 210	gcc Ala	ctg Leu	gac Asp	ctc Leu	agc Ser 215	tac Tyr	aac Asn	agc Ser	cag Gln	ccc Pro 220	ttt Phe	agc Ser	atg Met	aag Lys	672
	ggt Gly 225	ata Ile	ggc Gly	cac His	aat Asn	ttc Phe 230	agt Ser	ttt Phe	gtg Val	acc Thr	cat His 235	ctg Leu	tcc Ser	atg Met	cta Leu	cag Gln 240	720
45	agc Ser	ctt Leu	agc Ser	ctg Leu	gca Ala 245	cac His	aat Asn	gac Asp	att Ile	cat His 250	acc Thr	cgt Arg	gtg Val	tcc Ser	tca Ser 255	cat His	768
50	ctc Leu	aac Asn	agc Ser	aac Asn 260	tca Ser	gtg Val	agg Arg	ttt Phe	ctt Leu 265	gac Asp	ttc Phe	agc Ser	ggc Gly	aac Asn 270	ggt Gly	atg Met	816
55	ggc Gly	cgc Arg	atg Met 275	tgg Trp	gat Asp	gag Glu	ggg ggg	ggc Gly 280	ctt Leu	tat Tyr	ctc Leu	cat His	ttc Phe 285	ttc Phe	caa Gln	ggc Gly	864

			ggc Gly														912
5	ctc Leu 305	cgg Arg	ccc Pro	cag Gln	aac Asn	ctt Leu 310	gac Asp	aac Asn	ctc Leu	ccc Pro	aag Lys 315	agc Ser	ctg Leu	aag Lys	ctg Leu	ctg Leu 320	960
10			cga Arg														1008
15	ttc Phe	cta Leu	ccc Pro	aac Asn 340	ctg Leu	gaa Glu	gtc Val	cta Leu	gac Asp 345	ctg Leu	gca Ala	ggc Gly	aac Asn	cag Gln 350	cta Leu	aag Lys	1056
20			acc Thr 355														1104
			agt Ser														1152
25			aag Lys														1200
30	aca Thr	gtg Val	gac Asp	cac His	tcc Ser 405	tgg Trp	ttt Phe	ggg Gly	ccc Pro	att Ile 410	gtg Val	atg Met	aac Asn	ctg Leu	aca Thr 415	gtt Val	1248
35			gtg Val														1296
40			tta Leu 435														1344
			aag Lys														1392
45			gac Asp														1440
50			ctt Leu													ata Ile	1488
55	ctg Leu	cac	cat His	ctc Leu 500	tgc Cys	ggc Gly	tgg Trp	gac Asp	gtc Val 505	tgg Trp	tac Tyr	tgt Cys	ttt Phe	cat His 510	ctg Leu	tgc Cys	1536

								gcc Ala 520									1584
5								gtg Val									1632
10	gcc Ala 545	gac Asp	tgg Trp	gtg Val	tat Tyr	aac Asn 550	gag Glu	ctg Leu	cgg Arg	gtg Val	cgg Arg 555	ctg Leu	gag Glu	gag Glu	cgg Arg	cgc Arg 560	1680
15								tgc Cys									1728
20								ctc Leu									1776
								cac His 600									1824
25								cag Gln									1872
30								ctg Leu									1920
35								ctc Leu									1968
40								GJÅ āāā									2016
								cac His 680									2064
45			aca Thr			tago	ctcaç	gag d	caaca	igcto	gg aa	acaç	gctgo	ato	ettea	atgt	2119
50	ctg	gttc	ccg a	gtt	gctct	g co	ctgc	cttgo	tct	gtct	tac	taca	ccg	cta t	ttg	gcaagt	2179
_ •	gcg	caata	ata t	gcta	accaa	ag co	cacca	aggco	cac	ggaç	gcaa	aggt	tgg	ctg t	aaa	gggtag	2239
	tttt	ctto	ccc a	atgca	atctt	t ca	agga	gagto	g aac	gataç	gaca	ccaa	acco	cac			2289

NLSFNYRKKVSFARLHLASSFKNLVSLQELNMNGIFFRLLNKYTLRWLADLPKLHTLHLQMNFINQAQL
SIFGTFRALRFVDLSDNRISGPSTLSEATPEEADDAEQEELLSADPHPAPLSTPASKNFMDRCKNFKFN
MDLSRNNLVTITAEMFVNLSRLQCLSLSHNSIAQAVNGSQFLPLTGLQVLDLSHNKLDLYHEHSFTELP
RLEALDLSYNSQPFSMKGIGHNFSFVTHLSMLQSLSLAHNDIHTRVSSHLNSNSVRFLDFSGNGMGRMW
DEGGLYLHFFQGLSGVLKLDLSQNNLHILRPQNLDNLPKSLKLLSLRDNYLSFFNWTSLSFLPNLEVLD
LAGNQLKALTNGTLPNGTLLQKLDVSSNSIVSVAPGFFSKAKELRELNLSANALKTVDHSWFGPIVMNL
TVLDVRSNPLHCACGAAFVDLLLEVQTKVPGLANGVKCGSPGQLQGRSIFAQDLRLCLDEVLSWDCFGL
SLLAVAVGMVVPILHHLCGWDVWYCFHLCLAWLPLLARSRRSAQTLPYDAFVVFDKAQSAVADWVYNEL
RVRLEERRGRWALRLCLEDRDWLPGQTLFENLWASIYGSRKTLFVLAHTDRVSGLLRTSFLLAQQRLLE
DRKDVVVLVILRPDAHRSRYVRLRQRLCRQSVLFWPQQPNGQGGFWAQLSTALTRDNRHFYNQNFCRGP

Table 11: Comparison of intracellular domains of human DTLRs. DTLR1

is SEQ ID NO: 2; DTLR2 is SEQ ID NO: 4; DTLR3 is SEQ ID NO: 6; DTLR4 is SEQ ID NO: 8; DTLR5 is SEQ ID NO: 10; and DTLR6 is SEQ ID NO: 12. Particularly important and conserved, e.g., characteristic, residues 5 correspond, across the DTLRs, to SEQ ID NO: 18 residues tyr10-tyr13; trp26; cys46; trp52; pro54-gly55; ser69; lys71; trp134-pro135; and phe144-trp145. ORNLOFHAFISYSGHD---SFWVKNELLPNLEKEG----MQICLHERNF DTLR1 10 KENLQFHAFISYSEHD---SAWVKSELVPYLEKED----IQICLHERNF DTLR9 -----NELIPNLEKEDGS---ILICLYESYF DTLR8 SRNICYDAFVSYSERD---AYWVENLMVQELENFNPP---FKLCLHKRDF DTLR2 SPDCCYDAFIVYDTKDPAVTEWVLAELVAKLEDPREK--HFNLCLEERDW DTLR6 DTLR7 TSQTFYDAYISYDTKDASVTDWVINELRYHLEESRDK--NVLLCLEERDW 15 EDALPYDAFVVFDKTXSAVADWVYNELRGQLEECRGRW-ALRLCLEERDW DTLR10 DTLR4 RGENIYDAFVIYSSQD---EDWVRNELVKNLEEGVPP---FQLCLHYRDF PDMYKYDAYLCFSSKD---FTWVQNALLKHLDTQYSDQNRFNLCFEERDF DTLR5 DTLR3 TEQFEYAAYIIHAYKD---KDWVWEHFSSMEKEDQS----LKFCLEERDF 20 DTLR1 VPGKSIVENIITC-IEKSYKSIFVLSPNFVQSEWCH-YELYFAHHNLFHE DTLR9 VPGKSIVENIINC-IEKSYKSIFVLSPNFVQSEWCH-YELYFAHHNLFHE DTLR8 DPGKSISENIVSF-IEKSYKSIFVLSPNFVQNEWCH-YEFYFAHHNLFHE DTLR2 IPGKWIIDNIIDS-IEKSHKTVFVLSENFVKSEWCK-YELDFSHFRLFEE 25 DTLR6 LPGQPVLENLSQS-IQLSKKTVFVMTDKYAKTENFK-IAFYLSHORLMDE DTLR7 DPGLAIIDNLMQS-INQSKKTVFVLTKKYAKSWNFK-TAFYLXLQRLMGE DTLR10 LPGKTLFENLWAS-VYGSRKTLFVLAHTDRVSGLLR-AIFLLAOORLLE-IPGVAIAANIIHEGFHKSRKVIVVVSQHFIQSRWCI-FEYEIAQTWQFLS DTLR4 DTLR5 VPGENRIANIQDA-IWNSRKIVCLVSRHFLRDGWCL-EAFSYAQGRCLSD 30 DTLR3 EAGVFELEAIVNS-IKRSRKIIFVITHHLLKDPLCKRFKVHHAVQQAIEQ . * * : ::: DTLR1 GSNSLILILLEPIPQYSIPSSYHKLKSLMARRTYLEWPKEKSKRGLFWAN DTLR9 GSNNLILILLEPIPQNSIPNKYHKLKALMTQRTYLOWPKEKSKRGLFWA-35 DTLR8 NSDHIILILLEPIPFYCIPTRYHKLEALLEKKAYLEWPKDRRKCGLFWAN DTLR2 NNDAAILILLEPIEKKAIPORFCKLRKIMNTKTYLEWPMDEAOREGFWVN DTLR6 KVDVIILIFLEKPFQK---SKFLQLRKRLCGSSVLEWPTNPQAHPYFWQC DTLR7 NMDVIIFILLEPVLQH---SPYLRLRQRICKSSILQWPDNPKAERLFWQT DTLR10 40 DTLR4 SRAGIIFIVLQKVEKT-LLRQQVELYRLLSRNTYLEWEDSVLGRHIFWRR DTLR5 LNSALIMVVVGSLSQY-QLMKHQSIRGFVOKOOYLRWPEDLQDVGWFLHK DTLR3 NLDSIILVFLEEIPDYKLNHALCLRRGMFKSHCILNWPVQKERIGAFRHK 45 DTLR1 LRAAINIKLTEOAKK-----DTLR9 LRAAVNVNVLATREMYELQTFTELNEESRGSTISLMRTDCL DTLR8 LRAAIKS-----DTLR2 DTLR6 LKNALATDNHVAYSOVFKETV-----50 LXNVVLTENDSRYNNMYVDSIKQY-----DTLR7 DTLR10 DTLR4 LRKALLDGKSWNPEGTVGTGCNWQEATSI-----DTLR5 LSQQILKKEKEKKKDNNIPLQTVATIS-----DTLR3 LQVALGSKNSVH-----55

5

10

15

20

25

30

35

Transmembrane segments correspond approximately to 802-818 (791-823) of primate DTLR7 SEQ ID NO: 37; 559-575 (550-586) of DTLR8 SEQ ID NO: 39; 553-569 (549-582) of DTLR9 SEQ ID NO: 41; 796-810 (790-814) of DTLR10 SEQ ID NO: 43; and 481-497 (475-503) of DTLR10 SEQ ID NO: 45.

As used herein, the term DNAX Toll like receptor 2 (DTLR2) shall be used to describe a protein comprising a protein or peptide segment having or sharing the amino acid sequence shown in Table 2, or a substantial fragment thereof. Similarly, with a DTLR3 and Table 3; DTLR4 and Table 4; DTLR5 and Table 5; DTLR6 and Table 6; DTLR7 and Table 7; DTLR8 and Table 8; DTLR9 and Table 9; and DTLR10 and Table 10. Rodent, e.g., mouse, DTLR11 sequence is provided, e.g., in EST AA739083; DTLR13 in ESTAI019567; DTLR14 in ESTs AI390330 and AA244663.

The invention also includes a protein variations of the respective DTLR allele whose sequence is provided, e.g., a mutein agonist or antagonist. Typically, such agonists or antagonists will exhibit less than about 10% sequence differences, and thus will often have between 1and 11-fold substitutions, e.g., 2-, 3-, 5-, 7-fold, and It also encompasses allelic and other variants, e.g., natural polymorphic, of the protein described. Typically, it will bind to its corresponding biological receptor with high affinity, e.g., at least about 100 nM, usually better than about 30 nM, preferably better than about 10 nM, and more preferably at better than about 3 The term shall also be used herein to refer to related naturally occurring forms, e.g., alleles, polymorphic variants, and metabolic variants of the mammalian protein.

This invention also encompasses proteins or peptides having substantial amino acid sequence identity with the amino acid sequence in Table 2. It will include sequence variants with relatively few substitutions, e.g., preferably less than about 3-5. Similar features apply to

the other DTLR sequences provided in Tables 3, 4, 5, 6, 7, 8, 9, or 10.

A substantial polypeptide "fragment", or "segment", is a stretch of amino acid residues/of at least about 8 amino acids, generally at least 10 amino acids, more 5 generally at least 12 amino acids, often at least 14 amino acids, more often at least 16 amino acids, typically at least 18 amino acids, more typically at least 20 amino acids, usually at least 22 amino acids, more usually at 10 least 24 amino acids, preferably at least 26 amino acids, more preferably at least 28 amino acids, and, in particularly preferred embodiments, at least about 30 or more amino acids. Sequences of segments of different proteins can be compared to one another over appropriate 15 length stretches.

Amino acid sequence homology, or sequence identity, is determined by optimizing residue matches, if necessary, by introducing gaps as required. See, e.g., Needleham, et al., (1970) J. Mol. Biol. 48:443-453; Sankoff, et al., 20 (1983) chapter one in Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison, Addison-Wesley, Reading, MA; and software packages from IntelliGenetics, Mountain View, CA; the University of Wisconsin Genetics Computer Group (GCG), Madison, WI; and the NCBI (NIH); each of which is 25 incorporated herein by reference. This changes when considering conservative substitutions as matches. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, 30 isoleucine, leucine; aspartic acid, glutamic acid; asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. Homologous amino acid sequences are intended to include natural allelic and interspecies variations in the cytokine sequence. 35 homologous proteins or peptides will have from 50-100% homology (if gaps can be introduced), to 60-100% homology

(if conservative substitutions are included) with an amino acid sequence segment of Table 2, 3, 4, 5, 6, 7, 8, 9, or Homology measures will be at least about 70%, generally at least 76%, more generally at least 81%, often at least 85%, more often at least 88%, typically at least 90%, more typically at least 92%, usually at least 94%, more usually at least 95%, preferably at least 96%, and more preferably at least 97%, and in particularly preferred embodiments, at least 98% or more. The degree 10 of homology will vary with the length of the compared segments. Homologous proteins or peptides, such as the allelic variants, will share most biological activities with the embodiments described in Table 2, 3, 4, 6, 7, 8, 9, or 10. Particularly interesting regions of comparison, 15 at the amino acid or nucleotide levels, correspond to those within each of the blocks 1-10, or intrablock regions, corresponding to those indicated in Figures 2A-2B.

As used herein, the term "biological activity" is 20 used to describe, without limitation, effects on inflammatory responses, innate immunity, and/or. morphogenic development by respective ligands. For example, these receptors should, like IL-1 receptors, mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. 25 See, e.g., Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 30 56:449-463; and Parker, et al. (1993) Nature 363:736-738. The receptors exhibit biological activities much like regulatable enzymes, regulated by ligand binding. However, the enzyme turnover number is more close to an enzyme than a receptor complex. Moreover, the numbers of 35 occupied receptors necessary to induce such enzymatic

5

35

activity is less than most receptor systems, and may number closer to dozens per cell, in contrast to most receptors which will trigger at numbers in the thousands per cell. The receptors, or portions thereof, may be useful as phosphate labeling enzymes to label general or specific substrates.

The terms ligand, agonist, antagonist, and analog of, e.g., a DTLR, include molecules that modulate the characteristic cellular responses to Toll ligand like proteins, as well as molecules possessing the more 10 standard structural binding competition features of ligand-receptor interactions, e.g., where the receptor is a natural receptor or an antibody. The cellular responses likely are mediated through binding of various Toll 15 ligands to cellular receptors related to, but possibly distinct from, the type I or type II IL-1 receptors. See, e.g., Belvin and Anderson (1996) Ann. Rev. Cell Dev. Biol. 12:393-416; Morisato and Anderson (1995) Ann. Rev. Genetics 29:371-3991 and Hultmark (1994) Nature 367:116-117. 20

Also, a ligand is a molecule which serves either as a natural ligand to which said receptor, or an analog thereof, binds, or a molecule which is a functional analog of the natural ligand. The functional analog may be a ligand with structural modifications, or may be a wholly unrelated molecule which has a molecular shape which interacts with the appropriate ligand binding determinants. The ligands may serve as agonists or antagonists, see, e.g., Goodman, et al. (eds. 1990)

Goodman & Gilman's: The Pharmacological Bases of Therapeutics, Pergamon Press, New York.

Rational drug design may also be based upon structural studies of the molecular shapes of a receptor or antibody and other effectors or ligands. Effectors may be other proteins which mediate other functions in response to ligand binding, or other proteins which

normally interact with the receptor. One means for determining which sites interact with specific other proteins is a physical structure determination, e.g., x-ray crystallography or 2 dimensional NMR techniques.

These will provide guidance as to which amino acid residues form molecular contact regions. For a detailed description of protein structural determination, see, e.g., Blundell and Johnson (1976) Protein Crystallography, Academic Press, New York, which is hereby incorporated herein by reference.

II. Activities

30

35

The Toll like receptor proteins will have a number of different biological activities, e.g., in phosphate metabolism, being added to or removed from specific 15 substrates, typically proteins. Such will generally result in modulation of an inflammatory function, other innate immunity response, or a morphological effect. DTLR2, 3, 4, 5, 6, 7, 8, 9, or 10 proteins are homologous 20 to other Toll like receptor proteins, but each have structural differences. For example, a human DTLR2 gene coding sequence probably has about 70% identity with the nucleotide coding sequence of mouse DTLR2. At the amino acid level, there is also likely to be reasonable identity. 25

The biological activities of the DTLRs will be related to addition or removal of phosphate moieties to substrates, typically in a specific manner, but occasionally in a non specific manner. Substrates may be identified, or conditions for enzymatic activity may be assayed by standard methods, e.g., as described in Hardie, et al. (eds. 1995) The Protein Kinase FactBook vols. I and II, Academic Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al.

(1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al. (1993) Nature 363:736-738.

III. Nucleic Acids

30

35

This invention contemplates use of isolated nucleic acid or fragments, e.g., which encode these or closely related proteins, or fragments thereof, e.g., to encode a corresponding polypeptide, preferably one which is biologically active. In addition, this invention covers isolated or recombinant DNA which encodes such proteins or

polypeptides having characteristic sequences of the respective DTLRs, individually or as a group. Typically, the nucleic acid is capable of hybridizing, under appropriate conditions, with a nucleic acid sequence

segment shown in Tables 2-10, but preferably not with a corresponding segment of Table 1. Said biologically active protein or polypeptide can be a full length protein, or fragment, and will typically have a segment of amino acid sequence highly homologous to one shown in

Tables 2-10. Further, this invention covers the use of isolated or recombinant nucleic acid, or fragments thereof, which encode proteins having fragments which are equivalent to the DTLR2-10 proteins. The isolated nucleic acids can have the respective regulatory sequences in the

5' and 3' flanks, e.g., promoters, enhancers, poly-A addition signals, and others from the natural gene.

An "isolated" nucleic acid is a nucleic acid, e.g., an RNA, DNA, or a mixed polymer, which is substantially pure, e.g., separated from other components which naturally accompany a native sequence, such as ribosomes, polymerases, and flanking genomic sequences from the originating species. The term embraces a nucleic acid sequence which has been removed from its naturally occurring environment, and includes recombinant or cloned DNA isolates, which are thereby distinguishable from naturally occurring compositions, and chemically

5

10

synthesized analogs or analogs biologically synthesized by heterologous systems. A substantially pure molecule includes isolated forms of the molecule, either completely or substantially pure.

An isolated nucleic acid will generally be a homogeneous composition of molecules, but will, in some embodiments, contain heterogeneity, preferably minor. This heterogeneity is typically found at the polymer ends or portions not critical to a desired biological function or activity.

A "recombinant" nucleic acid is typically defined either by its method of production or its structure. reference to its method of production, e.g., a product made by a process, the process is use of recombinant nucleic acid techniques, e.g., involving human 15 intervention in the nucleotide sequence. Typically this intervention involves in vitro manipulation, although under certain circumstances it may involve more classical animal breeding techniques. Alternatively, it can be a nucleic acid made by generating a sequence comprising 20 fusion of two fragments which are not naturally contiguous to each other, but is meant to exclude products of nature, e.g., naturally occurring mutants as found in their Thus, for example, products made by natural state. transforming cells with any unnaturally occurring vector 25 is encompassed, as are nucleic acids comprising sequence derived using any synthetic oligonucleotide process. a process is often done to replace a codon with a redundant codon encoding the same or a conservative amino 30 acid, while typically introducing or removing a restriction enzyme sequence recognition site. Alternatively, the process is performed to join together nucleic acid segments of desired functions to generate a single genetic entity comprising a desired combination of 35 functions not found in the commonly available natural forms, e.g., encoding a fusion protein. Restriction

enzyme recognition sites are often the target of such artificial manipulations, but other site specific targets, e.g., promoters, DNA replication sites, regulation sequences, control sequences, or other useful features may be incorporated by design. A similar concept is intended for a recombinant, e.g., fusion, polypeptide. This will include a dimeric repeat. Specifically included are synthetic nucleic acids which, by genetic code redundancy, encode equivalent polypeptides to fragments of DTLR2-5 and fusions of sequences from various different related molecules, e.g., other IL-1 receptor family members.

A "fragment" in a nucleic acid context is a contiguous segment of at least about 17 nucleotides, generally at least 21 nucleotides, more generally at least 25 nucleotides, ordinarily at least 30 nucleotides, more ordinarily at least 35 nucleotides, often at least 39 nucleotides, more often at least 45 nucleotides, typically at least 50 nucleotides, more typically at least 55 nucleotides, usually at least 60 nucleotides, more usually at least 66 nucleotides, preferably at least 72 nucleotides, more preferably at least 79 nucleotides, and in particularly preferred embodiments will be at least 85 or more nucleotides. Typically, fragments of different genetic sequences can be compared to one another over appropriate length stretches, particularly defined segments such as the domains described below.

A nucleic acid which codes for a DTLR2-10 will be particularly useful to identify genes, mRNA, and cDNA species which code for itself or closely related proteins, as well as DNAs which code for polymorphic, allelic, or other genetic variants, e.g., from different individuals or related species. Preferred probes for such screens are those regions of the interleukin which are conserved between different polymorphic variants or which contain nucleotides which lack specificity, and will preferably be full length or nearly so. In other situations,

polymorphic variant specific sequences will be more useful.

10

15

This invention further covers recombinant nucleic acid molecules and fragments having a nucleic acid 5 sequence identical to or highly homologous to the isolated DNA set forth herein. In particular, the sequences will often be operably linked to DNA segments which control transcription, translation, and DNA replication. additional segments typically assist in expression of the desired nucleic acid segment.

Homologous, or highly identical, nucleic acid sequences, when compared to one another or Table 2-10 sequences, exhibit significant similarity. The standards for homology in nucleic acids are either measures for homology generally used in the art by sequence comparison or based upon hybridization conditions. Comparative hybridization conditions are described in greater detail below.

Substantial identity in the nucleic acid sequence 20 comparison context means either that the segments, or their complementary strands, when compared, are identical when optimally aligned, with appropriate nucleotide insertions or deletions, in at least about 60% of the nucleotides, generally at least 66%, ordinarily at least 25 71%, often at least 76%, more often at least 80%, usually at least 84%, more usually at least 88%, typically at least 91%, more typically at least about 93%, preferably at least about 95%, more preferably at least about 96 to 98% or more, and in particular embodiments, as high at about 99% or more of the nucleotides, including, e.g., 30 segments encoding structural domains such as the segments described below. Alternatively, substantial identity will exist when the segments will hybridize under selective hybridization conditions, to a strand or its complement, 35 typically using a sequence derived from Tables 2-10. Typically, selective hybridization will occur when there

is at least about 55% homology over a stretch of at least about 14 nucleotides, more typically at least about 65%, preferably at least about 75%, and more preferably at least about 90%. See, Kanehisa (1984) Nucl. Acids Res. 5 12:203-213, which is incorporated herein by reference. The length of homology comparison, as described, may be over longer stretches, and in certain embodiments will be over a stretch of at least about 17 nucleotides, generally at least about 20 nucleotides, ordinarily at least about 24 nucleotides, usually at least about 28 nucleotides, 10 typically at least about 32 nucleotides, more typically at least about 40 nucleotides, preferably at least about 50 nucleotides, and more preferably at least about 75 to 100 or more nucleotides.

Stringent conditions, in referring to homology in the 15 hybridization context, will be stringent combined conditions of salt, temperature, organic solvents, and other parameters typically controlled in hybridization reactions. Stringent temperature conditions will usually 20 include temperatures in excess of about 30°C, more usually in excess of about 37° C, typically in excess of about 45° C, more typically in excess of about 55° C, preferably in excess of about 65°C, and more preferably in excess of about 70° C. Stringent salt conditions will 25 ordinarily be less than about 500 mM, usually less than about 400 mM, more usually less than about 300 mM, typically less than about 200 mM, preferably less than about 100 mM, and more preferably less than about 80 mM, even down to less than about 20 mM. However, the 30 combination of parameters is much more important than the measure of any single parameter. See, e.g., Wetmur and Davidson (1968) <u>J. Mol. Biol.</u> 31:349-370, which is hereby incorporated herein by reference.

Alternatively, for sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison

5

10

15

algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.

Optical alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needlman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by visual inspection (see generally Ausubel et al., supra).

One example of a useful algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of 20 related sequences using progressive, pairwise alignments to show relationship and percent sequence identity. also plots a tree or dendrogram showing the clustering relationships used to create the alignment. PILEUP uses a simplification of the progressive alignment method of Feng 25 and Doolittle (1987) J. Mol. Evol. 35:351-360. used is similar to the method described by Higgins and Sharp (1989) CABIOS 5:151-153. The program can align up to 300 sequences, each of a maximum length of 5,000 nucleotides or amino acids. 30 The multiple alignment procedure begins with the pairwise alignment of the two most similar sequences, producing a cluster of two aligned This cluster is then aligned to the next most sequences. related sequence or cluster of aligned sequences. clusters of sequences are aligned by a simple extension of 35 the pairwise alignment of two individual sequences.

5

10

15

20

25

30

35

final alignment is achieved by a series of progressive, pairwise alignments. The program is run by designating specific sequences and their amino acid or nucleotide coordinates for regions of sequence comparison and by designating the program parameters. For example, a reference sequence can be compared to other test sequences to determine the percent sequence identity relationship using the following parameters: default gap weight (3.00), default gap length weight (0.10), and weighted end gaps.

Another example of algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described Altschul, et al. (1990) J. Mol. Biol. 215:403-410. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positivevalued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negativescoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. BLAST program uses as defaults a wordlength (W) of 11, the

BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989)

Proc. Nat'l Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=4, and a comparison of both strands.

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis 5 of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Nat'l Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match . 10 between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, more 15 preferably less than about 0.01, and most preferably less than about 0.001.

A further indication that two nucleic acid sequences of polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions, as described below.

The isolated DNA can be readily modified by nucleotide substitutions, nucleotide deletions, nucleotide insertions, and inversions of nucleotide stretches. These modifications result in novel DNA sequences which encode this protein or its derivatives. These modified sequences can be used to produce mutant proteins (muteins) or to enhance the expression of variant species. Enhanced

expression may involve gene amplification, increased transcription, increased translation, and other mechanisms. Such mutant DTLR-like derivatives include predetermined or site-specific mutations of the protein or its fragments, including silent mutations using genetic 5 code degeneracy. "Mutant DTLR" as used herein encompasses a polypeptide otherwise falling within the homology definition of the DTLR as set forth above, but having an amino acid sequence which differs from that of other DTLRlike proteins as found in nature, whether by way of 10 deletion, substitution, or insertion. In particular, "site specific mutant DTLR" encompasses a protein having substantial homology with a protein of Tables 2-10, and typically shares most of the biological activities or effects of the forms disclosed herein. 15

Although site specific mutation sites are predetermined, mutants need not be site specific. Mammalian DTLR mutagenesis can be achieved by making amino acid insertions or deletions in the gene, coupled with expression. Substitutions, deletions, insertions, or any 20 combinations may be generated to arrive at a final Insertions include amino- or carboxy- terminal construct. fusions. Random mutagenesis can be conducted at a target codon and the expressed mammalian DTLR mutants can then be screened for the desired activity. Methods for making 25 substitution mutations at predetermined sites in DNA having a known sequence are well known in the art, e.g., by M13 primer mutagenesis. See also Sambrook, et al. (1989) and Ausubel, et al. (1987 and periodic 30 Supplements).

The mutations in the DNA normally should not place coding sequences out of reading frames and preferably will not create complementary regions that could hybridize to produce secondary mRNA structure such as loops or hairpins.

35

The phosphoramidite method described by Beaucage and Carruthers (1981) Tetra. Letts. 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Polymerase chain reaction (PCR) techniques can often

10 be applied in mutagenesis. Alternatively, mutagenesis
primers are commonly used methods for generating defined
mutations at predetermined sites. See, e.g., Innis, et
al. (eds. 1990) PCR Protocols: A Guide to Methods and
Applications Academic Press, San Diego, CA; and

15 Dieffenbach and Dveksler (eds. 1995) PCR Primer: A
Laboratory Manual Cold Spring Harbor Press, CSH, NY.

IV. Proteins, Peptides

5

As described above, the present invention encompasses primate DTLR2-10, e.g., whose sequences are disclosed in Tables 2-10, and described above. Allelic and other variants are also contemplated, including, e.g., fusion proteins combining portions of such sequences with others, including epitope tags and functional domains.

The present invention also provides recombinant proteins, e.g., heterologous fusion proteins using segments from these rodent proteins. A heterologous fusion protein is a fusion of proteins or segments which are naturally not normally fused in the same manner.

Thus, the fusion product of a DTLR with an IL-1 receptor is a continuous protein molecule having sequences fused in a typical peptide linkage, typically made as a single translation product and exhibiting properties, e.g., sequence or antigenicity, derived from each source peptide. A similar concept applies to heterologous nucleic acid sequences.

In addition, new constructs may be made from combining similar functional or structural domains from other related proteins, e.g., IL-1 receptors or other DTLRs, including species variants. For example, ligandbinding or other segments may be "swapped" between 5 different new fusion polypeptides or fragments. See, e.g., Cunningham, et al. (1989) Science 243:1330-1336; and O'Dowd, et al. (1988) J. Biol. Chem. 263:15985-15992, each of which is incorporated herein by reference. Thus, new chimeric polypeptides exhibiting new combinations of 10 specificities will result from the functional linkage of receptor-binding specificities. For example, the ligand binding domains from other related receptor molecules may be added or substituted for other domains of this or related proteins. The resulting protein will often have 15 hybrid function and properties. For example, a fusion protein may include a targeting domain which may serve to provide sequestering of the fusion protein to a particular subcellular organelle.

Candidate fusion partners and sequences can be selected from various sequence data bases, e.g., GenBank, c/o IntelliGenetics, Mountain View, CA; and BCG, University of Wisconsin Biotechnology Computing Group, Madison, WI, which are each incorporated herein by reference.

The present invention particularly provides muteins which bind Toll ligands, and/or which are affected in signal transduction. Structural alignment of human DTLR1-10 with other members of the IL-1 family show conserved features/residues. See, e.g., Figure 3A. Alignment of the human DTLR sequences with other members of the IL-1 family indicates various structural and functionally shared features. See also, Bazan, et al. (1996) Nature 379:591; Lodi, et al. (1994) Science 263:1762-1766; Sayle and Milner-White (1995) TIBS 20:374-376; and Gronenberg, et al. (1991) Protein Engineering 4:263-269.

30

35

5

10

The IL-1 α and IL-1 β ligands bind an IL-1 receptor type I as the primary receptor and this complex then forms a high affinity receptor complex with the IL-1 receptor type III. Such receptor subunits are probably shared with the new IL-1 family members.

Similar variations in other species counterparts of DTLR2-10 sequences, e.g., in the corresponding regions, should provide similar interactions with ligand or substrate. Substitutions with either mouse sequences or human sequences are particularly preferred. Conversely, conservative substitutions away from the ligand binding interaction regions will probably preserve most signaling activities.

"Derivatives" of the primate DTLR2-10 include amino 15 acid sequence mutants, glycosylation variants, metabolic derivatives and covalent or aggregative conjugates with other chemical moieties. Covalent derivatives can be prepared by linkage of functionalities to groups which are found in the DTLR amino acid side chains or at the N- or C- termini, e.g., by means which are well known in the 20 These derivatives can include, without limitation, aliphatic esters or amides of the carboxyl terminus, or of residues containing carboxyl side chains, O-acyl derivatives of hydroxyl group-containing residues, and N-acyl derivatives of the amino terminal amino acid or 25 amino-group containing residues, e.g., lysine or arginine. Acyl groups are selected from the group of alkyl-moieties including C3 to C18 normal alkyl, thereby forming alkanoyl aroyl species.

In particular, glycosylation alterations are included, e.g., made by modifying the glycosylation patterns of a polypeptide during its synthesis and processing, or in further processing steps. Particularly preferred means for accomplishing this are by exposing the polypeptide to glycosylating enzymes derived from cells which normally provide such processing, e.g., mammalian

5

10

15

241:812-816.

glycosylation enzymes. Deglycosylation enzymes are also contemplated. Also embraced are versions of the same primary amino acid sequence which have other minor modifications, including phosphorylated amino acid residues, e.g., phosphotyrosine, phosphoserine, or phosphothreonine.

A major group of derivatives are covalent conjugates of the receptors or fragments thereof with other proteins of polypeptides. These derivatives can be synthesized in recombinant culture such as N- or C-terminal fusions or by the use of agents known in the art for their usefulness in cross-linking proteins through reactive side groups. Preferred derivatization sites with cross-linking agents are at free amino groups, carbohydrate moieties, and cysteine residues.

Fusion polypeptides between the receptors and other homologous or heterologous proteins are also provided. Homologous polypeptides may be fusions between different receptors, resulting in, for instance, a hybrid protein exhibiting binding specificity for multiple different Toll 20 ligands, or a receptor which may have broadened or weakened specificity of substrate effect. Likewise, heterologous fusions may be constructed which would exhibit a combination of properties or activities of the 25 derivative proteins. Typical examples are fusions of a reporter polypeptide, e.g., luciferase, with a segment or domain of a receptor, e.g., a ligand-binding segment, so that the presence or location of a desired ligand may be easily determined. See, e.g., Dull, et al., U.S. Patent No. 4,859,609, which is hereby incorporated herein by 30 reference. Other gene fusion partners include glutathione-S-transferase (GST), bacterial Bgalactosidase, trpE, Protein A, ß-lactamase, alpha amylase, alcohol dehydrogenase, and yeast alpha mating 35 factor. See, e.g., Godowski, et al. (1988) Science

5

10

15

20

25

30

35

The phosphoramidite method described by Beaucage and Carruthers (1981) Tetra. Letts. 22:1859-1862, will produce suitable synthetic DNA fragments. A double stranded fragment will often be obtained either by synthesizing the complementary strand and annealing the strand together under appropriate conditions or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Such polypeptides may also have amino acid residues which have been chemically modified by phosphorylation, sulfonation, biotinylation, or the addition or removal of other moieties, particularly those which have molecular shapes similar to phosphate groups. In some embodiments, the modifications will be useful labeling reagents, or serve as purification targets, e.g., affinity ligands.

Fusion proteins will typically be made by either recombinant nucleic acid methods or by synthetic polypeptide methods. Techniques for nucleic acid manipulation and expression are described generally, for example, in Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.), Vols. 1-3, Cold Spring Harbor Laboratory, and Ausubel, et al. (eds. 1987 and periodic supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York, which are each incorporated herein by reference. Techniques for synthesis of polypeptides are described, for example, in Merrifield (1963) J. Amer. Chem. Soc. 85:2149-2156; Merrifield (1986) Science 232: 341-347; and Atherton, et al. (1989) Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford; each of which is incorporated herein by reference. See also Dawson, et al. (1994) Science 266:776-779 for methods to make larger polypeptides.

This invention also contemplates the use of derivatives of a DTLR2-10 other than variations in amino acid sequence or glycosylation. Such derivatives may involve covalent or aggregative association with chemical

moieties. These derivatives generally fall into three classes: (1) salts, (2) side chain and terminal residue covalent modifications, and (3) adsorption complexes, for example with cell membranes. Such covalent or aggregative derivatives are useful as immunogens, as reagents in 5 immunoassays, or in purification methods such as for affinity purification of a receptor or other binding molecule, e.g., an antibody. For example, a Toll ligand can be immobilized by covalent bonding to a solid support 10 such as cyanogen bromide-activated Sepharose, by methods which are well known in the art, or adsorbed onto polyolefin surfaces, with or without glutaraldehyde cross-linking, for use in the assay or purification of a DTLR receptor, antibodies, or other similar molecules. 15 The ligand can also be labeled with a detectable group, for example radioiodinated by the chloramine T procedure, covalently bound to rare earth chelates, or conjugated to another fluorescent moiety for use in diagnostic assays.

A DTLR of this invention can be used as an immunogen 20 for the production of antisera or antibodies specific, e.g., capable of distinguishing between other IL-1 receptor family members, for the DTLR or various fragments The purified DTLR can be used to screen monoclonal antibodies or antigen-binding fragments 25 prepared by immunization with various forms of impure preparations containing the protein. In particular, the term "antibodies" also encompasses antigen binding fragments of natural antibodies, e.g., Fab, Fab2, Fv, etc. The purified DTLR can also be used as a reagent to detect 30 antibodies generated in response to the presence of elevated levels of expression, or immunological disorders which lead to antibody production to the endogenous receptor. Additionally, DTLR fragments may also serve as immunogens to produce the antibodies of the present invention, as described immediately below. For example, 35 this invention contemplates antibodies having binding

5

affinity to or being raised against the amino acid sequences shown in Tables 2-10, fragments thereof, or various homologous peptides. In particular, this invention contemplates antibodies having binding affinity to, or having been raised against, specific fragments which are predicted to be, or actually are, exposed at the exterior protein surface of the native DTLR.

The blocking of physiological response to the receptor ligands may result from the inhibition of binding of the ligand to the receptor, likely through competitive inhibition. Thus, in vitro assays of the present invention will often use antibodies or antigen binding segments of these antibodies, or fragments attached to solid phase substrates. These assays will also allow for the diagnostic determination of the effects of either ligand binding region mutations and modifications, or other mutations and modifications, e.g., which affect signaling or enzymatic function.

This invention also contemplates the use of

competitive drug screening assays, e.g., where
neutralizing antibodies to the receptor or fragments
compete with a test compound for binding to a ligand or
other antibody. In this manner, the neutralizing
antibodies or fragments can be used to detect the presence
of a polypeptide which shares one or more binding sites to
a receptor and can also be used to occupy binding sites on
a receptor that might otherwise bind a ligand.

V. Making Nucleic Acids and Protein

DNA which encodes the protein or fragments thereof can be obtained by chemical synthesis, screening cDNA libraries, or by screening genomic libraries prepared from a wide variety of cell lines or tissue samples. Natural sequences can be isolated using standard methods and the sequences provided herein, e.g., in Tables 2-10. Other species counterparts can be identified by hybridization

techniques, or by various PCR techniques, combined with or by searching in sequence databases, e.g., GenBank.

This DNA can be expressed in a wide variety of host cells for the synthesis of a full-length receptor or 5 fragments which can in turn, for example, be used to generate polyclonal or monoclonal antibodies; for binding studies; for construction and expression of modified ligand binding or kinase/phosphatase domains; and for structure/function studies. Variants or fragments can be 10 expressed in host cells that are transformed or transfected with appropriate expression vectors. molecules can be substantially free of protein or cellular contaminants, other than those derived from the recombinant host, and therefore are particularly useful in pharmaceutical compositions when combined with a 15 pharmaceutically acceptable carrier and/or diluent. protein, or portions thereof, may be expressed as fusions with other proteins.

Expression vectors are typically self-replicating DNA 20 or RNA constructs containing the desired receptor gene or its fragments, usually operably linked to suitable genetic control elements that are recognized in a suitable host These control elements are capable of effecting. expression within a suitable host. The specific type of control elements necessary to effect expression will depend upon the eventual host cell used. Generally, the genetic control elements can include a prokaryotic promoter system or a eukaryotic promoter expression control system, and typically include a transcriptional 30 promoter, an optional operator to control the onset of transcription, transcription enhancers to elevate the level of mRNA expression, a sequence that encodes a suitable ribosome binding site, and sequences that terminate transcription and translation. Expression vectors also usually contain an origin of replication that 35

allows the vector to replicate independently of the host cell.

The vectors of this invention include those which contain DNA which encodes a protein, as described, or a fragment thereof encoding a biologically active equivalent 5 polypeptide. The DNA can be under the control of a viral promoter and can encode a selection marker. invention further contemplates use of such expression vectors which are capable of expressing eukaryotic cDNA coding for such a protein in a prokaryotic or eukaryotic . 10 host, where the vector is compatible with the host and where the eukaryotic cDNA coding for the receptor is inserted into the vector such that growth of the host containing the vector expresses the cDNA in question. 15 Usually, expression vectors are designed for stable replication in their host cells or for amplification to greatly increase the total number of copies of the desirable gene per cell. It is not always necessary to require that an expression vector replicate in a host cell, e.g., it is possible to effect transient expression 20 of the protein or its fragments in various hosts using vectors that do not contain a replication origin that is recognized by the host cell. It is also possible to use vectors that cause integration of the protein encoding 25 portion or its fragments into the host DNA by recombination.

Vectors, as used herein, comprise plasmids, viruses, bacteriophage, integratable DNA fragments, and other vehicles which enable the integration of DNA fragments into the genome of the host. Expression vectors are specialized vectors which contain genetic control elements that effect expression of operably linked genes. Plasmids are the most commonly used form of vector but all other forms of vectors which serve an equivalent function and which are, or become, known in the art are suitable for use herein. See, e.g., Pouwels, et al. (1985 and

5

35

Supplements) Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., and Rodriquez, et al. (eds.) Vectors: A Survey of Molecular Cloning Vectors and Their Uses, Buttersworth, Boston, 1988, which are incorporated herein by reference.

Transformed cells are cells, preferably mammalian, that have been transformed or transfected with receptor vectors constructed using recombinant DNA techniques.

Transformed host cells usually express the desired protein or its fragments, but for purposes of cloning, amplifying, and manipulating its DNA, do not need to express the subject protein. This invention further contemplates culturing transformed cells in a nutrient medium, thus permitting the receptor to accumulate in the cell

membrane. The protein can be recovered, either from the culture or, in certain instances, from the culture medium.

For purposes of this invention, nucleic sequences are operably linked when they are functionally related to each other. For example, DNA for a presequence or secretory 20 leader is operably linked to a polypeptide if it is expressed as a preprotein or participates in directing the polypeptide to the cell membrane or in secretion of the polypeptide. A promoter is operably linked to a coding. sequence if it controls the transcription of the 25 polypeptide; a ribosome binding site is operably linked to a coding sequence if it is positioned to permit translation. Usually, operably linked means contiguous and in reading frame, however, certain genetic elements such as repressor genes are not contiguously linked but still 30 bind to operator sequences that in turn control expression.

Suitable host cells include prokaryotes, lower eukaryotes, and higher eukaryotes. Prokaryotes include both gram negative and gram positive organisms, e.g., E. coli and B. subtilis. Lower eukaryotes include yeasts, e.g., S. cerevisiae and Pichia, and species of the genus

<u>Dictyostelium</u>. Higher eukaryotes include established tissue culture cell lines from animal cells, both of non-mammalian origin, e.g., insect cells, and birds, and of mammalian origin, e.g., human, primates, and rodents.

5 Prokaryotic host-vector systems include a wide variety of vectors for many different species. As used herein, E. coli and its vectors will be used generically to include equivalent vectors used in other prokaryotes. A representative vector for amplifying DNA is pBR322 or many of its derivatives. Vectors that can be used to 10 express the receptor or its fragments include, but are not limited to, such vectors as those containing the lac promoter (pUC-series); trp promoter (pBR322-trp); Ipp promoter (the pIN-series); lambda-pP or pR promoters 15 (pOTS); or hybrid promoters such as ptac (pDR540). See Brosius, et al. (1988) "Expression Vectors Employing Lambda-, trp-, lac-, and Ipp-derived Promoters", in Vectors: A Survey of Molecular Cloning Vectors and Their Uses, (eds. Rodriguez and Denhardt), Buttersworth, Boston, Chapter 10, pp. 205-236, which is incorporated herein by 20 reference.

Lower eukaryotes, e.g., yeasts and <u>Dictyostelium</u>, may be transformed with DTLR sequence containing vectors. For purposes of this invention, the most common lower eukaryotic host is the baker's yeast, Saccharomyces 25 cerevisiae. It will be used to generically represent lower eukaryotes although a number of other strains and species are also available. Yeast vectors typically consist of a replication origin (unless of the integrating type), a selection gene, a promoter, DNA encoding the 30 receptor or its fragments, and sequences for translation termination, polyadenylation, and transcription termination. Suitable expression vectors for yeast include such constitutive promoters as 3-phosphoglycerate 35 kinase and various other glycolytic enzyme gene promoters or such inducible promoters as the alcohol dehydrogenase 2

5

35

promoter or metallothionine promoter. Suitable vectors include derivatives of the following types: self-replicating low copy number (such as the YRp-series), self-replicating high copy number (such as the YEp-series); integrating types (such as the YIp-series), or mini-chromosomes (such as the YCp-series).

Higher eukaryotic tissue culture cells are normally the preferred host cells for expression of the functionally active interleukin protein. In principle, 10 any higher eukaryotic tissue culture cell line is workable, e.g., insect baculovirus expression systems, whether from an invertebrate or vertebrate source. However, mammalian cells are preferred. Transformation or transfection and propagation of such cells has become a 15 routine procedure. Examples of useful cell lines include HeLa cells, Chinese hamster ovary (CHO) cell lines, baby rat kidney (BRK) cell lines, insect cell lines, bird cell lines, and monkey (COS) cell lines. Expression vectors for such cell lines usually include an origin of 20 replication, a promoter, a translation initiation site, RNA splice sites (if genomic DNA is used), a polyadenylation site, and a transcription termination These vectors also usually contain a selection gene or amplification gene. Suitable expression vectors may be plasmids, viruses, or retroviruses carrying promoters 25 derived, e.g., from such sources as from adenovirus, SV40, parvoviruses, vaccinia virus, or cytomegalovirus. Representative examples of suitable expression vectors include pCDNA1; pCD, see Okayama, et al. (1985) Mol. Cell Biol. 5:1136-1142; pMClneo PolyA, see Thomas, et al. 30 (1987) Cell 51:503-512; and a baculovirus vector such as pAC 373 or pAC 610.

For secreted proteins, an open reading frame usually encodes a polypeptide that consists of a mature or secreted product covalently linked at its N-terminus to a signal peptide. The signal peptide is cleaved prior to

secretion of the mature, or active, polypeptide. cleavage site can be predicted with a high degree of accuracy from empirical rules, e.g., von-Heijne (1986) Nucleic Acids Research 14:4683-4690, and the precise amino acid composition of the signal peptide does not appear to be critical to its function, e.g., Randall, et al. (1989) Science 243:1156-1159; Kaiser, et al. (1987) Science 235:312-317.

It will often be desired to express these polypeptides in a system which provides a specific or 10 defined glycosylation pattern. In this case, the usual pattern will be that provided naturally by the expression system. However, the pattern will be modifiable by exposing the polypeptide, e.g., an unglycosylated form, to 15 appropriate glycosylating proteins introduced into a heterologous expression system. For example, the receptor gene may be co-transformed with one or more genes encoding mammalian or other glycosylating enzymes. Using this approach, certain mammalian glycosylation patterns will be achievable in prokaryote or other cells. 20

The source of DTLR can be a eukaryotic or prokaryotic host expressing recombinant DTLR, such as is described The source can also be a cell line such as mouse Swiss 3T3 fibroblasts, but other mammalian cell lines are also contemplated by this invention, with the preferred cell line being from the human species.

25

35

Now that the sequences are known, the primate DTLRs, fragments, or derivatives thereof can be prepared by conventional processes for synthesizing peptides. 30 include processes such as are described in Stewart and Young (1984) Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, IL; Bodanszky and Bodanszky (1984) The Practice of Peptide Synthesis, Springer-Verlag, New York; and Bodanszky (1984) The Principles of Peptide Synthesis, Springer-Verlag, New York; all of each which are incorporated herein by reference. For example, an

azide process, an acid chloride process, an acid anhydride process, a mixed anhydride process, an active ester process (e.g., p-nitrophenyl ester, N-hydroxysuccinimide ester, or cyanomethyl ester), a carbodiimidazole process, an oxidative-reductive process, or a dicyclohexylcarbodiimide (DCCD)/additive process can be used. Solid phase and solution phase syntheses are both applicable to the foregoing processes. Similar techniques can be used with partial DTLR sequences.

The DTLR proteins, fragments, or derivatives are suitably prepared in accordance with the above processes as typically employed in peptide synthesis, generally either by a so-called stepwise process which comprises condensing an amino acid to the terminal amino acid, one by one in sequence, or by coupling peptide fragments to the terminal amino acid. Amino groups that are not being used in the coupling reaction typically must be protected to prevent coupling at an incorrect location.

. 10

15

20

25

30

35

If a solid phase synthesis is adopted, the C-terminal amino acid is bound to an insoluble carrier or support through its carboxyl group. The insoluble carrier is not particularly limited as long as it has a binding capability to a reactive carboxyl group. Examples of such insoluble carriers include halomethyl resins, such as chloromethyl resin or bromomethyl resin, hydroxymethyl resins, phenol resins, tert-alkyloxycarbonylhydrazidated resins, and the like.

An amino group-protected amino acid is bound in sequence through condensation of its activated carboxyl group and the reactive amino group of the previously formed peptide or chain, to synthesize the peptide step by step. After synthesizing the complete sequence, the peptide is split off from the insoluble carrier to produce the peptide. This solid-phase approach is generally described by Merrifield, et al. (1963) in J. Am. Chem.

Soc. 85:2149-2156, which is incorporated herein by reference.

The prepared protein and fragments thereof can be isolated and purified from the reaction mixture by means of peptide separation, for example, by extraction, precipitation, electrophoresis, various forms of chromatography, and the like. The receptors of this invention can be obtained in varying degrees of purity depending upon desired uses. Purification can be accomplished by use of the protein purification techniques 10 disclosed herein, see below, or by the use of the antibodies herein described in methods of immunoabsorbant affinity chromatography. This immunoabsorbant affinity chromatography is carried out by first linking the antibodies to a solid support and then contacting the 15 linked antibodies with solubilized lysates of appropriate cells, lysates of other cells expressing the receptor, or lysates or supernatants of cells producing the protein as a result of DNA techniques, see below.

Generally, the purified protein will be at least about 40% pure, ordinarily at least about 50% pure, usually at least about 60% pure, typically at least about 70% pure, more typically at least about 80% pure, preferable at least about 90% pure and more preferably at least about 95% pure, and in particular embodiments, 97%-99% or more. Purity will usually be on a weight basis, but can also be on a molar basis. Different assays will be applied as appropriate.

30 VI. Antibodies

35

Antibodies can be raised to the various mammalian, e.g., primate DTLR proteins and fragments thereof, both in naturally occurring native forms and in their recombinant forms, the difference being that antibodies to the active receptor are more likely to recognize epitopes which are only present in the native conformations. Denatured

antigen detection can also be useful in, e.g., Western analysis. Anti-idiotypic antibodies are also contemplated, which would be useful as agonists or antagonists of a natural receptor or an antibody.

Preferred antibodies will exhibit properties of both affinity and selectivity. High affinity is generally preferred, while selectivity will allow distinction between various embodiment subsets. In particular, it will be desirable to possess antibody preparations characterized to bind, e.g., various specific combinations of related members while not binding others. Such various combinatorial subsets are specifically enabled, e.g., these reagents may be generated or selected using standard methods of immunoaffinity, selection, etc.

15 Antibodies, including binding fragments and single chain versions, against predetermined fragments of the protein can be raised by immunization of animals with conjugates of the fragments with immunogenic proteins. Monoclonal antibodies are prepared from cells secreting the desired antibody. These antibodies can be screened 20 for binding to normal or defective protein, or screened for agonistic or antagonistic activity. These monoclonal antibodies will usually bind with at least a K_{D} of about 1 mM, more usually at least about 300 μM , typically at least 25 about 100µM, more typically at least about 30 µM, preferably at least about 10 µM, and more preferably at least about 3 µM or better.

The antibodies, including antigen binding fragments, of this invention can have significant diagnostic or therapeutic value. They can be potent antagonists that bind to the receptor and inhibit binding to ligand or inhibit the ability of the receptor to elicit a biological response, e.g., act on its substrate. They also can be useful as non-neutralizing antibodies and can be coupled to toxins or radionuclides to bind producing cells, or cells localized to the source of the interleukin.

30

35

5

10

35

Further, these antibodies can be conjugated to drugs or other therapeutic agents, either directly or indirectly by means of a linker.

The antibodies of this invention can also be useful in diagnostic applications. As capture or non-neutralizing antibodies, they might bind to the receptor without inhibiting ligand or substrate binding. As neutralizing antibodies, they can be useful in competitive binding assays. They will also be useful in detecting or quantifying ligand. They may be used as reagents for Western blot analysis, or for immunoprecipitation or immunopurification of the respective protein.

Protein fragments may be joined to other materials, particularly polypeptides, as fused or covalently joined 15 polypeptides to be used as immunogens. Mammalian DTLR and its fragments may be fused or covalently linked to a variety of immunogens, such as keyhole limpet hemocyanin, bovine serum albumin, tetanus toxoid, etc. Microbiology, Hoeber Medical Division, Harper and Row, 20 1969; Landsteiner (1962) Specificity of Serological Reactions, Dover Publications, New York; and Williams, et al. (1967) Methods in Immunology and Immunochemistry, Vol. 1, Academic Press, New York; each of which are incorporated herein by reference, for descriptions of 25 methods of preparing polyclonal antisera. A typical method involves hyperimmunization of an animal with an The blood of the animal is then collected antigen. shortly after the repeated immunizations and the gamma globulin is isolated. 30

In some instances, it is desirable to prepare monoclonal antibodies from various mammalian hosts, such as mice, rodents, primates, humans, etc. Description of techniques for preparing such monoclonal antibodies may be found in, e.g., Stites, et al. (eds.) Basic and Clinical Immunology (4th ed.), Lange Medical Publications, Los

Altos, CA, and references cited therein; Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH Press; Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed) Academic Press, New York; and particularly in Kohler and Milstein (1975) in Nature 256: .495-497, which 5 discusses one method of generating monoclonal antibodies. Each of these references is incorporated herein by Summarized briefly, this method involves reference. injecting an animal with an immunogen. The animal is then 10 sacrificed and cells taken from its spleen, which are then fused with myeloma cells. The result is a hybrid cell or "hybridoma" that is capable of reproducing in vitro. population of hybridomas is then screened to isolate individual clones, each of which secrete a single antibody 15 species to the immunogen. In this manner, the individual antibody species obtained are the products of immortalized and cloned single B cells from the immune animal generated in response to a specific site recognized on the immunogenic substance.

20 Other suitable techniques involve in vitro exposure of lymphocytes to the antigenic polypeptides or alternatively to selection of libraries of antibodies in phage or similar vectors. See, Huse, et al. (1989) "Generation of a Large Combinatorial Library of the 25 Immunoglobulin Repertoire in Phage Lambda," Science 246:1275-1281; and Ward, et al. (1989) Nature 341:544-546, each of which is hereby incorporated herein by reference. The polypeptides and antibodies of the present invention may be used with or without modification, including 30 chimeric or humanized antibodies. Frequently, the polypeptides and antibodies will be labeled by joining, either covalently or non-covalently, a substance which provides for a detectable signal. A wide variety of labels and conjugation techniques are known and are 35 reported extensively in both the scientific and patent literature. Suitable labels include radionuclides,

5

10

15

35

enzymes, substrates, cofactors, inhibitors, fluorescent moieties, chemiluminescent moieties, magnetic particles, and the like. Patents, teaching the use of such labels include U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149; and 4,366,241. Also, recombinant or chimeric immunoglobulins may be produced, see Cabilly, U.S. Patent No. 4,816,567; or made in transgenic mice, see Mendez, et al. (1997) Nature Genetics 15:146-156. These references are incorporated herein by reference.

The antibodies of this invention can also be used for affinity chromatography in isolating the DTLRs. Columns can be prepared where the antibodies are linked to a solid support, e.g., particles, such as agarose, Sephadex, or the like, where a cell lysate may be passed through the column, the column washed, followed by increasing concentrations of a mild denaturant, whereby the purified protein will be released. The protein may be used to purify antibody.

The antibodies may also be used to screen expression libraries for particular expression products. Usually the antibodies used in such a procedure will be labeled with a moiety allowing easy detection of presence of antigen by antibody binding.

Antibodies raised against a DTLR will also be used to raise anti-idiotypic antibodies. These will be useful in detecting or diagnosing various immunological conditions related to expression of the protein or cells which express the protein. They also will be useful as agonists or antagonists of the ligand, which may be competitive inhibitors or substitutes for naturally occurring ligands.

A DTLR protein that specifically binds to or that is specifically immunoreactive with an antibody generated against a defined immunogen, such as an immunogen consisting of the amino acid sequence of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, or 24, is typically

determined in an immunoassay. The immunoassay typically uses a polyclonal antiserum which was raised, e.g., to a protein of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, or 24. This antiserum is selected to have low crossreactivity against other IL-1R family members, e.g., DTLR1, preferably from the same species, and any such crossreactivity is removed by immunoabsorption prior to use in the immunoassay.

In order to produce antisera for use in an immunoassay, the protein of SEQ ID NO: 4, 6, 8, 10, 12, 10 14, 16, 18, 20, 22, or 24, or a combination thereof, is isolated as described herein. For example, recombinant protein may be produced in a mammalian cell line. appropriate host, e.g., an inbred strain of mice such as Balb/c, is immunized with the selected protein, typically 15 using a standard adjuvant, such as Freund's adjuvant, and a standard mouse immunization protocol (see Harlow and Lane, supra). Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used an immunogen. Polyclonal sera 20 are collected and titered against the immunogen protein in an immunoassay, e.g., a solid phase immunoassay with the immunogen immobilized on a solid support. Polyclonal antisera with a titer of 10^4 or greater are selected and tested for their cross reactivity against other IL-1R 25 family members, e.g., mouse DTLRs or human DTLR1, using a competitive binding immunoassay such as the one described in Harlow and Lane, supra, at pages 570-573. Preferably at least two DTLR family members are used in this determination in conjunction with either or some of the 30 human DTLR2-10. These IL-1R family members can be produced as recombinant proteins and isolated using standard molecular biology and protein chemistry techniques as described herein.

Immunoassays in the competitive binding format can be used for the crossreactivity determinations. For example,

35

the proteins of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and/or 24, or various fragments thereof, can be immobilized to a solid support. Proteins added to the assay compete with the binding of the antisera to the 5 immobilized antigen. The ability of the above proteins to compete with the binding of the antisera to the immobilized protein is compared to the protein of SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and/or 24. percent crossreactivity for the above proteins is calculated, using standard calculations. 10 Those antisera with less than 10% crossreactivity with each of the proteins listed above are selected and pooled. reacting antibodies are then removed from the pooled antisera by immunoabsorption with the above-listed 15 proteins.

The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein to the immunogen protein (e.g., the IL-1R like protein of SEQ ID NO: 4, 6, 8, 10, 12, 14, 20 16, 18, 20, 22, and/or 24). In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required is less than twice the amount of the protein of the selected protein or proteins that is required, then the second protein is said to specifically bind to an antibody generated to the immunogen.

It is understood that these DTLR proteins are members
of a family of homologous proteins that comprise at least
10 so far identified genes. For a particular gene
product, such as the DTLR2-10, the term refers not only to
the amino acid sequences disclosed herein, but also to
other proteins that are allelic, non-allelic or species
variants. It also understood that the terms include
nonnatural mutations introduced by deliberate mutation

using conventional recombinant technology such as single site mutation, or by excising short sections of DNA encoding the respective proteins, or by substituting new amino acids, or adding new amino acids. Such minor alterations must substantially maintain the immunoidentity 5 of the original molecule and/or its biological activity. Thus, these alterations include proteins that are specifically immunoreactive with a designated naturally occurring IL-1R related protein, for example, the DTLR proteins shown in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 10 18, 20, 22, or 24. The biological properties of the altered proteins can be determined by expressing the protein in an appropriate cell line and measuring the appropriate effect upon lymphocytes. Particular protein modifications considered minor would include conservative 15 substitution of amino acids with similar chemical properties, as described above for the IL-1R family as a whole. By aligning a protein optimally with the protein of DTLR2-10 and by using the conventional immunoassays described herein to determine immunoidentity, one can 20 determine the protein compositions of the invention.

VII. Kits and quantitation

Both naturally occurring and recombinant forms of the IL-1R like molecules of this invention are particularly 25 useful in kits and assay methods. For example, these methods would also be applied to screening for binding activity, e.g., ligands for these proteins. Several methods of automating assays have been developed in recent years so as to permit screening of tens of thousands of 30 compounds per year. See, e.g., a BIOMEK automated workstation, Beckman Instruments, Palo Alto, California, and Fodor, et al. (1991) Science 251:767-773, which is incorporated herein by reference. The latter describes 35 means for testing binding by a plurality of defined polymers synthesized on a solid substrate.

5

10

35

development of suitable assays to screen for a ligand or agonist/antagonist homologous proteins can be greatly facilitated by the availability of large amounts of purified, soluble DTLRs in an active state such as is provided by this invention.

Purified DTLR can be coated directly onto plates for use in the aforementioned ligand screening techniques. However, non-neutralizing antibodies to these proteins can be used as capture antibodies to immobilize the respective receptor on the solid phase, useful, e.g., in diagnostic uses.

This invention also contemplates use of DTLR2-10, fragments thereof, peptides, and their fusion products in a variety of diagnostic kits and methods for detecting the presence of the protein or its ligand. Alternatively, or additionally, antibodies against the molecules may be incorporated into the kits and methods. Typically the kit will have a compartment containing either a defined DTLR peptide or gene segment or a reagent which recognizes one or the other. Typically, recognition reagents, in the case of peptide, would be a receptor or antibody, or in the case of a gene segment, would usually be a hybridization probe.

A preferred kit for determining the concentration of,
25 e.g., DTLR4, a sample would typically comprise a labeled
compound, e.g., ligand or antibody, having known binding
affinity for DTLR4, a source of DTLR4 (naturally occurring
or recombinant) as a positive control, and a means for
separating the bound from free labeled compound, for
30 example a solid phase for immobilizing the DTLR4 in the
test sample. Compartments containing reagents, and
instructions, will normally be provided.

Antibodies, including antigen binding fragments, specific for mammalian DTLR or a peptide fragment, or receptor fragments are useful in diagnostic applications to detect the presence of elevated levels of ligand and/or

5

10

15

20

its fragments. Diagnostic assays may be homogeneous (without a separation step between free reagent and antibody-antigen complex) or heterogeneous (with a separation step). Various commercial assays exist, such as radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), enzyme-multiplied immunoassay technique (EMIT), substrate-labeled fluorescent immunoassay (SLFIA) and the like. For example, unlabeled antibodies can be employed by using a second antibody which is labeled and which recognizes the antibody to DTLR4 or to a particular fragment thereof. These assays have also been extensively discussed in the literature. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, CSH., and Coligan (ed. 1991 and periodic supplements) Current Protocols In Immunology Greene/Wiley, New York.

Anti-idiotypic antibodies may have similar use to serve as agonists or antagonists of DTLR4. These should be useful as therapeutic reagents under appropriate circumstances.

Frequently, the reagents for diagnostic assays are supplied in kits, so as to optimize the sensitivity of the assay. For the subject invention, depending upon the nature of the assay, the protocol, and the label, either labeled or unlabeled antibody, or labeled ligand is 25 provided. This is usually in conjunction with other additives, such as buffers, stabilizers, materials necessary for signal production such as substrates for enzymes, and the like. Preferably, the kit will also contain instructions for proper use and disposal of the 30 Typically the kit has compartments contents after use. for each useful reagent, and will contain instructions for proper use and disposal of reagents. Desirably, the reagents are provided as a dry lyophilized powder, where the reagents may be reconstituted in an aqueous medium 35

having appropriate concentrations for performing the assay.

The aforementioned constituents of the diagnostic assays may be used without modification or may be modified in a variety of ways. For example, labeling may be 5 achieved by covalently or non-covalently joining a moiety which directly or indirectly provides a detectable signal. In any of these assays, a test compound, DTLR, or antibodies thereto can be labeled either directly or indirectly. Possibilities for direct labeling include 10 label groups: radiolabels such as 125I, enzymes (U.S. Pat. No. 3,645,090) such as peroxidase and alkaline phosphatase, and fluorescent labels (U.S. Pat. No. 3,940,475) capable of monitoring the change in fluorescence intensity, wavelength shift, or fluorescence 15 polarization. Both of the patents are incorporated herein by reference. Possibilities for indirect labeling include biotinylation of one constituent followed by binding to avidin coupled to one of the above label groups.

20

25

30

35

There are also numerous methods of separating the bound from the free ligand, or alternatively the bound from the free test compound. The DTLR can be immobilized on various matrixes followed by washing. Suitable matrices include plastic such as an ELISA plate, filters, and beads. Methods of immobilizing the receptor to a matrix include, without limitation, direct adhesion to plastic, use of a capture antibody, chemical coupling, and biotin-avidin. The last step in this approach involves the precipitation of antibody/antigen complex by any of several methods including those utilizing, e.g., an organic solvent such as polyethylene glycol or a salt such as ammonium sulfate. Other suitable separation techniques include, without limitation, the fluorescein antibody magnetizable particle method described in Rattle, et al. (1984) Clin. Chem. 30(9):1457-1461, and the double antibody magnetic particle separation as described in U.S.

5

10

Pat. No. 4,659,678, each of which is incorporated herein by reference.

The methods for linking protein or fragments to various labels have been extensively reported in the literature and do not require detailed discussion here. Many of the techniques involve the use of activated carboxyl groups either through the use of carbodiimide or active esters to form peptide bonds, the formation of thioethers by reaction of a mercapto group with an activated halogen such as chloroacetyl, or an activated olefin such as maleimide, for linkage, or the like. Fusion proteins will also find use in these applications.

Another diagnostic aspect of this invention involves use of oligonucleotide or polynucleotide sequences taken from the sequence of a DTLR. These sequences can be used 15 as probes for detecting levels of the respective DTLR in patients suspected of having an immunological disorder. The preparation of both RNA and DNA nucleotide sequences, the labeling of the sequences, and the preferred size of the sequences has received ample description and 20 discussion in the literature. Normally an oligonucleotide probe should have at least about 14 nucleotides, usually at least about 18 nucleotides, and the polynucleotide probes may be up to several kilobases. Various labels may be employed, most commonly radionuclides, particularly 25 However, other techniques may also be employed, such as using biotin modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, 30 fluorescers, enzymes, or the like. Alternatively, antibodies may be employed which can recognize specific duplexes, including DNA duplexes, RNA duplexes, DNA-RNA hybrid duplexes, or DNA-protein duplexes. The antibodies in turn may be labeled and the assay carried out where the 35 duplex is bound to a surface, so that upon the formation

of duplex on the surface, the presence of antibody bound to the duplex can be detected. The use of probes to the novel anti-sense RNA may be carried out in any conventional techniques such as nucleic acid hybridization, plus and minus screening, recombinational probing, hybrid released translation (HRT), and hybrid arrested translation (HART). This also includes amplification techniques such as polymerase chain reaction (PCR).

Diagnostic kits which also test for the qualitative or quantitative presence of other markers are also contemplated. Diagnosis or prognosis may depend on the combination of multiple indications used as markers. Thus, kits may test for combinations of markers. See, e.g., Viallet, et al. (1989) Progress in Growth Factor Res. 1:89-97.

VIII. Therapeutic Utility

This invention provides reagents with significant 20 therapeutic value. The DTLRs (naturally occurring or recombinant), fragments thereof, mutein receptors, and antibodies, along with compounds identified as having binding affinity to the receptors or antibodies, should be useful in the treatment of conditions exhibiting abnormal expression of the receptors of their ligands. 25 abnormality will typically be manifested by immunological disorders. Additionally, this invention should provide therapeutic value in various diseases or disorders associated with abnormal expression or abnormal triggering of response to the ligand. 30 The Toll ligands have been suggested to be involved in morphologic development, e.g., dorso-ventral polarity determination, and immune responses, particularly the primitive innate responses. See, e.g., Sun, et al. (1991) Eur. J. Biochem. 196:247-254; Hultmark (1994) Nature 367:116-117. 35

Recombinant DTLRs, muteins, agonist or antagonist antibodies thereto, or antibodies can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active ingredients, e.g., in conventional pharmaceutically acceptable carriers or diluents, along with physiologically innocuous stabilizers and excipients. These combinations can be sterile, e.g., filtered, and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies or binding fragments thereof which are not complement binding.

Ligand screening using DTLR or fragments thereof can be performed to identify molecules having binding affinity to the receptors. Subsequent biological assays can then be utilized to determine if a putative ligand can provide competitive binding, which can block intrinsic stimulating activity. Receptor fragments can be used as a blocker or antagonist in that it blocks the activity of ligand.

15

25

30

Likewise, a compound having intrinsic stimulating activity can activate the receptor and is thus an agonist in that it simulates the activity of ligand, e.g., inducing signaling. This invention further contemplates the therapeutic use of antibodies to DTLRs as antagonists.

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, physiological state of the patient, and other medicants administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage.

Various considerations are described, e.g., in Gilman, et al. (eds. 1990) Goodman and Gilman's: The Pharmacological

Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences, (current edition), Mack Publishing Co., Easton, Penn.; each of which is hereby incorporated herein by reference. Methods for administration are discussed therein and below, e.g., for 5 oral, intravenous, intraperitoneal, or intramuscular administration, transdermal diffusion, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the Merck Index, Merck & Co., Rahway, New Jersey. Because 10 of the likely high affinity binding, or turnover numbers, between a putative ligand and its receptors, low dosages of these reagents would be initially expected to be effective. And the signaling pathway suggests extremely low amounts of ligand may have effect. 15 Thus, dosage ranges would ordinarily be expected to be in amounts lower than 1 mM concentrations, typically less than about 10 μM concentrations, usually less than about 100 nM, preferably less than about 10 pM (picomolar), and most preferably less than about 1 fM (femtomolar), with an appropriate 20 carrier. Slow release formulations, or slow release apparatus will often be utilized for continuous administration.

DTLRs, fragments thereof, and antibodies or its fragments, antagonists, and agonists, may be administered 25 directly to the host to be treated or, depending on the size of the compounds, it may be desirable to conjugate them to carrier proteins such as ovalbumin or serum albumin prior to their administration. Therapeutic 30 formulations may be administered in any conventional dosage formulation. While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical formulation. Formulations comprise at least one active ingredient, as defined above, together with one or more acceptable carriers thereof. 35 Each carrier must be both pharmaceutically and

physiologically acceptable in the sense of being compatible with the other ingredients and not injurious to the patient. Formulations include those suitable for oral, rectal, nasal, or parenteral (including

- subcutaneous, intramuscular, intravenous and intradermal) administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. See, e.g., Gilman, et al. (eds. 1990) Goodman and Gilman's: The
- Pharmacological Bases of Therapeutics, 8th Ed., Pergamon Press; and Remington's Pharmaceutical Sciences (current edition), Mack Publishing Co., Easton, Penn.; Avis, et al. (eds. 1993) Pharmaceutical Dosage Forms: Parenteral Medications Dekker, NY; Lieberman, et al. (eds. 1990)
- Pharmaceutical Dosage Forms: Tablets Dekker, NY; and Lieberman, et al. (eds. 1990) Pharmaceutical Dosage Forms:

 Disperse Systems Dekker, NY. The therapy of this invention may be combined with or used in association with other therapeutic agents, particularly agonists or
- 20 antagonists of other IL-1 family members.

Song (1989) Nature 340:245-246.

IX. Ligands

35

The description of the Toll receptors herein provide means to identify ligands, as described above. Such ligand should bind specifically to the respective receptor with reasonably high affinity. Various constructs are made available which allow either labeling of the receptor to detect its ligand. For example, directly labeling DTLR, fusing onto it markers for secondary labeling, e.g., FLAG or other epitope tags, etc., will allow detection of receptor. This can be histological, as an affinity method for biochemical purification, or labeling or selection in an expression cloning approach. A two-hybrid selection system may also be applied making appropriate constructs

with the available DTLR sequences. See, e.g., Fields and

5

Generally, descriptions of DTLRs will be analogously applicable to individual specific embodiments directed to DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, and/or DTLR10 reagents and compositions.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the inventions to the specific embodiments.

EXAMPLES

I. General Methods

Some of the standard methods are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor Press; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual, (2d ed.), vols. 1-3, CSH Press, NY; Ausubel, et al., Biology, Greene Publishing Associates, Brooklyn, NY; or Ausubel, et 10 al. (1987 and Supplements) Current Protocols in Molecular Biology, Greene/Wiley, New York. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., 15 Ausubel, et al. (1987 and periodic supplements); Coligan, et al. (ed. 1996) and periodic supplements, Current Protocols In Protein Science Greene/Wiley, New York; Deutscher (1990) "Guide to Protein Purification" in Methods in Enzymology, vol. 182, and other volumes in this 20 series; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, CA. Combination with recombinant techniques allow fusion to appropriate segments, e.g., to 25 a FLAG sequence or an equivalent which can be fused via a protease-removable sequence. See, e.g., Hochuli (1989) Chemische Industrie 12:69-70; Hochuli (1990) "Purification of Recombinant Proteins with Metal Chelate Absorbent" in Setlow (ed.) Genetic Engineering, Principle and Methods 12:87-98, Plenum Press, N.Y.; and Crowe, et al. (1992) 30 QIAexpress: The High Level Expression and Protein Purification System QUIAGEN, Inc., Chatsworth, CA. Standard immunological techniques and assays are described, e.g., in Hertzenberg, et al. (eds. 1996) Weir's 35 Handbook of Experimental Immunology vols. 1-4, Blackwell Science; Coligan (1991) Current Protocols in Immunology

Wiley/Greene, NY; and Methods in Enzymology volumes. 70, 73, 74, 84, 92, 93, 108, 116, 121, 132, 150, 162, and 163.

Assays for vascular biological activities are well known in the art. They will cover angiogenic and angiostatic activities in tumor, or other tissues, e.g., arterial smooth muscle proliferation (see, e.g., Koyoma, et al. (1996) Cell 87:1069-1078), monocyte adhesion to vascular epithelium (see McEvoy, et al. (1997) J. Exp. Med. 185:2069-2077), etc. See also Ross (1993) Nature 362:801-809; Rekhter and Gordon (1995) Am. J. Pathol. 147:668-677; Thyberg, et al. (1990) Atherosclerosis 10:966-990; and Gumbiner (1996) Cell 84:345-357.

Assays for neural cell biological activities are described, e.g., in Wouterlood (ed. 1995) Neuroscience Protocols modules 10, Elsevier; Methods in Neurosciences Academic Press; and Neuromethods Humana Press, Totowa, NJ. Methodology of developmental systems is described, e.g., in Meisami (ed.) Handbook of Human Growth and Developmental Biology CRC Press; and Chrispeels (ed.) Molecular Techniques and Approaches in Developmental Biology Interscience.

Computer sequence analysis is performed, e.g., using available software programs, including those from the GCG (U. Wisconsin) and GenBank sources. Public sequence databases were also used, e.g., from GenBank, NCBI, EMBO, and others. Determination of transmembrane and other important motifs may be predicted using such bioinformatics tools.

Many techniques applicable to IL-10 receptors may be applied to DTLRs, as described, e.g., in USSN 08/110,683 (IL-10 receptor), which is incorporated herein by reference for all purposes.

II. Novel Family of Human Receptors

35 .

10

15

20

25

Abbreviations: DTLR, DNAX Toll-like receptor; IL-1R, interleukin-1 receptor; TH, Toll homology; LRR, leucine-rich repeat; EST, expressed sequence tag; STS, sequence tagged site; FISH, fluorescence in situ hybridization.

5

The discovery of sequence homology between the cytoplasmic domains of Drosophila Toll and human interleukin-1 (IL-1) receptors has sown the conviction that both molecules trigger related signaling pathways 10 tied to the nuclear translocation of Rel-type transcription factors. This conserved signaling scheme governs an evolutionarily ancient immune response in both insects and vertebrates. We report the molecular cloning of a novel class of putative human receptors with a 15 protein architecture that is closely similar to Drosophila Toll in both intra- and extra-cellular segments. human Toll-like receptors, designated DTLRs 1-5, are likely the direct homologs of the fly molecule, and as such could constitute an important and unrecognized 20 component of innate immunity in humans; intriguingly, the evolutionary retention of DTLRs in vertebrates may indicate another role, akin to Toll in the dorsoventralization of the Drosophila embryo, as regulators of early morphogenetic patterning. Multiple tissue mRNA 25 blots indicate markedly different patterns of expression for the human DTLRs. Using fluorescence in situ hybridization and Sequence-Tagged Site database analyses, we also show that the cognate DTLR genes reside on chromosomes 4 (DTLRs 1, 2, and 3), 9 (DTLR4), and 1 (DTLR5). Structure prediction of the aligned Toll-30 homology (TH) domains from varied insect and human DTLRs, vertebrate IL-1 receptors, and MyD88 factors, and plant disease resistance proteins, recognizes a parallel β/α fold with an acidic active site; a similar structure notably recurs in a class of response regulators broadly 35 involved in transducing sensory information in bacteria.

The seeds of the morphogenetic gulf that so dramatically separates flies from humans are planted in familiar embryonic shapes and patterns, but give rise to very different cell complexities. DeRobertis and Sasai 5 (1996) Nature 380:37-40; and Arendt and Nübler-Jung (1997) Mech. Develop. 61:7-21. This divergence of developmental plans between insects and vertebrates is choreographed by remarkably similar signaling pathways, underscoring a greater conservation of protein networks and biochemical . 10 mechanisms from unequal gene repertoires. Miklos and Rubin (1996) Cell 86:521-529; and Chothia (1994) Develop. 1994 Suppl., 27-33. A powerful way to chart the evolutionary design of these regulatory pathways is by 15 inferring their likely molecular components (and biological functions) through interspecies comparisons of protein sequences and structures. Miklos and Rubin (1996) Cell 86:521-529; Chothia (1994) Develop. 1994 Suppl., 27-33 (3-5); and Banfi, et al. (1996) Nature Genet. 13:167-174. 20

A universally critical step in embryonic development is the specification of body axes, either born from innate asymmetries or triggered by external cues. DeRobertis and Sasai (1996) Nature 380:37-40; and Arendt and Nübler-Jung (1997) Mech. Develop. 61:7-21. As a model system, 25 particular attention has been focused on the phylogenetic basis and cellular mechanisms of dorsoventral polarization. DeRobertis and Sasai (1996) Nature 380:37-40; and Arendt and Nübler-Jung (1997) Mech. Develop. 61:7-30 A prototype molecular strategy for this transformation has emerged from the Drosophila embryo, where the sequential action of a small number of genes results in a ventralizing gradient of the transcription factor Dorsal. St. Johnston and Nüsslein-Volhard (1992) Cell 68:201-219; and Morisato and Anderson (1995) Ann. 35 Rev. Genet. 29:371-399.

This signaling pathway centers on Toll, a transmembrane receptor that transduces the binding of a maternally-secreted ventral factor, Spätzle, into the cytoplasmic engagement of Tube, an accessory molecule, and 5 the activation of Pelle, a Ser/Thr kinase that catalyzes the dissociation of Dorsal from the inhibitor Cactus and allows migration of Dorsal to ventral nuclei (Morisato and Anderson (1995) Ann. Rev. Genet. 29:371-399; and Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-10 The Toll pathway also controls the induction of potent antimicrobial factors in the adult fly (Lemaitre, et al. (1996) Cell 86:973-983); this role in Drosophila immune defense strengthens mechanistic parallels to IL-1 pathways that govern a host of immune and inflammatory 15 responses in vertebrates. Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and Wasserman (1993) Molec. Biol. Cell 4:767-771. A Toll-related cytoplasmic domain in IL-1 receptors directs the binding of a Pellelike kinase, IRAK, and the activation of a latent NF-kB/I-20 KB complex that mirrors the embrace of Dorsal and Cactus. Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and Wasserman (1993) Molec. Biol. Cell 4:767-771.

We describe the cloning and molecular 25 characterization of four new Toll-like molecules in humans, designated DTLRs 2-5 (following Chiang and Beachy (1994) Mech. Develop. 47:225-239), that reveal a receptor family more closely tied to Drosophila Toll homologs than to vertebrate IL-1 receptors. The DTLR sequences are 30 derived from human ESTs; these partial cDNAs were used to draw complete expression profiles in human tissues for the five DTLRs, map the chromosomal locations of cognate genes, and narrow the choice of cDNA libraries for fulllength cDNA retrievals. Spurred by other efforts (Banfi, 35 et al. (1996) Nature Genet. 13:167-174; and Wang, et al. (1996) J. Biol. Chem. 271:4468-4476), we are assembling,

by structural conservation and molecular parsimony, a biological system in humans that is the counterpart of a compelling regulatory scheme in Drosophila. In addition, a biochemical mechanism driving Toll signaling is

- suggested by the proposed tertiary fold of the Toll-homology (TH) domain, a core module shared by DTLRs, a broad family of IL-1 receptors, mammalian MyD88 factors and plant disease resistance proteins. Mitcham, et al. (1996) J. Biol. Chem. 271:5777-5783; and Hardiman, et al.
- 10 (1996) Oncogene 13:2467-2475. We propose that a signaling route coupling morphogenesis and primitive immunity in insects, plants, and animals (Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and Wilson, et al. (1997) Curr. Biol. 7:175-178) may have roots in bacterial two-component pathways.

Computational Analysis.

Human sequences related to insect DTLRs were identified from the EST database (dbEST) at the National 20 Center for Biotechnology Information (NCBI) using the BLAST server (Altschul, et al. (1994) Nature Genet. 6:119-129). More sensitive pattern- and profile-based methods (Bork and Gibson (1996) Meth. Enzymol. 266:162-184) were used to isolate the signaling domains of the DTLR family that are shared with vertebrate and plant proteins present 25 in nonredundant databases. The progressive alignment of DTLR intra- or extracellular domain sequences was carried out by ClustalW (Thompson, et al. (1994) Nucleic Acids Res. 22:4673-4680); this program also calculated the branching order of aligned sequences by the Neighbor-30 Joining algorithm (5000 bootstrap replications provided confidence values for the tree groupings).

Conserved alignment patterns, discerned at several degrees of stringency, were drawn by the Consensus program (internet URL http://www.bork.embl-heidelberg.de/Alignment/consensus.html). The PRINTS

library of protein fingerprints (http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/ PRINTS.html) (Attwood, et al. (1997) Nucleic Acids Res. 25:212-217) reliably identified the myriad leucine-rich repeats (LRRs) present in the extracellular segments of DTLRs with a compound motif (PRINTS code Leurichrpt) that flexibly matches N- and C-terminal features of divergent Two prediction algorithms whose three-state accuracy is above 72% were used to derive a consensus secondary structure for the intracellular domain 10 alignment, as a bridge to fold recognition efforts (Fischer, et al. (1996) FASEB J. 10:126-136). Both the neural network program PHD (Rost and Sander (1994) Proteins 19:55-72) and the statistical prediction method DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310) 15 have internet servers (URLs http://www.emblheidelberg.de/predictprotein/phd pred.html and http://bonsai.lif.icnet.uk/bmm/dsc/dsc read align.html, respectively). The intracellular region encodes the THD region discussed, e.g., in Hardiman, et al. (1996) . 20 Oncogene 13:2467-2475; and Rock, et al. (1998) Proc. Nat'l Acad. Sci. USA 95:588-593, each of which is incorporated herein by reference. This domain is very important in the mechanism of signaling by the receptors, which transfers a phosphate group to a substrate. 25

Cloning of full-length human DTLR cDNAs.

PCR primers derived from the Toll-like Humrsc786 sequence (GenBank accession code D13637) (Nomura, et al. (1994) DNA Res. 1:27-35) were used to probe a human erythroleukemic, TF-1 cell line-derived cDNA library (Kitamura, et al. (1989) Blood 73:375-380) to yield the DTLR1 cDNA sequence. The remaining DTLR sequences were flagged from dbEST, and the relevant EST clones obtained from the I.M.A.G.E. consortium (Lennon, et al. (1996) Genomics 33:151-152) via Research Genetics (Huntsville,

AL): CloneID#'s 80633 and 117262 (DTLR2), 144675 (DTLR3), 202057 (DTLR4) and 277229 (DTLR5). Full length cDNAs for human DTLRs 2-4 were cloned by DNA hybridization screening of λ gt10 phage, human adult lung, placenta, and fetal 5 liver 5'-Stretch Plus cDNA libraries (Clontech), respectively; the DTLR5 sequence is derived from a human multiple-sclerosis plaque EST. All positive clones were sequenced and aligned to identify individual DTLR ORFs: DTLR1 (2366 bp clone, 786 aa ORF), DTLR2 (2600 bp, 784 10 aa), DTLR3 (3029 bp, 904 aa), DTLR4 (3811 bp, 879 aa) and DTLR5 (1275 bp, 370 aa). Similar methods are used for Probes for DTLR3 and DTLR4 hybridizations DTLRs 6-10. were generated by PCR using human placenta (Stratagene) and adult liver (Clontech) cDNA libraries as templates, respectively; primer pairs were derived from the 15 respective EST sequences. PCR reactions were conducted using T. aquaticus Taqplus DNA polymerase (Stratagene) under the following conditions: $1 \times (94^{\circ} \text{ C}, 2 \text{ min}) 30 \times$ (55° C, 20 sec; 72° C 30 sec; 94° C 20 sec), 1 x (72° C, 8 20 min). For DTLR2 full-length cDNA screening, a 900 bp fragment generated by EcoRI/XbaI digestion of the first EST clone (ID# 80633) was used as a probe.

mRNA blots and chromosomal localization.

Human multiple tissue (Cat# 1, 2) and cancer cell line blots (Cat# 7757-1), containing approximately 2 μg of poly(A) + RNA per lane, were purchased from Clontech (Palo Alto, CA). For DTLRs 1-4, the isolated full-length cDNAs served as probes, for DTLR5 the EST clone (ID #277229) plasmid insert was used. Briefly, the probes were radiolabeled with [α-32P] dATP using the Amersham Rediprime random primer labeling kit (RPN1633). Prehybridization and hybridizations were performed at 65° C in 0.5 M Na₂HPO₄, 7% SDS, 0.5 M EDTA (pH 8.0). All stringency washes were conducted at 65° C with two initial washes in 2 x SSC, 0.1% SDS for 40 min followed by a

5

· 10

15

subsequent wash in 0.1 x SSC, 0.1% SDS for 20 min. Membranes were then exposed at -70° C to X-Ray film (Kodak) in the presence of intensifying screens. More detailed studies by cDNA library Southerns (14) were performed with selected human DTLR clones to examine their expression in hemopoietic cell subsets.

Human chromosomal mapping was conducted by the method of fluorescence in situ hybridization (FISH) as described in Heng and Tsui (1994) Meth. Molec. Biol. 33:109-122, using the various full-length (DTLRs 2-4) or partial (DTLR5) cDNA clones as probes. These analyses were performed as a service by SeeDNA Biotech Inc. (Ontario, Canada). A search for human syndromes (or mouse defects in syntenic loci) associated with the mapped DTLR genes was conducted in the Dysmorphic Human-Mouse Homology Database by internet server (http://www.hgmp.mrc.ac.uk/DHMHD/ hum_chrome1.html). Similar methods nare applicable to DTLRs 6-10.

20 Conserved architecture of insect and human DTLR ectodomains.

The Toll family in Drosophila comprises at least four distinct gene products: Toll, the prototype receptor involved in dorsoventral patterning of the fly embryo 25 (Morisato and Anderson (1995) Ann. Rev. Genet. 29:371-399) and a second named '18 Wheeler' (18w) that may also be involved in early embryonic development (Chiang and Beachy (1994) Mech. Develop. 47:225-239; Eldon, et al. (1994) Develop. 120:885-899); two additional receptors are predicted by incomplete, Toll-like ORFs downstream of the 30 male-specific-transcript (Mst) locus (GenBank code X67703) or encoded by the 'sequence-tagged-site' (STS) Dm2245 (GenBank code G01378) (Mitcham, et al. (1996) J. Biol. Chem. 271:5777-5783). The extracellular segments of Toll 35 and 18w are distinctively composed of imperfect, ~24 amino acid LRR motifs (Chiang and Beachy (1994) Mech. Develop.

47:225-239; and Eldon, et al. (1994) Develop. 120:885-899). Similar tandem arrays of LRRs commonly form the adhesive antennae of varied cell surface molecules and their generic tertiary structure is presumed to mimic the 5 horseshoe-shaped cradle of a ribonuclease inhibitor fold, where seventeen LRRs show a repeating β/α -hairpin, 28 residue motif (Buchanan and Gay (1996) Prog. Biophys. Molec. Biol. 65:1-44). The specific recognition of Spätzle by Toll may follow a model proposed for the 10 binding of cystine-knot fold glycoprotein hormones by the multi-LRR ectodomains of serpentine receptors, using the concave side of the curved β -sheet (Kajava, et al. (1995) Structure 3:867-877); intriguingly, the pattern of cysteines in Spätzle, and an orphan Drosophila ligand, Trunk, predict a similar cystine-knot tertiary structure 15 (Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and Casanova, et al. (1995) Genes Develop. 9:2539-2544).

The 22 and 31 LRR ectodomains of Toll and 18w, respectively (the Mst ORF fragment displays 16 LRRs), are 20 most closely related to the comparable 18, 19, 24, and 22 LRR arrays of DTLRs 1-4 (the incomplete DTLR5 chain presently includes four membrane-proximal LRRs) by sequence and pattern analysis (Altschul, et al. (1994) 25 Nature Genet. 6:119-129; and Bork and Gibson (1996) Meth. Enzymol. 266:162-184) (Fig. 1). However, a striking difference in the human DTLR chains is the common loss of a ~90 residue cysteine-rich region that is variably embedded in the ectodomains of Toll, 18w and the Mst ORF (distanced four, six and two LRRs, respectively, from the 30 membrane boundary). These cysteine clusters are bipartite, with distinct 'top' (ending an LRR) and 'bottom' (stacked atop an LRR) halves (Chiang and Beachy (1994) Mech. Develop. 47:225-239; Eldon, et al. (1994) 35 Develop. 120:885-899; and Buchanan and Gay (1996) Prog. Biophys. Molec. Biol. 65:1-44); the 'top' module recurs in

both Drosophila and human DTLRs as a conserved juxtamembrane spacer (Fig. 1). We suggest that the flexibly located cysteine clusters in Drosophila receptors (and other LRR proteins), when mated 'top' to 'bottom', form a compact module with paired termini that can be inserted between any pair of LRRs without altering the overall fold of DTLR ectodomains; analogous 'extruded' domains decorate the structures of other proteins (Russell (1994) Protein Engin. 7:1407-1410).

10

5

Molecular design of the TH signaling domain.

Sequence comparison of Toll and IL-1 type-I (IL-1R1) receptors has disclosed a distant resemblance of a ~200 amino acid cytoplasmic domain that presumably mediates signaling by similar Rel-type transcription factors. 15 Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and (Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; and Wasserman (1993) Molec. Biol. Cell 4:767-771). More recent additions to this functional paradigm include a pair of plant disease 20 resistance proteins from tobacco and flax that feature an N-terminal TH module followed by nucleotide-binding (NTPase) and LRR segments (Wilson, et al. (1997) Curr. Biol. 7:175-178); by contrast, a 'death domain' precedes 25 the TH chain of MyD88, an intracellular myeloid differentiation marker (Mitcham, et al. (1996) J. Biol. Chem. 271:5777-5783; and Hardiman, et al. (1996) Oncogene 13:2467-2475) (Fig. 1). New IL-1-type receptors include IL-1R3, an accessory signaling molecule, and orphan 30 receptors IL-1R4 (also called ST2/Fit-1/T1), IL-1R5 (IL-1R-related protein), and IL-1R6 (IL-1R-related protein-2) (Mitcham, et al. (1996) J. Biol. Chem. 271:5777-5783; Hardiman, et al. (1996) Oncogene 13:2467-2475). the new human DTLR sequences, we have sought a structural 35 definition of this evolutionary thread by analyzing the conformation of the common TH module: ten blocks of

conserved sequence comprising 128 amino acids form the minimal TH domain fold; gaps in the alignment mark the likely location of sequence and length-variable loops (Fig. 2A-2B).

Two prediction algorithms that take advantage of the 5 patterns of conservation and variation in multiply aligned sequences, PHD (Rost and Sander (1994) Proteins 19:55-72) and DSC (King and Sternberg (1996) Protein Sci. 5:2298-2310), produced strong, concordant results for the TH signaling module (Fig. 2A-2B). Each block contains a 10 discrete secondary structural element: the imprint of alternating β -strands (labeled A-E) and α -helices (numbered 1-5) is diagnostic of a β/α -class fold with α helices on both faces of a parallel β -sheet. Hydrophobic 15 β -strands A, C and D are predicted to form 'interior' staves in the $\beta\text{--sheet,}$ while the shorter, amphipathic $\beta\text{--}$ strands B and E resemble typical 'edge' units (Fig. 2A-2B). This assignment is consistent with a strand order of B-A-C-D-E in the core β -sheet (Fig. 2C); fold comparison ('mapping') and recognition ('threading') programs 20 (Fischer, et al. (1996) FASEB J. 10:126-136) strongly return this doubly wound β/α topology. A surprising, functional prediction of this outline structure for the TH domain is that many of the conserved, charged residues in the multiple alignment map to the C-terminal end of the $\beta-$ 25 sheet: residue Aspl6 (block numbering scheme - Fig. 2A-2B) at the end of βA , Arg39 and Asp40 following βB , Glu75 in the first turn of $\alpha 3$, and the more loosely conserved Glu/Asp residues in the $\beta \text{D-}\alpha 4$ loop, or after βE (Fig. 2A-30 2B). The location of four other conserved residues (Asp7, Glu28, and the Arg57-Arg/Lys58 pair) is compatible with a salt bridge network at the opposite, N-terminal end of the β -sheet (Fig. 2A-2B). Alignment of the other DTLR embodiments exhibit similar features, and peptide segments comprising these feataures, e.g., 20 amino acid segments 35 containing them, are particularly important.

Signaling function depends on the structural integrity of the TH domain. Inactivating mutations or deletions within the module boundaries (Fig. 2A-2B) have been catalogued for IL-1R1 and Toll. Heguy, et al. (1992) J. Biol. Chem. 267:2605-2609; Croston, et al. (1995) J. 5 Biol. Chem. 270:16514-16517; Schneider, et al. (1991) Genes Develop. 5:797-807; Norris and Manley. (1992) Genes Develop. 6:1654-1667; Norris and Manley (1995) Genes Develop. 9:358-369; and Norris and Manley (1996) Genes Develop. 10:862-872. The human DTLR1-5 chains extending 10 past the minimal TH domain (8, 0, 6, 22 and 18 residue lengths, respectively) are most closely similar to the stubby, 4 aa 'tail' of the Mst ORF. Toll and 18w display ' unrelated 102 and 207 residue tails (Fig. 2A-2B) that may negatively regulate the signaling of the fused TH domains. 15 Norris and Manley (1995) Genes Develop. 9:358-369; and Norris and Manley (1996) Genes_Develop. 10:862-872.

The evolutionary relationship between the disparate proteins that carry the TH domain can best be discerned by a phylogenetic tree derived from the multiple alignment (Fig. 3). Four principal branches segregate the plant proteins, the MyD88 factors, IL-1 receptors, and Toll-like molecules; the latter branch clusters the Drosophila and human DTLRs.

25

20

Chromosomal dispersal of human DTLR genes.

In order to investigate the genetic linkage of the nascent human DTLR gene family, we mapped the chromosomal loci of four of the five genes by FISH (Fig. 4). The

30 DTLR1 gene has previously been charted by the human genome project: an STS database locus (dbSTS accession number G06709, corresponding to STS WI-7804 or SHGC-12827) exists for the Humrsc786 cDNA (Nomura, et al. (1994) DNA Res.

1:27-35) and fixes the gene to chromosome 4 marker interval D4S1587-D42405 (50-56 cM) circa 4p14. This assignment has recently been corroborated by FISH

analysis. Taguchi, et al. (1996) <u>Genomics</u> 32:486-488. In the present work, we reliably assign the remaining DTLR genes to loci on chromosome 4q32 (DTLR2), 4q35 (DTLR3), 9q32-33 (DTLR4) and 1q33.3 (DTLR5). During the course of this work, an STS for the parent DTLR2 EST (cloneID #80633) has been generated (dbSTS accession number T57791 for STS SHGC-33147) and maps to the chromosome 4 marker interval D4S424-D4S1548 (143-153 cM) at 4q32 -in accord with our findings. There is a ~50 cM gap between DTLR2 and DTLR3 genes on the long arm of chromosome 4.

DTLR genes are differentially expressed.

10

Both Toll and 18w have complex spatial and temporal patterns of expression in Drosophila that may point to 15 functions beyond embryonic patterning. St. Johnston and Nüsslein-Volhard (1992) Cell 68:201-219; Morisato and Anderson (1995) Ann. Rev. Genet. 29:371-399; Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; Lemaitre, et al. (1996) Cell 86:973-983; Chiang and Beachy 20 (1994) Mech. Develop. 47:225-239; and Eldon, et al. (1994) Develop. 120:885-899. We have examined the spatial distribution of DTLR transcripts by mRNA blot analysis with varied human tissue and cancer cell lines using radiolabeled DTLR cDNAs (Fig. 5). DTLR1 is found to be ubiquitously expressed, and at higher levels than the 25 other receptors. Presumably reflecting alternative splicing, 'short' 3.0 kB and 'long' 8.0 kB DTLR1 transcript forms are present in ovary and spleen, respectively (Fig. 5, panels A and B). A cancer cell mRNA panel also shows the prominent overexpression of DTLR1 in 30 a Burkitt's Lymphoma Raji cell line (Fig. 5, panel C). DTLR2 mRNA is less widely expressed than DTLR1, with a 4.0 kB species detected in lung and a 4.4 kB transcript evident in heart, brain and muscle. The tissue distribution pattern of DTLR3 echoes that of DTLR2 (Fig. 35 5, panel E). DTLR3 is also present as two major

transcripts of approximately 4.0 and 6.0 kB in size, and the highest levels of expression are observed in placenta and pancreas. By contrast, DTLR4 and DTLR5 messages appear to be extremely tissue-specific. DTLR4 was detected only in placenta as a single transcript of ~7.0 kB in size. A faint 4.0 kB signal was observed for DTLR5 in ovary and peripheral blood monocytes.

Components of an evolutionarily ancient regulatory system. 10 The original molecular blueprints and divergent fates of signaling pathways can be reconstructed by comparative genomic approaches. Miklos and Rubin (1996) Cell 86:521-529; Chothia (1994) <u>Develop.</u> 1994 Suppl., 27-33; Banfi, et al. (1996) Nature Genet. 13:167-174; and Wang, et al. (1996) J. Biol. Chem. 271:4468-4476. We have used this 15 logic to identify an emergent gene family in humans, encoding five receptor paralogs at present, DTLRs 1-5, that are the direct evolutionary counterparts of a Drosophila gene family headed by Toll (Figs. 1-3). conserved architecture of human and fly DTLRs, conserved 20 LRR ectodomains and intracellular TH modules (Fig. 1), intimates that the robust pathway coupled to Toll in Drosophila (6, 7) survives in vertebrates. evidence borrows from a reiterated pathway: the manifold IL-1 system and its repertoire of receptor-fused TH domains, IRAK, NF- κ B and I- κ B homologs (Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416; Wasserman (1993) Molec. Biol. Cell 4:767-771; Hardiman, et al. (1996) Oncogene 13:2467-2475; and Cao, et al. (1996) Science 271:1128-1131); a Tube-like factor has also been 30 characterized. It is not known whether DTLRs can productively couple to the IL-IR signaling machinery, or instead, a parallel set of proteins is used. Differently from IL-1 receptors, the LRR cradle of human DTLRs is predicted to retain an affinity for Spätzle/Trunk-related 35

cystine-knot factors; candidate DTLR ligands (called PENs) that fit this mold have been isolated.

Biochemical mechanisms of signal transduction can be gauged by the conservation of interacting protein folds in 5 a pathway. Miklos and Rubin (1996) Cell 86:521-529; Chothia (1994) Develop. 1994 Suppl., 27-33. At present, the Toll signaling paradigm involves some molecules whose roles are narrowly defined by their structures, actions or fates: Pelle is a Ser/Thr kinase (phosphorylation), Dorsal is an NF-kB-like transcription factor (DNA-binding) and Cactus is an ankyrin-repeat inhibitor (Dorsal binding, degradation). Belvin and Anderson (1996) Ann. Rev. Cell Develop. Biol. 12:393-416. By contrast, the functions of the Toll TH domain and Tube remain enigmatic. Like other 15 cytokine receptors (Heldin (1995) Cell 80:213-223), ligand-mediated dimerization of Toll appears to be the triggering event: free cysteines in the juxtamembrane region of Toll create constitutively active receptor pairs (Schneider, et al. (1991) Genes Develop. 5:797-807), and chimeric Torso-Toll receptors signal as dimers (Galindo, 20 et al. (1995) Develop. 121:2209-2218); yet, severe truncations or wholesale loss of the Toll ectodomain results in promiscuous intracellular signaling (Norris and Manley (1995) Genes Develop. 9:358-369; and Winans and 25 Hashimoto (1995) Molec. Biol. Cell 6:587-596), reminiscent of oncogenic receptors with catalytic domains (Heldin (1995) Cell 80:213-223). Tube is membrane-localized, engages the N-terminal (death) domain of Pelle and is phosphorylated, but neither Toll-Tube or Toll-Pelle interactions are registered by two-hybrid analysis 30 (Galindo, et al. (1995) Develop. 121:2209-2218; and Gro β hans, et al. (1994) Nature 372:563-566); this latter result suggests that the conformational 'state' of the Toll TH domain somehow affects factor recruitment. 35 and Manley (1996) Genes Develop. 10:862-872; and Galindo, et al. (1995) Develop. 121:2209-2218.

At the heart of these vexing issues is the structural nature of the Toll TH module. To address this question. we have taken advantage of the evolutionary diversity of TH sequences from insects, plants and vertebrates, 5 incorporating the human DTLR chains, and extracted the minimal, conserved protein core for structure prediction and fold recognition (Fig. 2). The strongly predicted $(\beta/\alpha)_5$ TH domain fold with its asymmetric cluster of acidic residues is topologically identical to the structures of 10 response regulators in bacterial two-component signaling pathways (Volz (1993) Biochemistry 32:11741-11753; and Parkinson (1993) Cell 73:857-871) (Fig. 2A-2C). prototype chemotaxis regulator CheY transiently binds a divalent cation in an 'aspartate pocket' at the C-end of 15 the core β -sheet; this cation provides electrostatic stability and facilitates the activating phosphorylation of an invariant Asp. Volz (1993) Biochemistry 32:11741-Likewise, the TH domain may capture cations in its acidic nest, but activation, and downstream signaling, could depend on the specific binding of a negatively 20 charged moiety: anionic ligands can overcome intensely negative binding-site potentials by locking into precise hydrogen-bond networks. Ledvina, et al. (1996) Proc. Natl. Acad. Sci. USA 93:6786-6791. Intriguingly, the TH 25 domain may not simply act as a passive scaffold for the assembly of a Tube/Pelle complex for Toll, or homologous systems in plants and vertebrates, but instead actively participate as a true conformational trigger in the signal transducing machinery. Perhaps explaining the conditional 30 binding of a Tube/Pelle complex, Toll dimerization could promote unmasking, by regulatory receptor tails (Norris and Manley (1995) Genes Develop. 9:358-369; Norris and Manley (1996) Genes Develop. 10:862-872), or binding by small molecule activators of the TH pocket. However, 'free' TH modules inside the cell (Norris and Manley 35 (1995) Genes Develop. 9:358-369; Winans and Hashimoto

(1995) Molec. Biol. Cell 6:587-596) could act as catalytic, CheY-like triggers by activating and docking with errant Tube/Pelle complexes.

5 Morphogenetic receptors and immune defense.

The evolutionary link between insect and vertebrate immune systems is stamped in DNA: genes encoding antimicrobial factors in insects display upstream motifs similar to acute phase response elements known to bind NF-

- 10 KB transcription factors in mammals. Hultmark (1993)

 Trends Genet. 9:178-183. Dorsal, and two Dorsal-related factors, Dif and Relish, help induce these defense proteins after bacterial challenge (Reichhart, et al. (1993) C. R. Acad. Sci. Paris 316:1218-1224; Ip, et al.
- 15 (1993) Cell 75:753-763; and Dushay, et al. (1996) Proc.

 Natl. Acad. Sci. USA 93:10343-10347); Toll, or other

 DTLRs, likely modulate these rapid immune responses in adult Drosophila (Lemaitre, et al. (1996) Cell 86:973-983; and Rosetto, et al. (1995) Biochem. Biophys. Res. Commun.
- 20 209:111-116). These mechanistic parallels to the IL-1 inflammatory response in vertebrates are evidence of the functional versatility of the Toll signaling pathway, and suggest an ancient synergy between embryonic patterning and innate immunity (Belvin and Anderson (1996) Ann. Rev.
- Cell Develop. Biol. 12:393-416; Lemaitre, et al. (1996)
 Cell 86:973-983; Wasserman (1993) Molec. Biol. Cell 4:767-771; Wilson, et al. (1997) Curr. Biol. 7:175-178; Hultmark (1993) Trends Genet. 9:178-183; Reichhart, et al. (1993)
 C. R. Acad. Sci. Paris 316:1218-1224; Ip, et al. (1993)
- 30 Cell 75:753-763; Dushay, et al. (1996) Proc. Natl. Acad. Sci. USA 93:10343-10347; Rosetto, et al. (1995) Biochem. Biophys. Res. Commun. 209:111-116; Medzhitov and Janeway (1997) Curr. Opin. Immunol. 9:4-9; and Medzhitov and Janeway (1997) Curr. Opin. Immunol. 9:4-9). The closer
- 35 homology of insect and human DTLR proteins invites an even stronger overlap of biological functions that supersedes

5

25

30

the purely immune parallels to IL-1 systems, and lends potential molecular regulators to dorso-ventral and other transformations of vertebrate embryos. DeRobertis and Sasai (1996) Nature 380:37-40; and Arendt and Nübler-Jung (1997) Mech. Develop. 61:7-21.

The present description of an emergent, robust receptor family in humans mirrors the recent discovery of the vertebrate Frizzled receptors for Wnt patterning factors. Wang, et al. (1996) J. Biol. Chem. 271:4468-4476. As numerous other cytokine-receptor systems have 10 roles in early development (Lemaire and Kodjabachian (1996) Trends Genet. 12:525-531), perhaps the distinct cellular contexts of compact embryos and gangly adults simply result in familiar signaling pathways and their diffusible triggers having different biological outcomes 15 at different times, e.g., morphogenesis versus immune defense for DTLRs. For insect, plant, and human Tollrelated systems (Hardiman, et al. (1996) Oncogene 13:2467-2475; Wilson, et al. (1997) Curr. Biol. 7:175-178), these 20 signals course through a regulatory TH domain that intriguingly resembles a bacterial transducing engine (Parkinson (1993) Cell 73:857-871).

In particular, the DTLR6 exhibits structural features which establish its membership in the family. Moreover, members of the family have been implicated in a number of significant developmental disease conditions and with function of the innate immune system. In particular, the DTLR6 has been mapped to the X chromosome to a location which is a hot spot for major developmental abnormalities. See, e.g., The Sanger Center: human X chromosome website http://www.sanger.ac.uk/HGP/ChrX/index.shtml; and the Baylor College of Medicine Human Genome Sequencing website http://gc.bcm.tmc.edu:8088/cgi-bin/seq/home.

The accession number for the deposited PAC is

AC003046. This accession number contains sequence from
two PACs: RPC-164K3 and RPC-263P4. These two PAC

sequences mapped on human chromosome Xp22 at the Baylor web site between STS markers DXS704 and DXS7166. region is a "hot spot" for severe developmental abnormalities.

5

10

15

20

III. Amplification of DTLR fragment by PCR

Two appropriate primer sequences are selected (see Tables 1 through 10). RT-PCR is used on an appropriate mRNA sample selected for the presence of message to produce a partial or full length cDNA, e.g., a sample which expresses the gene. See, e.g., Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, San Diego, CA; and Dieffenbach and Dveksler (eds. 1995) PCR Primer: A Laboratory Manual Cold Spring Harbor Press, CSH, NY. Such will allow determination of a useful sequence to probe for a full length gene in a cDNA library. The DTLR6 is a contiguous sequence in the genome, which may suggest that the other DTLRs are also. Thus, PCR on genomic DNA may yield full length contiguous sequence, and chromosome walking methodology would then be applicable. Alternatively, sequence databases will contain sequence corresponding to portions of the described embodiments, or closely reTated forms, e.g., alternative splicing, etc. Expression

25 cloning techniques also may be applied on cDNA libraries.

IV. Tissue distribution of DTLRs

Message for each gene encoding these DTLRs has been detected. See Figures 5A-5F. Other cells and tissues 30 will be assayed by appropriate technology, e.g., PCR, immunoassay, hybridization, or otherwise. Tissue and organ cDNA preparations are available, e.g., from Clontech, Mountain View, CA. Identification of sources of natural expression are useful, as described.

35 Southern Analysis: DNA (5 µg) from a primary amplifie cDNA library is digested with appropriate restriction

enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, NH).

Samples for human mRNA isolation would typically include, e.g.: peripheral blood mononuclear cells 5 (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, THO clone Mot 72, resting (T102); T cell, THO clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 10 h pooled (T103); T cell, THO clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated 15 with specific peptide for 2, 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cells CD4+CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN- γ , TH2 polarized, 20 activated with anti-CD3 and anti-CD28 4 h (T116); T cell tumor lines Jurkat and Hut78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13, Tc783.58, Tc782.69, resting (T118); T cell random $\gamma\delta$ T cell clones, resting (T119); Splenocytes, resting (B100); Splenocytes, 25 activated with anti-CD40 and IL-4 (B101); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and 30 ionomycin for 6 h (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); NK cytotoxic clone 640-A30-1, resting (K107); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic 35 line, resting (M100); U937 premonocytic line, activated

with PMA and ionomycin for 1, 6 h pooled (M101); elutriated monocytes, activated with LPS, IFNy, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFNy, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, 5 IFNy, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNy, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated monocytes, activated LPS for 6 h 10 (M109); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CDla+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from 15 CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNF α 12 days FACS sorted, activated with PMA 20 and ionomycin for 1, 6 h pooled (D106); DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, 25 monocyte supe for 4, 16 h pooled (D110); leiomyoma L11 benign tumor (X101); normal myometrium M5 (O115); malignant leiomyosarcoma GS1 (X103); lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled 30 (C102); kidney fetal 28 wk male (O100); lung fetal 28 wk male (O101); liver fetal 28 wk male (O102); heart fetal 28 wk male (0103); brain fetal 28 wk male (0104); gallbladder fetal 28 wk male (0106); small intestine fetal 28 wk male (0107); adipose tissue fetal 28 wk male (0108); ovary 35 fetal 25 wk female (O109); uterus fetal 25 wk female

(O110); testes fetal 28 wk male (O111); spleen fetal 28 wk male (O112); adult placenta 28 wk (O113); and tonsil inflamed, from 12 year old (X100).

Samples for mouse mRNA isolation can include, e.g.: resting mouse fibroblastic L cell line (C200); Braf:ER 5 (Braf fusion to estrogen receptor) transfected cells, control (C201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN- γ and anti IL-4; T200); T cells, TH2 polarized (Mell4 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and 10 anti-IFN-γ; T201); T cells, highly TH1 polarized (see Openshaw, et al. (1995) <u>J. Exp. Med.</u> 182:1357-1367; activated with anti-CD3 for 2, 6, 16 h pooled; T202); T cells, highly TH2 polarized (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 15 6, 16 h pooled; T203); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 $\mu g/ml$ ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last 20 stimulation with antigen (T207); TH2 T cell clone CDC35, 10 μ g/ml ConA stimulated 15 h (T208); Mel14+ naive T cells from spleen, resting (T209); Mel14+ T cells, polarized to Th1 with IFN- γ /IL-12/anti-IL-4 for 6, 12, 24 h pooled (T210); Mel14+ T cells, polarized to Th2 with IL-4/anti-25 IFN-y for 6, 13, 24 h pooled (T211); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated B cell line CH12 (B201); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting 30 (D200); dendritic cells from bone marrow, resting (D201); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); macrophage cell line J774, resting (M202);

macrophage cell line J774 + LPS + anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774 + LPS +

35

IL-10 at 0.5, 1, 3, 5, 12 h pooled(M204); aerosol challenged mouse lung tissue, Th2 primers, aerosol OVA challenge 7, 14, 23 h pooled (see Garlisi, et al. (1995) Clinical Immunology and Immunopathology 75:75-83; X206); 5 Nippostrongulus-infected lung tissue (see Coffman, et al. (1989) Science 245:308-310; X200); total adult lung, normal (O200); total lung, rag-1 (see Schwarz, et al. (1993) Immunodeficiency 4:249-252; O205); IL-10 K.O. spleen (see Kuhn, et al. (1991) Cell 75:263-274; X201); total adult spleen, normal (0201); total spleen, rag-1 10 (O207); IL-10 K.O. Peyer's patches (O202); total Peyer's patches, normal (0210); IL-10 K.O. mesenteric lymph nodes (X203); total mesenteric lymph nodes, normal (O211); IL-10 K.O. colon (X203); total colon, normal (O212); NOD mouse pancreas (see Makino, et al. (1980) Jikken Dobutsu 15 29:1-13; X205); total thymus, rag-1 (0208); total kidney, rag-1 (O209); total heart, rag-1 (O202); total brain, rag-1 (0203); total testes, rag-1 (0204); total liver, rag-1 (0206); rat normal joint tissue (0300); and rat arthritic 20 joint tissue (X300).

The DTLR10 has been found to be highly expressed in precursor dendritic cell type 2 (pDC2). See, e.g., Rissoan, et al. (1999) Science 283:1183-1186; and Siegal, et al. (1999) Science 284:1835-1837. However, it is not expressed on monocytes. The restricted expression of DTLR10 reinforces the suggestions of a role for the receptor in host immune defense. The pDC2 cells are natural interferon producing cells (NIPC), which produce large amounts of IFNα in response to Herpes simplex virus infection.

V. Cloning of species counterparts of DTLRs

Various strategies are used to obtain species
counterparts of these DTLRs, preferably from other

primates. One method is by cross hybridization using
closely related species DNA probes. It may be useful to
go into evolutionarily similar species as intermediate

steps. Another method is by using specific PCR primers based on the identification of blocks of similarity or difference between particular species, e.g., human, genes, e.g., areas of highly conserved or nonconserved polypeptide or nucleotide sequence: Alternatively, antibodies may be used for expression cloning.

VI. Production of mammalian DTLR protein

An appropriate, e.g., GST, fusion construct is

- engineered for expression, e.g., in E. coli. For example, a mouse IGIF pGex plasmid is constructed and transformed into E. coli. Freshly transformed cells are grown in LB medium containing 50 μ g/ml ampicillin and induced with IPTG (Sigma, St. Louis, MO). After overnight induction,
- the bacteria are harvested and the pellets containing the DTLR protein are isolated. The pellets are homogenized in TE buffer (50 mM Tris-base pH 8.0, 10 mM EDTA and 2 mM pefabloc) in 2 liters. This material is passed through a microfluidizer (Microfluidics, Newton, MA) three times.
- The fluidized supernatant is spun down on a Sorvall GS-3 rotor for 1 h at 13,000 rpm. The resulting supernatant containing the DTLR protein is filtered and passed over a glutathione-SEPHAROSE column equilibrated in 50 mM Tris-base pH 8.0. The fractions containing the DTLR-GST fusion
- protein are pooled and cleaved with thrombin (Enzyme Research Laboratories, Inc., South Bend, IN). The cleaved pool is then passed over a Q-SEPHAROSE column equilibrated in 50 mM Tris-base. Fractions containing DTLR are pooled and diluted in cold distilled H2O, to lower the
- 30 conductivity, and passed back over a fresh Q-Sepharose column, alone or in succession with an immunoaffinity antibody column. Fractions containing the DTLR protein are pooled, aliquoted, and stored in the -70° C freezer.

Comparison of the CD spectrum with DTLR1 protein may suggest that the protein is correctly folded. See Hazuda, et al. (1969) J. Biol. Chem. 264:1689-1693.

VII. Biological Assays with DTLRs

Biological assays will generally be directed to the ligand binding feature of the protein or to the kinase/phosphatase activity of the receptor. The activity will typically be reversible, as are many other enzyme actions, and will mediate phosphatase or phosphorylase activities, which activities are easily measured by standard procedures. See, e.g., Hardie, et al. (eds.

1995) The Protein Kinase FactBook vols. I and II, Academic 10 Press, San Diego, CA; Hanks, et al. (1991) Meth. Enzymol. 200:38-62; Hunter, et al. (1992) Cell 70:375-388; Lewin (1990) Cell 61:743-752; Pines, et al. (1991) Cold Spring Harbor Symp. Quant. Biol. 56:449-463; and Parker, et al.

(1993) Nature 363:736-738. 15

5

The family of interleukin 1s contains molecules, each of which is an important mediator of inflammatory disease. For a comprehensive review, see Dinarello (1996) "Biologic basis for interleukin-1 in disease" Blood 87:2095-2147.

- 20 There are suggestions that the various Toll ligands may play important roles in the initiation of disease, particularly inflammatory responses. The finding of novel proteins related to the IL-1 family furthers the identification of molecules that provide the molecular
- basis for initiation of disease and allow for the 25 development of therapeutic strategies of increased range and efficacy.
- VIII. Preparation of antibodies specific for, e.g., DTLR4 30 Inbred Balb/c mice are immunized intraperitoneally with recombinant forms of the protein, e.g., purified DTLR4 or stable transfected NIH-3T3 cells. Animals are boosted at appropriate time points with protein, with or without additional adjuvant, to further stimulate antibody 35 production. Serum is collected, or hybridomas produced with harvested spleens.

Alternatively, Balb/c mice are immunized with cells transformed with the gene or fragments thereof, either endogenous or exogenous cells, or with isolated membranes enriched for expression of the antigen. Serum is collected at the appropriate time, typically after numerous further administrations. Various gene therapy techniques may be useful, e.g., in producing protein in situ, for generating an immune response.

Monoclonal antibodies may be made. For example,

splenocytes are fused with an appropriate fusion partner
and hybridomas are selected in growth medium by standard
procedures. Hybridoma supernatants are screened for the
presence of antibodies which bind to the desired DTLR,
e.g., by ELISA or other assay. Antibodies which
specifically recognize specific DTLR embodiments may also
be selected or prepared.

In another method, synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Nucleic acids may also be introduced into cells in an animal to produce the antigen, which serves to elicit an immune response. See, e.g., Wang, et al. (1993) Proc. Nat'l. Acad. Sci. 90:4156-4160; Barry, et al. (1994) BioTechniques 16:616-619; and Xiang, et al. (1995) Immunity 2: 129-135.

20

25

30

35

IX. Production of fusion proteins with, e.g., DTLR5

Various fusion constructs are made with DTLR5. This

portion of the gene is fused to an epitope tag, e.g., a

FLAG tag, or to a two hybrid system construct. See, e.g.,

Fields and Song (1989) Nature 340:245-246.

The epitope tag may be used in an expression cloning procedure with detection with anti-FLAG antibodies to detect a binding partner, e.g., ligand for the respective DTLR5. The two hybrid system may also be used to isolate proteins which specifically bind to DTLR5.

X. Chromosomal mapping of DTLRs

Chromosome spreads are prepared. In situ hybridization is performed on chromosome preparations obtained from phytohemagglutinin-stimulated lymphocytes cultured for 72 h. 5-bromodeoxyuridine is added for the final seven hours of culture (60 μ g/ml of medium), to ensure a posthybridization chromosomal banding of good quality.

An appropriate fragment, e.g., a PCR fragment, amplified with the help of primers on total B cell cDNA template, is cloned into an appropriate vector. The vector is labeled by nick-translation with ³H. The radiolabeled probe is hybridized to metaphase spreads as described in Mattei, et al. (1985) Hum. Genet. 69:327-331.

After coating with nuclear track emulsion (KODAK NTB2), slides are exposed, e.g., for 18 days at 4°C. To avoid any slipping of silver grains during the banding procedure, chromosome spreads are first stained with buffered Giemsa solution and metaphase photographed. R-banding is then performed by the fluorochrome-photolysis-Giemsa (FPG) method and metaphases rephotographed before

Alternatively, FISH can be performed, as described above. The DTLR genes are located on different chromosomes. DTLR2 and DTLR3 are localized to human chromosome 4; DTLR4 is localized to human chromosome 9, and DTLR5 is localized to human chromosome 1. See Figures 4A-4D.

35

25

analysis.

5

10

XI. Structure activity relationship

Information on the criticality of particular residues is determined using standard procedures and analysis. Standard mutagenesis analysis is performed, e.g., by generating many different variants at determined positions, e.g., at the positions identified above, and evaluating biological activities of the variants. This may be performed to the extent of determining positions which modify activity, or to focus on specific positions to determine the residues which can be substituted to either retain, block, or modulate biological activity.

Alternatively, analysis of natural variants can indicate what positions tolerate natural mutations. This may result from populational analysis of variation among individuals, or across strains or species. Samples from selected individuals are analyzed, e.g., by PCR analysis and sequencing. This allows evaluation of population polymorphisms.

20 XI. Isolation of a ligand for a DTLR

10

25

30

35

A DTLR can be used as a specific binding reagent to identify its binding partner, by taking advantage of its specificity of binding, much like an antibody would be used. A binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods.

The binding composition is used to screen an expression library made from a cell line which expresses a binding partner, i.e., ligand, preferably membrane associated. Standard staining techniques are used to detect or sort surface expressed ligand, or surface expressing transformed cells are screened by panning. Screening of intracellular expression is performed by various staining or immunofluorescence procedures. See also McMahan, et al. (1991) EMBO J. 10:2821-2832.

5

10

For example, on day 0, precoat 2-chamber permanox slides with 1 ml per chamber of fibronectin, 10 ng/ml in PBS, for 30 min at room temperature. Rinse once with PBS. Then plate COS cells at $2-3 \times 10^5$ cells per chamber in 1.5 ml of growth media. Incubate overnight at 37° C.

On day 1 for each sample, prepare 0.5 ml of a solution of 66 µg/ml DEAE-dextran, 66 µM chloroquine, and 4 µg DNA in serum free DME. For each set, a positive control is prepared, e.g., of DTLR-FLAG cDNA at 1 and 1/200 dilution, and a negative mock. Rinse cells with serum free DME. Add the DNA solution and incubate 5 hr at 37° C. Remove the medium and add 0.5 ml 10% DMSO in DME for 2.5 min. Remove and wash once with DME. Add 1.5 ml growth medium and incubate overnight.

On day 2, change the medium. On days 3 or 4, the 15 cells are fixed and stained. Rinse the cells twice with Hank's Buffered Saline Solution (HBSS) and fix in 4% paraformaldehyde (PFA)/glucose for 5 min. Wash 3X with The slides may be stored at -80° C after all liquid 20 is removed. For each chamber, 0.5 ml incubations are performed as follows. Add HBSS/saponin (0.1%) with 32 μ l/ml of 1 M NaN3 for 20 min. Cells are then washed with HBSS/saponin 1X. Add appropriate DTLR or DTLR/antibody complex to cells and incubate for 30 min. Wash cells twice with HBSS/saponin. 25 If appropriate, add first antibody for 30 min. Add second antibody, e.g., Vector anti-mouse antibody, at 1/200 dilution, and incubate for 30 min. Prepare ELISA solution, e.g., Vector Elite ABC horseradish peroxidase solution, and preincubate for 30 30 Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells

min. Use, e.g., 1 drop of solution A (avidin) and 1 drop solution B (biotin) per 2.5 ml HBSS/saponin. Wash cells twice with HBSS/saponin. Add ABC HRP solution and incubate for 30 min. Wash cells twice with HBSS, second wash for 2 min, which closes cells. Then add Vector

diaminobenzoic acid (DAB) for 5 to 10 min. Use 2 drops of buffer plus 4 drops DAB plus 2 drops of ${\rm H}_2{\rm O}_2$ per 5 ml of

glass distilled water. Carefully remove chamber and rinse slide in water. Air dry for a few minutes, then add 1 drop of Crystal Mount and a cover slip. Bake for 5 min at 85-90°C.

5 Evaluate positive staining of pools and progressively subclone to isolation of single genes responsible for the binding.

Alternatively, DTLR reagents are used to affinity purify or sort out cells expressing a putative ligand. See, e.g., Sambrook, et al. or Ausubel, et al.

Another strategy is to screen for a membrane bound receptor by panning. The receptor cDNA is constructed as described above. The ligand can be immobilized and used to immobilize expressing cells. Immobilization may be achieved by use of appropriate antibodies which recognize, e.g., a FLAG sequence of a DTLR fusion construct, or by use of antibodies raised against the first antibodies. Recursive cycles of selection and amplification lead to enrichment of appropriate clones and eventual isolation of receptor expressing clones.

Phage expression libraries can be screened by mammalian DTLRs. Appropriate label techniques, e.g., anti-FLAG antibodies, will allow specific labeling of appropriate clones.

25

30

35

10

15

20

All citations herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled; and the

invention is not to be limited by the specific embodiments that have been presented herein by way of example.

Humans have two distinct types of dendritic cell (DC) precursors. Peripheral blood monocytes (pDC1) give rise to immature myeloid DCs after culturing with GMCSF and IL-4. These immature cells become mature myeloid DCs (DC1) after stimulation with CD40 ligand (CD40L). The CD4+CD3-CD11c- plasmacytoid cells (pDC2) from blood or tonsils give rise to a distinct type of immature DC after culture with IL-3, and differentiate into mature DCs (DC2) after CD40L stimulation. Rissoan, et al. (1999) Science 283:1183-1186.

15

20

25

30

35

40

Siegal, et al. (1999) <u>Science</u> 284:1835-1837, show that pDC2 is the "Natural Interferon Producing Cell" (IPC). Interferons (IFNs) are the most important cytokines in antiviral immune responses. "Natural IFNproducing cells" (NIPCs) in human blood express CD4 and major histocompatibility complex class II proteins, but have not been isolated and further characterized because of their rarity, rapid apoptosis, and lack of lineage markers. Purified NIPCs are here shown to be the CD4(+)CD11c- type 2 dendritic cell precursors (pDC2s), which produce 200 to 1000 times more IFN than other blood cells after microbial challenge. pDC2s are thus an effector cell type of the immune system, critical for antiviral and antitumor immune responses. They are implicated as important cells in HIV infected patients Toll-like receptor (TLR) molecules belong to the IL-1/Toll receptor family. Ligands for TLR2 and TLR4 have

been identified, and their functions are related to the host immune response to microbial antigen or injury. Takeuchi, et al. (1999) Immunity 11:443-451; and Noshino, et al. (1999) J. Immunol. 162:3749-3752. The pattern of expression of TLRs seem to be restricted. Muzio, et al. (2000) J. Immunol. 164:5998-6004. With these findings that: i) TLR10 is highly expressed and restricted in pDC2s, and ii) pDC2 is the NIPC, it is likely that TLR10 will play an important role in the host's innate immune response.

WHAT IS CLAIMED IS:

1. A composition of matter selected from the group consisting of:

- a) a substantially pure or recombinant DTLR2 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 4;
 - b) a natural sequence DTLR2 of SEQ ID NO: 4;
 - c) a fusion protein comprising DTLR2 sequence;
- d) a substantially pure or recombinant DTLR3 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 6;
 - e) a natural sequence DTLR3 of SEQ ID NO: 6;
 - f) a fusion protein comprising DTLR3 sequence;
- g) a substantially pure or recombinant DTLR4 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 8;
 - h) a natural sequence DTLR4 of SEQ ID NO: 8;
 - i) a fusion protein comprising DTLR4 sequence;
- j) a substantially pure or recombinant DTLR5 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 10;
 - k) a natural sequence DTLR5 comprising SEQ ID NO: 10;
- a fusion protein comprising DTLR5 sequence;
 - m) a substantially pure or recombinant DTLR6 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 12, 28, or 30;
- n) a natural sequence DTLR6 comprising SEQ ID NO: 12, 28, or 30;
 - o) a fusion protein comprising DTLR6 sequence;
- p) a substantially pure or recombinant DTLR7 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 16, 18, or 37;

q) a natural sequence DTLR7 comprising SEQ ID NO: 16, 18, or 37;

- r) a fusion protein comprising DTLR7 sequence;
- s) a substantially pure or recombinant DTLR8 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 32 or 39;
 - t) a natural sequence DTLR8 comprising SEQ ID NO: 32 or 39;
- 10 u) a fusion protein comprising DTLR8 sequence;
 - v) a substantially pure or recombinant DTLR9 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 22 or 41;
- w) a natural sequence DTLR9 comprising SEQ ID NO: 22 or 41;
 - x) a fusion protein comprising DTLR9 sequence;
 - y) a substantially pure or recombinant DTLR10 protein or peptide exhibiting identity over a length of at least about 12 amino acids to SEQ ID NO: 34, 43, or 45;
 - z) a natural sequence DTLR10 comprising SEQ ID NO:
 34, 43, or 45;
 - zz) a fusion protein comprising DTLR10 sequence.

25

5

20

- 2. A substantially pure or isolated protein comprising a segment exhibiting sequence identity to a corresponding portion of a:
- a) DTLR2 of Claim 1, and said identity is over at least:
 - a) about 15 amino acids;
 - b) about 19 amino acids; or
 - c) about 25 amino acids;
- b) DTLR3 of Claim 1, and said identity is over at least:
 - a) about 15 amino acids;

		b)	about 19 amino acids; or
		c)	about 25 amino acids;
	c) DTL	R4 of Claim 1, and said identity is over at
		le	ast:
5		a)	about 15 amino acids;
		b)	about 19 amino acids; or
		c)	about 25 amino acids;
	Ċ) DTL	R5 of Claim 1, and said identity is over at
		le	ast:
10		a)	about 15 amino acids;
		b)	about 19 amino acids; or
		c)	about 25 amino acids;
	€		R6 of Claim 1, and said identity is over at
		le	ast:
15			about 15 amino acids;
			about 19 amino acids; or
	_		about 25 amino acids;
	Í		R7 of Claim 1, and said identity is over at
			ast:
20		a)	·
	,		about 19 amino acids; or
			about 25 amino acids;
	.g		R8 of Claim 1, and said identity is over at ast:
25			about 15 amino acids;
23		b)	about 19 amino acids; or
		•	about 25 amino acids;
	· h		R9 of Claim 1, and said identity is over at
	•		ast:
30		a)	about 15 amino acids;
		•	about 19 amino acids; or
			about 25 amino acids; or
	i		R10 of Claim 1, and said identity is over at
			ast:
35		a)	about 15 amino acids;
			about 19 amino acids; or

about 25 amino acids.

c)

The composition of matter of Claim 1, wherein 3. said: 5 a) DTLR2: i) comprises a mature sequence of Table 2; or ii) lacks post-translational modification; b) DTLR3: i) comprises a mature sequence of Table 3; or 10 ii) lacks post-translational modification; DTLR4: C) i) comprises a mature sequence of Table 4; or ii) lacks post-translational modification; d) DTLR5: 15 i) comprises a mature sequence of Table 5; or ii) lacks post-translational modification; DTLR6: e) i) comprises a mature sequence of Table 6; or ii) lacks post-translational modification; 20 f) DTLR7: i) comprises a sequence of Table 7; or ii) lacks post-translational modification; DTLR8: g) . i) comprises a sequence of Table 8; or 25 ii) lacks post-translational modification; h) DTLR9: i) comprises a sequence of Table 9; or ii) lacks post-translational modification; DTLR10: i) i) comprises a sequence of Table 10; or .30 ii) lacks post-translational modification; or protein or peptide: j) is from a warm blooded animal selected from

human;

35

a mammal, including a primate, such as a

	ii) comprises at least one polypeptide segment
	of SEQ ID NO: 4, 6, 26, 10, 12, 28, 30, 16
	18, 37, 39, 32, 22, 34, 43, or 45;
	iii) exhibits a plurality of said segments of
5	identity;
	iv) is a natural allelic variant of DTLR2,
	DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8,
	DTLR9, or DTLR10;
	v) has a length at least about 30 amino acids;
10	vi) exhibits at least two non-overlapping
	epitopes which are specific for a primate
	DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7,
	DTLR8, DTLR9, or DTLR10;
	vii) exhibits sequence identity over a length
15	of at least about 35 amino acids to a
	<pre>primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6,</pre>
	DTLR7, DTLR8, DTLR9. or DTLR10;
	viii) further exhibits at least two non-
	overlapping epitopes which are specific for
20	a primate DTLR2, DTLR3, DTLR4, DTLR5,
	DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10;
	ix) exhibits identity over a length of at least
	about 20 amino acids to a rodent DTLR6;
	x) is glycosylated;
25	xi) has a molecular weight of at least 100 kD
	with natural glycosylation;
	<pre>xii) is a synthetic polypeptide;</pre>
	xiii) is attached to a solid substrate;
	xiv) is conjugated to another chemical moiety;
30	xv) is a 5-fold or less substitution from
	natural sequence; or
	xvi) is a deletion or insertion variant from a
	natural sequence.
	•

- 35 4. A composition comprising:
 - a) a sterile DTLR2 protein or peptide of Claim 1,

	b)	said DTLR2 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		 an aqueous compound, including water,
		saline, and/or buffer; and/or
5		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	c)	a sterile DTLR3 protein or peptide of Claim 1;
	. d)	said DTLR3 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
10		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	e)	a sterile DTLR4 protein or peptide of Claim 1,
15	f)	said DTLR4 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
	•	ii) formulated for oral, rectal, nasal,
20		topical, or parenteral administration;
	g)	a sterile DTLR5 protein or peptide of Claim 1;
	h)	said DTLR5 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
25		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	i)	a sterile DTLR6 protein or peptide of Claim 1;
	j)	said DTLR6 protein or peptide of Claim 1 and a
30		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
35	k)	a sterile DTLR7 protein or peptide of Claim 1;

	1)	said DTLR7 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
5		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	m)	a sterile DTLR8 protein or peptide of Claim 1;
	n)	said DTLR8 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
10		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	0)	a sterile DTLR9 protein or peptide of Claim 1;
15	p)	said DTLR9 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
•		ii) formulated for oral, rectal, nasal,
20		topical, or parenteral administration;
	d)	a sterile DTLR10 protein or peptide of Claim 1;
•	r)	said DTLR10 protein or peptide of Claim 1 and a
		carrier, wherein said carrier is:
		i) an aqueous compound, including water,
25		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration;
	5.	The fusion protein of Claim 1, comprising:
30	a)	i implified of table a, o,
		4, 5, 6, 7, 8, 9, or 10;
	b)	a detection or purification tag, including a
		FLAG, His6, or Ig sequence; or
	c)	sequence of another receptor protein.
35		•

5

10

15

20

25

30

35

A kit comprising a protein or polypeptide of 6. Claim 1, and: a compartment comprising said protein or polypeptide; and/or instructions for use or disposal of reagents in b) said kit. A binding compound comprising an antigen binding 7. site from an antibody, which specifically binds to a natural DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10 protein of Claim 1, wherein: said protein is a primate protein; said binding compound is an Fv, Fab, or Fab2 b) fragment; said binding compound is conjugated to another c) chemical moiety; or said antibody: d) is raised against a peptide sequence of a i) mature polypeptide of Table 2, 3, 4, 5, 6, 7, 8, 9, or 10; is raised against a mature DTLR2, DTLR3, ii) DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10; iii) is raised to a purified human DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8,

- DTLR9, or DTLR10;
- iv) is immunoselected;
- is a polyclonal antibody; v)
- vi) binds to a denatured DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10;
- vii) exhibits a Kd to antigen of at least 30 μΜ;
- viii) is attached to a solid substrate, including a bead or plastic membrane;
- ix) is in a sterile composition; or

is detectably labeled, including a radioactive or fluorescent label.

8. A kit comprising said binding compound of Claim 5 7, and: a) a compartment comprising said binding compound; and/or instructions for use or disposal of reagents in b) said kit. 10 9. A method of: A) making an antibody of Claim 7, comprising immunizing an immune system with an immunogenic amount of: 15 a) a primate DTLR2; a primate DTLR3; b) a primate DTLR4; C) d) a primate DTLR5; a primate DTLR6; e) 20 f) a primate DTLR7; a primate DTLR8; g) h) a primate DTLR9; or a primate DTLR10; thereby causing said antibody to be produced; or producing an antigen: antibody complex, comprising: 25 B) contacting an antibody of Claim 7 with: a mammalian DTLR2 protein or peptide; a) b) a mammalian DTLR3 protein or peptide; c) a mammalian DTLR4 protein or peptide; 30 d) a mammalian DTLR5 protein or peptide; e) a mammalian DTLR6 protein or peptide; f) a mammalian DTLR7 protein or peptide; g) a mammalian DTLR8 protein or peptide; h) a mammalian DTLR9 protein or peptide; or 35 a mammalian DTLR10 protein or peptide; thereby allowing said complex to form.

	10.	A composition comprising:
	a)	a sterile binding compound of Claim 7, or
	b)	said binding compound of Claim 7 and a carrier,
5		wherein said carrier is:
		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration.
10		
	11.	An isolated or recombinant nucleic acid encoding
	a protein	or peptide or fusion protein of Claim 1,
	wherein:	
	a)	said DTLR is from a mammal; or
15	b)	said nucleic acid:
		i) encodes an antigenic peptide sequence of
		Table 2, 3, 4, 5, 6, 7, 8, 9, or 10;
		ii) encodes a plurality of antigenic peptide
		sequences of Table 2, 3, 4, 5, 6, 7, 8, 9,
20		or 10;
		iii) exhibits at least about 80% identity to a
		natural cDNA encoding said segment;
		iv) is an expression vector;
.		v) further comprises an origin of replication;
25		vi) is from a natural source;
		vii) comprises a detectable label;
		viii) comprises synthetic nucleotide sequence;
		ix) is less than 6 kb, preferably less than 3
3 0	•	kb;
30		x) is from a mammal, including a primate;
		xi) comprises a natural full length coding
		sequence;
		xii) is a hybridization probe for a gene
		BDCCC1DC 6514 UUU U •

PCT/US01/16766 WO 01/90151

		xiii) comprises at least 17 contiguous
		nucleotides from Table 2, 3, 4, 5, 6, 7, 8,
		9, or 10;
		xiv) comprises at plurality of nonoverlapping
5		segments of least 17 contiguous nucleotides
		from Table 2, 3, 4, 5, 6, 7, 8, 9, or 10;
	•	or
		xv) is a PCR primer, PCR product, or
		mutagenesis primer.
10		
	12.	A cell, tissue, or organ comprising a
	recombin	ant nucleic acid of Claim 11.
	13.	The cell of Claim 12, wherein said cell is:
15	a)	a prokaryotic cell;
	. b)	a eukaryotic cell;
	c)	a bacterial cell;
	d)	a yeast cell;
	e)	an insect cell;
20	f)	a mammalian cell;
	g)	a mouse cell;
	h)	-
	i)	a human cell.
25	14.	A kit comprising said nucleic acid of Claim 11,
	and.	-

- - a) a compartment comprising said nucleic acid;
 - a compartment further comprising a primate DTLR2, DTLR3, DTLR4, DTLR5, DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10 protein or polypeptide; and/or
 - instructions for use or disposal of reagents in said kit.
 - A method of: 15.

30

A) making a polypeptide, comprising expressing said nucleic acid of Claim 11, thereby producing said polypeptide; or

B) making a duplex nucleic acid, comprising contacting said nucleic acid of Claim 11 with a complementary nucleic acid, thereby allowing said duplex to form.

16. A nucleic acid which:

5

15

20

25

30

- a) hybridizes under wash conditions of 30°C and less than 2M salt to SEQ ID NO: 3;
 - b) hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 5;
 - c) hybridizes under wash conditions of 30°C and less than 2M salt to SEQ ID NO: 25;
 - d) hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 9;
 - e) hybridizes under wash conditions of 30°C and less than 2M salt to SEQ ID NO: 11, 27, or 29;
 - f) hybridizes under wash conditions of 30° C and less than 2 M salt to SEQ ID NO: 15, 17, or 36;
 - g) hybridizes under wash conditions of 30° C and less than 2M salt to SEQ ID NO: 31 or 38;
 - h) hybridizes under wash conditions of 30°C and less than 2 M salt to SEQ ID NO: 21 or 40;
 - i) hybridizes under wash conditions of 30°C and less than 2 M salt to SEQ ID NO: 33, 35, 42, or 44;
 - j) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR2;
 - k) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR3;

5

15

20

25

1) exhibits at least about 85% identity over a
 stretch of at least about 30 nucleotides to a
 primate DTLR4;
m) exhibits at least about 85% identity ever a

- m) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR5;
- n) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR6;
- o) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR7;
 - p) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR8;
 - q) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR9; or
 - r) exhibits at least about 85% identity over a stretch of at least about 30 nucleotides to a primate DTLR10.
 - 17. The nucleic acid of Claim 16, wherein:
 - a) said wash conditions are at 45° C and/or 500 mM salt; or
 - b) said identity is at least 90% and/or said stretch is at least 55 nucleotides.
 - 18. The nucleic acid of Claim 17, wherein:
- 30 a) said wash conditions are at 55° C and/or 150 mM salt; or
 - b) said identity is at least 95% and/or said stretch is at least 75 nucleotides.
- 35 19. A method of producing a ligand:receptor complex, comprising contacting:

a) a substantially pure primate DTLR2, including a recombinant or synthetically produced protein, with candidate Toll ligand;

- b) a substantially pure primate DTLR3, including a recombinant or synthetically produced protein, with candidate Toll ligand;
- c) a substantially pure primate DTLR4, including a recombinant or synthetically produced protein, with candidate Toll ligand;
- d) a substantially pure primate DTLR5, including a recombinant or synthetically produced protein, with candidate Toll ligand;
 - e) a substantially pure primate DTLR6, including a recombinant or synthetically produced protein, with candidate Toll ligand;
 - f) a substantially pure primate DTLR7, including a recombinant or synthetically produced protein, with candidate Toll ligand;
 - g) a substantially pure primate DTLR8, including a recombinant or synthetically produced protein, with candidate Toll ligand;
 - h) a substantially pure primate DTLR9, including a recombinant or synthetically produced protein, with candidate Toll ligand;
- 25 i) a substantially pure primate DTLR10, including a recombinant or synthetically produced protein, with candidate Toll ligand; thereby allowing said complex to form.
- 30 20. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting said cell with an agonist or antagonist of a mammalian DTLR2, DTLR3, DTLR4, DTLR5; DTLR6, DTLR7, DTLR8, DTLR9, or DTLR10.

35

5

15

20

21. The method of Claim 20, wherein said agonist or antagonist is of DTLR10, and said cell is a pDC2 cell.

SEQUENCE SUBMISSION

```
SEQ ID NO: 1 provides primate DTLR1 nucleotide sequence.
SEQ ID NO: 2 provides primate DTLR1 polypeptide sequence.
SEQ ID NO: 3 provides primate DTLR2 nucleotide sequence.
SEQ ID NO: 4 provides primate DTLR2 polypeptide sequence.
SEQ ID NO: 5 provides primate DTLR3 nucleotide sequence.
SEQ ID NO: 6 provides primate DTLR3 polypeptide sequence.
SEQ ID NO: 7 provides primate DTLR4 nucleotide sequence.
SEQ ID NO: 8 provides primate DTLR4 polypeptide sequence.
SEQ ID NO: 9 provides primate DTLR5 nucleotide sequence.
SEQ ID NO: 10 provides primate DTLR5 polypeptide sequence.
SEQ ID NO: 11 provides primate DTLR6 nucleotide sequence.
SEQ ID NO: 12 provides primate DTLR6 polypeptide sequence.
SEQ ID NO: 13 provides rodent DTLR6 nucleotide sequence.
SEO ID NO: 14 provides rodent DTLR6 polypeptide sequence.
SEQ ID NO: 15 provides primate DTLR7 nucleotide sequence.
SEQ ID NO: 16 provides primate DTLR7 polypeptide sequence.
SEQ ID NO: 17 provides primate DTLR7 nucleotide sequence.
SEQ ID NO: 18 provides primate DTLR7 polypeptide sequence.
SEQ ID NO: 19 provides primate DTLR8 nucleotide sequence.
SEQ ID NO: 20 provides primate DTLR8 polypeptide sequence.
SEQ ID NO: 21 provides primate DTLR9 nucleotide sequence.
SEQ ID NO: 22 provides primate DTLR9 polypeptide sequence.
SEQ ID NO: 23 provides primate DTLR10 nucleotide sequence.
SEQ ID NO: 24 provides primate DTLR10 polypeptide sequence.
SEQ ID NO: 25 provides primate DTLR4 nucleotide sequence.
SEQ ID NO: 26 provides primate DTLR4 polypeptide sequence.
SEQ ID NO: 27 provides rodent DTLR6 nucleotide sequence.
SEQ ID NO: 28 provides rodent DTLR6 polypeptide sequence.
SEQ ID NO: 29 provides rodent DTLR6 nucleotide sequence.
SEQ ID NO: 30 provides rodent DTLR6 polypeptide sequence.
SEQ ID NO: 31 provides primate DTLR8 nucleotide sequence.
SEQ ID NO: 32 provides primate DTLR8 polypeptide sequence.
SEQ ID NO: 33 provides primate DTLR10 nucleotide sequence.
SEQ ID NO: 34 provides primate DTLR10 polypeptide sequence.
SEQ ID NO: 35 provides rodent DTLR10 nucleotide sequence.
SEQ ID NO: 36 provides primate DTLR7 nucleotide sequence.
SEQ ID NO: 37 provides primate DTLR7 polypeptide sequence.
SEQ ID NO: 38 provides primate DTLR8 nucleotide sequence.
SEQ ID NO: 39 provides primate DTLR8 polypeptide sequence.
SEQ ID NO: 40 provides primate DTLR9 nucleotide sequence.
SEQ ID NO: 41 provides primate DTLR9 polypeptide sequence.
SEQ ID NO: 42 provides primate DTLR10 nucleotide sequence.
SEQ ID NO: 43 provides primate DTLR10 polypeptide sequence.
SEQ ID NO: 44 provides rodent DTLR10 nucleotide sequence.
SEQ ID NO: 45 provides rodent DTLR10 polypeptide sequence.
```

<110> Schering Corp.

```
<120> Human Receptor Proteins; Related Reagents and Methods
     <130> DX0724KP
 5
     <140>
     <141>
     <160> 45
10
     <170> PatentIn Ver. 2.0
     <210> 1
     <211> 2367
     <212> DNA
15
     <213> Unknown
     <220>
     <223> Description of Unknown Organism:primate; surmised
20
           Homo sapiens
     <220>
     <221> CDS
     <222> (1)..(2358)
25
     <220>
     <221> mat peptide
     <222> (67)..(2358)
30
     <400> 1
     atg act agc atc ttc cat ttt gcc att atc ttc atg tta ata ctt cag
                                                                        48
     Met Thr Ser Ile Phe His Phe Ala Ile Ile Phe Met Leu Ile Leu Gln
             -20
                                  -15
35
     atc aga ata caa tta tct gaa gaa agt gaa ttt tta gtt gat agg tca
     Ile Arg Ile Gln Leu Ser Glu Glu Ser Glu Phe Leu Val Asp Arg Ser
          -5
                           -1
     aaa aac ggt ctc atc cac gtt cct aaa gac cta tcc cag aaa aca aca
                                                                        144
40
     Lys Asn Gly Leu Ile His Val Pro Lys Asp Leu Ser Gln Lys Thr Thr
                       15
                                           20
     atc tta aat ata tcg caa aat tat ata tct gag ctt tgg act tct gac
                                                                        192
     Ile Leu Asn Ile Ser Gln Asn Tyr Ile Ser Glu Leu Trp Thr Ser Asp
45
                   30
                                       35
     atc tta tca ctg tca aaa ctg agg att ttg ata att tct cat aat aga
                                                                        240
     Ile Leu Ser Leu Ser Lys Leu Arg Ile Leu Ile Ile Ser His Asn Arg
              45
50
     atc cag tat ctt gat atc agt gtt ttc aaa ttc aac cag gaa ttg gaa
                                                                        288
     Ile Gln Tyr Leu Asp Ile Ser Val Phe Lys Phe Asn Gln Glu Leu Glu
55
     tac ttg gat ttg tcc cac aac aag ttg gtg aag att tct tgc cac cct
                                                                        336
     Tyr Leu Asp Leu Ser His Asn Lys Leu Val Lys Ile Ser Cys His Pro
      75
                           80
                                               85
```

2

	act Thr	gtg Val	aac Asn	ct <i>c</i> Leu	aag Lys 95	cac His	ttg Leu	gac Asp	ctg Leu	t <i>c</i> a Ser 100	Phe	aat Asn	gca Ala	ttt Phe	gat Asp 105		384
5	ctg Leu	cct Pro	ata Ile	tgc Cys 110	aaa Lys	gag Glu	ttt Phe	ggc Gly	aat Asn 115	atg Met	tct Ser	caa Gln	cta Leu	aaa Lys 120	ttt Phe	ctg Leu	432
10	. ej aaa	ttg Leu	agc Ser 125	acc Thr	aca Thr	cac His	tta Leu	gaa Glu 130	aaa Lys	tct Ser	agt Ser	gtg Val	ctg Leu 135	cca Pro	att Ile	gct Ala	480
15	cat His	ttg Leu 140	aat Asn	atc Ile	agc Ser	aag Lys	gtc Val 145	ttg Leu	ctg Leu	gtc Val	tta Leu	gga Gly 150	gag Glu	act Thr	tat Tyr	ggg Gly	528
20	gaa Glu 155	Lys	gaa Glu	gac Asp	cct Pro	gag Glu 160	ggc Gly	ctt Leu	caa Gln	gac Asp	ttt Phe 165	aac Asn	act Thr	gag Glu	agt Ser	ctg Leu 170	576
	cac His	att Ile	gtg Val	ttc Phe	ccc Pro 175	aca Thr	aac Asn	aaa Lys	gaa Glu	ttc Phe 180	cat His	ttt Phe	att Ile	ttg Leu	gat Asp 185	gtg Val	624
25	tca Ser	gtc Val	aag Lys	act Thr 190	gta Val	gca Ala	aat Asn	ctg Leu	gaa Glu 195	cta Leu	tct Ser	aat Asn	atc Ile	aaa Lys 200	tgt Cys	gtg Val	672
30	cta Leu	gaa Glu	gat Asp 205	aac Asn	aaa Lys	tgt Cys	tct Ser	tac Tyr 210	ttc Phe	cta Leu	agt Ser	att Ile	ctg Leu 215	gcg Ala	aaa Lys	ctt Leu	720
35	caa Gln	aca Thr 220	aat Asn	cca Pro	aag Lys	tta Leu	tca Ser 225	agt Ser	ctt Leu	acc Thr	tta Leu	aac Asn 230	aac Asn	att Ile	gaa Glu	aca Thr	768
40	Thr 235	Trp	Asn	tct Ser	Phe	11e 240	Arg	Ile	Leu	Gln	Leu 245	Val	Trp	His	Thr.	Thr 250	816
	gta Val	tgg Trp	tat Tyr	ttc Phe	tca Ser 255	att Ile	tca Ser	aac Asn	gtg Val	aag Lys 260	cta Leu	cag Gln	ggt Gly	cag Gln	ctg Leu 265	gac Asp	864
45	ttc Phe	aga Arg	gat Asp	ttt Phe 270	gat Asp	tat Tyr	tct Ser	Gly	act Thr 275	tcc Ser	ttg Leu	aag Lys	gcc Ala	ttg Leu 280	tct Ser	ata Ile	912
50	cac His	caa Gln	gtt Val 285	gtc Val	agc Ser	gat Asp	gtg Val	ttc Phe 290	ggt Gly	ttt Phe	ccg Pro	caa Gln	agt Ser 295	tat Tyr	atc Ile	tat Tyr	960
55	gaa Glu	atc Ile 300	ttt Phe	tcg Ser	aat Asn	atg Met	aac Asn 305	atc Ile	aaa Lys	aat Asn	ttc Phe	aca Thr 310	gtg Val	tct Ser	ggt Gly	aca Thr	1008
	cgc Arg	atg Met	gtc Val	cac His	atg Met	ctt Leu	tgc Cys	cca Pro	tcc Ser	aaa Lys	att Ile	agc Ser	ccg Pro	ttc Phe	ctg Leu	cat His	1056

	315					320					325					330	
5	ttg Leu	gat Asp	ttt Phe	tcc Ser	aat Asn 335	aat Asn	ctc Leu	tta Leu	aca Thr	gac Asp 340	acg Thr	gtt Val	ttt Phe	gaa Glu	aat Asn 345	tgt Cys	1104
	ggg Gly	cac	ctt Leu	act Thr 350	gag Glu	ttg Leu	gag Glu	aca Thr	ctt Leu 355	att Ile	tta Leu	caa Gln	atg Met	aat Asn 360	caa Gln	tta Leu	1152
	aaa Lys	gaa Glu	ctt Leu 365	tca Ser	aaa Lys	ata Ile	gct Ala	gaa Glu 370	atg Met	act Thr	aca Thr	cag Gln	atg Met 375	aag Lys	tct Ser	ctg Leu	1200
15	caa Gln	caa Gln 380	ttg Leu	gat Asp	att Ile	agc Ser	cag Gln 385	aat Asn	tct Ser	gta Val	agc Ser	tat Tyr 390	gat Asp	gaa Glu	aag Lys	aaa Lys	1248
20	gga Gly 395	gac Asp	tgt Cys	tct Ser	tgg Trp	act Thr 400	aaa Lys	agt Ser	tta Leu	tta Leu	agt Ser 405	tta Leu	aat Asn	atg Met	tct Ser	tca Ser 410	1296
25	aat Asn	ata Ile	ctt Leu	act Thr	gac Asp 415	act Thr	att Ile	ttc Phe	ága Arg	tgt Cys 420	tta Leu	cct Pro	ccc Pro	agg Arg	atc Ile 425	aag Lys	1344
30	gta Val	ctt Leu	gat Asp	ctt Leu 430	cac His	agc Ser	aat Asn	aaa Lys	ata Ile 435	аад Lys	agc Ser	att Ile	cct Pro	aaa Lys 440	caa Gln	gtc Val	1392
	gta Val	aaa Lys	ctg Leu 445	gaa Glu	gct Ala	ttg Leu	caa Gln	gaa Glu 450	ctc Leu	aat Asn	gtt Val	gct Ala	ttc Phe 455	aat Asn	tct Ser	tta Leu	1440
35	act Thr	gac Asp 460	ctt Leu	cct Pro	gga Gly	tgt Cys	ggc Gly 465	agc Ser	ttt Phe	agc Ser	agc Ser	ctt Leu 470	tct Ser	gta Val	ttg Leu	atc Ile	1488
40	att Ile 475	gat Asp	cac His	aat A ^l sn	tca Ser	gtt Val 480	tcc Ser	cac His	cca Pro	tca Ser	gct Ala 485	gat Asp	ttc Phe	ttc Phe	cag Gln	agc Ser 490	1536
45	tgc Cys	cag Gln	aag Lys	atg Met	agg Arg 495	tca Ser	ata Ile	aaa Lys	gca Ala	ggg Gly 500	gac Asp	aat Asn	cca Pro	ttc Phe	caa Gln 505	tgt Cys	1584
50	acc Thr	tgt Cys	gag Glu	ctc Leu 510	gga Gly	gaa Glu	ttt Phe	gtc Val	aaa Lys 515	aat Asn	ata Ile	gac Asp	caa Gln	gta Val 520	tca Ser	agt Ser	1632
50	gaa Glu	gtg Val	tta Leu 525	gag Glu	ggc Gly	tgg Trp	cct Pro	gat Asp 530	tct Ser	tat Tyr	aag Lys	tgt Cys	gac Asp 535	tac Tyr	ccg Pro	gaa Glu	1680
55	agt Ser	tat Tyr 540	aga Arg	gga Gly	acc Thr	cta Leu	cta Leu 545	aag Lys	gac Asp	ttt Phe	cac His	atg Met 550	tct Ser	gaa Glu	tta Leu	tcc Ser	1728

	tgc Cys 555	Asn	ata Ile	act Thr	ctg Leu	ctg Leu 560	atc Ile	gtc Val	acc Thr	atc Ile	gtt Val 565	gcc Ala	acc Thr	atg Met	ctg Leu	gtg Val 570	1776
5	ttg Leu	gct Ala	gtg Val	act Thr	gtg Val 575	acc Thr	tcc Ser	ctc Leu	tgc Cys	atc Ile 580	tac Tyr	ttg Leu	gat Asp	ctg Leu	ccc Pro 585	tgg Trp	1824
10	tat Tyr	ctc Leu	agg Arg	atg Met 590	gtg Val	tgc Cys	cag Gln	tgg Trp	acc Thr 595	cag Gln	acc Thr	cgg Arg	cgc Arg	agg Arg 600	gcc Ala	agg Arg	1872
15	aac Asn	ata Ile	ccc Pro 605	tta Leu	gaa Glu	gaa Glu	ctc Leu	caa Gln 610	aga Arg	aat Asn	ctc Leu	cag Gln	ttt Phe 615	cat His	gca Ala	ttt Phe	1920
20	att Ile	tca Ser 620	tat Tyr	agt Ser	ggg Gly	cac His	gat Asp 625	tct Ser	ttc Phe	tgg Trp	gtg Val	aag Lys 630	aat Asn	gaa Glu	tta Leu	ttg Leu	1968
	cca Pro 635	aac Asn	cta Leu	gag Glu	aaa Lys	gaa Glu 640	ggt Gly	atg Met	cag Gln	att Ile	tgc Cys 645	ctt Leu	cat His	gag Glu	aga Arg	aac Asn 650	2016
25	ttt Phe	gtt Val	cct Pro	ggc Gly	aag Lys 655	agc Ser	att Ile	gtg Val	gaa Glu	aat Asn 660	atc Ile	atc Ile	acc Thr	tgc Cys	att Ile 665	gag Glu	2064
30	aag Lys	agt Ser	Tyr	aag Lys 670	tcc Ser	atc Ile	ttt Phe	gtt Val	ttg Leu 675	tct Ser	ccc Pro	aac Asn	ttt Phe	gtc Val 680	cag Gln	agt Ser	2112
35	gaa Glu	tgg Trp	tgc Cys 685	cat His	tat Tyr	gaa Glu	ctc Leu	tac Tyr 690	ttt Phe	gcc Ala	cat His	cac His	aat Asn 695	ctc Leu	ttt Phe	cat His	2160
40	gaa Glu	gga Gly 700	tct Ser	aat Asn	agc Ser	tta Leu	atc Ile 705	ctg Leu	atc Ile	ttg Leu	ctg Leu	gaa Glu 710	ccc Pro	att Ile	ccg Pro	cag Gln	2208
	tac Tyr 715	tcc Ser	att Ile	cct Pro	agc Ser	agt Ser 720	tat Tyr	cac His	aag Lys	ctc Leu	aaa Lys 725	agt Ser	ctc Leu	atg Met	gcc Ala	agg Arg 730	2256
45	agg Arg	act Thr	tat Tyr	ttg Leu	gaa Glu 735	tgg Trp	ccc Pro	aag Lys	Glu	aag Lys 740	agc Ser	aaa Lys	cgt Arg	ggc Gly	ctt Leu 745	ttt Phe	2304
50	tgg Trp	gct Ala	aac Asn	tta Leu 750	agg Arg	gca Ala	gcc Ala	Ile	aat Asn 755	att Ile	aag Lys	ctg Leu	aca Thr	gag Glu 760	caa Gln	gca Ala	2352
55	Lys	_	tagt	ctag	ıa												2367
	<210	> 2	_														

<210> 2 <211> 786

<212> PRT <213> Unknown

_		0> 2														
5	Met	Thr	Ser -20	Ile	Phe	His	Phe	Ala -15	Ile	Ile	Phe	Met	Leu -10	Ile	Leu	Gln
10	Ile	Arg -5	Ile	Gln	Leu	Ser -1	Glu 1	Glu	Ser	Glu	Phe 5	Leu	Val	Asp	Arg	Ser 10
.0	Lys	Asn	Gly	Leu	Ile 15	His	Val	Pro	Lys	Asp 20	Leu	Ser	Gln	Lys	Thr 25	Thr
15	Ile	Leu	Asn	Ile 30	Ser	Gln	Asn	Tyr	Ile 35	Ser	Glu	Leu	Trp	Thr 40	Ser	Asp
	Ile	Leu	Ser 45	Leu	Ser	Lys	Leu	Arg 50	Ile	Leu	Ile	Ile	Ser 55	His	Asn	Arg
20	Ile	Gln 60	Tyr	Leu	Asp	Ile	Ser 65	Val	Phe	rys.	Phe	Asn 70	Gln	Glu	Leu	Glu
25	Tyr 75	Leu	Asp	Leu	Ser	His 80	Asn	Lys	Leu	Val	Lys 85	Ile	Ser	Суѕ	His	Pro 90
	Thr	Val	Asn	Leu	Lys 95	His	Leu	Asp	Leu	Ser 100	Phe	Asn	Ala	Phe	Asp 105	Ala
30	Leu	Pro	Ile	Cys 110	Lys	Glu	Phe	Gly	Asn 115	Met	Ser	Gln	Leu	Lys 120	Phe	Leu
	Gly	Leu	Ser 125	Thr	Thr	His	Leu	Glu 130	Lys	Ser	Ser	Val	Leu 135	Pro	Ile :	Ala
35	His	Leu 140	Asn	Ile	Ser	Lys	Val 145	Leu	Leu	Val	Leu	Gly 150	Glu	Thr	Tyr	Gly
10	Glu 155	Lys	Glu	Asp	Pro	Glu 160	Gly	Leu	Gln	Asp	Phe 165	Asn	Thr	Glu	Ser	Leu 170
20	His	Ile	Val	Phe	Pro 175	Thr	Asn	Lys	Glu	Phe 180	His	Phe	Ile	Leu	Asp 185	Val
15	Ser	Val	Lys	Thr 190	Val	Ala	Asn	Leu	Glu 195	Leu	Ser	Asn	Ile	Lys 200	Cys	Val
	Leu	Glu	Asp 205	Asn	Lys	Cys	Ser	Tyr 210	Phe	Leu	Ser	Ile	Leu 215	Ala	Lys	Leu
50	Gln	Thr 220	Asn	Pro	Lys	Leu	Ser 225		Leu	Thr	Leu	Asn 230	Asn	Ile	Glu	Thr
55	Thr 235	Trp	Asn	Ser	Phe	Ile 240	Arg	Ile	Leu	Gln	Leu 245	Val	Trp	His	Thr	Thr 250
כנ	Val	Trp	Tyr	Phe	Ser 255	Ile	Ser	Asn	Val	Lys 260	Leu	Gln	Gly	Gln	Leu 265	Asp

	Phe	Arg	Asp	Phe 270	Asp	Tyr	Ser	Gly	Thr 275	Ser	Leu	Lys	Ala	Leu 280	Ser	Ile
5	His	Gln	Val 285	Val	Ser	Asp	Val	Phe 290	Gly	Phe	Pro	Gln	Ser 295	Tyr	Ile	Туз
	Glu	Ile 300	Phe	Ser	Asn	Met	Asn 305	Ile	Lys	Asn	Phe	Thr 310	Val	Ser	Gly	Thi
10	Arg 315	Met	Val	His	Met'	Leu 320	Суѕ	Pro	Ser	Lys	Ile 325	Ser	Pro	Phe	Leu	His 330
15	Leu	Asp	Phe	Ser	Asn 335	Asn	Leu	Leu	Thr	Asp 340	Thr	Val	Phe	Glu	Asn 345	Cys
	Gly	His	Leu	Thr 350	Glu	Leu	Glu	Thr	Leu 355	Ile	Leu	Gln	Met	Asn 360	Gln	Leu
20	Lys	Glu	Leu 365	Ser	Lys	Ile	Ala	Glu 370	Met	Thr	Thr	Gln	Met 375	Lуs	Ser	Leu
	Gln	Gln 380	Leu	Asp	Ile	Ser	Gln 385	Asn	Ser	Val	Ser	Tyr 390	Asp	Glu	Lys	Lys
25	Gly 395	Asp	Суѕ	Ser	Trp	Thr 400	Lys	Ser	Leu	Leu	Ser 405	Leu	Asn	Met	Ser	Ser 410
30	Asn	Ile	Leu	Thr	Asp 415	Thr	Ile	Phe	Arg	Cys 420	Leu	Pro	Pro	Arg	Ile 425	Lys
	Val	Leu	Asp	Leu 430	His	Ser	Asn	Lys	Ile 435	Lys	Ser	Ile	Pro	Lys 440	Gln	Val
35	Val	Lys	Leu 445	Glu	Ala	Leu	Gln	Glu 450	Leu	Asn	Val	Ala	Phe 455	Asn	Ser	Leu
	Thr	Asp 460	Leu	Pro	Gly	Cys	Gly 465	Ser	Phe	Ser	Ser	Leu 470	Ser	Val	Leu	Ile
40	Ile 475	Asp	His	Asn	Ser	Val 480	Ser	His	Pro	Ser				Phe		Ser 490
45	Cys	Gln	Lys	Met	Arg 495	Ser	Ile	Lys	Ala	Gly 500	Asp	Asn	Pro	Phe	Gln 505	Cys
	Thr	Cys	Glu	Leu 510	Gly	Glu	Phe	Val	Lys 515	Asn	Ile	Asp	Gln	Val 520	Ser	Ser
50	Glu	Val	Leu 525	Glu	Gly	Trp	Pro	Asp 530	Ser	Tyr	Lys	Cys	Asp 535	Tyr	Pro	Glu
	Ser	Tyr 540	Arg	Gly	Thr	Leu	Leu 545	Lys	Asp	Phe	His	Met 550	Ser	Glu	Leu	Ser
55	Cys 555	Asn	Ile	Thr	Leu	Leu 560	Ile	Val	Thr	Ile	Val 565	Ala	Thr	Met	Leu	Val 570
	Leu	Ala	Val	Thr	Val	Thr	Ser	Leu	Cys	Ile	Tyr	Leu	Asp	Leu	Pro	Trp

WO 01/90151 PCT/US01/16766 575 580 585 Tyr Leu Arg Met Val Cys Gln Trp Thr Gln Thr Arg Arg Arg Ala Arg 595 5 Asn Ile Pro Leu Glu Glu Leu Gln Arg Asn Leu Gln Phe His Ala Phe 610 Ile Ser Tyr Ser Gly His Asp Ser Phe Trp Val Lys Asn Glu Leu Leu 10 Pro Asn Leu Glu Lys Glu Gly Met Gln Ile Cys Leu His Glu Arg Asn 640 15 Phe Val Pro Gly Lys Ser Ile Val Glu Asn Ile Ile Thr Cys Ile Glu 655 Lys Ser Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Ser 20 Glu Trp Cys His Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His 690 Glu Gly Ser Asn Ser Leu Ile Leu Ile Leu Leu Glu Pro Ile Pro Gln 25 705 Tyr Ser Ile Pro Ser Ser Tyr His Lys Leu Lys Ser Leu Met Ala Arg 30 Arg Thr Tyr Leu Glu Trp Pro Lys Glu Lys Ser Lys Arg Gly Leu Phe Trp Ala Asn Leu Arg Ala Ala Ile Asn Ile Lys Leu Thr Glu Gln Ala 35 Lys Lys 40 <210> 3 <211> 2355 <212> DNA <213> Unknown 45 <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens

<220> 50 <221> CDS <222> (1) .. (2352) <220> <221> mat_peptide

<222> (67)..(2352)

55

atg cca cat act ttg tgg atg gtg tgg gtc ttg ggg gtc atc atc agc 48

	Met	Pro	His -20	Thr	Leu	Trp	Met	Val -15	Trp	Val	Leu	Gly	Val -10	Ile	Ile	Ser	
5			aag Lys									Leu					96
10			atc Ile														144
15			aca Thr														192
13			att Ile 45														240
20			ctg Leu														288
25			ctg Leu														336
30			tta Leu														384
35			tta Leu														432
33 .	ttt Phe	tct Ser	cat His 125	ctc Leu	aca Thr	aaa Lys	ttg Leu	caa Gln 130	atc Ile	ctg Leu	aga Arg	gtg Val	gga Gly 135	aat Asn	atg Met	gac Asp	480
40	acc Thr	ttc Phe 140	act Thr	aag Lys	att Ile	caa Gln	aga Arg 145	aaa Lys	gat Asp	ttt Phe	gct Ala	gga Gly 150	ctt Leu	acc Thr	ttc Phe	ctt Leu	528
45	gag Glu 155	gaa Glu	ctt Leu	gag Glu	att Ile	gat Asp 160	gct Ala	tca Ser	gat Asp	cta Leu	cag Gln 165	agc Ser	tat Tyr	gag Glu	cca Pro	aaa Lys 170	576
50°			aag Lys														624
55			att Ile														672
<i>.</i>			ttg Leu 205														720

5	gaa Glu	cta Leu 220	tcc Ser	act Thr	ggt Gly	gaa Glu	aca Thr 225	aat Asn	tca Ser	ttg Leu	att Ile	aaa Lys 230	aag Lys	ttt Phe	aca Thr	ttt Phe	768
	aga Arg 235	aat Asn	gtg Val	aaa Lys	atc Ile	acc Thr 240	gat Asp	gaa Glu	agt Ser	ttg Leu	ttt Phe 245	cag Gln	gtt Val	atg Met	aaa Lys	ctt Leu 250	816
10	ttg Leu	aat Asn	cag Gln	att Ile	tct Ser 255	gga Gly	ttg Leu	tta Leu	gaa Glu	tta Leu 260	gag Glu	ttt Phe	gat Asp	gac Asp	tgt Cys 265	acc Thr	864
15	ctt Leu	aat Asn	gga Gly	gtt Val 270	ggt Gly	aat Asn	ttt Phe	aga Arg	gca Ala 275	tct Ser	gat Asp	aat Asn	gac Asp	aga Arg 280	gtt Val	ata Ile	912
20	gat Asp	cca Pro	ggt Gly 285	aaa Lys	gtg Val	gaa Glu	acg Thr	tta Leu 290	aca Thr	atc Ile	cgg Arg	agg Arg	ctg Leu 295	cat His	att Ile	cca Pro	960
25	agg Arg	ttt Phe 300	tac Tyr	tta Leu	ttt Phe	tat Tyr	gat Asp 305	ctg Leu	agc Ser	act Thr	tta Leu	tat Tyr 310	tca Ser	ctt Leu	aca Thr	gaa Glu	1008
	aga Arg 315	gtt Val	aaa Lys	aga Arg	atc Ile	aca Thr 320	gta Val	gaa Glu	aac Asn	agt Ser	aaa Lys 325	gtt Val	ttt Phe	ctg Leu	gtt Val	cct Pro 330	1056
30	tgt Cys	tta Leu	ctt Leu	tca Ser	caa Gln 335	cat His	tta Leu	aaa Lys	tca Ser	tta Leu 340	gaa Glu	tac Tyr	ttg Leu	gat _. Asp	ctc Leu 345	agt Ser	1104
35	gaa Glu	aat Asn	ttg Leu	atg Met 350	gtt Val	gaa Glu	gaa Glu	tac Tyr	ttg Leu 355	aaa Lys	aat Asn	tca Ser	gcc Ala	tgt Cys 360	gag Glu	gat Asp	1152
40					cta Leu												1200
45					acc Thr												1248
	aac Asn 395	att Ile	gat Asp	atc Ile	agt Ser	aag Lys 400	aat Asn	agt Ser	ttt Phe	cat His	tct Ser 405	atg Met	cct Pro	gaa Glu	act Thr	tgt Cys 410	1296
50	cag Gln	tgg Trp	cca Pro	gaa Glu	aag Lys 415	atg Met	aaa Lys	tat Tyr	ttg Leu	aac Asn 420	tta Leu	tcc Ser	agc Ser	aca Thr	cga Arg 425	ata Ile	1344
55 .	cac His	agt Ser	gta Val	aca Thr 430	ggc Gly	tgc Cys	att Ile	ccc Pro	aag Lys 435	aca Thr	ctg Leu	gaa Glu	att Ile	tta Leu 440	gat Asp	gtt Val	1392
	agc	aac	aac	aat	ctc	aat	tta	ttt	tct	ttg	aat	ttg	ccg	caa	ctc	aaa	1440

									•								
	Ser	Asn	Asn 445	Asn	Leu	Asn	Leu	Phe 450		Leu	Asn	Leu	Pro 455		Leu	Lys	
5	gaa Glu	ctt Leu 460	tat Tyr	att Ile	tcc Ser	aga Arg	aat Asn 465	aag Lys	ttg Leu	atg Met	Thr	cta Leu .470	cca Pro	gat Asp	gcc Ala	tcc Ser	1488
10	ctc Leu 475	tta Leu	ccc Pro	atg Met	Leu	cta Leu 480	gta Val	ttg Leu	aaa Lys	atc Ile	agt Ser 485	agg Arg	aat Asn	gca Ala	ata Ile	act Thr 490	1536
15	acg Thr	ttt Phe	tct Ser	aag Lys	gag Glu 495	caa Gln	ctt Leu	gac Asp	tca Ser	ttt Phe 500	cac His	aca Thr	ctg Leu	aag Lys	act Thr 505	ttg Leu	1584
10	gaa Glu	gct Ala	ggt Gly	ggc Gly 510	aat Asn	aac Asn	ttc Phe	att Ile	tgc Cys 515	tcc Ser	tgt Cys	gaa Glu	ttc Phe	ctc Leu 520	tcc Ser	ttc Phe	1632
20	act Thr	cag Gln	gag Glu 525	cag Gln	caa Gln	gca Ala	ctg Leu	gcc Ala 530	Lys	gtc Val	ttg Leu	att Ile	gat Asp 535	tgg Trp	cca Pro	gca Ala	1680
25	aat Asn	tac Tyr 540	ctg Leu	tgt Cys	gac Asp	tct Ser	cca Pro 545	tcc Ser	cat His	gtg Val	cgt Arg	ggc Gly 550	cag Gln	cag Gln	gtt Val	cag Gln	1728
30	gat Asp 555	gtc Val	cgc Arg	ctc Leu	tcg Ser	gtg Val 560	tcg Ser	gaa Glu	tgt Cys	cac His	agg Arg 565	aca Thr	gca Ala	ctg Leu	gtg Val	tct Ser 570	1776
35	ggc Gly	atg Met	tgc Cys	tgt Cys	gct Ala 575	ctg Leu	ttc Phe	ctg Leu	ctg Leu	atc Ile 580	ctg Leu	ctc Leu	acg Thr	ggg Gly	gtc Val 585	ctg Leu	1824
33	tgc Cys	cac His	cgt Arg	ttc Phe 590	cat His	ggc	ctg Leu	tgg Trp	tat Tyr 595	atg Met	aaa Lys	atg Met	atg Met	tgg Trp 600	gcc Ala	tgg Trp	~ 1872
40	ctc Leu	Gln	gcc Ala 605	aaa Lys	agg Arg	aag Lys	ccc Pro	agg Arg 610	aaa Lys	gct Ala	ccc Pro	agc Ser	agg Arg 615	aac Asn	atc Ile	tgc Cys	1920
45	tat Tyr	gat Asp 620	gca Ala	ttt Phe	gtt Val	tct Ser	tac Tyr 625	agt Ser	gag Glu	cgg Arg	gat Asp	gcc Ala 630	Tyr	tgg Trp	gtg Val	gag Glu	1968
50	aac Asn 635	ctt Leu	atg Met	gtc Val	cag Gln	gag Glu 640	ctg Leu	gag Glu	aac Asn	ttc Phe	aat Asn 645	ccc Pro	ccc Pro	ttc Phe	aag Lys	ttg Leu 650	2016
55	tgt Cys	ctt Leu	cat His	aag Lys	cgg Arg 655	gac Asp	ttc Phe	att Ile	cct. Pro	ggc Gly 660	aag Lys	tgg Trp	atc Ile	att Ile	gac Asp 665	aat Asn	2064
,,	atc Ile	att Ile	gac Asp	tcc Ser 670	att Ile	gaa Glu	aag Lys	agc Ser	cac His 675	aaa Lys	act Thr	gtc Val	ttt Phe	gtg Val 680	ctt Leu	tct Ser	2112

5									Cys			gaa Glu					2160
-	cat His	ttc Phe 700	cgt Arg	ctt Leu	ttt Phe	gaa Glu	gag Glu 705	aac Asn	aat Asn	gat Asp	Ala	gcc Ala 710	att Ile	ctc Leu	att Ile	ctt Leu	2208
10	ctg Leu 715	gag Glu	ccc Pro	att Ile	gag [.] Glu	aaa Lys 720	aaa Lys	gcc Ala	att Ile	ccc Pro	cag Gln 725	cgc	ttc Phe	tgc Cys	aag Lys	ctg Leu 730	2256
15	cgg Arg	aag Lys	ata Ile	atg Met	aac Asn 735	acc Thr	aag Lys	acc Thr	tac Tyr	ctg Leu 740	gag Glu	tgg Trp	ccc Pro	atg Met	gac Asp 745	gag Glu	2304
20	gct Ala	cag Gln	cgg Arg	gaa Glu 750	gga Gly	ttt Phe	tgg Trp	gta Val	aat Asn 755	ctg Leu	aga Arg	gct Ala	gcg Ala	ata Ile 760	aag Lys	tcc Ser	2352
	tag				•												2355
25	<212	l> 78 2> PB		vn													
30	<400 Met		His -20	Thr	Leu	Trp	Met	Val -15	Trp	Val	Leu	Gly	Val -10	Ile	Ile	Ser	
35	Leu	Ser -5	Lys	Glu	Glu	Ser -1	Ser 1	Asn	Gln	Ala	Ser 5	Leu	Ser	Cys	Asp	Arg 10	
	Asn	Gly	Ile	Cys	Lys 15	Gly	Ser	Ser	Gly	Ser 20	Leu	Asn	Ser	Ile	Pro 25	Ser	
40	Gly	Leu	Thr	Glu 30	Ala	Val	Lys	Ser	Leu 35	Asp	Leu	Ser	Asn	Asn 40	Arg	Ile	
45	Thr	Tyr	Ile 45	Ser	Asn	Ser	Asp	Leu 50	Gln	Arg	Cys	Val	Asn 55	Leu	Gln	Ala	
4 3	Leu	Val 60	Leu	Thr	Ser	Asn	Gly 65	Ile	Asn	Thr	Ile	Glu 70	Glu	Asp	Ser	Phe	
50	Ser 75	Ser	Leu	Gly	Ser	Leu 80	Glu	His	Leu	Asp	Leu 85	Ser	Tyr	Asn	Tyr	Leu 90	
	Ser	Asn	Leu	Ser	Ser 95	Ser	Trp	Phe	Lys	Pro 100	Leu	Ser	Ser	Leu	Thr 105	Phe	
55	Leu	Asn	Leu	Leu 110	Gly	Asn	Pro	Tyr	Lys 115	Thr	Leu	Gly	Glu	Thr 120	Ser	Leu	
	Phe	Ser	His	Leu	Thr	Lys	Leu	Gln	Ile	Leu	Arg	Val	Gly	Asn	Met	Asp	

125 130 . 135

5	Thr	Phe 140	Thr	Lys	Ile	Gln	Arg 145	Lys	Asp	Phe	Ala	Gly 150		Thr	Phe	Leu
•	Glu 155	Glu	Leu	Glu	Ile	Asp 160		Ser	Asp	Leu	Gln 165		Tyr	Glu	Pro	Lys 170
10	Ser	Leu	Lys	Ser	Ile 175	Gln	Asn	Val	Ser	His 180	Leu	Ile	Leu	His	Met 185	_
	Gln	His	Ile	Leu 190	Leu	Leu	Glu	Ile	Phe 1.95	Val	Asp	Val	Thr	Ser 200	Ser	Val
15	Glu	Cys	Leu 205	Glu	Leu	Arg	Asp	Thr 210	Asp	Leu	Asp	Thr	Phe 215	His	Phe	Ser
20	Glu	Leu 220	Ser	Thr	Glÿ	Glu	Thr 225	Asn	Ser	Leu	Ile	Lys 230	Lys	Phe	Thr	Phe
	Arg 235	Asn	Val	Lys	Ile	Thr 240	Asp	Glu	Ser	Leu	Phe 245	Gln	Val	Met	Lys	Leu 250
25	Leu	Asn	Gln	Ile	Ser 255	Gly	Leu	Leu	Glu	Leu 260	Glu	Phe	Asp	Asp	Cys 265	Thr
	Leu	Asn	Gly	Val 270	Gly	Asn	Phe	Arg	Ala 275	Ser	Asp	Asn	Asp	Arg 280	Val	Ile
30	Asp	Pro	Gly 285	Lys	Val	Glu	Thr	Leu 290	Thr	Ile	Arg	Arg	Leu 295	His	Ile	Pro
35	Arg	Phe 300	Tyr	Leu	Phe	Tyr	Asp 305	Leu	Ser	Thr	Leu	Tyr 310	Ser	Leu	Thr	Glu
	Arg 315	Val	Lys	Arg	Ile	Thr 320	Val	Glu	Asn	Ser	Lys 325	Val	Phe	Leu	Val	Pro 330
40	Cys	Leu	Leu	Ser	Gln 335	His	Leu	Lys	Ser	Leu 340	Glu	Tyr	Leu	Asp	Leu 345	Ser
	Glu	Asn	Leu	Met 350	Val	Glu	Glu	Tyr	Leu 355	Lys	Asn	Ser	Ala	Cys 360	Glu	Asp
45	Ala	Trp	Pro 365	Ser	Leu	Gln	Thr	Leu 370	Ile	Leu	Arg	Gln	Asn 375	His	Leu	Ala
50	Ser	Leu 380	Glu	Lys	Thr	Gly	Glu 385	Thr	Leu	Leu	Thr	Leu 390	Lys	Asn	Leu	Thr
	Asn 395	Ile	Asp	Ile	Ser	Lys 400	Asn	Ser	Phe	His	Ser 405	Met	Pro	Glu	Thr	Cys 410
55	Gln	Trp	Pro	Glu	Lys 415	Met	Lys	Tyr		Asn 420	Leu	Ser	Ser	Thr	Arg 425	Ile
	His	Ser	Val	Thr 430	Gly	Cys	Ile	Pro	Lys 435	Thr	Leu	Glu	Ile	Leu 440	Asp	Val

	Ser	Asn	Asn 445	Asn	Leu	Asn	Leu	Phe 450	Ser	Leu	Asn	Leu	Pro 455	Gln	Leu	Lys
5	Glu	Leu 460	Tyr	Ile	Ser	Arg	Asn 465	Lys	Leu	Met		Leu • 470	Pro	Asp	Ala	Sei
10	Leu 475	Leu	Pro	Met	Leu	Leu 480	Val	Leu	Lys	Ile	Ser 485	Arg	Asn	Ala	Ile	Th:
	Thr	Phe	Ser	Lys	Glu 495	Gln	Leu	Asp	Ser	Phe 500	His	Thr	Leu	Lys	Thr 505	Leu
15	Glu	Ala	Gly	Gly 510	Asn	Asn	Phe	Ile	Cys 515	Ser	Cys	Glu	Phe	Leu 520	Ser	Phe
	Thr	Gln	Glu 525	Gln	Gln	Ala	Leu	Ala 530	Lys	Val	Leu	Ile	Asp 535	Trp	Pro	Ala
20	Asn	Tyr 540	Leu	Cys	Asp	Ser	Pro 545	Ser	His	Val	Arg	Gly 550	Gln	Gln	Val	Gln
25	Asp 555	Val	Arg	Leu	Ser	Val 560	Ser	Glu	Cys	His	Arg 565	Thr	Ala	Leu	Val	Ser 570
	Gly	Met	Cys	Cys	Ala 575	Leu	Phe	Leu	Leu	Ile 580	Leu	Leu	Thr	Gly	Val 585	Leu
30	Cys	His	Arg	Phe 590	His	Gly	Leu	Trp	Tyr 595	Met	Lys	Met	Met	Trp 600	Ala	Trp
	Leu	Gln	Ala 605	Lys	Arg	Lys	Pro	Arg 610	Lys	Ala	Pro	Ser	Arg 615	Asn	Ile	Cys
35	Tyr	Asp 620	Ala	Phe	Val	Ser	Tyr 625	Ser	Glu	Arg	Asp	Ala 630	Tyr	Trp	Val	Glu
40	Asn 635	Leu	Met	Val	Gln	Glu 640	Leu	Glu	Asn	Phe	Asn 645	Pro	Pro	Phe	Lys	Leu 650
	Cys	Leu	His	Lys	Arg 655		Phe	Ile		Gly 660		Trp	Ile		Asp 665	Asn
45	Ile	Ile	Asp	Ser 670	Ile	Glu	Lys	Ser	His 675	Lys	Thr	Val	Phe	Val 680	Leu	Ser
	Glu	Asn	Phe 685	Val	Lys	Ser	Glu	Trp 690	Cys	Lys	Tyr	Glu	Leu 695	Asp	Phe	Ser
50	His	Phe 700	Arg	Leu	Phe	Glu	Glu 705 _.	Asn	Asn	Asp	Ala	Ala 710	Ile	Leu	Ile	Leu
55	Leu 715	Glu	Pro	Ile	Glu	Lys 720	Lys	Ala	Ile	Pro	Gln 725	Arg	Phe	Cys	Lys	Leu 730
	Arg	Lys	Ile	Met	Asn 735	Thr	Lys	Thr	Tyr	Leu 740	Glu	Trp	Pro	Met	Asp 745	Glu

Ala Gln Arg Glu Gly Phe Trp Val Asn Leu Arg Ala Ala Ile Lys Ser 750 755 760

5	<21 <21	0> 5 1> 2 2> D 3> U	715	wn													
10	<22 <22	3> D	escr omo			f Uņ	know	n Or	gani	sm:p	rima	te;	surm	ised			
15		1> C	DS 1)	(271	2)												
20		1> m	at_p 64).														
25	atg	0> 5 aga Arg -20	cag Gln	act Thr	ttg Leu	cct Pro	tgt Cys -15	atc Ile	tac Tyr	ttt Phe	tgg Trp	ggg Gly -10	ggc Gly	ctt Leu	ttg Leu	ccc Pro	48
30	ttt Phe -5	ggg Gly	atg Met	ctg Leu	tgt Cys -1	gca Ala 1	tcc Ser	tcc Ser	acc Thr	acc Thr 5	aag Lys	tgc Cys	act Thr	gtt Val	agc Ser 10	cat His	96
	gaa Glu	gtt Val	gct Ala	gac Asp 15	tgc Cys	agc Ser	cac His	ctg Leu	aag Lys 20	ttg Leu	act Thr	cag Gln	gta Val	ccc Pro 25	gat Asp	gat Asp	144
35	cta Leu	ccc Pro	aca Thr 30	aac Asn	ata Ile	aca Thr	gtg Val	ttg Leu 35	aac Asn	ctt Leu	acc Thr	cat His	aat Asn 40	caa Gln	ctc Leu	aga Arg	192
40	aga Arg	tta Leu 45	cca Pro	gcc Ala	gcc Ala	aac Asn	ttc Phe 50	aca Thr	agg Arg	tat Tyr	agc Ser	cag Gln 55	cta Leu	act Thr	agc Ser	ttg Leu	240
45	gat Asp 60	gta Val	gga Gly	ttt Phe	aac Asn	acc Thr 65	atc	tca Ser	aaa Lys	ctg Leu	gag Glu 70	cca Pro	gaa Glu	ttg Leu	tgc Cys	cag Gln 75	288
50	aaa Lys	ctt Leu	ccc Pro	atg Met	tta Leu 80	aaa Lys	gtt Val	ttg Leu	aac Asn	ctc Leu 85	cag Gln	cac His	aat Asn	gag Glu	cta Leu 90	tct Ser	336
	caa Gln	ctt Leu	tct Ser	gat Asp 95	aaa Lys	acc Thr	ttt Phe	gcc Ala	ttc Phe 100	tgc Cys	acg Thr	aat Asn	ttg Leu	act Thr 105	gaa Glu	ctc Leu	384
55	cat His	ctc Leu	atg Met 110	tcc Ser	aac Asn	tca Ser	atc Ile	cag Gln 115	aaa Lys	att Ile	aaa Lys	aat Asn	aat Asn 120	ccc Pro	ttt Phe	gtc Val	432

	aag Lys	cag Gln 125	aag Lys	aat Asn	tta Leu	atc Ile	aca Thr 130	tta Leu	gat Asp	ctg Leu	tct Ser	cat His 135	aat Asn	ggc Gly	ttg Leu	tca Ser	480
5	tct Ser 140	aca Thr	aaa Lys	tta Leu	gga Gly	act Thr 145	cag Gln	gtt Val	cag Gln	ctg Leu	gaa Glu 150	aat Asn	ctc Leu	caa Gln	gag Glu	ctt Leu 155	528
10	cta Leu	tta Leu	tca Ser	aac Asn	aat Asn' 160	aaa Lys	att Ile	caa Gln	gcg Ala	cta Leu 165	aaa Lys	agt Ser	gaa Glu	gaa Glu	ctg Leu 170	gat Asp	· 576
15	atc Ile	ttt Phe	gcc Ala	aat Asn 175	tca Ser	tct Ser	tta Leu	aaạ Lys	aaa Lys 180	tta Leu	gag Glu	ttg Leu	tca Ser	tcg Ser 185	aat Asn	caa Gln	624
20	att Ile	aaa Lys	gag Glu 190	ttt Phe	tct Ser	cca Pro	GJÀ ààà	tgt Cys 195	ttt Phe	cac His	gca Ala	att Ile	gga Gly 200	aga Arg	tta Leu	ttt Phe	672
20	ggc Gly	ctc Leu 205	ttt Phe	ctg Leu	aac Asn	aat Asn	gtc Val 210	cag Gln	ctg Leu	ggt Gly	ccc Pro	agc Ser 215	ctt Leu	aca Thr	gag Glu	aag Lys	720
25	cta Leu 220	Cys	ttg Leu	gaa Glu	tta Leu	gca Ala 225	aac Asn	aca Thr	agc Ser	att Ile	cgg Arg 230	aat Asn	ctg Leu	tct Ser	ctg Leu	agt Ser 235	768
30	aac Asn	agc Ser	cag Gln	ctg Leu	tcc Ser 240	acc Thr	acc Thr	agc Ser	Asn	aca Thr 245	act Thr	ttc Phe	ttg Leu	gga Gly	cta Leu 250	aag Lys	816
35	tgg Trp	aca Thr	aat Asn	ctc Leu 255	act Thr	atg Met	ctc Leu	gat Asp	ctt Leu 260	tcc Ser	tac Tyr	aac Asn	aac Asn	tta Leu 265	aat Asn	gtg Val	864
40	gtt Val	ggt Gly	aac Asn 270	gat Asp	tcc Ser	ttt Phe	gct Ala	tgg Trp 275	ctt Leu	cca Pro	caa Gln	cta Leu	gaa Glu 280	tat Tyr	ttc Phe	ttc Phe	912
40	cta Leu	gag Glu 285	Tyr	aat Asn	aat Asn	ata Ile	cag Gln 290	His	ttg Leu	ttt Phe	tct Ser	cac Ḥis 295	Ser	ttg Leu	cac His	ggg Gly	960
45	ctt Leu 300	Phe	aat Asn	gtg Val	agg Arg	tac Tyr 305	Leu	aat Asn	ttg Leú	aaa Lys	cgg Arg 310	Ser	ttt Phe	act Thr	aaa Lys	caa Gln 315	1008
50	agt	att	tcc Ser	ctt Leu	gcc Ala 320	Ser	ctc	ccc Pro	aag Lys	att Ile 325	Asp	gat Asp	ttt Phe	tct Ser	ttt Phe 330	cag Gln	1056
55	tg <u>c</u> Trp	cta Lev	aaa Lys	tgt Cys 335	Leu	gag	cac His	ctt Leu	aac Asn 340	Met	gaa Glu	gat Asp	aat Asn	gat Asp 345	Ile	cca Pro	1104
	gg(Gl	ata / Ile	aaa Lys	a ago s Ser	aat Asn	ato Met	tto Phe	aca Thr	: Gly	ttg Lev	ata Ile	aac Asr	cto Lev	aaa Lys	tac Tyr	tta Leu	1152

				350					355					360			•	
	5	agt Ser	cta Leu 365	tcc Ser	aac Asn	tcc Ser	Phe	aca Thr 370	agt Ser	ttg Leu	cga Arg	act Thr	ttg Leu 375	aca Thr	aat Asn	gaa Glu	aca Thr	1200
	10	ttt Phe 380	gta Val	tca Ser	ctt Leu	gct Ala	cat His 385	tct Ser	ccc' Pro	tta Leu	cac His	ata Ile 390	ctc Leu	aac Asn	cta Leu	acc Thr	aag Lys 395	1248
	10	aat Asn	aaa Lys	atc Ile	tca Ser	aaa Lys 400	ata Ile	gag Glu	agt Ser	gat Asp	gct Ala 405	ttc Phe	tct Ser	tgg Trp	ttg Leu	ggc Gly 410	cac His	1296
	15	cta Leu	gaa Glu	gta Val	ctt Leu 415	gac Asp	ctg Leu	ggc Gly	ctt Leu	aat Asn 420	gaa Glu	att Ile	ggg	caa Gln	gaa Glu 425	ctc Leu	aca Thr	1344
	20	ggc	cag Gln	gaa Glu 430	tgg Trp	aga Arg	ggt Gly	cta Leu	gaa Glu 435	aat Asn	att Ile	ttc Phe	gaa Glu	atc Ile 440	tat Tyr	ctt Leu	tcc Ser	1392
	25	tac Tyr	aac Asn 445	aag Lys	tac Tyr	ctg Leu	cag Gln	ctg Leu 450	act Thr	agg Arg	aac Asn	tcc Ser	ttt Phe 455	gcc Ala	ttg Leu	gtc Val	cca Pro	1440
		agc Ser 460	ctt Leu	caa Gln	cga Arg	ctg Leu	atg Met 465	ctc Leu	cga Arg	agg Arg	gtg Val	gcc Ala 470	ctt Leu	aaa Lys	aat Asn	gtg Val	gat Asp 475	1488
	30	agc Ser	tct Ser	cct Pro	tca Ser	cca Pro 480	ttc Phe	cag Gln	cct Pro	ctt Leu	cgt Arg 485	aac Asn	ttg Leu	acc Thr	att Ile	ctg Leu 490	gat Asp	1536
	35	cta Leu	agc Ser	aac Asn	aac Asn 495	aac Asn	ata Ile	gcc Ala	aac Asn	ata Ile 500	aat Asn	gat Asp	gac Asp	atg Met	ttg Leu 505	gag Glu	ggt Gly	1584
	40	ctt Leu	gag Glu	aaa Lys 510	cta Leu	gaa Glu	att Ile	ctc Leu	gat Asp 515	ttg Leu	cag Gln	cat His	aac Asn	aac Asn 520	tta Leu	gca Ala	cgg Arg	1632
•	45	ctc Leu	tgg Trp 525	Lys	cac His	gca Ala	aac Asn	cct Pro 530	ggt Gly	ggt Gly	ccc Pro	att Ile	tat Tyr 535	Phe	cta Leu	aag Lys	ggt Gly	1680
		ctg Leu 540	tct Ser	cac His	ctc Leu	cac His	atc Ile 545	ctt Leu	aac Asn	ttg Leu	gag Glu	tcc Ser 550	Asn	ggc	ttt Phe	gac Asp	gag Glu 555	1728
	50	atc Ile	cca Pro	gtt Val	gag Glu	gtc Val 560	ttc Phe	aag Lys	gat Asp	tta Leu	ttt Phe 565	gaa Glu	cta Leu	aag Lys	atc Ile	atc Ile 570	gat Asp	1776
	55	tta Leu	gga Gly	ttg Leu	aat Asn	aat Asn	tta Leu	aac Asn	aca Thr	ctt Leu	cca Pro	gca Ala	tct Ser	gtc Val	ttt Phe	aat Asn	aat Asn	1824

•	cag Gln	gtg Val	tct Ser 590	cta Leu	aag Lys	tca Ser	ttg Leu	aac Asn 595	ctt Leu	cag Gln	aag Lys	aat Asn	ctc Leu 600	ata Ile	aca Thr	tcc Ser	1872
5	gtt Val	gag Glu 605	aag Lys	aag Lys	gtt Val	ttc Phe	Gly 610	cca Pro	gct Ala	ttc Phe	agg Arg	aac Asn 615	ctg Leu	act Thr	gag Glu	tta Leu	1920
10	gat Asp 620	Met	cgc Arg	ttt Phe	aat Asn	ccc Pro 625	ttt Phe	gat Asp	tgc Cys	acg Thr	tgt Cys 630	gaa Glu	agt Ser	att	gcc Ala	tgg Trp 635	1968
15	ttt Phe	gtt Val	aat Asn	tgg Trp	att Ile 640	aac Asn	gag Glu	acc Thr	cat His	acc Thr 645	aac Asn	atc Ile	cct Pro	gag Glu	ctg Leu 650	tca Ser	2016
20	agc Ser	cac His	tac Tyr	ctt Leu 655	tgc Cys	aac Asn	act Thr	cca Pro	cct Pro 660	cac His	tat Tyr	cat His	ggg Gly	ttc Phe 665	cca Pro	gtg Val	2064
	aga Arg	ctt Leu	ttt Phe 670	Asp	aca Thr	tca Ser	tct Ser	tgc Cys 675	aaa Lys	gac Asp	agt Ser	gcc Ala	ccc Pro 680	ttt Phe	gaa Glu	ctc Leu	2112
25	ttt Phe	ttc Phe 685	atg Met	atc Ile	aat Asn	acc Thr	agt Ser 690	atc Ile	ctg Leu	ttg Leu	att Ile	ttt Phe 695	atc Ile	ttt Phe	att Ile	gta Val	2160
30	ctt Leu 700	ctc Leu	atc Ile	cac His	ttt Phe	gag Glu 705	ggc Gly	tgg Trp	agg Arg	ata Ile	tct Ser 710	ttt Phe	tat Tyr	tgg Trp	aat Asn	gtt Val 715	2208
35	tca Ser	gta Val	cat His	cga Arg	gtt Val 720	ctt Leu	ggt Gly	ttc Phe	aaa Lys	gaa Glu 725	ata Ile	gac Asp	aga Arg	cag Gln	aca Thr 730	gaa Glu	2256
40	cag Gln	ttt Phe	gaa Glu	tat Tyr 735	gca Ala	gca Ala	tat Tyr	ata Ile	att Ile 740	cat His	gcc Ala	tat Tyr	aaa Lys	gat Asp 745	aag Lys	gat Asp	2304
	tgg Trp	gtc Val	tgg Trp 750	gaa Glu	cat His	ttc Phe	tct Ser	tca Ser 755	atg Met	gaa Glu	aag Lys	gaa Glu	gac Asp 760	caa Gln	tct Ser	ctc Leu	2352
45	aaa Lys	ttt Phe 765	tgt Cys	ctg Leu	gaa Glu	gaa Glu	agg Arg 770	gac Asp	ttt Phe	gag Glu	gcg Ala	ggt Gly 775	gtt Val	ttt Phe	gaa Glu	cta Leu	2400
50	gaa Glu 780	gca Ala	att Ile	gtt Val	aac Asn	agc Ser 785	atc Ile	aaa Lys	aga Arg	agc Ser	aga Arg 790	aaa Lys	att Ile	att Ile	ttt Phe	gtt Val 795	2448
55	ata Ile	aca Thr	cac His	cat His	cta Leu 800	tta Leu	aaa Lys	gac Asp	Pro	tta Leu 805	tgc Cys	aaa Lys	aga Arg	ttc Phe	aag Lys 810	gta Val	2496
	cat His	cat His	gca Ala	gtt Val	caa Gln	caa Gln	gct Ala	att Ile	gaa Glu	caa Gln	aat Asn	ctg Leu	gat Asp	tcc Ser	att Ile	ata Ile	2544

PCT/US01/16766 WO 01/90151

815 820 825 ttg gtt ttc ctt gag gag att cca gat tat aaa ctg aac cat gca ctc 2592 Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu 5 tgt ttg cga aga gga atg ttt aaa tct cac tgc atc ttg aac tgg cca 2640 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro 850 10 gtt cag aaa gaa cgg ata ggt gcc ttt cgt cat aaa ttg caa gta gca 2688 Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala 865 870 15 ctt gga tcc aaa aac tct gta cat taa 2715 Leu Gly Ser Lys Asn Ser Val His 880 20 <210> 6 <211> 904 <212> PRT <213> Unknown 25 <400> 6 Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His 30 Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp 15 35 Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu 40 Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser 45 Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu

Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu 140 145 150

His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val

Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser

130

50

55

125

	Leu	Leu	Ser	Asn	Asn 160	Lys	Ile	Gln	Ala	Leu 165	Lys	Ser	Glu	Glu	Leu 170	Asp
5	Ile	Phe	Ala	Asn 175	Ser	Ser	Leu	Lys	Lys 180	Leu	Glu	Leu ,	Ser	Ser 185	Asn	Gln
	Ile	Lys	Glu 190	Phe	Ser	Pro	Gly	Cys 195	Phe	His	Ala [°]	Ile	Gly 200	Arg	Leu	Phe ·
10	Gly	Leu 205	Phe	Leu	Asn'	Asn	Val 210	Gln	Leu	Gly	Pro	Ser 215	Leu	Thr	Glu	Lys
15	Leu 220	Cys	Leu	Glu	Leu	Ala 225	Asn	Thr	Ser	Ile [.]	Arg 230	Asn	Leu	Ser	Leu	Ser 235
13	Asn	Ser	Gln	Leu	Ser 240	Thr	Thr	Ser	Asn	Thr 245	Thr	Phe	Leu	Gly	Leu 250	Lys
20	Trp	Thr	Asn	Leu 255	Thr	Met	Leu	Asp	Leu 260	Ser	Tyr	Asn	Asn	Leu 265	Asn	Val
	Val	Gly	Asn 270	Asp	Ser	Phe	Ala	Trp 275	Leu	Pro	Gln	Leu	Glu 280	Tyr	Phe	Phe
25	Leu	Glu 285	Tyr	Asn	Asn	Ile	Gln 290	His	Leu	Phe	Ser	His 295	Ser	Leu	His	Gly
30	Leu 300	Phe	Asn	Val	Arg	Tyr 305	Leu	Asn	Leu	Lys	Arg 310	Ser	Phe	Thr	Lys	Gln 315
,	Ser	Ile	Ser	Leu	Ala 320	Ser	Leu	Pro	Lys	11e 325	Asp	Asp	Phe	Ser	Phe 330	Gln
35	Trp	Leu	Lys	Cys 335	Leu	Glu	His	Leu	Asn 340	Met	Glu	Asp	Asn	Asp 345	Ile	Pro
	_		350					355					360	Lys		
40	•	365					370					375		Asn		
45	380					385					390			Leu		395
					400					405				Leu	410	
50				415					420					Glu 425		
			430					435					440			
55	-	445					450					455		Leu		
	Ser	Leu	Gln	Arg	Leu	Met	Leu	Arg	Arg	Val	Ala	Leu	Lys	Asn	Val	Asp

	460					465					470					475
5	Ser	Ser	Pro	Ser	Pro 480	Phe	Gln	Pro	Leu	Arg 485	Asn	Leu	Thr	Ile	Leu 490	Asp
5	Leu	Ser	Asn	Asn 495	Asn	Ile	Ala	Asn	Ile 500	Asn	Asp,	Asp	Met	Leu 505	Glu	Gly
10	Leu	Glu	Lys 510.	Leu	Glu _.	Ile	Leu	Asp 515	Leu	Gln	His	Asn	Asn 520	Leu	Ala	Arg
		Trp 525	Lys	His	Ala	Asn	Pro 530	Gly	Gly	Pro	Ile	Tyr 535	Phe	Leu	Lys	Gly
15	Leu 540	Ser	His	Leu	His	Ile 545	Leu	Asn	Leu	Glu	Ser 550	Asn	Gly	Phe	Asp	Glu 555
20	Ile	Pro	Val	Glu	Val 560	Phe	Lys	Asp	Leu	Phe 565	Glu	Leu	Lys	Ile	Ile 570	Asp
20	Leu	Gly	Leu	Asn 575	Asn	Leu	Asn	Thr	Leu 580	Pro	Ala	Ser	Val	Phe 585	Asn	Asn
25	Gln	Val	Ser 590	Leu	Lys	Ser	Leu	Asn 595	Leu	Gln	Lys	Asn	Leu 600	Ile	Thr	Ser
	Val	Glu 605	Lys	Lys	Val	Phe	Gly 610	Pro	Ala	Phe	Arg	Asn 615	Leu	Thr	Glu	Leu
30	Asp 620	Met	Arg	Phe	Asn	Pro 625	Phe	Asp	Cys	Thr	Cys 630	Glu	Ser	Ile	Ala	Trp 635
35	Phe	Val	Asn	Trp	11e 640	Asn	Glu	Thr	His	Thr 645	Asn	Ile	Pro	Glu	Leu 650	Ser
33	Ser	His	Tyr	Leu 655	Cys	Asn	Thr	Pro	Pro 660	His	Tyr	His	Gly	Phe 665	Pro	Val
40	Arg	Leu	Phe 670	Asp	Thr	Ser	Ser	Cys 675	Lys	Asp	Ser	Ala	Pro 680	Phe	Glu	Leu
	Phe	Phe 685	Met	Ile	Asn	Thr	Ser 690	Ile	Leu	Leu	Ile	Phe 695	Ile	Phe	Ile	Val
45	Leu 700	Leu	Ile	His	Phe	Glu 705	Gly	Trp	Arg	Ile	Ser 710	Phe	Tyr	Trp	Asn	Val 715
50	Ser	Val	His	Arg	Val 720	Leu	Gly	Phe	Lys	Glu 725		Asp	Arg	Gln	Thr 730	Glu
30	Gln	Phe	Glu	Tyr 735		Ala	Tyr	Ile	Ile 740		Ala	Tyr	Lys	Asp 745		Asp
55	Trp	Val	Trp 750		His	Phe	Ser	Ser 755		Glu	Lys	Glu	Asp 760	Gln	Ser	Leu
	Lys	Phe	Cys	Leu	Glu	Glu	Arg	Asp	Phe	Glu	Ala	Gly		Phe	Glu	Leu

	Glu 780	Ala	Ile	Val	Asn	·Ser 785	Ile	Lys	Arg	Ser	Arg 790	Lys	Ile	Ile	Phe	Val 795	
5	Ile	Thr	His	His	Leu 800	Leu	Lys	Asp	Pro	Leu 805	Cys	Lys	Arg	Phe	Lys 810	Val	
10	His	His	Ala	Val 815	Gln	Gln	Ala	Ile	Glu 820	Gln	Asn	Leu	Asp	Ser 825		Ile	
	Leu	Val	Phe 830	Leu	Glu	Glu	Ile	Pro 835	Asp	Tyr	Lys	Leu	Asn 840	His	Ala	Leu	
15	Cys	Leu 845	Arg	Arg	Gly	Met	Phe 850	Lys	Ser	His	Cys	Ile 855	Leu	Asn	Trp	Pro	
	Val 860	Gln	Lys	Glu	Arg	Ile 865	Gly	Ala	Phe	Arg	His 870	Lys	Leu	Gln	Val	Ala 875	
20	Leu	Gly	Ser	Lys	Asn 880	Ser	Val	His				•					
25	<212 <212	0> 7 1> 24 2> DN 3> Ur		√n											-		
30	<220 <220	3> De		iptio sapie		f Un}	cnowr	ı Orç	ganis	sm:pı	rimat	:e; s	surmi	ised			
35		1> CI		(2397	7)												
40	atg	0> 7 gag Glu	ctg Leu	aat Asn	ttc Phe 5	tac Tyr	aaa Lys	atc Ile	ccc Pro	gac Asp 10	aac Asn	ctc Leu	ccc Pro	ttc Phe	tca Ser 15	acc Thr	48
45	aag Lys	aac Asn	ctg Leu	gac Asp 20	ctg Leu	agc Ser	ttt Phe	aat Asn	ccc Pro 25	ctg Leu	agg Arg	cat His	tta Leu	ggc Gly 30	agc Ser	tat Tyr	96
20	agc Ser	ttc Phe	ttc Phe 35	agt Ser	ttc Phe	cca Pro	gaa Glu	ctg Leu 40	cag Gln	gtg Val	ctg Leu	gat Asp	tta Leu 45	tcc Ser	agg Arg	tgt Cys	144
50	gaa Glu	atc Ile 50	cag Gln	aca Thr	att Ile	gaa Glu	gat Asp 55	GJ Y Gg G	gca Ala	tat Tyr	cag Gln	agc Ser 60	cta Leu	agc Ser	cac His	ctc. Leu	192
55	tct Ser 65	acc Thr	tta Leu	ata Ile	ttg Leu	aca Thr 70	gga Gly	aac Asn	ccc Pro	atc Ile	cag Gln 75	agt Ser	tta Leu	gcc Ala	ctg Leu	gga Gly 80	240
	gcc	ttt	tct	gga	cta	tca	agt	tta	cag	aag	ctg	gtg	gct	gtg	gag	aca	28.8

	Ala	Phe	Ser	Gly	Leu 85	Ser	Ser	Leu	Gln	Lys 90	Leu	Val	Ala	Val	Glu 95	Thr	
5				tct Ser 100													336
10				aat Asn													384
15				tct Ser								_	-				432
13				caa Gln													480
20				ctc Leu													528
25				cca Pro 180													576
30		_		aat Asn		_	_			_	_			-			624
35				ggt Gly													672
				aac Asn													720
40	-		_	acc Thr		-	_		_		-			_			768
45				att Ile 260													816
50				gtg Val													864
55				tgg Trp													912
رر				ttg Leu													960

5	aac Asn	aaa Lys	ggt Gly	Gly	aat Asn 325	gct Ala	ttt Phe	tca Ser	gaa Glu	gtt Val 330	gat Asp	cta Leu	cca Pro	agc Ser	ctt Leu 335	gag Glu	1008
	ttt Phe	cta Leu	gat Asp	ctc Leu 340	agt Ser	aga Arg	aat Asn	ggc Gly	ttg Leu 345	agt Ser	ttc. Phe	'aaa Lys	ggt Gly	tgc Cys 350	tgt Cys	tct Ser	1056
10	caa Gln	agt Ser	gat Asp 355	ttt Phe	ggġ Gly	aca Thr	acc Thr	agc Ser 360	cta Leu	aag Lys	tat Tyr	tta Leu	ġat Asp 365	ctg Leu	agc Ser	ttc Phe	1104
15	aat Asn	ggt Gly 370	gtt Val	att Ile	acc Thr	atg Met	agt Ser 375	tca Ser	aac Asn	ttc Phe	ttg Leu	ggc Gly 380	tta Leu	gaa Glu	caa Gln	cta Leu	1152
20	Glu 385	His	Leu	gat Asp	Phe	Gln 390	His	Ser	Asn	Leu	Lys 395	Gln	Met	Ser	Glu	Phe 400	1200
25	Ser	Val	Phe	cta Leu	Ser 405	Leu	Arg	Asn	Leu	Ile 410	Tyr	Leu	Asp	Ile	Ser 415	His	1248
	Thr	His	Thr	aga Arg 420	Val	Ala	Phe	Asn	Gly 425	Ile	Phe	Asn	Gly	Leu 430	Ser	Ser	1296
30	Leu	Glu	Val 435	ttg Leu	Lys	Met	Ala	Gly 440	Asn	Ser	Phe	Gln	Glu 445	Asn	Phe	Leu	1344
35	Pro	Asp 450	Ile	ttc Phe	Thr	Glu	Leu 455	Arg	Asn	Leu	Thr	Phe 460	Leu	Asp	Leu	Ser	1392
40	Gln 465	Cys	Gln	ctg Leu	Glu	Gln 470	Leu	Ser	Pro	Thr	Ala 475	Phe	Asn	Ser	Leu	Ser 480	1440
45	Ser	Leu	Gln	gta Val	Leu 485	Asn	Met	Ser	His	Asn 490	Asn	Phe	Phe ·	Ser	Leu 495	Asp	1488
	acg Thr	ttt Phe	cct Pro	Tyr 500	aag Lys	tgt Cys	ctg Leu	aac Asn	tcc Ser 505	ctc Leu	cag Gln	gtt Val	ctt Leu	gat Asp 510	tac Tyr	agt Ser	1536
50	ctc Leu	aat Asn	cac His 515	ata Ile	atg Met	act Thr	tcc Ser	aaa Lys 520	aaa Lys	cag Gln	gaa Glu	cta Leu	cag Gln 525	cat His	ttt Phe	cca Pro	1584
55	Ser	agt Ser 530	cta Leu	gct Ala	ttc Phe	tta Leu	aat Asn 535	ctt Leu	act Thr	cag Gln	aat Asn	gac Asp 540	ttt Phe	gct Ala	tgt Cys	act Thr	1632
	tgt	gaa	cac	cag	agt	ttc	ctg	caa	tgg	atc	aag	gac	cag	agg	cag	ctc	1680

	Cys 545	Glu	His	Gln	Ser	Phe 550		Gln	Trp	Ile	Lys 555		Gln	Arg	Gln	Leu 560	
5	ttg Leu	gtg Val	gaa Glu	gtt Val	gaa Glu 565	cga Arg	atg Met	gaa Glu	tgt Cys	gca Ala 570	aca Thr	cct Pro	tca Ser	gat Asp	aag Lys 575	cag Gln	1728
10	ggc Gly	atg Met	cct Pro	gtg Val 580	ctg Leu	agt Ser	ttg Leu	aat Asn	atc Ile 585	acc Thr	tgt Cys	cag Gln	atg Met	aat Asn 590	aag Lys	acc Thr	1776
15	atc Ile	att Ile	ggt Gly 595	gtg Val	tcg Ser	gtc Val	ctc Leu	agt Ser 600	gtg Val	ctt Leu	gta Val	gta Val	tct Ser 605	gtt Val	gta Val	gca Ala	1824
	gtt Val	ctg Leu 610	gtc Val	tat Tyr	aag Lys	ttc Phe	tat Tyr 615	ttt Phe	cac Kis	ctg Leu	atg Met	ctt Leu 620	ctt Leu	gct Ala	ggc Gly	tgc Cys	1872
20	ata Ile 625	aag Lys	tat Tyr	ggt Gly	aga Arg	ggt Gly 630	gaa Glu	aac Asn	atc Ile	tat Tyr	gat Asp 635	gcc Ala	ttt Phe	gtt Val	atc Ile	tac Tyr 640	1920
25	tca Ser	agc Ser	cag Gln	gat Asp	gag Glu 645	gac Asp	tgg Trp	gta Val	agg Arg	aat Asn 650	gag Glu	cta Leu	gta Val	aag Lys	aat Asn 655	tta Leu	1968
30	gaa Glu	gaa Glu	Gly ggg	gtg Val 660	cct Pro	cca Pro	ttt Phe	cag Gln	ctc Leu 665	tgc Cys	ctt Leu	cac His	tac Tyr	aga Arg 670	gac Asp	ttt Phe	2016
35	att	ccc Pro	ggt Gly 675	gtg Val	gcc Ala	att Ile	gct Ala	gcc Ala 680	aac Asn	atc Ile	atc Ile	cat His	gaa Glu 685	ggt Gly	ttc Phe	cat His	2064
	aaa Lys	agc Ser 690	cga Arg	aag Lys	gtg Val	att Ile	gtt Val 695	gtg Val	gtg Val	tcc Ser	cag Gln	cac His 700	ttc Phe	atc Ile	cag Gln	agc Ser	2112
40	cgc Arg 705	tgg Trp	tgt Cys	atc Ile	ttt Phe	gaa Glu 710	tat Tyr	gag Glu	att Ile	gct Ala	cag Gln 715	acc Thr	tgg Trp	cag Gln	ttt Phe	ctg Leu 720	2160
45	agc Ser	agt Ser	cgt Arg	gct Ala	ggt Gly 725	atc Ile	atc Ile	ttc Phe	att Ile	gtc Val 730	ctg Leu	cag Gln	aag Lys	gtg Val	gag Glu 735	aag Lys	2208
50	acc Thr	ctg Leu	ctc Leu	agg Arg 740	cag Gln	cag Gln	gtg Val	gag Glu	ctg Leu 745	tac Tyr	cgc Arg	ctt Leu	ctc Leu	agc Ser 750	agg Arg	aac Asn	2256 ·
55	act Thr	tac Tyr	ctg Leu 755	gag Glu	tgg Trp	gag Glu	gac Asp	agt Ser 760	gtc Val	ctg Leu	GJ A aaa	cgg Arg	cac His 765	atc Ile	ttc Phe	tgg Trp	2304
	aga Arg	cga Arg 770	ctc Leu	aga Arg	aaa Lys	gcc Ala	ctg Leu 775	ctg Leu	gat Asp	ggt Gly	aaa Lys	tca Ser 780	tgg Trp	aat Asn	cca Pro	gaa Glu	2352

5	gga Gly 785	aca Thr	gtg Val	ggt Gly	aca Thr	gga Gly 790	tgc Cys	aat Asn	tgg Trp	cag Gln	gaa Glu 795	gca Ala	aca Thr	Ser	Ile	tga	240
10	<210 <211 <212 <213	> 79 > PR	T	m								•					
10	< 400	> 8		Asn	Pho	ጥህድ	T.ve	Tle	Pro	Asp	Asn	Leu	Pro	Phe	Ser	Thr	
15	1				5					10					15		
	-		•	Asp 20					25					30			
20			35	Ser				40					45				
	Glu	Ile 50	Gln	Thr	Ile	Glu	Asp 55	Gly	Ala	Tyr	Gln	Ser 60	Leu	Ser	His	Leu	
25	Ser 65	Thr	Leu	Ile	Leu	Thr 70	Gly	Asn	Pro	Ile	Gln 75	Ser	Leu	Ala	Leu	Gly 80	
2.0	Ala	Phe	Ser	Gly	Leu 85	Ser	Ser	Leu	Gln	Lys 90	Leu	Val	Ala	Val	Glu 95	Thr	
30	Asn	Leu	Ala	Ser 100	Leu	Glu	Asn	Phe	Pro 105	Ile	Gly	His	Leu	Lys 110	Thr	Leu	
35	Lys	Glu	Leu 115	Asn	Val	Ala	His	Asn 120	Leu	Ile	Gln	Ser	Phe 125	Lys	Leu	Pro	
	Glu	Tyr 130		Ser	Asn	Leu	Thr 135		Leu	Glu	His	Leu 140	Asp	Leu	Ser	Ser	
40	Asn 145	_	Ile	Gln	Ser	Ile 150	Tyr	Cys	Thr	Asp	Leu 155		Val	Leu	His	Gln 160	
4 =	Met	Pro	Leu	Leu	Asn 165	Leu	Ser	Leu	Asp	Leu 170		Leu	Asn	Pro	Met 175	Asn	
45	Phe	Ile	Gln	Pro 180		Ala	Phe	Lys	Glu 185		Arg	Leu	His	Lys 190	Leu	Thr	
50	Leu	Arg	Asn 195	Asn	Phe	Asp	Ser	Leu 200		Val	Met	Lys	Thr 205	Cys	Ile	Gln	
	Gly	Leu 210		Gly	Leu	Glu	Val 215		Arg	Leu	. Val	Leu 220	Gly	Glu	Phe	Arg	
55	Asn 225		Gly	Asn	Leu	Glu 230		: Phe	a Asp	Lys	Ser 235	Ala	Leu	Glu	Gly	Leu 240	
	Cys	Asn	Leu	ı Thr	: Ile	Glu	Glu	ı Phe	arç	Lei	ı Ala	а Туг	Let	ı Asp	Tyr	Tyr	

245 250 255

5	Leu	Asp	Asp	Ile 260	Ile	Asp	Leu	Phe	Asn 265	Cys	Leu	Thr	Asn	Val 270	Ser	Ser
5	Phe	Ser	Leu 275	Val	Ser	Val	Thr	Ile 280	Glu	Arg	Val	Lys	Asp 285	Phe	Ser	Tyr
10	Asn	Phe 290	Gly	Trp	Gln	His	Leu 295	Glu	Leu	Val	Asn	Cys 300	Lys	Phe	Gly	Gln
	Phe 305	Pro	Thr	Leu	Lys	Leu 310	Lys	Ser	Leu	Lys	Arg 315	Leu	Thr	Phe	Thr	Ser 320
15	Asn	Lys	Gly	Gly	Asn 325	Ala	Phe	Ser	Glu	Val 330	Asp	Leu	Pro	Ser	Leu 335	Glu
20	Phe	Leu	Asp	Leu 340	Ser	Arg	Asn	Gly	Leu 345	Ser	Phe	Lys	Gly	Cys 350	Суѕ	Ser
20	Gln	Ser	Asp 355	Phe	Gly	Thr	Thr	Ser 360	Leu	Lÿs	Tyr	Leu	Asp 365	Leu	Ser	Phe
25	Asn	Gly 370	Val	Ile	Thr	Met	Ser 375	Ser	Asn	Phe	Leu	Gly 380	Leu	Glu	Gln _	Leu
	Glu 385	His	Leu	Asp	Phe	Gln 390	His	Ser	Asn	Leu	Lys 395	Gln	Met	Ser	Glu	Phe 400
30	Ser	Val	Phe	Leu	Ser 405	Leu	Arg	Asn	Leu.	Ile 410	Tyr	Leu	Asp	Ile	Ser 415	His
35	Thr	His	Thr	Arg 420	Val	Ala	Phe	Asn	Gly 425	Ile	Phe	Asn	Gly	Leu 430	Ser	Ser
	Leu	Glu	Val 435	Leu	Lys	Met	Ala	Gly 440	Asn	Ser	Phe	Gln	Glu 445	Asn	Phe	Leu -
40		Asp 450	Ile	Phe	Thr	Glu	Leu 455	Arg	Asn	Leu	Thr	Phe 460	Leu	Asp	Leu	Ser
	Gln 465	Cys	Gln	Leu	Glu	Gln 470	Leu	Ser	Pro	Thr	Ala. 475	Phe	Asn	Ser	Leu	Ser 480
45	Ser	Leu	Gln	Val	Leu 485	Asn	Met	Ser	His	Asn 490	Asn	Phe	Phe	Ser	Leu 495	Asp
50	Thr	Phe	Pro	Tyr 500	Lys	Суѕ	Leu	Asn	Ser 505	Leu	Gln	Val	Leu	Asp 510	Tyr	Ser
	Leu	Asn	His 515	Ile	Met	Thr	Ser	Lys 520	Lys	Gln	Glu	Leu	Gln 525	His	Phe	Pro
55	Ser	Ser 530	Leu	Ala	Phe	Leu	Asn 535	Leu	Thṛ	Gln	Asn	Asp 540	Phe	Ala	Cys	Thr
	Cys 545	Glu	His	Gln	Ser	Phe 550	Leu	Gln	Trp	Ile	Lys 555	Asp	Gln	Arg	Gln	Leu 560

	Leu	Val	Glu	Val	Glu 565	Arg	Met	Glu	Cys	Ala 570	Thr	Pro	Ser	Asp	Lys 575	Gln
5	Gly	Met	Pro	Val 580	Leu	Ser	Leu	Asn	Ile 585	Thr	Cys	Gln	Met	Asn 590	Lys	Thr
10	Ile	Ile	Gly 595	Val	Ser	Val	Leu	Ser 600		Leu	Val	Val	Ser 605	Val	Val	Ala ·
	Val	Leu 610	Val	Tyr	Lys	Phe	Tyr 615	Phe	His	Leu	Met	Leu 620	Leu	Ala	Gly	Cys
15	Ile 625	ГÀЗ	Tyr	Gly	Arg	Gly 630	Glu	Asn	Ile	Tyr	Asp 635	Ala	Phe	Val	Ile	Tyr 640
	Ser	Ser	Gln	Asp	Glu 645	Asp	Trp	Val	Arg	Asn 650	Glu	Leu	Val	Lys	Asn 655	Leu
20	Glu	Glu	Gly	Val 660	Pro	Pro	Phe	Gln	Leu 665	Cys	Leu	His	Tyr	Arg 670	Asp	Phe
25	Ile	Pro	Gly 675	Val	Ala	Ile	Ala	Ala 680	Asn	Ile	Ile	His	Glu 685	Gly	Phe	His
	Lys	Ser 690	Arg	Lys	Val	Ile	Val 695	Val	Val	Ser	Gln	His 700	Phe	Ile	Gln	Ser
30	Arg 705	Trp	Cys	Ile	Phe	Glu 710	Tyr	Glu	Ile	Ala	Gln 715	Thr	Trp	Gln	Phe	Leu 720
	Ser	Ser	Arg	Ala	Gly 725	Ile	Ile	Phe	Ile	Val 730	Leu	Gln	Lys	Val	Glu 735	Lys
35	Thr	Leu	Leu	Arg 740	Gln	Gln	Val	Glu	Leu 745	Tyr	Arg	Leu		Ser 750	Arg	Asn
40	Thr	Tyr	Leu 755	Glu	Trp	Glu	Asp	Ser 760	Val	Leu	Gly	Arg	His 765	Ile	Phe	Trp
	Arg	Arg 770	Leu	Arg	Lys	Ala	Leu 775	Leu	Asp	Gly	Lys	Ser 780		Asn	Pro	Glu
45	Gly 785	Thr	Val	Gly	Thr	Gly 790	Cys	Asn	Trp	Gln	Glu 795	Ala	Thr	Ser	Ile	
50 [*]	<213 <212	0> 9 L> 12 2> Di 3> Ur		n,												
55	<220 <223	3> De	escri			t Unl	cnowi	n Org	ganis	m:pr	rimat	ce; s	surmi	ised		٠
	<220)>	20													

<222> (1)..(1095)

<400> 9 tgt tgg gat gtt ttt gag gga ctt tct cat ctt caa gtt ctg tat ttg Cys Trp Asp Val Phe Glu Gly Leu Ser His Leu Gln Val Leu Tyr Leu 10 Asn His Asn Tyr Leu Asn Ser Leu Pro Pro Gly Val Phe Ser His Leu 10 20 act gca tta agg gga cta agc ctc aac tcc aac agg ctg aca gtt ctt Thr Ala Leu Arg Gly Leu Ser Leu Asn Ser Asn Arg Leu Thr Val Leu 35 15 tct cac aat gat tta cct gct aat tta gag atc ctg gac ata tcc agg 192 Ser His Asn Asp Leu Pro Ala Asn Leu Glu Ile Leu Asp Ile Ser Arg 50 55 aac cag ctc cta gct cct aat cct gat gta ttt gta tca ctt agt gtc 20 240 Asn Gln Leu Leu Ala Pro Asn Pro Asp Val Phe Val Ser Leu Ser Val 70 ttg gat ata act cat aac aag ttc att tgt gaa tgt gaa ctt agc act 288 25 Leu Asp Ile Thr His Asn Lys Phe Ile Cys Glu Cys Glu Leu Ser Thr ttt atc aat tgg ctt aat cac acc aat gtc act ata gct ggg cct cct 336 Phe Ile Asn Trp Leu Asn His Thr Asn Val Thr Ile Ala Gly Pro Pro 30 100 gca gac ata tat tgt gtg tac cct gac tcg ttc tct ggg gtt tcc ctc 384 Ala Asp Ile Tyr Cys Val Tyr Pro Asp Ser Phe Ser Gly Val Ser Leu 120 35 ttc tct ctt tcc acg gaa ggt tgt gat gaa gag gaa gtc tta aag tcc 432 Phe Ser Leu Ser Thr Glu Gly Cys Asp Glu Glu Glu Val Leu Lys Ser 130 135 40 cta aag ttc tcc ctt ttc att gta tgc act gtc act ctg act ctg ttc 480 Leu Lys Phe Ser Leu Phe Ile Val Cys Thr Val Thr Leu Thr Leu Phe 145 150 155 ctc atg acc atc ctc ada gtc aca aag ttc cgg ggc ttc tgt ttt atc 528 Leu Met Thr Ile Leu Thr Val Thr Lys Phe Arg Gly Phe Cys Phe Ile 45 165 170 tgt tat aag aca gcc cag aga ctg gtg ttc aag gac cat ccc cag ggc Cys Tyr Lys Thr Ala Gln Arg Leu Val Phe Lys Asp His Pro Gln Gly 50 180 aca gaa cct gat atg tac aaa tat gat gcc tat ttg tgc ttc agc agc 624 Thr Glu Pro Asp Met Tyr Lys Tyr Asp Ala Tyr Leu Cys Phe Ser Ser 195 55 aaa gac ttc aca tgg gtg cag aat gct ttg ctc aaa cac ctg gac act Lys Asp Phe Thr Trp Val Gln Asn Ala Leu Leu Lys His Leu Asp Thr 210 215

5	caa Gln 225	tac Tyr	agt Ser	gac Asp	caa Gln	aac Asn 230	aga Arg	ttc Phe	aac Asn	ctg Leu	tgc Cys 235	ttt Phe	gaa Glu	gaa Glu	aga Arg	gac Asp 240	720
						aac Asn											768
10						gtt Val											816
15	ggc Gly	tgg Trp	tgc Cys 275	ctt Leu	gaa Glu	gcc Ala	ttc Phe	agt Ser 280	tat Tyr	gcc Ala	cag Gln	ggc Gly	agg Arg 285	tgc Cys	tta Leu	tct Ser	864
20	gac Asp	ctt Leu 290	aac Asn	agt Ser	gct Ala	ctc Leu	atc Ile 295	atg Met	gtg Val	gtg Val	gtt Val	300 GJÀ āāā	tcc Ser	ttg Leu	tcc Ser	cag Gln	912
25	tac Tyr 305	cag Gln	ttg Leu	atg Met	aaa Lys	cat His 310	caa Gln	tcc Ser	atc Ile	aga Arg	ggc Gly 315	ttt Phe	gta Val	cag Gln	aaa Lys	cag Gln 320	960
23	cag Gln	tat Tyr	ttg Leu	agg Arg	tgg Trp 325	cct Pro	gag Glu	gat Asp	ctc Leu	cag Gln 330	gat Asp	gtt Val	ggc Gly	tgg Trp	ttt Phe 335	ctt Leu	1008
30	cat His	aaa Lys	ctc Leu	tct Ser 340	caa Gln	cag Gln	ata Ile	cta Leu	aag Lys 345	aaa Lys	gaa Glu	aag Lys	gaa Glu	aag Lys 350	aag Lys	aaa Lys	1056
35	gac Asp	aat Asn	aac Asn 355	att Ile	ccg Pro	ttg Leu	caa Gln	act Thr 360	gta Val	gca Ala	acc Thr	atc Ile	tcc Ser 365	taat	caaa	ıgg	1105
	agca	attt	cc a	actt	atct	c aa	gcca	acaaa	ı taa	ctct	tca	cttt	gtat	tt g	cacc	aagtt	1165
40	atca	attt	gg ç	gtc	ctct	ct go	gaggt	tttt	ttt	ttct	ttt	tgct	1225				
	aaat	ctct	ca a	tttt	cgta	at ca	aaaa	aaaa	a aaa	aaaa	aaa	tggc	ggco	ge			1275
45	<211 <212)> 10 l> 36 ?> PF 3> Ur	55 ?T	vn '													
50)> 10 Trp		Val	Phe 5	Glu	Gly	Leu	Ser	His 10	Leu	Gln	Val	Leu	Tyr 15	Leu	٠
55	Asn	His	Asn	Tyr 20	Leu	Asn	Ser	Leu	Pro 25	Pro	Gly	Val	Phe	Ser 30	His	Leu	
	Thr	Ala	Leu 35	Arg	Gly	Leu	Ser	Leu 40	Asn	Ser	Asn	Arg	Leu 45	Thr	Val	Leu	

	Ser	His 50	Asn	Asp	Leu	Pro	Ala 55	Asn	Leu	Glu	Ile	Leu 60	Asp	Ile	Ser	Arg
5	Asn 65	Gln	Leu	Leu	Ala	Pro 70	Asn	Pro	Asp	Val	Phe 75 _,		Ser	Leu	Ser	Val 80
10	Leu	Asp	Ile	Thr	His 85	Asn	Lys	Phe	Ile	Cys 90	Glu	Суѕ	Glu	Leu	Ser 95	Thr
10	Phe	Ile	Asn	Trp 100	Leu	Asn	His	Thr	Asn 105	Val	Thr	Ile	Ala	Gly 110	Pro	Pro
15	Ala	Asp	Ile 115	Tyr	Cys	Val	Tyr	Pro 120	Asp	Ser	Phe	Ser	Gly 125	Val	Ser	Leu
	Phe	Ser 130	Leu	Ser	Thr	Glu	Gly 135	Cys	Asp	Glu	Glu	Glu 140	Val	Leu	Lys	Ser
20	Leu 145	Lys	Phe	Ser	Leu	Phe 150	Ile	Val	Cys	Thr	Val 155	Thr	Leu	Thr	Leu	Phe 160
25	Leu	Met	Thr	Ile	Leu 165	Thr	Val	Thr	Lys	Phe 170	Arg	Gly	Phe	_	Phe 175	Ile
	Cys	Tyr	Lys	Thr 180	Ala	Gln	Arg	Leu	Val 185	Phe	Lys	Asp	His	Pro 190	Gln	Gly
30	Thr	Glu	Pro 195	Asp	Met	Tyr	Lys	Tyr 200	Asp	Ala	Tyr	Leu	Cys 205	Phe	Ser	Ser
	Lys	Asp 210	Phe	Thr	Trp	Val	Gln 215	Asn	Ala	Leu	Leu	Lys 220	His	Leu	Asp	Thr
35	Gln 225	Tyr	Ser	Asp	Gln	Asn 230	Arg	Phe	Asn	Leu	Cys 235	Phe	Glu	Glu	Arg.	Asp 240
40	Phe	Val	Pro	Gly	Glu 245	Asn	Arg	Ile	Ala	Asn 250	Ile	Gln	Asp	Ala	Ile 255	Trp
	Asn	Ser	Arg	Lys 260	Ile	Val	Cys	Leu	Val 265	Ser	Arg	His	Phe	Leu 270	Arg	Asp
45	Gly	Trp	Cys 275	Leu	Glu	Ala	Phe	Ser 280	Tyr	Ala	Gln	Gly	Arg 285	Cys	Leu	Ser
	Asp	Leu 290	Asn	Ser	Ala	Leu	Ile 295	Met	Val	Val	Val	Gly 300	Ser	Leu	Ser	Gln
50	Tyr 305	Gln	Leu	Met	Lys	His 310	Gln	Ser	Ile	Arg	Gly 315	Phe	Val	Gln	Lys	Gln 320
55	Gln	Tyr	Leu	Arg	Trp 325	Pro	Glu	Asp	Leu	Gln 330	Asp	Val	Gly	Trp	Phe 335	Leu
د ر	His	Lys	Leu	Ser 340	Gln	Gln	Ile	Leu	Lys 345	Lys	Glu	Lys	Glu	Lys 350	Lys	Lys

Asp Asn Asn Ile Pro Leu Gln Thr Val Ala Thr Ile Ser 355 360 365

5	<210> 11 <211> 3138 <212> DNA <213> Unknown															
10	<220> <223> Description of Unknown Organism:primate; surmised Homo sapiens															
15	<220> <221> CDS <222> (1)(3135)															
20	<220> <221> mat_peptide <222> (67)(3135)															
25	<400> atg tg Met Tr	g aca	Leu	aag Lys	aga Arg	cta Leu	att Ile -15	Leu	atc Ile	ctt Leu	ttt Phe	aac Asn -10	ata Ile	atc Ile	cta Leu	48
30	att tc Ile Se	r Lys	ctc Leu	ctt Leu	ggg Gly -1	gct Ala 1	aga Arg	tgg Trp	ttt Phe	cct Pro 5	aaa Lys	act Thr	ctg Leu	ccc Pro	tgt Cys 10	96
	gat gt Asp Va	c act l Thr	ctg Leu	gat Asp 15	gtt Val	cca Pro	aag Lys	aac Asn	cat. His 20	gtg Val	atc Ile	gtg Val	gac Asp	tgc Cys 25	aca Thr	144
	gac aa Asp Ly	g cat s His	ttg Leu 30	aca Thr	gaa Glu	att Ile	cct Pro	gga Gly 35	ggt Gly	att Ile	ccc Pro	acg Thr	aac Asn 40	acc Thr	acg Thr	192
40	aac ct Asn Le	acc Thr 45	ctc Leu	acc Thr	att Ile	aac Asn	cac His 50	ata Ile	cca Pro	gac Asp	atc	tcc Ser 55	cca Pro	gcg Ala	tcc Ser	240
45	ttt cad Phe Hi:	s Arg	ctg Leu	gac Asp	cat His	ctg Leu 65	gta Val	gag Glu	atc Ile	gat Asp	ttc Phe 70	aga Arg	tgc Cys	aac Asn	tgt Cys	288
50	gta com Val Pro 75	att o Ile	cca Pro	ctg Leu	80 GJA aaa	tca Ser	aaa Lys	aac Asn	aac Asn	atg Met 85	tgc Cys	atc Ile	aag Lys	agg Arg	ctg Leu 90	336
	cag att	aaa Lys	ccc Pro	aga Arg 95	agc Ser	ttt Phe	agt Ser	gga Gly	ctc Leu 100	act Thr	tat Tyr	tta Leu	aaa Lys	tcc Ser 105	ctt Leu	384
55	tac cto	g gat 1 Asp	gga Gly 110	aac Asn	cag Gln	cta Leu	cta Leu	gag Glu 115	ata Ile	ccg Pro	cag Gln	ggc Gly	ctc Leu 120	ccg Pro	cct Pro	4,32

													ttt Phe 135				480
5													ctc Leu				528
10													tat Tyr				576
15													ctc Leu				624
20													tct Ser				672
													caa Gln 215				720
25													agt Ser				768
30													tgt Cys				816
35	tct Ser	ccc Pro	cta Leu	cag Gln	atc Ile 255	cct Pro	gta Val	aat Asn	gct Ala	ttt Phe 260	gat Asp	gcg Ala	ctg Leu	aca Thr	gaa Glu 265	tta Leu	864
40													gtg Val			aga Arg	912
													ctg Leu 295				960
45	ttc Phe	ttg Leu 300	gcc Ala	aaa Lys	gaa Glu	att Ile	ggg Gly 305	gat Asp	gct Ala	aaa Lys	ttt Phe	ctg Leu 310	cat His	ttt Phe	ctc Leu	ccc Pro	1008
50													ctt Leu				1056
55											Ser		ctg Leu				1104
													ttg Leu				1152

350 355 360

						•			•								
5	aac Asn	ctc Leu	tcg Ser 365	cca Pro	tta Leu	cat His	aat Asn	ctt Leu 370	Gln	aat Asn	ctt Leu	gaa Glu	gtt Val 375	Leu	gat Asp	ctt Leu	1200
	ggc Gly	act Thr 380	aac Asn	ttt Phe	ata Ile	aaa Lys	att Ile 385	Ala	aac Asn	ctc Leu	agc Se <i>r</i>	atg Met 390	ttt Phe	aaa Lys	caa Gln	ttt Phe	1248
	aaa Lys 395	Arg	ctg Leu	aaa Lys	gtc Val	ata Ile 400	gat Asp	ctt Leu	tca Ser	gtg Val	aat Asn 405	aaa Lys	ata Ile	tca Ser	cct Pro	tca Ser 410	1296
15	gga Gly	gat Asp	tca Ser	agt Ser	gaa Glu 415	gtt Val	Gly	ttc Phe	tgc Cys	tca Ser 420	aat Asn	gcc Ala	aga Arg	act Thr	tct Ser 425	gta Val	1344
20	gaa Glu	agt Ser	tat Tyr	gaa Glu 430	ccc Pro	cag Gln	gtc Val	ctg Leu	gaa Glu 435	caa Gln	tta Leu	cat His	tat Tyr	ttc Phe 440	aga Arg	tat Tyr	1392
25	gat Asp	aag Lys	tat Tyr 445	gca Ala	agg Arg	agt Ser	tgc Cys	aga Arg 450	ttc Phe	aaa Lys	aac Asn	aaa Lys	gag Glu 455	gct Ala	tct Ser	ttc Phe	1440
30	atg Met	tct Ser 460	gtt Val	aat Asn	gaa Glu	agc Ser	tgc Cys 465	tac Tyr	aag Lys	tat Tyr	ggg Gly	cag Gln 470	acc Thr	ttg Leu	gat Asp	cta Leu	1488
	agt Ser 475	aaa Lys	aat Asn	agt Ser	ata Ile	ttt Phe 480	ttt Phe	gtc Val	aag Lys	tcc Ser	tct Ser 485	gat Asp	ttt Phe	cag Gln	cat His	ctt Leu 490	1536
35	tct Ser	ttc Phe	ctc Leu	aaa Lys	tgc Cys 495	ctg Leu	aat Asn	ctg Leu	tca Ser	gga Gly 500	aat Asn	ctc Leu	att Ile	agc Ser	caa Gln 505	act Thr	1584
40	ctt Leu	aat Asn	ggc Gly	agt Ser 510	gaa Glu	ttc Phe	caa Gln	cct Pro	tta Leu 515	gca Ala	gag Glu	ctg Leu	aga Arg	tat Tyr 520	ttg Leu	gac Asp	1632
45	ttc Phe	tcc Ser	aac Asn 525	aac Asn	cgg Arg	ctt Leu	gat Asp	tta Leu 530	ctc Leu	cat His	tca Ser	aca Thr	gca Ala 535	ttt Phe	gaa Glu	gag Glu	1680
50	ctt Leu	cac His 540	aaa Lys	ctg Leu	gaa Glu	gtt Val	ctg Leu 545	Asp	ata Ile	agc Ser	agt Ser	aat Asn 550	agc Ser	cat His	tat Tyr	ttt Phe	1728
	caa Gln .555	tca Ser	gaa Glu	gga Gly	att Ile	act Thr 560	cat His	atg Met	cta Leu	aac Asn	ttt Phe 565	acc Thr	aag Lys	aac Asn	cta Leu	aag Lys 570	1776
55	gtt Val	ctg Leu	cag Gln	aaa Lys	ctg Leu 575	atg Met	atg Met	aac Asn	gac Asp	aat Asn 580	gac Asp	atc Ile	tct Ser	tcc Ser	tcc Ser 585	acc Thr	1824

		agg Arg														1872
5		cac His					Trp									1920
10		ttc Phe 620														1968
15		cta Leu														2016
20		aag Lys														2064
20		aaa Lys														2112
25		caa Gln														2160
30		aag Lys 700														2208
35		ttt Phe														2256
40		aaa Lys														2304
		aat Asn														2352
45		gat Asp														2400
50	att Ile	cct Pro 780	tac Tyr	ctg Leu	gcc Ala	aca Thr	gat Asp 785	gtg Val	act Thr	tgt Cys	gtg Val	ggg Gly 790	cca Pro	gga Gly	gca Ala	2448
55		ggc Gly														2496
		act Thr														2544

815 820 825

					913					820					825		
5	ctc Leu	atg Met	gtg Val	atg Met 830	atg Met	aca Thr	gca Ala	agt Ser	cac His 835	ctc Leu	tat Tyr	ttc Phe	tgg Trp	gat Asp 840	gtg Val	tgg Trp	2592
10	tat Tyr	att Ile	tac Tyr 845	cat His	ttc Phe	tgt Cys	aag Lys	gcc Ala 850	aag Lys	ata Ile	aag Lys	GJÅ aaa	tat Tyr 855	cag Gln	cgt Arg	cta Leu	2640
	ata Ile	tca Ser 860	cca Pro	gac Asp	tgt Cys	tgc Cys	tat Tyr 865	gat Asp	gct Ala	ttt Phe	att Ile	gtg Val 870	tat Tyr	gac Asp	act Thr	aaa Lys	2688
15	gac Asp 875	cca Pro	gct Ala	gtg Val	açc Thr	gag Glu 880	tgg Trp	gtt Val	ttg Leu	gct Ala	gag Glu 885	ctg Leu	gtg Val	gcc Ala	aaa Lys	ctg Leu 890	2736
20	gaa Glu	gac Asp	cca Pro	aga Arg	gag Glu 895	aaa Lys	cat His	ttt Phe	aat Asn	tta Leu 900	tgt Cys	ctc Leu	gag Glu	gaa Glu	agg Arg 905	gac Asp	2784
25	tgg Trp	tta Leu	cca Pro	910 GJ A āāā	cag Gln	cca Pro	gtt Val	ctg Leu	gaa Glu 915	aac Asn	ctt Leu	tcc Ser	cag Gln	agc Ser 920	ata Ile	cag Gln	2832
30	ctt Leu	agc Ser	aaa Lys 925	aag Lys	a <i>c</i> a Thr	gtg Val	ttt Phe	gtg Val 930	atg Met	aca Thr	gac Asp	aag Lys	tat Tyr 935	gca Ala	aag Lys	act Thr	2880
	gaa Glu	aat Asn 940	ttt Phe	aag Lys	ata Ile	gca Ala	ttt Phe 945	tac Tyr	ttg Leu	tcc Ser	cat His	cag Gln 950	agg Arg	ctc Leu	atg Met	gat Asp	2928
35	gaa Glu 955	aaa Lys	gtt Val	gat Asp	gtg Val	att Ile 960	atc Ile	ttg Leu	ata Ile	ttt Phe	ctt Leu 965	gag Glu	aag Lys	ccc Pro	ttt Phe	cag Gln 970	2976
40	aag Lys	tcc Ser	aag Lys	ttc Phe	ctc Leu 975	cag Gln	ctc Leu	cgg Arg	aaa Lys	agg Arg 980	ctc Leu	tgt Cys	ggg ggg	agt Ser	tct Ser 985	gtc Val	3024
45	ctt Leu	gag Glu	tgg Trp	cca Pro 990	aca Thr	aac Asn	ccg Pro	caa Gln	gct Ala 995	cac His	cca Pro	tac Tyr	Phe	tgg Trp 000	cag Gln	tgt Cys	3072
50	cta Leu	aag Lys 1	aac Asn .005	gcc Ala	ctg Leu	gcc Ala	Thr	gac Asp 010	aat Asn	cat His	gtg Val	Ala	tat Tyr 015	agt Ser	cag Gln	gtg Val	3120
	Phe	aag Lys 020				tag											313,8
55	<211	> 12 > 10 > PF	45														

<213> Unknown

	< 400															_
5	Met	Trp	Thr -20	Leu	Lys	Arg	Leu	Ile -15	Leu	Ile	Leu	Phe	Asn -10	Ile	Ile	Leu
	Ile	Ser -5	Lys	Leu	Leu	Gly -1	Ala 1	Arg	Trp	Phe	Pro 5	Lys	Thr	Leu	Pro	Cys 10
10	Asp	Val	Thr	Leu	Asp 15	Val	Pro	Lys	Asn	His 20	Val	Ile	Val	Asp	Cys 25	Thr
15	Asp	Lys	His	Leu 30	Thr	Glu	Ile	Pr.o	Gly 35	Gly	Ile	Pro	Thr	Asn 40	Thr	Thr
	Asn	Leu	Thr 45	Leu	Thr	Ile	Asn	His 50	Ile	Pro	Asp	Ile	Ser 55	Pro	Ala	Ser
20	Phe	His 60	Arg	Leu	Asp	His	Leu 65	Val	Glu	Ile	Asp	Phe 70	Arg	Суѕ	Asn	Cys
	Val 75	Pro	Ile	Pro	Leu	Gly 80	Ser	Lys	Asn	Asn	Met 85	Cys	Ile	Lys	Arg	Leu 90
25	Gln	Ile	Lys	Pro	Arg 95	Ser	Phe	Ser	Gly	Leu 100	Thr	Tyr	Leu	ГЛЗ	Ser 1 05	Leu
30	Tyr	Leu	Asp	Gly 110	Asn	Gln	Leu	Leu	Glu 115	Ile	Pro	Gln	Gly	Leu 120	Pro	Pro
	Ser	Leu	Gln 125	Leu	Leu	Ser	Leu	Glu 130	Ala	Asn	Asn	Ile	Phe 135	Ser	Ile	Arg
35	Lys	Glu 140	Asn	Leu	Thr	Glu	Leu 145	Ala	Asn	Ile	Glu	Ile 150	Leu	Tyr	Leu	Gly
	Gln 155		Cys	Tyr	Tyr	Arg 160	Asn	Pro	Cys	Tyr	Val 165	Ser	Tyr	Ser	Ile	Glu 170
40	Lys	Asp	Ala	Phe	Leu 175	Asn	Leu	Thr	Lys	Leu 180	Lys	Val	Leu	Ser	Leu 185	Lys
45	Asp	Asn	Asn	Val 190	Thr	Ala	Val	Pro	Thr 195	Val	Leu	Pro	Ser	Thr 200	Leu	Thr
40	Glu	Leu	Tyr 205	Leu	Tyr	Asn	Asn	Met 210	Ile	Ala	Lys	Ile	Gln 215	Glu	Asp	Asp
50	Phe	Asn 220	Asn	Leu	Asn	Gln	Leu 225	Gln	Ile	Leu	Asp	Leu 230	Ser	Gly	Asn	Суѕ
	Pro 235	Arg	Суѕ	Tyr	Asn	Ala 240	Pro	Phe	Pro	Cys	Ala 245	Pro	Cys	Lys	Asn	Asn 250
55	Ser	Pro	Leu	Gln	Ile 255		Val	Asn	Ala	Phe 260	Asp	Ala	Leu	Thr	Glu 265	Leu
	Lys	Val	Leu	Arg	Leu	His	Ser	Asn	Ser	Leu	Gln	His	Val	Pro	Pro	Arg

270 275 280

5	Trp	Phe	Lys 285	Asn	Ile	Asn	Lys	Leu 290	Gln	Glu	Leu	Asp	Leu 295	Ser	Gln	Asn
ِي .	Phe	Leu 300	Ala	Lys	Glu	Ile	Gly 305	Asp	Ala	Lys	Phe.	Leu 310	His	Phe	Leu	Pro
10	Ser 315	Leu	Ile	Gln	Leu	Asp 320	Leu	Ser	Phe	Asn	Phe 325	Glu	Leu	Gln	Val	Tyr 330
	Arg	Ala	Ser	Met	Asn 335	Leu	Ser	Gln	Ala	Phe 340	Ser	Ser	Leu	Lys	Ser 345	Leu
15	Lys	Ile	Leu	Arg 350	Ile	Arg	Gly	Tyr	Val 355	Phe	Lys	Glu	Leu	Lys 360	Ser	Phe
20	Asn	Leu	Ser 365	Pro	Leu	His	Asn [.]	Leu 370	Gln	Asn	Leu	Glu	Val 375	Leu	Asp	Leu
	Gly	Thr 380	Asn	Phe	Ile	Lys	Ile 385	Ala	Asn	Leu	Ser	Met 390	Phe	Lys	Gln	Phe
25	Lys 395	Arg	Leu	Lys	Val	11e 400	Asp	Leu	Ser	Val	Asn 405	Lys	Ile	Ser	Pro	Ser 410
	Gly	Asp	Ser	Ser	Glu 415	Val	Gly	Phe	Cys	Ser 420	Asn	Ala	Arg	Thr	Ser 425	Val
30	Glu	Ser	Tyr	Glu 430	Pro	Gln	Val	Leu	Glu 435	Gln	Leu	His	Tyr	Phe 440	Arg	Tyr
35	Asp	Lys	Tyr 445	Ala	Arg	Ser	Cys	Arg 450	Phe	Lys	Asn	Lys	Glu 455	Ala	Seŗ	Phe
	Met	Ser 460	Val	Asn	Glu	Ser	Cys 465	Tyr	Lys	Tyr	Gly	Gln 470	Thr	Leu	Asp	Leu
40	Ser 475	Lys	Asn	Ser	Ile	Phe 480	Phe	Val	Lys	Ser	Ser 485	Asp	Phe	Gln	His	Leu 490
	Ser	Phe	Leu	Lys	Cys 495	Leu	Asn	Leu	Ser	Gly 500	Asn	Leu	Ile	Ser	Gln 505	Thr
45	Leu	Asn	Gly	Ser 510	Glu	Phe	Gln	Pro	Leu 515	Ala	Glu	Leu	Arg	Tyr 520	Leu	Asp
50	Phe	Ser	Asn 525	Asn	Arg	Leu	Asp	Leu 530	Leu	His	Ser	Thr	Ala 535	Phe	Glu	Glu
	Leu	His 540	Lys	Leu	Glu	Val	Leu 545	Asp	Ile	Ser	Ser	Asn 550	Ser	His	Tyr	Phe
55	Gln 555	Ser	Glu	Gly	Ile	Thr 560	His	Met	Leu	Asn	Phe 565	Thr	Lys	Asn	Leu	Lys 570
	Val	Leu	Gln	Lys	Leu 575	Met	Met	Asn	Asp	Asn 580	Asp	Ile	Ser	Ser	Ser 585	Thr

	Ser	Arg	Thr	Met 590	Glu	Ser	Glu	Ser	Leu 595	Arg	Thr	Leu	Glu	Phe 600	Arg	Gly
5	Asn	His	Leu 605	Asp	Val	Leu	Trp	Arg 610	Glu	Gly	Asp	Asn	Arg 615	Tyr	Leu	Gln
10	Leu	Phe 620	Lys	Asn	Leu	Leu	Lys 625	Leu	Glu	Glu	Leu	Aśp 630	Ile	Ser	Lys	Asn
	Ser 635	Leu	Ser	Phe	Leu	Pro 640	Ser	Gly	Val	Phe	Asp 645	Gly	Met	Pro	Pro	Asn 650
15	Leu	Lys	Asn	Leu	Ser 655	Leu	Ala	Lys	Asn	Gly 660	Leu	Lys	Ser	Phe	Ser 665	Trp
	Lys	Lys	Leu	Gln 670	Cys	Leu	Lys	Asn	Leu 675	Glu	Thr	Leu	Asp	Leu 680	Ser	His
20	Asn	Gln	Leu 685	Thr	Thr	Val	Pro	Glu 690	Arg	Leu	Ser	Asn	Cys 695	Ser	Arg	Ser
25	Leu	Lys 700	Asn	Leu	Ile	Leu	Lys 705	Asn	Asn	Gln	Ile	Arg 710	Ser	Leu	Thr	Lys
	Tyr 715	Phe	Leu	Gln	Asp	Ala 720	Phe	Gln	Leu	Arg	Tyr 725	Leu	Asp	Leu	Ser	Ser 730
30	Asn	Lys	Ile	Gln	Met 735	Ile	Gln	Lys	Thr	Ser 740	Phe	Pro	Glu	Asn	Val 745	Leu
	Asn	Asn	Leu	Lys 750	Met	Leu	Leu	Leu	His 755	His	Asn	Arg	Phe	Leu 760	Cys	Thr
35	Cys	Asp	Ala 765	Val	Trp	Phe	Val	Trp 770	Trp	Val	Asn	His	Thr 775	Glu	Val	Thr
40	Ile	Pro 780	Tyr	Leu	Ala	Thr	Asp 785	Val	Thr	Cys	Val	Gly 790	Pro	Gly	Ala	His
	Lys 795	Gly	Gln	Ser	Val	Ile 800	Ser	Leu	Asp	Leu	Tyr 805		Cys	Glu		Asp 810
45	Leu	Thr	Asn		11e 815	Leu	Phe	Ser	Leu	Ser 820	Ile	Ser	Val	Ser	Leu 825	Phe
٠	Leu	Met	Val	Met 830	Met	Thr	Ala	Ser	His 835	Leu	Tyr	Phe	Trp	Asp 840	Val	Trp
50	Tyr	Ile	Tyr 845	His	Phe	Cys	Lys	Ala 850	Lys	Ile	Lys	Gly	Tyr 855	Gln	Arg	Leu
55	Ile	Ser 860	Pro	Asp	Cys	Cys	Tyr 865	Asp	Ala	Phe	Ile	Val 870	Tyr	Asp	Thr	Lys
	Asp 875	Pro	Ala	Val	Thr	Glu 880	Trp	Val	Leu	Ala	Glu 885	Leu	Val	Ala	Lys	Leu 890

	Glu	Asp	Pro	Arg	Glu 895		His	Phe	Asn	Leu 900		Leu	Glu	Glu	Arg 905	Asp	
5	Trp	Leu	Pro	Gly 910	Gln	Pro	Val	Leu	Glu 915		Leu	Ser	Gln	Ser 920	Ile	Gln	
	Leu	Ser	Lys 925	Lys	Thr	Val	Phe	Val 930	Met	Thr	Asp	Lys	Tyr 935	Ala	Lys	Thr	
10	Glu	Asn 940	Phe	Lys	Ile	Ala	Phe 945	Tyr	Leu	Ser	His	Gln 950	Arg	Leu	Met	Asp	
15	Glu 955	Lys	Val	Asp	Val	Ile 960	Ile	Leu	Ile	Phe	· Leu 965	Glu	Lys	Pro	Phe	Gln 970	
	Lys	Ser	Lys	Phe	Leu 975	Gln	Leu	Arg	Lys	Arg 980	Leu	Cys	Gly	Ser	Ser 985	Val	
20	Leu	Glu	Trp	Pro 990	Thr	Asn	Pro	Gln	Ala 995	His	Pro	Tyr		Trp 1000	Gln	Cys	
	Leu	Lys]	Asn .005	Ala	Leu	Ala		Asp 1010		His	Val		Tyr 1015	Ser	Gln	Val	
25		Lys 1020	Glu	Thr	Val	•											
30	<211 <212)> 13 > 18 > DN 3> Un	IA	vn													
35	<220 <223	3> De	scri s mu	ptic scul	on of lus	Unk	nowr	n Org	ganis	sm:ro	odent	:; sı	ırmis	ed [°]			
40)> .> CE !> (1		(177)													
45	ctt	> 13 gga Gly	aaa	cct Pro	ctt Leu ,5	cag Gln	aag Lys	tct Ser	aag Lys	ttt Phe 10	ctt Leu	cag Gln	ctc Leu	agg Arg	aag Lys 15	aga Arg	48
50	ctc Leu	tgc Cys	agg Arg	agc Ser 20	tct Ser	gtc Val	ctt Leu	gag Glu	tgg Trp 25	cct Pro	gca Ala	aat Asn	cca Pro	cag Gln 30	gct Ala	cac His	96
30	cca Pro	tac Tyr	ttc Phe 35	tgg Trp	cag Gln	tgc Cys	ctg Leu	aaa Lys 40	aat Asn	gcc Ala	ctg Leu	acc Thr	aca Thr 45	gac Asp	aat Asn	cat His	144
55	gtg Val	gct Ala 50	tat Tyr	agt Ser	caa Gln	atg Met	ttc Phe 55	aag Lys	gaa Glu	aca Thr	gtc Val	tag					180

```
<210> 14
      <211> 59
      <212> PRT
 5
      <213> Unknown
      <400> 14
     Leu Gly Lys Pro Leu Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys Arg
10
      Leu Cys Arg Ser Ser Val Leu Glu Trp Pro Ala Asn Pro Gln Ala His
      Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Thr Thr Asp Asn His
15
      Val Ala Tyr Ser Gln Met Phe Lys Glu Thr Val
20
     <210> 15
     <211> 990
     <212> DNA
     <213> Unknown
25
     <220>
     <223> Description of Unknown Organism:primate; surmised
           Homo sapiens
30
     <220>
     <221> CDS
     <222> (2)..(988)
     <400> 15
35
     g aat too aga oft ata aac ttg aaa aat ofe tat ttg goo tgg aac tgc 49
       Asn Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn Cys
         1
                          5
     tat ttt aac aaa gtt tgc gag aaa act aac ata gaa gat gga gta ttt
40
     Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly Val Phe
                  20
                                                           30
     gaa acg ctg aca aat ttg gag ttg cta tca cta tct ttc aat tct ctt
                                                                        145
     Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe Asn Ser Leu
45
              35
                                   40
     tca cat gtg cca ccc aaa ctg cca agc tcc cta cqc aaa ctt ttt ctg
                                                                        193
     Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg Lys Leu Phe Leu
50
     age aac acc cag atc aaa tac att agt qaa qaa qat ttc aag gga ttg
                                                                        241
     Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu Asp Phe Lys Gly Leu
55
     ata aat tta aca tta cta gat tta agc ggg aac tgt ccg agg tgc ttc
                                                                        289
     Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly Asn Cys Pro Arg Cys Phe
                       85
                                           90
```

	aat gcc Asn Ala	cca Pro	ttt Phe 100	cca Pro	tgc Cys	gtg Val	cct Pro	tgt Cys 105	gat Asp	ggt Gly	ggt Gly	gct Ala	tca Ser 110	att Ile	aat Asn	337
5	ata gat Ile Asp	cgt Arg 115	ttt Phe	gct Ala	ttt Phe	caa Gln	aac Asn 120	ttg Leu	acc Thr	caa Gln	ctt Leu	cga Arg 125	tac Tyr	cta Leu	aac Asn	385
10	ctc tct Leu Ser 130	Ser	act Thr	tcc Ser	ctc Leu	agg Arg 135	aag Lys	att Ile	aat Asn	gct Ala	gcc Ala 140	tgg Trp	ttt Phe	aaa Lys	aat Asn	433
. 15	atg cct Met Pro 145	cat His	ctg Leu	aag Lys	gtg Val 150	ctg Leu	gat Asp	ctt Leu	gaa Glu	ttc Phe 155	aac Asn	tat Tyr	tta Leu	gtg Val	gga Gly 160	481
20	gaa ata Glu Ile															529
	ctt gac Leu Asp	ttg Leu	tct Ser 180	ttt Phe	aac Asn	tat Tyr	ata Ile	aag Lys 185	Gly ggg	agt Ser	tat Tyr	cca Pro	cag Gln 190	cat His	att Ile	577
25	aat att Asn Ile	tcc Ser 195	aga Arg	aac Asn	ttc Phe	tct Ser	aaa Lys 200	ctt Leu	ttg Leu	tct Ser	cta Leu	cgg Arg 205	gca Ala	ttg Leũ	cat His	625
30	tta aga Leu Arg 210	Gly	tat Tyr	gtg Val	ttc Phe	cag Gln 215	gaa Glu	ctc Leu	aga Arg	gaa Glu	gat Asp 220	gat Asp	ttc Phe	cag Gln	ccc Pro	673
35	ctg atg Leu Met 225	cag Gln	ctt Leu	cca Pro	aac Asn 230	tta Leu	tcg Ser	act Thr	atc Ile	aac Asn 235	ttg Leu	ggt Gly	att Ile	aat Asn	ttt Phe 240	721
40	att aag Ile Lys	caa Gln	atc Ile	gat Asp 245	ttc Phe	aaa Lys	ctt Leu	ttc Phe	caa Gln 250	aat Asn	ttc Phe	tcc Ser	aat Asn	ctg Leu 255	gaa Glu	769
	att att Ile Ile	tac Tyr	ttg Leu 260	tca Ser	gaa Glu	aac Asn	aga Arg	ata Ile 265	tca Ser	ccg Pro	ttg Leu	gta Val	aaa Lys 270	gat Asp	acc Thr	817
45	cgg cag Arg Gln	agt Ser 275	tat Tyr	gca Ala	aat Asn	agt Ser	tcc Ser 280	tct Ser	ttt Phe	caa Gln	cgt Arg	cat His 285	atc Ile	cgg Arg	aaa Lys	865
50	cga cgc Arg Arg ·290	Ser	aca Thr	gat Asp	ttt Phe	gag Glu 295	ttt Phe	gac Asp	cca Pro	cat His	tcg Ser 300	aac Asn	ttt Phe	tat Tyr	cat His _	913
55	ttc acc Phe Thr 305	cgt Arg	cct Pro	tta Leu	ata Ile 310	aag Lys	cca Pro	caa Gln	tgt Cys	gct Ala 315	gct Ala	tat Tyr	gga Gly	aaa Lys	gcc Ala 320	961
	tta gat Leu Asp								tt							990

5	<21 <21	0> 1 1> 3 2> P 3> U	29	wn												
10		0> 1 Ser		Leu	Ile 5		Leu	Lys	Asn	Leu 10	Tyr	Leu	Ala	Trp	Asn 15	Cys
15	Tyr	Phe	Asn	Lys 20	Val	Cys	Glu	Lys	Thr 25		Ile	Glu	Asp	Gly 30	Val	Phe
	Glu	Thr	Leu 35	Thr	Asn	Leu	Glu	Leu 40	Leu	Ser	Leu	Ser	Phe 45	Asn	Ser	Leu
20	Ser	His 50	Val	Pro	Pro	Lys	Leu 55	Pro	Ser	Ser	Leu	Arg 60	Lys	Leu	Phe	Leu
	Ser 65	Asn	Thr	Gln	Ile	Lys 70	Tyr	Ile	Ser	Glu	Glu 75	Asp	Phe	Lys	Gly	Leu 80
25	Ile	Asn	Leu	Thr	Leu 85	Leu	Asp	Leu	Ser	Gly 90	Asn	Cys	Pro	Arg	Cys 95	Phe
30	Asn	Ala	Pro	Phe 100	Pro	Cys	Val	Pro	Cys 105	Asp	Gly	Gly	Ala	Ser 110	Ile	Asn
	Ile	Asp	Arg 115	Phe	Ala	Phe	Gln	Asn 120	Leu	Thr	Gln	Leu	Arg 125	Tyr	Leu	Asn
35	Leu	Ser 130	Ser	Thr	Ser	Leu	Arg 135	Lys	Ile	Asn	Ala	Ala 140	Trp	Phe	Lyś	Asn
	Met 145	Pro	His	Leu	Lys	Val 150	Leu	Asp	Leu	Glu	Phe 155	Asn	Tyr	Leu	Val	Gly 160
40	Glu	Ile	Ala	Ser	Gly 165	Ala	Phe	Leu	Thr	Met 170	Leu	Pro	Arg	Leu	Glu 175	Ile
 45	Leu	Asp	Leu	Ser 180	Phe	Asn	Tyr	Ile	Lys 185		Ser	Týr	Pro	Gln 190		Ile
	Asn	Ile	Ser 195	Arg	Asn	Phe	Ser	Lys 200	Leu	Leu	Ser	Leu	Arg 205	Ala	Leu	His
50	Leu	Arg 210	Gly	Tyr	Val	Phe	Gln 215	Glu	Leu	Arg	Glu	Asp 220	Asp	Phe	Gln	Pro
	Leu 225	Met	Gln	Leu	Pro	Asn 230	Leu	Ser	Thr	Ile	Asn 235	Leu	Gly	Ile	Àsn	Phe 240
55	Ile	Lys	Gln	Ile	Asp 245	Phe	Lys	Leu	Phe	Gln 250	Asn	Phe	Ser	Asn	Leu 255	Glu
	Ile	Ile	Tyr	Leu	Ser	Glu	Asn	Arg	Ile	Ser	Pro	Leu	Val	Lys	Asp	Thr

260 265 270 Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His Ile Arg Lys 280 5 Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala Ala Tyr Gly Lys Ala 10 . 310 Leu Asp Leu Ser Leu Asn Ser Ile Phe 325 15 <210> 17 <211> 1557 <212> DNA <213> Unknown 20 <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens 25 <220> <221> CDS <222> (1)..(513) <220> 30 <221> misc feature <222> (93)..(149) <223> Xaa translation depends on genetic code <400> 17 35 cag tot ott too aca too caa act tto tat gat got tac att tot tat 48 Gln Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr gac acc aaa gat gcc tct gtt act gac tgg gtg ata aat gag ctg cgc 40 Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg 20 tac cac ctt gaa gag agc cga gac aaa aac gtt ctc ctt tgt cta gag 144 Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu 45 35 40 gag agg gat tgg gac ccg gga ttg gcc atc atc gac aac ctc atg cag 192 Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln 50 55 50 agc atc aac caa agc aag aaa aca gta ttt gtt tta acc aaa aaa tat Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr 75

gca aaa agc tgg aac ttt aaa aca gct ttt tac ttg gsc ttg cag agg

Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Xaa Leu Gln Arg

90

288

WO 01/90151 PCT/US01/16766.

	cta Leu	atg Met	ggt Gly	gag Glu 100	aac Asn	atg Met	gat Asp	gtg Val	att Ile 105	ata Ile	ttt Phe	atc Ile	ctg Leu	ctg Leu 110	gag Glu	cca Pro	336
5	gtg Val	tta Leu	cag Gln 115	cat His	tct Ser	Pr _i o CCG	tat Tyr	ttg Leu 120	agg Arg	cta Leu	cgg Arg	cag Gln	cgg Arg 125	atc Ile	tgt Cys	aag Lys	384
10	agc Ser	tcc Ser 130	atc Ile	ctc Leu	cag Gln	tgg Trp	cct Pro 135	gac Asp	aac Asn	ccg Pro	aag Lys	gca Ala 140	gaa Glu	agg Arg	ttg Leu	ttt Phe	432
15	tgg Trp 145	caa Gln	act Thr	ctg Leu	wga Xaa	aat Asn 150	gtg Val	gtç Val	ttg Leu	act Thr	gaa Glu 155	aat Asn	gat Asp	tca Ser	cgg Arg	tat Tyr 160	480
20	aac Asn	aat Asn	atg Met	tat Tyr	gtc Val 165	gat Asp	tcc Ser	att Ile	aag Lys	caa Gln 170	tac Tyr	taad	etgad	gt	taagt	catga	533
20	tttc	gcgc	ca t	taata	aaga	t go	aaag	ggaat	gac	attt	cng	tatt	agtt	at	ctatt	gctan	593
	ggta	acna	aa t	ttant	ccca	a aa	anct	tang	tng	gttt	naa	aaca	acna	ca 1	ttntg	ctggn	653
25	ccca	cagt	tt t	tgaç	ggto	a gç	ragto	cagg	ccc	agca	taa	ctgg	gtct	tc 1	tgctt	caggg	713
	tgto	tnca	ıga ç	ggctg	caat	g ta	ggtg	ıttca	cca	gaga	cat	aggo	atca	ct q	ggggt	cacac	773
30	tnca	ıtgtg	ıgt t	gttt	tctg	g at	tcaa	ttcc	tcc	tggg	rcta	ttgg	rccaa	ag q	gctat	actca	833
	tgta	agco	at ç	gcgag	rccta	t co	caca	angg	cag	cttg	ctt	cato	agag	ct a	agcaa	aaaag	893
	agag	gttg	rct a	agcaa	gatg	a ag	rtcac	aatc	ttt	tgta	atc	gaat	caaa	aa a	agtga	tatct	953
35	cato	actt	tg ç	gccat	atto	t at	ttgt	taga	agt	aaac	cac	aggt	ссса	cc a	igctc	catgg	1013
	gagt	gaco	ac c	ctcag	rtcca	g gg	raaaa	cagc	tga	agac	caa	gatg	gtga	gc t	ctga	ttgct	1073
40	tcag	ıttgg	tc a	atcaa	ctat	t tt	ccct	tgac	tgc	tgtc	ctg	ggat	ggcc	gg (ctatc	ttgat	1133
40	ggat	agat	tg t	gaat	atca	g ga	ggcc	aggg	atc	actg	tgg	acca	tctt	ag d	agtt	gacct	1193
	aaca	catc	tt c	tttt	caat	a to	taag	aact	ttt	gcca	ctg	tgac	taat	gg t	ccta	atatt	1253
45	aago	tgtt	gt t	tata	ttta	t ca	tata	tcta	tgg	ctac	atg	gtta	tatt	at ç	gctgt	ggttg	1313
	cgtt	cggt	tt t	attt	acag	t tg	cttt	taca	aat	attt	gct	gtaa	catt	tg a	cttc	taagg	1373
50	ttta	gatg	cc a	ttta	agaa	c tg	agat	ggat	agc	tttt	aaa	gcat	cttt	ta d	ttct	tacca	1433
<i>3</i> 0	tttt	ttaa	aa g	gtatg	cagc	t aa	atto	gaag	ctt	ttgg	tct	atat	tgtt	aa t	tgcc	attgc	1493
	tgta	aatc	tt a	aaat	gaat	g aa	taaa	aatg	ttt	catt	tta	aaaa	aaaa	aa a	aaaa	aaaaa	1553
55	aaaa																1557

<210> 18

<211> 171 <212> PRT <213> Unknown 5 <400> 18

5 <400> 18
Gln Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser Tyr
1 5 10 15

Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu Leu Arg 20 25 30

Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu Cys Leu Glu 35 40 45

15 Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp Asn Leu Met Gln 50 55 60

Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val Leu Thr Lys Lys Tyr 65 70 75 80

20
Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe Tyr Leu Xaa Leu Gln Arg
85
90
95

Leu Met Gly Glu Asn Met Asp Val Ile Ile Phe Ile Leu Leu Glu Pro 25 100 105 110

Val Leu Gln His Ser Pro Tyr Leu Arg Leu Arg Gln Arg Ile Cys Lys 115 120 125

30 Ser Ser Ile Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Arg Leu Phe 130 135 140

Trp Gln Thr Leu Xaa Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr 145 150 155 160

Asn Asn Met Tyr Val Asp Ser Ile Lys Gln Tyr 165 170

40 <210> 19 <211> 629 <212> DNA <213> Unknown

<220>
50 <221> CDS <222> (1)..(486)

	aat Asn 1	gaa Glu	Leu	atc Ile	Pro 5	aat Asn	cta Leu	gag Glu	aag Lys	gaa Glu 10	Asp	ggt Gly	tct Ser	atc Ile	ttg Leu 15	Ile	48
5	tgc Cys	ctt Leu	tat Tyr	gaa Glu 20	agc Ser	tac Tyr	ttt Phe	gac Asp	cct Pro 25	ggc	aaa Lys	agc Ser	att Ile	agt Ser 30	Glu	aat Asn	96
10	att Ile	gta Val	agc Ser 35	ttc Phe	att Ile	gag Glu	aaa Lys	agc Ser 40	tat Tyr	aag Lys	tcc Ser	atc Ile	ttt Phe 45	gtt Val	ttg Leu	tcy Xaa	144
15	ccc Pro	aac Asn 50	ttt Phe	gtc Val	cag Gln	aat Asn	gag Glu 55	tgg Trp	tgc Cys	cat His	tat Tyr	gaa Glu 60	ttc Phe	tac Tyr	ttt Phe	gcc Ala	192
20	cac His 65	cac His	aat Asn	ctc Leu	ttc Phe	cat His 70	gaa Glu	aat Asn	tct Ser	gat Asp	cay Xaa 75	ata Ile	att Ile	ctt Leu	atc Ile	tta Leu 80	240
	ctg Leu	gaa Glu	ccc Pro	att Ile	cca Pro 85	ttc Phe	tat Tyr	tgc Cys	att Ile	ccc Pro 90	acc Thr	agg Arg	tat Tyr	cat His	aaa Lys 95	ctg Leu	288
25	gaa Glu	gct Ala	ctc Leu	ctg Leu 100	gaa Glu	aaa Lys	aaa Lys	gca Ala	tac Tyr 105	ttg Leu	gaa Glu	tgg Trp	ccc Pro	aag Lys 110	gat Asp	agg Arg	336
30	cgt Arg	aaa Lys	tgt Cys 115	ggg ggg	ctt Leu	ttc Phe	tgg Trp	gca Ala 120	aac Asn	ctt Leu	cga Arg	gct Ala	gct Ala 125	gtt Val	aat Asn	gtt Val	384
35	aat Asn	gta Val 130	tta Leu	gcc Ala	acc Thr	aga Arg	gaa Glu 135	atg Met	tat Tyr	gaa Glu	ctg Leu	cag Gln 140	aca Thr	ttc Phe	aca Thr	gag Glu	432
40	tta Leu 145	aat Asn	gaa Glu	gag Glu	tct Ser	cga Arg 150	ggt Gly	tct Ser	aca Thr	atc Ile	tct Ser 155	ctg Leu	atg Met	aga Arg	aca Thr	gac Asp 160	480
4 0	tgt Cys	cta Leu	taaa	atco	cca c	cagto	ctt	gg ga	agtt	gggg	aco	cacat	aca	ctgt	tggg	rat	536
45											tat	ttat	taaa	at a	aaaa	atggt	
	tatt	ccct	itc a	aaaa	aaaa	ia a _, a	aaaa	aaaa	aaa	L							629
50	<211 <212)> 20 .> 16 !> PF !> Ur	52	⁄n	*												
55)> 20 Glu		Ile	Pro 5	Asn	Leu	Glu	Lys	Glu 10	Asp	Gly	Ser	īle	Leu 15	Ile	
	Cys	Leu	Tyr	Glu	Ser	Tyr	Phe	Asp	Pro	Gly	Lys	Ser	Ile	Ser	Glu	Asn	

20	25	30

Ile Val Ser Phe Ile Glu Lys Ser Tyr Lys Ser Ile Phe Val Leu Xaa 5 Pro Asn Phe Val Gln Asn Glu Trp Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu Asn Ser Asp Xaa Ile Ile Leu Ile Leu 10 Leu Glu Pro Ile Pro Phe Tyr Cys Ile Pro Thr Arg Tyr His Lys Leu 15 Glu Ala Leu Leu Glu Lys Lys Ala Tyr Leu Glu Trp Pro Lys Asp Arg Arg Lys Cys Gly Leu Phe Trp Ala Asn Leu Arg Ala Ala Val Asn Val 120 20 Asn Val Leu Ala Thr Arg Glu Met Tyr Glu Leu Gln Thr Phe Thr Glu 130 135 Leu Asn Glu Glu Ser Arg Gly Ser Thr Ile Ser Leu Met Arg Thr Asp 25 150 Cys Leu 30 <210> 21 <211> 427 <212> DNA <213> Unknown 35 <220> <223> Description of Unknown Organism:primate; surmised Homo sapiens <220> 40 <221> CDS <222> (1)..(426) <400> 21 45 aag aac tcc aaa gaa aac ctc cag ttt cat gct ttt att tca tat agt Lys Asn Ser Lys Glu Asn Leu Gln Phe His Ala Phe Ile Ser Tyr Ser 1 gaa cat gat tot goo tgg gtg aaa agt gaa ttg gta cot tac cta gaa 96 50 Glu His Asp Ser Ala Trp Val Lys Ser Glu Leu Val Pro Tyr Leu Glu 20 25 aaa gaa gat ata cag att tgt ctt cat gag aga aac ttt gtc cct ggc 144 Lys Glu Asp Ile Gln Ile Cys Leu His Glu Arg Asn Phe Val Pro Gly 55 40 aag agc att gtg gaa aat atc atc aac tgc att gag aag agt tac aag Lys Ser Ile Val Glu Asn Ile Ile Asn Cys Ile Glu Lys Ser Tyr Lys

55 50 60 tcc atc ttt qtt ttg tct ccc aac ttt gtc caq agt qag tgg tgc cat 240 Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Ser Glu Trp Cys His 5 70 tac gaa ctc tat ttt gcc cat cac aat ctc ttt cat gaa gga tct aat 288 Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His Glu Gly Ser Asn 10 aac tta atc ctc atc tta ctg gaa ccc att cca cag aac agc att ccc 336 Asn Leu Ile Leu Ile Leu Glu Pro Ile Pro Gln Asn Ser Ile Pro 100 105 15 aac aag tac cac aag ctg aag gct ctc atg acg cag cgg act tat ttg 384 Asn Lys Tyr His Lys Leu Lys Ala Leu Met Thr Gln Arg Thr Tyr Leu 120 cag tgg ccc aag gag aaa agc aaa cgt ggg ctc ttt tgg gct a 427 20 Gln Trp Pro Lys Glu Lys Ser Lys Arg Gly Leu Phe Trp Ala 130 135 <210> 22 25 <211> 142 <212> PRT <213> Unknown <400> 22 30 Lys Asn Ser Lys Glu Asn Leu Gln Phe His Ala Phe Ile Ser Tyr Ser Glu His Asp Ser Ala Trp Val Lys Ser Glu Leu Val Pro Tyr Leu Glu 25 35 Lys Glu Asp Ile Gln Ile Cys Leu His Glu Arg Asn Phe Val Pro Gly . 35 Lys Ser Ile Val Glu Asn Ile Ile Asn Cys Ile Glu Lys Ser Tyr Lys 40 Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Ser Glu Trp Cys His 45 Tyr Glu Leu Tyr Phe Ala His His Asn Leu Phe His Glu Gly Ser Asn 85 Asn Leu Ile Leu Ile Leu Glu Pro Ile Pro Gln Asn Ser Ile Pro 50 Asn Lys Tyr His Lys Leu Lys Ala Leu Met Thr Gln Arg Thr Tyr Leu 115 120

<210> 23

130

55

Gln Trp Pro Lys Glu Lys Ser Lys Arg Gly Leu Phe Trp Ala

```
<211> 662
     <212> DNA
     <213> Unknown
 5
     <220>
     <223> Description of Unknown Organism:primate; surmised
           Homo sapiens
    ·<220>
10
     <221> CDS
     <222> (1)..(627)
     <220>
     <221> misc_feature
15
     <222> (18)..(136)
     <223> Xaa translation depends on genetic code
     <400> 23
     48
20
     Ala Ser Thr Cys Ala Trp Pro Gly Phe Pro Gly Gly Gly Lys Val
     ggc gar atg agg atg ccc tgc cct acg atg cct tcg tgg tct tcg aca
                                                                     96
     Gly Xaa Met Arg Met Pro Cys Pro Thr Met Pro Ser Trp Ser Ser Thr
25
                                     25
     aaa cgc rga gcg cag tgg cag act ggg tgt aca acq agc ttc ggg ggc
     Lys Arg Xaa Ala Gln Trp Gln Thr Gly Cys Thr Thr Ser Phe Gly Gly
             .35
                                 40
30
     age tgg agg agt gee gtg gge get ggg eac tee gee tgt gee tgg agg
                                                                     192
     Ser Trp Arg Ser Ala Val Gly Ala Gly His Ser Ala Cys Ala Trp Arg
          50
35
     aac gcg act ggc tgc ctg gca aaa ccc tct ttg aga acc tgt ggg cct
     Asn Ala Thr Gly Cys Leu Ala Lys Pro Ser Leu Arg Thr Cys Gly Pro -
      65
                         70
     cgg tct atg gca gcc gca aga cgc tgt ttg tgc tgg ccc aca cgg acc
                                                                     288
40
     Arg Ser Met Ala Ala Ala Arg Arg Cys Leu Cys Trp Pro Thr Arg Thr
                      85
                                         90
     ggg tca gtg gtc tct tgc gcg cca ktt ntc ctg ctg gcc cag cag cgc
                                                                     336
     Gly Ser Val Val Ser Cys Ala Pro Xaa Xaa Leu Leu Ala Gln Gln Arg
45
                 100
                                    105
     ctg ctg gar gac cgc aag gac gtc gtg gtg ctg gtg atc cta ang cct
                                                                     384
     Leu Leu Xaa Asp Arg Lys Asp Val Val Leu Val Ile Leu Xaa Pro
                                120
50
     gac ggc caa gcc tcc cga cta cnn gat gcg ctg acc agc gcc tct gcc
                                                                     432
     Asp Gly Gln Ala Ser Arg Leu Xaa Asp Ala Leu Thr Ser Ala Ser Ala
                            135
55
     gcc aga gtg tcc tcc tct ggc ccc acc agc cca gtg gtc gcg cag ctt
                                                                     480
     Ala Arg Val Ser Ser Ser Gly Pro Thr Ser Pro Val Val Ala Gln Leu
     145
                        150
                                            155
```

	ctg Leu	agg Arg	cca Pro	gca Ala	tgc Cys 165	atg Met	gcc Ala	ctg Leu	acc Thr	agg Arg 170	gac Asp	aac Asn	cac His	cac His	ttc Phe 175	tat Tyr	528
5		cgg Arg															576
10		cct Pro															624
15	atc Ile	tgad	caac	cac a	atgct	cgco	ca co	ctca	ccad	c aca	acc						662
20	<213 <213	0> 24 1> 20 2> PI 3> Ur)9 RT	√n													
25)> 24 Ser		Cys	Ala 5	Trp	Pro	Gly	Phe	Pro 10	Gly	Gly	Gly	Gly	Lys 15	Val	
23	Gly	Xaa	Met	Arg 20	Met	Pro	Cys	Pro	Thr 25	Met	Pro	Ser	Trp	Ser 30	Ser	Thr	
30	Lys	Arg	Xaa 35	Ala	Gln	Trp	Gln	Thr 40	Gly	Cys	Thr	Thr	Ser 45	Phe	Gly	Gly	
	Ser	Trp 50	Arg	Ser	Ala	Val	Gly 55	Ala	Gly	His	Ser	Ala 60	Cys	Ala	Trp	Arg	
35	Asn 65	Ala	Thr	Gly	Cys	Leu 70	Ala	Lys	Pro	Ser	Leu 75	Arg	Thr	Cys	Gly	Pro 80	
40	Arg	Ser	Met	Ala	Ala 85	Ala	Arg	Arg	Cys	Leu 90	Cys	Trp	Pro	Thr	Arg 95	Thr	
40	Gly	Ser	Val	Val 100	Ser	Cys	Ala	Pro	Xaa 105	Xaa	Leu	Leu		Gln 110	Gln	Arg	
45	Leu	Leu	Xaa 115	Asp	Arg	Lys	Asp	Val 120	Val	Val	Leu	Val	Ile 125	Leu	Xaa	Pro	
	Asp	Gly 130	Gln	Ala	Ser	Arg	Leu 135	Xaa	Asp	Ala	Leu	Thr 140	Ser	Ala	Ser	Ala	
50	Ala 145	Arg	Val	Ser	Ser	Ser 150	Gly	Pro	Thr	Ser	Pro 155	Val	Val	Ala	Gln	Leu 160	
EF	Leu	Arg	Pro	Ala	Cys 165	Met	Ala	Leu	Thr	Arg 170	Asp	Asn	His	His	Phe 175	Tyr	
55	Asn	Arg	Asn	Phe 180	Cys	Gln	Gly	Thr	His 185	Gly	Arg	Ile	Ala	Val 190	Ser	Arg	

Asn Pro Ala Arg Cys His Leu His Thr His Leu Thr Tyr Ala Cys Leu 200 Ile 5 <210> 25 <211> 4865 10 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised 15 Homo sapiens <220> <221> CDS <222> (107)..(2617) 20 <220> <221> mat peptide <222> (173)..(2617) <220> 25 <221> misc feature <222> (189) <223> Xaa translation depends on genetic code 30 <400> 25 aaaatactcc cttgcctcaa aaactgctcg gtcaaacggt gatagcaaac cacgcattca 60 cagggccact gctgctcaca naascagtga ggatgatgcc aggatg atg tct gcc Met Ser Ala 35 tcg cgc ctg gct ggg act ctg atc cca gcc atg gcc ttc ctc tcc tgc 163 Ser Arg Leu Ala Gly Thr Leu Ile Pro Ala Met Ala Phe Leu Ser Cys -15 40 gtg aga cca gaa agc tgg gag ccc tgc gtg gag gtt cct aat att act Val Arg Pro Glu Ser Trp Glu Pro Cys Val Glu Val Pro Asn Ile Thr -1 1 . 45 tat caa tgc atg gag ctg aat ttc tac aaa atc ccc gac aac ctc ccc Tyr Gln Cys Met Glu Leu Asn Phe Tyr Lys Ile Pro Asp Asn Leu Pro 15 20 tto toa acc aag aac ctg gac ctg agc ttt aat ccc ctg agg cat tta 307 50 Phe Ser Thr Lys Asn Leu Asp Leu Ser Phe Asn Pro Leu Arg His Leu 30 35 ggc agc tat agc ttc ttc agt ttc cca gaa ctg cag gtg ctg gat tta 355 Gly Ser Tyr Ser Phe Phe Ser Phe Pro Glu Leu Gln Val Leu Asp Leu 55 50 55

52

tcc agg tgt gaa atc cag aca att gaa gat ggg gca tat cag agc cta

Ser Arg Cys Glu Ile Gln Thr Ile Glu Asp Gly Ala Tyr Gln Ser Leu

65 70 75

		•										
5									cag Gln			451
10									ctg Leu			499
						Asn			gga Gly			547
15									caa Gln			595
20									cac His 155			643
25									ttg Leu			691
30			_				_	_	tcc Ser	_	7	739
30									agg Arg			787
35									atg Met			835
40									gtt Val 235			883
45									tct Ser			931
50									gca Ala			979
50									ttg Leu			1027
55									gta Val			1075

	ttt Phe	tct Ser	tat Tyr	aat Asn 305	ttc Phe	gga Gly	tgg Trp	caa Gln	cat His 310	tta Leu	gaa Glu	tta Leu	gtt Val	aac Asn 315	tgt Cys	aaa Lys	1123
5						aca Thr			Leu								1171
10						ggt Gly											1219
15						gat Asp 355											1267
20						gat Asp											1315
20						gtt Val											1363
25						ctg Leu											1411
30						ttc Phe											1459
35	att Ile 430	tct Ser	cat His	act Thr	cac His	acc Thr 435	aga Arg	gtt Val	gct Ala	ttc Phe	aat Asn 440	ggc Gly	atc Ile	ttc Phe	aat Asn	ggc Gly 445	1507
40						gtc Val											1555
	aac Asn	ttc Phe	ctt Leu	cca Pro 465	gat Asp	atc Ile	ttc Phe	aca Th <i>r</i>	gag Glu 470	ctg Leu	aga Arg	aac Asn	ttg Leu	acc Thr 475	ttc Phe	ctg Leu	1603
45	gac Asp	ctc Leu	tct Ser 480	cag Gln	tgt Cys	caa Gln	ctg Leu	gag Glu 485	cag Gln	ttg Leu	tct Ser	cca Pro	aca Thr 490	gca Ala	ttt Phe	aac Asn	1651
50	tca Ser	ctc Leu 495	tcc Ser	agt Ser	ctt Leu	cag Gln	gta Val 500	cta Leu	aat Asn	atg Met	agc Ser	cac His 505	aac Asn	aac Asn	ttc Phe	ttt Phe	1699
55	tca Ser 510	Leu	gat Asp	acg Thr	ttt Phe	cct Pro 515	tat Tyr	aag Lys	tgt Cys	ctg Leu	aac Asn 520	tcc Ser	ctc Leu	cag Gln	gtt Val	ctt Leu 525	1747
						cac His											1795

530 535 540

										-					0.0		
5				-	agt Ser		-						_		-		1843
10					gaa Glu												1891
					gtg Val												1939
15					atg Met												1987
20	aat Asn	aag Lys	acc Thr	atc Ile	att Ile 610	ggt Gly	gtg Val	tcg Ser	gtc Val	ctc Leu 61:5	agt Ser	gtg Val	ctt Leu	gta Val	gta Val 620	tct Ser	2035
25	gtt Val	gta Val	gca Ala	gtt Val 625	ctg Leu	gtc Val	tat Tyr	aag Lys	ttc Phe 630	tat Tyr	ttt Phe	cac His	ctg Leu	atg Met 635	ctt Leu -	ctt Leu	2083
30					aag Lys												2131
	gtt Val	atc Ile 655	tac Tyr	tca Ser	agc Ser	cag Gln	gat Asp 660	gag Glu	gaç Asp	tgg Trp	gta Val	agg Arg 665	aat Asn	gag Glu	cta Leu	gta Val	2179
35	aag Lys 670	aat Asn	tta Leu	gaa Glu	gaa Glu	ggg Gly 675	gtg Val	cct Pro	cca Pro	ttt Phe	cag Gln 680	ctc Leu	tgc Cys	ctt Leu	cac His	tac Tyr 685	2227 -
40	aga Arg	gac Asp	ttt Phe	att Ile	ccc Pro 690	ggt Gly	gtg Val	gcc Ala	att Ile	gct Ala 695	gcc Ala	aac Asn	atc Ile	atc Ile	cat His 700	gaa Glu	2275
45	ggt Gly	ttc Phe	cat His	aaa Lys 705	agc Ser	cga Arg	aag Lys	gtg Val	att Ile 710	gtt Val	gtg Val	gtg Val	tcc Ser	cag Gln 715	cac His	ttc Phe	2323_
50	atc Ile	cag Gln	agc Ser 720	cgc Arg	tgg Trp	tgt Cys	atc Ile	ttt Phe 725	gaa Glu	tat Tyr	gag Glu	att Ile	gct Ala 730	cag Gln	acc Thr	tgg Trp	2371
					agt Ser												2419
55	gtg Val 750	gag Glu	aag Lys	acc Thr	ctg Leu	ctc Leu 755	agg Arg	cag Gln	cag Gln	gtg Val	gag Glu 760	ctg Leu	tac Tyr	cgc Arg	ctt Leu	ctc Leu 765	2467

					gtc ctg gge Val Leu Gl		2515
5	atc ttc tg	g aga cga c p Arg Arg L 785	tc aga aaa eu Arg Lys	gcc ctg ctg Ala Leu Leu 790	gat ggt aa Asp Gly Ly: 79	s Ser Trp	2563
10	aat cca ga Asn Pro Gl 80	u Gly Thr V	tg ggt aca [.] al Gly Thr 805	gga tgc aat Gly Cys Asn	tgg cag gaa Trp Gln Glu 810	gca aca 1 Ala Thr	2611
15	tct atc tg Ser Ile 815	aagaggaa aa	ataaaaac ct	cctgaggc at	ttcttgcc ca	gctgggtc	2667
	caacacttgt	tcagttaata	agtattaaat	gctgccacat	gtcaggcctt	atgctaaggg	2727
20	tgagtaattc	catggtgcac	tagatatgca	gggctgctaa	tctcaaggag	cttccagtgc	2787
20	agagggaata	aatgctagac	taaaatacag	agtcttccag	gtgggcattt	caaccaactc	2847
	agtcaaggaa	cccatgacaa	agaaagtcat	ttcaactctt	acctcatcaa	gttgaataaa	2907
25	gacagagaaa	acagaaagag	acattgttct	tttcctgagt	cttttgaatg	gaaattgtat	2967
	tatgttatag	ccatcataaa	accattttgg	tagttttgac	tgaactgggt	gttcactttt	3027
30	tcctttttga	ttgaatacaa	tttaaattct	acttgatgac	tgcagtcgtc	aaggggctcc	3087
50	tgatgcaaga	tgccccttcc	attttaagtc	tgtctcctta	cagakgttaa	agtctantgg	3147
	ctaattccta	aggaaacctg	attaacacat	gctcacaacc	atcctggtca	ttctcganca	3207
35	tgttctattt	tttaactaat	cacccctgat	atattttat	ttttatatat	ccagttttca	3267
	tttttttacg	tcttgcctat	aagctaatat	cataaataag	gttgtttaag	acgtgcttca	3327
40	aatatccata	ttaaccacta	tttttcaagg	aagtatggaa	aagtacactc	tgtcactttg	3387
40	tcactcgatg	tcattccaaa	gttattgcct	actaagtaat	gactgtcatg	aaagcagcat	3447
	tgaaataatt	tgtttaaagg	gggcactctt	ttaaacggga	agaaaatttc	cgcttcctgg	3507
45	tcttatcatg	gacaatttgg	gctakaggca	kgaaggaagt	gggatkacct	caggangtca	3567
	ccttttcttg	attccagaaa	catatgggct	gataaacccg	gggtgacctc	atgaaatgag	3627
5 0	ttgcagcaga	wgtttatttt	tttcagaaca	agtgatgttt	gatggacctm	tgaatctmtt	3687
50	tagggagaca	cagatggctg	ggatccctcc	cctgtaccct	tctcactgmc	aggagaacta	3747
	cgtgtgaagg	tattcaaggc	agggagtata	cattgctgtt	tcctgttggg	caatgctcct	3807
55	tgaccacatt	ttgggaagag	tggatgttat	cattgagaaa	acaatgtgtc	tggaattaat	3867
	aggattetta	taaagaaggt	†ccc2g2222	gaatgttcat	topogattat	+ 42 44 2 2 2 2 2	3927

	ggaacatt	ca a	ggaa	aagg	a ca	atca	ggat	gtc	atca	ggg	aaat	gaaa	at a	aaaa	ccaca	3987
	atgagata	tc a	cctt	atac	c ag	gtag	atgg	cta	ctat	aaa	aaaa	tgaa	gt	gtcat	caagg	4047
5	atatagag	aa a	ttgg	aacc	c tt	cttc	actg	ctg	gagg	gaa	tgga	aaat	gg 1	tgtag	ccgtt	4107
	atgaaaaa	ca g	tacg	gagg	t tt	ctca	aaaa	tta	aaaa	tagʻ	aact	gcta	ta 1	tgato	cagca	4167
10	atctcact	tc t	gtat	atat	a cc	caaa	ataa	ttg	aaat	cag	aatt	tcaa	ga a	aaata	tttac	4227
10	actcccat	gt t	catt	gtgg	c ac	tctt	caca	atc	actg	ttt	ccaa	agtt	at (ggaaa	caacc	4287
	caaatttc	ca t	tgga	aaat	a aa	tgga	.caaa	∙gga	aatg	tgc	atat	aacg	ta d	caatg	ıgggat	4347
15	attattca	gc c	taaa	aaaa	g gg	ggga	tcct	gtt	attt	atg	acaa	catg	aa 1	taaac	ccgga	4407
	ggccatta	tg c	tatg	taaa	a tg	agca	agta	aca	gaaa	gac	aaat	actg	cc 1	tgatt	tcatt	4467
20	tatatgag	gt t	ctaa	aata	g to	aaac	tcat	aga	agca	gag	aata	gaac	ag 1	tggtt	cctag	4527
20	ggaaaagg	ag g	aagg	gaga	a at	gagg	aaat	agg	gagt	tgt	ctaa	ttgg	ta 1	taaaa	ttata	4587
	gtatgcaa	ga t	gaat	tagc	t ct	aaag	ratca	gct	gtat	agc	agag	ttcg	ta 1	taatg	gaacaa	4647
25	tactgtat	ta t	gcac	ttaa	c at	tttg	ttaa	gag	ggta	cct	ctca	tgtt	aa 🤉	gtgtt	cttac	4707
	catataca	ta t	acac	aagg	a ag	rcttt	tgga	ggt	gatg	gat	atat	ttat	ta (ccttg	gattgt	4767
30	ggtgatgg	tt t	gaca	ggta	t gt	gact	atgt	cta	aact	cat	caaa	ttgt	at a	acatt	aaata	4827
30	tatgcagt	tt t	ataa	tatc	a aa	aaaa	aaaa	aaa	aaaa	a						4865
35	<210> 26 <211> 83 <212> PR <213> Un	37 RT	'n											,		
40	<400> 26 Met Ser		Ser	Arg	Leu	Ala	Gly -15	Thr	Leu	Ile	Pro	Ala -10	Met	Ala	Phe	
45	Leu Ser -5	Cys	Val	Arg	Pro	Glu 1	Ser	Trp	Glu	Pro 5	Cys	Val	Glu	Val	Pro 10	
13	Asn Ile	Thr	Tyr	Gln 15	Cyś	Met	Glu	Leu	Asn 20	Phe	Tyr	Lys	Ile	Pro 25	Asp	
50	Asn Leu	Pro	Phe 30	Ser	Thr	Lys	Asn	Leu 35	Asp	Leu	Ser	Phe	Asn 40	Pro	Leu	
	Arg His	Leu 45	Gly	Ser	Tyr	Ser	Phe 50	Phe	Ser	Phe	Pro	Glu 55	Leu	Gln	Val	
55	Leu Asp 60	Leu	Ser	Arg	Cys	Glu 65	Ile	Gln	Thr	Ile	Glu 70	Asp	Gly	Ala	Tyr	

Gln Ser Leu Ser His Leu Ser Thr Leu Ile Leu Thr Gly Asn Pro Ile

	75					80					85					90
5	Gln	Ser	Leu	Ala	Leu 95	Gly	Ala	Phe	Ser	Gly 100	Leù	Ser	Ser	Leu	Gln 105	_
	Leu	Val	Ala	Val 110	Glu	Thr	Asn	Leu	Ala 115	Ser	Leu _,	Glu	Asn	Phe 120	Pro	Ile
10	Gly	His	Leu 125	Lys	Thr.	Leu	Lys	Glu 130	Leu	Asn	Val	Ala	His 135	Asn	Leu	Ile
	Gln	Ser 140	Phe	Lys	Leu	Pro	Glu 145	Tyr	Phe	Ser	Asn	Leu 150	Thr	Asn	Leu	Glu
15	His 155	Leu	Asp	Leu	Ser	Ser 160	Asn	Lys	Ile	Gln	Ser 165	Ile	Tyr	Cys	Thr	Asp 170
20	Leu	Arg	Val	Leu	His 175	Gln	Met	Pro	Leu	Leu 180	Asn	Leu	Ser	Leu	Asp 185	Leu
				Pro 190					195					200		
25			205	Lys				210					215			
		220		Суѕ			225					230				
30	235			Glu		240					245				_	250
35				Glu	255					260					265	
	•	·		Asp 270					275					280		
40			285	Val				290					295			
		300		Phe			305					310				
45	315			Phe		320					325					330
50				Phe	335					340					345	
				Ser 350					355					360	•	
55			365	Cys				370					375			
	Tyr	Leu 380	Asp	Leu	Ser	Phe	Asn 385	Gly	Val	Ile	Thr	Met 390	Ser	Ser	Asn	Phe

	Leu 395	Gly	Leu	Glu	Gln	Leu 400	Glu	His	Leu	Asp	Phe 405	Gln	His	Ser	Asn	Leu 410
5	Lys	Gln	Met	Ser	Glu 415	Phe	Ser	Val	Phe	Leu 420	Ser	Leu ⁄	Arg	Asn	Leu 425	Ile
10	Tyr	Leu	Asp	Ile 430	Ser	His	Thr	His	Thr 435	Arg	Val	Ala	Phe	Asn 440	Gly	Ile
	Phe	Asn	Gly 445	Leu	Ser	Ser	Leu	Glu 450	Val	Leu	Lys	Met	Ala 455	Gly	Asn	Ser
15	Phe	Gln 460	Glu	Asn	Phe	Leu	Pro 465	Asp	Ile	Phe	Thr	Glu 470	Leu	Arg	Asn	Leu
	Thr 475	Phe	Leu	Asp	Leu	Ser 480	Gln	Cys	Gln	Leu	Glu 485	Ġln	Leu	Ser	Pro	Thr 490
20	Ala	Phe	Asn	Ser	Leu 495	Ser	Ser	Leu	Gln	Val 500	Leu	Asn	Met	Ser	His 505	Asn
25	Asn	Phe	Phe	Ser 510	Leu	Asp	Thr	Phe	Pro 515	Tyr	Lys	Cys	Leu	Asn 520	Ser	Leu
	Gln	Val	Leu 525	Asp	Tyr	Ser	Leu	Asn 530	His	Ile	Met	Thr	Ser 535	Lys	Lys	Gln
30	Glu	Leu 540	Gln	His	Phe	Pro	Ser 545	Ser	Leu	Ala	Phe	Leu 550	Asn	Leu	Thr	Gln
	Asn 555	Asp	Phe	Ala	Cys	Thr 560	Cys	Glu	His	Gln	Ser 565	Phe	Leu	Gln	Trp	Ile 570
35	Lys	Asp	Gln	Arg	Gln 575	Leu	Leu	Val	Glu	Val 580	Glu	Arg	Met	Glu	Cys 585	Ala
40	Thr	Pro	Ser	Asp 590	Lys	Gln	Gly	Met	Pro 595	Val	Leu	Ser	Leu	Asn 600	Ile	Thr
	Cys	Gln	Met 605	Asn	Lys	Thr	Ile			Val		Val	Leu 615	Ser	Val	Leu
45	Val	Val 620	Ser	Val	Val	Ala	Val 625	Leu	Val	Tyr	Lys	Phe 630	Tyr	Phe	His	Leu
	Met 635	Leu	Leu	Ala	Gly	Cys 640	Ile	Lys	Tyr	Gly	Arg 645	Gly	Glu	Asn	Ile	Tyr 650
50	Asp	Ala	Phe	Val	Ile 655	Tyr	Ser	Ser	Gln	Asp 660	Glu	Asp	Trp	Val	Arg 665	Asn
55	Glu	Leu	Val	Lys 670	Asn	Leu	Glu	Glu	Gly 675	Val	Pro	Pro	Phe	Gln 680	Leu	Cys
	Leu	His	Tyr 685	Arg	Asp	Phe	Ile	Pro 690	Gly	Val	Ala	Ile	Ala 695	Ala	Asn	Ile

	116	700	GIu	Gly	Phe	His	Lys 705	Ser	Arg	Lys	Val	Ile 710	Val	Val	Val	Ser	
5	Gln 715	His	Phe	Ile	Gln	Ser 720	Arg	Trp	Cys	Ile	Phe 725	Glu	Tyr	Glu	Ile	Ala 730	
	Gln	Thr	Trp	Gln	Phe 735	Leu	Ser	Ser	Arg	Ala 740	Gly.	Île	Ile	Phe	Ile 745	Val	
10	Leu	Gln	Lys	Val 750	Glu	Lys	Thr	Leu	Leu 755	Arg	Gln	Gln	Val	Glu 760	Leu	Tyr	
15	Arg	Leu	Leu 765	Ser	Arg	Asn	Thr	Tyr 770	Leu	Glu	Trp	Glu	Asp 775	Ser	Val	Leu	,
	Gly	Arg 780	His	Ile	Phe	Trp	Arg 785	Arg	Leu	Arg	Lys	Ala 790	Leu	Leu	Asp	Gly	
20	Lys 795	Ser	Trp	Asn	Pro	Glu 800	Gly	Thr	Val	Gly	Thr 805	Gly	Cys	Asn	Trp	Gln 810	
	Glu	Ala	Thr	Ser	Ile 815												
25	<21:	0> 27 l> 30 2> Di	00 NA														
30	<220	3> De		iptio		E Un)	(nowi	org	, ganis	sm:ro	odent	:; sı	ırmis	sed			
35)> L> CI ?> (1		(300)													~
40	<222	0> l> mi 2> (6 3> Xa	52).	(100))	on de	epend	ds on	ı ger	netio	e coć	le					
45)> 27 tat		ato	π 22	, 	cat	act	ttc						***	224	40
43	Ser 1	Tyr	Ser	Met	Glu 5	Lys	Asp	Ala	Phe	Leu 10	Phe	Met	Arg	Asn	Leu 15	Lys	48
50	gtt Val	ctc Leu	tca Ser	cta Leu 20	aaa Lys	gat Asp	aac Asn	aat Asn	gtc Val 25	aca Thr	gct Ala	gtc Val	ccc Pro	acc Thr 30	act Thr	ttg Leu .	96
55	cca Pro	cct Pro	aat Asn 35	tta Leu	cta Leu	gag Glu	ctc Leu	tat Tyr 40	ctt Leu	tat Tyr	aac Asn	aat Asn	atc Ile 45	att Ile	aag Lys	aaa Lys	144
	atc Ile	caa Gln	gaa Glu	aat Asn	gat Asp	ttc Phe	aat Asn	aac Asn	ctc Leu	aat Asn	gag Glu	ttg Leu	caa Gln	gtn Xaa	ctt Leu	gac Asp	192

50 55 60

cta ngt gga aat tgc cct cga tgt nat aat gtc cca tat ccg tgt aca 240 Leu Xaa Gly Asn Cys Pro Arg Cys Xaa Asn Val Pro Tyr Pro Cys Thr 5 65 70 75 80

ccg tgt gaa aat aat tcc ccc tta cag atc cat gan aat gct ttc aat 288
Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Xaa Asn Ala Phe Asn
85 90 95

10

tca tcg aca gan
Ser Ser Thr Xaa
100

15

<210> 28 <211> 100 <212> PRT

<213> Unknown

20

30

Val Leu Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Thr Leu 20 25 30

Pro Pro Asn Leu Leu Glu Leu Tyr Leu Tyr Asn Asn Ile Ile Lys Lys 35 40 45

Ile Gln Glu Asn Asp Phe Asn Asn Leu Asn Glu Leu Gln Xaa Leu Asp 50 55 60 .

Leu Xaa Gly Asn Cys Pro Arg Cys Xaa Asn Val Pro Tyr Pro Cys Thr 35 65 70 75 80

Pro Cys Glu Asn Asn Ser Pro Leu Gln Ile His Xaa Asn Ala Phe Asn 85 90 95

40 Ser Ser Thr Xaa

<210> 29
45 <211> 1756
<212> DNA
<213> Unknown

<220>

55

50 <223> Description of Unknown Organism:rodent; surmised Mus musculus

<220> <221> CDS <222> (1)..(1182)

<400> 29
tot cca gaa att ccc tgg aat tcc ttg cct cct gag gtt ttt gag ggt 48

	Ser 1	Pro	Glu	Ile	Pro 5	Trp	Asn	Ser	Leu	Pro 10		Glu	Val	Phe	Glu 15	Gly	
5	atg Met	ccg Pro	cca Pro	aat Asn 20	cta Leu	aag Lys	aat Asn	ctc Leu	tcc Ser 25	ttg Leu	gcc Ala	aaa Lys	aat Asn	30 30	ctc Leu	aaa Lys	96
10	tct Ser	ttc Phe	ttt Phe 35	tgg Trp	gac Asp	aga Arg	ctc Leu	cag Gln 40	tta Leu	ctg Leu	aag Lys	cat His	ttg Leu 45	gaa Glu	att Ile	ttg Leu	144
15	gac Asp	ctc Leu 50	agc Ser	cat His	aac Asn	cag Gln	ctg Leu 55	aca Thr	aaa Lys	gta Val	cct Pro	gag Glu 60	aga Arg	ttg Leu	gcc Ala	aac Asn	192
	tgt Cys 65	tcc Ser	aaa Lys	agt Ser	ctc Leu	aca Thr 70	aca Thr	ctg Leu	att Ile	ctt Leu	aag Lys 75	cat His	aat Asn	caa Gln	atc Ile	agg Arg 80	240
20	caa Gln	ttg Leu	aca Thr	aaa Lys	tat Tyr 85	ttt Phe	cta Leu	gaa Glu	gat Asp	gct Ala 90	ttg Leu	caa Gln	ttg Leu	cgc Arg	tat Tyr 95	cta Leu	288
25	gac Asp	atc Ile	agt Ser	tca Ser 100	aat Asn	aaa Lys	atc Ile	cag Gln	gtc Val 105	att Ile	cag Gln	aag Lys	act Thr	agc Ser 110	ttc Phe	cca Pro	336
30	gaa Glu	aat Asn	gtc Val 115	ctc Leu	aac Asn	aat Asn	ctg Leu	gag Glu 120	atg Met	ttg Leu	gtt Val	tta Leu	cat His 125	cac His	aat Asn	cgc Arg	384
35	ttt Phe	ctt Leu 130	tgc Cys	aac Asn	tgt Cys	gat Asp	gct Ala 135	gtg Val	tgg Trp	ttt Phe	gtc Val	tgg Trp 140	tgg Trp	gtt Val	aac Asņ	cat His	432
-	aca Thr 145	gat Asp	gtt Val	act Thr	att Ile	cca Pro 150	tac Tyr	ctg Leu	gcc Ala	act Thr	gat Asp 155	gtg Val	act Thr	tgt Cys	gta Val	ggt Gly 160	480
40	cca Pro	gga Gly	gca Ala	cac His	aaa Lys 165	ggt Gly	caa Gln	agt Ser	gtc Val	ata Ile 170	tcc Ser	ctt [.] Leu	gat Asp	ctg Leu	tat Tyr 175	acg Thr	528
45	tgt Cys	gag Glu	tta Leu	gat Asp 180	ctc Leu	aca Thr	aac Asn	ctg Leu	att Ile 185	ctg Leu	ttc Phe	tca Ser	gtt Val	tcc Ser 190	ata Ile	tca Ser	576
50	tca Ser	gtc Val	ctc Leu 195	ttt Phe	ctt Leu	atg Met	gta Val	gtt Val 200	atg Met	aca Thr	aca Thr	agt Ser	cac His 205	ctc Leu	ttt Phe	ttc Phe	624
55	tgg Trp	gat Asp 210	atg Met	tgg Trp	tac Tyr	att Ile	tat Tyr 215	tat Tyr	ttt Phe	tgg Trp	aaa Lys	gca Ala 220	aag Lys	ata Ile	aag Lys	Gly ggg	672
	tat Tyr 225	cca Pro	gca Ala	tct Ser	Ala	atc Ile 230	cca Pro	tgg Trp	agt Ser	Pro	tgt Cys 235	tat Tyr	gat Asp	gct Ala	ttt Phe	att Ile 240	720

5	gtg Val	tat Tyr	gac Asp	act Thr	aaa Lys 245	aac Asn	tca Ser	gct Ala	gtg Val	aca Thr 250	gaa Glu	tgg Trp	gtt Val	ttg Leu	cag Gln 255	gag Glu	768
_	ctg Leu	gtg Val	gca Ala	aaa Lys 260	ttg Leu	gaa Glu	gat Asp	cca Pro	aga Arg 265	gaa Glu	aaa Lys	cac His	ttc Phe	aat Asn 270	ttg Leu	tgt Cys	816
10	cta Leu	gaa Glu	gaa Glu 275	aga Arg	gac Asp	tgg Trp	cta Leu	cca Pro 280	gga Gly	cag Gln	cca Pro	gtt Val	cta Leu 285	gaa Glu	aac Asn	ctt Leu	864
15	tcc Ser	cag Gln 290	agc Ser	ata Ile	cag Gln	ctc Leu	agc Ser 295	aaa Lys	aag Lys	aca Thr	gtg Val	ttt Phe 300	gtg Val	atg Met	aca Thr	cag Gln	912
20	aaa Lys 305	tat Tyr	gct Ala	aag Lys	act Thr	gag Glu 310	agt Ser	ttt Phe	aag Lys	atg Met	gca Ala 315	ttt Phe	tat Tyr	ttg Leu	tct Ser	cat His 320	960
25	Gln	Arg	Leu	Leu	Asp 325	Glu	Lys	Val	Asp	Val 330	Ile	Ile	Leu	Ile	ttc Phe 335	Leu	1008
	Glu	Arg	Pro	Leu 340	Glņ	Lys	Ser	Lys	Phe 345	Leu	Gln	Leu	Arg	Lys 350	aga Arg	Leu	1056
30	Cys	Arg	Ser 355	Ser	Val	Leu	Glu	Trp 360	Pro	Ala	Asn	Pro	Gln 365	Ala	cac His	Pro	1104
35	Tyr	Phe 370	Trp	Gln	Cys	Leu	Lys 375	Asn	Ala	Leu	Thr	Thr 380	Asp	Asn	cat His	Val	1152
40	Ala 385	Tyr	Ser	Gln	Met	Phe 390	Ļys	Glu	Thr	Val					atgto		1202
													•			ggtct	
45												•				gctaa	
																cagtt	
50		-														tttga	•
50												•				gtttt	
																agagt	
55																aakgc	
																ttttt	
						-	•		35-	1	- 33		9 5				

	tgg	ccat	cca '	tgaa		•										
5	<21 <21	0> 3: 1> 3: 2> P: 3> U:	94 RT	wn												
10		0> 30 Pro		Ile	Pro 5	Trp	Asn	Ser	Leu	Pro 10	Pro	Glu	Val	Phe	Glu 15	Gly
15	Met	Pro	Pro	Asn 20	Leu	Lys	Asn	Leu	Ser 25	Leu	Ala	Lys	Asn	Gly 30		Lys
	Ser	Phe	Phe 35	Trp	Asp	Arg	Leu	Gln 40	Leu	Leu	Lys	His	Leu 45	Glu	Ile	Leu
20	Asp	Leu 50	Ser	His	Asn	Gln	Leu 55	Thr	Lys	Val	Pro	Glu 60	Arg	Leu	Ala	Asn
25	Cys 65	Ser	Lys	Ser	Leu	Thr 70	Thr	Leu	Ile	Leu	Lys 75	His	Asn	Gln	Ile	Arg 80
	Gln	Leu	Thr	Lys	Tyr 85	Phe	Leu	Glu	Asp	Ala 90	Leu	Gln	Leu	Arg	Tyr 95	Leu
30	Asp	Ile	Ser	Ser 100	Asn	Lys	Ile	Gln	Val 105	Ile	Gln	Lys	Thr	Ser 110	Phe	Pro
	Glu	Asn	Val 115	Leu	Asn	Asn	Leu	Glu 120	Met	Leu	Val	Leu	His 125	His	Asn	Arg
35	Phe	Leu 130	Cys	Asn	Cys	Asp	Ala 135	Val	Trp	Phe	Val	Trp 140	Trp	Val	Asn	His
40	Thr 145	Asp	Val	Thr	Ile	Pro 150	Tyr	Leu	Ala	Thr	Asp 155	Val	Thr	Cys	Val	Gly 160
	Pro	Ġly	Ala	His	Lys 165	Gly	Gln	Ser	Val	Ile 170	Ser	Leu	Asp	Leu	Tyr 175	Thr
45	Cys	Glu	Leu	Asp 180	Leu	Thr	Asn	Leu	Ile 185	Leu	Phe	Ser	Val	Ser 190	Ile	Ser
	Ser	Val	Leu 195	Phe	Leu	Met	Val	Val 200	Met	Thr	Thr	Ser	His 205	Leu	Phe	Phe
50	Trp	Asp 210		Trp	Tyr	Ile	Tyr 215	Tyr ·	Phe	Trp	Lys	Ala 220	Lys	Ile	Lys	Gly
55	Tyr 225	Pro	Ala	Ser	Ala	Ile 230	Pro	Trp	Ser	Pro	Cys 235	Tyr	Asp	Ala	Phe	Ile 240
	Val	Tyr	Asp	Thr	Lys 245	Asn	Ser	Ala	Val	Thr	Glu	Trp	Val	Leu	Gln 255	Glu

	Leu	Val	Ala	Lys 260	Leu	Glu	Asp	Pro	Arg 265	Glu	Lys	His	Phe	Asn 270	Leu	Cys	
5	Leu	Glu	Glu 275	Arg	Asp	Trp	Leu	Pro 280	Gly	Gln	Pro	Val	Leu 285	Glu	Asn	Leu	
	Ser	Gln 290	Ser	Ile	Gln	Leu	Ser 295	Lys	Lys	Thr		Phe	Val	Met	Thr	Gln	
10	Lys 305	Tyr	Ala	Lys	Thr	Glu 310	Ser	Phe	Lys	Met	Ala 315	Phe	Tyr	Leu	Ser	His 320	
15	Gln	Arg	Leu	Leu	Asp 325	Glu	Lys	Val	Asp	Val 330	Ile	Ile	Leu	Ile	Phe 335	Leu	
	Glu	Arg	Pro	Leu 340	Gln	Lys	Ser	Lys	Phe 345	Leu	Gln	Leu	Arg	Lys 350	Arg	Leu	
20	Cys	Arg	Ser 355	Ser	Val	Leu	Glu	Trp 360	Pro	Ala	Asn	Pŗo	Gln 365	Ala	His	Pro	
	Tyr	Phe 370	Trp	Gln	Cys	Leu	Lys 375	Asn	Ala	Leu	Thr	Thr 380	Asp	Asn	His	Val	
25	Ala 385	Tyr	Ser	Gln	Met	Phe 390	Lys	Glu	Thr	Val					-	•	
30	<210> 31 <211> 999 <212> DNA <213> Unknown																
35	<220 <223	3> De	scri	ptic apie	on of	Unk	nown	Org	ganis	m:pr	imat	e; s	urmi	sed	•		
40)> .> CD !> (2		847)					-							•	
45	<222	> mi !> (1	.) {	282)		n de	pend	ls on	gen	etic	cod	e					•
50	c to	> 31 in ga a As	t go	c aa a Ly	s Il	t cg e Ar 5	g ca g Hi	c na s Xa	g go a Al	а Ту	t tc r Se 0	a ga r Gl	g gt u Va	c at 1 Me	g at t Me 1	g gtt t Val 5 ~	49
	gga Gly	tgg Trp	tca Ser	gat Asp 20	tca Ser	tac Tyr	acc Thr	tgt Cys	gaa Glu 25	tac Tyr	cct Pro	tta Leu	aac Asn	cta Leu 30	agg Arg	gga Gly	97
55	act Thr	agg Arg	tta Leu 35	aaa Lys	gac Asp	gtt Val	cat His	ctc Leu '40	cac His	gaa Glu	tta Leu	tct Ser	tgc Cys 45	aac Asn	aca Thr	gct Ala	145

	5				gtc Val													193
	J				tgc Cys													241
1	.0				tgc Cys													289
1	.5				aag Lys 100													337
2	0				tct Ser													385
2	:5				ggt Gly													433
					agc Ser		_	-			-	_						481
3	0		_		atc Ile		-	-					-	_				529
. 3	5				gaa Glu 180													577
4	ł 0				ata Ile													625
4	15				agg Arg													673
					tgg Trp													721
5	50				gct Ala													769
Ę	55				cag Gln 260													817
		aca	atc	tyt	ctg	atg	aga	aca	gac	tgt	yta	taa	aatc	cca ·	cagt	cctt	gg	867

Thr Ile Xaa Leu Met Arg Thr Asp Cys Xaa 275 280

25

40

55

20 Gly Trp Ser Asp Ser Tyr Thr Cys Glu Tyr Pro Leu Asn Leu Arg Gly 20 25 30

Thr Arg Leu Lys Asp Val His Leu His Glu Leu Ser Cys Asn Thr Ala 35 40 45

Leu Leu Ile Val Thr Ile Val Val Ile Met Leu Val Leu Gly Leu Ala 50 55 60

Val Ala Phe Cys Cys Leu His Phe Asp Leu Pro Trp Tyr Leu Arg Met 30 65 70 75 80

Leu Gly Gln Cys Thr Gln Thr Trp His Arg Val Arg Lys Thr Thr Gln 85 90 95

35 Glu Gln Leu Lys Arg Asn Val Arg Phe His Ala Phe Ile Ser Tyr Ser 100 105 110

Glu His Asp Ser Leu Trp Val Lys Asn Glu Leu Ile Pro Asn Leu Glu 115 120 125

Lys Glu Asp Gly Ser Ile Leu Ile Cys Leu Tyr Glu Ser Tyr Phe Asp 130 135 140

Pro Gly Lys Ser Ile Ser Glu Asn Ile Val Ser Phe Ile Glu Lys Ser 45 145 150 155 160

Tyr Lys Ser Ile Phe Val Leu Ser Pro Asn Phe Val Gln Asn Glu Trp 165 170 175

50 Cys His Tyr Glu Phe Tyr Phe Ala His His Asn Leu Phe His Glu Asn 180 185 190

Ser Asp His Ile Ile Leu Ile Leu Glu Pro Ile Pro Phe Tyr Cys 195 200 205

Ile Pro Thr Arg Tyr His Lys Leu Xaa Ala Leu Leu Glu Lys Lys Ala 210 215 220

	Tyr : 225	Leu	Glu	Trp	Pro	Lys 230	Asp	Arg	Arg	Lys	Cys 235	Gly :	Leu :	Xaa	Trp	Ala 240	
5	Asn :	Leu	Arg		Ala 245	Val	Asn	Val	Asn	Val 250	Leu ,	Ala '	Thr .	Arg	Glu 255	Met	
	Tyr	Glu		Gln 260	Thr	Phe	Thr	Glu	Leu 265	Asn	Glú	Glu :	Ser .	Arg 270	Gly	Ser	
10	Thr	Ile	Xaa 275	Leu	Meť	Arg	Thr	Asp 280	Cys	Xaa							
15	<210 <211 <212 <213	> 11 > DN	.73	m													
20	Homo sapiens																
25	<220> <221> CDS <222> (1)(1008)																
30	<220> <221> misc_feature <222> (285) <223> Xaa translation depends on genetic code																
35	cta)> 3 cct Pro	act	ggc Gly	acc Thr 5	cgg Arg	ctc Leu	cgg Arg	agg Arg	ctg Leu 10	gat Asp	gtc Val	agc Ser	tgc Cys	aac Asn 15	agc Ser	48
4.0	atc Ile	agc Ser	ttc Phe	gtg Val 20	gcc Ala	ccc Pro	ggc Gly	ttc Phe	ttt Phe 25	Ser	aag Lys	gcc Ala	aag Lys	gag Glu 30	ctg Leu	cga Arg	96
40	gag Glu	ctc Ļeu	aac Asn 35	ctt Leu	agc Ser	gcc Ala	aac Asn	gcc Ala 40	Leu	aag Lys	aca Thr	gtg Val	gac Asp 45	cac His	tcc Ser	tgg Trp	144
45	ttt Phe	ggg Gly 50	Pro	ctg Leu	gcg Ala	agt Ser	gcc Ala 55	Leu	caa Gln	ata Ile	cta Leu	gat Asp 60	gta Val	agc Ser	gcc Ala	aac Asn	192
50	cct Pro 65	Leu	cac His	tgc Cys	gcc Ala	tgt Cys 70	Gly	gcg Ala	gcc Ala	ttt Phe	atig Met 75	gac Asp	ttc Phe	ctg Leu	ctg Leu	gag Glu 80	240
55	gtg Val	cag Glr	gct Ala	gcc Ala	gtg Val	. Pro	ggt Gly	cto Lei	g ccc i Pro	ago Ser 90	Arc	gtg Val	aag Lys	tgt Cys	ggc Gly 95	Ser	288
	ccg	ggo	cag	cto Leu	caç Glr	ggg Glv	cto Lev	c ago	ato	ttt Phe	gca Ala	cag Gln	gac Asp	ctg Leu	cgc Arg	ctc Leu	336

				100					105					110			
. 5	tgc Cys	ctg Leu	gat Asp 115	gag Glu	gcc Ala	ctc Leu	Ser	tgg Trp 120	gac Asp	tgt Cys	ttc Phe	gcc Ala	ctc Leu 125	tcg Ser	ctg Leu	ctg Leu	384
	gct Ala	gtg Val 130	gct Ala	ctg Leu	GJ Y ggc	ctg Leu	ggt Gly 135	gtg Val	ccc Pro	atg Met	ctgʻ Leu	cat His 140	cac His	ctc Leu	tgt Cys	ggc Gly	432
10	tgg Trp 145	gac Asp	ctc Leu	tgg Trp	tac Tyr	tgc Cys 150	ttc Phe	cac His	ctg Leu	tgc Cys	ctg Leu 155	gcc Ala	tgg Trp	ctt Leu	ccc Pro	tgg Trp 160	480
15				caa Gln													528
20	ttc Phe	gtg Val	gtc Val	ttc Phe 180	gac Asp	aaa Lys	acg Thr	cag Gln	agc Ser 185	gca Ala	gtg Val	gca Ala	gac Asp	tgg Trp 190	gtg Val	tac Tyr	576
25	aac Asn	gag Glu	ctt Leu 195	cgg Arg	Gly ggg	cag Gln	ctg Leu	gag Glu 200	gag Glu	tgc Cys	cgt Arg	Gly ggg	cgc Arg 205	tgg Trp	gca Ala	ctc Leu	624
2.0	cgc Arg	ctg Leu 210	tgc Cys	ctg Leu	gag Glu	gaa Glu	cgc Arg 215	gac Asp	tgg Trp	ctg Leu	cct Pro	ggc Gly 220	aaa Lys	acc Thr	ctc Leu	ttt Phe	672
30				tgg Trp											Phe		720
35	ctg Leu	gcc Ala	cac His	acg Thr	gac Asp 245	cgg Arg	gtc Val	agt Ser	ggt Gly	ctc Leu 250	ttg Leu	cgc Arg	gcc Ala	agc Ser	ttc Phe 255	ctg Leu	768
40	ctg Leu	gcc Ala	cag Gln	cag Gln 260	cgc Arg	ctg Leu	ctg Leu	gag Glu	gac Asp 265	Arg	aag Lys	gac Asp	gtc Val	gtg Val 270	gtg Val	ctg . Leu	816
45	gtg Val	atc Ile	ctg Leu 275	agc Ser	cct Pro	gac Asṗ	ggc Gly	cgc Arg 280	cgc Arg	tcc Ser	cgc Arg	tac Tyr	gkg Xaa 285	cgg Arg	ctg Leu	cgc Arg	864
	cag Gln	cgc Arg 290	Leu	tgc Cys	cgc Arg	cag Gln	agt Ser 295	gtc Val	ctc Leu	ctc Leu	tgg Trp	ccc Pro 300	cac His	cag Gln	ccc Pro	agt Ser	912
50	ggt Gly 305	Gln	cgc	agc Ser	ttc Phe	tgg Trp 310	gcc Ala	cag Gln	ctg Leu	ggc Gly	atg Met 315	Ala	ctg Leu	acc Thr	agg Arg	gac Asp 320	960
55	aac Asn	cac	cac His	ttc Phe	tat Tyr 325	Asn	cgg Arg	aac Asn	ttc Phe	tgc Cys 330	Gln	gga Gly	ccc Pro	acg Thr	gcc Ala 335	gaa Glu	1008

	tagc	cgtg	ag c	cgga	atcc	t gc	acgg	tgcc	acc	tcca	cac	tcac	ctca	cc t	ctgc	ctgcc	1068
	tggt	ctga	.cc c	tccc	ctgc	t cg	cctc	cctc	acc	ccac	acc	tgac	acag	ag c	aggc	actca	1128
5	ataa	atgo	ta c	cgaa	ggct	a aa	aaaa	aaaa	aaa	aaaa	aaa ,	aann	a				1173
10	<210 <211 <212 <213	> 33 > PR	16	m							٠						
15	<400 Leu 1	> 34 Pro	Ala	Gly .	Thr 5	Arg	Leu	Arg	Arg	Leu 10	Asp	Val	Ser	Суѕ	Asn 15	Ser	
	Ile	Ser	Phe	Val 20	Ala	Pro	Gly	Phe	Phe 25	Ser	Lys	Ala	Lys	Glu 30	Leu	Arg	
20	Glu	Leu	Asn 35	Leu	Ser	Ala	Asn	Ala 40	Leu	Lys	Thr	Val	Asp 45	His	Ser	Trp	
25	Phe	Gly 50	Pro	Leu	Ala	Ser	Ala 55	Leu	Gln	Ile	Leu	Asp 60	Val	Ser	Ala	Asn	
25	Pro 65	Leu	His	Cys	Ala	Cys 70	Gly	Ala	Ala	Phe	Met 75	Asp	Phe	Leu	Leu	Glu 80	
30	Val	Gln	Ala	Ala	Val 85	Pro	Gly	Leu	Pro	Ser 90	Arg	Val	Lys	Cys	Gly 95	Ser	
	Pro	Gly	Gln	Leu 100	Gln	Gly	Leu	Ser	Ile 105	Phe	Ala	Gln	Asp	Leu 110	Arg	Leù	,
35	Cys	Leu	Asp 115		Ala	Leu	Ser	Trp 120	Asp	Cys	Phe	Ala	Leu 125	Ser	Leu	Leu	
4.0	Ala	Val 130	Ala	Leu	Gly	Leu	Gly 135	Val	Pro	Met	Leu	His 140	His	Leu	Cys	Gly	
40	Trp 145		Leu	Trp	Tyr	Cys 150	Phe	His	Leu	Cys	Leu 155	Ala	Trp	Leu	Pro	Trp 160	
45	Arg	Gly	Arg	Gln	Ser 165	Gly	Arg	Asp ·	Glu	Asp 170	Ala	Leu	Pro	Tyr	Asp 175	Ala	
	Phe	Val	Val	Phe 180		Lys	Thr	Gln	Ser 185		Val	Ala	Asp	Trp 190		Tyr	
50	Asn	Glu	Leu 195		Gly	Gln	Leu	Glu 200		Cys	Arg	Gly	Arg 205		Ala	Leu	
	Arg	Leu 210	Cys	Leu	Glu	Glu	Arg 215		Trp	Leu	Pro	Gly 220		Thr	Leu	Phe	
55	Glu 225		Leu	Trp	Ala	Ser 230		Tyr	Gly	Ser	Arg 235		Thr	Leu	Phe	Val 240	

	Leu	Ala	His	Thr	Asp 245	Arg	Val	Ser		Leu 250	Leu	Arg	Ala	Ser	Phe 255	Leu	
5	Leu	Ala	Gln	Gln 260	Arg	Leu	Leu	Glu	Asp 265	Arg	Lys	Asp	Val	Val 270	Val	Leu	
	Val	Ile	Leu 275	Ser	Pro	Asp	Gly	Arg 280	Arg	Ser	Arg	Tyr	Xaa 285	Arg	Leu	Arg	
10	Gln	Arg 290	Leu	Cys	Arg	Gln	Ser 295	Val	Leu	Leu	Trp	Pro 300	His	Gln	Pro	Ser	
15	Gly 305	Gln	Arg	Ser	Phe	Trp 310	Ala	Gln	Leu	Gly	Met 315	Ala	Leu	Thr	Arg	Asp 320	
	Asn	His	His	Phe	Tyr 325	Asn	Arg	Asn	Phe	Суs 330	Gln	Gly	Pro	Thr	Ala 335	Glu	
20	<210: <211: <212: <213:	> 49 > DN	7 1A	۷n										•			
25	<220: <223:	> De	scri s mu	ptic	n of us	Unk	nown	Org	anis	m:ro	dent	; su	rmis	ed			
30	<400 tggc			gacc	gcgt	c ag	tggc	ctcc	tgc	gcac	cag	cttc	ctgc	tg g	ctca	gcagc	60
	gcct	gttg	ga a	gacc	gcaa	g ga	cgtg	gtgg	tgt	tggt	gat	cctg	cgtc	cg g	atgc	cccac	120
35	cgtc	cçgc	ta t	gtgc	gact	g cg	ccag	cgtc	tct	gccg	cca	gagt	gtgc	tc t	tctg	gcccc	180
	agcga	accc	aa c	gggc	aggg	g gg	cttc	tggg	ccc	agct	gag	taca	gccc	tg a	ctag	ggaca	240
	accgo	ccac	tt c	tata	acca	g aa	cttc	tgcc	ggg	gacc	tac	agca	gaat	ag c	tcag	agcaa	300
40	cagct	tgga	aa c	agct	gcat	c tt	catg	tctg	gtt	cccg	agt	tgct	ctgc	ct g	cctt	gctct	360
	gtctt	tact	ac a	ccgc	tatt	t gg	caag	tgcg	caa	tata	tgc	tacc	aagc	ca c	cagg	cccac	420
15	ggag	caaa	gg t	tggc	tgta	a ag	ggta	gttt	tct	tece	atg	catc	tttc	ag g	agag	tgaag	480
	ataga	acac	ca a	accc	ac			•									497
50	<210><211><211><212><213>	> 30 > DN	99 A	n													
55	<220> <223>	De:	scri	ptio: apie:	n of	Unk	nown	Orga	anis	m:pr	imat	e; s	urmi	sed			
	<220>	·															

```
<221> CDS
      <222> (1)..(3096)
     <220>
 5
     <221> mat_peptide
     <222> (52)..(3096)
     <220>
     <221> misc feature
      <222> (725)
      <223> Xaa translation depends on genetic code
      atg ctg acc tgc att ttc ctg cta ata tct ggt tcc tgt gag tta tgc
     Met Leu Thr Cys Ile Phe Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys
15
      gcc gaa gaa aat ttt tct aga agc tat cct tgt gat gag aaa aag caa
                                                                         96
      Ala Glu Glu Asn Phe Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln
20
      aat gac tca gtt att gca gag tgc agc aat cgt cga cta cag gaa gtt
                                                                         144
      Asn Asp Ser Val Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val
25
      ccc caa acg gtg ggc aaa tat gtg aca gaa cta gac ctg tct gat aat
                                                                         192
      Pro Gln Thr Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn
30
      ttc atc aca cac ata acg aat gaa tca ttt caa ggg ctg caa aat ctc
                                                                         240
      Phe Ile Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu
                                   55
      act aaa ata aat cta aac cac aac ccc aat gta cag cac cag aac gga
35
      Thr Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly
           65
      aat ccc ggt ata caa tca aat ggc ttg aat atc aca gac ggg gca ttc
                                                                         336
      Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala Phe
40
      80
      ctc aac cta aaa aac cta agg gag tta ctg ctt gaa gac aac cag tta
      Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Glu Asp Asn Gln Leu
                      100.
45
      ccc caa ata ccc tct ggt ttg cca gag tct ttg aca gaa ctt agt cta
      Pro Gln Ile Pro Ser Gly Leu Pro Glu Ser Leu Thr Glu Leu Ser Leu
                  115
50
                                                                         480
      att caa aac aat ata tac aac ata act aaa gag ggc att tca aga ctt
      Ile Glm Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly Ile Ser Arg Leu
              130
                                                                         528
      ata aac ttg aaa aat ctc tat ttg gcc tgg aac tgc tat ttt aac aaa
55
      Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn Cys Tyr Phe Asn Lys
                              150
      gtt tgc gag aaa act aac ata gaa gat gga gta ttt gaa acg ctg aca
                                                                         576
```

	Val 160	Cys	Glu	Lys	Thr	Asn 165	Ile	Glu	Asp	Gly	Val 170	Phe	Glu	Thr	Leu	Thr 175	
5	aat Asn	ttg Leu	gag Glu	ttg Leu	cta Leu 180	tca Ser	cta Leu	tct Ser	ttc Phe	aat Asn 185	tct Ser	ctt Leu	tca Ser	cat His	gtg Val 190	cca Pro	624
10	ccc Pro	aaa Lys	ctg Leu	cca Pro 195	agc Ser	tcc Ser	cta Leu	cgc Arg	aaa Lys 200	ctt Leu	tťt Phe	ctg Leu	agc Ser	aac Asn 205	acc Thr	cag Gln	672
15	atc Ile	aaa Lys	tac Tyr 210	att Ile	agt Ser	gaa Glu	gaa Glu	gat Asp 215	ttc Phe	aag Lys	gga Gly	ttg Leu	ata Ile 220	aat Asn	tta Leu	aca Thr	720
	tta Leu	cta Leu 225	gat Asp	tta Leu	agc Ser	ggg Gly	aac Asn 230	tgt Cys	ccg Pro	agg Arg	tgc Cys	ttc Phe 235	aat Asn	gcc Ala	cca Pro	ttt Phe	768
20	cca Pro 240	tgc Cys	gtg Val	cct Pro	tgt Cys	gat Asp 245	ggt Gly	ggt Gly	gct Ala	tca Sėr	att Ile 250	aat Asn	ata Ile	gat Asp	cgt Arg	ttt Phe 255	816
25	gct Ala	ttt Phe	caa Gln	aac Asn	ttg Leu 260	acc Thr	caa Gln	ctt Leu	cga Arg	tac Tyr 265	cta Leu	aac Asn	ctc Leu	tct Ser	agc Ser 270	act Thr	864
30	tcc Ser	ctc Leu	agg Arg	aag Lys 275	att Ile	aat Asn	gct Ala	gcc Ala	tgg Trp 280	ttt Phe	aaa Lys	aat Asn	atg Met	cct Pro 285	cat His	ctg Leu	912
35	aag Lys	gtg Val	ctg Leu 290	gat Asp	ctt Leu	gaa Glu	ttc Phe	aac Asn 295	tat Tyr	tta Leu	gtg Val	gga Gly	gaa Glu 300	ata Ile	gcc Alạ	tct Ser	960
	GJλ āāā	gca Ala 305	ttt Phe	tta Leu	acg Thr	atg Met	ctg Leu 310	ccc Pro	cgc Arg	tta Leu	gaa Glu	ata Ile 315	ctt Leu	gac Asp	ttg Leu	tct Ser	- 1008
40	ttt Phe 320	aac Asn	tat Tyr	ata Ile	aag Lys	ggg Gly 325	agt Ser	tat Tyr	cca Pro	cag Gln	cat His 330	Ile	aat Asn	att Ile	tcc Ser	aga Arg 335	1056
45	aac Asn	ttc Phe	tct Ser	aaa Lys	ctt Leu 340	ttg Leu	tct Ser	cta Leu	egg Arg	gca Ala 345	ttg Leu	cat His	tta Leu	aga Arg	ggt Gly 350	tat Tyr	1104
50	gtg Val	ttc Phe	cag Gln	gaa Glu 355	ctc Leu	aga Arg	gaa Glu	gat Asp	gat Asp 360	ttc Phe	cag Gln	ccc Pro	ctg Leu	atg Met 365	cag Gln	ctt Leu	1152
55	cca Pro	aac Asn	tta Leu 370	tcg Ser	act Thr	atc Ile	aac Asn	ttg Leu 375	ggt Gly	att Ile	aat Asn	ttt Phe	att Ile 380	aag Lys	caa Gln	atc Ile	1200
	gat Asp	ttc Phe 385	aaa Lys	ctt Leu	ttc Phe	caa Gln	aat Asn 390 •	ttc Phe	tcc Ser	aat Asn	ctg Leu	gaa Glu 395	att Ile	att Ile	tac Tyr	ttg Leu	1248

!		tca Ser 400	gaa Glu	aac Asn	aga Arg	ata Ile	tca Ser 405	ccg Pro	ttg Leu	gta Val	aaa Lys	gat Asp 410	acc Thr	cgg Arg	cag Gln	agt Ser	tat Tyr 415	1296
	(gca Ala	aat Asn	agt Ser	tcc Ser	tct Ser 420	ttt Phe	caa Gln	cgt Arg	cat His	atc Ile 425	cgg Arg	'aaa Lys	cga Arg	cgc Arg	tca Ser 430	aca Thr	1344
10		gat Asp	ttt Phe	gag Glu	ttt Phe 435	gać Asp	cca Pro	cat His	tcg Ser	aac Asn 440	ttt Phe	tat Tyr	cat His	ttc Phe	acc Thr 445	cgt Arg	cct Pro	1392
15	5 1	tta Leu	ata Ile	aag Lys 450	cca Pro	caa Gln	tgt Cys	gct Ala	gct Ala 455	tat Tyr	gga Gly	aaa Lys	gcc Ala	tta Leu 460	gat Asp	tta Leu	agc Ser	1440
20	1	ctc Leu	aac Asn 465	agt Ser	att Ile	ttc Phe	ttc Phe	att Ile 470	gly ggg	cca Pro	aac Asn	caa Gln	ttt Phe 475	gaa Glu	aat Asn	ctt Leu	cct Pro	1488
25	1	gac Asp 480	att Ile	gcc Ala	tgt. Cys	tta Leu	aat Asn 485	ctg Leu	tct Ser	gca Ala	aat Asn	agc Ser 490	aat Asn	gct Ala	caa Gln	gtg Val	tta Leu 495	1536
-	á	agt Ser	gga Gly	act Thr	gaa Glu	ttt Phe 500	tca Ser	gcc Ala	att Ile	cct Prc	cat His 505	gtc Val	aaa Lys	tat Tyr	ttg Leu	gat Asp 510	ttg Leu	1584
30		aca Thr	aac Asn	aat Asn	aga Arg 515	cta Leu	gac Asp	ttt Phe	gat Asp	aat Asn 520	gct Ala	agt Ser	gct Ala	ctt Leu	act Thr 525	gaa Glu	ttg Leu	1632
35	5 5	tcc Ser	gac Asp	ttg Leu 530	gaa Glu	gtt Val	cta Leu	gat Asp	ctc Leu 535	agc Ser	tat Tyr	aat Asn	tca Ser	cac His 540	tat Tyr	ttc Phe	aga Arg	1680
40	1	ata Ile	gca Ala 545	ggc Gly	gta Val	aca Thr	cat His	cat His 550	cta Leu	gaa Glu	ttt Phe	att Ile	caa Gln 555	aat Asn	ttc Phe	aca Thr	aat Asn	1728
45	1	cta Leu 560	aaa Lys	gtt Val	tta Leu	aac Asn	ttg Leu 565	agc Ser	cac His	aac Asn	aac Asn	att Ile 570	tat Tyr	act Thr	tta Leu	aca Thr	gat Asp 575	1776
	ā															agt Ser 590		1824
50		aat Asn	cgc Arg	ctt Leu	gac Asp 595	att Ile	ttg Leu	tgg Trp	aat Asn	gat Asp 600	gat Asp	gac Asp	aac Asn	agg Arg	tat Tyr 605	atc Ile	tcc Ser	1872
55	5]	att [le	ttc Phe	aaa Lys 610	ggt Gly	ctc Leu	aag Lys	aat Asn	ctg Leu 615	aca Thr	cgt Arg	ctg Leu	gat Asp	tta Leu 620	tcc Ser	ctt Leu	aat Asn	1920
	ā	agg	ctc	aag	cac	atc	cca	aat	gaa	gca .	ttc	ctt	aat	ttg	сса	gcg	agt	19.68

	Arg	Leu 625	Lys	His	Ile	Pro	Asn 630		Ala	Phe	Leu	Asn 635	Leu	Pro	Ala	Ser	
5	ctc Leu 640	act Thr	gaa Glu	cta Leu	cat His	ata Ile 645	aat Asn	gat Asp	aat Asn	atg Met	tta Leu 650	Lys	ttt Phe	ttt Phe	aac Asn	tgg Trp 655	2016
10	aca Thr	tta Leu	ctc Leu	cag Gln	cag Gln 660	ttt Phe	cct Pro	cgt Arg	ctc Leu	gag Glu 665	ttg Leu	ctt Leu	gac Asp	tta Leu	cgt Arg 670	gga Gly	2064
15	aac Asn	aaa Lys	cta Leu	ctc Leu 675	ttt Phe	tta Leu	act Thr	gat Asp	agc Ser 680	cta Leu	tct Ser	gac Asp	ttt Phe	aca Thr 685	tct Ser	tcc Ser	2112
	ctt Leu	cgg Arg	aca Thr 690	ctg Leu	ctg Leu	ctg Leu	agt Ser	cat His 695	aac Asn	agg Arg	att Ile	tcc Ser	cac His 700	cta Leu	ccc Pro	tct Ser	2160
20	ggc Gly	ttt Phe 705	ctt Leu	tct Ser	gaa Glu	gtc Val	agt Ser 710	agt Ser	ctg Leu	aag Lys	cac His	ctc Leu 715	gat Asp	tta Leu	agt Ser	tcc Ser	2208
25	aat Asn 720	ctg Leu	cta Leu	aaa Lys	aca Thr	atm Xaa 725	aac Asn	aaa Lys	tcc Ser	gca Ala	ctt Leu 730	gaa Glu	act Thr	aag Lys	acc Thr	acc Thr 735	2256
30	acc Thr	aaa Lys	tta Leu	tct Ser	atg Met 740	ttg Leu	gaa Glu	cta Leu	cac His	gga Gly 745	aac Asn	ccc Pro	ttt Phe	gaa Glu	tgc Cys 750	acc Thr	2304
35	tgt Cys	gac Asp	att Ile	gga Gly 755	gat Asp	ttc Phe	cga Arg	aga Arg	tgg Trp 760	atg Met	gat Asp	gaa Glu	cat His	ctg Leu 765	aat Asn	gtc Val	2352
	aaa Lys	att Ile	ccc Pro 770	aga Arg	ctg Leu	gta Val	gat Asp	gtc Val 775	att Ile	tgt Cys	gcc Ala	agt Ser	cct Pro 780	ggg ggg	gat Asp	caa Gln	2400
40	aga Arg	ggg Gly 785	aag Lys	agt Ser	att Ile	gtg Val	agt Ser 790	ctg Leu	gag Glu	cta Leu	aca Thr	act Thr 795	tgt Cys	gtt Val	tca Ser	gat Asp	2448
45	gtc Val 800	act Thr	gca Ala	gtg Val	ata Ile	tta Leu 805	ttt Phe	ttc Phe	ttc Phe	acg Thr	ttc Phe 810	ttt Phe	atc Ile	acc Thr	Thr	atg Met 815	2496
50	gtt Val	atg Met	ttg Leu	gct Ala	gcc Ala 820	ctg Leu	gct <i>i</i> Ala	cac His	cat His	ttg Leu 825	ttt Phe	tac Tyr	tgg Trp	gat Asp	gtt Val 830	tgg Trp	2544
55	ttt Phe	ata Ile	tat Tyr	aat Asn 835	gtg Val	tgt Cys	tta Leu	gct Ala	aag Lys 840	tta Leu	aaa Lys	ggc Gly	tac Tyr	agg Arg 845	tct Ser	ctt Leu	2592
	tcc Ser	Thr	tcc Ser 850	caa Gln	act Thr	ttc Phe	tat Tyr	gat Asp 855	gct Ala	tac Tyr	att Ile	tct Ser	tat Tyr 860	gac Asp	acc Thr	aaa Lys	2640

5	gat Asp	gcc Ala 865	tct Ser	gtt Val	act Thr	gac Asp	tgg Trp 870	gtg Val	ata Ile	aat Asn	gag Glu	ctg Leu 875	cgc Arg	tac Tyr	cac His	ctt Leu	2688
	gaa Glu 880	gag Glu	agc Ser	cga Arg	gac Asp	aaa Lys 885	aac Asn	gtt Val	ctc Leu	ctt Leu	tgt Cys 890	cta Leu	gag Glu	gag Glu	Arg	gat Asp 895	2736
10	tgg Trp	gac Asp	ccg Pro	gga Gly	ttġ Leu 900	gcc Ala	atc Ile	atc Ile	gac Asp	aac Asn 905	ctc Leu	atg Met	cag Gln	agc Ser	atc Ile 910	aac Asn	2784
15	caa Gln	agc Ser	aag Lys	aaa Lys 915	aca Thr	gta Val	ttt Phe	gtt Val	tta Leu 920	acc Thr	aaa Lys	aaa Lys	tat Tyr	gca Ala 925	aaa Lys	agc Ser	2832
20	tgg Trp	aac Asn	ttt Phe 930	aaa Lys	aca Thr	gct Ala	ttt Phe	tac Tyr 935	ttg Leu	gcc Ala	ttg Leu	cag Gln	agg Arg 940	cta Leu	atg Met	ggt Gly	2880
25	gag Glu	aac Asn 945	atg Met	gat Asp	gtg Val	att Ile	ata Ile 950	ttt Phe	atc Ile	ctg Leu	ctg Leu	gag Glu 955	cca Pro	gtg Val	tta Leu	cag Gln	2928
-	cat His 960	tct Ser	ccg Pro	tat Tyr	ttg Leu	agg Arg 965	cta Leu	cgg Arg	cag Gln	cgg Arg	atc Ile 970	tgt Cys	aag Lys	agc Ser	tcc Ser	atc Ile 975	2976
30	ctc Leu	cag Gln	tgg Trp	cct Pro	gac Asp 980	aac Asn	ccg Pro	aag Lys	gca Ala	gaa Glu 985	ggc Gly	ttg Leu	ttt Phe	tgg Trp	caa Gln 990	act Thr	3024
35								Glu					Tyr	aac Asn 1005			3072
40		Val	-	tcc Ser			Gln		taa								3099
45	<21 <21	0> 3 1> 1 2> P 3> U	032 RT	wn						•							
50	<40 Met	0> 3 Leu	7 Thr -15		Ile	Phe	Leu	Leu -10		Ser	Gly	Ser	Cys -5	Glu	Leu	Cys	
	Ala -1			Asn	Phe	Ser 5		Ser	Tyr	Pro	Cys 10		Glu	Lys	Lys	Gln 15	
55	Asn	Asp	Ser	. Val	Ile 20		Glu	Cys	Ser	Asn 25		Arg	Leu	Gln	Glu 30	Val	
	Pro	Glr	Thr	. Val	Gly	. Lys	Туг	. Val	. Thr	Glu	Leu	Asp	Leu	Ser	Asp	Asn	

WO 01	/9015	1												PC'	T/US0	1/16766
				35					40					45		
5	Phe	Ile	Thr 50	His	Ile	Thr	Asn	Glu 55	Ser	Phe	Gln	Gly	Leu 60	Gln	Asn	Leu
J	Thr	Lys 65	Ile	Asn	Leu	Asn	His 70	Asn	Pro	Asn	Val	Gln 75	His	Gln	Asn	Gly
10	Asn 80	Pro	Gly	Ile	Glņ	Ser 85	Asn	Gly	Leu	Asn	·Ile 90	Thr	Asp	Gly	Ala	Phe 95
	Leu	Asn	Leu	Lys	Asn 100	Leu	Arg	Glu	Leu	Leu 105	Leu	Glu	Asp	Asn	Gln 110	Leu
15	Pro	Gln	Ile	Pro 115	Ser	Gly	Leu	Pro	Glu 120	Ser	Leu	Thr	Glu	Leu 125	Ser	Leu
20	Ile	Gln	Asn 130	Asn	Ile	Tyr	Asn	Ile 135	Thr	Lys	Glu	Gly	Ile 140	Ser	Arg	Leu
	Ile	Asn 145	Leu	Lys	Asn	Leu	Tyr 150	Leu	Ala	Trp	Asn	Cys 155	Tyr	Phe	Asn	Lys
25	Val 160	Cys	Glu	Lys	Thr	Asn 165	Ile	Glu	Asp	Gly	Val 170	Phe	Glu	Thr	Leu	Thr 175
					180					185	Ser				190	
30				195					200		Phe			205		
35			210					215			Gly		220		•	
		225					230				Cys	235				
40	240					245					Ile 250					255
					260					265	Leu				270	
45				275					280		Lys			285		
50	Lys	Val	Leu 290	Asp	Leu	Glu	Phe	Asn 295	Tyr	Leu	Val	Gly	Glu 300	Ile	Ala	Ser
	Gly	Ala 305	Phe	Leu	Thr	Met	Leu 310	Pro	Arg	Leu	Glu	Ile 315	Leu	Asp	Leu	Ser
55	Phe 320	Asn	Tyr	Ile	Lys	Gly 325	Ser	Tyr	Pro	Gln	His 330	Ile	Asn	Ile	Ser	Arg 335

Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg Gly Tyr 340 345 350

	Val	Phe	Gln	Glu 355	Leu	Arg	Glu	Asp	Asp 360	Phe	Gln	Pro	Leu	Met 365	Gln	Leu
5	Pro	Asn	Leu 370	Ser	Thr	Ile	Asn	Leu 375	Gly	Ile	Asn	Phe	Ile 380	Lys	Gln	Ile
10	Asp	Phe 385	Lys	Leu	Phe	Gln	Asn 390	Phe	Ser	Asn	Leu	Glu 395	Ile	Ile	Tyr	Leu
	Ser 400	Glu	Asn	Arg	Ile	Ser 405	Pro	Leu	Val	Lys	Asp 410	Thr	Arg	Gln	Ser	Tyr 415
15	Ala	Asn	Ser	Ser	Ser 420	Phe	Gln	Arg	His	Ile 425	Arg	Lys	Arg	Arg	Ser 430	Thr
	Asp	Phe	Glu	Phe 435	Asp	Pro	His	Ser	Asn 440	Phe	Tyr	His	Phe	Thr 445	Arg	Pro
20	Leu	Ile	Lys 450	Pro	Gln	Cys	Ala	Ala 455	Tyr	Gly	Lys	Àla	Leu 460	Asp	Leu	Ser
25	Leu	Asn 465	Ser	Ile	Phe	Phe	Ile 470	Gly	Pro	Asn	Gln	Phe 475	Glu	Asn	Leu	Pro
	Asp 480	Ile	Ala	Cys	Leu	Asn 485	Leu	Ser	Ala	Asn	Ser 490	Asn	Ala	Gln	VaI	Leu 495
30	Ser	Gly	Thr	Glu	Phe 500	Ser	Ala	Ile	Pro	His 505	Val	Lys	Tyr	Leu	Asp 510	Leu
	Thr	Asn	Asn	Arg 515	Leu	Asp	Phe	Asp	Asn 520	Ala	Ser	Ala	Leu	Thr 525	Glu	Leu
35	Ser	Asp	Leu 530	Glu	Val	Leu	Asp	Leu 535	Ser	Tyr	Asn	Ser	His 540	Tyr	Phe	Arg
40		Ala 545	Gly	Val	Thr	His	His 550	Leu	Glu	Phe	Ile	Gln 555	Asn	Phe	Thr	Asn
	Leu 560		Val	Leu		Leu 565	Ser	His	Asn	Asn	Ile 570.	Tyr	Thr	Leu	Thr	Asp 575
45	Lys	Tyr	Asn	Leu	Glu 580	Ser	Lys	Ser	Leu	Val 585	Glu	Ļeu	Val	Phe	Ser 590	Gly
	Asn	Arg	Leu	Asp 595	Ile	Leu	Trp	Asn	Asp 600	Asp	Asp	Asn	Arg	Tyr 605	Ile	Ser
50	Ile	Phe	Lys 610	Gly	Leu	Lys	Asn	Leu 615	Thr	Arg	Leu	qzA	Leu 620	Ser	Leu	Asn.
55	Arg	Leu 625	Lys	His	Ile	Pro	Asn 630	Glu	Ala	Phe	Leu	Asn 635	Leu	Pro	Ala	Ser
	Leu 640	Thr	Glu	Leu	His	Ile 645	Asn	Asp	Asn	Met	Leu 650	Lys	Phe	Phe	Asn	Trp 655

	Thr	Leu	Leu	Gln	Gln 660	Phe	Pro	Arg	Leu	Glu 665	Leu	Leu	Asp	Leu	Arg 670	Gly
5	Asn	Lys	Leu	Leu 675	Phe	Leu	Thr	Asp	Ser 680	Leu	Ser	Asp	Phe	Thr 685	Ser	Ser
•	Leu	Arg	Thr 690	Leu	Leu	Leu	Ser	His 695	Asn	Arg	Ile	Ser	His 700	Leu	Pro	Ser
10	Gly	Phe 705	Leu	Ser	Glú	Val	Ser 710	Ser	Leu	Lys	His	Leu 715	Asp	Leu	Ser	Ser
15	Asn 720	Leu	Leu	Lys	Thr	Xaa 725	Asn	Lys	Ser	Ala	Leu 730	Glu	Thr	Lys	Thr	Thr 735
13	Thr	Lys	Leu	Ser	Met 740	Leu	Glu	Leu	His	Gly 745	Asn	Pro	Phe	Glu.	Cys 750	Thr
20	Cys	Asp	Ile	Gly 755	Asp	Phe	Arg	Arg	Trp 760	Met	Asp	Glu	His	Leu 765	Asn	Val
	Lys	Ile	Pro 770	Arg	Leu	Val	Asp	Val 775	Ile	Cys	Ala	Ser	Pro 780	Gly	Asp	Gln
25	Arg	Gly 785	Lys	Ser	Ile	Val	Ser 790	Leu	Glu	Leu	Thr	Thr 795	Cys	Val	Ser	Asp
30	Val 800	Thr	Ala	Val	Ile	Leu 805	Phe	Phe	Phe	Thr	Phe 810	Phe	Ile	Thr	Thr	Met 815
	Val	Met	Leu	Ala	Ala 820	Leu	Ala	His	His	Leu 825	Phe	Tyr	Trp	Asp	Val 830	Trp
35			•	835	Val				840					845		
٠			850		Thr			855					860			,
40		865			Thr		870					875				
45	880				Asp	885					890					895
					Leu 900					905					910	
50				915					920					925		
			930		Thr			935					940			
55 .	Glu	Asn 945		Asp	Val	Ile	Ile 950		Ile	Leu	Leu	. Glu 955		Val	Leu	Gln
	His	Ser	Pro	Tyr	Leu	Arg	Leu	ı Arg	Gln	Arg	Ile	Cys	Lys	Ser	Ser	Ile

960 965 970 975 Leu Gln Trp Pro Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr 980 985 5 Leu Arg Asn Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met 1000 Tyr Val Asp Ser Ile Lys Gln Tyr 10 1010 <210> 38 <211> 3046 15 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised 20 Homo sapiens <220> <221> CDS <222> (111)..(2543) 25 <220> <221> mat_peptide <222> (168)..(2543) 30 <400> 38 gaatcatcca cgcacctgca gctctgctga gagagtgcaa gccgtggggg ttttgagctc 60 atcttcatca ttcatatgag gaaataagtg gtaaaatcct tggaaataca atg aga 116 35 ctc atc aga aac att tac ata ttt tgt agt att gtt atg aca gca gag 164 Leu Ile Arg Asn Ile Tyr Ile Phe Cys Ser Ile Val Met Thr Ala Glu -10 40 ggt gat gct cca gag ctg cca gaa gaa agg gaa ctg atg acc aac tgc 212 Gly Asp Ala Pro Glu Leu Pro Glu Glu Arg Glu Leu Met Thr Asn Cys tcc aac atg tct cta aga aag gtt ccc gca gac ttg acc cca gcc aca 260 45 Ser Asn Met Ser Leu Arg Lys Val Pro Ala Asp Leu Thr Pro Ala Thr 20 acg aca ctg gat tta tcc tat aac ctc ctt ttt caa ctc cag agt tca 308 Thr Thr Leu Asp Leu Ser Tyr Asn Leu Leu Phe Gln Leu Gln Ser Ser 50 35 gat ttt cat tct gtc tcc aaa ctg aga gtt ttg att cta tgc cat aac 356 Asp Phe His Ser Val Ser Lys Leu Arg Val Leu Ile Leu Cys His Asn 50 55 aga att caa cag ctg gat ctc aaa acc ttt gaa ttc aac aag gag tta Arg Ile Gln Gln Leu Asp Leu Lys Thr Phe Glu Phe Asn Lys Glu Leu 65

5				gat Asp													452
Э	tta Leu	ctg Leu	gca Ala	ggt Gly	ctc Leu 100	agg Arg	tat Tyr	tta Leu	gat Asp	ctt Leu 105	tct. Ser	ttt Phe	aat Asn	gac Asp	ttt Phe 110	gac Asp	500
10	acc Thr	atg Met	cct Pro	atc Ile 115	tgť Cys	gag Glu	gaa Glu	gct Ala	ggc Gly 120	aac Asn	atg Met	tca Ser	cac His	ctg Leu 125	gaa Glu	atc Ile	548
15	cta Leu	ggt Gly	ttg Leu 130	agt Ser	GJA āāā	gca Ala	aaa Lys	ata Ile 135	caa Gln	aaa Lys	tca Ser	gat Asp	ttc Phe 140	cag Gln	aaa Lys	att Ile	596
20				cat His													644
25		Tyr		gaa Glu													692
23				cca Pro													740
30				tca Ser 195													788
35				agt Ser													836
40				gtt Val													884
45				atc Ile													932
33				aat Asn													980
50				tac Tyr 275													1028
55				aga Arg													1076
	ttg	acc	aaa	atg	gac	ata	gaa	aac	ctg	aca	ata	tca	aat	gca	caa	atg	1124

	Leu	Thr 305	Lys	Met	Asp	Ile	Glu 310	Asn	Leu	Thr	Ile	Ser 315	Asn	Ala	Gln	Met	
5	cca Pro 320	cac His	atg Met	ctt Leu	ttc Phe	ccg Pro 325	aat Asn	tat Tyr	cct Pro	acg Thr	aaa Lys 330	Phe	caa Gln	tat Tyr	tta Leu	aat Asn 335	1172
10	ttt Phe	gcc Ala	aat Asn	aat Asn	atc Ile 340	tta Leu	aca Thr	gac Asp	gag Glu	ttg Leu 345	ttt Phe	aaa Lys	aga Arg	act Thr	atc Ile 350	caa Gln	1220
15				ttg Leu 355													1268
13				gta Val													1316
20	gat Asp	ctg Leu 385	agt Ser	caa Gln	aat Asn	cta Leu	tta Leu 390	caa Gln	cat His	aaa Lys	aat Asn	gat Asp 395	gaa Glu	aat Asn	tgc Cys	tca Ser	1364
25				act Thr			Asn										1412
30				ttc Phe													1460
35				caa Gln 435													1508
33				gaa Glu													1556
40	Gly		Ser	cat His													1604
45	ttc Phe 480	Ile	ctc Leu	agc Ser	cca Pro	tct Ser 485	ctg Leu	gat Asp	ttt Phe	gtt Val	cag Gln 490	agc Ser	tgc Cys	cag Gln	gaa Glu	gtt Val 495	1652
50				aat Asn		Gly											1700
55	aaa Lys	aat Asn	ttc Phe	att Ile 515	Gln	ctt Leu	gaa Glu	aca Thr	tat Tyr 520	tca Ser	gag Glu	gtc Val	atg Met	atg Met 525	gtt Val	gga Gly	1748
J.)	tgg Trp	tca Ser	gat Asp 530	tca Ser	tac Tyr	acc	tgt Cys	gaa Glu 535	Tyr	cct Pro	tta Leu	aac Asn	cta Leu 540	Arg	gga Gly	act Thr	1796

5	agg Arg	tta Leu 545	aaa Lys	gac Asp	gtt Val	cat His	ctc Leu 550	cac His	gaa Glu	tta Leu	tct Ser	tgc Cys 555	Asn	aca Thr	gct Ala	ctg Leu	1844
	ttg Leu 560	att Ile	gtc Val	acc Thr	att Ile	gtg Val 565	gtt Val	att Ile	atg Met	cta Leu	gtt Val 570	ctg Leu	ggg Gly	ttg Leu	gct Ala	gtg Val 575	1892
10	gcc Ala	ttc Phe	tgc Cys	tgt Cys	ctc Leu 580	cac His	ttt Phe	gat Asp	ctg Leu	ccc Pro 585	tgg Trp	tat Tyr	ctc Leu	agg Arg	atg Met 590	cta Leu	1940
15	ggt Gly	caa Gln	tgc Cys	aca Thr 595	caa Gln	aca Thr	tgg Trp	cac	agg Arg 600	gtt Val	agg Arg	aaa Lys	aca Thr	acc Thr 605	caa Gln	gaa Glu	1988
20	caa Gln	ctc Leu	aag Lys 610	aga Arg	aat Asn	gtc Val	cga Arg	ttc Phe 615	cac His	gca Ala	ttt Phe	att Ile	tca Ser 620	tac Tyr	agt Ser	gaa Glu	2036
25	cat His	gat Asp 625	tct Ser	ctg Leu	tgg Trp	gtg Val	aag Lys 630	aat Asn	gaa Glu	ttg Leu	atc Ile	ccc Pro 635	aat Asn	cta Leu	gag Glu	aag Lys	2084
•.	gaa Glu 640	gat Asp	ggt Gly	tct Ser	atc Ile	ttg Leu 645	att Ile	tgc Cys	ctt Leu	tat Tyr	gaa Glu 650	agc Ser	tac Tyr	ttt Phe	gac Asp	cct Pro 655	2132
30	ggc Gly	aaa Lys	agc Ser	att Ile	agt Ser 660	gaa Glu	aat Asn	att Ile	gta Val	agc Ser 665	ttc Phe	att Ile	gag Glu	aaa Lys	agc Ser 670	tat Tyr	2180
35	aag Lys	tcc Ser	atc Ile	ttt Phe 675	gtt Val	ttg Leu	tct Ser	ccc Pro	aac Asn 680	ttt Phe	gtc Val	cag Gln	aat Asn	gag Glu 685	tgg Trp	tgc Cys	2228
40	cat His	tat Tyr	gaa Glu 690	ttc Phe	tac Tyr	ttt Phe	gcc Ala	cac His 695	cac His	aat Asn	ctc Leu	ttc Phe	cat His 700	gaa Glu	aat Asn	tct Ser	2276
45	gat Asp	cat His 705	ata Ile	att Ile	ctt Leu	atc Ile	tta Leu 710	ctg Leu	gaa Glu	ccc Pro	att Ile	cca Pro 715	ttc Phe	tat Tyr	tgc Cys	att Ile	2324
	ccc Pro 720	acc Thr	agg Arg	tat Tyr	cat His	aaa Lys 725	ctg Leu	aaa Lys	gct Ala	ctc Leu	ctg Leu 730	gaa Glu	aaa Lys	aaa Lys	gca Ala	tac Tyr 735	2372
50	ttg Leu	gaa Glu	tgg Trp	ccc Pro	aag Lys 740	gat Asp	agg Arg	cgt Arg	aaa Lys	tgt Cys 745	ggg Gly	ctt Leu	ttc Phe	tgg Trp	gca Ala 750	aac Asn	- 2420
55	ctt Leu	cga Arg	gct Ala	gct Ala 755	att Ile	aat Asn	gtt Val	aat Asn	gta Val 760	tta Leu	gcc Ala	acc Thr	aga Arg	gaa Glu 765	atg Met	tat Tyr	2468
	gaa	ctg	cag	aca	ttc	aca	gag	tta	aat	gaa [.]	gag	tct	cga	ggt	tct	aca	2516

	Glu	Leu	Gln 770		Phe	Thr	Glu	Leu 775	Asn	Glu	Glu	Ser	Arg 780		Ser	Thr	
5				atg Met						taa	aatc	cca (cagt	cctt	gg		2563
	gaag	gttg	ggg (accad	cata	ca ci	tgtt	gggat	gta	acati	tgat	aca	acct	tta	tgat	ggcaat	2623
10	ttga	acaat	tat	ttati	taaa	at a	aaaa	atggt	tat	tcc	cttc	ata	tcag	ttt	ctag	aaggat	2683
	ttct	aaga	aat	gtato	cctat	ta ga	aaaca	acctt	cad	caagt	ttta	taa	gggc	tta	tgga	aaaagg	2743
15	tgtt	cato	cc a	aggat	tgti	t at	aato	catga	aaa	aatgi	tggc	cag	gtgc	agt	ggct	cactct	2803
	tgta	aatco	cca (gcact	atg	gg ag	gcca	aaggt	ggg	gtgad	ccca	cga	ggtc	aag	agat	ggagac	2863
	cato	cctg	gcc a	aacat	ggt	ga aa	accct	gtct	cta	acta	aaaa	taca	aaaa	att	agct	ggcgt	2923
20	gato	ggtgo	cac (gcct	gtagt	ic co	cagct	cactt	gg	gaggo	ctga	ggca	agga	gaa	tcgct	tgaac	2983.
	ccg	ggago	gtg (gcagt	tgca	ag to	gagct	gaga	tc	gagco	cact	gcad	ctcc	agc	ctggt	gacag	3043
25	agc																3046
30	<211 <212	0> 39 1> 81 2> PF 3> Ur	l1 RT	wn													
)> 39		-1		_		_				_					
35	Met	Arg	ren	11e	Arg -15	Asn	ile	Tyr	TIE	-10	Cys	Ser	Ile	Val	Met -5	Thr	
	Ala	Glu	Gly -1	Asp 1	Ala	Pro	Glu	Leu 5	Pro	Glu	Glu	Arg	Glu 10	Leu	Met	Thr	
40	Asn	Cys ¹	Ser	Asn	Met	Ser	Leu 20	Arg	Lys	Val	Pro	Ala 25	Asp	Leu	Thr	Pro	
	Ala 30	Thr	Thr	Thr	Leu	Asp 35	Leu	Ser	Tyr	Asn	Leu 40	Leu	Phe	Gln	Leu	Gln 45	•
45	Ser	Ser	Asp	Phe	His 50	Ser	Val	Ser	Lys	Leu 55	Arg	Val	Leu	Ile	Leu 60	Cys	
50	His	Àsn	Arg	Ile 65	Gln	Gln	Leu	Asp	Leu 70	Lys	Thr	Phe	Glu	Phe 75	Asn	Lys	
	Glu	Leu	Arg 80	Tyr	Leu	Asp	Leu	Ser 85	Asn	Asn	Arg	Leu	Lys 90	Ser	Val	Thr	
55	Trp	Tyr 95	Leu	Leu	Ala	Gly	Leu 100	Arg	Tyr	Leu	Asp	Leu 105	Ser	Phe	Asn	Asp	
	Phe 110	Asp	Thr	Met	Pro	Ile 115	Cys	Glu	Glu	Ala	Gly 120	Asn	Met	Ser	His	Leu 125	

	Glu	Ile	Leu	Gly	Leu 130	Ser	Gly	Ala	Lys	Ile 135	Gln	Lys	Ser	Asp	Phe 140	Gln
5	Lys	Ile	Ala	His 145	Leu	His	Leu	Asn	Thr 150	Val	Phe	Leu	Gly	Phe 155	Arg	Thr
10	Leu	Pro	His 160	Tyr	Glu	Glu	Gly	Ser 165	Leu	Pro	Ile		Asn 170	Thr	Thr	Lys
LU	Leu	His 175	Ile	Val	Leu	Pro	Met 180	Asp	Thr	Asn	Phe	Trp 185	Val	Leu	Leu	Arg
15	Asp 190	Gly	Ile	Lys	Thr	Ser 195	Lys	Ile	Leu	Glu	Met 200	Thr	Asn	Ile	Asp	Gly 205
	Lys	Ser	Gln	Phe	Val 210	Ser	Tyr	Glu	Met	Gln 215	Arg	Asn	Leu	Ser	Leu 220	Glu
20	Asn	Ala	Lys	Thr 225	Ser	Val	Leu	Leu	Leu 230	Asn	Lys	Val	Asp	Leu 235	Leu	Trp
25 ·	Asp	Asp	Leu 240	Phe	Leu	Ile	Leu	Gln 245	Phe	Val	Trp	His	Thr 250	Ser	Val	Glu
		255	Gln	•			260					265				
30	270		Ser			275					280					285
			Val		290					295					300	
35			Leu	305					310					315		
40			Pro 320					325					330			
		335					340					345				
45	350		Leu			. 355		•			360					365
		•	Leu		370					375					380	
50			Asp	385					390					395		
55			Trp 400					405					410			
	Leu	Ser 415	Asp	Ser	Val	. Phe	Arg 420		Leu	Pro	Lys	Ser 425		Gln	тте	Leu

	Asp 430	Leu	Asn	Asn	Asn	Gln 435	Ile	Gln	Thr	Val	Pro 440	Lys	Glu	Thr	Ile	His 445
5	Leu	Met	Ala	Leu	Arg 450	Glu	Leu	Asn	Ile	Ala 455	Phe	Asn	Phe	Leu	Thr 460	Asp
	Leu	Pro	Gly	Cys 465	Ser	His	Phe	Ser	Arg 470	Leu	Ser	Val	Leu	Asn 475	Ile	Glu
10	Met	Asn	Phe 480	Ile	Leu	Ser	Pro	Ser 485	Leu	Asp	Phe	Val	Gln 490	Ser	Cys	Gln
15	Glu	Val 495	Lys	Thr	Leu	Asn	Ala 500	Gly	Arg	Asn.	Pro	Phe 505	Arg	Cys	Thr	Суѕ
	Glu 510	Leu	Lys	Asn	Phe	Ile 515	Gln	Leu	Glu	Thr	Tyr 520	Ser	Glu	Val	Met	Met 525
20	Val	Gly	Trp	Ser	Asp 530	Ser	Tyr	Thr	Cys	Glu 535	Tyr	Pro	Leu	Asn	Leu 540	Arg
	Gly	Thr	Arg	Leu 545	Lys	Asp	Val	His	Leu 550	His	Glu	Leu	Ser	Cys 555	Asn	Thr
25			560					565					570	Leu		
30		575					580					585		Tyr		
	590					595					600			Lys		605
35					610					615				Ile	620	
				625				•	630					Pro 635		
40			640					645					650	Ser		
45		655					660					665		Ile		
	670					675					680		i	Gln		685
50	Trp	Cys	His	Tyr	Glu 690	Phe	Tyr	Phe	Ala	His 695	His	Asn	Leu	Phe	His 700	Glu
	Asn	Ser	Asp	His 705	Ile	Ile	Leu	Ile	Leu 710	Leu	Glu	Pro	Ile	Pro 715	Phe	Tyr
55	Суѕ	Ile	Pro 720	Thr	Arg	Tyr	His	Lys 725	Leu	Lys	Ala	Leu	Leu 730	Glu	ГÀЗ	ГÀЗ
	Ala	Tyr	Leu	Glu	Trp	Pro	Lys	Asp	Arg	Arg	Lys	Cys	Gly	Leu	Phe	Trp

740 735 745 Ala Asn Leu Arg Ala Ala Ile Asn Val Asn Val Leu Ala Thr Arg Glu 755 5 Met Tyr Glu Leu Gln Thr Phe Thr Glu Leu Asn, Glu Glu Ser Arg Gly 770 775 Ser Thr Ile Ser Leu Met Arg Thr Asp Cys Leu 10 <210> 40 <211> 2760 15 <212> DNA <213> Unknown <220> <223> Description of Unknown Organism:primate; surmised 20 Homo sapiens <220> <221> CDS <222> (68)..(2455) 25 <220> <221> mat_peptide <222> (161)..(2455) 30 <220> <221> misc feature <222> (2529) <223> n may be a, c, g, or t 35 <400> 40 aagaatttgg actcatatca agatgctctg aagaagaaca accctttagg atagccactg 60 caacatc atg acc aaa gac aaa gaa cct att gtt aaa agc ttc cat ttt 109 Met Thr Lys Asp Lys Glu Pro Ile Val Lys Ser Phe His Phe 40 -30 -25 -20 gtt tgc ctt atg atc ata ata gtt gga acc aga atc cag ttc tcc gac 157 Val Cys Leu Met Ile Ile Ile Val Gly Thr Arg Ile Gln Phe Ser Asp -15 -10 45 gga aat gaa ttt gca gta gac aag tca aaa aga ggt ctt att cat gtt 205 Gly Asn Glu Phe Ala Val Asp Lys Ser Lys Arg Gly Leu Ile His Val -1 50 cca aaa gac cta ccg ctg aaa acc aaa gtc tta gat atg tct cag aac 253 Pro Lys Asp Leu Pro Leu Lys Thr Lys Val Leu Asp Met Ser Gln Asn 20 25 30 tac atc gct gag ctt cag gtc tct gac atg agc ttt cta tca gag ttg 301 55 Tyr Ile Ala Glu Leu Gln Val Ser Asp Met Ser Phe Leu Ser Glu Leu

40

aca gtt ttg aga ctt tcc cat aac aga atc cag cta ctt gat tta agt

45

349

35

	Thr	Val	Leu 50	Arg	Leu	Ser	His	Asn 55	Arg	Ile	Gln	Leu	Leu 60	Asp	Leu	Ser	
5	gtt Val	ttc Phe 65	aag Lys	ttc Phe	aac Asn	cag Gln	gat Asp 70	tta Leu	gaa Glu	tat Tyr	Leu	gat Asp · 75	tta Leu	tct Ser	cat His	aat Asn	397
10	cag Gln 80	ttg Leu	caa Gln	aag Lys	ata Ile	tcc Ser 85	tgc Cys	cat His	cct Pro	att Ile	gtg Val 90	agt Ser	ttc Phe	agg Arg	cat His	tta Leu 95	445
1 5	gat Asp	ctc Leu	tca Ser	tt <i>c</i> Phe	aat Asn 100	gat Asp	ttc Phe	aag Lys	gcc Ala	ctg Leu 105	ccc Pro	atc Ile	tgt Cys	aag Lys	gaa Glu 110	ttt Phe	493
13				tca Ser 115													541
20				gat Asp													589
25				tta Leu		Asn											637
30				ctg Leu													685
35				gct Ala													733
				act Thr 195													.7 81
40				tta Leu													829
45	acc Thr	ctc Leu 225	aac Asn	cac His	ata Ile	gaa Glu	acg Thr 230	act Thr	tgg Trp	aaa Lys	tgc Cys	ctg Leu 235	gtc Val	aga Arg	gtc Val	ttt Phe	877 -
50	caa Gln 240	Phe	ctt Leu	tgg Trp	ccc Pro	aaa Lys 245	cct Pro	gtg Val	gaa Glu	tat Tyr	ctc Leu 250	aat Asn	att Ile	tac Tyr	aat Asn	tta Leu 255	925
55				gaa Glu													973
دد				gca Ala 275	Leu					Ile					Phe		1021

5					gct Ala												1069
J					tca Ser												1117
10					ttc Phe												1165
15					gaa Glu 340												1213
20					aat Asn												1261
25					cct Pro												1309
25	_	-			aga Arg			_		-			_	-	_		1357
30					ttg Leu				_			_		_		-	1405
35					agg Arg 420												1453
40					aaa Lys												1501
45					aat Asn												1549
40					gta Val												1597
50					ttc Phe												1645
55					ttc Phe 500												1693
	aat	ata	gac	caa	gta	tca	agt	gaa	gtg	tta	gag	ggc	tgg	cct	gat	tct	1741

DX0724XK

	Asn	Ile	Asp	Gln 515	Val	Ser	Ser	Glu		Leu	Glu	Gly	Trp		Asp	Ser	
	tat	aaq	tgt		tac	cca	gaa	agt	520 tat	aca	gga	agc	cca	525 cta	aaa	gac	1789
5	Tyr	Lys	Cys 530	Asp	Tyr	Pro	Glu	Ser 535	Tyr	Arg	ĞÎy	Ser	Pro 540	Leu	Lys	Asp	
10	ttt Phe	cac His 545	atg Met	tct Ser	gaa Glu	tta Leu	tcc Ser 550	tgc Cys	aac Asn	ata Ile	act Thr	ctg Leu 555	ctg Leu	atc Ile	gtc Val	acc Thr	1837
15	atc Ile 560	ggt Gly	gcc Ala	acc Thr	atg Met	ctg Leu 565	gtg Val	ttg Leu	gct. Ala	gtg Val	act Thr 570	gtg Val	acc Thr	tcc Ser	ctc Leu	tgc Cys 575	· 1885
13	atc Ile	tac Tyr	ttg Leu	gat Asp	ctg Leu 580	ccc Pro	tgg Trp	tat Tyr	ctc Leu	agg Arg 585	atg Met	gtg Val	tgc Cys	cag Gln	tgg Trp 590	acc Thr	1933
20	cag Gln	act Thr	cgg Arg	cgc Arg 595	agg Arg	gcc Ala	agg Arg	aac Asn	ata Ile 600	ccc Pro	tta Leu	gaa Glu	gaa Glu	ctc Leu 605	caa Gln	aga Arg	1981
25	aac Asn	ctc Leu	cag Gln 610	ttt Phe	cat His	gct Ala	ttt Phe	att Ile 615	tca Ser	tat Tyr	agt Ser	gaa Glu	cat His 620	gat Asp	tct Ser	gcc Ala	2029
30	tgg Trp	gtg Val 625	aaa Lys	agt Ser	gaa Glu	ttg Leu	gta Val 630	cct Pro	tac Tyr	cta Leu	gaa Glu	aaa Lys 635	gaa Glu	gat Asp	ata Ile	cag Gln	2077
35	att Ile 640	tgt Cys	ctt Leu	cat His	gag Glu	agg Arg 645	aac Asn	ttt Phe	gtc Val	cct Pro	ggc Gly 650	aag Lys	agc Ser	att Ile	gtg Val	gaa Glu 655	2125
	aat Asn	atc Ile	atc Ile	aac Asn	tgc Cys 660	att Ile	gag Glu	aag Lys	agt Ser	tac Tyr 665	aag Lys	tcc Ser	atc Ile	ttt Phe	gtt Val 670	ttg Leu	2173
40	tct Ser	ccc Pro	aac Asn	ttt Phe 675	gtc Val	cag Gln	agt Ser	gag Glu	tgg Trp 680	tgc Cys	cat His	tac Tyr	gaa Glu	ctc Leu 685	tat Tyr	ttt Phe	2221
45	gcc Ala	cat His	cac His 690	aat Asn	ctc Leu	ttt Phe	cat His	gaa Glu 695	gga Gly	tct Ser	aat Asn	aac Asn	tta Leu 700	atc Ile	ctc Leu	atc Ile	2269
50	tta Leu	ctg Leu 705	gaa Glu	ccc Pro	att Ile	cca Pro	cag Gln 710	aac Asn	agc Ser	att Ile	ccc Pro	aac Asn 715	aag Lys	tac Tyr	cac His	aag Lys	2317
55	ctg Leu 720	aag Lys	gct Ala	ctc Leu	atg Met	acg Thr 725	cag Gln	cgg Arg	act Thr	tat Tyr	ttg Leu 730	cag Gln	tgg Trp	ccc Pro	aag Lys	gag Glu 735	2365
	aaa Lys	agc Ser	aaa Lys	cgt Arg	ggg Gly 740	ctc Leu	ttt Phe	tgg Trp	gct Ala	aac Asn 745	att Ile	aga Arg	gcc Ala	gct Ala	ttt Phe 750	aat Asn	2413

DX0724XK

5	atg a Met I	aaa .ys	tta Leu	aca Thr 755	cta Leu	gt <i>c</i> Val	act Thr	gaa Glu	aac Asn 760	aat Asn	gat Asp	gtg Val	aaa Lys	tct Ser 765			2455
3	taaaa	aaa	tt t	agga	aaati	tc a	actt	aaga	a ac	catt	attt	act	tgga	tga	tggt	gaatag	2515
	tacag	tcg	ta a	agtna	actgi	tc t	ggag	gtgc	c tc	catt	atcc	tca	tgcc	ttc	agga	aagact	2575
10	taaca	aaa	ac a	aatg	tttc	at c	tggg	gaac	t ga	gcta	ggcg	gtg	aggt	tag	cctg	ccagtt	2635
	agaga	cag	cc d	cagto	ctcti	tc t	ggtt	taat	c at	tatg	tttc	aaa	ttga	aac	agtc	tcttt	2695
15	gagta	aat	gc t	cag	tttt	cc a	gctc	ctct	с са	ctct	gctt	tcc	caaa	tgg	attc	tgttgg	2755
	tgaag	í															2760
20	<210><211><211><212><213>	79 PR	6 T	۸Ü													
25 .	<400> Met T		Lys	Asp	Lys	Glu	Pro -25	Ile	Val	Lys	Ser	Phe -20	His	Phe	Val	СУè	
30	Leu M -15	let	Ile	Ile	Ile	Val -10	Gly	Thr	Arg	Ile	Gln -5	Phe	Ser	Asp	Gly -1	.Asn 1	•
	Glu P	he i	Ala	Val 5	Asp	Lys	Ser	Lys	Arg 10	Gly	Leu	Ile	His	Val 15	Pro	Lys	
35	Asp L	eu	Pro 20	Leu	Lys	Thr	Lys	Val 25	Leu	Asp	Met	Ser	Gln 30	Asn	Tyr	Ile	
	Ala G	lu : 35	Leu	Gln	Val	Ser	Asp 40	Met	Ser	Phe	Leu	Ser 45	Glu	Leu	Thr	Val	
40	Leu A 50	rg 1	Leu	Ser	His	Asn 55	Arg	Ile	Gln	Leu	Leu 60	Asp	Leu	Ser	Val	Phe 65	
45	Lys P	he i	Asn	Gln	Asp 70	Leu	Glu	Tyr	Leu	Asp 75	Leu	Ser	His	Asn	Gln 80	Leu	•
43	Gln L	ys :	Ile	Ser 85	Cys	His	Pro	Ile	Val 90	Ser	Phe	Arg	His	Leu 95	Asp	Leu	
50	Ser P		Asn 100	Asp	Phe	Lys	Ala	Leu 105	Pro	Ile	Cys	Lys	Glu 110	Phe	Gly	Asn	
	Leu S	er (Gln	Leu	Asn	Phe	Leu 120	Gly	Leu	Ser	Ala	Met 125	Lys	Leu	Gln	Lys	
55	Leu A	.sp]	Leu	Leu	Pro	Ile	Ala	His	Leu	His	Leu	Ser	Tyr	Ile	Leu	Leu	

150 155 160

					150					155					100	
5	Ile	Leu	Asn	Ala 165	Lys	Thr	Leu	His	Leu 170	Val	Phe	His	Pro	Thr 175	Ser	Leu
J	Phe	Ala	Ile 180	Gln	Val	Asn	Ile	Ser 185	Val	Asn	Thr	·Leu	Gly 190	Cys	Leu	Gln
10	Leu	Thr 195	Asn	Ile	Lys	Leu	Asn 200	Asp	Asp	Asn	Cys	Gln 205	Val	Phe	Ile	Lys
	Phe 210	Leu	Ser	Glu	Leu	Thr 215	Arg	Gly	Pro	Thr	Leu 220	Leu	Asn	Phe	Thr	Leu 225
15	Asn	His	Ile	Glu	Thr 230	Thr	Trp	Lys	Cys	Leu 235	Val	Arg	Val	Phe	Gln 240	Phe
20	Leu	Trp	Pro	Lys 245	Pro	Val	Glu	Tyr	Leu 250	Asn	Ile	Tyr	Asn	Leu 255	Thr	Ile
	Ile	Glu	Ser 260	Ile	Arg	Glu	Glu	Asp 265	Phe	Thr	Tyr	Ser	Lys 270	Thr	Thr	Leu
25	Lys	Ala 275	Leu	Thr	Ile	Glu	His 280	Ile	Thr	Asn	Gln	Val 285	Phe	Leu	Phe	Ser
	Gln 290	Thr	Ala	Leu	Tyr	Thr 295	Val	Phe	Ser	Glu	Met 300	Asn	Ile	Met	Met	Leu 305
30	Thr	Ile	Ser	Asp	Thr 310	Pro	Phe	Ile	His	Met 315	Leu	Cys	Pro	His	Ala 320	Pro
35	Ser	Thr	Phe	Lys 325	Phe	Leu	Asn	Phe	Thr 330	Gln	Asn	Val	Phe	Thr 335	Asp	Ser
	Ile	Phe	Glu 340	Lys	Cys	Ser	Thr	Leu 345	Val	Lys	Leu	Glu	Thr 350	Leu	Ile	Leu
40		Lys 355					360					365				
	Asp 370	Met	Pro	Ser	Leu	Glu 375	Ile	Leu	Asp	Val	Ser 380	Trp	Asn	Ser	Leu	Glu 385
45	Ser	Gly	Arg	His	Lys 390	Glu	Asn	Cys	Thr	Trp 395	Val	Glu	Ser	Ile	Val 400	Val
50	Leu	Asn	Leu	Ser 405	Ser	Asn	Met	Leu	Thr 410	Asp	Ser	Val	Phe	Arg 415	Cys	Leu
30	Pro	Pro	Arg 420	Ile	Lys	Val	Leu	Asp 425	Leu	His	Ser	Asn	Lys 430	Ile	Lys ·	Ser
55	Val	Pro 435	Lys	Gln	Val	Val	Lys 440	Leu	Glu	Ala	Leu	Gln 445	Glu	Leu	Asn	Val
	Ala 450	Phe	Asn	Ser	Leu	Thr 455	Asp	Leu	Pro	Gly	Cys 460	Gly	Ser	Phe	Ser	Ser 465

	Leu	Ser	Val	Leu	Ile 470	Ile	Asp	His	Asn	Ser 475	Val	Ser	His	Pro	Ser 480	Ala
5	Asp	Phe	Phe	Gln 485	Ser	Cys	Gln	Lys	Met 490	Arg	Ser	Ile	Lys	Ala 495	Gly	Asp
10	Asn	Pro	Phe 500	Gln	Cys	Thr	Cys	Glu 505	Leu	Arg	Glu	Phe	Val 510	Lys	Asn	Ile
	Asp	Gln 515	Val	Ser	Ser	Glu	Val 520	Leu	Glu	Gly	Trp	Pro 525	Asp	Ser	Tyr	Lys
15	Cys 530	Asp	Tyr	Pro	Glu	Ser 535	Tyr	Arg	Gly	Ser	Pro 540	Leu	Lys	Asp	Phe	His 545
	Met	Ser	Glu	Leu	Ser 550	Cys	Asn	Ile	Thr	Leu 555	Leu	Ile	Val	Thr	Ile 560	Gly
20	Ala	Thr	Met	Leu 565	Val	Leu	Ala	Val	Thr 570	Val	Thr	Ser	Leu	Cys 575	Ile	Tyr
25	Leu	Asp	Leu 580	Pro	Trp	Tyr	Leu	Arg 585	Met	Val	Cys	Gln	Trp 590	Thr	Gln	Thr
	Arg	Arg 595	Arg	Ala	Arg	Asn	Ile 600	Pro	Leu	Glu	Glu	Leu 605	Gln	Arg	Asn	Leu
30	Gln 610	Phe	His	Ala	Phe	Ile 615	Ser	Tyr	Ser	Glu	His 620	Asp	Ser	Ala	Trp	Val 625
	Lys	Ser	Glu	Leu	Val 630	Pro	Tyr	Leu	Glu	Lys 635	Glu	Asp	Ile	Gln	Ile 640	Cys
35	Leu	His	Glu	Arg 645	Asn	Phe	Val	Pro	Gly 650	Lys	Ser	Ile	Val	Glu 655	Asn	Ile
40	Ile	Asn	Суs 660	Ile	Glu	Lys	Ser	Tyr 665	Lys	Ser	Ile	Phe	Val 670	Leu	Ser	Pro
,	Asn	Phe 675	Val	Gln	Ser		Trp 680		His	Tyr		Leu 685		Phe	Ala	His
45	His 690	Asn	Leu	Phe	His	Glu 695	Gly	Ser	Asn	Asn	Leu 700	Iļe	Leu	Ile	Leu	Leu 705
	Glu	Pro	Ile	Pro	Gln 710	Asn	Ser	Ile	Pro	Asn 715	Lys	Tyr	His	Lys	Leu 720	Lys
50	Ala	Leu	Met	Thr 725	Gln	Arg	Thr	Tyr	Leu 730	Gln	Trp	Pro	Lys	Glu 735	Lys	Ser _
5 5	Lys	Arg	Gly 740	Leu	Phe	Trp	Ala	Asn 745	Ile	Arg	Ala	Ala	Phe 750	Asn	Met	Lys
	Leu	Thr 755	Leu	Val	Thr	Glu	Asn 760	Asn	Asp	Val	Lys	Ser 765				

```
<210> 42
     <211> 3168
     <212> DNA
 5
     <213> Unknown
     <220>
     <223> Description of Unknown Organism:primate; surmised
           Homo sapiens
10
     <220>
     <221> CDS
     <222> (1)..(3165)
15
     <220>
     <221> mat_peptide
     \langle 222 \rangle (14\overline{4})..(3165)
     <400> 42
20
     atg ccc atg aag tgg agt ggg tgg agg tgg agc tgg ggg ccg gcc act
     Met Pro Met Lys Trp Ser Gly Trp Arg Trp Ser Trp Gly Pro Ala Thr
                  -45
     cac aca gcc ctc cca ccc cca cag ggt ttc tgc cgc agc gcc ctg cac
                                                                         96
25
     His Thr Ala Leu Pro Pro Pro Gln Gly Phe Cys Arg Ser Ala Leu His
              -30
     ccg ctg tct ctc ctg gtg cag gcc atc atg ctg gcc atg acc ctg gcc
                                                                         144
     Pro Leu Ser Leu Leu Val Gln Ala Ile Met Leu Ala Met Thr Leu Ala
30
         -15
                              -10
     ctg ggt acc ttg cct gcc ttc cta ccc tgt gag ctc cag ccc cac ggc
                                                                         192
     Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys Glu Leu Gln Pro His Gly
35
     ctg gtg aac tgc aac tgg ctg ttc ctg aag tct gtg ccc cac ttc tcc _240
     Leu Val Asn Cys Asn Trp Leu Phe Leu Lys Ser Val Pro His Phe Ser
40
     atg gca gca ccc cgt ggc aat gtc acc agc ctt tcc ttg tcc tcc aac
     Met Ala Ala Pro Arg Gly Asn Val Thr Ser Leu Ser Leu Ser Ser Asn
               35
                                                                         336 --
     cgc atc cac cac ctc cat gat tct gac ttt gec cac ctg ccc agc ctg
45
     Arg Ile His His Leu His Asp Ser Asp Phe Ala His Leu Pro Ser Leu
     cgg cat ctc aac ctc aag tgg aac tgc ccg ccg gtt ggc ctc agc ccc
                                                                         384
     Arg His Leu Asn Leu Lys Trp Asn Cys Pro Pro Val Gly Leu Ser Pro
50
     atg cac ttc ccc tgc cac atg acc atc gag ccc agc acc ttc ttg gct
     Met His Phe Pro Cys His Met Thr Ile Glu Pro Ser Thr Phe Leu Ala
                       85
55
                                                                          480
     gtg ccc acc ctg gaa gag cta aac ctg agc tac aac aac atc atg act
     Val Pro Thr Leu Glu Glu Leu Asn Leu Ser Tyr Asn Asn Ile Met Thr
                  100
                                       105
```

5	gtg Val	cct Pro	gcg Ala 115	ctg Leu	ccc Pro	aaa Lys	tcc Ser	ctc Leu 120	ata Ile	tcc Ser	ctg Leu	tcc Ser	ctc Leu 125	agc Ser	cat His	acc Thr	528
	aac Asn	atc Ile 130	ctg Leu	atg Met	cta Leu	gac Asp	tct Ser 135	gcc Ala	agc Ser	ctc Leu	gcc Ala	ggc Gly 140	ctg Leu	cat His	gcc Ala	ctg Leu	576
10	cgc Arg 145	ttc Phe	cta Leu	ttc Phe	atgʻ Met	gac Asp 150	Gly	aac Asn	tgt Cys	tat Tyr	tac Tyr 155	aag Lys	aac Asn	ccc Pro	tgc Cys	agg Arg 160	624
15	cag Gln	gca Ala	ctg Leu	gag Glu	gtg Val 165	gcc Ala	ccg Pro	ggt Gly	gcc Ala	ctc Leu 170	ctt Leu	ggc	ctg Leu	ggc Gly	aac Asn 175	ctc Leu	672
20	acc Thr	cac His	ctg Leu	tca Ser 180	ctc Leu	aag Lys	tac Tyr	aac Asn	aac Asn 185	ctc Leu	act Thr	gtg Val	gtg Val	ccc Pro 190	cgc Arg	aac Asn	720
25														cgc Arg			768
	aaa Lys	ctg Leu 210	gcg Ala	cct Pro	gag Glu	gac Asp	ctg Leu 215	gcc Ala	aat Asn	ctg Leu	acc Thr	gcc Ala 220	ctg Leu	cgt Arg	gtg Val	ctc Leu	816
30	gat Asp 225	gtg Val	ggc Gly	gga Gly	aat Asn	tgc Cys 230	cgc Arg	cgc Arg	tgc Cys	gac Asp	cac His 235	gct Ala	ccc Pro	aac Asn	ccc Pro	tgc <i>Cys</i> 240	864
35	atg Met	gag Glu	tgc Cys	cct Pro	cgt Arg 245	cac His	ttc Phe	ccc Pro	cag Gln	cta Leu 250	cat His	ccc Pro	gat Asp	acc Thr	ttc Phe 255	agc Ser	912
40	cac His	ctg Leu	agc Ser	cgt Arg 260	ctt Leu	gaa Glu	ggc	ctg Leu	gtg Val 265	ttg Leu	aag Lys	gac Asp	agt Ser	tct Ser 270	ctc Leu	tcc Ser	960
45	tgg Trp	ctg Leu	aat Asn 275	gcc Ala	agt Ser	tgg Trp	ttc Phe	cgt Arg 280	ggg Gly	ctg Leu	gga Gly	aac Asn	ctc Leu 285	cga Arg	gtg Val	ctg Leu	1008
	gac Asp	ctg Leu 290	agt Ser	gag Glu	aac Asn	ttc Phe	ctc Leu 295	tac Tyr	aaa Lys	tgc Cys	atc Ile	act Thr 300	aaa Lys	acc Thr	aag Lys	gcc Ala	1056
50	ttc Phe 305	cag Gln	ggc Gly	cta Leu	aca Thr	cag Gln 310	ctg Leu	Yid Cdc	aag Lys	ctt Leu	aac Asn 315	ctg Leu	tcc Ser	ttc Phe	aat Asn	tac Tyr 320	1104
55														tcc Ser			1152
	agc	ctg	gtc	gcc	ctg	aag	gag	ctg	gac	atg	cac	ggc	atc	ttc	ttc	cgc	1200

	Ser	Leu	Val	Ala 340	Leu	Lys	Glu	Leu	Asp 345	Met	His	Gly	Ile	Phe 350	Phe	Arg	
5													ctg Leu 365				1248
10	Gln												gcc Ala				1296
15													ctg Leu				1344
13													Gly ggg				1392
20													gct Ala				1440
25													tgc Cys 445				1488
30													acc Thr				1536
35													cgc Arg				1584
33													ctg Leu				1632
40													gac Asp				1680
45													ctg Leu 525				1728
50													cac His				1776
55													ctg Leu				1824
													acg Thr				1872

-				ttc Phe 580													1920
5				ctg Leu													1968
10				cag Gln													2016
15				aag Lys													2064
20				aag Lys													2112
25				gca Ala 660													2160
				acc Thr													2208
30			Val	gcc Ala													2256
35				agc Ser													2304
40				gcg Ala													2352
45				gcc Ala 740													2400
				gtg Val													2448
50				cag Gln													2496
55				gcc Ala													2544
	gtg	gct	ctg	ggc	ctg	ggt	gtg	ccc	atg	ctg	cat	cac	ctc	tgt	ggc	tgg	2592

	Val	Ala	Leu	Gly	Leu 805	Gly	Val	Pro	Met	Leu 810	His	His	Leu	Cys	Gly 815	Trp	
5										ctg Leu							2640
10										gcc Ala							2688
15	gtg Val	gtc Val 850	ttc Phe	gac Asp	aaá Lys	acg Thr	cag Gln 855	agc Ser	gca Ala	gtg Val	gca Ala	gac Asp 860	tgg Trp	gtg Val	tac Tyr	aac Asn	2736
	gag Glu 865	ctt Leu	cgg Arg	ggg Gly	cag Gln	ctg Leu 870	gag Glu	gag Glu	tgc Cys	cgt Arg	ggg Gly 875	cgc Arg	tgg Trp	gca Ala	ctc Leu	cgc Arg 880	2784
20	ctg Leu	tgc Cys	ctg Leu	gag Glu	gaa Glu 885	cgc Arg	gac Asp	tgg Trp	ctg Leu	cct Pro 890	ggc Gly	aaa Lys	acc Thr	ctc Leu	ttt Phe 895	gag Glu	2832
25	aac Asn	ctg Leu	tgg Trp	gcc Ala 900	tcg Ser	gtc Val	tat Tyr	ggc Gly	agc Ser 905	cgc Arg	aag Lys	acg Thr	ctg Leu	ttt Phe 910	gtg Val	ctg Leu	2880
30	gcc Ala	cac His	acg Thr 915	gac Asp	cgg Arg	gtc Val	agt Ser	ggt Gly 920	ctc Leu	ttg Leu	cgc Arg	gcc Ala	agc Ser 925	ttc Phe	ctg Leu	ctg Leu	2928
35	gcc Ala	cag Gln 930	cag Gln	cgc Arg	ctg Leu	ctg Leu	gag Glu 935	gac Asp	cgc Arg	aag Lys	gac Asp	gtc Val 940	gtg Val	gtg Val	ctg Leu	gtg Val	2976
,	atc Ile 945	ctg Leu	agc Ser	cct Pro	gac Asp	ggc Gly 950	cgc Arg	cgc Arg	tcc Ser	cgc Arg	tat <i>Tyr</i> 955	gtg Val	cgg Arg	ctg Leu	cgc Arg	cag Gln 960	3024
. 40	cgc Arg	ctc Leu	tgc Cys	cgc Arg	cag Gln 965	agt Ser	gtc Val	ctc Leu	ctc Leu	tgg Trp 970	ccc Pro	cac His	cag Gln	ccc Pro	agt Ser 975	ggt. Gly	3072
45	cag Gln	cgc Arg	agc Ser	ttc Phe 980	tgg Trp	gcc Ala	cag Gln	ctg Leu	ggc Gly 985	atg Met	gcc Ala	ctg Leu	acc Thr	agg Arg 990	gac Asp	aac Asn	3120
50	cac His	cac His	ttc Phe 995	tat Tyr	aac Asn	cgg Arg	Asn	ttc Phe .000	tgc Cys	cag Gln	gga Gly	Pro	acg Thr .005	gcc Ala	gaa Glu	tag	3168
55	<211 <212	0> 43 l> 10 2> PF 3> Ur)55 RT	vn						·							

<400> 43

	Met	Pro) Met	Lys -45		Ser	Gly	Trp	Arg -40	Trp	Ser	Trp	Gly	Pro -35		·Thi
5	His	Thr	Ala -30	Leu	Pro	Pro	Pro	Gln -25		Phe	Cys	Arg	Ser -20		Leu	His
	Pro	Leu -15	Ser	Leu	Leu	Val	Gln -10	Ala	Ile	Met	Leu	Ala -5		Thr	Leu	Ala
10	Leu 1	Gly	Thr	Leu	Pro 5	Ala	Phe	Leu	Pro	Cys 10	Glu	Leu	Gln	Pro	His 15	_
15	Leu	Val	Asn	Cys 20	Asn	Trp	Leu	Phe	Leu 25	Lys	Ser	Val	Pro	His 30	Phe	Ser
	Met	Ala	Ala 35	Pro	Arg	Gly	Asn	Val 40	Thr	Ser	Leu	Ser	Leu 45	Ser	Ser	Asn
20	Arg	Ile 50	His	His	Leu	His	Asp 55	Ser	Asp	Phe	Ala	His 60	Leu	Pro	Ser	Leu
	65					70		Asn			75		•			80
25					85	•		Thr		90		·			95	
30	Val	Pro	Thr	Leu 100	Glu	Glu	Leu	Asn	Leu 105	Ser	Tyr	Asn	Asn	Ile 110	Met	Thr
			115					Leu 120		•			125			
35		130					135	Ala				140				
	145					150		Asn			155					160
40					165			Gly		170					175	
45	Thr	His	Leu	Ser 180	Leu	Lys	Tyr	Asn	Asn 185	Leu	Thr	Val	Val	Pro 190	Arg	Asn
	Leu	Pro	Ser 195	Ser	Leu	Glu	Tyr	Leu 200	Leu	Leu	Ser	Tyr	Asn 205	Arg	Ile	Val
50	Lys.	Leu 210	Ala	Pro	Glu	Asp	Leu 215	Ala	Asn	Leu	Thr	Ala 220	Leu	Arg	Val	Leu
	Asp 225	Val	Gly	Gly	Asn	Cys 230	Arg	Arg	Cys	Asp	His 235	Ala	Pro	Asn	Þго	Cys 240
55	Met	Glu	Cys	Pro	Arg 245	His	Phe	Pro	Gln	Leu 250	His	Pro	Asp	Thr	Phe 255	Ser
	His	Leu	Ser	Arg	Leu	Glu	Gly	Leu	Val	Leu	Lys	Asp	Ser	Ser	Leu	Ser

260 265 270 Trp Leu Asn Ala Ser Trp Phe Arg Gly Leu Gly Asn Leu Arg Val Leu 280 5 Asp Leu Ser Glu Asn Phe Leu Tyr Lys Cys Ile Thr Lys Thr Lys Ala 295 Phe Gln Gly Leu Thr Gln Leu Arg Lys Leu Asn Leu Ser Phe Asn Tyr 10 Gln Lys Arg Val Ser Phe Ala His Leu Ser Leu Ala Pro Ser Phe Gly 15 Ser Leu Val Ala Leu Lys Glu Leu Asp Met His Gly Ile Phe Phe Arg 345 Ser Leu Asp Glu Thr Thr Leu Arg Pro Leu Ala Arg Leu Pro Met Leu 20 Gln Thr Leu Arg Leu Gln Met Asn Phe Ile Asn Gln Ala Gln Leu Gly 375 Ile Phe Arg Ala Phe Pro Gly Leu Arg Tyr Val Asp Leu Ser Asp Asn 25 Arg Ile Ser Gly Ala Ser Glu Leu Thr Ala Thr Met Gly Glu Ala Asp 405 410 30 Gly Glu Lys Val Trp Leu Gln Pro Gly Asp Leu Ala Pro Ala Pro Val Asp Thr Pro Ser Ser Glu Asp Phe Arg Pro Asn Cys Ser Thr Leu 35 Asn Phe Thr Leu Asp Leu Ser Arg Asn Asn Leu Val Thr Val Gln Pro Glu Met Phe Ala Gln Leu Ser His Leu Gln Cys Leu Arg Leu Ser His 40 Asn Cys Ile Ser Gln Ala Val Asn Gly Ser Gln Phe Leu Pro Leu Thr 485 490 45 Gly Leu Gln Val Leu Asp Leu Ser His Asn Lys Leu Asp Leu Tyr His Glu His Ser Phe Thr Glu Leu Pro Arg Leu Glu Ala Leu Asp Leu Ser 50 Tyr Asn Ser Gln Pro Phe Gly Met Gln Gly Val Gly His Asn Phe Ser 535

Asn Ile His Ser Gln Val Ser Gln Gln Leu Cys Ser Thr Ser Leu Arg 565 570 575

Phe Val Ala His Leu Arg Thr Leu Arg His Leu Ser Leu Ala His Asn

555

55

	Ala	Leu	Asp	Phe 580	Ser	Gly	Asn	Ala	Leu 585	Gly	His	Met	Trp	Ala 590	Glu	Gly
5	Asp	Leu	Tyr 595	Leu	His	Phe	Phe	Gln 600	Gly	Leu	Ser	Gly	Leu 605	Ile	Trp	Leu
10	qzA	Leu 610	Ser	Gln	Asn	Arg	Leu 615	His	Thr	Leu	Leu	Pro 620	Gln	Thr	Leu	Arg
	Asn 625	Leu	Pro	Lys	Ser	Leu 630	Gln	Val	Leu	Arg	Leu 635	Arg	Asp	Asn	Tyr	Leu 640
15	Ala	Phe	Phe	ГÀЗ	Trp 645	Trp	Ser	Leu	His	Phe 650	Leu	Pro	Lys	Leu	Glu 655	Val
	Leu	Asp	Leu	Ala 660	Gly	Asn	Gln	Leu	Lys 665	Ala	Leu	Thr	Asn	Gly 670	Ser	Leu
20	Pro	Ala	Gly 675	Thr	Arg	Leu	Arg	Arg 680	Leu	Asp	Val	Ser	Cys 685	Asn	Ser	Ile
25	Ser	Phe 690	Val	Ala	Pro	Gly	Phe 695	Phe	Ser	Lys	Ala	Lys 700	Glu	Leu	Arg	Glu
	Leu 705	Asn	Leu	Ser	Ala	Asn 710	Ala	Leu	Lys	Thr	Val 715	Asp	His	Ser	Trp	Phe 720
30	Gly	Pro	Leu	Ala	Ser 725	Ala	Leu	Gln	Ile	Leu 730	Asp	Val	Ser	Ala	Asn 735	Pro
	Leu	His	Суѕ	Ala 740	Cys	Gly	Ala	Ala	Phe 745	Met	Asp	Phe	Leu	Leu 750	Glu	Val
35	Gln	Ala	Ala 755	Val	Pro	Gly	Leu	Pro 760	Ser	Arg	Val	Lys	Cys 765	Gly	Ser	Pro
40	Gly	Gln 770	Leu	Gln	Gly	Leu	Ser 775	Ile	Phe	Ala	Gln	Asp 780	Leu	Arg	Leu	Суѕ
	Leu 785		Glu	Ala		Ser 790	_	Asp	Cys	Phe	Ala 795		Ser	Leu.	Leu	Ala 800
45	Val	Ala	Leu	Gly	Leu 805	Gly	Val	Pro	Met	Leu 810	His	His	Leu	Cys	Gly 815	Trp
	Asp	Leu	Trp	Tyr 820	Cýs	Phe	His	Leu	Cys 825	Leu	Ala	Trp	Leu	Pro 830	Trp	Arg
50	Gly	Arg	Gln 835	Ser	Gly	Arg	Asp	Glu 840	Asp	Ala	Leu	Pro	Tyr 845	Asp	Ala	Phe
55	Val	Val 850	Phe	Asp	Lys	Thr	Gln 855	Ser	Ala	Val	Ala	Asp 860	Trp	Val	Tyr	Asn
	Glu 865	Leu	Arg	Gly	Gln	Leu 870	Glu	Glu	Cys	Arg	Gly 875	Arg	Trp	Ala	Leu	Arg 880

	Leu	Cys	Leu	Glu	Glu 885	Arg	Asp	Trp	Leu	Pro 890	Gly	Lys	Thr	Leu	Phe 895	Glu	
5	Asn	Leu	Trp	Ala 900	Ser	Val	Tyr	Gly	Ser 905	Arg	Lys	Thr	Leu	Phe 910	Val	Leu	
	Ala	His	Thr 915	Asp	Arg	Val	Ser	Gly 920	Leu	Leu	Arg	Ala	Ser 925	Phe	Leu	Leu	
10	Ala	Gln 930	Gln	Arg	Leu	Leu	Glu 935	Asp	Arg	Lys	Asp	Val 940	Val	Val	Leu	Val	
15	Ile 945	Leu	Ser	Pro	Asp	Gly 950	Arg	Arg	Ser		Tyr 955	Val	Arg	Leu	Arg	Gln 960	
	Arg	Leu	Суѕ	Arg	Gln 965	Ser	Val	Leu	Leu	Trp 970	Pro	His	Gln	Pro	Ser 975	Gly	
20	Gln	Arg	Ser	Phe 980	Trp	Ala	Gln	Leu	Gly 985	Met	Ala	Leu	Thr	Arg 990	Asp	Asn	
	His	His	Phe 995	Tyr	Asn	Arg		Phe 1000	Cys	Gln	Gly		Thr 1005	Ala	Glu		
25	<212 <212	0> 44 l> 22 2> DN	289 NA														
30	<220	3> De	escri	m lptic uscul		נתט 5	cnown	n Orç	janis	sm:ro	odent	:; sı	ırmis	sed			
35	<220 <221 <222	l> CI		2079	9)										٠		
40	aac		tcc											cgc Arg			48
45 -	ctg Leu	gca Ala	agt Ser	tcc Ser 20	ttt Phe	aag Lys	aac Asn	ctg Leu	gtg Val 25	tca Ser	ctg Leu	cag Gln	gag Glu	ctg Leu 30	aac Asn	atg Met	96
50	aac Asn	ggc Gly	atc Ile 35	ttc Phe	ttc Phe	cgc Arg	ttg Leu	ctc Leu 40	aac Asn	aag Lys	tac Tyr	acg Thr	ctc Leu 45	aga Arg	tgg Trp	ctg Leu	144
55	gcc Ala	gat Asp 50	ctg Leu	ccc Pro	aaa Lys	ctc Leu	cac His 55	act Thr	ctg Leu	cat His	ctt Leu	caa Gln 60	atg Met	aac Asn	ttc Phe	atc Ile	192
<i></i>	aac Asn 65	cag Gln	gca Ala	cag Gln	ctc Leu	agc Ser 70	atc Ile	ttt Phe	ggt Gly	acc Thr	ttc Phe 75	cga Arg	gcc Ala	ctt Leu	cgc Arg	ttt Phe 80	240

5					gac Asp 85												288
					gag Glu												336
10					CCa,												384
15	atg Met	gac Asp 130	agg Arg	tgt Cys	aag Lys	aac Asn	ttc Phe 135	aag Lys	ttc Phe	aac Asn	atg Met	gac Asp 140	ctg Leu	tct Ser	cgg Arg	aac Asn	432
20	aac Asn 145	ctg Leu	gtg Val	act Thr	atc Ile	aca Thr 150	gca Ala	gag Glu	atg Met	ttt Phe	gta Val 155	aat Asn	ctc Leu	tca Ser	cgc Arg	ctc Leu 160	480
25	cag Gln	tgt Cys	ctt Leu	agc Ser	ctg Leu 165	agc Ser	cac His	aac Asn	tca Ser	att Ile 170	gca Ala	cag Gln	gct Ala	gtc Val	aat Asn 175	ggc Gly	528
	tct Ser	cag Gln	Phe	ctg Leu 180	ccg Pro	ctg Leu	acc Thr	ggt Gly	ctg Leu 185	cag Gln	gtg Val	cta Leu	gac Asp	ctg Leu 190	tcc Ser	cac His	576
30	aat Asn	aag Lys	ctg Leu 195	gac Asp	ctc Leu	tac Tyr	cac His	gag Glu 200	cac His	tca Ser	ttc Phe	acg Thr	gag Glu 205	cta Leu	cca Pro	cga Arg	624
35					gac Asp												672
40					aat Asn												720
45					gca Ala 245												768
•	ctc Leu	aac Asn	agc Ser	aac Asn 260	tca Ser	gtg Val	agg Arg	ttt Phe	ctt Leu 265	gac Asp	ttc Phe	agc Ser	ggc Gly	aac Asn 270	ggt Gly	atg Met	816
50					gat Asp												864
55	ctg Leu	agt Ser 290	ggc Gly	gtg Val	ctg Leu	aag Lys	ctg Leu 295	gac Asp	ctg Leu	tct Ser	caa Gln	aat Asn 300	aac Asn	ctg Leu	cat His	atc Ile	912
	ctc	cgg	ccc	cag	aac	ctt	gac	aac	ctc	ccc	aag	agc	ctg	aag	ctg	ctg	960

	Leu 305	Arg	Pro	Gln	Asn	Leu 310	Asp	Asn	Leu	Pro	Lys 315	Ser	Leu	Lys	Leu	Leu 320	
5										ttt Phe 330							1008
10	ttc Phe	cta Leu	ccc Pro	aac Asn 340	ctg Leu	gaa Glu	gtc Val	cta Leu	gac Asp 345	ctg Leu	gca Ala	ggc Gly	aac Asn	cag Gln 350	cta Leu	aag Lys	1056
15	gcc Ala	ctg Leu	acc Thr 355	aat Asn	ggc Gly	acc Thr	ctg Leu	cct Pro 360	aat Asn	ggc Gly	acc Thr	ctc Leu	ctc Leu 365	cag Gln	aaa Lys	ctc Leu	1104
1.5	gat Asp	gtc Val 370	agt Ser	agc Ser	aac Asn	agt Ser	atc Ile 375	gtc Val	tct Ser	gtg Val	gcc Ala	ccc Pro 380	ggc Gly	ttc Phe	ttt Phe	tcc Ser	1152
20	aag Lys 385	gcc Ala	aag Lys	gag Glu	ctg Leu	cga Arg 390	gag Glu	ctc Leu	aac Asn	ctt Leu	agc Ser 395	gcc Ala	aac Asn	gcc Ala	ctc Leu	aag Lys 400	1200
25	aca Thr	gtg Val	gac Asp	cac His	tcc Ser 405	tgg Trp	ttt Phe	ggg Gly	ccc Pro	att Ile 410	gtg Val	atg Met	aac Asn	ctg Leu	aca Thr 415	gtt Val	1248
30	cta Leu	gac Asp	gtg Val	aga Arg 420	agc Ser	aac Asn	cct Pro	ctg Leu	cac His 425	tgt Cys	gcc Ala	tgt Cys	GJ À GG À	gca Ala 430	gcc Ala	ttc Phe	1296
35	gta Val	gac Asp	tta Leu 435	ctg Leu	ttg Leu	gag Glu	gtg Val	cag Gln 440	acc Thr	aag Lys	gtg Val	cct Pro	ggc Gly 445	ctg Leu	gct Ala	aat Asn	1344
	ggt Gly	gtg Val 450	aag Lys	tgt Cys	ggc Gly	agc Ser	ccc Pro 455	ggc Gly	cag Gln	ctg Leu	cag Gln	ggc Gly 460	cgt Arg	agc Ser	atc Ile	ttc Phe	- 1392
40	gcg Ala 465	cag Gln	gac Asp	ctg Leu	cgg Arg	ctg Leu 470	tgc Cys	ctg Leu	gat Asp	gag Glu	gtc Val 475	Leu	tct Ser	tgg Trp	gac Asp	tgc Cys 480	1440
45	ttt Phe	ggc Gly	ctt Leu	tca Ser	ctc Leu 485	ttg Leu	gct Ala	gtg Val	gcc Ala	gtg Val 490	ggc Gly	ațg Met	gtg Val	gtg Val	cct Pro 495	ata Ile	1488
50	ctg Leu	cac His	cat His	ctc Leu 500	tgc Cys	ggc Gly	tgg Trp	gac Asp	gtc Val 505	tgg Trp	tac Tyr	tgt Cys	ttt Phe	cat His 510	ctg Leu	tgc Cys	1536
55	ctg Leu	gca Ala	tgg Trp 515	cta Leu	cct Pro	ttg Leu	cta Leu	gcc Ala 520	cgc Arg	agc Ser	cga Arg	cgc Arg	agc Ser 525	gcc Ala	caa Gln	act Thr	1584
	ctc Leu	cct Pro 530	tat Tyr	gat Asp	gcc Ala	ttc Phe	gtg Val 535	Val	ttc Phe	gat Asp	aag Lys	gca Ala 540	cag Gln	agc Ser	gca Ala	gtt Val	1632

5	gcc Ala 545	gac Asp	tgg Trp	gtg Val	tat Tyr	aac Asn 550	gag Glu	ctg Leu	cgg Arg	gtg Val	cgg Arg 555	ctg Leu	gag Glu	gag Glu	cgg Arg	cgc Arg 560	1680
	ggc Gly	cgc Arg	tgg Trp	gca Ala	ctc Leu 565	cgc Arg	ctg Leu	tgc Cys	ctg Leu	gag Glu 570	gaç Asp	cga Arg	gat Asp	tgg Trp	ctg Leu 575	cct . Pro	1728
10	ggc Gly	cag Gln	acg Thr	ctc Leu 580	ttc Phe	gag Glu	aac Asn	ctc Leu	tgg Trp 585	gct Ala	tcc Ser	atc Ile	tat Tyr	ggg Gly 590	agc Ser	cgc Arg	1776
15	aag Lys	act Thr	cta Leu 595	ttt Phe	gtg Val	ctg Leu	gcc Ala	cac His 600	acg Thr	gac Asp	cgc Arg	gtc Val	agt Ser 605	ggc Gly	ctc Leu	ctg Leu	1824
20	cgc Arg	acc Thr 610	agc Ser	ttc Phe	ctg Leu	ctg Leu	gct Ala 615	cag Gln	cag Gln	cgc Arg	ctg Leu	ttg Leu 620	gaa Glu	gac Asp	cgc Arg	aag Lys	1872
25	gac Asp 625	gtg Val	gtg Val	gtg Val	ttg Leu	gtg Val 630	atc Ile	ctg Leu	cgt Arg	ccg Pro	gat Asp 635	gcc Ala	cac His	cgc Arg	tcc Ser	cgc Arg 640	1920
20	tat Tyr	gtg Val	cga Arg	ctg Leu	cgc Arg 645	cag Gln	cgt Arg	ctc Leu	tgc Cys	cgc Arg 650	cag Gln	agt Ser	gtg Val	ctc Leu	tt <i>c</i> Phe 655	tgg Trp	1968
30	ccc Pro	cag Gln	cag Gln	ccc Pro 660	aac Asn	ggg Gly	cag Gln	ggg Gly	ggc Gly 665	ttc Phe	tgg Trp	gcc Ala	cag Gln	ctg Leu 670	agt Ser	aca Thr	2016
35	gcc Ala	ctg Leu	act Thr 675	agg Arg	gac Asp	aac Asn	cgc Arg	cac His 680	ttc Phe	tat Tyr	aac Asn	cag Gln	aac Asn 685	ttc Phe	tgc Cys	cgg Arg	2064
40			aca Thr			tago	tcaç	gag c	aaca	igctg	ıg aa	acag	ctgo	atc	ttca	tgt	2119
	ctgg	ttcc	cg a	gtto	rctct	g co	tgcc	ttgc	tet	gtct	tac	taca	ccgc	ta t	ttgg	caagt	2179
45	gcgc	aata	ıta t	geta	ccaa	ıg 'cc	acca	iggco	cac	ggag	caa	aggt	tggc	tg t	aaag	ggtag	2239
43	tttt	cttc	cc a	itgca	itctt	t ca	ggag	gagtg	r aag	gatag	aca	ccaa	acco	ac			2289
50	<211 <212	> 45 > 69 > PF > Un	3	n,				•									
55		> 45 Leu		Phe	Asn 5	Tyr	Arg	Lys	Lys	Val 10	Ser	Phe	Ala	Arg	Leu 15	His	
	Leu	Ala	Ser	Ser	Phe	Lys	Asn	Leu	Val	Ser	Leu	Gln	Glu	Leu	Asn	Met	•

.

5	Asn	Gly	Ile 35	Phe	Phe	Arg	Leu	Leu 40	Asn	Lys	Tyr	Thr	Leu 45	Arg	Trp	Leu
J	Ala	Asp 50	Leu	Pro	Lys	Leu	His 55	Thr	Leu	His	Leų	Gln 60	Met	Asn	Phe	Ile
10	Asn 65	Gln	Ala	Gln	Leu	Ser 70	Ile	Phe	Gly	Thr	Phe 75	Arg	Ala	Leu	Arg	Phe 80
	Val	Asp	Leu	Ser	Asp 85	Asn	Arg	Ile	Ser	Gly 90	Pro	Ser	Thr	Leu	Ser 95	Glu
15	Ala	Thr	Pro	Glu 100	Glu	Ala	Asp	Asp	Ala 105	Glu	Gln	Glu	Glu	Leu 110	Leu	Ser
20	Ala	Asp	Pro 115	His	Pro	Ala	Pro	Leu 120	Ser	Thr	Pro	Ala	Ser 125	Lys	Asn	Phe
	Met	Asp 130	Arg	Суѕ	Lys	Asn	Phe 135	Lys	Phe	Asn	Met	Asp 140	Leu	Ser	Arg	Asn
25	Asn 145	Leu	Val	Thr	Ile	Thr 150	Ala	Glu	Met	Phe	Val **	Asn	Leu	Ser	Arg	Leu 160
	Gln	Cys	Leu	Ser	Leu 165	Ser	His	Asn	Ser	Ile 170	Ala	Gln	Ala	Val	Asn 175	Gly
30	Ser	Gln	Phe	Leu 180	Pro	Leu	Thr	Gly	Leu 185	Gln	Val	Leu	Asp	Leu 190	Ser	His
35	Asn	Lys	Leu 195	Asp	Leu	Tyr	His	Glu 200	His	Ser	Phe	Thr	Glu 205	Leu	Pro	Arg
	Leu	Glu 210	Ala	Leu	Asp	Leu	Ser 215	Tyr	Asn	Ser	Gln	Pro 220	Phe	Ser	Met	ГЛЗ
40	Gly 225	Ile	Gly	His	Asn	Phe 230	Ser	Phe	Val	Thr	His 235		Ser	Met	Leu	Gln 240
	Ser	Leu	Ser	Leu	Ala 245	His	Asn	Asp	Ile	His 250	Thr	Arg	Val	Ser	Ser 255	His
45	Leu	Asn	Ser	Asn 260	Ser	Val	Arg	Phe	Leu 265	Asp	Phe	Ser	Gly	Asn 270	Gly	Met
50	Gly	Arg	Met 275	Trp	Asp	Glu	Gly	Gly 280	Leu	Tyr	Leu	His	Phe 285	Phe	Gln	Gly
	Leu	Ser 290	Gly	Val	Leu	Lys	Leu 295	Asp	Leu	Ser	Gln	Asn 300	Asn	Leu	His	Ile
55	Leu 305	Arg	Pro	Gln	Asn	Leu 310	Asp	Asn	Leu	Pro	Lys 315	Ser	Leu	Lys	Leu	Leu 320
	Ser	Leu	Arg	Asp	Asn 325	Tyr	Leu	Ser	Phe	Phe 330	Asn	Trp	Thr	Ser	Leu 335	Ser

	Phe	Leu	Pro	Asn 340	Leu	Glu	Val	Leu	Asp 345	Leu	Ala	Gly	Asn	Gln 350	Leu	Lys
5	Ala	Leu	Thr 355	Asn	Gly	Thr	Leu	Pro 360	Asn	Gly	Thr	Leu	Leu 365	Gln	Lys	Leu
10	Asp	Val 370	Ser	Ser	Asn	Ser	Ile 375	Val	Ser	Val	Ala	Pro 380	Gly	Phe	Phe	Śer
	Lys 385	Ala	Lys	Glu	Leu	Arg 390	Glu	Leu	Asn	Leu	Ser 395	Ala	Asn	Ala	Leu	Lys 400
15	Thr	Val	Asp	His	Ser 405	Trp	Phe	Gly	Pro	Ile 410	Val	Met	Asn	Leu	Thr 415	Val
	Leu	Asp	Val	Arg 420	Ser	Asn	Pro	Leu	His 425	Cys	Ala	Суѕ	Gly	Ala 430	Ala	Phe
20	Val	Asp	Leu 435	Leu	Leu	Ğlu	Val	Gln 440	Thr	Lys	Val	Pro	Gly 445	Leu	Ala	Asn
25	Gly	Val 450	Lys	Cys	Gly	Ser	Pro 455	Gly	Gln	Leu	Gln	Gly 460	Arg	Ser	Ile	Phe
	Ala 465	Gln	Asp	Leu	Arg	Leu 470	Суѕ	Leu	Asp	Glu	Val 475	Leu	Ser	Trp	Asp	Cys 480
30	Phe	Gly	Leu	Ser	Leu 485	Leu	Ala	Val	Ala	Val 490	Gly	Met	Val	Val	Pro 495	Ile
	Leu	His	His	Leu 500	Cys	Gly	Trp	Asp	Val 505	Trp	Tyr	Cys	Phe	His 510	Leu	Cys
35	Leu	Ala	Trp 515	Leu	Pro	Leu	Leu	Ala 520	Arg	Ser	Arg	Arg	Ser 525	Ala	Gln	Thr
40	Leu	Pro 530	Tyr	Asp	Ala	Phe	Val 535	Val	Phe	Asp	Lys	Ala 540	Gln	Ser	Ala	Val
	Ala 545	Asp	Trp	Val		Asn 550		Leu	Arg	Val	Arg 555	Leu	Glu	Glu	Arg	Arg 560
45	Gly	Arg	Trp	Ala	Leu 565	Arg	Leu	Суѕ	Leu.	Glu 570	Asp	Arg _.	Asp	Trp	Leu 575	Pro
	Gly	Gln	Thr	Leu 580	Phe	Glu	Asn	Leu	Trp 585	Ala	Ser	Ile	Tyr	Gly 590	Ser	Arg
50	Lys	Thr	Leu 595	Phe	Val	Leu	Ala	His 600	Thr	Asp	Arg	Val	Ser 605	Gly	Leu	Leu
55	Arg	Thr 610	Ser	Phe	Leu	Leu	Ala 615	Gln	Gln	Arg	Leu	Leu 620	Glu	Asp	Arg	Lys
	Asp 625	Val	Val	Val	Leu	Val 630	Ile	Leu	Arg	Pro	Asp 635	Ala	His	Arg	Ser	Arg 640

Tyr Val Arg Leu Arg Gln Arg Leu Cys Arg Gln Ser Val Leu Phe Trp 645 650 655

Pro Gln Gln Pro Asn Gly Gln Gly Gly Phe Trp Ala Gln Leu Ser Thr 660 665 670

Ala Leu Thr Arg Asp Asn Arg His Phe Tyr Asn Gln Asn Phe Cys Arg 675 680 685

10 Gly Pro Thr Ala Glu 690

FIG. 2C

FIG. 3

