Transducers & Instrumentation

Module 06

Biopotential Electrodes

Biopotential sources in the body

- The body is a good conductor of electricity.
- There are several biological sources of biopotentials.
- Every cell has an electric potential difference across its cell membrane.
- This potential can change transiently in excitable cells such as nerves and muscles → This results in volume conduction in the body → Potential distribution within and on the surface of the body.
- These current sources are the driving forces behind all electrical activity recorded from different tissue: EEG, EMG, ECG, EOG, ECoG, etc.
- Currents within the body are due to the flow of ions in the body fluids.

Biopotential electrodes as transducers of currents

• Electrical currents in circuits is due to the flow of electrons.

 Biopotential electrodes act as transducers that convert ionic current to electronic current and vice versa.

Basic electrochemistry

Biopotential electrode equivalent circuit

Polarizable and Non-polarizable Electrodes

- Nature of current flow through the electrodes.
- Ideally Polarizable electrodes.
 - No actual current flows across the electrode-electrolyte interface.
 - Electrode acts as a capacitor.
 - E.g. Platinum electrode
- Ideally Non-polarizable electrodes.
 - Current flows through the electrode-electrolyte interface.
 - Electrode acts as a short.
 - E.g. Ag-AgCl electrode.

Polarizable vs. Non-polarizable electrode

Grimnes, Sverre, and Orjan G. Martinsen. *Bioimpedance* and bioelectricity basics. Academic press, 2011.

Polarizable vs. Non-polarizable electrode

Grimnes, Sverre, and Orjan G. Martinsen. *Bioimpedance* and bioelectricity basics. Academic press, 2011.

Ag-AgCl Electrode

- Silver metal with AgCl coating.
- AgCl layer provides the Chloride ions for converting electronic current to ionic current.

Ag-AgCI Electrode

- Has a half cell potential of 0.23V.
- Provide stable recordings compared to Ag electrodes.
- Use commonly for recording biopotentials from the surface of the body.
- AgCl deposition on the metal is done through electroplating or through sintering.

Electrode-Skin Interface

Electrodes for stimulation of tissue

- Same principle as recording electrodes but deal with larger current density.
- Net current crossing the electrode-electrolyte interface might not be zero.
- The nature of the electrodes used must consider the nature of the chemical reactions at the interface.
 - Oxidation of the metal can lead to toxic ions in the body.
 - Use of noble metals at high current density/voltage can result in electrolysis at the electrodes.
 - Ag/AgCl electrodes can lead to change in local electrolyte concentration underneath the electrode.