Theorem (Root test)
Let $\sum a_n$ be a series and let $\alpha = \limsup a_n ^{\frac{1}{n}}$.
The series Zan
The series $2an$ (i) converges absolutely if ax (ii) diverges if ax (iii) diverges if ax
(Inconclusive if $\alpha=1$).
Proof: (i) Suppose <<1. Let BE(a,1), so << B<1. sup{lamlimina
There exists NEIN s.t. n = N implies an \ B.
Hence $ a_n < \beta^n$ for $n \ge N$. Since $\sum_{i=1}^{\infty} \beta^n$ converges, by comparison test, $\sum_{i=1}^{\infty} a_n > 1$ (B<1)
by comparison test, [I and converges. " (B<1)"
(ii) Suppose a>1. limsup an +>1. For every n, Vn=sup land m≥n]
Hence an infinitely often. Then an > 1 infinitely often. Recall: \(\San \) converges \(\Rightarrow \) an \(\rightarrow 0 \). Then \(a_n \neq 0 \), so \(\San \) diverges.
Recall: Ean converges => an >0. Then an >0, so Zan diverges.

Ratio test
Let Zan be a series of nonzero real numbers.
(i) If livisup anti < 1, then Zan converges absolutely.
(ii) If liminf anti >1, then Zan diverges.
(Otherwise no information). Note: Weaker version: if $\lim_{n \to \infty} a_{n+1} = L > 1$.
Proof: Let x= limsup lan/h.
By Lemma:
(i) If limsup ant < 1, iming ant < 1 insup and < 1 insup < 1
(ii) If liminf (and)>1,

⇒ a>1 => diverge by Root test.

Monday, July 19

If you feel that your performance was hindered by the typo, schedule an appointment with me between now and class tomorrow — respond to upcoming Piazza post.

Exam Stats (out of 30).

Max: 25

Mean: 14.75

Median: 13

SD: 5.37

Recall:

- comparison test.

- proved that the hormonic series

Z h diverges

⇒ \(\frac{1}{2} \) \\ \frac{1}{n^p} \) diverges for p<1.

(p-series)

Soon: $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p>1.

Math 104 Worksheet 10 UC Berkeley, Summer 2021 Monday, July 19

Lemma. Let (s_n) be a sequence of nonzero real numbers. Then

$$\liminf \left|\frac{s_{n+1}}{s_n}\right| \leq \liminf |s_n|^{1/n} \leq \limsup |s_n|^{1/n} \leq \limsup \left|\frac{s_{n+1}}{s_n}\right|.$$

Proof. (The proof here uses the fact that $\lim n^{1/n} = 1$ and $\lim a^{1/n} = 1$ for any constant a > 0; see p.49 in the textbook for the proofs.) The second inequality is trivial. For the third inequality:

Let $L := \limsup \left| \frac{s_{n+1}}{s_n} \right|$. If $L = \infty$ then the inequality is trivial, so assume $L \in \mathbb{R}$. Let $\varepsilon > 0$. (Goal: Show that $\limsup |s_n|^{1/n} \le L + \varepsilon$.) There exists $N \in \mathbb{N}$ such that $\left| \frac{s_{n+1}}{s_n} \right| < L + \varepsilon$ for $n \geq N$. Then for n > N,

$$|s_n| = \left|\frac{s_n}{s_{n-1}}\right| \cdot \left|\frac{s_{n-1}}{s_{n-2}}\right| \cdot \cdot \cdot \left|\frac{s_{N+1}}{s_N}\right| \cdot |s_N| < (L+\varepsilon)^{n-N}|s_N| = (L+\varepsilon)^n \cdot \frac{|s_N|}{(L+\varepsilon)^N} = C(L+\varepsilon)^n$$
 where $C := \frac{|s_N|}{(L+\varepsilon)^N}$. Hence $|s_n|^{1/n} < C^{1/n}(L+\varepsilon)$ for $n > N$, so

 $\limsup |s_n|^{1/n} \leq \limsup C^{1/n}(L+\varepsilon) = L+\varepsilon.$ Exercise 1. Using the same strategy as above, prove the first inequality.

Let L= liminf | Suti | If L= 0, trivial. LER, L>D Assume Let \$70. (Show that liminf | Sn) = L-E) There exists NEW such that nZN implies 150+1>L-8. Then for n>N. 15N= 15n 1. . 15N+1 15N > (L-E) |SN = C(L-E)" ISn/ > C+(L-ε). liminf Isol = 2 L-E

() [m | 200+1]=00 Assume liminf | 200 . lim | Suti =00, there 15,17 > CT (MH) > M Since RHS -> M+1