EMBEDDINGS OF \mathbb{C}^* -SURFACES INTO WEIGHTED PROJECTIVE **SPACES**

HUBERT FLENNER, SHULIM KALIMAN, AND MIKHAIL ZAIDENBERG

ABSTRACT. Let V be a normal affine surface which admits a \mathbb{C}^* - and a \mathbb{C}_+ -action. Such surfaces were classified e.g., in [FlZa₁, FlZa₂], see also the references therein. In this note we show that in many cases V can be embedded as a principal Zariski open subset into a hypersurface of a weighted projective space. In particular, we recover a result of D. Daigle and P. Russell, see Theorem A in [DR].

1. Introduction

If $V = \operatorname{Spec} A$ is a normal affine surface equipped with an effective \mathbb{C}^* -action, then its coordinate ring A carries a natural structure of a \mathbb{Z} -graded ring $A = \bigoplus_{i \in \mathbb{Z}} A_i$. As was shown in [FlZa₁], such a \mathbb{C}^* -action on V has a hyperbolic fixed point if and only if $C = \operatorname{Spec} A_0$ is a smooth affine curve and $A_{\pm 1} \neq 0$. In this case the structure of the graded ring A can be elegantly described in terms of a pair (D_+, D_-) of \mathbb{Q} -divisors on C with $D_+ + D_- < 0$. More precisely, A is the graded subring

$$A = A_0[D_+, D_-] \subseteq K_0[u, u^{-1}], \quad K_0 := \operatorname{Frac} A_0,$$

where for i > 0

(1)
$$A_i = \{ f \in K_0 \mid \operatorname{div} f + iD_+ \ge 0 \} u^i \text{ and } A_{-i} = \{ f \in K_0 \mid \operatorname{div} f + iD_- \ge 0 \} u^{-i}.$$

This presentation of A (or V) is called in $[FlZa_1]$ the DPD-presentation. Furthermore two pairs (D_+, D_-) and (D'_+, D'_-) define equivariantly isomorphic surfaces over C if and only if they are equivalent that is,

$$D_+ = D'_+ + \operatorname{div} f$$
 and $D_- = D'_- - \operatorname{div} f$ for some $f \in K_0^{\times}$.

In this note we show that if such a surface V admits also a \mathbb{C}_+ -action then it can be C*-equivariantly embedded (up to normalization) into a weighted projective space as a hypersurface minus a hyperplane; see Theorem 2.3 and Corollary 2.5 below. In particular we recover the following result of Daigle and Russell [DR].

Theorem 1.1. Let V be a normal Gizatullin surface with a finite divisor class group. Then V can be embedded into a weighted projective plane $\mathbb{P}(a,b,c)$ minus a hypersurface. More precisely:

(a) If $V = V_{d,e}$ is $toric^2$ then V is equivariantly isomorphic to the open part³ $\mathbb{D}_+(z)$ of the weighted projective plane $\mathbb{P}(1,e,d)$ equipped with homogeneous coordinates (x:y:z) and with the 2-torus action $(\lambda_1,\lambda_2).(x:y:z)=(\lambda_1x:\lambda_2y:z).$

¹⁹⁹¹ Mathematics Subject Classification: 14R05, 14R20.

Key words: weighted projective space, \mathbb{C}^* -action, \mathbb{C}_+ -action, affine surface.

¹That is, V admits a completion by a linear chain of smooth rational curves; see Section 3 below.

 $^{^2}$ See 3.1(a) below.

³We use the standard notation $\mathbb{V}_+(f) = \{f = 0\}$ and $\mathbb{D}_+(f) = \{f \neq 0\}$.

(b) If V is non-toric then $V \cong \mathbb{D}_+(xy-z^m) \subseteq \mathbb{P}(a,b,c)$ for some positive integers a,b,c satisfying a+b=cm and $\gcd(a,b)=1$.

2. Embeddings of \mathbb{C}^* -surfaces into weighted projective spaces

According to Proposition 4.8 in [FlZa₁] every normal affine \mathbb{C}^* -surface V is equivariantly isomorphic to the normalization of a weighted homogeneous surface V' in \mathbb{A}^4 . In some cases (described in loc.cit.) V' can be chosen to be a hypersurface in \mathbb{A}^3 . Cf. also [Du] for affine embeddings of some other classes of surfaces.

In Theorem 2.3 below we show that any normal \mathbb{C}^* -surface V with a \mathbb{C}_+ -action is the normalization of a principal Zariski open subset of some weighted projective hypersurface.

In the proofs we use the following observation from [Fl].

Proposition 2.1. Let $R = \bigoplus_{i \geq 0} R_i$ be a graded R_0 -algebra of finite type containing the field of rational numbers \mathbb{Q} . If $z \in R_d$, d > 0, is an element of positive degree then the group of dth roots of unity $E_d \cong \mathbb{Z}_d$ acts on R and then also on R/(z-1) via

$$\zeta.a = \zeta^i \cdot a \quad for \quad a \in R_i, \ \zeta \in E_d,$$

with ring of invariants $(R/(z-1))^{E_d} \cong (R[1/z])_0$. Consequently

$$(\operatorname{Spec} R/(z-1))/E_d \cong \mathbb{D}_+(z)$$

is isomorphic to the complement of the hyperplane $\{z=0\}$ in Proj(R).

Let us fix the notations.

2.2. Let $V = \operatorname{Spec} A$ be a normal \mathbb{C}^* -surface with DPD-presentation

$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].$$

If V carries a \mathbb{C}_+ -action then according to [FlZa₂], after interchanging (D_+, D_-) and passing to an equivalent pair, if necessary, we may assume that

(2)
$$D_{+} = -\frac{e_{+}}{d}[0] \quad \text{with} \quad 0 < e_{+} \le d,$$

$$D_{-} = -\frac{e_{-}}{d}[0] - \frac{1}{k}D_{0}$$

with an integral divisor D_0 , where $D_0(0) = 0$. We choose a polynomial $Q \in \mathbb{C}[t]$ with $D_0 = \operatorname{div}(Q)$; so $Q(0) \neq 0$.

Theorem 2.3. Let F be the polynomial

(3)
$$F = x^k y - s^{k(e_+ + e_-)} Q(s^d/z) z^{\deg Q} \in \mathbb{C}[x, y, z, s],$$

which is weighted homogeneous of degree 4 $k(e_++e_-)+d \deg Q$ with respect to the weights

(4)
$$\deg x = e_+, \quad \deg y = ke_- + d \deg Q, \quad \deg z = d, \quad \deg s = 1.$$

Then the surface V as in 2.2 above is equivariantly isomorphic to the normalization of the principal Zariski open subset $\mathbb{D}_{+}(z)$ of the hypersurface $\mathbb{V}_{+}(F)$ in the weighted projective 3-space

(5)
$$\mathbb{P} = \mathbb{P}(e_+, ke_- + d \deg Q, d, 1).$$

⁴We note that $e_+ + e_- = d(-D_+(0) - D_-(0)) \ge 0$.

Proof. With $s = \sqrt[d]{t}$ the field $L = \operatorname{Frac}(A)[s]$ is a cyclic extension of $K = \operatorname{Frac}(A)$. Its Galois group is the group of dth roots of unity E_d acting on L via the identity on K and by $\zeta . s = \zeta \cdot s$ if $\zeta \in E_d$. Let A' be the normalization of A in L. According to Proposition 4.12 in $[\operatorname{FlZa}_1]$

$$A' = \mathbb{C}[s][D'_+, D'_-] \subseteq \mathbb{C}(s)[u, u^{-1}]$$

with $D'_{\pm} = \pi_d^*(D_{\pm})$, where $\pi_d : \mathbb{A}^1 \to \mathbb{A}^1$ is the covering $s \mapsto s^d$. Thus

$$(D'_+, D'_-) = \left(-e_+[0], -e_-[0] - \frac{1}{k}\pi_d^*(D_0)\right) = \left(-e_+[0], -e_-[0] - \frac{1}{k}\operatorname{div}(Q(s^d))\right).$$

The element $x = s^{e_+}u \in A_1'$ is a generator of A_1' as a $\mathbb{C}[s]$ -module. According to Example 4.10 in [FlZa₁] the graded algebra A' is isomorphic to the normalization of

(6)
$$B = \mathbb{C}[x, y, s]/(x^k y - s^{k(e_+ + e_-)}Q(s^d)).$$

The cyclic group E_d acts on A' via

$$\zeta.x = \zeta^{e_+}x$$
, $\zeta.y = \zeta^{ke_-}y$, $\zeta.s = \zeta s$

with invariant ring A. Clearly this action stabilizes the subring B. Assigning to x, y, z, s the degrees as in (4), F as in (3) is indeed weighted homogeneous. Since $F(x, y, 1, s) = x^k y - s^{k(e_+ + e_-)}Q(s^d)$, the graded algebra

$$R = \mathbb{C}[x, y, z, s]/(F)$$

satisfies $R/(z-1) \cong B$. Applying Proposition 2.1 $V = \operatorname{Spec} A$ is isomorphic to the normalization of $\mathbb{D}_+(z) \cap \mathbb{V}_+(F)$ in the weighted projective space \mathbb{P} .

Remark 2.4. In general not all weights of the weighted projective space \mathbb{P} in (5) are positive. Indeed it can happen that $ke_- + d \deg Q \leq 0$. In this case we can choose $\alpha \in \mathbb{N}$ with $ke_- + d(\deg Q + \alpha) > 0$ and consider instead of F the polynomial

(7)
$$\tilde{F} = x^k y - s^{k(e_+ + e_-)} Q(s^d/z) z^{\deg Q + \alpha} \in \mathbb{C}[x, y, z, s],$$

which is now weighted homogeneous of degree $k(e_+ + e_-) + d(\deg Q + \alpha)$ with respect to the *positive* weights

(8)
$$\deg x = e_+, \quad \deg y = ke_- + d(\deg Q + \alpha), \quad \deg z = d, \quad \deg s = 1.$$

As before $V = \operatorname{Spec} A$ is isomorphic to the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $\mathbb{V}_+(F)$ in the weighted projective space

$$\mathbb{P} = \mathbb{P}(e_+, ke_- + d(\deg Q + \alpha), d, 1).$$

In certain cases it is unnecessary in Theorem 2.3 to pass to normalization.

Corollary 2.5. Assume that in (2) one of the following conditions is satisfied.

- (i) k = 1;
- (ii) $e_+ + e_- = 0$, and D_0 is a reduced divisor.

Then $V = \operatorname{Spec} A$ is equivariantly isomorphic to the principal open subset $\mathbb{D}_+(z)$ of the weighted projective hypersurface $\mathbb{V}_+(F)$ as in (3) in the weighted projective space \mathbb{P} from (5).

Proof. In case (i) the hypersurface in \mathbb{A}^3 with equation

$$F(x, y, 1, s) = xy - s^{e_{+} + e_{-}}Q(s^{d}) = 0$$

is normal. In other words, the quotient R/(z-1) of the graded ring $R = \mathbb{C}[x,y,z,s]/(F)$ is normal and so is its ring of invariants $(R/(z-1))^{E_d}$. Comparing with Theorem 2.3 the result follows.

Similarly, in case (ii)

$$F(x, y, 1, s) = x^k y - Q(s^d).$$

Since the divisor D_0 is supposed to be reduced and $D_0(0) = 0$, the polynomials Q(t) and then also $Q(s^d)$ both have simple roots. Hence the hypersurface F(x, y, 1, s) = 0 in \mathbb{A}^3 is again normal, and the result follows as before.

Remark 2.6. The surface V as in 2.2 is smooth if and only if the divisor D_0 is reduced and $-m_+m_-(D_+(0)+D_-(0))=1$, where $m_\pm>0$ is the denominator in the irreducible representation of $D_\pm(0)$, see Proposition 4.15 in [FlZa₁]. It can happen, however, that V is smooth but the surface $\mathbb{V}_+(F)\cap \mathbb{D}_+(z)\subseteq \mathbb{P}$ has non-isolated singularities. For instance, if in 2.2 $D_0=0$ (and so Q=1), then V is an affine toric surface⁵. In fact, every affine toric surface different from $(\mathbb{A}^1_*)^2$ or $\mathbb{A}^1\times\mathbb{A}^1_*$ appears in this way, see Lemma 4.2(b) in [FKZ₁].

In this case the integer k > 0 can be chosen arbitrarily. For any k > 1, the affine hypersurface $V_+(F) \cap \mathbb{D}_+(z) \subseteq \mathbb{P}$ with equation $x^k y - s^{k(e_+ + e_-)} = 0$ has non-isolated singularities and hence is non-normal. Its normalization $V = \operatorname{Spec} A$ can be given as the Zariski open part $\mathbb{D}_+(z)$ of the hypersurface $V_+(xy' - s^{e_+ + e_-})$ in $\mathbb{P}' = \mathbb{P}(e_+, e_-, d, 1)$ (which corresponds to the choice k = 1). Indeed, the element $y' = s^{e_+ + e_-}/x \in K$ with $y'^k = y$ is integral over A. However cf. Theorem 1.1(a).

Example 2.7. (Danilov-Gizatullin surfaces) We recall that a Danilov-Gizatullin surface V(n) of index n is the complement to a section S in a Hirzebruch surface Σ_d , where $S^2 = n > d$. By a remarkable result of Danilov and Gizatullin up to an isomorphism such a surface only depends on n and neither on d nor on the choice of the section S, see e.g., [DaGi, CNR, FKZ₃] for a proof.

According to [FKZ₁, §5], up to conjugation V(n) carries exactly (n-1) different \mathbb{C}^* -actions. They admit DPD-presentations

$$(D_+, D_-) = \left(-\frac{1}{d}[0], -\frac{1}{n-d}[1]\right), \text{ where } d = 1, \dots, n-1.$$

Applying Theorem 2.3 with $e_+ = 1$, $e_- = 0$, and k = n - d, the \mathbb{C}^* -surface V(n) is the normalization of the principal open subset $\mathbb{D}_+(z)$ of the hypersurface $\mathbb{V}_+(F_{n,d}) \subseteq \mathbb{P}(1,d,d,1)$ of degree n, where

$$F_{n,d}(x,y,z,s) = x^{n-d}y - s^{n-d}(s^d - z)$$
.

Taking here d=1 it follows that V(n) is isomorphic to the normalization of the hypersurface $x^{n-1}y - (s-1)s^{n-1} = 0$ in \mathbb{A}^3 .

As our next example, let us consider yet another remarkable class of surfaces. These were studied from different viewpoints in [MM, Theorem 1.1], [FlZa₃, Theorem 1.1(iii)], [GMMR, 3.8-3.9], [KK, Theorem 1.1. and Example 1], [Za, Theorem 1(b) and Lemma

 $^{^5}$ See 3.1(a) below.

7]. Collecting results from *loc.cit*. and from this section, we obtain the following equivalent characterizations.

Theorem 2.8. For a smooth affine surface V, the following conditions are equivalent.

- (i) V is not Gizatullin and admits an effective \mathbb{C}^* -action and an \mathbb{A}^1 -fibration $V \to \mathbb{A}^1$ with exactly one degenerate fiber, which is irreducible⁶.
- (ii) V is \mathbb{Q} -acyclic, $\bar{k}(V) = -\infty^{-7}$ and V carries a curve $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \geq 0$.
- (iii) V is \mathbb{Q} -acyclic and admits an effective \mathbb{C}^* and \mathbb{C}_+ -actions. Furthermore, the \mathbb{C}^* -action possesses an orbit closure $\Gamma \cong \mathbb{A}^1$ with $\bar{k}(V \setminus \Gamma) \geq 0$.
- (iv) The universal cover $\tilde{V} \to V$ is isomorphic to a surface $x^k y (s^d 1) = 0$ in \mathbb{A}^3 , with the Galois group $\pi_1(V) \cong E_d$ acting via $\zeta.(x, y, s) = (\zeta x, \zeta^{-k} y, \zeta^e s)$, where k > 1 and $\gcd(e, d) = 1$.
- (v) V is isomorphic to the \mathbb{C}^* -surface with DPD presentation $\operatorname{Spec} \mathbb{C}[t][D_+, D_-]$, where

$$(D_+, D_-) = \left(-\frac{e}{d}[0], \frac{e}{d}[0] - \frac{1}{k}[1]\right)$$
 with $0 < e \le d$ and $k > 1$.

(vi) V is isomorphic to the Zariski open subset

$$\mathbb{D}_+(x^ky - s^d) \subseteq \mathbb{P}(e, d - ke, 1), \quad where \quad 0 < e \le d \quad and \quad k > 1.$$

Proof. In view of the references cited above it remains to show that the surfaces in (v) and (vi) are isomorphic. By Corollary 2.5(ii) with $e_+ = -e_- = e$, the surface V as in (v) is isomorphic to the principal open subset $\mathbb{D}_+(z)$ in the weighted projective hypersurface

$$V_+(x^ky - (s^d - z)) \subseteq \mathbb{P}(e, d - ke, d, 1)$$
.

Eliminating z from the equation $x^k y - (s^d - z) = 0$ yields (vi).

These surfaces admit as well a constructive description in terms of a blowup process starting from a Hirzebruch surface, see [GMMR, 3.8] and [KK, Example 1].

An affine line $\Gamma \cong \mathbb{A}^1$ on V as in (ii) is distinguished because it cannot be a fiber of any \mathbb{A}^1 -fibration of V. In fact there exists a family of such affine lines on V, see [Za].

Some of the surfaces as in Theorem 2.8 can be properly embedded in \mathbb{A}^3 as Bertin surfaces $x^ey - x - s^d = 0$, see [FlZa₂, Example 5.5] or [Za, Example 1].

3. GIZATULLIN SURFACES WITH A FINITE DIVISOR CLASS GROUP

A Gizatullin surface is a normal affine surface completed by a zigzag i.e., a linear chain of smooth rational curves. By a theorem of Gizatullin [Gi] such surfaces are characterized by the property that they admit two \mathbb{C}_+ -actions with different general orbits.

In this section we give an alternative proof of the Daigle-Russell Theorem 1.1 cited in the Introduction. It will be deduced from the following result proven in [FKZ₂, Corollary 5.16].

Proposition 3.1. Every normal Gizatullin surface with a finite divisor class group is isomorphic to one of the following surfaces.

⁶Since V is not Gizatullin there is actually a unique \mathbb{A}^1 -fibration $V \to \mathbb{A}^1$. A surface V as in (i) is necessarily a \mathbb{Q} -homology plane (or \mathbb{Q} -acyclic) that is, all higher Betti numbers of V vanish.

⁷As usual, \bar{k} stands for the logarithmic Kodaira dimension.

(a) The toric surfaces $V_{d,e} = \mathbb{A}^2/E_d$, where the group $E_d \cong \mathbb{Z}_d$ of d-th roots of unity acts on \mathbb{A}^2 via

$$\zeta.(x,y) = (\zeta x, \zeta^e y).$$

(b) The non-toric \mathbb{C}^* -surfaces $V = \operatorname{Spec} \mathbb{C}[t][D_+, D_-]$, where

(9)
$$(D_+, D_-) = \left(-\frac{e}{m}[p], \frac{e}{m}[p] - c[q]\right) \text{ with } c \ge 1, p, q \in \mathbb{A}^1, p \ne q,$$

and with coprime integers e, m such that $1 \le e < m$.

Conversely, any normal affine \mathbb{C}^* -surface V as in (a) or (b) is a Gizatullin surface with a finite divisor class group.

Let us now deduce Theorem 1.1.

Proof of Theorem 1.1. To prove (a), we note that according to 2.1 the cyclic group E_d acts on the ring $\mathbb{C}[x,y,z]/(z-1) \cong \mathbb{C}[x,y]$ via $\zeta.x = \zeta x$, $\zeta.y = \zeta^e y$, and $\zeta.z = z$, where

$$\deg x = 1$$
, $\deg y = e$, and $\deg z = d$.

Hence $\mathbb{D}_{+}(z) = \operatorname{Spec} \mathbb{C}[x, y]^{E_d} = V_{d,e}$, as required in (a).

To show (b) we consider $V = \operatorname{Spec} A$ as in 3.1(b), where

$$A = \mathbb{C}[t][D_+, D_-] \subseteq \mathbb{C}(t)[u, u^{-1}].$$

By definition (1) the homogeneous pieces $A_{\pm 1}$ of A are generated as $\mathbb{C}[t]$ -modules by the elements

$$u_{+} = tu$$
 and $u_{-} = (t-1)^{c}u^{-1}$,

and similarly $A_{\pm m}$ by

$$v_{+} = t^{e}u^{m}$$
 and $v_{-} = t^{-e}(t-1)^{cm}u^{-m}$.

Thus

$$u_{+}^{m} = t^{m-e}v_{+}, \quad u_{-}^{m} = t^{e}v_{-}, \quad \text{and} \quad u_{+}u_{-} = t(t-1)^{c}.$$

The algebra A is the integral closure of the subalgebra generated by u_{\pm} , v_{\pm} and t. Consider now the normalization A' of A in the field $L = \operatorname{Frac}(A)[u'_{+}]$, where

(10)
$$u'_{+} = \sqrt[d]{v_{+}} \quad \text{with} \quad d = cm.$$

Clearly the elements $\sqrt[m]{v_+} = t^{\frac{e-m}{m}}u_+$ and then also $t^{\frac{e-m}{m}}$ both belong to L. Since e and m are coprime we can choose $\alpha, \beta \in \mathbb{Z}$ with $\alpha(e-m) + \beta m = 1$. It follows that the element $\tau := t^{\frac{1}{m}} = t^{\alpha \frac{e-m}{m}}t^{\beta}$ is as well in L whence being integral over A we have $\tau \in A'$.

The element u'_+ as in (10) also belongs to A' and as well $u'_- = \sqrt[d]{v_-} \in A'$. Now $v_+v_- = (t-1)^{cm}$, so taking dth roots we get for a suitable choice of the root u'_- ,

$$(11) u'_{\perp} u'_{\perp} = \tau^m - 1.$$

We note that u_{\pm} , v_{\pm} and t are contained in the subalgebra $B = \mathbb{C}[u'_{+}, u'_{-}, \tau] \subseteq A'$. The equation (11) defines a smooth surface in \mathbb{A}^{3} . Hence B is normal and so

$$A' = B \cong \mathbb{C}[u'_+, u'_-, \tau]/(u'_+u'_- - (\tau^m - 1))$$
.

By Lemma 3.2 below, for a suitable $\gamma \in \mathbb{Z}$ the integers $a = e - \gamma m$ and d are coprime. We may assume as well that $1 \leq a < d$. We let E_d act on A' via $\zeta.u'_+ = \zeta^a u'_+$ and

 $\zeta | A = \mathrm{id}_A$. Since $\gcd(a,d) = 1$, A is the invariant ring of this action. We claim that the action of E_d on (u'_+, u'_-, τ) is given by

(12)
$$\zeta.u'_{+} = \zeta^{a}u'_{+}, \quad \zeta.u'_{-} = \zeta^{-a}u'_{-} = \zeta^{b}u'_{-} \quad \text{and} \quad \zeta.\tau = \zeta^{c}\tau,$$

where b=d-a. Indeed, the equality $u_+'^c=t^{\frac{e-m}{m}}u_+=\tau^{e-m}u_+$ implies that $\zeta.\tau^{e-m}=\zeta^{ac}\tau^{e-m}$. Since $\tau=\tau^{\alpha(e-m)}t^{\beta}$ the element $\zeta\in E_d$ acts on τ via $\zeta.\tau=\zeta^{\alpha ca}\tau$. In view of the congruence $\alpha a\equiv 1\mod m$ the last expression equals $\zeta^c\tau$. Now the last equality in (12) follows. In the equation $u_+'u_-'=\tau^m-1$ the term on the right is invariant under E_d . Hence also the term on the left is. This provides the second equality in (12).

The algebra $B = \mathbb{C}[u'_+, u'_-, \tau]$ is naturally graded via

$$\deg u'_+ = a$$
, $\deg u'_- = b$, and $\deg \tau = c$.

According to Proposition 2.1 Spec $A = \operatorname{Spec} A'^{E_d}$ is the complement of the hypersurface $\mathbb{V}_+(f)$ of degree d = a + b in the weighted projective plane

$$\operatorname{Proj}(B) = \mathbb{P}(a, b, c), \text{ where } f = u'_{+}u'_{-} - \tau^{m},$$

proving (b). \Box

To complete the proof we still have to show the following elementary lemma.

Lemma 3.2. Assume that $e, m \in \mathbb{Z}$ are coprime. Then for every $c \geq 2$ there exists $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c are coprime.

Proof. Write $c = c'\gamma$ such that c' and m have no common factor and every prime factor of γ occurs in m. Then for every $\gamma \in \mathbb{Z}$ the integers $\gamma m - e$ and γ have no common prime factor. Indeed, such a prime must divide m and then also $e = \gamma m - (\gamma m - e)$. Hence it is enough to establish the existence of $\gamma \in \mathbb{Z}$ such that $\gamma m - e$ and c' are coprime. However, the latter is evident since the residue classes of γm , $\gamma \in \mathbb{Z}$, in $\mathbb{Z}_{c'}$ cover this group.

Remark 3.3. 1. Two triples (1, e, d) and (1, e', d) as in Theorem 1.1(a) define the same affine toric surface if and only if $ee' \equiv 1 \mod d$, see [FlZa₁, Remark 2.5].

2. As follows from Theorem 0.2 in [FKZ₂], the integers c, m in Theorem 1.1(b) are invariants of the isomorphism type of V. Indeed, the fractional parts of both divisors D_{\pm} as in (9) being nonzero and concentrated at the same point, there is a unique DPD presentation for V up to interchanging D_{+} and D_{-} , passing to an equivalent pair and applying an automorphism of the affine line $\mathbb{A}^{1} = \operatorname{Spec} \mathbb{C}[t]$.

Furthermore, from the proof of Theorem 1.1 one can easily derive that

$$a \equiv e \mod m$$
 and $b = mc - a \equiv -e \mod m$.

Therefore also the pair (a, b) is uniquely determined by the isomorphism type of V up to a transposition and up to replacing (a, b) by (a', b') = (a - sm, b + sm), while keeping gcd(a', b') = 1.

References

- [CNR] P. Cassou-Noguès, P. Russell: Birational morphisms $\mathbb{C}^2 \to \mathbb{C}^2$ and affine ruled surfaces, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 57–106. Osaka Univ. Press, Osaka 2007.
- [DR] D. Daigle, P. Russell: On log Q-homology planes and weighted projective planes. Can. J. Math. 56 (2004), 1145–1189.

- [DaGi] V. I. Danilov, M. H. Gizatullin: Automorphisms of affine surfaces. II. Math. USSR Izv. 11 (1977), 51–98.
- [Du] A. Dubouloz: Embeddings of Danielewski surfaces in affine spaces. Comment. Math. Helv. 81 (2006), 49–73.
- [F1] H. Flenner: Rationale quasihomogene Singularitten, Arch. Math. 36 (1981), 35–44.
- [FKZ₁] H. Flenner, S. Kaliman, M. Zaidenberg: *Completions of C*-surfaces*, in: Affine algebraic geometry. In honor of Prof. M. Miyanishi, 149-200. Osaka Univ. Press, Osaka 2007.
- [FKZ₂] H. Flenner, S. Kaliman, M. Zaidenberg: Uniqueness of \mathbb{C}^* and \mathbb{C}_+ -actions on Gizatullin surfaces. Transformation Groups 13:2 (2008), 305–354.
- [FKZ₃] H. Flenner, S. Kaliman, M. Zaidenberg: On the Danilov-Gizatullin Isomorphism Theorem. arXiv:0808.0459, 6p.
- [FKZ₄] H. Flenner, S. Kaliman, M. Zaidenberg, Smooth Gizatullin surfaces with non-unique \mathbb{C}^* -actions, 55p. (in preparation).
- [FlZa₁] H. Flenner, M. Zaidenberg: Normal affine surfaces with C*-actions, Osaka J. Math. 40, 2003, 981–1009.
- [FlZa₂] H. Flenner, M. Zaidenberg: Locally nilpotent derivations on affine surfaces with a C*-action. Osaka J. Math. 42, 2005, 931–974.
- [FlZa₃] H. Flenner, M. Zaidenberg: On a result of Miyanishi-Masuda. Arch. Math. 87 (2006), 15–18.
- [Gi] M.H. Gizatullin: Quasihomogeneous affine surfaces. (in Russian) Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1047–1071.
- [GMMR] R.V. Gurjar, K. Masuda, M. Miyanishi, P. Russell: Affine lines on affine surfaces and the Makar-Limanov invariant. Canad. J. Math. 60 (2008), 109–139.
- [KK] T. Kishimoto, H. Kojima: Affine lines on ℚ-homology planes with logarithmic Kodaira dimension −∞, Transform. Groups 11 (2006), 659–672; ibid. 13:1 (2008), 211-213.
- [MM] M. Miyanishi, K. Masuda: Affine Pseudo-planes with torus actions. Transform. Groups 11 (2006), 249–267.
- [Za] M. Zaidenberg: Affine lines on \mathbb{Q} -homology planes and group actions. Transform. Groups 11 (2006), 725–735.

FAKULTÄT FÜR MATHEMATIK, RUHR UNIVERSITÄT BOCHUM, GEB. NA 2/72, UNIVERSITÄTSSTR. 150, 44780 BOCHUM, GERMANY

E-mail address: Hubert.Flenner@ruhr-uni-bochum.de

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MIAMI, CORAL GABLES, FL 33124, U.S.A. *E-mail address*: kaliman@math.miami.edu

Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d'Hères cédex, France

E-mail address: zaidenbe@ujf-grenoble.fr