

Workload Characterization of Transformer Text Generation Inference

Puneeth N Naik

Prof. Govindarajan Ramaswamy, Prof. Murali Annavaram High Performance Computing Lab, Department of Computer Science and Automation Indian Institute Of Science, Bangalore puneethnaik@iisc.ac.in

Motivation

- LLMs use in applications increasing by the day.
- Important to understand the characteristics of LLM inference.
- Jensen Huang(Nvidia CEO):Al language models as-a-service "potentially one of the largest software opportunities ever"
- ChatGPT witnessed I.8 Billion visits in April 2023.
- Optimizations in LLM inference help reduce the carbon footprint of data centers.
- BLOOM inference consumed 914KWh electricity, of which GPU accounted for 75.3% in just 18 days.

Related Work

- There has been considerable work to optimize the inference of LLMs in literature.
- Previous work study the effect of only GPU DVFS on CNN inference.

Results

Feature	i	indicBAR [*]	Г	mBART	
Activation funct	ion	Gelu		Relu	
Vocabulary siz	æ	64K		250K(3.9x)	
Number of parameters		244M		610M(2.5x)	
Hidden dimensi	ion	1024		1024	
Decoder FC dimension		4096		4096	
Decoder layer	^S	6		12(2x)	
Encoder FC dimension		4096		4096	
Encoder layer	'S	6		12(2x)	
Max length		84		300	
Name	Con	nponent		Spec	
SI		CPU	A	AMD Ryzen 5600X	
SI		GPU	N	Nvidia RTX 3060	
Software	,	Version			
Python		3.9.15			
Transforme		4.25.I			
PyTorch		1.12.1			
CUDA/CUDA Driver		er	12.1	/570	

indicBART summarization vs. optimisations(baseline, opt2, opt4)

Conclusion

- We present a workload characterization of LLM inference for indicBART/summarization and mBART/translation.
- Considerable amount of "unnecessary" device-to-host transfers happen in LogitProcess and BeamSearchProcess.
- Reduce inference latency by upto 32.4% for indicBART/summarization and 19% for mBART/translation by moving logic on the GPU.
- Reduce device-to-host transfer by 66.8% for indicBART/summarization and 99.1% for mBART/translation.
- DVFS plays a role in optimizing the energy efficiency of LLM inference. For some settings, we achieve 15% lower energy consumption at just 5% degradation in performance vs the configuration chosen by the DVFS.

Baseline

Opt	t 2
atch	Soc

Model	Batch Size	Seq Len	D2H Size	Model	Batch Size	Seq Len	D2H Size
indicBART	64	252	335KB	indicBART	64	252	111.18KB
indicBART	16	252	84KB	indicBART	16	252	28.12KB
indicBART	4	252	21KB	indicBART	4	252	7.355KB
mBART	16	203	10.5MB	mBART	16	203	95.7KB
mBART	4	203	2.63MB	mBART	4	203	24.39KB
mBART	I	203	0.66MB	mBART	I	203	6.7KB

	Base		Opt2				
Model	Batch Size	Seq Len	GPU Util %	Model	Batch Size	Seq Len	GPU Util %
indicBART	64	252	70.4	indicBART	64	252	99.1
indicBART	16	252	72.45	indicBART	16	252	97.4
indicBART	4	252	71.98	indicBART	4	252	89.1
mBART	16	203	76.9	mBART	16	203	98.1
mBART	4	203	78. I	mBART	4	203	93.7
mBART	I	203	69.9	mBART	I	203	76.7

Want to know more?

Please scan me

13,698,141,013 Until specified number of iterations complete Until stopping criteria is met(max=300) 0.0019%, 27,163 ▶ beam_search:finalize 17%, 2,372,503,103 1.37%, 190,359,800 0.014%, 1,895,597 0.007%, 949,655 13,212,012,439 Until specified number of iterations complete Until stopping criteria is met(max=300) 0.00016%, 14,445 → beam search:finalize 77%, 13,214,629,899 6.66%, 1,143,416,504 14.06%, 2,414,096,203 0.088%, 15,104,513 0.005%, 989,274

Until specified number of iterations complete

Until stopping criteria is met(max=300)

0.69%, 91,509,377

60%, 10,328,385,431 13.17%, 2,264,291,262

1.35%, 17,9761,324

0.0016%, 212,080

beam search:finalize

0.013%, 2,191,154

0.00015%, 19,425

get_output

Baseline Opt2 E^1D^1 product(J^1s^1) vs configuration E^1D^1 product(J^1s^1) vs configuration ____ 5.001,2.8 ____ 5.001,3.7 ____ 5.001,3.7 7.301,2.2 7.301,2.2 7.301,2.8 7.301,2.8 7.301,3.7 7.301,3.7 gdvfs,3.7 gdvfs,3.7 ⊋ 250000 · , 200000 -150000

Baseline							
Cpu clk (GHz)	GPU clk (GHz)	GPU mem clk(GHz)	Energy (J)	Wall Time(s)	EDP (Js)		
3.7	1.575	7.301	3,308	21.65	71,609		
3.7	1.395	7.301	3,154	22.92	72,299		
3.7	gdvfs	gdvfs	3,894	20.63	80,327		

Opt2							
Cpu clk (GHz)	GPU clk (GHz)	GPU mem clk(GHz)	Energy (J)	Wall Time(s)	EDP (Js)		
2.2	1.395	7.301	2,223.7	18.78	41,765		
2.2	1.575	7.301	2,417.7	17.54	42,401		
3.7	gdvfs	gdvfs	3.388.4	15.921	53.946		