Discussion - Sep 26

- 1. Show det (AB) = det (BA)
- 2. Show det(p-1BP) = det(B) when P is invertible.

 3. Show det(p)-1 = det(p-1) when P invertible.

 4. Show det(zero matrix) = 0.

- 5. If A is the zero matrix, show that det (I-A) =0.
- 6. If ATA = In, show that det (A) = ±1.
- 7. Compute elementary matrices for (3×3) (a) $R_1 \rightarrow 6R_1$ (b) $R_1 + 3R_1 \rightarrow R_2$ (c) $R_1 2R_3 \rightarrow R_1$ (d) $R_1 \leftrightarrow R_2$ (e) $R_1 \leftrightarrow R_3$ What are their inverses?
- 8. What is the matrix of the disallowed operation R, + 2R2 P3? Is it invertible?
- 9. For which \ is \(\begin{picture} 2-\times \\ 1 & 2-\times \end{picture} \) not invertible?
- 10. Graph (x,y) for which $(\frac{Z}{l}, \frac{x}{y})$ is not invertible.
- 11. Graph (x,y) for which (x 2) is not invertible.
- 12. For which x is (x -1) invertible?
- 13. Solve [123:3] using Cramer's rule.
- 14. What is x, if [] = []? (Using Cromer's rule)