Al-Generated Code Similarity Prediction Model

Introduction

Large Language Models (LLMs) such as GPT, LLaMA, and others have shown remarkable capabilities in understanding and generating human-like text. While these models perform well on general tasks, customizing their behavior for specific applications or domains often requires fine-tuning. Fine-tuning an LLM allows the model to adapt to domain-specific language, rules, or specialized tasks, enhancing its accuracy and relevance for the desired application.

This document details the methodology implemented for predicting Al-detected scores in the given task. The process involves the following key steps: pre-processing, data preparation, model fine-tunning, evaluation and deployment.

In this assignment I have used LLaMA 3 for fine-tunning using Unsloth which is a toolkit designed to simplify the process of enhancing large language models for specific applications.

Methodology

1. Data Understanding

Dataset Description:

- **Input Data**: A dataset containing coding questions, candidate answers, Al-generated responses, and their corresponding Al-detected scores.
- **Score Range**: The Al-detected scores range from 0 (no Al characteristics detected) to 1 (high Al characteristics detected).
- Fields:
 - coding_problem_id
 - llm_answer_id
 - candidate_code
 - ai_code
 - question
 - rules
 - examples
 - programming_language
 - plagiarism_score (Target Variable)

2. Pre-processing

- Data Loading
 - **Objective**: Load the dataset containing candidate code, Al-generated code, question details, and Al-detected scores.
 - Steps:
 - 1. Using python, iterated through the directories, accessed the files and extracted the features needed.
- Data Preparation
 - **Objective**: Creating the structured dataset.
 - Final Result:
 - The extracted features are:

```
"coding_problem_id",
"llm_answer_id",
"candidate_code",
"ai_code",
"question",
"rules",
"Examples",
"Programming_language"
```

- The final dataframe has 378 rows and 8 columns.
- The Fig1 shows the final structured dataset that has been prepared.

coding_problem_id	llm_answer_id	candidate_code	ai_code	question	rules	examples	programming_language	plagiarism_score
source_code_000	gpt-3.5-turbo_00	fun findLargestElement(array: IntArray) : Int	public class LargestElementFinder {\n publi	Write a program to find the largest element in	['The array can have duplicate elements.']	Input: [1, 4, 2, 9, 5]\nOutput: 9	Java	0.0
source_code_000	gpt-3.5-turbo_01	fun findLargestElement(array: IntArray) : Int	public class Main {\n public static void ma	Write a program to find the largest element in	['The array can have duplicate elements.']	Input: [1, 4, 2, 9, 5]\nOutput: 9	Java	0.0
source_code_000	gpt-4-turbo_00	fun findLargestElement(array: IntArray) : Int	public class Main {\n public static void ma	Write a program to find the largest element in	['The array can have duplicate elements.']	Input: [1, 4, 2, 9, 5]\nOutput: 9	Java	0.0
source_code_000	gpt-4-turbo_01	fun findLargestElement(array: IntArray) : Int	public class LargestElement {\n public stat	Write a program to find the largest element in	['The array can have duplicate elements.']	Input: [1, 4, 2, 9, 5]\nOutput: 9	Java	0.0
source_code_000	gpt-4_00	fun findLargestElement(array: IntArray) : Int	public class Main {\n public static void main	Write a program to find the largest element in	['The array can have duplicate elements.']	Input: [1, 4, 2, 9, 5]\nOutput: 9	Java	0.0

Fig1

- Created train set and test set out of the final dataframe I have prepared.
 - Train set(70%)
 - Test set(30%)

3. Feature Engineering

- Input Formatting
 - Generated prompts combining context (question, rules, examples) and candidate/AI code for training and evaluation. This structure allowed the LLM to focus on the task while understanding the context holistically.

"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Analyze the provided details and predict the likelihood that the Candidate Code is AI-generated. The score ranges from 0 to 1, where: - 0 indicates no AI characteristics detected. - 1 indicates a high likelihood of AI characteristics. Base your analysis on the similarities and differences in syntax, structure, variable naming, and logical flow between the Candidate Code and the AI-Generated Code. ### Input: { { "question": "{}", "rules": "{}", "examples": "{}", "programming language": "{}", "candidate code": "{}", "ai code": "{}" } } ### Response {}"""

- From the generated prompt, created a new feature to train the model.
- Then converted the dataset into hugging face dataset.

Tokenization

Unsloth internally performs RoPE Scaling, so larger maximum sequence lengths are automatically supported. Otherwise the API is pretty much the same as transformers' from_pretrained, except that

FastLanguageModel.from_pretrained also returns the model tokenizer for convenience.

Therefore I used the tokenizer from Unsloth itself.

- **Objective**: Convert textual data into a machine-readable format.
- Steps:
 - 1. Leveraged the tokenizer associated with the unsloth/llama-3-8b-bnb-4bit model.

4. Model Selection Rationale

- a. Selected Model
 - Model: unsloth/llama-3-8b-bnb-4bit.
 - Rationale:
 - 1. LLaMa 3, a high-performance open-source model, optimized with 4-bit quantization for memory efficiency.
 - 2. Optimized for efficient inference using 4-bit quantization.
 - 3. Pre-trained on diverse datasets, making it robust for text understanding and regression tasks.
 - 4. Capable of processing complex textual inputs like code and natural language descriptions.
- b. Fine-Tuning
 - Employed PEFT (Parameter-Efficient Fine-Tuning) with LoRA (Low-Rank Adaptation) for efficient model adjustments without retraining the entire network.
 - Configured with the Hugging Face SFTTrainer using:
 - 1. Batch size: 2
 - 2. Max sequence length: 2048
 - 3. Gradient accumulation: 4
 - 4. Learning rate: 2e-4
 - 5. Warm-up steps: 5
 - 6. Optimizer: AdamW with 8-bit optimizations.
 - Performance monitoring during training included GPU memory utilization and training runtime.

5. Inference

- Custom prompts analyzed syntax, structure, and logical flow between candidate and AI code.
- The model predicted scores within the range [0, 1] for Al similarity likelihood.
- Extracted results using tokenized decoding and regular expressions.

6. Evaluation

a. Metrics:

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (R²)

Results from evaluation indicated the model's ability to closely predict the Al-detected score based on the input features.

The current evaluation results:

```
Mean Absolute Error (MAE): 0.2412

Mean Squared Error (MSE): 0.1259

Root Mean Squared Error (RMSE): 0.3548

R-squared (R<sup>2</sup>): -0.7427
```

The interpretation

- **Good**: The error metrics (MAE and RMSE) might seem low in absolute terms depending on the target variable's scale.
- **Bad**: A negative R² indicates that the model is fundamentally flawed and fails to capture the underlying patterns in the data.

b. Model Saving:

Saved the fine-tuned LoRA adapters and tokenizer locally for reusability:

```
model.save_pretrained("/path/to/save/lora_model")
tokenizer.save_pretrained("/path/to/save/lora_model")
```

7. Deployment

The code development is still in progress

8. Dependencies and installation

a. Requirements:

Python Packages:

o torch

- o transformers
- o trl
- o unsloth
- pandas
- o Scikit-learn

b. Installation:

Followed <u>Unsloth Documentation</u> for setup:

9. Experiment

 Applied data cleaning for the ai code and candidate code and experimented the results.

Data cleaning steps

- 1. Removed Comments:
 - Handles single-line (//, #) and multi-line (/* */) comments.
- 2. Normalized Variable Names:
 - Replaces all variable names with placeholders like var1, var2 for uniformity.
 - A counter ensures unique placeholders for each variable.
- 3. Standardized Whitespace:
 - Consolidates multiple spaces and newlines for clean formatting.
- 4. Consistent Formatting:
 - Uses autopep8 to auto-format Python code. For other languages, similar formatters can be applied (e.g., Prettier for JavaScript or PHP-CS-Fixer for PHP).

Evaluation results after data cleaning:

```
Mean Absolute Error (MAE): 0.2316

Mean Squared Error (MSE): 0.1070

Root Mean Squared Error (RMSE): 0.3271

R-squared (R<sup>2</sup>): -0.4816
```

10. Results comparison

Model Performance Metrics Comparison

- First Model (before data cleaning):
 - MAE: 0.2412MSE: 0.1259RMSE: 0.3548
 - R²: -0.7427 (Negative R² indicates poor model performance)

• Second Model (after data cleaning):

MAE: 0.2316MSE: 0.1070RMSE: 0.3271

 \circ R²: -0.4816 (Negative R², but less negative than the first

model)

11. Conclusion

While both models (model before data-cleaning and after data-cleaning) show some potential, their negative R² values and error metrics indicate the need for substantial improvements. Focusing on advanced models, better feature engineering, and optimized hyperparameters should help enhance performance and provide more accurate predictions.