Visually Exploring Random Forests

The ggRandomForests package

John Ehrlinger

Department of Quantitative Health Sciences
Lerner Research Institute
Cleveland Clinic
john.ehrlinger@gmail.com

UseR! 2014

Statistical Modeling: The Two Cultures

Two goals of statistical models:

- Prediction: Predict the response given future observations
- Information: Explain association of covariates to the response

L. Breiman 2001

L. Breiman 2001

Ensemble of Classification/Regression Trees

randomForest R Package

RStudio CRAN logs rank: 61

- L. Breiman 2001
 - Ensemble of Classification/Regression Trees
- randomForest R Package
 - RStudio CRAN logs rank: 61
 - Advantages
 - Predictive Performance (A+)
 - Simple to train/tune
 - Non-parametric/non-linear
 - Built in generalization error estimates

- L. Breiman 2001
 - Ensemble of Classification/Regression Trees
- randomForest R Package
 - RStudio CRAN logs rank: 61
 - Advantages
 - Predictive Performance (A+)
 - Simple to train/tune
 - Non-parametric/non-linear
 - Built in generalization error estimates
 - Disadvantages
 - Information (F)

- Bootstrap Data (B)
 - Training set (b)
 - ► Hold out set (oob)

- Bootstrap Data (B)
 - Training set (b)
 - ► Hold out set (oob)
- A Split Rule

- Bootstrap Data (B)
 - Training set (b)
 - ► Hold out set (oob)
- A Split Rule
- A Stopping Rule

- Bootstrap Data (B)
 - Training set (b)
 - ► Hold out set (oob)
- A Split Rule
- A Stopping Rule

- Bootstrap Data (B)
 - Training set (b)
 - Hold out set (oob)
- A Split Rule
- A Stopping Rule
- Tree Estimates

- Bootstrap Data (B)
 - Training set (b)
 - ► Hold out set (oob)
- A Split Rule
- A Stopping Rule
- Tree Estimates
- Aggregate for Forest Estimates

randomForests for Survival

Ishwaran et al., 2008

randomForestSRC package: A unified treatment for

- Survival
- Regression
- Classification

randomForests for Survival

Ishwaran et al., 2008

randomForestSRC package: A unified treatment for

- Survival
- Regression
- Classification
- Advantages
 - randomForests for Survival
 - Parallel Execution (OpenMP)
 - Minimal Depth Variable Selection

randomForests for Survival

Ishwaran et al., 2008

randomForestSRC package: A unified treatment for

- Survival
- Regression
- Classification
- Advantages
 - randomForests for Survival
 - Parallel Execution (OpenMP)
 - Minimal Depth Variable Selection
- Disadvantages
 - Some performance optimization remains
 - Graphics...

ggRandomForest package

Goal: Simplify graphical representation of randomForests.

In progress:

https://github.com/ehrlinger/ggRandomForests

ggRandomForest package

Goal: Simplify graphical representation of randomForests.

In progress:

https://github.com/ehrlinger/ggRandomForests

- Extracts data.frame objects from a randomForest[SRC].
- Create ggplot graphic elements from each data.frame type.

Unified graphics for Survival, Regression and Classification Forests

Example: Heart Surgery Data

Yoon et.al. 2010

Four surgical treatments:

CABG, CABG+MVR, CABG+SVR, Transplant

- 1466 patients (observations n)
- 46 covariates (predictors p)
- randomForest imputation for missing data.
- 2 separate outcomes (response)
 - Hospital Death (binary, events=43)
 - Survival time with censoring (events=444)

Classification Forests

Classification - predicted probability

Hospital Death

plot.ggRFsrc(rf.cls)

ggError function

```
# ggRandomForest error convergence rate
gg.err = ggError(rf.cls)
plot(gg.err)
# or...
plot.ggError(rf.cls)
```

ggError function

plot .ggError(rf .cls)

ROC curves

plot .ggROC(rf . cls)

Random Forests for Survival

```
# randomForestSRC survival forest
rf.surv = rfsrc(Surv(ivdead, dead)~.,
                 data = dta.rfs.
                 ntree = ntree)
# ggRandomForests default (predicted survival)
plot.ggRFsrc(rf.surv)
Alternatively:
# ggRFsrc data object
srvData = ggRFsrc(rf.surv)
plot (srvData)
```

Random Forests for Survival

plot.ggRFsrc(rf.surv)

ggError Function

plot.ggError(rf.surv)

Survival Forests

plot.ggRFsrc(rf.surv, se=.95)

Survival Forests

plot.ggRFsrc(rf.surv, se=.95)

Survival Forests

plot.ggRFsrc(rf.surv, se=.95)

Survival Forests (3 month)

Survival Forests (5 year)

But how do randomForests predict?

We want the good prediction ... and information too!

But how do randomForests predict?

We want the good prediction ... and information too!

- Which Variables contribute?
 - Variable Importance (VIMP)
 - Minimal Depth

But how do randomForests predict?

We want the good prediction ... and information too!

- Which Variables contribute?
 - Variable Importance (VIMP)
 - Minimal Depth
- How do Variables contribute?
 - Variable Dependence plots
 - Partial Dependence plots

Variable Importance vimp.plt=plot.ggVimp(rf.surv)

Minimal Depth

- Average (minimal) split distance from the root node (0) over the entire forest
- Measure of how a variable segregates the population

Minimal Depth md. plt=plot.ggMinimalDepth(rf.surv)

Minimal Depth and VIMP grid.arrange(md.plt, vimp.plt)

1.00

Minimal Depth and VIMP

How do variables contribute?

Variable Dependence Plot

```
plot.ggVariable(rf.surv, vars="bun_pr", time=c(.25, 5))
```


Partial Variable Dependence

Partial Variable Dependence

plot.ggPartial(rf.part,...)

Partial Variable Dependence

plot.ggPartial(rf.part,...)

Conditional Plots

Conditional Plots

Partial Dependence Coplots

The ggRandomForest Package

For good prediction ... and information too!

- Which Variables contribute?
 - Variable Importance (VIMP) mispecification
 - Minimal Depth segmentation and selection
- How do Variables contribute?
 - Variable Dependence plots Covariate Trends
 - Partial Dependence plots Risk Adjusted Trends

ggRandomForests

Unified graphics for Survival, Regression and Classification Forests

https://github.com/ehrlinger/ggRandomForests john.ehrlinger@gmail.com

References I

- Breiman, L. (2001b). "Statistical Modeling: The Two Cultures". In: *Statistical Science* 16.3, pp. 199–231.
- Breiman, L. (2001a). "Random Forests". In: *Machine Learning* 45.1, pp. 5–32.
- Liaw, A. and M. Wiener (2002). "Classification and Regression by randomForest". In: *R News* 2.3, pp. 18–22.
- Ishwaran, H. et al. (2008). "Random survival forests". In: *The Annals of Applied Statistics* 2.3, pp. 841–860.
- Ishwaran, H. and U. B. Kogalur (2014). Random Forests for Survival, Regression and Classification (RF-SRC), R package version 1.5.2.
- Wickham, H. (2009). *ggplot2: elegant graphics for data analysis*. Springer New York.

References II

Yoon, D. Y. et al. (2010). "Decision support in surgical management of ischemic cardiomyopathy". In: *The Journal of Thoracic and Cardiovascular Surgery* 139.2, pp. 283–293.