ThinkEco, Inc.

Modlet TE1010

Report No. THKE0005

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2011 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: August 22, 2011 ThinkEco, Inc. Model: Modlet TE1010

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2011	ANSI C63.10:2009	Pass		
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Duty Cycle	FCC 15.247:2010	ANSI C63.10:2009	Pass		

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400

Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number
00	None		

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	ThinkEco, Inc.
Address:	148 Madison Ave, 8th Floor
City, State, Zip:	New York, NY 10016
Test Requested By:	Ben Burns
Model:	Modlet TE1010
First Date of Test:	8/18/2011
Last Date of Test:	8/22/2011
Receipt Date of Samples:	8/18/2011
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description	of the EUT (Equipment Under Test):
2.4 GHz ISM radio, 802.	15.4

Testing Objective:
To demonstrate compliance to FCC Part 15 requirements

Configurations

Revision 9/21/05

CONFIGURATION 1 THKE0005

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
2.4 GHz ISM radio	ThinkEco, Inc.	Modlet TE1010	804F580000100A19

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
PC for USB power						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Power	No	0.5m	No	PC	2.4 GHz ISM radio
PA = Cable	PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.				

CONFIGURATION 2 THKE0005

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
2.4 GHz ISM radio	ThinkEco, Inc.	Modlet TE1010	804F580000100A15

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	2.0m	No	2.4 GHz ISM radio	AC Mains
AC Power	No	1.8m	No	2.4 GHz ISM radio	Unterminated
AC Power	No	1.8m	No	2.4 GHz ISM radio	Unterminated
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Revision 4/28/03

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	8/18/2011	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
2	8/18/2011	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
3	8/18/2011	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	8/18/2011	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	8/18/2011	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	8/18/2011	Duty Cycle	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	8/19/2011	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
8	8/22/2011	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

Duty Cycle

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The test firmware was provided with a "Duty Cycle Demonstration" mode, called "Test 5". The following description was included in the test instructions by the manufacturer about this mode:

"...sending 92-byte PRBS9 packets over the air on the selected channel at a rate of approximately 75 packets per second, which corresponds to the highest duty cycle the modlet can produce in real world use"

For the purposes of taking radiated spurious emissions data in the Average detector, the duty cycle was measured in its worst case mode of 9 pulses of 2.625 ms duration. The following value was calculated in dB to apply to the Average readings:

20*Log[(9x2.625)/100] = -12.5 dB

NORTHWEST		Durte	Cuala			XMit 2010.11.03
EMC		Duty (Cycle			
EUT:	Modlet TE1010				Work Order: THKE000	5
Serial Number:	804F580000100A19				Date: 08/18/11	
Customer:	ThinkEco, Inc.				Temperature: 22.6°C	
	Bryan Takata				Humidity: 48%	
Project:				Baro	metric Pres.: 30.3 in	
	Rod Peloquin		Power: 5VDC via USB		Job Site: EV06	
TEST SPECIFICATI	IONS		TEST METHOD			
FCC 15.247:2011			ANSI C63.10:200	19		
COMMENTS						
Transmitting 'Duty	Cycle Demonstration' mo	de with modulation on mid channel.				
DEVIATIONS FROM	M TEST STANDARD					
None						
	_	R-C 1	Pol.			
Configuration #	1	Rocky le	· stelling			
		Signature	V			
				Value	Limit	Results
To continue to accordance to contrade to						
Typical pulse width				6.25 ms	N/A	N/A
100 ms Period				9 Pulses	N/A	N/A

Duty Cycle

Typical pulse width

Result: N/A Value: 6.25 ms Limit: N/A

Too ms Period

Result: N/A

Value: 9 Pulses

Limit: N/A

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The 6 dB occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available with the typical modulation.

EMC Occupied	Bandwidth XMIt 2011.08.04 PsaTx 2011.08.04
EUT: Modlet TE1010	Work Order: THKE0005
Serial Number: 804F580000100A19	Date: 08/18/11
Customer: ThinkEco, Inc.	Temperature: 22.6°C
Attendees: Bryan Takata	HuMid, 19, 2445 MHzity: 48%
Project: None	Barometric Pres.: 30.3 in
	DC via USB Job Site: EV06
	ST METHOD
FCC 15.247:2011 AN:	ISI C63.10:2009
COMMENTS	
Transmitting continuous mode with modulation. 0.4 dB added to reference level offset for antenna port a	adapter cable.
DEVIATIONS FROM TEST STANDARD	
None	
Configuration # 1 Signature	
Channel	Value Limit Result
Low, 11, 2405 MHz	1.468 MHz > 500 kHz Pass
Mid, 19, 2445 MHz	1.454 MHz > 500 kHz Pass
High, 26, 2480 MHz	1.473 MHz > 500 kHz Pass

		N	/lid, 19, 2445 MH:	Z		
				Malara	1 114	D14
_				Value	Limit	Result
				1.454 MHz	> 500 kHz	Pass

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting at its only data rate available in a no hop mode.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

NORTHWEST			Out	put Power			XMit 2011.08.04 PsaTx 2011.08.04
EMC			Out	put rower			FSa1X 2011.00.04
EUT:	Modlet TE1010				Work Order	THKE0005	
Serial Number:	804F580000100A19					08/18/11	
	ThinkEco, Inc.				Temperature		
	Bryan Takata				Humidity		
Project:					Barometric Pres.		
	Rod Peloquin		Power:	5VDC via USB	Job Site	EV06	
TEST SPECIFICATION	ONS			TEST METHOD			
FCC 15.247:2011				ANSI C63.10:2009			
COMMENTS							
_		. 0.4 dB added to reference level of	fset for antenna p	ort adapter cable.			
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	1	Rocky le. Signature	Relings				
Channel					Value	Limit	Result
Low, 11, 2405 MHz					2.087 mW	< 1 W	Pass
Mid, 19, 2445 MHz					2.081 mW	< 1 W	Pass
High, 26, 2480 MHz					2.031 mW	< 1 W	Pass

		Mid, 19, 2445 MH	Z		
			Value	Limit	Result
			2.081 mW	< 1 W	Pass

Band Edge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available.

The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST		Donal	Edua Camplianas			XMit 2011.08.04
EMC		Bano	Edge Compliance			PsaTx 2011.08.04
EUT:	Modlet TE1010			Work Order	: THKE0005	
Serial Number:	804F580000100A19			Date	: 08/18/11	
Customer:	ThinkEco, Inc.			Temperature	: 22.6°C	
Attendees:	Bryan Takata			Humidity		,
Project:	None			Barometric Pres.	: 30.3 in	,
	Rod Peloquin		Power: 5VDC via USB	Job Site	: EV06	,
TEST SPECIFICAT	IONS		TEST METHOD			
FCC 15.247:2011			ANSI C63.10:2009			
COMMENTS						
Transmitting conti	nuous mode with modulation. 0.4 dB a	added to reference level offset for ant	enna port adapter cable.			
	M TEST STANDARD					
None						
Configuration #	1	Rochy le Fieling Signature				
Channel				Value	Limit	Result
Low, 11, 2405 MHz				-41.7 dBc	≤ -20 dBc	Pass
High, 26, 2480 MHz				-39.66 dBc	≤ -20 dBc	Pass

	Н	ligh, 26, 2480 MH	z		
					. .
			Value	Limit	Result
			-39.66 dBc	≤ -20 dBc	Pass

Spurious Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

NORTHWEST EMC		Spurious Conducted Emission	ns		XMit 2011.08. PsaTx 2011.08
	llet TE1010	<u> </u>	Work Order:	THEFOODS	
Serial Number: 804F				08/18/11	
Customer: Thin			Temperature:		
Attendees: Brya			Humidity:		
Project: Non			Barometric Pres.:		
Tested by: Rod	Peloquin	Power: 5VDC via USB	Job Site:	EV06	
TEST SPECIFICATIONS	i i	TEST METHOD			
FCC 15.247:2011		ANSI C63.10:2009			
Transmitting continuous	s mode with modulation. 0.4 dB add	ded to reference level offset for antenna port adapter cable.			
Transmitting continuous	s mode with modulation. 0.4 dB add	ded to reference level offset for antenna port adapter cable.			
_		ded to reference level offset for antenna port adapter cable.			
Transmitting continuous DEVIATIONS FROM TES None		ded to reference level offset for antenna port adapter cable.			
DEVIATIONS FROM TES	ST STANDARD	Red to reference level offset for antenna port adapter cable. Rocky la Release.			
DEVIATIONS FROM TES	ST STANDARD	Roby to Roby			
DEVIATIONS FROM TES	ST STANDARD	Rolly be Rolly	Value	Limit	Result
DEVIATIONS FROM TESTON Configuration # Channel Low, 11, 2405 MHz	ST STANDARD	Signature Frequency Range 30 MHz - 12.5 GHz	-46.68 dBc	≤ -20 dBc	Result Pass
DEVIATIONS FROM TEST None Configuration # Channel .ow, 11, 2405 MHz .ow, 11, 2405 MHz	ST STANDARD	Signature Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-46.68 dBc -51 dBc	≤ -20 dBc ≤ -20 dBc	Pass Pass
Channel Cow, 11, 2405 MHz Low, 12, 2405 MHz Low, 11, 2405 MHz Low, 11, 2405 MHz Low, 11, 2405 MHz	ST STANDARD	Signature Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-46.68 dBc -51 dBc -53.98 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass
DEVIATIONS FROM TESTON Configuration # Channel Low, 11, 2405 MHz Low, 11, 2405 MHz Low, 11, 2445 MHz Low, 14, 2445 MHz Low, 14, 2445 MHz Low, 19, 2445 MHz	ST STANDARD	Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	-46.68 dBc -51 dBc -53.98 dBc -51.27 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass Pass
DEVIATIONS FROM TES None Configuration #	ST STANDARD	Signature Frequency Range 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz 30 MHz - 12.5 GHz	-46.68 dBc -51 dBc -53.98 dBc	≤ -20 dBc ≤ -20 dBc ≤ -20 dBc	Pass Pass Pass

L	ow, 11, 2405 MH	z		
Frequency				
Range		Value	Limit	Result
12.5 GHz - 25 GHz		-51 dBc	≤ -20 dBc	Pass

N	1id, 19, 2445 MHz		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-51.27 dBc	≤ -20 dBc	Pass

H	ligh, 26, 2480 MH	z		
Frequency				
Range		Value	Limit	Result
12.5 GHz - 25 GHz		-51.06 dBc	≤ -20 dBc	Pass

Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2011	12
40GHz DC Block	Miteq	DCB4000	AMD	8/12/2011	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2011	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its only data rate available for each modulation type available. ANSI C63.10:2009, Section 6.11.2.3 was followed. The spectrum analyzer was set as follows:

The emission peak was located and zoomed in on within the passband.

- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX
- f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

EMC Power S	pectral Density				XMit 2011.08.04 PsaTx 2011.08.04
EUT: Modlet TE1010			Work Order:	THKE0005	
Serial Number: 804F580000100A19				08/18/11	
Customer: ThinkEco, Inc.			Temperature:	22.6°C	
Attendees: Bryan Takata		HuMi	d, 19, 2445 MHzity:		
Project: None			Barometric Pres.:	30.3 in	
	5VDC via USB		Job Site:	EV06	
TEST SPECIFICATIONS	TEST METHOD				
FCC 15.247:2011	ANSI C63.10:2009				
COMMENTS					
Transmitting continuous mode with modulation. 0.4 dB added to reference level offset for antenna processing the standard	ort adapter cable.				
None					
Configuration # 1 Rolling to Rolling to Rolling					
	Value	(dBm / Hz) To	Value	Limit	
Channel	(dBm / Hz)	(dBm / 3 kHz)	(dBm / 3 kHz)	(dBm / 3 kHz)	Result
Low, 11, 2405 MHz	-57.096	34.8	-22.296	8	Pass
Mid, 19, 2445 MHz	-57.347	34.8	-22.547	8	Pass
High, 26, 2480 MHz	-57.453	34.8	-22.653	8	Pass

		Mid, 19, 2445 MH:	Z		
	Value	(dBm / Hz) To	Value	Limit	
	(dBm / Hz)	(dBm / 3 kHz)	(dBm / 3 kHz)	(dBm / 3 kHz)	Result
	-57.347	34.8	-22.547	8	Pass

Power Spectral Density

	Н	ligh, 26, 2480 MF	·lz		
	Value	(dBm / Hz) To	Value	Limit	
	(dBm / Hz)	(dBm / 3 kHz)	(dBm / 3 kHz)	(dBm / 3 kHz)	Result
	-57.453	34.8	-22.653	8	Pass

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting 'Continous' mode with modulation

CHANNELS TESTED

Low, Channel 11 = 2405MHz Mid, Channel 19 = 2445MHz

High, Channel 26 = 2480MHz

POWER SETTINGS INVESTIGATED

120VAC/60Hz

FREQUENCY RANGE INV	ESTIGATED		
Start Frequency	30 MHz	Stop Frequency	25 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	6/24/2011	12
High Pass Filter	Micro-Tronics	HPM50111	HFO	8/9/2010	24
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/28/2011	12
Antenna, Bilog	Teseq	CBL 6141B	AXR	11/29/2010	12
EV01 Cables	N/A	Bilog Cables	EVA	6/28/2011	12
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/28/2011	12
Antenna, Horn	ETS	3115	AIZ	1/24/2011	24
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/28/2011	12
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	3/2/2011	12
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	3/2/2011	12
Antenna, Horn	ETS	3160-07	AHU	NCR	0
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	3/2/2011	12
Antenna, Horn	ETS	3160-08	AHV	NCR	0
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/15/2010	12
Cable	ESM Cable Corp.	KMKM-72	EVY	9/15/2010	12

MEASUREMENT BANDWIDTHS							
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data			
	(MHz)	(kHz)	(kHz)	(kHz)			
	0.01 - 0.15	1.0	0.2	0.2			
	0.15 - 30.0	10.0	9.0	9.0			
	30.0 - 1000	100.0	120.0	120.0			
	Above 1000	1000.0	N/A	1000.0			
	Measurements were made u	using the bandwidths and dete	ectors specified. No video filter	was used.			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

AC Powerline Conducted Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting 'Continous' mode with modulation, high channel

Transmitting 'Continous' mode with modulation, mid channel

Transmitting 'Continous' mode with modulation, low channel

POWER SETTINGS INVESTIGATED

120VAC/60Hz

CONFIGURATIONS INVESTIGATED

THKE0005 - 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/9/2011	24 mo
Attenuator	Coaxicom	66702 2910-20	ATO	7/20/2011	12 mo
EV07 Cables	N/A	Conducted Cables	EVG	6/17/2011	12 mo
LISN	Solar	9252-50-R-24-BNC	LIR	2/17/2011	12 mo
Receiver	Rohde & Schwarz	ESCI	ARH	3/30/2011	12 mo

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its only data rate available. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

