§1. Lineárni závislost a nezávislost

- Def: Nechť = $S = \{\overrightarrow{u_1}, \overrightarrow{u_1}, \dots, \overrightarrow{u_1}\}$ je konečná množina vektorů vektorového prostoru V. Řekneme, že $množina\ vektorů\ S$ je:
 - 1. lineárně nezávislá, jestliže platrí:

$$p_1 \cdot \overrightarrow{u_1} + p_1 \cdot \overrightarrow{u_1} + \cdots + p_1 \cdot \overrightarrow{u_1} = \overrightarrow{0} \quad \Leftrightarrow \quad p_1 = p_2 = \cdots = p_k = 0$$

2. lineárně závislá, jestliže platrí:

$$\exists p_i \neq 0 : p_1 \cdot \overrightarrow{u_1} + p_1 \cdot \overrightarrow{u_1} + \cdots + p_1 \cdot \overrightarrow{u_1} = \overrightarrow{0} (i \in \{1, 2, \dots, k\})$$

V.1.1.: Obsahuje li S vektor
r $\overrightarrow{0}$, pak je lineárně závislá.

Když $S = \{\overrightarrow{u}\}$, pak S je závislá $\Leftrightarrow \overrightarrow{u} = \overrightarrow{0}$.

V.1.2.: Vektoru jsou lineárně závislé právě tehdy, když alespon 1 z nich lze vyjádřit jako lineární kombinaci ostatních.

Pozn: Ne každý z lineárně závislych vektorů může být vyjádřen jako lin. kombinace ostatních.

Pozn: Nechť \overrightarrow{a} , $\overrightarrow{b} \in V$ jsou závislé vekktory. V geometrickém prostoru se jedná o rovnoběžné vektory.

Př: Vyjádřete vektory jako lineární kombinaci vektorů $\overrightarrow{PB}, \overrightarrow{PC}, \overrightarrow{PD}$, je li S středem úsečky BC, U těžiště čtyřstěnu $\triangle BCD$ a T těžiště PBCD.

 $\overrightarrow{PS} = \frac{\overrightarrow{PB} + \overrightarrow{PC}}{2}$ – Polovina úhlopříčky rovnoběžníkku.

$$\overrightarrow{PU} = \overrightarrow{PS} + \overrightarrow{SU} = \overrightarrow{PS} + \frac{1}{3}\overrightarrow{SD} = \frac{1}{3}\overrightarrow{PD} + \frac{2}{3}\overrightarrow{PS} = \frac{\overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD}}{3}$$

 $\overrightarrow{PT} = \frac{\overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD}}{4}$

Př: V U_3 a V_3 je dána množina $S = \{\overrightarrow{a} \ \overrightarrow{b}\}; \overrightarrow{\neq 0} \neq \overrightarrow{b}$. Určete $\langle S \rangle$