Санкт-Петербургский государственный университет Программная инженерия

Реализация протокола электронного голосования на блокчейне Hyperledger Fabric

Автор: С. А. Скаредов, 16.Б11-мм

Научный руководитель: доцент кафедры СП, к.ф.-м.н. К. Ю. Романовский Консультанты: старший преподаватель кафедры СП Я. А. Кириленко ведущий разработчик «DSX Technologies Russia» Ф. П. Долголев Рецензент: технический директор «DSX Technologies Russia», к.ф.-м.н. А. Н. Иванов

Санкт-Петербург, 2020

Электронное голосование

- Требования
 - Надёжность
 - 0 Приватность
 - о Проверяемость
- Виды
 - о Традиционное
 - о Акционерное
- Примеры
 - о Голосование на блокчейне в России, Эстонии, Турции, Америке
 - Национальный расчётный депозитарий
 - Годовое общее собрание акционеров Московской биржи
 - Более 84% проголосовавших электронно (8-27.04.2020)

E-voting

- DSX Technologies и Accenture
- Система акционерного голосования
- Анонимизация волеизъявления участника
- Возможность проверки честного учёта голосов
- Патенты
 - o <u>US10,388,097</u>: Blockchain-based cryptologic ballot verification
 - US10,445,965: Blockchain-based cryptologic ballot organization

UI

Веб/Мобильные приложения

Java Application

E-voting API

Формирование запросов

Выстраивание состояния

Валидация сообщений

Go Chaincode

Чтение/Запись

DLT

Hyperledger Fabric

Application-based подход

UI

Веб/Мобильные приложения

Java Application

E-voting API

Формирование запросов

Go Chaincode

Выстраивание состояния

Валидация сообщений

Чтение/Запись

DLT

Hyperledger Fabric

Chaincode-based подход

Цель: Реализация протокола тайного электронного акционерного голосования на блокчейне Hyperledger Fabric

<u>Задачи:</u>
Обзор предметной области
Протокол E-votingHyperledger Fabric
Проектирование архитектуры системы
Анализ существующего решенияРазработка нового подходаСравнение подходов
Реализация нового подхода
Реализация системы смарт-контрактовРефакторинг off-chain приложения
Тестирование системы

Протокол

- Монеты
 - Аддитивно гомоморфное шифрование
 - E(x + y) = E(x) + E(y)
 - Криптографическое доказательство неотрицательности
 - E(10) = E(15) + E(-5)
- Процесс
 - о Инициализация голосования
 - Распределение монет
 - о Голосование
 - Подсчёт и публикация результатов

Hyperledger Fabric

- Open-source блокчейн-платформа
 - Linux Foundation
- Корпоративное применение
 - Идентификация и авторизация пользователей
 - Приватные распределённые реестры
- База данных «ключ-значение»
- Поддержка смарт-контрактов
 - Go, Java, JavaScript
- Инструменты для off-chain приложений
 - o Go-, Java-, JavaScript-SDKs

Application-based

Chaincode-based

Сравнение подходов

Критерий \ Подход	Application-based	Chaincode-based
Модель данных	«Сырые» строки Программные объек	
Состояние системы	Локальное	Общее
Хранимые данные	Все сообщения	Корректные сообщения
Синхронизация	Индивидуальная	Автоматическая
DLT-зависимость	Слабая	Сильная

Детали реализации

- Модель данных
- □ Способ хранения в базе данных «ключ-значение»
- Погика валидации
- Использование возможностей Hyperledger Fabric

Композитные ключи

Объект	Тип объекта	Подтип объекта	ID голосования	ID объекта
Уникальное сообщение	«message»	«emission»	+	
Повторяющееся сообщение	«message»	«vote»	+	<message id=""></message>
Кошелёк	«wallet»		+	<wallet address=""></wallet>

Обработчики и контекст

- Контекст
 - о Контейнер для обрабатываемого сообщения
- BeforeTx
 - о Десериализация сообщения
 - Проверка подписи
 - о Запись сообщения в контекст
- AfterTx
 - о Запись сообщения в реестр
 - Публикация события

Тестирование

- Проверка работоспособности
 - Голосование акционеров Московской биржи
 - 30 голосов по 3 ответа
 - 1500 участников
- Сравнение времени работы логики валидации подходов

Результаты нагрузочного тестирования

Метод	Application (ms/op)	Chaincode (ms/op)
organize	0.468 ± 0.010	0.477 ± 0.001
emit	0.150 ± 0.002	0.310 ± 0.001
distribute	150.167 ± 0.702	82.826 ± 0.353
vote	601.631 ± 2.746	268.063 ± 1.041
finalize	117.593 ± 2.402	148.902 ± 0.863

Конфигурация рабочей станции (18)

Результаты

- ✓ Проведён обзор предметной области
 - √ Протокол E-voting
 - √ Hyperledger Fabric
- √ Спроектирована архитектура системы
 - √ Проанализировано существующее решение
 - ✓ Разработан новый подход
 - ✓ Произведено сравнение подходов
- √ Реализован новый подход
 - ✓ Реализована система смарт-контрактов
 - √ Проведён рефакторинг off-chain приложения
- √ Проведено тестирование системы

Конфигурация рабочей станции

- Операционная система: macOS Mojave v10.14.6
- ЦПУ: Intel Core i7, 2.6 GHz, 6 Cores, 12 Logical processors
- O3Y: 32 GB 2400 MHz DDR4
- Java: AdoptOpenJDK 8 (v1.8.0_242, x86_64)
- JMH: org.openjdk.jmh:jmh-core: 1.21
- Go: go 1.14.2 (darwin/amd64)
- Hyperledger Fabric: v2.1.0 (commit: 1bdf97537)