QUANTIZATION OF THE UNCONSTRAINED THEORY

Consider the $\mathbb{Z}/2$ -graded theory on $\mathbb{C}^5 \times \mathbb{R}$ with two sets of fundamental fields:

$$\mu \in \Pi\Omega^{\bullet}(\mathbb{R}) \widehat{\otimes} P.V.^{1,\bullet}(\mathbb{C}^5)$$

$$\gamma \in \Omega^{\bullet}(\mathbb{R}) \widehat{\otimes} \Omega^{1,\bullet}(\mathbb{C}^5).$$

We will denote the full space of fields of the theory by \mathcal{E} .

This is a non-degenerate BV theory with pairing defined by

$$\int \gamma \wedge (\mu \vdash \Omega).$$

The action is

$$S = \int \gamma \left(d\mu + \frac{1}{2} [\mu, \mu] \right) \vdash \Omega + \frac{1}{3} \int \gamma \partial \gamma \partial \gamma.$$

where $[\cdot,\cdot]$ denotes the Lie bracket of vector fields.

The first term describes a theory of BF type based on the local Lie algebra

$$\mathcal{L} = \Omega^{\bullet}(\mathbb{R}) \,\widehat{\otimes} \, P.V.^{1,\bullet}(\mathbb{C}^5).$$

With the term $\frac{1}{3}\int \gamma \partial \gamma \partial \gamma$ we will view this theory as a deformation of a BF type theory.

Let $\mathcal{O}_{loc}(\mathcal{E})$ denote the cochain complex of local functionals. It is equipped with the classical BRST operator

$$\{S,-\} = \mathrm{d} + \mathrm{d}_{\mathrm{CE}} + \delta$$

where d_{CE} denotes (roughly) the Chevalley–Eilenberg differential for holomorphic vector fields and δ is the operator $\left\{\frac{1}{3}\int\gamma\partial\gamma\partial\gamma$, $\cdot\right\}$.

1. One-loop Feynman diagrams

To construct the one-loop quantization we must first construct a one-loop effective family. This is a family of functionals $\{I[L]\}_{L>0}$ which satisfies the renormalization group equations.

The 11-dimensional theory on $\mathbb{C}^5 \times \mathbb{R}$ that we consider is a mixed holomorphic-topological theory. Heuristically, this means that the theory depends holomorphically on \mathbb{C}^5 and topologically on \mathbb{R} .

Theorem 1.1 (GWR). For any mixed holomorphic-topological theory on $\mathbb{C}^n \times \mathbb{R}^m$, $n, m \geq 0$, there exists a translation-invariant effective family $\{I[L]\}$ which to first order in \hbar is finite.

We briefly recount the main elements involved in the proof of this theorem. The result relies on the existence of a propagator corresponding to the "holomorphic-topological" gauge that enjoys particularly desirable analytic properties. At the level of the free theory, the linear BRST operator for the 11-dimensional theory in question is of the form

$$\overline{\partial} + \partial_{\Omega} + d_{dR}$$
.

The first term denotes the $\overline{\partial}$ -operator corresponding to a graded holomorphic vector bundle built from polyvector fields on $X = \mathbb{C}^5$. The second term term is the holomorphic differential operator action by the divergence operator on the same bundle of polyvector fields. The third term is the de Rham operator along \mathbb{R} .

The "holomorphic-topological gauge" refers to the choice of the following gauge fixing operator

$$Q^{\rm GF} = \overline{\partial}^* + \mathrm{d}_{\rm dR}^*.$$

The heat kernel is

$$K_t(z,t;w,s) = \frac{1}{(2\pi i)^{11/2}} e^{|z-w|^2/4t + (t-s)^2/4t} \times$$
$$\sum_{i=1}^{5} (\partial_{z^i} - \partial_{w^i}) \otimes (\mathrm{d}z^i - \mathrm{d}w^j) \otimes \prod_{j=1}^{5} (\mathrm{d}\overline{z}^j - \mathrm{d}\overline{w}^j) \otimes (\mathrm{d}t - \mathrm{d}s)$$

The propagator is

$$P_{\epsilon < L}(z, t; w, s) = \int_{T-\epsilon}^{L} Q^{GF} K_t(z, t; w, s) dT.$$

2. The quantum master equation

The anomaly to satisfying the scale L quantum master equation is

$$\Theta[L] = QI[L] + \hbar \triangle_L I[L] + \frac{1}{2} \{I[L], I[L]\}_L.$$

Here \triangle_L is the well-defined regularized scale L BV Laplacian, and $\{-,-\}_L$ is a regularized version of the classical BV bracket. The $\hbar \to 0$, $L \to 0$ limit of the above equation is precisely the classical master equation. An effective family $\{I[L]\}$ is a quantum field theory if it satisfies the scale L QME for every L > 0. For more complete details we refer to **Book2**.

In general, not every effective theory satisfies the QME. The scale L anomaly to satisfying the QME describes the failure of I[L] to satisfy the scale L QME. Since I[L] is filtered by powers of \hbar , so is the anomaly. For theories of cotangent type as considered in this paper, I[L] truncates

at order \hbar , hence we only need to consider the \hbar -linear anomaly which we denote by $\hbar\Theta[L]$. The $L \to 0$ limit of $\Theta[L]$ is defined and determines a cohomological degree +1 local functional

$$\Theta \stackrel{\text{def}}{=} \lim_{L \to 0} \Theta[L] \in \mathcal{O}_{\text{loc}}(\mathcal{E}).$$

Moreover, Θ is closed for the classical differential $\{S, -\}_{BV}$, hence determines a cohomology class

$$[\Theta] \in H^1(\mathcal{O}_{loc}(\mathcal{E}), \{S, -\}_{BV}),$$

see CostelloBook.

2.1. The obstruction deformation complex. There is a decreasing filtration on $\mathcal{O}_{loc}(\mathcal{E})$ whose pth layer $F^p\mathcal{O}_{loc}(\mathcal{E})$ consists of local functionals which are at least p-linear in the field γ . BW: I'm worried that this isn't a complete filtration.

Roughly, the pth layer in the associated graded of this filtration is the local cohomology of holomorphic vector fields on \mathbb{C}^5 with values in a particular local module corresponding to p-linear local functionals of the field γ .

- At the zeroth layer p = 0, the associated graded is the local Lie algebra cochains $C_{loc}^{\bullet}(\mathcal{L})$. By an argument similar to BW: Brian and Chris, we see that at this stage there the class of the anomaly can be identified with a class in $H^{12}(\mathfrak{w}_5)$ where \mathfrak{w}_5 is the Lie algebra of vector fields on the formal 5-disk. This cohomology is trivial $H^{12}(\mathfrak{w}_5) = H^{13}(BU(5)) = 0$. BW: check this first isomorphism, there might be a connecting differential
- BW: at the next layer it seems like we should be looking at $H^{\bullet}(\mathfrak{w}_5,\mathfrak{w}_5)$.
- 2.2. Characterizing the anomaly cocycle. A general result of Costello Costello Wittengenus states that the one-loop anomaly of any BV theory reduces to the weight of a sum of wheel graphs. Furthermore, using the holomorphic-topological gauge, the types of wheels that appear are those with a fixed number of vertices as we will soon explain.

To state the following result, we fix some notation. If Γ is a graph with a distinguished internal edge e, let $W_{\Gamma,e}(P_{\epsilon < L}, K_{\epsilon}, I)$ denote the following modified weight. Instead of placing $P_{\epsilon < L}$ at each internal edge, we place K_{ϵ} at the edge labeled e and $P_{\epsilon < L}$ on the remaining internal edges.

Lemma 2.1. The one-loop anomaly cocycle $\Theta \in \mathcal{O}_{loc}(\mathcal{E})$ is cohomologous to the $L \to 0$ limit of the expression

$$\lim_{\epsilon \to 0} \sum_{\Gamma \in \text{Wheel}_{\mathbb{Z},e}} W_{\Gamma}(P_{\epsilon < L}, K_{\epsilon}, I).$$

Here the sum is over all wheels with seven vertices equipped with a distinguished edge e.