CSVreader Module

Module

CSVreader

Uses

CityPostT, CityT, EarthquakeT, EarthquakeT.ColorRating, EarthquakeT.MagType, EarthquakeBag, GeoCollection, RedBlackBST

Syntax

Exported Constants

None

Exported Access Programs

Routine name	In	Out	Exceptions
readEarthquakes	String, EarthquakeBag		IOException
readEarthquakesBST	String, RedBlackBST		IOException
readPopulation	String, GeoCollection		IOException
readCityPosition	String, seq of CityPostT		IOException
rmFirstLastQuote	String	String	
generateColorRating	\mathbb{R}	ColorRating	
fullProvName	String	String	

Semantics

Environment Variables

A file listing Earthquake Information.

A file listing Population Densities.

A file listing City Coordinates.

State Variables

None

State Invariant

None

Assumptions

The input file by filename will match the specific format required by the read method.

Access Routine Semantics

readEarthquakes(filename, bag):

- transition: Read each line of the earthquake csv file and convert to a EarthquakeT object, which is stored in a EarthquakeBag.
- exception: If the file by filename does not exist, produces IOException.

readEarthquakesBST(filename, bst):

- transition: Read each line of the earthquake csv file and convert to a EarthquakeT object, which is stored in a RedBlackBST.
- exception: If the file by filename does not exist, produces IOException.

readPopulation(filename, geoCollec):

- transition: Read each line of the population csv file and convert to a CityT object, which is stored in a GeoCollection HashMap.
- exception: If the file by filename does not exist, produces IOException.

readCityPosition(filename, cityPostList):

- transition: Read each line of the city coordinates csv file and convert to a CityPostT object, which is stored in a list of cities.
- exception: If the file by filename does not exist, produces IOException.

rmFirstLastQuote(cell):

- transition: Remove first and last double quotations from a string value.
- exception: None

generateColorRating(cell4):

• transition: Generate an enum ColorRating type based on the magnitude of earthquake.

• exception: None

fullProvName(nameP):

• output: a new province name similar to the following table.

	nameP =	out :=
nameP = 2	ON	Ontario
	QC, PQ	Quebec
	NS	Nova Scotia
	NB	New Brunswick
	MB	Manitoba
	BC	British Columbia
	PE	Prince Edward Island
	SK	Saskatchewan
	AB	Alberta
	NL	Newfoundland and Labrador
	NU	Nunavut
	NT	Northwest Territories
	YT	Yukon
	AK	Alaska
	WA	Washington
	default	UNLOCATED
$ nameP \neq 2$	VANCOUVER IS-	British Columbia
	LAND	
	SOUTHERN	Quebec
	QUEBEC	
	default	UNLOCATED

• exception: None

Considerations

There are a number of different variations of geolocation names in the earthquake csv file, for these an appropriate province name should be assigned. For any that could not be matched to a province name, UNLOCATED should be assigned.

Point ADT Module

Template Module

PointT

Uses

N/A

Syntax

Exported Types

PointT = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new PointT	\mathbb{R},\mathbb{R}	PointT	RuntimeException
getLat		\mathbb{R}	
getLong		\mathbb{R}	
distance	PointT	\mathbb{R}	
latFilter	\mathbb{R}	$<\mathbb{R},\mathbb{R}>$	
equals	PointT	\mathbb{B}	

Semantics

State Variables

 $x: \mathbb{R}$ $y: \mathbb{R}$

Access Routine Semantics

PointT(lat, long):

• transition: x, y := lat, long

• output: out := self

• exception: $exc := ((lat > 90 \lor lat < -90) \Rightarrow IndexOutOfBoundsException)$

```
getLat():
```

• output: out := x

getLong():

 \bullet output: out := y

distanceTo(that):

- ullet output: out:= d such that d is the distance(in km) between current point and that latFilter(radius):
- output: out := < minLat, maxLat > such that $\forall (p: PointT|distanceTo(p) \leq radius: p.getLat() \geq minLat \wedge p.getLat() \leq maxLat$ equals(that):
 - output: $out := (x = that.getLat()) \land (y = that.Long())$

City ADT Module

Template Module

CityT

Uses

N/A

Syntax

Exported Types

CityT = ?

Routine name	In	Out	Exceptions
new CityT	String, String, \mathbb{R}	CityT	
getCityName		String	
getProvince		String	
getPopDensity		\mathbb{R}	
equals	CityT	\mathbb{B}	

Semantics

State Variables

```
cityName: String province: String popDensity: \mathbb{R}
```

Access Routine Semantics

```
CityT(city, pro, pop):
```

- transition: cityName, province, popDensity := city, pro, pop
- output: out := self

getCityName():

• output: out := cityName

getProvince():

• output: out := province

getPopDensity():

• output: out := popDensity

equals(that):

• output: $out := (cityName = that.getCityName()) \land (province = that.getProvince()) \land (popDensity = that.getPopDensity())$

City Position ADT Module

Template Module

CityPostT

Uses

PointT

Syntax

Exported Types

CityPostT = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new CityPostT	String, \mathbb{R}, \mathbb{R}	CityPostT	
getPoint		PointT	
getCityName		String	

Semantics

State Variables

cityName : String
point : PointT

Access Routine Semantics

CityT(city, lat, lon):

- $\bullet \ \ \text{transition:} \ \ \textit{cityName}, point := \textit{city}, newPointT(lat, lon)$
- output: out := self

getPoint():

 \bullet output: out := point

getCityName():

• output: out := cityName

CityT Collection Module

Template Module

 ${\bf GeoCollection}$

Uses

CityT

\mathbf{Syntax}

Exported Types

GeoCollection = ?

Routine name	In	Out	Exceptions
add	CityT		
getCities	String	seq of CityT	
getAllCities		set of tuple of(String, seq of CityT)	
isEmpty		\mathbb{B}	

Semantics

State Variables

```
s: set of tuple of (String, seq of CityT)
```

Access Routine Semantics

add(city):

• transition: $s := \{ \langle str, cities \rangle : \langle String, seq of CityT \rangle \mid \langle str, cities \rangle \in s : (str = getFirstCityLetter(city) \Rightarrow \langle str, cities||[city] \rangle \mid true \Rightarrow \langle str, cities \rangle) \}$

isEmpty():

• output: $out := (|s| = 0 \Rightarrow true \mid true \Rightarrow false)$

getCities(firstLetter):

• output: $out := \{ \langle str, cities \rangle : \langle String, \text{ seq of CityT} \rangle \mid \langle str, cities \rangle \in s \land str = firstLetter : cites \}$

getAllCities():

• output: out := s

Local Functions

getFirstCityLetter : String \rightarrow String getFirstCityLetter(city) $\equiv city[0]$

Earthquake ADT Module

Template Module

 ${\bf EarthquakeT}$

Uses

LocalDateTime, PointT

Syntax

Exported Types

Earthquake T = ?

 $\label{eq:colorRating} \text{ColorRating} = \{ \text{ NOCOLOR, ZERO, PURPLE, BLUE, GREEN, YELLOW, ORANGE, RED } \}$

 ${\it MagType} = \{$ M5, mb, MB, Mb, MC, Mc, mc, ML, MLSn, MN, MS, MW, Ms, Mw, BLANK $\}$

EarthquakeT implements Comparable(EarthquakeT)

Exported Constants

None

Exported Access Programs

Routine name	In	Out	Exceptions
new EarthquakeT	String, String, LocalDateTime,	EarthquakeT	
	$\mathbb{R}, \mathbb{R}, \mathbb{R}, \mathbb{R}, \text{ MagType, ColorRating}$		
getNameOfProv		String	
getPlace		String	
getPointT		PointT	
getMag		\mathbb{R}	
getDph		\mathbb{R}	
getMagitudeType		MagType	
getDate		LocalDateTime	
getColor		ColorRating	
compareTo	EarthquakeT	\mathbb{Z}	
equals	EarthquakeT	\mathbb{B}	

Semantics

State Variables

place: String

nameOfProv: String date: LocalDateTime

lat: \mathbb{R} lng: \mathbb{R} dph: \mathbb{R} mag: \mathbb{R}

 ${\bf magnitude Type:\ Mag Type}$

color: ColorRating

State Invariant

None

Assumptions

Two earthquakes are not the same if they happened to have two different dates or two different places recorded.

Access Routine Semantics

EarthquakeT(place, prov., date, lat, lng, dph, mag, mgT, color):

lat, lng, place, nameOfProv, date, dph, mag, magnitudeType, color := lat, lng, place, prov, date, dph, mag, mgT, color

• output: out := self

• exception: None

getNameOfProv():

• transition:

• output: out := nameOfProv

• exception: None

getPlace():

• output: out := place

• exception: None

getPointT():

• output: out := PointT(lat, lng)

• exception: None

getMag():

• output: out := mag

• exception: None

getDph():

• output: out := dph

• exception: None

getMagitudeType():

• output: out := magnitudeType

• exception: None

getDate():

 \bullet output: out := date

• exception: None

getColor():

 \bullet output: out := color

• exception: None

compare To(eq):

• output: out := an integer value according to the following table.

	out :=
this.mag < eq.mag	-1
this.mag > eq.mag	1
this.mag = eq.mag	0

• exception: None

equals(that):

• output: $out := (sameDate \land samePoint \land samePlace \land sameDepth \land sameMagValue \land sameMagType \land sameEqClass) \Rightarrow True|True \Rightarrow False$

• exception: None

Local Functions

```
sameDate: EarthquakeT \rightarrow \mathbb{B}
sameDate(d) \equiv (d.date) = (this.date)
# Returns true if the given EarthquakeT object has the same date as the current.
samePoint: EarthquakeT \rightarrow \mathbb{B}
samePoint(d) \equiv (d.Point) = (this.Point)
#Returns true if the given EarthquakeT object has the same Point as the current.
samePlace: EarthquakeT \rightarrow \mathbb{B}
samePlace(d) \equiv (d.place) = (this.place)
#Returns true if the given EarthquakeT object has the same place as the current.
sameDepth: EarthquakeT \to \mathbb{B}
sameDepth(d) \equiv |d.dph - this.dph| < 0.0000001
#Returns true if the given EarthquakeT object has the same depth value
as the current within the tolerance.
sameMagValue: EarthquakeT \rightarrow \mathbb{B}
\operatorname{sameMagValue}(d) \equiv |d.\operatorname{mag} - this.\operatorname{mag}| < 0.0000001
#Returns true if the given EarthquakeT object has the same magnitude value
as the current within the tolerance.
sameMagType: EarthquakeT \rightarrow \mathbb{B}
sameMagType(d) \equiv (d.magnitudeType) = (this.magnitudeType)
#Returns true if the given EarthquakeT object has the same magnitude type
as the current.
sameEqClass: EarthquakeT \rightarrow \mathbb{B}
sameEqClass(d) \equiv (d.color) = (this.color)
#Returns true if the given EarthquakeT object has the same earthquake class
as the current.
```

Edge ADT Module

Template Module

Edge

Uses

N/A

Syntax

Exported Types

Edge = ?

Routine name	In	Out	Exceptions
new Edge	String, String, Z	Edge	
weight		\mathbb{Z}	
from		String	
to		String	

Semantics

State Variables

```
v: String w: String weight: \mathbb{Z}
```

Access Routine Semantics

```
Edge(from, to, w):
```

- transition: v, w, weight := from, to, w
- output: out := self

weight():

• output: out := weight

from():

ullet output: out := v

to():

 \bullet output: out := w

City Graph Module

Template Module

 ${\rm CityGraph}$

Uses

Edge

\mathbf{Syntax}

Exported Types

CityGraph = ?

Routine name	In	Out	Exceptions
new CityGraph		CityGraph	
addEdge	Edge		
adj	String	seq of Edge	

Semantics

State Variables

adj: set of tuple of (String, seq of Edge)

Access Routine Semantics

CityGraph():

- transition: $adj := \{\}$
- output: out := self

addEdge(e):

• transition: $adj := \{ < str, edges > : < String, \text{ seq of Edge } > | < str, edges > \in adj : (str = e.from() \Rightarrow < str, edges||[e] > | true \Rightarrow < str, edges >) \}$

adj(v):

 \bullet output: out := {< str, edges >:< String, seq of Edge > | < str, edges >< adj \land str = v : edges}

EarthquakeBag Module

Template Module

EarthquakeBag is seq of EarthquakeT

- # Used only for testing time performance against RedBlackBST module.
- # This module is not part of the actual application.

Generic Queue Module

Generic Template Module inherits Iterable(T)

Queue(T)

Uses

None

Syntax

Exported Constants

None

Exported Types

Queue = ?

Internal Types

Node = ?

Internal Node type has a link to next item in the queue.

Routine name	In	Out	Exceptions
Queue		Queue	
isEmpty		\mathbb{B}	
enqueue	Т		
toString		String	
start			
next		Т	NoSuchElementException

Semantics

State Variables

```
first: Node last: Node n: \mathbb{N} s: \text{seq of } T

# For simplification, the linked-node structure is represented by seq of T.

# s[1] is the first Node.

# s[n] is the last Node.
```

State Invariant

None

Assumptions

None

Access Routine Semantics

Queue():

- transition: first, last, n := null, null, 0
- output: out := self
- exception: none

isEmpty():

- output: $out := (n = 0) \Rightarrow True | True \Rightarrow False$
- exception: None

enqueue(item):

- output: out := s||item|
- exception: None

toString():

 $\bullet \text{ output: } out := out || (\forall \, i : \mathbb{N} | i \in [1..n] : s[i])$

• exception: None

<u>Iterator Methods</u>:

 $i:\mathbb{N}$

start():

• transition: i := 0

• exception: none

next():

• transition-output: i, out := i + 1, s[i]

• exception: $(i > n) \Rightarrow \text{NoSuchElementException}$

Considerations

When an instance of Queue is iterated in a loop, an iterator consisting of these two methods is returned, and the start() method is call initially, and for the successive iterations next() method is call.

Generic RedBlackBST Module

Generic Template Module

RedBlackBST(T with Comparable(T), V)

Uses

Queue

Syntax

Exported Types

RedBlackBST = ?

Internal Types

Node = ?

State Variables of Node:

key: Key, lst: seq of V, left: Node, right: Node, color: B, size: N

Internal Node type was modified to store a seq of V.

Routine name	In	Out	Exceptions
RedBlackBST		RedBlackBST	
size		N	
isEmpty		\mathbb{B}	
get	T	seq of V	
put	T, V		
min		Т	
max		T	
keys		seq of T	
keys	T, T	seq of T	
values	T, T	seq of V	

Semantics

State Variables

root: Node RED: \mathbb{B} BLACK: \mathbb{B} s: set of $\langle T, V \rangle$

For simplification, the linked-node structure is represented by set of $\langle T, V \rangle$.

State Invariant

RED = TrueBLACK = False

Assumptions

None

Access Routine Semantics

RedBlackBST():

- transition: None
- output: out := self
- exception: None

size():

- \bullet output: out := root.size
- exception: None

isEmpty():

- output: $out := (root = null) \Rightarrow True | True \Rightarrow False$
- exception: None

get(key):

• output: out := L where $\langle x, L \rangle \in s \land (x.key = key)$

• exception: None

put(key, val):

- transition: $s := \{\langle x, L \rangle : \langle T, V \rangle | \langle x, L \rangle \in s : (x.key = key \Rightarrow \langle x, L | |[val] \rangle | \text{True} \Rightarrow \langle x, L \rangle) \}$
- exception: None

 $\min()$:

- output: out := smallest key in s
- exception: None

 $\max()$:

- output: out := largest key in s
- exception: None

keys():

- output: $out := out || (\forall \langle x, L \rangle : \langle T, V \rangle | \langle x, L \rangle \in s : x.key)$
- exception: None

keys(lo, hi):

- output: $out := out||(\forall \langle x, L \rangle : \langle T, V \rangle | \langle x, L \rangle \in s \land lo \leq x.key \leq hi : x.key)|$
- exception: None

values(lo, hi):

- output: $out := out||(\forall \langle x, L \rangle : \langle T, V \rangle | \langle x, L \rangle \in s \land lo \leq x.key \leq hi : L)$
- exception: None

Search Earthquakes Module

Module

SearchEarthquakes

Uses

RedBlackBST, PointT

Syntax

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
searchEarthquakeInCircle	RedBlackBST, PointT, \mathbb{R}	seq of EarthquakeT	

Semantics

State Variables

N/A

Access Routine Semantics

 $search Earth quake In Circle (bst, \, location, \, radius) \colon$

• output: $out := \{e : EarthquakeT \mid e \in bst \land location.distanceTo(e.getPointT()) \leq radius : e\}$

Sort Module

Module

Sort

Uses

PointT

Syntax

Exported Types

N/A

Exported Access Programs

Routine name	In	Out	Exceptions
sortByDistance	PointT, seq of EarthquakeT		
sortByMagnitude	seq of EarthquakeT		

Semantics

State Variables

N/A

Access Routine Semantics

sortByDistance(location, eqList):

• transition: eqList := eqList such that $\forall (i : \mathbb{N} \mid i \in [0..|eqLisi| - 2] : location.distanceTo(eqList[i].getPointT()) < location.distanceTo(eqList[i+1].getPointT()))$

sortByMagnitude(eqList):

• transition: eqList := eqList such that $\forall (i : \mathbb{N} \mid i \in [0..|eqLisi| - 2] : eqList[i] > eqList[i + 1]$

Risk Assessment Module

Template Module

RiskAssessment

Uses

SearchEarthquakes, GeoCollection, CityGraph, CityPostT

Syntax

Exported Types

RiskAssessment = ?

Exported Access Programs

Routine name	In	Out	Exceptions
new RiskAssessment	RedBlackBST, PointT		
getRisk		\mathbb{Z}	
getCity		String	
getFrequency		\mathbb{Z}	
getMag		\mathbb{R}	
getPoplationDensity		\mathbb{R}	
nearestLowerRiskCity	CityGraph	String	

Semantics

State Variables

 $earthquakeTree: RedBlackBST < \mathbb{R}, EarthquakeT >$

cityProv :<> $frequency : \mathbb{Z}$ $averageMag : \mathbb{R}$

 $populationDensity: \mathbb{R}$

 $rating: \mathbb{Z}$

Access Routine Semantics

RiskAssessment(bst, location):

```
• transition: earthquakeTree := bst,
     cityPov := getCityProv(location, SearchEarthquakes.searchEarthquakeInCircle(bst,
     location, 100)),
     frequency := getFrequency(),
     averageMag :=getAverageManitude(),
     populationDensity := getPopulation(),
     rating := OverallRating(frequency, averageMag, populationDensity)
getRisk():
   • output: out := rating
getCity():
   • output: out := cityProv[0]
getFrequency():
   • output: out := frequency
getMag():
   • output: out := averageMag
getPoplationDensity():
   • output: out := populationDensity
nearestLowerRiskCity(graph):
   • output: out := min.to() such that min \in graph.adj(getCity) \land RiskAssessment(earthquakeTree,
     getLocation(min.to()).getRisk() < rating \land \forall (e : Edge \mid e \in graph.adj(getCity) \land e
     RiskAssessment(earthquakeTree, getLocation(e.to()).getRisk() < rating: e.weight \ge
     min.weight)
```

Local Functions

```
getLocation : String \rightarrow PointT
getLocation(city) \equiv cityPost.getPoint() such that \forall (c: CityPostT \mid c \in seq of CityPostT \land cityPostT )
c.qetCityName = city : cityPost = c
getCityProv : PointT, seq of EarthquakeT \rightarrow tuple of (String, String)
getCityProv(location, eqList) \equiv \langle eq.qetPlace(), eq.qetNameOfProv() \rangle such that \forall (e:
EarthquakeT \mid c \in eqList: location.distanceTo(e.getPointT()) \geq location.distanceTo(eq.getPointT()))
getPopulation:
getPopulation \equiv city.qetPopDensity() such that \forall (c : CityT \mid c \in \text{seq of CityT} \land
c.getCityName = cityProv[0] \land c.getProvince = cityProv[1] : city = c
getFrequency: seq of EarthquakeT \rightarrow \mathbb{Z}
getFrequency(s) \equiv |s|
getAverageMagnitude : seq of EarthquakeT \rightarrow \mathbb{R}
getAverageMagnitude(s) \equiv +(e : EarthquakeT \mid e \in s : e.getMag())/|s|
frequencyRating: \mathbb{R} \to \mathbb{Z}
frequencyRating(frequency) \equiv (frequence < 1 \Rightarrow 0 \mid frequence \geq 1 \land frequence <
10 \Rightarrow 1 \mid frequence > 10 \land frequence < 100 \Rightarrow 2 \mid frequence > 100 \land frequence <
1000 \Rightarrow 3 \mid frequence > 1000 \Rightarrow 4
magnitudeRating: \mathbb{R} \to \mathbb{Z}
magnitudeRating(averageMag) \equiv (averageMag < 1 \Rightarrow 0 \mid averageMag > 1 \land averageMag <
4 \Rightarrow 1 \mid averageMag \geq 4 \land averageMag < 6 \Rightarrow 2 \mid averageMag \geq 6 \land averageMag <
7 \Rightarrow 3 \mid averageMag \geq 7 \Rightarrow 4)
populationdensityRating: \mathbb{R} \to \mathbb{Z}
populationdensityRating(populationdensity) \equiv (populationdensity < 1000 \Rightarrow 0 | populationdensity \geq
1000 \land population density < 5000 \Rightarrow 1 \mid population density \geq 5000 \Rightarrow 2
overallRating: \mathbb{Z}, \mathbb{R}, \mathbb{R} \to \mathbb{Z}
overallRating(f, a, p) \equiv frequencyRating(f) + magnitudeRating(a) + populationdensityRating(p)
```

View Interface Module

Interface Module

ViewList

Uses

PointT

\mathbf{Syntax}

Exported Types

None

Routine name	In	Out	Exceptions
display	seq of EarthquakeT, PointT		

display by magnitude Module

Module inherits ViewList

DisplayByMagnitude

Uses

PointT, Sort

Syntax

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
display	seq of EarthquakeT, PointT		

Semantics

State Variables

N/A

Access Routine Semantics

display(eqList, location):

• print(e.getMag(), e.getColor(), e.getDate().getYear(), e.getPlace()) for all e ∈ Sort.sortByMagnitude(eqList)

display by distance Module

Module inherits ViewList

DisplayByDistance

Uses

PointT, Sort

Syntax

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
display	seq of EarthquakeT, PointT		

Semantics

State Variables

N/A

Access Routine Semantics

display(eqList, location):

• print(location.distanceTo(e.getPointT()), e.getMag(),e.getColor(), e.getDate().getYear(), e.getPlace()) for all e ∈ Sort.sortByMagnitude(location, eqList)

view risk assessment Module

Module

ViewRisk

Uses

RiskAssessment, RedBlackBST, PointT

Syntax

Exported Types

None

Exported Access Programs

Routine name	In	Out	Exceptions
showRisk	RedBlackBST, seq of CityPostT, PointT, CityGraph		

Semantics

State Variables

N/A

Access Routine Semantics

display(bst, loc, s, graph):

• print(ra.getRisk(), ra.getCity(),ra.getFrequency(), ra.getMag(), ra.getPoplationDensity(), ra.nearestLowerRiskCity(graph)) such that ra = RiskAssessment(bst, loc)

Local Functions

 $\begin{array}{l} \operatorname{initGraph}: RiskAssessment, seq of CityPostT, CityGraph \rightarrow CityGraph \\ \operatorname{initGraph}(\operatorname{ra}, \operatorname{s}, \operatorname{graph}) \equiv \operatorname{graph.addEdge}(\operatorname{e}) \operatorname{such} \operatorname{that} \operatorname{e} = \operatorname{Edge}(\operatorname{ra.getCity}(), \operatorname{cityPost.getCityName}, \\ \operatorname{ra.getCity}().\operatorname{getPoint}().\operatorname{distanceTo}(\operatorname{cityPost.getCityName.getPoint}())) \text{ for all cityPost} \in \operatorname{s} \\ \operatorname{and} \operatorname{ra.getCity}().\operatorname{getPoint}().\operatorname{distanceTo}(\operatorname{cityPost.getCityName.getPoint}()) < 100 \\ \end{array}$

Controller Module

Module

Controller

Uses

 $CSV reader, \, Search Earth quakes, \, View List, \, View Risk$

\mathbf{Syntax}

Exported Types

Controller = ?

Routine name	In	Out	Exceptions
init	RedBlackBST, GeoCollection, seq of CityPostT		
search	RedBlackBST, PointT, \mathbb{R}		
updateViewOfList	ViewList		
updateViewOfRisk	RedBlackBST, PointT, seq of CityPostT, CityGraph		

Semantics

State Variables

location: PointT

eqList: seq of EarthquakeT

Access Routine Semantics

init(bst, geoCollection, cityPostList):

• transition:

The states of bst, geoCollection, cityPostLists are modified by accessing the routes of readEarthquakesBST, readPopulation, and readCityPosition in CSVreader module.

search(bst, loc, radius):

• transition: location := loc, The states of variable eqList is modified by accessing the route of searchEarthquakeIn-Circle in SearchEarthquakes module.

updateViewOfList(view):

- print the list of earthquakes by accessing the route of display in ViewList module. updateViewOfRisk(bst, loc, s, graph):
 - print the the risk assessment result by accessing the route of showRisk in ViewRisk module.