Übungsblatt 3

zum Mathematischen Brückenkurs für Naturwissenschaftler:innen

im Wintersemester 2023/24

Dozent: Apl.Prof. Dr. G. von Hippel

1. Eigenschaften von reellen Funktionen

Bestimmen Sie für die folgenden Funktionen $f:\to$ jeweils, ob diese nach oben bzw. nach unten beschränkt, beschränkt, monoton wachsend bzw. fallend, streng monoton wachsend bzw. fallend, und gerade bzw. ungerade sind.

1. $f(x) = x^2$

6. $f(x) = x^5 + x^3 - x$

2. f(x) = x

7. $f(x) = (x^2 - 1)^2$

3. $f(x) = -x^2$

8. $f(x) = x^{-x}$

4. $f(x) = \sin x$

9. $f(x) = x^{-x}$

5. $f(x) = \sin(x^2)$

10. $f(x) = x \log(x^2 + 1)$

2. Grenzwerte von Funktionen

Bestimmen Sie jeweils die folgenden Grenzwerte:

1. $\lim_{x\to 0} x^2$

 $6. \lim_{x \to 0} \frac{x-1}{2x}$

 $2. \lim_{x \to 0}^{-x^2}$

7. $\lim_{x \to 1} \frac{(x^2 - 1)^2}{1 - x}$

 $-\frac{1}{x^2}$ 3. $\lim_{x \to 0}$

8. $\lim_{x \to 0} x \cot x$

4. $\lim_{x \to 2} \frac{x-2}{x^2+1}$

9. $\lim_{x \to 0} \frac{x^3}{\sinh^3 x}$

5. $\lim_{x \to 1^+} (x + \sqrt{x-1})$

 $10. \lim_{x \to 0^+} x \sin\left(\frac{1}{x}\right)$

3. Ableitung von Funktionen – I

Bestimmen Sie jeweils die Ableitung folgender Funktionen ausgehend von der Definition der Ableitung:

 $1. \ f(x) = x^2$

 $3. \ f(y) = \sin y$

2. $f(x) = x^3$

 $4. \ f(y) = \cos x$

4. Ableitung von Funktionen – II

Bestimmen Sie jeweils die Ableitung folgender Funktionen nach dem angegebenen Argument, und geben Sie die zugehörigen Definitionsbereiche an:

1.
$$f(x) = x^2$$

2.
$$f(x) = x^n + x^p - c, n \in p > 0$$

3.
$$g(\omega) = \sin(\omega t + \varphi)$$

4.
$$h(t) = \sin(\omega t + \varphi)$$

5.
$$f(s) = \sqrt{s^2 + 1}$$

6.
$$p(q) = -(q^2 - a^2)^2$$

7.
$$S(h) = \alpha h^2 + \beta h - \gamma + \omega h$$

8.
$$\lambda(x) = x \sin x + x^2 \cos x$$

9.
$$\rho(\sigma) = \sigma \log \sigma - \sigma$$

10.
$$\theta(z) = \sum_{k=1}^{8} k z^k$$

11.
$$f(y) = \frac{y^2 - 2y - 1}{y^2 + 4}$$

12.
$$f(y) = \frac{y^2 - 2y - 1}{y^2 - 4}$$

13.
$$f(x) = \frac{x_{+}-2x}{1+x^{2}}$$

14.
$$s(x) = x\sqrt{1+x^2}$$

15.
$$w(t) = \sqrt{(1-x^2)^2}$$

16.
$$\sigma(t) = |t+1|$$

17.
$$r(t) = \sin^2(\omega t) + \cos^2(\omega t + \phi)$$

18.
$$z(x) = \frac{\sin x - \cos x}{x^2 + 2}$$

19.
$$k(x) = \log \sqrt{x^4 + 1}$$

20.
$$f(x) = \sqrt{\log(x^4 + 1)}$$

5. Höhere Ableitungen

Bestimmen Sie jeweils die ersten, zweiten und dritten Ableitungen folgender Funktionen nach dem angegebenen Argument:

1.
$$f(x) = x^2 - 2x + 1$$

2.
$$f(x) = -\frac{x^2}{2}$$

$$3. \ g(y) = y \log y$$

4.
$$h(r) = \frac{1}{1+r^2}$$

5.
$$u(\tau) = \sin^2(\tau^3)$$

6.
$$g(x) = \sin x$$

7.
$$f(x) = \sin(\alpha x) + \alpha \cos x$$

8.
$$t(\alpha) = \tan \alpha$$

$6. \ \ Taylor\text{-}Reihen$

Entwickeln Sie folgende Funktionen jeweils in eine Taylor-Reihe um den angegebenen Punkt:

1.
$$P(x) = x^2 + px + q, x = p$$

2.
$$f(x) = -x, x = 0$$

3.
$$f(x) = \sin x, x = \pi$$

4.
$$f(y) = \log y, y = 1$$

5.
$$f(x) = \log(x+1), x = 0$$

6.
$$g(\rho) = \frac{1}{1-\rho}, \ \rho = 0$$

7. Extrema von Funktionen

Bestimmen Sie jeweils alle lokalen sowie die globalen Extrema der folgenden Funktionen auf dem angegebenen Definitionsbereich:

1.
$$f(x) = \lambda(x^2 - v^2)^2, x \in$$

2.
$$f(x) = -x, x \in [0; 1]$$

3.
$$f(x) = \sin x, x \in [-\pi/2; \pi]$$

4.
$$f(x) = |x^2 - 1|, x \in [-2; 5]$$

5.
$$f(x) = x^{2-x^2}, x \in [0, \infty)$$

6.
$$g(t) = \frac{t+1}{t^2-4}, t \in \{\pm 2\}$$