МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» Высшая школа электроники и компьютерных наук Кафедра системного программирования

Разработка приложения для бинарной классификации вредоносных команд по метрике MITRE с использованием алгоритмов машинного обучения

Научный руководитель: ст. преподаватель кафедры СП К.Ю. Никольская

Автор: студент группы КЭ-303 М.Д. Григорьев

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Цель: разработать приложение для бинарной классификации вредоносных команд по метрике MITRE с использованием алгоритмов машинного обучения

Задачи:

- 1. Провести обзор научной литературы
- 2. Подготовить обучающий набор данных
- 3. Реализовать выбранные методы машинного обучения
- 4. Разработать приложение классификации вредоносных команд по по метрике MITRE
- 5. Провести тестирование разработанного приложения

MITRE ATT&CK

https://attack.mitre.org/

АНАЛИЗ ЛИТЕРАТУРЫ

Название	Авторы	Набор данных	Алгоритм	Точнос ть
Data Mining Applied to Intrusion Detection: MITRE Experiences	Bloedorn, E. E., Talbot, L. M., & DeBarr, D. D. (n.d.)	Собран вручную	Random Forest	91%
Cyber security threat modeling based on the MITRE Enterprise ATT&CK Matrix	Wenjun Xiong, Emeline Legrand, Oscar Åberg, Robert Lagerström	база знаний MITRE ATT&CK	Decision Tree	97%
A Machine Learning Approach to Dataset Imputation for Software Vulnerabilities	Shahin Rostami, Agnieszka Kleszcz, Daniel Dimanov, Vasilios Katos	ENISA	Logistic Regression	99,88%
A Novel Enhanced Naïve Bayes Posterior Probability (ENBPP) Using Machine Learning: Cyber Threat Analysis	Ayan Sentuna, Abeer Alsadoon, P. W. C. Prasad, Maha Saadeh, Omar Hisham Alsadoon	Собран вручную	Naïve Bayes	92-96%

ВАРИАНТЫ ИСПОЛЬЗОВАНИЯ

ДИАГРАММА ПОСЛЕДОВАТЕЛЬНОСТИ

ДИАГРАММА ДЕЯТЕЛЬНОСТИ РАБОТЫ С ПРИЛОЖЕНИЕМ

СРЕДСТВА РАЗРАБОТКИ

- Язык программирования: Python 3.10.6
- Редактор исходного кода: VSCode 1.78.2
- Среда разработки модели машинного обучения: Jyputer Notebook
- Библиотеки: scikit-learn 1.2.2, pandas 1.5.0, NumPy 1.21.6, matplotlib 3.7.1

НАБОР ДАННЫХ

- Количество классов команд: 2
- Общее количество записей: 1 742
- Количество видов команд: 14 (Reconnaissance, Resource Development, Initial Access, Execution, Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement, Collection, Command and Control, Exfiltration, Impact, Safe)

ПРЕДОБРАБОТКА

- 1. Проверка на наличие пустых значений и оценка типов признаков
- 2. Трансформация признаков

Итог:

• Количество записей: 1 600

РАСПРЕДЕЛЕНИЕ ПРИЗНАКОВ ПОСЛЕ ПРЕДОБРАБОТКИ

АЛГОРИТМЫ МАШИННОГО ОБУЧЕНИЯ

- 1. Naïve Bayes
- 2. Logistic Regression
- 3. Decision Tree
- 4. Random Forest

ОБУЧЕНИЕ МОДЕЛЕЙ

- Для обучения было использовано 80% от всей выборки (1 280 записей из 1 600)
- Для тестирования было использовано 20% от всей выборки (320 записей из 1600)
- Обучение производилось с помощью локальных возможностей (CPU: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx @ 1.40GHz 2.10 GHz)

МЕТРИКИ НА ТЕСТОВЫХ ДАННЫХ

Модель	Accuracy	Recall	Precision	F1
Gaussian Naïve Bayes	0,9812500	0,9944751	0,9884393	0,9890109
Logistic Regression	0,9945234	0,9967534	0,9912876	0,9915966
Random Forest Classifier	0,9836862	0,9822995	0,9916362	0,9864222
Decision Tree Classifier	0,9687500	0,9833333	0,9719101	0,9708222

РАБОТА ПРИЛОЖЕНИЯ (1)


```
o divine@divinelaptop:~/PycharmProjects/DataAnalytics/CourseWork/dist/mitre main$ ./mitre main
 Выберите действие:
 1 --> Загрузить файл
 2 --> Выбрать алгоритм
3 --> Выход
Введите абсолютный путь до файла: /home/divine/PycharmProjects/DataAnalytics/POWERSHELL.csv
                                         command clear malicious
513 C:\Windows\system32\CompatTelRunner.exe -m:inv...
794 taskeng.exe {00833C53-8F14-4E72-BB18-7DBAF7D0E...
731 c:\windows\system32\svchost.exe -k netsvcs -p ...
518 C:\Windows\system32\DllHost.exe /Processid:{C1...
947 C:\Windows\system32\wevtutil.exe cl Microsoft-...
Выберите действие:
1 --> Загрузить файл
 2 --> Выбрать алгоритм
 3 --> Выход
 Введите количество алгоритмов: 2
Введите название алгоритма:
1 --> Байесовский классификатор
2 --> Логистическая регрессия
3 --> Бэггинг
 4 --> Дерево решений
Введите название алгоритма:
 1 --> Байесовский классификатор
2 --> Логистическая регрессия
3 --> Бэггинг
  --> Дерево решений
Сохранить результаты?
 1 --> Yes
2 --> No
```

РАБОТА ПРИЛОЖЕНИЯ (2)


```
Сохранить результаты?
1 --> Yes
2 --> No
                                              Command Naive Bayes Logistic Regression True Answer
                     C:\Windows\system32\lpremove.exe
     C:\Windows\system32\wevtutil.exe cl Microsoft...
     C:\Windows\system32\wevtutil.exe cl Microsoft...
                               taskhostw.exe TpmTasks
     C:\Windows\system32\MpSigStub.exe /stub 1.1.15...
              C:\Windows\SysWOW64\runonce.exe /Run6432
1290 C:\Windows\system32\wevtutil.exe cl Microsoft...
277 C:\Program Files\Common Files\Microsoft Shared...
1739 reg query "HKLM\SOFTWARE\Wow6432Node\Microsof...
703 c:\windows\system32\svchost.exe -k dcomlaunch ...
1601 C:\Windows\system32\wevtutil.exe cl Microsoft...
    C:\Windows\System32\svchost.exe -k LocalSystem...
     git pack-objects --all-progress-implied --revs...
                   onsent.exe 968 310 0000000003BD7EE0
     C:\Windows\System32\Upfc.exe /launchtype boot ...
     C:\Windows\system32\wevtutil.exe cl Microsoft...
1092 C:\Windows\system32\wevtutil.exe cl Microsoft...
881 C:\Windows\system32\taskmgr.exe /4
1656 C:\Windows\system32\wevtutil.exe cl Microsoft...
     C:\Windows\System32\ie4uinit.exe -ClearIconCache
     C:\Windows\SysWOW64\SearchProtocolHost.exe Glo...
              C:\Windows\System32\svchost.exe -k swprv
     C:\Windows\system32\wevtutil.exe cl Microsoft-...
     C:\Windows\system32\wevtutil.exe cl Microsoft...
     C:\ProgramData\Microsoft\Windows Defender\plat...
                          git.exe remote update
    c:\windows\system32\svchost.exe -k netsvcs -p ...
1220 C:\Windows\system32\wevtutil.exe cl Microsoft...
1075 C:\Windows\system32\wevtutil.exe cl Microsoft...
1566 C:\Windows\system32\wevtutil.exe cl Microsoft...
1719 C:\Users\AlBungstein\AppData\Local\Microsoft\0...
727 c:\windows\system32\svchost.exe -k netsvcs -p ...
    C:\Windows\System32\DataExchangeHost.exe -Embe...
    reg query "HKLM\SOFTWARE\Wow6432Node\Microsof...
    C:\Windows\SysWOW64\rundll32.exe C:\Windows\Sy...
961 C:\Windows\system32\wevtutil.exe cl Microsoft-...
                           Get-NetConnectionProfile |
1530 C:\Windows\system32\wevtutil.exe cl Microsoft...
1562 C:\Windows\system32\wevtutil.exe cl Microsoft...
1670 Backup-SqlDatabase -ServerINstance yComputer\I...
1232 C:\Windows\system32\wevtutil.exe cl Microsoft...
1340 C:\Windows\system32\wevtutil.exe cl Microsoft...
1611 C:\Windows\system32\wevtutil.exe cl Microsoft...
1642 C:\Windows\system32\wevtutil.exe cl Microsoft...
     c:\users\amber.turing\appdata\local\google\chr...
     powershell -noProfile -nonInteractive -Windows...
1312 C:\Windows\system32\wevtutil.exe cl Microsoft...
1429 netsh interface ipv6 delete address interface=...
```

РАБОТА ПРИЛОЖЕНИЯ (3)


```
• (DataAnalytics) divine@divinelaptop:~/PycharmProjects/DataAnalytics/CourseWork/dist/mitre main$ ./mitre main
 Выберите действие:
 1 --> Загрузить файл
 2 --> Выбрать алгоритм
 3 --> Выход
 Введите абсолютный путь до файла: /home/divine/PycharmProjects/DataAnalytics/POWERSHELL.csv
                                           command clear malicious
 189 $cred=new-object system.management.automation....
 1074 C:\Windows\system32\wevtutil.exe cl Microsoft...
 1099 C:\Windows\system32\wevtutil.exe cl Microsoft...
 1489 C:\Windows\system32\wevtutil.exe cl "Microsof...
 1522 C:\Windows\system32\wevtutil.exe cl Microsoft...
 Выберите действие:
 1 --> Загрузить файл
 2 --> Выбрать алгоритм
 3 --> Выход
 Введите количество алгоритмов: 2
 Введите название алгоритма:
 1 --> Байесовский классификатор
 2 --> Логистическая регрессия
 3 --> Бэггинг
 4 --> Дерево решений
 Введите название алгоритма:
 1 --> Байесовский классификатор
 2 --> Логистическая регрессия
 3 --> Бэггинг
 4 --> Дерево решений
 Сохранить результаты?
 1 --> Да
 2 --> HeT
```

РАБОТА ПРИЛОЖЕНИЯ (4)

ФУНКЦИОНАЛЬНОЕ ТЕСТИРОВАНИЕ

№	Название теста	Шаги	Ожидаемый результат	Тест пройден?
1	Выбор файла	 В меню ввести цифру 1. Ввести абсолютный путь до файла. 	Программа должна вывести первые несколько строчек файла.	Да
2	Выбор одной модели	 В меню ввести цифру 2. Ввести цифру 1. С помощью цифр 1-4 выбрать алгоритм. 	Программа должна вывести результаты в виде таблицы	Да
3	Выбор двух и более моделей	 В меню ввести цифру 2. Ввести цифру от 2 до 4. С помощью цифр 1-4 поочередно выбрать алгоритмы. 	Программа должна вывести результаты в виде таблицы	Да
4	Ввод неверных параметров	1. В меню выбора интерфейса ввести значение не из списка доступных интерфейсов.	Программа должна вывести сообщение об ошибке «Выберете заново».	Да

А/В ТЕСТИРОВАНИЕ

Количество данных	Алгоритм	Score
300	GaussianNB	0,98
	LogisticRegression	1,0
	DecisionTreeClassifier	0,98
	RandomForestClassifier	1,0
600	GaussianNB	0,96
	LogisticRegression	0,98
	DecisionTreeClassifier	0,98
	RandomForestClassifier	0,99
900	GaussianNB	0,98
	LogisticRegression	0,99
	DecisionTreeClassifier	0,98
	RandomForestClassifier	0,99
1 200	GaussianNB	0,99
	LogisticRegression	0,99
	DecisionTreeClassifier	0,98
	RandomForestClassifier	0,99
1 500	GaussianNB	0,98
	LogisticRegression	1,0
	DecisionTreeClassifier	0,97
	RandomForestClassifier	0,99

АКТ О ВНЕДРЕНИИ

АКТ о внедрении научно-технической продукции

Данный акт удостоверяет, что в ООО «Р-Вижн» внедрен в опытную эксплуатацию приложение для бинарной классификации вредоносных команд по метрике МІТКЕ с использованием алгоритмов машинного обучения, разработанный студентом группы КЭ-303 Григорьевым Максимом Дмитриевичем, научный руководитель — старший преподаватель кафедры системного программирования ФГАОУ ВО «ЮУрГУ (НИУ)» Никольская Ксения Юрьевна.

Приложение для бинарной классификации вредоносных команд по метрике MITRE с использованием алгоритмов машинного обучения используется в коммерческих целях.

Акт подписал

Генеральный директор

Бондаренко А.В.

3°£05 2023 г.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ

- 1. Проведен обзор научной литературы
- 2. Подготовлен обучающий набор данных.
- 3. Реализованы выбранные методы машинного обучения
- 4. Разработано приложение классификации вредоносных команд по метрике MITRE
- 5. Проведено тестирование разработанного приложения

ВИД КОМАНД

Вид команды	Команды MITRE
Execution	$assembly = [Ref]. Assembly. Get Type(('{0}{1}i{2}' -f $a,$b,$u))$
Command and Control	\$field.SetValue(\$null,\$true)
Discovery	\$ping = New-Object System.Net.Networkinformation.Ping
Privilege Escalation	\$computer = " <hostname>"</hostname>
Credential Access	\$cred = New-Object System.management.Automation.PSCredential(\$user, \$pass)

NAIVE BAYES

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

DECISION TREE

https://www.section.io/engineering-education/introduction-to-random-forest-in-machine-learning/

RANDOM FOREST

https://www.researchgate.net/figure/Classification-process-based-on-the-Random-Forest-algorithm-2_fig1_324517994

LOGISTIC REGRESSION

