绝密★启用前

2019 年全国统一高考化学试卷 (新课标Ⅲ)

可能用到的相对原子质量: H1 Li7 C12 N14 O16 Na 23 S 32 Cl 35.5 Ar 40 Fe 56 I 127

一、选择题:本题共13个小题,每小题6分。共78分,在每小题给出的四个选项中,只有一项是符合题目要求的。

- 1.化学与生活密切相关。下列叙述错误的是
- A. 高纯硅可用于制作光感电池
- B. 铝合金大量用于高铁建设
- C. 活性炭具有除异味和杀菌作用
- D. 碘酒可用于皮肤外用消毒
- 2.下列化合物的分子中,所有原子可能共平面的是
- A. 甲苯
- B. 乙烷
- C. 丙炔
- D. 1,3-丁二烯

3.X、Y、Z 均为短周期主族元素,它们原子的最外层电子数之和我 10,X 与 Z 同族,Y 最外层电子数等于 X 次外层电子数,且 Y 原子半径大于 Z。下列叙述正确的是

- A. 熔点: X 的氧化物比 Y 的氧化物高
- B. 热稳定性: X 的氢化物大于 Z 的氢化物
- C. X与Z可形成离子化合物ZX
- D. Y 的单质与 Z 的单质均能溶于浓硫酸
- 4.离子交换法净化水过程如图所示。下列说法中错误的是

- A. 经过阳离子交换树脂后,水中阳离子的总数不变
- B. 水中的 NO_3^- 、 SO_4^{2-} 、Cl-通过阳离子树脂后被除去
- C. 通过净化处理后, 水的导电性降低
- 5.设 N_A 为阿伏加德罗常数值。关于常温下 pH=2 的 H_3PO_4 溶液,下列说法正确的是
- A. 每升溶液中的 H^{+} 数目为 $0.02N_{A}$
- B. $c(H^+) = c(H_2PO_4^-) + 2c(HPO_4^-) + 3c(PO_4^{3-}) + c(OH^-)$
- C. 加水稀释使电离度增大,溶液 pH 减小
- D. 加入 NaH₂PO₄ 固体,溶液酸性增强
- 6.下列实验不能达到目的的是

选项	目的	实验
A	制取较高浓度的次氯酸溶液	将 Cl ₂ 通入碳酸钠溶液中
В	加快氧气的生成速率	在过氧化氢溶液中加入少量 MnO ₂
С	除去乙酸乙酯中的少量乙酸	加入饱和碳酸钠溶液洗涤、分液

D	制备少量二氧化硫气体	向饱和亚硫酸钠溶液中滴加浓硫酸

A. A

В. В

C. **C**

D. D

7.为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状 Zn(3D-Zn)可以高效沉积 ZnO 的特点,设计了采用强碱性电解质的 3D-Zn—NiOOH 二次电池,结构如下图所示。电池反应为 $Zn(s)+2NiOOH(s)+H_2O(l)$ $\stackrel{\mathbb{L}}{\longleftarrow} ZnO(s)+2Ni(OH)_2(s)$ 。

- A. 三维多孔海绵状 Zn 具有较高的表面积,所沉积的 ZnO 分散度高
- B. 充电时阳极反应为 Ni(OH)₂(s)+OH⁻(aq)-e⁻—NiOOH(s)+H₂O(l)
- C. 放电时负极反应为 Zn(s)+2OH⁻(aq)-2e⁻ ZnO(s)+H₂O(l)
- D. 放电过程中 OH-通过隔膜从负极区移向正极区
- 三、非选择题:共 174 分,第 22~32 题为必考题,每个试题考生都必须作答。第 33~38 题为选考题,考生根据要求作答。
- (一) 必考题: 共129分。
- 8.高纯硫酸锰作为合成镍钴锰三元正极材料的原料,工业上可由天然二氧化锰粉与硫化锰矿(还含 Fe、Al、
- Mg、Zn、Ni、Si 等元素)制备,工艺如下图所示。回答下列问题:

相关金属离子[$c_0(Mn+)=0.1 \text{ mol}\cdot L^{-1}$]形成氢氧化物沉淀的 pH 范围如下:

	金属离子	Mn ²⁺	Fe ²⁺	Fe ³⁺	Al ³⁺	Mg ²⁺	Zn ²⁺	Ni ²⁺
١								

开始沉淀的 pH	8.1	6.3	1.5	3.4	8.9	6.2	6.9
沉淀完全的 pH	10.1	8.3	2.8	4.7	10.9	8.2	8.9

(1)"滤渣 1"含有 S 和;	写出"溶浸"中二氧化锰与硫化锰反应的化学方程式
(2)"氧化"中添加适量的 MnO ₂ 的作用是将	0
(3)"调 pH"除铁和铝,溶液的 pH 范围应调节为	~6之间。
(4) "除杂 1"的目的是除去 Zn ²⁺ 和 Ni ²⁺ , "滤渣 3"的主	三要成分是。

(6)写出"沉锰"的离子方程式

(5) "除杂 2"的目的是生成 MgF_2 沉淀除去 Mg^{2+} 。若溶液酸度过高, Mg^{2+} 沉淀不完全,原因是

- (7)层状镍钴锰三元材料可作为锂离子电池正极材料,其化学式为 LiNi $_x$ Co $_y$ Mn $_z$ O $_2$,其中 Ni、Co、Mn 的化合价分别为+2、+3、+4。当 $x=y=\frac{1}{3}$ 时,z=_____。
- 9.乙酰水杨酸(阿司匹林)是目前常用药物之一。实验室通过水杨酸进行乙酰化制备阿司匹林的一种方法如

$$COOH$$
 $COOH$ $COOH$ $COOH$ $COOCH_3$ $COOH$ $COOCH_3$ $COOCH_3$

下:

.1-1-1-1-1			
	水杨酸	醋酸酐	乙酰水杨酸
熔点/℃	157~159	-72~-74	135~138
相对密度/ (g·cm ⁻³)	1.44	1.10	1.35
相对分子质量	138	102	180

实验过程:在 100 mL 锥形瓶中加入水杨酸 6.9 g 及醋酸酐 10 mL,充分摇动使固体完全溶解。缓慢滴加 0.5 mL 浓硫酸后加热,维持瓶内温度在 70 ℃左右,充分反应。稍冷后进行如下操作.

- ①在不断搅拌下将反应后的混合物倒入 100 mL 冷水中, 析出固体, 过滤。
- ②所得结晶粗品加入 50 mL 饱和碳酸氢钠溶液,溶解、过滤。
- ③滤液用浓盐酸酸化后冷却、过滤得固体。
- ④固体经纯化得白色的乙酰水杨酸晶体 5.4 g。

回答下列问题:

(1) 该合成反应中应采用 加热。(填标号)

A. 热水浴

称)。

- B. 酒精灯
- C. 煤气灯
- D. 电炉

(2)下列玻璃仪器中,①中需使用的有_____(填标号),不需使用的_____(填名

- (3) ①中需使用冷水,目的是
- (4)②中饱和碳酸氢钠的作用是 ,以便过滤除去难溶杂质。
- (5) ④采用的纯化方法为。
- (6) 本实验的产率是%。

10.

近年来,随着聚酯工业的快速发展,氯气的需求量和氯化氢的产出量也随之迅速增长。因此,将氯化氢转化为氯气的技术成为科学研究的热点。回答下列问题:

(1) Deacon 发明的直接氧化法为: $4HCl(g)+O_2(g)=2Cl_2(g)+2H_2O(g)$ 。下图为刚性容器中,进料浓度比 $c(HCl):c(O_2)$ 分别等于 1:1、4:1、7:1 时 HCl 平衡转化率随温度变化的关系:

(2) Deacon 直接氧化法可按下列催化过程进行:

$$CuCl2(s)=CuCl(s)+\frac{1}{2}Cl2(g) \Delta H1=83 kJ·mol-1$$

$$CuCl(s) + \frac{1}{2}O_2(g) = CuO(s) + \frac{1}{2}Cl_2(g) \quad \Delta H_2 = -20 \text{ kJ} \cdot \text{mol}^{-1}$$

 $CuO(s)+2HCl(g)=CuCl_2(s)+H_2O(g)$ $\Delta H_3=-121 \text{ kJ}\cdot\text{mol}^{-1}$

则 $4HCl(g)+O_2(g)=2Cl_2(g)+2H_2O(g)$ 的 $\Delta H=$ kJ·mol⁻¹。

- (3) 在一定温度的条件下,进一步提高 HCI 的转化率的方法是 。(写出 2 种)
- (4) 在传统的电解氯化氢回收氯气技术的基础上,科学家最近采用碳基电极材料设计了一种新的工艺方案,主要包括电化学过程和化学过程,如下图所示:

负极区发生的反应有

(写反应方程式)。电路中转移 1 mol 电子, 需消耗氧气

L (标准状况)

(二)选考题: 共45分。请考生从2道物理题、2道化学题、2道生物题中每科任选一题作答。

如果多做,则每科按所做的第一题计分。

[化学——选修 3: 物质结构与性质]

11.磷酸亚铁锂	$(LiFePO_4) \\$	可用作锂	!离子电池正极材	料,具有热和	急定性好、	循环性能优良、	安全性高等特点,
	_						
文献报道可米井	FeCl₃、NI	$H_4H_2PO_4$	LiCl 和苯胺等作	为原料制备。	,回答下列	刊问题:	

(1) 在周期表中,	与 Li 的化学性质最相似的	邻族元素是	,该元素基态原子	核外 M 层电子的自旋	き状态
(填"相	同"或"相反")。				

- (2) FeCl₃ 中的化学键具有明显的共价性,蒸汽状态下以双聚分子存在的 FeCl₃ 的结构式为______, 其中 Fe 的配位数为
- (3) 苯胺)的晶体类型是_____。苯胺与甲苯()的相对分子质量相近,但苯胺的熔点(-5.9℃)、沸点(184.4℃)分别高于甲苯的熔点(-95.0℃)、沸点(110.6℃),原因是_____。
- (4) NH₄H₂PO₄中, 电负性最高的元素是______; P的______杂化轨道与O的2p轨道形成_____键。
- (5) NH₄H₂PO₄和 LiFePO₄属于简单磷酸盐,而直链的多磷酸盐则是一种复杂磷酸盐,如: 焦磷酸钠、三磷酸钠等。焦磷酸根离子、三磷酸根离子如下图所示:

这类磷酸根离子的化学式可用通式表示为 (用 n 代表 P 原子数)。

[化学——选修 5: 有机化学基础]

12.氧化白藜芦醇 W 具有抗病毒等作用。下面是利用 Heck 反应合成 W 的一种方法:

回答下列问题:

(1) A 的化学名称为。	
(2) — COOH中的官能团名称是	О
(3) 反应③的类型为, W 的分	子式为。

(4) 不同条件对反应④产率的影响见下表:

实验	碱	溶剂	催化剂	产率/%
1	КОН	DMF	Pd(OAc) ₂	22.3
2	K ₂ CO ₃	DMF	Pd(OAc) ₂	10.5
3	Et ₃ N	DMF	Pd(OAc) ₂	12.4
4	六氢吡啶	DMF	Pd(OAc) ₂	31.2
5	六氢吡啶	DMA	Pd(OAc) ₂	38.6
6	六氢吡啶	NMP	Pd(OAc) ₂	24.5

上述实验探究了	和	对反应产率的影响。此	比外,还可以进一步探究_	等对反应产率的影
响。				

(5) X为D的同分异构体,写出满足如下条件的X的结构简式____。

①含有苯环; ②有三种不同化学环境的氢,个数比为 6:2:1; ③1 mol 的 X 与足量金属 Na 反应可生成 2 g H_2 。

(6) 利用 Heck 反应,由苯和溴乙烷为原料制备 ,写出合成路线____。(无标

试剂任选)