HW 1: Sets, Vocabulary, and Measuring

Bart Snapp and Brad Findell

January 14, 2020

Contents

Set Theory Problems	3
Extra Set Theory Problems	7
Vocabulary and Notation	9
Triangle Area	11
Measuring by Sight	12

Set Theory Problems

Short-answer problems.

Problem 1 Given two sets X and Y, $X \cup Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 2 Given two sets X and Y, $X \cap Y$ is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).
- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 3 Given two sets X and Y, X - Y is the set of elements that are

Multiple Choice:

- (a) in X or in Y (but not in both).
- (b) in X or in Y (or both, as the "or" is inclusive).

Author(s): Bart Snapp and Brad Findell

- (c) in X and in Y.
- (d) in X but not in Y.
- (e) in Y but not in X.

Problem 4 Consider the following Venn diagrams:

For each set expression below, identify the Venn diagram above in which the corresponding region is shaded:

- (a) $X \cap Y$ is figure ?
- (b) $X \cup Y$ is figure ?
- (c) X Y is figure ?

Problem 5 Draw a Venn diagram for the set of elements that are in X or Y but not both. How does it differ from the Venn diagram for $X \cup Y$?

Problem 6 Consider the following Venn diagrams:

(A)

(B)

- (a) If Venn diagram (A) above shows the relationship between sets X and Y, then $X \cap Y = (0/\emptyset/X \cup Y)$ and the sets are said to be (disjoint/empty/subsets).
- (b) If Venn diagram (B) above shows the relationship between sets X and Y, then we say that $(X \text{ and } Y \text{ are disjoint} / X \subseteq Y / Y \subseteq X)$.
- (c) If we let X be the set of "right triangles" and we let Y be the set of "equilateral triangles" which diagram above shows the relationship between these two sets?

Multiple Choice:

- (i) Diagram (A).
- (ii) Diagram (B).
- (iii) Neither of these.
- (iv) Not enough information.

Explain your reasoning.

Problem 7 If $X = \{1, 2, 3, 4, 5\}$ and $Y = \{3, 4, 5, 6\}$ find the following: (List elements in ascending order, separated by commas, with no spaces.)

- (a) $X \cup Y = \{ ? \}$
- (b) $X \cap Y = \{ \boxed{?} \}$
- (c) $X Y = \{ ? \}$
- (d) $Y X = \{ ? \}$

Problem 8 Let $n\mathbb{Z}$ represent the integer multiples of n. So for example:

$$3\mathbb{Z} = \{\dots, -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\}$$

Compute the following (use capital Z for \mathbb{Z}):

- (a) $3\mathbb{Z} \cap 4\mathbb{Z} = \boxed{?}$
- (b) $2\mathbb{Z} \cap 5\mathbb{Z} = \boxed{?}$
- (c) $3\mathbb{Z} \cap 6\mathbb{Z} = \boxed{?}$
- (d) $4\mathbb{Z} \cap 6\mathbb{Z} = \boxed{?}$
- (e) $4\mathbb{Z} \cap 10\mathbb{Z} = \boxed{?}$

Problem 9 Make a general rule for intersecting sets of the form $n\mathbb{Z}$ and $m\mathbb{Z}$. Explain why your rule works.

Problem 10 If $X \cup Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X\subseteq Y\ /\ X=Y\ /\ Y\subseteq X\ /\ X=\emptyset)$ because every element of $(X\ /\ Y)$ must be in $(X\ /\ Y).$

Problem 11 If $X \cap Y = X$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X \subseteq Y / X = Y / Y \subseteq X / X = \emptyset)$ because every element of (X / Y) must be in (X / Y).

Problem 12 If $X - Y = \emptyset$, what can we say about the relationship between the sets X and Y? Explain your reasoning.

 $(X\subseteq Y\,/\,X=Y\,/\,Y\subseteq X\,/\,X=\emptyset)$ because every element of $(X\,/\,Y)$ must be in $(X\,/\,Y)$.

Extra Set Theory Problems

More short-answer problems.

Reminders

- Sets are collections of objects such as numbers or points. The objects are called *elements* of the set, and the order elements are listed is not important.
- The notation $\{7,3\}$ means "The set containing 7 and 3."
- Note that {8} is not the same as the number 8 but rather is a set that contains one element that happens to be a number.
- The set containing zero elements, sometimes call the *empty set* is denoted $\{\}$ or \emptyset .
- The elements of a set can themselves be sets.

Problem 13 Indicate the number of elements in each set:

- (a) The set $\{3,5,6,9,10\}$ has ? element(s).
- (b) The set $\{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$ has ? element(s).
- (c) The set $\{\{\}\}$ has $\boxed{?}$ element(s).
- (d) The set $\{\}$ has ? element(s).
- (e) The set \emptyset has ? element(s).
- (f) The set $\{\emptyset\}$ has $\boxed{?}$ element(s).

Problem 14 Indicate whether each statement is true or false:

- (a) $2 \in \{3, 2, 5\}$. (True/False)
- (b) $2 \subseteq \{3, 2, 5\}$. (*True* / *False*)
- (c) $\{2\} \in \{3, 2, 5\}$. (True/False)

Author(s): Bart Snapp and Brad Findell

Extra Set Theory Problems

- (d) $\{2\} \subseteq \{3, 2, 5\}$. (True/False)
- (e) $\emptyset = \{\}$. (True/False)
- (f) $\emptyset = {\emptyset}$. (True/False)
- (g) $\{\emptyset\} = \{\{\}\}\$. (True/False)
- (h) $\emptyset \in \{\emptyset\}$. (True/False)
- (i) $\emptyset \subseteq \{\emptyset\}$. (True/False)
- (j) $2 \in \{\{3, 2, 7\}, \{4, 5\}, \{2\}, \emptyset\}$. (True/False)
- (k) $2 \subseteq \{\{3,2,7\}, \{4,5\}, \{2\}, \emptyset\}$. (True/False)
- (l) $\{2\} \in \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)
- (m) $\{2\} \subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)
- (n) $\{\{2\}\} \in \{\{3, 2, 7\}, \{4, 5\}, \{2\}, \emptyset\}$. (True/False)
- (o) $\{\{2\}\}\subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)

Problem 15 Explain the difference between the symbols \in and \subseteq .

Problem 16 How is $\{\emptyset\}$ different from \emptyset ?

Vocabulary and Notation

 $Short\text{-}answer\ questions.$

Question 17 An equilateral quadrilateral is called a ?.
Question 18 An equiangular quadrilateral is called a ?.
Question 19 An regular quadrilateral is called a ?. (Note: A regular polygon is both equilateral and equiangular.)
Question 20 If A and B are points, then
(a) \overrightarrow{AB} denotes a $?$,
(b) \overrightarrow{AB} denotes a $?$ with endpoint $?$,
(c) \overline{AB} denotes a $?$, and
(d) AB denotes the $\boxed{?}$ of \overline{AB} or (equivalently) the $\boxed{?}$ from A to B .
Question 21 As a set of points, an angle is the ? of two ? with a common ?, which is called the ? of the angle.
Question 22 When two lines intersect so that all four angles are congruent, the angles are said to be ? and the lines are said to be ?.
Question 23 A ? measures 180°. (Hint: Answer with two words.)
A : () P : (

9

Vocabulary and Notation

Question 24 Two angles whose measures sum to 180° are said to be ?.

Question 25 Two angles whose measures sum to 90° are said to be $\boxed{?}$.

Triangle Area

 $Short\text{-}answer\ measuring\ problems.$

Problem 26 Carefully measure heights to compute the area of the triangle below in three ways.

Geogebra link: https://tube.geogebra.org/m/mjscvuw3

- (a) When AB is the base, the height is $\boxed{?}$, so the area is $\boxed{?}$.
- (b) When BC is the base, the height is $\boxed{?}$, so the area is $\boxed{?}$.
- (c) When CA is the base, the height is $\boxed{?}$, so the area is $\boxed{?}$.

Author(s): Brad Findell

Measuring by Sight

Short-answer measuring problems.

Instructions

Adjust the figures to fit the given conditions within **eyeball accuracy**. Enter the requested measurements.

Problem 27 Geogebra link: https://tube.geogebra.org/m/gjf28er6 In figure above, when point C is adjusted so that \overline{BC} is perpendicular to \overline{AC} , AC = ?.

Problem 28 Geogebra link: https://tube.geogebra.org/m/a888zyw2 In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{?}$.

Problem 29 Geogebra link: https://tube.geogebra.org/m/kta9hbuf In $\triangle ABC$ above, the height to base \overline{AC} is ?.

Author(s): Brad Findell