Secondo compito in itinere - 28 Giugno 2013

1. Siano

$$A = \begin{bmatrix} 1 & k & k \\ 0 & 2k & 1 \\ 0 & 1 & 2k \end{bmatrix} \qquad e \qquad B = \begin{bmatrix} 2k & 1 & 0 \\ 1 & 2k & 0 \\ k & 1 & 1 \end{bmatrix}.$$

- (a) [8] Determinare i valori del parametro reale k in corrispondenza dei quali le matrici A e B sono simili.
- (b) [2] Per k=0, riconoscere la trasformazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ rappresentata, rispetto alla base canonica, dalla matrice A.

2. Siano

$$X = \{(x,y,z,t) \in \mathbb{R}^4 \ : \ x+y+t=0 \, , \ x+2y-z+t=0 \}$$
e $\mathbf{v} = (1,2,1,0) \, .$

- (a) [3] Determinare una base ortogonale \mathscr{B} del sottospazio X.
- (b) [2] Determinare la proiezione ortogonale $p_X(\mathbf{v})$ del vettore \mathbf{v} sul sottospazio X .
- (c) [2] Determinare il simmetrico ortogonale $s_X(\mathbf{v})$ del vettore \mathbf{v} rispetto al sottospazio X.
- (d) [1] Determinare l'angolo ϑ tra i vettori \mathbf{v} e $\mathbf{v}' = p_X(\mathbf{v})$.
- (e) [1] Sia $f: \mathbb{R}^4 \to \mathbb{R}^4$ una trasformazione ortogonale. Determinare l'angolo ϑ' tra i vettori $f(\mathbf{v})$ e $f(\mathbf{v}')$.

3. Siano

$$Q: x^{2} + 3y^{2} + z^{2} - 4xz + 6y = 0$$

$$\pi: x - 2y + z + 2 = 0$$

$$\Gamma = Q \cap \pi.$$

- (a) [2] Riconoscere la quadrica Q.
- (b) [2] Scrivere l'equazione canonica di Q.
- (c) [2] Stabilire se $\,Q\,$ è una quadrica a centro. In caso affermativo, determinare il centro di $\,Q\,$.
- (d) [2] Stabilire se Q è una quadrica di rotazione. In caso affermativo, determinare l'asse di rotazione di Q.
- (e) [2] Scrivere le equazioni della curva Γ' proiezione ortogonale di Γ sul piano coordinato xy.
- (f) [1] Riconoscere la curva Γ' .
- (g) [1] Riconoscere la curva Γ .
- (h) [2] Determinare (se esiste) il centro di Γ .

Soluzioni

- 1. (a) Le matrici A e B possiedono gli stessi autovalori $\lambda_1=1$, $\lambda_2=2k+1$ e $\lambda_3=2k-1$. poiché tali autovalori dipendono dal parametro k, bisogna vedere se esistono autovalori multipli. Si ha che $\lambda_1=\lambda_2$ per k=0, $\lambda_1=\lambda_3$ per k=1, mentre $\lambda_2=\lambda_3$ non è mai possibile. Si hanno i seguenti casi.
 - Per $k \neq 0,1$, le due matrici date possiedono tre autovalori reali distinti e quindi sono entrambe diagonalizzabili. Quindi sono simili.
 - Per k=0, si ha che A è diagonalizzabile (essendo reale e simmetrica), mentre B non lo è. Quindi le due matrici date non sono simili.
 - $\bullet\,$ Per $\,k=1\,,$ entrambe le matrici risultano diagonalizzabili. Quindi sono simili.

In conclusione, le matrici A e B sono simili per $k \neq 0$.

(b) Per k = 0, si ha la matrice di permutazione

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Tale matrice è ortogonale e ha determinate -1. Quindi la trasformazione $f: \mathbb{R}^3 \to \mathbb{R}^3$ rappresentata dalla matrice A è una rotazione impropria. Tuttavia, poiché A è reale e simmetrica e ha come autovalori 1 (contato due volte) e -1, la trasformazione f è una riflessione rispetto al piano dato dall'autospazio $V_1 = \langle (1,0,0), (0,1,1) \rangle$.

- 2. (a) Risolvendo il sistema lineare che definisce il sottospazio X, si trova che il generico vettore di tale sottospazio è $\mathbf{x}=(x,y,y,-x-y)$. Scegliamo $\mathbf{x}_1=(1,0,0,-1)$ (per x=1 e y=0). Cerchiamo ora i vettori $\mathbf{x}=(x,y,y,-x-y)\in X$ ortogonali a \mathbf{x}_1 . Si deve avere $\langle \mathbf{x},\mathbf{x}_1\rangle=0$, ossia 2x+y=0. Pertanto si hanno i vettori $\mathbf{x}=(x,-2x,-2x,x)$. Scegliamo il vettore $\mathbf{x}_2=(1,-2,-2,1)$. Una base ortogonale di X è pertanto data da $\mathscr{B}=\{\mathbf{x}_1,\mathbf{x}_2\}$.
 - (b) Utilizzando la base ortogonale $\mathscr{B} = \{\mathbf{x}_1, \mathbf{x}_2\}$ di X trovata nel punto precedente, si ha che la proiezione ortogonale di \mathbf{v} su X è data dal vettore

$$p_X(\mathbf{v}) = \frac{\langle v, \mathbf{x}_1 \rangle}{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle} \mathbf{x}_1 + \frac{\langle v, \mathbf{x}_2 \rangle}{\langle \mathbf{x}_2, \mathbf{x}_2 \rangle} \mathbf{x}_2$$
$$= \frac{1}{2} (1, 0, 0, -1) - \frac{1}{2} (1, -2, -2, 1)$$
$$= (0, 1, 1, -1).$$

(c) Il simmetrico ortogonale di $\,{f v}\,$ rispetto a $\,X\,$ è il vettore

$$s_X(\mathbf{v}) = 2p_X(\mathbf{v}) - \mathbf{v} = 2(0, 1, 1, -1) - (1, 2, 1, 0) = (-1, 0, 1, -2).$$

(d) L'angolo ϑ tra i vettori ${\bf v}$ e $p_X({\bf v})$ è l'angolo compreso tra 0 e π tale che

$$\cos \vartheta = \frac{\langle \mathbf{v}, \mathbf{v}' \rangle}{||\mathbf{v}|| ||\mathbf{v}'||} = \frac{3}{\sqrt{6}\sqrt{3}} = \frac{1}{\sqrt{2}}.$$

Quindi $\vartheta = \pi/4$.

(e) Poiché le trasformazioni ortogonali conservano il prodotto scalare, esse conservano anche gli angoli. Infatti, si ha

$$\cos \vartheta' = \frac{\langle f(\mathbf{v}), f(\mathbf{v}') \rangle}{||f(\mathbf{v})|| \, ||f(\mathbf{v}')||} = \frac{\langle \mathbf{v}, \mathbf{v}' \rangle}{||\mathbf{v}|| \, ||\mathbf{v}'||} = \cos \vartheta.$$

Di conseguenza, si ha $\vartheta' = \vartheta = \pi/4$.

- 3. (a) Gli invarianti ortogonali della quadrica sono $I_4=27$, $I_3=-9$, $I_2=3$, $I_1=5$. Poiché $I_4>0$, $I_3\neq 0$, $I_2>0$ e $I_1I_3<0$, la quadrica Q è un iperboloide iperbolico (a una falda).
 - (b) Gli autovalori della matrice B che rappresenta la parte quadratica dell'equazione di Q sono $\lambda_1=3\,,~\lambda_2=3\,,~\lambda_3-1\,.$ Quindi l'equazione canonica di Q

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + \frac{I_4}{I_3} = 0$$

diventa

$$3x^2 + 3y^2 - z^2 = 3.$$

(c) Poiché $I_3 \neq 0$, Q è una quadrica a centro. Le coordinate del centro C di Q soddisfano il sistema lineare

$$\begin{cases} x - 2z = 0 \\ y + 1 = 0 \\ z - 2x = 0 \end{cases}$$

da cui si ha $C \equiv (0, -1, 0)$.

(d) Poiché possiede due autovalori uguali, Q è una quadrica di rotazione. L'asse di rotazione di Q è la retta a che passa per il centro e che ha come direzione quella individuata dall'autospazio $V_{-1} = \langle (1,0,1) \rangle$ relativo all'unico autovalore semplice. Pertanto

$$a: \begin{cases} x=t \\ y=-1 \\ z=t \end{cases}$$
 ossia $a: \begin{cases} x=z \\ y=-1 \end{cases}$.

(e) Le equazioni di Γ sono

$$\Gamma: \begin{cases} x^2 + 3y^2 + z^2 - 4xz + 6y = 0\\ x - 2y + z + 2 = 0. \end{cases}$$

Dalla seconda equazione si ha z = -x + 2y - 2. Sostituendo nella prima equazione e semplificando, si ottiene

$$\Gamma: \begin{cases} 6x^2 - 12xy + 7y^2 + 12x - 2y + 4 = 0\\ x - 2y + z + 2 = 0. \end{cases}$$

Pertanto, si ha

$$\Gamma'$$
:
$$\begin{cases} 6x^2 - 12xy + 7y^2 + 12x - 2y + 4 = 0 \\ z = 0. \end{cases}$$

(f) Poiché è l'intersezione di una quadrica con un piano, la curva Γ è una conica. Poiché Γ' è la proiezione di Γ sul piano xy parallelamente alla direzione dell'asse z, anche Γ' è una conica. Nel piano xy, abbiamo la conica di equazione

$$6x^2 - 12xy + 7y^2 + 12x - 2y + 4 = 0.$$

Gli invarianti ortogonali sono $I_3=-162\neq 0$ e $I_2=6>0$. Quindi Γ' è una ellisse reale (irriducibile).

- (g) Poiché le proiezioni parallele conservano la natura delle coniche, anche la conica Γ è una ellisse reale (irriducibile) come Γ' .
- (h) Essendo una ellisse reale, Γ è una conica a centro. In particolare, il centro K di Γ giace sul piano π : x-2y+z+2=0 che contiene la curva Γ e sulla retta n parallela all'asse z passante per il centro $K'\equiv (-6,-5)$ di Γ' . Poiché

$$n: \begin{cases} x = -6 \\ y = -5 \\ z = t \end{cases}$$

intersecando questa retta con $\,\pi\,,$ si ottiene $\,t=-6\,$ e quindi $\,K\equiv (-6,-5,-6)\,.$