	M	AE		15	8			e (c t	ur	٠.	10	5			
					N	οV	Ī	8	20	u1 24						
										8				P	oste	اد
To	da	مرخ	0	bje	ctiu	ies		Tu	rni	ng	f	ser	foru	Ma r	Ce	
•	tw	nin	a	Pe	rf	0(n	ıaı	ce	•							
		'										iΛ	0	rd	er	
				40)	mo	nif	puli	ate	ols G	lic	jht	P	aki	1	
				که		Ru a	ile	er:	s, nS	elete	ev	ate ffe	eren.	tial	l	
						7	hr	ust		etc		•		/		
					>		→					3	3			
													9 5			

consider a few twn procedures compared to SLF W=L T= D pullup maneuver (flare maneuver) pilot pull back
on control stick,

& A/c move
in a carved
flight path,

L > W define n = load factor = $\frac{L}{\omega}$ if n=1 (L=W) means

$$\Gamma = \frac{mV^{2}}{(1+W)} = \frac{1}{9} \frac{V^{2}}{(n+1)}$$

$$\omega = \frac{g(n+1)}{V}$$

$$\frac{1}{V}$$

$$\frac{1}{V$$

lateral forces

L sin
$$\phi = mV^2$$

also $\cos \phi = \omega - L$

bankangle corresponds dicreatly to load factor

 $\Gamma = mV^2 - \frac{1}{L\sin \phi} = \frac{1}{n} \frac{V^2}{g\sin \phi} = 1$

Recall $\cos^2 \phi + \sin^2 \phi = 1$

thus $(\frac{1}{n})^2 + \sin^2 \phi = 1$

then $\Gamma = \frac{V^2}{g\sqrt{n^2-1}} = \frac{1}{n} = \frac$

twn Radius twn Rate total distance traveled in a turn on level

— plane? total distance 277 F +ravel 360° car get time from 1800 if I want to minimize r & maximize w - Low V what - high n

Lie	nid	-5	7
•			

n constraints

- Structural limits of aircraft

1. Linit load foctor:

per marent da mage
occurs

2. Whinate load factor'
Structural failure occurs
(AKA, something
Breaks)

Mmax, structural ~ 2 commercial ~ 7-8 military

- thrust constraint:

in a level turn, lift will increase by a ratio of Yeas \$ it you increase L, induced dragt @ a given V, TRT in the twn as a funtion of Eost in the induced drag & limited by thrust available Drag = Thrust
= 1/20V2S (Cop+ KC2) n thrust , constraint $C_L = n \cdot 2W$, $K = \pi Re$ Thrust = $\frac{1}{2}\rho V^2 S(C_{0P} + K(\frac{n}{\rho} \frac{2W}{s})^2)$ TA, max M+hrust constraint

 $\frac{1}{\text{constraint}} = \left(\frac{1}{2}\rho V^{2}\right)\left(\frac{1}{\text{Tamax}} - \frac{1}{2}V^{2}C_{Dp}\right)^{\frac{1}{2}}$ $\frac{1}{\text{constraint}} = \left(\frac{1}{\text{K}}W's\right)\left(\frac{1}{\text{W}} - \frac{1}{2}V^{2}C_{Dp}\right)^{\frac{1}{2}}$ nc_Lmax, constraint @ agiven V in the tun You need corresponding C2 to get necessary lift a desired b $n = \frac{1}{2}\rho V^2 S C_L$ @ agiven constrained by Cemax 12 PUS CLMAX McLmax constraint =

B = high n & low V best turn
performance C = high V Use high n for a given problem, If asked to determine lowest r or fastest w Lowes,

Struct

Notichever

15 lowest

Noumax

constraint -> @ a goven

because there is a tradeoff with n & U, how do we get theoretical rmin & Wmax? - Main doesn't necessarily happen @ Mmax because of dependence on V 2 = 0 = d (g/n²-1) n also depends on V

$$= V_{min} = V_{4k}(V_{5})$$

$$= V_{7min} = V_{7}(V_{4k})$$

this is V@ theretical

minimum twn Radius

also: $n_{min} = \sqrt{2 - \left(\frac{4 \times Cop}{(7/\omega)^2}\right)}$

 $T_{min} = \frac{\sqrt{2}}{9\sqrt{n_{r_{min}}^2 - 1}} = \frac{4\sqrt{\sqrt{2}}}{9\sqrt{1-4\sqrt{2}}}$ $\sqrt{2}\sqrt{1-4\sqrt{2}}$ $\sqrt{2}\sqrt{1-4\sqrt{2}}$

1 min turn Radius conditions a given watio but - iff Vrnin is below Stall velocity, then have to adjust V2 n & two @ a higher radius for max w: $\frac{d\omega}{dv} = 0 = \frac{d}{dv} \left(\frac{g\sqrt{n^2-1}}{v} \right)$ Anderson ch. 6

Vwmax =
$$\left[2\left(\frac{W_{S}}{S}\right)\right]^{\frac{1}{2}}\left(\frac{K}{CDp}\right)^{\frac{1}{4}}$$

Now = $\left(\frac{T}{K}\right)^{\frac{1}{2}}\left(\frac{K}{CDp}\right)^{\frac{1}{4}}$

Object = $\left(\frac{T}{K}\right)^{\frac{1}{4}}\left(\frac{CDp}{K}\right)^{\frac{1}{4}}$

determine "theoretical min turn Radius"

W/S = $\frac{76.84}{K}$ $\frac{1}{6}$ $\frac{1}{6}$

$$T_{min} = \frac{V_{r_{min}}^{2}}{9\sqrt{n_{r_{min}-1}^{2}}} = \frac{4k(w_{s})}{4k(w_{s})}$$

$$= \frac{\sqrt{r_{min}}}{9\sqrt{n_{r_{min}-1}^{2}}} = \frac{4k(w_{s})}{\sqrt{1-4k(w_{s})^{2}}}$$

$$= \frac{4.0.08(76.84 \frac{0b_{c+2}}{4})}{(322\frac{0}{52})(0.00238 \frac{0.015}{6.3795})^{2}}$$

$$= 861 \text{ ft}$$
Theoretical min'

