Exercices Mathématiques pour l'informatique II : Espaces vectoriels et sous-espaces vectoriels sur \mathbb{R}

- 1. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^2 ? Justifiez votre réponse. Décrivez géométriquement chaque ensemble.
 - (a) $E_1 = \{(x, y) \in \mathbb{R}^2 : x \le y\}$
 - (b) $E_2 = \{(x, y) \in \mathbb{R}^2 : x = y\}$
 - (c) $E_3 = \{(x, y) \in \mathbb{R}^2 : x \cdot y = 0\}$
 - (d) $E_4 = \{(x+1,x) : x \in \mathbb{R}\}$
 - (e) $E_5 = \{(x, y) \in \mathbb{R}^2 : 5x 3y = 0\}$
 - (f) $E_6 = \{(x, y) \in \mathbb{R}^2 : 3x + 7y 6 = 0\}$
- 2. Les ensembles suivants sont-ils des sous-espaces vectoriels de \mathbb{R}^n ? Justifiez votre réponse.
 - (a) $E_1 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 = 0\}$
 - (b) $E_2 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_2 = 1\}$
 - (c) $E_3 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 = x_2 = ... = x_n\}$
 - (d) $E_4 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + ... + x_n^2 = 1\}$
 - (e) $E_5 = \{(x_1, x_2, ..., x_n) \in \mathbb{R}^n : x_1 + x_2 + ... + x_n = 0\}$
- 3. Soient $n \in \mathbb{N}$ et $p(x) = a_0 + a_1x + ... + a_nx^n$, avec $a_n \neq 0$. Les ensembles suivants sont-ils des sous-espaces vectoriels de $\mathbb{R}[x]$ (on pose deg $0 = -\infty$)? Justifiez votre réponse.
 - (a) $E_1 = \{ p(x) \in \mathbb{R}[x] : \deg p = n \}$
 - (b) $E_2 = \{ p(x) \in \mathbb{R}[x] : \deg p \le n \}$
 - (c) $E_3 = \{p(x) \in \mathbb{R}[x] : p(0) = 0\}$
 - (d) $E_4 = \{p(x) \in \mathbb{R}[x] : p(1) = 0\}$
 - (e) $E_5 = \{p(x) \in \mathbb{R}[x] : p(0) = 1\}$
- 4. Soient les ensembles $F = \{(x, y, z) \in \mathbb{R}^3 : x + y z = 0\}$ et $G = \{(a b, a + b, a 3b) : a, b \in \mathbb{R}\}.$
 - (a) F et G sont-ils des sous-espaces vectoriels de \mathbb{R}^3 ?
 - (b) Calculez $F \cap G$. Est-ce un sous-espace vectoriel de \mathbb{R}^3 ?
 - (c) Calculez $F \cup G$. Est-ce un sous-espace vectoriel de \mathbb{R}^3 ?
- 5. Soient E un espace vectoriel sur \mathbb{R} et F, G deux sous-espaces vectoriels de E.
 - (a) Montrez que $F \cap G = F + G$ si et seulement si F = G.
 - (b) Montrez que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subseteq G$ ou $G \subseteq F$.