Math 530 Quiz 3

Name:Michael Pena

Note: Show your work on all problems. Each part of each problem is worth 5 points. A total of 25 points is possible.

1. Let $X \sim \text{gamma}(\alpha, \beta)$. Show that $EX^n = \beta^n \Gamma(n + \alpha) / \Gamma(\alpha)$, where n is a positive integer.

$$E(X^n) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} x^n \cdot x^{\alpha-1} \cdot e^{-x/\beta} dx$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} x^{\alpha+n-1} e^{-x/\beta} dx$$

notice the gamma kernel $(\alpha + n, \beta)$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \Gamma(\alpha + n)\beta^{\alpha+n}$$
$$= \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)} \cdot \beta^{\alpha+n-\alpha}$$
$$= \frac{\Gamma(\alpha + n)\beta^{n}}{\Gamma(\alpha)}$$

- Let X be a continuous random variable with pdf f_X and cdf F_X. Moreover, assume that f_X is symmetric about a point a.
 - (a) Show that the random variables U = X a and W = a X have the same distribution.

Want to show that $F_U(u) = F_W(w)$

 $g_1^{-1}(u) = u + a \text{ and } g_2^{-1}(w) = a - w$ thus $\frac{d}{du}g_1^{-1}(u) = 1$ and $\frac{d}{dw}g_2^{-1}(w) = -1$ thus $f_U(u) = f_X(u) \cdot |1| = f_X(x - a)$ and $f_W(w) = f_X(w) \cdot |-1| = f_X(a - x)$

$$F_U(u) = \int_{-\infty}^{\infty} f_U(u) du$$
$$= \int_{-\infty}^{\infty} f_U(u) du$$
$$= \int_{-\infty}^{\infty} f_X(x - a) du$$

note: du = dx while dw = -dx

$$= \int_{-\infty}^{\infty} f_X(x-a)dx$$

 f_X is symmetric about a

$$= \int_{-\infty}^{\infty} f_X(a - x) dx$$

$$= \int_{-\infty}^{\infty} -f_X(a - x) \cdot -dx$$

$$= \int_{w(-\infty)=\infty}^{w(\infty)=-\infty} -f_W(w) dw$$

$$= \int_{-\infty}^{\infty} f_W(w) dw$$

$$= F_W(w)$$

Thus $F_U(u) = F_W(w)$ and thus U and W have same distribution

(b) Assuming that the k-th central moment of X exists, show that for an odd positive integer $E[X-a]^k=0$.

$$E[x-a]^k = \int_{-\infty}^{\infty} [x-a]^k f_X(x) dx$$

u = x - a thus x = a + u thus du = dx

$$= \int_{\infty}^{\infty} u^k f_X(a+u) du$$

let $g(u) = u^k f_X(a+u)$, notice

$$g(-u) = (-u)^k f_X(a - u)$$
$$= -u^k f_X(a - u)$$

 f_X is symmetric at a so $f_X(a-u) = f_X(a+u)$

$$=-u^k f_X(a+u)$$

This shows that g(u)=g(-u); g is odd. Thus $\int_{\infty}^{\infty}g(u)du=0$ Which implies $E[x-a]^k=0$ 3. Let X be a random variable with pmf $f_X(x) > 0$ for $x = 1, 2, 3, \cdots$ (positive integers), and $f_X(x) = 0$ for all other values of x. Then, the pmf of X_T , the random variable X truncated at X = 1, is given by

$$f_{X_T}(x) = \frac{f_X(x)}{P(X>1)}$$
, for $x = 2, 3, \cdots$.

(a) Verify that f_{XT}(x) is a pmf.

We know that $\sum_{x=1}^{\infty} f_X(x) = 1$ because it is defined as a pmf.

We want to show that $\sum_{x=2}^{\infty} \frac{f_X(x)}{P(X>1)} = 1$

notice

$$\sum_{x=2}^{\infty} \frac{f_X(x)}{P(X>1)}$$

$$= \frac{1}{P(X>1)} \cdot \sum_{x=2}^{\infty} f_X(x)$$

$$= \frac{1}{P(X>1)} \cdot [1 - f_X(1)]$$

$$= \frac{1}{P(X>1)} \cdot [1 - P(X \le 1)]$$

$$= \frac{1}{1 - P(X \le 1)} \cdot [1 - P(X \le 1)] = 1$$

Notice that $\forall x \in N$, $f_X(x) > 0$. Thus $\forall x \in N - \{1\}$, $\frac{f_X(x)}{P(X>1)} > 0$ implying $\forall x \in N - \{1\}$, $f_{X_T} > 0$. This shows that $f_{X_T}(x)$ is a pmf.

(b) Assume that $f_X(1) = 1/4$, $E(X) = \mu$. Obtain $E(X_T)$ as a function of μ .

$$E[X_T] = \sum_{x=2}^{\infty} x \cdot f_{X_T}(x) = \sum_{x=2}^{\infty} x \frac{f_X(x)}{P(X>1)} = \frac{1}{P(X>1)} \sum_{x=2}^{\infty} x f_X(x)$$

Note that $E(X) = \mu = \sum_{x=1}^{\infty} x f_X(x) = f_X(1) + \sum_{x=2}^{\infty} x f_X(x) = (1/4) + \sum_{x=2}^{\infty} x f_X(x)$ Thus $\sum_{x=2}^{\infty} x f_X(x) = \mu - 1/4$

Thus

$$\frac{1}{P(X>1)} \sum_{x=2}^{\infty} x f_X(x)$$

$$= \frac{1}{P(X>1)} (\mu - 1/4)$$

$$= \frac{1}{1 - P(X \le 1)} (\mu - 1/4)$$

$$= \frac{1}{1 - f_X(1)} (\mu - 1/4)$$

$$= \frac{\mu - 1/4}{3/4} = \frac{4\mu - 1}{3}$$

thus $E[X_T] = [4\mu - 1]/3$