Esame di *Calcolo delle probabilità e statistica* (per studenti di Informatica) corso A

Università degli studi di Bari Aldo Moro Docente: Stefano Rossi 28-09-2020

Esercizio 1. Si ha a disposizione un mazzo di $n \ge 1$ chiavi, che ne contiene solo una in grado di aprire una porta. Si conduce il seguente esperimento. Si sceglie una chiave a caso e si prova a vedere se apre la porta. Se non la apre, la si rimette nel mazzo e se ne estrae un'altra finché non si trova la chiave che apre la porta. Si lanciano quindi k monete equilibrate (le cui facce sono testa e croce), dove $k \ge 1$, è il numero di tentativi necessari ad aprire la porta.

- (1) Calcolare la probabilità di ottenere almeno una testa.
- (2) Sapendo di aver ottenuto almeno una testa, calcolare la probabilità che sia stato necessario solo un tentativo, verificando che tale probabilità è pari a $\frac{n+1}{2n^2}$.
- (3) Calcolare il limite per $n \to \infty$ della probabilità determinata al punto precedente.

(Suggerimento: per il punto 1) è utile ricordare che $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$.)

Esercizio 2. Sia Y=2X-3 una variabile aleatoria, dove X è una variabile di Poisson di parametro incognito $\lambda>0$.

- (1) Determinare l'aspettazione e la varianza di Y.
- (2) Determinare lo stima di massima verosimiglianza per il parametro λ corrispondente alle 5 osservazioni di Y date da $y_1 = y_2 = -3$, $y_3 = 3$ e $y_4 = y_5 = 5$.

Esercizio 3. Due macchinari diversi dovrebbero produrre bottiglie che in media hanno lo stesso contenuto di vino. La media \bar{x}_1 di un campione di $n_1=25$ bottiglie prodotte dal primo macchinario è pari a 748cl, mentre la media \bar{x}_2 di un campione di $n_2=25$ bottiglie prodotte dal secondo è pari a 751cl. E' noto che la varianza del contenuto di tutte le bottiglie prodotte dal primo macchinario è $\sigma_1^2=30cl^2$, mentre per le bottiglie prodotte dal secondo macchinario si ha $\sigma_2^2=36cl^2$.

- (1) Costruire un intervallo (bilatero) di confidenza per la differenza delle medie (reali) $\mu_1 \mu_2$ con un livello di fiduca del 90% e del 95%.
- (2) Condurre un test di verifica delle ipotesi per accertare che le due medie al punto di sopra siano uguali a un livello di significatività del 10% e del 5%.