

(4)1

CORRESPONDING PROTEIN SYNTHESIS BLOCKED

CHROMOSOMĘ OLIGONUCLEOTIDE RNA PROTEIN KEY: **-00**≺ TRANSCRIPTION UNIT RETROVIRAL VECTOR VIRAL PARTICLE

···

OLIGONUCLEOTIDE BINDS TO COMPLEMENTARY RNA SPATTONS | CONTROL | CONTR

AFFECT OLS. F1G.

FIG. 3

HER2 PROMOTER FRAGMENT

-19

- 3º TCCTCCTCCTCCTCCTCCTCCTCCGACGAACTCCTTCATATTCTTA
- 5' AGGAGAAGGAGGAGGTGGAGGAGGGGCTGCTTGAGGAAGTATAAGAAT
- 5' UCCUCUUCCUCCUCCUCCUCCUCCC CU-RICH TRIPLEX FORMING RNA
- 3' AGGAGAAGGAGGGGGGGGGGGGGG GA-RICH TRIPLEX FORMING RNA

FIG. 4A

THE UG SMALL NUCLEAR RNA GENE

FIG. 4B

THE CHIMERIC OLIGONUCLEOTIDE PRODUCING GENE

FIG. 4C

FIG. 6A

FIG. 7B

Ab: U₆ON:

FIG. 8

U₆ -

FIG. 7A

FIG. 9A

```
u c
  CG
c GC
  UA
  CG
  \mathsf{GC}
  UA20
{\tt 1} \ \mathsf{GCAUAUccu:} \mathsf{CGaccuccccuucccuucccuucccUUC:::C}
    U
                                                       60
   U 80
   U
             U6CTcon ENERGY = -12.72 kcal
              (U60N ENERGY = -12.46 kcal)
                         20
GuGcuCGCUUCg:GCAgCACAUau:::CCuCGaC:::AUG<sup>ag</sup>c
C:CuuGCGAAGuaCGUaGUGUAagaacGG:GC:GgacUAC<sub>uu</sub>a
 Α
                     60
 U
 A 80
 UUUUU
              U6AS ENERGY = -30.83 kcal
               (mU6 ENERGY = -26.48 kcal)
```


TRIPLEX RNA OLIGONUCLEOTIDE HER2 PROMOTER MAP. AND

TRIPLEX RNA OLIGONUCLEOTIDE

CCCAATCACAGGAGGAGGAGGTGGAGGAGGAGGCTGCTTGAGGAGGTATAAGAA 3' GGGTTAGTGTCCTCCTCCTCCTCCTCCTCCTCCGACGACCTCCTTCATATTCTT e. nccncnnccnccnccnccnccnccnccncc - 77 . ເນ

CAAT

BOX

TATA ets-

ELEMENT BOX

FIG. 11A

FIG. 11B

FIG. 12A

FIG. 12B

TIME (HOURS)

FIG. 12D

FIG. 12C

FIG. 14A

FIG. 13

POSSIBLE FACTORS IN LIMITING SUPPLY:

RNA POLYMERASE III (RpolIII)
IFIIIB CONTAINING THE TATA BINDING PROTEIN (TBP)
PROXIMAL SEQUENCE ELEMENT BINDING PROTEIN (PBP)
UPSTREAM ENHANCERS (Octi,?)
OTHER UNCHARACTERIZED TRANSCRIPTIONAL FACTORS (?)
5' CAPPING ENZYME, CO-FACTORS
LUPUS ASSOCIATED ANTIGEN (La)

TRANSFECTION DOSE (µg)

FIG. 14B

FIG. 15

FIG. 16

ACCT 1 U.P. F. IG.

FIG. 17

- 🔀 U6 (5μg U6ON)
- ∪6 (10µg U60N)
- U6 (20µg U60N)
- ∠ U60N (20µg U60N)

TIME (HOURS)

FIG. 18A

FIG. 18B

FIG. 18C

FIG. 19

FIG. 20A

RNA LEVELS

FIG. 20B

U1 RNA - 5 μg U60NU1 RNA - 20 μg U60N

FIG. 20C

FIG. 21

FIG. 22

FIG. 23A

FIG. 23B

Abrahal Carl HG.

FIG 24

-34	TAGTGTCCTCTTCCTCCTCCTCCTCCTCCGGACGAAC
9/-	GGT

5' CCAATCACAGGAGGAGGAGGAGGAGGAGGAGGGCTGCTTG

5' UCCUCUUCCUCCUCCCCCCUCCUCCC... CU-RICH RNA

3' AGGAGAAGGAGGGGGAGGAGGGG... GA-RICH RNA

5' GGGCCCCCCCCCGAGGUCGACGGUAUCG... CONTROL RNA

FIG. 26B 67 07 67 02

FIG. 27A

EV C.C.) EVI GLASS

U6 PARENT GENE

- 240	TTCCCATGAT	TCCTTCATAT	TTGCATATAC
-210	GATACAAGGC	TGTTAGAGAG	ATAATTAGAA
-180	TTAATTTGAC	TGTAAACACA	AAGATATTAG
- 150	TACAAAATAC	GTGACGTAGA	AAGTAATAAT
-120	TTCTTGGGTA	GTTTGCAGTT	TTTAAAATTA
-90	TGTTTTAAAA	TGGACTATCA	TATGCTTACC
-60	GTAACTTGAA	AGTATTTCGA	TTTCTTGGCT
-30	TTATATATCT	TGTGGAAAGG	ACGAAACACC
+1	GTGCTCGCTT	CGGCAGCACA	TATCCTCGAG
+31	CATGGCCCCT	GCGCAAGGAT	GACACGCAAA
+61	TGCATGAAGC	GTTCCATATT	TTT 83 NUCLEOTIDES

FIG. 27B

U60N GENERATOR

-240	TTCCCATGAT	TCCTTCATAT	TTGCATATAC
-210	GATACAAGGC	TGTTAGAGAG	ATAATTAGAA
-180	TTAATTTGAC	TGTAAACACA	AAGATATTAG
-150	TACAAAATAC	GTGACGTAGA	AAGTAATAAT
-120	TTCTTGGGTA	GTTTGCAGTT	TTTAAAATTA
90	TGTTTTAAAA	TGGACTATCA	TATGCTTACC
-60	GTAACTTGAA	AGTATTTCGA	TTTCTTGGCT
-30	TTATATATCT	TGTGGAAAGG	ACGAAACACC
+1 .	GTGCTCGCTT	CGGCAGCACA	TATCCTCGAC
+31	TCCTCTTCCT	CCTCCACCTC	CTCCTCCCAT
+61	GCATGAAGCG	TTCCATATTT	TT 82 NUCLEOTIDES