Principles of Micro- and Nanofabrication for Electronic and Photonic Devices

Film Deposition Part IV: CVD

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Film Deposition

Film Deposition

Thin Film in CMOS

- CVD
 - □ Si
 - poly-Si
 - **□** W, SiO₂, ...
- PVD
 - □ Al, Ti
 - **---**
- Electrodeposition
 - □ Cu

CVD: Chemical Vapor Deposition

APCVD Atmosphere Pressure CVD

LPCVD Low Pressure CVD

UHVCVD Ultrahigh Vacuum CVD

MOCVD Metal Organic CVD

PECVD Plasma Enhanced CVD

ALD Atomic Layer Deposition

CVD: Chemical Vapor Deposition

Example:

$$SiH_4(g) = Si(s) + 2H_2(g)$$

 $SiH_4(g) + O_2(g) = SiO_2(s) + 2H_2(g)$

CVD

- Process Parameters
 - Time
 - Temperature
 - Gas type
 - Gas pressure
 - Flow rate
 - **-**

- gas transport
- surface reaction

Control Parameters

- Film thickness
- Crystallinity
- **□** Film quality (defects, dielectric strength, ...)

Q: differences between CVD and oxidation?

Crystallinity

Deposit Si on Si

$$SiH_4(g) = Si(s) + 2H_2(g)$$

Crystallinity

Silicon Solar Cells

Deposition Rate vs. Temperature

Deposition Rate vs. Gas Flow

Issues of Gas Transport

tilt the samples to improve uniformity

Issues of Gas Transport

better to operate at surface reaction limited zone (low T, high flux rate)

Gas Types

Si CVD

LPCVD

Low Pressure CVD

Growth velocity (log scale)

at low pressure,

- Increased rate
- Increased zone for surface reaction
- reduce cost

why??

LPCVD

Low Pressure CVD

Growth velocity (log scale)

molecular mean free path λ

$$\lambda = \frac{kT}{\sqrt{2\pi r^2 p}}$$

PECVD

Plasma Enhanced CVD

plasma enhances the ion energy:

- higher dep. rate
- lower temperature

SiO₂ Growth Methods

dry oxidation

$$\Box$$
 Si + O₂

~ 1100 °C

wet oxidation

$$\Box$$
 Si + H₂O

~ 1000 °C

APCVD / LPCVD

$$\Box$$
 SiH₄ + O₂

400~600 °C

PECVD

$$\Box$$
 SiH₄ + N₂O

200~400 °C

- Sputter or Evaporation
 - substrate at room temperature

growth temperature

film quality

Step Coverage

- LPCVD, UHVCVD, oxidation
- ALD

- ...

diffusion/transport controlled

- PECVD
- PVD (sputter, evaporation)
- _

MOCVD

Metal-Organic CVD

$$Ga(CH_3)_3$$
 (g) + AsH_3 (g) = $GaAs$ (s) + $3CH_4$ (g)

 $Ga(CH_3)_3$ (g) + NH_3 (g) = GaN (s) + $3CH_4$ (g)

ALD: Atomic Layer Deposition

- self limited growth
- layer by layer
- high uniformity
- accurate thickness control

TiO₂ / Al₂O₃ multilayer

ALD: Atomic Layer Deposition

$$I_{D,Sat} = \frac{W}{L} \mu C \frac{(V_G - V_{th})^2}{2}$$

$$C = \frac{\kappa \varepsilon_0 A}{t}$$

thickness t is already \sim nm high κ -> large C -> large I_D

Film Type	Thermal	Al_2O_3	Ta ₂ O ₅	ZrO_2	HfO ₂
	SiO ₂				
Dielectric Constant	3.95	9	26	25	25-40
Bandgap (eV)	8.9	8.7	4.5	7.8	5.7
Barrier Height to Silicon	n 3.2	2.8	1-1.5	1.4	1.5
Deposition Technique	Thermal Growth	CVD	CVD	CVD	CVD

Selective Deposition

Tungsten (W) via by CVD

$$WF_6(g) + 3H_2(g) = W(s) + 6HF(g)$$

non-selective (everywhere)

$$2WF_6$$
 (g) + 3Si (s) = $2W$ (s) + $3SiF_4$ (g)
selective, only on Si, not SiO₂

Q: why do we use CVD for W vias?

Step Coverage

surface reaction

ballistic transport

Localized CVD

Graphene by CVD

Grephene likes to nucleate at Cu grain boundaries How to get single crystal graphene?

Graphene by CVD

Diamond by CVD

