SHAHEED BHAGAT SINGH STATE TECHNICAL CAMPUS, FEROZEPUR

DOLL NO	
ROLL No:	Total number of pages:[2
	Total number of questions:06

B.Tech. ME 3rd Sem. Engg. Materials & Metallurgy Subject Code: BTME- 306-A Paper ID:

Time allowed: 3 Hrs

Max Marks: 60

- Important Instructions:
 - All questions are compulsory
 - Assume any missing data
 - All parts of a question and section should be attempted sequentially and at a place only
 - Additional instructions, if any

PART A (2×10)

Q. 1. Short-Answer Questions:

All COs

- (a) What do you mean by slip system? Define this for FCC metals.
- (b) Differentiate between hardness and hardenability.
- (c) Sketch (112) plane and [101] direction.
- (d) How does the metallic bond differ from the ionic and covalent bonds?
- (e) Explain interstitial and vacancy diffusion mechanisms with examples and sketches.
- (f) Classify Engineering materials with at least one example of each type of material.
- (g) Explain cooling curve for pure iron from from liquid stage to room temperature.
- (h) What do you mean by lamellar and globular pearlite microstructure? Make sketches for both of them.
- (i)Draw-BCC and HCP crystal structures and mention their packing factor.
- (j) Explain burgers vector in case of screw dislocation with neat figures.

Q. 2.	Sketch and briefly explain the binary equilibrium diagram in which two components are Cu and Ni. Also apply inverse lever rule for composition of the alloy having 50% of Cu and Nickel each at 1270 ° C. OR	CO1
	Write down a note on crystallographic notation of atomic planes.	CO1
Q. 3.	Write down a brief note on crystal imperfections. OR	CO2
	Explain elastic and plastic deformation with sketches. What do you mean by strain or work hardening?	CO2
Q. 4.	Draw neat, labelled Iron-Iron carbide phase diagram. Explain cooling of 3.0 % carbon alloy from liquid stage to room temperature and also calculate the relative percentage of various phases at salient points. OR	CO3
	Differentiate between TTT (time temperature transformation) diagram and CCT (continuous Cooling transformation) diagrams. How will you draw TTT diagram for a 0.8 % Carbon steel?	CO3
Q. 5.	Explain Jominy's end quench test for determination of hardenability. OR	CO4
	Explain briefly hardening, annealing and normalizing heat treatment processes. Discuss and draw sketches for a 0.4% carbon steel before and after these treatments.	CO4
Q. 6.	Discuss the effects of the addition of the following alloying elements on the structure and properties of steel. i) Chromium ii) Boron iii) Silicon and iv) Moly. OR	

Which alloying elements are called as Austenite stabilizers, Ferrite stabilizers, CO5

carbide formers and graphitizers? Explain with figures on iron-carbon

diagram.