Assignment 2

Course Lecturer: Yizheng Zhao

April 13, 2022

* This assignment, due on 29th April, contributes to 10% of the total mark of the course.

Question 1. Some interesting properties of \mathcal{EL}

- Show that every \mathcal{EL} -concept is satisfiable (regardless of the presence of an \mathcal{EL} -TBox). That is, for every \mathcal{EL} -concept C there exists an interpretation \mathcal{I} such that $C^{\mathcal{I}} \neq \emptyset$.
- Show that every \mathcal{EL} -TBox is consistent. That is, for every \mathcal{EL} -TBox \mathcal{T} there exists an interpretation \mathcal{I} such that $\mathcal{I} \models \mathcal{T}$.

Question 2. Reasoning in \mathcal{EL}

Let \mathcal{T} be an \mathcal{EL} -TBox containing the following (primitive) concept definitions:

```
Bird \equiv Vertebrate \sqcap \exists has_part.Wing Reptile \sqsubseteq Vertebrate \sqcap \exists lays.Egg
```

- Compute an \mathcal{EL} -TBox \mathcal{T}' in normal form using the pre-processing algorithm given in the lecture.
- Apply the algorithm from the lecture slides deciding whether $A \sqsubseteq_{\mathcal{T}'} B$, where A, B are concept names. Using the normalized TBox \mathcal{T}' as input and explain step-by-step which rules are applied.
- Using the output of the algorithm, decide whether

```
Reptile \sqsubseteq_{\mathcal{T}'} Vertebrate
Vertebrate \sqsubseteq_{\mathcal{T}'} Bird
```

Question 3. Bisimulation & bisimulation invariance

In the lecture we defined bisimulation for ALC and showed bisimulation invariance of ALC (Theorem 3.2).

- Define a notion of " \mathcal{ALCN} -bisimulation" that is appropriate for \mathcal{ALCN} in the sense that bisimilar elements satisfy the same \mathcal{ALCN} -concepts.
- Use the definition to show that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Question 4. Closure under Disjoint Union

Recall Theorem 3.8 from the lecture, which says that the disjoint union of a family of models of an \mathcal{ALC} -TBox \mathcal{T} is again a model of \mathcal{T} . Note that the disjoint union is only defined for concept and role names.

• Extend the notion of disjoint union to individual names such that the following holds: for any family $(\mathcal{I}_{\nu})_{\nu\in\Omega}$ of models of an \mathcal{ALC} -knowledge base \mathcal{K} , the disjoint union $\biguplus_{\nu\in\Omega}\mathcal{I}_{\nu}$ is also a model of \mathcal{K} .

Question 5. Closure under Disjoint Union

Let $\mathcal{K} = \{\mathcal{T}, \mathcal{A}\}$ be a consistent \mathcal{ALC} -KB. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{K} .

• Prove that for all \mathcal{ALC} -concepts C and D we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$. Hint: Use the modified definition of disjoint union from the previous exercise.

Question 6. Finite model property

Let C be an \mathcal{ALC} -concept that is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} . Show truth or falsity of the following statement:

- for all $m \geq 1$ there is a finite model \mathcal{I}_m of \mathcal{T} such that $|C^{\mathcal{I}_m}| \geq m$.
- Does it hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ "?

Question 7. Bisimulation over filtration

Let C be an \mathcal{ALC} -concept, \mathcal{T} an \mathcal{ALC} -TBox, \mathcal{I} an interpretation and \mathcal{J} its filtration w.r.t. $\mathsf{sub}(C) \cup \mathsf{sub}(\mathcal{T})$ (see Definition 3.14 for the definition of filtration). Show truth or falsity of the following statement:

• the relation $\rho = \{(d, [d]) \mid d \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .

Question 8. Bisimulation within the same interpretation

We define "bisimulations on \mathcal{I} " as bisimulations between an interpretation \mathcal{I} and itself. Let $d, e \in \Delta^{\mathcal{I}}$ be two elements. We write $d \approx_{\mathcal{I}} e$ if they are bisimilar, i.e., if there is a bisimulation ρ on \mathcal{I} such that $d \rho e$.

• Show that $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

Consider the interpretation \mathcal{J} defined like the filtration, but with $\approx_{\mathcal{I}}$ instead of \simeq .

- Show that $\rho = \{(\mathsf{d}, [\mathsf{d}]_{\approx_{\mathcal{I}}})\} \mid \mathsf{d} \in \Delta^{\mathcal{I}}$ is a bisimulation between \mathcal{I} and \mathcal{J} .
- Show that, if \mathcal{I} is a model of an \mathcal{ALC} -concept C w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then so is \mathcal{J} .

Question 9. Unravelling

Draw the unravelling of the following interpretation \mathcal{I} at d up to depth 5, i.e., restricted to d-paths of length at most 5 (see Definition 3.21):

Question 10. Tree model property

• Show the truth or falsity of the following statement: if K is an ALC-KB and C an ALC-concept such that C is satisfiable w.r.t. K, then C has a tree model w.r.t. K.

Question 11. Tableau algorithm

• Apply the Tableau algorithm consistent (A) to the following ABox:

$$\mathcal{A} = \{(b,a): r, (a,b): r, (a,c): s, (c,b): s, a: \exists s.A, b: \forall r.((\forall s.\neg A) \sqcup (\exists r.B)), c: \forall s.(B \sqcap (\forall s.\bot))\}.$$

If A is consistent, draw the model generated by the algorithm.

Question 12. Extension of Tableau algorithm

We consider the concept constructor \rightarrow (implication) with the following semantics:

$$(C \to D)^{\mathcal{I}} := \{ x \in \Delta^{\mathcal{I}} \mid x \in C^{\mathcal{I}} \text{ implies } x \in D^{\mathcal{I}} \}.$$

To extend consistent (A) to this constructor, we propose two alternatives new expansion rules:

The deterministic →-rule

Condition: A contains $a: C \to D$ and a: C, but not a: D

Action: $A \longrightarrow A \cup \{a:D\}$

The nondeterministic →-rule

Condition: A contains $a: C \to D$, but neither $a: \dot{\neg} C$ nor a: D

Action: $A \longrightarrow A \cup \{a: X\}$ for some $X \in \{ \neg C, D \}$

For each rule, determine whether the extended algorithm remains terminating, sound, and complete.

Question 13. Modification of Tableau algorithm

We consider an \mathcal{ALC} TBox \mathcal{T} consisting only of the following two kinds of axioms:

- role inclusions of the form $r \sqsubseteq s$, and
- role disjointness constraints of the form disjoint(r, s).

where r and s are role names. An interpretation \mathcal{I} satisfies these axioms if

- $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$, and
- $r^{\mathcal{I}} \cap s^{\mathcal{I}} = \emptyset$, respectively.

Modify the Tableau algorithm consistent (A) to decide consistency of (T, A), where A is an ABox and T an TBox containing only role inclusions and role disjointness constraints. Show that the algorithm remains terminating, sound, and complete.