Detecting Depression using Speech Processing

Pranav Bijith, Farhan Ansari

Background

- 20.78% of individuals in the U.S. are depressed from the period
 2018-2019.
- Tools that help doctors identify patients that could potentially have depression would be useful in helping people get the treatment they need.
- Depression has effects on a patient's voice, often lowering their pitch and increasing the length of pauses.
- The DAIC-WoZ dataset contains 189 voice recordings of depressed and non-depressed patients talking to a human-controlled virtual interviewer.

Research Question

How can we detect depression using speech recognition?

Hypothesis

- We predict that our model will be mediocre at average around a 60-65% due to a lack of computing power and state of the art models being around 70-75%
- We predict that gradient boosting be more effective compared to a CNN

Methods

- We used a gradient boosting algorithm coupled with feature extraction from the library librosa. There were 68 features extracted, including pitch, mfcc, spectral centroid, etc.
- For gradient boosting, we used SMOTE, cross validation, and K-Best optimize the model
- For our second model, we used a CNN with 4 layers of convolution paired with dropout and max pooling. It also had 2 Relu layers and a softmax layer at the end.

Results

Fig. 2 (59 feat.)

Receiver Operating Characteristic (ROC) Curve

1.0

0.8

0.8

1.0

Fig. 3 (20 feat.)

Table 1: Results for precision, recall, F1-Score and Support for Gradient Boosting model

Class	Precision	Recall	F1-Score	Support
Not Depressed	0.81	0.79	0.80	33
Depressed	0.53	0.57	0.55	14

Table 2: List of Parameters used in the Gradient Boosted Folds

n_estimators	learning_rate	max_depth	min_samples_split
340.0	0.01	13	2
345.0	0.05	15	5
350.0	0.07	17	7
355.0	0.08	20	9
360.0	0.085	25	25
370.0	0.09	30	30
330.0	0.095	45	45
	0.12	60	55
		100	75

Table 3: Accuracy, Macro Average, and Weighted Average for Gradient Boosting model

<u> </u>	_ = -	
Accuracy	0.72	
Macro Avg	0.68	
Weighted Avg	0.73	

Discussion

- As seen in Figures 1 & 2, using 59 features was more suitable than using 20 features as demonstrated in Figures 3 & 4.
- The macro F1 score for this model is 0.675 and the weighted accuracy was 73% (Table 3), which was around the low end of current state-of-the-art models, which use more advanced techniques.

Method	Paper	Dataset	Performance
LSTM	Alhanai et al. 2018 [37]	DAIC-WOZ	MAE/RMSE 4.97/6.27
	Du et al. 2018 [88]	BD	UAR/UAP/Accuracy 0.651/0.678/65.0%
	Salekin et al. 2018 [89]	DAIC-WOZ	F1/Accuracy 0.901/90%
	Othmani et al. 2021 [77]	DAIC-WOZ	F1 (D/N) 0.49/0.82 accuracy 73.35%
	Zhang et al. 2021 [38]	DAIC-WOZ	MAE/RMSE 5.48/6.31
CNN	Yang et al. 2017 [84]	DAIC-WOZ	MAE/RMSE 5.163/5.974
	Haque et al. 2018 [78]	DAIC-WOZ	F1/Precision/Recall 0.769/71.4%/83.3%
	He et al. 2018 [79]	AVEC2013/14	MAE/RMSE 8.78/10.90
	Huang et al. 2020 [44]	DAIC-WOZ	F1/Accuracy 0.700/82.9%
	Muzammel et al. 2020 [83]	DAIC-WOZ	Accuracy/Precision/ Recall/F1 86.06%/81%/73%/77%
	Vâzquez-Romero et al. 2020 [85]	DAIC-WOZ	F1/Accuracy/Precision/ Recall 0.65/74%/55%/79%

- Some errors came from patients with minor depression.
- Our hypothesis that the gradient boosting model would outperform the CNN was correct. The CNN model only predicted "Not depressed", making it ineffective as a model despite its high accuracy.
- The gradient boosting algorithm was also not entirely fine tuned as seen with the hyperparameter distribution in Table 2.
- 59 features were used due to it yielding the greatest result with the parameters used in the Gradient Boosted folds

Applications

 Machine learning models that can use speech to detect depression could be valuable for physicians to get patients treatment. Having a software that could reliably detect depression would be able to diagnose many people who would have otherwise never been treated.

Future Exploration

- How can models be revised to maintain patients' privacy?
- Would integrating NLP to analyze the content of a patient's speech make the model more effective?

References

- Santilli, Mara. "Depression Statistics in 2023." Forbes Health, 5 July 2023,
 www.forbes.com/health/mind/depression-statistics/.
- Wu, Pingping et al. "Automatic depression recognition by intelligent speech signal processing: A
 systematic survey" 21 June 2022, https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cit2.12113
- Kumar, Ajitesh. "Gradient Boosting Algorithm: Concepts, Example." Data Analytics, 3 Dec. 2022,
 vitalflux.com/gradient-boosting-algorithm-concepts-example/.