Slides to Accompany $Programming\ Languages$ and Methodologies

R. J. Schalkoff

Chapter 12, Part 4: Axiomatic Semantics

Axiomatic Semantics

- Axiomatic semantics provides a machine-independent formalism for quantifying semantics.
- The development of axiomatic semantics is more abstract than denotational semantics, and involves assertions and logical formulas from predicate logic.

Axiomatic Semantics Development

- Assume an imperative language.
- In axiomatic semantics, the program semantics reduces to the semantics of a statement (derived from <command>) which is itself usually a sequence of commands derived from <command-seq>.
- The statement semantics are described by the addition of assertions that are always TRUE when control of the program reaches the assertions.
- In this sense, program meaning = program correctness with respect to a specification are given by pre and post condition assertions.
- As with denotational semantics, the divide-and-conquer approach is fundamental.

Axiomatic semantics is commonly used for three primary objectives:

- 1. To prove programs 'correct';
- 2. To provide formal specifications from which programs may be derived; and
- 3. (Our interest:) to develop a formal and quantitative description of the semantics of syntactically correct program fragments.

The relation between an initial logical assertion and a final logical assertion following a code fragment captures the essence of the code fragment semantics.

A Sample Assertion

A typical assertion (where \cap indicates conjunction or AND) might look like:

$$\{m < 5 \cap k = n^2\}$$

where m, n and k are variables in predicate calculus which are related to program (fragment) variables.

The truth value of the sample assertion depends upon the values of m, n and k.

We are concerned with two classes of assertions:

- 1. Assertions about entities that are TRUE just before execution of the code fragment. These are represented using a set of preconditions, $\{P\}$.
- 2. Assertions about entities that are TRUE just after the execution of the code fragment. These are represented using a set of postconditions, $\{Q\}$.

Using these yields an axiomatics semantic description of a code fragment of the form:

 $\{P\}$ <code fragment> $\{Q\}$

The program semantics are based on assertions about logical relationships that remain the same each time the program executes.

The basic representational strategy^a is:

 $\{logical\ preconditions\} \cap \{syntactic\ fragment\} \rightarrow \\ \{logical\ postconditions\}$

^aNote this involves implication.

With respect to axiomatic semantics:

- Variables in the predicate calculus (logical description) correspond to program (fragment) variables. Note that variables in the logical description get values from the corresponding program variables.
- Function symbols (connectives) in the logical description include all the operations available in the programming language. This includes <, >, * and so forth.
- The truth value of a statement in predicate logic is dependent upon the values of component variables.
- Note a significant distinction is made between = in logic (equality test) and the use of = (assignment) in the programming language.

Implication Review

Implication is another important logical connective and plays a role in the rules which accompany axiomatic semantics.

Implication is not the same as equality. The truth table for implication is shown below:

p	q	$p \rightarrow q$	$\neg p \cup q$
$oxed{T}$	T	T	T
T	F	F	F
F	Т	Т	Т
F	F	T	T

A very important equivalence is:

$$\{(p \to q) = (\neg p \cup q)\} = T$$

Ordered-Pair and Specification

The axiomatic semantics of C are given by the ordered pair

$$(\{P\}, \{Q\})$$

Alternately, $(\{P\}, \{Q\})$ provides a **specification** for code (fragment) C.

minic Example

A simple minic code fragment is shown below. Note the semicolon (;) is only shown to illustrate the termination of the statement. It is **not** part of the string derived from <command>.

$$x = 1 / y;$$

One axiomatic representation for this code fragment in the form $\{P\}$ <code fragment> $\{Q\}$ is

$$\{y \neq 0\}$$
 x = 1 / y $\{x = \frac{1}{y}\}$

It is critical to note in the above example that \mathbf{x} and \mathbf{y} are **program variables** whereas x and y are variables in the predicate calculus.

Partial and Total Correctness

Given:

$$\{P\} \ \mathtt{C} \ \{Q\}$$

Partial Correctness: A program (fragment) is partially correct if the following compound statement in predicate logic is true:

$$\{P\} \cap \mathtt{C} \text{ executes } \to \{Q\}$$

Total Correctness: Total correctness extends partial correctness with the additional requirement that the program (fragment) is guaranteed to terminate. In other words,

Partial Correctness + Termination = Total Correctness

Lack of Uniqueness of the Axiomatic Specification

Axiomatic representations are not unique, and this is perhaps the Achilles heel of the technique.

Axiomatic Descriptions Using minic

Consider the minic program fragment involving assignment and an expression:

$$x = y + 1;$$

Suppose further we are given an axiomatic specification corresponding to this fragment as

$${y = -3} \times = y + 1 \{x < 0\}$$
 (1)

Correctness of the Sample Specification

Given the specification $\{y = -3\}$ $\mathbf{x} = \mathbf{y} + \mathbf{1}$ $\{x < 0\}$, note y and x are logical variables and \mathbf{y} and \mathbf{x} are program variables. We proceed in the following manner:

- 1. Assume $\{y = -3\} = \text{TRUE}$. This requires that y (the logical variable) has the value -3. Note this is not assignment, but rather = is used as a logical connective, in this case the test for equality. This also constrains the corresponding program variable, y.
- 2. Assume x = y + 1 executes.
- 3. Since y is constrained by the value of y, use the substitution indicated in the program fragment to get the value of x, and consequently x. Note we are not done.
- 4. $\{y = -3\}$ and the substitution $\rightarrow \{x = -2\}$ (is TRUE).

5. Observe $\{x = -2\} \rightarrow \{x < 0\}$. Now we are done, except for the following important observation.

In the previous example, be careful to note

$${x = -2} \rightarrow {x < 0}$$

This is implication, not equality, and the converse

$${x < 0} \to {x = -2}$$

is not true.

Alternative Specifications for the Same Fragment

An alternate is

$${y = 3} \times = y + 1 \{x > 0\}$$
 (2)

Thus (so far), the axiomatic specification of program fragment x = y + 1 is either the pair

$$(\{y=-3\}, \{x<0\})$$

or

$$({y = 3}, {x > 0})$$

Furthermore, another possible precondition for the same code fragment and $\{Q\}$ in (2) is

$$\{P\} = \{y \ge 0\} \tag{3}$$

Standardization: The Weakest Precondition

Formal Definition. Given C and $\{Q\}$, the weakest precondition, denoted $\{W\}$, is defined as follows. Suppose $\{P\}$ is any precondition for which

$$\{P\} \subset \{Q\}$$

holds. If

$$\{P\} \to \{W\}$$

(note this is logical implication), then $\{W\}$ is the weakest precondition.

Axiom for Command Sequencing

This applies to a minic command sequence of the form C1;C2, where C1 and C2 are commands.

$$\frac{\{P\} \text{ C1 } \{Q1\} \cap \{Q1\} \text{ C2 } \{Q2\}}{\{P\} \text{ C1; C2} \{Q2\}}$$
(4)

For clarity or to avoid possible ambiguity we write this as:

$$\frac{[\{P\} \text{ C1 } \{Q1\}] \cap [\{Q1\} \text{ C2 } \{Q2\}]}{\{P\} \text{ C1; C2}\{Q2\}}$$
(5)

Axiom for Assignment

The semantics of syntactic constructs using = (assignment) must be carefully considered in order to avoid developing nonsensical axiomatic semantics descriptions.

Formulation #1.

$$\{true\} \ x = x + 1 \ \{x = x + 1\}$$
 (6)

Notice the direct mapping of program variables and connectives to logical variables and connectives in (6), most importantly the (erroneous) mapping of =. Note the postcondition *must be false*, i.e., there is no value of x such that x = x + 1 is TRUE in logic.

The attempt to capture the axiomatic semantics of assignment via logical variable x and the = connective in logic fails.

Formulation #2. We try to improve upon the previous axiomatic semantics description with the following specification:

$${x = A} = x + 1 {x = A + 1}$$

Whereas this captures the intuitive notion of assignment in a logically correct manner, it is not very general.

The Axiom for Assignment

v = e is a common command in imperative languages.

To develop the pre/post-condition pairs, the following is useful:

$$\{[e/v]Q\} \text{ v = e } \{Q\} \tag{7}$$

where v is derived from <identifier> and e is derived from <expr>. Furthermore, the notation [e/v] means the substitution of e for all free occurrences of v in postcondition Q.

For example, consider the minic fragment y = x+y. An axiomatic semantics description might be:

$${x = 1, x + y > 2}$$
 y = x + y ${x = 1, y > 2}$

where we have used $[x + y/y]\{x = 1, y > 2\}$ to produce $\{x = 1, x + y > 2\}$.

Using The Assignment Axiom

Consider a previous example:

$${x = A} x = x + 1 {x = A + 1}$$

Given $\{Q\} = \{x=A+1\}$ we can derive $\{P\}$ via:

$$\left[\frac{x+1}{x}\right] \{x = A+1\} = \{x+1 = A+1\} = \{x = A\}$$