PCT

ORGAN 110N MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 7:

C12N 15/57, 9/52 // C12R 1/225

A1

(11) Numéro de publication internationale:

WO 00/39309

(43) Date de publication internationale:

6 juillet 2000 (06.07.00)

(21) Numéro de la demande internationale:

PCT/FR99/03270

(22) Date de dépôt international:

23 décembre 1999 (23.12.99)

(30) Données relatives à la priorité:

98/16462

24 décembre 1998 (24.12.98) F

FR

(71) Déposant (pour tous les Etats désignés sauf US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE [FR/FR]; 147, rue de l'Université, F-75338 Paris Cedex 07 (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): POQUET, Isabelle [FR/FR]; 56-62 rue de Vouillé, F-75015 Paris (FR). GRUSS, Alexandra [US/FR]; 25, rue Louis Scocard, F-91400 ORSAY (FR). BOLOTINE, Alexandre [RU/FR]; 5, rue Maréchal Gallieni, F-54000 Nancy (FR). SOROKINE, Alexei [RU/FR]; 8, res. les Quinconçes, F-91190 Gif-sur-Yvette (FR).
- (74) Mandataires: VIALLE-PRESLES, Marie-José etc.; Cabinet Orès, 6, avenue de Messine, F-75008 Paris (FR).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: GRAM-POSITIVE BACTERIA DEPRIVED OF HITA PROTEASIC ACTIVITY AND THEIR USES
- (54) Titre: BACTERIES A GRAM POSITIF DEPOURVUES D'ACTIVITE PROTEASIQUE HtrA, ET LEURS UTILISATIONS
- (57) Abstract

The invention concerns bacteria strains, obtained from gram-positive bacteria whereof the genome size is not more than 3.2 Mb, and wherein the HtrA surface protease is inactive. Said strains are useful for expressing exported proteins of interest.

(57) Abrégé

L'invention concerne des souches bactériennes, obtenues à partir de bactéries à gram-positif dont la taille du génome est au plus égale à 3,2 Mb, et dans lesquelles la protéase de surface HtrA est inactive. Ces souches sont utilisables pour l'expression de protéines d'intérêt exportées.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie .	ES	Espagne	LS	Lesotho		
AM	Arménie	FI	Finlande	LT	Lituanie	SI	Slovénie
AT	Autriche	FR	France	LU		SK	Slovaquie
ΑU	Australie	GA.	Gabon	LV	Luxembourg Lettonie	SN	Sénégal
AZ	Azerbaĭdjan	GB	Royaume-Uni	MC		SZ	Swaziland
BA	Bosnie-Herzégovine	GE	Géorgie	MD	Monaco	TD	Tchad
ВВ	Barbade	GH	Ghana		République de Moldova	TG	Togo
BE	Belgique	GN	Guinée	MG	Madagascar	TJ	Tadjikistan
BF	Burkina Faso	GR	Grèce	MK	Ex-République yougoslave	TM	Turkménistan
BG	Bulgarie	HU			de Macédoine	TR	Turquie
BJ	Bénin	IE	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BR	Brésil		Irlande	MN	Mongolie	UA	Ukraine
BY	Bélarus	IL.	Īsraēl	MR	Mauritanie	UG	Ouganda
CA	Canada	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CF		IT	Italie	MX	Mexique	UZ	Ouzbékistan
	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		Zimozowe
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

WO 00/39309 PCT/FR99/03270

BACTERIES A GRAM POSITIF DEPOURVUES D'ACTIVITE PROTEASIQUE HtrA, ET LEURS UTILISATIONS.

L'invention concerne la production, chez des bactéries à Gram-positif, de protéines exportées.

5

10

15

30

35

On désigne sous le terme général de : « protéines exportées », des protéines qui sont transportées à travers la membrane cytoplasmique. Dans le cas des bactéries à Gram-positif, ce transport aboutit à la sécrétion de la protéine dans le milieu, ou à son association à la surface cellulaire.

L'un des principaux problèmes qui se pose lors de la production de protéines d'intérêt exportées par des bactéries-hôtes, réside dans la dégradation de ces protéines pendant et/ou après leur exportation, au niveau de l'enveloppe ou de la surface de la cellule. Cette dégradation entraîne souvent une baisse du rendement, et/ou une altération de la structure et de l'activité de la protéine.

Les enzymes responsables de cette dégradation des protéines exportées, sont des protéases bactériennes 20 elles-mêmes exportées dans l'enveloppe; il s'agit de protéases dites : « de ménage », qui ont normalement parmi leurs fonctions principales un rôle de dégradation protéines exportées anormales ou mal 25 s'accumulant dans le milieu ou dans l'enveloppe, notamment en conditions de stress, ainsi qu'un rôle de recyclage des protéines exportées.

Les protéines hétérologues, qui sont souvent imparfaitement reconnues par les protéines chaperons intervenant dans le repliement des protéines chez la bactérie-hôte sont particulièrement sensibles à l'attaque de ces protéases.

La protéase de ménage exportée la plus anciennement caractérisée est la protéase à sérine HtrA/DegP d'E. coli. Il s'agit d'une protéase à localisation périplasmique, qui est exprimée sous

contrôle d'un promoteur inductible à haute température; BECKWITH et STRAUCH (Proc. Natl. Acad. Sci. USA 85:1576-1580, 1988) ont observé qu'elle intervenait dans la protéolyse de protéines de fusion entre des protéines exportées d'E. coli et le rapporteur de l'exportation PhoA. Ils ont proposé d'inactiver cette protéase chez E. coli afin de limiter la dégradation des protéines hétérologues exportées.

souches mutantes ďE. coli, Des lesquelles le gène codant pour la protéase HtrA/DegP a été inactivé ont ainsi été obtenues [BECKWITH et STRAUCH, publication précitée, et Demande PCT WO88/058211 ; cependant il a été constaté que cette inactivation se traduit par un ralentissement de la cinétique dégradation, mais ne suffit pas pour l'abolir, du fait de l'existence dans l'enveloppe d'autres protéases dégradant les protéines exportées.

10

25

30

35

(1944年) 1911年 - 1920年 - 1980年 - 1980年

Chez *E. coli*, plusieurs protéases de ménage de l'enveloppe, assurant des fonctions similaires à celles de HtrA/DegP ont été caractérisées : il s'agit notamment des protéases HhoA/DegQ et HhoB/DegS, structurellement homologues à HtrA/DegP, et de protéases de structure différente mais fonctionnellement comparables (ApeA/protéaseI, OmpT, OmpP, Prc/Tsp, SppA/protéaseIV, PrtIII et SohB).

Des études concernant d'autres bactéries ont également permis de mettre en évidence l'existence dans chaque espèce étudiée, de plusieurs protéases de ménage exportées. Par exemple, de très nombreuses espèces bactériennes possèdent plusieurs protéases de la famille HtrA (PALLEN et WREN, Mol. Microbiol. 19:209-21, 1997); trois homologues de HtrA ont été identifiés chez B. subtilis (YyxA, YkdA et YvtB/Yirf), Synechocystis (HtrA, HhoB), Pseudomonas aueruginosa Aquifex (HtoA et aeolicus, deux chez Haemophilus influenzae HhoB), Campylobacter jejuni, Brucella abortus et Yersinia

Company of the Company of the Company

10

enterolitica, et quatre chez Mycobacterium tuberculosis. Diverses bactéries à Gram-positif possèdent également des protéases à sérine considérées comme apparentées à la famille HtrA, sur la base d'une homologie au niveau du domaine catalytique: EtA, EtB, V8/StsP de S. aureus, GseP de Bacillus licheniformis et Spro de Mycobacterium paratuberculosis (KOONIN et al., Chap 117 in Escherichia coli and Salmonella typhimurium, 2203-17, 1997). Enfin, des protéases exportées non-apparentées à HtrA, également été mises en évidence, par exemple B. subtilis (MARGOT et KARAMATA, Microbiology, 142:3437-STEPHENSON et HARWOOD Appl. Environn. Microbiol. 64:2875-2881, 1998; WU et al. J. Bacteriol. 173:4952-58, 1991).

Il a donc été proposé de combiner des mutations affectant plusieurs protéases exportées, pour parvenir à une réduction effective de la dégradation des protéines hétérologues exportées.

Par exemple, une souche d'E. coli mutée dans degP/htrA, ompT, prt et prc (MEERMAN les gènes 20 GEORGIOU, Bio/technology 12:1107-10, 1994), et une souche subtilis déficiente dans les six protéases extracellulaires (WU et al., 1991, publication précitée), ont été construites dans ce but. Cependant, l'utilisation de ces souches ne permet pas d'éliminer totalement la 25 protéolyse des protéines exportées. Par exemple, dans le cas de la souche de B. subtilis décrite par WU et al., l'activité extracellulaire que protéasique résiduelle soit négligeable (<1%), la dégradation des protéines hétérologues exportées reste importante. Pour 30 pallier ce problème, cette même équipe a apporté des modifications supplémentaires à cette souche, afin de lui (WU et al., faire surproduire divers chaperons 180:2830-35, 1998). En outre, Bacteriol. l'inactivation du gène d'une de ces protéases de ménage 35 exportées n'ait pas de conséquences notables sur

bactérie, le cumul des mutations peut affecter la viabilité des souches; MEERMAN et GEORGIOU, (1994, publication précitée) observent ainsi une diminution du taux de croissance pouvant aller jusqu'à 50%.

Chez les bactéries lactiques, seules quelques 5 protéases exportées ont fait l'objet d'études ; la mieux caractérisée à l'heure actuelle est la protéase dénommée PrtP (KOK, FEMS Microbiol. Reviews 87:15-42, 1990), qui est localisée à la surface cellulaire, où elle est ancrée au peptidoglycanne. Cette protéase est présente chez de 10 nombreuses bactéries lactiques, notamment Lactococcus lactis, où son gène est plasmidique. Elle participe à la nutrition azotée des bactéries en dégradant les caséines du lait. D'autres protéases de surface ont été purifiées deux espèces de bactéries lactiques, partir de 15 Lactobacillus delbrueckeii subsp. bulgaricus Lactobacillus helveticus, mais leur fonction n'a pas été déterminée. (STEFANITSI et al., FEMS Microbiol. Lett. 128:53-8, 1995; STEFANITSI et GAREL, Lett. Appl. 1997 ; 20 Microbiol. 24:180-84, YAMAMOTO, et al., Biochem. 114:740-45, 1993). Récemment, un gène inductible codant pour une protéine stress homologue aux protéases de la famille HtrA a été mis en évidence chez Lactobacillus helveticus (SMEDS et al., J. Bacteriol. 180:6148-53, 1998). Il a été observé que ce 25 gène était nécessaire à la survie à température élevée; une souche mutante de Lactobacillus helveticus laquelle le gène htrA a été inactivé par l'insertion d'un gène rapporteur (gusA, codant pour la β -glucuronidase) sous contrôle du promoteur htrA, été construite. 30 a ·L'étude de l'expression du gène gusA dans ce mutant a permis de mettre en évidence une induction de transcription de ce gène dans les mêmes conditions que gène htrA dans les souches sauvages ; en 35 revanche, aucune activité β-glucuronidase n'a été observée.

10

15

20

25

travaux précédents visant Lors de caractériser des protéines exportées de Lactococcus lactis par l'étude de protéines de fusion avec rapporteur d'exportation Δ_{SP} Nuc (POQUET et J. Bacteriol. 180:1904-12, 1998), l'équipe des Inventeurs a observé une importante protéolyse extra-cellulaire, bien que les expérimentations aient été effectuées dans une souche de L. lactis subsp. cremoris dépourvue de tout plasmide, et donc en particulier de celui qui porte prtP.

Les Inventeurs ont entrepris de rechercher des protéases extra-cellulaires responsables de cette protéolyse.

Ils ont ainsi découvert, chez L. lactis, l'existence d'un gène de la famille htrA.

Ce gène, mis en évidence dans le génome de la souche IL1403 de $L.\ lactis$ subsp. lactis, code pour une protéine de 408 acides aminés, dénommée ci-après $\operatorname{HtrA_{L1}}$ dont la séquence nucléotidique et la séquence en acides aminés sont représentées sur la Figure 1, et figurent dans la liste de séquences en annexe (SEQ ID NO: 1). Cette protéine est très homologue à $\operatorname{HtrA}\ d'E.\ coli$, et à divers autres membres connus de la famille $\operatorname{HtrA}\$, comme le montre le Tableau I ci dessous, qui illustre les pourcentages d'identité et de similarité entre $\operatorname{HtrA_{L1}}\$ et différentes protéines de la famille $\operatorname{HtrA}\$:

TABLEAU I

_ Protéine	Organisme	% identité	% similarité
HtrA/DegP/ protéase Do	E. coli	31.5	38.2
HhoA/DegQ	E. coli	34.0	40.8
HhoB/DegS	E. coli	29.9	37.3
HtrA	S. typhimurium	32.4	39.1
HtoA	H. influenzae	31.9	39.2
HhoB/DegS	H. influenzae	31.2	40.0
spHtrA	S. pneumoniae	55.6	62.0
HtrA	Lb. helveticus	46.9	54.1
YyxA	B. subtilis	43.5	52.0
YkdA	B. subtilis	42.5	49.4

La protéine HtrA de la souche IL1403 de L. lactis subsp. lactis possède les trois acides aminés Ser,

His et Asp, qui définissent le site catalytique caractéristique des protéases à sérine apparentées à la trypsine, parmi lesquelles la famille HtrA; en outre elle présente, autour de ces trois acides aminés, les trois motifs suivants: DAYVVTNYH₁₂₇VI, D₁₅₇LAVLKIS, et GNS₂₃₉GGALINIEGQVIGIT, qui correspondent aux consensus définis par PALLEN et WREN (Mol. Microbiol. 19:209-21, 1997) pour le domaine catalytique des protéases HtrA: -GY--TN-HV-, D-AV---- et GNSGG-L-N-G--IGIN.

10

15

20

25

30

-35

Elle possède à son extrémité N-terminale une séquence d'acides aminés hydrophobes L₁₀LTGVVGGAIALGGSAI₂₆ correspondant à un segment transmembranaire putatif. La protéine HtrA_{L1} de *L. lactis* subsp. *lactis* serait donc une protéine intégrale de la membrane cytoplasmique. Selon la règle dite « du positif interne » concernant la topologie de ces protéines (VON HEIJNE, Nature, 341:456-8, 1989) sa topologie correspond au type « C-out », c'est-à-dire que sa partie C-terminale, qui comprend en particulier son site catalytique, serait exposée à l'extérieur de la membrane plasmique. Comme la protéase HtrA de *E. coli*, HtrA_{L1} de *L. lactis* subsp. *lactis* apparaît donc comme une protéase de l'enveloppe, pouvant dégrader des protéines exportées. Les acides aminés du domaine catalytique et du domaine transmembranaire sont encadrés sur la figure 1.

Les Inventeurs ont procédé à l'inactivation de ce gène par mutation ; à température optimale $(30\,^{\circ}\text{C})$, la souche mutante de L. lactis subsp. lactis ainsi obtenue est viable et croit normalement ; en revanche, sa croissance et sa viabilité sont affectées à plus hautes températures (à partir de $37\,^{\circ}\text{C}$), à la fois sur boite et et en milieu liquide.

En outre, les Inventeurs ont étudié l'effet de cette mutation sur l'exportation de différentes protéines de fusion, et ont constaté que l'inactivation de la protéase $\operatorname{Htr}A_{L1}$ chez L. lactis suffisait à abolir totalement la dégradation des protéines exportées ; cet

effet est surprenant, compte tenu de la protéolyse résiduelle observée antérieurement chez d'autres bactéries après inactivation de protéases de la famille HtrA.

La présente invention a pour objet un procédé pour la production d'une protéine d'intérêt, caractérisé en ce qu'il comprend la mise en culture d'une souche bactérienne exprimant ladite protéine d'intérêt, et susceptible d'être obtenue à partir d'une bactérie à gram positif dont la taille du génome est au plus égale à 3,2 Mb, de préférence au plus égale à 3 Mb, et avantageusement au plus égale à 2,5 Mb, par mutation inactivant la protéase de surface HtrA de ladite bactérie;

et l'obtention de ladite protéine d'intérêt exportée par ladite souche.

15

20

25

30

35

Selon un mode de mise en œuvre préféré de la présente invention, la bactérie à gram-positif de départ est choisie parmi des bactéries du groupe constitué par les Streptococcaceae, et les Lactobacillaceae. Avantageusement, elle est choisie parmi les lactocoques.

Elle peut également être choisie parmi des bactéries appartenant au groupe constitué par les Bacillaceae, par exemple au genre Listeria, et les Enterococcaceae, notamment du genre Enterococcus.

ladite souche bactérienne Avantageusement, également comporter une ou plusieurs modifications de son génome, visant à améliorer production et/ou la sécrétion de protéines exprimées dans ladite bactérie, et/ou à éviter leur dégradation. Selon le type de protéine que l'on souhaite obtenir, on peut par exemple utiliser une souche bactérienne dans laquelle l'activité protéasique PrtP a été inactivée, et/ou une souche bactérienne surproduisant une protéine permettant de stabiliser les protéines exportées, telle que la

protéine Nlp4 de *Lactococcus lactis*, ou un de ses homologues (POQUET et al. 1998, publication précitée).

La présente invention a également pour objet toute souche bactérienne, susceptible d'être obtenue à partir d'une bactérie à gram positif dont la taille du génome est au plus égale à 3,2 Mb, telle que définie cidessus, par mutation inactivant la protéase de surface HtrA de ladite bactérie, et comprenant en outre au moins une cassette d'expression d'un gène d'intérêt, à l'exception d'une souche de Lactobacillus helveticus comprenant une seule cassette d'expression, constituée par la séquence codant pour le gène rapporteur gus insérée dans le gène htrA de ladite souche, sous contrôle transcriptionnel du promoteur dudit gène.

On entend par : « cassette d'expression » toute construction d'ADN recombinant comprenant un gène d'intérêt que l'on souhaite exprimer, ou un site permettant l'insertion dudit gène, placé sous contrôle de séquences de régulation de la transcription (promoteur, terminateur) fonctionnelles dans la bactérie-hôte concernée.

Au sens de la présente invention, on entend par : « protéase HtrA » toute protéase à sérine de type trypsine, présentant des similitudes fonctionnelles et structurelles suffisantes avec la protéase HtrA de E. coli, pour pouvoir être regroupée dans la même famille, à savoir :

25

- un site catalytique formé par les trois acides aminés Ser, His et Asp ;
- la présence, autour de ce site catalytique, des régions consensus : -GY--TN-HV-, D-AV---- et GNSGG-L-N-G-IGIN ;
- un signal d'exportation permettant à la protéase d'être transportée jusqu'à la surface cellulaire
 de la bactérie (il peut s'agir, par exemple, d'un peptide

10

15

20

25

signal, d'un domaine transmembranaire, d'un signal d'ancrage à la paroi, etc.).

Pour la mise en œuvre de la on peut obtenir des bactéries mutantes invention, dépourvues d'activité HtrA en effectuant une ou plusieurs mutations, notamment au niveau de la séquence codant pour protéase HtrA et/ou au niveau des séquences régulation permettant l'expression du gène de manière à empêcher l'expression d'une protéase HtrA fonctionnelle. Ces mutations peuvent être effectuées de classique, par délétion, insertion, remplacement d'au moins un nucléotide ou une séquence nucléotidique dans le gène HtrA; elles peuvent résulter soit en l'absence de production de HtrA, soit en la production d'une protéase HtrA dans laquelle au moins un acide aminé nécessaire à l'activité a été délété ou remplacé.

Les techniques de mutagénèse appropriées sont connues en elles-mêmes; avantageusement, on utilisera des techniques de mutagénèse dirigée, dans la mesure où les données disponibles sur les protéases de la famille HtrÀ permettent, même si l'on ne dispose pas d'informations plus précises sur la séquence spécifique du gène que l'on souhaite inactiver, de cibler la ou les mutations sur des domaines conservés nécessaires à l'activité (par exemple le domaine catalytique).

- La présente invention peut être mise en œuvre dans de nombreux domaines.

En premier lieu, elle peut être utilisée dans le domaine de la production de protéines d'intérêt (par exemple enzymes, protéines humaines, etc.) par génie génétique à partir de cultures de bactéries transformées par un gène d'intérêt. Dans ce domaine, la présente invention permet d'améliorer le rendement en protéines exportées (et en particulier sécrétées), et d'éviter leur

10

15

20

25

30

35

والمتعالج والمتاريخ والمتارين والمتعارضين والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض والمتعارض

contamination par des produits de protéolyse, inactifs : ceci permet de les purifier facilement et à moindre coût.

Pour cette application on utilisera de préférence des souches mutantes obtenues à partir de bactéries non-pathogènes, telles que *Lactococcus* spp., *Lactobacillus* spp., ainsi que des streptocoques alimentaires, *Streptococcus thermophilus*.

Les souches mutantes obtenues à partir bactéries habituellement utilisées en industrie agroalimentaire, telles que les bactéries lactiques (notamment, les lactocoques, les lactobacilles et streptocoques thermophiles), peuvent avantageusement être utilisées dans ce même domaine. Par exemple, on peut les utiliser dans la composition de ferments, pour produire protéines hétérologues permettant d'améliorer qualité du produit fermenté fini ; ainsi, l'exportation d'enzymes étrangères produites par une souche mutante de lactis conforme à l'invention, au sein de fromages fermentés par L. lactis peut améliorer leur affinage et leurs qualités organoleptiques.

Ces souches mutantes peuvent également être utilisées pour l'obtention de produits diététiques ou de médicaments. Dans ce domaine on peut par exemple utiliser des souches mutantes conformes à l'invention d'exprimer, préalablement à l'ingestion du produit, et/ou après son ingestion, des protéines à effet prophylactique ou-thérapeutique, telles que des enzymes (permettant par de faciliter exemple la digestion), des protéines permettant de stimuler le système immunitaire, antigènes vaccinaux, etc. Dans la plupart des cas, préférera, pour les utilisations dans ce domaine, et afin de garantir une innocuité maximale, des souches mutantes partir de bactéries non pathogènes, avantageusement, de bactéries habituellement utilisées l'alimentation. pour Cependant, dans le cadre d'utilisations vaccinales, on peut utiliser des souches mutantes obtenues à partir de bactéries (notamment streptocoques, staphylocoques, entérocoques ou listeria) pathogènes, et de préférence, de variants de ces bactéries portant déjà une ou plusieurs mutations atténuant leur pouvoir pathogène; l'inactivation de la protéine HtrA, en limitant les capacités de survie de ces bactéries en conditions de stress, peut contribuer à atténuer leur virulence, comme observé précédemment dans le cas de certaines bactéries à gram-négatif.

Dans le cadre de certaines applications, dans lesquelles la bactérie hôte doit être viable et capable de produire des protéines à des températures de l'ordre de 35 à 40°C, par exemple la production en fermenteur de certaines protéines, ou la production après ingestion, dans le tractus digestif de l'homme ou d'un animal, de protéines à activité thérapeutique ou prophylactique, on utilisera avantageusement des souches mutantes obtenues à partir de bactéries thermophiles, telles que Streptococcus thermophilus.

La présente invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples non-limitatifs, illustrant l'obtention de mutants de L. lactis dans lesquels la protéase de surface HtrA est inactive, et les propriétés de ces mutants.

25 EXEMPLE 1 : INACTIVATION DU GENE htra DE L. lactis

10

15

Le gène htrA, porté par le chromosome de la souche IL1403 (CHOPIN et al. Plasmid, 11, 260-263, 1984) de L. lactis subsp. lactis, a été inactivé par intégration d'un plasmide suicide portant un fragment interne du gène (FA) de 665 pb.

A titre de témoin positif d'intégration, on a utilisé un plasmide suicide portant un fragment tronqué en 3' (GA) de 902pb, dont l'intégration sur le chromosome restitue une copie sauvage du gène.

35 Ces fragments ont été préalablement obtenus par amplification PCR, à partir de l'ADN génomique de la

souche IL1403 de L. lactis subsp. lactis, en utilisant les couples d'amorces F/A et G/A :

- F [5'-GGAGCCA(G/T)(A/C/T)GC(A/G/C/T)(C/T)T(A/G/T)GG-3'] localisée en aval du codon d'initiation ATG
- 5 G [5'-GTTTCCACTTTTCTGTGG-3'] localisée en amont du promoteur de htrA

25

engal of the growth persons for a

- A [5'-TT(A/T)CC(A/T)GG(A/G)TT(A/G/T)AT(A/G/C/T)GC-3']. localisée en amont du codon de la sérine du site catalytique.
- 10 L'emplacement des amorces, F, G, et A, est indiqué sur la figure 1.

L'amplification a été effectuée dans les conditions suivantes :

- mélange réactionnel : 0,2mM de chaque dNTP, 5 μ M de chaque oligonucléotide, environ 500ng d'ADN chromosomique, 2mM MgCl₂, 1,25 unité de Taq-DNA-pol (BOEHRINGER MANNHEIM) dans le tampon Taq fourni par le fabricant ;
- conditions de température : 5min 94°C, 30 cycles (30sec à 94°C, 30sec à 46°C et 30sec à 72°C), et 4°C.

Les fragments amplifiés ont été ligaturés au plasmide linéaire pGEM (PROMEGA). Après transformation de $E.\ coli$ TG1 par les produits de ligation, les clones résistants à l'ampicilline, et dépourvus d'activité β -galactosidase sont sélectionnés. Les plasmides obtenus, portant respectivement les fragments FA et GA, sont dénommés pES1.1 et pES2.1.

Les inserts FA et GA ont été sous-clonés dans un vecteur suicide portant un gène de résistance au 30 chloramphénicol. Ce vecteur étant incapable répliquer seul en l'absence de la protéine RepA qui est nécessaire à l'initiation de sa réplication, intégrats ont été créés par ligature entre chacun des plasmides pES1.1 et pES2.1, 35 et le vecteur suicide, préalablement linéarisés.

Après transformation souche TG1 de la d'E. coli, et sélection des clones résistant au chloramphénicol, la partie pGEM^T des cointégrats a été délétée, et les vecteurs re-circularisés. Les plasmides obtenus sont multipliés dans la souche d'E. coli TG1 après sélection clones des résistant $repA^{+}$; chloramphénicol, on obtient les plasmides dénommés pVS6.1 et pVS7.4.

pVS6.1 contient le fragment FA, et pVS7.4 contient le fragment GA du gène $htrA_{L1}$ de la souche IL1403 de $L.\ lactis$ subsp. lactis.

Ces plasmides ont été utilisés pour transformer la souche IL1403 de *L. lactis* subsp. *lactis*; les clones ayant intégré ces plasmides au locus *htrA* sur le chromosome ont été sélectionnés en présence de chloramphénicol.

15

20

25

Dans les deux cas, plusieurs clones indépendants résistants au chloramphénicol ont été obtenus. Cinq clones de chaque classe, notés A à E dans le cas de l'intégration de pVS6.1, et 17 à 22 dans le cas de l'intégration de pVS7.4, ont été choisis pour analyse.

Pour chacun de ces clones, l'intégration au locus htrA a été confirmée par transfert de Southern.

Deux clones, A et 17, ont été choisis pour les analyses suivantes ; ils constituent les deux prototypes des souches mutantes, qui seront dénommées ci-après :

- -htrA (mutation nulle du gène $htrA_{LI}$, Cm^R); cette souche n'exprime pas de protéase HtrA active;
- $htrA^+/htrA$ (copie sauvage + copie tronquée 30 du gène $htrA_{L1}$, Cm^R); cette souche exprime une protéase Htra_{L1} active.

EXEMPLE 2 : ROLE DU GENE $htra_{L1}$ DE L. lactis DANS LA SURVIE A HAUTE TEMPERATURE

Les deux souches htrA et htrA⁺/htrA sont cultivées, en culture liquide, dans les conditions habituelles de croissance de L. lactis, c'est-à-dire à

30°C et en présence d'oxygène mais sans agitation, et en présence de chloramphénicol.

Le comportement de la souche htrA de L. lactis subsp. lactis à 30°C et à 37°C, a été étudié en utilisant comme témoins la souche htrA+/htrA, ainsi que la souche-mère IL403 (cultivée en l'absence de chloramphénicol).

Les bactéries ont été cultivées pendant 1 nuit à température ambiante, en milieu M17 contenant 1% de glucose (+2,5 μg/ml chloramphénicol pour les deux souches htrA et htrA+/htrA). Les cultures ont été diluées au 1/100^{ieme} le matin dans le même milieu, et divisées en deux lots placés en semi-anaérobiose à 30°C ou à 37°C. La croissance a été suivie par mesure de la DO600.

10

15

30

Les résultats sont illustrés par la Figure 2.

A 30°C (Fig. 2A), on constate que la souche $htrA^{+}/htrA$ (\blacksquare), la souche htrA (\spadesuit), et la souche sauvage IL1403 (▲) présentent des temps de génération très proches: 65 min pour la souche sauvage, 70 min. pour $htrA^{+}/htrA$, et 75 min pour htrA; enfin, pour les 3 cultures, les valeurs de DO500 correspondant à la phase stationnaire sont très comparables ($DO_{600} = 2,1 \text{ à } 2,2$).

Ces résultats indiquent qu'il n'y a pas de différence de croissance significative entre ces trois souches à 30°C.

A 37°C (Fig. 2B), la souche $htrA^{\dagger}/htrA$ () a 25 un temps de génération de 100 min, et la DO600 de la phase stationnaire est moindre qu'à 30° C (DO₆₀₀ = 1,25). Une croissance plus faible à 37°C qu'à 30°C est également observée pour la souche sauvage IL1403 (▲) ; le temps de génération est de 65 min, mais la DO_{600} de la phase stationnaire est plus faible qu'à 30° C ($DO_{600} = 1,9$). Dans le cas de la souche htrA (◆) la croissance est très faible, voire nulle, et DO600 ne dépasse pas 0,1 même après 7h de culture.

35

Il ressort de ces résultats que la souche htrA de L. lactis subsp. lactis est thermosensible, et que la mutation htrA est létale à $37\,^{\circ}C$.

EXEMPLE 3 : ROLE DU GENE htrall DE L. LACTIS DANS LA PROTEOLYSE DE SURFACE

L'effet de la mutation $htrA_{LI}$ sur la stabilité de cinq protéines exportées a été testé. Ces protéines sont :

- i) une protéine hétérologue, la nucléase sécrétée de *S. aureus*, Nuc ; cette protéine est exprimée par le-plasmide pNuc3 (LE LOIR et al., J. Bacteriol. 176:5135-5139, 1994 ; LE LOIR et al., J. Bacteriol. 180:1895-903 1998) ;
- ii) trois protéines hybrides (Usp-Δ_{SP}Nuc, $\text{Nlp4-}\Delta_{\text{SP}}\text{Nuc}$, et $\text{Exp5-}\Delta_{\text{SP}}\text{Nuc}$) résultant de la fusion entre 15 rapporteur Δ_{SP} Nuc et des fragments de protéines exportées de L. lactis : la protéine sécrétée Usp45 (VAN ASSELDONK et al., Gene 95:155-60, 1990), la lipoprotéine Nlp4, et la protéine Exp5 (qui est elle-même une protéine 20 de fusion entre une protéine exportée et une protéine cytoplasmique); ces protéines, ainsi que les plasmides pVE8009, pVE8024 qui et pVE8021 les respectivement, sont décrits par POQUET et al. (1998, publication précitée) ;
- 25 iii) une protéine naturellement exportée de L. lactis, AcmA.
 - Chez la souche sauvage MG1363 de L. lactis subsp. cremoris, Usp- $\Delta_{\rm SP}$ Nuc est sécrétée, Nlp4- $\Delta_{\rm SP}$ Nuc est associée aux cellules ; pour ces 2 protéines, on détecte dans le milieu, à côté de la forme mature, différents produits de dégradation, parmi lesquels le peptide NucA provenant de la partie $\Delta_{\rm SP}$ Nuc de la fusion ; quant à la fusion tripartite Exp5- $\Delta_{\rm SP}$ Nuc, elle est très instable et on ne détecte pas la forme mature dans le milieu mais seulement les produits de dégradation, dont le peptide NucA. La forme mature, ainsi que les produits de

dégradation de ces trois protéines hybrides peuvent être détectées à l'aide d'anticorps anti-NucA.

La protéine naturellement exportée de L. lactis choisie est la bactériolysine AcmA (BUIST et al., J. Bacteriol. 177:1554-1563, 1995). Cette protéine qui dégrade le peptidoglycane est à la fois sécrétée et associée à la surface, probablement par affinité avec son substrat. Elle présente, aussi bien chez la souche MG1363 de L. lactis subsp. cremoris que chez la souche IL1403 de L. lactis subsp. lactis, des produits de protéolyse actifs et donc détectables, comme la protéine intacte, par zymogramme.

10

15

20

25

30

35

Les souches transformées par les plasmides exprimant ces différentes protéines sont cultivées à 30°C pendant plusieurs heures, au moins jusqu'au milieu de la phase exponentielle ou jusqu'au début de la phase stationnaire.

Pour chaque plasmide, des cultures des trois souches IL1403, htrA, et $htrA^*/htrA$, ayant atteint des DO_{600} comparables ont été utilisées pour extraire des échantillons protéiques : a) de la culture totale, b) des cellules, c) du milieu, selon le protocole décrit par POOUET et al., (1998, publication précitée).

Ces échantillons sont soumis à une électrophorèse (SDS-PAGE) sur gel dénaturant.

Pour détecter les protéines Nuc, Usp- Δ_{SP} Nuc, Nlp4- Δ_{SP} Nuc, Exp5- Δ_{SP} Nuc, et leurs produits de dégradation, on procède à un transfert des protéines sur membrane, puis à une révélation immunologique grâce à des anticorps anti-NucA, qui sont détectés à l'aide d'un conjugué protéine G/peroxydase (BIO-RAD), et d'un kit de chimioluminescence (DUPONT-NEN).

AcmA est détecté par zymogramme (BUIST et al., 1995, publication précitée): des microcoques dont la paroi est sensible à AcmA sont inclus dans le gel d'électrophorèse à la concentration de 0,2%, ce qui le

rend opaque; après électrophorèse, le gel est traité à 37°C pendant une nuit dans un tampon contenant 50mM de Tris/HCl à pH7 et 0,1% de Triton X100, ce qui permet la lyse des microcoques par AcmA ou ses produits de protéolyse actifs. Le gel est ensuite coloré par du bleu de méthylène à 0,1% dans du KOH à 0,01%: les bandes correspondant à l'activité AcmA apparaissent comme des halos d'hydrolyse transparents sur fond bleu.

Pour chaque protéine, les profils de dégradation dans les souches IL1403, htrA, et htrA[†]/htrA, ont été comparés en observant le contenu protéique accumulé pendant plusieurs heures de culture.

Les Figures 3 à 6 présentent respectivement les résultats de détection immunologique, pour les protéines Nuc, Usp- Δ_{SP} Nuc, Nlp4- Δ_{SP} Nuc et Exp5- Δ_{SP} Nuc. Pour les protéines Nuc, (Fig.3) et Usp- Δ_{SP} Nuc, (Fig.4),

La Fig. 7 représente un zymogramme de l'activité bactériolysine d'AcmA; la détection a été effectuée sur l'ensemble de la culture (T), les cellules seules (C) ou le milieu (M).

Chez la souche IL1403 :

10

15

20

25

30

35

Pour les protéines sécrétées Nuc et Usp- $\Delta_{\rm SP}$ Nuc (Fig. 3 et 4 : trois premiers puits), et pour la lipoprotéine Nlp4- $\Delta_{\rm SP}$ Nuc (Fig.5 : premier puits), on détecte un profil de trois bandes, comme précédemment observé chez la souche MG1363 (LE LOIR et al., 1994 ; POQUET et al., 1998, publications précitées) :

- a) celle de plus haut poids moléculaire est le précurseur dont le peptide-signal n'a pas été clivé, ce qui est confirmé par sa présence exclusive dans les cellules (Fig. 3 et 4);
- b) la bande intermédiaire est la forme mature après clivage du peptide-signal, et elle est présente exclusivement dans le milieu dans le cas des protéines sécrétées Nuc et Usp- $\Delta_{\rm SP}$ Nuc (Fig. 3 et 4) ;

c) la bande de plus faible poids moléculaire est le peptide NucA qui comigre pratiquement avec la forme commerciale NucA purifiée à partir de *S. aureus* (la légère différence de migration étant due aux spécificités de clivage distinctes chez *S. aureus* et *L. lactis*), et qui se trouve à la fois libéré dans le milieu et associé aux cellules.

Pour la protéine Exp5- Δ_{SP} Nuc (Fig. 6 : premier puits) on ne détecte que très difficilement deux formes, une de haut poids moléculaire, et une de faible poids moléculaire, NucA, qui comigre pratiquement avec la forme purifiée commerciale ; la protéolyse chez IL1403 est donc pratiquement totale.

Pour la protéine AcmA (Fig. 7 : les trois premiers puits), on détecte comme précédemment observé chez la souche MG1363 (BUIST et al., 1995, publication précitée), un profil de quatre bandes :

- a) celle de plus haut poids moléculaire est le précurseur dont le peptide-signal n'a pas été clivé, qui est présent exclusivement dans les cellules;
- b) la bande de poids moléculaire légèrement inférieur est la forme mature après clivage du peptidesignal, qui est à la fois sécrétée dans le milieu et associée à la surface des cellules par affinité pour son substrat:
- c et d) les deux bandes de plus faible poids moléculaire sont des produits de protéolyse actifs, à la fois sécrétés dans le milieu et associés à la surface des cellules par affinité pour leur substrat.

30 Chez la souche htrA+/htrA:

The sales of the engineering of the first of the sales of

10

15

20

25

(Fig. 3 et 4 : trois derniers puits, Fig.5 et 6 : dernier puits, et Fig. 7 : trois derniers puits). Les profils observés sont absolument identiques à ceux observés dans la souche sauvage. La souche htrA⁺/htrA présente donc un phénotype de protéolyse sauvage,

gradient gewonder was

7.7

s'expliquant par la copie sauvage du gène $htrA_{L1}$ qu'elle possède.

Chez la souche htrA:

(Fig. 3 et 4 : trois puits centraux, Fig.5 et 6 : puits central, et Fig. 7 : trois puits centraux).

Dans tous les cas, on ne détecte aucun des produits de protéolyse ; simultanément, la quantité de protéine mature (ou de haut poids moléculaire dans le cas de Exp5- Δ_{SP} Nuc) augmente.

Ces résultats montrent que le produit du gène $htrA_{L1}$ est bien responsable de la dégradation des protéines sécrétées, et que son inactivation entraîne l'abolition totale de cette dégradation.

REVENDICATIONS

- 1) Procédé pour la production d'une protéine d'intérêt, caractérisé en ce qu'il comprend :
- la mise en culture d'une souche bactérienne exprimant ladite protéine d'intérêt, et susceptible d'être obtenue à partir d'une bactérie à gram positif dont la taille du génome est au plus égale à 3,2 Mb, par mutation inactivant la protéase de surface HtrA de ladite bactérie;
- l'obtention de ladite protéine d'intérêt exportée par ladite souche.

15

20

25

35

- 2) Procédé selon la revendication 1, caractérisée en ce que la bactérie à gram positif de départ est choisie parmi les Streptococcaceae, Lactobacillaceae, les Bacillaceae des Staphylococcus et Listeria, et les Enterococcaceae du genre Enterococcus.
- 3) Procédé selon la revendication 2, caractérisée en ce que la bactérie à gram positif de départ est choisie dans le groupe constitué par Lactococcus spp., Lactobacillus spp., et Streptococcus thermophilus.
- 4) Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que la souche bactérienne utilisée est également dépourvue de l'activité protéasique PrtP.
- 5) Souche bactérienne, susceptible d'être obtenue à partir d'une bactérie à gram positif dont la taille du génome est au plus égale à 3,2 Mb, telle que définie dans une quelconque des revendications 1 à 3, par mutation inactivant la protéase de surface HtrA de ladite bactérie, et comprenant en outre au moins une cassette d'expression d'un gène d'intérêt, à l'exception d'une souche de Lactobacillus helveticus comprenant une seule cassette d'expression, constituée par la séquence codant pour le gène rapporteur gusA insérée dans le gène htrA de

ladite souche, sous contrôle transcriptionnel du promoteur dudit gène.

- 6) Souche bactérienne selon la revendication 5, caractérisée en ce qu'elle est également dépourvue de l'activité protéasique PrtP.
- 7) Utilisation d'une souche bactérienne telle que définie dans une quelconque des revendications 1 à 4, pour la préparation d'un produit fermenté.
- 8) Utilisation d'une souche bactérienne telle que définie dans une quelconque des revendications 1 à 4, pour la préparation d'un aliment diététique.
 - 9) Utilisation d'une souche bactérienne telle que définie dans une quelconque des revendications 1 à 4, pour la préparation d'un médicament.
- 15 10) Utilisation selon la revendication 9, caractérisée en ce que ledit médicament est un vaccin.

..... PAGE BLANK (USPTO)

FIG. 1

THIS PAGE BLANK (USPTO)

FIG. 1 (suite)

THIS PAGE BLANK (USPTO)

3/9

1321	tgctctttactcacacaatatcaatgatacagtaaaagttacttattatcgtgatggtaa ++														aa	1200					
	A	L	Y	s	H	N	I	N	ם	T	V	ĸ	v	Ţ	Ž.	Y	R	D	G	ĸ	1790
1381	atc	atcaaatacagcagatgttaaactttctaaatcaaccagtgacttagaaacaagcagtcc SNTADVKLSKSTSDLETSSP													1440						
	s	N	T	A	ם	٧	ĸ	L	S	ĸ	s	T	S	D	L	E	T	s	s	P	T##0
							.acttaataatttaataaaagtcttctgtaaatagaaggcttt														
		s																			7300
1501	ttt 	cata	acta	aaaq	gtct	gaa	aat:	tt:	taa.	aaa1 +-	taa:	taaa	attt 	cca	ettt	tt	:ttt	tat	tga	tt -+	1560
1561	tat																				1620
1621	agt																				1680
1681	att																				1740

FIG. 1 (suite)

4/9

FIG. 2

FIG. 3

THIS PAGE BLANK (USPTO)

FIG. 4

THIS PAGE BLANK (USPTO)

7/9

NIp4-AspNuc

FIG 5

8/9

FIG. 6

FIG. 7

FEUILLE DE REMPLACEMENT (REGLE 26)

LISTE DE SEQUENCES

<110> INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) POQUET, Isabelle GRUSS, Alexandra BOLOTINE, Alexandre SOROKINE, Alexei <120> BACTERIES A GRAM POSITIF DEPOURVUES D'ACTIVITE PROTEASIQUE HtrA, ET LEURS UTILISATIONS. <130> MJPcb539/89 <140> <141> <150> FR9816462 <151> 1998-12-24 <160> 2 <170> PatentIn Ver. 2.1 <210> 1 <211> 1740 <212> ADN <213> Lactococcus lactis <220> <221> CDS <222> (230)..(1453) <400> 1 aaacaagatg aaaacatgat ttatcaacat ttttttactt ttttccactt ttctqtqqaa 60 aactttatta aaatatccac ttatcctcat taatttttag attatccaca aaaatgtgga 120 gaaactatat tagtttgatt tttgttacta ttaaggtatt attaagtgag agtagatata 180 attacatcat agaaatgcta caaagattaa taattgaaag gaattattt atg gca aaa 238 Met Ala Lys 1 gct aat ata gga aaa ttg cta tta aca ggt gtc gtg ggc gga gcc atc 286 Ala Asn Ile Gly Lys Leu Leu Thr Gly Val Val Gly Gly Ala Ile 5 10 gca ctt gga gga agt gca atc tat caa agc act aca aat caa tcg gca 334 Ala Leu Gly Gly Ser Ala Ile Tyr Gln Ser Thr Thr Asn Gln Ser Ala 20 25 aat aat agt cgt tca aat aca act agt aca aag gtt agt aac gtt tcg 382 Asn Asn Ser Arg Ser Asn Thr Thr Ser Thr Lys Val Ser Asn Val Ser 40 gta aat gtc aat acc gat gtt acc tct gca att gaa aaa gtt tca aat 430 Val Asn Val Asn Thr Asp Val Thr Ser Ala Ile Glu Lys Val Ser Asn 55 tot gto gtt tot gtt atg aat tat caa aaa gat aac toa caa agt agt 478 Ser Val Val Ser Val Met Asn Tyr Gln Lys Asp Asn Ser Gln Ser Ser 70 75

	agt Ser									526
	tta Leu									574
	ggt Gly									622
	tca Ser									670
	gtt Val 150							Leu		718
	gaa Glu									766
	att Ile									814
	gca Ala									862
	act Thr						Asn		Asn	910
	aca Thr 230									958
	att Ile									1006
	gaa Glu									1054
	aat Asn									1102
	tca Ser									1150
	aca Thr 310	_	_				-		-	1198

ggt (1246
gct (Ala (340																1294
gta a Val																1342
aat d Asn i																1390
gca d Ala i																1438
cca f					taat	aact	ta a	ataat	ttaa	at aa	aagt	ctto	e tgt	aaat	aga	1493
aggc	tttt	tt c	atac	ctaaa	ag to	ctgaa	aattt	t tta	aaaa	ataa	taaa	attto	cca t	tttt	cttt	1553
attg	attt	at q	gtaa	aata	aa aq	gttaa	agcat	gaa	aaatt	tta	cttt	actt	ag a	aagco	cgaaca	1613
attt	ttga	ıgt c	atto	cagga	aa tt	ggto	gtgo	aat	gaaa	acat	caac	caacq	gcg (ccctt	gattt	1673
aatg	ggca	itt ç	gacto	ggaca	aa aa	aaato	cctga	a gga	atgat	tac	gata	atcct	cc a	attta	aaatac	1733
ttate	ggc															1740
~210°	. 2															-

<210> 2 <211> 408 <212> PRT

<213> Lactococcus lactis

<400> 2

Met Ala Lys Ala Asn Ile Gly Lys Leu Leu Thr Gly Val Val Gly

1 5 10 15

Gly Ala Ile Ala Leu Gly Gly Ser Ala Ile Tyr Gln Ser Thr Thr Asn
20 25 30

Gln Ser Ala Asn Asn Ser Arg Ser Asn Thr Thr Ser Thr Lys Val Ser 35 40 45

Asn Val Ser Val Asn Val Asn Thr Asp Val Thr Ser Ala Ile Glu Lys 50 55 60

Val Ser Asn Ser Val Val Ser Val Met Asn Tyr Gln Lys Asp Asn Ser 65 70 75 80

Gln Ser Ser Asp Phe Ser Ser Ile Phe Gly Gly Asn Ser Gly Ser Ser 85 90 95

Ser Ser Thr Asp Gly Leu Gln Leu Ser Ser Glu Gly Ser Gly Val Ile 100 105 110

Tyr Lys Lys Ser Gly Giy Asp Ala Tyr Val Val Thr Asn Tyr His Val 115 120 125

Ile Ala Gly Asn Ser Ser Leu Asp Val Leu Leu Ser Gly Gly Gln Lys 130 135 140

Val Lys Asp Ser Val Val Gly Tyr Asp Glu Tyr Thr Asp Leu Ala Val
145 150 155 - 160

Leu Lys Ile Ser Ser Glu His Val Lys Asp Val Ala Thr Phe Ala Asp 165 170 175

Ser Ser Lys Leu Thr Ile Gly Glu Pro Ala Ile Ala Val Gly Ser Pro 180 185 190

Leu Gly Ser Gln Phe Ala Asn Thr Ala Thr Glu Gly Ile Leu Ser Ala 195 200 . 205

Thr Ser Arg Gln Val Thr Leu Thr Gln Glu Asn Gly Gln Thr Thr Asn 210 225

Ile Asn Ala Ile Gln Thr Asp Ala Ala Ile Asn Pro Gly Asn Ser Gly 225 230 235 240

Gly Ala Leu Ile Asn Ile Glu Gly Gln Val Ile Gly Ile Thr Gln Ser 245 250 255

Lys Ile Thr Thr Glu Asp Gly Ser Thr Ser Val Glu Gly Leu Gly 260 265 270

Phe Ala Ile Pro Ser Asn Asp Val Val Asn Ile Ile Asn Lys Leu Glu 275 280 285

Asp Asp Gly Lys Ile Ser Arg Pro Ala Leu Gly Ile Arg Met Val Asp 290 295 300

Leu Ser Gln Leu Ser Thr Asn Asp Ser Ser Gln Leu Lys Leu Leu Ser 305 310 315 320

Ser Val Thr Gly Gly Val Val Val Tyr Ser Val Gln Ser Gly Leu Pro 325 330 335

Ala Ala Ser Ala Gly Leu Lys Ala Gly Asp Val Ile Thr Lys Val Gly 340 345 350

Asp Thr Ala Val Thr Ser Ser Thr Asp Leu Gln Ser Ala Leu Tyr Ser 355 360 365

His Asn Ile Asn Asp Thr Val Lys Val Thr Tyr Tyr Arg Asp Gly Lys 370 375 380

Ser Asn Thr Ala Asp Val Lys Leu Ser Lys Ser Thr Ser Asp Leu Glu 385 390 395 400

Thr Ser Ser Pro Ser Ser Ser Asn 405

and the state of the section

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/57 C12N9/52

//C12R1/225

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC 7 & C12N & C12R \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate. of the relevant passages	Relevant to claim No.
Y	ANDRÈAS SMEDS ET AL.: "Molecular characterization of a stress-inducible gene from Lactobacillus helveticus" JOURNAL OF BACTERIOLOGY, vol. 180, no. 23, December 1998 (1998-12), pages 6148-6153, XP002113159 cited in the application abstract page 6149, left-hand column, paragraph 2 - paragraph 3 page 6150, right-hand column, paragraph 2 -page 6152, left-hand column, paragraph 4	2,3

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu- ments, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search	Date of mailing of the international search report
22 March 2000	29/03/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer
Fax: (+31-70) 340-3016	Montero Lopez, B

PCT/FR 99/03270

PALLEN M J ET AL: "The HtrA family of serine proteases."	Relevant to claim No.
PALLEN M J ET AL: "The HtrA family of	
	1 5
MOLECULAR MICROBIOLOGY, (1997 OCT) 26 (2) 209-21. REF: 72, XP002113160 abstract	2,3
page 209, right-hand column, paragraph 2 page 211, left-hand column, paragraph 2 -right-hand column, paragraph 2 page 215, left-hand column, last paragraph -page 216, right-hand column, paragraph 1 page 218, left-hand column, paragraph 4	
WO 88 05821 A (PRESIDENT AND FELLOWS OF THE HARVARD COLLEGE) 11 August 1988 (1988-08-11) cited in the application page 2, line 17 - line 31 page 4, line 28 - line 34 page 5, line 25 -page 6, line 9; example 4	1,5
WO 91 15572 A (THE WELCOME FOUNDATION LIMITED) 17 October 1991 (1991-10-17) page 2, last paragraph -page 3, paragraph 2 page 7, paragraph 2 -page 8, paragraph 1; examples 1,5	5,9,10
US 5 264 365 A (GEORGE GEORGION ET AL.) 23 November 1993 (1993-11-23) column 2, line 58 -column 3, line 40 column 4, line 56 -column 5, line 13; examples 1-6	1,4-6
_	
* **	
	abstract page 209, right-hand column, paragraph 2 page 211, left-hand column, paragraph 2 -right-hand column, paragraph 2 page 215, left-hand column, last paragraph -page 216, right-hand column, paragraph 1 page 218, left-hand column, paragraph 4 W0 88 05821 A (PRESIDENT AND FELLOWS OF THE HARVARD COLLEGE) 11 August 1988 (1988-08-11) cited in the application page 2, line 17 - line 31 page 4, line 28 - line 34 page 5, line 25 -page 6, line 9; example 4 W0 91 15572 A (THE WELCOME FOUNDATION LIMITED) 17 October 1991 (1991-10-17) page 2, last paragraph -page 3, paragraph 2 page 7, paragraph 2 -page 8, paragraph 1; examples 1,5 US 5 264 365 A (GEORGE GEORGION ET AL.) 23 November 1993 (1993-11-23) column 2, line 58 -column 3, line 40 column 4, line 56 -column 5, line 13;

INTERNA

NAL SEARCH REPORT

Inter .onal Application No PCT/FR 99/03270

Information on patent family members

Patent document cited in search report			Publication date		Patent family member(s)	Publication date	
WO	8805821	Α	11-08-1988	AT DE	122391 T 3853745 D	15-05-1995 14-06-1995	
				EP	0300035 A	25-01-1989	
	-		-	JP	- 1502320 T	17-08-1989	
				US 	4946783 A	07-08-1990	
WO	9115572	Α	17-10-1991	AT	157397 T	15-09-1997	
*				AU	659995 B	08-06-1995	
				AU	7541791 A	30-10-1991	
				CA	2079463 A	01-10-1991	
				DE.	69127440 D	02-10-1997	
				DE	69127440 T	02-01-1998	
				· DK	524205 T	27-10-1997	
				EP	0524205 A	27-01-1993	
				ES	2106776 T	16-11-1997	
				GR	3025258 T	27-02-1998	
				HU	65496 A	28-06-1994	
				IL	97720 A	20-06-1999	
				ΝZ	237616 A	25-03-1994	
				US	5804194 A	08-09-1998	
				US	5980907 A	09-11-1999	
				ZA	9102397 A	25-11-1992	
US	5264365	Α	23-11-1993	US	5508192 A	16-04-1996	

RAPPORT DE RECHE ENTERNATIONALE

Dem ... Internationale No PCT/FR 99/03270

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C12N15/57 C12N9/52

//C12R1/225

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultee (système de classification suivi des symboles de classement) C1B 7 C12N C12R

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUM	ENTS CONSIDERES COMME PERTINENTS	·
Catégorie '	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visees
X	ANDRÈAS SMEDS ET AL.: "Molecular characterization of a stress-inducible gene from Lactobacillus helveticus" JOURNAL OF BACTERIOLOGY, vol. 180, no. 23, décembre 1998 (1998-12), pages 6148-6153, XP002113159 cité dans la demande	5
Y	abrégé page 6149, colonne de gauche, alinéa 2 - alinéa 3 page 6150, colonne de droite, alinéa 2 -page 6152, colonne de gauche, alinéa 4/	2,3
	<u> </u>	

X Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe
 Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date 	"T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'Invention "X" document particulièrement pertinent; l'Invention revendiquée ne peut
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à	être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres
une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée	documents de même nature, cette combinaison étant évidente pour une personne du métier "&" document qui tait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 22 mars 2000	Date d'expédition du présent rapport de recherche internationale 29/03/2000
Nom et adresse postale de l'administration chargée de la recherche international Office Européen des Brevets, P.B. 5818 Patentiaan 2	e Fonctionnaire autorisé
NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Montero Lopez, B

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

12 人名英格兰斯特

1

RAPPORT DE RECERCHE INTERNATIONALE

PCT/FR 99/03270

		<u> </u>	·
C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS		
Catégorie ?	identification des documents cités, avec,le cas échéant, l'indicationdes passages p	ertinents	no, des revendications visées
X	PALLEN M J ET AL: "The HtrA family of serine proteases." MOLECULAR MICROBIOLOGY, (1997 OCT) 26 (2) 209-21. REF: 72, XP002113160		1,5
Y	·		2,3
	abrégé page 209, colonne de droite, alinéa 2 page 211, colonne de gauche, alinéa 2 -colonne de droite, alinéa 2 page 215, colonne de gauche, dernier alinéa -page 216, colonne de droite, alinéa 1 page 218, colonne de gauche, alinéa 4		
X	WO 88 05821 A (PRESIDENT AND FELLOWS OF THE HARVARD COLLEGE) 11 août 1988 (1988-08-11) cité dans la demande page 2, ligne 17 - ligne 31 page 4, ligne 28 - ligne 34 page 5, ligne 25 -page 6, ligne 9; exemple 4		1,5
X	WO 91 15572 A (THE WELCOME FOUNDATION LIMITED) 17 octobre 1991 (1991-10-17) page 2, dernier alinéa -page 3, alinéa 2 page 7, alinéa 2 -page 8, alinéa 1; exemples 1,5		5,9,10
X	US 5 264 365 A (GEORGE GEORGION ET AL.) 23 novembre 1993 (1993-11-23) colonne 2, ligne 58 -colonne 3, ligne 40 colonne 4, ligne 56 -colonne 5, ligne 13; exemples 1-6		1,4-6
,		•	
	-		
	·		
,			

1. 6.5. 1. 1. 5.

RAPPORT DE RECERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

PCT/FR 99/03270

Membre(s) de la Date de Document brevet cité Date de au rapport de recherche publication famille de brevet(s) publication 11-08-1988 15-05-1995 WO 8805821 AT 122391 T DE 3853745 D 14-06-1995 EP 0300035 A 25-01-1989 JP-1502320 T 17-08-1989 US 07-08-1990 4946783 A 17-10-1991 AT 157397 T 15-09-1997 WO 9115572 Α ΑU 659995 B 08-06-1995 ΑU 7541791 A 30-10-1991 CA 2079463 A 01-10-1991 69127440 D DE 02-10-1997 69127440 T 02-01-1998 DE DK 524205 T 27-10-1997 EP 0524205 A 27-01-1993 ES 2106776 T 16-11-1997 3025258 T 27-02-1998 GR 28-06-1994 HU 65496 A IL 97720 A 20-06-1999 NZ 237616 A 25-03-1994 US 5804194 A 08-09-1998 US 5980907 A 09-11-1999 ZA 9102397 A 25-11-1992 US 5264365 Α 23-11-1993 US 5508192 A 16-04-1996 THIS PAGE BLANK (U.S. .