Compiler Design

Language and Grammars

- Every (programming) language has precise rules
 - In English:
 - Subject Verb Object
 - In C
 - programs are made of functions
 - » Functions are made of statements etc.

Parsing

A.K.A. Syntax Analysis

- Recognize sentences in a language.
- Discover the structure of a document/program.
- Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.
- The above tree is used later to guide translation.

Parsing During Compilation

report errors

Errors in Programs

Lexical

```
if x<1 then y=5: "Typos"
```

Syntactic

```
if ((x<1) & (y>5))) ...
{ ... { ... _ ... }
```

Semantic

```
if (x+5) then ...
Type Errors
Undefined IDs, etc.
```

Logical Errors

```
if (i<9) then ...
Should be <= not <
Bugs
Compiler cannot detect Logical Errors
```

Error Detection

- Much responsibility on Parser
 - Many errors are syntactic in nature
 - Precision/ efficiency of modern parsing method
 - Detect the error as soon as possible
- Challenges for error handler in Parser
 - Report error clearly and accurately
 - Recover from error and continue...
 - Should be efficient in processing
- Good news is
 - Simple mechanism can catch most common errors
- Errors don't occur that frequently!!
 - 60% programs are syntactically and semantically correct
 - 80% erroneous statements have only 1 error, 13% have 2
 - Most error are trivial: 90% single token error
 - 60% punctuation, 20% operator, 15% keyword, 5% other error

Adequate Error Reporting is Not a Trivial Task

Difficult to generate clear and accurate error messages.

Example

```
function foo () {
    if (...) {
    } else {
                       Missing } here
                        Not detected until here
Example
    int myVarr;
                           Misspelled ID here
    x = myVar;
    . . .
                          Not detected until here
```

ERROR RECOVERY

- After first error recovered
 - Compiler must go on!
 - Restore to some state and process the rest of the input
- Error-Correcting Compilers
 - Issue an error message
 - Fix the problem
 - Produce an executable

Example

```
Error on line 23: "myVarr" undefined. "myVar" was used.
```

May not be a good Idea!!

Guessing the programmers intention is not easy!

ERROR RECOVERY MAY TRIGGER MORE ERRORS!

- Inadequate recovery may introduce more errors
 - Those were not programmers errors
- Example:

Too many Error message may be obscuring

- May bury the real message
- Remedy:
 - allow 1 message per token or per statement
 - Quit after a maximum (e.g. 100) number of errors

ERROR RECOVERY APPROACHES: PANIC MODE

Discard tokens until we see a "synchronizing" token.

Example

```
Skip to next occurrence of 
} end ;
Resume by parsing the next statement
```

- The key...
 - Good set of synchronizing tokens
 - Knowing what to do then
- Advantage
 - Simple to implement
 - Does not go into infinite loop
 - Commonly used
- Disadvantage
 - May skip over large sections of source with some errors

ERROR RECOVERY APPROACHES: PHRASE-LEVEL RECOVERY

Compiler corrects the program

by deleting or inserting tokens

...so it can proceed to parse from where it was.

Example

while $(x==4)_{x}$ y:= a + b

Insert do to fix the statement

The key...

Don't get into an infinite loop

...constantly inserting tokens and never scanning the actual source

- Generally used for error-repairing compilers
 - Difficulty: Point of error detection might be much later the point of error occurrence

ERROR RECOVERY APPROACHES: ERROR PRODUCTIONS

- Augment the CFG with "Error Productions"
- Now the CFG accepts anything!
- If "error productions" are used...
 Their actions:
 { print ("Error...") }
- Used with...
 - LR (Bottom-up) parsing
 - Parser Generators

ERROR RECOVERY APPROACHES: GLOBAL CORRECTION

- Theoretical Approach
- Find the minimum change to the source to yield a valid program
 - Insert tokens, delete tokens, swap adjacent tokens
- Global Correction Algorithm

Input: grammatically incorrect input string x; grammar G

Output: grammatically correct string y

Algorithm: converts x → y using minimum number changes (insertion, deletion etc.)

Impractical algorithms - too time consuming

Parsers

We categorize the parsers into two groups:

1. Top-Down Parser

the parse tree is created top to bottom, starting from the root.

2. Bottom-Up Parser

- the parse is created bottom to top; starting from the leaves
- Both top-down and bottom-up parsers scan the input from left to right (one symbol at a time).
- Efficient top-down and bottom-up parsers can be implemented only for sub-classes of context-free grammars.
 - LL for top-down parsing
 - LR for bottom-up parsing

CONTEXT FREE GRAMMARS (CFG)

A context-free grammar has four components: $G = (V, \Sigma, P, S)$

- ✓ A set of **non-terminals** (V). Non-terminals are syntactic variables that denote sets of strings. The non-terminals define sets of strings that help define the language generated by the grammar.
- \checkmark A set of tokens, known as **terminal symbols** (Σ). Terminals are the basic symbols from which strings are formed.
- ✓ A set of **productions** (P). The productions of a grammar specify the manner in which the terminals and non-terminals can be combined to form strings. Each production consists of a **non-terminal** called the left side of the production, an arrow, and a sequence of tokens and/or **on-terminals**, called the right side of the production.
- ✓ One of the non-terminals is designated as the **start symbol** (S); from where the production begins.

Example of CFG:

```
G = ( V, \Sigma, P, S )Where:

V = { Q, Z, N }

\Sigma = \{ 0, 1 \}
P = { Q \rightarrow Z | Q \rightarrow N | Q \rightarrow E | Z \rightarrow 0Q0 |

N \rightarrow 1Q1 }

S = { Q }
```

This grammar describes palindrome language, such as: 1001, 11100111, 00100, 1010101, 11111, etc.

Rule Alternative Notations

NOTATIONAL CONVENTIONS

```
Terminals
   a b c ...
Nonterminals
   A B C ...
   Expr
Grammar Symbols (Terminals or Nonterminals)
   X Y Z U V W ...
                            A sequence of zero
Strings of Symbols
                            Or more terminals
   αβγ...
                             And nonterminals
Strings of Terminals
   xyzuvw...
                              Including ε
Examples
   A \rightarrow \alpha B
         A rule whose righthand side ends with a nonterminal
   A \rightarrow x \alpha
         A rule whose righthand side begins with a string of terminals (call it "x")
```

DERIVATIONS

- ☐A derivation is basically a sequence of production rules, in order to get the input string. During parsing, we take two decisions for some sentential form of input:
- ☐ Deciding the non-terminal which is to be replaced.
- □ Deciding the production rule, by which, the non-terminal will be replaced.

To decide which non-terminal to be replaced with production rule, we can have two options.

DERIVATIONS

```
1. E → E + E

2. → E * E

3. → (E)

4. → - E

5. → ID
```

A "Derivation" of "(id*id)"

$$E \Rightarrow (E) \Rightarrow (E*E) \Rightarrow (\underline{id}*E) \Rightarrow (\underline{id}*\underline{id})$$
"Sentential Forms"

A sequence of terminals and nonterminals in a derivation $(\underline{id}*E)$

DERIVATIONS

```
If A \rightarrow \beta is a rule, then we can write
```


Any sentential form containing a nonterminal (call it A) ... such that A matches the nonterminal in some rule.

Derives in zero-or-more steps ⇒*

$$E \Rightarrow^* (id*id)$$

If
$$\alpha \Rightarrow^* \beta$$
 and $\beta \Rightarrow \gamma$, then $\alpha \Rightarrow^* \gamma$

Derives in one-or-more steps ⇒+

CFG Terminology

<u>Given</u>

- G A grammar
- S The Start Symbol

Define

```
L(G) The language generated

L(G) = \{ w \mid S \Rightarrow + w \}
```

"Equivalence" of CFG's

If two CFG's generate the same language, we say they are "equivalent." $G_1 \approx G_2$ whenever $L(G_1) = L(G_2)$

In making a derivation...

Choose which nonterminal to expand

Choose which rule to apply

LEFTMOST DERIVATION

In a derivation... always expand the *leftmost* nonterminal.

```
E
\Rightarrow E+E
\Rightarrow (E)+E
\Rightarrow (E*E)+E
\Rightarrow (\underline{id}*E)+E
\Rightarrow (\underline{id}*\underline{id})+E
\Rightarrow (\underline{id}*\underline{id})+E
```

```
1. E → E + E

2. → E * E

3. → (E)

4. → - E

5. → ID
```

Let \Rightarrow_{LM} denote a step in a leftmost derivation (\Rightarrow_{LM}^* means zero-or-more steps)

At each step in a leftmost derivation, we have

$$wA\gamma \Rightarrow_{LM} w\beta\gamma$$
 where $A \rightarrow \beta$ is a rule

(Recall that W is a string of terminals.)

Each sentential form in a leftmost derivation is called a "left-sentential form."

If $S \Rightarrow_{LM}^* \alpha$ then we say α is a "left-sentential form."

RIGHTMOST DERIVATION

In a derivation... always expand the <u>rightmost</u> nonterminal.

```
E
\Rightarrow E+E
\Rightarrow E+\underline{id}
\Rightarrow (E)+\underline{id}
\Rightarrow (E*E)+\underline{id}
\Rightarrow (E*\underline{id})+\underline{id}
\Rightarrow (\underline{id}*\underline{id})+\underline{id}
```

```
1. E \rightarrow E + E

2. \rightarrow E \star E

3. \rightarrow (E)

4. \rightarrow -E

5. \rightarrow ID
```

Let \Rightarrow_{RM} denote a step in a rightmost derivation (\Rightarrow_{RM}^* means zero-or-more steps)

At each step in a rightmost derivation, we have

$$\alpha Aw \Rightarrow_{RM} \alpha \beta w$$
 where $A \rightarrow \beta$ is a rule

(Recall that W is a string of terminals.)

Each sentential form in a rightmost derivation is called a "right-sentential form."

If $S \Longrightarrow_{RM}^* \alpha$ then we say α is a "right-sentential form."

- A parse tree is a graphical representation of a derivation sequence of a sentential form.
- Tree nodes represent symbols of the grammar (nonterminals or terminals) and tree edges represent derivation steps.
- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.

Two choices at each step in a derivation...

- · Which non-terminal to expand
- · Which rule to use in replacing it

The parse tree remembers only this

Two choices at each step in a derivation...

- · Which non-terminal to expand
- Which rule to use in replacing it

The parse tree remembers only this

I

> E+E

 $\Rightarrow E + id$

 \Rightarrow (E) + id

 $\Rightarrow (E^*E) + \underline{id}$

 $\Rightarrow (E^*\underline{id}) + \underline{id}$

⇒ (<u>id</u>*<u>id</u>)+<u>id</u>

Two choices at each step in a derivation...

- · Which non-terminal to expand
- Which rule to use in replacing it

The parse tree remembers only this

Leftmost Derivation:

Ε

⇒ E+E

→ (E) +E

 \Rightarrow (E*E) +E

 \Rightarrow (<u>id</u>*E) +E

 \Rightarrow (id*id)+E

 \Rightarrow (<u>id</u>*<u>id</u>)+<u>id</u>

Rightmost Derivation:

E

> E+E

⇒ E+id

 \Rightarrow (E)+id

 $\Rightarrow (E*E)+id$

 \Rightarrow (E*<u>id</u>) +<u>id</u>

 \Rightarrow (id*id)+id

1.
$$E \rightarrow E + E$$

2.
$$\rightarrow$$
 E \star E

$$3. \rightarrow (E)$$

5. → **I**D

id

id

Given a leftmost derivation, we can build a parse tree. Given a rightmost derivation, we can build a parse tree.

Every parse tree corresponds to...

- A single, unique leftmost derivation
- A single, unique rightmost derivation

AMBIGUOUS GRAMMAR

Ambiguity:

However, one input string may have several parse trees!!!

Therefore:

- Several leftmost derivations
- Several rightmost derivations

A grammar that produces more than one parse tree for any input sentence is said to be an ambiguous grammar.

AMBIGUOUS GRAMMAR

Leftmost Derivation #1

Е

 \Rightarrow E+E

 \Rightarrow id+E

 \Rightarrow id+E*E

 $\Rightarrow id+id*E$

⇒ id+id*id

1. E → E + E 2. → E * E 3. → (E) 4. → - E 5. → ID

Input: id+id*id

Leftmost Derivation #2

E

⇒ E*E

 \Rightarrow E+E*E

 \Rightarrow id+E*E

⇒ <u>id</u>+<u>id</u>*E

⇒ <u>id</u>+<u>id</u>*<u>id</u>

AMBIGUOUS GRAMMAR

- > Is this an ambiguous grammar?
- > Example:
 - Find a derivation for the expression: 4/2+2

Why are ambiguous grammars problematic?

$$(4/2) + 2 = 4$$
 or $4/(2+2) = 1$

- ➤ It is often possible to transform an ambiguous grammar into an equivalent unambiguous grammar.
- In our grammar,
 - * has higher precedence than +
 - · each operator associates to the left

- For the most parsers, the grammar must be unambiguous.
- unambiguous grammar
 - unique selection of the parse tree for a sentence
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.
- An unambiguous grammar should be written to eliminate the ambiguity.
- We have to prefer one of the parse trees of a sentence (generated by an ambiguous grammar) to disambiguate that grammar to restrict to this choice.

What about this grammar?

```
E ::= E + E
| E - E
| E * E
| E / E
| num
| id
```


- Operators +-*/ have the same precedence!
- ➤ It is *ambiguous*: has more than one parse tree for the same input sequence (depending which derivations are applied each time)

Unambiguous Grammar

PREDICTIVE PARSING

- The goal is to construct a top-down parser that never backtracks
- Always leftmost derivations
- We must transform a grammar in two ways:
 - eliminate left recursion
 - perform left factoring
- These rules eliminate most common causes for backtracking although they do not guarantee a completely backtrack-free parsing

LEFT RECURSION: INFINITE LOOPING PROBLEM

A grammar is left-recursive if it has a non-terminal A, such that there is a derivation:

 $A \stackrel{+}{\Rightarrow} A\alpha$, for some α .

Top-Down parsing can't reconcile this type of grammar, since it could consistently make choice which wouldn't allow termination.

$$A \Rightarrow A\alpha \Rightarrow A\alpha\alpha \Rightarrow A\alpha\alpha\alpha \dots \text{ etc. } A \rightarrow A\alpha \mid \beta$$

So we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.

The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.

IMMEDIATE LEFT RECURSION

- ightharpoonup A ightharpoonup A ightharpoonup A ightharpoonup Where ho does not start with A
 - eliminate immediate left recursion
- $A \rightarrow \beta A'$ where A' is a new nonterminal
- $A' \rightarrow \alpha A' \mid \epsilon$ an equivalent grammar

More General (but still immediate):

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid A\alpha_3 \mid \dots \mid \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots$$

Transform into:

$$\begin{array}{l} A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \beta_3 A' \mid ... \\ A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \alpha_3 A' \mid ... \mid \epsilon \end{array}$$

IMMEDIATE LEFT RECURSION ELIMINATION: EXAMPLE

Our Example:

$$E \rightarrow E + T \mid T \longrightarrow \begin{cases} E \rightarrow TE' \\ E' \rightarrow + TE' \mid \in \end{cases}$$

$$T \rightarrow T * F \mid F \longrightarrow F \rightarrow (E) \mid id \longrightarrow F$$

LEFT RECURSION IN MORE THAN ONE STEP

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

Example:

```
S \to A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \to A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid \underline{\mathbf{e}}
```

Is A left recursive? Yes.

Is S left recursive? Yes, but not immediate left recursion. $S \Rightarrow Af \Rightarrow Sdf$

Approach:

Look at the rules for S only (ignoring other rules)... No left recursion.

Look at the rules for A...

Do any of A's rules start with S? Yes.

$$A \rightarrow S\underline{d}$$

Get rid of the S. Substitute in the righthand sides of S.

$$A \rightarrow Afd \mid bd$$

The modified grammar:

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow A\underline{\mathbf{c}} \mid A\underline{\mathbf{fd}} \mid \underline{\mathbf{bd}} \mid \underline{\mathbf{e}}$

Now eliminate immediate left recursion involving A.

$$S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$$

 $A \rightarrow \underline{\mathbf{bd}}A' \mid \underline{\mathbf{e}}A'$
 $A' \rightarrow \mathbf{c}A' \mid \mathbf{fd}A' \mid \underline{\mathbf{e}}$

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}

A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}

B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
```

So Far:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}

A \rightarrow \underline{\mathbf{bd}}A' \mid \underline{\mathbf{Be}}A'

A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \varepsilon
```

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}

A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}

B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
```

So Far:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow \underline{\mathbf{bd}}A' \mid B\underline{\mathbf{e}}A'
A' \rightarrow \underline{\mathbf{c}}A' \mid \underline{\mathbf{fd}}A' \mid \varepsilon
B \rightarrow A\underline{\mathbf{g}} \mid \underline{\mathbf{Sh}} \mid \underline{\mathbf{k}} \rightarrow
```

Look at the B rules next; Does any righthand side start with "S"?

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}
B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
```

<u>So Far:</u>

```
S \rightarrow A\underline{f} \mid \underline{b}
A \rightarrow \underline{bd}A' \mid B\underline{e}A'
A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \varepsilon
B \rightarrow A\underline{g} \mid A\underline{fh} \mid \underline{bh} \mid \underline{k}

Substitute, using the rules for "S"
A\underline{f}... \mid b...
```

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}

A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}

B \rightarrow A\mathbf{g} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
```

So Far:

```
S \rightarrow A\underline{f} \mid \underline{b}
A \rightarrow \underline{bd}A' \mid B\underline{e}A'
A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon
B \rightarrow A\underline{g} \mid A\underline{fh} \mid \underline{bh} \mid \underline{k}
```

Does any righthand side start with "A"?

```
The Original Grammar:
       S \rightarrow Af \mid \underline{b}
       A \rightarrow Ac \mid Sd \mid Be
       B \rightarrow Ag \mid Sh \mid k
So Far:
       S \rightarrow A\mathbf{f} \mid \mathbf{b}
       A \rightarrow bdA' \mid BeA'
       A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \varepsilon
       B \rightarrow \underline{bd}A'g \mid B\underline{e}A'g \mid A\underline{fh} \mid \underline{bh} \mid \underline{k}
                Substitute, using the rules for "A"
                              bdA'... | BeA'...
```

The Original Grammar: $S \rightarrow Af \mid \underline{b}$ $A \rightarrow Ac \mid Sd \mid Be$ $B \rightarrow Ag \mid Sh \mid k$ So Far: $S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}$ $A \rightarrow bdA' \mid BeA'$ $A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon$ $B \rightarrow \underline{bd}A'g \mid \underline{Be}A'g \mid \underline{bd}A'\underline{fh} \mid \underline{Be}A'\underline{fh} \mid \underline{bh} \mid \underline{k}$ Substitute, using the rules for "A" **bd**A'... | B**e**A'...

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}
A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}}
B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}
```

So Far:

```
S \rightarrow A\underline{f} \mid \underline{b}

A \rightarrow \underline{bd}A' \mid B\underline{e}A'

A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \varepsilon

B \rightarrow \underline{bd}A'\sigma \mid B_{\sigma}A'\sigma \mid b\sigma
```

 $A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon$ $B \rightarrow \underline{bd}A'\underline{g} \mid \underline{Be}A'\underline{g} \mid \underline{bd}A'\underline{fh} \mid \underline{Be}A'\underline{fh} \mid \underline{bh} \mid \underline{k}$

Next Form

```
S \rightarrow A\underline{f} \mid \underline{b}
A \rightarrow \underline{bd}A' \mid B\underline{e}A'
A' \rightarrow \underline{c}A' \mid \underline{fd}A' \mid \epsilon
B \rightarrow \underline{bd}A'\underline{g}B' \mid \underline{bd}A'\underline{fh}B' \mid \underline{bh}B' \mid \underline{k}B'
B' \rightarrow \underline{e}A'\underline{g}B' \mid \underline{e}A'\underline{fh}B' \mid \epsilon
```

Finally, eliminate any immediate Left recursion involving "B"

The Original Grammar:

```
S \rightarrow A\underline{\mathbf{f}} \mid \underline{\mathbf{b}}

A \rightarrow A\underline{\mathbf{c}} \mid S\underline{\mathbf{d}} \mid B\underline{\mathbf{e}} \mid C

B \rightarrow A\underline{\mathbf{g}} \mid S\underline{\mathbf{h}} \mid \underline{\mathbf{k}}

C \rightarrow B\underline{\mathbf{km}}A \mid AS \mid \underline{\mathbf{j}} -
```

If there is another nonterminal, then do it next.

So Far:

```
S \rightarrow A\underline{f} \mid \underline{b}
A \rightarrow \underline{b}\underline{d}A' \mid B\underline{e}A' \mid CA'
A' \rightarrow \underline{c}A' \mid \underline{f}\underline{d}A' \mid \epsilon
B \rightarrow \underline{b}\underline{d}A'\underline{g}B' \mid \underline{b}\underline{d}A'\underline{f}\underline{h}B' \mid \underline{b}\underline{h}B' \mid \underline{k}B' \mid CA'\underline{g}B' \mid CA'\underline{f}\underline{h}B'
B' \rightarrow \underline{e}A'\underline{g}B' \mid \underline{e}A'\underline{f}\underline{h}B' \mid \epsilon
```

ALGORITHM FOR ELIMINATING LEFT RECURSION

```
Assume the nonterminals are ordered A_1, A_2, A_3,...
          (In the example: S, A, B)
\underline{\text{for}} \underline{\text{each}} nonterminal A_i (for i = 1 to N) \underline{\text{do}}
   for each nonterminal A_i (for j = 1 to i-1) do
      Let A_i \rightarrow \beta_1 \mid \beta_2 \mid \beta_3 \mid \dots \mid \beta_N be all the rules for A_i
      if there is a rule of the form
         A_i \rightarrow A_i \alpha
      then replace it by
         A_i \rightarrow \beta_1 \alpha \mid \beta_2 \alpha \mid \beta_3 \alpha \mid \dots \mid \beta_N \alpha
      endIf
   endFor
   Eliminate immediate left recursion
            among the A_i rules
                                                                      Inner Loop
endFor
```

Left Factoring: Common Prefix Problem

Problem: Uncertain which of 2 rules to choose:

```
stmt \rightarrow if expr then stmt else stmt
| if expr then stmt
```

When do you know which one is valid?

What's the general form of stmt?

```
A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \alpha : \text{if } expr \text{ then } stmt \beta_1 : \text{else } stmt \quad \beta_2 : \in
```

Transform to:

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

EXAMPLE:

 $stmt \rightarrow if expr then stmt rest$

$$rest \rightarrow else\ stmt \mid \in$$

Left Factoring: Example

```
A \rightarrow \underline{abB} \mid \underline{aB} \mid \underline{cdg} \mid \underline{cdeB} \mid \underline{cdfB}
A \rightarrow aA' \mid cdg \mid cdeB \mid cdfB
A' \rightarrow bB \mid B
A \rightarrow aA' \mid cdA''
A' \rightarrow bB \mid B
A'' \rightarrow g \mid eB \mid fB
```

Left Factoring: Example

 $A \rightarrow ad \mid a \mid ab \mid abc \mid b$

 $A \rightarrow aA' \mid b$

A' \rightarrow d | ϵ | b | bc

 $A \rightarrow aA' \mid b$

 $A' \rightarrow d \mid \epsilon \mid bA''$

 $\textbf{A''} \rightarrow \epsilon \textbf{ | c}$

THE END