PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-251059

(43)Date of publication of application: 17.09.1999

(51)Int.CI.

H05B 33/12 G09F 9/30

H05B 33/26

(21)Application number : 10-047564

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

27.02.1998

(72)Inventor: YONEDA KIYOSHI

SHIBATA KENICHI

(54) COLOR DISPLAY DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a color display device by which a bright and clear color display can be obtained, by using only one kind (one color) of material for a light emitting layer of an organic EL element to simplify its process and also by enlarging its color area. SOLUTION: This color display device is equipped with a TFT having a source electrode 9 and a drain electrode 10 on a substrate 2, a cathode 12 connected to the source electrode 9 or to the drain electrode 10 and an EL element which is structured by laminating a light emitting element layer and an anode 17 in order and is driven by the TFT, and a color filter 22 is provided on the anode 17 side of the EL element in it.

LEGAL STATUS

[Date of request for examination]

19.05.2000

[Date of sending the examiner's decision of

17.04.2001

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-251059

(43)公開日 平成11年(1999)9月17日

(51) Int. Cl.	識別記号		FI				,
H05B	33/12		H 0 5 B	33/12	E		
G09F	9/30		G 0 9 F	9/30	$\mathbf{D}^{^{\prime}}$		
H 0 5 B	33/26		H 0 5 B	33/26	Α		
	審査請求 未請求 請求項の数4	OL		,	(全5頁)		
(21)出願番号	特願平10-47564		(71)出願人	000001889			
				三洋電機株	式会社		
(22)出願日	平成10年(1998)2月27日			大阪府守口	市京阪本通	2丁目5番5号	
			(72)発明者	米田 清			
				大阪府守口市	市京阪本通	2丁目5番5号	三洋
				電機株式会	社内		
•			(72)発明者	柴田 賢一			
				大阪府守口市	市京阪本通	2丁目5番5号	三洋
	n.P	-		電機株式会社	生内		
			(74)代理人	弁理士 安置	多り耕二	(外1名)	
		1					

(54) 【発明の名称】カラー表示装置

(57)【要約】

【課題】 有機EL素子の発光層を1種類(1色)の材料のみを用いるようにして工程が簡略化し、且つ色面積を大きくして明るく鮮明なカラー表示を得ることができるようにする。

【解決手段】 基板2上に、ソース電極9及びドレイン電極10を備えたTFTと、そのソース電極9又はドレイン電極10に接続された陰極12、発光素子層及び陽極17を順に積層して成りTFTによって駆動されるEL素子とを備えており、EL素子の陽極17側にカラーフィルタ22を設けたカラー表示装置とする。

【特許請求の範囲】

【請求項1】 基板上に、ソース電極及びドレイン電極を備えた薄膜トランジスタと、該薄膜トランジスタの上層に該薄膜トランジスタのソース電極又はドレイン電極に接続された陰極、発光素子層及び陽極を順に積層して成り前記薄膜トランジスタによって駆動されるエレクトロルミネッセンス素子と、を備えており、該エレクトロルミネッセンス素子の陽極側に色要素を設けたことを特徴とするカラー表示装置。

【請求項2】 前記色要素は、透明基板上にカラーフィ 10 ルタ層を備えてなることを特徴とする請求項1記載のカ ラー表示装置。

【請求項3】 前記色要素は、透明基板上に蛍光変換層を備えてなることを特徴とする請求項1記載のカラー表示装置。

【請求項4】 前記エレクトロルミネッセンス素子の陽極の形状は櫛状若しくは網目状であることを特徴とする請求項1記載のカラー表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、基板上に、エレクトロルミネッセンス素子(Electro Luminescence:以下、「EL」と称する。)及び薄膜トランジスタ(Thin Film Transistor:以下、「TFT」と称する。)素子を備えたカラー表示装置に関する。

[0002]

【従来の技術】近年、EL素子を用いたカラー表示装置が、CRTやLCDに代わるカラー表示装置として注目されている。図4に、従来のEL素子及びTFTを備えたカラー表示装置の断面図を示す。同図に示す如く、ガ30ラスや合成樹脂などから成る絶縁性基板2上に、ゲート電極3、ゲート絶縁膜4、ソース領域6及びドレイン領域7を備えた能動層5、層間絶縁膜8、ソース領域6及びドレイン領域7にそれぞれ接続されたソース電極9及びドレイン電極10、平坦化絶縁膜11を順次形成してなるTFTを形成する。ソース電極9は有機EL素子の陽極17に接続されており、有機EL素子のスイッチング素子として機能する。

【0003】このTFTの上に有機EL素子を形成する。有機EL素子は、TFTのソース電極に接続された 40 ITO (Indium Thin Oxide) 等の透明電極から成る陽極17、MTDATA (4,4'-bis(3-methylphenylphenylmino)biphenyl) から成る第2ホール輸送層16、TPD (4,4',4"-tris(3-methylphenylphenylmino)triphenylanine) からなる第1ホール輸送層15、発光層14、Bebq2から成る電子輸送層13、マグネシウム・インジウム合金(MgIn)から成る陰極12がこの順番で積層形成されている。このように、各層は有機化合物から成り、その各層と陽極17及び陰極12とによって有機EL素子が構成されている。50

【0004】その有機EL素子は、陽極17から注入されたホールと、陰極12から注入された電子とが発光層14の内部で再結合し、発光層14を形成する有機分子を励起して励起子が生じる。この励起子が放射失活する過程で発光層14から光が放たれ、この光が透明な陽極から透明絶縁基板2を介して外部へ出射される(図中、矢印方向)。

[0005]

【発明が解決しようとする課題】ところで、上述の従来の構造では、カラー表示を得るために有機EL素子の発光する色を、例えば三原色であるR(赤)、G(青)、B(青)とした場合には、発光層14がそれぞれの色を発光するような材料を選択しなければならない。例えば赤色の場合にはポルフィリンー亜鉛錯体(ZnPr)、緑色の場合には10ベンゾ[h]キノリノールーベリリウム錯体(BeBq2)、青色の場合にはアゾメチンー亜鉛錯体(AZM)をそれぞれ用いなければならず、それらの発光層の形成には各色毎に別々の工程で順次形成することとなり工程数が増えるという欠点があった。

20 【0006】また、有機EL素子から出射する各着色光は、基板2上に設けたTFT側に出射するため、TFTによって遮断されてしまうことになり、十分明るく鮮明な表示を得ることができないという欠点があった。そこで本発明は、上記の従来の欠点に鑑みて為されたものであり、有機EL素子の発光層を1種類(1色)の材料のみを用いるようにして工程が簡略化でき、且つ色面積が大きくなり明るく鮮明なカラー表示を得ることができるカラー表示装置を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明のカラー表示装置は、基板上に、ソース電極及びドレイン電極を備えた薄膜トランジスタの上層に薄膜トランジスタのソース電極又はドレイン電極に接続された陰極、発光素子層及び陽極を順に積層して成り前記薄膜トランジスタによって駆動されるエレクトロルミネッセンス素子と、を備えており、該エレクトロルミネッセンス素子の陽極側に色要素を設けたものである。

【0008】また、その色要素は、透明基板上に蛍光変 換層又はカラーフィルタ層を備えてなるものである。ま た、陽極の形状は櫛歯状又は網目状である。

[0009]

【発明の実施の形態】

<第1の実施の形態>本発明のカラー表示装置について以下に説明する。図1は、本実施の形態のカラーフィルタを備えたカラー表示装置の断面図である。

【0010】同図に示す如く、前述の図3に示した従来の有機EL素子及びTFTを備えたカラー表示装置と異なる点は、TFT上に形成した有機EL素子の構造が従来のものと反転している点と、カラー表示を得るために50 有機EL素子の陽極側に色要素としてカラーフィルタを

20

- 4

- 集

30

: 10

123

1. 2

設けた点と、発光層が1種類(1色)の発光材料からな っている点である。

【0011】表示画素1は、ガラスや合成樹脂などから 成る絶縁基板、又は絶縁性薄膜であるSiN膜、SiO 2 膜等を堆積して表面が絶縁性を有する導電性基板ある いは半導体基板等の基板2上に、TFT及び有機EL素 子を積層形成して成り、マトリクス状に配置されてお り、カラー表示パネルを形成する。基板2は透明でも不 透明でも良い。

【0012】TFTは、ゲート電極3をゲート絶縁膜4 の下に設けたいわゆるボトムゲート型のTFTであり、 能動層として多結晶シリコン膜を用いた従来の構造と同 様であるので説明を省略するが、TFTのソース電極9 は有機EL素子の陰極12に接続されている。また、T FTの構造はボトムゲート型に限るものではなく、ゲー ト電極がゲート絶縁膜の上に設けられるいわゆるトップ ゲート型でもよい。

【0013】有機EL素子は、マグネシウム・インジウ ム合金(MgIn)又はアルミニウム・リチウム合金 (AlLi) 等から成りTFTのソース電極9に接続さ れた陰極12、Bebq2から成る電子輸送層13、発 光層14、TPD (4,4',4"-tris(3-methylphenylphe nylamino) triphenylanine) からなる第1ホール輸送層 15, MTDATA (4,4' -bis(3-methylphenylphenyl amino)biphenyl) から成る第2ホール輸送層16、IT O (Indium Thin Oxide) 等の透明電極から成る陽極 1 7がこの順番で積層形成されて成る。

【0014】有機EL素子から発光される光は透明な陽 極17から外部(図中、紙面上方向)へ出射される。な お、陽極17は共通電極であり、また発光層14、電子 30 輸送層13、各ホール輸送層15,16は絶縁膜18に て隣接する表示画素間で絶縁されている。この有機EL 表示装置の表示パネルに色要素としてカラーフィルタを 設ける。

【0015】図1に示す如く、陽極17側に、透明フィ ルム又はガラス基板等の透明絶縁基板21にR、G、B を備えたカラーフィルタ22を設ける。このカラーフィ ルタ22は、有機EL素子の陽極17側にその周辺を接 着剤にて接着して固定する。なお、カラーフィルタ22 はEL素子とTFTからなる表示画素1に対応して各色 40 が設けられている。各色間には光を遮断するブラックマ トリックス (BM) 23が備えられていても良い。

【0016】有機EL素子からの発光光は、カラーフィ ルタ22を通ってそれぞれの色を図の矢印の方向に出射 する。ここで、有機EL素子の発光層の発光材料につい て説明する。有機EL素子の発光層14の発光材料は、 有機EL素子上に設けた色要素に応じて選択する。即 ち、本実施の形態の場合のように、カラーフィルタを用 いる場合には、有機EL素子から発光する光の色は白色 光を用いる。

【0017】白色光を発光させるためには、発光層14 の材料としては、ZnBTZ錯体を用いたり、あるいは 積層体のTPD (芳香族ジアミン) / p-E t TA Z (1, 2, 4-トリアゾール誘導体) /Ala (ただ し、「Alq」は赤色発光色素であるニールレッドで部 分的にドープすることを意味する。) を用いることによ り実現できる。

【0018】こうして有機EL素子の発光層として用い る発光材料は本実施の形態の場合には、白色発光材料1 種類を用いるだけでよく、また、透明基板21上にR, G、Bの3色からなるカラーフィルタを配置してそのカ ラーフィルタ形成面と有機EL素子の陽極側とを接着す るだけであるから、従来の如く3原色を発光するために 有機EL素子層内に3種類の発光層の材料を形成してい たのに比べて非常に工程が簡略化できる。

【0019】また、発光光が陽極に設けたカラーフィル タ側から表示画素の色として出射されるので従来の如く TFT基板側から出射されるよりも色が発光される面積 が大きくなり明るく鮮明なカラー表示を得ることができ

<第2の実施の形態>図2に、色要素として、蛍光変換 層を用いた場合の表示装置の断面図を示す。

【0020】同図に示す如く、第1の実施の形態と異な る点は、陽極17上に蛍光変換層24を形成した点、発 光層14の材料が例えば青色発光材料を用いた点であ る。ガラス基板等の透明基板21上に蒸着法により有機 材料を蒸着して蛍光変換層24を形成する。そしてその 透明基板21を陽極17上に貼り付ける。蛍光変換層2 4として、有機EL素子の発光層を青色が発光される材 料とした場合について説明する。

【0021】蛍光変換層24は、照射された着色光の色 を他の色に変換する機能を有している。従って、発光層 14を青色発光の材料を用いてカラー表示装置から3原 色のR、G、Bを得ようとする場合には、蛍光変換層2 4は、青色が赤色または緑色に変換される材料を用いて 形成しなければならない。 有機EL素子の発光層14か ら発光した青色光を赤色光に変換する場合には、その発 光層を4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリン) - 4 H-ピラン (DCM) 等を用いて形成する。そうすることにより、表示画素か ら赤色を出射することができる。

【0022】次に、有機EL素子の発光層14から発光 した青色光を緑色光に変換する材料として、2.3. 5, 6-1H, 4H-テトラヒドロ-8-トリフロルメ チルキノリジノ (9, 9a, 1-gh) クマリン等を用 いて形成する。表示画素から緑色を出射することができ る。また、有機EL素子の発光層14から青色光を放出 する表示画素には、青色の色純度を高めるために青色変 換層を設けても良い。その場合には例えば次の青色発光 50 材料を形成する。

【0023】また、青色発光材料としては、オキサジアゾール(OXD)、アゾメチンー亜鉛錯体(AZM)、A1ーキノリン混合配位子錯体+ペリレン等を用いる。こうして有機EL素子の発光層として用いる発光材料は、本実施の形態の場合には青色発光材料1種類を用いるだけでよく、また、透明基板21上に3種類の蛍光変換材料を1層形成するだけであるから、従来の如く3原色を発光するために有機EL素子層内に3種類の発光層の材料を形成していたのに比べて非常に工程が簡略化できる。

【0024】なお、本実施の形態においては、発光層14から発光する光が青色の場合について説明したが、本発明はそれに限定されるものではなく、発光層14からの光は赤色でも緑色でも良い。その際、赤色の光を発光する発光層とする場合には赤色を青色及び緑色に変換する材料から成る蛍光変換層を設け、緑色の光を発光する発光層とする場合には緑色を赤色及び青色に変換する材料から成る蛍光変換層を設ける。

【0025】また、本実施の形態においても、発光光が 陽極に設けた蛍光変換層側から出射されるので従来の如 20 くTFT基板側から出射されるよりも色を発光する面積 が大きくなり明るく鮮明なカラー表示を得ることができる。なお、上述の各実施の形態においては、陽極17の 材料としてITOを用いたが、真空蒸着法、あるいはイオン蒸着法、例えばイオンクラスター法にてA1等の金属を用いて形成しても良い。そのときには、図3に示すように、有機EL素子からの発光光が陽極17にて遮断されてしまうのを防止するため、陽極17を図3(a)のように櫛歯形状又は図3(b)のように網目形状として極力光を透過させるようにする。その際、櫛歯の間隔 30

及び網目の大きさは必要とする明るさに応じて設定すればよい。

[0026]

【発明の効果】本発明の表示装置によれば、色要素としてカラーフィルタ層あるいは蛍光変換層を透明基板上に設けたものであるので、有機EL素子に貼り付けることが可能となり、また色要素がカラーフィルタ層あるいは蛍光変換層であることから、有機EL素子から発光する光の色は、1色でよいため有機EL素子の発光素子層に10複数の発光材料を用いなくて良くなるため、工程が簡略化される。

【0027】更に、発光光が陽極に設けた色要素側から 出射されるので、従来の如くTFT基板側から出射され るよりも色面積が大きくなり明るく鮮明なカラー表示を 得ることができる。

【図面の簡単な説明】

【図1】本発明のカラー表示装置の第1の実施の形態を 示す断面図である。

【図2】本発明のカラー表示装置の第2の実施の形態を 示す断面図である。

【図3】本発明のカラー表示装置の陽極の形状を示す斜 視図である。

【図4】従来のカラー表示装置の断面図である。

【符号の説明】

2	基板
1 2	陰極
1 4	発光層
1 7	陽極
2 2	カラーフィルタ
2 4	蛍光変換層

[図1]

【図2】

