1. (a) 109000205 蕭战隆 an = 2an-1+3an-2+25 x4 n-2 =) an-2an-1-3an-2 = >5 x 4ⁿ⁻² particular: assume >5c.4n-2 characteristic: $x-2x-3=0 \Rightarrow X=3$ or solve particular: 25c.4h-2-50c.4h-3-75c.4h-4= 25×4h-2 =) c.4ⁿ⁻² - 2c.4ⁿ⁻³ - 3c.4ⁿ⁻⁴ = 4ⁿ⁻² =) C.4n-2 = 1c.4n-2 = 4n-2 = 4n-2 =) $C - \frac{1}{5}C = 1$ =) $C = \frac{16}{5}$.; particular sol: $25 \times \frac{16}{5} \times 4^{-2} = 80.4^{-2}$ total solution: 80.4"-2+ A.3"+ B.(-1)" = ar

 $\begin{cases} a_0 = 30.4^{-2} + A + B = 1 \\ \Rightarrow \begin{cases} A + B = -4 \\ \Rightarrow \end{cases} \begin{cases} A = 2 \\ B = -6 \end{cases}$ $\begin{cases} A = 2 \\ A = 30.4 + 2.3 - 6.(-1)^n \end{cases}$ a = 8.4 + 3A - B = 32 3A-B = 12

· (b) an-6 an-1 + 9 an-2 = 0 particular 401: 0

charateristic equ: $x^2-6x+9=0 \Rightarrow (x-3)=0 \Rightarrow x=3$ (repeated not) homogeneous: (Ar+B).3r

 $\begin{cases} a_1 = (A+B) \cdot 3 = 15 \end{cases} \begin{cases} A = 4 \end{cases}$ is total solution & an= (4n+1).3"

2.
$$a_{n}a_{n-2} = (a_{n-1})^{2} + 2a_{n-1}a_{n-2}$$
, for $n \ge 2$

$$= a_{0} = 2$$

$$a_{1} = 4$$

$$a_{2} = 16$$

$$a_{3} = 96$$

$$a_{4} = 768$$

$$a_{4} = 768$$

$$a_{5} = 7680$$

$$a_{5} = 7680$$

$$a_{7} = a_{n-1} \times (2n)$$

$$a_{n} = a_{n-1} \times (2n)$$

$$a_{n} = a_{n-1} \times (2n)$$

3. Show this by induction:

base case: k = | $2020^{2} - | = (2020 \times 2020) - | = 4080399 = 202| \times 2019$, true

Inductive case: $k \ge |$ Assume k = n holds for $2020^{2n} - |$ is a multiple of 202|then for k = n + 1 $2020^{2n} - | = (2020)^{2n} - | = ($

., we complete the proof *

4. prove this by pigeonhole:

since we need to choose 4 district numbers from 16 numbers, so we have $C_{4}^{16} = 1820$ holes.

Let a_1, a_2, a_3, a_4 be chosen, and they are all $\in [1, 9]$ $a_1 + a_2 = a_{12}$ $a_{13} + a_3 = a_{13}$ $a_1 + a_4 = a_{14}$ and $a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34} \in \mathbb{N}$ $a_2 + a_4 = a_{24}$ $a_3 + a_4 = a_{34}$ then $\begin{cases} a_1 = a_{12} - a_2 = a_{13} - a_3 = a_{14} - a_4 \\ a_2 = a_{34} - a_3 = a_{13} - a_3 = a_{14} - a_4 \end{cases}$

1