14/15(二)浙江工业大学高等数学 A 考试试卷 A

学院:	班级:	学号:	姓名:

任课教师:_____(请务必填上)

题 号	_	-	=	四	五	六	总分
得 分							

一、填空选择题(本题满分30分,每小题3分)

1. 设向量
$$\vec{a}=(4,3,-5)$$
 , $\vec{b}=(1,0,1)$, 则 $\vec{a}\times\vec{b}=3\vec{i}-9\vec{j}-3\vec{k}$ 。

2. 直线
$$\frac{x-1}{-1} = \frac{y+1}{2} = \frac{z}{2}$$
 与 x 轴正向夹角的余弦是 $-\frac{1}{3}$ or $\frac{1}{3}$ 。

3. 过点
$$(1,1,1)$$
 与直线
$$\begin{cases} 3x+y-z=2\\ 2x-z-2=0 \end{cases}$$
 的平面方程为 $\frac{5x+y-2z=4}{}$.

4. 设
$$x^2 + y^2 + z^2 - 4z = 0$$
, 则 $\frac{\partial z}{\partial x} = \frac{x}{2-z}$ 。

5. 设
$$z = f(xy, x^2 + y^2)$$
, f 可微, 则 $\frac{\partial z}{\partial x} = \underline{yf_1' + 2xf_2'}$ 。

6. 函数
$$u = xy^2 + z^3 - xyz$$
 在点 $(1,1,1)$, 沿方向 $\bar{l} = (0,1,2)$ 的方向导数是 $\sqrt{5}$ 。

7. 函数
$$f(x,y) = xy$$
 在闭区域 $x \ge 0, y \ge 0, x^2 + y^2 \le 1$ 上的最大值是 1/2 。

8. 改变积分次序
$$\int_{1}^{2} dx \int_{\sqrt{x}}^{x} f(x,y) dy + \int_{2}^{4} dx \int_{\sqrt{x}}^{2} f(x,y) dy = \int_{1}^{2} dy \int_{y}^{y^{2}} f(x,y) dx$$
。

9. 设
$$L$$
为圆周 $x^2 + y^2 = R^2$,则 $\oint_L e^{\sqrt{x^2 + y^2}} ds = \underline{2\pi e^R R}$ 。

10. 将函数
$$f(x) = \frac{1}{3+x}$$
 展开为麦克劳林级数,则该级数的收敛半径是 $\frac{3}{3}$ 。

二、判断题(本题满分 10 分,每小题 2 分): (正确的填 √,错误的填×)

1. 级数
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{\pi}{2^n}$$
 、 $\sum_{n=1}^{\infty} \ln(1 + \frac{(-1)^n}{2n})$ 都是绝对收敛的。 (×)

2. 若级数
$$\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$$
 收敛,则级数 $\sum_{n=1}^{\infty} u_n$ 也收敛。(×)

3. 级数
$$\sum_{n=1}^{\infty} u_n$$
 收敛的充分必要条件是部分和数列 $S_n = \sum_{i=1}^n u_i$ 的极限存在。(\checkmark)

- 4. 若存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$,则正项级数 $\sum_{n=1}^{\infty} a_n$ 发散. (\checkmark)
- 5. 设 f(x) 是连续、以 2π 为周期的周期函数,则 f(x) 的傅立叶级数收敛且收敛于 f(x)。(\checkmark)

三、试解下列各题(本题满分18分,每小题6分):

1. 设 $z = (xy)^x$ $(x, y > 0; x, y \neq 1)$ 求: dz 。

解:
$$\frac{\partial z}{\partial x} = (xy)^x (\ln(xy) + 1);$$
 $\frac{\partial z}{\partial y} = x^2 (xy)^{x-1}$ 5 分 $dz = (xy)^x (\ln(xy) + 1) dx + x^2 (xy)^{x-1} dy$ 6 分

2. 求曲线 $x^2 + y^2 + z^2 = 6$, x + y + z = 0 在点 (1,-2,1) 处的切线及法平面方程。

解:
$$\frac{dy}{dx}\Big|_{(1,-2,1)} = 0$$
, $\frac{dz}{dx}\Big|_{(1,-2,1)} = -1$; 切向量 $\vec{T} = (1,0,-1)$; 4分

切线
$$\frac{x-1}{1} = \frac{y+2}{0} = \frac{z-1}{-1}$$
; 法平面 $x-z=0$ 6分

3. 设函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
, 讨论函数在点 $(0,0)$ 处 (1) 是否连续;

(2) 偏导数是否存在。

区域。

解:用定义讨论,1)、2)两问各3分。

四、试解下列各题(本题满分30分,每小题6分):

1. 求 $\iint_{D} (x+y)^2 dxdy$, 其中区域 D 由曲线 $x^2 + y^2 = 1$ 所围成。

解:
$$\iint_{D} (x+y)^{2} dx dy = \iint_{D} (x^{2} + y^{2}) dx dy + \iint_{D} 2xy dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{1} \rho^{3} d\rho + 0$$
 4 分
$$= \frac{\pi}{2}$$
 6 分

2. 求 $\iint_{\Omega} (x^2 + y^2) dv$, 其中 Ω 是由曲面 $4z^2 = 25(x^2 + y^2)$ 及平面 z = 5 所围成的闭

解:
$$\iiint_{\Omega} (x^2 + y^2) dv = \int_0^{2\pi} d\theta \int_0^2 \rho^3 d\rho \int_{\frac{5}{2}\rho}^5 dz$$
 4 分

3. 求 $\iint_{\Sigma} (z^2 + x) dy dz + z dx dy$, 其中 Σ 是旋转抛物面 $z = \frac{1}{2} (x^2 + y^2)$ 介于平面 z = 0, z = 2 之间部分的下侧。

解: 补上平面 $\sum_{i}:z=2$,上侧,利用高斯公式得:

$$\iint_{\Sigma} (z^2 + x) dy dz + z dx dy = \bigoplus_{\Sigma + \Sigma_1} - \iint_{\Sigma_1} = \iiint_{\Omega} 2 dv - \iint_{D} 2 dx dy$$
 3 \mathcal{L}

$$= \int_0^{2\pi} d\theta \int_0^2 \rho d\rho \int_{\frac{1}{2}\rho^2}^2 2dz - 8\pi$$
 5 \(\frac{1}{2}\)

4. 求球体 $x^2 + y^2 + z^2 \le 4a^2$ 被圆柱面 $x^2 + y^2 = 2ax$ (a > 0) 所截得的(含在圆柱面内的部分)立体的体积。

解: 由对称性可得
$$V = 4\iint_{D} \sqrt{4a^2 - x^2 - y^2} dxdy$$
 2 分

$$=4\int_0^{\frac{\pi}{2}} d\theta \int_0^{2a\cos\theta} \sqrt{4a^2 - \rho^2} \rho d\rho$$
 4 \(\frac{\pi}{2}\)

$$=\frac{32}{3}a^3(\frac{\pi}{2}-\frac{2}{3})$$
 6 \(\frac{\partial}{2}\)

5. 求 $\oint \frac{xdy - ydx}{x^2 + y^2}$, 其中 L 是曲线 $x^2 + 4y^2 - 4 = 0$ 的正向。

解: 令
$$P = \frac{-y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$, 则有 $\frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \frac{\partial P}{\partial y}$ 2 分

选取适当的0 < r < 1,作圆周 $l: x^2 + y^2 = r^2$,取顺时针方向。

在曲线 L 与 l 围成闭区域 D 上利用格林公式有

$$\oint_{L} \frac{xdy - ydx}{x^2 + y^2} = \oint_{L+l} -\oint_{l} = 0 - \oint_{l} \frac{xdy - ydx}{x^2 + y^2}$$
 4

$$= \int_0^{2\pi} \frac{r^2 \cos^2 \theta + r^2 \sin^2 \theta}{r^2} d\theta = 2\pi$$
 6 \(\frac{\(\frac{1}{2}\)}{2}\)

五、 (8分) 求: 1) 幂级数 $\sum_{n=0}^{\infty} \frac{n+1}{n!} x^n$ 的收敛域与和函数; 2) 数项级数 $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ 的和。

解: 1)
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\frac{n+2}{(n+1)!}}{\frac{n+1}{n!}} = 0$$
,收敛域是 $(-\infty, +\infty)$ 2分

记
$$S(x) = \sum_{n=0}^{\infty} \frac{n+1}{n!} x^n = \sum_{n=0}^{\infty} \frac{n}{n!} x^n + \sum_{n=0}^{\infty} \frac{1}{n!} x^n = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} x^n + e^x = xe^x + e^x$$
 5 分

或
$$\int_0^x S(x)dx = \sum_{n=0}^\infty \int_0^x \frac{n+1}{n!} x^n dx = \sum_{n=0}^\infty \frac{1}{n!} x^{n+1} = xe^x$$

两边求导得 $S(x) = (x+1)e^x$

2)
$$\sum_{n=1}^{\infty} \frac{n^2}{n!} = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} = \sum_{n=0}^{\infty} \frac{n+1}{n!} = S(1) = 2e$$

六、(4 分)证明: xOy 平面上曲线 $y = e^x$, $0 \le x \le 1$ 绕 x 轴旋转所得旋转面的面积 $S = 2\pi \int_1^e \sqrt{1+t^2} dt$ 。

解一: 旋转面方程是
$$x = \frac{1}{2} \ln(y^2 + z^2)$$
,

在 yOz 面上的投影区域 $D: 1 \le y^2 + z^2 \le e^2$

$$S = \iint_{\Sigma} dS = \iint_{D} \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^{2} + \left(\frac{\partial x}{\partial z}\right)^{2}} \, dy dz = \iint_{D} \sqrt{1 + \frac{1}{y^{2} + z^{2}}} \, dy dz \qquad 3 \, \text{f}$$

$$= \int_{0}^{2\pi} d\theta \int_{1}^{e} \rho \sqrt{1 + \frac{1}{\rho^{2}}} \, d\rho = 2\pi \int_{1}^{e} \sqrt{1 + t^{2}} \, dt \qquad 4 \, \text{f}$$

解二:利用积分元素法有 $\Delta S = 2\pi y \Delta s$,

$$S = 2\pi \int_{1}^{\infty} y ds = 2\pi \int_{0}^{1} y \sqrt{1 + {y'}^{2}} dx = 2\pi \int_{0}^{1} e^{x} \sqrt{1 + {e^{2x}}} dx = 2\pi \int_{1}^{e} \sqrt{1 + {t^{2}}} dt$$