Tecnologías de la Información

Programación Orientada a Objetos - Teclado y Sonido

Daniela Opitz dopitz@udd.cl

Basada en presentaciones oficiales de libro Introduction to Programming in Python (Sedgewick, Wayne, Dondero).

Disponible en https://introcs.cs.princeton.edu/python

Outline

- Interrogaciones
- Teclado en animaciones
- Sonido en animaciones
- Certamen 2 2018

Usando el teclado

```
9 balls = [
       Ball(.480, .860, .015, .023, .05, stddraw.BLACK),
       Ball(.480, .860, .030, .046, .05, stddraw.BLUE),
11
       Ball(.180, .260, .040, .026, .05, stddraw.GREEN)
12
13
14
15 while True:
16
       # get keystrokes
      if stddraw.hasNextKeyTyped():
17
           k = stddraw.nextKeyTyped()
18
19
          if k == stddraw.K_UP:
               for b in balls: b.increase_speed(0.1, 0.1)
20
           elif k == stddraw.K_DOWN:
21
               for b in balls: b.increase_speed(-0.1, -0.1)
22
23
      # update velocity
24
      for b in balls: b.update()
25
26
27
      # clear the background
       stddraw.clear(stddraw.LIGHT_GRAY)
28
29
      # draw the ball on the screen
30
31
      for b in balls: b.draw()
32
      # copy buffer to screen
34
       stddraw.show(∅)
       stddraw.pause(20)
35
```

Códigos para teclas en https://github.com/josiest/
pygtails/blob/master/docs/pygstants.rst

Keycode Name	Ascii	Description
K_BACKSPACE	\b	backspace
K_TAB	\t	tab
K_CLEAR		clear
K_RETURN	\r	return
K_PAUSE		pause
K_ESCAPE	^[escape
K_SPACE		space
K_UP		up arrow
K_DOWN		down arrow
K_RIGHT		right arrow
K_LEFT		left arrow

Sonido

- El **sonido** es una percepción por un conjunto de vibraciones que se propagan por un medio elástico, como el aire.
- Un tono es la sensación auditiva o atributo psicológico de los sonidos que los caracteriza más agudos o más graves.

4

Sonido

Escala de notas occidental

i	frequency (440*2 ^{i/12})	sinusodial waveform
0	440	
1	466.16	
2	493.88	
3	523.25	
4	554.37	
5	587.33	
6	622.25	
7	659.26	
8	698.46	
9	739.99	
10	783.99	
11	830.61	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
12	880	$\wedge \wedge $

Audio digital

- Para representar un sonido en un computador debemos convertir una señal continua a una señal discreta.
- El computador toma muestras (sampling) en intervalos regulares

	samples/sec	samples	sampled waveform
1/40 second of concert A	5,512	137	
	11,025	275	^^^^^
	22,050	551	^/^////////////////////////////////////
CD standard —	→ 44,100	1102	\frac{1}{\sqrt{1}}\frac{1}\frac{1}{\sqrt{1}}\frac{1}{\sqrt{1}}\frac{1}{\sqrt{1}}\fra

Módulo stdaudio

```
\frac{1}{i} - \sin\left(\frac{2\pi i \cdot hz}{44100}\right)
```

```
1 import math
 2 import stdaudio
 3 import sys
 5 def tone(hz, duration):
       n = int(44100 * duration)
      note = [0.0]*(n+1)
      for i in range(n+1):
           note[i] = math.sin(2.0 * math.pi * i * hz / 44100)
10
      stdaudio.playSamples(note)
11
12 hz = float(sys.argv[1])
13 duration = float(sys.argv[2])
14 tone(hz, duration)
```

```
python3 playthatnote.py 440.0 3.0 python3 playthatnote.py 880.0 3.0 python3 playthatnote.py 220.0 3.0 python3 playthatnote.py 494.0 3.0
```

Reproducir canción

```
1 import math
 2 import stdio # this is new!
 3 import stdaudio
 5 SPS = 44100
                                 Lee desde teclado y convierte
 6 \quad CONCERT\_A = 440.0
                                 automáticamente a entero/float.
 7 NOTES ON SCALE = 12.0
  while not stdio.isEmpty():
       pitch = stdio.readInt()
10
      duration = stdio.readFloat()
      hz = CONCERT_A * (2.0 ** (pitch / NOTES_ON_SCALE))
       n = int(SPS * duration)
       note = [0.0]*(n+1)
14
       for i in range(n+1):
15
16
           note[i] = math.sin(2.0 * math.pi * i * hz / SPS)
       stdaudio.playSamples(note)
18
  stdaudio.wait()
```

```
$ head elise.txt
7 .125
6 .125
7 .125
6 .125
7 .125
2 .125
5 .125
3 .125
0 .25
```


Certamen 2 2018