1	1. A method for determining the concentration of chloride ions in samples,
2	comprising:
3	preparing an enzyme reagent, said enzyme reagent including:
4	α -amylase that is substantially calcium-free; and
5	an α -amylase activity detecting substrate; and
6	combining the enzyme reagent with sodium ion and a sample containing
7	chloride ion to be assayed, the sodium ion being present in a higher concentration
8	than said chloride ion;
9	assaying the quantity of α -amylase formed due to the presence of sodium ions
10	and chloride ions in said sample; and
11	determining the quantity of said chloride ions by reference to said assay of α -
12	amylase.
13	
14	2. The method according to claim 1, wherein calcium is removed from the α -
15	amylase that is substantially calcium-free by use of a chelating compound.
16	
17	3. The method according to claim 1, wherein calcium is removed from the α -
18	amylase that is substantially calcium-free by use of a compound that forms a covalent bond
19	with calcium.
20	
21	
22	
23	

- 1 4. The method according to claim 2, wherein said chelating compound is a
- 2 member selected from the group consisting of ethylenediaminetetraacetic acid, trans-1,2-
- 3 cyclohexanediamine-N,N,N',N'-tetraacetic acid, glycol ether diamine tetraacetic acid,
- 4 iminotetraacetic acid, and diaminopropanetetraacetic acid.

5. The method of claim 2, wherein said chelating compound is thylenediaminetetraacetic acid.

8

- 9 6. The method according to claim 1, wherein said α -amylase activity detecting
- 10 substrate is a member selected from the group consisting of 2-chloro-4-nitrophenyl-α-D-
- 11 maltotrioside, 4-nitrophenyl-α-D-maltopentaoside and α-glucosidase, 2-chloro-4-
- 12 nitrophenyl- β -D-maltopentaoside and α -glucosidase and β -glucosidase, 4-nitrophenyl- α -D-
- 13 maltoheptaoside, α -glucosidase, and 2-chloro-4-nitrophenyl- β -D-maltoheptaoside and α -
- 14 glucosidase and β-glucosidase.

15

- 16 7. The method according to claim 6, wherein said α -amylase activity detecting
- 17 substrate is 2-chloro-4-nitrophenyl-α-D-maltotrioside.

18

- 19 8. The method according to claim 1, wherein said sample is a bodily fluid
- 20 sample.

21

- 22 9. The method according to claim 8, wherein said bodily fluid sample is
- 23 selected from the group consisting of serum, plasma, or urine.

10.

2													
3	11.	The	method	of	claim	1,	wherein	said	sodium	ion	compound	is	sodium
4 acetat	e.												
5													
6													
7													
8													
9													
10													
11													
12													
13													
14													
15													
16													
17													
18													
19													
20													
21													
22													
23													

The method of claim 1, wherein said sodium ion compound is sodium citrate.

1	12. A composition for use in determining the concentration of chloride ions in a
2	luid sample, comprising: α -amylase that is substantially calcium-free, sodium ion, and an α -
3	amylase activity detecting substrate.
4	
5	13. A composition as in claim 12 further comprising a compound capable of
6	forming a chelate with a calcium ion and a calcium chelate compound.
7	
8	14. A composition according to claim 13, wherein said compound capable of
9	forming a chelate with a calcium ion is a member selected from the group consisting of
10	ethylenediaminetetraacetic acid, trans-1,2-cyclohexanediamine-N,N,N',N'-tetraacetic acid,
11	glycol ether diamine tetraacetic acid, iminotetraacetic acid, and diaminopropanetetraacetic
12	acid.
13	
14	15. A composition according to claim 13, wherein said compound capable of
15	forming a chelate with a calcium ion is ethylenediaminetetraacetic acid.
16	
17	16. The composition according to claim 13, wherein said calcium chelate
18	compound is calcium-ethylenediaminetetraacetic acid.
19	
20	
21	
22	
23	

1

17.

⁵ nitrophenyl-α-D-maltoheptaoside,

 $^{6}~$ maltoheptaoside and $\alpha\text{-glucosidase}$ and $\beta\text{-glucosidase}.$

The composition according to claim 12, wherein said α-amylase activity

and

2-chloro-4-nitrophenyl-β-D-

² detecting substrate is a member selected from the group consisting of 2-chloro-4-

 3 nitrophenyl- α -D-maltotrioside, 4-nitrophenyl- α -D-maltopentaoside and α -glucosidase, 2-

4 chloro-4-nitrophenyl-β-D-maltopentaoside and α-glucosidase and β-glucosidase, 4-

α-glucosidase,

A method of activating calcium-free α -amylase for enzymatic activity 21. 2 comprising mixing chloride ion with calcium-free α -amylase in the presence of excess sodium ion.

1	22. A method for determining the concentration of sodium ions in samples,
2 (comprising:
3	preparing an enzyme reagent, said enzyme reagent including:
4	α -amylase that is substantially calcium-free; and
5	an α -amylase activity detecting substrate; and
6	combining the enzyme reagent with excess chloride ion, and a sample
7	containing sodium ion to be assayed, the chloride ion being present in a higher
8	concentration than said sodium ion;
9	assaying the quantity of α -amylase formed due to the presence of sodium ions
10	and chloride ions in said sample; and
11	determining the quantity of said sodium ions by reference to said assay of α -
12	amylase.
13	
14	23. The method of claim 22, wherein a calcium-binding compound is combined
15	with the enzyme reagent, the excess chloride ion, and the sample containing sodium ion to
16	be assayed before the α -amylase quantity is determined.
17	
18	24. The method of claim 22, wherein said calcium-binding compound is
19	ethylenediaminetetraacetic acid.
20	
21	
22	
23	