Feedback — Final Exam

Thank you. Your submission for this exam was received.

You submitted this exam on **Sun 14 Apr 2013 1:51 PM EDT -0400**. You got a score of **159.67** out of **170.00**. You can attempt again in 10 minutes.

Question 1

What is the centroid of the region bounded by the curves $y = x^2$ and $y = 5 - x^2$?

Hint: draw a picture of this region as your first step.

$$(ar{x},ar{y})=\left(0,rac{5}{2}
ight)$$

$$igcup (ar x,ar y)=\left(0,rac{\sqrt{3}}{2}
ight)$$

$$igcup (ar x,ar y)=\left(0,rac{5}{4}
ight)$$

$$^{\bigcirc}\left(\bar{x},\bar{y}\right)=\left(0,\frac{32}{5}\right)$$

$$^{\bigcirc}\left(\bar{x},\bar{y}\right)=\left(0,\frac{3}{2}\right)$$

$$\bigcirc$$
 $(\bar{x},\bar{y})=(0,2)$

$$\bigcirc \; (\bar{x},\bar{y}) = (0,0)$$

$$\bar{x}, \bar{y}) = \left(1, \frac{3}{2}\right)$$

Total

10.00 / 10.00

Question 2

If x(t) satisfies the differential equation

$$\frac{dx}{dt} = 2e^{t-x}$$

and x(0) = 0, then what is x(1) ?

Your Answer		Score	Explanation
$\odot \ln(2e-1)$	✓	10.00	
$\bigcirc \ln(2e+1)$			
$\bigcirc e^2 - 5$			
$\bigcirc \ln(3e-2)$			
$e^2 - 1$			
$\bigcirc \ln(e+6)$			
$ \bigcirc e^2 + 5 $			
$\bigcirc \ln(3e+2)$			
Total		10.00 / 10.00	

Question 3

What is the area between the curves y=-x and $y=\dfrac{2}{x(x+2)}$ for $1\leq x\leq e$?

Your Answer	Score	Explanation
	√ 10.00	
$\mathbb{O}\left(rac{e^2-1}{5}+\lnrac{1}{3-e} ight)$		

$$\bigcirc \frac{e^2}{3} + \ln \frac{1}{3+e}$$

$$2e^2 + \ln \frac{7}{2+e}$$

$$^{\bigcirc}e^2+\lnrac{2}{4+e}$$

$$\log \ln \frac{10}{3+2e}$$

$$^{\bigcirc}e^2+\lnrac{5}{4+e}$$

10.00 / 10.00

Question 4

Compute the arc-length of the graph of $y=rac{x^2}{4}-rac{\ln x}{2}$ for $1\leq x\leq e^2$.

Hint: your expression for the arclength element dL should admit a "miracle" factorization that eliminates a certain square root.

Your Answer		Score	Explanation
	✓	10.00	
$\bigcirc \ \frac{e^6+11}{12}$			
$\bigcirc \frac{e-1}{2}$			
$\odot \frac{e^2+1}{2}$			
\circ $\frac{e^2-7}{4}$			
$\bigcirc \frac{e^4+7}{4}$			
$\odot rac{e^4-3}{2}$			

 $\bigcirc \ \frac{e^4-11}{12}$

Total

10.00 / 10.00

Question 5

What is the volume of the solid generated by rotating about the y-axis the region defined by the inequalities:

- 1. $y \geq 2x^3$, and 2. $y \leq 2x$.

Your Answer	Score	Explanation
$\odot \frac{8\pi}{15}$	10.00	
15		
\bigcirc $\frac{32\pi}{}$		
105		
$\frac{\pi}{6}$		
\bigcirc 4π		
$\overline{15}$		
\bigcirc 224 π		
15		
$\bigcirc \frac{\pi}{3}$		
2π		
5		
0.16π		
21		
Total	10.00 / 10.00	

Question 6

You approximate $\ln \frac{3}{2}$ using the series:

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \, rac{x^n}{n}$$

If you use the first four terms as your approximation — that is, using terms up to and including the x^4 term — then what is the bound on your error E that comes from observing that the series above is alternating?

Your Answer		Score	Explanation
$^{\circledcirc}$ $E<rac{1}{160}$	✓	10.00	
$^{igordown} E < rac{1}{324}$			
$^{igordown} E < rac{1}{120}$			
$^{igordown} E < rac{1}{24}$			
$^{igorplus}E<rac{1}{1024}$			
$^{igorplus}E<rac{1}{384}$			
$^{igorphi}E<rac{1}{720}$			
$^{igorplus}E<rac{1}{1215}$			
Total		10.00 / 10.00	

Question 7

Compute $\int e^{2x} \sin x \, dx$.

Your Answer		Score	Explanation
$^{\circledcirc}\frac{1}{5}e^{2x}(2\sin x-\cos x)+C$	1	10.00	

- $-rac{2}{5}e^{2x}(\cos x-2\sin x)+C$
- $igcircle rac{2}{5}\,e^{2x}(\sin x-2\cos x)+C$
- $^{\bigcirc}-rac{1}{5}\,e^{2x}(\cos x-\sin x)+C$
- = $rac{2}{5}\,e^{2x}(\cos x-2\sin x)+C$
- $\bigcirc \ \frac{2}{5} \, e^{2x} (2\cos x + \sin x) + C$
- $^{\bigcirc}-rac{1}{5}\,e^{2x}(2\cos x-\sin x)+C$
- $^{\bigcirc}-rac{2}{5}\,e^{x}(\cos x+\sin x)+C$

10.00 / 10.00

Question 8

Which of the following is $\int_{x=0}^2 \sqrt{4-x^2} \ dx$?

	$J_{x=0}$		
Your Answer		Score	Explanation
π	✓	10.00	
$\bigcirc \frac{4}{3}$			
$\circ \frac{\pi}{4}$			
$\bigcirc \frac{64}{15}$			
\bigcirc 4π			
$\bigcirc \frac{\sqrt{2}}{3}$			
$\circ \frac{\pi}{2}$			

 $\frac{\sqrt{3}}{2}$ Total 10.00 / 10.00

Question 9

Which of the following functions is in $O(x^4)$ as $x o +\infty$? Select all that apply.

Your Answer		Score	Explanation
I OUI AIISWEI		3001 0	Explanation
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	✓	1.25	
$oxed{ \dfrac{e^x}{x^5} }$	✓	1.25	
$\ensuremath{\mathbb{Z}} \arctan x$	✓	1.25	
$\ensuremath{ \mathbb{Z} } x(x+1)(x+2)$	✓	1.25	
	✓	1.25	
$rac{x^5}{1000 \ln x}$	X	-1.25	
$\ensuremath{ \mathbb{Z}} x^3 \ln(x^2)$	✓	1.25	
$ \ens$	X	-1.25	
Total		5.00 / 10.00	

Question 10

Evaluate the limit $\lim_{x o 0} rac{\ln\Bigl(1+\sin^2(2x)\Bigr)}{5x^2}$

Your Answer	So	core	Explanation
	√ 10	0.00	
5			

- $-\frac{4}{5}$
- $0 \frac{1}{5}$
- $\bigcirc \frac{2}{5}$
- The limit does not exist.
- $-\frac{2}{5}$
- $\bigcirc 0$

10.00 / 10.00

Question 11

Compute the expectation ${\mathbb E}$ of the probability distribution function

$$\rho(x) = \kappa \sqrt{x-1}, \qquad 1 \le x \le 2$$

where κ is the appropriate constant.

$lacktriangledown$ $\mathbb{E}=rac{8}{5}$ $lacktriangledown$ 10.00 $\mathbb{E}=rac{8}{3}$	Your Answer		Score	Explanation
₹	$^{\circledcirc}$ $\mathbb{E}=rac{8}{5}$	✓	10.00	
	⊀			

- $\mathbb{E} = \frac{4}{3}$
- ${}^{\bigcirc}\,\mathbb{E}=rac{2}{5}$
- $^{igorplus} \mathbb{E} = rac{9}{8}$
- $\mathbb{E} = \frac{11}{6}$

$$\mathbb{E}=rac{9}{5}$$
 $\mathbb{E}=rac{3}{2}$

10.00 / 10.00

Question 12

Which of the following sequences is the second forward difference, $\Delta^2 a$, of the sequence

$$a = (-1, 5, 3, 2, 5, 0, 0, 2, 1, 4, 8, 7, -1, 12, 0, 0, 0, 0, \dots)$$

Your Answer		Score	Explanation
$lacktriangledown \Delta^2 a = (-8, 1, 4, -8, 5, 2, -3, 4, 1, -5, -7, 21, -25, 12, 0, 0, \ldots)$	✓	10.00	
$lacksquare \Delta^2 a = (6, -1, -5, 8, 0, 2, -1, 3, 3, -1, -8, 13, -25, 12, 0, 0, \ldots)$			
$lacksquare \Delta^2 a = (-8, 3, -4, -1, 2, 4, -3, 1, 0, 9, -4, 2, -20, 12, 0, 0, \ldots)$			
$lacksquare \Delta^2 a = (6, -2, -1, 3, -5, 0, 2, -1, 3, 4, -1, 8, 13, -12, 0, 0, \ldots)$			
$lacksquare$ $\Delta^2 a = (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 134, 223, 0, 0, 0,)$			
$egin{array}{c} \mathbb{O} \ \Delta^2 a = (-6,-1,-4,8,-3,12,-2,-4,0,5,9,12,-25,12,0,0,\ldots) \end{array}$			
$lacksquare$ $\Delta^2 a = (-8, 0, 1, -2, 6, 4, 3, -4, 2, 4, -5, 7, -2, 12, 0, 0, \ldots)$			
$lacksquare$ $\Delta^2 a = (-8, 3, 4, 8, 1, 9, -13, 2, 4, 5, -7, 12, -21, -12, 0, 0, \ldots)$			
Total		10.00 / 10.00	

Question 13

Which of the following statements about series convergence are true? Select all that apply.

Your Answer	Score	Explanation
$\prod_{n=3}^{\infty} (-1)^n \ rac{\ln n}{n^{3/4}}$ converges conditionally.	x -1.00	
$\prod_{n=1}^{\infty} \frac{n \cdot 3^n}{(2n)!}$ converges conditionally by the ratio test.	√ 1.67	
$ \sum_{n=1}^{\infty} rac{n \cdot 3^n}{(2n)!}$ converges absolutely by the ratio test.	√ 1.00	
$\displaystyle \mathbb{Z} \sum_{n=5}^{\infty} \frac{\ln n}{\ln(\ln n)}$ diverges by the $\displaystyle \frac{1}{n}$ -th term test.	√ 1.00	
$ \sum_{n=5}^{\infty} \frac{\ln n}{\ln(\ln n)} $ diverges by the comparison test with $ \sum_{n=5}^{\infty} \frac{1}{n} . $	√ 1.00	
$\prod_{n=0}^{\infty} (-1)^n$ converges conditionally.	√ 1.67	
$\displaystyle \mathbb{Z} \sum_{n=0}^{\infty} (-1)^n rac{n}{n^2+1}$ converges conditionally.	√ 1.00	
$\displaystyle \mathbb{Z} \sum_{n=3}^{\infty} rac{\ln n}{n^{3/4}}$ diverges by the $\displaystyle n$ -th term test.	X -1.67	
Total	4.67 / 10.00	

Question 14

Using your knowledge of Taylor series, evaluate the following infinite series:

$$rac{\pi}{4} - rac{\pi^3}{4^3 \cdot 3!} + rac{\pi^5}{4^5 \cdot 5!} - \ldots + (-1)^n \, rac{\pi^{2n+1}}{4^{2n+1} \cdot (2n+1)!} + \ldots$$

Your Answer		Score	Explanation
	1	10.00	

- \circ $\cos \frac{\pi}{4}$
- $\bigcirc \frac{3}{1-\pi}$
- The series does not converge.
- \circ $\cosh \frac{\pi}{4}$
- \circ $\sin \frac{\pi}{2}$
- $\bigcirc \tan \frac{\pi}{4}$

10.00 / 10.00

Question 15

If x and y are related by the equation

$$x^2 + 4x^3y + y^2 = 3x^2y + 5,$$

find a formula for $\frac{dy}{dx}$ in terms of x and y.

Your Answer	Score	Explanation

$$igcite{0} rac{dy}{dx} = rac{6xy - 2x - 12x^2y}{4x^3 + 2y - 3x^2}$$

$$\frac{dy}{dx} = \frac{-1}{4x^3 - 2y + 3x^2}$$

10.00 / 10.00

Question 16

Which of the following is the Taylor expansion about x=0 of

$$f(x) = \int_{t=0}^{x} \sin(t^2) dt$$

up to and including terms of order x^{10} ?

Your Answer			Score	Explanation
	1 .	1 _	 10.00	

$$^{\circledcirc} f(x) = rac{1}{3} \, x^3 - rac{1}{42} \, x^7 + O(x^{11})$$

$$^{ extstyle 0} f(x) = x^3 - rac{1}{6} \, x^7 + O(x^{11})$$

$$igcap f(x) = rac{1}{2} \, x^2 - rac{1}{30} \, x^6 - rac{1}{120} \, x^{10} + O(x^{11})$$

$$lacksquare f(x) = rac{1}{3} \, x^3 - rac{1}{42} \, x^7 + rac{1}{120} \, x^{10} + O(x^{11})$$

$$^{igcap} f(x) = x - rac{2}{5} \, x^5 + rac{2}{27} \, x^9 + O(x^{11})$$

$$\int \int f(x) = x^2 - rac{1}{2} \, x^6 + rac{1}{6} \, x^{10} + O(x^{11})$$

$$^{igorightarrow} f(x) = x^2 - rac{1}{6}\,x^6 + rac{1}{120}\,x^{10} + O(x^{11})$$

$${}^{igodot} f(x) = rac{1}{2} \, x^2 - rac{1}{24} \, x^4 + rac{1}{720} \, x^6 + O(x^{11})$$

4/17/13

Total

10.00 / 10.00

Question 17

Which of the following is the interval of convergence of the series $\sum_{n=1}^{\infty} rac{n+2}{4^n n^2} \left(2x+1
ight)^n$?

Your Answer		Score	Explanation
	✓	10.00	

$$\bigcirc$$
 $-2 \leq x < 2$

$$\bigcirc -\frac{5}{2} \le x \le \frac{3}{2}$$

$$\bigcirc -\frac{5}{2} < x < \frac{3}{2}$$

$$\bigcirc -2 < x < 2$$

$$\bigcirc -2 < x \leq 2$$

$$0 - \frac{5}{2} < x \le \frac{3}{2}$$

$$\bigcirc -2 \leq x \leq 2$$

Total

10.00 / 10.00