Self-exercise - SRU03 Response to questions

Tuan Vo

09th November, 2022

1 Step-by-step with A3-SRU03

Example 1. Let the linear m-step method be given by coefficients $\alpha_l \in \mathbb{R}$ and $\beta_l \in \mathbb{R}$ where l = 0, 1, ..., m, satisfying the following system of equations

$$\sum_{l=0}^{m} a_l = 0, (1)$$

$$\sum_{l=0}^{m} (l^{q} \alpha_{l} - q \, l^{q-1} \beta_{l}) = 0, \quad for \quad q = 1, 2, 3, \dots, p.$$
 (2)

Then the linear m-step method has the consistency order of p.

Consider the following ordinary differential equation (ODE) taking the form

$$x'(t) = f(t, x(t)), \text{ with } x(t_0) = x_0,$$
 (3)

which may be approximated by a linear multistep method, taking the general form

$$\sum_{l=0}^{m} \alpha_l \, x(t_j + lh) = h \sum_{l=0}^{m} \beta_l \, f(t_j + lh, x(t_j + lh)).$$
 (4)

Observation 1. There are 6 symbols arising in (1), (2), (4) to be aware of

- 1. m is the total number of steps used in the multistep method.
- 2. $\alpha \in \mathbb{R}$ is the coefficient for the linear combination of $x(t_i + lh)$
- 3. $\beta \in \mathbb{R}$ is the coefficient for the linear combination of $f(t_j + lh, x(t_j + lh))$.
- 4. p is the consistency order.
- 5. l is the dummy index, running from 0 to m.
- 6. q is the dummy index, running from 1 to p.

Observation 2. The multistep method arising in (4) is a linear multistep method, or specifically linear m-step method. The term linear coming along with m-step method, i.e. linear m-step method, emphasizes the fact that there is actually a linear combination of the terms $x(t_j + lh)$ with coefficients α_l on the LHS of (4), and a linear combination of the terms $f(t_j + lh, x(t_j + lh))$ with coefficients β_l on the RHS of (4). This linear m-step method uses the information from the previous m steps to compute the value for the next step. In details, let us examine the formula (4) which is written again as follows

$$\sum_{l=0}^{m} \alpha_l \, x(t_j + lh) = h \sum_{l=0}^{m} \beta_l \, f(t_j + lh, x(t_j + lh)), \tag{5}$$

whose LHS is written in its entirety as follows

$$\sum_{l=0}^{m} \alpha_l x(t_j + lh) = \alpha_0 x(t_j) + \alpha_1 x(t_j + h) + \alpha_2 x(t_j + 2h) + \dots + \dots + \alpha_{m-1} x(t_j + (m-1)h) + \alpha_m x(t_j + mh),$$
 (6)

whereas the RHS of (5) has its expansion as follows

$$\sum_{l=0}^{m} \beta_{l} f(t_{j} + lh, x(t_{j} + lh)) = \beta_{0} f(t_{j}, x(t_{j})) + \beta_{1} f(t_{j} + h, x(t_{j} + h)) + \beta_{2} f(t_{j} + 2h, x(t_{j} + 2h)) + \cdots + + \beta_{m-1} f(t_{j} + (m-1)h, x(t_{j} + (m-1)h)) + \beta_{m} f(t_{j} + mh, x(t_{j} + mh)).$$
(7)

The insertion of (6) and (7) into (5) leads to

$$\alpha_{0} x(t_{j}) + \alpha_{1} x(t_{j} + h) + \alpha_{2} x(t_{j} + 2h)$$

$$+ \dots$$

$$+ \alpha_{m-1} x(t_{j} + (m-1)h) + \alpha_{m} x(t_{j} + mh)$$

$$=$$

$$\beta_{0} f(t_{j}, x(t_{j})) + \beta_{1} f(t_{j} + h, x(t_{j} + h)) + \beta_{2} f(t_{j} + 2h, x(t_{j} + 2h))$$

$$+ \dots +$$

$$+ \beta_{m-1} f(t_{i} + (m-1)h, x(t_{i} + (m-1)h)) + \beta_{m} f(t_{i} + mh, x(t_{i} + mh)), (8)$$

which tells us the fact that the value $x(t_j + mh)$ is approximated by using all information from previous steps, based on

- 1. $x(t_j), x(t_j+h), \ldots, x(t_j+(m-1)h).$
- 2. $f(t_j, x(t_j)), f(t_j + h, x(t_j + h)), \ldots, f(t_j + mh, x(t_j + mh)).$
- 3. Coefficients α_l and β_l .

Observation 3. The apprearance of the green term $f(t_j + mh, x(t_j + mh))$ arising in (8) plays a significant role, meaning that

- 1. $\beta_m = 0$: the green term is switched off, and the scheme becomes **explicit**.
- 2. $\beta_m \neq 0$: the green term is switched on, and the scheme becomes **implicit**.

Observation 4. Specific choices of α_l and β_l leads to some familiar methods. Especially, when m=1 the linear m-step method becomes single-step method, or one-step method. If so, according to (4) there will be 4 coefficients $(\alpha_0, \alpha_1, \beta_0, \beta_1)$ to be defined. For example:

- 1. $(\alpha_0, \alpha_1, \beta_0, \beta_1) = (-1, 1, 1, 0)$ we obtain explicit Euler.
- 2. $(\alpha_0, \alpha_1, \beta_0, \beta_1) = (-1, 1, 0, 1)$ we obtain implicit Euler.

2 Step-by-step with A4-SRU03

Example 2. Examine the consistency order of the following explicit numerical scheme

$$y^{j+1} = y^j + \frac{h}{2} \Big(f(t^j, y^j) + f(t^{j+1}, y^j + hf(t^j, y^j)) \Big), \tag{9}$$

which is used to approximate the ordinary differential equation (ODE):

$$y'(t) = f(t, y(t)). \tag{10}$$

Approach: The exact solution at time t+h is obtained by Taylor series expansion as

$$y(t+h) = y(t) + h y'(t) + \frac{h^2}{2}y''(t) + \mathcal{O}(h^3)$$

with

$$y' = f(t, y)$$

$$y'' = \frac{d}{dt} f(t, y) = f_t(t, y(t)) + f_y(t, y(t))y'(t) = f_t(t, y(t)) + f_y(t, y(t))f(t, y(t)).$$

Thus

$$y(t+h) = y^{j} + h f(t, y^{j}) + \frac{h^{2}}{2} \left(f_{t}(t, y^{j}) + f_{y}(t, y^{j}) f(t, y^{j}) \right) + \mathcal{O}(h^{3})$$

The approximation can be written as

$$y^{j+1} = y^j + h \Phi(h)$$
, with $\Phi(h) = \frac{1}{2} \left[f(t, y^j) + f(t + h, y^j + h f(t, y^j)) \right]$.

We now expand $\Phi(h)$ around 0, i.e., $\Phi(h) = \Phi(0) + h \Phi'(0) + \mathcal{O}(h^2)$. Here

$$\Phi'(h) = \frac{1}{2}f_t(t+h, y^j + hf(t, y^j)) + \frac{1}{2}f_y(t+h, y^j + hf(t, y^j))f(t, y^j).$$

Thus

$$\Phi(0) = f(t, y^j), \quad \Phi'(0) = \frac{1}{2}f_t(t, y^j) + \frac{1}{2}f_y(t, y^j)f(t, y^j)$$

and

$$\Phi(h) = f(t, y^j) + \frac{h}{2} \Big(f_t(t, y^j) + f_y(t, y^j) f(t, y^j) \Big) + \mathcal{O}(h^2).$$

Therefore

$$y^{j+1} = y^j + h f(t, y^j) + \frac{h^2}{2} \Big(f_t(t, y^j) + f_y(t, y^j) f(t, y^j) \Big) + \mathcal{O}(h^3).$$

The error $|y(t+h) - y^{j+1}| = \mathcal{O}(h^3)$ and thus the method has consistency order 2.

Mathe III \cdot SRU03 \cdot Response to questions \cdot WS22/23