Homework 4

Warning: The hard deadline has passed. You can attempt it, but **you will not get credit for it**. You are welcome to try it as a learning exercise.

□ In accordance with the Coursera Honor Code, I (吳軒衡) certify that the answers here are my own work.

Question 1

Neural Network and Deep Learning

A fully connected Neural Network has L=2; $d^{(0)}=5$, $d^{(1)}=3$, $d^{(2)}=1$ If only products of the form $w_{ij}^{(\ell)}x_i^{(\ell-1)}$, $w_{ij}^{(\ell+1)}\delta_j^{(\ell+1)}$, and $x_i^{(\ell-1)}\delta_j^{(\ell)}$ count as operations (even for $x_0^{(\ell-1)}=1$), without counting anything else, which of the following is the total number of operations required in a single iteration of backpropagation (using SGD on one data point)?

- none of the other choices
- \bigcirc 43
- O 59
- \bigcirc 53
- \bigcirc 47

Question 2

Consider a Neural Network without any bias terms $x_0^{(\ell)}$. Assume that the network contains $d^{(0)}=10$ input units, 1 output unit, and 36 hidden units. The hidden units can be arranged in any number of layers $\ell=1,\cdots,L-1$, and each layer is fully connected to the layer above it. What is the minimum possible number of weights that such a network can have?

- \bigcirc 43
- **o** 46
- O 45
- none of the other choices

O 44

Question 3

Following Question 2, what is the maximum possible number of weights that such a network can have?

- O 490
- **o** 510
- O 500
- O 520
- none of the other choices

Question 4

Autoencoder

Assume an autoencoder with $\tilde{d}=1$. That is, the $d\times\tilde{d}$ weight matrix W becomes a $d\times 1$ weight vector \mathbf{w} , and the linear autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2.$$

We can solve this problem with stochastic gradient descent by defining

$$\operatorname{err}_n(\mathbf{w}) = \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T\mathbf{x}_n\|^2$$

and calculate $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$. What is $\nabla_{\mathbf{w}} \operatorname{err}_n(\mathbf{w})$?

- $\bigcirc 2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{x}_n + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w})\mathbf{w} 4(\mathbf{x}_n^T \mathbf{w})\mathbf{w}$
- $\bigcirc (4\mathbf{w} 4)(\mathbf{x}_n^T \mathbf{x}_n)$
- none of the other choices
- $2(\mathbf{x}_n^T \mathbf{w})^2 \mathbf{w} + 2(\mathbf{x}_n^T \mathbf{w})(\mathbf{w}^T \mathbf{w}) \mathbf{x}_n 4(\mathbf{x}_n^T \mathbf{w}) \mathbf{x}_n$
- $\bigcirc (4\mathbf{x}_n 4)(\mathbf{w}^T \mathbf{w})$

Question 5

Following Question 4, assume that noise vectors $\boldsymbol{\epsilon}_n$ are generated i.i.d. from a zero-mean, unit var iance Gaussian distribution and added to \mathbf{x}_n to make $\tilde{\mathbf{x}}_n = \mathbf{x}_n + \boldsymbol{\epsilon}_n$, a noisy version of \mathbf{x}_n .

Then, the linear denoising autoencoder tries to minimize

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T(\mathbf{x}_n + \boldsymbol{\epsilon}_n)\|^2.$$

For any fixed \mathbf{w} , what is $\mathcal{E}(E_{in}(\mathbf{w}))$, where the expectation \mathcal{E} is taken over the noise generation process?

none of the other choices

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + d\mathbf{w}^T \mathbf{w}$$

$$\bigcirc \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w}\mathbf{w}^T \mathbf{x}_n\|^2 + (\text{mathbf}\{\mathbf{w}\}^T \text{mathbf}\{\mathbf{w}\})^2$$

$$\bigcirc \ \, \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \mathbf{w}^T \mathbf{w}$$

$$\bigcirc \ \frac{1}{N} \sum_{n=1}^{N} \|\mathbf{x}_n - \mathbf{w} \mathbf{w}^T \mathbf{x}_n\|^2 + \frac{1}{d} \mathbf{w}^T \mathbf{w}$$

Question 6

Nearest Neighbor and RBF Network

Consider getting the 1 Nearest Neighbor hypothesis from a data set of two examples $(\mathbf{x}_+, +1)$ and $(\mathbf{x}_-, -1)$. Which of the following linear hypothesis $g_{LIN}(\mathbf{x}) = \mathrm{sign}(\mathbf{w}^T\mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to the hypothesis?

$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = -\|\mathbf{x}_{+}\|^{2} + \|\mathbf{x}_{-}\|^{2}$$

$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = -\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

$$\mathbf{w} = 2(\mathbf{x}_{-} - \mathbf{x}_{+}), b = +||\mathbf{x}_{+}||^{2} - ||\mathbf{x}_{-}||^{2}$$

$$\mathbf{w} = 2(\mathbf{x}_{+} - \mathbf{x}_{-}), b = +\mathbf{x}_{+}^{T}\mathbf{x}_{-}$$

none of the other choices

Question 7

Consider an RBF Network hypothesis for binary classification

$$g_{RBFNET}(\mathbf{x}) = \text{sign}(\beta_{+} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{+}\|^{2}) + \beta_{-} \exp(-\|\mathbf{x} - \boldsymbol{\mu}_{-}\|^{2}))$$

and assume that $\beta_+>0>\beta_-$. Which of the following linear hypothesis

 $g_{LIN}(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ (where \mathbf{w} does not include $b = w_0$) is equivalent to $g_{RBFNET}(\mathbf{x})$?

$$\mathbf{w} = 2(\boldsymbol{\mu}_{+} - \boldsymbol{\mu}_{-}), b = \ln \left| \frac{\beta_{+}}{\beta_{-}} \right| - \|\boldsymbol{\mu}_{+}\|^{2} + \|\boldsymbol{\mu}_{-}\|^{2}$$

$$\mathbf{w} = 2(\boldsymbol{\mu}_{-} - \boldsymbol{\mu}_{+}), b = \ln \left| \frac{\beta_{-}}{\beta_{+}} \right| + \|\boldsymbol{\mu}_{+}\|^{2} - \|\boldsymbol{\mu}_{-}\|^{2}$$

$$\mathbf{w} = 2(\beta_{+}\boldsymbol{\mu}_{+} + \beta_{-}\boldsymbol{\mu}_{-}), b = -\beta_{+} \|\boldsymbol{\mu}_{+}\|^{2} + \beta_{-} \|\boldsymbol{\mu}_{-}\|^{2}$$

$$\mathbf{w} = 2(\beta_{+}\mu_{+} + \beta_{-}\mu_{-}), b = +\beta_{+}\|\mu_{+}\|^{2} - \beta_{-}\|\mu_{-}\|^{2}$$

none of the other choices

1/18/2016 Coursers

Question 8

Assume that a full RBF network (page 9 of class 214) using RBF($\mathbf{x}, \boldsymbol{\mu}$) = [[$\mathbf{x} = \boldsymbol{\mu}$]] is solved for squared error regression on a data set where all inputs \mathbf{x}_n are different. What are the optimal coefficients β_n for each RBF(\mathbf{x}, \mathbf{x}_n)?

 $\bigcirc y_n$

 $\bigcirc \|\mathbf{x}_n\| \mathbf{y}_n$

none of the other choices

 $\bigcirc y_n^2$

 $||\mathbf{x}_n||^2 y_n^2$

Question 9

Matrix Factorization

Consider matrix factorization of $\widetilde{d}=1$ with alternating least squares. Assume that the $\widetilde{d}\times N$ user factor matrix V is initialized to a constant matrix of 1. After step 2.1 of alternating least squares (page 10 of lecture 215), what is the optimal w_m , the $\widetilde{d}\times 1$ movie `vector' for the m-th movie?

the average rating of the *m*-th movie

 \bigcirc the total rating of the m-th movie

 \bigcirc the maximum rating of the m-th movie

 \bigcirc the minimum rating of the m-th movie

none of the other choices

Question 10

Assume that for a full rating matrix R, we have obtained a perfect matrix factorization $R = V^T W$. That is, $r_{nm} = \mathbf{v}_n^T \mathbf{w}_m$ for all n, m. Then, a new user (N+1) comes. Because we do not have any information for the type of the movie she likes, we initialize her feature vector \mathbf{v}_{N+1} to $\frac{1}{N} \sum_{n=1}^N \mathbf{v}_n$, the average user feature vector. Now, our system decides to recommend her a movie m with the maximum predicted score $\mathbf{v}_{N+1}^T \mathbf{w}_m$. What would the movie be?

the movie with the largest minimum rating

the movie with the smallest rating variance

the movie with the largest maximum rating

1/18/2016 Coursers

the movie with the largest average rating	
onone of the other choices	

Question 11

Experiment with Backprop neural Network

Implement the backpropagation algorithm (page 16 of lecture 212) for d-M-1 neural network with tanh-type neurons, **including the output neuron**. Use the squared error measure between the output $g_{NNET}(\mathbf{x}_n)$ and the desired y_n and backprop to calculate the per-example gradient. Because of the different output neuron, your $\delta_1^{(L)}$ would be different from the course slides! Run the algorithm on the following set for training (each row represents a pair of (\mathbf{x}_n, y_n) ; the first column is $(\mathbf{x}_n)_1$; the second one is $(\mathbf{x}_n)_2$; the third one is y_n):

hw4_nnet_train.dat

and the following set for testing:

hw4_nnet_test.dat

Fix T = 50000 and consider the combinations of the following parameters:

- the number of hidden neurons M
- the elements of $w_{ii}^{(\ell)}$ chosen independently and uniformly from the range (-r,r)
- the learning rate η

Fix $\eta=0.1$ and r=0.1. Then, consider $M\in\{1,6,11,16,21\}$ and repeat the experiment for 500 times. Which M results in the lowest average E_{out} over 500 experiments?

 \bigcirc 21

 \bigcirc 11

 \bigcirc 16

 \bigcirc 6

 \cap 1

Question 12

Following Question 11, fix $\eta=0.1$ and M=3. Then, consider $r\in\{0,0.1,10,100,1000\}$ and repeat the experiment for 500 times. Which r results in the lowest average E_{out} over 500 experiments?

 \bigcirc 10

 \bigcirc 100

 \bigcirc 0.1

 \bigcirc 0

0 1000

Question 13

Following Question 11, fix r=0.1 and M=3. Then, consider $\eta \in \{0.001,0.01,0.1,1,10\}$ and repeat the experiment for 500 times. Which η results in the lowest average E_{out} over 500 experiments?

Coursera

0.001

 $\bigcirc 0.01$

O 10

 \bigcirc 1

0.1

Question 14

Following Question 11, deepen your algorithm by making it capable of training a d-8-3-1 neural network with tanh-type neurons. Do not use any pre-training. Let r=0.1 and $\eta=0.01$ and repeat the experiment for 500 times. Which of the following is true about E_{out} over 500 experiments?

 $0.00 \le E_{out} < 0.02$

 $0.02 \le E_{out} < 0.04$

 $0.06 \le E_{out} < 0.08$

 $0.04 \le E_{out} < 0.06$

onone of the other choices

Question 15

Experiment with 1 Nearest Neighbor

Implement any algorithm that `returns' the \$1\$ Nearest Neighbor hypothesis discussed in page 8 of lecture 214. $g_{\rm nbor}(\mathbf{x}) = y_m$ such that \mathbf{x} closest to \mathbf{x}_m

Run the algorithm on the following set for training:

hw4_knn_train.dat

and the following set for testing:

Coursera
hw4_knn_test.dat
Which of the following is closest to $E_{in}(g_{ m nbor})$?
O.1
O.4
O.0
O 0.2
O.3

Question 16

Following Question 15, which of the following is closest to $E_{out}(g_{nbor})$?

- 0.28
- 0.30
- \bigcirc 0.34
- 0.26
- \bigcirc 0.32

Question 17

Now, implement any algorithm for the k Nearest Neighbor with k=5 to get $g_{5\text{-nbor}}(\mathbf{x})$. Run the algorithm on the same sets in Question 15 for training/testing.

Which of the following is closest to $E_{in}(g_{5\text{-nbor}})$?

- \bigcirc 0.3
- \bigcirc 0.0
- \bigcirc 0.4
- \bigcirc 0.1
- \bigcirc 0.2

Question 18

Following Question 17, Which of the following is closest to $E_{\it out}(g_{\it 5-nbor})$

 \bigcirc 0.26

Question 19

Experiment with k-Means

Implement the \$k\$-Means algorithm (page 16 of lecture 214).Randomly select k instances from $\{\mathbf{x}_n\}$ to initialize your $\boldsymbol{\mu}_m$ Run the algorithm on the following set for training:

hw4_kmeans_train.dat

and repeat the experiment for 500 times. Calculate the clustering E_{in} by

 $\frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{M} [[\mathbf{x}_n \in S_m]] \|\mathbf{x}_n - \boldsymbol{\mu}_m\|^2$

as described on page 13 of lecture 214 for M=k.

For k=2, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

0.5

 \bigcirc 2.0

0 1.0

O 2.5

0 1.5

Question 20

For k=10, which of the following is closest to the average E_{in} of k-Means over 500 experiments?

O 1.5

O 2.5

O 2.0

O 1.0

0.5

□ In accordance with the Coursera Honor Code, I (吳軒衡) certify that the answers here are my own work.

1/18/2016 Coursera

Submit Answers

Save Answers

You cannot submit your work until you agree to the Honor Code. Thanks!