Connected Stocks: Evidence from Tehran Stock Exchange

S.M. Aghajanzadeh M. Heidari

M. Mohseni

Tehran Institute for Advanced Studies

March, 2021

Table of Contents

- Motivation
- 2 Literature
- Empirical Studies
- 4 Results
- 6 Robustness Check
- Conclusion

Motivation

Research Question

- Can the common ownership cause stock return comovement ?
 - We connect stocks through the common ownership by blockholders (ownership > 1%)
 - We focus on excess return comovement for a pair of the stocks
 - We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications. (Portfolio selection, Risk management, Hedging and Asset pricing)
 - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Commonownership measurements
- Empirical Studies
- 4 Results
- Robustness Check
- 6 Conclusion

Main Effect

 Common-ownership and comovement efect [Antón and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

• Common-ownership and liquidity demand

[Koch et al (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Papers' Detail

Commonownership measurements

Model-based measures

- ullet HJL $_I^A(A,B)=\sum_{i\in I^{A,B}}rac{lpha_{i,B}}{lpha_{i,A}+lpha_{i,B}}$ [Harford et al.-JFE-2011]
 - Bi-directional
 - Pair-level measure of common ownership
 - Its potential impact on managerial incentives
 - Measure not necessarily increases when the relative ownership increases
 - Accounts only for an investor's relative holdings
- $\bullet \quad \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} s_{j} s_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \text{ [Azar et al.-JF-2018]}$
 - Capture a specific type of externality
 - Measured at the industry level
 - Assumes that investors are fully informed about the externalities
- $\operatorname{GGL}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ [Erik et al.-JFE-2019]
 - Bi-directional
 - Less information
 - Not sensitive to the scope
 - Measure increases when the relative ownership of firm A increases

Commonownership measurements

Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ [He and Huang -RFS(2017)] [He et al-JFE(2019)]
- $Overlap_{Min}(A, B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A}, \alpha_{i,B}\}$ [Newham et al.(2018)]
- $Overlap_{AP}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ [Antón and Polk -JF(2014)]
- $Overlap_{HL}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ [Hansen and Lott -JGQA(1996)] [Freeman-(2019)]
- Unappealing properties
 - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
 - Both Overlap_{Count} and Overlap_{AP} are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
 - Measuring Common Ownership
 - Correlation Calculation
 - Controls
- 4 Results
- Robustness Check
- 6 Conclusion

Antón and Polk -JF(2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

Example

lpha and eta are the percent of common owner's ownership from firms' market cap. For better observation, assume that lpha+eta=100

Comparison of three methods for calculating common ownership

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
α_1	1/3	10	20	5	10	20	1
β_1	1/3	10	10	5	10	20	1
α_2	1/3	80	10	5	10	20	1
β_2	1/3	80	20	5	10	20	1
α_3	1/3	10	70	5	10	20	1
β_3	1/3	10	70	5	10	20	1
SQRT	3	2.33	2.56	0.45	0.9	1.8	0.09
SUM	1	1	1	0.15	0.3	0.6	0.03
Quadratic	3	1.52	1.85	133.33	33.33	8.33	3333.33

Conclusion

We use the SQRT formula because it has an acceptable variation and has fair values at lower level of common ownership.

Pair Composition and Business Group

Pair in the Business Group

Pair Composition and Business Group

Pair not in any of Business Groups

Pair Composition

- Pairs consist of two firms with at least one common owner
 - 9976 unique pairs which is 17% of possible pairs ($\frac{342*341}{2} = 58311$)

	mean	min	median	max
Number of unique paris	4201	2889	4099	5115

Year	2015	2016	2017	2018	2019	2020	Mean
No. of Pairs	4130	5113	5808	6221	5805	3971	5175
No. of Groups	41	42	45	45	45	46	44
No. of Pairs not in Groups	0	0	0	0	0	0	0
No. of Pairs in the same Group	633	755	968	1076	1116	832	897
No. of Pairs not in the same Group	3779	4836	5395	5720	5321	3246	4716
Avg. Number of Common owner	1.24	1.22	1.21	1.20	1.20	1.18	1.21
Med. Number of Common owner	1	1	1	1	1	1	1
Avg. Number of Pairs in one Group	23	24	25	28	29	22	25
Med. Number of Pairs in one Group	10	10	9	11	12	9	10
Av. Percent of each Blockholder	18.74	19.25	19.41	19.38	19.28	18.82	19.15
Medi. Percent of each Blockholder	10	10.08	10.31	10.17	10.48	10.79	10
Av. Number of Owners	6.06	5.93	5.8	5.91	5.94	6.06	5.95
Med. Number of Owners	6.08	5.96	5.82	5.92	5.92	6.02	5.95
Av. Block. Ownership	81.37	82.21	82.64	83.29	83.48	82.94	82.66
Med. Block. Ownership	80.03	80.6	80.74	81.48	81.63	81.28	80.96

By Group we mean Business Group

Data Summary

- We use blockholders' data from 2015/03/25 (1394/01/06) to 2020/03/18 (1398/12/28)
 - Includes of 1203 Days and 60 Months
 - Consists of 600 firm inculding 342 firm with common owners

2015	2016	2017	2018	2019	2020	mean
353	381	514	545	573	597	494
721	886	1258	1367	1397	1369	1166
41	42	46	46	46	46	45
112	124	189	195	219	244	181
241	264	333	351	354	353	316
32	39	42	47	46	43	42
22	26	29	32	32	32	29
21	21.6	20.4	22.9	25.5	25.1	23
7.66	6.87	6.8	7.25	9.33	9.63	8
5	5	5	5	5	4	5
4	4	4	4	4	3	4
71.9	71.8	68.5	77.9	78.7	69.3	73
80.6	80.4	77.5	83.4	82	75.1	80
	353 721 41 112 241 32 22 21 7.66 5 4 71.9	353 381 721 886 41 42 112 124 241 264 32 39 22 26 21 21.6 7.66 6.87 5 5 4 4 71.9 71.8	353 381 514 721 886 1258 41 42 46 112 124 189 241 264 333 32 39 42 22 26 29 21 21.6 20.4 7.66 6.87 6.8 5 5 5 4 4 4 71.9 71.8 68.5	353 381 514 545 721 886 1258 1367 41 42 46 46 112 124 189 195 241 264 333 351 32 39 42 47 22 26 29 32 21 21.6 20.4 22.9 7.66 6.87 6.8 7.25 5 5 5 5 4 4 4 4 71.9 71.8 68.5 77.9	353 381 514 545 573 721 886 1258 1367 1397 41 42 46 46 46 112 124 189 195 219 241 264 333 351 354 32 39 42 47 46 22 26 29 32 32 21 21.6 20.4 22.9 25.5 7.66 6.87 6.8 7.25 9.33 5 5 5 5 5 4 4 4 4 71.9 71.8 68.5 77.9 78.7	353 381 514 545 573 597 721 886 1258 1367 1397 1369 41 42 46 46 46 46 112 124 189 195 219 244 241 264 333 351 354 353 32 39 42 47 46 43 22 26 29 32 32 32 21 21.6 20.4 22.9 25.5 25.1 7.66 6.87 6.8 7.25 9.33 9.63 5 5 5 5 4 4 4 4 4 3 71.9 71.8 68.5 77.9 78.7 69.3

By Group we mean Business Group

Number of Pairs

FCA vs. FCAP Summary

	variable	count	mean	std	min	25%	median	75%	max
Total	FCA	256296	0.164	0.266	0.002	0.024	0.057	0.174	3.893
TOLAI	FCAP	256296	0.138	0.188	0.002	0.023	0.052	0.157	0.999
Same Group	FCA	41199	0.481	0.419	0.003	0.147	0.424	0.690	3.893
Same Group	FCAP	41199	0.388	0.264	0.004	0.124	0.394	0.605	0.999
Not Same Group	FCA	215097	0.104	0.166	0.002	0.022	0.045	0.112	2.813
Not Same Group	FCAP	215097	0.090	0.120	0.002	0.021	0.042	0.106	0.999
Same Industry	FCA	40009	0.375	0.416	0.007	0.059	0.233	0.567	3.893
Same moustry	FCAP	40009	0.288	0.260	0.006	0.054	0.198	0.491	0.999
Not Come Industry	FCA	216287	0.125	0.205	0.002	0.023	0.048	0.128	2.869
Not Same Industry	FCAP	216287	0.110	0.156	0.002	0.022	0.045	0.121	0.999

Results

- By the proposed measurement, common ownership increases
- Common ownership is greater in pairs that are in the same business group and insutry

FCA vs. FCAP Distributions

Monthly

Correlation Calculation

4 Factor + Industry

Frist Step:

Estimate each of these models on periods of three month:

• CAPM + Industry (2 Factor):

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t} + \boxed{\varepsilon_{i,t}}$$

• 4 Factor :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

• 4 Factor + Industry (5 Factor) :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

Correlation Calculation Results

Factors	mean	std	min	max
SMB	0.19	1.47	-5.64	19.52
HML	-0.12	1.39	-4.90	23.20
Winner – Loser	0.69	1.06	-2.61	8.58
Market	0.24	1.23	-4.71	4.89

$\rho_{ij,t}$	count	mean	std	min	25%	50%	75%	max
CAPM + Industry	255222	0.008	0.324	-1	-0.192	0.007	0.206	1
4 Factor	255250	0.040	0.335	-1	-0.170	0.035	0.248	1
4 Factor + Industry	255239	0.006	0.322	-1	-0.192	0.005	0.204	1

Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

Future Correlation via FCA

Controls

- ρ_t : Current period correlation
- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- **SameIndustry**: Dummy variable for whether the two stocks belong to the same Industry.
- **SameSize**: The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket :The negative of absolute difference in percentile ranking of the book to market ratio across a pair

Summary of Controls

Monthly

Type of Pairs	Yes	No
SameIndustry	1092	8235
	(11.7%)	(88.3%)
${\sf SameGroup}$	1100	8227
	(11.8%)	(88.2%)

	count	mean	std	min	25%	50%	75%	max
Size1	256296	0.75	0.21	0.01	0.62	0.81	0.93	1
Size2	256296	0.48	0.25	0.00	0.29	0.46	0.67	1.00
SameSize	256296	-0.27	0.21	-0.99	-0.41	-0.23	-0.10	0.00
BookToMarket1	256296	0.52	0.26	0.00	0.32	0.53	0.74	1.00
BookToMarket2	256296	0.50	0.24	0.00	0.31	0.49	0.69	1.00
${\sf SameBookToMarket}$	256296	-0.29	0.21	-1.00	-0.42	-0.25	-0.12	0.00

Fortnightly

Table of Contents

- Motivation
- 2 Literature
- Beneficial Studies
- Results
 - Normalized Rank-Transformed
 - Effective Business Group
 - Discontinuity
 - Logaritmic
 - Sum Factor
- Robustness Check

Estimation model

Use Fama macbeth to estimate this model

$$\rho_{ij,t+1} = \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ + \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ + \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1}$$
 (1)

Estimate that model on a monthly frequency

Future Correlation via FCA

Normalized Rank-Transformed

Model Estimation

Normalized Rank-Transformed

	Dependen	t Variable:Fu	ture Monthly	Correlation of	f 4F+Industry	Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00494***	0.00405***	0.00148	0.000149	0.000267	0.0000376
	(4.97)	(5.50)	(1.80)	(0.17)	(0.33)	(0.05)
ρ_t		0.127***	0.126***	0.126***	0.126***	0.126***
		(4.73)	(4.71)	(4.70)	(4.70)	(4.70)
SameGroup			0.0177***	0.0102***	0.0114***	0.0121***
			(7.43)	(4.32)	(4.61)	(4.90)
$(FCA^*) \times SameGroup$				0.0102***	0.0103***	0.0101***
				(4.13)	(4.16)	(4.08)
SameIndustry					-0.00372	-0.00484*
					(-1.87)	(-2.36)
SameSize						0.0116***
						(4.37)
SameBookToMarket						0.00777*
						(2.03)
Constant	0.00652***	0.00554***	0.00282***	0.00255***	0.00288***	0.00827***
	(8.54)	(8.54)	(4.46)	(3.95)	(4.60)	(6.56)
Observations	242577	241839	241839	241839	241839	241839
R ²	0.001	0.034	0.035	0.035	0.036	0.036

t statistics in parentheses

 $^{^{*}}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Model Estimation

Normalized Rank-Transformed (Down Market)

	Future Co	rr. of 4F+Ind	. Residuals
	(1)	(2)	(3)
FCA*	0.0000376 (0.05)	0.0000376 (0.05)	0.0000376 (0.05)
$(FCA^*) \times SameGroup$	0.0101*** (4.08)	0.0101*** (4.08)	
${\sf Down\ Market}\times{\sf SameGroup}$		0.00507*** (3.94)	0.00507*** (3.94)
Up Market × SameGroup		0.00706** (3.20)	0.00706** (3.20)
$(FCA^*) \times Down \ Market \times SameGroup$			0.00539** (2.86)
$(FCA^*) \times Up \; Market \times SameGroup$			0.00475** (3.04)
Observations	241839	241839	241839
R^2	0.036	0.036	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Business Group Dummy

We use group dummies and its interaction with FCA*

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_2 * \mathsf{SameGroup}_{ij} + \beta_3 * \mathit{FCA}^*_{ij,t} * \; \mathsf{SameGroup}_{ij} \\ &+ \sum_1^G \lambda_{1,g} * \delta_{ij,g} \\ &+ \sum_1^G \lambda_{2,g} * \delta_{ij,g} * \mathsf{FCA}^*_{ij,t} \\ &+ \sum_n^G \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

• $\delta_{ij,g} = \mathsf{SameGroup}_{ij} * \gamma_g$ which γ_g is a business group dummy

Significant lambdas are

Coef.	t-stat	Uo
0.037	2.41	Retirment
-0.017	-2.13	Melli bank
-0.024	-2.53	Sakt Inv.
-0.025	-2.64	TIPICO
-0.030	-2.94	Setad ejraee Imam
-0.031	-3.48	SITA
-0.036	-3.98	Mostazafan
-0.039	-2.01	Alipour Family
-0.056	-2.3	TORKOIS partners
-0.057	-3.69	Sepah Bank
-0.066	-3.37	Tejarat Bank
-0.086	-3.18	Edalat
-0.156	-5.71	Fars
-0.376	-2.11	Tamin

Effective Business Group

Check banking and Investment

- We define three types of groups
 - Bank's Group: Groups that their ultimate owner is bank
 - Bank In Group: Groups that ,at least, consist of one bank
 - Inv. In Group: Groups that ,at least, consist of one investment firm
- Estimated model:

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} * \mathsf{SameGroup}_{ij} \\ &+ \beta_4 * \mathsf{Bank's Group}_{ij,g} + \beta_5 * \mathsf{Bank's Group}_{ij,g} * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_6 * \mathsf{Bank In Group}_{ij,g} + \beta_7 * \mathsf{Bank In Group}_{ij,g} * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_8 * \mathsf{Inv. In Group}_{ij,g} + \beta_9 * \mathsf{Inv. In Group}_{ij,g} * \mathsf{FCA}^*_{ij,t} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

ullet All dummies of each type define by interaction with SameGroup $_{ij}$

Effective Business Group

Check banking and Investment

	De. Variable:Future Monthly Correlation of 4F+Industry Residua				
	(1)	(2)	(3)	(4)	(5)
FCA*	-0.000142 (-0.15)	-0.000151 (-0.16)	0.000226 (0.25)	-0.0000291 (-0.03)	0.00000405
SameGroup	0.0122*** (4.90)	0.0108*** (3.83)	0.0160*** (5.41)	0.0145*** (4.39)	0.0151*** (3.58)
$(FCA^*) \times SameGroup$	0.0102*** (4.08)	0.00905** (3.37)	0.0119*** (4.53)	0.0101*** (3.91)	0.00776** (2.68)
$\left(FCA^*\right) \times Bank's \; group \times SameGroup$		0.00865* (2.22)			0.0110** (2.72)
$(FCA^*) \times Bank \ in\ group \times SameGroup$			-0.0202* (-2.37)		-0.0342** (-3.43)
$(FCA^*) \times Inv. \ in \ group \times SameGroup$				0.00392 (0.80)	0.0185** (2.67)
Observations R ²	241839 0.037	241839 0.037	241839 0.038	241839 0.037	241839 0.039

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimation model

Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split}$$

Estimate that model on a monthly frequency

| ㅁ ▶ ◀률 ▶ ◀불 ▶ 4 분 | 토 | 토 이 오 (C)

Future Correlation via FCA

Discontinuity

Fortnightly

Discontinuity

	Dependent '	Variable:Futui	e Monthly C	orrelation of 4	F+Industry Residua
	(1)	(2)	(3)	(4)	(5)
FCA*	0.00494***	-0.0000967	-0.000489	-0.000777	-0.000839
	(4.97)	(-0.07)	(-0.39)	(-0.63)	(-0.70)
$(FCA^* > Q3[FCA^*]) \times FCA^*$		0.0119***	0.0107***	0.00601**	0.00589**
		(5.85)	(5.13)	(3.06)	(2.93)
ρ_{t}			0.126***	0.126***	0.126***
			(4.72)	(4.71)	(4.71)
SameGroup				0.0156***	0.0176***
				(7.06)	(7.32)
SameIndustry					-0.00515*
-					(-2.48)
SameSize					0.0112***
					(4.24)
SameBookToMarket					0.00773*
					(2.02)
Constant	0.00652***	0.00264*	0.00205*	0.00117	0.00682***
	(8.54)	(2.66)	(2.37)	(1.35)	(4.87)
Observations	242577	242577	241839	241839	241839
R^2	0.001	0.001	0.035	0.035	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimation model

Use Fama macbeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} \\ &+ \beta_2 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup} \\ &+ \beta_4 * (\mathsf{FCA}^*_{ij,t} > Q3[\mathsf{FCA}^*_{ij,t}]) \times \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{3}$$

• Estimate that model on a monthly frequency

4 Factor + Industry Future Correlation via FCA*

Discontinuity & Business Groups

Discontinuity & Business Groups

	F	uture Month	ly Correlatio	n of 4F+Indι	ıstry Residua	ls
	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	-0.000839 (-0.70)	0.0000376 (0.05)	-0.00108 (-0.91)	0.0000483	-0.000505 (-0.42)	-0.000642 (-0.56)
$(FCA^* > Q3[FCA^*]) \times FCA^*$	0.00589** (2.93)	(5.55)	0.00330 (1.50)	(5.55)	0.00189 (0.83)	0.00208 (0.95)
$(FCA^*) \times SameGroup$		0.0101*** (4.08)	0.00910** (3.41)	0.000987 (0.23)		0.00168 (0.41)
$\left(FCA^* > Q3[FCA^*]\right) \times \left(FCA^*\right) \times SameGroup$				0.0137** (2.69)	0.0135*** (3.92)	0.0117* (2.41)
Observations R ²	241839 0.036	241839 0.036	241839 0.037	241839 0.037	241839 0.037	241839 0.037

t statistics in parentheses

Fortnightly

 $^{^{*}}$ p < 0.05, ** p < 0.01, *** p < 0.001

Model Estimation

Grouped by size

		All Firms			Big Firms		Big	g & Small Fi	rms		Small Firms	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
FCA*	0.0000376 (0.05)	-0.000839 (-0.70)	-0.000642 (-0.56)	0.00120 (1.39)	-0.000445 (-0.36)	-0.0000214 (-0.02)	-0.000970 (-0.85)	-0.000751 (-0.46)	-0.000260 (-0.15)	-0.00199 (-0.90)	-0.00384 (-1.03)	-0.00456 (-1.35)
$(FCA^* > Q3[FCA^*]) \times FCA^*$		0.00589** (2.91)	0.00208 (0.95)		0.00558* (2.25)	0.00398 (1.69)		0.00185 (0.59)	-0.00292 (-0.64)		0.0130° (2.09)	0.00552 (0.92)
SameGroup	0.0121*** (4.66)	0.0176*** (7.18)	0.00744* (2.55)	0.00665* (2.16)	0.00776* (2.30)	0.00130 (0.32)	0.0154** (3.21)	0.0180*** (3.85)	0.0107* (2.01)	0.00676 (0.88)	0.0222** (3.16)	0.00491 (0.49)
$(FCA^*) \times SameGroup$	0.0101*** (4.15)		0.00168 (0.41)	0.00392 (1.58)		-0.00548 (-1.16)	0.00536 (1.31)		-0.00315 (-0.56)	0.0221*** (4.25)		0.0190 (1.43)
$(FCA^* > Q3[FCA^*]) \times (FCA^*) \times SameGroup$			0.0117* (2.41)			0.0124 (1.95)			0.0146 (1.99)			0.00257 (0.14)
SameIndustry	-0.00484* (-2.54)	-0.00515** (-2.67)	-0.00512* (-2.43)	-0.0213*** (-7.39)	-0.0216*** (-7.46)	-0.0217*** (-7.36)	0.00399 (1.30)	0.00375 (1.25)	0.00411 (1.33)	0.00828 (1.76)	0.00708 (1.46)	0.00773 (1.53)
Observations R ²	241839 0.036	241839 0.036	241839 0.037	110944 0.031	110944 0.031	110944 0.032	97637 0.044	97637 0.044	97637 0.046	33258 0.080	33258 0.081	33258 0.085

t statistics in parentheses

Fortnightly

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Estimation model

• Use Fama macbeth to estimate this model

$$\rho_{ij,t+1} = \beta_0 + \beta_1 * ln(FCA_{ij,t}) + \beta_2 * SameGroup_{ij}$$

$$+ \beta_3 * ln(FCA_{ij,t}) \times SameGroup_{ij}$$

$$+ \sum_{k=1}^{n} \alpha_k * Control_{ij,t} + \varepsilon_{ij,t+1}$$

$$(4)$$

Estimate that model on a monthly frequency

Future Correlation via FCA

Logaritmic Transformation

Fortnightly

Logaritmic Transformation

	Dependent	t Variable:Fut	ure Monthly	Correlation o	f 4F+Industr	y Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
In(FCA)	0.00451*** (6.17)	0.00377*** (6.76)	0.00151* (2.32)	0.0000861 (0.12)	0.000216 (0.32)	0.0000174 (0.03)
$ ho_{t}$		0.126*** (4.73)	0.126*** (4.71)	0.126*** (4.70)	0.126*** (4.70)	0.126*** (4.70)
SameGroup			0.0171*** (7.14)	0.0307*** (6.54)	0.0321*** (6.43)	0.0326*** (6.59)
$(ln(FCA)) \times SameGroup$				0.00792*** (4.41)	0.00798*** (4.41)	0.00787*** (4.35)
SameIndustry					-0.00391 (-1.94)	-0.00499* (-2.42)
SameSize						0.0114*** (4.27)
SameBook To Market						0.00777* (2.04)
Constant	0.0183*** (8.35)	0.0155*** (9.15)	0.00681** (3.44)	0.00259 (1.18)	0.00332 (1.62)	0.00814*** (3.96)
Observations R^2	242577 0.001	241839 0.034	241839 0.035	241839 0.035	241839 0.036	241839 0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCAP*

Normalized Rank Transformed

Normalized Rank Transformed

	Dependen	t Variable:Fu	ture Monthly	Correlation of	4F+Industry	Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
FCAP*	0.00523***	0.00428***	0.00175*	0.000292	0.000403	0.0000710
	(5.35)	(5.99)	(2.22)	(0.35)	(0.50)	(0.09)
ρ_t		0.127***	0.126***	0.126***	0.126***	0.126***
		(4.73)	(4.71)	(4.70)	(4.70)	(4.70)
SameGroup			0.0174***	0.00936***	0.0106***	0.0114***
			(7.51)	(3.98)	(4.45)	(4.73)
$(FCAP^*) \times SameGroup$				0.0108***	0.0109***	0.0108***
				(3.98)	(3.99)	(3.94)
SameIndustry					-0.00380	-0.00489*
,					(-1.90)	(-2.37)
SameSize						0.0114***
						(4.27)
SameBookToMarket						0.00787*
						(2.05)
Constant	0.00651***	0.00554***	0.00286***	0.00257***	0.00291***	0.00827***
	(8.55)	(8.52)	(4.52)	(3.97)	(4.65)	(6.56)
Observations	242577	241839	241839	241839	241839	241839
R ²	0.001	0.034	0.035	0.036	0.036	0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
- 3 Empirical Studies
- 4 Results
- Robustness Check
 - Random Pairs from Same Business Group
 - Random Pairs from Same Size
 - Random Pairs from Same Industry
- 6 Conclusion

Random Pairs from Same Business Group

 β_3 in model 1

 β_2 in model 2

 β_4 in model 3

Random Pairs from Same Size

 β_3 in model 1

 β_2 in model 2

 β_4 in model 3

Random Pairs from Same Industry

 β_3 in model 1

 β_2 in model 2

 β_4 in model 3

Table of Contents

- Motivation
- 2 Literature
- Empirical Studies
- 4 Results
- 6 Robustness Check
- **6** Conclusion

Conclusion

- We derive a measure that captures the extent of common ownership distribution.
- The common ownership comovement effect with a extra explanation:
 - Common ownership that crosses a threshold affect on comovement
 - Be in the same business group has a major effect on comovement
 - Business groups of banks affect more than normal business groups

- Anton, Polk, Connected Stocks , Jornal of Finance 2014
- Andrew Koch, Stefan Ruenzi, Laura Starks, Commonality in Liquidity A Demand-Side Explanation, The Review of Financial Studies 2016
- Pastor, L., and R. Stambaugh, Liquidity risk and expected stock returns, Journal of Political Economy 2003
- Acharya, V., and L. Pedersen, Asset pricing with liquidity risk, Journal of Financial Economics 2005
- Khanna, T., Thomas, C., Synchronicity and firm interlocks in an emerging market, Journal of Financial Economics 2009
- Boubaker, S., Mansali, H., Rjiba, H.-Large controlling shareholders and stock price synchronicity, Journal of Banking and finance 2014
- Morck, R., Yeung, B., Yu, W., The information content of stock markets: Why do emerging markets have synchronous stock price, Journal of Financial Economics 2000
- Harford, J., Jenter, D., Li, K., Institutional cross-holdings and their effect on acquisition decisions, Journal of Financial Economics 2011
- AZAR, J., SCHMALZ, M. C., TECU, I,, Anticompetitive Effects of Common Ownership, Journal of Financial 2018
- He, Jie (Jack) Huang, Jiekun , Zhao, Shanc, Internalizing governance externalities The role of institutional cross-ownership. Journal of Financial 2019

Table of Contents

- Appendix I
- Appendix II
- 9 Appendix III
- Appendix IV

Measuring Common Ownership

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

Table of Contents

- Appendix I
- 8 Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
- Appendix III
- Appendix IV

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - 2 Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity = $\frac{\sum_{\mathbf{t}} (n_{i,j,\mathbf{t}}^{\text{ups}}, n_{i,j,\mathbf{t}}^{\text{down}})}{T_{i,j}}$
- $2 Correlation = \frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$SYNCH_{i,t} = \beta_0 + \beta_1 Excess_{i,t} + \beta_2 UCF_{i,t} + \sum_k \beta_k Control_{i,t}^k$$

$$+ Industry Dummies + Year Dummies + \varepsilon_{i,t}$$

- Stock price synchronicity increases with excess control
- Firms with substantial excess control are more likely to experience stock price crashes

Connected Stocks

JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership
 - $FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$
 - ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

$$\rho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama and MacBeth

Table of Contents

- Appendix
- 8 Appendix II
- Appendix III
- 10 Appendix IV

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Monthly)

Monthly variables

	Dependen	t Variable:Fu	ture Monthly	Correlation of	f 4F+Industry	Residuals
	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00494*** (4.97)	0.00405*** (5.50)	0.00148 (1.80)	0.000149 (0.17)	0.000267 (0.33)	0.0000376 (0.05)
$ ho_{t}$		0.127*** (4.73)	0.126*** (4.71)	0.126*** (4.70)	0.126*** (4.70)	0.126*** (4.70)
SameGroup			0.0177*** (7.43)	0.0102*** (4.32)	0.0114*** (4.61)	0.0121*** (4.90)
$(FCA^*) \times SameGroup$				0.0102*** (4.13)	0.0103*** (4.16)	0.0101*** (4.08)
SameIndustry					-0.00372 (-1.87)	-0.00484* (-2.36)
SameSize						0.0116*** (4.37)
SameBookToMarket						0.00777* (2.03)
Constant	0.00652*** (8.54)	0.00554*** (8.54)	0.00282*** (4.46)	0.00255*** (3.95)	0.00288*** (4.60)	0.00827*** (6.56)
Observations R ²	242577 0.001	241839 0.034	241839 0.035	241839 0.035	241839 0.036	241839 0.036

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Appendix I
- 8 Appendix II
- Appendix III
- Appendix IV
 - Measuring Common Ownership
 - Controls
 - Logaritmic
 - Discontinuity
 - Business Group
 - Other

FCA vs. FCAP Distributions

Fortnightly

Summary of Controls

Fortnightly

Type of Pairs	Yes	No
SameIndustry	1142	9125
	(11.1%)	(88.9%)
SameGroup	1173 (11.4%)	9094 (88.6%)
ActiveHolder	2819 (27.5%)	7448 (72.5%)

Variable	count	mean	std	min	25%	50%	75%	max
Size1	636641	0.75	0.21	0.01	0.61	0.81	0.93	1
Size2	636641	0.47	0.26	0.00	0.26	0.45	0.67	1.00
SameSize	636641	-0.28	0.22	-0.99	-0.42	-0.24	-0.10	0.00
BookToMarket1	636641	0.52	0.27	0.00	0.31	0.54	0.74	1.00
BookToMarket2	636641	0.50	0.25	0.00	0.29	0.49	0.70	1.00
SameBookToMarket	636641	-0.29	0.21	-1.00	-0.43	-0.25	-0.12	0.00

Future Correlation via FCA

4 Factor + Industry (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
In(FCA)	0.0108***	0.00989***	0.00964***	0.00511***	0.00499***	0.00271***	0.00276***	0.00281***	0.00297***
	(8.48)	(9.12)	(8.81)	(5.15)	(4.95)	(4.12)	(4.07)	(4.16)	(3.78)
$\rho_{-}t$		0.0740***	0.0739***	0.0734***	0.0733***	0.0710***	0.0708***	0.0711***	0.0723***
		(5.50)	(5.49)	(5.44)	(5.44)	(5.36)	(5.34)	(5.36)	(5.39)
ActiveHolder			0.00970***		0.00810***	0.00425*	0.00416*	0.00356	0.00410*
			(6.05)		(5.06)	(2.35)	(2.40)	(1.94)	(2.41)
SameGroup				0.0329***	0.0322***	0.0216***	0.0214***	0.0218***	0.0247***
				(10.98)	(10.80)	(7.32)	(7.29)	(7.47)	(9.32)
SameIndustry						0.0275***	0.0267***	0.0264***	0.0288***
•						(7.00)	(6.73)	(6.55)	(6.45)
Samesize								0.0403***	0.0235***
								(3.53)	(4.35)
SameBookToMarket								0.0127**	0.0146***
								(3.22)	(4.34)
Constant	0.0432***	0.0395***	0.0363***	0.0214***	0.0191***	0.0396**	0.0504**	0.0372***	0.0225***
	(8.14)	(8.73)	(8.10)	(5.32)	(4.71)	(3.13)	(3.20)	(4.04)	(5.91)
Value	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00152	0.0127	0.0131	0.0137	0.0141	0.0184	0.0193	0.0183	0.0164

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
FCA*	0.0124***	-0.00545***	-0.00518***	-0.00450***	-0.00440***	-0.00408**	-0.00537***	-0.00420**	-0.00526***	-0.00448***
	(7.43)	(-3.99)	(-3.90)	(-3.44)	(-3.40)	(-3.19)	(-4.06)	(-3.22)	(-3.98)	(-3.49)
$FCA^* > Median[FCA^*]) \times FCA^*$		0.0360***	0.0332***	0.0314***	0.0240***	0.0232***	0.0228***	0.0156***	0.0231***	0.0231***
		(9.80)	(10.20)	(9.78)	(8.68)	(8.29)	(9.37)	(5.83)	(9.14)	(8.17)
$\rho_{-}t$			0.0738***	0.0737***	0.0727***	0.0727***	0.0711***	0.0708***	0.0712***	0.0724***
			(5.50)	(5.49)	(5.42)	(5.41)	(5.38)	(5.34)	(5.38)	(5.41)
ActiveHolder				0.00792***		0.00494**	0.00362	0.00322	0.00284	0.00354*
				(4.85)		(2.98)	(1.94)	(1.81)	(1.49)	(2.02)
SameIndustry					0.0363***	0.0357***	0.0315***	0.0261***	0.0303***	0.0339***
,					(8.06)	(7.91)	(7.93)	(6.60)	(7.47)	(7.54)
SameGroup								0.0191***		
								(6.14)		
Samesize									0.0416***	0.0213***
									(3.67)	(3.91)
SameBookToMarket									0.0128**	0.0147***
James John Tomarket									(3.24)	(4.36)
Constant	0.0150***	-0.000422	-0.000591	-0.00187	-0.00234	-0.00312*	0.0300*	0.0375*	0.0258**	0.00782***
	(6.31)	(-0.25)	(-0.38)	(-1.19)	(-1.70)	(-2.19)	(2.59)	(2.50)	(3.22)	(3.56)
Value	No	No	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00208	0.0132	0.0136	0.0149	0.0151	0.0182	0.0196	0.0181	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Monthly variables

	(1)	(2)
FCA*	-0.00370**	-0.00472***
	(-2.79)	(-3.39)
(FCA* - M // [FCA*]) FCA*	0.0100***	0.0141***
$(FCA^* > Median[FCA^*]) \times FCA^*$	0.0128***	
	(4.34)	(5.15)
$\rho_u t$	0.0722***	0.0708***
,	(5.39)	(5.35)
	(3.33)	(5.55)
ActiveHolder	0.00140	0.000470
	(0.73)	(0.22)
	(/	(- /
$(FCA^* > Median[FCA^*]) \times ActiveHolder$	0.00338	0.00522
	(1.17)	(1.75)
SameGroup	0.0117**	0.0106**
	(3.29)	(2.87)
(FCA* > Median[FCA*]) × SameGroup	0.0139***	0.0109**
(I CA > Median[I CA]) x Samedidap	(4.05)	(3.14)
	(4.05)	(3.14)
Constant	0.00973***	0.0380*
	(4.57)	(2.51)
Value	No	Yes
Interaction	No	Yes
N	613875	613875
r2	0.0173	0.0202

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Future Correlation via FCA*

4 Factor + Industry (by Business Group)

Fortnightly variables for subset of Same Business Group

(1)	(2)	(3)	(4)	(5)	(6)
0.0183***	-0.0127*	0.0100***	-0.00219	0.00842***	-0.00535
(7.04)	(-2.13)	(5.21)	(-0.39)	(5.37)	(-0.98)
	0.0460***		0.0186*		0.0210*
	(4.63)		(2.08)		(2.53)
					0.0174***
		(3.41)	(3.07)	(4.00)	(3.61)
		0.0226***	0.0222***	0.0220***	0.0327***
					(7.83)
		(7.05)	(1.10)	(7.95)	(7.65)
		0.0340**	0.0318**		
		(3.11)	(3.03)		
		0.0609***	0.0605***		
		(5.97)	(5.90)		
		, ,	, ,		
0.0344***	0.0149**	0.0399***	0.0314***	0.104***	0.0941***
(9.76)	(3.01)	(8.38)	(5.53)	(5.71)	(5.16)
No	No	No	No	Yes	Yes
No	No	No	No	Yes	Yes
103914	103914	103914	103914	103914	103914
0.00281	0.00488	0.0390	0.0407	0.0494	0.0511
	0.0344*** (9.76) No No 103914	0.0183*** -0.0127* (7.04) (-2.13) 0.0460*** (4.63) 0.0344*** 0.0149** (9.76) (3.01) No No No No 103914 103914	0.0183*** -0.0127* 0.0100*** (7.04) (-2.13) (5.21) 0.0460*** (4.63) 0.0162*** (3.41) 0.0336*** (7.85) 0.0340** (3.17) 0.0609*** (5.97) 0.0344*** 0.0149** 0.0399*** (9.76) (3.01) (8.38) No No No No No No No 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 (7.04) (-2.13) (5.21) (-0.39) 0.0460*** 0.0186* (2.08) 0.0162*** 0.0149** (3.41) (3.07) 0.0336*** 0.0333*** (7.78) (7.78) 0.0340*** 0.0318** (3.17) (3.03) 0.0609*** 0.0605*** (5.97) (5.90) 0.0344*** 0.0149** 0.0399*** 0.0314*** (9.76) (3.01) (8.38) (5.53) No No No No No No No No 103914 103914 103914 103914	0.0183*** -0.0127* 0.0100*** -0.00219 0.00842*** (7.04) (-2.13) (5.21) (-0.39) (5.37) 0.0460*** 0.0186* (2.08) 0.0162*** 0.0149** 0.0188*** (3.41) (3.07) (4.00) 0.0336*** 0.0333*** 0.0330*** (7.85) (7.78) (7.95) 0.0340** 0.0318** (3.17) (3.03) 0.0609*** 0.0605*** (5.97) (5.90) 0.0344*** 0.0149** 0.0399*** 0.0314*** 0.104*** (9.76) (3.01) (8.38) (5.53) (5.71) No No No No Yes No No No No Yes 103914 103914 103914 103914 103914

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Fortnightly variables for subset of Different Business Group

	(1)	(2)	(3)	(4)	(5)	(6)
FCA*	0.00422**	-0.00178	0.00194*	-0.00210	0.00172	-0.00290*
	(3.11)	(-1.37)	(1.98)	(-1.75)	(1.93)	(-2.26)
/						
$(FCA^* > Median[FCA^*]) \times FCA^*$		0.0146***		0.00996***		0.0115***
		(4.22)		(3.48)		(3.82)
ActiveHolder			0.000676	0.000186	-0.000437	-0.00102
Activerioider			(0.48)	(0.13)	(-0.30)	(-0.70)
			(0.40)	(0.13)	(-0.30)	(-0.70)
SameIndustry			0.0238***	0.0231***	0.0211***	0.0202***
,			(4.34)	(4.23)	(4.23)	(4.05)
			()	(1.20)	(1.20)	(1.00)
Samesize			0.0217***	0.0217***		
			(3.94)	(3.94)		
SameBookToMarket			0.00482	0.00477		
			(1.49)	(1.48)		
Constant	0.00831***	0.00285	0.0124***	0.00886***	0.0240	0.0202
Constant	(4.07)	(1.67)	(5.03)	(4.03)	(1.53)	(1.32)
7/1						
Value	No	No	No	No	Yes	Yes
Interaction	No	No	No	No	Yes	Yes
N	509961	509961	509961	509961	509961	509961
r2	0.000490	0.000899	0.0120	0.0124	0.0148	0.0152

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Factor + Industry Future Correlation via FCA*

Normalized Rank Transformed for each cross section (Fortnightly)

Fortnightly variables

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FCA*	0.0124***	0.0126***	0.0114***	0.0112***	0.00613***	0.00618***	0.00634***	0.00717***
	(7.43)	(7.54)	(8.09)	(7.90)	(8.02)	(7.89)	(8.12)	(7.01)
FCA*2		0.0109*** (10.30)	0.0101*** (10.52)	0.00959*** (10.08)	0.00697*** (9.59)	0.00700*** (9.97)	0.00701*** (9.37)	0.00710*** (8.49)
		(10.50)	(10.52)	(10.00)	(3.33)	(3.31)	(3.31)	(0.43)
$\rho_{-}t$			0.0737***	0.0736***	0.0711***	0.0709***	0.0712***	0.0724***
			(5.49)	(5.48)	(5.37)	(5.36)	(5.38)	(5.41)
ActiveHolder				0.00761***	0.00345	0.00331	0.00267	0.00336
				(4.62)	(1.84)	(1.84)	(1.40)	(1.90)
SameIndustry					0.0310***	0.0301***	0.0299***	0.0334***
, i					(7.85)	(7.57)	(7.40)	(7.46)
Samesize							0.0416***	0.0214***
							(3.66)	(3.91)
SameBookToMarket							0.0126**	0.0146***
							(3.19)	(4.29)
Constant	0.0150***	0.00429*	0.00372*	0.00224	0.0330**	0.0428**	0.0288***	0.0108***
	(6.31)	(2.35)	(2.24)	(1.35)	(2.82)	(2.85)	(3.52)	(4.76)
Value	No	No	No	No	Yes	Yes	No	No
Interaction	No	No	No	No	No	Yes	Yes	No
N	613875	613875	613875	613875	613875	613875	613875	613875
r2	0.00132	0.00215	0.0133	0.0136	0.0183	0.0191	0.0182	0.0162

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001