MATH 239 Spring 2012: Assignment 7

Due: 9:29 AM, Friday, June 22 2012 in the dropboxes outside MC 4066

Note: There is no note.	
Last Name:	
First Name:	
I.D. Number:	
Section:	
Mark (For the marker only): /50	
Acknowledgments:	
1. {16 marks} For the following statements, of cations through a proof or counterexample	letermine whether they are true or false, and give justifi-
(a) If there is a u, v -walk of odd length, the	nen there is a u, v -path of odd length.

(b) If G is a bipartite graph, then any closed walk has even length.

(c) If there is a cycle containing u and v and another cycle containing v and w, then there is a cycle containing u and w. (d) Any 3-regular graph must have a Hamilton cycle. 2. $\{8 \text{ marks}\}\$ Prove that if G is a graph where every vertex has degree at least k, then G contains a path of length at least k.

- 3. {16 marks} The Kneser graph $G_{n,k}$ is the graph where the vertices are all k-subsets of [n], and two vertices are adjacent if and only if their corresponding sets are disjoint.
 - (a) Draw $G_{4,1}$ and $G_{5,2}$.

(b) How many vertices and edges are there in $G_{n,k}$?

(c) Prove that if $n \geq 3k - 1$, then $G_{n,k}$ is connected.

(d) Prove that if $n \geq 3k$, then $G_{n,k}$ is not bipartite. As {Extra credit: 4 marks}, prove this statement for $n \geq 2k + 1$.

4. {10 marks} Let a_n be the number of cycles of length 4 in an *n*-cube. So $a_1 = 0$, $a_1 = 1$, $a_2 = 6$. For $n \ge 1$, determine an explicit formula for a_n .

(Hint: There are at least 2 ways to solve this question. One way is to use the recursive construction of the n-cube to generate a recurrence relation, and solve it. Another way is to enumerate certain pairs of binary strings.)