

Experiment 2

Student Name: Jay shankar kumar UID: 23BCS10408

Branch: CSE Section/Group: KRG_1B

Semester: 5th

Subject Name: ADBMS Subject Code: 23CSP-333

1.Aim of the practical

[MEDIUM]

You are a Database Engineer at TalentTree Inc., an enterprise HR analytics platform that stores employee data, including their reporting relationships. The company maintains a centralized Employee relation that holds: Each employee's ID, name, department, and manager ID (who is also an employee in the same table).

Your task is to generate a report that maps employees to their respective managers, showing:

- The employee's name and department
- Their manager's name and department (if applicable)
- This will help the HR department visualize the internal reporting hierarchy.

```
CODE: -----MEDIUM-----
CREATE TABLE Employee (
 EmpID INT PRIMARY KEY,
 EmpName VARCHAR(50) NOT NULL,
 Department VARCHAR(50) NOT NULL,
 ManagerID INT NULL
);
ALTER TABLE Employee
ADD CONSTRAINT FK Manager FOREIGN KEY (ManagerID)
REFERENCES Employee(EmpID);
INSERT INTO Employee (EmpID, EmpName, Department,
ManagerID)
VALUES
(1, 'JAY', 'HR', NULL),
(2, 'shankar', 'Finance', 1),
(3, 'kumar', 'IT', 1),
(4, 'ram', 'Finance', 2),
(5, 'lakshman', 'IT', 3),
(6, 'hanuman', 'HR', 1);
```

SELECT

E.EmpName AS [EmployeeName], E.Department AS [EmployeeDept],

M.EmpName AS [Manager

Name], M.Department AS [ManagerDept] FROM Employee AS E JOIN Employee AS M ON E.ManagerId = M.EmpID;

OUTPUT:

	BOOK_TITLE	AUTHOR_NAME
1	Database Systems	jay shankar
2	Operating Systems	23bcs10408
3	Computer Networ	krg_1B
4	Advanced Datab	jay shankar
5	Modern OS	23bcs10408

Query executed successfully.

Output

[HARD]

(13,2019,40),

To write SQL queries that retrieve requested Net Present Value (NPV) data by performing conditional joins on multiple columns (ID and YEAR) across two related tables, and to handle missing data using appropriate SQL functions.

CODE: -----HARD----- CREATE TABLE YEARS_TBL(ID INT, YEAR INT, NPV INT) INSERT INTO YEARS_TBL(ID, YEAR, NPV) VALUES (1,2018,100), (7,2020,30),

DEPARTMENT OF

Discover. Learn. Empower.

(1,2019,113),

(2,2008,121), (3,2002,12), (11,2020,99), (7,2019,0);

CREATE TABLE QUERIES TBL(

ID INT,

YEAR INT

);

INSERT INTO QUERIES_TBL(ID, YEAR)

VALUES

(1,2019),

(2,2008),

(3,2009),

(7,2018),

(7,2019),

(7,2020),

(13,2019);

SELECT Q.*,ISNULL(Y.NPV,0) AS [NPV]

FROM

YEARS TBL AS Y

RIGHT OUTER JOIN

QUERIES_TBL AS Q

ON

Y.ID = Q.ID

AND

Y.YEAR = Q.YEAR

OUTPUT:

100 %	•	Ø	No issu	ues found
[⊞] Results				
	ID	YEAR	NPV	
1	1	2019	113	
2	2	2008	121	
3	3	2009	0	
4	7	2018	0	
5	7	2019	0	
6	7	2020	30	
7	13	2019	40	

Query executed successfully.

Learning Outcomes:

☐ Understand and implement self-joins to model hierarchical
relationships within a single table (e.g., employees reporting
to other employees).
☐ Construct relational queries to fetch meaningful
information such as employee-manager relationships,
including handling NULL values using LEFT JOIN.
$\ \square$ Design and populate tables using the CREATE TABLE and
INSERT INTO statements for real-world hierarchical and
time-series data scenarios.
☐ Perform multi-table joins to retrieve and match data across
different datasets, such as actual vs. requested values (e.g.,
NPV values for specific years).
☐ Handle missing data using functions like ISNULL() to
substitute default values during join operations.
☐ Apply conditional joins involving multiple keys (e.g.,
joining on both ID and YEAR) to ensure accurate data
mapping.
☐ Develop problem-solving approaches using SQL to derive
insights from HR records and financial datasets in enterprise
applications.