

Contents

2

Flow Chart

◆ผังงาน (Flow Chart) คือ
 วิธีการออกแบบโปรแกรม
 อย่างเป็นขั้นตอน โดยการ
 ใช้สัญลักษณ์และตัวอักษร
 ประกอบการอธิบายในแต่ละขั้นตอน

Flow Chart

สัญลักษณ์	ความหมาย	
	จุดเริ่มตันหรือจุดจบของโปรแกรม (Terminal)	
	การรับและแสดงผลของข้อมูล (Input/Output)	
	การประมวลผล (Process)	
	การตัดสินใจ (Decision /Selection)	

3

4

Flow Chart

สัญลักษณ์	ความหมาย	
	ข้อมูลออกทางจอภาพ (Display)	
$\boxed{\uparrow\downarrow} \Longrightarrow $	ทิศทางของขั้นตอนการดำเนินงาน (Flow Line)	
0	จุดเชื่อมการทำงานที่อยู่หน้า เดียวกัน (Connector)	
	จุดเชื่อมการทำงานที่อยู่คนละหน้า (Off Page Connector)	

Flow Chart

ตัวอย่างคำนวณหาพื้นที่ของรูปสี่เหลี่ยมผืนผ้า
 ขั้นตอนการทำงานของโปรแกรม :
 เริ่มต้นทำงาน
 รับความกว้างของรูปสี่เหลี่ยมผืนผ้า
 คำนวณหาพื้นที่ของรูปสี่เหลี่ยมผืนผ้า
 คำนวณหาพื้นที่ของรูปสี่เหลี่ยมผืนผ้า
 แสดงผลลัพธ์ที่ได้ออกทางจอภาพ
 จบการทำงาน

6

Flow Chart

- ◆ ผังงานโครงสร้างควบคุมหลักในการเขียนโปรแกรม
 - โครงสร้างแบบลำดับ (Sequential structure)
 - โครงสร้างแบบมีทางเลือก (Selection structure)
 - โครงสร้างแบบทำซ้ำ (Repetition structure)

Flow Chart

◆โครงสร้างแบบลำดับ (Sequential structure)

โครงสร้างแสดงขั้นตอนการทำงานที่ เป็นไป<u>ตามลำดับก่อนหลัง</u>

จบการทำงาน

แต่ละขั้นตอนจะถูก<u>ประมวลผลเพียง</u> ครั้งเดียวเท่านั้น

7

Flow Chart

- ◆โครงสร้างแบบมีทางเลือก (Selection structure)
 - โครงสร้างแบบมีทางเลือก คือ โครงสร้างที่มีเงื่อนไข ขั้นตอน การทำงานบางขั้นตอนที่<u>ต้องมีการตัดสินใจ</u>เพื่อเลือกวิธีการ ประมวลผลขั้นต่อไป และ<u>อาจจะมีบางขั้นตอนที่ไม่ได้รับการ</u> ประมวลผล
 - การตัดสินใจอาจ<u>มีทางเลือก 2 ทางหรือมากกว่า</u>ก็ได้

Flow Chart

◆ โครงสร้างแบบมีทางเลือก (Selection structure)

Flow Chart

โครงสร้างแบบทำซ้ำ i=1,sum=0
(Repetition structure)
โครงสร้างแบบทำซ้ำ คือ โครงสร้างที่ขั้นตอน
การทำงานบางขั้นตอนได้รับการประมวลผล
มากกว่า 1 ครั้ง ทั้งนี้ขึ้นอยู่กับเงื่อนไขบาง
ประการ โครงสร้างแบบซ้ำนี้ต้องมีการตัดสินใจ
ในการทำงานซ้ำ

QuickCheck1

เขียนผังงาน (flow chart) และโปรแกรมสำหรับการแปลงอุณหภูมิองศาเซลเซียส(C)ให้ เป็นองศาฟาเรนไฮต์(F) โดยรับค่า C จากคีย์บอรด์ (F = C x 1.8 + 32)

Temperature in C: **34** 34.0 C = 93.2 F

Contents

13

Review: Relational expression

Python	รายละเอียด	ตัวอย่าง	ข้อสังเกตุ
>	มากกว่า	x > 5	
>=	มากกว่าหรือเท่ากับ	x >= 5	ระวังที่จะเขียนผิดเป็น => วิธีการช่วยจำให้เขียน ตามลำดับการพูด
<	น้อยกว่า	x < 10	
<=	น้อยกว่าหรือ เท่ากับ	x <= 10	ระวังที่จะเขียนผิดเป็น =< วิธีการช่วยจำให้เขียน ตามลำดับการพูด
==	เท่ากับ	x == 5	อย่าสับสนกับเครื่องหมาย = ในนิพจน์กำหนดค่า
<u>!</u> =	ไม่เท่ากับ	x != 5	

14

Review: Relational expression

การเปรียบเทียบ

<u>ตัวแปรกับค่าคงที่</u> x!=10

 $a \le 150.5$

Contents

Boolean data type

- ◆ข้อมูลชนิดบูลีนมีค่าได้สองค่าเท่านั้นคือ จริง (True) กับ เท็จ (False)
- 🌩ค่าจริงแทนด้วย "True" และค่าเท็จแทนด้วย "False"

ตัวอย่าง

```
print(5>6)
x='A'>'C'
print(x)
print(type(x))
```

17

Boolean data type

◆สามารถแปลงค่าได้โดยใช้ bool() Function

bool(expression)

<u>ตัวอย่าง</u>

```
x=5
print(x)
print(bool(x))
print(type(bool(x)))

y=bool(0) and 101%2!=0
print(y)
```

1

Contents

Selection Statement (if statement)

- ◆คำสั่ง if ใช้สำหรับกรณีที่ต้องมีการตัดสินใจหรือมีเงื่อนไข
- ◆คำสั่ง if **ต้อง**มีเครื่องหมาย ":" (colon) ตามหลังส่วนนิพจน์หรือเงื่อนไข
- ◆ประกอบด้วยสองส่วน คือ ส่วนของการตรวจสอบเงื่อนไข และส่วนของคำสั่ง
 ที่ต้องการให้ทำในกรณีที่เงื่อนไขนั้นเป็นจริง
- ชิปแบบ

Selection Statement (if statement)

- ◆ประกอบด้วยสองส่วน คือ ส่วนของการตรวจสอบเงื่อนไข และส่วนของคำสั่งที่ ต้องการให้ทำในกรณีที่เงื่อนไขนั้นเป็นจริง
- **♦**ตัวอย่าง

if (exam>50): print("Passed")

if (exam>50):
 print("Passed")

Selection Statement (if statement)

- ◆สำหรับกรณีที่เงื่อนไขเป็นจริงแล้วต้องการจะทำหลายคำสั่ง ให้ใช้
 ปีกกาคร่อมคำสั่งทั้งหมดนั้น ซึ่งเรียกว่า "Block"
- **♦**ลูปแบบ

if (นิพจน์หรือเงื่อนไข): คำสั่ง คำสั่ง ตัวอย่าง if (a > 0): x = a * b y = y + x

22

Selection Statement (if statement)

21

score = input()
score = int(score)

if(score >= 50):
 print("You pass")

Selection Statement (if/else statement)

คำสั่ง if/else ใช้สำหรับกรณีที่ ต้องมีการตัดสินใจ 2 ทางเลือก
 รูปแบบ

if (นิพจน์หรือเงื่อนไข): คำสั่งที่ 1 else: คำสั่งที่ 2

if (นิพจน์หรือเงื่อนไข): คำสั่งที่ 1

else:

คำสั่งที่ 2

Selection Statement (if/else statement)

if (score >= 50):
 print("You pass")
else:
 print("You fail")

25

27

Selection Statement (if/else statement)

◆กรณีที่แต่ละทางเลือกจะต้องทำงานมากกว่า 1 คำสั่ง

26

Selection Statement (if/else statement)

◆กรณีที่แต่ละทางเลือกจะต้องทำงานมากกว่า 1 คำสั่ง

if VS if/else statement

if (a > 0):

QuickCheck2

↑กำหนดให้โปรแกรมมีขั้นตอนการทำงานดังนี้
เริ่มต้น
 รับค่า x และ y
 ถ้า x > y และ y > 0 ให้ y มีค่าเป็น 0
 จบ

จงเขียน flow chart ของโปรแกรมนี้ จงหาค่า y เมื่อคอมพิวเตอร์ทำโปรแกรมนี้จนจบ และผู้ใช้ใส่ค่า 5 และ 3

29

QuickCheck2

3

QuickCheck3

• จงหาผลลัพธ์ของโปรแกรมนี้ เมื่อผู้ใช้ใส่ค่าต่อไปนี้

n,m = input("Enter n,m: ").split()

n = int(n)

m = int(m)if (n > 0):

print("Positive number")

if (m > 0):

print("Positive number")

n	m	Output
3	5	
3	0	
0	-2	