Autocovariance Functions (ACVFs)

& Autocorrelation Functions (ACFs)

STAT 464 / 864 | Fall 2024 Discrete Time Series Analysis Skyepaphora Griffith, Queen's University

Covariance Matrices of Stationary Processes

The covariance matrix Γ_N of a stationary time series is Toeplitz

Toeplitz: Identical entries along diagonals

There are only N distinct values in Γ_N

We can capture all info about Γ_N in one N-length vector (or... function?)

Autocovariance Functions | ACVFs

Covariance Kernel: $\gamma_X(t, t+h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h})$ $t \in T, h \in \mathbb{Z}$

$$= \operatorname{Cov}(X_s, X_{s+h}) \qquad \forall s \in T$$

The time difference h is called "lag"

Autocovariance Function:

$$\gamma_X(h) \stackrel{\text{def}}{=} \text{Cov}(X_t, X_{t+h}) \qquad t \in T, h \in \mathbb{Z}$$

$$\gamma_X(0, h)$$

ACVFs and Stationarity

To show X_t is stationary:

- 1) Show that $\mathrm{E}[X_t]$ is time independent
- 2) Show that $Cov(X_t, X_{t+h})$ is time independent

This will show up in your assignments and stuff. A lot.

If I ask you to find the ACVF of $\,X_t$, you can assume $\,X_t$ is stationary

Autocorrelation Functions (ACFs)

Denoted $\rho_X(h)$, or just $\rho(h)$

ACVFs are easy to standardize!

$$\rho(h) = \rho(X_t, X_{t+h}) = \frac{\operatorname{Cov}(X_t, X_{t+h})}{\sqrt{\operatorname{Var}(X_t)\operatorname{Var}(X_{t+h})}}$$

$$= \frac{\gamma(h)}{\sqrt{\gamma(0)\gamma(0)}} = \frac{\gamma(h)}{\gamma(0)}$$

Properties of ACVFs and ACFs

- 1) $\gamma_X(0)$ is the variance $\mathrm{Var}(X_t) \quad \forall t \in T$ (independent of t)
- 2) γ_X is an even function. So is ρ_X , by extension.

$$\gamma_X(-h) = \operatorname{Cov}(X_t, X_{t-h})$$

$$= \operatorname{Cov}(X_{t-h}, X_t)$$

$$= \operatorname{Cov}(X_t, X_{t+h}) = \gamma_X(h)$$

3) $\rho_X(0) = 1$. Always.

Example: White Noise

Definition:

A time series {Xt} is called white noise if

- 1) It's weakly stationary (assume mean = 0, WLOG)
- 2) All X_t are pairwise uncorrelated: $\rho_X(h) = 0 \quad \forall h \neq 0$

If the mean is \mu and the variance is \s^2, we write X_t ~ wn(,)

i.i.d. Time Series
$$\Longrightarrow$$
 White noise

