3. ИТЕРАЦИОННЫЕ ВЫЧИСЛЕНИЯ СУММЫ С ВЕЩЕСТВЕННЫМИ ЧИСЛАМИ

3. 1. Цель, требования и рекомендации к выполнению задания

Цель выполнения задания: изучение и практическое освоение приемов программирования циклических вычислительных процессов с неизвестным количеством повторений на примере решения задачи вычисления суммы.

Требования и рекомендации к выполнению задания:

- 1) выбрать в качестве исходных данных для программы вещественные числа:
- а) значение аргумента x;
- б) значение ε (0 < ε << 1);
- 2) подобрать исходные данные, выявляющие особенности вычислений с плавающей точкой;
 - 3) при построении математической модели данной задачи необходимо:
- а) определить способ вычисления значения очередного слагаемого, использующий соотношение для итераций;
 - б) определить способ вычисления частичной суммы;
 - в) определить условие окончания суммирования;
- 4) при разработке алгоритма выбрать способ вычисления значения очередного слагаемого, содержащий минимальное количество умножений.

Общая формулировка задания

Заданы вещественные $x \in D \subset R$ и $\varepsilon > 0$. Пользуясь формулой «бесконечного сложения» $\sum_{i=0...\infty} u_i(x)$ вычислить частичную сумму $S_n(x) = \sum_{i=0...n} u_i(x)$, номер n последнего слагаемого частичной суммы в соответствии с $\varepsilon > 0$. Формулы для слагаемого заданы в каждом из индивидуальных заданий.

3.2. Задания

Рассматриваются суммы $\sum_{i=0...\infty} u_i$. Для каждого индивидуального задания определены вид элемента u_i и проверяемые в программе ограничения.

1.
$$u(i) = (-1)^{i} x^{2i} / (2i)!$$

2.
$$u(i) = x^i / i!$$

3.
$$u(i) = (1/\operatorname{sqrt}(2\pi))(-1)^n x^{2n+1}/(2^n n!(2n+1))$$

4.
$$u(i) = (-1)^{i} x^{2i} / i!$$

5.
$$u(i) = x^{i}(i+1) / i!$$

6.
$$u(i) = x^{3i}/(3i)!$$

7.
$$u(i) = x^{3i+q} / (3i+q)!$$
; $q = 1, 2$

8.
$$u(i) = q^{i} x^{4i} / (4i)!; q = +1,-1$$

9.
$$u(i) = x^{4i+1} / (4i+1)!$$

10.
$$u(i) = x^{4i+3} / (4i+3)!$$

11.
$$u(i) = (-1)^{i} 2^{2i} x^{4i} / (4i)!$$

12.
$$u(i) = (-1)^{i+1} 2^{2i-1} x^{4i-2} / (4i-2)!$$

13.
$$u(i) = 2^{2i}x^{2i+1} / (2i+1)!; \quad i \ge 1$$

14.
$$u(i) = (-1)^{i+1} 2^{2i-1} x^{2i} / (2i)!; \quad i \ge 1$$

15.
$$u(i) = (-1)^{i}(2i-1)! x^{2i} / 2^{2i}/(i!)^{2}; i \ge 1;$$

$$f(x) = \ln 2 - \ln(1 + \operatorname{sqrt}(1 + x^2));$$
 $x^2 \le 1.$

16.
$$u(i) = (-1)^{i} 2^{2i-1} (i-1)! i! x^{2i+1} / (2i+1)!;$$
 $i \ge 1 x^2 < 1.$

17.
$$u(i) = (-1)^{i} 2^{2i} (i!)^{2} x^{2i+1} / (2i+1)!;$$
 $x^{2} < 1.$

18.
$$u(i) = (-1)^{i}(2i-1)! / 2^{2i-1} / i! / (i-1)! / (2i+1) / x^{2i+1}; i \ge 1; x^{2} \ge 1.$$

19.
$$u(i) = (2i)! x^{2i+1} / 2^{2i} / (i!)^2 / (2i+1); \quad x^2 < 1.$$

20.
$$u(i) = 2^{2i} (i!)^2 x^{2i+1} / (2i+1)! / (i+1); \quad x^2 \le 1.$$

21.
$$u(i) = (2i)! / 2^{2i} / (i!)^2 / (2i + 1) (x^2 / (1 + x^2))^i$$

22. Вычислить пару значений:

$$u_1(i) = p^i \sin(i \cdot x) / i; \quad i \ge 1; (0 < x < 2\pi) & (p^2 \le 1).$$

$$u_2(i) = p^i \cos(i \cdot x) / i; \quad i \ge 1 ; (0 < x < 2\pi) & (p^2 \le 1).$$

23. Вычислить пару значений:

$$u_1(i) = x^i \sin(i \cdot p)/i!$$
; $i \ge 1$; $x^2 < 1$.

$$u_2(i) = x^i \cos(i \cdot p) / i!$$
; $i \ge 0$; $x^2 < 1$.

24.
$$u(i) = (-1)^{i} x^{2i+1} / (2i+1)!$$

25.
$$u(i) = x^{2i+1} / (2i+1)!$$

26.
$$u(i) = x^{2i} / (2i)!$$