Phylogenomics

Ruiqi Li, Ph.D. University of Southern California

Contents

- 1. Data Type
- 2. Phylogenomics Pipeline
 - 1. Finding Orthologs/Exon assemble
 - 2. Align individual genes
 - 3. Trim Alignments
 - 4. Infer Phylogeny
- 3. Practice

Why phylogenomics?

Genome Tree vs Single Gene Tree

1. Data Type

Others: SNPs (RAD-seq)

How to choose the "best" method

- Morphology
- Single gene
- Multiple genes
- Target capture
- Whole genome sequencing

Sample availability

Morphology > Single gene

≈ Multiple genes

≈ Target capture

> RNA-seq

> Whole genome sequencing

Budget

Morphology > Single gene

≈ Multiple genes

≈ Target capture

> RNA-seq

> Whole genome sequencing

Time sensitivity

Morphology > Single gene

≈ Multiple genes

> Target capture

≈ RNA-seq

> Whole genome sequencing

Will the data answer your questions?

Morphology < Single gene

- < Multiple genes
- < Target capture
 - < RNA-seq
- < Whole genome sequencing

2.1 Finding Orthologs

Orthologs are genes in different species evolved from a common ancestral gene by a **speciation event**.

Paralogs are gene copies created by a **duplication event** within the same genome.

2.1 Finding Orthologs

The green A1s are _____.

A1 and A2 are _____.

A and A1 are _____.

A and A2 are _____.

2.1 Finding Orthologs

The green A1s are orthologs.

A1 and A2 are paralogs.

A and A1 are orthologs.

A and A2 are orthologs.

2.1 Finding Orthologs from transcriptomes and genomes

software: OrthoFinder, OrthoMCL, OMA, OrthoFisher

2.1 "Finding" Orthologs from target capture data

With targeted resequencing, a subset of genes or regions of the genome are isolated and sequenced. Target enrichment works by capturing genomic regions of interest by hybridization to target-specific biotinylated probes

Design the probes with existing genome/transcriptome data

Assembling with reference: HybPiper pipeline (reference-guided assembly)

2.2 Align individual genes

software: mafft, muscle, etc.

Multiple Sequence Alignment

					115					120					125				
Sequence A	Α	G	Т	Т	G	Α	С	Т	Т	С	Т	С	Α	G	G	Т	Α	Т	Т
Sequence B	Α	G	G	Т	Α	Α	С	Т	Т	С	Α	G	Α	Т	G	Α	Α	Α	Т
Sequence C	Α	G	G	Т	С	Α	С	-	-	G	Α	С	Α	G	G	С	Α	Т	Т
Sequence D	Α	G	G	Т	С	Α	С	-	-	G	Α	С	Α	G	G	С	Α	-	Т
Sequence E	Α	G	G	Т	С	Α	С	Т	т	G	Α	G	Α	-	G	С	Α	-	Т
Sequence F	Α	G	G	Т	С	Α	С	Т	Т	G	Α	С	Α	G	G	С	Α	Т	Т

2.3 Trim Alignments

software: trimAL, etc.

2.4 Phylogeny Inference

concatenation and coalescence

Tutorial 1:

Genome/Transcriptome Data - OrthoFinder (coalescence method)

Tutorial 2:

Target Sequence Data - Alignment, Trim, concatenation, phylogeny (concatenation method)

2.4 Phylogeny Inference

	Maximum Likelihood (ML)	Bayesian
software	raxml	phylobayes
Statistics	search for trees that maximizes the chance of seeing the data P(Data Tree)	search for the tree that maximizes the chance of seeing the tree given the data P(Tree Data)
computing	Low	High

Bayesian MCMC chain convergence

Software Installation

Please follow instructions on the tutorial 4. Software Installation

Practice

Tutorial 1. Simplified Workflow (Skip this time)

OrthoFinder Output

```
total 132K
drwxrwxr-x 2 ruiqi 36K Jul 19 16:38 Orthogroup_Sequences
drwxrwxr-x 2 ruigi 4.0K Jul 19 16:38 Orthogroups
drwxrwxr-x 2 ruigi 12K Jul 19 16:38 Single_Copy_Orthologue_Sequences
drwxrwxr-x 2 ruiqi 4.0K Jul 19 16:38 Putative_Xenologs
drwxrwxr-x 2 ruigi 4.0K Jul 19 16:38 Phylogenetic_Hierarchical_Orthogroups
drwxrwxr-x 2 ruiqi 4.0K Jul 19 16:38 Phylogenetically_Misplaced_Genes
drwxrwxr-x 2 ruigi 20K Jul 19 16:38 Resolved_Gene_Trees
drwxrwxr-x 2 ruigi 20K Jul 19 16:38 Gene_Trees
drwxrwxr-x 2 ruigi 4.0K Jul 19 16:38 Gene_Duplication_Events
drwxrwxr-x 2 ruiqi 4.0K Jul 19 16:38 Comparative_Genomics_Statistics
drwxrwxr-x 3 ruiqi 4.0K Jul 19 16:38 Species_Tree
drwxrwxr-x 7 ruigi 4.0K Jul 19 16:38 WorkingDirectory
drwxrwxr-x 6 ruiqi 4.0K Jul 19 16:38 Orthologues
-rw-rw-r-- 1 ruigi 729 Jul 19 16:38 Log.txt
-rw-rw-r-- 1 ruigi 2.5K Jul 19 16:38 Citation.txt
```

Single Copy Ortholog from OrthoFinder Results

```
-rw-rw-r-- 1 ruiqi 5.5K Jul 19 16:38 0G0000272.fa
-rw-rw-r-- 1 ruiqi 5.6K Jul 19 16:38 0G0000271.fa
-rw-rw-r-- 1 ruiqi 449 Jul 19 16:38 0G0000271.fa
-rw-rw-r-- 1 ruiqi 679 Jul 19 16:38 0G0000270.fa
-rw-rw-r-- 1 ruiqi 747 Jul 19 16:38 0G0000269.fa
-rw-rw-r-- 1 ruiqi 2.9K Jul 19 16:38 0G0000268.fa
-rw-rw-r-- 1 ruiqi 1.8K Jul 19 16:38 0G0000267.fa
-rw-rw-r-- 1 ruiqi 1.9K Jul 19 16:38 0G0000266.fa
-rw-rw-r-- 1 ruiqi 1.7K Jul 19 16:38 0G0000265.fa
-rw-rw-r-- 1 ruiqi 2.1K Jul 19 16:38 0G0000264.fa
(phylogen) ruiqi@argonaute:~/ruiqi_data/PhylogenomicsWorkshop/ExampleData/OrthoFinder/Results_Jul19/Single_Copy_Orthologue_Se
quences$ pwd
/home/ruiqi/ruiqi_data/PhylogenomicsWorkshop/ExampleData/OrthoFinder/Results_Jul19/Single_Copy_Orthologue_Sequences
```

Practice

Tutorial 2. Manual Workflow

2. Manual Workflow

- 2.1 Genome/Transcriptome/Target Capture Assembly
- 2.2 Alignment with mafft
- 2.3 Trimming with trimal
- 2.4 Concatenation with catfasta2phyml
- 2.5 Phylogeny Inference with raxml

Practice

Tree visualization:

https://beta.phylo.io/viewer/#

Final ML tree

ID	Species	Group		
Acanthapomotis	Acantharchus pomotis	Non-cichlid		
Acropomjaponic	Acropoma japonicum	Non-cichlid		
Etroplumaculat	Etroplus maculatus	Indian cichlids		
Maylandzebraxx	Maylandia zebra	African cichlids		
Neolampbrichar	Neolamprologus brichardi	African cichlids		
Oreochrnilotic	Oreochromis niloticus	African cichlids		
Pundaminyerere	Pundamilia nyererei	African cichlids		
Tylochrpolylep	Tylochromis polylepis	African cichlids		
Ectodusdescamp	Ectodus descampsii	African cichlids		