Selfish Behavior in the Tezos Proof-of-Stake Protocol

Michael Neuder ^{1†} Daniel J. Moroz ² Rithvik Rao ² David C. Parkes ²

¹Dept. of Computer Science, University of Colorado, Boulder

²School of Engineering and Applied Sciences, Harvard University

Cryptoeconomic Systems Conference March 2020

[†] Work completed while MN was visiting Harvard University.

Content

- 1. Related Work
- 2. Tezos
 - Overview
 - o Proof-of-Stake Mechanism
 - Delay Function
 - Reward Functions
- 3. Selfish Endorsing Attack
 - Example Length-2 Attack
 - Feasibility & Profitability
 - Probability
- 4. Results
- 5. Future Work

Related Work

- Eyal and Sirer (2013) outline how an attacker can earn a larger relative percentage of blocks in a Proof-of-Work mechanism by not immediately publishing blocks.
 - Slows down block production, but is profitable because of difficulty adjustment.
- Brown-Cohen et al. (2019) demonstrate theoretical weaknesses in PoS.
 - * Our work is an instance of the *Predictable Selfish Mine* described in their work.

Overview

- 2014 White Paper from Arthur Breitman and ICO in 2017.
- Currently 10th largest digital currency by market cap at \$2 billion.
- o Implements an Optional Delegated Proof-of-Stake.
- A built in mechanism for updating the protocol democratically.

Proof-of-Stake Mechanism

- Currency is divided into groups of 8,000 tokens called rolls.
- At each block-height random roll selection is used to select:
 - 1. A list of bakers indexed by priority (discussed further).
 - 2. A group of 32 endorsers to vote on block quality.
- Both bakers and endorsers are incentivized to participate with rewards.
- To be eligible to stake, deposit and reward tokens are frozen 5 cycles.

Delay Function

Delay function under Emmy⁺

$$\mathcal{D}(p,e) = 60 + 40p + 8\max(24 - e, 0) \tag{1}$$

- o p is the priority of the baker.
- e is the number of endorsements included.
- Determines when a block is considered valid.
- Minimum of 60 seconds between blocks.

Reward Functions

Block Reward under Emmy⁺

$$\mathcal{R}_b(p,e) = \frac{16}{p+1} \left(\frac{4}{5} + \frac{1}{5} \cdot \frac{e}{32} \right)$$
 (2)

- o p is the priority of the baker.
- o e is the number of endorsements included.
- Max value of 16 XTZ if p = 0 and e = 32.

Reward Functions

Endorsement Reward under Emmy⁺

$$\mathcal{R}_e(p_i) = \frac{2}{p_i + 1} \tag{3}$$

- \circ p_i is the priority of the block which includes the endorsement.
- Max value of 2 XTZ if $p_i = 0$.

Example Rewards

- \circ Slot $\ell-1$ rewards
 - 1. $R_b(1,32) = 16$ XTZ
 - 2. $R_e(1) = 1$ XTZ
- \circ Slot $\ell-1$ rewards
 - 1. $R_b(0,31) = 15.9 \text{ XTZ}$
 - 2. $R_e(0) = 2 \text{ XTZ}$

Selfish Endorsing Attack

Example Length-2 Attack

- Attacker creates two blocks before the honest network.
- o Only endorses private chain, hence the name Selfish Endorsing.

Selfish Endorsing Attack

Feasibility & Profitability

Delay Lemma

$$\mathcal{D}_2(p_\ell, e_\ell, n_{\ell+1}) = 40(p_\ell - n_{\ell+1}) + 8\max(24 - e_\ell, 0) - 8\max(e_\ell - 8, 0) \tag{4}$$

- Allows calculation of difference in time between selfish and honest chain creating two blocks.
- If $\mathcal{D}_2 < 0$, then an attack is *feasible*.

Selfish Endorsing Attack

Feasibility & Profitability

Reward Lemma

$$\mathcal{R}_2(p_{\ell}, e_{\ell-1}, e_{\ell}) = 16\left(\frac{1}{p_{\ell}+1} + \frac{e_{\ell}}{160} - \frac{1}{5}\right) + 2e_{\ell-1}\left(\frac{1}{p_{\ell}+1} - 1\right)$$
 (5)

- Allows calculation of difference in reward for attacker to play honestly versus selfishly.
- o If $\mathcal{R}_2 > 0$, then an attack is *profitable*.

Joint probability mass function of state variables

$$\Pr[t \mid \alpha] = \underbrace{(1-\alpha)^{p_{\ell}}\alpha}_{\Pr[\mathcal{P}=p_{\ell}]} \times \underbrace{\alpha^{n_{\ell+1}}(1-\alpha)}_{\Pr[\mathcal{N}=n_{\ell+1}]} \times \underbrace{\begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix}} \alpha^{e_{\ell-1}} (1-\alpha)^{32-e_{\ell-1}} \times \underbrace{\begin{pmatrix} 32\\e_{\ell} \end{pmatrix}} \alpha^{e_{\ell}} (1-\alpha)^{32-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 6\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

$$= \begin{pmatrix} 32\\e_{\ell-1} \end{pmatrix} \cdot \begin{pmatrix} 32\\e_{\ell} \end{pmatrix} \cdot \alpha^{n_{\ell+1}+e_{\ell-1}+e_{\ell}+1} \cdot (1-\alpha)^{65+p_{\ell}-e_{\ell-1}-e_{\ell}}$$

- Joint of 2 Geometric R.V.'s and 2 Binomial R.V.'s.
- $\circ \alpha$ is percentage of rolls owned by attacker.

Results

The set of feasible & profitable length-2 attacks

$$\mathcal{A}_{2} = \{ (e_{\ell-1}, e_{\ell}, p_{\ell}, n_{\ell+1}) \mid \mathcal{D}_{2} < 0 \ \land \ \mathcal{R}_{2} > 0 \}$$
 (7)

The value of length-2 attack

$$V_2 = \sum_{t \in A_2} \Pr[t \mid \alpha] \cdot \mathcal{R}_2$$
 (8)

Results

α	$\mathcal{C} \cdot \Pr[\mathcal{A}_2]$		%	$\mathcal{C}\cdot\mathcal{V}_2$		%
0.1	0.04	0.17	425%	0.09	0.21	233%
0.15	3.88	2.16	56%	7.07	2.02	29%
0.2	33.91	7.70	23%	52.61	6.10	12%
0.25	136.76	12.91	9.4%	175.91	9.00	5.1%
0.3	309.66	12.66	4.1%	324.55	7.92	2.4%
0.35	407.33	8.07	2.0%	361.14	4.60	1.3%
0.4	318.98	3.53	1.1%	254.94	1.85	0.7%

- \circ $\mathcal C$ is the number of minutes in a year.
- Blue column represents results before heuristic fix and green represents after.

Future Work

- Apply framework to other PoS mechanisms
- Longer attacks
 - 1. Have not been formally analyzed
 - 2. Computationally difficult
- Double spend attacks.

Thanks!

Questions