

Name SOLUTIONS

Calculator Assumed

Notes Permitted

Marks available:

21

Time allowed: 25 minutes

1. [3 marks]

Using the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ or otherwise, determine the exact solutions to $2x^2 - 2x + 25 = 0$.

$$0.5 \pm \frac{\sqrt{-196}}{4} = \frac{1}{2} \pm 3.5 i$$

2. [5 marks]

If w = 5 - 3i and c = 2 + i determine exactly in the form a + bi

a)
$$c^2$$

b)
$$wc$$

b)
$$wc$$
 $(5-3i)(2+i)$
 $(5-3i)(2+i$

3. [4 marks]

The Argand diagram below shows the complex number z. On the same diagram plot and label the four complex numbers given by t = z, u = i z, $v = i z w = z^2$.

4. [4 marks]

Prove by contradiction that $\frac{\sqrt{3}-\sqrt{5}}{4}$ is irrational.

Assume $\int \frac{3-\sqrt{5}}{4} = a$ where a is rational $\sqrt{3}-\sqrt{5}=4a$ $(\sqrt{3}-\sqrt{5})^2=16a^2$ $3+5-2\sqrt{5}=16a^2$ $\sqrt{5}=4-8a^2$ If a is rational, $4-8a^2$ must also be rational But $\sqrt{5}=is$ irrational which contradicts our assumption that a is rational. Hence $\sqrt{5}=\sqrt{5}=is$ is irrational

5. [5 marks: 1, 4]

The variables k and m are both positive integers such that $m^2 + 3 = 2k$.

i. Explain why *m* must always be odd.

2k is even, hence m² + 3 is even Since 3 is odd m² is odd So m must be odd. V

ii. Using the fact that an odd integer can be written in the form 2n + 1, or otherwise, prove that k is always the sum of three square numbers.

 $2k = m^{2} + 3$ $= (2n+1)^{2} + 3 \quad V$ $= 4n^{2} + 4n + 4$ $k = 2n^{2} + 2n + 2 \quad V$ $= n^{2} + n^{2} + 2n + 1 + 1$ $= n^{2} + (n+1)^{2} + 1^{2} \quad V$