

第四部分: 多Agent决策

章宗长 2023年4月18日

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

制定群组决策

- 社会选择理论
- 投票过程
- 投票过程的性质
- 策略性操纵

社会选择理论(social choice theory)

- 本节将研究用于制定群组决策的协议,这属于社会选择理论的范畴
- 社会选择理论研究的问题:综合个人偏好,得出 集体选择
- 社会选择的典型实例: 投票 (voting)

社会选择理论模型

- 假设集合 $Ag = \{1, ..., n\}$ 为投票者集合
 - □ 有限 or 无限? → 有限
 - □ 奇数 or 偶数? → 奇数

- 投票者关于候选集合 $\Omega = \{\omega_1, \omega_2, ...\}$ 做出选择
- 如果 $|\Omega|$ = 2,将其称为成对选举(pairwise election)
- 如果 $|\Omega| > 2$,称为一般投票场景(general voting scenario)

偏好

- 每个投票者对候选者都有其偏好(preference): 对集合Ω 内元素的一个排序(ordering)
- 例:假设候选集合 $\Omega = \{\omega_1, \omega_2, \omega_3\}$,Agent i的偏好排序是 $(\omega_2, \omega_3, \omega_1)$,那么表示Agent i最偏好 ω_2 , ω_3 次之,最不偏好 ω_1 ,可记作

$$\omega_2 \succ_i \omega_3 \succ_i \omega_1$$

■ 将候选集合 Ω 上的所有偏好构成的集合记作 $\Pi(\Omega)$

偏好聚合

- 社会选择理论研究的基本问题:
 - □ 偏好聚合(preference aggregation): 给定一组偏好, 我们如何将它们结合起来得出一个尽可能紧密地反映 投票人偏好的群组决策?
- 偏好聚合的两种形式:
 - □ 社会福利函数 (social welfare functions)
 - □ 社会选择函数(social choice functions)

社会福利函数

- 令Π(Ω)表示候选集合Ω上的偏好排序集合
- 一个社会福利函数的输入是每个投票 者的偏好,输出一个社会偏好排序:

$$f: \underbrace{\Pi(\Omega) \times \cdots \times \Pi(\Omega)}_{n \ times} \to \Pi(\Omega)$$

- 社会福利函数的结果用>*表示
 - □ $\omega >^* \omega'$: 在社会排序中,对 ω 的偏好高于对 ω' 的偏好
- 例子: 组合搜索引擎的结果, 协同过滤

社会选择函数

■ 有时,只需要选出一个候选者,而不是一个社会偏好排序

■ 社会选择函数的形式:

$$f: \underbrace{\Pi(\Omega) \times \cdots \times \Pi(\Omega)}_{n \ times} \to \Omega$$

可以由社会福利函数得 到社会选择函数

■ 例子: 总统选举

我们把社会福利函数和社会选择函数称作投票过程

制定群组决策

- 社会选择理论
- 投票过程
- 投票过程的性质
- 策略性操纵

投票过程——多数制(Plurality)

- 也叫做最高票者当选(first-past-the-post),赢者通吃(winner-takes-all)
- 是一个社会选择函数,选出单一的结果
- 每个投票者提交一个偏好排序(或者一个最期望的 候选者),被排到第一位次数最多的候选者获胜

Party	Leader	Votes	
Conservative Party	David Cameron	11,334,920 (36.8%)	
Labour Party	Ed Miliband	9, 344, 328 (30. 4%)	
UK Independence Party	Nigel Farage	3,881,129 (12.6%)	
Liberal Democrats	Nick Clegg	2,415,888 (7.9%)	
Scottish National Party	Nicola Sturgeon	1,454,436 (4.7%)	
Green Party	Natalie Bennett	1,154,562 (3.8%)	

多数制的问题

- 以英国为例,它有三大主要政党:
 - □ 工党(Labour Party),自由民主党(Liberal Democrats) 和保守党(Conservative Party)
- 假设38%的人选择 ω_L ,22%的人选择 ω_D ,40%的人选择 ω_C
- 根据多数制,保守党 ω_c 获胜,但是有60%的人(多数)倾向于其他候选者

策略性投票(Tactical Voting)

■ 假设你的偏好是

$$\omega_D >_i \omega_L >_i \omega_C$$

但是民调显示49%的选民的偏好是 $\omega_L > \omega_D > \omega_C$,还有49%的选民的偏好是 $\omega_C > \omega_D > \omega_L$

- 那么你会把票投给谁呢?
 - \square 最好投给 ω_L ,即使这并不是你真实的偏好

通过策略性投票,获得更期望看到的结果

策略性投票 (续)

Hillary Clinton Bernie Sanders Jeb Bush Carly Fiorina

民意调查:

✓ Hillary

✓ Jeb

✓ Bernie

✓ Carly

40% 策略性投票

30%

18%

12%

"浪费的选票"

Jeb获胜,即使70%的投票者相信Bernie或者 Carly可以是更好的总统!

康多塞悖论(Condorcet's Paradox)

■ **康多塞悖论**: 在某些情况下,无论我们选择哪种结果,大多数选民都会对我们选择的结果不满意。

Marquis de Condorcet (1743 – 1794)

■ 例子: 假设 $Ag = \{1,2,3\}$, $\Omega = \{\omega_1, \omega_2, \omega_3\}$,并且有

$$\omega_1 \succ_1 \omega_2 \succ_1 \omega_3$$

$$\omega_3 \succ_2 \omega_1 \succ_2 \omega_2$$

$$\omega_2 \succ_3 \omega_3 \succ_3 \omega_1$$

□ 对每一个候选者来说,都有另一个候选者被大多数投票者所偏好!

投票过程——序列多数选举 (Sequential Majority Election)

- 多数制的一种变体,表现为进行一系列的选举
 - □ 每次进行成对选举, 胜者进入下一次成对选举
- ■序列可以是
 - □线性的
 - □ 树状的(类似淘汰赛)
- ■最终的选举结果
 - □不仅取决于选民的偏好

□ 还取决于候选人参加选举的顺序,即选举议程(election agenda)

线性序列多数选举

例子:如果选举议程是 ω_2 , ω_3 , ω_4 , ω_1 ,那么第一次选举在 ω_2 和 ω_3 之间进行,胜者和 ω_4 之间进行选举,本次的胜者与 ω_1 进行选举

树状序列多数选举

例子: 以平衡二叉树的方式组织选举议程:

- (1) 在 ω_1 和 ω_2 之间进行选举;
- (2) 在 ω_3 和 ω_4 之间进行选举;
- (3) 在(1)的胜者和(2)的胜者之间进行选举

序列多数选举的问题

- 假设
 - □ 33个投票者的偏好是 $\omega_1 >_i \omega_2 >_i \omega_3$
 - □ 33个投票者的偏好是 $\omega_3 >_i \omega_1 >_i \omega_2$
 - □ 33个投票者的偏好是 $\omega_2 >_i \omega_3 >_i \omega_1$
- 对任意一个候选者,我们可以固定一个选举议程使得其在序列多数选举中获胜!
 - \square 如果用选举议程($\omega_3,\omega_2,\omega_1$),则 ω_1 胜
 - □ 如果用选举议程($\omega_1, \omega_3, \omega_2$),则 ω_2 胜
 - □ 如果用选举议程($\omega_1, \omega_2, \omega_3$),则 ω_3 胜

多数图(Majority Graph)

- ■一种有向图
 - □ 节点: 候选者
 - \Box 边:如果大多数选民将 ω 排在 ω '之前,那么有一条从 ω 指向 ω '的边

上一个例子的多数图

- 多数图的性质:
 - □ 多数图是完全的(complete)
 - 对任意两个结果 ω_i 和 ω_i ,要么 ω_i 胜过 ω_i ,要么 ω_i 胜过 ω_i
 - □ 多数图是不对称的(asymmetric)
 - 如果 ω_i 胜过 ω_i ,那么 ω_i 不会反过来胜过 ω_i (对一条边而言)
 - □ 多数图是不自反的 (irreflexive)
 - 一个结果不能战胜自己

多数图的另一个例子

■多数图是投票者偏好的一种简洁的表示

- 例子: 通过设计不同的选举议程, 每个候选者都可以成为最终赢家
 - □ 若议程为(ω_3 , ω_2 , ω_4 , ω_1),则 ω_1 胜
 - \Box 若议程为($\omega_1, \omega_4, \omega_2, \omega_3$),则 ω_3 胜
 - \Box 若议程为(ω_3 , ω_4 , ω_1 , ω_2),则 ω_2 胜
 - \Box 若议程为($\omega_3,\omega_1,\omega_2,\omega_4$),则 ω_4 胜

21

如果存在议程使得某候选者为最终赢家,则称该候选者为一个可能的赢家(possible winner)

康多塞赢家

■ 康多塞赢家:对任意议程,该候选者都是最终赢家

■ 例子: 康多塞赢家为 ω_1

投票过程——波达计数(Borda Count)

- ■多数制有较多问题的原因
 - □ 忽略了大多数选民的偏好顺序,只关注排名靠前的候选人
- ■波达计数考虑了整个偏好顺序
 - □ 对于每个候选人,都有一个计数变量,计算支持这个候选人的强弱程度
 - □ 设 $|\Omega| = k$,如果 ω_i 出现在偏好顺序中的第一位,那么为其计数变量增加k-1,为偏好顺序中的下一个的计数变量增加k-2,以此类推,直到为偏好顺序中的最后一个增加0
 - □ 对所有投票者的偏好进行上述操作,给出候选者排名

波达计数的例子1

Position	Point
1 st	k-1
2 nd	k-2
3 rd	k-3
:	:
$m{k}^{ ext{th}}$	0

假设有3个投票者和3个候选者,3个 投票者的偏好顺序如下:

$$(\omega_2)$$
>1 ω_1 >1 ω_3
 (ω_3) >2 (ω_2) >2 (ω_1) 2
 (ω_1) 2 (ω_2) 3 (ω_3) 3

- 按照波达计数的规则, 候选者ω2的最终得分为4
 - □ ω₂出现在第1个偏好顺序中的第1位, 计数变量增加2
 - □ ω₂出现在第2、3个偏好顺序中的第2位, 计数变量各增加1
- 思考: 候选者 ω_1 、 ω_3 的最终得分各为多少呢?

波达计数的例子2

Hillary Clinton Bernie Sanders

Hillary > Carly > Bernie > Jeb Jeb > Carly > Bernie > Hillary

Jeb Bush

Carly Fiorina

Bernie > Carly > Jeb > Hillary

(30 votes)

(28 votes)

(5 votes)

■ 按照波达计数的规则, 计算四位候选者的最终得分:

Hillary =
$$(3)(30) + (0)(28 + 25 + 12) + (1)(5) = 95$$

Carl =
$$(2)(30 + 28 + 25) + (3)(12 + 5) = 217$$

Bernie =
$$(1)(30 + 28) + (3)(25) + (2)(12) + (0)(5) = 157$$

$$Jeb = (0)(30) + (3)(28) + (1)(25 + 12) + (2)(5) = 131$$

投票过程——斯莱特排序(Slater Ranking)

- 考虑如下的NP-难问题:找到一个一致排序(不包含环),使它尽可能接近**多数图**
 - □使得排序和多数图的不一致程度最小
 - 不一致程度: 为了使对应的排序与多数图一致,图中有 多少条边需要被"翻转"

例子1:

无环

排序 $\omega_1 >^* \omega_3 >^* \omega_2 >^* \omega_4$ 与 多数图一致

投票过程——斯莱特排序(续)

例子2:

有环

- 考虑排序 $\omega_1 >^* \omega_2 >^* \omega_4 >^* \omega_3$
 - □ 与多数图的不一致程度为2

- 考虑排序 $\omega_1 >^* \omega_2 >^* \omega_3 >^* \omega_4$
 - □ 与多数图的不一致程度为1
 - □ 不一致程度最小,因此为斯莱特排序

制定群组决策

- 社会选择理论
- 投票过程
- 投票过程的性质
- 策略性操纵

投票过程的性质

- 一个"好的"投票过程应该具有怎样的性质?
- 三个关键的性质:
 - □ 帕累托条件 (Pareto condition)
 - □ 康多塞赢家条件(Condorcet winner condition)
 - □ 无关选项独立性 (Independence of irrelevant alternatives, IIA)
- 同时还应该**避免**独裁性(dictatorship)!

帕累托条件

■ 回顾4.1节的帕累托最优或帕累托效率:

一个结果ω被称为帕累托最优,当没有其他结果可以在不使任何人情况变坏的前提下,使得至少一个人情况变得更好。

■ 对于投票过程来说, 帕累托条件就是:

如果每个投票者都将 ω_i 排在 ω_j 前面,那么一定有 $\omega_i >^* \omega_j$ 。

■ 多数制和波达计数满足帕累托条件,而序列多数选举不满足

帕累托条件(续)

■ 例: 序列多数选举不满足帕累托条件

$$C > A > B > D$$
 (10 votes)
 $A > B > D > C$ (15 votes)
 $B > D > C > A$ (12 votes)

В

选举议程: A, B, C, D C D A C

得到的结果 $D >^* C >^* A >^* B$

而所有选民都有B > D!

康多塞赢家条件

- 康多塞赢家
 - □ 在任何选举议程下都是最终赢家,换句话说,在任何成 对选举中都能获胜的候选者
- 康多塞赢家条件

如果 ω_i 是一个康多塞赢家,那么 ω_i 在社会选择中排名第一,或者最终选择的是 ω_i 。

□ 看似是一个显然的性质,但在前面介绍的投票过程中, **只有序列多数选举满足**

康多塞赢家条件(续)

■ 例:多数制不满足康多塞赢家条件

- 根据多数制,A获胜
- 而C是康多塞赢家

无关选项独立性

■ 无关选项独立性(IIA):

两个候选项的社会排序仅依赖于二者在投票者偏好中的相对关系,与其他候选项无关。

■ 举例说明:

假设候选者包括 ω_i 和 ω_j ,投票结果是 $\omega_i >^* \omega_j$,这时有人改变了自己的偏好,但其对 ω_i 和 ω_j 的相对排序不变,仍然有 $\omega_i >^* \omega_j$ 。

■多数制、波达计数和序列多数选举都不满足IIA

例:多数制不满足IIA

A和B在投票者偏好 中的相对排序没变

$$A > C > B$$
 (49 votes)

$$C > B > A$$
 (48 votes)

$$B > C > A$$
 (3 votes)

$$A > C > B$$
 (49 votes)

$$\mathbf{B} > \mathbf{C} > \mathbf{A}$$
 (48 votes)

$$B > C > A$$
 (3 votes)

■ 根据多数制,A获胜

■ 根据多数制, B获胜

例:波达计数不满足IIA

Jeb和Bernie在投票者偏 好中的相对排序没变

Carly > Jeb > Hillary > Bernie (5 votes)

Jeb > Carly > Hillary > Bernie (28 votes)

Hillary =
$$(3)(30) + (0)(28 + 25 + 12) + (1)(5) = 95$$

Carly =
$$(2)(30 + 28 + 25) + (3)(12 + 5) = 217$$

Bernie =
$$(1)(30 + 28) + (3)(25) + (2)(12) + (0)(5) = 157$$

$$Jeb = (0)(30) + (3)(28) + (1)(25 + 12) + (2)(5) = 131$$

Hillary =
$$(3)(30) + (1)(28 + 5) + (0)(25 + 12) = 123$$

Carly =
$$(2)(30 + 28 + 25) + (3)(12 + 5) = 217$$

Bernie =
$$(1)(30) + (0)(28 + 5) + (3)(25) + (2)(12) = 129$$

$$Jeb = (0)(30) + (3)(28) + (1)(25 + 12) + (2)(5) = 131$$

$$Carly >^* Bernie >^* Jeb >^* Hillary$$

$$Carly >^* Jeb >^* Bernie >^* Hillary$$

Jeb和Bernie的最终社会排序发生了变化

例:序列多数选举不满足IIA

B和D在投票者偏好 中的相对排序没变

$$C > A > B > D$$
 (10 votes)

$$A > B > D > C$$
 (15 votes)

$$B > D > C > A$$
 (12 votes)

$$C > B > A > D$$
 (10 votes)

$$A > B > D > C$$
 (15 votes)

$$B > D > C > A$$
 (12 votes)

选举议程: A, B, C, D

选举议程: A, B, C, D

得到的结果

$$D >^* C >^* A >^* B$$

B和D的最终社会 排序发生了变化 得到的结果

$$B >^* D >^* C >^* A$$

独裁性

- 如果对某个投票者i有: $f(\overline{\omega}_1, \dots, \overline{\omega}_n) = \overline{\omega}_i$,那么该 投票过程具有独裁性
- 具有独裁性的投票过程只输出某一个投票者的偏好, 而忽略了其他投票者的偏好!

这显然是一个不希望看到的性质!

■ 前面介绍的投票过程都不具有独裁性,但是具有独裁性的过程满足帕累托条件和IIA这两个好的性质

阿罗定理(Arrow's Theorem)

■ 也称为阿罗不可能定理(Arrow's impossibility theorem):

对于两个以上候选人的选举,唯一满足帕累托条件和IIA的投票程序是独裁,其社会结果实际上是简单地由一个选民选择。

Kenneth J. Arrow (1921 -2017)

"If we exclude the possibility of interpersonal comparisons of utility, then the only methods of passing from individual tastes to social preferences which will be satisfactory and which will be defined for a wide range of sets of individual orderings are either imposed or dictatorial."

[Arrow 1950]

若排除人际效用的可比性,而且在一个相当广的范围内对 任何个人偏好排序集合都有定义,那么把个人偏好总合为 社会偏好的最理想的方法,要么是强加的,要么是独裁的。

阿罗定理(续)

- 有*m*个决策者,他们每个人都有*N*种选择,并对这*N*个选择 有一个从优至劣的排序。要设计一种选举法则,使得将这 *m*个排序的信息汇总成一个新的排序,即投票结果。我们 希望这种法则满足以下条件:
 - **帕累托条件:** 如果所有的m个决策者都认为选择a优于b,那么在投票结果中,a也优于b。
 - □ **非独裁**:不存在一个决策者*X*,使得投票结果总是等同于*X*的排序。
 - □ **无关选项独立性**:如果现在一些决策者改了主意,但是在每个决策者的排序中,*a*和*b*的相对位置不变,那么在投票结果中*a*和*b*的相对位置也不变。
- $max_1 max_2 max_3$ 那么,如果 $max_3 max_4 max_3$ 我们不可能设计出这种法则。

制定群组决策

- 社会选择理论
- 投票过程
- 投票过程的性质
- 策略性操纵

可操纵性(Manipulation)

- 我们已经看到,有时候,选民可以通过从战术上歪曲他们的偏好(即策略性投票)而受益
- 给定一个社会选择函数f,对一组选民偏好排序 $\overline{\omega}_1, \dots \overline{\omega}_i, \dots, \overline{\omega}_n$ 和选民i,如果存在偏好排序 $\overline{\omega}_i'$,使得

$$f(\overline{\omega}_1, \dots, \overline{\omega}'_i, \dots, \overline{\omega}_n) \succ_i f(\overline{\omega}_1, \dots, \overline{\omega}_i, \dots, \overline{\omega}_n)$$

则该过程是可操纵的(munipulable),即选民可以通过单方面改变自己的偏好来获得更好的结果

策略性操纵

- 从某种意义上来说,我们不希望投票过程具有可操 纵性
- 是否存在无法操纵的投票过程? Yes, 独裁投票

■ 除了独裁投票,是否存在其他满足帕累托条件的不可被操纵的投票过程?

No, 根据Gibbard-Satterthwaite定理

■ 虽然该结论较为悲观,但是可以通过提升操纵的难度来 优化投票过程

容易计算 & 容易操纵

■ 容易计算 (easy to compute):

函数 f 对应的算法可以在关于投票者和候选者数的多项式时间内运行结束。

- 斯莱特排序不容易计算,其他已经介绍的投票过程都是容易计算的
- 容易操纵 (easy to manipulate):

如果存在一个并非出于本意的偏好排序 $\overline{\omega}_i'$ 使得投票结果更令投票者i满意,则可以在多项式时间内计算出来。

策略性操纵的复杂度

■ 是否存在非独裁投票过程,容易计算且满足帕累托 条件,但是不容易操纵?

Yes, 例: second-order Copeland投票过程

- 计算复杂度(computational complexity)在此处成为正面的性质
- 依然存在问题:可能会有一些启发式的操纵算法在 实际选举中表现较好,影响投票过程

小结

- ■社会选择理论
 - □ 理论模型、社会福利/选择函数
- ■投票过程
 - □ 多数制、序列多数选举、波达计数、斯莱特排序
- 投票过程的性质
 - □帕累托条件、康多塞赢家、条件无关选项独立性、独裁性
 - □阿罗定理
- ■策略性操纵
 - □ 可操纵性、计算复杂度(容易计算、容易操纵)

内容安排

4.1	多Agent交互
4.2	制定群组决策
4.3	形成联盟
4.4	分配稀缺资源
4.5	协商
4.6	辩论
4.7	分布式规划

形成联盟

- 合作博弈概览
- 收益公平分配: 夏普利值
- 模块化表示
- 简单博弈及其表示
- 联盟结构的形成

囚徒困境 vs. 合作博弈(Cooperative/Coalitional Game)

- 在4.1节,我们从博弈论的角度介绍了多Agent交互
 - □ **囚徒困境**中不会出现合作,其原因是
 - 没有制定具有约束力的协议
 - 收益是由于个体行为而直接给予个体的

囚徒困境及 其收益矩阵

	i 揭发	(D)	i 沉默	(C)
j 揭发 (D)		-5		-10
J 物及(D)	-5		0	
:公司甲4 (C)		0		-1
<i>j</i> 沉默(<i>C</i>)	-10		-1	

■ 合作博弈建模Agent能通过合作获利的情景

- □ 特点1: 使用合同等与其他Agent制定具有约束力的协议
- □ 特点2: 收益不直接分配给个体,而是集体

合作博弈的三个阶段

- 联盟结构的生成
 - □ 决定了哪些Agent之间合作
 - □ 基本问题: 我应该加入哪个联盟?
 - □ 结果: 划分出来多个联盟,每个Agent只属于其中一个联盟
 - □整个划分是一个联盟结构
- 求解每个联盟的最优化问题
 - □ 决定联盟内部如何合作
 - □ 求解一个联盟的联合问题:
 - 最大化联盟本身的效用,通常涉及联合规划等方法

合作博弈的三个阶段(续)

- 划分利益
 - □ 决定联盟的成员获得多少效用
 - □ 联盟成员不能忽略彼此的偏好
 - 如果分到的收益不够好,成员 会选择离开
 - □涉及分配的公平问题

合作博弈的生命周期

合作博弈 & 联盟

■合作博弈

$$\mathcal{G} = \langle Ag, \nu \rangle$$

- □ $Ag = \{1, 2, ..., n\}$: Agent的集合
- □ ν : $2^{Ag} \rightarrow \mathbb{R}$: 合作博弈的特征函数,它表示一个联盟可以获得的收益

```
% Representation of a Simple
% Characteristic Function Game

% List of Agents
1,2,3
% Characteristic Function
1 = 5
2 = 5
3 = 5
1,2 = 10
1,3 = 10
2,3 = 10
1,2,3 = 25
```

- 联盟 (coalition)
 - □ 将Ag的子集称为联盟,用C表示, $C \subseteq Ag$
 - □ 大联盟 (grand coalition): 包含所有Agent的联盟,此时 C = Ag
 - $\nu(C) = k$: 联盟C通过合作可以获得k的效用

加入哪个联盟?

■ 例子

- 一个人可以 通过自己工 作赚取一定 数量的钱。
- 但是,通过合作,通过合作,有可能态。得额外收益。那么选择加入哪个联盟一起工作?

不任联都特没通盟的成稳能何盟愿别有过获情联定地,所可只人组大,这种明,所可只人组大,这种是,所可以有可建收才样况盟。

"加入哪个联盟?"转变为"联盟是否稳定?"

加入哪个联盟? (续)

- 已知特征函数和收益向量,一个Agent应该加入哪个联盟?
 - □ 联盟C的收益向量 $x = \langle x_1, ..., x_k \rangle$: 分配给联盟C中每一个成员的收益组成的向量
 - □ 收益向量是高效的 (efficient) , 如果满足:

$$\nu(C) = \sum_{i \in C} x_i$$

例: 如果 $\nu(\{1,2\}) = 20$,那么可能的结果是: $\langle 20,0 \rangle$, $\langle 19,1 \rangle$, $\langle 18,2 \rangle$, ..., $\langle 1,19 \rangle$, $\langle 0,20 \rangle$

加入哪个联盟? (续)

- 一个Agent应该只加入满足下列条件的联盟C:
 - □ 可行的 (feasible): 它不反对联盟C的收益向量
 - □ 高效的 (efficient): 联盟C的所有收益都得到了分配

- 然而,可以有多个满足条件的联盟:
 - □每个联盟有不同的特征函数
- Agent如何选择?
 - □加入能带来最大收益的联盟

核心(Core)

- 合作博弈的核心:对所有成员(大联盟)的收益的可行分配集合,使得没有任何子联盟反对
- 直觉上,如果存在一个结果使得联盟中所有成员 都获得更高的收益,那么该联盟反对原来的结果
- 如果存在针对联盟 $C \subseteq Ag$ 的效益分配 $\langle x_1', ..., x_k' \rangle$,使得:

$$x_i' > x_i$$
 对于所有 $i \in C$

那么,C会反对大联盟的收益分配结果 $\langle x_1, ..., x_n \rangle$

核心(续)

- 如果有人反对,结果就不会发生!
 - □ 如果核心为空集,则无法形成联盟
- 如果核心是非空集,则大联盟是稳定的,因为没有人可以从叛离中获利
- 等价的问题
 - □ 大联盟稳定吗?
 - □ 核心是非空集吗?

核心与公平收益

- 有时核心非空,但是并不公平
 - □ 假设 $Ag = \{1,2\}$,并且有如下的特征函数:
 - $\nu(\{1\}) = 5$
 - $\nu(\{2\}) = 5$
 - $\nu(\{1,2\}) = 20$
 - □ 结果⟨20,0⟩不在核心中,因为子联盟{2}会对此进行反对
 - □ 然而,结果⟨14,6⟩在核心中,因为{2}并不能得到比6更高的收益,也就不会反对
 - □ 但是,Agent 2仅获得大小为6的收益,而Agent 1获得14的收益,这可能不公平!

课后作业4-4

一些朋友计划一起去看一场电影,每个人对想看电影的类型进行了投票。以下为偏好排序及相应的票数:

Votes	3	2	5	3
First Choice	action	romance	comedy	drama
Second Choice	drama	drama	action	romance
Third Choice	comedy	comedy	drama	action
Forth Choice	romance	action	romance	comedy

基于这些数据,分别用多数制和波达计数这样两种投票过程,计算出获胜的电影类型。

课后作业4-5

■ 已知候选集合 $\Omega = \{\omega_a, \omega_b, \omega_c, \omega_d\}$,一个线性序列成对选举的过程及结果如下:

$$\{\omega_a, \omega_b\} \longrightarrow \omega_a
 \{\omega_a, \omega_c\} \longrightarrow \omega_c
 \{\omega_a, \omega_d\} \longrightarrow \omega_a
 \{\omega_b, \omega_c\} \longrightarrow \omega_b
 \{\omega_b, \omega_d\} \longrightarrow \omega_d
 \{\omega_c, \omega_d\} \longrightarrow \omega_c$$

(a) 画出表示这些结果的多数图。

- (b) 如果存在,给出一个导致结果为 ω_a 的选举议程, 否则,解释为什么不存在。
- (c) 如果存在,给出一个导致结果为 ω_c 的选举议程; 否则,解释为什么不存在。
- (d)给出康多塞赢家的定义。在这个线性序列成对选举中,存在康多塞赢家吗?如果存在,它是什么,否则,解释为什么不存在。
- (e) 如果你希望让 ω_a 成为康多塞赢家,应该修改哪个成对选举的结果,为什么?