Махмадзиеев Али Олимович 181-331

Задание 4 [до 10 баллов] По набору данных из задания 1 на основе метода решающих деревьев построить классификатор.

- 1. Предобработать данные [до 2 баллов].
- 2. Построить и протестировать классификатор [до 2 баллов].
- 3. Реализовать метод, проверяющий значения признаков классифицируемого объекта на соответствие областям допустимых значений признаков и выявляющий аномальные объекты [до 4 баллов].
- 4. Проиллюстрировать варианты эксплуатации классификатора [до 2 баллов].

Лабораторная работа №4

Считаем датасет:

B [1]:	import numpy as np								
B [2]:									
Out[2]:		Source	Target	Trade_ld	Bitcoins	Money	Money_Rate	Date	labe
	0	586159	100349	1373958491820869	1.250628	124.06234	99.200000	2013-07-16 07:08:11	(
	1	199328	115248	1358039479966822	0.054551	0.77872	14.275064	2013-01-13 01:11:20	(
	2	105211	96376	1329371016524489	13.543310	56.09165	4.141650	2012-02-16 05:43:36	(
	3	69334	320942	1365522594463088	1.074300	239.99089	223.392805	2013-04-09 15:49:55	(
	4	89169	28388	1322881924264838	8.443058	25.93792	3.072100	2011-12-03 03:12:04	(
		•••	•••						
	67746	67321	31219	1322472062155919	4.840776	12.16971	2.514000	2011-11-28 09:21:02	(
	67747	231	499498	1370529976369716	1.267475	153.61795	121.199951	2013-06-06 14:46:16	(
	67748	THK	527401	1378329329034856	13.944896	188256.09400	13500.000031	2013-09-04 21:15:29	1
	67749	90128	36865	1345470700972834	0.021053	0.19147	9.094549	2012-08-20 13:51:40	(
	67750	231	235134	1354578128349347	0.010000	0.12660	12.660000	2012-12-03 23:42:08	(

Удаляем строки содержащие Nan:

```
B [7]: df = df.dropna()
df.shape
Out[7]: (67751, 8)
```

Разбираем данные на тренировочные и тестовые(75%-25%):

Строим классификатор «метод решающих деревьев», указываем максимальную глубину дерева 10 и в criterion энтропию:

```
B [11]: from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(criterion='entropy', max_depth=10)
dt.fit(points_train, labels_train)

Out[11]: DecisionTreeClassifier(criterion='entropy', max_depth=10)

B [12]: import matplotlib.pyplot as plt
from sklearn import tree
plt.figure()
tree.plot_tree(dt)
plt.show()
```

Результат классификации:

```
B [14]: print(format(dt.score(points_test, labels_test)))
0.9995276892195064
```

Даём новые данные классификатору:

Проверяем значения признаков на доверительные интервалы:

Результат классификации:

