

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA (Prova Online)

19/06/2020

Allievi fisici

Tempo a disposizione: 2 ore	
NOME E COGNOME	•••••
NOME E COCNOME	
Allegare alle soluzioni il presente testo indicando (in STAMPATELLO)	:

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non</u> saranno considerati ai fini della valutazione del compito. Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas \Re = 8314 J/(kmol·K)

□ ESERCIZIO 1 (punti 10)

Si studino le caratteristiche dell'impianto schematizzato in figura.

10 kg/s aria nelle condizioni 1 (P1=1bar, T1=25°C) vengono elaborati da un compressore (C) con un rapporto di compressione pari a 16 e un rendimento isoentropico di 0.9.

L'aria viene riscaldata a pressione costante fino alla temperatura di 1100°C tramite un input termico (Q23) (es. radiazione solare concentrata) e successivamente elaborata dall'espansore (E1) caratterizzato da un rapporto di espansione pari a 5. Successivamente l'aria viene nuovamente riscaldata a pressione costante fino alle condizioni 5 ed elaborata da un espansore E2 fino alla pressione di 1 bar (P6= 1bar) Entrambi gli espansori sono ideali (rendimento isoentropico unitario) e il rendimento

meccanico ed elettrico del sistema è pari a 1.

Sapendo che la potenza netta prodotta dal sistema è 5 MW e assumendo l'aria gas perfetto (cp=1007 J/kg/K, γ =1.4, MM=28.9 kg/kmol), si chiede di:

- a. Rappresentare qualitativamente su un diagramma T-s le trasformazioni del sistema e calcolare temperatura, pressione e entropia del solo punto 2 (s1=0 J/kg/K);
- b. Calcolare la potenza del compressore C
- c. Calcolare la potenza termica Q23
- d. Calcolare la potenza di E1 e E2;
- e. Calcolare la temperatura di ingresso in E2 (T5)
- f. Calcolare il rendimento del sistema

□ ESERCIZIO2 (punti 10)

In un tubo lungo 200 m di diametro interno e spessore rispettivamente pari a 100 mm e 3 mm (k=30 W/m/K) entra una portata di acqua di 1.5 kg/s in condizioni di liquido saturo a 200°C. Il tubo viene lambito da una corrente di gas a 550°C e l'acqua in uscita dal tubo ha un titolo di vapore pari a 0.7.

Assumendo un coefficiente di scambio termico convettivo interno pari a 4000 W/m²/K, si chiede di (condizioni stazionarie) calcolare:

- a. la potenza termica assorbita dall'acqua
- b. la resistenza termica conduttiva e convettiva interna
- c. la temperatura della superficie interna ed esterna del tubo
- d. il coefficiente di scambio convettivo esterno e la velocità della corrente di gas

(ENTALPIA H2O: h_{LS}= 852.4 kJ/kg, h_{VS}= 2210.2 kJ/kg LS→Liq. Saturo, VS→ Vap. Saturo)

e. la portata di acqua liquida (m_{MIX}) che deve essere miscelata con la portata uscente dal tubo per ottenere un titolo di vapore pari a 0.6 (h_{MIX}= 106.3 kJ/kg entalpia dell'acqua liquida da miscelare)

Correlazione per convezione forzata per cilindro (lunghezza caratteristica diametro) e proprietà del gas

$Nu = 0.027 * Re^{0.805} Pr^{\frac{1}{3}}$				
c _p [J/kg/K]	1063.7			
k [W/m/K]	0.0482			
μ [Pa*s]	3.27E-05			
Densità [kg/m³]	0.534			

□ QUESITO 3 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Descrivere un ciclo Rankine saturo ideale e discutere la pratica della rigenerazione ideale
- 2- Ricavare l'equazione dell'aletta e il profilo di temperatura nel caso di lunghezza infinita e temperatura alla base imposta (Disegnare qualitativamente il profilo di T nel caso di $T_{BASE} < T_{\infty}$). Definire e commentare l'efficienza e l'efficacia.

QUESITO 5 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.2 punti se sbagliata).

Dati due cicli termodinamici (1 e 2) che operano tra le stesse sorgenti a T cost. (TMAX=TMAX1=TMAX2; TIMIN=TIM1=TMIN2):	Se entrambi cicli JB ideali allora η1>η2 se β1>β2 (indipendentemente da fluido lavoro - uguale per entrambi) Se cicli generici reali e η1>η2 allora sempre ηΙΙ1>ηΙΙ2 Se entrambi cicli di Carnot, η1=η2 solo se stesso fluido	vero vero	.	falso falso
Per un ciclo Rankine saturo ideale (fluido di lavoro H₂O): P→Pressione T→Temperatura	Se Pmax↑ allora Tmax↑ e η ↑ Lo scarico della turbina è in condizioni di vapore saturo La rigenerazione ideale porta ad un ηII=1	□ vero		falso falso falso
Una macchina operatrice elabora un fluido incomprimibile (ρ=1000 kg/m³):	Se η_{idr} =1 allora ΔT >0 Lmeccanico>Lelettrico>Lidraulico Se ΔP =1bar, Δz =1m, Δv =0m/s ed η_{idr} =0.8 allora I=137 J/kg	□ vero		
Due sfere (D1=2D2) di stesso materiale si trovano alla stessa T iniziale (T ₀), (T ₀ >Tamb), aria in quiete:	Se Nu=2+0.43 (Gr*Pr) ^{0.25} allora Bi1>Bi2 Se t=3 s, allora Fou1=4*Fou2 L'approccio a parametri concentrati è utilizzabile sempre se Bi*Fou<0.01	□ vero		falso
Per un fluido reale:	Una Compressione seguita da espansione (β_C = β_E e entrambe con η_{is} =1) implica un lavoro netto \neq 0 Nel piano T-s, le isobare sono segmenti nella zona bifase In un piano P-T, le isoentalpiche sono sempre monotone	• vero		falso