

PES University, Bengaluru

(Established under Karnataka Act No. 16 of 2013)

OCTOBER 2020: IN SEMESTER ASSESSMENT B Tech FIFTH SEMESTER TEST – 1

UE18CS312 (4 credit subject) - Data Analytics Scheme and Solutions

Time: 2 Hrs	Answer All Questions	Max Marks: 60

1. a) An online certification course has been offered to students in the fifth and seventh semesters of Computer Science and Engineering. The number of registrations and number of successful certifications across the country at the end of each month as recorded by the course is provided below:

4 (2+2)

Month	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
Number of registrations	44	101	386	4,904	12,106	74,696	1,02,458	12,524
Successful certifications	6	59	174	359	18,036	72,599	96,239	6,980

- (i) If we use a Cox-comb plot to visualize this data, how many sectors would this plot have and how would we represent the data provided in the table?
- (ii) A potential registrant wants to answer the question: "Is the increase in the number of certifications between the fifth and seventh semester students statistically significant?" Assuming the detailed data for fifth and seventh semesters is available, suggest an approach one might take to answer this question.

2 marks each

- (i) (Either a schematic diagram or an explanation in words) Eight sectors for the eight months for which data is available. The size of the sector would be proportional to number of registrations. We would use different shades for registrations versus certifications (or a band in one color (with the area proportionate to the number of certifications) around each sector representing the registrations for that month)
- (ii) Design a t-test or a z-test (since the number is rather large)

For the t test:

- Calculate t
 - by finding the difference between mean certifications of one semester and the other (let us call this num)
 - for each group calculate the variance divided by the number of observations-1 (let us call the variance divided by degrees of freedom, σ^2_1 and σ^2_{21})
 - compute $\operatorname{sqrt}(\sigma^2_{1+}\sigma^2_{2})$ (let us call this denom)
 - compute num/denom
 - calculate degrees of freedom (add the number of observations from each group
 -2)
 - look up the value in the table and interpret the value of t

Similarly for the z-score (the p-value compared to the value in the table for a given significance will determine whether the difference is statistically significant or not)

b) In the data shown in Question 1(a) above,

(i) Is there any anomaly? Briefly explain your answer.

3

		(ii) The organizers of the course have realized that data has not been recorded during weekends in April. Suggest a method to fill in the missing values.	
		 1.5 marks each (i) In the month of July, the number of certifications seems to exceed the number of registrations. This appears anomalous. (It cannot be argued as not anomalous because it includes registrants from previous months, given the numbers do not tally.) (ii) [open ended] Data for weekends can be modeled based on weekend data in March and May as a function of the data during the week and that can be used to predict values for weekends in April based on the cases during the week in April (any other reasonable approach that is suitably justified can be considered) 	
	c)	The range of scores of students for various components of their project submission is (3,8). How much will a student who has scored 7 on this scale get, if the marks are rescaled to a new range, (16,25)?	3
		(((7-3)/(8-3))*(25-16)) + 16 = 23.2 (rounded to 23)	
2.	a)	Briefly explain the sampling technique(s) used in each of the following cases: (i) A Kitkat factory produces ten different flavours of the chocolates and has twenty assembly lines (two for each flavour). A taste tester selects a random chocolate bar from every other line. (ii) A restaurant has placed a feedback card on every table and allows diners to choose whether they would like to provide a feedback on behalf of their group or not.	4
		Solution (2+2):	
		 (i) Systematic sampling (every other line) followed by simple random sampling (ii) Convenience (cluster) sampling, since the customers can choose to give feedback or not and the feedback, if given, would be of the entire table (including elders, adults, youth and children) 	
		(Convenience sampling – can be given complete credit; cluster based sampling can be given 1 mark)	
	b)	For the following examples, identify the datatypes as numeric/ categorical, ordinal/ interval/ ratio and discrete/ continuous (as applicable)	3
		 (i) Movie rating on a scale of 1 to 5 (ii) When booking a flight ticket, response to whether the wheelchair service would be required for the passenger (yes/ no) 	
		(iii) Temperature (recorded in Centigrade from various regions around the world)	
		Solution (1 mark each): (i) Numeric, Ordinal, Discrete	
		(ii) Numeric, Discrete, Binary (or nominal, discrete) (iii) Numeric, interval, continuous (considered interval as temperature can be negative	
		and holds no true zero)	
	c)	Twenty engineers and twenty pilots were subject to tests and scores were measured for the following six features: (i) Intelligence (ii) Conformance to procedure (iii) Eyesight (iv) Hearing (v) Sensory motor coordination and (vi) Perseverance. Briefly outline the steps to extract two principal components from this data to visualize the two groups of twenty points in the 2-dimensional rectangular plane.	3 (2+1)
		Solution (1 mark for each step): (i) Subtract the mean of each feature (or subtract the mean and divide by the standard deviation for each feature). Compute the outer product for each mean adjusted feature vector and add this to obtain the the covariance matrix for the 40 points (or two separate covariance matrices for each of the 20 points)	
		(ii) Perform eigen analysis to obtain the Eigen values; select the two Eigen vectors corresponding to the largest two Eigen values	

	vec	tors tha ng two	t are a	appro ent co	ximat olors (ions i	for eaccolor i	Eigen vectors (6x2) to obtain (2x ch point. Plot this on a 2D grap for the twenty points representirenty points for pilots)	oh
a)	Taste testers A in the week as			i have	e rateo	l the o	quality	y of food at a restaurant on six day	ys 4
	Day	M	Tu	W	Th	F	Sa		
	Aman's ratio	ig 4	2	3	5	1	3		
	Mani's ratin	g 3	3	2	5	2	2		
	usi Ra (ii) What i	ng simpling(Am	e linea an) =	ar reg $eta_0 + eta$	ressio 1Ratii leterm	n with ng(Ma	n the fani) on for	n's rating in terms of Mani's rating following model? this model? rating of the food on Thursday has	
	Solution:							tic that can be used for this.)	
	(i) $\beta_1 = rR$				_				
	$\beta_0 = \mu_A$ (ii) Coefficient	_{man} -β ₁ μ _N ient of α)	
	(iii) Cook'	distanc	ce or I)FBe	ta can	be u	sed to	measure the influence that Mani ression model	's
b	month) is found your answer: (i) Is it ne mo (ii) Can we and 1.5 marks each	to be po cessarily ath and # assume #views o	true tviews there on a ch	corre that the on a v is no nannel	lated. ne Pea ideo w cause becau	Answerson's rould to be effective countries of the countr	er the f s corre o be cl ct relation	ideo and average #videos posted problems of collowing questions with a line to justice elation coefficient between #posting loser to 1 than it is to 0 for this data? ionship between #postings per monon does not imply causation?	ify ıs/
	positive correlat	ause co	rrelatio there	n doe is cau	es not sation	imply ! We r	causa nust do	ely correlated ation does not mean there cannot be of further tests to infer causation justification is a plausible one.)	ре
C)	For each of the	following	scatte	rplots	sugge	st whe	ether th	he data is suitable for linear regression e it amenable for modeling with line	

- (i) Not suitable x needs to be transformed to ln(x), sqrt(x), etc., and y to ln(y), sqrt(y) etc.
- (ii) Not suitable x could be transformed to x^2 , x^3 , etc., and y to y^2 , y^3 , etc.
- 4. a) Write the linear algebraic expression for computing an estimate of the Beta vector in a multiple linear regression system to predict 4 dependent variables using 5 independent variables.

4 (2+2)

In the table given below, identify the features that are significant (for an alpha = 0.01) and if there is insufficient data to do this, list out what other data is necessary to determine the significance of regression coefficients.

Term	Coef	SE Coef	Т	Р
Constant	389.166	66.0937	5.8881	0.000
X_1	2.125	1.2145	1.7495	0.092
X_2	5.318	0.9629	5.5232	0.000
X_3	4.22	0.3	14.06	0.043
X_4	-24.132	1.8685	-12.9153	0.000
X_5	-17.201	1.333	-12.9039	0.004

Solution (2 marks each):

$$\beta$$
_hat = $(X^TX)^{-1}X^TY$

(Either form is acceptable)

Variables X_1 and X_3 are not statistically significant; all others are statistically significant.

b) Rajesh has designed a logistic regression classifier to predict the likelihood of stars being visible in the night sky based on the humidity reported on any day:

logit (p) = $\log(p/(1-p)) = \beta_0 + \beta_1*$ humidity, where p is the probability of a power cut. Given that $\beta_0 = 1.8185$ and $\beta_1 = -0.0665$, answer the following questions:

- (i) What does the value of β_0 mean?
- (ii) If humidity on a day = 25, what is the probability with which stars are visible in the night sky according to this model?

3 (1+2)

		Solution:										
		(OR t	the probab	oility o	of star	s being	g visit	ole in the	night sky			
		1 /	•				y with	n which	stars are	visible in the	night	
		•	ccording t $(1-p) = -1$									
		*	(1-p) = 1 (1-p) = e									
		4.					bout 5	3% chan	ice stars a	re visible)		
	c)	In a collection of stones. All tho determined to b confusion matrix operator character	se 100 p e precious k look like	orecious stone for the	us sto ies by nis cla	ones a a log ssifier	along gistic 1 ? Wha	with 10 regressic at should	00 other on classifi be done	rocks have ier. What doe to obtain a rec	been s the	3 (2+1)
		Solution:										
			Precious	s stone	es O	ther ro	ocks					
		Precious stones	100			0						
		Rocks	100			800						
		If we vary the th we can compute							-	-	ous',	
	, 1											
5.	a)	With a schemati level, trend and not accounted fo	seasonali	ty. W	hat ar	e cycl	ic cor					4
		(1 mark each (i (OE))	ncluding	the sc	hema	tic dia	ıgram	for wha	at the con	mponent looks	like	
		. , , ,	here the tr	end b	egins))						
		- Trend (u)	oward or c	downv	ward)							
			ity (repetit									
										n decade or se h most time s		
		models)	a are not	perioc	are an	iu 50 c	amot	oc prec	neted wit	ii most time s	SCITCS	
	b)	For the data g exponential smo with a window s to make the fore	oothing (S ize $= 3$ fo	ES) w	vith a point	lpha = ts t=5,	= 0.7 v 6,7. [\	with sim You can	ple movi use the va	ng average (S alues of y avai	MA)	3
			t	1	2	3	4	5	6	7]	
			y _t	10	11	12	16	17	19	20		
			, , ·			1	1	Ī		i i		
			sMA					13	15	18.67		
			_					13 4/17	15 4/19	18.67	-	
			sMA								-	
			sMA APE					4/17	4/19	1.34/20	-	

	(1 r	mark) MAPE (SMA) = 0.1709 SES) = 0.1389 Exponential Smoo	othing is more a	accurate		
c)	Suç	(i) Croston's (Open-ended as seasonal (ii) Holt-Win' (Open-ended trend and sea or school suphighs or lows (iii) ARIMA (Open-ended (Open-en	s method I) Forecasting the crops, fruits, etc. ter's method I) Forecasting a asonality (such a oplies or avionic, with a general	e demand for a , or winter (or s dependent var as the demand parts or the pricupward or down de demand for a	any entity that ummer) clother riable where the for flu medicing the of stocks of the nward trend)	ne underlying process has both ne or a specific type of pesticide f companies that have seasonal t has a sporadic demand (such	
6 a)	Equ	uation for ARII (i) ARIMA(0	MA models (2+2) (1,1,0))			4
	⊿ Y _t	$\begin{aligned} &= e_t \\ &OR \\ &_{t+1} = e_t + e_{t+1} \\ &\text{(ii)} ARIMA(1) \\ &= \beta y_t + \alpha e_t \\ &OR \\ &_1 = \beta y_t + \alpha e_t + \alpha e_t \end{aligned}$	·				
b)	△ Y _t F _{t+1} Y _{t+1}	OR t+1 = $e_t + e_{t+1}$ (ii) ARIMA(1 $f_t = \beta y_t + \alpha e_t$ OR $f_t = \beta y_t + \alpha e_t + \alpha e_t$ which model is be	etter and why? (A az DO	M/hv/2	6
b)	△ Y _t F _{t+1} Y _{t+1}	OR $t+1 = e_t + e_{t+1}$ (ii) ARIMA(1 $t = \beta y_t + \alpha e_t$ OR $t = \beta y_t + \alpha e_t + \alpha e_t$	et+1	3+3) Model B 251.42	A or B? Model B	Why? AIC is the negative log likelihood the sample will fit/ estimate future values – lower the better	6
b)	✓Yt Ft+1 Yt+1 Wh	OR $t+1 = e_t + e_{t+1}$ (ii) ARIMA(1) $t = \beta y_t + \alpha e_t$ OR $t = \beta y_t + \alpha e_t + \alpha e_t$ which model is because Statistic	etter and why? (Model B		AIC is the negative log likelihood the sample will fit/ estimate future	6