Appunti di Analisi II

Jacopo Tissino

 $1~\mathrm{marzo}~2017$

Serie

Definite in \mathbb{C} . Se omettiamo gli estremi della somma, s'intende da un qualche naturale, generalmente 1, a $+\infty$.

1.1 Definizioni

Se la successione delle somme parziali ha limite finito o infinito, allora scriviamo:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=1}^{\infty} a_k \tag{1.1.1}$$

Data una serie $\sum_{n=1}^{\infty} a_n$, (a_n) è la sua successione dei termini generali. Teorema 1.1.1. Se la serie $\sum_{n=1}^{\infty} a_n$ converge, allora $\lim_{n\to\infty} a_n = 0$

1.2 Serie notevoli

Geometrica Se $z \in \mathbb{C}, |z| < 1$, allora

$$\sum_{n=1}^{\infty} z^n = \frac{1}{1-z} \tag{1.2.1}$$

Telescopica Data $(a_n)_{n\in\mathbb{N}}$ convergente a ℓ , se $(b_n)_{n\in\mathbb{N}}$ è tale che $b_n=a_{n+1}-a_n$, allora

$$\sum_{n=0}^{\infty} b_n = \ell - a_0 \tag{1.2.2}$$

Armonica generalizzata Per $p \leq 1$, la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \tag{1.2.3}$$

diverge, converge invece per p > 1.

1.3 Criteri

Confronto Date le serie $\sum a_n$ e $\sum b_n$, entrambe a termini positivi, se $a_n \leq b_n$ definitivamente

- 1. se $\sum a_n$ diverge allora $\sum b_n$ diverge;
- 2. se $\sum b_n$ converge allora $\sum a_n$ converge;

Confronto asintotico Date le serie $\sum a_n$ e $\sum b_n$, entrambe a termini positivi, se

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \ell \in \bar{\mathbb{R}}^+ \tag{1.3.1}$$

allora

- 1. se $\ell \in (0, +\infty)$, le serie hanno lo stesso carattere;
- 2. se $\ell = 0$, a_n diverge $\implies b_n$ diverge e b_n converge $\implies a_n$ converge;
- 3. se $\ell = +\infty$, b_n diverge $\implies a_n$ diverge e a_n converge $\implies b_n$ converge.

Rapporto Data $\sum a_n$ a termini positivi, se $\exists h \in (0,1)$ tale che

$$\frac{a_{n+1}}{a_n} \le h \tag{1.3.2}$$

definitivamente, allora $\sum a_n$ converge. Se $\exists h>1$ tale che per infiniti valori di n

$$\frac{a_{n+1}}{a_n} > h \tag{1.3.3}$$

allora $\sum a_n$ diverge.

Rapporto asintotico Data $\sum a_n$ a termini positivi, e $\ell = \limsup_{n \to \infty} a_{n+1}/a_n$. Allora $\ell \in [0, +\infty]$. Se $\ell < 1$, $\sum a_n$ converge. Se $\ell > 1$, $\sum a_n$ diverge.

Radice (n-esima) Data $\sum a_n$ a termini positivi, se $\exists h \in (0,1)$ tale che

$$\sqrt[n]{a_n} \le h \tag{1.3.4}$$

definitivamente, allora $\sum a_n$ converge. Se $\exists h>1$ tale che per infiniti valori di n

$$\sqrt[n]{a_n} > h \tag{1.3.5}$$

allora $\sum a_n$ diverge.

Radice asintotica Data $\sum a_n$ a termini positivi, e $\ell = \limsup_{n \to \infty} \sqrt[n]{a_n}$. Allora $\ell \in [0, +\infty]$. Se $\ell < 1$, $\sum a_n$ converge. Se $\ell > 1$, $\sum a_n$ diverge.

Teorema 1.3.1. (Indimostrato) Data una successione $(a_n)_{n\in\mathbb{N}}$ a termini positivi:

$$\liminf_{n \to \infty} \frac{a_{n+1}}{a_n} \le \liminf_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \sqrt[n]{a_n} \le \limsup_{n \to \infty} \frac{a_{n+1}}{a_n} \tag{1.3.6}$$

Condensazione di Cauchy Data $\sum a_n$ a termini positivi, con termine generale decrescente, le serie $\sum a_n$ e $\sum 2^n a_{2^n}$ hanno lo stesso carattere.

Leibniz Data la successione a_n a termini positivi infinitesima con $a_{n+1} \leq a_n$, la serie

$$\sum b_n = \sum (-1)^n a_n \tag{1.3.7}$$

converge, e

$$\left| \sum_{n=k}^{\infty} b_n \right| \le a_{k+1} \tag{1.3.8}$$

Convergenza assoluta Una serie $\sum z_n$ si dice assolutamente convergente se converge la serie $\sum |z_n|$. Se una serie è assolutamente convergente, allora è convergente, e vale $|\sum z_n| \leq \sum |z_n|$.

Capitolo 2 Integrali generalizzati

Capitolo 3
Spazi metrici

Capitolo 4 Serie di funzioni

Calcolo differenziale multivariato

Curve e 1-forme differenziali in \mathbb{R}^n

Invertibilità locale e funzione implicita

Indice

1	Serie			1
	1.1	Definizioni .		1
	1.2	Serie notevoli	[1
			Geometrica	1
			Telescopica	1
			Armonica generalizzata	1
	1.3	Criteri		2
			Confronto	2
			Confronto asintotico	2
			Rapporto	2
			Rapporto asintotico	2
			Radice $(n\text{-esima})$	2
			Radice asintotica	3
			Condensazione di Cauchy	3
			Leibniz	3
			Convergenza assoluta	3
2	Integrali generalizzati			4
3	Spazi metrici			5
4	Serie di funzioni			6
5	Calcolo differenziale multivariato			7
6	Curve e 1-forme differenziali in \mathbb{R}^n			8
7	Invertibilità locale e funzione implicita			9