Abstract Interpretation

William Schultz

August 25, 2022

If we want to analyze the behavior of a program, we typically perform some kind of abstraction. That is, we approximate the concrete semantics of the program in some way that is sufficient for analysis. Abstract interpretation provides a formal framework for defining and performing these types of program abstractions.

Background

A lattice $L = (S, \sqsubseteq)$ is a partially ordered set where each pair of elements has a least upper bound (i.e. $join \sqcup$) and a greatest lower bound (i.e. $meet, \sqcap$).

Abstraction Domains

An abstraction domain is defined as follows, where D is a concrete domain and \hat{D} is an abstract domain, and elements of \hat{D} form a lattice:

- $\gamma: \hat{D} \to D$: Concretization function that maps abstract values to sets of concrete elements
- $\alpha: D \to \hat{D}$: Abstraction function that maps sets of concrete elements to the most precise value in the abstract domain.

where α and γ must form a Galois connection. That is, they satisfy the following condition

$$\forall x \in D, \forall \hat{x} \in \hat{D} : \alpha(x) \sqsubseteq \hat{x} \Leftrightarrow x \sqsubseteq \gamma(\hat{x})$$

Intuitively, this means that the abstraction and concretization functions respect the orderings of D and \hat{D} . That is, if $\alpha(x)$, the abstraction of x, is ordered before some other $\hat{x} \in \hat{D}$, then x should be ordered before $\gamma(\hat{x})$, the concretization of \hat{x} .