ENGR 065: Circuit Theory

Problem Set #6

Read Chapter 5 from [1] and then solve the following problems.

Problem 1 [20%]: Assuming an ideal OpAmp, compute v_o when $v_a = 1V$, $v_b = 0V$. Is the OpAmp operating in the linear region?

Problem 2 [20%]: Find v_o assuming an ideal OpAmp and $R = 29\Omega$.

Problem 3 [20%]: Select R_1 and R_2 such that $v_0 = 6v_s$

Problem 4 [30%]:

- a) Determine v_o in terms of V_1, V_2, V_3, V_4 .
- **b**) Design R_1 , R_2 , R_3 , R_4 , R_5 to obtain $v_o = -\frac{1}{4}(v_1 + v_2 + v_3 + v_4)$. This is known as an averaging amplifier, where the output equals to the (negative) average of the inputs.

Hint: Fix $R_5 = 1k\Omega$ and pick the remaining resistors.

 $Problem \ 5 \ [10\%]$: A noninverting current amplifier is portrayed in the figure below.

- a) Show that $i_0 = Ki_s$ where K is the current gain.
- b) What is the value of K when $R_1=11k\Omega$ and $R_2=1k\Omega$.

References

[1] C. Alexander and M. Sadiku "Fundamentals of Electric Circuits", 7th Edition, 2021, McGraw-Hill