Universidad de El Salvador Facultad Multidisciplinaria de Occidente Mayra Cañas Estadistica Descriptiva con Python

Table of contents

•	
Exploracion de datos	3
Medidas de tendencia central	5

Estadistica Descriptiva Con Python

Se utiliza para presentar las características básicas de los datos de manera sencilla y comprensible. Esto incluye medidas como la media, mediana, moda, rango, varianza, desviación estándar, y más.

Exploracion de datos

Cargamos los paquetes a utilizar:

```
#!pip install pandas
```

Cargamos la base de datos:

```
import pandas as pd

df = pd.read_csv(r"C:\Users\PC\Documents\clases\r\cars.csv")
df
```

	manufacturer_name	$model_name$	transmission	color	odometer_value	year_produced	engin
0	Subaru	Outback	automatic	silver	190000	2010	gasol
1	Subaru	Outback	automatic	blue	290000	2002	gasol
2	Subaru	Forester	automatic	red	402000	2001	gasol
3	Subaru	Impreza	mechanical	blue	10000	1999	gasol
4	Subaru	Legacy	automatic	black	280000	2001	gasol
38526	Chrysler	300	automatic	silver	290000	2000	gasol
38527	Chrysler	PT Cruiser	mechanical	blue	321000	2004	diese
38528	Chrysler	300	automatic	blue	777957	2000	gasol
38529	Chrysler	PT Cruiser	mechanical	black	20000	2001	gasol
38530	Chrysler	Voyager	automatic	silver	297729	2000	gasol

Tipos de datos:

```
#tipos de datos en la base
df.dtypes
```

```
manufacturer_name object model_name object
```

transmission	object
color	object
odometer_value	int64
year_produced	int64
engine_fuel	object
engine_has_gas	bool
engine_type	object
engine_capacity	float64
body_type	object
has_warranty	bool
state	object
drivetrain	object
price_usd	float64
is_exchangeable	bool
location_region	object
number_of_photos	int64
up_counter	int64
feature_0	bool
feature_1	bool
feature_2	bool
feature_3	bool
feature_4	bool
feature_5	bool
feature_6	bool
feature_7	bool
feature_8	bool
feature_9	bool
duration_listed	int64
dtype: object	

Generamos el conjunto completo de estadisticos descriptivos de la base de datos

#Estadisticos descriptivos fundamentales
df.describe()

	odometer_value	year_produced	engine_capacity	price_usd	$number_of_photos$	up_count
count	38531.000000	38531.000000	38521.000000	38531.000000	38531.000000	38531.000
mean	248864.638447	2002.943734	2.055161	6639.971021	9.649062	16.306091
std	136072.376530	8.065731	0.671178	6428.152018	6.093217	43.286933
\min	0.000000	1942.000000	0.200000	1.000000	1.000000	1.000000
25%	158000.000000	1998.000000	1.600000	2100.000000	5.000000	2.000000

	odometer_value	year_produced	engine_capacity	price_usd	$number_of_photos$	up_count
50%	250000.000000	2003.000000	2.000000	4800.000000	8.000000	5.000000
75%	325000.000000	2009.000000	2.300000	8990.000000	12.000000	16.000000
max	1000000.000000	2019.000000	8.000000	50000.000000	86.000000	1861.0000

Medidas de tendencia central

Las medidas de tendencia central son la media(promedio), mediana(dato central) y moda(dato que mas se repite de una serie)

La media quedaria como:

```
#Media utilizando siempre un dato cuantitativo
media = df['price_usd'].mean()
print(media)
```

6639.971021255613

La mediana se obtiene como:

```
mediana = df['price_usd'].median()
print(mediana)
```

4800.0