Written Assignment 4

Due Tuesday, October 30th

1. Ch. 2.9, # 18

2. Ch 2.9, (a) # 43, (b) # 44. For this problem, recall that the *half life* is a time value, t, for the amount of carbon-14 to be *half* of the starting value. [Hint: to find the half-life, set $Q(t) = \frac{1}{2}Q_0$ and solve for t.]

3. Consider the function $y = 14e^{-0.02x}$.

(a) Calculate $\frac{dy}{dx}$.

(b) Write out the quantity (-0.02y) in terms of x and show that it matches your answer from part $(a)^1$.

4. Ch. 2.7 (a) # 5, (b) # 6, (c) # 7, (d) # 8.

5. Ch. 2.7 # 34

6. For the functions below, (i) describe the intervals where f is increasing/decreasing, and (ii) describe the intervals where f is concave up and down using the interval method.

(a)
$$f(x) = x^2 \ln(x)$$

(b)
$$f(x) = e^{-x^2}$$

(c)
$$f(x) = \frac{1}{x} - \frac{1}{\sqrt{x}}$$

In the future, we will understand this process as showing that $y = 14e^{-0.02x}$ is a solution to the differential equation $\frac{dy}{dx} = -0.02y$.