4° Práctica de Cálculo por Elementos Finitos - MC516

Josue Huaroto Villavicencio - 20174070I Sección: E

25 de agosto de 2020

1 Diagrama de flujo

Figura 1: Diagrama de flujo

2 Ejecución del código

Del solver principal, se modifica algunas funciones para implementar ahora los elementos de la armadura en 3D.

Código 1: Cálculo de la longitud y el ángulo entre nodos

```
def AllAngle(f,s):
      L = DistanceNodes(f,s)
      C = []
      for i in range(3):
           C.append((s[i]-f[i])/L)
      C = np.arccos(np.array(C))
      return [C,L]
  def DistanceNodes(f,s):
      return np.sqrt((s[0]-f[0])**2+(s[1]-f[1])**2+(s[2]-f[2])**2)
  def SingleAngle(f,s):
12
      if(s[0] == f[0]):
13
           aux = np.pi/2
14
           if(s[1] < f[1]):
15
                aux *= -1
16
           return aux
17
       else:
18
           aux = np.arctan((s[1]-f[1])/(s[0]-f[0]))
19
20
      if(aux < 0 \text{ and } s[1] > f[1]):
21
           aux += np.pi
22
23
      if(s[1] < f[1]):
24
           aux += np.pi
25
           if(s[0] > f[0]):
26
               aux += np.pi
27
      return aux
```

Ahora, es necesario modificar la inserción de las matrices de rigidez de los elementos a la matriz de rigidez global.

Código 2: Ensamble de la matriz de rigidez

```
def AssemblyStiffness(nStiffnessMatrix,k,i,j):
      for p in range(0,3):
          for m in range (0,3):
              nStiffnessMatrix[3*i+p][3*i+m] += k[p][m]
              nStiffnessMatrix[3*i+p][3*j+m] += k[p][3+m]
              nStiffnessMatrix[3*j+p][3*i+m] += k[p+3][m]
              nStiffnessMatrix[3*j+p][3*j+m] += k[p+3][3+m]
  def Initialize(nStiffnessMatrix,nU,nF):
      for i in range(0, Nodes):
          nU[i][0] = 0
11
          nF[i][0] = 0
12
13
      for i in range(0, NumberOfElement):
14
          AssemblyStiffness(nStiffnessMatrix, K[i], int(Elements[i][0]), int(Elements[i][1]))
15
```

Todos los demás elementos del código permanecen igual; ahora solo se necesita definir las condiciones del problema a resolver.

Código 3: Condiciones del problema

```
NodesCondition = []
Nodes = 12
Nodes *= 3
NumberOfElement = 33

E = 2.1e5 #MPA
A = np.pi*25*25 #mm²
```

```
_{8} K = []
_{9} L = []
_{10} P_A = 10000 #N
_{11} P_B = 8000 #N
12 11 = 600 #mm
_{13} 12 = 500#mm
  alpha = 30*np.pi/180
  beta = 70*np.pi/180
  PosNodes = np.array([(0,0,0),(11,0,0),(2*11,0,0),(3*11,0,0),
                        (11,-11*np.tan(alpha),0),(2*11,-11*np.tan(alpha),0),
18
                        (0,0,-12),(11,0,-12),(2*11,0,-12),(3*11,0,-12),
19
                        (11,-11*np.tan(alpha),-12),(2*11,-11*np.tan(alpha),-12)])
20
  Elements = np.array([(0,1),(0,4),(0,6),(0,10),
                         (1,2),(1,4),(1,6),(1,7),(1,8),(1,10),
                         (2,3),(2,4),(2,5),(2,8),(2,10),(2,11),
                         (3,5),(3,8),(3,9),(3,11),
                         (4,5),(4,10),
26
                         (5,10),(5,11),
                         (6,7),(6,10),
                         (7,8),(7,10),
                         (8,9),(8,10),(8,11),
30
                         (9,11),
31
                         (10,11)])
32
33
  for i in range(0,NumberOfElement):
34
      L.append(AllAngle(PosNodes[Elements[i][0]],PosNodes[Elements[i][1]]))
35
36
  L = np.array(L)
37
38
  for i in range(0, NumberOfElement):
39
      1 = L[i][1]
40
      angles = np.cos(L[i][0])
41
      aux = np.zeros((6,6))
42
      w = np.zeros((3,3))
43
44
      for j in range(0,3):
45
           for k in range(0,3):
46
               w[j][k] = angles[j]*angles[k]
47
48
      for k in range(6):
49
           for j in range(6):
50
               s = 1
51
52
               if k >= 3:
53
                    s *= -1
54
55
               if j >= 3:
56
                    s *= -1
57
               aux[k][j] = w[k%3][j%3]*s
      aux = aux*E*A/1
      K.append(aux)
  StiffnessMatrix = np.zeros((Nodes, Nodes))
  U = np.zeros(Nodes).reshape(Nodes,1)
  F = np.zeros(Nodes).reshape(Nodes,1)
```

```
Initialize(StiffnessMatrix,U,F)
  \#Node in UBoundary = Node*3+(x=0,y=1,z=2)
  UBoundaryCondition(U,0,3*0+0) #Nodo 0 en X
  UBoundaryCondition(U,0,3*0+1) #Nodo 0 en Y
  UBoundaryCondition(U,0,3*0+2) #Nodo 0 en Z
  UBoundaryCondition(U,0,3*6+0) #Nodo 6 en X
  UBoundaryCondition(U,0,3*6+1) #Nodo 6 en Y
  UBoundaryCondition(U,0,3*6+2) #Nodo 6 en Z
  UBoundaryCondition(U,0,3*3+1) #Nodo 3 en Y
  UBoundaryCondition(U,0,3*3+2) #Nodo 3 en Z
  UBoundaryCondition(U,0,3*9+1) #Nodo 9 en Y
  UBoundaryCondition(U,0,3*9+2) #Nodo 9 en Z
  FBoundaryCondition(F,-P_A/2,3*4+1) #Nodo 4 en Y
  FBoundaryCondition(F,-P_A/2,3*10+1) #Nodo 10 en Y
  FBoundaryCondition(F,P_B*np.sin(beta)/2,3*5+0) #Nodo 5 en X
  FBoundaryCondition(F,P_B*np.sin(beta)/2,3*11+0) #Nodo 11 en X
  FBoundaryCondition(F,-P_B*np.cos(beta)/2,3*5+1) #Nodo 5 en Y
  FBoundaryCondition(F,-P_B*np.cos(beta)/2,3*11+1) #Nodo 11 en Y
94
  U,F=Solve(StiffnessMatrix,U,F)
96
  nU = np.zeros((U.shape[0]//3,3))
  nF = np.zeros((U.shape[0]//3,3))
99
  for i in range(U.shape[0]//3):
101
      for j in range(3):
102
          nU[i][j] = U[3*i+j][0]
103
          nF[i][j] = F[3*i+j][0]
104
105
  print("Stiffness Matrix:\n",StiffnessMatrix,'\n')
  print("Displacements:\n",nU,'\n')
  print("Forces:\n",nF)
```

La notación para las condiciones del problema es muy similar a los problemas anteriores de barras, siendo la diferencia más notable que no hay una relación directa entre nodos y cantidad de elementos.

La representación de la armadura es:

Figura 2: Armadura 3D

3 Resultados del problema

Al finalizar la ejecución del solver, obtenemos la matriz de rigidez, las fuerzas y desplazamientos:

Figura 3: Matriz de rigidez

Figura 4: Desplazamientos y fuerzas

Cada desplazamiento y fuerza corresponde a un nodo en una dirección $(x, y \circ z)$; por lo que al nodo i le corresponde las reacciones 3i (x), 3i + 1 (y) y 3i + 2 (z).

Se organiza los datos del desplazamiento y fuerza en cada dirección en una tabla para cada nodo para tener una mejor compresión de los resultados:

Resultados del análisis por elementos finitos								
Nodo	Desp. x (mm)	Desp. y (mm)	Desp. z (mm)	Fuerza x (N)	Fuerza y (N)	Fuerza z (N)	Fuerza resultante (N)	
0	0.0	0.0	0.0	-3403.09997	4374.50697	580.26842	5572.62165	
1	-0.00607	-0.04191	0.01043	0.0	0.0	0.0	0.0	
2	-0.01075	-0.03483	0.00254	0.0	0.0	0.0	0.0	
3	-0.01474	0.0	0.0	0.0	1993.5736	98.79737	1996.0202	
4	-0.00897	-0.04223	0.01815	0.0	-5000.0	0.0	5000.0	
5	-0.00057	-0.03471	0.00731	3758.77048	-1368.08057	0.0	4000.0	
6	0.0	0.0	0.0	-4114.441	4650.96484	-679.06578	6246.69745	
7	-0.00692	-0.05129	0.01043	0.0	0.0	0.0	0.0	
8	-0.01384	-0.04263	0.00167	0.0	0.0	0.0	0.0	
9	-0.01817	0.0	0.0	0.0	1717.11573	0.0	1717.11573	
10	-0.01157	-0.05129	0.01815	0.0	-5000.0	0.0	5000.0	
11	-0.00056	-0.04204	0.00793	3758.77048	-1368.08057	0.0	4000.0	

Cuadro 1: Desplazamientos y reacciones en los nodos

Luego, los esfuerzos en cada elemento:

Esfuerzos para los elementos de la armadura								
Elemento	Nodo 1	Nodo 2	Longitud (mm)	Esfuerzo (MPa)				
0	0	1	600.0	-2.12568				
1	0	4	692.82032	4.04634				
2	0	6	500.0	0.0				
3	0	10	854.40037	0.505				
4	1	2	600.0	-1.63612				
5	1	4	346.41016	0.19657				
6	1	6	781.02497	0.54023				
7	1	7	500.0	0.0				
8	1	8	781.02497	-0.09704				
9	1	10	608.27625	-0.34516				
10	2	3	600.0	-1.39597				
11	2	4	692.82032	0.65348				
12	2	5	346.41016	-0.07434				
13	2	8	500.0	0.3643				
14	2	10	854.40037	-0.46391				
15	2	11	608.27625	-0.11292				
16	3	5	692.82032	1.5422				
17	3	8	781.02497	-0.47202				
18	3	9	500.0	0.0				
19	3	11	854.40037	0.60235				
20	4	5	600.0	2.9383				
21	4	10	500.0	0.0				
22	5	10	781.02497	0.40563				
23	5	11	500.0	-0.25968				
24	6	7	600.0	-2.42228				
25	6	10	692.82032	4.73743				
26	7	8	600.0	-2.42228				
27	7	10	346.41016	0.0				
28	8	9	600.0	-1.51471				
29	8	10	692.82032	0.71534				
30	8	11	346.41016	-0.35767				
31	9	11	692.82032	1.74904				
32	10	11	600.0	3.85203				

Cuadro 2: Esfuerzos para los elementos de la armadura

4 Deformada de la armadura

Figura 5: Izquierda:Armadura sin deformar

Derecha:Armadura deformada

Figura 6: Armadura sin deformar: - - - -

Armadura deformada: —

5 Verificación de resultados

Para el CAD se utilizó el software de Fusion 360

Figura 7: Geometría renderizada en Fusion 360

Mientras que la simulación estática se realizó en SimScale

Figura 8: Esfuerzos y desplazamientos hallados en SimScale

6 Conclusiones

1. Muchos elementos de la armadura tienen esfuerzos bajos, por lo que es posible reemplazarlos o eliminarlos para ahorrar en material en el diseño. Para verificar cuáles elementos son posibles eliminar se hace una optimización topológica con Fusion 360:

Figura 9: Optimización topológica de la armadura

Las barras cruzadas son las que se somenten a un menor esfuerzo, para mejorar el diseño y reducir costos de material sería conveniente eliminar dichas barras o reducir su sección. Así mismo, debería aumentarse la sección de las barras de color rojo para aumentar el factor de seguridad.

- 2. Los resultados brindados por la simulación en SimScale, son muy similares a los obtenidos por el código, siendo los elementos de mayor esfuerzo el 25 y el 1; mientras que los de menor esfuerzo son las barras cruzadas.
- 3. La implementación del código para una armadura 3D no difiere mucho del hecho para armaduras planas.
- 4. Las reacciones con mayor magnitud aparecen en los apoyos fijos (nodo 0, 6).
- 5. Existen 4 nodos (1, 2, 7, 8) que tienen reacción 0.
- 6. Los nodos 4, 9, 10 tienen reacciones solo en dirección y.

Referencias

- [1] Optimized methods in FEM: https://www.sciencedirect.com/topics/engineering/gauss-seidel-method
- [2] Sparse Matrix: https://en.wikipedia.org/wiki/Sparse_matrix
- [3] Sparse Matrix Library: https://github.com/uestla/Sparse-Matrix
- [4] Mailman algorithm: http://www.cs.yale.edu/homes/el327/papers/matrixVectorApp.pdf
- [5] Fast Algorithms with Preprocessing for Matrix-Vector Multiplication Problems: https://www.sciencedirect.com/science/article/pii/S0885064X84710211