l'icom MAI 3 - Rounergeuce rad funcior I.

Shuckey publed peorie":

Definice: $f, fu: H \to IR(C)$ $(H \neq \emptyset), u \in N$ eynabol \tilde{Z} for choreone galor apasols sagrisce linesty

preneparti cashecryth ernethe $\{Sic3 = 1\}$ \tilde{Z} for \tilde{Z} for

1. I fn -> f no M (bodora bannegenee), kaga sn -> f no M (bodone)

2. I fn -> f no M (skejamitena konnegenee), kaga sn -> f no M (skejnomei mi)

3. Z fu Z f uv of (loliolne objanetnie (), lege on Z fue of (lok. skja. k)

Linula, synth, integeralus a derivoralus kad femlier (
por stejanie me lanneyenci lae s nehmetam radm , rocko'zek "
galo s lenetuejmi svuety)

1. $\frac{aa'nee ue}{k} \frac{priadi'}{linee g} \frac{a}{a} \frac{sunusce}{k}$: $\frac{x}{2} \frac{p_i(x) \in \mathbb{R}}{p_i(x) \in \mathbb{R}} \frac{y}{2} \lim_{x \to x_0} f_i(x) \lim_{x \to x_0} f$

2. 2a'nee uo poiadi' sunuoce a integerra'iu': $\forall u \quad fu \in R(\langle a_1b\rangle) \quad j = j \quad fu \in R(\langle a_1b\rangle) \quad a \quad plah'$ $\sum_{i} fu \quad \exists \quad uo \langle a_1b\rangle \quad \int_{a}^{b} (\sum_{i} fu) = \sum_{i} \int_{a}^{b} fu$

3. sa'neine pradi' sumoce a derivora'ui

 $\Rightarrow \sum_{i=1}^{\infty} f_{i} \stackrel{ln}{\Rightarrow} f_{i} \stackrel{ln}{\Rightarrow} (a_{i}a_{i}) \underset{f}{\Rightarrow} (a_{i}a_{i}) \underset$

Nysetiora'u l'honnergence rad funlice ? In for

- 1. bodra' knineguse no H n'e systrord'ul konneigue cëseluych
- 2. stejame ma lennergeere us H

(i) mentra podmer also skejuner une brunequiel:

I fu 3 60 H => fu 30 60 M

deg: I fu relemnegegi stejnsæine av H, jakeed fu \$0 00 M

(ii) jestačuj?a podnechleg per skejame una lemneepeuxi

1. (Weiershass)

neer rake!: $|f_n(x)| \le \delta m$, $n \in \mathbb{N}$, $x \in \mathbb{M}$ f = 0 I for f = 0 M. I donner f = 0 (a rake! absolutive f = 0)

2. (Diai) - nie peideraska

- 3. (abel a Dirichleh) (imeabrolubre' sky'n lunnegence)

 fn ; gn: 4 -> R, pal I fugu => no H, ledge jissu

 epluing poducing (1) nels (ii)
 - (i) (abel) I fu Z no H g prehupsk i gn 4 zi no H

 Mejne meeneere a per leavel x EH ze i gn(x) i nemolmul
 - (ii) (Diniellel)

 The mo' no H slejne onenene cashecul souely,

 gn = 0 no H a per leavele x & H & polnepol 2 gu(x)?

 memoloune
- (iii) <u>medue</u> a prhaeighte podeciales shejureceme hune gence

 Bolsano Cancelyora (shejernei no) podeciales;

 for : H -> IR(C); \$\frac{7}{2} \text{ for } \frac{2}{3} \text{ no } H <=>

 Vero \(\ext{H} \text{ of } \text{VEM} : \quad \quad \text{ for } \quad \text{ for } \quad \text{ for } \quad \text{ \text{ for } } \quad \text{ for } \quad \text{ \text{ for } } \quad \text{ for } \quad \text{ \text{ for } } \quad \text{ for } \quad \text
- 3. lokolae skejuneine lennegeuce
- (i) $f_n: (q, b) \to \mathbb{R}$ $f_n: (q, b) \to \mathbb{R}$ $f_n: (q, b) \to \mathbb{R}$
- (ii) I for = uo (a16) . => I for => uo leavele'en int. <0,3>019,0)

Intelody resine

1.)
$$\sum_{n=1}^{\infty} x^n$$
 (piduodeedy perhod - no rablodee pshipy)

(i) bodoma bouneignue: $\sum_{i=1}^{\infty} x^{n} \text{ lency.} \iff |x| | |x| |x| | |x|$

(ii) slignomine language v(-1, 1): $x^n \not\equiv 0$ seo (-1, 1) (siz perel, see lanvegues: polonyords' for')(sup $|x^n| = 1 \not\equiv 0$) $x \in (-1, 1)$ $\Rightarrow \xrightarrow{2} x^n \not\equiv seo (-1, 1)$

(iii) $\frac{loholme' ekejume'ma' lonneguce \Upsilon(-1,1)}{|X| \leq a < 1. |X''| \leq a'', \quad \stackrel{\sim}{I} a'' long. \Rightarrow (a>0)$ $\Rightarrow \quad \stackrel{\sim}{Z} \times^m \Rightarrow \quad v \quad lavde'ee \quad int. \quad (veiershass)$ $\stackrel{\sim}{Z} \times^m \Rightarrow \quad v \quad lavde'ee \quad int. \quad (veac1) \quad kef$ $\stackrel{\sim}{Z} \times^m \Rightarrow \quad v(-1,1)$

Formalælee! $\sum_{i=1}^{\infty} x^{in}$ melannegregi av zaldae'ar okoli' trollet 1

(3. 40 zaldælæ iæl. (ϵ ,1; (slæ δ (x ϵ);

spinere: læ δ $\sum_{i=1}^{\infty} x^{in} \Rightarrow$ 40 (ϵ ,1), par, peolige'

4. læ ϵ $x^{in} = 1$, δ musla lannegeral i rada $\lambda \to 1 - \infty$ $\sum_{i=1}^{\infty} liæ x^{in} = \sum_{i=1}^{\infty} 1 - \frac{\epsilon_{i}m}{1}$ (n'2 mila o zalærne sumeoce a limite)

(skejur per int (-1,- ϵ))

(2) Jedarducke' peikledy uo unit Weiershasson keelevia

(i) $\frac{\infty}{2} \frac{x^m}{m^2}$: Indone knowigeeje v 2-1,17, poude dineigreje (n'z rejectioralus cetselvezil, rad): v = (-1,1) knowing abrabletne

(*) simuo'race' huit: $\left|\frac{x^{\alpha}}{a^{2}}\right| \leq \frac{1}{a^{2}} = \frac{1}{2} = \frac{1}{2$

(ii) $\frac{\sum_{i=1}^{\infty} \frac{1}{x^4 + 4^2}}{0 \le \frac{1}{x^4 + u^2}} \stackrel{\leq}{=} \frac{1}{u^2} \quad \forall x \in \mathbb{R}, \ Z \stackrel{1}{=} u^2 \quad k. \implies Z \stackrel{\sim}{=} r \, \mathbb{R}$ (Weiermass jales r (i))

(iii) $\frac{\sum_{1}^{\infty} \frac{n^{2}n^{2}}{m^{3}} = \frac{3}{2} \times R$: $\forall x \in R : \left| \frac{n^{2}n^{2}}{m^{3}} \right| \leq \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{n^{2}n^{2}}{m^{3}} \right| \leq \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{n^{2}n^{2}}{m^{3}} \right| \leq \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum_{1}^{\infty} \frac{1}{m^{3}} \cdot k \right| = \frac{1}{m^{3}} \cdot \left| \sum$

3) Loho lue skijame ma lenneguice

 $\frac{\sum_{i=1}^{\infty} x^{n}}{n} : \frac{\text{ohn knnegence}}{\text{per } |x| | |x|^{n}} : \frac{\text{ohn knnegence}}{\text{per } |x| | |x|^{n}} : \frac{\sum_{i=1}^{\infty} x^{n}}{n} | |x| | |x|^{n}} : \frac{\sum_{i=1}^{\infty} x^{n}}{n} | |x|^{n} | |x|^{n} | |x|^{n} | |x|^{n} | |x|^{n}} : \frac{\sum_{i=1}^{\infty} x^{n}}{n} | |x|^{n}} : \frac{\sum_{i$

 $a_{m}(x) = (-x)^{m} \angle 1$, Lychy $\frac{1}{2}(-x)^{m}$ $\frac{1}{2}x^{2}$ slejne $\frac{1}{2}(-x)^{m}$ $\frac{1}{2}x^{2}$ slejne $\frac{1}{2}(-x)^{m}$

a $a_{M}(x) = (-x)^{M} ji klesajSu uo (-1, -\varepsilon),$

 $kg = \frac{\int_{-1}^{\infty} (-1)^{n}}{n} \cdot (-x)^{n} - \frac{\int_{-1}^{\infty} x^{n}}{n} \stackrel{?}{=} ko (-1, -\epsilon)$

odhed: ra'mene sumoce a linus (n'2 purslessuo neta)

 $\lim_{x \to -1+1} \frac{\sum_{m=1}^{\infty} \frac{x^{m}}{m}}{\sum_{m=1}^{\infty} \frac{x^{m}}{x^{m}}} = \frac{\sum_{m=1}^{\infty} \frac{E \cdot 1)^{m}}{m}}{\sum_{m=1}^{\infty} \frac{E \cdot 1)^{m}}{m}} \left(= -\ln 2 - \mu \cdot n \cdot de^{-1} \right)$

hed sniet vady a fee synta' no int. 2-1,1) (unit synth de auf o synthis whethe lat. stepn. burregenden rad synty'de fee')

Redo deurau'
$$\frac{1}{2} \left(\frac{x^{2}}{m}\right)' = \frac{1}{2} \left(\frac{x^{2}}{m}\right)' = \frac{1}{2$$

$$\left(\text{lef}_{1}\right) \qquad \frac{f}{m} = \text{lef}_{2}$$

Deah' seef
$$\sqrt{2-1}, 1$$
: $\frac{\sqrt{2}}{1} \frac{\sqrt{n}}{n} = lee \frac{1}{1-x}$

Pornolailes: rader \(\frac{7}{m} \) (= la 2) melemnergrezi nere nyclile, like se prita' la $l = -la \frac{1}{2} = -la (1 - \frac{1}{2}) = \int_{-1}^{\infty} \frac{1}{m^2 n}$ (nr +) (kunigige rejekleji)

$$(4)$$
 $\underline{\underline{Du}}$: Vyskovsejke jodobne vysetnit i radu $\underbrace{\underline{\sum}_{0}^{\infty}}_{2n+1}$.

(
$$\Rightarrow$$
 anche x no $\angle -1,1>$)
Greityte $\Rightarrow \frac{(-1)^2}{2^{n+1}} (= \frac{\pi}{4})$