Sur le critère de Weyl

Amar AHMANE

1. Polynômes trigonométriques

Définition 1. On appelle polynôme trigonométrique de degré $\leq N$ $(N \in \mathbb{N})$ de la variable réelle x toute fonction de la forme $x \mapsto \sum_{n=-N}^{N} c_n e^{inx}$ $(c_n \in \mathbb{C})$

Les polynômes trigonométriques sont des fonctions continues 2π -périodiques.

Définition 2. On définit les coefficients de Fourier d'une fonction $f: \mathbb{R} \to \mathbb{C}$ continue 2π -périodique par

$$\forall n \in \mathbb{Z}, \quad c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int}dt$$

Notation : Pour tout $k \in \mathbb{Z}$, on note e_k l'application définie par

$$\forall x \in \mathbb{R}, \quad e_k(x) = \exp(ikx)$$

Lemme 1. Pour tout $n, N \in \mathbb{N}$, on considère les fonctions

$$S_n = \sum_{k=-n}^{n} e_k, \qquad \sigma_N = \frac{1}{N+1} \sum_{n=0}^{n} S_n$$

Alors, pour tout $\alpha \in]0,\pi[$, la suite de fonctions (σ_N) converge uniformément vers 0 sur $[-\pi,\pi]\setminus [-\alpha,\alpha]$.

Démonstration. En effet, ce résultat vient du clacul de $\sigma_N(x)$ pour $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. Soit $x \in \mathbb{R}$ tel que $x \notin 2\pi\mathbb{Z}$, alors d'abord pour $n \geq 0$

$$S_n(x) = \sum_{k=-n}^n e_k(x)$$

$$= \sum_{k=-n}^n \exp(ikx)$$

$$= \sum_{k=0}^n \exp(ix)^k + \sum_{k=0}^n \exp(-ix)^k - 1$$

$$= \frac{1 - \exp(i(n+1)x)}{1 - \exp(ix)} + \frac{1 - \exp(-i(n+1)x)}{1 - \exp(-ix)} - 1$$

$$= \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \exp\left(\frac{nx}{2}\right) + \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \exp\left(\frac{-nx}{2}\right) - 1$$

$$= \frac{2\cos\left(\frac{nx}{2}\right)\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} - 1$$

Puis $2\cos\left(\frac{nx}{2}\right)\sin\left(\frac{(n+1)x}{2}\right) = \sin\left(\frac{(2n+1)x}{2}\right) + \sin\left(\frac{x}{2}\right)$ et finalement

$$S_n(x) = \frac{\sin\left(\frac{(2n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

C'est le noyeau de Dirichlet. Ensuite, on a, pour $N \geq 0$

$$\sum_{n=0}^{N} \exp\left(\frac{i(2n+1)x}{2}\right) = \exp(ix/2) \sum_{n=0}^{N} \exp(inx)$$
$$= \frac{\sin\left(\frac{N+1}{2}x\right)}{\sin\left(\frac{x}{2}\right)} \exp\left(\frac{i(N+1)x}{2}\right)$$

En prenant la partie imaginaire et en multipliant par $\frac{1}{N+1}\frac{1}{\sin\left(\frac{x}{2}\right)}$ on obtient

$$\sigma_N(x) = \frac{1}{N+1} \left(\frac{\sin\left(\frac{(N+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \right)^2$$

C'est le noyeau de Féjer.

Soit alors $0 < \alpha < \pi$. Pour $N \ge 0$, il vient que

$$\forall x \in [-\pi, \pi] \setminus [-\alpha, \alpha], \quad |\sigma_N(x)| \le \frac{1}{(N+1)\sin(\frac{\alpha}{2})}$$

On majore alors uniforément σ_N sur $[-\pi, \pi] \setminus [-\alpha, \alpha]$ par une quantité tendant vers 0, d'où le résultat wink.

Notation : Pour toute fonction $f: \mathbb{R} \to \mathbb{C}$ continue 2π -périodique, on note pour tous entiers naturels n, N

$$S_n(f) = \sum_{k=-n}^{n} c_k(f)e_k, \qquad \sigma_N(f) = \frac{1}{N+1} \sum_{n=0}^{N} S_n(f)$$

Théorème 3. (de Féjer) Soit $f : \mathbb{R} \to \mathbb{C}$ continue 2π -périodique. Alors la suite de fonctions $(\sigma_N(f))$ converge uniformément vers f sur \mathbb{R} .

Démonstration. En effet, on commence par remarquer que

$$\sigma_N(f)(x) = \frac{1}{2\pi} \int_0^{2\pi} f(y)\sigma_N(x-y)dy \tag{1}$$

du fait que

$$S_n(f)(x) = \sum_{k=-n}^{n} c_k(f)e_k(x)$$

$$= \sum_{k=-n}^{n} \left(\frac{1}{2\pi} \int_0^{2\pi} f(y)e_k(-y)dy\right) e_k(x)$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=-n}^{n} e_k(-y)e_k(x)\right) f(y)dy$$

$$= \frac{1}{2\pi} \int_0^{2\pi} S_n(x-y)f(y)dy$$

On effectue le changement de variable z = x - y dans l'intégrale de la relation (1), et on trouve

$$\sigma_N(f)(x) = \frac{1}{2\pi} \int_{x-2\pi}^x f(x-z)\sigma_N(z) dz$$

Or, l'application $\varphi: z \to f(x-z)\sigma_N(z)$ est périodique en tant que produit de telles fonctions, et alors, si on pose $A(t) = \int_{t-2\pi}^t \varphi(z) \mathrm{d}z$ pour tout $t \in \mathbb{R}$, alors A est dérivable sur \mathbb{R} en vertu du TFA et A'(t) = 0 por tout $t \in \mathbb{R}$ en vertu de la 2π -périodicité de φ , et alors A est constante soit $A(x) = A(\pi)$ et donc finalement

$$\sigma_N(f)(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-y)\sigma_N(y) dy$$

Soit $\varepsilon > 0$. La fonction f est uniformément continue sur \mathbb{R} puisque 2π -périodique (preuve ici), on peut alors choisir $\alpha \in]0, \pi[$ tel que

$$\forall x, y \in \mathbb{R}, \quad |x - y| \le \alpha \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

Posons $M = \sup_{x \in [-\pi,\pi]} |f(x)|$, alors pour tout $x \in \mathbb{R}$ et $\mathbb{N} \ge 0$ on a

$$|f(x) - \sigma_N(f)(x)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f(x - y)) \sigma_N(y) dy \right|$$

$$\leq \frac{1}{2\pi} \int_{-\pi}^{-\alpha} |f(x) - f(x - y)| |\sigma_N(y)| dy + \frac{1}{2\pi} \int_{\alpha}^{\pi} |f(x) - f(x - y)| |\sigma_N(y)| dy$$

$$+ \frac{1}{2\pi} \int_{-\alpha}^{\alpha} |f(x) - f(x - y)| |\sigma_N(y)| dy$$

D'abord, pour $y \in [-\alpha, \alpha]$, $|x-y-x| = |y| \le \alpha$ donc $|f(x)-f(x-y)| \le \varepsilon$ par uniforme continuité d'où $\int_{-\alpha}^{\alpha} |f(x)-f(x-y)| |\sigma_N(y)| \mathrm{d}y \le \varepsilon \int_{-\alpha}^{\alpha} |\sigma_N(y)| \mathrm{d}y \le \varepsilon$. Ensuite, comme σ_N converge uniforément vers 0 sur $[-\pi, \pi] \setminus [-\alpha, \alpha]$, il existe $N_0 \ge 0$ tel que pour tout $N \ge N_0$

$$\sup_{y \in [-\pi,\pi] \setminus [-\alpha,\alpha]} |\sigma_N(y)| \le \varepsilon$$

D'où

$$\frac{1}{2\pi} \int_{-\pi}^{-\alpha} |f(x) - f(x - y)| |\sigma_N(y)| dy \le \frac{M}{\pi} \varepsilon(\pi - \alpha) \quad \text{et} \quad \frac{1}{2\pi} \int_{\alpha}^{\pi} |f(x) - f(x - y)| |\sigma_N(y)| dy \le \frac{M}{\pi} \varepsilon(\pi - \alpha)$$

Finalement pour tout $N \geq N_0$ et pour tout $x \in \mathbb{R}$ alors

$$|f(x) - \sigma_N(f)(x)| < (2M+1)\varepsilon$$

D'où le résultat.

Corollaire 1. Toute fonction $f:[0,1] \to \mathbb{C}$ continue vérifiant f(0) = f(1) est uniformément approchée par une suite de polynômes trigonométriques.

Démonstration. Soit $f:[0,1]\to\mathbb{C}$ continue vérifiant f(0)=f(1). On peut par dilatation se ramener à une fonction $\tilde{f}:[0,2\pi]\to\mathbb{C}$ telle que $\tilde{f}(0)=\tilde{f}(2\pi)$. On peut considérer alors l'unique fonction périodique g telle que $g_{|[0,2\pi]}=\tilde{f}$. g est approchée uniformément par une suite de polynômes tirogonométriques, donc $\tilde{f}=g_{|[0,2\pi]}$ également par restriction, puis f par dilatation.

2. Preuve du critère de Weyl

Notation : Pour toute suite $(x_n)_{n\geq 1}$ à valeurs dans [0,1], on décide de noter, pour tout entier $N\geq 1$ et toute sous-ensemble non vide $Y\subset [0,1]$

$$\gamma(N,(x_n),Y) = \frac{1}{N} \operatorname{Card}\{1 \le n \le N \mid x_n \in Y\}$$

On dit que $(x_n)_{n>1}$ est équipartie si

$$\forall 0 \le a < b \le 1, \quad \lim_{N \to +\infty} \gamma(N, (x_n), [a, b]) = b - a$$

Notation: Pour toute function $f:[0,1]\to\mathbb{R}$ continue telle que f(0)=f(1), on note pour $M\in\mathbb{N}^*$

$$\Phi_M(f) = \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) \mathbb{1}_{\left[\frac{k}{M}, \frac{k+1}{M}\right]} + f(1)\mathbb{1}_{\{1\}}$$

Proposition 1. Soit $f:[0,1] \to \mathbb{R}$ continue telle que f(0) = f(1). Pour tout $\varepsilon > 0$, il existe $M \ge 1$ tel que

$$\sup_{x \in [0,1]} |f(x) - \Phi_M(f)(x)| \le \varepsilon$$

Démonstration. En effet, f est continue sur le segment [0,1], donc uniformément continue d'après le théorème de Heine. Pour $\varepsilon > 0$, il existe $\eta > 0$ tel que

$$\forall x, y \in [0, 1], |x - y| \le \eta \Longrightarrow |f(x) - f(y)| \le \varepsilon$$

On choist $M \in \mathbb{N}^*$ tel que $\frac{1}{M} \leq \eta$. Soit $x \in [0,1]$, si x < 1 il existe un unique $k \in \{0, \dots, M-1\}$ tel que $x \in \left[\frac{k}{M}, \frac{k+1}{M}\right[$ et on a $\Phi_M(f)(x) = f\left(\frac{k}{M}\right)$ et $\left|x - \frac{k}{M}\right| \leq \frac{1}{M} \leq \eta$ donc $|f(x) - \Phi_M(f)(x)| \leq \varepsilon$, sinon x = 1 et $|f(x) - \Phi_M(f)(x)| = 0 \leq \varepsilon$. Ceci valant pour tout $x \in [0,1]$ on a bien le résultat voulu. Remarquons que tout entier $M' \geq M$ vérifie la condition voulue car $\frac{1}{M'} \leq \frac{1}{M} \leq \eta$.

Lemme 2. Soit $(x_n)_{n\geq 1}$ une suite d'éléments de [0,1]. Alors (x_n) est équipartie si et seulement si

$$\forall 0 \le a < b \le 1, \quad \lim_{N \to +\infty} \gamma(N, (x_n), [a, b[) = b - a)$$

Démonstration. En effet, on suppose (x_n) équipartie et soit $0 \le a < b \le 1$, alors pour tout $N \ge 1$

$$\gamma(N, (x_n), [a, b]) < \gamma(N, (x_n), [a, b])$$

et pour tout $\varepsilon > 0$ tel que $b - \varepsilon > a$

$$\gamma(N,(x_n),[a,b]) > \gamma(N,(x_n),[a,b-\varepsilon])$$

pour tout ε adapté, et à partir d'un certain rang N_0 , on obtient, en vertu de l'hypothèse de départ

$$b-a-2\varepsilon \le \gamma(N,(x_n),[a,b]) \le b-a+\varepsilon$$

ce qui permet de conclure pour le sens direct.

Réciproquement, soit $0 \le a < b \le 1$, alors pour tout $N \ge 1$

$$\gamma(N,(x_n),[a,b]) \le \gamma(N,(x_n),[a,b])$$

et pour tout $\varepsilon > 0$ tel que $b + \varepsilon \le 1$

$$\gamma(N,(x_n),[a,b+\varepsilon]) \ge \gamma(N,(x_n),[a,b])$$

et on conclut comme plus haut.

Lemme 3. Soit $(x_n)_{n\geq 1}$ une suite équipartie. Alors

$$\lim_{N \to +\infty} \gamma(N, (x_n), \{1\}) = 0$$

Démonstration. En effet,

$$\gamma(N, (x_n), [0, 1]) = \gamma(N, (x_n), [0, 1]) + \gamma(N, (x_n), \{1\})$$

On conclut en passant à la limite et en utilisant le Lemme précédent.

Théorème 4. Soit (x_n) une suite à valeurs dans [0,1]. Alors les psse

- i) (x_n) est équipartie.
- ii) Pour toute fonction $f:[0,1] \to \mathbb{R}$ continue vérifiant f(0) = f(1),

$$\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_0^1 f(t) dt$$

iii) $\forall p \in \mathbb{Z}^*$, $\lim_{N \to +\infty} \frac{1}{N} \sum_{n=1}^N \exp(2i\pi px_n) = 0$

Démonstration. On entame une preuve par chaîne d'implications.

 $|i\rangle \Longrightarrow ii\rangle$ Supposons (x_n) équipartie. Soit $f:[0,1]\to\mathbb{R}$ telle que f(0)=f(1). Soit $\varepsilon>0$ et $M'\geq 1$ comme dans la proposition 1. D'après un résultat sur les sommes de Riemann, on peut choisir $M\geq M'$ tel que

$$\left| \int_0^1 f(t) dt - \frac{1}{M} \sum_{k=1}^M f\left(\frac{k}{M}\right) \right| \le \varepsilon$$

On a, pour tout $N \in \mathbb{N}$

$$\left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N f(x_n) \right| \le \left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N \Phi_M(f)(x_n) \right| + \left| \frac{1}{N} \sum_{n=1}^N (f(x_n) - \Phi_M(f)(x_n)) \right|$$

Or, d'une part

$$\left| \frac{1}{N} \sum_{n=1}^{N} (f(x_n) - \Phi_M(f)(x_n)) \right| \le \frac{1}{N} \sum_{n=1}^{N} \underbrace{|f(x_n) - \Phi_M(f)(x_n)|}_{\le \varepsilon} \le \varepsilon$$

D'autre part

$$\begin{split} \sum_{n=1}^{N} \Phi_{M}(f)(x_{n}) &= \sum_{n=1}^{N} \left[\sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) \mathbb{1}_{\left[\frac{k}{M}, \frac{k+1}{M}\right]}(x_{n}) + f(1) \mathbb{1}_{\left\{1\right\}}(x_{n}) \right] \\ &= \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) \sum_{n=1}^{N} \mathbb{1}_{\left[\frac{k}{M}, \frac{k+1}{M}\right]}(x_{n}) + f(1) \sum_{n=1}^{N} \mathbb{1}_{\left\{1\right\}}(x_{n}) \\ &= \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) N \gamma\left(N, (x_{n}), \left[\frac{k}{M}, \frac{k+1}{M}\right]\right) + N \gamma\left(N, (x_{n}), \left\{1\right\}\right) \end{split}$$

Si bien que, en utilisant les Lemmes 2 et 3,

$$\left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N \Phi_M(f)(x_n) \right| \xrightarrow[N \to +\infty]{} \left| \int_0^1 f(t) dt - \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) \frac{1}{M} \right|$$

Il existe alors $N_0 \in \mathbb{N}$ tel que pour tout $N \geq N_0$

$$\left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N \Phi_M(f)(x_n) \right| \le \varepsilon + \left| \int_0^1 f(t) dt - \frac{1}{M} \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) \right|$$

Or, ayant f(0) = f(1), on remarque que $\frac{1}{M} \sum_{k=0}^{M-1} f\left(\frac{k}{M}\right) = \frac{1}{M} \sum_{k=1}^{M} f\left(\frac{k}{M}\right)$ et donc pour tout $N \ge N_0$

$$\left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N \Phi_M(f)(x_n) \right| \le 2\varepsilon$$

Finalement, pour tout $N \geq N_0$

$$\left| \int_0^1 f(t) dt - \frac{1}{N} \sum_{n=1}^N f(x_n) \right| \le 2\varepsilon + \varepsilon = 3\varepsilon$$

 $- |ii\rangle \Longrightarrow iii)$ Soit $p \in \mathbb{Z}^*$. On va montrer que

$$\frac{1}{N} \sum_{k=1}^{N} \cos(2k\pi px_n) \xrightarrow[N \to +\infty]{} 0$$

Ici on pose $f:x\in [0,1]\to \cos(2\pi px)$ qui vérifie bien les conditions de ii) et on a alors par hypothèse

$$\frac{1}{N} \sum_{k=1}^{N} \cos(2k\pi px_n) = \frac{1}{N} \sum_{k=1}^{N} f(x_n) \xrightarrow[N \to +\infty]{} \int_{0}^{1} f(t) dt = 0$$

On procède de même pour montrer que

$$\frac{1}{N} \sum_{k=1}^{N} \sin(2k\pi p x_n) \xrightarrow[N \to +\infty]{} 0$$

Et on en conclut que

$$\frac{1}{N} \sum_{k=1}^{N} \exp(2k\pi px_n) \xrightarrow[N \to +\infty]{} 0$$

 $\overline{(iii) \Longrightarrow i)}$ Soit 0 < a < b < 1. Pour $\varepsilon > 0$, on définit deux applications f_{ε}^+ et f_{ε}^- telles que

$$f_{\varepsilon}^{-} \le \mathbb{1}_{[a,b]} \le f_{\varepsilon}^{+} \tag{1}$$

et telles que $f_{\varepsilon}^-(0)=f_{\varepsilon}^-(1)=f_{\varepsilon}^+(0)=f_{\varepsilon}^+(1)=0$ et

$$\int_0^1 f_{\varepsilon}^- = b - a - \varepsilon, \qquad \int_0^1 f_{\varepsilon}^+ = b - a + \varepsilon$$

D'après le corollaire 1, il existe des suites (P_m) et (Q_m) de polynômes trigonométriques convergeant uniformément respectivement vers f_{ε}^+ et f_{ε}^- sur [0,1].

On a alors pour $N \ge 1$ et $m \ge 1$

$$\left| \frac{1}{N} \sum_{n=1}^{N} f_{\varepsilon}^{+}(x_{n}) - \int_{0}^{1} f_{\varepsilon}^{+} \right| \leq \left| \frac{1}{N} \sum_{n=1}^{N} f_{\varepsilon}^{+}(x_{n}) - \frac{1}{N} \sum_{n=1}^{N} P_{m}(x_{n}) \right| + \left| \frac{1}{N} \sum_{n=1}^{N} P_{m}(x_{n}) - \int_{0}^{1} P_{m} \right| + \left| \int_{0}^{1} f_{\varepsilon}^{+} - \int_{0}^{1} P_{m} \right|$$

$$\leq \frac{1}{N} \sum_{n=1}^{N} |f_{\varepsilon}^{+}(x_{n}) - P_{m}(x_{n})| + \int_{0}^{1} |f_{\varepsilon}^{+} - P_{m}|$$

$$+ \left| \frac{1}{N} \sum_{n=1}^{N} P_{m}(x_{n}) - \int_{0}^{1} P_{m} \right|$$

Pour m assez grand, $|f_{\varepsilon}^+(x_n) - P_m(x_n)| \leq \varepsilon$ pour tout $n \geq 1$. On choisit un tel m, et par hypothèse et par linéarité, à partir d'un certain rang N_0 ,

$$\forall N \ge N_0, \quad \left| \frac{1}{N} \sum_{n=1}^{N} P_m(x_n) - \int_0^1 P_m \right| \le \varepsilon$$

Si bien que pour tout $N \geq N_0$, on a

$$\left| \frac{1}{N} \sum_{n=1}^{N} f_{\varepsilon}^{+}(x_n) - \int_{0}^{1} f_{\varepsilon}^{+} \right| \leq 3\varepsilon$$

et on procède de même pour $f_{\varepsilon}^-,$ et on note N_1 un rang à partir duquel

$$\left| \frac{1}{N} \sum_{n=1}^{N} f_{\varepsilon}^{+}(x_n) - \int_{0}^{1} f_{\varepsilon}^{+} \right| \leq 3\varepsilon, \quad \left| \frac{1}{N} \sum_{n=1}^{N} f_{\varepsilon}^{-}(x_n) - \int_{0}^{1} f_{\varepsilon}^{-} \right| \leq 3\varepsilon$$

Pour $N \geq N_1$, on moyenne la relation (1) pour avoir

$$\int_0^1 f_{\varepsilon}^- - 3\varepsilon \le \frac{1}{N} \sum_{n=1}^N f_{\varepsilon}^- \le \gamma(N, (x_n), [a, b]) \le \frac{1}{N} \sum_{n=1}^N f_{\varepsilon}^+(x_n) \le \int_0^1 f_{\varepsilon}^+ + 3\varepsilon$$

Soit pour tout $N \geq N_1$

$$b-a-4\varepsilon \le \gamma(N,(x_n),[a,b]) \le b-a+4\varepsilon$$

Les cas où $0 \le a < b \le 1$ se déduisent facilement des cas 0 < a < b < 1.