Gaussian Process Regression in High-Dimensional and Structured Domains

Variational Inference and Active Learning on Manifolds

Yuanxing Cheng, Advisor: Lulu Kang, Chun Liu

Illinois Institute of Technology

Ph.D. Oral Exam, July 27, 2025

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Introduction: Computer Experiments

What is a computer experiment?

Introduction: Computer Experiments

What is a computer experiment? It is a simulation using computer models.

- physical,
- biological,
- engineering, etc.

Challenges

- dimension
- cost of data acquisition

Introduction: Gaussian Process

Why Gaussian Process (GP)?

- simple assumption with an explicit prediction formula
- can perform Uncertainty Quantification (UQ) easily

When using Bayesian Approach to do Gaussian Process regression,

- assume prior distributions with hyperparameters
- 2 obtain the posterior distribution
- 3 maximize the posterior to find the best value for the hyperparameters
- f 4 find posterior predictive distribution at untried x

Energetic Variational Inference Gaussian Process

The first method uses Energetic Variational Inference to find the maximum point of the posterior distribution function.

- Energetic Variational Approach (Wang Y., Liu C., 2022)
- Variational Inference (Wang, Y., Chen, J., Liu, C. et al., 2021)

We have

- stable posterior approximation
- variable selection

Introduction: Active Learning Manifold Gaussian Process

The second method uses a quick active learning method on a manifold Gaussian process. We aim to achieve the following:

- Dimension reduction
- Active learning

We use:

- Manifold learning: Neural network
- Active learning criteria: Active Learning Cohn

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Gaussian Process Regression

The Gaussian Process model.

$$y_i = y(\boldsymbol{x}_i) = \boldsymbol{g}(\boldsymbol{x}_i)^{\top} \boldsymbol{\beta} + Z(\boldsymbol{x}_i) + \epsilon_i, \quad i = 1, \dots, n,$$
 (1)

- $\{x_i,y_i\}_{i=1}^n$ are the data, $x_i\in\Omega\subseteq\mathbb{R}^d$, $y_i\in\mathbb{R}$
- ullet g(x) is a p-dimensional vector of basis function, and eta are their linear coefficients
 - lacksquare zero order effect (intercept), $m{g}(m{x})=1$, $m{eta}=eta_0$, p=1
 - first order effect, $g(x) = [1, x_1, x_2, \dots, x_d]$, $\beta = [\beta_0, \beta_1, \beta_2, \dots, \beta_d]$
 - second order effect, etc.
- The noise $\epsilon_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma_\omega^2)$ and is also independent of the other stochastic ingredients of (1).

About Gaussian Process $Z(\cdot)$

 $Z(\cdot) \sim GP(0, \tau^2 \pmb{K})$, which indicates $\mathbb{E}[Z(\pmb{x})] = 0$ and $\mathrm{Cov}\left[Z(\pmb{x}_1), Z(\pmb{x}_2)\right] = \tau^2 k(\pmb{x}_1, \pmb{x}_2)$.

- τ^2 is a constant variance and $k(\cdot,\cdot;\omega):\Omega\times\Omega\mapsto\mathbb{R}_+$ is the correlation function of the stochastic process with hyperparameters ω .
- Here we use *Gaussian kernel* function, symmetric, and positive definite. $k(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\omega}) = \exp\left\{-\sum_{j=1}^d \omega_j (x_{1j} x_{2j})^2\right\}$, with $\boldsymbol{\omega} \in \mathbb{R}^d$ and $\boldsymbol{\omega} \geq 0$.
- Here we also define the noise-to-signal ratio $\eta = \sigma_\omega^2/\tau^2$. It's expected to be small

About response y

With above assumption, y_n is also a gaussian process where $\mathbb{E}[y(x)] = g(x)^{\top} \beta, \forall x \in \Omega$ and

$$Cov [y(\boldsymbol{x}_1), y(\boldsymbol{x}_2)] = \tau^2 k(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\omega}) + \sigma^2 \delta(\boldsymbol{x}_1, \boldsymbol{x}_2), \quad \forall \boldsymbol{x}_1, \boldsymbol{x}_2 \in \Omega,$$

= $\tau^2 [k(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\omega}) + \eta \delta(\boldsymbol{x}_1, \boldsymbol{x}_2)],$

where $\delta(\boldsymbol{x}_1, \boldsymbol{x}_2) = 1$ if $\boldsymbol{x}_1 = \boldsymbol{x}_2$ and 0 otherwise.

In summary, all the unknown parameters are β, ω, τ^2 , and η , and we define $\theta = (\beta, \omega, \tau^2, \eta)$.

Hyperparameters learning objective

log-marginal likelihood:

$$\ell(\tau^2, \eta) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log \tau^2 - \frac{1}{2} \log \det(\mathbf{K}_n + \eta \mathbf{I}_n)$$

$$-\frac{1}{2\tau^2} \mathbf{Y}_n^{\top} (\mathbf{K}_n + \eta \mathbf{I}_n)^{-1} \mathbf{Y}_n.$$
(2)

differentiating ℓ with respect to τ^2 , solve

$$\hat{\tau}^2 = \frac{1}{n} \mathbf{Y}_n^{\top} (\mathbf{K}_n + \eta \mathbf{I}_n)^{-1} \mathbf{Y}_n.$$
 (3)

Final form

$$\ell(\eta) = -\frac{1}{2} \boldsymbol{Y}_n^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{Y}_n - \frac{1}{2} \log \det(\boldsymbol{K}_n + \eta \boldsymbol{I}_n) + C, \quad (4)$$

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Priors

We assume the following prior distributions for the parameters

- $\beta \sim \mathcal{MVN}_{p}(\mathbf{0}, \nu^{2}\mathbf{R})$ or $\rho(\beta) \propto 1$ for a non-informative prior.
- \bullet $\omega_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{Gamma}(a_{\omega}, b_{\omega}), \text{ for } i = 1, \ldots, d$
- au $au^2 \sim \text{Inverse-} \chi^2(df_{\tau^2})$
- $\eta \sim \mathsf{Gamma}(a_n, b_n).$

Then we have the sampling distribution

$$\mathbf{y}_n | \boldsymbol{\theta} \sim \mathcal{MVN}_n \left(\mathbf{G}\boldsymbol{\beta}, \tau^2 (\mathbf{K}_n + \eta \mathbf{I}_n) \right),$$
 (5)

where y_n is the vector of y_i 's, G is a matrix with each row being $g(x_i)^{\top}$. The matrix K_n is the $n \times n$ kernel matrix and $K_n[i,j] = K(x_i,x_j)$ and is symmetric and positive definite. I_n is an $n \times n$ identity matrix.

Conditional posterior distributions of β

We start with the informative prior case. Using the Bayes formula we obtain

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}_n) \propto p(\boldsymbol{y}_n \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})$$
$$p(\boldsymbol{\beta} \mid \boldsymbol{y}_n, \boldsymbol{\omega}, \tau^2, \eta) \propto p(\boldsymbol{y}_n \mid \boldsymbol{\beta}, \boldsymbol{\omega}, \tau^2, \eta) \cdot p(\boldsymbol{\beta} \mid \boldsymbol{\omega}, \tau^2, \eta)$$
$$\propto p(\boldsymbol{y}_n \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\beta})$$

Then, $m{eta}|m{y}_n, m{\omega}, au^2, \eta \sim \mathcal{MVN}_d\left(\hat{m{eta}}_n, m{\Sigma}_{m{eta}|n}\right)$, where

$$egin{aligned} oldsymbol{\Sigma}_{oldsymbol{eta}|n} &= \left[rac{1}{ au^2} oldsymbol{G}^ op (oldsymbol{K}_n + \eta oldsymbol{I}_n)^{-1} oldsymbol{G} + rac{1}{
u^2} oldsymbol{R}^{-1}
ight]^{-1} \ \hat{oldsymbol{eta}}_n &= oldsymbol{\Sigma}_{oldsymbol{eta}|n} rac{(oldsymbol{G}^ op (oldsymbol{K}_n + \eta oldsymbol{I}_n)^{-1} oldsymbol{y}_n)}{ au^2} \end{aligned}$$

Shrinkage Effect and variable selection

 $\Sigma_{\beta|n}$ and $\hat{\beta}_n$ are used to form an interval estimate. When the confidence interval contains 0, the corresponding effect is considered nonsignificant and is therefore discarded.

$$oldsymbol{\Sigma}_{oldsymbol{eta}|n} = \left[rac{1}{ au^2} oldsymbol{G}^ op (oldsymbol{K}_n + \eta oldsymbol{I}_n)^{-1} oldsymbol{G} + rac{1}{
u^2} oldsymbol{R}^{-1}
ight]^{-1}$$

Thus, we use R for regularization and ν as the shrinking coefficient. We define the matrix R to be a diagonal matrix and follow the Hierarchy principle,

- lower order effects are more likely to be significant than higher order effects
- effects of the same order are equally likely to be significant

Structure of Basis Function and Regularization Matrix

Introduction

Variable Selection step

- 1 use cross validation to find the best ν
- 2 with fixed u, do regression and calculate the interval estimate of $\hat{m{\beta}}_n$
- 3 if a confidence interval contains 0, it's nonsignificant and will be discarded
- 4 according to the weak Heredity principle, higher-order effects are only considered if one or more of its parent effects are significant; otherwise, they are removed.
 - lacktriangle e.g. x_1x_2 will be discarded if neither x_1 nor x_2 is significant
- **5** The new model has a new g and eta, repeat the above steps.

Posterior, informative prior case

With the informative prior, the posterior distribution is

$$p(\boldsymbol{\omega}, \tau^{2}, \eta | \boldsymbol{y}_{n}) \propto \int p(\boldsymbol{\theta} | \boldsymbol{y}_{n}) d\boldsymbol{\beta}$$

$$\propto \det(\boldsymbol{\Sigma}_{\boldsymbol{\beta}|n})^{1/2}$$

$$\times \exp\left[-\frac{1}{2}\hat{\boldsymbol{\beta}}_{n}^{\top}\boldsymbol{\Sigma}_{\boldsymbol{\beta}|n}^{-1}\hat{\boldsymbol{\beta}}_{n} + \frac{1}{2\tau^{2}}\boldsymbol{y}_{n}^{\top}(\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1}\boldsymbol{y}_{n}\right]$$

$$\times \det(\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{1-/2}(\tau^{2})^{-n/2}p(\tau^{2})p(\boldsymbol{\omega})p(\eta) \qquad (6)$$

And if using the noninformative prior, we can further integrate (6) with respect to τ^2 and obtain $p(\boldsymbol{\omega}, \eta \mid \boldsymbol{y}_n)$.

Noninformative prior case

In the noninformative prior case, we have the estimate of $\hat{\beta}_n$ being normal with its variance and mean being

$$\Sigma_{\boldsymbol{\beta}|n} = \tau^2 \left[\boldsymbol{G}^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{G} \right]^{-1}$$
$$\hat{\boldsymbol{\beta}}_n = \left[\boldsymbol{G}^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{G} \right]^{-1} \left[\boldsymbol{G}^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \right] \boldsymbol{y}_n$$

In this case, we can define

$$s_n^2 = \tau^{-2} \hat{\boldsymbol{\beta}}_n^{\top} \boldsymbol{\Sigma}_{\boldsymbol{\beta}|n}^{-1} \hat{\boldsymbol{\beta}}_n + \boldsymbol{y}_n^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{y}_n$$

$$= \boldsymbol{y}_n^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \left[\boldsymbol{G} \left(\boldsymbol{G}^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{G} \right)^{-1} \boldsymbol{G}^{\top} + (\boldsymbol{K}_n + \eta \boldsymbol{I}_n) \right]$$

$$\times (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{y}_n.$$

so that above posterior (6) can be simplified.

The simplified posterior distribution:

$$p(\boldsymbol{\omega}, \tau^{2}, \eta | \boldsymbol{y}_{n}) \propto (\tau^{2})^{-\left[\frac{1}{2}(df_{\tau^{2}} + n - p) + 1\right]} \exp\left(-\frac{1 + s_{n}^{2}}{2\tau^{2}}\right)$$

$$\times \det(\boldsymbol{G}^{\top}(\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1}\boldsymbol{G})^{-1/2}$$

$$\times \det(\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{1-/2}p(\boldsymbol{\omega})p(\eta)$$
(7)

Notice, $p(\boldsymbol{\omega}, \tau^2, \eta | \boldsymbol{y}_n) \propto p(\tau^2 | \boldsymbol{\omega}, \eta, \boldsymbol{y}_n) p(\boldsymbol{\omega}, \eta | \boldsymbol{y}_n)$. Define $\hat{\tau}^2 = \left(1 + s_n^2\right) / \left(df_{\tau^2} + n - p\right)$, we actually have $\tau^2 | \boldsymbol{\omega}, \eta, \boldsymbol{y}_n \sim \text{Scaled Inverse-}\chi^2(df_{\tau^2} + n - p, \hat{\tau}^2)$.

We then integrate (7) with au^2 and obtain

$$p(\boldsymbol{\omega}, \eta | \boldsymbol{y}_n) \propto (\hat{\tau}^2)^{-\frac{1}{2}(df_{\tau^2} + n - p)}$$
$$\times \det(\boldsymbol{G}^{\top}(\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1}\boldsymbol{G})^{1 - 2} \det(\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{1 - 2} p(\boldsymbol{\omega}) p(\eta). \tag{8}$$

Posterior predictive distribution

Given the parameters (ω, τ^2, η) , the posterior predictive distribution of y(x) at query point $x \in \Omega$ is the following

$$y(\boldsymbol{x})|\boldsymbol{y}_n, \boldsymbol{\omega}, \tau^2, \eta \sim \mathcal{N}(\hat{\mu}(\boldsymbol{x}), \sigma_n^2(\boldsymbol{x})),$$
 (9)

where

$$\hat{\mu}(\boldsymbol{x}) = \boldsymbol{g}(\boldsymbol{x})^{\top} \hat{\boldsymbol{\beta}}_{n} + K(\boldsymbol{x}, \mathcal{X}_{n}) (\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1} (\boldsymbol{y}_{n} - \boldsymbol{G} \hat{\boldsymbol{\beta}}_{n}), \quad (10)$$

$$\sigma_{n}^{2}(\boldsymbol{x}) = \tau^{2} \left\{ 1 - K(\boldsymbol{x}, \mathcal{X}_{n}) (\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1} K(\mathcal{X}_{n}, \boldsymbol{x}) \right. \quad (11)$$

$$+ \boldsymbol{c}(\boldsymbol{x})^{\top} \left[\boldsymbol{G}^{\top} (\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1} \boldsymbol{G} \right]^{-1} \boldsymbol{c}(\boldsymbol{x}) \right\}$$

$$\boldsymbol{c}(\boldsymbol{x}) = \boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{G}^{\top} (\boldsymbol{K}_{n} + \eta \boldsymbol{I}_{n})^{-1} K(\mathcal{X}_{n}, \boldsymbol{x}),$$

$$K(\boldsymbol{x}, \mathcal{X}_{n}) = K(\mathcal{X}_{n}, \boldsymbol{x})^{\top} = [K(\boldsymbol{x}, \boldsymbol{x}_{1}), \dots, K(\boldsymbol{x}, \boldsymbol{x}_{n})]$$

Computational Issue

FVIGP

To avoid computational issues caused by ill-conditioned matrices, here we plug in $\hat{\beta}_n$ into $\hat{\mu}(x)$ and obtain the alternative formula.

$$\hat{\mu}(\boldsymbol{x}) = \left(\left(\boldsymbol{g}(\boldsymbol{x})^{\top} - K(\boldsymbol{x}, \mathcal{X}_n) (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{G} \right) \right.$$

$$\times \left(\boldsymbol{G}^{\top} (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{G} \right)^{-1} \boldsymbol{G}^{\top} + K(\boldsymbol{x}, \mathcal{X}_n) \left. \right) (\boldsymbol{K}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{y}_n$$

Sampling Procedure

The sampling procedure is

- I Generate posterior samples from $p(\boldsymbol{\omega}, \tau^2, \eta | \boldsymbol{y}_n)$ or $p(\boldsymbol{\omega}, \eta | \boldsymbol{y}_n)$, depending on which prior is used for $\boldsymbol{\beta}$, and then select the mode.
- 2 Based on the posterior samples of (ω, τ^2, η) , generate the conditional posterior distribution for β . If non-informative prior is used, generate the conditional distribution of $\tau^2 | \omega, \eta$.
- Based on the posterior samples of (ω, τ^2, η) (or (ω, η) for non-informative prior), generate the posterior predictive distribution of any query point $y(x)|y_n, \omega, \tau^2, \eta$. For non-informative prior, the posterior predictive distribution $y(x)|y_n, \omega, \eta$ is the same except τ^2 is replaced by $\hat{\tau}^2$.

Outline

1 Introduction

EVIGP

- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Preliminary

We start with the continuous formulation.

- denote the posterior, either (6) or (8) to be ρ^*
- \blacksquare define dynamic flow map $\pmb{x} = \phi(\pmb{z},t): \mathbb{R}^d \to \mathbb{R}^d$, smooth and one-to-one.
 - \blacksquare It is designed to transform an initial pdf $\rho^0(z)$ to $\rho^*(x)$ as $t\to\infty$
 - lacksquare velocity: $\dot{\phi}(z,t):=oldsymbol{u}(\phi(z,t),t)$, $z\in\mathbb{R}^d$, t>0
 - $\begin{tabular}{l} \blacksquare transportation equation: $\dot{\rho}+\nabla\cdot(\rho \pmb{u})=0$, $\rho(\pmb{x},0)=\rho^0(\pmb{x})$ and $\rho(\pmb{x},\infty)=\rho^*(\pmb{x})$ }$
- the energy functional $\mathcal{F}[\phi_t]$ is the KL divergence of ρ and ρ^* : $\mathcal{F}[\phi_t] = \int \rho(x) \ln \left(\frac{\rho}{\rho^*}\right) \,\mathrm{d}x$. And we expect $\mathcal{F}[\phi_t] \to 0$ as $t \to \infty$.

Energy Dissipation Law

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}[\phi_t] = -\triangle(\phi_t, \dot{\phi}_t),\tag{12}$$

The $\triangle(\phi_t,\dot{\phi}_t)$ represents the rate of energy dissipation,

- lacktriangledown $\Delta(oldsymbol{\phi}_t, \dot{oldsymbol{\phi}}_t) \geq 0$ so that $\mathcal{F}(oldsymbol{\phi}_t)$ decreases with time
- lacksquare a simple quadratic functional in terms of $\dot{\phi}_t$

$$\triangle(\phi_t, \dot{\phi}_t) = \int_{\Omega_t} \rho_{[\phi_t]} ||\dot{\phi}_t||_2^2 d\mathbf{x},$$

where

- lacksquare $\rho_{[\phi_t]}$ denotes the pdf of the distribution at t
- lacksquare Ω_t is the current support
- $\|\boldsymbol{a}\|_2 = \boldsymbol{a}^{\top} \boldsymbol{a}, \ \forall \boldsymbol{a} \in \mathbb{R}^d.$

Solving, step 1

As stated in Wang, Y., Chen, J., Liu, C. et al., 2021

perform discretization on space parameter, which is called the "approximation-then-variation" approach and obtain the particle version of the PDE.

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{F}_h(\{x_i(t)\}_{i=1}^N) = -\triangle_h(\{x_i(t)\}_{i=1}^N, \{\dot{x}_i(t)\}_{i=1}^N).$$
 (13)

Here $x_i(t) = \phi(x_i(0),t)$ where $x_i(0)$ is sampled from the initial distribution ρ^0 , and

$$\mathcal{F}_h(\boldsymbol{x}_i) = \frac{1}{N} \sum_{i=1}^{N} \left(\ln \left(\frac{1}{N} \sum_{j=1}^{N} K_h(\boldsymbol{x}_i, \boldsymbol{x}_j) \right) + V(\boldsymbol{x}_i) \right)$$

where $K_h(\boldsymbol{x}_i, \boldsymbol{x}_j) \propto \exp(-\|\boldsymbol{x}_i - \boldsymbol{x}_j\|^2/h^2)$, h is kernel bandwidth and $V = -\log \rho^*$.

Solving, step 2

2 Using the energetic variational approach, by taking variation of \mathcal{F}_h with respect to \boldsymbol{x}_t , and $\frac{1}{2}\Delta_h$ with respect to $\dot{\boldsymbol{x}}_t$,

$$\frac{\delta \frac{1}{2} \triangle_h}{\delta \dot{x}_i(t)} = -\frac{\delta \mathcal{F}_h}{\delta x_i}, \quad \text{for } i = 1, \dots, N.$$
 (14)

Using above quadratic form dissipation, we have

$$\triangle_h = \frac{1}{N} \sum_{i=1}^N \|\boldsymbol{u}\|^2$$

Then assuming $u(x_i(t),t) \approx \dot{x}_i(t)$, we have

$$\frac{\delta \frac{1}{2} \triangle_h}{\delta \dot{\boldsymbol{x}}_i(t)} = \frac{\dot{\boldsymbol{x}}_i(t)}{N}$$

Solving, step 3

3 using implicit Euler for time discretization, the numerical scheme is

$$\frac{1}{N} \frac{\boldsymbol{x}_{i}^{n+1} - \boldsymbol{x}_{i}^{n}}{\tau} = -\frac{\delta \mathcal{F}_{h}}{\delta \boldsymbol{x}_{i}} \left(\left\{ \boldsymbol{x}_{i}^{n+1} \right\}_{i=1}^{N} \right)$$

Using Proximal Point Algorithm, we need to solve

$$\{\boldsymbol{x}_i^{n+1}\}_{i=1}^N = \operatorname*{arg\,min}_{\{\boldsymbol{x}_i\}_{i=1}^N} J(\{\boldsymbol{x}_i\}_{i=1}^N)$$

- $J(\{x_i\}_{i=1}^N) := \frac{1}{2\tau} \sum_{i=1}^N \|x_i x_i^n\|^2 / N + \mathcal{F}_h(\{x_i\}_{i=1}^N)$
- $\blacksquare~\{\boldsymbol{x}(t)\}_{i=1}^{N}$ is the locations of particles at time t
- $\mathbf{x}_i(t)$ is the derivative of \mathbf{x}_i with t
- lacksquare subscript h is the bandwidth parameter of the kernel

EVI as sampling method road map

 $\left\{\left(\boldsymbol{x}_0^i\right)\right\}_{i=1}^N$ initial particles from initial distribution (uniform, normal, etc.)

implicit Euler updates

particles approximate target densities that minimize \mathcal{F}_h the mode maximize posterior (6) or (8)

About the diffusion term

With KL divergence as the energy functional, EnVarA gives

$$\mathcal{F}[\phi_t] = \int \rho \ln \rho + \rho V \, d\boldsymbol{x} \implies \rho \boldsymbol{u} = -(\nabla \rho + \rho \nabla V)$$

Combine with the transportation equation we have

$$\dot{\rho} = \nabla \cdot (\nabla \rho + \rho \nabla V)$$

We can set the diffusion term to 0. And this correspond to use $\mathcal{F}[\phi_t]=\int \rho V\,\mathrm{d}x$ and thus

$$\mathcal{F}_h(\boldsymbol{x}_i) = V(\boldsymbol{x}_i) = -\log \rho^*(\boldsymbol{x}_i)$$

In this case, the scheme ends up a simple gradient flow that should converges to the local maximum points of $\rho^*(x_i)$.

Two variants of EVI-GP

- EVI-Post: Generate *N* particles and they will approximate the posterior samples through implicit Euler updates
- EVI-MAP: This variant corresponds to Maximum A Posteriori (MAP), and is thus named EVI-MAP. Simply set $\mathcal{F}(\boldsymbol{x}) = V(\boldsymbol{x})$ and N = 1. This is equivalent to proximal point algorithm.

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Performance Metric

Performance is measured by the Standardized Root Mean Squared Predictive Error (RMSPE).

standardized RMSPE =
$$\left(\sqrt{\frac{1}{N}\sum_{i}(\hat{y}_{i}-y_{i})^{2}}\right)$$
 /std. dev. (y_{i})

- lacksquare \hat{y}_i is the predicted value at x_i
- lacksquare y_i is the true value at x_i
- lacksquare $\sigma(y_i)$ is the standard deviation of all y_i
- The closer the RMSPE is to **0**, the better the model performance.
- Our method (EVIGP) is compared against the R packages: gpfit, mlegp, and laGP.

Example 1: $x \sin(x)$ (Setup)

- **Data**: training data size $n_{train} = 11$, testing data size $n_{test} = 100$, from latin hypercube sampling on [0,1] and then scaled to [0,10]
- Noise: $\epsilon \sim \mathcal{N}(0, 0.5^2)$
- Priors: $a_{\omega} = a_{\eta} = 1$, $b_{\omega} = b_{\eta} = 5$.
- EVI Settings: Time step h=0.02, scale $\tau=1$. Initially, 100 EVI particle uniformly distributed at $[0,0.1] \times [0.1,0.4]$
- **Solver**: L-BFGS (PyTorch) with history size 50, max inner iterations 100, and max epoch 500.

Numerical results

Figure: Contour plot of $x\sin(x)$ case, where left two using EVI-MAP and right two using EVI-post, top two are from constant mean model and bottom two are from linear mean model. Red points are those with the highest posterior

Example 1: $x \sin(x)$ (Result)

Figure: The gaussian process prediction. Black dots are training data, red curve is the true $x\sin(x)$ and blue curve is the predicted, light blue area shows the predictive condifence interval

Example 1: $x \sin(x)$ (Comparison)

FVIGP

The test was conducted for 1000 times, and the mean of RMSPE of all methods tested are listed below, where the column for R packages only shows the best among them.

Type of mean	EVIGP	EVIGP with 0 diffusion	gpfit/mlegp/lagp
Constant	0.1318	0.1310	0.1275
Linear	0.1211	0.1195	0.1583

Table: standardized RMSPE, $x \sin(x)$ case

Example 1: $x \sin(x)$ (Robustness)

Figure: The mean standardized RMSPE from all different cases and methods as indicated in the label.

Example 2: OTL Circuit (Setup)

Function: A 6-dimensional electronic circuit function.

$$V_m(\mathbf{x}) = \frac{(V_{b1} + 0.74)\beta(R_{c2} + 9)}{\beta(R_{c2} + 9) + R_f} + \frac{11.35R_f}{\beta(R_{c2} + 9) + R_f} + \frac{0.74R_f\beta(R_{c2} + 9)}{(\beta(R_{c2} + 9) + R_f)R_{c1}}, V_{b1} = \frac{12R_{b2}}{R_{b1} + R_{b2}}$$

- **Data**: $n_{\text{train}} = 200$, $n_{\text{test}} = 1000$.
- Noise: $\epsilon \sim \mathcal{N}(0, 0.02^2)$.
- Priors: $a_{\omega} = a_n = 1.1$, $b_{\omega} = b_n = 2.5$.
- **EVI Settings**: Time step h = 0.001, scale $\tau = 1$
- Informative Prior: A 5-fold cross-validation was used to select a shrinkage parameter $\nu = 2.65$ for variable selection.
- Solver: L-BFGS (PyTorch) with history size 50, max inner iterations 100, and max epoch 500

informative prior and shirinkage effect

With an informative prior, we first use cross-validation to choose the parameter ν and then select parameters based on their significance.

- lacksquare R is a diagonal matrix. And on the diagonal, the values are
 - lacksquare 1, corresponds to the intercept term in $oldsymbol{g}$
 - r = 4/3, linear effect
 - r², quadratic effect,
- ν is searched in a evenly spaced grid from 0 to 5 with 0.05 grid size. A 5-fold cross validation is used to find ν with the smallest standardized RMSPE. The final result is $\nu=2.65$.

To better illustrate, we rename $R_{b1}, R_{b2}, R_f, R_{c1}, R_{c2}, \beta$ to be x_1, x_2, \ldots, x_6 , respectively.

EVIGP

Example 2: OTL circuit (Comparison)

The mean of RMSPE of all methods tested are listed below.

Type of mean	EVIGP	mlegp/lagp
Constant	0.02207	0.04892
Linear	0.01401	0.03593
Quadratic	0.02181	0.03012
Quadratic, after selection	0.01927	N/A

Table: standardized RMSPF

Example 2: OTL circuit (Significance of effects)

We kept only $x_2, x_3, x_4, x_3x_4, x_2^2$ and regress the data again.

Example 2: OTL circuit (Robustness)

Figure: The mean standardized RMSPE from all different cases and methods as indicated in the label.

Example 3: Borehole Function (Setup)

■ **Problem**: An 8-dimensional function modeling water flow through a borehole.

$$f(\boldsymbol{x}) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_\omega) \left(1 + \frac{2LT_u}{\ln(r/r_\omega)r_\omega^2 K_\omega} + \frac{T_u}{T_l}\right)}$$

- Priors: $a_{\omega} = a_n = 1$, $b_{\omega} = b_n = 4$.
- **Informative Prior**: Cross-validation resulted in shrinkage parameter $\nu = 0.95$.
- \blacksquare variables are also renamed as x_1, x_2, \ldots, x_8 .
- The rest settings are inherited from the OTL example.

Example 3: Borehole Function (Comparison)

The mean of RMSPE of all methods tested are listed below.

Type of mean	EVIGP	mlegp/lagp
Constant	0.0108	0.3349
Linear	0.04190	0.1808
Quadratic	0.03182	0.2022
Quadratic, after selection	0.02310	N/A

Table: standardized RMSPE

Example 3: Borehole Function (Robustness)

Figure: The mean standardized RMSPE from all different cases and methods as indicated in the label.

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

The manifold Gaussian Process (mGP) framework decomposes the regression task into: $F = G \circ M$

- ullet $M:\mathcal{X} o \mathcal{H}$ is a deterministic mapping, $\mathcal{H} \subset \mathbb{R}^Q$ latent feature space
- $\blacksquare G: \mathcal{H} \to \mathcal{Y}$ is a GPR model on \mathcal{H}

Specifically,

$$Y_n \sim \mathcal{N}(0, \tau^2(\tilde{K}_n + \eta I_n)),$$

where $K_{n,ij} = k(M(\boldsymbol{x}_i), M(\boldsymbol{x}_i))$. Mapping M can be parameterized via a neural net with parameters θ_M , optimized jointly with GP hyperparameters.

Posterior distribution

Correspondingly,

$$(y(\boldsymbol{x})|\boldsymbol{y},\tau^2,\eta,\boldsymbol{\theta}) = \tilde{\boldsymbol{k}}_n(\boldsymbol{x})'(\tilde{\boldsymbol{K}}_n + \hat{\eta}\boldsymbol{I}_n)^{-1}\boldsymbol{y},$$
(15)

$$s_n^2(\boldsymbol{x}) \triangleq \operatorname{Var}\left[y(\boldsymbol{x})|\boldsymbol{y},\tau^2,\eta,\boldsymbol{\theta}\right]$$
 (16)

$$= \hat{\tau}^2 \left[1 - \tilde{\boldsymbol{k}}(\boldsymbol{x})' (\tilde{\boldsymbol{K}}_n + \hat{\eta} \boldsymbol{I}_n)^{-1} \tilde{\boldsymbol{k}}(\boldsymbol{x}) \right] + \hat{\sigma}^2, (17)$$

And the negative log likelihood is:

$$\mathsf{NLML}(\boldsymbol{\theta}_{\mathsf{mGP}}) = n \log \tau^2 + \log \det(\tilde{\boldsymbol{K}}_n + \eta \boldsymbol{I}_n) + \frac{1}{\tau^2} \boldsymbol{y}^\top (\tilde{\boldsymbol{K}}_n + \eta \boldsymbol{I}_n)^{-1} \boldsymbol{y},$$

Neural Network Architecture

In each layer, the transformation is defined as

$$Z_i = T_i(X) = \sigma_M(W_i Z_{i-1} + B_i)$$

- \bullet σ_M is the activation function
- W_i and B_i are the weight matrix and bias vector for the *i*-th layer

$$M(\boldsymbol{X}) = T_l \circ T_{l-1} \circ \cdots \circ T_1(\boldsymbol{Z}_0)$$

with $Z_0 = X$.

A batch normalizing layer is also applied so that kernel values have

- kernel values
- well-behaved gradients

Activation function

Log-sigmoid:

$$\log -\sigma(x) := \log\left(\frac{1}{1 + e^{-x}}\right) = -\log(1 + e^{-x}).$$

Its derivative.

$$\frac{d}{dx}\log\sigma(x) = \frac{1}{1+e^x} = \sigma(-x),$$

- smoother transition
- not magnitude explosion

A combined loss

- reconstruction loss from the autoencoder architecture
- L_2 regularization

$$\begin{split} \mathcal{L}_{\text{total}} &= \text{NLML} + \alpha \mathcal{L}_{\text{reconstruction}} + \beta \mathcal{L}_{\text{regularization}} \\ &= \text{NLML} + \frac{\alpha}{N} \sum_{i=1}^{N} \| M_{\text{decoder}}(M_{\text{encoder}}(\boldsymbol{x}_i)) - \boldsymbol{x}_i \|^2 \\ &+ \beta \sum_{l} \| \boldsymbol{W}_{l} \|_F^2. \end{split}$$

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Integrated Mean-Squared Error

Active Learning Cohn selects new data points \boldsymbol{x}_{n+1} that minimize the model's integrated mean-squared error (IMSE) over the input space.

$$\breve{s}_{n+1}^2(\boldsymbol{x}|\boldsymbol{x}_{n+1}) \triangleq \hat{\tau}^2 \left[1 - \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x})^\top (\tilde{\boldsymbol{K}}_{n+1} + \eta \boldsymbol{I}_{n+1})^{-1} \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x}) \right],$$

$$\mathsf{IMSE}(\boldsymbol{x}_{n+1}) \triangleq \int_{\mathcal{X}} \breve{s}_{n+1}^2(\boldsymbol{x}|\boldsymbol{x}_{n+1}) \, \mathrm{d}\boldsymbol{x},$$

- x_{n+1} is selected from a finite candidate pool $\mathcal{X}_{\mathsf{cand}} \subset \mathcal{X}$.
- $\tilde{k}_{n+1}(x) = [\tilde{k}(x,x_1),\dots,\tilde{k}(x,x_{n+1})]^{\top}$ \tilde{K}_{n+1} denote the kernel vector and $(n+1)\times(n+1)$ correlation matrix evaluated in the learned latent space $\mathcal{H}=M(\mathcal{X})$ using the current mGP parameters.

Active Learning Cohn

Minimizing the IMSE is equivalent to maximizing the expected reduction in posterior variance, thus

$$\mathsf{ALC}(\boldsymbol{x}_{n+1}) = \int_{\mathcal{X}} s_n^2(\boldsymbol{x}) - \breve{s}_{n+1}^2(\boldsymbol{x}|\boldsymbol{x}_{n+1}) \, \mathrm{d}\boldsymbol{x}$$
$$\propto \int_{\mathcal{X}} \hat{\tau}^2 \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x})^\top (\tilde{\boldsymbol{K}}_{n+1} + \eta \boldsymbol{I}_{n+1})^{-1} \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x},$$

where $s_n^2(\boldsymbol{x})$ is computed via (16) except that k function is replaced by \tilde{k} , and thus $\boldsymbol{k}_n(\boldsymbol{x})$ by $\tilde{\boldsymbol{k}}_n(\boldsymbol{x})$ and \boldsymbol{K}_n by $\tilde{\boldsymbol{K}}_n$.

ALC Approximation

Numerically, we introduce a fixed reference set \mathcal{X}_{ref} of size msampled from \mathcal{X} using Latin Hypercube Design. The ALC objective becomes:

$$\mathsf{ALC}(\boldsymbol{x}_{n+1}) \propto \sum_{\boldsymbol{x} \in \mathcal{X}_{\mathsf{ref}}} \hat{\tau}^2 \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x})^\top (\tilde{\boldsymbol{K}}_{n+1} + \eta \boldsymbol{I}_{n+1})^{-1} \tilde{\boldsymbol{k}}_{n+1}(\boldsymbol{x}).$$

At each active learning iteration, the most informative training point is selected via:

$$oldsymbol{x}_{n+1}^* = rg \max_{oldsymbol{x} \in \mathcal{X}_{\mathsf{cand}}} \mathsf{ALC}(oldsymbol{x}),$$

and subsequently removed from the candidate pool \mathcal{X}_{cand} .

Improvement

- batch acquisition: acquire B design points per iteration
- pre-screening: shrinking the candidate set, leaving only those with high predictive variance
- **1** among the candidate set $\mathcal{X}_{\mathsf{cand}}$, we identify the top K > B points with the highest predictive variance, denoted \mathcal{X}_r^* :

$$\mathcal{X}_{\mathsf{cand}}^{(r)} = \left\{ oldsymbol{x}_1^{(r)}, oldsymbol{x}_2^{(r)}, \dots, oldsymbol{x}_K^{(r)}
ight\},$$

- **2** compute ALC on $\mathcal{X}_{\mathsf{cand}}^{(r)}$.
- \blacksquare select the B points with the highest ALC scores

Algorithm: ALmGP (Part 1: Setup)

Algorithm 1: Active Learning for Manifold Gaussian Process

- 1: **Input:** Initial training dataset $\{x_i, y_i\}_{i=1}^{n_0}$; reference set \mathcal{X}_{ref} and candidate set $\mathcal{X}_{\text{cand}}$; tuning parameters $K, B, \text{Tol}, N_{\max}$; and initial mGP settings.
- 2: Output: Trained mGP model and estimated parameters.
- 3: **Step 0:** Fit the mGP model using the initial training set $\{x_i, y_i\}_{i=1}^{n_0}$.

Algorithm: ALmGP (Part 2: Main Loop)

Algorithm 1: Active Learning for Manifold Gaussian Process (Cont.)

- 4: for $r=1,2,\ldots,\lfloor N_{\max}/B \rfloor$ do
- 5: **Step 1:** Screen candidates: Select the top K points with the highest posterior variance from $\mathcal{X}_{\mathsf{cand}}$.
- 6: **Step 2:** Score candidates: Compute the ALC acquisition score for each screened point.
- 7: **Step 3:** Acquire new data: Select top *B* points with the highest ALC scores and add to the training set.
- 8: **Step 4:** Update model: Re-train or update the mGP model with the expanded training set.
- 9: **Step 5:** Check convergence: If error is below To1, terminate.
- 10: end for

Outline

- 1 Introduction
- 2 EVIGP
 - Gaussian Process Regression
 - Bayesian Approach
 - Energetic Variational Inference
 - Numerical results
- 3 Active Learning Manifold Gaussian Process
 - Manifold Gaussian Process
 - Active Learning Cohn
 - Numerical results

Experimental Setup

- Optimizer: L-BFGS with strong Wolfe line search from PyTorch.
- Stability: Model hyperparameters are squared to ensure positivity.
- **Metric**: Root Mean Square Error (RMSE) on an independent test set.

$$\mathsf{RMSE} = \sqrt{\frac{1}{n_{\mathsf{test}}}} \sum_i (\hat{y}_i - y_i)^2$$

- **Robustness**: Each experiment is repeated 10 times.
- **Baseline**: Performance is compared against random point acquisition.
- Data generation: Latin Hypercube Design

Example 1: Piecewise Trigonometric Function (Setup)

■ Function: A 1D function with three distinct regions and Gaussian noise $\epsilon \sim \mathcal{N}(0, 0.1^2)$.

$$F(x) = \begin{cases} 1.35\cos(12\pi x), & x \in [0, 0.33] \\ 1.35, & x \in [0.33, 0.66] \\ 1.35\cos(6\pi x), & x \in [0.66, 1] \end{cases}$$

- Parameters:
 - Initial data: $n_0 = 10$
 - Budget: $N_{\text{max}} = 20$ (with batch size B = 1)
 - Neural Network: [1-6-2] architecture

ALmGP

Example 1: Piecewise Trigonometric Function (Results)

Figure: Final selected data, model prediction, learned latent space, and RMSE comparison against random sampling. The final average RMSE

Example 2: 2D Deterministic Function (Setup)

■ Function: A 2D function composed of Gaussian PDFs and a linear term, rotated by 45°.

$$f(x_1, x_2) = 1 - \phi(x_2; 3, 0.5^2) - \phi(x_2; -3, 0.5^2) + \frac{x_1}{100}$$

- Parameters:
 - Initial data: $n_0 = 50$
 - Budget: $N_{\text{max}} = 50$ (with batch size B = 1)
 - Neural Network: [2-10-3] architecture

Example 2: 2D Deterministic Function (Results)

Figure: True function heatmap, final prediction heatmap, and RMSE comparison.

The final average RMSE was **0.0152**.

■ **Function**: A function defined on the surface of a 3D unit sphere $(x^2 + y^2 + z^2 = 1)$.

$$f(x, y, z) = \cos(x) + y^2 + e^z$$

- Parameters:
 - Initial data: $n_0 = 50$
 - Budget: $N_{\text{max}} = 100$ (with batch size B = 1)
 - Neural Network: [3-10-2] architecture

Example 3: Function on the 3D Sphere (Results)

Figure: True function on the sphere, final prediction, and RMSE comparison.

The final average RMSE was 6×10^{-3} .

Example 4: 8D Borehole Function (Setup)

- Function: A well-known 8-dimensional benchmark function that models groundwater flow through a borehole.
- Challenge: A complex, high-dimensional, and nonlinear regression problem.
- Parameters:
 - Initial data: $n_0 = 50$
 - Budget: $N_{\rm max} = 150$ (with batch size B = 1)
 - Neural Network: [8-30-4] architecture

Example 4: 8D Borehole Function (Results)

Figure: Test RMSE comparison for the 8D Borehole function.

The final average RMSE was **0.605**.

Discussion & Limitations

This work sought to extend Gaussian Process (GP) regression to complex systems with high dimensionality and scarce data.

- **EVIGP Framework:** We introduced an energetic variational inference (EVI) approach that uses particle-based dynamics for stable posterior approximation and variable selection.
- **ALMGP Framework:** We developed a manifold-based active learning strategy using an autoencoder to perform GP regression in a learned low-dimensional space.

Its limitations

- **EVI Sensitivity:** The EVIGP framework is sensitive to the setting of mean function.
- Manifold Quality: The quality of the learned latent space depends heavily on the autoencoder's stability and expressiveness, which can risk distorting important features.

Conclusion & Future Work

The methods developed in this dissertation make GP modeling more adaptive to structural constraints and more scalable for scientific surrogate modeling. For future research directions:

- For EVI: Future research can explore adaptive kernels, hierarchical priors, and connections to Wasserstein gradient flows to improve flexibility.
- For Active Learning: We can integrate manifold regularization into the autoencoder or develop an end-to-end framework that co-optimizes for uncertainty and geometry.
- **Unified System:** A powerful next step is to combine both contributions into a single system that dynamically evolves its inference and acquisition strategies, unlocking new applications in autonomous experimentation.

Acknowledgements

I would like to express my sincere gratitude to the following individuals and institutions for their invaluable support throughout my Ph.D. journey:

- My Advisors: Dr. Lulu Kang and Dr. Chun Liu, for their exceptional guidance, mentorship, and unwavering support.
- My Committee: Thank you to the members of my dissertation committee for their insightful feedback and encouragement.
- **IIT**, **OSG**: For providing the resourcesthat made this research possible
- Collaborators & Colleagues: A special thanks to my peers and collaborators for the stimulating discussions and support.
- Family & Friends: Finally, I am deeply grateful to my family and friends for their constant love and encouragement.

Thank You

Questions?