Chapter 1 Introduction

Ren Ping Liu

renping.liu@uts.edu.au

adapted from textbook slides by JFK/KWR

26 March 2024

Computer Networking: A Top-Down Approach

8th edition, Global Edition Jim Kurose, Keith Ross Copyright © 2022 Pearson Education Ltd

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge: hosts, access network, physical media
- 1.3 Network core: packet/circuit switching, internet structure
- 1.4 Performance: loss, delay, throughput
- 1.5 Protocol layers, service models
- 1.6 Network Under Attack
- 1.7 History

Queueing Dealy

packets queue in router buffers

- packets queue, wait for turn.
 - e.g. when blue packet arrives, it finds 2.5 packets in front of it \rightarrow queueing delay

Blue packet - Queueing Delay = 2.5 * L/R

Blue packet – total Delay = 2.5*L/R + L/R ... more to come ...

Packet delay: four sources

$$D_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

d_{proc} : nodal processing

- check bit errors
- determine output link
- typically < msec</p>

d_{queue} : queueing delay

- time waiting at output link for transmission
- depends on congestion level of router
- $d_{\text{queue}} = 2.5 * L/R$

Packet delay: four sources

$$D_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

very different

d_{trans} : transmission delay:

- L: packet length (bits)
- R: link transmission rate (bps)

$$d_{trans} = L/R$$

$$d_{trans} \text{ and } d_{prop}$$

 d_{prop} : propagation delay:

- d: length of physical link
- s: propagation speed (~2x10⁸ m/sec)

$$d_{\text{prop}} = d/s$$

^{*} Check out the online interactive exercises: http://gaia.cs.umass.edu/kurose ross

Conveyor belt analogy

A worker is loading a batch of 10 boxes onto the conveyer belt.

- The worker takes 1 second to load one box onto belt (loading rate 1b/s)
- conveyor belt move forward (propagation rate) at 10m/s
- box ~ bit; 10box batch ~ packet
- Q: How long until the batch reaches the other end?

- time to load entire batch onto the belt d_{trans} = 10b/(1b/s) = 10s
- time for boxes to "propagate" to the other end: $d_{prop} = 1000 m/(10 m/s) = 100 s$

• A:
$$d_{end\text{-}to\text{-}end} = d_{trans} + d_{prop}$$

= $10 + 100$
= $110s$

Conveyor belt analogy

A worker is loading a batch of 10 boxes onto the conveyer belt.

- at time $t=d_{trans}=10s$, where is the last box/bit?
 - Answer: the last box is being loaded onto the belt/link
- at time $t=d_{trans}=10s$, where is the first box/bit?
 - Answer: the first box hasn't reached the end (on the belt/link)
- at time $t=d_{prop}=100s$, where is the first box/bit?
 - Answer: the first box is just reaching the end

Conveyor belt analogy (more)

- suppose the belt length is 50m now
- at time $t=d_{trans}=10s$, where is the last box/bit?
 - Answer: the last box is being loaded onto the belt/link
- at time $t=d_{trans}=10s$, where is the first box/bit?
 - Answer: the fist box has reached the destination.

Conveyor belt analogy (more)

- suppose the belt length is 50m now
- at time $t=d_{prop}=5s$, where is the first box/bit?
 - Answer: the fist box is just reaching the destination.
- at time $t=d_{prop}=5s$, where is the last box/bit?
 - Answer: the last box is still in the source, not loaded

Packet delay: four sources

Nodal delay: • $d_{proc} = 2ms$

•
$$d_{proc} = 2ms$$

•
$$d_{\text{queue}} = 2.5 * L/R$$

•
$$d_{trans} = L/R$$

•
$$d_{prop} = d/s$$

$$D_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} = 2ms + 2.5 * L/R + L/R + d/s$$

"Real" Internet delays and routes

- what do "real" Internet delay & loss look like?
- traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination (with time-to-live field value of i)
 - router i will return packets to sender
 - sender measures time interval between transmission and reply

Real Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

3 delay measurements from gaia.cs.umass.edu to cs-gw.cs.umass.edu 1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms 4 delay measurements to border1-rt-fa5-1-0.gw.umass.edu 3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms 4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms 5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms trans-oceanic link | 100 ks like delays | decrease! Why? | ab | 124 ms | 128 ms | 128 ms | 128 ms | 128 ms | 136 ms | 128 ms | 136 ms | 128 ms | 136 9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms 16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms 19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms * Do some traceroutes from exotic countries at www.traceroute.org

Introduction: 1-12

Packet queueing delay (revisited)

- R: link bandwidth (bps)
- L: packet length (Bytes → bits)
- a: average packet arrival rate (packet/s)
- Arrival rate: La (bps)
- Traffic intensity: La/R

- La/R ~ 0: avg. queueing delay small
- $La/R \rightarrow 1$: avg. queueing delay large
- La/R > 1: more "work" arriving is more than can be serviced - average delay infinite!

 $La/R \rightarrow 1$

Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all

^{*} Check out the Java applet for an interactive animation on queuing and loss

Throughput

- throughput: rate (bits/time unit) at which bits are being sent from sender to receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Throughput

 $R_s < R_c$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput: network scenario

10 connections (fairly) share backbone bottleneck link *R* bits/sec

- per-connection endend throughput: $min(R_c, R_s, R/10)$
- in practice: R_c or R_s is often bottleneck

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/

Mid-break

■ Q & A

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge: hosts, access network, physical media
- 1.3 Network core: packet/circuit switching, internet structure
- 1.4 Performance: loss, delay, throughput
- 1.5 Protocol layers, service models
- 1.6 Network Under Attack
- 1.7 History

Recap Internet Intro from Week1

How do they operate?

Networks are complex, with many "pieces":

- hosts: clients / servers
- switches/routers
- links of various media
- network types
- packet transmission

Putting pieces together

Structure: network of networks

Analogy: Australia Post

letter writing letter reading

postman pick up postman delivery

distribute distribute

truck delivery truck delivery

airplane / ship transport

a series of steps, involving services at different parts/layers

Layering of Australia Post

you&friend	letter writing			letter reading
postman	postman pick up			postman delivery
postoffice	distribute			distribute
trucking	truck delivery			truck delivery
flight/ship		air transport	ship transport	

layers: each layer implements a service

Focus on one job that you are best at!

- via its own internal-layer actions •••
- relying on services provided by layer below

Internet protocol stack

- Layer 5. application: supporting network applications
 - IMAP, SMTP, HTTP
- Layer 4. transport: process-process data transfer
 - TCP, UDP
- Layer 3. network: routing of datagrams from source to destination
 - IP, routing protocols
- Layer2. link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), PPP
- Layer1. physical: bits "on the wire"

- 5. application
- 4. transport
- 3. network
- 2. data link
- 1. physical

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change in layer's service *implementation*: transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system
- Focus on what you do best!

Protocol layers Company products

5.application

Facebook, Netflix, WeChat, YouTube

MS Windows, MacOS, Google Android

Telstra, Optus, Cisco, Juniper

2. link

CommScope, Corning, Inc. Fujikura

Focus on what you do best!

Chapter 1: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge: hosts, access network, physical media
- 1.3 Network core: packet/circuit switching, internet structure
- 1.4 Performance: loss, delay, throughput
- 1.5 Protocol layers, service models
- 1.6 Network Under Attack
- 1.7 History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packet-switching
- 1964: Baran packet-switching in military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demo
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program

THE ARPA NETWORK

Introduction: 1-28

1972-1980: Internetworking, new and proprietary nets

- 1970: ALOHAnet satellite network in Hawaii
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- late70's: proprietary architectures: DECnet, SNA, XNA
- late 70's: switching fixed length packets (ATM precursor)
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best-effort service model
- stateless routing
- decentralized control

define today's Internet architecture

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for nameto-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

- new national networks: CSnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks

NSFNET T1 Network 1991

Introduction: 1-30

1990, 2000s: commercialization, the Web, new applications

- early 1990s: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990s: commercialization of the Web

late 1990s – 2000s:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

2005-present: more new applications, Internet is "everywhere"

- ~18B devices attached to Internet (2017)
 - rise of smartphones (iPhone: 2007)
- aggressive deployment of broadband access
- increasing ubiquity of high-speed wireless access: 4G/5G, WiFi
- emergence of online social networks:
- Facebook: ~ 2.5 billion users
- service providers (Google, FB, Microsoft) create their own networks
 - bypass commercial Internet to connect "close" to end user, providing "instantaneous" access to search, video content, ...
- enterprises run their services in "cloud" (e.g., Amazon Web Services, Microsoft Azure)

Introduction: 1-32

Chapter 1: summary

We've covered a "ton" of material!

- Internet overview
- what's a protocol?
- network edge, access network, core
 - packet-switching versus circuitswitching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- history

You now have:

- context, overview, vocabulary, "feel" of networking
- more depth, detail, and fun to follow!

Assignment 1. Internet Introduction

- Earn 5% in NetFun
 - Based on weeks 1 and 2 learning materials
 - Please answer questions in specified format strictly!
- Timing
 - No time limit, has due date.
 - Submit before the due date: Sunday, 3rd March
 - NO late submission accepted!

Lecture done

