

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

направление подготовки 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № __4__

Название: <u>Исследование способов организации оперативной памяти и</u> взаимодействия процессов

Дисциплина: Операционные системы

Студент	ИУ6-53Б			В.К. Залыгин
	(Группа)	·	(Подпись, дата)	(И.О. Фамилия)
Преподаватель				В.Ю. Мельников
1				А.М. Суровов
			(Подпись, дата)	(И.О. Фамилия)

ВВЕДЕНИЕ

Цель лабораторной работы

Цель данной работы — получение теоретических и практических сведений об управлении процессами, потоками и оперативной памятью в UNIX-подобных системах и в Linux в частности.

Задание

- Открыть в текстовом браузере некую страницу и перевести его в фоновый режим
 - Запустить ещё два экземпляра текстового браузера в фоновом режиме
 - Найти процесс, максимально нагружающий процессор
 - Вывести список процессов текущего пользователя
 - «Убить» первый процесс браузера в котором открыта 1 страница
 - Вывести список всех процессов всех пользователей
 - Просмотреть список процессов постранично
- Отобрать из вывода команды ps строку, соответствующую процессу «dbus-daemon», определить, где лежит её выполняемый файл и с какими параметрами он запущен
- Записать в файл с именем, содержащим текущее время, строку «-----»и список процессов
- Выполнить команду в фоновом режиме с отсрочкой запуска на 1 минуту. Продемонстрировать, что команда выполнилась именно через минуту.
- Отобрать из одного из сформированных файлов строки, относящиеся к одному из процессов.
- Вывести результаты работы произвольной команды в один файл, а сообщения об ошибках в другой. Продемонстрировать правильность работы.
- Выполнить произвольную команду с ограничением использования процессорного времени 300 секунд и выводом результатов и сообщений об ошибках в один файл.
- Настроить cron на выполнение команды ежедневно в заданное время. Продемонстрировать правильность работы.

Выполнение

Сначала откроем в консольном браузере сайт и уведем его в фон.

Рисунок 1 — Результат перевода браузера в фоновый режим Откроем еще две страницы и уведем их в фон.

1747 tty1	T	0:00 w3m google.com
1754 tty1	T	0:00 w3m ya.ru
1755 tty1	T	0:00 w3m yandex.ru

Рисунок 2 — Еще два запущенных в фоне процесса Используем утилиту top и посмотрим самый ресурсозатратный процесс.

				, 1 user unning,							
:CPU(s	s): (sy, Ö,O							
ків Ме	em:	1003252	tota	1, 1582	20 used	, 84	150	932 fre	e,	25716 buff	ers
KiB Su	Jap:	1046524	tota	.1,	0 used	, 104	6	524 fre	ee,	60512 cacl	ned
PID	USER	PR	ΝI	VIRT	RES	SHR	S	%CPU	×MEM	TIME+	COMMAND
1759	user	20	0	13064	2660	2228	R	0,660	0,265	0:00.96	top
1745	root	20	0	Θ	Θ	Θ	Ι	0,330	0,000	0:00.32	kworker/0+
1	root	20	0	10816	1556	1420	S	0,000	0,155	0:01.00	init
2	root	20	0	0	0	0	S	0,000	0,000		kthreadd
3	root	0	-20	0	Θ	Θ	Ι	0,000	0,000	0:00.00	rcu_gp
4	root	0	-20	0	Θ	0	Ι	0,000	0,000	0:00.00	rcu_par_gp
6	root		-20	Θ	Θ	0		0,000			kworker/0+
7	root	20	0	0	Θ	0	Ι	0,000	0,000		kworker∕u+
8	root		-20	Θ	Θ			0,000			mm_percpu+
9	root	20	Θ	Θ	Θ	0	S	0,000	0,000	0:00.44	ksoftirqd+
10	root	20	0	0	0	0		0,000			rcu_preem+
11	root	20	0	Θ	Θ	0	Ι	0,000	0,000	0:00.00	rcu_sched
12	root	20	0	Θ	Θ	0	Ι	0,000	0,000		
13	root	rt	0	0	Θ	0	S	0,000	0,000	0:00.19	migration+
15	root	20	0	Θ	Θ	0	S	0,000	0,000	0:00.00	cpuhp/0
16	root	20	0	0	0			0,000		0:00.00	kdevtmpfs
17	root	0	-20	Θ	Θ	0	Ι	0,000	0,000	0:00.00	netns
18	root	20	0	0	Θ	0	S	0,000	0,000	0:00.00	rcu_tasks+

Рисунок 3 – Больше всего ресурсов СРU потребляет программа top

С помощью команды ps а посмотрим все процессы и найдем процессы браузеров. После чего завершим один из них принудительно.

```
user@zalygin ~1$ ps a ¦ grep w3m
1747 tty1 T 0:00 w3m google.com
1754 tty1 T 0:00 w3m ya.ru
                           0:00 w3m yandex.ru
                  T
                           0:00 grep --color=auto w3m
user@zalygin ~1$ kill 1747
user@zalygin ~1$ ps a | grep w3m
                  T
T
T
                           0:00 w3m google.com
0:00 w3m ya.ru
1754 tty1
1755 tty1
                           0:00 w3m yandex.ru
                  S+
                           0:00 \text{ grep } --\text{color} = \text{auto } \text{w3m}
user@zalygin ~1$ kill -9 1747
                               w3m google.com
user@zalygin ~1$ ps a ¦ grep w3m
                      0:00 w3m ya.ru
0:00 w3m yandex.ru
                  T
                  Т
                  S+
                           0:00 grep --color=auto w3m
```

Рисунок 4 — Принудительное завершение процесса первого браузера Вывод всех процессов пользователей командой ps a.

root	1108	0.0	0.8	430640	8832	?	Ss		10:58	0:00	/usr/sbin/Modem
polkitd	1140	0.0	1.6		16528	?	S	l	10:58	0:00	/usr/libexec/po
root	1179	0.0	1.3	373128	13120	?	Ss	s 1	10:58	0:00	/usr/sbin/Netwo
root	1228	0.0	0.0	Θ	0	?	I	(10:58	0:00	[ipv6_addrconf]
root	1234	0.0	0.3	45340	3788	?	Ss	3	10:58	0:00	/usr/libexec/bl
syslogd	1369	0.0	0.1	12644	1572	?	Ss	3	10:58	0:00	/sbin/syslogd -
klogd	1420	0.0	0.1	6340	1584	?	Ss	3	10:58	0:00	/sbin/klogd -c
root	1525	0.0	0.1	19320	1956	?	12	ls	10:58	0:00	/usr/sbin/crond
_avahi	1579	0.0	0.3	51772	3536	?	S		10:58	0:00	avahi-daemon: r
_avahi	1580	0.0	0.0	51644	368	?	S		10:58	0:00	avahi-daemon: c
root	1631	0.0	0.0	49076	608	?	Ss	3	10:58	0:00	/usr/sbin/sshd
root	1643	0.0	0.3	72292	3500	tty1	Ss	3	10:58	0:00	/bin/login
root	1644	0.0	0.0	4200	636	tty2	Ss	3 +	10:58	0:00	/sbin/mingetty
root	1645	0.0	0.0	4200	736	tty3	Ss	: +	10:58	0:00	/sbin/mingetty
root	1646	0.0	0.0	4200	740	tty4	Ss	3+	10:58	0:00	/sbin/mingetty
root	1647	0.0	0.0	4200	640	tty5	Ss	3 +	10:58	0:00	/sbin/mingetty
root	1648	0.0	0.0	4200	680	tty6	Ss	: +	10:58	0:00	/sbin/mingetty
user	1669	0.0	0.3	15716	3444	tty1	S		10:58	0:01	-bash
root	1745	0.1	0.0	Θ	0	?	I		12:15	0:00	[kworker/0:1-ev
user	1754	0.0	0.5	50472	5720	tty1	T		12:17	0:00	w3m ya.ru
user	1755	0.0	0.5	50472	5684	tty1	T		12:18	0:00	w3m yandex.ru
root	1762	0.1	0.0	0	0	?	I		12:20		
root	1771	0.1	0.0	0	0	?	I		12:25	0:00	[kworker/0:0-ev
user	1772	0.0	0.2	10816	2420	tty1	R-	F	12:26	0:00	ps axu
[user@zal	ygin ~	1\$ _									•

Рисунок 5 – Вывод всех процессов всех пользователей

Так как список выше, чем размер терминала, удобно будет использовать команду последовательной выдачи строк more.

HORD	D.7.D.	0711	МПМ	ПОП	700	mmili	OMAR	OMADM	m r Ma	COMMAND
USER		×CPU		VSZ		TTY	STAT			COMMAND
root	1	0.0	0.1	10816	1556	?	Ss	10:58	0:01	init [4]
root	2	0.0	0.0	0	0	?	S	10:58		[kthreadd]
root	3	0.0	0.0	0	Θ	?	I <	10:58	0:00	[rcu_gp]
root	4	0.0	0.0	Θ	0	?	I <	10:58		
root	6	0.0	$\Theta.\Theta$	Θ	0	?	I <	10:58	0:00	[kworker/0:0H-k
р]										
root	7	0.0	0.0	Θ	0	?	I	10:58	0:00	[kworker/u2:0-s
c]										
root	8	0.0	0.0	0	0	?	I <	10:58	0:00	[mm_percpu_wq]
root	9	0.0	0.0	0	0	?	S	10:58	0:00	[ksoftirqd/0]
root	10	0.0	0.0	Θ	0	?	I	10:58	0:00	[rcu_preempt]
root	11	0.0	0.0	0	0	?	I	10:58	0:00	[rcu_sched]
root	12	0.0	0.0	0	0	?	I	10:58	0:00	[rcu_bh]
root	13	0.0	0.0	0	0	?	S	10:58	0:00	[migration/0]
root	15	0.0	0.0	Θ	0	?	S	10:58	0:00	[cpuhp/0]
root	16	0.0	0.0	0	0	?	S	10:58	0:00	[kdevtmpfs]
root	17	0.0	0.0	Θ	0	?	I <	10:58	0:00	[netns]
root	18	0.0	0.0	Θ	0	?	S	10:58	0:00	[rcu_tasks_kthr
e]										
root	19	0.0	0.0	0	0	?	S	10:58	0:00	[kauditd]
root	20	0.0	0.0	0	0	?	S	10:58	0:00	[khungtaskd]
root	21	0.0	0.0	0	0	?	S	10:58	0:00	

Рисунок 6 – Использование утилиты more для последовательной выдачи данных Выведем строку, относящуюся к процессу dbus-daemon

```
[user@zalygin ~1$ ps axu | grep 'dbus-daemon'
message+ 876 0.0 0.3 49700 3244 ? Ss 10:58 0:00 /bin/dbus-daemo
n --system
```

Рисунок 7 – Строка вывода ps, соответствующая процессу dbus-daemon Чтобы создать файл с датой и требуемой строкой, можно использовать группу команд.

```
Luser@zalygin ~1$ export NOW=$(date '+xH-xM-xS') && echo $NOW && touch $NOW && echo '-----' >> $NOW && ps >> $NOW 
12-42-35 
Luser@zalygin ~1$ cat 12-42-35 
------ PID TTY TIME CMD 
1669 tty1 00:00:03 bash 
1754 tty1 00:00:00 w3m 
1755 tty1 00:00:00 w3m 
1840 tty1 00:00:00 ps
```

Рисунок 8 — Создание файла с текущем временем, запись в него строки и списка процессов

Чтобы отсрочить команду на минуту, можно ее предварять командой date.

```
[user@zalygin ~]$ (sleep 60 && date) & date
[5] 1843
Fri Oct 11 12:43:42 UTC 2024
[user@zalygin ~]$ Fri Oct 11 12:44:42 UTC 2024
[5] Done ( sleep 60 && date )
```

Рисунок 9 – Отсрочка команды на 1 минуту

Используем grep, чтобы вывести строки процессов, относящиеся к браузеру.

```
[user@zalygin ~ ]$ cat 12-42-35

PID TTY TIME CMD

1669 tty1 00:00:03 bash

1754 tty1 00:00:00 w3m

1755 tty1 00:00:00 ps

[user@zalygin ~ ]$ cat 12-42-35 | grep w3m

1754 tty1 00:00:00 w3m

1754 tty1 00:00:00 w3m

1755 tty1 00:00:00 w3m

[user@zalygin ~ ]$
```

Рисунок 10 – Фильтрация строк, относящихся только к утилите w3m

Чтобы перенаправить потоки вывода и ошибок, нужно использовать специальные операторы >, 2>.

```
[user@zalygin ~1$ (echo "stdout" && echo "stderr" 1>&2 ) >out 2>err
[user@zalygin ~1$ cat out
stdout
[user@zalygin ~1$ cat err
stderr
stderr
[user@zalygin ~1$ cat err
```

Рисунок 11 – Вывод потока вывода и потока ошибок в раздельные файлы

Для выполнения операции с ограничением по времени работы, можно использовать команду timeout.

```
[root@zalygin ~ ]# bash -c 'timeout -s 9 300 apt-get update' >out 2>&1
[root@zalygin ~ ]# cat out

Get:1 http://ftp.altlinux.org p8/branch/x86_64 release [1091B]

Get:2 http://ftp.altlinux.org p8/branch/x86_64-i586 release [537B]

Get:3 http://ftp.altlinux.org p8/branch/noarch release [885B]

Fetched 2513B in 1s (1506B/s)

Hit http://ftp.altlinux.org p8/branch/x86_64/classic pkglist

Hit http://ftp.altlinux.org p8/branch/x86_64/classic release

Hit http://ftp.altlinux.org p8/branch/x86_64-i586/classic pkglist

Hit http://ftp.altlinux.org p8/branch/noarch/classic pkglist

Hit http://ftp.altlinux.org p8/branch/noarch/classic pkglist

Hit http://ftp.altlinux.org p8/branch/noarch/classic release

Reading Package Lists...

Building Dependency Tree...

[root@zalygin ~ ]#
```

Рисунок 12 — Выполнение операции с ограничением по времени работы Создаем задание, пишущее в файл текущую дату ежедневно.

Рисунок 13 – Установка команды с запуском ежедневно в 13:10 После смотрим на содержимое файла.

```
[root@zalygin ~1# cat /tmp/crondate
Fri Oct 11 13:10:01 UTC 2024
[root@zalygin ~1# _
```

Рисунок 14 – Результат выполнения задания

ЗАКЛЮЧЕНИЕ

В результате выполнения работы были получены теоретические и практические сведения об управлении процессами, потоками и оперативной памятью в UNIX-подобных системах и в Linux в частности.