

Exercise 5

Table 5.1

		Typical Parameter Value		
Parameter Symbol	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold	0.7	-0.8	V
	voltage(V _{BS} =0)			
K	Transconductance	134	50	μ Α /V²
	parameter(in			
	saturation)			
γ	Bulk threshold	0.45	0.4	$V^{1/2}$
	parameter			
λ	Channel length	0.1	0.2	V-1
	modulation parameter			
$2 \varphi_F $	Surface potential at	0.9	0.8	V
	strong inversion			

 $[*]K = \mu C_{OX}$

4.1 Calculate the output resistance and the minimum output voltage, while maintaining all devices in saturation, for the circuits shown in Figure 5.1. Assume that i_{OUT} is actually $10\mu A$. Use Table 5.1 for device model information. $V_{bs}=0$ V.

Fig 5.1

Answer:

$$V_{GS3} = V_{GS4} = \left(\sqrt{2 \times \frac{L}{KW} I_D} + V_T\right) = 0.17 + 0.7 V = 0.87 \text{ V}.$$

$$g_{m2} = g_{m4} = \sqrt{2 \times \frac{KW}{L} I_D} = 115.8 \times 10^{-6}$$

$$r_{out} = r_{ds1} + r_{ds2} + g_{m2}r_{ds1}r_{ds2}.$$

$$r_{ds1} = r_{ds2} = \frac{1}{\lambda I_D} = 1 \times 10^6$$

 $r_{out} = 117.8 \times 10^6$
 $v_{out} = V_{GS3} + V_{GS4} - V_{T2} = 1.04 V$

5.2 A reference circuit is shown in figure 5.2, assume that $(W/L)_1=(W/L)_2=(W/L)_3=4$, $(W/L)_4=1$, please calculate the symbolic expression of V_{REF} . (已知各管处于饱和区且各管阈值电压为 Vt)

Figure 5.2

Answer:

$$\begin{split} V_{REF} &= V_{GS1} + V_{GS3} - V_{GS4} \\ V_{REF} &= V_{ON1} + V_{T1} + V_{ON3} + V_{T3} - V_{ON4} - V_{T4} \\ V_{T3} &= V_{T4} \\ V_{ON4} &= 2 \times V_{ON1} = 2 \times V_{ON3} \\ V_{REF} &= V_{T1} \end{split}$$

- 5.3 As the circuits shown in Figure 5.3, I_{REF} =0.3mA and γ =0. Using the model parameters in Table 5.1.
- (a) Calculate the voltage V_b when $V_X=V_Y$.
- (b) If V_b is 100mV smaller than the value in (a), calculate the deviation of I_{out} from 300 μ A.

Figure 5.3

Answer:

(a)
$$V_{GS1} = \left(\sqrt{2 \times \frac{L}{KW}} I_{REF} + V_T\right) = 0.24 + 0.7 = 0.94 \ V.V_b = 2 \times V_{GS1} = 1.88 \ V.$$

(b)
$$\lambda(L = 0.5u) = 2 \times \lambda(L = 1u) = 0.2V^{-1}$$

$$I_{out} = I_{REF} \frac{1 + \lambda (V_{GS1} + \Delta V_b)}{1 + \lambda V_{GS1}} \, , \; \; \Delta \, I_{out} = I_{REF} \frac{\lambda \Delta V_b}{1 + \lambda V_{GS1}} = -5.05 \times 10^{-6} \, . \label{eq:Iout}$$

5.4 Design M3 and M4 of Figure 5.4(a) so that the output characteristics are identical to the circuit shown in Figure 5.4(b). It is desired that i_{OUT} is ideally 10uA.

Figure 5.4

Answer:

(a)
$$V_{GS1} = V_{GS3}, V_{GS2} = V_{GS4}, I_3 = I_4 = 5uA, I_{out} = 10uA$$
, we must have $(\frac{W}{L})_{1} = 2 \times (\frac{W}{L})_{3}, (\frac{W}{L})_{3} = 2/1.$

In (b)
$$i_3 = i_4 = 10uA = i_1$$
, $(\frac{W}{L})_4 \times V_{Dsat4}^2 = (\frac{W}{L})_1 \times V_{Dsat1}^2$, $V_{Dsat4} = 2 \times V_{Dsat1}$

$$V_{GS4} = V_T + V_{Dsat4}, V_{GS2} = V_T + V_{Dsat4}, V_{out} > V_{GS2} - V_T = V_{Dsat4} = 2 \times V_{Dsat1}$$

In (a)
$$I_3 = I_4 = 5uA = 2 \times I_1$$
, $(\frac{W}{L})_4 \times V_{Dsat4}^2 = \frac{1}{2} (\frac{W}{L})_1 \times V_{Dsat1}^2$

because,
$$\frac{V_{Dsat4}}{V_{Dsat1}} = \sqrt{\frac{1}{2} \times \left(\frac{W}{L}\right)_{1} / \left(\frac{W}{L}\right)_{4}} = 2$$
, $\left(\frac{W}{L}\right)_{4} = \frac{1}{8} \times \left(\frac{W}{L}\right)_{1} = 1/2$