# Mascaret-Tracer-Courlis Reference Manual



## Contents

| 1    | Detail list of keywords                                   | 15 |
|------|-----------------------------------------------------------|----|
| 1.1  | ABSCISSE APPORT                                           | 15 |
| 1.2  | ABSCISSE DE DEBUT DE ZONE                                 | 15 |
| 1.3  | ABSCISSE DE FIN DE ZONE                                   | 15 |
| 1.4  | ABSCISSE DE L'AFFLUENT DU CONFLUENT X                     | 16 |
| 1.5  | ABSCISSE DE LA PERTE DE CHARGE SINGULIERE                 | 16 |
| 1.6  | ABSCISSE DEBUT                                            | 16 |
| 1.7  | ABSCISSE DEVERSOIRS                                       | 16 |
| 1.8  | ABSCISSE DU BARRAGE PRINCIPAL                             | 16 |
| 1.9  | ABSCISSE FIN                                              | 17 |
| 1.10 | ABSCISSES DES SECTIONS DE CALCUL                          | 17 |
| 1.11 | ABSCISSES EN TRAVERS CRETE                                | 17 |
| 1.12 | ABSCISSES SEUILS                                          | 17 |
| 1.13 | ABSOLUTE CLIP EVOLUTION                                   | 17 |
| 1.14 | ANGLE DE L'AFFLUENT DU CONFLUENT X                        | 18 |
| 1.15 | ATTENUATION OF CONVECTION                                 | 18 |
| 1.16 | AUTO CALIBRATION COEFFICIENTS IN FLOODPLAIN ZONES         | 18 |
| 1.17 | AUTO CALIBRATION COEFFICIENTS IN MAIN CHANNEL ZONES       | 18 |
| 1.18 | AUTO CALIBRATION CONVERGENCE TOLERANCE                    | 18 |
| 1.19 | AUTO CALIBRATION DOWNSTREAM ELEVATION FOR FLOOD X         | 19 |
| 1.20 | AUTO CALIBRATION FLOOD MEASUREMENTS ABSCISSAE FOR FLOOD X | 19 |
| 1.21 | AUTO CALIBRATION INFLOW FOR x FLOW                        | 19 |
| 1.22 | AUTO CALIBRATION INFLOWS ABSCISSAE FOR FLOOD X            | 19 |
| 1.23 | AUTO CALIBRATION INFLOWS VALUES FOR FLOOD X               | 19 |
| 1.24 | AUTO CALIBRATION LISTING FILE                             | 20 |
| 1.25 | AUTO CALIBRATION LOWER BOUNDS FLOODPLAIN ZONES COEF       | 20 |

| 1.26 | AUTO CALIBRATION LOWER BOUNDS MAIN CHANNEL ZONES COEF       | 20         |
|------|-------------------------------------------------------------|------------|
| 1.27 | AUTO CALIBRATION MAXIMUM NUMBER OF ITERATIONS               | 20         |
| 1.28 | AUTO CALIBRATION MEASUREMENTS WEIGHTING COEFFICIENTS FOR FL | .OOD<br>20 |
| 1.29 | AUTO CALIBRATION NUMBER OF AREAS                            | 21         |
| 1.30 | AUTO CALIBRATION NUMBER OF FLOODS                           | 21         |
| 1.31 | AUTO CALIBRATION NUMBER OF INFLOWS FOR FLOOD X              | 21         |
| 1.32 | AUTO CALIBRATION NUMBER OF MEASUREMENTS FOR FLOOD x         | 21         |
| 1.33 | AUTO CALIBRATION RESULTS FILE                               | 21         |
| 1.34 | AUTO CALIBRATION SELECTED CHANNEL                           | 22         |
| 1.35 | AUTO CALIBRATION UPPER BOUNDS FLOODPLAIN ZONES COEF         | 22         |
| 1.36 | AUTO CALIBRATION UPPER BOUNDS MAIN CHANNEL ZONES COEF       | 22         |
| 1.37 | AUTO CALIBRATION ZONES DOWNSTREAM ABSCISSAE                 | 22         |
| 1.38 | AUTO CALIBRATION ZONES UPSTREAM ABSCISSAE                   | 22         |
| 1.39 | AUTOMATIC HEADLOSS AT JUNCTIONS                             | 23         |
| 1.40 | AUTOMATIC HEADLOSSES TRANSCRITICAL KERNEL                   | 23         |
| 1.41 | BEDLOAD OPTION                                              | 23         |
| 1.42 | BRANCHE NUMERO                                              | 23         |
| 1.43 | BRANCHES DES SECTIONS DE CALCUL                             | 23         |
| 1.44 | CALCULATION FOR VALIDATION OF THE CODE                      | 24         |
| 1.45 | CALCULATION KERNEL                                          | 24         |
| 1.46 | CALCULATION WITH SAND                                       | 24         |
| 1.47 | CASIERS COTE INITIALE                                       | 24         |
| 1.48 | CASIERS FICHIER GEOMETRIE                                   | 24         |
| 1.49 | CASIERS NOMBRE DE COTES DE PLANIMETRAGE                     | 25         |
| 1.50 | CASIERS OPTION DE CALCUL                                    | 25         |
| 1.51 | CASIERS OPTION DE PLANIMETRAGE                              | 25         |
| 1.52 | CASIERS PAS DE PLANIMETRAGE                                 | 25         |
| 1.53 | CHECKPOINT ABSCISSA                                         | 25         |
| 1.54 | CHEKPOINT REACH                                             | 26         |
| 1.55 | CLIP EVOLUTION                                              | 26         |
| 1.56 | CLIPPING OPTION                                             | 26         |
| 1.57 | CODE VERSION                                                | 26         |
| 1.58 | COEFF DEBIT DEVERSOIRS                                      | 26         |
| 1.59 | COEFF DEBIT SEUILS                                          | 27         |
| 1.60 | COEFFICIENT DE LA PERTE DE CHARGE SINGULIERE                | 27         |

| 1.61 | COMPUTATION CONTINUED                                | 27 |
|------|------------------------------------------------------|----|
| 1.62 | COMPUTATION PRINTOUTS                                | 27 |
| 1.63 | COMPUTATION TITLE                                    | 27 |
| 1.64 | CONCENTRATION LAW x CONCENTRATION                    | 28 |
| 1.65 | CONCENTRATION LAW x FILE                             | 28 |
| 1.66 | CONCENTRATION LAW x INPUT                            | 28 |
| 1.67 | CONCENTRATION LAW x NAME                             | 28 |
| 1.68 | CONCENTRATION LAW x NUMBER OF POINTS                 | 28 |
| 1.69 | CONCENTRATION LAW x TIME                             | 29 |
| 1.70 | CONCENTRATION LAW x TIME UNIT                        | 29 |
| 1.71 | CONCENTRATIONS PRINTOUTS INTO LISTING                | 29 |
| 1.72 | CONTROL CELL DEFINITION FOR BEDLOAD                  | 29 |
| 1.73 | CONVECTION FINITE VOLUMES SCHEME PARAMETER W         | 29 |
| 1.74 | CONVECTION OPTION FOR TRACERS                        | 30 |
| 1.75 | COTE CRETE DEVERSOIRS                                | 30 |
| 1.76 | COTE DE CRETE DU BARRAGE PRINCIPAL                   | 30 |
| 1.77 | COTES CRETES                                         | 30 |
| 1.78 | COTES CRETES SEUILS                                  | 30 |
| 1.79 | COTES MOYENNES CRETES                                | 31 |
| 1.80 | COTES RUPTURES SEUILS                                | 31 |
| 1.81 | COUPLING FREQUENCY BETWEEN HYDRAULIC AND TRACER      | 31 |
| 1.82 | COURANT NUMBER                                       | 31 |
| 1.83 | COURLIS CONVECTION FINITE VOLUMES SCHEME ORDER       | 31 |
| 1.84 | COURLIS CONVECTION FINITE VOLUMES SCHEME PARAMETER W | 32 |
| 1.85 | COURLIS CONVECTION OPTION FOR TRACERS                | 32 |
| 1.86 | COURLIS DICTIONARY                                   | 32 |
| 1.87 | COURLIS GEOMETRY FILE                                | 32 |
| 1.88 | COURLIS INITIAL CONCENTRATIONS INPUT                 | 32 |
| 1.89 | COURLIS INITIAL CONDITIONS FILE                      | 33 |
| 1.90 | COURLIS INTIAL CONDITIONS NUMBER OF POINTS           | 33 |
| 1.91 | COURLIS NUMBER OF TRACERS                            | 33 |
| 1.92 | COURLIS OPTION                                       | 33 |
| 1.93 | COURLIS TRACERS CONVECTION                           | 33 |
| 1.94 | CROSS SECTION LAYOUT                                 | 34 |
| 1.95 | CROSS SECTION RESULTS FILE                           | 34 |
| 1.96 | D16                                                  | 34 |

| 1.97  | D84                                        | 34 |
|-------|--------------------------------------------|----|
| 1.98  | DEBUG BEDLOAD                              | 34 |
| 1.99  | DICTIONARY                                 | 35 |
| 1.100 | DIFFUSION COEFFICIENT 1 FOR TRACERS        | 35 |
| 1.101 | DIFFUSION COEFFICIENT 2 FOR TRACERS        | 35 |
| 1.102 | DRY ZONE DOWNSTREAM ABSCISSA               | 35 |
| 1.103 | DRY ZONE REACH                             | 35 |
| 1.104 | DRY ZONE UPSTREAM ABSCISSA                 | 36 |
| 1.105 | EPAISSEURS SEUILS                          | 36 |
| 1.106 | EXTREMITE NUMERO                           | 36 |
| 1.107 | FICHIER DE GEOMETRIE                       | 36 |
| 1.108 | FILE FOR IMPOSED ELEVATIONS FOR EROSION    | 36 |
| 1.109 | FIRST TIME STEP TO SAVE                    | 37 |
| 1.110 | FLOOD WAVE CALCULATION                     | 37 |
| 1.111 | FLOODPLAIN COEFFICIENT                     | 37 |
| 1.112 | FLOODPLAIN LEFT LIMIT                      | 37 |
| 1.113 | FLOODPLAIN RIGHT LIMIT                     | 37 |
| 1.114 | FORMAT DU FICHIER DE GEOMETRIE             | 38 |
| 1.115 | FREE BOUNDARY NUMBER                       | 38 |
| 1.116 | FRICTION CONVERSATION ALONG VERTICAL WALLS | 38 |
| 1.117 | FRICTION LAW                               | 38 |
| 1.118 | FRICTION ZONE DOWNSTREAM ABSCISSA          | 38 |
| 1.119 | FRICTION ZONE UPSTREAM ABSCISSA            | 39 |
| 1.120 | FROUDE LIMIT AT BOUNDARIES                 | 39 |
| 1.121 | GEOMETRY PRINTOUTS                         | 39 |
| 1.122 | GRADIENTS DE DESCENTE SEUILS               | 39 |
| 1.123 | HOMOTHETY COEFFICIENT                      | 39 |
| 1.124 | HYDRAULICS LAWS PRINTOUTS                  | 40 |
| 1.125 | HYDROSTATIC TERMS FOR TRANSCRITICAL KERNEL | 40 |
| 1.126 | IMPLICIT TREATMENT OF FRICTION             | 40 |
| 1.127 | IMPLICITATION OF TRANSCRITICAL KERNEL      | 40 |
| 1.128 | IMPOSED ELEVATION FOR EROSION              | 40 |
| 1.129 | INDEX OF NODES                             | 41 |
| 1.130 | INITIAL CONCENTRATIONS ABSCISSAE           | 41 |
| 1.131 | INITIAL CONCENTRATIONS FILE                | 41 |
| 1.132 | INITIAL CONCENTRATIONS INPUT               | 41 |

| 1.133 | INITIAL CONCENTRATIONS PRESENCE            | 41 |
|-------|--------------------------------------------|----|
| 1.134 | INITIAL CONCENTRATIONS PRINTOUTS           | 42 |
| 1.135 | INITIAL TRACER CONCENTRATION POINTS NUMBER | 42 |
| 1.136 | INITIAL WATER ELEVATIONS                   | 42 |
| 1.137 | INITIAL WATER ELEVATIONS ABSCISSA          | 42 |
| 1.138 | INITIAL WATER ELEVATIONS AVAILABLE         | 42 |
| 1.139 | INITIAL WATER ELEVATIONS DICHARGES         | 43 |
| 1.140 | INITIAL WATER ELEVATIONS FILE              | 43 |
| 1.141 | INITIAL WATER ELEVATIONS FILE FORMAT       | 43 |
| 1.142 | INITIAL WATER ELEVATIONS INPUT             | 43 |
| 1.143 | INITIAL WATER ELEVATIONS POINTS NUMBER     | 43 |
| 1.144 | INITIAL WATER ELEVATIONS PRINTOUTS         | 44 |
| 1.145 | INITIAL WATER ELEVATIONS REACH             | 44 |
| 1.146 | INPUT FILE TO CONTINUE COMPUTATION         | 44 |
| 1.147 | INTIAL TIME                                | 44 |
| 1.148 | KEYWORD FILE FOR COURLIS                   | 44 |
| 1.149 | KEYWORDS FILENAME                          | 45 |
| 1.150 | LARGEURS VANNES                            | 45 |
| 1.151 | LATERAL INFLOW CONTRIBUTION IN MOMENTUM    | 45 |
| 1.152 | LATERAL INFLOW DISCHARGES NUMBER           | 45 |
| 1.153 | LAW NAME                                   | 45 |
| 1.154 | LAYERS CONCENTRATION                       | 46 |
| 1.155 | LAYERS NAME                                | 46 |
| 1.156 | LIAISON ABSCISSE CORRESPONDANTE            | 46 |
| 1.157 | LIAISON COEFFICIENT D'ACTIVATION           | 46 |
| 1.158 | LIAISON COEFFICIENT DE DEBIT ORIFICE       | 46 |
| 1.159 | LIAISON COEFFICIENT DE DEBIT SEUIL         | 47 |
| 1.160 | LIAISON COEFFICIENT PERTE DE CHARGE        | 47 |
| 1.161 | LIAISON COTE                               | 47 |
| 1.162 | LIAISON LARGEUR                            | 47 |
| 1.163 | LIAISON LONGUEUR                           | 47 |
| 1.164 | LIAISON NATURE                             | 48 |
| 1.165 | LIAISON NUMERO DU BIEF ASSOCIE             | 48 |
| 1.166 | LIAISON NUMERO DU CASIER FIN               | 48 |
| 1.167 | LIAISON NUMERO DU CASIER ORIGINE           | 48 |
| 1.168 | LIAISON RUGOSITE                           | 48 |

| 1.169 | LIAISON SECTION                               | 49 |
|-------|-----------------------------------------------|----|
| 1.170 | LIAISON TYPE                                  | 49 |
| 1.171 | LIAISON TYPE ORIFICE                          | 49 |
| 1.172 | LIBRARIES LIST                                | 49 |
| 1.173 | LINEAR INTERPOLATION OF FRICTION COEFFICIENT  | 49 |
| 1.174 | LISTING COURLIS FILE                          | 50 |
| 1.175 | LISTING FILE                                  | 50 |
| 1.176 | LOCAL SLOPE                                   | 50 |
| 1.177 | LOCATION ABSCISSA                             | 50 |
| 1.178 | LOCATION REACH                                | 50 |
| 1.179 | LOI TYPE                                      | 51 |
| 1.180 | LOIS FICHIER                                  | 51 |
| 1.181 | LOIS MODE D'ENTREE                            | 51 |
| 1.182 | LONGITUDINAL PROFILE RESULTS FILE             | 51 |
| 1.183 | LONGUEUR APPORT                               | 51 |
| 1.184 | LONGUEUR DEVERSOIRS                           | 52 |
| 1.185 | MAIN CHANNEL COEFFICIENT                      | 52 |
| 1.186 | MAXIMAL ELEVATION AT CHECKPOINT               | 52 |
| 1.187 | MAXIMAL TIME                                  | 52 |
| 1.188 | MEAN DIAMETER                                 | 52 |
| 1.189 | METHODE DE CALCUL DU MAILLAGE                 | 53 |
| 1.190 | MINIMUM WATER DEPTH                           | 53 |
| 1.191 | MODE DE SAISIE DU MAILLAGE                    | 53 |
| 1.192 | MODEL SAVE                                    | 53 |
| 1.193 | MODEL SAVE FILE                               | 53 |
| 1.194 | MODIFIED FORMULA FOR SHEAR STRESS COMPUTATION | 54 |
| 1.195 | MORPHOLOGY OPTION RECKING 2015                | 54 |
| 1.196 | NETWORK PRINTOUTS                             | 54 |
| 1.197 | NODES NUMBER                                  | 54 |
| 1.198 | NOM DU CONFLUENT X                            | 54 |
| 1.199 | NOM EXTREMITE                                 | 55 |
| 1.200 | NOMBRE D'APPORTS DE PLUIE                     | 55 |
| 1.201 | NOMBRE DE BRANCHES                            | 55 |
| 1.202 | NOMBRE DE CASIERS                             | 55 |
| 1.203 | NOMBRE DE CONFLUENTS                          | 55 |
| 1.204 | NOMBRE DE DEVERSOIRS                          | 56 |

| 1.205 | NOMBRE DE LIAISONS                           | 56 |
|-------|----------------------------------------------|----|
| 1.206 | NOMBRE DE PAS DE PLANIMETRAGE                | 56 |
| 1.207 | NOMBRE DE PERTES DE CHARGE SINGULIERES       | 56 |
| 1.208 | NOMBRE DE PLAGES DE DISCRETISATION           | 56 |
| 1.209 | NOMBRE DE SECTIONS DE CALCUL                 | 57 |
| 1.210 | NOMBRE DE SECTIONS DE LA ZONE                | 57 |
| 1.211 | NOMBRE DE ZONES DE DISCRETISATION            | 57 |
| 1.212 | NOMBRE DE ZONES DE PLANIMETRAGE              | 57 |
| 1.213 | NOMS DES APPORTS                             | 57 |
| 1.214 | NOMS DEVERSOIRS                              | 58 |
| 1.215 | NOMS SEUILS                                  | 58 |
| 1.216 | NUM BRANCHE DE LA PERTE DE CHARGE SINGULIERE | 58 |
| 1.217 | NUM BRANCHE DEVERSOIRS                       | 58 |
| 1.218 | NUM BRANCHE DU BARRAGE PRINCIPAL             | 58 |
| 1.219 | NUM BRANCHE SEUILS                           | 59 |
| 1.220 | NUM DE L'EXTREMITE DE DEBUT                  | 59 |
| 1.221 | NUM DE L'EXTREMITE DE FIN                    | 59 |
| 1.222 | NUMBER CONCENTRATION LAW LATERAL SAND        | 59 |
| 1.223 | NUMBER CONCENTRATION LAW LATERAL SILT        | 59 |
| 1.224 | NUMBER CONCENTRATION LAW UPSTREAM SAND       | 60 |
| 1.225 | NUMBER CONCENTRATION LAW UPSTREAM SILT       | 60 |
| 1.226 | NUMBER OF CONCENTRATION LAWS                 | 60 |
| 1.227 | NUMBER OF DIFFERENT DISCHARGES IN LAWS       | 60 |
| 1.228 | NUMBER OF DRY ZONES                          | 60 |
| 1.229 | NUMBER OF FRICTION ZONES                     | 61 |
| 1.230 | NUMBER OF HYDRAULIC LAWS                     | 61 |
| 1.231 | NUMBER OF ITERATIONS FOR THE HYDRAULIC MODEL | 61 |
| 1.232 | NUMBER OF ITERATIONS FOR THE SEDIMENT MODEL  | 61 |
| 1.233 | NUMBER OF LAYERS                             | 61 |
| 1.234 | NUMBER OF LOCATIONS                          | 62 |
| 1.235 | NUMBER OF POINTS IN LAWS                     | 62 |
| 1.236 | NUMBER OF SECTIONS WITH STORAGE ZONES        | 62 |
| 1.237 | NUMBER OF TIME STEPS                         | 62 |
| 1.238 | NUMBER OF TRACER SOURCES                     | 62 |
| 1.239 | NUMBER OF TRACERS                            | 63 |
| 1.240 | NUMBER OF TRIBUTARIES FOR CONFLUENT X        | 63 |

| 1.241 | NUMERICAL FOR BEDLOAD SCHEME                   | 63 |
|-------|------------------------------------------------|----|
| 1.242 | NUMERO BRANCHE APPORT                          | 63 |
| 1.243 | NUMERO DE BRANCHE DE ZONE                      | 63 |
| 1.244 | NUMERO DE LA LOI                               | 64 |
| 1.245 | NUMERO DE LA LOI ASSOCIEE                      | 64 |
| 1.246 | NUMERO DU CASIER ASSOCIE                       | 64 |
| 1.247 | NUMERO DU DERNIER PROFIL                       | 64 |
| 1.248 | NUMERO DU DERNIER PROFIL DE LA SERIE           | 64 |
| 1.249 | NUMERO DU PREMIER PROFIL                       | 65 |
| 1.250 | NUMERO DU PREMIER PROFIL DE LA SERIE           | 65 |
| 1.251 | NUMERO LOI APPORT                              | 65 |
| 1.252 | NUMERO LOI DEVERSOIRS                          | 65 |
| 1.253 | NUMEROS LOIS SEUILS                            | 65 |
| 1.254 | OPTIMIZATION OF TRANSCRITICAL KERNEL           | 66 |
| 1.255 | OPTION AUTO CALIBRATION                        | 66 |
| 1.256 | OPTION FOR DISPERSION CALCULATION FOR TRACERS  | 66 |
| 1.257 | OPTION FOR PROFILE EVOLUTION                   | 66 |
| 1.258 | OPTION ROUNDED ENERGY SLOPE                    | 66 |
| 1.259 | ORDER FOR THE CONVECTION FINITE VOLUMES SCHEME | 67 |
| 1.260 | ORDONNEE DE L'AFFLUENT DU CONFLUENT X          | 67 |
| 1.261 | OUTPUT FILE TO CONTINUE COMPUTATION            | 67 |
| 1.262 | PARTHENIADES COEFFICIENT                       | 67 |
| 1.263 | PAS D'ESPACE DE LA SERIE                       | 67 |
| 1.264 | PERIOD FOR PRINTOUTS                           | 68 |
| 1.265 | PERIOD FOR PRINTOUTS COURLIS                   | 68 |
| 1.266 | PERIOD FOR STORAGE                             | 68 |
| 1.267 | PLANIMETRAGE PRINTOUTS                         | 68 |
| 1.268 | POROSITY                                       | 68 |
| 1.269 | POST-PROCESSOR                                 | 69 |
| 1.270 | PRECISION ROUNDED ENERGY SLOPE                 | 69 |
| 1.271 | PRINCIPAL PROGRAM                              | 69 |
| 1.272 | PRINTOUTS CONCENTRATION LAWS                   | 69 |
| 1.273 | PRINTOUTS COUPLING PARAMETERS                  | 69 |
| 1.274 | PRINTOUTS INITIAL CONC LAWS FOR COURLIS        | 70 |
| 1.275 | PRINTOUTS SEDIMENT INFLOWS                     | 70 |
| 1.276 | PRINTOUTS SEDIMENT INTERFACES                  | 70 |

| 1.277 | PRINTOUTS SEDIMENT PARAMETERS                           | 70 |
|-------|---------------------------------------------------------|----|
| 1.278 | PROFILS EN ABSCISSE ABSOLUE                             | 70 |
| 1.279 | PROGRESSIVE OVERFLOW IN FLOODPLAIN                      | 71 |
| 1.280 | PROGRESSIVE OVERFLOW IN STORAGE AREA                    | 71 |
| 1.281 | REACH NUMBER FOR THE FRICTION ZONE                      | 71 |
| 1.282 | REACHES GAP                                             | 71 |
| 1.283 | RESIDUAL ROBUSTNESS COEFFICIENT                         | 71 |
| 1.284 | RESULTS FILE                                            | 72 |
| 1.285 | ROUGHNESS RATIO WITH QSTAR FOR LEFORT                   | 72 |
| 1.286 | SAND D50                                                | 72 |
| 1.287 | SAND DIFFUSION COEFFICIENT                              | 72 |
| 1.288 | SAND FALL VELOCITY                                      | 72 |
| 1.289 | SAND INITIAL CONCENTRATION                              | 73 |
| 1.290 | SAND LIMIT PERCENTAGE                                   | 73 |
| 1.291 | SAND PERCENTAGE                                         | 73 |
| 1.292 | SAUVEGARDE MAILLAGE                                     | 73 |
| 1.293 | SECTION NUMBER STORAGE                                  | 73 |
| 1.294 | SEDIMENT SLIDE OPTION                                   | 74 |
| 1.295 | SEDIMENTS PROPERTIES FILE                               | 74 |
| 1.296 | SEDIMENTS PROPERTIES INPUT                              | 74 |
| 1.297 | SEDIMENTS WEIGHT BY VOLUME                              | 74 |
| 1.298 | SHIELDS SHEAR STRESS WITH DISCHARGE FOR RECKING 2015    | 74 |
| 1.299 | SILT DEPOSITION CRITICAL SHEAR STRESS                   | 75 |
| 1.300 | SILT DIFFUSION COEFFICIENT                              | 75 |
| 1.301 | SILT EROSION CRITICAL SHEAR STRESS                      | 75 |
| 1.302 | SILT FALL VELOCITY                                      | 75 |
| 1.303 | SILT INITIAL CONCENTRATION                              | 75 |
| 1.304 | SKIN FRICTION COEFFICIENT                               | 76 |
| 1.305 | SLOPE LIMITER FOR THE FINITE VOLUMES SCHEME FOR COURLIS | 76 |
| 1.306 | SLOPE LIMITER OF FINITE VOLUMES SCHEME                  | 76 |
| 1.307 | SLOPE STABILITY MODEL                                   | 76 |
| 1.308 | SOURCES ABSCISSA                                        | 76 |
| 1.309 | SOURCES BRANCH                                          | 77 |
| 1.310 | SOURCES LENGTHS                                         | 77 |
| 1.311 | SOURCES NAME                                            | 77 |
| 1.312 | SOURCES TYPE                                            | 77 |

| 1.313 | STABILITY SLOPE FOR EMERGED EMBANKMENTS      | 77 |
|-------|----------------------------------------------|----|
| 1.314 | STABILITY SLOPE FOR SUBMERGED EMBANKMENTS    | 78 |
| 1.315 | STOPPING CRITERION                           | 78 |
| 1.316 | STORAGE AREAS                                | 78 |
| 1.317 | STORAGE AREAS LINK LISTING FILE              | 78 |
| 1.318 | STORAGE AREAS LINK RESULTS FILE              | 78 |
| 1.319 | STORAGE AREAS LISTING FILE                   | 79 |
| 1.320 | STORAGE AREAS RESULTS FILE                   | 79 |
| 1.321 | STORAGE OPTION                               | 79 |
| 1.322 | STORAGE PERIOD FOR THE CROSS SECTION PROFILE | 79 |
| 1.323 | STORAGE PERIOD FOR THE LONGITUDINAL PROFILE  | 79 |
| 1.324 | SUSPENSION OPTION                            | 80 |
| 1.325 | TIME STEP                                    | 80 |
| 1.326 | TIME UNIT IN LAWS                            | 80 |
| 1.327 | TIME UNIT IN TRACER CONC LAW                 | 80 |
| 1.328 | TOTAL FRICTION COEFFICIENT                   | 80 |
| 1.329 | TRACER BALANCE PRINTOUTS INTO LISTING        | 81 |
| 1.330 | TRACER CONC LAW POINTS NUMBER                | 81 |
| 1.331 | TRACER LAW FILE                              | 81 |
| 1.332 | TRACER LAW INPUT                             | 81 |
| 1.333 | TRACER LAW NAMES                             | 81 |
| 1.334 | TRACER LAWS NUMBER FOR BOUNDARIES            | 82 |
| 1.335 | TRACER LAWS PRINTOUTS                        | 82 |
| 1.336 | TRACER LISTING FILE                          | 82 |
| 1.337 | TRACER NUMBER OF LAWS                        | 82 |
| 1.338 | TRACER NUMBER OF LAWS FOR SOURCES            | 82 |
| 1.339 | TRACER PHYSICAL PARAMETERS FILE              | 83 |
| 1.340 | TRACER POST-PROCESSOR                        | 83 |
| 1.341 | TRACER RESULTS FILE                          | 83 |
| 1.342 | TRACER WEATHER DATA FILE                     | 83 |
| 1.343 | TRACERS CONVECTION                           | 83 |
| 1.344 | TRACERS DIFFUSION                            | 84 |
| 1.345 | TRACERS PRESENCE                             | 84 |
| 1.346 | TRANSPORT LAW                                | 84 |
| 1.347 | TYPE DE CONDITION                            | 84 |
| 1.348 | TYPE DE RUPTURE DU BARRAGE PRINCIPAL         | 84 |

| 1.349               | TYPE DEVERSOIRS                                        | 85              |
|---------------------|--------------------------------------------------------|-----------------|
| 1.350               | TYPE OF BOUNDARY CONDITIONS TRACER                     | 85              |
| 1.351               | TYPE OF VALIDATION CALCULATION                         | 85              |
| 1.352               | TYPE SEUILS                                            | 85              |
| 1.353               | UNCENTERED SCHEME                                      | 85              |
| 1.354               | UPSTREAM EQUILIBRIUM SLOPE                             | 86              |
| 1.355               | UPSTREAM SEDIMENT CONCENTRATION FROM EQUILIBRIUM SLOPE | 86              |
| 1.356               | UPSTREAM SEDIMENT CONCENTRATION WITHOUT VOIDS          | 86              |
| 1.357               | VALEUR DU PAS                                          | 86              |
| 1.358               | VARIABLE TIME STEP WITH COURANT NUMBER                 | 86              |
| 1.359               | VARIABLES COMPUTED                                     | 87              |
| 1.360               | VARIABLES SAVED                                        | 87              |
| 1.361               | WATER DEPTH THRESHOLD IDENTIFYING THE WAVE             | 87              |
| 1.362               | WATER QUALITY MODEL                                    | 87              |
| 1.363               | WATER WEIGHT BY VOLUME                                 | 87              |
| 1.364               | WEIR LAW POINTS NUMBER                                 | 88              |
| 1.365               | WEIRS NUMBER                                           | 88              |
| 2                   | List of knywords algorified good ding to type          | 00              |
|                     | List of keywords classified according to type          |                 |
| <b>2.1</b> 2.1.1    | APPORTS ET DEVERSOIRS  CASIER                          | <b>89</b>       |
| 2.1.2               | DEBITS D"APPORTS                                       |                 |
| 2.1.3               | DEVERSOIRS LATERAUX                                    | 89              |
| 2.2                 | CALAGE                                                 | 90              |
| 2.2.1               | FROTTEMENT ZONES DE STOCKAGE                           |                 |
| 2.3                 | CALAGE AUTO                                            | 90              |
| 2.3.1               | LISTE CRUES                                            | 90              |
| 2.3.2               | PARAMETRES                                             |                 |
| 2.3.3<br><b>2.4</b> | CASIERS                                                | 90<br><b>91</b> |
| <b>2.4</b> 2.4.1    | LIAISONS                                               |                 |
| 2.5                 | CONCENTRATION INFLOW                                   | 91              |
| 2.5.1               | SEDIMENT INFLOWS                                       | 91              |
| 2.5.2               | UPSTREAM CONDITIONS                                    |                 |
| 2.6                 | CONCENTRATION LAWS                                     | 92              |
| 2.6.1               | CONCENTRATION LAWS                                     |                 |
| <b>2.7</b> 2.7.1    | CONDITIONS INITIALES  LIGNE D"EAU                      | <b>92</b>       |
|                     | REPRISE ETUDE                                          |                 |

| <ul><li>2.7.3</li><li>2.7.4</li></ul> | TRACEURZONES SECHES          |           |
|---------------------------------------|------------------------------|-----------|
| <b>2.8</b> 2.8.1                      |                              | <b>93</b> |
| <b>2.9</b>                            |                              | 93        |
| 2.10                                  |                              | 93        |
| 2.10.1                                | LIBRARIES                    |           |
| 2.11                                  |                              | 93        |
| 2.11.1                                |                              |           |
|                                       | EXTREMITES LIBRES            |           |
|                                       | GEOMETRIE                    |           |
| 2.12                                  |                              | 94        |
|                                       | CASIER                       |           |
| 2.12.2                                | FICHIER DE REPRISE           | 94        |
|                                       | IMPRESSION                   |           |
|                                       | LISTING                      |           |
|                                       | RESULTATS                    |           |
|                                       | RUBENS                       |           |
| 2.12.8                                | STOCKAGE                     |           |
| 2.13                                  |                              | 95        |
| 2.14                                  |                              | 95        |
| 2.14.1                                | LOIS                         |           |
| 2.15                                  |                              | 96        |
| 2.15.1                                | DEBORDEMENT PROGRESSIF       |           |
| 2.16                                  |                              | 96        |
| 2.17                                  |                              | 96        |
| 2.18                                  | PLANIMETRAGE ET MAILLAGE     | 97        |
|                                       | MAILLAGE  PLANIMETRAGE       |           |
| 2.19                                  |                              | 97        |
|                                       | COURLIS PRINTOUTS            |           |
| 2.19.2                                | COURLIS RESULTS              | 98        |
| 2.20                                  | PRINTOUTS-TRACER RESULTS     | 98        |
| 2.20.1<br>2.20.2                      | TRACER PRINTOUTS             | 98<br>98  |
| 2.21                                  | SEDIMENT GEOMETRY            | 98        |
| 2.22                                  | SEDIMENT PARAMETERS          | 98        |
|                                       | BEDLOAD                      |           |
|                                       | PHYSICAL PARAMETERS          |           |
|                                       | - OLI ZIIVII INI I (本) F にん) | 77        |
| 2.22.4                                | SLOPE STABILITY              | 100       |

| 2.23   | SINGULARITE (BARRAGE-SEUIL)     | 100   |
|--------|---------------------------------|-------|
|        | BARRAGE PRINCIPAL               |       |
| 2.23.2 | PERTES DE CHARGES               | . 100 |
| 2.23.3 | SEUILS                          | . 101 |
| 2.24   | TRACER                          | 101   |
| 2.25   | TRACER LAWS                     | 101   |
| 2.25.1 | TRACER LAW                      | . 101 |
| 2.26   | TRACERS                         | 101   |
| 2.27   | TRACERS PARAMETERS              | 102   |
| 2.28   | VARIABLES CALCULEES ET STOCKEES | 102   |
| 3      | Glossary                        | 103   |
| 3.1    | English/French glossary         | 103   |
| 3.2    | French/English glossary         | 113   |
|        | Bibliography                    | 123   |

### 1. Detail list of keywords

#### 1.1 ABSCISSE APPORT

Type: Real Dimension: 0

Mnemo Apport(iapp)%AbscisseRel

DEFAULT VALUE: MANDATORY
French keyword: ABSCISSE APPORT

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/abscisses

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.2 ABSCISSE DE DEBUT DE ZONE

Type: Real Dimension: 0

Mnemo maille\_r%AbscisseDeb

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DE DEBUT DE ZONE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/absDebutZone

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.3 ABSCISSE DE FIN DE ZONE

Type: Real Dimension: 0

Mnemo maille\_r%AbscisseFin

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DE FIN DE ZONE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/absFinZone

#### 1.4 ABSCISSE DE L'AFFLUENT DU CONFLUENT X

Type: Real Dimension: 0

Mnemo Confluent(iconf)%AbscisseAfflu(iafflu)

DEFAULT VALUE: 0.0

French keyword: ABSCISSE DE L'AFFLUENT DU CONFLUENT x

XML pathnode: parametresCas/parametresConfluents/confluents/structureParametresConfluent/abscisses

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.5 ABSCISSE DE LA PERTE DE CHARGE SINGULIERE

Type: Real Dimension: 0

Mnemo abscisse\_rel
DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DE LA PERTE DE CHARGE SINGULIERE

XML pathnode : parametresCas/parametresSingularite/pertesCharges/abscisses

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.6 ABSCISSE DEBUT

Type: Real Dimension: 0

Mnemo AbscRelExtDebBief(ibief)

DEFAULT VALUE: MANDATORY
French keyword: ABSCISSE DEBUT

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/abscDebut

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.7 ABSCISSE DEVERSOIRS

Type: Real Dimension: 0

Mnemo Deversoir(idev)%AbscisseRel

DEFAULT VALUE: 0.0

French keyword: ABSCISSE DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/abscisse

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.8 ABSCISSE DU BARRAGE PRINCIPAL

Type: Real Dimension: 1

Mnemo Barrage%AbscisseRel

DEFAULT VALUE: 0.0

French keyword: ABSCISSE DU BARRAGE PRINCIPAL

XML pathnode : parametresCas/parametresSingularite/barragePrincipal/abscisse

1.9 ABSCISSE FIN 17

#### 1.9 ABSCISSE FIN

Type: Real Dimension: 0

Mnemo AbscRelExtFinBief(ibief)

DEFAULT VALUE: MANDATORY French keyword: ABSCISSE FIN

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/abscFin

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.10 ABSCISSES DES SECTIONS DE CALCUL

Type: Real Dimension: 0

Mnemo section%AbscisseRel DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DES SECTIONS DE CALCUL

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/absSection

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.11 ABSCISSES EN TRAVERS CRETE

Type: Real Dimension: 0

Mnemo Singularite(ising)%PtX(ipoint)

**DEFAULT VALUE: MANDATORY** 

French keyword: ABSCISSES EN TRAVERS CRETE

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/abscTravCrete

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.12 ABSCISSES SEUILS

Type: Real Dimension: 0

Mnemo Singularite(ising)%AbscisseRel

DEFAULT VALUE: 0.0

French keyword: ABSCISSES SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/abscisse

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.13 ABSOLUTE CLIP EVOLUTION

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 1e-05

French keyword: CLIP ABSOLU SUR L'EVOLUTION

XML pathnode : parametresCas/parametresSedimentaires/charriage/clipping/ clipAbsoluEvol

Define clipping threshold in bottom evolution (meters)

#### 1.14 ANGLE DE L'AFFLUENT DU CONFLUENT X

Type: Real Dimension: 0

Mnemo Confluent(iconf)%AngleAfflu(iafflu)

DEFAULT VALUE: 0.0

French keyword: ANGLE DE L'AFFLUENT DU CONFLUENT x

XML pathnode : parametresCas/parametresConfluents/confluents/structureParametresConfluent/angles

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.15 ATTENUATION OF CONVECTION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: ATTENUATION DE LA CONVECTION

XML pathnode : parametresCas/parametresNumeriques/attenuationConvection

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.16 AUTO CALIBRATION COEFFICIENTS IN FLOODPLAIN ZONES

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Valeur\_coeff\_maj

DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENTS DE LIT MAJEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMaj

Define initial friction coefficients in the floodplain for each zone before the automatic calibra-

tion

#### 1.17 AUTO CALIBRATION COEFFICIENTS IN MAIN CHANNEL ZONES

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Valeur\_coeff\_min

DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENTS DE LIT MINEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMin

Define initial Strickler coefficients in the main channel for each zone before the automatic

calibration

#### 1.18 AUTO CALIBRATION CONVERGENCE TOLERANCE

Type: Real Dimension: 1

Mnemo Calage\_constantes%Precis

DEFAULT VALUE: 0.01

French keyword: PRECISION CONVERGENCE

XML pathnode : parametresCas/parametresCalageAuto/parametres/precision

Define maximal error value for automatic calibration

#### 1.19 AUTO CALIBRATION DOWNSTREAM ELEVATION FOR FLOOD x

Type: Real Dimension: 1

Mnemo Calage\_crues%ZAVAL(i)

DEFAULT VALUE: 0.0

French keyword: COTE AVAL DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/s

Define the elevation downstream during the flood for the automatic calibration

#### 1.20 AUTO CALIBRATION FLOOD MEASUREMENTS ABSCISSAE FOR FLOOD X

Type: Integer Dimension: 0

Mnemo Calage\_crues%Xmesu(i,j)

**DEFAULT VALUE: MANDATORY** 

French keyword: ABSCISSES DES MESURES DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCru

Define the abscissae of measurements points during the flood

#### 1.21 AUTO CALIBRATION INFLOW FOR x FLOW

Type: Real Dimension: 1

Mnemo Calage crues%DEBIT(i)

DEFAULT VALUE: 0.0

French keyword: DEBIT AMONT DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structurePa

Define the inflow during the flood for the automatic calibration

#### 1.22 AUTO CALIBRATION INFLOWS ABSCISSAE FOR FLOOD X

Type: Real Dimension: 0

Mnemo Calage\_Crues%abscisse(i,j)

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DES APPORTS DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structurePa

Define the abscissae for inflows during the flood

#### 1.23 AUTO CALIBRATION INFLOWS VALUES FOR FLOOD X

Type: Real Dimension: 0

Mnemo Calage\_crues%apport\_X(i,j)

DEFAULT VALUE: MANDATORY

French keyword: DEBITS DES APPORTS DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues

Define the inflows values during the flood

#### 1.24 AUTO CALIBRATION LISTING FILE

Type: String Dimension: 1

Mnemo FichierResultat1Calage%nom

DEFAULT VALUE:

French keyword: FICHIER DE LISTING DU CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/parametres/nomFichListing

Define the listing file for automatic calibration

#### 1.25 AUTO CALIBRATION LOWER BOUNDS FLOODPLAIN ZONES COEF

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Valeur\_coeff\_maj\_binf

DEFAULT VALUE: MANDATORY

French keyword: BORNES INFERIEURES COEF LIT MAJEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMajBinf

Define the lower bounds of coefficient values in the floodplain for each zone

#### 1.26 AUTO CALIBRATION LOWER BOUNDS MAIN CHANNEL ZONES COEF

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Valeur\_coeff\_min\_binf

DEFAULT VALUE: MANDATORY

French keyword: BORNES INFERIEURES COEF LIT MINEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMinBinf

Define the lower bounds of coefficient values in the main channel for each zone

#### 1.27 AUTO CALIBRATION MAXIMUM NUMBER OF ITERATIONS

Type: Integer Dimension: 1

Mnemo Calage\_constantes%NITER

DEFAULT VALUE: 100

French keyword: NOMBRE MAX D'ITERATIONS

XML pathnode : parametresCas/parametresCalageAuto/parametres/nbMaxIterations

Define the maximum number of iterations for automatic calibration

#### 1.28 AUTO CALIBRATION MEASUREMENTS WEIGHTING COEFFICIENTS FOR FLOOD

X

Type: Integer Dimension: 0

Mnemo Calage\_crues%Pondmesu(i,j)

DEFAULT VALUE: MANDATORY

French keyword: PONDERATIONS DES MESURES DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues

Define the weighting coefficient for each measurement during the flood (to assess its reliability)

#### 1.29 AUTO CALIBRATION NUMBER OF AREAS

Type: Integer

Dimension: 1

Mnemo nb\_zone\_frottement

DEFAULT VALUE: 0

French keyword: NOMBRE DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/nbZones

Define the number of areas for the automatic calibration

#### 1.30 AUTO CALIBRATION NUMBER OF FLOODS

Type: Integer

Dimension: 1

Mnemo Calage\_crues%Nb\_crue

DEFAULT VALUE: 0

French keyword: NOMBRE DE CRUES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/nbCrues

Define the number of floods for automatic calibration

#### 1.31 AUTO CALIBRATION NUMBER OF INFLOWS FOR FLOOD X

Type: Integer

Dimension: 1

Mnemo Calage crues%NbApports(i)

DEFAULT VALUE: 0

French keyword: NOMBRE D'APPORTS DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structurePa

Define the number of inflows for the flood

#### 1.32 AUTO CALIBRATION NUMBER OF MEASUREMENTS FOR FLOOD x

Type: Integer

Dimension: 1

Mnemo Calage\_crues%Nmes(i)

DEFAULT VALUE: 0

French keyword: NOMBRE MESURES DE LA CRUE x POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/crues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueCalageAuto/listeCrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrueScrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structureParametresCrues/structurePa

Define the number of measures to describe the flood

#### 1.33 AUTO CALIBRATION RESULTS FILE

Type: String Dimension: 1

Mnemo FichierResultatCalage%nom

DEFAULT VALUE:

French keyword: FICHIER RESULTAT DU CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/parametres/nomFichResult

Define the results file for automatic calibration results

#### 1.34 AUTO CALIBRATION SELECTED CHANNEL

Type: Integer

Dimension: 1

Mnemo Calage\_constantes%IESTIM

DEFAULT VALUE: 1

French keyword: CHOIX DU LIT POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/parametres/typeLit

Choice of channel for automatic calibration

#### 1.35 AUTO CALIBRATION UPPER BOUNDS FLOODPLAIN ZONES COEF

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Valeur\_coeff\_maj\_bsup

DEFAULT VALUE: MANDATORY

French keyword: BORNES SUPERIEURES COEF LIT MAJEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMajBsup

Define the upper bounds of coefficient values in the floodplain for each zone

#### 1.36 AUTO CALIBRATION UPPER BOUNDS MAIN CHANNEL ZONES COEF

Type: Real Dimension: 0

Mnemo Calage frott(i)%Valeur coeff min bsup

DEFAULT VALUE: MANDATORY

French keyword: BORNES SUPERIEURES COEF LIT MINEUR DE ZONES POUR CALAGE AUTO

XML pathnode : parametresCas/parametresCalageAuto/zones/coefLitMinBsup

Define the upper bounds of coefficient values in the main channel for each zone

#### 1.37 AUTO CALIBRATION ZONES DOWNSTREAM ABSCISSAE

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Abscfin\_zone\_frott

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DE FIN DE ZONES POUR CALAGE AUTO XML pathnode: parametresCas/parametresCalageAuto/zones/absFinZone

Define the last abscissae for each zone in the automatic calibration process

#### 1.38 AUTO CALIBRATION ZONES UPSTREAM ABSCISSAE

Type: Real Dimension: 0

Mnemo Calage\_frott(i)%Abscdeb\_zone\_frott

DEFAULT VALUE: MANDATORY

French keyword: ABSCISSES DE DEBUT DE ZONES POUR CALAGE AUTO XML pathnode: parametresCas/parametresCalageAuto/zones/absDebZone Define the upstream abscissae for each zone in the automatic calibration process

#### 1.39 AUTOMATIC HEADLOSS AT JUNCTIONS

Type: Logical

Dimension: 1

Mnemo PerteChargeConfluent

DEFAULT VALUE: NO

French keyword: PERTES DE CHARGE AUTOMATIQUE AUX CONFLUENTS XML pathnode: parametresCas/parametresModelePhysique/perteChargeConf

Option to apply automatic calculated headloss at junctions

#### 1.40 AUTOMATIC HEADLOSSES TRANSCRITICAL KERNEL

Type: Logical

Dimension: 1

Mnemo PerteElargissementTrans

DEFAULT VALUE: YES

French keyword: PERTES DE CHARGE AUTOMATIQUE NOYAU TRANSCRITIQUE

XML pathnode : parametresCas/parametresNumeriques/perteChargeAutoElargissement

Automatic headlosses due to enlargement

#### 1.41 BEDLOAD OPTION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: OPTION CHARRIAGE

XML pathnode : parametresCas/parametresSedimentaires/charriage/charriageOpt

Bedload model

#### 1.42 BRANCHE NUMERO

Type: Integer Dimension: 15

Mnemo

DEFAULT VALUE: 1;2;3;4;5;6;7;8;9;10;11;12;13;14;15

French keyword: BRANCHE NUMERO

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/numeros

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.43 BRANCHES DES SECTIONS DE CALCUL

Type: Integer Dimension: 0

Mnemo section%Branche
DEFAULT VALUE: MANDATORY

French keyword: BRANCHES DES SECTIONS DE CALCUL

XML pathnode: parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/branchesSection

#### 1.44 CALCULATION FOR VALIDATION OF THE CODE

Type: Logical

Dimension: 1

Mnemo CalculValidation

DEFAULT VALUE: NO

French keyword: CALCUL POUR VALIDATION DU CODE

XML pathnode : parametresCas/parametresGeneraux/validationCode Option to indicate that the calculation is calculation of validation in the listing

#### 1.45 CALCULATION KERNEL

Type: Integer
Dimension: 1
Mnemo Noyau

DEFAULT VALUE: 3

French keyword: NOYAU DE CALCUL

XML pathnode : parametresCas/parametresGeneraux/code

choice of the calculation kernel, between: - SARAP: transcritical steady kernel - REZODT:

unsteady kernel - MASCARET: transcritical unsteady kernel.

#### 1.46 CALCULATION WITH SAND

Type: Logical

Dimension: 1

Mnemo CalcSable DEFAULT VALUE: YES

French keyword: CALCUL AVEC SABLE

XML pathnode : parametresCas/parametresSedimentaires/calculSable

Activating non-cohesive sediments for suspension

#### 1.47 CASIERS COTE INITIALE

Type: Real Dimension: 2

Mnemo Casier(icasier)%Cote

**DEFAULT VALUE: MANDATORY** 

French keyword: CASIERS COTE INITIALE

XML pathnode : parametresCas/parametresCasier/cotesInitiale

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.48 CASIERS FICHIER GEOMETRIE

Type: String Dimension: 0

Mnemo FichierGeomCasier%Nom

DEFAULT VALUE: '

French keyword: CASIERS FICHIER GEOMETRIE

XML pathnode : parametresCas/parametresCasier/fichierGeomCasiers

#### 1.49 CASIERS NOMBRE DE COTES DE PLANIMETRAGE

Type: Integer Dimension: 0

Mnemo Casier(icasier)%NbCotePlanim

**DEFAULT VALUE: MANDATORY** 

French keyword : CASIERS NOMBRE DE COTES DE PLANIMETRAGE XML pathnode : parametresCasier/nbCotesPlanimetrage

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.50 CASIERS OPTION DE CALCUL

Type: Integer Dimension: 0

Mnemo option\_calcul

DEFAULT VALUE: 2

French keyword: CASIERS OPTION DE CALCUL

XML pathnode : parametresCas/parametresCasier/optionCalcul

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.51 CASIERS OPTION DE PLANIMETRAGE

Type: Integer Dimension: 0

Mnemo option\_planim

DEFAULT VALUE: 1

French keyword: CASIERS OPTION DE PLANIMETRAGE

XML pathnode : parametresCas/parametresCasier/optionPlanimetrage

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.52 CASIERS PAS DE PLANIMETRAGE

Type: Real Dimension: 0

Mnemo Casier(icasier)%PasPlanim

DEFAULT VALUE: MANDATORY

French keyword: CASIERS PAS DE PLANIMETRAGE

XML pathnode : parametresCas/parametresCasier/pasPlanimetrage

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.53 CHECKPOINT ABSCISSA

Type: Real Dimension: 1

Mnemo Bief\_controle

DEFAULT VALUE: -1.0

French keyword: POINT DE CONTROLE ABSCISSE

XML pathnode : parametresCas/parametresTemporels/abscisseControle

Define the abscissa of the checkpoint (stopping criterion)

#### 1.54 CHEKPOINT REACH

Type: Integer Dimension: 1

Mnemo Bief controle

DEFAULT VALUE: -1

French keyword: POINT DE CONTROLE BIEF ASSOCIE

XML pathnode : parametresCas/parametresTemporels/biefControle

Define the reach where the checkpoint is

#### 1.55 CLIP EVOLUTION

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0

French keyword: CLIP EVOLUTION

XML pathnode : parametresCas/parametresSedimentaires/charriage/clipping/clipEvolution

Specify the clipping threshold in percent of water depth

#### 1.56 CLIPPING OPTION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: OPTION DE CLIPPING

XML pathnode : parametresCas/parametresSedimentaires/charriage/clipping/optClipping

Activate the clipping option in water depth percentage

#### 1.57 CODE VERSION

Type: Integer Dimension: 1

Mnemo VersionCode

DEFAULT VALUE: 1

French keyword: VERSION DU CODE

XML pathnode : parametresCas/parametresGeneraux/versionCode

Name and number of code version used

#### 1.58 COEFF DEBIT DEVERSOIRS

Type: Real Dimension: 0

Mnemo Deversoir(idev)%CoeffDebit

DEFAULT VALUE: 0.38

French keyword: COEFF DEBIT DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/coeffDebit

#### 1.59 COEFF DEBIT SEUILS

Type: Real Dimension: 0

Mnemo Singularite(ising)%CoeffDebit

DEFAULT VALUE: 0.38

French keyword: COEFF DEBIT SEUILS

XML pathnode: parametresCas/parametresSingularite/seuils/structureParametresSeuil/coeffDebit

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.60 COEFFICIENT DE LA PERTE DE CHARGE SINGULIERE

Type: Real
Dimension: 0
Mnemo coeff

DEFAULT VALUE: MANDATORY

French keyword: COEFFICIENT DE LA PERTE DE CHARGE SINGULIERE XML pathnode: parametresCas/parametresSingularite/pertesCharges/coefficients

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.61 COMPUTATION CONTINUED

Type: Logical

Dimension: 1

Mnemo RepriseCalcul

DEFAULT VALUE: NO

French keyword: REPRISE DE CALCUL

XML pathnode : parametresCas/parametresConditionsInitiales/repriseEtude/repriseCalcul

Continue computation from water elevations

#### 1.62 COMPUTATION PRINTOUTS

Type: Logical

Dimension: 1

Mnemo ImpressionCalcul

DEFAULT VALUE: NO

French keyword: IMPRESSION CALCUL

XML pathnode : parametresCas/parametresImpressionResultats/impression/ impressionCalcul

The listing file is written during computation

#### 1.63 COMPUTATION TITLE

Type: String
Dimension: 1
Mnemo TitreCas

DEFAULT VALUE:

French keyword: TITRE DU CALCUL

XML pathnode : parametresCas/parametresImpressionResultats/titreCalcul

Define the simulation title

#### 1.64 CONCENTRATION LAW x CONCENTRATION

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 0.0

French keyword: LOI CONC x CONCENTRATION

XML pathnode : parametresCas/loisDeConcentration/lois/concentration

List the concentrations for concentration laws

#### 1.65 CONCENTRATION LAW x FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '

French keyword: LOI CONC x FICHIER

XML pathnode : parametresCas/loisDeConcentration/lois/fichier

File name for the concentration law

#### 1.66 CONCENTRATION LAW x INPUT

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 1

French keyword: LOI CONC x MODE D'ENTREE

XML pathnode : parametresCas/loisDeConcentration/lois/modeEntree

Specify the kind of input for the concentration law

#### 1.67 CONCENTRATION LAW x NAME

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '

French keyword: LOI CONC x NOM

XML pathnode : parametresCas/loisDeConcentration/lois/nom

Concentration law name

#### 1.68 CONCENTRATION LAW x NUMBER OF POINTS

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 0

French keyword: LOI CONC x NOMBRE DE POINTS

XML pathnode : parametresCas/loisDeConcentration/lois/nbPts

Specify the number of points for the concentration law

#### 1.69 CONCENTRATION LAW x TIME

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 0.0

French keyword: LOI CONC x TEMPS

XML pathnode : parametresCas/loisDeConcentration/lois/temps

List the time values for concentration laws

#### 1.70 CONCENTRATION LAW x TIME UNIT

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 1

French keyword: LOI CONC x UNITE DE TEMPS

XML pathnode : parametresCas/loisDeConcentration/lois/uniteDeTemps

Define the time unit for concentration laws

#### 1.71 CONCENTRATIONS PRINTOUTS INTO LISTING

Type: Logical

Dimension: 1

Mnemo ImpressionConcListing

DEFAULT VALUE: YES

French keyword: IMPRESSION DES CONCENTRATIONS SUR LE LISTING

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ concentrations

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.72 CONTROL CELL DEFINITION FOR BEDLOAD

Type: Integer
Dimension: -1
Mnemo fvcell
DEFAULT VALUE: 1

French keyword: DEFINITION DES VOLUMES DE CONTROLE POUR LE CHARRIAGE XML pathnode: parametresCas/parametresSedimentaires/charriage/ volumeControle

Choice of control cell definition for bedload (FV)

#### 1.73 CONVECTION FINITE VOLUMES SCHEME PARAMETER W

Type: Real Dimension: 1

Mnemo ConsTrac(ib)%ParamW

DEFAULT VALUE: 0.0

French keyword: PARAMETRE W DU SCHEMA DE CONVECTION VOLUMES FINIS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion/paramW

#### 1.74 CONVECTION OPTION FOR TRACERS

Type: Integer

Dimension: 1

Mnemo ConsTrac(ib)%Scheconv

DEFAULT VALUE: 2

French keyword: OPTION DE CONVECTION POUR LES TRACEURS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion /optionConvection

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.75 COTE CRETE DEVERSOIRS

Type: Real Dimension: 0

Mnemo Deversoir(idev)%CoteCrete

DEFAULT VALUE: 0.0

French keyword: COTE CRETE DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/coteCrete

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.76 COTE DE CRETE DU BARRAGE PRINCIPAL

Type: Real Dimension: 1

Mnemo Barrage%CoteCrete

DEFAULT VALUE: 0.0

French keyword: COTE DE CRETE DU BARRAGE PRINCIPAL

XML pathnode : parametresCas/parametresSingularite/barragePrincipal/coteCrete

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.77 COTES CRETES

Type: Real Dimension: 0

Mnemo Singularite(ising)%PtY(ipoint)

DEFAULT VALUE : MANDATORY French keyword : COTES CRETES

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/cotesCrete

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.78 COTES CRETES SEUILS

Type: Real Dimension: 0

Mnemo Singularite(ising)%CoteCrete

DEFAULT VALUE: 0.0

French keyword: COTES CRETES SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/coteCrete

#### 1.79 COTES MOYENNES CRETES

Type: Real Dimension: 0

Mnemo Singularite(ising)%CoteCrete

DEFAULT VALUE: 0.0

French keyword: COTES MOYENNES CRETES

XML pathnode: parametresCas/parametresSingularite/seuils/structureParametresSeuil/coteCreteMoy

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.80 COTES RUPTURES SEUILS

Type: Real Dimension: 0

Mnemo Singularite(ising)%CoteRupture

DEFAULT VALUE: 10000.0

French keyword: COTES RUPTURES SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/coteRupture

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.81 COUPLING FREQUENCY BETWEEN HYDRAULIC AND TRACER

Type: Integer Dimension: 1

Mnemo FreqCouplage

DEFAULT VALUE: 1

French keyword: FREQUENCE DE COUPLAGE ENTRE HYDRAULIQUE ET TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresNumeriquesQualiteEau /frequenceCouplHyd

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.82 COURANT NUMBER

Type: Real Dimension: 1

Mnemo CourantObj

DEFAULT VALUE: 1.0

French keyword: NOMBRE DE COURANT SOUHAITE

XML pathnode : parametresCas/parametresTemporels/nbCourant

Define the Courant number value to maintain during calculation

#### 1.83 COURLIS CONVECTION FINITE VOLUMES SCHEME ORDER

Type: Integer Dimension: 1

Mnemo ConsConv

DEFAULT VALUE: 1

French keyword: ORDRE DU SCHEMA DE CONVECTION VOLUMES FINIS POUR COURLIS

XML pathnode: parametresCas/parametresSedimentaires/equationTransport/ ordreConvVolFinisCourlis

Order of the convection schemes (finite volumes) in Courlis

#### 1.84 COURLIS CONVECTION FINITE VOLUMES SCHEME PARAMETER W

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0

French keyword: PARAMETRE W DU SCHEMA DE CONVECTION VOLUMES FINIS POUR COURLIS

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/ parametreWConvVolFinisCou

Value of W in the convection scheme (finite volumes) in Courlis

#### 1.85 COURLIS CONVECTION OPTION FOR TRACERS

Type: Integer Dimension: 1

Mnemo ConsConv

DEFAULT VALUE: 2

French keyword: OPTION DE CONVECTION POUR LES TRACEURS POUR COURLIS

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/ optionConvTraceursCourlis

Numerical scheme for convection for suspension

#### 1.86 COURLIS DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: 'dico\_Courlis.txt'

French keyword: DICTIONAIRE COURLIS

XML pathnode : parametresCas/parametresGeneraux/dictionaireCourlis

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.87 COURLIS GEOMETRY FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE COURLIS

XML pathnode : parametresCas/geometrieSedimentaire/fichierGeometrieCourlis

Name of the geometry file for Courlis (geoC)

#### 1.88 COURLIS INITIAL CONCENTRATIONS INPUT

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: MODE D'ENTREE DES CONCENTRATIONS INITIALES POUR COURLIS XML pathnode: parametresCas/conditionInitialesCourlis/ modeEntreeConcIniCourlis

Specify the kind of input for the initial concentrations in Courlis

#### 1.89 COURLIS INITIAL CONDITIONS FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: "

French keyword: FICHIER DES CONCENTRATIONS INITIALES POUR COURLIS XML pathnode: parametresCas/conditionInitialesCourlis/fichierConcIniCourlis

Name of the file with initial concentrations for Courlis

#### 1.90 COURLIS INTIAL CONDITIONS NUMBER OF POINTS

Type: Integer Dimension: 1

Dimension : Mnemo

DEFAULT VALUE: 2

French keyword: NOMBRE DE POINTS DECRIVANT LES CONC INITIALES POUR COURLIS

XML pathnode : parametresCas/conditionInitialesCourlis/nbPtsConcIniCourlis

Number of points to describe initial concentrations for Courlis

#### 1.91 COURLIS NUMBER OF TRACERS

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: NOMBRE DE TRACEURS POUR COURLIS

XML pathnode : parametresCas/conditionInitialesCourlis/nbTraceursCourlis

Specify the number of tracers for Courlis

#### 1.92 COURLIS OPTION

Type: Logical

Dimension: 1

Mnemo OptionCourlis

DEFAULT VALUE: NO

French keyword: OPTION COURLIS

XML pathnode : parametresCas/parametresGeneraux/optionCourlis

Option to activate Courlis (sediment transport module)

#### 1.93 COURLIS TRACERS CONVECTION

Type: Logical Dimension: 1

Dimension: 1 Mnemo ConsConv

Mnemo ConsConv
DEFAULT VALUE: YES

French keyword: CONVECTION DES TRACEURS POUR COURLIS

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/ convTraceursCourlis

Activate the convection equation for tracers with Courlis

#### 1.94 CROSS SECTION LAYOUT

Type: Integer Dimension: 1

Mnemo ModeleLit

DEFAULT VALUE: 1

French keyword: COMPOSITION DES LITS

XML pathnode: parametresCas/parametresModelePhysique/compositionLits

Option to choose the model handling interaction between n channel and floodplain channel

#### 1.95 CROSS SECTION RESULTS FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER RESULTATS PROFIL EN TRAVERS

XML pathnode : parametresCas/impressionResCourlis/resultatsCourlis/ fichierResProfilTravers

Name of the results file for the cross sections

#### 1.96 D16

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0 French keyword: D16

XML pathnode : parametresCas/parametresSedimentaires/parametresPhysiques/d16

Particle size for which 16

#### 1.97 D84

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0 French keyword: D84

XML pathnode : parametresCas/parametresSedimentaires/parametresPhysiques/d84

Particle size for which 84

#### 1.98 DEBUG BEDLOAD

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: DEBUG CHARRIAGE

XML pathnode : parametresCas/parametresSedimentaires/charriage/debugBedload

Option to print solid transport variables during calculation

1.99 DICTIONARY 35

#### 1.99 DICTIONARY

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: DICTIONNAIRE

XML pathnode : parametresCas/parametresGeneraux/dictionaire

Keywords dictionnary

#### 1.100 DIFFUSION COEFFICIENT 1 FOR TRACERS

Type: Real Dimension: 1

Mnemo ConsTrac(ib)%CoefDiffu(1)

DEFAULT VALUE: 0.0

French keyword: COEFFICIENT DE DIFFUSION 1 POUR LES TRACEURS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion /coeffDiffusion1

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.101 DIFFUSION COEFFICIENT 2 FOR TRACERS

Type: Real Dimension: 1

Mnemo ConsTrac(ib)%CoefDiffu(2)

DEFAULT VALUE: 0.0

French keyword: COEFFICIENT DE DIFFUSION 2 POUR LES TRACEURS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion /coeffDiffusion2

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.102 DRY ZONE DOWNSTREAM ABSCISSA

Type: Real Dimension: 0

Mnemo abs\_rel\_fin
DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DE FIN DE ZONE SECHE

 $XML\ pathnode: parametres Cas/parametres Conditions Initiales/zones Seches/abs Fin$ 

Downstream abscissa of the dry zone

#### 1.103 DRY ZONE REACH

Type: Integer Dimension: 0

Mnemo num\_branche
DEFAULT VALUE: MANDATORY

French keyword: BRANCHE DE ZONE SECHE

XML pathnode : parametresCas/parametresConditionsInitiales/zonesSeches/branche

Reach ID for the dry zone

#### 1.104 DRY ZONE UPSTREAM ABSCISSA

Type: Real Dimension: 0

Mnemo abs\_rel\_deb
DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DE DEBUT DE ZONE SECHE

XML pathnode : parametresCas/parametresConditionsInitiales/zonesSeches/absDebut

Upstream abscissa of the dry zone

#### 1.105 EPAISSEURS SEUILS

Type: Integer Dimension: 0

Mnemo Singularite(ising)%Epaisseur\_Seuil

DEFAULT VALUE: 1

French keyword: EPAISSEURS SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/epaisseur

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.106 EXTREMITE NUMERO

Type: Integer Dimension: 0

Mnemo NumExtLibre
DEFAULT VALUE: MANDATORY
French keyword: EXTREMITE NUMERO

XML pathnode : parametresCas/parametresGeometrieReseau/extrLibres/numExtrem

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.107 FICHIER DE GEOMETRIE

Type: String Dimension: 1

Mnemo FichierGeom%Nom

DEFAULT VALUE:

French keyword: FICHIER DE GEOMETRIE

XML pathnode : parametresCas/parametresGeometrieReseau/geometrie/fichier

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.108 FILE FOR IMPOSED ELEVATIONS FOR EROSION

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER POUR LES COTES D'EROSION IMPOSEES

XML pathnode : parametresCas/parametresSedimentaires/charriage/profil/eroLim

File containing elevations imposed for erosion with option 2 of profile evolution

#### 1.109 FIRST TIME STEP TO SAVE

Type: Integer Dimension: 1

Mnemo PremierPasStocke

DEFAULT VALUE: 1

French keyword: PREMIER PAS DE TEMPS A STOCKER

XML pathnode : parametresCas/parametresImpressionResultats/pasStockage/ premPasTpsStock

Define the first time step to be saved into results files

# 1.110 FLOOD WAVE CALCULATION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: CALCUL D'UNE ONDE DE SUBMERSION

XML pathnode : parametresCas/parametresNumeriques/calcOndeSubmersion

Flood waves calculations with dam

# 1.111 FLOODPLAIN COEFFICIENT

Type: Real Dimension: 0

Mnemo valeur\_coeff\_maj
DEFAULT VALUE: MANDATORY

French keyword: VALEUR DU COEFFICIENT LIT MAJEUR

XML pathnode : parametresCas/parametresCalage/frottement/coefLitMaj

Define the value of the friction coefficient in the floodplain

### 1.112 FLOODPLAIN LEFT LIMIT

Type: Real Dimension: 0

Mnemo limite\_maj\_gauche
DEFAULT VALUE: MANDATORY

French keyword: LIMITE GAUCHE LIT MAJEUR

XML pathnode : parametresCas/parametresCalage/zoneStockage/limGauchLitMaj

Define the left limit of the floodplain

# 1.113 FLOODPLAIN RIGHT LIMIT

Type: Real Dimension: 0

Mnemo limite\_maj\_droite
DEFAULT VALUE: MANDATORY

French keyword: LIMITE DROITE LIT MAJEUR

XML pathnode : parametresCas/parametresCalage/zoneStockage/limDroitLitMaj

Define the right limit of the floodplain

#### 1.114 FORMAT DU FICHIER DE GEOMETRIE

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 2

French keyword: FORMAT DU FICHIER DE GEOMETRIE

XML pathnode : parametresCas/parametresGeometrieReseau/geometrie/format

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.115 FREE BOUNDARY NUMBER

Type: Integer Dimension: 1

Mnemo NbExtLibre

DEFAULT VALUE: 2

French keyword: NOMBRE D'EXTREMITES LIBRES

XML pathnode : parametresCas/parametresGeometrieReseau/extrLibres/nb

TODO: WRITE HELP FOR THAT KEYWORD

# 1.116 FRICTION CONVERSATION ALONG VERTICAL WALLS

Type: Logical

Dimension: 1

Mnemo FrottParoiVerticale

DEFAULT VALUE: YES

French keyword: CONSERVATION DU FROTTEMENT SUR LES PAROIS VERTICALES XML pathnode: parametresCas/parametresModelePhysique/conservFrotVertical Option to apply an additional friction if there is vertical walls (channel for example)

# 1.117 FRICTION LAW

Type: Integer Dimension: -1

Mnemo LoiFrottement

DEFAULT VALUE: 1

French keyword: LOI DE FROTTEMENT

XML pathnode : parametresCas/parametresCalage/frottement/loi

Define the friction law

# 1.118 FRICTION ZONE DOWNSTREAM ABSCISSA

Type: Real Dimension: 0

Mnemo abscfin\_zone\_frott
DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE FIN ZONE DE FROTTEMENT

XML pathnode : parametresCas/parametresCalage/frottement/absFinZone

Define the downstream abscissa for the friction zone

#### 1.119 FRICTION ZONE UPSTREAM ABSCISSA

Type: Real Dimension: 0

Mnemo abscdeb\_zone\_frott
DEFAULT VALUE: MANDATORY

French keyword: ABSCISSE DEBUT ZONE DE FROTTEMENT

XML pathnode : parametresCas/parametresCalage/frottement/absDebZone

Define the upstream abscissa for the friction zone

#### 1.120 FROUDE LIMIT AT BOUNDARIES

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 1.0

French keyword: FROUDE LIMITE POUR LES CONDITIONS LIMITES

XML pathnode: parametresCas/parametresNumeriques/froudeLimCondLim

Froude number at boundaries

#### 1.121 GEOMETRY PRINTOUTS

Type: Logical

Dimension: 1

Mnemo impression geo

DEFAULT VALUE: NO

French keyword: IMPRESSION DE LA GEOMETRIE

XML pathnode : parametresCas/parametresImpressionResultats/impression/impressionGeometrie

Printing of geometry information into listing file

### 1.122 GRADIENTS DE DESCENTE SEUILS

Type: Real Dimension: 0

Mnemo Singularite(ising)%Pente

DEFAULT VALUE: 5000.0

French keyword: GRADIENTS DE DESCENTE SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils/structureParametresSeuil/gradient

TODO: WRITE HELP FOR THAT KEYWORD

# 1.123 HOMOTHETY COEFFICIENT

Type: Real
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 0.0

French keyword: COEFFICIENT D'HOMOTHETIE

XML pathnode : parametresCas/parametresSedimentaires/talus/coeffHomothetie

Define the homothetie coefficient

### 1.124 HYDRAULICS LAWS PRINTOUTS

Type: Logical

Dimension: 1

Mnemo impression\_hydrau

DEFAULT VALUE: NO

French keyword: IMPRESSION DES LOIS HYDRAULIQUES

XML pathnode: parametresCas/parametresImpressionResultats/impression/impressionLoiHydraulique

Printing of hydraulics laws into listing file

# 1.125 HYDROSTATIC TERMS FOR TRANSCRITICAL KERNEL

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: TERMES NON HYDROSTATIQUES POUR LE NOYAU TRANSCRITIQUE XML pathnode: parametresCas/parametresNumeriques/termesNonHydrostatiques

Additional non-hydrostatics terms in Saint Venant equations

# 1.126 IMPLICIT TREATMENT OF FRICTION

Type: Logical

Dimension: 1

Mnemo FrottementImplicite

DEFAULT VALUE: NO

French keyword: TRAITEMENT IMPLICITE DU FROTTEMENT

XML pathnode : parametresCas/parametresNumeriques/traitImplicitFrot

Implicit treatment of friction term

### 1.127 IMPLICITATION OF TRANSCRITICAL KERNEL

Type: Logical

Dimension: 1

Mnemo Impli\_Trans

DEFAULT VALUE: NO

French keyword: IMPLICITATION DU NOYAU TRANSCRITIQUE

XML pathnode : parametresCas/parametresNumeriques/implicitNoyauTrans

Use of the implicit scheme in the transcrical kernel

# 1.128 IMPOSED ELEVATION FOR EROSION

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0

French keyword: COTE D'EROSION IMPOSEE

XML pathnode : parametresCas/parametresSedimentaires/charriage/profil/eroLim

Elevation imposed for erosion with option 2 of profile evolution

### 1.129 INDEX OF NODES

Type: String Dimension: 5

Mnemo ExtNoeud(i, inoeud)
DEFAULT VALUE: 'MANDATORY'
French keyword: INDEX DES NOEUDS

XML pathnode : parametresCas/parametresGeometrieReseau/listeNoeuds/noeuds/noeud/num

TODO: WRITE HELP FOR THAT KEYWORD

# 1.130 INITIAL CONCENTRATIONS ABSCISSAE

Type: Real Dimension: 2

Mnemo

DEFAULT VALUE: 0.0;0.0

French keyword: ABSCISSES DES CONC INI

XML pathnode : parametresCas/conditionInitialesCourlis/abscissesConcIni

Abscissae for initial concentrations

# 1.131 INITIAL CONCENTRATIONS FILE

Type: String Dimension: 1

Mnemo FichierConcIni%Nom

DEFAULT VALUE: "

French keyword: FICHIER DES CONCENTRATIONS INITIALES

XML pathnode : parametresCas/parametresTraceur/ parametresConcentrationsInitialesTraceur/fichConcInit

TODO: WRITE HELP FOR THAT KEYWORD

### 1.132 INITIAL CONCENTRATIONS INPUT

Type: Integer Dimension: 1

Mnemo TypeEntreeConcInit

DEFAULT VALUE: 1

French keyword: MODE D'ENTREE DES CONCENTRATIONS INITIALES

XML pathnode: parametresCas/parametresTraceur/ parametresConcentrationsInitialesTraceur/modeEntree

TODO: WRITE HELP FOR THAT KEYWORD

# 1.133 INITIAL CONCENTRATIONS PRESENCE

Type: Logical Dimension: 1

Mnemo Presence\_ConcIni

DEFAULT VALUE: NO

French keyword: PRESENCE CONCENTRATIONS INITIALES

XML pathnode : parametresCas/parametresTraceur/ parametresConcentrationsInitialesTraceur/presenceCon

#### 1.134 INITIAL CONCENTRATIONS PRINTOUTS

Type: Logical

Dimension: 1

Mnemo ImpressionConcIni

DEFAULT VALUE: NO

French keyword: IMPRESSION DES CONCENTRATIONS INITIALES

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ concentInit

TODO: WRITE HELP FOR THAT KEYWORD

# 1.135 INITIAL TRACER CONCENTRATION POINTS NUMBER

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: NOMBRE POINTS CONCENTRATION INITIALE TRACEUR

XML pathnode : parametresCas/parametresTraceur/ parametresConcentrationsInitialesTraceur/nbPts

Unused in FORTRAN

#### 1.136 INITIAL WATER ELEVATIONS

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 0.0

French keyword: COTES DE LA LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/cote

Unused in FORTRAN

### 1.137 INITIAL WATER ELEVATIONS ABSCISSA

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 0.0

French keyword: ABSCISSES DE LA LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/abscisse

Unused in FORTRAN

# 1.138 INITIAL WATER ELEVATIONS AVAILABLE

Type: Logical Dimension: 1

Mnemo presence\_ligne\_deau

DEFAULT VALUE: YES

French keyword: PRESENCE LIGNE D'EAU INITIALE

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/LigEauInit

Indicate the use of initial water elevations

#### 1.139 INITIAL WATER ELEVATIONS DICHARGES

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 0.0

French keyword: DEBITS DE LA LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/debit

Unused in FORTRAN

# 1.140 INITIAL WATER ELEVATIONS FILE

Type: String Dimension: -1

Mnemo FichierLigne%Nom

DEFAULT VALUE: '

French keyword: FICHIER LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/fichLigEau Name of the file with initial water elevations, necessary with REZODT and MASCARET

# 1.141 INITIAL WATER ELEVATIONS FILE FORMAT

Type: Integer Dimension: 1

Mnemo format\_ligne

DEFAULT VALUE: 1

French keyword: FORMAT LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/formatFichLig

File format for the initial water elevations

### 1.142 INITIAL WATER ELEVATIONS INPUT

Type: Integer Dimension: 1

Mnemo type\_entree\_ligne

DEFAULT VALUE: 1

French keyword: MODE D'ENTREE DE LA LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/modeEntree

Specify the kind of input for the initial water elevations

# 1.143 INITIAL WATER ELEVATIONS POINTS NUMBER

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE:

French keyword: NOMBRE POINTS LIGNE D'EAU

XML pathnode : parametresCas/parametresConditionsInitiales/ligneEau/nbPts

Unused in FORTRAN

#### 1.144 **INITIAL WATER ELEVATIONS PRINTOUTS**

Type: Logical

Dimension: 1

Mnemo impression\_ligne

**DEFAULT VALUE:** NO

IMPRESSION DE LA LIGNE D'EAU INITIALE French keyword:

XML pathnode: parametresCas/parametresImpressionResultats/impression/impressionligneEauInitiale

Printing of initial water elevations into listing file

#### **INITIAL WATER ELEVATIONS REACH** 1.145

Type: Integer 1

Dimension:

Mnemo

DEFAULT VALUE:

BRANCHE DE LA LIGNE D'EAU French keyword:

XML pathnode: parametresCas/parametresConditionsInitiales/ligneEau/branche

Unused in FORTRAN

#### INPUT FILE TO CONTINUE COMPUTATION 1.146

Type: String Dimension: -1

Mnemo FichierRepriseLec%Nom

**DEFAULT VALUE:** 

French keyword: FICHIER DE REPRISE EN LECTURE

XML pathnode: parametresCas/parametresConditionsInitiales/repriseEtude/ fichRepriseLec

Name of the file from which to continue computation with permanent boundary conditions

#### 1.147 **INTIAL TIME**

Type: Real Dimension:

Mnemo **TempsInitial** 

**DEFAULT VALUE:** 

TEMPS INITIAL French keyword:

XML pathnode: parametresCas/parametresTemporels/tempsInit

Define intial calculation time in seconds

#### 1.148 **KEYWORD FILE FOR COURLIS**

Type: String Dimension: 1

Mnemo

**DEFAULT VALUE:** 

French keyword: FICHIER DES MOTS-CLEFS COURLIS

XML pathnode: parametresCas/parametresGeneraux/fichierMotCleCourlis

### 1.149 KEYWORDS FILENAME

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER DES MOT-CLES

XML pathnode : parametresCas/parametresGeneraux/fichMotsCles

Xcas file name

# 1.150 LARGEURS VANNES

Type: Real Dimension: 0

Mnemo Singularite(ising)%LargeurVanne

DEFAULT VALUE: 0.0

French keyword: LARGEURS VANNES

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/largVanne

TODO: WRITE HELP FOR THAT KEYWORD

# 1.151 LATERAL INFLOW CONTRIBUTION IN MOMENTUM

Type: Integer
Dimension: 1
Mnemo cqmv
DEFAULT VALUE: 0

French keyword: APPORT DE DEBIT DANS LA QUANTITE DE MVT XML pathnode: parametresCas/parametresNumeriques/apportDebit

The inflow modifies the momentum equation (otherwise, the inflow is considered perpendicular to the flow and does not bring any momentum)

#### 1.152 LATERAL INFLOW DISCHARGES NUMBER

Type: Integer Dimension: 1

Mnemo nb\_apport

DEFAULT VALUE: 0

French keyword: NOMBRE DE DEBITS D'APPORTS

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/nbQApport

TODO: WRITE HELP FOR THAT KEYWORD

# **1.153** LAW NAME

Type: String Dimension: 0

Mnemo LoiHydrau(iloi)%Nom DEFAULT VALUE : 'MANDATORY'

French keyword: LOI NOM

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi/ nom

### 1.154 LAYERS CONCENTRATION

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0;0.0;0.0

French keyword: CONCENTRATION DES COUCHES

XML pathnode: parametresCas/parametresSedimentaires/couchesSedimentaires/ concentrationCouches

Define concentration (kg/m3) of sediment layers

#### 1.155 LAYERS NAME

Type: String Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: ';;'

French keyword: NOM DES COUCHES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/nomCouches

Define sediment layers name

#### 1.156 LIAISON ABSCISSE CORRESPONDANTE

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%CaracRC%Abscisse

DEFAULT VALUE: MANDATORY

French keyword: LIAISON ABSCISSE CORRESPONDANTE

XML pathnode : parametresCas/parametresCasier/liaisons/abscBief

TODO: WRITE HELP FOR THAT KEYWORD

# 1.157 LIAISON COEFFICIENT D'ACTIVATION

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%CoefNoye

DEFAULT VALUE: MANDATORY

French keyword: LIAISON COEFFICIENT D'ACTIVATION

XML pathnode : parametresCas/parametresCasier/liaisons/coefActivation

TODO: WRITE HELP FOR THAT KEYWORD

# 1.158 LIAISON COEFFICIENT DE DEBIT ORIFICE

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%CoefDebitOrifice

DEFAULT VALUE: MANDATORY

French keyword: LIAISON COEFFICIENT DE DEBIT ORIFICE

XML pathnode: parametresCas/parametresCasier/liaisons/coefDebitOrifice

### 1.159 LIAISON COEFFICIENT DE DEBIT SEUIL

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%CoefDebitSeuil

**DEFAULT VALUE: MANDATORY** 

French keyword: LIAISON COEFFICIENT DE DEBIT SEUIL

XML pathnode : parametresCas/parametresCasier/liaisons/coefDebitSeuil

TODO: WRITE HELP FOR THAT KEYWORD

# 1.160 LIAISON COEFFICIENT PERTE DE CHARGE

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%CoefPerteCharge

DEFAULT VALUE: MANDATORY

French keyword: LIAISON COEFFICIENT PERTE DE CHARGE

XML pathnode : parametresCas/parametresCasier/liaisons/coefPerteCharge

TODO: WRITE HELP FOR THAT KEYWORD

# 1.161 LIAISON COTE

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%Cote

DEFAULT VALUE: MANDATORY French keyword: LIAISON COTE

XML pathnode : parametresCas/parametresCasier/liaisons/cote

TODO: WRITE HELP FOR THAT KEYWORD

# 1.162 LIAISON LARGEUR

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%Largeur

DEFAULT VALUE: MANDATORY
French keyword: LIAISON LARGEUR

XML pathnode : parametresCas/parametresCasier/liaisons/largeur

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.163 LIAISON LONGUEUR

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%Longueur

DEFAULT VALUE: MANDATORY
French keyword: LIAISON LONGUEUR

XML pathnode : parametresCas/parametresCasier/liaisons/longueur

#### 1.164 LIAISON NATURE

Type: Integer Dimension: 0

Mnemo Liaison(iliaison)%NatureLiaison

DEFAULT VALUE: MANDATORY
French keyword: LIAISON NATURE

XML pathnode : parametresCas/parametresCasier/liaisons/nature

TODO: WRITE HELP FOR THAT KEYWORD

# 1.165 LIAISON NUMERO DU BIEF ASSOCIE

Type: Integer Dimension: 0

Mnemo Liaison(iliaison)%CaracRC%NumBief

DEFAULT VALUE: MANDATORY

French keyword: LIAISON NUMERO DU BIEF ASSOCIE

XML pathnode : parametresCas/parametresCasier/liaisons/numBiefAssocie

TODO: WRITE HELP FOR THAT KEYWORD

# 1.166 LIAISON NUMERO DU CASIER FIN

Type: Integer Dimension: 0

Mnemo num\_casier\_fin DEFAULT VALUE : MANDATORY

French keyword: LIAISON NUMERO DU CASIER FIN

XML pathnode : parametresCas/parametresCasier/liaisons/numCasierFin

TODO: WRITE HELP FOR THAT KEYWORD

### 1.167 LIAISON NUMERO DU CASIER ORIGINE

Type: Integer Dimension: 0

Mnemo num\_casier\_origine
DEFAULT VALUE: MANDATORY

French keyword: LIAISON NUMERO DU CASIER ORIGINE

XML pathnode: parametresCas/parametresCasier/liaisons/numCasierOrigine

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.168 LIAISON RUGOSITE

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%Rugosite

DEFAULT VALUE: MANDATORY
French keyword: LIAISON RUGOSITE

XML pathnode : parametresCas/parametresCasier/liaisons/rugosite

#### 1.169 LIAISON SECTION

Type: Real Dimension: 0

Mnemo Liaison(iliaison)%Section

DEFAULT VALUE: MANDATORY
French keyword: LIAISON SECTION

XML pathnode : parametresCas/parametresCasier/liaisons/section

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.170 LIAISON TYPE

Type: Integer Dimension: 0

Mnemo Liaison(iliaison)%TypeLiaison

DEFAULT VALUE: MANDATORY French keyword: LIAISON TYPE

XML pathnode : parametresCas/parametresCasier/liaisons/types

TODO: WRITE HELP FOR THAT KEYWORD

# 1.171 LIAISON TYPE ORIFICE

Type: Integer Dimension: 0

Mnemo Liaison(iliaison)%TypeOrifice

**DEFAULT VALUE: MANDATORY** 

French keyword: LIAISON TYPE ORIFICE

XML pathnode : parametresCas/parametresCasier/liaisons/typeOrifice

TODO: WRITE HELP FOR THAT KEYWORD

### 1.172 LIBRARIES LIST

Type: String Dimension: 1

Mnemo nom\_bibli

DEFAULT VALUE:

French keyword: LISTE DES BIBLIOTHEQUES

XML pathnode : parametresCas/parametresGeneraux/bibliotheques/bibliotheque

Was used by the procedure for launching on workstation

# 1.173 LINEAR INTERPOLATION OF FRICTION COEFFICIENT

Type: Logical Dimension: 1

Mnemo InterpLinCoeffFrott

DEFAULT VALUE: NO

French keyword: INTERPOLATION LINEAIRE DES STRICKLER

XML pathnode : parametresCas/parametresModelePhysique/interpolLinStrickler

Option to choose linear interpolation for friction coefficients

#### 1.174 LISTING COURLIS FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER LISTING COURLIS

XML pathnode : parametresCas/impressionResCourlis/resultatsCourlis/ fichierListingCourlis

Name of listing file

# 1.175 LISTING FILE

Type: String Dimension: 1

Mnemo FichierListing%Nom

DEFAULT VALUE: '

French keyword: FICHIER LISTING

XML pathnode : parametresCas/parametresImpressionResultats/listing/fichListing

Name of listing file

# 1.176 LOCAL SLOPE

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: YES

French keyword: PENTE LOCALE

XML pathnode : parametresCas/parametresSedimentaires/charriage/penteEnergie/ penteLocale

The energy slope is calculated locally from Strickler formula (otherwise it is deduced from head

values)

#### 1.177 LOCATION ABSCISSA

Type: Real Dimension: 0

Mnemo abscisse\_rel
DEFAULT VALUE: MANDATORY
French keyword: ABSCISSE DU SITE

XML pathnode : parametresCas/parametresImpressionResultats/stockage/abscisse

Location abscissa

#### 1.178 LOCATION REACH

Type: Integer Dimension: 0

Mnemo num\_branche
DEFAULT VALUE: MANDATORY
French keyword: BRANCHE DU SITE

XML pathnode : parametresCas/parametresImpressionResultats/stockage/branche

Reach ID for each location

1.179 LOI TYPE 51

### 1.179 LOI TYPE

Type: Integer Dimension: 0

Mnemo LoiHydrau(iloi)%Type

DEFAULT VALUE: MANDATORY French keyword: LOI TYPE

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi/ type

TODO: WRITE HELP FOR THAT KEYWORD

# 1.180 LOIS FICHIER

Type: String Dimension: 0

Mnemo FichierLoiHydrau%Nom

DEFAULT VALUE: '

French keyword: LOIS FICHIER

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi /donnees/fichier

TODO: WRITE HELP FOR THAT KEYWORD

# 1.181 LOIS MODE D'ENTREE

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: MANDATORY

French keyword: LOIS MODE D'ENTREE

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi/donnees/modeEr

TODO: WRITE HELP FOR THAT KEYWORD

### 1.182 LONGITUDINAL PROFILE RESULTS FILE

Type: String Dimension: 1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER RESULTATS PROFIL EN LONG

XML pathnode : parametresCas/impressionResCourlis/resultatsCourlis/ fichierResProfilLong

Name of the results file for the longitudinal profiles

#### 1.183 LONGUEUR APPORT

Type: Real Dimension: 0

Mnemo Apport(iapp)%Longueur

DEFAULT VALUE: MANDATORY French keyword: LONGUEUR APPORT

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/longueurs

### 1.184 LONGUEUR DEVERSOIRS

Type: Real Dimension: 0

Mnemo Deversoir(idev)%Longueur

DEFAULT VALUE: 0.0

French keyword: LONGUEUR DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/longueur

TODO: WRITE HELP FOR THAT KEYWORD

# 1.185 MAIN CHANNEL COEFFICIENT

Type: Real Dimension: 0

Mnemo valeur\_coeff\_min DEFAULT VALUE : MANDATORY

French keyword: VALEUR DU COEFFICIENT LIT MINEUR

XML pathnode : parametresCas/parametresCalage/frottement/coefLitMin

Define the value of the friction coefficient in the main channel

# 1.186 MAXIMAL ELEVATION AT CHECKPOINT

Type: Real Dimension: 1

Mnemo Cote max controle

DEFAULT VALUE: -1.0

French keyword: COTE MAXIMALE DE CONTROLE

XML pathnode : parametresCas/parametresTemporels/coteMax

Define maximal elevation at checkpoint to stop computation

# 1.187 MAXIMAL TIME

Type: Real Dimension: 1

Mnemo TempsMaximum
DEFAULT VALUE: 10000000.0
French keyword: TEMPS MAXIMUM

XML pathnode : parametresCas/parametresTemporels/tempsMax

Define maximal time to reach in simulation in seconds

# 1.188 MEAN DIAMETER

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.0

French keyword: DIAMETRE MOYEN

XML pathnode : parametresCas/parametresSedimentaires/parametresPhysiques/dm

Mean diameter

### 1.189 METHODE DE CALCUL DU MAILLAGE

Type: Integer Dimension: 1

Mnemo TypeMaillage

DEFAULT VALUE: 2

French keyword: METHODE DE CALCUL DU MAILLAGE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/methodeMaillage

TODO: WRITE HELP FOR THAT KEYWORD

# 1.190 MINIMUM WATER DEPTH

Type: Real
Dimension: 1
Mnemo HEPS
DEFAULT VALUE: 0.005

French keyword: HAUTEUR D'EAU MINIMALE

XML pathnode : parametresCas/parametresNumeriques/hauteurEauMini

TODO: WRITE HELP FOR THAT KEYWORD

# 1.191 MODE DE SAISIE DU MAILLAGE

Type: Integer Dimension: 1

Mnemo mode saisie maillage

DEFAULT VALUE: 2

French keyword: MODE DE SAISIE DU MAILLAGE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/modeSaisie

TODO: WRITE HELP FOR THAT KEYWORD

### 1.192 MODEL SAVE

Type: Logical Dimension: 1

Mnemo sauvegarde\_modele

DEFAULT VALUE: False

French keyword: SAUVEGARDE DU MODELE

XML pathnode : parametresCas/parametresGeneraux/sauveModele

Option to save the model in a ascii file (see MODEL SAVE FILE)

# 1.193 MODEL SAVE FILE

Type: String Dimension: 1

Mnemo FichierModele%Nom

DEFAULT VALUE: 'temp'

French keyword: FICHIER SAUVEGARDE DU MODELE

XML pathnode : parametresCas/parametresGeneraux/fichSauvModele

Model save file (general informations)

#### 1.194 MODIFIED FORMULA FOR SHEAR STRESS COMPUTATION

Type: Logical

Dimension: 1

Mnemo tau\_option DEFAULT VALUE: YES

French keyword: FORMULE MODIFIEE DE CALCUL DE LA CONTRAINTE XML pathnode: parametresCas/parametresSedimentaires/shearformula

Choice of the formula for shear stress computation

# 1.195 MORPHOLOGY OPTION RECKING 2015

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE:

French keyword: MORPHOLOGY OPTION RECKING 2015

XML pathnode : parametresCas/parametresSedimentaires/charriage/recking2015/ morphoOptRecking2015

Mobility shear stress for 1: riffle-pools or 2: others morphologies

# 1.196 NETWORK PRINTOUTS

Type: Logical

Dimension: 1

Mnemo impression reseau

DEFAULT VALUE: NO

French keyword: IMPRESSION DU RESEAU

XML pathnode : parametresCas/parametresImpressionResultats/impression/ impressionReseau

Printing of network information into listing file

### 1.197 NODES NUMBER

Type: Integer Dimension: 1

Mnemo NbNoeud

DEFAULT VALUE: 0

French keyword: NOMBRE DE NOEUDS

XML pathnode: parametresCas/parametresGeometrieReseau/listeNoeuds/nb

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.198 NOM DU CONFLUENT x

Type: String Dimension: 0

Mnemo Confluent(iconf)%Nom

DEFAULT VALUE:

French keyword: NOM DU CONFLUENT x

XML pathnode: parametresCas/parametresConfluents/confluents/structureParametresConfluent/nom

### 1.199 NOM EXTREMITE

Type: String Dimension: 0

Mnemo Extremite(iext)%Nom
DEFAULT VALUE: 'MANDATORY'
French keyword: NOM EXTREMITE

XML pathnode: parametresCas/parametresGeometrieReseau/extrLibres/noms/string

TODO: WRITE HELP FOR THAT KEYWORD

# 1.200 NOMBRE D'APPORTS DE PLUIE

Type: Integer Dimension: 0

Mnemo nombre\_apport

DEFAULT VALUE: 0

French keyword: NOMBRE D'APPORTS DE PLUIE

XML pathnode : parametresCas/parametresApportDeversoirs/apportCasier/nbApportPluie

TODO: WRITE HELP FOR THAT KEYWORD

# 1.201 NOMBRE DE BRANCHES

Type: Integer
Dimension: 1
Mnemo NbBief

DEFAULT VALUE: 1

French keyword: NOMBRE DE BRANCHES

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/nb

TODO: WRITE HELP FOR THAT KEYWORD

### 1.202 NOMBRE DE CASIERS

Type: Integer Dimension: 0

Mnemo nombre\_casier

DEFAULT VALUE: 0

French keyword: NOMBRE DE CASIERS

XML pathnode : parametresCas/parametresCasier/nbCasiers

TODO: WRITE HELP FOR THAT KEYWORD

# 1.203 NOMBRE DE CONFLUENTS

Type: Integer Dimension: 1

Mnemo nb\_confluent

DEFAULT VALUE: 0

French keyword: NOMBRE DE CONFLUENTS

XML pathnode : parametresCas/parametresConfluents/nbConfluents

#### 1.204 NOMBRE DE DEVERSOIRS

Type: Integer Dimension: 1

Mnemo nb deversoir

DEFAULT VALUE: 0

French keyword: NOMBRE DE DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/nbDeversoirs

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.205 NOMBRE DE LIAISONS

Type: Integer Dimension: 1

Mnemo nombre liaison

DEFAULT VALUE: 0

French keyword: NOMBRE DE LIAISONS

XML pathnode: parametresCas/parametresCasier/liaisons/nbLiaisons

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.206 NOMBRE DE PAS DE PLANIMETRAGE

Type: Integer Dimension: 1

Mnemo nb\_pas\_planim

DEFAULT VALUE:

French keyword: NOMBRE DE PAS DE PLANIMETRAGE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/planim/nbPas

TODO: WRITE HELP FOR THAT KEYWORD

### 1.207 NOMBRE DE PERTES DE CHARGE SINGULIERES

Type: Integer Dimension: 0

Mnemo nb\_pc\_sing

DEFAULT VALUE: 0

French keyword: NOMBRE DE PERTES DE CHARGE SINGULIERES

XML pathnode : parametresCas/parametresSingularite/pertesCharges/nbPerteCharge

TODO: WRITE HELP FOR THAT KEYWORD

# 1.208 NOMBRE DE PLAGES DE DISCRETISATION

Type: Integer Dimension: 1

Mnemo nb\_maille

DEFAULT VALUE: 1

French keyword: NOMBRE DE PLAGES DE DISCRETISATION

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/nbPlages

#### 1.209 NOMBRE DE SECTIONS DE CALCUL

Type: Integer

Dimension: 1

Mnemo nb\_section

DEFAULT VALUE: 1

French keyword: NOMBRE DE SECTIONS DE CALCUL

XML pathnode: parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/nbSections

TODO: WRITE HELP FOR THAT KEYWORD

# 1.210 NOMBRE DE SECTIONS DE LA ZONE

Type: Integer Dimension: 0

Mnemo maille\_r%NbSection
DEFAULT VALUE: MANDATORY

French keyword: NOMBRE DE SECTIONS DE LA ZONE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/nbSectionZone

TODO: WRITE HELP FOR THAT KEYWORD

# 1.211 NOMBRE DE ZONES DE DISCRETISATION

Type: Integer

Dimension: 1

Mnemo nb maille

DEFAULT VALUE: 1

French keyword: NOMBRE DE ZONES DE DISCRETISATION

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/nbZones

TODO: WRITE HELP FOR THAT KEYWORD

### 1.212 NOMBRE DE ZONES DE PLANIMETRAGE

Type: Integer Dimension: 1

Mnemo nb\_zone\_planim

DEFAULT VALUE: 1

French keyword: NOMBRE DE ZONES DE PLANIMETRAGE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/planim/nbZones

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.213 NOMS DES APPORTS

Type: String Dimension: 0

Mnemo Apport(iapp)%Nom
DEFAULT VALUE: 'MANDATORY'
French keyword: NOMS DES APPORTS

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/noms/string

#### 1.214 NOMS DEVERSOIRS

Type: String Dimension: 0

Mnemo Deversoir(idev)%Nom
DEFAULT VALUE: 'MANDATORY'
French keyword: NOMS DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/nbDeversoirs /noms/string

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.215 NOMS SEUILS

Type: String Dimension: 0

Mnemo Singularite(ising)%Nom

DEFAULT VALUE: 'weir'

French keyword: NOMS SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/nom

TODO: WRITE HELP FOR THAT KEYWORD

# 1.216 NUM BRANCHE DE LA PERTE DE CHARGE SINGULIERE

Type: Integer Dimension: 0

Mnemo num\_branche
DEFAULT VALUE: MANDATORY

French keyword: NUM BRANCHE DE LA PERTE DE CHARGE SINGULIERE

XML pathnode : parametresCas/parametresSingularite/pertesCharges/numBranche

TODO: WRITE HELP FOR THAT KEYWORD

### 1.217 NUM BRANCHE DEVERSOIRS

Type: Integer Dimension: 0

Mnemo Deversoir(idev)%NumBranche

DEFAULT VALUE: 1

French keyword: NUM BRANCHE DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/numBranche

TODO: WRITE HELP FOR THAT KEYWORD

# 1.218 NUM BRANCHE DU BARRAGE PRINCIPAL

Type: Integer Dimension: 1

Mnemo Barrage%NumBranche

DEFAULT VALUE: 0

French keyword: NUM BRANCHE DU BARRAGE PRINCIPAL

XML pathnode : parametresCas/parametresSingularite/barragePrincipal/numBranche

#### 1.219 NUM BRANCHE SEUILS

Type: Integer Dimension: 0

Mnemo Singularite(ising)%NumBranche

DEFAULT VALUE: 1

French keyword: NUM BRANCHE SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/numBranche

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.220 NUM DE L'EXTREMITE DE DEBUT

Type: Integer Dimension: 0

Mnemo ExtDebBief(ibief)
DEFAULT VALUE: MANDATORY

French keyword: NUM DE L'EXTREMITE DE DEBUT

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/numExtremDebut

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.221 NUM DE L'EXTREMITE DE FIN

Type: Integer Dimension: 0

Mnemo ExtFinBief(ibief)
DEFAULT VALUE: MANDATORY

French keyword: NUM DE L'EXTREMITE DE FIN

XML pathnode : parametresCas/parametresGeometrieReseau/listeBranches/numExtremFin

TODO: WRITE HELP FOR THAT KEYWORD

# 1.222 NUMBER CONCENTRATION LAW LATERAL SAND

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 0

French keyword: NUMERO LOI CONC APPORT SABLE

XML pathnode : parametresCas/apportsConcentration/apportsSedimentaires/ numLoiConcApportSable

Number of the concentration law used at lateral boundaries for sands

# 1.223 NUMBER CONCENTRATION LAW LATERAL SILT

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 0

French keyword: NUMERO LOI CONC APPORT VASE

XML pathnode: parametresCas/apportsConcentration/apportsSedimentaires/ numLoiConcApportVase

Number of the concentration law used at lateral boundaries for silts

#### 1.224 NUMBER CONCENTRATION LAW UPSTREAM SAND

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 0

French keyword: NUMERO LOI CONC AMONT SABLE

XML pathnode : parametresCas/apportsConcentration/conditionsAmont/ numLoiConcAmontSable

Number of the concentration law used at upstream boundaries for sands

# 1.225 NUMBER CONCENTRATION LAW UPSTREAM SILT

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 0

French keyword: NUMERO LOI CONC AMONT VASE

XML pathnode : parametresCas/apportsConcentration/conditionsAmont/numLoiConcAmontVase

Number of the concentration law used at upstream boundaries for silts

# 1.226 NUMBER OF CONCENTRATION LAWS

Type: Integer Dimension: 1

Mnemo

Vinemo

DEFAULT VALUE: 1

French keyword : NOMBRE DE LOIS DE CONCENTRATION XML pathnode : parametresCas/loisDeConcentration/nbLois

Number of concentration laws

### 1.227 NUMBER OF DIFFERENT DISCHARGES IN LAWS

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: LOIS NOMBRE DE DEBITS DIFFERENTS

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi/donnees/nbDebit

Unused in FORTRAN

# 1.228 NUMBER OF DRY ZONES

Type: Integer Dimension: 1

Mnemo nb\_zone\_seche

DEFAULT VALUE: 0

French keyword: NOMBRE DE ZONES SECHES

XML pathnode : parametresCas/parametresConditionsInitiales/zonesSeches/nb

Number of dry zones

#### 1.229 NUMBER OF FRICTION ZONES

Type: Integer Dimension: -1

Mnemo nb zone frottement

**DEFAULT VALUE:** 

NOMBRE DE ZONES DE FROTTEMENT French keyword:

XML pathnode: parametresCas/parametresCalage/frottement/nbZone

Define the number of friction zones

# 1.230 NUMBER OF HYDRAULIC LAWS

Type: Integer Dimension: Mnemo nb loi **DEFAULT VALUE:** 2

French keyword: NOMBRE DE LOIS HYDRAULIQUES

XML pathnode: parametresCas/parametresLoisHydrauliques/nb

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.231 NUMBER OF ITERATIONS FOR THE HYDRAULIC MODEL

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE:

French keyword: NOMBRE D'ITERATIONS HYDRAULIQUE

XML pathnode: parametresCas/couplage/nbIterationsHydraulique

Specify the number of iterations of the hydraulic model (Mascaret)

#### 1.232 NUMBER OF ITERATIONS FOR THE SEDIMENT MODEL

Type: Integer 1

Dimension:

Mnemo

DEFAULT VALUE:

NOMBRE D'ITERATIONS SEDIMENTO French keyword:

XML pathnode: parametresCas/couplage/nbIterationsSedimento

Specify the number of iterations of the sediment model (Courlis)

#### 1.233 **NUMBER OF LAYERS**

Type: Integer Dimension: 1

Mnemo **NbCouches** 

**DEFAULT VALUE:** 

NOMBRE DE COUCHES French keyword:

XML pathnode: parametresCas/parametresSedimentaires/nbCouches

Define the number of sediment layers

### 1.234 NUMBER OF LOCATIONS

Type: Integer
Dimension: 1
Mnemo nb\_site
DEFAULT VALUE: 0

French keyword: NOMBRE DE SITES

XML pathnode : parametresCas/parametresImpressionResultats/stockage/nbSite

Number of locations whose results are saved

# 1.235 NUMBER OF POINTS IN LAWS

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 2

French keyword: LOIS NOMBRE DE POINTS

XML pathnode: parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi/donnees/nbPoint

Unused in FORTRAN

# 1.236 NUMBER OF SECTIONS WITH STORAGE ZONES

Type: Integer Dimension: -1

Mnemo nb\_profil\_zone\_sto

DEFAULT VALUE: 0

French keyword: NOMBRE DE PROFILS COMPORTANT DES ZONES DE STOCKAGE

XML pathnode : parametresCas/parametresCalage/zoneStockage/nbProfils

Indicate the number of sections with storage zones

# 1.237 NUMBER OF TIME STEPS

Type: Integer
Dimension: 1
Mnemo NIT
DEFAULT VALUE: 10000000

French keyword: NOMBRE DE PAS DE TEMPS

XML pathnode : parametresCas/parametresTemporels/nbPasTemps

Define the number of time steps to compute

# 1.238 NUMBER OF TRACER SOURCES

Type: Integer Dimension: 1

Mnemo nb\_Sources

DEFAULT VALUE: 0

French keyword: NOMBRE DE SOURCES DE TRACEURS

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/nbSources

### 1.239 NUMBER OF TRACERS

Type: Integer
Dimension: 1
Mnemo Nbtrac
DEFAULT VALUE: 0

French keyword: NOMBRE DE TRACEURS

XML pathnode : parametresCas/parametresTraceur/nbTraceur

TODO: WRITE HELP FOR THAT KEYWORD

# 1.240 NUMBER OF TRIBUTARIES FOR CONFLUENT X

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 3

French keyword: NOMBRE D'AFFLUENTS DU CONFLUENT x

XML pathnode : parametresCas/parametresConfluents/confluents/structureParametresConfluent/nbAffluent

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.241 NUMERICAL FOR BEDLOAD SCHEME

Type: Integer Dimension: -1

Mnemo bedload scheme

DEFAULT VALUE: 1

French keyword: SCHEMA NUMERIQUE POUR LE CHARRIAGE

XML pathnode : parametresCas/parametresSedimentaires/charriage/ schemaNumerique

Choice of numerical scheme for bedload

# 1.242 NUMERO BRANCHE APPORT

Type: Integer Dimension: 0

Mnemo Apport(iapp)%NumBranche

DEFAULT VALUE: MANDATORY

French keyword: NUMERO BRANCHE APPORT

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/numBranche

TODO: WRITE HELP FOR THAT KEYWORD

# 1.243 NUMERO DE BRANCHE DE ZONE

Type: Integer Dimension: 0

Mnemo maille\_r%Branche
DEFAULT VALUE: MANDATORY

French keyword: NUMERO DE BRANCHE DE ZONE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/numBrancheZo

### 1.244 NUMERO DE LA LOI

Type: Integer Dimension: 0

Mnemo Extremite(i)%NumeroLoi

DEFAULT VALUE: MANDATORY
French keyword: NUMERO DE LA LOI

XML pathnode : parametresCas/parametresGeometrieReseau/extrLibres/numLoi

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.245 NUMERO DE LA LOI ASSOCIEE

Type: Integer Dimension: 0

Mnemo ApportPluie(iapport)%NumeroLoi

DEFAULT VALUE: 0

French keyword: NUMERO DE LA LOI ASSOCIEE

XML pathnode : parametresCas/parametresApportDeversoirs/apportCasier/numLoi

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.246 NUMERO DU CASIER ASSOCIE

Type: Integer Dimension: 0

Mnemo ApportPluie(iapport)%Numero

DEFAULT VALUE: 0

French keyword: NUMERO DU CASIER ASSOCIE

XML pathnode : parametresCas/parametresApportDeversoirs/apportCasier/numCasier

TODO: WRITE HELP FOR THAT KEYWORD

### 1.247 NUMERO DU DERNIER PROFIL

Type: Integer Dimension: 0

Mnemo proffin\_zone\_planim
DEFAULT VALUE: MANDATORY

French keyword: NUMERO DU DERNIER PROFIL

XML pathnode : parametresCas/parametresPlanimetrageMaillage/planim/numDerProf

TODO: WRITE HELP FOR THAT KEYWORD

# 1.248 NUMERO DU DERNIER PROFIL DE LA SERIE

Type: Integer Dimension: 0

Mnemo maille\_e(k)%ProfilFin
DEFAULT VALUE: MANDATORY

French keyword: NUMERO DU DERNIER PROFIL DE LA SERIE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/numDerProfPlanimetrageMaillage/maillage/maillageClavier/numDerProfPlanimetrageMaillage/maillage/maillage/maillageClavier/numDerProfPlanimetrageMaillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/maillage/

#### 1.249 NUMERO DU PREMIER PROFIL

Type: Integer Dimension: 0

Mnemo profdeb\_zone\_planim DEFAULT VALUE: MANDATORY

French keyword: NUMERO DU PREMIER PROFIL

XML pathnode : parametresCas/parametresPlanimetrageMaillage/planim/num1erProf

TODO: WRITE HELP FOR THAT KEYWORD

# 1.250 NUMERO DU PREMIER PROFIL DE LA SERIE

Type: Integer Dimension: 0

Mnemo maille\_e(k)%ProfilDeb

DEFAULT VALUE: MANDATORY

French keyword: NUMERO DU PREMIER PROFIL DE LA SERIE

XML pathnode: parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/num1erProfPla

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.251 NUMERO LOI APPORT

Type: Integer Dimension: 0

Mnemo Apport(iapp)%NumeroLoi

DEFAULT VALUE: MANDATORY
French keyword: NUMERO LOI APPORT

XML pathnode : parametresCas/parametresApportDeversoirs/debitsApports/numLoi

TODO: WRITE HELP FOR THAT KEYWORD

### 1.252 NUMERO LOI DEVERSOIRS

Type: Integer Dimension: 0

Mnemo Deversoir(idev)%NumeroLoi

DEFAULT VALUE: 0

French keyword: NUMERO LOI DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/numLoi

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.253 NUMEROS LOIS SEUILS

Type: Integer Dimension: 0

Mnemo Singularite(ising)%NumeroLoi

DEFAULT VALUE: 0

French keyword: NUMEROS LOIS SEUILS

XML pathnode: parametresCas/parametresSingularite/seuils /structureParametresSeuil/numLoi

#### 1.254 OPTIMIZATION OF TRANSCRITICAL KERNEL

Type: Logical Dimension: 1 Mnemo Opt DEFAULT VALUE: NO

French keyword: OPTIMISATION DU NOYAU TRANSCRITIQUE

XML pathnode : parametresCas/parametresNumeriques/optimisNoyauTrans

Option to optimize transcritical kernel

# 1.255 OPTION AUTO CALIBRATION

Type: Logical Dimension: -1

Mnemo

DEFAULT VALUE: TRUE

French keyword: OPTION CALAGE AUTO

XML pathnode: parametresCas/parametresCalageAuto/parametres/modeCalageAuto

Option to activate automatic calibration

# 1.256 OPTION FOR DISPERSION CALCULATION FOR TRACERS

Type: Integer Dimension: 1

Mnemo ConsTrac(ib)%OptionCalculDisp

DEFAULT VALUE: 1

French keyword: OPTION DE CALCUL DE LA DISPERSION POUR LES TRACEURS

 $XML\ pathnode: \qquad parametres Cas/parametres Traceur/parametres Convection Diffusion\ / option Calcul Diffusion\ / option Calcul$ 

TODO: WRITE HELP FOR THAT KEYWORD

# 1.257 OPTION FOR PROFILE EVOLUTION

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: OPTION D'EVOLUTION DE PROFIL

XML pathnode: parametresCas/parametresSedimentaires/charriage/profil/evolOpt Model for evolution of the tranversal profiles (1: flat deposit et uniform erosion; 2: uniform

deposit et uniform erosion)

#### 1.258 OPTION ROUNDED ENERGY SLOPE

Type: Logical Dimension: 1

Dimension:
Mnemo

DEFAULT VALUE: NO

French keyword: OPTION ARRONDI PENTE ENERGIE

XML pathnode : parametresCas/parametresSedimentaires/charriage/penteEnergie/ optArrondi

The transport formula uses rounded energy slope

### 1.259 ORDER FOR THE CONVECTION FINITE VOLUMES SCHEME

Type: Integer Dimension: 1

Mnemo ConsTrac(ib)%OrdreVF

DEFAULT VALUE: 1

French keyword: ORDRE DU SCHEMA DE CONVECTION VOLUMES FINIS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion /ordreSchemaConvec

TODO: WRITE HELP FOR THAT KEYWORD

# 1.260 ORDONNEE DE L'AFFLUENT DU CONFLUENT X

Type: Real Dimension: 0

Mnemo Confluent(iconf)%OrdonneeAfflu(iafflu)

DEFAULT VALUE: 0.0

French keyword: ORDONNEE DE L'AFFLUENT DU CONFLUENT x

XML pathnode: parametresCas/parametresConfluents/confluents/structureParametresConfluent/ordonnees

TODO: WRITE HELP FOR THAT KEYWORD

# 1.261 OUTPUT FILE TO CONTINUE COMPUTATION

Type: String Dimension: -1

Mnemo FichierRepriseEcr%Nom

DEFAULT VALUE:

French keyword: FICHIER DE REPRISE EN ECRITURE

XML pathnode: parametresCas/parametresImpressionResultats/fichReprise/fichRepriseEcr Name of the file created with permanent boundary limits to continue computation (only with

the MASCARET kernel)

# 1,262 PARTHENIADES COEFFICIENT

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0;0.0;0.0

French keyword: COEFFICIENT DE PARTHENIADES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/ partheniades

Define the Partheniades coefficient for suspension

#### 1.263 PAS D'ESPACE DE LA SERIE

Type: Real Dimension: 0

Mnemo maille\_e(k)%Pas
DEFAULT VALUE: MANDATORY

French keyword: PAS D'ESPACE DE LA SERIE

XML pathnode : parametresCas/parametresPlanimetrageMaillage/maillage/maillageClavier/pasEspacePlag

### 1.264 PERIOD FOR PRINTOUTS

Type: Integer Dimension: 1

Mnemo PasImpression

DEFAULT VALUE: 1

French keyword: PAS D'IMPRESSION

XML pathnode: parametresCas/parametresImpressionResultats/pasStockage/pasImpression

Define the period to print results in number of time steps

# 1.265 PERIOD FOR PRINTOUTS COURLIS

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: PAS D'IMPRESSION COURLIS

XML pathnode : parametresCas/impressionResCourlis/pasImpressionCourlis Define the period to print results into the Courlis listing in number of time steps

#### 1.266 PERIOD FOR STORAGE

Type: Integer Dimension: 1

Mnemo PasStockage

DEFAULT VALUE: 1

French keyword: PAS DE STOCKAGE

XML pathnode : parametresCas/parametresImpressionResultats/pasStockage/pasStock

Define the period to save results in number of time steps

### 1.267 PLANIMETRAGE PRINTOUTS

Type: Logical

Dimension: 1

Mnemo ImpressionPlani

DEFAULT VALUE: NO

French keyword: IMPRESSION DU PLANIMETRAGE

XML pathnode : parametresCas/parametresImpressionResultats/impression/impressionPlanimetrage

Printing of planimetrage information into listing file

#### 1.268 POROSITY

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.25 French keyword: POROSITE

XML pathnode : parametresCas/parametresSedimentaires/charriage/porosite

Define sediment porosity

#### 1.269 POST-PROCESSOR

Type: Integer Dimension: 1

Mnemo post\_processeur

DEFAULT VALUE: 1

French keyword: POST-PROCESSEUR

XML pathnode : parametresCas/parametresImpressionResultats/resultats/postProcesseur Results file format. If SARAP kernel is selected and the post processor is RUBENS then the

format will be LIDOP (ASCII file) otherwise it will be LIDONP (binary format)

#### 1.270 PRECISION ROUNDED ENERGY SLOPE

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 3

French keyword: PRECISION ARRONDI PENTE ENERGIE

XML pathnode : parametresCas/parametresSedimentaires/charriage/penteEnergie/precision

Number of decimals to keep for the energy slope

#### 1.271 PRINCIPAL PROGRAM

Type: String Dimension: 1

Mnemo nom\_fortran DEFAULT VALUE : 'princi.f'

French keyword: PROGRAMME PRINCIPAL

XML pathnode : parametresCas/parametresGeneraux/progPrincipal

Name of Fortran file (unused in this version).

#### 1.272 PRINTOUTS CONCENTRATION LAWS

Type: Logical Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES LOIS DE CONCENTRATION

XML pathnode: parametresCas/impressionResCourlis/impressionCourlis/ impressionLoisConcentration

Print the concentration laws

#### 1.273 PRINTOUTS COUPLING PARAMETERS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES PARAMETRES DE COUPLAGE

XML pathnode: parametresCas/impressionResCourlis/impressionCourlis/ impressionParamCouplage

Print the coupling parameters

#### 1.274 PRINTOUTS INITIAL CONC LAWS FOR COURLIS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES CONC INITIALES POUR COURLIS

XML pathnode: parametresCas/impressionResCourlis/impressionCourlis/ impressionConcInitiales

Print the initial concentrations

#### 1.275 PRINTOUTS SEDIMENT INFLOWS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES APPORTS SEDIMENTAIRES

XML pathnode : parametresCas/impressionResCourlis/impressionCourlis/ impressionApportsSedi

Print the sediment inflows

# 1.276 PRINTOUTS SEDIMENT INTERFACES

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES INTERFACES SEDIMENTAIRES

XML pathnode : parametresCas/impressionResCourlis/impressionCourlis/ impressionInterfacesSedi

Print the sediment interfaces (between layers)

### 1.277 PRINTOUTS SEDIMENT PARAMETERS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: IMPRESSION DES PARAMETRES SEDIMENTAIRES

XML pathnode: parametresCas/impressionResCourlis/impressionCourlis/ impressionInterfacesSedi

Print the sediment parameters

# 1.278 PROFILS EN ABSCISSE ABSOLUE

Type: Logical

Dimension: 1

Mnemo Prof\_Abs
DEFAULT VALUE: NO

French keyword: PROFILS EN ABSCISSE ABSOLUE

XML pathnode : parametresCas/parametresGeometrieReseau/geometrie/profilsAbscAbsolu

### 1.279 PROGRESSIVE OVERFLOW IN FLOODPLAIN

Type: Logical

Dimension: 1

Mnemo DebProgressifLM

DEFAULT VALUE: NO

French keyword: DEBORDEMENT PROGRESSIF LIT MAJEUR

XML pathnode: parametresCas/parametresModelePhysique/debordement/litMajeur Floodplain channel is taken into account only when water surface elevation reach the bottom

elevation at the limit between main and floodplain channel

#### 1.280 PROGRESSIVE OVERFLOW IN STORAGE AREA

Type: Logical

Dimension: 1

Mnemo DebProgressifZS

DEFAULT VALUE: NO

French keyword: DEBORDEMENT PROGRESSIF ZONES DE STOCKAGE

XML pathnode: parametresCas/parametresModelePhysique/debordement/zoneStock Storage areas channel are taken into account only when water surface elevation reach the bottom elevation at the limit between main channel and storage area

#### 1.281 REACH NUMBER FOR THE FRICTION ZONE

Type: Integer Dimension: 0

Mnemo branche\_zone\_frott
DEFAULT VALUE: MANDATORY

French keyword: NUMERO DE BIEF POUR LA ZONE DE FROTTEMENT XML pathnode: parametresCas/parametresCalage/frottement/numBranche

Define the reach number for the friction zone

# 1.282 REACHES GAP

Type: Real
Dimension: 1
Mnemo ecart
DEFAULT VALUE: 1.0

French keyword: ECART ENTRE BRANCHES

XML pathnode : parametresCas/parametresImpressionResultats/rubens/ecartInterBranch

TODO: WRITE HELP FOR THAT KEYWORD

# 1.283 RESIDUAL ROBUSTNESS COEFFICIENT

Type: Real
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 0.0

French keyword: COEFFICIENT DE RESISTANCE RESIDUELLE

XML pathnode : parametresCas/parametresSedimentaires/talus/coeffResistanceResiduelle

Define the coefficient of residual robustness

#### 1.284 RESULTS FILE

Type: String Dimension: 1

Mnemo FichierResultat%Nom

DEFAULT VALUE: '

French keyword: FICHIER RESULTATS

XML pathnode: parametresCas/parametresImpressionResultats/fichResultat

Name of the results file read by RUBENS

# 1.285 ROUGHNESS RATIO WITH QSTAR FOR LEFORT

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: RAPPORT RUGOSITE AVEC QSTAR POUR LEFORT

XML pathnode : parametresCas/parametresSedimentaires/charriage/lefort/ rapportRugositeQstarLefort

Option to calculate the ratio between the friction and the skin friction when it is unknown

# 1.286 SAND D50

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0;0.0;0.0

French keyword: D50 DES SABLES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/d50Sables

Median diameter non-cohesive sediments (sands) for suspension

### 1.287 SAND DIFFUSION COEFFICIENT

Type: Real
Dimension: 1
Mnemo CnuxS
DEFAULT VALUE: 50.0

French keyword: COEFFICIENT DE DIFFUSION DES SABLES

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/ coefDiffusionSables

Define the diffusion coefficient for non-cohesive sediments (sands) for suspension

# 1.288 SAND FALL VELOCITY

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0;0.0;0.0

French keyword: VITESSE DE CHUTE DES SABLES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/ vitesseChuteSables

Non-cohesive sediment fall velocity for suspension

#### 1.289 SAND INITIAL CONCENTRATION

Type: Real Dimension: 2

Mnemo

DEFAULT VALUE: 0.0:0.0

French keyword: CONCENTRATION EN SABLE INI

XML pathnode: parametresCas/conditionInitialesCourlis/concentrationSableIni

Initial concentration for sands

#### 1.290 SAND LIMIT PERCENTAGE

Type: Real Dimension: 1

Mnemo LimiteSable

DEFAULT VALUE: 60.0

French keyword: POURCENTAGE LIMITE DE SABLE

XML pathnode : parametresCas/parametresSedimentaires/traitementCouches/ pourcentageLimSable

Non-cohesive (sands) percentage limit in the sediment layer to consider erosion and deposition laws for non-cohesive sediments (percentage greater than the limit defined) or for cohesive sediments (percentage lower than the limit defined) for suspension

#### 1.291 SAND PERCENTAGE

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0;0.0;0.0

French keyword: POURCENTAGE DE SABLE

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/ pourcentageSable

Define non-chesive sediments percentage in the sediment layers for suspension

#### 1.292 SAUVEGARDE MAILLAGE

Type: Logical

Dimension: 1

Mnemo sauvegarde\_maillage

DEFAULT VALUE: NO

 $French\ keyword: \qquad {\tt SAUVEGARDE}\ {\tt MAILLAGE}$ 

 $XML\ pathnode: \qquad parametres Cas/parametres Planimetrage Maillage/maillage/sauv Maillage$ 

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.293 SECTION NUMBER STORAGE

Type: Integer Dimension: 0

Mnemo num\_profil\_sto DEFAULT VALUE : MANDATORY

French keyword: NUMERO PROFIL STOCKAGE

XML pathnode : parametresCas/parametresCalage/zoneStockage/numProfil

List the numbers of sections with storage zones

#### 1.294 SEDIMENT SLIDE OPTION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: OPTION DE RUPTURE DE TALUS

XML pathnode : parametresCas/parametresSedimentaires/charriage/ruptureTalus/ optRuptureTalus

Activate sediment slide model

#### 1.295 SEDIMENTS PROPERTIES FILE

Type: String Dimension: 1

Mnemo FichierSedim

DEFAULT VALUE:

French keyword : FICHIER DES CARACTERISTIQUES SEDIMENTAIRES XML pathnode : parametresCas/parametresSedimentaires/fichierCaracSedi

Name of the file with the sediments properties (obsolete)

#### 1.296 SEDIMENTS PROPERTIES INPUT

Type: Integer Dimension: 1

Mnemo ModeParamSedim

DEFAULT VALUE: 1

French keyword : MODE D'ENTREE DES CARACTERISTIQUES SEDIMENTAIRES XML pathnode : parametresCas/parametresSedimentaires/modeEntreeCaracSedi

Specify the kind of input for the sediments properties

# 1.297 SEDIMENTS WEIGHT BY VOLUME

Type: Real
Dimension: 3
Mnemo Talus
DEFAULT VALUE: 0.0:0.0:0.0

French keyword: POIDS VOLUMIQUE DES SEDIMENTS

XML pathnode : parametresCas/parametresSedimentaires/talus/poidsVolumiqueSedi

Define the weight by volume of sediments

# 1.298 SHIELDS SHEAR STRESS WITH DISCHARGE FOR RECKING 2015

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: YES

French keyword: CALCUL CONTRAINTE AVEC LE DEBIT POUR RECKING 2015

XML pathnode: parametresCas/parametresSedimentaires/charriage/recking2015 /calculContrainteDebitRec

Use of a discharge formula to obtain the Sheilds number with Recking formula (2015)

#### 1.299 SILT DEPOSITION CRITICAL SHEAR STRESS

Type: Real Dimension: 1

Mnemo CoucheSed(1)

DEFAULT VALUE: 0.0

French keyword: CONTRAINTE CRITIQUE DE DEPOT DES VASES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/ contrainteCritDepotVases

Bottom shear stress for deposition of cohesive sediments (silts) for suspension

#### 1,300 SILT DIFFUSION COEFFICIENT

Type: Real
Dimension: 1
Mnemo CnuxV
DEFAULT VALUE: 50.0

French keyword: COEFFICIENT DE DIFFUSION DES VASES

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/ coefDiffusionVases

Define the diffusion coefficient for cohesive sediments (silts) for suspension

#### 1.301 SILT EROSION CRITICAL SHEAR STRESS

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)

DEFAULT VALUE: 0.0:0.0:0.0

French keyword: CONTRAINTE CRITIQUE D'EROSION DES VASES

XML pathnode: parametresCas/parametresSedimentaires/couchesSedimentaires/ contrainteCritErosionVase

Bottom shear stress for erosion of cohesive sediments (silt) for suspension

# 1.302 SILT FALL VELOCITY

Type: Real Dimension: 1

Mnemo CoucheSed(1)

DEFAULT VALUE: 0.0

French keyword: VITESSE DE CHUTE DES VASES

XML pathnode : parametresCas/parametresSedimentaires/couchesSedimentaires/ vitesseChuteVases

Cohesive sediments (silts) fall velocity for suspension

# 1.303 SILT INITIAL CONCENTRATION

Type: Real Dimension: 2

Mnemo

DEFAULT VALUE: 0.0:0.0

French keyword: CONCENTRATION EN VASE INI

XML pathnode: parametresCas/conditionInitialesCourlis/concentrationVaseIni

Initial concentration for silts

#### 1.304 SKIN FRICTION COEFFICIENT

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)
DEFAULT VALUE: 85.0;85.0;85.0

French keyword: STRICKLER DE PEAU

XML pathnode: parametresCas/parametresSedimentaires/couchesSedimentaires/ stricklerPeau

Define the skin friction coefficient

#### 1.305 SLOPE LIMITER FOR THE FINITE VOLUMES SCHEME FOR COURLIS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: LIMITEUR DE PENTE DU SCHEMA VOLUMES FINIS POUR COURLIS

XML pathnode : parametresCas/parametresSedimentaires/equationTransport/limitPenteVolFinisCourlis

Activation of the slope limiter in the finite volumes scheme for Courlis

#### 1.306 SLOPE LIMITER OF FINITE VOLUMES SCHEME

Type: Logical

Dimension: 1

Mnemo ConsTrac(ib)%LimiteurPente

DEFAULT VALUE: NO

French keyword: LIMITEUR DE PENTE DU SCHEMA VOLUMES FINIS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion/ LimitPente

TODO: WRITE HELP FOR THAT KEYWORD

# 1.307 SLOPE STABILITY MODEL

Type: Integer
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 1

French keyword: MODELE DE RUPTURE DES TALUS

XML pathnode: parametresCas/parametresSedimentaires/talus/modeleRuptureTalus

Choice of the slope stability model

#### 1.308 SOURCES ABSCISSA

Type: Real Dimension: 0

Mnemo Source\_Tracer(i)%AbscisseRel

DEFAULT VALUE: 0.0

French keyword: ABSCISSE DES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/abscisses

#### 1.309 SOURCES BRANCH

Type: Integer Dimension: 0

Mnemo Source\_Tracer(i)%NumBranche

DEFAULT VALUE: 1

French keyword: BRANCHE DES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/numBranche

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.310 SOURCES LENGTHS

Type: Real Dimension: 1

Mnemo Source\_Tracer(i)%Longueur

DEFAULT VALUE: 0.0

French keyword: LONGUEUR DES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/longueurs

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.311 SOURCES NAME

Type: String Dimension: 0

Mnemo Source tracer(i)%Nom

DEFAULT VALUE: '

French keyword: NOM DES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/nbSources /noms/string

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.312 SOURCES TYPE

Type: Integer Dimension: 0

Mnemo Source\_Tracer(i)%Type

DEFAULT VALUE: 1

French keyword: TYPE DES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/typeSources

TODO: WRITE HELP FOR THAT KEYWORD

# 1.313 STABILITY SLOPE FOR EMERGED EMBANKMENTS

Type: Real
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 0.0

French keyword: PENTE DE STABILITE DES TALUS EMERGES

XML pathnode : parametresCas/parametresSedimentaires/talus/penteStabiliteTalusEmerges

Define the stability slope for emerged embankments

#### 1.314 STABILITY SLOPE FOR SUBMERGED EMBANKMENTS

Type: Real
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 0.0

French keyword: PENTE DE STABILITE DES TALUS IMMERGES

XML pathnode : parametresCas/parametresSedimentaires/talus/ penteStabiliteTalusImmerges

Define the stability slope for embankments underwater

#### 1.315 STOPPING CRITERION

Type: Integer Dimension: 1

Mnemo CritereArret

DEFAULT VALUE:

French keyword: CRITERE D'ARRET DU CALCUL

XML pathnode : parametresCas/parametresTemporels/critereArret

Choice of stopping criterion

#### 1.316 STORAGE AREAS

Type: Logical

Dimension: 1

Mnemo OptionCasier

DEFAULT VALUE: NO

French keyword: PRESENCE DE CASIERS

XML pathnode : parametresCas/parametresGeneraux/presenceCasiers

Option to activate storage areas (REZODT kernel

# 1.317 STORAGE AREAS LINK LISTING FILE

Type: String Dimension: 0

Mnemo FichierListingLiaison%Nom

DEFAULT VALUE:

French keyword: FICHIER LISTING LIAISONS

XML pathnode: parametresCas/parametresImpressionResultats/casier/listingLiaison

Name of listing file for storage areas links (CASIER)

# 1.318 STORAGE AREAS LINK RESULTS FILE

Type: String Dimension: 1

Mnemo FichierResultatLiaison%Nom

DEFAULT VALUE:

French keyword: FICHIER RESULTATS LIAISONS

XML pathnode: parametresCas/parametresImpressionResultats/casier/resultatLiaison

Name of results file for storage areas links (CASIER)

#### 1.319 STORAGE AREAS LISTING FILE

Type: String Dimension: 1

Mnemo FichierListingCasier%Nom

DEFAULT VALUE: '

French keyword: FICHIER LISTING CASIERS

XML pathnode : parametresCas/parametresImpressionResultats/casier/listingCasier

Name of listing file for storage areas (CASIER)

#### 1.320 STORAGE AREAS RESULTS FILE

Type: String Dimension: 1

Mnemo FichierResultatCasier%Nom

DEFAULT VALUE: '

French keyword: FICHIER RESULTATS CASIERS

XML pathnode : parametresCas/parametresImpressionResultats/casier/resultatCasier

Name of results file read by RUBENS for storage areas (CASIER)

# 1.321 STORAGE OPTION

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: OPTION DE STOCKAGE

XML pathnode : parametresCas/parametresImpressionResultats/stockage/option

Specify if results are saved for all sections or at specific locations

#### 1.322 STORAGE PERIOD FOR THE CROSS SECTION PROFILE

Type: Integer

Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: PAS DE STOCKAGE POUR LE PROFIL EN TRAVERS

XML pathnode : parametresCas/impressionResCourlis/pasStockageProfilTravers

Define the number of time steps between two cross section profiles saved

# 1.323 STORAGE PERIOD FOR THE LONGITUDINAL PROFILE

Type: Integer Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: PAS DE STOCKAGE POUR LE PROFIL EN LONG

XML pathnode : parametresCas/impressionResCourlis/pasStockageProfilLong

Define the number of time steps between two longitudinal profiles saved

#### 1.324 SUSPENSION OPTION

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: OPTION SUSPENSION

XML pathnode : parametresCas/parametresSedimentaires/suspension/suspensionOpt

Suspension model

#### 1.325 TIME STEP

Type: Real
Dimension: 1
Mnemo DT
DEFAULT VALUE: 0.0

French keyword: PAS DE TEMPS

XML pathnode : parametresCas/parametresTemporels/pasTemps

Define time step in seconds

#### 1.326 TIME UNIT IN LAWS

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 1

French keyword: LOIS UNITE DE TEMPS

XML pathnode : parametresCas/parametresLoisHydrauliques/lois/structureParametresLoi /donnees/uniteTp

Unused in FORTRAN

#### 1.327 TIME UNIT IN TRACER CONC LAW

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 1

French keyword: LOI CONC TRACEUR UNITE DE TEMPS

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur/loisTracer/structureSParametres

Unused in FORTRAN

# 1.328 TOTAL FRICTION COEFFICIENT

Type: Real Dimension: 3

Mnemo CoucheSed(iCouche)
DEFAULT VALUE: 40.0;40.0;40.0
French keyword: STRICKLER TOTAL

XML pathnode: parametresCas/parametresSedimentaires/couchesSedimentaires/ stricklerTotal

Define the total friction coefficient

#### 1.329 TRACER BALANCE PRINTOUTS INTO LISTING

Type: Logical

Dimension: 1

Mnemo ImpressionBilanTracer

DEFAULT VALUE: YES

French keyword: IMPRESSION DU BILAN TRACEUR SUR LE LISTING

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ bilanTracer

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.330 TRACER CONC LAW POINTS NUMBER

Type: Integer

Dimension: 1

Mnemo

DEFAULT VALUE: 1

French keyword: NOMBRE POINTS CONC LOI TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur /loisTracer/structureSParametres

Unused in FORTRAN

# 1.331 TRACER LAW FILE

Type: String Dimension: 0

Mnemo FichierLoiTracer%Nom

DEFAULT VALUE: '

French keyword: LOI TRACEUR FICHIER

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur /loisTracer/structureSParametres

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.332 TRACER LAW INPUT

Type: Integer Dimension: 0

Mnemo mode\_entree\_loi

DEFAULT VALUE: 1

French keyword: LOI TRACEUR MODE D'ENTREE

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur/loisTracer/structureSParametres

TODO: WRITE HELP FOR THAT KEYWORD

# 1.333 TRACER LAW NAMES

Type: String Dimension: 0

Mnemo LoiTracer(iloi)%Nom

DEFAULT VALUE: '

French keyword: LOI TRACEUR NOMS

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur /loisTracer/structureSParametres

#### 1.334 TRACER LAWS NUMBER FOR BOUNDARIES

Type: Integer

Dimension: 1

Mnemo Cond\_Lim(i)%NumeroLoi

DEFAULT VALUE: 0

French keyword: NUMERO DES LOIS TRACEUR POUR LES CL

XML pathnode : parametresCas/parametresTraceur/parametresConditionsLimitesTraceur /numLoiCondLimitesTraceur

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.335 TRACER LAWS PRINTOUTS

Type: Logical

Dimension: 1

Mnemo ImpressionLoiTracer

DEFAULT VALUE: NO

French keyword: IMPRESSION DES LOIS TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/loiTracer

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.336 TRACER LISTING FILE

Type: String Dimension: 1

Mnemo FichierListingTracer%Nom

DEFAULT VALUE: '

French keyword: FICHIER LISTING TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ fichListTracer

Name of the listing file for tracers

# 1.337 TRACER NUMBER OF LAWS

Type: Integer Dimension: 1

Mnemo nb\_loi\_tracer

DEFAULT VALUE: 1

French keyword: NOMBRE DE LOIS TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresLoisTraceur/nbLoisTracer

TODO: WRITE HELP FOR THAT KEYWORD

# 1.338 TRACER NUMBER OF LAWS FOR SOURCES

Type: Integer Dimension: 0

Mnemo

DEFAULT VALUE: 0

French keyword: NUMERO DES LOIS TRACEUR POUR LES SOURCES

XML pathnode : parametresCas/parametresTraceur/parametresSourcesTraceur/numLoi

#### 1.339 TRACER PHYSICAL PARAMETERS FILE

Type: String Dimension: 1

Mnemo Fichier\_Parphy%nom

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES PHYSIQUES TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresNumeriquesQualiteEau /fichParamPhysiqueT

TODO: WRITE HELP FOR THAT KEYWORD

# 1.340 TRACER POST-PROCESSOR

Type: Integer

Dimension: 1

Mnemo post\_processeur\_tracer

DEFAULT VALUE: 2

French keyword: POST-PROCESSEUR TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ formatFichResultat

File format for tracer results

# 1.341 TRACER RESULTS FILE

Type: String Dimension: 1

Mnemo FichierResuTracer%Nom

DEFAULT VALUE: '

French keyword: FICHIER RESULTATS TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresImpressionTraceur/ fichResultTracer

Name of the results file for tracers

#### 1.342 TRACER WEATHER DATA FILE

Type: String Dimension: 1

Mnemo Fichier\_Meteo%nom

DEFAULT VALUE:

French keyword: FICHIER DES DONNEES METEO TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresNumeriquesQualiteEau /fichMeteoTracer

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.343 TRACERS CONVECTION

Type: Logical Dimension: 0

Mnemo Constrac(ib)%CONV

DEFAULT VALUE: YES

French keyword: CONVECTION DES TRACEURS

XML pathnode : parametresCas/parametresTraceur/parametresConvectionDiffusion /convectionTraceurs

#### 1.344 TRACERS DIFFUSION

Type: Logical Dimension: 0

Mnemo ConsTrac(ib)%DIFF

DEFAULT VALUE: YES

French keyword: DIFFUSION DES TRACEURS

XML pathnode: parametresCas/parametresTraceur/parametresConvectionDiffusion /diffusionTraceurs

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.345 TRACERS PRESENCE

Type: Logical

Dimension: 1

Mnemo OptionTracer

DEFAULT VALUE: NO

French keyword: PRESENCE DE TRACEURS

XML pathnode : parametresCas/parametresTraceur/presenceTraceurs

TODO: WRITE HELP FOR THAT KEYWORD

# 1.346 TRANSPORT LAW

Type: Integer Dimension: -1

Mnemo

DEFAULT VALUE: 1

French keyword: LOI DE TRANSPORT

XML pathnode : parametresCas/parametresSedimentaires/charriage/ loiTransport

Choice of the bedload law

# 1.347 TYPE DE CONDITION

Type: Integer Dimension: 0

Mnemo Extremite(i)%Type
DEFAULT VALUE: MANDATORY
French keyword: TYPE DE CONDITION

THE DE CONDITION

XML pathnode : parametresCas/parametresGeometrieReseau/extrLibres/typeCond

TODO: WRITE HELP FOR THAT KEYWORD

# 1.348 TYPE DE RUPTURE DU BARRAGE PRINCIPAL

Type: Integer Dimension: 1

Mnemo Barrage%TypeRupture

DEFAULT VALUE: 1

French keyword: TYPE DE RUPTURE DU BARRAGE PRINCIPAL

XML pathnode : parametresCas/parametresSingularite/barragePrincipal/typeRupture

#### 1.349 TYPE DEVERSOIRS

Type: Integer Dimension: 0

Mnemo Deversoir(idev)%Type

DEFAULT VALUE: MANDATORY
French keyword: TYPE DEVERSOIRS

XML pathnode : parametresCas/parametresApportDeversoirs/deversLate/type

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.350 TYPE OF BOUNDARY CONDITIONS TRACER

Type: Integer

Dimension: 1

Mnemo Cond\_Lim(i)%Type

DEFAULT VALUE:

French keyword: TYPE DE CONDITIONS LIMITES TRACEUR

XML pathnode : parametresCas/parametresTraceur/parametresConditionsLimitesTraceur/typeCondLimTra

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.351 TYPE OF VALIDATION CALCULATION

Type: Integer Dimension: 1

Mnemo typeValidation

DEFAULT VALUE: 1

French keyword: TYPE DE CALCUL DE VALIDATION EFFECTUE XML pathnode: parametresCas/parametresGeneraux/typeValidation

Integer given in the listing corresponding to the type of validation doing (not used anymore)

# 1.352 TYPE SEUILS

Type: Integer Dimension: 0

Mnemo Singularite(ising)%Type

DEFAULT VALUE: 2

French keyword: TYPE SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/type

TODO: WRITE HELP FOR THAT KEYWORD

# 1.353 UNCENTERED SCHEME

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: DECENTREMENT

XML pathnode : parametresCas/parametresNumeriques/decentrement

#### 1.354 UPSTREAM EQUILIBRIUM SLOPE

Type: Real Dimension: 1

Mnemo

DEFAULT VALUE: 0.005

French keyword: PENTE EQUILIBRE AMONT

XML pathnode : parametresCas/parametresSedimentaires/charriage/penteEquilibre/ penteAmont

Equilibrium slope associated to sediment discharge at upstream boundary

#### 1.355 UPSTREAM SEDIMENT CONCENTRATION FROM EQUILIBRIUM SLOPE

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: NO

French keyword: CONCENTRATION AMONT CALCULEE AVEC PENTE EQUILIBRE

XML pathnode : parametresCas/parametresSedimentaires/charriage/penteEquilibre/ optPenteEquilibre

Option to calculate upstream sediment concentration from an equilibrium slope given by the

user

#### 1.356 UPSTREAM SEDIMENT CONCENTRATION WITHOUT VOIDS

Type: Logical

Dimension: 1

Mnemo

DEFAULT VALUE: YES

French keyword: CONCENTRATION AMONT SANS LES VIDES

XML pathnode : parametresCas/parametresSedimentaires/charriage/ concentrationAmontSansVides

Option to indicate that the upstream sediment concentration does not take into account voids

#### 1.357 VALEUR DU PAS

Type: Real Dimension: 0

Mnemo Profil(iprof)%Pas
DEFAULT VALUE: MANDATORY
French keyword: VALEUR DU PAS

XML pathnode : parametresCas/parametresPlanimetrageMaillage/planim/valeursPas

TODO: WRITE HELP FOR THAT KEYWORD

# 1.358 VARIABLE TIME STEP WITH COURANT NUMBER

Type: Logical Dimension: 1

Mnemo PasTempsVariable

DEFAULT VALUE: NO

French keyword: PAS DE TEMPS VARIABLE SUIVANT NOMBRE DE COURANT

XML pathnode : parametresCas/parametresTemporels/pasTempsVar

Option to use variable time step according to Courant number value

#### 1.359 VARIABLES COMPUTED

Type: Logical
Dimension: 15
Mnemo VarCalc

DEFAULT VALUE: NO;NO;NO;NO;NO;NO;NO;YES;NO;NO;NO;NO;NO

French keyword: VARIABLES CALCULEES

XML pathnode : parametresCas/parametresVariablesCalculees/variablesCalculees

List variables to be computed

#### 1.360 VARIABLES SAVED

Type: Logical Dimension: 42 Mnemo VarSto

DEFAULT VALUE: YES;NO;NO;NO;NO;YES;YES;YES;NO;NO;YES;NO;NO;NO;NO;NO;NO;NO;NO;YE

French keyword: VARIABLES STOCKEES

XML pathnode : parametresCas/parametresVariablesStockees/variablesStockees

List of variables to be saved

#### 1.361 WATER DEPTH THRESHOLD IDENTIFYING THE WAVE

Type: Real Dimension: 1

Mnemo DZArriveeFront

DEFAULT VALUE: 0.01

French keyword: ELEVATION DE COTE ARRIVEE DU FRONT

XML pathnode : parametresCas/parametresModelePhysique/elevCoteArrivFront

Water depth threshold identifying the wave arrival

#### 1.362 WATER QUALITY MODEL

Type: Integer Dimension: 1

Mnemo Modele\_Qual\_Eau

DEFAULT VALUE: 1

French keyword: MODELE DE QUALITE D'EAU

 $XML\ pathnode: \qquad parametres Cas/parametres Traceur/parametres Numeriques Qualite Eau\ /modele Qualite Eau\ /mode$ 

Choice of water quality model

# 1.363 WATER WEIGHT BY VOLUME

Type: Real
Dimension: 1
Mnemo Talus
DEFAULT VALUE: 0.0

French keyword: POIDS VOLUMIQUE DE L'EAU

XML pathnode : parametresCas/parametresSedimentaires/talus/poidsVolumiqueEau

Define the weight by volume of water

# 1.364 WEIR LAW POINTS NUMBER

Type: Integer

Dimension: 0

Mnemo nb\_point

DEFAULT VALUE: 0

French keyword: NOMBRE DE POINTS DES LOIS SEUILS

XML pathnode : parametresCas/parametresSingularite/seuils /structureParametresSeuil/nbPtLoiSeuil

TODO: WRITE HELP FOR THAT KEYWORD

#### 1.365 WEIRS NUMBER

Type: Integer
Dimension: 0
Mnemo nb\_sing

DEFAULT VALUE: 0

French keyword: NOMBRE DE SEUILS

XML pathnode : parametresCas/parametresSingularite/nbSeuils

# 2. List of keywords classified according to type

# 2.1 APPORTS ET DEVERSOIRS

#### 2.1.1 CASIER

NOMBRE D'APPORTS DE PLUIE NUMERO DE LA LOI ASSOCIEE NUMERO DU CASIER ASSOCIE

# 2.1.2 DEBITS D"APPORTS

ABSCISSE APPORT
LATERAL INFLOW DISCHARGES NUMBER
LONGUEUR APPORT
NOMS DES APPORTS
NUMERO BRANCHE APPORT
NUMERO LOI APPORT

# 2.1.3 DEVERSOIRS LATERAUX

NOMBRE DE DEVERSOIRS

#### **DEVERSOIRS**

ABSCISSE DEVERSOIRS
COEFF DEBIT DEVERSOIRS
COTE CRETE DEVERSOIRS
LONGUEUR DEVERSOIRS
NOMS DEVERSOIRS
NUM BRANCHE DEVERSOIRS
NUMERO LOI DEVERSOIRS
TYPE DEVERSOIRS

#### 2.2 CALAGE

#### 2.2.1 FROTTEMENT

FLOODPLAIN COEFFICIENT
FRICTION LAW
FRICTION ZONE DOWNSTREAM ABSCISSA
FRICTION ZONE UPSTREAM ABSCISSA
MAIN CHANNEL COEFFICIENT
NUMBER OF FRICTION ZONES
REACH NUMBER FOR THE FRICTION ZONE

#### 2.2.2 ZONES DE STOCKAGE

FLOODPLAIN LEFT LIMIT
FLOODPLAIN RIGHT LIMIT
NUMBER OF SECTIONS WITH STORAGE ZONES
SECTION NUMBER STORAGE

#### 2.3 CALAGE AUTO

#### 2.3.1 LISTE CRUES

#### **CRUE** x

AUTO CALIBRATION FLOOD MEASUREMENTS ABSCISSAE FOR FLOOD x

AUTO CALIBRATION INFLOW FOR x FLOW

AUTO CALIBRATION INFLOWS ABSCISSAE FOR FLOOD x

AUTO CALIBRATION MEASUREMENTS WEIGHTING COEFFICIENTS FOR FLOOD x

AUTO CALIBRATION NUMBER OF INFLOWS FOR FLOOD x

AUTO CALIBRATION NUMBER OF MEASUREMENTS FOR FLOOD x

#### **CRUES**

AUTO CALIBRATION DOWNSTREAM ELEVATION FOR FLOOD x

AUTO CALIBRATION INFLOWS VALUES FOR FLOOD x

AUTO CALIBRATION NUMBER OF FLOODS

#### 2.3.2 PARAMETRES

AUTO CALIBRATION CONVERGENCE TOLERANCE

AUTO CALIBRATION LISTING FILE

AUTO CALIBRATION MAXIMUM NUMBER OF ITERATIONS

AUTO CALIBRATION RESULTS FILE

AUTO CALIBRATION SELECTED CHANNEL

OPTION AUTO CALIBRATION

# **2.3.3 ZONES**

AUTO CALIBRATION COEFFICIENTS IN FLOODPLAIN ZONES

AUTO CALIBRATION COEFFICIENTS IN MAIN CHANNEL ZONES

AUTO CALIBRATION LOWER BOUNDS FLOODPLAIN ZONES COEF

2.4 CASIERS 91

AUTO CALIBRATION LOWER BOUNDS MAIN CHANNEL ZONES COEF

AUTO CALIBRATION NUMBER OF AREAS

AUTO CALIBRATION UPPER BOUNDS FLOODPLAIN ZONES COEF

AUTO CALIBRATION UPPER BOUNDS MAIN CHANNEL ZONES COEF

AUTO CALIBRATION ZONES DOWNSTREAM ABSCISSAE

AUTO CALIBRATION ZONES UPSTREAM ABSCISSAE

#### 2.4 CASIERS

CASIERS COTE INITIALE

CASIERS FICHIER GEOMETRIE

CASIERS NOMBRE DE COTES DE PLANIMETRAGE

CASIERS OPTION DE CALCUL

CASIERS OPTION DE PLANIMETRAGE

CASIERS PAS DE PLANIMETRAGE

NOMBRE DE CASIERS

#### 2.4.1 LIAISONS

LIAISON ABSCISSE CORRESPONDANTE

LIAISON COEFFICIENT D'ACTIVATION

LIAISON COEFFICIENT DE DEBIT ORIFICE

LIAISON COEFFICIENT DE DEBIT SEUIL

LIAISON COEFFICIENT PERTE DE CHARGE

LIAISON COTE

LIAISON LARGEUR

LIAISON LONGUEUR

LIAISON NATURE

LIAISON NUMERO DU BIEF ASSOCIE

LIAISON NUMERO DU CASIER FIN

LIAISON NUMERO DU CASIER ORIGINE

LIAISON RUGOSITE

LIAISON SECTION

LIAISON TYPE

LIAISON TYPE ORIFICE

NOMBRE DE LIAISONS

# 2.5 CONCENTRATION INFLOW

#### 2.5.1 SEDIMENT INFLOWS

NUMBER CONCENTRATION LAW LATERAL SAND NUMBER CONCENTRATION LAW LATERAL SILT

#### 2.5.2 UPSTREAM CONDITIONS

NUMBER CONCENTRATION LAW UPSTREAM SAND NUMBER CONCENTRATION LAW UPSTREAM SILT

#### 2.6 CONCENTRATION LAWS

NUMBER OF CONCENTRATION LAWS

#### 2.6.1 CONCENTRATION LAWS

CONCENTRATION LAW x CONCENTRATION

CONCENTRATION LAW x FILE

CONCENTRATION LAW x INPUT

CONCENTRATION LAW x NAME

CONCENTRATION LAW x NUMBER OF POINTS

CONCENTRATION LAW x TIME

CONCENTRATION LAW x TIME UNIT

# 2.7 CONDITIONS INITIALES

#### 2.7.1 LIGNE D"EAU

INITIAL WATER ELEVATIONS

INITIAL WATER ELEVATIONS ABSCISSA

INITIAL WATER ELEVATIONS AVAILABLE

INITIAL WATER ELEVATIONS DICHARGES

INITIAL WATER ELEVATIONS FILE

INITIAL WATER ELEVATIONS FILE FORMAT

INITIAL WATER ELEVATIONS INPUT

INITIAL WATER ELEVATIONS POINTS NUMBER

INITIAL WATER ELEVATIONS REACH

# 2.7.2 REPRISE ETUDE

COMPUTATION CONTINUED

INPUT FILE TO CONTINUE COMPUTATION

#### 2.7.3 TRACEUR

INITIAL CONCENTRATIONS FILE

INITIAL CONCENTRATIONS INPUT

INITIAL CONCENTRATIONS PRESENCE

INITIAL TRACER CONCENTRATION POINTS NUMBER

#### 2.7.4 ZONES SECHES

DRY ZONE DOWNSTREAM ABSCISSA

DRY ZONE REACH

DRY ZONE UPSTREAM ABSCISSA

NUMBER OF DRY ZONES

2.8 CONFLUENTS 93

#### 2.8 CONFLUENTS

NOMBRE DE CONFLUENTS

#### 2.8.1 CONFLUENT NUMERO x

ABSCISSE DE L'AFFLUENT DU CONFLUENT x
ANGLE DE L'AFFLUENT DU CONFLUENT x
NOM DU CONFLUENT x
NUMBER OF TRIBUTARIES FOR CONFLUENT x
ORDONNEE DE L'AFFLUENT DU CONFLUENT x

#### 2.9 COUPLING

NUMBER OF ITERATIONS FOR THE HYDRAULIC MODEL NUMBER OF ITERATIONS FOR THE SEDIMENT MODEL

#### 2.10 GENERAL PARAMETERS

CALCULATION FOR VALIDATION OF THE CODE
CALCULATION KERNEL
CODE VERSION
COURLIS DICTIONARY
COURLIS OPTION
DICTIONARY
KEYWORD FILE FOR COURLIS
KEYWORDS FILENAME
MODEL SAVE
MODEL SAVE FILE
PRINCIPAL PROGRAM
STORAGE AREAS
TYPE OF VALIDATION CALCULATION

#### 2.10.1 LIBRARIES

LIBRARIES LIST

#### 2.11 GEOMETRIE-RESEAU

#### 2.11.1 BRANCHES

ABSCISSE DEBUT
ABSCISSE FIN
BRANCHE NUMERO
NOMBRE DE BRANCHES
NUM DE L'EXTREMITE DE DEBUT
NUM DE L'EXTREMITE DE FIN

#### 2.11.2 EXTREMITES LIBRES

EXTREMITE NUMERO
FREE BOUNDARY NUMBER
NOM EXTREMITE
NUMERO DE LA LOI
TYPE DE CONDITION

#### **TRACEUR**

TRACER LAWS NUMBER FOR BOUNDARIES
TYPE OF BOUNDARY CONDITIONS TRACER

#### 2.11.3 GEOMETRIE

FICHIER DE GEOMETRIE FORMAT DU FICHIER DE GEOMETRIE PROFILS EN ABSCISSE ABSOLUE

#### **2.11.4 NOEUDS**

INDEX OF NODES NODES NUMBER

# 2.12 IMPRESSIONS - RESULTATS

COMPUTATION TITLE

# 2.12.1 CASIER

STORAGE AREAS LINK LISTING FILE STORAGE AREAS LINK RESULTS FILE STORAGE AREAS LISTING FILE STORAGE AREAS RESULTS FILE

#### 2.12.2 FICHIER DE REPRISE

OUTPUT FILE TO CONTINUE COMPUTATION

# 2.12.3 IMPRESSION

COMPUTATION PRINTOUTS
GEOMETRY PRINTOUTS
HYDRAULICS LAWS PRINTOUTS
INITIAL WATER ELEVATIONS PRINTOUTS
NETWORK PRINTOUTS
PLANIMETRAGE PRINTOUTS

#### **2.12.4 LISTING**

LISTING FILE

#### 2.12.5 PAS DE STOCKAGE ET D"IMPRESSION

FIRST TIME STEP TO SAVE PERIOD FOR PRINTOUTS PERIOD FOR STORAGE

#### 2.12.6 RESULTATS

POST-PROCESSOR RESULTS FILE

#### **2.12.7 RUBENS**

REACHES GAP

#### 2.12.8 STOCKAGE

LOCATION ABSCISSA LOCATION REACH NUMBER OF LOCATIONS STORAGE OPTION

#### 2.13 INITIAL CONDITIONS COURLIS

COURLIS INITIAL CONCENTRATIONS INPUT
COURLIS INITIAL CONDITIONS FILE
COURLIS INTIAL CONDITIONS NUMBER OF POINTS
COURLIS NUMBER OF TRACERS
INITIAL CONCENTRATIONS ABSCISSAE
SAND INITIAL CONCENTRATION
SILT INITIAL CONCENTRATION

# 2.14 LOIS HYDRAULIQUES

NUMBER OF HYDRAULIC LAWS

#### 2.14.1 LOIS

LAW NAME LOI TYPE

#### **DONNEES LOIS**

LOIS FICHIER
LOIS MODE D'ENTREE
NUMBER OF DIFFERENT DISCHARGES IN LAWS
NUMBER OF POINTS IN LAWS
TIME UNIT IN LAWS

# 2.15 MODELISATION PHYSIQUE

ATTENUATION OF CONVECTION
AUTOMATIC HEADLOSS AT JUNCTIONS
CROSS SECTION LAYOUT
FRICTION CONVERSATION ALONG VERTICAL WALLS
HYDROSTATIC TERMS FOR TRANSCRITICAL KERNEL
LATERAL INFLOW CONTRIBUTION IN MOMENTUM
LINEAR INTERPOLATION OF FRICTION COEFFICIENT
WATER DEPTH THRESHOLD IDENTIFYING THE WAVE

#### 2.15.1 DEBORDEMENT PROGRESSIF

PROGRESSIVE OVERFLOW IN FLOODPLAIN PROGRESSIVE OVERFLOW IN STORAGE AREA

#### 2.16 PARAMETRES NUMERIQUES

AUTOMATIC HEADLOSSES TRANSCRITICAL KERNEL FLOOD WAVE CALCULATION FROUDE LIMIT AT BOUNDARIES IMPLICIT TREATMENT OF FRICTION IMPLICITATION OF TRANSCRITICAL KERNEL MINIMUM WATER DEPTH OPTIMIZATION OF TRANSCRITICAL KERNEL UNCENTERED SCHEME

#### 2.17 PARAMETRES TEMPORELS

CHECKPOINT ABSCISSA
CHEKPOINT REACH
COURANT NUMBER
INTIAL TIME
MAXIMAL ELEVATION AT CHECKPOINT
MAXIMAL TIME
NUMBER OF TIME STEPS
STOPPING CRITERION
TIME STEP
VARIABLE TIME STEP WITH COURANT NUMBER

#### 2.18 PLANIMETRAGE ET MAILLAGE

METHODE DE CALCUL DU MAILLAGE

#### 2.18.1 MAILLAGE

MODE DE SAISIE DU MAILLAGE SAUVEGARDE MAILLAGE

#### **MAILLAGE PAR CLAVIER**

ABSCISSE DE DEBUT DE ZONE

ABSCISSE DE FIN DE ZONE

ABSCISSES DES SECTIONS DE CALCUL

BRANCHES DES SECTIONS DE CALCUL

NOMBRE DE PLAGES DE DISCRETISATION

NOMBRE DE SECTIONS DE CALCUL

NOMBRE DE SECTIONS DE LA ZONE

NOMBRE DE ZONES DE DISCRETISATION

NUMERO DE BRANCHE DE ZONE

NUMERO DU DERNIER PROFIL DE LA SERIE

NUMERO DU PREMIER PROFIL DE LA SERIE

PAS D'ESPACE DE LA SERIE

#### 2.18.2 PLANIMETRAGE

NOMBRE DE PAS DE PLANIMETRAGE

NOMBRE DE ZONES DE PLANIMETRAGE

NUMERO DU DERNIER PROFIL

NUMERO DU PREMIER PROFIL

VALEUR DU PAS

#### 2.19 PRINTOUTS-COURLIS RESULTS

PERIOD FOR PRINTOUTS COURLIS STORAGE PERIOD FOR THE CROSS SECTION PROFILE STORAGE PERIOD FOR THE LONGITUDINAL PROFILE

#### 2.19.1 COURLIS PRINTOUTS

PRINTOUTS CONCENTRATION LAWS

PRINTOUTS COUPLING PARAMETERS

PRINTOUTS INITIAL CONC LAWS FOR COURLIS

PRINTOUTS SEDIMENT INFLOWS

PRINTOUTS SEDIMENT INTERFACES

PRINTOUTS SEDIMENT PARAMETERS

# 2.19.2 COURLIS RESULTS

CROSS SECTION RESULTS FILE
LISTING COURLIS FILE
LONGITUDINAL PROFILE RESULTS FILE

#### 2.20 PRINTOUTS-TRACER RESULTS

#### 2.20.1 TRACER PRINTOUTS

CONCENTRATIONS PRINTOUTS INTO LISTING INITIAL CONCENTRATIONS PRINTOUTS
TRACER BALANCE PRINTOUTS INTO LISTING TRACER LAWS PRINTOUTS
TRACER LISTING FILE

# 2.20.2 TRACER RESULTS

TRACER POST-PROCESSOR TRACER RESULTS FILE

#### 2.21 SEDIMENT GEOMETRY

COURLIS GEOMETRY FILE

#### 2.22 SEDIMENT PARAMETERS

NUMBER OF LAYERS
SEDIMENTS PROPERTIES FILE
SEDIMENTS PROPERTIES INPUT

#### 2.22.1 BEDLOAD

BEDLOAD OPTION
CONTROL CELL DEFINITION FOR BEDLOAD
DEBUG BEDLOAD
MODIFIED FORMULA FOR SHEAR STRESS COMPUTATION
NUMERICAL FOR BEDLOAD SCHEME
POROSITY
TRANSPORT LAW
UPSTREAM SEDIMENT CONCENTRATION WITHOUT VOIDS

#### CLIPPING

ABSOLUTE CLIP EVOLUTION CLIP EVOLUTION CLIPPING OPTION

#### **ENERGY SLOPE**

LOCAL SLOPE
OPTION ROUNDED ENERGY SLOPE
PRECISION ROUNDED ENERGY SLOPE

#### **EQUILIBRIUM SLOPE**

UPSTREAM EQUILIBRIUM SLOPE
UPSTREAM SEDIMENT CONCENTRATION FROM EQUILIBRIUM SLOPE

#### **LEFORT**

ROUGHNESS RATIO WITH QSTAR FOR LEFORT

#### **PROFILE**

FILE FOR IMPOSED ELEVATIONS FOR EROSION IMPOSED ELEVATION FOR EROSION OPTION FOR PROFILE EVOLUTION

#### RECKING2015

MORPHOLOGY OPTION RECKING 2015 SHIELDS SHEAR STRESS WITH DISCHARGE FOR RECKING 2015

#### **SEDIMENT SLIDE**

SEDIMENT SLIDE OPTION

#### 2.22.2 PHYSICAL PARAMETERS

D16

D84

MEAN DIAMETER

#### 2.22.3 SEDIMENT LAYERS

LAYERS CONCENTRATION
LAYERS NAME
SKIN FRICTION COEFFICIENT
TOTAL FRICTION COEFFICIENT

#### **SUSPENSION**

PARTHENIADES COEFFICIENT

SAND D50

SAND FALL VELOCITY

SAND LIMIT PERCENTAGE

SAND PERCENTAGE

SILT DEPOSITION CRITICAL SHEAR STRESS

SILT EROSION CRITICAL SHEAR STRESS

SILT FALL VELOCITY

#### 2.22.4 SLOPE STABILITY

HOMOTHETY COEFFICIENT
RESIDUAL ROBUSTNESS COEFFICIENT
SEDIMENTS WEIGHT BY VOLUME
SLOPE STABILITY MODEL
STABILITY SLOPE FOR EMERGED EMBANKMENTS
STABILITY SLOPE FOR SUBMERGED EMBANKMENTS
WATER WEIGHT BY VOLUME

#### 2.22.5 SUSPENSION

CALCULATION WITH SAND SUSPENSION OPTION

#### TRANSPORT EQUATION

COURLIS CONVECTION FINITE VOLUMES SCHEME ORDER
COURLIS CONVECTION FINITE VOLUMES SCHEME PARAMETER W
COURLIS CONVECTION OPTION FOR TRACERS
COURLIS TRACERS CONVECTION
SAND DIFFUSION COEFFICIENT
SILT DIFFUSION COEFFICIENT
SLOPE LIMITER FOR THE FINITE VOLUMES SCHEME FOR COURLIS

#### 2.23 SINGULARITE (BARRAGE-SEUIL)

WEIRS NUMBER

# 2.23.1 BARRAGE PRINCIPAL

ABSCISSE DU BARRAGE PRINCIPAL COTE DE CRETE DU BARRAGE PRINCIPAL NUM BRANCHE DU BARRAGE PRINCIPAL TYPE DE RUPTURE DU BARRAGE PRINCIPAL

#### 2.23.2 PERTES DE CHARGES

ABSCISSE DE LA PERTE DE CHARGE SINGULIERE COEFFICIENT DE LA PERTE DE CHARGE SINGULIERE NOMBRE DE PERTES DE CHARGE SINGULIERES NUM BRANCHE DE LA PERTE DE CHARGE SINGULIERE 2.24 TRACER 101

# 2.23.3 **SEUILS**

ABSCISSES EN TRAVERS CRETE

ABSCISSES SEUILS

COEFF DEBIT SEUILS

COTES CRETES

COTES CRETES SEUILS

COTES MOYENNES CRETES

COTES RUPTURES SEUILS

**EPAISSEURS SEUILS** 

GRADIENTS DE DESCENTE SEUILS

LARGEURS VANNES

NOMS SEUILS

NUM BRANCHE SEUILS

NUMEROS LOIS SEUILS

TYPE SEUILS

WEIR LAW POINTS NUMBER

#### 2.24 TRACER

NUMBER OF TRACER SOURCES

SOURCES ABSCISSA

SOURCES BRANCH

SOURCES LENGTHS

SOURCES NAME

SOURCES TYPE

# 2.25 TRACER LAWS

TRACER NUMBER OF LAWS

TRACER NUMBER OF LAWS FOR SOURCES

# 2.25.1 TRACER LAW

TIME UNIT IN TRACER CONC LAW

TRACER CONC LAW POINTS NUMBER

TRACER LAW FILE

TRACER LAW INPUT

TRACER LAW NAMES

# 2.26 TRACERS

COUPLING FREQUENCY BETWEEN HYDRAULIC AND TRACER

# 2.27 TRACERS PARAMETERS

CONVECTION FINITE VOLUMES SCHEME PARAMETER W
CONVECTION OPTION FOR TRACERS
DIFFUSION COEFFICIENT 1 FOR TRACERS
DIFFUSION COEFFICIENT 2 FOR TRACERS
NUMBER OF TRACERS
OPTION FOR DISPERSION CALCULATION FOR TRACERS
ORDER FOR THE CONVECTION FINITE VOLUMES SCHEME
SLOPE LIMITER OF FINITE VOLUMES SCHEME
TRACER PHYSICAL PARAMETERS FILE
TRACER WEATHER DATA FILE
TRACERS CONVECTION
TRACERS DIFFUSION
TRACERS PRESENCE
WATER QUALITY MODEL

#### 2.28 VARIABLES CALCULEES ET STOCKEES

VARIABLES COMPUTED VARIABLES SAVED

# 3. Glossary

# 3.1 English/French glossary

| ABSCISSE APPORT                     | ABSCISSE APPORT                              |
|-------------------------------------|----------------------------------------------|
| ABSCISSE DE DEBUT DE ZONE           | ABSCISSE DE DEBUT DE ZONE                    |
| ABSCISSE DE FIN DE ZONE             | ABSCISSE DE FIN DE ZONE                      |
| ABSCISSE DE L'AFFLUENT DU CONFLUENT | ABSCISSE DE L'AFFLUENT DU CONFLUENT          |
| х                                   | x                                            |
| ABSCISSE DE LA PERTE DE CHARGE      | ABSCISSE DE LA PERTE DE CHARGE               |
| SINGULIERE                          | SINGULIERE                                   |
| ABSCISSE DEBUT                      | ABSCISSE DEBUT                               |
| ABSCISSE DEVERSOIRS                 | ABSCISSE DEVERSOIRS                          |
| ABSCISSE DU BARRAGE PRINCIPAL       | ABSCISSE DU BARRAGE PRINCIPAL                |
| ABSCISSE FIN                        | ABSCISSE FIN                                 |
| ABSCISSES DES SECTIONS DE CALCUL    | ABSCISSES DES SECTIONS DE CALCUL             |
| ABSCISSES EN TRAVERS CRETE          | ABSCISSES EN TRAVERS CRETE                   |
| ABSCISSES SEUILS                    | ABSCISSES SEUILS                             |
| ABSOLUTE CLIP EVOLUTION             | CLIP ABSOLU SUR L'EVOLUTION                  |
| ANGLE DE L'AFFLUENT DU CONFLUENT x  | ANGLE DE L'AFFLUENT DU CONFLUENT x           |
| ATTENUATION OF CONVECTION           | ATTENUATION DE LA CONVECTION                 |
| AUTO CALIBRATION COEFFICIENTS IN    | COEFFICIENTS DE LIT MAJEUR DE ZONES          |
| FLOODPLAIN ZONES                    | POUR CALAGE AUTO                             |
| AUTO CALIBRATION COEFFICIENTS IN    | COEFFICIENTS DE LIT MINEUR DE ZONES          |
| MAIN CHANNEL ZONES                  | POUR CALAGE AUTO                             |
| AUTO CALIBRATION CONVERGENCE        | PRECISION CONVERGENCE                        |
| TOLERANCE                           |                                              |
| AUTO CALIBRATION DOWNSTREAM         | COTE AVAL DE LA CRUE x POUR CALAGE           |
| ELEVATION FOR FLOOD x               | AUTO                                         |
| AUTO CALIBRATION FLOOD MEASUREMENTS | ABSCISSES DES MESURES DE LA CRUE x           |
| ABSCISSAE FOR FLOOD x               | POUR CALAGE AUTO                             |
| AUTO CALIBRATION INFLOW FOR x FLOW  | DEBIT AMONT DE LA CRUE x POUR CALAGE<br>AUTO |
| AUTO CALIBRATION INFLOWS ABSCISSAE  | ABSCISSES DES APPORTS DE LA CRUE x           |
| FOR FLOOD x                         | POUR CALAGE AUTO                             |

| AUTO CALIBRATION INFLOWS VALUES FOR | DEBITS DES APPORTS DE LA CRUE x POUR |
|-------------------------------------|--------------------------------------|
| FLOOD x                             | CALAGE AUTO                          |
| AUTO CALIBRATION LISTING FILE       | FICHIER DE LISTING DU CALAGE AUTO    |
| AUTO CALIBRATION LOWER BOUNDS       | BORNES INFERIEURES COEF LIT MAJEUR   |
| FLOODPLAIN ZONES COEF               | DE ZONES POUR CALAGE AUTO            |
| AUTO CALIBRATION LOWER BOUNDS MAIN  | BORNES INFERIEURES COEF LIT MINEUR   |
| CHANNEL ZONES COEF                  | DE ZONES POUR CALAGE AUTO            |
| AUTO CALIBRATION MAXIMUM NUMBER OF  | NOMBRE MAX D'ITERATIONS              |
| ITERATIONS                          | NOTIBLE THAN D TIERATIONS            |
|                                     | DONDEDATIONS DES MESSIDES DE LA CRIE |
| AUTO CALIBRATION MEASUREMENTS       | PONDERATIONS DES MESURES DE LA CRUE  |
| WEIGHTING COEFFICIENTS FOR FLOOD    | x POUR CALAGE AUTO                   |
| X                                   |                                      |
| AUTO CALIBRATION NUMBER OF AREAS    | NOMBRE DE ZONES POUR CALAGE AUTO     |
| AUTO CALIBRATION NUMBER OF FLOODS   | NOMBRE DE CRUES POUR CALAGE AUTO     |
| AUTO CALIBRATION NUMBER OF INFLOWS  | NOMBRE D'APPORTS DE LA CRUE x POUR   |
| FOR FLOOD x                         | CALAGE AUTO                          |
| AUTO CALIBRATION NUMBER OF          | NOMBRE MESURES DE LA CRUE x POUR     |
| MEASUREMENTS FOR FLOOD x            | CALAGE AUTO                          |
| AUTO CALIBRATION RESULTS FILE       | FICHIER RESULTAT DU CALAGE AUTO      |
| AUTO CALIBRATION SELECTED CHANNEL   | CHOIX DU LIT POUR CALAGE AUTO        |
| AUTO CALIBRATION UPPER BOUNDS       | BORNES SUPERIEURES COEF LIT MAJEUR   |
| FLOODPLAIN ZONES COEF               | DE ZONES POUR CALAGE AUTO            |
| AUTO CALIBRATION UPPER BOUNDS MAIN  | BORNES SUPERIEURES COEF LIT MINEUR   |
| CHANNEL ZONES COEF                  | DE ZONES POUR CALAGE AUTO            |
| AUTO CALIBRATION ZONES DOWNSTREAM   | ABSCISSES DE FIN DE ZONES POUR       |
| ABSCISSAE                           | CALAGE AUTO                          |
| AUTO CALIBRATION ZONES UPSTREAM     | ABSCISSES DE DEBUT DE ZONES POUR     |
| ABSCISSAE                           | CALAGE AUTO                          |
| AUTOMATIC HEADLOSS AT JUNCTIONS     | PERTES DE CHARGE AUTOMATIQUE AUX     |
| AUTORATIC READEOSS AT JUNCTIONS     | CONFLUENTS                           |
| ALITOMATIC HEADLOSCES TRANSCRITTCAL |                                      |
| AUTOMATIC HEADLOSSES TRANSCRITICAL  | PERTES DE CHARGE AUTOMATIQUE NOYAU   |
| KERNEL                              | TRANSCRITIQUE                        |
| BEDLOAD OPTION                      | OPTION CHARRIAGE                     |
| BRANCHE NUMERO                      | BRANCHE NUMERO                       |
| BRANCHES DES SECTIONS DE CALCUL     | BRANCHES DES SECTIONS DE CALCUL      |
| CALCULATION FOR VALIDATION OF THE   | CALCUL POUR VALIDATION DU CODE       |
| CODE                                |                                      |
| CALCULATION KERNEL                  | NOYAU DE CALCUL                      |
| CALCULATION WITH SAND               | CALCUL AVEC SABLE                    |
| CASIERS COTE INITIALE               | CASIERS COTE INITIALE                |
| CASIERS FICHIER GEOMETRIE           | CASIERS FICHIER GEOMETRIE            |
| CASIERS NOMBRE DE COTES DE          | CASIERS NOMBRE DE COTES DE           |
| PLANIMETRAGE                        | PLANIMETRAGE                         |
| CASIERS OPTION DE CALCUL            | CASIERS OPTION DE CALCUL             |
| CASIERS OPTION DE PLANIMETRAGE      | CASIERS OPTION DE PLANIMETRAGE       |
| CASIERS PAS DE PLANIMETRAGE         | CASIERS PAS DE PLANIMETRAGE          |
| CHECKPOINT ABSCISSA                 | POINT DE CONTROLE ABSCISSE           |
| CUECKLOINI WD2C122H                 | LOTHI DE CONTROLE ADSCISSE           |

| CHERDOTHE DEVCH                      | DOINT DE CONTROLE DIFE ACCOCTE       |
|--------------------------------------|--------------------------------------|
| CHEKPOINT REACH                      | POINT DE CONTROLE BIEF ASSOCIE       |
| CLIP EVOLUTION                       | CLIP EVOLUTION                       |
| CLIPPING OPTION                      | OPTION DE CLIPPING                   |
| CODE VERSION                         | VERSION DU CODE                      |
| COEFF DEBIT DEVERSOIRS               | COEFF DEBIT DEVERSOIRS               |
| COEFF DEBIT SEUILS                   | COEFF DEBIT SEUILS                   |
| COEFFICIENT DE LA PERTE DE CHARGE    | COEFFICIENT DE LA PERTE DE CHARGE    |
| SINGULIERE                           | SINGULIERE                           |
| COMPUTATION CONTINUED                | REPRISE DE CALCUL                    |
| COMPUTATION PRINTOUTS                | IMPRESSION CALCUL                    |
| COMPUTATION TITLE                    | TITRE DU CALCUL                      |
| CONCENTRATION LAW x CONCENTRATION    | LOI CONC x CONCENTRATION             |
| CONCENTRATION LAW x FILE             | LOI CONC x FICHIER                   |
| CONCENTRATION LAW x INPUT            | LOI CONC x MODE D'ENTREE             |
| CONCENTRATION LAW x NAME             | LOI CONC x NOM                       |
| CONCENTRATION LAW x NUMBER OF POINTS | LOI CONC x NOMBRE DE POINTS          |
| CONCENTRATION LAW x TIME             | LOI CONC x TEMPS                     |
| CONCENTRATION LAW x TIME UNIT        | LOI CONC x UNITE DE TEMPS            |
| CONCENTRATIONS PRINTOUTS INTO        | IMPRESSION DES CONCENTRATIONS SUR LE |
| LISTING                              | LISTING                              |
| CONTROL CELL DEFINITION FOR BEDLOAD  | DEFINITION DES VOLUMES DE CONTROLE   |
|                                      | POUR LE CHARRIAGE                    |
| CONVECTION FINITE VOLUMES SCHEME     | PARAMETRE W DU SCHEMA DE CONVECTION  |
| PARAMETER W                          | VOLUMES FINIS                        |
| CONVECTION OPTION FOR TRACERS        | OPTION DE CONVECTION POUR LES        |
|                                      | TRACEURS                             |
| COTE CRETE DEVERSOIRS                | COTE CRETE DEVERSOIRS                |
| COTE DE CRETE DU BARRAGE PRINCIPAL   | COTE DE CRETE DU BARRAGE PRINCIPAL   |
| COTES CRETES                         | COTES CRETES                         |
| COTES CRETES SEUILS                  | COTES CRETES SEUILS                  |
| COTES MOYENNES CRETES                | COTES MOYENNES CRETES                |
| COTES RUPTURES SEUILS                | COTES RUPTURES SEUILS                |
| COUPLING FREQUENCY BETWEEN HYDRAULIC | FREQUENCE DE COUPLAGE ENTRE          |
| AND TRACER                           | HYDRAULIQUE ET TRACEUR               |
| COURANT NUMBER                       | NOMBRE DE COURANT SOUHAITE           |
| COURLIS CONVECTION FINITE VOLUMES    | ORDRE DU SCHEMA DE CONVECTION        |
| SCHEME ORDER                         | VOLUMES FINIS POUR COURLIS           |
| COURLIS CONVECTION FINITE VOLUMES    | PARAMETRE W DU SCHEMA DE CONVECTION  |
| SCHEME PARAMETER W                   | VOLUMES FINIS POUR COURLIS           |
| COURLIS CONVECTION OPTION FOR        | OPTION DE CONVECTION POUR LES        |
| TRACERS                              | TRACEURS POUR COURLIS                |
| COURLIS DICTIONARY                   | DICTIONAIRE COURLIS                  |
| COURLIS GEOMETRY FILE                | FICHIER DE GEOMETRIE COURLIS         |
| COURLIS INITIAL CONCENTRATIONS INPUT | MODE D'ENTREE DES CONCENTRATIONS     |
|                                      | INITIALES POUR COURLIS               |
| COURLIS INITIAL CONDITIONS FILE      | FICHIER DES CONCENTRATIONS INITIALES |
|                                      | POUR COURLIS                         |

| COURLIS INTIAL CONDITIONS NUMBER OF  | NOMBRE DE POINTS DECRIVANT LES CONC          |
|--------------------------------------|----------------------------------------------|
| POINTS                               | INITIALES POUR COURLIS                       |
| COURLIS NUMBER OF TRACERS            | NOMBRE DE TRACEURS POUR COURLIS              |
| COURLIS OPTION                       | OPTION COURLIS                               |
| COURLIS TRACERS CONVECTION           | CONVECTION DES TRACEURS POUR COURLIS         |
| CROSS SECTION LAYOUT                 | COMPOSITION DES LITS                         |
| CROSS SECTION RESULTS FILE           | FICHIER RESULTATS PROFIL EN TRAVERS          |
| D16                                  | D16                                          |
| D84                                  | D84                                          |
| DEBUG BEDLOAD                        | DEBUG CHARRIAGE                              |
| DICTIONARY                           | DICTIONNAIRE                                 |
| DIFFUSION COEFFICIENT 1 FOR TRACERS  | COEFFICIENT DE DIFFUSION 1 POUR LES TRACEURS |
| DIFFUSION COEFFICIENT 2 FOR TRACERS  | COEFFICIENT DE DIFFUSION 2 POUR LES TRACEURS |
| DRY ZONE DOWNSTREAM ABSCISSA         | ABSCISSE DE FIN DE ZONE SECHE                |
| DRY ZONE REACH                       | BRANCHE DE ZONE SECHE                        |
| DRY ZONE UPSTREAM ABSCISSA           | ABSCISSE DE DEBUT DE ZONE SECHE              |
| EPAISSEURS SEUILS                    | EPAISSEURS SEUILS                            |
| EXTREMITE NUMERO                     | EXTREMITE NUMERO                             |
| FICHIER DE GEOMETRIE                 | FICHIER DE GEOMETRIE                         |
| FILE FOR IMPOSED ELEVATIONS FOR      | FICHIER POUR LES COTES D'EROSION             |
| EROSION                              | IMPOSEES                                     |
| FIRST TIME STEP TO SAVE              | PREMIER PAS DE TEMPS A STOCKER               |
| FLOOD WAVE CALCULATION               | CALCUL D'UNE ONDE DE SUBMERSION              |
| FLOODPLAIN COEFFICIENT               | VALEUR DU COEFFICIENT LIT MAJEUR             |
| FLOODPLAIN LEFT LIMIT                | LIMITE GAUCHE LIT MAJEUR                     |
| FLOODPLAIN RIGHT LIMIT               | LIMITE DROITE LIT MAJEUR                     |
| FORMAT DU FICHIER DE GEOMETRIE       | FORMAT DU FICHIER DE GEOMETRIE               |
| FREE BOUNDARY NUMBER                 | NOMBRE D'EXTREMITES LIBRES                   |
| FRICTION CONVERSATION ALONG VERTICAL | CONSERVATION DU FROTTEMENT SUR LES           |
| WALLS                                | PAROIS VERTICALES                            |
| FRICTION LAW                         | LOI DE FROTTEMENT                            |
| FRICTION ZONE DOWNSTREAM ABSCISSA    | ABSCISSE FIN ZONE DE FROTTEMENT              |
| FRICTION ZONE UPSTREAM ABSCISSA      | ABSCISSE DEBUT ZONE DE FROTTEMENT            |
| FROUDE LIMIT AT BOUNDARIES           | FROUDE LIMITE POUR LES CONDITIONS<br>LIMITES |
| GEOMETRY PRINTOUTS                   | IMPRESSION DE LA GEOMETRIE                   |
| GRADIENTS DE DESCENTE SEUILS         | GRADIENTS DE DESCENTE SEUILS                 |
| HOMOTHETY COEFFICIENT                | COEFFICIENT D'HOMOTHETIE                     |
| HYDRAULICS LAWS PRINTOUTS            | IMPRESSION DES LOIS HYDRAULIQUES             |
| HYDROSTATIC TERMS FOR TRANSCRITICAL  | TERMES NON HYDROSTATIQUES POUR LE            |
| KERNEL                               | NOYAU TRANSCRITIQUE                          |
| IMPLICIT TREATMENT OF FRICTION       | TRAITEMENT IMPLICITE DU FROTTEMENT           |
| IMPLICITATION OF TRANSCRITICAL       | IMPLICITATION DU NOYAU TRANSCRITIQUE         |
| KERNEL                               | COTE D'EDOCTON IMPOSEE                       |
| IMPOSED ELEVATION FOR EROSION        | COTE D'EROSION IMPOSEE                       |

| INDEX OF NODES                             | INDEX DES NOEUDS                                                        |
|--------------------------------------------|-------------------------------------------------------------------------|
| INITIAL CONCENTRATIONS ABSCISSAE           | ABSCISSES DES CONC INI                                                  |
| INITIAL CONCENTRATIONS FILE                | FICHIER DES CONCENTRATIONS INITIALES                                    |
| INITIAL CONCENTRATIONS INPUT               | MODE D'ENTREE DES CONCENTRATIONS INITIALES                              |
| INITIAL CONCENTRATIONS PRESENCE            | PRESENCE CONCENTRATIONS INITIALES                                       |
| INITIAL CONCENTRATIONS PRINTOUTS           | IMPRESSION DES CONCENTRATIONS INITIALES                                 |
| INITIAL TRACER CONCENTRATION POINTS NUMBER | NOMBRE POINTS CONCENTRATION INITIALE TRACEUR                            |
| INITIAL WATER ELEVATIONS                   | COTES DE LA LIGNE D'EAU                                                 |
| INITIAL WATER ELEVATIONS ABSCISSA          | ABSCISSES DE LA LIGNE D'EAU                                             |
| INITIAL WATER ELEVATIONS AVAILABLE         | PRESENCE LIGNE D'EAU INITIALE                                           |
| INITIAL WATER ELEVATIONS DICHARGES         | DEBITS DE LA LIGNE D'EAU                                                |
| INITIAL WATER ELEVATIONS FILE              | FICHIER LIGNE D'EAU                                                     |
| INITIAL WATER ELEVATIONS FILE FORMAT       | FORMAT LIGNE D'EAU                                                      |
| INITIAL WATER ELEVATIONS INPUT             | MODE D'ENTREE DE LA LIGNE D'EAU                                         |
| INITIAL WATER ELEVATIONS POINTS NUMBER     | NOMBRE POINTS LIGNE D'EAU                                               |
| INITIAL WATER ELEVATIONS PRINTOUTS         | IMPRESSION DE LA LIGNE D'EAU                                            |
|                                            | INITIALE                                                                |
| INITIAL WATER ELEVATIONS REACH             | BRANCHE DE LA LIGNE D'EAU                                               |
| INPUT FILE TO CONTINUE COMPUTATION         | FICHIER DE REPRISE EN LECTURE                                           |
| INTIAL TIME                                | TEMPS INITIAL                                                           |
| KEYWORD FILE FOR COURLIS                   | FICHIER DES MOTS-CLEFS COURLIS                                          |
| KEYWORDS FILENAME                          | FICHIER DES MOT-CLES                                                    |
| LARGEURS VANNES                            | LARGEURS VANNES                                                         |
| LATERAL INFLOW CONTRIBUTION IN             | APPORT DE DEBIT DANS LA QUANTITE DE                                     |
| MOMENTUM                                   | MVT                                                                     |
| LATERAL INFLOW DISCHARGES NUMBER           | NOMBRE DE DEBITS D'APPORTS                                              |
| LAW NAME LAYERS CONCENTRATION              | LOI NOM                                                                 |
| LAYERS CONCENTRATION  LAYERS NAME          | CONCENTRATION DES COUCHES                                               |
| LIAISON ABSCISSE CORRESPONDANTE            | NOM DES COUCHES LIAISON ABSCISSE CORRESPONDANTE                         |
| LIAISON COEFFICIENT D'ACTIVATION           | LIAISON COEFFICIENT D'ACTIVATION                                        |
| LIAISON COEFFICIENT DE DEBIT ORIFICE       | LIAISON COEFFICIENT DE ACTIVATION  LIAISON COEFFICIENT DE DEBIT ORIFICE |
| LIAISON COEFFICIENT DE DEBIT SEUIL         | LIAISON COEFFICIENT DE DEBIT ORIFICE LIAISON COEFFICIENT DE DEBIT SEUIL |
| LIAISON COEFFICIENT DE DEBTI SEUL          | LIAISON COEFFICIENT DE DEBIT SEUTE LIAISON COEFFICIENT PERTE DE CHARGE  |
| LIAISON COEFFICIENT FERTE DE CHARGE        | LIAISON COEFFICIENT FERTE DE CHARGE                                     |
| LIAISON COTE LIAISON LARGEUR               | LIAISON COTE LIAISON LARGEUR                                            |
| LIAISON LANGEOR LIAISON LONGUEUR           | LIAISON LARGEON LIAISON LONGUEUR                                        |
| LIAISON NATURE                             | LIAISON NATURE                                                          |
| LIAISON NUMERO DU BIEF ASSOCIE             | LIAISON NUMERO DU BIEF ASSOCIE                                          |
| LIAISON NUMERO DU CASIER FIN               | LIAISON NUMERO DU CASIER FIN                                            |
| LIAISON NUMERO DU CASIER ORIGINE           | LIAISON NUMERO DU CASIER ORIGINE                                        |
| LIAISON RUGOSITE                           | LIAISON RUGOSITE                                                        |
| LIAISON SECTION                            | LIAISON SECTION                                                         |
|                                            |                                                                         |

| LIAISON TYPE                                 | LIAISON TYPE                         |
|----------------------------------------------|--------------------------------------|
| LIAISON TYPE ORIFICE                         | LIAISON TYPE ORIFICE                 |
| LIBRARIES LIST                               | LISTE DES BIBLIOTHEQUES              |
| LINEAR INTERPOLATION OF FRICTION COEFFICIENT | INTERPOLATION LINEAIRE DES STRICKLER |
| LISTING COURLIS FILE                         | FICHIER LISTING COURLIS              |
| LISTING FILE                                 | FICHIER LISTING                      |
| LOCAL SLOPE                                  | PENTE LOCALE                         |
| LOCATION ABSCISSA                            | ABSCISSE DU SITE                     |
| LOCATION REACH                               | BRANCHE DU SITE                      |
| LOI TYPE                                     | LOI TYPE                             |
| LOIS FICHIER                                 | LOIS FICHIER                         |
| LOIS MODE D'ENTREE                           | LOIS MODE D'ENTREE                   |
| LONGITUDINAL PROFILE RESULTS FILE            | FICHIER RESULTATS PROFIL EN LONG     |
| LONGUEUR APPORT                              | LONGUEUR APPORT                      |
| LONGUEUR DEVERSOIRS                          | LONGUEUR DEVERSOIRS                  |
| MAIN CHANNEL COEFFICIENT                     | VALEUR DU COEFFICIENT LIT MINEUR     |
| MAXIMAL ELEVATION AT CHECKPOINT              | COTE MAXIMALE DE CONTROLE            |
| MAXIMAL TIME                                 | TEMPS MAXIMUM                        |
| MEAN DIAMETER                                | DIAMETRE MOYEN                       |
| METHODE DE CALCUL DU MAILLAGE                | METHODE DE CALCUL DU MAILLAGE        |
| MINIMUM WATER DEPTH                          | HAUTEUR D'EAU MINIMALE               |
| MODE DE SAISIE DU MAILLAGE                   | MODE DE SAISIE DU MAILLAGE           |
| MODEL SAVE                                   | SAUVEGARDE DU MODELE                 |
| MODEL SAVE FILE                              | FICHIER SAUVEGARDE DU MODELE         |
| MODIFIED FORMULA FOR SHEAR STRESS            | FORMULE MODIFIEE DE CALCUL DE LA     |
| COMPUTATION                                  | CONTRAINTE                           |
| MORPHOLOGY OPTION RECKING 2015               | MORPHOLOGY OPTION RECKING 2015       |
| NETWORK PRINTOUTS                            | IMPRESSION DU RESEAU                 |
| NODES NUMBER                                 | NOMBRE DE NOEUDS                     |
| NOM DU CONFLUENT x                           | NOM DU CONFLUENT x                   |
| NOM EXTREMITE                                | NOM EXTREMITE                        |
| NOMBRE D'APPORTS DE PLUIE                    | NOMBRE D'APPORTS DE PLUIE            |
| NOMBRE DE BRANCHES                           | NOMBRE DE BRANCHES                   |
| NOMBRE DE CASIERS                            | NOMBRE DE CASIERS                    |
| NOMBRE DE CONFLUENTS                         | NOMBRE DE CONFLUENTS                 |
| NOMBRE DE DEVERSOIRS                         | NOMBRE DE DEVERSOIRS                 |
| NOMBRE DE LIAISONS                           | NOMBRE DE LIAISONS                   |
| NOMBRE DE PAS DE PLANIMETRAGE                | NOMBRE DE PAS DE PLANIMETRAGE        |
| NOMBRE DE PERTES DE CHARGE                   | NOMBRE DE PERTES DE CHARGE           |
| SINGULIERES                                  | SINGULIERES                          |
| NOMBRE DE PLAGES DE DISCRETISATION           | NOMBRE DE PLAGES DE DISCRETISATION   |
| NOMBRE DE SECTIONS DE CALCUL                 | NOMBRE DE SECTIONS DE CALCUL         |
| NOMBRE DE SECTIONS DE LA ZONE                | NOMBRE DE SECTIONS DE LA ZONE        |
| NOMBRE DE ZONES DE DISCRETISATION            | NOMBRE DE ZONES DE DISCRETISATION    |
| NOMBRE DE ZONES DE PLANIMETRAGE              | NOMBRE DE ZONES DE PLANIMETRAGE      |
| NOMS DES APPORTS                             | NOMS DES APPORTS                     |
|                                              |                                      |

| NOWC DEVERGOTEC                         | NOME DEVEDENTE                           |
|-----------------------------------------|------------------------------------------|
| NOMS DEVERSOIRS                         | NOMS DEVERSOIRS                          |
| NOMS SEUILS                             | NOMS SEUILS                              |
| NUM BRANCHE DE LA PERTE DE CHARGE       | NUM BRANCHE DE LA PERTE DE CHARGE        |
| SINGULIERE                              | SINGULIERE                               |
| NUM BRANCHE DEVERSOIRS                  | NUM BRANCHE DEVERSOIRS                   |
| NUM BRANCHE DU BARRAGE PRINCIPAL        | NUM BRANCHE DU BARRAGE PRINCIPAL         |
| NUM BRANCHE SEUILS                      | NUM BRANCHE SEUILS                       |
| NUM DE L'EXTREMITE DE DEBUT             | NUM DE L'EXTREMITE DE DEBUT              |
| NUM DE L'EXTREMITE DE FIN               | NUM DE L'EXTREMITE DE FIN                |
| NUMBER CONCENTRATION LAW LATERAL        | NUMERO LOI CONC APPORT SABLE             |
| SAND                                    |                                          |
| NUMBER CONCENTRATION LAW LATERAL        | NUMERO LOI CONC APPORT VASE              |
| SILT                                    |                                          |
| NUMBER CONCENTRATION LAW UPSTREAM       | NUMERO LOI CONC AMONT SABLE              |
| SAND                                    |                                          |
| NUMBER CONCENTRATION LAW UPSTREAM       | NUMERO LOI CONC AMONT VASE               |
| SILT                                    |                                          |
| NUMBER OF CONCENTRATION LAWS            | NOMBRE DE LOIS DE CONCENTRATION          |
| NUMBER OF DIFFERENT DISCHARGES IN       | LOIS NOMBRE DE DEBITS DIFFERENTS         |
| LAWS                                    | Edia Nombre de dedita differenta         |
| NUMBER OF DRY ZONES                     | NOMBRE DE ZONES SECHES                   |
| NUMBER OF FRICTION ZONES                | NOMBRE DE ZONES DE FROTTEMENT            |
| NUMBER OF HYDRAULIC LAWS                | NOMBRE DE LOIS HYDRAULIQUES              |
| NUMBER OF ITERATIONS FOR THE            | NOMBRE D'ITERATIONS HYDRAULIQUE          |
| HYDRAULIC MODEL                         | NOMBRE D TIERATIONS HIDRAULIQUE          |
| NUMBER OF ITERATIONS FOR THE            | NOMBRE D'ITERATIONS SEDIMENTO            |
| SEDIMENT MODEL                          | NOMBRE D TIERATIONS SEDIMENTO            |
| NUMBER OF LAYERS                        | NOMBRE DE COUCHES                        |
|                                         | NOMBRE DE COOCHES  NOMBRE DE SITES       |
| NUMBER OF LOCATIONS                     |                                          |
| NUMBER OF POINTS IN LAWS                | LOIS NOMBRE DE POINTS                    |
| NUMBER OF SECTIONS WITH STORAGE         | NOMBRE DE PROFILS COMPORTANT DES         |
| ZONES                                   | ZONES DE STOCKAGE                        |
| NUMBER OF TIME STEPS                    | NOMBRE DE PAS DE TEMPS                   |
| NUMBER OF TRACER SOURCES                | NOMBRE DE SOURCES DE TRACEURS            |
| NUMBER OF TRACERS                       | NOMBRE DE TRACEURS                       |
| NUMBER OF TRIBUTARIES FOR CONFLUENT     | NOMBRE D'AFFLUENTS DU CONFLUENT x        |
| х                                       |                                          |
| NUMERICAL FOR BEDLOAD SCHEME            | SCHEMA NUMERIQUE POUR LE CHARRIAGE       |
| NUMERO BRANCHE APPORT                   | NUMERO BRANCHE APPORT                    |
| NUMERO DE BRANCHE DE ZONE               | NUMERO DE BRANCHE DE ZONE                |
| NUMERO DE LA LOI                        | NUMERO DE LA LOI                         |
| NUMERO DE LA LOI ASSOCIEE               | NUMERO DE LA LOI ASSOCIEE                |
| NUMERO DU CASIER ASSOCIE                | NUMERO DU CASIER ASSOCIE                 |
| NUMERO DU DERNIER PROFIL                | NUMERO DU DERNIER PROFIL                 |
| NUMERO DU DERNIER PROFIL DE LA SERIE    | NUMERO DU DERNIER PROFIL DE LA SERIE     |
| NUMERO DU PREMIER PROFIL                | NUMERO DU PREMIER PROFIL                 |
| NUMERO DU PREMIER PROFIL DE LA SERIE    | NUMERO DU PREMIER PROFIL DE LA SERIE     |
| MOTILING DO INCITEDO INOLIE DE EN SENTE | HOHERO DO I KEHILEK I KOI IL DE LA SEKIE |

|                                       | T                                            |
|---------------------------------------|----------------------------------------------|
| NUMERO LOI APPORT                     | NUMERO LOI APPORT                            |
| NUMERO LOI DEVERSOIRS                 | NUMERO LOI DEVERSOIRS                        |
| NUMEROS LOIS SEUILS                   | NUMEROS LOIS SEUILS                          |
| OPTIMIZATION OF TRANSCRITICAL KERNEL  | OPTIMISATION DU NOYAU TRANSCRITIQUE          |
| OPTION AUTO CALIBRATION               | OPTION CALAGE AUTO                           |
| OPTION FOR DISPERSION CALCULATION     | OPTION DE CALCUL DE LA DISPERSION            |
| FOR TRACERS                           | POUR LES TRACEURS                            |
| OPTION FOR PROFILE EVOLUTION          | OPTION D'EVOLUTION DE PROFIL                 |
| OPTION ROUNDED ENERGY SLOPE           | OPTION ARRONDI PENTE ENERGIE                 |
| ORDER FOR THE CONVECTION FINITE       | ORDRE DU SCHEMA DE CONVECTION                |
| VOLUMES SCHEME                        | VOLUMES FINIS                                |
| ORDONNEE DE L'AFFLUENT DU CONFLUENT   | ORDONNEE DE L'AFFLUENT DU CONFLUENT          |
| X                                     | x                                            |
| OUTPUT FILE TO CONTINUE COMPUTATION   | FICHIER DE REPRISE EN ECRITURE               |
| PARTHENIADES COEFFICIENT              | COEFFICIENT DE PARTHENIADES                  |
| PAS D'ESPACE DE LA SERIE              | PAS D'ESPACE DE LA SERIE                     |
| PERIOD FOR PRINTOUTS                  | PAS D'IMPRESSION                             |
| PERIOD FOR PRINTOUTS COURLIS          | PAS D'IMPRESSION COURLIS                     |
| PERIOD FOR STORAGE                    | PAS DE STOCKAGE                              |
| PLANIMETRAGE PRINTOUTS                | IMPRESSION DU PLANIMETRAGE                   |
|                                       |                                              |
| POROSITY                              | POROSITE                                     |
| POST-PROCESSOR                        | POST-PROCESSEUR                              |
| PRECISION ROUNDED ENERGY SLOPE        | PRECISION ARRONDI PENTE ENERGIE              |
| PRINCIPAL PROGRAM                     | PROGRAMME PRINCIPAL                          |
| PRINTOUTS CONCENTRATION LAWS          | IMPRESSION DES LOIS DE CONCENTRATION         |
| PRINTOUTS COUPLING PARAMETERS         | IMPRESSION DES PARAMETRES DE                 |
|                                       | COUPLAGE                                     |
| PRINTOUTS INITIAL CONC LAWS FOR       | IMPRESSION DES CONC INITIALES POUR           |
| COURLIS                               | COURLIS                                      |
| PRINTOUTS SEDIMENT INFLOWS            | IMPRESSION DES APPORTS SEDIMENTAIRES         |
| PRINTOUTS SEDIMENT INTERFACES         | IMPRESSION DES INTERFACES                    |
|                                       | SEDIMENTAIRES                                |
| PRINTOUTS SEDIMENT PARAMETERS         | IMPRESSION DES PARAMETRES                    |
|                                       | SEDIMENTAIRES                                |
| PROFILS EN ABSCISSE ABSOLUE           | PROFILS EN ABSCISSE ABSOLUE                  |
| PROGRESSIVE OVERFLOW IN FLOODPLAIN    | DEBORDEMENT PROGRESSIF LIT MAJEUR            |
| PROGRESSIVE OVERFLOW IN STORAGE AREA  | DEBORDEMENT PROGRESSIF ZONES DE STOCKAGE     |
| REACH NUMBER FOR THE FRICTION ZONE    | NUMERO DE BIEF POUR LA ZONE DE<br>FROTTEMENT |
| REACHES GAP                           | ECART ENTRE BRANCHES                         |
| RESIDUAL ROBUSTNESS COEFFICIENT       | COEFFICIENT DE RESISTANCE RESIDUELLE         |
|                                       | FICHIER RESULTATS                            |
| DECILITE ETLE                         | PRICEICK KENIIIIAIN                          |
| RESULTS FILE                          |                                              |
| ROUGHNESS RATIO WITH QSTAR FOR        | RAPPORT RUGOSITE AVEC QSTAR POUR             |
| ROUGHNESS RATIO WITH QSTAR FOR LEFORT | RAPPORT RUGOSITE AVEC QSTAR POUR<br>LEFORT   |
| ROUGHNESS RATIO WITH QSTAR FOR        | RAPPORT RUGOSITE AVEC QSTAR POUR             |

| SAND FALL VELOCITY                   | VITESSE DE CHUTE DES SABLES          |
|--------------------------------------|--------------------------------------|
| SAND INITIAL CONCENTRATION           | CONCENTRATION EN SABLE INI           |
| SAND LIMIT PERCENTAGE                | POURCENTAGE LIMITE DE SABLE          |
| SAND PERCENTAGE                      | POURCENTAGE DE SABLE                 |
| SAUVEGARDE MAILLAGE                  | SAUVEGARDE MAILLAGE                  |
| SECTION NUMBER STORAGE               | NUMERO PROFIL STOCKAGE               |
| SEDIMENT SLIDE OPTION                | OPTION DE RUPTURE DE TALUS           |
| SEDIMENTS PROPERTIES FILE            | FICHIER DES CARACTERISTIQUES         |
|                                      | SEDIMENTAIRES                        |
| SEDIMENTS PROPERTIES INPUT           | MODE D'ENTREE DES CARACTERISTIQUES   |
|                                      | SEDIMENTAIRES                        |
| SEDIMENTS WEIGHT BY VOLUME           | POIDS VOLUMIQUE DES SEDIMENTS        |
| SHIELDS SHEAR STRESS WITH DISCHARGE  | CALCUL CONTRAINTE AVEC LE DEBIT POUR |
| FOR RECKING 2015                     | RECKING 2015                         |
| SILT DEPOSITION CRITICAL SHEAR       | CONTRAINTE CRITIQUE DE DEPOT DES     |
| STRESS                               | VASES                                |
| SILT DIFFUSION COEFFICIENT           | COEFFICIENT DE DIFFUSION DES VASES   |
| SILT EROSION CRITICAL SHEAR STRESS   | CONTRAINTE CRITIQUE D'EROSION DES    |
|                                      | VASES                                |
| SILT FALL VELOCITY                   | VITESSE DE CHUTE DES VASES           |
| SILT INITIAL CONCENTRATION           | CONCENTRATION EN VASE INI            |
| SKIN FRICTION COEFFICIENT            | STRICKLER DE PEAU                    |
| SLOPE LIMITER FOR THE FINITE VOLUMES | LIMITEUR DE PENTE DU SCHEMA VOLUMES  |
| SCHEME FOR COURLIS                   | FINIS POUR COURLIS                   |
| SLOPE LIMITER OF FINITE VOLUMES      | LIMITEUR DE PENTE DU SCHEMA VOLUMES  |
| SCHEME                               | FINIS                                |
| SLOPE STABILITY MODEL                | MODELE DE RUPTURE DES TALUS          |
| SOURCES ABSCISSA                     | ABSCISSE DES SOURCES                 |
| SOURCES BRANCH                       | BRANCHE DES SOURCES                  |
| SOURCES LENGTHS                      | LONGUEUR DES SOURCES                 |
| SOURCES NAME                         | NOM DES SOURCES                      |
| SOURCES TYPE                         | TYPE DES SOURCES                     |
| STABILITY SLOPE FOR EMERGED          | PENTE DE STABILITE DES TALUS EMERGES |
| EMBANKMENTS                          |                                      |
| STABILITY SLOPE FOR SUBMERGED        | PENTE DE STABILITE DES TALUS         |
| EMBANKMENTS                          | IMMERGES                             |
| STOPPING CRITERION                   | CRITERE D'ARRET DU CALCUL            |
| STORAGE AREAS                        | PRESENCE DE CASIERS                  |
| STORAGE AREAS LINK LISTING FILE      | FICHIER LISTING LIAISONS             |
| STORAGE AREAS LINK RESULTS FILE      | FICHIER RESULTATS LIAISONS           |
| STORAGE AREAS LISTING FILE           | FICHIER LISTING CASIERS              |
| STORAGE AREAS RESULTS FILE           | FICHIER RESULTATS CASIERS            |
| STORAGE OPTION                       | OPTION DE STOCKAGE                   |
| STORAGE PERIOD FOR THE CROSS SECTION | PAS DE STOCKAGE POUR LE PROFIL EN    |
| PROFILE                              | TRAVERS                              |
| STORAGE PERIOD FOR THE LONGITUDINAL  | PAS DE STOCKAGE POUR LE PROFIL EN    |
| PROFILE                              | LONG                                 |
|                                      |                                      |

| CHCDENCTON ODETON                          | OPTION CUCPENCION                           |
|--------------------------------------------|---------------------------------------------|
| SUSPENSION OPTION                          | OPTION SUSPENSION                           |
| TIME STEP                                  | PAS DE TEMPS                                |
| TIME UNIT IN LAWS                          | LOIS UNITE DE TEMPS                         |
| TIME UNIT IN TRACER CONC LAW               | LOI CONC TRACEUR UNITE DE TEMPS             |
| TOTAL FRICTION COEFFICIENT                 | STRICKLER TOTAL                             |
| TRACER BALANCE PRINTOUTS INTO              | IMPRESSION DU BILAN TRACEUR SUR LE          |
| LISTING                                    | LISTING                                     |
| TRACER CONC LAW POINTS NUMBER              | NOMBRE POINTS CONC LOI TRACEUR              |
| TRACER LAW FILE                            | LOI TRACEUR FICHIER                         |
| TRACER LAW INPUT                           | LOI TRACEUR MODE D'ENTREE                   |
| TRACER LAW NAMES                           | LOI TRACEUR NOMS                            |
| TRACER LAWS NUMBER FOR BOUNDARIES          | NUMERO DES LOIS TRACEUR POUR LES CL         |
| TRACER LAWS PRINTOUTS                      | IMPRESSION DES LOIS TRACEUR                 |
| TRACER LISTING FILE                        | FICHIER LISTING TRACEUR                     |
| TRACER NUMBER OF LAWS                      | NOMBRE DE LOIS TRACEUR                      |
| TRACER NUMBER OF LAWS FOR SOURCES          | NUMERO DES LOIS TRACEUR POUR LES<br>SOURCES |
| TRACER PHYSICAL PARAMETERS FILE            | FICHIER DES PARAMETRES PHYSIQUES TRACEUR    |
| TRACER POST-PROCESSOR                      | POST-PROCESSEUR TRACEUR                     |
| TRACER RESULTS FILE                        | FICHIER RESULTATS TRACEUR                   |
| TRACER WEATHER DATA FILE                   | FICHIER DES DONNEES METEO TRACEUR           |
| TRACERS CONVECTION                         | CONVECTION DES TRACEURS                     |
| TRACERS DIFFUSION                          | DIFFUSION DES TRACEURS                      |
| TRACERS PRESENCE                           | PRESENCE DE TRACEURS                        |
| TRANSPORT LAW                              | LOI DE TRANSPORT                            |
| TYPE DE CONDITION                          | TYPE DE CONDITION                           |
| TYPE DE RUPTURE DU BARRAGE PRINCIPAL       | TYPE DE RUPTURE DU BARRAGE PRINCIPAL        |
| TYPE DEVERSOIRS                            | TYPE DEVERSOIRS                             |
| TYPE OF BOUNDARY CONDITIONS TRACER         | TYPE DE CONDITIONS LIMITES TRACEUR          |
| TYPE OF VALIDATION CALCULATION             | TYPE DE CALCUL DE VALIDATION                |
|                                            | EFFECTUE                                    |
| TYPE SEUILS                                | TYPE SEUILS                                 |
| UNCENTERED SCHEME                          | DECENTREMENT                                |
| UPSTREAM EQUILIBRIUM SLOPE                 | PENTE EQUILIBRE AMONT                       |
| UPSTREAM SEDIMENT CONCENTRATION FROM       | CONCENTRATION AMONT CALCULEE AVEC           |
| EQUILIBRIUM SLOPE                          | PENTE EQUILIBRE                             |
| UPSTREAM SEDIMENT CONCENTRATION            | CONCENTRATION AMONT SANS LES VIDES          |
| WITHOUT VOIDS                              |                                             |
| VALEUR DU PAS                              | VALEUR DU PAS                               |
| VARIABLE TIME STEP WITH COURANT            | PAS DE TEMPS VARIABLE SUIVANT NOMBRE        |
| NUMBER                                     | DE COURANT                                  |
| VARIABLES COMPUTED                         | VARIABLES CALCULEES                         |
| VARIABLES SAVED                            | VARIABLES STOCKEES                          |
| WATER DEPTH THRESHOLD IDENTIFYING THE WAVE | ELEVATION DE COTE ARRIVEE DU FRONT          |
| WATER QUALITY MODEL                        | MODELE DE QUALITE D'EAU                     |
|                                            |                                             |

| WATER WEIGHT BY VOLUME | POIDS VOLUMIQUE DE L'EAU         |
|------------------------|----------------------------------|
| WEIR LAW POINTS NUMBER | NOMBRE DE POINTS DES LOIS SEUILS |
| WEIRS NUMBER           | NOMBRE DE SEUILS                 |

## 3.2 French/English glossary

| ABSCISSE APPORT                     | ABSCISSE APPORT                     |
|-------------------------------------|-------------------------------------|
| ABSCISSE DE DEBUT DE ZONE           | ABSCISSE DE DEBUT DE ZONE           |
| ABSCISSE DE DEBUT DE ZONE SECHE     | DRY ZONE UPSTREAM ABSCISSA          |
| ABSCISSE DE FIN DE ZONE             | ABSCISSE DE FIN DE ZONE             |
| ABSCISSE DE FIN DE ZONE SECHE       | DRY ZONE DOWNSTREAM ABSCISSA        |
| ABSCISSE DE L'AFFLUENT DU CONFLUENT | ABSCISSE DE L'AFFLUENT DU CONFLUENT |
| x                                   | x                                   |
| ABSCISSE DE LA PERTE DE CHARGE      | ABSCISSE DE LA PERTE DE CHARGE      |
| SINGULIERE                          | SINGULIERE                          |
| ABSCISSE DEBUT                      | ABSCISSE DEBUT                      |
| ABSCISSE DEBUT ZONE DE FROTTEMENT   | FRICTION ZONE UPSTREAM ABSCISSA     |
| ABSCISSE DES SOURCES                | SOURCES ABSCISSA                    |
| ABSCISSE DEVERSOIRS                 | ABSCISSE DEVERSOIRS                 |
| ABSCISSE DU BARRAGE PRINCIPAL       | ABSCISSE DU BARRAGE PRINCIPAL       |
| ABSCISSE DU SITE                    | LOCATION ABSCISSA                   |
| ABSCISSE FIN                        | ABSCISSE FIN                        |
| ABSCISSE FIN ZONE DE FROTTEMENT     | FRICTION ZONE DOWNSTREAM ABSCISSA   |
| ABSCISSES DE DEBUT DE ZONES POUR    | AUTO CALIBRATION ZONES UPSTREAM     |
| CALAGE AUTO                         | ABSCISSAE                           |
| ABSCISSES DE FIN DE ZONES POUR      | AUTO CALIBRATION ZONES DOWNSTREAM   |
| CALAGE AUTO                         | ABSCISSAE                           |
| ABSCISSES DE LA LIGNE D'EAU         | INITIAL WATER ELEVATIONS ABSCISSA   |
| ABSCISSES DES APPORTS DE LA CRUE x  | AUTO CALIBRATION INFLOWS ABSCISSAE  |
| POUR CALAGE AUTO                    | FOR FLOOD x                         |
| ABSCISSES DES CONC INI              | INITIAL CONCENTRATIONS ABSCISSAE    |
| ABSCISSES DES MESURES DE LA CRUE x  | AUTO CALIBRATION FLOOD MEASUREMENTS |
| POUR CALAGE AUTO                    | ABSCISSAE FOR FLOOD x               |
| ABSCISSES DES SECTIONS DE CALCUL    | ABSCISSES DES SECTIONS DE CALCUL    |
| ABSCISSES EN TRAVERS CRETE          | ABSCISSES EN TRAVERS CRETE          |
| ABSCISSES SEUILS                    | ABSCISSES SEUILS                    |
| ANGLE DE L'AFFLUENT DU CONFLUENT x  | ANGLE DE L'AFFLUENT DU CONFLUENT x  |
| APPORT DE DEBIT DANS LA QUANTITE DE | LATERAL INFLOW CONTRIBUTION IN      |
| MVT                                 | MOMENTUM                            |
| ATTENUATION DE LA CONVECTION        | ATTENUATION OF CONVECTION           |
| BORNES INFERIEURES COEF LIT MAJEUR  | AUTO CALIBRATION LOWER BOUNDS       |
| DE ZONES POUR CALAGE AUTO           | FLOODPLAIN ZONES COEF               |
| BORNES INFERIEURES COEF LIT MINEUR  | AUTO CALIBRATION LOWER BOUNDS MAIN  |
| DE ZONES POUR CALAGE AUTO           | CHANNEL ZONES COEF                  |
| BORNES SUPERIEURES COEF LIT MAJEUR  | AUTO CALIBRATION UPPER BOUNDS       |
| DE ZONES POUR CALAGE AUTO           | FLOODPLAIN ZONES COEF               |
| BORNES SUPERIEURES COEF LIT MINEUR  | AUTO CALIBRATION UPPER BOUNDS MAIN  |
| DE ZONES POUR CALAGE AUTO           | CHANNEL ZONES COEF                  |

| BRANCHE DE LA LIGNE D'EAU                            | INITIAL WATER ELEVATIONS REACH       |
|------------------------------------------------------|--------------------------------------|
| BRANCHE DE ZONE SECHE                                | DRY ZONE REACH                       |
| BRANCHE DES SOURCES                                  | SOURCES BRANCH                       |
| BRANCHE DU SITE                                      | LOCATION REACH                       |
| BRANCHE NUMERO                                       | BRANCHE NUMERO                       |
| BRANCHES DES SECTIONS DE CALCUL                      | BRANCHES DES SECTIONS DE CALCUL      |
| CALCUL AVEC SABLE                                    | CALCULATION WITH SAND                |
| CALCUL CONTRAINTE AVEC LE DEBIT POUR                 | SHIELDS SHEAR STRESS WITH DISCHARGE  |
| RECKING 2015                                         | FOR RECKING 2015                     |
| CALCUL D'UNE ONDE DE SUBMERSION                      | FLOOD WAVE CALCULATION               |
| CALCUL POUR VALIDATION DU CODE                       | CALCULATION FOR VALIDATION OF THE    |
|                                                      | CODE                                 |
| CASIERS COTE INITIALE                                | CASIERS COTE INITIALE                |
| CASIERS FICHIER GEOMETRIE                            | CASIERS FICHIER GEOMETRIE            |
| CASIERS NOMBRE DE COTES DE                           | CASIERS NOMBRE DE COTES DE           |
| PLANIMETRAGE                                         | PLANIMETRAGE                         |
| CASIERS OPTION DE CALCUL                             | CASIERS OPTION DE CALCUL             |
| CASIERS OPTION DE PLANIMETRAGE                       | CASIERS OPTION DE PLANIMETRAGE       |
| CASIERS PAS DE PLANIMETRAGE                          | CASIERS PAS DE PLANIMETRAGE          |
| CHOIX DU LIT POUR CALAGE AUTO                        | AUTO CALIBRATION SELECTED CHANNEL    |
| CLIP ABSOLU SUR L'EVOLUTION                          | ABSOLUTE CLIP EVOLUTION              |
| CLIP EVOLUTION                                       | CLIP EVOLUTION                       |
| COEFF DEBIT DEVERSOIRS                               | COEFF DEBIT DEVERSOIRS               |
| COEFF DEBIT SEUILS                                   | COEFF DEBIT SEUILS                   |
| COEFFICIENT D'HOMOTHETIE                             | HOMOTHETY COEFFICIENT                |
| COEFFICIENT DE DIFFUSION 1 POUR LES                  | DIFFUSION COEFFICIENT 1 FOR TRACERS  |
| TRACEURS                                             |                                      |
| COEFFICIENT DE DIFFUSION 2 POUR LES                  | DIFFUSION COEFFICIENT 2 FOR TRACERS  |
| TRACEURS                                             |                                      |
| COEFFICIENT DE DIFFUSION DES SABLES                  | SAND DIFFUSION COEFFICIENT           |
| COEFFICIENT DE DIFFUSION DES VASES                   | SILT DIFFUSION COEFFICIENT           |
| COEFFICIENT DE LA PERTE DE CHARGE                    | COEFFICIENT DE LA PERTE DE CHARGE    |
| SINGULIERE                                           | SINGULIERE                           |
| COEFFICIENT DE PARTHENIADES                          | PARTHENIADES COEFFICIENT             |
| COEFFICIENT DE RESISTANCE RESIDUELLE                 | RESIDUAL ROBUSTNESS COEFFICIENT      |
| COEFFICIENTS DE LIT MAJEUR DE ZONES                  | AUTO CALIBRATION COEFFICIENTS IN     |
| POUR CALAGE AUTO                                     | FLOODPLAIN ZONES                     |
| COEFFICIENTS DE LIT MINEUR DE ZONES                  | AUTO CALIBRATION COEFFICIENTS IN     |
| POUR CALAGE AUTO                                     | MAIN CHANNEL ZONES                   |
| COMPOSITION DES LITS                                 | CROSS SECTION LAYOUT                 |
| CONCENTRATION AMONT CALCULEE AVEC                    | UPSTREAM SEDIMENT CONCENTRATION FROM |
| PENTE EQUILIBRE                                      | EQUILIBRIUM SLOPE                    |
| CONCENTRATION AMONT SANS LES VIDES                   | UPSTREAM SEDIMENT CONCENTRATION      |
|                                                      | WITHOUT VOIDS                        |
|                                                      |                                      |
| CONCENTRATION DES COUCHES                            | LAYERS CONCENTRATION                 |
| CONCENTRATION DES COUCHES CONCENTRATION EN SABLE INI |                                      |
|                                                      |                                      |

| CONCEDUATION DI EDOMETRIDUT CUD LEC  | EDICATON CONVEDCATION ALONG VEDATORA |
|--------------------------------------|--------------------------------------|
| CONSERVATION DU FROTTEMENT SUR LES   | FRICTION CONVERSATION ALONG VERTICAL |
| PAROIS VERTICALES                    | WALLS                                |
| CONTRAINTE CRITIQUE D'EROSION DES    | SILT EROSION CRITICAL SHEAR STRESS   |
| VASES                                |                                      |
| CONTRAINTE CRITIQUE DE DEPOT DES     | SILT DEPOSITION CRITICAL SHEAR       |
| VASES                                | STRESS                               |
| CONVECTION DES TRACEURS              | TRACERS CONVECTION                   |
| CONVECTION DES TRACEURS POUR COURLIS | COURLIS TRACERS CONVECTION           |
| COTE AVAL DE LA CRUE x POUR CALAGE   | AUTO CALIBRATION DOWNSTREAM          |
| AUTO                                 | ELEVATION FOR FLOOD x                |
| COTE CRETE DEVERSOIRS                | COTE CRETE DEVERSOIRS                |
| COTE D'EROSION IMPOSEE               | IMPOSED ELEVATION FOR EROSION        |
| COTE DE CRETE DU BARRAGE PRINCIPAL   | COTE DE CRETE DU BARRAGE PRINCIPAL   |
| COTE MAXIMALE DE CONTROLE            | MAXIMAL ELEVATION AT CHECKPOINT      |
| COTES CRETES                         | COTES CRETES                         |
| COTES CRETES SEUILS                  | COTES CRETES SEUILS                  |
| COTES DE LA LIGNE D'EAU              | INITIAL WATER ELEVATIONS             |
| COTES MOYENNES CRETES                | COTES MOYENNES CRETES                |
| COTES RUPTURES SEUILS                | COTES RUPTURES SEUILS                |
| CRITERE D'ARRET DU CALCUL            | STOPPING CRITERION                   |
| D16                                  | D16                                  |
| D50 DES SABLES                       | SAND D50                             |
| D84                                  | D84                                  |
| DEBIT AMONT DE LA CRUE X POUR CALAGE | AUTO CALIBRATION INFLOW FOR x FLOW   |
| AUTO                                 | NOTO CHEIDIGITION INTLOW TOR X TEOW  |
| DEBITS DE LA LIGNE D'EAU             | INITIAL WATER ELEVATIONS DICHARGES   |
| DEBITS DES APPORTS DE LA CRUE X POUR | AUTO CALIBRATION INFLOWS VALUES FOR  |
| CALAGE AUTO                          | FLOOD x                              |
| DEBORDEMENT PROGRESSIF LIT MAJEUR    | PROGRESSIVE OVERFLOW IN FLOODPLAIN   |
| DEBORDEMENT PROGRESSIF ZONES DE      | PROGRESSIVE OVERFLOW IN STORAGE AREA |
| STOCKAGE                             | TROGRESSIVE OVERTEOW IN STORAGE AREA |
| DEBUG CHARRIAGE                      | DEBUG BEDLOAD                        |
| DECENTREMENT                         | UNCENTERED SCHEME                    |
| DEFINITION DES VOLUMES DE CONTROLE   | CONTROL CELL DEFINITION FOR BEDLOAD  |
| POUR LE CHARRIAGE                    | CONTROL CELL DEFINITION FOR BEDLUAD  |
| DIAMETRE MOYEN                       | MEAN DIAMETER                        |
|                                      |                                      |
| DICTIONAIRE COURLIS                  | COURLIS DICTIONARY                   |
| DICTIONNAIRE                         | DICTIONARY                           |
| DIFFUSION DES TRACEURS               | TRACERS DIFFUSION                    |
| ECART ENTRE BRANCHES                 | REACHES GAP                          |
| ELEVATION DE COTE ARRIVEE DU FRONT   | WATER DEPTH THRESHOLD IDENTIFYING    |
|                                      | THE WAVE                             |
| EPAISSEURS SEUILS                    | EPAISSEURS SEUILS                    |
| EXTREMITE NUMERO                     | EXTREMITE NUMERO                     |
| FICHIER DE GEOMETRIE                 | FICHIER DE GEOMETRIE                 |
| FICHIER DE GEOMETRIE COURLIS         | COURLIS GEOMETRY FILE                |
| FICHIER DE LISTING DU CALAGE AUTO    | AUTO CALIBRATION LISTING FILE        |

| TIGHTED DE DEDDICE EN ECDITANDE      | OVERNIE BY B TO COMPANY CONDUCTION    |
|--------------------------------------|---------------------------------------|
| FICHIER DE REPRISE EN ECRITURE       | OUTPUT FILE TO CONTINUE COMPUTATION   |
| FICHIER DE REPRISE EN LECTURE        | INPUT FILE TO CONTINUE COMPUTATION    |
| FICHIER DES CARACTERISTIQUES         | SEDIMENTS PROPERTIES FILE             |
| SEDIMENTAIRES                        |                                       |
| FICHIER DES CONCENTRATIONS INITIALES | INITIAL CONCENTRATIONS FILE           |
| FICHIER DES CONCENTRATIONS INITIALES | COURLIS INITIAL CONDITIONS FILE       |
| POUR COURLIS                         |                                       |
| FICHIER DES DONNEES METEO TRACEUR    | TRACER WEATHER DATA FILE              |
| FICHIER DES MOT-CLES                 | KEYWORDS FILENAME                     |
| FICHIER DES MOTS-CLEFS COURLIS       | KEYWORD FILE FOR COURLIS              |
| FICHIER DES PARAMETRES PHYSIQUES     | TRACER PHYSICAL PARAMETERS FILE       |
| TRACEUR                              |                                       |
| FICHIER LIGNE D'EAU                  | INITIAL WATER ELEVATIONS FILE         |
| FICHIER LISTING                      | LISTING FILE                          |
| FICHIER LISTING CASIERS              | STORAGE AREAS LISTING FILE            |
| FICHIER LISTING COURLIS              | LISTING COURLIS FILE                  |
| FICHIER LISTING LIAISONS             | STORAGE AREAS LINK LISTING FILE       |
| FICHIER LISTING TRACEUR              | TRACER LISTING FILE                   |
| FICHIER POUR LES COTES D'EROSION     | FILE FOR IMPOSED ELEVATIONS FOR       |
| IMPOSEES                             | EROSION                               |
| FICHIER RESULTAT DU CALAGE AUTO      | AUTO CALIBRATION RESULTS FILE         |
| FICHIER RESULTATS                    | RESULTS FILE                          |
| FICHIER RESULTATS CASIERS            | STORAGE AREAS RESULTS FILE            |
| FICHIER RESULTATS LIAISONS           | STORAGE AREAS LINK RESULTS FILE       |
| FICHIER RESULTATS PROFIL EN LONG     | LONGITUDINAL PROFILE RESULTS FILE     |
| FICHIER RESULTATS PROFIL EN TRAVERS  | CROSS SECTION RESULTS FILE            |
| FICHIER RESULTATS TRACEUR            | TRACER RESULTS FILE                   |
| FICHIER SAUVEGARDE DU MODELE         | MODEL SAVE FILE                       |
| FORMAT DU FICHIER DE GEOMETRIE       | FORMAT DU FICHIER DE GEOMETRIE        |
| FORMAT LIGNE D'EAU                   | INITIAL WATER ELEVATIONS FILE FORMAT  |
| FORMULE MODIFIEE DE CALCUL DE LA     | MODIFIED FORMULA FOR SHEAR STRESS     |
| CONTRAINTE                           | COMPUTATION                           |
| FREQUENCE DE COUPLAGE ENTRE          | COUPLING FREQUENCY BETWEEN HYDRAULIC  |
| HYDRAULIQUE ET TRACEUR               | AND TRACER                            |
| FROUDE LIMITE POUR LES CONDITIONS    | FROUDE LIMIT AT BOUNDARIES            |
| LIMITES                              |                                       |
| GRADIENTS DE DESCENTE SEUILS         | GRADIENTS DE DESCENTE SEUILS          |
| HAUTEUR D'EAU MINIMALE               | MINIMUM WATER DEPTH                   |
| IMPLICITATION DU NOYAU TRANSCRITIQUE | IMPLICITATION OF TRANSCRITICAL KERNEL |
| IMPRESSION CALCUL                    | COMPUTATION PRINTOUTS                 |
| IMPRESSION DE LA GEOMETRIE           | GEOMETRY PRINTOUTS                    |
| IMPRESSION DE LA LIGNE D'EAU         | INITIAL WATER ELEVATIONS PRINTOUTS    |
| INITIALE                             |                                       |
| IMPRESSION DES APPORTS SEDIMENTAIRES | PRINTOUTS SEDIMENT INFLOWS            |
| IMPRESSION DES CONC INITIALES POUR   | PRINTOUTS INITIAL CONC LAWS FOR       |
| COURLIS                              | COURLIS                               |
|                                      |                                       |

| IMPRESSION DES CONCENTRATIONS                             | INITIAL CONCENTRATIONS PRINTOUTS                            |
|-----------------------------------------------------------|-------------------------------------------------------------|
| INITIALES                                                 |                                                             |
| IMPRESSION DES CONCENTRATIONS SUR LE                      | CONCENTRATIONS PRINTOUTS INTO                               |
| LISTING                                                   | LISTING                                                     |
| IMPRESSION DES INTERFACES                                 | PRINTOUTS SEDIMENT INTERFACES                               |
| SEDIMENTAIRES                                             |                                                             |
| IMPRESSION DES LOIS DE CONCENTRATION                      | PRINTOUTS CONCENTRATION LAWS                                |
| IMPRESSION DES LOIS HYDRAULIQUES                          | HYDRAULICS LAWS PRINTOUTS                                   |
| IMPRESSION DES LOIS TRACEUR                               | TRACER LAWS PRINTOUTS                                       |
| IMPRESSION DES PARAMETRES DE                              | PRINTOUTS COUPLING PARAMETERS                               |
| COUPLAGE                                                  | THENTOGED COOLDENG THUMBELEND                               |
| IMPRESSION DES PARAMETRES                                 | PRINTOUTS SEDIMENT PARAMETERS                               |
| SEDIMENTAIRES                                             | TRINIOGIS SEDIMENT TRANSPILA                                |
| IMPRESSION DU BILAN TRACEUR SUR LE                        | TRACER BALANCE PRINTOUTS INTO                               |
| LISTING                                                   | LISTING                                                     |
| IMPRESSION DU PLANIMETRAGE                                | PLANIMETRAGE PRINTOUTS                                      |
| IMPRESSION DU RESEAU                                      | NETWORK PRINTOUTS                                           |
| INDEX DES NOEUDS                                          | INDEX OF NODES                                              |
|                                                           |                                                             |
| INTERPOLATION LINEAIRE DES STRICKLER                      | LINEAR INTERPOLATION OF FRICTION                            |
|                                                           | COEFFICIENT                                                 |
| LARGEURS VANNES                                           | LARGEURS VANNES                                             |
| LIAISON ABSCISSE CORRESPONDANTE                           | LIAISON ABSCISSE CORRESPONDANTE                             |
| LIAISON COEFFICIENT D'ACTIVATION                          | LIAISON COEFFICIENT D'ACTIVATION                            |
| LIAISON COEFFICIENT DE DEBIT ORIFICE                      | LIAISON COEFFICIENT DE DEBIT ORIFICE                        |
| LIAISON COEFFICIENT DE DEBIT SEUIL                        | LIAISON COEFFICIENT DE DEBIT SEUIL                          |
| LIAISON COEFFICIENT PERTE DE CHARGE                       | LIAISON COEFFICIENT PERTE DE CHARGE                         |
| LIAISON COTE                                              | LIAISON COTE                                                |
| LIAISON LARGEUR                                           | LIAISON LARGEUR                                             |
| LIAISON LONGUEUR                                          | LIAISON LONGUEUR                                            |
| LIAISON NATURE                                            | LIAISON NATURE                                              |
| LIAISON NUMERO DU BIEF ASSOCIE                            | LIAISON NUMERO DU BIEF ASSOCIE                              |
| LIAISON NUMERO DU CASIER FIN                              | LIAISON NUMERO DU CASIER FIN                                |
| LIAISON NUMERO DU CASIER ORIGINE                          | LIAISON NUMERO DU CASIER ORIGINE                            |
| LIAISON RUGOSITE                                          | LIAISON RUGOSITE                                            |
| LIAISON SECTION                                           | LIAISON SECTION                                             |
| LIAISON TYPE                                              | LIAISON TYPE                                                |
| LIAISON TYPE ORIFICE                                      | LIAISON TYPE ORIFICE                                        |
| LIMITE DROITE LIT MAJEUR                                  | FLOODPLAIN RIGHT LIMIT                                      |
| LIMITE GAUCHE LIT MAJEUR                                  | FLOODPLAIN LEFT LIMIT                                       |
| LIMITEUR DE PENTE DU SCHEMA VOLUMES                       | SLOPE LIMITER OF FINITE VOLUMES                             |
| FINIS                                                     | SCHEME                                                      |
| LIMITEUR DE PENTE DU SCHEMA VOLUMES                       | SLOPE LIMITER FOR THE FINITE VOLUMES                        |
| FINIS POUR COURLIS                                        | SCHEME FOR COURLIS                                          |
| LISTE DES BIBLIOTHEQUES                                   | LIBRARIES LIST                                              |
| LOI CONC TRACEUR UNITE DE TEMPS                           | TIME UNIT IN TRACER CONC LAW                                |
| LOI CONC TRACEOR ONTIE DE TEMPS  LOI CONC X CONCENTRATION | CONCENTRATION LAW x CONCENTRATION                           |
|                                                           | CONCENTRATION LAW X CONCENTRATION  CONCENTRATION LAW X FILE |
| LOI CONC x FICHIER                                        | CONCENTRATION LAW X FILE                                    |

| LOI CONC x MODE D'ENTREE                    | CONCENTRATION LAW x INPUT                                      |
|---------------------------------------------|----------------------------------------------------------------|
| LOI CONC X NOM                              | CONCENTRATION LAW X NAME                                       |
| LOI CONC x NOMBRE DE POINTS                 | CONCENTRATION LAW X NAME  CONCENTRATION LAW X NUMBER OF POINTS |
| LOI CONC x TEMPS                            | CONCENTRATION LAW X NORBER OF FOUNTS  CONCENTRATION LAW X TIME |
| LOI CONC X TEMPS  LOI CONC X UNITE DE TEMPS | CONCENTRATION LAW X TIME  CONCENTRATION LAW X TIME UNIT        |
|                                             |                                                                |
| LOI DE FROTTEMENT                           | FRICTION LAW                                                   |
| LOI DE TRANSPORT                            | TRANSPORT LAW                                                  |
| LOI NOM                                     | LAW NAME                                                       |
| LOI TRACEUR FICHIER                         | TRACER LAW FILE                                                |
| LOI TRACEUR MODE D'ENTREE                   | TRACER LAW INPUT                                               |
| LOI TRACEUR NOMS                            | TRACER LAW NAMES                                               |
| LOI TYPE                                    | LOI TYPE                                                       |
| LOIS FICHIER                                | LOIS FICHIER                                                   |
| LOIS MODE D'ENTREE                          | LOIS MODE D'ENTREE                                             |
| LOIS NOMBRE DE DEBITS DIFFERENTS            | NUMBER OF DIFFERENT DISCHARGES IN                              |
|                                             | LAWS                                                           |
| LOIS NOMBRE DE POINTS                       | NUMBER OF POINTS IN LAWS                                       |
| LOIS UNITE DE TEMPS                         | TIME UNIT IN LAWS                                              |
| LONGUEUR APPORT                             | LONGUEUR APPORT                                                |
| LONGUEUR DES SOURCES                        | SOURCES LENGTHS                                                |
| LONGUEUR DEVERSOIRS                         | LONGUEUR DEVERSOIRS                                            |
| METHODE DE CALCUL DU MAILLAGE               | METHODE DE CALCUL DU MAILLAGE                                  |
| MODE D'ENTREE DE LA LIGNE D'EAU             | INITIAL WATER ELEVATIONS INPUT                                 |
| MODE D'ENTREE DES CARACTERISTIQUES          | SEDIMENTS PROPERTIES INPUT                                     |
| SEDIMENTAIRES                               |                                                                |
| MODE D'ENTREE DES CONCENTRATIONS            | INITIAL CONCENTRATIONS INPUT                                   |
| INITIALES                                   |                                                                |
| MODE D'ENTREE DES CONCENTRATIONS            | COURLIS INITIAL CONCENTRATIONS INPUT                           |
| INITIALES POUR COURLIS                      |                                                                |
| MODE DE SAISIE DU MAILLAGE                  | MODE DE SAISIE DU MAILLAGE                                     |
| MODELE DE QUALITE D'EAU                     | WATER QUALITY MODEL                                            |
| MODELE DE RUPTURE DES TALUS                 | SLOPE STABILITY MODEL                                          |
| MORPHOLOGY OPTION RECKING 2015              | MORPHOLOGY OPTION RECKING 2015                                 |
| NOM DES COUCHES                             | LAYERS NAME                                                    |
| NOM DES SOURCES                             | SOURCES NAME                                                   |
| NOM DU CONFLUENT x                          | NOM DU CONFLUENT x                                             |
| NOM EXTREMITE                               | NOM EXTREMITE                                                  |
| NOMBRE D'AFFLUENTS DU CONFLUENT x           | NUMBER OF TRIBUTARIES FOR CONFLUENT                            |
|                                             | x                                                              |
| NOMBRE D'APPORTS DE LA CRUE x POUR          | AUTO CALIBRATION NUMBER OF INFLOWS                             |
| CALAGE AUTO                                 | FOR FLOOD x                                                    |
| NOMBRE D'APPORTS DE PLUIE                   | NOMBRE D'APPORTS DE PLUIE                                      |
| NOMBRE D'EXTREMITES LIBRES                  | FREE BOUNDARY NUMBER                                           |
| NOMBRE D'ITERATIONS HYDRAULIQUE             | NUMBER OF ITERATIONS FOR THE                                   |
|                                             | HYDRAULIC MODEL                                                |
| NOMBRE D'ITERATIONS SEDIMENTO               | NUMBER OF ITERATIONS FOR THE                                   |
|                                             | SEDIMENT MODEL                                                 |
|                                             |                                                                |

| NOMBRE DE BRANCHES                   | NOMBRE DE BRANCHES                  |
|--------------------------------------|-------------------------------------|
| NOMBRE DE CASIERS                    | NOMBRE DE CASIERS                   |
| NOMBRE DE CONFLUENTS                 | NOMBRE DE CONFLUENTS                |
| NOMBRE DE COUCHES                    | NUMBER OF LAYERS                    |
| NOMBRE DE COURANT SOUHAITE           | COURANT NUMBER                      |
| NOMBRE DE CRUES POUR CALAGE AUTO     | AUTO CALIBRATION NUMBER OF FLOODS   |
| NOMBRE DE DEBITS D'APPORTS           | LATERAL INFLOW DISCHARGES NUMBER    |
| NOMBRE DE DEVERSOIRS                 | NOMBRE DE DEVERSOIRS                |
| NOMBRE DE LIAISONS                   | NOMBRE DE LIAISONS                  |
| NOMBRE DE LOIS DE CONCENTRATION      | NUMBER OF CONCENTRATION LAWS        |
| NOMBRE DE LOIS HYDRAULIQUES          | NUMBER OF HYDRAULIC LAWS            |
| NOMBRE DE LOIS TRACEUR               | TRACER NUMBER OF LAWS               |
| NOMBRE DE NOEUDS                     | NODES NUMBER                        |
| NOMBRE DE PAS DE PLANIMETRAGE        | NOMBRE DE PAS DE PLANIMETRAGE       |
| NOMBRE DE PAS DE TEMPS               | NUMBER OF TIME STEPS                |
| NOMBRE DE PERTES DE CHARGE           | NOMBRE DE PERTES DE CHARGE          |
| SINGULIERES                          | SINGULIERES                         |
| NOMBRE DE PLAGES DE DISCRETISATION   | NOMBRE DE PLAGES DE DISCRETISATION  |
| NOMBRE DE POINTS DECRIVANT LES CONC  | COURLIS INTIAL CONDITIONS NUMBER OF |
| INITIALES POUR COURLIS               | POINTS                              |
| NOMBRE DE POINTS DES LOIS SEUILS     | WEIR LAW POINTS NUMBER              |
| NOMBRE DE PROFILS COMPORTANT DES     | NUMBER OF SECTIONS WITH STORAGE     |
| ZONES DE STOCKAGE                    | ZONES                               |
| NOMBRE DE SECTIONS DE CALCUL         | NOMBRE DE SECTIONS DE CALCUL        |
| NOMBRE DE SECTIONS DE LA ZONE        | NOMBRE DE SECTIONS DE LA ZONE       |
| NOMBRE DE SEUILS                     | WEIRS NUMBER                        |
| NOMBRE DE SITES                      | NUMBER OF LOCATIONS                 |
| NOMBRE DE SOURCES DE TRACEURS        | NUMBER OF TRACER SOURCES            |
| NOMBRE DE TRACEURS                   | NUMBER OF TRACERS                   |
| NOMBRE DE TRACEURS POUR COURLIS      | COURLIS NUMBER OF TRACERS           |
| NOMBRE DE ZONES DE DISCRETISATION    | NOMBRE DE ZONES DE DISCRETISATION   |
| NOMBRE DE ZONES DE FROTTEMENT        | NUMBER OF FRICTION ZONES            |
| NOMBRE DE ZONES DE PLANIMETRAGE      | NOMBRE DE ZONES DE PLANIMETRAGE     |
| NOMBRE DE ZONES POUR CALAGE AUTO     | AUTO CALIBRATION NUMBER OF AREAS    |
| NOMBRE DE ZONES SECHES               | NUMBER OF DRY ZONES                 |
| NOMBRE MAX D'ITERATIONS              | AUTO CALIBRATION MAXIMUM NUMBER OF  |
|                                      | ITERATIONS                          |
| NOMBRE MESURES DE LA CRUE x POUR     | AUTO CALIBRATION NUMBER OF          |
| CALAGE AUTO                          | MEASUREMENTS FOR FLOOD x            |
| NOMBRE POINTS CONC LOI TRACEUR       | TRACER CONC LAW POINTS NUMBER       |
| NOMBRE POINTS CONCENTRATION INITIALE | INITIAL TRACER CONCENTRATION POINTS |
| TRACEUR                              | NUMBER                              |
| NOMBRE POINTS LIGNE D'EAU            | INITIAL WATER ELEVATIONS POINTS     |
|                                      | NUMBER                              |
| NOMS DES APPORTS                     | NOMS DES APPORTS                    |
| NOMS DEVERSOIRS                      | NOMS DEVERSOIRS                     |
| NOMS SEUILS                          | NOMS SEUILS                         |

| NOYAU DE CALCUL                      | CALCULATION KERNEL                   |
|--------------------------------------|--------------------------------------|
| NUM BRANCHE DE LA PERTE DE CHARGE    | NUM BRANCHE DE LA PERTE DE CHARGE    |
| SINGULIERE                           | SINGULIERE                           |
| NUM BRANCHE DEVERSOIRS               | NUM BRANCHE DEVERSOIRS               |
| NUM BRANCHE DU BARRAGE PRINCIPAL     | NUM BRANCHE DU BARRAGE PRINCIPAL     |
| NUM BRANCHE SEUILS                   | NUM BRANCHE SEUILS                   |
| NUM DE L'EXTREMITE DE DEBUT          | NUM DE L'EXTREMITE DE DEBUT          |
| NUM DE L'EXTREMITE DE FIN            | NUM DE L'EXTREMITE DE FIN            |
| NUMERO BRANCHE APPORT                | NUMERO BRANCHE APPORT                |
| NUMERO DE BIEF POUR LA ZONE DE       | REACH NUMBER FOR THE FRICTION ZONE   |
| FROTTEMENT                           |                                      |
| NUMERO DE BRANCHE DE ZONE            | NUMERO DE BRANCHE DE ZONE            |
| NUMERO DE LA LOI                     | NUMERO DE LA LOI                     |
| NUMERO DE LA LOI ASSOCIEE            | NUMERO DE LA LOI ASSOCIEE            |
| NUMERO DES LOIS TRACEUR POUR LES CL  | TRACER LAWS NUMBER FOR BOUNDARIES    |
| NUMERO DES LOIS TRACEUR POUR LES     | TRACER NUMBER OF LAWS FOR SOURCES    |
| SOURCES                              | THEER NOTBER OF ENWS TOR SOCKEES     |
| NUMERO DU CASIER ASSOCIE             | NUMERO DU CASIER ASSOCIE             |
| NUMERO DU DERNIER PROFIL             | NUMERO DU DERNIER PROFIL             |
| NUMERO DU DERNIER PROFIL DE LA SERIE | NUMERO DU DERNIER PROFIL DE LA SERIE |
| NUMERO DU PREMIER PROFIL             | NUMERO DU PREMIER PROFIL             |
| NUMERO DU PREMIER PROFIL DE LA SERIE | NUMERO DU PREMIER PROFIL DE LA SERIE |
| NUMERO LOI APPORT                    | NUMERO LOI APPORT                    |
| NUMERO LOI CONC AMONT SABLE          | NUMBER CONCENTRATION LAW UPSTREAM    |
| NOTIENO LOT CONC ATIONT SABLE        | SAND                                 |
| NUMERO LOI CONC AMONT VASE           | NUMBER CONCENTRATION LAW UPSTREAM    |
| MONERO EOI CONC MIONI VASE           | SILT                                 |
| NUMERO LOI CONC APPORT SABLE         | NUMBER CONCENTRATION LAW LATERAL     |
| Noneko Eoi Cowe Ai Foki Sabel        | SAND                                 |
| NUMERO LOI CONC APPORT VASE          | NUMBER CONCENTRATION LAW LATERAL     |
| NOMERO LOI CONC AFFORT VASE          | SILT                                 |
| NUMERO LOI DEVERSOIRS                | NUMERO LOI DEVERSOIRS                |
| NUMERO PROFIL STOCKAGE               | SECTION NUMBER STORAGE               |
| NUMEROS LOIS SEUILS                  | NUMEROS LOIS SEUILS                  |
| OPTIMISATION DU NOYAU TRANSCRITIQUE  | OPTIMIZATION OF TRANSCRITICAL KERNEL |
| OPTION ARRONDI PENTE ENERGIE         | OPTION ROUNDED ENERGY SLOPE          |
|                                      |                                      |
| OPTION CHARDIAGE                     | OPTION AUTO CALIBRATION              |
| OPTION CHARRIAGE                     | BEDLOAD OPTION                       |
| OPTION COURLIS                       | COURLIS OPTION                       |
| OPTION D'EVOLUTION DE PROFIL         | OPTION FOR PROFILE EVOLUTION         |
| OPTION DE CALCUL DE LA DISPERSION    | OPTION FOR DISPERSION CALCULATION    |
| POUR LES TRACEURS                    | FOR TRACERS                          |
| OPTION DE CLIPPING                   | CLIPPING OPTION                      |
| OPTION DE CONVECTION POUR LES        | CONVECTION OPTION FOR TRACERS        |
| TRACEURS                             |                                      |
| OPTION DE CONVECTION POUR LES        | COURLIS CONVECTION OPTION FOR        |
| TRACEURS POUR COURLIS                | TRACERS                              |

| OPTION DE RUPTURE DE TALUS                  | SEDIMENT SLIDE OPTION                             |
|---------------------------------------------|---------------------------------------------------|
| OPTION DE STOCKAGE                          | STORAGE OPTION                                    |
| OPTION SUSPENSION                           | SUSPENSION OPTION                                 |
| ORDONNEE DE L'AFFLUENT DU CONFLUENT         | ORDONNEE DE L'AFFLUENT DU CONFLUENT               |
| x                                           | x                                                 |
| ORDRE DU SCHEMA DE CONVECTION               | ORDER FOR THE CONVECTION FINITE                   |
| VOLUMES FINIS                               | VOLUMES SCHEME                                    |
| ORDRE DU SCHEMA DE CONVECTION               | COURLIS CONVECTION FINITE VOLUMES                 |
| VOLUMES FINIS POUR COURLIS                  | SCHEME ORDER                                      |
| PARAMETRE W DU SCHEMA DE CONVECTION         | CONVECTION FINITE VOLUMES SCHEME                  |
| VOLUMES FINIS                               | PARAMETER W                                       |
| PARAMETRE W DU SCHEMA DE CONVECTION         | COURLIS CONVECTION FINITE VOLUMES                 |
| VOLUMES FINIS POUR COURLIS                  | SCHEME PARAMETER W                                |
| PAS D'ESPACE DE LA SERIE                    | PAS D'ESPACE DE LA SERIE                          |
| PAS D'IMPRESSION                            | PERIOD FOR PRINTOUTS PERIOD FOR PRINTOUTS COURLIS |
| PAS D'IMPRESSION COURLIS PAS DE STOCKAGE    | PERIOD FOR PRINTOUTS COURLIS  PERIOD FOR STORAGE  |
| PAS DE STOCKAGE POUR LE PROFIL EN           | STORAGE PERIOD FOR THE LONGITUDINAL               |
| LONG                                        | PROFILE                                           |
| PAS DE STOCKAGE POUR LE PROFIL EN           | STORAGE PERIOD FOR THE CROSS SECTION              |
| TRAVERS                                     | PROFILE                                           |
| PAS DE TEMPS                                | TIME STEP                                         |
| PAS DE TEMPS VARIABLE SUIVANT NOMBRE        | VARIABLE TIME STEP WITH COURANT                   |
| DE COURANT                                  | NUMBER                                            |
| PENTE DE STABILITE DES TALUS EMERGES        | STABILITY SLOPE FOR EMERGED                       |
|                                             | EMBANKMENTS                                       |
| PENTE DE STABILITE DES TALUS                | STABILITY SLOPE FOR SUBMERGED                     |
| IMMERGES                                    | EMBANKMENTS                                       |
| PENTE EQUILIBRE AMONT                       | UPSTREAM EQUILIBRIUM SLOPE                        |
| PENTE LOCALE                                | LOCAL SLOPE                                       |
| PERTES DE CHARGE AUTOMATIQUE AUX CONFLUENTS | AUTOMATIC HEADLOSS AT JUNCTIONS                   |
| PERTES DE CHARGE AUTOMATIQUE NOYAU          | AUTOMATIC HEADLOSSES TRANSCRITICAL                |
| TRANSCRITIQUE                               | KERNEL                                            |
| POIDS VOLUMIQUE DE L'EAU                    | WATER WEIGHT BY VOLUME                            |
| POIDS VOLUMIQUE DES SEDIMENTS               | SEDIMENTS WEIGHT BY VOLUME                        |
| POINT DE CONTROLE ABSCISSE                  | CHECKPOINT ABSCISSA                               |
| POINT DE CONTROLE BIEF ASSOCIE              | CHEKPOINT REACH                                   |
| PONDERATIONS DES MESURES DE LA CRUE         | AUTO CALIBRATION MEASUREMENTS                     |
| x POUR CALAGE AUTO                          | WEIGHTING COEFFICIENTS FOR FLOOD                  |
|                                             | x                                                 |
| POROSITE                                    | POROSITY                                          |
| POST-PROCESSEUR                             | POST-PROCESSOR                                    |
| POST-PROCESSEUR TRACEUR                     | TRACER POST-PROCESSOR                             |
| POURCENTAGE DE SABLE                        | SAND PERCENTAGE                                   |
| POURCENTAGE LIMITE DE SABLE                 | SAND LIMIT PERCENTAGE                             |
| PRECISION ARRONDI PENTE ENERGIE             | PRECISION ROUNDED ENERGY SLOPE                    |

122 Bibliography

| PRECISION CONVERGENCE                | AUTO CALIBRATION CONVERGENCE         |
|--------------------------------------|--------------------------------------|
|                                      | TOLERANCE                            |
| PREMIER PAS DE TEMPS A STOCKER       | FIRST TIME STEP TO SAVE              |
| PRESENCE CONCENTRATIONS INITIALES    | INITIAL CONCENTRATIONS PRESENCE      |
| PRESENCE DE CASIERS                  | STORAGE AREAS                        |
| PRESENCE DE TRACEURS                 | TRACERS PRESENCE                     |
| PRESENCE LIGNE D'EAU INITIALE        | INITIAL WATER ELEVATIONS AVAILABLE   |
| PROFILS EN ABSCISSE ABSOLUE          | PROFILS EN ABSCISSE ABSOLUE          |
| PROGRAMME PRINCIPAL                  | PRINCIPAL PROGRAM                    |
| RAPPORT RUGOSITE AVEC QSTAR POUR     | ROUGHNESS RATIO WITH QSTAR FOR       |
| LEFORT                               | LEFORT                               |
| REPRISE DE CALCUL                    | COMPUTATION CONTINUED                |
| SAUVEGARDE DU MODELE                 | MODEL SAVE                           |
| SAUVEGARDE MAILLAGE                  | SAUVEGARDE MAILLAGE                  |
| SCHEMA NUMERIQUE POUR LE CHARRIAGE   | NUMERICAL FOR BEDLOAD SCHEME         |
| STRICKLER DE PEAU                    | SKIN FRICTION COEFFICIENT            |
| STRICKLER TOTAL                      | TOTAL FRICTION COEFFICIENT           |
| TEMPS INITIAL                        | INTIAL TIME                          |
| TEMPS MAXIMUM                        | MAXIMAL TIME                         |
| TERMES NON HYDROSTATIQUES POUR LE    | HYDROSTATIC TERMS FOR TRANSCRITICAL  |
| NOYAU TRANSCRITIQUE                  | KERNEL                               |
| TITRE DU CALCUL                      | COMPUTATION TITLE                    |
| TRAITEMENT IMPLICITE DU FROTTEMENT   | IMPLICIT TREATMENT OF FRICTION       |
| TYPE DE CALCUL DE VALIDATION         | TYPE OF VALIDATION CALCULATION       |
| EFFECTUE                             |                                      |
| TYPE DE CONDITION                    | TYPE DE CONDITION                    |
| TYPE DE CONDITIONS LIMITES TRACEUR   | TYPE OF BOUNDARY CONDITIONS TRACER   |
| TYPE DE RUPTURE DU BARRAGE PRINCIPAL | TYPE DE RUPTURE DU BARRAGE PRINCIPAL |
| TYPE DES SOURCES                     | SOURCES TYPE                         |
| TYPE DEVERSOIRS                      | TYPE DEVERSOIRS                      |
| TYPE SEUILS                          | TYPE SEUILS                          |
| VALEUR DU COEFFICIENT LIT MAJEUR     | FLOODPLAIN COEFFICIENT               |
| VALEUR DU COEFFICIENT LIT MINEUR     | MAIN CHANNEL COEFFICIENT             |
| VALEUR DU PAS                        | VALEUR DU PAS                        |
| VARIABLES CALCULEES                  | VARIABLES COMPUTED                   |
| VARIABLES STOCKEES                   | VARIABLES SAVED                      |
| VERSION DU CODE                      | CODE VERSION                         |
| VITESSE DE CHUTE DES SABLES          | SAND FALL VELOCITY                   |
| VITESSE DE CHUTE DES VASES           | SILT FALL VELOCITY                   |

| [1] J-M. HERVOUET. Hydrodynamics of free surface flows. Modelling with the finite element method. John Wiley & Sons, Ltd, Paris, 2007. |
|----------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |
|                                                                                                                                        |