Rolling Adjoints

Fast Greeks along Monte Carlo scenarios for early-exercise options

Shashi Jain, Álvaro Leitao and Cornelis W. Oosterlee

Indian Istitute of Science - BGSMath - Centrum Wiskunde & Informatica

CWI - March 20, 2018

Motivation

- Efficient calculation of option sensitivities is a problem of practical importance.
- For many pricing problems, Monte Carlo is the only feasible choice.
- Multi-dimensional early-exercise option valuation is a clear example.
- Usual finite differences approach (bump-and-revalue) provides poor estimations at high computational cost.
- "Generalization" of the Smoking adjoints technique by Giles to a generic interval.
- Sensitivities along the paths required for MVA calculations.
- Sensitivities for complex products in energy markets: multiple exercise.

Outline

- Problem formulation
- Stochastic Grid Bundling Method (SGBM)
- Sensitivities along the paths with SGBM
- Mumerical results
- Conclusions

Problem formulation

- d-dimensional Bermudan option pricing problem.
- $\mathbf{X}_t = (X_t^1, \dots, X_t^d) \in \mathbb{R}^d$, depending on parameters $\theta = \{\theta_1, \dots, \theta_{N_{\theta}}\}$
- Let $h_t := h(\mathbf{X}_t)$ the intrinsic value of the option at time t.
- The holder receives $max(h_t, 0)$, if the option is exercised.
- The problem is to compute

$$\frac{V_{t_0}(\mathbf{X}_{t_0})}{B_{t_0}} = \max_{\tau} \mathbb{E}\left[\frac{h(\mathbf{X}_{\tau})}{B_{\tau}}\right],$$

where B_t is the risk-free saving account process and τ is a stopping time.

Optimization problem: determine the early-exercise policy.

Problem formulation

- It can be solved by the dynamic programming principle.
- The option value at the terminal time T is

$$V_T(\mathbf{X}_T) = \max(h(\mathbf{X}_T), 0).$$

- We solve the problem recursively, moving backwards in time.
- ullet The continuation value $Q_{t_{m-1}}$ is given by

$$Q_{t_{m-1}}(\mathbf{X}_{t_{m-1}}) = B_{t_{m-1}} \mathbb{E}\left[\frac{V_{t_m}(\mathbf{X}_{t_m})}{B_{t_m}}\middle|\mathbf{X}_{t_{m-1}}\right].$$

ullet The Bermudan option value at time t_{m-1} and state $old X_{t_{m-1}}$ reads

$$V_{t_{m-1}}(\mathbf{X}_{t_{m-1}}) = \max(h(\mathbf{X}_{t_{m-1}}), Q_{t_{m-1}}(\mathbf{X}_{t_{m-1}})).$$

• We are interested in V_{t_0} .

SGBM

• SGBM is based on N independent paths, $\{\mathbf{X}_{t_0}, \dots, \mathbf{X}_{t_M}\}$, obtained by a discretization scheme

$$\mathbf{X}_{t_m}(n) = F_{m-1}(\mathbf{X}_{t_{m-1}}(n), \mathbf{Z}_{t_{m-1}}(n), \theta),$$

where n = 1, ..., N is the index of the path.

- $\mathbf{Z}_{t_{m-1}}$ is a *d*-dimensional standard normal random vector.
- F_{m-1} is a transformation from \mathbb{R}^d to \mathbb{R}^d .
- The method then computes the option value at terminal time as

$$V_{t_M}(\mathbf{X}_{t_M}) = \max(h(\mathbf{X}_{t_M}), 0).$$

• The following SGBM components are performed for each time step, t_m , $m \le M$, moving backwards in time, starting from t_M .

SGBM - Bundling

- The grid points at t_{m-1} are bundled into $\mathcal{B}_{t_{m-1}}(1), \ldots, \mathcal{B}_{t_{m-1}}(\nu)$ non-overlapping sets or partitions.
- Several bundling techniques can be employed,
 - Equal-partitioning
 - k-means clustering algorithm
 - recursive bifurcation
 - recursive bifurcation of a reduced state space
- A mapping $\mathcal{I}_{t_{m-1}}^{\beta}: \mathbb{N}^{[1,N_{\beta}]} \mapsto \mathbb{N}^{[1,N]}$, is defined which maps ordered indices of paths in a bundle $\mathcal{B}_{t_{m-1}}(\beta)$ to the original path indices, where $N_{\beta}:=|\mathcal{B}_{t_{m-1}}(\beta)|$ is the cardinality of the β -th bundle, $\beta=1,\ldots,\nu$.

SGBM - Regression

- Regress-later approach within each bundle $\mathcal{B}_{t_{m-1}}(\beta), \ \beta=1,\ldots,\nu.$
- A parameterized value function $\tilde{G}: \mathbb{R}^d \times \mathbb{R}^K \mapsto \mathbb{R}$, which assigns values $\tilde{G}(\mathbf{X}_{t_m}, \alpha_{t_m}^{\beta})$ to states \mathbf{X}_{t_m} , is introduced.
- The aim is to choose, for each t_m and β , a vector $\alpha_{t_m}^{\beta}$ so that

$$\tilde{G}(\mathbf{X}_{t_m}, \alpha_{t_m}^{\beta}) = V_{t_m}(\mathbf{X}_{t_m}).$$

• The option value is approximated as a linear combination of a finite number of orthonormal basis functions ϕ_k as

$$V_{t_m}(\mathbf{X}_{t_m}) pprox G(\mathbf{X}_{t_m}, lpha_{t_m}^{eta}) = \sum_{k=1}^K lpha_{t_m}^{eta}(k) \phi_k(\mathbf{X}_{t_m}).$$

ullet The $lpha_{t_m}^eta$ weights are approximated using a least squares regression by

$$\underset{\widehat{\alpha}_{t_{m}}^{\beta}}{\operatorname{argmin}} \sum_{n=1}^{N_{\beta}} \left(V_{t_{m}} \left(\mathbf{X}_{t_{m}} \left(\mathcal{I}_{t_{m-1}}^{\beta} \left(n \right) \right) \right) - \sum_{k=1}^{K} \widehat{\alpha}_{t_{m}}^{\beta} (k) \phi_{k} \left(\mathbf{X}_{t_{m}} \left(\mathcal{I}_{t_{m-1}}^{\beta} \left(n \right) \right) \right) \right)^{2}.$$

SGBM - Continuation and option values

• The continuation values for $\mathbf{X}_{t_{m-1}}(n) \in \mathcal{B}_{t_{m-1}}(\beta)$, n = 1, ..., N, $\beta = 1, ..., \nu$, are approximated by

$$\widehat{Q}_{t_{m-1}}\left(\mathbf{X}_{t_{m-1}}(n)\right) = \mathbb{E}\left[G\left(\mathbf{X}_{t_m}, \alpha_{t_m}^{\beta}\right) \mid \mathbf{X}_{t_{m-1}}(n)\right].$$

Exploiting the linearity of the expectation operator, it is written as

$$\widehat{Q}_{t_{m-1}}(\mathbf{X}_{t_{m-1}}(n)) = \sum_{k=1}^{K} \widehat{\alpha}_{t_m}^{\beta}(k) \mathbb{E}\left[\phi_k(\mathbf{X}_{t_m}) \mid \mathbf{X}_{t_{m-1}}(n)\right].$$

- The vector of basis functions ϕ_k should ideally be chosen such that the expectations $\mathbb{E}\left[\phi_k(\mathbf{X}_{t_m})|\mathbf{X}_{t_{m-1}}\right]$ are known in closed-form, or have analytic approximations.
- The option value at each exercise time is then given by

$$\widehat{V}_{t_{m-1}}\left(\mathbf{X}_{t_{m-1}}(n)\right) = \max\left(h\left(\mathbf{X}_{t_{m-1}}(n)\right), \widehat{Q}_{t_{m-1}}\left(\mathbf{X}_{t_{m-1}}(n)\right)\right).$$

Sensitivities along the paths with SGBM

- As SGBM, the Rolling adjoints method follows a backward iteration, starting at maturity, where the sensitivities are trivial to calculate.
- We focus on two main sensitivities of interest:
 - $\blacktriangleright \text{ With respect to } \mathbf{X}_{t_{m-1}} \text{, i.e. } \frac{\partial V_{t_{m-1}}(\mathbf{X}_{t_{m-1}})}{\partial \mathbf{X}_{t_{m-1}}}.$
 - $\blacktriangleright \ \ \text{With respect to the model parameters, } \ \frac{\partial V_{t_{m-1}}(\mathbf{X}_{t_{m-1}})}{\partial \theta}.$
- \bullet The method requires the derivatives of the regression coefficients, $\widehat{\alpha}_{t_m}^{\beta}.$
- ullet Assuming minimal smoothness of the option value function V,

$$\frac{\partial}{\partial \theta} \left(\mathbb{E} \left[\frac{V_{t_m} \left(\mathbf{X}_{t_m} \right)}{B_{t_m}} \middle| \mathbf{X}_{t_{m-1}} \right] \right) = \mathbb{E} \left[\frac{\partial}{\partial \theta} \left(\frac{V_{t_m} \left(\mathbf{X}_{t_m} \right)}{B_{t_m}} \right) \middle| \mathbf{X}_{t_{m-1}} \right].$$

• The sensitivity of the option value at t_{m-1} w.r.t θ is given by

$$\frac{\partial}{\partial \theta} V_{t_{m-1}}(\mathbf{X}_{t_{m-1}}) = \left(\frac{\partial}{\partial \theta} h\left(\mathbf{X}_{t_{m-1}}\right)\right) \mathbb{1}_{Q_{t_{m-1}} < h\left(\mathbf{X}_{t_{m-1}}\right)} + \left(\frac{\partial}{\partial \theta} Q_{t_{m-1}}\left(\mathbf{X}_{t_{m-1}}\right)\right) \mathbb{1}_{Q_{t_{m-1}} \ge h\left(\mathbf{X}_{t_{m-1}}\right)}.$$

- The sensitivity of the immediate payoff, h, is usually easy to compute.
- The sensitivity of the $Q_{t_{m-1}}$ for $\mathbf{X}_{t_{m-1}}(n)$ in bundle $\mathcal{B}_{t_{m-1}}(eta)$ is

$$\frac{\partial}{\partial \theta} \widehat{Q}_{t_{m-1}}(\mathbf{X}_{t_{m-1}}(n)) = \frac{\partial}{\partial \theta} \left(\sum_{k=1}^{K} \widehat{\alpha}_{t_{m}}^{\beta}(k) \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right) \\
= \sum_{k=1}^{K} \left(\left(\frac{\partial}{\partial \theta} \widehat{\alpha}_{t_{m}}^{\beta}(k) \right) \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right) \\
+ \widehat{\alpha}_{t_{m}}^{\beta}(k) \frac{\partial}{\partial \theta} \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right)$$

- $\frac{\partial}{\partial \theta} \mathbb{E}\left[\phi_k(\mathbf{X}_{t_m}) \mid \mathbf{X}_{t_{m-1}}(n)\right]$ is usually trivial to compute.
- The derivative of the regression coefficients is the difficult part.
- Let us first define matrix $\mathbf{A}_{t_m}^{\beta}$ as

$$\mathbf{A}_{t_m}^{\beta} := \begin{bmatrix} \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))) & \phi_2(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))) & \dots & \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))) \\ \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))) & \phi_2(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))) & \dots & \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))) & \phi_2(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))) & \dots & \phi_K(\mathbf{X}_{t_m}\mathcal{I}_{t_{m-1}}^{\beta}((N_{\beta}))) \end{bmatrix},$$

where $\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)), \ldots, \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))$ are the states of the paths in bundle $\mathcal{B}_{t_{m-1}}(\beta)$.

• The corresponding vector of option values for these paths

$$\mathbf{V}_{t_m}^{eta} := egin{bmatrix} \widehat{V}_{t_m}(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{eta}(1))) \ \widehat{V}_{t_m}(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{eta}(2))) \ dots \ \widehat{V}_{t_m}(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{eta}(N_{eta}))) \end{bmatrix}.$$

• The least squares coefficients computation can be written as:

$$\widehat{\boldsymbol{\alpha}}_{t_m}^{\boldsymbol{\beta}} = (\mathbf{A}_{t_m}^{\boldsymbol{\beta}}^{\top} \mathbf{A}_{t_m}^{\boldsymbol{\beta}})^{-1} (\mathbf{A}_{t_m}^{\boldsymbol{\beta}}^{\top}) \mathbf{V}_{t_m}^{\boldsymbol{\beta}}.$$

• The derivative of the regression coefficients is then given by

$$\frac{\partial \alpha_{t_m}^{\beta}}{\partial \theta} = \frac{\partial (\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1}}{\partial \theta} (\mathbf{A}_{t_m}^{\beta})^{\top} \mathbf{V}_{t_m}^{\beta}
+ (\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1} \frac{\partial \mathbf{A}_{t_m}^{\beta}}{\partial \theta} \mathbf{V}_{t_m}^{\beta}
+ (\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1} (\mathbf{A}_{t_m}^{\beta})^{\top} \frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \theta},$$

The derivative of the matrix inverse can be further expanded as

$$\frac{\partial (\mathbf{A}_{t_m}^{\beta} \mathbf{\bar{A}}_{t_m}^{\beta})^{-1}}{\partial \theta} = -(\mathbf{A}_{t_m}^{\beta} \mathbf{\bar{A}}_{t_m}^{\beta})^{-1} \left(\frac{\partial \mathbf{\bar{A}}_{t_m}^{\beta}}{\partial \theta} \mathbf{\bar{A}}_{t_m}^{\beta} + \mathbf{\bar{A}}_{t_m}^{\beta} \mathbf{\bar{A}}_{t_m}^{\beta} \right) (\mathbf{\bar{A}}_{t_m}^{\beta} \mathbf{\bar{A}}_{t_m}^{\beta})^{-1}.$$

CWI - March 20, 2018

- So, to compute $\frac{\partial \alpha_{tm}^{\beta}}{\partial \theta}$, we need the quantities $\frac{\partial \mathbf{A}_{tm}^{\beta}}{\partial \theta}$ and $\frac{\partial \mathbf{V}_{tm}^{\beta}}{\partial \theta}$.
- The derivative of the regression matrix reads

$$\frac{\partial \boldsymbol{A}_{t_m}^{\beta}}{\partial \boldsymbol{\theta}} = \begin{bmatrix} \frac{\partial \phi_1(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \boldsymbol{\theta}} & \cdots & \frac{\partial \phi_K(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_m-1}^{\beta}(1)))}{\partial \boldsymbol{X}_{t_m}} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \boldsymbol{\theta}} \\ \frac{\partial \phi_1(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2)))}{\partial \boldsymbol{X}_{t_m}} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))}{\partial \boldsymbol{\theta}} & \cdots & \frac{\partial \phi_K(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2)))}{\partial \boldsymbol{X}_{t_m}} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))}{\partial \boldsymbol{\theta}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \boldsymbol{X}_{t_m}} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \boldsymbol{\theta}} & \cdots & \frac{\partial \phi_K(\boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \boldsymbol{X}_{t_m}} \frac{\partial \boldsymbol{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \boldsymbol{\theta}} \end{bmatrix},$$

where $\frac{\partial \mathbf{X}_{t_m}}{\partial a}$ is usually easy to obtain.

• Since $\mathbf{V}_{t_m}^{\beta} := \mathbf{V}_{t_m}^{\beta}(\mathbf{X}_{t_m}, \theta)$, the derivative of the option price vector is

$$\frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \theta} | \mathcal{F}_{t_{m-1}} = \frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_m}} \frac{\partial \mathbf{X}_{t_m}}{\partial \theta} + \frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \theta},$$

where $\frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \mathbf{X}_{\bullet}}$ is exactly the Delta sensitivity.

Delta along the paths

ullet Delta is the sensitivity of the option value at t_{m-1} w.r.t. $old X_{t_{m-1}}$,

$$\frac{\partial V_{t_{m-1}}(\mathbf{X}_{t_{m-1}})}{\partial \mathbf{X}_{t_{m-1}}} = \left(\frac{\partial h\left(\mathbf{X}_{t_{m-1}}\right)}{\partial \mathbf{X}_{t_{m-1}}}\right) \mathbb{1}_{Q_{t_{m-1}} < h\left(\mathbf{X}_{t_{m-1}}\right)} + \left(\frac{\partial Q_{t_{m-1}}\left(\mathbf{X}_{t_{m-1}}\right)}{\partial \mathbf{X}_{t_{m-1}}}\right) \mathbb{1}_{Q_{t_{m-1}} \ge h\left(\mathbf{X}_{t_{m-1}}\right)}.$$

- Again, the payoff term is usually trivial to compute.
- The computation of the sensitivity of the continuation value function

$$\frac{\partial \widehat{Q}_{t_{m-1}}(\mathbf{X}_{t_{m-1}}(n))}{\partial \mathbf{X}_{t_{m-1}}} = \frac{\partial}{\partial \mathbf{X}_{t_{m-1}}} \left(\sum_{k=1}^{K} \widehat{\alpha}_{t_{m}}^{\beta}(k) \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right) \\
= \sum_{k=1}^{K} \left(\frac{\partial \widehat{\alpha}_{t_{m}}^{\beta}(k)}{\partial \mathbf{X}_{t_{m-1}}} \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right) \\
+ \widehat{\alpha}_{t_{m}}^{\beta}(k) \frac{\partial}{\partial \mathbf{X}_{t_{m-1}}} \mathbb{E} \left[\phi_{k}(\mathbf{X}_{t_{m}}) \mid \mathbf{X}_{t_{m-1}}(n) \right] \right).$$

Delta along the paths

- $\frac{\partial}{\partial \mathbf{X}_{t_{m-1}}} \mathbb{E}\left[\phi_k(\mathbf{X}_{t_m}) \mid \mathbf{X}_{t_{m-1}}(n)\right]$ is computed via the numerical scheme.
- Following the same idea as before, we can write

$$\frac{\partial \alpha_{t_m}^{\beta}}{\partial \mathbf{X}_{t_{m-1}}} = \frac{\partial (\mathbf{A}_{t_m}^{\beta}^{\top} \mathbf{A}_{t_m}^{\beta})^{-1}}{\partial \mathbf{X}_{t_{m-1}}} (\mathbf{A}_{t_m}^{\beta}^{\top}) \mathbf{V}_{t_m}^{\beta}
+ (\mathbf{A}_{t_m}^{\beta}^{\top} \mathbf{A}_{t_m}^{\beta})^{-1} \frac{\partial \mathbf{A}_{t_m}^{\beta}^{\top}}{\partial \mathbf{X}_{t_{m-1}}} \mathbf{V}_{t_m}^{\beta}
+ (\mathbf{A}_{t_m}^{\beta}^{\top} \mathbf{A}_{t_m}^{\beta})^{-1} (\mathbf{A}_{t_m}^{\beta}^{\top}) \frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_{m-1}}},$$

Similarly, we further expand the inverse derivative as

$$\frac{\partial (\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1}}{\partial \mathbf{X}_{t_{m-1}}} = -(\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1} \left(\frac{\partial \mathbf{A}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_{m-1}}} \mathbf{A}_{t_m}^{\beta} + \mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta} \right) (\mathbf{A}_{t_m}^{\beta} \mathbf{A}_{t_m}^{\beta})^{-1}$$

Delta along the paths

As with the model parameter derivative, we have

$$\frac{\partial \mathbf{A}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_{m-1}}} = \begin{bmatrix} \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_m}} \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_m}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_{m-1}}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_{m-1}}} \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2)))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(2))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1)))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(1))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_m}} & \frac{\partial \mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_{m-1}}} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta})))}{\partial \mathbf{X}_{t_{m-1}}} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_1(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_m}(\mathbf{X}_{t_{m-1}}^{\beta}(N_{\beta}))} & \cdots & \frac{\partial \phi_K(\mathbf{X}_{t_m}(\mathcal{I}_{t_{m-1}}^{\beta}(N_{\beta}))}{\partial \mathbf{X}_{t_m}(\mathbf{X}_{t_{m-1}}^{\beta}(N_{\beta})} \\$$

where $\frac{\partial \mathbf{X}_{t_m}}{\partial \mathbf{X}_{t_m}}$ is obtained using the discretization scheme.

• Finally, $\frac{\partial \mathbf{V}_{tm}^{\beta}}{\partial \mathbf{X}_{t}}$ is given by

$$\frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_{m-1}}} = \frac{\partial \mathbf{V}_{t_m}^{\beta}}{\partial \mathbf{X}_{t_m}} \frac{\partial \mathbf{X}_{t_m}}{\partial \mathbf{X}_{t_{m-1}}}.$$

Numerical results

- Geometric Brownian Motion, 90,000 paths.
- European, Bermudan and spread options. Two sets:

	V	26 40 44
	X_{t_0}	36, 40, 44
	σ	10%, 20%,40%
Set I	r	0.06
Set i	Strike <i>K</i>	40
	M	50
	T	1 year
	$\mathbf{X}_{t_0} := \{S^1_{t_0}, S^2_{t_0}\}\$ $\sigma := \{\sigma^1, \sigma^2\}$	[100, 100]
	$\sigma := \{\sigma^1, \sigma^2\}$	[15% 15%]
	r	0.03
Set II	Strike <i>K</i>	5
	М	8
	$ ho_{12}$	0.5
	T	1 year

European option - Delta convergence in bundles

European option - Delta convergence in basis functions

European option - Vega convergence in bundles

European option - Vega convergence in basis functions

Bermudan option - Greeks at t_0

X_{t_0}	COS	SGBM	Error	LSMC1	Error	LSMC2	Error
	Delta	Delta (s.e.)	SGBM	Delta (s.e.)	LSMC1	Delta (s.e.)	LSMC2
36	-0.695	-0.695	-0.0001	-0.711	0.0159	-0.972	-0.2770
		(0.6e-5)		(0.0213)		(0.227)	
40	-0.404	-0.404	0.0003	-0.402	-0.0019	-0.463	-0.0591
		(0.5e-5)		(0.0190)		(0.033)	
44	-0.213	-0.214	0.0009	-0.227	0.0141	-0.253	-0.0396
		(0.9e-5)		(0.0080)		(0.031)	

Table: t_0 Delta values for Bermudan put option on a single asset for different initial asset prices. The values in brackets are the standard errors from thirty trials.

X_{t_0}	COS	SGBM	Error	LSMC1	Error	LSMC2	Error
	Vega	Vega (s.e.)	SGBM	Vega (s.e.)	LSMC1	Vega (s.e.)	LSMC2
36	10.955	10.920	-0.0348	11.099	0.1445	10.734	-0.2209
		(0.001)		(0.070)		(0.231)	
40	14.747	14.752	0.0049	14.890	0.1438	14.730	-0.0170
		(0.001)		(0.099)		(0.057)	
44	12.524	12.616	0.0924	12.556	0.0318	12.536	0.0126
		(0.003)		(0.062)		(0.051)	

Table: t_0 Vega values for Bermudan put option on a single asset for different initial asset prices. The values in brackets are the standard errors from thirty trials.

Bermudan option - Greeks at t_0

σ	COS	SGBM	Error	LSMC1	Error	LSMC2	Error
	Vega	Vega (s.e.)	SGBM	Vega (s.e.)	LSMC1	Vega (s.e.)	LSMC2
10%	13.360	13.402	0.0416	13.526	0.1652	13.285	-0.0754
		(0.002)		(0.062)		(0.066)	
20%	14.747	14.750	0.0034	14.931	0.1841	14.730	-0.0170
		(0.001)		(0.084)		(0.057)	
40%	15.055	15.053	-0.0019	15.188	0.1336	15.115	0.0598
		(0.002)		(0.104)		(0.087)	

Table: t_0 Vega values for Bermudan put option on a single asset for different asset volatilities. The initial asset value is $\mathbf{X}_{t_0} = 40$.

X_{t_0}	COS	SGBM	Error	LSMC1	Error	LSMC2	Error
	Vega	Vega (s.e.)	SGBM	Vega (s.e.)	LSMC1	Vega (s.e.)	LSMC2
34.5	6.794	6.757	-0.0372	7.062	0.2677	6.866	0.0719
		(0.0008)		(0.212)		(0.433)	
35	8.383	8.342	0.0414	8.621	0.2374	8.076	-0.3075
		(0.001)		(0.119)		(0.149)	
35.5	9.771	9.731	0.0397	10.224	0.4529	9.450	-0.3206
		(0.001)		(0.103)		(0.161)	

Table: t_0 Vega values for Bermudan put option on a single asset for a case where the initial asset price is close to the early-exercise boundary.

Bermudan spread option - Greeks at t_0

	SGBM	SGBM	LSMC1	LSMC2
	extended Delta (s.e)	BR Delta (s.e)	BR Delta (s.e.)	BR Delta (s.e.)
∂V_{t_0}	0.4020	0.4021	0.4029	0.4570
$\frac{\partial V_{t_0}}{\partial S^1_{t_0}}$	(0.2e-4)	(0.1e-3)	(0.011)	(0.083)
∂V_{t_0}	-0.3448	-0.3453	-0.3446	-0.3795
$\frac{\partial V_{t_0}}{\partial S_{t_0}^2}$	(0.2e-4)	(0.1e-3)	(0.010)	(0.085)

Table: t_0 Delta values for Bermudan spread option on two assets.

	SGBM	SGBM	LSMC1	LSMC2
	extended Vega (s.e)	BR Vega (s.e)	BR Vega (s.e.)	BR Vega (s.e.)
∂V_{t_0}	20.6082	20.7551	20.4900	20.5136
$\frac{\partial V_{t_0}}{\partial \sigma_1}$	(0.016)	(0.025)	(0.124)	(0.198)
∂V_{t_0}	16.8822	17.0611	17.0022	17.1409
$\frac{\partial V_{t_0}}{\partial \sigma_2}$	(0.013)	(0.017)	(0.089)	(0.155)

Table: Vega t_0 values for Bermudan spread option on two assets.

Case	SGBM extended	SGBM BR	LSMC1 BR	LSMC2 BR
Single Asset (50 monitoring dates)	4.5s	10s	2s	4.2s
Two Asset (8 monitoring dates)	3s	12s	4s	7s

Table: The computational time of 30 trials,

Conclusions

- We have presented an approach to compute sensitivities w.r.t state space and model parameters along the path for early-exercise options.
- The approach is applicable to regress-later schemes like SGBM.
- Through the examples we numerically illustrate study the convergence of the method and demonstrate the stability of the method.
- The sensitivities along the paths are computed without significant computational and memory overhead.
- Future work:
 - Compute MVA for SIMM based initial margins.
 - Sensitivities in energy market complex options.

References

Shashi Jain, Álvaro Leitao, and Cornelis W. Oosterlee.

Rolling adjoints: fast Greeks along Monte Carlo scenarios for early-exercise options, 2017.

Submitted to Quantitative Finance. Available at SSRN: https://ssrn.com/abstract=3093846.

Shashi Jain and Cornelis W. Oosterlee.

The Stochastic Grid Bundling Method: Efficient pricing of Bermudan options and their Greeks.

Applied Mathematics and Computation, 269:412-431, 2015.

Questions

Thank you for your attention