Algèbre 2

<u>T D</u>

Exercice 1

Soit $a \in \mathbb{R}^*$. On considère le système (S) $\begin{cases} ay + a^2z = a^2\\ \frac{1}{a} + az = a\\ \frac{1}{a^2}x + \frac{1}{a}y = 1 \end{cases}$

- 1) Déterminer trois matrices A, X et B telles que (S)<=>AX=B
- 2) Montrer que A²-A-2I₃=0.
- 3) En déduire que A est inversible puis calculer A-1.

Exercice 2

Soit β = (e₁, e₂, e₃) la base canonique de \mathbb{R}^3 f $\in L(\mathbb{R}^3)$ dont la matrice associée dans la base β est la matrice définie par $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Soient les vecteurs V_1 , V_2 et V_3 définis par : V_1 = e_1

$$V_2 = e_1 + e_2$$

$$V_3 = e_1 + e_3$$

- 1) Montrer que $\beta' = (V_1, V_2, V_3)$ est une base de \mathbb{R}^3 .
- 2) Exprimer $f(V_1)$, $f(V_2)$ et $f(V_3)$ en fonction de e_1 , e_2 et e_3 .
- 3) Exprimer $f(V_1)$, $f(V_2)$ et $f(V_3)$ en fonction de V_1 , V_2 et V_3 .
- 4) En déduire la matrice A' associée à f dans la base β' .
- 5) En déduire les valeurs propres de f.
- 6) Déterminer les sous espaces propres de f.
- 7) F est-elle diagonalisable?

Exercice 3

Soient $U_1 = (1; -1; 2), U_2 = (1; 1; -1)$ et $U_3 = (-1; -3; -7)$

On pose E=vect (U1, U2, U3)

- 1) Donner une base de E.
- 2) Montrez que F= $\{(x,y,z) \in \mathbb{R}^3, x+y+z=0\}$ est un sous espace vectoriel de \mathbb{R}^3 .
- 3) Déterminer dim(F).
- 4) Donner une base $E \cap F$.

Exercice 4

Soient E= {(x,y,z) $\in \mathbb{R}^3$, x+y+z=0} et v₁=(1 ;-2 ;3), v₂=(2 ;1 ;-1). On pose F=vect (v₁, v₂)

- 1) Montrer que E est un sous espace vectoriel de \mathbb{R}^3 .
- 2) Déterminer E ∩ F.
- 3) A-t-on $E \oplus F$?

Exercice 5

- 1) On considère la matrice A= $\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$
 - a) Calculer A^2 et vérifier que $A^2=2I_3-A$.
 - b) En déduire que A est inversible et calculer son inverse.
- 2) On considère B= $\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$
 - a) Calculer B³-B.
 - b) En déduire que B est inversible et calculer son inverse.

Exercice 6

1) Soient A=
$$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
 et B= $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$

- a) Calculer A², A³ puis montrer que A³-A²-A+I₃=0.
- b) En déduire que A est inversible et calculer son inverse.
- c) Montrer que B³-3B+2B=0. En déduire que B n'est pas inversible.
- 2) Calculer l'inverse des matrices carrées suivantes :

a)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & -1 \\ -2 & -2 & -1 \end{pmatrix}$$

Exercice 7

On considère que A= $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

- 1) Verifier que A²=A+2I₃.
- 2) En déduire que A est inversible puis déterminer son inverse.
- 3) Montrer que $\forall n \in \mathbb{N}$ Aⁿ=U_nA+V_nI₃ avec U_n et V_n qui sont deux suites à déterminer.

Exercice 8

1) Cherchez les valeurs propres et la dimension des sous espaces propres des matrices suivantes :

$$A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix} \quad E = \begin{pmatrix} 4 & 0 & -1 \\ 0 & -2 & -6 \\ 0 & 4 & 8 \end{pmatrix}$$

2) Ces matrices sont-elles diagonalisables?

Exercice 9

Soit f l'endomorphisme de \mathbb{R}^3 dont sa matrice dans sa base canonique est définie par $A = \begin{pmatrix} 1 & -1 & -2 \\ -3 & -3 & -3 \\ 2 & 2 & 2 \end{pmatrix}$.

- 1) Déterminer le noyau et Im(f).
- 2) Trouver une base dont la matrice de f est B= $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

3) Soit A=
$$\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

- a) Déterminer rg(A)
- b) Soit f l'endomorphisme associé à A dans la base canonique. Déterminer le noyau et Im(f).

4) Soient A=
$$\begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 2 & 0 \end{pmatrix}$$
 et B= $\begin{pmatrix} 0 & 3 & 1 \\ 1 & 0 & 1 \\ 2 & -1 & 1 \end{pmatrix}$

Calculer AB; BA; $(A+B)^2$ et A^2+B^2+2AB .