The group G is isomorphic to the group labelled by [720, 763] in the Small Groups library. Ordinary character table of $G \cong S6$:

	1a	2a	2b	2c	3a	3b	4a	4b	5a	6a	6b
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	1	-1	1	-1	-1
χ_3	5	-1	3	1	-1	2	-1	1	0	-1	0
χ_4	5	-3	1	1	2	-1	-1	-1	0	0	1
χ_5	5	1	-3	1	-1	2	-1	-1	0	1	0
χ_6	5	3	-1	1	2	-1	-1	1	0	0	-1
χ_7	9	3	3	1	0	0	1	-1	-1	0	0
χ_8	9	-3	-3	1	0	0	1	1	-1	0	0
χ_9	10	2	-2	-2	1	1	0	0	0	-1	1
χ_{10}	10	-2	2	-2	1	1	0	0	0	1	-1
χ_{11}	16	0	0	0	-2	-2	0	0	1	0	0

Trivial source character table of $G \cong S6$ at p = 3

Trivial source character table of $G \cong S6$ at $p = 3$																				
$Normalisers N_i$	N_1						N_2				N_3				N_4					
$p-subgroups \ of \ G \ up \ to \ conjugacy \ in \ G$	P_1						P_2				P_3				P_4					
Representatives $n_j \in N_i$	1a	2a	2b	2c	4a	4b	5a	1a	2b	2b	2c	1a	2a	2a	2c	1a	2c	2b	2a	4a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	27	3	3	3	-1	3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	27	-3	-3	3	-1	-3	2	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	36	-6	6	0	-2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11}$	36	6	-6	0	-2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11}$	36	0	0	-4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	9	3	3	1	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	9	-3	-3	1	1	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	6	0	4	2	0	2	1	3	3	1	1	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	15	-3	5	-1	-1	1	0	3	3	-1	-1	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	15	3	-5	-1	-1	-1	0	3	-3	1	-1	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	6	0	-4	2	0	-2	1	3	-3	-1	1	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	6	4	0	2	0	2	1	0	0	0	0	3	3	1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	15	5	-3	-1	-1	1	0	0	0	0	0	3	3	-1	-1	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	6	-4	0	2	0	-2	1	0	0	0	0	3	-3	-1	1	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	15	-5	3	-1	-1	-1	0	0	0	0	0	3	-3	1	-1	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	10	-4	4	2	-2	0	0	1	1	1	1	1	-1	-1	1	1	1	1	-1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	1	-1	-1	1	1	-1	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	10	4	-4	2	-2	0	0	1	-1	-1	1	1	1	1	1	1	1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11}$	20	0	0	-4	0	0	0	2	0	0	-2	2	0	0	-2	2	-2	0	0	0

```
P_1 = Group([()]) \cong 1
```

 $N_1 = SymmetricGroup([1..6]) \cong S6$

$$N_2 = Group([(4,5),(2,3),(5,6),(1,2,3)]) \cong S3 \times S3$$

 $P_2 = Group([(1,2,3)]) \cong C3$

 $P_3 = Group([(1, 2, 3)(4, 6, 5)]) \cong C3$

 $P_4 = Group([(4,5,6),(1,2,3)]) \cong C3 \times C3$

 $N_3 = Group([(2,3)(5,6),(1,2,3)(4,6,5),(1,4)(2,6)(3,5),(4,6,5)]) \cong S3 \times S3$

 $N_4 = Group([(4,5,6),(1,4)(2,5)(3,6),(2,3),(5,6),(1,2,3)]) \cong (S3 \times S3) : C2$