Chapitre 2 Programmation linéaire Algorithme du simplexe

Cours RO202

Zacharie ALES (zacharie.ales@ensta.fr)

Adapté de cours de Marie-Christine Costa, Alain Faye et Sourour Elloumi

- Résolution graphique
- Théorèmes fondamentaux
- Algorithme du simplexe
 - Méthode des tableaux
- Dualité

Résolution graphique Théorèmes fondamentaux Algorithme du simplexe Dua

Programme

Optimisation dans les graphes

Chapitre 1

1.1 - Arbre couvrant

ésolution graphique Théorèmes fondamenta

Définition - Programme linéaire

Exemple - Flot maximal

$$\begin{cases} & \max \quad \varphi_{ts} \\ & \varphi_{ij} \leq c_{ij} \\ & \sum\limits_{i \in \Gamma^-(j)} \varphi_{ij} = \sum\limits_{i \in \Gamma^+(j)} \varphi_{ji} \quad \forall i,j \in A \quad \text{(capacit\'es)} \\ & \varphi_{ij} \geq 0 \qquad \forall (ij) \in A \end{cases}$$

Objectif de ce cours

Méthode générale de résolution des programmes linéaires

Sommaire

- Résolution graphique
- 2 Théorèmes fondamentaux
- Algorithme du simplexe
- 4 Dualité

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Exemple

$$max \ z = 2x_1 + x_2$$

s.c.
$$x_1 - x_2 \le 3$$

$$x_1 + 2x_2 \leq 6$$

$$-x_1+2x_2\leq 2$$

$$x_1, x_2 \ge 0$$

Exemple $max \ z = 2x_1 + x_2$ s.c. $x_1 - x_2 \le 3$ $x_1 + 2x_2 \le 6$ $-x_1 + 2x_2 \le 2$ $x_1, x_2 \ge 0$

Exemple $max \ z = 2x_1 + x_2$ s.c. $x_1 - x_2 \le 3$ $x_1 + 2x_2 \le 6$ $-x_1 + 2x_2 \le 2$ $x_1, x_2 \ge 0$

Exemple $max \ z = 2x_1 + x_2$ s.c. $x_1 - x_2 \le 3$ $x_1 + 2x_2 \le 6$

 $-x_1+2x_2\leq 2$

 $x_1, x_2 \ge 0$

Exemple

$$max \ z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$

$$x_1 + 2x_2 \le 6$$

$$-x_1+2x_2\leq 2$$

$$x_1, x_2 \ge 0$$

Tout point du domaine est une solution réalisable

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Trouver la valeur maximisant

$$z = 2x_1 + x_2$$

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Trouver la valeur maximisant

$$z=2x_1+x_2$$

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Trouver la valeur maximisant $z = 2x_1 + x_2$

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Trouver la valeur maximisant $z = 2x_1 + x_2$

Problème résolu

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Solution optimale

- $x_1 = 4$
- $x_2 = 1$

$$z = 9$$

Résolution graphique

Définition - Point extrême d'un polyèdre

Point qui ne peut pas être exprimé comme une combinaison convexe d'autres points du polyèdre

Combinaison convexe de $\{x_i\}_{i=1}^n$: $\sum_{i=1}^n \lambda_i x_i$ avec $\sum_{i=1}^n \lambda_i = 1$

Théorème

Démontré dans la suite

Pour tout programme linéaire, un des points extrêmes du polyèdre correspond à une solution optimale

Résolution graphique

Algorithme naïf

Énumérer tous les points extrêmes et retenir un de ceux pour lequel z est le plus élevé

Très long quand la dimension augmente!

Idée de l'algorithme du simplexe

- Partir d'un point extrême du polyèdre
- Jusqu'à preuve d'optimalité ou de non-finitude
 - Aller d'un point extrême vers un autre qui améliore l'objectif

Sommaire

- Résolution graphique
- 2 Théorèmes fondamentaux
- Algorithme du simplexe
- 4 Dualité

Forme standard d'un programme linéaire

Le simplexe utilise un programme linéaire mis sous forme standard

Définition - Forme standard d'un PL

$$\begin{array}{ll} & & & \\ & & \\ \text{max} & & c^T x \\ \text{s.c.} & & Ax = b \leftarrow m \text{ contraintes} \\ & & x \geq 0 \end{array}$$

Exemple - PL sous forme standard

max
$$3x_1 + 4x_2 + x_3$$

s.c. $x_1 + x_2 - x_3 = 4$
 $4x_1 - x_2 + 4x_3 = 6$
 $x_1, x_2, x_3 \ge 0$

Il est toujours possible de mettre un PL sous forme standard

1/4 Contrainte \leq $2x_1 + 3x_2 \leq 6 \rightarrow \begin{cases} \dots \\ \dots \end{cases}$

$$2/4$$
 Contrainte ≥
$$3x_1 + 2x_2 \ge 18 \rightarrow \begin{cases} \dots \\ \dots \end{cases}$$

Il est toujours possible de mettre un PL sous forme standard

$1/4 \text{ Contrainte} \leq$ $2x_1 + 3x_2 \leq 6 \rightarrow \begin{cases} \dots \\ \dots \\ \dots \end{cases}$

2/4 Contrainte ≥ $3x_1 + 2x_2 ≥ 18 → \begin{cases} \dots \\ \dots \end{cases}$

Il est toujours possible de mettre un PL sous forme standard

$1/4 \text{ Contrainte} \leq$ $2x_1 + 3x_2 \leq 6 \rightarrow \begin{cases} \dots \\ \dots \\ \dots \end{cases}$

2/4 Contrainte ≥ $3x_1 + 2x_2 ≥ 18 → \begin{cases} \dots \\ \dots \end{cases}$

Il est toujours possible de mettre un PL sous forme standard

1/4 Contrainte \leq $2x_1 + 3x_2 \leq 6 \rightarrow \begin{cases} \dots \\ \dots \end{cases}$

2/4 Contrainte ≥ $3x_1 + 2x_2 ≥ 18 → \begin{cases} \dots \\ \dots \end{cases}$

Il est toujours possible de mettre un PL sous forme standard

2/4 Contrainte ≥ $3x_1 + 2x_2 \ge 18 \rightarrow \begin{cases} \dots \\ \dots \end{cases}$

Quiz!

Question 1

Lequel de ces trois points est celui pour lequel la variable d'écart s a la plus petite valeur?

3/4 Variable de signe quelconque

$$x \in \mathbb{R} \to \left\{ \begin{array}{c} \dots & \dots & \dots \\ \dots & \dots & \dots \end{array} \right.$$

4/4 Minimisation

$$\mathsf{min}\,2x_1-3x_2\to\dots\dots$$

 $\min f = -\max(-f)$

Mise sous forme standard

Exemple sous forme non standard

max
$$z = 2x_1 + x_2$$

s.c. $-x_1 + x_2 \le 3$
 $x_1 + 2x_2 \le 6$
 $-x_1 + 2x_2 \le 2$
 $x_1, x_2 \ge 0$

Exemple sous forme standard

Représentation matricielle

- n = 5 (5 variables)
- m = 3 (3 contraintes)

$$b = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} c = \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

Bases et solutions de base

Problème sous forme standard

$$\max c^T x$$

s.c.
$$Ax = b$$

 $x \ge 0$

Hypothèse : $A \in M_{m \times n}$ est de rang m (sinon on peut réduire le nombre de contraintes)

(billott off pour rouding to frombre de contraintee

Définition - Base d'un programme linéaire

m variables dont les colonnes de A sont linéairement indépendantes

S'il y a des colonnes linéairement dépendantes, on peut réduire le nombre de variables

Notation - Matrice B des variables d'une base

Sous-matrice carrée $M_{m \times m}$ de A contenant les vecteurs colonnes de la base

Remarque

B est inversible

Car ses vecteurs colonnes sont linéairement indépendants

Bases et solutions de base

Notation - Matrice N des variables hors-base

Sous-matrice $M_{m \times n - m}$ de A contenant les vecteurs colonnes qui ne sont pas dans la base

Notation

- x_B: variables de base
- x_N: variables hors base

Exemple - Base $\{x_1, x_4, x_5\}$

Question 2

$$\left(\begin{array}{ccccc} x_1 & x_2 & x_3 & x_4 & x_5 \\ 4 & 8 & 7 & 6 & 1 \\ 4 & 5 & 4 & 5 & 2 \end{array}\right)$$

Indiquer la matrice de base associée à la base (x_3, x_5) .

Question 3

On considère le problème :

max
$$z = 2x_1 + x_2$$

s.c. $-x_1 + x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Est-ce que $\{x_1, x_2, x_4\}$ est une base?

Indication

$$A = \left(\begin{array}{ccccc} -1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 1 \end{array}\right)$$

Réorganisation

Propriété

B inversible donc

•

Réorganisation

Propriété

B inversible donc

Définition - Solution associée à une base B

•
$$x_B = B^{-1}b$$

•
$$x_B = B^{-1}b$$

• $x_N = 0$ $\Rightarrow Ax = b$ est vérifié

Réorganisation

Propriété

B inversible donc

Définition - Solution associée à une base B

•
$$x_B = B^{-1}b$$

•
$$x_B = B^{-1}b$$

• $x_N = 0$ $\Rightarrow Ax = b$ est vérifié

•
$$x_N = 0$$

Définition - Base réalisable

Base dont la solution associée est réalisable

 $\Leftrightarrow B^{-1}b \ge 0$ (sinon au moins une variable négative)

Réorganisation

$$\bullet$$
 $A = (B N)$

Propriété

B inversible donc

Définition - Solution associée à une base B

•
$$x_B = B^{-1}b$$

•
$$x_B = B^{-1}b$$
 $\Rightarrow Ax = b$ est vérifié

•
$$x_N = 0$$

Définition - Base réalisable

Base dont la solution associée est réalisable

 $\Leftrightarrow B^{-1}b \ge 0$ (sinon au moins une variable négative)

Définition - Base réalisable dégénérée

Base dont la solution réalisable comporte une variable de base nulle

$$\exists b \in B \ x_b = 0$$

Exemple

max
$$2x_1 + x_2$$

s.c. $x_1 - x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Décomposition de $Bx_B + Nx_N = b$

Considérons la base $\{x_1, x_4, x_5\}$:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix}$$

Solution associée à $B: x_B = B^{-1}b$ et $x_N = 0$

$$\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = B^{-1}b = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}$$

Remarques

- $\{x_1, x_4, x_5\}$ est une base car
- $\{x_1, x_4, x_5\}$ est une base réalisable car

Problème

max
$$z = 2x_1 + x_2$$

s.c. $-x_1 + x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 > 0$

Question 4

Est-ce que $\{x_1, x_3, x_4\}$ est une base réalisable ?

Question 5

Est-ce que la solution (0, 0, 3, 6, 2) est une solution de base réalisable?

Indications

$$A = \begin{pmatrix} -1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ -1 & 2 & 0 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Correspondance entre points extrêmes et bases réalisables

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Correspondance entre points extrêmes et bases réalisables

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Correspondance entre points extrêmes et bases réalisables

Exemple

max
$$z = 2x_1 + x_2$$

s.c. $x_1 - x_2 + x_3 = 3$
 $x_1 + 2x_2 + x_4 = 6$
 $-x_1 + 2x_2 + x_5 = 2$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Question 6

Identifier la base associée à chaque sommet

Théorèmes fondamentaux de la programmation linéaire

Théorème 1 (preuve en fin de chapitre)

L'ensemble des points extrêmes d'un polytope ou d'un polyèdre convexe correspond à l'ensemble des solutions de base réalisables

Polytope : polyèdre borné

Théorèmes fondamentaux de la programmation linéaire

Théorème 1 (preuve en fin de chapitre)

L'ensemble des points extrêmes d'un polytope ou d'un polyèdre convexe correspond à l'ensemble des solutions de base réalisables

Polytope: polyèdre borné

Théorème 2

L'optimum d'une fonction linéaire sur un polytope convexe est atteint en au moins un point extrême S'il est atteint en plusieurs points extrêmes, alors il est atteint en tout point combinaison convexe de ces points extrêmes

Optimum en 1 unique point extrême

Optimum en 2 points extrêmes

Théorème 2

L'optimum d'une fonction linéaire sur un polytope convexe est atteint en au moins un point extrême

Preuve	١
	1
	1
	1
	1
•••••	1
	1
	1
	1
	1
	1

Conséquence des deux théorèmes

Il existe une base réalisable B^* dont la solution de base associée est optimale

Exemple - Programme ayant un optimum non fini

Sous réserve que le programme linéaire ait un optimum fini

min
$$z = -5x_1 + 3x_2$$

s.c.
$$-x_1 + 3x_2 \le 3$$

$$-x_1 + 2x_2 \le 1$$

$$x_1, \quad x_2 \geq 0$$

•
$$x_1 \to +\infty \Rightarrow z \to -\infty$$

Comment savoir si une base réalisable B est optimale?

Nécessite de réécrire l'objectif

$$x_B = B^{-1}b - B^{-1}Nx_N$$
 Valeur de la solution associée à B

$$z = c^Tx = c_B^Tx_B + c_N^Tx_N = c_B^TB^{-1}b + (c_N^T - c_B^TB^{-1}N)x_N$$

 Δ : **coûts réduits** des variables hors base $x_N \rightarrow$

Comment savoir si une base réalisable *B* est optimale?

Nécessite de réécrire l'objectif

 Δ : **coûts réduits** des variables hors base x_N -

Théorème 3 (cas de la maximisation)

Une base réalisable non dégénérée B est une base optimale ssi

$$x_B > 0$$

$$\Delta \leq 0$$

 $\Lambda > 0$ en cas de minimisation

Comment savoir si une base réalisable B est optimale?

Nécessite de réécrire l'objectif

$$x_B = B^{-1}b - B^{-1}Nx_N$$
 Valeur de la solution associée à B

$$z = c^T x = c_B^T x_B + c_N^T x_N = c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N) x_N$$

 Δ : coûts réduits des variables hors base x_N

Théorème 3 (cas de la maximisation)

Une base réalisable non dégénérée B est une base optimale ssi

$$\chi_B > 0$$

$$\Delta < 0$$

 $\Lambda > 0$ en cas de minimisation

Idée de preuve

......

La base $\{x_1, x_4, x_5\}$ est-elle optimale?

Programme linéaire

Reformulation

- $x_B = (x_1, x_4, x_5)$
- $x_N = (x_2, x_3)$
- $c_B = (2,0,0)$
- $c_N = (1,0)$

Calcul des coûts réduits

$$\Delta_{N} = c_{N} - c_{B}^{T} B^{-1} N$$

$$= (1 \ 0) - (2 \ 0 \ 0) \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & 0 \\ 2 & 0 \end{pmatrix}$$

$$= (3 \ -2)$$

$$(x_{2}, x_{3}, x_{4}) \begin{pmatrix} x_{4} \\ x_{5} \\ x_{4} \end{pmatrix}$$

 $\Delta_{N,1} > 0$ donc $\{x_1, x_4, x_5\}$ n'est pas une base optimale

Question 7

On applique l'algorithme du simplexe à un problème de maximisation.

La base actuelle est non dégénérée et les coûts réduits des variables hors base x_1 et x_2 sont $\Delta_1 = 1$ et $\Delta_2 = 4$.

Parmi les affirmations ci-dessous, lesquelles sont correctes?

- A: L'optimum est atteint.
- B: L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x1.
- C : L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x2.

Question 8

On applique l'algorithme du simplexe à un problème de maximisation.

La base actuelle est non dégénérée et les coûts réduits des variables hors base x_1 et x_2 sont $\Delta_1 = -5$ et $\Delta_2 = -2$.

Parmi les affirmations ci-dessous, lesquelles sont correctes?

- A: L'optimum est atteint.
- B: L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x1.
- C : L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x2.

Question 9

On applique l'algorithme du simplexe à un problème de maximisation.

La base actuelle est non dégénérée et les coûts réduits des variables hors base x_1 et x_2 sont $\Delta_1 = 3$ et $\Delta_2 = -1$.

Parmi les affirmations ci-dessous, lesquelles sont correctes?

- A: L'optimum est atteint.
- B: L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x1.
- O: L'optimum n'est pas atteint et je peux améliorer la solution en augmentant x2.

Résumé

Ce que l'on sait

Un PL peut être mis sous forme standard

 $\max Ax = b, x \ge 0$ Ensemble de m variables dont les colonne de A son indépendantes

A chaque base est associée une solution

- Point extrêmes
 ⇔ solutions de bases réalisables
 Théorème 1
- Une base non dégénérée est optimale ssi $\overset{\downarrow}{\Delta}_N \leq 0$

Comment trouver une base fournissant une solution optimale?

Sommaire

- Algorithme du simplexe Méthode des tableaux

- Partir d'une base réalisable i.e., d'un point extrême
- Passer d'une base à une base réalisable "voisine" en améliorant z
 Ou en ne modifiant pas z
- Stop quand on ne peut plus améliorer z

Remarque

En programmation linéaire continue, optimum local = optimum global

Inconvénient

Le nombre de points extrêmes peut être très grand

Directions admissibles dans l'algorithme du simplexe

: direction admissible mais non considérée

: direction non admissible

Passage d'une base à une base "voisine"

Variable entrante

• Faire entrer une variable x_e dans la base

i.e., augmenter la valeur de x_e

2 Faire sortir une variable x_s de la base

 $x_s \leftarrow 0$

Variable sortante

Quelle direction choisir? (i.e., quelle variable faire entrer dans la base?)

Corollaire du théorème 3 (cas de la maximisation)

S'il existe un coût réduit $\Delta_{N,i} > 0$ alors on peut faire croître z en augmentant la valeur de x_i , sinon le max est atteint

Vrai uniquement si la base est non dégénérée

Quelle direction choisir? (i.e., quelle variable faire entrer dans la base?)

Corollaire du théorème 3 (cas de la maximisation)

S'il existe un coût réduit $\Delta_{N,i} > 0$ alors on peut faire croître z en augmentant la valeur de x_i , sinon le max est atteint

Vrai uniquement si la base est non dégénérée

Exemple - Choix de la direction

 $\Delta_2 = 3 > 0$ donc augmenter x_2 permet d'améliorer l'objectif

Si x_2 augmente de δ ,

Quelle direction choisir? (i.e., quelle variable faire entrer dans la base?)

Corollaire du théorème 3 (cas de la maximisation)

S'il existe un coût réduit $\Delta_{N,i} > 0$ alors on peut faire croître z en augmentant la valeur de x_i , sinon le max est atteint

Vrai uniquement si la base est non dégénérée

Exemple - Choix de la direction

 $\Delta_2 = 3 > 0$ donc augmenter x_2 permet d'améliorer l'objectif

Si x_2 augmente de δ ,

Problématique 2

Jusqu'où effectuer le déplacement?

Les contraintes doivent être respectées

Jusqu'où effectuer le déplacement?

Les contraintes du problème indiquent de combien la variable entrant en base peut augmenter

Nécessite de reformuler les contraintes sous forme canonique

$$Ax = b$$

$$\cdot = x_N$$

.....

(1)

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

$$x_1 = 3 + x_2 \ge 0$$

$$x_4=3-3x_2\geq 0$$

$$x_5 = 5 - x_2 \ge 0$$

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4 = 3 - 3x_2 \ge 0$$

$$x_5 = 5 - x_2 \ge 0$$
 $(B^{-1}b)_i \triangle (B^{-1}N)_{ia}$

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{=} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{=} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{=} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{=}$$

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4=3-3x_2\geq 0 \ \Rightarrow \ \ldots \ldots$$

$$x_5 = 5 - x_2 \ge 0$$
 $(B^{-1}b)_i \stackrel{\frown}{=} (B^{-1}N)_{ig}$

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4=3-3x_2\geq 0 \ \Rightarrow \ \ldots \ldots$$

$$x_5 = 5 - x_2 \ge 0 \Rightarrow \dots$$
 $(B^{-1}b)_i \stackrel{\frown}{\longrightarrow} (B^{-1}N)_{ie}$

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

• x_3 reste hors base ($x_3 = 0$) et x_1 , x_4 et x_5 doivent rester ≥ 0 donc

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4 = 3 - 3x_2 \ge 0 \Rightarrow \dots$$

$$x_5 = 5 - x_2 \ge 0 \Rightarrow \dots$$
 $(B^{-1}b)_i \xrightarrow{} (B^{-1}N)_{ie}$

 \rightarrow x_2 peut être augmenté jusqu'à min(1,5)

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

x₃ reste hors base (x₃ = 0) et
 x₁, x₄ et x₅ doivent rester ≥ 0 donc

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4=3-3x_2\geq 0 \ \Rightarrow \ \ldots \ldots$$

$$x_5 = 5 - x_2 \ge 0 \Rightarrow \dots$$
 $(B^{-1}b)_i \xrightarrow{} (B^{-1}N)_{ia}$

 \rightarrow x_2 peut être augmenté jusqu'à min(1,5)

• Si $x_2 \leftarrow 1$ alors $x_4 \leftarrow 0$

 x_4 sort donc de la base

Exemple

$$\underbrace{\begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix}}_{} = \underbrace{\begin{pmatrix} 3 \\ 3 \\ 5 \end{pmatrix}}_{} - \underbrace{\begin{pmatrix} -1 & 1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}}_{} \underbrace{\begin{pmatrix} x_2 \\ x_3 \end{pmatrix}}_{}$$

x₃ reste hors base (x₃ = 0) et
 x₁, x₄ et x₅ doivent rester ≥ 0 donc

$$x_1 = 3 + x_2 \geq 0 \Rightarrow \dots$$

$$x_4=3-3x_2\geq 0 \ \Rightarrow \ \ldots \ldots$$

$$x_5 = 5 - x_2 \ge 0 \Rightarrow \dots$$
 $(B^{-1}b)_i \xrightarrow{} (B^{-1}N)_{i0}$

 \rightarrow x_2 peut être augmenté jusqu'à min(1,5)

• Si $x_2 \leftarrow 1$ alors $x_4 \leftarrow 0$

x₄ sort donc de la base

Nouvelle solution obtenue

- En base : $x_2 = 1$, $x_1 = x_5 = 4$
- Hors base : $x_3 = x_4 = 0$

Question 10

Rappel: $x_B = B^{-1}b - B^{-1}Nx_N \ge 0$

On considère un problème comportant 4 variables x_1 , x_2 , x_3 et x_4 . Dans l'algorithme du simplexe, on considère la base $x_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et on souhaite faire entrer la variable x_3 en base (i.e., on souhaite augmenter la valeur de x_3).

Sachant que $x_N = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$, $B^{-1}b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $B^{-1}N = \begin{pmatrix} 3 & 4 \\ -5 & 6 \end{pmatrix}$, de combien puis-je faire augmenter x_3 au maximum?

Question 11

On considère un problème comportant 4 variables x_1 , x_2 , x_3 et x_4 .

Dans l'algorithme du simplexe, on considère la base $x_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et on souhaite faire entrer la variable x_3 en base

(i.e., on souhaite augmenter la valeur de x_3).

Sachant que $x_N = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$, $B^{-1}b = \begin{pmatrix} 4 \\ 5 \end{pmatrix}$, $B^{-1}N = \begin{pmatrix} 7 & -2 \\ 4 & -5 \end{pmatrix}$, de combien puis-je faire augmenter x_3 au maximum?

Rappel : $x_B = B^{-1}b - B^{-1}Nx_N \ge 0$

Question 12

On considère un problème comportant 4 variables x_1 , x_2 , x_3 et x_4 .

Dans l'algorithme du simplexe, on considère la base $x_B = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et on souhaite faire entrer la variable x_3 en base

(i.e., on souhaite augmenter la valeur de x_3).

Sachant que $x_N = \begin{pmatrix} x_3 \\ x_4 \end{pmatrix}$, $B^{-1}b = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$, $B^{-1}N = \begin{pmatrix} -3 & 2 \\ -1 & 5 \end{pmatrix}$, de combien puis-je faire augmenter x_3 au maximum?

Rappel : $x_B = B^{-1}b - B^{-1}Nx_N \ge 0$

Changement de base - Récapitulatif

1 - Déterminer la variable *e* qui entre dans la base (maximisation)

Sélectionner une variable hors base de coût réduit positif

Plusieurs stratégies possibles :

- Choisir la variable de plus petit indice Règle de Bland
- Ohoisir une variable ayant le plus grand coût réduit

Minimisation: remplacer "positif" par "négatif"

Dualité

Changement de base - Récapitulatif

1 - Déterminer la variable *e* qui entre dans la base (maximisation)

Sélectionner une variable hors base de coût réduit positif

Plusieurs stratégies possibles :

- Choisir la variable de plus petit indice Règle de Bland
- Ochoisir une variable ayant le plus grand coût réduit

Minimisation: remplacer "positif" par "négatif"

2 - Déterminer la variable qui sort de la base

- Les variables hors base ≠ e restent nulles,
- Chaque variable de base x_i doit rester ≥ 0

on aura donc:

$$\bullet$$
 $(B^{-1}b)_i - (B^{-1}N)_{ie}x_e \ge 0$

Si $(B^{-1}N)_{ie}>0$, l'augmentation de x_e sera donc limitée par $\frac{(B^{-1}b)_i}{(B^{-1}N)_{ie}}$ $\forall i\in B$

La variable sortante s est une variable de base de rapport positif et minimal

- $x_s \leftarrow 0$
- $\qquad \qquad \mathbf{x}_{e} \leftarrow \tfrac{(B^{-1}b)_{S}}{(B^{-1}N)_{Se}}$

Définition - Pivotage

Mettre les contraintes sous forme canonique par rapport à une nouvelle base

Éliminer xe des contraintes et de l'objectif

Exemple - x_2 entre en base et x_4 sort

$$x_4 = 3 - 3x_2 + x_3$$

Définition - Pivotage

Mettre les contraintes sous forme canonique par rapport à une nouvelle base

Éliminer xe des contraintes et de l'objectif

Exemple - x_2 entre en base et x_4 sort

$$x_4 = 3 - 3x_2 + x_3$$

$$x_2 = 1 + \frac{1}{3}x_3 - \frac{1}{3}x_4$$
 (1)

Définition - Pivotage

Mettre les contraintes sous forme canonique par rapport à une nouvelle base

Éliminer xe des contraintes et de l'objectif

Exemple - x_2 entre en base et x_4 sort

$$x_4 = 3 - 3x_2 + x_3$$

$$x_2 = 1 + \frac{1}{3}x_3 - \frac{1}{3}x_4$$
 (1)

On remplace x₂ par (1) dans l'expression des variables de base x₁ et x₅ et de l'objectif :

$$x_1 = 4 - \frac{2}{3}x_3 - \frac{1}{3}x_3$$

•
$$x_1 = 4 - \frac{2}{3}x_3 - \frac{1}{3}x_4$$

• $x_5 = 4 - \frac{4}{3}x_3 + \frac{1}{3}x_4$

•
$$z = 9 - x_3 - x_4$$

Définition - Pivotage

Mettre les contraintes sous forme canonique par rapport à une nouvelle base

Éliminer $x_{\rm P}$ des contraintes et de l'objectif

Exemple - x_2 entre en base et x_4 sort

$$x_4 = 3 - 3x_2 + x_3$$

$$x_2 = 1 + \frac{1}{3}x_3 - \frac{1}{3}x_4$$
 (1)

On remplace x₂ par (1) dans l'expression des variables de base x₁ et x₅ et de l'objectif :

$$x_1 = 4 - \frac{2}{3}x_3 - \frac{1}{3}x_3$$

$$x_1 = 4 - \frac{2}{3}x_3 - \frac{1}{3}x_4$$

$$x_5 = 4 - \frac{4}{3}x_3 + \frac{1}{3}x_4$$

•
$$z = 9 - x_3 - x_4$$

• Nouvelle solution de base :
$$x_1 = 4$$
, $x_2 = 1$, $x_5 = 4$, $z = 9$ et $x_3 = x_4 = 0$

Cette solution est optimale

Car $\Delta < 0$ (i.e., car les variables hors base ont des coefficients négatifs dans l'objectif)

Formules de changement de base (données à titre indicatif)

Notations

- e : variable entrante
- s : variable sortante
- \(\) : termes de la nouvelle base
 Passage de \(B \) à la base adjacente \(\hat{B} \)

Remarques

- Formules obtenues par simple calcul
- Il n'est pas demandé de les connaître
- Les calculs se font par la méthode des tableaux

Pivotage

Formules de changement de base

- $i \in B \setminus \{s\}$:
 - $\widehat{\overline{a}}_{ij} = \overline{a}_{ij} \frac{\overline{a}_{ie}\overline{a}_{sj}}{\overline{a}_{so}} \ (j \in N \setminus \{e\})$
 - $\widehat{\overline{a}}_{is} = -\frac{\overline{a}_{ie}}{\overline{a}_{se}} (j = s)$
 - $ullet \widehat{ar{b}}_i = \overline{b}_i rac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_s$
- i = e :
 - $ullet \ \widehat{\overline{a}}_{ej} = rac{\overline{a}_{sj}}{\overline{a}_{se}} \ (j \in N \setminus \{e\})$
 - $\bullet \ \widehat{\overline{a}}_{es} = \frac{1}{\overline{a}_{se}} \ (j = s)$
 - $\widehat{\overline{b}}_e = \frac{\overline{b}_s}{\overline{a}_{se}}$
- $j \in N \setminus \{e\} : \widehat{\Delta}_j = \Delta_j \Delta_e \frac{\overline{a}_{sj}}{\overline{a}_{se}}$
- \bullet j = s:
 - $oldsymbol{\hat{\Delta}}_{\mathcal{S}} = -rac{\Delta_{\mathcal{E}}}{\overline{a}_{\mathcal{S}\mathcal{E}}}$
 - $\bullet \ \widehat{\overline{Z}} = \overline{Z} + \Delta_{\theta} \frac{\overline{b}_{s}}{\overline{a}_{se}}$

Sommaire

- Résolution graphique
- 2 Théorèmes fondamentaux
- Algorithme du simplexeMéthode des tableaux
- 4 Dualite

Construction du tableau initial associé à un PL sous forme standard

max *cx*

s.c. $A^T x = b$

 $x \ge 0$

Remarque : la colonne z peut être omise

Construction du tableau initial associé à un PL sous forme standard

Remarque : la colonne z peut être omise

Exemple

Exemple - Tableau initial

Construction du tableau initial associé à un PL sous forme standard

Remarque : la colonne z peut être omise

Exemple

Exemple - Tableau initial

Construction du tableau initial associé à un PL sous forme standard

Remarque : la colonne z peut être omise

Exemple

Exemple - Tableau initial

Construction du tableau initial associé à un PL sous forme standard

Remarque : la colonne z peut être omise

С

Construction du tableau

(Obj)

Remarque : la colonne z peut être omise

1

Forme canonique

Définition - Forme canonique d'un PL pour une base B

PL dont les vecteurs colonnes associés à z et aux variables de B forment la matrice identité À des permutations de colonnes près

• Cette forme permet de trouver facilement la solution associée à une base

Exe	Exemple - Tableau initial											
		<i>X</i> ₁	<i>X</i> ₂	Х3	<i>X</i> ₄	<i>X</i> ₅	Z	(RHS)	-			
	(C ₁)	1	-1	1				3				
	(C_2)	1	2		1			6				
	(C_3)	-1	2			1		2				
	(Obj)	2	1				1	-				

nique
RHS)
3
3
5
-6

Combiner linéairement les contraintes

Ε	Exemple - Tableau initial											
		<i>X</i> ₁	<i>X</i> ₂	Х3	<i>X</i> ₄	<i>X</i> ₅	(RHS)					
	(C ₁)	1	-1	1			3					
	(C_2)	1	2		1		6					
	(C ₃)	-1	2			1	2					
	(Obj)	2	1				-					

Combiner linéairement les contraintes

Exemple - Tableau initial

(Obj)

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	(RHS)
(C ₁)	1	-1	1			3
(C_2)	1	2		1		6
(C ₂)	-1	2			1	2

Exemple - Tableau sous forme canonique

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X 4	X 5	(RHS)
(C ₁)	- 1	-1	1			3
$(C_2)-(C_1)$	0	3	-1	1		3
$(C_3)+(C_1)$	0	1	1		1	5
$\overline{(\textit{Obj}) - 2(C_1)}$	0	3	-2			-6

Combiner linéairement les contraintes

Exemple - Tableau initial

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	(RHS)
(C ₁)	1	-1	1			3
(C_2)	1	2		1		6
(C_3)	-1	2			1	2
(Obj)	2	1				_

Exemple - Tableau sous forme canonique

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X 4	X ₅	(RHS)
(C ₁)	-1	-1	1			3
$(C_2)-(C_1)$	0	3	-1	1		3
$(C_3)+(C_1)$	0	1	1		1	5
$\overline{(\textit{Obj}) - 2(C_1)}$	0	3	-2			-6

Propriétés

Mettre sous forme canonique fait apparaître

- B⁻¹b dans la colonne (RHS)
- $B^{-1}N$ dans les colonnes x_N
- les coûts réduits dans la ligne (Obj) ⇒ variable sortante

Combiner linéairement les contraintes

Exemple - Tableau initial

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	(RHS)
(C ₁)	1	-1	1			3
(C_2)	1	2		1		6
(C_3)	-1	2			1	2
(Obj)	2	1				_

Exemple - Tableau sous forme canonique

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	X 5	(RHS)
(<i>C</i> ₁)	-1	-1	1			3
$(C_2)-(C_1)$	0	3	-1	1		3
$(C_3)+(C_1)$	0	1	1		1	5
$\overline{(Obj)-2(C_1)}$	0	3	-2			-6

Propriétés

Mettre sous forme canonique fait apparaître

- \bullet $B^{-1}b$ dans la colonne (RHS)
- \bullet $B^{-1}N$ dans les colonnes x_N
- les coûts réduits dans la ligne (Obj) ⇒ variable sortante

Remarque

L'opposé de la valeur de la solution de base réalisable apparaît en bas à droite

-6 dans l'exemple

Question 13

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	(RHS)
(C ₁)	-5	7	1			3	
(C_2)	2	6		1			6
(Obj)	3	3			1		-6

Indiquer les combinaisons linéaires permettant de mettre ce tableau sous forme canonique pour la base (x_1, x_4) :

•
$$C_1 \rightarrow ... * C_1 ... * C_2$$

•
$$C_2 \rightarrow ... * C_1 ... * C_2$$

$$\bullet \hspace{0.1cm} \textit{Obj} \rightarrow \textit{Obj}...*C_1...*C_2$$

Comment trouver la variable de base sortante?

Utiliser le ratio test

Pour chaque contrainte i, calculer $\frac{(B^{-1}b)_i}{(B^{-1}N)_{ie}}$

- $(B^{-1}b)_i$: colonne (RHS)
- $(B^{-1}N)_{ie}$: colonne x_e

La variable sortante est celle fournissant le plus petit ratio strictement positif Exception : si une variable e a un ratio nul et que $(B^{-1}N)_{ie} \geq 0$, c'est elle qui sort de la base (dans ce cas pas d'augmentation de l'objectif et base dégénérée)

Exemple - Tableau sous forme canonique ($x_e = x_2$)

		x ₁	<i>X</i> ₂	Х3	x ₄	X 5	(RHS)		
X ₁	(C_1)	1	-1	1			3	\Rightarrow	3 -1
\mathbf{x}_4	(C_2)		3	-1	1		3	\Rightarrow	<u>3</u>
X 5	(C_3)		1	1		1	5	\Rightarrow	<u>5</u>
	(Obj)		3	-2			-6		

La ligne de x_4 fournit le plus petit ratio positif, donc x_4 est la variable sortante

Question 14

	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	(RHS)
(C ₁)	-7	4	1			1	
(C_2)	2	3		1			4
(Obj)	3	-2			1		

Le tableau ci-dessus correspond à un problème de minimisation.

Quelles seront les prochaines variables entrant et sortant de base?

Fin de la première itération du simplexe

Fin de la première itération du simplexe

On recommence tant qu'il y a des coût réduits positifs

Fin de la première itération du simplexe

On recommence tant qu'il y a des coût réduits positifs

Exemple - Tableau sous forme canonique 2

		x ₁	x ₂	х ₃	<i>X</i> ₄	x ₅	(RHS)
x ₁	$(C_1) + (C_2)$	1		<u>2</u>	<u>1</u>		4
x ₂	$(C_2)/3$		1	$-\frac{1}{3}$	<u>1</u>		1
x ₅	$(C_3) - 3(C_2)$			$\frac{4}{3}$	$-\frac{1}{3}$	1	4
	(Obj)			-1	-1		-9

- Tous les coûts réduits sont négatifs, fin de l'algorithme
- Solution optimale $(x_1, x_2) = (4, 1)$ de valeur z = 9

Remarque

Dantzig a proposé 2 critères pour déterminer

- La variable qui entre dans la base Plus grand $\Delta_i > 0$
- 2 La variable qui sort de la base Plus petit rapport > 0

QCM

- A. Seul le critère 1 est impératif
- B. Seul le critère 2 est impératif
- C. Les deux sont impératifs

Choix d'une base réalisable initiale

Il n'est pas toujours facile de déterminer une base initiale

Méthodes possibles

- Prendre les variables d'écart (si possible)
 - ⇒ Valeur nulle de la fonction économique
- Introduire 1 variable artificielle par contrainte avec
 - un coefficient 1 dans la contrainte
 - un très grand coût dans l'objectif

Elles sortiront de la base au cours des *m* premières itérations et seront supprimées du problème

Méthode du « big M »

Exemple - Base formée des variables d'écart

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>X</i> ₅	Z	(RHS)
(<i>C</i> ₁)	1	-1	1				3
(C_2)	1	2		1			6
(C_3)	-1	2			1		2
(Obj)	2	1				1	_

Solution associée :

•
$$x_1 = x_2 = 0$$
, $x_3 = 3$, $x_4 = 6$, $x_5 = 2$

Remarque

À la première itération :

- x₁ entre en base
- x₃ sort de la base

et on retrouve la base initiale utilisée précédemment

QCM

 x_e doit entrer en base et tous les rapports $\frac{(B^{-1}b)_i}{(B^{-1}N)_{ie}}$ sont < 0. Que peut-on en déduire ?

- Le système n'a pas de solution
- 2 Le système a une solution infinie
- On est à l'optimum

.....

.....

Données: PL sous forme standard

 $B \leftarrow \text{Déterminer une base initiale}^*$

Mettre le PL sous forme canonique pour B

tant que il existe des coûts réduits > 0 faire

 $x_e \leftarrow \text{variable entrant dans la base}$ // Utiliser les coûts réduits**

 $x_s \leftarrow \text{variable sortant de la base}$ // Utiliser le ratio test***

$$B \leftarrow (B \backslash x_s) \cup x_e$$

Mettre le PL sous forme canonique pour B

fin

Minimisation : remplacer > 0 par < 0, adapter la sélection des variables entrantes et sortantes

* : Si l'origine n'est pas réalisable, peut nécessiter une phase préliminaire appellée simplexe phase 1

** : Plusieurs règles de pivotage possibles

*** .

- Si plusieurs variables candidates ont le même ratio, la base suivante sera dégénérée
- Si tous les ratios sont négatifs → problème non borné

Le simplexe est efficace en pratique mais... NON PROUVÉ POLYNOMIAL

On ne connaît pas de règle de changement de base pour laquelle il n'existe aucune instance entraînant un nombre exponentiel d'itérations

Aspects non abordés dans ce cours

- Risque de cyclage s'il y a dégénerescence
 Cas d'une variable de base nulle
- Difficulté pour trouver une base initiale
- ...

- Méthode de Gauss-Jordan (opérations de pivotage)
- Algorithme du simplexe (Dantzig, 1947)
- Algorithme dual du simplexe
- Variations du simplexe
- Algorithme de Khachiyan (1979)
 Polynomial!
- Méthodes de point intérieur
- Karmarkar (1984)
- ..

Ce problème est polynomial, "simple" à résoudre

- CPLEX
- Gurobi
- XPRESS
- COIN-OR
- ..

Permettent de traiter des instances ayant des centaines de milliers de variables et contraintes

Voire des millions si la matrice est creuse

Sommaire

- Résolution graphique
- Théorèmes fondamentaux
- Algorithme du simplexe
- Dualité

Exemple de problème

Un investisseur veut acheter au moins

- 25 actions A
- 60 actions B
- 15 actions C

Il peut acheter auprès de deux courtiers les packs suivants :

Action	Pack 1	Pack 2
А	20	5
В	30	20
С	5	10
Coût unitaire	6	9

Objectif

Acheter suffisamment d'actions de chaque type pour un coût minimal

Dualité

Données

Action	Pack 1	Pack 2	Quantité min
Α	20	5	25
В	30	20	60
С	5	10	15
Coût unitaire	6	9	-

Modèle

Nombre de pack 1 achetés – Nombre de packs 2 achetés

$$\min z = 6x_1 + 9x_2$$

s.c.
$$20x_1 +5x_2 \ge 25$$

$$30x_1 + 20x_2 \ge 60$$

$$5x_1 + 10x_2 \ge 15$$

$$x_1, x_2 \geq 0$$

Dualité

Données

Action	Pack 1	Pack 2	Quantité min
Α	20	5	25
В	30	20	60
С	5	10	15
Coût	6	9	-

Un 3ème courtier souhaite vendre des actions A, B et C séparément

Il doit fixer les prix unitaires u_A , u_B et u_C des actions.

Pour être concurrentiel avec :

• le courtier 1 il faut : $20u_A + 30u_B + 5u_C \le 6$

• le courtier 2 il faut : $5u_A + 20u_B + 10u_C \le 9$

Il cherche à maximiser ses gains :

 $\max 25u_A + 60u_B + 15u_C$

Dualité - Exemple

Problème PRIMAL

Problème de l'investisseur se fournissant auprès des courtiers 1 et 2 :

min
$$6x_1 +9x_2$$

s.c. $20x_1 +5x_2 \ge 25$
 $30x_1 +20x_2 \ge 60$
 $5x_1 +10x_2 \ge 15$
 $x_1, x_2 \ge 0$

Objectif: Minimiser le coût du portefeuille

Problème **DUAL**

Problème du concurrent des courtiers 1 et 2 :

$$\begin{array}{ll} \max 25u_A + 60u_B + 15u_C \\ \text{s.c. } 20u_A + 30u_B + 5u_C \leq 6 \\ 5u_A + 20u_B + 10u_C \leq 9 \\ u_A, \quad u_B, \quad u_C \geq 0 \end{array}$$

Objectif: Trouver le prix des actions qui maximise son profit

Dualité

Problème PRIMAL (P)

min
$$z = c^T x$$

s.c. $Ax \ge b$
 $x > 0$

Problème **DUAL** (D)

$$\max v = u^T b$$
s.c.
$$A^T u \le c$$

$$u > 0$$

Exemple de primal

min
$$6x_1 +9x_2$$

s.c. $20x_1 +5x_2 \ge 25$
 $30x_1 +20x_2 \ge 60$
 $5x_1 +10x_2 \ge 15$
 $x_1, x_2 > 0$

Exemple de dual

$$\begin{array}{ll} \max 25u_A + 60u_B + 15u_C \\ \text{s.c. } 20u_A + 30u_B + 5u_C \leq 6 \\ 5u_A + 20u_B + 10u_C \leq 9 \\ u_A, \quad u_B, \quad u_C \geq 0 \end{array}$$

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} =$$

						_	
1	2	3	4	5 50 500	۱	6	١
10	20	30	40	50	Ш	60	= 1
100	200	300	400	500	Ц	600)

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} =$$

$$c^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
10 & 20 & 30 & 40 & 50 \\
100 & 200 & 300 & 400 & 500
\end{pmatrix}
\begin{pmatrix}
6 \\
60 \\
600
\end{pmatrix}
=$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

Dual

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

Dual

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

Dual

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ u_C \rightarrow \begin{pmatrix} 100 & 200 & 300 & 400 & 500 \end{pmatrix} \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

Dual

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ u_C \rightarrow \begin{pmatrix} 100 & 200 & 300 & 400 & 500 \end{pmatrix} \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} =$$

$$u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ u_B \rightarrow & 10 & 20 & 30 & 40 & 50 \\ u_C \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} =$$

$$c^{T} = \begin{pmatrix} (C_{A}) & (C_{B}) \\ \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ u_C \rightarrow \begin{pmatrix} 100 & 200 & 300 & 400 & 500 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = 0$$

$$c^{T} = \begin{pmatrix} \left(C_{A}\right)\left(C_{B}\right)\left(C_{C}\right)\left(C_{D}\right)\left(C_{E}\right) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^{T} = \begin{pmatrix} \left(C_{A}\right)\left(C_{B}\right)\left(C_{C}\right)\left(C_{D}\right)\left(C_{E}\right) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{c} u_A \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ u_B \rightarrow & 10 & 20 & 30 & 40 & 50 \\ u_C \rightarrow & 100 & 200 & 300 & 400 & 500 \\ \end{pmatrix} \begin{array}{c} 6 \\ 60 \\ 600 \\ \end{array} =$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = 0$$

$$c^{T} = \begin{pmatrix} \begin{pmatrix} C_{A} \end{pmatrix} \begin{pmatrix} C_{B} \end{pmatrix} \begin{pmatrix} C_{C} \end{pmatrix} \begin{pmatrix} C_{D} \end{pmatrix} \begin{pmatrix} C_{E} \end{pmatrix} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = b$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$b^T = 6 60 600$$

$$A^T = \begin{pmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \\ 4 & 40 & 400 \\ 5 & 50 & 500 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = c$$

$$c^{T} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^{T} = \begin{pmatrix} \left(C_{A}\right)\left(C_{B}\right)\left(C_{C}\right)\left(C_{D}\right)\left(C_{E}\right) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \end{bmatrix} \begin{bmatrix} 6 \\ 60 \\ 600 \end{bmatrix} = b$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$b^T = 6 60 600$$

$$A^{T} = \begin{pmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \\ 4 & 40 & 400 \\ 1 & 1$$

$$c^{T} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 & 60 & 600 \\ 600 & 600 \end{pmatrix}$$

$$c^T = \begin{pmatrix} (C_A) & (C_B) & (C_C) & (C_D) & (C_E) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = b$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$b^T = 6 60 600$$

$$A^T = \begin{pmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \\ 4 & 40 & 400 \\ 1 & 1 \\$$

$$\downarrow \\
6 60 600$$

$$c^{T} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \\ \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = b$$

$$c^{T} = \begin{pmatrix} \begin{pmatrix} C_{A} \end{pmatrix} \begin{pmatrix} C_{B} \end{pmatrix} \begin{pmatrix} C_{C} \end{pmatrix} \begin{pmatrix} C_{D} \end{pmatrix} \begin{pmatrix} C_{E} \end{pmatrix} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$c^T = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = b$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne: coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$b^T = 6 60 600$$

$$A^T = \begin{pmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \\ 4 & 40 & 400 \\ 1 & 1 \\$$

$$\begin{array}{cccc} u_A & u_B & u_C \\ \downarrow & \downarrow & \downarrow \\ \hline 6 & 60 & 600 \\ \end{array}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \\ \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = b$$

$$c^{T} = \begin{pmatrix} \left(C_{A}\right)\left(C_{B}\right)\left(C_{C}\right)\left(C_{D}\right)\left(C_{E}\right) \\ \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{array}{c} u_A \rightarrow \\ u_B \rightarrow \\ u_C \rightarrow \\ 10 & 20 & 30 & 40 & 50 \\ 100 & 200 & 300 & 400 & 500 \\ \end{array} = \begin{array}{c} \color{red} 6 \\ 60 \\ 600 \end{array} =$$

200 300 400 500

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

Dual

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

50

$$c^{T} = \begin{pmatrix} x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$(C_1) \rightarrow \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ (C_2) \rightarrow & 10 & 20 & 30 & 40 & 50 \\ (C_3) \rightarrow & 100 & 200 & 300 & 400 & 500 \end{pmatrix} \begin{pmatrix} 6 \\ 60 \\ 600 \end{pmatrix} = 0$$

$$c^T = \begin{pmatrix} \left(C_A\right) \left(C_B\right) \left(C_C\right) \left(C_D\right) \left(C_E\right) \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \hline 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Primal

- 1 ligne : coefficients d'une contrainte
- 1 colonne : coefficients d'une variable

- 1 ligne : coefficients d'une variable
- 1 colonne : coefficients d'une contrainte

$$b^T = 6 60 600$$

$$\begin{array}{cccc}
u_A & u_B & u_C \\
\downarrow & \downarrow & \downarrow \\
\hline
6 & 60 & 600
\end{array}$$

$$A^T = \begin{pmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \\ 4 & 40 & 400 \end{pmatrix}$$

$$\begin{array}{c} (C_A) \to \\ (C_B) \to \\ = c \ (C_C) \to \\ (C_D) \to \\ \end{array} \begin{array}{c} 1 \quad 10 \quad 100 \\ 2 \quad 20 \quad 200 \\ 3 \quad 30 \quad 300 \\ 4 \quad 40 \quad 400 \\ \end{array}$$

Quiz!

Question 15

$$(P) \left\{ \begin{array}{ll} \min & x_1 + 2x_2 \\ \text{s.c.} & 3x_1 + 2x_2 \geq 1 \\ & x_1 + 2x_2 \leq 3 \\ & x_1, x_2 \geq 0 \end{array} \right.$$

Quel problème ci-dessous correspond au dual de (P)?

$$(D_1) \left\{ \begin{array}{llll} \min & u_1 + 2u_2 \\ \text{s.c.} & 3u_1 + u_2 \geq 1 \\ & u_1 + 2u_2 \geq 3 \\ & u_1 \geq 0 \\ & u_2 \leq 0 \end{array} \right. \quad (D_2) \left\{ \begin{array}{lll} \min & u_1 + 3u_2 \\ \text{s.c.} & 3u_1 + 2u_2 \geq 1 \\ & u_1 + 2u_2 \geq 2 \\ & u_1 \geq 0 \\ & u_2 \leq 0 \end{array} \right. \quad (D_3) \left\{ \begin{array}{lll} \min & u_1 + 3u_2 \\ \text{s.c.} & 3u_1 + u_2 \geq 1 \\ & u_1 \geq 0 \\ & u_2 \leq 0 \end{array} \right. \\ \left(D_4\right) \left\{ \begin{array}{lll} \min & u_1 + 3u_2 \\ \text{s.c.} & 3u_1 + u_2 \geq 1 \\ & 2u_1 + 2u_2 \geq 1 \\ & 2u_1 + 2u_2 \geq 2 \end{array} \right. \quad (D_5) \left\{ \begin{array}{ll} \min & u_1 + 2u_2 \\ \text{s.c.} & 3u_1 + u_2 \geq 1 \\ & 2u_1 + 2u_2 \geq 3 \\ & u_1 \geq 0 \\ & u_2 \leq 0 \end{array} \right. \quad (D_6) \left\{ \begin{array}{ll} \min & u_1 + 3u_2 \\ \text{s.c.} & 3u_1 + 2u_2 \geq 1 \\ & u_1 + 2u_2 \geq 2 \\ & u_1 \geq 0 \\ & u_2 \leq 0 \end{array} \right.$$

Passage du primal au dual

Règles de passage du primal au dual

Prim	al	ļ	Dual
Objectif	max	min	Objectif
	<u> </u>	≥ 0	
Contraint	e ≥	≤ 0	Variable
	=	$\in \mathbb{R}$	
	≥ 0	\geq	
Variable	≤ 0	< C	Contrainte
	\mathbb{R}	=	

Passage du primal au dual

Règles de passage du primal au dual

Prima	I	Dual		
Objectif	max	min	Objectif	
	\leq	≥ 0		
Contrainte	≥	≤ 0	Variable	
	=	$\in \mathbb{R}$		
	≥ 0	\geq		
Variable	≤ 0	≤ (Contrainte	
	${\mathbb R}$	=		

Exemple (cas où le primal maximise l'objectif)

Primal	Dual
$x_1 + 2x_2 \leq 0 \ (C_1)$	$u_1 \geq 0$
$x_1 + 2x_2 \ge 0 \ (C_2)$	$u_2 \leq 0$
$x_1 + 2x_2 = 0 (C_3)$	$u_3 \in \mathbb{R}$
$x_4 \geq 0$	$ \geq c_4$
$x_5 \leq 0$	≤ <i>c</i> ₅
$x_6 \in \mathbb{R}$	= c_6

Passage du primal au dual

Règles de passage du primal au dual

Dual			Primal
Objectif m	ax	min	Objectif
	\leq	≥ 0	
Contrainte	\geq	≤ 0	Variable
	=	$\in \mathbb{R}$	
≥	0	\geq	
Variable <	0	\leq	Contrainte
	\mathbb{R}	=	

Exemple (cas où le primal maximise l'objectif)

Primal	Dual
$x_1 + 2x_2 \le 0 \ (C_1)$	$u_1 \geq 0$
$x_1 + 2x_2 \ge 0 \ (C_2)$	$u_2 \leq 0$
$x_1 + 2x_2 = 0 (C_3)$	$u_3 \in \mathbb{R}$
$x_4 \geq 0$	$ \geq c_4$
$x_5 \leq 0$	≤ c 5
$x_6 \in \mathbb{R}$	= c_6

Quiz!

Question 16

On considère un problème de maximisation contenant la contrainte $x_1 + 3x_3 \le 2$.

Le domaine de définition de la variable duale associée à cette contrainte est :

- A : ≥ 0
- B : ≤ 0
- C : non contraint

Question 17

On considère un problème de minimisation contenant la contrainte $2x_1 + 7x_3 \ge 4$.

Le domaine de définition de la variable duale associée à cette contrainte est :

- A : ≥ 0
- B : ≤ 0
- C : non contraint

Dualité faible

Théorème - Dualité faible

Pour toute solution réalisable

- x du problème primal; et
- u du problème dual,

on a

$$\sum_{i=1}^{m} b_i u_i \leq \sum_{j=1}^{n} c_j x_j$$
Valeur de l'objectif dual pour y primal pour x

Preuve

.....

.....

Dualité

Exemple de primal

min
$$z = 6x_1 +9x_2$$

s.c. $20x_1 +5x_2 \ge 25$
 $30x_1 +20x_2 \ge 60$
 $5x_1 +10x_2 \ge 15$
 $x_1, x_2 > 0$

Exemple de dual

Illustration du théorème de la dualité faible

- Une solution du primal $x_1 = 1$, $x_2 = \frac{3}{2}$, $z = \frac{39}{2}$
- Une solution du dual $u_A = \frac{1}{5}$, $u_B = \frac{1}{30}$, $u_C = \frac{1}{5}$, v = 10

On a bien $z \ge v$

Solutions optimales

- Une solution du primal $x_1 = \frac{3}{2}$, $x_2 = \frac{3}{4}$, $z = \frac{63}{4}$
- Une solution du dual $u_A = 0$, $u_B = \frac{3}{40}$, $u_C = \frac{3}{4}$, $v = \frac{63}{4}$

 $z = v \Rightarrow$ les deux solutions sont optimales!

Dualité forte

Théorème - Dualité forte

Si le primal a une solution optimale x^* alors le dual a une solution optimale u^* telle que

$$v^* = \sum_{i=1}^m b_i u_i^* = \sum_{j=1}^n c_j x_j^* = z^*$$

Pas de "saut de dualité"

Remarque

Si l'un des 2 problèmes a un optimum non fini, alors l'autre problème n'a pas de solution réalisable

Utilité de la dualité

Utilité de la dualité faible 1/2

Une solution u du problème dual fournit une borne sur la solution optimale du primal

Permet d'évaluer la qualité d'une solution du primal

Utilité de la dualité

Utilité de la dualité faible 1/2

Une solution u du problème dual fournit une borne sur la solution optimale du primal

Permet d'évaluer la qualité d'une solution du primal

Utilité de la dualité

Utilité de la dualité faible 1/2

Une solution u du problème dual fournit une borne sur la solution optimale du primal

Permet d'évaluer la qualité d'une solution du primal

Utilité de la dualité faible 1/2

Une solution u du problème dual fournit une borne sur la solution optimale du primal

Permet d'évaluer la qualité d'une solution du primal

Utilité de la dualité faible 2/2

Le dual peut être beaucoup plus simple à résoudre que le primal

Quiz!

Question 18

On considère un problème de maximisation P.

On sait qu'il existe une solution réalisable de ce problème de valeur 10.

On sait également que le problème dual associé D a une solution réalisable de valeur 20.

Que peut-on en déduire sur l'optimum de P et D (notés v(P) et v(D))?

Question 19

On considère un problème de minimisation P.

On sait qu'il existe une solution réalisable de ce problème de valeur 15.

Que peut-on en déduire sur l'optimum de P et D (notés v(P) et v(D))?

Utilité de la dualité forte

Si on a une paire (x^*, u^*) de solutions du primal et du dual, on peut facilement vérifier :

- la réalisabilité de x^* pour le primal;
- la réalisabilité de u* pour le dual;
- l'égalité des deux objectifs.

⇒ Test d'optimalité

Relations Primal / Dual

Résum	Résumé des cas possibles					
				Dual		
			borné	irréalisable	non-borné	
		borné	possible	X	Х	
	Primal	irréalisable	Х	possible	possible	
		non-borné	Х	possible	Х	

Dualité

Théorème des écarts complémentaires

Problème primal

$$\min c^T x$$

s.c.
$$Ax \ge b$$

$$x \geq 0$$

Problème dual

$$\max u^T b$$

s.c.
$$uA < c$$

$$u \geq 0$$

Théorème des écarts complémentaires

Soient

- x une solution réalisable de (P)
- u une solution réalisable de (D)

x et u sont optimales si et seulement si

$$u^{T}(Ax - b) = 0$$
 et $(c - A^{T}u)^{T}x = 0$

Corollaire

A l'optimum, toute contrainte C vérifie :

- soit C est saturée $A_i x = b_i$
- soit la variable duale associée est nulle $u_i = 0$

Car
$$Ax - b > 0$$
 et $u > 0$

ésolution graphique Théorèmes for

Résumé des notions abordées dans ce chapitre

PL

• Outil de modélisation et de résolution de nombreux problèmes réels

Simplexe

- Très utilisé pour la résolution de problèmes
- Améliore successivement la solution en passant d'une base réalisable à une autre jusqu'à trouver une solution optimale
- Rapide et pratique mais non prouvé polynomial!
- Il existe des alternatives de complexité polynomiale Exemple : méthodes de point intérieur

Dualité

- Un PL peut être vu comme une paire (Primal, Dual)
- Ils sont liés par les théorèmes de dualité faible, forte et les écarts complémentaires

Réponse aux questions

Second of Second Sec	$\begin{array}{l} C_2 \to \frac{2}{5} * C_1 + 1 * C_2 \\ Obj \to Obj + \frac{3}{5} * C_1 + 0 * C_2 \\ Od14 : x_2 \text{ entre et } x_3 \text{ sort} \\ Od15 : D3 \\ Od15 : \ge 0 \\ Od17 : \ge 0 \\ Od18 : v(P) \in [10, 20], \\ v(D) \in [10, 20] \\ Od19 : v(P) \le 15, v(D) \le 15 \end{array}$
Q1 : C Q2 : ligne 1 : 7,1 ligne 2 : 4,2 Q2 : Vrai Q3 : Vrai Q4 : Non car $B^{-1}b$ n'est pas ≥ 0 Q5 : Oui car c'est la solution associée à la base x_3 , x_4 , x_5 qui est résciée à la base x_3 , x_4 , x_5 qui est résciée à	$\begin{array}{l} \mathbb{Q}_1 : \mathbb{Z}_1 \\ \mathbb{Q}_1 : \mathbb{Z}_2 \\ \mathbb{Q}_1 : \mathbb{Z}_3 : \mathbb{Z}_4 \\ \mathbb{Q}_1 : \mathbb{Z}_3 : \mathbb{Z}_4 \\ \mathbb{Q}_1 : \mathbb{Z}_3 : \mathbb{Z}_4 \\ \mathbb{Q}_1 : \mathbb{Q}_1 \\ \mathbb{Q}_1 \\ \mathbb{Q}_1 \\ \mathbb{Q}_1 \\ \mathbb{Q}_1 \\ \mathbb{Q}_1 \\ \mathbb{Q}_$

Théorème 1

L'ensemble des points extrêmes d'un polytope ou d'un polyèdre convexe correspond à l'ensemble des solutions de base réalisables

Preuve 1/2 - Point extrême ⇒ base réalisable

Soit x un point extrême du domaine réalisable.

Soit B la sous-matrice de A correspondant aux colonnes d'indices $j \in \{1, ..., m\}$ tels que $x_j > 0$.

Supposons que *B* n'est pas inversible. Ainsi $\exists w_B \in \mathbb{R}^{n,*}$, $Bw_B = 0$.

Posons $w_N = 0 \in \mathbb{R}^{m-n}$. On a donc $0 = Bw_B = Bw_B + Nw_N = Aw$.

Vecteurs w_B et w_N dans l'ordre des colonnes de A

Soit $\theta \in \mathbb{R}^*$ tel que $x_B \pm \theta w_B \geq 0$.

 $x \pm \theta w$ est réalisable car

- $x \pm \theta w \ge 0$; et
- $A(x \pm \theta w) = Ax \pm \theta Aw = Ax = b$.

x n'est donc pas un point extrême car il est égal à $\frac{x+\theta w}{2} + \frac{x-\theta w}{2}$.

Il est donc au milieu du segment d'extrémités $x + \theta w$ et $x - \theta w$.

B est donc nécessairement inversible. Si B a moins de m colonnes, on en rajoute afin d'obtenir une base. Cette base est réalisable car x est réalisable.

Théorème 1

L'ensemble des points extrêmes d'un polytope ou d'un polyèdre convexe correspond à l'ensemble des solutions de base réalisables.

Preuve 2/2 - Base réalisable ⇒ Points extrêmes

Soit x la solution associée à une base réalisable B.

Supposons que x ne soit pas un point extrême. Il existe donc $y \in \mathbb{R}^n$ et $z \in \mathbb{R}^n$ des solutions réalisables non égales à x telles qu' $\exists t \in]0, 1[, x = (1-t)y + tz]$.

- $x_N = 0 = (1 t)y_N + tz_N \text{ donc } y_N = z_N = 0$;
- $B(y_B z_B) = B(y_B z_B) + N(y_N z_N) = A(y z) = Ay Az = b b = 0$. Comme B est inversible, on obtient y = z.

x est donc un point extrême.