ResNeXt

Aggregated Residual Transformations for Deep Neural Networks

허진규, 전태호

Abstract

Cardinality 기법을 통해서 Resnet의 성능을 높이고자 했다.

ILSVRC2016 에서 2등을 했다.

Cardinality

total channel = separated channel * cardinality

Introduction

- 깊어지면 param의 수가 늘어나서 어려움
- Inception에서
 split-transform-merge strategy를
 이용해서 적은 연산량과 높은
 정확도를 이끔

1x1 conv로 transform,
 concat으로 merge하며 적용시킴

<ResNeXt의 블럭 구조>

Related Work

1. Multi-branch convolutional networks (inception model)

2. Grouped convolutions (2 gpu)

3. Compressing convolutional networks

4. Ensembling (실패(?))

Method

• cov를 통과할때마다 output 반으로 감소

• ResNet보다 채널 수는 더 많지만 연산 수는 더 적은 것을 볼 수 있다.

• ResNeXt는 각 블록이 3개의 conv를 사용해야 성능 향상에 도움이 된다.

stage	output	ResNet-50		ResNeXt-50 (32×4d)	
conv1	112×112	7×7, 64, stride 2 3×3 max pool, stride 2		7×7, 64, stride 2	
conv2	56×56			3×3 max pool, stride 2	
		1×1, 64 3×3, 64 1×1, 256	×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3
conv3	28×28	1×1, 128 3×3, 128 1×1, 512	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4
conv4	14×14	1×1, 256 3×3, 256 1×1, 1024	×6	1×1, 512 3×3, 512, C=32 1×1, 1024	×6
conv5	7×7	1×1,512 3×3,512 1×1,2048	×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048]×3
	1×1	global average pool 1000-d fc, softmax		global average pool 1000-d fc, softmax	
# params.		25.5×10^6		25.0 ×10 ⁶	
FLOPs		4.1 ×10 ⁹		4.2×10^9	

Cardinality vs Width

 Width보다 Cardinality를 증가시키는 것이 더 효율적이다.

효율적이라는 말은 동일한 파라미터
 수 대비 더 좋은 성능을 의미한다.

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	2 × 40d	23.0
ResNeXt-50	4 × 24d	22.6
ResNeXt-50	$8 \times 14d$	22.3
ResNeXt-50	32 × 4d	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	2 × 40d	21.7
ResNeXt-101	4 × 24d	21.4
ResNeXt-101	8 × 14d	21.3
ResNeXt-101	$32 \times 4d$	21.2

Cardinality vs Deep vs Width

ResNeXt-101 >
 ResNet-101 wider >
 ResNet-200

• 즉

cardinality > width > deep

	setting	top-1 err (%)	top-5 err (%)
1× complexity refer	ences:		
ResNet-101	1 × 64d	22.0	6.0
ResNeXt-101	$32 \times 4d$	21.2	5.6
2× complexity mode	els follow:		
ResNet-200 [15]	1 × 64d	21.7	5.8
ResNet-101, wider	1 × 100 d	21.3	5.7
ResNeXt-101	2 × 64d	20.7	5.5
ResNeXt-101	$64 \times 4d$	20.4	5.3

ResNeXt Architecture

stage	output	ResNet-50		ResNeXt-50 (32×4d)	
conv1	112×112	7×7, 64, stride 2		7×7, 64, stride 2	
conv2	56×56	3×3 max pool, stride 2		3×3 max pool, stride 2	
		1×1, 64 3×3, 64 1×1, 256	×3	1×1, 128 3×3, 128, C=32 1×1, 256	×3
conv3	28×28	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix}$	×4	1×1, 256 3×3, 256, C=32 1×1, 512	×4
conv4	14×14	1×1, 256 3×3, 256 1×1, 1024	×6	1×1, 512 3×3, 512, C=32 1×1, 1024	×6
conv5	7×7	1×1,512 3×3,512 1×1,2048	×3	1×1, 1024 3×3, 1024, C=32 1×1, 2048	×3
	1×1	global average pool 1000-d fc, softmax		global average pool 1000-d fc, softmax	
# params.		25.5×10^6		25.0×10^6	
FLOPs		4.1 ×10 ⁹		4.2×10^9	

Thanks for listening