數位系統實驗(一) 期末專題之 數位電子骰子

財金系三年 C班 學號 1082414 張恆達

一、 題目說明(Subject explanation)

透過 NE555 製造的高速震盪,作為 CD4017BE 之 CP 腳位的輸入計數,將 CD4017BE 之 Q7 接回 CR 實現骰子點數在 1~6 點跳動,高速的震盪使骰出的 結果成為隨機事件,即人眼無法捕捉點數跳動的過程來控制結果。再將計數器之結果透過 8 對 3 編碼器轉成二進制,並輸入 SN74LS47N 使其驅動共 陽極七段顯示器來將骰子的結果以阿拉伯數字呈現。

二、動機(cause)

隨著上學期結束,我們即將迎來農曆新年,每逢除夕夜晚大家都會回家團圓,這時各種遊戲是必不可或缺,像是麻將、大富翁、十八骰仔……。而這些遊戲都跟一個重要的道具相關,也就是「骰子」,透過骰子的隨機性讓整個遊戲產生更多不可預期的變化,以達到娛樂的效果。那我能不能透過電路板做出一個電子的骰子呢?

三、 使用元件及說明(Used IC explanation)

(一) 零件總表:

名稱	數量
NE555P	1
CD4017BE	1
SN74LS32N	2
HD74LS02P	1
SN74LS47N	1
共陽極七段顯示器	1
電阻 1kΩ	3
電阻 330Ω	5
電容 1μF	1
電容 0.022μF	2
3 號電池	4
漆包線	很多

(一) IC 說明:

(1) NE555P:

- 功能說明:555是一個用途很廣且相當普遍的計時IC,只需少數的電阻和電容,便可產生數位電路所需的各種不同頻率之脈波訊號。
- 腳位圖:

NE 555

• 腳位功能簡介:

Pin	Name	Purpose
1	GND	接地,電源負極, 0V
2	TRIG	觸發 (Trigger),當 Pin 2 之電壓低於 1/3 Vcc 時,會令 Pin 3 輸出高電位及 Pin 7 對地開路。
3	OUT	輸出腳,由 Pin 2、4、6 控制其為高電位或低電位。
4	RESET	Pin 4 之電壓小於 0.4V 時,Output 之輸出為低電位、Pin7對地短路。所以不使用 Pin4 時,應接於 1V 以上之電壓。
5	CTRL	Pin 5 直接與比較器的參考電壓相通,充許由外界電路改變 Pin 2、Pin 6 之動作電壓。平時多接一個 0.01 μF 以上之電容到 Ground,以避免雜訊干擾。
6	THR	Pin 6 之電壓高於 2/3Vcc 時,會使 Output 低電位、Pin 7對地短路。
7	DIS	與 Output 同步動作。當 Output 輸出高電位時,Pin 7 對地開路; Output 輸出低電位時,Pin 7 對地短路。
8	Vcc	電壓輸入,+3V至+15V。

(2) CD4017BE:

- 功能說明: CD4017是一種十進位制的循環計數器。具有10個輸出端, CP、CR、INH輸入端。
- 腳位圖:

● 腳位功能簡介:

Q0 到 Q9 為輸出端,分別代表十進位的 0 到 9,Co 代表進位,每往 CP 輸入一次訊號,數字便往上加 一,直到 9 時下次循環為 0。透過 CR 可以將計算歸 零。由於此 IC 為 CMOS 元件,故輸入腳位不用時必 須要接地。

(3) SN74LS32N:

• 功能說明: OR 閘

腳位圖:

真值表:

/\ / · ·		
A	В	output
0	0	0
0	1	1
1	0	1
1	1	1

(4) SN74LS47N:

• 功能說明: SN74LS47N 是驅動共陽極的七段顯示器的專用驅動 IC,7447利用一串4bits二進位碼(ABCD)與 a~g 作對應,使用者只需要送出二進位碼給 IC 便會自動解碼並推動七段顯示器對應的LED 燈,即能達成顯示數字的效果。LT 低電位時全亮。BI/RBO 低電位時全不亮。RBI 低電位且 LT 電位高時,輸入 0000 不顯示,BI/RBO 自動設為低電位

• 腳位圖:

• 對應表:

	5	SN74 LS47	7 Function	n Table					
Decimal	BCD Code Input	Output							
	DCBA	a	b	С	d	e	f	g	
0	0000	ON	ON	ON	ON	ON	ON	OFF	
1	0001	OFF	ON	ON	OFF	OFF	OFF	OFF	
2	0010	ON	ON	OFF	ON	ON	OFF	ON	
3	0011	ON	ON	ON	ON	OFF	OFF	ON	
4	0100	OFF	ON	ON	OFF	OFF	ON	ON	
5	0101	ON	OFF	ON	ON	OFF	ON	ON	
6	0110	OFF	OFF	ON	ON	ON	ON	ON	
7	0111	ON	ON	ON	OFF	OFF	OFF	OFF	
8	1000	ON	ON	ON	ON	ON	ON	ON	
9	1001	ON	ON	ON	OFF	OFF	ON	ON	
10	1010	OFF	OFF	OFF	ON	ON	OFF	ON	
11	1011	OFF	OFF	ON	ON	OFF	OFF	ON	
12	1100	OFF	ON	OFF	OFF	OFF	ON	ON	
13	1101	ON	OFF	OFF	ON	OFF	ON	ON	
14	1110	OFF	OFF	OFF	ON	ON	ON	ON	
15	1111	OFF	OFF	OFF	OFF	OFF	OFF	OFF	

ON: LED 燈亮 OFF: LED 燈滅

(5) 共陽極七段顯示器:

● 功能說明: 七段顯示器每一節段代表一個發光二極體(LED),而每一個LED之陽極接在一起成為共同腳,而各陰極即分別為 a~g,,共同腳接正電源,將要顯示之節段接腳輸入低電位,相對之節段LED即可發光。十進位之對應可參照 SN74LS47N 的表。

● 腳位圖:

四、 電路圖 (detailed circuit diagram)

(一)設計思路:

線上電路模擬 v1: https://tinyurl.com/y3vv8hqz

直覺來想一個骰子應該具備足夠的隨機性,並在最後產生點數的顯示, 古我粉可以把骰骰子簡單拆解成「擲出骰子」跟「顯示骰子點數」這兩 步驟,並簡單分成四個區域來分別實行以上功能。

A. NE555 高速震盪區:

由於骰子應該還要方便易帶,我們不可能提著一整個訊號產生器來產生訊號,故我採用 NE555 來做一個簡易的訊號產生器。當壓下開關時,透過 NE555、兩個 $1k\Omega$ 的電阻、一個 1μ F 的電容,經過計算,可產生頻率為 480 Hz 的震盪,當然我們也可以透過調整電阻跟電容的數值增加或降低震盪頻率。由於手邊剛好有 1k Ω 、 1μ F 這兩個,組合出來的頻率也夠高,便可保證骰子的公平性。之後將這些訊號傳入計數器中做計數。

B. 循環計數區:

這邊負責接收前面 A 區所產生的訊號,我們可透過這個 6 循環的計數器做計數的動作,當計到 6 時會回到 1 繼續計數(mod 6),

分別產生了相對應的骰子點數。但市面上好像找不到一個 **6 循環的計數器 IC**,故我們在電路實作上可能要做上一些調整。

C. 八對三編碼區 (6對3簡化版):

由於從**循換計數區**產生的是分別代表六個不同的 output,但我最後想要把骰子點數做成數位數字的形式,故我們應該要將其轉成2 進制的形式方便下一步轉換,所以這邊就可以用上這學期教的**入對三編碼器**將其進行轉換。

Q 0	Q 1	Q 2	Q 3	Q 4	Q 5	A 0	A 1	A 2
1	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	1	0
0	0	1	0	0	0	1	1	0
0	0	0	1	0	0	0	0	1
0	0	0	0	1	0	1	0	1
0	0	0	0	0	1	0	1	1

D. 數位數字呈現區

最後我們將三對八解碼器得出來的二進位數字做數位數字的轉換,我們可以透過一堆複雜的 AND 閘相連來完成 1~9 數字信號轉換,由於我們的最大值只到 6 故將原本用來輸入第四個 bit 的線直接接地保持電路正常。但那一坨實在太複雜了,需要找一個方法來降低電路時做的困難。

A 0	A 1	A 2	a	b	С	d	е	f	g
1	0	0	1	1	1	1	1	1	0
0	1	0	0	1	1	0	0	0	0
1	1	0	1	1	0	1	1	0	1
0	0	1	0	1	1	0	0	1	1
1	0	1	1	0	1	1	0	1	1
0	1	1	1	0	1	1	1	1	1

(二) 設計改良:

1. 用 CD4017BE 做 6 循環的計數器:

這裡我找到一個 IC 能符合我需要的功能,也就是 CD4017BE,它本質上是一個從 0 數到 9 的計數器,我們可以搭配他的 CR 也就是清除,把 Q7 接到 CR,即可使他成為一個 6 循環的計數器,且他的輸出方式跟預想中的線上模擬一樣,分別代表六個不同的output,故後面的編碼器不用做更改,但這顆 IC 有一個點需要注意,就是他的輸出腳位沒有按照順序排列,故接的時候須特別

小心有沒有差錯洞,小規模試驗如下圖,簡單證明上述方法的可 行性,按鈕的電容是因為按鈕太敏感所以加上去的,但實際做骰子的時候,可以讓輸入敏感一點,也可以選擇不用接。

2. SN74LS47N + 共陽極七段顯示器:

經過研究,這邊我們可以用 SN74LS47N 搭配共陽極七段顯示器來替換最後面 D 區複雜的電路,7414 是驅動共陽極七段顯示器專用 IC,雖然內部實作的電路不同,但這可使得這類 IC 可以完美取代掉電路板上 D 區的那一坨東西,使得電路簡化很多。我們將 C 區的二進制輸入 7447 的 A、B、C、D 四個腳位,並將,7447 的 LB 跟 RBI 接正。下面是用指撥開關做的小規模試驗照片,數字都能正常顯示,這類 IC 真的幫忙電路板省下了不少空間。

五、 成品解說

(1) 成品圖:

經過上述一連串的電路化簡,整個電路板上的 IC 跟線路乾淨了不少,最終成品如下圖所示:

接著我們將板子對照前面的設計圖畫出分區來做功能的說明

(2) 成品分區說明:

- A區:按下按鈕後電路導通,透過555產生480Hz的 訊號傳到B區,圖中LED是用來確認是用來確認訊號 是否有傳過去,但由於閃爍太快,單看一個燈時會有 視覺暫留,看起來不太明顯。
- B區: 圖中我們將 A 區訊號源傳入的地方我有放一顆按鈕,主要是拿來測試計數器是否運作正常,按一下 CP 會輸一個訊號進去+1,由於前面連閃速度太快不好觀察順序有沒有接對所以多一個檢查區。將計數器的 Q6 接到 CR 使他會從 Q0 到 Q5 循環計數,接著透過六條電線將 B 區的計數成果傳過去 C 區。
- C區:在這邊我們要將B區送過來的訊號做編碼的動作,我把八對三編碼器的1~6 對應到收到的Q0~Q5,剩下的輸入接地,這樣就可以編碼出QO1~11Q,我們可以透過接出來的三個LED燈(被框到D區)了解是否編碼成功。圖中我又多用了一顆HD74LSO2P,單純只是因為我只有兩顆SN74LS32N,少了一個QR閘,但我突然想到實驗一時有教到如何使用NOR做出QR,這個知識剛好派上用場。
- D區: 最後我們將二進制的數字傳入 SN74LS47N,多 出來的一個 bit 也直接接地當作 0,這樣他就可以正 確推動我們的共陽極七段顯示器。其實推動七段顯示 器是一個蠻複雜的工程,但幸好這些複雜的電路都被 封裝在 SN74LS47N 裡了,沒有這顆 IC 大概一張板子 是接不完這個作業了。這樣按下 A 區的按鈕就開示進 行骰骰子,放開按紐時骰出來的點數我們就可以快速 且清楚從七段顯示器上看到。

成果展示影片

六、 心得

首先一開始想先感謝老師對我的不離不棄,這學期因為出太多 狀況了,加上可能是還沒上過數位邏輯的正課的關係,整個電路板 接起來有點力不從心,需要花好多時間去您的辦公室問才有辦法抓 出板子上的Bug,真的很感謝老師讓我這樣問問題。

這學期的實驗課正式進入數位邏輯的領域,可能是本來對硬體的敏感度就不高,這學期的實驗真的做的很心累,有很多東西都要接很多次,不斷的 Debug 才能正常運作。當電路接不出來時真的會有點懷疑為甚麼要雙主修而不是輔系,心裡這麼想但感覺我越挫越勇。

雖然最後這個作業也是花了整整三天的跨年連假,從研究、設計、採買、試做、IC 燒壞(他壞掉我真的氣炸,IC 一定要多幾個備用)、再採買……一連串時間才整出這顆小骰子。雖然辛苦但當自己研究跟設計好的電路如預想中運作時,真的很感動,至少我知道這三天的努力沒有白費。回頭來看,其實這一學期的實驗有很多地

方都可以應用到這張設計圖上,也在我卡關時給了我不少設計上的 靈感。前面走過的路永遠不會白費,只是我們並不知道那些時候會 派上用場。

還有兩點很重要,接之前輸入輸出的腳位要先設定好,然後接 電路的前一天真的要睡飽再來接,沒做好這兩點的下場就是怎麼接 都鬼打牆,永遠接不出來。

最後再次感謝老師這學期的指導跟鼓勵,雖然下學期的實驗課 不是您了,但希望偶爾還是能去辦公室跟您聊聊天。