

Everyone Can Be a Quantum Open Source Developer!

Dr. Sarah Kaiser | @crazy4pi314

Technical staff and community lead at Unitary Fund

readme.md

Quantum software developer + OSS advocate

```
H(register);
CNOT(register, target);

// Encode the message into the entangled pair,
// and measure the qubits to extract the classical data
// we need to correctly decode the message into the target qubit:
CNOT(msg, register);
H(msg);
let data1 = M(msg);
let data2 = M(register);

// decode the message by applying the corrections on
// the target qubit accordingly:
if (data1 == One) { Z(target); }
if (data2 == One) { X(target); }
```

I wanted to learn how to be a better programmer to help teach others

Global open source meetup groups were amazing, I wanted to help build one for quantum computing.

demos of quantum programming at events and on Twitch. Also wrote a book on quantum programming

That one time we sat here and talked about WINS: I got my first public PR approved on #Qsharp from @MSFTQuantum today ***

Thanks again to @azureadvocates and especially @allinison for the best tech conference ever!!

...and now I work here

Hnitary Fund

because evolution is unitary

Creating a quantum technology ecosystem that benefits the most people.

https://unitary.fund

So.... what is quantum computing?

A question I ask myself frequently 😌

Graphics cards are hardware accelerators.

GPUs are good at speeding up *some* highly parallelizable tasks:

- Rendering graphics
- Training + inferencing machine learning models
- Editing video and audio files
- Making your computer case hotter 💫

A quantum computer is a hardware accelerator.

Quantum computers are good at speeding up ??? tasks.

We know we can:

- Factor large integers
- Search unstructured data
- Simulate quantum systems
- ...

SIDEBAR: Ok, but how is a quantum device different?

Normal (classical) bits

Quantum bits (qubits)

cgranade/quantum-falsehoods.md

We know how to use hardware accelerators. We program them.

OpenCL: a framework for writing programs that execute across heterogeneous platforms.

CUDA:

Industry/Hardware specific solutions for parallel computing.

A quantum programming language for quantum computers??

Spoiler: quantum programs are classical programs that address quantum hardware

Great, so what can we **do** with a quantum computer?

- Chemistry / material science
- · 🔍 Cryptography
- Machine learning
- · ... Help us find more!

Programming concrete applications helps us understand what to do next.

- How many qubits will we need?
- What are the right quantum algorithms?
- Who is going to develop it?

Who can program quantum devices?

Full stack developers

Front-end developers

Machine learning scientists

Teachers

Data scientists

Dev ops

UI/UX designers

Physicists

Python developers

Chemists

Academics

Project managers

Mobile developer

Full stack developers

Front-end developers

Machine learning scientists

Teachers

Data scientists

Dev ops

UI/UX designers

Physicists

Python developers

Chemists

Academics

Project managers

Mobile developer

Full stack developers

Front-end developers

Machine learning scientists

Teachers

Data scientists

Dev ops

EVERYONE UI/UX designers

Physicists

Python developers

Chemists

Academics

Project managers

Mobile developer

Let's program quantum computers.

With open source tools of course!

The quantum ecosystem is open

^{*} This timeline is representative, not precise

The quantum ecosystem is open: qosf.org

How can Python help?

There are tons of Python packages that can help you learn quantum computing, as well as write code for quantum computers.

The quantum stack

Quantum Applications

oss

OSS

Libraries / Techniques

Quantum Languages

Intrinsic Operations

Quantum Hardware

Simulators

@crazy4pi314

Hi Python, meet Q#! a domain-specific language for quantum programming

- Q# is included in the Quantum Development Kit (QDK), a development platform for expressing and executing quantum programs.
- Allows you to write code the same way you think about it (high level of abstraction)

Tools for quantum developers ₩

The Quantum Development Kit offers lots of great tools for working with Q#

- Editor extensions and syntax highlighting and intellisense
- Great libraries to help bootstrap your applications
- Lots of built-in simulators and tools to build your own!
- Azure Quantum service to run your programs on hardware

To the code!

https://bit.ly/osd-qsharp

Quantum computing is not magic, but we are

TODO

Connect with me:

sckaiser.dev | @crazy4pi314

Learn QC w/ Python and **Q# Book!**

bit.ly/qsharp-book

cgranade/quantum-falsehoods.md

https://dev.to/cgranade

Q#/QDK:

docs.microsoft.com/quantum

