Micro Controllers Summary

Lucien Zürcher

June 13, 2019

Contents

Basi	Basic MC				
1.1	Von Neumann Architecture	2			
1.2	Harvard-Architecture	2			
1.3	Numerical Systems	2			
1.4	Hexadecimal	2			
1.5	hex / binary	2			
1.6	Signed numbers	2			
1.7	carry / overflow	2			
1.8	Bit groups	2			
1.9	Quantity of address lines	3			
1.10	Microprocessor vs Mircocontroller	3			
1.11	CPU components	3			
1.12	Instruction Cycle Steps	3			
1.13	Types of MCU Registers	3			

1 Basic MC

1.1 Von Neumann Architecture

Components:

- CPU, Central Processing Unit
- Memory, Program and Data
- In-/Output-Unit, Peripherals
- Bus-System: Communication

One shared bus and memory for program and data.

1.2 Harvard-Architecture

basically same as Von Neumann, with the difference, that there are **two separate bus systems** for program and data

1.3 Numerical Systems

Numerical value Z_B of a n-digit, integer number with base B ($B \ge 2$):

$$Z_B = \sum_{i=0}^{n-1} x_i \cdot B^i$$

Decimal	Dual / Binary	Hexadecimal
197	0b1100'0101	0xC5
B = 10	B=2	B = 16
$= 1 \cdot 10^2 +$	$=1\cdot 2^7 + 1\cdot 2^6 +$	$= C \cdot 16^1 + 5 \cdot 16^0$
$9 \cdot 10^{1} +$	$0 \cdot 2^5 + 0 \cdot 2^4 +$	$= 12 \cdot 16^1 + 5 \cdot 16^0$
$7 \cdot 10^0$	$0 \cdot 2^3 + 1 \cdot 2^2 +$	
	$0 \cdot 2^1 + 1 \cdot 2^0$	

The amount of presentable numbers is B^n The highest presentable number is B^n-1 . Calculated from $x_i=B-1$ for $n-1\geq i\geq 0$

1.4 Hexadecimal

0 - 9	A	B	C	D	E	F
0 - 9	10	11	12	13	14	15
xxxx	1010	1011	1100	1101	1111	

1.5 hex / binary

Н	D	В	Dec	Bin	
0	0	0000	16	2^{5}	(max 31)
1	1	0001	32	2^{6}	(max 63)
2	2	0010	64	2^{7}	(max 127)
3	3	0100	128	2^{8}	(max 255)
4	4	0101	256	2^{9}	(max 511)
5	5	0110	512	2^{10}	(max 1'023)
6	6	0111	1'024	2^{11}	(max 2'047)
7	7	1000	2'048	2^{12}	(max 4'095)
9	9	1001	4'096	2^{13}	(max 8'191)
A	10	1010	8'192	2^{14}	(max 16'383)
B	11	1011	16'384	2^{15}	(max 31'767)
C	12	1110	32'768	2^{16}	(max 65'535)
D	13	1011			
E	14	1011			
F	15	1011			

1.6 Signed numbers

two's compliment is beeing used

$$Z_{signed} = -x_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} x_i \cdot 2^i$$

most significant bit is negative Example: -1 as 16-bit Hex = 0xFFFFConversion:

- 1. Invert binary: $-6 \rightarrow 0110 \rightarrow 1001$
- 2. *increment by 1* : $1001 + 0001 \rightarrow 1010$

1.7 carry / overflow

Carry is set on crossover between lowest and highest number

Overflow happens on crossover between highest absolut values

1.8 Bit groups

Nibble/Tetrade has the size of 4 bits

Byte has the size of 8 bits

Word is MC9S08JM60 specific, it has 16 bits

1.9 Quantity of address lines

$$1 \text{ K} = 2^{10} = 1024 \text{ Bit} \triangleq 10 \text{ Adresslines}$$

 $64 \text{ K} = 2^{16} = 65536 \text{ Bit} \triangleq 16 \text{ Adresslines}$

example, $32K \times 8$ memory storage space:

bits storage: $32 \cdot 2^10 \cdot 8 = 2^5 \cdot 2^10 \cdot 2^3 = 2^18 \rightarrow 18$ Bits number address lines: $32 \cdot 2^10 = 2^15 = 32$ 768 highest address: $2^{18} - 1 = 0x7FFFF = 262'143$

1.10 Microprocessor vs Mircocontroller

Mircocontroller contains CPU (Processor), Peripherals (I/O) and Memory (RAM / ROM). Basically a small computer.

Mircoprocessor has only CPU and som integrated Circuits.

1.11 CPU components

ALU (Aritmetic Unit), AKKU (Accumulator), PC (Programming Counter), Busses, Instruction-Register, Address-Register, Operand-Register, Control Unit, ...

1.12 Instruction Cycle Steps

- 1. instruction fetch
- 2. instruction decode
- 3. (operand fetch)
- 4. instruction execute
- 5. next address and inc PC

1.13 Types of MCU Registers

AKKU, PC, Instruction-Register (decoder), Operand-Register

```
#include <stdio.h>
#define N 10
/* Block
 * comment */
int main()
{
    int i;
    // Line comment.
    puts("Hello world!");

    for (i = 0; i < N; i++)
    {
        puts("LaTeX is also great for programmers!");
    }
    return 0;
}</pre>
```