

Encrypted by Default The Evolution of Data Control in Decentralized Networks

What is Data Control?

What is data control?

- Create
- Read
- Update
- Delete

What is data control?

- Create
- Read
- Update
- Delete
- \bullet = CRUD!

Different for different data

- Financial
- Health/Healthcare Data
- Broadcast Communications
- Personal Communications
- Metadata

- Create
- Read
- Update
- Delete

- Create
 - Authorship validation
- Read
- Update
- Delete

- Create
 - Authorship validation
- Read
- Update
 - Logic
- Delete

- Create
 - Authorship validation
- Read
- Update
 - Logic
- Delete
 - o State: Logic
 - History: Tombstones

- Create
 - Authorship validation
- Read
 - Public
- Update
 - Logic
- Delete
 - State: Logic
 - History: Tombstones

History

How did the internet develop data control?

Physical Access Controls

User Access Controls Encrypted Communication

Encrypted Data

The Great Encrypting of the Internet

How did the internet develop data control?

Physical Access Controls

User Access Controls

Encrypted Communication

Encrypted Data

What about Blockchain?

Etherscan Shows All

TRANSACTIONS (24H) PENDING TRANSACTIONS (LAST 1H) TOTAL TRANSACTION FEE (24H) AVG. TRANSACTION FEE (24H) 1,230,437 (3,71%) 85,289 (Average) 179.21 ETH (2.54%) 0.48 USD (12.00%) More than 2.880.595.108 transactions found Page 1 of 10000 First Last (Showing the last 500k records) Transaction Hash Method ? From To Txn Fee Block Amount 0xf5b3866e9fa... [12 secs ago quasarbuilder (Stader Labs: Permi... 0.015460747 ETH Transfer 22869510 0.00005025 0x30ca83b8c1... 0x4a004205 12 secs ago 0x00000000...514D94f4a (\rightarrow) Oxa7AAbd7F...87aFcc8B8 0 FTH 0.00035866 22869510 \rightarrow 0xD0d1b57A...7c159F576 0x7908d07D...5F4E28965 0xda842a1c2c... 12 secs ago 0.002715735 ETH Transfer 22869510 0.00003559 \rightarrow 0x78a5aefb0e6... r 0x59891E6b...1Ae6628c1 0x9998baCF...c92643077 Transfer 22869510 12 secs ago 0.000160351 ETH 0.00003559 0xb7c4304d1e... Circle: USDC Token Transfer 12 secs ago 0x721eb111...a80CF34a9 0 FTH 0.00006838 Pepe: PEPE Token [0x36f6bf015b3... 12 secs ago FixedFloat 1 (\rightarrow) 0 ETH Transfer 22869510 0.00010249 0x5a3a9fb820d... (12 secs ago 0x33ec4E86...9693dd884 \rightarrow Tether: USDT Stabl... 0 ETH 22869510 0.00008287 Approve 0xb372222b98... 12 secs ago 0x74a0d46B...1c7DaBf3C TOX85eC1b91...901040b59

0 ETH

0.00017381

Add Sequenc...

The Present

Where are we today, the good

- Most Internet sites use SSL
- Device encryption common
- p2p encryption common and promoted
- Sensitive data often encrypted at rest
- Encryption is easier than ever
- Newer tools (TEE, zk-proofs)

Where are we today, the bad

- Blockchain... Still mostly public
- web2 and web3 applications leaks personal data
- Users are not well educated

Why social graph privacy?

Your social connections are yours

Permission to read is permission to exploit

Social connections expose a lot of information

Users need to be able to trust decentralized social

Some of the problems we faced

 How do we approach the shared ownership nature of connections?

Unidirectional aka "Follows"

Unidirectional aka "Follows"

PRId: Pseudonymous Relationship Identifier

PRId: Pseudonymous Relationship Identifier

PRId: Pseudonymous Relationship Identifier

```
Root_Shared_Secret_AB ← ECDH( Bob_public Alice_secret )
Alice->Bob Context Secret<sub>A→B Ctx</sub> ← Blake2b256(
     key = Root_Shared_Secret_AR
     salt = Id_{Bob}
     personal = "PRIdCtx0")
Alice->Bob PRId ← XSalsa20(
     message = Id<sub>Bob</sub>
     key = Secret_{A \rightarrow B} ctx
     nonce = Padded_24_Bytes_LE( Id<sub>Alice</sub> ) )
```


Some of the problems we faced

- How do we approach the shared ownership nature of connections?
- How can we store this much data?

Data Storage

- Minimize the data
- Compress the data before encryption
- Chunk (paginate) the data
- Place the data in child trees
- Require the storage in state
- Remove (eventually) historical states

Some of the problems we faced

- How do we approach the shared ownership nature of connections?
- How can we store this much data?
- Where do we store and how do we rotate the private key?

Key Management & Communication

- Wallet encryption key storage for now
- SIWF standard extending EIP-4361 and CAIP-122
 - Defines communication of Verified Credentials and signed payloads for permissions
- Rotation results in "lazy" access updating

Some of the problems we faced

- How do we approach the shared ownership nature of connections?
- How can we store this much data?
- Where do we store and how do we rotate the private key?
- Is e2e encryption possible for this data?

End to End Encryption?

- Trust in the client
- Services provided
- Limits with shared data

End to End Encryption?

- Trust in the client
- Services provided
- Limits with shared data
- Result: Application level trust

We can offer *choice* in who to trust, limit the amount of trust required required, and control some of the consequences of broken trust.

The Future

Threshold Cryptography

- What: Nodes that together can provide cryptographic actions
- Imagine: Users only needed to worry about proof of permission instead of key management
- Status: Viable Now
- Potential Limit: Collusion and Sybil Attacks

Homomorphic Encryption

- What: Calculation and transformations on encrypted data
- Imagine: Applications can be information blind while still providing services
- Status: Slow & expensive
- Potential Limit: May never be fast enough for some operations and could leak significant metadata

Passkey Encryption

- What: PRF extension to WebAuthn
- Imagine: Devices provide on-device encryption primitives to applications
- Status: Limited support
- Potential Limits:
 - Trust in the passkey systems and the application
 - Sandboxed to the application

Quantum Everything

- What: Quantum-safe cryptography
- Imagine: Quantum computing still allows for cryptography
- Status: Working, but more expensive
- Potential Limit: Theoretical safety, take care with storage

No one shall be subjected to arbitrary interference with his privacy, family, home or correspondence...

Universal Declaration of Human Rights: Article 12

Thank you

www.frequency.xyz

www.dsnp.org

