Lecture 8: On-Policy Learning and Off-Policy Learning

Bolei Zhou

The Chinese University of Hong Kong

February 19, 2020

Announcement

- Course Piazza: http://piazza.com/cuhk.edu.hk/spring2020/ierg6130
- Ask questions and give comments there with your name or anonymously

Today's Content

- On-policy learning and off-policy learning
- Q-learning

Review: TD Prediction

- We collect experiences by interacting with the environment
 - Which policy to use for the interaction? For prediction, we just use the given policy π
- A trajectory consists of an alternating sequence of states and state—action pairs:

$$\cdots \underbrace{S_{t}}_{A_{t}} \underbrace{R_{t+1}}_{A_{t+1}} \underbrace{S_{t+1}}_{A_{t+1}} \underbrace{R_{t+2}}_{S_{t+2}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{S_{t+3}}_{A_{t+3}} \underbrace{S_{t+3}}_{A_{t+3}} \cdot \cdots$$

3 TD(0) method for estimating the value function $V_{\pi}(S)$

$$A_t \leftarrow$$
 action given by π for S
Take action A_t , observe R_{t+1} and S_{t+1} $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

• How about estimating action value function Q(S)?

Sarsa: On-Policy TD Control

- **1** As it is a control task, we don't have a given policy π and we have to learn a policy through trial and error!
- **②** Which policy to use for the interaction? ϵ -greedy policy!
 - All actions are tried with non-zero probability
 - 2 With probability 1ϵ choose the greedy action
 - **3** With probability ϵ choose an action at random

$$\pi(a|s) = egin{cases} \epsilon/|\mathcal{A}| + 1 - \epsilon & ext{if } a^* = ext{arg max}_{a \in \mathcal{A}} \ Q(s,a) \ \epsilon/|\mathcal{A}| & ext{otherwise} \end{cases}$$

A collected trajectory consists of an alternating sequence of states and state-action pairs:

$$\cdots - \underbrace{S_{t} - A_{t}^{R_{t+1}}(S_{t+1}) - R_{t+2}(S_{t+2})}_{A_{t+1}} + \underbrace{R_{t+3}}_{C_{t+2}}(S_{t+3}) - \underbrace{A_{t+3}^{R_{t+3}}(S_{t+3})}_{A_{t+3}} + \cdots$$

Q ϵ -greedy policy for one step, then bootstrap the action value function:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Sarsa algorithm

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Initialize Q(s,a), for all s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0 Repeat (for each episode): Initialize S Choose A from S using policy derived from Q (e.g., \epsilon-greedy) Repeat (for each step of episode): Take action A, observe R, S' Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy) Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)] S \leftarrow S'; A \leftarrow A'; until S is terminal
```

- In ϵ -greedy policy, ϵ could be gradually decreased from 1 to 0 such that the policy follows from total random to greedy(Q), or ϵ is set as a fixed value as 0.1

n-step Sarsa

① Consider the following *n*-step Q-returns for $n = 1, 2, \infty$

$$\begin{split} n &= 1(\textit{Sarsa})q_t^{(1)} = & R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) \\ n &= 2 \qquad q_t^{(2)} = & R_{t+1} + \gamma R_{t+2} + \gamma^2 Q(S_{t+2}, A_{t+2}) \\ & \vdots \\ n &= \infty (\textit{MC}) \quad q_t^{\infty} = & R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T \end{split}$$

Thus the n-step Q-return is defined as

$$q_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n}, A_{t+n})$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left(q_t^{(n)} - Q(S_t, A_t)\right)$$

On-policy Learning vs. Off-policy Learning

- On-policy learning: Learn about policy π from the experience collected from π
 - **1** Behave non-optimally in order to explore all actions, then reduce the exploration. e.g., ϵ -greedy
- Another important approach is off-policy learning which essentially uses two different polices:
 - the one which is being learned about and becomes the optimal policy
 - the other one which is more exploratory and is used to generate trajectories
- Off-policy learning: Learn about policy π from the experience sampled from another policy μ
 - **1** π : target policy
 - \mathbf{Q} μ : behavior policy

Off-policy Learning

1 Following behaviour policy $\mu(a|s)$ to collect data

$$\mathcal{S}_1, \mathcal{A}_1, \mathcal{R}_2, ..., \mathcal{S}_{\mathcal{T}} \sim \mu$$
 Update π using $\mathcal{S}_1, \mathcal{A}_1, \mathcal{R}_2, ..., \mathcal{S}_{\mathcal{T}}$

- 2 It leads to many benefits:
 - Learn about optimal policy while following exploratory policy
 - 2 Learn from observing humans or other agents
 - **3** Re-use experience generated from old policies $\pi_1, \pi_2, ..., \pi_{t-1}$

Off-Policy Control with Q-Learning

1 The target learning policy π is greedy on Q(s, a)

$$\pi(s) = \underset{a'}{\operatorname{arg max}} Q(s, a')$$

- ② The behavior policy could be totally random, but we let it improve, thus the behavior policy μ is ϵ -greedy on Q(s, a)
- Thus Q-learning target:

$$R_{t+1} + \gamma Q(S_{t+1}, A') = R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$$

$$= R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a')$$

Thus the Q-Learning update becomes

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Q-learning algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Initialize Q(s,a), for all s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state,\cdot) = 0 Repeat (for each episode): Initialize S Repeat (for each step of episode): Choose A from S using policy derived from Q (e.g., \epsilon-greedy) Take action A, observe R, S' Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma \max_a Q(S',a) - Q(S,A)\big] S \leftarrow S' until S is terminal
```

Comparison of Sarsa and Q-Learning

Sarsa: On-Policy TD control

Choose action A_t from S_t using policy derived from Q with ϵ -greedy Take action A_t , observe R_{t+1} and S_{t+1} Choose action A_{t+1} from S_{t+1} using policy derived from Q with ϵ -greedy $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$

Q-Learning: Off-Policy TD control

Choose action A_t from S_t using policy derived from Q with ϵ -greedy Take action A_t , observe R_{t+1} and S_{t+1} Then 'imagine' A_{t+1} as $\arg\max Q(S_{t+1},a')$ in the update target $Q(S_t,A_t) \leftarrow Q(S_t,A_t) + \alpha \left\lceil R_{t+1} + \gamma \max Q(S_{t+1},a) - Q(S_t,A_t) \right\rceil$

Comparison of Sarsa and Q-Learning

Backup diagram for Sarsa and Q-learning

- In Sarsa, A and A' are sampled from the same policy so it is on-policy
- In Q Learning, A and A' are from different policies, with A being more exploratory and A' determined directly by the max operator

Example on Cliff Walk (Example 6.6 from Textbook)

https://github.com/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/blob/master/modelfree/cliffwalescom/cuhkrlcourse/RLexample/cliffwalescom/c

Result of Q-Learning

On-line performance of Q-learning is worse than that of Sarsa

Importance Sampling

Estimate the expectation of a function

$$E_{x \sim P}[f(x)] = \int f(x)P(x)dx \approx \frac{1}{n} \sum_{i} f(x_i)$$

② But sometimes it is difficult to sample x from P(x), then we can sample x from another distribution Q(x), then correct the weight

$$\mathbb{E}_{x \sim P}[f(x)] = \int P(x)f(x)dx$$

$$= \int Q(x)\frac{P(x)}{Q(x)}f(x)dx$$

$$= \mathbb{E}_{x \sim Q}\left[\frac{P(x)}{Q(x)}f(x)\right] \approx \frac{1}{n}\sum_{i}\frac{P(x_{i})}{Q(x_{i})}f(x_{i})$$

Importance Sampling for Off-Policy RL

 Estimate the expectation of return using trajectories sampled from another policy (behavior policy)

$$\mathbb{E}_{T \sim \pi}[g(T)] = \int P(T)g(T)dT$$

$$= \int Q(T)\frac{P(T)}{Q(T)}g(T)dT$$

$$= \mathbb{E}_{T \sim \mu}\left[\frac{P(T)}{Q(T)}g(T)\right]$$

$$\approx \frac{1}{n}\sum_{i}\frac{P(T_{i})}{Q(T_{i})}g(T_{i})$$

Importance Sampling for Off-Policy Monte Carlo

• Generate episode from behavior policy μ and compute the generated return G_t

$$S_1, A_1, R_2, ..., S_T \sim \mu$$

- ② Weight return G_t according to similarity between policies
 - Multiply importance sampling corrections along whole episode

$$G_t^{\pi/\mu} = \frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\mu(A_{t+1}|S_{t+1})} ... \frac{\pi(A_T|S_T)}{\mu(A_T|S_T)} G_t$$

Update value towards correct return

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\pi/\mu} - V(S_t))$$

Importance Sampling for Off-Policy TD

- **1** Use TD targets generated from μ to evaluate π
- 2 Weight TD target $R + \lambda V(S')$ by importance sampling
- Only need a single importance sampling correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} (R_{t+1} + \lambda V(S_{t+1})) - V(S_t) \right)$$

Policies only need to be similar over a single step

Why don't use importance sampling on Q-Learning?

Off-policy TD

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\mu(A_t|S_t)} \left(R_{t+1} + \lambda V(S_{t+1}) \right) - V(S_t) \right) \quad (1)$$

- Short answer: Because Q-learning does not make expected value estimates over the policy distribution. For the full answer click here
- Remember bellman optimality backup from value iteration

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a'} Q(s',a')$$
 (2)

 Q-learning can be considered as sample-based version of value iteration, except instead of using the expected value over the transition dynamics, we use the sample collected from the environment

$$Q(s,a) = r + \gamma \max_{a'} Q(s',a')$$
 (3)

Q-learning is over the transition distribution, not over policy distribution thus no need to correct different policy distributions

Comparison of DP and TD in Update

Expected update (DP)	Sample update for model-free RL
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}[R + \gamma V(S') s]$	$V(S) \leftarrow^{\alpha} R + \gamma V(S')$
Policy Iteration	Sarsa
$Q(S,A) \leftarrow \mathbb{E}[R + \gamma Q(S',A') s,a]$	$Q(S,A) \leftarrow^{\alpha} R + \gamma Q(S',A')$
Value Iteration	Q-Learning
$Q(S,A) \leftarrow \mathbb{E}[R + \gamma \max_{a' \in \mathcal{A}} Q(S',A') s,a]$	$Q(S,A) \leftarrow^{\alpha} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$
where $x \leftarrow^{\alpha} y$ is defined as $x \leftarrow x + \alpha(y - x)$	

Sarsa and Q-Learning Example

```
https:
```

//github.com/cuhkrlcourse/RLexample/tree/master/modelfree

Next Week

- Value function approximation
- Deep Q Learning