

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT FOR LOW-POWER, NON-LICENSED TRANSMITTER

Test Report No. : W164R-D022

AGR No. : A161A-258

Applicant : **BLUEBIRD INC.**

Address : (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea

Manufacturer : BLUEBIRD INC.

Address : (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea

Type of Equipment: Premium Tablet

FCC ID. : SS4ST100

Model Name : ST100

Serial number : N/A

Total page of Report : 122 pages (including this page)

Date of Incoming : February 01, 2016

Date of issue : April 06, 2016

SUMMARY

The equipment complies with the regulation; FCC PART 15 SUBPART E Section 15.407

This test report only contains the result of a single test of the sample supplied for the examination.

It is not a generally valid assessment of the features of the respective products of the mass-production.

Reviewed by:

Jae-Ho, Lee / Chief Engineer ONETECH Corp.

Approved by:

Sung-Ik, Han/ Managing Director

Report No. : W164R-D022

ONETECH Corp.

PAGE

CONTENTS

1. VERIFICATION OF COMPLIANCE	7
2. TEST SUMMARY	8
2.1 TEST ITEMS AND RESULTS	8
2.2 Additions, deviations, exclusions from standards	8
2.3 RELATED SUBMITTAL(S) / GRANT(S)	8
2.4 PURPOSE OF THE TEST	8
2.5 TEST METHODOLOGY	8
2.6 TEST FACILITY	8
3. GENERAL INFORMATION	9
3.1 PRODUCT DESCRIPTION	9
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	10
4. EUT MODIFICATIONS	10
5. SYSTEM TEST CONFIGURATION	11
5.1 JUSTIFICATION	11
5.3 MODE OF OPERATION DURING THE TEST	12
5.4 CONFIGURATION OF TEST SYSTEM	16
5.5 ANTENNA REQUIREMENT	16
6. PRELIMINARY TEST	17
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	17
6.2 GENERAL RADIATED EMISSIONS TESTS	17
7. MIMIMUM 26 DB BANDWIDTH	18
7.1 OPERATING ENVIRONMENT	18
7.2 TEST SET-UP	18
7.3 TEST EQUIPMENT USED	18
7.4.1 Test data for 802.11a RLAN Mode	19
7.4.2 Test data for 802.11n_HT20 RLAN Mode	28
8. MAXIMUM PEAK OUTPUT POWER	37
8.1 OPERATING ENVIRONMENT	37
8.2 TEST SET-UP	37
8.3 TEST EQUIPMENT USED.	37
8.4 TEST DATA FOR 802.11A RLAN MODE	38
8.5 TEST DATA FOR 802.11N_HT20 RLAN MODE	47
9. PEAK POWER SPECTRUL DENSITY	56
It should not be reproduced except in full, without the written approval of ONETECH.	EMC-003 (Rev.1)

EMC-003 (Rev.1)

9.1 OPERATING ENVIRONMENT	56
9.2 TEST SET-UP	56
9.3 TEST EQUIPMENT USED	56
9.4 TEST DATA FOR 802.11A RLAN MODE	57
9.5 TEST DATA FOR 802.11N_HT20 RLAN MODE	66
10. FREQUENCY STABILITY WITH TEMPERATURE VARIATION	75
10.1 OPERATING ENVIRONMENT	75
10.2 TEST SET-UP	75
10.3 TEST EQUIPMENT USED	75
10.4 TEST DATA FOR 5 150 MHz ~ 5 250 MHz BAND	76
10.5 TEST DATA FOR 5 250 MHz ~ 5 350 MHz BAND	77
10.6 TEST DATA FOR 5 470 MHz ~ 5 725 MHz BAND	78
10.7 TEST DATA FOR 5 725 MHz ~ 5 850 MHz BAND	79
11. FREQUENCY STABILITY WITH VOLTAGE VARIATION	80
11.1 OPERATING ENVIRONMENT	80
11.2 Test set-up	80
11.3 TEST EQUIPMENT USED.	80
11.4 TEST DATA FOR 5 150 MHz ~ 5 250 MHz BAND	81
11.5 TEST DATA FOR 5 250 MHz ~ 5 350 MHz BAND	81
11.6 TEST DATA FOR 5 470 MHz ~ 5 725 MHz BAND	82
11.7 TEST DATA FOR 5 725 MHz ~ 5 850 MHz BAND	82
12. RADIATED SPURIOUS EMISSIONS	83
12.1 OPERATING ENVIRONMENT	83
12.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	83
12.3 TEST EQUIPMENT USED.	83
12.4 TEST DATA FOR 5 150 MHz ~ 5 250 MHz BAND	84
12.4.1 Test data for 30 MHz ~ 1 000 MHz	84
12.4.2 Test data for Below 30 MHz	85
12.4.3 Test data for above 1 GHz	86
12.5 TEST DATA FOR 5 250 MHz ~ 5 350 MHz BAND	87
12.5.1 Test data for 30 MHz ~ 1 000 MHz	87
12.5.2 Test data for Below 30 MHz	88
12.5.3 Test data for above 1 GHz	89
12.6 TEST DATA FOR 5 470 MHz ~ 5 725 MHz BAND	90
12.6.1 Test data for 30 MHz ~ 1 000 MHz	90
12.6.2 Test data for Below 30 MHz	91
12.6.3 Test data for above 1 GHz	92

It should not be reproduced except in full, without the written approval of ONETECH.

12.7 TEST DATA FOR 5 725 MHz ~ 5 850 MHz BAND	93
12.7.1 Test data for 30 MHz ~ 1 000 MHz	93
12.7.2 Test data for Below 30 MHz	94
12.7.3 Test data for above 1 GHz	95
13. RADIATED RESTRICTED BAND EDGE MEASUREMENTS	96
13.1 OPERATING ENVIRONMENT	96
13.2 TEST SET-UP FOR CONDUCTED MEASUREMENT	96
13.3 TEST EQUIPMENT USED	96
13.4 TEST DATA FOR 5 150 MHz ~ 5 250 MHz BAND	97
13.4.1 Test data for 802.11a RLAN Mode	97
13.4.2 Test data for 802.11n_HT20 RLAN Mode	98
13.5 TEST DATA FOR 5 250 MHz ~ 5 350 MHz BAND	99
13.5.1 Test data for 802.11a RLAN Mode	99
13.5.2 Test data for 802.11n_HT20 RLAN Mode	100
13.6 TEST DATA FOR 5 725 MHz ~ 5 850 MHz BAND	101
13.6.1 Test data for 802.11a RLAN Mode	101
15.6.2 Test data for 802.11n_HT20 RLAN Mode	102
14. CONDUCTED EMISSION TEST	103
14.1 OPERATING ENVIRONMENT	103
14.2 Test set-up	103
14.3 TEST EQUIPMENT USED	103
14.4 TEST DATA	104
14.4.1 Test data for 5 150 MHz ~ 5 250 MHz Band	104
14.4.2 Test data for 5 250 MHz ~ 5 350 MHz Band	106
14.4.3 Test data for 5 470 MHz ~ 5 725 MHz Band	108
14.4.4 Test data for 5 725 MHz ~ 5 850 MHz Band	110
15 DYNAMIC FREQUENCY SELECTION (DFS)	112
15.1 OPERATING ENVIRONMENT	112
15.2 Test set-ups	112
15.3 DFS TEST SIGNALS	113
15.4 TECHNICAL REQUIREMENT SPECIFICATION	114
15.5 TEST EQUIPMENT USED	114
15.6 TEST DATA FOR 5 250 MHz ~ 5 350 MHz BAND	115
15.6.1 Plot of Radar waveform type1	115
15.6.2 No traffic signal(master signal)	116
15.6.3 Client(EUT) Data Traiifc Signal	117
15.6.4 Channel move and Channel Closing transmission time	118
It should not be reproduced except in full, without the written approval of ONETECH.	EMC-003 (Rev.1)

15.7 TEST DATA FOR 5 470 MHz ~ 5 725 MHz BAND	119
15.7.1 Plot of Radar waveform type1	119
15.7.2 No traffic signal(master signal)	120
15.7.3 Client(EUT) Data Traiifc Signal	121
15.7.4 Channel move and Channel Closing transmission time	122

Report No. : W164R-D022

DUELECH

Report No. : W164R-D022

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
W164R-D022	April 06, 2016	Initial Issue	All

1. VERIFICATION OF COMPLIANCE

Applicant : BLUEBIRD INC.

Address : (Dogok-dong, SEI Tower13,14)39, Eonjuro30-gil, Gangnam-gu, Seoul, South Korea

Contact Person : Jae-ho, Lee / Assistant Manager

Telephone No. : +82-70-7730-8210

FCC ID : SS4ST100

Model Name : ST100

Serial Number : N/A

Date : April 06, 2016

EQUIPMENT CLASS	Unlicensed National Information infrastructure(UNII)	
E.U.T. DESCRIPTION	Premium Tablet	
THIS REPORT CONCERNS	Original Grant	
MEASUREMENT PROCEDURES	ANSI C63.10: 2013	
TYPE OF EQUIPMENT TESTED	Pre-Production	
KIND OF EQUIPMENT		
AUTHORIZATION REQUESTED	Certification	
EQUIPMENT WILL BE OPERATED	ECC DADE 15 GUDDADE E C	
UNDER FCC RULES PART(S)	FCC PART 15 SUBPART E Section 15.407	
Modifications on the Equipment to Achieve	None	
Compliance	None	
Final Test was Conducted On	3 m, Semi Anechoic Chamber	

^{-.} The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.407(a)	26 dB Bandwidth	PASS
15.407(a)	Maximum Conducted Output Power	Met the Limit / PASS
15.407(a)	Peak Power Spectral Density	Met the Limit / PASS
15.407(a)	Peak Excursion	Met the Limit / PASS
15.407(g)	Frequency Stability	Met the Limit / PASS
15.407(b)	Undesirable Emissions	Met the Limit / PASS
15.205, 15.407(b)	General Field Strength Limits (Restricted Bandsand Radiated Emission Limits)	Met the Limit / PASS
15.207	AC Conducted Emissions 150 kHz-30 MHz	Met the Limit / PASS
15.407(h)	Dynamic frequency Selection	Met the Limit / PASS

2.2 Additions, deviations, exclusions from standards

No additions, deviations or exclusions have been made from standard.

2.3 Related Submittal(s) / Grant(s)

Original submittal only

2.4 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in FCC PART 15 SUBPART E Section 15.407

2.5 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at a distance of 3 m from EUT to the antenna.

2.6 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 301-14, Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do, 464-862 Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-4617/ G-666/ T-1842

IC (Industry Canada) - Registration No. Site# 3736A-3

-. Site Accreditation:

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

3. GENERAL INFORMATION

3.1 Product Description

The BLUEBIRD INC., Model ST100 (referred to as the EUT in this report) is a Premium Tablet. Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Premium Tablet	
	5 150 MHz ~ 5 250 MHz Band	802.11a/n(HT20): 5 180 MHz ~ 5 240 MHz
FREQUENCY	5 250 MHz ~ 5 350 MHz Band	802.11a/n(HT20): 5 260 MHz ~ 5 320 MHz
RANGE	5 470 MHz ~ 5 725 MHz Band	802.11a/n(HT20): 5 500 MHz ~ 5 700 MHz
	5 725 MHz ~ 5 850 MHz Band	802.11a/n(HT20): 5 745 MHz ~ 5 825 MHz
	5 150 MHz ~	Wi-Fi 802.11a (11.88 dBm)
	5 250 MHz Band	Wi-Fi 802.11n_20 MHz (11.88 dBm)
	5 250 MHz ~	Wi-Fi 802.11a (11.50 dBm)
MAX. RF OUTPUT	5 350 MHz Band	Wi-Fi 802.11n_20 MHz (11.50 dBm)
POWER	5 470 MHz ~	Wi-Fi 802.11a (12.08 dBm)
	5 725 MHz Band	Wi-Fi 802.11n_20 MHz (12.14 dBm)
	5 725 MHz ~	Wi-Fi 802.11a (11.55 dBm)
	5 850 MHz Band	Wi-Fi 802.11n_20 MHz (11.60 dBm)
MODULATION TYPE	OFDM Modulation(BPSK/QPSK/16QAM/64QAM)	
	5 150 MHz ~ 5 250 MHz Band	0.65 dBi
	5 250 MHz ~ 5 350 MHz Band	0.66 dBi
Antenna Gain	5 470 MHz ~ 5 725 MHz Band	0.54 dBi
	5 725 MHz ~ 5 850 MHz Band	-0.63 dBi
List of each Osc. or crystal Freq.(Freq. >= 1 MHz)	26 MHz	

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

EMC-003 (Rev.1)

Report No. : W164R-D022

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Display Controller Board	Kingdisplay	KD101N37-40NA-A1-REVB	
Display Panel	N/A	N/A	
Main Board	N/A	N/A	
Battery	Guandong TeamGiant New Energy Tech.Limited Liability Co.,LTD	BAT-ST100	
SUB Board	N/A	TVE1015IST-SUB-V1.1	
Sensor	N/A	CMK-TVE1013-B-V5B1.0	
Antenna	N/A	MICRO RF Rev 3.0	
Camera module	N/A	CMK-TVE1010I-F-V2B2.0	
Touch sensor controller Board	N/A	101332C-Q-00	
Wireless Module	HUAWEI TECHNOLOGIES CO.,LTD.	MU739	QISMU739

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
N/A	N/A	N/A	N/A

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting mode is programmed.

5 150 MHz ~ 5 250 MHz Band

Modulation & Channel selected	DATA RATE	OUTPUT POWER
	6 Mbps	11.88
	9 Mbps	11.86
	12 Mbps	11.82
802.11a	18 Mbps	11.77
(High Channel)	24 Mbps	11.72
	36 Mbps	11.68
	48 Mbps	11.64
	54 Mbps	11.54
	6.5 Mbps	11.88
	13 Mbps	11.84
	19.5 Mbps	11.81
802.11n(HT20)	26 Mbps	11.76
(High Channel)	39 Mbps	11.69
	52 Mbps	11.64
	58.5 Mbps	11.64
	65 Mbps	11.56

The worse case data rate for each modulation is determined 6 Mbps for IEEE 802.11a and 6.5 Mbps for IEEE 802.11n(HT20).

⁻ To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

5 250 MHz ~ 5 350 MHz Band

Modulation & Channel selected	DATA RATE	OUTPUT POWER
	6 Mbps	11.50
	9 Mbps	11.41
	12 Mbps	11.41
802.11a	18 Mbps	11.40
(Middle Channel)	24 Mbps	11.33
	36 Mbps	11.28
	48 Mbps	11.20
	54 Mbps	11.14
	6.5 Mbps	11.50
	13 Mbps	11.43
	19.5 Mbps	11.39
802.11n(HT20)	26 Mbps	11.34
(Middle Channel)	39 Mbps	11.28
	52 Mbps	11.26
	58.5 Mbps	11.19
	65 Mbps	11.15

The worse case data rate for each modulation is determined 6 Mbps for IEEE 802.11a and 6.5 Mbps for IEEE 802.11n(HT20).

Report No. : W164R-D022

⁻ To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

5 470 MHz ~ 5 725 MHz Band

Modulation & Channel selected	DATA RATE	OUTPUT POWER	
	6 Mbps	12.08	
	9 Mbps	12.02	
	12 Mbps	12.00	
802.11a	18 Mbps	11.94	
(Low Channel)	24 Mbps	11.88	
	36 Mbps	11.84	
	48 Mbps	11.79	
	54 Mbps	11.76	
	6.5 Mbps	12.14	
	13 Mbps	12.06	
	19.5 Mbps	12.05	
802.11n(HT20)	26 Mbps	11.94	
(Low Channel)	39 Mbps	11.90	
	52 Mbps	11.87	
	58.5 Mbps	11.80	
	65 Mbps	11.74	

The worse case data rate for each modulation is determined 6 Mbps for IEEE 802.11a and 6.5 Mbps for IEEE 802.11n(HT20).

Report No. : W164R-D022

⁻ To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

5 725 MHz ~ 5 850 MHz Band

Modulation & Channel selected	DATA RATE	OUTPUT POWER	
	6 Mbps	11.55	
	9 Mbps	11.52	
	12 Mbps	11.49	
802.11a	18 Mbps	11.50	
(Low Channel)	24 Mbps	11.47	
	36 Mbps	11.44	
	48 Mbps	11.43	
	54 Mbps	11.42	
	6.5 Mbps	11.60	
	13 Mbps	11.57	
	19.5 Mbps	11.56	
802.11n(HT20)	26 Mbps	11.53	
(Low Channel)	39 Mbps	11.52	
	52 Mbps	11.50	
	58.5 Mbps	11.51	
	65 Mbps	11.48	

The worse case data rate for each modulation is determined 6 Mbps for IEEE 802.11a and 6.5 Mbps for IEEE 802.11n(HT20).

Report No. : W164R-D022

⁻ To get a maximum emission levels from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis.

Page 16 of 122 Report No. : W164R-D022

5.4 Configuration of Test System

Line Conducted Test: The EUT was tested in a Transmitting mode. The EUT was connected to USB and the

power of USB was connected to Adapter. All supporting equipments were connected to

another LISN. Preliminary Power line Conducted Emission test was performed by using

the procedure in ANSI C63.10: 2013 to determine the worse operating conditions.

Radiated Emission Test: Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:

2013 to determine the worse operating conditions. Final radiated emission tests were

conducted at 3 meter open area test site.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once

maximum reading was determined, the search antenna was raised and lowered in both

vertical and horizontal polarization.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is a PIFA Antenna on the main board in the EUT, so no consideration of replacement by the user.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	X

6.2 General Radiated Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)	
Transmitting Mode	X	

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

7. MIMIMUM 26 dB BANDWIDTH

7.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 47 % R.H.

7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz, and peak detection was used. The 26 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 26 dB.

7.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

7.4.1 Test data for 802.11a RLAN Mode

-. Test Date : March 10, 2016

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	26 dB Bandwidth (MHz)
	Low	5 180	18.38
5 150 ~ 5 250	Middle	5 200	18.38
	High	5 240	18.38
5 250 ~ 5 350	Low	5 260	18.38
	Middle	5 300	18.38
	High	5 320	18.38
	Low	5 500	18.38
5 470 ~ 5 725	Middle	5 600	18.38
	High	5 700	18.38
5 725 ~ 5 850	Low	5 745	18.38
	Middle	5 785	18.38
	High	5 825	18.38

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

7.4.2 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 10, 2016

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	26 dB Bandwidth (MHz)
	Low	5 180	18.74
5 150 ~ 5 250	Middle	5 200	18.74
	High	5 240	18.74
	Low	5 260	18.74
5 250 ~ 5 350	Middle	5 300	18.74
	High	5 320	18.74
	Low	5 500	18.74
5 470 ~ 5 725	Middle	5 600	18.74
	High	5 700	18.74
	Low	5 745	18.74
5 725 ~ 5 850	Middle	5 785	18.74
	High	5 825	18.74

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

8. MAXIMUM PEAK OUTPUT POWER

8.1 Operating environment

Temperature : 23 °C

Relative humidity : 47 % R.H.

8.2 Test set-up

The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99 % bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

8.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

8.4 Test data for 802.11a RLAN Mode

-. Test Date : March 10, 2016

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	26 dB Bandwidth (MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
	Low	5 180	18.38	11.88	23.98	12.10
5 150 ~ 5 250	Middle	5 200	18.38	11.67	23.98	12.31
	High	5 240	18.38	11.82	23.98	12.16
	Low	5 260	18.38	11.27	23.98	12.71
5 250 ~ 5 350	Middle	5 300	18.38	11.50	23.98	12.48
	High	5 320	18.38	11.27	23.98	12.71
	Low	5 500	18.38	12.08	23.98	11.90
5 470 ~ 5 725	Middle	5 600	18.38	11.27	23.98	12.71
	High	5 700	18.38	9.15	23.98	14.83
	Low	5 745	18.38	10.56	30.00	19.44
5 725 ~ 5 850	Middle	5 785	18.38	11.03	30.00	18.97
	High	5 825	18.38	11.55	30.00	18.45

Remark: See next page for measurement data.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

Page 47 of 122 Report No. : W164R-D022

8.5 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 10, 2016

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	26 dB Bandwidth (MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
	Low	5 180	18.74	11.88	23.98	12.10
5 150 ~ 5 250	Middle	5 200	18.74	11.64	23.98	12.34
	High	5 240	18.74	11.69	23.98	12.29
	Low	5 260	18.74	11.36	23.98	12.62
5 250 ~ 5 350	Middle	5 300	18.74	11.50	23.98	12.48
	High	5 320	18.74	11.30	23.98	12.68
	Low	5 500	18.74	12.14	23.98	11.84
5 470 ~ 5 725	Middle	5 600	18.74	11.21	23.98	12.77
	High	5 700	18.74	9.21	23.98	14.77
	Low	5 745	18.74	10.59	30.00	19.41
5 725 ~ 5 850	Middle	5 785	18.74	11.31	30.00	18.69
	High	5 825	18.74	11.60	30.00	18.40

Remark: See next page for measurement data.

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

9. PEAK POWER SPECTRUL DENSITY

9.1 Operating environment

Temperature : 23 °C

Relative humidity : 47 % R.H.

9.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz, the video bandwidth is set to 3 times the resolution bandwidth. The maximum level form the EUT in 1 MHz bandwidth was measured with above condition.

9.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

HEAD OFFICE : 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) EMC Testing Div. : 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

9.4 Test data for 802.11a RLAN Mode

-. Test Date : March 10, 2016

-. Operating condition : Highest Output Power Transmitting Mode

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
	Low	5 180	1.59	11.00	9.41
5 150 ~ 5 250	Middle	5 200	1.38	11.00	9.62
	High	5 240	1.34	11.00	9.66
	Low	5 260	0.93	11.00	10.07
5 250 ~ 5 350	Middle	5 300	1.00	11.00	10.00
	High	5 320	0.90	11.00	10.10
	Low	5 500	1.85	11.00	9.15
5 470 ~ 5 725	Middle	5 600	1.01	11.00	9.99
	High	5 700	-0.93	11.00	11.93
	Low	5 745	0.05	30.00	29.95
5 725 ~ 5 850	Middle	5 785	0.94	30.00	29.06
	High	5 825	1.24	30.00	28.76

Remark: See next page for measurement data.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

9.5 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 10, 2016

-. Operating condition : Highest Output Power Transmitting Mode

-. Test Result : Pass

FREQUENCY RANGE (MHz)	CHANNEL	FREQUENCY (MHz)	MEASURED VLAUE (dBm)	LIMIT (dBm)	MARGIN (dB)
	Low	5 180	1.42	11.00	9.58
5 150 ~ 5 250	Middle	5 200	1.13	11.00	9.87
	High	5 240	1.24	11.00	9.76
	Low	5 260	0.81	11.00	10.19
5 250 ~ 5 350	Middle	5 300	0.98	11.00	10.02
	High	5 320	1.00	11.00	10.00
	Low	5 500	1.70	11.00	9.30
5 470 ~ 5 725	Middle	5 600	0.79	11.00	10.21
	High	5 700	-1.16	11.00	12.16
	Low	5 745	0.14	30.00	29.86
5 725 ~ 5 850	Middle	5 785	0.60	30.00	29.40
	High	5 825	1.29	30.00	28.71

Remark: See next page for measurement data.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

10. FREQUENCY STABILITY WITH TEMPERATURE VARIATION

10.1 Operating environment

Temperature : 23 °C

Relative humidity : 47 % R.H.

10.2 Test set-up

Turn EUT off and set chamber temperature to -30 °C and then allow sufficient time (approximately 20 min to 30 min after chamber reach the assigned temperature) for EUT to stabilize. Turn on the EUT and measure the EUT operating frequency and then turn off the EUT after the measurement. The temperature in the chamber was raised 10 °C step from 0 °C to +65 °C. Repeat above method for frequency measurements every 10 °C step and then record all measured frequencies on each temperature step.

10.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)
■ -	SSE-43CI-A	Samkun Tech	Humidity Chamber	060712	May 15, 2015 (1Y)
■ -	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

10.4 Test Data for 5 150 MHz ~ 5 250 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0		5 180 025 648	25.648
10		24.098	
20		5 180 023 057	23.057
30	5 100 000 000	5 180 022 100	22.100
40	5 180 000 000	5 180 021 128	21.128
50		5 180 020 530	20.530
60		5 180 019 892	19.892
65		5 200 027 251	27.251
0		5 200 025 816	25.816
10		5 200 024 570	24.570
20		5 200 023 902	23.902
30	5 200 000 000	5 200 023 001	23.001
40	5 200 000 000	5 200 022 119	22.119
50		5 200 021 369	21.369
60		5 200 020 678	20.678
65		5 180 020 100 22.10 5 180 021 128 21.12 5 180 020 530 20.53 5 180 019 892 19.89 5 200 027 251 27.25 5 200 025 816 25.81 5 200 023 902 23.90 5 200 023 902 23.90 5 200 023 001 23.00 5 200 022 119 22.11 5 200 021 369 21.36 5 240 020 678 20.67 5 240 028 270 28.27 5 240 025 312 25.31 5 240 024 439 24.43 5 240 023 378 23.37 5 240 022 574 22.57 5 240 022 053 22.05 5 240 020 0861 20.86	28.270
0		5 240 026 700	26.700
10		5 240 025 312	25.312
20		5 240 024 439	24.439
30	5 240 000 000	5 240 023 378	23.378
40	5 240 000 000	5 240 024 439 5 240 023 378 5 240 022 574	22.574
50		5 240 022 053	22.053
60		5 240 020 861	20.861
65		5 180 025 648	25.648

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

10.5 Test Data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0	5 260 000 000 5 300 000 000	5 260 028 657	28.657
10		5 260 027 302	27.302
20		5 260 025 813	25.813
30	5 260 000 000	5 260 024 768	24.768
40	5 260 000 000	5 260 023 818	23.818
50		5 260 022 742	22.742
60		5 260 021 817	21.817
65		5 260 028 657 28.6 5 260 027 302 27.3 5 260 025 813 25.8 5 260 024 768 24.7 5 260 023 818 23.8 5 260 022 742 22.7 5 260 021 817 21.8 5 260 021 052 21.0 5 300 029 154 29.1 5 300 027 772 27.7 5 300 025 328 25.3 5 300 024 543 24.5 5 300 023 444 23.4 5 300 022 860 22.8 5 300 021 604 21.6 5 320 029 600 29.6 5 320 026 764 26.7 5 320 025 940 25.9 5 320 025 059 25.0 5 320 024 088 24.0 5 320 023 307 23.3	21.052
0		5 300 029 154	29.154
10		5 300 027 772	27.772
20		5 300 026 243	26.243
30	7 200 000 000	5 300 025 328	25.328
40	5 300 000 000	5 300 024 543	24.543
50		5 300 023 444	23.444
60		5 300 022 860	22.860
65		5 260 027 302 5 260 025 813 5 260 024 768 5 260 023 818 5 260 022 742 5 260 021 817 5 260 021 052 5 300 029 154 5 300 027 772 5 300 025 328 5 300 024 543 5 300 023 444 5 300 022 860 5 300 021 604 5 320 029 600 5 320 025 940 5 320 025 059 5 320 023 307	21.604
0		5 320 029 600	29.600
10		5 320 027 939	27.939
20		5 320 026 764	26.764
30		5 320 025 940	25.940
40	5 320 000 000	5 320 025 059	25.059
50		5 320 024 088	24.088
60		5 320 023 307	23.307
65		5 320 022 242	22.242

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

10.6 Test Data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
0		5 500 036 153	36.153
10	5 500 036 153 3 5 500 034 849 3 5 500 032 426 3 5 500 031 337 3 5 500 030 204 3 5 500 029 441 2 5 500 028 490 2 5 600 036 926 3 5 600 034 154 3 5 600 032 459 3 5 600 031 316 3 5 600 032 459 3 5 600 039 217 3 5 700 038 115 3 5 700 036 506 3 5 700 031 178 3 5 700 031 104 3	34.849	
20		5 500 033 250	33.250
30	5 500 000 000	5 500 032 426	32.426
40	5 500 000 000	5 500 031 337	31.337
50		5 500 030 204	30.204
60		5 500 029 441	29.441
65		5 500 028 490	28.490
0		5 600 036 926	36.926
10		5 600 035 451	35.451
20		5 600 034 154	34.154
30	~ <00 000 000	5 600 033 219	33.219
40	5 600 000 000	5 600 032 459	32.459
50		5 600 031 316	31.316
60		5 600 030 217	30.217
65		5 500 033 250 33.250 5 500 032 426 32.426 5 500 031 337 31.337 5 500 030 204 30.204 5 500 029 441 29.441 5 500 028 490 28.490 5 600 036 926 36.926 5 600 035 451 35.451 5 600 034 154 34.154 5 600 032 459 32.459 5 600 031 316 31.316 5 600 030 217 30.217 5 600 029 461 29.461 5 700 036 506 36.506 5 700 035 031 35.031 5 700 033 178 33.178 5 700 032 473 32.473 5 700 031 104 31.104	29.461
0		5 700 038 115	38.115
10		5 700 036 506	36.506
20		5 700 035 031	35.031
30	5 500 000 000	5 700 034 170	34.170
40	5 700 000 000	5 700 033 178	33.178
50		5 700 032 473	32.473
60		5 700 031 104	31.104
65		5 700 030 318	30.318

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 79 of 122 Report No. : W164R-D022

10.7 Test Data for 5 725 MHz ~ 5 850 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Temperature (°C)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)	
0		5 745 038 274	38.274	
10		5 745 036 853	36.853	
20		5 745 035 418	35.418	
30		5 745 034 190	34.190	
40	5 745 000 000	5 745 033 502	33.502	
50		5 745 032 360	32.360	
60		5 745 031 419	31.419	
65		5 745 030 459	30.459	
0		5 785 038 714	38.714	
10		5 785 037 185	37.185	
20		5 785 035 916	35.916	
30	5 505 000 000	5 785 035 093	35.093	
40	5 785 000 000	5 785 034 103	34.103	
50		5 785 033 307	33.307	
60		5 785 032 275	32.275	
65		5 745 038 274 38. 5 745 036 853 36. 5 745 035 418 35. 5 745 034 190 34. 5 745 033 502 33. 5 745 032 360 32. 5 745 031 419 31. 5 785 031 419 31. 5 785 037 185 37. 5 785 037 185 37. 5 785 035 916 35. 5 785 035 916 35. 5 785 034 103 34. 5 785 033 307 33. 5 785 031 715 31. 5 825 039 206 39. 5 825 036 365 36. 5 825 035 236 35. 5 825 034 278 34. 5 825 033 491 33. 5 825 032 274 32.	31.715	
0		5 825 039 206	39.206	
10		5 825 038 072	38.072	
20		5 825 036 365	36.365	
30	5 025 000 000	5 825 035 236	35.236	
40	5 825 000 000	5 825 034 278	34.278	
50		5 785 031 715 31. 5 825 039 206 39. 5 825 038 072 38. 5 825 036 365 36. 5 825 035 236 35. 5 825 034 278 34. 5 825 033 491 33. 5 825 032 274 32.		
60				
65		5 825 031 414	31.414	

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

11. FREQUENCY STABILITY WITH VOLTAGE VARIATION

11.1 Operating environment

Temperature : 23 °C Relative humidity : 47 % R.H.

11.2 Test set-up

An external DC power supply was connected to the input of the EUT. The voltage of EUT set to 115 % of the nominal value and then was reduced to 85 % of nominal voltage. The output frequency was recorded at each step.

11.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul 22, 2015 (1Y)
■ -	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

11.4 Test Data for 5 150 MHz ~ 5 250 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
4.37		5 180 024 280	24.280
3.80	5 180 000 000	5 180 024 236	24.236
3.23		5 180 024 214	24.214
4.37		5 200 024 730	24.730
3.80	5 200 000 000	5 200 024 692	24.692
3.23		5 200 024 651	24.651
4.37		5 240 025 541	25.541
3.80	5 240 000 000	5 240 025 495	25.495
3.23		5 240 025 460	25.460

11.5 Test Data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
4.37		5 260 025 987	25.987
3.80	5 260 000 000	5 260 025 954	25.954
3.23		5 260 025 920	25.92
4.37		5 300 026 474	26.474
3.80	5 300 000 000	5 300 026 429	26.429
3.23		5 300 026 383	26.383
4.37		5 320 026 944	26.944
3.80	5 320 000 000	5 320 026 896	26.896
3.23		5 320 026 865	26.865

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

11.6 Test Data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
4.37		5 500 033 426	33.426
3.80	5 500 000 000	5 500 033 391	33.391
3.23		5 500 033 349	33.349
4.37		5 600 034 352	34.352
3.80	5 600 000 000	5 600 034 312	34.312
3.23		5 600 034 286	34.286
4.37		5 700 035 176	35.176
3.80	5 700 000 000	5 700 035 152	35.152
3.23		5 700 035 128	35.128

11.7 Test Data for 5 725 MHz ~ 5 850 MHz Band

-. Test Date : March 10, 2016

-. Result : Pass

Voltage (Vdc)	Carrier Freq. (Hz)	Measured Freq. (Hz)	Freequency Error (kHz)
4.37		5 745 035 608	35.608
3.80	5 745 000 000	5 745 035 567	35.567
3.23		5 745 035 523	35.523
4.37		5 785 036 068	36.068
3.80	5 785 000 000	5 785 036 031	36.031
3.23		5 785 035 996	35.996
4.37		5 825 036 519	36.519
3.80	5 825 000 000	5 825 036 470	36.470
3.23		5 825 036 450	36.450

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

12. RADIATED SPURIOUS EMISSIONS

12.1 Operating environment

Temperature : $(23 \sim 24)$ °C

Relative humidity : $(43 \sim 44) \%$ R.H.

12.2 Test set-up for conducted measurement

The radiated emissions measurements were performed on the 3 m, open-field test site. The EUT was placed on a non-conductive turntable above the ground plane.

The frequency spectrum from 30 MHz to 40 GHz was scanned and maximum emission levels at each frequency recorded. The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

12.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)
■ -	ESCI	Rohde & Schwarz	Test Receiver	101012	Nov. 02, 2015 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 29, 2015 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 23, 2015 (1Y)
■ -	SCU40A	Rohde & Schwarz	Pre-Amplifier	100436	Jun. 04, 2015 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
-	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■-	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Apr. 30, 2015 (2Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

12.4 Test data for 5 150 MHz ~ 5 250 MHz Band

12.4.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : $(43 \sim 44)$ % R.H. Temperature: $(23 \sim 24)$ °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Premium Tablet Date: March 09, 2016

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBu√]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1	207.510	46.8	11.0	3.8	32.8	28.8	43.5	14.7	100	19
V	ertical									
2 3 4 5 6	46.490 66.860 125.060 369.500 827.331	100 to 10	13.9 10.9 9.7 15.2 21.2	1.9 2.3 3.3 5.1 8.0	32.9 33.1 33.2 32.6 33.4	31.4 26.0 30.8 26.7 32.5	40.0 40.0 43.5 46.0 46.0	8.6 14.0 12.7 19.3 13.5	100 100 100 100 100	270 0 0 102 75

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 85 of 122 Report No. : W164R-D022

12.4.2 Test data for Below 30 MHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_		0	Ant. Factor (dB/m)	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)

Any emissions were not observed from the EUT.

12.4.3 Test data for above 1 GHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(MHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	(dBµV/m)	(dB)
				Low Ch	annel				
	54.96	Peak	Н				67.36	73.98	6.62
10.260.00	37.32	Average	Н	20.60	16.20	10.50	49.72	53.98	4.26
10 360.00	54.53	Peak	V	38.60	16.30	42.50	66.93	73.98	7.05
	36.65	Average	V				49.05	53.98	4.93
	Middle Channel								
	54.11	Peak	Н				66.51	73.98	7.47
40.400.00	37.00	Average	Н	• • • •			49.40	53.98	4.58
10 400.00	54.24	Peak	V	38.60	16.30	42.50	66.64	73.98	7.34
	36.26	Average	V				48.66	53.98	5.32
				High Cl	nannel				
	55.08	Peak	Н				67.48	73.98	6.50
	36.87	Average	Н				49.27	53.98	4.71
10 480.00	54.74	Peak	V	38.60	16.30 42	42.50	67.14	73.98	6.84
	36.29	Average	V				48.69	53.98	5.29

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

12.5 Test data for 5 250 MHz ~ 5 350 MHz Band

12.5.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : $(43 \sim 44)$ % R.H. Temperature: $(23 \sim 24)$ °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Premium Tablet Date: March 09, 2016

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBu√]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
H	orizontal -									
1 2 3	205.570 303.540 827.331	A	10.9 13.7 21.2	3.8 4.6 8.0	32.8 32.7 33.4	29.2 26.8 31.9	43.5 46.0 46.0	14.3 19.2 14.1	100 100 100	19 359 359
V	ertical									
4 5 6	46.490 66.860 125.060	48.5 45.9 50.7	13.9 10.9 9.7	1.9 2.3 3.3	32.9 33.1 33.2	31.4 26.0 30.5	40.0 40.0 43.5	8.6 14.0 13.0	100 100 100	0

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 88 of 122 Report No. : W164R-D022

12.5.2 Test data for Below 30 MHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	_		0	Ant. Factor (dB/m)	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)

Any emissions were not observed from the EUT.

12.5.3 Test data for above 1 GHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(MHz)	$(dB\mu V)$	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	(dBµV/m)	(dB)
				Low Ch	annel				
	54.58	Peak	Н				67.38	73.98	6.60
	36.15	Average	Н				48.95	53.98	5.03
10 520.00	54.86	Peak	V	38.80	16.50	42.50	67.66	73.98	6.32
	36.59	Average	V				49.39	53.98	4.59
	Middle Channel								
	55.12	Peak	Н				67.92	73.98	6.06
	37.01	Average	Н				49.81	53.98	4.17
10 600.00	54.87	Peak	V	38.80	16.50	42.50	67.67	73.98	6.31
	36.64	Average	V				49.44	53.98	4.54
				High Ch	nannel				
	54.77	Peak	Н				67.57	73.98	6.41
	36.81	Average	Н				49.61	53.98	4.37
10 640.00	54.85	Peak	V	38.80	16.50 42	42.50	67.65	73.98	6.33
	36.47	Average	V				49.27	53.98	4.71

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

12.6 Test data for 5 470 MHz ~ 5 725 MHz Band

12.6.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : $(43 \sim 44)$ % R.H. Temperature: $(23 \sim 24)$ °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Premium Tablet Date: March 09, 2016

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBu√]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Н	orizontal -									
1 2	205.570 827.331	46.7 33.8	10.9 21.2	4.1 8.8	32.9 32.8	28.8 31.0	43.5 46.0	14.7 15.0	200 100	0 359
V	ertical									
3 4 5 6	46.490 66.860 125.060 372.410	48.5 45.7 50.2 38.6	13.9 10.9 9.7 15.3	2.0 2.4 3.2 5.7	33.0 33.0 33.0 33.0	31.4 26.0 30.1 26.6	40.0 40.0 43.5 46.0	8.6 14.0 13.4 19.4	100 100 100 100	0 130 0 102

Page 91 of 122 Report No. : W164R-D022

12.6.2 Test data for Below 30 MHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	Reading (dBμV)	Ant. Height (m)	O	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

Any emissions were not observed from the EUT.

12.6.3 Test data for above 1 GHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(MHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	(dBµV/m)	(dB)
				Low Ch	annel				
	55.18	Peak	Н				69.28	73.98	4.70
11 000 00	36.84	Average	Н	20.40	17.20	10.60	50.94	53.98	3.04
11 000.00	54.26	Peak	V	39.40	17.30	42.60	68.36	73.98	5.62
	36.34	Average	V				50.44	53.98	3.54
	Middle Channel								
	54.62	Peak	Н				68.72	73.98	5.26
44.500.00	36.75	Average	Н	• • • •			50.85	53.98	3.13
11 200.00	54.79	Peak	V	39.40	17.30	42.60	68.89	73.98	5.09
	37.04	Average	V				51.14	53.98	2.84
				High Cl	nannel				
	54.81	Peak	Н				68.91	73.98	5.07
	36.32	Average	Н				50.42	53.98	3.56
11 400.00	55.17	Peak	V	39.40	17.30 42	42.60	69.27	73.98	4.71
	54.81	Peak	Н				50.58	53.98	3.40

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

12.7 Test data for 5 725 MHz ~ 5 850 MHz Band

12.7.1 Test data for 30 MHz ~ 1 000 MHz

Humidity Level : $(43 \sim 44)$ % R.H. Temperature: $(23 \sim 24)$ °C

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.247

Result : PASSED

EUT : Premium Tablet Date: March 09, 2016

Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz)

-. Low, Middle and High Channels were tested, but the worst data were recorded.

No.	FREQ	READING QP F	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Н	orizontal -									
1 2	206.540 827.331	46.6 35.8	11.0 21.2	3.8 8.0	32.8 33.4	28.6 31.6	43.5 46.0	14.9 14.4	100 100	359 359
V	ertical									
3 4 5 6	47.460 66.860 125.060 363.680		13.8 10.9 9.7 15.1	2.0 2.3 3.3 5.1	32.9 33.1 33.2 32.6	31.6 25.6 29.9 26.4	40.0 40.0 43.5 46.0	8.4 14.4 13.6 19.6	100 100 100 100	292 130 0 123

Page 94 of 122 Report No. : W164R-D022

12.7.2 Test data for Below 30 MHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

-. Frequency range : 9 kHz ~ 30 MHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency (MHz)	0		0	Ant. Factor (dB/m)	Emission Level(dBμV/m)	Limits (dBµV/m)	Margin (dB)

Any emissions were not observed from the EUT.

12.7.3 Test data for above 1 GHz

-. Test Date : March 09, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Frequency range : 1 GHz ~ 40 GHz

-. Measurement distance : 3 m

-. Operating mode : Transmitting mode

Frequency	Reading	Detector	Ant. Pol.	Ant.	Cable	Amp	Total	Limits	Margin
(MHz)	(dBµV)	Mode	(H/V)	Factor	Loss	Gain	(dBµV/m)	(dBµV/m)	(dB)
				Low Ch	annel				
	48.65	Peak	Н				62.95	73.98	11.03
11 400 00	32.89	Average	Н	20.50	17.50	10.70	47.19	53.98	6.79
11 490.00	45.53	Peak	V	39.50	17.50	17.50 42.70		73.98	14.15
	30.72	Average	V				45.02	53.98	8.96
	Middle Channel								
	48.88	Peak	Н				63.18	73.98	10.80
	33.10	Average	Н				47.40	53.98	6.58
11 570.00	45.42	Peak	V	39.50	17.50	42.70	59.72	73.98	14.26
	32.19	Average	V				46.49	53.98	7.49
				High Cl	nannel				
	48.40	Peak	Н				62.70	73.98	11.28
	33.03	Average	Н				47.33	53.98	6.65
11 650.00	45.37	Peak	V	39.50	17.50 42	42.70	59.67	73.98	14.31
	31.77	Average	V				46.07	53.98	7.91

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Page 96 of 122 Report No. : W164R-D022

13. RADIATED RESTRICTED BAND EDGE MEASUREMENTS

13.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$

Relative humidity : 50 % R.H.

13.2 Test set-up for conducted measurement

The radiated emissions measurements were performed on the 3 m, open-field test site. The EUT was placed on a non-conductive turntable above the ground plane.

The system was rotated 360°, and the antenna was varied in the height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for horizontal and vertical polarization of the receiving antenna.

13.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 22, 2015 (1Y)
■ -	ESCI	Rohde & Schwarz	Test Receiver	101012	Nov. 02, 2015 (1Y)
■ -	310N	Sonoma Instrument	Pre-Amplifier	312544	Apr. 29, 2015 (1Y)
■ -	SCU-18	Rohde & Schwarz	Pre-Amplifier	10041	Nov. 23, 2015 (1Y)
■ -	DT3000	Innco System	Turn Table	930611	N/A
■ -	MA4000-EP	Innco System	Antenna Master	3320611	N/A
■ -	VULB9163	Schwarzbeck	TRILOG Broadband Antenna	9163-421	Jul. 10, 2014 (2Y)
■ -	BBHA9120D	Schwarzbeck	Horn Antenna	BBHA9120D295	Aug. 31, 2015 (2Y)
■ -	BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Apr. 30, 2015 (2Y)

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

13.4 Test data for 5 150 MHz ~ 5 250 MHz Band

13.4.1 Test data for 802.11a RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m-. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	67.68	Peak	Н				67.98	74.00	6.02
	42.66	Average	Н	31.00	11.50	42.20	42.96	54.00	11.04
5 150.00	67.23	Peak	V				67.53	74.00	6.47
	42.40	Average	V				42.70	54.00	11.30

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Page 98 of 122 Report No. : W164R-D022

13.4.2 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	54.55	Peak	Н				54.85	74.00	19.15
	32.72	Average	Н				33.02	54.00	20.98
5 150.00	52.91	Peak	V	31.00	11.50	42.20	53.21	74.00	20.79
	32.37	Average	V				32.67	54.00	21.33

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

13.5 Test data for 5 250 MHz ~ 5 350 MHz Band

13.5.1 Test data for 802.11a RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m-. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	49.58	Peak	Н				50.38	74.00	23.62
	32.04	Average	Н	31.30	11.70	42.20	32.84	54.00	21.16
5 350.00	50.00	Peak	V				50.80	74.00	23.20
	31.57	Average	V				32.37	54.00	21.63

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Page 100 of 122 Report No. : W164R-D022

13.5.2 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBμV/m)	Limits (dBµV/m)	Margin (dB)
	52.51	Peak	Н				53.31	74.00	20.69
	33.38	Average	Н				34.18	54.00	19.82
5 350.00	51.72	Peak	V	31.30	11.70	42.20	52.52	74.00	21.48
	33.36	Average	V				34.16	54.00	19.84

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

13.6 Test data for 5 725 MHz ~ 5 850 MHz Band

13.6.1 Test data for 802.11a RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)	
	63.20	Peak	Н				65.00	74.00	9.00	
	43.29	Average	Н			42.20	45.09	54.00	8.91	
5 725.00	60.54	Peak	V	31.90	12.10		62.34	74.00	11.66	
	41.42	Average	V				43.22	54.00	10.78	
				High Ch	ligh Channel					
	51.15	Peak	Н				53.25	74.00	20.75	
	33.48	Average	Н				35.58	54.00	18.42	
5 850.00	47.81	Peak	V	32.10	12.20	42.20	49.91	74.00	24.09	
	31.96	Average	V				34.06	54.00	19.94	

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

15.6.2 Test data for 802.11n_HT20 RLAN Mode

-. Test Date : March 06, 2016

-. Resolution bandwidth : 1 MHz for Peak and Average Mode for the emissions fall in restricted band,

100 kHz for Peak Mode for the emissions outside restricted band

-. Video bandwidth : 1 MHz for Peak Mode, 10 Hz for Average Mode

-. Measurement distance : 3 m -. Result : Pass

Frequency (MHz)	Reading (dBμV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss	Amp Gain	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
				Low Ch	annel				
	64.22	Peak	Н				66.02	74.00	7.98
	43.06	Average	Н				44.86	54.00	9.14
5 725.00	60.22	Peak	V	31.90	12.10	42.20	62.02	74.00	11.98
	40.20	Average	V				42.00	54.00	12.00
				High Cl	annel				
	50.54	Peak	Н				52.64	74.00	21.36
	33.64	Average	Н				35.74	54.00	18.26
5 850.00	47.04	Peak	V	32.10	12.20	42.20	49.14	74.00	24.86
	32.06	Average	V				34.16	54.00	19.84

Tabulated test data for Restricted Band

Remark - "H": Horizontal, "V": Vertical

Margin (dB) = Limits (dB μ V/m) - Emission Level (dB μ V/m)

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

14. CONDUCTED EMISSION TEST

14.1 Operating environment

Temperature : $(23 \sim 24)$ °C

Relative humidity : $(46 \sim 49)$ % R.H.

14.2 Test set-up

The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

14.3 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■,-	ESPI	Rohde & Schwarz	Test Receiver	101012	Nov. 02, 2015 (1Y)
□ -	ESHS10	Rohde & Schwarz	Test Receiver	834467/007	Apr. 29, 2015 (1Y)
□ -	NSLK8128	Schwarzbeck	AMN	8128-216	Apr. 06, 2015 (1Y)
■ -	NSLK8126	Schwarzbeck	AMN	8126-404	Apr. 29, 2015 (1Y)
□ -	3825/2	EMCO	AMN	9109-1869	Apr. 29, 2015 (1Y)
■ -	3825/2	EMCO	AMN	9109-1867	Apr. 29, 2015 (1Y)

All test equipment used is calibrated on a regular basis.

14.4 Test data

14.4.1 Test data for 5 150 MHz ~ 5 250 MHz Band

-. Test Date : March 08, 2016

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NO	FREQ R	EADING V		CTOR R	AV QP	LIMIT	MAR	GIN PH	ASE		
[MHz] [dBuV][dBuV]	[dB] [dB]	dBu∀][dBu	V] [dBuV][dBu∨] [c	BuV][dBi	uV]			
1	0.20300	31.9	-	9.9	41.8		63.5		21.7		H(QP)
2	0.45400	27.6	****	9.9	37.5	****	56.8	****	19.3	****	H(QP)
3	0.56100	28.7		10.0	38.7		56.0		17.3		H(QP)
4	4.69600	20.0	****	10.1	30.1	****	56.0		25.9	***	H(QP)
5	8.90000	24.8	****	10.3	35.1		60.0		24.9	****	H(QP)
6	25.72000	25.0		10.5	35.5	THE RESERVE	60.0	Teacer:	24.5	Second	H(QP)
7	0.20300	****	15.2	9.9		25.1	****	53.5	****	28.4	H(CAV)
8	0.45400		13.8	9.9		23.7	****	46.8	****	23.1	H(CAV)
9	0.56100	****	14.7	10.0		24.7		46.0	****	21.3	H(CAV)
10	4.69600	Section 1	6.6	10.1		16.7		46.0		29.3	H(CAV)
11	8.90000	****	9.7	10.3	****	20.0		50.0	****	30.0	H(CAV)
12	25,72000	Course.	12.0	10.5		22.5		50.0	****	27.5	H(CAV)

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

LIMIT READING C.FACTOR RESULT MARGIN PHASE QP ΑV QP ΑV QP ΑV [MHz] [dBuV][dBuV] [dB] [dBuV][dBuV][dBuV][dBuV][dBuV]0.34100 19.2 N(QP) 0.41600 29.8 9.9 39.7 57.5 17.8 N(QP) 2 3 4 0.55700 33.3 56.0 N(QP 10.0 43.3 127 26.1 N(QP) 0.87100 10.0 36.1 56.0 19.9 8.67000 10.3 60.0 N(QP) 6 7 25.53000 25.8 10.5 36.3 60.0 23.7 N(QP 0.34100 16.6 26.5 49.2 22.7 N(CAV 9.9 8 16.5 26.4 47.5 0.41600 9.921.1 N(CAV) 36.2 0.55700 26.2 10.0 9.8 14.8 24.8 21.2 10 0.87100 10.0 46.0 N(CAV 25.6 24.4 N(CAV) 15.3 8 67000 10.3 50.0 11 25.53000 21.8 28.2 11.3 10.5 50.0 N(CAV)

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

14.4.2 Test data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 08, 2016

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NO	FREQ R	EADING	100	CTOR F	RESULT AV QP	LIMIT	MAR	GIN PH	ASE			
I	MHz] [dBuV	S		A THE PARTY OF THE	uV] [dBuV][d	Name of the Party	Bu∨][dBı	uV]				
1	0.31600	30.2	****	9.9	40.1	****	59.8		19.7	****	H(QP)	
2	0.37400	28.3		9.9	38.2	****	58.4	****	20.2		H(QP)	
3	0.52000	28.1		10.0	38.1		56.0		17.9		H(QP)	
4	4.69200	21.2		10.1	31.3		56.0		24.7		H(QP)	
5	8.85500	23.5		10.3	33.8	****	60.0		26.2		H(QP)	
6	26.44000	25.8		10.5	36.3	****	60.0		23.7		H(QP)	
7	0.31600	****	14.3	9.9	****	24.2	****	49.8	****	25.6	H(CAV)	
8	0.37400		13.8	9.9		23.7		48.4		24.7	H(CAV)	
9	0.52000		14.3	10.0	****	24.3		46.0		21.7	H(CAV)	
10	4.69200	****	6.4	10.1	****	16.5	****	46.0	****	29.5	H(CAV)	
11	8.85500		11.1	10.3		21.4		50.0		28.6	H(CAV)	
12	26.44000		13.1	10.5		23.6		50.0		26.4	H(CAV)	

NO []	FREQ RI QP A\ MHz] [dBuV]	-	QP	AV QP	RESULT AV QP uV] [dBuV][d	LIMIT AV dBuV] [MAR dBuV][dBu		ASE			
1	0.31900	29.5		9.9	39.4		59.7		20.3		N(QP)	
2	0.47100	29.6		9.9	39.5		56.5		17.0		N(QP)	
3	0.55700	33.1		10.0	43.1		56.0		12.9		N(QP)	
4	0.75100	26.6		10.0	36.6		56.0		19.4		N(QP)	
5	8.99500	23.6		10.3	33.9		60.0		26.1		N(QP)	
6	26.54000	24.0		10.5	34.5		60.0		25.5		N(QP)	
7	0.31900		15.8	9.9		25.7		49.7		24.0	N(CAV)	
8	0.47100		14.7	9.9		24.6		46.5		21.9	N(CAV)	
9	0.55700		25.7	10.0		35.7		46.0		10.3	N(CAV)	
10	0.75100		12.4	10.0		22.4		46.0		23.6	N(CAV)	
11	8.99500		10.4	10.3		20.7		50.0		29.3	N(CAV)	
12	26.54000		9.4	10.5		19.9		50.0		30.1	N(CAV)	

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

14.4.3 Test data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 08, 2016

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NO	FREQ R	EADING		CTOR R	AV QP	LIMIT	MAR	GIN PH	ASE		
[1	MHz] [dBuV][dBuV]			V] [dBu√][BuV][dB	uV]			
1	0.34400	28.5	****	9.9	38.4	****	59.1		20.7	****	H(QP)
2	0.41300	28.6		9.9	38.5	****	57.6		19.1		H(QP)
3	0.52000	28.5		10.0	38.5		56.0		17.5		H(QP)
4	4.70400	21.5		10.1	31.6		56.0		24.4		H(QP)
5	12.23000	24.3		10.4	34.7		60.0		25.3		H(QP)
6	26.99000	25.2		10.5	35.7		60.0		24.3		H(QP)
7	0.34400		12.7	9.9		22.6		49.1		26.5	H(CAV)
8	0.41300		12.3	9.9		22.2	****	47.6		25.4	H(CAV)
9	0.52000		13.4	10.0	****	23.4	****	46.0	****	22.6	H(CAV)
10	4.70400		6.5	10.1		16.6	****	46.0	****	29.4	H(CAV)
11	12.23000		14.6	10.4		25.0		50.0		25.0	H(CAV)
12	26.99000		11.4	10.5		21.9		50.0		28.1	H(CAV)

ОИ []	NO FREQ READING C.FACTOR RESULT LIMIT MARGIN PHASE QP AV QP AV QP AV QP AV [MHz] [dBuV][dBuV] [dBu] [dBuV][dBuV] [dBuV][dBuV]											
1	0.24300	30.9		9.9	40.8		62.0		21.2		N(QP)	_
2	0.45000	29.0		9.9	38.9		56.9		18.0		N(QP)	
3	0.56200	33.6		10.0	43.6		56.0		12.4		N(QP)	
4	0.91700	25.8		10.0	35.8		56.0		20.2		N(QP)	
5	8.81000	24.4		10.3	34.7		60.0		25.3		N(QP)	
6	26.43000	25.0		10.5	35.5		60.0		24.5		N(QP)	
7	0.24300		13.9	9.9		23.8		52.0		28.2	N(CAV)	
8	0.45000		15.4	9.9		25.3		46.9		21.6	N(CAV)	
9	0.56200		26.2	10.0		36.2		46.0		9.8	N(CAV)	
10	0.91700		14.2	10.0		24.2		46.0		21.8	N(CAV)	
11	8.81000		12.5	10.3		22.8		50.0		27.2	N(CAV)	
12	26.43000		12.0	10.5		22.5		50.0		27.5	N(CAV)	

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Jun-Hui, Lee / Senior Engineer

Report No. : W164R-D022

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

14.4.4 Test data for 5 725 MHz ~ 5 850 MHz Band

-. Test Date : March 08, 2016

-. Resolution bandwidth : 9 kHz

-. Frequency range : 0.15 MHz ~ 30 MHz

-. Tested Line : HOT LINE

NO	FREQ RI	EADING /		CTOR R	ESULT AV QP	LIMIT	MAR	GIN PH	ASE		
[1	MHz] [dBu√	[[dBu∀]	[dB] [d	Bu∨][dBu	V] [dBuV][dBu∀] [d	Bu∀][dBi	uV]			
1	0.20300	31.2		9.9	41.1	****	63.5	****	22.4		H(QP)
2	0.44700	28.6		9.9	38.5	****	56.9		18.4		H(QP)
3	0.53700	28.8		10.0	38.8		56.0		17.2	****	H(QP)
4	4.66400	20.0	****	10.1	30.1		56.0	****	25.9	****	H(QP)
5	8.71500	23.2		10.3	33.5		60.0	****	26.5	****	H(QP)
6	26.81000	24.4	****	10.5	34.9	****	60.0		25.1		H(QP)
7	0.20300		14.4	9.9		24.3		53.5	****	29.2	H(CAV)
8	0.44700	****	13.1	9.9	****	23.0		46.9	****	23.9	H(CAV)
9	0.53700		13.2	10.0		23.2		46.0		22.8	H(CAV)
10	4.66400	****	5.4	10.1		15.5		46.0		30.5	H(CAV)
11	8.71500		13.8	10.3		24.1		50.0		25.9	H(CAV)
12	26.81000		13.7	10.5	****	24.2	****	50.0	****	25.8	H(CAV)

NO []	FREQ RI QP A\ MHz] [dBuV]		QP	ACTOR R AV QP [dBuV][dBu'	ESULT AV QP V] [dBuV][d	LIMIT AV dBuV] [c		GIN PH	ASE			
1	0.25700	31.4		9.9	41.3		61.5		20.2		N(QP)	
2	0.37500	28.9		9.9	38.8		58.4		19.6		N(QP)	
3	0.54900	32.0		10.0	42.0		56.0		14.0		N(QP)	
4	0.74400	26.1		10.0	36.1		56.0		19.9		N(QP)	
5	8.90500	24.4		10.3	34.7		60.0		25.3		N(QP)	
6	26.24000	25.5		10.5	36.0		60.0		24.0		N(QP)	
7	0.25700		14.1	9.9		24.0		51.5		27.5	N(CAV)	
8	0.37500		14.8	9.9		24.7		48.4		23.7	N(CAV)	
9	0.54900		23.9	10.0		33.9		46.0		12.1	N(CAV)	
10	0.74400		12.7	10.0		22.7		46.0		23.3	N(CAV)	
11	8.90500		9.7	10.3		20.0		50.0		30.0	N(CAV)	
12	26.24000		10.8	10.5		21.3		50.0		28.7	N(CAV)	

Remark: Margin (dB) = Limit - Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

Tested by: Jun-Hui, Lee / Senior Engineer

15 DYNAMIC FREQUENCY SELECTION (DFS)

15.1 Operating environment

Temperature : $23 \, ^{\circ}\text{C}$ Relative humidity : $47 \, \% \, \text{R.H.}$

15.2 Test set-ups

The FCC 06-96 and RSS-210 A9.3 describes a conducted test setup. A conducted test setup was user this testing. Figure 1 shows the typical test setup. Each one channel selected between 5 250 MHz and 5 350 MHz, 5 470 MHz and 5 725 MHz is chosen for the testing.

Figure 1. Setup for Client with injection at the Master

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

15.3 DFS Test Signals

Table 5 - Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Number of Pulses	Minimum	Minimum
	Width		Number of Pulses		Number
Type		(µsec)		Percentage of	
	(µsec)			Successful	of
		1.400	10	Detection	Trials
0	1	1428	18	See Note 1	See Note
					1
1	1	Test A: 15 unique	$\begin{bmatrix} \begin{pmatrix} 1 \end{pmatrix} \end{bmatrix}$	60%	30
		PRI values	$\left(\frac{360}{360} \right)$		
		randomly selected	Roundup		
		from the list of 23	$\left \left(\frac{19 \cdot 10^6}{10^6} \right) \right $		
		PRI values in	$\left(\left[\begin{array}{c}\overline{\mathrm{PRI}}_{\musec}\end{array}\right]\right]$		
		Table 5a	((, , , , ,)		
		Test B: 15 unique			
		PRI values			
		randomly selected			
		within the range			
		of 518-3066			
		μ sec, with a			
		minimum			
		increment of 1			
		μ sec,			
		excluding PRI			
		values			
		selected in			
		Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types	1-4)		80%	120

Table 6 - Long Pulse Radar Test Waveform

Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of
105/10-	(µsec)	(MHz)	W453 100X	per Burst		Successful	Trials
	N. C.	32 31				Detection	
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

15.4 Technical Requirement Specification

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode					
	Master	Client (without DFS)	Client (with DFS)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode					
	Master	Client (without DFS)	Client (with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			
U-NII Detection Bandwidth	Yes	Not required	Yes			

15.5 Test equipment used

	Model Number	Manufacturer	Description	Serial Number	Last Cal. (Interval)
■ -	FSV40	Rohde & Schwarz	Signal Analyzer	101009	Jul. 30, 2014 (1Y)
■, -	D-05180-2	RLC Electronis Inc.	Combiner	0813	Apr. 29, 2014 (1Y)
■, -	11636B	Hewlett Packard	Combiner	12268	Nov. 08, 2014 (1Y)
■-	SMJ100A	R/S	Signal Generator	101038	Nov. 08, 2014 (1Y)
■, -	DRP-305DN	DIGITAL Elec.	DC Power supply	4030195	Sep. 03, 2014 (1Y)
	AIR-AP1252AG-K-K9	CISCO	AP	FGL1439Z0KE	N/A

All test equipment used is calibrated on a regular basis.

It should not be reproduced except in full, without the written approval of ONETECH.

EMC-003 (Rev.1)

Report No. : W164R-D022

HEAD OFFICE: 301-14 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599) **EMC Testing Div.**: 307-51 Daessangnyeong-ri, Chowol-eup, Gwangju-si, Gyeonggi-do 464-862 Korea (TEL: 82-31-765-8289, FAX: 82-31-766-2904)

15.6 Test data for 5 250 MHz ~ 5 350 MHz Band

-. Test Date : March 10, 2015

Engage (MII-)	Channel m	ove time(s)	Channel closing transmission time(ms)		
Frequency (MHz)	Measured	Limit	Measured	Limit	
5 300	0.152	10	0	60	

15.6.1 Plot of Radar waveform type1

Note: The calibrated conducted DFS detection threshold level is set to -59.5 dBm (-62+1+1.00=-60.00)

15.7 Test data for 5 470 MHz ~ 5 725 MHz Band

-. Test Date : March 11, 2015

F (MII.)	Channel me	ove time(s)	Channel closing transmission time(ms)		
Frequency (MHz)	Measured	Limit	Measured	Limit	
5 600	0.152	10	0	60	

15.7.1 Plot of Radar waveform type1

Note: The calibrated conducted DFS detection threshold level is set to -59.5 dBm (-62+1+1.01=-59.99)

CF 5.6 GHz

1001 pts

2.0 5/

