A Book	c of Abstract Algeb	ra	(2nd Ed	dition)	
Cha	pter AA, Problem 11E		Bookmark	Show all steps: ON	
Problem					
Pr	rove the following:				
А	$\cap (B-C)=(A\cap B)-C.$				
	Step-by-step solution				
	Step 1 of 2 Objective:- The objective is to prove $A \cap (B-C) = (A \cap B) - C$.				
Ol					
Th					
Co	omment				
	Step 2	2 of 2			
Pr	oof:-				
Le	Let A and B are two sets.				
Th	The difference of two sets A and B is:-				
A	$A - B = \left\{ x : x \in A, x \notin B \right\}$				
Th	The intersection of two sets A and B is:-				
A	$A \cap B = \{x : x \in A \ and \ x \in B\}$				
Le	et $x \in A \cap (B - C)$				
x	$e \in A \cap (B-C)$				
	$\Rightarrow x \in A \text{ and } (x \in B - C)$				
	$\Rightarrow x \in A \text{ and } (x \in B, x \notin C)$				
=	$\Rightarrow (x \in A \text{ and } x \in B), (x \notin C)$				

$$\Rightarrow (x \in A \cap B), (x \notin C)$$

$$\Rightarrow (x \in A \cap B, x \notin C)$$

$$\Rightarrow x \in A \cap B - C$$
So,
$$A \cap (B - C) \subseteq (A \cap B) - C \qquad(1)$$
Let $x \in A \cap B - C$

$$x \in A \cap B - C$$

$$\Rightarrow (x \in A \cap B, x \notin C)$$

$$\Rightarrow (x \in A \cap B), (x \notin C)$$

$$\Rightarrow (x \in A \text{ and } x \in B), (x \notin C)$$

$$\Rightarrow x \in A \text{ and } (x \in B, x \notin C)$$

$$\Rightarrow x \in A \text{ and } (x \in B - C)$$

$$\Rightarrow x \in A \text{ ond } (x \in B - C)$$
So,
$$(A \cap B) \cup (A \cap B) - C \subseteq A \cap (B - C) \qquad(2)$$
Let us consider the equation (1) and (2).
$$A \cap (B - C) = (A \cap B) - C$$

Proved

Comment