

TMA4100

Matematikk 1

Høst 2014

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

Løsningsforslag — Øving 05

 $\boxed{\mathbf{3.5.18}}$ Vi skal evaluere tan $(\sec^{-1} x)$. Funksjonen $\sec^{-1} x$ er plottet på side 197 i boka, og vi ser at den kun er definert for |x| > 1. Vi ser også at den er monotont voksende på hele dette området. Det betyr at den også er inverterbar for alle |x| > 1.

La $\theta = \sec^{-1} x$. Vi har da at

$$x = \sec \theta = \frac{1}{\cos \theta} \implies \cos \theta = \frac{1}{x}.$$

Vi husker at i en rettvinklet trekant er cosinus forholdet mellom hosliggende katet og hypotenusen. Vi tegner derfor en rettvinklet trekant der den ene kateten har lengde 1, hypotenusen har lengde x og vinkelen mellom disse θ . Den siste sidekanten kaller vi y.

Via Pythagoras' læresetning har vi at $y = \sqrt{x^2 - 1}$. Siden tangens er lik motstående katet over hosliggende katet, følger det at

$$\tan(\sec^{-1} x) = \tan \theta = \frac{y}{1} = \sqrt{x^2 - 1}.$$

Husk at vi antok at |x| > 1, slik at uttrykket alltid er definert.

3.5.30 Vi bruker derivasjonsregelen for $\cos^{-1} x$,

$$\frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}},$$

sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi $u = \frac{a}{\sqrt{a^2+x^2}}$. Vi regner først ut den deriverte til u,

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(a(a^2 + x^2)^{-\frac{1}{2}} \right) = a \left(-\frac{1}{2} \right) (a^2 + x^2)^{-\frac{3}{2}} \frac{\mathrm{d}}{\mathrm{d}x} (a^2 + x^2)$$
$$= -\frac{a}{2} (a^2 + x^2)^{-\frac{3}{2}} 2x = -\frac{ax}{(a^2 + x^2)^{\frac{3}{2}}} = -\frac{ax}{(a^2 + x^2)\sqrt{a^2 + x^2}}.$$

Deretter finner vi den deriverte av y,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}u = -\frac{1}{\sqrt{1 - u^2}}\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{\sqrt{1 - \frac{a^2}{a^2 + x^2}}}\left(-\frac{ax}{(a^2 + x^2)\sqrt{a^2 + x^2}}\right)$$
$$= \frac{1}{\sqrt{1 - \frac{a^2}{a^2 + x^2}} \cdot \sqrt{a^2 + x^2}} \cdot \frac{ax}{(a^2 + x^2)} = \frac{ax}{\sqrt{a^2 + x^2 - a^2}(a^2 + x^2)} = \frac{a}{a^2 + x^2}.$$

3.6.2 Vi starter med å bruke definisjonene av $\cosh x$ og $\sinh x$ (side 199 i boka) og utvider høyresidene:

$$\begin{split} \cosh x \cosh y + \sinh x \sinh y &= \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} \cdot \frac{\mathrm{e}^y + \mathrm{e}^{-y}}{2} + \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} \cdot \frac{\mathrm{e}^y - \mathrm{e}^{-y}}{2} \\ &= \frac{\mathrm{e}^x \mathrm{e}^y + \mathrm{e}^x \mathrm{e}^{-y} + \mathrm{e}^{-x} \mathrm{e}^y + \mathrm{e}^{-x} \mathrm{e}^{-y}}{4} + \frac{\mathrm{e}^x \mathrm{e}^y - \mathrm{e}^x \mathrm{e}^{-y} - \mathrm{e}^{-x} \mathrm{e}^y + \mathrm{e}^{-x} \mathrm{e}^{-y}}{4} \\ &= \frac{2\mathrm{e}^x \mathrm{e}^y + 2\mathrm{e}^{-x} \mathrm{e}^{-y}}{4} = \frac{\mathrm{e}^{x+y} + \mathrm{e}^{-(x+y)}}{2} = \cosh(x+y). \end{split}$$

Helt tilsvarende kan vi vise den andre likheten,

$$\begin{aligned} \sinh x \cosh y + \cosh x \sinh y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} \cdot \frac{\mathrm{e}^y + \mathrm{e}^{-y}}{2} + \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} \cdot \frac{\mathrm{e}^y - \mathrm{e}^{-y}}{2} \\ &= \frac{\mathrm{e}^x \mathrm{e}^y + \mathrm{e}^x \mathrm{e}^{-y} - \mathrm{e}^{-x} \mathrm{e}^{-y} - \mathrm{e}^{-x} \mathrm{e}^{-y}}{4} + \frac{\mathrm{e}^x \mathrm{e}^y - \mathrm{e}^x \mathrm{e}^{-y} + \mathrm{e}^{-x} \mathrm{e}^y - \mathrm{e}^{-x} \mathrm{e}^{-y}}{4} \\ &= \frac{2\mathrm{e}^x \mathrm{e}^y - 2\mathrm{e}^{-x} \mathrm{e}^{-y}}{4} = \frac{\mathrm{e}^{x+y} - \mathrm{e}^{-(x+y)}}{2} = \sinh(x+y). \end{aligned}$$

For å finne tilsvarende uttrykk for $\cosh(x-y)$ og $\sinh(x-y)$ kan vi enten følge prosedyren ovenfor motsatt vei eller sette inn -y for y i utrykkene over. Vi viser her de to fremgangsmåtene på hvert sitt utrykk.

$$\cosh(x - y) = \frac{e^{x+y} + e^{-(x+y)}}{2} = \frac{2e^{x+y} + 2e^{-(x+y)}}{4} \\
= \frac{(e^{x-y} + e^{x+y} + e^{-x-y} + e^{-x+y}) + (e^{x-y} - e^{x+y} - e^{-x-y} + e^{-x+y})}{4} \\
= \frac{(e^x + e^{-x})(e^{-y} + e^y)}{4} + \frac{(e^x - e^{-x})(e^{-y} - e^y)}{4} \\
= \cosh x \cosh y + \sinh x (-\sinh y) = \cosh x \cosh y - \sinh x \sinh y.$$

$$\sinh(x - y) = \sinh(x + (-y)) = \sinh x \cosh(-y) + \cosh x \sinh(-y)$$
$$= \sinh x \cosh y - \cosh x \sinh y.$$

Vi har her brukt identitetene $\cosh(-y) = \cosh y$ og $\sinh(-y) = -\sinh y$, side 199 i boka.

3.6.5 Vi bruker uttrykkene for de inverse av de hyperbolske funksjonene, side 202 i boka:

$$\sinh^{-1} x = \ln\left(x + \sqrt{x^2 + 1}\right),$$
$$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right),$$
$$\tanh^{-1} x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right).$$

Ved hjelp av kjerneregelen for derivasjon får vi nå at

$$\frac{\mathrm{d}}{\mathrm{d}x} \sinh^{-1} x = \frac{1}{x + \sqrt{x^2 + 1}} \left(1 + \frac{1}{2\sqrt{x^2 + 1}} 2x \right)$$

$$= \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}} = \frac{\sqrt{x^2 + 1} + x}{x\sqrt{x^2 + 1} + x^2 + 1}$$

$$= \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} \left(x + \sqrt{x^2 + 1} \right)} = \frac{1}{\sqrt{x^2 + 1}}.$$

Helt tilsvarende, man trenger bare bytte ut $x^2 + 1 \mod x^2 - 1$, er

$$\frac{\mathrm{d}}{\mathrm{d}x}\cosh^{-1}x = \frac{1}{\sqrt{x^2 - 1}}.$$

Hvis du ikke er helt overbevist om at dette er riktig, anbefaler vi at du går gjennom utregningene over på nytt.

For $\tanh^{-1} x$ får vi at

$$\frac{\mathrm{d}}{\mathrm{d}x} \tanh^{-1} x = \frac{1}{2} \cdot \frac{1-x}{1+x} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1+x}{1-x} \right) = \frac{1}{2} \cdot \frac{1-x}{1+x} \cdot \frac{(1-x)-(1+x)(-1)}{(1-x)^2}$$
$$= \frac{1}{2} \cdot \frac{1-x+1+x}{(1+x)(1-x)} = \frac{1}{(1+x)(1-x)} = \frac{1}{1-x^2}.$$

Av Definisjon 8, side 149 i boka, følger det nå at

$$\int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C_1,$$

$$\int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C_2,$$

$$\int \frac{dx}{1 - x^2} = \tanh^{-1} x + C_3.$$

Vi har brukt ulike integrasjonskonstanter for å poengtere at disse ikke på noen måte er relatert.

 $\boxed{4.1.16}$ Vi vet at avstanden s øker med $100 \, \mathrm{km/t}$, det vil si at

$$\frac{\mathrm{d}s}{\mathrm{d}t} = 100.$$

Vi er interessert i å finne farten til bilen, altså $\frac{dx}{dt}$.

Punktene A,C og P danner en rettvinklet trekant med sidelengder henholdsvis x, s og k. Av Pythagoras' læresetning følger det at

$$s^2 = k^2 + x^2$$

Vi vet at k er konstant, og deriverer med hensyn på tiden t,

$$2s\frac{\mathrm{d}s}{\mathrm{d}t} = 0 + 2x\frac{\mathrm{d}x}{\mathrm{d}t} \quad \Rightarrow \quad \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{s}{x} \cdot \frac{\mathrm{d}s}{\mathrm{d}t}.$$

Avstandene s og x er ukjente, så vi prøver å eliminere disse fra utrykket. Vi vet at vinkelen mellom laserpistolen og veien er 45° , slik at

$$\frac{x}{s} = \sin 45^\circ = \frac{1}{\sqrt{2}}.$$

Vi kan nå løse for $\frac{dx}{dt}$,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{2} \cdot \frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{2} \cdot 100 \approx 141,4.$$

Det vil si at farten til bilen er omlag 141,4 km/t.

4.1.36 Vi lar h være vannhøyden i m, slik at h=3 når bassenget er fullt, og h=0 når det er tomt. Videre lar vi V være vannvolumet i m³. Det at vannet tappes ut med en rate på $1 \text{ m}^3/\text{min}$, betyr at

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 1.$$

Vi ønsker å finne ut hvor fort vannhøyden synker, det vil si $\frac{dh}{dt}$.

Vi starter med å finne et uttrykk for V som funksjon av h. La oss se på den nederste delen $(h \leq 2)$ av bassenget først. Bredden til bassenget er konstant lik 8, mens lengden av vannet, l, stiger lineært fra l=0 når h=0 til l=20 når h=2. Altså må $l(h)=\frac{20}{2}h=10h$. Totalt volum V når $h\leq 2$ er altså

$$V = \frac{1}{2} \cdot 8 \cdot 10h \cdot h = 40h^2.$$

Når h > 2, er bredden og lengden konstant, henholdvis lik 8 og 20. Høyden av denne delen av volumet er gitt som h - 2. Da blir volumet av den øverste delen $8 \cdot 20 \cdot (h - 2) = 160(h - 2)$, og vi får det totale volumet ved å legge til den nederste delen,

$$V = 160(h-2) + 40 \cdot 2^2 = 160(h-2) + 160 = 160(h-1).$$

Oppsummert er volumet som funksjon av høyden gitt ved

$$V(h) = \begin{cases} 40h^2, & \text{når } h \le 2, \\ 160(h-1), & \text{når } h > 2. \end{cases}$$

a) Når h=2.5, får vi at

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 160 \frac{\mathrm{d}h}{\mathrm{d}t}$$

$$\Rightarrow \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{160} \cdot \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{160} \cdot 1 = 0,00625.$$

b) Når h = 1, får vi at

$$\frac{\mathrm{d}V}{\mathrm{d}t} = 80h \frac{\mathrm{d}h}{\mathrm{d}t}$$

$$\Rightarrow \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{1}{80h} \cdot \frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{80 \cdot 1} \cdot 1 = 0,0125.$$

Oppsummert har vi at når vannstanden er $2.5 \,\mathrm{m}$ synker den med $0.00625 \,\mathrm{m/min}$ eller $6.25 \,\mathrm{mm/min}$, mens når vannstanden er $1 \,\mathrm{m}$ synker den med $0.0125 \,\mathrm{m/min}$ eller $12.5 \,\mathrm{mm/min}$.

4.2.14 Vi prøver først å finne ut hvor mange løsninger som finnes. Observer at både $\cos x$ og x^2 er like funksjoner. Det følger at dersom x_1 er en løsning, det vil si at $\cos x_1 = x_1^2$, så er også $-x_1$ en løsning.

Videre vet vi at $x^2 > 1$ når |x| > 1, og at $\cos x \le 1$ for alle x. Altså må alle løsninger ligge i intervallet $-1 \le x \le 1$.

La

$$f(x) = \cos x - x^2.$$

Vi ønsker å bestemme alle x slik at f(x) = 0. Vi har at

$$f'(x) = -\sin x - 2x.$$

Det vil si at f(x) < 0 for $x \in (0,1]$, slik at f(x) er synkende her. Altså kan det bare være en løsning på dette intervallet. Endepunktet på intervallet, x = 0, er åpenbart ikke riktig løsning.

Vi konkluderer analysen vår med at det finnes akkurat to løsninger, en i intervallet (0,1] og en i intervallet [-1,0).

Vi bruker så Newtons metode (side 224 i boka), til å bestemme roten i intervallet (0,1]. I vårt eksempel får vi at

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\cos x_n - x_n^2}{-\sin x_n - 2x_n} = x_n + \frac{\cos x_n - x_n^2}{\sin x_n + 2x_n}.$$

Som startpunkt bruker vi midtpunktet, $x_0 = 0.5$, men andre punkter vil også fungere. Vi utfører første iterasjon, og får

$$x_1 = x_0 + \frac{\cos x_0 - x_0^2}{\sin x_0 + 2x_0} = 0.5 + \frac{\cos 0.5 - 0.5^2}{\sin 0.5 + 2 \cdot 0.5} \approx 0.924206927293198 \approx 0.924.$$

Ved å iterere videre (husk å ta med alle desimaler i x_n når du regner ut x_{n+1}), får vi følgende resultat:

n	x_n	$f(x_n)$
0	0,50000000000000000	$6,28 \cdot 10^{-01}$
1	0,924206927293198	$-2,52 \cdot 10^{-01}$
2	0,829105755997418	$-1,19 \cdot 10^{-02}$
3	0,824146131728195	$-3,29 \cdot 10^{-05}$
4	0,824132312409912	$-2,56 \cdot 10^{-10}$
5	0,824132312302522	$1{,}11\cdot 10^{-16}$
6	$0,\!824132312302522$	$1{,}11\cdot10^{-16}$

Fem iterasjoner er altså nok for å nå maskinpresisjon ($\sim 10^{-16}$). De to løsningene er $x=\pm 0.824132312302522$.

4.2.18 Vi skal finne maksimum og minimum for funksjonen

$$g(x) = \frac{\sin x}{1 + x^2}.$$

Sinus er en oscillerende funksjon mellom -1 og 1, så vi kan forvente mange lokale maksimum og minimum for g(x). Samtidig er nevneren $1+x^2$ monotont økende, slik at vi forventer at globalt maksimum må være det lokale maksimumet som ligger nærmest x=0, og tilsvarende for det globale minimumet. Vi merker oss også at g(x) er definert for alle $x \in \mathbb{R}$.

For å finne kandidater til maksimum og minimum, regner vi først ut den deriverte,

$$g'(x) = \frac{(1+x^2)\cos x - \sin x \cdot 2x}{(1+x^2)^2}.$$

Vi ser at q'(x) = 0 når telleren er null. Vi ønsker altså å finne røtter til funksjonen

$$f(x) = (1+x^2)\cos x - 2x\sin x.$$

For å løse f(x) = 0 bruker vi Newtons metode,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Den deriverte til f(x) er gitt ved

$$f'(x) = 2x\cos x + (1+x^2)(-\sin x) - (2\sin x + 2x\cos x)$$
$$= -(1+x^2)\sin x - 2\sin x = -(3+x^2)\sin x.$$

På tilsvarende måte som i forrige oppgave itererer vi oss frem til løsningen. Merk at vi ikke kan velge $x_0 = 0$, siden f'(0) = 0. Vi velger derfor $x_0 = 1,0$ i første omgang (husk at vi vet at globalt maksimum og minimum ligger nært null).

n	x_n	$f(x_n)$
0	1,000000000000000000	$-6,02 \cdot 10^{-01}$
1	0,8210463079671654	$-6,09 \cdot 10^{-02}$
2	0,7983816444825249	$-9,50 \cdot 10^{-04}$
3	0,7980170858066054	$-2,45 \cdot 10^{-07}$
4	0,7980169918423763	$-1,60 \cdot 10^{-14}$
5	0,7980169918423702	$-2,22 \cdot 10^{-16}$

Deretter prøver vi $x_0 = -1.0$.

n	x_n	$f(x_n)$
0	-1,000000000000000000000000000000000000	$-6,02 \cdot 10^{-01}$
1	-0.8210463079671654	$-6,09 \cdot 10^{-02}$
2	-0,7983816444825249	$-9,50 \cdot 10^{-04}$
3	-0.7980170858066054	$-2,45 \cdot 10^{-07}$
4	-0,7980169918423763	$-1,60 \cdot 10^{-14}$
5	-0.7980169918423702	$-2.22 \cdot 10^{-16}$

Vi evaluerer så g i disse to punktene:

$$g(0.7980169918423702) \approx 0.437,$$

 $g(-0.7980169918423702) \approx -0.437.$

Vi konkluderer med at maksimum til g er 0,437 og minimum er -0,437.

Det at minimumspunktet er lik minus maksimumspunktet, er ikke tilfeldig. Dette følger av at at $\sin x$ og $1+x^2$ er henholdsvis odde og like funksjoner, slik at også g(x) er odde.