#### Deep Learning for Music Analysis and Generation

# **Guitar x ML/DL**

Yu-Hua Chen Ph.D. candidate

f08946011@ntu.edu.tw

# How we represent *guitar*



### Outline

- 1. Tabulature modeling and generation
- 2. Electric guitar transcription (wet audio -> tab)
- 3. Effect rendering (clean audio -> wet audio)

Tabulature modeling and generation

## Background

- 1. Music Transformer
- 2. REMI



Represent MIDI file using **token**, easier to make it as input for language model



Bar, Position (1/16), Chord (C major),
Position (1/16), Tempo Class (mid),
Tempo Value (10), Position (1/16),
Note Velocity (16), Note On (60),
Note Duration (4), Position (5/16),
.....
Tempo Value (12), Position (9/16),
Note Velocity (14), Note On (67),
Note Duration (8), Bar

### Difference between Tab and MIDI

#### **Tabulature**

- 1. Note onset
- 2. Note offset
- 3. Note on fingerboard
- 4. Chord information (not at all)
- 5. Quantized time grid
- 6. No velocity7. etc..

More like a score



Easy Solo Guitar Arrangement

#### MIDI

- 1. Note onset
- 2. Note offset
- 3. With velocity
- 4. etc..



## Tabulature modeling and generation

Inspired by REMI and Music Transformer,

We proposed a **Guitar Tab Generation Model** (ISMIR'20)





## Followup works

- 1. DadaGP dataset (ISMIR'21)
  - a. 26181 song scores in the GuitarPro format covering 739 musical genres
- 2. GTR-CTRL (EvoMUSART'23)
  - a. instrument and genre Conditioning
  - b. multi tracks
  - c. more token types



Electric guitar transcription (wet audio -> tab)

## Transcription

#### **Transcription** - Transcribe Audio into MIDI

- Onset and Frames (O&F)
   (by Curtis Hawthorne, ISMIR'17)
- 1. Sequence-to-Sequence Piano Transcription with Transformers (by Curtis Hawthorne, ISMIR'21)
- 1. MT3: Multi-Task Multitrack Music Transcription (by Josh Gardner, ICLR'22)





### Challenge in Transcription

- 1. electric guitar audio often comes with multi-effect (amplifier, modulation..)
- 2. most of transcription model is designed for piano in MIDI, which is in a discrete format



TENT: Technique-Embedded Note Tracking for Real-World Guitar Solo Recordings, Ting-Wei Su, Yuan-Ping Chen, Li Su, Yi-Hsuan Yang, ISMIR'19

# Transcription

Inspired previous mentioned works

We proposed a **Guitar Transcription Model** (ICASSP'22)

transcribing amplifier effected guitar audio





| Model                           | (Encoder output) |          |  |
|---------------------------------|------------------|----------|--|
| Wiodel                          | Onset F1         | Frame F1 |  |
| Onset and Frame (OAF) [14]      | 0.591            | 0.583    |  |
|                                 | 0.543            | 0.523    |  |
| CE-only Transformer [17]        | 0.554            | 0.524    |  |
| •                               | 0.568            | 0.537    |  |
|                                 | 0.598            | 0.579    |  |
| Proposed multi-loss Transformer | 0.604            | 0.573    |  |
| -                               | 0.613            | 0.582    |  |

# Transcription

Also a new Guitar Dataset - EGDB



- The DI (input signal) is recorded by musician
  - Given a Tab
  - Sight Reading Performance
    - w/ a special pickup
  - Post-processing
  - Human Curation
  - Rendered by JUCE
    - w/ different tones
- We have (tab, DI, color) pairs
  - Audio of individual string



### Followup works

- 1. Sequence-to-Sequence Network Training Methods for Automatic Guitar Transcription With Tokenized Outputs (ISMIR'23)
- 2. Note and Playing Technique Transcription of Electric Guitar Solos in Real-World Music Performance (ICASSP'23) *from Li Su's lab*
- 3. FretNet: Continuous-valued pitch contour streaming for polyphonic guitar tablature transcription (ICASSP'23)
- 4. SynthTab: Leveraging Synthesized Data for Guitar Tablature Transcription (ICASSP'24)
- GAPS: A Large and Diverse Classical Guitar Dataset and Benchmark Transcription Model (ISMIR'24)

Large Dataset!

# Followup works (Large dataset)



Transcription

| Midi Guitar         | # Tracks | Variations | Total Hours |
|---------------------|----------|------------|-------------|
| Acoustic Nylon (25) | 5501     | 7          | 1620.40     |
| Acoustic Steel (26) | 5149     | '          | 1890.95     |
| Electric Jazz (27)  | 1572     |            | 1305.73     |
| Electric Clean (28) | 2989     |            | 2793.04     |
| Electric Muted (29) | 504      | 16         | 467.47      |
| Overdriven (30)     | 1556     |            | 1534.21     |
| Distortion (31)     | 3444     |            | 3501.09     |

Table 2. SynthTab track distribution by MIDI instrument.

- 2. Finetune on their dataset

1. Pre-train

| Both of them are rendered from          |
|-----------------------------------------|
| DadaGP                                  |
| Collecting electric guitar dataset is a |
| challenge task (not in algorithmic      |
| manner)                                 |

| Name                | Audio type | Track count | Duration (m) | Note count | Scores           |
|---------------------|------------|-------------|--------------|------------|------------------|
| GuitarSet [5]       | Real       | 360         | 180          | 62,476     | No               |
| IDMT-SMT-Guitar [7] | Real       | 1173        | 340          | *5,767     | No               |
| EGDB [6]            | Real       | 240         | 118          | 35,700     | No               |
| FrançoisLeduc [4]   | Real       | 79          | 240          | 75,312     | Yes (commercial) |
| GAPS (ours)         | Real       | 300         | 843          | 259,410    | Yes              |
| SynthTab [8]        | Synthetic  | 20,715      | 786,774      | 7.5        | Yes, via DadaGP  |

Effect rendering (clean audio -> wet audio)

# Neural amplifier (effect) modeling

How electric guitar produce sound:



### Background of overdrive and distortion

- From guitarist perspective
  - Overdrive: adding a little gain boost or boosting the signal, it also make the dynamic more sensitive
  - Distortion: produces way more gain than overdrive
- From signal perspective
  - They are both the result of a non-linear characteristic curve(clipping), which causes the input signal to be clipped at the output
  - Overdrive or distortion?
     depends on the extent of non-linearity



## Traditional Method: Circuit Analysis

- White-Box
- Nodal Analysis
  - Rewrite the schematic into equations
- pros:
  - Accurate
  - User control
- cons:
  - Slow and infeasible for large circuit
  - Re-design everytime
  - Need to open up the hardware



Figure 1: Tone stack circuit with component values.

(DAfx'06) DISCRETIZATION OF THE '59 FENDER BASSMAN TONE STACK, David T. Yeh

# Traditional Method: Circuit Analysis



TS808

Klon Centaur

Need to know the circuit itself, then model it.

### Neural Network on amps or effect modelling

- Notable Researcher
  - Alec wright
    - Ph.D@Aalto University
  - Vesa Välimäki
    - Professor@Aalto University
  - Lauri Juvela
    - Assistant Professor@Aalto University
  - Marco A. Martinez-Ramirez
    - Researcher@Sony AI
  - Christian J. Steinmetz
    - Ph.D@QUML

- Company
  - Neural DSP
  - Native Instrument
  - Adobe
  - Positive Grid
  - many pedal and plugin company...

## CNN on amps modelling

#### (ICASSP'19) Deep Learning for Tube Amplifier Emulation

from Eero-Pekka Damskagg, Lauri Juvela, Etienne Thuillier, and Vesa Välimäki

Dataset: audio tagging dataset (~4 hours)

Model: Wavenet - with condition module

 $z = \tanh(W_f * x + V_f * c) \odot \sigma(W_g * x + V_g * c), \quad (2)$ 

Target Tone: Fender Bassman preamplifier which rendered from SPICE



Fig. 2. Proposed deep neural network architecture.



Fig. 3. Mean results of the MUSHRA listening test.

### RNN on amps modelling

#### (DAFx'19)Real-Time Black-Box Modelling With Recurrent Neural Networks

from Alec Wright, Eero-Pekka Damskägg, and Vesa Välimäki

Dataset: IDMT-guitar - 8 minutes and 10 seconds of audio

Model: RNN

Target Tone: Electro-Harmonix Big Muff Pi distortion/fuzz pedal and the Blackstar HT-1 combo guitar amplifier.

Table 1: Error-to-signal ratio and processing speed for the Wavenet and the proposed GRU/LSTM models of the HT-1 Amplifier. The best results are highlighted.

| Model   | Hidden<br>Size | Layers | Number of<br>Parameters | ESR   | Time (s) / s<br>of Output |
|---------|----------------|--------|-------------------------|-------|---------------------------|
| WaveNet | 16             | 10     | 24065                   | 2.2%  | 0.53                      |
| WaveNet | 8              | 18     | 11265                   | 1.2%  | 0.63                      |
| WaveNet | 16             | 18     | 43265                   | 0.79% | 0.91                      |
| GRU     | 32             | 1      | 3393                    | 3.3%  | 0.097                     |
| LSTM    | 64             | 1      | 17217                   | 1.8%  | 0.24                      |
| LSTM    | 96             | 1      | 38113                   | 1.1%  | 0.41                      |

Table 2: Error-to-signal ratio and processing speed for the Wavenet and proposed LSTM models of the Big Muff pedal. The best results are highlighted.

| Model   | Hidden<br>Size | Layers | Number of<br>Parameters | ESR  | Time (s) / s<br>of Output |
|---------|----------------|--------|-------------------------|------|---------------------------|
| WaveNet | 16             | 10     | 24065                   | 11%  | 0.53                      |
| WaveNet | 8              | 18     | 11265                   | 9.9% | 0.63                      |
| WaveNet | 16             | 18     | 43265                   | 9.2% | 0.91                      |
| LSTM    | 32             | 1      | 4513                    | 10%  | 0.12                      |
| LSTM    | 48             | 1      | 9841                    | 6.1% | 0.18                      |
| LSTM    | 64             | 1      | 17217                   | 4.1% | 0.24                      |



If there's no paired data.

Can we learn the transformation between these two distributions?

### Unsupervised learning on amps modelling

#### (ICASSP'22) ADVERSARIAL GUITAR AMPLIFIER MODELLING WITH UNPAIRED DATA

from Alec Wright, Vesa Välimäki and Lauri Juvela

Dataset: IDMT-guitar - 40 min of audio from the Ibanez 2820 guitar, and 30 min from the Career-SG

Generator: Wavenet



**Fig. 2**. Training setup for (a) the Generator and (b) Discriminator. Generator inputs, taken from the input domain X, are processed to emulate the timbre, but not content, of the target domain Y.



Fig. 1. (a) Supervised black-box modelling is based on paired audio data  $\{x_i, y_i\}_{i=0}^N$ , where the target audio  $y_i$  is obtained by processing the input audio  $x_i$  with the target device. When paired data is unavailable, we propose to use (b) unpaired data, made up of examples of a source timbre  $\{x_i\}_{i=0}^N \in X$  and examples of a target timbre  $\{y_j\}_{j=0}^M \in Y$ , where neither the content nor the timbre contained in  $x_i$  match those contained in  $y_j$ .

## Unsupervised learning on amps modelling

#### (ICASSP'22) ADVERSARIAL GUITAR AMPLIFIER MODELLING WITH UNPAIRED DATA

from Alec Wright, Vesa Välimäki and Lauri Juvela

Discriminator: MelGAN



**Table 2.** Objective and subjective results for the Single Guitar experiment. For validations losses, bold indicates best performing unsupervised model. For the listening test result bold indicates best performing of all models and 95% confidence intervals are shown.

|            |         |                       | Val                          | idation                      | Loss                 |                     | Listening |
|------------|---------|-----------------------|------------------------------|------------------------------|----------------------|---------------------|-----------|
| Mod        | el      | $\mathcal{E}_{ m ms}$ | $\mathcal{E}_{\mathrm{lms}}$ | $\mathcal{E}_{\mathrm{mel}}$ | $\mathcal{E}_{lmel}$ | $\mathcal{E}_{ESR}$ | Test      |
|            |         | Tar                   | get Ton                      | e: Clear                     | n                    |                     |           |
| Superv     | ised    | 5.12                  | 0.76                         | 0.57                         | 0.12                 | 0.003               | 81±4.1    |
| MelG       | AN      | 37.5                  | 1.47                         | 2.75                         | 0.17                 | 2.38                | 71±4.8    |
| Spectral E | Oomain  |                       |                              |                              |                      |                     |           |
| Input      | # Disc. |                       |                              |                              |                      |                     |           |
| Spect.     | 1       | 39.2                  | 3.27                         | 3.39                         | 0.39                 | 2.55                | 32±4.7    |
| Mel        | 1       | 40.0                  | 1.51                         | 2.88                         | 0.28                 | 1.27                | 46±4.4    |
| Log Spect. | 3       | 44.1                  | 0.81                         | 3.76                         | 0.18                 | 2.71                | 82±4.5    |
| Log Mel    | 3       | 46.9                  | 0.93                         | 4.07                         | 0.19                 | 1.04                | 83±3.9    |
|            | ,       | Target T              | one: Lig                     | ght Dist                     | ortion               |                     |           |
| Superv     | ised    | 2.57                  | 0.81                         | 0.28                         | 0.09                 | 0.001               | 93±3.0    |
| MelG       | AN      | 25.2                  | 2.18                         | 1.32                         | 0.18                 | 2.51                | 73±5.4    |
| Spectral D | Omain   |                       |                              |                              |                      |                     |           |
| Input      | # Disc. |                       |                              |                              |                      |                     |           |
| Spect.     | 1       | 32.5                  | 4.26                         | 2.39                         | 0.45                 | 1.49                | 35±4.0    |
| Mel        | 1       | 34.4                  | 4.12                         | 2.57                         | 0.48                 | 2.43                | 34±4.0    |
| Log Spect. | 1       | 45.3                  | 1.11                         | 4.51                         | 0.23                 | 2.18                | 81±4.8    |
| Log Mel    | 3       | 38.1                  | 1.17                         | 3.36                         | 0.21                 | 2.50                | 88.7±3.9  |
|            | 7       | arget To              | one: He                      | avy Dis                      | tortion              |                     |           |
| Superv     | ised    | 6.33                  | 2.53                         | 0.60                         | 0.19                 | 0.03                | 57±4.6    |
| MelG       | AN      | 22.4                  | 2.49                         | 1.81                         | 0.22                 | 2.04                | 92±2.8    |
| Spectral D | Oomain  |                       |                              |                              |                      |                     |           |
| Input      | # Disc. |                       |                              |                              |                      |                     |           |
| Spect.     | 1       | 28.9                  | 4.14                         | 2.70                         | 0.37                 | 2.33                | 54±5.7    |
| Mel        | 1       | 25.5                  | 7.15                         | 2.36                         | 0.60                 | 0.86                | 28±3.4    |
| Log Spect. | 1       | 32.1                  | 2.52                         | 3.25                         | 0.29                 | 3.17                | 81±4.8    |
| Log Mel    | 3       | 24.5                  | 2.55                         | 2.21                         | 0.23                 | 2.37                | 85±3.8    |



If we consider this task as a audio generation problem with clean guitar as conditional input?

# Unsupervised learning on amps modelling

(DAFx'24) Improving unsupervised clean-to-rendered guitar tone transformation using GANs and integrated unaligned clean data

(ISMIR-LBD'23) Neural amplifier modelling with several GAN variants

Dataset: EGDB, EGFxset

Generator: Wavenet

Target Tone: EGDB -> Mesa Boogie(Mesa), Marshall, Fender Twin Reverb (Ftwin),



# BD-2 as target tone



# Way to represent tone is undefined



# Way to represent tone is undefined

By text description? Clearly, insufficient for a diverse range of tones

```
"Muddy" = a tone with too much bass.
```

"Bright" = a tone with a lot of treble, sometimes too much

"Thick" = a tone with a well-crafted midrange and bass

"Thin" = a tone with not enough definition to it.

"Fuzzy" = a tone with a lot of distortion, potentially affecting the clarity of it.

## Zero-shot amp modeling

(ISMIR'24) Towards Zero-Shot Amplifier Modeling: One-to-Many Amplifier Modeling via Tone Embedding Control Positive Grid®

from Yu-Hua Chen, Yen-Tung Yeh, Yuan-Chiao Cheng, Jui-Te Wu, Yu-Hsiang Ho, Jyh-Shing Roger Jang, Yi-Hsuan Yang

Dataset: Internal dataset



Imitate the transform in device by neural network

# General concept of our proposed model



#### **Dataset**

- 30 mins of clean audio (x)
- 9 guitar amplifiers rendered audio (y)
  - High-gain
    - Boogie Mark IV (amp1), PRS Archon 100 (amp2), and Soldano SLO-100 (amp3)
  - o Low-gain
    - Fender Tweed Deluxe (amp4), Vox AC30 (amp5), and Matchless DC30 (amp6)
  - o Crunch
    - Vox AC30 Hand wired Overdriven (amp7), Friedman BE100 (amp8), and Overdriven Marshall JTM45 (amp9).

# Tone embedding visualization



**Figure 4**: A t-SNE visualization of the tone embeddings from the wet signals of the N=9 amps. Each point represents a tone embedding extracted from a wet signal, with color and shape indicating the category of the amp tone. We see 2 big cross-amp clusters and 9 small clusters for each amp, suggesting the ability of the encoder  $\mathcal E$  to distinguish between different tones based on their embeddings.

- Tone embedding encoder is trained on a larger dataset and rendered with a great diversity of amplifiers
- The t-SNE visualization shows the efficacy of capturing tone information and clustering tone from same amplifiers.

# Rerference wet signal of tone embedding module



- Paired reference
  - content and tone are identical to wet signal
- Unpaired reference
  - different content
  - o identical tone

# Objective evaluation in STFT loss

| high-gain         Amp1 Amp3         0.0420 0.0268 0.1951         0.0670 0.1254         0.1189 0.1741         0.1741 0.1208 0.1741         0.1208 0.1741         0.1208 0.1741         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.1304 0.1777         0.0618 0.0775 0.0618         0.0775 0.0618 0.0334         0.0166 0.0138         0.0334 0.0166 0.0138         0.0334 0.0166 0.0121         0.0779 0.0275 0.0275           crunch         Amp8 0.0124 0.1583 0.0760         0.0885 0.0733 0.0988 0.0775         0.0604 0.1562 0.0775 |           |      | GCN        | FiLM-GCN |                  | (                  | Concat-GCN |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|------------|----------|------------------|--------------------|------------|------------------|
| high-gain         Amp2         0.0268         0.1951         0.0670         0.1189         0.1741         0.1208           Amp3         0.0527         0.1659         0.1254         0.1143         0.1777         0.1304           Iow-gain         Amp4         0.0087         0.0698         0.0230         0.0275         0.0618         0.0775           Iow-gain         Amp5         0.0004         0.0813         0.0167         0.0138         0.0334         0.0166           Amp6         0.0014         0.0947         0.0169         0.0121         0.0779         0.0275           Amp7         0.0393         0.1022         0.0860         0.0885         0.0733         0.0988                                                  |           |      | one-to-one | LUT      | ToneEmb (paired) | ToneEmb (unpaired) | LUT        | ToneEmb (paired) |
| low-gain         Amp5         0.0004         0.0813         0.0167         0.0138         0.0334         0.0166           Amp6         0.0014         0.0947         0.0169         0.0121         0.0779         0.0275           Amp7         0.0393         0.1022         0.0860         0.0885         0.0733         0.0988                                                                                                                                                                                                                                                                                                                                                                                                                | high-gain | Amp2 | 0.0268     | 0.1951   | 0.0670           | 0.1189             | 0.1741     | 0.1208           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | low-gain  | Amp5 | 0.0004     | 0.0813   | 0.0167           | 0.0138             | 0.0334     | 0.0166           |
| Amp9 0.0035 0.1593 0.0375 <b>0.0290</b> 0.1211 0.0407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | crunch    | Amp8 | 0.0124     | 0.1583   | 0.0760           | 0.0604             | 0.1562     | 0.0775           |

# Tone embedding of unseen amplifiers

#### non-retrieval

 directly take the output of tone embedding encoder

#### nearest embedding

closet embedding seen in training data

#### mean embedding

 closet embedding among mean embedding of 9 amplifiers



### Evaluation of zero shot tone modelling

|                  | non-retrieval                          | retrieva | l-based |
|------------------|----------------------------------------|----------|---------|
|                  | $(\phi^* = \mathcal{E}(\mathbf{z}^*))$ | nearest  | mean    |
| unseen high gain | 0.2511                                 | 0.2560   | 0.2593  |
| unseen low gain  | 0.0338                                 | 0.0274   | 0.0404  |

**Table 2**: Efficacy of using different methods for FiLM-GCN (cf. Section 3.4) for zero-shot modeling of two unseen amps, measured again in complex STFT loss.

- non-retrieval embedding slightly outperform other methods on modelling highgain target
- A more versatile embedding condition can enhance the performance of unseen amplifiers

# Case study in zero shot modelling scenario



- The high-frequency content is not modelled accurately in the orange square area.
- For the quick string-bending content around frames 6,000 to 7,000, the generated harmonics are correctly damped.
- The characteristic of high gain is accurately modeled.

#### Conclusion

- 1. There is opportunity for further improvement and investigation in each transformation or modeling on the below roadmap
- 2. Guitar-related tasks can use piano-related tasks as a reference, but modifications should be made or highlighted (e.g., tablature vs. MIDI)

