1. Find a Cartesian equation of the line ℓ in $\mathbf{A}^2(\mathbb{R})$ containing the points $P = S \cap S'$ and $Q = T \cap T'$ where

$$S: x + 5y - 8 = 0$$
, $S': 3x + 6 = 0$, $T: 5x - \frac{1}{2}y = 1$, $T': x - y = 5$.

- **2.** Deterimine an equation for the line in $A^2(\mathbb{C})$ parallel to **v** and passing through $S \cap T$ in each of the following cases:
 - 1. $\mathbf{v} = (2,4)$, S: 3x 2y 7 = 0, T: 2x + 3y = 0,
 - 2. $\mathbf{v} = (-5\sqrt{2}, 7), S: x y = 0, T: x + y = 1.$
- **3.** Let ABC be a triangle in some affine space X. Consider the points C' and B' on the sides AB and AC of the triangle ABC such that

$$\overrightarrow{AC'} = \lambda \overrightarrow{BC'}$$
 and $\overrightarrow{AB'} = \mu \overrightarrow{CB'}$.

The lines BB' and CC' meet in the point M. For a fixed but arbitrary point $O \in X$ show that

$$\overrightarrow{OM} = \frac{\overrightarrow{OA} - \lambda \overrightarrow{OB} - \mu \overrightarrow{OC}}{1 - \lambda - \mu}.$$

- **4.** Consider the triangle ABC in \mathbb{E}^n with side lengths a,b,c. Let G be its centroid, H the orthocenter and I the incenter. For a fixed but arbitrary point $O \in X$, show that
 - 1. $\overrightarrow{OG} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}$,
 - 2. $\overrightarrow{OI} = \frac{a\overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC}}{a+b+c}$,
 - 3. $\overrightarrow{OH} = \frac{(\tan \hat{A})\overrightarrow{OA} + (\tan \hat{B})\overrightarrow{OB} + (\tan \hat{C})\overrightarrow{OC}}{\tan \hat{A} + \tan \hat{B} + \tan \hat{C}}$
- **5.** In some affine space, consider the angle BOB' and the points $A \in [OB]$, $A' \in [OB']$. Show that

$$\overrightarrow{OM} = m \frac{1-n}{1-mn} \overrightarrow{OA} + n \frac{1-m}{1-mn} \overrightarrow{OA}'$$

$$\overrightarrow{ON} = m \frac{n-1}{n-m} \overrightarrow{OA} + n \frac{m-1}{m-n} \overrightarrow{OA'}$$

where $M = AB' \cap A'B$ and $N = AA' \cap BB'$ and where $\overrightarrow{OB} = m \overrightarrow{OA}$ and $\overrightarrow{OB'} = n \overrightarrow{OA'}$.

- 6. Show that the midpoints of the diagonals of a complete quadrilateral are collinear.
- 7. Prove the following generalziation of Thales' theorem.

In an affine space **A** over **K** let H,H',H'' be three distinct parallel hyperplanes, and ℓ_1 and ℓ_2 be lines which are not parallel to H,H',H''. Let $P_i=\ell_i\cap H$, $P_i'=\ell_i\cap H'$, $P_i''=\ell_i\cap H''$ (for i=1,2), and let k_1,k_2 be the scalars such that

$$\overrightarrow{P_iP_i^{\prime\prime}}=k_i\overrightarrow{P_iP_i^{\prime}}\quad i=1,2.$$

Then $k_1 = k_2$.