Examples of Analysis of Loops

In the notes below, we will analyze the runtime of functions written in pseudocode.

1. Func1(n)

1 $x \leftarrow 0$;

2 for $i \leftarrow 1$ to n do

3 | $x \leftarrow x + i$;
4 | $x \leftarrow x - 1$;
5 end
6 return (x);

In example 1, lines 1, 3, 4, and 6 take constant time. Since what we are really interested in is the runtime for very large values of n, we'll ignore the execution time for lines 1 and 6, since each will only execute once regardless of the value of n. Each pass through the for-loop takes constant time c. Since the for-loop executes n times in total, the total execution time is cn. Therefore, the function is $\Theta(n)$.

We will find it helpful to use summation notation to analyze more complicated functions with nested loops. Here is how we would use a summation to analyze the function above:

$$\sum_{i=1}^{n} c = cn$$

2. Func2(n)

1 $x \leftarrow 0$;

2 for $i \leftarrow 1$ to n do

3 | for $j \leftarrow 1$ to n do

4 | $x \leftarrow x + (i - j)$;

5 | end

6 end

7 return (x);

Line 4 takes constant time c. Thus we can model this function as follows. Note that the inner summation represents the inner for-loop and the outer summation represents the outer for-loop.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c$$

We will simplify the nested summation below by starting with the inner summation.

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c = \sum_{i=1}^{n} cn = cn^{2} = \Theta(n^{2})$$

3.

```
Func3(n)

1 x \leftarrow 0;

2 for i \leftarrow 6 to n do

3 | for j \leftarrow 1 to 2n do

4 | x \leftarrow x + (i - j);

5 | end

6 end

7 return (x);
```

Analysis:

$$\sum_{i=6}^{n} \sum_{j=1}^{2n} c = \sum_{i=6}^{n} 2nc = (n-5)2nc = \Theta(n^2)$$

4.

Func4(n)

1
$$x \leftarrow 0$$
;

2 for $i \leftarrow 1$ to n do

3 | for $j \leftarrow 1$ to i do

4 | $x \leftarrow x + (i - j)$;

5 | end

6 end

7 return (x) ;

Analysis:

$$\sum_{i=1}^{n} \sum_{j=1}^{i} c = \sum_{i=1}^{n} ci = c \sum_{i=1}^{n} i = c \frac{n(n+1)}{2} = \Theta(n^{2})$$

5. Func5(n)

1 $x \leftarrow 0$;
2 for $i \leftarrow 1$ to n do

3 | for $j \leftarrow 1$ to $\lfloor \sqrt{n} \rfloor$ do

4 | $x \leftarrow x + (i - j)$;
5 | end
6 end
7 return (x);

Analysis:

$$\sum_{i=1}^{n} \sum_{j=1}^{\lfloor n \rfloor} c = \sum_{i=1}^{n} c \lfloor n \rfloor = cn \lfloor \sqrt{n} \rfloor \approx cn \times n^{1/2} = \Theta(n^{3/2})$$

6. Func6(n) $\mathbf{1} \ x \leftarrow 0;$ 2 for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to $\lfloor \sqrt{i} \rfloor$ do $x \leftarrow x + (i - j);$ 6 end 7 return (x);

Analysis:

The running time is:

$$\sum_{i=1}^n \sum_{j=1}^{\lfloor \sqrt{i} \rfloor} c = \sum_{i=1}^n c \lfloor \sqrt{i} \rfloor \approx \sum_{i=1}^n c \sqrt{i} = c \sum_{i=1}^n \sqrt{i}$$

We will analyze $\sum_{i=1}^{n} \sqrt{i}$ by using upper and lower bounds:

We will first find an upper bound. Since the root function is increasing,

$$\sum_{i=1}^{n} \sqrt{i} = \sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}$$
 (1)

$$<\underbrace{\sqrt{n} + \sqrt{n} + \sqrt{n} + \cdots + \sqrt{n}}_{\text{n terms}}$$
 (2)
= $n\sqrt{n}$

$$= n\sqrt{n} \tag{3}$$

Therefore $c_1 n \sqrt{n}$ is an upper bound on the summation.

Next, we will find a lower bound, we will do this by throwing away the lower half of the terms, and then decreasing the argument of each term to

$$\sum_{i=1}^{n} \sqrt{i} = \sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}$$
 (4)

$$> \underbrace{\sqrt{\frac{n}{2} + 1} + \sqrt{\frac{n}{2} + 2} + \dots + \sqrt{n}}_{\frac{n}{2} \text{ terms}}$$
 (5)

$$> \underbrace{\sqrt{\frac{n}{2}} + \sqrt{\frac{n}{2}} + \sqrt{\frac{n}{2}} + \dots + \sqrt{\frac{n}{2}}}_{\frac{n}{2} \text{ terms}}$$
 (6)

$$=\frac{n}{2}\sqrt{\frac{n}{2}}\tag{7}$$

$$=\frac{n}{2\sqrt{2}}\sqrt{n}\tag{8}$$

Therefore: Therefore $c_2 n \sqrt{n}$ is lower bound on the summation.

So
$$\sum_{i=1}^{n} \sqrt{i} = \Theta(n^{\frac{3}{2}})$$

7. $\begin{aligned} & & \text{Func7}(n) \\ & & \text{1} & x \leftarrow 0; \\ & & \text{2} & i \leftarrow 1; \\ & & \text{3} & \text{while} \ (i < n) \ \text{do} \\ & & \text{4} & & x \leftarrow 2x; \\ & & \text{5} & & i \leftarrow i + 1; \\ & & \text{6} & \text{end} \\ & & & \text{7} & \text{return} \ (x); \end{aligned}$

Analysis: The while-loop executes n times, doing constant work each time, so the runtime is $\Theta(n)$.

```
8. Func8(n)

1 x \leftarrow 0;

2 i \leftarrow 8;

3 while (i < n) do

4 | x \leftarrow 2x;

5 | i \leftarrow i + 1;

6 end

7 return (x);
```

Analysis: Analysis: The while-loop executes n-7 times, doing constant work each time, so the runtime is $\Theta(n)$.

Note that starting the loop at a constant other than 1 doesn't change the asymptotic runtime.

9. Func9(n)

1 $x \leftarrow 0$;

2 $i \leftarrow 1$;

3 while (i < n) do

4 $x \leftarrow 2x$;

5 $i \leftarrow i + 3$;

6 end

7 return (x);

Analysis: Now we are incrementing i by 3 each time through the loop, so the loop should iterate about a third as many times as it did in the previous problem. We can see this by creating a table:

Iteration Number	value of i
0	1
1	1 + 3
2	1 + 3*2
3	1 + 3 * 3
k	1 + 3 * k

The loop will terminate when the value of i (which is 1+3k) is greater than n. That is:

$$1 + 3k > n$$

Solving for k, this is when $k > \frac{n-1}{3}$, so the loop terminates when k is about $\frac{n}{3}$. In other words there are about $\frac{n}{3}$ iterations of the loop. Each iteration takes constant time c, so the total time is about $\frac{n}{3}c$, which is $\Theta(n)$.

10. Func10(n)

1 $x \leftarrow 0$;

2 $i \leftarrow 1$;

3 while (i < n) do

4 | $x \leftarrow 2x$;

5 | $i \leftarrow 2i$;

6 end

7 return (x);

Analysis: Now we are doubling i each time through the loop. We will use a table again:

Iteration Number	value of i
0	1
1	2
2	2^{2}
3	2^{3}
k	2^k

The loop will terminate when the value of i (which is 2^k) is greater than n. To make the math easier we will solve for when they are equal:

$$2^k = n$$

Solving for k, this is when $k \approx log_2(n)$, so now the loop terminates after about $log_2(n)$ interations. Since constant work is done in each iteration the runtime is now $\Theta(\log_2(n))$.

11. Func11(n)

1 $x \leftarrow 0$;

2 $i \leftarrow 42$;

3 while (i < n) do

4 $x \leftarrow 2x$;

 $i \leftarrow 3i;$

6 end

7 return (x);

Analysis:

Iteration Number	value of i
0	42
1	42×3
2	42×3^2
3	42×3^3
k	42×3^k

The loop will terminate when the value of i (which is 42×3^k) is greater than n. To make the math easier we will solve for when they are equal:

$$42 * 3^k = n$$

Solving for k, this is when $k = log_3(\frac{n}{42})$, . Since constant work is done in each iteration the runtime is $\Theta(\log_2(n))$.

CSE 2321: Examples of Analysis of Loops 2

Give the asymptotic running time of each the following functions in Θ notation. Justify your answer. (Show your work.)

1. Func1(n)

1 $s \leftarrow 0$;

2 for $i \leftarrow 3$ to n^2 do

3 | for $j \leftarrow 7$ to $2i \lfloor \log_5(i) \rfloor$ do

4 | $s \leftarrow s + i - j$;

5 | end

6 end

7 return (s);

Solution:

We can model the running-time T(n) of the two loops with the following summation:

$$T(n) = \sum_{i=3}^{n^2} \sum_{j=7}^{2i \log_2 i} c$$

The inner summation evaluates to $c(2i \log_5(i) - 6)$. The dominant term is $2i \log_5(i)$, so we will evaluate the following summation:

$$\sum_{i=3}^{n^2} 2i \log_5(i)$$

Upper Bound:

$$\sum_{i=3}^{n^2} 2i \log_5(i) \le \sum_{i=1}^{n^2} 2i \log_5(i) \le \sum_{i=1}^{n^2} 2n^2 \log_5(n^2) = n^2 \times 2n^2 \log_5(n^2) = 2n^4 \log_5(n^2)$$

Therefore,

$$\sum_{i=3}^{n^2} 2i \log_5(i) = O(n^4 \log(n))$$

Lower Bound:

$$\sum_{i=3}^{n^2} 2i \log_5(i) \ge \sum_{i=n^2/2+1}^{n^2} 2i \log_5(i) \ge \sum_{i=n^2/2+1}^{n^2} 2(n^2/2) \log_5(n^2/2) = (n^2/2)2(n^2/2) \log_5(n^2/2)$$

Therefore,

$$\sum_{i=3}^{n^2} 2i \log_5(i) = \Omega(n^4 \log(n))$$

Since $T(n) = O(n^4 \log_2(n))$ and $T(n) = \Omega(n^4 \log_2(n))$, we conclude that $T(n) = \Theta(n^4 \log_2(n))$.

2.

Func2(n)

1
$$s \leftarrow 0$$
;

2 for $i \leftarrow 3$ to $\lfloor \sqrt{n} \rfloor$ do

3 $\begin{vmatrix} j \leftarrow i^3; \\ 4 & \text{while } (j \geq i) \text{ do} \end{vmatrix}$

5 $\begin{vmatrix} s \leftarrow s + i - j; \\ 6 & | j \leftarrow j - 4; \end{vmatrix}$

7 | end

8 end

9 return (s) ;

Inner while loop (steps 3-7) iterates $(i^3 - i)/4$ times and takes ci^3 time.

Running time is:

$$T(n) = \sum_{i=3}^{\sqrt{n}} ci^3$$

Upper Bound:

$$\sum_{i=3}^{\sqrt{n}} ci^3 \le \sum_{i=1}^{\sqrt{n}} c(i)^3 \le \sum_{i=1}^{\sqrt{n}} c(\sqrt{n})^3 = \sqrt{n}cn^{1.5} = cn^2$$

Therefore,

$$\sum_{i=3}^{\sqrt{n}} ci^3 = O(n^2)$$

Lower Bound:

$$\sum_{i=3}^{\sqrt{n}} ci^3 \ge \sum_{i=\sqrt{n}/2+1}^{\sqrt{n}} c(i)^3 \ge \sum_{i=\sqrt{n}/2+1}^{\sqrt{n}} c(\sqrt{n}/2)^3 = \sqrt{n}/2cn^{1.5}/8$$

Therefore,

$$\sum_{i=3}^{\sqrt{n}} ci^3 = \Omega(n^2)$$

Since $T(n) = O(n^2)$ and $T(n) = \Omega(n^2)$, we conclude that $T(n) = \Theta(n^2)$.

3.

Solution:

At the end of the k'th iteration of the inner while loop (steps 4-8), variable j equals $3n^3/4^k$. Inner while loop terminates when:

$$3n^3/4^k=18$$
, or
$$3n^3/18=4^k$$
, or
$$k=\log_4(3n^3/18)=3\log_4(n)+\log_4(3/18).$$

Thus the inner while loop takes $c \log_2(n)$ times for some constant c.

At the end of the k'th iteration of the outer while loop, variable i equals $n4^k$. Outer while loop terminates when:

$$n4^k = 5n^3$$
, or $4^k = 5n^3/n = 5n^2$, or $k = \log_4(5n^2) = 2\log_4(n) + \log_4(5)$.

Thus the outer while loop takes $c_2 \log_2(n)$ times for some constant c_2 .

Since the running time of the inner while loop does not depend upon the running time of the outer while loop, the total running time is $(c \log_2(n) * c_2 \log_2(n)) = \Theta((\log_2(n))^2)$.