

Machine Learning and FinTech: PCA more

Huei-Wen Teng

National Yang Ming Chiao Tung University

Notations

$$\mathbf{x} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix} \qquad \mathbf{x}_{j} = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

The j-th feature

$$\mathbf{x}_{j} = \begin{pmatrix} x_{1j} \\ x_{2j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

The i-th observation

$$x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{in} \end{pmatrix}$$

$$\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_p)$$

$$\mathbf{X} = (x_i^{\mathsf{T}}, x_2^{\mathsf{T}}, \dots, x_n^{\mathsf{T}})$$

T: vector or matrix transpose

Notations

- □ The transpose of a matrix

$$\mathbf{x}^{\mathsf{T}} = \begin{pmatrix} x_{11} & x_{21} & \cdots & x_{n1} \\ x_{12} & x_{22} & \cdots & x_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ x_{1p} & x_{2p} & \cdots & x_{np} \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Preliminaries

- \square For a $p \times p$ matrix A, a non zero vector v, and a value λ .
- \square If $Av = \lambda v$, then v is an eigenvector of A with eigenvalue λ .
- If $\{v_1, ..., v_p\}$ is a basis, such that v_i is eigenvector of A with eigenvalue λ_i . Then,

$$A\left(v_1 \ \cdots \ v_p\right) = \left(\lambda_1 v_1 \ \cdots \ \lambda_p v_p\right) = \left(v_1 \ \cdots \ v_p\right) \begin{pmatrix} \lambda_1 \\ & \cdots \\ & \lambda_p \end{pmatrix}$$

- \square We write $AV = V\Lambda$, or $A = V\Lambda V^{-1}$, and say A is diagonalizable.

The Principal Axis Theorem

- \square A matrix is symmatric if $A^{\top} = A$

$$\square VV^{\top} = VV^{-1} = I$$

- $v_i \perp v_j$ for $i \neq j$
- $||v_i|| = 1$ for all i

The Principal Axis Theorem

□ When A is a real and symmetric matrix, A can be diagonalized, $A = V \Lambda V^{\mathsf{T}}$.

$$\Lambda = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & \lambda_p \end{pmatrix} \text{ is the diagonal matrix with }$$

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p,$$

 $V = \begin{pmatrix} v_1 \cdots v_p \end{pmatrix} \text{ is the orthonormal matrix of Eigen vectors } \\ v_1, \ldots, v_p, \text{ i.e., } V^\mathsf{T} V = I.$

Data matrix X

- For an $n \times p$ data matirx \mathbf{X} , $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is real symmetric, because $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}}\mathbf{X}$
- □ Thus, X^TX is diagonalizable with orthonormal eigen basis.

PCA

- PCA actually seeks to find $w = (w_1, \dots, w_p)^{\mathsf{T}}$ to maximize the variance of $Z_1 = \mathbf{X} w = X_1 w_1 + X_2 + w_2 + \cdots X_p w_p$.
- PAC aims at $\max_{\|w\|^2=1} \text{var}(Z_1)$
- oxdot Because Z_1 has a column mean 0, its variance equals

$$Var(Z_1) = \frac{1}{n} ||Z_1||^2 = \frac{1}{n} ||\mathbf{x}w||^2$$

PCA equals to $\max_{\|w\|^2=1} \|\mathbf{X}w\|^2$

However

$$\|\mathbf{X}w\|^{2} = w^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}w = w^{\mathsf{T}}V\Lambda V^{\mathsf{T}}w$$

$$= \tilde{w}^{T} \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{p} \end{pmatrix} \tilde{w}$$

$$= \lambda_{1}\tilde{w}_{1}^{2} + \dots + \lambda_{p}\tilde{w}_{p}^{2}$$

$$\leq \lambda_{1}$$

$$V^{\mathsf{T}}w = \begin{pmatrix} v_{1} \\ \vdots \\ v_{p} \end{pmatrix} w = \tilde{w}$$

How do we do eigen decomposition for $\mathbf{X}^{\mathsf{T}}\mathbf{X}$?

□ The eigen decomposition procedure

 $(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = V\Lambda V^{-1}$, where V is the matrix of eigenvectors, and Λ is the diagonal matrix with eigenvalues in the diagonal.

Singular Value Decomposition (SVD). See next.

Singular Value Decomposition (SVD) I

The SVD of the $N \times p$ matrix X has the form X = UDV'.

- $U = (u_1, ..., u_N)$ is an $N \times N$ orthogonal matrix. $\{u_1, ..., u_N\}$ form an orthonormal basis for the space spanned by the column vectors of X.
- $V = (v_1, ..., v_p)$ is an $p \times p$ orthogonal matrix. $\{v_1, ..., v_p\}$ form an orthonormal basis for the space spanned by the raw vector of X.
- ▶ *D* is an $N \times p$ rectangular matrix with nonzero elements along the first $p \times p$ submatrix diagonal. $diag(d_1, d_2, \ldots, d_p), d_1 \geq d_2 \geq \cdots \geq d_p \geq 0$ are the singular values of X with N > p. Let plum denote matrix and vector transpose.

Singular Value Decomposition (SVD) II

With SVD of X, we have

$$X'X = (UDV')'(UDV')$$

$$= VD'U'UDV'$$

$$= VD'DV'$$

$$= VD^{2}V'.$$

Here, $D^2 = D'D$. If you have the SVP, you already have the Eigen value decomposition for X'X.

- The columns of V (i.e., v_j , j = 1, ..., p) are the eigenvectors of X'X. They are called *principle component direction* of X.
- The diagonal values in D (i.e., $d_1, j = 1, ..., p$) are the square roots of the eigenvalues of X'X.

What do we use PCA for?

- Dimension reduction for visualization
- □ Insights? Rescaled Cluster-then-predict

Teng et al (2024)

https://www.sciencedirect.com/science/article/abs/pii/S1057521923005215

What do we use PCA for?

- Feature engineering
 - ▶ Find representative feature
 - avoid multi-collinarity problems
 - improve prediction

Tuan et al (2023)

Panel A: Unadjusted data				
In-sample test	Logistic regression	KNN	Decision Tree	Random Fores
Accuracy	0.6325	0.9459	1.0000	1.0000
Precision	0.6261	0.9422	1.0000	1.0000
Recall	0.4625	0.9378	1.0000	1.0000
Out-of-sample test				
Accuracy	0.6125	0.5689	0.5111	0.7076
Precision	0.2109	0.1847	0.1574	0.2389
Recall	0.5482	0.5227	0.4961	0.4070
Panel B: After PCA				
In-sample test				
Accuracy	0.6169	0.8578	1.0000	1.0000
Precision	0.6154	0.8544	1.0000	1.0000
Recall	0.4050	0.8260	1.0000	1.0000
Out-of-sample test				
Accuracy	0.5154	0.8109	0.7005	0.8057
Precision	0.1563	0.4372	0.2964	0.4278
Recall	0.4845	0.7735	0.6805	0.7558

Probabilistic view using Eigen decomposition (Skipped)

Suppose $\chi \sim N_p(\mathbf{0}, \Sigma)$. Find $w = (w_1, ..., w_p)^{\mathsf{T}}$ satisfying $\|w\|^2 = 1$ to maximize $\text{Var}(w^{\mathsf{T}}\chi)$

$$Var(w^{\mathsf{T}}\chi) = w^{\mathsf{T}}\Sigma w$$

$$\approx \frac{1}{n}w^{\mathsf{T}}X^{\mathsf{T}}Xw = \frac{1}{n}w^{\mathsf{T}}V\Lambda V^{\mathsf{T}}w$$

$$= \frac{1}{n}\tilde{w}^{\mathsf{T}}\Lambda\tilde{w}$$

$$= \frac{1}{n}(\lambda_1\tilde{w}_1^2 + \dots + \lambda_p\tilde{w}_p^2)$$

$$\leq \frac{1}{n}\lambda_1$$

Machine Learning and FinTech: PCA more

Huei-Wen Teng

National Yang Ming Chiao Tung University