Задача 1. Докажите, что набор векторов $\{e_1,\ldots,e_m\}\in\mathbb{R}^m$, где $e_i=(0,\ldots,1_i,\ldots,0)$, образует базис \mathbb{R}^m .

Задача 2. а) Пусть $f: \mathbb{R}^m \to \mathbb{R}^m$ — биективное линейное отображение. Докажите, что набор векторов $\{e_{1'}, \ldots, e_{m'}\}$, где $e_{i'} = f(e_i)$, образует базис \mathbb{R}^m .

б) Пусть линейное преобразование f переводит базис $\{e_1, \dots, e_m\}$ в базис. Докажите, что оно биективно.

Определение 1. Матрицей называется произвольная прямоугольная таблица чисел.

Задача 3. Запишем координаты вектора $e_{i'}$ в столбец: $\begin{pmatrix} c_{\mathbf{i}}^{\bar{i}} \\ c_{\mathbf{i}}^2 \end{pmatrix}$, а из этих столбцов составим квадратную

таблицу

$$C := \begin{pmatrix} c_1^1 & c_2^1 & \cdots & c_{\mathbf{m}}^1 \\ c_1^2 & c_2^2 & \cdots & c_{\mathbf{m}}^2 \\ \vdots & \vdots & \ddots & \vdots \\ c_1^m & c_2^m & \cdots & c_{\mathbf{m}}^m \end{pmatrix}$$

Эта таблица называется матрицей преобразования f в базисе $\{e_i\}$.

Задача 4. а) Пусть $w \in \mathbb{R}^m$ имеет координаты $w^1, \dots, w^m.$ То есть

$$w = \begin{pmatrix} w^1 \\ \vdots \\ w^m \end{pmatrix} = w^1 e_1 + w^2 e_2 + \dots + w^m e_m.$$

Найдите координаты вектора f(w) в базисе $\{e_{1'}, \ldots, e_{m'}\}$.

б) Найдите координаты вектора f(w) в базисе $\{e_1, \ldots, e_m\}$.

в) Придумайте привило умножения матрицы C на вектор-столбец координат вектора w так, чтобы $f(w) = C \cdot w$.

Задача 5. Вычислите: **a)** $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$; **б)** $\begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; Что это за линейное преобразование? **в)** $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$; **д)** $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -5 & -5 \end{pmatrix}$.

B)
$$\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix};$$
 r) $\begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix};$ **д**) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 7 \\ -5 \end{pmatrix}.$

Задача 6. Пусть f и g — два биективных отображения $\mathbb{R}^m \to \mathbb{R}^m$. Пусть $e_{i'} = fe_i$, и $e_{i''} = ge_{i'}$.

а) Докажите, что $\{e_{1''}, \ldots, e_{m''}\}$ также базис.

б) Пусть C и D — матрицы преобразований f и g в базисе $\{e_i\}$. Найдите координаты $g(f(e_1))$ в базисе $\{e_{i''}\}$, в базисе $\{e_{i'}\}$ и в базисе $\{e_i\}$.

в) Придумайте правило умножения матриц так, чтобы

$$g(f(w)) = g(C \cdot w) = D \cdot (C \cdot w) = (D \cdot C) \cdot w.$$

Задача 7. Придумайте две матрицы C и D так, чтобы: **a)** CD = D; **b)** CD = DC; **в)** $CD \neq DC$.

Задача 8. Постройте биекцию между множеством всех линейных отображений (операторов) $\mathbb{R}^m \to \mathbb{R}^m$ и множеством матриц размера m на m.

Задача 9. а) Найдите такую матрицу E, что для любой матрицы C верно: EC = CE = C.

б) Докажите, что такая матрица единственна.

в) Пусть C — матрица биективного линейного оператора. Докажите, что найдётся матрица D такая, что CD = DC = E.

г) Докажите, что множество матриц биективных линейных операторов образуют группу относительно операции умножения.

Задача 10. Придумайте, как описать аффинные преобразования с помощью матриц, векторов, их сложения и умножения.