SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

ZAVRŠNI RAD br. 1951

RAZVOJ APLIKACIJE ZA PROCJENU RIZIKA U INVESTICIJSKIM PORTFELJIMA UZ POMOĆ MONTE CARLO SIMULACIJA

Ivan Džanija

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 3. ožujka 2025.

ZAVRŠNI ZADATAK br. 1951

Pristupnik: Ivan Džanija (0036547433)

Studij: Elektrotehnika i informacijska tehnologija i Računarstvo

Modul: Računarstvo

Mentorica: izv. prof. dr. sc. Mihaela Vranić

Zadatak: Razvoj aplikacije za procjenu rizika u investicijskim portfeljima uz pomoć Monte

Carlo simulacija

Opis zadatka:

Monte Carlo simulacije su moćan alat koji investitorima pomaže u procjeni rizika i potencijalnih povrata na ulaganja u investicijskim portfeljima. Ova metoda omogućuje investitorima da bolje razumiju raspon mogućih ishoda i donose informiranije odluke o alokaciji imovine. Cilj ovog završnog rada je razviti aplikaciju koja implementira Monte Carlo simulacije za procjenu rizika i potencijalnih povrata u investicijskim portfeljima. Aplikacija treba koristiti javno dostupne podatke o kretanju cijena različitih vrijednosnih papira te omogućiti korisnicima analizu osjetljivosti portfelja na promjene tržišnih uvjeta. Ključne funkcionalnosti uključuju generiranje velikog broja simulacija kako bi se procijenio raspon mogućih ishoda, vizualizaciju rezultata u obliku distribucija i ključnih metrika rizika te intuitivno korisničko sučelje koje olakšava donošenje informiranih odluka o alokaciji imovine. U sklopu rada potrebno je detaljno dokumentirati razvijenu aplikaciju, prikazati reprezentativne slučajeve uporabe, te kritički analizirati prednosti i ograničenja razvijenog rješenja. Radu treba priložiti izvorni programski kod, korištene skupove podataka i upute za korištenje aplikacije.

Rok za predaju rada: 23. lipnja 2025.

Sadržaj

1.	Uvo	d	3
2.	Teoı	rija portfelja i matematičke osnove	5
	2.1.	Portfelj	5
	2.2.	Povrati	5
		2.2.1. Aritmetički povrat	5
		2.2.2. Logaritamski povrat	6
		2.2.3. Očekivani povrat	6
	2.3.	Volatilnost	7
	2.4.	Geometrijsko Brownovo gibanje	7
	2.5.	Monte Carlo simulacije	8
	2.6.	Cholesky dekompozicija	8
	2.7.	PCA dekompozicija	9
3.	Imn	olementacija aplikacije	11
Э.			
	3.1.	Algoritmi i komponente	11
	3.2.	Parsiranje podataka	12
	3.3.	Model kriptovalute	13
	3.4.	Model portfelja	13
	3.5.	Matematički okvir	15
	3.6.	Monte Carlo simulacija	17
4.	Rez	ultati i rasprava	19
5.	Zak	ljučak	21
Li	terat	ura	22

Sažetak		•	•	 •	•	 •		•	 •	•	•	•	 •	•	•	•	•	•	 •	•	•	•	•	• (23
Abstract .			•			 •		•	 •	•	•	•	 •		•	•	•	•	 •			•		• .	 24
A: The Code	е.		•						 		•		 							•					 25

1. Uvod

Modeliranje ponašanja portfelja je jedna od ključnih metoda pri odabiru investicijskih ulaganja ili sigurnih financijskih rezervi. U posljednjem desetljeću, kriptovalute su postale sveprisutna komponenta financijskih tržišta, karakterizirana visokom volatilnošću, nelinearnim ovisnostima i globalnom dostupnošću što kroz iznimno pouzdane izvore što kroz izrazito nepouzdane izvore. Upravljanje rizikom u takvom okruženju zahtijeva napredne alate za modeliranje budućih scenarija. Jedan od takvih alata u standarnim financijskim modelima je Monte Carlo simulacija. Monte Carlo simulacija, kao statistička metoda temeljena na ponovljenom uzorkovanju slučajnih varijabli i često korištena metoda u modeliranju ostalih financijskih instrumenata, nameće se kao ključni pristup za analizu portfelja kriptovaluta.

U ovom radu fokusira se na implementaciji Monte Carlo metode za predviđanje vrijednosti portfelja s primjenom Cholesky dekompozicije kako bi se osigurala realistična obrada korelacija između kriptovaluta koje su još uvijek specijalna skupina investicija s visokom međusobnom korelecijom.

Glavni izazov u modeliranju kriptovaluta leži u njihovoj inherentnoj nestabilnosti. Dok tradicionalne financijske instrumente karakteriziraju relativno predvidljivi obrasci, kriptovalute pokazuju ekstremne fluktuacije koje zahtijevaju precizno podešavanje parametara poput driftova i volatilnosti.

U radu je razvijen C++ programski okvir koji integrira povijesne podatke kriptovaluta, obavlja potrebne matematičke operacije i generira simulacije. Generirane simulacije omogućuju analizu različitih scenarija kretanja cijena, a korisnik može odabrati različite portfelje i vremenske okvire. Sva interakcija s korisnikom odvija se putem grafičkog sučelja koje omogućuje jednostavno upravljanje parametrima simulacije i vizualizaciju rezultata.

Rad je strukturiran kako slijedi: U drugom poglavlju opisuju se teorijske osnove teorije

portfelja, Monte Carlo metode i geometrijskog Brownovog gibanja. Treće poglavlje detaljno opisuje implementaciju algoritama, uključujući postupak Cholesky dekompozicije, brzo "parsiranje" financijskog skupa podataka i optimizacije za velike skupove podataka. U četvrtom poglavlju analiziraju se rezultati simulacija za različite konfiguracije portfelja, dok se u zaključku raspravlja o primjenjivosti modela, mogućim i očitim praktičnim problemima i smjerovima daljnjeg istraživanja.

Ovakav rad može poslužiti kao osnova za daljnje istraživanje i razvoj naprednijih modela koji će omogućiti bolje razumijevanje i upravljanje rizicima povezanima s kriptovalutama, ali i ostalim financijskim instrumentima.

2. Teorija portfelja i matematičke osnove

Teorija portfelja, čiji su začetnici Harry Markowitz i James Tobin, daje strogu matematičku definiciju financijskim pojmovima. Ključni optimizacijski problem teorije portfelja je *dualni cilj*: maksimizacija očekivanog povrata uz istovremeno minimiziranje rizika.

2.1. Portfelj

Investicijske portfelje matematički prikazujemo kao linearnu kombinaciju pojedinih investicija sa vektorom pojedinih udjela **w**.

Definicija 1. *Vektor* **w** *predstavlja udjele investicija u portfelju.*

$$\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_N \end{pmatrix}, \qquad \sum_{i=1}^N w_i = 1$$

2.2. Povrati

Povrat investicije je osnovna mjera uspješnosti investicije.

2.2.1. Aritmetički povrat

Definicija 2. Neka je P_t cijena financijskog instrumenta u trenutku t te P_{t-1} cijena istog instrumenta u trenutku t-1. Aritmetički povrat R_t definiramo kao:

$$R_t = \frac{P_t}{P_{t-1}} - 1 = \frac{P_t - P_{t-1}}{P_{t-1}} = \frac{\Delta P}{P_{t-1}}$$

Neka buduća cijena nam neće biti poznata pri investiranju te zato povrat promatramo kao slučajnu varijablu. Vidimo kako je moguće imati negativan povrat ako je cijena koju promatramo manja od početne cijene i to je upravo situacija koji pokušavamo izbjeći.

2.2.2. Logaritamski povrat

Logaritamski povrat r_t definiramo preko prirodnog logaritma omjera cijena.

Definicija 3. Neka je P_t cijena financijskog instrumenta u trenutku t te P_{t-1} cijena istog instrumenta u trenutku t-1. Logaritamski povrat r_t definiramo kao:

$$r_t = \ln\left(\frac{P_t}{P_{t-1}}\right) = \ln(P_t) - \ln(P_{t-1})$$

Logaritamski povrat u pravilu koristimo zbog njegovih pogodnih matematičkih svojstava kao što je svojstvo simetrije $\ln(a) = -\ln(1/a)$ te svojstvo aditivnosti $r_{0,T} = \sum_{t=1}^{T} r_t$.

2.2.3. Očekivani povrat

Definicija 4. Očekivani povrat promatramo kao srednju vrijednost prijašnjih povrata jer je upravo srednja vrijednost nepristran procjenitelj očekivanja slučajne varijable R_t za koji vrijedi:

$$E(R_t) = \frac{1}{N} \sum_{i=1}^{N} R_i$$

Definicija 5. Očekivani povrat portfelja je linearna kombinacija očekivanih povrata pojedinačnih asseta:

$$\mathbb{E}[R_p] = \mathbf{w}^{\mathsf{T}} \boldsymbol{\mu} = \sum_{i=1}^n w_i \mu_i$$

gdje je $\mu = (\mu_1, ..., \mu_n)^{\mathsf{T}}$ vektor očekivanih povrata.

2.3. Volatilnost

Drugi dio optimizacijskog problema teorije portfelja je smanjenje rizika. Volatilnost je upravo jednostavna mjera rizika koja ima pogodna matematička svojstva. Promatramo je kao standardnu devijaciju slučajne varijable R_t , a ima je smisla tako promatrati jer će nam upravo takva mjera kvantificirati kretanje povrata.

Definicija 6. Volatilnost investicije definiramo kao nepristran procjenitelj standardne devijacije slučajne varijable R_t :

$$\sigma_R = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} [R_i - E(R_t)]^2}$$

Definicija 7. Volatilnost portfelja mjeri se standardnom devijacijom povrata i dana je kvadratnim korijenom varijance:

$$\sigma_p = \sqrt{\mathbf{w}^{\intercal} \mathbf{\Sigma} \mathbf{w}}$$

gdje je Σ matrica kovarijance s elementima $\Sigma_{ij} = \text{Cov}(r_i, r_j)$.

2.4. Geometrijsko Brownovo gibanje

Geometrijsko Brownovo gibanje (GBM) je jedan od standardnih stohastičkih procesa za modeliranje kretanja cijena financijskih instrumenata. Diferencijalna jednadžba GBM-a je:

$$dS_{t} = \mu S_{t} dt + \sigma S_{t} dW(t)$$

gdje je W(t) Wienerov proces.

Eksplicitno rješenje GBM-a daje formulu za cijenu u trenutku t:

$$S_t = S_0 \exp\left[\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W_t\right]$$

gdje je S_0 početna cijena, μ drift, σ volatilnost i W_t Wienerov proces.

Detaljno objašnjene o GBM-u i njegovim svojstvima te kompletan derivacijski postupak možete pronaći u [1].

2.5. Monte Carlo simulacije

Monte Carlo metoda je numerička metoda koja koristi slučajno uzorkovanje za rješavanje problema. Jedan iznimno intuitivan i elegantan primjer je određivanje vrijednost broja π . Ideja je generiranje što većeg broja točaka unutar jediničnog kvadrata koji u sebi sadrži jedinični krug te određivanje omjera broja točaka unutar kruga i ukupnog broja točaka te onda preko omjera površina kvadrata i kruga dobijemo procjenu vrijednosti broja π .

U kontekstu financija, Monte Carlo simulacije koriste se za generiranje vjerojatnosnih scenarija budućih cijena. Za portfelj od *n* instrumenata, koraci su:

- 1. Generiraj nezavisne šokove $Z_i \sim N(0,1)$
- 2. Transformiraj u korelirane šokove $\mathbf{Y} = L\mathbf{Z}$ gdje je L donje trokutasta matrica Cholesky dekompozicije Σ
- 3. Ažuriraj cijene simulacije po GBM formuli za svaki instrument:

$$S_t^{(i)} = S_0^{(i)} \exp\left(\left(\mu_i - \frac{\sigma_i^2}{2}\right)\Delta t + \sigma_i Y_i \sqrt{\Delta t}\right)$$

4. Izračunaj vrijednost portfelja $V_t = \sum_{i=1}^n w_i S_t^{(i)}$

2.6. Cholesky dekompozicija

Cholesky dekompozicija je numerička metoda koja se koristi za dekompoziciju simetričnih pozitivno definitnih matrica. I upravo je matrica kovarijance Σ simetrična pozitivno definitna matrica.

Definicija 8. Neka je Σ simetrična pozitivno definitna matrica kovarijance. Tada postoji

jedinstvena donja trokutasta matrica L takva da:

$$\Sigma = LL^{\dagger}$$

gdje je L donja trokutasta matrica.

Ova faktorizacija omogućuje generiranje vektora koreliranih slučajnih varijabli iz vektora nezavisnih slučajnih varijabli.

Teorem 1. Neka je $\mathbf{Z} = (Z_1, ..., Z_n)^{\mathsf{T}}$ vektor nezavisnih N(0, 1) varijabli. Tada vektor $\mathbf{Y} = L\mathbf{Z}$ ima kovarijacijsku matricu $\mathbf{\Sigma}$.

Dokaz 1.

$$Cov(\mathbf{Y}) = \mathbb{E}[L\mathbf{Z}(L\mathbf{Z})^{\intercal}] = L\mathbb{E}[\mathbf{Z}\mathbf{Z}^{\intercal}]L^{\intercal} = L \cdot I \cdot L^{\intercal} = LL^{\intercal} = \mathbf{\Sigma}$$

2.7. PCA dekompozicija

PCA (Principal Component Analysis) je tehnika koja se koristi za redukciju dimenzionalnosti podataka i identifikaciju glavnih komponenti koje objašnjavaju što veći dio ukupne varijance podataka.

Definicija 9. Neka je Σ kovarijacijska matrica slučajnog vektora $\mathbf{X} = (X_1, X_2, ..., X_n)^{\mathsf{T}}$. Svojstvena dekompozicija matrice Σ daje:

$$\Sigma = V \Lambda V^{\mathsf{T}}$$

gdje je V ortogonalna matrica vlastitih vektora, a Λ dijagonalna matrica vlastitih vrijednosti.

Ovaj rezultat sljedi iz spektralnog teorema ?? Sada možemo definirati PCA dekompoziciju.

Definicija 10. PCA dekompozicija slučajnog vektora \mathbf{X} daje novi vektor $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^\mathsf{T}$ gdje su Y_i glavne komponente slučajnog vektora \mathbf{X} . Glavne komponente su linearne

kombinacije originalnih varijabli ${\bf X}$ i definiraju se kao:

$$\mathbf{Y} = \mathbf{V}^{\mathsf{T}} \mathbf{X}$$

gdje je ${m V}$ matrica vlastitih vektora kovarijacijske matrice ${m \Sigma}$, a ${\bf Y}_i$ su glavne komponente.

3. Implementacija aplikacije

Ovaj dio rada opisuje implementaciju aplikacije za simulaciju portfelja kriptovaluta. Aplikacija je napisana u C++ programskom jeziku i koristi isključivo standardnu biblioteku C++ za matematičke operacije i modeliranje. Za interakciju s korisnikom koristi se grafičko sučelje(implementirano sa Qt bibliotekom za C++) koje omogućuje vizualizaciju rezultata. Prikaz modela rada aplikacije je dan na slici 3.1.

3.1. Algoritmi i komponente

Aplikacija se sastoji od nekoliko ključnih komponenti:

- Parsiranje podataka: Učitavanje i obrada povijesnih podataka o cijenama kriptovaluta.
- Model kriptovaluta: Implementacija modela kriptovaluta.
- Model portfelja: Definiranje portfelja kriptovaluta.
- Matematički okvir: Implementacija matematičkih operacija potrebnih za simulaciju i modeliranje portfelja. Npr. (Množenje matrica, vektora, operacije nad vektorima i matricama te razne matrične dekompozicije).
- Monte Carlo simulacija: Generiranje simulacija budućih cijena portfelja kriptovaluta.
- **PCA dekompozicija:** Implementacija PCA dekompozicije za redukciju dimenzionalnosti podataka i identifikaciju glavnih komponenti.
- Vizualizacija rezultata: Prikaz rezultata simulacija kroz grafičko sučelje.

Slika 3.1. Model rada aplikacije

3.2. Parsiranje podataka

Efikasno parsiranje povijesnih podataka o cijenama kriptovaluta je prvi korak u simulaciji i stavaranju modela portfelja. Podatci se učitavaju iz CSV datoteka koje sadrže povijesne cijene kriptovaluta. Povijesni podatci su preuzeti sa [?]. Podatci se parsiraju u *candle* strukturu koja sadrži otvorenu, zatvorenu, najvišu i najnižu cijenu te volumen kriptovalute za svaki vremenski interval.

```
struct Candle {
  public:
    // OHLC

double open, high, low, close;
  double volume, marketcap;
  timestamp time;
  double log_return;
```

```
9  // Constructors, getters, setters, etc.
10 };
```

3.3. Model kriptovalute

Model kriptovalute je implementiran kao klasa koja sadrži povijesne podatke o cijenama kriptovalute i metode za izračunavanje povrata, volatilnosti i driftova.

```
class Cryptocurrency {
    public:
      std::string name, tick;
      std::vector<Candle> hist_data;
      bool metrics_calculated = false;
      // Drift = sum(return_i) / n;
      // Volatility = sqrt((1/n - 1) * sum((return_i - Drift)^2)
      double drift, volatility;
10
      // Constructors, getters, setters, etc.
11
12
      void calculate_metrics();
      void reevaluate_metrics();
14
      void individual_monte_carlo(int sim_count, int
15
          forecast_days);
  };
```

3.4. Model portfelja

Model portfelja je implementiran kao klasa koja sadrži vektor kriptovaluta i njihove udjele u portfelju.

```
class Portfolio {
   private:
   std::vector<std::string> _asset_names;
```

```
std::unordered_map < Cryptocurrency, double,</pre>
          Cryptocurrency::Hash> _assets;
     public:
       // Covariance matrix
       Doubles_Matrix aligned_log_return_matrix;
       Doubles_Matrix covariance_matrix;
       std::vector<double> aligned_means;
10
       std::vector < double > aligned_volatilities;
11
12
       timestamp aligned_start = timestamp();
       timestamp aligned_end = timestamp();
14
       timestamp aligned_stamp = timestamp();
15
       bool aligned_returns_calculated = false;
16
       bool covariance_matrix_calculated = false;
17
       bool aligned_metrics_calculated = false;
18
19
       void add_asset(const Cryptocurrency &crypto, double
20
          ammount);
21
       void remove_asset(const Cryptocurrency &crypto, double
22
          ammount);
23
       Cryptocurrency get_asset(const std::string &name) const;
24
25
       std::vector<std::string> &get_asset_names();
26
       Doubles_Matrix &aligned_log_returns(timestamp start);
       Doubles_Matrix &calculate_covariance(timestamp start);
29
       int calculate_aligned_metrics(timestamp start);
30
       std::vector < Doubles_Matrix > monte_carlo(int simulations,
31
          int steps,
                                                  timestamp start);
32
       int PCA(timestamp start, int num_components,
33
```

3.5. Matematički okvir

Matematički okvir aplikacije implementira osnovne matematičke operacije nad vektorima i matricama, kao što su množenje matrica i vektora te razne matrične dekompozicije. Sve metode koriste samo standardnu biblioteku C++. Cholesky dekompozicija je implementirana kao metoda koja prima kovarijacijsku matricu i matricu L u koju se sprema donja trokutasta matrica dekompozicije te metoda vraća int koji označava uspješnost dekompozicije. Algoritam radi točno prema koracima matematične notacije. Znamo da je matrica kovarijance uvijek simetična i pozitivno definitna, pa je Cholesky dekompozicija uvijek moguća. QR dekompozicija je implementirana kao metoda koja prima ulaznu matricu te matrice Q i R u koje se spremaju rezultati dekompozicije. Implemetacija QR dekompozicije koristi Householderove refleksije za dekompoziciju matrice.

Kod 3..1: Metode implementirane u matematičkom okviru

```
std::vector<T> scalar_multiply(const std::vector<T> &v, T
     scalar);
  template <typename T>
15
  std::vector<std::vector<T>>
  matrix_scalar_multiply(const std::vector<std::vector<T>>
     &matrix, T scalar);
18
  template <typename T>
19
  std::vector<T> vector_add(const std::vector<T> &v1, const
     std::vector<T> &v2);
21
  template <typename T>
22
  std::vector<T> vector_subtract(const std::vector<T> &v1,
                                   const std::vector<T> &v2);
24
25
  template <typename T>
26
  std::vector<T> vector_multiply(const std::vector<T> &v1,
27
                                   const std::vector<T> &v2);
29
  template <typename T>
30
  std::vector<std::vector<T>>
31
  matrix_multiply(const std::vector<std::vector<T>> &A,
                   const std::vector<std::vector<T>> &B);
33
34
  template <typename T>
35
  std::vector<std::vector<T>>
  matrix_subtract(const std::vector<std::vector<T>> &A,
                   const std::vector<std::vector<T>> &B);
38
39
  template <typename T>
42
  int QR_decomposition(const std::vector<std::vector<T>> &matrix,
```

```
std::vector<std::vector<T>> &Q,
44
                         std::vector<std::vector<T>> &R);
45
  template <typename T> int normalize(std::vector<T> &v);
47
48
  template <typename T>
  int matrix_inverse(const std::vector<std::vector<T>> &input,
                      std::vector<std::vector<T>> &output) {
51
52
  template <typename T>
53
  std::vector<T> eigen_values(const std::vector<std::vector<T>>
     &matrix);
55
  template <typename T>
  int eigen_pairs(const std::vector<std::vector<T>> &matrix,
                   std::vector<std::pair<T, std::vector<T>>>
                      &results);
```

3.6. Monte Carlo simulacija

Monte Carlo simulacija je implementirana kao metoda klase Portfolio koja generira simulacije budućih cijena portfelja kriptovaluta. Simulacije koriste model geometrijskog Brownovog gibanja za generiranje budućih cijena te Cholesky dekompoziciju za osiguranje uzoračke korelacije između kriptovaluta. Implementacija Monte Carlo simulacija prvo koristi metodu za izračuvanje kovarijacijske matrice portfelja iz povijesnih podataka kriptovaluta. Također se može postaviti početni datum simulacije, broj simulacija i broj koraka simulacije. Zatim se generiraju nezavisne slučajne varijable($\sim N(0,1)$) koje se transformiraju u korelirane šokove pomoću Cholesky dekompozicije. Zatim se ažuriraju cijene simulacije koristeći geometrijsko Brownovo gibanje prema formuli: 2.4. Primjer rezultata simulacije je dan na slici 3.2.

Slika 3.2. Primjer Monte Carlo simulacije portfelja kriptovaluta (100 simulacija, 60 dana)

4. Rezultati i rasprava

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam

rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

5. Zaključak

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Literatura

[1] J. Campana i C. Grenon, "Deriving the black-scholes formula from brownian motion", 2021.

Sažetak

Razvoj aplikacije za procjenu rizika u investicijskim portfeljima

uz pomoć Monte Carlo simulacija

Ivan Džanija

Unesite sažetak na hrvatskom.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem.

Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec

ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh

lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam

rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit

blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris

lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Ključne riječi: prva ključna riječ; druga ključna riječ; treća ključna riječ

23

Abstract

Development of an application for risk assessment in investment portfolios with the help of Monte Carlo simulations

Ivan Džanija

Enter the abstract in English.

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Keywords: the first keyword; the second keyword; the third keyword

24

Privitak A: The Code

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam

rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.