NP-complétude de 3-sat

Dans ce document, on démontrer la **NP**-complétude du problème de satisfiabilité d'une formule sous 3-CNF, noté 3-SAT :

3-SAT : Entrée. Une formule
$$\varphi$$
 sous forme 3-CNF Sortie. La formule φ est-elle satisfiable ?

I. Quelques rappels.

On se fixe un ensemble fini de variables \mathcal{Q} . On notera $\mathbb{B} = \{ \boldsymbol{V}, \boldsymbol{F} \}$ l'ensemble des booléens.

I.1. | Valuations & satisfiabilité.

Une valuation (ou un environnent propositionnel) est une fonction de la forme $\rho: \mathcal{Q} \to \mathbb{B}$. À une variable, on assigne vrai ou faux.

Pour une formule logique φ , on associe $[\![\varphi]\!]: \mathbb{B}^{\mathbb{Q}} \to \mathbb{B}$ une fonction booléenne. À une valuation, on associe donc vrai ou faux.

Une formule φ est satisfiable si on peut l'interpréter à vrai, *i.e.* s'il existe une valuation ρ telle que $[\![\varphi]\!](\rho) = \mathbf{V}$.

Attention, il ne faut pas confondre satisfiable $(\exists \rho)$ et tautologique/valide $(\forall \rho)$.

I.2. | Formes normales conjonctives.

Une formule sous n-CNF (conjunctive normal form), c'est une formule de la forme

$$\cdots \wedge \underbrace{(\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k)}_{k \leq n} \wedge \cdots,$$

où chaque ℓ_i est un littéral donc soit $p \in \mathcal{Q}$ soit $\neg p$ avec $p \in \mathcal{Q}$.

Le terme dans l'accolade est appelé clause. La taille (i.e. le nombre de littéraux) de chacune des clauses est inférieure à n.

On n'a pas de contraintes sur le nombre de clauses (*i.e.* on peut avoir autant de \land que l'on veut).

Le problème n-SAT, c'est, dans chaque clause, choisir (au moins) un littéral pour le valuer à vrai.

I.3. Le problème SAT.

Le problème

SAT : Entrée. Une formule φ Sortie. La formule φ est-elle satisfiable ?

est \mathbf{NP} -complet. C'est le théorème de $\mathit{Cook\text{-}Levin}$ et il est admis en $\mathrm{MP2I/MPI}$.

Dans ce théorème, il n'y a pas de contrainte sur la forme de φ .

Pour résoudre ce problème, on applique l'algorithme de Quine. C'est un algorithme force brute légèrement optimisé.

Algorithme de Quine

On choisit $x \in \text{vars}(\varphi)$ (par contrainte ou au hasard).

 $Premi\`ere\ tentative: x \leftarrow \textbf{\textit{V}}$

On tente de résoudre φ avec $x \leftarrow \mathbf{V}$.

Si on réussit, on s'arrête : la formule est satisfiable.

 $Seconde\ tentative: x \leftarrow \textit{\textbf{F}}$

On tente de résoudre φ avec $x \leftarrow \mathbf{F}$.

Si on réussit, on s'arrête : la formule est satisfiable.

Dernier cas

Si les deux tentatives ont raté, la formule n'est pas satisfiable.

I.4. Réductions polynomiales.

On notera \mathcal{E}_P l'ensemble des entrées d'un problème P. On notera P^+ l'ensemble des *instantes positives* de P, c'est-à-dire les solutions du problème.

On dit qu'un problème Q se réduit à P dès lors qu'il existe une fonction $f:\mathscr{C}_Q\to\mathscr{C}_P$ calculable en temps polynomial telle que :

$$w \in Q^+ \Longleftrightarrow f(w) \in P^+.$$

On notera alors $Q \leq_{\mathbf{p}} P$.

Lorsqu'on a $Q \leqslant_{\mathbf{p}} P$, il faut le comprendre par Q est plus simple à résoudre que P.

I.5. Problèmes NP-difficiles.

Les problèmes \mathbf{NP} -difficiles sont les problèmes plus compliqués à résoudre que tous les problèmes dans \mathbf{NP} (*i.e.* plus compliqués que tous les problèmes vérifiables en temps polynomial).

Un problème P est \mathbf{NP} -difficile si, quel que soit $Q \in \mathbf{NP}$, on a la réduction polynomiale $Q \leqslant_{\mathbf{p}} P$.

Pour démontrer qu'un problème P est \mathbf{NP} -difficile, il suffit de trouver un problème Q \mathbf{NP} -difficile tel que $Q \leqslant_{\mathbf{p}} P$.

S'il existe un problème \mathbf{NP} -difficile plus simple que le problème P alors P est \mathbf{NP} -difficile.

I.6. NP-complétude?

Un problème est **NP**-complet s'il est **NP**-difficile et qu'il est dans la classe **NP**.

Les problèmes \mathbf{NP} -complets sont les problèmes les plus difficiles de la classe \mathbf{NP} .

II. Le problème 3-SAT.

Pour démontrer la **NP**-complétude de 3-sat, on a deux propriétés à démontrer :

- (1) le problème 3-sat est dans NP (la partie simple);
- (2) le problème 3-sat est **NP**-difficile (la partie complexe).

II.1. 3-SAT est dans NP.

Là, c'est la partie simple : vérifier qu'une formule est satisfiable. Pour cela, on a le droit à des données, un *certificat*.

Dans notre cas, on peut choisir comme certificat ρ une valuation. Pour vérifier que $[\![\varphi]\!](\rho) = \mathbf{V}$, il suffit de calculer $[\![\varphi]\!](\rho)$.

Cette vérification se réalise en temps polynomial (en temps linéaire, même). D'où, 3-sat est dans **NP**.

II.2. 3-SAT est NP-difficile.

On procède par réduction au problème SAT. Pour cela, on commence par se donner une formule φ et on va construire une formule ψ sous 3-CNF telle que φ est satisfiable si, et seulement si, ψ l'est.

La difficulté vient du fait que φ n'a pas de contrainte sur sa forme. Par exemple, si on suppose que φ est sous CNF, alors il faut réussir à transformer une clause de taille inconnue en une 3-clause.

L'idée de cette preuve, est qu'on va s'intéresser aux sous-formules de la formule φ . Pour cela, pour chaque sous-formule $\vartheta \subseteq \varphi$, [1] on construit deux objets

^[1]On utilise cette notation ensembliste, même si une formule n'est pas un ensemble.

- une variable propositionnelle x_{ϑ} ;
- une formule K_{ϑ} .

L'idée est qu'on **ne peut pas** inclure une sous-formule (qui est plus qu'un littéral) directement dans K_{φ} . On veut se limiter à des formules simples, pour pouvoir construire simplement la 3-CNF.

Ainsi, à la place de sous-formules directement, on donne des relations sur les x_{ϑ} pour $\vartheta \subseteq \varphi$.

En ajoutant les x_{ϑ} , on définit un nouvel ensemble de variable

$$\mathcal{Q}' = \mathcal{Q} \cup \{x_{\vartheta} \mid \vartheta \subseteq \varphi\}.$$

II.2.a. Définition des K_{η} puis de Ω .

On définit :

- ▶ pour $\vartheta = p$ avec $p \in \mathcal{Q}$, on pose $K_{\vartheta} = p$;
- pour $\vartheta = \top$, on pose $K_{\vartheta} = p \vee \neg p$;
- ▶ pour $\vartheta = \bot$, on pose $K_{\vartheta} = p \land \neg p$;
- pour $\vartheta = \neg \gamma$, on pose $K_{\vartheta} = \neg x_{\gamma}$;
- pour $\vartheta = \gamma \wedge \delta$, on pose $K_{\vartheta} = x_{\delta} \wedge x_{\gamma}$;
- ▶ pour $\vartheta = \gamma \vee \delta$, on pose $K_{\vartheta} = x_{\delta} \vee x_{\gamma}$;
- pour $\vartheta = \gamma \to \delta$, on pose $K_{\vartheta} = x_{\delta} \vee \neg x_{\gamma}$.

Tous les K_{ϑ} sont des 2-CNF.

Posons la formule Ω , une formule sous 3-CNF équivalente à

$$\Omega \equiv \bigwedge_{\vartheta \subset \varphi} (K_\vartheta \leftrightarrow x_\vartheta),$$

où les K_{ϑ} ne sont pas des variables, mais bien des morceaux de formules.

Justifions de la bonne définition de Ω . On commence par développer le \leftrightarrow en deux implications, puis en une 2-CNF. Ensuite, on remplace K_{ϑ} dans cette définition. On n'est pas garanti d'obtenir une 3-CNF à ce point, car il peut y avoir des \wedge dans une des futures clauses. Pour cela, on utilise les loi de De Morgan.

Cette formule permet de conserver la « structure » de la formule originelle φ . En effet, si elle est vraie, c'est que toutes les variables x_{ϑ} coordonnent avec les valuations de K_{ϑ} .

On définit la formule $\psi = \Omega \wedge x_{\varphi}$. Cette formule est sous forme normale conjonctive et même 3-CNF. De plus, notre construction est polynomiale en la taille de φ .^[2]

Il ne reste qu'une propriété à démontrer :

 φ satisifiable $\iff \psi$ satisifiable,

ce que l'on fait par double-implication.

II.2.b. | Premier sens de l'implication.

On veut montrer le sens « \Longrightarrow ». On suppose φ satisfiable, et on montre que ψ satisfiable.

Soit $\rho \in \mathbb{B}^{\mathbb{Q}}$ tel que $[\![\varphi]\!](\rho) = \mathbf{V}$.

Là, c'est pas trop compliqué, il suffit de construire une valuation μ sur \mathcal{Q}' telle que $\llbracket \psi \rrbracket^{\mu} = \mathbf{V}$.

On pose

$$\begin{split} \mu: \mathcal{Q}' &= \mathcal{Q} \sqcup (\mathcal{Q}' \smallsetminus \mathcal{Q}) \longrightarrow \mathbb{B} \\ p &\in \mathcal{Q} \longmapsto \rho(p) \\ x_{\vartheta} &\in \mathcal{Q}' \smallsetminus \mathcal{Q} \longmapsto \llbracket \vartheta \rrbracket(\rho). \end{split}$$

 $^{^{[2]}}$ Justifions . . . Il ne faut pas voir les sous-formules ϑ de φ comme des sous-ensembles. On n'en a pas $2^{|\varphi|}$, mais bien un nombre polynomial (en réalité, c'est même linéaire en nombre d'opérateurs $^{[3]}$) en la taille de φ . Ceci justifie bien que notre construction est polynomiale.

 $^{^{[3]}}$ En réalité, pour une formule φ avec n connecteurs d'arité 2, il y en a exactement 2n+1. Ceci se montre très bien par induction sur une formule à n connecteurs.

On peut démontrer aisément^[4] que l'on a, quelle que soit $\vartheta \subseteq \varphi$, on ait $[\![K_{\vartheta}]\!](\mu) = [\![x_{\vartheta}]\!](\mu)$. Ceci est vrai par la définition de μ .

Par conjonction \wedge et équivalence \leftrightarrow , on en déduit que $\llbracket\psi\rrbracket(\mu)=$ \boldsymbol{V} . En effet, l'égalité des valuations de K_{ϑ} et de x_{ϑ} donne que l'équivalence $K_{\vartheta} \leftrightarrow x_{\vartheta}$ est valué à vrai. Ceci étant vrai pour toute formule, on peut conclure.

Aussi, on a
$$\llbracket x_{\varphi} \rrbracket(\mu) = \llbracket \varphi \rrbracket(\mu) = \llbracket \varphi \rrbracket(\rho) = \mathbf{V}$$
.

On en déduit que ma formule ψ est satisfiable si φ l'est. À présent, montrons l'autre implication.

II.2.c. Deuxième sens de l'implication.

On veut montrer le sens « \iff ».

On va commencer par montrer : quelles que soient ρ et μ , si on a $\llbracket\Omega\rrbracket(\mu) = \mathbf{V}$ alors $\mu(x_{\varphi}) = \llbracket\varphi\rrbracket(\rho)$. Ce qu'on démontre ici, c'est que Ω assure la « structure » de φ .

Pour démontrer cela, on commence par montrer que, toujours en supposant $[\![\Omega]\!](\mu) = \mathbf{V}$, pour toute sous-formule $\vartheta \subseteq \varphi$, on a $\mu(x_{\vartheta}) = [\![\vartheta]\!](\rho)$. Ceci se démontre simplement par induction sur la sous-formule ϑ . Le résultat sur φ se conclut de cette généralisation.

$$\llbracket K_{\gamma \wedge \delta} \rrbracket(\mu) = \llbracket x_{\gamma} \wedge x_{\delta} \rrbracket(\mu) = \llbracket x_{\gamma} \rrbracket(\mu) \cdot \llbracket x_{\delta} \rrbracket(\mu) = \llbracket \gamma \rrbracket(\mu) \cdot \llbracket \delta \rrbracket(\mu) = \llbracket \gamma \wedge \delta \rrbracket(\mu).$$

$$\mu(x_\vartheta) \underset{(\star)}{=} \llbracket K_\vartheta \rrbracket(\mu) = \llbracket x_\gamma \wedge x_\delta \rrbracket(\mu) = \mu \bigl(x_\gamma \bigr) \cdot \mu(x_\delta) \underset{(\star\star)}{=} \llbracket \gamma \rrbracket(\mu) \cdot \llbracket \delta \rrbracket(\mu) = \llbracket \gamma \wedge \delta \rrbracket(\mu).$$

^[4]On procède par induction sur la formule ϑ , et on procède cas par cas. Par exemple, pour le cas $\vartheta=\gamma\wedge\delta$:

 $^{^{[5]} \}mathrm{Un}$ exemple de cas : si $\vartheta = \gamma \wedge \delta$ alors

L'égalité (\star) est vraie car $[\![K_\vartheta \leftrightarrow x_\vartheta]\!] = \boldsymbol{V}$ par hypothèse. L'égalité $(\star \star)$ est vraie par hypothèse d'induction.

On suppose ψ satisfiable, et on montre que φ satisfiable. Soit une valuation $\mu \in \mathbb{B}^{\mathbb{Q}'}$ telle que $\llbracket \psi \rrbracket (\mu) = \mathbf{V}$.

Ceci implique deux résultats :

- $[\![\Omega]\!](\mu) = V$, on peut donc appliquer les remarques précédentes ;
- et $[\![\varphi]\!](\mu) = \mathbf{V}$.

Il suffit de poser $\rho = \mu|_{\mathscr{O}'}$ et on a bien que $[\![\varphi]\!](\rho) = \mathbf{V}$.

Ainsi, la formule φ est satisfiable. Ceci conclut la preuve de l'équivalence, et donc la réduction.

III. Conclusion.

L'idée de la preuve, c'est qu'on peut ajouter autant de \wedge et de variables que l'on veut. La seule contrainte que l'on a dans une 3-CNF, c'est la taille d'une clause.

Cette preuve est au programme de MP2I/MPI et c'est parfois un thème qui tombe à l'oral.