Using Machine Learning Algorithms in Realized Volatility Forecasting in Presence of Jumps

lakov Grigoryev

New Economic School

April 16, 2021

Notation:

- P_t is the asset price at time $t \in [0, T]$
- $p_t = \log P_t$
- ullet $r_{t,\Delta t}=p_{t+\Delta t}-p_t$ is the asset return

Notation:

- P_t is the asset price at time $t \in [0, T]$
- $p_t = \log P_t$
- ullet $r_{t,\Delta t}=p_{t+\Delta t}-p_t$ is the asset return

Diffusion equation:

$$dp_t = \mu_t dt + \sigma_t dW_t + \kappa_t dq_t, \ 0 \le t \le T,$$

where

- W_t is Brownian motion
- μ_t and σ_t are predictable processes
- σ_t is independent of W_t
- ullet q_t is the number of jumps with time-varying intensity κ_t

Asset return:
$$r_{t,\Delta t} = p_{t+\Delta t} - p_t$$
Diffusion equation: $dp_t = \mu_t dt + \sigma_t dW_t + \kappa_t dq_t$, $0 \le t \le T$

Realized variance:

$$\mathsf{RV}_t^2 = \sum_{i=0}^{m-1} r_{t+\frac{\Delta t}{m}\cdot i, \frac{\Delta t}{m}}^2 \xrightarrow[m \to \infty]{} \underbrace{\int\limits_{0}^{\Delta t} \sigma_{t+\tau}^2 d\tau}_{\mathsf{IV}_t} + \underbrace{\sum_{t < \tau \le t+\Delta t} \kappa_{\tau}^2}_{\mathsf{K}_t}$$

Asset return: $r_{t,\Delta t} = p_{t+\Delta t} - p_t$ Diffusion equation: $dp_t = \mu_t dt + \sigma_t dW_t + \kappa_t dq_t$, $0 \le t \le T$

Realized variance:

$$\mathsf{RV}_t^2 = \sum_{i=0}^{m-1} r_{t+\frac{\Delta t}{m},i,\frac{\Delta t}{m}}^2 \xrightarrow[m \to \infty]{} \underbrace{\int\limits_{0}^{\Delta t} \sigma_{t+\tau}^2 d\tau}_{\mathsf{IV}_t} + \underbrace{\sum_{t < \tau \leq t+\Delta t} \kappa_{\tau}^2}_{\mathsf{K}_t}$$

Realized volatility:
$$RV_t = \sqrt{\sum\limits_{i=0}^{m-1} r_{t+\frac{\Delta t}{m} \cdot i, \frac{\Delta t}{m}}^2}$$

Theory: Decomposition into Continuous and Jump Parts

$$\underbrace{\mathsf{Consistency}}_{\mathsf{Consistency}} \colon \mathsf{RV}_t^2 \xrightarrow[m \to \infty]{p} \mathsf{IV}_t + K_t$$

<u>Goal</u>: find observable C_t and J_t such that $RV_t^2 = C_t + J_t$,

$$C_t \xrightarrow[m \to \infty]{p} \mathsf{IV}_t, \text{ and } J_t \xrightarrow[m \to \infty]{p} K_t$$

Theory: Decomposition into Continuous and Jump Parts

Consistency: $RV_t^2 \xrightarrow[m \to \infty]{p} IV_t + K_t$

<u>Goal</u>: find observable C_t and J_t such that $RV_t^2 = C_t + J_t$,

$$C_t \xrightarrow[m o \infty]{p} \mathsf{IV}_t, \text{ and } J_t \xrightarrow[m o \infty]{p} K_t$$

Approach: use median realized variance estimator¹:

$$C_t \equiv \mathsf{MedRV}_t = rac{\pi}{6 - 4\sqrt{3} + \pi} \left(rac{m}{m-2}
ight) imes$$

$$\times \sum_{i=1}^{m-2} \operatorname{Med} \left(\left| r_{t+\frac{\Delta t}{m}\cdot (i-1),\frac{\Delta t}{m}} \right|, \left| r_{t+\frac{\Delta t}{m}\cdot i,\frac{\Delta t}{m}} \right|, \left| r_{t+\frac{\Delta t}{m}\cdot (i+1),\frac{\Delta t}{m}} \right| \right)^2,$$

$$J_t = \mathsf{RV}_t^2 - C_t$$

¹Andersen et al. (2012, JoE)

Theory: HAR-CJ Model (modified)

Denote:

$$c_t = \log C_t, \quad j_t = \log(J_t + 1)$$

$$c_t^n = \frac{\sum_{i=0}^{n-1} c_{t-i}}{n}, \quad j_t^n = \frac{\sum_{i=0}^{n-1} j_{t-i}}{n}$$

Theory: HAR-CJ Model (modified)

Denote:

$$c_t = \log C_t, \quad j_t = \log(J_t + 1)$$

$$c_t^n = \frac{\sum_{i=0}^{n-1} c_{t-i}}{n}, \quad j_t^n = \frac{\sum_{i=0}^{n-1} j_{t-i}}{n}$$

Daily HAR-CJ model (modified to estimate both parts of RV_t^2):

$$c_{t} = \beta_{0}^{c} + \beta_{cd}^{c} c_{t-1}^{1} + \beta_{cw}^{c} c_{t-1}^{5} + \beta_{cm}^{c} c_{t-1}^{22} + \beta_{jd}^{c} j_{t-1}^{1} + \beta_{jw}^{c} j_{t-1}^{5} + \beta_{jm}^{c} j_{t-1}^{22} + \epsilon_{t}^{c}$$

$$j_{t} = \beta_{0}^{j} + \beta_{cd}^{j} c_{t-1}^{1} + \beta_{cw}^{j} c_{t-1}^{5} + \beta_{cm}^{j} c_{t-1}^{22} + \beta_{jd}^{j} j_{t-1}^{1} + \beta_{jw}^{j} j_{t-1}^{5} + \beta_{jm}^{j} j_{t-1}^{22} + \epsilon_{t}^{j}$$

Theory: HAR-CJ Model (modified)

Denote:

$$c_t = \log C_t, \quad j_t = \log(J_t + 1)$$

$$c_t^n = \frac{\sum_{i=0}^{n-1} c_{t-i}}{n}, \quad j_t^n = \frac{\sum_{i=0}^{n-1} j_{t-i}}{n}$$

Daily HAR-CJ model (modified to estimate both parts of RV_t^2):

$$c_{t} = \beta_{0}^{c} + \beta_{cd}^{c} c_{t-1}^{1} + \beta_{cw}^{c} c_{t-1}^{5} + \beta_{cm}^{c} c_{t-1}^{22} + \beta_{jd}^{c} j_{t-1}^{1} + \beta_{jw}^{c} j_{t-1}^{5} + \beta_{jm}^{c} j_{t-1}^{22} + \epsilon_{t}^{c}$$

$$j_{t} = \beta_{0}^{j} + \beta_{cd}^{j} c_{t-1}^{1} + \beta_{cw}^{j} c_{t-1}^{5} + \beta_{cm}^{j} c_{t-1}^{22} + \beta_{jd}^{j} j_{t-1}^{1} + \beta_{jw}^{j} j_{t-1}^{5} + \beta_{jm}^{j} j_{t-1}^{22} + \epsilon_{t}^{j}$$

• 'd' is 'day', 'w' is 'week', 'm' is 'month'

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

Decision tree:

Node N, data X

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, t \in [k, T]$$
Target: $(c_t, j_t), t \in [k, T]$

- Node N, data X
- Q(X, F, T) > 0?

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, t \in [k, T]$$

Target: $(c_t, j_t), t \in [k, T]$

- Node N, data X
- Q(X, F, T) > 0?
- Yes \Rightarrow feature F and threshold T (optimizing Q(X, F, T)):
 - $F < T \Rightarrow$ subtree with node N_{TRUE} , data X_{TRUE}
 - $F \geq T \Rightarrow$ subtree with node N_{FALSE} , data X_{FALSE}

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, t \in [k, T]$$

Target: $(c_t, j_t), t \in [k, T]$

- Node N, data X
- Q(X, F, T) > 0?
- Yes \Rightarrow feature F and threshold T (optimizing Q(X, F, T)):
 - $F < T \Rightarrow$ subtree with node N_{TRUE} , data X_{TRUE}
 - $F \geq T \Rightarrow$ subtree with node N_{FALSE} , data X_{FALSE}
- No \Rightarrow N is a leaf node

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

- Node N, data X
- Q(X, F, T) > 0?
- Yes \Rightarrow feature F and threshold T (optimizing Q(X, F, T)):
 - $F < T \Rightarrow$ subtree with node N_{TRUE} , data X_{TRUE}
 - $F \geq T \Rightarrow$ subtree with node N_{FALSE} , data X_{FALSE}
- No \Rightarrow N is a leaf node

$$Q(X, F, T) = H(X) - \frac{|X_{TRUE}|}{|X|}H(X_{TRUE}) - \frac{|X_{FALSE}|}{|X|}H(X_{FALSE}),$$
 where $H(X) = \min_{c \in \mathbb{R}} \frac{1}{|X|} \sum_{t=k}^{T} (y^t - c)^2$

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

Random Forest:

• Bootstrap n_{tree} samples

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

Random Forest:

- Bootstrap n_{tree} samples
- On each sample: decision tree with a reduced number of regressors

Regressors:
$$c_{t-1}, \ldots, c_{t-k}, j_{t-1}, \ldots, j_{t-k}, \ t \in [k, T]$$

Target: $(c_t, j_t), \ t \in [k, T]$

Random Forest:

- Bootstrap n_{tree} samples
- On each sample: decision tree with a reduced number of regressors
- Return the mean of n_{tree} predictions

General neural network:

• neurons, grouped in layers, connected to each other

General neural network:

- neurons, grouped in layers, connected to each other
- weights of neurons

General neural network:

- neurons, grouped in layers, connected to each other
- weights of neurons
- (non-linear) activation functions for each layer

General neural network:

- neurons, grouped in layers, connected to each other
- weights of neurons
- (non-linear) activation functions for each layer

A single hidden layer neural network can approximate any non-linear function given enough number of neurons in this hidden layer.²

²Donaldson & Kamstra (1996, J. Forecast.)

Theory: LSTM Model

Legend:

Layer Pointwize op Copy

\$\frac{1}{2}\$

• from Oxford-Man Institute of Quantitative Finance library

- from Oxford-Man Institute of Quantitative Finance library
- daily realized volatility and median realized variance estimator

- from Oxford-Man Institute of Quantitative Finance library
- daily realized volatility and median realized variance estimator
- S&P 500 Index

- from Oxford-Man Institute of Quantitative Finance library
- daily realized volatility and median realized variance estimator
- S&P 500 Index
- ticks every 5 minutes

- from Oxford-Man Institute of Quantitative Finance library
- daily realized volatility and median realized variance estimator
- S&P 500 Index
- ticks every 5 minutes
- period from 1/3/2000 to 1/14/2021

- from Oxford-Man Institute of Quantitative Finance library
- daily realized volatility and median realized variance estimator
- S&P 500 Index
- ticks every 5 minutes
- period from 1/3/2000 to 1/14/2021
- in-sample to out-of-sample proportion: 7:3

Empirical Research: Results

- predictions are one-step-ahead
- errors are calculated on out-of-sample data

Error/Model	HAR-CJ	LSTM	Random Forest
MSE for c _t	0.518	1.697	0.520
MSE for j _t	2.52×10^{-8}	2.82×10^{-8}	2.07×10^{-8}
MSE for C_t	5.29×10^{-9}	1.37×10^{-8}	4.87×10^{-9}
MSE for J_t	2.52×10^{-8}	2.83×10^{-8}	2.08×10^{-8}
MSE for RV_t^2	3.61×10^{-8}	6.99×10^{-8}	3.36×10^{-8}

HAR-CJ model for RV_t^2 , one-step-ahead predictions

LSTM model for RV_t^2 , one-step-ahead predictions

Random Forest model for RV_t^2 , one-step-ahead predictions

HAR-CJ model for C_t (left) and J_t (right), one-step-ahead predictions

Random Forest model for C_t (left) and J_t (right), one-step-ahead predictions

Conclusion

- Random Forest predicts RV_t^2 (as a sum of continuous part and jumps) slightly better than HAR-CJ model.
- Random Forest predicts jumps of RV_t^2 better than HAR-CJ model.
- Random Forest model predicts continuous part of RV_t^2 approximately with the same accuracy as HAR-CJ model.
- LSTM model is the worst (due to small in-sample training set) in predicting continuous part, jumps and RV_t^2 , even with regularization.