# Big data science Day 1 - Hands on

F. Legger - INFN Torino

#### What we will use

- Python with Jupyter notebooks
- Prerequisites: some familiarity with numpy and pandas
  - Day 1: familiarise with ML dataset, parquet files
- ML libraries
  - Day 2: MLlib
    - Gradient Boosting Trees GBT
    - Multilayer Perceptron Classifier MCP
  - Day 3: Keras
    - Sequential model
  - Day 4: bigDL
    - Sequential model







## Input dataset

- Open HEP dataset @UCI <a href="https://archive.ics.uci.edu/ml/datasets/HIGGS">https://archive.ics.uci.edu/ml/datasets/HIGGS</a>
- Signal (heavy Higgs) + background (ttbar)



Baldi, Sadowski, and Whiteson. "Searching for Exotic Particles in High-energy Physics with Deep Learning." Nature Communications 5

#### Input dataset

- Open HEP dataset @UCI, 7GB (.csv)
- 10M Monte Carlo events
  - 21 low level features
    - pt's, angles, MET, b-tag, …
  - 7 high level features
    - Invariant masses (m(jj), m(jjj), ...)
- Smaller datasets for code testing (1M, 100k)
- You'll find them on HDFS

## Hands-on today

- You will familiarize with jupyter notebooks, numpy and pandas
- Input data:
  - efficient format: convert CSV to Parquet
    - A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values
    - And Apache parquet?
  - Create input for ML. Format depends on chosen ML library, in our case MLLib from Apache
- Visualization
  - explore dataset, plot features
  - correlation matrix