Midterm Exam - CSE210 (Electronics I) – Section 1 Department of CSE, Independent University, Bangladesh (IUB) Summer Term 2023, Date: 08-07-2023

Name	
Student ID	

- This paper contains 6 problems.
- Duration of the exam: 75 minutes.
- Total marks: 50
- This is a closed-book exam, and calculators are allowed.
- Student/s caught guilty of adopting any unfair means shall be expelled from the
 examination hall immediately and examination of such student/s including the outcome
 shall be terminated/cancelled right away

Problem 1 Points: 4 + 4 = 8

Determine V_{o1} and V_{o2} for the following networks:

Figure 1

Solution:

(a)
$$V_{o_1} = 12 \text{ V} - 0.7 \text{ V} = 11.3 \text{ V}$$

 $V_{o_2} = 1.2 \text{ V}$

(b)
$$V_{o_1} = \mathbf{0} \mathbf{V}$$

 $V_{o_2} = \mathbf{0} \mathbf{V}$

Problem 2 Points: 2 + 2 + 4 = 8

For the network below:

- (a) Calculate 5τ
- **(b)** Compare 5τ to half the period of the applied signal.
- (c) Sketch v₀

Figure 2

Solution:

(a)
$$\tau = RC = (56 \text{ k}\Omega)(0.1 \mu\text{F}) = 5.6 \text{ ms}$$

 $5\tau = 28 \text{ ms}$

(b)
$$5\tau = 28 \text{ ms} \gg \frac{T}{2} = \frac{1 \text{ ms}}{2} = \mathbf{0.5 \text{ ms}}, 56:1$$

(c) Positive pulse of v_i :

Diode "on" and
$$v_o = -2 \text{ V} + 0.7 \text{ V} = -1.3 \text{ V}$$

Capacitor charges to $12 \text{ V} + 2 \text{ V} - 0.7 \text{ V} = 13.3 \text{ V}$

Negative pulse of v_i :

Diode "off" and
$$v_o = -12 \text{ V} - 13.3 \text{ V} = -25.3 \text{ V}$$

Determine and Sketch v_o for each following networks (a) and (b) For the input shown:

Figure 3

Solution:

- (a) Diode "on" for $v_i \ge 4.7 \text{ V}$ For $v_i > 4.7 \text{ V}$, $V_o = 4 \text{ V} + 0.7 \text{ V} = \textbf{4.7 V}$ For $v_i < 4.7 \text{ V}$, diode "off" and $v_o = v_i$
- (b) Again, diode "on" for $v_i \ge 3.7 \text{ V}$ but v_o now defined as the voltage across the diode For $v_i \ge 3.7 \text{ V}$, $v_o = \textbf{0.7 V}$

For $v_i < 3.7$ V, diode "off", $I_D = I_R = 0$ mA and $V_{2.2 \text{ k}\Omega} = IR = (0 \text{ mA})R = 0 \text{ V}$

Therefore,
$$v_o = v_i - 3 \text{ V}$$

At $v_i = 0 \text{ V}$, $v_o = -3 \text{ V}$
 $v_i = -8 \text{ V}$, $v_o = -8 \text{ V} - 3 \text{ V} = -11 \text{ V}$

Problem 4 Points: 4 + 2 + 4 = 10

Determine the **output waveform** for the following network (Fig-4) and calculate the **output dc level** and the required **PIV** of **each diode**

Figure 4

Solution:

Positive half cycle:

$$v_0 = 2k\Omega X 10V/(2k\Omega + 6k\Omega) = 2.5 V$$

Negative half cycle:

$$v_0 = 2k\Omega X 10V/(2k\Omega + 3k\Omega) = 4.0 V$$

$$V_{dc}$$
 = 0.318(2.5 V) + 0.318(4.0 V) = **2.067** V

Problem 5 Points: 4 + 4 = 8

(a) Given a diode current of 8 mA and n = 1, find I_s if the applied voltage is 0.5 V and the temperature is room temperature (25°C).

(b) Given a diode current of 6 mA, $V_T = 26$ mV, n = 1, and $I_S = 1$ nA, find the applied voltage V_D

Note: Boltzmann's constant = 1.38×10^{-23} J/K

Solution:

(a)

$$V_{T} = \frac{kT_{K}}{q} = \frac{(1.38 \times 10^{-23} \text{ J/K})(25^{\circ}\text{C} + 273^{\circ}\text{C})}{1.6 \times 10^{-19} \text{ C}}$$

$$= 25.70 \text{ mV}$$

$$I_{D} = I_{s} (e^{V_{D}/nV_{T}} - 1)$$

$$8\text{mA} = I_{s} (e^{(0.5\text{V})/(1)(25.70 \text{ mV})} - 1) = I_{s} (2.8 \times 10^{8})$$

$$I_{s} = \frac{8 \text{ mA}}{2.8 \times 10^{8}} = 28.57 \text{ pA}$$

$$I_D = I_s (e^{V_D/nV_T} - 1)$$

$$6 \text{ mA} = 1 \text{ nA} (e^{V_D/(1)(26 \text{ mV})} - 1)$$

$$6 \times 10^6 = e^{V_D/26 \text{ mV}} - 1$$

$$e^{V_D/26 \text{ mV}} = 6 \times 10^6 - 1 \cong 6 \times 10^6$$

$$\log_e e^{V_D/26 \text{ mV}} = \log_e 6 \times 10^6$$

$$\frac{V_D}{26 \text{ mV}} = 15.61$$

$$V_D = 15.61(26 \text{ mV}) \cong \textbf{0.41 V}$$

Problem 6 Points: 2 + 2 + 2 + 2 = 8

Find out V_{o} for network and condition (ON or OFF) of the D1 and D2 germanium diodes of Fig.5 when:

a)
$$V_1 = 0 V, V_2 = 0 V$$

b)
$$V_1 = 5 V, V_2 = 0 V$$

c)
$$V_1 = 0 V, V_2 = 5 V$$

d)
$$V_1 = 5 V, V_2 = 5 V$$

Figure 5

Solution:

#	V ₁ (V)	V ₂ (V)	D1 (ON/OFF)	D2 (ON/OFF)	V _o (V)
а	0	0	ON	ON	0.3
b	5	0	OFF	ON	0.3
С	0	5	ON	OFF	0.3
d	5	5	OFF	OFF	5