ÔN TẬP CUỐI KỲ

I. TÍCH PHÂN KÉP

1) Thay đổi thứ tự lấy tích phân

a)
$$I = \int_{0}^{1} dx \int_{x}^{\sqrt{2-x}} f(x, y) dy$$

b)
$$I = \int_{-2}^{3} dy \int_{y^2-4}^{y+2} f(x,y) dx$$

c)
$$I = \int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{2y}} f(x, y) dx$$

d)
$$I = \int_{0}^{1} dx \int_{2+\sqrt{4-x^2}}^{1+\sqrt{1-x^2}} f(x,y)dy + \int_{0}^{2} dx \int_{2+\sqrt{4-x^2}}^{x} f(x,y)dy$$

e)
$$I = \int_{0}^{1-\frac{\sqrt{2}}{2}} dy \int_{1+\sqrt{2y-y^2}}^{2-y} f(x,y) dx$$

e)
$$I = \int_{0}^{1-\frac{\sqrt{2}}{2}} dy \int_{1+\sqrt{2y-y^2}}^{2-y} f(x,y)dx$$
 f) $I = \int_{0}^{\sqrt{2}} dy \int_{2+\sqrt{4-y^2}}^{y^2} f(x,y)dx + \int_{\sqrt{2}}^{2} dy \int_{2+\sqrt{4-y^2}}^{y} f(x,y)dx$

g)
$$I = \int_{0}^{1} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y) dy$$

g)
$$I = \int_{0}^{1} dx \int_{\sqrt{2x-x^2}}^{\sqrt{2x}} f(x,y)dy$$
 h) $I = \int_{-1}^{0} dy \int_{-y}^{1+\sqrt{1-y^2}} f(x,y)dx + \int_{0}^{1} dy \int_{\sqrt{y}}^{1+\sqrt{1-y^2}} f(x,y)dx$

2) Tính tích phân bội hai sau

a)
$$I = \iint_D (4xy + 2) dx dy$$
, với D là miền phẳng bị giới hạn bởi
$$\begin{cases} 2x \le x^2 + y^2 \le 4x \\ y \ge x \end{cases}$$
.

b)
$$I = \iint_D (xy-1)dxdy$$
, với D là miền phẳng bị giới hạn bởi
$$\begin{cases} 2y \le x^2 + y^2 \le 4y \\ x \ge 0 \\ y \le x \end{cases}$$

II. TÍCH PHÂN BỘI 3

1) Hãy xác định cận cho các biến của tích phân $I = \iiint_{\Omega} f(x, y, z) dx dy dz$

a)
$$\Omega$$
 là khối vật thể bị giới hạn bởi
$$\begin{cases} x^2 + y^2 + z^2 \leq 9 \\ x \geq \sqrt{y^2 + z^2} \end{cases}$$
.

b) Ω là khối vật thể bị giới hạn bởi
$$\begin{cases} x^2 + z^2 \le 4 \\ y \le 3 + x^2 + z^2 \\ y \ge \sqrt{x^2 + z^2} - 1 \end{cases}$$

c)
$$\Omega$$
 là khối vật thể bị giới hạn bởi
$$\begin{cases} x^2 + y^2 + z^2 \le 4x + 2y + 4 \\ y \le 1 - \sqrt{z^2 + (x - 2)^2} \end{cases}$$
.

2) Tính thể tích khối vật thể Ω , biết Ω giới hạn bởi:

a)
$$\Omega : \begin{cases} z = \sqrt{x^2 + y^2} \\ z = 2 - x^2 - y^2 \end{cases}$$

b)
$$\Omega:\begin{cases} z \le 4 - x^2 - y^2 \\ z \ge 0 \\ x^2 + y^2 \le 1 \end{cases}$$

1

c)
$$\Omega:\begin{cases} x^2 + y^2 \le 1\\ z = 6 - \sqrt{x^2 + y^2}\\ z = x^2 + y^2 \end{cases}$$

d)
$$\Omega:\begin{cases} 1 \le x^2 + y^2 \le 4 \\ z \le 6 - \sqrt{x^2 + y^2} \\ z \ge x^2 + y^2 \end{cases}$$

e)
$$\Omega:\begin{cases} x^2 + y^2 + z^2 \le 4\\ x \ge y^2 + z^2\\ y^2 + z^2 \le 1 \end{cases}$$

f)
$$\Omega:\begin{cases} x^2 + y^2 + z^2 \le 2x \\ x \ge 1 + \sqrt{y^2 + z^2} \end{cases}$$

g)
$$\Omega$$
:
$$\begin{cases} x^2 + y^2 + z^2 \ge 4y \\ x^2 + y^2 + z^2 \le 4y + 5 \\ y \ge 2 + \sqrt{x^2 + y^2} \end{cases}$$

d) Tính tích phân bội ba sau:

a)
$$I = \iiint_{\Omega} (xz+4) dx dy dz$$
, Với $\Omega = \{(x, y, z) \in R^3 | x^2 + y^2 + z^2 \le 6y; y \ge 3 + \sqrt{x^2 + z^2} \}$.

b)
$$I = \iiint_{\Omega} (2x - y^2) dx dy dz$$
, với Ω là khối vật thể bị giới hạn bởi
$$\begin{cases} x^2 + y^2 \le 4 \\ x^2 + y^2 + z^2 \le 9 \end{cases}$$
 $z \ge 0$

c)
$$I = \iiint_{\Omega} (2x + yz) dx dy dz$$
, với Ω là khối vật thể bị giới hạn bởi:
$$\begin{cases} x^2 + y^2 + z^2 \le 4 \\ y \le \sqrt{x^2 + z^2} \end{cases}$$
.

3) Đổi sang tọa độ cầu rồi tính

$$I = \int_{-2}^{0} dx \int_{-\sqrt{4-x^2}}^{0} dy \int_{-\sqrt{4-x^2-y^2}}^{0} x dz$$

4) Đổi sang tọa độ trụ rồi tính

$$I = \int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} dy \int_{0}^{4} z \sqrt{x^{2} + y^{2}} dz$$

III. TÍCH PHÂN DƯỜNG

1) Hãy tính các tích phân đường loại 1 sau:

a) I =
$$\int_{C} \frac{8x}{\sqrt{1+4x^2}} dl$$
, trong đó C là một phần parabol $y = x^2$ nối A(1,1) với B(2,4).

b)
$$I = \int_C \frac{x}{y} dl$$
, trong đó C là một phần parabol $y^2 = 2x$ nối từ $A(1, \sqrt{2})$ đến $B(2, 2)$.

c) $I = \int_C 2x dl$, trong đó $C = C_1 + C_2$, với C_1 : $y = x^2$ từ (0,0) đến (1,1) và C_2 là đường thẳng từ (1,1) đến (2,2).

d) I =
$$\int_C (x + y^2) dl$$
, trong đó C là biên $\triangle ABC$ với A(1,1), B(3,3), C(3,2).

e)
$$I = \int_C (xy - x - y) dl$$
, với (C) là chu vi của tam giác OAB, trong đó: O(0,0), A(1,0), B(1,2).

f)
$$I = \int_C x(y-1)dI$$
, trong đó C là nửa trên đường tròn $x^2 + y^2 = 2y$.

g)
$$I = \int_{C} (xe^{y} + 2xy - 1)dl$$
, với (C) là nửa đường tròn $x^{2} + y^{2} = 4$, lấy phần $y \ge 0$

i)
$$I = \int_C (x+y)dl$$
, với C là giao tuyến của $x^2 + y^2 + z^2 = 4$; $y = x$.

j)
$$I = \int_C x^2 dl$$
, với C là giao tuyến của $x^2 + y^2 + z^2 = 4$; $x + y + z = 0$.

k)
$$I = \int_C xyzdl$$
, với C là giao tuyến của $x^2 + y^2 + z^2 = R^2$; $x^2 + y^2 = \frac{R^2}{4}$, $(x \ge 0, y \ge 0, z \ge 0)$.

2) Hãy tính tích phân đường loại 2 sau:

a)
$$I = \int_C x^2 y dx - x(y^2 + 1) dy$$
, trong đó C là đường có phương trình $y = \sqrt{4 - x^2}$ nối từ $A(-2,0)$ đến $B(2,0)$.

b)
$$I = \int_C (2xy - x^2) dx + (x + y^2) dy$$
, trong đó C là cung của parabol $y = 1 - x^2$ đi từ điểm $A(0,1)$ đến điểm $B(1,0)$.

c)
$$I = \int_C (2xy^3 - e^{2x} + \sin y - 2^x) dx + (3x^2y^2 + x\cos y - 4ye^{-y}) dy$$
, với C là một nửa đường tròn $x^2 + y^2 = 1$, phần $y \ge 0$, nổi từ $A(-1,0)$ đến $B(1,0)$.

d)
$$I = \int_{(C)} (x^2 \sin y - xy + 2) dx + \left(e^{2y} - \frac{x^3 \cos y}{3} - \frac{x^2}{2}\right) dy$$
, với C là đoạn gấp khúc ABC (theo thứ tự), trong đó: $A(-3,0)$, $B(0,3)$, $C(3,0)$.

IV. PHƯƠNG TRÌNH VI PHÂN

1) Giải các phương trình vi phân cấp 1 sau:

a)
$$(x^2 + y^2)dy + (2xy + 1)dx = 0$$

b)
$$y^2 dx + (x^2 - xy) dy = 0$$

c)
$$2xy' = x + 3y$$

d)
$$y' = \frac{y}{x} + x^2 e^{-x} \cos^2\left(\frac{y}{x}\right)$$
, $v \acute{o} i \quad x \neq 0$

e)
$$y' + \frac{y}{x} = 4x^4y^4$$
, với $x \neq 0$

f)
$$xy' = x \sin\left(\frac{y}{x}\right) + y$$
, $v \leftrightarrow x \neq 0$

g)
$$y'-2y \tan x + y^2 \sin^2 x = 0$$

2) Giải các phương trình vi phân cấp 2 sau:

a)
$$y''-6y'+9=9e^{3x}$$

b)
$$y'' - 2y' = x$$

c)
$$y'' - 5y' + 6y = 2xe^{2x}$$

d)
$$y'' - 3y' + 2y = e^x (2x - 3)$$

e)
$$y''-y'-12y = (16-14x)e^{-3x}$$

f)
$$y'' + 2y' + y = xe^x + 2e^{-x}$$

g)
$$y'' + y' = e^x + \sin x$$