Práctica No. 7 Características de la Onda Senoidal

Integrantes: León Steven, Figueroa Erick, Viracucha William

Cálculo del voltaje medido en el Osciloscopio

$$V_{pico} = Div/Cuadro \cdot \#Divisiones$$

$$V_{pico} = 1.15 \ V \cdot 6$$

$$V_{pico} = 6.9 \ V$$

Cálculo del periodo medido en el Osciloscopio

$$T = Div/Cuadro \cdot \#Divisiones$$

$$T = 50x10^{-6} \ s \cdot 8$$

$$T = 0.0004 \ s = 4x10^{-4} \ s$$

Cálculo de la frecuencia natural

$$f = \frac{1}{T} = \frac{1}{0.0004 \ s}$$
$$f = 2500 \ Hz$$

Cálculo de la frecuencia angular

$$w = 2\pi f = 2\pi (2500)$$
$$w = 5000\pi \ rad/s$$

Cálculo del voltaje eficaz o RMS para la resistencia de 2.2
k Ω

$$V_{rms} = \frac{6.9 V}{\sqrt{2}}$$
$$V_{rms} = 4.879 V$$

Cálculo del error para el Voltaje

Valor Teórico: $4.86 \ V$ Valor Medido: $4.879 \ V$

$$error = \frac{|4.86 - 4.879|}{4.86} \cdot 100 = 0.4 \%$$