A HyFlex Module for the 0-1 Knapsack Problem*

Steven Adriaensen, Gabriela Ochoa

March 11, 2015

1 Problem Formulation

Given a set of n items I, with associated weight $w:I\to\mathbb{R}$ and profit $p:I\to\mathbb{R}$ functions, and knapsack capacity V. Find the subset K that maximizes the total profit $\sum_{i\in K} p(i)$ and that satisfies the capacity constraint, i.e. $\sum_{i\in K} w(i) < V$. Here the search-space S is the subset of 2^I where each candidate solution satisfies the capacity constraint. The cost function $c:S\to\mathbb{R}$ maps each subset K to its negated total profit. This domain provides 10 benchmark instances, generated using the generator used in [2]. Table 1 gives the optimal solution qualities (f_{opt}) as well as the parameters used to generate each instance.

Table 1: Instances provided in the KP domain

index	n	type (t)	seed (i)	$f_{opt}*$
0	1K	no small weights (15)	12	104046
1	2K	uncorrelated (1)	13	1263861
2	2K	weakly corr. (2)	14	243145
3	2K	almost str. corr. (5)	17	431363
4	2K	no small weights (15)	23	396167
5	5K	uncorrelated (1)	24	4417737
6	5K	weakly corr. (2)	25	954172
7	5K	uncorr., similar weights (9)	32	1577175
8	5K	almost str. corr. (5)	28	1530536
9	5K	no small weights (15)	34	1467454

^{*}This description is an extract from [1]

lavailable here http://www.diku.dk/~pisinger/codes.html

 $^{^{2}}$ the range of coefficients is [1, r = 10 K] and # tests is always 1 K

2 Solution Initialisation

Constructs a candidate solution representing the empty set.

3 Low Level Heuristics

3.1 Local search heuristics

- 0. PACKRANDOM: Packs a randomly fitting item.
- 1. PACKBEST: Packs most valuable fitting item.
- 2. PACKPPP: Packs a randomly fitting item, improving the *Profit Per Pound* $\frac{\sum_{j \in K} p(j)}{\sum_{j \in K} w(j)}$ of the solution.
- 3. PACKLIGHT: Packs the lightest fitting item.
- 4. SWAPFIRST: Substitute a random packed piece by a random more expensive fitting piece.
- 5. SWAPBEST: Perform the substitution of 2 pieces, improving the total profit most.

3.2 Mutational heuristics

- 6. SWAPRANDOM: Randomly substitutes 2 pieces.
- 7. SWAPPPP: Randomly substitutes 2 pieces, improving the *Profit Per Pound* of the solution.
- 8. REMOVERANDOM: Unpacks a random piece.
- 9. REMOVEWORST: Unpacks the cheapest piece.
- 10. RemoveHeavy: Unpacks the heaviest piece.

The SWAP, REMOVE mutations are repeated $\lceil 5\alpha \rceil$ and $\lceil \alpha |K| \rceil$ times, respectively.

3.3 Ruin-Recreate heuristics

These heuristics first unpack $\lceil \alpha |K| \rceil$ randomly selected pieces, subsequently they pack pieces, till no more fit.

- 11. REPACKBEST: Each time packs the most valuable fitting piece.
- REPACKPPP: Each time packs the fitting piece, improving the *Profit Per Pound*of the solution most.

3.4 Crossover heuristics

- 13. INTERSECTION: The output solution packs the items packed in both input solutions
- 14. RANDOMUNION: Starting from the empty solution, each time packs a random fitting piece, packed in either of the input solutions.
- 15. BESTUNION: Starting from the empty solution, each time packs the fitting piece, packed in either of the input solutions, improving the total profit most.

References

- [1] Steven Adriaensen, Gabriela Ochoa, and Ann Nowé. A benchmark set extension and comparative study for the hyflex framework. In *Evolutionary Computation (CEC)*, 2015 IEEE Congress on. IEEE, 2015.
- [2] Silvano Martello, David Pisinger, and Paolo Toth. Dynamic programming and strong bounds for the 0-1 knapsack problem. *Management Science*, 45(3):414–424, 1999.