MAC0422 - Sistemas Operacionais

Marcelo Trylesinski Vinicius Agostini

NUSPs: 9297996 e 4367487

Bacharelado em Ciência da Computação Universidade de São Paulo

11 de Setembro de 2017

- Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

- 🕕 Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

• getcwd() devolve o diretório atual

- getcwd() devolve o diretório atual
- using_history() para criar histórico de comandos no shell

- getcwd() devolve o diretório atual
- using_history() para criar histórico de comandos no shell
- readline() imprime o prompt e lê uma linha inteira de entrada do usuário

- getcwd() devolve o diretório atual
- using_history() para criar histórico de comandos no shell
- readline() imprime o prompt e lê uma linha inteira de entrada do usuário
- add_history() adiciona o comando ao histórico do shell

- getcwd() devolve o diretório atual
- using_history() para criar histórico de comandos no shell
- readline() imprime o prompt e lê uma linha inteira de entrada do usuário
- add_history() adiciona o comando ao histórico do shell
- tokeniza o input para separar o comando e os argumentos correspondentes

- getcwd() devolve o diretório atual
- using_history() para criar histórico de comandos no shell
- readline() imprime o prompt e lê uma linha inteira de entrada do usuário
- add_history() adiciona o comando ao histórico do shell
- tokeniza o input para separar o comando e os argumentos correspondentes
- funções separadas para execução de binários ou comandos embutidos

- Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

Executando Binários

- cria novo processo fork()
- executa o comando neste processo execve()
- processo pai espera o término do filho waitpid()

- 🕕 Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

Comandos Embutidos

- chown(path, owner, group)
- time(), localtime() e strftime()

- Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

main

- Argumentos
 - escalonador desejado
 - caminho para o arquivo de trace
 - caminho para o arquivo de saída
 - flag opcional para o log de debug
- Processa o arquivo de trace linha por linha, adicionando um Process ao vetor de processos
- switch determina qual algoritmo rodar baseado na escolha do usuário

Shortest Job First

- heap de Process
- comparador para ordenar por dt
- insere processos quando chegam em $\mathcal{O}(\log n)$ e determina o próximo processo a ser executado em $\mathcal{O}(1)$.

Round Robin

- fila circular de Process
- enqueue() e dequeue() em $\mathcal{O}(1)$.
- lista ligada = sem redimensionamento
- quantum = 0.5

Escalonamento com prioridade

- heap de Process
- comparador para ordenar por deadline
- roda processo com menor deadline
- usa a função 1/deadline * quantum para determinar quanto tempo o processo vai rodar
- usamos o mesmo quantum do Round Robin e causou muitas mudanças de contexto desnecessárias devido à função acima

- Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

Testes Pequenos (50 processos)

Testes Médios (150 processos)

Testes Grandes (450 processos)

- Shell
 - Arquitetura
 - Binários
 - Embutidos
- Escalonador de Processos
 - Implementação
- Resultados
 - Mudanças de Contexto
 - Cumprimento de Deadline

Testes Pequenos (50 processos)

Processos Finalizados - Teste Pequeno

100

Testes Médios (150 processos)

Processos Finalizados - Teste Médio

4 D > 4 D > 4 E > 4 E > E *94(*)

Testes Grandes (450 processos)

Considerações

- Round Robin e Escalonamento com prioridade sofreram muito quando a quantidade de processos aumentou
- SJF também sofreu, mas muito menos
- Os inputs acabaram causando filas longas
- Os processos n\u00e3o conseguem terminar a tempo se tiverem que esperar uma eternidade
- balanço entre t0, dt, deadline