

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Projekt

Projektowanie technologii wytwarzania

Obejma

Rysunek 7

Borsuk Piotr
Nr. Albumu 416947
Technologie Przemysłu 4.0
Wydział Odlewnictwa
Rok 2, Semestr 4, Grupa nr. 1
Rok akademicki 2023/2024

Warunki technologicznego odbioru:

- żeliwo szare EN-GJL-250,
- Tolerancja DCTG8,
- klasy naddatków E-G,
- Naddatki na obróbkę skrawaniem (góra 2,8mm, dół 1,4mm ,bok 1,4mm ,otwór 2,8 mm),

Obliczenia

Dane	Obliczenia	Wyniki
$ ho = 7 \ g/cm^3$ V _{odi} =1502 cm ³	Ciężar odlewu $Q_{odl} = V_{odl} imes ho_{stopu}$	$Q_{odl} = 10,514 \ kg \sim 10,6kg$
	$Q_{odl} = 1502 \ cm^3 \times 7 \frac{g}{cm^3} = 10,514 kg$	
$Q_{odl} = 10,6kg$	Obliczenie masy odlewu wraz układem wlewowym	$Q = 14 \ kg$
	$Q = (1,2 - 1,35) \times Q_{odl}$ $Q = 1,3 \times 10,6 = 13,78 kg \sim 14 kg$	
s = 1,4 g=(32,8 mm+25 mm+25	Obliczenie czasu zalewania formy $t_{zal} = s imes \sqrt[3]{g imes Q}$	$t_{zal} = 10,5 \ s$
mm)/3=27 mm	ozat on vone	
Q=14 kg	$t_{zal} = 1.4 \times \sqrt[3]{27 \times 14} = 10.12 s \sim 10.5 s$	
C=15 cm t=10,5 s	Sprawdzenie dopuszczalnej prędkości podnoszenia się metalu w formie	$V_h = 1,43 \ cm/s$
1-10,5 3	$V_h = \frac{C}{t}$	
	l L	
	$V_h = \frac{15 \ cm}{10.5 \ s} = 1.43 \ cm/s$	
$\sqrt{H_{\pm r}} = \sqrt{28} cm$ $\mu = 0.42$	Obliczenie sumarycznego minimalnego przekroju wlewu doprowadzającego	$\sum F_{dmin} = 1,93 \ cm^2$
$g = 981 cm/s^2$	$\sum F_{dmin} = \frac{Q}{\sqrt{2g} \times \gamma \times \mu \times t_{zal} \times \sqrt{H_{\acute{s}r}}}$	
$t_{zal} = 10,5 s$	·	
$\rho = 7 \ g/cm^3$	$\sum F_{dmin} = \frac{14000}{\sqrt{2 \times 981} \times 7 \times 0,42 \times 10,5 \times \sqrt{28}}$	
	V23017	

Q = 14kg = 14000 g	$\sum F_{dmin} = 1,93 \ cm^2$	
	Dobór przekroju wlewu doprowadzającego	$F_{dmin} = 1 cm^2$
$\sum F_{dmin} = 1,93 \ cm^2$	$F_{dmin} = \frac{\sum F_{dmin}}{n}$	a=29 mm ,b=26 mm,
n=2	$F_{dmin} = \frac{1,93}{2} = 0,965 \text{ cm}^2$	h=4mm
	Dobrano $F_{dmin}=1\ cm^2$	
	a=29 mm ,b=26 mm, h=4mm	
$H_0 = 30 cm$ $C = 15 cm$ $P = 7,5 cm$	Obliczenie średniego ciśnienia metalostatycznego $H_{\pm r}=H_0-\frac{P^2}{2C}$ $H_{\pm r}=30-\frac{7,5^2}{2\times15}=28,1~cm{\sim}28~cm$	$H_{\pm r} = 28 cm$

n-liczba odlewów	Obliczenie belki wlewowej i wlewu głównego	$F_{b1} = F_{b2} = 14,4 \text{ cm}^2$
zasilanych przez dany		
element układu	$F_{b1} = F_{b2}$	$F_{wg} = 29,4 \ cm^2$
wlewowego	$F_{b1} = F_{b2}$ $\sum F_d : F_{bw} : F_{wg} = 1: 1, 2: 1, 4$	
	$F_{bw} = 1.2 \times n \times \sum F_d$ $F_{wg} = 1.4 \times n \times \sum F_d$	h = 40 mm b = 17,4 cm a = 33cm
	$F_{b1} = F_{b2} = 6 \times 1.2 \times (2) = 14.4 \text{cm}^2$	
	$F_{wg} = 12 \times 1.4 \times (2) = 33.6 \ cm^2$	
	2.22 000	
	a=33 cm P= 14,4 cm ²	
	h=50 cm b=17,4	
	U-11,T	

$\eta = 2$
y = 7
$\gamma = 7 \frac{g}{cm^3}$
n = 12
$Q_c = 14000 g$
$t_{zal} = 10.5 s$

9. Obliczenie wielkości zbiornika wlewowego

$$V_{zw} = \frac{Q_c \times n \times 1000}{\gamma \times t_{zal}} \times \eta$$

$$V_{zw} = \frac{14000 \times 12 \times 1000}{7 \times 10.5} \times 2$$

$$V_{zw} = 4137.9 \ cm^3 \sim 4000 \ cm^3$$

Dane zbiornika a=255 mm, b=160,h=145mm , r_1 =80mm, r_2 =64mm, r_3 =48mm

 $V_{zw} = 4000 \ cm^3$