7 Слабая сходимость

Пусть X – линейное нормированное пространство.

Опр. Говорят, что последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ слабо сходится к элементу $x_0 \in X$ при $n \to \infty$, если

$$\langle x^*, x_n \rangle \to \langle x^*, x_0 \rangle$$
 при $n \to \infty$ $\forall x^* \in X^*$.

Сходимость в X по норме принято называть $\mathit{сильной}\ \mathit{сходимостью}.$

В силу теоремы Рисса-Фишера в гильбертовом пространстве H последовательность $\{x_n\}_{n=1}^\infty$ слабо сходится к x_0 при $n\to\infty$ тогда и только тогда, когда

$$(x_n, y) \to (x_0, y) \quad \forall y \in H.$$

Предложение 7.1. Если последовательность $\{x_n\}_{n=1}^{\infty}$ сильно сходится к элементу x_0 , то она и слабо сходится к x_0 .

Доказательство. Достаточно заметить, что

$$|\langle x^*, x_n \rangle - \langle x^*, x_0 \rangle| \le ||x^*|| ||x_n - x_0|| \to 0 \quad \forall x^* \in X.$$

Предложение доказано.

Замечание. Обратное неверно. Пример дает ортонормированная последовательность $\{e_n\}_{n=1}^{\infty} \subset H$.

Действительно, для всякого $f \in H$ в силу сходимости ряда $\sum_{n=1}^{\infty} |(f.e_n)|^2$ коэффициенты Фурье $(f,e_n) \to 0$. Значит $e_n \to 0$ слабо в X. В то же время последовательность $\{e_n\}_{n=1}^{\infty}$ не сходится сильно.

Предложение 7.2. Слабый предел единствен.

Доказательство. Предположим, что последовательность $\{x_n\}_{n=1}^{\infty}$ имеет два слабых предела $x_0' \neq x_0''$.

В силу следствия из теоремы Хана-Банаха существует функционал $x^* \in X^*$ такой, что $\langle x^*, x_0' - x_0'' \rangle = \|x_0' - x_0''\|$. Тогда

$$0 = \langle x^*, x_n \rangle - \langle x^*, x_n \rangle \to \langle x^*, x_0' \rangle - \langle x^*, x_0'' \rangle = \langle x^*, x_0' - x_0'' \rangle = \|x_0' - x_0''\|.$$

Отсюда $x'_0 = x''_0$.

Предложение доказано.

Предложение 7.3. B конечномерном пространстве X слабая сходимость совпадает с сильной.

Доказательство. Пусть e_1, e_2, \ldots, e_n – базис в X. Для всякого элемента $x \in X$ существует единственное разложение по базису $x = \sum_{i=1}^n x_i e_i$.

Известно, что сильная сходимость

$$x^{(n)} = \sum_{i=1}^{n} x_i^{(n)} e_i \to x = \sum_{i=1}^{n} x_i e_i$$

эквивалентна покоординатной сходимости $x_i^{(n)} \to x_i, \ 1 \leqslant i \leqslant n.$

В то же время координата x_i является линейным непрерывным функционалом от x. Поэтому если $x^{(n)} \to x$ слабо, то $x_i^{(n)} \to x_i$ ($1 \le i \le n$) и $x^{(n)} \to x$ сильно.

Предложение доказано.

Опр. Последовательность $\{x_n\}_{n=1}^{\infty} \subset X$ называется *слабо фундаментальной*, если для всякого функционала $x^* \in X^*$ числовая последовательность $\{\langle x^*, x_n \rangle\}_{n=1}^{\infty}$ является сходящейся.

Опр. Пространство X называется *слабо полным*, если в нем всякая слабо фундаментальная последовательность слабо сходится (к элементу пространства X.)

Предложение 7.4. Если последовательность $\{x_n\}_{n=1}^{\infty}$ слабо фундаментальна, то она ограничена.

Доказательство. По условию последовательность $\langle \pi x_n, x^* \rangle = \langle x^*, x_n \rangle$ сходится для всякого функционала $x^* \in X^*$. Поэтому в силу теоремы Банаха-Штейнгауза

$$\|\pi x_n\| \leqslant M \quad \forall n \geqslant 1 \Rightarrow \|x_n\| = \|\pi x_n\| \leqslant M \quad \forall n \geqslant 1.$$

Предложение доказано.

Следствие 7.1. Если последовательность слабо сходится, то она ограничена.

Предложение 7.5. Если $x_n \to x_0$ слабо, то $||x_0|| \leqslant \underline{\lim}_{n \to \infty} ||x_n||$.

Доказательство. Пусть $d=\varliminf_{n\to\infty}\|x_n\|$. Выберем подпоследовательность $\{x_{n_k}\}_{k=1}^\infty$ такую, что $d=\varliminf_{n\to\infty}\|x_{n_k}\|$. Заметим, что

$$|\langle x^*, x_{n_k} \rangle| \leqslant ||x_{n_k}|| ||x^*|| \quad \forall x^* \in X^*,$$

откуда

$$|\langle \pi x_0, x^* \rangle| = |\langle x^*, x_0 \rangle| = \lim_{n \to \infty} |\langle x^*, x_{n_k} \rangle| \leqslant \lim_{n \to \infty} ||x_{n_k}|| ||x^*|| \leqslant d||x^*|| \quad \forall x^* \in X^*.$$

Значит, $||x_0|| = ||\pi x_0|| \leqslant d$.

Предложение доказано.

Теорема 7.1. Всякое рефлексивное пространство слабо полно.

Доказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ – слабо фундаментальная последовательность в рефлексивном пространстве X. Докажем, что она слабо сходится.

По условию для каждого $x^* \in X^*$ существует предел $f(x^*) = \lim_{n \to \infty} \langle x^*, x_n \rangle$. Заметим, что f – линейный функционал. В самом деле,

$$f(\alpha x_1^* + \beta x_2^*) = \lim_{n \to \infty} \langle \alpha x_1^* + \beta x_2^*, x_n \rangle =$$

= $\alpha \lim_{n \to \infty} \langle x_1^*, x_n \rangle + \beta \lim_{n \to \infty} \langle x_2^*, x_n \rangle = \alpha f(x_1^*) + \beta f(x_2^*).$

В силу предложения 7.4 имеем $||x_n|| \leq M$, откуда

$$|\langle x^*, x_n \rangle| \leqslant M ||x^*|| \ \forall \, x^* \in X^*.$$

Переходя к пределу при $n \to \infty$, имеем

$$|f(x^*)| \le M||x^*|| \ \forall x^* \in X^* \Rightarrow f \in X^{**}.$$

В силу рефлексивности X существует элемент $x_0 \in X$ такой, что $f(x^*) = \langle x^*, x_0 \rangle$. Таким образом, $\langle x^*, x_n \rangle \to \langle x^*, x_0 \rangle$.

Теорема доказана.

Следствие 7.2. Всякое гильбертово пространство слабо полно.

Замечание 7.1. Существуют нормированные пространства, которые слабо полны, но не являются рефлексивными. Пример дает пространство $L_1(E)$. (Это утверждение мы приводим без доказательства.)

Опр. Подмножество M нормированного пространства X называется *слабо компактным*, если из любой последовательности $\{x_n\}_{n=1}^{\infty} \subset M$ можно выделить подпоследовательность, слабо сходящуюся к элементу множества M.

Теорема 7.2. В рефлексивном пространстве X замкнутый шар $\overline{B}_r(0) = \{ \|x\| \leqslant r \}$ слабо компактен.

Доказательство проведем для случая сепарабельного пространства X. В этом случае X^{**} сепарабельно, т.к. оно изометрично X. В силу теоремы 5.4 пространство X^* также сепарабельно. Возьмем счетное всюду плотное в X^* множество $\{x_k^*\}_{k=1}^\infty$.

Пусть $\{x_n\}_{n=1}^{\infty} \in B_r(0)$. Рассмотрим числовую последовательность $\{\langle x_1^*, x_n \rangle\}_{n=1}^{\infty}$. Так как

$$|\langle x_1^*, x_n \rangle| \leqslant ||x_1^*||_* ||x_n|| \leqslant r ||x_1^*||,$$

эта последовательность ограничена. Следовательно из нее можно выделить сходящуюся подпоследовательность $\{\langle x_1^*, x_n^{(1)} \rangle\}_{n=1}^{\infty}$

Точно так же из последовательности $\{\langle x_2^*, x_n^{(1)} \rangle\}_{n=1}^{\infty}$ можно выделить сходящуюся подпоследовательность $\{\langle x_2^*, x_n^{(2)} \rangle\}_{n=1}^{\infty}$. И т.д.

Таким образом, для любого $k \geqslant 1$ существует подпоследовательность $\{x_n^{(k)}\}_{n=1}^\infty$ такая, что $\langle x_k^*, x_n^{(k)} \rangle$ сходится при $n \to \infty$. Заметим, что диагональная подпоследовательность $\{x_n^{(n)}\}_{n=1}^\infty$ такова, что $\langle x_k^*, x_n^{(n)} \rangle$ сходится для всех $k \geqslant 1$.

Следовательно (в силу теоремы 2.2) последовательность $\langle x^*, x_n^{(n)} \rangle$ сходится для всех $x^* \in X^*$. Таким образом, последовательность $\{x_n^{(n)}\}_{n=1}^{\infty}$ слабо фундаментальна, и в силу теоремы 7.1 существует элемент $x_0 \in X$ такой, что $x_n^{(n)} \to x$ слабо в X.

Из предложения 7.5 следует, что

$$||x_0|| \leqslant \underline{\lim}_{n \to \infty} ||x_n^{(n)}|| \leqslant r.$$

Таким образом, $x_0 \in \overline{B}_r(0) = \{ ||x|| \leqslant r \}.$

Теорема доказана.

Следствие 7.3. Замкнутый шар $\overline{B}_r(0)$ в гильбертовом пространстве слабо компактен.

Следствие 7.4. Всякое ограниченное множество в рефлексивном пространстве относительно слабо компактно.

Понятие о * - слабой сходимости.

Опр. Последовательность $\{x_n^*\}_{n=1}^\infty\subset X^*$ называется * - слабо сходящейся, если существует элемент $x_0^*\in X^*$ такой, что

$$\langle x_n^*, x \rangle \to \langle x^*, x_0 \rangle$$
 при $n \to \infty$ $\forall x \in X$.

Теорема 7.3. Если X – банахово, то всякая * - слабо сходящаяся последовательность ограничена.

Доказательство. Пусть последовательность $\{x_n^*\}_{n=1}^{\infty}$ является * - слабо сходящейся. Тогда для всякого $x \in X$ последовательность $\{\langle x_n^*, x \rangle\}_{n=1}^{\infty}$ ограничена. В силу теоремы Банаха-Штейнгауза последовательность $\{\|x_n^*\|_{X^*}\}_{n=1}^{\infty}$ также ограничена.

Теорема доказана.

Теорема 7.4. Если $x_n^* \to x_0^* * -$ слабо в $X^*,$ то $\|x_0^*\|_{X^*} \leqslant \underline{\lim}_{n \to \infty} \|x_n^*\|_{X^*}.$

Теорема 7.5. (Теорема Банаха – Алаоглу). Пусть X – нормированное пространство. Тогда замкнутый шар $\overline{B}_r(0)$ в сопряженном пространстве X^* компактен относительно * - слабой сходимости.