Korszerű vizsgálati módszerek labor jegyzőkönyv

Elektronmikroszkópia

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizika BSc III. évfolyam

'C' mérőcsoport

 $M\'{e}r\'{e}s$ $d\'{a}tuma$: 2018.04.11.

Mérés vezetője: Lábár János

1. Bevezető

A mérésünk során a TEM (transzmissziós elektronmikroszkóp) működési elvével és használatával ismerkedhettünk meg, valamint lehetőségünk nyílt különböző minták diffrakciós mintázatának tanulmányozására is. A készített képek alapján kiszámolhattuk a mikroszkóp kameraállandóját, majd ennek ismeretében elvégezhettük a minta diffrakciós képének kiértékelését. A mérések során egy apertúra ki illetve behelyezésével történő sötét, illetve világos látóterű képi üzemmódok használatával végeztük a beállításokat, melyek elméleti háttere, valamint lényege és a TEM működése is megtalálható [1]-ben.

2. Mérési feladatok és kiértékelés

A laborgyakorlat során egy Si és egy Ni minták diffrakciós képeit készítettük el. A Ni minta diffrakciós képe, polikristályos minta lévén különböző sugarú és intenzitású koncentrikus körökből állt, melyek sugarainak meghatározásának segítségével kalibrálni tudtuk a Si (egykristály) mintával törtnő mérésünket, valamint meg tudtuk határozni a kameraállandót is. Mivel a Ni minta ismerten köbös rács, ezért az alábbi összefüggést használhatjuk a kalibráció során:

$$R_{hkl} = \frac{L\lambda}{a} \sqrt{h^2 + k^2 + l^2},$$

ahol R_{hkl} a felvételen a direkt nyaláb pontja és a hkl indexű síksereg távolsága, L a kalibrálandó kamera hossz, λ a hullámhossz, a pedig a rácsállandó. A mikroszkópot jobban jellemzi a $L\lambda$ szorzat, melyet szokás mikroszkóp állandónak is nevezni. A mérésünk során azonban ezen képlet egy egyszerűsített alakjával dolgozhatunk, ugyanis a síktávolságok, vagyis a

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

értékek meg vannak adva hivatalos mérések alapján [2]-ben. A mérés során készített kalibrációs képet *image plate*-re készítettük, melyet elektronikus formában meg is kaptunk. A Ni mintáról készített, a kalibrációhoz is használt felvétel a 1 . ábrán látható.

2.1. Kalibráció

A kalibráció elvégzéséhez a függőleges tengely mentén felülről a 634. pixelnél vettem ki egy sort, az ezen sorban kapott intenzitásértékeket a 2. ábrán ábrázoltam.

 $1.~{\rm ábra}.~{\rm A}$ Ni minta diffrakciós képe, melyen a gyűrűs mintázat a polikristályos elrendeződés miatt alakul ki

2.ábra. A kivágott sor intenzitás eloszlása. A kalibrációhoz szükséges csúcsillesztéseket python segítségével végeztem

A képen látható csúcsból a kép közepéhez legközelebbi nyolc csúcsot illesztettem meg a középső, direkt nyalábhoz tartozó folt kivételével, mivel ezen csúcsok nagy intenzitásuk miatt kicsi illesztési hibákat adtak. Az illesztett függvény

$$f(x) = A \cdot e^{-\frac{x-x_0}{2\sigma^2}} + B$$

volt, vagyis egy konstans háttérrel ellátott Gauss-görbe. Az illesztésekből számunkra csak a csúcsok helyei fontosak, hiszen csak ezek kellenek a kalibrációhoz. Az illesztésből kapott értékeket az 1 . táblázat tartalmazza.

Bal	oldal	Jobb oldal		
x_0 [pixel]	Δx_0 [pixel]	x_0 [pixel]	Δx_0 [pixel]	
577.02	0.13	931.51	0.09	
549.88	0.16	958.87	0.08	
462.00	0.09	1046.60	0.09	
410.98	0.16	1097.07	0.06	
395.53	0.11	1112.45	0.13	
339.92	0.12	1168.98	0.09	
300.65	0.18	1207.40	0.16	

1. táblázat. A kalibrációhoz használt csúcsok középpontjai, középről a kép széle felé haladva

Ha az egy sorban levő értékeket kivonjuk egymásból, majd vesszük a kapott érték felét, akkor megkapjuk az egyes diffrakciós gyűrűkhöz tartozó sugarakat. Az így számolt sugár értékeket a 2 . táblázat tartalmazza.

R [pixel]	ΔR [pixel]	d [Å]
177.29	0.08	2.037180
204.50	0.09	1.764250
292.30	0.06	1.247510
343.04	0.09	1.063880
358.46	0.09	1.018590
414.53	0.08	0.882125
453.38	0.12	0.809493

2. táblázat. A számolt sugárértékek és a hozzájuk tartozó síktávolságok, melyeket a [2]-ből írtam be a táblázatba

A kapott sugárértékekre és a síktávolságok reciprokaira egy az origón átmenő egyenest illesztve megkapjuk a kívánt mikroszkóp állandó értékét. Az egyenesillesztés a 3 . ábrán látható.

3. ábra. A további számolásokhoz használt kalibrációs egyenes

Az illesztés alapján a kalibrációs egyenes meredeksége, így a mikroszkóp állandó értéke

$$L\lambda = 365.25 \pm 0.67.$$

2.2. Egykristály diffrakció

A kalibráció alapján meg tudjuk határozni a síktávolságok értékeit minden diffrakciós pont esetére, ez alapján pedig el tudjuk végezni azok indexelését. Az általam feldolgozott diffrakciós kép a 4 . ábrán látható.

4.ábra. Az egykristály diffrakció vizsgálata során készített diffrakciós kép a ${\tt Si}$ mintáról

A kapott képen az egyes diffrakciós pontokat indexeltem, hogy a későbbiekben azonosítani lehessen őket, majd kiszámoltam a direkt nyalábtól vett távolságukat. A direkt nyaláb helyzetét a képen (732, 623)-nek olvastam le. Az egyes diffrakciós pontok indexelése a 5 . ábrán látható.

5. ábra. A megindexelt diffrakciós kép

Az egyes diffrakciós pontok helyzetei és a kalibráció által számolt síktávolságok, valamint a számolt indexek a 3 . táblázatban láthatók.

Pont	x [pixel]	y [pixel]	$ \Delta x $ [pixel]	$ \Delta y $ [pixel]	$ \Delta $ [pixel]	d [Å]	Index
1	600	652	132	29	135.15	2.702	$\{0\overline{2}0\}$
2	866	594	134	29	137.10	2.664	{020}
3	838	820	106	197	223.71	1.633	{311}
4	715	845	17	222	222.65	1.640	$\{3\overline{1}1\}$
5	623	428	109	195	223.40	1.635	$\{\overline{311}\}$
6	751	401	19	222	222.81	1.639	$\{\overline{3}1\overline{1}\}$
7	992	568	260	55	265.75	1.374	{040}
8	470	680	262	57	268.13	1.362	$\{0\overline{4}0\}$
9	972	794	240	171	294.69	1.239	${331}$
10	580	872	152	249	291.73	1.252	$\{3\overline{3}1\}$
11	494	454	238	169	291.90	1.251	$\{\overline{331}\}$
12	883	370	151	253	294.64	1.239	$\{\overline{3}3\overline{1}\}$
13	1105	760	373	137	397.36	0.919	${351}$
14	948	1015	216	392	447.57	0.816	$\{622\}$
15	816	1042	84	419	427.34	0.854	$\{602\}$
16	684	1068	48	445	447.58	0.816	$\{6\overline{2}2\}$
17	446	904	286	281	400.95	0.910	${3\overline{5}1}$
18	336	704	396	81	404.20	0.903	$\{0\overline{6}0\}$
19	358	482	374	141	399.70	0.913	$\{\overline{351}\}$
20	640	200	92	423	432.89	0.844	$\{\overline{6}0\overline{2}\}$
21	1010	340	278	283	396.70	0.921	$\{\overline{3}5\overline{1}\}$
22	1115	532	383	91	393.66	0.928	{060}

3. táblázat. A számolt síktávolságok és Miller-indexek táblázata. Pirossal kiemeltem azon indexeket, melyekhez tartozó diffrakciós pontok vélhetően tiltott reflexiók, ugyanis nem szerepelt a hozzájuk tartozó síktávolság érték a kapott táblázatban. Az indexelést [3] alapján végeztem. Az egyes diffrakciós csúcsok koordinátáit Nebulosity 3 programmal határoztam meg, mely bár alapvetően csillagászati program, de jelen problémához alkalmazható volt.

Az indexelés során a következőképpen jártam el: kiválasztottam a 3. pontot (mivel az első kettő síktávolság értéke nem szerepelt a táblázatban), majd ezen ponthoz a táblázatban szereplő indexeket rendeltem. A következő pont esetében, amennyiben az nem volt átellenben az előző ponttal, még szabadon választhattam a síktávolságok által adott indexekből, azonban ennek választásával már megadtam, hogy milyennek kell lennie a többi pont indexeinek. A továbbiakban már csak megtekintettem a síktávolságok által adott lehetséges indexeket a pontokhoz, majd összevetettem ezt azzal, hogy minek kellene kijönnie az adott pontra a korábbiak indexeléséből származó lineárkombinációk alapján. A tiltott reflexiók esetében nem voltak megadva a lehetséges indexek, ott csak a lineárkombinációk alapján számoltam.

A kapott adatok alapján kiszámíthatjuk a zónatengelyek irányait is, melyek a síkseregek által képzett metszésvonalak. Ezen irányokat két, nem egy egyenesre eső diffrakciós pont indexeinek vektoriális szorzataként állíthatjuk elő, esetünkben például a 3. és 4. diffrakciós pontra:

$$\{311\} \times \{3\overline{1}1\} = \{20\overline{6}\}$$

Mivel számunkra csak az irány megadása a fontos, ezért ezen két vektorhoz tartozó zónatengely iránya $\frac{1}{\sqrt{10}}\{10\overline{3}\}$.

3. Diszkusszió

Mérésünk során betekintettünk a transzmissziós elektronmikroszkóp működésébe, valamint az azzal végzett mérések alapján sikerült meghatároznunk a műszer mikroszkóp állandóját, valamint indexeltük egy egykristályos mintáról készített felvételen látható diffrakciós pontokat. Az indexelés természetesen önkényes volt, az első két választott pont indexeinek sorrendje és előjelei tetszőlegesen választhatók, így a jelen indexeléstől eltérő is kapható.

Hivatkozások

[1]: Méréshez kiadott jegyzet: http://atomfizika.elte.hu/kvml/docs/korszeruosszefuzott.pdf

[2]: Ni adatlap: http://www.energia.mta.hu/labar/Ni_cF4_04-010-6148.pdf

[3]: Si adatlap: http://www.energia.mta.hu/labar/Si_cF8_04-002-0118.pdf