

DUT-IDIA Semestre 1

Module Architecture des Ordinateurs

Chapitre III

LOGIQUE COMBINATOIRE

Pr: Mustapha Johri

Année Universitaire: 2024 - 2025

Circuits logiques combinatoires

1. Combinatoires

• Les circuits logiques sont des circuits électroniques servant à effectuer physiquement des fonctions logiques.

Circuits combinatoires:

Les signaux de sortie ne dépendent que des signaux d'entrée présents.

- Exemple : les portes logiques,...
- Contre-exemple : le circuit ci-dessous n'est pas un circuit combinatoire

□ Demi-additionneur binaire

La table de vérité du demi-additionneur (qui ne tient pas compte d'une retenue antérieure).

а	b	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$\begin{array}{ccc}
\square & \mathbf{R} = \mathbf{a} \cdot \mathbf{b} \\
\square & \mathbf{S} = \mathbf{a} \oplus \mathbf{b}
\end{array}$$

☐ Additionneur complet

(En tenant pas compte d'une retenue antérieure).

а	b	R	S	R'
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

R' =
$$\bar{a}$$
.b.R + \bar{a} . \bar{b} .R + \bar{a} .b. \bar{R} + \bar{a} .b.R
S = \bar{a} . \bar{b} .R + \bar{a} .b. \bar{R} + \bar{a} .b.R + \bar{a} .b.R

Ce qui donne

R' =
$$(a \oplus b).R + a.b$$

S = $(a \oplus b) \oplus R$

- **☐** Additionneur complet
- Réalisation d'un additionneur complet en utilisant les demi additionneurs

R' =
$$(a \oplus b).R + a.b$$

S = $(a \oplus b) \oplus R$

☐ Additionneur à plusieurs bits

□ Définition et fonctionnement

- C'est un circuit combinatoire qui est constitué de :
 - ❖ V : Une entrée d'activation (1 : activée 0 non)
 - N: entrées de données.
 - ❖ 2^N sorties.
- Pour chaque combinaison des entrées(E1,...EN) la seule sortie activée est celle dont l'indice est le nombre codé en binaire.

■ Exemple : Si V=1 et si E1=E2=...=EN=0, la sortie S0 qui sera activée (S0=V=1).

☐ Décodeur binaire de 2x4

- ❖ 2: entrées de données.
- $2^2 = 4$ sorties.

V	Α	В	S0	S1	S2	S3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

☐ Décodeur binaire de 3x8

A	В	С	S0	S1	S2	S3	S4	S5	S 6	S 7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

☐ Réalisation d'une fonction logique avec Décodeur

Comment réaliser la fonction F avec un décodeur?

On a 2 entrée donc on utilise un décodeur à 2x4.

Α	В	щ
0	0	1
0	1	1
1	0	1
1	1	0

☐ Réalisation d'une fonction logique avec Décodeur

Exercice : Réaliser un additionneur complet avec un décodeur et des portes logiques?

а	b	R	S	R'
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

On a 3 entrée donc on utilise un décodeur 3x8.

☐ Multiplexeur

- Un multiplexeur est un circuit combinatoire qui permet de sélectionner une information parmi 2ⁿ valeurs en entrée.
- Ce circuit est constitué de :
 - \bullet n entrées d'adresses/commandes($A_0, A_1, ..., A_{n-1}$).
 - ❖ N=2ⁿ entrées d'information $(D_0, D_1,, D_{N-1})$
 - Une seule sortie S.

La sortie S reflète l'entrée qui porte le numéro codé par les n bits d'adresse

Exemple : Si $A_0=A_1=...A_n=0$, La sortie $S=D_0$.

n entrées d'adresses

☐ Multiplexeur 2x1

V	Co	S
0	X	0
1	0	E0
1	1	E1

Trouver l'expression logique de la sortie S?

$$S = V.(\overline{C_0}.E_0 + C_1E_1)$$

☐ Multiplexeur 4x1

C1	C0	S
0	0	E0
0	1	E1
1	0	E2
1	1	E3

☐ Multiplexeur 8x1

C2	C1	C0	S
0	0	0	E0
0	0	1	E1
0	1	0	E2
0	1	1	E3
1	0	0	E4
1	0	1	E5
1	1	0	E6
1	1	1	E7

☐ Réalisation d'une fonction logique avec multiplexeur

Comment réaliser la fonction S avec un MUX 4x1?

On affecte au variables d'adresse les variables de la fonction logique S

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

☐ Réalisation d'une fonction logique avec multiplexeur

Soit la table de vérité suivante : réaliser la fonction logique "f" en utilisant un :

• multiplexeur 8x1

Α	В	С	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

☐ Réalisation d'une fonction logique avec multiplexeur

Soit la table de vérité suivante : réaliser la fonction logique "f" en utilisant un :

• multiplexeur 4x1

Z	Υ	X	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

□ Démultiplexeur

- Il joue le rôle inverse d'un multiplexeur, il permet de faire passer une information dans l'une des sorties selon les valeurs des entrées de commandes.
- Il possède:
 - Une seule entrée.
 - ❖ 2ⁿ sorties
 - ❖N entrées de sélection (commandes)

☐ Démultiplexeur de 1 à 4

C1	C0	S 3	S2	S1	S0
0	0	0	0	0	E
0	1	0	0	E	0
1	0	0	Е	0	0
1	1	Е	0	0	0

☐ Réalisation d'une fonction logique avec démultiplexeur

Comment réaliser la fonction S avec un DeMUX 1x4?

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

4. Un coup d'œil sur le microprocesseur/Mémoire

☐ UAL du Microprocesseur à 1 bit

☐ Aperçu vers la Mémoire

Avec un décodeur et un multiplexeur qui vont permettre de réduire le nombre de fils de transfert d'adresses à l'entrée de la mémoire.

HIN