Симплекс-метод

Лекция по дисциплине «Исследование операций

Задача линейного программирования в стандартной форме

$$f(x) = \sum_{j=1}^{n} c_j \cdot x_j \to \max(\min)$$

 $\sum_{j} a_{ij} \cdot x_j \leqslant (\geqslant) b_i, i \in [1; m]$
 $x_j \geqslant 0$

Задача линейного программирования в канонической форме

$$f(x) = \sum_{j=1}^{n} c_j \cdot x_j \rightarrow \max(\min)$$

$$\sum_{j} a_{ij} \cdot x_j = b_i, i \in [1; m]$$

$$x_j \geqslant 0$$

Переход от стандартной к канонической форме

Преобразования ограничений—неравенств в ограничения—равенства выполняются путем введения в ограничения дополнительных переменных с коэффициентами ± 1 в зависимости от знака неравенства:

- если ограничение неравенство имело знак \leqslant , то в левую часть его вводится дополнительная неотрицательная переменная с коэффициентом +1 и знак \leqslant заменяется знаком =;
- если ограничение неравенство имело знак \geqslant , то в левую часть его вводится дополнительная неотрицательная переменная с коэффициентом -1 и знак \geqslant заменяется знаком =.

Переход от стандартной к канонической форме

Example

Стандартная форма

$$f(x) = 3x_1 + 4x_2$$
$$x_1 + x_2 \geqslant 6$$
$$x_1 + 2x_2 \geqslant 8$$

Example

Каноническая форма

$$f(x) = 3x_1 + 4x_2 + 0x_3 + 0x_4$$
$$x_1 + x_2 + x_3 = 6$$
$$x_1 + 2x_2 + x_4 = 8$$

Базисные и свободные переменные

Система ограничений общей задачи линейного программирования содержит m уравнений.

- При n = m система ограничений имеет единственное решение, которое является оптимальным.
- При n>m, т.е. в случае, когда неизвестных больше, чем уравнений, система может иметь бесконечное множество решений, одно из которых является оптимальным. В этих решениях (n-m) переменных могут принимать произвольные значения. Эти переменные называются свободными. Остальные m переменных выражаются через свободные и называются базисными переменными.

Симплексный метод

Стратегия метода решения задачи ЛП основана на особенностях постановки этой задачи. Множество

$$X = \{x | \sum_{j=1}^{n} a_{ij} x_j = b_i; i = 1, \dots, m; x_j \geqslant 0; j = 1, \dots, n; m < n\}$$

допустимых решений задачи, определяемых приведенными ограничениями, является выпуклым и геометрически представляет выпуклый политоп, имеющий конечное число вершин, которые соответствуют множеству допустимых базисных решений системы ограничений.

Симплексный метод,

Базисным решением (базисным планом) называется такое решение, которое получится, если положить все свободные переменные равными нулю и решить уравнения относительно базисных переменных. Если целевая функция достигает максимального значения, то оно находится в одной из вершин политопа, т.е. среди допустимых базисных решений.

Стратегия решения задачи симплексным методом сводится к направленному перебору базисных решений.

Симплексный метод

Направленность перебора состоит в последовательном улучшении очередного базисного решения и сводится к следующим этапам:

- записать задачу линейного программирования в канонической форме;
- определить начальное допустимое базисное решение;
- проверить полученное базисное решение на оптимальность;
- если решение неоптимальное, перейти к другому базисному решению, обеспечивающему возрастание целевой функции, т.е. выполнить переход к нехудшему плану.

В результате многократного повторения этапов 3 и 4 будет:

- либо получено оптимальное решение;
- либо выявлена противоречивость ограничений;
- либо определено, что при допустимых базисных решениях целевая функция является неограниченной.

Симплекс-таблицы

Выбор начального базисного решения

За начальные базисные переменные берутся те m переменных, при которых коэффициенты в уравнениях-ограничениях образуют единичную матрицу, т.е. эти переменные входят в одно уравнение с коэффициентом, равным единице, и во все остальные — с коэффициентом, равным нулю.

Обычно это те дополнительные переменные, которые были введены при переходе в ограничениях от неравенств к равенствам для образования канонической формы задачи.

Тогда начальное базисное решение имеет вид

$$x_i = b_i, i = 1, \dots, m; x_{m+1} = \dots = x_n = 0$$

11 / 27

Проверка базисного решения на оптимальность

Для определения оптимальности очередного базисного решения (плана) необходимо вычислить относительные оценки Δ_j , которые записываются в соответствующий столбец индексной строки.

$$\Delta_j = Z_j - C_j$$

где $Z_j = \sum_{i=1}^m C_i \cdot a_{ij}, \, j=1,\ldots,m.$

 C_{j} – коэффициенты при переменных в целевой функции;

 C_i — коэффициенты при базисных переменных текущего базисного плана;

 a_{ij} – элементы столбцов коэффициентов при переменной x_j в системе уравнений, соответствующей текущему базису.

Проверка базисного решения на оптимальность

Текущее базисное решение вычисляется как сумма произведений элементов столбца C на соответствующий элемент столбца B (базисные решения) $(\sum_{i=1}^m C_i \cdot b_i)$ и записывается в соответствующий столбец индексной строки

Проверка базисного решения на оптимальность

- Если для некоторого базисного решения все элементы Δ_j индексной строки положительны, то найдено оптимальное решение.
- Если не выявлены неограниченность целевой функции и противоречивость ограничений, а в индексной строке есть отрицательные числа Δ_j , то следует перейти к вычислению следующего базисного решения.
- Неограниченность целевой функции задачи проявляется в случае, если Δ_k для некоторого j=k и среди чисел $a_{ik} (i=1,2,\ldots,m)$ нет положительных $(a_{ik}\leqslant 0)$.
- Если число нулевых оценок $\Delta_j=0$ равно числу базисных переменных, задача имеет единственное решение. Если число нулевых оценок $\Delta_j=0$ превышает число базисных переменных, то задача имеет бесконечное множество решений.
- Если все Δ_j положительны, но базисное решение содержит хотя бы одну искусственную переменную, не равную нулю, то ограничения задачи несовместны.

14 / 27

Процедура расчетов связана с использованием симплекс-таблиц, каждая из которых соответствует текущему базисному решению. Предыдущая таблица отличается от последующий новым базисом. Новый базис отличается от старого только одной переменной. Выбор переменной, которая должна быть введена в число базисных, определяется из требования максимального прироста целевой функции при переходе от одного решения к другому.

- По наибольшей по модулю отрицательной величине Δ_j определяется столбец, который называется разрешающим столбцом.
- В этом столбце находится переменная x_j , которая будет введена в новый базис. Допустим, что такая величина Δ_j находится в столбце с номером r (j=r). Далее надо определить переменную, которая будет выведена из базиса и место которой займет новая базисная переменная.
- Переменная, удаляемая из числа базисных, располагается в разрешающей строке. Разрешающая строка находится по наименьшему положительному частному от деления правых частей уравнений-ограничений (b_i) , расположенных в столбце на положительные элементы разрешающего столбца:

$$\min\left[\frac{b_i}{a_{ir}}\right]$$

Предположим, что такое частное получено в строке с номером s (i=s).

Следовательно, из базисных переменных будет удалена переменная из строки с номером s.

Пересечение разрешающего столбца и разрешающей строки дает разрешающий элемент.

Следовательно, в качестве разрешающего элемента выступает $_{sr}$. Таким образом, разрешающий элемент указывает на **базисную переменную, которую нужно заменить** (она становится свободной), и на **переменную, которая войдет в новый базис**.

Преобразование симплексной таблицы к новому базису состоит в следующем:

- в столбец БП заносят новую базисную переменную на место переменной, удаляемой из базиса;
- ② в столбец C_{δ} заносят коэффициенты при базисных переменных в целевой функции;
- элементы строки вновь введенной базисной переменной получают путем деления элементов разрешающей строки на предыдущем этапе на разрешающий элемент;
- элементы других строк новой симплекс-таблицы рассчитываются в соответствии с шагом Гаусса;
- 💿 после расчета всех элементов заполняется индексная строка.

Шаг Гаусса (шаг Гаусса-Жордана)

Пусть k - номер итерации симплекс-метода.

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - a_{ir}^{(k)} \cdot \frac{a_{sj}^{(k)}}{a_{sr}^{(k)}}$$

Или правило «треугольника»:

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - a_{ir}^{(k)} \cdot a_{sj}^{(k+1)}$$

Алгоритм решения задачи І

- Записать задачу в канонической форме при помощи линейных преобразований.
- Определить базисные переменные, входящие только в одно из уравнений системы с коэффициентом +1, и во все остальные с коэффициентами, равными нулю.
- Выделить свободные переменные.
- Найти начальное базисное решение, полагая свободные переменные равными нулю.
- Заполнить симплекс-таблицу:
 - столбец базисных переменных (БП);
 - столбец C коэффициентов при базисных переменных в целевой функции;
 - столбец базисного решения B (правые части уравнений-ограничений при начальном заполнении);
 - ullet строку c_j коэффициентов переменных в целевой функции;

20 / 27

Алгоритм решения задачи II

- матрицу a_{ij} коэффициенты переменных в системе ограничений задачи.
- Вычислить относительные оценки

$$\Delta_j = \sum_{i=1}^m c_i \cdot a_{ij} - c_j, j = 1, \dots, n$$

и записать их в индексную строку. В начальной записи это, как правило, коэффициенты c_j с обратным знаком, так как все c_j равны нулю.

- 🕡 Проанализировать относительные оценки Δ_j :
 - если все оценки положительны, то расчет закончен, получено оптимальное решение, оптимальное значение целевой функции равно $\sum_{i=1}^m c_i \cdot b_i$ и должно быть записано в индексной строке в столбце ;

Алгоритм решения задачи III

• если среди оценок есть отрицательные, то следует найти среди них наибольшую по модулю отрицательную величину

$$\Delta_r = max |\Delta_j|$$

и проанализировать коэффициенты столбца таблицы, которому соответствует эта оценка. Если все коэффициенты этого столбца отрицательны, то задача не имеет решения, так как целевая функция не ограничена на этом плане. В противном случае этот столбец является разрешающим столбцом.

Разделить элементы столбца В (базисных решений) на соответствующие коэффициенты разрешающего столбца и среди полученных частных выбрать наименьшее значение:

$$\min_{1\leqslant i\leqslant m}\left[\frac{b_i}{a_{ir}}\right]$$

Алгоритм решения задачи IV

Строка, соответствующая выбранному отношению является разрешающей строкой. Элемент, лежащий на пересечении разрешающей строки и разрешающего столбца, является разрешающим элементом.

- Выполнить пересчет таблицы для получения нового базисного решения:
 - ввести новую базисную переменную (определенную по разрешающему столбцу);
 - пересчитать строку, в которую ввели новую базисную переменную, поделив ее коэффициенты на разрешающий элемент;
 - вычислить все остальные коэффициенты, используя правило «треугольника».
- Вычислить новое значение целевой функции, определив сумму произведений $c_i \cdot b_i$ и перейти к пункту 6.

Пример

Для изготовления различных изделий А, В, С предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия каждого вида, цена одного изделия и общее количество сырья каждого вида, которое может быть использовано предприятием, приведены в таблице. Изделия А, В, С могут производиться в любых соотношениях, но производство ограничено выделенным предприятию сырьем каждого вида. Нужно составить план производства изделий, при котором общая стоимость всей произведенной предприятием продукции будет максимальной.

Рип от пот д	Нормы затр	ат сырья на о,	Общее количество		
Вид сырья	A	В	C	сырья	
1	4	2	1	180	
2	3	1	3	210	
3	1	2	6	244	
Цена одного изделия	10	14	12		

Решение

Составим математическую модель задачи. Обозначим:

 x_1 – количество изделий A,

 x_2 – количество изделий В,

 x_3 – количество изделий С.

Общая стоимость произведенной продукции:

$$F = 10x_1 + 14x_2 + 12x_3.$$

Это целевая функция, максимум которой необходимо определить. Система ограничений:

$$4x_1 + 2x_2 + x_3 \le 180$$

$$3x_1 + x_2 + 3x_3 \le 210$$

$$x_1 + 2x_2 + 5x_3 \le 244$$

$$x_1, x_2, x_3 \ge 0.$$

Решение

Запишем задачу в канонической форме:

$$F = 10x_1 + 14x_2 + 12x_3 + 0x_4 + 0x_5 + 0x_6$$

$$4x_1 + 2x_2 + x_3 + 1x_4 + 0x_5 + 0x - 6 = 180$$

$$3x_1 + x_2 + 3x_3 + 0x_4 + 1x_5 + 0x_6 = 210$$

$$x_1 + 2x_2 + 5x_3 + 0x_4 + 0x_5 + 1x_6 = 244$$

$$x_1, x_2, x_3 \ge 0.$$

Базовыми переменными являются x_4 , x_5 , x_6 . Свободные переменные x_1 , x_2 , x_3 равны нулю.

Решение

Составим и заполним симплекс-таблицу для 1-й итерации:

			<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆
БΠ	C_{δ}	B_0	10	14	12	0	0	0
<i>X</i> 4	0	180	4	2	1	1	0	0
<i>X</i> 5	0	210	3	1	3	0	1	0
<i>x</i> ₆	0	244	1	2	5	0	0	1