

Sorry arima, I'm going Bayesian

Pierre Gauthier

École des Mines de Nancy

May 2019

Tuteur: Denis Villemonais

Pierre Gauthier Sorry ARIMA

Introduction

- Projet à partir du billet *Sorry ARIMA*, *but I'm Going Bayesian* par Kim Larsen.
- Étudier une autre approche que celle classique pour les série temporelles.
- Utilisation des méthodes de Monté-carlo par chaîne de Markov.

Sommaire

- 1 Méthode de Monte-Carlo par chaînes de Markov
- 2 Approche bayésienne pour la modélisation des series temporelles
- 3 Modélisation d'un jeu de données

Méthode de Monte-Carlo par chaînes de Markov

Méthode de Monté-carlo par chaînes de Markov

Pierre Gauthier Sorry ARIMA May 2019

Monté-Carlo Markov Chain

- Utilisé initialement lors du projet Manhattan, développé par Nicholas Metropolis et Stanislas Ulamn en 1949.
- Amélioration de la méthode avec l'échantillonnage préférentiel par Keith Hastings (1970)
- Application en optimisation (recuit simulé), en physique statistique, en machine learning, ...

Principe de l'Échantillonneur de Gibbs

- On veut obtenir la loi de $\Theta = (\theta_1, \dots, \theta_n)$
- On ne peut pas exprimer $Loi(\Theta)$ mais on connaît $Loi(\theta_i|(\theta_1,\ldots,\theta_{i-1},\theta_{i+1},\ldots,\theta_n))$

Algorithme d'Échantillonnage de Gibbs

Soit
$$\Theta^{(t)} = \left(\theta_1^{(t)}, \dots, \theta_n^{(t)}\right)$$

- \blacksquare Prendre des valeurs initiales Θ_0
- Pour t de 1 à ...
 - Tirer $\theta_1^{(t+1)} \sim \mathbb{P}(\theta_1 | X, \theta_2 = \theta_2^{(t)}, \dots, \theta_n = \theta_n^{(t)})$

 - $\blacksquare \dots$ $\blacksquare \text{ Tirer } \theta_n^{(t+1)} \sim \mathbb{P}(\theta_2 | X, \theta_1 = \theta_1^{(t+1)}, \dots, \theta_{n-1} = \theta_{n-1}^{(t+1)})$

- Problème multidimensionnel → problème unidimensionnel
- \blacksquare La chaîne de Markov ainsi définie admet comme mesure invariante la distribution jointe de Θ
- On obtient des tirages $\Theta_{i_1}, \dots, \Theta_{i_M}$ de la distribution jointe de Θ Nous pouvons ainsi estimer les loi marginales des θ_i par

$$p_{ heta_i}(x) = rac{1}{m} \sum_{t=1}^m p(x| heta_1^{(t)},\dots, heta_n^{(t)}))$$
(Rao $-$ Blackwellized)

Convergence?

- Regarder la trace
- Regarder les autocorrélations des tirages.
- Comparer des parties de l'échantillon avec le Geweke z-score

Figure – Exemple pour un paramètre de régression

Un exemple simple pour l'Échantilloneur de Gibbs

On simule la loi d'un vecteur gaussien $\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho \\ \rho & \sigma_2^2 \end{pmatrix} \end{bmatrix}$

On utilise l'échantillonneur de Gibbs en itérant :

$$egin{aligned} & x_{n+1} \sim \mathcal{N}\left(\mu_1 +
ho rac{\sigma_1}{\sigma_2} \left(y_n - \mu_2
ight), \sigma_1^2 (1-
ho)
ight) \ & y_{n+1} \sim \mathcal{N}\left(\mu_2 +
ho rac{\sigma_2}{\sigma_1} \left(x_{n+1} - \mu_1
ight), \sigma_2^2 (1-
ho)
ight) \end{aligned}$$

Pierre Gauthier Sorry ARIMA May 2019 7 / 38

11

12

13

18

```
def sample x given y(y, mean, var):
2
        mu = mean[0] + var[0,1] * math.sqrt(var[0,0]) / math.sqrt(var[1,1]) * (y - mean[1])
 3
        var = var[0, 0] * (1 - var[1, 0])
        return np.random.normal(mu. var)
 5
6
    def sample y given x(x, mean, var):
7
        mu = mean[1] + var[0, 1] * math.sqrt(var[1, 1]) / math.sqrt(var[0, 0]) * (x - mean[0])
        var = var[1, 1] * (1 - var[1, 0])
        return np.random.normal(mu, var)
10
    def gibbs sampler(mean, var, N iter):
        samples = np. zeros((N iter, 2))
        v = mean[1]
14
15
        for i in range(N iter):
            x = sample_x_given_y(y, mean, var)
16
17
            y = sample y given x(x, mean, var)
            samples [i, :] = [x, v]
19
20
        return samples
```

Listing 1 – Implémentation Python

Simulations
$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \ \sigma_1^2 = 1, \ \sigma_2^2 = 0.5, \ \rho = 0.6$$

Pierre Gauthier Sorry ARIMA May 2019 9 / 38

Simulations
$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \ \sigma_1^2 = 1, \ \sigma_2^2 = 0.5, \ \rho = 0.6$$

Simulations
$$\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \ \sigma_1^2 = 1, \ \sigma_2^2 = 0.5, \ \rho = 0.6$$

Pierre Gauthier Sorry ARIMA May 2019 11 / 38

Application numérique : Une alternative à l'algorithme E-M pour le mélange de gaussiennes

Échantillon $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ suivant une loi $f(\mathbf{x}_i, \theta)$ avec des variables latentes $\mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n)$

 \rightarrow Algorithme E-M: Maximisation de $L(\theta; X) = p(x|\theta) = \int p(x, z|\theta) dZ$

$$L(\mathbf{x}; \boldsymbol{\theta}) = Q\left(\boldsymbol{\theta}; \boldsymbol{\theta}^{(c)}\right) - H\left(\boldsymbol{\theta}; \boldsymbol{\theta}^{(c)}\right)$$

$$\begin{cases} Q\left(\theta; \theta^{(c)}\right) = E\left[L((\mathbf{x}, \mathbf{z}); \theta) | \theta^{(c)}\right] \\ H\left(\theta; \theta^{(c)}\right) = E\left[\sum_{i=1}^{n} \log f\left(z_{i} | \mathbf{x}_{i}, \theta\right) | \theta^{(c)}\right] \end{cases}$$

 $oldsymbol{ heta}^{(c+1)} = rg \max_{oldsymbol{ heta}} \left(Q\left(oldsymbol{ heta}, oldsymbol{ heta}^{(c)}
ight)
ight)$ fait tendre la suite $L\left(\mathbf{x}; oldsymbol{ heta}^{(c+1)}
ight)$ vers un max local

Application : mélange de gaussiennes

- Les données x viennent de gaussiennes $\{C_1, \ldots, C_M\}$
- $z_i \in \{1, \ldots, m\}$ si un individu i vient de C_1, \ldots, C_M

$$\mathbf{x}_i | (\mathbf{z}_i = j) \sim \mathcal{N}(\mu_j, \sigma_j^2) \quad \mathbb{P}(\mathbf{z}_i = j) = \pi_j$$

$$\theta = \left(\pi, \mu, \sigma^2\right)$$

■ E-M : maximisation de $\hat{ heta}_{\mathrm{MLE}}(x) = rg \max_{ heta} f(x| heta)$

$$\ell_{ heta}(x) = \sum_{n=1}^{N} \log \left(\sum_{j=1}^{M} \pi_{j} \; \mathcal{N}_{\mu_{j},\sigma_{j}^{2}}\left(x_{n}
ight)
ight)$$

■ Bayesien estimateur $\hat{\theta}_{MMSE}(x) = E[\theta|x]$

Figure — Mélange de deux gausiennes [F. Sur, Introduction à l'apprentissage automatique]

Application : Échantillonneur de Gibbs pour le mélange de 2 gaussiennes

Pour 2 gaussiennes :
$$\begin{cases} \boldsymbol{x}_i | (\boldsymbol{z}_i = 1) \sim \mathcal{N} \left(\mu_1, \sigma_1^2 \right) & \mathbb{P} \left(\boldsymbol{z}_i = 1 \right) = \pi_1 \\ \boldsymbol{x}_i | \left(\boldsymbol{z}_i = 2 \right) \sim \mathcal{N} \left(\mu_2, \sigma_2^2 \right) & \mathbb{P} \left(\boldsymbol{z}_i = 2 \right) = \pi_2 = 1 - \pi_1 \end{cases}$$
 \rightarrow On veut obtenir $\Theta = (\boldsymbol{z}, \mu) = (\boldsymbol{z}_1, \dots, \boldsymbol{z}_1, \mu)$ $(\pi, \sigma \text{ fixés à } \hat{\pi}, \hat{\sigma})$

Pierre Gauthier Sorry ARIMA May 2019 14 / 38

Application : Échantillonneur de Gibbs pour le mélange de 2 gaussiennes

$$\Theta = (\mathbf{z}, \mu) = (\mathbf{z_1}, \dots, \mathbf{z_1}, \mu)$$

$$lacksquare$$
 $Z | \mu$: On a $p(\mathcal{C}_1|x) = \frac{p(\mathcal{C}_1)p(x|\mathcal{C}_1)}{p(\mathcal{C}_1)p(x|\mathcal{C}_1) + p(\mathcal{C}_2)p(x|\mathcal{C}_2)}$

$$\text{Utiliser } \mathbb{P}\left(\boldsymbol{z}_{i}=j|\mu,\boldsymbol{x}\right)=\frac{\hat{\pi}_{j}\boldsymbol{p}_{\mathcal{N}}(\boldsymbol{x}_{i},\mu_{j},\hat{\sigma}_{j})}{\hat{\pi}_{1}\boldsymbol{p}_{\mathcal{N}}(\boldsymbol{x}_{i},\mu_{1},\hat{\sigma}_{1})+\hat{\pi}_{2}\boldsymbol{p}_{\mathcal{N}}(\boldsymbol{x}_{i},\mu_{2},\hat{\sigma}_{2})}\quad j\in\{1,2\}$$

$$\blacksquare \mu | \mathbf{z}$$
 :

Pierre Gauthier Sorry ARIMA May 2019 15 / 38

Échantilloneur de Gibbs pour une mixture gaussienne

- **1** Prendre les valeurs initiales $\Theta_0 = (\mathbf{z}^{(0)}, \mu_1^{(0)}, \mu_2^{(0)}), \mu_0, \tau_0$
- 2 Pour t de à ...
 - Pour *i* de 1 à *N* tirer

$$\pmb{z}_i^{(t+1)} \in \{1,2\} \text{ avec } \mathbb{P}(\pmb{z}_i^{(t+1)} = 1 | \mu^{(t)}) = \frac{\hat{\pi}_1 p_{\mathcal{N}}(\pmb{x}_i, \mu_1^{(t)}, \hat{\sigma}_1)}{\hat{\pi}_1 p_{\mathcal{N}}(\pmb{x}_i, \mu_1^{(t)}, \hat{\sigma}_1) + \hat{\pi}_2 p_{\mathcal{N}}(\pmb{x}_i, \mu_2^{(t)}, \hat{\sigma}_2)}$$

Pour $j \in \{1, 2\}$ avec $\tau'_{j_0} = \tau_0 + N\hat{\tau}_j$ $\mu'_{j_0} = \frac{N \hat{\tau}_j \bar{x} + \tau_0 \mu_0}{N\hat{\tau}_j + \tau_0}$ Tirer $\mu_i^{(t+1)} \mathbf{z} \sim \mathcal{N}\left(\mu'_{i_0}, 1/\tau'_{i_0}\right)$

```
mu given Z = function(X, Z, mu prior) 
    # Z variables latentes
    # mu prior contient parametres loi a priori de mu
    mu = rep(0.2) : sigma = rep(0.2)
    for(i in 1:2){
        sample i size = sum(Z==i)
        sample_j_mean = mean(X[Z==i])
        sigma[j] = sd(X[Z==j]); precision_j = 1 / sigma[j]^2
        precision_post = sample_j_size * precision_j +
            mu prior$precision
            mean_post = (sample_j_mean * sample_j_size *
            precision_j + mu_prior$mean *
            mu_prior$precision ) / precision_post
        mu[i] = rnorm(1.mean post.sgrt(1/precision post)) # on
               tire mu selon la loi normale a posteriori
    return(list(mu = mu, sigma = sigma))
```

```
echantillonneur_gibbs <- function(X,N_simu){
    # X sont les donnees
    # initalisation
    :
    for (k in 1:N_simu){
        Z <- Z_given_mu(X,Z,mu,pi_1) ; param_post <- mu_given_Z(X, Z, mu_prior)
        mu = param_post$mu
    :
    ;
    return(list(Z, mu_1, mu_2))
}</pre>
```

Listing 2 - Implémentation en R

Simulations

Données : on gènere équiprobablement 1000 points à partir de 2 gaussiennes $\mathcal{N}(-2,1)$, $\mathcal{N}(-3,0.5)$

On prend à priori $\mu \sim \mathcal{N}\left(0,4\right)$

Pierre Gauthier Sorry ARIMA May 2019 18 / 38

Simulations

Pour 1000 itérations

ightarrow burn-in de 100

Pierre Gauthier Sorry ARIMA May 2019 19 / 38

Simulations : diagnostic de μ avec le package coda

(sans le burn-in)

Simulations : diagnostic de μ avec le package coda

variable	moyenne	95% CI lower	95% CI upper	vraie valeur
μ_{1}	2.963882	2.899498	3.032716	3
μ_2	-1.981757	-2.061083	-1.902244	-2

Pierre Gauthier Sorry ARIMA May 2019 21 / 38

Approche bayésienne pour la modélisation des series temporelles

Approche bayésienne pour les séries temporelles

Pierre Gauthier Sorry ARIMA May 2019

Approche bayésinne pour la modélisation des séries temporelles

Les modèle espace-états

bruit blanc gaussien

		-
equation d'observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N\left(0, H_t ight)$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0,Q_t ight)$

- *v*_t observations
- α_t variables d'états / latentes /
 cachées
- Z_t matrice de mesure
- \blacksquare T_t matrice de transition

Figure – Hidden Markov Chain[researchgate.net]

Approche bayésienne pour la modélisation des séries temporelles

→ Bayesian structural time series (BSTS)

bruit blanc gaussien

observation	$y_t = \mu_t + \beta^T x_t + \tau_t + \varepsilon_t$	$arepsilon_{t}\sim N\left(0,\sigma_{arepsilon}^{2} ight)$
regression	$\beta^T x_t$	
tendance + marche aléatoire	$\mu_t = \mu_{t-1} + \delta_{t-1} + u_t$	$u_t \sim N\left(0, \sigma_u^2\right)$
marche aléatoire	$\delta_t = \delta_{t-1} + \nu_t$	$v_t \sim N\left(0, \sigma_v^2\right)$
saisonnalité	$ au_t = -\sum_{s=1}^{s-1} au_{t-s} + w_t$	$w_t \sim N\left(0, \sigma_w^2\right)$

Pierre Gauthier Sorry ARIMA May 2019 23 / 38

→ Bayesian structural time series (BSTS)

observation	$y_t = Z_t^T \alpha_t + \epsilon_t$	$\epsilon_t \sim N(0, H_t)$
	Z_t^T $(1 0 \beta^T x_t)$	$\begin{pmatrix} \alpha_t^T \\ \mu_t & \delta_t & 1 \end{pmatrix}^T$
equation de transition	$\alpha_{t+1} = T_t \alpha_t + R_t \eta_t$	$\eta_t \sim N\left(0,Q_t ight)$
$\left(egin{array}{c} lpha_t \ lpha_t \ \delta_t \ 1 \end{array} ight)$	$egin{pmatrix} T_t \ 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ \end{pmatrix}$	$egin{pmatrix} N_t\eta_t \ u_t \ v_t \ w_t \end{pmatrix}$

 \rightarrow estimation des paramètres

Loi à postériori états cachés α_t : Le filtre de Kalman

Itérations sur l'estimation $p(\alpha_t|y_{1:t}) \sim \mathcal{N}(\hat{\alpha}_t, P_t)$

Figure – [github : anhdanggit/nowcasting-google-queries/]

Loi à postériori de β : *spike-and-slab prior*

- On prend la partie regression $y_t^* = y_t \mu_t$
- On utilise pour β une distribution à priori *spike-and-slab* :

$$ho(\gamma)=\prod_{k=1}^N\pi^{\gamma_k}(1-\pi)^{1-\gamma_k}$$
, $\gamma_k\in\{0,1\}$ $N=\mathit{Card}(\mathsf{x})$

- $\blacktriangleright \text{ Å priori}: p\left(\beta,\gamma,\sigma_{\varepsilon}^2\right) = p\left(\beta_{\gamma}|\gamma,\sigma_{\varepsilon}^2\right)p\left(\sigma_{\varepsilon}^2|\gamma\right)p(\gamma)$
- $\blacktriangleright \ \beta_{\gamma} \left| \sigma_{\epsilon}^{2}, \gamma \sim \mathcal{N} \left(b_{\gamma}, \sigma_{\epsilon}^{2} \left(\Omega_{\gamma}^{-1} \right)^{-1} \right) \right. \left. \left. \sigma_{\epsilon}^{2} \right| \gamma \sim \textit{IG} \left(\frac{\nu}{2}, \frac{ss}{2} \right) \right.$

papramètres à priori : v nombre de paramètres, $\frac{ss}{v} = (1 - R^2) s_y^2$, $\Omega^{-1} \propto X^T X$

■ On utilise les propriété des lois conjugé pour obtenir les loi à postériori $\beta_{\gamma}|\sigma_{\epsilon}, \gamma, \mathbf{y}^* \qquad \gamma_{\epsilon}^2|\gamma, \mathbf{y}^* \qquad \gamma|\mathbf{y}^*$

■ Intérêt de la spike-and-slab

Figure –

[batisengul.co.uk]

$$\beta_{\gamma} = \beta [\gamma_{k} \neq 0]$$

Échantilloneur de Gibbs pour BSTS : SSVS algorithm

$$\Theta = \left(\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2\right)$$

- ► Choisir les paramètres à priori v, R^2 , s_y^2 , π
- ► Tirer $\gamma, \beta, \sigma_{\varepsilon}^2, \sigma_{v}^2, \sigma_{u}^2$

$$\sigma_u^2, \sigma_u^2, \sigma_w^2$$
 sont tiré selon la loi .| $\gamma \sim \mathit{IG}\left(\frac{\nu}{2}, \frac{ss}{2}\right)$

Sur $1, \ldots, M$:

- **1** Après application du filtre de Kalman, on tire les états latents α depuis $p\left(\alpha|y,\gamma,\beta,\sigma_{\varepsilon}^2,\sigma_{v}^2,\sigma_{u}^2\right)$
- 2 On tire σ_u^2 et σ_v^2 selon $p\left(\frac{1}{\sigma_u^2}, \frac{1}{\sigma_v^2} | y, \alpha, \beta, \sigma_\varepsilon^2\right)$
- 3 On tire β et σ_{ϵ}^2 selon $p\left(\beta, \sigma_{\epsilon}^2 | y, \alpha, \sigma_{u}^2, \sigma_{v}^2\right)$

On prend comme modèle la moyenne des tirages $(\Theta^m, \dots, \Theta^M)$

Utilisation du modèle BSTS sur un jeu de données

On prend le jeu de données CO2 comprenant 295 observations

- ► Input Gas : arrivée d'essence
- ► Output CO2 : CO2 en sortie

On utilise le modèle précédent pour exprimer Input Gas en fonction de Output CO2.

$$\begin{aligned} y_t &= \mu_t + \beta^T \mathbf{x}_t + \epsilon_t & \epsilon_t \sim \mathcal{N}\left(0, \sigma_\epsilon^2\right) \\ \mu_t &= \mu_{t-1} + \delta_{t-1} + u_t & u_t \sim \mathcal{N}\left(0, \sigma_u^2\right) \end{aligned}$$

Listing 3 - package bsts
Observations et valeurs obtenues par le modèle bsts.reg

Pierre Gauthier Sorry ARIMA May 2019 29 / 38

Convergence

Résidus

Pierre Gauthier Sorry ARIMA May 2019 31 / 38

Comparaison avec un modéle à fontion de transfert

Modèle à fonction de transfert : $Y_t = \mu + \frac{\Omega(B)}{\Delta(B)} X_{t-b} + \frac{\Theta(B)}{\Phi(B)} \varepsilon_t$ Avec :

 \blacksquare (Y_t) chronique à modeliser

 $\frac{\Omega(B)}{\Delta(B)}$ fonction de transfert

 (X_t) chronique explicative

lacksquare (u_t) chronique des erreurs

$$o$$
 On blanchit la chronique $X_t: \chi_t = rac{\Phi_1(B)}{\Theta_1(B)} X_t$

$$\to \Upsilon_t = \frac{\Phi_1(B)}{\Theta_1(B)} Y_t = \frac{\Omega(B)}{\Delta(B)} \chi_{t-b} + \widetilde{\varepsilon}_t$$

On utilise le corrélogramme croisé
$$\rho(h) = \frac{\operatorname{Cov}(\chi_t, \Upsilon_{t+h})}{\sqrt{\operatorname{Var}(\chi_t) \cdot \operatorname{Var}(\Upsilon_t)}} = \begin{cases} \nu_h \frac{\sigma_{\chi}}{\sigma r} & \text{si } h \geqslant 0 \\ 0 & \text{si } h < 0 \end{cases}$$

où
$$\Upsilon_t = \sum_{h\geqslant 0}
u_h \chi_{t-h} + \widetilde{arepsilon}_t$$

 \rightarrow blanchissement de *Input Gas*.

Pierre Gauthier Sorry ARIMA May 2019 33 / 38

 \rightarrow blanchissement de *Input Gas*.

Pierre Gauthier Sorry ARIMA May 2019 34 / 38

→ Determiner la fonction de transfert

Pierre Gauthier Sorry ARIMA May 2019 35 / 38

ightarrow Le meilleur modèle est un AR[2] au numérateur et un polynome de degré 4 au dénominateur

```
> output XY=arimax(Y,order=c(2,0,0),transfer=list(c(1,5)),fixed=c(NA,NA,NA,0,0,0,0,NA,NA,NA),xtransf=X)
> summary(output XY)
Coefficients
         ar 1
                       intercept
                                 T1-AR1 T1-MAO T1-MA1 T1-MA2
                                                                             T1-MA4
      1.5272
                                  0.5490
                                                                   -0.5310
                                                                            -0.3801
              -0.6288
                         53.3618
                                                                   0.0738
      0 0467
               0 0495
                          0 1375 0 0392
                                                                             0 1017
      T1-MA5
      -0.5180
      0 1086
sigma^2 estimated as 0.0571: log likelihood = 2.08, aic = 9.83
Training set error measures:
                               RMSE
                                                                           MASE
Training set 0.0001700879 0.2389594 0.1681788 -0.001732428 0.3130213 0.2806151 0.02877323
```

```
> coeftest(output_XY)
z test of coefficients:
           Estimate Std. Error z value Pr(>|z|)
ar1
           1.527181
                      0.046723
                                32.6859 < 2.20-16
          -0.628841
                      0.049471 = 12.7114 < 2.20 = 16
intercept 53.361773
                      0.137503 388.0769 < 2.2e-16
T1-AR1
           0.549027
                      0.039191 14.0089 < 2.20-16
T1-M43
          -0.530964
                      0.073814 =7.1933 6.325 = 13 ***
T1-MA4
          -0.380125
                      0.101704 -3.7376 0.0001858 ***
T1-MA5
          -0.518006
                      0.108562 -4.7715 1.829@-06 ***
```

ightarrow Diagnostic des résidus

Pierre Gauthier Sorry ARIMA May 2019 37 / 38

Modélisation d'un jeu de données

Conclusion

Pierre Gauthier Sorry ARIMA May 2019

Conclusion

 Arguments de l'auteur pour une approche bayesienne

Bayesiens contre fréquentistes

Les avantage de l'approche bayésienne

Figure - [http://www.tylervigen.com/]

Modélisation d'un jeu de données

Merci de votre attention

Pierre Gauthier Sorry ARIMA May 2019