Application of Information Theory, Lecture 8 Kolmogorov Complexity and Other Entropy Measures

Handout Mode

Iftach Haitner

Tel Aviv University.

December 16, 2014

Part I

Kolmogorov Complexity

Description length

- What is the description length of the following strings?
 - 1. 010101010101010101010101010101010101
 - **2.** 01101010000010011111001100110011111110
 - **3.** 1110101001100011001111100010101011111
- 1. Eighteen 01
 - 2. First 36 bit of the binary expansion of $\sqrt{2} 1$
 - 3. Looks random, but 22 ones out of 36
- Bergg's paradox: Let s be "the smallest positive integer that cannot be described in twelve English words"
- ► The above is a definition of s, of less than twelve English words...
- Solution: the word "described" above in the definition of s is not well defined

Kolmogorov complexity

- For s string $x \in \{0,1\}^*$, let K(x) be the length of the shortest C^{++} program (written in binary) that outputs x (on empty input)
- Now the term "described" is well defined.
- ▶ Why *C*⁺⁺?
- All (complete) programming language/computational model are essentially equivalent.
- Let K'(x) be the description length of x in another complete language, then $|K(x) k'(x)| \le const$.
- ► What is K(x) for $x = \underbrace{0101010101...01}_{n \text{ pairs}}$
- "For $i = 1 : i^{++} : n$; print 01"
- ► $K(x) \le \log n + const$
- This is considered to be small complexity. We typically ignore log n factors.
- ▶ What is K(x) for x being the first n digits of π ?
- $K(x) = \log n + const$

More examples

- ▶ What is K(x) for $x \in \{0,1\}^n$ with k ones?
- ▶ Recall that $\binom{n}{k} \le 2^{nh(k/n)}$
- ▶ Hence $K(x) \le \log n + nh(k/n)$

Bounds

- ► $K(x) \le |x| + const$
- ► Proof: "output x"
- Most sequences have high Kolmogorov complexity:
- ▶ At most 2^{n-1} (C^{++}) programs of length $\leq n-2$
- ▶ 2ⁿ strings of length n
- Hence, at least $\frac{1}{2}$ of *n*-bit strings have Kolmogorov complexity at least n-1
- ▶ In particular, a random sequence has Kolmogorov complexity $\approx n$

Conditional Kolmogorov complexity

- ▶ K(x|y) Kolmogorov complexity of x given y. The length of the shortest partogram that outputd x on input y
- ► Chain rule

$$K(x,y) \approx k(y) + k(x|y)$$

Hvs. K

H(X) speaks about a random variable X and K(x) of a string x, but

- Both quantities measure the amount of uncertainty or randomness in an object
- Both measure the number of bits it takes to describe an object
- Another property: Let X_1, \ldots, X_n be iid, then whp $K(X_1, \ldots, X_n) \approx H(X_1, \ldots, X_n) = nH(X_1)$
- ► Proof: ? AEP
- ► Example: coin flip (0.7, 0.3) then whp we get a string with $K(x) \approx n \cdot h(0.3)$

Universal compression

- ▶ A program of length K(x) that outputs x, compresses x into k(x) bit of information.
- ► Example: length of the human genome: 6 · 109 bits
- But the code is redundant
- ► The relevant number to measure the number of possible values is the Kolmogorov complexity of the code.
- No-one knows its value...

Universal probability

 $K(x) = \min_{p: p()=x} |p|$, where p() is the output of C^{++} program defined by p.

Definition 1

The universal probability of a string x is

$$P_{\mathcal{U}}(x) = \sum_{p: \ p()=x} 2^{-|p|} = \Pr_{p \leftarrow \{0,1\}^{\infty}} [p()=x]$$

- ▶ Namely, the probability that if one picks a program at random, it prints *x*.
- Insensitive (up o constant factor) to the computation model.
- Interpretation: $P_{\mathcal{U}}(x)$ is the the probability that you observe x in nature.
- Computer as an intelligent amplifier

Theorem 2

 $\exists c > 0$ such that $2^{-K(x)} \le P_{\mathcal{U}}(x) \le c \cdot 2^{-K(x)}$ for every $x \in \{0,1\}^*$.

- ▶ The interesting part is $P_{\mathcal{U}}(x) \leq c \cdot 2^{-K(x)}$
- ▶ Hence, for $X \sim P_{\mathcal{U}}$, it holds that $|\mathsf{E}_{K(X)}[-]H(X)| \leq c$

Proving Theorem 2

- ▶ We need to find c > 0 such that $k(x) \le \log \frac{1}{P_u(x)} + c$ for every $x \in \{0, 1\}^*$
- ▶ In other words, find a program to output x whose length is $\log \frac{1}{P_u(x)} + c$
- ▶ Idea, program chooses a leaf on the Shannon code for $P_{\mathcal{U}}$ (in which x is of depth $\left[\log \frac{1}{P_{\mathcal{U}}(x)}\right]$)
- \triangleright Problem: $P_{\mathcal{U}}$ is not computable
- ▶ Solution: compute a better and better estimate for the tree of $P_{\mathcal{U}}$ along with the "mapping" from the tree nodes back to codewords.

Proving Theorem 2

▶ Initial *T* to be the infinite Binary tree.

Program 3 (M)

Enumerate over all programs in $\{0,1\}^*$: at round i emulate the first i programs (one after the other), for i steps, and do: If program p outputs a string x and $(*,x,n(x)) \notin T$, place (p,x,n(x)) at unused n(x)-depth node of T, for $n(x) = \left\lceil \log \frac{1}{\hat{P}_{\mathcal{U}}(x)} \right\rceil + 1$ and $\hat{P}_{\mathcal{U}}(x) = \sum_{p' : \text{ emulated } p' \text{ has output } x} 2^{-|p'|}$

- ► The program never gets stack (can always add the node).
 - Proof: Let $x \in \{0,1\}^*$. At each point through the execution of M, $\sum_{(p,x,\cdot)\in\mathcal{T}} 2^{-|p|} \le 2^{-K(x)}$

Since $\sum_{x} 2^{-K(x)} \le 1$, the proof follows by Kraft inequality.

- ▶ $\forall x \in \{0,1\}^*$: M adds a node (\cdot, x, \cdot) to T at depth $2 + \left\lceil \log \frac{1}{P_{\mathcal{U}}(x)} \right\rceil$ Proof: $\hat{P}_{\mathcal{U}}(x)$ converges to $P_{\mathcal{U}}(x)$
- ► For $x \in \{0,1\}^*$, let $\ell(x)$ be the location its $(2 + \left\lceil \log \frac{1}{P_{\mathcal{U}}(x)} \right\rceil)$ -depth node
- ▶ Program for printing x. Run M till it assigns the node at the location of $\ell(x)$

Applications

- (another) Proof that there are infinity many primes.
- Assume there are finitely many primes p_1, \ldots, p_m
- ► Any length *n* integer *x* can be written as $x = \prod_{i=1}^{m} p_i^{d_i}$
- ▶ $d_i \le n$, hence length $d_i \le \log n$
- ▶ Hence, $K(x) \le m \cdot \log n + const$
- ▶ But for most numbers $k(x) \ge n 1$

Computability of K

- ▶ Can we compute K(x)?
- Answer, No.
- Proof: Assume K is computable by a program of length C
- ▶ Let s be the smallest positive integer s.t. K(s) > 2C + 10,000
- **s** can be computed by the following program:
 - 1. x = 0
 - **2.** While (K(x) < 2C + 10,000): x^{++}
 - 3. Output x
- ► Thus $K(s) < C + \log C + \log 10,000 + const < 2C + 10,000$
- ► Bergg's Paradox, revisited:
- s the smallest positive number with K(s) > 10000
- ▶ This is not a paradox, since the description of *s* is not short.

Explicit large complexity strings

▶ Can we give an explicit example of string x with large k(x)?

Theorem 4

 \exists constant C s.t. the theorem $K(x) \ge C$ cannot be proven (under any reasonable axiom system).

- For most strings K(x) > C + 1, but it cannot be proven even for a single string
- K(x) ≥ C is an example for a theorem that cannot be proven, and for most x's cannot be disproved.
- ▶ Proof: for integer C define the program T_C :
 - 1. y = 0
 - **2.** If y is a proof for the statement k(x) > C, output x
 - **3.** *y*⁺⁺
- $|T_C| = \log C + D$, where D is a const
- ► Take C such that C > log C + D
- ▶ If T_C stops and outputs x, then $k(x) < \log C + D < C$, a contradiction to the fact that \exists proof that k(x) > C.

Part II

Other Entropy Measures

Other entropy measures

Let $X \sim p$ be a random variable over X.

- ► Recall that Shannon entropy of X is $H(X) = \sum_{x \in \mathcal{X}} -p(x) \cdot \log p(x) = \mathsf{E}_X \left[-\log p(X) \right]$
- Max entropy of X is H₀(X) = log |Supp(X)|
- ▶ Min entropy of X is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}$
- ► Collision probability of X is $CP(X) = \sum_{x \in \mathcal{X}} p(x)^2$ Probability of collision when drawing two independent samples from X
- ► Collision entropy/Renyi entropy of X is $H_2(X) = -\log CP(X)$
- ► For $\alpha \neq 1 \in \mathbb{N}$ $H_{\alpha} = \frac{1}{1-\alpha} \log \left(\sum_{i=1}^{n} p_{i}^{\alpha} \right) = \frac{\alpha}{1-\alpha} \log(\|p\|_{\alpha})$
- ► $H_{\infty}(X) \le H_2(X) \le H(X) \le H_0(X)$ (Jensen) Equality iff X is uniform over \mathcal{X}
- ► For instance, $CP(X) \le \sum_{x} p(x) \max_{x'} p(x') = \max_{x'} p(x')$. Hence, $H_2(X) \ge -\log \max_{x'} p(x') = H_{\infty}(X)$.
- $H_2(X) \leq 2 H_{\infty}(X)$
- ▶ Proof: $CP(X) \ge (\max_{X'} p(X'))^2$. Hence, $-\log CP(X) \le -2 H_{\infty}(X)$

Other entropy measures, cont

- No simple chain rule.
- Let $X = \perp$ wp $\frac{1}{2}$ and uniform over $\{0, 1\}^n$ otherwise, and let Y be indicator for $X = \perp$.
- ▶ $H_{\infty}(X|Y=1)=0$ and $H_{\infty}(X|Y=0)=n$. But $H_{\infty}(X)=1$.

Section 1

Shannon to Min entropy

Shannon to Min entropy

Given rv $X \sim p$, let X^n denote n independent copies of X, and let $p^n(x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i)$.

Lemma 5

Let
$$X \sim p$$
 and let $\varepsilon > 0$. Then $\Pr\left[-\log p^n(X^n) \le n \cdot (\mathsf{H}(X) - \varepsilon)\right] < 2 \cdot e^{-2\varepsilon^2 n}$.

Proof: (quantitative) AEP.

- $\blacktriangleright \ A_{n,\varepsilon} := \{ \mathbf{x} \in \operatorname{Supp}(X^n) \colon 2^{-n(H(X)+\varepsilon)} \le p^n(\mathbf{x}) \le 2^{-n(H(X)-\varepsilon)} \}$
- ► $-\log p^n(\mathbf{x}) \ge n \cdot (\mathsf{H}(X) \varepsilon)$ for any $\mathbf{x} \in A_{n,\varepsilon}$

Proposition 6 (Hoeffding's inequality)

Let Z^1, \ldots, Z^n be iids over [0, 1] with expectation μ . Then,

$$\Pr\big[|\frac{\sum_{j=i}^n \mathbf{Z}^j}{n} - \mu| \geq \varepsilon\big] \leq \mathbf{2} \cdot e^{-2\varepsilon^2 n} \text{ for every } \varepsilon > \mathbf{0}.$$

▶ Taking $Z_i = \log p(X_i)$, it follows that $\Pr[X^n \notin A_{n,\varepsilon}] \le 2 \cdot e^{-2\varepsilon^2 n}$

Corollary 7

 $\exists rv \ W \ that \ is \ (2 \cdot e^{-2\varepsilon^2 n})$ -close to X^n , and $H_{\infty}(W) \geq n(H(X) - \varepsilon)$.

Proof: $W = X^n$ if $X^n \in A_{n,\varepsilon}$, and "well spread" outside $Supp(X^n)$ otherwise.

Shannon to Min entropy, conditional version

Lemma 8

Let $(X, Y) \sim p$ let $\varepsilon > 0$. Then

$$\mathsf{Pr}_{(X^n, Y^n) \leftarrow (X, Y)^n} \left[-\log \rho^n_{X^n \mid Y^n} (x^n \mid y^n) \le n \cdot (\mathsf{H}(X \mid Y) - \varepsilon) \right] < 2 \cdot e^{-2\varepsilon^2 n}.$$

Proof: same proof, letting $Z_i = \log p_{X|Y}(X_i, Y_i)$

Corollary 9

 \exists rv W over $\mathcal{X}^n \times \mathcal{Y}^n$ that is $(2 \cdot e^{-2\varepsilon^2 n})$ -far from $(X, Y)^n$,

- ▶ $SD(W_{\mathcal{Y}^n}, Y^n) = 0$, and
- ▶ $H(W \mid W_{\mathcal{Y}^n} = \mathbf{y}) \ge n \cdot (H(X|Y) \varepsilon)$, for any $\mathbf{y} \in \text{Supp}(Y^n)$

Proof: ?

Section 2

Renyi-entropy to Uniform Distribution

Pairwise independent hashing

Definition 10 (pairwise independent function family)

A function family $\mathcal{G}=\{g\colon \mathcal{D}\mapsto \mathcal{R}\}$ is pairwise independent, if $\forall~x\neq x'\in \mathcal{D}$ and $y,y'\in \mathcal{R}$, it holds that $\Pr_{g\leftarrow \mathcal{G}}\left[g(x)=y\land g(x')=y')\right]=(\frac{1}{|\mathcal{R}|})^2$.

- ► Example: for $\mathcal{D} = \{0, 1\}^n$ and $\mathcal{R} = \{0, 1\}^m$ let $\mathcal{G} = \{(A, b) \in \{0, 1\}^{m \times n} \times \{0, 1\}^m\}$ with $(A, b)(x) = A \times x + b$.
- ▶ 2-universal families: $\Pr_{g \leftarrow \mathcal{G}} [g(x) = g(x'))] = \frac{1}{|\mathcal{R}|}$.
- Example for universal family that is not pairwise independent?
- Many-wise independent
- We identify functions with their description.
- Amazingly useful tool

Leftover hash lemma

Lemma 11 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_2(X) \ge k$ let $\mathcal{G} = \{g : \{0,1\}^n \mapsto \{0,1\}^m\}$ be 2-universal and let $G \leftarrow \mathcal{G}$. Then $SD((G,G(X)),(G,\sim\{0,1\}^m)) \le \frac{1}{2} \cdot 2^{(m-k))/2}$.

Extraction.

Lemma 12

Let p be a distribution over $\mathcal U$ with $CP(p) \leq \frac{1+\delta}{|\mathcal U|}$, then $SD(p, \sim \mathcal U) \leq \frac{\sqrt{\delta}}{2}$.

Proof: Let q be the uniform distribution over \mathcal{U} .

$$\qquad \qquad ||p-q||_2^2 = \sum_{u \in \mathcal{U}} (d(u) - q(u))^2 = ||p||_2^2 + ||q||_2^2 - 2\langle p, q \rangle = \mathsf{CP}(p) - \tfrac{1}{|\mathcal{U}|} \le \tfrac{\delta}{|\mathcal{U}|}$$

- ► Chebyshev Sum Inequality: $(\sum_{i=1}^{n} a_i)^2 \le n \sum_{i=1}^{n} a_i^2$
- ► Hence, $\|p q\|_1^2 \le |\mathcal{U}| \cdot \|p q\|_2^2$
- ▶ Thus, $SD(p,q) = \frac{1}{2} \|p q\|_1 \le \frac{\sqrt{\delta}}{2}$.

To deuce the proof of Lemma 11, we notice that

$$\mathsf{CP}(G,G(X)) \leq \frac{1}{|\mathcal{G}|} \cdot (2^{-k} + 2^{-m}) = \frac{1 + 2^{m-k}}{|\mathcal{G} \times \{0,1\}^m|}$$