Portfólio

Database Modeling & SQL

Nome: Polliana Silva

Curso: Análise e Desenvolvimento de Sistemas

Turma: ADS - EAD/2024

Atividade: Portfólio

Sistema de uma Faculdade

Entrega: 04/01/2025

Sumário

1.	Descrição do Problema	03
2.	Objetivos de Aprendizagem	03
3.	Levantamento de Requisitos	03
4.	Modelo Conceitual	04
5.	Modelo Lógico	05
6.	Modelo Físico	05-10
	a. Criação do banco e tabelas	05-07
	b. Inserção de dados	08-09
	c. Consulta simples	09
	d. Consultas relacionadas	09
	e. Atualizações	10
	f. Exclusões	10
7.	Conclusão	11

1. Descrição do Problema

Um sistema acadêmico para uma faculdade que precisa gerenciar informações sobre alunos, cursos, matérias e professores. O sistema permitirá registrar dados detalhados das matrículas realizadas, armazenando informações dos alunos matriculados, professores e suas respectivas disciplinas, além de controlar as turmas e notas dos alunos.

2. Objetivos de Aprendizagem

Com este estudo de caso, os alunos deverão ser capazes de:

Analisar Requisitos: Trabalhar em conjunto para levantar os requisitos necessários para o sistema.

Modelar Banco de Dados: Criar um modelo *conceitual, lógico* e *físico* para armazenar todas as informações necessárias para o sistema.

3. Levantamento de Requisitos

- 1. Principais necessidades dos clientes:
- Armazenar informações de alunos, professores, cursos e matérias
- Realizar controles básicos, como montar turmas e armazenar notas dos alunos
- Informações a serem armazenadas:
- Dados pessoais de alunos e professores
- Informações sobre cursos, matérias e turmas
- Notas e desempenho dos alunos em cada matéria
- 3. Utilização dos dados:
- Consultar informações acadêmicas
- Gerenciar a matrícula de alunos em turmas
- Registrar e consultar notas

4. Modelo Conceitual

O modelo conceitual representa a estrutura do sistema através de 9 entidades principais (Professor, Aluno, Curso, Disciplina, Turma, Matrícula, Notas, Cargo e Pré-Requisitos) e seus relacionamentos:

- Professores podem lecionar várias turmas e ministrar diferentes disciplinas
- Alunos podem realizar matrículas em diversas turmas
- Cada disciplina pertence a um curso e pode ter pré-requisitos
- Para cada matrícula é registrado um conjunto de notas

5. Modelo Lógico

O modelo lógico define a estrutura das tabelas com seus campos e tipos de dados:

- Chaves primárias (PK) utilizam tipo INTEGER
- Dados textuais utilizam VARCHAR com tamanhos adequados
- Campos únicos (CPF, RA, códigos) possuem constraint UNIQUE
- Relacionamentos implementados via chaves estrangeiras (FK)
- Dados numéricos (notas, frequência) utilizam DECIMAL para precisão

6. Modelo Físico

a. Criação do banco e tabelas:

```
-- Criar e usar o banco de dados

CREATE DATABASE sistema_academico;

USE sistema_academico;
-- Criar tabela de Cargo

CREATE TABLE Cargo (
   idCargo INT AUTO_INCREMENT PRIMARY KEY,
   nome_cargo VARCHAR(50)
);
-- Criar tabela de Professor

CREATE TABLE Professor (
```

```
idProfessor INT AUTO INCREMENT PRIMARY KEY,
    idCargo INT,
    cod professor VARCHAR(20),
    nome_completo VARCHAR(100),
    CPF VARCHAR(11),
    telefone VARCHAR(20),
    email VARCHAR(100),
    endereco VARCHAR(200),
    FOREIGN KEY (idCargo) REFERENCES Cargo(idCargo)
CREATE TABLE Curso (
    idCurso INT AUTO_INCREMENT PRIMARY KEY,
    cod_curso VARCHAR(20),
    nome_curso VARCHAR(100),
    semestre_duracao INT
CREATE TABLE Disciplina (
    idDisciplina INT AUTO_INCREMENT PRIMARY KEY,
    idCurso INT,
    cod disciplina VARCHAR(20),
    nome_disciplina VARCHAR(100),
    carga_horaria INT,
    FOREIGN KEY (idCurso) REFERENCES Curso(idCurso)
CREATE TABLE Turma (
    idTurma INT AUTO_INCREMENT PRIMARY KEY,
    idDisciplina INT,
    cod turma VARCHAR(20),
    semestre INT,
    horario VARCHAR(50),
    vagas INT,
    FOREIGN KEY (idDisciplina) REFERENCES Disciplina(idDisciplina)
CREATE TABLE Aluno (
    idAluno INT AUTO_INCREMENT PRIMARY KEY,
    RA VARCHAR(20),
    nome_completo VARCHAR(100),
    CPF VARCHAR(11),
    telefone VARCHAR(20),
    email VARCHAR(100),
    endereco VARCHAR(200),
    data_nascimento DATE
```

```
CREATE TABLE Matricula (
    idMatricula INT AUTO_INCREMENT PRIMARY KEY,
    idTurma INT,
    data_matricula DATE,
    status VARCHAR(20),
    FOREIGN KEY (idAluno) REFERENCES Aluno(idAluno),
    FOREIGN KEY (idTurma) REFERENCES Turma(idTurma)
CREATE TABLE Notas (
    idNota INT AUTO_INCREMENT PRIMARY KEY,
   idMatricula INT,
    nota DECIMAL(4,2),
    frequencia DECIMAL(5,2),
    situacao VARCHAR(20),
   FOREIGN KEY (idMatricula) REFERENCES Matricula(idMatricula)
CREATE TABLE Pre_Requisitos (
    idPreRequisitos INT AUTO INCREMENT PRIMARY KEY,
    disciplina id INT,
    prerequisito_id INT,
    FOREIGN KEY (disciplina id) REFERENCES Disciplina(idDisciplina),
   FOREIGN KEY (prerequisito id) REFERENCES Disciplina(idDisciplina)
CREATE TABLE Professor Turma (
    idProfessorTurma INT AUTO INCREMENT PRIMARY KEY,
    idProfessor INT,
    idTurma INT,
    FOREIGN KEY (idProfessor) REFERENCES Professor(idProfessor),
    FOREIGN KEY (idTurma) REFERENCES Turma(idTurma)
CREATE TABLE Professor Disciplina (
    idProfessorDisciplina INT AUTO_INCREMENT PRIMARY KEY,
    idProfessor INT,
   idDisciplina INT,
    FOREIGN KEY (idProfessor) REFERENCES Professor(idProfessor),
   FOREIGN KEY (idDisciplina) REFERENCES Disciplina(idDisciplina)
-- Ver todas as tabelas
SHOW TABLES;
-- Ver estrutura de uma tabela específica
DESCRIBE Professor;
```

b. Inserção de Dados:

```
INSERT INTO Cargo (nome_cargo) VALUES
('Docente'),
('Coordenador'),
('Tutor');
INSERT INTO Professor (idCargo, cod_professor, nome_completo, CPF, telefone,
email, endereco) VALUES
(1, 'PROF001', 'João Silva', '12345678901', '11999999991', 'joao@email.com', 'Rua
A, 123'),
(2, 'PROF002', 'Maria Santos', '23456789012', '11999999992', 'maria@email.com',
'Rua B, 456'),
(1, 'PROF003', 'Pedro Souza', '34567890123', '11999999993', 'pedro@email.com',
'Rua C, 789');
INSERT INTO Curso (cod_curso, nome_curso, semestre_duracao) VALUES
('SI', 'Sistemas de Informação', 8),
('CC', 'Ciência da Computação', 8),
('ADS', 'Análise e Desenvolvimento de Sistemas', 6);
INSERT INTO Disciplina (idCurso, cod_disciplina, nome_disciplina, carga_horaria)
VALUES
(1, 'BD001', 'Banco de Dados', 80),
(1, 'PROG001', 'Programação I', 60),
(2, 'ALG001', 'Algoritmos', 60);
INSERT INTO Turma (idDisciplina, cod turma, semestre, ano, horario, vagas) VALUES
(1, 'BD2024A', 1, 2024, 'Segunda 19h-22h', 40),
(2, 'PROG2024A', 1, 2024, 'Terça 19h-22h', 35),
(3, 'ALG2024A', 1, 2024, 'Quarta 19h-22h', 45);
INSERT INTO Aluno (RA, nome_completo, CPF, telefone, email, endereco,
data nascimento) VALUES
('RA001', 'Ana Oliveira', '45678901234', '11988888881', 'ana@email.com', 'Rua X,
100', '2000-03-15'),
('RA002', 'Carlos Lima', '56789012345', '11988888882', 'carlos@email.com', 'Rua Y,
200', '2001-06-20'),
('RA003', 'Julia Costa', '67890123456', '11988888883', 'julia@email.com', 'Rua Z,
300', '2002-09-10');
INSERT INTO Matricula (idAluno, idTurma, data_matricula, status) VALUES
(1, 1, '2024-01-15', 'Ativa'),
(2, 2, '2024-01-15', 'Ativa'),
(3, 3, '2024-01-15', 'Ativa');
```

```
INSERT INTO Notas (idMatricula, nota, frequencia, situacao) VALUES
(1, 8.5, 90.0, 'Aprovado'),
(2, 7.0, 85.0, 'Aprovado');
-- Inserir pré-requisitos
INSERT INTO Pre_Requisitos (disciplina_id, prerequisito_id) VALUES
(2, 1),
(3, 2);
-- Inserir professor_turma
INSERT INTO Professor_Turma (idProfessor, idTurma) VALUES
(1, 1),
(2, 2),
(3, 3);
-- Inserir professor_disciplina
INSERT INTO Professor_Disciplina (idProfessor, idDisciplina) VALUES
(1, 1),
(2, 2),
(3, 3);
```

c. Consulta Simples:

```
-- Ver todos os professores

SELECT * FROM Professor;

-- Ver todas as disciplinas

SELECT * FROM Disciplina;

-- Ver todos os alunos

SELECT * FROM Aluno;
```

d. Consultas Relacionadas:

```
-- Ver alunos e suas notas

SELECT a.nome_completo, d.nome_disciplina, n.nota, n.frequencia

FROM Aluno a

JOIN Matricula m ON a.idAluno = m.idAluno

JOIN Notas n ON m.idMatricula = n.idMatricula

JOIN Turma t ON m.idTurma = t.idTurma

JOIN Disciplina d ON t.idDisciplina = d.idDisciplina;

-- Ver professores e suas disciplinas

SELECT p.nome_completo, d.nome_disciplina

FROM Professor p

JOIN Professor_Disciplina pd ON p.idProfessor = pd.idProfessor

JOIN Disciplina d ON pd.idDisciplina = d.idDisciplina;
```

e. Atualizações:

```
-- Atualizar telefone de um professor

UPDATE Professor

SET telefone = '11999997777'

WHERE idProfessor = 1;

-- Atualizar status de uma matrícula

UPDATE Matricula

SET status = 'Trancada'

WHERE idAluno = 1;

-- Atualizar nota de um aluno

UPDATE Notas

SET nota = 9.5

WHERE idMatricula = 1;
```

f. Exclusões:

```
--- Deletar nota:

DELETE FROM Notas WHERE idNota = 1;

-- Podemos deletar um vinculo de professor com turma

DELETE FROM Professor_Turma

WHERE idProfessorTurma = 1;

-- Ou um vinculo de professor com disciplina

DELETE FROM Professor_Disciplina

WHERE idProfessorDisciplina = 1;

-- Quando tem relacionamento entre tabelas, exemplo:

-- 1º Deletar as notas deste aluno

DELETE FROM Notas

WHERE idMatricula IN (SELECT idMatricula FROM Matricula WHERE idAluno = 3);

-- 2º Deletar as matrículas do aluno

DELETE FROM Matricula

WHERE idAluno = 3;

-- 3º Finalmente, deletar o aluno

DELETE FROM Aluno

WHERE idAluno = 3;
```

7. Conclusão

O script SQL foi desenvolvido para criar a estrutura do banco de dados do sistema acadêmico, seguindo a sequência:

- 1. Criação do Banco de Dados
- Criação do banco sistema_academico
- Definição para uso imediato do banco
- 2. Criação das Tabelas
- As tabelas são criadas em ordem específica para respeitar as dependências de chaves estrangeiras
- Cada tabela possui um identificador único (chave primária) com AUTO_INCREMENT
- Campos que não podem ter duplicatas são marcados como UNIQUE
- Relacionamentos s\u00e3o estabelecidos atrav\u00e9s de chaves estrangeiras (FOREIGN KEY)
- 3. Estrutura das Principais Tabelas:
- Cargo: Armazena os tipos de cargos dos professores
- Professor: Dados completos dos professores, vinculado ao cargo
- Curso: Informações dos cursos oferecidos
- Disciplina: Cadastro das disciplinas, vinculadas aos cursos
- Turma: Registro das turmas, vinculadas às disciplinas
- Aluno: Dados completos dos alunos
- Matricula: Registro de matrículas, vinculando alunos e turmas
- Notas: Controle de notas e frequências por matrícula
- Pre Requisitos: Gerenciamento de pré-requisitos entre disciplinas
- Professor Turma e Professor Disciplina: Tabelas de relacionamento
- 4. Exemplos de Dados
- Inserção de registros básicos nas tabelas Cargo e Curso
- Demonstração do funcionamento da estrutura do banco

Esta estrutura permite o armazenamento e gerenciamento completo das informações acadêmicas, mantendo a integridade dos dados e os relacionamentos necessários entre as entidades.