6.047/6.878/HST.507 Computational Biology: Genomes, Networks, Evolution

Lecture 07

Hidden Markov Models Part II

	Psets	Week		Topic	Category		Topic	Re
Describe your previous	PS1 out	1	Thu, Sep 08	Introde	ection		Intro: Biology, Algorithms, Machine Learning	1.
	on:L1-L5	_	Fri, Sep 09	muvu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Recitation1: Probability, Statistics, Biology	1.3
computational biology, type of	1 1		Tue, Sep 13				Global/local alignment/DynProg	
project that best fits your		2	Thu, Sep 15		Foundations		StringSearch/Blast/DB Search	1
interests. Post these in a			Fri, Sep 16	Module I:			Recitation 2 - Multiple, Progressive, Phylogenetic, Whole-genome alignment	1
profile that lets your			Tue, Sep 20				Comparative genomics I, Evolutionary signatures for genome annotation	14
classmates know you and find		3	Thu, Sep 22	Genomes	Frontiers		Comparative genomics II: Whole-Genome Assembly/Alignment/Duplication	- 5
potential partners.	due		Fri, Sep 23				Recitation 3 - Evolutionary signatures and measures of selection	4
Due Mon 9/26 with PS1	Mon 9/26		Fri, Sep 23		Project Ment		Brainstorming: research area, type of project, partner selection. 32G-882	1.
Identify previous project	PS2 out		Tue, Sep 27				HMMs1 - Evaluation / Parsing	7
proposals, recent papers, and	on:L6-R5	4	Thu, Sep 29	Module II:	Foundations		HMMs2 - PosteriorDecoding/Learning	(
potential partners that match			Fri, Sep 30	Gene and		R4	Recitation 4 - HMMs, Conditional random fields / Gene finding in Practice	
your areas of interest. List	1 [Tue, Oct 04	Gene Express.			Expression Analysis: Clustering, Classification, Feature Selection	13,
initial project ideas and		5	Thu, Oct 06	Modeling			Regulatory Motif Discovery: Globs Sampling, Expectation Maximization	1
partners.	due		Fri, Oct 07			R5	Recitation 5 - Entropy, Information, Motifs, Supervised Learning	15,
Due Wed 10/12 with PS2	Wed 10/12		Tue, Oct 11	Module III:		***	No lecture, Columbus Day Holiday is Monday and Tuesday	
Form teams of two, specify	PS3 out		Thu, Oct 13	Non-coding	Frontiers		Transcript structure/expression analysis using next-generation sequencing	9,
project goals, division of	on:L10-R8		Fri, Oct 14	RNAs and			Recitation 6 - Supervised learning: Random Forests, Feature Select, SVMs	1
work, milestones, datasets,			Fri, Oct 14	their roles in	Project Ment	oring	Proposal: Finalizing question,goals,partner,mentor,milestones. 32G-882	1.
challenges, in form of NIH	1 1		Tue, Oct 18			L11	Structural RNAs: Fold prediction and genome-wide annotation	1
proposal. Project Proposal.		7	Thu, Oct 20	gene regulation	Foundations	L12	Small RNAs and their diverse roles in gene regulation	1
Due on 10/24 (before PS3)			Fri, Oct 21	regulation		R7	Recitation 7 - Nextgen sequencing: RNAseq, GRO-seq, Ribosome profiling	1
Evaluate/discuss three peer	1 1		Tue, Oct 25	Module IV:		L13	Epigenetics: Chromatin/lincRNA/prot regulation in development/disease	1
proposals, NIH review format.		В	Thu, Oct 27	Regulatory	Frontiers	L14	Epigenomics: Chromatin marks, chromatin states, and their dynamics	1
Panel Discussion Fri 10/29.	due	0	Fri, Oct 28 genomics and		R8	Recitation 8 - Network/Graph algorithms, spectral partitioning, eigenvectors	1	
Reviews Mon 10/31 w/ PS3	Mon 10/31		Fri, Oct 28	epigenomics	Project Ment	oring	Panel discussion: reconciling critiques, suggestions, strategies. 32G-882	1
Address peer evaluations and	PS4 out		Tue, Nov 01			L15	Phylogenetics: Molecular Evolution, Tree Building, Phylogenetic inference	2
revise your aims/scope as	on:L15-R10	9	Thu, Nov 03	1	Foundations	L16	Phylogenomics: gene/species trees reconciliation. Bayesian reconstruction	2
needed. Continue making			Fri, Nov 04	Module V:	Foundations	R9	Recitation 9 - Population genomics, coalescent theory	2
substantial progress on	1 1		Tue, Nov 08	Phylogenetics		L17	Population genomics: Learning population history from genetic data	2
proposed milstones. Refine		10	Thu, Nov 10	and Population		L18	Population genomics: Statistical genetics and human disease mapping	2
list of final deliverables and			Fri. Nov 11	genomics	Frontiers	-	No recitation: Veteran's Day Holiday	$\overline{}$
scientific results as needed.	1 1		Tue, Nov 15		Frontiers	L19	Population genomics: Measuring natural selection in human populations	2
Write outline of final report.		11	Thu, Nov 17	t		L20	Population genomics: Finding the missing heritability in GWAS	2
Midcourse progress report		11	Fri. Nov 18		Quiz review	R10	Recitation 10 - Quiz Review	15
Due on Mon 11/28, Project	due		Fri, Nov 18	Quiz 1	Project Ment	pring	Progress feedback, new/missing analyses, critique response, 32G-882	1.
final score projection from	Mon 11/21		Tue, Nov 22		Quiz		In Class Quiz (the only Quiz) - covers L1-R10	1-
course staff by Friday 12/2		12	Thu, Nov 24	Thanksgiving	Thanksgiving	-	Thanksgiving holiday - No lecture	٠.
			Fri. Nov 25	Break	Break	_	No recitation, thanksgiving break	٠.
Complete your milestones.	1 1		Tue, Nov 29				Systems Biology: Predicting metabolism from gene expression in TB	1
finalize results, figures, write-	l I		Thu Dec 01	Module IX:	Frontiers		Bacterial genomics, human microbiome, ecosystems	1
up in conference publication	No more 13	13	13 Fri, Dec 02	Current			Recitation 11 - Project tips: Preparing your final report. Todos and todonts	1
format. As part of report.	psets		Fri. Dec 02	Research	Project Ment		Project feedback results interpretation write-up presentation tips, 32G-882	1
comment on your overall	(finish		Tue, Dec 06		,		Three-dimensional genome interactions: compartments, high-resolution maps	
project experience. Final	projects)	14	Thu. Dec 08				Personal Genomes, Synthetic Genomes, Computing in C vs. Si	TE
written report Due 12/9	i 1		Fri. Dec 09	Module X:	Frontiers		Recitation 12 - Project tips: Preparing your final presentation. How to speak	1
Conference format slide	1		Tue, Dec 13				Final Presentations - Part I (11am)	+:
		15	Tue, Dec 13				Final Presentations - Part II (3om), 32G-882	_

Module II: Modeling genes and gene expression

PS2 out		Tue, Sep 27	la contra	L6	HMMs1 - Evaluation / Parsing	7.
on:L6-R5	4	Thu, Sep 29	Module II:	L7	HMMs2 - PosteriorDecoding/Learning	8
C10, 20 117		Fri, Sep 30	Gene and	R4	Recitation 4 - HMMs, Conditional random fields / Gene finding in Practice	9
1		Tue, Oct 04	Gene Express.	L8	Expression Analysis: Clustering, Classification, Feature Selection	13,14
	5	Thu, Oct 06	Modeling	L9	Regulatory Motif Discovery: Gibbs Sampling, Expectation Maximization	15
due		Fri, Oct 07		R5	Recitation 5 - Entropy, Information, Motifs, Supervised Learning	15,16
Wed 10/12		Tue Oct 11		-	No lecture, Columbus Day Holiday is Monday and Tuesday	

- Computational Foundations
 - Hidden Markov Models (HMMs): Central tool in CS
 - Decoding, evaluation, parsing, likelihood, scoring
 - Unsupervised Learning: Expectation Maximization
 - Supervised learning: generative/discriminative models
- Biological frontiers:
 - PS2: Modeling conservation, GC content, CpG islands
 - L6/L7: Genome annotation and parsing
 - L8: Gene expression analysis: cluster genes/conditions
 - L9: Regulatory motif discovery: EM, gibbs sampling, info

Goals for today: HMMs, part II

- · Review: Three algorithms from last time
 - Markov Chains and Hidden Markov Models
 - Increasing the 'state' space / adding memory
 - Calculating likelihoods P(x,π)
 - Viterbi algorithm: Find $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$
- · Counting over all paths
 - Forward algorithm: Find P(x), over all paths
 - Model comparison: ex: "CpGs" vs. "Gs and Cs"
- · Posterior decoding: Another way of 'parsing'
 - Find most likely state k_i, overall all possible paths
- Learning (ML training, Baum-Welch, Viterbi training)
 - Supervised: Find $e_i(.)$ and a_{ij} given labeled sequence
 - Unsupervised: given only x → annotation + params

Markov Chains & Hidden Markov Models

- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities
- A: .1 C: .3 G: .4 T: .2
- HMM
 - Q: states
 - V: observations
 - p: initial state probabilities
 - A: transition probabilities
 - E: emission probabilities

HMM nomenclature for this course

Transitions: $a_{kl} = P(\pi_i = l | \pi_{i-1} = k)$

Transition probability from state *k* to state *l*

Emissions: $e_k(x_i)=P(x_i|\pi_i=k)$

Emission probability of symbol x_i from state k

- Vector **x** = Sequence of observations
- Vector π = Hidden path (sequence of hidden states)
- Transition matrix $A=a_{kl}=$ probability of $k \rightarrow l$ state transition
- Emission vector $E = e_k(x_i) = \text{prob. of observing } x_i \text{ from state } k$
- Bayes's rule: Use $P(x_i|\pi_i=k)$ to estimate $P(\pi_i=k|x_i)$

	One path	All paths
	Scoring x, one path	2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
Sc	Prob of a path, emissions	Prob of emissions, over all paths
5	3. Viterbi decoding	4. Posterior decoding
Decoding	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{\pi_i \mid \pi_i = \operatorname{argmax}_k \Sigma_{\pi} P(\pi_i = k x)\}$
Dec	Most likely path	Path containing the most likely state at any time point.
	5. Supervised learning, given π	6. Unsupervised learning
earning-		$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Le	Viterbi training, best path	Baum-Welch training, over all paths

Scoring probability of a path + sequence

Multiply emissions, transitions

D	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
Sco	Prob of a path, emissions	Prob of emissions, over all paths
6	3. Viterbi decoding	Posterior decoding
Decoding	$π* = argmax_π P(x,π)$	$\pi^{\Lambda} = \{\pi_i \mid \pi_i = \operatorname{argmax}_k \Sigma_{\pi} P(\pi_i = k \mid x)\}$
Dec	Most likely path	Path containing the most likely state at any time point.
5	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda)$	6. Unsupervised learning
-earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Le	Viterbi training, best path	Baum-Welch training, over all paths

3. Decoding: find the most likely path

Viterbi algorithm

Finding the most likely path

• Find path π^* that maximizes total joint probability P[x, π]

Calculate maximum $P(x,\pi)$ recursively

Viterbi algortithm

Define $V_k(i)$ = Probability of the most likely path through state π_i =k Compute $V_k(i+1)$ recursively, as a function of $\max_k \{ \ V_k(i) \ \}$

• Assume we know V_i for the previous time step (i-1)

all possible previous states j

The Viterbi Algorithm

Input: x = x1....xN

Initialization:

 $V_0(0)=1$, $V_k(0)=0$, for all k>0

Iteration:

 $V_k(i) = e_K(x_i) \times \max_i a_{ik} V_i(i-1)$

Termination:

 $P(x, \pi^*) = \max_k V_k(N)$

Traceback:

Follow max pointers back

In practice:

Use log scores for computation

Running time and space:

Time: O(K²N) Space: O(KN)

One path

1. Scoring x, one path

 $P(x,\pi)$

Scoring

Decoding

Learning

Prob of a path, emissions

3. Viterbi decoding

 $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$

Most likely path

5. Supervised learning, given π

 $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi | \Lambda)$ 6. Unsupervised learning.

 $Λ^* = \operatorname{argmax}_Λ \operatorname{max}_π P(x, π | Λ)$ Viterbi training, best path

All paths

2. Scoring x, all paths

 $P(x) = \sum_{\pi} P(x,\pi)$

Prob of emissions, over all paths

4. Posterior decoding

 $\pi^{\wedge} = \{ \pi_i \mid \pi_i = \operatorname{argmax}_k \Sigma_{\pi} P(\pi_i = k | x) \}$

Path containing the most likely state at any time point.

6. Unsupervised learning

 $\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi | \Lambda)$

Baum-Welch training, over all paths

2. Model evaluation: Total P(x|M), summed over all paths

Forward algorithm

Simple: Given the model, generate some sequence x

Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1\pi 2}$
- 4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x. How do we find the <u>total probability</u> of generating a given x, over any path?

Complex: Given x, was it generated by the model?

Given a sequence x,

What is the probability that x was generated by the model (using any path)?

- $P(x) = \sum_{\pi} P(x,\pi)$
- · Challenge: exponential number of paths
- (cheap) alternative:
- Calculate probability over maximum (Viterbi) path π*
- · (real) solution
 - Calculate sum iteratively using principles of dynamic programming

The Forward Algorithm - derivation

Define the forward probability:

$$\begin{split} f_l(i) &= P(x_1...x_i, \ \pi_i = I) \\ &= \quad \Sigma_{\pi 1...\pi i - 1} \, P(x_1...x_{i-1}, \ \pi_1, ..., \ \pi_{i-2}, \ \pi_{i-1}, \quad \pi_i = I) \, e_l(x_i) \\ &= \Sigma_k \bigg[\Sigma_{\pi 1...\pi i - 2} \, P(x_1...x_{i-1}, \ \pi_1, ..., \ \pi_{i-2}, \ \pi_{i-1} = k) \bigg] \, a_{kl} \, e_l(x_i) \\ &= \Sigma_k \bigg[f_k(i-1) \bigg] a_{kl} \, e_l(x_i) \\ &= e_l(x_i) \, \Sigma_k \bigg[f_k(i-1) \bigg] a_{kl} \end{split}$$

Calculate total probability $\Sigma_{\pi} P(x,\pi)$ recursively

• Assume we know f_i for the previous time step (i-1)

every possible previous state j

The Forward Algorithm

Input: x = x1....xN

Initialization:

 $f_0(0)=1$, $f_k(0)=0$, for all k>0

Iteration:

 $f_k(i) = e_K(x_i) \times sum_i a_{ik} f_i(i-1)$

Termination:

 $P(x, \pi^*) = sum_k f_k(N)$

In practice:

Sum of log scores is difficult

→ approximate exp(1+p+q)

→ scaling of probabilities

Running time and space:

Time: O(K²N) Space: O(K)

Application: Distinguishing between two models

HMM1: Promoters = only Cs and Gs matter HMM2: Promoters = it's actually CpGs that matter ("C"-phosphate-"G", i.e. on the same strand!)

(increasing the state space)

In the human genome, CpG islands matter!

- Regions of regulatory importance in promoters of many genes
 - Defined by their methylation state (epigenetic information)
 - CpGs more important than simply the abundance of Cs and Gs
 - Provide evidence of methylation state!
- · Methylation process in the human genome (form of silencing):
 - Methylation signature: high chance of methyl-C mutating to T in CpG
 - → CpG dinucleotides are rare, throughout the genome
 - BUT methylation is suppressed for active promoters
 - → CpG dinucleotides are much more frequent than elsewhere
 - Such regions are called CpG islands
 - · A few hundred to a few thousand bases long
- Problems:
 - Given a short sequence, does it come from a CpG island or not?
 - How to find the CpG islands in a long sequence
- How do we encode this in an hidden Markov model?

Increasing the state of the system (looking back)

- · Markov Models are memory-less
 - In other words, all memory is encoded in the states
 - To remember additional information, augment state
- Our first HMM had minimal memory
 - State, emissions, only depend on current state
 - Current state only encoded **one** previous nucleotide
- · How do you count di-nucleotide frequencies?
 - CpG islands: di-nucleotides
 - Codon triplets: tri-nucleotides
 - Di-codon frequencies: six nucleotides
- → Expanding the number of states

Modeling CpG islands: incorporating memory

- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities
- HMM
 - Q: states
 - V: observations
 - p: initial state probabilities
 - A: transition probabilities
 - E: emission probabilities

Example 2: CpG islands: incorporating memory

HMM for CpG islands

- Emission probabilities distinct for the '+' and the '-' states
 - Infer most likely set of states, giving rise to observed emissions
 - → 'Paint' the sequence with + and states

Why we need so many states...

In our simple GC-content example, we only had 2 states (+|-) Why do we need 8 states here: 4 CpG+ / 4 CpG-?

→ Encode 'memory' of previous state: nucleotide transitions

Training emission parameters for CpG+/CpG- states

- · Count di-nucleotide frequencies:
 - 16 possible di-nucleotides. 16 transition parameters.
 - Alternative: 16 states, each emitting di-nucleotide
- · Derive two Markov chain models:
 - +' model: from the CpG islands
 - '-' model: from the remainder of sequence
- · Transition probabilities for each model:
 - Encode differences in di-nucleotide frequencies

	+	Α	С	G	Т
	Α	.180	.274	.426	.120
Ī	С	.171	.368	.274	.188
I	G	.161	.339	.375	.125
	Т	.079	.355	.384	.182

•	Α	С	G	Т
Α	.300	.205	.285	.210
С	.322	.298	.078	.302
G	.248	.246	.298	.208
Т	.177	.239	.292	.292

4. Decoding, all paths

Find the likelihood an emission x_i is generated by a state

Calculate most probable label at a single position

$P(Label_i=B|x)$

- Calculate most probable label, L_i, at each position i
- Do this for all N positions gives us {L*₁, L*₂, L*₃.... L*_N}
- How much information have we observed? Three settings:
 - Observed nothing: Use prior information
 - Observed only character at position i: Prior + emission probability
 - Observed entire sequence: Posterior decoding

Calculate $P(\pi_7 = CpG + | x_7 = G)$

- · With no knowledge (no characters)
 - Simply time spent in markov chain states
 - P(π_i =k) = most likely state (**prior**)
- · With very little knowledge (just that character)
 - Time spent, adjusted for different emission probs.
 - Use Bayes rule to change inference directionality
 - $P(\pi_i = k \mid x_i = G) = P(\pi_i = \kappa) * P(x_i = G \mid \pi_i = k) / P(x_i = G)$
- With knowledge of entire sequence (all characters)
 - P(π_i=k | x=AGCGCG...GATTATCGTCGTA)
 - Sum over all paths that emit 'G' at position 7
 - → Posterior decoding

Motivation for the Backward Algorithm

We want to compute

 $P(\pi_i = k \mid x)$, the probability distribution on the ith position, given x

We start by computing

$$\begin{split} P(\pi_i = k, \ x) &= P(x_1...x_i, \ \pi_i = k, \ x_{i+1}...x_N) \\ &= P(x_1...x_i, \ \pi_i = k) \ P(x_{i+1}...x_N \ | \ x_1...x_i, \ \pi_i = k) \\ &= P(x_1...x_i, \ \pi_i = k) \ P(x_{i+1}...x_N \ | \ \pi_i = k) \end{split}$$

Forward, f_k(i) Backward, b_k(i)

The Backward Algorithm - derivation

Define the backward probability:

$$\begin{split} b_k(i) &= P(x_{i+1}...x_N \mid \pi_i = k) \\ &= \Sigma_{\pi i+1}...\pi_N \, P(x_{i+1},x_{i+2},\,...,\,x_N,\,\pi_{i+1},\,...,\,\pi_N \mid \pi_i = k) \\ &= \Sigma_1 \, \Sigma_{\pi i+1}...\pi_N \, P(x_{i+1},x_{i+2},\,...,\,x_N,\,\pi_{i+1} = I,\,\pi_{i+2},\,...,\,\pi_N \mid \pi_i = k) \\ &= \Sigma_1 \, e_I(x_{i+1}) \, a_{kI} \overline{\sum_{\pi i+1}...\pi_N \, P(x_{i+2},\,...,\,x_N,\,\pi_{i+2},\,...,\,\pi_N \mid \pi_{i+1} = I)} \\ &= \Sigma_1 \, e_I(x_{i+1}) \, a_{kI} \overline{b_I(i+1)} \end{split}$$

Calculate total end probability recursively

Assume we know b_i for the next time step (i+1)

The Backward Algorithm

Input: x = x1....xN

Initialization:

 $b_k(N) = a_{k0}$, for all k

Iteration:

 $b_k(i) = \sum_i e_i(x_{i+1}) a_{ki} b_i(i+1)$

Termination:

 $P(x) = \Sigma_i a_{0i} e_i(x_1) b_i(1)$

In practice:

Sum of log scores is difficult

- → approximate exp(1+p+q)
- → scaling of probabilities

Running time and space:

Time: O(K²N) Space: O(K)

Putting it all together: Posterior decoding

- $P(k) = P(\pi_i = k \mid x) = f_k(i) b_k(i) / P(x)$
 - Probability that ith state is k, given all emissions x
- · Posterior decodina
 - Define most likely state for every of sequence x
 - $-\pi_i^* = \operatorname{argmax}_k P(\pi_i = k \mid x)$
- Posterior decoding 'path' π[^];
 - For classification, more informative than Viterbi path π^*
 - More refined measure of "which hidden states" generated x
 - However, it may give an invalid sequence of states
 - Not all j→k transitions may be possible

Summary this far

- · Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (#0)
- · Scoring the likelihood of a sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (#1)
 - Without specifying a path, total probability of generating x
 - · Sum probabilities over all paths
 - · Forward algorithm (#3)
- Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - · Viterbi algorithm (#2)
 - What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)
- Next: Learning (#5 and #6)

One path All paths 1. Scoring x, one path 2. Scoring x, all paths Scoring $P(x,\pi)$ $P(x) = \sum_{\pi} P(x,\pi)$ Prob of a path, emissions Prob of emissions, over all paths 3. Viterbi decoding 4. Posterior decoding Decoding $\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$ $\pi^{\wedge} = \{\pi_i \mid \pi_i = \operatorname{argmax}_k \Sigma_{\pi} P(\pi_i = k | x)\}$ Path containing the most likely Most likely path state at any time point. 5. Supervised learning, given π 6. Unsupervised learning Learning $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x, \pi | \Lambda)$ 6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi | \Lambda)$ $Λ^* = argmax_Λ max_π P(x, π)$ Viterbi training, best path Baum-Welch training, over all paths

Learning: How to train an HMM

Transition probabilities

e.g. P(P_{i+1}|B_i) – the probability of entering a pathogenicity island from background DNA

Emission probabilities

i.e. the nucleotide frequencies for background DNA and pathogenicity islands

Two learning scenarios

Case 1. Estimation when the "right answer" is known

Examples:

GIVEN:

a genomic region $x = x_1...x_{1,000,000}$ where we have good (experimental) annotations of the CpG islands

Case 2. Estimation when the "right answer" is unknown

Examples:

GIVEN:

the porcupine genome; we don't know how frequent are the CpG islands there, neither do we know their composition

QUESTION:

Update the parameters θ of the model to maximize $P(x|\theta)$

Two types of learning: Supervised / Unsupervised

5. Supervised learning

infer model parameters given labeled training data

- GIVEN:
 - a HMM M, with unspecified transition/emission probs.
- labeled sequence x,
- FIND:
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
- → Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning

infer model parameters given unlabelled training data

- GIVEN:
 - · a HMM M, with unspecified transition/emission probs.
 - unlabeled sequence x,
- FIND:
 - parameters θ = (Ei, Aij) that maximize P[x | θ]
- → Viterbi training:

guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate

→ Baum-Welch training:

guess parameters, sum over all paths (#4), update parameters (#5), iterate

5: Supervised learning

Estimate model parameters based on **labeled** training data

Case 1. When the right answer is known

Given $x = x_1...x_N$

for which the true $\pi = \pi_1 ... \pi_N$ is known,

Define:

 A_{kl} = # times k \rightarrow l transition occurs in π $E_k(b)$ = # times state k in π emits b in x

We can show that the maximum likelihood parameters $\boldsymbol{\theta}$ are:

$$a_{kl} = \frac{A_{kl}}{\Sigma_i A_{ki}} \qquad e_k(b) = \frac{E_k(b)}{\Sigma_c E_k(c)}$$

Case 1. When the right answer is known

Intuition: When we know the underlying states,

Best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:

Given little data, there may be <u>overfitting</u>: $P(x|\theta)$ is maximized, but θ is unreasonable **0 probabilities – VERY BAD**

Example:

Given 10 nucleotides, we observe

$$\begin{array}{c} x = \text{C, A, G, G, T, C, C, A, T, C} \\ \pi = \text{P, P, P, p, p, P, P, P, P, P} \end{array}$$
 Then:
$$\begin{array}{c} a_{\text{PB}} = 1; \\ e_{\text{P}}(A) = .2; \\ e_{\text{P}}(G) = .4; \\ e_{\text{P}}(G) = .2; \\ e_{\text{P}}(T) = 2 \end{array}$$

Pseudocounts

Solution for small training sets:

Add pseudocounts

 A_{kl} = # times k \rightarrow l transition occurs in π + r_{kl} $E_k(b)$ = # times state k in π emits b in x + $r_k(b)$

 r_{kl} , $r_{k}(b)$ are pseudocounts representing our prior belief

Larger pseudocounts ⇒ Strong priof belief

Small pseudocounts (ε < 1): just to avoid 0 probabilities

Example: Training Markov Chains for CpG islands

- С G Т .180 .426 120 С .171 .368 .274 188 G .161 .339 .375 125 Т .079 355 .384 182
- Α С G т Α .300 .205 .285 .210 С .302 .322 .298 .078 G .248 .246 .298 .208 .177 .239 .292

- · Training Set:
 - set of DNA sequences w/ known CpG islands
- Derive two Markov chain models:
 - '+' model: from the CpG islands
 - '-' model: from the remainder of sequence
- Transition probabilities for each model:

$$a_{st}^{+} = \frac{c_{st}^{+}}{\sum_{t'} c_{st'}^{+}}$$

is the number of times letter t followed letter s inside the CpG islands

$$a_{st}^{-} = \frac{c_{st}^{-}}{\sum_{t'} c_{st'}^{-}}$$

is the number of times letter t followed letter s outside the CpG islands

6: Unsupervised learning

Estimate model parameters based on unlabeled training data

Learning case 2. When the right answer is unknown

We don't know the true A_{kl} , $E_k(b)$

Idea:

- We estimate our "best guess" on what A_{kl}, E_k(b) are (M step, maximum-likelihood estimation)
- · We update the probabilistic parse of our sequence, based on these parameters (E step, expected probability of being in each state given parameters)
- · We repeat

Two settings:

- Simple: Viterbi training (best guest = best path)
- · Correct: Expectation maximization (all paths, weighted)

Simple casae: Viterbi Training

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Perform Viterbi, to find π^*
- 2. Calculate A_{kl} , $E_k(b)$ according to π^* + pseudocounts
- 3. Calculate the new parameters a_{kl} , $e_{k}(b)$

Until convergence

Notes:

- Convergence to local maximum guaranteed. Why?
- Does not maximize P(x | θ)
- In general, worse performance than Baum-Welch

Expectation Maximization (EM)

The basic idea is the same:

1.Use model to estimate missing data (E step)
2.Use estimate to update model (M step)
3.Repeat until convergence

EM is a general approach for learning models (ML estimation) when there is "missing data" Widely used in computational biology

EM pervasive in computational biology

Rec 3 (SiPhy), Lec 8 (Kmeans), Lec 9 (motifs)

Expectation Maximization (EM)

- 1. Initialize parameters randomly
- 2. E Step Estimate expected probability of hidden labels, Q, given current (latest) parameters and observed (unchanging) sequence

$$Q = P(Labels | S, params^{t-1})$$

3. M Step Choose new <u>maximum likelihood</u> parameters over probability distribution Q, given current probabilistic label assignments

$$params' = \underset{params}{\arg \max} E_{Q} \Big[\log P(S, labels \mid params'^{-1}) \Big]$$

4. Iterate

P(S|Model) guaranteed to increase each iteration

Case 2. When the right answer is unknown

Starting with our best guess of a model M, parameters θ :

Given $x = x_1...x_N$

for which the true $\pi = \pi_1 ... \pi_N$ is unknown,

We can get to a provably more likely parameter set $\boldsymbol{\theta}$

Principle: EXPECTATION MAXIMIZATION

- 1. Estimate probabilistic parse based on parameters (E step)
- 2. Update parameters A_{kl}, E_k based on probabilistic parse (M step)
- 3. Repeat 1 & 2, until convergence

Estimating probabilistic parse given params (E step)

To estimate A_{kl}:

At each position i:

Find probability transition $k\rightarrow l$ is used:

$$\begin{split} P(\pi_i = k, \, \pi_{i+1} = l \mid x) &= [1/P(x)] \times \boxed{P(\pi_i = k, \, \pi_{i+1} = l, \, \boxed{x_1 \dots x_N})} = Q/P(x) \\ \text{where } Q &= \boxed{P(x_1 \dots x_k, \, \boxed{\pi_i = k} \mid \pi_{i+1} = l, \, \boxed{x_{i+1} \dots x_N})} = \\ &= P(\pi_{i+1} = l, \, x_{i+1} \dots x_N) \boxed{\pi_i = k} \boxed{P(x_1 \dots x_i, \, \boxed{\pi_i = k})} = \\ &= P(\pi_{i+1} = l, \, x_{i+1} x_{i+2} \dots x_N \mid \pi_i = k) \boxed{f_k(i)} = \\ &= \boxed{P(x_{i+2} \dots x_N \mid \pi_{i+1} = l)} \boxed{P(x_{i+1} \mid \pi_{i+1} = l)} \boxed{P(\pi_{i+1} = l \mid \pi_i = k)} \ f_k(i) = \\ &= \boxed{b_i(i+1)} \boxed{e_i(x_{i+1} \mid a_k| f_k(i))} \end{split}$$

So:
$$P(\pi_i = k, \pi_{i+1} = l \mid k, \theta) = \frac{\int_{k}^{k} ||\mathbf{e}_i(\mathbf{x}_{i+1})||\mathbf{b}_i(\mathbf{i}+1)||}{P(\mathbf{x} \mid \theta)}$$

(For one such transition, at time step i→i+1)

New parameters given probabilistic parse (M step)

(Sum over all k→l transitions, at any time step i) So,

 $f_k(i) a_{kl} e_i(x_{i+1}) b_i(i+1)$

$$A_{kl} = \sum_{i} P(\pi_i = k, \ \pi_{i+1} = l \mid x, \ \theta) = \sum_{i} -\frac{1}{P(x \mid \theta)}$$

Similarly,

$$E_k(b) = [1/P(x)] \sum_{\{i \mid xi = b\}} f_k(i) b_k(i)$$

Dealing with multiple training sequences

(Sum over all training seqs, all k→l transitions, all time steps i)

If we have several training sequences, $x^1, ..., x^M$, each of length N,

$$\mathsf{A}_{\mathsf{k}\mathsf{l}} = \frac{\sum_{\mathsf{X}} \sum_{\mathsf{j}} \mathsf{P}(\pi_{\mathsf{i}} = \mathsf{k}, \, \pi_{\mathsf{i}+1} = \mathsf{l} \mid \mathsf{x}, \, \theta)}{\mathsf{P}(\mathsf{x} \mid \theta)} = \frac{\sum_{\mathsf{X}} \sum_{\mathsf{j}} \sum_{\mathsf{j}} \mathsf{P}(\pi_{\mathsf{k}} = \mathsf{k}, \, \pi_{\mathsf{k}+1} = \mathsf{k}, \, \pi_{\mathsf{k}+1}$$

Similarly,

$$\mathsf{E}_{\mathsf{k}}(b) = \sum_{\mathsf{X}} (1/\mathsf{P}(\mathsf{X})) \sum_{\{i \mid \mathsf{X}^i = [b]\}} \mathsf{f}_{\mathsf{k}}(i) \mathsf{b}_{\mathsf{k}}(i)$$

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters (or arbitrary)

Iteration:

- 1. Forward
- 2. Backward
- 3. \rightarrow Calculate new log-likelihood P(x | θ) (E step)
- 4. Calculate Akl, Ek(b)
- 5. \rightarrow Calculate new model parameters a_{kl} , $e_k(b)$ (M step)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until $P(x \mid \theta)$ does not change much

The Baum-Welch Algorithm – comments

Time Complexity:

iterations \times O(K²N)

Guaranteed to increase the log likelihood of the model

$$P(\theta \mid x) = P(x, \theta) / P(x) = P(x \mid \theta) / (P(x) P(\theta))$$

Not guaranteed to find <u>globally</u> best parameters

Converges to local optimum, depending on initial conditions

• Too many parameters / too large model: Overtraining

5	One path 1. Scoring x, one path	All paths 2. Scoring x, all paths
Ë	$P(x,\pi)$	$P(x) = \sum_{\pi} P(x,\pi)$
Scoring	Prob of a path, emissions	Prob of emissions, over all paths
0	3. Viterbi decoding	4. Posterior decoding
Decoding	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{ \pi_i \mid \pi_i = \operatorname{argmax}_k \Sigma_{\pi} P(\pi_i = k x) \}$
Dec	Most likely path	Path containing the most likely state at any time point.
0	5. Supervised learning, given π	Unsupervised learning
Learning	$ Λ* = \operatorname{argmax}_{\Lambda} P(x, \pi \Lambda) $ 6. Unsupervised learning. $ Λ* = \operatorname{argmax}_{\Lambda} \operatorname{max}_{\pi} P(x, \pi \Lambda) $	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(x, \pi \Lambda)$
Fe	Viterbi training, best path	Baum-Welch training, over all paths

What have we learned?

- Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (#0)
- Scoring: Finding the likelihood of a given sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities (#1)
 - Without specifying a path, total probability of generating x
 - Sum probabilities over all paths
 - Forward algorithm (#3)
- Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm (#2)
 - What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)
- Learning: Estimating HMM parameters from training data
 - When state sequence is known
 - Simply compute maximum likelihood A and E (#5a)
 - When state sequence is not known
 - Viterbi training: Iterative estimation of best path / frequencies (#5b)
 - Baum-Welch: Iterative estimation over all paths / frequencies (#6)

The main questions on HMMs	
1. Scoring x, one path = Joint probability of a sequence and a path, given the model GIVEN a HMM M, a path π, and a sequence x, FIND Prob[x, π M] "Running the model", simply multiply emission and transition probabilities Application: "all promoter" vs. "all backgorund" comparisons 2. Scoring x, all paths = total probability of a sequence, summed across all paths GIVEN a HMM M, a sequence x FIND the total probability P[x M] summed across all paths Forward algorithm, sum score over all paths (same result as backward)	SCORING
3. Viterbi decoding = parsing a sequence into the optimal series of hidden states - GIVEN a HMM M, and a sequence x, - FIND the sequence π' of states that maximizes P[x, π M] → Viterbi algorithm, dynamic programming, max score over all paths, trace pointers find path 4. Posterior decoding = total prob that emission x, came from state k, across all paths - GIVEN a HMM M, a sequence x - FIND the total probability P[π, = k x, M) → Posterior decoding: run forward & backward algorithms to & from state π, =k	PARSING
5. Supervised learning = optimize parameters of a model given training data GIVEN a HMM M, with unspecified transition/emission probs., labeled sequence x, FIND parameters θ = {e, e, a}, that maximize P[x θ] Simply count frequency of each emission and transition observed in the training data 6. Unsupervised learning = optimize parameters of a model given training data GIVEN a HMM M, with unspecified transition/emission probs., unlabeled sequence x, FIND parameters θ = {e, e, a}, that maximize P[x θ] ∀ Viterbi training: guess parameters, find optimal Viterbi path (#2), update parameters (#5), iterate Baum-Welch training: guess, sum over all emissions/transitions (#4), update (#5), iterate	LEARNING