08-09 函子和自然变换

LATEX Definitions are here.

一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
 - Set 中对象为任意集合;
 - Set 中箭头为集合间映射。
- Cat: **所有范畴构成的范畴**,满足
 - Cat 中任何对象都构成一个范畴;
 - Cat 中任何箭头都构成一个函子。

若 C, D 为 Cat 中对象,则:

- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c,
 c 为任意 C 中的对象;
 - C^{op} 中箭头皆形如 $i^{op}: c_2 \xrightarrow{C^{op}} c_1$, $i: c_1 \xrightarrow{C} c_2$ 可为任意 C 中的箭头 。
- C × D: **积范畴**,满足
 - C^{Cat} D 中对象皆形如 c . d ,
 c , d 分别为任意 C , D 中的对象 ;
 - C × D 中箭头皆形如 i. j,
 i, j 分别为任意 C, D 中的箭头。
- C → D: 所有 C 到 D 的函子的范畴 , 满足
 - C
 —→ D 中任何对象
 都是 C 到 D 的函子;
 - $C \xrightarrow{Cat} D$ 中任何箭头都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象; 满足
 - C/c₂ 中对象皆形如 c.1.i, 其中 c 和
 i: c → c₂ 分别为 C 中任意的对象和箭头;
 - c_2/C 中箭头皆形如 f_{ic_2} id 且满足下述交换图,其中 c,c' 为 C 中任意对象且 f,i, i' 为 C 中任意箭头;

- c₁/C: **仰范畴**, 这里 c 为任意 C 中对象; 满足
 - c₁/C 中对象皆形如 1. c. i, 其中 c 和
 i: c₁ → c 分别为 C 中任意的对象和箭头;
 - C/c₁ 中箭头皆形如 id. f 且满足下述交换图,其中c,c'为C中任意对象且 f,i,i'为C中任意箭头;

函子

接下来我们来提供函子的正式定义:

- F: C → D 为函子当且仅当
 - 对任意 C 中对象 c , cF 为
 D 中对象且 :cidF = :cF id ;
 - 对任意 C 中箭头 $i_1: c_1 \stackrel{c}{\rightarrow} c_2$ 和 $i_2: c_2 \stackrel{c}{\rightarrow} c_3$, 始终都有等式 $(i_1 \circ i_2) F = i_1 F \stackrel{D}{\circ} i_2 F$ 成立 。

函子的复合运算

若已确信 $F: C \xrightarrow{Cat} D$ 为函子并且还知道 $G: D \xrightarrow{Cat} E$ 为函子则

• **F**^{Cat} **G**: C → E 也构成一个函子。

恒等函子

对于函子我们也有恒等映射,即:

 $\begin{array}{ccc} \bullet & {}_{:C}\mathrm{Id} \overset{\mathsf{Cat}}{\circ} \textbf{\textit{F}} = \textbf{\textit{F}} \\ & = \textbf{\textit{F}} \overset{\mathsf{Cat}}{\circ} {}_{:D}\mathrm{Id} \end{array}$

忠实,完全和本质满函子

若 C, D, E 皆为局部小范畴,则

- **P** 是**忠实的**当且仅当对任意 C 中的对象 c_1, c_2 , $c_1 \stackrel{C}{\rightarrow} c_2$ 与 $c_1 \stackrel{D}{\rightarrow} c_2 \stackrel{E}{\rightarrow}$ 之间始终都存在单射 ;
- **F** 是**完全的**当且仅当对任意 C 中的对象 c_1, c_2 , $c_1 \overset{C}{\rightarrow} c_2$ 与 $c_1 \overset{D}{\rightarrow} c_2 \overset{E}{\rightarrow}$ 之间始终都存在满射 ;
- **P** 是**完全忠实的**当且仅当任意 C 中对象 c_1, c_2 , $c_1 \overset{c}{\rightarrow} c_2$ 与 $c_1 \overset{D}{\rightarrow} c_2 \overset{D}{\longleftarrow}$ 之间始终都存在双射 。

(i) Note

刚才提到的"单/满/双射"针对的都是范畴的箭头部分。

• **P** 是**本质满的**当且仅当对任意 D 中对象 d 都存在 C 中对象 c 使 $\stackrel{D}{\subset}$ d 之间有双射。

根据刚才的信息我们不难得知

- 若 F, G 为忠实函子
 则 G^{Cat}G 为忠实函子;
- 若 F, G 为完全函子
 则 F^{Cat} G 为完全函子;
- 若 F, G 为完全忠实函子
 则 F^{Cat}G 为完全忠实函子;
- 若 F, G 为本质满函子
 则 F G 为本质满函子。