Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Exame de Análise Matemática I (parte 1) - Engenharia Informática

28 de janeiro de 2022 Duração: 1h15m

- A resposta às questões do grupo 1 não carece de justificação e será atribuída cotação de zero valores caso o aluno erre 3 ou mais alíneas.
- Não é permitido utilizar máquina de calcular ou telemóvel durante a prova.

 $[0.5 \, val.]$ 1. (a) Identifique a igualdade que é válida em \mathbb{R} :

i)
$$\frac{x}{1-x^2} = \frac{1}{1-x}$$
;

ii)
$$\sqrt{1-x^2} = 1-x$$
;

iii)
$$(a+b)^2 = a^2 + b^2$$
;

iv)
$$\sqrt{x^4} = x^2$$
.

 $[0.5 \, val.]$ (b) Identifique a proposição verdadeira:

i)
$$\arcsin(1) = \frac{1}{\sin(1)}$$
;

ii)
$$\sin(x) = 1 \iff x = \arcsin(1);$$

iii)
$$\arccos(0.5) = -\frac{\pi}{3};$$

iv)
$$\arccos(-0.5) = \frac{2\pi}{3}$$
;

(c) A função inversa de $f(x) = 3 + \ln(2x - 5)$ é: $[0.5 \, val.]$

i)
$$g(x) = \frac{1}{3 + \ln(2x - 5)};$$

ii) $g(x) = -3 - \ln(-2x + 5);$

ii)
$$g(x) = -3 - \ln(-2x + 5)$$

iii)
$$g(x) = \frac{1}{2} (5 + e^{x-3});$$

iv) nenhuma das anteriores.

(d) (CORRIGIDO) A restrição principal da função $f(x) = \sin(2x - \pi)$ é: $[0.5\,val.]$

i)
$$]-\infty, +\infty[$$
;

ii)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right];$$

iii)
$$]0, \pi[;$$

iv)
$$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$
.

 $[1.0 \, val.]$ 2. A equação $\sqrt{x} - \cos(x) = 0$ tem apenas uma solução real, pertencente ao intervalo [0,1].

- (a) Recorrendo ao método gráfico, justifique a afirmação anterior.
- (b) Efectue 2 iterações do método da bisseção, para determinar uma estimativa para a solução da equação dada. Indique um majorante para o erro dessa estimativa e utilize 2 casas decimais em todos os cálculos que realizar.

[2.0 val.] 3. Calcule as seguintes primitivas:

a)
$$\int \frac{\sqrt{4x}}{\sqrt[3]{x}} \, dx;$$

b)
$$\int \frac{1+x}{\sqrt{36-9x^2}} dx$$
.

 $[2.0\,val.]$ 4. (a) Recorrendo à definição de primitiva, mostre que

$$\int \arccos(x) dx = x \arccos(x) - \sqrt{1 - x^2} + c, \quad c \in \mathbb{R}.$$

- (b) Considere o integral definido $\int_{-1}^{1} \arccos(x) dx$.
 - i) Determine uma estimativa para o integral, recorrendo à regra de Simpson (simples).
 - ii) Recorrendo à alínea (a), determine o valor exacto do integral.

 $[4.0\,val.]$ 5. Considere a região \mathcal{A} , sombreada, da figura seguinte.

- (a) Usando integrais, indique uma expressão simplificada para a área de A.
- (b) Usando integrais, calcule o volume da região que se obtém pela rotação da região $\mathcal A$ em torno do eixo Ox.
- (c) Identifique, justificando, uma expressão simplificada para o comprimento da curva definida por $y = x^3$ entre os pontos de abcissas x = -1 e x = 1.

- 1. (a) Opção (iv).
 - (b) Opção (iv).
 - (c) Opção (iii).
 - (d) Opção (iv).
- 2. (a) Tendo em conta que

$$\sqrt{x} - \cos(x) = 0 \quad \Leftrightarrow \quad \sqrt{x} = \cos(x)$$

as soluções da equação correspondem às abcissas dos pontos de intersecção dos gráficos das funções $f_1(x) = \sqrt{x}$ e $f_2(x) = \cos(x)$.

(b) Consideremos a função $f(x) = \sqrt{x} - \cos(x)$. Então

n	[a,b]	x_n	erro $f(a)$	$f(x_n)$	f(b)
1	[0, 1]	$x_1 = 0.5$	$0.5 \mid f(0) = -1$	f(0.5) = -0.17	f(1) = 0.46
2	[0.5, 1]	$x_2 = 0.75$	$0.25 \mid f(0.5) = -0.17$	f(0.75) = 0.13	f(1) = 0.46

Então, $\overline{x} = 0.75$ é uma aproximação para a solução, com erro máximo de 0.25.

3. a) Recorrendo às regras das primitivas imediatas, tem-se

$$\int \frac{\sqrt{4x}}{\sqrt[3]{x}} \, dx = 2 \int \frac{x^{\frac{1}{2}}}{x^{\frac{1}{3}}} \, dx = 2 \int \underbrace{x^{\frac{1}{6}}}_{R2} \, dx = 2 \frac{x^{\frac{7}{6}}}{\frac{7}{6}} + c = \frac{12}{7} \sqrt[6]{x^7} + c \,, \quad c \in \mathbb{R} \,.$$

b) Recorrendo às regras das primitivas imediatas, tem-se

$$\int \frac{1+x}{\sqrt{36-9x^2}} dx = \int \frac{1}{\sqrt{36-9x^2}} dx + \int \frac{x}{\sqrt{36-9x^2}} dx$$

$$= \int \frac{1}{\sqrt{36(1-\frac{9x^2}{36})}} dx + \int x (36-9x^2)^{-\frac{1}{2}} dx$$

$$= \frac{2}{6} \int \frac{\frac{1}{2}}{1-(\frac{x}{2})^2} dx - \frac{1}{18} \int \underbrace{-18x (36-9x^2)^{-\frac{1}{2}}}_{R2} dx$$

$$= \frac{1}{3} \arcsin\left(\frac{x}{2}\right) - \frac{1}{18} \frac{(36-9x^2)^{\frac{1}{2}}}{\frac{1}{2}} + c$$

$$= \frac{1}{3} \arcsin\left(\frac{x}{2}\right) - \frac{1}{9} \sqrt{36-9x^2} + c, \quad c \in \mathbb{R}.$$

4. (a) Basta verificar que a derivada de $x \arccos(x) - \sqrt{1-x^2} + c$ é $\arccos(x)$:

$$\underbrace{\left(x \operatorname{arccos}(x) - \sqrt{1 - x^2} + c\right)'}_{R4+R3}$$

$$= \underbrace{\left(x \operatorname{arccos}(x)\right)'}_{R5} - \underbrace{\left(\sqrt{1 - x^2}\right)'}_{R7} + \underbrace{\left(c\right)'}_{R1}$$

$$= \underbrace{\left(x\right)'}_{R2} \operatorname{arccos}(x) + x \underbrace{\left(\operatorname{arccos}(x)\right)'}_{R19+R2} - \frac{1}{2}(1 - x^2)^{-\frac{1}{2}}(-2x) + 0$$

$$= \operatorname{arccos}(x) + x \left(-\frac{1}{\sqrt{1 - x^2}}\right) + \frac{x}{\sqrt{1 - x^2}}$$

$$= \operatorname{arccos}(x) - \frac{x}{\sqrt{1 - x^2}} + \frac{x}{\sqrt{1 - x^2}}$$

$$= \operatorname{arccos}(x) \checkmark$$

(b) i) Considerando a regra de Simpson (simples) no intervalo [-1,1], tem-se h=1 e

$$\int_{-1}^{1} \underbrace{\arccos(x)}_{f(x)} dx$$

$$\simeq \frac{1}{3} \left(f(-1) + 4 f(0) + f(1) \right)$$

$$= \frac{1}{3} \left(\arccos(-1) + 4 \arccos(0) + \arccos(1) \right)$$

$$= \frac{1}{3} \left(\pi + 4 \frac{\pi}{2} + 0 \right)$$

$$= \pi$$

ii) Tendo em conta o resultado da alínea (a), tem-se

$$\int_{-1}^{1} \arccos(x) dx = \left[x \arccos(x) - \sqrt{1 - x^2} \right]_{-1}^{1}$$
$$= \arccos(1) - \sqrt{0} - \left(-\arccos(-1) - \sqrt{0} \right)$$
$$= \pi$$

5. (a) Começamos por notar que a recta que delimita um dos sectores da fronteira é definida por

•
$$x^2 + y^2 = 2$$
 \Leftrightarrow $y = \pm \sqrt{2 - x^2}$ \Rightarrow $y = \sqrt{2 - x^2}$ Então.

$$\text{Área}(\mathcal{A}) = \int_{-1}^{1} \underbrace{\sqrt{2-x^2}}_{f_{sup}} - \underbrace{x^3}_{f_{inf}} dx.$$

(b) Uma vez que na rotação em torno do eixo Ox existirá uma sobreposição parcial da parte esquerda, vamos considerar apenas

Então, o volume do sólido de revolução que se obtém pela rotação da região $\mathcal A$ em torno do eixo Ox é dado por

Volume(
$$\mathcal{A}_{Ox}$$
) = $\pi \int_{-1}^{0} \left(\underbrace{\sqrt{2-x^2}}_{R_{ext}} \right)^2 - \left(\underbrace{0}_{R_{ext}} \right)^2 dx + \pi \int_{0}^{1} \left(\underbrace{\sqrt{2-x^2}}_{R_{ext}} \right)^2 - \left(\underbrace{x^3}_{R_{ext}} \right)^2 dx$
= $\pi \int_{-1}^{0} 2 - x^2 dx + \pi \int_{0}^{1} 2 - x^2 - x^6 dx$
= $\pi \left[2x - \frac{x^3}{3} \right]_{-1}^{0} + \pi \left[2x - \frac{x^3}{3} - \frac{x^7}{7} \right]_{0}^{1}$
= $\pi \left(0 - \left(-2 + \frac{1}{3} \right) \right) + \pi \left(2 - \frac{1}{3} - \frac{1}{7} - 0 \right)$
= $\pi \frac{5}{3} + \pi \frac{32}{21}$
= $\frac{67}{21} \pi$.

(c) O comprimento da linha pretendida, representada na figura seguinte, é

comprimento =
$$\int_{-1}^{1} \sqrt{1 + \left[\left(x^{3} \right)' \right]^{2}} dx = \int_{-1}^{1} \sqrt{1 + \left[3x^{2} \right]^{2}} dx = \int_{-1}^{1} \sqrt{1 + 9x^{4}} dx$$
.