CIE6020 Assignment 1

Due: 23:55, 25 Jan 2019

- 1. If the base of the logarithm is b, we denote the entropy as $H_b(X)$. Show that $H_b(X) = (\log_b a)H_a(X)$.
- 2. Coin flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips required.
 - (a) Find the entropy H(X) in bits. The following expressions may be useful:

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}, \qquad \sum_{n=0}^{\infty} nr^n = \frac{r}{(1-r)^2}.$$

- (b) A random variable X is drawn according to this distribution. Find an "efficient" sequence of yes-no questions of the form, "Is X contained in the set S?" Compare H(X) to the expected number of questions required to determine X.
- 3. Entropy of functions. Let X be a random variable taking on a finite number of values. What is the (general) inequality relationship of H(X) and H(Y) if
 - (a) $Y = 2^X$?
 - (b) $Y = \cos(X)$?
- 4. What is the minimum value of $H(p_1, \ldots, p_n) = H(\mathbf{p})$ as \mathbf{p} ranges over the set of n-dimensional probability vectors? Find all \mathbf{p} 's that achieve this minimum.
- 5. Let X be a discrete random variable. Show that the entropy of a function of X is less than or equal to the entropy of X, i.e., $H(g(X)) \leq H(X)$. (Hint: apply chain rule on H(X, g(X)).)
- 6. Let p(x, y) be given by

X	0	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	0	$\frac{1}{3}$

Find by definition: (a) H(X), H(Y). (b) H(X|Y), H(Y|X). (c) H(X,Y). (d) I(X;Y). Check that H(X) + H(Y|X) = H(Y) + H(X|Y), and H(X) - H(X|Y) = H(Y) - H(Y|X). Draw a Venn diagram (information diagram) for the quantities in parts (a) through (d).

7. Chain rule for conditional entropy. Show that

$$H(X_1, X_2, ..., X_n | Y) = \sum_{i=1}^n H(X_i | X_1, ..., X_{i-1}, Y).$$

- 8. Entropy of a sum. Let X and Y be random variables that take on values $x_1, x_2, ..., x_r$ and $y_1, y_2, ..., y_s$, respectively. Let Z = X + Y.
 - (a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus, the addition of *independent* random variables adds uncertainty.
 - (b) Give an example of (necessarily dependent) random variables in which H(X) > H(Z) and H(Y) > H(Z).
 - (c) Under what conditions does H(Z) = H(X) + H(Y)?