

Performance Measurement

Fundamentals of Data Structures Research Project 1 Group ???

??? ??? ???

September 23, 2019

Contents

1	Intr	roduction	1						
	1.1	Problem Description	1						
	1.2	Purpose of Report	1						
2	Algorithm Specification								
	2.1	Algorithm 1	2						
	2.2	Algorithm 2	2						
		2.2.1 Recursive	2						
		2.2.2 Iterative	2						
3	Test	ting Results	3						
	3.1	Time Table	3						
	3.2	Plots	4						
		3.2.1 General Comparison	4						
		3.2.2 Time Complexity of Algorithm 1	5						
		3.2.3 Recursive and Iterative Algorithm 2	5						
		3.2.4 Time Complexity of Algorithm 2	6						
4	Ana	alysis and Comments	7						
	4.1	Time Complexity	7						
		4.1.1 Algorithm 1	7						
		4.1.2 Algorithm 2	7						
	4.2	Space Complexity	7						
		4.2.1 Algorithm 1	7						
		4.2.2 Algorithm 2 (Recursive)	7						
		4.2.3 Algorithm 2 (Iterative)	7						
	4.3	Further Improvement	8						
Aı	ppen	dices	9						
\mathbf{A}	Sou	Source Code (in C)							
B	A 114	hor List and Doclaration	19						

Introduction

1.1 Problem Description

Calculate X^N with 2 different algorithms.

1.2 Purpose of Report

In this project, we will first implement the two algorithms calculating X^N . Then we will test their performances and compare them agains each other. In the end, we will give a proof of their complexities.

Algorithm Specification

2.1 Algorithm 1

Initialize the variable product with X. Multiply it with X for N-1 times.

2.2 Algorithm 2

2.2.1 Recursive

Define f(X, N) as the process for calculating X^N . $f(X, N) = \begin{cases} X, & N = 1 \\ f(X^2, N/2), & N > 1, N = 2k \\ X \cdot f(X^2, (N-1)/2), & N > 1, N = 2k+1 \end{cases}$ Calculate f(X, N) recursively.

2.2.2 Iterative

- 1. Initialize the variable *product* with 1.
- 2. If the current N is odd, multiply product by X.
- 3. Divide N by 2, replace the base X with X^2 .
- 4. Repeating process 2 and 3 until N becomes 0.

Testing Results

All the time is displayed in seconds.

3.1 Time Table

	N	1000	5000	10000	20000
	Iterations (K)	10000	10000	10000	10000
	Ticks	30	142	296	609
Algo 1	Total Time (sec)	0.03	0.142	0.296	0.609
	Duration (sec)	0.003	0.0142	0.0296	0.0609
	Iterations (K)	10000000	10000000	10000000	10000000
	Ticks	437	532	547	593
Algo 2 (iterative)	Total Time (sec)	0.437	0.532	0.547	0.593
	Duration (sec)	0.0000437	0.0000532	0.0000547	0.0000593
	Iterations (K)	10000000	10000000	10000000	10000000
	Ticks	1109	1374	1499	1578
Algo 2 (recursive)	Total Time (sec)	1.109	0.156	0.156	0.172
	Duration (sec)	0.0001109	0.0001374	0.0001499	0.0001578

	N	40000	60000	80000	100000
	Iterations (K)	10000	10000	10000	10000
	Ticks	1219	1845	2360	2954
Algo 1	Total Time (sec)	1.219	1.845	2.36	2.954
	Duration (sec)	0.1219	0.1845	0.236	0.2954
	Iterations (K)	10000000	10000000	10000000	10000000
	Ticks	640	625	656	641
Algo 2 (iterative)	Total Time (sec)	0.64	0.625	0.656	0.641
	Duration (sec)	0.000064	0.0000625	0.0000656	0.0000641
	Iterations (K)	10000000	10000000	10000000	10000000
	Ticks	1704	1734	1781	1782
Algo 2 (recursive)	Total Time (sec)	0.188	0.187	0.188	0.186
	Duration (sec)	0.0001704	0.0001734	0.0001781	0.0001782

3.2 Plots

3.2.1 General Comparison

As N becomes larger, the time consumption of Algorithm 1 increases rapidly, and Algorithm 1 becomes much slower than Algorithm 2.

The iterative and recursive versions of Algorithm 2 are too fast compared to Algorithm 1, so they look like the same line in the figure.

3.2.2 Time Complexity of Algorithm 1

By plotting the time of Algorithm 1 divided by N, the figure looks almost like a straight horizontal line, which indicates that the time complexity of Algorithm 1 is O(N).

3.2.3 Recursive and Iterative Algorithm 2

If we put the running time of two different versions of Algorithm 2 in one figure, it's clear that the iterative version runs faster than the recursive version. However, unlike the situation when we are comparing Algorithm 1 with Algorithm 2, the ratio of their time consumption isn't increasing.

3.2.4 Time Complexity of Algorithm 2

By plotting the time of Algorithm 2 divided by $\log N$, both the iterative and recursive version looks like a horizontal line, which indicates that the time complexity of Algorithm 2 is $O(\log N)$. The different height of the two lines indicates that their time complexities have different constant coefficients.

Analysis and Comments

4.1 Time Complexity

4.1.1 Algorithm 1

As we did N-1 multiplications, the time complexity of Algorithm 1 is O(N).

4.1.2 Algorithm 2

Since every time the problem becomes half as large as the original one, T(N) = T(N/2) + O(1).

We use substitution method to prove its complexity by substituting T(N/2) with $c \log(N/2)$. $T(N) = c \log(N/2) + O(1) = c \log N$. Thus, the time complexity of Algorithm 2 is $O(\log N)$.

4.2 Space Complexity

4.2.1 Algorithm 1

Only a constant number of variables are required no matter how large N is, so the space complexity is O(1).

4.2.2 Algorithm 2 (Recursive)

Every time the process is called, constant number of variables are pushed into the system stack. So the space complexity of recursive Algorithm 2 is the same as its time complexity, $O(\log N)$.

4.2.3 Algorithm 2 (Iterative)

Unlike its recursive version, the iterative Algorithm 2 doesn't use more space as N becomes larger, so its space complexity is O(1).

4.3 Further Improvement

For Algorithm 2, the current base of $O(\log N)$ is 2, maybe we can alter the base to a larger integer to improve the time performance.

Appendices

Appendix A

Source Code (in C)

```
Listing A.1: Project 1.c
1 #include <stdio.h>
2 #include <time.h>
3 #include <limits.h>
  const int cnt[] = {1000, 5000, 10000, 20000, 40000, 60000,
     80000, 100000);
                          // cnt 为供测试用的指数
6 const int cases = 8;
      // cnt 数组的大小
7 const double base = 1.0001;
                                                           // 供
      测试用的底数
  double algorithm1(double x, int n);
                                                   // 算法1, 暴
      力计算
10 double algorithm2 iterative(double x, int n);
                                        // 算法2, 迭代版
  double algorithm2_recursive(double x, int n);
                                        // 算法2, 递归版
  double get_runtime(double (*f)(double x, int n), double x, int
     n, int k);
                       // 计算函数 f 运行 k 次的 tick 数
13
14
  int main(void) {
      int i, j;
15
      int k1, k2, k3;
16
      double ticks;
17
18
      for (i = 0; i < cases; i++)
19
          printf("Please input the number of executions for
20
             algorithm 1:");
          scanf("%d", &k1);
21
             // 读入运行次数 k1
          ticks = get_runtime(algorithm1, base, cnt[i], k1);
22
                                    // 测量时间
```

```
printf("N:%d Ticks:%.0f Total Time(sec):%6f Duration:%f
23
              \n", cnt[i], ticks, ticks / CLK_TCK,
                  ticks / k1); // 输出答案
24
           printf("Please input the number of executions for
25
              algorithm 2(iterative):");
           scanf("%d", &k2);
26
              // 读入运行次数 k2
27
           ticks = get_runtime(algorithm2_iterative, base, cnt[i],
                                // 测量时间
           printf("N:%d Ticks:%.0f Total Time(sec):%6f Duration:%f
28
              \n", cnt[i], ticks, ticks / CLK_TCK,
                  ticks / k2); // 输出答案
29
           printf("Please input the number of executions for
30
              algorithm 2(recursive):");
           scanf("%d", &k3);
31
              // 读入运行次数 k2
           ticks = get_runtime(algorithm2_recursive, base, cnt[i],
32
               k3);
                                // 测量时间
           printf("N:%d Ticks:%.0f Total Time(sec):%6f Duration:%f
33
              \n", cnt[i], ticks, ticks / CLK_TCK,
                  ticks / k3); // 输出答案
34
35
      }
36 }
37
38 double algorithm1(double x, int n) {
39
       int i;
       double res = x;
40
       for (i = 1; i < n; i++) {</pre>
41
           res *= x;
42
              // 执行 N-1 次乘法
43
       }
44
      return x;
45
46 }
47
48 double algorithm2 iterative(double x, int n) {
       double res = 1;
49
       for (; n; n /= 2, x *= x)
50
          // 迭代,缩小问题规模
           if (n \% 2)res = res * x;
51
              // 若 N 为奇数,则要将 X 乘给答案
52
      return res;
53
54 }
55
56 double algorithm2_recursive(double x, int n) {
```

```
57
      if (n == 1)return x;
58
         // 递归出口
      if (n % 2 == 0)return algorithm2_recursive(x * x, n / 2);
59
                              // 若 N 为偶数,则直接缩小问题规模
      else return algorithm2_recursive(x * x, n / 2) * x;
60
                                   // 若 N 为奇数,则要将 X 乘
         给答案
61 }
62
63 double get_runtime(double (*f)(double x, int n), double x, int
     n, int k) { // 接受函数指针 f, 计算其执行 k 次的 tick 数
64
      clock_t start, stop;
65
      int i;
      start = clock(); // 记录起始时间
66
      for (i = 0; i < k; i++) {</pre>
67
          f(x, n);
68
69
      }
70
      stop = clock(); // 记录终止时间
71
      return stop - start;
72 }
```

Appendix B

Author List and Declaration

Author List

Code: ??? Test: ??? Report: ???

Declaration

We hereby declare that all the work done in this project titled "Performance Measurement" is of our independent effort as a group.