Faculté des Mathématiques **USTHB**

Master 1 ISMTID

Module: Processus Stochastiques 2

Année 2013/2014 22/06/2014 Durée: 1h 30m

Rattrapage

Exercice 1 (8 pts) A/Soit $X \in (\Omega, \mathcal{F}, P)$ i.e., X est \mathcal{F} mesurable, une v.a telle que $E(|X|) < +\infty$.

- 1/ Montrer que si $\mathcal{A} = \{\Omega, \emptyset\}$ alors $E(X/\mathcal{A}) = E(X)$ p.s.
- 2/ Soit la filtration $(\mathcal{F}_n)_{n\geq 0}$ sur (Ω, \mathcal{F}, P) et Y une v.a. intégrable. Montrer que $(E(Y/\mathcal{F}_n))_{n\geq 0}$ est une martingale.
- B/ Lequels de ces temps représente un temps d'arrêt:
- 1/ Deux joueur A et B joue à un jeu équitable. Le joueur A décide de s'arrêter au temps T_1 où sa fortune est égale à la mise initiale de son adversaire B.
- 2/ Un actionnaire demande à son banquier de vendre ses actions au temps T_2 où l'indice boursier chute de 1%.
- $3/T_3 = \max\{n \ge 1 : Z_n \in]0; 22[\}$ et $T_4 = \min\{n \ge 1 : Z_n = 0\}$ où Z_n un processus adapté à une filtration $(\mathcal{F}_n)_{n \ge 0}$.
- C/ Considérons l'espace probabilisé (Ω, \mathcal{A}, P) sur lequel sont construites deux filtrations $(\mathcal{F}_n)_{n\geq 0}$ et $(\mathcal{G}_n)_{n\geq 0}$ satisfaisant $\mathcal{G}_n\subseteq \mathcal{F}_n$. Soit T un \mathcal{F}_n -temps d'arrêt (temps d'arrêt par rapport à la filtration $(\mathcal{F}_n)_{n\geq 0}$) et S un \mathcal{G}_n -temps d'arrêt. Est-ce que S est un \mathcal{F}_n -temps d'arrêt? Est-ce que T est un \mathcal{G}_n -temps d'arrêt? Justifiez vos réponses.
- Exercice 2 (8 pts) Soit S_t le prix d'une action en bourse au temps t. On suppose que le prix d'une action est modélisé par un mouvement Brownien géométrique $S_t = S_0 \exp(\mu t + \sigma W_t)$, où W_t est un processus de Wiener. On suppose que $S_0 = 1$.
- 1/ Supposons que les valeurs des paramètres sont $\mu = 0.05$ et $\sigma = 0.09$. Sachant que $S_3 = 60$, trouver la probabilité que le prix S_{12} est supérieur à 120.

On suppose désormais que $\mu \in \mathbb{R}$ et $\sigma > 0$ quelconques.

- 2/ Trouver la médiane et l'espérance de S_t .
- 3/ Donner une expression de l'espérance conditionnelle $E[S_t/\mathcal{F}_s]$, avec s < t et \mathcal{F}_t la filtration associé à S.
- 4/ Donner les conditions sur μ et σ pour que $\{S_t, t \geq 0\}$ soit une martingale.
- 5/ Quelle est la limite de la médiane quand t tend vers ∞ . Conclure si l'action serait ou non, à long terme, un bon investissement dans ce cas.

Exercice 3 (4 pts) Soit W(t) un mouvement Brownien et $\lambda \in \mathbb{R}$. Montrer que $e^{\lambda W(t)-\lambda^2 \frac{t}{2}}$ est une martingale relativement à la filtration $\mathcal{F}_t = \sigma(W(s), s \leq t)$.