1 Question de cours

Équation locale de conservation de la masse (démo 1D uniquement). Conséquences en régime permanent sur le débit massique.

2 Miroir de Fresnel

Figure 1: Schéma du dispositif des miroirs de Fresnel

Le dispositif interférentiel des miroirs de Fresnel est formé de 2 miroirs présentant une arête commune et faisant entre eux un angle $\epsilon=15'$ très faible. Il est éclairé par une source ponctuelle monochromatique ($\lambda=546~nm$) S placée à une distance d=25~cm de l'arête commune, repérée par l'angle α également très faible.

- 1. Modéliser le système par deux sources S_1 et S_2 distantes de a dont on donnera l'expression.
- 2. On place un écran, parallèlement à l'axe des 2 sources, à une distance $D=1,75\ m$ de l'arête commune.
- 3. Quelle est la forme des franges observées? Les caractériser par leur rayon ou leur interfrange.
- 4. Combien observe-t-on de franges brillantes?
- 5. Le spectre de la source au sodium contient en fait deux longueurs d'onde très voisines λ_0 et $\lambda_0 + \Delta \lambda$, avec $\Delta \lambda \ll \lambda_0$.
- 6. Quel est l'ordre d'interférences pour la première annulation du contraste ? Effectuer l'application numérique pour $\lambda_0 = 577 \ nm$ et $\Delta \lambda = 2, 1 \ nm$.
- 7. Ce brouillage sera-t-il visible avec le système étudié?

3 Caractérisation de sources

On a utilisé un système de fentes d'Young avec une distance $a=0,5\ mm$ entre les deux fentes. Les figures d'interférences ont été obtenues sur un écran placé à $D=5\ m$ des fentes d'Young.

On a utilisé pour obtenir ces figures :

- Une lampe quasi-ponctuelle comportant un doublet centré sur λ_0 , avec une différence des deux longueurs d'onde $\Delta\lambda$.
- Une lampe quasi-ponctuelle de largeur spectrale $\Delta \lambda$ centrée sur λ_0 .
- 1. Associer chacune des figures d'interférence aux sources utilisées.
- 2. Déterminer la longueur d'onde moyenne λ_0 pour chacune des sources.
- 3. Déterminer $\Delta \lambda$ pour chacune des sources.

