VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY

RESEARCH TOPIC: DATA ANALYTICS

MINI PROJECT

Linear regression and Polynomial regression model for chemical experiments

Lecturer: Assoc. Prof. Tran Minh Quang

Group 7:

Đinh Thanh Phong	2270243
Trần Ngọc Phụng	2270123
Thái Học Phú	2270183

Table of Contents

1. Project introduction and objectives:	2
2. Linear regression for convection drying experiment:	3
3. Polynomial regression for correlation between vapor	pressure
and temperature of Butanol:	3
3.1) Difference Between Ideal Gas and Real Gas	3
3.2) Real gas: 1-Butanol	5
3.3) Introduction Polynomial Regression using R.	6
3.4) The 1-Butanol experimental data	7
3.5) Application Polynomial Regression using Python	
3.5.1) Build model:	10
3.5.2) Model evaluation:	14
3.5.3) Model conclusion:	16
References	17

1. Project introduction and objectives:

Project 1: find the relationship between "time" and "humidity" by linear regression model. aims to optimize drying for materials, thereby applying to practical industries such as drying paper and other materials.

Project 2: find the relationship between "temperature" and "pressure" of Butanol gas by using a polynomial regression model. Thereby optimizing productivity and safety in the production of Butanol gas.

2. Linear regression for convection drying experiment:

3. Polynomial regression for correlation between vapor pressure and temperature of Butanol:

3.1) Difference Between Ideal Gas and Real Gas

Real gas and Ideal gas. As the particle size of an ideal gas is extremely small and the mass is almost zero and no volume Ideal gas is also considered a point mass. The molecules of real gas occupy space though they are small particles and also have volume.

Ideal gas: An ideal gas is defined as a gas that obeys gas laws at all conditions of pressure and temperature. Ideal gasses have velocity and mass. They do not have volume. When compared to the total volume of the gas the volume occupied by the gas is negligible. It does not condense and does not have triple points.

Real gas: A real gas is defined as a gas that does not obey gas laws at all standard pressure and temperature conditions. When the gas becomes massive

and voluminous it deviates from its ideal behavior. Real gasses have velocity, volume and mass. When they are cooled to their boiling point, they liquefy. When compared to the total volume of the gas the volume occupied by the gas is not negligible.

Ideal vs. Real Gases

To make you understand how ideal gas and real gas are different from each other, here are some of the major differences between ideal gas and real gas:

Ideal gas	Real gas	
Ideal gas obeys all gas laws under all conditions of pressure and temperature.	Real gas obeys gas laws only at conditions of low pressure and high temperature. They obey Vanderwaal's real gas equation	
The molecules collide with each other elastically.	The molecules collide with each other inelastically.	
The volume occupied by the molecules is negligible as compared to the total volume.	The volume occupied by molecules is not negligible as compared to total volume.	
There are no intermolecular forces of attraction.	Either attractive or repulsive forces are present between the particles.	
It is a hypothetical gas.	It exists in nature around us.	
It has high pressure	It has a pressure correction term in its equation and the actual pressure is less than ideal gas.	
Obeys PV = nRT	Obeys $(P+rac{an^2}{V^2})(V-nb)=nRT$	

3.2) Real gas: 1-Butanol

- Formula: C4H10O
- Other names: Butyl alcohol; n-Butan-1-ol; n-Butanol; n-Butyl alcohol;
 Butyl hydroxide; CCS 203; Hemostyp; Methylolpropane; Propylcarbinol;
 n-C4H9OH; Butanol; Butan-1-ol; 1-Hydroxybutane; Alcool butylique;
 Butanolo; Butylowy alkohol; Butyric alcohol; Propylmethanol;
 Butanolen; 1-Butyl alcohol; Rcra waste number U031; Butanol-1; NSC 62782
- Antoine Equation Parameters:

$$log10(P) = A - (B / (T + C))$$

P = vapor pressure (bar)

T = temperature(K)

Temperature (K)	Α	В	С	Reference	Comment
295.8 - 391.0	4.54607	1351.555	-93.34	Kemme and Kreps, 1969	
391 479.	4.39031	1254.502	-105.246	Hessel and Geiseler, 1965	Coefficents calculated by NIST from author's data.
419.34 - 562.98	4.42921	1305.001	-94.676	Ambrose and Townsend, 1963	Coefficents calculated by NIST from author's data.
362.36 - 398.84	4.50393	1313.878	-98.789	Biddiscombe, Collerson, et al., 1963	Coefficents calculated by NIST from author's data.

3.3) Introduction Polynomial Regression using R

By using R, the report on https://rpubs.com/anup_jana/polynomial shows us the polynomial model that was built by 19 observations. of 2 variables.


```
summary(poly_reg1) # check the summary of polynomial model
## Call:
## lm(formula = pressure ~ ., data = poly_pressure1)
## Residuals:
     Min
             1Q Median 3Q
## -7.1989 -4.2112 0.2224 4.0172 7.0729
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.453e+00 4.645e+00 1.389 0.186418
## temperature -7.992e-01 1.893e-01 -4.223 0.000852 ***
## temperature2 1.588e-02 2.226e-03 7.135 5.06e-06 ***
## temperature3 -1.052e-04 9.415e-06 -11.179 2.31e-08 ***
## temperature4 2.341e-07 1.297e-08 18.056 4.28e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.38 on 14 degrees of freedom
```

You can see from the summary of the model that all transformed temperature variables are significant and R2 of the model is 99.96%.

Inspired by the report, we want to build another polynomial model that uses Python language and was built by a larger dataset, 86 observations as the section below.

3.4) The 1-Butanol experimental data

Multiple R-squared: 0.9996, Adjusted R-squared: 0.9994 ## F-statistic: 7841 on 4 and 14 DF, p-value: < 2.2e-16

The experimental data shown in these pages are freely available and have been published already in the DDB Explorer Edition.

Component

Formula	Molar Mass	CAS Registry Number	Name
C ₄ H ₁₀ O	74.123	71-36-3	1-Butanol

Diagrams

T [K]	P [kPa]	State	
295.75	0.7333	Vapor-Liquid	
298.13	0.905	Vapor-Liquid	
303.15	1.277	Vapor-Liquid	
304.05	1.3732	Vapor-Liquid	
308.18	1.809	Vapor-Liquid	
309.35	1.973	Vapor-Liquid	
313.85	2.613	Vapor-Liquid	
321.35	4.133	Vapor-Liquid	
323.25	4.593	Vapor-Liquid	
325.55	5.280	Vapor-Liquid	
329.44	6.540	Vapor-Liquid	
331.45	7.373	Vapor-Liquid	
333.27	8.091	Vapor-Liquid	
337.51	10.100	Vapor-Liquid	
338.95	10.852	Vapor-Liquid	
342.29	12.910	Vapor-Liquid	
343.45	13.812	Vapor-Liquid	
346.65	16.185	Vapor-Liquid	
347.69	16.850	Vapor-Liquid	
351.13	19.870	Vapor-Liquid	
357.54	26.700	Vapor-Liquid	
358.25	27.731 Vapor-Liquid		
362.36	33.045	Vapor-Liquid	
362.59	33.370	Vapor-Liquid	
366.81	39.974	Vapor-Liquid	

366.85	40.030	Vapor-Liquid
366.95	40.463	Vapor-Liquid
370.31	46.230	Vapor-Liquid
370.51	46.601	Vapor-Liquid
373.70	53.090	Vapor-Liquid
373.89	53.450	Vapor-Liquid
374.32	54.436	Vapor-Liquid
376.79	59.932	Vapor-Liquid
379.37	66.280	Vapor-Liquid
379.52	66.632	Vapor-Liquid
379.65	67.594	Vapor-Liquid
382.04	73.331	Vapor-Liquid
383.35	77.140	Vapor-Liquid
384.31	79.856	Vapor-Liquid
384.34	79.930	Vapor-Liquid
386.58	86.807	Vapor-Liquid
388.41	92.750	Vapor-Liquid
388.47	92.995	Vapor-Liquid
390.54	100.142	Vapor-Liquid
390.57	100.210	Vapor-Liquid
390.95	102.125	Vapor-Liquid
391.30	102.830	Vapor-Liquid
392.34	106.705	Vapor-Liquid
394.09	113.412	Vapor-Liquid
395.71	119.945	Vapor-Liquid
397.31	126.628	Vapor-Liquid
398.15	123.100	Vapor-Liquid
398.84	133.322	Vapor-Liquid
419.34	254.731	Vapor-Liquid
423.15	269.200	Vapor-Liquid
429.11	335.690	Vapor-Liquid
433.77	381.995	Vapor-Liquid
439.24	439.041	Vapor-Liquid
439.28	439.447	Vapor-Liquid
443.97	492.946	Vapor-Liquid
448.15	515.300	Vapor-Liquid
448.63	554.957	Vapor-Liquid
459.75	719.306	Vapor-Liquid
462.64	764.497	Vapor-Liquid
470.31	905.744	Vapor-Liquid
472.55	947.794	Vapor-Liquid
473.15	925.700	Vapor-Liquid

480.96	1128.560	Vapor-Liquid
482.32	1158.750	Vapor-Liquid
490.87	1346.910	Vapor-Liquid
492.30	1404.470	Vapor-Liquid
498.15	1518.300	Vapor-Liquid
502.06	1683.210	Vapor-Liquid
502.47	1692.740	Vapor-Liquid
512.82	2023.360	Vapor-Liquid
513.06	2044.430	Vapor-Liquid
522.92	2404.750	Vapor-Liquid
523.15	2372.300	Vapor-Liquid
523.20	2412.550	Vapor-Liquid
532.85	2818.460	Vapor-Liquid
533.23	2827.880	Vapor-Liquid
542.77	3283.940	Vapor-Liquid
548.15	3567.100	Vapor-Liquid
550.64	3694.710	Vapor-Liquid
556.89	4053.610	Vapor-Liquid
562.98	4413.110	Vapor-Liquid

3.5) Application Polynomial Regression using Python

3.5.1) Build model:

Steps to set up the model:

- The model was built on Google Colab.
- The source code:

```
import numpy as np
import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('VaporPressureofButanol.csv')

X = df.iloc[:,0]

X = X.to_numpy()

X.shape

y = df.iloc[:,1]
```

```
y = y.to numpy()
y.shape
plt.figure()
plt.scatter(X, y, c='b')
plt.xlabel("data")
plt.ylabel("target/label")
plt.title(" All data points")
plt.show()
from sklearn.model selection import train test split
X = X.reshape(-1,1)
X_train, X_test, y_train, y_test = train_test_split(X, y,
test size=0.3)
print("X_train shape:", X_train.shape)
print("y train shape:", y train.shape)
print("X test shape:", X test.shape)
print("y test shape:", y test.shape)
from sklearn.linear model import LinearRegression
model = LinearRegression()
model.fit(X train, y train)
N draw = 100
Xmin=300
Xmax=570
X draw = np.linspace(Xmin, Xmax, N draw)
y draw = model.predict(X draw.reshape(-1,1))
plt.figure()
plt.scatter(X test.ravel(), y test, c='b', label = 'Test
plt.scatter(X train.ravel(), y train, c='g', label = 'Train
plt.plot(X draw, y draw, '-r', label="Prediction")
plt.xlabel("data (x)")
```

```
plt.ylabel("target/label (y)")
plt.title(" All data points")
plt.legend()
plt.show()
model.coef
model.intercept
import sklearn.metrics as metrics
y pred = model.predict(X test)
mae = metrics.mean absolute error(y test, y pred)
mse = metrics.mean squared error(y test, y pred)
rmse = np.sqrt(mse)
print("MIN : MAX : MEDIAN = {:<5.2f} : {:<5.2f}: :
{:<5.2f}".format(np.abs(y test - y pred).min(),</pre>
                                                np.abs(y test -
y pred).max(),
np.median(np.abs(y test - y pred)) ))
print("MSE: {:<5.2f}".format(mse))</pre>
print("RMSE: {:<5.2f}".format(rmse))</pre>
print("MAE: {:<5.2f}".format(mae))</pre>
y test
from sklearn.preprocessing import PolynomialFeatures
def feature extractor(X, degree=2, interaction only=False,
include bias=True):
 transformer = PolynomialFeatures(degree=degree,
interaction only=interaction only,
                                    include bias=include bias)
 return transformer.fit transform(X)
X_train_trans = feature_extractor(X_train, degree=4)
X_test_trans = feature extractor(X test, degree=4)
```

```
print("X train.shape: ", X train.shape)
print("X test.shape: ", X test.shape)
print("X_train_trans.shape: ", X_train_trans.shape)
print("X test trans.shape: ", X test trans.shape)
improved model = LinearRegression()
improved model.fit(X train trans, y train)
N draw = 100
X draw = np.linspace(Xmin, Xmax, N draw)
X draw trans = feature extractor(X draw.reshape(-1,1), degree=4)
y draw = improved model.predict(X draw trans)
plt.figure()
plt.plot(X draw, y draw, '-r', label="Prediction")
plt.scatter(X test.ravel(), y test, c='b', label = 'Test
plt.scatter(X train.ravel(), y train, c='g', label = 'Train
points')
plt.xlabel("Temperature (X)")
plt.ylabel("Pressure (y)")
plt.title(" Pressure and Temperature Polynomial Regression")
plt.legend()
plt.show()
X test trans.shape
import sklearn.metrics as metrics
y pred = improved model.predict(X test trans) # X test =>
mae = metrics.mean absolute error(y test, y pred)
mse = metrics.mean squared error(y_test, y_pred)
rmse = np.sqrt(mse)
R2 = metrics.r2_score(y_test, y_pred)
```

```
print("MIN : MAX : MEDIAN = {:<5.2f} : {:<5.2f}: :</pre>
{:<5.2f}".format(np.abs(y test - y pred).min(),</pre>
                                                   np.abs(y_test -
y_pred).max(),
np.median(np.abs(y test - y pred)) ))
print("MSE: {:<5.2f}".format(mse))</pre>
print("RMSE: {:<5.2f}".format(rmse))</pre>
print("MAE: {:<5.2f}".format(mae))</pre>
print("R2: {:<5.2f}".format(R2))</pre>
error = abs(y_test - y_pred)
error
plt.figure()
plt.hist(error, bins=50, density=True)
plt.xlabel("error")
plt.ylabel("Frequency")
plt.title("Distribution of errors")
plt.show()
improved model.coef
improved model.intercept
```

3.5.2) Model evaluation:

The result show that:

- The R2 value is 1.00
- The model plot is fitting with the data.

- The model formula is:

$$y(pred) = a*x^1 + b*x^2 + c*x^3 + d*x^4 + intercep$$

coef_ a*x^1	coef_b*x^2	coef_c*x^3	coef_d*x^4	intercept
-5.49E+01	3.08E-01	-7.54E-04	6.84E-07	3567.28

- We checked the result manually by excel, then the result was correct.

3.5.3) Model conclusion:

As a result, we successfully built a polynomial regression to apply for correlation between vapor pressure and temperature of Butanol. We can apply this method to analyze some other science field. This method can help scientists to know the rules of the data better.

References

- 1. https://vi.wikipedia.org/wiki/Butan
- 2. Dortmund Data Bank Vapor Pressure of 1-Butanol http://www.ddbst.com/en/EED/PCP/VAP C39.php
- 3. NIST Standard Reference Data https://webbook.nist.gov/cgi/cbook.cgi?ID=C71363&Mask=4&Type=ANTOINE&Plot=on
- 4. Polynomial Regression Pressure Dataset https://rpubs.com/anup_jana/polynomial
- 5. <u>Difference Between Ideal Gas and Real Gas in Tabular Form BYJU'S</u> (byjus.com)
- 6. Tài liệu "Hướng dẫn làm thí nghiệm Quá trình & Thiết bị ".
- 7. Quá trình & Thiết bị trong công nghệ Hóa Học Tập VII Kỹ thuật Sấy vật liệu Nguyễn Văn Lụa ĐHBKTPHCM.
- 8. Sổ tay Quá trình & Thiết bị công nghệ Hóa Chất Tập II Chương VII NXBKHKT Hà Nội 1982.
- Qúa trình và thiết bị công nghệ hóa học& thực phẩm.-Tập 3-Truyền khối.
 Võ Văn Bang, Vũ Bá Minh