### Создание веб-сервиса для поиска музыки по подобию

### Аннотация

В современном мире существует множество сервисов, предлагающих осуществлять поиск новой музыки для прослушивания. Большинство таких сервисов используют коллаборативную фильтрацию для выбора рекомендуемых композиций, либо дорогостоящие и затратные по времени решения, основанные на нейронных сетях или фильтрации на основе контента. В данной работе представлен проект сервиса с использование фильтрации на основе контента, в котором пользователю предлагается самостоятельно осуществлять регулировку параметров для поиска музыки.

#### Актуальность

Текущие рекомендательные системы для поиска музыки, использующие коллаборативную фильтрацию, значительно превосходят по своей распространенности рекомендательные системы на основе контента, и при этом не предоставляют нужного пользователю результата. Отсутствует система, в которой пользователь может самостоятельно отрегулировать параметры, учитываемые в поиске похожей музыки, при этом остаются основные недостатки коллаборативной фильтрации - проблема холодного старта, разреженности данных и синонимии.

### Сравнение аналогов

#### **Pandora Radio**

Представляет собой службу потокового воспроизведения музыки и основана на рекомендательной системе Music Genome Project. [1] В базе данных Pandora Radio находится более миллиона композиций с около 400 характеристиками к каждой. [2][3] Пользователь выбирает музыкального исполнителя, после чего система ищет похожие композиции. Используя функции "нравится" или "не нравится", слушатель часто может настроить радиостанцию по своему вкусу, однако, вынужден мириться с определёнными ограничениями в случае использования бесплатной подписки. Сервис был доступен до 31 июля 2017 года в США, Австралии и Новой Зеландии, но на текущий момент доступен только в США. [4]

# **Spotify**

Служба потокового аудио, предоставляющая возможность бесплатно слушать музыку, составлять плейлисты, искать рекомендации. Музыку можно искать по нескольким параметрам, в том числе по жанру, исполнителю или по лейблу звукозаписи. Рекомендации предоставляются гибридной рекомендательной системой на основе метода ансамбля с использованием свёрточных нейронных сетей. [5]

#### VK.com

Крупнейшая социальная сеть в Европе. [6] Рекомендации в разделе "Музыка" предоставляются на основе коллаборативной фильтрации с учётом персонализации результатов. [7]

### Критерии сравнения аналогов

#### Используемый тип рекомендательной системы

При использовании рекомендательной системы с фильтрацией на основе содержания сервис предоставляет пользователю результат, основываясь на содержимом объектов (музыки). При использовании рекомендательной системы на основе коллаборативной фильтрации результат формируется исключительно на основе оценок других пользователей. У обоих подходов есть недостатки, описанные в [8] и многих других источниках. В исследовании [9] было показано, что для некоторых случаев гибридные рекомендательные системы являются более подходящими по сравнению с остальными.

### Размер музыкальной библиотеки

Количество треков, информация о которых имеется в системе. В связи с "проблемой холодного старта" для рекомендательных систем, основанных на коллаборативной фильтрации как сказано в [10], а также подобной проблеме для гибридных рекомендательных система, описанной в [11], размер библиотеки является существенной характеристикой системы.

### Персонализация поиска

Возможность для каждого отдельно взятого пользователя или запроса определения результата работы системы с учётом истории действий в сервисе, либо без их учёта. Так, успех компаний Netflix и Surfingbird, использующих гибридные рекомендательные системы [8], совместно с исследованием [12], показывают, что использование истории пользователя и персонализация выдачи поисковых результатов повышает оценки качества работы сервиса.

# Таблица сравнения по критериям

| Критерий                     | Pandora radio                   | Spotify           | VK.com                        |
|------------------------------|---------------------------------|-------------------|-------------------------------|
| Тип рекомендательной системы | Фильтрация на основе содержания | Гибридная         | Коллаборативная<br>фильтрация |
| Размер библиотеки<br>музыки  | > 1 миллиона                    | > 30<br>миллионов | не известно                   |
| Персонализация поиска        | Есть                            | Есть              | Есть                          |

# Выводы по итогам сравнения

Популярнейшие сервисы предоставляют возможность использования рекомендаций, предоставленных рекомендательными системами разных видов, однако не дают

пользователю самостоятельно отрегулировать какие параметры для него являются значимыми в поиске новой музыки.

# Выбор метода решения

При обзоре аналогов были выявлены основные недостатки в имеющихся решениях, предлагается устранить либо нивелировать ДЛЯ удовлетворения потребностей пользователей в новом решении: \* С одной стороны, нужно позволить пользователю самостоятельно выбирать параметры поиска похожих композиций для улучшения удобства использования [12], а с другой - обеспечить стандартный набор параметров, полученных другими пользователями, на состояние которых не обязательно оказывать влияние для получения рекомендаций; \* Обеспечить поиск как по библиотеке музыкальных композиций отдельного пользователя, так и по общей, предоставив пользователю большую кастомизацию поиска, поскольку в [13] не было найдено ни одного сервиса с подобными функциями, однако потребность пользователей в таком сервисе есть [14] [15]; \* Использовать в первую очередь фильтрацию на основе содержания, но автоматизировать рассчёт параметров музыкальной композиции для снижения материальных и временных затрат, поскольку ввиду [16] прибегая к помощи человека они значительно увеличивают время обработки каждой композиции, и более того - увеличивают вероятность ошибки не объективности результатов.

#### Описание метода решения

### Общий обзор метода решения

В конечном решении нужно создать легкомасштабируемый надёжный веб-сервис со следующими функциональными частями: \* Регистрация и авторизация пользователя; \* Поиск музыки, похожей на конкретную композицию, выбранную пользователем; \* Расширенный поиск музыки, в параметрах которого пользователь может задать перечисленные ниже, но не ограничиваясь лишь этим списком, параметры: 1. Жанр (поп, рок, академическая музыка и т.д.); 2. Тональность (до мажор, фа-диез мажор, соль минор и т.д.) [17], а также связанные с ней характеристики, описанные в [18]; 3. Темп музыки (40-48, 44-52, 63-80 и т.д.) [19]; 4. Тип лада (модальная гармония, тональная гармония); 5. Тип музыкального стиля (например, "гармония барокко" [20]); 6. Главная нота (аккорд); 7. Наличие вокала. \* Аналогичные варианты поиска для отдельных частей музыкальных композиций: \* Возможность загружать собственные композиции: \* Ограничивать поиск похожей музыки среди загруженной своей библиотеки музыки. Исследования [21], [22] показывают, что значения времени загрузки страницы сервиса более 1 секунды значительно уменьшают конверсию на сайтах, однако на домашней конфигурации компьютера (Intel B950, 2.1 GHz) рассчёт одного лишь темпа с помощью библотеки Librosa [23] композиции длиной 5 минут занимает более 20 секунд, что является неприемлемым. В связи с этим, требуется организовать асинхронную очередь рассчёта параметров композиции для отложенного получения результатов.

### Особенности метода решения

Таким образом, стек технологий должен предлагать лёгкую масштабируемость в случае увеличения нагрузки, а также простоту в использовании и реализации. Плюсом

является направленность на технологии с открытым исходным кодом по внутренним убеждениям авторов статьи. Согласно рекомендации сообщества DigitalOcean [24] был сделан выбор в пользу следующего стека технологий: Python, Django, Librosa, PostgreSOL. Gunicorn (+Nginx). Неподсредственное взаимодействие компонентами этого стека также описаны в [25]. Общая архитектура системы (см. Рис. 1) условно разделяет процесс обработки аудио на 4 этапа: 1. Пользователь загружает аудио-файл на сервер (PreLoadedAudio), который делится на равные временные промежутки, которые помещаются в очередь на обработку; 2. Из задач в очереди формируются запросы на обработку (ProcessQuery) для отдельных потоков обработки (Processor). который контроллируется менеджером потоков обработки (ThreadManager): 3. Информация об обработанных аудио-файлах и информация о полученных характеристиках сохраняется в базу данных; 4. При поисковом запросе пользователем происходит выборка из базы данных по заданным пользоватем параметрам.



Рис. 1 - Общая архитектура решения. Пример с ВРМ (темп).

# Выводы

В данной работе была описана концепция и общее архитектурное решение сервиса для поиска музыки по подобию. При этому в силу субъетивности понятия "подобная музыка" было предложено ввести в сервис функционал расширенного поиска, предлагающий самостоятельно конкретизировать это понятие для пользователя. В предложенном подходе при использовании фильтрации лишь на основе контента без значительных отзывов пользователей вероятно проявление проблемы "холодного старта". Однако, учитывая результаты работы пользователей, в дальнейшем предполагается установить значения поисковой системы так, чтобы удовлетворить требования большинства. На данный момент получен сервис для простейшего расчёта

темпа музыки. Перспектива разработки в первую очередь включает в себя расширение функционала по добавлению других характеристик, а далее - остальные пункты, описанные в разделе "Описание метода решения".

#### Источники

- 1. Pandora Radio. 13.12.2017, URL: https://en.wikipedia.org/wiki/Pandora\_Radio
- 2. The Best Music Services Compared. 02.01.2014, URL: http://www.techlicious.com/guide/best-music-service-best-for-you/
- 3. About Pandora. 29.12.2014, URL: http://www.pandora.com/about
- 4. Pandora no longer available in Australia... 12.09.2017, URL: http://help.pandora.com/customer/portal/articles/2830912
- 5. Ever Wonder How Spotify Discover Weekly Works? Data Science. 14.12.2017, URL: http://blog.galvanize.com/spotify-discover-weekly-data-science/
- 6. Годовой отчёт Mail.Ru Group Limited. 28.04.2017, URL: https://corp.mail.ru/ru/mobile/releases/9967/
- 7. Всё об аудиозаписях "Вконтакте". 14.12.2017, URL: https://vk.com/page-2158488 47218044
- 8. Recommender system. 13.12.2017, URL: https://en.wikipedia.org/wiki/Recommender\_system
- 9. Adomavicius, G.; Tuzhilin, A. (June 2005). "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions". IEEE Transactions on Knowledge and Data Engineering. 17 (6): 734–749. doi:10.1109/TKDE.2005.99
- 10. Коллаборативная фильтрация. 13.12.2017, URL: https://ru.wikipedia.org/wiki/Коллаборативная\_фильтрация
- 11. Melville P., Mooney R., Nagarajan R. Content-Boosted Collaborative Filtering for Improved Recommendations // University of Texas, USA: Материалы конф. / AAAI-02, Austin, TX, USA, 2002. 2002. P. 187-192.
- 12. Wang, Ying; Tan, Chee-Wee; and clemmensen, torkil, "DO YOU GET BETTER USER EXPERIENCES WHEN YOU CUSTOMIZE YOUR SMARTPHONE?: AN EXPERIMENT WITH OBJECT AND BEHAVIOR-BASED BELIEFS AND ATTITUDES" (2016). Research Papers. Paper 113. http://aisel.aisnet.org/ecis2016\_rp/113
- 13. 20 fantastic ways to find new music that you like, 17.03.2009, URL: http://inspiredm.com/20-fantastic-ways-to-find-new-music-that-you-like-no-lastfm-pandora-inside/
- 14. similar music Google Trends. 16.12.2017, URL: https://trends.google.ru/trends/explore?date=today%205-y&q=similar%20music
- 15. [Discover] "Find Similar Songs" Option The Spotify Community. 16.12.2017, URL: https://community.spotify.com/t5/Live-Ideas/Discover-quot-Find-Similar-Songs-quot-Option/idi-p/1580814
- 16. Ike, Elephant (February 2006). "Tiny Mix Tapes: Tim Westergren Interview". 30.05.2013, URL: https://www.tinymixtapes.com/features/tim-westergren-music-genome-project-founder
- 17. И. Дубовский, С. Евсеев, И. Способин, В. Соколов. Учебник гармонии. М.: Музыка, 2007

- 18. Тональность Википедия. 16.12.2017, URL: https://ru.wikipedia.org/wiki/Тональность
- 19. Мальтер Л. Таблицы по инструментоведению. М., 1964.
- 20. Музыка эпохи барокко Википедия. 16.12.2017, URL: https://ru.wikipedia.org/wiki/Музыка\_эпохи\_барокко
- 21. Marissa Mayer. In Search of... A better, faster, stronger Web. Velocity. Web performance and operations conference. 22-24 June 2009
- 22. Why Web Performance Matters: Is Your Site Driving Customers Away? 2010, URL: http://www.mcrinc.com/Documents/Newsletters/201110\_why\_web\_performance\_matters.pdf
- 23. Librosa. 16.12.2017, URL: https://librosa.github.io/
- 24. Popular tutorials | Digital Ocean. 16.12.2017, URL: https://www.digitalocean.com/community/tutorials?q=django&primary\_filter=popular
- 25. How To Set Up Django with Postgres, Nginx, and Gunicorn on Ubuntu 16.04 | DigitalOcean. 16.12.2017, URL: https://www.digitalocean.com/community/tutorials/how-to-set-up-django-with-postgres-nginx-and-gunicorn-on-ubuntu-16-04