Logic

Contents

- 1. Logic in knowledge representation.
- 2. Propositional logic.
- 3. Predicate logic.
- 4. Extensions.
- 5. Conclusions.

Introduction

- Symbolic Logic can be used for knowledge representation.
- Facts are modelled in a mathematical language.
- The inference mechanism is the Logic deductive reasoning.

Characteristics as KBS.

- Huge expressiveness.
- Its semantics are well stated.
- Properties well known and stated.
- Deductive reasoning. Two versions:
 - Propositional logic.
 - Predicate Logic.
- Semidecidability.

Contents

- 1. Logic in knowledge representation.
- 2. Propositional logic.
- 3. Predicate logic.
- 4. Extensions.
- 5. Conclusions.

Propositional Logic

- Introduction
- Vocabulary
- Semantics
- Inference rules
- Automatic proof

Introduction

- To relate proposition ⇔ p (representation)
- Representation management obtains new propositions.
- Knowledge comes from the declaration of initial facts.
- The *inference* mechanism applies *deductive* logic reasoning:
- Logic is a representation formalism
- If logic is a representation formalism, then, propositional logic is as well another one
- C: Propositional logic is a representation formalism

Vocabulary

- Propositional variables (literals): p, q, r, ...
 - They are the jump from the knowledge level to the symbolic one.
 - The opposite jump needs semantic *tables*.
- Connectives: They associate propositional variables:
 - Basic ones: "v" "¬"
 - Derivate ones: "∧" "→" "↔" "⊕"

Connectives

- **Basic or primitive connectives**
 - Or (\mathbf{v})
 - − Not (¬)
- **Derivate connectives** (from primitive ones)
 - And (Λ)

 $p \wedge q \equiv \neg(\neg p \vee \neg q)$

- Conditional (→)
- $p \rightarrow q \equiv \neg p \vee q$
- Biconditional (\leftrightarrow) $p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$
- Exclusive or (\oplus) $p \oplus q = \neg (p \leftrightarrow q)$
- Precedence: $\neg \land \lor \oplus \rightarrow \Leftrightarrow$
- A well formed formula is obtained by means of connecting propositional variables.

Semantics

- In order to analyse the semantics of a formula, we construct the *truth table*.
- Propositional logic is bivalued: 2ⁿ interpretations.
- Formulas can be:
 - Valid: They are true regardless of any interpretation.
 - Satisfiable: There exists at least one interpretation that makes the formula true.
 - Not satisfiable: There is not any interpretation that makes the formula true.

Truth tables for logic connectives

р	q	¬ p	pvd	pvq	p⊕q	p→q	p⇔q
V	V	F	V	V	F	V	V
V	F	F	F	V	V	F	F
F	V	V	F	V	V	V	F
F	F	V	F	F	F	V	V

Inference rules

- To obtain new valid formulas from initial valid ones, which are called axioms or premises.
- Proof process: to obtain the concluding formulae from axioms and inference rules.

Inference rules

→ - introduction	→ - removal				
[n]	(modus ponens) (modus tollens)				
[p]	$b \rightarrow d$ $p \rightarrow d$				
<u>q</u>	<u>p</u>				
$p \rightarrow q$	q ¬ p				
→ - introduction	→ - removal				
$p \rightarrow q$	$\frac{p \leftrightarrow q}{p \to q} \qquad \frac{p \leftrightarrow q}{q \to p}$				
$ q \rightarrow p $	$p \rightarrow q \qquad q \rightarrow p$				
p ↔ q					
¬ - introduction	¬ - removal				
[p]	р				
falso	¬p falso				
¬р	falso p				
∧ - introduction	∧ - removal				
р	$p \wedge q$ $p \wedge q$				
q	$\frac{1}{p}$ $\frac{1}{q}$				
<u>p</u> v d	· · · · · · · · · · · · · · · · · · ·				
v - introduction	∨ - removal				
<u>p</u> <u>q</u>	[p] [q]				
<u>p v q</u> <u>p v q</u>	$p \vee q \qquad r \qquad r$				
	r				

Resolution principle

Given two *clauses*, which are formulas with only logical ORs and NOts, containing *ONLY ONE* complementary literal, we can construct a new clause containing all the literals except the complementary one (p and $\neg p$):

$$q_1 \vee q_2 \vee q_3 \vee ... \vee q_i \vee p \vee q_{i+1} \vee ... \vee q_m$$

 $r_1 \vee r_2 \vee r_3 \vee ... \vee r_k \vee \neg p \vee r_{k+1} \vee ... \vee r_n$

$$q_1 \ \lor \ q_2 \ \lor \dots \ \lor \ q_i \ \lor \ q_{i+1} \ \lor \ \dots \ \lor \ q_m \ \lor \ r_1 \ \lor \ r_2 \ \lor \ \dots \ \lor \ r_k \ \lor \ r_{k+1} \ \lor \ \dots \ \lor \ r_n$$

Procedure to obtain the Conjunctive normal form

- Replace derivate connectives by logical nots, ors and ands.
- Move nots inwards, De Morgan's Laws:
 - $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q)$ + double negative law: $\neg \neg p \equiv p$
- Distribute ORs over ANDs:
 - $p v (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
 - $(p \wedge q) \vee r \equiv (p \vee r) \wedge (q \vee r)$
- Remove tautologies

Example

• $[(p\rightarrow q)\land (q\rightarrow r)]\rightarrow (p\rightarrow r)$

Automatic proof

- Given a set of *premises* (p₁ ∧ p₂ ∧ ... ∧ p_n), how does a system test a *conclusion c?*
- There are three ways:
 - Truth tables.
 - Inference rules.
 - Proof by contradiction (reductio ad absurdum).

Proof by truth tables

We build the truth table associated to $(p_1 \land p_2 \land p_3 \land ... \land p_n \rightarrow \mathbf{c})$

and test if it is a tautology.

Example: Can we obtain q from p and $p \rightarrow q$? Is the following formula a tautology?

$$((p \rightarrow q) \land p) \rightarrow q$$

Proof by inference rules

Combine the premises p_i by means of the inference rules until c is obtained.

Proof by contradiction

To test if the following formula is false

$$p_1 \wedge p_2 \wedge p_3 \wedge \dots \wedge p_n \wedge \neg c$$

by means of:

- Truth tables
- Inference rules
- Resolution principle

Contents

- 1. Logic in knowledge representation.
- 2. Propositional logic.
- 3. Predicate logic.
- 4. Extensions.
- 5. Conclusions.

Predicate Logic

- Introduction
- Vocabulary
- Semantics
- Inference rules
- Automatic proof.

Introduction

- It improves the lack of expressiveness of the propositional logic.
- Characteristics:
 - It relates *predicates* instead of propositions.
 - It can express ideas that propositional logic can not:
 - Socrates is a man
 - Every man is mortal

?????????????????????

Vocabulary

- Predicates, (with variables).
- Quantifiers:
 - Universal (♥)
 - Existential (**3**)
- Functions.
- Connectives: from propositional logic

Predicates

$$Name(Arg_1, Arg_2, ..., Arg_N)$$

- Arg, can be a variable or atom.
- Variables: represented by the last characters from the alphabet
- Atoms: they are concrete values, constants.
- The number of arguments must be constant.
- The truth of a predicate depends on the values of its arguments.

Quantifiers

- They appear next to variables
- They are related to a *domain*, use parentheses.
- Universal Quantifier: any value makes the expression true.
- Existential Quantifier: there is, at least, one value that makes the expresión true.

Quantifier equivalence

$$\forall x \ p(x) \equiv \neg (\exists x \ \neg p(x))$$
 $\exists x \ p(x) \equiv \neg (\forall x \ \neg p(x))$
 $\neg (\forall x \ p(x)) \equiv \exists x \ \neg p(x)$

Functions

 $Name(Arg_1, Arg_2, ..., Arg_N)$

- Its syntax is equivalent to that of predicates, but its semantic is different:
 - Predicates may be true or false.
 - Functions return values of any type (numbers, strings, structs,...)

Grammar

```
argument := variable | constant |
   function(argument_list)
argument list := argument | argument "," argument list
atomic formula := predicate(argument list)
operator := "\Lambda" | "V" | "\rightarrow" | "\leftrightarrow"
quantifier := "\(\mathbf{T}\)" | "\(\mathbf{3}\)"
formula := V | F | atomic_formula | - formula |
    formula operator formula | quantifier variable formula |
    (formula)
```

Semantics

- Atomic Formula, only one predicate. Its value depends on the values of its arguments.
- To obtain the value of a formula, every variable must be quantified. The value depends on:
 - The universally quantified variables
 - The existentially quantified variables.
 - The functions.
 - Predicates.
 - Connectives.

Inference rules in predicate logic

- Propositional rules plus the following ones:
 - Rule 1: Existential quantifier introduction:
 P(a) → ∃x P(x)
 - Rule 2: Existential quantifier removal:
 ∃x P(x) → P(a)
 - Rule 3: Universal quantifier introduction:
 For all constant P is true → ∀x P(x)
 - Rule 4. Universal quantifier removal:
 ∀x P(x) → For any constant P is true

Automatic Proof. Resolution Principle

Steps:

- To obtain the conjunctive normal form
- Unification and resolution principle

Conjunctive normal form

- Also called Skolem normal form.
- Properties:
 - There are only universal quantifiers at the beginning of the formula (every variable is universally quantified).
 - The remainder of the formula consists of conjunctions of *clauses*, disjunctions of literals.
 - Conjunction of disjunction of literals

Conjunctive normal form (2). Procedure

- Replace derivative connectives with primitive (and ∧) ones.
- Move NOTs inward by means of:
 - De Morgan's laws
 - Double negation law
 - Quantifier equivalence laws.
- Make quantified variables independent.
- Remove existential quantifiers:
 - when it is out of domain of every universal quantifier.
 - when it is in the domain of a universal quantifier.
- Move universal quantifiers to the beginning of the formula.
- Remove universal quantifiers.
- Distribute ORs over ANDs.
- Make a clause for every disjunction.
- Change the variables' names.

Example

• $\forall x (big(x) \land house(x) \rightarrow work(x) \lor (\exists y clean(y,x) \land \neg \exists y garden(y,x)))$

Unification

 At the resolution principle, arguments of predicates are important. For instance:

Man(Socrates) v ¬Man(Socrates)

is a tautology, whereas

Man(Socrates) v ¬Man(dog(Socrates)), no.

 In order to be able to apply the resolution principle, we must make literals equal. For instance:

Man(x) v ¬Man(Socrates)

are equal if variable x gets the value "Socrates"

Unification(2). Concept

- Process that performs variable substitutions in order to make literals equal.
- Substitution s of variables $x_1, x_2, ..., x_n$ by terms (functions, variables, constants) $t_1, t_2, ..., t_n$ consists in replacing every variable x_i apparition by the corresponding term t_i , in the clause. It is denoted by the set $\{t_1/x_1, t_2/x_2, ..., t_n/x_n\}$.

Substitution Properties

- There exists an empty substitution {} that does not modify the clause.
- Substitution can be composed:

$$Ls_1s_2 = (Ls_1)s_2$$

Substitution composition is associative:

$$(S_1S_2)S_3 = S_1(S_2S_3)$$

Substitution composition is not commutative:

$$S_1S_2 \neq S_2S_1$$

Unification algorithm

- 1. Look for the first difference between two comparable predicates:
 - If they are constant, unification is impossible.
 - If one of them is a constant "a" and the another is a variable "x", then, apply substitution "a/x".
 - If both are variables "x" and "y", then, apply substitution "x/y" (or "y/x".
 - If one of them is a function (with one or more variables) and the another one is a variable, substitute the variable by the function with the same variables.
 - If both are the same function, then, invoque recursively the unification algorithm for the argument lists.
- 2. Go to step 1 while there are differences.

Resolution principle

- The procedure starts with a set of clauses, whose variables use different names.
- Find two clauses containing the same predicate, where it is negated in one clause but not in the other.
- Perform unification to make the arguments of the complementary literal equal.
- Combine both clauses by the logical OR connective, discarding the unified predicates

Resolution principle (2)

- 1. Select a *pair of literals* in two different clauses.
- 2. Perform *unification*.
- 3. If unification successes, include the combination of both clauses, discarding the unified literals.
- 4. If the result is the *empty clause*, there was a contradiction in the initial clauses (success).
- 5. If there is no pair of literals to be unified, the method stops.
- 6. If there are more pairs of literals to be unified, go to step 1.

Exercise

1) man(Marco)
2) pompeian(Marco)
3) ∀x (pompeian(x) → roman(x))
4) governor(Cesar)
5) ∀x (roman(x) → faithful(x,César) ∨ hate(x,César))
6) ∀x∃y faithful(x,y)
7) ∀x ∀y (person(x) ∧ governor(y) ∧ try_to_kill(x,y) → ¬faithful(x,y))
8) try_to_kill(Marco,César)
9) ∀x (man(x) → person(x))

Obtain the Conjunctive normal form

Prove by contradiction with resolution principle

10)¿¿¬faithful(Marco,Cesar)??

Exercise

- Prove that "someone passes AI" by contradiction and the resolution principle, given that:
 - "If someone solves the exercises by himself (he does not copy the results), then, he passes AI"
 - "If someone copies the answers, then, another one solves them by himself".
 - "Pepe copies the answers".

Contents

- 1. Logic in knowledge representation.
- 2. Propositional logic.
- 3. Predicate logic.
- 4. Extensions.
- 5. Conclusions.

Extensions

- Modal logic
- Predicate logic with identity
- Classes and relations logic
- Superior order predicate logic
- Multivalued logic
- Fuzzy logic
- No monotonous logic

Conclusions

- Huge expressiveness
- Inference ability
- Propositional logic
 - Decidability
 - Limited
- Predicated logic
 - Improve propositional logic
 - Semidecidability
- Drawbacks:
 - unstructured knowledge
 - There is some kind of information that is inexpressible logic.