

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 3 :	A1	(11) International Publication Number: WO 83/00395
G02B 27/44		(43) International Publication Date: 3 February 1983 (03.02.83)

(21) International Application Number: PCT/US82/00881	(81) Designated States: AU, CH, DE, GB, JP, NL.
(22) International Filing Date: 30 June 1982 (30.06.82)	Published <i>With international search report.</i>
(31) Priority Application Numbers: 8122335 8128194	
(32) Priority Dates: 20 July 1981 (20.07.81) 17 September 1981 (17.09.81)	
(33) Priority Country: GB	
(71) Applicant: RCA CORPORATION [US/US]; P.O. Box 432, Princeton, NJ 08540 (US).	
(72) Inventors: KNOP, Karl, Heinrich : Wannenholzstrasse 18, CH-8046 Zürich (CH). MORF, Rudolf, Hans : Rychenbergstr. 163, CH-8400 Winterthur (CH).	
(74) Agents: COHEN, Samuel et al.; RCA Corporation, Patent Operations, P.O. Box 432, Princeton, NJ 08540 (US).	

(54) Title: DIFFRACTIVE SUBTRACTIVE COLOR FILTER RESPONSIVE TO ANGLE OF INCIDENCE OF POLYCHROMATIC ILLUMINATING LIGHT

(57) Abstract

A diffractive subtractive color filter (Fig. 1) includes a variable index-of-refraction optical medium (100) of certain minimum thickness (t) and periodicity (d) with respect to the wavelength of incident light. The filter meets certain specified constraints with respect to: (1) relative indices-of-refraction of both its internal structure and that of its surroundings (114, 116), (2) relative values of incident wavelength to periodicity and (3) the relative indices-of-refraction of the optical medium and its surroundings; and operates to produce both angularly-dependent subtractive-color filter reflection spectra and subtractive-color filter transmission spectra in accordance with its physical parameters. Such filters are suitable for use as authenticating devices for sheet-material authenticated items.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	KP	Democratic People's Republic of Korea
AU	Australia	LI	Liechtenstein
BE	Belgium	LK	Sri Lanka
BR	Brazil	LU	Luxembourg
CF	Central African Republic	MC	Monaco
CG	Congo	MG	Madagascar
CH	Switzerland	MW	Malawi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HU	Hungary	TG	Togo
JP	Japan	US	United States of America

-1-

1

DIFFRACTIVE SUBTRACTIVE COLOR FILTER
RESPONSIVE TO ANGLE OF INCIDENCE OF
POLYCHROMATIC ILLUMINATING LIGHT

5

This invention relates to diffractive subtractive color filters and, more specifically, to a new type of diffractive subtractive color filter which is particularly suitable for use as an authenticating device for an authenticated item comprised of sheet material.

10

Reference is made to U.S. Patent No. 3,957,354, which issued May 18, 1976 to Knop, and is assigned to the same assignee as the present invention. This patent, which relates to a diffractive subtractive color filtering technique, employs a diffracting phase medium (which may be transmissive or reflective) illuminated by polychromatic (e.g., white) light to segregate zero diffraction order output light from higher diffraction order output light. The zero diffraction order output light is subtractively color filtered to possess color characteristics determined by such parameters as the effective optical peak amplitude and the waveform profile of spatially distributed diffraction elements of the diffracting phase medium. The aggregate of the higher diffraction orders possess color characteristics which are the complement of the zero diffraction order. As discussed in this patent, diffractive subtractive color filters, which employ no dyes, may be used in the projection of color pictures. In this case, the zero diffraction order may be projected through an aperture which is sufficiently wide to admit the zero diffraction order, but not wide enough to admit any of the higher diffraction orders.

15

Reference is further made to co-pending U.S. Patent application serial No. 235,970, which was filed by Webster et al on February 19, 1981, and is assigned to the same assignee as the present invention. This patent application describes a sheet-material authenticating item with a reflective diffractive authenticating device, which

-2-

1 uses a reflective (rather than transmissive) diffractive color filter, of a type disclosed in U.S. Patent No. 3,957,354, to authenticate various items of sheet-materials which are subject to counterfeiting. Such 5 items include bank notes and other valuable documents, credit cards, passports, security passes and phonograph records for their covers, for example. Such an authenticating device prevents would-be counterfeiters from employing advanced photocopying machines for the 10 color copying of documents. Such color copying machines, now or at least in the near future, would be capable of providing such high fidelity color copies that a non-expert would find it very difficult, if not 15 impossible, to discriminate between a counterfeit and a genuine article. The basic requirement for an authenticating device attached to an authenticated item is that the authenticating device possess a distinctive characteristic that is not capable of being photocopied. Additional requirements are that the distinctive 20 characteristic be easily recognized by the man-in-the-street; that the technical sophistication and capital cost needed to fabricate authenticating devices be high, and that the variable cost per unit plus the amortization of the high capital cost per unit be 25 sufficiently low as not to be an impediment to its use.

As brought out in the aforesaid co-pending patent application, a reflective diffractive subtractive color filter meets all these requirements. Such a filter has the characteristic of producing angularly-separated 30 reflected diffraction orders of different colors in response to the illumination thereof by polychromatic light. Such a characteristic cannot be copied by a photocopying machine. By merely tilting the authenticated item, angular separation between the zero and first orders 35 and the angular width of each order are sufficiently large to provide a difference in color hue that is easily discernable by a man-in-the-street. Furthermore, such a diffractive structure requires high sophistication and a

1 high capital cost to make an original embossing master,
which then can be replicated by embossing the diffractive
structure in plastic film. This replication technique
permits low unit cost to be achieved in the fabrication of
5 reflective diffractive authenticating devices.

10 The present invention is directed to a new type
of diffractive subtractive color filter that exhibits
unusual optical characteristics in both reflection and
transmission. In reflection, the diffractive subtractive
color filter of the present invention operates as a
colored mirror, in which the color of the mirror varies
with the viewing angle. Like any other mirror, the
viewing angle is an angle of reflection in which the
reflected light at that viewing angle depends on the light
15 incident on the mirror at an angle of incidence equal to
that angle of reflection but is totally independent of any
light incident on the mirror at any angle of incidence
unequal to the angle of reflection of that viewing angle.
Therefore, by way of one example, the colored mirror of
20 the present invention may appear as a red mirror when
viewed at a normal angle to the surface of the filter, but
as a green mirror when viewed at an angle of 20° with
respect to the normal to the surface. In the special case
25 of non-absorptive structures the color characteristics of
this novel diffractive subtractive color filter in
transmission are the complement of those in reflection.
Therefore, the color characteristics in transmission also
show an angular dependence. These angularly dependent
color characteristics, in both reflection and
30 transmission, are specifically determined by the
respective values of certain physical parameters of the
diffractive structure comprising the novel diffractive
subtractive color filter of the present invention.
Although its use is not limited thereto, the diffractive
35 subtractive color filter of the present invention can be
used to great advantage as a reflective diffractive
authenticating device in accordance with the teaching of
the aforesaid co-pending patent application.

-4-

1 More specifically, the present invention is
concerned with a diffractive subtractive color filter
responsive to polychromatic illuminating light having a
given wavelength spectrum incident thereon for deriving
5 reflection spectra which vary as a function of the angle
of incidence and polarization of the illuminating light.
The diffractive subtractive color filter also derives
transmission spectra which are substantially (in the
10 special case of non-absorptive structures exactly) the
complement of the reflection spectra. Structurally, the
filter comprises a first optical medium having a thickness
 t between two opposite faces thereof. The first optical
medium has a varying index-of-refraction which divides the
15 first optical medium into juxtaposed periodic diffraction
elements of a diffractive structure having a period d
which extends in a direction substantially parallel to the
faces and perpendicular to a given direction. Therefore,
each one of the diffraction elements extends along a
20 direction substantially parallel to the faces and parallel
to the given direction. Furthermore, the spatial
distribution of the varying index-of-refraction within the
volume of each diffraction element divides that
diffraction element into a plurality of separate
25 three-dimensional regions of certain-valued
indices-of-refraction, which include one or more regions
of relatively higher index-of-refraction and one or more
regions of relatively lower index-of-refraction. Each of
the regions has a specified size and shape, whereby the
30 entire volume of each diffraction element has an average
index-of-refraction \bar{n} . This array of diffracting elements
is normally embedded between a second optical medium with
refractive index n_2 and a third optical medium with
refractive index, n_3 .

35 Let us define the spectral range of interest
extending from a minimum wavelength λ_1 up to a maximum
wavelength λ_2 . This spectral range may lie in the visible
range ($0.4 \mu\text{m} \leq \lambda \leq 0.7 \mu\text{m}$) or anywhere else in the
electromagnetic spectrum. By the term wavelength we mean

-5-

1 the free-space wavelength (it is assumed that the
wavelength in air is substantially the free-space
wavelength). The structures to be described below satisfy
5 the following relationships.

$$\bar{n} > \max(n_2, n_3) \quad (1)$$

$$d \max(n_2, n_3) < \lambda_2 \quad (2)$$

10 $d(\bar{n} + 1) > \lambda_1 \quad (3)$

$$4 \bar{n} t \geq \lambda_1 \quad (4)$$

15 where $\max(n_2, n_3)$ is generally the larger of n_2 and n_3 ,
but, in the special case where $n_2 = n_3$, is n_2 or n_3 . The
result is that the characteristics of each of the spectra
depends on (1) the angle of incidence of the illuminating
light, (2) the specified size and shape of each of the
regions of the certain-valued relatively higher and
relatively lower indices-of-refraction (which, in turn,
20 determine the value of \bar{n}), and (3) the respective physical
values of d and t .

In the drawings:

25 FIG. 1 is a diagram illustrating a generalized
embodiment of a diffractive structure incorporating the
principles of the present invention;

30 FIG. 2 illustrates one specific, geometrically
simple, example of the diffractive structure shown
generally in FIG. 1;

35 FIG. 3 is a flow chart showing the steps for
fabricating a first practical example of the diffractive
structure shown generally in FIG. 1;

FIG. 3a illustrates a first modification of the
example of FIG. 3;

35 FIG. 3b illustrates, in idealized form, the
diffractive structures of FIGS. 3 and 3a, having a
predetermined set of relative parameter values, and FIG.
3c, 3d and 3e illustrate, respectively, the zero-order
reflection spectra of the structure shown in FIG. 3b for

1 polychromatic illuminating light at angles of incidence of
0°, 20° and 40°;

5 FIG. 4 illustrates a second modification of a
diffractive structure fabricated by the method shown in
FIG. 3;

10 FIG. 4a illustrates, in idealized form, the
diffractive structure of FIG. 4, having a predetermined
set of relative parameter values, and FIGS. 4b and 4c
illustrate, respectively, the zero-order reflection
spectra of the structure shown in FIG. 4a for
polychromatic illuminating light at angles of incidence of
0° and 30°;

15 FIG. 5 illustrates a third modification of a
diffractive structure fabricated by the method of FIG. 3;

20 FIG. 5a illustrates, in idealized form, the
diffractive structure of FIG. 5 having a predetermined set
of relative parameter values, and FIGS. 5b and 5c
illustrate, respectively, the zero-order reflection
spectra of the structure shown in FIG. 5a for
polychromatic illuminating light at angles of incidence of
0° and 20°;

25 FIGS. 6a and 6b, respectively, illustrate the
zero-order spectra of an experimental filter, which was
actually constructed and had a diffractive structure
similar to that shown in FIG. 4, for visible polychromatic
illuminating light at angles of incidence of 0° and 30°;

30 FIG. 7 illustrates a fourth modification of a
diffractive structure fabricated by the method shown in
FIG. 3; and

35 FIGS. 8 and 9 illustrate uses of a diffractive
subtractive color filter incorporating the present
invention as an authenticating device for an authenticated
item.

The term "light," as used herein, includes
visible light having a wavelength spectrum of 0.4 - 0.7
micrometers, ultraviolet light having wavelength spectrum
below 0.4 micrometer, and infra-red light having a
wavelength spectrum above 0.7 micrometer. However,

-7-

1 although not limited thereto, the present invention is
particularly suitable for use with diffuse polychromatic
visible (e.g. white) light incident on a diffractive
5 subtractive color filter incorporating the present
invention that is simultaneously incident on the filter at
all angles of incidence between 0° and 90°.

10 It is known that obliquely incident light is
refracted when it passes the interface between two optical
such refraction effects need not be considered in order to
understand the principles of the present invention.
Therefore, for the sake of clarity in describing the
present invention, refraction effects have been ignored.

15 The expression "free space wavelength," as used
herein, is meant to include the wavelength in air or the
like, as well as a vacuum, since, compared to the
index-of-refraction of the materials comprising the filter
itself, the difference between the index-of-refraction of
the air and that of a vacuum is negligible.

20 Referring to FIG. 1, there is shown a first
optical medium 100 having a thickness t between two
opposite faces 102 and 104 thereof. As shown in FIG. 1,
the thickness t extends in a vertical Y direction, and the
faces 102 and 104 extend in a horizontal X direction and
25 in a Z direction (not shown) perpendicular to the plane of
the paper. Optical medium 100 has a varying
index-of-refraction which divides it into juxtaposed
periodic diffraction elements 106 having a period d which
extends in the X direction. This results in each one of
diffraction elements 106 extending along the Z direction
(not shown), perpendicular to the plane of the paper. The
30 spatial distribution n(x, y) of the varying
index-of-refraction within the volume of each diffraction
element 106 divides that diffraction element 106 into a
plurality of separate three-dimensional regions (e.g.,
35 regions 108, 110 and 112) of certain-valued relatively
higher and relatively lower indices-of-refraction. As
shown in FIG. 1, each of these regions has a specified

-8-

1 size and shape. This results in the entire value of each
2 diffraction element 106 having an average
3 index-of-refraction \bar{n} . In FIG. 1, the fine-structure
4 regions 108, 110 and 112 are illustrated for the first,
5 second and last diffraction elements 106, while only the
6 average index-of-refraction \bar{n} is indicated for the third
7 and fourth diffraction elements 106. It should be
8 understood, however, that both the fine-structure and the
9 average index-of-refraction \bar{n} of all the diffraction
10 elements 106, FIG. 1 are similar.

11 Contacting face 102 is second optical medium 114
12 having a thickness t_2 in the Y direction and having an
13 index-of-refraction n_2 . Contacting face 104 is third
14 optical medium 116 having a thickness t_3 in the Y
15 direction and having an index-of-refraction n_3 .

16 Assuming that the amount of any absorption
17 within the diffractive subtractive color filter of FIG. 1
18 is negligible, a first portion of polychromatic
19 illuminating light 118 incident on top surface 120 of
20 second optical medium 114 at an angle α with respect to
21 the normal ultimately gives rise to zero-order reflection
22 output light 122 at an angle of reflection α with respect
23 to the normal. A second portion of polychromatic light
24 118 incident on top surface 120 at an angle α with respect
25 to the normal ultimately gives rise to zero-order
transmission light 124 emerging from the bottom surface of
third optical medium 116 at an angle α with respect to the
normal.

30 The polarization and color characteristics of
31 the spectra of zero-order reflection light 122 for each
32 angle of reflection depend on the wavelength spectrum and
33 the angle of incidence of polychromatic light 118 and on
34 the physical parameters of the diffractive subtractive
35 color filter shown in FIG. 1. These physical parameters
include the respective values of the period d of the
diffraction elements 106 and the thickness t of first
optical medium 100; the respective values of the
index-of-refraction n_2 of second optical medium 114 and n_3 .

1 of third optical medium 116, and the respective values of
variable index-of-refraction $n(x, y)$ as a function of
spatial distribution within the volume of each diffractive
element 106, which respective values define the size and
5 shape of each of regions 108, 110 and 112 and the average
index-of-refraction \bar{n} of each diffraction element 106.
These same factors determine the color and polarization
characteristics of the spectra of zero-order transmission
10 light 124 emerging at an angle α , relative to the normal
since transmission light 124 exhibits color
characteristics which in the special case of
non-absorptive structures are the complement of zero-order
reflection light 122.

15 It is known that light is an electromagnetic
wave and that the properties of electromagnetic waves are
defined by Maxwell's equations. It is also known that
where the period d of a diffractive structure is much
smaller than the wavelength of incident light, the
20 incident light is not affected by (i.e., does not see) the
diffractive structure. It is also known that where the
period d of the diffractive structure is substantially
larger than the wavelength of incident light, the
diffractive properties of the diffractive structure can be
25 determined, with negligible error, without resorting to
Maxwell's equations by utilizing the simplifying
approximations provided by Kirchhoff-Huygens wave theory.
However, as is the case in the present invention, when the
behavior of a diffractive structure depends upon
illuminating light having a wavelength spectrum that
30 comprises wavelengths in the general neighborhood of the
period d of the diffractive structure, it is essential
that Maxwell's equations be utilized to determine the
properties of the diffractive structure.

35 Relationship (1) given previously is:
 $\bar{n} > \max(n_2, n_3)$. This implies that the value of the
average index-of-refraction \bar{n} of the diffractive structure
formed by first optical medium 100 in FIG. 1 is larger
than the value of the index-of-refraction n_2 of the second

-10-

1 optical medium 114 contacting upper face 102 of first
 optical medium 100 and also is larger than the value of
 the index-of-refraction n_3 of third optical medium 116
 contacting lower face 104 of optical medium 100.

5 Relationship (2) states:

$$d \max(n_2, n_3) < \lambda \quad (2)$$

10 The effect of this constraint is to prevent (at least in a portion of the spectral range of interest and with the viewing angle being equal to an angle of incidence $\alpha = 0$) any diffraction orders other than zero order that may have been generated with first optical medium 100, from ever emerging into the ambient. Thus, all the reflected light
 15 and all the transmitted light that emerges into the ambient that has been ultimately derived from polychromatic light 118 having normal incidence (i.e., $\alpha = 0$) is comprised solely of zero-order reflection light 122 and zero-order transmission light 124

20 Relationship (3) states:

$$d(\bar{n} + 1) > \lambda_1 \quad (3)$$

25 Since in first optical medium 100, the average index-of-refraction \bar{n} is large relative to the substantially unity index-of-refraction of the ambient, the wavelength of light within first optical medium 100 will be shorter than the corresponding free-space wavelength in the ambient. Relationship (3) implies that
 30 at least for an angle of incidence α approaching 90° within first optical medium 100, the zero diffraction order and at least one first diffraction order can both propagate. Further, in order for both relationship (2) and relationship (3) to be true, the respective values of
 35 the free-space λ and d must be fairly close to one another. Therefore, it is necessary to make use of Maxwell's equations to predict the optical properties of the diffractive subtractive color filter shown in FIG. 1.

Relationship (4) states:

-11-

1

$$t \geq \frac{\lambda}{4n}$$

(4)

Relationship (4) signifies that first optical medium 100 is of sufficient thickness t to ensure that constructive and destructive interference (due to different path lengths) occurs at some wavelengths of the wavelength spectrum of the polychromatic light between those rays of light reflected from face 102 and those rays of light reflected from face 104 which ultimately combine to form zero-order reflection light 122.

The filtering characteristics of a diffractive subtractive color filter that conforms with all the above constraints depends on the specific values of its physical parameters such as n_2 , n_3 , the function $n(x, y)$, which determines the size and shape of each of regions 108, 110 and 112, and the physical values of t and d . In order to design a particular filter, Maxwell's equations must be solved for a selected set of these physical parameters at various relative wavelengths within a relative wavelength spectrum of λ/d . In practice, it takes a computer to perform the many calculations required to solve, by numerical analysis, Maxwell's equations for any particular set of physical parameters. Alternatively, a filter having specific values of its physical parameters can be constructed, and its reflective spectra characteristics can be measured.

As shown in FIG. 1, second optical medium 114 and third optical medium 116 comprise separate layers of material having respective thicknesses t_2 and t_3 which usually are much larger than the thickness t of first optical medium 100. The respective indices n_2 and n_3 of the material forming second optical medium 114 and third optical medium 116, while being smaller than the value of the average index-of-refraction \bar{n} , are generally greater than the substantially unity index-of-refraction of the ambient. However, this is not essential. In principle, at least, second optical medium 114 and/or third medium 116 could be either air or a vacuum. In this special

1 case, polychromatic light 118 could be incident directly
on face 102, so that zero-order reflection light 122
and/or zero-order transmission 124 would emerge directly
5 from surface 102 and/or surface 104.

FIG. 2 shows a geometrically simple specific example of a diffractive subtractive color filter of the type shown in generalized form in FIG. 1. In the specific example of FIG. 2, first optical medium 100 is comprised of periodically spaced rectangular regions 200 composed of a material having an index-of-refraction $n_1 = 3$. These relatively high index-of-refraction regions 200 are separated by rectangular regions 202 having a relatively low index-of-refraction $n_0 = 1.5$. Both second optical medium 114 and third optical medium 116 have indices-of-refraction n_2 and n_3 also equal to 1.5. The thickness t of first optical medium 100 (which is the height of both rectangular regions 200 and 202) has the relative value of 0.625 d, where d is the spatial period of the diffractive elements formed by each pair of adjacent regions 200 and 202. The width w of each higher index-of-refraction rectangular region 200 has a relative value equal to 0.125 d. Therefore, the width of each lower rectangular region 202 has a relative value equal to 0.875 d.

25 The optical mediums 114 and 116 have thicknesses t_2 and t_3 which are very much larger than the spatial period d of first optical medium 100. By way of example, the value of the thickness t_2 may have a relative value of 37.5 d, whereas the thickness t_3 is assumed to be so large 30 as to extend indefinitely.

From a theoretical standpoint, the embedded laminated grating shown in FIG. 2 is probably the geometrically simplest structure which yields the angular-dependent reflective spectra discussed above in connection with FIG. 1. In order to test the validity of the assumptions on which the present invention is based, the respective spectra of the zero-order reflected light, 35 for the particular implementation shown in FIG. 2, were

1 calculated on a computer for each of two angles of
incidence. More specifically, the computer solved
Maxwell's equations for each of four different cases,
assuming in each case that wavelength spectrum λ/d
5 polychromatic light extended over a relative range of
values of λ/d from 1 to 2.4. The four cases were (1) an
angle of incidence (with respect to the normal) of 0° with
the electric E vector of the incident light assumed to be
10 polarized parallel to the line direction of the grating
(which, in FIG. 2, is in a direction perpendicular to the
paper); (2) an angle of incidence of 0° (with respect to
the normal) with the magnetic vector H of the incident
light assumed to be polarized parallel to the line
direction of the grating; (3) an angle of incidence of 20°
15 with the electric vector E of the incident light assumed
to be polarized parallel to the line direction grating,
and (4) at an angle of incidence of 20° with the magnetic
vector H of the incident light assumed to be polarized
parallel to the line direction of the grating. The
20 respective solutions of Maxwell's equation, in each of
these four cases, for a structure having the physical
parameters of FIG. 2, showed that both the electric and
magnetic polarization zero-order reflection spectra are
angularly dependent. Each of these reflection spectra is
25 attained by plotting the percentage of zero-order
reflection light as a function of λ/d over the relative
wavelength spectrum from 1-2.4. It was found that each of
the two electric vector spectra exhibited one large
reflectance peak each over a sub-interval of the λ/d
30 spectrum together with a plurality of much lower
reflectance peaks over the remainder of the λ/d of the
wavelength spectrum. The respective positions of
sub-intervals of the high reflectance peaks, in terms of
35 the values of λ/d ; and the shape of the high reflectance
peaks were substantially different for the case of 0°
incident polychromatic light from the case of 20° incident
polychromatic light. The respective H vector spectra were
composed of only relatively low reflectance peaks.

-14-

1 However, the relative height, shape and spatial
distribution of these peaks for the case of 0° incident
polychromatic light were different from that of 20°
5 incident polychromatic light. Therefore, the assumptions
on which the present invention are based are valid.

10 Different color effects can be obtained
depending upon the particular choice of the value of d .
With d having a value of 0.4 micrometer (μm), the color
changes from reddish to white when the angle of incidence
is changed from 0° to 20° . However, with a value of d
equal to $0.32\mu m$, the color change is from green to red
when the angle of incidence changes from 0° to 20° .
Further, since all the spectra contain a number of low
15 reflectance detailed features, such as peaks and sharp
band edges, these peaks and sharp band edges may be
employed in an authenticating device for machine readable
identification. In fact, by a proper choice of the value
of d , some of the peaks or sharp end edges which occur at
longer wavelengths can be made to occur in the infra-red,
20 rather than in the visible light spectrum. Furthermore,
the E vector and the H vector reflection spectra are very
different from each other. This strong polarization
dependence is also suited for machine identification, when
the invention is utilized in an authenticating device of
25 the type discussed above. In addition, the angular
dependence about a tilt axis parallel to grating line
direction is significantly different from a tilt axis
perpendicular to grating line direction. This is another
discriminant that can be used for machine identification.
30

35 The structure in FIG. 2 was obtained by
selecting the two refractive indices $n_1 = 3$ and
 $n_3 = n_2 = 1.5$, then optimizing the thicknesses t and the
line width w . The thickness t_2 and t_3 of the bottom and
top layers are not critical as long as they are large
compared to d . For best visibility of the reflective
light, the bottom layer should be terminated by strongly
absorbing (black) material. The given values of t and w

-15-

1 in FIG. 2 are not the only choices of these parameters
that provide good results.

5 While for an authenticating device, the
reflective zero-order spectra are used, it should be
understood that the transmission spectra, which are also
produced, may be useful for other purposes.

10 The main benefit of the geometrically simple
structure of the species as shown in FIG. 2 is that it was
easy to calculate on a computer solving Maxwell's
equations, in order to test the validity of the present
invention. However, the structure of FIG. 2 would be most
difficult (if not impossible) to physically implement in a
real structure, at the present state of the art. FIG. 3
15 illustrates the steps of a method for fabricating
geometrically more complex, but more practical, species of
the present invention that have physical structures which
are more easily realizable.

FIG. 3 is a flow chart showing the successive
method steps for fabricating a finished filter employing
20 the principles of the present invention, starting with a
thermoplastic material 300 which may have a surface relief
pattern embossed therein by a metal embossing master 302,
by such known techniques as casting or hot pressing. By
way of example, metal master 302 is shown as having a
25 rectangular waveform profile of physical depth a . The
first step is to emboss this waveform profile into the
upper surface of thermoplastic material 300 having an
index-of-refraction n_3 . This results in the production of
relief structure 304. The second step is to deposit a
30 relatively thin layer of material 306 having an
index-of-refraction of n_1 and having given thickness and
shape characteristics on the relief surface of structure
304. Known depositing techniques includes evaporation,
35 sputtering (particularly ion beam sputtering), spin-on
techniques, etc. Material 306 is selected to have an
index-of-refraction n_1 which is large relative to the
index-of-refraction n_3 of thermoplastic material 300. The
next step is to overcoat the deposited layer 306 on the

-16-

1 relief surface of structure 304 with a material 308 having
an index-of-refrction n_2 , which is relatively low compared
with the index-of-refraction n_1 of deposited layer 306.
5 This results in a finished filter comprised of a first
optical medium having a thickness t extending from the
bottom of the troughs of the surface relief waveform
profile in thermoplastic structure 304 to the top of the
deposited layer 306 overlying the crests of this waveform
profile. The first optical medium in FIG. 3 comprises
10 those regions of thermoplastic structure 304 forming the
crests of the waveform profile (index-of-refraction n_3),
all regions of deposited layer 306 (index-of-refraction
 n_1) and those portions of the troughs of this surface
relief waveform profile which are not already filled by
15 deposited layer 306 but are filled by overcoat material
308 (index-of-refraction n_2). In order to meet the
constraints of the present invention, it is necessary that
the average index-of-refraction \bar{n} of all the regions of
which the first optical medium of the finished filter is
20 comprised be larger than the value of either n_2 or n_3 .
The second optical medium is comprised of the remainder of
overcoat 308 which lies above surface relief structure 304
and the third optical medium is comprised of the remainder
25 of thermoplastic material 300 which lies below surface
relief structure 304.

In FIG. 3, the thickness c of deposited layer
306 happens to be smaller than the physical depth a of the
30 embossed rectangular waveform grating. This is not
essential. The thickness c of the deposited layer 306 may
be larger than the depth a of the embossed rectangular
waveform grating. In this latter case, the configuration
of the finished filter in FIG. 3 would have the appearance
shown in FIG. 3a, rather than that of the finished filter
actually shown in FIG. 3.

35 FIG. 3b, in idealized form, shows a particular
example of the species of the present invention
represented by the finished filters of FIGS. 3 and 3a. As
indicated in FIG. 3b, the relatively high

1 index-of-refraction of n_1 of the deposited layer 306 is
equal to 3; the relatively low indices-of-refraction of n_2
and n_3 are both 1.5; the rectangular waveform period d has
a 50% aspect ratio or duty-cycle (i.e., it is a square
5 wave); the thickness c of deposited layer 306 has the
relative value 0.22 d and the distance between the top of
the deposited layer 306 lying within a trough of the
waveform and the bottom of deposited layer 306 lying above
a crest of the deposited waveform has a relative value
10 0.055 d . Therefore, the depth a of the square-wave
profile is 0.275 d (the sum of 0.22 d and 0.055 d). A
computer programmed to solve Maxwell's equations for the
particular configuration and values of parameters shown in
15 FIG. 3b, calculated the zero-order reflection spectra
shown in FIGS. 3c, 3d and 3e for various angles of
incidence of polychromatic light over wavelength spectrum
extending over a relative range of values λ/d from 1-2.5.
FIG. 3c shows both the E vector zero-order reflection
spectra and the H vector reflection spectrum for an angle
20 of incidence of 0° with respect to the normal, while,
FIGS. 3d and 3e show these reflection spectra for 20° and
 40° , respectively, relative to the normal. As shown in
25 FIG. 3c, at zero angle of incidence, the zero-order
reflection spectrum for the E vector exhibits a large
single peak. The position of the sub-interval of the
relative wavelength spectrum at which this single peak
appears is in accordance with relationship 4, discussed
above. Specifically, the peak only occurs over a
sub-interval of relative wavelengths λ/d which lie in the
30 spectral range of interest $\lambda_1 < \lambda < \lambda_2$ substantially
equal to the maximum value of n_2 or n_3 (which in the case
of FIG. 3b is 1.5). As stated earlier in connection of
FIG. 2, the H vector polarization in each of FIGS. 3c, 3d
and 3e contributes relatively little to the overall
reflectance, but contains features, such as narrow, sharp
35 peaks suitable for a machine identification.

More generally, the width of the single large
peak at 0° (such as the large peak in FIG. 3c) increases

-18-

1 with increasing refractive index of the deposition
material n_1 and increasing deposition thickness c . A peak
reflectance close to 100% can usually be obtained for any
5 given type of grating profile by tuning its depth value,
and/or its deposition thickness value. As shown in FIG.
3c, the large peak of the E vector polarization meets all
the above criteria. In addition, the E vector
10 polarization shows a relatively weak reflection peak at a
value of λ/d in the vicinity of unity and the H vector
polarization shows a relatively sharp reflection peak at a
value of λ/d in the vicinity of 1.52.

As indicated in FIGS. 3d and 3e, the reflection
spectrum splits into two peaks moving symmetrically
15 towards shorter and higher wavelengths respectively for
angles of incidence which are oblique with respect to an
axis (perpendicular to the plane of the paper) parallel to
the grating lines. The amount of wavelength shift from
the original position at $\alpha = 0^\circ$ is of the order of $d\alpha$.
However, at oblique angles with respect to an axis
20 perpendicular to the grating lines, a much weaker shift
towards shorter wavelengths results with no associated
peak splitting. This weaker shift is similar to the $\cos \alpha$
dependent shift observed in conventional interference
25 filter structures.

By a proper choice of the grating period d , the
peak for $\alpha = 0$ can be placed in the red. Then, the
sequence is green, then blue for typical shifts to
 $\alpha = 15^\circ$, then 30° (parallel to the grating lines).
However, if the grating period d is chosen so that, at
30 $\alpha = 0$, the peak is located in the green, a typical shift
produces magenta. Finally, if the grating period d is
chosen so that, at $\alpha = 0$, the peak is located in the blue,
a typical shift causes the color changes to green and then
to red. This description of color change is somewhat
35 simplified, since the particular structure, such as the
particular structure shown in FIG. 3b, exhibits its own
specific spectral signature (which includes, in the case

1 of FIG. 3b, the effect of the middle-sized additional E
and H vector polarization peaks shown in FIGS. 3c and 3d).

5 Typical values of the grating period d are from
0.1 to 0.45 μm and typical grating depths a are from 0.1
to 0.2 μm , when λ is in the visible wavelength spectrum of
0.4-0.7 μm . The refraction index of the deposition
material is usually in the range from 1.7-5. In practice,
the index-of-refraction n_1 depends on λ and may be complex
(for absorptive materials), thus introducing a further
10 variability in design of the filter.

15 In FIG. 3, it is assumed that deposition takes
places perfectly normal to the surface of the relief
structure, so that the thickness of deposition on all the
bottoms and on all the tops of the rectangular waveform
profile are all equal to one another. In practice, such
perfect deposition can only be approached, but not
reached, by practical deposition techniques, such as
evaporation or ion beam sputtering, directed normal to the
surface of the relief structure. The result is that, in
20 practice, the method of FIG. 3 tends to result in a
finished filter having a configuration that looks more
like FIG. 4, than either like FIG. 3 or FIG. 3a. The main
difference between the configuration of FIG. 4 and those
of FIGS. 3 and 3a is that the thickness of deposited
25 material 306 overlying the troughs of the rectangular
waveform relief structure 304 is substantially larger than
the thickness overlying the crests of this rectangular
waveform profile.

30 FIG. 4a shows, in idealized form, a specific
example of a configuration which approximates the
configuration of FIG. 4. In FIG. 4a, the value of
relatively high index-of-refraction n_1 of deposited
material 306 is 2.3 and the indices-of-refraction n_2 and
35 n_3 of structure 304 and overcoat 308 are 1.5. As
indicated in FIG. 4a, the boundary between structure 304
and deposited layer 306 forms a square-wave profile having
a period d and a relatively high amplitude of 0.3d. The
boundary between overcoat 308 and deposited layer 306

-20-

1 forms a square-wave profile having a period d and a
5 relatively low amplitude of 0.1 d. Further, the troughs
of this relatively low amplitude square-wave are situated
at a distance of 0.1 d above the crests of the relatively
high amplitude square-wave. Therefore, in the case of
FIG. 4a, the overall thickness t of the first optical
medium is 0.5 d.

10 FIGS. 4b and 4c, respectively, show the
zero-order reflection spectrum for angles of incidence and
of 0° and 30° , computed by solving Maxwell's equations for
a filter having the configuration and physical parameters
shown in FIG. 4a.. The similarities and differences
between the zero-order reflection spectra shown in FIGS.
15 4b and 4c, on one hand, and those shown in FIGS. 3c, 3d
and 3e, on the other hand, should be noted. More
specifically, the main feature, shown in FIG. 4b, is that,
20 for 0° the strong E vector has a reflection peak relative
value for λ of about 1.8 d. As shown in FIG. 4c, for 30°
incidence, this peak splits into two peaks at a relative
value of λ equal to approximately 1.38 d and apporximately
25 2.25 d. This is in agreement with the general principles
discussed above in connection of FIGS. 3c, 3d and 3e. In
addition, when the angle of incidence is 30° , a third peak
in the E vector polarization spectrum is observed at a
relative value of λ of about 1.08 d, as shown in FIG. 4c.
The H vector polarization spectrum for an angle of
30 incidence of 0° , shown in FIG. 4b, is almost featureless.
However, at an angle of incidence of 30° , as shown in FIG.
35 4c, a complicated spectrum with several sharp resonances
develops. It is obvious that these sharp peaks are
ideally suited for machine identification.

The deposition of the deposited layer 306 need
not be made normal to the relief surface of structure 304.
FIG. 5 illustrates a configuration of the finished filter
in which the layer 306 is deposited at a relatively large
oblique angle (i.e., about 45°) with respect to the relief
surface of structure 304. Such an angular deposition may
be accomplished by evaporation or ion beam sputtering from

1 an angularly displaced source. FIG. 5a shows, in
idealized form, a specific example of the structure shown
in FIG. 5. In FIG. 5a, the relatively high
5 index-of-refraction n_1 of deposited material 306 is 3 and
the respective indices-of-refraction n_2 and n_3 of
structure 304 and overcoat 308 are 1.5. In FIG. 5a, an
L-shaped deposit of material 306 occurs periodically, with
a period d , at a spacing therebetween of 0.5 d . The width
and height of the horizontal leg of each L-shaped deposit
10 of material 306 are 0.5 d and 0.25 d , respectively. The width
and height of the vertical leg of each L-shaped
deposit of material 306 are 0.18 d and 0.2 d ,
respectively. The dimensions shown in FIG. 5a approximate
15 those which would be obtained using the method of FIG. 3,
with an angle of evaporation for deposited material 306 of
about 35°.

One of the benefits of the configuration shown
in FIGS. 5 and 5a, when employed in an authenticating
20 device, is that it belongs to a class, along with the
configuration of FIG. 3, of particularly secure structures
where each individual grating line is fully encapsulated
by the host material. This encapsulation prevents the
possibility that deposited layer might be peeled off to
25 reveal the physical structure of the grating.

FIGS. 5b and 5c, respectively, show the
zero-order reflection spectra for 0° and for 20° of a
filter having the physical parameters of the configuration
shown in FIG. 5a, as calculated from Maxwell's equations
30 by a computer. As shown in FIG. 5b, the calculated E
vector polarization spectrum for 0° has bandpass
characteristic with very sharp edges, suitable to produce
good colors. The H vector polarization is characterized
35 by two sharp peaks. As shown in FIG. 5c, at 20°, the two
shifted peaks, at relative values of λ about equal to 1.6
 d and about 2.3 d have very much reduced intensity and do
not produce a strong color effect. While this reduced
intensity is in contrast to the previous examples, a
useful application of this reduced intensity property

-22-

1 would be to put printed information on the back side of a
structure which would not be visible for small viewing
angles, near 0° , but could be seen and read at larger
angles, near 20° .
5

Numerous structures have been fabricated.
Mainly these structures had the configurations shown in
FIG. 3, FIG. 3a and FIG. 4. One such structure, which had
a configuration shown in FIG. 4 (or approximately in FIG.
10 4a) was made by first forming a square-wave surface relief
structure ($d = 0.38 \mu\text{m}$, and $= 0.12 \mu\text{m}$) in photoresist,
using lithographic techniques; then depositing
 $\text{ZnS}(t = 0.12 \mu\text{m})$ by vapor deposition. Finally, the device
was covered with an ultra-violet curable epoxy. No hot
pressing or casting technique was involved, since the
15 fabrication was experimental and at this stage no mass
production was intended. The physical parameters employed
corresponded closely to those chosen for the numerical
calculation by computer of FIG. 4a, discussed above.
FIGS. 6a and 6b, respectively, show the zero-order
20 reflection spectra toward 0° and 30° obtained
experimentally from this fabricated structure. Good
qualitative agreement is observed between the computed
spectra shown in FIGS. 4b and 4c and the corresponding
experimental spectra shown in FIG. 6a and 6b. All the
25 main peaks discussed above in connection with FIGS. 4a and
4b can be found and compared, although their intensity and
exact positions in FIGS. 6a and 6b vary slightly.

So far in this discussion, the surface relief of
30 structure 304 has always had a rectangular waveform
profile. This need not be the case. FIG. 7 shows a
species of the present invention in which the surface
relief of structure 304 has a triangular waveform.
Further, as shown in FIG. 7, deposited layer 306 is
35 deposited at an oblique angle, in a manner similar to that
discussed in connection with FIG. 5, to cover only one of
the two exposed sides of the triangular waveform.

All of the configurations shown in FIGS. 2-7 are
species of the filter shown in FIG. 1. These species

-23-

1 should be considered merely as illustrative examples of
the present invention. Any other configuration, not
shown, that conforms to the constraints discussed above in
connection with FIG. 1, are within the purview of the
5 present invention. Actually, an infinite number of
different grating structures can be made, depending upon
the particular choice of relief structure, materials,
deposition thickness, etc.

10 All the structures described herein are
extremely hard to counterfeit, even when it is assumed
that the counterfeiter has large capital and technical
resources available. This is due to at least to two
facts. First, it is virtually impossible to investigate
15 the geometry of a given structure by optical
(non-destructive) means. Although it is possible to
calculate the optical properties of a given structure, the
inverse problem exceeds present day computing capability.
Second, a mechanical or chemical analysis of a given
structure is very hard, if not impossible, due to its
20 fineness, with typical dimensions in the sub-micrometer
range. In particular, structures, such as those shown in
FIGS. 3, 5 and 7, are extremely difficult to separate for
analysis because the deposition material is separated into
discrete lines fully enclosed by the surrounding
25 materials. Further, the first step of the method shown in
FIG. 3 uses the surface relief pattern of a master to
reproduce the surface relief pattern in many replicas of
the master. Since the same master is used over and over
to make replicas, the process inherently gives high
30 reproducibility and cannot be easily copied, unless
someone has access to this original master.

Since filter structures of the present invention
meet all the requirements for an authenticating device of
the type described in the aforementioned co-pending patent
35 application, and, in addition, are so extremely hard to
counterfeit, a filter structure incorporating the present
invention is particularly suitable for use as such an
authenticating device.

-24-

1 FIGS. 8 and 9 are similar to figures of the
aforementioned co-pending patent application. As shown in
FIG. 8, one or more authenticating devices, such as
authenticating device 800, may be bonded to an
5 authenticated item 802 comprised of sheet material, as
discussed more fully in the aforesaid co-pending patent
application. Authenticating device 800 may comprise a
filter structure incorporating any of the embodiments (for
example, the embodiment shown in Fig. 3) of the present
10 invention. One example of such an authenticating device
800 is shown in FIG. 9. In FIG. 9, authenticating device
800 is comprised of a first area 900 having a dimension W
surrounded by a second area 902. Area 900 may be made of
a first diffractive structure incorporating the principles
15 of the present invention which provides zero-order
reflection light having a first color hue (such as red)
when viewed in diffuse polychromatic light at a 0° angle
with respect to the normal to the surface of
authenticating device 800. Area 902 may be comprised of a
20 second diffractive structure incorporating the principles
of the present invention which provides zero-order
reflection light of a second contrasting color hue (such
as green) when viewed in diffuse polychromatic light at a
0° angle with respect to the normal to the surface of
25 authenticating device 800. When authenticating device 800
(usually together with authenticating item 802) is tilted
so that it is viewed at an oblique angle of incidence, the
first color hue, such as red of area 900 may change to
green, while, at the same time, the second color hue, such
30 as green, of area 902 may change to magenta. The size of
the dimension W of area 900 is at least sufficiently large
so that area 902 may be easily seen at normal viewing
distances, such as 30 centimeters.

In an authenticating device, as well as other
35 articles of manufacture, various attributes of the present
invention may be combined to advantage. For instance, the
grating lines in one area such as area 900, may be
oriented at a different angle from the grating lines of a

-25-

1 different area, such as area 902. Further, some areas.
could employ overlapping grating lines of different
periodicities d and/or of different angular orientations.
The fact that angular discrimination of spectra differs
5 marked between tilting about an axis parallel to grating
lines and tilting about an axis perpendicular to grating
lines can be made use of in an authenticating device, as
well as other articles of manufacture. Making use of the
principles of the present invention, it is possible to
10 produce character text in a manner such that it is
discernable from the background only under certain viewing
conditions and not for other viewing conditions. In this
regard, a focused laser beam may be employed to write text
characters by selectively destroying portions of a
15 diffractive structure surface that had been fabricated in
accordance with the principles of the present invention.

20

25

30

35

-26-

1 WHAT IS CLAIMED IS:

1. A diffractive subtractive color filter (Fig. 1) responsive to incident polychromatic illuminating light (118) having a given wavelength spectrum (a) for deriving reflection spectra (i) which vary as a function of the angle of incidence α of said illuminating light and (ii) in which for each angle of incidence the reflection spectrum comprises separate portions that are polarized respectively parallel to and perpendicular to a given direction, and (b) for also deriving transmission spectra which are substantially the complement of said reflection spectra;

characterized by:

15 a first optical medium (100) having a thickness t between two opposite faces (102, 104) thereof, said first optical medium having a varying index-of-refraction which divides said first optical medium into juxtaposed periodic diffraction elements (106) of a diffractive structure having a period d which extends in a direction substantially parallel to said faces and perpendicular to said given direction, so that each one of said diffraction elements extends along a direction substantially parallel to said faces and parallel to said given direction,

25 the spatial distribution of said varying index-of-refraction within the volume of each diffraction element dividing that diffraction element into a plurality of separate three-dimensional regions (108, 110, 112) of certain-valued relatively higher and relatively lower indices-of-refraction, each of said regions having a specified size and shape, whereby the entire volume of each diffraction element has an average index-of-refraction \bar{n} ,

35 said average index-of-refraction \bar{n} being larger than the index-of-refraction n_2 of a second optical medium (114) contacting one of said opposite faces and also larger than the index-of-refraction n_3 of a third optical medium (116) contacting the other of said opposite faces, and

-27-

1 at all free space wavelengths λ within a
sub-interval of said illuminating wavelength spectrum
extending from a minimum wavelength λ_1 up to a maximum
wavelength λ_2 , the following relationships are true

5

$$\bar{n} > \max(n_2, n_3) \quad (1)$$

$$d \max(n_2, n_3) < \lambda_2 \quad (2)$$

$$d(\bar{n} + 1) > \lambda_1 \quad (3)$$

10

$$4\bar{n}t \geq \lambda_1 \quad (4)$$

15

where $\max(n_2, n_3)$ is generally the larger of n_2 and n_3 ,
but in the special case where $n_2 = n_3$, is n_2 or n_3 ,
whereby the characteristics of each of said spectra
depends on (1) the angle of incidence of said illuminating
light, (2) the specified size and shape of each of said
regions of said certain-valued relatively higher and
relatively lower indices-of-refraction, so that the value
of \bar{n} is determined, and (3) the respective physical values
of d and t .

25

30

35

-28-

1

2. The diffractive subtractive color filter
defined in claim 1, wherein at least the free space
wavelengths of said sub-interval of the wavelength
spectrum of said polychromatic illuminating light includes
5 free space wavelengths within the range of 0.4-0.7
micrometer of visible light.

5

3. The diffractive subtractive color filter
defined in claim 1 or 2,

10

wherein the angle α is any angle between 0° and
 90° in a plane normal to said faces and parallel to said
given direction.

15

4. The diffractive subtractive color filter
(e.g., Fig. 2) defined in claim 1, further including said
second optical medium (114) and said third optical medium
(116),

wherein said second optical medium is comprised
of a solid material laminated to said one of said opposite
faces (102) of said first medium,

20

wherein said third optical medium is comprised of
a solid material laminated to said other of said opposite
faces (104) of said first medium, and

25

wherein the index-of-refraction n_2 (1.5) of the
solid material of which said second optical medium is
composed and the index-of-refraction n_3 (1.5) of the solid
material of which said third optical medium is composed
are both larger than unity.

30

35

-29-

1 5. The diffractive subtractive color filter
(Figs. 3, 3a, etc.) defined in claim 4,
 wherein each diffractive element of said first
optical medium includes at least one first region (306)
5 comprised of a solid material having an
index-of-refraction n_1 larger than either n_2 or n_3 , at
least one second region contacting said second optical
medium (308) that is composed of the same solid material
as said second optical medium, and at least one third
10 region contacting said third optical medium (304) that is
composed of the same solid material as said third optical
medium.

15 6. The diffractive subtractive color filter
defined in claim 5, wherein said second and third optical
mediums are composed of the same solid material, whereby
 n_2 is equal to n_3 .

20 7. The diffractive subtractive color filter
defined in claim 5, wherein said first region (306)
contacts both said second region and said third region.

20

25

30

35

-30-

1

8. The diffractive subtractive color filter
(Figs. 3, 5, 7) defined in claim 7, wherein said second
region contacts said third region.

5

9. The diffractive subtractive color filter
defined in claim 8, wherein said second and third optical
mediums are composed of the same solid material, whereby
 n_2 is equal to n_3 .

10.

10. The diffractive subtractive color filter
(Figs. 3a, 4) defined in claim 7, wherein said first
region is situated in between said second and third
regions and completely separates said second region from
said third region so that there is no contact between said
second and third regions.

15

20

25

30

35

-31-

1 11. The diffractive subtractive color filter
 (Fig. 3) defined in claim 5,
 wherein said third optical medium (304) and all
5 third regions of said first optical medium (306) are
 comprised of a diffraction grating formed by a given
 periodic waveform having said period d and a given
 amplitude a embossed as a surface relief pattern in a
 solid material having said index-of-refraction n_3 ,

10 wherein all said first regions of said first
 optical medium are comprised of solid material having said
 index-of-refraction n_1 deposited on at least a portion of
 said surface relief pattern, said deposited material
 having predetermined thickness and shape characteristics,
 and

15 wherein said second optical medium and all said
 second regions of said first optical medium are comprised
 of an overcoat of solid material having said
 index-of-refraction n_2 which covers said surface relief
 pattern and said deposited material, said overcoat filling
20 in all those portions of said first optical medium not
 occupied by said first and third regions.

25

30

35

-32-

1

5

12. The diffractive subtractive color filter defined in claim 11, wherein the ratio of the index-of-refraction n_1 to the larger of the indices-of-refraction n_2 and n_3 is at least 1.5.

13. The diffractive subtractive color filter defined in claim 11, wherein both the indices-of-refraction of n_2 and n_3 have a value of substantially 1.5,

10

wherein the index-of-refraction of n_1 has a value in the range of 1.7-5,

15

wherein the period d of said periodic waveform has a value in the range of 0.1-0.45 micrometer, wherein the amplitude a of such periodic waveform has a value in the range of 0.1-0.2 micrometer, and wherein the wavelength spectrum of said polychromatic illuminating light includes free space wavelengths within the range of 0.4-0.7 micrometer of visible light.

20

25

30

35

-33-

1 14. The diffractive subtractive color filter
defined in claim 11, wherein said periodic waveform of
said diffraction grating is a rectangular waveform.

5 15. The diffractive subtractive color filter
defined in claim 14, wherein said first regions are
comprised of respective layers of said deposited material
covering respectively the crests and the troughs of said
rectangular waveform.

10 16. The diffractive subtractive color filter
defined in claim 15, wherein said deposited layer-covering
said crests and covering said troughs of said rectangular
waveform both have substantially the same thickness c.

15 17. The diffractive subtractive color filter
defined in claim 16, wherein the value of c is smaller
than the value of a.

20 18. The diffractive subtractive color filter
defined in claim 16; wherein the value of c is larger than
the value of a.

25

30

35

-34-

1

19. The diffractive subtractive color filter defined in claim 15, wherein the deposited layer covering the troughs of said rectangular waveform has a thickness which is larger than the thickness of the deposited layer covering said crests but is smaller than the sum of the amplitude a of said rectangular waveform and the thickness of the deposited layer covering the crests of said rectangular waveform.

10

20. The subtractive diffractive color filter (Fig. 5) defined in claim 14, wherein said first regions are comprised of L-shaped layers of said deposited material that cover the crests and a certain one of the two sides of said rectangular waveform, the deposited layers covering said crests and covering said certain one of the two sides of said rectangular waveform having respective thicknesses.

15

25

30

35

-35-

1 21. The subtractive diffractive color filter
(Fig. 7) defined in claim 11, wherein said predetermined
waveform of said diffraction grating is a triangular
waveform.

5 22. The diffractive subtractive color filter
defined in claim 20, wherein said first regions are
comprised of layers of deposited material covering a
certain one of the sides of said triangular waveform.

10

15

20

25

30

35

-36-

1 23. method for utilizing a diffractive
 subtractive filter comprising a first optical medium
 having a thickness t between two opposite faces thereof,
 said first optical medium having a varying
 5 index-of-refraction which divides said first optical
 medium into juxtaposed periodic diffraction elements of a
 diffractive structure having a period d which extends in a
 direction substantially parallel to said faces and
 perpendicular to a given direction, so that each one of
 10 said diffraction elements extends along a direction
 substantially parallel to said faces and parallel to said
 given direction, the spatial distribution of said varying
 index-of-refraction within the volume of each diffraction
 element dividing that diffraction element into a plurality
 15 of separate three-dimensional regions of certain-valued
 relatively higher and relatively lower
 indices-of-refraction, each of said regions having a
 specified size and shape, whereby the entire volume of
 each diffraction element has an average
 20 index-of-refraction \bar{n} , said average index-of-refraction \bar{n}
 being larger than the index-of-refraction n_2 of a second
 optical medium contacting one of said opposite faces and
 also larger than the index-of-refraction n_3 of a third
 optical medium contacting the other of said opposite
 25 faces, and at all free space wavelengths λ within at least
 a sub-interval extending from a minimum wavelength λ_1 up
 to a maximum wavelength λ_2 , the following relationships
 are true for all angles of incidence of illuminating light
 in a range between zero and α with respect to a plane
 30 normal to said faces and parallel to said given direction:

$$\bar{n} > \max(n_2, n_3) \quad (1)$$

$$d \max(n_2, n_3) < \lambda_2 \quad (2)$$

$$d(\bar{n} + 1) > \lambda_1 \quad (3)$$

$$4\bar{n}t \geq \lambda_1 \quad (4)$$

-37-

1 where $\max(n_2, n_3)$ is generally the larger of n_2 and n_3 ,
but, in the special case where $n_2 = n_3$, is n_2 or n_3 ;
said method including the steps of:

5 (a) illuminating said filter with diffuse
polychromatic visible light which includes said
wavelengths extending from $\lambda_1 < \lambda < \lambda_2$ of said
sub-interval;

10 (b) viewing a first color hue of the light
reflected from said filter at a first given value of angle
 α_1 in a range between zero and α , and

15 (c) viewing a second color hue different from
said first color hue of the light reflected from said
filter at a second given value of angle α_2 in said range
between zero and α which is different from said first
given value of angle α_1 .

24. The method defined in claim 23, wherein α
has a value of 90° , and

20 wherein step (b) comprises the step of viewing
said first color hue at a first given value of angle α_1 in
a range between 0° and 90° , and step (c) comprises the
step of viewing said second color hue at a second given
value of angle α_2 in said range between 0° and 90° .

25 25. The method defined in claim 23 or 24,
wherein step (a) comprises illuminating said
filter with diffuse white light having a wavelength
spectrum extending from 0.4-0.7 micrometer.

30

35

-38-

1 26. An article (Fig. 8) comprising an
authenticated item of sheet material which is subject to
counterfeiting and an authenticating device (800) bonded
to said item, characterized in that said device includes
5 (as, for the example, Fig. 3):

10 a substrate (304) bonded to said sheet material,
said substrate being composed of a material having an
index-of-refraction n_3 , said substrate having a
diffractive structure including at least one diffraction
grating embossed as a surface relief pattern on an area of
the viewable surface of said substrate, each diffraction
grating having a line direction formed by a given periodic
waveform having a period d perpendicular to said line
direction and a given amplitude a embossed in said
15 viewable surface,

20 a solid material (306) having an
index-of-refraction n_1 larger than n_3 deposited on at
least a given portion of each period of each embossed
diffractive grating, said deposited material on said given
portion of each period having the same predetermined
thickness and shape characteristics such that a maximum
overall thickness of size t of such diffraction grating in
a direction normal to said viewable surface is formed by
the sum of the amplitude a of that embossed diffraction
25 grating and the thickness of said deposited material of
that diffraction grating, and

30 an overcoat (308) composed of a solid material
having an index-of-refraction n_2 smaller than n_1 which
covers said relief pattern and said deposited material,
said overcoat filling in all of the space within said
overall thickness t of each diffraction grating not
already occupied by said substrate material or by said
deposited material,

35 wherein at all free space wavelengths λ within a
sub-interval extending from a minimum wavelength λ_1 up to
a maximum wavelength λ_2 of illuminating light, the
following relationships are true for all angles of
incidence of said illuminating light in a range between

-39-

1 zero and α with respect to a plane normal to said variable
 surface and parallel to said line direction:

$$\bar{n} > \max(n_2, n_3) \quad (1)$$

$$5 d \max(n_2, n_3) < \lambda_2 \quad (2)$$

$$d(\bar{n} + 1) > \lambda_1 \quad (3)$$

$$4 \bar{n} t \geq \lambda_1 \quad (4)$$

10 where \bar{n} is the average index-of-refraction of the substrate material, the deposited material and the overcoat material within the volume of the space occupied by the overall thickness t of each diffraction grating,
 15 and where $\max(n_2, n_3)$ is generally the larger of n_2 and n_3 , but, in the special case where $n_2 = n_3$, is n_2 or n_3 , whereby the polarization and color characteristics of the spectra of the reflected light from each diffraction grating of said authenticating device
 20 viewed at a viewing angle between zero and α is determined by the value of the viewing angle and by the set of parameters including (1) the values of the indices-of-refraction n_1 , n_2 and n_3 , (2) the given waveform of that diffraction grating (3) the predetermined thickness and shape characteristics of the deposited material of that diffraction grating and (4) the respective physical values of the period d , the amplitude a and the overall thickness t of that diffraction grating.

25 27. The article defined in claim 26,
 30 wherein the value of α is 90° .

-40-

1 28. The article defined in claim 26,
wherein said diffractive structure (Fig. 9)
includes a first of said diffraction gratings (900)
occupying a first portion of the area of said diffractive
5 structure and a second of said diffraction gratings (902)
occupying a second portion of the area of said diffractive
structure, and

10 wherein at least one of said parameters of said
first of said diffraction gratings is substantially
different from that of said second of said diffraction
gratings thereby to provide substantially different
polarization and color characteristics of the spectra of
the reflected light from said first and second diffraction
gratings for all viewing angles between zero and α .

15 29. The article defined in claim 28, wherein
said first and second portions of the area of said
diffractive structure are contiguous with one another.

20 30. The article defined in claim 29, wherein
said second portion of the area surrounds the first
portion of the area of said diffractive structure.

31.. The article defined in anyone of claims 28,
29., and 30, wherein said one parameter is the value of d.

25

30

35

1/5

Fig. 1

Fig. 2

Fig. 3

Fig. 3a

Fig. 3b

Fig. 3c

Fig. 3d

Fig. 3e

Fig. 4b

Fig. 4c

Fig. 5

Fig. 5a

Fig. 5b

Fig. 5c

Fig. 6a

Fig. 6b

Fig. 7

Fig. 8

Fig. 9

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US82/00381

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols are used, indicate all)¹

According to International Patent Classification (IPC) or to both National Classification and IPC
 INT. CL. 5 G02B 27/44
 U.S. CL. 350/162R

II. FIELDS SEARCHED

Minimum Documentation Searched⁴

Classification System	Classification Symbols
U.S.	350/162R, 162SF, 166

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched⁴

III. DOCUMENTS CONSIDERED TO BE RELEVANT^{1,2}

Category ³	Citation of Document, ^{1,4} with indication, where appropriate, of the relevant passages ^{1,7}	Relevant to Claim No. ^{1,8}
Y	US, A, 4,130,347, Published 19 December 1978	1-31
Y	US, A, 4,155,627, Published 22 May 1979	1-31
Y	US, A, 4,057,326, Published 08 November 1977	1-31
Y	US, A, 4,029,394, Published 14 June 1977	1-31
Y	US, A, 4,277,138, Published 07 July 1981	1-31
Y	US, A, 3,542,453, Published 24 November 1970	22
Y	US, A, 3,858,977, Published 07 January 1975	26-31
A	US, A, 3,957,354, Published 18 May 1976	
A	US, A, 3,759,604, Published 18 September 1973	
A	US, A, 4,255,019, Published 10 March 1981	
A	US, A, 3,911,479, Published 07 October 1975	

¹ Special categories of cited documents:^{1,3}^{"A"} document defining the general state of the art which is not considered to be of particular relevance^{"E"} earlier document but published on or after the international filing date^{"L"} document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)^{"O"} document referring to an oral disclosure, use, exhibition or other means^{"P"} document published prior to the international filing date but later than the priority date claimed^{"T"} later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention^{"X"} document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step^{"Y"} document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art^{"&"} document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search²:

19 August 1982

Date of Mailing of this International Search Report³

03 SEP 1982

International Searching Authority⁴:

ISA/US

Signature of Authorized Officer¹⁰George P. Chambers
George P. Chambers

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.