ECE4634 Digital Communications Fall 2007

Instructor: R. Michael Buehrer

Lecture #11: Pulse Shaping

Pulse Shaping

 The spectrum of the signal is dependent on the <u>spectrum of the</u> <u>pulse</u> used, the pulse rate as well as the <u>autocorrelation</u> of the data.

$$P_{x}(f) = \frac{F(f)^{2}}{T_{s}} \sum_{k=-\infty}^{\infty} R(k) e^{j2\pi f k T_{s}}$$

- Often we wish to control aspects of the transmission bandwidth.
- We saw last time how we can control spectral characteristics using different line codes
 - controls the autocorrelation and pulse duration
- Now we turn look at controlling spectrum by controlling the shape of the pulse used.
- This is termed pulse shaping and allows us to maximize data rate within a given bandwidth
- What to read Sections 6.3 and 6.4

- In this lecture we will demonstrate that
 - pulse shaping allows us to control the spectral parameters of the signal
 - there are limits to what can be done with a pulse that is limited to duration T
 - we can reduce bandwidth by allowing the pulse duration to be more than the time between consecutive pulses (T) but in general this leads to ISI
 - a family of pulses termed Nyquist pulses or raised cosine pulses provide minimum bandwidth with zero ISI

- The Federal Communications Commission (FCC) and many system designers typically specify bandwidth constraints using the spectral mask.
- A spectral mask describes the maximum power allowed within a certain bandwidth

Design Criteria for Pulse Spectrum

- Two important spectral characteristics
 - First null bandwidth
 - Size of sidelobes
- These will determine how well the pulse fits within the mask at a given data rate
- Would like to "round off the corners" of pulses to avoid excessive spectral occupancy

Rectangular Pulse

Time Waveform

Magnitude Spectrum

First Null BW: 1/T = R_s (symbol rate)

• First Sidelobe: 13.6 dB down

Peaks equal
$$\frac{2}{\pi n}$$

Located at
$$fT = \frac{2n+1}{2}$$

Example Signal

Example signal

Example Spectrum

Triangular Pulse

Magnitude Spectrum

• First Null BW: $2/T = 2R_s$

First Sidelobe: 26 dB down

Example Signal

Example signal

Example Spectrum

Sinusoidal Pulse Shape

• First Null BW: $1.5/T = 1.5R_s$

First Sidelobe: 22 dB down

Example Signal

Example signal

Example Spectrum

Truncated Gaussian Pulse Shape

Time Waveform

Magnitude Spectrum

• First Null BW: 1.5/T = 1.5Rs

Largest Sidelobe: 31 dB down

Example signal

Example Spectrum

Elongating the pulse

• In order to reduce the bandwidth further, we must elongate the symbols to beyond one symbol duration.

However, if pulses overlap they may produce inter-

Example 11.1

 We allow the pulse to go beyond one symbol duration (exponential pulse)

• First Null BW: 1/T = 1R_s

First Sidelobe: > 40 dB down

Example - continued

Unfortunately, this leads to inter-symbol interference

Nyquist's First Criteria for Zero ISI

- Overlapping pulses will not cause intersymbol interference if they have zero amplitude at the time we sample the signal.
- Mathematically we desire:

$$h(kT_s) = \begin{cases} C, & k = 0 \\ 0, & k \neq 0 \end{cases}$$

- where h(t) is the pulse shape, k is an integer and T_s is one symbol duration
- What is one pulse that we have examined that exhibits this property?
 - A Sinc pulse

Nyquist's First Criteria for Zero ISI

 This requirement is equivalent to having a transfer function

$$H(f) = \begin{cases} rect \left(\frac{f}{2B_o} \right) + Y(f) & |f| < 2B_o \\ 0 & else \end{cases}$$

where $B_o = R_s/2$ (i.e., ½ the symbol rate) and Y(f) is a real function that is even symmetric about *f*=0 and odd symmetric about $f=B_0$.

for proof

Sinc pulses

Note that at sampling times adjacent pulses equal zero

No Inter-Symbol Interference (ISI) if we are using sinc pulses.

RM Buehrer Virginia Tech Fall 2007

- Use of sinc(t/T_o) pulses does allow for zero ISI, however, it require filters in frequency that are impossible to implement ("brick wall filters") since they are non-causal.
 - We can make them causal by truncating the pulse and adding a delay
- These pulses have the minimum bandwidth possible $(B = B_0 = R/2)$.
- We can use (modestly) more practical filters and still satisfy Nyquist's zero ISI criteria if we allow the use of more bandwidth
- One set of such filters are Raised-Cosine filters or in the time domain Raised-Cosine pulses

Raised Cosine Pulse Family - Satisfies the Nyquist Criteria

Frequency Domain:

$$H(f) = \begin{cases} \frac{\sqrt{E}}{2B_o} & 0 \le |f| < f_1 \\ \frac{1}{2} \frac{\sqrt{E}}{2B_o} \left[1 + \cos \left(\frac{\pi(|f| - f_1)}{2(B_o - f_1)} \right) \right] & f_1 \le |f| \le 2B_o - f_1 \\ 0 & |f| > 2B_o - f_1 \end{cases}$$

- $B = 2B_o f_1$ is the absolute bandwidth of the filter
- B_o and f_1 are related through a which is termed the roll-off factor $a_0 1 \frac{f_1}{f_1}$
- Time Domain: $h(t) = F^{-1} \{ H(f) \} = \sqrt{E} \left(\frac{\sin(2\pi B_0 t)}{2\pi B_0 t} \right) \cdot \left[\frac{\cos(2\pi \alpha B_0 t)}{1 (4\alpha B_0 t)^2} \right]$

$$= \sqrt{E}\operatorname{sinc}(2B_0t) \cdot \left[\frac{\cos(2\pi\alpha B_o t)}{1 - (4\alpha B_o t)^2} \right]$$

Spectrum of Raised Cosine Pulse

• α = 0 corresponds to sinc() function and "brick wall filter"

- f_{Δ} = excess bandwidth of the filter since it represents the bandwidth beyond the minimum.
- As α increases, f_{Λ} increases

RM Buehrer Virginia Tech Fall 2007

$$\begin{array}{cccc}
\alpha = 0 & \longrightarrow & B = B_o = R_s / 2 \\
\alpha = 1 & \longrightarrow & B = 2B_o = R_s
\end{array}$$

Pulse Design for No ISI Raised Cosine (α =0)

Note that at sampling times adjacent pulses equal zero

No Inter-Symbol Interference (ISI) if we are using RC pulses.

Note that RC pulses with $\alpha = 0$ are sinc pulses

Raised Cosine Pulse - Time Domain

$$T_s = 1/2B_o$$

Raised Cosine Pulse - Frequency Domain

RM Buehrer Virginia Tech Fall 2007

Bandwidth of Raised Cosine Pulses

For PCM system:

$$\mathbf{B} = (1 + \alpha) \cdot f_s \cdot n/2 \, \mathbf{Hz}$$

- $0 \le \alpha \le 1$ is a parameter called "roll-off factor"
- Special cases:
 - α = 0 is just a *sinc(.)* function
 - α = 1 is the largest possible value
 - α = 0.35 was used in the old U.S. Digital Cellular (IS-54/136) standard

Time Domain

Frequency Domain

In class drill

Implementation of Raised Cosine Pulse

- Can be digitally implemented with an FIR filter
- Analog filters such as Butterworth filters may approximate the tight shape of this spectrum
- Practical pulses must be truncated in time
 - Truncation leads to sidelobes even in RC pulses
 - The larger the value of α , the less effect that a given truncation length has.
- Sometimes a "square-root" raised cosine spectrum is used when identical filters are implemented at transmitter and receiver
 - We will discuss this more when we talk about "matched filtering"

Truncated Raised Cosine Pulses

 Truncating raised cosine pulse to finite duration results in some side-lobes

- $\alpha = 0.25$
- Truncated to 10, 4, and 2 symbols
- For 10-symbol long approximation, we see no side-lobes within 50dB
- As truncation length gets smaller, sidelobes rise
- Larger truncation length requires larger delay to make pulse causal.

Analog and Digital Communications

Conclusions

- Reducing the bandwidth of the transmit signal is desirable to improve spectral efficiency (i.e., get the most bits/sec in the smallest bandwidth)
- Elongating pulses is a good way to reduce bandwidth
 - Elongating pulses indiscriminately will introduce ISI
- Intelligent pulse design can reduce bandwidth without this penalty
 - Nyquist Criterion
 - Sinc pulse and Raised Cosine pulse satisfy Nyquist Criterion
- Channel conditions can also reduce bandwidth further resulting in channel-induced ISI
 - We will discuss this more next time

ECE4634 Appendix

Proof of Nyquist Filter Frequency Domain Characteristics

Nyquist's First Criteria for Zero ISI

 Zero ISI in the time domain is equivalent to having a transfer function

$$H(f) = \begin{cases} rect \left(\frac{f}{2B_o} \right) + Y(f) & |f| < 2B_o \\ 0 & else \end{cases}$$

where $B_o = R_s/2$ (i.e., ½ the symbol rate) and Y(f) is a real function that is even symmetric about f=0 and odd symmetric about $f=B_o$.

$$| Y(-f) = Y(f) | f | < 2B_o$$

$$| Y(-f + B_o) = -Y(f + B_o) | f | < B_o$$

34

$$h(t) = \int_{-2B_o}^{-B_o} Y(f)e^{j\omega t}df + \int_{-B_o}^{B_o} (1+Y(f))e^{j\omega t}df + \int_{B_o}^{2B_o} Y(f)e^{j\omega t}df$$

$$= \int_{-B_o}^{B_o} e^{j\omega t}df + \int_{-2B_o}^{2B_o} Y(f)e^{j\omega t}df$$

$$= 2B_o \left(\frac{\sin(2\pi B_o t)}{2\pi B_o t}\right) + \int_{-2B_o}^{0} Y(f)e^{j\omega t}df + \int_{0}^{2B_o} Y(f)e^{j\omega t}df$$

Via a change of variables:

Tild a change of variables:
$$f_{I} = f + B_{o}$$

$$f_{I} = f + B$$

35

$$h(t) = 2B_o \left(\frac{\sin(2\pi B_o t)}{2\pi B_o t} \right) + j2\sin(2\pi B_o t) \int_{-B_o}^{B_o} Y(f_1 + B_o) e^{j2\pi f_1 t} df_1$$

We can see that the above equation is zero at $t=n/(2B_0)$ for n not equal to zero.

One pulse shape that satisfies this equation is

$$H(f) = \begin{cases} rect\left(\frac{f}{2B_o}\right) & |f| < 2B_o \\ 0 & else \end{cases}$$
 \tag{Y(f)=0}

Or $sinc(t/T_o)$ in the time domain