UNIT-V UNDECIDARILITY Recursive L Recursively Enumerable Languages; Algorithm: After some finite no. of steps, always halts of Procedure: May or maynot halt. tx: Giun'n, is n prime? -> -Algo Gliven 'n', is na perfect number ? -> Algo Given 'n', is there a parfeit number > n.? -> Procedure (running 1 / more trues) Recurrine Alanguage: A language & is said to be recurring, if There & an algorithm to determine whether the going string w belonge to ke or not. Recurrinely Drumenable Kanguage: A language & ?s said to be recurrinely enumerable of there is a procedure to determine whether wEN or not. - Consider TM M & string w. There are 3 possible outcomes 1. I'M halt to accept the string. 2. Try half I reject the string 3. TM numer halts (runs forever) Remeive Language: - A language & is said to be recurrère there exists a TM M such that I strings w. (3) WEX, the TM halts of accepts the string. (i) wed, the TM halts of refer the string. Recursive languages are called Turing decidable languages. Recursively commenable danguage: A language & is said to be recursively enumerable if there exists a TM M such that & strings w, is of WEL, the TM halt's Laccepts the string. (ii) It work, the TM either halts 4 rejects the strong

model any mechanical computer with a TM. some TM corresponding to every computable problem. . If there is no TM that decides problem P, then there no algorithm that solver problem P. Kanguage that is not recurrinely Enumerable: - Leading of The Biagonal Gat danguage (Ls). kneeding of TM: -A TM can be encoded as a binary string. To represent a TM M= (Q, E, T, d, 20, 4, F) as a binary string, we align integers to 1. Hates 2. Tape Symbols 3. Directions. Q= {9, 92, ... 9ny Assume, Stout state = 91 & Final State = 90. E= {0, 14, 1 = {0, 1, \$}. We shall assume, the tope symbols -: X140, X2401, X340 41 al X1, X2, X2. D= { LIRY : For L => D, & R => D2 S(91, 21) = (9k, Xe, Dm) W A IVIT A This rule can be encoded as bomary string. 0'10110k10l10m ; 1-> separator Code for entire Turing Machine: 96 Cilicalier - Monnillen; 11 -> seperator. 4 C1, C2, C3,... Cn are code for transition rules. i.c.

d(4,6)= (90,4, R): 0'10'10'103102' d(46,1)= (96,1,12) : 0610210610210 S(96,4)=(93,4,L): 061031031010 J(93,1)= (94,4,L): 03/02/04/03/01 &(94,1)=(95, 16,L) : 0410-10310310' 1=2 S(ap b) = (as, b, R) ! D4103105102102. B=3 S(as, b)= (az, LL): 05/02/02/02/09 - . Code for entire TM: - (A valid binary code in TM starts with 0). -> streny TM can be emoded as binary string. JAM is a TM 4 w is an Propert string then we shall consider a code pair, CM, W> <M, W> = Code for TM (11 W Diagonalitat? Kanquage (K.); Mi is the 18th Tmachine whose Binary code is we If we is not a valid code then we accepaisume that Mi only has I state of no transitions. 4(Mi) = \$

Consider an infinite Boolean Matrix:	
D WI WZ WZ WY Wr.	
M, 1 0 1 1 0	
M ₂ 1 0 0 1	
71 Ms 0 1 1 0 1	
My 0 1 0 1 1	
Mr 0 0 0 0	
Marine visita or los is al	
when is properly to the same and the same	
(i,j) th entry will be i', if its TM acepts the ith string.	
Otherwise, D'	
From Lagoral elements, M. accepts W, lly, Mr doen't accept Wr.	
Diagonalizat? Materix is the strings which correspond	
to zero is diagonal. i. e	
de = {we we Ps not accepted by Mil	
Jaking all the strings: In Siagonal mater which correspond	
to 1 is	
Vi = { Wil we is accepted by Mely	
Theorem: of is not recursively enumerable. That is,	
There's no TM -that accepts &!	
Froof: Ouppose of is recursively enumerable, i.e;	
as accepted by M:	
Now, check whether we is in it	
Care-1: of we be in de.	
We accepted by Me.	
But by definitely, we is not in by.	
By proof of Contradiction, we can say that do is	
By proof of Contradiction, we can say that do is not recursively enumerable by case-4.	
Scanned by CamScan	ne

Case-2: Of we is not in Va. - then we isn't accepted by M: But by definit, if we ren't accepted by Mr. I man Mi Ex. But : there is contradiction. in our assumption. ... There is no TM that accepts Ki. -. Ka le not recurrively enumerable. An Underidable Froblem that Re Recurrently Enumerable: A language it is called decidable if it is recurrère. t is called Undecidable if it isn't recurring. We have 3 clauses of languages. 1. Remussive Lang. 2. Vanguages that are Recuerchely enumerable but not remarke. 3. Mon- recursively enumerable languages. (Ls) Mon-Recumely Enumerable There's no TM that Recursively bournerable accepts he to du But not recursive decidable. In Complement of Universe danguage). The Universal Language (Kis): Contains a code pair such that M accepts w. Ku = fM, w> / M accepts w/ where, Mle TM & w le a strong of <M, w> le a binary Lu = { < M, w> | M down't accept wy

accepted by a TMU'called the Universal TM. Universal TM is a TM, that can simulate any other TM with including itself. TM U has 3 topes. FL First tape contains <M, w> code par Glalle llalin - 2nd-tape Porthally, contains 'D', Contains info about the state. 3rd tape corrains string w! Used for Simulat? 'O' represents - the start state. (on 2nd tape). Suppose after sometimes, let 2nd tape has 0000 & FC & pointing to 11 in 3rd tape. i. That means we're reading in 1994 & are reading 1. =(00).. It'll check whithey the block starts with 04102. Undecidability of the Universal Language: du is not recurbire. Suppose Ly Ps receiver, then to be also receivening. If Ly is recounse, then Ly is also recueunce. But WKT, of is not recurring enumerable. i. There's a contradict of our assumption that the Ku is mulin W doem't accept w recursive. cicup touters Ist down night w - refert -Shilton Mallept W. Scanned by CamScanner

tolliers the Les depunds on du by TM, The also Perit accepted by TM, The accepted.
PCP (MPCP: Introduced by End Poul
The 18th must be of equal length.
Indo A B Jor each 1; the performance of PCP has a wind with the say that, this enstance of PCP has a grown of integers, solution of there is a sequence of integers, and the torm 1, 12, in (m)
tuch that wi, we wis Wim = xi, xi2 Xim The solution is 1,12 Im
3 Not 18 Mi 10 111 1 1 10 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1
1011 10 late can't contatinate with 2 3 10 0 mas as then, we contatinate with 2 : Can contatinate with 1. can't be there
Then, $W = 1011111$, $\chi = 10111$ i. Le Salle 219
We cont concalination 1 2 43. 1=1.
Hour concaunate 3.
-'. Sol = 2113.

```
us
2. Solut = (2113)(2113)*
     w?
          101
     10
     011
             W= 10101
     101
  ic 133 11
  W= 10101101
           , x=101011011
 7=1333----
 .. The Instance of PCP doesn't have
    BANA
     No
                     ab
    ab abbb
                  W's ab
    baa
                W=abbbab, n=abbba
             w = abbbabb, x = abbbabbb.
        122143
           w=abbbabbbaa, x=abbbabbbaa.
 124
 Web, n=bbb
 ?= 4140g
 w-bbbab, x=bbba
E 414 1000 000
 webbbabb , nebbbabbb
       webbbahhhaa, x=bbbabbbaa
```

Scanned by CamScanner

Modified Post Correspondence Problems (MPCP):
Detis: An Entance of MPCP constité of leste of strênies over
We no be a corresponding pair,
or more integers "12- Im (m20) such that
The solo & Pin = 1, 1/2 Pin = 1, 1/2 1/2
An empty Rest can be so soll if we = x;
Reduing MPCP to PCP: 909 10 motors soft to
For every instance of MPCP, we can construct an instance of PCP.
Let us consider an instance of MPCP.
A B We can construct an instance
1 W, X, C D
We M. D. W.
dength dike a data dela y, & &
andderstand of the density = R+2.
For is to k
Alphabet is [Sufx, \$4]
For 221 to k.
- Let ye be we with a x after each symbol of we-
Scanned by CamScanner
Scamed by Cambeanner

- det ti be ni with a 'x' before each symbol of wi. 40= xy, 4 70= 21 4 yr=1= \$ 4 7r+1 = ₩-45 MPCF So M= 231 (PCP) 00110110 00110 2 0011 00 00110110110 001101101100 2 0110 110 P Zī For PCP instance to have a solo, we must start with index O (io) of end with iku. If the constructed PCP has a rol Theo, the Prestance of MPCP also how a roll, inch your young year = \$0 \$1, -- other \$1 * W = *1 *1 *0* 1 = 4/x/x0x/ x/xD 1201 *1 *1 * 0 * 0 * 1 * 0 * If we remove all 'x's and & from string, To, II. .. Lim Xx11 You'll get a string NTM: -- nim The remove all 's's and \$' from string, you you yim year, then we'll get string wiwi ... wim