FreifunkFinder- An Android Application to Find the Closest Freifunk Wi-Fi Nodes

CN lab – WiSe 2015/2016

Govind Singh (govind.singh@stud.tu-darmstadt.de)
Puneet Arora (puneet.arora@stud.tu-darmstadt.de)
Sooraj Mandotti (sooraj.mandotti@stud.tu-darmstadt.de)

Fromunkfingor

*Logo adapted from : https://www.iconfinder.com/search/?q=wifi

Freifunk

A non-commercial initiative for <u>free</u> wireless networks.

- Users share their internet access.
- Decentralized mesh network.

Manchester

Amsterdam

Lenden

Frankfur(7)

Praha

Paris

Genêve

Image Source : https://freifunk.net

A part of global movement for free infrastructure.

Motivation

- Problem: Freifunk Wi-Fi nodes available all over Darmstadt, however user unaware of Wi-Fi nodes in vicinity. Solutions available but:-
 - Location and height parameters often ignored
 - Nodes displayed on a static map
 - Not so user-friendly
- Our Solution: An augmented reality Wi-Fi finder Android application to facilitate direction-oriented & user-friendly displays

Implementation- Block Diagram

- 💠 UI Layer -
 - Sensor & Location managers
 - Camera View
 - Overlay View
- Application Logic Layer -
 - User-Node distance calculation
 - Sorting, Filtering based on user configuration
- Database Layer -
 - Interactions with SQLite
- Common Utilities -

Implementation - Sensors and Location

Sensor Manager

- Uses Accelerometer and Compass
- Sensor data smoothing:
 - >> Averaging over last 5 sensor values
 - >> Exponential smoothing of calculated new value newValue = oldValue + ex.coefficient *

 (newValue - oldValue)

Image source: http://www.sitepoint.com/how-to-use-orientation-on-your-mobile-sites/

Location updates

- Register and listen for both GPS and Network providers
- Preference to GPS
- Time based frequent update for more accuracy

Image source: http://logodatabase. net/verve+mobile+logo

Implementation - Views

FrameLayout for layering of views

Camera View

- Camera content on a custom SurfaceView
- SurfaceHolder Callbacks for implementing camera related steps

Image source: http://stitchroute82.exteen.com/20130423/online-learning-course-of-surveillance-webcams-in-schools

Overlay View

- Device's orientation calculation
- Determining Wi-Fi nodes bearing and elevation from device's current orientation
- Overlaying Wi-Fi nodes on a custom view

Image source: http://www.zagg. com/us/en_us/invisibleshield/glass-screenprotector

From User to Node - Distance calculation

- Also called Great-circle distance.
- Calculated using Haversine formula.

Let ϕ_1 , λ_1 and ϕ_2 , λ_2 be the geographical latitude and longitude of two points 1 and 2, and $\Delta\phi$, $\Delta\lambda$ their absolute differences; then $\Delta\sigma$, the central angle between them, is given by:

$$\Delta \sigma = 2 \arctan \sqrt{\sin^2(\frac{\Delta \phi}{2}) + \cos \phi_1 \cdot \cos \phi_2 \cdot \sin^2(\frac{\Delta \lambda}{2})}$$

The distance d, i.e. the arc length, for a sphere of radius r and $\Delta \sigma$ given in radians

$$d = r\Delta\sigma$$

Image and Formula Source: https://commons.wikimedia.org/wiki/File:Law-of-haversines.png

Image Source: https://commons.wikimedia.org/wiki/File:
Great circle hemispheres.png

User Interface

Rendered Node Information

- Node is online

- Node is offline

- Altitude information is correct

No altitude information available

All above icons vary in size based on if user is closer or farther from the node.

Summary & Conclusion

- Successfully developed an android application that displays the available Wi-Fi nodes in an augmented reality fashion.
- Considered all three of the location parameters (latitude, longitude and altitude).
- Dynamically selects GPS/Network location provider based on availability.
- Provided user configurable parameters.
- Flexible design for future extensions.

Future extensions

- Dynamic Wi-Fi strength rendering
- Sorting based on Wi-Fi strength
- Scope to add more locations

Thank you for your attention! Questions?