Ejercicio 1. Sea γ una fórmula proposicional del lenguaje $\{\neg, \rightarrow\}$ tal que ninguna de sus variables proposicionales aparece más de una vez. Demostrar que γ es una contingencia.
Inducción en complexidad:
(B): PEFORM
f [:
1) Y = ¬Y
TH ME E PHOLE HAN E THE STAN / NE : Just
quq: Fryrky => rk 79 => r'k 19] J for HI
2) Y = Y -> Y
quq: In/N=4=>NF4->X=)NFX) & NF4
quq: Jr/r/ + 4 => v/ + 4 -> v = - (-4 x x) => v = 4 x } Vale pm &
Como en phi no aparece la misma variable proposicional mas de una vez, entonces puedo elegir 2 valuaciones independientes que hagan verdad a psi y a gamma. Esas valuaciones existen por HI y ademas al no compartir variables proposicionales no se molestan entre si y entonces combinando las 2 valuaciones conseguimos la valuacion mega maestra que no satisface a phi.
ta vatuación mega maestra que no satisface a pin.

Lestructura que tiene como dominio los números naturales y el símbolo + se interpreta como la suma usual. Probar que el conjunto de los números naturales que tienen resto 2 en la división por 3 es definible.
U: < IN , + 2 >
$\Psi(x) = (\overline{f}_y)(\underline{f}_z) \left[3*(y) = (x+z) \wedge \Psi_1(z) \right] , 3*(x) = x + x + x$
$\Psi_{0}(x) = x + x = x$ $\Psi_{1}(x) = (\forall y, z) \left[\neg \Psi_{0}(y) \wedge \neg \Psi_{0}(z) \right] \rightarrow \neg (y + z = x) \int_{x} \neg \Psi_{0}(x)$
$(\sqrt{7}, \frac{1}{2}) = (\sqrt{7}, \frac{1}{2}) = (\sqrt{2}, \frac{1}{2}) = (\sqrt{2})$
K = close de modelo cuys univers en un injuto de moturoller que tiener ruto 2 modelo 3.
$M \in K \Leftrightarrow M, V \models I$
$M \neq l \Leftrightarrow M, v \models (\forall x) [2=3(x)] \Leftrightarrow Pointour a M \models 2=3(a)$
⇔ Pour toly o/ M, v[x→0] = (∃x, z) [3*(y)= (a+z) ∧ 4,(z)]
(a) Por todo a, exiten b gc/M, v[x+a, y+b, z+c] = 3*(b)= (a+c) , Y, (c)
@ Por tolo a, exite byc/M, v = 4,(c) y M, v = 5+6+6= a+c
(For tools a, exiter by c, c vole 1 y vole 3.6 = a+c (vole 36 = a+1)
(Vole 36 = 0 +1)

Ejercicio 2. Sea $\mathcal L$ un lenguaje con igualdad y un símbolo de función binario +. Sea U la

 $M \vee \models B_2 \hookrightarrow (1, \vee \models (\forall x)) [G(x) \hookrightarrow \neg B(x)]$ €) Pour tolo a, M, v [x→a] = G(a) of M, v [x+a] ≠ B(a) $Q = M, V[X \rightarrow a] \neq G(a) \rightarrow M, V[X \rightarrow a] = B(a)$ Para todo a, vale que a es gris y vale que a no es blanco. O vale que a es blanco y no es gris. (Verdadero mirando el modelo) Por toto a, b M, v[≈→a, γ→b] ≠ E(a,b) a M, v = [s(a) ∧ B(b)] v[s(b) ∧ B(a)] ≈ f_m A_b, No vale que a y b están conectados o vale que a y b tienen distinto color. (Verdadero mirando el modelo) $oldsymbol{\mathsf{L}}$) $oldsymbol{\mathsf{SQB}}$ $oldsymbol{\mathsf{NS}}$ $oldsymbol{\mathsf{NS}}$ $oldsymbol{\mathsf{NS}}$ $oldsymbol{\mathsf{MS}}$ $oldsymbol{\mathsf{MS}}$. Hay verdades que no se pueden demostrar 1. Encontrar una formula que valga en el modelo, pero que no parezca deducirse de los 2. Encontrar un modelo M', donde los axiomas valgan pero no la formula. 3. Como M' cumple los mismos axiomas que M, entonces si algo es verdad en M, deberia ser verdad en M'. Lo cual es mentira porque la formula la pensamos para que sea falsa. $\Psi: (\exists x) \lceil (\forall y) \lceil \neg E(x, y) \neg \neg E(x, x) \rceil$ 2) M':

Veamos que los axiomas valen con este modelo.

Como no agregue nodos los axiomas B1 y B2 no se modifican y siguen valiendo.

Como la unica relacion que agregue fue entre nodos de distinto color, sigue valiendo que si 2 nodos estan conectados => son de distinto color

Supongo que SQB es completo con respecto a M. Entonces, M = phi => {SB1, SB2, SB3} phi. Por correctitud de SQ, {SB1, SB2, SB3} = phi. Yo encontré un modelo M' = {SB1,SB2,SB3}, entonces M' = phi. Abs porque M' = ¬phi.
entonces M = pni. Abs porque M = ¬pni.