Medium datasets: (2 datasets fully functional, should find more benchmarking dataset)

```
==> nnz size: 10^5 - 10^6, blksize maximum = 32
```

- syn_data_med_10000_1000_0.01_sp converges with: b = 16, s = 64, b = 32 b = 64
- phishing: always converges, nicely
- a8a: b = 32, s = 128 diverges for nystrom s-step, converge only on blksize = 16 "a8a dataset with blksize = 20, s = 100, and it seems that s-step nystrom converges faster"
- a7a.test: b = 32, the dataset converges (should have less blksize, but if blksize = 64, diverges)

Large datasets: (3 datasets functional)

- ==> nnz size: $10^6 10^7$, blksize maximum = 64
- syn_data_med_10000_200 converges with: b = 16, s = 64,128, 256.

$$b = 32$$
, $s = 64$, 128

$$b = 64$$
, $s = 64$

$$b = 128, s = 64$$

(I should consider this as large because the size of nnz is large)

- syn_data_large_30000_1000_0.1_sp: converges for blkszie 32, blksize 16, blksize 64, s = 64
- syn_data_large_10000_2000_0.1_sp: b = 64, s = 128 (run for 3 hours)

(Currently, there is no other benchmarking large datasets that is not synthetic)

Small datasets: (3 datasets functional)

- ==> nnz size: 10^4-10^5, blksize maximum = 32
- syn_data_small_5000_20_0.1_sp: converge at b = 32, s = 128
- abalone: converge at b = 32, s = 128 (Original Krr fail to converge, accuracy stay around 1e-12, like 1.8e-12 but no less)
- space_ga_scale: converge at b = 32, s = 128
- a1a: converge at b = 32, s = 128

Extreme small datasets: (2 datasets fully functional)

- ==> nnz size: less than 10⁴, blksize maximum = 16
- breast-cancer scale: always converges
- pyrim scale: always converges
- triazines_scale: only converge at blksize = 1

We could try merging them to two classes: (small & extreme small vs. medium & large datasets)