Continuité des fonctions vectorielles

Dans tout le chapitre, E et F sont des \mathbb{K} -ev normés par $\|\cdot\|_E$ et $\|\cdot\|_F$.

Les notions qui vont suivre sont invariantes par passage à une norme équivalente. En particulier elles ne dépendent pas de la norme lorsque les espace sont de dimensions finies.

1) Limites

Convergences

Définition:

Soient $f: X \subset E \to F$ et a un point adhérent à X. On dit que f tend vers $\ell \in F$ en a si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in X, \|x - a\|_E \leq \eta \Longrightarrow \|f(x) - \ell\| \leq \varepsilon$$

Cet élément ℓ est alors unique, et on note $\ell = \lim_{x \to a} f(x)$ ou $f(x) \xrightarrow[x \to a]{} \ell$.

Exemple: 🕏

1) Pour une fonction constante.

Soit
$$C \in F$$
. Soit $f : E \to F$

$$x \mapsto C \in F$$

Soit $a \in E$.

Soit $\varepsilon > 0$, pour tout $\eta > 0$, alors

$$\forall x \in E, \|x - a\|_E \le \eta \Longrightarrow \|f(x) - C\|_F = \|C - C\|_F = 0 < \varepsilon$$

C'est toujours vrai, donc $\lim_{x \to a} f(x) = C$

2) Soit $i \in [\![1,n]\!]$, considérons $p_i:\mathbb{R}^n \to \mathbb{R}$ $\begin{array}{c} & \xrightarrow{\epsilon_1 \cdot \text{ in } \rightarrow \mathbb{R}} \\ (x_1, \dots, x_n) \mapsto x_i \end{array}$ Soit $a = (a_1, \dots, a_n) \in \mathbb{R}^n$

$$(x_1, \dots, x_n) \mapsto x_n$$

Soit
$$a = (a_1, ..., a_n) \in \mathbb{R}^n$$

Soit
$$\varepsilon > 0$$

Posons $\eta = \varepsilon > 0$ (on a complété après)

Alors
$$\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$$

$$\max_{1 \le k \le n} |x_k - a_k| = \|x - a\|_{\infty} \le \eta$$

$$\Rightarrow |p_i(x) - a_i| = |x_i - a_i| \le \|x - a\|_{\infty} \le \eta = \varepsilon$$

Donc
$$p_i(x) \xrightarrow[x \to a]{} a_i$$

Propriété:

Soient $f: X = X_1 \cup X_2 \subset E \to F$, a un point adhérent à X_1 et à X_2 et $\ell \in F$.

Si
$$f(x) \xrightarrow[x \in X_1]{x \to a} \ell$$
 et $f(x) \xrightarrow[x \in X_2]{x \to a} \ell$, alors $f(x) \xrightarrow[x \in X]{x \to a} \ell$.