## Московский физико-технический институт Физтех-школа прикладной математики и информатики

## ОСНОВЫ КОМБИНАТОРИКИ И ТЕОРИИ ЧИСЕЛ

II CEMECTP

Лектор: Райгородский



Автор: Киселев Николай Репозиторий на Github

## Содержание

1 Функциональные последовательности и ряды

 $\mathbf{2}$ 

Рассмотрим  $f(t) = \ln t$ .

$$\int_{1}^{n+1} \ln t dt = t \ln t \Big|_{1}^{n+1} - \int_{1}^{n+1} dt = (n+1) \ln(n+1) - n$$

Следовательно, сходится последовательность

$$(n+1)\ln(n+1) - n - \sum_{k=1}^{n} \ln k - \frac{1}{2} \ln n = (n+1) \left( \ln n + \ln \left( 1 + \frac{1}{n} \right) \right) - \ln n! - \frac{1}{2} \ln n - n =$$

$$= \left( n + \frac{1}{2} \right) \ln n + (n+1) \left( \frac{1}{n} + o \left( \frac{1}{n} \right) \right) - \ln n! - \ln e^n$$

Следовательно, сходится 
$$\underbrace{\left\{\left(n+\frac{1}{2}\right)\ln n + \ln n! + n\right\}}_{\ln \frac{n!e^n}{n^{n+\frac{1}{2}}}}$$

Поэтому,  $\ln \frac{n!e^n}{n^{n+\frac{1}{2}}} \to C > 0$  и  $n! \sim C \frac{n^{n+\frac{1}{2}}}{e^n}$ . Найдем C, пользуясь формулой Валлиса

$$\pi = \lim_{n \to \infty} \frac{1}{n} \left( \frac{(2n)!!}{(2n-1)!!} \right)^2$$

Имеем

$$\frac{1}{n} \left( \frac{(2n)(2n-2)\dots 2}{(2n-1)(2n-3)\dots 1} \right) = \frac{1}{n} \left( \frac{2^{2n}(n!)^2}{(2n)!} \right)^2 \sim \frac{2^{4n}}{n} \frac{C^4 n^{4n+2} e^{4n}}{e^{4n} C^2 (2n)^{4n+1}} = \frac{C^2}{2} \Rightarrow C = \sqrt{2\pi}$$

Но тогда

$$n! \sim \sqrt{2\pi} \left(\frac{n}{e}\right)^n, n \to \infty$$

## 1 Функциональные последовательности и ряды

Пусть  $f_n, f: E \to \mathbb{R}$  или  $\mathbb{C}$  (все утверждения тоже верны для  $\mathbb{R}$  или  $\mathbb{C}$ ).

**Определение 1.1.** Говорят, что  $f_n$  поточечно сходится к f на E, если  $\forall x \in Ef(x) = \lim_{n\to\infty} f_n(x)$ . Пишут  $f_n \to f$  на E, и f называют пределом функциональной последовательности  $f_n$ 

**Пример.**  $f_n:[0,1)\to\mathbb{R}, f_n(x)=x^n$ . Тогда  $f_n\to f$ , при  $f(x)=\left\{\begin{array}{ll} 0,x\in[0,1)\\ 1,x=1 \end{array}\right.$  Функция оказалась разрывна!

Распишем определение поточечной сходимост ипо по определению.

$$f_n \to f$$
 на  $E \Leftrightarrow \forall x \forall \varepsilon > 0 \exists N : \forall n > N(|f_n(x) - f(x)| < \varepsilon)$ 

**Определение 1.2.** Говорят, что  $\{f_n\}$  равномерно сходится к f на множестве E, если

$$\forall \varepsilon > 0 \exists N : \forall x \forall n > N(|f_n(x) - f(x)| < \varepsilon)$$

Пишут  $f_n \rightrightarrows f$  на E, или  $f_n \rightrightarrows_E f$ 

Замечание. Равномерная сходимость влечет поточечную

**Замечание.** Если  $f_n \rightrightarrows f$  на E, то f определена на E однозначно

Лемма 1.1 (Супремум критерий).  $f_n \rightrightarrows_E f \Leftrightarrow \lim_{n\to\infty} \rho_n = 0$ , г $\partial e \rho_n = \sup_{x\in E} |f_n(x) - f(x)|$ 

Доказательство.

$$\forall x \in E(|f_n(x) - f(x)| < \varepsilon), \sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon$$

Эти условия равносильны, поэтому лемма верна

Задача. 
$$f_n \rightrightarrows f \Leftrightarrow \forall \{x\} \subset E \ \lim_{n \to \infty} |f_n(x_n) - f(x_n)| = 0$$

**Определение 1.3.** Функциональная последовательность поточечно (равномерно) сходится на множестве E, если найдется такая определенная на E функция, к которой последовательность поточечно (равномерно) сходится

Пусть задан функциональный ряд  $\sum_{n=1}^{\infty} u_n$ , где  $u_n: E \to \mathbb{R}$ 

Определение 1.4. Говорят, что  $\sum_{n=1}^{\infty} u_n$  сходится на E, если  $\forall x \in E (\sum_{n=1}^{\infty} u_n(x))$  сходится. При этом, функция  $S: E \to \mathbb{R}, S(x) = \sum_{n=1}^{\infty} u_n(x)$  называется суммой ряда  $\sum_{n=1}^{\infty} u_n$ 

**Определение 1.5.** Функциональный ряд поточечно (равномерно) сходится на E, если последовательность частичных сумм  $S_N = \sum_{n=1}^N u_n$  поточечно (равномерно) сходится на E

Утверждение 1.1. Пусть  $g:E 
ightharpoonup \mathbb{R}$  ограничена

- 1. Если  $f_n \Longrightarrow f$  на E, то  $gf_n \Longrightarrow gf$  на E
- 2. Если  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на E, то  $\sum_{n=1}^{\infty} g u_n$  также равномерно сходится на E, причем

$$\sum_{n=1}^{\infty} g u_n = g \sum_{n=1}^{\infty} u_n$$

Доказательство.

1. Пусть  $|g| \leq M$ . Для любого  $x \in E$  имеем

$$|g(x)f_n(x) - g(x)f(x)| \leqslant M|f_n(x) - f(x)|$$

$$\sup_{x \in E} |g(x)f_n(x) - g(x)f(x)| \leqslant M \sup_{x \in E} |f_n(x) - f(x)|$$

2. Очевидно

Утверждение 1.2.

1. Если  $f_n \Rightarrow f$  на E,  $g_n \Rightarrow g$  на E, то  $\lambda f_n + mug_n \Rightarrow \lambda f + \mu g$  на E.

 $\overline{\Phi\Pi M M \Phi T M}$ , весна 2025

2. Если  $\sum_{n=1}^{\infty} u_n$ ,  $\sum_{n=1}^{\infty} v_n$  равномерно сходится на E, u  $\lambda, \mu \in \mathbb{R}$ , то  $\sum_{n=1}^{\infty} (\lambda u_n + \mu v_n)$  равномерно сходится на E, причем  $\sum_{n=1}^{\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=1}^{\infty} u_n + \mu \sum_{n=1}^{\infty} v_n$ 

Доказательство.

1.  $f_n + g_n \Longrightarrow f$  на E.

$$\forall x \in E | (f_n(x) + g_n(x)) - (f(x) + g(x)) | \leq |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

$$\sup_{x \in E} |(f_n(x) + g_n(x)) - (f(x) + g(x))| \leq \sup_{x \in E} |f_n(x) - f(x)| + \sup_{x \in E} |g_n(x) - g(x)|$$

**Следствие.** Если  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на E, то  $u_n \rightrightarrows 0$  на E

Доказательство. Если  $S_n-n$ -ая частичная сумма  $sum_{n=1}^\infty u_n$ , то  $u_n=S_n-S_{n-1} \rightrightarrows S-S=0$ 

**Задача.** Пусть  $f_n \rightrightarrows f$  на  $E, g: D \to E,$  тогда  $f_n \circ g \rightrightarrows f \circ g$  на D

**Теорема 1.1** (Критерий Коши).  $\{f_n\}$  равномерно сходится на  $E \Leftrightarrow \forall \varepsilon > 0 \exists N \forall m, n > N \forall x \in E(|f_n(x) - f(x)| \leq \varepsilon)(1)$ 

Доказательство.

- $\Rightarrow$  Пусть  $f_n \Rightarrow f$  на E. Зафиксируем  $\varepsilon > 0, n \geqslant N$ . Тогда  $\forall x \forall n, m \geqslant N |f_n(x) f(x)| \leqslant |f_n(x) f(x)| + |f_m(x) f(x)| < \varepsilon$
- $\Leftarrow$  Пусть  $\{f_n\}$  удовлетворяет (1). Тогда  $\forall x \in E\{f_n(x)\}$  фундаментальна. Положим  $f(x) = \lim_{n \to \infty} f_n(x)$ , зафиксируем  $\varepsilon > 0$  и выберем N из условия (1). Тогда

$$|f_n(x) - f(x)| \le \varepsilon \forall x \in E \forall n \ge N$$

Это означает, что  $f_n \rightrightarrows f$  на E.

Следствие (Критерий Коши).  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на  $E \Leftrightarrow \forall \varepsilon > 0 \exists N \forall m, n \geqslant N \forall x \in E \left( \left| \sum_{k=m+1}^{n} u_k(x) \right| < \varepsilon \right)$ 

**Следствие.** Пусть  $E \subset \mathbb{R}$ , все функции  $f_n$  непрерывны на  $\overline{E}$ . Если  $\{f_n\}$  равномерно сходится на E, то  $\{f_n\}$  равномерно сходится на  $\overline{E}$ 

Доказательство. Зафиксируем  $\varepsilon > 0$ . Тогда по Критерию Коши,  $\exists N \forall n, m > N \forall x \in E(|f_n(x) - f_m(x)| \leqslant \varepsilon)$ . Пусть  $y \in \overline{E} \Rightarrow \exists \{x_n\} \subset E : (x_k \to y)$ . В неравенстве  $|f_n(x_k) - f_m(x_k)| \leqslant \varepsilon$  переходим к прелельному переходу, получаем, что  $|f_n(y) - f_m(y)| \leqslant \varepsilon$ . Тогда  $\{f_n\}$  равномерно сходится на  $\overline{E}$ 

**Пример.**  $\sum_{n=1}^{\infty} \frac{1}{n^x}$  — сходится на  $(1,\infty)$  неравеномерно.

Доказательство. Предположим противное. Но тогда, по следствию 2,  $\sum_{n=1}^{\infty} \frac{1}{n^x}$  равномерно сходтися на  $[1,\infty)$ , противоречие

ФПМИ МФТИ, весна 2025

**Теорема 1.2** (О непрерывности предельной функции). Пусть  $E \subset \mathbb{R}$ . Если  $f_n \rightrightarrows f$  на E, и все функции  $f_n$  непрерывны на E, то f — непрерывна на E

Доказательство. Зафиксируем  $\varepsilon > 0$ . Тогда  $existsN \forall n \geqslant N \forall x \in E\left(|f_n(x) - f(x)| \leqslant \frac{\varepsilon}{3}\right)$ . Для любого  $x \in E$ 

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| \le |f_N(x) - f_N(a)| + \frac{2\varepsilon}{3}$$

Т.к.  $f_N$  непрерывна в a, то  $\exists \delta > 0 \forall x \in B_\delta(a) \cap E\left(|f_N(x) - f_N(a)| < \frac{\varepsilon}{3}\right)$ . Но тогда  $\forall x \in B_\delta(a) \cap E(|f(x) - f(a)| < \varepsilon$ ). Значит f непрерывна в  $\forall a \in E$ .

**Замечание.** В условиях предыдущей теоремы, если a — предельная точка E, то  $\lim_{x\to a}\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty}\lim_{x\to a} f_n(x)$ 

**Следствие** (О непрерывности суммы ряда). Если  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на E и все функции  $u_n$  непрерывны на E, то сумма ряда также непрерывна на E.

Пример.  $f_n(x) = n^{\alpha} x^n, x \in [0, 1], f_0 \equiv 0$ 

$$\rho_n = \sup_{[0,1]} |f_n(x)| = n^{\alpha} \Rightarrow (f_n \Rightarrow_{[0,1]} f_0 \Leftrightarrow \alpha < 0)$$

$$\lim_{n \to \infty} \int_0^1 f(x) dx = \lim_{n \to \infty} \frac{n^{\alpha}}{n+1} = \int_0^1 f_0(x) dx = 0 \Leftrightarrow \alpha < 1$$

**Теорема 1.3** (Об интегрируемости предельной функции). *Если*  $f_n \rightrightarrows_{[a,b]} f, f_n \in R[a,b] \Rightarrow f \in R[a,b]$ , причем  $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$ 

 $\mathcal{A}$ оказательство. Докажем, что  $f\in R[a,b]$ . Зафиксируем  $\varepsilon>0$ . По определению равномерной сходимости,  $\exists N \forall n>N \forall x\in [a,b]\left(|f_n(x)-f(x)|<\frac{\varepsilon}{b-a}\right)$ . Оценим колебание f на  $E\subset [a,b]$ , то есть оценим  $\omega(f,E)=\sup_{x,y\in E}|f(y)-f(x)|$ . Т.к.  $f=(f-f_N)+f_N\Rightarrow |f(y)-f(x)|\leqslant |f-f_N|(y)-|f-f_N|(x)|+|f_N(y)-f_N(x)|\Rightarrow \omega(f,E)\leqslant \omega(f-f_N,E)+\omega(f_N,E),\frac{\varepsilon}{2(b-a)}$ . По критерию Дарбу,  $\exists T$  — разбиение [a,b], такое, что  $\Omega_T(f_N)<\frac{\varepsilon}{2}$ . Тогда для разбиения T имеем  $\Omega_T(f)\leqslant \sum \omega(f,E)\Delta x_i<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ . Но тогда  $f\in R[a,b]$ . При этом,

$$\left| \int_{a}^{b} f_{n}(x) f(x) - \int_{a}^{b} f(x) dx \right| \leqslant \int_{a}^{b} |f_{n}(x) - f(x)| dx < \varepsilon$$

**Следствие** (О почленном интегрировании ряда). Если  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на [a,b] и все  $u_n \in R[a,b]$ , то сумма ряда также  $\in R[a,b]$ 

Доказательство.

$$\int_{a}^{b} \left( \sum_{n=1}^{\infty} u_n(x) \right) dx = \sum_{n=1}^{\infty} \left( \int_{a}^{b} u_n(x) dx \right)$$

**Замечание.** В условиях предыдущей теоремы,  $\lim_{n\to\infty}\int_a^b f_n(x)dx=\int_a^b f(x)dx$ 

**Теорема 1.4** (О дифференцируемости предельной функции). Пусть I — некоторый промежуток и заданы функции  $f_n: I \to \mathbb{R}$ , такие, что:

- 1.  $f_n \to f$  на I
- 2. Все  $f_n$  дифференцируемы на I
- 3.  $f'_n \Longrightarrow g$  на I

Тогда f дифференцируема на I, причем f' = g на I.

Доказательство. Пусть  $x \in I$ . Рассмотрим  $\varphi_n(t) = \begin{cases} \frac{f_n(t) - f_n(x)}{t - x}, t \neq x \\ f'_n(x), t = x \end{cases} \varphi_n \to \varphi$  на I,

где  $\varphi(t)=\left\{egin{array}{l} \frac{f(t)-f(x)}{t-x},t\neq x\\ g(x),t=x \end{array}\right.$  . Покажем, что сходимость равномерная. Действительно, при  $t\neq x$ 

$$\varphi_n(t) - \varphi_m(t) = \frac{(f_n(t) - f_m(t)) - (f_n(x) - f_m(x))}{t - x} = f'_n(c) - f'_m(c)$$

Для некоторой c, лежащей между t,x. Т.к.  $\{f'_n\}$  равномерно сходится на I, то  $\{f'_n\}$  удовлетворяет условию Коши. Тогда условию Коши удовлетворяет и  $\{\varphi_n\}$ . По критерию Коши,  $\varphi_n \Rightarrow \varphi$  на I, все  $\varphi_n$  непрерывны в  $x \Rightarrow \varphi$  непрерывна в точке x, т.е.  $\lim_{t\to x} \varphi(t) = \varphi(x)$ , или f'(x) = g(x).

**Замечание.** В условиях предыдущей теоремы,  $\frac{d}{dx}\lim_{n\to\infty}f_n(x)=\lim_{n\to\infty}\frac{d}{dx}f_n(x)$ 

**Следствие** (О почленном дифференцировании ряда). Пусть I — невырожденный промежуток, и  $u_n: I \to \mathbb{R}$ , т.ч.

- 1.  $\sum_{n=1}^{\infty} u_n$  почленно сходится на I
- 2. все  $u_n$  дифференцируемы на I
- 3.  $\sum_{n=1}^{\infty} u_n$  равномерно сходится на I

Тогда сумма ряда дифференцируема на I.

Доказательство.

$$\left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x)$$

**Замечание.** В предыдущей теореме равномерную сходимость производных нельзя заменить равномерной сходимостью функций.

**Пример.**  $f_n(x) = \sqrt{x^2 + \frac{1}{n}} \Rightarrow \forall x \in \mathbb{R} f_n(x) \to f(x) = |x|$ . Предельная функция не дифференцируема в 0.