数学分析笔记

柯力成 PB23010363

第一章:数列极限

1.1 **数列极限的定义**:设 $\{a_n\}$ 是一个数列,a 是一个实数。如果对任意的 $\epsilon > 0$,存在 $N \in \mathbb{N}^+$,使得当 n > N 时,有:

$$|a_n - a| < \epsilon$$

则数列 $\{a_n\}$ 收敛于 a_n 记作 $\lim_{n\to\infty} a_n = a_n$

- 1.2 收敛数列的性质:
- 1. 收敛数列的极限唯一

Proof:
$$|a-b| \leq |a-a_n| + |b-a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

2. 收敛数列是有界的

Proof:
$$\mathbb{R} M = |a_1| + |a_2| + \cdots + |a_N| + |a| + 1$$

1.3 子列:

- 1. 子列的定义:设 $\{a_n\}$ 是一个数列, $k_i \in N^+(i=1,2,3,\ldots)$,且满足 $k_1 < k_2 < k_3 < \ldots$,那么数列 $\{a_{k_n}\}$ 叫作 $\{a_n\}$ 的一个子列。
 - 2. 以下命题等价: (这里引申出判断数列发散的方法)
 - 1) $\{a_n\}$ 收敛
 - (a_n) 任意子列收敛
 - 3) {a_n} 任意子列收敛且极限相同

Proof: 只证 1) \Rightarrow 3): 收敛则 $|a_n-a|<\epsilon \ \forall n>N$,且 $n_k\geqslant n>N$,则 $|a_{n_k}-a|<\epsilon$

- 1.4 极限与四则运算:极限与四则运算可交换且保序。
- 1.4 **夹逼定理:** $a_n \leqslant b_n \leqslant c_n(n \gg)$ 1 且 $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = a$,则 $\lim_{n \to \infty} b_n = a$ 这里甚至没有事先要求 $\{b_n\}$ 收敛。