KET/CHH 2. přednáška Ing. Martin Sýkora, Ph.D

Opakování z minulé přednášky...

Veličina	Označení	Jednotky
výchylka	A	m, mm, μm
rychlost	V	m/s
zrychlení	а	m/s², mm/s²

$$a = \frac{dv}{dt} = \frac{d^2A}{dt^2}$$

KET/CHH 2.přednáška

Absolutní a relativní snímače chvění

Relativní snímač chvění

- · Měří chvění vzhledem k nějakému bodu v prostoru
- · Oba body se mohou vzájemně pohybovat relativní chvění
- Např. měření mezi rámem stroje a základem apod.

Absolutní snímač chvění

- Měří vůči setrvačné hmotě v klidu (tzv. seismická hmota)
- Tj. měří absolutní chvění objektu (pohybuje se) vůči hmotě, která je v klidu – absolutní chvění
- · Princip nejčastěji používaného snímače akcelerometru

KET/CHH 2.přednáška

Rozdělení snímačů chvění

Dělení podle nejrůznějších kritérií

· Montáž, princip, měřené veličiny

Souvislost se zamýšleným způsobem použití

· Specifické vlastnosti některých snímačů mohou omezit použití

Některá kritéria dělení jsou obecná

· Platí nejen pro snímače chvění, ale pro snímače obecně

KET/CHH 2.přednáška

Snímače chvění podle spojení s měřeným objektem

Dotykové (taktilní)

- Fyzicky spojen s měřeným objektem
- Nevýhody:
 - · Zatěžuje měřený objekt (snímač má určitou hmotnost)
 - · Nelze měřit např. horké povrchy
 - Způsob upevnění může ovlivnit vlastnosti snímače
- Příklad: běžně používané akcelerometry

KET/CHH 2.přednáška

Snímače chvění podle spojení s měřeným objektem

Bezdotykové

- · Pracují na takovém principu, který nevyžaduje mechanické spojení
- Např. laserový vibrometr měření pohybu povrchu pomocí světelného paprsku
- Nevýhody:
 - · Nákladné, složité, citlivé na zacházení
 - Potřeba odrazivý povrch

KET/CHH 2.přednáška

Snímače chvění podle principu

Dělení podle využívaného fyzikálního jevu

- Mechanické
- Pneumatické
- Optické
- Elektrické

Z hlediska praktického použití mají význam hlavně

- · Elektrické piezoelektrický akcelerometr
- Optické resp. optoelektronické laserový vibrometr

KET/CHH 2.přednáška

Snímače chvění podle druhu změny

Podle toho zda generují signál

- Tzv. aktivní (neboli energetické)
- · Snímač se chová jako zdroj energie
- · Vznikající signál (např. napětí) odpovídá chvění
- Například piezoelektrický akcelerometr

Nebo mění určitou vlastnost či parametr

- · Tzv. parametrické snímače
- Mění se např. odpor nebo indukčnost
- · Vyžadují napájení

KET/CHH 2.přednáška

Snímače chvění podle měřené veličiny

Snímače výchylky

- Tzv. vibrometry
- Měří výchylku

Snímače rychlosti

- · Tzv. velometry
- Měří rychlost vibrací

Snímače zrychlení

- Tzv. akcelerometry
- · Měří zrychlení

KET/CHH 2.přednáška

Charakteristiky chvění

Veličiny popisující chvění mají charakter vektoru

Obecně může těleso kmitat ve všech třech osách – složky x, y, z

Harmonické průběhy

- Pro harmonické průběhy platí, že je lze vyjádřit pomocí amplitudy a fáze
- · Vztah mezi výchylkou, rychlostí a zrychlením je dán derivací
- Nemění se tvar pouze se mění pouze fázový posun
- V případech kdy není fáze významná a záleží pouze na amplitudě, lze výchylku určit dělením zrychlení konstantou - 4πf²

KET/CHH 2.přednáška

Charakteristiky chvění

Pro harmonický pohyb popsaný vztahem

$$A = A_0 \cdot \sin(\omega t)$$

Lze určit okamžitou rychlost kmitání

$$v = \frac{dA}{dt} = \omega \cdot A_0 \cdot \cos(\omega t) = v_0 \cdot \cos(\omega t) = v_0 \cdot \sin\left(\omega t + \frac{\pi}{2}\right)$$

A okamžité zrychlení

$$a = \frac{dv}{dt} = -\omega^2 \cdot A_0 \cdot \sin(\omega t) = -a_0 \cdot \sin(\omega t) = a_0 \cdot \sin(\omega t + \pi)$$

KET/CHH 2.přednáška

Charakteristiky chvění – maximální rozkmit

Maximální rozkmit – 2A₀

- · Též hodnota špička špička (peak peak) nebo dvojamplituda
- Významná hodnota z hlediska hodnocení maximálního namáhání konstrukce
- Dvojnásobek amplitudy resp. vzdálenost mezi krajními body

Poznámka pro cvičení

- · Maximálního rozkmitu využijeme při cejchování snímače
- Pro harmonický signál budeme porovnávat naměřené zrychlení a rozdíl krajních poloh kmitajícího objektu
- Odvození vztahu pro harmonický průběh viz výše

KET/CHH 2.přednáška

Charakteristiky chvění – maximální hodnota

Maximální hodnota - Ao

- Též amplituda
- · Reprezentuje maximální hodnotu, které průběh dosáhne
- · Ukazuje velikost krátkodobé špičky, rázu
- Neříká nic o frekvenčních vlastnostech ani časovém průběhu

KET/CHH 2.přednáška

Charakteristiky chvění – střední a efektivní hodnota

Střední hodnota - Astř

- · Integrální hodnota průběhu
- · Získá se průměrováním okamžitých hodnot po určitou dobu

Efektivní hodnota - Aef

- Z hlediska hodnocení velikosti vibrací nejdůležitější hodnota
- · Analogicky jako u elektrických signálů
- Odráží se v ní jak energetické poměry signálu, tak do určité míry souvislost s tvarem průběhu
- · Důležitá pro hodnocení negativních vlivů vibrací

KET/CHH 2.přednáška

Hladinové vyjádření – decibely

Logaritmické vyjádření pomocí vztažné hodnoty

$$L_p = 10 \cdot \log \frac{p}{p_0}$$

L_p – hladina dané veličiny

p – hodnota veličiny

p_o – vztažná hodnota

Význam hladinového vyjádření

- · Zmenšení rozsahu (řádově) vyjadřovaných hodnot
- Měřené hodnoty jsou často v rozsahu několika řádů
- · Snazší porovnání řádově měřených hodnot

KET/CHH 2.přednáška

Hladinové vyjádření – veličiny popisující chvění

Veličina	Definiční vztah	Referenční hodnota
Hladina zrychlení	$L_a = 20 \cdot \log \frac{a}{a_0}$	a ₀ =10 ⁻⁶ [m·s ⁻²]
Hladina rychlosti	$L_v = 20 \cdot \log \frac{v}{v_0}$	v ₀ =10 ⁻⁹ [m·s ⁻¹]
Hladina výchylky	$L_A = 20 \cdot \log \frac{A}{A_0}$	A ₀ =10 ⁻⁶ [m]

KET/CHH 2.přednáška

