Лабораторная работа №3. Вычисление определённого интеграла.

Задача №1.

Тема: Вычисление определенного интеграла.

Цель: Вычислить значение определенного интеграла с помощью

Pascal.ABC.net.

Оборудование: PascalABC.NET, draw.io.

Условие задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника левых частей. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3.

Мат. Модель:

$$\int_{0,6}^{1.4} \frac{\sqrt{x^2 + 5} \, dx}{2x + \sqrt{x^2 + 0.5}};$$

a	нижний предел	real	
	интегрирования		
b	верхний предел	real	
	интегрирования		
S	значение	real	
	интеграла		
h	шаг	real	
n	кол-во разбиений	integer	
X	переменная	real	

<u>Код</u> программы:

```
Program Zadanye_1;
Var
a,b,h,s,x: real;
n: integer;
begin
  Writeln('Введите нижний предел интегрирования ');
  Readln(a);
  Writeln('Введите верхний предел интегрирования ');
  Readln(b);
  Writeln('Введите кол-во разбиений ');
  Readln(n);
  h := (b-a)/n;
  s:=0;
  x := a;
    While x \le (b-h) do
      begin
        s:=s+(sqrt(x*x+5))/(2*x+sqrt(x*x+0.5));
      end;
  s:=s*h;
  Writeln('Значение интеграла буде равно ', s);
end.
```

Результат вычисления:

Окно вывода

Введите нижний предел интегрирования 0.6 Введите верхний предел интегрирования 1.4 Введите кол-во разбиений 10 Значение интеграла буде равно 0.599514853306861

Анализ результатов вычисления:

Учтены приведения типов и осуществлён форматированный вывод.

Задача№2.

Условие задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом прямоугольника правых частей. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3. Мат. Модель:

$$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 5} \, dx}{2x + \sqrt{x^2 + 0.5}};$$

Блок-схема:

a	нижний предел	real	
u	•	1001	
	интегрирования		
b	верхний предел real		
	интегрирования		
S	значение	real	
	интеграла		
h	шаг	real	
n	кол-во разбиений	integer	
	•		
X	переменная real		
	_		

<u>Код</u> программы:

```
Program Zadanye_2;
Var
a,b,h,s,x: real;
n: integer;
begin
  Writeln('Введите нижний предел интегрирования ');
  Readln(a);
  Writeln('Введите верхний предел интегрирования ');
  Readln(b);
  Writeln('Введите кол-во разбиений ');
  Readln(n);
  h := (b-a)/n;
  s:=0;
  x := a+h;
    While x<=b do
     begin
        s:=s+(sqrt(x*x+5))/(2*x+sqrt(x*x+0.5));
      end;
  s:=s*h;
  Writeln('Значение интеграла буде равно ', s);
end.
```

Результат вычисления:

Окно вывода

Введите нижний предел интегрирования

0.6
Введите верхний предел интегрирования

1.4
Введите кол-во разбиений

10
Значение интеграла буде равно 0.599514853306861

Анализ результатов вычисления:

Учтены приведения типов и осуществлён форматированный вывод. Задачи за 2 балла.

Задача 1.

Условие задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом трапеций. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3.

Мат. модель:

$$\int_{0,6}^{1.4} \frac{\sqrt{x^2 + 5} \, dx}{2x + \sqrt{x^2 + 0.5}};$$

Блок-схема:

a	нижний предел	real	
	интегрирования		
b	верхний предел	real	
	интегрирования		
S	значение	real	
	интеграла		
h	шаг	real	
n	кол-во разбиений	integer	
X	переменная	real	

Код программы:

```
Program Zadanye_1;
Var
a,b,h,s,x: real;
n: integer;
begin
 Writeln('Введите нижний предел интегрирования ');
  Readln(a);
  Writeln('Введите верхний предел интегрирования ');
  Readln(b);
  Writeln('Введите кол-во разбиений ');
  Readln(n);
  h := (b-a)/n;
  s := 0;
  x := a+h;
    While x<=b-h do
      begin
        s:=s+(sqrt(x*x+5))/(2*x+sqrt(x*x+0.5));
        x := x+h;
      end;
  s:=h*(((a+b)/2)+s);
  Writeln('Значение интеграла буде равно ', s);
end.
```

Результат вычисления:

Окно вывода

```
Введите нижний предел интегрирования
0.6
Введите верхний предел интегрирования
1.4
Введите кол-во разбиений
10
Значение интеграла буде равно 0.627166110568261
```

Анализ результатов вычисления:

Учтены приведения типов и осуществлён форматированный вывод.

Задача №2.

Условие задачи: Написать программу для вычисления определенного интеграла из индивидуального задания методом парабол. Протестировать программу на определенном интеграле, вычисленным в ходе выполнения самостоятельной работы 3.

Мат. модель:

1)
$$\int_{0.6}^{1.4} \frac{\sqrt{x^2 + 5} \, dx}{2x + \sqrt{x^2 + 0.5}};$$

Блок-схема:

a	нижний предел интегрирования	real	
b	верхний предел интегрирования	real	
S	значение интеграла	real	
h	шаг	real	
n	кол-во разбиений	integer	
X	переменная	real	
SC	сумма четных	real	
sn	сумма нечетных	real	

Код программы:

```
a,b,h,s,x,sc,sn: real;
n: integer;
begin
  Writeln('Введите нижний предел интегрирования ');
  Readln(a);
  Writeln('Введите верхний предел интегрирования ');
  Readln(b);
  Writeln('Введите кол-во разбиений ');
  Readln(n);
  h := (b-a)/n;
  sc:=0;
  x := a+h;
    While x<=b-h do
      begin
        sc:=sc+(sqrt(x*x+5))/(2*x+sqrt(x*x+0.5));
         x := x + 2 * h;
       end;
    sn:=0;
    x := a + 2 * h;
    While x \le b - (2 * h) do
         sn:=sn+(sqrt(x*x+5))/(2*x+sqrt(x*x+0.5));
         x := x + 2 * h;
       end;
  a := (sqrt(a*a+5)) / (2*a+sqrt(a*a+0.5));
  b := (sqrt(b*b+5)) / (2*b+sqrt(b*b+0.5));
  s:=(h*(a+b+4*sc+2*sn))/3;
  Writeln('Значение интеграла буде равно ', s);
end.
```

Результат вычисления:

Окно вывода

Введите нижний предел интегрирования

0.6

Зведите верхний предел интегрирования

1.4

Зведите кол-во разбиений

100

Значение интеграла буде равно 0.620128314670848

Анализ результатов вычисления:

Учтены приведения типов и осуществлён форматированный вывод.

Кол-во	Шаг	Метод левых	Метод правых	Метод трапеций	Метод парабол
разбиений		частей	частей		
10	0.08	0.599514853306861	0.599514853306861	0.627166110568261	0.689049437769845
100	0.008	0.626932217589939	0.626932217589939	0.630064804807561	0.626063142604552
1000	0.0008	0.630032749743964	0.630032749743964	0.63034943661052	0.629470431200829
10000	8E-05	0.629810013649746	0.629810013649746	0.629841696601311	0.629898826905828