

Dual-Mode Free-Jet Combustor

Charles J. Trefny and Vance F. Dippold III

NASA Glenn Research Center Cleveland, Ohio USA

Shaye Yungster

Ohio Aerospace Institute Cleveland, Ohio USA

Outline

- Historical Perspective
- Dual-Mode Free-Jet Combustor Concept
- Results of First CFD First Campaign
- Results of Second CFD Campaign
- Summary

Historical Perspective

RJ43-MA-3 circa 1950

Dual-Mode Free-Jet Combustor Subsonic Combustion Ramjet Mode

Dual-Mode Free-Jet Combustor

Supersonic Free-Jet Combustion Mode

Dual-Mode Free-Jet Combustor

Supersonic free-jet mode was analyzed in two separate CFD campaigns:

1) RANS with equilibrium chemistry for free-jet proof-of-concept Mach 5, 8, and 12 flight conditions
Axial fuel injection through choked annular slots
Effect of nozzle throat area
Reported in 2010 AIAA paper

2) Time-accurate RANS with finite-rate chemistry to increase fidelity
Focus on Mach 8 flight condition
Fuel and air pre-mixed, flameholders added
Effect of nozzle throat area and other parameters
Reported in 2015 JANNAF paper

This paper will summarize highlights from both campaigns and present latest results not previously published

Subsonic combustion ramjet mode, nor mode transition have been analyzed to date

Flowpath Sizing and Inlet Conditions

Inlet throat area (sta. 1) is variable, based on inlet contraction ratio schedule at a Mach 2.5 Flight Condition

combustion or ramjet inlet flow matching

Flight	Freestream				Inflow	Nozzle		Ethylene-Air
Mach	Stagnation	Inflow	Inflow	Inflow	Mach	Area	Air Flow	Equilibrium
Number,	Temp,	Pressure,	Temp,	Velocity,	Number,	Ratio,	Rate, ṁ _a	Temperature
M_0	T _{T,0} (R)	P_1 (lb/in ²)	T ₁ (R)	V ₁ (ft/sec)	M ₁ (ref)	A_8/A_1	(Ib/sec)	$T_{T,EQ}(R)$
5	2,225	27.26	1321	3509	2.00	3.743	97.4	5,074
6	2,982	25.25	*1594	4544	2.42	3.323	95.4	5,428
8	4,833	21.77	1966	6531	3.08	2.709	81.1	6,360
10	7,163	22.99	*2609	8316	3.38	2.198	71.9	7,717
12	10,085	25.29	3714	10055	3.51	1.833	63.2	9,682

GASP CFD Code

- GASP Version 5 Commercial code by Aerosoft, Inc.
- Reynolds-Averaged Navier-Stokes equations
- Menter Shear Stress Transport (SST) turbulence model with compressibility correction
- 8-Species, 3-reaction Baurle ethylene-air chemistry model in equilibrium mode (infinite reaction rates)
- 3rd-order, upwind-biased Roe scheme
- 414,000 grid points
- Initial calculations with adiabatic walls
- Constant-temperature walls for evaluation of heat load

Geometry for GASP CFD Calculations

Ethylene Mass Fraction and Pressure Distributions

Pressure Contours and Streamlines for Mach 5, 8, and 12

Mach 5 flight condition (2 injectors)

Mach 8 flight condition (3 injectors)

Mach 12 flight condition (3 injectors)

Temperature Contours for Mach 5, 8, and 12

Mach 5 flight condition (2 injectors)

Mach 8 flight condition (3 injectors)

Mach 12 flight condition (3 injectors)

Effect of Nozzle Throat Area, Mach 8 Flight Condition

Effect of Nozzle Throat Area on Pressure Field

90% Nozzle Throat Area

100% Nozzle Throat Area

110% Nozzle Throat Area

90% Nozzle Throat Area

100% Nozzle Throat Area

110% Nozzle Throat Area

Performance Compared to Standard Cycle

TAFI CFD Code

- Time-accurate, fully-implicit (TAFI) code developed in-house at NASA GRC
- Reynolds-Averaged Navier-Stokes equations
- Spalart-Allmaras one-equation turbulence model was used with a constant value of 0.9 for the turbulent Prandtl and Schmidt numbers
- 9-Species, 10-reaction Singh and Jachimowski reduced ethylene-air combustion mechanism
- Grid consisted of 24 blocks with a total of 136,840 grid points
- Initial calculations with adiabatic walls
- Constant-temperature walls for evaluation of heat load

Geometry for TAFI Finite-Rate CFD Calculations

Mach 8 Case Shown

Skewed Gaussian Fuel Inflow Profiles

N

Solutions Periodic for Uniform and low Φ_{max} Cases, Mach 8 Flight Condition

Effect of Fuel Inflow Profile, Mach 8 Flight Condition

Effect of Nozzle Throat Area, Mach 8 Flight Condition, $\Phi_{max} = 2.5$

Effect of Nozzle Throat Area, Mach 8 Flight Condition, $\Phi_{max} = 2.5$

Reduced Combustion Chamber Diameter, Mach 8 Flight Condition, $\Phi_{max} = 2.5$

Performance Map for Mach 8 Flight Condition

TAFI and GASP Results Compared to Ideal Scramjet

Mach 8 Geometry at Mach 10 Flight Condition, $\Phi_{max} = 2.5$

3-D CFD Using the National Combustion Code

Mach 8 Geometry with Fuel Injection Spool Added

Summary

- A new dual-mode combustor that relies on supersonic combustion in a free jet was introduced
- Free-jet combustion process validated numerically for axisymmetric geometry with a pre-mixed and non pre-mixed fuel-air inflow
- Ignition is enhanced by strong shock waves in the free-jet
- Coupling of ignition delay with free-jet flowfield caused instability
- Net thrust per unit airflow was 70-85 lbs at a flight Mach number of 8 depending on the throat area setting
- Heat load depends on the fuel-air ratio in the free-jet shear layer and is within the capacity of hydrocarbon fuel
- Three-dimensional CFD calculation with discrete fuel injection is underway