DISCRETE STRUCTURE CS211

Week-04-Lecture 01

SET

A well defined collection of distinct objects is called a set.

The objects are called the elements or members of the set.

Sets are denoted by capital letters A,B,C ... X,Y,Z.

SET

The elements of a set are represented by lower case letters a, b, c, ..., x, y, z.

If an object x is a member of a set A we write $x \in A$, which reads "x belongs to A" or "x is in A" or "x is an element of A"

Otherwise we write $x \notin A$, which reads "x does not belong to A" or "x is not in A" or "x is not an element of A".

TABULAR FORM

Listing all the elements of a set, separated by commas and enclosed within braces or curly brackets {}.

EXAMPLES:

DISCRIPTIVE FORM

Stating in words the elements of the set.

EXAMPLES:

A = set of a first five Natural Numbers.

B = set of positive even integers less or equal to fifty.

C = set of positive odd integers.

SET BUILDER FORM

Writing in symbolic form the common characteristics shared by all the elements of the set.

EXAMPLES

$$A = \{x \in N \mid x \le 5\}$$
 N=Natural Number

$$B = \{y \in E \mid 0 < y \le 50\}$$
 E=Even Number

$$C = \{x \in O \mid x > 0\}$$
 O=Odd Number

SET OF NUMBERS

1. Set of Natural Numbers

$$N = \{1, 2, 3, \dots\}$$

2. Set of Whole Numbers

$$W = \{0, 1, 2, 3, \dots\}$$

3. Set of Integers

$$Z = \{..., -3, -2, -1, 0, +1, +2, +3, ...\}$$

= $\{0, \pm 1, \pm 2, \pm 3, ...\}$

SET OF NUMBERS

- 4. Set of Even Integers $E = \{0, \pm 2, \pm 4, \pm 6, ...\}$
- 5. Set of Odd Integers $O = \{\pm 1, \pm 3, \pm 5, ...\}$
- 6. Set of Prime Numbers
 P = {2, 3, 5, 7, 11, 13, 17, 19, ...}
- 7. Set of Rational Numbers $Q = \{x \mid x = p/q ; p, q \in Z, q \neq 0\}$

SUBSET

If A and B are two sets, A is called a subset of B, written $A \subseteq B$, if, and only if, every element of A is also an element of B.

Symbolically:

 $A \subseteq B \leftrightarrow \text{if } x \in A \text{ then } x \in B$

SUBSET

REMARKS:

- 1. When $A \subseteq B$, then B is called a superset of A.
- 2. When $A \not\subseteq B$, then there exist at least one $x \in A$ such that $x \notin B$.
- 3. Every set is a subset of itself.

EXAMPLE

$$A = \{1, 3, 5\}$$
 $B = \{1, 2, 3, 4, 5\}$

$$C = \{1, 2, 3, 4\} D = \{3, 1, 5\}$$

Then

$$A \subseteq B$$
 $A = \{1, 3, 5\}$

$$A \subseteq D \qquad D = \{3,1,5\}$$

PROPER SUBSET

Let A and B be sets. A is a proper subset of B, if, and only if, every element of A is in B but there is at least one element of B that is not in A.

Symbolically:

 $A \subset B$

EQUAL SETS

Two sets A and B are equal if, and only if, every element of A is in B and every element of B is in A and is denoted A = B.

Symbolically:

 $A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$

EQUAL SETS

EXAMPLE:

Let A = {1,2,3,6}
B = the set of positive divisors of 6
C = {3,1,6,2}
D = {1,2,2,3,6,6,6}

Then A,B,C, and D are all equal sets.

Point to ponder!!

- 1. Is n(A) = n(D)?
- 2. Are equal sets equivalent and vice versa?

NULL SET

A set which contains no element is called a null set, or an empty set or a void set.

Symbolically:

It is denoted by the Greek letter \emptyset (phi) or $\{\ \}$.

NULL SET

EXAMPLE

 $A = \{x \mid x \text{ is a person taller than } 10 \text{ feet}\}$

$$A = \emptyset$$

$$B = \{x \mid x^2 = 4, x \text{ is odd}\}\$$

$$B = \emptyset$$

EXERCISE

(a)	x	€ {x}	TRUE

(b)
$$\{x\} \subseteq \{x\}$$
 TRUE

(c)
$$\{x\} \in \{x\}$$
 FALSE

(d)
$$\{x\} \in \{\{x\}\}\$$
 TRUE

(e)
$$\emptyset \subseteq \{x\}$$
 TRUE

(f)
$$\emptyset \in \{x\}$$
 FALSE

UNIVERSAL SET

The set of all elements under consideration is called the Universal Set.

The Universal Set is denoted by U.

VENN DIAGRAM

A Venn diagram is a graphical representation of sets by regions in the plane.

FINITE AND INFINITE SETS

A set S is said to be finite if it contains exactly m distinct elements where m denotes some non negative integer.

In such case we write

$$|S| = m \text{ or } n(S) = m$$

A set is said to be infinite if it is not finite.

FINITE AND INFINITE SETS

EXAMPLES

- 1. The set S of letters of English alphabets is finite and |S| = 26
- 2. The null set \emptyset has no elements, is finite and $|\emptyset| = 0$
- 3. The set of positive integers {1, 2, 3,...} is infinite.

EXERCISE

1.
$$A = \{month in the year\}$$
 FINITE

2.
$$B = \{even integers\}$$
 INFINITE

3. C = {positive integers less than 1}
FINITE

MEMBERSHIP TABLE

A table displaying the membership of elements in sets. To indicate that an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is used.

А	Ac
1	О
0	1

UNION

Let A and B be subsets of a universal set U. The union of sets A and B is the set of all elements in U that belong to A or to B or to both, and is denoted $A \cup B$.

Symbolically:

 $A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$

UNION

EXAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

$$A = \{a, c, e, g\}$$

$$B = \{d, e, f, g\}$$

Then $A \cup B = \{a, c, e, g\} \cup \{d, e, f, g\}$ $= \{a, c, d, e, f, g\}$

VENN DIAGRAM FOR

MEMBERSHIP TABLE FOR

$A \cup B$

А	В	A∪B
1	1	1
1	0	1
О	1	1
О	О	О

INTERSECTION

Let A and B subsets of a universal set U. The intersection of sets A and B is the set of all elements in U that belong to both A and B and is denoted $A \cap B$.

Symbolically:

 $A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$

INTERSECTION

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then

$$A \cap B = \{a, c, e, g\} \cap \{d, e, f, g\}$$

= $\{e, g\}$

VENN DIAGRAM

REMARK

1.
$$A \cap B = B \cap A$$

2.
$$A \cap B \subseteq A$$
 and $A \cap B \subseteq B$

3. If
$$A \cap B = \emptyset$$

then A & B are called disjoint sets.

MEMBERSHIP TABLE FOR

 $A \cap B$

А	В	$A \cap B$
1	1	1
1	0	О
О	1	О
О	О	O

SET DIFFERENCE

Let A and B be subsets of a universal set U. The difference of "A and B" (or relative complement of B in A) is the set of all element in U that belong to A but not to B, and is denoted by A-B or A/B.

Symbolically:

$$A - B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

SET DIFFERENCE

EXAMPLE:

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$
 $B = \{d, e, f, g\}$

Then:

A-B =
$$\{a, c, e, g\}$$
 - $\{d, e, f, g\}$
= $\{a, c\}$

VENN DIAGRAM

REMARKS:

A - B is shaded

- 1. $A B \neq B A$
- 2. $A B \subseteq A$
- 3. A B, $A \cap B$ and B A are mutually disjoint sets.

MEMBERSHIP TABLE FOR

A - B

А	В	A - B
1	1	О
1	О	1
О	1	О
О	О	0

COMPLEMENT

Let A be a subset of universal set U. The complement of A is the set of all element in U that do not belong to A, and is denoted A^c, A or A'

Symbolically:

$$A' = \{ x \in U \mid x \notin A \}$$

COMPLEMENT

EXMAPLE

Let
$$U = \{a, b, c, d, e, f, g\}$$

 $A = \{a, c, e, g\}$

Then

$$A' = \{a, b, c, d, e, f, g\} - \{a, c, e, g\}$$

= $\{b, d, f\}$

VENN DIAGRAM

REMARKS:

1.
$$A' = U - A$$

2.
$$A \cap A' = \emptyset$$

3.
$$A \cup A' = U$$

MEMBERSHIP TABLE FOR

A'

A	A'
1	0
О	1

Let
$$U = \{1, 2, 3, ..., 10\}$$

 $X = \{1, 2, 3, 4, 5\}$
 $Y = \{y \mid y = 2 \text{ x}, \text{ x} \in X\}$
 $Z = \{z \mid z^2 - 9 \text{ z} + 14 = 0\}$
Enumerate:
(i) $X \cap Y$ (ii) $Y \cup Z$
(iii) $X - Z$ (iv) Y'
(v) $X' - Z'$ (vi) $(X - Z)'$

Note that "y" and "z" both belongs to Universal set "U".

Given

$$U = \{1, 2, 3, ..., 10\}$$

$$X = \{1, 2, 3, 4, 5\}$$

$$Y = \{y \in U \mid y = 2 \text{ x, x } \in X\}$$

= \{2, 4, 6, 8, 10\}

$$Z = \{z \in U \mid z^2 - 9z + 14 = 0\}$$
$$= \{2, 7\}$$

(i)
$$X \cap Y = \{1, 2, 3, 4, 5\} \cap \{2, 4, 6, 8, 10\}$$

= $\{2, 4\}$

(ii)
$$Y \cup Z = \{2, 4, 6, 8, 10\} \cup \{2, 7\}$$

= $\{2, 4, 6, 7, 8, 10\}$

(iii)
$$X - Z = \{1, 2, 3, 4, 5\} - \{2, 7\}$$

= $\{1, 3, 4, 5\}$

```
(iv)Y'=U-Y
      = \{1, 2, 3, ..., 10\} - \{2, 4, 6, 8, 10\}
      = \{1, 3, 5, 7, 9\}
(v)X'-Z'
      ={6, 7, 8, 9, 10} - {1, 3, 4, 5, 6, 8, 9, 10}
      = \{7\}
(vi)(X-Z)'
      = U - (X - Z)
      = \{1, 2, 3, ..., 10\} - \{1, 3, 4, 5\}
      = \{2, 6, 7, 8, 9, 10\}
```

$$U = \{ x \in Z, 0 \le x \le 10 \}$$

$$P = \{x \in U \mid x \text{ is a prime number}\}\$$

$$Q = \{x \in U \mid x^2 < 70\}$$

- (i) Draw a Venn diagram for the above
- (ii) List the elements in $P^c \cap Q$

$$U = \{ x \in Z, 0 \le x \le 10 \}$$

$$= \{0, 1, 2, 3, ..., 10 \}$$

$$P = \{x \in U \mid x \text{ is a prime number} \}$$

$$= \{2, 3, 5, 7 \}$$

$$Q = \{x \in U \mid x^2 < 70 \}$$

$$= \{0, 1, 2, 3, 4, 5, 6, 7, 8 \}$$

VENN DIAGRAM

The yellow shaded region is the desired result.

ELEMENTS OF

(ii)
$$P' \cap Q$$

$$P' = U - P$$

$$= \{0, 1, 2, 3, ..., 10\} - \{2, 3, 5, 7\}$$

$$= \{0, 1, 4, 6, 8, 9, 10\}$$
and
$$P' \cap Q$$

$$= \{0, 1, 4, 6, 8, 9, 10\} \cap \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$= \{0, 1, 4, 6, 8\}$$

- (i) $(A \cap B) \cap C'$ (ii) $A' \cup (B \cup C)$
- (iii) $(A-B) \cap C$ (iv) $(A \cap B') \cup C'$

Let
$$U = \{1, 2, 3, 4, 5\}$$
 $C = \{1, 3\}$

Where A and B are non empty sets. Find A in each of the following:

(i)
$$A \cup B = U$$
 $A \cap B = \emptyset$ and $B = \{1\}$

(ii)
$$A \subset B$$
 and $A \cup B = \{4, 5\}$

(iii)
$$A \cap B = \{3\}$$
 $A \cup B = \{2, 3, 4\}$
and $B \cup C = \{1,2,3\}$

(iv) A and B are disjoint, B and C are disjoint, and the union of A and B is the set {1, 2}.