Project Euler #15: Lattice paths

This problem is a programming version of Problem 15 from projecteuler.net

Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner.

How many such routes are there through a $N \times M$ grid? As number of ways can be very large, print it modulo (10^9+7) .

Input Format

The first line contains an integer T , i.e., number of test cases. Next T lines will contain integers N and M.

Constraints

- $1 \le T \le 10^3$
- $1 \le N \le 500$
- $1 \le M \le 500$

Output Format

Print the values corresponding to each test case.

Sample Input

Sample Output

Explanation

For 2×2 as shown in statement above.

A 4×4 grid example

To find the number of paths in a 4×4 grid you'll have to generate all the discreet permutations of {R, R, R, R, D, D, D, D, D}, where any combination of 4 Rs and 4 Ds will always be a valid path. If the Rs are first placed randomly in 4 of the 8 positions then they are considered independent. The Ds are considered dependent because they have no choice but to be placed into the remaining open slots.

Count the number of routes using the binomial coefficient

The number of contiguous routes for a square grid ($n \times n$) is the central binomial coefficient or the center number in the $2n^{th}$ row of Pascal's triangle. The rows start their numbering at 0.

$$\binom{2n}{n} = \frac{(2n)!}{n! \times n!}$$

The formula in general for any rectangular grid ($n \times m$) using the notation for the binomial coefficient is:

$$\binom{n+m}{n} = \frac{(n+m)!}{n! \times m!}$$