DSC 255 - MACHINE LEARNING FUNDAMENTALS

BOOSTING WEAK LEARNERS

SANJOY DASGUPTA, PROFESSOR,

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Choosing A Classifier

So many choices:

- Nearest neighbor
- Different generative models
- Linear predictors with different loss functions
- Different kernels
- Neural nets
- etc.

Can one **combine** them?

And get a classifier that is better than any of them individually?

Combining Simple Classifiers

1 No one classifier is going to be the final product. So why not keep the individual components simple?

Combining Simple Classifiers

- 1 No one classifier is going to be the final product. So why not keep the individual components simple?
- 2 How to train each constituent classifier?
 On the full training set?

Combining Simple Classifiers

- 1 No one classifier is going to be the final product. So why not keep the individual components simple?
- 2 How to train each constituent classifier? On the full training set?
- 3 The full (combined) models may get enormous. Is this bad for generalization?

Weak Learners

It is often easy to come up with a **weak classifier**, one that is marginally better than random guessing:

$$\Pr(h(X) \neq Y) \leq \frac{1}{2} - \epsilon$$

A learning algorithm that can consistently generate such classifiers is called a **weak learner**.

Is it possible to systematically boost the quality of a weak learner??

The Blueprint For Boosting

Given: data set
$$(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)})$$
.

- Initially give all points equal weight.
- Repeat for t = 1, 2, ...:
 - \succ Feed weighted data set to the weak learner, get back a weak classifier h_t
 - \triangleright Reweight data to put more emphasis on points that h_t gets wrong
- Combine all these h_t 's linearly