$MA1522\ Notes\ (AY24/25\ Sem1)$

Michael Yang

Chapter 2: Matrix Algebra

- 2.1 Definition and Special types of Matrices
- 2.2 Matrix Algebra
- 2.3 Linear System and Matrix Equation
- 2.4 Inverse of Matrices
- 2.5 Elementary Matrices
- 2.6 Equivalent Statements for Invertibility
- 2.7 LU Factorization
- 2.8 Determinant by Cofactor Expansion
- 2.9 Determinant by Reduction

Theorem

Suppose **B** is obtained from **A** by a single elementary row operation, $\mathbf{A} \xrightarrow{r} \mathbf{B}$. Then the determinant of **B** is obtained from the determinant of **A** as such.

- If $r = R_i + aR_j$, then $det(\mathbf{B}) = det(\mathbf{A})$;
- If $r = cR_i$, then $det(\mathbf{B}) = c det(\mathbf{A})$;
- If $r = R_i \leftrightarrow R_j$, then $\det(\mathbf{B}) = -\det(\mathbf{A})$.

Corollary

The determinant of an elementary matrix E is given as such.

- If **E** corresponds to $R_i + aR_j$, then $det(\mathbf{E}) = 1$.
- If **E** corresponds to cR_i , then $det(\mathbf{E}) = c$.
- If **E** corresponds to $R_i + aR_j$, then $\det(\mathbf{E}) = -1$.

Theorem

Let ${\bf A}$ and ${\bf R}$ be square matrices such that

$$\mathbf{R} = \mathbf{E}_k \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$$

for some elementary matrices $\mathbf{E}_1, \mathbf{E}_2, \dots, \mathbf{E}_k$. Then

$$\det(\mathbf{R}) = \det(\mathbf{E}_k) \dots \det(\mathbf{E}_2) \det(\mathbf{E}_1) \det(\mathbf{A}).$$

Corollary

Let **A** be a $n \times n$ square matrix.

Suppose $\mathbf{A} \xrightarrow{r_1} \xrightarrow{r_2} \dots \xrightarrow{r_k} \mathbf{R} = \begin{pmatrix} d_1 & * & \dots & * \\ 0 & d_2 & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{pmatrix}$, where \mathbf{R} is the reduced row-echelon form of \mathbf{A} . Let \mathbf{E}_1 be

the elementary matrix corresponding to the elementary row operation r_i , for i = 1, ..., k. Then

$$\det(\mathbf{A}) = \frac{d_1 d_2 \dots d_n}{\det(\mathbf{E}_k) \dots \det(\mathbf{E}_2) \det(\mathbf{E}_1)}.$$

2.10 Properties of Determinant

Theorem

(Determinant of product is the product of determinant)

Let \mathbf{A} and \mathbf{B} be square matrices of the same size. Then

$$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B}).$$

By induction, for square matrices A_1, A_2, \dots, A_k of the same size,

$$\det(\mathbf{A}_1\mathbf{A}_2\ldots\mathbf{A}_k)=\det(\mathbf{A}_1)\det(\mathbf{A}_2)\ldots\det(\mathbf{A}_k).$$

Theorem

(Determinant of inverse is the inverse of determinant)

If **A** is invertible, then

$$\det(\mathbf{A}^{-1}) = \det(\mathbf{A})^{-1}$$

Theorem

(Determinant of scalar multiplication)

For any square matrix \mathbf{A} of order n and scalar c,

$$\det(c\mathbf{A}) = c^n \det(\mathbf{A}).$$

Definition

Let **A** be a $n \times n$ square matrix. The adjoint of **A**, denoted as $\operatorname{adj}(\mathbf{A})$, is the $n \times n$ square matrix whose (i, j) entry is the (j, i)-cofactor of **A**,

$$\mathbf{adj}(\mathbf{A}) = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

(Adjoint formula)

Let A be a square matrix and adj(A) be its adjoint. Then

$$\mathbf{A}(\mathbf{adj}(\mathbf{A})) = \det(\mathbf{A})\mathbf{I},$$

where ${f I}$ is the identity matrix.

Corollary

(Adjoint formula for inverse)

Let **A** be an invertible matrix. Then the inverse of **A** is given by

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{adj}(\mathbf{A})$$

Chapter 3: Euclidean Vector Spaces

3.1 Euclidian Vector Spaces

Definition

A (real) n-vector is a collection of n ordered real numbers,

$$\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}, where \ v_i \in \mathbb{R} \ for \ i = 1, \dots, n.$$

The real number v_i is called the *i*-th coordinate of the vector \mathbf{v} . The **Euclidean** n-space, denoted \mathbb{R}^n , is the collection of all n-vectors

$$\mathbb{R}^{n} = \left\{ v = \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{pmatrix} \middle| v_{i} \in \mathbb{R} \text{ for } i = 1, \dots, n. \right\}$$

Properties of Vector Addition and Scalar Multiplication

Since vectors are matrices (column vectors are $n \times 1$ matrices and row vectors are $1 \times n$ matrices), the properties of matrix addition and scalar multiplication holds for vectors. For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and scalars $a, b \in \mathbb{R}$,

- 1. The sum $\mathbf{u} + \mathbf{v}$ is a vector in \mathbb{R}^n
- 2. (Commutative) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (Associative) $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- 4. (Zero vector) $\mathbf{0} + \mathbf{v} = \mathbf{v}$.
- 5. The negative $-\mathbf{v}$ is a vector in \mathbb{R}^n such that $\mathbf{v} \mathbf{v} = \mathbf{0}$.
- 6. (Scalar multiple) $a\mathbf{v}$ is a vector in \mathbb{R}^n .
- 7. (Distribution) $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 8. (Distribution) $(a + b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 9. (Associativity of scalar multiplication) $(ab)\mathbf{u} = a(b\mathbf{u})$.
- 10. If $a\mathbf{u} = \mathbf{0}$, then either a = 0 or $\mathbf{u} = \mathbf{0}$.

Definition

A linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{R}^n$ is $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k$ for some $c_1, c_2, \dots, c_k \in \mathbb{R}^k$.

Definition

A set V equipped with addition and scalar multiplication is said to be a vector space over \mathbb{R} if it satisfies the following axioms.

6

1. For any vectors \mathbf{u}, \mathbf{v} in V, the sum $\mathbf{u} + \mathbf{v}$ is in V.

- 2. (Commutative) For any vectors \mathbf{u}, \mathbf{v} in $V, \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- 3. (Associative) For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $V, \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- 4. (Zero vector) There is a vector $\mathbf{0}$ in V such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$ for all vectors \mathbf{v} in V.
- 5. (Negative) For any vector \mathbf{u} in V, there exists a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$.
- 6. For any scalar a in \mathbb{R} and vector \mathbf{v} in V, $a\mathbf{v}$ is a vector in V.
- 7. (Distribution) For any scalar a in \mathbb{R} and vector \mathbf{u}, \mathbf{v} in V, $a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$.
- 8. (Distribution) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $(a+b)\mathbf{u} = a\mathbf{u} + b\mathbf{u}$.
- 9. (Associativity of scalar multiplication) For any scalars a, b in \mathbb{R} and vector \mathbf{u} in V, $a(b\mathbf{u}) = (ab)\mathbf{u}$.
- 10. For any vector \mathbf{u} in V, $1\mathbf{u} = \mathbf{u}$.

3.2 Dot Product, Norm, Distance

Definition

The inner product (or dot product) of vectors $\mathbf{u} = (u_i)$ and $\mathbf{v} = (v_i)$ in \mathbb{R}^n is defined to be

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2, + \dots + u_n v_n.$$

Define the **norm** of a vector $\mathbf{u} \in \mathbb{R}^n$, $\mathbf{u} = (u_i)$, to be the square root of the inner product of \mathbf{u} with itself, and is denoted as $||\mathbf{u}||$,

$$||u|| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}.$$

This is also known as the **length** or **magnitude** of the vector.

Properties of inner product and norm

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be vectors and $a, b, c \in \mathbb{R}$ be real numbers.

1. Inner product is **symmetric**,

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$$
.

2. Inner product **commutes** with scalar multiple,

$$c\mathbf{u} \cdot \mathbf{v} = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}).$$

3. Inner product is **distributive**,

$$\mathbf{u} \cdot (a\mathbf{v} + b\mathbf{w}) = a\mathbf{u} \cdot \mathbf{v} + b\mathbf{u} \cdot \mathbf{w}$$

- 4. Inner product is **positive definite**, $\mathbf{u} \cdot \mathbf{u} \geq 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.
- 5. $||c\mathbf{u}|| = |c| ||\mathbf{u}||$.

Definition

A vector $\mathbf{u} \in \mathbb{R}^n$ is a **unit vector** if its norm is 1,

$$||\mathbf{u}|| = 1$$

Normalizing a vector

Let **u** be a nonzero vector $\mathbf{u} \neq \mathbf{0}$. By multiplying by the reciprocal of the norm, we get a unit vector,

$$\mathbf{u} \longrightarrow \frac{\mathbf{u}}{||\mathbf{u}||}$$

This is called **normalizing u**.

Definition

The **distance** between two vectors \mathbf{u} and \mathbf{v} , denoted as $d(\mathbf{u}, \mathbf{v})$, is defined to be

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$$

Define the angle θ between two nonzero vectors, $\mathbf{u}, \mathbf{v} \neq \mathbf{0}$ to be such that

$$\frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}|| \ ||\mathbf{v}||}$$

3.3 Linear Combinations and Linear Spans

Definition

A linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in \mathbb{R}^n$ is

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k$$
, for some $c_1, c_2, \ldots c_k \in \mathbb{R}$.

The scalars $c_1, c_2, \dots c_k$ are called **coefficients**.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be vectors in \mathbb{R}^n . The **span** (or **linear span**) of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ is the subset of \mathbb{R}^n containing all the linear combinations of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$,

$$\operatorname{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\} = \{c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k \mid c_1, c_2, \dots, c_k \in \mathbb{R}\}.$$

Algorithm to Check for Linear Combination

- 1. Form the $n \times k$ matrix $\mathbf{A} = (\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k)$ whose columns are the vectors in S.
- 2. Then a vector \mathbf{v} in \mathbb{R}^n is in $span\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ if and only if the system $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent.
- 3. If the system is consistent, then the solutions to the system are the possible coefficients of the linear

combination. That is, if
$$\mathbf{u} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$
 is a solution to $\mathbf{A}\mathbf{x} = \mathbf{v}$, then

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k.$$

8

Algorithm to Check if $span(S) = \mathbb{R}^n$

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a set of vectors in \mathbb{R}^n .

- 1. Form the $n \times k$ matrix $\mathbf{A} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k)$ whose columns are the vectors in S.
- 2. Then $span(S) = \mathbb{R}^n$ if and only if the system $\mathbf{A}\mathbf{x} = \mathbf{v}$ is consistent for all \mathbf{v} .
- 3. This is equivalent to the reduced row-echelon form of A having no zero rows.

Properties of linear span

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a finite set of vector. The span of S, span(S) has the following properties.

1. The span of S contains the origin,

$$\mathbf{0} \in span(S)$$
.

2. The span of S is closed under vector addition, for any $\mathbf{u}, \mathbf{v} \in span(S)$, and real number $\alpha \in \mathbb{R}$,

$$\mathbf{u} + \mathbf{v} \in span(S)$$

3. The span S is closed under scalar multiplication, for any $\mathbf{u} \in span(S)$ and real number $\alpha \in \mathbb{R}$,

$$\alpha \mathbf{u} \in span(S)$$
.

Properties (ii) and (iii) can be combined together into one property (ii'): The span is closed under linear combinations, that is, if \mathbf{u} , \mathbf{v} are vectors in span(S) and α , β are any scalars, then the linear combination $\alpha \mathbf{u} + \beta \mathbf{v}$ is a vector in span(S).

Theorem

(Linear span is closed under linear combinations)

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a set of vectors in \mathbb{R}^n . For any vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ in span(S), the span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ is a subset of span(S),

$$span\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_m\}\subseteq span(S).$$

Algorithm to check for Set Relations between Spans

Suppose we are given 2 sets of vectors $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$.

- 1. By the corollary, if $\mathbf{v}_i \in span(S)$ for $i = 1, \ldots, m$, we can conclude that $span(T) \subseteq span(S)$.
- 2. Recall that to check if $\mathbf{v}_i \in span(S)$, we check that the system ($\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k \ | \ \mathbf{v}_i$) is consistent for all $i = 1, \dots, m$.
- 3. There are in total m such linear systems to check. However, since they have the same coefficient matrix, we may combine and check them together, that is, check that

$$(\mathbf{u}_1 \mathbf{u}_2 \ldots \mathbf{u}_k | \mathbf{v}_1 | \mathbf{v}_2 | \ldots | \mathbf{v}_m)$$

is consistent.

(Algorithm to check for set relations between spans)

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ and $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ be sets of vectors in \mathbb{R}^n . Then $span(T) \subseteq span(S)$ if and only if $(\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k \mid \mathbf{v}_1 \mid \mathbf{v}_2 \mid \dots \mid \mathbf{v}_m)$ is consistent.

3.4 Subspaces

Definition

The set of solutions to a linear system Ax = b can be expressed **implicitly** as

$$V = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{u} = \mathbf{b} \}$$

or **explicitly** as

$$V = \{ \mathbf{u} + s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \dots + s_k \mathbf{v}_k \mid s_1, s_2, \dots, s_k \in \mathbb{R} \},$$

where $\mathbf{u} + s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \cdots + s_k \mathbf{v}_k$, $s_1, s_2, \dots, s_k \in \mathbb{R}$ is the general solution.

Definition

A subset V of \mathbb{R}^n is a **subspace** if it satisfies the following properties.

- 1. V contains the zero vector, $\mathbf{0} \in V$.
- 2. V is closed under scalar multiplication. For any vector, v in V and scalar α , the vector $\alpha \mathbf{v}$ is in V.
- 3. V is closed under addition. For any vectors \mathbf{u} , \mathbf{v} in V, the sum $\mathbf{u} + \mathbf{v}$ is in V.

Property (i) can be replaced with property (i'): V is **nonempty**.

Properties (ii) and (iii) is equivalent to property (ii'): V is closed under linear combination. For any \mathbf{u} , \mathbf{v} in V, and scalars α , β , the linear combination $\alpha \mathbf{u} + \beta \mathbf{v}$ is in V.

Theorem

(Solution set of a homogeneous system is a subspace)

The solution set $V = \{\mathbf{u} \mid \mathbf{A}\mathbf{u} = \mathbf{b}\}$ to a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is a subspace if and only if $\mathbf{b} = \mathbf{0}$, that is, the system is homogeneous.

Definition

The solution set to a homogeneous system is call a solution space.

Theorem

(Subspaces are equivalent to linear spans)

A subset $V \subseteq \mathbb{R}^n$ is a subspace if and only if it is a linear span, V = span(S), for some finite set $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$.

Check if a set is a subspace

To show that a set V is a subspace, we can either

- find a spanning set, that is, find a set S such that V = span(s), or
- \bullet show that V satisfies the 3 conditions of being a subspace.

To show that a subset V is not a subspace, we can either

- show that it does not contain the zero vector, $\mathbf{0} \notin V$,
- find a vector $\mathbf{v} \in V$ and a scalar $\alpha \in \mathbb{R}$ such that $\alpha \mathbf{v} \notin V$, or
- find vectors $\mathbf{u}, \mathbf{v} \in V$ such that the sum is not in $V, \mathbf{u} + \mathbf{v} \notin V$.

Theorem

(Affine spaces)

The solution set $W = \{ \mathbf{w} \mid \mathbf{A}\mathbf{w} = \mathbf{b} \}$ of a non-homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{b} \neq 0$, is given by

$$\mathbf{u} + V := \{ \ \mathbf{u} + \mathbf{v} \mid \mathbf{v} \in V \ \}$$

where $V = \{ v \mid \mathbf{A}\mathbf{v} = \mathbf{0} \}$ is the solution space to the associated homogeneous system and \mathbf{u} is a particular solution, $\mathbf{A}\mathbf{u} = \mathbf{b}$.

That is, vectors in $\mathbf{u} + V$ are of the form $\mathbf{u} + \mathbf{v}$ for some \mathbf{v} in V.

3.5 Linear Independence

Definition

A set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent if the only coefficients $c_1, c_2, \dots, c_k \in \mathbb{R}$ satisfying the equation

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_k\mathbf{u}_k = \mathbf{0}$$

are $c_1 = c_2 = \cdots = c_k = 0$. Otherwise, we say that the set is linearly dependent.

Algorithm to Check for Linear Independence

Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a set of vectors in \mathbb{R}^n .

- $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent if and only if the homogeneous system $(\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k)\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- The homogeneous system has only the trivial solution if and only if the reduced row-echelon form of $(\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k)$ has no non-pivot column.

Theorem

(Solution set of a homogeneous system is a subspace)

A subset $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ of \mathbb{R}^n is linearly independent if and only if the reduced row-echelon form of $\mathbf{A} = (\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k)$ has no non-pivot columns.

3.6 Basis and Coordinates

Definition

Let V be a subspace of \mathbb{R}^n . A set $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is a **basis** for V if

- span(S) = V and
- \bullet S is linearly independent.

Theorem

Suppose $S \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is a basis for V. Then every vector \mathbf{v} in the subspace V can be written as a linear combination of vectors in S uniquely.

Theorem

(Basis for Solution Set of Homogeneous System)

Let $V = \{\mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{0}\}$ be the solution space to some homogeneous system. Suppose

$$s_1\mathbf{u}_1 + s_1\mathbf{u}_2 + \dots + s_k\mathbf{u}_k, s_1, s_2, \dots, s_k \in \mathbb{R}$$

is a general solution to the homogeneous system Ax = 0.

Then $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is a basis for the subspace $V = \{\mathbf{u} | \mathbf{A}\mathbf{u} = \mathbf{0}\}.$

Theorem

Basis for the zero space $\{0\}$ of \mathbb{R}^n is the empty set $\{\}$ or \emptyset .

Theorem

A $n \times n$ square matrix **A** is invertible if and only if the columns are linearly independent.

Theorem

A $n \times n$ square matrix **A** is invertible if and only if the columns spans \mathbb{R}^n .

Corollary

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a subset of \mathbb{R}^n containing n vectors. Then S is linearly independent if and only if S spans \mathbb{R}^n .

Corollary

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a subset of \mathbb{R}^n and $\mathbf{A} = (\mathbf{u}_1 \mathbf{u}_2 \dots \mathbf{u}_k)$ be the matrix whose columns are vectors in S. Then S is a basis for \mathbb{R}^n if and only if k = n and \mathbf{A} is an invertible matrix.

Theorem

A $n \times n$ square matrix **A** is invertible if and only if the columns of **A** form a basis for basis for \mathbb{R}^n .

A $n \times n$ square matrix **A** is invertible if and only if the row of **A** form a basis for basis for \mathbb{R}^n .

Theorem

(Equivalent Statements for Invertibility)

Let A be a square matrix of order n. The following statements are equivalent.

- 1. A is invertible.
- 2. \mathbf{A}^T is invertible.
- 3. A has a left-inverse, that is, there is a matrix B such that BA = I.
- 4. A has a right-inverse, that is, there is a matrix B such that AB = I.
- 5. The reduced row-echelon form of **A** is the identity matrix.
- 6. A can be expressed as a product of elementary matrices.
- 7. The homogeneous system Ax = 0 has only the trivial solution.
- 8. For any **b**, the system Ax = b is consistent.
- 9. The determinant of **A** is nonzero, $det(\mathbf{A}) \neq 0$.
- 10. The columns/rows of **A** are linearly independent for \mathbb{R}^n .
- 11. The columns/rows of **A** spans \mathbb{R}^n .

Definition

(Coordinates Relative to a Basis)

Let $S = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k}$ be a basis for a subspace V of \mathbb{R}^n .

Then given any vector $\mathbf{v} \in V$, we can write \mathbf{v} unique as

$$c_1\mathbf{u}_1, c_2\mathbf{u}_2, \ldots, c_k\mathbf{u}_k.$$

The coordinates of \mathbf{v} relative to the basis S is defined to be the vector

$$[\mathbf{v}]_s = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

Algorithm for Computing Relative Coordinate

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a basis for a subspace V of \mathbb{R}^n .

For $\mathbf{v} \in V$, find real numbers $c_1, c_2, \dots, c_k \in \mathbb{R} \in \mathbb{R}$ such that

$$c_1\mathbf{u}_1+c_2\mathbf{u}_2+\cdots+c_k\mathbf{u}_k=\mathbf{v}.$$

That is, we are solving for

$$(\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_k \mid \mathbf{v}).$$

Theorem

Let V be a subspace of \mathbb{R}^n and B a basis for V.

- 1. For any vectors $\mathbf{u}, \mathbf{v} \in V$, $\mathbf{u} = \mathbf{v}$ if and only if $[\mathbf{u}]_B = [\mathbf{v}]_B$.
- 2. For any $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in V$,

$$[c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_m]_B = c_1[\mathbf{v}_1]_B + c_2[\mathbf{v}_2]_B + \dots + c_m[\mathbf{v}_m]_B.$$

3.7 Dimensions

Theorem

Let V be a subspace of \mathbb{R}^n and B a basis for V. Suppose B contains k vectors, |B| = k. Let v_1, v_2, \dots, v_k be vectors in V. Then

- 1. $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is linearly independent if and only if $[\mathbf{v}_1]_B, [\mathbf{v}_2]_B, \dots, [\mathbf{v}_k]_B$ is linearly independent (respectively, dependent) in \mathbb{R}^k ; and
- 2. $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ spans V if and only if $[\mathbf{v}_1]_B, [\mathbf{v}_2]_B, \dots, [\mathbf{v}_k]_B$ spans \mathbb{R}^k .

Corollary

Let V be a subspace of \mathbb{R}^n and V a basis for B. Suppose B contains k vectors, |B| = k.

- 1. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subset of V with m > k, then S is linearly dependent.
- 2. If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a subset of V with m < k, then S cannot span V.

Corollary

Suppose $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ and $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ are bases for a subspace $V \subseteq \mathbb{R}^n$. Then k = m.

Definition

Let V be a subspace of \mathbb{R}^n . The dimension of V, denoted by $\dim(V)$, is defined to be the number of vectors in any basis of V.

Theorem

(Dimension of solution space)

Let **A** be a $m \times n$ matrix. The number of non-pivot columns in the reduced row-echelon form of A is the dimension of the solution space

$$V = \{ \mathbf{u} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{u} = \mathbf{0} \}.$$

(Spanning Set Theorem)

Let $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be a subset of vectors in \mathbb{R}^n , and let V = span(S). Suppose V is not the zero space, $V \neq \{\mathbf{0}\}$. Then there must be a subset of S that is a basis for V.

Theorem

(Linear Independence Theorem)

Let V be a subspace of \mathbb{R}^n and $S = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ a linearly independent subset of V, $S \subseteq V$. Then there must be a set T containing S, $S \subseteq T$ such that T is a basis for V.

Theorem

Let U and V be subspaces of \mathbb{R}^n .

- 1. If $U \subseteq V$, then $dim(U) \leq dim(V)$.
- 2. If $U \subseteq V$, and $U \neq V$, then dim(U) < dim(V) That is, $U \subseteq V$, then $dim(U) \leq dim(V)$ with equality if and only if U = V.

Theorem

(B1)

Let V be a k-dimensional subspace of \mathbb{R}^n , dim(V) = k. Suppose $U \subseteq V$ is a linearly independent subset containing k vectors, |S| = k. Then S is a basis for V.

- 1. |S| = dim(V)
- $2. S \subseteq V$
- 3. S is linearly independent

Theorem

(B2)

Let V be a k dimensional subspace of \mathbb{R}^n , dim(V) = k. Suppose S is a set containing k vectors, |S| = k, such that $V \subseteq span(S)$. Then S is a basis for V.

- 1. |S| = dim(V)
- 2. $V \subseteq span(S)$

3.8 Transition Matrices

Definition

Let V be a subspace of \mathbb{R}^n . Suppose $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ are **basis** for the subspace V. Define the transition matrix from T to S to be

$$\mathbf{P} = ([\mathbf{v}_1]_S \quad [\mathbf{v}_2]_S \quad \dots \quad [\mathbf{v}_k]_S),$$

the matrix whose columns are the coordinates of the vectors in T relative to the basis S.

(Transition Matrix)

Let V be a subspace of \mathbb{R}^n . Suppose $S = \{u_1, \dots, u_k\}$ are **bases** for the subspace V. Let **P** be the transition matrix from T to S. Then for any vector w in V,

$$[\mathbf{w}]_S = \mathbf{P}[\mathbf{w}]_T.$$

Algorithm to find Transition Matrix

Let $S = \{u_1, \dots, u_k\}$ and $T = \{v_1, \dots, v_k\}$ be a basis for a subspace V in \mathbb{R}^n . To find \mathbf{P} , the transition matrix from T to S,

$$("S"|"T") = (u_1 \quad u_2 \quad \dots u_k \quad | \quad v_1 \quad v_2 \quad \dots v_k) \xrightarrow{\operatorname{rref}} \left(\begin{array}{c|c} \mathbf{I}_k & \mathbf{P} \\ \mathbf{0}_{(n-k)\times k} & \mathbf{0}_{(n-k)\times k} \end{array} \right)$$

Theorem

(Inverse of Transition Matrix)

Suppose $S = \{u_1, \ldots, u_k\}$ and $T = \{v_1, \ldots, v_k\}$ are bases for a subspace V of \mathbb{R}^n . Let **P** be the transition matrix from T to S. Then P^{-1} is the transition matrix from S to T.

Chapter 4: Subspaces Associated to a Matrix

- 4.1 Column Space, Row Space, and Nullspace
- 4.2 Rank