

AD-A092 454

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 9/2
DOCUMENTATION FOR THE SHIP HYDROSTATICS COMPUTER PROGRAM HYDRO.(U)

OCT 80 S C FISHER
UNCLASSIFIED DTNSRDC/SPD-0965-01

NL

J or J
202454

END
DATE
REV.
1-81
DTIC

98 10 21 08 LEVEL 12

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

DOCUMENTATION FOR THE SHIP HYDROSTATICS COMPUTER
PROGRAM HYDRO

BY

STEVEN C. FISHER

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT REPORT

OCTOBER 1980

DTNSRDC/SPD-0965-01

DOCUMENTATION FOR THE SHIP HYDROSTATICS COMPUTER PROGRAM HYDRO

DMG FILE COPY

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DTNSRDC/SPD-0965-01	2 GOVT ACCESSION NO. <i>A D-A 092 454</i>	3 RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) <u>DOCUMENTATION FOR THE SHIP HYDROSTATICS COMPUTER</u> <u>PROGRAM HYDRO</u>	5. TYPE OF REPORT & PERIOD COVERED 9 FINAL	
7. AUTHOR(s) STEVEN C. FISHER	6. PERFORMING ORG. REPORT NUMBER DTNSRDC/SPD-0965-01	
9. PERFORMING ORGANIZATION NAME AND ADDRESS DAVID W. TAYLOR NAVAL SHIP R&D CENTER SHIP PERFORMANCE DEPT. BETHESDA, MD. 20084	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS P.E. 62543N Subprogram No. 43-421-001 Work Unit 1500-104-32	
11. CONTROLLING OFFICE NAME AND ADDRESS NAVAL MATERIAL COMMAND (NAVMAT) Code 08D17 Washington, D. C. 20360	12. REPORT DATE 11 OCTOBER 1980	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	16. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) HYDROSTATICS CUBIC PARAMETRIC SPLINES		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The computer program HYDRO, a hydrostatics program using cubic parametric splines for curve fitting, is presented. Program documentation and the instructions on program usage are included.		

TABLE OF CONTENTS

	Page
LIST OF FIGURES	iv
LIST OF TABLES	iv
NOMENCLATURE	v
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
OVERVIEW OF THE PROGRAM HYDRO	1
INPUT INFORMATION	2
OUTPUT INFORMATION	3
APPENDIX A - DETAILED DESCRIPTIONS OF THE SUBROUTINES AND COMMON BLOCKS	34

Accession For	
NTIS	CPA&I
FNIC	GPO
Unpublished	
Classification	
By	
Distribution/	
Availability Codes	
Dist	Avail and/or Special
A	

LIST OF FIGURES

	Page
1 - Block Diagram of the Program HYDRO	4
2 - Hull Offset Coordinate System	5

LIST OF TABLES

	Page
1 - Required Input Information for Running HYDRO	6
2 - Sample Input for Program HYDRO	10
3 - Variable Values for Sample Input	11
4 - Sample Output for Program HYDRO with Output Tables in English and SI Units	13
5 - Sample Output Tables for Program HYDRO in English Units	30
6 - Sample Output Tables for Program HYDRO in SI Units	32

NOMENCLATURE

<u>SYMBOL</u>	<u>CC SYMBOL</u>	<u>DESCRIPTION</u>
A	A	Sectional area
A_M	AM	Midships sectional area
A_{WA}	AWA	Waterplane area of afterbody
A_{WF}	AWF	Waterplane area of forebody
A_{WT}	AWT	Waterplane area
A_X	AX	Maximum transverse Sectional area
B	B	Beam
(B)	CIRCB $B_M' V_T^{1/3}$	R.E. Froude's breadth coefficient
B_M	BM	Beam at amidships
B_X	BX	Beam, measured on the waterline at the maximum area section
C_B	CB	$V_T / (L_{WL} B_X T_X)$ Block coefficient
C_M	CM	$A_M / (B_M T_M)$ Midship section coefficient
C_P	CP	$V_T / (L_{WL} A_X)$ Longitudinal prismatic coefficient
C_{PA}	CPA	$V_A / (L_A A_M)$ Longitudinal prismatic coefficient of afterbody
C_{PE}	CPE	$V_E / (L_E A_X)$ Longitudinal prismatic coefficient of entrance
C_{PF}	CPF	$V_F / (L_F A_M)$ Longitudinal prismatic coefficient of forebody
C_{PR}	CPR	$V_R / (L_R A_X)$ Longitudinal prismatic coefficient of run
C_S	CS	$S / (V_T L_{WL})^{1/2}$ Wetted surface coefficient in non-dimensional form
C_{VP}	CVP	$V_T / (A_{WT} T_X)$ Vertical prismatic coefficient
C_{VPA}	CVPA	$V_A / (A_{WA} T_{MA})$ Vertical prismatic coefficient of afterbody

<u>SYMBOL</u>	<u>CC SYMBOL</u>	<u>DESCRIPTION</u>
C_{VPF}	$CVPF$	$\frac{V_F}{A_{WF} T_{MF}}$ Vertical prismatic coefficient of forebody
C_{WP}	CWP	$A_{WT}/(L_{WL} B_X)$ Waterplane coefficient
C_{WPA}	$CWPA$	$A_{WA}/(L_A B_M)$ Waterplane coefficient of afterbody
C_{WPF}	$CWPF$	$A_{WF}/(L_F B_M)$ Waterplane coefficient of forebody
C_{WS}	CWS	$S/(\Delta_T L_{WL})^{1/2}$ Taylors wetted surface coefficient in dimensional form
C_X	CX	$A_X/(B_X T_X)$ Maximum transverse section coefficient
C_V	$CVOL$	V_T/L_{WL}^3 Volumetric coefficient
$D-L$	$D-L$	$\Delta_T/(0.01L)^3$ Displacement - length ratio
f_E	FTE	Taylor's "f" at forward perpendicular
\overline{FB}	XFB	Longitudinal center of bouyancy from F.P. or forward end of WL (formerly LCB)
\overline{FF}	XFF	Distance of center of flotation from F.P. or forward end of WL (formerly LCF)
(K)	$CIRCK$	$0.5833 \frac{V}{\Delta_T^{1/6}}$ R.E. Froude's speed-displacement coefficient, ratio of ship speed of a wave having its length proportional to cube root of volume of displacement for design condition of ship.
L	L	Length, in general
L_E	LE	Length of entrance, from FP to forward end of parallel middlebody or maximum section
l_P	LP	Length of parallel middlebody
L_{PP}	LPP	Length between perpendiculars

<u>SYMBOL</u>	<u>CC SYMBOL</u>	<u>DESCRIPTION</u>
L_R	LR	Length of run, from section of maximum area or after end of parallel middle-body to waterline termination or other designated point
L_{WL}	LWL	Length on waterline
(M)	CIRCM $L_{PP}' \nabla^{1/3}$	R.E. Froudes' length coefficient or length-displacement ratio
(P)	CIRCP $0.746 \frac{V}{(L_{WL} C_P)^{1/2}}$	Baker's speed constant on basis of which ships of equal wave-making length can be compared.
T_M	TM	Draft at amidships
T_{MA}	TMA	Draft of afterbody at 0.75 L
T_{MF}	TMF	Draft of forebody at 0.25 L
S	S	Wetted Surface
(S)	CIRCS $S \nabla^{2/3}$	R.E. Froudes' wetted surface coefficient
t_E	TTE	Taylor tangent to area curve- intercept of tangent to curve at the bow on the midship ordinate, expressed as a ratio of the midship ordinate
(T)	CIRCT $T_M \nabla^{1/3}$	R.E. Froudes' draft coefficient
T_X	TX	Draft at maximum area section
ΔT	DIS	Displacement of the ship in tons of 2240 lbs usually given for the design condition in salt water at 59°. Conversion from model displacement in fresh water involves ratio of densities of salt and and fresh water. The displacement volume of the model is converted to displacement using 35.97 cu ft/ton and the displacement volume for the ship is converted to displacement using 34.977 cu. ft/ton. (continued on next page)

GLOSSARY (Continued)

<u>SYMBOL</u>	<u>CC SYMBOL</u>	<u>DESCRIPTION</u>
ΔT (cont)	DIS	The ratio of the displacement, model to ship, used is $(35.970/34.977)^3 = (1.0284)^3$. Standard usage in NSRDC is for a model temperature of 68°F or 20°C and latitude of Washington D.C., and a ship temperature of 59°F or 15°C , 3.5 percent salinity, 45° north latitude.
V	v	Speed of ship, knots
∇_A		Volume of afterbody
∇_E		Volume of entrance
∇_F		Volume of forebody
∇_R		Volume of run
∇_T		Total volume

ENGLISH/SI EQUIVALENTS

1 degree (angle)	= 0.01745 rad (radians)
1 foot	= 0.3048 m (meters)
1 foot per second	= 0.3048 m/sec (meters per second)
1 inch	= 25.40 mm (millimeters)
1 knot	= 0.5144 m/s (meters per second)
1 lb (force)	= 4.448 N (Newtons)
1 lb (force) - inch	= 0.1130 N·m (Newton-meter)
1 long ton (2240 lb)	= 1.016 metric tons, or 1016 kilograms
1 horsepower	= 0.746 kW (kilowatts)

ABSTRACT

The computer program HYDRO, a hydrostatics program using cubic parametric splines for curve fitting, is presented. Program documentation and the instructions on program usage are included.

ADMINISTRATIVE INFORMATION

This Project was authorized and funded by the Naval Material Command (NAVMAT) Ship Performance and Hydromechanics Program under Program Element 62543N, Subproject Number 43-421-001, Work Unit Number 1500-104-32.

INTRODUCTION

Previously at DTNSRDC, a complete hydrostatic analysis of a given hull form required the execution of three separate computer programs. In an effort to consolidate and improve these programs, a new computer program, HYDRO, was written. Because the number of programs has been reduced to one, the time required to complete the analysis has been shortened. The original programs used the trapazoidal rule for calculating the sectional areas and volumes. HYDRO uses parametric splines to define the hull shape to allow exact integration, which improves the accuracy of the results.

Program documentation is included below. Instructions on program usage and a sample output are also given.

OVERVIEW OF THE PROGRAM HYDRO

The computer program HYDRO defines the stations and curves using a cubic parametric spline to fit the offsets. Each pair of parametric splines ($x(t)$, $y(t)$) define a segment between two consecutive points. The equations are:

$$x = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$0 \leq t \leq 1$$

The sectional areas are obtained by integrating the splines. The volume, waterplane area, and wetted surface are obtained by integrating parametric splines that are fitted to the sectional area, waterplane, and wetted surface curves. However, the station girths cannot be found through integration of the splines. The girths are calculated by taking evenly spaced points that are interpolated between the original offsets, and integrated using Simpson's rule.

The endpoints of the sectional area, waterplane, and wetted surface curves are at the furthest forward and furthest aft stations with non-zero sectional area, if no bow or stern profile has been entered. If the bow or stern profile has been included, the endpoints are taken at the intersection of the waterline with the bow or stern. If the bow has a bulb, the tip of the bulb is used as the forward endpoint instead of the bow waterline intersection.

HYDRO consists of 12 subprograms, and uses 4 common blocks. A block diagram of the program HYDRO is shown in Figure 1, and a brief description of each subprogram and common block is given in Appendix A. The core requirement for loading and running the program is approximately 65,000 octal words. The amount of time required to run the program depends upon the number of stations, points per station, and drafts, but normally does not exceed 20 seconds.

INPUT INFORMATION

Table 1 contains a list of the required input information and the respective format needed to run the program. An example input deck is shown in Table 2 , and the corresponding input values are shown in Table 3.

The offsets of the model can either be input in the form required by the earlier hydrostatics programs, (IPROG = 0) or in the form used by the NAVSEA lines generation programs and the TEKTRONICS computer program DIGITIZE (IPROG = 1). The stations must be in order, from the bow to the stern, and the offsets for each station must be in order of increasing waterline height. A maximum of 40 stations and 40 points per station are allowed. The coordinate system for the model offsets is shown in Figure 2.

Taylors' f and t, and the half angle of entrance can either be input or calculated, depending on the value of the variable ICALC. The calculated values may not be accurate if the bow sections have an unusual shape.

HYDRO allows additional sectional area and wetted surface to be input. This feature adjusts the results to reflect the additional volume and wetted surface due to items that might not be indicated by the station offsets, such as skeg. The additional volume is added indirectly by increasing the sectional area of certain stations, so that the LCB will be shifted accordingly.

Up to six drafts can be used. The drafts are input at the bow and the stern so the model can be trimmed. The drafts are given at distances from the waterline to the baseline.

OUTPUT INFORMATION

The output, shown in Table 4, is given in English and SI units (MET = 1). The output tables are taken directly from the earlier hydrostatics programs. It should be noted that the L_{WL} coefficients are calculated using the waterline length input into the program. The program output consists of an echo of station offsets, control variables, station areas and girths, tables of hull coefficients, and non-dimensionalized beams and section areas. The printing of the station offsets is suppressed if the value of the variable INSTAT is greater than zero.

The output tables are given in English, SI, and English and SI units, depending upon the value of the variable MET. Table 4 shows the output tables in English and SI units (MET = 1). Tables 5 and 6 show the output tables in English (MET = 0) and in SI (MET = 2) units.

Figure 1 - Block Diagram of the Program HYDRO

FIGURE 2 - HULL OFFSET COORDINATE SYSTEM

TABLE 1
Required Input Information for Running HYDRO

<u>CARD</u>	<u>FORMAT</u>	<u>COL</u>	<u>NAME</u>	<u>DESCRIPTION</u>
1	A10	1-10	MODEL	Model number
2	8A10	1-80	TITLE	The title for the output
3	F10.5	1-10	XLAM	Ship to model scale
	F10.5	11-20	V	Model speed (knots)
	F10.5	21-30	XLWL	L _{WL} , ft (model)
	F10.5	31-40	XLPP	L _{PP} , ft (model)
	F10.5	41-50	SS	Station spacing ft (model)
4	F10.5	1-10	XX	X axis scaling factor
	F10.5	11-20	YY	Y axis scaling factor
	F10.5	21-30	ZZ	Z axis scaling factor
	F10.5	31-40	XBS	X axis scaling factor for bow and stern profiles
	F10.5	41-50	YBS	Z axis scaling factor for bow and stern profiles
5	F10.5	1-10	XM	Distance from bow to amidships, ft (model)
	F10.5	11-20	WATDEN	Water density, lbs/ft ³ (usually 62.4)
	I5	21-25	MET	Output Index MET=0 English Units MET=1 English and Metric units MET=2 Metric Units
	I5	26-30	ISTAT	Print control for station offsets. If ISTAT > 0, suppress printing

Table 1 - Required Input Information for Running HYDRO (Cont)

<u>CARD</u>	<u>FORMAT</u>	<u>COL</u>	<u>NAME</u>	<u>DESCRIPTION</u>
6	F10.5	1-10	XLP	Length of parallel middlebody
	F10.5	11-20	ENTA	Half angle of entrance, degrees
	F10.5	21-30	FTE	Taylors' f
	F10.5	31-40	TTE	Taylors' t
	I5	41-45	ICALC	If not zero, ENTA, FTE, & TTE will be calculated
7	I5	1-5	N	Number of stations
	I5	6-10	NDRAFT	Number of drafts
	I5	11-15	IPROG	=0 if offsets are in the old format =1 if offsets are in the new format
	I5	16-20	IBOW	=0 if no bow or stern profile is entered =1 if only a bow profile is entered =2 if only a stern profile is entered =3 if both a bow and a stern profile are entered
8	I5	1-5	NSTAT	Number of stations that have extra sectional area that are not indicated by the offsets
	F10.5	6-15	EXWET	Additional wetted surface not indicated by the offsets
8a	F10.5	1-10	XXL	Station number with extra sectional area
	F10.5	11-20	EXVOL	Extra sectional area, ft ² (model scale)

Table 1 - Required Input Information for Running HYDRO (Cont)

<u>CARD</u>	<u>FORMAT</u>	<u>COL</u>	<u>NAME</u>	<u>DESCRIPTION</u>
9	F10.5	1-10	SF	Forward station where the draft is taken.
	F10.5	11-20	SA	Aft station where the draft is taken.
	F10.5	21-30	TF	Forward draft, ft. (model scale)
	F10.5	31-40	TA	Aft draft, ft (model scale)
	I5	41-45	IPRINT	If not zero, large output table will be printed.
10	F10.5	21-30	X	Station offset distance from F.P. (positive aft)
	F10.5	31-40	Y	Beam .
	F10.5	41-50	Z	height above baseline
10a	The card following the last card 10 must have 99999. or greater starting in column 21.			
11	(ignored if no bow profile is entered)			
	F10.5	21-30	XB	Bow offset distance from FP (positive aft)
	F10.5	31-40	YB	Height above baseline
11a	The card following the last card 11 must have 99999. or greater starting in column 21.			
12	(ignored if no stern profile is entered)			
	F10.5	21-30	XS	Stern offset Distance from FP (positive aft)
	F10.5	31-40	YS	Height above baseline
12a	The card following the last card 12 must have 99999. or greater starting in column 21.			

Table 1 - Required Input Information for Running HYDRO (Cont)

NOTE - Cards 10 and 10a are the input cards for the offsets in the new format. The corresponding cards for the old format are:

<u>CARD</u>	<u>FORMAT</u>	<u>COLS</u>	<u>NAME</u>	<u>DESCRIPTION</u>
10	8F10.5	1-80	X	Station distance from forward perpendicular
10a	I5	1-5	MM	Number of offsets in a given station
10b	8F10.5	1-80	Y	Beam offsets at a given station
10c	8F10.5	1-80	Z	Height offsets at a given station.

The series of cards 10a - c repeat N times.

9876

EXAMPLE RUN FOR PROGRAM HYDRO

31.435	4.637	27.358	27.358	1.368
.0833333	.0833333	.0833333	.0833333	.0833333
13.673	62.4	1	0	
.0	.0	.0	0	1
25	1	1	3	
3	1.6			
16.	.02			
17.	.06			
18.	.1			
0.0	19.0	1.098	1.098	1
		0.0	0.0	11.4522
		0.000000	0.095436	13.17003
		0.000000	0.514100	15.21960
		8.207413	0.623125	1.678300
		8.207413	0.673149	1.908701
		8.207413	0.724131	2.863051
		8.207413	0.792135	3.817402
		8.207413	0.871151	5.726102
		8.207413	0.951191	7.634803
		8.207413	0.935169	9.543503
		8.207413	1.020143	11.45220
		8.207413	1.121193	13.17003
		8.207413	1.751158	15.21960
		16.41482	0.614168	0.000000
		16.41482	0.966174	0.954351
		16.41482	1.201387	1.908701
		16.41482	1.342564	2.863051
		16.41482	1.424101	3.817402
		16.41482	1.737611	5.726102
		16.41482	1.871191	7.634803
		16.41482	1.871191	13.78322
		16.41482	1.456174	13.68318
		16.41482	1.456174	13.98324
		16.41482	8.471151	14.09195
		328.2965	9.632149	14.22009
		328.2965	10.61108	14.38429
		328.2965	11.71173	14.61164
		328.2965	12.79443	14.93028
		99999999.		
		13.36040	0.000000	
		9.377755	0.954351	
		7.911856	1.908701	
		6.871164	2.863051	
		5.933622	3.817402	
		4.568764	5.726102	
		3.360877	7.634803	
		2.213633	9.543503	
		1.060726	11.45220	
		0.000000	13.17003	
		-1.37241	15.21960	
		-2.71332	17.17830	
		-4.14649	19.08701	
		-5.68381	20.99571	
		-7.32941	22.90441	
		-9.06786	24.81311	
		-10.8430	26.72181	
		-12.8299	28.63051	
		-15.2696	30.73008	
		99999999.		
		246.2224	1.373	
		262.6372	3.241	
		279.0522	5.441	
		295.4668	7.86	
		311.8817	10.488	
		328.2965	13.189	
		99999999.		

Table 2 - Sample Input for Program HYDRO

TABLE 3
VARIABLE VALUES FOR SAMPLE INPUT

<u>CARD NO.</u>	<u>VARIABLE</u>	<u>VALUES</u>
1	MODEL	9765
2	TITLE	EXAMPLE RUN FOR PROGRAM HYDRO
3	XLAM	31.435
	V	4.637 knots
	XLWL	27.358 ft
	XLPP	27.358 ft
	SS	1.368 ft
4	XX	0.08333 ft/inch
	YY	0.08333
	ZZ	0.08333
	XBS	0.08333
	YBS	0.08333
5	XM	13.679 ft
	WATDEN	62.4 lbs/ft ³
	MET	1
	ISTAT	0
6	XLP	0.0
	ENTA	0.0
	FTE	0.0
	TTE	0.0
	ICALC	1
7	N	25
	NDRAFT	1
	IPIRG	1
	IBOW	3
8	NSTAT	3
	EXWET	1.6 ft ²
8a i	XXL(1)	16.
	EXVOL(1)	0.02 ft ²
ii	XXL(2)	17
	EXVOL(2)	0.06 ft ²
iii	XXL(3)	18
	EXVOL(3)	0.10 ft ²

Table 3 - Variable Values for Sample Input (Cont)

VARIABLE VALUES FOR SAMPLE INPUT

<u>CARD NO.</u>	<u>VARIABLE</u>	<u>VALUES</u>
9	SF	0.0
	SA	19.0
	TF	1.1 ft
	TA	1.1 ft
	IPRINT	1
10, 10a	STATION OFFSETS	
11, 11a	BOW OFFSETS	
12, 12a	STERN OFFSETS	

EXAMPLE RUN FOR PROGRAM HYDRO

INPUT DATA

SCALE RATIO	=	31.435
MODEL SPEED	=	4.637
LWL	=	27.358
LBP	=	27.358
STATION SPACING	=	1.368
X AXIS SCALING FACTOR	=	.083
Y AXIS SCALING FACTOR	=	.083
Z AXIS SCALING FACTOR	=	.083
X AXIS SCALING FACTOR FOR BOW AND STERN	=	.083
Y AXIS SCALING FACTOR FOR BOW AND STERN	=	.083
BOW TO MIDSHIPS	=	13.679
WATER DENSITY	=	62.400
MET (OUTPUT UNIT INDEX)	=	1
PARALLEL MIDDLEBODY LENGTH	=	0.000
HALF ANGLE OF ENTRANCE	=	0.000
TAYLOR'S F	=	0.000
TAYLOR'S T	=	0.000
ICALC	=	1
NO. OF STATIONS	=	25
NO. OF DRAFTS	=	1
INPUT STYLE (IPROG)	=	1
IBOW	=	3
ADDED WETTED SURFACE	=	1.600
NSTAT	=	3

ADDED STATION AREA

STATION	AREA
16.00	.0200
17.00	.0600
18.00	.1000

DRAFT INFORMATION

NO.	FWD STATION	FWD DRAFT	AFT STATION	AFT DRAFT
1	0.00	1.10	19.00	1.10

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units

Table 4- Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

STATION 0.00

$x = 0.00$

HEIGHT ABOVE BASELINE	HALF BREADTH
.954	0.000
1.098	.008
1.272	.045

STATION .50

$x = .68$

HEIGHT ABOVE BASELINE	HALF BREADTH
.140	.052
.159	.054
.239	.060
.318	.066
.477	.073
.636	.076
.795	.078
.954	.085
1.098	.101
1.272	.146

STATION 1.00

$x = 1.37$

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.054
.080	.081
.159	.100
.239	.115
.318	.127
.477	.145
.636	.156
.795	.166
.954	.180
1.098	.203
1.272	.253

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

STATION 1.50

X = 2.05

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.070
.080	.123
.159	.158
.239	.183
.318	.204
.477	.236
.636	.257
.795	.274
.954	.294
1.098	.321
1.272	.372

STATION 2.00

X = 2.74

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.085
.034	.132
.080	.176
.159	.228
.198	.248
.239	.267
.318	.298
.446	.335
.477	.342
.636	.373
.732	.389
.795	.398
.954	.425
.967	.427
1.098	.455
1.132	.464
1.253	.502

STATION 2.50

X = 3.42

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.094
.010	.134
.080	.248
.090	.260
.159	.319
.239	.367
.240	.368
.318	.402

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

.452	.448
.477	.456
.636	.500
.668	.507
.795	.536
.863	.552
.954	.573
1.023	.590
1.098	.613
1.272	.677

STATION 3.00

X = 4.10

HEIGHT ABOVE HALF
BASELINE BREADTH

0.000	.095
.001	.131
.001	.134
.032	.266
.080	.344
.120	.387
.159	.420
.239	.472
.267	.488
.318	.514
.436	.569
.477	.587
.605	.635
.636	.646
.769	.688
.795	.695
.916	.732
.954	.745
1.040	.775
1.098	.796
1.149	.815
1.246	.854

STATION 4.00

X = 5.47

HEIGHT ABOVE HALF
BASELINE BREADTH

0.000	.095
.001	.134
.004	.269
.005	.279
.024	.402
.075	.528
.153	.645
.252	.750
.368	.842
.494	.920
.623	.987
.754	1.043

Table 4 - Sample Output for Program HYDPO with output tables
in English and SI Units (Cont)

.795	1.058
.881	1.091
.954	1.114
1.003	1.131
1.098	1.152
1.118	1.168
1.225	1.203
1.272	1.217

STATION 5.00

X = 6.84

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.010	.478
.014	.541
.039	.676
.087	.804
.154	.924
.240	1.033
.340	1.131
.454	1.216
.577	1.288
.707	1.347
.735	1.379
.837	1.396
.954	1.433
1.085	1.476
1.098	1.479
1.202	1.509
1.272	1.527

STATION 6.00

X = 8.21

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.016	.736
.022	.825
.049	.964
.096	1.097
.166	1.220
.256	1.331
.362	1.428
.483	1.510
.612	1.578

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

.746	1.634
.795	1.647
.881	1.680
.954	1.698
1.014	1.718
1.098	1.739
1.143	1.751
1.268	1.780

STATION 7.00

x = 9.58

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.023	1.017
.031	1.126
.066	1.271
.129	1.404
.216	1.523
.324	1.625
.449	1.710
.586	1.778
.731	1.830
.795	1.844
.878	1.869
.954	1.882
1.023	1.899
1.098	1.912
1.164	1.923
1.272	1.936

STATION 8.00

x = 10.94

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1.129
.029	1.271
.030	1.289
.058	1.445

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

.119	1.586
.212	1.707
.333	1.804
.475	1.878
.629	1.932
.790	1.966
.795	1.967
.952	1.987
.954	1.987
1.098	1.997
1.109	1.998
1.260	2.003

STATION 9.00

X = 12.31

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1.129
.030	1.290
.034	1.446
.034	1.459
.065	1.621
.141	1.758
.257	1.865
.404	1.942
.575	1.986
.758	2.003
.795	2.004
.864	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

STATION 10.00

X = 13.68

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1.129
.030	1.290
.034	1.459
.035	1.504
.054	1.628
.121	1.773
.228	1.889
.373	1.970
.558	2.003
.606	2.004
.756	2.004
.795	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

STATION 11.00

X = 15.05

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1.129
.030	1.290
.034	1.443
.034	1.459
.061	1.623
.129	1.766
.239	1.881
.384	1.960
.559	2.001
.617	2.004

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

.756	2.004
.795	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

STATION 12.00

X = 16.41

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.026	1.129
.030	1.290
.030	1.302
.046	1.452
.091	1.604
.166	1.740
.271	1.854
.407	1.939
.573	1.988
.757	2.003
.795	2.004
.862	2.004
.938	2.004
.954	2.004
1.098	2.004
1.105	2.004
1.259	2.004
1.272	2.004

STATION 13.00

X = 17.78

HEIGHT ABOVE BASELINE	HALF BREADTH
0.000	.095
.001	.134
.004	.269
.008	.404
.011	.542
.015	.682
.018	.826
.022	.975
.024	1.075
.026	1.128

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

.041	1.284
.074	1.436
.130	1.579
.215	1.705
.326	1.810
.460	1.892
.614	1.947
.779	1.978
.795	1.983
.946	1.994
.954	1.995
1.098	2.000
1.107	2.001
1.259	2.004
1.272	2.004

STATION 14.00

x = 19.15

HEIGHT ABOVE BASELINE	HALF BREADTH
.021	0.000
.030	.133
.039	.265
.047	.398
.056	.532
.065	.669
.074	.808
.084	.951
.099	1.096
.121	1.243
.154	1.390
.208	1.528
.291	1.649
.401	1.749
.532	1.827
.678	1.883
.795	1.912
.831	1.921
.954	1.937
.984	1.947
1.098	1.960
1.133	1.965
1.272	1.974

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

STATION 15.00

$x = 20.52$

HEIGHT ABOVE BASELINE	HALF BREADTH
.114	0.000
.129	.127
.142	.254
.155	.341
.168	.509
.180	.638
.193	.769
.206	.904
.222	1.041
.243	1.181
.273	1.321
.322	1.454
.398	1.571
.500	1.669
.621	1.747
.754	1.807
.795	1.820
.894	1.852
.954	1.862
1.034	1.886
1.098	1.898
1.171	1.912
1.272	1.926

STATION 16.00

$x = 21.89$

HEIGHT ABOVE BASELINE	HALF BREADTH
.270	0.000
.283	.119
.296	.238
.308	.357
.321	.476
.335	.596
.347	.719
.360	.845
.373	.974
.392	1.105
.420	1.236
.464	1.362
.531	1.475
.621	1.571
.727	1.652
.795	1.691
.844	1.717
.954	1.759
.968	1.769
1.094	1.811
1.220	1.845

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

1.272	1.855
STATION 17.00	
X = 23.25	
HEIGHT ABOVE BASELINE	HALF BREADTH
.453	0.000
.465	.110
.477	.219
.488	.328
.500	.438
.512	.549
.525	.662
.536	.777
.549	.896
.565	1.017
.590	1.138
.627	1.256
.682	1.365
.756	1.461
.795	1.502
.846	1.544
.947	1.614
.954	1.615
1.056	1.671
1.098	1.690
1.170	1.718
1.272	1.752
STATION 18.00	
X = 24.62	
HEIGHT ABOVE BASELINE	HALF BREADTH
.655	0.000
.666	.099
.676	.198
.687	.297
.698	.396
.709	.496
.720	.598
.731	.702
.743	.809
.758	.919
.777	1.030
.795	1.105
.806	1.139
.849	1.244
.906	1.310
.954	1.396
.979	1.425
1.063	1.498
1.098	1.522
1.158	1.558
1.259	1.608

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

1.272 1.613

STATION 19.00

X = 25.99

HEIGHT ABOVE BASELINE	HALF BREADTH
.874	0.000
.884	.088
.893	.175
.901	.263
.911	.351
.920	.440
.930	.530
.940	.622
.950	.717
.954	.750
.962	.814
.978	.914
.998	1.015
1.028	1.113
1.070	1.207
1.098	1.255
1.125	1.293
1.191	1.370
1.270	1.433
1.272	1.437

STATION 20.00

X = 27.36

HEIGHT ABOVE BASELINE	HALF BREADTH
1.099	0.000
1.107	.076
1.116	.152
1.124	.228
1.132	.304
1.140	.381
1.149	.459
1.157	.539
1.165	.621
1.174	.706
1.185	.794
1.199	.885
1.218	.976
1.244	1.066

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

**BOW
PROFILE**

HEIGHT ABOVE BASELINE	LONGITUDINAL DISTANCE
0.000	1.113
.080	.781
.159	.659
.239	.573
.318	.499
.477	.381
.636	.281
.795	.184
.954	.088
1.098	0.000
1.272	-.114
1.432	-.226
1.591	-.346
1.750	-.474
1.909	-.611
2.068	-.756
2.227	-.908
2.386	-.1069
2.561	-.272

**STERN
PROFILE**

HEIGHT ABOVE BASELINE	LONGITUDINAL DISTANCE
.114	20.519
.270	21.886
.453	23.254
.655	24.622
.874	25.990
1.099	27.358

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

EXAMPLE RUN FOR PROGRAM HYDRO

DRAFTS

MIDSHIPS DRAFT	FWD STATION	FWD DRAFT	AFT STATION	AFT DRAFT
1.10	0.00	1.10	19.00	1.10

VOLUME	=	69.788
DISPLACEMENT	=	4354.798
WATERPLANE AREA	=	82.427
WETTED SURFACE COMPUTED	=	116.299
WATERLINE LENGTH	=	27.352
STATION AT AX	=	10.00

X	BEAM	GIRTH	AREA
0.000	.016	.288	.001
.684	.203	2.024	.144
1.368	.407	2.331	.314
2.052	.642	2.415	.508
2.736	.910	2.544	.735
3.420	1.226	2.730	.992
4.104	1.591	2.975	1.290
5.472	2.325	3.548	1.974
6.840	2.959	4.146	2.641
8.207	3.479	4.685	3.230
9.575	3.825	5.110	3.687
10.943	3.993	5.418	3.999
12.311	4.008	5.616	4.156
13.679	4.008	5.689	4.201
15.047	4.008	5.660	4.185
16.415	4.008	5.567	4.127
17.783	4.000	5.420	4.007
19.151	3.920	5.161	3.658
20.519	3.797	4.803	3.097
21.885	3.624	4.367	2.439
23.254	3.380	3.869	1.764
24.622	3.046	3.284	1.102
25.990	2.512	2.569	.370
27.358	0.000	0.000	0.000

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

SHIP AND MODEL DATA
MODEL 9876

EXAMPLE RUN FOR PROGRAM HYDRO

DESCRIPTION	S H I P		M O D E L		LINEAR RATIO = 31.435									
	ENG.	METRIC	ENG.	METRIC										
WL LENGTH (LWL) FT M	860.0	262.1	27.36	8.34	V SQRT(LWL) = .887									
LENGTH BP (LPP) FT M	860.0	262.1	27.36	8.34	FROUDE NO. = .264									
BEAM AT AX (BX) FT M	126.0	38.4	4.01	1.22	CIRCLE K = 2.410									
DRAFT AT AX (TX) FT M	34.5	10.5	1.10	.33	XFB/LWL = .515									
DISPLACEMENT(DISITON TONNE LBS	621045W	631005W	1.94FW	1.98FW	XFB/LPP = .515									
WETTED SURF.(S)SQ FT M SQ	114922.0	10676.6	116.30	10.80	XFF/LWL = .574									
DESIGN SPEED(V) KTS M/S	26.0	13.4	4.64	2.39	1/2 ENT. ANGLE = 3.3 DEG									
					1/2 ENT. ANGLE = .058RAD									
LWL COEFFICIENTS				LPP COEFFICIENTS										
CB = .580	CPE = .57	LE/L = .50	D-L = 97.64	CB = .580										
CP = .607	CPR = .64	LP/L = 0.00	CVOL = 3.41E-3	CP = .607										
CX = .954	CVP = .77	LR/L = .50	CWS = 15.73	L,BX = 6.83										
CWP = .752	CVPA = .71	L/BX = 6.83	CS = 2.66	D-L = 97.64										
CFF = .57	CVPF = .86	BX/TX = 3.65	FTE = .02	CVOL = 3.41E-3										
CFA = .64	CWPF = .64		TTE = .68											
CWPA = .87														

FWD STATIONS														
0.00	.50	1.00	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
A AX														
	.000	.034	.075	.121	.175	.236	.307	.470	.629	.769	.878	.952	.989	1.000
B BX														
	.004	.051	.102	.160	.227	.306	.397	.580	.738	.868	.954	.996	1.000	1.000

AFT STATIONS														
11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00					
A AX														
	.996	.982	.954	.871	.737	.581	.420	.262	.088	0.000				
B BX														
	1.000	1.000	.998	.978	.947	.904	.843	.760	.627	0.000				

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

Table 4 - Sample Output for Program HYDRO with Output Tables
in English and SI Units (Cont)

SHIP AND MODEL DATA MODEL 9876									
EXAMPLE RUN FOR PROGRAM HYDRO									
DESCRIPTION		S H I P			M O D E L				
ENG.	METRIC	ENG.	METRIC	ENG.	METRIC				
WL LENGTH (LWL) FT	M	860.0	262.1	27.358	8.339	LINEAR RATIO =	31.435		
LENGTH BP (LPP) FT	M	860.0	262.1	27.358	8.339	V. SQRT(LWL) =	.887		
BEAM AT AX (BX) FT	M	126.0	38.4	4.008	1.222	FROUDE NO. =	.254		
DRAFT AT AX (TX) FT	M	34.5	10.5	1.098	.335	CIRCLE K =	2.410		
DISPLACEMENT(DIS)TON TONNE	LBS	62104SW	63100SW	1.944FW	1.975FW	XFB/LWL =	.515		
WETTED SURF.(S)SQ FT	M SQ	114922.0	10676.6	116.299	10.805	XFB/LPP =	.515		
DESIGN SPEED(V) KTS	M/S	26.0	13.4	4.637	2.385	1/2 ENT. ANGLE =	3.3 DEG		
LWL COEFFICIENTS									
CB = .580	CPE = .575	LE/L = .500	D-L = 97.640	CB = .580					
CP = .607	CPR = .640	LP/L = 0.000	CVOL= 3.408E-3	CP = .607					
CX = .954	CVP = .771	LR/L = .500	CWS = 15.725	L/BX = 6.825					
CWP = .752	CVPA = .706	L/BX = 6.825	CS = 2.662	D-L = 97.640					
CPF = .575	CVPF = .860	BX/TX = 3.651	FTE = .017	CVOL = 3.408E-3					
CPA = .640	CWPF = .638		TTE = .685						
CWPA = .865									
ITTC COEFFICIENTS									
CM = .954	CIRCLE M = 6.645			CIRCLE B = .974					
CIRCLE T = .267	CIRCLE S = 6.861								
STATION	A/AX	B/BX							
0.00	.000	.004							
.50	.034	.051							
1.00	.075	.102							
1.50	.121	.160							
2.00	.175	.227							
2.50	.236	.306							
3.00	.307	.397							
4.00	.470	.580							
5.00	.629	.738							
6.00	.769	.868							
7.00	.878	.954							
8.00	.952	.996							
9.00	.989	1.000							
10.00	1.000	1.000							
11.00	.996	1.000							
12.00	.982	1.000							
13.00	.954	.998							
14.00	.871	.978							
15.00	.737	.947							
16.00	.581	.904							
17.00	.420	.843							
18.00	.262	.760							
19.00	.088	.627							
20.00	0.000	0.000							

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

Table 5 - Sample Output Tables for Program HYDRO in English Units

SHIP AND MODEL DATA MODEL 9876														
EXAMPLE RUN FOR PROGRAM HYDRO														
	SHIP	MODEL												
WL LENGTH (LWL) FT	860.0	27.36												
LENGTH BP (LPP) FT	860.0	27.36	LINEAR RATIO =	31.415										
BEAM AT AX (BX) FT	126.0	4.01	V. SOR(LWL) =	.847										
DRAFT AT AX (TX) FT	34.5	1.10	CIRCLE K =	2.410										
DISPLACEMENT(DISITONS LBS)	62104. SW	1.94FW	CIRCLE P =	.849										
	4354.8		XFB/LWL =	.515										
WETTED SURF. (S)SQ FT	114922.	116.30	XFB/LPP =	.515										
DESIGN SPEED (V) KTS	26.0	4.64	XFF, LWL =	.574										
			1/2 ENT. ANGLE=	3.3 DEG										
LWL COEFFICIENTS														
CB = .580	CPE = .57	LE L = .50	CB = .580											
CP = .60	CPR = .64	LP L = 0.00	CP = .607											
CX = .954	CVP = .77	LR/L = .50	L/BX = 6.83											
CWP = .752	CVPA = .71	L/BX = 6.83	D-L = 97.64											
CPF = .57	CVPF = .86	BX/TX = 3.65	FTE = .02											
CPA = .64	CWPF = .64	D-L = 97.64	TTE = .68											
	CWPA = .87	CWS = 15.73												

FWD STATIONS														
0.00	.50	1.00	1.50	2.00	2.50	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	
A/AX														
	.000	.034	.075	.121	.175	.236	.307	.470	.629	.769	.878	.952	.989	1.000
B/BX														
	.004	.051	.102	.160	.227	.306	.397	.580	.738	.868	.954	.996	1.000	1.000

AFT STATIONS														
11.00	12.00	13.00	14.00	15.00	16.00	17.00	18.00	19.00	20.00					
A/AX														
	.996	.982	.954	.871	.737	.581	.420	.262	.088	0.000				
B/BX														
	1.000	1.000	.998	.978	.947	.904	.843	.760	.627	0.000				

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
 THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

Table 5 - Sample Output Tables for Program HYDRO in
English Units (Continued)

SHIP AND MODEL DATA
MODEL 9876

EXAMPLE RUN FOR PROGRAM HYDRO

	SHIP	MODEL	
WL LENGTH (LWL) FT	860.0	27.358	LINEAR RATIO = 31.435
LENGTH BP (LPP) FT	860.0	27.358	V. SQRT(LWL) = .887
BEAM AT AX (BX) FT	126.0	4.008	CIRCLE K = 2.410
DRAFT AT AX (TX) FT	34.5	1.098	CIRCLE P = .849
DISPLACEMENT(DIS) TONS LBS	62104. SW	1.944FW 4354.8	XFB LWL = .515
WETTED SURF. (S)SQ FT	114922.	116.299	XFB LPP = .515
DESIGN SPEED (V) KTS	26.0	4.637	XFF LWL = .574
			1/2 ENT. ANGLE = 3.3 DEG

LWL COEFFICIENTS

CB	CPE	CPR	CPA	LE/L	LP/L	LR/L	LBX	BX/TX	D-L	CWS
.580	.575	.640	.640	.500	0.000	.500	6.825	3.651	.97.64	15.73
.607	.640	.771	.771	.034	.075	.121	.175	.236	.470	.000
.954	.771	.706	.706	.051	.102	.160	.227	.306	.470	.000
.752	.706	.706	.706	.075	.102	.160	.227	.306	.470	.000
.575	.860	.860	.860	.075	.102	.160	.227	.306	.470	.000
.640	.638	.865	.865	.075	.102	.160	.227	.306	.470	.000
STATION	A/AX	B/BX								
0.00	.000	.004								
.50	.034	.051								
1.00	.075	.102								
1.50	.121	.160								
2.00	.175	.227								
2.50	.236	.306								
3.00	.307	.397								
4.00	.470	.580								
5.00	.629	.738								
6.00	.769	.868								
7.00	.878	.954								
8.00	.952	.996								
9.00	.999	1.000								
10.00	1.000	1.000								
11.00	.996	1.000								
12.00	.982	1.000								
13.00	.954	.998								
14.00	.871	.978								
15.00	.737	.947								
16.00	.581	.904								
17.00	.420	.843								
18.00	.262	.760								
19.00	.088	.627								
20.00	0.000	0.000								

LPP COEFFICIENTS

CB	CP	L/BX	D-I	FTE	TTE
.580	.607	6.825	97.64	.02	.68
.607	.645	.974			
.954	.974	.267			
.752	.861				
.575					
.640					

ITTC COEFFICIENTS

CM	CIRCLE M	CIRCLE B	CIRCLE T	CIRCLE S
.954	.6.645	.974	.267	.8.861
.645				
.974				
.267				
.8.861				

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

Table 6 - Sample Output Tables for Program HYDRO in SI Units

SHIP AND MODEL DATA
MODEL 9876

EXAMPLE RUN FOR PROGRAM HYDRO

	SHIP	MODEL	
WL LENGTH (LWL) M	860.0	27.36	LINEAR RATIO = 31.435
LENGTH BP (LPP) M	860.0	27.36	FROUDE NO. = .2H3
BEAM AT AX (BX) M	126.0	4.01	CIRCLE K = 2.587
DRAFT AT AX (TX) M	34.5	1.10	XFB/LWL = .515
DISPLACEMENT(DISITONNE 2223882 SW	69.62FW		XFB/LPP = .515
WETTED SURF. (S) M SQ	114922.	116.30	XFF/LWL = .574
DESIGN SPEED (V) M/S	26.0	4.64	1/2 ENT. ANGLE= 0.000RAD

LWL COEFFICIENTS

CB = .580	CPE = .57	LE/L = .50
CP = .607	CPR = .64	LP/L = 0.00
CX = .954	CVP = .77	LR/L = .50
CWP = .752	CVPA = .71	L/BX = 6.83
CPF = .57	CVPF = .86	BX/TX = 3.65
CFA = .64	CWPF = .64	CVOI. = 3.41E-3
	CWPA = .87	CS = 2.66

LPP COEFFICIENTS

CB = .580
CP = .617
L/BX = 6.83
CVOL = 3.41E-3
FTE = .02
TTE = .68

FWD STATIONS

0.00 .50 1.00 1.50 2.00 2.50 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
A/AX .000 .034 .075 .121 .175 .236 .307 .470 .629 .769 .878 .952 .989 1.000
B/BX .004 .051 .102 .160 .227 .306 .397 .580 .738 .868 .954 .996 1.000 1.000

AFT STATIONS

11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00
A/AX .996 .982 .954 .871 .737 .581 .420 .262 .088 0.000
B/BX 1.000 1.000 .998 .978 .947 .904 .843 .760 .627 0.000

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

Table 6 - Sample Output Tables for Program HYDRO
in SI Units (Continued)

SHIP AND MODEL DATA MODEL 9876			
EXAMPLE RUN FOR PROGRAM HYDRO			
	SHIP	MODEL	
WL LENGTH (LWL) M	860.0	27.358	LINEAR RATIO = 31.435
LENGTH BP (LPP) M	860.0	27.358	FROUDE NO. = .243
BEAM AT AX (BX) M	126.0	4.008	CIRCLE K = 2.547
DRAFT AT AX (TX) M	34.5	1.098	XFB/LWL = .515
DISPLACEMENT(DIS) TONNE	2223882	SW 69.616FW	XFB/LPP = .515
WETTED SURF. (S) M SQ	114922.	116.299	XFF/LWL = .574
DESIGN SPEED (V) M/S	26.0	4.637	1/2 ENT. ANGLE = 0.000RAD
LWL COEFFICIENTS			
CB = .580	CPE = .575	LE/L = .500	CB = .580
CP = .607	CPR = .640	LP/L = 0.000	CP = .607
CX = .954	CVP = .771	LR/L = .500	L BX = 6.825
CWP = .752	CVPA = .706	L BX = 6.825	CVOL = 3.40HE-3
CPF = .575	CVPF = .860	BX/TX = 3.651	FTE = .017
CPA = .640	CWPF = .638	CVOL = 3.408E-3	TTE = .685
	CWPA = .865	CS = 2.662	
ITTC COEFFICIENTS			
CM * .954	CIRCLE M = 6.645	CIRCLE B * .974	
CIRCLE T * .267	CIRCLE S = 6.861		
STATION	A/AX	B/BX	
0.00	.000	.004	
.50	.034	.051	
1.00	.075	.102	
1.50	.121	.160	
2.00	.175	.227	
2.50	.236	.306	
3.00	.307	.397	
4.00	.470	.580	
5.00	.629	.738	
6.00	.764	.868	
7.00	.878	.954	
8.00	.952	.996	
9.00	.989	1.000	
10.00	1.000	1.000	
11.00	.996	1.000	
12.00	.982	1.000	
13.00	.954	.998	
14.00	.871	.978	
15.00	.737	.947	
16.00	.581	.904	
17.00	.420	.843	
18.00	.262	.760	
19.00	.088	.627	
20.00	0.000	0.000	

THE SHIP DISPLACEMENT IS CALCULATED FOR SALT WATER AT 59 DEGREES F (15 DEGREES C)
THE MODEL DISPLACEMENT IS CALCULATED FOR FRESH WATER AT 73 DEGREES F (22.8 DEGREES C)

APPENDIX A

DETAILED DESCRIPTIONS OF THE SUBROUTINES AND COMMON BLOCKS

PROGRAM HYDRO

Purpose: To perform a series of hydrostatic calculations on a given model.

Calling Sequence

MAIN PROGRAM

Common Blocks

ADVOL, CONST, FANDT, STOW

Subroutines Called

APPEND, FTCALC, GIRTH, INPUT, MAX, OUTPUT, SINTEC,
SPLNT2, SPPLY2

SUBROUTINE APPEND

Purpose: To calculate the waterline intersection with the bow or stern profiles.

Calling Sequence

APPEND (X,Y,N,X1, DRAFT, ND, POINT)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
DRAFT	Real	-----	Input	Drafts of Ship
N	Integer	-----	Input	Number of points in the bow or stern profile
ND	Integer	-----	Input	Number of drafts
POINT	Real	(7)	Output	Longitudinal distance to profile waterline intersection
X	Real	-----	Input	Longitudinal profile offset
X1	Real	-----	Output	Longitudinal distance to furthest forward underwater projection (bow only)
Y	Real	-----	Input	Vertical profile offset

Common Blocks

None.

Subprograms Called.

SPLNT2 , SPPLY 2

Detailed Description

This subroutine calculates the intersection of the bow or stern profile with the waterline(s). Also, a check is made to find the furthest forward underwater projection (i.e., a bulbous bow). These values are used as endpoints on the sectional area curves.

SUBROUTINE CUBCO2

Purpose: To calculate the coefficients of a parametric spline using endpoint-tangent information from SPLNT2.

Calling Sequence

Call CUBCO2 (SEG,CC)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
SEG	Real	(8,1)	Input	Array containing endpoint-tangent form data from SPLNT2
CC	Real	(14)	Output	Polynomial coefficients of the parametric spline

Subroutines called

None

Common Blocks

None

SUBROUTINE FTCALC

Purpose: To calculate Taylors' f and t
and the half angle of entrance.

Calling Sequence

FTCALC (PSEG, SEG, AX, N, BOWPT, XM)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
AX	Real	-----	Input	Maximum Sectional area
N	Integer	-----	Input	Number of stations
BOWPT	Real	-----	Input	Intersection of water-line and bow
PSEG	Real	(8,N)	Input	Parametric spline information for the sectional area curve
SEG	Real	(8,N)	Input	Parametric spline information for the waterplane area curve
XM	Real	-----	Input	Distance from FP to midships

Common Blocks

FANDT

Subroutines Called

CUBCO2, SPLY2

Detailed Description

Subroutine FTCALC calculates Taylors' f and t, and the half angle of entrance if the input variable ICALC is not zero. This subroutine may not give correct answers if the bow has an unusual shape.

SUBROUTINE GIRTH

Purpose: To calculate the wetted surface.

Calling Sequence

GIRTH (SEG, NS, TE, N, SPAN)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
SEG	Real	(8,40)	Input	Array containing the spline information
NS	Integer	-----	Input	Array containing the number of segments to integrate for each draft
TE	Real	-----	Input	Array containing the t value for the last segment for each draft
N	Integer	-----	Input	Number of drafts
SPAN	Integer	-----	Output	Array containing the girth values

Common Blocks

None

Subprograms Called

CUBCO2, SIMSON

Detailed Description

Finds the wetted perimeter of each station for multiple drafts. It interpolates points using the parametric spline data, and then calculates the segment lengths by using simpsons rule to solve the integral equations.

SUBROUTINE INPUT

Purpose: To read in the data

Calling sequence

Call INPUT

Common Blocks

ADVOL, CONST, FANDT, STOW

Subroutines Called

None

Detailed description

This subroutine reads in all of the data, and scales the model offsets.

SUBROUTINE MAX

Purpose: To find the station with the maximum sectional area.

Calling Sequence

MAX (SEG, NPT, YVAL, XVAL)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
NPT	Integer	-----	Input	Number of points in array
SEG	Real	(8,NPT)	Input	Parametric spline information of the sectional area curve
YVAL	Real	-----	Output	Maximum sectional area
XVAL	Real	-----	Output	Longitudinal position of the maximum sectional area value

Common Blocks

None

Subroutines called

CUBCO2

SUBROUTINE OUTPUT

Purpose: To write out the results of the hydrostatic analysis on a ship model.

Calling Sequence

Call Output (VOL, S, WP, AX, BX, TX, AM, BM, TM,
TMF, TMA, STA, BEAMS, SECAR, XPT, XFF)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
AM	REAL	-----	Input	Sectional area at midships
AX	REAL	-----	Input	Maximum sectional area
BEAMS	REAL	(40)	Input	Waterline beam offsets
BM	REAL	-----	Input	Beam at midships
BX	REAL	-----	Input	Beam at the station with the maximum sectional area
TM	REAL	-----	Input	Draft at midships
TMF	REAL	-----	Input	Draft at 0.25 LWL
TMA	REAL	-----	Input	Draft at 0.75 LWL
TX	REAL	-----	Input	Draft at the station with the maximum sectional area
VOL	REAL	(3)	Input	VOL (1)-Volume forward of amidships VOL (2)-Volume aft of amidships VOL (3)-Volume forward of the station with the maximum sectional area

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
SECAR	Real	(40)	Input	The station sectional areas
WP	Real	(2)	Input	WP (1)-Waterplane area forward of midships WP (2)-Waterplane area aft of midships
S	Real	-----	Input	Wetted surface
XFB	Real	-----	Input	Distance from the FP to the LCB
XFF	Real	-----	Input	Distance from the FP to the LCF
XPT	Real	-----	Input	Distance from the FP to the station of maximum sectional area
STA	Real	(40)	Input	Stations distance from FP

Common Blocks

ADVOL, CONST, FANDT

Subroutines Called

None

Detailed description

The results of the hydrostatic analysis are printed in English and/or metric units depending on the value of the variable "MET". Both ship and model scale data are presented, and the water densities are assumed to be 62.4 lbs/ft³ for the model, and 64.17 lbs/ft³ for the ship.

SUBROUTINE SIMSON

Purpose: To integrate using Simpson's rule.

Calling Sequence

SIMSON (DIST, VEC, N, VAL)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
DIST	Real	-----	Input	Interval distance
VEC	Real	(N)	Input	Array of values to integrate
N	Integer	-----	Input	Number of elements in VEC
VAL	Real	-----	Output	Value of the integral

Subroutines Called

None

Common Blocks

None

SUBROUTINE SINTEG

Purpose: To integrate a parametrically defined curve.

Calling Sequence
SINTEG (SEG, NS, TE, N AREA)

<u>VARIABLE</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
SEG	Real	(8,1)	Input	Array containing the parametric spline information.
N	Integer	-----	Input	Number of integrations to perform
NS	Integer	(N)	Input	Array containing the last segment to integrate to for each integration.
TE	Real	(N)	Input	Array containing the t value for the last segment to integrate to for each integration
AREA	Real	(N)	Output	Array containing the results of the integration

Subroutines Called

CUBCO2

Common Blocks

None

Detailed description

This subroutine evaluates the Integral $\int_0^{y_1} f dy$ where $f = f(x(t), y(t))$, a series of parametric splines.

SUBROUTINE SPLNT2

Purpose: To fit cubic parametric splines segments through a set of data points.

Calling Sequences

Call SPLNT (SEGS, P, NP, NDI, ENDI)

<u>VARIABLES</u>	<u>TYPE</u>	<u>DIMENSION</u>	<u>USE</u>	<u>DESCRIPTION</u>
P	Real	(2,NP)	Input	Array of (x,y) points
NP	Integer	-----	Input	Number of points
NDI	Integer	(2)	Input	Indicates whether slope at first or last point is specified NDI (1)>1 slope at first point is specified NDI (2)>1 slope at last point is specified
ENDI	Real	(2,2)	Input	Slope at first or last point (if NDI>1) ENDI (2,1)- DX/DT at first point ENDI (2,1)- DY/DT at first point ENDI (1,2)- DX/DT at last point ENDI (2,2)- DY/DT at last point
SEGS	Real	(8,NP-1)	Output	Array containing the parametric spline information in endpoint tangent form

Common Blocks

None

Subroutines Called

None

Detailed Description

The subroutine returns the spine information in endpoint-tangent form. It can be changed to a polynomial coefficient form by using subroutine CUBCO2.

SUBROUTINE SPPLY 2

Purpose: To find the intersection between a curve defined by a parametric spline and $y = \text{constant}$ line

Calling Sequence

Call SPPLY2, (Y, SEGS, NSEGS, PT, NINT, TINT, INT)

VARIABLE	TYPE	DIMENSION	USE	DESCRIPTION
Y	Real	-----	Input	Y value intersecting curve
SEGS	Real	(8, NSEGS)	Input	Array containing the parametric spline information
NSEGS	Integer	-----	Input	Number of segments
PT (1)	Real	-----	Output	X coordinate of the intersection
PT (2)	Real	-----	Output	Y coordinate of the intersection
NINT	Integer	-----	Output	Index of segment in which intersection occurs.
TINT	Real	-----	Output	Value of t parameter at the intersection
INT	Integer	-----	Output	Error return = 1 Intersection found = 3 no intersection

Common Blocks

None

Subroutines Called

CUBCO2

Detailed Description

The t value corresponding to a given Y value is found, and is then used to calculate the X value corresponding to the Y value.

COMMON BLOCK ADVOL

<u>FORTRAN SYMBOL</u>	<u>MATH SYMBOL</u>	<u>TYPE</u>	<u>DESCRIPTION</u>
X		Real	Longitudinal distance of the stations from the FP
SS		Real	Station spacing
XM		Real	Distance from FP to midships
EXVOL		Real	Extra volume to be added to certain stations
XXL		Real	Station numbers to add extra volume to
NSTAT		Real	Number of stations to add extra volume to
EXWET		Real	Added wetted surface

COMMON BLOCK CONST

<u>FORTRAN SYMBOL</u>	<u>MATH SYMBOL</u>	<u>TYPE</u>	<u>DESCRIPTION</u>
XLAM	λ	REAL	Ship to model scale ratio
XLPP	Lpp	REAL	Length between perpendiculars
XLWL	L_{WL}	Real	Waterline length
DENMOD	ρ_g	REAL	Model water density
V		REAL	Model speed, knots
MET		Integer	Printout control for english or metric units
XLP		Real	length of parallel middlebody
N		Integer	Number of stations
MODEL		Character string	Model number
TITLE		Character string	Title for output

COMMON BLOCK FANDT

<u>FORTRAN SYMBOL</u>	<u>MATH SYMBOL</u>	TYPE	<u>DESCRIPTION</u>
ENTA		Real	Half angle of entrance, degrees
FTE		Real	Taylor's' f
TTE		Real	Taylor's' t

COMMON BLOCK STOW

<u>FORTRAN SYMBOL</u>	<u>MATH SYMBOL</u>	<u>TYPE</u>	<u>DESCRIPTION</u>
Y		Real	Half beam offsets
Z		Real	Waterline offsets corresponding to Y
ICALC		Integer	Control for calculating the Half angle of entrance and Taylors f and t
IBOW		Integer	Control to indicate if bow and/or stern profiles are input
SF		Real	Forward station where draft is taken
SA		Real	Aft station where draft is taken
TF		Real	Forward draft at SF
TA		Real	Aft draft at SA
IPRINT		Integer	Print Control Variable
XB		Real	X axis offsets for the bow profile (longitudinal)
YB		Real	Z axis offsets (vertical) for the bow profile
XS		Real	X axis offsets for the bow profile (longitudinal)
YS		Real	Z axis offsets (vertical) for the bow profile
MM		Integer	Array containing the number of points per station.

DNSRDC ISSUES THREE TYPES OF REPORTS

1. DNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-

NICAL VALUE. THEY CARRY A CONSEQUITIVE NUMERICAL IDENTIFICATION REGARDLESS OF

THEIR CLASSIFICATION OR THE ORIGINALITY DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-

INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.

THEY CARRY A DEPARTMENTAL ALPHANUMERIC IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION

OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-

TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE

NUMERICAL CODE OF THE ORIGINALITY DEPARTMENT. ANY DISTRIBUTION OUTSIDE DNSRDC

MUST BE APPROVED BY THE HEAD OF THE ORIGINALITY DEPARTMENT ON A CASE-BY-CASE

BASIS.

END

DATE
FILMED

1-81

DTIC