ALGÈBRE HOMOLOGIQUE. — Critères de représentabilité des foncteurs. Note (*) de M. Jean Benabou, présentée par M. Henri Villat.

On donne un critère « formel » de représentabilité de foncteurs F à valeurs dans les ensembles. Ce critère est utilisé pour obtenir des conditions suffisantes maniables, qui se ramènent à montrer que F n'est pas « trop grand ». Différents critères de majoration permettent de retrouver la plupart des cas « concrets » de représentabilité et d'existence d'adjoints.

1. Critère « formel » de représentabilité. — Soit $\mathfrak U$ un univers. Si $\mathfrak S$ et $\mathcal C$ sont deux $\mathfrak U$ -catégories, X un objet de $\mathcal C$ et $K: \mathcal S \to \mathcal C$ un foncteur, un système projectif de source X et de but $K: \xi = (\xi(S): X \to K(S))$ $(S \in Ob(\mathcal S))$ est un morphisme du foncteur constant K_X dans K. On note Proj(X, K) l'ensemble de ces systèmes. Si $\mathcal C'$ est une $\mathfrak U$ -catégorie et $F: \mathcal C \to \mathcal C'$ un foncteur, on note $F \circ \xi$ le système $(F(\xi(S))) \in Proj(F(X), F \circ K)$. Si $F \circ K$ a une limite projective $\xi' \in Proj(X', F \circ K)$, on note $\lambda(F\xi)$ le morphisme canonique $F(X) \to X'$. On dit que $\xi \in Proj(X, K)$ est séparant (resp. recollant) si, pour tout objet Y de $\mathcal C$, le morphisme $\lambda(Hom(Y, \xi)): Hom(Y, X) \to \lim_{\longleftarrow} Hom(Y, K(.))$ est injectif (resp. surjectif). [En général $\lim_{\longleftarrow} Hom(Y, K(.))$ n'est pas un $\mathfrak U$ -ensemble.] Il est clair que ξ est recollant et séparant $\Leftrightarrow \xi = \lim_{\longleftarrow} K$.

Soit \mathcal{C} une \mathcal{U} -catégorie et $F:\mathcal{C}\to \operatorname{Ens}(\mathcal{U})$ un foncteur de \mathcal{C} dans la catégorie des ensembles qui sont éléments de \mathcal{U} . On définit $[(^4)$ ou $(^4)]$ une \mathcal{U} -catégorie \mathcal{S} et un foncteur $K:\mathcal{S}\to\mathcal{C}$ de la façon suivante : Les objets de \mathcal{S} sont les couples (X,x) où $X\in\operatorname{Ob}(\mathcal{C})$ et $x\in F(X)$; les flèches sont les couples (f,x) où $f:X\to Y\in\mathcal{C}$ et $x\in F(X)$; la source de (f,x) est (X,x) et le but est (Y,F(f)(x)); la composition est

$$(g, F(f)(x))(f, x) = (gf, x).$$

Le foncteur K est défini par

$$K(X, x) = X;$$
 $K(f, x) = f.$

Théorème 1. — Les conditions suivantes sont équivalentes :

- (i) Le foncteur $F: \mathcal{C} \to Ens$ (U) est représentable;
- (ii) La catégorie S a un objet initial;
- (iii) Le foncteur K a une limite projective et F est compatible avec cette limite;
- (iv) Il existe un objet X de C et un système projectif séparant $\xi \in \text{Proj}(X, K)$ tel que λ $(F\xi) : F(X) \to \lim_{\to \infty} F \circ K$ est surjective.
- 2. Majorations. Une U-catégorie I est U-petite, s'il existe une U-catégorie I équivalente à I et telle que Ob (I)∈U. Un foncteur

 $\Phi: \mathcal{I} \to \mathcal{C}$ est \mathcal{U} -petit si \mathcal{I} et \mathcal{C} sont deux \mathcal{U} -catégories et si \mathcal{I} est \mathcal{U} -petite. Un objet X d'une \mathcal{U} -catégorie \mathcal{C} est à sous-objets (resp. quotients) \mathcal{U} -petits si la catégorie des sous-objets de X (resp. des quotients de X) est \mathcal{U} -petite; il est \mathcal{U} -petit s'il est à sous-objets et objets-quotients \mathcal{U} -petits. \mathcal{C} est à petits quotients (resp. sous-objets, resp. objets) si tout $X \in \mathcal{O}$ (\mathcal{C}) est à quotients (resp. sous-objets, resp. quotients et sous-objets) \mathcal{U} -petits. Les catégories « usuelles » sont toutes à petits objets. Une \mathcal{U} -catégorie \mathcal{C} est à \mathcal{U} -lim si tout foncteur \mathcal{U} -petit de but \mathcal{C} admet une lim.

Soit \mathcal{C} une \mathcal{U} -catégorie et $F:\mathcal{C}\to Ens(\mathcal{U})$ un foncteur. En général, le foncteur K du paragraphe 1 n'est pas \mathcal{U} -petit. Nous allons donner plusieurs « critères de majoration » permettant de ramener (iii) à la considération de lim de foncteurs \mathcal{U} -petits.

Soit $f: X \to Y \in \mathcal{C}$, et $y \in F(Y)$ on dit que y passe par f s'il existe $x \in F(x)$ tel que y = F(f)(x). On dit que $x \in F(X)$ engendre X si pour tout couple $f, g: X \to Y$, $F(f)(x) = F(g)(x) \Rightarrow f = g$. On dit que $x \in F(X)$ engendre strictement X si pour tout sous-objet $j: X' \to X$ de X, si x passe par j, j est un isomorphisme. F est \mathfrak{A} -borné s'il existe une famille $\mathfrak{M} = (X_m)_{m \in M}$ avec $M \in \mathfrak{A}$, $X_m \in \mathrm{Ob}(\mathcal{C})$ telle que pour tout $X \in \mathrm{Ob}(\mathcal{C})$ et $x \in F(X)$, il existe $f: X_m \to X$ tel que x passe par f. F est génériquement \mathfrak{A} -borné s'il existe une famille $\mathcal{C}_f = (X_\gamma)_{\gamma \in \Gamma}$ avec $\Gamma \in \mathfrak{A}$, $X_\gamma \in \mathrm{Ob}(\mathcal{C})$ telle que si $x \in F(X)$ engendre X, X est isomorphe à un des X_γ . F est strictement \mathfrak{A} -borné s'il existe une famille $\mathcal{C} = (X_\lambda)_{\lambda \in \Lambda}$ avec $\Lambda \in \mathfrak{A}$, $X_\lambda \in \mathrm{Ob}(\mathcal{C})$ telle que si $x \in F(X)$ engendre strictement X, X est isomorphe à un X_λ .

La notion essentielle est celle de foncteur \mathbb{C} -borné. En effet, si F est \mathbb{C} -borné, on définit une catégorie \mathbb{C} -petite \mathbb{S}' et un foncteur $\Phi = \mathbb{S}' \to \mathbb{S}$ de la manière suivante : Les objets de \mathbb{S}' sont les couples (m, x) où $m \in \mathbb{N}$ et $x \in F(X_m)$; les flèches sont les quadruples (n, f, m, x) où $f: X_m \to X_n \in \mathbb{C}$ et $x \in F(X_m)$, la source étant (m, x) et le but (n, F(f)(x)); la composition est donnée par

$$(p, g, n, F(j)(x)) \circ (n, f, m, x) = (p, gf, m, x);$$

$$\Phi(m, x) = (X_m, x), \qquad \Phi(n, f, m, x) = (f, x).$$

Avec ces notations, on a:

Lemme 1. — Si \mathcal{C} est à produits fibrés et $F:\mathcal{C} \to Ens$ est \mathfrak{A} -borné et commute avec les produits fibrés; pour toute \mathfrak{A} -catégorie \mathcal{C}' et tout foncteur $K':\mathcal{S} \to \mathcal{C}'$, K' a une limite projective $\Leftrightarrow K' \circ \Phi$, petit foncteur, a une limite projective, et les deux sont canoniquement isomorphes.

On exprime ceci en disant que Φ fait de S' une catégorie cofinale dans S.

Théorème 2. — Soit \mathcal{C} une \mathbb{N} -catégorie ayant des \mathbb{N} -lim. Un foncteur $F: \mathcal{C} \to \operatorname{Ens}(\mathbb{N})$ est représentable \Leftrightarrow il est \mathbb{N} -borné et commute avec les lim.

Pour reconnaître qu'un foncteur $F:\mathcal{C}\to Ens(\mathfrak{U})$ est $\mathfrak{U}\text{-born\'e}$ on dispose des critères suivants :

Proposition 1. — Soit I une U-petite catégorie et

 $\Phi: \mathcal{J} \to \text{Fonct}(\mathcal{C}, \text{Ens}(\mathfrak{A}));$

 $i \to F_i : \mathcal{C} \to \operatorname{Ens}(\mathfrak{A}), \quad un \quad foncteur. \quad Si \quad les \quad F_i \quad sont \quad tous \quad \mathfrak{A}-born\acute{e}s, \quad \varinjlim_i F_i$ est $\mathfrak{A}-born\acute{e}$.

Supposons pour simplifier que \mathcal{C} est à \mathfrak{U} -lim et que F commute aux \mathfrak{U} -lim.

Proposition 2. — Si \mathcal{C} est à petits sous-objets : génériquement \mathfrak{U} -borné \Rightarrow strictement \mathfrak{U} -borné $\Rightarrow \mathfrak{U}$ -borné.

Proposition 3. — Si \mathcal{C} est à petits objets quotients : \mathfrak{A} -borné \Rightarrow génériquement \mathfrak{A} -borné \Rightarrow strictement \mathfrak{A} -borné.

Les trois notions coïncident dans le cas où $\mathcal C$ est à petits objets, et l'on a alors :

Proposition 4. — Si \mathcal{C} est à petits objets et $G: \mathcal{C} \to \operatorname{Ens}(\mathfrak{A})$ est un foncteur \mathfrak{A} -borné, tout sous-foncteur F de G, qui commute avec les \lim_{\leftarrow} , est \mathfrak{A} -borné.

Dans le cas où $\mathcal C$ admet un cogénérateur C, c'est-à-dire un objet tel que le foncteur $Hom(.,C):\mathcal C\to Ens(\mathfrak U)$ soit fidèle, on a un critère de majoration « indépendant du foncteur F ». En effet :

Proposition 5. — Soit \mathcal{C} une \mathcal{U} -catégorie à \mathcal{U} -limites projectives, ayant un cogénérateur \mathcal{C} tel que pour tout $\mathbf{I} \in \mathcal{U}$, $\mathcal{C}^{\mathbf{I}}$ soit à sous-objets \mathcal{U} -petits (c'est le cas si \mathcal{C} est à sous-objets petits) un foncteur $\mathbf{F}: \mathcal{C} \to \mathrm{Ens}(\mathcal{U})$ est représentable si et seulement si il commute aux limites projectives.

3. Remarques et applications.

Remarque 1. — Toutes les définitions se dualisent au cas des foncteurs contravariants, et les résultats subsistent.

Remarque 2. — Avec des modifications évidentes, tout ce qui précède est valable si l'on ne se place pas dans le « contexte des univers », mais dans le formalisme où l'on distingue « classes » et « ensembles », « grosses catégories » et « petites catégories ».

Les critères de représentabilité donnés au paragraphe 2 permettent de retrouver, en général avec des hypothèses plus faibles, les théorèmes d'existence d'adjoints donnés par Freyd (2). Par exemple, du théorème 2, on déduit :

Théorème 3. — Soit \mathcal{C} une catégorie à limites projectives et $S: \mathcal{C} \to \mathcal{D}$ un foncteur, S a un adjoint à gauche si et seulement si il commute avec les limites projectives et pour tout objet D de \mathcal{D} , le foncteur Hom(D, S(.)) est borné.

[Freyd obtient le même théorème en supposant, en outre, que \mathcal{C} est à petits sous-objets et que pour tout $D \in Ob(\mathcal{O})$, Hom(D, S(.)) n'est pas le foncteur vide.]

La proposition 4 permet de construire des « objets définis par générateurs et relations » quand on sait construire des « objets libres ». De façon précise on a :

Théorème 4. — Soient α , β , c des α -catégories et $s: \alpha \to \beta$; $p: \beta \to c$, $q: \alpha \to c$ des foncteurs tels que :

- (i) $P \circ S = Q$ et P est fidèle;
- (ii) ex est à petits objets;
- (iii) A est à U-limites projectives et Q a un adjoint à gauche.

Alors S admet un adjoint à gauche \Leftrightarrow S commute avec les $\mathfrak U$ -limites projectives.

Par exemple, si & et & sont des catégories d'ensembles « munies de structures » & est la catégorie des ensembles, P et Q sont les foncteurs qui « oublient les structures » et S un foncteur qui « oublie une partie de la structure », (i) et (ii) sont satisfaits et il suffit de vérifier (iii) et de savoir que S commute aux lim, ce qui est en général assez facile, pour que S admette un adjoint à gauche.

De la proposition 4 on déduit encore :

Théorème 5. — Soit $\mathcal C$ une $\mathcal U$ -catégorie à $\mathcal U$ -limites inductives si et seulement si il existe une $\mathcal U$ -catégorie $\mathcal A$ ayant des $\mathcal U$ -sommes directes et un foncteur fidèle $P:\mathcal C\to\mathcal A$ ayant un adjoint à gauche.

[Les applications de ce théorème au cas où $\mathfrak{A} = \operatorname{Ens}(\mathfrak{U})$ et P est le foncteur « oubli de structures » sont très nombreuses.]

- (*) Séance du 11 janvier 1965.
- (1) Ehresmann, Gattungen von lokalen Structuren (Jahresberichte der Deutschen. Mat. Vereinigung, 60, 1957).
 - (2) FREYD, Abelian Categories, Harper et Row, New-York, 1964.
- (3) GROTHENDIECK, Éléments de Géométrie algébrique, chap. 0, Presses Universitaires de France, 1961.
 - (1) KAN, Adjoint Functors (Trans. Amer. Mat. Soc., 1958).

(65, rue d'Hauteville, Paris, 5e.)