What is claimed is:

1.	A device for photodynamic stimulation of human ce	ells, comprising
----	---	------------------

- a base housing containing a control mechanism and a pulse generator; and
- at least one applicator equipped with at least one pulsed first light source connected to said
- 4 pulse generator;
- wherein:
- the generator is configured to selectably supply electrical pulses at a frequency between
- ⁷ 200 and 20,000 Hz., a pulse length between 2 and 200 microseconds, and an amplitude of
- between 2 and 25 volts; and
 - the at least one first light source is a semiconductor diode which emits light of approximately 600, 900, and 1200 nanometers wavelength in response to said pulses from said generator.
 - 2. A device according to claim 1, wherein at least one of the first light sources is a semiconductor diode which emits blue-light radiation in the range of 350 to 500 nanometers.
- 3. A device according to claim 1, wherein at least one of the first light sources is a tube which emits blue-light radiation in the range of 350 to 500 nanometers.
- 4. A device according to claim 1, wherein the at least one applicator
- 2 comprises sensors connected to the control mechanism for measurement of reflected light for
- 3 feedback control and automatic adjustment.

- 5. A device according to claim 1, wherein the at least one applicator is
- 2 mounted to the base housing by means of a movable-joint arm.
- 6. A device according to claim 5, wherein the at least one applicator
- 2 comprises several single applicators hinged together so as to be adjustable at angles with respect
- 3 to one another.
 - 7. A device according to claim 1, further comprising a hand-held applicator comprising at least one second light source connected to said pulse generator and at least one light outlet.
 - 8. A device according claim 7 wherein the hand-held applicator is equipped with a shaft and a head and a printed circuit board equipped with semiconductor diodes.
- 9. A device according to claim 7 wherein the at least one light outlet is equipped with a mounted lens.

10. A device according to claim 8 wherein:

- at least a first semiconductor diode on the printed circuit board radiates red and infrared
- light at wavelengths of approximately 600, 900, and 1200 nanometers;
- at least a second semiconductor diode on the printed circuit board radiates blue light in the
- 5 range of approximately 350 to 500 nanometers;
- the head comprises an expander rotatable to selectably conduct blue light or red and
- 7 infrared light to said at least one light outlet.
 - 11. A device according to claim 10, wherein the expander includes a fiber optic cable.
 - A device according to claim 10, wherein the light output is at approximately 25% of a selected level for approximately 10 seconds and is at the selected level thereafter.

visnaga.

1	13. A method of treating tissue, comprising the steps of:
2	introducing a photosensitive substance to the tissue;
3	determining when the tissue has absorbed a predetermined level of the photosensitive
4	substance; and
5	irradiating the tissue with a device according to claim 1.
1	14. A method according to claim 13, wherein the step of introducing a
2	photosensitive substance to the tissue comprises topical application of a lotion containing the
3	photosensitive substance.
1	15. A method according to claim 13, wherein the step of introducing a
2	photosensitive substance to the tissue comprises oral ingestion of a substance comprising at least
3	the photosensitive substance.
1	16. A method according to claim 13, wherein the step of introducing a
2	photosensitive substance to the tissue comprises subcutaneous injection of a substance comprising
3	at least the photosensitive substance.
1	17. A method according to claim 13, wherein the photosensitive substance is one
2	of photofrin, 5-aminolevulan acid, hermatoporphyrin, verteporfin, chlorins, phthaldodyanines,
3	phenothiazine, benzoporphyrin-derivative monoacid-A (ATMPn), L-Phenylalanin, and ammi

L		18.	A method	according to	claim	13,	wherein	dimethylsulfoxid	le is also	introduced
,	to the tissue.									

- 19. A method according to claim 13, wherein dimethylsulfoxide is mixed with the photodynamic substance.
- 20. A method according to claim 13, wherein:
- the photosensitive substance is photofrin;
 - the photosensitive substance is introduced to the tissue of a patient by subcutaneous injection of 1 to 2 mg. per kg. of the patient's weight;
 - the patient is kept in dim light for approximately 48 hours before irradiation; and the patient is kept out of strong light for approximately eight weeks after irradiation.
 - 21. A method according to claim 13, wherein:
 - the photosensitive substance is 5-Aminolavulin acid;
 - the photosensitive substance is introduced to the tissue of a patient by topical application of
- a 10 to 20 percent mixture in one of an oil-in-water emulsion and a cream;
- the patient is kept in dim'light for approximately six hours before irradiation; and
- the patient is kept out of strong light for approximately 48 hours after irradiation.

1	22. A method according to claim 13, wherein:
2	the photosensitive substance is L-Phenylalanin;
3	the photosensitive substance is introduced to the tissue of a patient by topical application of
4	a 5 to 30 percent mixture according to a degree of treatment desired; and
5	the patient is kept out of strong light for approximately 24 hours after application.
1	23. A method according to claim 13, wherein:
2	the photosensitive substance is L-Phenylalanin;
3	the photosensitive substance is introduced to the tissue of a patient by oral ingestion of 50
4	to 100 mg according to the patient's weight and to degree of treatment desired;
5	the patient is kept in dim light for approximately 60 minutes before irradiation; and
6	the patient is kept out of strong light for approximately 24 hours after application.
1	24. A method according to claim 13, wherein:
2	the photosensitive substance is ammi visnaga;
3	the photosensitive substance is administered to the tissue of a patient by topical application
4	of a 5 to 30 percent mixture, according to degree of treatment desired, in a liquid medium;
5	the patient avoids direct sunlight for approximately 30 minutes before irradiation; and
6	the patient avoids sunbathing for approximately five days after irradiation.

2

1	25.	A method according to claim 13,	wherein

the photosensitive substance is ammi visnaga;

the photosensitive substance is administered to the tissue of a patient by oral ingestion of approximately 100 mg. thereof;

the patient avoids direct sunlight for approximately three hours before irradiation; and the patient avoids sunbathing for approximately five days after irradiation.

- 26. A method according to claim 13, wherein the step of determining when the tissue has absorbed a predetermined level of the photosensitive substance comprises observing that the tissue undergoes a predetermined color change when viewed under a predetermined illumination.
- 27. A method according to claim 26, wherein the predetermined illumination comprises a wood lamp.
- 28. An apparatus according to claim 1, wherein the pulse duration is limited to 20 microseconds.
- 29. A method according to claim 13, wherein the pulse duration is limited to 20 microseconds.

1	30. A device for photodynamic stimulation of human cells, comprising:
2	a base housing containing a control mechanism and a pulse generator; and
3	at least one applicator equipped with at least one pulsed first light source connected to said
4	pulse generator;
5	wherein:
6	the generator is configured to selectably supply electrical pulses at a frequency between
7	200 and 20,000 Hz., a pulse length between 2 and 200 nanoseconds, and an amplitude of between
8	40 and 400 volts; and
9	the at least one first light source is a laser diode which emits light of approximately 600,
10	900, and 1200 nanometers wavelength in response to said pulses from said generator.
1	31. A device according to claim 30, wherein at least one of the first light
2	sources is a laser diode which emits blue-light radiation in the range of 350 to 500 nanometers.
1	32. A device according to claim 30, wherein at least one of the first light
2	sources is a tube which emits blue-light radiation in the range of 350 to 500 nanometers.

- 33. A device according to claim 30, wherein the at least one applicator
 comprises sensors connected to the control mechanism for measurement of reflected light for
 feedback control and automatic adjustment.
- 1 34. A device according to claim 30, wherein the at least one applicator is
 2 mounted to the base housing by means of a movable-joint arm.

- 1 35. A device according to claim 34, wherein the at least one applicator
- 2 comprises several single applicators hinged together so as to be adjustable at angles with respect
- 3 to one another.
- A device according to claim 30, further comprising a hand-held applicator
- 2 comprising at least one second light source connected to said pulse generator and at least one light
- з outlet.
 - 37. A device according claim 36 wherein the hand-held applicator is equipped with a shaft and a head and a printed circuit board equipped with laser diodes.
 - 38. A device according to claim 36 wherein the at least one light outlet is equipped with a mounted lens.

39. A device according to claim 37 wherein:

- at least a first laser diode on the printed circuit board radiates red and infrared light at
 wavelengths of approximately 600, 900, and 1200 nanometers;
- at least a second laser diode on the printed circuit board radiates blue light in the range of approximately 350 to 500 nanometers;
- the head comprises an expander rotatable to selectably conduct blue light or red and infrared light to said at least one light outlet.
 - 40. A device according to claim 39, wherein the expander includes a fiber optic cable.
 - A device according to claim 39, wherein the light output is at approximately 25% of a selected level for approximately 10 seconds and is at the selected level thereafter.

4

visnaga.

42. A method of treating tissue, comprising the steps of: 1 introducing a photosensitive substance to the tissue; 2 determining when the tissue has absorbed a predetermined level of the photosensitive 3 substance; and 4 irradiating the tissue with a device according to claim 30. 5 43. A method according to claim 42, wherein the step of introducing a 1 photosensitive substance to the tissue comprises topical application of a lotion containing the 2 photosensitive substance. 3 44. A method according to claim 42, wherein the step of introducing a photosensitive substance to the tissue comprises oral ingestion of a substance comprising at least 2 the photosensitive substance. 45. A method according to claim 42, wherein the step of introducing a photosensitive substance to the tissue comprises subcutaneous injection of a substance comprising at least the photosensitive substance. 3 46. A method according to claim 42, wherein the photosensitive substance is one 1 of photofrin, 5-aminolevulan acid, hermatoporphyrin, verteporfin, chlorins, phthaldodyanines, 2

phenothiazine, benzoporphyrin-derivative monoacid-A (ATMPn), L-Phenylalanin, and ammi

2	to the tissue.
1	48. A method according to claim 42, wherein dimethylsulfoxide is mixed with the
2	photodynamic substance.
1	49. A method according to claim 42, wherein:
2	the photosensitive substance is photofrin;
3	the photosensitive substance is introduced to the tissue of a patient by subcutaneous
4	injection of 1 to 2 mg. per kg. of the patient's weight;
5	the patient is kept in dim light for approximately 48 hours before irradiation; and
6	the patient is kept out of strong light for approximately eight weeks after irradiation.
1	50. A method according to claim 42, wherein:
2	the photosensitive substance is 5-Aminolavulin acid;
3	the photosensitive substance is introduced to the tissue of a patient by topical application of
4	a 10 to 20 percent mixture in one of an oil-in-water emulsion and a cream;
5	the patient is kept in dim light for approximately six hours before irradiation; and
6	the patient is kept out of strong light for approximately 48 hours after irradiation.

47. A method according to claim 42, wherein dimethylsulfoxide is also introduced

1	31. A method according to claim 42, wherein:
2	the photosensitive substance is L-Phenylalanin;
3	the photosensitive substance is introduced to the tissue of a patient by topical application of
4	a 5 to 30 percent mixture according to a degree of treatment desired; and
5	the patient is kept out of strong light for approximately 24 hours after application.
1	52. A method according to claim 42, wherein:
2	the photosensitive substance is L-Phenylalanin;
3	the photosensitive substance is introduced to the tissue of a patient by oral ingestion of 50
4	to 100 mg according to the patient's weight and to degree of treatment desired;
5	the patient is kept in dim light for approximately 60 minutes before irradiation; and
6	the patient is kept out of strong light for approximately 24 hours after application.
1	53. A method according to claim 42, wherein:
2	the photosensitive substance is ammi visnaga;
3	the photosensitive substance is administered to the tissue of a patient by topical application
4	of a 5 to 30 percent mixture, according to degree of treatment desired, in a liquid medium;
5	the patient avoids direct sunlight for approximately 30 minutes before irradiation; and
6	the patient avoids sunbathing for approximately five days after irradiation.

2

1	54.	A method according to claim 42, wherein

the photosensitive substance is ammi visnaga;

the photosensitive substance is administered to the tissue of a patient by oral ingestion of approximately 100 mg. thereof;

the patient avoids direct sunlight for approximately three hours before irradiation; and the patient avoids sunbathing for approximately five days after irradiation.

- 55. A method according to claim 42, wherein the step of determining when the tissue has absorbed a predetermined level of the photosensitive substance comprises observing that the tissue undergoes a predetermined color change when viewed under a predetermined illumination.
- 56. A method according to claim 56, wherein the predetermined illumination comprises a wood lamp.
- 57. An apparatus according to claim 30, wherein the pulse duration is limited to 20 nanoseconds.
- 58. A method according to claim 42, wherein the pulse duration is limited to 20 nanoseconds.