Fachrichtung Mathematik
Fakultät für Mathematik und Informatik
Universität des Saarlandes
Prof. Dr. Michael Bildhauer
M.Sc. Nils Gutheil

Lösungshinweise Übungsblatt 5 **Höhere Mathematik für (Naturwiss. und) Ingenieure II**Sommersemester 2020

Aufgabe 1. (Konvexität/Konkavität, 1.5+1.5 Punkte)

i) Es seien $f: \mathbb{R} \to \mathbb{R}$ konvex, $n \geq 2, \lambda_1, \ldots, \lambda_n \geq 0$ mit $\lambda_1 + \cdots + \lambda_n = 1$ und $x_1, \ldots, x_n \in \mathbb{R}$. Zeigen Sie mithilfe vollständiger Induktion die *Jensensche Ungleichung*

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i).$$

ii) Es sei $f:(0,\infty)\to\mathbb{R}$ die durch $f(x)=\ln(x)/x$ definierte Funktion. Ist f konvex bzw. konkav?

Lösung Aufgabe 1.

i) Induktionsanfang (n = 2): Es seien $\lambda_1, \lambda_2 \ge 0$ mit $\lambda_1 + \lambda_2 = 1$ und $x_1, x_2 \in \mathbb{R}$. Da f konvex ist, gilt

$$f(\lambda_1 x_1 + \lambda_2 x_2) = f(\lambda_1 x_1 + (1 - \lambda_1) x_2) \le \lambda_1 f(x_1) + (1 - \lambda_1) f(x_2) = \lambda_1 f(x_1) + \lambda_2 f(x_2).$$

Induktionsschritt: Es sei $n \in \mathbb{N}$ fest und für alle $\mu_1, \dots, \mu_n \geq 0$ mit $\mu_1 + \dots + \mu_n = 1$ und $y_1, \dots, y_n \in \mathbb{R}$ gelte

$$f\Big(\sum_{i=1}^{n} \mu_i y_i\Big) \le \sum_{i=1}^{n} \mu_i f(y_i)$$

(Induktions voraus setzung).

Es seien nun $\lambda_1, \ldots, \lambda_{n+1} \geq 0$ mit $\lambda_1 + \cdots + \lambda_{n+1} = 1$ und $x_1, \ldots, x_{n+1} \in \mathbb{R}$. Da f konvex ist, gilt

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left((1 - \lambda_{n+1}) \sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} x_i + \lambda_{n+1} x_{n+1}\right)$$

$$\leq (1 - \lambda_{n+1}) f\left(\sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) + \lambda_{n+1} f(x_{n+1})$$

und aus

$$\lambda_1 + \cdots + \lambda_{n+1} = 1$$

folgt

$$\lambda_1 + \cdots + \lambda_n = 1 - \lambda_{n+1}$$

also

$$\frac{\lambda_1}{1 - \lambda_{n+1}} + \dots + \frac{\lambda_n}{1 - \lambda_{n+1}} = 1.$$

Aus der Induktionsvoraussetzung (mit $\mu_i = \lambda_i/(1-\lambda_{n+1})$ und $y_i = x_i$) folgt

$$f\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) \le \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i),$$

d.h.

$$f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) \le (1 - \lambda_{n+1}) \sum_{i=1}^n \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i) + \lambda_{n+1} f(x_{n+1}) = \sum_{i=1}^{n+1} \lambda_i f(x_i).$$

ii) Nach der Quotientenregel ist f (zweimal) differenzierbar mit

$$f'(x) = \frac{1 - \ln(x)}{x^2}, \quad f''(x) = \frac{-x - 2x(1 - \ln(x))}{x^4} = \frac{2\ln(x) - 3}{x^3}$$

für alle $x \in (0, \infty)$. Es ist also

$$f''(x) > 0 \quad \Leftrightarrow \quad 2\ln(x) - 3 > 0 \quad \Leftrightarrow \quad x > \exp\left(\frac{3}{2}\right),$$

wobei wir benutzt haben, dass die Exponentialfunktion exp: $\mathbb{R} \to (0, \infty)$ streng monoton steigend ist. Nach Satz 5.8 ist f also (streng) konkav auf $(0, e^{\frac{3}{2}})$ und (streng) konvex auf $(e^{\frac{3}{2}}, \infty)$.

Aufgabe 2. (*Grenzwerte*, 2.5+1.5+2+2.5+1 *Punkte*)

i) Berechnen Sie – falls existent – die Grenzwerte

$$\lim_{x \to 0} \frac{\cosh^2(x) - 1}{\sin^2(x)}, \quad \lim_{x \to 0} \frac{2^x - 1}{e^x - 1}, \quad \lim_{x \to 0} \frac{\ln(1 + x^2)}{e^x \sin(x)}, \quad \lim_{x \to 2} \frac{\cosh^2(x) - 1}{\sinh^2(x)}.$$

ii) Berechnen Sie – falls existent – die Grenzwerte

$$\lim_{x \to 0^+} x^x, \quad \lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}}.$$

iii) Berechnen Sie – falls existent – die Grenzwerte

$$\lim_{x \to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x} \right), \quad \lim_{x \to 0} \left(\frac{\ln(1+x)}{x^3} - \frac{1}{x^2} \right).$$

iv) Berechnen Sie – falls existent – die Grenzwerte

$$\lim_{x \to 1^{-}} \sin(\pi x) \ln(|1 - x|), \quad \lim_{x \to \infty} \frac{x - \sin(x)}{x + \cos(x)}.$$

v) Es sei $a_n = n \sin\left(\frac{1}{n}\right)$ $(n \in \mathbb{N})$. Berechnen Sie $\lim_{n \to \infty} a_n$.

Lösung Aufgabe 2.

i) • Die Funktionen $f(x) = \cosh^2(x) - 1$ und $g(x) = \sin^2(x)$ sind (zweimal) differenzierbar auf \mathbb{R} mit $f(0) = \cosh(0) - 1 = 0 = g(0)$, $f'(0) = 2\cosh(0)\sinh(0) = 0 = g'(0) = 2\sin(0)\cos(0)$ und $g''(x) = 2(\cos^2(x) - \sin^2(x)) \neq 0$ für $x \in (-\frac{\pi}{4}, \frac{\pi}{4})$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 0} \frac{\cosh^2(x) - 1}{\sin^2(x)} = \lim_{x \to 0} \frac{2\cosh(x)\sinh(x)}{2\sin(x)\cos(x)} = \lim_{x \to 0} \frac{2(\sinh^2(x) + \cosh^2(x))}{2(\cos^2(x) - \sin^2(x))} = 1.$$

• Die Funktionen $f(x) = 2^x - 1$ und $g(x) = e^x - 1$ sind differenzierbar auf \mathbb{R} mit $f(0) = 2^0 - 1 = 0 = e^0 - 1 = g(0)$ und $g'(x) = e^x \neq 0$ für alle $x \in \mathbb{R}$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 0} \frac{2^x - 1}{e^x - 1} = \lim_{x \to 0} \frac{2^x \ln(2)}{e^x} = \ln(2).$$

• Die Funktionen $f(x) = \ln(1+x^2)$ und $g(x) = e^x \sin(x)$ sind differenzierbar auf \mathbb{R} mit $f(0) = \ln(1) = 0 = g(0) = e^0 \sin(0)$ und $g'(x) = e^x (\sin(x) + \cos(x)) \neq 0$ für alle $x \in (-\frac{5\pi}{4}, \frac{5\pi}{4})$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 0} \frac{\ln(1+x^2)}{e^x \sin(x)} = \lim_{x \to 0} \frac{\frac{2x}{1+x^2}}{e^x (\sin(x) + \cos(x))} = 0.$$

• Die Funktionen $f(x) = \cosh^2(x) - 1$ und $g(x) = \sinh^2(x)$ sind stetig auf \mathbb{R} mit $g(2) = \sinh^2(2) \neq 0$. Also gilt

$$\lim_{x \to 2} \frac{\cosh^2(x) - 1}{\sinh^2(x)} = \frac{\cosh^2(2) - 1}{\sinh^2(2)}.$$

ii) • In der Vorlesung (S. 140) wurde gezeigt, dass $\lim_{x\to 0^+} x \ln(x) = 0$ und da die Exponentialfunktion stetig ist, gilt

$$\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln(x)} = e^0 = 1.$$

• Die Funktionen $f(x) = \ln(x)$ und $g(x) = \sqrt{x}$ sind differenzierbar auf \mathbb{R} mit $\lim_{x\to\infty} f(x) = \infty = \lim_{x\to\infty} g(x)$ und $g'(x) = \frac{1}{2\sqrt{x}} \neq 0$ für alle $x \in (0,\infty)$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to \infty} \frac{\ln(x)}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$

und da die Exponentialfunktion stetig ist, gilt

$$\lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}} = \lim_{x \to \infty} e^{\frac{\ln(x)}{\sqrt{x}}} = e^0 = 1.$$

$$\frac{\ln(1+x)}{x^2} - \frac{1}{x} = \frac{\ln(1+x) - x}{x^2}$$

und die Funktionen $f(x) = \ln(1+x) - x$ und $g(x) = x^2$ sind (zweimal) differenzierbar auf $(-1, \infty)$ mit $f(0) = \ln(1) - 0 = 0 = g(0)$, $f'(0) = \frac{1}{1+0} - 1 = 0 = g'(0)$ und $g''(x) = 2 \neq 0$ für alle $x \in (-1, \infty)$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = \lim_{x \to 0} \frac{\frac{1}{1+x} - 1}{2x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x)^2}}{2} = -\frac{1}{2}.$$

• Wir zeigen, dass die einseitigen Grenzwerte

$$\lim_{x \to 0^{-}} \left(\frac{\ln(1+x)}{x^{3}} - \frac{1}{x^{2}} \right), \quad \lim_{x \to 0^{+}} \left(\frac{\ln(1+x)}{x^{3}} - \frac{1}{x^{2}} \right)$$

nicht existieren. Es seien R>0 und $0<\varepsilon<\frac{1}{2}.$ Nach dem oben gezeigten gibt es $0<\delta<1$ mit

$$\frac{\ln(1+x)}{x^2} - \frac{1}{x} \le -\frac{1}{2} + \varepsilon < 0$$

für alle $x \in (-\delta, \delta)$. Wähle nun $0 < \delta < 1$ so klein, dass zusätzlich

$$\delta \le \frac{\frac{1}{2} - \varepsilon}{R}$$

und damit

$$\frac{-\frac{1}{2} + \varepsilon}{R} < x < \frac{\frac{1}{2} - \varepsilon}{R}$$

für alle $x \in (-\delta, \delta)$ ist. Dann gilt

$$\left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)\frac{1}{x} \le \left(-\frac{1}{2} + \varepsilon\right)\frac{1}{x} > R$$

für alle $x \in (-\delta, 0)$ und

$$\left(\frac{\ln(1+x)}{x^2} - \frac{1}{x}\right)\frac{1}{x} \le \left(-\frac{1}{2} + \varepsilon\right)\frac{1}{x} < -R$$

für alle $x \in (0, \delta)$. Also existieren die einseitigen Grenzwerte

$$\lim_{x \to 0^{-}} \left(\frac{\ln(1+x)}{x^{3}} - \frac{1}{x^{2}} \right) = \lim_{x \to 0^{-}} \left(\frac{\ln(1+x)}{x^{2}} - \frac{1}{x} \right) \frac{1}{x}$$

und

$$\lim_{x \to 0^+} \left(\frac{\ln(1+x)}{x^3} - \frac{1}{x^2} \right) = \lim_{x \to 0^+} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x} \right) \frac{1}{x}$$

und damit auch der Grenzwert

$$\lim_{x \to 0} \left(\frac{\ln(1+x)}{x^3} - \frac{1}{x^2} \right) = \lim_{x \to 0} \left(\frac{\ln(1+x)}{x^2} - \frac{1}{x} \right) \frac{1}{x}$$

nicht (wir haben gezeigt, dass die Funktion in jeder beliebig kleinen Nullumgebung unbeschränkt ist).

iv) • Da wir den einseitigen Grenzwert $x \to 1^-$ betrachten, können wir annehmen, dass 0 < x < 1 (also |1 - x| = 1 - x und $\sin(\pi x) \neq 0$) ist. Dann gilt

$$\sin(\pi x)\ln(|1-x|) = \frac{\ln(1-x)}{\frac{1}{\sin(\pi x)}}$$

für alle $x \in (0,1)$ und die Funktionen $f_1(x) = \ln(1-x)$ und $g_1(x) = \frac{1}{\sin(\pi x)}$ sind differenzierbar auf (0,1) mit $\lim_{x\to 1^-} f_1(x) = -\infty$, $\lim_{x\to 1^-} g_1(x) = \infty$ und $g_1'(x) = -\frac{\pi\cos(\pi x)}{\sin^2(\pi x)} \neq 0$ für alle $x \in (\frac{1}{2},1)$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 1^{-}} \sin(\pi x) \ln(|1 - x|) = \lim_{x \to 1^{-}} \frac{\ln(1 - x)}{\frac{1}{\sin(\pi x)}}$$

$$= \lim_{x \to 1^{-}} \frac{-\frac{1}{1 - x}}{-\frac{\pi \cos(\pi x)}{\sin^{2}(\pi x)}}$$

$$= \lim_{x \to 1^{-}} \frac{\sin^{2}(\pi x)}{\pi (1 - x) \cos(\pi x)},$$

falls der Grenzwert auf der rechten Seite exisitert.

Die Funktionen $f_2(x) = \sin^2(\pi x)$ und $g_2(x) = \pi(1-x)\cos(\pi x)$ sind differenzierbar auf $(\frac{1}{2}, 1)$ mit $\lim_{x\to 1^-} f(x) = \sin^2(\pi) = 0 = \lim_{x\to 1^-} g(x) = \pi \cdot 0 \cdot \cos(\pi)$ und $\lim_{x\to 1^-} g'_2(x) = \lim_{x\to 1^-} \left(-\pi\cos(\pi x) - \pi^2(1-x)\sin(\pi x)\right) = \pi$, d.h. es existiert $\delta \in (0, \frac{1}{2})$ mit $g'_2(x) \neq 0$ für alle $x \in (1-\delta, 1)$. Nach der Regel von L'Hospital gilt

$$\lim_{x \to 1^{-}} \frac{\sin^{2}(\pi x)}{\pi (1 - x) \cos(\pi x)} = \lim_{x \to 1^{-}} \frac{2\pi \sin(\pi x) \cos(\pi x)}{-\pi \cos(\pi x) - \pi^{2} (1 - x) \sin(\pi x)} = 0.$$

Also gilt

$$\lim_{x \to 1^{-}} \sin(\pi x) \ln(|1 - x|) = 0.$$

• Für alle $x \in (0, \infty)$ gilt $x + \cos(x) > 0$ und

$$\frac{x - \sin(x)}{x + \cos(x)} = \frac{1 - \frac{\sin(x)}{x}}{1 + \frac{\cos(x)}{x}}.$$

Wegen

$$\underbrace{0}_{\to 0} < \left| \frac{\sin(x)}{x} \right|, \left| \frac{\cos(x)}{x} \right| \le \underbrace{\frac{1}{x}}_{\to 0}$$

für alle $x \in (0, \infty)$ folgt mit dem Einschließungskriterium, dass

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = 0, \quad \lim_{x \to \infty} \frac{\cos(x)}{x} = 0$$

und damit

$$\lim_{x \to \infty} \frac{x - \sin(x)}{x + \cos(x)} = \lim_{x \to \infty} \frac{1 - \frac{\sin(x)}{x}}{1 + \frac{\cos(x)}{x}} = 1.$$

v) Betrachte die Funktion

$$h: (0, \infty) \to \mathbb{R}, \quad h(x) = x \sin\left(\frac{1}{x}\right) = \frac{\sin(\frac{1}{x})}{\frac{1}{x}}.$$

Die Funktionen $f(x)=\sin(\frac{1}{x})$ und $g(x)=\frac{1}{x}$ sind differenzierbar auf $(0,\infty)$ mit $\lim_{x\to\infty}f(x)=\sin(0)=0=\lim_{x\to\infty}g(x)$ und $g'(x)=-\frac{1}{x^2}\neq 0$ für alle $x\in(0,\infty)$. Nach der Regel von L'Hospital gilt

$$\lim_{x\to\infty}h(x)=\lim_{x\to\infty}\frac{\sin(\frac{1}{x})}{\frac{1}{x}}=\lim_{x\to\infty}\frac{-\cos(\frac{1}{x})\frac{1}{x^2}}{-\frac{1}{x^2}}=\lim_{x\to\infty}\cos\left(\frac{1}{x}\right)=1$$

und damit

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} h(n) = 1.$$

Aufgabe 3. (Zentraler Differenzenquotient, 1.5+1 Punkte)

i) Es seien $f\colon I\to\mathbb{R}$ differenzierbar und $x_0\in I.$ Zeigen Sie, dass der zentrale Differenzenquotient

$$\delta(h) = \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

im Limes $h \to 0$ gegen $f'(x_0)$ konvergiert.

ii) Es habe $g: I \to \mathbb{R}$ die Eigenschaft, dass der Grenzwert

$$\lim_{h \to 0} \frac{g(x_0 + h) - g(x_0 - h)}{2h}$$

existiert. Ist q differenzierbar in x_0 ?

Lösung Aufgabe 3.

i) Es ist

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) + f(x_0) - f(x_0 - h)}{2h}$$

$$= \underbrace{\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{2h}}_{h = x - x_0} + \underbrace{\lim_{h \to 0} \frac{-(f(x_0) - f(x_0 - h))}{-2h}}_{-h = x - x_0}$$

$$= \underbrace{\frac{1}{2} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}}_{= f'(x_0)} + \underbrace{\frac{1}{2} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}}_{= f'(x_0)}$$

ii) Es seien $g: \mathbb{R} \to \mathbb{R}$, g(x) = |x| und $x_0 = 0$. Dann ist g(h) - g(-h) = 0 für alle $h \in \mathbb{R} - \{0\}$, sodass

$$\lim_{h \to 0} \frac{g(x_0 + h) - g(x_0 - h)}{2h} = \lim_{h \to 0} \frac{g(h) - g(-h)}{2h} = 0,$$

aber g ist nicht differenzierbar in x_0 .

Aufgabe 4. (Numerische Differentiation, 2+3 Punkte) Es seien x > -1, $f(x) = \ln(1+x)$, n = 2, $h_0 = 1/8$, $h_1 = 1/16$, $h_2 = 1/32$. Berechnen Sie einen Näherungswert ("Extrapolation zum Limes $h \to 0$ ", 8 Nachkommastellen) für f'(0)

- i) mittels des Differenzenquotienten;
- ii) mittels des zentralen Differenzenquotienten (als Polynom in h_i^2).

Lösung Aufgabe 4.

i) Mithilfe des Differenzenquotienten berechnen wir gemäß dem Algorithmus von Neville für den Wert $p_2(0)$ des Interpolationspolynoms p_2 an der Stelle 0 das Schema

und erhalten $f'(0) \approx p_2(0) = p_{2,2}(0) = 0,99994841.$

ii) Mithilfe des zentralen Differenzenquotienten berechnen wir gemäß dem Algorithmus von Neville für den Wert $p_2(0)$ des Interpolationspolynoms p_2 an der Stelle 0 das Schema

und erhalten $f'(0) \approx p_2(0) = p_{2,2}(0) = 1,00000000$.