Intégrales généralisées

raph

September 23, 2023

Contents

1	Suite d'intégrales			2
	1.1 Méthodes		odes	2
		1.1.1	Calculer limite de suites d'intégrales	2
2 Intégrales a paramètres			a paramètres	2
	2.1	1 Méthode		2
		2.1.1	Trouver domaine de définition de x	2
		2.1.2	Montrer la continuité	2
		2.1.3	Montrer la dérivabilité (montrer classe C^1)	3
		214	Déterminer une limite	3

1 Suite d'intégrales

1.1 Méthodes

1.1.1 Calculer limite de suites d'intégrales

Soit I_n notre intégrale.

- 1. Vérifier que la fonction est continue donc CM *Exemple*: Quotient de fonction dont le dénominateur ne s'annule pas, alors continue sur un **intervalle** donc CM sur le même **intervalle**
- 2. Étudier la convergence simple de f_n
- 3. Chercher une fonction Φ intégrable tel que $\forall n\in\mathbb{N}, |F_n(x)|\leq\Phi(x)$ et que $\int_0^{+\infty}\Phi(x)dx$ converge
- 4. Par théorème de convergence dominée, on a I_n qui **converge** donc:

$$\lim_{n \to +\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \lim_{n \to +\infty} f_n(x) dx = \int_0^{+\infty} f(x) dx$$

2 Intégrales a paramètres

2.1 Méthode

2.1.1 Trouver domaine de définition de x

- 1. Prendre la fonction f(x,t) pour tout t et regarder pour quelles valeurs de x la fonction a des FI
- 2. En déduire le domaine de définition de x

2.1.2 Montrer la continuité

- 1. Vérifier: $\forall t \in I, x \mapsto f(x, t)$ est continue sur A
- 2. Vérifier: $\forall x \in A, t \mapsto f(x,t)$ est continue par morceaux sur I

Si les 2 sont continue, on peut même écrire $\forall x \in A, \forall t \in I, (x,t) \mapsto f(x,t)$ est continue sur $A \times I$

1. Trouver un g(t) tel que $|f(x,t)| \leq g(t)$ et que g(t) continue et converge (donc intégrable) **Remarque**: si on trouve pas de fonction g(t) facilement, prendre un subset du domaine de définition de x, soit [a,b] et remplacer x par a si la fonction est décroissante ou b si croissante

Si ces conditions sont réunies, alors la fonction $F: x \mapsto \int_I f(x,t) dt$ est continue sur A

2.1.3 Montrer la dérivabilité (montrer classe C^1)

Pareil que la continuité mais avec $\frac{\partial f}{\partial x}$

2.1.4 Déterminer une limite

Si
$$G_n(x)$$
 converge alors $\lim_{x\to 0} G_n(x) = G(0)$