

Transistores de Efeito de campo FET - field-effect transistor

Prof. Alceu André Badin

Introdução

FETs versus TBJs

• Similaridades:

Amplificadores.

Dispositivo para controle de corrente.

Circuitos para casamento de impedância

• Diferenças:

FETs são dispositivos controlados por tensão. TBJs são dispositivos controlados por corrente.

FETs têm maior impedância de entrada. TBJs têm ganho mais alto.

FETs pouco sensíveis a variações de temperatura — mais adequados para circuitos integrados.

Tipos de FET

- JFET: Junção FET.
- MOSFET: Transistores de efeito de campo metal-óxidosemicondutor.
- **D-MOSFET**: MOSFET tipo depleção.
- E-MOSFET: MOSFET tipo intensificação.

Símbolos do JFET para o canal n

Construção do JFET

- Há dois tipos de JFETs:
- o de canal *n*
- o de canal p
- *O canal* n é o mais amplamente usado dos dois.
- JFETs têm três terminais: O dreno (D) e a fonte (S, do inglês source) são conectados pelo canal n

- O **porta** (G, do inglês *gate*) é conectado por material do tipo *p*.
 - Prof. Alceu A. Badin UTFPR/DAELT

Características da operação JFET

•condições básicas de operação para um JFET:

 $V_{GS} = 0$ V, V_{DS} aumentando para um valor positivo

 $V_{GS} < 0$ V, V_{DS} em algum valor positivo

(Resistor controlado por tensão)

- • $V_{GS} = 0 \text{ V e a } V_{DS}$ aumenta de 0 V a uma tensão positiva:
- \circ O tamanho da região de depleção entre a ponta do tipo p e o canal n aumenta e diminui a largura do canal n, que aumenta sua resistência.
- o Resistência do canal n aumenta, I_D ao aumenta porque a V_{DS} está aumentando.

Assimetria da região de depleção

 $V_{DS} = 2 \text{ V}$

pinch-off

• Se a $V_{GS}=0$ V e a V_{DS} aumenta continuamente para uma tensão mais positiva, um ponto é alcançado onde a região de depleção fica tão grande que "estrangula" o canal.

• Isso sugere que a corrente no canal $(I_D)_{V_{GS}=0 \text{ V}}$ cai para 0 A, mas isso não acontece: à medida que a V_{DS} aumenta, a I_D também aumenta. Entretanto, uma vez que o *pinch-off* ocorre, aumentos subsequentes na V_{DS} não fazem com que a I_D aumente.

Pinch-off⁺ G $V_{DS} = V_P$

Prof. Alceu A. Badin UTFPR/DAELT

saturação

• No ponto do pinch-off:

o Qualquer aumento adicional da V_{DS} não produz nenhum aumento na I_D . No *pinch-off*, a V_{DS} recebe o nome de V_p .

o A I_D está em saturação ou em seu valor máximo, e é referida como I_{DSS} .

Características de operação da JFET

 \bullet À medida que a V_{GS} se torna mais negativa, a região de depleção aumenta.

Características de operação da JFET

- À medida que a V_{GS} se torna mais negativa:
- O JFET passa por um *pinch-off* quando em baixa tensão (V_P) .
- A I_D diminui ($I_D < I_{DSS}$) mesmo quando a V_{DS} aumenta.

• A I_D cai, por fim, a 0 A. O valor de V_{GS} que faz com que isso ocorra

é denominado $V_{GS(off)}$.

Prof. Alceu A. Badin

Resistor controlado por tensão

- A região à esquerda do *pinch-off* é chamada de **região** ôhmica.
- O JFET pode ser usado como um resistor variável, no qual a V_{GS} controla a resistência dreno-fonte (r_d) .

$$r_d = \frac{r_o}{\left(1 - \frac{V_{GS}}{V_P}\right)^2}$$

• V_{GS} diminui e a resistência (r_d) aumenta.

Prof. Alceu A. Badir

Características de transferência do JFET

- As características de transferência de entrada a saída do JFET não são tão simples quanto as do TBJ.
- TBJ: β indica a relação entre I_B (entrada) e I_C (saída).
- JFET: a relação entre V_{GS} (entrada) e I_D (saída) é um pouco mais complicada:

$$I_D = I_{DSS} \! \left({\scriptstyle 1-rac{V_{GS}}{V_P}}
ight)^{\! 2}$$

Gráfico da curva de transferência do JFET

- Utilizando os valores de I_{DSS} e V_p ($V_{GS(desligado)}$) encontrados em uma folha de dados, a curva de transferência pode ser colocada em um gráfico conforme os passos a seguir:
- 1. Resolvendo a equação para $V_{GS} = 0$ V: $I_D = I_{DSS}$
- 2. Resolvendo a equação para $V_{GS} = V_{GS(desligado)}$: $I_D = 0$ A

$$I_{\mathrm{D}} = I_{\mathrm{DSS}} \left(1 - \frac{V_{\mathrm{GS}}}{V_{\mathrm{P}}} \right)^{2}$$

- 3. Resolvendo a equação para $V_{GS} = 0$ V to $V_{GS(desligado)}$: 0 A $< I_D < I_{DSS}$
 - Prof. Alceu A. Badin UTFPR/DAELT

Curva de transferência do JFET

• Este gráfico mostra o valor de I_D para um dado valor de V_{GS} .

JFETs de canal p

• O JFET de canal *p* se comporta da mesma forma que o JFET de canal *n*. A diferenças são que as polaridadades de tensão e as direções das correntes são reversas.

Características do JFET de canal p

- À medida que a V_{GS} se torna mais positiva:
- O JFET passa por um *pinch-off* quando a uma baixa tensão (V_P) .
- A região de depleção aumenta, e a I_D diminui ($I_D < I_{DSS}$).
- A I_D cai, por fim, a 0 A (quando $V_{GS} = V_{GSoff}$)

• Observe também que a altos níveis de V_{DS} o JFET atinge uma situação de ruptura: a I_D aumenta incontrolavelmente se $V_{DS} > V_{DSm\acute{a}x}$.

Encapsulamento e identificação dos terminais

2N2844

CASE 22-03, STYLE 12 TO-18 (TO-206AA)

JFETs
GENERAL PURPOSE
P-CHANNEL

Folha de dados (JFETs)

ESPECIFICAÇÕES MÁXIMAS

Símbolo	Parâmetro	Valor	Unidade
V_{DS}	Tensão dreno-fonte	25	V
V_{DG}	Tensão dreno-porta	25	V
V_{GS}	Tensão porta-fonte	-25	V
I_{GF}	Corrente direta de porta	10	mA
T_j, T_{stg}	Faixa de temperatura da junção para operação e armazenagem	-55 a +150	°C

Folha de dados (JFET)

•Características elétricas

CARACTERÍSTICAS ELÉTRICAS (T_A = 25°C a menos que outro valor seja especificado).

	Símbolo	Parâmetro	Condições de teste	Mín.	Típ.	Máx.	Unidade	
Ī								

CARACTERÍSTICAS EM ESTADO DESLIGADO

$V_{(BR)GSS}$	Tensão de ruptura porta-fonte	$I_G = 10 \mu A, V_{DS} = 0$	-25			V
I_{GSS}	Corrente reversa de porta	$V_{GS} = -15 \text{ V}, V_{DS} = 0$ $V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			-1,0 -200	nA nA
V _{GS(off)}	Tensão de corte porta-fonte	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA}$ 5457	-0,5		-6,0	V
V_{GS}	Tensão porta-fonte	$V_{DS} = 15 \text{ V}, I_D = 100 \mu\text{A}$ 5457		-2,5		V

CARACTERÍSTICAS EM ESTADO LIGADO

I _{DSS} Corrente de dreno para tensão nula na porta	$V_{DS} = 15 \text{ V}, V_{GS} = 0$ 5457	1,0	3,0	5,0	mA	
--	--	-----	-----	-----	----	--

CARACTERÍSTICAS DE PEQUENO SINAL

g_{fs}	Condutância de transferência direta	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1,0 \text{ kHz}$ 5457	1000		5000	μmhos
g _{os}	Condutância de saída	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1,0 \text{ MHz}$		10	50	μmhos
C _{iss}	Capacitância de entrada	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1,0 \text{ MHz}$		4,5	7,0	pF
C _{rss}	Capacitância de transferência reversa	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1,0 \text{ MHz}$		1,5	3,0	pF
NF	Figura de ruído	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1,0 \text{ kHz},$			3,0	dB
		$R_G = 1.0$ megohm, $BW = 1.0$ Hz				

JFET X BJT - resumo

$$JFET TBJ$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2 \Leftrightarrow I_C = \beta I_B$$

$$I_D = I_S \Leftrightarrow I_C \cong I_E$$

$$I_G \cong 0 \text{ A} \Leftrightarrow V_{BE} \cong 0.7 \text{ V}$$

MOSFETs

• MOSFETs têm características similares às dos JFETs e características adicionais que fazem deles muito úteis.

- Há dois tipos de MOSFETs:
- o Tipo depleção
- Tipo intensificação

Construção do MOSFET tipo depleção

- O dreno (D) e a fonte (S) se conectam às regiões de tipo n. Essas regiões estão conectadas pelo canal n. Esse canal n está conectado à Porta (G) por uma fina camada isolante de dióxido de silício (SiO₂).
- O material de tipo *n* fica sobre um substrato de tipo *p* que pode ter uma conexão terminal adicional chamada de **substrato** (SS).

Operação MOSFET

básica

- Uma MOSFET tipo depleção pode operar de dois modos:
- o Modo depleção
- o Modo intensificação

Operação no modo depleção (D-MOSFET)

• As características são similares às do JFET.

Quando
$$V_{GS} = 0$$
 V, $I_D = I_{DSS}$

Quando
$$V_{GS} < 0 \text{ V}, I_D < I_{DSS}$$

• A fórmula utilizada para colocar em gráfica a curva de transferância para um JFET também se aplica ao D-MOSFET:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

Operação no modo intensificação (D-MOSFET)

 $V_{GS} > 0$ V, a I_D aumenta além da I_{DSS} ($I_D > I_{DSS}$)

• A fórmula utilizada para transformar em gráfico a curva de

transferência ainda se aplica:

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

- Observe que a V_{GS} é positiva agora
 - Prof. Alceu A. Badin UTFPR/DAELT

MOSFET tipo depleção de canal p

Símbolos de MOSFET tipo D

Contrução do MOSFET tipo intensificação

- O dreno (D) e a Fonte (S) se conectam às regiões de tipo n. Essas regiões são conectadas por um canal n.
- A **Porta** (**G**) se conecta ao substrato tipo *p* por uma fina camada isolante de dióxido de silício (SiO₂).
- · Não há canal.
- O material de tipo n fica sobre um substrato tipo p que pode ter uma conexão terminal chamada de **Substrato** (SS).

Prof. Alceu A. Badin UTFPR/DAELT

Operação MOSFET tipo intensificação

- O MOSFET tipo intensificação (E-MOSFET) opera somente no modo intensificação.
- V_{GS} é sempre positiva.
- À medida que a V_{GS} aumenta, a I_D aumenta.
- À medida que a V_{GS} se mantém constante e a V_{DS} é aumentada, a I_D satura (I_{DSS}) e o nível de saturação (V_{DSsat}) é alcançado.

Curva de transferência do

MOSFET tipo intensificação

Para determinar a I_D dada a V_{GS} :

$$I_D = k(V_{GS} - V_T)^2$$

onde:

 V_T = a tensão limiar do E-MOSFET

k, uma constante, pode ser determinada com a utilização de valores de um ponto específico e a fórmula:

$$V_{GS} = +8 \text{ V}$$
 $V_{GS} = +8 \text{ V}$
 $V_{GS} = +6 \text{ V}$
 $V_{GS} = +2 \text{ V}$

 V_{DSsat} pode ser calculada utilizando-se:

$$k = \frac{I_{D(ON)}}{(V_{GS(ON)} - V_T)^2}$$

$$V_{ extit{DSsat}} = V_{ extit{GS}} - V_{ extit{T}}$$

Prof. Alceu A. Badin

UTFPR/DAELT

MOSFETs tipo

intensificação de canal p

• O MOSFET tipo intensificação de canal *p* é similar à sua cópia de canal *n*, exceto pelo fato que as polaridades de tensão e as correntes são reversas.

Símbolos MOSFET

Prof. Alceu A. Badin

JTFPR/DAELT

Folha de dados

ESPECIFICAÇÕES MÁXIMAS

Especificações	Símbolo	Valor	Unidade
Tensão dreno-fonte	V_{DS}	25	V_{cc}
Tensão dreno-porta	V_{DG}	30	$V_{\rm cc}$
Tensão porta-fonte*	V_{GS}	30	V_{cc}
Corrente de dreno	I_{D}	30	mAcc
Dissipação total do dispositivo @ $T_A = 25$ °C Fator de redução acima de 25 °C	P_D	300 1,7	mW mW/°C
Faixa de temperatura da junção	T_J	175	°C
Faixa de temperatura do canal para armazenamento	T _{stg}	-65 a +175	°C

^{*} Potenciais transitórios de ±75 V não causam falha na função porta-óxido.

more...

Folha de dados

• Características elétricas

CARACTERÍSTICAS ELÉTRICAS (T _A = 25°C a menos que outro valor seja especificado)				
Características	Símbolo	Mín.	Máx.	Unidade
CARACTERÍSTICAS EM ESTADO DESLIGADO				
Tensão de ruptura dreno-fonte ($I_D = 10 \mu A, V_{GS} = 0$)	V _{(BR)DSX}	25	-	Vcc
Corrente de dreno para tensão nula na porta $(V_{DS} = 10 \text{ V}, V_{GS} = 0) \text{ T}_A = 25^{\circ}\text{C}$ $\text{T}_A = 150^{\circ}\text{C}$	I _{DSS}	_	10 10	nAcc μAcc
Corrente reversa de porta $(V_{GS} = \pm 15 \ V_{CC}, V_{DS} = 0)$	I_{GSS}	n-site.	± 10	pAcc
CARACTERÍSTICAS EM ESTADO LIGADO				
Tensão de limiar da porta $(V_{DS} = 10 \text{ V}, I_D = 10 \mu\text{A})$	V _{GS(Th)}	1,0	5	Vcc
Tensão de estado ligado dreno-fonte ($I_D = 2.0 \text{ mA}, V_{GS} = 10 \text{V}$)	V _{DS(ligado)}	_	1,0	V
Corrente de dreno no estado ligado $(V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V})$	$I_{D(ligado)}$	3,0	_	mAcc
CARACTERÍSTICAS DE PEQUENO SINAL	CARACTERÍSTICAS DE PEQUENO SINAL			
Admitância de transferência direta $(V_{DS} = 10 \text{ V}, I_D = 2,0 \text{ mA}, f = 1,0 \text{ kHz})$	y _{fs}	1000	-	μmho
Capacitância de entrada $(V_{DS} = 10 \text{ V}, V_{GS} = 0, f = 140 \text{ kHz})$	C _{iss}	-	5,0	pF
Capacitância reversa de transferência $(V_{\rm DS}=0,V_{\rm GS}=0,{\rm f}=140~{\rm kHz})$	C _{rss}	-	1,3	pF
Capacitância substrato-dreno $(V_{D(SUB)} = 10 \text{ V, f} = 140 \text{ kHz})$	C _{d(sub)}	-	5,0	pF
Resistência dreno-fonte $(V_{GS} = 10 \text{ V}, I_D = 0, f = 1,0 \text{ kHz})$	$\mathbf{r}_{d_{s}(ligado)}$	-	300	ohms
CARACTERÍSTICAS DE CHAVEAMENTO				
Atraso de ligamento (Fig. 5)	t _{d1}	_	45	ns
Tempo de subida (Fig. 6) $I_D = 2.0 \text{ mA}_{CC}, V_{DS} = 10 \text{ V}_{CC},$ $(V_{GS} = 10 \text{ V}_{CC})$	t _r		65	ns
Prof. Alce Atraso de desligamento (Fig. 7) Tempo de queda (Figura 8) (Veja a Figura 9; circuito de tempo determinado)	t _{d2}	_	100	ns ns

Tabela-resumo

Manuseio de MOSFETs

- MOSFETs são muito sensíveis à eletricidade estática.
- Por causa da camada muito fina de SiO₂ entre os terminais externos e das camadas do dispositivo, nenhuma descarga elétrica pequena pode produzir uma condução indesejada.

Proteção

- o Sempre carregue-o em uma bolsa sensível a estática.
- o Utilize pulseiras anti estática ao manusear componentes sensiveis.
- o Coloque dispositivos de tensão limitada entre a ponta e a fonte, como diodos Zener, para limitar qualquer tensão transiente.

