인덱스의 이해와 활용

MySQL을 중심으로

우리 FISA 2기 김경은

01.인덱스란

02.인덱스의 종류

03. 인덱스의 동작원리

04. 인덱스의 효율적인 설계와 활용

01.인덱스란

- 데이터베이스에서 인덱스란 "색인" 또는 "찾아보기"로 비유된다.
- 데이터베이스에서 원하는 데이터를 찾으려고 할때 (SELECT문), 인덱스를 사용하면 데이터의 조회 속도를 높일 수 있다.
- 그러나 삽입, 수정, 삭제 성능은 저하될 수 있으므로 적절 한 사용이 필요하다.
- 인덱스는 열(Column)을 기준으로 생성한다.

-- 테이블에 생성된 인덱스 확인 SHOW INDEX FROM 테이블명;

-- 새 인덱스 생성 CREATE INDEX 인덱스명 ON 테이블명(컬럼명);

-- 인덱스 삭제 ALTER TABLE 테이블명 DROP INDEX 인덱스명;

02.인덱소의 종류

02. 인덱스의 종류

클러스터링 인덱스

PRIMARY KEY 설정된 열에 적용 테이블 당 하나만 존재 클러스터링 인덱스 기준으로 데이터 자체가 정렬됨

보조 인덱스

PK가 아닌 열에 적용 그 외 다른 열에 추가로 적용 가능 데이터 자체가 정렬되는 것이 아니 라 정렬된 색인(찾아보기)이 있음

02. 인덱스의 종류

B-TREE 인덱스

MySQL에서 일반적인 경우 B-Tree구조의 인덱스를 가지게 된 다.

등호나 부등호, BETWEEN이나 LIKE를 사용한 쿼리에 적합하다.

R-TREE 인덱스

MySQL 8.0부터 공간 데이터를 위한 공간 인덱스를 지원한다.
R-tree는 B-tree 기반으로 동작하며 도형의 포함관계를 바탕으로 트리구조가 생성된다.

FULL TEXT 인덱스

FULL TEXT 인덱스는 전문 검색을 위한 인덱스로 단어 단위로 인덱 싱된다.

B-Tree 기반으로 동작하고 텍스 트 데이터를 효율적으로 처리하기 위한 특화된 기능을 제공한다.

MyISAM, InnoDB(5.6.4 이후)

03. 인덱스 동작원리

B-Tree 구조

03. B-Tree 구조

인덱스 key값(학번) 자식 노드의 주소

 201610743
 101

 201810903
 102

SELECT * FROM students WHERE id=201710084

101번 페이지

 201610743
 201

 201710084
 202

102번 페이지

201810903203201923512204

201번 페이지

201610743	홍혜진	여	경영학과
201623211	박재현	남	경제학과

202번 페이지

201710084	조유정	여	컴퓨터과학과
201710234			

루트 페이지

브랜치 페이지 (중간 페이지)

> 리프 페이지 == 데이터 페이지

03. B-Tree 구조

SELECT * FROM students

WHERE name="조유정"

#101

김경은 #201 용은희 #202

보조 인덱스

리프 페이지

데이터페이지

#201

김경은 201810903 201913751 나경률 201810543 박재현 201623211

#401

#501 #502

201610743 201810903

#501

201610743	홍혜진	여	경영학과
201623211	박재현	남	경제학과
201710084	조유정	여	컴퓨터과학과
201810543	나경률	남	전기공학과

#502

#202

용은희

조유정

홍혜진

202016532

201710084

201610743

201810903	김경은	여	컴퓨터과학과
201913751	김유은	여	수학과
202016532	용은희	여	전자공학과

클러스터형 인덱스

리프페이지

데이터 페이지

04. 인덱스의 효율적인 설계와 활용

04. 효율적인 인덱스 설계

첫번째.

카디널리티(분포도)가 높은 열에 걸어야 효과가 있다.

두번째.

자주 사용되어야 가치가 있다. SELECT가 자주 일어나는 열에 거는 것이 효과적이다.

세번째.

테이블의 20%이상을 스캔하는 경우에는 full scan이 더 효과적일 수 있다.

네번째.

WHERE절에서 연산을 하는 경우 인덱스가 사용되지 않을 수 있다.

다섯번째.

복합 인덱스의 경우에는 순서를 고려하여 인덱스를 설계해야한다.

04. 인덱스의 활용

Table: employees

Columns:

emp_no int PK
birth_date date
first_name varchar(14)
last_name varchar(16)
gender enum('M','F')
hire_date date

• first_name에 인덱스를 적용하지 않은 경우 / 적용한 경우

```
        ② 2 20:3... SELECT * FROM employees WHERE first_name = "Parto" 228 row(s) returned
        ② 3 20:3... CREATE INDEX `idx_employees_first_name` ON `empl... OK
        ② 4 20:3... SELECT * FROM employees WHERE first_name = "Parto" 228 row(s) returned
        ② 0.0008 sec / 0.00012...
```

-> 약 50.36배 빨라짐

• gender에 인덱스를 적용하지 않은 경우 / 적용한 경우

```
    ✓ 5 20:3... SELECT * FROM employees WHERE gender = 'M' 179973 row(s) returned 0.0023 sec / 0.180 sec
    ✓ 6 20:3... CREATE INDEX `idx_employees_gender` ON `employe... OK 0.000 sec
    ✓ 7 20:3... SELECT * FROM employees WHERE gender = 'M' 179973 row(s) returned 0.0041 sec / 0.245 sec
```

-> 오히려 성능이 안좋아짐

05. 인덱스의 활용

varchar(14)

varchar(16)

date

enum('M','F')

first_name

last_name

hire_date

gender

• emp_no에 연산이 이루어지는 경우

possible_key key key_len ref partitions type filtered Extra select_type table id rows **Table: employees** ALL **SIMPLE** 100.00 Using where employees NULL 299468 Columns: -> 옵티마이저의 실행계획에 인덱스가 포함되어 있지 않다. int PK emp_no birth_date date

• 복합 인덱스의 순서에 따라 달라지는 쿼리 성능

Thank you

궁금한 점을 물어보세요