Erabiltzaile-ereduak, moldagarritasuna eta gomendioak

User models, adaptation, and recommendation

Ainhoa Alvarez, Ana Arruarte, Mikel Larrañaga Lengoaia eta Sistema Informatikoak saila

Content-based recommenders

Edukian oinarritutako GS

Ainhoa Alvarez, Ana Arruarte, Mikel Larrañaga Lengoaia eta Sistema Informatikoak saila

Basic ideas

Basic ideas, items

Basic ideas, ratings

Basic ideas, user model

Basic ideas, resume

Examples

- Personalized news feeds
- Artist of Genre music feeds

Google News

Netflix

"For You" section of Apple Music

Keyword vector

- Each keyword is a dimension
- Each item has a position in that space
- The position defines a vector
- Each user has a taste profile (also defines a vector)
- The match between user
 preference and items is measured
 by how closely the two vectors align

Romance

Vector space model

- It is an algebraic model for representing text documents (and any objects, in general) as vectors of identifiers.
- Originally created for queries, indexing
- Elements are represented as vectors

$$d_{j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$

Vector space model, items

Vector space model, users

$$F_x = ||F|| \cos \alpha$$

Remember

 $\cos 0 = 1$

 $\cos 90 = 0$

 $\cos 180 = -1$

$$\cos \alpha = \frac{uuvv}{||uu||||||v|||} = \frac{\sum_{i=1}^{n} u_i v_i}{||u|| \cdot ||v||}$$

Norm of the vector: Vector lenght

$$||u|| = \sqrt{\sum_{j=1}^{n} u_j^2}$$

 Prediction is the cosine of the angle between the two vectors (user profile, item)

- Cosine
 - ranges between -1 and 1 (0 and 1 if all positive values in vectors)

Remember

 $\cos 0 = 1$

 $\cos 90 = 0$

Cos 180 = -1

- closer to 1 is better.
- Adequate for Top-n

Describing items

- Representing an item through a keyword vector:
 - Simple 0/1 (keyword applies or doesn't) Lacks intensity
 - Simple occurrence count
 Provides intensity
 - -TFIDF, most commonly Provides intensity and distinctiveness
 - Other options
 - Document length

Describing items

- Do we consider tags to be yes-or-no?
 - Actor (we don't really get a measure for how much "Tom Hanks" a movie has)
 - Descriptive (is how often a tag is applied a proxy for how relevant/significant the feature is?)
- Do we care about IDF?
 - Actor (are infrequent actors more significant than stars?)

 Not adequate

Better count

Descriptive (is "prison scene" more significant than "car chase" or "romance"?)

Building user profiles

- A set of keywords that the user may like, dislike or not have an opinion on
- Infer from explicit and implicit user ratings are combined
 - Implicit. User actions: Read, buy, click
 - Explicit: Explicit user ratings
- Allowing the user to edit a profile can be also valuable

Building user profiles, rankings

- Simply unary aggregate profiles of items we rated without weights
- Unary with threshold only put items above a certain rating into our profile (but all likes are equal)
- Weight, but positive only higher weight for things with higher scores
- Weight, and include negative also negative weight for low ratings

Building user profiles, update profiles

- Don't recompute all each time
- Weight new/old similarly keep track of total weight in profile and mix in new rating (linear combination)
 - Special case for changed rating; subtract old
- Mechanism for temporal decay.
 - Decay old profile and mix in new

Building user profiles

- Vector space model conflates liking with importance
 - Works well with query terms application
 - Not so well in others: I like ketchup a lot but I do not care much if it is in a dish I'm ordering

Advantages/strengths

- Entirely content-based
- Understandable profile
- Easy computation
- Are capable of recommending items not yet rated by any user
- Flexibility to be integrated with query-based or case-based approaches

Case-based recommendation

- Structure cases around a set of relevant attributes (e.g., camera price, zoom, pixels)
- Query based on an example or attribute query, and retrieve relevant cases

Knowledge-based recommendation

Component

User profile

action	-0,07
sci fi	3.2
Tom Hanks	
•••	

list

Product/item features

action	
sci fi	
Tom Hanks	
•••	

Knowledge models

Challenges and limitations

- Figuring out the right weights and factors
- It cannot handle interdependencies
 - I like Sandra Bullock in Action movies, but Meg
 Ryan in Romantic Comedy movies
 - I like comedies with violence, and historical documentaries, but not historical comedies or violent documentaries

References

- Vector space model
 - Salton, Wong, and Yang (1995) "A Vector Space
 Model for Automatic Indexing," CACM 18:11.
 - http://en.wikipedia.org/wiki/Vector space model
- Ricci et.al. (2011). *Recommender Systems* Handbook. Chapter 3