WHAT IS CLAIMED IS:

1. A compound of the formula:

$$(R^4)$$
 R^2 R^3 $S(O)$ R^1

or a pharmaceutically acceptable salt thereof,

4 wherein

1

2

- 5 n is 0, 1 or 2;
- 6 p is 1 or 2;
- R^1 is aryl or heteroaryl;
- 8 R² is a heterocyclyl;
- 9 R³ is hydrogen, alkyl, or -C(=O)-R⁵, where R⁵ is alkyl, alkoxy, aryl, or aryloxy; 10 and
- each R⁴ is independently hydrogen, hydroxy, cyano, alkyl, alkoxy, thioalkyl, alkylthio, halo, haloalkyl, hydroxyalkyl, nitro, alkoxycarbonyl, alkylcarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, amino, alkylamino, dialkylamino, alkylamino, alkylamino, alkylaminocarbonyl,
- alkylcarbonylamino, alkylcarbonyl(alkylamino), alkylaminosulfonyl,
- 16 alkylsulfonylamino or methylenedioxyhydrogen, alkyl, alkoxy, halo, or
- 17 haloalkyl.
- 1 2. The compound according to Claim 1, wherein p is 1 and R⁴ is located at 2 the 6-position of the indole ring system.
- 1 3. The compound according to Claim 1, wherein R² is optionally substituted piperazin-1-yl or optionally substituted piperidin-4-yl.
- 1 4. The compound according to Claim 3, wherein R² is piperazin-1-yl, 4-2 methylpiperazin-1-yl, 3,5-dimethylpiperazin-1-yl, N-methyl piperidin-4-yl or piperidin-4-yl.
- 1 5. The compound according to Claim 4, wherein R² is 4-methylpiperazin-1-2 yl.

- The compound according to Claim 3, wherein R¹ is optionally substituted 1 6. 2 phenyl or optionally substituted thienyl. The compound according to Claim 6, wherein R¹ is thien-2-yl or phenyl 1 7. which is optionally substituted with alkyl, halo or haloalkyl. 2 The compound according to Claim 7, wherein R¹ is phenyl, 2.3-1 8. dichlorophenyl, 2-fluorophenyl, 2-methylphenyl, 2-trifluoromethylphenyl, 3-bromophenyl, or 2 3 thien-2-yl. 1 9. The compound according to Claim 6, wherein n is 2. The compound according to Claim 9, wherein R³ is hydrogen, methyl, or -1 10. $C(=O)-R^5$, where R^5 is alkoxy. 2 The compound according to Claim 1, wherein R¹ is thienyl or phenyl 1 11. 2 which is optionally substituted with a substituent selected from the group consisting of alkyl, 3 halo and haloalkyl. 1 The compound according to Claim 11, wherein R¹ is phenyl, 2.3-12. dichlorophenyl, 2-fluorophenyl, 2-methylphenyl, 2-trifluoromethylphenyl, 3-bromophenyl or 2 3 thien-2-yl. 1 13. The compound according to Claim 11, wherein n is 2. The compound according to Claim 13, wherein R² is optionally substituted 1 14. piperazin-1-yl or optionally substituted piperidin-4-yl. 2 1 The compound according to Claim 14, wherein R² is piperazin-1-vl. 4-15. methylpiperazin-1-yl, 3,5-dimethylpiperazin-1-yl, N-methyl piperidin-4-yl or piperidin-4-yl. 2 The compound according to Claim 15, wherein R³ is hydrogen, methyl or 1 16.
 - 17. The compound according to Claim 1, wherein n is 2.

 $-C(=O)-R^5$, where R^5 is alkoxy.

2

1

- 1 18. The compound according to Claim 17, wherein R¹ is thienyl or phenyl
- which is optionally substituted with a substituent selected from the group consisting of alkyl,
- 3 halo, haloalkyl, and a mixture thereof.
- 1 19. The compound according to Claim 18, wherein R² is optionally substituted
- 2 piperazin-1-yl or optionally substituted piperidin-4-yl.
- 1 20. The compound according to Claim 19, wherein R³ is hydrogen, methyl or
- 2 $-C(=O)-R^5$, where R^5 is alkoxy.
- 1 21. The compound according to Claim 1, wherein said compound is 2-
- 2 benzenesulfonyl-7-(4-methylpiperazin-1-yl)-1H-indole.
- 1 22. A method for producing a 2-substituted indole of the formula:

$$(R^4)_{\overline{p}}$$
 $(R^5)_{\overline{n}}$ $(R^7)_{\overline{n}}$ $(R^7$

3 wherein

2

8

16

4 n is 0, 1, or 2;

5 p is 1 or 2;

6 R¹ is aryl or heteroaryl;

R² is a heterocycle optionally protected with a protecting group;

 R^3 is hydrogen, alkyl, or $-C(=O)-R^5$, where R^5 is alkyl, alkoxy, aryl or aryloxy;

9 and

each R⁴ is independently hydrogen, hydroxy, cyano, alkyl, alkoxy, thioalkyl,

alkylthio, halo, haloalkyl, hydroxyalkyl, nitro, alkoxycarbonyl,

12 alkylcarbonyl, alkylsulfonyl, arylsulfonyl, haloalkylsulfonyl, amino,

alkylamino, dialkylamino, alkyl(aryl)amino, alkylaminocarbonyl,

14 alkylcarbonylamino, alkylcarbonyl(alkylamino), alkylaminosulfonyl,

alkylsulfonylamino or methylenedioxy;

said method comprising contacting a substituted indole of the formula:

$$(R^4)_{\overline{p}} = (R^2)_{\overline{k}^{3'}}$$

17 18

wherein R^{3} is alkyl or $-C(=O)-R^{5}$,

- 19 (i) with a base to produce a deprotonated indole; and
- 20 (ii) contacting the deprotonated indole with a sulfonylating agent of the formula:
- 21 Y-SO₂-R¹, where Y is halide, or a disulfide agent of the formula: R¹-S-S-R¹ to produce 2-
- 22 substituted indole of the formula:

$$(R^4)_{p}$$
 R^2
 $R^{3'}$
 $S(O)_{n}$
 R^1

23 24

- (iii) optionally oxidizing the sulfur with an oxidizing agent; and
- 25 (iv) optionally removing the protecting group to produce the 2-substituted indole.
- 1 23. The method of Claim 22, wherein Y is fluorine.
- 1 24. A composition comprising:
- 2 (a) a therapeutically effective amount of a compound of Claim 1; and
- 3 (b) a pharmaceutically acceptable carrier.
- 1 25. A method for treating a CNS disease state in a subject, said method
- 2 comprising administering to said subject a therapeutically effective amount of a compound of
- 3 Claim 1.
- 1 26. The method of Claim 25, wherein the disease state comprises psychoses,
- 2 schizophrenia, manic depressions, neurological disorders, memory disorders, attention deficit
- 3 disorder, Parkinson's disease, amyotrophic lateral sclerosis, Alzheimer's disease and
- 4 Huntington's disease.

1

- 27. A method for treating a disorder of the gastrointestinal tract in a subject,
- 2 said method comprising administering to said subject a therapeutically effective amount of a
- 3 compound of Claim 1.

1

- 3 28. A method for treating obesity in a subject, said method comprising
- 4 administering to said subject a therapeutically effective amount of a compound of Claim 1.