DP2 2024

Acme Software Factory

Repositorio: https://github.com/DP2-2024-C1-029/Acme-Software-Factory.git

Miembro:

• Jaime Varas Cáceres (jaivarcac@alum.us.es)

Tutor: José González Enríquez
25/05/2024

GRUPO C1.029
Versión 1.0

DP2 2024

Acme Software Factory

Índice

Historial de versiones	3
Capítulo 1 — Pruebas funcionales	4
Code Audit	4
Audit Record	6
Capítulo 2 – Pruebas de desempeño	9
Bibliografía	11

Acme Software Factory Grupo: C1.029

Historial de versiones

Fecha	Versión	Descripción	Entrega
27/05/2024	V1.0	Inicio del documento	D04

Capítulo 1 – Pruebas funcionales

Code Audit

Tras ejecutar todos los test, se puede observar que para las codeAudit se cubre el 95.5%, valor que está por encima de la recomendación mínima del 90% que debería cubrir al menos todos los test.

~ #	acme.features.auditor.codeAudit	95,	5 % 1.747	82	1.829
>	AuditorCodeAuditPublishService.java	96,	0 % 486		506
>	AuditorCodeAuditDeleteService.java	94,	5 % 308	18	326
>	AuditorCodeAuditUpdateService.java	95,	2 % 360	18	378
>	AuditorCodeAuditCreateService.java	93,	5 % 234		250
>	AuditorCodeAuditShowService.java	97,	5 % 239		245
>	MuditorCodeAuditListService.java	95,	5 % 85		89
>	AuditorCodeAuditController.java	100,	0 % 35		35

En primer lugar, para no repetirlo durante todo el documento, se va a comentar que las líneas que los "assert" siempre aparecen en amarillo, y que el "status" tampoco se puede poner en verde, porque hay un caso que nunca se puede probar.

```
codeAuditId = super.getRequest().getData("id", int.class);
codeAudit = this.repository.findOneCodeAuditById(codeAuditId);
auditor = codeAudit == null ? null : codeAudit.getAuditor();
status = codeAudit != null && codeAudit.isDraftMode() && super.getRequest().getPrincipal().hasRole(auditor);
super.getResponse().setAuthorised(status);
}
```

Voy a empezar hablando por del Publish, en el que tenemos un condicional que no ha podido ser probado en todos los casos, esto aparece en todos los servicios en los que se calculan la moda de la notas:

Para el update service podemos observar que todo está en verde, menos una rama extra del cálculo de la moda:

```
@Override
public void validate(final CodeAudit object) {
    assert object != null;

    if (!super.getBuffer().getErrors().hasErrors("code")) {
        CodeAudit existing;

        existing = this.repository.findOneCodeAuditByCode(object.getCode());
        super.state(existing == null || existing.equals(object), "code", "auditor.codeAudit.form.error.duplicated");
}

if (!super.getBuffer().getErrors().hasErrors("executionDate")) {
        Date minimunNoment = MomentHelper.parse("2000/01/01 00:00", "yyyy/MN/dd HH:mm");

        super.state(MomentHelper.isPresentOrPast(object.getExecutionDate()), "executionDate", "auditor.codeAudit.form.error.too-close");
        super.state(MomentHelper.isAfterOrEqual(object.getExecutionDate(), minimunMoment), "executionDate", "auditor.codeAudit.form.error.
}

if (!super.getBuffer().getErrors().hasErrors("project"))
        super.state(!object.getProject().isDraftMode(), "project", "auditor.codeAudit.form.error.drafted-project");
}
```

```
Grupo: C1.029
```

En el ListService tenemos una línea en amarillo que corresponde a la internacionalización del valor del modo borrador:

```
Dataset dataset;

dataset = super.unbind(object, "code", "executionDate", "type");
   if (super.getRequest().getLocale().getLanguage().equals("es"))
        dataset.put("published", object.isDraftMode() ? "No" : "Si");
else if (super.getRequest().getLocale().getLanguage().equals("en"))
        dataset.put("published", object.isDraftMode() ? "No" : "Yes");

super.getResponse().addData(dataset);
}
```

En el controlador, todo está verde:

```
@PostConstruct
protected void initialise() {
    super.addBasicCommand("list", this.listService);
    super.addBasicCommand("show", this.showService);
    super.addBasicCommand("create", this.createService);
    super.addBasicCommand("update", this.updateService);
    super.addBasicCommand("delete", this.deleteService);
    super.addCustomCommand("publish", "update", this.publishService);
}
```

El resto de los servicios que no han sido nombrados es porque están cubiertas o las faltas de coberturas ya han sido mencionadas en otros servicios.

Audit Record

En esta ocasión, no superamos el umbral del 90% por un 0.1%, pero se a unas líneas en el deleteService correspondientes al unbind que no se usan nunca y que se han dejado por seguir el estilo de AcmeJobs.

```
      ✓ ## acme.features.auditor.auditRecord
      89,9 %
      1.348
      152
      1.500

      > J AuditorAuditRecordDeleteService.java
      55,5 %
      106
      85
      191

      > J AuditorAuditRecordUpdateService.java
      94,1 %
      302
      19
      321

      > J AuditorAuditRecordPublishService.java
      94,7 %
      322
      18
      340

      > J AuditorAuditRecordCreateService.java
      95,2 %
      314
      16
      330

      > J AuditorAuditRecordListService.java
      95,3 %
      161
      8
      169

      > J AuditorAuditRecordShowService.java
      94,7 %
      108
      6
      114

      > J AuditorAuditRecordController.java
      100,0 %
      35
      0
      35
```

A continuación, el unbind del delete:

```
@Override
public void unbind(final AuditRecord object) {
    assert object != null;

    SelectChoices marks;
    Dataset dataset;

    marks = SelectChoices.from(Mark.class, object.getMark());

    dataset = super.unbind(object, "code", "startPeriod", "endPeriod", "link", "draftMode");
    dataset.put("mark", marks.getSelected().getKey());
    dataset.put("marks", marks);

    dataset.put("masterId", object.getCodeAudit().getId());
    dataset.put("draftMode", object.getCodeAudit().isDraftMode());

    super.getResponse().addData(dataset);
}
```

El update, a excepción de las dos líneas del authorise que están en amarillo siempre, esta todo en verde:

```
super.bind(object, "code", "startRexical", "mank", "link");

@Override
public void validate(final AuditRecord object) {
    assert object != null;

if (!super.getBuffer().getErrors().hasErrors("code")) {
        AuditRecord existing;
        existing = this.repository.findOneAuditRecordByCode(object.getCode());
        super.state(existing == null || existing.equals(object), "code", "auditor.auditRecord.form.error.duplicated");
    }

if (!super.getBuffer().getErrors().hasErrors("startPeriod")) {
        Oate miniaumWoment = MomentHelper.parse("2000/01/01 00:100", "yyyy/MV/dd HH:mm");

        super.state(NomentHelper.isPresentOn-Past(object.getStartPeriod()), "startPeriod", "auditor.auditRecord.form.error.not-past");
        super.state(NomentHelper.isPresentOn-Past(object.getStartPeriod(), object.getStartPeriod(), petExecutionDate()), "startPeriod", "auditor.auditRecord.form.error.before-audit";
    }

if (!super.getBuffer().getErrors().hasErrors("endPeriod")) {
        Date miniaumWoment = MomentHelper.parse("2000/01/10 00:00", "yyyy/MV/dd HH:mm");

        super.state(MomentHelper.isPresentOn-Past(object.getEndPeriod(), insulatior.auditRecord.form.error.not-past");
        super.state(MomentHelper.isAfterOnEqual(object.getEndPeriod(), insulation.auditRecord.form.error.not-past");
        super.state(MomentHelper.isAfterOnEqual(object.getEndPeriod(), miniaumMoment), "auditor.auditRecord.form.error.too-early");
    }

if (!super.getBuffer().getErrors().hasErrors("startPeriod") & !super.getBuffer().getErrors().hasErrors("endPeriod"))
        super.state(MomentHelper.isAfter(object.getEndPeriod(), object.getEndPeriod(), nullForcors("endPeriod"))
        super.state(MomentHelper.isAfter(object.getEndPeriod(), object.getEndPeriod(), nullForcors("endPeriod"))
        super.state(MomentHelper.isAfter(object.getEndPeriod(), object.getEndPeriod(), nullForcors("endPeriod"))
        super.state(MomentHelper.isAfter(object.getEndPeriod(), object.getEndPeriod(), nullForcors("endPeriod"), "auditor.auditRecord.form.error.t
```

El list, tiene un par de líneas de las que no se han podido cubrir todas las ramas, una es el idioma y la otra es una comprobación para mostrar un botón:

```
Grupo: C1.029
```

```
Dataset dataset;

dataset = super.unbind(object, "code", "mark", "startPeriod", "endPeriod");
if (super.getRequest().getLocale().getLanguage().equals("es"))
    dataset.put("published", object.isDraftMode()? "No": "Si");
else if (super.getRequest().getLocale().getLanguage().equals("en"))
    dataset.put("published", object.isDraftMode()? "No": "Yes");

super.getResponse().addData(dataset);

@Override
public void unbind(final Collection<AuditRecord> objects) {
    assert objects != null;

    int masterId;
    CodeAudit codeAudit;
    final boolean showCreate;

    masterId = super.getRequest().getData("masterId", int.class);
    codeAudit = this.repository.findOneCodeAuditById(masterId);
    showCreate = codeAudit.isDraftMode() && super.getRequest().getPrincipal().hasRole(codeAuditor());
    super.getResponse().addGlobal("masterId", masterId);
    super.getResponse().addGlobal("masterId", masterId);
    super.getResponse().addGlobal("masterId", showCreate);
}
```

Por último, el controlador y el resto de servicios no tienen nada que destacar ya que están cubiertos en su gran mayoría.

```
@PostConstruct
protected void initialise() {
    super.addBasicCommand("list", this.listService);
    super.addBasicCommand("show", this.showService);
    super.addBasicCommand("create", this.createService);
    super.addBasicCommand("update", this.updateService);
    super.addBasicCommand("delete", this.deleteService);
    super.addCustomCommand("publish", "update", this.publishService);
}
```

Como conclusión se puede sacar que todo el "CodeAudit" ha sido probado de manera muy exhaustiva, probando todas las validaciones posibles. Al final de este capítulo se muestran capturas de un bloc de notas usado para la realización de los tests.

Acme Software Factory

```
pasar un proyecto no publicado
usar el show (calcular moda con auditrecords)
usar el delete
usar el update
usar el publish
 show de auditores ya creados probar los show con usuarios no validos y roles no validos \gamma
login con auditor1
listar 3 primeros, 2 intermedios, 2 finales
probar publish de algunos vacios, otros sin nota suficiente, otros con nota pero insuficientes
probar delete
probar create
 SAFE RECORD
 login auditor1
list code audits
 chf001
update sin project a ESE codeAudit con algunos records dentro
update sin project a ESE codeAudit con algunos records dentro
ver sus records
publicar el q tiene
borrar el chf001 después de publicar (salta la validación) -delete a un codeAudit con algunos records publicados dentro
 crear auditRecord c/code usado:
  -form vacio
update auditRecord
  delete
crear auditRecord
show auditRecord
update auditRecord campo a campo
publish
publish chf001
 asociar con proyecto no publicado (create, update, publish) show audit nulo y entrar con un user de otro rol
create: proyect no publicado
update, delete, publish de otros usuarios y de codeAudits ya publicados y con proyectos no públicos (+ probar cambio idioma) 61=publicado 64=no publicado ambos de auditor2
  empatar frecuencias al calcular la moda (ejecutar en el show, update, publish y delete) creando nuevos auditRecords
list: idioma y listar de un codeAudit q no es tuyo create: hijos de otros padres, draftmode false, delete: records de otros, records publicados: 94 es de auditor1 no publicado update: records de otros, records publicados: 94 es de auditor1 no publicado publish: create en codeAudits tuyos publicados, records de otros, records publicados: 94 es de auditor1 no publicado
 SAFE LIST CODEAUDIT
list: auditor2: tamaño pagina, paginas, cambiar idiom
show: auditor2: publicado, no publicado, sin hijos
 Show: auurior 2: рилиську, и. учественного стеате:
-ref: espacio, patron incorrecto, muchos caracteres, caracteres raros: Переводчик
ПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПереводчикПе
 delete: sin hijos, con un hijo, con hijos con empate de notas, con algun hijo publicado publish: sin hijos, con hijos con empate de notas, con algun hijo publicado
```

Para terminar este capítulo me gustaría comentar que he usado el Excel de SampleData para la realización de los tests .safe de los create, update, y publishl

Capítulo 2 – Pruebas de desempeño

El desarrollo del software se ha ejecutado durante todo el cuatrimestre en mi PC personal. Obteniendo los resultados de ejecutar el replayer en eclipse, nos genera una batería de datos, los cuales, analizándolos mediante las técnicas enseñadas en clase, hemos podido obtener resultados claros.

Vamos a empezar por los promedios de los resultados de búsqueda.

Como se puede observar, hay alguna ruta que tiene peticiones que han tardado más, lo que es un resultado muy bueno, porque nos indica que las búsquedas se realizan de manera rápida. En este apartado tengo que comentar que este replayer ha sido realizado tras implementar índices y optimizar funciones ya que ya realicé análisis de los tests antes de este test, pero tuvieron que repetirse por un cambio en la base de datos. Estas optimizaciones eran principalmente streams que filtraban colecciones que podían ser filtradas en las queries del repositorio.

A continuación, vamos a observar el intervalo de confianza del PC personal frente al del PC 2 obtenido de una simulación con función random:

3,4333 3,5102

2.6386 2 6561

ime	time2				
118,981	128	Before	Before		
4,2176	4,4204				
5,3789	5,5568	Media	18,01173466	Media	18,90199475
2,7016	2,9224	Error típico	0,800853773	Error típico	0,843978306
5,6944	6,2135	Mediana	8,4451	Mediana	8,882994905
2,813	3,0785	Moda	1,6443	Moda	#N/D
3,8537	3,8993	Desviación estándar	23,08626825	Desviación estándar	24,32942222
2,6418	2,6693	Varianza de la muestra	532,9757817	Varianza de la muestra	591,9207856
3,8901	4,0155	Curtosis	6,064819444	Curtosis	6,65967996
2,8518	3,0145	Coeficiente de asimetría	2,227677693	Coeficiente de asimetría	2,285082191
4,4202	4,5072	Rango	176,9036	Rango	193,5139574
2,002	2,1692	Mínimo	1,4693	Mínimo	1,501044814
3,2454	3,4588	Máximo	178,3729	Máximo	195,0150022
2,2707	2,3879	Suma	14967,7515	Suma	15707,55764
3,1305	3,3808	Cuenta	831	Cuenta	831
2,2492	2,4616	Nivel de confianza (95,0%)	1,571936802	Nivel de confianza (95,0%)	1,656582769
5,2131	5,5099				
2,2196	2,3162	Interval ms		Interval ms	

Con estos datos se ha realizado un Z-Test, el cual se muestra a continuación.

16,43979785 19,58367146

Prueba z para medias de dos muestras		
	118,981	127,5729791
Media	17,89008494	18,79126619
Varianza (conocida)	532,9757817	591,9207856
Observaciones	830	830
Diferencia hipotética de las medias	0	
Z	-0,774096135	
P(Z<=z) una cola	0,219436971	
Valor crítico de z (una cola)	1,644853627	
Valor crítico de z (dos colas)	0,438873943	
Valor crítico de z (dos colas)	1,959963985	

Podemos observar que Alpha es 0.05, y que el p-value es 0.438... por lo que podemos decir que los cambios **no** dieron como resultado ninguna mejora significativa; los tiempos de muestreo son diferentes, pero son globalmente iguales.

<u>También se ha replicado estas pruebas en otro ordenador</u> (PC2 – características similares) y he obtenido los siguientes resultados:

Grupo: C1.029

17,24541198 20,55857752

Before			After	
Media	17,676054		Media	16,1123892
Error típico	0,889129834		Error típico	0,86213183
Mediana	8,2571		Mediana	7,77585
Moda	1,8587		Moda	2,2533
Desviación estándar	22,01382046		Desviación estándar	20,8700019
Varianza de la muestra	484,6082912		Varianza de la muestra	435,556978
Curtosis	5,013810694		Curtosis	6,79789118
Coeficiente de asimetría	2,151641913		Coeficiente de asimetría	2,40979951
Rango	129,7616		Rango	133,031
Mínimo	1,4517		Mínimo	1,4817
Máximo	131,2133		Máximo	134,5127
Suma	10835,4211		Suma	9441,8601
Cuenta	613		Cuenta	586
Nivel de confianza(95,0%)	1,746115661		Nivel de confianza (95,0%)	1,69325055
Interval ()ms:			Interval ()ms:	
	15,92993834		17,8056398	14,4191387
Prueba z para medias de dos muestras				
	108,5408	134,5127		
Media	-	15,90999556		
Varianza (conocida)		435,5569784		
Observaciones	612	585		
Diferencia hipotética de las medias	0			
z	1,305020867			
P(Z<=z) una cola	0,095942871			
Valor crítico de z (una cola)	1,644853627			
Valor crítico de z (dos colas)	0,191885742			
	-			

Podemos observar que Alpha es 0.05, y que el p-value es 0.19... por lo que podemos decir que los cambios no dieron como resultado ninguna mejora significativa; los tiempos de muestreo son diferentes, pero son globalmente iguales.

Como **conclusión**, ninguno de los PCs muestra una diferencia significativa en el rendimiento (antes y después) a un nivel de variación del 5%. Por lo tanto, las diferencias observadas en las medias no son estadísticamente significativas, lo que sugiere que ninguno de los PCs es concluyentemente más rápido o lento que el otro según los datos proporcionados.

Bibliografía

Diapositivas de Diseño y Pruebas 2 – Universidad de Sevilla.