

ECUACIONES DIFERENCIALES ORDINARIAS APROXIMACIÓN NUMÉRICA INTRODUCCIÓN

APROXIMACIÓN NUMÉRICA DE UNA ECUACIÓN DIFERENCIAL ORDINARIA

MÉTODOS DE APROXIMACIÓN

CONTENIDO

Título Ecuaciones Diferenciales Ordinarias

Duración 240 minutos

Información general : Resaltar la importancia de realizar una aproximación

numérica a las ecuaciones diferenciales ordinarias; con programación, aplicando Métodos Numéricos y en

problemas de Ingeniería.

Objetivo : Conocer las diferentes técnicas de los métodos numéricos,

con programación numérica, para hacer una aproximación

numérica a las ecuaciones diferenciales ordinarias;

obteniendo resultados confiables.

ECUACIONES DIFERENCIALES ORDINARIAS

El objetivo es introducir los métodos numéricos para resolver una acuación diferencial ordinaria. Es decir resolver este problema de valor numéricamente.

Un problema de valor a resolver puede ser:

$$\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$$

En donde: $x, y, y' \in \mathbb{R}^2$ y $x_0, y_0 \in \mathbb{R}$

Como problemas de valor se tienen:

Problemas de Valor Inicial (PVI).- Un PVI requiere conocer de la variable dependiente en $x=x_0$ para una EDO de primer orden. Para una EDO de segundo orden, a más de la condición anterior señalada, se requiere conocer la primera derivada en $x=x_0$.

Problemas de Valor de Frontera (PVF).- Se diferencia por las condiciones de frontera que se pueden presentar; así:

- **1 Primera Clase (Dirichlet)**.- Se da el valor funcional de la solución. Ejemplos: $y(x_0) = y_0$, $y(x_1) = y_1$.
- **Segunda Clase (Newman)**.- Se especifica el valor de la derivada. Ejemplos: $y'(x_0) = y_0$.
- **3 Tercera Clase (Robben)**.- El valor funcional esta relacionado con la derivada. Ejemplo: $y'(x_0) + \alpha y(x_0) = \beta$, α , β son parámetros.

MÉTODOS DE SOLUCIÓN.-

- Existen muchos métodos de solución como:
- Método de Euler
- Método de Runge Kutta
- Método de Euler Modificado
- Método de Heun
- Método de las Diferencias Finitas
- Método de Elementos Finitos
- Métodos sin mallados (Meshless)

NOTA:

• Tambien existen los métodos MULTIPASO como por ejemplo: Técnica de Adams – Bashforth.

Se presentan a continuación tres ejercicios para resolver mediante los métodos de **Euler**, **Heun** y el método de **Diferencias Finitas**; en donde se aplicará los criterios de diferenciación numérica aprendidos:

MÉTODO DE EULER

Es el método más sencillo que genera una solución numérica de la función.

Analicemos el siguiente PVI:

$$\begin{cases} y' = f(t,y) \\ y(a) = y_0 \end{cases}$$

Se requiere encontrar la solución numérica de la función solución y = f(t).

(El análisis de este método y la programación se desarrollará con la participación de los alumnos).

El programa en Matlab, para este método es:

```
Editor - C:\Users\ESPE\Documents\MATLAB\MATLAB_Asignatura_Otros\ASIGNATURA_METODOS_NUMERICOS\A7_EDO\euler.m
  euler.m × +
 fx=inline(f,'T','Y');
       h=(b-a)/M;
       T=zeros(1,M+1);
       Y=zeros(1,M+1);
       T=a:h:b;
       Y(1) = ya;
 8 - | for j=1:M
           Y(j+1)=Y(j)+h*fx(T(j),Y(j));
10 -
       E=[T' Y'];
11 -
12 -
       plot(T,Y)
13 -
      L end
```

EJERCICIO

Resolver, aplicando la aproximación de Euler, el siguiente PVI

$$\begin{cases} y' = \frac{t-y}{2} \\ y(0) = 1 \end{cases} \quad 0 \le t \le 3$$

(Ejercicio a ser resuelto en clase con la participación de los alumnos)

Los resultados que se obtienen, con el Programa de Euler realizado, son:


```
>> E=euler('(T-Y)/2',0,3,1,12)
E =
        0
             1.0000
   0.2500
             0.8750
   0.5000
             0.7969
   0.7500
             0.7598
   1.0000
             0.7585
             0.7887
   1.2500
   1.5000
             0.8464
   1.7500
             0.9281
   2.0000
             1.0308
   2.2500
             1.1520
             1.2892
   2.5000
   2.7500
             1.4406
    3.0000
             1.6043
```

La gráfica de la solución aproximada es:

NOTAS:

- Se puede programar, en matlab, este método para un problema de valor inicial de primer orden.
- La solución exacta del PVI anterior es

$$y(t) = 3e^{-\frac{t}{2}} + t - 2$$

 El método de Euler no se suele utilizar en la práctica debido a que la solución que proporciona acumula errores apreciables a lo largo del cálculo. Sin embargo, es importante estudiarlo porque es más facil llevar a cabo el análisis del error de este método que el de otros más exactos pero más complejos.

MÉTODO DE HEUN

Es una idéa nueva en la construcción de un algoritmo que genera una solución numérica de un PVI.

Analicemos el siguiente PVI:

$$\begin{cases} y'(t) &= f(t, y(t)) \\ y(t_0) &= y_0 \end{cases} a \le t \le b$$

Se requiere encontrar la solución numérica de la función solución y = f(t).

(El análisis de este método y la programación se desarrollará con la participación de los alumnos).

EJERCICIO

Resolver, aplicando el método de Heun, el siguiente PVI

$$\begin{cases} y' = \frac{t-y}{2} \\ y(0) = 1 \end{cases}$$

$$0 \le t \le 3$$

(Ejercicio a ser resuelto en clase con la participación de los alumnos)

El Programa en Matlab es:


```
Editor - C:\Users\ESPE\Documents\MATLAB\MATLAB_Asignatura_
   euler.m X
             Heun.m X
      function H=Heun(f,a,b,ya,M)
        fx=inline(f,'T','Y');
 2 -
       h = (b-a)/M;
        T=zeros(1,M+1);
        Y=zeros(1,M+1);
        T=a:h:b;
        Y(1) = ya;
     for j=1:M
            kl=fx(T(j),Y(j));
10 -
            k2=fx(T(j+1),Y(j)+h*k1);
            Y(j+1)=Y(j)+(h/2)*(k1+k2);
11 -
12 -
       end
13 -
       H=[T' Y'];
14 -
        plot(T,Y)
        end
```

Ejecutando el ejercicio desarrollado a mano, se tiene:

```
H =
              1.0000
        0
   0.2500
             0.8984
   0.5000
              0.8381
   0.7500
              0.8141
   1.0000
             0.8222
   1.2500
             0.8587
   1.5000
             0.9201
   1.7500
              1.0037
   2.0000
             1.1068
   2.2500
             1.2271
   2.5000
             1.3626
   2.7500
              1.5115
   3.0000
             1.6723
```


MÉTODO DE LAS DIFERENCIAS FINITAS

La discretización de las ecuaciones diferenciales, sea de coeficientes constantes o variables, conduce a resolver sistemas de ecuaciones algebraicas lineales.

Este método es ideal para enfrentar problemas de valor (inicial o de frontera), con ecuaciones diferenciales parciales y ordinarias.

Realicemos el siguiente PVF con condiciones de DIRICHLET.

EJERCICIO.-

Resolver el siguiente problema de valor de frontera:

$$\begin{cases}
-y'' + y &= 1 - 2\cos(x) \\
y(0) &= 0 \\
y(1) &= 0
\end{cases}$$

(El análisis de este método y la programación se desarrollará con la participación de los alumnos).

REFERENCIAS BIBLIOGRAFICAS

- 1. Sánchez Juan Miguel, Problemas de Cálculo Numérico para ingenieros con aplicaciones Matlab, McGraw-Hill, Primera edición, 2005.
- 2. A. Quarteroni, F. Saleri, Cálculo Científico con Matlab y Octave. Springer-Verlag Italia, milano 2006