PSALTer results panel $S = \iiint \left(\frac{1}{4}\left(2\,a_{.0}^{\alpha}\,\mathcal{A}_{\alpha}^{\alpha\beta}\,\mathcal{A}_{\beta\chi}^{\chi} + \mathcal{A}^{\alpha\beta\chi}\left(-2\,a_{.0}^{\alpha}\,\mathcal{A}_{\beta\chi\alpha}^{\alpha} + 4\,w_{\alpha\beta\chi}\right) + 4\,\mathcal{T}^{\alpha\beta}\,h_{\alpha\beta}^{-\,a_{.0}^{\alpha}}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}_{\alpha}^{\alpha\beta} + a_{.0}^{\alpha}\,h_{\chi}^{\chi}\,\partial_{\beta}\mathcal{A}_{\alpha}^{\alpha\beta} - 2\,a_{.0}^{\alpha}\,h_{\alpha\chi}\,\partial_{\beta}\mathcal{A}^{\alpha\beta\chi} + 2\,a_{.0}^{\alpha}\,h_{\beta\chi}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\beta} + 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} + 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} + 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} + 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} + 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{A}_{\alpha}^{\alpha\beta} - 4\,c_{.0}^{\alpha}\,\partial^{\chi}\mathcal{$

Wave operator

	${}^{0^+}h^{\perp}$	o <u>⁺</u> h∥	${}^{0^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{R}_a{}^{\parallel}$	${}^{0^{\scriptscriptstyle +}}_{\: \scriptstyle \bullet} \mathcal{A}_{S}{}^{\scriptscriptstyle \perp t}$	${}^{0^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}_{\scriptscriptstyle S}{}^{\scriptscriptstyle \parallel}$	${}^{0^{\scriptscriptstyle +}}_{\: \:}\mathcal{A}_{\operatorname{S}}{}^{\perp \operatorname{h}}$	${}^{0^{-}}\mathcal{A}_{a}$
⁰ . h [⊥] †	0	0	0	Θ	$\frac{i a \cdot k}{9}$	$-\frac{i a \cdot k}{4 \sqrt{2}}$	Θ
⁰ . h∥ †	0	Θ	$\frac{i a \cdot k}{2 \sqrt{2}}$	Θ	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	0
${}^{0^+}_{\bullet}\mathcal{R}_a{}^{\parallel}$ †	0	$-\frac{i a \cdot k}{2 \sqrt{2}}$	$-\frac{a}{\frac{0}{2}}$	Θ	Θ	Θ	Θ
${}^{0^+}_{\bullet}\mathcal{A}_{S}^{\perp t}$ †	Θ	0	0	0	$\frac{a_{\stackrel{\bullet}{0}}}{2}$	$-\frac{a_{\stackrel{\circ}{\theta}}}{2\sqrt{2}}$	0
${}^{0^{\scriptscriptstyle +}}_{\scriptstyle \bullet}\mathcal{A}_{\scriptscriptstyle S}{}^{\parallel}$ †	$-\frac{1}{4} i a_{\stackrel{\bullet}{0}} k$	$\frac{i a \cdot k}{4 \sqrt{3}}$	Θ	$\frac{a}{\frac{\theta}{\theta}}$	Θ	$-\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	0
${}^{0^{\scriptscriptstyle +}}_{}\mathcal{A}_{S}{}^{\perp h}$ †	$\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$	0	$-\frac{a_{\stackrel{\circ}{\theta}}}{2\sqrt{2}}$	$-\frac{a_{\stackrel{\circ}{0}}}{2\sqrt{2}}$	$\frac{a}{\frac{\theta}{2}}$	0
^{0⁻} -ℛa [∥] †	0	0	0	0	0	0	$-\frac{a_{\frac{1}{0}}}{2}$

0	$-\frac{\ddot{0}}{2}$	${}^{1^{+}}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}\mathcal{A}_{a^{\perp}\alpha\beta}$	${}^{1^{\scriptscriptstyle +}}_{^{\scriptscriptstyle +}}\mathcal{A}_{{\mathsf S}^{}\alpha\beta}$	$^{1^{-}}_{\bullet}h^{\perp}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{a}{}^{\parallel}{}_{\alpha}$	${}^{1^{\text{-}}}_{\:\raisebox{1pt}{\text{\cdot}}} \mathcal{A}_{a}{}^{\perp}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\perpt}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\parallelt}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\perph}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}_{S}{}^{\parallelh}{}_{\alpha}$
	${}^{1^{+}}_{\bullet}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha\beta}$	$-\frac{a}{\frac{0}{9}}$	$-\frac{a_{\stackrel{\circ}{\Theta}}}{2\sqrt{2}}$	0	0	0	Θ	0	0	0	0
	$^{1^{+}}_{\cdot}\mathcal{A}_{a}^{\perp}^{\dagger}^{\alpha\beta}$	$-\frac{a_{\stackrel{\circ}{\theta}}}{2\sqrt{2}}$	0	Θ	Θ	0	Θ	0	0	0	0
	$^{1^{+}}_{\cdot}\mathcal{A}_{S}^{\perp}^{\dagger}^{}^{}^{}$	0	0	$\frac{a}{\theta}$	Θ	0	0	0	0	0	0
	$\frac{1}{\bullet}h^{\perp}\uparrow^{\alpha}$	0	0	0	0	$\frac{i a \cdot k}{4 \sqrt{2}}$	Θ	$-\frac{ia.k}{4\sqrt{6}}$	$\frac{1}{4} i \sqrt{\frac{5}{6}} a \cdot k$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$-\frac{i a \cdot k}{4 \sqrt{6}}$
	${}^{1} \cdot \mathcal{A}_{a}^{\parallel} \uparrow^{\alpha}$	0	0	0	$-\frac{ia.k}{4\sqrt{2}}$	$-\frac{a_{\stackrel{\bullet}{0}}}{4}$	$\frac{a_{\stackrel{\circ}{\theta}}}{2\sqrt{2}}$	0	0	0	0
	$^{1}_{\cdot}\mathcal{A}_{a}^{\perp}\dagger^{\alpha}$	0	0	Θ	Θ	$\frac{a_{\stackrel{\bullet}{0}}}{2\sqrt{2}}$	Θ	0	0	0	0
	1 - \mathcal{A}_{S} 1 †	0	0		4 √6	0	Θ	$\frac{1}{3}\left(-a_{\bullet}-c_{\bullet}k^{2}\right)$	$\frac{1}{6} \sqrt{5} \left(a_{\bullet} - 2 c_{\bullet} k^2 \right)$	$-\frac{a_{.}+4c_{.}k^{2}}{6\sqrt{2}}$	$\frac{1}{6} \left(-a \cdot -4 \cdot c \cdot k^2 \right)$
	${}^{1}\mathcal{A}_{S}{}^{\parallelt}\dagger^{\alpha}$	0	0	Θ	$-\frac{1}{4} i \sqrt{\frac{5}{6}} a_{0} k$	0	Θ	$\frac{1}{6} \sqrt{5} \left(a_{\bullet} - 2 c_{\bullet} k^2 \right)$	$\frac{1}{3}\left(a_{\bullet}-5c_{\bullet}k^{2}\right)$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_{\bullet} + 4 c_{\bullet} k^2 \right)$	$-\frac{1}{6} \sqrt{5} \left(a_{\bullet} + 4 c_{\bullet} k^2 \right)$
	$^{1}_{\bullet}\mathcal{A}_{S}^{\perp h}\dagger^{\alpha}$	0	0	0	$\frac{i a \cdot k}{4 \sqrt{3}}$		Θ	$-\frac{a_{0}+4c_{5}k^{2}}{6\sqrt{2}}$	$-\frac{1}{6} \sqrt{\frac{5}{2}} \left(a_{\bullet} + 4 c_{\bullet} k^2 \right)$	$\frac{1}{3}\left(a_{\bullet}-2c_{\bullet}k^{2}\right)$	$\frac{a_{\frac{1}{0}}-8c_{\frac{1}{5}}k^{2}}{6\sqrt{2}}$
	$^{1}\mathcal{A}_{s}^{\parallel h}\dagger^{\alpha}$	0	0	0	$\frac{i a \cdot k}{4 \sqrt{6}}$	Θ	Θ	$\frac{1}{6} \left(-a \cdot -4 \cdot c \cdot k^2 \right)$	$-\frac{1}{6} \sqrt{5} \left(a_{0} + 4 c_{5} k^{2} \right)$	$\frac{a_{\theta}-8c_{5}k^{2}}{6\sqrt{2}}$	$\frac{5a.}{12} - \frac{4c.k^2}{3}$

2 - 3	$\frac{2}{6}h^{\parallel}_{\alpha\beta}$	$^{4}\mathcal{A}_{a}^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}_{s}^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}_{s}^{1}_{\alpha\beta}$	$^{2}\mathcal{A}_{a}^{\parallel}_{\alpha\beta\chi}$	${}^{2}\mathcal{A}_{S}^{\parallel}_{\alpha\beta\chi}$	_
$\stackrel{2^+}{\cdot}h^{\parallel}\uparrow^{\alpha\beta}$		$-\frac{i a \cdot k}{4 \sqrt{2}}$	$-\frac{i a \cdot k}{4 \sqrt{3}}$	$\frac{i a \cdot k}{4 \sqrt{6}}$	Θ	0	
$\mathcal{A}_{a}^{2} + \mathcal{A}_{a}^{\beta} + \mathcal{A}_{a}^{\beta}$	$\frac{i a \cdot k}{4 \sqrt{2}}$	$\frac{a}{\frac{\theta}{\theta}}$	0	0	Θ	0	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\parallel} \dagger^{\alpha\beta}$	$\frac{i a \cdot k}{4 \sqrt{3}}$	0	$-\frac{a}{\frac{\theta}{2}}$	Θ	Θ	Θ	
${}^{2^{+}}_{\bullet}\mathcal{A}_{S}^{\perp}^{\dagger}^{\alpha\beta}$	$-\frac{i a_{\stackrel{\circ}{0}} k}{4 \sqrt{6}}$	0	Θ	$\frac{a}{\frac{\theta}{\theta}}$	Θ	Θ	
${}^{2^{-}}\mathcal{A}_{a}{}^{\parallel}\dagger^{\alpha\beta\chi}$	0	0	0	Θ	$\frac{a}{\theta}$	0	
${}^{2}\mathcal{A}_{S}^{\parallel} + {}^{\alpha\beta\chi}$	Θ	0	Θ	Θ	0	$\frac{a}{\theta}$	$^{3}\mathcal{A}_{s}^{\parallel}_{\alpha\beta\chi}$
						$^{3}\mathcal{A}_{s}^{\parallel} + ^{\alpha\beta\chi}$	

Saturated propagator

	$\overset{0^+}{\boldsymbol{\cdot}}\mathcal{T}^\perp$	${}^{0^{\scriptscriptstyle +}}\mathcal{T}^{\parallel}$	${}^{0^+}\mathcal{W}_a{}^{\parallel}$	^{0⁺} Ws ^{⊥t}	^{0⁺} Ws [∥]	^{0⁺} Ws ^{⊥h}	0 ${}^{-}W_{a}{}^{\parallel}$
${\overset{0^{\scriptscriptstyle +}}{\cdot}}\mathcal{T}^{\scriptscriptstyle \perp}$ †	$-\frac{36 k^2}{a_{\cdot 0} (16+3 k^2)^2}$	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{2 i \sqrt{6} k}{16 a + 3 a k^2}$	$-\frac{72 i k}{a_{0} \left(16+3 k^{2}\right)^{2}}$	$\frac{8 i k (19+3 k^2)}{a_0 (16+3 k^2)^2}$	$-\frac{4 i \sqrt{2} k (10+3 k^2)}{a_0 (16+3 k^2)^2}$	0
[⊙] ⁺∵″ †	$\frac{4 \sqrt{3}}{16 a + 3 a k^2}$	$\frac{4}{a \cdot k^2}$	$\frac{2 i \sqrt{2}}{a \cdot k}$	$\frac{8 i \sqrt{3}}{16 a. k+3 a. k^3}$	$-\frac{8 i}{\sqrt{3} \left(16 a_{0} k+3 a_{0} k^{3}\right)}$	$-\frac{8 i \sqrt{\frac{2}{3}}}{16 a. k+3 a. k^{3}}$	Θ
^{o⁺} wa [∥] †	$-\frac{2 i \sqrt{6} k}{16 a.+3 a. k^2}$	$-\frac{2i\sqrt{2}}{a.k}$	0	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a_{0} + 3 a_{0} k^{2}}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	0
^{0⁺} Ws ^{⊥t} †	$\frac{72 i k}{a \cdot \left(16+3 k^2\right)^2}$	$-\frac{8 i \sqrt{3}}{16 a \cdot k+3 a \cdot k^3}$	$\frac{4 \sqrt{6}}{16 a + 3 a k^2}$	$-\frac{144}{a_{0}\left(16+3k^{2}\right)^{2}}$	$\frac{16(19+3 k^2)}{a_{0}(16+3 k^2)^2}$	$-\frac{8 \sqrt{2} (10+3 k^2)}{a_{0} (16+3 k^2)^{2}}$	0
^{0⁺} Ws [∥] †	$-\frac{8 i k (19+3 k^2)}{a \cdot (16+3 k^2)^2}$	$\frac{8i}{\sqrt{3}\left(16a.k+3a.k^3\right)}$	$-\frac{4\sqrt{\frac{2}{3}}}{16 a_{0} + 3 a_{0} k^{2}}$	$\frac{16(19+3 k^2)}{a_0(16+3 k^2)^2}$	$-\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$	$-\frac{8 \sqrt{2} (22+3 k^2)}{3 a_0 (16+3 k^2)^2}$	0
°°Ws ^{⊥h} †	$\frac{4 i \sqrt{2} k (10+3 k^2)}{a_i (16+3 k^2)^2}$	$\frac{8i\sqrt{\frac{2}{3}}}{16a.k+3a.k^{3}}$	$-\frac{8}{\sqrt{3}\left(16a_{0}+3a_{0}k^{2}\right)}$	$-\frac{8\sqrt{2}(10+3k^2)}{a(16+3k^2)^2}$	$-\frac{8\sqrt{2}(22+3k^2)}{3a_{\frac{1}{6}}(16+3k^2)^2}$	$\frac{32(13+3k^2)}{3a_{\cdot 0}(16+3k^2)^2}$	Θ
^{0⁻} .Wa [∥] †	0	0	0	0	0	0	$-\frac{2}{a}$

	2											
a	<u>z</u> .	$^{1^{+}}_{\cdot}W_{a}^{\parallel}_{\alpha\beta}$	$^{1^{+}}_{\bullet}W_{a^{\perp}}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}W_{S}^{\perp}_{\alpha\beta}$	${}^{1}_{\bullet}\mathcal{T}^{\perp}{}_{\alpha}$	${}^{1}\mathcal{W}_{a}{}^{\parallel}{}_{\alpha}$	$^{1}_{\cdot}W_{a}^{\perp}{}_{\alpha}$	${}^{1}_{\cdot}W_{s}^{\perp t}{}_{\alpha}$	¹⁻w _s ∥ ^t α	¹-Ws ^{1h} a	¹⁻₩s ^{∥h} α	
¹⁺Wa	, † ^{αβ}	0	$-\frac{2\sqrt{2}}{a_{\stackrel{\bullet}{0}}}$	0	0	Θ	0	Θ	0	0	0	
¹.⁺Wa	± † ^{αβ}	$-\frac{2\sqrt{2}}{a_{\stackrel{\circ}{\theta}}}$	$\frac{2}{a}$	0	0	Θ	0	Θ	Θ	0	0	
1. W _S	± † ^{αβ}	Θ	Θ	$\frac{4}{a}$	Θ	Θ	0	0	0	0	0	
1-0	τ [⊥] † ^α	0	0	0	$\frac{2 k^2}{a_{\stackrel{\cdot}{0}} (2+k^2)^2}$	$\frac{2 i \sqrt{2} k}{a \cdot (2+k^2)}$	$\frac{i k (4+k^2)}{a \cdot (2+k^2)^2}$	$-\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2}$	$\frac{i \sqrt{\frac{5}{6}} k}{a_{0} (2+k^{2})}$	$-\frac{2 i k (3+k^2)}{\sqrt{3} a_{0} (2+k^2)^2}$	$\frac{i \sqrt{\frac{2}{3}} k}{2 a_{0} + a_{0} k^{2}}$	
1-w	′a [∥] † ^α	Θ	0	0	$-\frac{2 i \sqrt{2} k}{2 a + a \cdot k^2}$	0	$\frac{\sqrt{2} (4+k^2)}{a \cdot (2+k^2)}$	$-\frac{2 k^2}{\sqrt{3} \left(2 a + a \cdot k^2\right)}$	0	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a_{0} + a_{0} k^2}$	0	
1-W	′a [⊥] † ^α	Θ	0	0	$-\frac{i k (4+k^2)}{a_{0}(2+k^2)^2}$	$\frac{\sqrt{2} (4+k^2)}{a_{\theta} (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} a_0 \left(2+k^2\right)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} a_{\theta} (2+k^2)^2}$	$-\frac{k^2}{\sqrt{6} \ a_{\stackrel{\circ}{0}}(2+k^2)}$	
1⁻.W _S	. ^{±t} † ^α	Θ	Θ	0	$\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2} =$	$\frac{2 k^2}{\sqrt{3} \left(2 a_0 + a_0 k^2\right)}$	$\frac{k^2 \left(-2+k^2\right)}{2 \sqrt{6} \ a_{0} \left(2+k^2\right)^2}$	$\frac{1}{48} \left(-\frac{1}{c_{\frac{1}{5}}k^2} - \frac{4\left(76+52k^2+3k^4\right)}{a_{\frac{1}{6}}\left(2+k^2\right)^2} \right)$	$\frac{1}{48} \sqrt{5} \left(-\frac{1}{c_{5} k^{2}} + \frac{40 + 12 k^{2}}{2 a_{0} + a_{0} k^{2}} \right)$	$\frac{-\frac{1}{c_{5}k^{2}} + \frac{8(-2*k^{2})}{a_{6}(2*k^{2})^{2}}}{24\sqrt{2}}$	$-\frac{1}{24c. k^{2}} + \frac{1}{-2a\frac{8a.}{6} -\frac{8a.}{2+3k^{2}}}$	
1⁻.W _S	s ^{llt} † ^α	Θ	0	0	$-\frac{i\sqrt{\frac{5}{6}}k}{a_{\cdot 0}(2+k^2)}$	0	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a + 2 a k^2}$	$\frac{1}{48} \sqrt{5} \left(-\frac{1}{c_{.5} k^2} + \frac{40 + 12 k^2}{2 a_{.0} + a_{.0} k^2} \right)$	$\frac{1}{48} \left(\frac{4}{a_{\bullet}} - \frac{5}{c_{5} k^{2}} \right)$	$\frac{1}{24} \sqrt{\frac{5}{2}} \left(-\frac{1}{c_{5} k^{2}} - \frac{8}{a_{0} (2+k^{2})} \right)$	$-\frac{\sqrt{5} \left(a_{0}+4 c_{5} k^{2}\right)}{24 a_{0} c_{5} k^{2}}$	
¹⁻W _S	i ^{⊥h} † ^α	Θ	Θ	0	$\frac{2 i k (3+k^2)}{\sqrt{3} a_{\theta} (2+k^2)^2}$	$\frac{\sqrt{\frac{2}{3}} k^2}{2 a + a \cdot k^2}$	$\frac{k^2 (5+2 k^2)}{\sqrt{3} \ a_{\theta} (2+k^2)^2}$	$\frac{-\frac{1}{c_5 k^2} + \frac{8(-2 k^2)}{a_6 (2 k^2)^2}}{24 \sqrt{2}}$	$\frac{1}{24} \sqrt{\frac{5}{2}} \left(-\frac{1}{c_{5} k^{2}} - \frac{8}{a_{0} (2+k^{2})} \right)$	$-\frac{1}{24c_{5}k^{2}}+\frac{2\left(17+14k^{2}+3k^{4}\right)}{3a_{0}\left(2+k^{2}\right)^{2}}$	$\frac{-\frac{1}{c_{\frac{1}{5}}k^{2}} - \frac{8(7+3k^{2})}{a_{\frac{1}{6}}(2+k^{2})}}{12\sqrt{2}}$	
¹⁻W _S	s ^{llh} † ^α	Θ	Θ	0	$-\frac{i\sqrt{\frac{2}{3}}k}{2a_{0}+a_{0}k^{2}}$	0	$-\frac{k^2}{\sqrt{6}\ a_{\bullet}(2+k^2)}$	$-\frac{1}{24c \cdot k^{2}} + \frac{1}{-2a \cdot -\frac{8a \cdot \theta}{\theta - 2+3k^{2}}}$	$-\frac{\sqrt{5} \left(a_{0}+4 c_{5} k^{2}\right)}{24 a_{0} c_{5} k^{2}}$	$\frac{-\frac{1}{c_{5}k^{2}} - \frac{8(7*3k^{2})}{a_{6}(2*k^{2})}}{12\sqrt{2}}$	$\frac{5}{3 a_{0}} - \frac{1}{12 c_{5} k^{2}}$:

2 . 0	$12c. k^2$	$^{2^{+}}\mathcal{T}^{\parallel}{}_{\alpha\beta}$	$^{2^{+}}_{\cdot}W_{a}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}W_{S}^{\parallel}_{\alpha\beta}$	$^{2^{+}}_{\bullet}W_{S^{\perp}}{}_{\alpha\beta}$	$^{2^{-}}W_{a}{}^{\parallel}{}_{\alpha\beta\chi}$	2 w_{s} $ _{\alpha\beta\chi}$	
	$^{2^{+}}\mathcal{T}^{\parallel}$ † lphaeta	$-\frac{8}{a_{0}k^{2}}$	$-\frac{4i\sqrt{2}}{a.k}$	$\frac{4i}{\sqrt{3} a_{0} k}$	$\frac{4 i \sqrt{\frac{2}{3}}}{a \cdot k}$	0	0	
	$^{2^{+}}_{\cdot}W_{a}^{\parallel}\uparrow^{\alpha\beta}$	$\frac{4i\sqrt{2}}{a.k}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_{0}}$	$\frac{4}{\sqrt{3} a}$	0	0	
	$^{2^{+}}W_{S}^{\parallel}$ † $^{\alpha\beta}$	$-\frac{4i}{\sqrt{3}}a_{0}k$	$\frac{2\sqrt{\frac{2}{3}}}{a_{\stackrel{\bullet}{0}}}$	$-\frac{8}{3 a_{\bullet}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\bullet}{\theta}}}$	0	0	
	$\overset{2^{+}}{\cdot}W_{S}^{\parallel} + \overset{\alpha\beta}{\cdot}$ $\overset{2^{+}}{\cdot}W_{S}^{\perp} + \overset{\alpha\beta}{\cdot}$	$-\frac{4i\sqrt{\frac{2}{3}}}{a.k}$	$\frac{4}{\sqrt{3} \ a_{0}}$	$-\frac{2\sqrt{2}}{3a_{\stackrel{\circ}{\theta}}}$	$\frac{8}{3 a_{\bullet}}$	0	0	
	2 · w_{a} $^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a}$	0	
	$^{2}W_{S}$ $\dagger^{\alpha\beta\chi}$	0	0	Θ	Θ	0	$\frac{4}{a}$	3•
							$3^{-}W_{S}^{\parallel} \uparrow^{\alpha\beta\chi}$	

Source constraints

Spin-parity form	Covariant form	Multiplicities
$k \cdot \mathcal{W}_{S}^{\parallel} + 2 k \cdot \mathcal{W}_{S}^{\perp h} - 6 i \cdot \mathcal{T}^{\perp} = 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} + \partial_{\chi} \partial^{\chi} \partial_{\alpha} \mathcal{W}^{\alpha\beta}_{\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k \stackrel{0^*}{\cdot} W_S^{\perp t} + 2 i \stackrel{0^*}{\cdot} \mathcal{T}^{\perp} == 0 $	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} = \partial_{\chi} \partial_{\beta} \partial_{\alpha} \mathcal{W}^{\alpha\beta\chi}$	1
$k^{1}W_{s}^{h^{\alpha}} - 6i^{1}T^{L^{\alpha}} = k(3^{1}W_{a}^{L^{\alpha}} + 1^{W_{s}^{L^{\alpha}}})^{2}$	$2\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\mathcal{W}^{\beta\alpha\chi} = 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\mathcal{T}^{\alpha\beta} + \partial_{\delta}\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{W}^{\beta\chi\delta}$	3
Total expected gauge generators:		5

Massive spectrum

(No particles)

Massless spectrum

Massless particle					
Pole residue: $\frac{1}{c_s}$	> 0				
Polarisations: 2					

Massless particle						
Pole residue:	0					
Polarisations:	2					

Unitarity conditions