The Network of Foreign Direct Investment Flows: Theory and Empirical Analysis¹

John Schoeneman² jbs5686@psu.edu PhD Candidate Boliang Zhu² bxz14@psu.edu Assistant Professor

Bruce Desmarais² bdesmarais@psu.edu Associate Professor

April 8, 2017

¹Acknowledgement: This material is based on work supported by the National Science Foundation under IGERT Grant DGE-1144860, Big Data Social Science.

²Pennsylvania State University

Introduction

- FDI as a Network
 - Clustering
 - Reciprocity
- Motivation
 - Violation of Independence Assumptions
 - Theoretical Importance of Dependence Terms
- Simultaneously test exogenous variables as well

FDI Network 2008

Color Scheme: Autocracy to Democracy is scaled as Blue to Red

Theory for Network Terms

Reciprocity

- Standard practice to resolve political opposition from competing firms
- Anti-reciprocal relationship in mixed dyads

Transitivity

- MNC expansion and supply-chain fragmentation
- Risk of Expropriation
- PTA networks

FDI Data and Exogenous Covariates

- Bilateral FDI statistics from UNCTAD, 2001-2012
- Dyad-level Covariates
 - Gravity +
 - Contiguity +
 - Common Language +
 - Four Types of Defense Treaties +
 - Colonial Relationships +
 - PTA depth¹ +

- Node-level Covariates
 - GDP per capita +/-
 - ullet GDP Growth Rate +
 - Polity IV +
 - Political Violence -
 - Trade Openness +

ERGM Count Model: Base

$$\mathsf{Pr}_{m{ heta};h;m{g}}(m{Y}=m{y}) = rac{h(m{y})\mathsf{exp}(m{ heta}\cdotm{g}(m{y}))}{m{\kappa}_{h,m{g}}(m{ heta})}$$
 Sum : $m{g}(m{y}) = \sum_{(i,j)\in\mathbb{Y}}m{y}_{i,j}$ Sum, Fractional Moment : $m{g}(m{y}) = \sum_{(i,j)\in\mathbb{Y}}m{y}_{i,j}^{1/2}$ Non-Zero : $m{g}_k = \sum \mathbb{I}(m{y}_{i,j}
eq 0)$

 $(i,i) \in \mathbb{Y}$

ERGM Count Model: Variables

$$\mathsf{Reciprocity}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \mathit{min}(\boldsymbol{y}_{i,j}, \boldsymbol{y}_{j,i})$$

$$\text{Transitive Weights}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \min \bigg(\boldsymbol{y}_{i,j}, \max_{k \in \mathcal{N}} \bigg(\min(\boldsymbol{y}_{i,k}, \boldsymbol{y}_{k,j}) \bigg) \bigg),$$

Dyadic Covariate :
$$oldsymbol{g}(oldsymbol{y},oldsymbol{x}) = \sum_{(i,j)} oldsymbol{y}_{i,j} x_{i,j}$$

Sender Covariate :
$$oldsymbol{g}(oldsymbol{y},oldsymbol{x}) = \sum_i x_i \sum_j oldsymbol{y}_{i,j}$$

Receiver Covariate :
$$\boldsymbol{g}(\boldsymbol{y}, \boldsymbol{x}) = \sum_{j} x_{j} \sum_{i} \boldsymbol{y}_{i,j}$$

Count Model and Network Dependencies

Covariate Results

Conclusion and Future Research

- Conclusion
 - Network terms are substantively important
 - Network terms need to be modeled instead of being assumed away
- Future Steps
 - Condition reciprocity on development
 - Assortativity
 - TERGM

References

Dür, A., Baccini, L., & Elsig, M. (2014). The design of international trade agreements: Introducing a new dataset. The Review of International Organizations, 9(3), 353-375.