Computer Networks

CMP2205

Lecture 5

Spread Spectrum

- Narrow frequency band -> good reception (power, bandwidth).
- But in some cases, wide band is used, aka, spread spectrum.
 - Modulate signal to increase bandwidth of signal to be transmitted.
- 2 variations:
 - Frequency Hopping (FH).
 - Transmitter hops frequencies
 - Direct Sequence (DS).
 - Use spreading code to convert each bit of the original signal into multiple bits.

Communication Satellites

- Weather balloons.
- The moon.
- Artificial satellites:
 - Geostationary.
 - -Medium-Earth Orbit.
 - -Low-Earth Orbit.

Satellite Communications

Satellite Communications

- Satellite-based antenna(e) in stable orbit above earth.
- Two or more (earth) stations communicate via one or more satellites serving as relay(s) in space.
- Uplink: earth->satellite.
- Downlink: satellite->earth.
- Transponder: satellite electronics converting uplink signal to downlink.

Orbits

- Shape: circular, elliptical.
- Plane: equatorial, polar.
- Altitude: geostationary (GEO), medium earth (MEO), low earth (LEO).

Communication Satellites

GEOs

- High-flying satellites.
- Orbit at 35,863 Km above earth and rotates in equatorial plane.
- Many GEO satellites up there!

GEO: Plus's and minus's

- Plus's:
 - Stationarity: no frequency changes due to movement.
 - Tracking by earth stations simplified.
 - At that altitude, provides good coverage of the earth.
- Minus's:
 - Weakening of signal.
 - Polar regions poorly served.
 - Delay!
 - Spectral waste for point-to-point communications.

Principal Satellite Bands

Band	Downlink	Uplink	Bandwidth	Problems
L	1.5 GHz	1.6 GHz	15 MHz	Low bandwidth; crowded
S	1.9 GHz	2.2 GHz	70 MHz	Low bandwidth; crowded
С	4.0 GHz	6.0 GHz	500 MHz	Terrestrial interference
Ku	11 GHz	14 GHz	500 MHz	Rain
Ka	20 GHz	30 GHz	3500 MHz	Rain, equipment cost

- . Downlink frequencies interfere with microwave.
- . Internationally-agreed frequency bands.

LEO Satellites

- Circular or slightly eliptical orbit under 2,000 Km.
- Orbit period: 1.5 to 2 hours.
- Coverage diameter: 8,000 Km.
- RTT propagation delay < 20ms (compared to > 300ms for GEOs).
- Subject to large frequency changes and gradual orbit deterioration.

LEO Constellations

- Advantages over GEOs:
 - Lower delay, stronger signal, more localized coverage.
- But, for broad coverage, many satellites needed.
- Example: Iridium (66 satellites).

LEOs

Low-Earth Orbit Satellites Iridium

- (a) The Iridium satellites from six necklaces around the earth.
- (b) 1628 moving cells cover the earth.

In Summary...

- GEOs
 - Long delay 250-300 ms.
- LEOs
 - Relatively low delay 40 200 ms.
 - Large variations in delay multiple hops/route changes, relative motion of satellites, queuing.

Satellite Data Rates

- Satellite has 12-20 transponders, each ranging from 36-50 Mbps.
- T1: 1.54 Mbps.
- T2: 6.312 Mbps.
- T3: 44.736 Mbps.
- T4: 274.176 Mbps.

The Mobile Telephone System

- First-Generation Mobile Phones: Analog Voice
- Second-Generation Mobile Phones: Digital Voice
- Third-Generation Mobile Phones:
 Digital Voice and Data

The "Cell" Concept

- (a) Frequencies not reused in adjacent cells.
- (b) To add more users, smaller cells.

Mobile Phone System Structure

- Hierarchy.
- Base station.
- Mobile Switching Center (MSC).
- MSCs connected through PSTN.

Handoffs

- As mobile phones move, they switch cells, and thus base stations.
- Soft versus hard handoffs.
 - Two base stations while handoff is in progress.
 - Hard handoff.
- Roaming.

Community Antenna Television

An early cable television system.

Internet over Cable

DSL

ADSL versus Internet over Cable

- Both uses fiber in the backbone.
- ADSL uses twisted pair and IoC uses coax on the edge.
- Coax has higher capacity but shared with TV.
- IoC's capacity is unpredicatble as it depends on how many users/traffic.

Data Link Layer

Application

Transport

Network

DLL

PHY

What does it do?

- What functions it performs?
- Typically:
 - Handling transmission errors, a.k.a., error control.
 - Flow control.
 - Framing.

Framing

DLL and the Stack

- (a) Virtual communication
- (b) Actual communication

DLL Between Routers

The DLL and PHY

- The PHY delivers raw sequence of bits.
 - Unreliable service.
- The DLL must detect and, in some cases, correct errors.

DLL's Error Control

- Break bit stream into frames.
- Check if frames arrived correctly.
- If not:
 - Discards frame.
 - In some cases also request retransmisssion.

Framing (Revisited)

- Not trivial.
- · Different methods.

Framing: Using Counters

(a) Without errors. (b) With one error.

Framing: Flag Byte

- Each frame starts and ends with special bytes: flag bytes.
- Two consecutive flag bytes indicate end of frame and beginning on new frame.
- Problem?

Framing: Flag Byte

- Each frame starts and ends with special bytes: flag bytes.
- Two consecutive flag bytes indicate end of frame and beginning on new frame.
- Problem?
 - What if flab bit pattern occurs in data?

Byte Stuffing

- (a) A frame delimited by flag bytes.
- (b) Four examples of byte sequences before and after stuffing.

Byte Stuffing (Cont'd)

- Single ESC: part of the escape sequence.
- Doubled ESC: single ESC is part of data.
- De-stuffing.

- Problem:
 - What if character encoding does not use 8-bit characters?

Bit Stuffing

- Allows character codes with arbitrary bits per character.
- Each frames begins and ends with special pattern.
- Example: 01111110.
- When sender's DLL finds 5 consecutive 1's in data stream, stuffs 0.
- When receiver sees 5 1's followed by 0, destuffs.

Bit Stuffing: Example

- (a) Original data.
- (b) Data as they appear on the line.
- (c) Data after de-stuffing.

Error Control

- Reliable delivery.
 - Hop-by-hop!
- Detecting errors.
- Detecting and correcting errors.

Acknowledgments

- Special control info (in the case of the DLL, control frame) acknowledging receipt of data.
- Positive and negative ACKs.
 - ACKs.
 - NACKs.

Are ACKs sufficient?

Reliable Delivery

- Timers.
- · Retransmission.
- Duplicate detection.

Flow Control

- Handles mismatch between sender's and receiver's speed.
 - Receiver's buffer limitation.
- Feedback-based flow control.
 - Explicit permission from receiver.
- Rate-based flow control.
 - Implicit mechanism for limiting sending rate.
- DLL typically uses feedback-based flow control.