

通用物体检测

基于锚框的单阶段法 (SSD/RetinaNet)

基于锚框的多阶段法 (Faster R-CNN)

级联地重复这个过程

内容回顾: 物体检测算法的总结 (基于锚框)

基于锚框的检测算法		多阶段法	单阶段法
相同点	检测思想	铺设的锚框为检测起点,对锚框的类别和位置进行矫正	
	检测起点	铺设的锚框	
	检测结果	新正的锚框	
不同点	难点问题之一	<u>小尺度物体</u> 人脸检测讲	正负样本的平衡
	锚框矫正次数	≥2次	1次
	检测精度	较高	较低
	检测速度	较慢	较快

无需锚框的关键点法 (CornerNet)

角点

无需锚框的中心域法 (FCOS)

⇒ 内容回顾:物体检测算法的总结 (无需锚框)

无需锚框算法	关键点法	中心域法	
算法动机	移除掉锚框,减少超参数,增加灵活性		
算法思想	先检测关键点,再进行配对来框定物体	铺设锚点替代锚框来检测物体	
算法优点	全新的检测流程,为检测带来了新的思 路	减少超参数,简化计算	
算法难点	不同关键点之间的配对问题	正负样本的划分问题	
计算速度	流程比较复杂,速度相对较慢	流程比较简单,速度相对较快	
检测精度	精度能达到甚至超过基于锚框的单阶段法		

- 物体检测环境配置
- 通用物体检测概述
- 基于锚框的检测算法
- 无需锚框的检测算法
- 物体检测算法的对比总结
- **文用检测算法的研究思路**

实用检测算法的研究思路: 对比探索

实用检测算法的研究思路: 对比探索

基于锚框的多阶段法 VS 单阶段法

基于锚框的多阶段法 VS 单阶段法: 本质区别

哪些区别带来的差异?

基于锚框的多阶段法 VS 单阶段法: 本质区别

■ 多阶段法与单阶段法的主要区别:多了一个额外的检测步骤

■ 该步骤让多阶段法具备以下特点: ① 二阶段的分类; ② 二阶段的回归

③ 二阶段的特征; ④ 特征的校准

多阶段法的二阶段分类过程

单阶段法的一阶段分类过程

多分类 (具体类别)

阶段分类

段分类

作用?

■ 问题:正负样本极度失衡(图中黑色为正,白色为负,比例为5:15)

■ 影响: 负样本极多, 难以训练, 导致分类效果不佳

■ 方案: 二阶段分类可以缓解该问题

■ 问题:正负样本极度失衡(图中黑色为正、白色为负,比例为5:15)

■ 影响: 负样本极多, 难以训练, 导致分类效果不佳

■ 方案: 二阶段分类可以缓解该问题 虽然正负样本比例为5:15

但只做简单的二分类任务

■ 问题:正负样本极度失衡(图中黑色为正、白色为负,比例为5:15)

■ 影响: 负样本极多, 难以训练, 导致分类效果不佳

经过第一阶段二分类的过滤之后

第二阶段多分类正负样本比例约1:1

■ 方案: 二阶段分类可以缓解该问题 虽然正负样本比例为5:15

但只做简单的二分类任务

不仅正负样本比例为5:15

而且是复杂的多分类任务

多阶段法的二阶段回归过程

单阶段法的一阶段回归过程

二阶段回归

- ①经过两个阶段的回归矫正,使得检测结果的位置更加精准
- ②经过第一阶段的回归矫正,可以为第二阶段提供更多的正样本

- 基础网络的特征是共享的
- 但两个阶段有着自己独有的特征来负责难度不同的任务

基于锚框的多阶段法 VS 单阶段法: 特征的校准

为什么 要做特征校准?

■ 多阶段法会使用一个RoI池化的操作,根据矩形框把特征扣出来进行校准

基于锚框的多阶段法 VS 单阶段法: 特征的校准

(a):第一阶段中,初始的锚框,初始的特征;图(b):经过第一阶段校正后的锚框,初始的特征;(c):经过第一阶段校正后的锚框,经过Rol池化校准后的特征

- 锚框回归后位置发生改变,因此特征应根据锚框进行校准,提高准确度
- 调整特征大小,使其一致易于批处理

基于锚框的多阶段法 VS 单阶段法: 总结

实用物体检测算法RefineDet

■ 多阶段法:精度较高,速度较慢

■ 单阶段法:精度较低,速度较快

■ 找到两者的本质区别,取之长补己短的改进思路

■ 提出RefineDet算法: 单阶段法的速度+多阶段法的精度

实用物体检测算法RefineDet: 改进思路

- 多阶段法精度较高的原因: 第二阶段带来的4个方面改进, 让精度得以提升
- 多阶段法速度较慢的原因: 4个改进中有些改进比较耗时, 导致速度变慢
- 前3个改进可以在单阶段法中高效实现:二阶段分类、回归、特征(高性价比)
- 最后1个改进,需要逐区域进行,导致速度变慢,且提升有限(低性价比)

Faster R-CNN中RPN步骤:

- ① 整张图传入VGG16或ResNet提取特征
- ② 选择下采样倍数为16的特征层作为检测层
- ③ 根据检测层预设一系列大小和比例的锚框 (9个)
- ④ 对锚框进行二分类和回归得到若干候选区域

Faster R-CNN中Fast R-CNN步骤:

- ① 利用RolPooling在检测层的特征上提取每个候选区域对应的特征
- ② 输入CNN/FC子网络来增强候选区域的特征
- ③ 对候选区域进行多分类和回归得到检测结果

利用RolPooling在检测层的特征上提取每个候选区域对应的特征,并转换为大小一致的特征

■ 目的①:特征大小一致后,不同候选区域可以组成一个批次,从而进行批处理

■ 目的②: 进过第一阶段的校准,锚框的位置发生了变化,因此需要进行特征校准

- 每个候选区域的大小不一样,位置不一样
- 每个候选区域需要单独处理,不能并行加速
- RoI池化以及其改进版,涉及到取整或插值等操作
- 因此,特征校准的RoI池化比较慢,尤其是候选区域较多时

实用物体检测算法RefineDet: 整体框架

- 在单阶段法中,集成多阶段法中高性价比的改进,抛弃低性价比的改进
- 从而在保持单阶段法的速度的同时,获得多阶段法的精度

- ➤ 锚框校准模块 (ARM)
 - 过滤负样本
 - 初步的边框校正
- ▶ 传输连接模块 (TCB)
 - 转换ARM特征
 - 融合高层特征
- ➤ 物体检测模块 (ODM)
 - 更好的特征
 - 精细的分类和回归

实用物体检测算法RefineDet: 锚框校准模块

- ➤ 锚框校准模块 (ARM)
 - 过滤负样本
 - 初步的边框校正

实用物体检测算法RefineDet: 传输连接模块

- ➤ 锚框校准模块 (ARM)
 - 过滤负样本
 - 初步的边框校正
- ➤ 传输连接模块 (TCB)
 - 转换ARM特征
 - 融合高层特征

- 传输连接模块≈FPN
- 当时FPN没有公布代码
- 实现的TCB有些细节不一样
- 使用ReLU, DeConv等

实用物体检测算法RefineDet: 物体检测模块

- ▶ 传输连接模块 (TCB)
 - 转换ARM特征
 - 融合高层特征
- ➤ 物体检测模块 (ODM)
 - 更好的特征
 - 精细的分类和回归

实用物体检测算法RefineDet: 二阶段分类

实用物体检测算法RefineDet: 二阶段回归

实用物体检测算法RefineDet: 二阶段特征

实用物体检测算法RefineDet: 二阶段特征

全卷积网络实现

少量额外计算

⇒ 实用物体检测算法RefineDet: 速度精度

System	VOC2007 test mAP	FPS (Titan X)	Number of Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	~6000	~1000 x 600
YOLO (GoogleNe)	63.4	45	98	448 x 448
YOLOv2 (Darknet-19)	78.6	40	845	544 x 544
SSD300* (VGG16)	77.2	46	8732	300 x 300
SSD512* (VGG16)	79.8	19	24564	512 x 512
RefineDet320 (VGG16)	80.0	40	6375	320 x 320
RefineDet512 (VGG16)	81.8	24	16320	512 x 512

- 单阶段法的速度
- 多阶段法的精度

实用物体检测算法RefineDet: 速度精度

System	VOC2007 test mAP	FPS (Titan X)	Number of Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	~6000	~1000 x 600
YOLO (GoogleNe)	63.4	45	98	448 x 448
YOLOv2 (Darknet-19)	78.6	40	845	544 x 544
SSD300* (VGG16)	77.2	46	8732	300 x 300
SSD512* (VGG16)	79.8	19	24564	512 x 512
RefineDet320 (VGG16)	80.0	40	6375	320 x 320
RefineDet512 (VGG16)	81.8	24	16320	512 x 512

- 相对于baseline的SSD,不仅精度提高2个点,速度变快5 FPS
- 精度提高得益于二阶段分类、二阶段回归、二阶段特征
- 速度变快是因为①用了更少的检测层 (6->4); ②用了更少锚框(25K->16K)

Component	RefineDet320			
negative anchor filtering?	_			
two-step cascaded regression?	✓	\checkmark		
transfer connection block?	✓	\checkmark	\checkmark	
mAP (%)	80.0	79.5	77.3	76.2

- 二阶段回归 +2.2
- 二阶段特征 +1.1

实用物体检测算法RefineDet: 代码开源

实用物体检测算法RefineDet

实用物体检测算法RefineDet

实用检测算法的研究思路: 对比探索

基于锚框的单阶段法 VS 无需锚框的中心域法

检测流程非常相似

基于锚框的单阶段法

锚框分类

锚框回归

无需锚框的中心域法

锚点设计

锚点分类

锚点回归

RetinaNet 与FCOS 的相同点

- 相同的基础网络
- 特征金字塔
- 分类子网络
- 回归子网络

RetinaNet和FCOS的不同点: ①正负样本定义

■ RetinaNet: 利用IoU选取正负训练样本

■ FCOS: 利用空间和尺度上的限制来选取正负训练样本

RetinaNet和FCOS的不同点: ②回归起点

■ RetinaNet: 从一个矩形框 (锚框) 开始回归物体

■ FCOS: 从一个点 (锚点) 开始回归物体

RetinaNet和FCOS的不同点: ③每个位置铺设的样本个数

■ RetinaNet: 在每个位置铺设了9个锚框 (3个比例和3个尺度)

■ FCOS: 在每个位置只铺设了一个锚点

SetinaNet和FCOS的不同点

- ① 正负训练样本定义的不同
- ② 回归的起点不同
- ③ 每个位置铺设的样本个数不同

哪一个是本质区别?

让FCOS在速度稍微变快的同时,精度得到提高

找到这个高效的本质区别,并加以改进提出ATSS

- 正负训练样本定义的不同
- ② 回归的起点不同

Inconsistency	FCOS		Ret	tinaNe	et (#A:	=1)	
GroupNorm	✓		√	√	√	√	✓
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	✓
In GT Box	✓				\checkmark	\checkmark	\checkmark
Centerness	✓					\checkmark	\checkmark
Scalar	✓						\checkmark
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

- 正负训练样本定义的不同
- ② 回归的起点不同

Inconsistency	FCOS	RetinaNet (#A=1)					
GroupNorm	√		√	√	√	√	√
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	\checkmark
In GT Box	✓				\checkmark	\checkmark	\checkmark
Centerness	✓					\checkmark	\checkmark
Scalar	✓						✓
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

- 正负训练样本定义的不同
- ② 回归的起点不同

Inconsistency	FCOS	RetinaNet (#A=1)					
GroupNorm	✓		√	√	√	\checkmark	√
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	✓
In GT Box	✓				\checkmark	\checkmark	✓
Centerness	✓					\checkmark	\checkmark
Scalar	✓						√
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

- 正负训练样本定义的不同
- ② 回归的起点不同

Inconsistency	FCOS	RetinaNet (#A=1)					
GroupNorm	✓		√	√	√	√	\checkmark
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	\checkmark
In GT Box	✓				\checkmark	\checkmark	✓
Centerness	✓					\checkmark	\checkmark
Scalar	✓						√
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0

实用物体检测算法ATSS: 探索本质区别

- ① 正负训练样本定义的不同
- ② 回归的起点不同

(a) Positive sample

(b) RetinaNet

(c) FCOS

Regression	Box	Point
Intersection over Union	37.0	36.9
Spatial and Scale Constraint	37.8	37.8

实用物体检测算法ATSS: 探索本质区别

- ① 正负训练样本定义的不同
- ② 回归的起点不同

(a) Positive sample

(b) RetinaNet

(c) FCOS

Regression Classification	Box	Point	
Intersection over Union Spatial and Scale Constraint	37.0 37.8	36.9 37.8	

实用物体检测算法ATSS: 探索本质区别

- ① 正负训练样本定义的不同
- ② 回归的起点不同

(a) Positive sample

(b) RetinaNet

(c) FCOS

Regression Classification	Box	Point
Intersection over Union	37.0	36.9
Spatial and Scale Constraint	37.8	37.8

⇒ 实用物体检测算法ATSS: 自适应训练样本选取

- ① 正负训练样本定义的不同
- ②回归的起点不同

实用物体检测算法ATSS: 自适应训练样本选取

① 正负训练样本定义的不同

②回归的起点不同

for each level $i \in [1, \mathcal{L}]$ do $S_i \leftarrow \text{ select } k \text{ anchors from } A_i \text{ whose center are closest to the center of ground-truth } g \text{ based on L2 distance;}$ $C_g = C_g \cup S_i;$

end for

compute IoU between C_g and g: $D_g = IoU(C_g, g)$; compute mean of D_g : $m_g = Mean(D_g)$; compute standard deviation of D_g : $v_g = Std(D_g)$; compute IoU threshold for ground-truth g: $t_g = m_g + v_g$;

- *L*是检测层的个数
- *A*_i是第i个检测层所关联的锚框
- *g*是真实标注
- *k*是超参数,默认值为9
- S_i是g在第i个检测层上选取的k个候选正样本
- C_a 是g所有的候选正样本

实用物体检测算法ATSS: 自适应训练样本选取

① 正负训练样本定义的不同

②回归的起点不同

```
for each level i \in [1, \mathcal{L}] do \mathcal{S}_i \leftarrow \text{ select } k anchors from A_i whose center are closest to the center of ground-truth g based on L2 distance; \mathcal{C}_g = \mathcal{C}_g \cup \mathcal{S}_i; end for compute IoU between \mathcal{C}_g and g: \mathcal{D}_g = IoU(\mathcal{C}_g, g); compute standard deviation of \mathcal{D}_g: w_g = Std(\mathcal{D}_g); compute IoU threshold for ground-truth g: t_g = m_g + v_g;
```


compute IoU threshold for ground-truth g: $t_q = m_g + v_g$;

① 正负训练样本定义的不同

②回归的起点不同

```
for each level i \in [1, \mathcal{L}] do \mathcal{S}_i \leftarrow \text{ select } k anchors from A_i whose center are closest to the center of ground-truth g based on L2 distance; \mathcal{C}_g = \mathcal{C}_g \cup \mathcal{S}_i; end for compute IoU between \mathcal{C}_g and g: \mathcal{D}_g = IoU(\mathcal{C}_g, g); compute mean of \mathcal{D}_g: m_g = Mean(\mathcal{D}_g); compute standard deviation of \mathcal{D}_g: v_g = Std(\mathcal{D}_g); v_g = g 跟所有候选正样本\mathcal{C}_g 的IoU的均值
```


每个物体都有一个自适应阈值

① 正负训练样本定义的不同

②回归的起点不同

```
for each level i \in [1, \mathcal{L}] do \mathcal{S}_i \leftarrow \text{ select } k \text{ anchors from } A_i \text{ whose center are closest to the center of ground-truth } g \text{ based on L2 distance;} \mathcal{C}_g = \mathcal{C}_g \cup \mathcal{S}_i; end for compute IoU between \mathcal{C}_g and g: \mathcal{D}_g = IoU(\mathcal{C}_g, g); compute mean of \mathcal{D}_g: m_g = Mean(\mathcal{D}_g); compute standard deviation of \mathcal{D}_g: v_g = Std(\mathcal{D}_g); compute IoU threshold for ground-truth g: t_g = m_g + v_g;
```

 $= t_g$ 是g从所有候选正样本 C_g 中选取最终正样本的阈值

① 正负训练样本定义的不同

② 回归的起点不同

for each level $i \in [1, \mathcal{L}]$ do

 $S_i \leftarrow \text{ select } k \text{ anchors from } A_i \text{ whose center are closest}$ to the center of ground-truth g based on L2 distance; $C_g = C_g \cup S_i$;

end for

compute IoU between C_g and g: $D_g = IoU(C_g, g)$; compute mean of D_g : $m_g = Mean(D_g)$; compute standard deviation of D_g : $v_g = Std(D_g)$; compute IoU threshold for ground-truth g: $t_g = m_g + v_g$;

① 正负训练样本定义的不同

② 回归的起点不同

for each level $i \in [1, \mathcal{L}]$ do

 $S_i \leftarrow \text{ select } k \text{ anchors from } A_i \text{ whose center are closest}$ to the center of ground-truth g based on L2 distance; $C_g = C_g \cup S_i$;

end for

compute IoU between C_g and g: $D_g = IoU(C_g, g)$; compute mean of D_g : $m_g = Mean(D_g)$; compute standard deviation of D_g : $v_g = Std(D_g)$; compute IoU threshold for ground-truth g: $t_g = m_g + v_g$;

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
			39.9			
RetinaNet (#A=1) + ATSS	39.3	57.5	42.8	24.3	43.3	51.3
FCOS	37.8	55.6	40.7	22.1	41.8	48.8
FCOS + Center sampling	38.6	57.4	41.4	22.3	42.5	49.8
FCOS + ATSS	39.2	57.3	42.4	22.7	43.1	51.5

ResNet-101	43.6	62.1	47.4	26.1	47.0	53.6
ResNeXt-32x8d-101	45.1	63.9	49.1	27.9	48.2	54.6
ResNeXt-64x4d-101	45.6	64.6	49.7	28.5	48.9	55.6
ResNet-101-DCN	46.3	64.7	50.4	27.7	49.8	58.4
ResNeXt-32x8d-101-DCN	47.7	66.6	52.1	29.3	50.8	59.7
ResNeXt-64x4d-101-DCN	47.7	66.5	51.9	29.7	50.8	59.4
ResNeXt-32x8d-101-DCN	50.6	68.6	56.1	33.6	52.9	62.2
ResNeXt-64x4d-101-DCN	50.7	68.9	56.3	33.2	52.9	62.4

⇒ 实用物体检测算法ATSS: 超参数分析

k									I
AP (%)	38.0	38.8	39.1	39.3	39.1	39.0	39.1	39.2	38.9

■ 超参k很鲁棒

⇒ 实用物体检测算法ATSS: 超参数分析

k	3	5	7	9	11	13	15	17	19
AP (%)	38.0	38.8	39.1	39.3	39.1	39.0	39.1	39.2	38.9

Scale	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
5	39.0	57.9	41.9	23.2	42.8	50.5
6	39.2	57.6	42.5	23.5	42.8	51.1
7	39.3	57.6	42.4	22.9	43.2	51.3
8	39.3	57.5	42.8	24.3	43.3	51.3
9	38.9	56.5	42.0	22.9	42.4	50.3

Aspect Ratio	AP	AP50	AP_{75}	AP_S	AP_M	AP_L
4:1	39.1	57.2	42.3	23.1	43.1	51.4
2:1	39.0	56.9	42.5	23.3	43.5	50.6
1:1	39.3	57.5	42.8	24.3	43.3	51.3
2:1	39.3	57.4	42.3	22.8	43.4	51.0
4:1	39.1	56.9	42.6	22.9	42.9	50.7

■ 超参k很鲁棒

- ATSS只在每个位置 铺设一个锚框
- ATSS使用不同尺度 和比例的锚框,精度 变化不大
- ATSS对不同尺度和 比例的锚框非常鲁棒

实用物体检测算法ATSS: 最后一个不同点

- ① 正负训练样本定义的不同
- ②回归的起点不同
- ③ 每个位置铺设的样本个数不同?

Inconsistency	FCOS	RetinaNet (#A=1)						
GroupNorm	✓		√	\checkmark	\checkmark	\checkmark	√	
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	✓	
In GT Box	✓				\checkmark	\checkmark	✓	
Centerness	✓					\checkmark	\checkmark	
Scalar	✓						./	
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0	

Method	#sc	#ar	AP	AP ₅₀	AP_{75}
RetinaNet (#A=9)	3	3	36.3	55.2	38.8
+Imprs.	3	3	38.4	56.2	41.6
+Imprs.+ATSS	3	3	39.2	57.6	42.7
+Imprs.+ATSS	3	1	39.3	57.7	42.6
+Imprs.+ATSS	1	3	39.2	57.1	42.5
+Imprs.+ATSS	1	1	39.3	57.5	42.8

■ 在基于IoU选取正负样本的情况下,每个位置铺设更多的锚框可以提升精度

实用物体检测算法ATSS: 最后一个不同点

- ① 正负训练样本定义的不同
- ②回归的起点不同
- ③ 每个位置铺设的样本个数不同?

Inconsistency	FCOS	RetinaNet (#A=1)						
GroupNorm	√		√	√	√	√	√	
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	\checkmark	
In GT Box	✓				\checkmark	\checkmark	\checkmark	
Centerness	✓					\checkmark	\checkmark	
Scalar	✓						\checkmark	
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0	

Method	#sc	#ar	AP	AP ₅₀	AP_{75}
RetinaNet (#A=9)	3	3	36.3	55.2	38.8
+Imprs.	3	3	38.4	56.2	41.6
+Imprs.+ATSS	3	3	39.2	57.6	42.7
+Imprs.+ATSS	3	1	39.3	57.7	42.6
+Imprs.+ATSS	1	3	39.2	57.1	42.5
+Imprs.+ATSS	1	1	39.3	57.5	42.8

- 在基于IoU选取正负样本的情况下,每个位置铺设更多的锚框可以提升精度
- 在所提出的ATSS算法下,每个位置铺设更多的锚框没有带来性能的提升

实用物体检测算法ATSS: 最后一个不同点

- ① 正负训练样本定义的不同
- ② 回归的起点不同
- ③ 每个位置铺设的样本个数不同?

Inconsistency	FCOS	RetinaNet (#A=1)						
GroupNorm	√		√	√	√	√	√	
GIoU Loss	✓			\checkmark	\checkmark	\checkmark	\checkmark	
In GT Box	✓				\checkmark	\checkmark	\checkmark	
Centerness	✓					\checkmark	\checkmark	
Scalar	✓						\checkmark	
AP (%)	37.8	32.5	33.4	34.9	35.3	36.8	37.0	

Method	#sc	#ar	AP	AP ₅₀	AP_{75}
RetinaNet (#A=9)	3	3	36.3	55.2	38.8
+Imprs.	3	3	38.4	56.2	41.6
+Imprs.+ATSS	3	3	39.2	57.6	42.7
+Imprs.+ATSS	3	1	39.3	57.7	42.6
+Imprs.+ATSS	1	3	39.2	57.1	42.5
+Imprs.+ATSS	1	1	39.3	57.5	42.8

- 在选取正负样本的情况下,每个位置铺设更多的锚框可以提升精度
- 在所提出的ATSS算法下,每个位置铺设更多的锚框没有带来性能的提升
- 因此,只要合理地选取训练正负样本,每个位置铺设多少个锚框,最终结果都相似
- 结论: 如果发挥多层锚框的作用, 还需要进一步探索

实用物体检测算法ATSS: 代码开源

实用物体检测算法ATSS: CVPR2020最佳论文奖提名

Paper award nominees

Weakly-supervised Domain Adaptation via GAN and Mesh Model for Estimating 3D Hand Poses Interacting Objects Seungryul Baek; Kwang In Kim; Tae-Kyun Kim

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Shangahe Wur Christian Runnrecht: Andrea Vedaldi

Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection Shifeng Zhang; Cheng Chi; Yongqiang Yao; Zhen Lei; Stan Li

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He; Haoqi Fan; Yuxin Wu; Saining Xie; Ross Girshick

BSP-Net: Generating Compact Meshes via Binary Space Partitioning

Zhiqin Chen; Andrea Tagliasacchi; Hao Zhang

Disentangled image generation through structured noise injection

Yazeed Alharbi; Peter Wonka

UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional Variational Autoencoders

Jing Zhang; Deng-Ping Fan; Yuchao Dai; Saeed Anwar; Fatemeh Sadat Saleh; Tong Zhang; Nick Barnes

TextureFusion: High-Quality Texture Acquisition for Real-Time RGB-D Scanning

Joo Ho Lee: Hyunho Ha: Yue Dong: Xin Tong: Min H. Kim

Controllable Orthogonalization in Training DNNs

Lei Huang; Li Liu; Fan Zhu; Diwen Wan; Zehuan Yuan; Bo Li; Ling Shao

DeepCap: Monocular Human Performance Capture Using Weak Supervision

Marc Habermann; Weipeng Xu; Michael Zollhöfer; Gerard Pons-Moll; Christian Theobalt

Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for Indoor Scenes from a Single Image Yinyu Nie; Xiaoguang Han; Shihui Guo; Yujian Zheng; Jian Chang; Jian.J Zhang

Thirty a rate, Alaegaang rian, eminar eac, rajian Energ, elan enang, elan

Transferring Cross-domain Knowledge for Video Sign Language Recognition

Dongxu Li; Xin Yu; Chenchen Xu; Lars Petersson; Hongdong Li

实用检测算法的研究思路: 对比探索

- 对比不同类型的检测算法,探索两者之间的本质区别
- 取之长补己短的改进思路,提出面向实用的全新算法

实用检测算法的研究思路: 对比探索

- 对比不同类型的检测算法,探索两者之间的本质区别
- 取之长补己短的改进思路,提出面向实用的全新算法

- ① 二阶段的分类
- ② 二阶段的回归
- ③ 二阶段的特征
- **④特征校准**

RefineDet算法

实用检测算法的研究思路: 对比探索

- 对比不同类型的检测算法,探索两者之间的本质区别
- 取之长补己短的改进思路,提出面向实用的全新算法

- ① 正负样本定义
- ②回归起始状态
- ③ 每个位置样本数量

ATSS算法

⇒ 课程作业

- 单步调试ATSS代码,总结RetinaNet和FCOS的区别
- 1. 代码链接 (https://github.com/sfzhang15/ATSS)
- 2. 按照安装教程,利用Anaconda配置ATSS的环境

- 3. 利用PyCharm单步调试ATSS的代码
- 4. 总结RetinaNet和FCOS的区别,熟悉ATSS的改进

感谢聆听 Thanks for Listening

