Interaction of η -meson with light nuclei

V. B. Belyaev Joint Institute for Nuclear Research, Dubna, 141980, Russia

S. A. Rakityansky*, S. A. Sofianos, and M. Braun Physics Department, University of South Africa, P.O.Box 392, Pretoria 0001, South Africa

W. Sandhas

Physikalisches Institut, Universität Bonn, D-53115 Bonn, Germany

(February 9, 2008)

Abstract

A microscopic treatment of η -nucleus scattering is presented. When applying the underlying exact integral equations, the excitation of the target are neglected, and an input ηN amplitude is chosen which reproduces the $S_{11}(1535)$ resonance. It is shown that the η -nucleus scattering lengths are quite sensitive to the ηN parameters and the nuclear wave functions. For a special choice of the parameters an $\eta^4 He$ quasi-bound state occurs.

I. INTRODUCTION

There are at least three main reasons which motivate studies concerning η -nucleus systems.

The first one is of a fundamental character and is related to the possibility of studying the quark structure of η -mesons and the nucleon $S_{11}(1535)$ -resonance, and the role played by the strange quarks in these systems. Recently, in experiments with $N\overline{N}$ annihilation into ϕ and ω channels [1], it was established that there is a strong polarization of the strange sea-quarks in nucleons. It is, therefore, interesting to investigate possible manifestation of this phenomenon also in η -nucleus systems.

The second reason concerns a pure nuclear problem, namely, the possible formation of η – nucleus bound states. It was argued by Haider and Liu [2] that, due to the rather strong attraction in the ηN -interaction at low energies, the η -meson, when immersed in the nucleus, might create a system which in some respects is analogous to a hypernucleus.

^{*}Permanent address: Joint Institute for Nuclear Research, Dubna, 141980, Russia

Estimations in [2] indicated that such a possibility exists for nuclei with atomic number $A \ge 12$.

Thirdly, Charge Symmetry Breaking (CSB) effects can be studied in processes involving η -production. Indeed, CSB was experimentally observed at Saturne [3] in the reaction

$$d + d \longrightarrow {}^{4}He + \pi^{0}, \tag{1}$$

near the threshold of η -production. It was found that the production of pions was much greater than the CSB expected from electromagnetic interaction. The experimental cross-section is equal to 0.97 pb/sr (at $E_d=1100$ MeV), while the one obtained from electromagnetic considerations is 0.003 pb/sr [4], the latter estimate being made at 600 MeV.

A possible explanation of CSB in the above reaction is that it can be attributed to the $\eta - \pi^0$ mixing, i.e., the process (1) can proceed via intermediate production of a pure η^0 meson state with isospin I = 0,

$$d + d \longrightarrow {}^{4}He + \eta^{0}, \tag{2}$$

which is an allowed reaction. The state $|\eta^0\rangle$ can be expressed as a linear combination of the physical ones, $|\eta\rangle$ and $|\pi^0\rangle$,

$$|\eta^0\rangle = \frac{1}{\sqrt{1+\lambda^2}}(|\eta\rangle + \lambda|\pi^0\rangle),\tag{3}$$

where the parameter λ characterises the $\eta - \pi^0$ mixing. From Eq. (3) it follows that λ is the proportionality constant between the amplitudes [5]

$$f(dd \to \alpha \pi^0) \sim \lambda f(dd \to \alpha \eta).$$
 (4)

The process (1), therefore, is no longer forbidden and one can expect a cross section much larger than the electromagnetic one.

Based on the above ideas, the authors of Ref. [6] obtained 0.12 pb/sr for the cross–section of the process (1) as compared to the experimental value of 0.97 pb/sr. To explain this discrepancy, fully microscopic few–body calculations, which take into account the $\eta - \pi^0$ mixing, should be performed.

We would also like to mention the possibility of studying processes of the type

$$d + d \longrightarrow {}^{4}He^{*} \left(\mathcal{J}^{P}, 0 \right) + \pi^{0}. \tag{5}$$

Here, ${}^{4}\!He^{*}(\mathcal{J}^{P},0)$ denotes excited states of ${}^{4}\!He$ nucleus with isotopic spin I=0 and different angular momenta and parities. These reactions might provide us with large cross sections due to the extended size of the excited ${}^{4}\!He$ nucleus.

Having the above in mind, and in order to get some insight into the physics of η -nucleus systems, we undertook microscopic investigations concerning the low-energy behaviour of the η -nucleus elastic scattering amplitude and the positions of poles of the corresponding t-matrices in the complex k-plane. Another issue addressed is up to what extent the attraction of the two-body ηN interaction should be enhanced in order to produce quasi-bound states in the η -nucleus system.

II. THE METHOD

Our method is based on the so-called Finite-Rank-Approximation (FRA) of the Hamiltonian proposed as an alternative to the multiple scattering theory of pion-nucleus interaction [7]. We, therefore, start by outlining this approach.

Consider the scattering of an η -meson from a nucleus of atomic number A. The total Hamiltonian of this system is

$$H = H_0 + V + H_A, \tag{6}$$

where H_0 is the kinetic energy operator (free Hamiltonian) of the η -nucleus motion, $V = V_1 + V_2 + \cdots + V_A$ is the sum of ηN -potentials, and H_A is the total Hamiltonian of the nucleus. Introducing the Green function

$$G_A(z) = \frac{1}{z - H_0 - H_A},\tag{7}$$

we obtain the following equation for the transition operator

$$T(z) = V + VG_A(z)T(z). (8)$$

For further developments, we introduce the (auxiliary) transition operator $T^0(z)$ via

$$T^{0}(z) = V + VG_{0}(z)T^{0}(z), (9)$$

where

$$G_0(z) = \frac{1}{z - H_0} \tag{10}$$

is the free Green function. From the definition of $G_0(z)$ and V, it is clear that T^0 describes the scattering of mesons by a nucleus in which the position of the nucleons is fixed. The operator T^0 differs from the usual fixed center t-matrix in two respects. Firstly, Eq. (9) contains the kinetic energy operator H_0 describing the motion of the η -meson with respect to the center of mass of the target, secondly, the energy argument of T^0 is taken to be that of the total energy z of the system.

Using the resolvent equation

$$G_A(z) = G_0(z) + G_0(z)H_AG_A(z),$$
 (11)

we easily infer from (8) and (9)

$$T(z) = T^{0}(z) + T^{0}(z)G_{0}(z)H_{A}G_{A}(z)T(z),$$
(12)

a form suitable for the low–energy approximation on which our approach is essentially based. The spectral decomposition of the nuclear Hamiltonian H_A reads

$$H_A = \sum_n \mathcal{E}_n^A |\Psi_n^A\rangle \langle \Psi_n^A| + \int E |\Psi_E^A\rangle \langle \Psi_E^A| \, dE \,, \tag{13}$$

where $|\Psi_n^A\rangle$ are the bound-state eigenfuntions of H_A with \mathcal{E}_n being the corresponding energies. Since we are interested in processes at energies far below the excited states or break-up thresholds of the nuclei, we can neglect all contributions to (13) except the ground-state part. That is, we use the approximation

$$H_A \approx \mathcal{E}_0^A |\Psi_0^A \rangle \langle \Psi_0^A|. \tag{14}$$

Inserting Eq. (14) into Eq. (12) and sandwiching with $|\Psi_0^A\rangle$, we obtain the Lippmann–Schwinger–type equation

$$T(\vec{k}', \vec{k}; z) = T^{0}(\vec{k}', \vec{k}; z) + \mathcal{E}_{0}^{A} \int \frac{d^{3}q}{(2\pi)^{3}} \frac{T^{0}(\vec{k}', \vec{q}; z)}{(z - \frac{q^{2}}{2\mu})(z - \mathcal{E}_{0} - \frac{q^{2}}{2\mu})} T(\vec{q}, \vec{k}; z), \tag{15}$$

where

$$T^{0}(\vec{k}', \vec{k}; z) = \int d^{3(A-1)}r |\Psi_{0}^{A}(\vec{r})|^{2} T^{0}(\vec{k}', \vec{k}; \vec{r}; z), \tag{16}$$

Here \vec{r} represents all nuclear Jacobi coordinates.

From a practical point of view it is convenient to rewrite Eq. (9) by using the Faddeevtype decomposition

$$T^{0}(z) = \sum_{i=1}^{A} T_{i}^{0}(z).$$

Introducing the operators

$$t_i(z) = V_i + V_i \frac{1}{z - H_0} t_i(z),$$

we finally get for the Faddeev components T_i^0 the following system of integral equations

$$T_{i}^{0}(\vec{k}', \vec{k}; \vec{r}; z) = t_{i}(\vec{k}', \vec{k}; \vec{r}; z) + \int \frac{d^{3}k''}{(2\pi)^{3}} \frac{t_{i}(\vec{k}', \vec{k}''; \vec{r}; z)}{z - \frac{k''^{2}}{2\mu}} \sum_{j \neq i} T_{j}^{0}(\vec{k}'', \vec{k}; \vec{r}; z).$$

$$(17)$$

The amplitude t_i describes the scattering of the η -meson off the i-th nucleon. It is expressed in terms of the corresponding two-body $t_{\eta N}$ -matrix via

$$t_i(\vec{k}', \vec{k}; \vec{r}; z) = t_{\eta N}(\vec{k}', \vec{k}; z) \exp \left[i(\vec{k} - \vec{k}') \cdot \vec{r_i} \right],$$

where $\vec{r_i}$ is the vector from the nuclear center of mass to the *i*-th nucleon and can be expressed in terms of the Jacobi coordinates $\{\vec{r}\}$.

To get the nuclear wave function we used the so-called Integro—Differential Equation—Approach (IDEA) [8,9]. In this approach the wave-function of a nucleus consisting of A nucleons is decomposed in Faddeev-type components

$$\Psi(\mathbf{r}) = \sum_{i < j \le A} \psi_{ij}(\mathbf{r}),$$

obeying

$$(h_0 - E)\psi_{ij}(\mathbf{r}) = -V(r_{ij}) \sum_{k < l \le A} \psi_{kl}(\mathbf{r}).$$

Here h_0 is the kinetic energy operator of the nucleus, and V_{ij} is the potential between nucleons i and j. These components are written as a product of a harmonic polynomial $H_{[L_m]}$ and an unknown function P

$$\psi_{ij}(\mathbf{r}) = H_{[L_m]}(\mathbf{r}) \frac{1}{\rho^{\mathcal{L}_0 + 1}} P(z, \rho),$$

where P depends only on the pair separation $r_{ij} = \sqrt{\rho(1+z)/2}$ and the hyperradius $\rho = \left[2/A\sum r_{ij}^2\right]^{1/2}$. Eventually, one has to solve an integro-differential equation for this function P which, for an A-boson system, reads [8,9]

$$\left\{ \frac{\hbar^2}{m} \left[-\frac{\partial^2}{\partial \rho^2} + \frac{\mathcal{L}_0(\mathcal{L}_0 + 1)}{\rho^2} - \frac{4}{\rho^2} \frac{1}{W_0(z)} \frac{\partial}{\partial z} (1 - z^2) W_0(z) \frac{\partial}{\partial z} \right] \right. \\
\left. + \frac{A(A - 1)}{2} V_0(\rho) - E \right\} P(z, \rho) = \\
\left. - \left[V \left(\rho \sqrt{\frac{1+z}{2}} \right) - V_0(\rho) \right] \left\{ P(z, \rho) + \int_{-1}^{+1} f_0(z, z') P(z', \rho) dz' \right\}.$$

 $V_0(\rho)$ is the hypercentral potential. The details of the method which takes into account the two-body correlations exactly can be found in Refs. [8,9].

III. RESULTS

To solve Eq. (15) we need, as an input to Eq. (17), the two-body ηN -amplitude (or the corresponding t-matrix) and the ground state wave function Ψ_0^A of the nucleus. For $t_{\eta N}$ we employ the S-wave separable form

$$t_{\eta N}(k, k', z) = \frac{\lambda}{(k^2 + \alpha^2)(z - E_0 + i\Gamma/2)(k'^2 + \alpha^2)}$$
(18)

where E_0 and Γ are the position and width of the S_{11} resonance. Different sets of parameters α and λ are chosen such that the scattering lengths in [10] are reproduced.

For such a form, the equation for T^0 can be solved analytically. The results thus obtained are given in Table 1. The required nuclear wave functions were constructed using the Integro–differential Equation with the Malfliet-Tjon I+III (MT) nucleon–nucleon potential [11]. As can be seen there is a strong dependence of the resulting η –nucleus scattering length on the two-body input. A large ηN –scattering length generates a strong attraction of the η –meson by the three– and four–nucleon systems.

In Table 2 we present η -nucleus scattering lengths obtained by using two different sets of the nuclear wave functions, namely, the one constructed using the IDEA with MT potential

and a phenomenological one of Gaussian form chosen to reproduce the root mean square radii of the nuclei obtained via the IDEA. We see that the considerable difference found for ${}^{2}H$ practically vanishes when going over to ${}^{4}He$.

TABLES

TABLE I. The η -nucleus scattering lengths (in fm) for 9 combinations of the range parameter α and the $a_{\eta N}$ scattering length [10,12,13].

	$\alpha = 2.357 \; (\text{fm}^{-1})$	$\alpha = 3.316 \; (\text{fm}^{-1})$	$\alpha = 7.617 \text{ (fm}^{-1})$	$\alpha_{\eta N}$ (fm)
^{2}H	0.65 + i0.86	0.62 + i0.91	0.54 + i0.97	
^{3}H	0.81 + i1.90	0.66 + i1.98	0.41 + i2.00	0.27 + i0.22
^{3}He	0.79 + i1.90	0.64 + i1.98	0.39 + i2.00	
4He	0.23 + i3.54	-0.40+i3.43	-0.96 + i2.95	
^{2}H	0.74 + i0.77	0.73 + i0.83	0.67 + i0.91	
^{3}H	1.12 + i1.82	0.99 + i1.96	0.71 + i2.07	0.28 + i0.19
^{3}He	1.10 + i1.83	0.97 + i1.91	0.68 + i2.07	
4He	0.96 + i3.99	0.06 + i4.13	-0.91 + i3.62	
^{2}H	1.38 + i2.27	1.05 + i2.45	0.57 + i2.34	
^{3}H	-1.44 + i4.60	-1.72 + i3.76	-1.56 + i3.00	0.55 + i0.30
^{3}He	-1.42 + i4.54	-1.68 + i3.74	-1.53 + i2.99	
4He	-3.66 + i1.78	-2.96+i1.39	-2.42+i1.25	

TABLE II. The η -nucleus scattering lengths (in fm) for different nuclear wave functions. In all cases $a_{\eta N}{=}0.55{+}i0.30$ fm.

Model	IDEA	Gaussian
^{2}H	1.05 + i2.45	0.57 + i2.14
^{3}H	-1.72 + i3.76	-1.42 + i4.32
3He	-1.68 + i3.74	-1.39 + i4.28
4He	-2.96+i1.39	-3.07 + i1.48

To find at which values of the ηN -scattering length a quasi-bound state appears in the η -nucleus system, we write the $\eta - N$ scattering length in terms of two parameters g_1 and g_2

$$a_{\eta N} = (0.55g_1 + i0.30g_2) \text{ fm}.$$

Note that $g_1 = g_2 = 1$ is just one of the choices in Table 1. These parameters are varied until the η -nucleus T-matrix exhibits a pole for Re E = 0. Preliminary results of this search with Gaussian type wave functions are given in Table 3.

	$\alpha = 2.357 \text{ (fm}^{-1}\text{)}$	$\alpha = 3.316 \text{ (fm}^{-1}\text{)}$	$\alpha = 7.617 \text{ (fm}^{-1}\text{)}$	g_2
d	1.610	1.613	1.547	0
	1.654	1.566	1.535	1
t	1.293	1.124	0.996	0
	1.361	1.310	1.260	1
$^3{ m He}$	1.302	1.204	1.130	0
	1.330	1.221	1.144	1
⁴ He	1.075	0.992	0.910	0
	0.955	0.911	0.899	1

TABLE III. Values of g_1 at which a quasi-bound state appears.

It is seen that an η – 4He quasi-bound state for realistic values of $a_{\eta N}$ can exist. In all other cases, the physical ηN input, has to be modified in order to be able to support a corresponding quasi-bound state.

Finally, we mention that using the auxiliary matrix T^0 instead of the full solution of Eq. (15), we obtained completely different results.

IV. CONCLUSIONS

We have investigated ηA systems with $A \leq 4$ in the framework of a few-body microscopic approach by using different two-body input parameters and nuclear bound state wave functions. The results can be summarized as follows:

- There is a remarkable increase of attraction with increasing atomic number.
- The same tendency appears for all nuclei when the ηN scattering length is increased.
- It is important in calculating ηA observables to use microscopically constructed wave functions.
- The fixed scatterer approximation, corresponding to the use of T^0 instead of T, is inadequate in describing the η -nucleus system.
- There is a strong indication that the η^4He system can form a quasi-bound state.

REFERENCES

- [1] M. G. Sapozhnikov, Preprint JINR (Dubna) E15-94-501; J. Ellis et al. CERN preprint, TH/94-7326, Geneva,1994.
- [2] Q. Haider, L. C. Liu, Phys. Lett., **172 B**, 257(1986)
- [3] R. Frascaria et al., Phys. Rev. C 50, R537(1994)
- [4] C. Y. Cheung, Phys. Lett., **119 B**, 47(1982)
- [5] C. Wilkin, Phys. Lett., **331 B**, 276(1994)
- [6] S. A. Coon and B. M. Preedons. Phys. Rev. C 33, 605(1986)
- [7] V. B. Belyaev, in *Lectures on the theory of few-body systems*, Springer-Verlag, Heidelberg, 1990
- [8] M. Fabre de la Ripelle, H. Fiedeldey, and S. A. Sofianos, Phys. Rev. C 38, 449(1988)
- [9] W. Oehm, S. A. Sofianos, H. Fiedeldey, and M. Fabre de la Ripelle, Phys. Rev. C44, 81(1991)
- [10] R. S.Bhalerao, L. C. Liu, Phys. Rev. Lett., 54, 865(1985)
- [11] R. A. Malfliet and J.A. Tjon, Nucl. Phys. A127, 161 (1969); Ann. Phys. (N.Y.) 61, 425 (1970)
- [12] C. Wilkin, Phys. Rev., C 47, R938(1993)
- [13] C. Bennhold, H. Tanabe, Nucl. Phys., A 530, 625(1991)