Solution TD nº 3

Exo1: Phome du plus court chemin:

1. Bellman-Ford (Les ppc depuis le sommet 2):

Iter	2	1	3	4	5	6
0	0	+0	+0	+00	+00	+ ~
1	0	+ 00	15,0	1,2	11,2	+ 00
2	0	-1, (F)	15,0	1,2	3,4	+00
3	0	-1,4	15,0	1,2	3, 4	2,1
4	0	-1,@	13,6	[1,0]	[3,4]	2,0

2. Dijkstra (Les ppe depuis le sommet 6):

	Iter	-11	12	3	4	5	6
	0	+00	+00	+00	+00	+ ∞	0
1	1	+00	9,6	11,6	+00	19,6	
1	2	+∞		11,6	10,0	19,6	
T	3	12,4		11,6		12,4	ľ
	4	12,4				12,4	
	5					12,4	

Edo 2: Plane de Coloration des graphes:

(les numéros désignent les couleurs) 1: Couleur 1 2: Couleur 2

On utilisant l'algo de coloration de Welsh & Powell:

1. On tri les sommets dans l'ordre décroissant de leurs dégrée { A, C, B, D, E, G, F, H }. 2. priis, je donne des Couleurs ou numéros au sommets de manière que 2 sommets adjacents ne penvent pas avoir la m couleur => 4 couleur pour G. => Le nbr min de Wagons qu'il faut est 4.

EX03:

1: Couleur 1 2: couleur 2

{5,8,2,3,11,12,14,1,6,7,9,10,4,13} -> Le nbr chromatique de G4 égale à 4 (4 couleurs) Exo4 : Flot maximal et coupe minimale:

525t -> ""

5365t -> ""

5365t -> ""

53664t -> ""

51364t -> ""

5165t -> ""

51664t -> ""

5164t -> ""

5164t -> ""