Ex: 8.1 In the current source of Example 8.1 (Fig. 8.1) we have $I_O = 100 \,\mu\text{A}$ and we want to reduce the change in output current, ΔI_O , corresponding to a 1-V change in output

voltage, ΔV_O , to 1%

of I_0 .

That is,
$$\Delta I_O = \frac{\Delta V_O}{r_{o2}} = 0.01 I_O \Rightarrow \frac{1 \text{ V}}{r_{o2}}$$

 $= 0.01 \times 100 \,\mu A$

$$r_{o2} = \frac{1 \text{ V}}{1 \mu \text{A}} = 1 \text{ M}\Omega$$

$$r_{o2} = \frac{V_A' \times L}{I_O} \Rightarrow 1 \text{ M}\Omega = \frac{20 \times L}{100 \text{ u.A}}$$

$$\Rightarrow L = \frac{100 \text{ V}}{20 \text{ V/} \mu\text{m}} = 5 \mu\text{m}$$

To keep V_{OV} of the matched transistors the same as that in Example 8.1, $\frac{W}{I}$ of the transistor should

$$\frac{\textit{W}}{\textit{5}\,\mu\text{m}} = \frac{10\,\mu\text{m}}{\textit{1}\,\mu\text{m}} \Rightarrow \textit{W} = \textit{50}\,\mu\text{m}$$

So the dimensions of the matched transistors Q_1

$$\Rightarrow \left(\frac{W}{L}\right)_2 = \frac{120}{200 \times (0.2)^2} = 15 \Rightarrow W_2$$

$$= 15 \times L$$

$$W_2 = 15 \,\mu\text{m}, \ \frac{W_2}{W_1} = 6 \Rightarrow W_1 = \frac{W_2}{6} = 2.5 \,\mu\text{m}$$

$$\frac{W_3}{W_1} = 2 \Rightarrow W_3 = 2 \times W_1 = 5 \,\mu\text{m}$$

To allow the voltage at the drain of Q_5 to go up to within 0.2 V of positive supply, we need $V_{OV5} = 0.2 \text{ V}$:

$$I_5 = \frac{1}{2} k_p' \left(\frac{W}{L}\right)_5 V_{OV5}^2$$

$$80 \,\mu\text{A} = \frac{1}{2}80 \,\frac{\mu\text{A}}{\text{V}^2} \left(\frac{W}{L}\right)_{\epsilon} (0.2)^2 \Rightarrow$$

$$\left(\frac{W}{L}\right)_5 = \frac{2 \times 80}{80 \times (0.2)^2} = 50 \Rightarrow W_5 = 50 L_5$$

$$W_5 = 50 \,\mu\text{m}$$

$$\frac{W_5}{W_4} = 4 \Rightarrow W_4 = \frac{50 \,\mu\text{m}}{4} = 12.5 \,\mu\text{m}$$

Ex: 8.3 From Eq. (8.21) we have

Assignment W = 50 µm as L = 5 µm Ojectv4 E2Xamv5F161pm

Ex: 8.2 For the circuit of Fig. 8.4 we have

$$I_{2} = I_{REF} \frac{(W/L)_{1}}{(W/L)_{1}} \frac{\text{Therefore the law conditions of the law conditions of the law conditions of the law conditions are supported by the law conditions and the law conditions are supported by the law conditions are suppor$$

 $L_1 = L_2 = \cdots = L_5 = 1 \ \mu\text{m}$

$$I_{\text{REF}} = 10 \,\mu\text{A}, \ I_2 = 60 \,\mu\text{A}, \ I_3 = 20 \,\mu\text{A}, \ I_4 = I_3 = 20 \,\mu\text{A}, \ \text{and} \ I_5 = 80 \,\mu\text{A},$$

we have

$$I_2 = I_{\text{REF}} \frac{W_2}{W_1} \Rightarrow \frac{W_2}{W_1} = \frac{I_2}{I_{\text{RFF}}} = \frac{60}{10} = 6$$

$$I_3 = I_{\text{REF}} \frac{W_3}{W_1} \Rightarrow \frac{W_3}{W_1} = \frac{I_3}{I_{\text{REF}}} = \frac{20}{10} = 2$$

$$I_5 = I_4 \frac{W_5}{W_4} \Rightarrow \frac{W_5}{W_4} = \frac{I_5}{I_4} = \frac{80}{20} = 4$$

To allow the voltage at the drain of Q_2 to go down to within 0.2 V of the negative supply voltage, we need $V_{OV2} = 0.2 \text{ V}$:

$$I_2 = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_2 V_{OV2}^2 = \frac{1}{2} k'_n \left(\frac{W}{L}\right)_2 V_{OV2}^2$$

$$60 \,\mu\text{A} = \frac{1}{2}200 \,\frac{\mu\text{A}}{\text{V}^2} \left(\frac{W}{L}\right)_2 (0.2)^2$$

$$= 1.02 \text{ mA}$$

$$I_0 = 1.02 \text{ mA}$$

$$R_o = r_{o2} = \frac{V_A}{I_O} = \frac{100 \text{ V}}{1.02 \text{ mA}} = 98 \text{ k}\Omega \simeq 100 \text{ k}\Omega$$

Ex: 8.4

From Eq. (8.23), we have

$$I_O = \frac{I_{\text{REF}}}{1 + (2/\beta)} \left(1 + \frac{V_O - V_{BE}}{V_A} \right)$$

= 0.88 mA/V

 $1 = \sqrt{2 \times 0.4 \times \left(\frac{W}{L}\right) \times 0.1}$

$$A_0 = 50 \left(\frac{10}{100}\right)^{1/2} = 15.8 \text{ V/V}$$

For $I_D = 1$ mA, we have

$$g_m = 0.28 \text{ mA/V} \left(\frac{1}{0.010}\right)^{1/2} = 2.8 \text{ mA/V}$$

$$A_0 = 50 \left(\frac{0.010}{1}\right)^{1/2} = 5 \text{ V/V}$$

Ex: 8.8

Since all transistors have the same

$$\frac{W}{L} = \frac{7.2 \,\mu\text{m}}{0.36 \,\mu\text{m}},$$

 $I_{C1} = I = 100 \,\mu\text{A} = 0.1 \,\text{mA}$

$$g_{m1} = \frac{I_{C1}}{V_T} = \frac{0.1 \text{ mA}}{25 \text{ mV}} = 4 \text{ mA/V}$$

$$R_{\rm in} = r_{\pi 1} = \frac{\beta_1}{g_{m1}} = \frac{100}{4 \text{ mA/V}} = 25 \text{ k}\Omega$$

$$r_{o1} = \frac{V_A}{I} = \frac{50 \text{ V}}{0.1 \text{ mA}} = 500 \text{ k}\Omega$$

$$r_{o2} = \frac{|V_A|}{I} = \frac{50 \text{ V}}{0.1 \text{ mA}} = 500 \text{ k}\Omega$$

$$A_0 = g_{m1} r_{o1} = (4 \text{ mA/V}) (500 \text{ k}\Omega) = 2000 \text{ V/V}$$

$$A_v = -g_{m1} (r_{o1} \parallel r_{o2}) = -(4 \text{ mA/V}) \times$$

$$(500 \text{ k}\Omega \parallel 500 \text{ k}\Omega) = -1000 \text{ V/V}$$

Ex: 8.10 Refer to Fig. 8.18(b),

$$v_o = iR_L$$

$$v_{\rm sig} = i(R_s + R_{\rm in})$$

Thus,

$$\frac{v_o}{v_{\text{sig}}} = \frac{R_L}{R_s + R_{\text{in}}} \qquad \text{Q.E.D}$$

Assignment Project Exam Help

 $= I_{D1} = 100 \,\mu\text{A}$ Ex: 8.11 Since $g_m r_o \gg 1$, we use Eq. (8.54),

$$r_{o1} = \frac{V'_{An}L_1}{I_{D1}} = \frac{5 \text{ V/}\mu\text{m} (0.36 \text{ }\mu\text{m})}{0.1 \text{ mA}} = 18 \text{ k}\Omega$$

$$r_{o2} = \frac{|V'_{Ap}|L_2}{I_{D2}} = \frac{6 \text{ V/}\mu\text{m} (0.36 \text{ }\mu\text{m})}{0.1 \text{ mA}} = 21.6 \text{ k}\Omega$$

Voltage gain is

$$A_v = -g_{m1} \left(r_{o1} \parallel r_{o2} \right)$$

$$A_v = -(1.24 \text{ mA/V}) (18 \text{ k}\Omega \parallel 21.6 \text{ k}\Omega)$$

$$= -12.2 \text{ V/V}$$

Ex: 8.9

Ex: 8.12 For
$$g_m r_o \gg 1$$
, we use Eq. (8.58),

$$R_{\rm out} \simeq r_o + (g_m r_o) R_s$$

to obtain

R_s	0	r_o	$(g_m r_o) r_o$	∞
$R_{\rm out}$	r_o	$(g_m r_o) r_o$	$(g_m r_o)^2 r_o$	∞

Ex: 8.13 A_{vo} remains unchanged at $g_m r_o$. With a load resistance R_L connected,

$$A_v = A_{vo} \frac{R_L}{R_L + R_o}$$

$$= (a, r) \frac{R_L}{R_L}$$

$$R_{
m in} \simeq r_e rac{r_o + R_L}{r_o + rac{R_L}{eta + 1}}$$

to obtain

R_L	0	r_o	$(\beta+1)r_o$	∞
$R_{\rm in}$	r_e	$2 r_e$	$rac{1}{2}r_{\pi}$	r_{π}

Ex: 8.15 Using Eq. (8.68),

$$R_{\text{out}} \simeq r_o + (g_m r_o)(R_e \parallel r_\pi)$$

we obtain

R_e	0	r_e	r_{π}	r_o	∞		
$R_{ m out}$	r_o	2 <i>r</i> _o	$\left \left(\frac{\beta}{2} + 1 \right) r_o \right $	$(\beta+1)r_o$	$(\beta+1)r_o$		

Ex: 8.16 $R_o = [1 + g_m(R_e \parallel r_\pi)]r_o$

where

$$g_m = 40 \text{ mA/V}, \ r_\pi = \frac{\beta}{g_m} = 2.5 \text{ k}\Omega,$$

$$R_e = 0.5 \text{ k}\Omega$$
, and $r_o = \frac{V_A}{I_C} = \frac{10}{1} = 10 \text{ k}\Omega$

Ex: 8.19

If all transistors are matched and are obviously operating at the same I_D , then all $|V_{OV}|$ will be equal and equal to that of Q_1 , namely, $|V_{OV}| = 0.7 - 0.5 = 0.2 \text{ V}$

Assignment Project $_{P_0}$ = [1 + 40(0.5 || 2.5)] × 10 = 1.0 - 0.5 - 0.2 = 0.3 V

 $= 177 \text{ k}\Omega$

The lowest $v_{\rm DS2}$ can go is $|V_{OV}|=0.2~{\rm V}$

Without emitted the post of the contraction with the contraction $\frac{1}{2}$ without emitted the contraction $\frac{1}{2}$ without emitted $\frac{1}{2}$ with emitted $\frac{1}{2}$ without emitted $\frac{1}{2}$ without Similarly, $V_{SG4} = V_{SG3} = 0.7 \text{ V}$

$$V_{D4} = V_{S3} = V_{G3} + |V_t| + |V_{OV}|$$

Ex: 8.17 Since he of transitto p mercases houtput resistance by a factor approximately equa

 $K \simeq g_{m2}r_{o2}$

 v_{SD3} can go as low as $|V_{OV}|$, so

$$v_{O_{\text{max}}} = V_{D4} - v_{SD3_{\text{min}}} = 1.5 - 0.2 = 1.3 \text{ V}$$

Ex: 8.18 If L is halved $\left(L = \frac{0.55 \,\mu\text{m}}{2}\right)$ and $|V_A| = |V_A'| \cdot L$, we obtain

$$|V_A| = 5 \text{ V/}\mu\text{m} \left(\frac{0.55 \,\mu\text{m}}{2}\right) = 1.375 \text{ V}$$

$$R_o = \frac{|V_A|}{|V_{OV}|/2} \cdot \frac{|V_A|}{I_D} = \frac{2 (1.375 \text{ V})^2}{(0.3 \text{ V}) (100 \text{ } \mu\text{A})}$$

$$= 126 \text{ k}\Omega$$

Since
$$I_D = \frac{1}{2} \left(\mu_p C_{ox} \right) \left(\frac{W}{L} \right) |V_{OV}|^2 \left(1 + \frac{V_{SD}}{|V_A|} \right)$$

$$\frac{W}{L} = \frac{2(100 \,\mu\text{A})}{90 \,\mu\text{A/V}^2(0.3 \,\text{V})^2 \left(1 + \frac{0.3 \,\text{V}}{1.375 \,\text{V}}\right)}$$

$$\frac{W}{I} = 20.3$$

Ex: 8.20 Refer to Fig. 8.33.

$$g_{m1} = g_{m2} = g_{m3} = g_{m4} = \frac{2 I_D}{|V_{OV}|} = \frac{2 \times 0.2}{0.2}$$

= 2 mA/V

$$r_{o1} = r_{o2} = r_{o3} = r_{o4} = \frac{|V_A|}{I_D} = \frac{2}{0.2} = 10 \text{ k}\Omega$$

$$R_{on} = (g_{m2}r_{o2})r_{o1} = (2 \times 10) \times 10 = 200 \text{ k}\Omega$$

$$R_{op} = (g_{m3}r_{o3})r_{o4} = (2 \times 10) \times 10 = 200 \text{ k}\Omega$$

$$R_o = R_{on} \| R_{op} = 200 \| 200 = 100 \text{ k}\Omega$$

$$A_v = -g_{m1}R_o = -2 \times 100 = -200 \text{ V/V}$$

Ex: 8.21
$$\sigma_{1} = \sigma_{2} = \sigma$$

$$= \frac{I_D}{\frac{V_{OV}}{2}} = \frac{0.1 \text{ mA}}{(0.2/2) \text{ V}} = 1 \text{ mA/V}$$

$$r_{o1} = r_{o2} = r_o$$

= $\frac{V_A}{I_D} = \frac{2 \text{ V}}{0.1 \text{ mA}} = 20 \text{ k}\Omega$

so,
$$g_m r_o = 1 \text{ mA/V} (20 \text{ k}\Omega) = 20$$

(a) For $R_L = 20 \text{ k}\Omega$,

$$R_{\text{in}2} = \frac{R_L + r_{o2}}{1 + g_{m2}r_{o2}} = \frac{20 \text{ k}\Omega + 20 \text{ k}\Omega}{1 + 20} = 1.9 \text{ k}\Omega$$

$$\therefore A_{v1} = -g_{m1} \left(r_{o1} \parallel R_{\text{in2}} \right)$$

$$= -1 \text{ mA/V} (20 \parallel 1.9) = -1.74 \text{ V/V}$$

If we use the approximation of Eq. (8.83),

$$R_{\rm in2} \approx \frac{R_L}{g_{m2}r_{o2}} + \frac{1}{g_{m2}} = \frac{20 \text{ k}\Omega}{20} + \frac{1}{1 \text{ mA/V}} = 2 \text{ k}\Omega$$

$$A_{v1} = -1 \text{ mA/V} (20 \text{ k}\Omega \parallel 2 \text{ k}\Omega) = -1.82 \text{ V/V}$$

Continuing, from Eq. (8.80),

$$A_v = -g_{m1} [(g_{m2}r_{o2}r_{o1}) \parallel R_L]$$

$$A_v = -1 \text{ mA/V } \{ [(20) (20 \text{ k}\Omega)] \parallel 20 \text{ k}\Omega \}$$

(a)
$$I_{D1} = I$$
 and $I_{D2} = I$

Since $V_{OV1} = V_{OV2} = 0.2 \text{ V}$, we have

$$\frac{I_{D2}}{I_{D1}} = \frac{\frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_2 V_{OV2}^2}{\frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{OV1}^2} = \frac{I}{I} = 1$$

Thus,

$$\frac{k_p'\left(\frac{W}{L}\right)_2}{k_n'\left(\frac{W}{L}\right)_1} = 1 \Rightarrow \left(\frac{W}{L}\right)_2 = \frac{k_n'}{k_p'}\left(\frac{W}{L}\right)_1$$

$$=\frac{k_n'}{\frac{k_n'}{4}}\left(\frac{W}{L}\right)_1$$

or
$$\left(\frac{W}{L}\right)_2 = 4\left(\frac{W}{L}\right)$$

(b) The minimum voltage required across current source I_1 would be $|V_{OV}| = 0.2$ V, since it is made with a single transistor. If a $0.1-V_{PP}$ signal swing is to be allowed at the drain of Q_1 , the highest dc bias voltage would be

=A188 ignment Project Dec 1.55 V/V = 1.55 V

(b) Now, for $R_L = 400 \text{ k}\Omega$, $R_{\text{in}2} \simeq \frac{R_L}{g_{m2}r_{o2}} + \frac{400 \text{ k}\Omega}{g_{m2}} + \frac{1}{g_{m2}} \frac{1}{20} + \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} + \frac{1}{1 \text{ mA/V}} + \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} + \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} + \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} \frac{1}{1 \text{ mA/V}} + \frac{1}{1 \text{ mA/V}} \frac{1}$

 $A_v = -1 \text{ mA/V } [(20) (20 \text{ k}\Omega)] \parallel 400 \text{ k}\Omega$

= -200 V/V

$$A_{v2} = \frac{A_v}{A_{v1}} = \frac{-200}{-10.2} = 19.6 \text{ V/V}$$

(d) Since current source I_2 is implemented with a cascoded current source, the minimum voltage Dequired across it for proper operation is

(e) From parts (c) and (d), the allowable range of

signal swing at the output is from 0.4 V to 1.55 V $-V_{OV}$ or 1.35 V.

so,
$$0.4 \text{ V} \le v_O \le 1.35 \text{ V}$$
.

Ex: 8.23 Referring to Fig. 8.38.

$$R_{op} = (g_{m3}r_{o3}) (r_{o4} \parallel r_{\pi 3})$$
 and

$$R_{on} = (g_{m2}r_{o2}) (r_{o1} \parallel r_{\pi 2})$$

The maximum values of these resistances are obtained when $r_o \gg r_{\pi}$ and are given by

$$R_{on}\Big|_{\max} = (g_{m2}r_{o2}) r_{\pi 2}$$

$$R_{op}\Big|_{\max} = (g_{m3}r_{o3}) r_{\pi 3}$$

Since $g_m r_\pi = \beta$,

$$R_{on}\Big|_{\max} = \beta_2 r_{o2}$$

$$R_{op}\Big|_{\max} = \beta_3 r_{o3}$$

Ex: 8.22

Since
$$A_v = -g_{m1}(R_{on} || R_{op}),$$

 $|A_{vmax}| = g_{m1}(\beta_2 r_{o2} || \beta_3 r_{o3}).$

Ex: 8.24 For the *npn* transistors,

$$g_{m1} = g_{m2} = \frac{|I_C|}{|V_T|} = \frac{0.2 \text{ mA}}{25 \text{ mV}} = 8 \text{ mA/V}$$

$$r_{\pi 1} = r_{\pi 2} = \frac{\beta}{g_m} = \frac{100}{8 \text{ mA/V}} = 12.5 \text{ k}\Omega$$

$$r_{o1} = r_{o2} = \frac{|V_A|}{|I_C|} = \frac{5 \text{ V}}{0.2 \text{ mA}} = 25 \text{ k}\Omega$$

From Fig. 8.38,

$$R_{on} = (g_{m2}r_{o2}) (r_{o1} \parallel r_{\pi 2})$$

=
$$(8 \text{ mA/V}) (25 \text{ k}\Omega) (25 \text{ k}\Omega \parallel 12.5 \text{ k}\Omega)$$

$$R_{on} = 1.67 \text{ M}\Omega$$

For the *pnp* transistors.

$$g_{m3} = g_{m4} = \frac{|I_C|}{V_T} = \frac{0.2 \text{ mA}}{25 \text{ mV}} = 8 \text{ mA/V}$$

$$100 = \frac{1}{2} \times 387 \times \frac{3.6}{0.36} \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.227 \text{ V}$$

$$V_{GS} = 0.227 + 0.5 = 0.727 \text{ V}$$

$$V_{Omin} = V_{G3} - V_{t3}$$

$$=V_{GS4}+V_{GS1}-V_{t3}$$

Thus.

$$V_{Omin} = 2V_{GS} - V_t$$

$$= V_t + 2 V_{OV}$$

$$= 0.5 + 2 \times 0.227 = 0.95 \text{ V}$$

$$g_m = \frac{2 I_D}{V_{OV}} = \frac{2 \times 0.1}{0.227} = 0.88 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{V_A'L}{I_D} = \frac{5 \times 0.36}{0.1} = 18 \text{ k}\Omega$$

$$R_o = (g_{m3}r_{o3})r_{o2} = (0.88 \times 18) \times 18$$

= 285 k\O

Ex: 8.26 For the Wilson mirror from Eq. (8.94), we have

 $R_{op} = (g_{m3}r_{o3}) (r_{o4} \parallel r_{\pi3})$ = (8 mA/V) Thus $\frac{|I_O - I_{REF}|}{\text{CP}} \times 100 = 0.02\%$ = (8 mA/V) whereas for the simple mirror from Eq. (8.18) we have

 $A_v = -g_{m1}(R_{on} \parallel R_{op})$ $= -(8 \text{ mA/VA16 M2} \parallel \text{WSEChat } p^{lo} \text{WIED der})$

$$A_{...} = -4186 \text{ V/V}$$

 $A_{v\text{max}}$ occurs when r_{o1} and r_{o4} are $\gg r_{\pi}$.

Then

$$R_{on} = (g_{m2}r_{o2}) r_{\pi 2} = \beta_2 r_{o2}$$

$$R_{on} = 100 (25 \text{ k}\Omega) = 2.5 \text{ M}\Omega$$

$$R_{op} = (g_{m3}r_{o3}) r_{\pi 3} = \beta_3 r_{o3}$$

$$R_{op} = 50 (20 \text{ k}\Omega) = 1 \text{ M}\Omega$$

Finally,

$$A_{v \text{max}} = -(8 \text{ mA/V}) (2.5 \text{ M}\Omega \parallel 1.0 \text{ M}\Omega)$$

$$A_{v\text{max}} = -5714 \text{ V/V}$$

Ex: 8.25 Refer to the circuit in Fig. 8.39. All transistors are operating at $I_D = I_{REF} = 100 \mu A$ and equal V_{OV} , found from

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

Hence
$$\frac{|I_O - I_{REF}|}{I_{DEE}} \times 100 = 2\%$$

For the Wilson current mirror, we have

$$R_o = \frac{\beta r_o}{2} = \frac{100 \times 100 \text{ k}\Omega}{2} = 5 \text{ M}\Omega$$

and for the simple mirror, $R_o = r_o$ = 100 k Ω .

Ex: 8.27 For the two current sources designed in Example 8.6, we have

$$g_m = \frac{I_C}{V_T} = \frac{10 \,\mu\text{A}}{25 \,\text{mV}} = 0.4 \,\frac{\text{mA}}{\text{V}}$$

$$r_o = \frac{V_A}{I_C} = \frac{100 \text{ V}}{10 \,\mu\text{A}} = 10 \,\text{M}\Omega,$$

$$r_n = \frac{\beta}{\alpha} = 250 \text{ k}\Omega$$

For the current source in Fig. 8.43(b), we have

$$R_o = r_{o2} = r_o = 10 \text{ M}\Omega$$

For the current source in Fig. 8.43, from Eq. (8.102), we have

$$R_{\text{out}} \simeq [1 + g_m (R_E \parallel r_n)] r_o$$

From Example 8.6, $R_E = R_3 = 11.5 \text{ k}\Omega$;

therefore,

$$R_{\mathrm{out}} \simeq \left[1 + 0.4 \frac{\mathrm{mA}}{\mathrm{V}} \left(11.5 \mathrm{~k\Omega} \parallel 250 \mathrm{~k\Omega}\right)\right] 10 \mathrm{~M\Omega}$$

$$\therefore R_{\text{out}} = 54 \text{ M}\Omega$$

Ex: 8.28

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.2}{0.2} = 2 \text{ mA/V}$$

$$g_{mb} = \chi g_m = 0.2 \times 2 = 0.4 \text{ mA/V}$$

$$r_{o1} = r_{o3} = \frac{V_A}{I_D} = \frac{5}{0.2} = 25 \text{ k}\Omega$$

 $v_o = -\beta i_b R_L = -\frac{100 \times 4}{2.75} v_{\text{sig}}$

$$R_L = r_{o1} \parallel r_{o3} \parallel \frac{1}{g_{mb}} = 25 \parallel 25 \parallel 2.5 \text{ k}\Omega$$

 $= 2.083 \text{ k}\Omega$

$$\frac{v_o}{v_L} = \frac{R_L}{1} = \frac{2.083}{1} = 0.81 \text{ V/V}$$

$$G_v \equiv \frac{v_o}{v_{\rm sig}} = -145.5 \text{ V/V}$$

These results apply for both $R_{\rm sig} = 4 \text{ k}\Omega$ and $R_{\rm sig} = 400 \text{ k}\Omega$. If in the CC–CE amplifier of Example 8.7, $R_{\text{sig}} = 400 \text{ k}\Omega$, G_v becomes

$$G_v = \frac{255}{255 + 400} \times 0.99 \times -160$$

$$= -61.7 \text{ V/V}$$

Ex: 8.30

$\frac{v_o}{v_i} = \frac{R_L}{R_L + \frac{1}{1}} = \frac{2.083}{2.083 + \frac{1}{2}} = 0.81 \text{ V/V}$ Assignment Project Example 1.00 Project Example 2.00 Project Example 2.00

$$\begin{array}{c}
R_{\text{sig}} & \text{https://per-kej-theory.} \\
R_{\text{sig}} & \text{https://powcodef.com} \\
R_{\text{sig}} & \text{https://powcodef.com} \\
R_{\text{sig}} & \text{https://powcodef.com} \\
R_{\text{sig}} & \text{https://per-kej-theory.} \\
R_{\text{sig}} & \text{https://per-kej-$$

$$r_{e2} = \frac{25 \text{ mV}}{5 \text{ mA}} = 5 \Omega$$

$$g_{m1} = \sqrt{2k_n I_D}$$

$$= \sqrt{2 \times 8 \times 1}$$

$$= 4 \text{ mA/V}$$

$$r_{e1} = \frac{25 \text{ mV}}{0.05 \text{ mA}} = 500 \Omega$$

$$R_{in} = 101 \times (0.5 + 101 \times 1.005) = 10.3 \text{ M}\Omega$$

$$R_{out} = 1 \parallel \left[0.005 + \frac{0.5 + (100/101)}{101} \right] \approx 20 \Omega$$

$$r_{\pi 2} = \frac{100}{40} = 2.5 \text{ k}\Omega$$

$$R_{in} = \infty$$

$$r_{e2} = \frac{25 \text{ mV}}{5 \text{ mA}} = 50$$

$$R_{in} = 101 \times (0.5 + 101 \times 1.005) = 10.3 \text{ M}\Omega$$

$$R_{out} = 1 \parallel \left[0.005 + \frac{0.5 + (100/101)}{101} \right] \approx 20 \Omega$$

$$r_{g} = \frac{100}{40} = 2.5 \text{ k}\Omega$$

$$r_{g} = \frac{1}{1 + 0.005 + \frac{0.5 + (100/101)}{101}} = 0.98 \text{ V/V}$$

$$r_{g} = \frac{v_{sig}}{2.75}$$

$$r_{g} = 25 \Omega$$

$$r_{g} = 25 \Omega$$

Ex: 8.31 Refer to Fig. 8.49.

$$r_e = 25 \Omega$$

$$R_{\rm in} = (\beta_1 + 1)(2 r_e) = 101 \times 0.05 = 5.05 \text{ k}\Omega$$

$$\begin{split} &\frac{v_o}{v_i} = \frac{\alpha_2 R_L}{2 \ r_e} \simeq \frac{5}{0.05} = 100 \text{ V/V} \\ &\frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \times \frac{v_o}{v_i} \\ &= \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} \times \frac{v_o}{v_i} \\ &= \frac{5.05}{5.05 + 5} \times 100 = 50 \text{ V/V} \end{split}$$

Ex: 8.32

and

 $v_o = iR_L$

Thus,

$$\frac{v_o}{v_i} = \frac{1}{2} g_m R_L$$

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2I}{V_{OV}}$$

$$\frac{v_o}{v_i} = \frac{1}{2} \times \frac{2I}{V_{OV}} R_L = \frac{IR_L}{V_{OV}} \qquad \text{Q.E.D}$$

(b) $I=0.1~\mathrm{mA}$ and $R_L=20~\mathrm{k}\Omega$, to obtain a gain of 10 V/V,

$$10 = \frac{0.1 \times 20}{V_{OV}}$$

$$\Rightarrow V_{OV} = 0.2 \text{ V}$$

$$I_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) V_{OV}^2$$

Assignment Project^{0.1}Exame Help $i = \frac{v_i}{2/g_m} = \frac{1}{2}g_m v_i \qquad \Rightarrow \frac{W}{L} = 25$

$$\Rightarrow \frac{W}{L} = 25$$

https://powcoder.com

Add WeChat powcoder

8.1 Referring to Fig. 8.1, $V_{DD} = 1.3 \text{ V}$,

$$I_O = I_{REF} = 100 \,\mu\text{A}, L = 0.5 \,\mu\text{m}, W = 5 \,\mu\text{m},$$

 $V_A' = 5 \,\text{V}/\mu\text{m}, V_t = 0.4 \,\text{V}, k_n' = 500 \,\mu\text{A}/\text{V}^2$

$$I_O = I_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) V_{OV}^2$$

$$V_{OV} = \sqrt{\frac{2I_D}{k_n' \left(\frac{W}{L}\right)}}$$

$$= \sqrt{\frac{2 (100 \ \mu A)}{\left(500 \ \mu A/V^2\right) \left(\frac{5}{0.5}\right)}} = 0.2 \ V$$

$$V_{DS} = V_{GS} = V_t + V_{OV} = 0.4 + 0.2 = 0.6 \text{ V}$$

$$R = \frac{V_{DD} - V_{GS}}{I_{REF}} = \frac{1.8 - 0.6}{0.1 \text{ mA}} = 12 \text{ k}\Omega$$

The lowest V_O will be

$$V_{DS2} = V_{OV} = 0.2 \text{ V}$$

$$R_{O} = r_{o} = \frac{V_{A}'L}{S_{O}} = \frac{5 \text{ V}/ \text{ } \mu\text{m} \times 0.5 \text{ } \mu\text{m}}{\text{Constant}} = \frac{25 \text{ k}\Omega}{P}$$

$$\Delta I_{D} \approx \frac{\Delta V_{O}}{r_{o}} = \frac{0.5 \text{ } M}{25 \text{ } K} = 20 \text{ } \mu\text{A}$$

$$\Delta I_D \approx \frac{\Delta V_O}{r_c} = \frac{0.5 \text{ V}}{25 \text{ K}} = 20 \,\mu\text{A}$$

Set
$$|V_{OV}| = V_{DD} - V_{Omax}$$

$$= 1.3 - 1.1 = 0.2 \text{ V}$$

$$V_G = V_{DD} - \left| V_{tp} \right| - \left| V_{OV} \right|$$

$$= 1.3 - 0.4 - 0.2 = 0.7 \text{ V}$$

$$R = \frac{V_G}{I_{D1}} = \frac{0.7 \text{ V}}{80 \,\mu\text{A}} = 8.75 \,\text{k}\Omega$$

$$I_D = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right) |V_{OV}|^2$$

Project Exam Help $\frac{E_{M_D}}{E} = \frac{E_{M_D}}{\mu_D C_{OX} |V_{OV}|^2} = \frac{E_{N_D}}{80 \, \mu A/V^2 \times 0.2^2} = 50$

8.2 Refer to Fig. 8. https://powcedefing.com f $W_2 = 5 W_1$ and we let $L_1 = L_2$, then we obtain

$$\frac{\Delta I_O}{I_O} = 10\%$$

$$I_O = I_{D2} = I_{REF} \frac{(W/L)_2}{(W/L)_3} = 20 \ \mu A \times 5 = 100 \ \mu A$$

 $I_{O} = I_{D2} = I_{REF} \frac{(W/L)_{2}}{(W/L)_{1}} = 20 \ \mu\text{A} \times 5 = 100 \ \mu\text{A}$ $\Delta I_{O} = 0.1 \times 150 = \mu\text{Add} \ \text{WeChat}_{V_{O}} \text{powecher}$

$$r_o = \frac{\Delta V_O}{\Delta I_O} = \frac{1.5 \text{ V}}{15 \text{ } \mu\text{A}} = 100 \text{ k}\Omega$$

$$r_o = \frac{V_A}{I_O} = \frac{V_A'L}{I_O}$$

$$100 = \frac{10 \times L}{0.15} \Rightarrow L = 1.5 \,\mu\text{m}$$

$$\Rightarrow V_A = 15 \text{ V}$$

$$V_{OV} = V_{DS2min} = 0.3 \text{ V}$$

$$V_{GS} = V_t + V_{OV} = 0.5 + 0.3 = 0.8 \text{ V}$$

$$I_D = \frac{1}{2}k'_n \left(\frac{W}{L}\right) V_{OV}^2 \left(1 + \frac{V_{DS}}{V_A}\right)$$

$$150 = \frac{1}{2} \times 400 \times \frac{W}{L} \times 0.09 \left(1 + \frac{0.8}{15} \right)$$

$$\Rightarrow \frac{W}{L} = 7.91$$

$$W = 7.91 \times 1.5 = 11.9 \,\mu\text{m}$$

$$R = \frac{V_{DD} - V_{GS}}{I_{REF}} = \frac{1.8 - 0.8}{0.15} = 6.7 \text{ k}\Omega$$

From Eq. (8.8):

$$I_O = \frac{(W/L)_2}{(W/L)_1} \cdot I_{REF} \left(1 + \frac{V_O - V_{GS}}{V_{12}} \right)$$

$$V_{GS} = V_t + V_{OV} = 0.5 \text{ V} + 0.2 \text{ V} = 0.7 \text{ V}$$

Thus, I_D equal $5I_{REF}$ will be obtained at

$$V_O = V_{GS} = 0.7 \text{ V}$$

For
$$V_O = V_{GS} + 1 = 1.7 \text{ V}$$

$$I_O = 100 \left(1 + \frac{1.7 - 0.7}{20} \right) = 105 \,\mu\text{A}$$

The corresponding increase in I_O , ΔI_O is, thus, $5 \mu A$.

8.5 Referring to Fig. P8.5, we obtain

$$V_{GS1} = V_{GS2}$$
 so that $\frac{I_{D2}}{I_{D1}} = \frac{(W/L)_2}{(W/L)_1}$ and

$$I_{D2} = I_{REF} \frac{(W/L)_2}{(W/L)_1}$$

$$I_{D3}=I_{D2}$$

$$V_{GS3} = V_{GS4}$$
, thus $\frac{I_{D4}}{I_{D3}} = \frac{(W/L)_4}{(W/L)_3}$
 $I_O = I_{D4} = I_{REF} \frac{(W/L)_2}{(W/L)_1} \cdot \frac{(W/L)_4}{(W/L)_3}$

8.6 Refer to the circuit of Fig. P8.6. For Q_2 to operate properly (i.e., in the saturation mode) for drain voltages as high as +0.8 V, and provided its width is the minimum possible, we use

$$|V_{OV}| = 0.2 \text{ V}$$

Note that all three transistors Q_1 , Q_2 , and Q_3 will be operated at this value of overdrive voltage. For Q_1 ,

$$I_{D1} = I_{REF} = 20 \,\mu\text{A}$$

$$I_{D1} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_1 |V_{OV}|^2$$

$$20 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_1 \times 0.04$$

$$I_{D4} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_4 V_{OV}^2$$
$$40 = \frac{1}{2} \times 400 \times \left(\frac{W}{L}\right)_4 \times 0.2^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_4 = 5$$

$$W_4 = 2.5 \,\mu\mathrm{m}$$

Finally, since

$$I_5 = 80 \, \mu A = 2 \, I_4$$

$$\left(\frac{W}{L}\right)_5 = 2\left(\frac{W}{L}\right)_4$$

$$\Rightarrow \left(\frac{W}{L}\right)_5 = 10$$

$$W_5 = 5 \mu m$$

To find the value of R, we use

$$|V_{SG1}| = |V_{tp}| + |V_{OV1}|$$

= 0.5 + 0.2 = 0.7 V

⇒ Assignment Project Evalum Help

 $W_1 = 5 \,\mu\text{m}$

Now, for

https://powcoder.com/linear-esistance of the current source Q_2 is I_{REF} , we have $r_{o2} = \frac{V_{A2}}{I_2} = \frac{Q_{Ap}}{I_2}$

 $= 15 \text{ k}\Omega$

$$I_2 = 100 \,\mu\text{A} = 5I_{\text{REF}}$$
, we have

$$\frac{(W/L)_2}{(W/L)_1} = 5$$

eChat $\mathbb{P}_{\mathbf{W}}^{\underline{5} \times 0.5} = 25 \text{ k}\Omega$ der output resistance of the current sink Q_5 is

$$\Rightarrow \left(\frac{W}{L}\right)_2 = 5 \times 10 = 50$$

$$W_2 = 50 \times 0.5 = 25 \,\mu\text{m}$$

For

 $I_3 = 40 \,\mu\text{A} = 2I_{\text{REF}}$, we obtain

$$\frac{(W/L)_3}{(W/L)_1} = 2$$

$$\Rightarrow \left(\frac{W}{L}\right)_3 = 20$$

$$W_3 = 10 \,\mu\text{m}$$

We next consider Q_4 and Q_5 . For Q_5 to operate in saturation with the drain voltage as low as -0.8 V, and for it to have the minimum possible W/L, we operate Q_5 at

$$V_{OV} = 0.2 \text{ V}$$

This is the same overdrive voltage at which Q_4 will be operating. Thus, we can write for Q_4 ,

$$I_4 = I_3 = 40 \,\mu\text{A}$$

and using

$$=\frac{5\times0.5}{1000}=25\,\mathrm{k}\Omega$$

$$r_{o5} = \frac{V_{A5}}{I_5} = \frac{V'_{An} \times L}{I_5}$$

= $\frac{5 \times 0.5}{80} = 31.25 \text{ k}\Omega$

8.7 Referring to the figure, suppose that Q_1 has $W = 10 \,\mu\text{m}$, Q_2 has $W = 20 \,\mu\text{m}$, and Q_3 has $W = 40 \,\mu\text{m}$.

(1) With Q_1 diode connected,

$$I_2 = I_{\text{REF}} \frac{(W/L)_2}{(W/L)_1} = 100 \,\mu\text{A} \left(\frac{20}{10}\right) = 200 \,\mu\text{A}$$

$$I_3 = 100 \,\mu\text{A}\left(\frac{40}{10}\right) = 400 \,\mu\text{A}$$

(2) With Q_2 diode connected, and $W = 20 \mu m$,

$$I_1 = 100 \,\mu\text{A}\left(\frac{10}{20}\right) = 50 \,\mu\text{A}$$

$$I_3 = 100 \,\mu\text{A}\left(\frac{40}{20}\right) = 200 \,\mu\text{A}$$

(3) If Q_3 with $W = 40 \mu \text{m}$ is diode connected,

$$I_1 = 100 \,\mu\text{A}\left(\frac{10}{40}\right) = 25 \,\mu\text{A}$$

$$I_2 = 100 \,\mu\text{A}\left(\frac{20}{40}\right) = 50 \,\mu\text{A}$$

So, with only one transistor diode connected, we can get 25 μA , 50 μA , 200 μA , and 400 μA , or four different currents.

For the six cases above we obtain

(1)
$$W = W_1 = 10 \,\mu\text{m} \Rightarrow V_{SG} = 1.05 \,\text{V}$$

(2)
$$W = W_2 = 20 \,\mu\text{m} \Rightarrow V_{SG} = 0.92 \,\text{V}$$

(3)
$$W = W_3 = 40 \,\mu\text{m} \Rightarrow V_{SG} = 0.82 \,\text{V}$$

(4)
$$W = W_1 + W_2 = 30 \,\mu\text{m} \Rightarrow V_{SG} = 0.86 \,\text{V}$$

(5)
$$W = W_2 + W_3 = 60 \,\mu\text{m} \Rightarrow V_{SG} = 0.78 \,\text{V}$$

(6)
$$W = W_1 + W_3 = 50 \,\mu\text{m} \Rightarrow V_{SG} = 0.80 \,\text{V}$$

8.8 (a) If $I_S = 10^{-17}$ A and we ignore base currents, then

$$I_{\text{REF}} = I_S e^{V_{BE}/V_T}$$
 so that

$$V_{BE} = V_T \ln \left(\frac{I_{REF}}{10^{-17}} \right)$$

For $I_{REF} = 10 \,\mu\text{A}$,

Now, i Assiste managertd, the roject 0. Exam = Help effective width is the um of the two widths.

(4) If Q_1 and Q_2 are diode connected, then

$$W_{\text{eff}} = 20 + 10 = 3$$
 ptt ps://powcoder.com/So for the range of $I_3 = 100 \,\mu\text{A}\left(\frac{40}{30}\right) = 133 \,\mu\text{A}$

(5) If Q_2 and Q_3 are Aode Contect when Q_3 are Q_4 and Q_5 are Q_5 and Q_6 are Q_5 and Q_6 are Q_6 are Q_6 and Q_8 are Q_6 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 are Q_8 are Q_8 and Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and Q_8 are Q_8 are Q_8 and

$$I_1 = 100 \,\mu\text{A} \left(\frac{10}{60}\right) = 16.7 \,\mu\text{A}$$

(6) If Q_1 and Q_3 are diode connected,

$$W_{\rm eff} = 10 + 40 = 50 \,\mu \rm m$$
, so that

$$I_2 = 100 \,\mu\text{A}\bigg(\frac{20}{50}\bigg) = 40 \,\mu\text{A}$$

So three different currents are obtained with double-diode connects.

To find V_{SG} , we use the following for the diode-connected transistor(s):

$$I_D = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right) (V_{SG} - |V_{tp}|)^2$$

and substitute $I_D = I_{REF} = 100 \,\mu\text{A}$. Thus

$$100 = \frac{1}{2} \times 100 \times \left(\frac{W}{1 \,\mu\text{m}}\right) (V_{SG} - 0.6)^2$$

$$\Rightarrow V_{SG} = 0.6 + \sqrt{\frac{2}{W(\mu m)}}$$

(b) Accounting for finite β ,

$$I_O = I_{\text{REF}} \cdot \frac{1}{1 + 2/\beta}$$

For $I_{REF} = 10 \,\mu\text{A}$,

$$I_O = \frac{10 \,\mu\text{A}}{1 + \frac{2}{50}} = 9.62 \,\mu\text{A}$$

For $I_{REF} = 0.1 \text{ mA}$,

$$I_O = \frac{0.1 \text{ mA}}{1 + \frac{2}{100}} = 0.098 \text{ mA}$$

For $I_{REF} = 1 \text{ mA}$,

$$I_O = \frac{1 \text{ mA}}{1 + \frac{2}{100}} = 0.98 \text{ mA}$$

For $I_{REF} = 10 \text{ mA}$,

$$I_O = \frac{10 \text{ mA}}{1 + \frac{2}{50}} = 9.62 \text{ mA}$$

8.9

 $I_O = mI_{C1}$

A node equation at the collector of Q_1 yields

$$I_{\text{REF}} = I_{C1} + \frac{I_O + I_{C1}}{\beta}$$

Substituting $I_{C1} = I_O/m$ results in

$$\frac{I_O}{I_{\text{REF}}} = \frac{m}{1 + \frac{m+1}{\beta}} \qquad \text{Q.E.D.}$$

For $\beta = 80$ and the error in the current transfer

ratio table limited to 10%, that is
$$\frac{m}{1 + \frac{m+1}{\beta}} \ge 0.9$$

 $\left(1+\frac{m+1}{\beta}\right) \leq \frac{1}{6}$

$$\frac{m+1}{\beta} \le \frac{1}{0.9} - 1$$

 $m \leq \beta \left(\frac{1}{0.9} - 1\right) Add$

$$m \le 80 \left(\frac{1}{0.9} - 1 \right) - 1 = 7.88$$

Thus, the largest current transfer ratio possible is 7.88.

8.10

For identical transistors, the transfer ratio is

$$\frac{I_O}{I_{\text{REF}}} = \frac{1}{1 + 2/\beta} = \frac{1}{1 + \frac{2}{50}} = 0.96$$

8.11 Nominally, $I_O = I_{REF} = 1 \text{ mA}$

$$r_{o2} = \frac{V_{A2}}{I_O} = \frac{90}{1} = 90 \text{ k}\Omega$$

$$r_{o2} = \frac{\Delta V_O}{\Delta I_O} \Rightarrow \frac{10 - 1}{\Delta I_O} = 90 \Rightarrow \Delta I_O = 0.1 \text{ mA}$$

$$\frac{\Delta I_O}{I_O} = \frac{0.1}{1} = 10\% \text{ change}$$

8.12 Equation (8.21) gives the current transfer ratio of an npn mirror with a nominal ratio of m:

$$I_{O} = I_{REF} \frac{m}{1 + \frac{m+1}{\beta}} \left(1 + \frac{V_{O} - V_{BE}}{V_{A2}} \right)$$

This equation can be adapted for the pnp mirror of Fig. P8.12 by substituting m = 1, replacing V_O with the voltage across Q_3 , namely $(3 - V_0)$, replacing V_{BE} with V_{EB} , and V_{A2} with $|V_A|$:

$$I_O = I_{REF} \frac{1 + [(3 - V_O - V_{EB})/|V_A|]}{1 + (2/\beta)}$$
 (1)

Now, substituting $I_0 = 1$ mA, $V_0 = 1$ V, $\beta = 50$,

Project Exam Help $V_{EB} = V_T \ln \frac{I_O}{I_C} = 0.025 \ln \left(\frac{10^{-3}}{10^{-15}} \right) = 0.691 \text{ V}$

V. For $V_0 = 2.7$ V, Eq. (1) yields

$$I_O = 1.013 \frac{1 + \frac{3 - 2.7 - 0.691}{50}}{1.04} = 0.966 \text{ mA}$$

For $V_O = -5$ V, Eq. (1) yields

$$I_O = 1.013 \frac{1 + \frac{3 - (-5) - 0.691}{50}}{1.04} = 1.116 \text{ mA}$$

Thus, the change in I_0 is 0.15 mA.

8.13 The solution is given in the circuit diagram. Note that the starting point is calculating the current I in the Q_1 - R_1 - Q_2 branch. See figure on next page.

8.14 Refer to the circuit in Fig. P8.14.

$$V_2 = 2.7 - V_{EB} = 2.7 - 0.7 = +2 \text{ V}$$

$$V_3 = 0 + V_{EB} = +0.7 \text{ V}$$

Thus, Q_3 and Q_4 are operating in the active mode, and each is carrying a collector current of I/2. The same current is flowing in Q_2 and Q_1 ; thus

This figure belongs to Problem 8.13.

Assignment Project Exam Help

$$V_1 = -2.7 + \frac{I}{2}R$$

8.15 There are various ways this design could be achieved, but the most straightforward is the one

But

https://powcoder.com

$$V_1 = -V_{BE1} = -0.7$$

Thus,

Add WeChat

$$-0.7 = -2.7 + \frac{1}{2}IR$$

$$\Rightarrow IR = 4 \text{ V}$$

The current I splits equally between Q_5 and Q_6 ; thus

$$V_4 = -2.7 + \left(\frac{I}{2}\right)R = -2.7 + 2 = -0.7 \text{ V}$$

$$V_5 = -2.7 + \left(\frac{I}{2}\right) \left(\frac{R}{2}\right) = -2.7 + 1 = -1.7 \text{ V}$$

Thus, Q_5 and Q_6 are operating in the active mode as we have implicitly assumed.

Note that the values of V_1 , V_2 , V_3 , V_4 , and V_5 do not depend on the value of R. Only I depends on the value of R:

(a)
$$R = 10 \text{ k}\Omega \implies I = \frac{4}{10} = 0.4 \text{ mA}$$

(b)
$$R = 100 \text{ k}\Omega \implies I = \frac{4}{100} = 0.04 \text{ mA}$$

With this scheme,

$$R = \frac{5 - 0.7 - 0.7 - (-5)}{0.1 \text{ mA}} = 86 \text{ k}\Omega$$

and each transistor has EBJ areas proportional to the current required. Multiple, parallel transistors are acceptable.

Note: This large value of *R* is not desirable in integrated form; other designs may be move suitable.

Even without knowing exact circuitry, we can find the total power dissipation as approximately

$$P_T = P_{CC} + P_{EE}$$

$$P_T = 5 \text{ V} (0.1 + 0.2 + 0.4 + 0.8) \text{ mA}$$

+5 V (0.1 + 0.5 + 1 + 2) mA
 $P_T = 7.5 \text{ mW} + 18 \text{ mW} = 25.5 \text{ mW}$

8.16 (a)

Figure 2 shows the special case of V=0 V. As before, the voltage at X, V_X , will be equal to V. Thus

$$V_X = 0$$

That is, a virtual ground appears at X, and thus the current *I* that flows into X can be found from

$$I = \frac{5 - V_X}{10 \text{ k}\Omega} = \frac{5 - 0}{10} = 0.5 \text{ mA}$$

This is the current that will be mirrored to the output, resulting in $I_Z = 0.5$ mA.

8.17 Using Eq. (8.28),

$$R_{\rm in} = r_{o1} \parallel \frac{1}{g_{m1}}$$

where

$$r_{o1} = \frac{V_A}{I_{D1}} = \frac{V'_A L}{I_{D1}} = \frac{10 \times 0.5}{0.1 \text{ mA}} = 50 \text{ k}\Omega$$

Assignment Project Examp Help

Figure 1 shows the current conveyor circuit with Y connected to a voltage V, X fed with/a current source I, and Z connected to Soltage V that W keeps Q_5 operating in the active mode. Assuming that all transistors are operating in the active mode and that $\beta \gg 1$, so that we can neglect all base currents, we see that the current V through Q_1 will flow through the two output mirror Q_3 , Q_4 , and Q_5 . The current I in Q_5 will be drawn from Q_2 , which forms a mirror with Q_1 . Thus $V_{EB2} = V_{EB1}$ and the voltage that appears at X will be equal to V. The current in Q_5 will be equal to I, thus terminal Z sinks a constant current I.

(b)

Figure 2

 $= \sqrt{2 \times 0.5 \times \left(\frac{10}{0.5}\right) \times 0.1} = 1.414 \text{ mA/V}$

 g_{m1}

Thus.

Poweoder 2

$$A_{is} = \frac{(W/L)_2}{(W/L)_1} = \frac{50/0.5}{10/0.5} = 5 \text{ A/A}$$

$$R_O = r_{o2} = \frac{V_A}{I_{D2}} = \frac{V_A'L}{I_{D2}}$$

$$=\frac{10\times0.5}{5\times0.1}=10 \text{ k}\Omega$$

8.18
$$A_{is} = 4 = \frac{(W/L)_2}{(W/L)_1}$$

Since $L_1 = L_2$, then

$$\frac{W_2}{W_1} = 4$$

$$R_{\rm in}=r_{o1}\parallel\frac{1}{g_{m1}}\simeq\frac{1}{g_{m1}}$$

For

$$R_{\rm in} = 500 \ \Omega \Rightarrow g_{m1} = 2 \ {\rm mA/V}$$

$$g_{m1} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_1 I_{D1}}$$

Thus,

$$2 = \sqrt{2 \times 0.4 \times \left(\frac{W}{L}\right)_1 \times 0.2}$$

$$\Rightarrow \left(\frac{W}{L}\right)_1 = 25$$

$$R_O = r_{o2} = \frac{V_A}{I_{D2}} = \frac{V_A'L}{I_{D2}}$$

Thus,

$$20 = \frac{20 L}{4 \times 0.2}$$

$$\Rightarrow L = 0.8 \ \mu m$$

$$W_1 = 25 \times 0.8 = 20 \,\mu\text{m}$$

$$W_2 = 4 W_1 = 80 \mu m$$

8.19 Refer to Fig. P8.19. Consider first the diode-connected transistor Q_2 . From the figure we

$$v_o = i_{d3} R_L = g_{m1} v_i \frac{W_3}{W_2} R_L$$

Thus, the small-signal voltage gain will be

$$\frac{v_o}{v_i} = g_{m1} R_L \ (W_3 / W_2)$$

8.20 Replacing Q_1 and Q_2 with their small-signal hybrid- π models results in the equivalent circuit shown in the figure below. Observe that the controlled source $g_{m1}v_{\pi1}$ appears across its controlling voltage $v_{\pi1}$; thus the controlled source can be replaced with a resistance $(1/g_{m1})$. The input resistance $R_{\rm in}$ can now be obtained by inspection as

$$R_{\text{in}} = r_{o1} \parallel \frac{1}{g_{m1}} \parallel r_{\pi 1} \parallel r_{\pi 2}$$

Since $r_{o1} \gg r_{\pi 1}$,

see that from a small-signal point of view it is equivalent to a resistance Q_{12} This we explicate that $\bar{p} \bar{o} \bar{w}^{R} \bar{c} \bar{o} \bar{e}^{R} \bar{c}$

$$\frac{v_{d1}}{v_i} = -g_{m1} \times \frac{1}{g_{m2}} = -\frac{g_{m1}}{g_{m2}}$$

The signal current in the drain of Q_1 , g_{m1} v_i , will be mirror in the drain of Q_3 ;

$$i_{d3} = g_{m1} v_i \frac{(W/L)_3}{(W/L)_2} = g_{m1} v_i \frac{W_3}{W_2}$$

which flows through R_L and produces the output voltage v_o ,

$$= g_{m2} \left(\frac{1}{g_{m1}} \parallel r_{\pi 1} \parallel r_{\pi 2} \right) \tag{2}$$

For situations where β_1 and β_2 are large, we can neglect $r_{\pi 1}$ and $r_{\pi 2}$ in Eqs. (1) and (2) to obtain

$$R_{\rm in} \simeq 1/g_{m1}$$

$$A_{is} \simeq g_{m1}/g_{m2}$$

This figure belongs to Problem 8.20.

Figure 1

Replacing the MOSFET with its hybrid- π model but neglecting r_o results in the equivalent circuit in Fig. 1. Observing that the controlled-source $g_m v_{gs}$ appears across its control voltage v_{gs} , we can replace it by a resistance $1/g_m$, as indicated. Thus the small-signal resistance of the diode-connected MOS transistor is $1/g_m$. For the given values,

$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)} I_D$$

$$= \sqrt{2\times0.2\times10\times0.1} = 0.632 \text{ m}$$

 $=\sqrt{2 \times 0.2 \times 10 \times 0.1} = 0.632 \text{ mA/V}$

$$I_{C3} \simeq I_{B1} + I_{B2} = 2 I_{B1} = 2 \times \frac{I_{C1}}{\beta}$$

= $2 \times \frac{0.1}{100} = 0.002 \text{ mA}$

$$V_{BE3} = 0.7 - 0.025 \ln \left(\frac{1 \text{ mA}}{0.002 \text{ mA}} \right)$$

= 0.545 V

$$V_x = V_{BE3} + V_{BE1} = 1.187 \text{ V}$$

If I_{REF} is increased to 1 mA,

$$V_{BE1}=0.7$$

$$I_{C3} \simeq 0.02 \text{ mA}$$

$$V_{BE3} = 0.7 - 0.025 \ln\left(\frac{1}{0.02}\right) = 0.6 \text{ V}$$

$$V_x = 1.3 \text{ V}$$

Thus,

$$\triangle V_x = 1.3 - 1.187 = 0.113 \text{ V}$$

When $V_O = V_x$, the Early effect on Q_1 and Q_2 will be the same, and

$$I_O = I_{REF}/(1 + 2/\beta^2)$$

(b) Replacing the BJT with its hybrid- π model results in the equivalent circuit in Fig. 2.

Observing that the controlled source/g/n appears across its court of walkage v_s, we can replace it by a resistance $1/g_m$, as indicated. Next the two parallel resistances $1/g_m$ and r_{π} can be combined as

99.98 μ A, for an error of -0.02μ A or -0.02%.

 $0.9998 \,\mu\text{A}$, for an error of $-0.0002 \,\text{mA}$ or -0.02%. For proper current-source operation, the minimum required voltage at the output is the

value needed to keep Q in the active region, which is approximately ... V

Thus, the diode-connected BJT has a small-signal resistance r_e . For the given data,

$$r_e = \frac{V_T}{I_E} = \frac{25 \text{ mV}}{0.1 \text{ mA}} = 250 \text{ }\Omega$$

8.22 Refer to Fig. 8.11.

$$I_{C1} \simeq I_{REF} = 0.1 \text{ mA}$$

$$V_{BE1} = 0.7 - 0.025 \ln \left(\frac{1 \text{ mA}}{0.1 \text{ mA}} \right)$$

= 0.642 V

8.23

This figure belongs to Problem 8.21, part (b).

Figure 2

$$I_{O1} = I_{O2} = I_{O3} \cdot \cdot \cdot = I_{On} = I_{O} = I_{C1}$$

The emitter of Q_3 supplies the base currents for all transistor, so

$$I_{E3} = \frac{(n+1)I_O}{\beta}$$

$$I_{\text{REF}} = I_{B3} + I_O = \frac{(n+1)I_O}{\beta(\beta+1)} + I_O$$

$$\frac{I_O}{I_{\mathrm{REF}}} = \frac{1}{1 + \frac{(n+1)}{\beta \left(\beta + 1\right)}} \simeq \frac{1}{1 + \frac{n+1}{\beta^2}}$$

For the deviation from unity to be kept < 0.2%

$$\frac{n+1}{\beta^2} \le 0.002$$

$$\Rightarrow n_{\text{max}} = 0.002 \times 150^2 - 1 = 44$$

8.24 Refer to Fig. 8.11 and observe that $I_{C1} \simeq I_{REF}$ and $I_{C2} = I_{C1}$; thus each of Q_1 and Q_2 is operating at a collector bias current approximately equal to I_{REF} . Transistor Q_3 is operating at an emitter bias current

$$= \alpha i_e + (1 - \alpha) \times 2(1 - \alpha) i_e$$

$$= i_e [\alpha + 2(1 - \alpha)^2]$$
But $2(1 - \alpha)^2 \ll \alpha$. Thus,
$$i_x \simeq \alpha i_e$$

$$v_x = i_{e3} r_{e3} + i_{e1} r_{e1}$$

$$= 2(1 - \alpha) i_e \frac{\alpha V_T}{2(1 - \alpha) I_{REF}} + i_e \frac{\alpha V_T}{I_{REF}}$$
(1)

$$v_x = \alpha i_e \left[\frac{V_T}{I_{\text{DEE}}} + \frac{V_T}{I_{\text{DEE}}} \right]$$

 $i_{x} = \alpha i_{e1} + (1 - \alpha)i_{e3}$

Now, using $i_x = \alpha i_e$ from Eq. (1), we have

$$v_x = i_x \times \frac{2V_T}{I_{\text{DEE}}}$$

$$R_{\rm in} \equiv \frac{v_x}{i_x} = \frac{2V_T}{I_{\rm REF}}$$
 Q.E.D.

For $I_{REF} = 100 \,\mu\text{A} = 0.1 \,\text{mA}$,

$$=\frac{2(1-\alpha)}{\alpha}I_{\text{REF}}$$

8.25 For
$$I = 10 \,\mu\text{A}$$
:

Replacing each of the transfer ying WC model and applying an input test voltage to determine R_{in} , we obtain the equivalent circuit shown.

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{0.4 \text{ mA/V}} = 250 \text{ k}\Omega$$

eChat.powcoder

$$A_0 = g_m r_o = \frac{V_A}{V_I} = \frac{10 \text{ V}}{0.025 \text{ V}} = 400 \text{ V/V}$$

For $I = 100 \,\mu\text{A}$:

$$g_m = \frac{100 \,\mu\text{A}}{25 \,\text{mV}} = 4 \,\text{mA/V}$$

$$r_{\pi} = \frac{100}{4 \text{ mA/V}} = 25 \text{ k}\Omega$$

$$r_o = \frac{10 \text{ V}}{100 \text{ } \mu\text{A}} = 100 \text{ k}\Omega$$

$$A_0 = 4 \text{ mA/V} \times 100 \text{ k}\Omega = 400 \text{ V/V}$$

In this equivalent circuit,

$$r_{e1} = r_{e2} = r_e = \frac{V_T}{I_E} = \frac{\alpha V_T}{I_C} = \frac{\alpha V_T}{I_{\text{REF}}}$$

$$r_{e3} = \frac{V_T}{I_{E3}} = \frac{\alpha V_T}{2(1-\alpha)I_{\text{REF}}}$$

$$i_{e1} = i_{e2} = i_e$$

$$i_{e3} = i_{b1} + i_{b2} = 2(1 - \alpha)i_e$$

From the figure we obtain

For
$$I = 1$$
 mA:
 $g_m = \frac{1 \text{ mA}}{25 \text{ mV}} = 40 \text{ mA/V}$
 $r_\pi = \frac{100}{40 \text{ mA/V}} = 2.5 \text{ k}\Omega$
 $r_o = \frac{10 \text{ V}}{1 \text{ mA}} = 10 \text{ k}\Omega$
 $A_0 = 40 \text{ mA/V} \times 10 \text{ k}\Omega = 400 \text{ V/V}$

I	g_m	r_{π}	r_o	A_0
10 μΑ	0.4 mA/V	250 kΩ	1 ΜΩ	400 V/V
100 μΑ	4.0 mA/V	25 kΩ	100 kΩ	400 V/V
1 mA	40 mA/V	2.5 kΩ	10 kΩ	400 V/V

8.26 Refer to Fig. 8.13(b).

$$g_m = \frac{I_C}{V_T} = \frac{I}{V_T} = \frac{0.5 \text{ mA}}{0.025 \text{ V}} = 20 \text{ mA/V}$$

$\frac{v_o}{v_{\text{sig}}} = \frac{r_{\pi}}{r_{\pi} + R_{\text{sig}}} \times -g_m(r_o \parallel R_L)$
= $-\frac{25}{25+5}$ × 4 (1000 kΩ 100 kΩ)
= -303 V/V

8.27
$$A_{0} = \frac{2V_{A}}{V_{OV}} = \frac{2V'_{A}L}{V_{OV}} = \frac{2 \times 10 \times 0.5}{0.2} = 50 \text{ V/V}$$

$$g_{m} = \frac{2I_{D}}{V_{OV}}$$

$$2 = \frac{2I_{D}}{0.2} \Rightarrow I_{D} = 0.2 \text{ mA}$$

$$I_{D} = \frac{1}{2} k'_{n} \frac{W}{L} V_{OV}^{2}$$

$$0.2 = \frac{1}{2} \times 0.4 \times \frac{W}{L} \times 0.2^{2}$$

$$\Rightarrow \frac{W}{L} = 25$$

$r_o = A_{I_C}$ so that Project Exame Help proportional to $\sqrt{I_D}$. Thus

$$R_{\rm in} = r_{\pi} = \frac{\beta}{g_m} = \frac{100}{20 \text{ mA/V}} = 5 \text{ k}\Omega$$
 $I_D = 100 \text{ } \mu\text{A}$
 $A_{vo} = -A_0 = -g_m \text{ ratto}$
 $A_{vo} = -A_0 = -g_m \text{ ratto}$

$$R_o = r_o = 200 \text{ k}\Omega$$

To raise R_{in} by a factor of I by changing I, the value of I must be overect I the same factor. I = 0.1 mA.

Now, g_m is reduced by a factor of 5 and r_o is increased by a factor of 5, keeping $A_{\nu\rho}$ unchanged at -4000 V/V. However, R_a will be increased to

$$R_o = 5 \times 200 \text{ k}\Omega = 1 \text{ M}\Omega$$

If the amplifier is fed with a signal source having $R_{\rm sig} = 5 \text{ k}\Omega$ and a 100-k Ω load resistance is connected to the output, the equivalent circuit shown below results.

From Eq. (8.42), g_m is proportional to $\sqrt{I_D}$. Thus increases g_m by a factor of 2.

8.29
$$A_0 = \frac{2V_A}{V_{OV}} = \frac{2V_A'L}{V_{OV}}$$

$$20 = \frac{2 \times 5 \times L}{0.2}$$

$$\Rightarrow L = 0.4 \,\mu\text{m}$$

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2I}{V_{OV}}$$

This figure belongs to Problem 8.26.

$$2 = \frac{2I}{0.2}$$

$$\Rightarrow I = 0.2 \text{ mA}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$0.2 = \frac{1}{2} \times 0.4 \times \frac{W}{L} \times 0.04$$

$$\Rightarrow \frac{W}{L} = 25$$

$$\Rightarrow \frac{W}{L} = 4.21$$

$$\Rightarrow W = 4.21 \text{ um}$$

$$\Rightarrow W = 4.21 \,\mu\text{m}$$

8.33
$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.1}{0.2} = 1 \text{ mA/V}$$

From Table K.1 (Appendix K), for the 0.18-µm process we have

$$|V'_A| = 5 \text{ V/}\mu\text{m}, \mu_n C_{ox} = 387 \,\mu\text{A/V}^2$$

Thus, for our NMOS transistor whose $L = 0.3 \, \mu \text{m}$

$$V_A = 5 \times 0.3 = 1.5 \text{ V}$$

$$r_o = \frac{V_A}{I_D} = \frac{1.5 \text{ V}}{0.1 \text{ mA}} = 15 \text{ k}\Omega$$

$$A_0 = g_m r_o = 1 \times 15 = 15 \text{ V/V}$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

$$100 = \frac{1}{2} \times 387 \times \frac{W}{L} \times 0.2^2$$

roject Exam Help The highest instantaneous voltage allowed at the drain in that $\{V_{OV}\}$ across the transfector. Thus

$$v_{Omax} = 1.8 - 0.2 = +1.6 \text{ V}$$

8.31 For the *npn* transitor ps://powcoder.

$$g_m = \frac{I_C}{V_T} = \frac{0.1 \text{ mA}}{0.025 \text{ V}} = 4 \text{ mA/V}$$

For the NMOS transitor dd WeChat $R_{in} = r_{\pi} = \frac{V_A}{\rho} = \frac{100 \text{ V}}{R_{in}} = \frac{4000 \text{ V/V}}{R_{in}}$

$$g_m = \frac{2 I_D}{V_{OV}}$$

$$4 = \frac{2 I_D}{0.25}$$

$$\Rightarrow I_D = 0.5 \text{ mA}$$

$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D} = \sqrt{2 \times 0.2 \times 40 \times I_D}$$

$$= \sqrt{16I_D} = 4\sqrt{I_D} \text{ mA/V } (I_D \text{ in mA})$$

$$r_o = \frac{V_A}{I_D} = \frac{10 \text{ V}}{I_D}$$

$$A_0 = g_m r_o = \frac{40}{\sqrt{I_D}} \text{ V/V} \quad (I_D \text{ in mA})$$

$$R_{\rm in}=\infty$$

	ВЈТ	Cell	MOSFET Cell				
Bias current	$I_C = 0.1$ mA	$I_C = 1$ mA	$I_D = 0.1$ mA	$I_D = 1$ mA			
$g_m (\text{mA/V})$	4	40	1.26	4			
r_o (k Ω)	1000	100	100	10			
A ₀ (V/V)	4000	4000	126	40			
$R_{\rm in}$ (k Ω)	25	2.5	∞	∞			

8.32
$$g_m = \frac{2 I_D}{V_{OV}} = \frac{2 \times 0.1}{0.5} = 0.4 \text{ mA/V}$$

From Table J.1 (Appendix J), we find that for the 0.5- μ m process $|V_A'| = 20 \text{ V}/\mu$ m. Thus for our 1-μ-m long transistor, $V_A = 20$ V.

$$r_o = \frac{V_A}{I_D} = \frac{20 \text{ V}}{0.1 \text{ mA}} = 200 \text{ k}\Omega$$

$$A_0 = g_m r_o = 0.4 \times 200 = 80 \text{ V/V}$$

From Table J.1:

$$\mu_n C_{ox} = 190 \,\mu\text{A/V}^2$$

Now.

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$100 = \frac{1}{2} \times 190 \times \frac{W}{L} \times 0.25$$

8.35 Using Eq. (8.46),

$$A_{0} = \frac{V'_{A}\sqrt{2(\mu_{n}C_{ox}) (WL)}}{\sqrt{I_{D}}}$$

$$18 = \frac{5\sqrt{2 \times 0.4 \times 8 \times 0.54 \times 0.54}}{\sqrt{I_{D}}}$$

$$\Rightarrow I_D = 0.144 \text{ mA}$$

8.36
$$g_m = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D}$$

$$=\sqrt{2\times0.4\times8I_{D}}=2.53\sqrt{I_{D}}$$

$$I_D = 25 \,\mu\text{A}, \qquad g_m = 2.53\sqrt{0.025} = 0.4 \,\text{mA/V}$$

$$I_D = 250 \,\mu\text{A}, \qquad g_m = 2.53\sqrt{0.25} = 1.26 \,\text{mA/V}$$

$$I_D = 2.5 \text{ mA}, \qquad g_m = 2.53\sqrt{2.5} = 4 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{V_A'L}{I_D} = \frac{5 \times 0.36}{I_D} = \frac{1.8}{I_D}$$

$$A_0 = g_m r_a$$

 $I_D = 26 \,\mu\text{A}$ $r_o = \frac{1.8}{0.025} = 72 \,\text{k}\Omega$ $A_0 = 0.025 \,\text{PM}$

$$I_D = 250 \,\mu\text{A}$$
 $r_o = \frac{1.8}{0.25} = 7.2 \,\text{k}\Omega$

$$A_0 = 1.26 \times 7.2 = 9.1 \text{ V/V}$$

(c) If the device is redesigned with a new value of W so that it operates at

$$V_{OV} = 0.25 \text{ V} \text{ for } I_D = 100 \,\mu\text{A},$$

$$g_m = \frac{2I_D}{V_{OV}} = \frac{0.2 \text{ mA}}{0.25 \text{ V}} = 0.8 \text{ mA/V}$$

$$r_o = \frac{V_A'L}{I_D} = \frac{5 \times 0.36}{0.1} = 18 \text{ k}\Omega$$

$$A_0 = g_m r_o = 0.8 \times 18 = 14.4 \text{ V/V}$$

(d) If the redesigned device in (c) is operated at 10 μ A, V_{OV} decreases by a factor equal to $\sqrt{10}$ to 0.08 V, g_m decreases by a factor of $\sqrt{10}$ to 0.253 mA/V, r_o increases by a factor of 10 to 180 k Ω , and A_0 becomes

$$0.253 \times 180 = 45.5 \text{ V/V}$$

which is an increase by a factor of $\sqrt{10}$.

(e) The lowest value of A_0 is obtained with the first design when operated at $I_D = 100 \,\mu\text{A}$. The resulting $A_0 = 4.55$ V/V. The highest value of A_0 is obtained with the second design when operated

at $I_D = 10$ µA. The resulting $A_D = 45.5$ V/V. If in (n) Hesi m W.Z. Shift dons an will 11 increased by a factor of 10, g_m remains

 $I_D = 250 \,\mu\text{A}$ $r_o = \frac{1.8}{0.25} = 7.2 \,\text{k}\Omega$ unchanged but r_o increases by a factor of 10. $I_D = 2.5 \,\text{mA}$ $r_o = \frac{1.8}{0.25} = 7.2 \,\text{k}\Omega$ $I_D = 2.5 \,\text{mA}$ $r_o = \frac{2.5}{0.25} = \frac{2.5}{0.25} = \frac{2.5}{0.25} = \frac{2.5}{0.15} = 40 \,\text{V/V}$

$$A_0 = \frac{2V_A}{V_{OV}} = \frac{2V_A'L}{V_{OV}} = \frac{2 \times 6 \times 0.5}{0.15} = 40 \text{ V/V}$$

8.37 $L = 0.36 \, \mu \text{m}$, $V_{\text{A}} \text{ Add}$ WeChat $I_{\text{P}} \text{ Power}^{1}$

(a)
$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 10}{0.25} = 80 \,\mu\text{A/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{V_A'L}{I_D}$$

From Appendix J, Table J.1, $V'_A = 5 \text{ V}/\mu\text{m}$,

$$r_o = \frac{5 \times 0.36}{10} = 0.18 \text{ M}\Omega$$

$$A_0 = g_m r_o = 80 \times 0.18 = 14.4 \text{ V/V}$$

(b) If I_D is increased to 100 μ A (i.e., by a factor of 10), V_{OV} increases by a factor of $\sqrt{10} = 3.16$ to

$$V_{OV} = 0.25 \times 3.16 = 0.79 \text{ V}$$

and g_m increases by a factor of $\sqrt{10} = 3.16$ to

$$g_m = 80 \times 3.16 = 253 \,\mu\text{A/V} = 0.253 \,\text{mA/V}$$

and r_o decreases by a factor of 10 to

$$r_o = \frac{0.18 \text{ M}\Omega}{10} = 18 \text{ k}\Omega$$

Thus, A_0 becomes

$$A_0 = 0.253 \times 18 = 4.55 \text{ V/V}$$

 $100 = \frac{1}{2} \times 400 \times \frac{W}{r} \times 0.15^{2}$

$$\Rightarrow \frac{W}{I} = 22.2$$

Thus.

$$W = 22.2 \times 0.5 = 11.1 \,\mu\text{m}$$

$$g_m = \frac{2 I_D}{V_{OV}} = \frac{2 \times 0.1}{0.15} = 1.33 \text{ mA/V}$$

$$r_o = \frac{V_A'L}{I_D} = \frac{6 \times 0.5}{0.1} = 30 \text{ k}\Omega$$

8.39
$$A_0 = |A_{vo}| = 100$$

$$100 = \frac{2 V_A}{V_{OV}} = \frac{2 V_A}{0.2}$$

$$\Rightarrow V_A = 10 \text{ V}$$

Since $V'_{A} = 20 \text{ V/} \mu\text{m}$, we have

$$L = \frac{V_A}{V_A'} = \frac{10}{20} = 0.5 \,\mu\text{m}$$

$$I_D = \frac{1}{2} k_n' \frac{W}{L} V_{OV}^2$$

$$50 = \frac{1}{2} \times 200 \times \frac{W}{L} \times 0.2^{2}$$

$$\Rightarrow \frac{W}{L} = 12.5$$

8.40 Refer to Fig. 8.15(a).

$$V_{SG2} = |V_{tp}| + |V_{OV}| = 0.5 + 0.3 = 0.8 \text{ V}$$

$$V_G = 2.5 - V_{SG2} = 2.5 - 0.8 = 1.7 \text{ V}$$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{OV1}^2$$

$$100 = \frac{1}{2} \times 200 \times \left(\frac{W}{L}\right)_1 \times 0.3^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_1 = 11.1$$

$$I_{D2} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_2 |V_{OV2}|^2$$

$$100 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_2 \times 0.3^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_1 = 8$$

$$I_{D2} = \frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_2 |V_{OV}|^2$$

$$100 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_2 \times 0.25^2$$

$$\left(\frac{W}{L}\right)_2 = 32$$

8.42 Refer to Fig. P8.42. The gain of the first stage is

$$A_{v1} = -g_{m1}(r_{o1}/2)$$

where $(r_{o1}/2)$ is the equivalent resistance at the output of Q_1 and includes r_{o1} in parallel with the output resistance of the current-source load, which is equal to r_{o1} . Similarly, the gain of the second stage is

$$A_{v2} = -g_{m2}(r_{o2}/2)$$

Now because $V_{An} = |V_{Ap}| = |V_A|$ and both Q_1 and Q_2 are operating at equal current P_{Ap} base $P_{Ap} = P_{Ap} = P_{Ap}$

 $\Rightarrow \left(\frac{W}{A} \bar{\mathbf{S}} \mathbf{\tilde{S}} \mathbf{\tilde{S}}} \mathbf{\tilde{S}} \mathbf{\tilde{S}$

The overall voltage gain A_v will be $g_{m1} = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.1}{0.3} = 0.67 \text{ mA/V}$ $r_{o1} = r_{o2} = \frac{|V_A'|L}{I_D} = \frac{20 \times 0.5}{0.1} = 100 \text{ k}\Omega$

 $A_{v} = -0.67 \times (100 \, \text{M}^{30}) = 33.5 \text{WeChateque} \text{ overly of the position of the posi$ If the two transistors are operated at equal

8.41 Refer to Fig. 8.15. Since $V'_{An} = |V'_{Ap}|$ and the channel lengths are equal, $V_{An} = |V_{Ap}|$ and $r_{o1} = r_{o2} = r_o$. Thus

$$A_v = -g_{m1}(r_{o1} \parallel r_{o2}) = -g_{m1}(r_o/2)$$
$$-40 = -\frac{1}{2}g_{m1}r_o$$
$$\Rightarrow g_{m1}r_o = 80$$

$$A_0 = \frac{2V_{An}}{V_{OV}} = \frac{2V'_{An}L}{V_{OV}}$$

$$80 = \frac{2 \times 5 \times L}{0.25}$$

$$\Rightarrow L = 2 \mu m$$

$$V_{SG2} = |V_{tp}| + |V_{OV}| = 0.5 + 0.25 = 0.75 \text{ V}$$

$$V_G = V_{DD} - V_{SG2} = 1.8 - 0.75 = 1.05 \text{ V}$$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) V_{OV}^2$$

$$100 = \frac{1}{2} \times 400 \times \left(\frac{W}{L}\right)_1 \times 0.25^2$$

$$A_v = \frac{1}{4} (g_m r_o)^2$$

$$g_m r_o = \frac{2|V_A|}{|V_{OV}|} = \frac{2 \times 5}{|V_{OV}|} = \frac{10}{|V_{OV}|}$$

$$A_v = 400 = \frac{1}{4} \times \left[\frac{10}{|V_{OV}|} \right]^2$$

$$\Rightarrow |V_{OV}| = 0.25 \text{ V}$$

8.43

Figure 1

(a) Neglecting the dc current in the feedback network and the Early effect, we see from Fig. 1 that $I_D = 200 \, \mu A$. Now, using

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

we can determine V_{OV} :

$$0.2 = \frac{1}{2} \times 2 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.45 \text{ V}$$

$$V_{GS} = V_t + V_{OV} = 0.5 + 0.45 = 0.95 \text{ V}$$

The current in the feedback network can now be found as

$$I_R = \frac{V_{GS}}{2 \text{ M}\Omega} = \frac{0.95}{2} = 0.475 \text{ } \mu\text{A}$$

which indeed is much smaller than the 200 μ A delivered by the current source. Thus, we were justified in neglecting I_R above.

(b) Replacing the MOSFET with its hybrid- π model, we obtain the equivalent circuit shown in Fig. 2.

$$V_{DS} = V_{GS} \left(1 + \frac{R_{G2}}{R_{G1}} \right)$$

= 0.95 × $\left(1 + \frac{3}{2} \right)$ = 2.375 V

The MOSFET will remain in saturation as long as $V_{DG} \ge -V_t$. Thus at the limit $V_{DG} = -0.5 \text{ V}$,

$$v_{Gmax} = 0.5 + v_{Dmin}$$

$$V_{GS} + |\hat{v}_i| = 0.5 + V_{DS} - |\hat{v}_o|$$

$$0.95 + \frac{|\hat{v}_o|}{|A_v|} = 0.5 + 2.375 - |\hat{v}_o|$$

$$|\hat{v}_o| = \frac{0.5 + 2.375 - 0.95}{1 + \frac{1}{|A_v|}}$$

Substituting $|A_v| = 86.5$, we obtain

$$|\hat{v}_o| = 1.9 \text{ V}$$

An approximate value of $|\hat{v}_o|$ could have been obtained from

$$v_{Omin} = V_{OV} = 0.45 \text{ V}$$

Assignment Project Exam Help

Add WeChat powcoder

A node equation at the output node yields

$$\frac{v_o}{r_s} + g_m v_{gs} + \frac{v_o - v_i}{R_{C2}} = 0$$

where $v_{as} = v_i$. Thus,

$$v_o\left(\frac{1}{r_o} + \frac{1}{R_{G2}}\right) = -v_i\left(g_m - \frac{1}{R_{G2}}\right)$$

$$\frac{v_o}{v_i} = -\left(g_m - \frac{1}{R_{G2}}\right)(r_o \parallel R_{G2})$$

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.2}{0.45} = 0.894 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_B} = \frac{20}{0.2} = 100 \text{ k}\Omega$$

$$\frac{v_o}{v_i} = -\left(0.89 - \frac{1}{3000}\right) \times (100 \parallel 3000)$$

$$= -86.5 \text{ V/V}$$

To obtain the maximum allowable negative signal swing at the output, we first determine the dc voltage at the output by referring to Fig. 1,

$$= \frac{v_i}{R_{G1}} - \frac{A_v v_i - v_i}{R_{G2}}$$

$$= v_i \left[\frac{1}{R_{G1}} + \frac{(1 - A_v)}{R_{G2}} \right]$$

$$R_{in} = \frac{v_i}{i_i} = 1 / \left[\frac{1}{R_{G1}} + \frac{(1 - A_v)}{R_{G2}} \right]$$

$$= 1 / \left(\frac{1}{2} + \frac{(1 + 86.5)}{3} \right) = 33.7 \text{ k}\Omega$$

8.44 Refer to Fig. 8.16(a).

$$R_o = 100 \text{ k}\Omega = r_{o1} \parallel r_{o2}$$

But

$$r_{o1} = r_{o2} = \frac{|V_A|}{I_{\text{DEE}}} = \frac{5}{I_{\text{DEE}}}$$

Thus,

$$100 = \frac{1}{2} \times \frac{5}{I_{\text{REF}}}$$

$$\Rightarrow I_{REF} = 25 \,\mu A$$

$$A_v = -g_{m1}R_o$$

$$-40 = -g_{m1} \times 100$$

$$\Rightarrow g_{m1} = 0.4 \text{ mA/V}$$

But

$$g_{m1} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right)_1 I_{D1}}$$

$$0.4 = \sqrt{2 \times 0.4 \left(\frac{W}{L}\right) \times 0.025}$$

$$\Rightarrow \left(\frac{W}{L}\right) = 8$$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 V_{OV1}^2$$

$$25 = \frac{1}{2} \times 400 \times 8 \times V_{OV1}^2$$

$$\Rightarrow V_{OV1} = 0.125 \text{ V}$$

If Q_2 and Q_3 are operated at $|V_{OV}| = 0.125 \text{ V}$,

 $I_{D2} = I_{D3} = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_2 |V_{OV}|^2$ ASSIGNMENT Proj

Thus,

$$\frac{k'_n}{k'_p} \frac{1}{|V_{OV3}|^2} \frac{1}{1 + \frac{V_{DD}}{|V_{AD}|}} (v_I - V_{In})^2$$

$$= \frac{1 - \frac{v_O}{V_{DD} + |V_{Ap}|}}{1 + \frac{V_O}{V_{AB}}}$$

$$\frac{200}{65 \times 0.526^2} \frac{1}{1 + \frac{5}{10}} (v_I - 0.6)^2 = \frac{1 - \frac{v_O}{5 + 10}}{1 + \frac{v_O}{20}}$$

$$7.41(v_I - 0.6)^2 = \frac{1 - 0.07v_O}{1 + 0.05v_O}$$

Substituting $v_O = V_{OA} = 4.47 \text{ V}$ gives

$$v_I = V_{IA} = 0.88 \text{ V}$$

To find the coordinates of point B, we note that $V_{OB} = V_{IB} - 0.6$. Thus

 $\mathbf{e_{this}^{7.41}V_{OB}^{2}} = \mathbf{E_{+0.05}^{+0.05}V_{OB}} \mathbf{Help}$ This equation can be solved by trial and pror to yield

$\Rightarrow \left(\frac{W}{L}\right)_{2,3} = 32 \text{ https://powcoder.com}$

 $V_{IB} = 0.96 \text{ V}$

8.45 From the results of Example 8.4, we see that the almost linear region of the translety characteristic (i.e., region 3) is defined by $V_{IA} = 0.89 \text{ V}$ and $V_{IB} = 0.935 \text{ V}$. Maximum output signal swing is achieved by biasing Q_1 at the middle of this range; thus

$$V_I = 0.913 \text{ V}$$

The peak-to-peak amplitude at the output will be $(V_{OA} - V_{OB}) = 2.47 - 0.335 = 2.135 \text{ V}$. Thus the peak amplitude will be $\frac{1}{2}(2.135) = 1.07 \text{ V}.$

8.46 Refer to the solution to Example 8.4.

$$V_{OA} = V_{DD} - |V_{OV3}|$$

= 5 - 0.526 = 4.474 \times 4.47 V

The relationship between v_O and v_I in region III of the transfer characteristic can be found as follows:

$$\begin{split} &\frac{1}{2}k'_n \left(\frac{W}{L}\right)_1 (v_I - V_m)^2 \left(1 + \frac{v_O}{V_{An}}\right) \\ &= \frac{1}{2}k'_p \left(\frac{W}{L}\right)_2 (V_{SG} - |V_{tp}|)^2 \left(1 + \frac{V_{DD} - v_O}{|V_{An}|}\right) \end{split}$$

Thus at the output the linear region now extends from 0.36 VAV 4.47 (V) as compared to 0.335 V to 2.47 V when the power supply was 3 V: an increase of about the same size as the increase in the power supply.

8.47 Refer to Fig. 8.16(a).

Note that Q_2 , Q_3 are not matched:

$$I_{D1} = 100 \, \mu A$$

(a)
$$I_{D2} = I_{D1} = 100 \,\mu\text{A}$$

$$\frac{I_{D3}}{I_{D2}} = \frac{(W/L)_3}{(W/L)_2} = \frac{W_3}{W_2}$$

(Note that $V_{SG2} = V_{SG3}$)

$$\Rightarrow I_{D3} = 100 \,\mu\text{A} \, \frac{10}{40} = 25 \,\mu\text{A} \Rightarrow I_{\text{REF}} = 25 \,\mu\text{A}$$

(b) By referring to Fig. 8.16(d), you notice that in Segment III, both Q_1 and Q_2 are in saturation and the transfer characteristic is quite linear. The output voltage in this segment is limited between V_{OA} and V_{OB} : coordinates of point A:

$$v_{OA} = V_{DD} - |V_{OV3}|$$

$$|V_{OV3}|^2 = \frac{I_{D3}}{\frac{1}{2}k_p'\left(\frac{W}{L}\right)_2} = \frac{25}{\frac{1}{2}\times50\times\frac{10}{1}}$$

$$\Rightarrow |V_{OV3}| = 0.32 \text{ V}$$

$$V_{OA} = 3.3 - 0.32 = 2.98$$
V

At point B:
$$V_{OB} = V_{IB} - V_{tn}$$

Now we find the transfer equation for the linear section: (Refer to Example 8.4)

$$i_{D1} = i_{D2} \Rightarrow \text{ (Note that } |V_{OV2}| = |V_{OV3}|\text{)}$$

$$\frac{1}{2}k'_{n}\left(\frac{W}{L}\right)_{1}(v_{I}-V_{m})^{2}\left(1+\frac{v_{O}}{V_{An}}\right)$$

$$= \frac{1}{2}k_p' \left(\frac{W}{L}\right)_2 V_{OV3}^2 \left(1 + \frac{V_{DD} - v_O}{|V_{AP}|}\right)$$

$$\frac{1}{2} \times 100 \times \frac{20}{1} (v_I - 0.8)^2 \left(1 + \frac{v_O}{100} \right)$$

$$= \frac{1}{2} \times 50 \times \frac{40}{1} \times 0.32^{2} \left(1 + \frac{3.3 - v_{O}}{50} \right)$$

For $v_O = 1.65$ V, from ① we have

$$(v_I - 0.8)^2 = 0.11 (1 - 0.03 \times 1.65) \Rightarrow v_I$$

$$= 1.123 \text{ V}$$

$$\left. \frac{\partial v_O}{\partial v_I} \right|_{v_I = 1.123} = -195.8 \text{ V/V}$$

(e)
$$R_{\text{out}} = r_{o1} \parallel r_{o2}$$

$$r_{o1} = \frac{V_{An}}{I_{D1}} = \frac{100 \text{ V}}{0.1 \text{ mA}} = 1 \text{ M}\Omega$$

$$r_{o2} = \frac{V_{Ap}}{I_{D2}} = \frac{50 \text{ V}}{0.1 \text{ mA}} = 500 \text{ k}\Omega$$

$$\Rightarrow R_{\text{out}} = 500 \text{ k}\Omega \parallel 1 \text{ M}\Omega$$

$$R_{\rm out} = 333 \, \mathrm{k}\Omega$$

$$g_{m1} = \sqrt{2k_n'\left(\frac{W}{L}\right)_1 I_{D1}}$$

$$= \sqrt{2 \times 100 \times 10^{-6} \times \frac{20}{1} \times 100 \times 10^{-6}}$$

$$= 0.632 \text{ mA/V}$$

 $\begin{array}{c}
(v_{I} - A8)^{2} = 0.32^{2} \begin{pmatrix} 1.066 - \frac{v_{O}}{4} \end{pmatrix} \\
(v_{I} - 0.8)^{2} = 0.11 \begin{pmatrix} 1 - 0.019v_{O} \\ 1 + 0.01v_{O} \end{pmatrix}
\end{array}$

$$(v_I - 0.8)^2 = 0.11 \left(\frac{1 - 0.019v_O}{1 + 0.01v_O} \right)$$

obtained in (c), (d) and (e) are all reasonably

+1.0 V

$$\simeq 0.11(1-0.03v)$$
 https://powcoder.com

Now if we solve for $V_{OB} = V_{IB} - 0.8$

V_{OB} + 0.0033V_{OB} A¹dd WeChat powcode

and Q_2 are in saturation 0.33 V $\leq v_O \leq$ 2.98 V

(c) From (b) we can find V_{IA} and V_{IB} :

$$V_{IB} = V_{OB} + V_t = 0.33 + 0.8 = 1.13 \text{ V}$$

If we solve (1) for $V_{OA} = 2.98$ V, then

$$(V_{IA} - 0.8)^2 = 0.11 (1 - 0.03 \times 2.98) \Rightarrow V_{IA}$$

$$= 1.116 \text{ V}$$

Large-signal voltage gain

$$=\frac{\Delta v_O}{\Delta v_I} = \frac{2.98 - 0.33}{1.13 - 1.116}$$

$$\frac{\Delta v_O}{\Delta v_i} = -189.3 \text{ V/V}$$

(d)
$$v_O = \frac{V_{DD}}{2} = \frac{3.3}{2} = 1.65 \text{ V}$$

Differentiating both sides of (1) relative to v_I :

$$2(v_I - 0.8) = 0.11 \times (-0.03) \frac{\partial v_O}{\partial v_I}$$

$$\Rightarrow \frac{\partial v_O}{\partial v_I} = -606.1 (v_I - 0.8)$$

From Fig. 1 we see that since the dc currents into the gates are zero,

$$V_D = V_G$$

Also, since Q_1 and Q_2 are matched and carry equal drain currents,

$$I_{D1}=I_{D2}=I_{D}$$

$$V_{SG2} = V_{GS1} = 1 \text{ V}$$

and thus,

$$V_G = 0$$

$$I_D = \frac{1}{2} \times 1 \times (1 - 0.5)^2 = 0.125 \text{ mA}$$

Figure 2

From Fig. 2 we see that

$$v_o = v_i - 2g_m v_{gs} R$$

But

$$v_{gs} = v_i$$

Thus,

$$R_{\text{in}} = \frac{v_i}{i_i} = \frac{v_i}{(v_i - v_o)/R} = R \frac{1}{1 - \frac{v_o}{v_i}}$$

$$= \frac{R}{1 - A_v} = \frac{1000}{1 + 74.1} = 13.3 \text{ k}\Omega$$

$$(d) \frac{v_i}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = \frac{13.3}{20 + 13.3} = 0.4 \text{ V/V}$$

$$G_v = \frac{v_o}{v_{\text{sig}}} = \frac{v_i}{v_{\text{sig}}} \times \frac{v_o}{v_i}$$

$$= 0.4 \times -74.1 = -29.6 \text{ V/V}$$

(e) Both Q_1 and Q_2 remain in saturation for output voltages that ensure that the minimum voltage across each transistor is equal to $|V_{OV}|=0.5$ V. Thus, the output voltage can range from -0.5 V to +0.5 V.

8.49 (a)
$$I_{\text{REF}} = I_{C3} = \frac{3 - V_{BE3}}{46 \text{ k}\Omega}$$

$$I_{\text{REF}} = \frac{3 - 0.7}{46}$$

$A_v = \frac{c_o}{V_{ov}} = \frac{1 - 2g_m R}{1 - 0.5}$ ment Project Exam Help

 $A_v = 1 - 2 \times 0.5 \times 1000 = -999 \text{ V/V}$

https://powcoder.com $v_i \stackrel{i_i}{=} R_{in} = \frac{v_i}{v_{gs}} = v_i$ https://powcoder.com Q_1 Q_2 Q_3 Q_2

Figure 3

For the circuit in Fig. 3 we can write at the output

$$\frac{v_o}{r_o/2} + 2g_m v_{gs} + \frac{v_o - v_i}{R} = 0$$

Substituting $v_{gs} = v_i$ and rearranging, we obtain

$$\frac{v_o}{v_i} = -2g_m \frac{1 - \frac{1}{2g_m R}}{\frac{1}{R} + \frac{2}{r}}$$

But $2g_m R \gg 1$; thus

$$A_v = \frac{v_o}{v_i} \simeq -2g_m \left(R \parallel \frac{r_o}{2} \right)$$

where

$$r_o = \frac{|V_A|}{I_D} = \frac{20}{0.125} = 160 \text{ k}\Omega$$

$$A_v = -2 \times 0.5(1000 \parallel 80) = -74.1 \text{ V/V}$$

(b)
$$|V_A| = 50 \text{ V} \Rightarrow r_{o1} = \frac{|V_A|}{I} = \frac{30}{0.25}$$

= 120 k\Omega

$$r_{o2} = \frac{30}{0.25} = 120 \text{ k}\Omega$$

Total resistance at the collector of Q_1 is

equal to $r_{o1} \parallel r_{o2}$, thus

$$r_{\text{tot}} = 120 \text{ k}\Omega \parallel 120 \text{ k}\Omega = 60 \text{ k}\Omega$$

(c)
$$g_{m_1} = \frac{I_{C1}}{V_T} = \frac{0.25}{0.025} = 10 \text{ mA/V}$$

$$r_{\pi 1} = \frac{\beta}{q} = \frac{50}{10} = 5 \text{ k}\Omega$$

(d)
$$R_{\rm in} = r_{\pi 1} = 5 \text{ k}\Omega$$

$$R_o = r_{o1} \parallel r_{o2} = 120 \text{ k}\Omega \parallel 120 \text{ k}\Omega = 60 \text{ k}\Omega$$

$$A_v = -g_{m1}R_o = -10 \times 60 = -600 \text{ V/V}$$

8.50

For an output of 1.6 V,

$$V_{SD2min} = |V_{OV2}| = 1.8 - 1.6 = 0.2 \text{ V},$$

For an output of 0.2 V,

$$V_{DS1min} = 0.2 \text{ V},$$

thus

$$V_{OV1} = 0.2 \text{ V}$$

$L = 2 \times 0.367 = 0.734$

Again, to use a multiple of $0.18~\mu m$ we select $L=0.9~\mu m$. This represents an increase in L by a factor of $\frac{0.90}{0.54}=\frac{5}{3}$. Ws will have to increase by the same factor. Thus, the area of each transistor will increase by a factor of $\left(\frac{5}{3}\right)^2$ and the total area will increase as follows:

Initial total area =

Area of Q_1 + Area of Q_2 + Area of Q_3

$$= 6.46 \times 0.54^2 + 29.1 \times 0.54^2 + 29.1 \times 0.54^2$$

$$= 18.85 \mu m^2$$

New total area =

$$6.46\times0.9^2 + 29.1\times0.9^2 + 29.1\times0.9^2$$

$$= 52.37 \mu m^2$$

Thus, the increase is by a factor of 2.78.

8.51 Refer to Fig. 8.18.

Since Aş'signiment Project Exam Help

and $I_D = \frac{1}{2} \left(\mu_p C_{ox} \right) (W/L) V_{OV}^2$, we have

$$= \frac{20 + 20}{1 + 2 \times 20} = 980 \ \Omega$$

$$\left(\frac{n}{L}\right)_{2} = \left(\frac{n}{L}\right)_{3} \frac{1}{100} \left(\frac{1}{L}\right)_{2} \frac{1}{100$$

$$= \frac{2 (50 \,\mu\text{A})}{\left(86 \,\mu\text{A/V}^2\right) (0.2 \,\text{V})^2} = 29.3$$

$$\underbrace{\overset{v_o}{v_{\text{sig}}}}_{1+0.98} = \overset{R_L}{\underset{1-0.98}{\text{Rs}}} = \overset{R_L}{\underset{1-0.98}{\text{Coder}}}$$

 $\left(\frac{W}{L}\right)_{1} = \frac{2(50 \,\mu\text{A})}{(387 \,\mu\text{A/V}^{2})(0.2 \,\text{V})^{2}} = 6.46$

 A_v must be at least -10 V/V

and
$$A_v = -g_m (r_{o1} \parallel r_{o2})$$

$$g_{m1} = \frac{2I_D}{V_{OV1}} = \frac{2 \times 0.05}{0.2} = 0.5 \text{ mA/V}$$

$$r_{o1} \parallel r_{o2} = \frac{10}{0.5} = 20 \text{ k}\Omega$$

Rut

$$r_{o1} = \frac{V_{A1}}{I_{D1}} = \frac{V'_{An}L}{I_{D1}} = \frac{5L}{0.05} = 100L$$

$$r_{o2} = \frac{|V_{A2}|}{I_{D2}} = \frac{|V'_{Ap}|L}{I_{D2}} = \frac{6L}{0.05} = 120L$$

Thus,

$$100L \parallel 120L = 20 \text{ k}\Omega$$

$$\Rightarrow L = 0.367 \,\mu\text{m}$$

If L is to be an integer multiple of 0.18 μ m, then

$$L = 0.54 \,\mu\text{m}$$

To raise the gain to 20 V/V, $r_{o1} \parallel r_{o2}$ has to be raised to 40 k Ω , which requires

8.52

$$R_{\rm in} = \frac{r_o + R_L}{1 + g_m r_o} = \frac{20 + 20}{1 + 2 \times 20} = 980 \ \Omega$$

Since $i_s = i_o$,

$$\frac{i_o}{i_{\text{sig}}} = \frac{R_s}{R_s + R_{\text{in}}} = \frac{20}{20 + 0.98} = 0.95 \text{ A/A}$$

If R_L increases by a factor of 10, R_{in} becomes

$$R_{\rm in} = \frac{20 + 200}{1 + 2 \times 20} = 5.37 \text{ k}\Omega$$

and the current gain becomes

$$\frac{i_o}{i_{\text{sig}}} = \frac{20}{20 + 5.37} = 0.79 \text{ A/A}$$

Thus an increase in R_L by a factor of 10 resulted in a decrease in the current gain from 0.95 A/A to 0.79 A/A, a change of only -17%. This indicates that the CG amplifier functions as an effective current buffer.

8.53 Refer to Fig. P8.53.

$$I_D = 0.2 \text{ mA}$$
 $V_{OV} = 0.2 \text{ V}$ $g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.2}{0.2} = 2 \text{ mA/V}$ $r_o = \frac{V_A}{I_D} = \frac{20}{0.2} = 100 \text{ k}\Omega$

$$R_{\rm out} = r_{\rho} + R_s + g_m r_o R_s$$

500 = Assignment Project + E^5 x and × Help $\Rightarrow R_s = \frac{400}{201} \approx 2 \text{ k}\Omega$ v_i R_{in} 2.2

$$\Rightarrow R_s = \frac{400}{201} \simeq 2 \text{ k}\Omega$$

 $V_{\text{BIAS}} = I_D R_S + V_G 1 + V_{OV} 1 +$

$$= 0.2 \times 2 + 0.5 + 0.2$$

$$= 1.1 \text{ V}$$

$\frac{v_o}{v_{\text{sig}}} = 90.9 \times 0.98 = 89 \text{ V/V}$ (f) Total Water Calcal Cofform

8.54 Refer to Fig. P8.54. To obtain maximum output resistance, we use the largest possible R_s consistent with $I_D R_s \le 0.3$ V. Thus

$$R_s = \frac{0.3 \text{ V}}{0.1 \text{ mA}} = 3 \text{ k}\Omega$$

Now, for Q_2 we have

$$g_m = 1 \text{ mA/V}$$
 and $V_A = 10 \text{ V}$

$$r_o = \frac{V_A}{I_D} = \frac{10 \text{ V}}{0.1 \text{ mA}} = 100 \text{ k}\Omega$$

$$R_{\rm out} = r_o + R_s + g_m r_o R_s$$

$$= 100 + 3 + 1 \times 100 \times 3$$

$$=403 \text{ k}\Omega$$

8.55 Refer to Fig. P8.55.

(a)
$$I_{D1} = I_{D2} = I_{D3} = 100 \,\mu\text{A}$$

Using
$$I_{D1} = \frac{1}{2} k'_n (W/L)_1 V_{OV1}^2$$
, we obtain

$$0.1 = \frac{1}{2} \times 4 \times V_{OV1}^2$$

$$\Rightarrow V_{OV1} = 0.224 \text{ V}$$

$$V_{GS1} = V_t + V_{OV1} = 0.8 + 0.224 = 1.024 \text{ V}$$

$$V_{\text{BIAS}} = V_{GS} + I_{D1}R_s$$

$$= 1.024 + 0.1 \times 0.05 = 1.03 \text{ V}$$

(b)
$$g_{m1} = \frac{2 I_{D1}}{V_{OV1}} = \frac{2 \times 0.1}{0.224} = 0.9 \text{ mA/V}$$

All transistors are operating at $I_D = 0.1$ mA and have $|V_A| = 20$ V. Thus all have equal values

$$r_o = \frac{|V_A|}{I_D} = \frac{20}{0.1} = 200 \text{ k}\Omega$$

(c) For
$$Q_2$$
, $R_L = r_{o2} = 200 \text{ k}\Omega$,

$$R_{\rm in} = \frac{r_o + R_L}{1 + g_m r_o}$$
$$= \frac{200 + 200}{1 + 0.9 \times 200} = 2.2 \text{ k}\Omega$$

(d)
$$R_{\text{out}} = r_o + R_s + g_m r_o R_s$$

(e)
$$\frac{v_i}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_s} = \frac{2.2}{2.2 + 0.05} = 0.98 \text{ V/V}$$

$$\frac{v_i}{v_o} = \frac{x_{in}}{v_o} = 2.2$$

 $V_{\text{BIAS}} - V_t = 1.03 - 0.8 = 0.23 \text{ V to}$ $(V_{DD} - V_{OV2})$. Since $I_{D2} = I_{D1}$ and $k_n = k_p$, then $V_{OV2} = V_{OV1}$. Thus the maximum value of v_o is 3.3 - 0.224 = 3.076 V. Thus the peak-to-peak value of v_o is 3.076 - 0.23 = 2.85 V. Correspondingly, the peak-to-peak value of $v_{\rm sig}$

$$v_{\rm sig}$$
 (peak to peak) = $\frac{2.85}{89}$ = 32 mV

8.56 Given Eq. (8.63):

$$R_{
m in} \simeq r_e rac{r_o + R_L}{r_o + rac{R_L}{eta + 1}}$$

We can write

$$\frac{R_{\rm in}}{r_e} = \frac{1 + (R_L/r_o)}{1 + [R_L/(\beta + 1)r_o]} = \frac{1 + (R_L/r_o)}{1 + (R_L/101r_o)}$$

R_L/r_o	0	1	10	100	1000	∞
$R_{\rm in}/r_e$	1	2	10	50.8	91.8	101

Observe that the range of R_{in} is r_e to $(\beta + 1)r_e$.

8.57
$$R_{\rm in} \simeq r_e \frac{r_o + R_L}{r_o + R_L/(\beta + 1)}$$

 $R_{\rm in} \simeq 2r_e$ is obtained when

$$\frac{r_o + R_L}{r_o + R_L/(\beta + 1)} = 2$$

$$\Rightarrow R_L \simeq r_o$$

8.58 Equation (8.66):

$$R_{\text{out}} = r_o + (R_e \parallel r_\pi) + (R_e \parallel r_\pi) g_m r_o$$

= $r_o + (r_e \parallel r_\pi) (1 + g_m r_o)$

For $g_m r_o \gg 1$,

$$R_{\text{out}} \simeq r_o + g_m r_o (R_e \parallel r_\pi)$$

$$\frac{R_{\text{out}}}{r_o} = 1 + \frac{g_m r_\pi R_e}{r_\pi + R_e}$$

$$=1+\frac{\beta R_e}{(\beta+1)r_e+R_e}$$

Thus,

Thus

$$i = -i_{\text{sig}} \frac{1/r_e}{\frac{1}{r_e} + \frac{1}{r_o} + \frac{1}{R_{\text{sig}}}}$$

and

$$i_1 = i_{\text{sig}} \frac{1/r_o}{\frac{1}{r_e} + \frac{1}{r_o} + \frac{1}{R_{\text{sig}}}}$$

At the collector node, we can write

$$i_o \equiv k i_{\rm sig} = i_1 - \alpha i$$

Thus,

$$ki_{\text{sig}} = i_{\text{sig}} \frac{1/r_o + (\alpha/r_e)}{\frac{1}{r_e} + \frac{1}{r_o} + \frac{1}{R_{\text{sig}}}}$$
 (1)

Now $r_o \gg r_e$ and for the case $R_{\rm sig} \gg r_e$, we obtain

$$k \simeq \frac{\alpha/r_e}{1/r_e} = \alpha$$

For our case,

For $\beta = 100$, $\beta = 1$

 $\frac{R_{\text{out}}}{r_o} = 1 + \frac{100(R_e/r_e)}{101 + (R_e/r_e)}$

The output resistance R_{out} is given by $CO_{\text{log}} = \prod_{i \in I_{\text{log}}} \prod_{i \in I_{\text{log}}} g_m r_o$

R_e/r_e	0	1	2	10	$\beta/2$	β	1000
$R_{\rm out}/r_o$	1	2	2.9	10	34	51	92

Observe that R_{out} ranges from r_o to $\beta + C_{r_o}$, with the maximum value obtained for $R_e = \infty$.

where

$$g_m r_o = 4 \times 500 = 2000$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{4} = 25 \text{ k}\Omega$$

Thus.

$$R_{\text{out}} = 500 + (10 \parallel 25) \times 2001$$

$$= 14.8 \text{ M}\Omega$$

Thus the CB amplifier has a current gain of nearly unity and a very high output resistance: a near-ideal current buffer!

A more exact value of k can be obtained using Eq. (1); k = 0.975.

8.60 Refer to Fig. P8.60.

$$I = I_C = \alpha I_E = 0.99 \times \frac{5 - 0.7}{4.3} \simeq 1 \text{ mA}$$

$$r_o = \frac{V_A}{I_C} = \frac{100 \text{ V}}{1 \text{ mA}} = 100 \text{ k}\Omega$$

$$R_{\text{out}} = r_o + (R_E \| r_\pi)(1 + g_m r_o)$$

8.59 Refer to Fig. P8.59. To obtain the short-circuit current gain k, we replace the BJT with its T model and short circuit the collector to ground, resulting in the circuit shown in the figure.

At the emitter node we see that there are three parallel resistances to ground: r_e , r_o , and R_{sig} .

where

$$g_m = \frac{I_C}{V_T} = \frac{1 \text{ mA}}{0.025 \text{ V}} = 40 \text{ mA/V}$$

$$g_m r_o = 40 \times 100 = 4000$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{100}{40} = 2.5 \text{ k}\Omega$$

$$R_E = 4.3 \text{ k}\Omega$$

Thus,

$$R_{\text{out}} = 100 + (4.3 \parallel 2.5) \times 4001 = 6.4 \text{ M}\Omega$$

$$\Delta V_C = 10 \text{ V}$$

$$\Delta I = \frac{10 \text{ V}}{6.4 \text{ M}\Omega} = 1.6 \,\mu\text{A}$$

A very small change indeed!

8.61 Refer to Fig. 8.27.

$$R_{\text{out}} = r_o + (R_e \parallel r_\pi)(1 + g_m r_o)$$

8.63 Refer to Fig. 8.32

$$R_o = g_{m3}r_{o3}r_{o4}$$

For identical transistors,

$$R_o = (g_m r_o) r_o$$

$$= \frac{2|V_A|}{|V_{OV}|} \times \frac{|V_A|}{I}$$

$$IR_o = \frac{2|V_A|^2}{V_{OV}}$$
 Q.E.D.

(a)
$$I = 0.1 \text{ mA}$$

$$0.1 \times R_o = \frac{2 \times 4^2}{0.2} = 160$$

$$R_o = 1.6 \,\mathrm{M}\Omega$$

To obtain the W/L values,

$$I = I_D = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L} \right)_{3,4} |V_{OV}|^2$$

$$R_{\text{out}} = r_o + (R_e \parallel r_\pi)(1 + g_m r_o)$$

$$\approx r_o + R_e \parallel r_\pi)(g_m r_o)$$

$$= 1 + g_m(R_e \parallel r_\pi)(g_m r_o)$$

$$\Rightarrow \left(\frac{W}{L}\right)_{3,4} \times 0.2^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_{3,4} = 50$$

$$\Rightarrow \left(\frac{W}{L}\right)_{3,4} = 50$$

$$\frac{R_{\text{out}}}{r_o} = 1 + \frac{100 \, R_e}{5 + R_e} \tag{1}$$

where R_e is in kilohms.

(a) For
$$R_{\text{out}} = 5 r_o$$
, Eq. (1) gives $R_e = 0.208 \text{ k}\Omega = 208 \Omega$

(b) For
$$R_{\text{out}} = 10 \ r_o$$
, Eq. (1) gives $R_e = 0.495 \ \text{k}\Omega \simeq 500 \ \Omega$.

(c) For $R_{\text{out}} = 50 r_o$, Eq. (1) gives $R_e = 4.8 \text{ k}\Omega$. From Eq. (1) we see that the maximum value of $R_{\rm out}/r_o$ is obtained with $R_e=\infty$ and its value is 101, which is $(\beta + 1)$.

8.62 50 =
$$g_{m2}r_{o2}$$

= $A_{02} = \frac{2V_A}{V_{OV}}$
 $V_A = 50 \times V_{OV}/2$
= $25 \times 0.2 = 5 \text{ V}$

$$V_A = 50 \times V_{OV}/2$$

= 25 × 0.2 = 5 V
 $V_A = V'_A L$
5 = 5 × L \Rightarrow L = 1 μ m

$$500 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_{3,4} |V_{OV}|^2$$

$$\Rightarrow \left(\frac{W}{L}\right)_{3,4} = 250$$

8.64 Refer to Fig. 8.32.

$$R_o = (g_{m3}r_{o3})r_{o4}$$

For identical transistors,

$$R_o = (g_m r_o) r_o$$
$$= \frac{2|V_A|}{|V_{OV}|} \times \frac{|V_A|}{I}$$

Thus.

$$IR_o = \frac{2|V_A|^2}{|V_{OV}|}$$

Substituting

$$|V_A| = |V_A'| L$$

$$IR_o = \frac{2|V_A'|^2}{|V_{OV}|} L^2 \qquad \text{Q.E.D}$$

Now, for

$$L = 0.18 \,\mu\text{m}, \qquad IR_o = \frac{2 \times 5^2}{0.2} \times 0.18^2 = 8.1 \,\text{V}$$

 $L = 0.36 \,\mu\text{m}, \qquad IR_o = \frac{2 \times 5^2}{0.2} \times 0.36^2 = 32.4 \,\text{V}$

$$L = 0.54 \,\mu\text{m}, \qquad IR_o = \frac{2 \times 5^2}{0.2} \times 0.54^2 = 72.9 \text{ V}$$

To fill out the table we use

$$g_m = \frac{2I_D}{|V_{OV}|} = \frac{2I}{|V_{OV}|} = \frac{2I}{0.2} = 10I$$

$$A_v = g_m(R_o/2)$$

- (a) The price paid is the increase in circuit area.
- (b) As I is increased, g_m increases and hence the current-driving capability of the amplifier, and as we will see later, its bandwidth.
- (c) The circuit with the largest area (58n) as compared to the circuit with the smallest area (0.065n): A_v is 364.5/40.5 = 9 times larger; g_m is 100 times larger, but R_o is 11.1 times lower.

To obtain W/L, we use

$$I_D = I = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$250 = \frac{1}{2} \times 400 \times \left(\frac{W}{L}\right) \times 0.25^2$$

$$\Rightarrow \frac{W}{L} = 20$$

To obtain maximum negative signal swing at the output, we select V_G so that the voltage at the drain of Q_1 is the minimum permitted, which is equal to V_{OV} (i.e., 0.25 V). Thus

$$V_G = 0.25 + V_{GS2}$$

$$= 0.25 + V_{OV2} + V_t$$

$$= 0.25 + 0.25 + 0.5 = 1.0 \text{ V}$$

The minimum permitted output voltage is

Since all transistors are operating at the same I_D

$$V_G - V_t = 1 - 0.5 = 0.5 \text{ V or } 2V_{OV}.$$

8.66 Refer to Fig. 8.33.

* Assignment Project Exam Help

$$g_{m1} = \frac{2I_D}{V_{OV}} = \frac{2I}{V_{OV}}$$

$$2 = \frac{2I}{0.25}$$

and $|V_{OV}|$, all have equal values of g_m . Also https://powcobadaecall have equal |V_a| = 4 V, all r_o's will be

$$\Rightarrow I = 0.25 \text{ mA}$$

$$r_o = \frac{|V_A|}{I_D} = \frac{|V_A|}{I} = \frac{4}{0.2} = 20 \text{ k}\Omega$$

$$200 = \frac{2V_A^2}{0.25 \times 0.25}$$

$$\Rightarrow V_A = 2.5 \text{ V}$$

$$V_A = V'_A L$$

$$L = \frac{V_A}{V_A'} = \frac{2.5}{5} = 0.5 \,\mu\text{m}$$

$$R_{op} = (g_m r_o) r_o = (2 \times 20) \times 20$$

$$R_o = R_{on} \parallel R_{op} = 400 \text{ k}\Omega$$

$$A_v = -g_{m1}R_o = -2 \times 400 = -800 \text{ V/V}$$

8.67 Refer to Fig. 8.33.

$$A_v = -g_{m1}R_o$$

$$-280 = -1 \times R_o \Rightarrow R_o = 280 \text{ k}\Omega$$

This table belongs to Problem 8.64.

		= 0.18 µ 8.1 V	ım	$L = 2L_{\min} = 0.36 \mu\text{m}$ $IR_o = 32.4 \text{V}$				$L = 3L_{\min} = 0.54 \mu\text{m}$ $IR_o = 72.9 \text{V}$				
	g _m (mA/V)	R_o $(k\Omega)$	$A_v \ (V/V)$	2WL (μm²)	g _m (mA/V)	$R_o \ (\mathbf{k}\Omega)$		$\begin{array}{ c c } 2WL \\ (\mum^2) \end{array}$	g _m (mA/V)	R_o $(k\Omega)$	A _{vo} (V/V)	$\frac{2WL}{(\mu m^2)}$
I = 0.01 mA $W/L = n$	0.1	810	-40.5	0.065 n	0.1	3,240	-162	0.26n	0.1	7,290	-364.5	0.58n
I = 0.1 mA $W/L = 10 n$	1.0	81	-40.5	0.65n	1.0	324	-162	2.6n	1.0	729	-364.5	5.8n
I = 1.0 mA $W/L = 100 n$	10.0	8.1	-40.5	6.5n	10.0	32.4	-162	26n	10.0	72.9	-364.5	58 <i>n</i>

Thus,

Since

 $V_{G4} = V_{DD} - V_{SG4} = 3.3 - 1 = 2.3 \text{ V}$

obtained by selecting V_{GS} as follows:

To obtain the largest possible signal swing at the

output, we maximize the allowable positive signal

swing by setting V_{D4} at its highest possible value

of $V_{DD} - |V_{OV}| = 3.3 - 0.2 = 3.1 \text{ V}$. This will be

$$g_{m1} = \frac{2I_D}{V_{OV}} = \frac{2I}{V_{OV}} \Rightarrow I = \frac{1}{2}g_{m1}V_{OV}$$

= $\frac{1}{2} \times 1 \times 0.25 = 0.125 \text{ mA}$

All four transistors are operated at the same value of I_D and the same value of $|V_{OV}|$. Also all have the same channel length and $|V_A'|$; thus all r_a values are equal. Thus

$$R_{on} = R_{op} = 2R_o = 2 \times 280 = 560 \text{ k}\Omega$$

$$560 = (g_m r_o) r_o$$

$$\Rightarrow V_A = 2.96 \text{ V}$$

$$L = \frac{V_A}{V_A'} = \frac{2.96}{5} = 0.6 \,\mu\text{m}$$

For each of the NMOS devices,

$$=\frac{2|V_A|^2}{0.25\times0.125}$$

$$v_{D3\text{max}} = V_{G3} + |V_{tp}|$$

= 2.1 + 0.8 = 2.9 V

 $V_{G3} = V_{D4} - V_{SG3}$

 $V_{SG3} = V_{SG4} = 1 \text{ V}$ $V_{G3} = 3.1 - 1 = 2.1 \text{ V}$

Since both Q_3 and Q_4 carry the same current $I = 100 \,\mu\text{A}$ and are operated at the same overdrive voltage, $|V_{OV}| = 0.2 \text{ V}$, their W/L ratios will be the same and can be found from

the highest allowable voltage at the output will be

$$R_{on} = R_{op} = 2R_o = 2 \times 280 = 560 \text{ k}\Omega$$

 $560 = (g_m r_o) r_o$
 $= \frac{2|V_A|}{|V_{OV}|} \frac{|V_A|}{I}$
 $= \frac{2|V_A|^2}{0.25 \times 0.125}$
 $\Rightarrow V_A = 2.96 \text{ V}$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L_o} \right)_{12} V_{OV}^2$$

$$Assignment Project LV_{1,2} Want and can be reduced by the sum of the first of the project of$$

$$\Rightarrow \left(\frac{W}{L}\right)_{1,2} = 10 \frac{100 = \frac{1}{2} \times 60 \times \left(\frac{W}{L}\right)_{3,4} \times 0.2^{2}}{\text{For each of the PMOS transferors,}} / \text{powcoder.com}$$

 $I_D = \frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_{3} |V_{OV}|^2$ $125 = \frac{1}{2} \times 100 \times \left(\frac{W}{L}\right)_{3,4} \times 0.25$ To obtain R_o , we first find g_m and r_o of both $g_{m3,4} = \frac{2I_D}{|V_{OV}|} = \frac{2 \times 0.1}{0.2} = 1 \text{ mA/V}$

$$\Rightarrow \left(\frac{W}{L}\right)_{3,4} = 40$$

$$r_{o3,4} = \frac{|V_A|}{I_D} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

 $R_o = (g_{m3}r_{o3})r_{o4}$

$$= 1 \times 50 \times 50 = 2.5 \text{ M}\Omega$$

8.68

$$V_{SG4} = |V_{tp}| + |V_{OV}|$$

= 0.8 + 0.2 = 1 V

While v_x appears across R_o , v_y appears across r_{o1} ,

$$\begin{aligned} \frac{v_y}{v_x} &= \frac{r_{o1}}{R_o} \\ &= \frac{r_{o1}}{r_{o1} + r_{o2} + g_{m2}r_{o2}r_{o1}} \end{aligned}$$

For $g_{m2}r_{o2} \gg 1$ and $g_{m2}r_{o1} \gg 1$,

$$\frac{v_y}{v_x} \simeq \frac{1}{g_{m2}r_{o2}}$$

8.70 Refer to Fig. P8.70.

(a) For the circuit in (a),

$$I = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{L}\right) V_{OVa}^2 \tag{1}$$

For the circuit in (b),

$$I = \frac{1}{2}\mu_n C_{ox} \left(\frac{W}{4L}\right) V_{OVb}^2 \tag{2}$$

Comparing Eqs. (1) and (2) we see that

(b) For the cascode circuit in (c) to have the same minimum voltage requirement at the drain as that for circuit (b), which is equal to $V_{OVb} = 2 V_{OVa}$, we must operate each of the two transistors in the cascode amplifier at $V_{OV} = V_{OVa}$. Thus each of the two transistors in the cascode circuit will have $g_m = g_{ma}$. Also, each will have $r_o = r_{oa}$. Thus

$$A_{vc} = -g_m R_o$$

$$\simeq -g_m [(g_m r_o) r_o]$$

$$= -A_{va}^2$$

Obviously, the cascode delivers a much greater gain than that achieved by quadrupling the channel length of the CS amplifier.

8.71

Vovb Assignment Project Exam

$$g_{m} = \frac{2I_{D}}{V_{OV}}$$
Thus for the circuit in (a), PS://powcode^{0.4.V}Corh
$$Q_{3}$$

 $g_{ma} = \frac{2I}{V_{OVa}}$

and for the circuit Add WeChat powcoder,

$$g_{mb} = \frac{2I}{V_{OVb}} = \frac{2I}{2 V_{OVa}} = \frac{I}{V_{OVa}}$$

Thus,

$$g_{mb} = \frac{1}{2} g_{ma}$$
 Q.E.D.

Since the channel length in (b) is four times that in (a),

$$V_{Ab} = 4V_{Aa}$$

and

$$r_{ob} = 4r_{oa}$$

Thus

$$A_{va} = -g_{ma}r_{oa}$$

and

$$A_{vb} = -g_{mb}r_{ob}$$
$$= -\frac{1}{2}g_{ma} \times 4 r_{oa}$$

$$=2A_{va}$$
 Q.E.D.

Since all four transistors have equal transconductance parameters, k, and all four have the same bias current, their overdrive voltages will be equal. We can obtain $|V_{OV}|$ by considering either Q_1 or Q_4 . For Q_1 ,

$$V_{GS} = V_I = 0.6 \text{ V} = V_t + V_{OV}$$

Thus.

$$V_{OV} = 0.6 - 0.4 = 0.2 \text{ V}$$

Similarly, for Q_4 ,

$$V_{SG} = V_{DD} - V_{G4} = 1.3 - 0.7 = 0.6 \text{ V}$$

Thus,

$$|V_{OV}| = V_{SG} - |V_t| = 0.6 - 0.4 = 0.2 \text{ V}$$

The maximum allowable voltage at the output is

$$v_{Omax} = V_{GS} + |V_{t3}|$$

$$= 0.4 + 0.4 = 0.8 \text{ V}$$

The minimum allowable voltage at the output is

$$v_{O\min} = V_{G2} - |V_{t2}|$$

$$= 0.9 - 0.4 = 0.5 \text{ V}$$

Thus the output voltage can range from $0.5\ V$ to $0.8\ V$.

8.72

$$R_{\text{in2}} = \frac{r_{o2} + R_L}{1 + g_{m2}r_{o2}}$$

$$= \frac{9 + 143.6}{1 + 1.55 \times 9} = 10.2 \text{ k}\Omega$$

$$R_{d1} = r_{o1} \parallel R_{\text{in2}} = 9 \parallel 10.2 = 4.8 \text{ k}\Omega$$

$$A_1 = -g_{m1}R_{d1} = -1.55 \times 4.8 = -7.41 \text{ V/V}$$

8.73 Refer to Fig. P8.73.

(a)
$$R_1 = r_{o1} = r_o$$

$$R_2 \simeq (g_m r_o) r_o$$

$$R_3 = \frac{R_2 + r_o}{g_m r_o} = \frac{g_m r_o^2 + r_o}{g_m r_o} \simeq r_o$$

(b)
$$i_1 = g_m v$$

$$i_2 = i_1 \frac{R_3}{R_3 + r_o} = g_m v_i \frac{r_o}{r_o + r_o} = \frac{1}{2} g_m v_i$$

Assignment Project Exam Help $v_i \sim 1$ Add WeChat, $p_0 = 1$ $v_0 = 1$ Add WeChat, $p_0 = 1$ $v_0 = 1$

$$g_{m1} = g_{m2} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D}$$

$$= \sqrt{2 \times 0.4 \times \frac{5.4}{0.36} \times 0.2} = 1.55 \text{ mA/V}$$

$$r_{o1} = r_{o2} = \frac{V_A}{I_D} = \frac{V_A' L}{I_D} = \frac{5 \times 0.36}{0.2} = 9 \text{ k}\Omega$$

$$R_o = r_{o1} + r_{o2} + g_{m2} r_{o2} r_{o1} = 9 + 9 + 1.55 \times 9 \times 9$$

$$= 143.6 \text{ k}\Omega$$

$$A_v = -g_{m1} (R_o \parallel R_L)$$

$$-100 = -1.55 (R_o \parallel R_L)$$

$$\Rightarrow R_o \parallel R_L = 64.5 \text{ k}\Omega$$

$$\frac{1}{R_o} + \frac{1}{R_L} = \frac{1}{64.5}$$

$$\frac{1}{R_L} = \frac{1}{64.5} - \frac{1}{143.6} = \frac{1}{117}$$

$$\Rightarrow R_L = 117 \text{ k}\Omega$$

$$v_{2} = -i_{4}R_{2} = -\frac{1}{2}g_{m}(g_{m}r_{o})r_{o}v_{i}$$

$$= -\frac{1}{2}(g_{m}r_{o})^{2}v_{i}$$

$$v_{3} = -i_{5}R_{1} = -\frac{1}{2}g_{m}v_{i}r_{o} = -\frac{1}{2}(g_{m}r_{o})v_{i}$$
(d) v_{i} is a 5-mV peak sine wave.

$$\hat{v}_1 = -\frac{1}{2} \times 20 \times v_i = -10 \times 5 = -50 \text{ mV}$$

Thus, v_1 is a 50-mV peak sine wave that is 180° out of phase with v_i .

$$\hat{v}_2 = -\frac{1}{2} \times 20^2 \times 5 = -1 \text{ V}$$

Thus, v_2 is a 1-V peak sine wave, 180° out of phase relative to v_i .

$$\hat{v}_3 = -\frac{1}{2} \times 20 \times 5 = -50 \text{ mV}$$

Thus, v_3 is a 50-mV peak sine wave, 180° out of phase relative to v_i .

We design for a minimum voltage of $|V_{OV}|$ across each of Q_1 and Q_2 .

$$V_{G1} = V_{DD} - V_{SG1} = V_{DD} - |V_{tp}| - |V_{OV}|$$

= 1.8 - 0.4 - 0.2 = 1.2 V

$$V_{G2} = V_{S2} - V_{SG2}$$

$$= 1.6 - 0.4 - 0.2 = 1.0 \text{ V}$$

$$V_{G3} = V_{S3} - V_{SG3}$$

$$= 1.4 - 0.4 - 0.2 = 0.8 \text{ V}$$

All transistors carry the same $I_D = 0.2$ mA and operate at the same value of $|V_{OV}| = 0.2$ V. Thus, their W/L ratios will be equal,

$$0.2 = \frac{1}{2} \times 0.1 \times \frac{W}{L} \times 0.2^2$$

$$\Rightarrow \frac{W}{L} = 100$$

$$R_o = (g_m r_o)^2 r_o$$

where

Assignment Project $|V_D| = \frac{2I_D}{I_D} = \frac{2 \times 0.2}{0.2} = 2 \text{ mA/V}$ $r_o = \frac{|V_A| L}{I_D} = \frac{2 \times 0.2}{0.2} = 12 \text{ k}\Omega$ 0 https://powcoder.com

8.75 Refer to Fig. P8.75.

(a) $R_{o1} = r_o$

Add WeChat powcoder

$$R_{-5} = r_{-1}$$

8.74

$$R_{o4} = (g_m r_o) r_o$$

$$R_{o3} = r_{o3} + (g_{m3}r_{o3})(R_{o1} \parallel R_{o2})$$

$$= r_o + g_m r_o \times \frac{1}{2} r_o$$

$$\simeq r_o(1+\frac{1}{2}g_mr_o)\simeq \frac{1}{2}(g_mr_o)r_o$$

$$R_{\text{in3}} = \frac{r_{o3} + R_{o4}}{1 + g_{m3}r_{o3}} \simeq \frac{r_o + g_m r_o r_o}{g_m r_o}$$

$$=\frac{1}{g_m}+r_o\simeq r_o$$

(b)
$$R_o = R_{o3} \parallel R_{o4}$$

$$=\frac{1}{2}(g_mr_o)r_o\parallel(g_mr_o)r_o$$

$$=\frac{1}{3}(g_m r_o)r_o$$

(c) When v_o is short-circuited to ground, $R_{\rm in2}$ becomes equal to $1/g_{m3}$. This resistance will be much smaller than the two other resistances between the drain of Q_1 and ground, namely,

 $R_{o1} = r_o$ and $R_{o2} = r_o$. Thus the signal current in the drain of Q_1 , $g_{m1}v_i$ will mostly flow into $1/g_{m3}$, that is, into the source of Q_3 and out of the drain of Q_3 to ground. Thus, the output short-circuit current will be equal to $g_{m1}v_i$; thus the short-circuit transconductance G_m will be

$$G_m = g_{m1}$$
 Q.E.D.
(d) $\frac{v_o}{r} = -g_{m1}R_o$

$$= -g_m \times \frac{1}{3} (g_m r_o) r_o$$

$$=-\frac{1}{3}(g_m r_o)^2$$

For

$$g_m = 2 \text{ mA/V}$$
 and $A_0 = 30$

$$\frac{v_o}{v_i} = -\frac{1}{3}(30)^2 = -300 \text{ V/V}$$

8.76

$$g_m r_o = |V_A|/V_T$$

$$r_{\pi} = \frac{\beta}{g_m}$$

Thus.

$$IR_o = \frac{|V_A|}{V_T} \frac{Ir_o r_\pi}{r_o + r_\pi}$$

$$=\frac{|V_A|}{V_T}\frac{|V_A|}{r_1+r_2}$$

$$=\frac{|V_A|}{V_T}\frac{|V_A|}{1+\frac{r_o}{r}}$$

$$= \frac{|V_A|}{V_T} \frac{|V_A|}{1 + \frac{1}{\theta} g_m r_o}$$

$$= \frac{|V_A|}{V_T} \frac{1}{\frac{1}{|V_A|} + \frac{1}{\beta} \frac{1}{V_T}}$$

$$= \frac{|V_A|}{(V_T/|V_A|) + (1/\beta)}$$

Q.E.D

Assignment Project Exam Help Q_4 $I \text{ (mA)} \quad 0.1 \quad 0.5 \quad 1$

Add We Chats. pow code III transistors have

equal β and r_o , and, since they conduct equal currents, they have equal g_m , then

$$R_o = (g_{m3}r_{o3})(r_{o4} \parallel r_{\pi 3})$$

$$I = 0.2 \text{ mA}$$

$$g_{m3} = \frac{I}{V_T} = \frac{0.2}{0.025} = 8 \text{ mA/V}$$

$$r_{o3} = r_{o4} = \frac{V_A}{I} = \frac{5}{0.2} = 25 \text{ k}\Omega$$

$$r_{\pi 3} = \frac{\beta}{g_{m3}} = \frac{50}{8} = 6.25 \text{ k}\Omega$$

$$R_o = (8 \times 25)(25 \parallel 6.25)$$

 $= 1 M\Omega$

8.77 When Eq. (8.88) is applied to the case of identical *pnp* transistors, it becomes

$$R_o = (g_m r_o)(r_o \parallel r_\pi)$$

Now

$$g_m = \frac{I}{V_T} \quad r_o = \frac{|V_A|}{I}$$

$$R_{on} = R_{op} = g_m r_o(r_o \parallel r_\pi)$$

$$R_o = R_{on} \| R_{op} = \frac{1}{2} (g_m r_o) (r_o \| r_\pi)$$

$$A_v = -g_m R_o$$

$$= -\frac{1}{2}(g_m r_o)g_m(r_o \parallel r_\pi)$$

$$= -\frac{1}{2}(g_m r_o) \frac{g_m r_o r_\pi}{r_\pi + r_o}$$

$$= -\frac{1}{2}(g_m r_o) \frac{1}{\frac{1}{a_r r} + \frac{1}{a_r r}}$$

Substituting
$$g_m r_o = \frac{|V_A|}{V_T}$$
 and $g_m r_\pi = \beta$,

$$A_v = -\frac{1}{2} \frac{|V_A|/V_T}{(V_T/|V_A|) + (1/\beta)}$$

For
$$|V_A| = 5$$
 V and $\beta = 50$ we obtain

$$A_v = -\frac{1}{2} \frac{5/0.025}{(0.025/5) + (1/50)} = -4000 \text{ V/V}$$

8.79 The output resistance of the cascode amplifier (excluding the load) is

$$R_o = g_m r_o(r_o \parallel r_\pi)$$

Thus.

$$A_v = -g_m(R_o \parallel R_L)$$

$$=-g_m(R_o \parallel \beta r_o)$$

For $|V_A| = 100 \text{ V}$, $\beta = 50$, and I = 0.2 mA we

$$g_m = \frac{I}{V_T} = \frac{0.2}{0.025} = 8 \text{ mA/V}$$

$$r_{\pi} = \frac{\beta}{g_m} = \frac{50}{8} = 6.25 \text{ k}\Omega$$

$$r_o = \frac{|V_A|}{I} = \frac{100}{0.2} = 500 \text{ k}\Omega$$

$$R_o = 8 \times 500 \times (500 \parallel 6.25)$$

$$= 24,691 \text{ k}\Omega$$

$$A_v = -8(24.7 \parallel 25) \times 10^3$$

$$= -99.4 \times 10^3 \approx -10^5 \text{ V/V}$$

 $R_o = g_{m2}r_{o2}r_{o1}$

$$= 1 \times 50 \times 50 = 2.5 \text{ M}\Omega$$

$$A_{vo} = -g_{m1}R_o$$

$$= -4 \times 2.5 \times 10^3 = -10,000 \text{ V/V}$$

(c) Refer to the circuit in Fig. P8.80(c).

$$g_{m1} = g_{m2} = \frac{2I_D}{|V_{OV}|} = \frac{2I}{|V_{OV}|} = \frac{2 \times 0.1}{0.2} =$$

$$r_{o1} = r_{o2} = \frac{|V_A|}{I_D} = \frac{|V_A|}{I} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

$$R_{\rm in}=\infty$$

$$R_o = g_{m2}r_{o2}r_{o1}$$

$$= 1 \times 50 \times 50 = 2.5 \text{ M}\Omega$$

$$A_{vo} = -g_{m1}R_o = -1 \times 2.5 \times 18^3 = -2500 \text{ V/V}$$

(d) Refer to the circuit in Fig. P8.80(c).

$$g_{m1} = \frac{2I_D}{|V_{OV}|} = \frac{2I}{|V_{OV}|} = \frac{2 \times 0.1}{0.2} = 1 \text{ mA/V}$$

Assignment Project Exam Help

8.80 (a) Refer to circuit in Fig. P8.80(a).

$$r_{o1} = \frac{|V_A|}{I} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

$$g_{m1} = \frac{I}{V_T} = \frac{0.1}{0.02} \text{herps://powcoder.com}$$

$$g_{m2} = g_{m1} = 4 \text{ mA/V}$$

$$r_{\pi 2} = \frac{\beta}{g_{m2}} = \frac{100}{4} = 25 \text{ k}\Omega$$

$$r_{\pi 1} = r_{\pi 2} = \frac{\beta}{g_m} = \frac{100}{A} d^{25}k^{\Omega}WeChat^{R}_{R_o} = (g_{m2}r_{o2})(r_{o1} \parallel r_{\pi 2})$$

$$r_{o1} = r_{o2} = \frac{|V_A|}{I} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

$$R_{\rm in} = r_{\pi 1} = 25 \text{ k}\Omega$$

$$R_o = g_{m2} r_{o2} (r_{o1} \parallel r_{\pi 2})$$

$$= (4 \times 50)(50 \parallel 25) = 3.33 \text{ M}\Omega$$

$$A_{vo} = -g_m R_o$$

$$= -4 \times 3.33 \times 10^3 = -13{,}320 \text{ V/V}$$

(b) Refer to the circuit in Fig. P8.80(b).

$$g_{m1} = \frac{I}{V_T} = \frac{0.1}{0.025} = 4 \text{ mA/V}$$

$$g_{m2} = \frac{2I_{D2}}{V_{OV}} = \frac{2I}{V_{OV}} = \frac{2 \times 0.1}{0.2} = 1 \text{ mA/V}$$

$$r_{\pi 1} = \frac{\beta}{g_{m1}} = \frac{100}{4} = 25 \text{ k}\Omega$$

$$r_{o1} = \frac{|V_A|}{I} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

$$r_{o2} = \frac{|V_A|}{I} = \frac{5}{0.1} = 50 \text{ k}\Omega$$

$$R_{\rm in} = r_{\pi 1} = 25 \text{ k}\Omega$$

$$P = (q, r, r)(r, ||r, r)$$

$$= 4 \times 50(50 \parallel 25)$$

$$= 3.33 \text{ M}\Omega$$

$$A_{vo} = -g_{m1}R_o$$

$$= -1 \times 3.33 \times 10^6 = -3330 \text{ V/V}$$

Comment: The highest voltage gain (13,320 V/V) is obtained in circuit (a). However, the input resistance is only 25 k Ω . Of the two circuits with infinite input resistance (c and d), the circuit in (d) has the higher voltage gain. Observe that combining MOSFETs with BJTs results in circuits superior to those with exclusively MOSFETs or BJTs.

8.81 (a) Refer to the circuit in Fig. P8.81(a).

$$g_{m1} = \sqrt{2\mu_n C_{ox} \left(\frac{W}{L}\right) I_D}$$

$$=\sqrt{2\times0.4\times25\times0.1}$$

$$= 1.41 \text{ mA/V}$$

$$r_{o1} = \frac{V_A}{I_D} = \frac{1.8}{0.1} = 18 \text{ k}\Omega$$

$$g_{m2} = \frac{I}{V_T} = \frac{0.1}{0.025} = 4 \text{ mA/V}$$

$$r_{o2} = \frac{V_A}{I} = \frac{1.8}{0.1} = 18 \text{ k}\Omega$$

$$r_{\pi 2} = \frac{\beta}{g_{m2}} = \frac{125}{4} = 31.25 \text{ k}\Omega$$

$$G_m = g_{m1} = 1.41 \text{ mA/V}$$

$$R_o = g_{m2}r_{o2}(r_{o1} \parallel r_{\pi 2})$$

$$= 4 \times 18 \times (18 \parallel 31.25) = 822.3 \text{ k}\Omega$$

$$A_{vo} = -G_m R_o = -1.41 \times 822.3 = -1159 \text{ V/V}$$

(b) Refer to circuit in Fig. P8.81(b).

$$g_{m1} = g_{m2} = \sqrt{2 \times 0.4 \times 25 \times 0.1}$$

= 1.41 mA/V

$$r_{o1} = r_{o2} = \frac{V_A}{I} = \frac{1.8}{0.1} = 18 \text{ k}\Omega$$

$$G_m = g_{m1} = 1.41 \text{ mA/V}$$

$$A_{vo} = -G_m R_o = -1.41 \times 457 = -644 \text{ V/V}$$

We observe that the print transistor provides higher gain. Scassool powcoder.com

$$R_o = g_{m3}r_{o3}r_{o2}$$

$$= 1.6 \times 50 \times 50 = 4 M\Omega$$

8.83

8.82 Refer to Fig. 8 Add WeChat From the figure we see that the figu

$$I_O = I_{\text{REF}} \frac{(W/L)_2}{(W/L)_1}$$

$$=20\frac{40/1}{4/1}=200 \,\mu\text{A}$$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_1 V_{OV1}^2$$

$$20 = \frac{1}{2} \times 160 \times \frac{4}{1} \times V_{OV1}^2$$

$$\Rightarrow V_{OV1} = 0.25 \text{ V}$$

$$V_{G2} = V_{GS1} = V_t + V_{OV1} = 0.6 + 0.25 = 0.85 \text{ V}$$

$$V_{OV4} = V_{OV1}$$

Thus,

$$V_{GS4} = V_{GS1} = 0.85 \text{ V}$$

$$V_{G3} = 0.85 + 0.85 = 1.7 \text{ V}$$

The lowest voltage at the output while Q_3 remains in saturation is

$$V_{Omin} = V_{G3} - V_{t3}$$

= 1.7 - 0.6 = 1.1 V

$$R_o = \beta_3 r_{o3}/2$$

where

$$r_{o3} = \frac{V_A}{I} = \frac{100 \text{ V}}{1 \text{ mA}} = 100 \text{ k}\Omega$$

Thus.

$$R_o = \frac{100 \times 100}{2} = 5 \text{ M}\Omega$$

$$\Delta I_O = \frac{\Delta V_O}{R_o} = \frac{10 \text{ V}}{5 \text{ M}\Omega} = 2 \text{ } \mu\text{A}$$

$$\frac{\Delta I_O}{I_O} = \frac{2 \,\mu\text{A}}{1 \,\text{mA}} = 0.002$$
 or 0.2%

8.85 (a)
$$I_{O1} = I_{O2} = \frac{1}{2} \frac{I_{REF}}{1 + \frac{2}{a^2}}$$

$$R = \frac{1.1 + 2.5}{0.1} = 36 \text{ k}\Omega$$

 $V_{O{
m max}}$ is limited by Q_3 saturating. Thus

$$V_{O\text{max}} = V_{E3} - V_{EC\text{sat}}$$

= 1.8 - 0.3 = 1.5 V

$$= 1.8 - 0.3 = 1.5 \text{ V}$$

8.87 Replacing each of the transistors in the Wilson mirror of Fig. 8.40 with its T model while neglecting r_o results in the circuit shown below.

The figure shows the required circuit. Obser that the unit in the riss in the three transistors having base-emitter junctions with area ratio 1:2:4. Thus

$$I_{O1} = \frac{0.1}{1 + \frac{2}{\beta^2}} = \frac{0.1}{1 + \frac{2}{\beta^2}} = \frac{0.0999 \text{ m/A}}{1 + \frac{2}{\beta^2}} = \frac{0.0999 \text{ m/A}}{1 + \frac{2}{\beta^2}} = \frac{0.1}{1 + \frac{2}{\beta^2}} = \frac{0.0999 \text{ m/A}}{1 + \frac{2}{\beta^2}} = \frac{0.1}{1 + \frac{2}{\beta^2}} = \frac{0.0999 \text{ m/A}}{1 + \frac{2}{\beta^2}} = \frac{0.0999 \text{ m/$$

$$I_{02} = \frac{0.2}{1 + \frac{2}{50^2}} = 0.1998 \text{ mA}$$
 have applied a test voltage v_x . In the following we analyze the circuit to find i_x and hence R_{in} , as

$$I_{O4} = \frac{0.4}{1 + \frac{2}{50^2}} = 0.3997 \text{ mA}$$

Note that all three transistors are operating at equal emitter currents, approximately equal to I_{REF} . Thus

$$r_{e1} = r_{e2} = r_{e3} = \frac{V_T}{I_{\text{REF}}}$$

Analysis of the circuit proceeds as follows. Since $r_{e1} = r_{e2}$, we obtain

$$i_{e2} = i_{e1} \tag{1}$$

Node equation at node 1:

$$i_{e3} + \alpha i_{e2} = i_{e1} + i_{e2}$$

Using Eq. (1) yields

$$i_{e3} = (2 - \alpha)i_{e1} \tag{2}$$

Node equation at node 2:

$$i_x = \alpha i_{e2} + (1 - \alpha)i_{e3}$$

Using Eqs. (1) and (2) yields

$$i_x = i_{e1}[\alpha + (1 - \alpha)(2 - \alpha)]$$

$$i_x = i_{e1}[2 - 2\alpha + \alpha^2]$$
 (3)

8.86

Finally, v_x can be expressed as the sum of the voltages across r_{e3} and r_{e1} ,

$$v_x = i_{e3}r_e + i_{e1}r_e$$

Using Eq. (2) yields

$$v_x = i_{e1} r_e (3 - \alpha) \tag{4}$$

Dividing Eq. (4) by Eq. (3) yields

$$R_{\rm in} = \frac{v_x}{i_x} = r_e \frac{3 - \alpha}{2 - 2\alpha + \alpha^2}$$

For $\alpha \simeq 1$,

$$R_{\rm in} = 2r_e = 2\frac{V_T}{I_{\rm RFF}}$$
 Q.E.D.

Thus, for $I_{REF} = 0.2 \text{ mA}$,

$$R_{\rm in} = 250 \,\Omega$$

8.88 Refer to circuit in Fig. 8.41(a).

(a) Each of the three transistors is operating at $I_D = I_{REF}$. Thus

of Q_4 would appear in series with the gate of Q_3 and thus carries zero current. Thus including Q_4 has no effect on the value of R_o , which can be found from Eq. (8.96):

$$R_o = g_{m3}r_{o3}r_{o2}$$

where

$$g_{m3} = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.18}{0.3} = 1.2 \text{ mA/V}$$

$$r_{o2} = r_{o3} = \frac{V_A}{I_{RFF}} = \frac{18}{0.18} = 100 \text{ k}\Omega$$

Thus

$$R_o = 1.2 \times 100 \times 100 = 12 \text{ M}\Omega$$

(f) For
$$\triangle V_O = 1$$
 V, we obtain

$$\Delta I_O = \frac{\Delta V_O}{R_o} = \frac{1 \text{ V}}{12 \text{ M}\Omega} = 0.08 \text{ } \mu\text{A}$$

$$\frac{\Delta I_O}{I_O} = 0.04\%$$

8.89 Replacing each of the three transistors in the Wilson current mirror in Fig. 8.41(a) with its

 $I_{\text{REF}} = A^{\mu_n} C_{ov} \left(\frac{W}{2} \right) V_{ov}^2$ Wilson current mirror in Fig. 8.41(a) with its $Projected Exhibits in the circuit in He figure
180 = \frac{1}{2} \times 400 \times 10 \times V_{ov}^2$

 $180 = \frac{1}{2} \times 400 \times 10 \times V_{OV}$ $\Rightarrow V_{OV} = 0.3 \text{ V}$

 $\Rightarrow V_{OV} = 0.3 \text{ V}$ $V_{G3} = V_m + V_{OV} = 0.5 \text{ ttps.} \text{ powcoder.}$

(b) Q_1 is operating at $V_{DS} = V_{GS} = 0.8 \text{ V}$

 Q_2 is operating at $V_{DS} = 2V_{GS}$ 1 WeChat

$$I_{\text{REF}} - I_O = \frac{\triangle V_{DS}}{r_o}$$

where

$$r_o = \frac{V_A}{I_{\text{REF}}} = \frac{18}{0.18} = 100 \text{ k}\Omega$$

$$I_{\text{REF}} - I_O = \frac{0.8}{100} = 0.008 \text{ mA} = 8 \text{ } \mu\text{A}$$

$$I_O = 180 - 8 = 172 \,\mu\text{A}$$

(c) Refer to Fig. 8.41(c). Since Q_1 and Q_2 are now operating at equal V_{DS} , we estimate $I_O = I_{REF} = 180 \mu A$.

(d) The minimum allowable V_O is the value at which Q_3 leaves the saturation region:

$$V_{Omin} = V_{G3} - V_t$$

= $V_{GS3} + V_{GS1} - V_t$
= $0.8 + 0.8 - 0.5 = 1.1 \text{ V}$

(e) Diode-connected transistor Q_4 has an incremental resistance $1/g_{m4}$. Reference to Fig. 8.41(b) indicates that the incremental resistance

Here, we have applied a test voltage v_x to determine R_{in} ,

$$R_{\rm in} \equiv \frac{v_x}{i_x}$$

Since all three transistors are identical and are operating at the same I_D ,

$$g_{m1}=g_{m2}=g_{m3}$$

Now from the figure we see that

$$i_1 = i_2$$

and

$$i_2 + i_3 = i_2 + i_1$$

Thus

$$i_3 = i_1 = i_2$$

A node equation at node 2 gives

$$i_x + i_3 = i_2 + i_3$$

Thus

$$i_x = i_2$$

The voltage v_x can be expressed as the sum of the voltages across $1/g_{m3}$ and $1/g_{m1}$:

$$v_x = (i_3/g_{m3}) + (i_1/g_{m1})$$

Substituting $i_3 = i_2$ and $i_1 = i_2$, $g_{m1} = g_{m3} = g_m$, and

$$v_x = 2 i_2/g_m$$

But $i_2 = i_x$; thus

$$v_x = 2 i_x/g_m$$

and thus

$$R_{\rm in} = \frac{2}{g_m}$$
 Q.E.D.

$$r_{\pi 2} = \frac{\beta}{g_m} = \frac{200}{0.8} = 250 \text{ k}\Omega$$

$$R_{\text{out}} = (2.9 \parallel 250) + 2500 + 0.8 \times 2500 \times (2.9 \parallel 250)$$

$$= 8.2 \text{ M}\Omega$$

A 5-V change in V_O gives rise to

$$\Delta I_O = \frac{5}{7.1} = 0.7 \,\mu\text{A}$$

8.91 Refer to Fig. 8.42.

(a) To obtain a current transfer ratio of 0.8 (i.e., $I_O/I_{\rm REF}=0.8$ and $I_O=80~\mu{\rm A}$), we write

$$I_O R_E = V_T \ln \left(\frac{I_{\text{REF}}}{I_O} \right)$$

$$0.08R_E = 0.025 \ln \left(\frac{100}{80} \right)$$

$$\Rightarrow R_E = 69.7 \Omega$$

Assignment Project $\sum_{r_{o2}}^{g_{m2}} = \sum_{s_0}^{0.08} \sum_{s_0}^{= 3.2 \text{ mA}} \text{Help}$

(a) Assuming β is high so that we can neglect base currents,

$$I_O R_E = V_T \ln \left(\frac{I_{\text{REF}}}{I_O} \right)$$

Substituting $I_O = 20 \mu A$ and $I_{REF} = 200 \mu A$ results in

$$0.02 R_E = 0.025 \ln \left(\frac{200}{20} \right)$$

$$\Rightarrow R_E = 2.88 \text{ k}\Omega$$

(b)
$$R_{\text{out}} = (R_E \parallel r_{\pi 2}) + r_{o2} + g_{m2}r_{o2}(R_E \parallel r_{\pi 2})$$

where

$$g_{m2} = \frac{0.02}{0.025} = 0.8 \text{ mA/V}$$

$$r_{o2} = \frac{V_A}{I_O} = \frac{50}{0.02} = 2500 \text{ k}\Omega$$

(b) To obtain $I_O/I_{\rm REF}=0.1$, that is, $I_O=10~\mu{\rm A}$, we write

$$0.01 R_E = V_T \ln \left(\frac{100}{10} \right)$$

$$\Rightarrow R_E = 5.76 \text{ k}\Omega$$

$$g_{m2} = \frac{0.01}{0.025} = 0.4 \text{ mA/V}$$

$$r_{o2} = \frac{50}{0.01} = 5000 \text{ k}\Omega$$

$$r_{\pi 2} = \infty$$

$$R_{\text{out}} = R_E + r_{o2} + g_{m2}r_{o2}R_E$$

$$= 5.76 + 5000 + 0.4 \times 5000 \times 5.76$$

$$= 16.5 \text{ M}\Omega$$

Compared to r_{o2} ,

$$\frac{R_{\rm out}}{r_{o2}} = \frac{16.5}{5} = 3.3$$

(c) To obtain $I_O/I_{REF} = 0.01$, that is, $I_O = 1 \mu A$, we write

$$0.001 \ R_E = 0.025 \ \ln \left(\frac{100}{1} \right)$$

$$\Rightarrow R_E = 115 \text{ k}\Omega$$

$$g_{m2} = \frac{0.001}{0.025} = 0.04 \text{ mA/V}$$

$$r_{o2} = \frac{50}{0.001} = 50 \times 10^3 \text{ k}\Omega$$

$$R_{\text{out}} = 115 + 50 \times 10^3 + 0.04 \times 50 \times 10^3 \times 115$$

 $= 280 M\Omega$

Relative to the value of r_{o2} ,

$$\frac{R_{\text{out}}}{r_{o2}} = \frac{280}{50} = 5.6$$

8.92 (a) Refer to the circuit in Fig. P8.92. Neglecting the base currents, we see that all three transistors are operating at $I_C = 10 \,\mu\text{A}$, and thus

8.94

The figure shows the equivalent circuit of the source follower prepared for finding R_o . Observe that we have set $v_i = 0$ and applied a test voltage v_x . We note that

$$v_{gs} = v_{bs} = -v_x \tag{1}$$

 $V_{BE1} = V_{BE2} = V_{BE3} = 0.7 - 0.025 \ln \left(\frac{1 \text{ mA}}{10 \mu} \right)$ and $v_{BE1} = 0.585 \text{ SSIgnment}$ Exam, Help

From the circuit we see that the voltage across Ris $V_{BE} = 0.585 \text{ V}$, thus

 $I_OR = V_{BE}$

Thus,

$$R = \frac{0.585}{0.01} = 58.5 \text{ k}\Omega$$

Q.E.D.

(b) $g_{m3} = \frac{0.01}{0.025} = Ardd We Chat powcoder$

$$r_{o3} = \frac{40}{0.01} = 4000 \text{ k}\Omega$$

$$r_{\pi 3} = \frac{\beta}{g_{m3}} = \frac{100}{0.4} = 250 \text{ k}\Omega$$

$$R_{\text{out}} = (R \parallel r_{\pi 3}) + r_{o3} + g_{m3}r_{o3}(R \parallel r_{\pi 3})$$

$$= (58.5 \parallel 250) + 4000 + 0.4 \times 4000 \times (58.5 \parallel 250)$$

 $= 79.9 M\Omega$

8.93 Refer to the circuit in Fig. P8.93. Since Q_1 and Q_2 are matched and conducting equal currents I, their V_{GS} values will be equal. Thus from the loop Q_1 , Q_6 , R, and Q_2 , we see that

$$IR = V_{EB6}$$

$$=V_T \ln\left(\frac{I}{I_c}\right)$$
 Q.E.D.

Now to obtain I = 0.2 mA, we write

$$0.2R = 0.7 - 0.025 \ln \left(\frac{1 \text{ mA}}{0.2 \text{ mA}} \right)$$

$$\Rightarrow R = 3.3 \text{ k}\Omega$$

8.95 The dc level shift provided by a source follower is equal to its V_{GS} . Thus, to obtain a dc level shift of 0.9 V, we write

$$V_{GS} = 0.9 \text{ V} = V_t + V_{OV}$$

$$\Rightarrow V_{OV} = 0.9 - 0.6 = 0.3 \text{ V}$$

To obtain the required bias current, we use

$$I = I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$=\frac{1}{2}\times0.2\times\frac{20}{0.5}\times0.3^2$$

$$I = 0.36 \text{ mA} = 360 \,\mu\text{A}$$

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.36}{0.3} = 2.4 \text{ mA/V}$$

$$g_{mb} = \chi g_m = 0.2 \times 2.4 = 0.48 \text{ mA/V}$$

$$r_o = \frac{V_A}{I_D} = \frac{V_A'L}{I_D} = \frac{20 \times 0.5}{0.36} = 27.8 \text{ k}\Omega$$

To determine A_{vo} , we note [refer to Fig. 8.45(b)] that the total effective resistance between the MOSFET source terminal and ground is

$$r_{o1} \parallel r_{o3} \parallel \frac{1}{g_{mb}}$$
. Denoting this resistance *R*, we have

$$R = r_o \parallel r_o \parallel \frac{1}{g_{mb}}$$

= 27.8 \| 27.8 \| \frac{1}{0.48}
= 1.81 k\Omega

Thus, the open-circuit voltage gain is

Finds, the open-entral voltage
$$A_{vo} = \frac{R}{R + \frac{1}{g_m}}$$

$$= \frac{1.81}{1.81 + \frac{1}{2.4}} = 0.81 \text{ V/V}$$

$$R_o = R / \frac{1}{g_m}$$

$$= 1.81 \text{ k}\Omega / \frac{1}{2.4 \text{ mA/V}}$$

$$= 0.339 \text{ k}\Omega$$

When a load resistance of 2 k Ω is connected to

the output, the total resistance between the off ut node and ground become $A \parallel R \parallel R \parallel L \parallel L \parallel L \parallel L$

$$0.95 \text{ k}\Omega$$
. Thus, the voltage gain becomes

$$A_v = \frac{0.95}{0.95 + \frac{1}{2.4}} = 0.7 \text{ V/V}$$

$$\frac{v_{\text{sig}}}{121.5 + \frac{1}{2.4}} = \frac{121.5}{121.5 + \frac{1}{2.4}} = \frac{121.5}{12$$

8.96

 $R_{\rm in}$ $R_{\rm in2} = r_{\rm \pi 2}$

Each of Q_1 and Q_2 is operating at an I_C approximately equal to 200 µA. Thus for both devices.

$$g_m = \frac{0.2}{0.025} = 8 \text{ mA/V}$$
 $r_e \simeq \frac{1}{g_m} = 0.125 \text{ k}\Omega$
 $r_\pi = \frac{\beta}{g_m} = \frac{100}{8} = 12.5 \text{ k}\Omega$
 $r_o = \frac{V_A}{I_C} = \frac{50}{0.2} = 250 \text{ k}\Omega$

(a)
$$R_{\text{in}2} = r_{\pi 2} = 12.5 \text{ k}\Omega$$

$$R_{\rm in} = (\beta_1 + 1)[r_{e1} + (r_{\pi 2} \parallel r_{o1})]$$

$$= 101[0.125 + (12.5 \parallel 250)]$$

$$\frac{v_{b1}}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = \frac{1.215}{1.215 + 0.5} = 0.71 \text{ V/V}$$

$$\frac{v_{e1}}{v_{b1}} = \frac{r_{\pi 2} \parallel r_{o1}}{(r_{\pi 2} \parallel r_{o1}) + r_{e1}} = 0.99 \text{ V/V}$$

$$\frac{v_o}{v_{b1}} = -g_{m2}r_{o2} = -8 \times 250 = -2000 \text{ V/V}$$

$$G_v = \frac{v_o}{v_{\text{sig}}} = 0.71 \times 0.99 \times -2000 = -1405 \text{ V/V}$$

(b) Increasing the bias current by a factor of 10 (i.e., to 2 mA) results in

$$g_m = 80 \text{ mA/V}$$

$$r_e=0.0125~\mathrm{k}\Omega$$

$$r_{\pi} = 1.25 \text{ k}\Omega$$

$$r_o = 25 \text{ k}\Omega$$

$$R_{\rm in2} = r_{\pi 2} = 1.25 \text{ k}\Omega$$

$$\frac{v_{b1}}{v_{\text{sig}}} = \frac{121.5}{121.5 + 500}$$

$$v_{b1} = \frac{1}{(1.25 \parallel 25) + 0.0125}$$

= -2000 V/V (unchanged)

$$G_v = \frac{v_o}{v_{\text{sig}}} = 0.2 \times 0.99 \times -2000 = -396 \text{ V/V}$$

which has been reduced by a factor of 3.5! All this reduction in gain is a result of the reduction in $R_{\rm in}$.

Figure 1

(a) From Fig. 1 we see that

$$I_{D1} \simeq 0.1 \text{ mA/V}$$

$$I_{D1} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right) V_{OV}^2$$

$$0.1 = \frac{1}{2} \times 2 \times V_{OV}^2$$

$$\Rightarrow V_{OV} = 0.316 \text{ V}$$

$$V_{GS} = V_t + V_{OV} = 1.316 \text{ V}$$

Thus,

$$V_{C2} = V_{G2} = 0.7 + V_{GS} = 2.016 \text{ V}$$

$$I_{C2} = \frac{V_{CC} - V_{C2}}{3 \text{ k}\Omega} = \frac{5 - 2.016}{3} \simeq 1 \text{ mA}$$

(b)
$$g_{m1} = \frac{2I_{D1}}{V_{OV}} = \frac{2 \times 0.1}{0.316} = 0.632 \text{ mA/V}$$

$$g_{m2} = \frac{I_{C2}}{V_T} = \frac{1 \text{ mA}}{0.025} = 40 \text{ mA/V}$$

$$r_{\pi 2} = \frac{\beta}{40} = \frac{200}{40} = 5 \,\mathrm{k}\Omega$$

 $\frac{v_o}{v_{\rm sig}} = \frac{487}{487 + 500} \times -19.5$

(e) The suggested configuration, shown partially in Fig. 3, will have

Figure 3

no effect on the dc bias of each transistor. However, it will have a profound effect on R_{in} , as $R_{\rm in}$ now is 10 M Ω , and

$$\frac{v_o}{v_{\rm sig}} = \frac{10}{10 + 0.5} \times -19.5 = -18.6 \text{ V/V}$$

This is nearly double the value we had before!

 $r_{\pi 2} = \frac{\beta}{A} = \frac{200}{5} = 5 \text{ k}\Omega$ (c) Neglecting R_G , an write Project From Fig. 48.3 we see that P

$$r_{e2} = \frac{V_T}{I_{ex}} = \frac{25 \text{ mV}}{10 \text{ mA}} = 2.5 \Omega$$

$$\frac{v_o}{m} = -g_{m2}(3 \parallel 1)$$

WeChatappwicoder

$$\frac{v_o}{v_i} = 0.65 \times -30 = -19.5 \text{ V/V}$$

 $\frac{v_o}{v_i} = 0.65 \times -30 = -19.5 \text{ V/V}$

Figure 2

From Fig. 2 we can find i_i as

$$i_i = \frac{v_i - A_v v_i}{R_G}$$

$$=\frac{v_i+19.4\ v_i}{R_G}$$

$$R_{\rm in} \equiv \frac{v_i}{i_i} = \frac{R_G}{20.5} = \frac{10 \text{ M}\Omega}{20.5} = 487 \text{ k}\Omega$$

Thus the overall voltage gain becomes

$$\frac{v_o}{v_{\rm sig}} = \frac{R_{\rm in}}{R_{\rm in} + R_{\rm sig}} \times A_v$$

The Darlington follower circuit prepared for small-signal analysis is shown in the figure.

$$R_{\text{in}} = (\beta + 1)[r_{e1} + (\beta_2 + 1)(r_{e2} + R_L)]$$

$$= 101[0.25 + (101)(0.0025 + 1)]$$

$$= 10.25 \text{ M}\Omega$$

$$R_{\text{out}} = r_{e2} + \frac{r_{e1} + R_{\text{sig}}/(\beta_1 + 1)}{\beta_2 + 1}$$

$$= 2.5 + \frac{250 + \frac{100 \times 10^3}{101}}{101} = 14.8 \ \Omega$$

With R_L removed,

$$G_{vo} = \frac{v_o}{v_{\rm sig}} = 1$$

With R_L connected,

$$G_v = rac{v_o}{v_{
m sig}} = G_{vo}rac{R_L}{R_L + R_{
m out}}$$

$$= 1 \times \frac{1}{1 + 0.0148} = 0.985$$

8.99

From the figure we can determine the overall voltage gain as

$$G_v = \frac{v_o}{v_{\rm sig}} = \frac{{
m Total\ resistance\ in\ the\ drain}}{{
m Total\ resistance\ in\ the\ sources}}$$

$$= \frac{R_L}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} = \frac{1}{2} g_m R_L$$

Project Exam Help $g_m = g_{m1} = g_{m2} = 5 \text{ mA/V}$

$$g_m = g_{m1} = g_{m2} = 5 \text{ mA/V}$$

der.com

8.101 Refer to Fig. P8.101. All transistors are operating at $I_E = 0.5$ mA. Thus, r = 0.5 mA = 0.5 mA r = 0.5 mA = 0.5 mA

The figure shows the circuit prepared for signal

$$G_v = \frac{v_o}{v_{\rm sig}} = \frac{\alpha \times \text{Total resistance in collectors}}{\text{Total resistance in emitters}}$$

$$=\frac{\alpha R_L}{\frac{R_{\text{sig}}}{\beta+1}+r_{e1}+r_{e2}}$$

where

 $\alpha \simeq 1$

$$r_{e1} = r_{e2} = \frac{V_T}{I_F} = \frac{25 \text{ mV}}{0.5 \text{ mA}} = 50 \Omega$$

$$G_v = \frac{10}{\frac{10}{101} + 0.05 + 0.05} = 50.2 \text{ V/V}$$

(a) Refer to Fig. P8.101(a).

$$\frac{v_o}{v_{\rm sig}} = -\frac{\alpha \times \text{Total resistance in collector}}{\text{Total resistance in emitter}}$$

$$= \frac{-\alpha \times 10 \text{ k}\Omega}{\frac{10 \text{ k}\Omega}{\beta + 1} + r_e}$$

$$\alpha = \frac{\beta}{\beta + 1} = \frac{100}{101} = 0.99$$

$$G_v = \frac{-0.99 \times 10}{\frac{10}{101} + 0.05} = -66.4 \text{ V/V}$$

(b) Refer to Fig. P8.101(b).

$$i_{b1} = \frac{v_{\text{sig}}}{10 + (\beta + 1)r_{e1}} = \frac{v_{\text{sig}}}{10 + 101 \times 0.05}$$

$$i_{c1} = \beta i_{b1} = \frac{100 \ v_{\text{sig}}}{10 + 101 \times 0.05}$$

$$i_{c2} = \alpha i_{c1} = \frac{0.99 \times 100 \ v_{\text{sig}}}{10 + 101 \times 0.05}$$

$$v_o = -i_{c2} \times 10$$

$$G_v \equiv \frac{v_o}{v_{\text{sig}}} = -\frac{10 \times 0.99 \times 100}{10 + 101 \times 0.05} = -65.8 \text{ V/V}$$

(c) Refer to Fig. P8.101(c).

$$G_v = rac{v_o}{v_{
m sig}} = rac{lpha imes {
m Total \ resistance \ in \ collector}}{{
m Total \ resistance \ in \ emitters}}$$

$$= \frac{0.99 \times 10}{\frac{10}{\beta + 1} + 2 r_e} = \frac{0.99 \times 10}{\frac{10}{101} + 2 \times 0.05}$$

$$= 49.7 \text{ V/V}$$

(d) Refer to Fig. P8.101(d).

$$R_{\text{in}}$$
 (at the base of Q_1) = $(\beta_1 + 1)[r_{e1} + r_{\pi 2}]$

where

$$r_{e1} = 50 \Omega$$

 $r_{n2} = 6 \Omega$
Ssignment Project Exam Help

$$R_{\text{in}} = 101(0.05 + 5.05) = 515 \text{ k}\Omega / \text{powcoder} = \frac{v_{\text{sig}}}{\rho_{\text{O}}} = \frac{v_{\text{sig$$

$$= -20 \times 10 = -200 \text{ V/V}$$

$$G_v = \frac{v_o}{v_{\text{sig}}} = 0.98 \times 0.98 \times -200 = -194 \text{ V/V}$$

(e) Refer to Fig. P8.101(e).

$$i_{b1} = \frac{v_{\text{sig}}}{10 + (\beta + 1)r_{e1}} = \frac{v_{\text{sig}}}{10 + 101 \times 0.05}$$

$$G_v = \frac{v_o}{v_{\text{sig}}} = \frac{0.99 \times 100 \times 10}{10 + 101 \times 0.05} = 65.8 \text{ V/V}$$
(f)

 $i_{c1} = \beta_1 i_{b1} = \frac{100 \ v_{\text{sig}}}{10 + 101 \times 0.05}$

 $i_{c2} = \alpha i_{e2} = \alpha i_{c1} = \frac{0.99 \times 100 \ v_{\text{sig}}}{10 + 101 \times 0.05}$

 $v_o = i_{c2} \times 10 = \frac{0.99 \times 100 \times 10 \ v_{\text{sig}}}{10 + 101 \times 0.05}$

$$G_v = \frac{v_o}{v_{\text{sig}}} = 0.98 \times 0.98 \times -200 = -194 \text{ V/V}$$

$$v_o = i_{c2} \times 10 \text{ k}\Omega = \frac{0.99 \times 10 \text{ } v_{\text{sig}}}{\frac{10}{101} + 0.05 + 0.05}$$

$$G_v = \frac{v_o}{v_{\rm sig}} = 49.7 \text{ V/V}$$