

Redes neuronales (Parte II: Modelos)

Inteligencia artificial

Patricio García Báez Grado en Ingeniería Informática

Índice

- Perceptrón Simple
- Perceptrón Multicapa (MLP)
- Otros modelos

- Características
 - Autor más representativo: Rosenblat (1962)
 - RN de una capa de cómputo
 - E reales / S bipolares o binarias
 - Modelo de Neurona
 - Función de suma:

$$net_j = b_j + \sum_i x_i w_{ij}$$

Función de activación: bipolar o binaria

$$f(net_{j}) = \begin{cases} 1 \Rightarrow net_{j} > \phi \\ 0 \Rightarrow -\phi \leq net_{j} \leq \phi \\ -1 \Rightarrow net_{j} < -\phi \end{cases} \qquad f_{act}(net_{j}) = \begin{cases} 1 \Rightarrow net_{j} > 0 \\ 0 \Rightarrow \text{otro caso} \end{cases}$$

- Regla Aprendizaje
 - Supervisado mediante Corrección de Error
 - Ajuste de pesos:

$$\Delta w_{ij} = \alpha \cdot e_j \cdot x_i$$

- Donde $e_{_{j}}$ es el error ajustado a [-1,0,1] y α el ratio de aprendizaje

- Algoritmo Aprendizaje
 - Inicializar pesos y bias $\in \{-1,0,1\}$, $0 < \alpha \le 1,0$
 - Repetir
 - Para cada patrón
 - » Calcular salida de cada neurona j

$$net_{j} = b_{j} + \sum_{i} x_{i} w_{ij}$$

$$x_{j} = f(net_{j}) = \begin{cases} 1 \Rightarrow net_{j} > \phi \\ 0 \Rightarrow -\phi \leq net_{j} \leq \phi \\ -1 \Rightarrow net_{j} < -\phi \end{cases}$$

$$x_{1} \quad \Box \quad w_{1} \\ w_{2} \\ x_{2} \quad \Box \quad w_{2}$$

Perceptrón para función AND

» Modificar pesos de cada conexión ij

$$\Delta w_{ij} = \alpha \cdot e_j \cdot x_i$$

Hasta no se modifiquen pesos en bucle anterior

Ejemplo de evolución para función AND

Entrada	Net	Salida Ol	ojetivo	Cambio W	W Actuales	α=1, φ=0.2
(x1, x2, 1)			(ΔW)	(w1, w2, b)		
					(0 0 0)	
(1 1 1)	0	0	1	(1 1 1)	(1 1 1)	
(1 0 1)	2	1	-1	(-1 0 -1)	(0 1 0)	
(0 1 1)	1	1	-1	(0 -1 -1)	(0 0 -1)	
$(0 \ 0 \ 1)$	-1	-1	-1	(0 0 0)	(0 0 -1)	
Resultados de la segunda pasada:						
(1 1 1)	-1	-1	1	(1 1 1)	(1 1 0)	
(1 0 1)	1	1	-1	(-1 0 -1)	(0 1 -1)	
(0 1 1)	0	0	-1	(0 -1 -1)	(0 0 -2)	
(0 0 1)	-2	-1	-1	(0 0 0)	(0 0 -2)	
Resultados de la tercera pasada:						
(1 1 1)	-2	-1	1	(1 1 1)	(1 1 -1)	
(1 0 1)	0	0	-1	(-1 0 -1)	(0 1 -2)	
(0 1 1)	-1	-1	-1	(0 0 0)	(0 1 -2)	
$(0 \ 0 \ 1)$	-2	-1	-1	(0 0 0)	(0 1 -2)	

Ejemplo de evolución para función AND

Entrada Net Salida Objetivo Cambio W W Actuales $\alpha=1, \ \phi=0.2$ (x1, x2, 1) (ΔW) (w1, w2, b)

Resultados de la cuarta pasada:

 (1 1 1) -1
 -1
 1
 (1 1 1) (1 2 -1)

 (1 0 1) 0
 0
 -1
 (-1 0 -1) (0 2 -2)

 (0 1 1) 0
 0
 -1
 (0 -1 -1) (0 1 -3)

 (0 0 1) -3
 -1
 -1
 (0 0 0) (0 1 -3)

Continuamos iterando......

 $(0 \ 0 \ 1) \ -4$

Resultados de la pasada décima en la que desaparece el error:

-1

 (1 1 1) 1
 1 (0 0 0)
 (2 3 -4)

 (1 0 1) -2
 -1 -1 (0 0 0)
 (2 3 -4)

 (0 1 1) -1 -1 (0 0 0)
 (2 3 -4)

-1

 $(0 \ 0 \ 0)$

 $(2 \ 3 \ -4)$

Separabilidad lineal

$$w_{1j}x_1 + w_{2j}x_2 + b > \phi$$

$$w_{1j}x_1 + w_{2j}x_2 + b < -\phi$$

- Teorema de Convergencia
 - Si existe un vector de pesos w^* tal que para todo patrón p pertenciente al conjunto de patrones de entrenamiento P, $f_{act}(x(p)\cdot w^*) = d(p)$, entonces para cualquier w vector de pesos inicial el aprendizaje del perceptrón acabará convergiendo en un número finito de pasos a un vector de pesos (no necesariamente único ni necesariamente w^*) que da la respuesta correcta a todos los patrones de entrenamiento

Discusión

- Según Minsky y Papert (1969,1988)
 - Limitaciones
 - » Separabilidad lineal
 - » Concavidad, convexidad
 - » Problemas clásicos: xor, paridad
 - » Incapacidad de generalización global en base a ejemplos localmente aprendidos
 - Conjetura de que estas limitaciones se extienden a los multicapas
 - Conjetura no justificada, véase algoritmos multicapas backpropagation y funciones de base radial

Características

- Autores: Invención independiente de: Bryson, 1969;
 Werbos, 1974; Parker, 1985; Lecun, 1985; Rumelhart,
 Hinton, Williams, 1986
- Soporta una o más capas ocultas
- E binarias o reales / S en principio binarias, aunque las salidas se aproximan por una función continua no lineal para clasificación
- Modelo de Neurona
 - Función de suma:

$$net_j = b_j + \sum_i x_i w_{ij}$$

 Función de activación: no lineal (sigmoide, ReLU), también lineal o SoftMax en salida

$$f_{act}(net) = \frac{1}{1 + \exp(-net)} \qquad f_{act}(net) = max(0, net)$$

- Regla de aprendizaje
 - Supervisado mediante Corrección de Error
 - Ajuste de pesos por Retropropagación del Error (Backpropagation)

$$\Delta w_{ij} = \alpha \cdot \delta_j \cdot x_i$$

– Donde δ_j es un coeficiente de error calculado para cada capa y α el ratio de aprendizaje

- Algoritmo Aprendizaje (Backpropagation)
 - Inicializar pesos y bias
 - Repetir
 - Para cada patrón
 - » Para cada capa (desde la 1ª a la última)
 - » Calcular salida de cada neurona j

$$net_j = b_j + \sum_i x_i w_{ij} \quad f_{act}(net_j)$$

» Para cada conexión *ij* de la capa de salida

$$\delta_{j} = f_{act}'(net_{j}) \cdot e_{j}$$

$$\Delta w_{ij} = \alpha \cdot \delta_j \cdot x_i$$

» Para cada conexión ij de capas anteriores

$$\delta_{j} = f_{act}'(net_{j}) \cdot \sum_{k=1}^{m} \delta_{k} \cdot w_{jk}$$
$$\Delta w_{ij} = \alpha \cdot \delta_{j} \cdot x_{i}$$

Hasta error pequeño ó alcancemos nmi

- Obtención de la regla
 - Error a minimizar:

$$E = \frac{1}{2} \cdot \sum_{k} (d_{k} - x_{k})^{2} = \frac{1}{2} \cdot \sum_{k} e_{k}^{2}$$

Minimización bajo la derivada:

- Obtención de la regla
 - Para última capa:

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} \frac{1}{2} \cdot \sum_{k} (d_{k} - x_{k})^{2} =$$

$$= \frac{\partial}{\partial w_{ij}} \frac{1}{2} \cdot \sum_{k} (d_{k} - f_{act}(net_{k}))^{2} =$$

$$= -(d_{j} - x_{j}) \cdot \frac{\partial}{\partial w_{ij}} f_{act}(net_{j}) =$$

$$= -(d_{j} - x_{j}) \cdot f'_{act}(net_{j}) \cdot \frac{\partial}{\partial w_{ij}} net_{j} =$$

$$= -e_{j} \cdot f'_{act}(net_{j}) \cdot x_{i} = -\delta_{j} \cdot x_{i}$$
donde:
$$\delta_{j} = e_{j} \cdot f'_{act}(net_{j})$$

- Obtención de la regla
 - Para capas ocultas:

$$\frac{\partial E}{\partial w_{ij}} = \sum_{k} \frac{\partial E}{\partial x_{k}} \frac{\partial}{\partial w_{ij}} x_{k} = -\frac{1}{2} \cdot 2 \cdot \sum_{k} (d_{k} - x_{k}) \cdot \frac{\partial}{\partial w_{ij}} x_{k}$$

$$= -\sum_{k} (d_{k} - x_{k}) \cdot f'_{act}(net_{k}) \cdot \frac{\partial}{\partial w_{ij}} net_{k} =$$

$$= -\sum_{k} e_{k} \cdot f'_{act}(net_{k}) \cdot \frac{\partial}{\partial w_{ij}} net_{k} = -\sum_{k} \delta_{k} \cdot \frac{\partial}{\partial w_{ij}} net_{k}$$

$$donde: \delta_{k} = e_{k} \cdot f'_{act}(net_{k})$$

$$entonces:$$

$$-\sum_{k} \delta_{k} \cdot \frac{\partial}{\partial w_{ij}} net_{k} = -\sum_{k} \delta_{k} \cdot \frac{\partial net_{k}}{\partial x_{j}} \frac{\partial}{\partial w_{ij}} x_{j} =$$

$$= -\sum_{k} \delta_{k} \cdot w_{jk} \cdot \frac{\partial}{\partial w_{ij}} x_{j} =$$

$$= -\sum_{k} \delta_{k} \cdot w_{jk} \cdot f'_{act}(net_{j}) \cdot \frac{\partial}{\partial w_{ij}} net_{j} =$$

$$= -\sum_{k} \delta_{k} \cdot w_{jk} \cdot f'_{act}(net_{j}) \cdot \frac{\partial}{\partial w_{ij}} net_{j} =$$

$$= -\sum_{k} \delta_{k} \cdot w_{jk} \cdot f'_{act}(net_{j}) \cdot x_{i} = -\delta_{j} \cdot x_{i}$$

$$donde:$$

$$\delta_{j} = f'_{act}(net_{j}) \cdot \sum_{k} \delta_{k} \cdot w_{jk}$$

Elecciones

- Número de capas ocultas
 - Una capa oculta suele bastar
 - Más capas pueden facilitar la tarea
- Número de neuronas ocultas
 - Cuanto menos mejor:
 - » Aprendizaje más rápido
 - » Mayor capacidad de generalización
 - » Menor posibilidad de parálisis
 - Técnicas de eliminación y/o creación de neuronas
- Funciones de activación
 - En capas ocultas: no lineales
 - En capa de salida: de acuerdo a los valores deseados

Elecciones

- Número de pares de entrenamiento
 - Según Baum-Haussler (1989) con P=número de patrones, W=número de pesos y ε fración de error => P>W/ ε
 - Shuffled de patrones
- Inicialización de pesos y bias
 - Influyen en alcanzar el error global o local y la velocidad con que se alcanza
 - Si se dan valores muy grandes ⇒ caida en valores de derivada pequeños (saturación)
 - Si se dan valores muy pequeños ⇒ salidas próximas a 0 ⇒ lentitud
 - Experimentalmente en intervalo:

$$\left[-0.5,0.5\right] \circ \left[-\frac{2.4}{fanin},\frac{2.4}{fanin}\right] \circ \left[-\frac{1}{\sqrt{fanin}},\frac{1}{\sqrt{fanin}}\right]$$

Elecciones

- Ratios de aprendizaje
 - Grande ⇒ parálisis o inestabilidad
 - Pequeños ⇒ lentitud en aprendizaje
 - Ratios adaptivos (RMSProp, Hinton (2012))
- Función de pérdida a minimizar
 - Error cuadrático medio (MSE de Mean Squared Error)
 - Cross-entropy loss
- Tiempo de aprendizaje
 - Hasta que el error sea menor que cota definida a priori
 - Hasta que pendiente de error sea menor que cota definida a priori
 - Hasta que pendiente de pesos sea menor que cota definida a priori
 - Jugar con 2 conjuntos, mientras no empeore el error de testeo (Early stopping)

- Variantes
 - Momentum: Rumelhart, Hinton, Williams (1986)
 - Añade un término proporcional al último ∆w

$$\Delta(t+1)w_{ij} = \alpha \cdot \delta_j \cdot x_i + \eta \cdot \Delta(t)w_{ij}$$

- Quickprop: Fahlman (1988)
 - Utiliza segunda derivada para estimar mejor la posición del mínimo
- Adam: Diederik (2014)
 - Combinación de RMSProp y Momentum
- Regularización
 - Previene el sobreajuste (Dropout Layers)
- Batch
 - Acumula los ∆w y los aplica al final

- Desventajas
 - Convergencia no demostrada
 - Lento proceso de aprendizaje
 - Incertidumbre en la convergencia debido a:
 - Parálisis de red
 - Mínimos locales

Otros modelos

- GAN (Generative Adversarial Network)
 - Sistema de dos RNs que compiten mutuamente en juego de suma cero
- LSTM (Long Short-Term Memory)
 - RN recurrente que abordar el problema de desvanecimiento de gradiente para aprender dependencias a largo plazo en secuencias de datos
- Transformer
 - RN que incorpora mecanismo de autoatención, dando un peso diferente a cada parte de la entrada
- CNN (Convolutional Neural Network)
 - Incorpora filtros convolucionales mas reducciones de muestreo antes de capa de clasificación

Créditos

Esta presentación está bajo una licencia

Creative Commons Attribution-ShareAlike 4.0 International Lice

nse

23

Referencias

- Introduction to the theory of neural computation. Hertz, Krogh, Palmer. Addison-Wesley. 1991
- Fundamentals of Neural Networks. Architectures, algorithms, and applications. Fausett. Prentice-Hall. 1994
- Neural Networks. A comprehensive foundation. Haykin. Macmillan. 1994
- Neurocomputing. Hecht-Nielsen. Addison-Wesley. 1989
- Neural Computing. Theory and Practice. Wasserman. Van Nostrand. 1989
- Descripción Formal de Modelos de Redes Neuronales. J.R. Álvarez. IX Cursos de Verano de la UNED. 1998
- Neural Netowrks for Pattern Recognition. C.M. Bishop. 1995
- Deep Learning. I. Goodfellow, Y. Bengio, A. Courville. MIT Press. 2016