$C_2H_6O(g) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(g)$

énergie **nécessaire** à la **rupture des liaisons**

	Liaisons	Énergie de liaison	Quantité	Énergie nécessaire
$\bullet \bullet$	C-C	346 kJ.mol ⁻¹	1 mol	346 kJ
\bigcirc	C-H	412 kJ.mol ⁻¹	5 mol	2060 kJ
	C-O	351 kJ.mol ⁻¹	1 mol	351 kJ
-	О-Н	464 kJ.mol ⁻¹	1 mol	464 kJ
0=0	0=0	502 kJ.mol ⁻¹	3 mol	1506 kJ
	Énerg	4727 kJ		

énergie **libérée** par la **formation des liaisons**

	Éne	5964 kJ		
	O-H	464 kJ.mol ⁻¹	6 mol	2784 kJ
	C=O	795 kJ.mol ⁻¹	4 mol	3180 kJ
	Liaisons	Énergie de liaison	Quantité	Énergie libérée

COMBUSTIONS

énergie de réaction :

4727 kJ - 5964 kJ la transformation est **exothermique**

L'énergie molaire de réaction de la combustion de l'éthanol est donc de 1237 kJ.mol-1

Transfert thermique échangée entre le système et le milieu extérieur par mole d'avancement.

Brûler une mole d'éthanol (46 g) libère 1237 kJ.

On en déduit que le **pouvoir calorifique (PC)** de l'éthanol gazeux est de **27 MJ.kg**-1

Le PC est l'énergie libérée par la combustion d'1 kg de combustible