

CSE 331: Automata & Computability Spring 2024 Prepared By: KKP Assignment 01 (DFA & NFA) Total Mark: 94

[Or means you may solve any One question]

[Problems having multiple Or, mention the problem no properly. For example: 2a) 3b)]

Submission Deadline

- Part A (Question 1-9): Feb 8, 2024
- Part A (Question 10-18): Feb 12, 2024
- Part B (Question 01-04): Feb 17, 2024

Submission Link: https://forms.gle/7SgURw2ThbZntfVW6

Penalty:

- For every one day delay you will receive a 5 marks penalty.
- If you plagiarize, then each member of the group will receive (number of question plagiarized * 3
 * number of group members) points penalty.

Additional Resource

Please go through the video lectures of Mursalin Sir [The first three video lectures on DFA]
Link: https://drive.google.com/drive/folders/179OApcX9k_8GBFM3Suea1_SEwTpyReRW

Part A: Deterministic Finite Automata (DFA) [Each question contains 3 marks]

- 1. a) Draw a DFA for the set of strings that have three consecutive 0s. $\Sigma = \{0,1\}$
 - Or, b) Draw a DFA for the set of strings that doesn't contain 0s. $\Sigma = \{0,1\}$
- 2. a) Construct a DFA that accept the language, $L = \{ w \in \{a,b\}^*; w \text{ starts and ends with different symbols.} \}$
 - Or, b) Construct a DFA that accept the language, $L = \{ w \in \{a,b\}^*: w \text{ starts and ends with the same symbol.} \}$
- 3. a) Draw a DFA of strings that ends with "0101". $\Sigma = \{0,1\}$
 - Or, b) Design a DFA that accepts the language L = $\{w \mid w \text{ ends with the substring "yxxy"}\}\$ over the alphabet $\{x,y\}$
- 4. Construct a DFA defined as $L = \{ w \in \{0,1\}^*$: the length of w is one more than multiple of 3}
- Construct a DFA defined as L = { w ∈ {0,1}}: w, when interpreted as a binary number, is divisible by 5.}
- 6. $L = \{w \in \{0, 1, \#\}^* : w \text{ does not contain } \# \text{ and the number of 0s in } w \text{ is not a multiple of 3} \}$
- 7. Construct a DFA of the language L over the alphabet $\Sigma = \{a,b,c\}$ defined as follows- $L = \{w|w \text{ does not contain "ba" and ends with "cb"}\}$
- 8. Draw a DFA of strings that contains at least three 0s or exactly two 1s. $\Sigma = \{0.1\}$
- 9. a) Draw a DFA of strings where the 2nd last symbol is a. $\Sigma = \{a,b\}$
 - Or, b) Draw a DFA of strings where the 3rd last symbol is 1. $\Sigma = \{0,1\}$ [You may draw the NFA for this problem if you find it difficult to solve using DFA]
- 10. a) Draw a DFA of strings that have 1 as every 3rd symbol. $\Sigma = \{0,1\}$
 - Or, b) The set of binary numbers has 0 in all even positions. $\Sigma = \{0,1\}$.
- 11. a) Draw a DFA which accepts exactly one "ab". $\Sigma = \{a,b\}$
 - Or, b) Draw a DFA which accepts exactly two "ab". $\Sigma = \{a,b\}$
- 12. Draw a DFA which accepts at least two "00" as a substring. $\Sigma = \{0,1\}$
- 13. a) Draw a DFA which accepts exactly two "00" as a substring. $\Sigma = \{0,1\}$
 - Or, b) Draw a DFA which accepts at most two "00" as a substring. $\Sigma = \{0,1\}$
- 14. Construct a DFA defined as L = {An even number of 0s follow the last 1 in w} $\Sigma = \{0,1\}$
- 15. Construct a DFA defined as L = {w| each "b" is followed by at least one "a"} $\Sigma = \{a,b\}$ For example: baaa
- 16. Construct a DFA where the set of binary strings where numbers of 0s between two successive 1s will be even. Σ = {0.1}.
- 17. a) Construct a DFA of the Language, L = { w ∈ {0,1}* : w contains 01^m0 as a substring where m is divisible by 3 }
 - Or, b) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : w \text{ contains } 01^m0 \text{ as a substring where } m \text{ leaves a remainder of } 2 \text{ when divided by } 3 \}$

18. a) Construct a DFA of the Language, L = { $w \in \{0,1\}^*$: $w = 0^m 1^n$ where m and n are both odd.}

Or, b) Construct a DFA of the Language, $L = \{ w \in \{0,1\}^* : w = 0^m 1^n \text{ where m and n are both even.} \}$

Or, c) The problem can also be designed as:

```
L1 = \{w : w = 0^m, where m is even}

L2 = \{w : w = 1^n, where n is even}

L = L1 . L2
```

Prove L is a regular language by giving a state diagram for DFA.

Part B: Mursalin Sir's [MHB] Quiz Question from Previous semesters [Each question contains 10 marks.]

Question 1.

```
Let \Sigma = {0, 1}  L1 = \{w: w = 1^{\infty} \text{ where m is odd} \}   L2 = \{w: w \text{ does not contain any } y \in L1 \text{ as a substring} \}
```

- (a) Write down a length 6 string that is in L2. (1 point) .
- (b) Give the state diagram for a DFA that recognizes L1. (5 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)
- (d) Give the state diagram for a DFA that recognizes $L1 \cap L2$. You can use the construction shown in class but there is a much simpler DFA. (2 points)

Question 2.

The symmetric difference of the languages L1 and L2, denoted by L1 \triangle L2, is defined in the following way.

$$L1\triangle L2 = \{w : w \text{ is in exactly one of } L1 \text{ and } L2\}$$

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

 $A = \{w: \text{the length of } w \text{ is greater than or equal to 3} \text{ but less than or equal to 5} \}$ $B = \{w: \text{the length of } w \text{ is greater than or equal to 2} \text{ but less than or equal to 4} \}$ $C = \{w: \text{the length of } w \text{ is odd} \}$

- (a) Give the state diagram for a DFA that recognizes A. (2 points)
- (b) Give the state diagram for a DFA that recognizes B. (2 points)
- (c) Give the state diagram for a DFA that recognizes $\ensuremath{\mathsf{A}} \triangle \ensuremath{\mathsf{B}}.$ (2 points)
- (d) If you use the construction from class to get a DFA for the language $(A\triangle B)\cup C$, how many states will it have? (1 point)
- (e) Give a 5-state DFA that recognizes (A△B) ∪ C. (3 points)

Question 3.

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

```
L1 = \{w : \text{every second letter of } w \text{ is } 0\}

L2 = \{w : \text{every third letter of } w \text{ is } 1\}
```

- (a) Write down a length 5 string that is in L1 \cap L2. (1 point) .
- (b) Give the state diagram for a DFA that recognizes L1. (3 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)
- (d) Give the state diagram for a DFA that recognizes L1 \cap L2. (3 points)

Question 4.

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ .

$$L1 = \{0, 10\}$$

$$L2 = {L_1}^*$$

$$L3 = \{w : \text{the length of } w \text{ is four}\}$$

- (a) Write down all the strings in L2 \cap L3. (2.5 points)
- (b) Give the state diagram for a DFA that recognizes L1. (4.5 points)
- (c) Give the state diagram for a DFA that recognizes L2. (3 points)

For Practice: [Don't have to submit]

Non-Deterministic finite automata (NFA)

- 1. Construct a NFA which recognize the language L = { $w \in \{0,1\}^*$: $w = 0.00^\circ$ and "111" as a substring}
- 2. Construct a NFA which recognize the language L = { $w \in \{0,1\}^*$: w contains at least two 0s or exactly two 1s}
- 3. Construct a NFAs for for the languages L = $\{w \in \Sigma : w \text{ does not start with a Punctuation or contains only Alphabets}\}$ where $\Sigma = D \cup A \cup P$

You can use the sets above to label the transitions of your NFA.