1. Series de potencias

1.1. Definición

Definición 1. Una serie de potencias es una serie de la forma:

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

donde a_n , $n = 0, 1, ..., z_0$ y z son elementos de \mathbb{R} .

Estamos interesados en determinar los valores de z para los cuales una serie converge.

Ejemplo 1. La serie geométrica

$$\sum_{n=0}^{\infty} z^n,$$

es una serie de potencias. Aquí $a_n=1,\, n=0,1,\dots$ y $z_0=0.$ Esta serie converge para |z|<1 a

$$\frac{1}{1-z}$$

y no converge para cualquier otro valor de $z \in \mathbb{R}$.

Ejemplo 2. Supongamos $f:I\to\mathbb{R}$, donde I es un intervalo abierto I=(a,b) y que f tiene derivadas de todo orden en $z_0\in I$. Entonces es posible construir la serie de Taylor de f en z_0 que es una serie de potencias. Recordemos que esta serie es

$$S(f, z_0, z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

2. Límites superior e inferior

Definición 2. Dada una sucesión de números reales x_n , consideramos una nueva sucesión:

$$A_n = \sup\{x_n, x_{n+1}, \ldots\}$$

La nueva sucesión de reales A_n es siempre nocreciente $(A_n \ge A_{n+1})$, luego tiene un límite (puede ser $\pm \infty$). A este límite lo llamamos el límite superior de x_n . Lo denotamos por lím sup. Es decir:

$$\limsup x_n = \lim_{n \to \infty} A_n = \lim_{n \to \infty} \sup \{x_n, x_{n+1}, \ldots\}.$$

Tomando ínfimo en lugar de supremo conseguimos el límite inferior (lím inf).

Ejemplo 3. Si $x_n = (-1)^n$, entonces

$$\{x_n, x_{n+1}, \ldots\} = \{\pm 1, \mp 1, \pm 1, \ldots\}.$$

El supremode este conjunto es para todo n igual a 1 y el ínfimo igual a -1. Luego lím inf $x_n=-1$ y lím sup =1.

Ejemplo 4. Si $x_n = 1/n$, si n es par y $x_n = 1$ si n es impar, entonces el conjunto

$$\{x_n, x_{n+1}, \ldots\}$$

tiene por supremo 1 y el ínfimo igual a 0. Luego lím inf $x_n = 0$ y lím sup = 1.

Teorema 1. Propiedades Sea x_n e y_n dos sucesiones de números reales, entonces:

- 1. El lím sup y el lím inf existen siempre si se permite que $\pm \infty$ sean sus posibles valores.
- 2. $\liminf x_n \le \limsup x_n$.
- 3. $\liminf x_n = \limsup x_n$ si y solo si el $\lim x_n$ existe. En este caso todos los límites coinciden.
- 4. $\liminf (x_n + y_n) \ge \liminf x_n + \liminf y_n$.
- 5. $\limsup (x_n + y_n) \le \limsup x_n + \limsup y_n$

3. Radio de convergencia

Definición 3. Dada la serie de potencias

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

definimos el radio de convergencia R de la siguiente forma:

$$\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{1/n}.$$

Ejemplo 5. La serie

$$\sum_{n=0}^{\infty} z^n,$$

tiene radio de convergencia:

$$\frac{1}{R} = \limsup_{n \to \infty} 1^{1/n} = \lim_{n \to \infty} 1^{1/n} = 1$$

Luego R = 1.

Ejemplo 6. La serie

$$\sum_{n=0}^{\infty} \left(\frac{1}{M}\right)^n z^n,$$

tiene radio de convergencia:

$$\frac{1}{R} = \limsup_{n \to \infty} \left(\left(\frac{1}{M} \right)^n \right)^{1/n} = \lim_{n \to \infty} \left(\left(\frac{1}{M} \right)^n \right)^{1/n} = \frac{1}{M}$$

Luego R = M.

Ejemplo 7. Fijemos M>0 y n un natural tal que [n/2]>M (aquí [x] es la parte entera de x). Entonces, como $n-[n/2]\geq [n/2]>M$

$$\begin{split} n! &= n(n-1) \cdots 1 > n(n-1) \cdots (n-[n/2]) \\ &> \underbrace{M \cdots M}_{[n/2] - \text{veces}} \\ &\geq M^{[n/2]} \\ &> M^{n/3} \end{split}$$

Luego

$$\frac{1}{R} := \limsup_{n \to \infty} (1/n!)^{1/n} \le \lim_{n \to \infty} \left(\frac{1}{M^{n/3}}\right)^{1/n} = \frac{1}{\sqrt[3]{M}}$$

Como M es arbitrario, haciendo $M\to\infty$ vemos que el radio de convergencia de la serie $\sum\limits_{n=0}^{\infty}\frac{1}{n!}z^n$ es $R=\infty$.

Primer Teorema Principal

Teorema Consideremos la serie:

$$\sum_{n=0}^{\infty} a_n z^n,$$

Entonces:

1. <+->Si |z| < R, la serie converge absolutamente en z.

2. <+->Si |z| > R, la serie diverge.

3. <+->Si |z|=R, ??????

Demostración Primer Teorema Principal Dem. Supongamos $0 < R < \infty$. Sea L=1/R y tomemos $\varepsilon > 0$ pequeño. Como

$$\lim_{n \to \infty} \sup\{|a_n|^{1/n}, |a_{n+1}|^{1/n+1}, \ldots\} = L$$

para n_0 suficientemente grande

$$\sup\{|a_n|^{1/n}, |a_{n+1}|^{1/n+1}, \ldots\} < L + \varepsilon.$$

Así

$$|a_n|^{1/n} < L + \varepsilon$$
 para $n \ge n_0$.

Elijamos $0 < r < 1/(L + \varepsilon) < 1/L = R$. Si |z| < r entonces

$$|a_n||z|^n < (L+\varepsilon)^n r^n$$
 para $n \ge n_0$.

Demostración Primer Teorema Principal

Pero $r(L+\varepsilon)<1$. La desigualdad de arriba y el teorema de comparación (notar que el miembro de la derecha forma una serie geométrica) implican que la serie converge absolutamente para este z. Como epsilon es arbitrario, dado cualquier z, con |z|<1, tenemos un ε lo suficientemente chico para que $|z|<1/(L+\varepsilon)$.

Ejercicio: Demostrar los casos R = 0, $R = \infty$ y el segundo inciso.

Segundo Teorema Principal

Teorema La función

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

es holomorfa dentro del círculo con centro en el origen dado por el radio de convergencia. Además

$$f'(z) = g(z) := \sum_{n=1}^{\infty} n a_n z^{n-1},$$

teniendo esta serie el mismo radio de convergencia que el de f.

Demostración Segundo Teorema Principal Dem. La afirmación sobre el radio de convergencia es consecuencia de que $\lim_{n\to\infty} n^{1/n}=1$. Como el radio R' de convergencia de g es:

$$\frac{1}{R'} = \limsup_{n \to \infty} |a_{n+1}(n+1)|^{1/(n+1)}$$

$$= \limsup_{n \to \infty} |a_{n+1}|^{1/(n+1)} \lim_{n \to \infty} |(n+1)|^{1/(n+1)}$$
Ejer. Matemáticos
$$= \limsup_{n \to \infty} |a_{n+1}|^{1/(n+1)} = \frac{1}{R}$$

Demostración Segundo Teorema Principal Ahora veamos que f es holomorfa y f'=g. Sea $0< r< R, |z_0|< r$ y $N\in\mathbb{N}$. Pongamos:

$$f(z) = S_N(z) + E_N(z),$$

$$S_N(z) = \sum_{n=0}^N a_n z^n \quad \text{y} \quad E_N(z) = \sum_{n=N+1}^\infty a_n z^n$$

Tomemos $|h| < r - |z_0|$, así $|z_0 + h| < r$. Tenemos

$$\frac{f(z_0 + h) - f(z_0)}{h} - g(z_0) = \frac{S_N(z_0 + h) - S_N(z_0)}{h} - S'_N(z_0) + S'_N(z_0) - g(z_0) + \frac{E_N(z_0 + h) - E_N(z_0)}{h}$$

Demostración Segundo Teorema Principal Ahora si $\varepsilon > 0$

$$\left| \frac{E_N(z_0 + h) - E_N(z_0)}{h} \right| \le \sum_{n=N+1}^{\infty} |a_n| \left| \frac{(z_0 + h)^n - z_0^n}{h} \right|$$

$$= \sum_{n=N+1}^{\infty} |a_n| (|z_0|^{n-1} + |z_0|^{n-2}h + \dots + h^{n-1})$$

$$\le 2 \sum_{n=N+1}^{\infty} |a_n| nr^{n-1} < \varepsilon$$

Para N suficientemente grande. Además como $S_N'(z) \to g(z)$ cuando $N \to \infty$ podemos elegir, a su vez, N suficientemente grande para que

$$|S_N'(z_0) - g(z_0)| < \varepsilon$$

Demostración Segundo Teorema Principal Fijemos un N que satisfaga las condiciones anteriores. Ahora podemos encontrar $\delta>0$ para que $|h|<\delta$ cumpla que

$$\left|\frac{S_N(z_0+h)-S_N(z_0)}{h}-S_N'(z_0)\right|<\varepsilon.$$

Esto muestra que $f'(z_0) = g(z_0)$ y por consiguiente f es holomorfa.

Un corolario

Corolario Una serie de potencias es infinitamente diferenciable. Las sucesivas derivadas se obtienen derivando término a término la serie. El radio de convergencia se conserva

Representación de la función exponencial

Ejemplo Habímos visto que la serie:

$$f(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

tenía radio de convergencia infinito y por ende converge en \mathbb{R} . Ahora vemos que

$$f'(z) = \sum_{n=1}^{\infty} \frac{1}{(n-1)!} z^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!} z^n$$

Representación de la función exponencial

Ejemplo Esta f resuelve la simple ecuación diferencial f'(z) = f(z). La misma ecuación es resuelta por $g(z) = e^z$. Tenemos:

$$\frac{d}{dz}f(z)e^{-z} = f'(z)e^{-z} - f(z)e^{-z} = 0$$

Entonces $h(z)=f(z)e^{-z}$ es una función costante. Pero h(0)=1, entonces $f(z)e^{-z}=1$ y de allí $f(z)=e^z$.

Comentario Podemos a partir de la exponencial encontrar desarrollos en serie para las funciones trigonométricas.

4. Funciones analíticas

Funciones Analíticas

Podemos hacer un desarrollo de pontencias centrado en otro punto $z_0 \in \mathbb{R}$ diferente que 0. Nos referimos a considerar series de la forma

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Claramente a este tipo de serie se le aplican todos los resultados anteriores. Ahora el disco de convergencia es un disco centrado en z_0 y de radio dado por el radio de convergencia dado por la misma fórmula que antes.

Funciones Analíticas

Definición Una función $f:\Omega\subset\mathbb{R}\to\mathbb{R}$ se dirá analítica si para cada $z_0\in\Omega$, existe un R y $a_n\in\mathbb{R}$, tal que vale la igualdad:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
, para $|z - z_0| < R$

Ejercicio Si f es analítica tenemos la siguiente fórmula

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

para los coeficientes a_n .