	ECE 147 Homework 1
	(minds) xindow o si A (i)
(ID	a) ?) a = real orthogonal matrix
	Property = Q = QT (If orthogonal)
PX ;	Thus, Q's is also on ortugonal matrix. Also, as
guira	QT=QT, thus QT is also orthogonal
	3 au coulou
SO ₁	av = 1v where 1 = eigenvalue
	VZIIQVII = 11XVIIVZV
TAID	Right mayor (IVII. 11 KI = 11 VII. 11 DIJ exeruston
. 9	Norm 11 11 = 11Q11 = 1
	(As olumns are perpendicular to each other, each
	column has a norm of 1. IIQII = 1
	TAA AO 2941 MARIE DE LA TAA
۱۱۱۱)	Det(A) Det(B) = Det(AB) (QTQ) = I
	$det(Q^T)$. $Det(Q) = det(Q^TQ) = det(T) = 1$
	Q_= 0 V = 0 = V V = Q
	therefore $(de+(b))^2 = 1$
	$det(Q) = \pm 1$
5.00	o it Folse , The Hantibe mothing for and it ()
(۷)	Need to show 11Qx11 = 11x11 where x is a vertor.
(0)	$ Qx = \sqrt{(Qx)_1^2 + (Qx)_2^2 + (Qx)_3^2 \cdots}$
	$= \sqrt{x^{T}Q^{T}Qx} = \sqrt{x^{T}Lx} = \sqrt{x^{T}x}$
	1100
	$\sqrt{x^{T}x} = - x $
	Thus II Q x II = \xTx = II x II
	And therefore, is a length preserving transformation
	F21A7 2097 A red reducing in

b) i) A is a matrix (equar)

$$A = V \times V^T$$
 $V \times V \times V \times V^T$
 $V \times V \times V \times V^T \times V \times V^T \times V^T$

	Eigenvalues of a positive semidefinite matix are non negative
	Thus FRUE 21 butable pried in Hilliadia (
[4] 8-12 }	TRUE - The rank of a matrix can exceed the number of
i a	distinct eigenvalues, which may he lesser than or equal to the
has des	number troping distinct eigenvalues.
	i ste game deportment in the other is
٧)	TRUE > Non zero jum y as two eigenvertoss corresponding
	to the same eigenvalue i is always an eigenveutor.
(02)	PROBABILITY REFRESHER: MONTH ON IT (1)
A	hose of the adoption is at it was the T
	1 Novan Lik = = (1 = 0)n-1(1 0)

iv) duel ends after
$$n^{12n}$$
 round, from (i)

$$\frac{P(n, A-not hit)}{P(B-not hit)} = \frac{(1-P_A)^{n-1}(1-P_B)^n \cdot P_A}{1-(1-P_A)(1-P_B)}$$

$$= \frac{(1-(P_A-1)(P_B-1))((1-P_A)(1-P_B)}{1-(1-P_A)(1-P_B)}$$
v) duel ends after n^{12n} round, given both are hit
$$\frac{P(n, A R B \text{ arc hit})}{P(AR B \text{ arc hit})} = \frac{(1-P_A)^{n-1}(1-P_B)^{n-1}}{(1-P_A)(1-P_B)}$$

$$= \frac{(1-(1-P_A)(1-P_B))(1-P_A)(1-P_B)}{1-(1-P_A)(1-P_B)}$$

$$= \frac{(1-(1-P_A)(1-P_B)}{1-(1-P_A)(1-P_B)}$$

$$= \frac{(1-(1-P_A)(1-P_B)}{1-($$

13 (15% 19 12 / 6 17 (02)() Pefining & events D: man has dangerous type of disease. T: man has a positive LSA test. P(TID) = 0.9 P(TID) = 6.61 P(D=0.0005 i) Using Bayes theorem: P(PIT) = P(TID) P(D) P(TID)P(D) +P(TID')P(D') 0.9 × 0.0005 + 0.01 × 0.9995 ii) $P(D|T^c) = P(T^c|D)P(D)$ 0.1×0.0065 = 0.00658528 0.1×0.0005 + 0.99×0.9995 2 1: rodness +1)9 = (===)9 = F. 8 (3 x2 = F(Ax+b) = F(Ax) + Eb) 5x 1x 1 = AE(x) + b e) $(0V(x) = E((x-Ex)(x-Ex)^{t})$ Mac 1 (OV (AnctB) = F((Ax+B 4 F(Ax+b))(Ax+B + E(Ax+b))) = E((Ax -AE(x))(Ax - AE(x))) A E(fxl-E[x]3[x-E[x]]) AT = A cov (oc) AT

3)	Multivariate derivatives: 20 2 2 1 2 1 mm (+0)
a)	7x x Ay = Ay > Using matrix cookbook property
6)	Vy xTAY = (xTA)T = ATOC (V)
	Tigs marking
c)	VAXTAY -> dxTAY dxTAY dxTAY dxTAY
	dai, dai, dai, dai, m xy
	datay datay datay
	William dans dans dans
d)	xeRn f= xTAx +bTx
	Cutxxiv Mxf= (Ax + ATx) + b
e)	f= + (AB) + TAF = 2+ XY-
	tr(AB) = et sum of element wise products of A and B
	thus, PAF = BT
	$= Txx\omega = xY$
f)	f= for tr (BA + ATB + AZB)
	· ·
	= tr (BA) + tr (ATB) + tr (AZB) - (0)
	VAF = BT + B + AAB
1 1	
9)	$f = 11A + \lambda B 11_F^2$ Frobenius. $7_A f = ?$ $f = tr((A + \lambda B)^T(A + \lambda B))$
	$f = tr((A + \lambda B)^{T}(A + \lambda B))$
(979) y	f= tr(ATA + NATB + NBTA + NBTB)
	$= 77_{44} = 2A + \lambda B + \lambda B + 0$
2	0= 4+ 1 += 2 A)+2/BXY (D)T V
· 37	i d
2 9 T	x 1 7x Y = "9
9	

(04)
$$\underset{x}{\min} \left[\frac{1}{2} \sum_{i=1}^{n} \left| y^{(i)} - wx^{(i)} \right|^{2} \right]$$

(04) $\underset{x}{\min} \left[\frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - wx^{(i)} \right)^{2} \right]$

(05) $\underset{x}{\min} \left[\frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - wx^{(i)} \right)^{2} \right]$

Ferms dependent on w
 $\underset{x}{=} \left[\frac{1}{2} \sum_{i=1}^{n} \left(- \frac{1}{2} y^{(i)} wx^{(i)} + x^{(i)} wx^{(i)} \right) \right]$

Taking the trace

 $\underset{x}{=} \underbrace{- + x} \left(wx^{(i)} y^{(i)} + \frac{1}{2} \underbrace{+ x} \left(wxx^{(i)} x^{(i)} w^{(i)} \right) \right]$

Verborgation?

 $g = - + x \left(wxy^{(i)} \right)^{-1} \underbrace{+ x} \left(wxx^{(i)} x^{(i)} w^{(i)} \right) - 1$
 $y = - + x \left(wxy^{(i)} \right)^{-1} \underbrace{+ x} \left(wxx^{(i)} x^{(i)} w^{(i)} \right) - 1$
 $w = - + x \underbrace{+ x} \left(xx^{(i)} \right)^{-1} \underbrace{+ x} \left(xx^{(i)} x^{(i)} w^{(i)} \right) + \underbrace{+ x} \underbrace{+$