PCI

3340 Wolfenbüttel (DE).

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(11) Internationale Veröffentlichungsnummer: WO 89/07158 (51) Internationale Patentklassifikation 4: **A1** C21D 8/04, C22C 38/14 (43) Internationales Veröffentlichungsdatum: 10. August 1989 (10.08.89) (74) Anwalt: KAISER, Henning; Salzgitter AG, Postfach 15 PCT/DE89/00057 (21) Internationales Aktenzeichen: 06 27, Kurfürstendamm 32, D-1000 Berlin 15 (DE). (22) Internationales Anmeldedatum: 27. Januar 1989 (27.01.89) (81) Bestimmungsstaaten: AT (europäisches Patent), BE (europäisches Patent), CH (europäisches Patent), DE (europäisches Patent), FR (europäisches Patent), GB (europäisches Patent), IT (europäisches Patent), JP, LU (europäisches Patent), NL (europäisches Patent), (31) Prioritätsaktenzeichen: P 38 03 064.0 P 38 43 732.5 SE (europäisches Patent), SU, US. 29. Januar 1988 (29.01.88) (32) Prioritätsdaten: 22. Dezember 1988 (22.12.88) Veröffentlicht (33) Prioritätsland: _ Mit internationalem Recherchenbericht Mit geänderten Ansprüchen und Erklärung. (71) Anmelder (für alle Bestimmungsstaaten ausser US): STAHLWERKE *PEINE-SALZGITTER AG [DE/ DE]; Gerhardstr. 10, D-3150 Peine (DE). (72) Erfinder; und (75) Erfinder/Anmelder (nur für US): FREIER, Klaus [DE/ DE]; Marienburgweg 65, D-3340 Wolfenbüttel (DE). ZIMNIK, Walter [DE/DE]; Salzdahlumer Str. 60, D-

(54) Title: COLD-ROLLED SHEET OR STRIP AND PROCESS FOR MANUFACTURING THEM

(54) Bezeichnung: KALTGEWALZTES BLECH ODER BAND UND VERFAHREN ZU SEINER HERSTELLUNG

(57) Abstract

In order to produce sheet possessing good forming properties, in particular for rotationally symmetrical deep-drawing, a low-carbon steel containing not more than 0.009 % N is alloyed with 0.01 to 0.04 % Ti and in certain cases with 0.01 to 0.06 % Nb and continuously cast. The plate slabs are heated to a temperature above 1120 degrees Celsius, rolled to obtain a hot strip above the Ar₃ point, and wound at 520 \pm 100 degrees Celsius. After cold rolling to the desired fine sheet thickness, the steel strip is annealed by recrystallization, skin-passed and made into sheets.

(57) Zusammenfassung

Zur Erzeugung eines Bleches mit guten Umformeigenschaften, insbesondere für das rotationssymmetrische Tiefziehen, wird vorgeschlagen, einen kohlenstoffarmen Stahl, der max. 0,009 % N enthält, mit 0,01 - 0,04 % Ti und in bestimmten Fällen auch mit 0,01 bis 0,06 % Niob zu legieren, im Strang zu vergießen, die Bramme oberhalb 1120 Grad Celsius zu erwärmen, oberhalb des Ar₃-Punktes zu Warmband auszuwalzen und bei 520 ± 100 Grad Celsius zu haspeln. Nach dem Kaltwalzen auf die gewünschte Feinblechdicke wird das Stahlband rekristallisierend geglüht, bevor es abschließend dressiert und zu Blechen konfektioniert wird.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfoögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT AU BB BE BG BJ BR CF CG CH CM DE DK FT	Österreich Australien Barbados Belgien Bulgarien Benin Brasilien Zentrale Afrikanische Republik Kongo Schweiz Kamerun Deutschland, Bundesrepublik Dänemark Finnland	FR GA GB HU IT JP KP KR LI LK LU MC MG MI	Frankteich Gabun Vereinigtes Königreich Ungarn Italien Japan Demokratische Volksrepublik Korea Republik Korea Liechtenstein Sri Lanka Luxemburg Monaco Madagaskar Mali	MR MW NL NO RO SD SE SN SU TD TG US	Mauritanien Malawi Niederlande Norwegen Rumänien Sudan Schweden Senegal Soviet Union Tschad Togo Vereinigte Staaten von Amerika
---	---	---	--	--	---

8NSCOCID (WG _ 8907168A1_1) >

Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung

1

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bleches oder Bandes sowie ein zum Tiefziehen geeignetes Blech oder Band gemäß den Oberbegriffen der Ansprüche 1 und 6.

Zum Tiefziehen von rotationssymmetrischen Stahlteilen wird möglichst texturfreies kaltgewalztes Band oder Blech eingesetzt, damit ein quasiisotropes Umformen möglich und das gezogene Teil zipfelfrei ist. Damit ist gemeint, daß ein z. B. zylindrisch tiefgezogenes Teil keinen welligen Rand aufweist.

Eine vollkommene Zipfelfreiheit ist nur von isotropem Material ohne Seigerungen, ohne nichtmetallische Einschlüsse, ohne perlschnurartige Zementitausscheidungen und bei pan-cake-freiem Gefüge zu erwarten. Daher wird in der folgenden Beschreibung nur der Begriff "zipfelarmes" auch für nach dem Stand der Technik "zipfelfreies" Band verwendet.

In "Blech, Rohre, Profile" 9/1977, S. 341 - 346 wird detailliert die Ursache für die Zipfelbildung beschrieben und ein Maß für die relative Zipfelhöhe Z sowie die ebene Anisotropie Delta r — definiert. Ideal wären jeweils Ergebnisse mit dem Wert Null (zipfelfreies Material).

Der Wert für die ebene Anisotropie errechnet sich aus der Anisotropie r für unterschiedliches Ausdehnungsverhalten des Materials in Walzrichtung sowie unter 45 Grad und 90 Grad dazu. Für unterschiedliche Tiefzieheigenschaften sind verschiedene r-Werte einstellbar.

Für die in der Veröffentlichung erwähnten Stähle läßt sich zipfelfreies Material nur durch Normalglühen des kaltgewalzten Bandes in einer Dürchlaufglühe bei etwa 1000 Grad Celsius erreichen, wobei das Blech im Endzustand eine Korngröße ASTM 8 bei einer relativen Zipfelhöhe von ca. 0,3 bis 0,4 % und Delta r ca. \pm 0,1 erreichen.

Für nicht normalisierend geglühtes Band sei nur ein zipfelarmer Zustand durch Kompromisse in der Verfahrensführung bei der Blechherstellung zu erreichen. Dabei sollen die Walzendtemperaturen ca. 750 Grad Celsius und die Kaltwalzgrade entweder unter 25 % oder über 80 % liegen und mit als für die Zipfeligkeit ungünstig bezeichneten Rekristallisationstemperaturen von über 600 Grad Celsius gearbeitet werden.

Beschrieben wird weiterhin, daß ein Normalisieren nicht im Bund, sondern nur in einer Durchlaufglühe erfolgen kann, weil bei den hohen Temperaturen die Bänder zusammenkleben würden.

Aus der DE-OS 32 34 574 ist ein gattungsgemäßes zum Tiefziehen geeignetes kaltgewalztes Stahlblech oder Stahlband bekannt. Der Titangehalt soll, in Abhängigkeit der Gehalte an Kohlenstoff, Sauerstoff, Schwefel und Stickstoff, auf Werte bis 0,15 % steigen können, die Haspeltemperatur über 700 Grad Celsius oder mindestens jedoch 580 Grad Celsius mit anschließender Warmband-Erwärmung auf über 700 Grad Celsius betragen. Weiterhin wird ein Kaltwalzgrad von 70 - 85 % sowie ein Durchlaufglühen bei 700 - 900 Grad Celsius mit maximal zwei Minuten Haltezeit empfohlen. Hinweise zur Zipfelbildung des Materials werden nicht gegeben.

Aus der EP-A1-101 740 wird für einen gattungsgemäßen kaltgewalzten Stahl eine Brammenerwärmungstemperatur kleiner als 1100 Grad Celsius, eine Walzendtemperatur von unter Ar₃, Haspeltemperaturen von 320 - 600 Grad Celsius und Kaltwalzgrade von 50 - 95 % sowie rekristallisierendes Durchlaufglühen empfohlen. Dabei soll ein Stahl mit maximal 0,005 % Kohlenstoff, maximal 0,004 % Stickstoff und maximal 0,02 % Niob in Kombination mit einem oder mehreren der Elemente Aluminium, Chrom, Bor oder Wolfram Verwendung finden. Erzielt werden hohe mittlere r-Werte oberhalb 1,2. Hinweise auf die Zipfligkeit des Materials nach dem Tiefziehen sind nicht offenbart.

Ein weiteres Verfahren zur Herstellung tiefziehgeeigneter Stähle mit Brammenglühtemperatur kleiner 1100 Grad Celsius, Findwalztemperatur max. 780 Grad Celsius und Haspeltemperaturen von mindestens 450 Grad Celsius sowie Kaltbandglühen im Haubenoder Durchlaufglühofen sind in der EP-B1-120 976 offenbart. Das Verfahren soll r-Werte um 2 erzielen; Werte für die Zipfelbildung sind nicht offenbart.

Es ist allgemein bekannt, daß Warmband eine gute quasiisotrope Umformbarkeit besitzt, jedoch eine nicht ausreichende Oberflächengüte und zu große Toleranzen aufweist und zudem nicht in Dicken unter 1,2 mm hergestellt wird.

Von daher liegt der Erfindung die Aufgabe zugrunde, ein zipfelfreies oder zumindest zipfelarmes tiefziehgeeignetes Blech aus Stahlband und ein entsprechendes Herstellverfahren vorzuschlagen, bei dem auf das Durchlaufglühen bei Temperaturen oberhalb A verzichtet, aber trotzdem kostengünstig produziert werden kann.

Die Aufgabe wird erfindungsgemäß durch die Ansprüche 1 und 6 gelöst.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen erfaßt.

Überraschenderweise hat sich gezeigt, daß bei Anwendung der erfindungsgemäßen Brammen-, Glüh-, Walz- und Haspeltemperaturen für den genannten Stahl ein rekristallisierendes Glühen eines Bundes im Haubenofen ausreicht, um dem Stahlband oder dem konfektionierten Stahlblech hervorragende Tiefzieheigenschaften, insbesondere eine extreme Zipfelarmut, zu geben.

Die üblicherweise beim Stand der Technik für den Stahl St 4 NZ oder RSt 14 durch Normalglühen erreichten Werte der Korngröße von bestenfalls ASTM 8 entsprechend 490 µm² können durch das erfindungsgemäße Verfahren durch rekristallisierendes Glühen unterschritten werden, wobei zusätzlich niedrige Streckgrenzenwerte beibehalten werden können durch Wahl entsprechender Kaltwalzgrade in Abhängigkeit vom Titangehalt. Dies ergibt den Vorteil, daß auf hohe Investitionen für eine Durchlaufglühe für eine Normalglühbehandlung verzichtet werden kann.

Durch Variation der Zulegierung von Titan in den angegebenen Grenzen läßt sich praktisch jeder gewünschte Kaltwalzgrad für die Erzeugung zipfelfreien Materials einstellen und/oder genauso ebenfalls eine Streckgrenze zwischen 175 und 450 N/mm² bei Zugfestigkeiten von 310 bis 520 N/mm².

Eine der Ursachen für die günstigen Eigenschaften des erzeugten Bleches ist in der frühzeitigen Bildung von Titannitrid zu sehen, so daß ein pan-cake-Gefüge während des rekristallisierenden Glühens durch die Aluminium-Nitrid-Ausscheidungen nicht entstehen kann.

Durch die Wahl niedriger Haspeltemperaturen um 520 Grad Celsius wurden überraschend Warmbandqualitäten erzielt, die nach dem Kaltwalzen ein zipfelfreies Material gewährleisteten und eine zusätzliche Kornverfeinerung ermöglichten.

Ein besonderer Vorteil des so hergestellten Warmbandes liegt darin, daß im Grundsatz keinerlei Restriktion hinsichtlich des anschließenden Kaltwalzens besteht, sofern der Kaltwalzgrad mindestens ca. 5 % beträgt, d.h. oberhalb der bekannten kritischen schwachen Kaltverformung bleibt, die beim Rekristallisationsglühen zu grobem Korn führt. Bisher war man bei der Erzeugung annähernd zipfelfreien Kaltbandes an bestimmte Kaltwalzgrade gebunden, sofern nicht normalgeglüht werden sollte.

Es wurde überraschend gefunden, daß zwar ein gewisser Titangehalt in der Stahllegierung unerlässlich ist, um das erfindungsgemäße Verfahren durchführen zu können und erfindungsgemäße Materialeingenschaften zu erzielen, aber diese Verfahrensparameter zumindest hinsichtlich des Kaltwalzgrades dann anzupassen sind, wenn der Stahllegierung das festigkeitssteigernde Element Niob hinzugefügt wird.

Die Variation der Kaltwalzgrade in Abhängigkeit von der Menge des zulegierten Titans ist bei gleichzeitiger Zulegierung von Niob in den angegebenen Grenzen auf Kaltwalzgrade von 45 bis 85 % beschränkt.

Die Zulegierung von Nieb behindert nicht die frühzeitige Bildung von Titannitrid, so daß auch bei dieser erfindungsgemäßen Stahllegierung ein pan-cake-Gefüge während des rekristallisierenden Glühens nicht entstehen kann.

Eine gravierende technische und wirtschaftliche Bedeutung der Erfindung liegt in der Verwendung des Feinbleches für rotationssymmetrisch tiefgezogene Teile wie Nadellagerkäfige, Riemenscheibenhälften usw. Das erfindungsgemäße Blech kann in diesen Fällen ohne wesentliche Nacharbeit wie Abschneiden der Zipfel eingesetzt werden. Die Zipfelarmut verhindert beim Tiefziehen auch das Entstehen sektoraler Wandschwächungen, so daß die gezogenen Teile bei Rotation keine Unwucht aufweisen. Weitere Vorteile zipfelarmen oder zipfelfreien Kaltbandes sind bekannt, so daß sich eine weitere Beschreibung erübrigt.

Einige Ausführungsbeispiele sollen das Ergebnis des erfindungsgemäßen Verfahrens verdeutlichen.

Aus den erfindungsgemäßen Schmelzen A - D sowie den Vergleichsschmelzen E - F (Tabelle 1) werden Brammen von 210 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 3 mm Dicke ausgewalzt, gehaspelt und auf Raumtemperatur abgekühlt. Die Walzendtemperaturen und Haspeltemperaturen zeigt Tabelle 2. Nach dem Beizen wurden Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 % bis zu 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Das Bund wurde im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt, mit einem Durchsatz von 1,1 t/h bis 1,9 t/h rekristallisierend geglüht und anschließend im Ofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit Umformgraden von 1 - 1,2 % wurde das Band zu Blechtafeln konfektioniert.

Blechronden von 90 bzw. 180 mm Durchmesser wurden mit Ziehstempeln von 50 bzw. 100 mm Durchmesser bei Haltekräften von 50 kN zu Näpfchen tiefgezogen. Figur 1 zeigt drei verschiedene Näpfchen, die die im folgenden verwendeten Begriffe zipfelig (Fig. 1a), zipfelarm (Fig. 1b) und zipfelfrei (Fig. 1c) definieren sollen, da die Messung der Zipfelhöhe mit den handelsüblichen Zipfelmeßgeräten, insbesondere von zipfelarmen und zipfelfreien Näpfchen mit geringen Höhendifferenzen bereits bei kleinsten Tiefziehgraten auf dem Näpfchenrand problematisch ist.

Diese Definition wurde für Figur 10 zur Darstellung der Zipfeligkeit von Näpfchen aus den verschiedenen Schmelzen übernommen. Bestätigt wurde die Erkenntnis, daß der bei 710 Grad Celsius gehaspelte Stahl E nur bei Kaltwalzgraden kleiner ca. 25 % zipfelfrei ist und im Bereich 30 - 50 % Kaltwalzgrad allenfalls als zipfelarm bezeichnet werden kann. Für den Vergleichsstahl F der gemäß Stand der Technik bei 500 Grad Celsius gehaspelt wurde, wurde Zipfeligkeit bei Kaltwalzgraden größer 30 % festgestellt.

Die Fotos in den Figuren 8 und 9 belegen dies eindrucksvoll.

Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle

A - D zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei
verschiedenen Kaltwalzgraden ein unterschiedliches
Tiefziehergebnis:

Stahl A mit 0,01 % Ti:

Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 30 - 50 % absolut zipfelfrei, während Kaltwalzgrade von 20 % bzw. 60 % nur zipfelarmes Näpfchen-Ziehen ermöglichte.

Stahl B mit 0,02 % Ti:

Zipfelfrei bei Epsilon = 10 % sowie 50 - 80 %

Zipfelarm bei Epsilon = 20 %; 40 %

Stähle C1/C2 mit 0,03 % Ti, wobei C1 mit 500 Grad Celsius und C2 mit 450 Grad Celsius gehaspelt wurde:

Zipfelfrei bei Epsilon = 10 - 20 % sowie 60 - 80 %

Zipfelarm bei Epsilon = 30 %; 50 %

Stahl D mit 0,04 % Ti:

Zipfelfrei bei Epsilon = 60 - 70 % bzw. 20 %

Zipfelarm bei Epsilon = 15 %, 25 %; 55 %; 80 %

Aus dem Vergleich der Kurven für die Stähle A - D lassen sich Tendenzen ablesen, die für Zwischenwerte des Legierungselementes Titan beispielsweise 0,025 % Ti - ausgehend von Stahl B - zipfelfreies Näpfchenziehen bei Kaltwalzgraden bis 15 % oder 20 % und bis 85 % erwarten lassen, also eine Kurvenverschiebung nach rechts; bei Werten zwischen 0,01 % und 0,02 % umgekehrt eine Verschiebung der "zipfelfreien" Kaltwalzgrade zu niedrigeren Umformverhältnissen nahelegen.

Die zu den Stählen gemäß Figur 10 und Tabelle 1 bzw. 2 korrespondierenden Fotos der Figuren 3 bis 7 von tiefgezogenen Näpfchen veranschaulichen das Ergebnis deutlich.

Überraschend zeigte sich, daß den "zipfelfreien" Umformgraden jeweils ein bestimmtes Zugfestigkeits- und Streckgrenzenniveau zugeordnet werden konnte (Figur 11) und die größte Zipfeligkeit gleichzeitig bei der niedrigsten Streckgrenze/Zugfestigkeit festzustellen war.

Beispiel: Stahl B

- a) Zipfelfreiheit beim Kaltwalzgrad 10 % 15 % $\stackrel{?}{=}$ Streckgrenzenniveau $R_{p0,2}$ = 400 350 N/mm 2 Zugfestigkeitsniveau R_m = 450 400 N/mm 2
- b) Zipfeligkeit beim Kaltwalzgrad 30 % \cong R_{p0,2}= 180 N/mm² und R_m = 320 N/mm²
- c) Zipfelfreiheit beim Kaltwalzgrad 50 80 % $\stackrel{\triangle}{=}$ $R_{p0,2}=$ 250 280 N/mm² und $R_{m}=$ 360 370 N/mm²

and the second s

Diese Erkenntnis ermöglicht eine bauteil- oder funktionsangepaßte Wahl der Festigkeit für ein und dasselbe Bauteil durch Änderung der Parameter Titangehalt und Kaltwalzgrad.

Tabelle 2 zeigt korrespondierend zu Figur 12 die erfindungsgemäß erzielte Korngröße in ASTM-Einheiten; die erzielbare Kornverfeinerung gegenüber Stählen ohne Titanzusatz nach dem Stand der Technik ist erheblich und reicht bis ASTM 11.

Das gröbste Korn wurde bei geringem Ti-Zusatz und geringem Kaltwalzgrad erzielt (ASTM 7). Vergleichsweise wurden bei den Stählen A - D die Warmband-Werte für die Korngröße (ASTM 9-10) in die Figur 12 aufgenommen.

Für einen Stahl C (Varianten C3 - C5) wurden Versuche mit variabler Haspeltemperatur Th und Glühdurchsatz Pg durchgeführt (Tabelle 3). Während Schwankungen in der Durchsatzmenge des Haubenglühofens von 1,1 - 1,9 t/h sowohl die Korngröße als auch die ebene Anisotropie Delta r nicht negativ beeinflußten, hatte eine Erhöhung der Haspeltemperaturen auf 710 Grad Celsius bei annähernd gleichen Walzendtemperaturen eine Kornvergröberung und eine Verschlechterung der ebenen Anisotropie zur Folge.

Die Figuren 2a, 2b, 2c zeigen entsprechende Ergebnisse an Näpfchen aus 180 mm-Ronden, die mit 100 mm-Stempeln bei 50 kN Rückhaltekraft tiefgezogen wurden.

In Tabelle 1 sind auch die Schmelzanalysen des erfindungsgemäß bei dem Verfahren einzusetzenden Stahles G mit 0,01 % Titan, H mit 0,02 % Titan und I mit 0,03 % Titan bei 0,05 % bzw. 0,06 % Niobzugabe aufgelistet, dazu wurde ein Vergleichsstahl K mit 0,05 % Niobzugabe, aber ohne Titangehalt aufgeführt. Aus den erfindungsgemäßen Schmelzen G - I sowie der Vergleichsschmelze K wurden Brammen von 220 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 4 mm Dicke ausgewalzt und gehaspelt sowie auf Raumtemperatur abgekühlt. Die Walzendtemperatur betrug 880 Grad Celsius und die Haspeltemperatur 510 Grad Celsius. Nach dem Beizen wurden die Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 bis 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Nach dem Haspeln wurde das festgewickelte Bund im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt und bei Durchsatzraten von 1,1 Tonnen bzw. 1,8 Tonnen pro Stunde rekristallisierend geglüht, anschließend im Haubenglühofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit einem Umformgrad von 1,1 % wurde das Band zu Blechtafeln konfektioniert. Blechronden von 90 mm Durchmesser wurden mit Ziehstempeln von 50 mm Durchmesser zu Näpfchen tiefgezogen (Figuren 13 - 16).

Für den Vergleichsstahl K, der in der Legierung kein Titan enthält, ansonsten zu der gattungsgemäßen Stahlsorte gehört, zeigt Fig. 16 deutlich, daß bei keinem der erprobten Kaltwalzgrade zipfelfreies Tiefziehen möglich war.

Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle G bis I zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein geringfügig unterschiedliches Tiefziehergebnis:

Stahl G mit 0,01 % Titan (Fig. 13):

Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 45 bis 85 % in der Kategorie zipfelarm und bei etwa 60 bis 80 % Kaltwalzgraden sogar zipfelfrei.

Stahl H mit 0,02 % Titan (Fig. 14): Zipfelarm im Bereich Epsilon = 55 bis 85 % fast zipfelfrei im Bereich von 60 bis 75 %.

Stahl I mit 0,03 % Titan (Fig. 15): Zipfelarm im Bereich von 60 bis 70 % Kaltwalzgraden.

Bei den erfindungsgemäß hergestellten Stählen konnten beispielsweise bei einem Titangehalt von 0,01 % am tiefziehfertigen Blech Streckgrenz- und Zugfestigkeitswerte festgestellt werden, die um mehr als 50 N/mm² über den Kennwerten des nur titanlegierten Materials lagen.

Die in Tabelle 1 aufgeführten erfindungsgemäßen Schmelzen L bzw. M mit Phosphorgehalten an der oberen Analysengrenze wurden behandelt wie die Stähle A - F. Die Haspeltemperatur betrug 510 bzw. 500 Grad Celsius. Bei einem Kaltwalzgrad von 66 % wurde die Konstanz der Ergebnisse über die gesamte Bandlänge geprüft, um die Effektivität des Bundglühens zu bestätigen. Die Näpfchen aus dem Tiefziehversuchen sind in Fig. 17 bzw. 18 dargestellt. Sie zeigen, daß zipfelfreies Material sowohl am Bandanfang (Position O) als auch nach jedem weiteren Viertel des Bandlänge bis zum Bandende (Position 1) erzeugt wurde.

					ر د	Tabell	1 1 6	- ! -			
					(We	rte in G	z a u swichts	ıyse rozenten	 .		. 1.
Si Mn		M	_	Ω.	လ	A1	z	Ti	g	Bemerkungen	Figur
0,02		0	0,17	600'0	0,011	0,022	0,0025	0,01	1		3
0,025		o`	0,25	0,013	900'0	0,054	0,0032	0,02	. <u>. l.</u>		4
0,03		0	0,24	0,014	900'0	0,051	0,0034	0,03	l.		2,5,6
0,03	_	0	0,20	0,012	0,005	8/0'0	0,0050	0,04	اليديد		7
0,02	_	0	0,25	0,020	0,015	0,061	0,0033	1	L	Vergleich	8
0,03	_	Ó	0,25	0,008	0,007	0,065	0,0047	ı	l	Vergleich	6
0 90'0	0	0	, 58	0,015	800'0	0,043	0,0038	0,01	0,05		13
0,10 0	0	o`	,54	0,010	0,002	0,046	0,0039	0,02	0,05		14
0	0	o	95′	0,015	0,005	0,049	0,0046	0,03	90,0		15
	1,40 1,	_		0,018	900'0	0,043	0,0039	1	0,05	Vergleich	16
0,04 (_	o),22	0,077	0,011	0,073	0,005	0,03			17
0,04		0	0,78	0,068	0,011	0.047	0.007	0.025	I		α

Tabelle 2

Stahl	Tw °C	Th °C	К			Figur
		C	min	/	max	
А	860	490	10	/	7	3
В	870	500	11	/	9	. 4
C1	870	500	11	/	9	5
C2	880	450	11	/	9	6
D	890	430	11	/	9	7
E	900	710	9	/	4	8
F	890	500	9	/	6	9

Tabelle 3

Stahl	Tw °C	Th °C	Pg t/h	K	Δr min /max	Figur
С3	880	520	1,1	9 - 10	-0,07/+0,06	5 2a
C4	- 915	540	1,9	9 - 10	-0,04/+0,08	3 2b
C5	870	710	1,9	8 - 9	+0,09/+0,17	7 2c

In Tabelle 2 und 3 bedeuten

Tw Walzendtemperatur
Th Haspeltemperatur
K Korngröße nach ASTM
Pg Glühdurchsatz
Ar ebene Anisotropie

ENSCHOUPT AMPLICATION STATES

Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung

Patentanspriiche

 Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes mit guter Umformbarkeit aus Stahl mit folgender Zusammensetzung in Gewichtsprozenten:

max. 0,10	% Kohlenstoff
max. 0,40	% Silizium
0,10 bis 1,0	%_Mangan
max. 0,08	% Phosphor
max. 0,02	% Schwefel
max. 0,009	% Stickstoff
0,015 bis 0,08	% Aluminium
0,01 bis 0,04	% Titan
max. 0,15	% von einem oder mehreren der
	Elementen aus der Gruppe Kupfer,
	Vanadium, Nickel,

Rest Eisen und unvermeidbare Verunreinigungen,

welches nach dem Warmwalzen und Kaltwalzen geglüht wird, dadurch gekennzeichnet, daß die Bramme auf oberhalb 1120 Grad Celsius erwärmt und zu Warmband bei einer Walzendtemperatur oberhalb des Ar₃-Punktes ausgewalzt und bei 520 ± 100 Grad Celsius gehaspelt und nach dem Kaltwalzen rekristallisierend im Bund geglüht wird.

2. Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 1, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird:

ENSINCID AND BOTHERAS I

ca. 0,01 % Titan: Epsilon 20 - 60 %,

vorzugsweise 30 - 50 %

ca. 0,02 % Titan: Epsilon 5 - 20 %,

vorzugsweise 10 - 15 % oder

Epsilon 40 - 85 %,

vorzugsweise 50 - 80 %

ca. 0,03 % Titan: Epsilon 5 - 25 %,

vorzugsweise 10 - 20 % oder-

Epsilon 50 - 85 %.

vorzugsweise 60 - 80 %

ca. 0,04 % Titan: Epsilon 15 - 25 %,

vorzugsweise 20 % oder

Epsilon 55 - 80 %,

vorzugsweise 60 - 70 %

und anschließend bei Temperaturen unterhalb A₁ rekristallisierend geglüht und danach mit einem Umformgrad von ca. 1 % dressiert wird.

- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Stahl eingesetzt wird, der zusätzlich 0,01 0,06 % Niob enthält.
- 4. Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 1, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird:

ca. 0,01 % Titan: Epsilon 45 bis 85 % ca. 0,02 % Titan: Epsilon 55 bis 85 % ca. 0,03 % Titan: Epsilon 60 bis 70 %

und anschließend bei Temperaturen unterhalb A₁ rekristallisierend geglüht und danach mit einem Umformgrad von ca. 1 % dressiert wird.

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Stahl nach dem Kaltwalzen im Festbund geglüht wird.
 - 6. Zum Tiefziehen geeignetes Blech oder Band aus Stahl in der angegebenen Zusammensetzung und hergestellt nach einem der in den Ansprüchen 1 bis 5 angegebenen Verfahren, gekennzeichnet durch ein rekristallisiertes Gefüge mit einer Ferritkorngröße feiner als ASTM 7 für einen Titangehalt von 0,01 % und feiner als ASTM 9 für Titangehalte von 0,015 bis 0,04 %.
 - 7. Zum Tiefziehen geeignetes Blech oder Band gemäß Anspruch 6, dadurch gekennzeichnet, daß der Titangehalt mindestens dem 3,5-fachen des Stickstoffgehaltes entspricht.
 - 8. Verwendung eines gemäß einem der Verfahren nach Anspruch 1 bis 5 hergestellten Bleches oder Bandes für das zipfelarme Tiefziehen vorzugsweise von rotationssymmetrischen Teilen.

9. Verwendung eines Stahles gemäß Anspruch 1 oder 3 für die Herstellung tiefgezogener, vorzugsweise rotationssymmetrischer Teile.

SA SEVENDE CHAN CONTRACT

באיברציותיים שואים בייניים אויים

GEANDERTE ANSPRUCHE

[beim Internationalen Büro am 25. Juli 1989 (25.07.89) eingegangen ursprüngliche Ansprüche 1 und 4 durch geänderte Ansprüche 1 und 4 ersetzt; alle weiteren Ansprüche unverandert (2 Seiten)]

Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes mit guten quasi-isotropen Umformeigenschaften, wobei die planare Anisotropie Werte im Bereich von etwa Delta r \pm 0,1 annimmt, aus Stahl mit folgender Zusammensetzung in Gewichtsprozenten:

0,025 - 0,10	%	Kohlenstoff
 max. 0,40	%	Silizium
0,10-bis 1,0	%	Mangan
max. 0,08	%	Phosphor
max. 0,015	%	Schwefel
max. 0,009	%	Stickstoff
0,015 bis 0,08	%	Aluminium
0,01 bis 0,04	%	Titan
max. 0,15	%	von einem oder mehreren der
		Elemente aus der Gruppe Kupfer,
		Vanadium, Nickel,

Rest Eisen und unvermeidbare Verunreinigungen,

durch Erwärmen einer Bramme auf oberhalb 1120 °C, Auswalzen zu Warmband bei einer Walzendtemperatur oberhalb des Arz-Punktes, Haspeln bei 520 \pm 100 $^{
m O}$ C, Kaltwalzen und anschließendes rekristallisierendes Glühen.

Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 1, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird:

discretion arm incorrections

ca. 0,01 % Titan: Epsilon 20 - 60 %,

vorzugsweise 30 - 50 %

ca. 0,02 % Titan: Epsilon 5 - 20 %,

vorzugsweise 10 - 15 % oder

Epsilon 40 - 85 %,

vorzugsweise 50 - 80 %

ca. 0,03 % Titan: Epsilon 5 - 25 %,

____vorzugsweise 10 - 20 % oder

Epsilon 50 - 85 %.

vorzugsweise 60 - 80 %

ca. 0,04 % Titan: Epsilon 15 - 25 %,

vorzugsweise 20 % oder

Epsilon 55 - 80 %,

vorzugsweise 60 - 70 %

und anschließend bei Temperaturen unterhalb A₁ rekristallisierend geglüht und danach mit einem Umformgrad von ca. 1 % dressiert wird.

- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Stahl eingesetzt wird, der zusätzlich 0,01 0,06 % Niob enthält.
- 4. Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 3, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird:

IN ARTIKEL 19 GENANNTE ERKLÄRUNG

zu Anspruch 1:

Der zu beanspruchende Schutzumfang soll Vakuumstähle ausschließen. Durch Definition der "guten Umformbarkeit" mit Hilfe des Delta-r-Wertes soll der Unterschied zu Werkstoffen guter Tiefzieheignung mit hohen R-Werten dargestellt werden. Die Schwefelwerte sind in Praxis und Beispielen wesentlich niedriger als 0,02%.

zu Anspruch 4:

Der Rückbezug aus Anspruch 1 wäre verwirrend, gemeint ist Anspruch 3. Ein Schreibfehler, resultierend aus der Inanspruchnahme zweier Prioritäten in Verbindung mit automatischer Textverarbeitung.

ENSPIRED LVAD GODZISNALI L

ENERTHORISM PART - BUTTEST - 1

0,02° % Ti

F1G 4

F16.5

F1G. 8

F16.9

Fig. 10

0 = zipfelfrei , 1 = zipfelarm, 2 = zipfelig

Fig. 12

F1G. 13

FIG. 16

FIG. 18

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 89/00057

	SIFICATION OF SUBJECT MATTER (if several class		
	g to International Patent Classification (IPC) or to both Na		
Int	. C1.4 C 21 D 8/04; C 22 C	38/14	
II. FIELD	S SEARCHED	,	
	Minimum Docum	entation Searched 7	
Classificati	on System '	Classification Symbols	
Int.	C1.4 C 21 D; C 22 C		
	Documentation Searched other to the Extent that such Documen	than Minimum Documentation to are included in the Fields Searched *	
	UMENTS CONSIDERED TO BE RELEVANT	required of the reloyant page 200 12	Relevant to Claim No. 13
Category *	Citation of Document, 13 with Indication, where ap	propriate, of the relevant passages	Neievant to Claim 140.
X	EP, A, 0171208 (KAWASAKI 1986, see claims and		1,3,7
Х	Patent Abstracts of Japan page 164 C35, 30 Janu A, 53137021 (SHIN NII 30 November 1978	ary 1979, & J.P,	1,7
A	EP, A, 0120976 (KAWASAKI 1984, cited in the ap		
A	EP, A, 0101740 (KAWASAKI 1984, cited in the ap		
A	DE, A, 2155620 (NIPPON KO	OKAN) 6 July 1972	
		./.	
"A" doc con "E" earli filin "L" doc whi cita "O" doc oth "P" doc iate	al categories of cited documents: 10 cument defining the general state of the art which is not saldered to be of particular relevance. lier document but published on or after the international register of the saldered to establish the publication date of another cited to establish the publication date of another station or other special reason (as specified) cument referring to an oral disclosure, use, exhibition or ar means cument published prior to the international filing date but or than the priority date claimed	"T" later document published after the or priority date and not in conflicted to understand the principle invention. "X" document of particular relevance cannot be considered novel or involve an inventive step. "Y" document of particular relevance cannot be considered to involve a document is combined with one ments, such combination being of in the art. "&" document member of the same priority and combined in the same principle."	the with the application but a or theory underlying the set; the claimed invention cannot be considered to set; the claimed invention in inventive step when the or more other such docubivious to a person skilled
	e Actual Completion of the International Search	Date of Mailing of this International Se	arch Report
	April 1989 (27.04.89)	30 May 1989 (30.03	
	nat Searching Authority	Signature of Authorized Officer	
	opean Patent Office		

III DOCE	MENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHE	ET)		
Category *		Relevant to Claim No		
A	US, A, 4125416 (H. KATOH et al.) 14 November 1978			
A	US, A, 3814636 (P.R. MOULD et al.) 4 June 1974			
A	Patent Abstracts of Japan, volume 8, Nr. 168 (C-236)(1605), 3 August 1984, & JP, A, 5967321 (KAWASAKI SEITETSU K.K.) 17 April 1984			
-				
		v		

ENSUCCIO

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.

DE 8900057 SA 26501

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 23/05/89

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP-A- 0171208	12-02-86	US-A- 475 JP-A- 6128	26757 06-02-86 10952 14-06-88 1852 12-12-86 17822 14-01-87
EP-A- 0120976	10-10-84	JP-A- 5906	1585 26-04-84 7322 17-04-84 6656 18-03-86
EP-A- 0101740	07-03-84	JP-A- 5814	2957 01-09-83 4430 27-08-83 6657 18-03-86
DE-A- 2155620	06-07-72	US-A- 371 GB-A- 133 AU-A- 365 CA-A- 93	7866 28-07-72 6420 13-02-73 3280 10-10-73 5571 14-06-73 9937 15-01-74 1296 01-08-74
US-A- 4125416	14-11-78		
US-A- 3814636	04-06-74	CA-A- 986	6751 06-04-76

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/DE 89/00057

I KI A	SSIFIKATION DES ANMELDUNGSGEGENSTANDS (bei n	nehreren Klassifikationssymbolen sind alle al	nzugepen) [©]
Nach	der Internationalen Patentklassifikation (IPC) oder nach der r	nationalen Klassifikation und der IPC	
ł	C21D-8/04;C-22C-38/14		
II. REC	HERCHIERTE SACHGEBIETE Recherchierter Mi	indestorüfstoff ⁷	
Klassifik		Klassifikationssymbole	-
Int. Cl.4			
int. Ci	C 21 D; C 22 C		
	Recherchierte nicht zum Mindestprüfstoff ge unter die recherchierte	ehörende Veröffentlichungen, soweit diese n Sachgebiete fallen ⁸	
	•		
111 CINIS	SCHLÄGIGE VERÖFFENTLICHUNGEN ⁹		
Art*	Kennzeichnung der Veröffentlichung 11, soweit erforderlich	unter Angabe der maßgeblichen Teile 12	Betr. Anspruch Nr. 13
X	EP, A, 0171208 (KAWASAKI S' 12. Februar 1986	reel)	1.,3.,7
	siehe Ansprüche und Be	ispiele	
Х	Patent Abstracts of Japan,	Band 3. Nr. 11.	1,7
A	Seite 164 C35, 30. Jan	nuar 1979,	
	& JP, A, 53137021 (SHI	N NIPPON SEITETSU	
	K.K.) 30. November 197	8	
A	EP, A, 0120976 (KAWASAKI S'	ਾਵਸਾ.)	
A	10. Oktober 1984		
	in der Anmeldung erwähnt		
		D7775 \	
Α	EP, A, 0101740 (KAWASAKI S' 7. März 1984	reel)	
	in der Anmeldung erwähnt		
A	DE, A, 2155620 (NIPPON KOK	(NA	
	6. Juli 1972	,	· • ,
· * Resont	dere Kategorien von angegebenen Veröffentlichungen 10:		.
"A" Vei	röffentlichung, die den allgemeinen Stand der Technik finiert, aber nicht als besonders bedeutsam anzusehen ist	"T" Spätere Veröffentlichung, die nach de meldedatum oder dem Prioritätsdatum	
	eres Dokument, das jedoch erst am oder nach dem interna-	ist und mit der Anmeldung nicht kelli Verständnis des der Erfindung zugru	diert, sondern nur zum
tio	nalen Anmeldedatum veröffentlicht worden ist	oder der ihr zugrundeliegenden Theorie	
	röffentlichung, die geeignet ist, einen Prioritätsanspruch eifelhaft erscheinen zu lassen, oder durch die das Veröf-	"X" Veröffentlichung von besonderer Bede te Erfindung kann nicht als neu oder a	
	itlichungsdatum einer anderen im Recherchenbericht ge- naten Veröffentlichung belegt werden soll oder die aus einem	keit beruhend betrachtet werden	ar crimacinación rong
and	deren besonderen Grund angegeben ist (wie ausgeführt)	"Y" Veröffentlichung von besonderer Bede te Erfindung kann nicht als auf erfin	
ein	röffentlichung, die sich auf eine mündliche Offenbarung, e Benutzung, eine Ausstellung oder andere Maßnahmen zieht	ruhend betrachtet werden, wenn die einer oder mehreren anderen Veröffen	Veröffentlichung mit tlichungen dieser Kate-
"P" Ve	röffentlichung, die vor dem internationalen Anmeldeda-	gorie in Verbindung gebracht wird un einen Fachmann naheliegend ist	a diese Verbindung für
tun	n, aber nach dem beanspruchten Prioritätsdatum veröffent- ht worden ist	"&" Veröffentlichung, die Mitglied derselbe	en Patentfamilie ist
IV. BES	CHEINIGUNG		
	ım des Abschlusses der internationalen Recherche	Absendedatum des internationalen Reche	rchenberichts
27.	April 1989	3 0 MA	Y 1989
Inter	rnationale Recherchenbehörde	Unterschrift des bevollmächtigten Gediens	steten
!	Furansisches Patentamt	1 41 (1	ROSSI

Art •	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Borr Associate At-
	The state of the s	Betr. Anspruch Nr.
A	US, A, 4125416 (H. KATOH et al.) 14. November 1978	
A	US, A, 3814636 (P.R. MOULD et al.) 4. Juni 1974	tanan ing pagamatan
A	Patent Abstracts of Japan, Band 8, Nr. 168 (C-236)(1605), 3. August 1984, & JP, A, 5967321 (KAWASAKI SEITETSU K.K.) 17. April 1984	
	•	
	 .	
	-	· *
:		
		

ANHÀNG ZUM INTERNATIONALEN RECHERCHENBERICHT ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.

DE 8900057 SA 26501

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 23/05/89 Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichur
EP-A- 0171208	12-02-86	JP-A- 6102675 US-A- 475095 JP-A- 61281855 JP-A- 62007823	2 14-06-88 2 12-12-86
EP-A- 0120976	10-10-84	WO-A- 840158 JP-A- 5906732 US-A- 4576656	2 17-04-84
EP-A- 0101740	07-03-84	WO-A8302953 JP-A- 58144430 US-A- 4576653	27-08-83
DE-A- 2155620	06-07-72	FR-A,B 2117866 US-A- 3716420 GB-A- 1333280 AU-A- 3655571 CA-A- 939937 AU-B- 451296	13-02-73 10-10-73 1 14-06-73 7 15-01-74
US-A- 4125416	14-11-78	Keine	,
US-A- 3814636	04-06-74	CA-A- 986751	06-04-76

THIS PAGE BLANK (USPTO)