

CLASSIFICAÇÃO: NEURÔNIO SIGMÓIDE

DIEGO RODRIGUES DSC

INFNET

CRONOGRAMA

Dia	Aula	Trab
29/07	Perceptron de Rosenblatt	\wedge
31/07	Classificação: Neurônio Sigmóide	
05/08	Classificação: Rede Neural Feedforward	Grupos
07/08	Classificação: Treinamento Robusto	
12/08	Regressão	Base de Dados
14/08	Agrupamento	
19/08	Séries Temporais	Modelos
21/08	Apresentação dos Trabalhos Parte I	

CLASSIFICAÇÃO: NEURÔNIO SIGMÓIDE

- PARTE 1 : TEORIA
 - METODOLOGIA CRISP
 - APLICAÇÃO AOS DADOS IRIS
- PARTE 2 : PRÁTICA
 - NOTEBOOK: CLASSIFICADOR IRIS
- PARTE 3 : TRABALHOS
 - ESCOPO & EVOLUÇÃO

PARTE 1 : TEORIA

CROSS INDUSTRY PROCESS FOR DATA MINING (CRISP-DM)

APRENDIZADO SUPERVISIONADO

Tarefas de classificação e regressão pertencem a esta categoria.

O treinamento consiste em encontrar parâmetros para o modelo que minimiza uma função de risco/erro para uma amostra de treinamento, baseado na diferença entre os valores previstos e reais, para cada observação.

APRENDIZADO SUPERVISIONADO

APRENDIZADO NÃO-SUPERVISIONADO APRENDIZADO POR REFORÇO

CLASSIFICAÇÃO

REGRESSÃO

GENERATIVO

AGRUPAMENTO

REFORÇO

CLASSIFICAÇÃO

Um bebê consegue separar e ordenar blocos com diferentes tamanhos, formas e cores. Ele também consegue identificar os tipos diferentes de objetos.

Os diferentes tipos de objetos são chamados de **classes**. As características dos objetos são chamadas de **variáveis** ou **atributos**.

Então, um classificador é um modelo **treinado para discriminar objetos** pertencentes a duas ou mais classes,

baseado em seus atributos.

DATA UNDERSTANDING & PREPARATION

REPRESENTAÇÃO

Ideia: como quantificar um objeto no mundo físico no mundo digital?

Exercício: qual seria uma boa representação para diferenciar ratos e elefantes?

MODELING

ALGORITMOS BASEADOS EM DENSIDADE

Algoritmos que dependem da função densidade de probabilidade dos dados, ou aproximações locais, para determinar a classe de observações fora da amostra de treino.

- 1) Classificador Bayesiano
- 2) Classificador Bayesiano "Naïve"
- 3) K-Vizinhos mais próximos

Algoritmos baseados em densidade dependem da **DENSIDADE** (!!). Consequentemente, se beneficiam de um **conjunto grande de observações e de baixa esparsidade do espaço de atributos**. O Classificador Bayesiano é considerado o classificador "ótimo", mas é raramente utilizado, dada a dificuldade de estimar a função densidade de probabilidade dos dados. É normalmente utilizado como benchmark para comparação teórica entre os algoritmos de classificação.

MODELOS FUNCIONAIS

Algoritmos que dependem da estimação dos parâmetros de uma função que é utilizada como superfície de separação entre as classes.

- 1) Funções Polinomiais
- 2) Regressão Logística
- 3) Máquina de Vetores Suporte
- 4) Neurônio Sigmoide / Tangente Hiperbólica
- 5) Árvores de Decisão

Algoritmos baseados em funções são mais simples, usualmente tem um número menor de parâmetros e não dependem em armazenar muitos dados para manter uma "memória", como por exemplo K-vizinhos mais próximos.

ALGORITMOS BASEADOS EM ENSEMBLE

Algoritmos que combinam modelos simples, usualmente através de votação ou ponderação, para atingir maiores taxas de classificação.

- 1) Random Forest
- 2) Boosting

Tree 1 Tree 2 Tree 3

0.2 -0.1 0.5

Ensemble Model:

example for regression

Boa capacidade de generalização gerado através de arranjos complexos de múltiplos modelos simples de machine learning.

ALGORITMOS BASEADOS EM ENSEMBLE

Modelos Multiclasse

- Discriminar múltiplos objetos em paralelo.
- Ensembles podem ser utilizados para especializar modelos.
- Alguns modelos são

 naturalmente multiclasse, como
 redes neurais.

ENSEMBLES BÁSICOS

ONE AGAINST ONE

EVALUATION

relevant elements false negatives true negatives 0 true positives false positives selected elements How many relevant How many selected items are relevant? items are selected? Recall = -Precision = -

FIGURAS DE MÉRITO CLASSIFICAÇÃO

Acurácia

• (TP+TN)/(P+N)

Taxa de Erro

1-Acurácia

Sensibilidade (Recall)

TP/(TP+FN)

Especificidade

TN/(TN+FP)

Precisão

TP/(TP+FP)

Produto Sp

SQRT[SQRT(R1*R2)

$$*(R1 + R2)/2$$

CAPACIDADE E GENERALIZAÇÃO

Under-fitting

(too simple to explain the variance)

explain the variance)

Appropriate-fitting

Over-fitting

(forcefitting -- too good to be true)

GENERALIZAÇÃO: IDENTIFICANDO OS HIPERPARÂMETROS ÓTIMOS

LEAVE ONE OUT

 Uma única observação é deixada de fora a cada treinamento. N treinamentos são realizados para calcular a estatística de erro.

K FOLDS

 Amostra é dividida em K conjuntos. K treinamentos são realizados, mantendo um conjunto como fora-da-amostra.

BOOTSTRAPPING

 O algoritmo itera, amostrando aleatoriamente M observações, para a quantidade Q desejada de treinamentos.

- TREINAMENTO UTILIZANDO K PARTIÇÕES, COM DADOS DAS CLASSES BALANCEADOS.
- CADA TREINAMENTO É REALIZADO PARA EXPLORAR UMA CONFIGURAÇÃO DE HIPERPARÂMETROS DO MODELO.
- 4 PARTIÇÕES SÃO USADAS PARA TREINAR O MODELO, 1 PARTIÇÃO É
 UTILIZADA PARA MENSURAR O DESEMPENHO FORA DA AMOSTRA
 (GENERALIZAÇÃO).
- UMA ESTATÍSTICA DA FIGURA DE MÉRITO É SELECIONADA PARA MEDIR A QUALIDADE DE CADA CONFIGURAÇÃO DE HIPERPARÂMETRO.

Teste

Treino

Treino

Treino

Treino

- Iteração dos hiperparâmetros
- Seleção da Figura de Mérito
- Seleção da Estatística de Ganho

PARTE 2 : PRÁTICA

AMBIENTE PYTHON

4. Variáveis Aleatórias

1. Editor de Código

5. Visualização

2. Gestor de Ambiente

6. Machine Learning

3. Ambiente
Python do Projeto

3. Notebook Dinâmico

PROBLEMA DE NEGÓCIO

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

Iris Setosa

Iris Versicolor

Iris Virginica

Iris Setosa

Iris Versicolor

Iris Virginica

REPRESENTAÇÃO

Características das flores

Largura & comprimento da pétala Largura & comprimento da sépala

MODELAGEM

REDE NEURAL FEED FORWARD

- REPRESENTAÇÃO: 2 ATRIBUTOS
- META-PARÂMETROS: 1 NEURÔNIO SIGMOIDE
- TREINAMENTO: BASE DE TREINO COMPLETA.
 - BASE DE VALIDAÇÃO PERCENTUAL
 - CRITÉRIO DE PARADA: NÚMERO DE ÉPOCAS
- ALGORITMO RMSPROP
 - BATELADA COMPLETA
 - TAXA DE APRENDIZADO
- FIGURA DE MÉRITO: PRECISÃO

CLASSIFICADOR IRIS

PRÓXIMA AULA: CLASSIFICAÇÃO REDE NEURAL UMA CAMADA OCULTA