學號:R06922086 系級: 資工所 姓名:林凡煒

1. 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何?

Model Structure

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	(None, 40)	0
embedding_1 (Embedding)	(None, 40, 128)	2560128
lstm_1 (LSTM)	(None, 40, 512)	1312768
lstm_2 (LSTM)	(None, 40, 512)	2099200
lstm_3 (LSTM)	(None, 512)	2099200
dense_1 (Dense)	(None, 256)	131328
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 1)	257

Training Process

Preprocessing: 先將 input data 去掉標點符號後,轉換成長度為 40 的 sequence vector,在透過 Word2Vec 變成 word vector。然後再丢入 RNN Model 中。

Parameters:

epochs = 20, batch size = 256,

model check point: monitor=' val_acc' , save_best_only=True

early stopping: monitor=' val_acc', patience=3

validation data: 1 / 10 training data

Accuracy

Kaggle's private / public score: 0.82158 / 0.82278

2. 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何?

Model Structure

Layer (type)	Output Shape	Param #
dense_8 (Dense)	(None, 1024)	2049024
activation_4 (Activation)	(None, 1024)	Ø
dropout_4 (Dropout)	(None, 1024)	0
dense_9 (Dense)	(None, 512)	524800
activation_5 (Activation)	(None, 512)	0
dropout_5 (Dropout)	(None, 512)	0
dense_10 (Dense)	(None, 256)	131328
activation_6 (Activation)	(None, 256)	Ø
dense_11 (Dense)	(None, 1)	257

Training Process

Preprocessing: 去掉標點符號後,轉成 2000 維的 BOW vector,再丢入 DNN Model。

D .

Parameters:

epochs = 20, batch size = 256,

model check point: monitor=' val_acc' , save_best_only=True

early stopping: monitor=' val_acc', patience=3

validation data: 1 / 10 training data

Accuracy

Kaggle's public/private score: 0.79020 / 0.79081

3. 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

	Today is a good day, but it is	
	hot	is a good day
Bag of word	0. 6196314	0. 6196314
RNN	0. 7671631	0. 9555416

BOW model 下對兩個句子的預測結果會是一樣的,但 RNN 對後者的預測比起前者,正情緒的傾向是比較明顯的。

會造成這種差異,是因為 RNN model 有記憶的特性,會考慮句子中詞彙的順序。

4. 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

	Kaggle's public score	Kaggle's private score
有標點符號	0.81733	0.81931
無標點符號	0.80025	0. 79625

由結果可以看出,有標點符號的結果會是比較好的。

猜測是基於有些標點符號可能是會影響語意的,比如說質問或者反諷的句子通常後面會接上問號,此時若有標點符號可能可以幫助 model 對情緒的判斷。

5. 請描述在你的 semi-supervised 方法是如何標記 label, 並比較有無 semi-supervised training 對準確率的影響。

	Kaggle's public	Kaggle's private
	score	score
Semi-supervised	0. 82278	0.82158
Non-semi-supervised	0.82006	0.82107

首先將 non-labeled data 切成 10 份,編號 1~10。

取出編號 1 的 data 作 prediction,若是結果 > 0.8 or < 0.2 ,則將 data m入 training data 中進行 retrain。

接下來依編號序號 1~10 一次取兩份 non-labeled data 進行 prediction。 這時編號 1~0 的 data 會有兩次 prediction 的結果,取出 結果 >0.8 or <0.2 的 data,觀察是否與前一次相同,若是相同則加入 training data 中作 retrain。

由結果可以看出, semi-supervised 的 performance 比較好。