

Problemi del latch CD

- Alea statica
- Durata del transitorio
- Uscite trasparenti

Alea statica nel latch CD

Realizzazione con latch SR Q = S + R'.q = C.D + (C.D')'.q = C.D + C'.q (D.q)

Equazioni caratteristiche "ridondanti"

$$Q = C.D + C'.q + D.q = C.D + (C'+D).q$$

 $Q = (C+q).(C'+D).(D+q) = (C'+D).((C.D)+q)$

Vincoli sulla codifica degli stati

Codifica degli stati interni - Le configurazioni associate a stati interni consecutivi devono differire per il valore di un solo bit.

Transizioni multiple (3)

RIASSUNTO

- 1- Si adotta il n° minimo di variabili di stato
- 2- Se esiste una codifica che garantisca l'adiacenza di ogni coppia stato presente/stato futuro, allora FINE
- 3- Si controlla la colonna in cui è specificata la transizione tra due stati che non si riesce a rendere adiacenti: se esiste un altro stato che deve andare nello stato desiderato e se si può renderlo adiacente agli stati della coppia, lo si adopera come stato di transizione e poi FINE
- 4- Se nella colonna esiste uno stato con stato futuro indifferente e se si può renderlo adiacente agli stati della coppia, lo si adopera come stato di transizione e poi FINE
- 5- Si incrementa di uno il n° di variabili di stato e si torna a 4

Il procedimento di analisi di una rete sequenziale asincrona è formato da 5 passi e consente di dedurne il comportamento dallo schema logico:

1: individuazione delle variabili di stato,

2: analisi della parte combinatoria,

3: individuazione della tabella delle transizioni,

4: studio delle condizioni di stabilità,

5: individuazione della tabella di flusso e del grafo degli stati.

$$Y_1 = x_2'y_2 + x_1y_2 + x_1'x_2y_1$$

 $Y_2 = x_2'y_2 + x_1y_2 + x_1'x_2y_1'$
 $z = y_1$

		X	1X2			$\mathbf{x_1}\mathbf{x_2}$							
y_1y_2	00	01	11	10	y_1y_2	00	01	11	10				
00	0	0	0	0	00	0	$\bigcirc 1$	0	0				
01	1	0	1		01	1	1	1	$\overline{1}$				
11	1)	1	1	(1)	11	1	0	1					
10	0	1	0	0	10	0	0	0	0				
		7	<i>I</i> ₁			$\mathbf{Y_2}$							

Il procedimento di sintesi

Il procedimento di sintesi di una rete sequenziale asincrona è formato da 5 passi e consente di dedurne lo schema logico dal comportamento:

1: individuazione del grafo degli stati,

2: definizione della tabella di flusso,

3: codifica degli stati e definizione della tabella delle transizioni,

4: sintesi della parte combinatoria,

5: schema logico.

Esempio (1: grafo degli stati)

<u>Stabilità</u> - Ogni stato è stabile per l'ingresso che lo genera. <u>Indifferenza sull'uscita</u> - La modifica di uscita può avvenire già durante la transizione oppure, indifferentemente, essere rinviata al raggiungimento della stabilità.

Esempio di sintesi Comportamento: "z cambia valore ad ogni fronte di salita di x" 1 - Lampada da tavolo x z

2 - Divisore x2 della frequenza di un segnale periodico

Esempio (2: tabella di flusso)

X		
stato	0	1
α	$\alpha,1$	β,-
β	γ,0	β,0
γ	γ ,0	δ,-
δ	α,1	δ ,1

CONTROLLI FORMALI

- 1. In ogni riga ci deve essere almeno una condizione di stabilità.
- 2. In ogni colonna si deve raggiungere sempre una stabilità.
- 3. Le situazioni di instabilità devono indicare uno stato futuro stabile nella colonna (assenza di transizioni multiple).

Grafo primitivo

Grafo degli stati primitivo – Grafo in cui ogni stato è stabile per una ed una sola configurazione d'ingresso.

Per individuare le esigenze di stati interni poste dalla specifica di comportamento è spesso utile iniziare il progetto con un **grafo primitivo**.

Di norma il grafo primitivo **non ha il minimo numero** possibile **di stati interni**

Nota la tabella di flusso primitiva (una sola stabilità per riga), è abbastanza agevole individuare l'**automa minimo**

					ŗ	Ι	ab	ello	e di	flı	188()					
		00	01	11	10			00	01	11	10			00	01	11	10
	A	A,0	В,0	-,-	D,0		A	A,0	В,0	-,-	S,0	ı					
	В	A,0	В,0	С,-	-,-		В	A,0	В,0	С,-	-,-	_	I	I,0	В,0	С,-	S,0
	С	-,-	F,-	C,1	D,-		С	-,-	S,-	C,1	S,-	ĺ	С	-,-	S,-	C,1	S,-
	D	A,0	-,-	E,0	D,0[S	A,0	S,0	S,0	S,0	ĺ	S	A,0	S,0	S,0	S,0
İ	Е	-,-	F,0	E,0	D,0							l					
	F	A,0	F,0	E,0	-,-							ĺ					
Tabella primitiva Tabella ridotta Tabella minim												a					
•		in	un'u	ınica	riga	S	e, pe	r og	ni ing	gress	osso o, pro li cor	es	senta	no s	imbo	li	

Esercitazione N.12

Una RSA ha due ingressi x,y ed una uscita z. Gli ingressi non cambiano mai di valore contemporaneamente e non presentano mai entrambi il valore 1. L'uscita può cambiare di valore solo in corrispondenza dei fronti di salita di x. Il valore che z deve assumere e poi mantenere costante fino al fronte successivo è 0 se nel precedente intervallo x=0 y non ha modificato il suo valore, 1 nel caso opposto.

DOMANDA N.1 - forme d'onda

DOMANDA N.2 – grafo primitivo

DOMANDA N.3 – tabella di flusso

DOMANDA N.4 – codifica degli stati

DOMANDA N.5 – espressioni delle variabili di stato futuro

Esercitazione N.13

Una rete sequenziale asincrona è caratterizzata da due segnali di ingresso X_1 , X_2 (i quali non cambiano mai contemporaneamente) e da un segnale di uscita Z. Quando il segnale X_1 è disattivo (livello logico 0), Z deve assumere il valore 0. Quando il segnale X_1 è attivo (livello logico 1), Z deve assumere l'ultimo valore presentato dal segnale X_2 nel precedente intervallo di attivazione di X_1 .

(v. esempi di forme d'onda)

DOMANDA N.1 - grafo primitivo DOMANDA N.2 – codifica degli stati e tabella delle transizioni DOMANDA N.3 – espressione di una variabile di stato futuro

Esercitazione N.14

L'autoscuola GRATTA&PERDI, per addestrare meglio i suoi allievi, vi chiede di realizzare un simulatore dotato di due ingressi \mathbf{f} , \mathbf{c} e di una uscita \mathbf{z} : \mathbf{f} è il pedale della frizione (1 premuto, 0 rilasciato), \mathbf{c} è la leva del cambio (1 marcia inserita, 0 folle), \mathbf{z} è il comando di un segnalatore acustico (1 rumore di orrenda grattata, 0 nessun suono).

L'allievo può modificare un solo ingresso alla volta. Il rumore della grattata deve essere generato quando si inserisce una marcia con la frizione non premuta e fino a quando non venga dapprima disinserita la marcia con frizione premuta e poi rilasciata la frizione; quando si disinserisce una marcia con la frizione non premuta e fino a quando non venga dapprima inserita la marcia con frizione premuta e poi rilasciata la frizione.

DOMANDA N.1 - forme d'onda

DOMANDA N.2 – grafo degli stati

DOMANDA N.3 – tabella di flusso e delle transizioni

DOMANDA N.4 – espressione di una variabile di stato futuro