שיעור 9 חמחלקה P המחלקה P

P המחלקה $oldsymbol{9.1}$

• המחלקה P היא אוסף כל הבעיות שקיים עבורן אלגוריתם המכריע אותן בזמן פולינומיאלי.

אלגוריתם מכריע
$$\equiv$$
 מ"ט דטרמיניסטית , בעיית הכרעה \equiv שפה ,

w על כל קלט A על כך שזמן הריצה על קיים קבוע קבוע פולינומיאלי פולינומיאלי אם מכריע בעייה בזמן פולינומיאלי אם אלגוריתם $O\left(|w|^c\right)$ על כל קלט סיים ע"י

P -דוגמאות לבעיות ב- 9.2

 $PATH = \{\langle G, s, t \rangle \mid t ext{ } t ext{ } s ext{ }$ גרף מכוןן המכיל מסלול מ $G \in P$

(2) $RELPRIME = \{\langle x,y \rangle \mid x \} \in P$

9.3 בעיית המסלול ההמילטוני HAMPATH

HAMPATH 9.1 הגדרה

בהינתן גרף מכוון G=(V,E) ושני קודקודים s ב- מסלול המילטוני מ- מסלול ב- G=(V,E) ושני קודקודים ל- מסלול מ- מסלול ב- מסלול ב

לדוגמה:

(1

הגדרה 9.2 בעיית HAMPATH

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

t -ל s -מכיל מסלול המילטוני מ-s ל-

 $HAMPATH = \{\langle G, s, t \rangle \mid \ ?t$ ל- s ל- s מסלול המכיל מסלול המילטוני מ- s ל- s

 $HAMPATH \in P$ נשאל שאלה: האם

לא ידוע האם קיים אלגוריתם המכריע את HAMPATH בזמן פולינומיאלי (שאלה פתוחה).

- $\langle G,s,t \rangle \in HAMPATH$ בהינתן קלט $\langle G,s,t \rangle$ האם
 - :ענה על שאלה אחרת

 $\langle G,s,t \rangle \in HAMPATH$ בהינתן קלט $\langle G,s,t \rangle$ ומחרוזת $\langle G,s,t \rangle$

- . היא מסלול המילטוני מ-s ל-t ב-t ב-מן פולינומיאלי ולענות בהתאם.
 - . במקרה זה, אומרים כי HAMPATH ניתנת לאימות בזמן פולינומיאלי.

9.4 אלגוריתם אימות

הגדרה 9.3 אלגוריתם אימות

אלגוריתם $w \in \Sigma^*$ סלכל קלט עבור אלגוריתם אלגוריתם N הוא הוא הוא בעייה עבור אימות אימות אלגוריתם אלגוריתם אימות א

(w,y) אם ורק אם קיימת מחרוזת (עדות) y באורך פולינומיאלי ב- |w| כך ש- V מקבל את הזוג $w\in A$ כלומר:

- $\exists y : V(w,y) = T \quad \Leftarrow \quad w \in A$ אם •
- $\forall y : V(w,y) = F \iff w \notin A$ אם •

9.1 הערה

- |w| אמן ריצה של אלגוריתום אימות נמדד ביחס לגודל הקלט.
- אלגוריתם אימות פולינומיאלי אם הוא רץ בזמן פולינומיאלי.

9.5 המחלקה NP

הגדרה 9.4 המחלקה NP

המחלקה NP היא אוסף כל הבעיות שקיים עבורן אלגוריתם אימות פולינומיאלי.

$HAMPATH \in NP$ 9.1 משפט

:HAMPATH בעיית המסלול ההמילטוני

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

t-t-s פלט: האם t-t-s מכיל מסלול המילטוני מ-t-t-s

 $HAMPATH = \big\{ \langle G, s, t \rangle \; \middle| \; : t \; \cdot s \; r$ גרף מכוון המכיל מסלול המילטוני מ- $G \; \big\}$

 $.HAMPATH \in NP$ הוכיחו כי

.HAMPATH נבנה אלגוריתם אימות V עבור

$$:(\left\langle G,s,t\right
angle ,y)$$
 על קלט $=V$

בודק האם y היא סדרה של (1)

 $u_1, u_2, \ldots u_n$

השונים זה מזה.

- אם לא \Rightarrow דוחה.
- $u_n=t$ ו- $u_1=s$ בודק האם (2
 - אם לא ⇒ דוחה.
- G -ם קיימות ($1 \le i \le n$ (לכל (u_i, u_{i+1}) קיימות ב- (3
 - אם כן ⇒ מקבל.
 - אם לא ⇒ דוחה.

נכונות

- זמן הריצה של האלגוריתם הוא פולינומיאלי בגודל הקלט.
- עבור y שהוא קידוד $G \Leftarrow (G,s,t) \in HAMPATH$ אם שהוא קידוד $G \Leftarrow (G,s,t) \in HAMPATH$ של מסלול זה, V יקבל את הזוג של מסלול זה, עיקבל את אוג
- לא מכיל מסלול המילטוני מ- s ל- ל- ל- לא מכיל מסלול המילטוני מ- G לא מכיל G לא מכיל G לא מכיל G לא מכיל האלגוריתם ידחה את הזוג $(\langle G,s,t\rangle,y)$

$HAMPATH \in NP$ 9.2 משפט

בעיית המסלול ההמילטוני HAMPATH:

 $s,t\in V$ ושני קודקודים G=(V,E) קלט: גרף מכוון

s -פלט: האם s מכיל מסלול המילטוני מ-s ל-

 $HAMPATH = ig\{ \langle G, s, t
angle \mid \ ?t$ ל- s המילטוני מסלול המילטוני מסלול המילטוני מG

$.HAMPATH \in NP$ הוכיחו כי

.HAMPATH נבנה אלגוריתם אימות V עבור אלגוריתם נבנה אלגוריתם אימות יוב

$$:(\langle G,s,t\rangle,y)$$
 על קלט $=V$

בודק האם y היא סדרה של (1

$$u_1, u_2, \ldots u_n$$

השונים זה מזה.

- אם לא ⇒ דוחה.
- $u_n=t$ ו- ו $u_1=s$ בודק האם (2
 - אם לא ⇒ דוחה.
- G -ם קיימות ב $i\leqslant n$ (לכל (u_i,u_{i+1}) קיימות ב(3)
 - \bullet אם כן \Rightarrow מקבל.
 - אם לא ⇒ דוחה.

נכונות

- זמן הריצה של האלגוריתם הוא פולינומיאלי בגודל הקלט.
- עבור y שהוא קידוד $G \Leftarrow (G,s,t) \in HAMPATH$ שהוא קידוד של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$ של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$ של מסלול זה, $G \Leftrightarrow (G,s,t) \in HAMPATH$
- לא מכיל מסלול המילטוני מ- s ל- ל- ל- לא מכיל מסלול המילטוני מ- G לא לכל G לא לכל G לכל G לכל G לכל G ידחה את הזוג G לכל G לכל G לא מכיל מסלול המילטוני מ- G לכל G לכל G האלגוריתם ידחה את הזוג לכל G

הגדרה 9.5 קליקה

בהינתן גרף לא מכוון G=(V,E), קליקה ב- G היא תת-קבוצה של קודקודים $C\subseteq V$ כך שלכל שני קודקודים $u,\mathbf{v}\in C$ מתקיים $u,\mathbf{v}\in C$

לדוגמה:

הגדרה 9.6 בעיית הקליקה

k ומספר G=(V,E) ומספר

?k פלט: האם G קליקה בגודל

 $CLIQUE = \{\langle G, k \rangle \mid k$ גרף גרף א מכוון המכיל קליקה גודל G

CLIQUE $\in NP$ 9.3 משפט

 $CLIQUE \in NP$.

.CLIQUE נבנה אלגוריתם אימות V עבור אלגוריתם:

 $: (\left< G, k \right>, y)$ על קלט = V

G -ם פונים שונים א קודקודים שונים מ- בודק האם g

• אם לא ⇒ דוחה.

.G -בודק האם כל שני קודקודים מ- ע מחוברים בצלע ב- (2

אם כן ⇒ מקבל.

• אם לא ⇒ דוחה.

הגדרה 9.7 בעיית

t ומספר ומספר $S=\{x_1,x_2,\ldots x_n\}$ ומספרים קלט: קבוצת

t שווה איבריה שווה t שסכום איבריה שווה t

$$SubSetSum = \left\{ \langle S, t \rangle \; \left| \; \sum_{x \in Y} x = t \; ext{-}$$
 כך ש $Y \subseteq S$ קיימת $Y \subseteq S$

$SubSetSum \in NP$ 9.4 משפט

 $SubSetSum \in NP$.

.SubSetSum עבור V עבור אלגוריתם אימות נבנה אלגוריתם

$$:(\left\langle S,t\right\rangle ,y)$$
 על קלט V

- S בודק האם y היא תת-קבוצה של (1
 - אם לא ⇒ דוחה.
- t שווה t בודק האם סכום המספרים ב- (2
 - אם לא ⇒ דוחה.
 - \bullet אחרת \Rightarrow מקבל.

א"ד NP הקשר בין 9.6

NP=Non-deterministic polynomial-time.

משפט 9.5

A לכל בעייה

אם ורק אם פולינומיאלי. א"ד המכרעיה עת $A \in NP$

דוגמה 9.1

. נבנה מ"ט א"ד M המכריעה את בומעCLIQUE בזמן פולינומיאלי

$$:\langle G,k\rangle$$
 על קלט $=M$

- G -ם בוחרת באופן א"ד קבוצה y של y קודקודים מ-
- G -בודקת האם כל שני קודקודים מy מחוברים בצלע ב-
 - * אם כן \Rightarrow מקבלת.
 - * אחרת \Rightarrow דוחה.

אלגוריתם אימות \equiv מ"ט א"ד.

NP -1 P הקשר בין המחלקה 9.7

. כל הבעיות שניתן להכריע פולינומיאלי. P

. כל הבעיות שניתן שניתן שניתן פולינומיאלי. כל הבעיות שניתן NP

משפט 9.6

 $P \subseteq NP$.

P=NP שאלה פתוחה: האם

9.7 משפט

סגורה תחת משלים. P

 $ar{A} \in P$ הוכחה: אם $A \in P$ אזי גם

CoNP 9.8 הגדרה

$$CoNP = \{ A \mid \bar{A} \in NP . \}$$

לדוגמה:

 $\overline{HAMPATH} \in CoNP$.

 $\overline{CLIQUE} \in Co\,NP\ .$

NP = CoNP שאלה פתוחה: האם

משפט 9.8

 $P \subseteq NP \cap CoNP$.

 $P = NP \cap CoNP$ שאלה פתוחה: האם

P = NP נדון בשאלה המרכזית: האם

הגדרה 9.9 פונקציה פולינומיאלית

בהינתן פונקציה $\Sigma^* \to \Sigma^*$, אומרים כי f חשיבה בזמן פולינומיאלי אם קיים אלגוריתן (מ"ט בהינתן פונקציה בזמן בזמן פולינויאלי.

הגדרה 9.10 רדוקציה פולינומיאלית

בהינתן שתי הבעיות B ו- B אומרים כי A ניתנת לרדוקציה פולינומיאלית ל- B, ומסמנים $A \leqslant_P B$, אם קיימת פונקציה $f: \Sigma^* \to \Sigma^*$ המקיימת:

- חשיבה בזמן פולינומיאלי f (1
 - $:w\in\Sigma^*$ לכל (2

$$w \in A \Leftrightarrow f(w) \in B$$
.

משפט 9.9 משפט הרדוקציה

לכל שתי בעיות $A \in B$, אם $A \leq B$ אזי

- $A \in P$ אזי $B \in P$ אם (1
- $A \in NP$ אזי $B \in NP$ אם (2
 - מסקנה מ- (1) ו- (2):
 - $.B \notin P$ אזי $A \notin P$ אס (3
- $.B \notin NP$ אזי $A \notin NP$ אם (4

 $w \in \Sigma^*$ קיימת, לכל המקיימת, פנקציה f חשיבה בזמן פולנומיאלי המקיימת, לכל $A \leqslant_P B$, קיימת

$$w \in A \iff f(w) \in B$$
.

יהי פולינומיאלי. שמחשבת את האלגוריתם שמחשבת M_f יהי

 $A \in P$ נוכיח כי אם $B \in P$ גוכיח נוכיח (1)

. בזמן פולינומיאי. את את המכריע את המכריע עת Bבזמן פולינומיאלי. נבנה אלגוריתם שמכריע עת Bבזמן שמכריע יהי

M_A התאור של

:w על כל קלט $=M_A$

- M_f ע"י f(w) מחשב את .1
- . מריץ את M_B על f(w) ועונה כמוה.

נוכיח כי M_A מכריע את A בזמן פולינומיאלי:

- $M_A \Leftarrow f(w)$ מקבל את מקבל את מקבל את $M_B \Leftarrow f(w) \in B \Leftarrow w \in A$
- $M_A \leftarrow f(w)$ דוחה את את דוחה את $M_B \leftarrow f(w) \notin B \leftarrow w \notin A$ אם •

נוכיח כי זמן הריצה של M_A הוא פולינומיאי בגודל הקלט ושל וולינומיאלי:

- M_f את הפולינום של P_f נסמן ב
- M_B את הפולינום של P_B נסמן ב

אמן הריצה של M_A על קלט w שווה

$$P_f(|w|) + P_B(|f(w)|)$$

על א חסום ע"י או הריצה של א M_A מכיוו ש- או הריצה ווי $f(w)|\leqslant P_f\left(|w|
ight)$

$$P_{f}\left(\left|w\right|\right)+P_{B}\left(P_{f}\left(\left|w\right|\right)\right)=P_{f}\left(\left|w\right|\right)+\left(P_{B}\circ P_{f}\right)\left(\left|w\right|\right)$$

.|w| את ההרכבה של שני פולינומים. לכן M_A רץ בזמן פולינומיאלי בגודל את ההרכבה של מסמן את מסמן את