Угловой пограничный слой в нелинейных эллиптических задачах, содержащих производные первого порядка

Бутузов В. Ф., Денисов И. В.

1. Случай $\alpha > 1$

Пусть выполнены следующие условия.

Условие І. Функции A(x,y), $F(u,x,y,\varepsilon)$ и $\phi(x,y)$ являются достаточно гладкими.

Как обычно, требуемый порядок гладкости зависит от порядка асимптотики, которую мы хотим построить. Поскольку речь идёт об асимптотике произвольного порядка, будем считать эти функции бесконечно дифференцируемыми.

Условие II. Уравнение F(u, x, y, 0) = 0, получающееся из (12) при $\varepsilon = 0$, в замкнутом прямоугольнике $\bar{\Omega}$ имеет решения $u = \bar{u}_0(x, y)$.

Условие III. Производная $\bar{F}_u(x,y) := F_u(\bar{u}_0(x,y),x,y,0) > 0$ в замкнутом прямоугольнике $\bar{\Omega}$.

Условие IV. Для системы

$$\frac{dz_1}{dt} = z_2, \quad \frac{dz_2}{dt} = F(\bar{u}_0(x, y) + z_1, x, y, 0), \quad t \ge 0,$$

где x, y – параметры, (x, y) – произвольная точка границы $\partial\Omega$, прямая $z_1 = \phi(x, y)$ – $\bar{u}_0(x, y)$ пересекает сепаратрису, входящую в точку покоя $(z_1, z_2) = (0, 0)$ этой системы при $t \to \infty$.

Для определённости будем считать, что в задаче (12), (2) параметр $\alpha=3/2$. Сделаем замену $\varepsilon^{1/2}=\mu$. Получим уравнение

$$\mu^4 \Delta u - \mu^3 A(x, y) \frac{\partial u}{\partial y} = F(u, x, y, \mu^2), \tag{14}$$

с краевым условием

$$u(x, y, \mu) = \phi(x, y), \quad (x, y) \in \partial\Omega.$$
 (15)

В соответствии с видом (13) искомой асимптотики функцию F заменим выражением, аналогичным (13) (см. [5]):

$$F = \bar{F} + \Pi F + PF. \tag{16}$$

Выражения (13) и (16) подставляются в уравнение (14), которое разделяется на части: регулярную

$$\mu^4 \Delta u - \mu^3 A(x, y) \frac{\partial \bar{u}}{\partial y} = \bar{F}, \tag{17}$$

погранслойную

$$\mu^4 \Delta \Pi - \mu^3 A(x, y) \frac{\partial \Pi}{\partial y} = \Pi F \tag{18}$$

и угловую погранслойную

$$\mu^4 \Delta P - \mu^3 A(x, y) \frac{\partial P}{\partial y} = PF, \tag{19}$$

вид правых частей уравнения указан ниже. Приведём схему построения асимптотики

Регулярная часть асимтотики находится из уравнения (17), в котором $\bar{F} = F(\bar{u}, x, y, \mu^2)$, а \bar{u} ищется в виде ряда по степеням μ

$$\bar{u}(x,y,\mu) = \sum_{k=0}^{\infty} \mu^k \bar{u}_k(x,y).$$
 (20)

Для нахождения коэффициентов ряда (20) получается система уравнений

$$F(\bar{u}_0(x,y), x, y, 0) = 0, \quad \bar{F}_u(x,y)\bar{u}_k = f_k(x,y), \quad k \ge 1,$$

где функции $f_k(x,y)$ рекуррентно выражаются через $\bar{u}_i(x,y)$ с номерами i < k. Корень первого уравнения $\bar{u}_0 = \bar{u}_0(x,y)$ выбирается в соответствии с условием II. Из последующих уравнений в силу условия III однозначно определяются функции $\bar{u}_k = \bar{u}_k(x,y), \ k \ge 1$.

Регулярная часть асимптотики, как будет видно в дальнейшем, даёт при $\mu \to 0$ приближение для решения задачи (14), (15) внутри прямоугольника Ω , но на границе $\partial \Omega$ функция $\bar{u}(x,y,\varepsilon)$, вообще говоря, не совпадает с заданной граничной функцией $\phi(x,y)$. Для устранения невязок в граничном условии (15) вводится погранслойная часть асимптотики, которая в соответствии с числом сторон прямоугольника Ω разделяется на четыре слагаемых:

$$\Pi = \Pi + \Pi + \Pi + \Pi + \Pi. \tag{21}$$

Каждое слагаемое играет роль вблизи соответствующей стороны прямоугольника Ω . Для построения погранфункций вводятся растянутые (погранслойные) переменные

$$\xi = \frac{x}{\mu^2}, \qquad \eta = \frac{y}{\mu^2}, \qquad \xi_* = \frac{a - x}{\mu^2}, \qquad \eta_* = \frac{b - y}{\mu^2},$$

и на четыре слагаемых, аналогичных (21), разделяется правая часть в (18).

Погранслойная часть асимптотики в окрестности стороны y=0 находится из задачи

$$\mu^4 \frac{\partial^2 \overset{(1)}{\Pi}}{\partial x^2} + \frac{\partial^2 \overset{(1)}{\Pi}}{\partial \eta^2} - \mu A(x, \mu^2 \eta) \frac{\partial \overset{(1)}{\Pi}}{\partial \eta} = \overset{(1)}{\Pi} F, \quad 0 \le x \le a, \quad \eta \ge 0$$
 (22)

$$\Pi(x,0,\mu) = \phi(x,0) - \bar{u}(x,0,\mu), \quad \Pi(x,\infty,\mu) = 0,$$
(23)

где

$$\Pi F = F\left(\bar{u}(x, \mu^2 \eta, \mu) + \Pi(x, \eta, \mu), x, \mu^2 \eta, \mu^2)\right) - F(\bar{u}(x, \mu^2 \eta, \mu), x, \mu^2 \eta, \mu^2).$$

Функция $\Pi^{(1)}$ ищется в виде ряда по степеням μ

$$\Pi(x,\eta,\mu) = \sum_{k=0}^{\infty} \mu^k \Pi_k(x,\eta).$$
(24)

Для главного члена $\Pi_0(x,\eta)$ из (22), (23) получается задача (переменная x играет роль параметра, $0 \le x \le a$):

$$\frac{\partial^2 \Pi_0^{(1)}}{\partial \eta^2} = F\left(\bar{u}(x,0) + \Pi_0^{(1)}, x, 0, 0\right), \quad \eta \ge 0,$$

$$\Pi_0^{(1)}(x,0) = \phi(x,0) - \bar{u}_0(x,0), \quad \Pi_0^{(1)}(x,\infty) = 0.$$

В силу условия IV эта задача имеет решение, уравнение интегрируется в квадратурах, и для решения в силу условия III справедлива экспоненциальная оценка $(c_{\rm M}, [5])$

$$\left| \overset{(1)}{\Pi}_0(x,\eta) \right| \le C \exp(-\kappa \eta), \tag{25}$$

где C>0 и $\kappa>0$ – здесь и далее подходящие положительные числа, не зависящие от ε . Такая же оценка оказывается справедливой и для производных

$$\frac{\partial \Pi_0}{\partial \eta}$$
 и $\frac{\partial^2 \Pi_0}{\partial x^2}$

 $(c_{M}, [1]).$

Для коэффициентов $\Pi_k(x,\eta),\ k\geq 1,$ ряда (24) получаются линейные задачи

$$\frac{\partial_2 \Pi_k^{(1)}}{\partial \eta_2} = F_u \left(\bar{u}_0(x,0) + \Pi_0^{(1)}(x,\eta), x, 0, 0 \right) \Pi_k^{(1)} + \Pi_k^{(1)}(x,\eta), \quad \eta \ge 0, \tag{26}$$

$$\Pi_k(x,0) = -\bar{u}_k(x,0), \quad \Pi_k(x,\infty) = 0,$$
(27)

где функции $\overset{(1)}{\pi}_k(x,\eta)$ рекуррентно выражаются черех $\overset{(1)}{\Pi}_i(x,\eta)$ с номерами i < k и имеют экспоненциальные оценки вида (25), если таким же оценкам удовлетворяют функции $\Pi_i(x,\eta)$ при i < k. Решения задач (26), (27) выписываются в явном виде (см. [3]) и для них вместе с производными

$$\frac{\partial \overset{(1)}{\Pi_k}}{\partial \eta}$$
 и $\frac{\partial^2 \overset{(1)}{\Pi_k}}{\partial x^2}$

получаются экспоненциальные оценки вида (25). Погранслойные ряды $\overset{(2)}{\Pi}(\xi,y,\mu),\overset{(3)}{\Pi}(x,\eta_*,\mu)$ и $\overset{(4)}{\Pi}(\xi_*,y,\mu),$ играющие роль в окрестностях сторон x = 0, y = b и x = a, строятся аналогично ряду $\Pi (x, \eta, \mu)$, и их члены имеют экспоненциальные оценки типа (25).

Погранслойная часть асимптотики устраняет невязки в граничном условии на сторонах прямоугольника Ω , внесенные регулярной частью. В то же время она вносит свои невязки в граничное условие. Эти невязки существенны лишь вблизи угловых точек границы. Так, пограничные функции $\Pi_k^{(1)}(x,\eta)$, устраняя невязки в граничном условии на стороне y = 0, в свою очередь вносят невязки в граничное условие на сторонах x = 0 и x = a. Эти невязки существенны лишь вблизи угловых точек (0,0) и (a,0), а далее, с ростом y, они экспоненциально затухают в силу оценки (25).

Аналогичные невязки вносят члены погранслойного ряда $\Pi^{(2)}(\xi,y,\mu)$ на стороны y=0 и y=b, члены ряда $\Pi^{(3)}(x,\eta_*,\mu)$ – на стороны x=0 и x=a, члены ряда $\Pi^{(4)}(\xi_*,y,\mu)$ – на стороны y=0 и y=b. С целью устранения этих невязок вводится угловая часть асимптотики, она обозначается буквой P. В соответствии с числом вершин прямоугольника Ω эта часть асимптотики разделяется на четыре слагаемых:

$$P = P + P + P + P + P, \tag{28}$$

и на четыре аналогичных слагаемых разделяется правая часть в (19). Каждое слагаемое играет роль только вблизи соответствующей вершины прямоугольника Ω.

Угловая погранслойная часть асимптотики в окрестности точки (0,0) находится из задачи

$$\begin{split} \frac{\partial^2 \overset{(1)}{P}}{\partial \xi^2} + \frac{\partial^2 \overset{(1)}{P}}{\partial \eta^2} - \mu A(\mu^2 \xi, \mu^2 \eta) \frac{\partial \overset{(1)}{P}}{\partial \eta} &= \overset{(1)}{P} \, F, \quad \xi \geq 0, \quad \eta \geq 0, \\ \overset{(1)}{P} \, (0, \eta, \mu) &= - \overset{(1)}{\Pi} \, (0, \eta, \mu), \quad \overset{(1)}{P} \, (\xi, 0, \mu) &= - \overset{(2)}{\Pi} \, (\xi, 0, \mu), \\ \overset{(1)}{P} \, (\xi, \eta, \mu) &\to 0 \quad \text{при} \quad (\xi + \eta) \to \infty, \end{split}$$

где

$$P F = F \left(\bar{u}(\mu^{2}\xi, \mu^{2}\eta, \mu) + \Pi \left(\mu^{2}\xi, \eta, \mu \right) + \Pi \left(\xi, \mu^{2}\eta, \mu \right) + P \left(\xi, \eta, \mu \right), \mu^{2}\xi, \mu^{2}\eta, \mu^{2} \right) - \left(\Pi F + \Pi F + \bar{F} \right) \Big|_{x=\mu^{2}\xi, y=\mu^{2}\eta}.$$

Функция $\stackrel{(1)}{P}$ ищется в виде ряда по степеням μ

$$P^{(1)}(\xi, \eta, \mu) = \sum_{k=0}^{\infty} \mu^k P_k^{(1)}(\xi, \eta).$$
 (29)

Для нахождения коэффициентов ряда (29) получаются эллиптические задачи, исследование которых представляет основную трудность. Задача для определения главного члена $P_0(\xi,\eta)$ угловой части асимптотики ставится в квадранте \mathbb{R}^2_+ и имеет вид, аналогичный задаче (8) – (10):

$$\frac{\partial^2 \stackrel{(1)}{P_0}}{\partial \xi^2} + \frac{\partial^2 \stackrel{(1)}{P_0}}{\partial \eta^2} = \stackrel{(1)}{P_0} F, \quad \xi \ge 0, \quad \eta \ge 0, \tag{30}$$

$$P_0^{(1)}(0,\eta) = -\prod_{0}^{(1)}(0,\eta), \qquad P_0^{(1)}(\xi,0) = -\prod_{0}^{(2)}(\xi,0), \tag{31}$$

$$\stackrel{(1)}{P}_0(\xi,\eta) \to 0$$
 при $(\xi+\eta) \to \infty$, (32)

где

$$\stackrel{(1)}{P_0} F = F \left(\bar{u}_0(0,0) + \stackrel{(1)}{\Pi_0} (0,\eta) + \stackrel{(2)}{\Pi_0} (\xi,0) + \stackrel{(1)}{P_0} (\xi,\eta), 0, 0, 0 \right) - F \left(\bar{u}_0(0,0) + \stackrel{(1)}{\Pi_0} (0,\eta), 0, 0, 0 \right) - F \left(\bar{u}_0(0,0) + \stackrel{(2)}{\Pi_0} (\xi,0), 0, 0, 0 \right).$$
(33)

Для функций $\overset{(1)}{P}_k \ (\xi, \eta), \ k \geq 1,$ получаются линейные задачи

$$\frac{\partial^2 \stackrel{(1)}{P_k}}{\partial \xi^2} + \frac{\partial^2 \stackrel{(1)}{P_k}}{\partial \eta^2} - F'_u \left(\bar{u}_0 + \stackrel{(1)}{\Pi_0} (0, \eta) + \stackrel{(2)}{\Pi_0} (\xi, 0) + \stackrel{(1)}{P_0} (\xi, \eta), 0, 0, 0 \right) \stackrel{(1)}{P_k} =$$

$$= \stackrel{(1)}{p}_{k}(\xi, \eta), \quad \xi \ge 0, \quad \eta \ge 0, \tag{34}$$

$$\stackrel{(1)}{P_k}(0,\eta) = -\stackrel{(1)}{\Pi_k}(0,\eta), \qquad \stackrel{(1)}{P_k}(\xi,0) = -\stackrel{(2)}{\Pi_k}(\xi,0), \tag{35}$$

$$\stackrel{(1)}{P}_k\left(\xi,\eta\right) \to 0$$
 при $\left(\xi+\eta\right) \to \infty,$ (36)

где функции $\stackrel{(1)}{p}_k \left(\xi, \eta \right)$ имеют экспоненциальные оценки

$$\begin{vmatrix} P_k (\xi, \eta) \end{vmatrix} \le C \exp(-\kappa(\xi + \eta)), \tag{37}$$

если таким же оценкам удовлетворяют функции $\stackrel{(1)}{P}_i(\xi,\eta)$ с номерами i < k.

Для исследования задач (30) – (32) и (34) – (36) на предмет их разрешимости и экспоненциальных оценок решения используется метод верхних и нижних решений (барьеров), разработанный для подобной ситуации в [2,3]. Рассмотрим возможные случаи, в зависимости от которых наряду с условиями I – IV будем требовать выполнения тех или иных дополнительных условий.

Случай (A). Сначала будем предполагать, что задача (30) – (32) имеет решение $P_0(\xi,\eta)$ с экспоненциальной оценкой вида (37). В этом случае в силу условия III и экспоненциальных оценок пограничных функций найдется положительное число ρ такое, что в области

$$\Omega_0 = \{(\xi, \eta) | \xi > \rho, \, \eta > \rho \} \tag{38}$$

производная F_u на полном нулевом приближении удовлетворяет неравенству

$$F_u\left(\bar{u}_0(0,0) + \Pi_0^{(1)}(0,\eta) + \Pi_0^{(2)}(\xi,0) + P_0^{(1)}(\xi,\eta), 0, 0, 0\right) \ge \gamma^2,$$

где γ – некоторое положительное число. Однако в приграничных полосах

$$E_{\xi} = \{(\xi,\eta) | \, 0 \leq \xi \leq \rho, \, \eta \geq 0 \} \quad \text{if} \quad E_{\eta} = \{(\xi,\eta) | \, \xi \geq 0, \, 0 \leq \eta \leq \rho \}$$

эта производная может быть отрицательной. Поэтому задачи (34) – (36) не всегда будут иметь решения, удовлетворяющие экспоненциальным оценкам вида (37). В связи с этим рассмотрим следующие дополнительные условия.

Условие (A_1) . Задача (30) – (32) имеет решение $\stackrel{(1)}{P}_0$ (ξ,η) с экспоненциальной оценкой вида (37), и, кроме этого, во всем квадранте \mathbb{R}^2_+ производная F_u на полном нулевом приближении удовлетворяет неравенству

$$F_u\left(\bar{u}_0(0,0) + \Pi_0^{(1)}(0,\eta) + \Pi_0^{(2)}(\xi,0) + P_0^{(1)}(\xi,\eta), 0, 0, 0\right) \ge \gamma^2,$$

 $rde \gamma$ – некоторое положительное число.

Условие (A_2) . Задача (30) – (32) имеет решение P_0 (ξ,η) с экспоненциальной оценкой вида (37), u, кроме этого, в пригнаничных полосах E_ξ и E_η квадранта \mathbb{R}^2_+ производная F_u на полном нулевом приближении удовлетворяет неравенству

$$F_u\left(\bar{u}_0(0,0) + \Pi_0^{(1)}(0,\eta) + \Pi_0^{(2)}(\xi,0) + P_0^{(1)}(\xi,\eta), 0, 0, 0\right) \ge -q^2,$$

где q – положительное число, причем $q\rho < \pi/2$, ρ – число из (38).

Если выполнено условие (A_1) , то для задач (34) – (36) можно построить верхние $\stackrel{(1)}{P}_{k+}$ и нижние $\stackrel{(1)}{P}_{k-}$ барьеры в виде

$$P_{k\pm}^{(1)} = \pm r \exp(-\kappa(\xi + \eta)) - \Pi_k^{(1)}(0, \eta) \exp(-\kappa \xi) - \Pi_k^{(2)}(\xi, 0) \exp(-\kappa \eta) - \bar{u}_k(0, 0) \exp(-\kappa(\xi + \eta)),$$

где r — подходящее положительное число. Эти барьеры имеют экспоненциальные оценки вида (37) и обеспечивают существование решений задач (34) — (36) с такой же оценкой.

Если условие (A_1) не выполнено, то потребуем выполнения условия (A_2) . В этом случае барьеры для задач (34) – (36) не удается построить сразу во всем квадранте \mathbb{R}^2_+ . Приходится разбивать его на три подобласти Ω_0 , Ω_1 и Ω_2 , где Ω_0 определена в (38),

$$\Omega_1 = \{(\xi, \eta) \mid \quad \xi \ge \eta, \quad 0 \le \eta \le \rho \},$$

$$\Omega_2 = \{(\xi, \eta) \mid \quad 0 \le \xi \le \rho, \quad \eta \ge \xi \}.$$

Сначала можно построить непрерывные в \mathbb{R}^2_+ и гладкие в каждой из трех подобластей барьерные функции, имеющие экспоненциальные оценки вида (37). Затем эти кусочно-гладкие барьеры можно специальным образом преобразовать в гладкие в \mathbb{R}^2_+ барьеры для задач (34) – (36) (см. [3]).

Таким образом, если выполнено условие (A_1) или условие (A_2) , то задачи (34) – (36) имеют решения $\stackrel{(1)}{P}_k$ (ξ,η) , удовлетворяющие экспоненциальным оценкам вида (37).

Случай (B). Теперь не будем делать априорного предположения о существовании и оценке решения задачи (30) – (32). Потребуем, чтобы граничное значение $\phi = \phi(0,0)$ было таково, что для функции F(u) := F(u,0,0,0) производная F'(u) > 0 для всех значений u на промежутке от $\bar{u}_0 = \bar{u}_0(0,0)$ до ϕ . Для определенности будем считать, что $\bar{u}_0 < \phi$.

Случай, когда $\bar{u}_0 > \phi$, сводится к предыдущему заменой в уравнении (12) u на -u.

Если же $\bar{u}_0 = \phi$, то $\Pi_0^{(1)}(0,\eta) = \Pi_0^{(2)}(\xi,0) = P_0^{(1)}(\xi,\eta) = 0$ и коэффициент при $P_k^{(1)}$ в уравнении (34) будет равен $-F_u(\bar{u}_0) < 0$. В этом случае решения задач (34) – (36) выписываются в явном виде и имеют экспоненциальные оценки вида (37).

В случае (B) при построении верхнего барьера для решения задачи (30) – (32) введем следующее условие.

Условие (B_1) . Существуют числа $\phi_1 > \phi$ и $C_+ \in (0, \phi_1 - \phi)$ такие, что F'(u) > 0 на промежутке $[\phi, \phi_1]$ и для любых значений s и t из промежутка $[0, \phi - \bar{u}_0]$ выполняется неравенство

$$F\left(\bar{u}_{0} + s + t - \frac{st}{\phi - \bar{u}_{0}} + C_{+}\right) - \left(1 - \frac{s}{\phi - \bar{u}_{0}}\right) F\left(\bar{u}_{0} + t\right) - \left(1 - \frac{t}{\phi - \bar{u}_{0}}\right) F\left(\bar{u}_{0} + s\right) > 0.$$
(39)

Если условие (B_1) выполнено, то верхний барьер для решения задачи (30) – (32) можно построить в виде

$$r \exp(-\kappa(\xi + \eta)) - \frac{\prod_{0}^{(1)} (0, \eta) \prod_{0}^{(2)} (\xi, 0)}{\phi - \bar{u}_{0}}, \tag{40}$$

где r и κ – подходящие положительные числа.

Очевидно, что при $\phi \to \bar{u}_0$ левая часть неравенства (39) стремится к числу $F(\bar{u}_0 + C_+) > 0$. Поэтому любая функция F(u) при значениях ϕ , достаточно близких к \bar{u}_0 , удовлетворяет условию (B_1) . При удалении ϕ от \bar{u}_0 ситуация может измениться. В [4] подробно исследован класс функций, удовлетворяющих условию (B_1) . Преобразуем левую часть неравенства (39) к виду, удобному для исследования. Так как

$$\bar{u}_0 + s + t - \frac{st}{\phi - \bar{u}_0} = \phi - (\phi - \bar{u}_0) \left(1 - \frac{s}{\phi - \bar{u}_0} \right) \left(1 - \frac{t}{\phi - \bar{u}_0} \right),$$

$$\bar{u}_0 + s = \phi - (\phi - \bar{u}_0) \left(1 - \frac{s}{\phi - \bar{u}_0} \right),$$

$$\bar{u}_0 + t = \phi - (\phi - \bar{u}_0) \left(1 - \frac{t}{\phi - \bar{u}_0} \right),$$

то левая часть неравенства (39) представляется в виде

$$F\left(\phi - (\phi - \bar{u}_0)\left(1 - \frac{s}{\phi - \bar{u}_0}\right)\left(1 - \frac{t}{\phi - \bar{u}_0}\right) + C_+\right) - \left(1 - \frac{s}{\phi - \bar{u}_0}\right)F\left(\phi - (\phi - \bar{u}_0)\left(1 - \frac{t}{\phi - \bar{u}_0}\right)\right) - \left(1 - \frac{t}{\phi - \bar{u}_0}\right)F\left(\phi - (\phi - \bar{u}_0)\left(1 - \frac{s}{\phi - \bar{u}_0}\right)\right).$$

Список литературы

- [1] Бутузов В. Ф. Сингулярно возмущенное уравнение эллиптического типа с двумя малыми параметрами // Дифференц. уравнения. 1976. Т. 12. №10 С. 1793 1803. (English transl.: Butuzov V. F. A singularly perturbed elliptic equation with two small parameters // Differential Equations. 1976. V. 12, No. 10. P. 1261.)
- [2] Денисов И.В. Квазилинейные сингулярно возмущенные эллиптические уравнения в прямоугольнике // Ж. вычисл. матем. и матем. физ. 1995. Т. 35. №11. С. 1666 1678. (English transl.: Denisov I.V. Quasilinear singularly perturbed elliptic equations in a rectangle // Computational Mathematics and Mathematical Physics. 1995. V. 35, No. 11. P. 1341 –1350.)
- [3] Денисов И.В. Угловой погранслой в нелинейных сингулярно возмущенных эллиптических задачах // Ж. вычисл. матем. и матем. физ. 2008. Т. 48. №1. С. 62 79. (English transl.: Denisov I. V. Corner boundary layer in nonlinear singularly perturbed elliptic problems // Computational Mathematics and Mathematical Physics. 2008. V. 48, No. 1. P. 59 –75.)
- [4] Денисов И.В. О некоторых классах функций // Чебышевский сборник. Т. Х. Вып. 2 (30). Тула: Изд-во Тул. гос. пед. ун-та им. Л.Н.Толстого, 2009. С. 79 108.
- [5] Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990.