

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(11) DE 3331016 A1

(51) Int. Cl. 3:
C09J 7/00

(30) Innere Priorität: (32) (33) (31)

06.04.83 DE 83100326

(71) Anmelder:

Beiersdorf AG, 2000 Hamburg, DE

(72) Erfinder:

Zimmermann, Dieter, 2155 Jork-Borstel, DE; Franzen, Kurt, Dipl.-Chem. Dr., 2000 Hamburg, DE

(54) Klebefolie für wiederlösbare Klebebindungen

Klebefolie für wiederlösbare Klebebindungen auf Basis von

- a) thermoplastischem Kautschuk und
- b) klebrigmachenden Harzen, wobei die Klebefolie
- c) hohe Elastizität und
- d) geringe Plastizität aufweist und wobei
- e) die Adhäsion geringer als die Kohäsion ist,
- f) das Haftvermögen beim Dehnen der Folie weitgehend verschwindet,
- g) das Verhältnis von Abzugskraft zu Reißlast 1 : 2 oder größer ist, und wobei
- h) eine damit hergestellte Klebebindung durch Ziehen an der Klebefolie in Richtung der Verklebungsebene lösbar ist.

DE 3331016 A1

1. Klebefolie für wiederlösbare Klebbindungen auf Basis von

- a) thermoplastischem Kautschuk und
- b) klebrigmachenden Harzen, wobei die Klebefolie
- 5 c) hohe Elastizität und
- d) geringe Plastizität aufweist und wobei
- e) die Adhäsion geringer als die Kohäsion ist,
- f) das Haftvermögen beim Dehnen der Folie weitgehend verschwindet,

- 10 g) das Verhältnis von Abzugskraft zu Reißlast 1:2 oder größer ist, und
wobei
- h) eine damit hergestellte Klebbindung durch Ziehen an der Klebefolie in
Richtung der Verklebungsebene lösbar ist.

2. Klebefolie nach Anspruch 1, worin die Masse selbstklebend eingesetzt ist.

15 3. Klebefolie nach Anspruch 1, wobei die Masse wärmeaktivierbar eingestellt ist.

4. Klebefolie nach einem der Ansprüche 1 - 3, zum wiederlösablen Verkleben zweier Fügeteile, von denen zumindest eines starr ist.

20 5. Klebefolie nach einem der Ansprüche 1 - 4, enthaltend Antioxidantien, UV-Stabilisatoren, Farbstoffe, Füllstoffe und/oder andere übliche Hilfsmittel.

6. Klebefolie nach einem der Ansprüche 1 - 5, mit einer Dicke von 0,2 mm bis 0,6 mm.

25 7. Klebefolie nach einem der Ansprüche 1 - 7, enthaltend als thermoplastischen Kautschuk ein Styrol-Butadien-Blockpolymer und als klebrigmachendes Harz ein Colophonium-Derivat.

27.10.83

8

BEIERSDORF AKTIENGESELLSCHAFT
HAMBURG

KLEBFOGLIE FÜR WIEDERLÖSBARE KLEBBINDUNGEN

Die Erfindung betrifft eine Klebfolie für wiederlösbar Klebbindungen,
5 insbesondere von zwei Fügeteilen, von denen zumindest eines starr ist.

Während üblicherweise in der Verklebungstechnik Fügeteile fest verbunden werden und ein späteres Trennen weder beabsichtigt noch gewünscht wird, gibt es doch Kleverbunde, die vom Einsatzbereich her nach einer bestimmten Zeit wieder getrennt werden müssen.

10 Selbstklebende Bänder, Folien oder Etiketten lassen sich von festen Untergründen unter Schälbelastung leicht entfernen. So ist es z.B. für Pflaster und dergleichen bekannt (vgl. US-PS 4 335 026), einen biegsamen Träger mit einem Kleber zu beschichten, der Elastomer-Anteile enthält, womit eine Verletzung der Haut beim Abziehen vermieden werden soll.

15 Schwierig wird es, wenn auf starren festen Untergründen starre feste Materialien verklebt werden. In einigen Fällen mag ein zerstörungsfreies Lösen durch Wärmeeinwirkung oder Quellen und Lösen des Klebstoffs in Lösungsmittel möglich sein. Der Aufwand ist aber sehr hoch, und die Gefahr der Beschädigung der verklebten Teile ist nicht auszuschließen.

20 Aufgabe der Erfindung war es, ein Klebsystem zur Verfügung zu stellen, das es aufgrund spezieller Eigenschaften ermöglicht, belastungsfähige Kleverbunde von starren festen Fügeteilen z.B. Informationstafeln auf Schaufelsterscheiben oder auf schichtstoffplattenverkleideten Wänden zu erstellen, die nach einer bestimmten Zeit ohne besonderen Aufwand

ZT-00-00

- 3 -

und ohne Schädigung der verklebten Materialien sich trennen lassen.

Überraschenderweise lässt sich diese Aufgabe mit einer selbstklebenden oder wärmeaktivierbaren Klebefolie lösen, die auf Basis eines thermoplastischen Kautschuks und klebrigmachender Harze aufgebaut ist.

5 Beim Verkleben von festen Materialien liefern derartige Systeme gute Bindefestigkeiten und Standfestigkeiten. Voraussetzung für die Wiederlösbarkeit ist eine Klebefolie mit einer hohen Elastizität und einer geringen Plastizität. Die Adhäsion muss geringer als die Kohäsion sein, und das Haftvermögen (Selbstklebe-Effekt) muss beim Dehnen der Klebefolie weitgehend verschwinden. Zur Trennung des Verbundes lässt sich die Klebefolie dann mit der Zugrichtung in der Ebene der Verklebung aus der Klebfuge herausziehen, was durch die durch starke Dehnung bewirkte Dickenabnahme begünstigt wird. Die Abzugskraft, die sich aus der Summe der Kräfte für die Verformung (Elastizität und Plastizität) und für die Schälung (Abschälung der Klebefolie) zusammensetzt, ist relativ niedrig. Weitere Hilfsmittel sind nicht erforderlich. Bei dieser Lösetechnik - vergleichbar mit dem Öffnen eines Reißverschlusses - bleiben die verklebten Teile unbeeinflusst.

10

15

Als thermoplastischer Kautschuk des Erfindungsgedankens lassen sich z.B. Styrol-butadien-Blockpolymere der Styrol-isopren-Blockpolymere verwenden.

20

25 Als klebrigmachende Harze eignen sich z.B. Natur- und Syntheseharze, wie z.B. hydrierte, disproportionierte, dimerisierte Colophonum-Abkömmlinge, die verestert oder als freie Säuren vorliegen können, Terpen- und Terpenphenolharze, synthetische Kohlenwasserstoff-Harze, um nur einige zu nennen.

Weiterhin können dem Elastomer-Harz-System Antioxidantien, UV-Stabilisatoren, Farbstoffe, Füllstoffe und andere übliche Hilfsmittel - wie dem Klebstoff-Fachmann bekannt - zugefügt werden.

30 Die Elastomerkomponente gibt dem System ohne Vulkanisation die notwendige Gummielastizität und Kohäsion, während das Harz vorrangig

4
27.08.80
- 3 -

für die Adhäsion auf den verschiedenen Untergründen verantwortlich ist.
Die Kombinatorik erfolgt nach dem bekannten Stand der Technik.

5 Die aufgeführten Rohstoffe können in einem Lösungsmittel z.B. Benzin gelöst und als hochprozentige Lösung mit einem Streichrakel auf Trennpapier oder Trennfolie gestrichen und in einem Trockenkanal getrocknet werden. Dieses Material kann zu Rollen geschnitten werden. Einfacher ist die Fertigung, wenn die Rohstoff-Mischung heiß geknetet und bei 120 - 160°C auf Trennpapier extrudiert wird.

10 Der Verklebungsvorgang und die Prüfung der Verbundfestigkeiten erfolgt nach der in der Klebstofftechnik üblichen Praxis, wobei vorteilhaft alle Arten von starren Fügeteilen miteinander verklebt werden können, wie Informationstafeln auf Schaufensterscheiben, Bilder oder Spiegel an Wänden oder Scheiben, Ausstellungsmaterial an Standwänden oder Gerüsten, aber auch Papier, Pappe oder Fotos auf ausreichend starren Untergründen.

15 Daß die Klebefoliendicke für den Abzieheffekt eine entscheidende Bedeutung hat, zeigt folgende vereinfachende Überlegung. Wenn eine bestimmte 0,6 mm dicke Klebstoff-Folie eine Abzugskraft von 20 N und eine Reißlast von 50 N und eine 1,2 mm Folie 30 und 100 N, läßt sich nach der Gleichung: Abzugskraft = Kraft für Verformung und Kraft für 20 Schälung folgende Tabelle aufstellen:

	Dicke (mm)	Verformung (N/25 mm)	Schälung (N/25 mm)	Abzugskraft (N/25 mm)	Reißlast (N/25 mm)
	1,2	20	10	30	100
	0,6	10	10	20	50
25	0,3	5	10	15	25
	0,15	2,5	10	12,5	12,5

Der Prinzip-Rechnung läßt sich entnehmen, daß der erfindungsgemäße Gedanke nur für Folien ab bestimmter Dicke gilt, nicht aber für sehr dünne

5
37 000 00

- A -

wo die Abzugskraft sich größenmäßig der Reißlast nähert. Allgemein - bei vergleichbarer Adhäsion und Kohäsion wird die Klebefolie beim Abziehen reißen. Aus Sicherheitsgründen soll sich die Abzugskraft zur Reißlast wie 1 : 2 bis 1 : 3 verhalten. Noch höhere Verhältniszahlen setzen noch dickere Folien voraus, wobei die obere Grenze von der Wirtschaftlichkeit gegeben wird.

Beispiel:

- 10 kg Styrolbutadien-Blockpolymer-Kautschuk
(Viskosität einer 25-prozentigen Lösung in Toluol:
10 ca. 4 Pa's),
- 10 kg Harz = hydriertes, mit Pentaerythrit verestertes
Colophonium und
- 0,2 kg Antioxidants (Basis aromatisches Amin) werden zwei Stunden
bei ca. 150°C geknete und bei 120-160°C zur 0,6 mm dicken, selbstklebenden
15 Folie extrudiert und einseitig mit Trennpapier abgedeckt. Für die weiteren
Versuche wurde das Material in 25 mm breite Rollen aufgeschnitten.

Reißlast : 50 N/25 mm
Dehnung : über 1200 %

- 20 Stirnzugfestigkeit einer Aluminium/GFK-Verklebung
(bei 80°C mit 10 bar verpreßt): 1 N/mm²
- Zugscherfestigkeit (Bindefestigkeit) einer Aluminium/Aluminium-Verklebung

- bei RT mit 10 bar verpreßt : 4,4 N/mm²
- bei 80°C mit 10 bar verpreßt : 5,0 N/mm²

- 25 Eine Polymethacrylat-Platte auf Schichtstoffplatte verklebt (zum
leichteren Abziehen läßt man einige Millimeter Klebefolie als Anfasser
überstehen) und im erfindungsgemäßen Gedanken in der Verklebungsebene
die Klebefolie abgezogen, ergibt eine Abzugskraft von : 20 N/25 mm, Deh-

27.06.80
-8-

nung : ca. 1000 %, wobei eine beträchtliche Verminderung der Foliendicke von 0,6 auf 0,2 mm eintritt und dann die Folie kaum selbstklebend ist.