Neural Network: Logistic Regression

Text and Web Mining (IS6751)

School of Communication and Information

Overview

- Introduce example applications of neural networks.
- Introduce Scalars, Vectors, and Matrixes and Matrix Operations.
- Introduce Logistic Regression (one neuron network) in detail.
 - Cover foundation concepts in Deep Learning

Applications of Neural Networks

Input(x)	Output (y)	Application
Home features	Price	Real Estate Standard
Ad, user info	Click on ad? (0/1)	Online Advertising NN
Image	Object (1,,1000)	Photo tagging CNN/ Transformer
Audio	Text transcript	Speech recognition RNN/
English	Chinese	Machine translation ormer
Image, Radar info	Position of other cars	Autonomous driving Custom/ 自动驾驶 Hybrid

Neural Network examples

Standard NN

E.g., input: a document vector output: sentiment polarity of the document.

Convolutional NN

E.g., input: an image matrix output: category of the image.

Recurrent NN

E.g., input: a sequence of words in a document output: sentiment polarity of the document

Intro to Scalars, Vectors, and Matrixes: Scalars

- A scalar is a single number.
- Integers ($a \in \mathbb{N}$, e.g., 10), real numbers ($x \in \mathbb{R}$, e.g., 10.5), etc.

• We denote it with italic font: a, x

Vectors

• A vector is a 1-D array of numbers (a column vector):

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

- Can be integer, real, etc.
- Example notation for type and size:

$$\mathbf{x} = \mathbb{R}^n$$

• We denote it with italic bold font: a, x

[1, 2]

Note that a column vector is represented as a row vector in PyTorch.

$$oldsymbol{x} = \mathbb{R}^2$$
 or $oldsymbol{x} = \mathbb{N}^2$

Matrices

• A matrix is a 2-D array of numbers:

Column

• Example notation for type and shape:

$$A = \mathbb{R}^{m \times n}$$

- We denote it with uppercase letter with italic bold font: A, X
- Vectors can be thought of as matrices that contain only one column.

Matrix representation in PyTorch:
[[1., 2.],
[3., 4.]]

Matrix

1 2 3 4

$$A = \mathbb{R}^{2 \times 2}$$

Matrix representation in PyTorch:
[[1.],
[2.]]

$$A = \mathbb{R}^{2 \times 1}$$

Tensors

- · A tensor is an array of numbers, that may have
 - zero dimension, and be a scalar
 - one dimension, and be a vector
 - two dimensions, and be a matrix
 - or more dimensions.
 - While, technically, scalar, vector, and matrix are valid tensors, when we speak of tensors, we are generally speaking of the generalization of the concept of a matrix to $N \ge 3$ dimensions.

Matrix Transpose

$$(A^{\top})_{i,j} = A_{j,i}.$$

$$(2.3)$$

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{\top} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

Matrix Addition

Matrices can be added if they have the same shape:

$$A + B = C$$

Each cell of \boldsymbol{A} is added to the corresponding cell of \boldsymbol{B} :

$$A_{i,j} + B_{i,j} = C_{i,j}$$

i is the row index and j the column index.

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix} + \begin{bmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{bmatrix} = \begin{bmatrix} A_{1,1} + B_{1,1} & A_{1,2} + B_{1,2} \\ A_{2,1} + B_{2,1} & A_{2,2} + B_{2,2} \end{bmatrix}$$

$$\begin{bmatrix} A_{3,1} & A_{3,2} \end{bmatrix} + \begin{bmatrix} B_{3,1} & B_{3,2} \end{bmatrix} = \begin{bmatrix} A_{1,1} + B_{1,1} & A_{1,2} + B_{1,2} \\ A_{2,1} + B_{2,1} & A_{2,2} + B_{2,2} \end{bmatrix}$$

$$(3 \times 2) \qquad (3 \times 2) \qquad (3 \times 2)$$

Broadcasting

$$\begin{bmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

$$X: (3 \times 4)$$

$$Y: (3 \times 4)$$

- PyTorch and Numpy (a Python library for handling multi-dimensional
- arrays and matrices) can handle operations on arrays of different shapes.
- The smaller array will be extended to match the shape of the bigger one.
 - PyTorch 和 Numpy(用于处理多维数组和矩阵的 Python 库)可以处理不同形状的数组上的操作。
 - 较小的数组将被扩展以匹配较大数组的形状。

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} + \begin{bmatrix} B_{1,1} \\ B_{2,1} \\ B_{3,1} \end{bmatrix}$$
 (3 × 2) + (3 × 1)
Note: (3 × 2) + (2 × 1) does not work.

is equivalent to $(3 \times 2) + (3 \times 2)$

$$\begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} + \begin{bmatrix} B_{1,1} & B_{1,1} \\ B_{2,1} & B_{2,1} \\ B_{3,1} & B_{3,1} \end{bmatrix} = \begin{bmatrix} A_{1,1} + B_{1,1} & A_{1,2} + B_{1,1} \\ A_{2,1} + B_{2,1} & A_{2,2} + B_{2,1} \\ A_{3,1} + B_{3,1} & A_{3,2} + B_{3,1} \end{bmatrix}$$

```
x = torch.arange(12).view(3, 4)
y = torch.arange(4).view(1, 4)
z = torch.arange(3).view(3, 1)
print(x)
print(y)
print(z)
print(x + y)
print(x + z)
        [4, 5, 6, 7],
        [8, 9, 10, 11]])
tensor([[0, 1, 2, 3]])
tensor([[0],
        [1],
        [4, 6, 8, 10],
        [ 8, 10, 12, 14]])
        [5, 6, 7, 8],
        [10, 11, 12, 13]])
```

Z: (3 × 4)

where the (3×1) matrix is converted to the right shape (3×2) by copying the first column. Numpy will do that automatically if the shapes can match.

Matrix (Dot) Product

- The way to multiply matrices is to calculate the sum of the products between rows and columns.
- The matrix product, also called **dot product**, is calculated as follows:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 2 \\ 4 \end{bmatrix} =$$

$$\begin{bmatrix} 1 \times 2 + 2 \times 4 \\ 3 \times 2 + 4 \times 4 \\ 5 \times 2 + 6 \times 4 \end{bmatrix} = \begin{bmatrix} 10 \\ 22 \\ 34 \end{bmatrix}$$

$$(3x2) \times (2x1) = (3x1)$$

$$(3x2) \times (2x1) = (3x1)$$

Matrix (Dot) Product

第一个矩阵的列数必须等于第二个矩阵的行数。因此,如果第一个矩阵的尺寸为 (m×n),则第二个矩阵的形状必须是 (n×p)。结果矩阵的形状将为 (m×p)。

• The number of columns of the first matrix must be equal to the number of rows of the second matrix. Thus, if the dimensions of the first matrix is $(m \times n)$, the second matrix need to be of shape $(n \times p)$. The resulting matrix will have the shape $(m \times p)$.

Element-wise (Hadamard) Product

- The product of the individual elements is called the element-wise product or Hadamard product.
- For two matrices A and B of the same shape $m \times n$, the Hadamard product $A \circ B$ (or $A \odot B$) is a matrix of the same shape as the operands.
- For example, the Hadamard product for a 3×3 matrix \boldsymbol{A} with a 3×3 matrix \boldsymbol{B} is.
 - ·各个元素的乘积称为元素乘积或 Hadamard 乘积。
 - •对于两个形状为 m×n 的矩阵 A 和 B,Hadamard 乘积 A。B(或 A ⊙ B)是与操作数形状相同的矩阵。
 - 例如, 3 × 3 矩阵 A 与 3 × 3 矩阵 B 的 Hadamard 乘积为。

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \circ \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & a_{13} b_{13} \\ a_{21} b_{21} & a_{22} b_{22} & a_{23} b_{23} \\ a_{31} b_{31} & a_{32} b_{32} & a_{33} b_{33} \end{bmatrix}$$

$$(3x3) \qquad \circ \qquad (3x3) \qquad = \qquad (3x3)$$

Logistic Regression

E.g., The probability of Positive Class given a review document.

- Models the *probability* that an input belongs to a particular category.
 - Given \boldsymbol{x} , want to predict $\hat{y} = P(y = 1 \mid \boldsymbol{x})$, where $0 \le \hat{y} \le 1$
 - $\mathbf{x} \in \mathbb{R}^{n_x}$, where $\mathbf{x} = x_1, x_2, ..., x_{n_x}$
 - Parameters: $\mathbf{w} \in \mathbb{R}^{n_x}$, $b \in \mathbb{R}$
 - $z = \mathbf{w}^T \mathbf{x} + b$
 - Output: $\hat{y} = \sigma(z)$ where $\sigma()$ is sigmoid function.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$
 $\mathbf{w}^T = [w_1 \ w_2 \ w_3]$

$$z = [w_1 \ w_2 \ w_3] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b$$
$$= w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

input

output

Logistic Regression

- Models the *probability* that an input belongs to a particular category.
 - Given **x**, want to predict $\hat{y} = P(y = 1 | \mathbf{x})$, where $0 \le \hat{y} \le 1$
 - $z = \mathbf{w}^T \mathbf{x} + b$
 - Output: $\hat{y} = \sigma(z)$ where $\sigma()$ is sigmoid function.

$$\sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \frac{1}{e^z}}$$
If z is large, $\sigma(z) \approx \frac{1}{1 + 0} = 1$

In general, if $\hat{y} >= 0.5$, predict positive class, otherwise negative class.

Logistic Regression cost function

Given
$$\{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$. [E.g., $\{(\mathbf{x}^{(1)}, 0), (\mathbf{x}^{(2)}, 1), ..., (\mathbf{x}^{(m)}, 1)\}$]

$$\hat{y}^{(i)} = \sigma(z^{(i)}) = \frac{1}{1+e^{-z^{(i)}}}$$
, where $z^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + b$

Loss (error) function: minimize the loss function, called Cross Entropy Loss Function (or negative log likelihood)

$$\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -(y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}))$$

If
$$y^{(i)}$$
==1, $\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\log(\hat{y}^{(i)})$: want $\log(\hat{y}^{(i)})$ large, want $\hat{y}^{(i)}$ large (close to 1) If $y^{(i)}$ ==0, $\mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\log(1-\hat{y}^{(i)})$: want $\log(1-\hat{y}^{(i)})$ large, want $\hat{y}^{(i)}$ small (close to 0)

Cost function: find **w** and **b** values that minimize the cost function

$$J(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Gradient Descent

Recap:
$$\hat{y}^{(i)} = \sigma(z^{(i)}) = \frac{1}{1 + e^{-z^{(i)}}}$$
, where $z^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + b$

$$J(\mathbf{w}, b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

$$J(\mathbf{w},b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize I(w, b)

Gradient Descent

Slope = Height / Width
=
$$J(w_2) - J(w_1) / w_2 - w_1$$

When slope is positive, decrease w value, and vice versa.

Gradient Descent is an iterative optimization algorithm for finding the minimum of a function. It takes steps proportional to the *negative* of the gradient of the function at the current point.

Slope (derivative) of Repeat { I(w) with respect to w Learning rate (e.g., 0.1)

$$w = w - \alpha \frac{dJ(w,b)}{dw}$$
$$b = b - \alpha \frac{dJ(w,b)}{db}$$

Intuition about derivatives

关于衍生品的直觉

$$f(x) = x^2$$

 $x = 2$; $f(x) = 4$
 $x = 2.001$; $f(x) \approx 4.004$

Slope (derivative) of f(x) at x=2 is

$$F(x)=3x: \frac{df(x)}{dx} = \frac{d3x}{dx} = 3$$

$$F(x)=x^2: \frac{df(x)}{dx} = \frac{dx^2}{dx} = 2x$$

$$F(x)=x^3: \frac{df(x)}{dx} = \frac{dx^3}{dx} = 3x^2$$

$$F(x)=logx: \frac{df(x)}{dx} = \frac{dlogx}{dx} = \frac{1}{x}$$

Some Basic Derivatives
$$rac{d}{dx}(c)=0$$
 $rac{d}{dx}(x)=1$ $rac{d}{dx}(x^n)=nx^{n-1}$

$$\frac{0.004}{0.001} = 4$$
: So, when *x* increases by 0.001, f(*x*) increases 0.004. So, the change rate of f(*x*) is 4 when *x* is 2.

0.001

$$\frac{df(x)}{dx} = \frac{dx^2}{dx} = 2x$$

Another example, the change rate of f(x) is 8 when x is 4: $\frac{4.001^2-4^2}{2} = \frac{0.008}{2} = 8.$

Computation Graph

• Used for computing derivatives in deep learning platforms, such as PyTorch.

$$J(a, b, c) = 3 (a + bc)$$

$$u = bc$$

$$v = a + u$$

$$J = 3v$$

$$b = 3$$

$$u = bc$$

$$v = a + u$$

$$J = 3v$$

$$J(a, b, c) = 3(a + bc) = 3(5 + 3*2) = 33$$

chain rule example:

$$\frac{dy}{dx} = \frac{dy}{dsomething} \frac{dsomething}{dx}$$

$$y = 5(x^{3} + 7)^{3}$$
= 5(something)³

$$y' = 15(\text{something})^{2} \times \frac{d(\text{something})}{dx}$$
= 15(x³ + 7)² × (3x² + 0)
= 45x²(x³ + 7)²

Use chain rule:
$$J(a, b, c) = 3(a + bc)$$

$$da = \frac{dJ}{da} = \frac{dJ}{dv}\frac{dv}{da} = 3 \cdot 1 = 3$$

$$a = 5$$

$$b = 3$$

$$c = 2$$

$$du = \frac{dJ}{du} = \frac{dJ}{dv} \frac{dv}{du} = 3 \cdot 1 = 3$$

$$db = \frac{dJ}{db} = \frac{dJ}{dv}\frac{dv}{du}\frac{du}{db} = \frac{dJ}{du}\frac{du}{db} = 3 \cdot 2 = 6$$

When
$$a=5$$
, get $v=11$ and $J=33$
When $a=5.001$, get $v=11.001$ and $J=33.003$

So, when a increases by 0.001, J increases 0.003. 0.003

$$\frac{0.003}{0.001} = 3$$
, so we can say that $\frac{dJ}{da} = 3$

$$v = a + u \qquad J = 3v$$

$$dv = \frac{dJ}{dv} = 3$$

$$dc = \frac{dJ}{dc} = \frac{dJ}{dv}\frac{dv}{du}\frac{du}{dc} = \frac{dJ}{du}\frac{du}{dc} = 3 \cdot 3 = 9$$

Logistic regression recap

$$z = \mathbf{w}^T \mathbf{x} + b$$

$$\hat{y} = a = \sigma(z)$$

$$\mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Represent Logistic Regression using Computation Graph

 x_1 w_1 x_2 $z = w_1x_1 + w_2x_2 + b$ $a = \sigma(z)$ b

One Neuron
Neural Network
$$\begin{array}{cccc}
x_1 & & & & \\
& & & \\
x_2 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

$$F(x) = logx: \frac{df(x)}{dx} = \frac{dlogx}{dx} = \frac{1}{x}$$

Logistic regression derivatives

 $\frac{\partial \mathcal{L}(\mathbf{a}, \mathbf{y})}{\partial w_2} = dw_2 = \frac{\partial \mathcal{L}(\mathbf{a}, \mathbf{y})}{\partial z} \cdot \frac{\partial z}{\partial w_2} = (a - y) \cdot x_2 \qquad \frac{\partial \mathcal{L}(\mathbf{a}, \mathbf{y})}{\partial h} = d\mathbf{b} = \frac{\partial \mathcal{L}(\mathbf{a}, \mathbf{y})}{\partial z} \cdot \frac{\partial z}{\partial h} = (a - y) \cdot 1 = (a - y)$

$$w_1 = w_1 - \alpha dw_1$$

 $w_2 = w_2 - \alpha dw_2$
 $b = b - \alpha db$

Logistic regression on m examples

```
J=0, dw_1=0, dw_2=0, db=0
For i = 1 to m
     z^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + b
     a^{(i)} = \sigma(z^{(i)})
    J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]
     dz^{(i)} = a^{(i)} - y^{(i)} # use derivatives
     dw_1 \neq = x_1^{(i)} dz^{(i)}
    dw_2 += x_2^{(i)} dz^{(i)}
     db \neq dz^{(i)}
J/=m; dw_1/=m; dw_2/=m; db/=m
```

I = I / m

$$epoch = n$$
 # e.g., n=20
For $j = 1$ to $epoch$
 $J = 0$, $dw_1 = 0$, $dw_2 = 0$, $db = 0$
For $i = 1$ to m
......
 $J/= m; dw_1/= m; dw_2/= m; db/= m$
 $w_1 = w_1 - \alpha dw_1; w_2 = w_2 - \alpha dw_2$
 $b = b - \alpha db$

 $w_1 = w_1 - \alpha dw_1$ $w_2 = w_2 - \alpha dw_2$ $b = b - \alpha db$

Update

Summary of today's lecture

- Introduced example applications of neural networks.
- Introduced Scalars, Vectors, and Matrixes and Matrix Operations.
- Covered Logistic Regression (one neuron network) in detail.
 - z score (from $\mathbf{w}^T \mathbf{x} + b$)
 - Sigmoid function
 - Cost or Loss function
 - Gradient Descent
 - Used for finding w, b values that minimize the cost function
 - Computation Graph
 - Used for computing derivatives

Reference

- Neural Network and Deep Learning, Andrew Ng, https://www.coursera.org/learn/neural-networks-deep-learning
- Deep Learning, Ian Goodfellow et al., 2016
 - Chapter 2