The purpose of this project is to begin to use Java variables and methods. There are four kinds of variables: static, instance, local, and parameter. We explore each of these, first using only the main method, then using methods as functions.

Create a new directory Geometry to hold all of the source files for this project.

Program 1. Type, compile, and run the program FirstCircle.

```
public class FirstCircle
{
    private static float PI = 3.14159f;

    public static void main(String[] args)
    {
        float r = 3;
        float C = 2 * PI * r;
        float A = PI * r * r;

        System.out.println("Circle Data");
        System.out.println("Radius: " + r);
        System.out.println("Circumference: " + C);
        System.out.println("Area: " + A);
    }
}
```

In this program, 2, 3, and 3.14159f are constants; the f at the end of 3.14159f tells the compiler that we are using a floating point constant.

The variables r, C, and A are local variables.

The variable PI is a static (class) variable.

Program 2. Copy this program into FirstSphere.java. Modify the program to output sphere data, including the volume and surface area.

Program 3. Copy this program into FirstCone.java. Modify the program to output cone data, including the volume and surface area.

Program 4. Copy FirstCircle.java into a new program SecondCircle. Refactor this program so that the computational methods are separate from the calling main method.

```
public class SecondCircle
{
    private static float PI = 3.14159f;
    public static float circumference(float r)
        return 2 * PI * r;
    }
    public static float area(float r)
    {
        return PI * r * r;
    }
    public static void main(String[] args)
        float D = 6;
        float C = circumference(D / 2);
        float A = area(D / 2);
        System.out.println("Diameter: " + D);
        System.out.println("Circumference: " + C);
        System.out.println("Area: " + A);
    }
}
```

This separates the actual logic for the computations from the code which tests these computations.

The variable \mathbf{r} is a parameter for the circumference and for the area methods. NOTE: the variable \mathbf{r} in the circumference method is a different variable from the variable \mathbf{r} in the area method.

Program 5. Create the class SecondSphere in an analogous manner.

Program 6. Create the class SecondCone in an analogous manner.