Polymer Simulation with a Flat Histogram Stochastic Growth Algorithm

Thomas Prellberg

thomas.prellberg@qmul.ac.uk

School of Mathematical Sciences

Queen Mary, University of London

joint work with

J. Krawczyk, TU Clausthal

A. Rechnitzer and A.L. Owczarek, Uni Melbourne

Outline

- Polymers in solution:
 - Equilibrium statistical mechanics, lattice model
- Algorithm:
 - Stochastic growth & flat histogram (flatPERM)
- Applications:
 - Bulk phenomena (previous work)
 - polymer collapse, protein groundstates
 - Surface phenomena (this talk)
 - confined polymers, force-induced desorption, interplay of collapse and adsorption
- Work in progress:
 - off-lattice models, extended Domb-Joyce model, ...

Introduction

Modelling of Polymers in Solution

- Polymers:
 long chains of monomers
- "Coarse-Graining": beads on a chain
- "Excluded Volume": minimal distance
- Contact with solvent: effective short-range interaction
- Good/bad solvent: repelling/attracting interaction
- Surface interaction treated analogously

Pedagogical Setting: Lattice Model

Self-Avoiding Walks with Interactions

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer → self-avoiding random walk (SAW)
- **9** Quality of solvent \rightarrow short-range interaction ϵ

Pedagogical Setting: Lattice Model

Self-Avoiding Walks with Interactions

- Physical space \rightarrow simple cubic lattice \mathbb{Z}^3
- Polymer → self-avoiding random walk (SAW)
- **9** Quality of solvent \rightarrow short-range interaction ϵ

Why Simulations?

- Most interesting open questions for dense and geometrically restricted configurations
- There is little theory and

this is notoriously difficult to simulate

Application: Pulling of Collapsed and Adsorbed Polymers

- In addition to
 - solvent modelling (bulk interaction)
- add
 - adsorption (surface interaction)
 - micromechanical deformationse.g. force on chain end (optical tweezers)
- Complete description through three-dimensional density of states:
 (a) bulk energy, (b) surface energy, (c) position of chain end

Stochastic Growth Algorithm

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

- Enrichment: weight too large → make copies of configuration
- ightharpoonup Pruning: weight too small \rightarrow remove configuration occasionally

PERM: "Go With The Winners"

PERM = Pruned and Enriched Rosenbluth Method

Grassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

- Enrichment: weight too large → make copies of configuration
- Pruning: weight too small → remove configuration occasionally

Current work: flatPERM = flat histogram PERM

TP and JK, PRL 92 (2004) 120602, TP, JK, and AR, Athens Proceedings 2004

- flatPERM samples a generalised multicanonical ensemble
- Determines the whole density of states in one simulation!

- Exact enumeration: choose all a continuations with equal weight
- ▶ Kinetic growth: chose *one* continuation with *a*-fold weight

- \blacksquare Exact enumeration: choose *all* a continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - \blacksquare An n step configuration gets assigned a weight

$$W = \prod_{k=0}^{n-1} a_k$$

View kinetic growth as approximate enumeration

- \blacksquare Exact enumeration: choose *all* a continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - \blacksquare An n step configuration gets assigned a weight

$$W = \prod_{k=0}^{n-1} a_k$$

 $m{\mathscr S}$ growth chains with weights $W_n^{(i)}$ give an estimate of the total number of configurations, $C_n^{\mathrm{est}} = \langle W \rangle_n = \frac{1}{S} \sum_i W_n^{(i)}$

- \blacksquare Exact enumeration: choose *all* a continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - \blacksquare An n step configuration gets assigned a weight

$$W = \prod_{k=0}^{n-1} a_k$$

- $m{\mathscr S}$ growth chains with weights $W_n^{(i)}$ give an estimate of the total number of configurations, $C_n^{\mathrm{est}} = \langle W \rangle_n = \frac{1}{S} \sum_i W_n^{(i)}$
- ullet Add pruning/enrichment with respect to ratio $r=W_n^{(S+1)}/C_n^{est}$

- \blacksquare Exact enumeration: choose *all* a continuations with equal weight
- Kinetic growth: chose one continuation with a-fold weight
 - An n step configuration gets assigned a weight

$$W = \prod_{k=0}^{n-1} a_k$$

- $m{\mathscr S}$ growth chains with weights $W_n^{(i)}$ give an estimate of the total number of configurations, $C_n^{\mathrm{est}} = \langle W \rangle_n = \frac{1}{S} \sum_i W_n^{(i)}$
- ullet Add pruning/enrichment with respect to ratio $r=W_n^{(S+1)}/C_n^{est}$
 - ullet Number of samples generated for each n is roughly constant
 - We have a flat histogram algorithm in system size

From PERM to flatPERM

- Consider athermal case
 - ightharpoonup PERM: estimate number of configurations C_n

From PERM to flatPERM

- Consider athermal case
 - ightharpoonup PERM: estimate number of configurations C_n

- Consider energy E, temperature $\beta = 1/k_BT$
 - thermal PERM: estimate partition function $Z_n(\beta)$

From PERM to flatPERM

- Consider athermal case
 - ightharpoonup PERM: estimate number of configurations C_n

- Consider energy E, temperature $\beta = 1/k_BT$
 - thermal PERM: estimate partition function $Z_n(\beta)$

- Consider parametrisation \vec{m} of configuration space
 - flatPERM: estimate density of states $C_{n,\vec{m}}$

$$ightharpoonup r = W_{n,\vec{m}}^{(i)} / C_{n,\vec{m}}^{est}$$

Simulation Results

Simulation results: ISAW

- ightharpoonup 2d ISAW up to n=1024
- One simulation suffices
- 400 orders of magnitude

(only 2d shown, 3d similar)

TP and JK, PRL 92 (2004) 120602

2-Dimensional Density of States

- Force-induced desorption of adsorbed polymers
 - Relevance: optical tweezers, AFM; related to DNA unzipping
- **9** 3-dim polymer in a half space, one simulation, up to n=256

JK et al, JSTAT (2004) P10004

2-Dimensional Density of States

Layering transitions of adsorbed polymers in poor solvents

- whole phase diagram at once
- low temperatures accessible
- hierarchy of layering transitions
- resolved controversy over "surface attached globule"

JK et al, Europhys Lett, in print

3-Dimensional Density of States

Pulling adsorbing and collapsing polymers off a surface

$$\epsilon_s = \alpha, \, \epsilon_b = 1 - \alpha$$

- \blacksquare simulations up to n=91 (4-dimensional histogram)
- interplay of (both force-induced and thermal) desorption $(\alpha = 1)$ and stretching $(\alpha = 0)$

JK et al, JSTAT, in print

Summary and Outlook

Conclusion: A Promising New Algorithm

- Presented "flat histogram" version of PERM
 - One simulation for complete density of states!
 (the range can also be selectively restricted)

Conclusion: A Promising New Algorithm

- Presented "flat histogram" version of PERM
 - One simulation for complete density of states!
 (the range can also be selectively restricted)
- Simulations of polymers:
 - collapsed polymers
 - force-induced desorption of adsorbed polymers
 - interplay adsorption/collapse
 - force-induced stretching/desorption

Conclusion: A Promising New Algorithm

- Presented "flat histogram" version of PERM
 - One simulation for complete density of states! (the range can also be selectively restricted)
- Simulations of polymers:
 - collapsed polymers
 - force-induced desorption of adsorbed polymers
 - interplay adsorption/collapse
 - force-induced stretching/desorption
- Outlook: applications to further models, e.g.
 - off-lattice simulations
 - extended Domb-Joyce model

The End

