SMAC Results

Yuri Lavinas 4/16/2017

Contents

Summary	1
Convergency plots	2
ANOVA test and HSD Tukey	14
All regions	14
KANTO	15
EASTJAPAN	16
ТОНОКИ	18

Summary

In this document we show the convergency plots for the GAModel and ReducedGAmodel with tournize size (k) 3 and tournsize (k) 2. The value of k being 2 was select by SMAC after it was executed for 2 days for both models.

Convergency plots

Kanto 2005 GAModel (Orange, k=3, Blue k=2)

Kanto 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2006 GAModel (Orange, k=3, Blue k=2)

Kanto 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2008 GAModel (Orange, k=3, Blue k=2)

Kanto 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Kanto 2010 GAModel (Orange, k=3, Blue k=2)

Kanto 2010 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2006 GAModel (Orange, k=3, Blue k=2)

Kansai 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2008 GAModel (Orange, k=3, Blue k=2)

Kansai 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Kansai 2010 GAModel (Orange, k=3, Blue k=2)

Kansai 2010 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2005 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2006 GAModel (Orange, k=3, Blue k=2)

Tohoku 2006 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2007 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2008 GAModel (Orange, k=3, Blue k=2)

Tohoku 2008 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2009 ReducedGAModel (Orange, k=3, Blue k=2)

Tohoku 2010 GAModel (Orange, k=3, Blue k=2)

Tohoku 2010 ReducedGAModel (Orange, k=3, Blue k=2)

EastJapan 2009 ReducedGAModel (Orange, k=3, Blue k=2)

EastJapan 2010 GAModel (Orange, k=3, Blue k=2)

EastJapan 2010 ReducedGAModel (Orange, k=3, Blue k=2)

ANOVA test and HSD Tukey

All regions

```
resultANOVA = aov(loglikeValues~model+years+regions, data = data)
summary(resultANOVA)
##
                Df
                       Sum Sq Mean Sq
                                         F value Pr(>F)
## model
                 1
                         3409
                                  3409
                                            1.972 0.16090
## years
                        26894
                                  5379
                                            3.111 0.00896 **
## regions
                 3 216542658 72180886 41751.046 < 2e-16 ***
## Residuals
               470
                       812555
                                  1729
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

95% family-wise confidence level

Differences in mean levels of model

Differences in mean levels of years

KANTO

```
subTabela = data[data$regions=="Kanto",]
print("In Kanto")
## [1] "In Kanto"
resultANOVA = aov(loglikeValues~model+years, data = subTabela)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq F value
                                             Pr(>F)
## model
                     4397
                              4397
                                     12.85 0.000499 ***
                 5 139054
                             27811
                                     81.29 < 2e-16 ***
## years
## Residuals
               113
                   38661
                               342
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

EASTJAPAN

```
subTabela2 = data[data$regions=="EastJapan",]
print("In EastJapan")
## [1] "In EastJapan"
resultANOVA = aov(loglikeValues~model+years, data = subTabela2)
summary(resultANOVA)
                Df Sum Sq Mean Sq F value
##
                                              Pr(>F)
## model
                    10522
                             10522
                                      2.91 0.090773 .
                                      5.42 0.000166 ***
## years
                    97986
                             19597
## Residuals
               113 408578
                              3616
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

Differences in mean levels of model

Differences in mean levels of years

```
subTabela3 = data[data$regions=="Kansai",]
print("In Kansai")
```

```
## [1] "In Kansai"
```

```
resultANOVA = aov(loglikeValues~model+years, data = subTabela3)
summary(resultANOVA)
```

```
##
                Df Sum Sq Mean Sq F value Pr(>F)
## model
                                     1.617 0.206
                       15
                               15
                            17925 1877.966 <2e-16 ***
## years
                 5
                    89623
## Residuals
               113
                     1079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

TOHOKU

```
subTabela3 = data[data$regions=="Tohoku",]
print("In Tohoku")
## [1] "In Tohoku"
resultANOVA = aov(loglikeValues~model+years, data = subTabela3)
summary(resultANOVA)
##
                Df Sum Sq Mean Sq F value
                                            Pr(>F)
## model
                     2321
                             2321
                                    39.02 7.59e-09 ***
                    43900
                             8780 147.60 < 2e-16 ***
## years
## Residuals
               113
                     6722
                               59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
tuk = TukeyHSD(resultANOVA)
op \leftarrow par(mar = c(5,14,4,2)+0.1)
plot(tuk,las=0)
```

95% family-wise confidence level

