景润杯试题选 (微分方程和空间解析几何) 答案

一、设直线 $L: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$ 在 xoy 平面的投影直线为 L_1 , 在 yoz 平面的投影直线为 L_2 ,

试问 L_1 与 L_2 是否异面?若异面,请求出公垂线段的长度及公垂线方程。(第八届景润杯试题)

答案: 异面, 公垂线长度 $\frac{1}{3}$, 公垂线方程 $\begin{cases} 2x-4y+5z-2=0\\ 4x+y+z+1=0. \end{cases}$.

二、求一条曲线,使它通过点(0,1),且其上任一点P(x,y)处的切线和法线在x轴上截下的 线段长度为 y^2+1 。(第八届景润杯试题)

答案:
$$y = e^{\pm x}$$
 或 $y^2 = \pm 2x + 1\left(x \neq \mp \frac{1}{2}\right)$.

三、设f(x)可微,且满足 $x = \int_0^x f(t)dt + \int_0^x tf(t-x)dt$,求

(1) f(x) 的表达式; (2) $\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} |f(t)|^n dt$ (其中 $n = 2,3,\cdots$) (第十一届景润杯试题)

答案: (1) $f(x) = \cos x - \sin x = \sqrt{2}\cos(x + \frac{\pi}{4})$;

(2)
$$\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}} |f(t)|^n dt = \begin{cases} 2^{\frac{n+1}{2}} \frac{(n-1)(n-3)\cdots 2}{n(n-2)\cdots 3} & n=3,5,7,\cdots \\ 2^{\frac{n+1}{2}} \frac{(n-1)(n-3)\cdots 1}{n(n-2)\cdots 2} \cdot \frac{\pi}{2} & n=2,4,6,\cdots \end{cases}$$

四、已知椭球面 Σ : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (0 < c < a < b),试求过x 轴并与曲面 Σ 的交线是圆

的平面方程。(第十四届景润杯试题)

答案:
$$y + \frac{b}{c} \sqrt{\frac{a^2 - c^2}{b^2 - a^2}} z = 0$$
 或 $y - \frac{b}{c} \sqrt{\frac{a^2 - c^2}{b^2 - a^2}} z = 0$.

五、已知两条异面直线为 $L_1: \frac{x-1}{2} = \frac{y+2}{2} = \frac{z+2}{1}$ 和 $L_2: \begin{cases} x=z-2 \\ y=1 \end{cases}$,求此二直线相切的最

小球面方程。(第十五届景润杯试题)

答案:
$$(x-\frac{2}{3})^2 + (y-\frac{1}{6})^2 + (z-\frac{1}{3})^2 = \frac{25}{4}$$

六、微分方程 $y''+(y')^2+4=0$ 的通解为_______。(第十九届景润杯试题) 答案: $e^y=C_1\cos 2x+C_2\sin 2x$ 或 $y=\ln(C_1\cos 2x+C_2\sin 2x)$,其中 C_1 , C_2 为任意常数。 七、已知平面 Π 与平面 $\Pi_1:13x-5y-10z+13=0$ 关于平面 $\Pi_2:x-2y+3z+1=0$ 对称,则平面 Π 的方程为_______。(第十九届景润杯试题) 答案: 2x-y-z+2=0。 八、已知 $y=e^{2x}+(1+x)e^x$ 是二阶常系数线性微分方程 $y''+\alpha y'+\beta y=\gamma e^x$ 的一个特解,则 $\alpha^2+\beta^2+\gamma^2=$ _______。(第十七届景润杯试题)

答案: 14.