Avance de proyecto #2

Brazo robótico antropomórfico

Avalos Lupercio Jesús Jail García Barajas Raúl Israel Martínez Jacinto Ricardo Rubio García Rodrigo Nolasco Casillas Héctor Alejandro Juan Pablo Salguero Hernández

CINEMATICA DEL ROBOT

La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia sin considerar las fuerzas que intervienen. Así, la cinemática se interesa por la descripción analítica del movimiento espacial del robot como una función del tiempo, y en particular por las relaciones entre la posición y la orientación del extremo final del robot con los valores que toman sus coordenadas articulares.

DENAVIT Y HARTENBERG

Denavit y Hartenberg propusieron un método sistemático para describir y representar la geometría espacial de los elementos de una cadena cinemática, y en particular de un robot, con respecto a un sistema de referencia fijo. Este método utiliza una matriz de transformación homogénea para describir la relación espacial entre dos elementos rígidos adyacentes, reduciéndose el problema cinemático directo a encontrar una matriz de transformación homogénea 4 x 4 que relacione la localización espacial del extremo del robot con respecto al sistema de coordenadas de su base

Los cuatro parámetros de D-H (θ i , di , ai , \propto i) dependen únicamente de las características geométricas de cada eslabón y de las articulaciones que le unen con el anterior y siguiente.

- Oi. Es el ángulo que forman los ejes xi–1 y xi medido en un plano perpendicular al eje zi–1, utilizando la regla de la mano derecha. Se trata de un parámetro variable en articulaciones giratorias.
- di. Es la distancia a lo largo del eje zi–1 desde el origen del sistema de coordenadas (i–1)-ésimo hasta la intersección del eje zi–1 con el eje xi. Se trata de un parámetro variable en articulaciones prismáticas.
- ai. Es la distancia a lo largo del eje xi que va desde la intersección del eje zi–1 con el eje xi hasta el origen del sistema i-ésimo, en el caso de articulaciones giratorias. En el caso de articulaciones prismáticas, se calcula como la distancia más corta entre los ejes zi–1 y zi.
- ∝i. Es el ángulo de separación del eje zi–1 y el eje zi, medido en un plano perpendicular al eje xi, utilizando la regla de la mano derecha.

Articulación	a_{i-1}	\propto_{i-1}	di	heta i
1	0	0	0	heta 1
2	L1	90	0	θ2
3	L2	0	0	θ3

Cálculo de la matriz Homogénea

$$\boldsymbol{T_i^{l-1}} \begin{bmatrix} \boldsymbol{C}\theta i & -\boldsymbol{S}\theta i & \boldsymbol{0} & \boldsymbol{a}_{i-1} \\ \boldsymbol{S}\theta i\boldsymbol{C} \propto_{i-1} & \boldsymbol{C}\theta i\boldsymbol{C} \propto_{i-1} & -\boldsymbol{S} \propto_{i-1} & -\boldsymbol{diS} \propto_{i-1} \\ \boldsymbol{S}\theta i\boldsymbol{S} \propto_{i-1} & \boldsymbol{C}\theta i\boldsymbol{S} \propto_{i-1} & \boldsymbol{C} \propto_{i-1} & \boldsymbol{diC} \propto_{i-1} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{bmatrix}$$

$$T_1^0 \begin{bmatrix} C\theta1 & -S\theta1 & \mathbf{0} & 0 \\ S\theta1 & C\theta1 & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$T_{2}^{1} \begin{bmatrix} C\theta 2 & -S\theta 2 & \mathbf{0} & L1 \\ \mathbf{0} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\ S\theta 2 & C\theta 2 & 0 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$T_3^2 \begin{bmatrix} C\theta3 & -S\theta3 & 0 & L2 \\ S\theta3 & C\theta3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_3^0 \begin{bmatrix} \textbf{C}\theta 1 \textbf{C}\theta 2 \textbf{C}\theta 3 - \textbf{C}\theta 3 \textbf{S}\theta 1 \textbf{S}\theta 2 & -\textbf{C}\theta 1 \textbf{C}\theta 3 \textbf{S}\theta 2 - \textbf{C}\theta 2 \textbf{C}\theta 3 \textbf{S}\theta 1 & \textbf{S}\theta 3 & L2 + \textbf{C}\theta 3 \textbf{L}1 \\ \textbf{C}\theta 1 \textbf{C}\theta 2 \textbf{S}\theta 3 - \textbf{S}\theta 1 \textbf{S}\theta 2 \textbf{S}\theta 3 & -\textbf{C}\theta 1 \textbf{S}\theta 2 \textbf{S}\theta 3 - \textbf{C}\theta 2 \textbf{S}\theta 1 \textbf{S}\theta 3 & -\textbf{C}\theta 3 & \textbf{L}1 \textbf{S}\theta 3 \\ \textbf{C}\theta 1 \textbf{S}\theta 2 + \textbf{C}\theta 2 \textbf{S}\theta 1 & \textbf{C}\theta 1 \textbf{C}\theta 2 - \textbf{S}\theta 1 \textbf{S}\theta 2 & 0 & \textbf{0} \\ \textbf{0} & \textbf{0} & \textbf{1} \end{bmatrix}$$

Modelo y simulación del brazo robótico (con correcciones).

Project

First Saved	Tuesday, June 11, 2019	
Last Saved	Tuesday, June 11, 2019	
Product Version	18.1 Release	
Save Project Before Solution	No	
Save Project After Solution	No	

Contents

<u>Units</u>

Después de las modificaciones realizadas en el diseño de SolidWorks, exportamos el archivo a Ansys para posteriormente realizarle un análisis estructural estático.

Model (A4)

- o Geometry
 - + Parts o Coordinate Systems o Connections
 - **→** Contacts
 - → Contact Regions
- o <u>Mesh</u>
- Static Structural (A5)
- Analysis Settings
- ★ Loads
- → Solution (A6)
- → Solution Information
- → Results
- Material

Data o Structural Steel

Units

TABLE 1			
Unit System	Metric (m, kg, N, s, V, A) Degrees rad/s Celsius		
Angle	Degrees		
Rotational Velocity	rad/s		
Temperature	Celsius		

Se establece el sistema métrico como predeterminado

Model (A4)

Geometry

(A4) > Geometry > Parts

Model (A4) > Connections > Contacts > Contact Regions Model (A4) > Mesh Model (A4) > Analysis

Object Name Static Structural (A5)
State Solved

Definition

Physics Type Structural
Analysis Type Static Structural
Solver Target Mechanical APDL

Options

Environment Temperature 22. °C
Generate Input Only No

Se establece el análisis como Static Structural con resolución

Model (A4) > Static Structural (A5) > Loads

Object Name Fixed Support Force

State Fully Defined

Scope

Scoping Method Geometry Selection

Se definen los soportes fijos del robot

Agregamos las fuerzas a los componentes

Geometry	4 Faces	1 Face	
Definition			
Туре	Fixed Support	Force	
Suppressed	No		
Define By	Components		
Coordinate System	Global Coordinate System		
X Component		1. N (ramped)	
Y Component		2. N (ramped)	
Z Component		0. N (ramped)	

FIGURE 1 Model (A4) > Static Structural (A5) > Force

Solution (A6)

Model (A4) > Static Structural (A5) > Solution

Object Name	Solution (A6)		
State	Solved		
Adaptive Mesh Refinement			
Max Refinement Loops	1.		
Refinement Depth	2.		
Information			
Status	Done		
MAPDL Elapsed Time	5. s		
MAPDL Memory Used	292. MB		
MAPDL Result File Size	4.3125 MB		

Después de agregar el mallado pasamos a la resolución del análisis

Post Processing		
Beam Section Results	No	

Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

Time [s]	Minimum [m]	Maximum [m]
1.	0.	1.1029e-004

FIGURE 3

Se nos muestra que la deformación total máxima es aceptable mostrándonos el resultado en metros.

FIGURE 4
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain

TABLE 16
Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain

Time [s]	Minimum [m/m]	Maximum [m/m]
1.	0.	1.3436e-005

FIGURE 5

Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain > Figure

Material Data

Structural

En este apartado se muestran datos acerca del material utilizado en el análisis como lo es su densidad, resistividad, capacidad de compresión entre otros.

TABLE 17
Structural Steel > Constants

Density	7850 kg m^-3
Isotropic Secant Coefficient of Thermal Expansion	1.2e-005 C^-1
Specific Heat	434 J kg^-1 C^-1
Isotropic Thermal Conductivity	60.5 W m^-1 C^-1
Isotropic Resistivity	1.7e-007 ohm m