Week 1

The Basics: Bonding and Molecular Structure

1.1 Course Information

9/28:

- No labs this week.
- Virtual lab: Watch a video and record data in your notebook; answer embedded quiz questions.
- Collaborative Learning in Organic Chemistry (CLOC).
 - 2hr Sunday or Monday.
 - Contact Dr. Britni Ratliff (ratliff@uchicago.edu).
 - Pass/Fail grading (based on attendance).
 - You work on problems related to the lecture content under the supervision of someone who's taken the class before.
 - You can opt-in/out on a quarter-by-quarter basis.
- Review syllabus: Download alternate textbooks, put exam dates in the calendar, add office hours to calendar.
- Develop an understanding of how structure affects reactivity mechanistic principles.
- You don't have to memorize anything, but you have to remember everything.
 - Like learning a language.
 - Vocabulary, grammar (principles), apply to understand and predict.

1.2 Defining Organic Chemistry

- Organic chemistry: Traditionally, the chemistry of living organisms. Now, the chemistry of carbon compounds.
 - Carbon is of particular import because it can bond with itself, and it can form strong bonds with other elements (e.g., C, O, H, S, N, and P) as well.
 - Carbon is bound in simple molecules (such as CO₂ and CH₄), and highly complex ones (such as proteins, DNA, and RNA).
- Carbon compounds:

- Natural: Sugars, fats, gasoline, hydrocarbons, hormones, natural drugs, peptides, rubber, silk, starch, cotton, etc.
- Synthetic: Dyes, fragrances, soaps, drugs, medicines, plastics, materials, teflon, nylon, etc.
- OChem is a central science that feeds into fields such as biochemistry, molecular biology, molecular medicine, math/theory (e.g., buckyballs), engineering, and physics.

1.3 Gen Chem Review

- Today:
 - 1. Intro (done).
 - 2. Atomic structure and bonding (review from Gen Chem).
 - 3. Chemical bonds octet rule.
 - 4. Writing Lewis structures.
 - 5. Formal charges.
- Atomic structure and bonding.
 - Atoms \rightarrow elements \rightarrow compounds.
 - Nucleus (protons and neutrons) surrounded by electrons.
 - This year, we'll concern ourselves with the main group elements.
 - Electron configuration:
 - Aufbau principle: Electrons fill orbitals from lowest energy to highest energy.
 - Pauli exclusion principle: 2 elections/orbital with opposite spin quantum numbers (must pair $+\frac{1}{2}$ with $-\frac{1}{2}$).
 - Hund's rule: Orbitals with equivalent energy get partially filled first before more electrons are added.
 - Example: $1s^22s^22p^63s^1$ is Na.
 - Valence electrons are key in this class.
- Noble gas configurations and the octet rule.
 - Lewis noticed that there is a special stability associated with a filled outer shell.
 - Thus, we generally have 8 electrons in the filled outer shell.
 - For example, $Cl \xrightarrow{1 e^-} Cl^-$ and $Na \xrightarrow[-1 e^-]{} Na^+$.
 - Chemical bonds form because they allow the atoms to achieve a filled octet.
 - Two kinds of bonding: Ionic and covalent.
 - Ionic: Not covered much this year. Lose or gain an electron (forming cations and anions, respectively) for a filled outer shell. Usually involves a metal and a nonmetal.
 - Covalent: Covered a lot this year. Sharing electrons to satisfy the need for an octet.
 - The atoms involved dictate whether bonding will be ionic or covalent.
 - Electronegativity: The ability of an atom to attract its valence shell electrons.
 - Defined by Pauling, who let Li = 1.0 and F = 4.0.
 - This is a very important concept for understanding bonding and reactivity.
 - EN increases across and up on the periodic table: More protons and a shorter distance away from the nucleus both mean a greater pull on the electrons.
 - Mnemonic (highest to lowest electronegativity): F O Cl N Br I S C H P.

- Non-polar covalent bonds form when $\Delta EN < 0.5$.
- Polar covalent bonds form when $\Delta EN \approx 0.5 1.9$.
- Exceptions to the octet rule: H wants 2 e[−]. Be wants 4 e[−]. B and Al want 6 e[−]. Molecule has an odd number of electrons (e.g., NO with 11 electrons is stable).
- Lewis structures.
 - General rules/procedure (there are exceptions).
 - 1. Determine the total number of valence electrons for the molecule. Add electrons for negative charges; remove for positive charges.
 - 2. Draw a skeleton and join atoms with single bonds. Put the atom that likes to make the most bonds in the center.
 - 3. Deduct 2 electrons from the count in step 1 for each single bond. Fill outside atoms with lone pair electrons.
 - 4. The remaining electrons go on the central atom.
 - 5. If you have too few electrons for every atom to have an octet, use lone pair electrons to convert single bonds to double bonds. We can also use triple bonds.
 - CH₄ and NH₃ presented as worked examples.
- 9/30: Today:
 - 4. Lewis Structures.
 - 5. Formal charges.
 - 6. Isomers.
 - 7. Structural formulas.
 - 8. Resonance.
 - 9. Orbitals and bonding.
 - Lewis structures:
 - H₂CO (formaldehyde) and CH₃COOH (acetic acid) presented as worked examples.
 - Formal charge determination:
 - If the number of valence electrons does not equal the total number of electrons on an atom, then
 you will have a formal charge.
 - Rule:

Formal Charge = normal valence
$$e^-$$
 - actual e^-
= valence e^- - $\left(\text{nonbonding } e^- + \frac{1}{2} \text{bonding } e^- \right)$
= valence e^- - $\left(\text{dots} + \text{lines} \right)$

- CH_3COO^- (acetate) has a formal charge of 6-7=-1 on its singly bonded oxygen.
- $CH_3NH_3^+$ (methyl ammonium) has a formal charge of 5-4=+1 on its nitrogen.
- Exceptions: Open shell Group III central atoms (e.g., B and Al).
 - BF₃ acts as a Lewis acid because it wants to grab $2e^-$ to form an octet.
 - It often acts in acid-base coupling reactions, grabbing a lone pair from an oxygen in an adjacent molecule and bonding through it.

1.4 OChem Basics

- Isomers:
 - Constitutional isomers: Same molecular formula but different bond connectivities.
 - Acetone vs. 3-propenol, yet both are C_3H_6O .
- Structural formulas:

Figure 1.1: Structural formulas.

- Dash structural formula: A Lewis structure.
- Bond line formula: No C-H's, show a vertex for each carbon, show heteroatoms and heteroatom H's. Also known as line-angle structure, zig-zag structure.
- Condensed formula: All atoms written out with no bonds or lone pairs.
- 3D representation: A dash structural/bond line formula with wedges and dashes.
- **Resonance**: When a molecule or an ion can be represented by 2 or more Lewis structures, i.e., two or more structures with the same skeleton connected by different electrons.
 - Resonance structures or resonance contributors.
 - The actual molecule is somewhere between the contributors.
 - CO_3^{2-} presented as a worked example.
 - Guidelines:
 - 1. Only lone pairs or π electrons move (never move single bonds).
 - 2. No structure with greater than $8e^-$ on a 2nd row atom.
 - 3. The species with the maximum number of octets is the strongest contributor.
 - 4. Charge on suitable atoms (e.g., negative charge on the atom with the highest electronegativity).
 - Resonance stabilization comes from delocalization. When 2 or more resonance structures, the "real" structure is somewhere in between (the real is more stable than any contributor).
 - CH₃COO⁻ (acetate), CH₂CHCH₂⁺, and (CH₃)₂CO presented as worked examples.
 - You can also depict delocalization with a curving dashed bond and δ^{-} 's.

1.5 Bonding and Orbital Diagrams

10/5: • Today:

- 9. Orbital theory and bonding.
- 10. Methane.
- 11. Ethane.
- 12. Ethylene.

- 13. Acetylene.
- 14. Comparison of sp^3 , sp^2 , sp orbitals.
- 15. VSEPR Model + Molecular Symmetry.
- Orbital theory and bonding:
 - Defines atomic orbitals.
 - Reviews s and p orbital shapes, positive and negative regions, and nodes.
 - Energy of orbitals diagram.
 - Phosphorous and sulfur can exceed the octet rule since they have d orbitals in which to stash extra electrons.
 - Filled with the Aufbau/Pauli Exclusion principles, and Hund's Rule.
 - Goes over bonding energy diagram.
 - Mathematically, we have a Linear Combination of Atomic Orbitals (or LCAO).
 - \blacksquare Electrons are represented as waves; thus, they have + and phases.
 - Opposite phases are destructive; this forms σ^* orbitals.
 - Same phases are constructive; this forms σ orbitals.
 - Goes over MO diagrams.
- Atomic orbital: A space where electrons are likely to be found 95% of the time.
- Degenerate (orbitals): Two orbitals with the same energy.
- Chemical bond: A favorable interaction between 2 atoms, i.e., one that helps to fill the outer orbitals to achieve a noble gas configuration.
- Bonding in methane:

Figure 1.2: Bonding in methane.

- Draws an orbital diagram for carbon.
- Promotes an electron from $2s \rightarrow 2p_z$.
- Hybridizes $2s, 2p_x, 2p_y, 2p_z$ into 4 degenerate sp^3 orbitals of weighted average energy, each containing only 1 electron.
- Links each of these sp^3 electrons to the 1s electron in H_2 , forming σ orbitals.
- The new orbitals adopt a tetrahedral arrangement to be as far apart as possible.
- Bonding in ethane.
 - Two sp^3 electrons combine in a σ orbital; no electrons go into the σ^* MO.
- The structure of ethylene.
 - Side by side overlap of p orbitals forms a π bond.
 - The angle between the hydrogens in ethylene is slightly less than 120°.

- The bond is slightly shorter than in ethane (greater s character plus an additional type of bond).
- Features of the C=C double bond.
 - sp^2 -hybridized carbons making 3σ and 1π bond.
 - A π bond is weaker than a σ bond, but still strong.
 - \bullet $\sigma_{sp^2-sp^2}$ is stronger than $\sigma_{sp^3-sp^3}$.
 - Restricted rotation (hard to twist C_2H_2 by 90°).
 - cis-trans isomerism as a result of restricted rotation.
 - The π bond acts like a Lewis base with some systems since the π electrons are held relatively weakly. In other words, the π -electrons are exposed.
- Draws an MO diagram for the carbons.
- The structure of acetylene.
 - -2π bonds, 1σ bond.
 - Even greater strength, but not quite as much greater as the $\sigma_{sp^3-sp^3} \to \sigma_{sp^2-sp^2}$ difference.

1.6 VSEPR Theory

- 10/7: There's a special kind of electronegativity that relates to hybridization: An sp-hybridized carbon is more electronegative than an sp^3 -hybridized carbon, for instance.
 - VSEPR Model:
 - Electron pairs want to stay as far apart as possible in space.
 - Consider the bonding electrons (number of atoms bound) and nonbonding electrons.
 - Describe shape based on the position of nuclei.
 - Constructs VSEPR table for linear, trigonal planar, tetrahedral, trigonal pyramidal, bent