العلامة		01 - • • • • • • • • • • • • • • • • • •
مجموع	مجزأة	عناصر الإجابة الموضوع 01
	0.25	التمرين الأول: $(3.25\dot{\upsilon})$ التمرين الأول: $HA+H_2O=A^-+H_3O^+$ في الماء: $HA+H_2O=A^-+H_3O^+$
		· ب- جدول تقدم التفاعل:
		المعادلة $HA + H_2O = A^- + H_3O^+$
		بوفرة n_0 الحالة الابتدائية 0 وفرة 0
	0.25	بوفرة n_0-x الحالة الانتقالية x
1.50		الحالة النهائية $n_0 - x_f$ بوفرة x_f بوفرة x_f
	0.25	$ au_f = rac{10^{-pH}}{C_0}$: ج $-$ عبارة نسبة التقدم النهائي $ au_f$ بدلالة pH المحلول pH المحلول
	0.25	$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]} ; \left[A^{-}\right] = \tau_f.C_0 \rightarrow \left[HA\right] = C_0 - \tau_f.C_0$
	0.25	pH المحلول:
	0.25	$pH = pK_a + \log\left(\frac{\tau_f}{1 - \tau_f}\right)$
	0.25	$pK_a=4,2$ أ- استنتاج ثابت الحموضة K_a للثنائية $\left(HA/A^- ight)$: بالمطابقة نجد ومنه $pK_a=4,2$
	0.25	$K_a = 6.3 \times 10^{-5}$
	0.25	${ m pH} > { m pKa}$ بالتعويض نجد $ au_{ m f} = 0.7$
1.75	0.25 0,25	الصفة الأساسية هي الغالبة (تقبل طرق صحيحة أخرى).
	0.25	$ au_f = rac{10^{-pH}}{C} \Rightarrow C = rac{10^{-pH}}{ au_f} = 1,262 imes 10^{-4} mo\ell \cdot L^{-1} : C_0$ ج $= 10^{-pH}$
	0.25	$C_0 = F \cdot C = 2 \times 10^{-2} mo\ell \cdot L^{-1}$
	0.25	C_6H_5COOH ه $-$ الحمض المعني هو حمض البنزويك
		التمرين الثانى: (3.5 ن)
	0.25 0.50	$E_{lib} = \Delta m $. 931.5 MeV تقبل الإجابة $= \Delta m $. 931.5 MeV الطاقة المتحررة عن تفاعل انشطار نواة اليورانيوم:
0.75	0.25	. وتقبل الإجابة السالبة $E_{\ell ib} = \left(m_i - m_f\right)C^2 = 176,50 MeV$
	$0.25 \\ 0.25$	2) أ- طاقة الربط للنواة هي الطاقة الواجب تقديمها لتفكيك النواة إلى مختلف نوياتها.
		طاقة الربط لنواة اليورانيوم: E _I = (92mp + 143 mn -m(U)). 931.5 MeV = 1784 MeV
1.00	0.25	$E_{I}(Zr) + E_{I}(Te) = E_{I}(U) + E_{lib} = 1960,5 \text{ MeV}$
		$\Delta E_2 = -E_\ell(Zr) - E_\ell(Te) \implies \Delta E = \Delta E_2 + \Delta E_1 \Rightarrow \Delta E_2 = -1960,53407 MeV$

العلامة		عناصر الإجابة
مجموع	مجزأة	علصر الإجابة
	0.25	: $\Delta t = 30 jours$ أ- كتلة اليورانيوم المستهلكة بعد مرور زمن $\Delta t = 30 jours$
1.00		$E_e = P \cdot \Delta t = 7,776 \times 10^{13} j$
	0.25	$e^{-E_e} \rightarrow E_e - 25.92 \times 10^{13}$;
	0.25	$\rho = \frac{E_e}{E} \Longrightarrow E = \frac{E_e}{\rho} = 25,92 \times 10^{13} j$
	0.25	$m(U) = \frac{E \cdot M \left(\frac{235}{92}U\right)}{N_A \cdot E_{g,h}} = 3,6kg$
	0.25	$m(U) = \frac{1}{N_A \cdot E_{\ell ib}} = 3,6 \text{kg}$
0.50	0.25	4 أ- المقصود بالنشاط eta^- هو إصدار إلكترون من نواة مشعة.
	0.25	$^{138}_{52}Te ightarrow ^{138}_{53}I + ^0_{-1}e ightarrow ^{138}_{52}Te$ ب $-$ معادلة تفكك النواة
		5) ذكر خطرين من أخطار الانشطار النووي: مختلف الأمراض والتشوهات التي تصيب الكائنات الحية و كل
0.25	0.25	الأضرار الناجمة عن التلوث الاشعاعي للبيئة.
		(• 2 5) • • • • • • • • • • • • • • • • • •
	0.25	التمرين الثالث: (3.5 ن)
0.50	0.25	1- القانون الأول: تتحرك الكواكب وفق مدارات إهليليجية تشغل الشمس أحد محرقيها.
	0.25	القانون الثاني: يمسح الشعاع الرابط بين الشمس والكوكب مساحات متساوية خلال مجالات زمنية متساوية.
	0.25	P أ- بتطبيق القانون الثاني لنيوتن في المعلم الهيليومركزي على الكوكب P . \longrightarrow
	0.25 0.25 0.25 0.25	$\sum \vec{\mathbf{F}} = m \vec{a} \Rightarrow \overrightarrow{F_{S/P}} = m_P \vec{a}$
	0.25	$G \; rac{M_S m_P}{r^2} \; = m_P \cdot rac{v^2}{r} \;\;\; \Rightarrow \;\;\; v = \sqrt{rac{{ m G} M_S}{r}}$ عبارة السرعة
	0.25	ب $T=rac{2\pi r}{n}$: ب $-$ عبارة الدور
	0.25	ν
	0.25	$T^2 = rac{4\pi^2 r^2}{v^2} = rac{4\pi^2 r^3}{GM_S} \Rightarrow T = 2\pi r \sqrt{rac{r}{G.M_S}}$
3.0	0.25	$rac{T^2}{r^3} = rac{4\pi^2}{GM_G} = ext{Cte}$ استتاج قانون کیبلر الثالث
3.0		$r^s = G M_S$
		جــــــــــــــــــــــــــــــــــــ
	0.25	
	0.25	الأرض SI عام الفتائج المحصورة بين الأرض SI عام 10
		زحل 2.9 ×10 ⁻¹⁹ 2,97 .10 ⁻¹⁹ SI و 3.0 ×10 ⁻¹⁹
		T ² 4-2 4-2
	0.25	$\frac{T^2}{r^3} = \frac{4\pi^2}{GM_S} = K \Rightarrow M_S = \frac{4\pi^2}{GK} \Rightarrow M_S = \frac{4.10}{6,67.10^{-11} \cdot 2.97.10^{-19}} = 2.10^{30} \text{ kg} - 2$
		T^2 T^2 T^2 T^2
	$0.25 \\ 0.25$	$\frac{T^2}{r^3} = \mathbf{K} \Rightarrow \mathbf{r}^3 = \frac{T^2}{K} \Rightarrow \mathbf{r} = \sqrt[3]{\frac{T^2}{K}} = 1,35.10^{11} m$ -2

المدة: 04 ساعات و نصف

العلامة		عناصر الإجابة							
مجموع	مجزأة	1 4.4, 5							
		التمرين الرابع: (3.25 ن)						التمرين الرابع: (ا	
0.50	0.25 0.25	$n_0(acid) = \frac{m_0}{M} = \frac{24}{60} \; , \; \; n_0(acid) = 0,4moL$: عمية المادة الابتدائية : -1						1- كمية المادة ا١	
0.50	0.25 0.25	$n_0(alcool) =$	$n_0(alcool) = rac{ ho V_0}{M} = rac{1,039 imes 41,6}{108} \;\;, \;\; n_0(alcool) = 0,4moL \;\;]$ حدول أولي $C_6H_5 - CH_2 - OH$ كحول أولي -2 معادلة التفاعل :						
0.25	0.25	CH ₃	$_{6}COOH + C_{6}$	$H_5 - CH_2 - CH_2$	ЭΗ	$=CH_3CC$	00-	$-CH_2-C_6H_5$	$+H_2O$ جدول التقدم -4
		المعادلة		CH ₃ COOH	$+C_{\epsilon}$	$_{5}H_{5}-CH_{2}-$	OH =	= CH ₃ COO – CH	$_{2}-C_{6}H_{5}+H_{2}O$
		الحالة	التقدم			mol	مادة ــــــــــــــــــــــــــــــــــــ	كميات ال	
	0.25	الابتدائية	x = 0	0,4		0,4		0	0
0.75	0.25 0.25	الوسطية	x(t)	0,4-x(t)		0,4-x(t))	x(t)	x(t)
		النهائية	x_f	$0,4-x_f$		$0, 4-x_f$		x_f	x_f
	0.25	m K=4 لاقا من	أو انط $r=0$,	ود الأسترة 67	مرد	المولات 🖈	ماوي	نزيج الابتدائي مت	5- كحول أولي و الم
0.75	0.25	حمض	كحول	2	ز	أسد		ماء	التركيب المولي
	0.25	0,13	0,13	3	0,	27		0,27	للمزيج عند التوازن
0.50	0.25 0.25	(تزايد الاستر).	ملاحظة: تقبل الإجابات مهما كان عدد الأرقام المعنوية 6 أ. عند نزع الماء من المزيج يصبح Qr < K وبالتالي تنزاح الجملة في الاتجاه المباشر (تزايد الاستر). ب. يصبح التفاعل تام عند استبدال الحمض بكلور الأسيل.						6- أ. عند نزع الما.
0.25	0.25	التمرين الخامس: (3.5 ن) \vec{R} الثقل: \vec{R} – توتر النابض: \vec{F} رد فعل المستوي: \vec{R} (د فعل المستوي: \vec{R}) \vec{R} – توتر النابض: \vec{R} المعادلة التفاضلية \vec{R} :							
0.75	0.25 0.25		d^2						بتطبيق القانون الثاني ل
3., 3	0.25		$\frac{d}{dt}$						بالاسقاط على X'X: ملاحظة: يمكن تطبيق
	0.25 0.25	$T_0=2\pi\sqrt{rac{m}{k}}$: عبارة الدور: $T_0=2\pi\sqrt{rac{m}{k}}$ التفاضلية نستنتج أن $T_0=2\pi\sqrt{rac{m}{k}}$						3- أ- عبارة الدور:	

العلامة		عناصر الإجابة
مجموع	مجزأة	الإجابة
	0.25	$ \left[T_{0}\right]^{2} = \frac{[M]}{[F][L]^{-1}} = \frac{[M]}{[M][L][T]^{-2}[L]^{-1}} \Rightarrow \left[T_{0}\right] = [T] \qquad \text{i.e.} $
	0.25	$\mathbf{v} = -\frac{2\pi}{T_0} \ X_0.sin(\frac{2\pi t}{T_0})$ ج- عبارة السرعة:
1.75	0.25	د–عبارة طاقة الجملة بدلالة الزمن: $E_{_{\rm T}}(t)=E_{_{\rm c}}(t)+E_{_{\rm pe}}(t)$
	0.25	$E_{T}(t) = \frac{1}{2} m \left(-\frac{2\pi}{T_{0}} X_{0} \sin\left(\frac{2\pi}{T_{0}} t\right) \right)^{2} + \frac{1}{2} k \left(X_{0} \cos\left(\frac{2\pi}{T_{0}} t\right) \right)^{2}$
	0.25	$\mathbf{E}_{\mathrm{T}}(\mathbf{t}) = \frac{1}{2} \mathbf{k} \mathbf{X}_{0}^{2} = \mathbf{C}^{te}$
	0.25	$E_T = E_{pe}$ (max) من البيان وباعتماد الخاصية: $E_C = E_T/2$ من البيان وباعتماد الخاصية
	0.23	$x=\pm \ 1.4 \ cm$: نجد بالاسقاط
		x = 1.1cm بالموضع ذو الفاصلة بالموضع دو الفاصلة
0.75		${ m E_C} = 3.5 { m x} 10^{-3} { m j}$ من البيان: لما $x = 1.1~{ m cm}$ لدينا
	0.25	$v = \sqrt{\frac{2E_C}{m}} = \pm 0.17 \text{ m/s}$ ومنه نجد:
		$V - \sqrt{\frac{1}{m}} - \pm 0.17 \text{ m/s}$ ومنه نجد:
		$\mathrm{E_{T}} = \frac{1}{2} k X_0^2 = 5.10^{-3} \mathrm{J}$ من البيان : k جـ -قيمة
	0.25	$k=25~\mathrm{N/m}$ نستنتج:
		التمرين التجريبي: (3 ن)
		الله الدارة الكهربائية: نربط على التسلسل: -المولد كهربائي القاطعة - الناقل الأومى
0.25	0.25	- المكثفة . نوصل القط التوتر بين طرفي الاناقل الأومي.
		المست ، الولو بين سريع دسان الاولىي،
	0.25	2- المعادلة التفاضلية:
	0.25	$U_{\scriptscriptstyle R} + U_{\scriptscriptstyle C} = E$ قانون التوترات $U_{\scriptscriptstyle R} + U_{\scriptscriptstyle C} = E$
1.00	0.25	
	0.25	$rac{dU_C}{dt} = rac{1}{RC}.U_R(t)$ باشتقاق المعادلة السابقة و علما أن:
		$\frac{dU_R}{dt} + \frac{1}{RC}U_R(t) = 0$ نتحصل على:
	0.25	-3 عبارتا $+$ و $+$ بتعويض الحل في المعادلة النفاضلية
0.75	$0.25 \\ 0.25$	واستخدام الشروط الابتدائية نجد:
		$\tau = RC$ $_{\mathfrak{G}}A = E$
0.75	0.25 0.25 0.25	$ au=0.10~{ m s}$ و $E=9~{ m V}$ رسم المنحنى البياني ثم نجد بيانيا: -4
0.25	0.25	$C = 10 \mu$ F ومنه $C = \frac{\tau}{R}$

العلامة				02.6	حادة الممضوء	عنامیر الا		<u> </u>		
مجموع	مجزأة	عناصر الإجابة الموضوع 02								
0.50	0.25 0.25	التمرين الأول: (3.5 ن) -1 - $-$								
			المعادلة	2A1(s) +	- 6H ₃ O ⁺ (aq) =	$= 2A1^{3+}$ (a)	$(a) + 3H_{\bullet}(a)$	+ 6H.O(<i>l</i>)		
		الحالة	التقدم	2111 (5) 1		ربية المادة بالمو				
		الابتدائية	x=0	n_0	C.V	0	0	بزيادة		
	0.25	الإنتقالية	x(t)	$n_0 - 2x$	CV - 6x	2x	3x	بزيادة		
		النهائية	X _f	$n_0 - 2x_f$	CV - 6x _f	$2x_f$	3x _f	بزيادة		
1.25							ائية:	يات المادة الابتد	ب- حساب کم	
	0.25	$n_0(Al) = \frac{m}{M} = 0.15 \text{mol}$								
	0.25	1	$n_0(Al)$	$-2x_{\max} = n_f$	$(Al) \Rightarrow x_n$	$n_{\text{max}} = \frac{n_{\text{f}}(A)}{n_{\text{f}}(A)}$	$\frac{1)-n_0(A1)}{2} =$	4,5x10 ⁻² mol	l	
	0.25	`	_		$V = 6x_{\text{max}}$		n ₀ (H ₃ O	⁺)=0,27m	ol	
	0.25	С	$C = \frac{n_0(H_3O^+)}{V} = 2.7 \text{ mol/L}$							
		$x = x_f/2$ لما $x = x_f/2$ لما $x = x_f/2$					3 لما 3			
			1	$n(A\ell)_t = n_0$	$(A\ell)-2x(t)$	$= n_0(A\ell)$	$\left(1\right) - \frac{2x_f}{2}$			
	0.25 0.25		2	$\mathbf{x}_f = \frac{n_0 (A\ell)}{2}$	$\frac{(1)-n(A\ell)_f}{2}$	\Rightarrow	$m_{t_{1/2}} = \frac{m_0}{}$	$\frac{+m_f}{2}$		
0.75	0.25							$t_{1/2} =$	نجد 1 min	
	0.25				ُحظتین ۵۶۸–۸۰۲	بین ا v_m =	$-\frac{\Delta}{2M\Delta t}$	توسطة للتفاعل:	4- السرعة الما	
	0.25			v_m =	$= -\frac{2,84-4,05}{2 \times 27(1-0)}$	= 0.02 m	iol.min ⁻¹			
	0.25	1.94-2.84								
1.00	0.25	عل تتناسب مع	$t_1 = 0,000$ المنافعة بين اللحظتين $t_2 = t_1$ اكبر منها بين اللحظتين t_1 و t_2 لأن سرعة التفاعل تتاسب مع كمية المادة للمتفاعلات.							

العلامة		عناصر الإجابة					
مجموع	مجزأة	الإجاب					
	0.55	التمرين الثاني(3,0 نقطة)					
1.50	0.25 0.25	$^{32}_{15}P ightarrow ^{32}_{16}S + ^{0}_{-1}e$. أ . معادلة التحول النووي الحادث: 1 . أ . معادلة التحول النووي الحادث:					
	$0.25 \\ 0.25 \\ 0.25$	$m=m_0e^{-\lambda t}$; $N=rac{m}{M}$. \mathbb{N}_{A} ; $N=N_0e^{-\lambda t}$: ب. قانون التناقص الاشعاعي					
	0,50	$\frac{E_l}{A} = \frac{1}{A} (15 \text{ m}_p + 17 \text{ m}_n - \text{m(P)}) \times 931.5 \; ; \; \frac{E_l}{A} = 8,46 \text{ MeV/nucl\'eon}$					
0.50	0.50	$m' = m_0 - m = m_0 - m_0 e^{-\lambda t} = m_o (1 - e^{-\lambda t})$: إثبات العبارة المعطاة : .2					
0.50	$0.25 \\ 0.25$	$^{32}_{17}Cl ightarrow ^{32}_{16}S + ^{0}_{+1}e$.32 النواة هي الكلور 32.					
0.50	0.50	$\frac{A(t)}{A_O} = \frac{1}{4} \Leftrightarrow e^{-\lambda t} = \frac{1}{4} \Rightarrow \lambda t = 2.\ln 2 \Rightarrow t = 2\frac{\ln 2}{\lambda} = 2t_{1/2} \tag{4}$					
		التمرين الثالث:(3.5 نقاط)					
	0.25	11-أ- عند غلق القاطعة، يفرض المولد بين لبوسي المكثفة المتقابلين فرقا في الكمون الكهربائي، الشيء الذي يدفع بالإلكترونات الحرة للبوس ذو الكمون المرتفع (الموجب) بالتحرك نحو اللبوس الآخر عبر الدارة (يلعب المولد دور مضخة للالكترونات)، فتنشأ شحنة كهربائية موجبة على هذا اللبوس وفي نفس الوقت شحنة كهربائية سالبة على اللبوس المقابل. تتزايد هذه الشحنة بفعل التكهرب عن بعد بين اللبوسين (تكثيف الشحن الكهربائية) وخاصة بوجود عازل كهربائي، فيتزايد تدريجيا التوتر بين اللبوسين وتتوقف حركة الالكترونات عندما يبلغ هذا التوتر بينهما قيمة القوة المحركة الكهربائية للمولد . ب)-المعادلة التفاضلية للتيار (i):					
	0.25	$u_{R_1} + u_{R_2} + u_C = E$; $(R_1 + R_2) i + u_C = E$					
1.75	0.25	$(R_1 + R_2) \frac{di}{dt} + \frac{du_C}{dt} = 0$ $\frac{du_C}{dt} = \frac{i}{C} ; (R_1 + R_2) \frac{di}{dt} + \frac{i}{C} = 0$					
	0.25	$\frac{di}{dt} + \frac{1}{(R_1 + R_2)C} i = 0$					
	0.25 0.25 0.25	ج- بتعويض الحل في المعادلة التفاضلية و باستعمال الشروط الابتدائية نتحصل على:					
1.25	0.25 0.25 0.25 0.25 0.25	$C = \frac{\tau}{(R_1 + R_2)} = 100~\mu$ F و نستنتج $\tau = 0.5~s$. $\tau = 0.5~s$ و نستنج نجد -2 $E = (R_1 + R_2). I_0 = 10~V$					
	0.25	${ m E(C)}=rac{1}{2}{ m C}{ m u}_{ m C}^2(t)\;\;;\;\;\;{ m E(C)}=rac{1}{2}{ m CE}^2(1{ m -e}^{-rac{t}{ au}})^2\;$					
		الطاقة الأعظمية:					
0.50	0.25	$u_c = E \implies E_{max}(C) = \frac{1}{2}C E^2 ; E_{max}(C) = 5x10^{-3} j$					

و نصف	:04 ساعات	المدة		حان البحالوريا دوره: 6 وتقني رياضي (مكيف)	•	•	اختبار مادة: العلوم الف	
مة	العلا			<u> </u>	عناصر الإجابة			
مجموع	مجزأة				عاصر الإجابة			
						3 نقطة)	التمرين الرابع: (5,	
0.25	0.25			ة الألمنيوم.	النحاس نحو صفيحا	رج العمود: من صفيحة	1- جهة التيار خار	
	0.25	ان الاعتدال	ممود لضه	، الشوارد بين نصفي الـ	ئية - مسلك لانتقال	- ي: – غلق الدارة الكهربا:	2- دور الجسر الملحي	
0.50			الكهربائي للمحلولين.					
0.50	0.25		Θ A	$(l_{(s)}/Al^{3+}_{(ga)}//Cu)$	$^{2+}$ (aa) / $Cu_{(s)} \oplus$	الرمز الاصطلاحي:	تمثيل العمود–	
	0.25			$\times \left(A l_{(s)} = A l^{3+}\right)$			2- المعادلتان النص	
	0.25			$\times \left(Cu^{2+}_{(aq)} + 2e^{-\frac{1}{2}}\right)$				
0.75				•	,		• 1-1::11 :11	
	0.25			$Al_{(s)} + 3 Cu^{2+}_{(a)}$	-2		معادلة التفاعل:	
	0.25		($Q_{\cdot} = \frac{\left[Al^{3+}\right]}{\left(aq\right)}$	$=\frac{(10^{-2})^2}{10^{-2}}$	ر التفاعل: 0.1 =	 القيمة الإبتدائية لكسر 	
0.50	0.25		2	$\left[Cu^{2+}\right]_{(aq)}$	$\left[10^{-1}\right]^{3}$	0,1		
	0.25			ىيابق.	اه المباشر للتفاعل ال	تتطور الجملة في الإتج	بما أن $Q_{r,i} < K$ بما	
	0.25	. ,,					5. أ - كمية الكهرباء:	
			ب- جدول التقدم:					
		معادلة	11	$2Al_{(s)}$	$+3 Cu^{2+}$	$_{0}=2Al^{3+}_{(aq)}$	$+3Cu_{(s)}$	
		حالة الجملة	التقدم		mmol	كميات المادة بـ		
	0.25	الإبتدائية	0	$n_0(Al)$	5	0,5	$n_0(Cu)$	
1.50		الإنتقالية	x	$n_0(Al)-2x$	5-3x	2x + 0.5	$n_0(Cu) + 3x$	
	0.25	النهائية	x_m	$n_0(Al)-2x_m$	$5-3x_m$	$2x_m + 0.5$	$n_0(Cu) + 3x_m$	
	0.25	$[Cu^{2+}] = ($	5 - 3x)	/V و [Al ³⁻	[-1] = (0,5 + 2x)	$^{\prime}$ V يعبر الدارة t	ج- لما 30 min ج	
	$0.25 \\ 0.25$					ol :نجد $Q = i$		
	0.25			$[Cu^{2+}] = 25,6 \text{ m}$	ے و mol/L	$Al^{3+}] = 59,6 \text{ mm}$	ol/L	
						3.5 ن)	التمرين الخامس: (ا	
	0.25				` ' '	••	1 . أ ـ بتطبيق القانون ال	
	0.25	$\sum \vec{F} = m\vec{c}$	$\vec{n} \Rightarrow \vec{P}$	$+\vec{R}+\vec{f}=m\vec{a} ;$	$ec{f}$ ، قوة الاحتكاك	$ec{R}$ رد فعل المستوي	، $ec{P}$ القوى: الثقل $-$	
1.50	0.25				-	•	بالإسقاط على المحور	
	0.25					$= m(g \sin \alpha - a)$		
	0.25				$\Delta\iota$		ب ـ من القياسات نجد قب	
	0.25	$f_1 = 0.5(9.8\sin 45 - 3) = 1.96N$: \vec{f}_1 شدة قوة الإحتكاك :						
	0.25	$ec{P}=% {\displaystyle\int\limits_{0}^{\infty}} \left[{\displaystyle\int\limits_{0}^{\infty}} {\displaystyle$	$ec{P}=mec{a} \implies mec{g}=mec{a} \implies ec{a}=ec{g} \implies ec{a}=ec{g}$ أ - و ب ـ المعادلتان الزمنيتان: القانون الثاني لنيوتن: -2					

العلامة		عناصر الإجابة
مجموع	مجزأة	المحاصر الإجابات
1.75	0.25 0.25 0.25	$y = \frac{g}{2v_0^2 \cos^2 \alpha} x^2 + (\tan \alpha) x$ معادلة $\begin{cases} x(t) = v_0 \cos \alpha t \\ y(t) = \frac{1}{2} gt^2 + v_0 \sin \alpha t \end{cases}$
	0.25	${ m v}_0=3,15m/s$: نعوض القيمتين x_N و y_N في معادلة المسار نجد: ${ m ec V}_0$
	0.25	$v_o^2 - v_A^2 = 2.a.d \implies a = \frac{v_o^2 - v_A^2}{2d} = 3.3 m/s : \vec{a}$ د ـ شدة شعاع التسارع
	0.25	$f=0.5(9.8\sin 45-3.3)=1.81N$: $ec{f}$ الإحتكاك $ec{f}$ عندة شعاع قوة الإحتكاك المحتكات الم
0.25	0.25	3 – النتيجتان مقبولتان لأنهما ضمن مجال حدود اخطاء التجربة.
		التمرين التجريبي:(03 نقاط)
0.25	0.25	1 - نقطة التكافؤ:هي النقطة التي يتم فيها التفاعل الكلي للنوع الكيميائي المُعَايَر وفق المعاملات الستيوكيومترية.
	0.25	2- عند التكافؤ يتحقق:
0.75	0.25 0.25	$n_i(HA) = n_E(HO^-) \Rightarrow C_a V_a = C_b V_{bE} \Rightarrow V_{bE} = \frac{C_a V_a}{Cb} = 10 \ mL$
		$(V_{bE}=10$ mL ; $$ pH $_{E}=8,4$) احداثیات نقطة التکافؤ:
0.50	$0.25 \\ 0.25$	$pH = pK_a = 4.8$ للثنائية : عند نصف التكافؤ : لما $V_b = V_{bE}/2$ لدينا $V_b = V_{bE}/2$ لدينا $PK_a = 3$
		- من الجدول المرفق الحمض المعاير هو حمض الايثانويك CH ₃ COOH 4- الحمض ضعيف لأن:
0.25	0.25	$pH_0 > 2$. $pH_E > 7$
	0.25	$CH_{3}COOH(aq) + HO^{-}(aq) = CHCOO^{-}(aq) + H_{2}O(\ell)$ معادلة تفاعل المعايرة: -5
		ب-حساب ثابت التوازن :
1.25	0.25 0.25	$K = \frac{\left[CH_{3}COO^{-}\right]_{f}}{\left[CH_{3}COOH\right]_{f}\left[HO^{-}\right]_{f}} \cdot \frac{\left[H_{3}O^{+}\right]}{\left[H_{3}O^{+}\right]} = \frac{K_{a}}{K_{e}} \rightarrow K = 10^{(pK_{e}-pK_{a})} = 1,6.10^{9}$
	0.25	تفاعل تام $K > 10^4$
	0.25	ج – الكاشف المناسب لهذه المعايرة هو الفينول فتاليين