Global Types with Internal Delegation and Connecting Communications

joint work with Ilaria Castellani, Paola Giannini and Ross Horne

ABCD meeting 17/12/2018

T = A? card; T'

Two Global Types

Motivation

```
G_{ac}
```

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (\mbox{ } (\mbox{ } A \xrightarrow{\mbox{ok}} C; \\ A \xrightarrow{\mbox{card}} C; \\ C \xrightarrow{\mbox{date}} A; \mbox{End}) \\ \boxplus \\ A \xrightarrow{\mbox{ko}} C; \mbox{End} \\) \end{array}$$

 G_{cb}

$$\begin{array}{c}
C \xrightarrow{\text{price}} B; \\
C \xrightarrow{T} B; \\
T'
\end{array}$$

$$B \xrightarrow{T'} C$$
; End

T' = A! date; End

$$\mathtt{A} \xrightarrow{\mathtt{title}} \mathtt{C}$$

$$A \xrightarrow{\text{title}} C$$

$$C \xrightarrow{\text{price}} A$$

$$\begin{array}{c} A \xrightarrow{\text{price}} C; \\ C \xrightarrow{\text{price}} A; \\ \left(A \xrightarrow{\text{ok}} C \right) \end{array}$$

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{price}} B; \mbox{connecting communication} \end{array}$$

$$\begin{array}{c} A \xrightarrow{\texttt{title}} C; \\ C \xrightarrow{\texttt{price}} A; \\ (A \xrightarrow{\texttt{ok}} C; \\ C \xrightarrow{\overset{\texttt{price}}{\longleftrightarrow}} B; \\ C \circ (\!(\bullet B); forward delegation) \end{array}$$

$$\begin{array}{c} A \xrightarrow{\text{price}} C; \\ C \xrightarrow{\text{price}} A; \\ (A \xrightarrow{\text{ok}} C; \\ C \xrightarrow{\text{price}} B; \\ C \circ \langle\!\langle \bullet B; \\ A \xrightarrow{\text{card}} C; \\ \end{array}$$

```
\begin{array}{c} A \xrightarrow{\texttt{title}} C; \\ C \xrightarrow{\texttt{price}} A; \\ (A \xrightarrow{\texttt{ok}} C; \\ C \xrightarrow{\overset{\texttt{price}}{\longleftrightarrow}} B; \\ C \xrightarrow{\texttt{card}} C; \\ A \xrightarrow{\texttt{card}} C; \\ B & ) \rangle \circ C; \ backward \ delegation \end{array}
```

```
\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{price}} B; \\ C \xrightarrow{\mbox{cow} (\bullet B;} \\ A \xrightarrow{\mbox{card}} C; \\ B \bullet) \hspace{-0.5cm} \rangle \circ C; \\ C \xrightarrow{\mbox{date}} A; End \end{array}
```

```
\begin{array}{c} A \xrightarrow{\text{price}} C; \\ C \xrightarrow{\text{price}} A; \\ (A \xrightarrow{\text{ok}} C; \\ C \xrightarrow{\overset{\text{price}}{\longleftrightarrow}} B; \\ C \xrightarrow{\text{cow}} B; \\ A \xrightarrow{\text{card}} C; \\ B \xrightarrow{\text{b}} C; \\ C \xrightarrow{\text{date}} A; End \\ & \\ \end{array}
```

```
A \xrightarrow{\text{title}} C:
C \xrightarrow{price} A:
                 (A \xrightarrow{ok} C;
                        C \xrightarrow{\overset{\mathtt{price}}{\longleftrightarrow}} B;
                        Co≪⊕B;
                         A \xrightarrow{card} C:
                        B \bullet \rangle \rangle \circ C;
                         C \xrightarrow{\mathtt{date}} A; End
                         \mathbb{H}
                        A \xrightarrow{ko} C; End )
```

Start with Forward delegation

C∘≪∙B

∘≪∙B

C○≪●

Terminology (active/passive):

- active forward delegation ○((•B
- passive forward delegation Co≪•.

Message sent to Cat goes directly to Bank

Trust assumption: Cat does not have authority to handle card.

End with backward delegation

 $\begin{array}{c}
C \circ \langle \langle \bullet B; \\
A \xrightarrow{\text{card}} C; \\
B \bullet \rangle \rangle \circ C;
\end{array}$

∘⟨⟨∙B; B∙⟩⟩∘

C∘⟨(•; A? card; •)>∘C

Terminology (active/passive):

- active backward delegation \> C
- passive backward delegation B•\>∘.

$$P ::= \sum_{i \in I} p_i ? \Lambda_i; P_i \text{ external choices of inputs}$$

$$P ::= \sum_{i \in I} p_i ? \Lambda_i; P_i \mid \bigoplus_{i \in I} p_i ! \Lambda_i; P_i \text{ internal choices of outputs}$$

$$\begin{array}{lll} P & ::= & \sum_{i \in I} \mathsf{p}_i ? \Lambda_i; \, P_i & | & \bigoplus_{i \in I} \mathsf{p}_i ! \Lambda_i; \, P_i \\ & | & \mathsf{p} \circ \langle\!\langle \bullet; \, P & | & \circ \langle\!\langle \bullet \mathsf{p}; \, P \\ & | & \bullet \rangle\!\rangle \circ \mathsf{q}; \, P \ \textit{backward delegation with principal} \end{array}$$

$$\begin{array}{lll} P & ::= & \sum_{i \in I} \mathsf{p}_i ? \Lambda_i; \, P_i & | & \oplus_{i \in I} \; \mathsf{p}_i ! \Lambda_i; \, P_i \\ & | & \mathsf{p} \circ \langle\!\langle \bullet; \, P & | & \circ \langle\!\langle \bullet \mathsf{p}; \, P \\ & | & \bullet \rangle\!\rangle \circ \mathsf{q}; \, P & | & \mathsf{q} \bullet \rangle\!\rangle \circ; \, P \; \textit{backward delegation with deputy} \end{array}$$

Λ ranges over λ and $\overset{\lambda}{\leftrightarrow}$

internal and external choices must not be ambiguous

Λ ranges over λ and $\stackrel{\lambda}{\leftrightarrow}$

internal and external choices must not be ambiguous

Processes

Λ ranges over λ and $\stackrel{\lambda}{\leftrightarrow}$

internal and external choices must not be ambiguous

A? title; A! price; (A? ok; B! $\overset{\text{price}}{\leftrightarrow}$; $\circ (\langle \bullet B; B \bullet \rangle) \circ$; A! date + A? ko)

```
 A [\![ C! \operatorname{card} ; C? \operatorname{date} ]\!] \parallel C [\![ \circ \langle \langle \bullet B \rangle; B \bullet \rangle \rangle \circ ; A! \operatorname{date} ]\!] \parallel B [\![ C \circ \langle \langle \bullet \rangle; A? \operatorname{card} ; \bullet \rangle \rangle \circ C ]\!]
```

```
A \[ C! \operatorname{card}; C? \operatorname{date} \] \\| C \[ \circ \langle \langle \bullet B; B \bullet \rangle \rangle \circ; A! \operatorname{date} \] \\| B \[ C \circ \langle \langle \bullet \rangle; A? \operatorname{card}; \bullet \rangle \rangle \circ C \] 
\downarrow A \[ C! \operatorname{card}; C? \operatorname{date} \] \\| C \[ B \bullet \rangle \rangle \circ; A! \operatorname{date} \] \\| C \[ A? \operatorname{card}; \bullet \rangle \rangle \circ C \]
```

```
A[\![ C! \operatorname{card}; C? \operatorname{date} ]\!] \| C[\![ \circ \langle \langle \bullet B; B \bullet \rangle \rangle \circ; A! \operatorname{date} ]\!] \| B[\![ C \circ \langle \langle \bullet \rangle; A? \operatorname{card}; \bullet \rangle \rangle \circ C]\!] 
\downarrow \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \qquad \downarrow \qquad \qquad
```

```
A[C! card; C? date] \parallel C[o(\bullet B; B \bullet)) \circ; A! date] \parallel
                                                          B \llbracket C \circ \langle \langle \bullet \rangle, A? card \rangle \rangle \circ C \rrbracket
A[\![ C! card; C? date ]\!] \parallel \overset{*}{C}[\![ B \bullet ]\!) \circ; A! date ]\!] \parallel C[\![ A? card; \bullet ]\!) \circ C[\![ B \bullet ]\!]
                           \texttt{A[\![}\,\texttt{C?}\,\texttt{date}\,\,]\!] \parallel \overset{\textstyle \star}{\texttt{C}[\![}\,\texttt{B}\bullet)\!\!\!)\circ; \texttt{A!}\,\texttt{date}\,\,]\!] \parallel \texttt{C[\![}\bullet)\!\!\!)\circ\texttt{C}\,]\!\!]
                                           A \llbracket C? date \rrbracket \parallel C \llbracket A! date \rrbracket \parallel B \llbracket \mathbf{0} \rrbracket
                              \mathbb{N} ::= p \llbracket P \rrbracket \mid p \llbracket P \rrbracket \mid \mathbb{N} \parallel \mathbb{N}
```

$$\Sigma_{i \in I} p_i ? \Lambda_i; P_i \xrightarrow{p_j ? \Lambda_j} P_j \quad j \in I \quad [ExtCH]$$

Motivation

$$\Sigma_{i \in I} p_i ? \Lambda_i; P_i \xrightarrow{p_j ? \Lambda_j} P_j \quad j \in I \quad [EXTCH]$$

$$\bigoplus_{i \in I} p_i ! \Lambda_i; P_i \xrightarrow{p_j ! \Lambda_j} P_i \quad j \in I \quad [INTCH]$$

Operational Semantics

$$\frac{P \xrightarrow{\mathsf{q}!\Lambda} P' Q \xrightarrow{\mathsf{p}?\Lambda} Q'}{\mathsf{p}\llbracket P \rrbracket \parallel \mathsf{q}\llbracket Q \rrbracket \xrightarrow{\mathsf{p}\Lambda \mathsf{q}} \mathsf{p}\llbracket P' \rrbracket \parallel \mathsf{q}\llbracket Q' \rrbracket} [\text{Com}]$$

$$\frac{P \xrightarrow{\mathsf{q}! \Lambda} P' Q \xrightarrow{\mathsf{p}? \Lambda} Q'}{\mathsf{p}\llbracket P \rrbracket \parallel \mathsf{q}\llbracket Q \rrbracket \xrightarrow{\mathsf{p}\Lambda \mathsf{q}} \mathsf{p}\llbracket P' \rrbracket \parallel \mathsf{q}\llbracket Q' \rrbracket} [\text{Com}]$$

$$p\llbracket \circ \langle \langle \bullet \mathsf{q}; P \rrbracket \rangle \| \mathsf{q}\llbracket p \circ \langle \langle \bullet; Q \rrbracket \rangle \xrightarrow{\mathsf{p} \circ \langle \langle \bullet \mathsf{q} \rangle} p\llbracket P \rrbracket \| p\llbracket Q \rrbracket \quad [\text{BDeL}]$$

Operational Semantics

$$\frac{P \xrightarrow{\mathbf{q}! \Lambda} P' Q \xrightarrow{\mathbf{p}? \Lambda} Q'}{\mathbf{p} \llbracket P \rrbracket \parallel \mathbf{q} \llbracket Q \rrbracket \xrightarrow{\mathbf{p} \Lambda \mathbf{q}} \mathbf{p} \llbracket P' \rrbracket \parallel \mathbf{q} \llbracket Q' \rrbracket} [\text{Com}]$$

$$\mathbf{p} \llbracket \circ \langle \langle \bullet \mathbf{q}; P \rrbracket \parallel \mathbf{q} \llbracket \mathbf{p} \circ \langle \langle \bullet ; Q \rrbracket \xrightarrow{\mathbf{p} \circ \langle \langle \bullet \mathbf{q} \rangle} \overset{*}{\mathbf{p}} \llbracket P \rrbracket \parallel \mathbf{p} \llbracket Q \rrbracket \quad [\text{BDeL}]$$

$$\overset{*}{\mathbf{p}} \llbracket \mathbf{q} \bullet \rangle \rangle \circ ; P \rrbracket \parallel \mathbf{p} \llbracket \bullet \rangle \rangle \circ \mathbf{p} ; Q \rrbracket \xrightarrow{\mathbf{q} \bullet \rangle \circ \mathbf{p}} \mathbf{p} \llbracket P \rrbracket \parallel \mathbf{q} \llbracket Q \rrbracket \quad [\text{EDeL}]$$

Operational Semantics

$$\frac{P \xrightarrow{\mathsf{q}! \Lambda} P' Q \xrightarrow{\mathsf{p}? \Lambda} Q'}{\mathsf{p} \llbracket P \rrbracket \parallel \mathsf{q} \llbracket Q \rrbracket \xrightarrow{\mathsf{p} \Lambda \mathsf{q}} \mathsf{p} \llbracket P' \rrbracket \parallel \mathsf{q} \llbracket Q' \rrbracket} [\text{Com}]$$

$$\mathsf{p} \llbracket \circ \langle \langle \bullet \mathsf{q}; P \rrbracket \parallel \mathsf{q} \llbracket \mathsf{p} \circ \langle \langle \bullet; Q \rrbracket \xrightarrow{\mathsf{p} \circ \langle \langle \bullet \mathsf{q} \rangle} \overset{*}{\mathsf{p}} \llbracket P \rrbracket \parallel \mathsf{p} \llbracket Q \rrbracket \quad [\text{BDeL}]$$

$$\overset{*}{\mathsf{p}} \llbracket \mathsf{q} \bullet \rangle \rangle \circ ; P \rrbracket \parallel \mathsf{p} \llbracket \bullet \rangle \rangle \circ \mathsf{p} ; Q \rrbracket \xrightarrow{\mathsf{q} \bullet \rangle \circ \mathsf{p}} \mathsf{p} \llbracket P \rrbracket \parallel \mathsf{q} \llbracket Q \rrbracket \quad [\text{EDeL}]$$

$$\frac{\mathsf{N} \xrightarrow{\phi} \mathsf{N}'}{\mathsf{N} \parallel \mathsf{N}'' \xrightarrow{\phi} \mathsf{N}' \parallel \mathsf{N}''} [\text{CT}]$$

 ϕ ranges over p Λ q, p \circ $\langle (\bullet q, q \bullet) \rangle \circ p$

a process offering more inputs and less outputs is better

a process offering more inputs and less outputs is better

$$\forall i \in I : P_i \leq Q_i$$

$$\sum_{i\in I\cup J} p_i?\Lambda_i; P_i \leq \sum_{i\in I} p_i?\Lambda_i; Q_i$$

[Sub-Out]

$$\forall i \in I : P_i \leq Q_i$$

$$\bigoplus_{i\in I} p_i! \Lambda_i; P_i \leq \bigoplus_{i\in I\cup J} p_i! \Lambda_i; Q_i$$

[SUB-IN] [SUB-OUT]
$$\forall i \in I : P_i \leq Q_i$$

$$\forall i \in I$$

connecting communications are better than 0

$$\forall i \in I : P_i \leq Q_i$$

$$\sum_{i\in I\cup J} p_i?\Lambda_i; P_i \leq \sum_{i\in I} p_i?\Lambda_i; Q_i$$

$$\forall i \in I : P_i \leq Q_i$$

$$\bigoplus_{i\in I} p_i! \Lambda_i; P_i \leq \bigoplus_{i\in I\cup J} p_i! \Lambda_i; Q_i$$

connecting communications are better than ${f 0}$

$$\sum_{i\in I} p_i ? \stackrel{\lambda_i}{\leftrightarrow} ; P_i \leq \mathbf{0}$$

[Sub-In]
$$\forall i \in I : P_i < Q_i$$

$$\forall i \in I : P_i < Q_i$$

$$\sum_{i \in I \cup J} p_i ? \Lambda_i; P_i \leq \sum_{i \in I} p_i ? \Lambda_i; Q_i$$

$$\bigoplus_{i\in I} p_i! \Lambda_i; P_i \leq \bigoplus_{i\in I\cup J} p_i! \Lambda_i; Q_i$$

[Sub-In-Skip]

$$\Sigma_{i\in I} p_i ? \stackrel{\lambda_i}{\leftrightarrow} ; P_i \leq \mathbf{0}$$

$$\delta$$
 ranges over $\circ \langle \! \langle \bullet \rangle \! \rangle \circ$

[SUB-IN]

$$\forall i \in I : P_i \leq Q_i$$

[Sub-Out]

$$\forall i \in I : P_i \leq Q_i$$

 $\sum_{i\in I\cup J} p_i ? \Lambda_i; P_i \leq \sum_{i\in I} p_i ? \Lambda_i; Q_i$

 $\oplus_{i\in I} \mathsf{p}_i ! \Lambda_i; P_i \leq \oplus_{i\in I \cup J} \mathsf{p}_i ! \Lambda_i; Q_i$

[Sub-In-Skip]

$$\Sigma_{i\in I} p_i ? \stackrel{\lambda_i}{\longleftrightarrow} ; P_i \leq \mathbf{0}$$

 δ ranges over $\circ \langle \! \langle \bullet \rangle \! \rangle \circ$

[Sub-Del]
$$\frac{P \le Q}{\delta: P \le \delta: Q}$$

[Sub-In] $\forall i \in I : P_i \leq Q_i$

$$\sum_{i \in I \cup J} p_i ? \Lambda_i; P_i \leq \sum_{i \in I} p_i ? \Lambda_i; Q_i$$

[Sub-Out]
$$\forall i \in I : P_i \leq Q_i$$

$$\bigoplus_{i\in I} p_i! \Lambda_i; P_i \leq \bigoplus_{i\in I\cup J} p_i! \Lambda_i; Q_i$$

$$\overline{\Sigma_{i\in I} p_i? \overset{\lambda_i}{\leftrightarrow}; P_i \leq \mathbf{0}}$$

$$\frac{P \le Q}{\delta; P < \delta; Q} \qquad \begin{array}{l} [\text{Sub-0}] \\ \mathbf{0} \le \mathbf{0} \end{array}$$

```
\begin{array}{c} A \xrightarrow{\text{bride}} C; \\ C \xrightarrow{\text{price}} A; \\ (A \xrightarrow{\text{ok}} C; \\ C \xrightarrow{\text{price}} B; \\ C \xrightarrow{\text{cod}} B; \\ A \xrightarrow{\text{card}} C; \\ B &) \circ C; \\ C \xrightarrow{\text{date}} A; \text{End} \\ \\ H & A \xrightarrow{\text{ko}} C; \text{End} \end{array}
```

```
C \xrightarrow{price} A:
              (A \xrightarrow{ok} C;
                     C \xrightarrow{\overset{\text{price}}{\longleftrightarrow}} B;
                       C∘((•B;
                      A \xrightarrow{card} C:
                      B \bullet \rangle \circ C;
                      C \xrightarrow{\text{date}} A: End
                      A \xrightarrow{ko} C; End )
```

$$\begin{array}{lll} \mathsf{G} & ::= & \boxplus_{i \in I} \, \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \, \mathsf{G}_i \\ & \mid \, \, \mathsf{p} \diamond \langle\!\langle \bullet \mathsf{q}; \, \mathsf{G} \, \mid \, \, \mathsf{q} \bullet \rangle\!\rangle \diamond \mathsf{p}; \, \mathsf{G} \\ & \mid \, \, \mu \mathsf{t}. \, \mathsf{G} \, \mid \, \mathsf{t} \, \mid \, \mathsf{End} \end{array}$$

```
\begin{array}{c} A \xrightarrow{\text{price}} C; \\ C \xrightarrow{\text{price}} A; \\ (A \xrightarrow{\text{ok}} C; \\ C \xrightarrow{\text{price}} B; \\ C \xrightarrow{\text{co}} B; \\ A \xrightarrow{\text{card}} C; \\ B \bullet ) \hspace{-0.5em} \rangle \circ C; \\ C \xrightarrow{\text{date}} A; End \\ \boxplus \\ A \xrightarrow{\text{ko}} C; End \end{array}
```

no ambiguity of choices

```
\begin{array}{c} A \xrightarrow{\text{price}} C; \\ C \xrightarrow{\text{price}} A; \\ (A \xrightarrow{\text{ok}} C; \\ C \xrightarrow{\text{price}} B; \\ C \xrightarrow{\text{co}} B; \\ A \xrightarrow{\text{card}} C; \\ B \bullet \rangle \circ C; \\ C \xrightarrow{\text{date}} A; End \\ \boxplus \\ A \xrightarrow{\text{ko}} C: End \end{array}
```

$$\begin{array}{lll} \mathsf{G} & ::= & \textstyle \boxplus_{i \in I} \, \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \, \mathsf{G}_i \\ & \mid & \mathsf{p} \circ \langle\!\langle \bullet \mathsf{q}; \, \mathsf{G} \mid & \mathsf{q} \bullet \rangle\!\rangle \circ \mathsf{p}; \, \mathsf{G} \\ & \mid & \mu \mathsf{t}.\mathsf{G} \mid & \mathsf{t} \mid & \mathsf{End} \end{array}$$

- no ambiguity of choices
- ullet each occurrence of po $\langle\!\langle ullet q$ is followed by an occurrence of $qullet p \rangle\!\rangle \circ p$

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{ok}} B; \\ C \xrightarrow{\mbox{cod}} B; \\ A \xrightarrow{\mbox{card}} C; \\ B \bullet) \hspace{-0.5cm} \circ \hspace{-0.5c$$

- no ambiguity of choices
- ullet each occurrence of po $\langle\!\langle ullet q$ is followed by an occurrence of $qullet p \rangle\!\rangle \circ p$
- no atomic interaction involving q occurs between po⟨(oq and qo))op

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{cos}} B; \\ C \circ \langle\!\langle \bullet B; \\ A \xrightarrow{\mbox{card}} C; \\ B \bullet \rangle\!\rangle \circ C; \\ C \xrightarrow{\mbox{date}} A; End \\ \boxplus \\ A \xrightarrow{\mbox{ko}} C; End \end{array})$$

$$\begin{array}{lll} \mathsf{G} & ::= & \boxplus_{i \in I} \, \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \, \mathsf{G}_i \\ & \mid \, \, \mathsf{p} \diamond \langle\!\langle \bullet \mathsf{q}; \, \mathsf{G} \, \mid \, \, \mathsf{q} \bullet \rangle\!\rangle \diamond \mathsf{p}; \, \mathsf{G} \\ & \mid \, \, \mu \mathsf{t}.\mathsf{G} \, \mid \, \mathsf{t} \, \mid \, \mathsf{End} \end{array}$$

- no ambiguity of choices
- each occurrence of po⟨⟨•q is followed by an occurrence of q•⟩⟩op
- no atomic interaction involving q occurs between po⟨⟨•q and q•⟩⟩op
- no choice occurs between p∘⟨⟨•q and q•⟩⟩∘p

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{price}} B; \\ C \xrightarrow{\mbox{co} \mbox{(\bulletB$;}} B; \\ A \xrightarrow{\mbox{card}} C; \\ B \bullet) \hspace{-0.5cm} \circ C; \\ C \xrightarrow{\mbox{date}} A; End \\ \boxplus \\ A \xrightarrow{\mbox{ko}} C; End \end{array})$$

$$\begin{array}{lll} \mathsf{G} & ::= & \boxplus_{i \in I} \, \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \, \mathsf{G}_i \\ & \mid & \mathsf{p} \diamond \langle\!\langle \bullet \mathsf{q}; \, \mathsf{G} \mid & \mathsf{q} \bullet \rangle\!\rangle \diamond \mathsf{p}; \, \mathsf{G} \\ & \mid & \mu \mathsf{t}.\mathsf{G} \mid & \mathsf{t} \mid & \mathsf{End} \end{array}$$

- no ambiguity of choices
- each occurrence of p∘ ((•q is followed by an occurrence of q•)()∘p
- no atomic interaction involving q occurs between po⟨⟨•q and q•⟩⟩op
- no choice occurs between p∘ ((•q and q•))∘p
- no delegation involving p occurs between po⟨⟨•q and q•⟩⟩op

$$\begin{array}{c} A \xrightarrow{\mbox{title}} C; \\ C \xrightarrow{\mbox{price}} A; \\ (A \xrightarrow{\mbox{ok}} C; \\ C \xrightarrow{\mbox{price}} B; \\ C \xrightarrow{\mbox{co} \mbox{\#}} B; \\ C \xrightarrow{\mbox{card}} C; \\ B \xrightarrow{\mbox{b} \mbox{\o}} C; \\ C \xrightarrow{\mbox{date}} A; End \\ \hline \\ A \xrightarrow{\mbox{ko}} C; End \end{array})$$

Projection: Example

```
A?title:
A!price;
           ( A?ok;
               B! \xrightarrow{\text{price}}; \qquad C \xrightarrow{\text{price}} B;
               ∘((•B;
                                            Co≪•B;
                                            A \xrightarrow{card} C:
               B•⟩⟩ο;
                                            B \bullet \rangle \rangle \circ C;
               A! date:
                                            C \xrightarrow{\mathtt{date}} A; End
               A?ko)
                                           A \xrightarrow{ko} C; End )
```

Projection: Example

```
A?title:
A!price;
          ( A?ok;
              B! \overset{\texttt{price}}{\leftrightarrow} :
                                                                     Co((•;
              ∘(•B;
                                         C∘((•B;
                                                                     A? card;
                                         A \xrightarrow{card} C:
                                                                      •)>oC
              B•⟩⟩o;
                                         B \bullet \rangle \rangle \circ C;
              A! date;
                                         C \xrightarrow{\mathtt{date}} A: End
              A?ko )
                                         A \xrightarrow{ko} C; End )
```

Direct Projection

Direct Projection

$$(\Sigma_{i\in I}p_i?\Lambda_i; P_i) \prod p?\Lambda; P = \Sigma_{i\in I}p_i?\Lambda_i; P_i + p?\Lambda; P$$

Direct Projection

$$\begin{split} (\Sigma_{i \in I} \mathsf{p}_i? \Lambda_i; P_i) & \prod \mathsf{p}? \Lambda; P = \Sigma_{i \in I} \mathsf{p}_i? \Lambda_i; P_i + \mathsf{p}? \Lambda; P \\ & (\Sigma_{i \in I} \mathsf{p}_i? \Lambda_i; P_i) \prod \mathsf{p}? \Lambda; \mathsf{T} = \Sigma_{i \in I} \mathsf{p}_i? \Lambda_i; P_i \\ & \text{if } \mathsf{p} = \mathsf{p}_i \text{ and } \Lambda = \Lambda_i \text{ and } P = P_i \text{ for some } j \in I \end{split}$$

$$\begin{split} &(\Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i) \bigcap \mathsf{p}?\Lambda;P = \Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i + \mathsf{p}?\Lambda;P \\ &(\Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i) \bigcap \mathsf{p}?\Lambda;\mathsf{T} = \Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i \\ &\text{if } \mathsf{p} = \mathsf{p}_j \text{ and } \Lambda = \Lambda_j \text{ and } P = P_j \text{ for some } j \in I \\ &(\Sigma_{i\in I}\mathsf{p}_i? \stackrel{\lambda_i}{\leftrightarrow};P_i) \bigcap \mathbf{0} = \Sigma_{i\in I}\mathsf{p}_i? \stackrel{\lambda_i}{\leftrightarrow};P_i \end{split}$$

$$\begin{split} &(\Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i) \, \big | \, \mathsf{p}?\Lambda;P = \Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i + \mathsf{p}?\Lambda;P \\ &(\Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i) \, \big | \, \mathsf{p}?\Lambda;\mathsf{T} = \Sigma_{i\in I}\mathsf{p}_i?\Lambda_i;P_i \\ &\text{if } \mathsf{p} = \mathsf{p}_j \text{ and } \Lambda = \Lambda_j \text{ and } P = P_j \text{ for some } j \in I \\ &(\Sigma_{i\in I}\mathsf{p}_i? \stackrel{\lambda_i}{\leftrightarrow};P_i) \, \big | \, \mathsf{0} = \Sigma_{i\in I}\mathsf{p}_i? \stackrel{\lambda_i}{\leftrightarrow};P_i \\ &\mathbf{0} \, \big | \, \mathsf{0} = \mathbf{0} \end{split}$$

$$(\ p\Lambda q;G\)\!\upharpoonright r = \begin{cases} q!\Lambda;G\!\upharpoonright p & \text{if } r=p\\ p?\Lambda;G\!\upharpoonright q & \text{if } r=q\\ G\!\upharpoonright r & \text{if } r\notin\{p,q\} \end{cases}$$

$$(\ \mathsf{p} \mathsf{\Lambda} \mathsf{q}; \mathsf{G}\) \! \upharpoonright \mathsf{r} = \begin{cases} \mathsf{q} ! \mathsf{\Lambda}; \mathsf{G} \! \upharpoonright \mathsf{p} & \text{if } \mathsf{r} = \mathsf{p} \\ \mathsf{p} ? \mathsf{\Lambda}; \mathsf{G} \! \upharpoonright \mathsf{q} & \text{if } \mathsf{r} = \mathsf{q} \\ \mathsf{G} \! \upharpoonright \mathsf{r} & \text{if } \mathsf{r} \not \in \{\mathsf{p}, \mathsf{q}\} \end{cases}$$

$$(\ \boxplus_{i \in I} \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \mathsf{G}_i\) \! \upharpoonright \mathsf{r} = \begin{cases} \oplus_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i\) \! \upharpoonright \mathsf{r} & \text{if } \mathsf{r} = \mathsf{p} \\ \prod_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i\) \! \upharpoonright \mathsf{r} & \text{otherwise} \end{cases} \text{ where } |I| > 1$$

$$(\mu \mathsf{t}.\mathsf{G}) \! \upharpoonright \mathsf{p} = \begin{cases} \mathsf{G} \! \upharpoonright \mathsf{p} & \text{if } \mathsf{t} \text{ does not occur in } \mathsf{G} \\ \mu \mathsf{t}.\mathsf{G} \! \upharpoonright \mathsf{p} & \text{if } \mathsf{p} \in \mathsf{part}(\mathsf{G}) \\ \mathbf{0} & \text{otherwise} \end{cases} \mathbf{t} \! \upharpoonright \! \mathsf{p} = \mathbf{t} \quad \mathsf{End} \! \upharpoonright \! \mathsf{p} = \mathbf{0}$$

Direct Projection

$$(\ \mathsf{p} \land \mathsf{q}; \mathsf{G} \) \upharpoonright \mathsf{r} = \begin{cases} \mathsf{q}! \land; \mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{r} = \mathsf{p} \\ \mathsf{p}? \land; \mathsf{G} \upharpoonright \mathsf{q} & \text{if } \mathsf{r} = \mathsf{q} \\ \mathsf{G} \upharpoonright \mathsf{r} & \text{if } \mathsf{r} \not \in \{\mathsf{p}, \mathsf{q}\} \end{cases}$$

$$(\ \boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \) \upharpoonright \mathsf{r} = \begin{cases} \oplus_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i \) \upharpoonright \mathsf{r} & \text{if } \mathsf{r} = \mathsf{p} \\ \textstyle \bigcap_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i \) \upharpoonright \mathsf{r} & \text{otherwise} \end{cases} \text{ where } |I| > 1$$

$$(\mu \mathsf{t}.\mathsf{G}) \upharpoonright \mathsf{p} = \begin{cases} \mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{t} \text{ does not occur in } \mathsf{G} \\ \mu \mathsf{t}.\mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{p} \in \mathsf{part}(\mathsf{G}) \\ \mathsf{0} & \text{otherwise} \end{cases}$$

$$\mathsf{t} \upharpoonright \mathsf{p} = \mathsf{t} \quad \mathsf{End} \upharpoonright \mathsf{p} = \mathsf{0}$$

$$\mathsf{p} \circ (\P \mathsf{q}; \mathsf{G}) \upharpoonright \mathsf{r} = \mathsf{q}$$

$$\mathsf{p} \circ (\P \mathsf{q}; \mathsf{G}) \upharpoonright \mathsf{r} = \mathsf{q}$$

$$\mathsf{G} \upharpoonright \mathsf{r} \quad \text{otherwise}$$

Direct Projection

$$(\ \mathsf{p} \land \mathsf{q}; \mathsf{G} \) \upharpoonright \mathsf{r} = \begin{cases} \mathsf{q} ! \land; \mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{r} = \mathsf{p} \\ \mathsf{p} ? \land; \mathsf{G} \upharpoonright \mathsf{q} & \text{if } \mathsf{r} = \mathsf{q} \\ \mathsf{G} \upharpoonright \mathsf{r} & \text{if } \mathsf{r} \not \in \{\mathsf{p}, \mathsf{q} \} \end{cases}$$

$$(\ \boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \) \upharpoonright \mathsf{r} = \begin{cases} \oplus_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i \) \upharpoonright \mathsf{r} & \text{if } \mathsf{r} = \mathsf{p} \\ \bigcap_{i \in I} (\ \alpha_i^{\mathsf{p}}; \mathsf{G}_i \) \upharpoonright \mathsf{r} & \text{otherwise} \end{cases} \text{ where } |I| > 1$$

$$(\mu \mathsf{t}.\mathsf{G}) \upharpoonright \mathsf{p} = \begin{cases} \mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{t} \text{ does not occur in } \mathsf{G} \\ \mu \mathsf{t}.\mathsf{G} \upharpoonright \mathsf{p} & \text{if } \mathsf{p} \in \mathsf{part}(\mathsf{G}) \\ \mathsf{0} & \text{otherwise} \end{cases}$$

$$\mathsf{t} \upharpoonright \mathsf{p} = \mathsf{t} \quad \mathsf{End} \upharpoonright \mathsf{p} = \mathsf{0}$$

$$\mathsf{p} \circ \langle \mathsf{q}, \mathsf{G} \rangle \circ \mathsf{q}, \mathsf{G} \circ \mathsf{q}, \mathsf{G} \circ \mathsf{q}, \mathsf{q} \circ \mathsf{q}, \mathsf{q}, \mathsf{q} \circ \mathsf{q}, \mathsf{q}$$

$$(\text{ rAs; G })\!\upharpoonright_{\!2}\!(p,q) = \begin{cases} s!\Lambda; G\!\upharpoonright_{\!2}\!(p,q) & \text{if } r=p \text{ and } s \neq q \\ r?\Lambda; G\!\upharpoonright_{\!2}\!(p,q) & \text{if } s=p \text{ and } r \neq q \\ G\!\upharpoonright_{\!2}\!(p,q) & \text{if } \{r,s\} \cap \{p,q\} = \emptyset \end{cases}$$

$$(\text{ rAs; G })\!\upharpoonright_{\!2}\!(p,q) = \begin{cases} s!\Lambda; G\!\upharpoonright_{\!2}\!(p,q) & \text{if } r=p \text{ and } s\neq q \\ r?\Lambda; G\!\upharpoonright_{\!2}\!(p,q) & \text{if } s=p \text{ and } r\neq q \\ G\!\upharpoonright_{\!2}\!(p,q) & \text{if } \{r,s\}\cap\{p,q\}=\emptyset \end{cases}$$

$$(\text{ rAs; G })\!\upharpoonright_{\!1}\!(p,q) = G\!\upharpoonright_{\!1}\!(p,q) & \text{if } r\neq q \text{ and } s\neq q$$

$$(\text{ r}\Lambda s; G\text{ })\!\upharpoonright_{\!2}(p,q) = \begin{cases} s!\Lambda; G\!\upharpoonright_{\!2}(p,q) & \text{if } r=p \text{ and } s\neq q \\ r?\Lambda; G\!\upharpoonright_{\!2}(p,q) & \text{if } s=p \text{ and } r\neq q \\ G\!\upharpoonright_{\!2}(p,q) & \text{if } \{r,s\}\cap\{p,q\}=\emptyset \end{cases}$$

$$(\text{ r}\Lambda s; G\text{ })\!\upharpoonright_{\!1}(p,q) = G\!\upharpoonright_{\!1}(p,q) & \text{if } r\neq q \text{ and } s\neq q$$

$$(q\bullet)\!\!>_{\!p}; G)\!\upharpoonright_{\!1}(p,q) = q\bullet\rangle\!\!>_{\!p}; G\!\upharpoonright_{\!p} & (q\bullet)\!\!>_{\!p}; G)\!\upharpoonright_{\!2}(p,q) = \bullet\rangle\!\!>_{\!p}; G\!\upharpoonright_{\!p}$$

$$(\text{ r}\Lambda s; G)\upharpoonright_2(p,q) = \begin{cases} s!\Lambda; G\upharpoonright_2(p,q) & \text{if } r=p \text{ and } s\neq q \\ r?\Lambda; G\upharpoonright_2(p,q) & \text{if } s=p \text{ and } r\neq q \\ G\upharpoonright_2(p,q) & \text{if } \{r,s\}\cap\{p,q\}=\emptyset \end{cases}$$

$$(\text{ r}\Lambda s; G)\upharpoonright_1(p,q) = G\upharpoonright_1(p,q) & \text{if } r\neq q \text{ and } s\neq q$$

$$(q\bullet)\!\!\! |\circ p; G) \upharpoonright_1(p,q) = q\bullet \!\!\! |\circ ; G\upharpoonright p \quad (q\bullet)\!\!\! |\circ p; G) \upharpoonright_2(p,q) = \bullet \!\!\! |\circ p; G\upharpoonright q$$

$$(r\circ\langle\!\! (\bullet s; G) \upharpoonright_1(p,q) = (r\bullet)\!\!\! |\circ s; G) \upharpoonright_1(p,q) = G\upharpoonright_1(p,q) & \text{if } \{r,s\}\cap\{p,q\}=\emptyset$$

Type System

Type System

```
q_i \bullet \rangle \circ; P_i \leq G \upharpoonright_1(p_i, q_i) \quad (i \in I)
                                Q_i \leq G \upharpoonright_2(p_i, q_i) (i \in I)
                                R_j \leq G \upharpoonright r_j (j \in J)
part(G) \subseteq \{p_i \mid i \in I\} \cup \{q_i \mid i \in I\} \cup \{r_i \mid j \in J\} all participants distinct
```

```
\vdash \Pi_{i \in I} \stackrel{*}{\mathsf{p}_i} \llbracket \, \mathsf{q}_i \bullet \rangle \rangle \circ ; P_i \, \rrbracket \, \Vert \, \Pi_{i \in I} \, \mathsf{p}_i \llbracket \, Q_i \, \rrbracket \, \Vert \, \Pi_{j \in J} \, \mathsf{r}_j \llbracket \, R_j \, \rrbracket : \mathsf{G}
```

```
\begin{array}{c} \mathsf{q}_{i} \bullet \rangle \rangle \circ; P_{i} \leq \mathsf{G} \upharpoonright_{1} (\mathsf{p}_{i}, \mathsf{q}_{i}) & (i \in I) \\ Q_{i} \leq \mathsf{G} \upharpoonright_{2} (\mathsf{p}_{i}, \mathsf{q}_{i}) & (i \in I) \\ R_{j} \leq \mathsf{G} \upharpoonright_{T_{j}} & (j \in J) \\ \mathsf{part}(\mathsf{G}) \subseteq \{\mathsf{p}_{i} \mid i \in I\} \cup \{\mathsf{q}_{i} \mid i \in I\} \cup \{\mathsf{r}_{j} \mid j \in J\} \text{ all participants distinct} \end{array}
```

$$\vdash \Pi_{i \in I} \overset{*}{\mathsf{p}_i} \llbracket \, \mathsf{q}_i \bullet \rangle \rangle \circ ; P_i \, \rrbracket \, \| \, \Pi_{i \in I} \, \mathsf{p}_i \llbracket \, Q_i \, \rrbracket \, \| \, \Pi_{j \in J} \, \mathsf{r}_j \llbracket \, R_j \, \rrbracket : \mathsf{G}$$

$$A \llbracket C! \operatorname{card}; C? \operatorname{date} \rrbracket \parallel \overset{\textstyle \times}{C} \llbracket \operatorname{B} \bullet \rangle \rangle \circ ; A! \operatorname{date} \rrbracket \parallel C \llbracket A? \operatorname{card}; \bullet \rangle \rangle \circ C \rrbracket$$

```
q_i \bullet > 0; P_i \le G \upharpoonright_1(p_i, q_i) \quad (i \in I)
                               Q_i \leq G \upharpoonright_2(p_i, q_i) (i \in I)
                               R_j \leq G \upharpoonright r_j (j \in J)
part(G) \subseteq \{p_i \mid i \in I\} \cup \{q_i \mid i \in I\} \cup \{r_i \mid j \in J\} all participants distinct
```

$$\vdash \Pi_{i \in I} \overset{*}{\mathsf{p}_i} \llbracket \, \mathsf{q}_i \bullet \rangle \rangle \circ ; P_i \, \rrbracket \, \| \, \Pi_{i \in I} \, \mathsf{p}_i \llbracket \, Q_i \, \rrbracket \, \| \, \Pi_{j \in J} \, \mathsf{r}_j \llbracket \, R_j \, \rrbracket : \mathsf{G}$$

$$A \llbracket C! \operatorname{card}; C? \operatorname{date} \rrbracket \parallel \overset{\textstyle *}{C} \llbracket \operatorname{B} \bullet \rangle \rangle \circ ; A! \operatorname{date} \rrbracket \parallel C \llbracket A? \operatorname{card}; \bullet \rangle \rangle \circ C \rrbracket$$

$$\begin{array}{c}
A \xrightarrow{\text{card}} C; \\
B \bullet \rangle \rangle \circ C; \\
C \xrightarrow{\text{date}} A: End
\end{array}$$

If $\vdash \mathbb{N} : \mathsf{G} \text{ and } \mathbb{N} \xrightarrow{\phi} \mathbb{N}', \text{ then } \vdash \mathbb{N}' : \mathsf{G}' \text{ for some } \mathsf{G}'.$

Session Fidelity

• If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \land \mathsf{q}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; (\boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \boxplus \mathsf{p} \land \mathsf{q}_i; \mathsf{G}')$, where ϕ_j for $1 \le j \le n$ is an atomic interaction not involving p and q .

Session Fidelity

- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \land \mathsf{q}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \dots; \phi_n; (\boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \boxplus \mathsf{p} \land \mathsf{q}; \mathsf{G}')$, where ϕ_j for $1 \leq j \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \circ \langle \! | \bullet \mathsf{q} |} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; \mathsf{p} \circ \langle \! | \bullet \mathsf{q}; \mathsf{G}',$ where ϕ_i for $1 \leq i \leq n$ is an atomic interaction not involving p and q .

Session Fidelity

- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \land \mathsf{q}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; (\boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \boxplus \mathsf{p} \land \mathsf{q}; \mathsf{G}')$, where ϕ_j for $1 \leq j \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \circ \langle \langle \bullet \mathsf{q} \rangle} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \dots; \phi_n; \mathsf{p} \circ \langle \langle \bullet \mathsf{q}; \mathsf{G}', \mathsf{where} \ \phi_i \ \text{for} \ 1 \leq i \leq n \ \text{is an atomic interaction not involving p}$ and q .
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{q} \bullet \rangle \!\!\! \circ \mathsf{p}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; \mathsf{q} \bullet \rangle \!\!\! \circ \mathsf{p}; \mathsf{G}'$, where ϕ_i for $1 \leq i \leq n$ is an atomic interaction not involving p and q .

and q.

Recap of new terminology

• If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \mathsf{A} \mathsf{q}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; (\boxplus_{i \in I} \mathsf{p} \mathsf{\Lambda}_i \mathsf{q}_i; \mathsf{G}_i \boxplus \mathsf{p} \mathsf{\Lambda}_\mathsf{q}; \mathsf{G}')$, where ϕ_i for

- $1 \le j \le n$ is an atomic interaction not involving p and q. • If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{po}\langle\!\langle \bullet \mathsf{q} \rangle} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \dots; \phi_n; \mathsf{po}\langle\!\langle \bullet \mathsf{q}; \mathsf{G}', \mathsf{where} \ \phi_i \ \text{for} \ 1 < i < n \ \text{is an atomic interaction not involving p}$
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{q} \bullet)\!\!\!\! \circ \mathsf{p}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; \mathsf{q} \bullet)\!\!\!\! \circ \mathsf{p}; \mathsf{G}'$, where ϕ_i for $1 \leq i \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \coprod_{i \in I} p \Lambda_i q_i$; G_i , then $\mathbb{N} = p \llbracket \bigoplus_{i \in I'} q_i ! \Lambda_i$; $P_i \rrbracket \Vdash \mathbb{N}_0$ with $I' \subseteq I$ and $\mathbb{N} \xrightarrow{p \Lambda_i q_i} \mathbb{N}_i$ and $\vdash \mathbb{N}_i : G_i$ for all $i \in I'$.

Type System

Session Fidelity

- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \land \mathsf{q}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; (\boxplus_{i \in I} \mathsf{p} \land_i \mathsf{q}_i; \mathsf{G}_i \boxplus \mathsf{p} \land \mathsf{q}; \mathsf{G}')$, where ϕ_j for $1 \leq j \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{p} \circ \langle \! \mid \mathsf{q} |} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \dots; \phi_n; \mathsf{p} \circ \langle \! \mid \mathsf{q}; \mathsf{G}',$ where ϕ_i for $1 \leq i \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \mathsf{G}$ and $\mathbb{N} \xrightarrow{\mathsf{q} \bullet)\!\!\! \circ \mathsf{p}} \mathbb{N}'$, then $\mathsf{G} = \phi_1; \ldots; \phi_n; \mathsf{q} \bullet)\!\!\! \rangle \circ \mathsf{p}; \mathsf{G}'$, where ϕ_i for $1 \leq i \leq n$ is an atomic interaction not involving p and q .
- If $\vdash \mathbb{N} : \bigoplus_{i \in I} p \Lambda_i q_i$; G_i , then $\mathbb{N} = p \llbracket \bigoplus_{i \in I'} q_i ! \Lambda_i$; $P_i \rrbracket \Vdash \mathbb{N}_0$ with $I' \subseteq I$ and $\mathbb{N} \xrightarrow{p \Lambda_i q_i} \mathbb{N}_i$ and $\vdash \mathbb{N}_i : G_i$ for all $i \in I'$.
- If $\vdash \mathbb{N} : \phi$; G, then $\mathbb{N} \xrightarrow{\phi} \mathbb{N}'$ and $\vdash \mathbb{N}' : G$.

Strong Progress

• If $\mathbb{N} = \mathbb{p}[\![\bigoplus_{i \in I} \mathbb{q}_i ! \Lambda_i; P_i]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbb{p} \Lambda_i \mathbb{q}_i} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for all $i \in I$.

- If $\mathbb{N} = \mathbb{p} \llbracket \bigoplus_{i \in I} \mathbb{q}_i ! \Lambda_i; P_i \rrbracket \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbb{p} \Lambda_i \mathbb{q}_i} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for all $i \in I$.
- If $\mathbb{N} = \mathbb{p}[\![\![\Sigma_{i \in I} \mathbf{q}_i? \lambda_i; P_i]\!]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbf{q}_i \lambda_i \mathbf{p}} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for some $i \in I$.

Strong Progress

- If $\mathbb{N} = \mathbb{p}[\![\bigoplus_{i \in I} \mathbb{q}_i ! \Lambda_i; P_i]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbb{p} \Lambda_i \mathbb{q}_i} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for all $i \in I$.
- If $\mathbb{N} = \mathbb{p}[\![\![\Sigma_{i \in I} \mathbf{q}_i? \lambda_i; P_i]\!]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbf{q}_i \lambda_i \mathbf{p}} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for some $i \in I$.
- $\bullet \ \, \text{If} \ \, \mathbb{N} = \underbrace{\mathsf{pl}}_{\phi} \circ \langle \! \langle \bullet \mathsf{q} ; P \,] \! \big| \ \, \mathbb{N}_0, \text{ then } \, \mathbb{N} \xrightarrow{\overrightarrow{\phi}}_{\mathsf{po}} \langle \! \langle \bullet \mathsf{q} \, \overrightarrow{\phi'} \, \mathsf{q} \bullet \! \rangle \! \circ \mathsf{p}}_{\mathsf{N}'} \, \text{for some}$

Type System

Strong Progress

- If $\mathbb{N} = \mathbb{p}[\![\bigoplus_{i \in I} \mathbb{q}_i ! \Lambda_i; P_i]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbb{p} \Lambda_i \mathbb{q}_i} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for all $i \in I$.
- If $\mathbb{N} = \mathbb{p}[\![\![\Sigma_{i \in I} \mathbf{q}_i? \lambda_i; P_i]\!]\!] \parallel \mathbb{N}_0$, then $\mathbb{N} \xrightarrow{\overrightarrow{\phi} \mathbf{q}_i \lambda_i \mathbf{p}} \mathbb{N}'$ for some $\overrightarrow{\phi}$ and for some $i \in I$.
- $\bullet \ \, \text{If} \ \, \mathbb{N} = \underbrace{\mathsf{pl}}_{\phi} \circ \langle \! \langle \bullet \mathsf{q} ; P \,] \! \big| \ \, \mathbb{N}_0, \text{ then } \, \mathbb{N} \xrightarrow{\overrightarrow{\phi}}_{\mathsf{po}} \langle \! \langle \bullet \mathsf{q} \, \overrightarrow{\phi'} \, \mathsf{q} \bullet \! \rangle \! \circ \mathsf{p}}_{\mathsf{N}'} \, \text{for some}$
- $\bullet \ \, \text{If} \ \, \mathbb{N} = \mathbf{q} \llbracket \, \mathbf{p} \circ \langle \! \langle \bullet ; \, Q \, \rrbracket \, \| \, \, \mathbb{N}_0, \, \text{then} \, \, \mathbb{N} \, \xrightarrow{\overrightarrow{\phi} \, \mathbf{p} \circ \langle \! \langle \bullet \, \mathbf{q} \, \overrightarrow{\phi'} \, \mathbf{q} \bullet \! \rangle \! \circ \mathbf{p}} \, \mathbb{N}' \, \, \text{for some} \\ \overrightarrow{\phi} \, \, \text{and} \, \, \overrightarrow{\phi'}.$

pro

- pro
 - internal delegation allows a better control of the whole conversation

- pro
 - internal delegation allows a better control of the whole conversation
 - internal delegation assures progress with a simple type system

- pro
 - internal delegation allows a better control of the whole conversation
 - internal delegation assures progress with a simple type system
- con

- pro
 - internal delegation allows a better control of the whole conversation
 - internal delegation assures progress with a simple type system
- con
 - channel delegation can represent more protocols

global types allowing

- global types allowing
 - nested delegation

- global types allowing
 - nested delegation
 - deputies to make choices

- global types allowing
 - nested delegation
 - deputies to make choices
 - ...

- global types allowing
 - nested delegation
 - deputies to make choices
 - ...
- coherence of sets of session types

- global types allowing
 - nested delegation
 - deputies to make choices
 - ...
- coherence of sets of session types
- integration with reversibility

Kohei Honda, Nobuko Yoshida, and Marco Carbone.
 Multiparty asynchronous session types. *Journal of the ACM*, 63(1):9, 2016.

- Kohei Honda, Nobuko Yoshida, and Marco Carbone.
 Multiparty asynchronous session types. *Journal of the ACM*, 63(1):9, 2016.
- Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages 435–446. ACM Press, 2011.

- Kohei Honda, Nobuko Yoshida, and Marco Carbone.
 Multiparty asynchronous session types. *Journal of the ACM*, 63(1):9, 2016.
- Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages 435–446. ACM Press, 2011.
- Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In FASE, volume 10202 of LNCS, pages 116–133. Springer, 2017.

- Kohei Honda, Nobuko Yoshida, and Marco Carbone.
 Multiparty asynchronous session types. *Journal of the ACM*, 63(1):9, 2016.
- Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages 435–446. ACM Press, 2011.
- Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In FASE, volume 10202 of LNCS, pages 116–133. Springer, 2017.
- Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of multiparty sessions for safe distributed programming. In *ECOOP*, volume 74 of *LIPIcs*, pages 24:1–24:31. Schloss Dagstuhl, 2017.

Questions

Thank you

