Problem 1. Suppose that a symmetric 3×3 matrix P satisfies $P^2 = P$. Let

$$P = Q\Lambda Q^T,$$

where Q is an orthogonal matrix, and $\Lambda = diag[1, 0, 1]$. Show that P is the projection to $span\{q_1, q_3\}$, where $Q = [q_1, q_2, q_3]$.

Problem 2. Suppose that a non-zero symmetric square matrix P satisfies $P^2 = P$. Then, P is

- (1) i) not ii) possible iii) always a projection matrix.
- (2) i) not ii) possible iii) always positive definite.
- (3) i) not ii) possible iii) always positive semi-definite.
- (4) i) not ii) possible iii) always a Markov matrix.

Problem 3. Given a unit vector x, the matrix $M = xx^T$ is

- (1) i) not ii) possible iii) always symmetric.
- (2) i) not ii) possible iii) always a projection matrix.
- (3) i) not ii) possible iii) always positive definite.
- (4) i) not ii) possible iii) always positive semi-definite.
- (5) i) not ii) possible iii) always has rank 1.

In addition, if M is a Markov matrix, what is x?

Problem 4. Suppose that a symmetric 4 matrix A has eigenvalues -3, 0, 1, 3. Find the dimension of the null space of $A^4 - 10A^2 + 9I = 0$.

Problem 5. Suppose that a positive 3×3 Markov matrix M has a steady-state eigenvector $v = (1\ 2\ 3)^T$. Find the limit

$$\lim_{n \to \infty} M^n \begin{pmatrix} 1\\0\\-3 \end{pmatrix}$$

Problem 6. Find the eigenvalues of the matrix M.

- (1) Given a vector v, $M = -3I + 2vv^T$.
- (2) Suppose that a symmetric Markov matrix S has eigenvalues $\lambda_1, \dots, \lambda_n$. $M = S 5I + uu^T$, where $u = (1 \dots 1)^T$.