Heuristic intro to some Quantum Monte Carlo and selected applications

Charles-David Hebert

Universite de Sherbrooke charles-david.hebert@usherbrooke.ca

20 novembre 2018

Overview

- Intro and motivation
- 2 Generalities
- Monte Carlo Methods
 - Continuous time Quantum Monte Carlo
 - Auxiliary field QMC
 - Stochastic series QMC
 - Variational Quantum Monte Carlo
- Selected applications

• Interest in modelling, predicting and gaining insights for various physical systems.

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem : The distribution of a sum of independent random variables approaches a Gaussian distribution.

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem : The distribution of a sum of independent random variables approaches a Gaussian distribution.
 - $\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$ Markov Chain central limit theorem

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.
 - $\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$
 - Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms
 - Submatrix Updates for the Hirsch-Fye algorithm [8].

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms
 - Submatrix Updates for the Hirsch-Fye algorithm [8].
 - Advent of Continuous time quantum Monte Carlo solvers [5]!

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms
 - Submatrix Updates for the Hirsch-Fye algorithm [8].
 - Advent of Continuous time quantum Monte Carlo solvers [5]!
 - Designer sign-free Hamiltonian Auxiliary field QMC [3] .

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms
 - Submatrix Updates for the Hirsch-Fye algorithm [8].
 - Advent of Continuous time quantum Monte Carlo solvers [5]!
 - Designer sign-free Hamiltonian Auxiliary field QMC [3] .
 - Better updates in stochastic series expansion [1].

- Interest in modelling, predicting and gaining insights for various physical systems.
- Analytic solutions are often unattainable without drastic approximations and ED, even if extremely powerful, is overwhelmed by too many degrees of freedom.
- The Central limit theorem: The distribution of a sum of independent random variables approaches a Gaussian distribution.

•
$$\mathbf{X} = \sum_{i=1}^{N} x_i \Rightarrow f_{\mathbf{X}}(x) \sim N(\mu_x, \frac{\sigma_x}{\sqrt{N}})$$

- Markov Chain central limit theorem
- Advances in computing power and especially efficient development of algorithms
 - Submatrix Updates for the Hirsch-Fye algorithm [8].
 - Advent of Continuous time quantum Monte Carlo solvers [5]!
 - Designer sign-free Hamiltonian Auxiliary field QMC [3] .
 - Better updates in stochastic series expansion [1].

$$H = H_{ee} + H_B + H_{eB} + \dots$$

$$H = H_{ee} + H_B + H_{eB} + ...$$
 (1)

$$H_{ee} = \sum_{\nu\nu'} t_{\nu\nu'} c_{\nu}^{\dagger} c_{\nu'} + U_{\nu\nu'} n_{\nu} n_{\nu'}$$

$$H = H_{ee} + H_{B} + H_{eB} + ...$$
 (1)

$$H_{ee} = \sum_{\nu\nu'} t_{\nu\nu'} c_{\nu}^{\dagger} c_{\nu'} + U_{\nu\nu'} n_{\nu} n_{\nu'}$$
 (2)

$$H_{B} = \sum_{q} \omega_{q} b_{q}^{\dagger} b_{q}$$

$$H = H_{ee} + H_B + H_{eB} + ...$$
 (1)

$$H_{\text{ee}} = \sum_{\nu\nu'} t_{\nu\nu'} c_{\nu}^{\dagger} c_{\nu'} + U_{\nu\nu'} n_{\nu} n_{\nu'} \ (2)$$

$$H_B = \sum_{q}^{\nu\nu} \omega_q b_q^{\dagger} b_q \tag{3}$$

$$H_{ extsf{eB}} \, = \, \sum_{q} g_{q} \left(
ho_{q} b_{q}^{\dagger} +
ho_{q}^{\dagger} b_{q}
ight)$$

$$H = H_{ee} + H_B + H_{eB} + ...$$
 (1)

$$H_{ee} = \sum_{\nu\nu'} t_{\nu\nu'} c_{\nu}^{\dagger} c_{\nu'} + U_{\nu\nu'} n_{\nu} n_{\nu'}$$
 (2)

$$H_B = \sum_{q}^{p} \omega_q b_q^{\dagger} b_q \tag{3}$$

$$H_{eB} = \sum_{q} g_{q} \left(\rho_{q} b_{q}^{\dagger} + \rho_{q}^{\dagger} b_{q} \right)$$
 (4)

$$\rho_{q}:=\rho_{q}[c^{\dagger},c]$$

Models

$$H = H_{ee} + H_B + H_{eB} + ...$$
 (1)

$$H_{\text{ee}} = \sum_{\nu\nu'} t_{\nu\nu'} c_{\nu}^{\dagger} c_{\nu'} + U_{\nu\nu'} n_{\nu} n_{\nu'}$$
 (2)

$$H_B = \sum_q \omega_q b_q^{\dagger} b_q \tag{3}$$

$$H_{eB} = \sum_{q} g_{q} \left(\rho_{q} b_{q}^{\dagger} + \rho_{q}^{\dagger} b_{q} \right)$$
 (4)

$$\rho_q := \rho_q[c^\dagger, c]$$

What MC for what?

- Spin systems (Heisenberg) \Rightarrow SSE
- Lattice systems ⇒ Af-QMC
- (Anderson) Impurity problems \Rightarrow CTQMC

⇒ Quantities of interests : **Observables!**

- ⇒ Quantities of interests : Observables!
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

- ⇒ Quantities of interests : **Observables!**
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{\mathcal{C}_n} p(\mathcal{C}_n) A_n$$

- ⇒ Quantities of interests : **Observables!**
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$

- ⇒ Quantities of interests : **Observables!**
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$
 (5)

 \Rightarrow Sum over a probability distribution with probability $p(\mathcal{C}_n)$ for the configuration \mathcal{C}_n .

- ⇒ Quantities of interests : Observables!
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$
 (5)

- \Rightarrow Sum over a probability distribution with probability $p(\mathcal{C}_n)$ for the configuration \mathcal{C}_n .
- \Rightarrow If one samples the configurations according to the probability density, one can write an approximation :

- ⇒ Quantities of interests : Observables!
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$
 (5)

- \Rightarrow Sum over a probability distribution with probability $p(\mathcal{C}_n)$ for the configuration \mathcal{C}_n .
- \Rightarrow If one samples the configurations according to the probability density, one can write an approximation :

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^N A(\mathcal{C}_n)$$

- ⇒ Quantities of interests : **Observables!**
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$
 (5)

- \Rightarrow Sum over a probability distribution with probability $p(\mathcal{C}_n)$ for the configuration \mathcal{C}_n .
- \Rightarrow If one samples the configurations according to the probability density, one can write an approximation :

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^{N} A(C_n) := \langle A \rangle_{MC}$$

- ⇒ Quantities of interests : **Observables!**
- \Rightarrow Calculated through an expectation value with respect to a given probability distribution.

$$\langle A \rangle_p = \sum_{C_n} p(C_n) A_n = \int_{C(\mathbf{x})} d\mathbf{x} \ p(\mathbf{x}) A(\mathbf{x})$$
 (5)

- \Rightarrow Sum over a probability distribution with probability $p(\mathcal{C}_n)$ for the configuration \mathcal{C}_n .
- \Rightarrow If one samples the configurations according to the probability density, one can write an approximation :

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^{N} A(\mathcal{C}_n) := \langle A \rangle_{MC}$$
 (6)

Importance Sampling

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^{N} A(\mathcal{C}_n)$$

Importance Sampling

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^{N} A(C_n) := \langle A \rangle_{MC}$$

Importance Sampling

$$\langle A \rangle \approx \frac{1}{N} \sum_{n=0}^{N} A(\mathcal{C}_n) := \langle A \rangle_{MC}$$
 (7)

 \Rightarrow Thus, one must write observables ideally in a form of a quadrature.

- \Rightarrow Thus, one must write observables ideally in a form of a quadrature.
- \Rightarrow Sampling according to the partition function, which can be written in such form is therefore very natural.

- \Rightarrow Thus, one must write observables ideally in a form of a quadrature.
- \Rightarrow Sampling according to the partition function, which can be written in such form is therefore very natural.

$$Z = \text{Tr}\left[\exp{-\beta H}\right]$$

- \Rightarrow Thus, one must write observables ideally in a form of a quadrature.
- \Rightarrow Sampling according to the partition function, which can be written in such form is therefore very natural.

$$Z = \text{Tr}\left[\exp{-\beta H}\right] \tag{8}$$

The trace can be computed in any basis, but some basis are better for different problems.

- \Rightarrow Thus, one must write observables ideally in a form of a quadrature.
- \Rightarrow Sampling according to the partition function, which can be written in such form is therefore very natural.

$$Z = \text{Tr}\left[\exp{-\beta H}\right] \tag{8}$$

The trace can be computed in any basis, but some basis are better for different problems.

- CTQMC Coherent States path integrals.
 - SSE Taylor expansion in a cleverly chosen basis of H (avoid sign-problem).
- AF-QMC Hubbard-Stratonovich transformation \Rightarrow independent Ising spins "basis".

$$Z = \int D[\overline{c}c] \exp[-S]$$

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c] e^{-S_0} e^{-S_I}$$

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$
 Coherent state Path integral

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$
$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

Coherent state Path integral

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$
$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$
$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$
$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$
$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$

$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$

$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

$$:= \sum_{C_n} W_{C_n}$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$

$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$

$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

$$:= \sum_{C_n} W_{C_n}$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

1 Band Hubbard model

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$

$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$

$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

$$:= \sum_{C_n} W_{C_n}$$

$$W_{C_n} = \frac{(-1)^n}{n!} \left(\prod^n V_{ii'} \right) \operatorname{Det} \left[\stackrel{\leftrightarrow}{\boldsymbol{G}} \right]$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

1 Band Hubbard model

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$

$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$

$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

$$:= \sum_{C_n} W_{C_n}$$

$$W_{C_n} = \frac{(-1)^n}{n!} \left(\prod^n V_{ii'} \right) \operatorname{Det} \left[\stackrel{\leftrightarrow}{\boldsymbol{G}} \right]$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

1 Band Hubbard model

Wick's Theorem

$$Z = \int D[\overline{c}c] \exp[-S] = \int D[\overline{c}c]e^{-S_0}e^{-S_I}$$

$$= \sum_{m} \int D[\overline{c}c]e^{-S_0} \left[\frac{(-1)^m}{m!} (S_I)^m \right]$$

$$\frac{Z}{Z_0} = \sum_{m=0}^{\infty} \frac{1}{m!} \int d1d1'...dmdm'$$

$$V_{11'}...V_{mm'} \langle T_{\tau}[n_1n_{1'}...n_mn_{m'}] \rangle_0$$

$$:= \sum_{C_n} W_{C_n}$$

$$W_{C_n} = \frac{(-1)^n}{n!} \left(\prod^n V_{ii'} \right) \operatorname{Det} \left[\stackrel{\leftrightarrow}{\boldsymbol{G}} \right]$$

Coherent state Path integral

Taylor expansion : Feynman Diagrams

1 Band Hubbard model

Wick's Theorem

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right]$$

9/16

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \approx \operatorname{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right]$$

9/16

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \approx \operatorname{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right] \tag{9}$$

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice.

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \approx \operatorname{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right] \tag{9}$$

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice. Take L time slices.

$$Z = \text{Tr}\left[e^{-\beta H}\right] \approx \text{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right]$$
 (9)

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice. Take L time slices.

$$\exp\left(-\Delta\tau U[n_{\uparrow}n_{\downarrow} - \frac{1}{2}(n_{\uparrow} + n_{\downarrow})]\right) = \frac{1}{2}\sum_{s=\pm 1}\exp\left(\lambda s(n_{\uparrow} - n_{\downarrow})\right) (10)$$

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \approx \operatorname{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right] \tag{9}$$

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice. Take L time slices.

$$\exp\left(-\Delta\tau U[n_{\uparrow}n_{\downarrow} - \frac{1}{2}(n_{\uparrow} + n_{\downarrow})]\right) = \frac{1}{2}\sum_{s=\pm 1}\exp\left(\lambda s(n_{\uparrow} - n_{\downarrow})\right) (10)$$

With this transformation, the fermions interact now through bosons with coupling λ .

$$Z = \text{Tr}\left[e^{-\beta H}\right] \approx \text{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right]$$
 (9)

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice. Take L time slices.

$$\exp\left(-\Delta\tau U[n_{\uparrow}n_{\downarrow}-\frac{1}{2}(n_{\uparrow}+n_{\downarrow})]\right)=\frac{1}{2}\sum_{s=\pm 1}\exp\left(\lambda s(n_{\uparrow}-n_{\downarrow})\right) (10)$$

With this transformation, the fermions interact now through bosons with coupling λ .

$$\Rightarrow Z = \frac{1}{2^L} \sum_{\{s\}} \text{Tr} \left[\prod_{l=0}^{L-1} e^{-\Delta \tau H_0} \exp\left(\lambda s (n_{\uparrow} - n_{\downarrow})\right) \right]$$
 (11)

$$Z = \text{Tr}\left[e^{-\beta H}\right] \approx \text{Tr}\left[e^{-\beta H_0}e^{-\beta H_I}\right]$$
 (9)

One must then use a discrete Hubbard Stratonovich to decouple the quartic terms in H_I . One Ising field at each imaginary time slice. Take L time slices.

$$\exp\left(-\Delta\tau U[n_{\uparrow}n_{\downarrow}-\frac{1}{2}(n_{\uparrow}+n_{\downarrow})]\right)=\frac{1}{2}\sum_{s=\pm 1}\exp\left(\lambda s(n_{\uparrow}-n_{\downarrow})\right) (10)$$

With this transformation, the fermions interact now through bosons with coupling λ .

$$\Rightarrow Z = \frac{1}{2^L} \sum_{\{s\}} \text{Tr} \left[\prod_{l=0}^{L-1} e^{-\Delta \tau H_0} \exp\left(\lambda s (n_{\uparrow} - n_{\downarrow})\right) \right]$$
(11)

4 D > 4 B > 4 E > 19 > E 9 4 C

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right]$$

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right]$$

$$= \sum_{\alpha_0} \langle \alpha_0 | \sum_{n} \frac{\beta^n}{n!} (-H)^n | \alpha_0 \rangle$$
(12)

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right]$$

$$= \sum_{\alpha_{0}} \langle \alpha_{0} | \sum_{n} \frac{\beta^{n}}{n!} (-H)^{n} | \alpha_{0} \rangle$$

$$= \sum_{\alpha_{0}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} \langle \alpha_{0} | (-H) | \alpha_{1} \rangle \langle \alpha_{1} | (-H) | \alpha_{2} \rangle \dots \langle \alpha_{n-1} | (-H) | \alpha_{n} \rangle$$

$$(12)$$

The basic idea of SSE is to write the trace over the evolution operator using complete basis states and taylor expanding :

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \tag{12}$$

$$= \sum_{\alpha_0} \langle \alpha_0 | \sum_n \frac{\beta^n}{n!} (-H)^n | \alpha_0 \rangle$$
 (13)

$$=\sum_{\{\alpha_i\}}\sum_{n=0}^{\infty}\frac{\beta^n}{n!}\langle\alpha_0|(-H)|\alpha_1\rangle\langle\alpha_1|(-H)|\alpha_2\rangle...\langle\alpha_{n-1}|(-H)|\alpha_n\rangle(14)$$

With $\alpha_n = \alpha_0$.

The basic idea of SSE is to write the trace over the evolution operator using complete basis states and taylor expanding :

$$Z = \operatorname{Tr}\left[e^{-\beta H}\right] \tag{12}$$

$$= \sum_{\alpha_0} \langle \alpha_0 | \sum_n \frac{\beta^n}{n!} (-H)^n | \alpha_0 \rangle$$
 (13)

$$=\sum_{\{\alpha_i\}}\sum_{n=0}^{\infty}\frac{\beta^n}{n!}\langle\alpha_0|(-H)|\alpha_1\rangle\langle\alpha_1|(-H)|\alpha_2\rangle...\langle\alpha_{n-1}|(-H)|\alpha_n\rangle(14)$$

With $\alpha_n = \alpha_0$.

Establish a variational wave function.

- Establish a variational wave function.
- Calculate the expectation value for the energy with this given wave function.

- Establish a variational wave function.
- 2 Calculate the expectation value for the energy with this given wave function.
- § Find a minimum (variational energy) with respect to the variational parameters.

- Establish a variational wave function.
- 2 Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.

- Establish a variational wave function.
- 2 Calculate the expectation value for the energy with this given wave function.
- § Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.

 \Rightarrow x := "real-space configuration", and lpha := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle}$$

- Establish a variational wave function.
- Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.

 \Rightarrow x := "real-space configuration", and lpha := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle}$$

$$E_{\alpha} = \sum_{x} p_{\alpha}(x) \frac{H \Psi_{\alpha}(x)}{\Psi_{\alpha}(x)}$$
(15)

- Establish a variational wave function.
- 2 Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.

 \Rightarrow x := "real-space configuration", and α := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle} \tag{15}$$

$$E_{\alpha} = \sum_{x} p_{\alpha}(x) \frac{H \Psi_{\alpha}(x)}{\Psi_{\alpha}(x)}$$
 (16)

$$p_{\alpha}(x) = \frac{\left|\Psi_{\alpha}(x)\right|^{2}}{\sum_{x'} \left|\Psi_{\alpha}(x')\right|^{2}}$$

- Establish a variational wave function.
- Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.

 \Rightarrow x := "real-space configuration", and α := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle} \tag{15}$$

$$E_{\alpha} = \sum_{x} p_{\alpha}(x) \frac{H \Psi_{\alpha}(x)}{\Psi_{\alpha}(x)}$$
 (16)

$$p_{\alpha}(x) = \frac{\left|\Psi_{\alpha}(x)\right|^2}{\sum_{x'} \left|\Psi_{\alpha}(x')\right|^2} \tag{17}$$

- Establish a variational wave function.
- Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.
- \Rightarrow x := "real-space configuration", and lpha := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle}$$
(15)
$$E_{\alpha} = \sum_{x} \rho_{\alpha}(x) \frac{H \Psi_{\alpha}(x)}{\Psi_{\alpha}(x)}$$
(16)
$$E_{\alpha} = \frac{1}{M} \sum_{m} \frac{H \Psi_{\alpha}(x_{m})}{\Psi_{\alpha}(x_{m})}$$
$$\rho_{\alpha}(x) = \frac{|\Psi_{\alpha}(x)|^{2}}{\sum_{x} |\Psi_{\alpha}(x')|^{2}}$$
(17)

- Establish a variational wave function.
- Calculate the expectation value for the energy with this given wave function.
- Find a minimum (variational energy) with respect to the variational parameters.
- Calculate various physical observables with the wave function obtained previously.
- \Rightarrow x := "real-space configuration", and lpha := "variational parameters".

$$E_{\alpha} = \frac{\langle \Psi_{\alpha} | H | \Psi_{\alpha} \rangle}{\langle \Psi_{\alpha} | \Psi_{\alpha} \rangle}$$
(15)
$$E_{\alpha} = \sum_{x} \rho_{\alpha}(x) \frac{H \Psi_{\alpha}(x)}{\Psi_{\alpha}(x)}$$
(16)
$$E_{\alpha} = \frac{1}{M} \sum_{m} \frac{H \Psi_{\alpha}(x_{m})}{\Psi_{\alpha}(x_{m})}$$
$$\rho_{\alpha}(x) = \frac{|\Psi_{\alpha}(x)|^{2}}{\sum_{x} |\Psi_{\alpha}(x')|^{2}}$$
(17)

SSE Application: 1D Heisenberg Model

CTQMC Application : Metal-Insulator Crossover on the square lattice

[2].

AF-QMC Application : The ground-state phase diagram for the honeycomb lattice model

References I

- Anders W. Sandvik, *Stochastic Series Expansion (quantum Monte Carlo)*, XIV Training Course on Strongly Correlated Systems Vietri Sul Mare, Salerno, Italy, October 5-16, 2009.
- Fakher Assaad, Lecture Notes Julich 2014 and Lecture notes Marburg 2018.
- David J. Luitz, *Numerical methods and applications in many fermion systems*, PhD thesis.
- Emmanuel Gull et al., Continuous time Monte Carlo methods for quantum impurity models, Review of modern physics Volume 83, 2011.
- Manuel Weber et al., Continuous-time quantum Monte Carlo for fermion-boson lattice models: Improved bosonic estimators and application to the Holstein mode.
- Otsuka et al., Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons, PRX 2016.

References II

Nukala et al., Fast update algorithm for the quantum Monte Carlo simulation of the Hubbard model, PRB 2009.

Kristjan Haule, Computational physics, Rutgers Lecture notes.