Geometric Data Structures: Range Queries

Sujoy Bhore

Indian Institute of Technology Bombay

A navigation system should display the current map view. How can we efficiently choose the data to display?

A navigation system should display the current map view. How can we efficiently choose the data to display?

A navigation system should display the current map view. How can we efficiently choose the data to display?

A navigation system should display the current map view. How can we efficiently choose the data to display?

2/19 Sujoy Bhore · Range Queries

A navigation system should display the current map view. How can we efficiently choose the data to display?

Evaluating each map feature is unrealistic.

We want a fast data structure for answering range queries

Motivation: Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are stored. We now want to perform a search: which employees have an income between 25K and 35K and were born between 1970 and 2000?

Sujoy Bhore · Range Queries

Motivation: Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are stored. We now want to perform a search: which employees have an income between 25K and 35K and were born between 1970 and 2000?

Geometric Interpretation:

Entries are points: (birth year, income level) and the query is an axis-parallel rectangle

Motivation: Geometry in Databases

In a personnel database, the employees of a company are anonymized and their monthly income and birth year are stored. We now want to perform a search: which employees have an income between 25K and 35K and were born between 1970 and 2000?

lacksquare This problem can easily be generalized to d dimensions.

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

largest element in the left subtree

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacktriangle internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- \blacksquare internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacksquare internal node v stores pivot value x_v

Example:

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

Task: Design a data structure for the case d = 1.

Solution: balanced binary search tree:

- stores points in the leaves
- lacksquare internal node v stores pivot value x_v

Example:

Search for all points in [6,50]

Answer:

Points in the leaves between the search paths, i.e.,

{7,8,12,15,17,21,33,41}

Where do the two paths diverge?


```
FindSplitNode(T,[x,x']) Where do the two paths diverge? v \leftarrow \operatorname{root}(T) while v not a leaf and (x' \leq x_v \text{ or } x > x_v) do \sqsubseteq if x' \leq x_v then v \leftarrow \operatorname{lc}(v) else v \leftarrow \operatorname{rc}(v) return v
```



```
FindSplitNode(T,[x,x']) Where do the two paths diverge? v \leftarrow \operatorname{root}(T) while v not a leaf and (x' \leq x_v \text{ or } x > x_v) do \sqsubseteq if x' \leq x_v then v \leftarrow \operatorname{lc}(v) else v \leftarrow \operatorname{rc}(v) return v
```

```
1dRangeQuery(T, |x, x'|)
  v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, [x, x'])
  if v_{\rm split} is leaf then check v_{\rm split}
  else
       v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
       while v not a leaf do
             if x \leq x_v then
                 ReportSubtree(rc(v)); v \leftarrow lc(v)
            else v \leftarrow rc(v)
        if x \leq x_v then report v
       // analog. for x' and rc(v_{split})
```



```
FindSplitNode(T,[x,x']) Where do the two paths diverge? v \leftarrow \operatorname{root}(T) while v not a leaf and (x' \leq x_v \text{ or } x > x_v) do \sqsubseteq if x' \leq x_v then v \leftarrow \operatorname{lc}(v) else v \leftarrow \operatorname{rc}(v) return v
```

```
 \begin{array}{ll} \mbox{1dRangeQuery}(T,[x,x']) & \mbox{Can find $canonical subset of} \\ v_{\rm split} \leftarrow \mbox{FindSplitNode}(T,[x,x']) & \mbox{all leaves in linear time} \\ \mbox{if $v_{\rm split}$ is leaf $\it then$ check $v_{\rm split}$} \\ \mbox{else} \\ \mbox{$v \leftarrow \mbox{lc}(v_{\rm split})$} \\ \mbox{$v \leftarrow \mbox{lc}(v_{\rm split})$} \\ \mbox{$v \leftarrow \mbox{lc}(v_{\rm split})$} \\ \mbox{$v_{\rm split}$} \\ \mbox{$v \leftarrow \mbox{lc}(v_{\rm split})$} \\ \mbox{$v \leftarrow \mbox{lc}(v_{\rm split})$}
```

 $v \leftarrow \operatorname{lc}(v_{\operatorname{split}})$ while v not a leaf do | if $x \leq x_v$ then | ReportSubtree(rc(v)); $v \leftarrow \operatorname{lc}(v)$ else $v \leftarrow \operatorname{rc}(v)$ if $x \leq x_v$ then report v // analog. for x' and $\operatorname{rc}(v_{\operatorname{split}})$

 $v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')$ **if** v_{split} is leaf **then** check v_{split} **else**

Sujoy Bhore Range Queries

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')
if v_{\text{split}} is leaf then check v_{\text{split}}
else
```

Theorem 1: A set of n points in \mathbb{R} can be preprocessed in $O(n\log n)$ time and O(n) space so that we can answer range queries in $O(k + \log n)$ time, where k is the number of reported points.

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')
if v_{\text{split}} is leaf then check v_{\text{split}}
else
```

standard BST

Theorem 1: A set of n points in \mathbb{R} can be preprocessed in $O(n\log n)$ time and O(n) space so that we can answer range queries in $O(k + \log n)$ time, where k is the number of reported points.

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x')

if v_{\text{split}} is leaf then check v_{\text{split}}

else
```

standard BST

Theorem 1: A set of n points in $\mathbb R$ can be preprocessed in $O(n\log n)$ time and O(n) space so that we can answer range queries in $O(k+\log n)$ time, where k is the number of reported points. Output sensitive!

Analysis of 1dRangeQuery

1dRangeQuery(T, x, x')

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x') \ O(\log n)
if v_{\text{split}} is leaf then check v_{\text{split}}
else
```

standard BST

Theorem 1: A set of n points in \mathbb{R} can be preprocessed in $O(n\log n)$ time and O(n) space so that we can answer range queries in $O(k+\log n)$ time, where k is the number of reported points. Output sensitive!

```
v_{\text{split}} \leftarrow \text{FindSplitNode}(T, x, x') \ O(\log n)
if v_{\text{split}} is leaf then check v_{\text{split}}
else
```

```
v \leftarrow \mathsf{lc}(v_{\mathsf{split}}) while v not a leaf do | if x \leq x_v then | ReportSubtree(\mathsf{rc}(v)); v \leftarrow \mathsf{lc}(v) else v \leftarrow \mathsf{rc}(v) report v // analog. for x' and \mathsf{rc}(v_{\mathsf{split}})
```

Proof sketch -

- two search paths of length $O(\log n)$.
- reporting subtree takes $O(k_v)$ time, where k_v is the # of leaves in the subtree of v.

standard BST

Theorem 1: A set of n points in \mathbb{R} can be preprocessed in $O(n\log n)$ time and O(n) space so that we can answer range queries in $O(k + \log n)$ time, where k is the number of reported points. Output sensitive!

Orthogonal Range Searching for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Orthogonal Range Searching for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Orthogonal Range Searching for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solution approaches:

- one search tree, alternate search for x and y coordinates $\rightarrow kd$ -Tree
- lacktriangleright primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - \rightarrow Range Tree

Orthogonal Range Searching for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solution approaches:

- one search tree, alternate search for x and y coordinates $\rightarrow kd$ -Tree
- lacktriangleright primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - → Range Tree

Temporary assumption: general position, that is, no two points have the same x- or y-coordinates

Orthogonal Range Searching for d=2

Given: Set P of n points in \mathbb{R}^2

Goal: A data structure to efficiently answer range queries of

the form $R = [x, x'] \times [y, y']$

Ideas for generalizing the 1d case?

Solution approaches:

- one search tree, alternate search for x and y coordinates $\to kd ext{-Tree}$
- lacktriangleright primary search tree on x-coordinates, several secondary search trees on y-coordinates
 - → Range Tree

Temporary assumption: general position, that is, no two points have the same x- or y-coordinates

Idea: Use 1-dimensional search trees on two levels:

lacksquare a 1d search tree T_x on x-coordinates

- lacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates

Idea: Use 1-dimensional search trees on two levels:

- lacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates
- lacktriangle compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x

10/19

- \blacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates
- lacktriangle compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x

- lacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates
- lacktriangle compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x

- lacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates
- lacktriangle compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x

- lacksquare a 1d search tree T_x on x-coordinates
- in each node v of T_x a 1d search tree $T_y(v)$ to store the canonical subset P(v) based on y-coordinates
- compute the points by x-query in T_x and subsequent y-queries in the auxiliary structures T_y for the subtrees in T_x $T_y(v)$

BuildRangeTree(P)

```
\begin{array}{l} \mbox{if } |P| = 1 \mbox{ then} \\ | \mbox{ create leaf } v \mbox{ for the point in } P \\ \mbox{else} \end{array}
```

```
split P at x_{\text{median}} into P_1 = \{p \in P \mid p_x \leq x_{\text{median}}\} and P_2 = P \setminus P_1 v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1) v_{\text{right}} \leftarrow \text{BuildRangeTree}(P_2) create node v with pivot x_{\text{median}} and children v_{\text{left}} and v_{\text{right}}
```

 $T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$ return v

BuildRangeTree(P)

```
if |P| = 1 then
     create leaf v for the point in P
else
     split P at x_{\mathsf{median}} into P_1 = \{ p \in P \mid p_x \leq x_{\mathsf{median}} \} and P_2 = P \setminus P_1
     v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1)
     v_{\mathsf{right}} \leftarrow \mathsf{BuildRangeTree}(P_2)
     create node v with pivot x_{\rm median} and children v_{\rm left} and v_{\rm right}
T_y(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}
return v
                                   (1-D search tree as before.)
```

11/19**Sujoy Bhore** Range Queries

Range Trees: Construction BuildRangeTree(P)if |P| = 1 then create leaf v for the point in Pelse split P at x_{median} into $P_1 = \{ p \in P \mid p_x \leq x_{\mathsf{median}} \}$ and $P_2 = P \setminus P_1$ $v_{\text{left}} \leftarrow \text{BuildRangeTree}(P_1)$ $v_{\mathsf{right}} \leftarrow \mathsf{BuildRangeTree}(P_2)$ create node v with pivot $x_{\rm median}$ and children $v_{\rm left}$ and $v_{\rm right}$ $T_{y}(v) \leftarrow \text{binary search tree for } P \text{ w.r.t } y\text{-coordinates}$

(1-D search tree as before.)

Task: How much space and runtime does BuildRangeTree use?

11/19

return v

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

12/19

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Proof:

Space - \blacksquare Tree T_x uses O(n) space.

- Canonical subsets of each level of T_x are a partition of P.
- Each point $p \in P$ appears once per level and all trees T_y of one level need together O(n) space.
- \blacksquare T_x has $O(\log n)$ levels \Longrightarrow $O(n \log n)$ space.

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Proof:

Space - \blacksquare Tree T_x uses O(n) space.

- lacksquare Canonical subsets of each level of T_x are a partition of P.
- Each point $p \in P$ appears once per level and all trees T_y of one level need together O(n) space.
- \blacksquare T_x has $O(\log n)$ levels $\implies O(n \log n)$ space.

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Proof:

Space - \blacksquare Tree T_x uses O(n) space.

- lacksquare Canonical subsets of each level of T_x are a partition of P.
- Each point $p \in P$ appears once per level and all trees T_y of one level need together O(n) space.
- \blacksquare T_x has $O(\log n)$ levels \Longrightarrow $O(n \log n)$ space.

Note: we have O(n) secondary trees, but, total space is $O(n \log n)$.

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

- Time -
- Constructing T_x takes $O(n \log n)$ time as before.
- For the T_y ' pre-sort P by y-coordinates once in $O(n \log n)$ time.
- From this sorted list build $T_y(v)$ bottom-up in O(n) time for the root v of T_x .
- Filter the sorted list into sorted lists of subsets P_1 and P_2 and construct $T_y(u)$, $T_y(w)$ again in O(n) time per level for u = lc(v), w = rc(v); then recurse.
- $O(\log n)$ levels $\Longrightarrow O(n \log n)$ time in total.

Lemma 3: A Range Tree for n points in \mathbb{R}^2 uses $O(n \log n)$ space and can be constructed in $O(n \log n)$ time.

Time -

- Constructing T_x takes $O(n \log n)$ time as before.
- For the T_y ' pre-sort P by y-coordinates once in $O(n \log n)$ time.
- From this sorted list build $T_y(v)$ bottom-up in O(n) time for the root v of T_x .

per level - O(n) time.

- Filter the sorted list into sorted lists of subsets P_1 and P_2 and construct $T_y(u)$, $T_y(w)$ again in O(n) time per level for u = lc(v), w = rc(v); then recurse.
 - $lacksquare O(\log n)$ levels $\Longrightarrow O(n \log n)$ time in total.

Range Queries in a Range Tree Reminder:

```
1dRangeQuery(T, x, x')
   v_{\mathsf{split}} \leftarrow \mathsf{FindSplitNode}(T, x, x')
   if v_{\rm split} is leaf then check v_{\rm split}
   else
        v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf \mathbf{do}
              if x \leq x_v then
            ReportSubtree(rc(v))
v \leftarrow lc(v)
else v \leftarrow rc(v)
         report v
        // analogous for x' and rc(v_{split})
```

Range Queries in a Range Tree Reminder:

```
1dRangeQuery(T, x, x') 2dRangeQuery(T, [x, x'] \times [y, y'])
   v_{\sf split} \leftarrow {\sf FindSplitNode}(T, x, x')
   if v_{\text{split}} is leaf then check v_{\text{split}} if v_{\text{split}} \in [x, x'] \times [y, y'] then report v_{\text{split}}
   else
        v \leftarrow \mathsf{lc}(v_{\mathsf{split}})
        while v not leaf do
            if x \leq x_v then
            ReportSubtree(rc(v)) 1dRangeQuery(T_y(rc(v)), y, y') v \leftarrow lc(v)
             else v \leftarrow rc(v)
       <u>report v</u> if v \in [x, x'] \times [y, y'] then report v
       // analogous for x' and rc(v_{split})
```

13/19 Sujoy Bhore · Range Queries

Range Queries in a Range Tree

```
 \begin{array}{lll} \textbf{1dRangeQuery}(T,x,x') & \textbf{2dRangeQuery}(T,[x,x']\times[y,y']) \\ v_{\text{split}} \leftarrow \text{FindSplitNode}(T,x,x') & \textbf{if } v_{\text{split}} & \textbf{if } v_{\text{split}} \in [x,x']\times[y,y'] \textbf{ then report } v_{\text{split}} \\ \textbf{else} & v \leftarrow \text{lc}(v_{\text{split}}) & \textbf{while } v \text{ not leaf do} \\ \textbf{if } x \leq x_v & \textbf{then} \\ \textbf{ReportSubtree}(\textbf{rc}(v)) & \textbf{1dRangeQuery}(T_y(\textbf{rc}(v)),y,y') \\ v \leftarrow \text{lc}(v) & \textbf{else } v \leftarrow \textbf{rc}(v) \\ \textbf{else } v \leftarrow \textbf{rc}(v) & \textbf{then report } v \\ \textbf{// analogous for } x' & \textbf{and } \textbf{rc}(v_{\text{split}}) \\ \end{array}
```

Lemma 4: A range query in a Range Tree takes $O(\log^2 n + k)$ time, where k is the number of reported points.

13/19 Sujoy Bhore · Range Queries

Range Queries in a Range Tree

```
\begin{array}{l} \textbf{1dRangeQuery}(T,x,x') & \textbf{2dRangeQuery}(T,[x,x']\times[y,y']) \\ v_{\text{split}} \leftarrow \mathsf{FindSplitNode}(T,x,x') & \textbf{if } v_{\text{split}} \in [x,x']\times[y,y'] \, \textbf{then report } v_{\text{split}} \\ \textbf{else} & v \leftarrow \mathsf{lc}(v_{\text{split}}) \\ \textbf{while } v \text{ not leaf do} \\ \textbf{if } x \leq x_v \, \textbf{then} \\ \textbf{ReportSubtree}(\mathsf{rc}(v)) & \textbf{1dRangeQuery}(T_y(\mathsf{rc}(v)),y,y') \\ v \leftarrow \mathsf{lc}(v) \\ \textbf{else } v \leftarrow \mathsf{rc}(v) \\ \textbf{report } v \quad \textbf{if } v \in [x,x'] \times [y,y'] \, \textbf{then report } v \\ \texttt{// analogous for } x' \, \textbf{and } \, \mathsf{rc}(v_{\text{split}}) \\ \end{array}
```

Lemma 4: A range query in a Range Tree takes $O(\log^2 n + k)$ time, where k is the number of reported points.

Cannonical subset in x-dim.

Range Queries in a Range Tree

```
\begin{array}{l} \textbf{1dRangeQuery}(T,x,x') & \textbf{2dRangeQuery}(T,[x,x']\times[y,y']) \\ v_{\text{split}} \leftarrow \text{FindSplitNode}(T,x,x') & \textbf{if } v_{\text{split}} & \textbf{if } v_{\text{split}} \in [x,x']\times[y,y'] \textbf{ then report } v_{\text{split}} \\ \textbf{else} & v \leftarrow \text{lc}(v_{\text{split}}) \\ \textbf{while } v \text{ not leaf do} \\ \textbf{if } x \leq x_v \textbf{ then} \\ \textbf{ReportSubtree}(\text{rc}(v)) & \textbf{1dRangeQuery}(T_y(\text{rc}(v)),y,y') \\ v \leftarrow \text{lc}(v) \\ \textbf{else } v \leftarrow \text{rc}(v) \\ \textbf{report } v & \textbf{if } v \in [x,x']\times[y,y'] \textbf{ then report } v \\ \textbf{// analogous for } x' \text{ and } \text{rc}(v_{\text{split}}) \\ \end{array}
```

Lemma 4: A range query in a Range Tree takes $O(\log^2 n + k)$ time, where k is the number of reported points.

- each visited node v in T_x : O(1)+1D-RangeQuery $\left(O(k_v+\log n)\right)$... recall $k_v=|p_v|$. - $\sum O(k_v+\log n)=\sum O(k_v)+\sum O(\log n)=O(k)+O(\log^2 n)$.

13/19

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

A 3 10 19 23 30 37 59 62 70 80 100 105

B 10 19 30 62 70 80 100

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

A 3 10 19 23 30 37 59 62 70 80 100 105

Can we do better than two binary searches?

B 10 19 30 62 70 80 100

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

 $\begin{array}{l} \text{link } a \in A \text{ with} \\ \text{smallest } b \geq a \\ \text{in } B \end{array}$

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

 $\begin{array}{l} \text{link } a \in A \text{ with} \\ \text{smallest } b \geq a \\ \text{in } B \end{array}$

Search interval [20,65]

Observation: Range queries in a Range Tree perform $O(\log n)$

1d range queries, each taking $O(\log n + k_v)$ time.

The query interval [y, y'] is always the same!

Idea: Use this property to accelerate the 1d queries to

 $O(1+k_v)$ time

Example: Two sets $B \subseteq A \subseteq \mathbb{R}$ in sorted arrays

 $\begin{array}{l} \text{link } a \in A \text{ with} \\ \text{smallest } b \geq a \\ \text{in } B \end{array}$

Search interval [20,65]

Pointer yields starting point for second search in ${\cal O}(1)$ time

■ In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ for the canonical subsets.

15/19

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ for the canonical subsets.
- Define for each array element A(v)[i] two pointers into the arrays $A(\operatorname{lc}(v))$ and $A(\operatorname{rc}(v))$
 - → Layered Range Tree

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ for the canonical subsets.
- \blacksquare Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- lacksquare Only in the split node the first binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers when descending into the children

Speed-up with Fractional Cascading

- In Range Trees we have $P(lc(v)) \subseteq P(v)$ and $P(rc(v)) \subseteq P(v)$ for the canonical subsets.
- \blacksquare Define for each array element A(v)[i] two pointers into the arrays $A({\rm lc}(v))$ and $A({\rm rc}(v))$
 - → Layered Range Tree
- lacksquare Only in the split node the first binary search takes $O(\log n)$ time, then it takes O(1) time to follow the pointers when descending into the children
- **Theorem 2:** A Layered Range Tree on n points in \mathbb{R}^2 can be constructed in $O(n \log n)$ time and space. Range queries take $O(\log n + k)$ time, where k is the number of reported points.

15/19 Sujoy Bhore · Range Queries

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y)$$

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
 unique coordinates

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
Rectangle $R = [x, x'] \times [y, y']$ unique coordinates

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p=(p_x,p_y) \longrightarrow \hat{p}=\left((p_x|p_y),\; (p_y|p_x)\right)$$
 Rectangle $R=[x,x']\times[y,y']$ unique coordinates

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
Rectangle $R = [x, x'] \times [y, y']$ unique coordinates

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = \left((p_x|p_y), \ (p_y|p_x)\right)$$
 Rectangle $R = [x, x'] \times [y, y']$ unique coordinates

 $\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$

Then:

So far: points in general position, that is no two points have the same x- or y-coordinate

Idea: Use pairs of numbers (a|b) with lexicographic order (algorithm only assumes totally ordered set)

$$p = (p_x, p_y) \longrightarrow \hat{p} = ((p_x|p_y), (p_y|p_x))$$
Rectangle $R = [x, x'] \times [y, y']$ unique coordinates

$$\hat{R} = [(x|-\infty), (x'|+\infty)] \times [(y|-\infty), (y'|+\infty)]$$

Then: $p \in R \Leftrightarrow \hat{p} \in \hat{R}$

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

	kd-Tree	Range Tree
Preprocessing		
Space		
Query time		

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the

form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$
		Fractional Cascading

Given: n points in \mathbb{R}^d

Output: data structure that efficiently answers queries of the form $[a_1, b_1] \times \cdots \times [a_d, b_d]$

	kd-Tree	Range Tree
Preprocessing	$O(n \log n)$	$O(n \log n)$
Space	O(n)	$O(n \log n)$
Query time	$O(\sqrt{n}+k)$	$O(\log^2 n + k)$

How can the data structures generalize to d dimensions?

18/19 Sujoy Bhore · Range Queries

How can the data structures generalize to d dimensions?

■ kd-Trees extend easily by dividing the points alternately in the d coordinates. Space remains O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.

18/19 Sujoy Bhore · Range Queries

How can the data structures generalize to d dimensions?

- kd-Trees extend easily by dividing the points alternately in the d coordinates. Space remains O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Higher-dimensional Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space grows to $O(n\log^{d-1}n)$; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Sujoy Bhore · Range Queries

How can the data structures generalize to d dimensions?

- kd-Trees extend easily by dividing the points alternately in the d coordinates. Space remains O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Higher-dimensional Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space grows to $O(n\log^{d-1}n)$; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

18/19 Sujoy Bhore · Range Queries

How can the data structures generalize to d dimensions?

- kd-Trees extend easily by dividing the points alternately in the d coordinates. Space remains O(n), construction $O(n \log n)$ and the query time is $O(n^{1-1/d} + k)$.
- Higher-dimensional Range Trees can be built recursively: the auxiliary search tree on the first coordinate is a (d-1)-dimensional Range Tree. The construction and space grows to $O(n\log^{d-1}n)$; a query takes $O(\log^d n + k)$ time, and with fractional cascading, $O(\log^{d-1} n + k)$ time.

Is it possible to query for other objects (e.g., polygons) with these data structures?

Yes, range searching for other objects (e.g. polygons) can be reduced to higher-dimensional range searching for points (see exercise). Queries for objects that are only partially contained in the query range will be covered in the next lecture.

Sujoy Bhore · Range Queries

Extension: Dynamic Range Queries

Question: Can we adapt the data structures for dynamic point sets?

- Inserting points
- Removing points

Extension: Dynamic Range Queries

Question: Can we adapt the data structures for dynamic point sets?

- Inserting points
- Removing points

1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n\log n} + k)$

Extension: Dynamic Range Queries

Question: Can we adapt the data structures for dynamic point sets?

- Inserting points
- Removing points
- 1) Divided kd-trees [van Kreveld, Overmars '91] support updates in $O(\log n)$ time, but the query time is $O(\sqrt{n\log n} + k)$
- 2) Augmented dynamic range trees [Mehlhorn, Näher '90] support updates in $O(\log n \log \log n)$ time and queries in $O(\log n \log \log n + k)$ time