

Übung zur Vorlesung Materialwissenschaften

Prof. Peter Müller-Buschbaum, Lea Westphal, Ziyan Zhang, Doan Duy Ky Le

Übungsblatt 3

Lösung

Aufgabe 1: Zugversuch

1.1 Berechnung der technischen Spannung und Dehnung

Abbildung 1: Spannungs-Dehnungs-Diagramm der Al-Legierung

Zunächst wurde die Querschnittsfläche der zylindrischen Probe berechnet. Der Durchmesser beträgt $d=12.8\,\mathrm{mm}$, woraus sich die Anfangsfläche ergibt zu:

$$A_0 = \pi \cdot \left(\frac{d}{2}\right)^2 = \pi \cdot (6.4 \,\mathrm{mm})^2 \approx 128,68 \,\mathrm{mm}^2$$

Für jede Messung wurde die technische Dehnung berechnet als:

$$\varepsilon = \frac{l - l_0}{l_0}$$

Dabei ist $l_0 = 50,800 \,\mathrm{mm}$ die Ausgangslänge der Probe. Die **technische Spannung** ergibt sich über:

$$\sigma = \frac{F}{A_0}$$

Beispielhaft für den zweiten Messpunkt mit $F = 7330 \,\mathrm{N}$ und $l = 50,813 \,\mathrm{mm}$:

$$\varepsilon = \frac{50,813 - 50,800}{50,800} \approx 0,000256, \quad \sigma = \frac{7330}{128,68} \approx 56,96 \, \mathrm{MPa}$$

1.2 Bedeutung der 0,2 %-Dehngrenze

Da viele Metalle keine klar erkennbare Streckgrenze zeigen, wird stattdessen die sogenannte 0,2 %-Dehngrenze verwendet. Dabei verschiebt man die lineare Anfangsgerade der Spannungs-Dehnungs-Kurve um $\varepsilon = 0,002$ nach rechts. Der Schnittpunkt dieser Offsetlinie mit der Kurve definiert die Streckgrenze. Dieses Verfahren ist genormt und ergibt verlässliche Vergleichswerte für den Beginn der plastischen Verformung.

1.3 Werkstoffkennwerte aus dem Diagramm

 \bullet Elastizitätsmodul E:

$$E \approx 219,03 \, \mathrm{GPa}$$

• Streckgrenze (0,2 %-Dehngrenze):

$$\sigma_{0,2} \approx 267,33 \, \mathrm{MPa}$$
 bei $\varepsilon \approx 0,005$

• Zugfestigkeit (maximale Spannung):

$$R_m \approx 369,13 \, \mathrm{MPa}$$
 bei $\varepsilon \approx 0,10$

• Bruchdehnung (letzter Messpunkt):

$$\varepsilon_{\rm Bruch} \approx 0.165$$
 (entspricht 16.5%)

1.4 Volumenänderung und Schubmodul

Unter der Annahme isotropen Verhaltens und einer Poisson-Zahl $\nu=0.33$ ergibt sich die relative Volumenänderung im elastischen Bereich zu:

$$\frac{\Delta V}{V} \approx (1 - 2\nu) \cdot \varepsilon \approx (1 - 2 \cdot 0.33) \cdot 0.165 \approx 0.0561 (5.61\%)$$

Der **Schubmodul** ergibt sich über:

$$G = \frac{E}{2(1+\nu)} = \frac{219,03 \,\text{GPa}}{2(1+0,33)} \approx 82,34 \,\text{GPa}$$

1.5 Rückfederungsmodul

Der sogenannte **Rückfederungsmodul** E_r beschreibt das elastische Energiepotenzial nach plastischer Verformung:

$$E_r = \frac{\sigma_y^2}{2E} = \frac{(267,33 \,\text{MPa})^2}{2 \cdot 219,03 \cdot 10^3 \,\text{MPa}} \approx 0.163 \,\text{MPa}$$

Aufgabe 2: Elastizität eines Gummistreifens

Ein elastischer Gummistreifen mit einer Ausgangslänge von $L_0 = 12 \,\mathrm{cm}$ und einer Querschnittsfläche von $A = 1 \,\mathrm{cm}^2$ wird bei Raumtemperatur durch eine Zugspannung von $\sigma = 2 \,\mathrm{MPa}$ auf $L = 30 \,\mathrm{cm}$ gedehnt.

2.1 Berechnung des Elastizitätsmodul
sE und der Vernetzungsdichte \boldsymbol{n}

Zunächst wird die Dehnung berechnet:

$$\lambda = \frac{L}{L_0} = \frac{30}{12} = 2.5$$

Da es sich um ein Elastomer handelt, kann die Spannung über das entropisch elastische Verhalten nach dem Modell für ideal vernetzte Ketten beschrieben werden:

$$\sigma = nRT(\lambda - \lambda^{-2})$$

Dabei sind:

- $\sigma = 2 \cdot 10^6 \, \text{Pa}$
- $R = 8.314 \, \text{J/(mol \cdot K)}$
- $T = 293 \, \text{K}$

Einsetzen ergibt:

$$2 \cdot 10^6 = n \cdot 8,314 \cdot 293 \cdot (2,5-0,16) \Rightarrow n \approx \frac{2 \cdot 10^6}{2437 \cdot 2.34} \approx 351,2 \,\text{mol/m}^3$$

Der Elastizitätsmodul ergibt sich dann durch:

$$E = 3nRT \approx 3 \cdot 351, 2 \cdot 8,314 \cdot 293 \approx 2,57 \cdot 10^6 \,\mathrm{Pa} = 2,57 \,\mathrm{MPa}$$

2.2 Berechnung der Spannung bei anderen Temperaturen und Längen

a) Für $L = 20 \,\mathrm{cm}$ bei $T = 293 \,\mathrm{K}$:

$$\lambda = \frac{20}{12} \approx 1,667, \quad \lambda^{-2} \approx 0,36$$

$$\sigma = \frac{E}{3}(\lambda - \lambda^{-2}) = \frac{2,57}{3}(1,667 - 0,36) \approx 1,12 \text{ MPa}$$

b) Für $L = 30 \, \text{cm}$ bei $T = 373 \, \text{K}$:

$$E = 3nRT = 3 \cdot 0.3512 \,\text{mol/cm}^3 \cdot 8.314 \,\text{cm}^3 \,\text{MPa/(mol K)} \cdot 373.15 \,\text{K} \approx 3.26 \,\text{MPa}$$

$$\lambda = 2.5, \quad \lambda^{-2} \approx 0.16$$

$$\sigma = \frac{E}{3}(\lambda - \lambda^{-2}) = \frac{3.26}{3}(2.5 - 0.16) \approx 2.55\,\mathrm{MPa}$$

Zusammenfassung der Ergebnisse

Fall	λ	T [K]	σ [MPa]
30 cm bei 20 °C	2,5	293	2,00
$20\mathrm{cm}$ bei $20\mathrm{^{\circ}C}$	1,667	293	1,12
30 cm bei 100 °C	2,5	373	2,55

Aufgabe 3: Theorie der Viskoelastizität

Ein viskoelastisches Material wird einem plötzlichen Spannungssprung von

$$\sigma_0 = 1000 \, \text{N/m}^2 = 1 \, \text{kPa}$$

ausgesetzt. Die Relaxationszeit beträgt:

$$\tau = 20\,\mathrm{s}$$

3.1 Qualitativer Verlauf der Dehnung $\varepsilon(t)$

Das Verhalten eines viskoelastischen Materials nach einem plötzlichen Spannungssprung kann mit dem **Maxwell-Modell** beschrieben werden. Dieses besteht aus einer Feder (elastisches Element) und einem Dämpfer (viskoses Element) in Serienschaltung.

Nach dem Spannungssprung auf σ_0 reagiert das Material sofort mit einer elastischen Dehnung:

$$\varepsilon(0) = \frac{\sigma_0}{E}$$

Im Anschluss fließt das Material weiter aufgrund des viskosen Anteils. Die Dehnung nimmt daher kontinuierlich und linear mit der Zeit zu:

$$\varepsilon(t) = \frac{\sigma_0}{E} + \frac{\sigma_0}{\eta} \cdot t$$

Hinweis zur Relaxationszeit τ :

Die Relaxationszeit ist im Maxwell-Modell definiert als:

$$\tau = \frac{\eta}{E}$$

Obwohl in dieser Aufgabe ein Spannungssprung (Kriechexperiment) betrachtet wird, taucht τ nicht direkt in der Formel für $\varepsilon(t)$ auf. Sie beschreibt jedoch, wie schnell das Material bei einem Dehnungssprung entspannen würde (Relaxationsexperiment) und kann verwendet werden, um η oder E zu bestimmen, falls einer der beiden Werte bekannt ist.

3.2 Vergleich mit ideal elastischem und ideal viskosem Material

Ideal elastisch:

Die Dehnung ε stellt sich sofort nach dem Anlegen der Spannung ein und bleibt anschließend konstant:

$$\varepsilon(t) = \frac{\sigma_0}{E}$$

Rein viskos:

Die Dehnung wächst linear mit der Zeit:

$$\varepsilon(t) = \frac{\sigma_0}{\eta} \cdot t$$

Viskoelastisch (Maxwell):

Die Dehnung besteht aus einem sofortigen Sprung und einem linearen Anstieg:

$$\varepsilon(t) = \frac{\sigma_0}{E} + \frac{\sigma_0}{\eta} \cdot t$$

Aufgabe 4: Modellierung von zeitabhängiger Verformung eines viskoelastischen

a) Herleitung der Differentialgleichung

Gegeben: Zwei Kelvin-Voigt-Elemente in Serie mit Parametern:

$$E_1 = 5 \text{ MPa}, \quad \eta_1 = 1.2 \times 10^5 \text{ Pa s}$$

 $E_2 = 20 \text{ MPa}, \quad \eta_2 = 5 \times 10^5 \text{ Pa s}.$

Die Reihenschaltung zweier Kelvin-Voigt-Körper bedeutet, dass sich die Dehnungen addieren:

$$\varepsilon = \varepsilon_{\rm KV1} + \varepsilon_{\rm KV2}$$

In beiden Teilkörpern ist die Spannung gleich:

$$\sigma = E_1 \varepsilon_{\text{KV}1} + \eta_1 \dot{\varepsilon}_{\text{KV}1} = E_2 \varepsilon_{\text{KV}2} + \eta_2 \dot{\varepsilon}_{\text{KV}2}$$

Setzt man

$$\varepsilon_{\mathrm{KV2}} = \varepsilon - \varepsilon_{\mathrm{KV1}}, \quad \dot{\varepsilon}_{\mathrm{KV2}} = \dot{\varepsilon} - \dot{\varepsilon}_{\mathrm{KV1}}$$

und

$$\dot{\varepsilon}_{\text{KV1}} = \frac{\sigma - E_1 \varepsilon_{\text{KV1}}}{\eta_1}$$

in das Stoffgesetz von KV2 ein, ergibt sich:

$$\sigma = E_2(\varepsilon - \varepsilon_{\text{KV1}}) + \eta_2 \left(\dot{\varepsilon} - \frac{\sigma - E_1 \varepsilon_{\text{KV1}}}{\eta_1} \right)$$

Daraus folgt:

$$\varepsilon_{\text{KV1}} = \frac{1}{E_2 \eta_1 - E_1 \eta_2} \left(E_2 \eta_1 \varepsilon + \eta_1 \eta_2 \dot{\varepsilon} - (\eta_1 + \eta_2) \sigma \right)$$

und durch Ableiten:

$$\dot{\varepsilon}_{\text{KV1}} = \frac{1}{E_2 \eta_1 - E_1 \eta_2} \left(E_2 \eta_1 \dot{\varepsilon} + \eta_1 \eta_2 \ddot{\varepsilon} - (\eta_1 + \eta_2) \dot{\sigma} \right)$$

Einsetzen in das Stoffgesetz von KV1:

$$\sigma = E_1 \varepsilon_{\text{KV}1} + \eta_1 \dot{\varepsilon}_{\text{KV}1}$$

führt auf die gesuchte Differentialgleichung:

$$\left(\frac{E_1 + E_2}{E_1 E_2}\right) \sigma + \left(\frac{\eta_1 + \eta_2}{E_1 E_2}\right) \dot{\sigma} = \varepsilon + \left(\frac{\eta_1}{E_1} + \frac{\eta_2}{E_2}\right) \dot{\varepsilon} + \left(\frac{\eta_1 \eta_2}{E_1 E_2}\right) \ddot{\varepsilon}$$

Die Koeffizienten sind also:

$$p_0 = \frac{E_1 + E_2}{E_1 E_2}$$

$$p_1 = \frac{\eta_1 + \eta_2}{E_1 E_2}$$

$$q_0 = 1$$

$$q_1 = \frac{\eta_1}{E_1} + \frac{\eta_2}{E_2}$$

$$q_2 = \frac{\eta_1 \eta_2}{E_1 E_2}$$

Einsetzen der Koeffizienten:

$$p_0 = \frac{E_1 + E_2}{E_1 E_2} = 2.5 \times 10^{-7} \,\text{Pa}^{-1}$$

$$p_1 = \frac{\eta_1 + \eta_2}{E_1 E_2} = 6.2 \times 10^{-9} \,\text{s} \cdot \text{Pa}^{-1}$$

$$q_0 = 1$$

$$q_1 = \frac{\eta_1}{E_1} + \frac{\eta_2}{E_2} = 4.9 \times 10^{-2} \,\text{s}$$

$$q_2 = \frac{\eta_1 \eta_2}{E_1 E_2} = 6.0 \times 10^{-4} \,\text{s}^2$$

Hinweis: Im Anhang befindet sich eine ausführlichere

b) Qualitativer Verlauf der Dehnung $\varepsilon(t)$

- 1. t=0: Sofortiger elastischer Dehnungssprung durch die Federn.
- 2. 0 < t < 0.5s: Zeitabhängige Zunahme der Dehnung (Kriechen) durch die Dämpfer.
- 3. t = 0.5s: Entlastung \rightarrow sofortige elastische Rückstellung.
- 4. t > 0.5s: Langsame viskose Erholung durch die Dämpfer.

Abbildung 2: Qualitativer Verlauf der Dehnung $\varepsilon(t)$ während und nach Belastung.

c) Einfluss einer Erhöhung von η_1

- 1. **Stoßdämpfung:** Erhöhung von $\eta_1 \to \text{stärkere viskose Dämpfung} \to \text{mehr Energie-absorption} \to \text{geringere Stoßbelastung}.$
- 2. **Energierückgabe:** Erhöhung von $\eta_1 \to \text{verzögerte Rückstellung} \to \text{weniger elastische Energierückgabe} \to \text{Schuh wirkt weniger "reaktiv".}$

Fazit: Höheres η_1 steigert Komfort, reduziert Reaktivität – geeignet für komfortorientierte Schuhe, weniger für performanceorientierte.

Quelle:

Shen, Y., Golnaraghi, F., & Plumtree, A. (2001). Modelling compressive cyclic stress strain behaviour of structural foam. *International Journal of Fatigue*, **23**(6), 491–497. https://doi.org/10.1016/S0142-1123(01)00014-7

Gross, D., Hauger, W., Schröder, J., & Werner, E. (2013). Formeln und Aufgaben zur Technischen Mechanik 4: Hydromechanik, Elemente der Höheren Mechanik, Numerische Methoden. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-41134-2