- 2. The Global Tea and Organic Juice companies have merged.
  - 1 Compute the expected time for each activity.
  - 2 Compute the variance for each activity.

| Activity | Opt. | Ml. | Pess. (b) | te | Variance  | Critical? |
|----------|------|-----|-----------|----|-----------|-----------|
| -        | (a)  | (m) |           |    | [(b - a)/ |           |
|          |      |     |           |    | $[6]^2$   |           |
| 1        | 16   | 19  | 28        | 20 | 4         | X         |
| 2        | 30   | 30  | 30        | 30 | 0         |           |
| 3        | 60   | 72  | 90        | 73 | 25        |           |
| 4        | 18   | 27  | 30        | 26 | 4         |           |
| 5        | 17   | 29  | 47        | 30 | 25        | X         |
| 6        | 4    | 7   | 10        | 7  | 1         |           |
| 7        | 12   | 15  | 18        | 15 | 1         | X         |
| 8        | 6    | 12  | 24        | 13 | 9         | X         |
| 9        | 18   | 27  | 30        | 26 | 4         |           |
| 10       | 20   | 35  | 50        | 35 | 25        |           |
| 11       | 40   | 55  | 100       | 60 | 100       |           |
| 12       | 11   | 20  | 29        | 20 | 9         | X         |
| 13       | 14   | 23  | 26        | 22 | 4         |           |
| 14       | 13   | 16  | 19        | 16 | 1         | X         |
| 15       | 0    | 0   | 0         | 0  | 0         |           |

The weighted average activity time is computed by the following formula:

$$t_e = \frac{a + 4m + b}{6} \tag{7.1}$$

where

 $t_e$  = weighted average activity time

a = optimistic activity time (1 chance in 100 of completing the activity earlier under normal conditions)

b = pessimistic activity time (1 chance in 100 of completing the activity later under*normal*conditions)

m = most likely activity time

## 2. The Variance for each activity

The variability in the activity time estimates is approximated by the following equations:

The standard deviation for the activity:

$$\sigma_{t_e} = \left(\frac{b-a}{6}\right) \tag{7.2}$$

## The standard deviation for the project:

$$\sigma_{T_E} = \sqrt{\Sigma \sigma_{t_e}^2} \tag{7.3}$$

Note the standard deviation of the activity is squared in this equation; this is also called variance. This sum includes only activities on the critical path(s) or path being reviewed.

| path being reviewed. |      |     |           |                |                      |           |  |  |
|----------------------|------|-----|-----------|----------------|----------------------|-----------|--|--|
| Activity             | Opt. | M1. | Pess. (b) | t <sub>e</sub> | Variance             | Critical? |  |  |
|                      | (a)  | (m) |           |                | [(b - a)/            |           |  |  |
|                      |      |     |           |                | $\left[6\right]^{2}$ |           |  |  |
| 1                    | 16   | 19  | 28        | 20             | 4                    | X         |  |  |
| 2                    | 30   | 30  | 30        | 30             | 0                    |           |  |  |
| 3                    | 60   | 72  | 90        | 73             | 25                   |           |  |  |
| 4                    | 18   | 27  | 30        | 26             | 4                    |           |  |  |
| 5                    | 17   | 29  | 47        | 30             | 25                   | X         |  |  |
| 6                    | 4    | 7   | 10        | 7              | 1                    |           |  |  |
| 7                    | 12   | 15  | 18        | 15             | 1                    | X         |  |  |
| 8                    | 6    | 12  | 24        | 13             | 9                    | X         |  |  |
| 9                    | 18   | 27  | 30        | 26             | 4                    |           |  |  |
| 10                   | 20   | 35  | 50        | 35             | 25                   |           |  |  |
| 11                   | 40   | 55  | 100       | 60             | 100                  |           |  |  |
| 12                   | 11   | 20  | 29        | 20             | 9                    | X         |  |  |
| 13                   | 14   | 23  | 26        | 22             | 4                    |           |  |  |
| 14                   | 13   | 16  | 19        | 16             | 1                    | X         |  |  |
| 15                   | 0    | 0   | 0         | 0              | 0                    |           |  |  |

# 3. Compute the expected project duration.

Duration = 114 days

| Activity | Opt. | Ml. | Pess. (b) | te | Variance  | Critical? |
|----------|------|-----|-----------|----|-----------|-----------|
|          | (a)  | (m) |           |    | [(b - a)/ |           |
|          |      |     |           |    | $[6]^2$   |           |
| 1        | 16   | 19  | 28        | 20 | 4         | X         |
| 2        | 30   | 30  | 30        | 30 | 0         |           |
| 3        | 60   | 72  | 90        | 73 | 25        |           |
| 4        | 18   | 27  | 30        | 26 | 4         |           |
| 5        | 17   | 29  | 47        | 30 | 25        | X         |
| 6        | 4    | 7   | 10        | 7  | 1         |           |
| 7        | 12   | 15  | 18        | 15 | 1         | X         |
| 8        | 6    | 12  | 24        | 13 | 9         | X         |
| 9        | 18   | 27  | 30        | 26 | 4         |           |
| 10       | 20   | 35  | 50        | 35 | 25        |           |
| 11       | 40   | 55  | 100       | 60 | 100       |           |
| 12       | 11   | 20  | 29        | 20 | 9         | X         |
| 13       | 14   | 23  | 26        | 22 | 4         |           |
| 14       | 13   | 16  | 19        | 16 | 1         | X         |
| 15       | 0    | 0   | 0         | 0  | 0         |           |





#### 4. What is the probability of completing the project by day 112?

The equation below is used to compute the 'Z' value found in statistical tables (Z = number of standard deviations from the mean), which in turn tells the probability of completing the project in the time specified.

$$Z = \frac{T_S - T_E}{\sqrt{\Sigma \sigma_{t_e}^2}}$$
 (7.4)

where  $T_E = \text{critical path duration}$ 

 $T_S$  = scheduled project duration

Z = probability (of meeting scheduled duration)

$$\frac{T_{s-}T_{E}}{\sqrt{\sum \sigma_{t_{e}}^{2}}} = \frac{112 - 114}{\sqrt{4 + 25 + 1 + 9 + 9 + 1}} = \frac{-2}{\sqrt{49}} = \frac{-2}{7} = -.28$$

$$\mathbf{P} \approx .39$$

### Within 116 days?

$$\frac{T_{s-T_E}}{\sqrt{\Sigma \sigma_{t_e}^2}} = \frac{116 - 114}{\sqrt{4 + 25 + 1 + 9 + 9 + 1}} = \frac{+2}{\sqrt{49}} = \frac{+2}{7} = +.28$$
  $\mathbf{P} \approx .61$ 

### 5. What is the probability of completing 'Negotiate with Unions' (11) by day 90?

Critical path duration = 86 days

$$\frac{T_{s-}T_{E}}{\sqrt{\Sigma\sigma_{t_{e}}^{2}}} = \frac{90 - 86}{\sqrt{4 + 100}} = \frac{+4}{\sqrt{104}} = \frac{+4}{10} = +.40$$

Probability of within 90 days  $\approx .65$ 

| Activity | Opt. | Ml. | Pess. (b) | te | Variance  | Critical? |
|----------|------|-----|-----------|----|-----------|-----------|
|          | (a)  | (m) |           |    | [(b - a)/ |           |
|          |      |     |           |    | $[6]^2$   |           |
| 1        | 16   | 19  | 28        | 20 | 4         | X         |
| 2        | 30   | 30  | 30        | 30 | 0         |           |
| 3        | 60   | 72  | 90        | 73 | 25        |           |
| 4        | 18   | 27  | 30        | 26 | 4         |           |
| 5        | 17   | 29  | 47        | 30 | 25        | X         |
| 6        | 4    | 7   | 10        | 7  | 1         |           |
| 7        | 12   | 15  | 18        | 15 | 1         | X         |
| 8        | 6    | 12  | 24        | 13 | 9         | X         |
| 9        | 18   | 27  | 30        | 26 | 4         |           |
| 10       | 20   | 35  | 50        | 35 | 25        |           |
| 11       | 40   | 55  | 100       | 60 | 100       |           |
| 12       | 11   | 20  | 29        | 20 | 9         | X         |
| 13       | 14   | 23  | 26        | 22 | 4         |           |
| 14       | 13   | 16  | 19        | 16 | 1         | X         |

| 15 | 0 | 0 | 0 | 0 | 0 |  |
|----|---|---|---|---|---|--|

# Standard Normal Probabilities



Table entry for z is the area under the standard normal curve to the left of z.

| z    | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| -3.4 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0003 | .0002 |
| -3.3 | .0005 | .0005 | .0005 | .0004 | .0004 | .0004 | .0004 | .0004 | .0004 | .0003 |
| -3.2 | .0007 | .0007 | .0006 | .0006 | .0006 | .0006 | .0006 | .0005 | .0005 | .0005 |
| -3.1 | .0010 | .0009 | .0009 | .0009 | .0008 | .0008 | .0008 | .0008 | .0007 | .0007 |
| -3.0 | .0013 | .0013 | .0013 | .0012 | .0012 | .0011 | .0011 | .0011 | .0010 | .0010 |
| -2.9 | .0019 | .0018 | .0018 | .0017 | .0016 | .0016 | .0015 | .0015 | .0014 | .0014 |
| -2.8 | .0026 | .0025 | .0024 | .0023 | .0023 | .0022 | .0021 | .0021 | .0020 | .0019 |
| -2.7 | .0035 | .0034 | .0033 | .0032 | .0031 | .0030 | .0029 | .0028 | .0027 | .0026 |
| -2.6 | .0047 | .0045 | .0044 | .0043 | .0041 | .0040 | .0039 | .0038 | .0037 | .0036 |
| -2.5 | .0062 | .0060 | .0059 | .0057 | .0055 | .0054 | .0052 | .0051 | .0049 | .0048 |
| -2.4 | .0082 | .0080 | .0078 | .0075 | .0073 | .0071 | .0069 | .0068 | .0066 | .0064 |
| -2.3 | .0107 | .0104 | .0102 | .0099 | .0096 | .0094 | .0091 | .0089 | .0087 | .0084 |
| -2.2 | .0139 | .0136 | .0132 | .0129 | .0125 | .0122 | .0119 | .0116 | .0113 | .0110 |
| -2.1 | .0179 | .0174 | .0170 | .0166 | .0162 | .0158 | .0154 | .0150 | .0146 | .0143 |
| -2.0 | .0228 | .0222 | .0217 | .0212 | .0207 | .0202 | .0197 | .0192 | .0188 | .0183 |
| -1.9 | .0287 | .0281 | .0274 | .0268 | .0262 | .0256 | .0250 | .0244 | .0239 | .0233 |
| -1.8 | .0359 | .0351 | .0344 | .0336 | .0329 | .0322 | .0314 | .0307 | .0301 | .0294 |
| -1.7 | .0446 | .0436 | .0427 | .0418 | .0409 | .0401 | .0392 | .0384 | .0375 | .0367 |
| -1.6 | .0548 | .0537 | .0526 | .0516 | .0505 | .0495 | .0485 | .0475 | .0465 | .0455 |
| -1.5 | .0668 | .0655 | .0643 | .0630 | .0618 | .0606 | .0594 | .0582 | .0571 | .0559 |
| -1.4 | .0808 | .0793 | .0778 | .0764 | .0749 | .0735 | .0721 | .0708 | .0694 | .0681 |
| -1.3 | .0968 | .0951 | .0934 | .0918 | .0901 | .0885 | .0869 | .0853 | .0838 | .0823 |
| -1.2 | .1151 | .1131 | .1112 | .1093 | .1075 | .1056 | .1038 | .1020 | .1003 | .0985 |
| -1.1 | .1357 | .1335 | .1314 | .1292 | .1271 | .1251 | .1230 | .1210 | .1190 | .1170 |
| -1.0 | .1587 | .1562 | .1539 | .1515 | .1492 | .1469 | .1446 | .1423 | .1401 | .1379 |
| -0.9 | .1841 | .1814 | .1788 | .1762 | .1736 | .1711 | .1685 | .1660 | .1635 | .1611 |
| -0.8 | .2119 | .2090 | .2061 | .2033 | .2005 | .1977 | .1949 | .1922 | .1894 | .1867 |
| -0.7 | .2420 | .2389 | .2358 | .2327 | .2296 | .2266 | .2236 | .2206 | .2177 | .2148 |
| -0.6 | .2743 | .2709 | .2676 | .2643 | .2611 | .2578 | .2546 | .2514 | .2483 | .2451 |
| -0.5 | .3085 | .3050 | .3015 | .2981 | .2946 | .2912 | .2877 | .2843 | .2810 | .2776 |
| -0.4 | .3446 | .3409 | .3372 | .3336 | .3300 | .3264 | .3228 | .3192 | .3156 | .3121 |
| -0.3 | .3821 | .3783 | .3745 | .3707 | .3669 | .3632 | .3594 | .3557 | .3520 | .3483 |
| -0.2 | .4207 | .4168 | .4129 | .4090 | .4052 | .4013 | .3974 | .3936 | .3897 | .3859 |
| -0.1 | .4602 | .4562 | .4522 | .4483 | .4443 | .4404 | .4364 | .4325 | .4286 | .4247 |
| -0.0 | .5000 | .4960 | .4920 | .4880 | .4840 | .4801 | .4761 | .4721 | .4681 | .4641 |