Deadline: 2024/12/17 23:59

Problem E. Just Do It

Time limit 4500 ms Memory limit 512MB

Problem Description

Give you a connected graph with n vertices and n weighted edges. Answer the minimal distances for Q pairs (u, v).

By the way, in some queries, you may be asked to adjust the weight of an edge.

Input format

The first line contains two integers n and Q, the number of vertices/edges and the number of queries. $(4 \le n, Q \le 3 \times 10^5)$

For the next n lines, the i-th line contain three integers u_i, v_i, w_i , meaning that there is an edges between u_i and v_i with weight w_i . $(1 \le u_i, v_i \le n; 1 \le w_i \le 10^9)$

For the last Q lines, there are two types of query:

- "1 x y c": add c to the weight of the edge between x and y. It's guaranteed that there is an edge between x and y. Moreover, we promise that the weight will fall in $[1, 10^9]$ after change. $(1 \le x, y \le n; -10^9 \le c \le 10^9)$
- "2 u v": answer the minimal distance of u and v. $(1 \le u, v \le n)$

The given graph is connected.

Output format

For each query with type 2, output one integer.

Subtask score

Subtask	Score	Additional Constraints
1	7	$n, Q \leq 1000$; no query of type 1.
2	11	$n, Q \le 1000$
3	8	The degree for all vertices is 2; no query of type 1.
4	12	The degree for all vertices is 2.
5	12	$w_i = 1$; no query of type 1.
6	18	no query of type 1.
7	32	No constraints

Deadline: 2024/12/17 23:59

Sample

Sample Input 1

7 3
1 2 8
6 1 3
2 6 6
7 4 9
3 1 4
4 6 10
5 3 9
2 5 7
1 1 6 1
2 3 7

Sample Output 1

35 27

Sample Input 2

9 4
1 3 3
4 3 1
5 3 3
3 8 8
3 6 5
9 1 7
7 1 2
2 6 7
8 2 8
2 1 3
2 2 8
2 2 9
2 7 8

Sample Output 2

3 8 22 13

Sample Input 3

 5 2

 1 4 12

 2 5 12

 4 3 5

 3 2 11

 5 1 15

 2 2 3

 2 4 5

Sample Output 3

11 27 Lab5

Deadline: 2024/12/17 23:59

Notes