TIME BASE AND DELAY GENERATOR 1821A

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument was thoroughly tested and inspected and found to meet its published specifications when it was shipped from the factory. The Hewlett-Packard Company further certifies that its calibration measurements are traceable to the U.S. National Bureau of Standards to the extent allowed by the Bureau's calibration facility.

WARRANTY AND ASSISTANCE

All Hewlett-Packard products are warranted against defects in materials and workmanship. This warranty applies for one year from the date of delivery, or, in the case of certain major components listed in the operating manual, for the specified period. We will repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard. No other warranty is expressed or implied. We are not liable for consequential damages.

Service contracts or customer assistance agreements are available for Hewlett-Packard products that require maintenance and repair on-site.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

MODEL 1821A

TIME BASE AND DELAY GENERATOR

Manual Serials Prefixed: 809— Manual Printed: JUNE 1968

Make all changes in this manual according to the Errata below. Also check the following table for your instrument serial prefix (3 digits) and/or serial number (8 digits) and make any listed change(s) in the manual:

900 02205 & higher	1		
809-03295 & higher 821	1		
		-	
905—	1, 2		
907—	1, 2, 3		j
4	Add A4: HP Part No. C501: Change to HP F 5% 200 vdcw (pi C504, C526: Change to (preferred replace (preferred	n to A: sweep time (incl A2 and 01821-61905; TQ 1; A: sweep the Part No. 0160-3355; TQ 1; C: for eferred replacement). To HP Part No. 0160-3540; TQ 2; ement). The Part No. 0160-3541; TQ 2; ement). The Part No. 0160-3542; TQ 2; ement). The Part No. 5080-0482; Q: Si fet (seement).	ime switch. cd poly 1 uF C: fxd poly 0.001 uF5% 100 vdcw C: fxd poly 0.01 uF 5% 100 vdcw C: fxd poly 0.01 uF 5% 100 vdcw change to HP Part No. 9140-0179;). elected)
CHANGE 1	Page 8-7, Figure 8-6, Schema VR201: Change to 53 Page 8-11, Figure 8-8, Schen VR403: Change to 53 Page 8-14, Figure 8-11,	nge to HP Part No. 1902-0688; V atic, J.6V. natic,	R: breakdown, 53.6V.
CHANGE 2 11 December 1969	Q101: Change to HP R113: Change TQ to	Part No. 0140-0149; TQ 2; C: f Part No. 1854-0215. 6.	xd mica 470 pF 5% 300 vdcw. 5; R: fxd metflm 10 k ohms 1% 1/8

 Δ = Latest additions to this change sheet.

This change sheet supersedes all prior change sheets for this manual.

Model 1821A Page 2/2

Instrument Serial Prefix	Make Manual Changes	Instrument Serial Prefix	Make Manual Changes
809-03295 & higher	1		
821-	1		
905-	1, 2		
907-	1, 2, 3		

CHANGE 2 (Cont'd)

Page 8-5, Figure 8-4, schematic,

Add $\check{\text{C108}}$, 470 pf, on S102 between ACS position and ground (next to R113).

R114: Change value to 10 k ohms.

Page 8-9, Figure 8-7, schematic.

Add C304, 470 pf, on S302 between ACS poistion and ground (next to R304).

R305: Change value to 10 k ohms.

CHANGE 3

Table 6-2, Replaceable Parts,

R103, R301: Change to hp Part No. 0698-6400; TQ2; R: fxd metflm 900 k ohms 1% 1/4 w.

OPERATING AND SERVICE MANUAL

MODEL 1821A TIME BASE AND DELAY GENERATOR

SERIALS PREFIXED: 809

See Section VII For Instruments
With Other Prefixes

Copyright HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 1966 1900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U. S. A.

02591-4

TABLE OF CONTENTS

Sect	ion		Page	Section	on		Page
I	GENER	RAL INFORMATION	1-1		5-15.	Main Sweep Vernier · · · ·	5-2
	1-1.	Instrument Description	1-1		5-16.	Magnified Sweep • • • • • • •	5-2
	1-5.	Scope of Manual · · · · · · · ·	1-1		5-17.	Delayed Sweep Time · · · ·	5-2
	1-7.	Instrument Identification · · · ·	1-1		5-18.	Delayed Sweep Vernier · · ·	5-3
	1-9.	Manual Changes · · · · · · · ·	1-1		5-19.	Delay Time Accuracy · · · ·	5-3
		C .			5-20.	Delay Time Linearity · · · ·	5-3
**	TATOMA	T T A TITON	0 1		5-21.	Jitter	5-3
II		LLATION	2-1		5-22.	Delayed Trigger Output	5-3
	2-1.	Initial Inspection · · · · · · ·	2-1		5-23.	Mixed Sweep • • • • • • • •	5-3
	2-4.	Claims	2-1		5-24.	Single Sweep · · · · · · · ·	5-3
	2-7.	Repackaging for Shipment · · · ·	2-1		5-25.	Adjustments	5-3
	2-10.	Preparation for Use · · · · · ·	2-1		5-27.	Preliminary	5-3
					5-29.	Initial Control Settings · · ·	5-3
пі	OPERA	ATION · · · · · · · · · · · · · · · · · · ·	3-1		5-30.	Output Level · · · · · · · ·	5-4
	3-1.	Introduction · · · · · · · · ·	3-1		5-31.	Trigger Symmetry · · · · ·	5-4
	3-3.	Controls and Connectors · · · ·	3-1		5 - 32.	Main Sweep Length	5-4
	3-16.	Trigger Signal Requirements · ·	3-2		5-33.	Delayed Sweep Length · · · ·	5-4
	3-18.	Operating Instructions · · · · ·	3-2		5 - 34.	Main Sweep Time · · · · · ·	5-4
		- 0			5-35.	Delayed Sweep Time · · · · ·	5-4
IV	DDING	IPALS OF OPERATION · · · · ·	4-1		5-36.	Sweep Comparator · · · 5-5	5/5-6
1 V	4-1.	Introduction · · · · · · · · ·	4-1				
	4-1. 4-6.	Main Sweep	4-1				
	4-0. 4-8.	Block Diagram Description •	4-1	VI	DEDI /	ACEABLE PARTS	6-1
	4-0. 4-13.	Circuit Details · · · · · · ·	4-2	VI	6-1.	Introduction · · · · · · · · ·	6-1
	4-15. 4-26.	Delayed Sweep · · · · · · · · ·	4-3		6-4.	Ordering Information · · · · ·	6-1
	4-28.	Block Diagram Description •	4-3		0-4.	Of uct mg mot master	
	4-32.	Circuit Details · · · · · · ·	4-3				
	4-32.	Sweep Display · · · · · · · ·	4-4	VII	MANII	AL CHANGES AND OPTIONS	7-1
	1-00.	Sweep Display	7-1	V 11	7-1.	Manual Changes · · · · · · ·	7-1
					7-5.	Options · · · · · · · · · · · · · · · · · · ·	7-1
V		ORMANCE CHECK AND			7-7.	Special Instruments	7-1
		USTMENTS · · · · · · · · · · · · · · · · · · ·	5-1		1-11	Special Most amount	
	5-1.	Introduction · · · · · · · · ·	5-1				
	5-3.	Test Equipment · · · · · · · · · · · · · · · · · · ·	5-1				
	5-5.	Performance Check · · · · · ·	5-1	VIII		MATICS AND TROUBLESHOOTING	8-1
	5-9.	Preliminary Set-Up · · · · ·	5-1		8-1.	Introduction · · · · · · · · ·	8-1
	5-11.	Initial Control Setting · · · ·	5-1		8-3.	Schematic Diagrams · · · · ·	8-1
	5-12.	Triggering · · · · · · · · ·	5-1		8-6.	Component Identification · · · ·	8-1
	5-13.	Trigger Point and Slope · · ·	5-2		8-8.	Troubleshooting	8-1
	5-14.	Main Sweep Time · · · · ·	5-2		8-12.	Repair and Replacement · · · ·	8-1

ii 02591-2

LIST OF ILLUSTRATIONS

Numbe	r Title l	Page	Number	r Title	Page
1-1. 1-2.	Model 1821A Time Base and Delay Generator · · · · · · · · · · · · · · · · · Sweep Combinations · · · · · · · · · 1-2			Main Triggering Test Set-Up · · · · · Delayed Triggering Test Set-Up · · · ·	
2-1.	Plug-In Mating · · · · · · · 1-2	/2-0	7-1.	Sweep Display Switch • • • • • • • • • • • • • • • • • • •	7-0
3-1. 3-2. 3-3. 3-4. 3-5. 3-6. 3-7.	Controls and Connectors · · · · · · · · · · · · · · · · · · ·	3-0 3-2 3-3 3-4 3-5 3-6	8-2. 8-3. 8-4. 8-5. 8-6.	Over-All Troubleshooting Tree · · · · · Adjustment Location and Component Identification · · · · · · · · · · · · · · · · · · ·	8-3 8-4 8-5 8-6 8-7
4-1. 4-2. 4-3. 4-4.	Model 1821A Block Diagram · · · · · · · Main Sweep Circuit Block Diagram · · · Delayed Sweep Circuit Block Diagram · Sweep Displays · · · · · · · · · · · · · · · · · · ·	4-0 4-1 4-4 4-5		Delayed Sweep Schematic Diagram · · · Component Identification, A3 · · · · · · Sweep Time Switch Schematic Diagram Plug and Jack connections · · · · · · · ·	8-12 8-13

LIST OF TABLES

Number	r Title	Page	Number	Title	Page
1-1.	Specifications · · · · · · · · · · · · · · · · · · ·	1-0	5-4. 5-5.	Main Sweep Time · · · · · · · · · Delayed Sweep Time · · · · · · · · · · · · · · · · · · ·	
2-1.	Shipping Test Strengths · · · · · · · · · · · · · · · · · · ·	2-1		Performance Check Record · · · · 5	-7/5-8
3-1.	Trigger Signal Requirements · · · · ·	3-2	6-1.	List of Reference Designators and Abbreviations · · · · · · · · · · · · · · · · · · ·	• 6-1
5-1.	Required Test Equipment · · · · · ·	5-0	6-2.	Replaceable Parts	6-2
5-2.	Main Sweep Performance · · · · · · ·	5-2			
5-3.	Delayed Sweep Performance · · · · ·	5-3	8-1.	Schematic Diagram Notes · · · · · ·	· 8-2

02591-3 iii

Figure 1-1. Model 1821A Time Base and Delay Generator

Table 1-1. Specifications

MAIN SWEEP:

RANGE:

0.1 $\mu \sec/\mathrm{div}$ to 1 \sec/div , 22 ranges in a 1, 2, 5 sequence; accuracy $\pm 3\%$; vernier provides continuous adjustment between ranges and extends slowest range to at least 2.5 \sec/div ; Horizontal Magnifier, on Model 180-series Oscilloscopes, expands fastest range to 20 \sec/div (X5) or 10 \sec/div (X10) with 5% accuracy.

TRIGGERING:

NORMAL:

Triggering Coupling: DC, AC, ACF, ACS: AC attenuates signals below approximately 20 Hz; ACF attenuates signals below approximately 15 kHz; ACS attenuates signals above approximately 30 kHz.

Internal: see manual for Vertical Plug-In.

External: 0.5 vpk-pkfrom dc to 50 MHz (depending on Trigger Coupling) increasing to 1 v pk-pk at 90 MHz.

Line: power-line waveform is used for triggering.

Slope: selectable, positive or negative.

Trigger Point: adjustable ± 3 v over selected trigger signal (± 30 v in EXT $\div 10$).

AUTOMATIC:

Bright baseline displayed in absence of trigger signal. Triggering is same as normal except that lower frequency limit of trigger signal is 40 Hz.

DELAYED SWEEP:

RANGE:

0.1 $\mu \rm{sec/div}$ to 50 msec/div, 18 ranges in a 1, 2, 5 sequence: accuracy $\pm 3\%$; vernier provides continuous adjustment between ranges and extends slowest range to at least 125 msec/div; Horizontal Magnifier, on Model 180-series Oscilloscopes, expands fastest range to 20 nsec/div (X5) or 10 nsec/div (X10) with 5% accuracy.

TRIGGERING:

AUTOMATIC:

Delayed sweep starts automatically at end of delay time. Slope, Trigger Point and Trigger Coupling are not selectable.

NORMAL:

Delayed sweep starts on first trigger signal after delay time.

Trigger Coupling: DC, AC, ACF, ACS: AC attenuates signals below approximately 20 Hz; ACF attenuates signals below approximately 15 kHz; ACS attenuates signals above approximately 30 kHz.

Internal: see manual for Vertical Plug-In.

SECTION I GENERAL INFORMATION

1-1. INSTRUMENT DESCRIPTION.

- 1-2. The Hewlett-Packard Model 1821A Time Base And Delay Generator (shown in Figure 1-1) is a sweep generating plug-in unit for the hp Model 180-series Oscilloscope. Main sweep speeds are selectable in 22 ranges from 0.1 µsec/divto1sec/div. A vernier provides continuous adjustment between ranges and will extend the slowest sweep to at least 2.5 sec/div. The Magnifier switch on Model 180-series Oscilloscopes can expand the fastest sweep to 10 nsec/div. Delayed sweep speeds can be selected with 18 ranges from 0.1 µsec/div to 50 msec/div; the delayed vernier provides continuous adjustment between ranges and extends the slowest sweep speed to at least 125 msec/div. The main and delayed sweeps can be used either separately or combined to obtain a dual sweep-speed display.
- 1-3. The delayed sweep feature of the Model 1821A permits accurate time measurement between a reference signal and a point of interest on a complex waveform or pulse train; it also allows for exact time interval measurement between consecutive pulses in a pulse train or burst. The length of time before the delayed sweep starts is adjustable. The mixed sweep feature permits viewing simultaneously the character of an entire complex waveform and an expanded portion of the same waveform.
- 1-4. Single sweep operation is possible for any type of display. This feature may be used with any sweep speed to facilitate transient waveform photography. Normal triggering of the Model 1821A main sweep and delayed sweep may be selected to occur on an internal signal from the vertical plug-in or on an external signal up to 90 MHz (requires 0.5v pk-pk up to 50 MHz, increasing to 1v at 90 MHz). For the main sweep, automatic triggering provides a bright base line in the absence of an input signal; for the delayed sweep, automatic triggering starts this sweep at the end of the delayed period set. Trigger slope level, and coupling

are controlled from the front panel for both the main and delayed sweeps. Table 1-1 provides complete specifications for the Model 1821A and Figure 1-2 illustrates typical displays obtainable with the plug-in.

1-5. SCOPE OF MANUAL.

1-6. This manual provides operating and service information for the hp Model 1821A Time Base And Delay Generator. This manual supplements the information presented in the Operating and Service Manual for the hp Model 180-series Oscilloscope. For specific information about any plug-in for the Model 180-series Oscilloscope, refer to the manual for that plug-in.

1-7. INSTRUMENT IDENTIFICATION.

1-8. Hewlett-Packard uses a two-section eight-digit serial number to identify instruments. The first three digits (preceding the dash) are the serial prefix which identifies a series of instruments; the last five digits identify a particular instrument in the series. The serial number appears on a plate located on the rear panel. All correspondence with a Hewlett-Packard Sales/Service Office in regard to an instrument should reference the complete serial number.

1-9. MANUAL CHANGES.

1-10. This manual provides complete information for any Model 1821A with a serial number prefixed (see Paragraph 1-7) by the three digits indicated on the title page. If the serial prefix of the instrument is different from that on the title page, a "Manual Changes" sheet supplied, or Section VII of this manual, will describe changes which will adapt this manual to provide correct coverage. Technical corrections (if any) to this manual, due to known errors in print, are called Errata and are shown on the change sheet. For information on manual coverage of any hp instrument, contact the nearest hp Sales/Service Office (addresses are listed at the rear of this manual).

Table 1-1. Specifications (Cont'd)

External: 0.5 v pk-pkfrom DC to 50 MHz (depending on Trigger Coupling) increasing to 1 v pk-pk at 90 MHz.

Slope: selectable, positive or negative.

Trigger Point: adjustable ± 3 v over selected trigger signal (± 30 v in EXT $\div 10$).

DELAY:

Time: continuously variable from 0.1 μ sec to 10 sec; accuracy $\pm 1\%$; linearity $\pm 0.2\%$; time jitter is less than 0.005% of maximum delay of each range (1 part in 20,000).

Trigger Output (at end of delay time): approximately 1.5 v pulse with rise time less than 50 nsec from 1k ohm impedance.

MIXED SWEEP:

Dual sweep display in which main sweep drives first portion of display and delayed sweep completes display at speeds up to 1,000 times faster.

INTENSIFIED SWEEP:

The intensified section of the main sweep shows the time of the delayed sweep. It indicates the portion of the main sweep to be expanded full screen in delayed operation.

SINGLE SWEEP:

Front panel controls permit single sweep operation.

WEIGHT:

Net, 3-3/4 lbs (1, 7 kg). Ship, 6-1/4 lbs (2, 8 kg).

Figure 1-2. Waveforms illustrating sweep combinations using Model 1821A: (A) normal sweep; (B) intensified sweep (portion covered by delayed sweep is brightened); (C) delayed sweep (intensified portion of B is expanded to full 10 div); (D) mixed sweep (faster delayed sweep drives right portion of display).

Figure 2-1. Plug-In Mating

SECTION II

2-1. INITIAL INSPECTION.

- 2-2. MECHANICAL CHECK. Check the shipping carton for damage immediately after receipt. If it is damaged, ask the carrier's agent to be present when the instrument is unpacked. Inspect the Model 1821A for physical damage such as bent or broken parts and dents or scratches. If damage is found, refer to Paragraph 2-4 for the recommended claim procedure. If the Model 1821A appears undamaged perform the electrical check (Paragraph 2-3). Retain the packaging material for possible future use.
- 2-3. ELECTRICAL CHECK. The performance check is given in Paragraphs 5-5 through 5-24. This check will determine whether or not the instrument is still operating within its specifications as listed in Table 1-1. The initial performance and accuracy of this instrument are certified as stated on the inside front cover of this manual. If the Model 1821A does not operate as specified, refer to Paragraph 2-4 for the recommended claim procedure.

2-4. CLAIMS.

- 2-5. If physical damage is found or if the instrument does not operate within specifications, notify the carrier and the nearest Hewlett-Packard Sales Service Office immediately. The Sales/Service Office will arrange for the repair or replacement of the instrument without waiting for a claim to be settled with the carrier.
- 2-6. The warranty statement for all Hewlett-Packard products is on the inside front cover of this manual. Contact the nearest Sales/Service Office for information about warranty claims.

2-7. REPACKAGING FOR SHIPMENT.

- 2-8. If the instrument is to be shipped to a Hewlett-Packard Sales/Service Office, attach a tag to it showing owner and owner's address, instrument's model number and 8 digit serial number, and a description of the services required.
- 2-9. The original shipping carton and packaging materials, except for the accordion-pleated pads,

- should be used for reshipment. If they are not available or reusable, the instrument should be repackaged with the following materials:
- a. A double walled carton (refer to Table 2-1 for test strength required).
- b. Heavy paper or sheets of cardboard to protect all instrument surfaces (use a nonabrasive material such as polyurethane or a cushioned paper such as Kimpak around all projecting parts).
- c. At least 4 inches of tightly packed, industry approved, shock absorbing material, such as extra firm polyurethane foam.
- d. Heavy duty shipping tape to secure outside of carton.

Table 2-1. Shipping Carton Test Strengths

Gross Weight (lbs)	Carton Test Strength (lbs)
up to 10	200
10 to 30	275
30 to 120	350
120 to 140	500
140 to 160	600

2-10. PREPARATION FOR USE.

- 2-11. The Model 1821A and the Vertical Plug-In are locked together and inserted as a unit, into the plug-in compartment of the Model 180-series Oscilloscope. This procedure is explained below. Power for the Model 1821A is supplied by the Oscilloscope.
- 2-12. Install plug-ins as follows:
 - a. Move locking bar to rear (see Figure 2-1).
- b. Fit vertical plug into horizontal jack (make certain that bulkhead connectors are aligned) and press plug-ins firmly together.
- c. After ensuring that front and rear panels are aligned, push locking bar forward.
- d. Lift the latch release and rotate latch downward. Insert plug-ins into the Model 180-series Oscilloscope.
 - e. Rotate latch upward and push forward to lock.

02591-2

- 1. Sweep Display. Determines which sweep is displayed; main, delayed, or combination.
- 2. TIME/DIV (main). Selects the time represented by each horizontal centimeter when displaying the main sweep.
- 3. VERNIER (main). Adjusts time/div of main sweep between calibrated positions of the Main TIME/DIV switch.
- 4. Trigger Source (main). Selects source of Trigger Signal that starts main sweep.
- 5. EXT INPUT (main). Connector for applying an external trigger signal.
- 6. Trigger Coupling (main). Selects type of trigger signal coupling.
- 7. SLOPE (main). Determines which slope of trigger signal starts main sweep.

- 8. TRIGGER LEVEL (main). Selects point on trigger signal waveform that starts main sweep.
- 9. SWEEP MODE (main). Selects type of main sweep operation.
- 10. RESET (main). Arms circuit (lamp lights) so that next trigger will start a single sweep.
- 11. DELAY (DIV). Adjusts time between start of main sweep and arming of delayed sweep circuits.
- 12. DEL'D TRIG OUTPUT. Connector for applying positive trigger to external equipment. Trigger occurs when delayed sweep circuit is armed.
- 13. INTENS RATIO. Adjusts the intensity difference between the normal main sweep and its intensified section.

SECTION III OPERATION

3-1. INTRODUCTION.

3-2. The Model 1821A produces two linear sweeps for use as time bases in the Model 180-series Oscilloscope. The delayed sweep circuit is armed by the main sweep after an adjustable delay period. Control settings determine whether the delayed sweep is automatically triggered immediately after the delay, or if it is triggered by the next input signal. Waveforms may be viewed on either time base alone, or on both time bases combined.

3-3. CONTROLS AND CONNECTORS.

- 3-4. Locations of controls and connectors are shown in Figure 3-1 along with a brief description of their functions. Controls that perform the same function for both main and delayed sweeps are explained for main sweep only. The following paragraphs explain some control functions in more detail.
- 3-5. SWEEP DISPLAY. The three positions of this switch are MAIN, MIXED, and DELAYED. The display obtained in each position is explained below.
- a. MAIN. The vertical input signal is displayed on a time base as set by the Main TIME/DIV control. With the Delayed TIME/DIV switch set to OFF the entire main sweep display will be of normal intensity. Any other setting of the Delayed TIME/DIV control will cause the main sweep to be intensified during the time the delayed sweep is produced (providing the delayed sweep is properly triggered).
- b. MIXED. In this mode the first part of the presentation is displayed on a time base set by the Main TIME/DIV switch. The last part of the presentation is displayed on a time base set by the Delayed TIME/DIV switch. The delay between the start of the main sweep and the start of the delayed sweep is determined in part by DELAY (DIV).
- c. DELAYED. The portion of the presentation that was intensified in MAIN is now displayed on a time base that is set by the Delayed TIME/DIV control.
- 3-6. TIME/DIV. The Main and Delayed TIME/DIV switches determine the time that it takes the main and delayed sweeps to move one division. The switches are concentric and interlocked so that the delayed sweep will always be faster than the main sweep. The Main TIME/DIV switch can select sweep speeds from 1 sec/ div to 0.1 μ sec/div. The Delayed TIME/DIV switch can select sweep speeds from 50 msec/div to 0.1 $\mu \sec/\text{div.}$ The selected main and delayed sweep speeds may be increased five or tentimes by positioning MAGNIFIER on the Model 180-series Oscilloscope to X5 or X10 respectively. The Delayed TIME/DIV switch should be positioned to OFF to view a main sweep display of normal intensity.
- 3-7. VERNIER. The Main and Delayed VERNIER controls provide continuous adjustment of sweep time between the calibrated steps of their respective

- TIME/DIV switches. When the VERNIER control is set to CAL (fully cw) sweep time can be read directly from its TIME/DIV switch. As VERNIER is rotated ccw, the selected TIME/DIV increases. With VERNIER fully ccw, the TIME/DIV is approximately 2.5 times greater than the indicated TIME/DIV.
- 3-8. SWEEP MODE. This lever switch determines the type of main sweep triggering. The AUTO position allows the main sweep to free run, providing a bright baseline, in the absence of a trigger signal. A trigger signal will override the auto circuit if its frequency is 40 Hz or greater. NORM should be used if the trigger frequency is less than 40 Hz or if triggering is erratic. NORM, however, will not provide a baseline in the absence of a trigger. Selecting SINGLE allows the main sweep circuit to be triggered only once. The sweep circuit must be rearmed manually, by depressing RESET, to be triggered again.
- 3-9. DELAY (DIV). This control adjusts the delay between the start of the main sweep and the arming of the delayed sweep. The delay time is the product of the DELAY (DIV) setting and the Main TIME/DIV setting.

Note

A single DELAY (DIV) reading has little meaning. Accurate time measurements can be made only by subtracting one reading from another.

3-10. The delayed sweep starts exactly at the end of the delay time only if the Delayed Trigger Source switch is set to AUTO. All other positions of the Delayed Trigger Source switch cause the delayed sweep to start on the first trigger after the delay time.

Note

The delayed sweep will not be generated when DELAY (DIV) is set to less than approximately 0.5.

- 3-11. TRIGGER SOURCE. The Main and Delayed Trigger Source switches determine the origin of the main and delayed triggers. When INT is selected, the main and delayed sweeps are triggered by the vertical deflection signal. When EXT or EXT \div 10 is selected the sweeps are triggered by the signals applied to the EXT INPUT connectors. EXT \div 10 attenuates the external trigger and should be used when the trigger signal is greater than 6 v pk-pk.
- 3-12. Each switch has one position not common to the other. The LINE position on the Main switch allows the main sweep to be triggered by the power line waveform. The AUTOposition on the Delayed switch causes the delayed sweep to start precisely at the end of the delay time set by DELAY (DIV). All other positions of the delayed switch cause the delayed sweep to start on the first trigger after the delay time.
- 3-13. TRIGGER COUPLING. These switches determine the type of coupling for the main and delayed

02591-3

triggers. Direct (DC) coupling is normally used for any trigger signal from DC to greater than 90 MHz. Capacitive (AC) coupling should be selected when it is desirable to block the dc level of the trigger signal. AC coupling, however, will attenuate signals below 20 Hz. AC fast (ACF) attenuates signals below 15 kHz and is used, for instance, to eliminate 60 Hz ripple that might trigger the sweep. AC slow (ACS) attenuates signals above 30 kHz. ACS is used to eliminate high-frequency noise.

3-14. SLOPE. The setting of this switch determines whether the sweep triggers on the positive-going (+) or negative-going (-) portion of the trigger signal. When Delayed Trigger Source is set to AUTO the delayed SLOPE control does not function.

3-15. LEVEL. This control establishes the point on the trigger waveform that starts the sweep. This point is adjustable from -3 v to +3 v along the selected slope. With an external trigger and the Trigger Source switch in EXT:10, the trigger point is adjustable from -30 v to +30 v along the selected slope. When the Delayed Trigger Source switch is in AUTO, the Delayed LEVEL control does not function. The Main LEVEL control can always vary the trigger point for the main sweep.

3-16. TRIGGER SIGNAL REQUIREMENTS.

3-17. Table 3-1 shows the trigger signal requirements of the Model 1821A with various combinations of control settings. Figure 3-2 is used in conjunction with

Figure 3-2. Trigger Amplitude Requirements

the table to determine the typical trigger amplitude necessary at frequencies up to $100\ \mathrm{MHz}.$

3-18. OPERATING INSTRUCTIONS.

3-19. Figures 3-3 through 3-7 give step-by-step operating instructions for the Model 1821A. These instructions are keyed to the photograph in each figure with index numbers. The preceding paragraphs contain additional information and should be read before using the operating instructions.

Table 3-1. Trigger Signal Requirements

	SWEEP MODE	TRIGGER SOURCE	TRIGGER COUPLING	TRIGGER AMPLITUDE	I I I I V F I			
		LINE	DC: dc to 90 MHz					
	NORM	INT	AC: 20 Hz to 90 MHz	See Figure 3-2	Adjustable			
		EXT	ACF: 15 kHz to 90 MHz ACS: 20 Hz to 30 kHz		+3 v to -3 v			
		EXT÷10		10 times that shown on Figure 3-2	Adjustable +30 v to -30 v	a		
M		LINE	DC: 40 Hz to 90 MHz			Selectable + or -		
A	ATIMO	INT	AC: 40 Hz to 90 MHz	See Figure 3-2	Adjustable			
I N	AUTO	TO EXT ACF: 15 kHz to 90 MHz ACS: 40 Hz to 30 kHz		bee rigure v-2	+3 v to -3 v	l		
		EXT ∴ 10		10 times that shown on Figure 3-2	Adjustable +30 v to -30 v			
	SINGLE	Single may b	e selected after setting up a	any display				
D E		AUTO	No function	Automatically trig- gered at end of delay	No fun	ction		
L A		INT	DC: DC to 90 MHz			Selectable		
Y E		EXT	AC: 20 Hz to 90 MHz ACF: 15 kHz to 90 MHz ACS: 20 Hz to 30 kHz	See Figure 3-2	Adjustable +3 v to - 3 v	+ or -		
D		EXT:-10		10 times that shown on Figure 3-2	Adjustable +30 v to -30 v			

3-2 02591-2

Obtain a baseline as follows:

- 1. Set Horizontal DISPLAY to INT.
- 2. Set Sweep Display to MAIN.
- 3. Position Delayed TIME/DIV to OFF.
- 4. Set SWEEP MODE to AUTO.
- 5. Use FIND BEAM with INTENSITY and position controls, if necessary, to locate baseline.

Set controls of Vertical Plug-In as desired (refer to Vertical Plug-In Manual.) $\,$

Adjust Horizontal Display as follows:

- Set Main Trigger Source as desired (if EXT or EXT ÷ 10 is selected connect trigger to Main EXT INPUT).
- 7. Select desired coupling.
- 8. Select desired slope.
- 9. Adjust TRIGGER LEVEL for desired trigger point. (If display is unstable, set SWEEP MODE to NORMAL and adjust LEVEL.)
- 10. Set Main VERNIER to CAL.
- 11. Set MAGNIFIER to X1.
- 12. Set Main TIME/DIV as desired.

Set up main sweep as explained in Figure 3-3.

- 1. Set Delayed Trigger Source to AUTO.
- 2. Rotate Delayed VERNIER fully cw to CAL.
- 3. Rotate Delayed TIME/DIV switch ccw from OFF and set the delayed sweep time ten to one-hundred times faster than the main sweep time (if possible).
- 4. Set Sweep Display to MIXED.
- 5. Adjust DELAY (DIV) until desired portion of waveform is displayed on delayed sweep.

Set up main sweep as explained in Figure 3-3.

- 1. Rotate the Delayed TIME/DIV control ccw from OFF.
- 2. Set Delayed Trigger Source to INT, EXT, or EXT ÷ 10 as desired. (If EXT or EXT ÷ 10 is selected, connect trigger to EXT INPUT.)
- 3. Set Delayed Trigger Coupling as desired.
- 4. Set Delayed SLOPE as desired.
- 5. Adjust Delayed TRIGGER LEVEL for an intensified display. (If intensified display does not appear, set DIV DELAY to 1.)
- 6. Adjust DELAY (DIV) to intensify desired signal.
- Set Sweep Display to DELAYED and observe previously intensified portion of signal.
- 8. Set Delayed VERNIER to CAL.
- 9. Set Delayed TIME/DIV as desired.

Note

The dotted horizontal lines on the CRT are the 10% and 90% references.

Figure 3-5. Rise Time Measurements

Set up main sweep as explained in Figure 3-2.

- 1. Set Delayed VERNIER to CAL.
- 2. Turn the Delayed sweep on by setting Delayed TIME/DIV ten to one-hundred times faster than Main TIME/DIV.
- 3. Set Delayed Trigger Source to AUTO.
- 4. Adjust DELAY (DIV) to intensify first point of interest, A, on waveform.

5. Set Sweep Display to DELAYED and adjust DELAY (DIV) to set A on a referency (Typically the Y axis). Note setting of DELAY (DIV).

6. Set Sweep Display to MAIN and adjust DE-LAY (DIV) to intensify second point of interest B.

7. Set Sweep Display to DELAYED and adjust DE-LAY (DIV) to set B on same reference line as A.

Calculate the difference between the setting of DE-LAY (DIV) in steps #5 and #7. Multiply the MAIN TIME/DIV setting by this difference to obtain the time between the two points A and B.

Figure 3-6. Time Differential Measurements

SINGLE SWEEP

- 1. Perform instructions given in any previous operating procedure.
- 2. Set SWEEP MODE to SINGLE.
- 3. Press RESET to arm sweep.
- 4. The RESET indicator will light, indicating sweep is armed. The first trigger input will start the sweep. The RESET indicator will extinguish at the end of the sweep.

INTENSITY RATIO

- A. Perform steps 1 through 5 of Figure 3-3.
- B. Set Main TIME/DIV to 50 μSEC and Delayed TIME/DIV to 5 μSEC .
- C. Set Delayed Trigger Source to AUTO and DELAY (DIV) to 2.00.
- D. Adjust INTENS RATIO for desired intensity difference between normal and intensified section of baseline.

Figure 3-7. Single Sweep Operation And Intensity Ratio Adjustment

Figure 4-1. Model 1821A Block Diagram

SECTION IV PRINCIPLES OF OPERATION

4-1. INTRODUCTION.

- 4-2. The Model 1821A Time Base and Delay Generator produces two linear sweeps for use as time bases in the Model 180-series Oscilloscopes. Either sweep, or a combination of both, may be selected by front panel controls. The selected sweep is applied to the Oscilloscope to drive the horizontal amplifier. Figure 4-1 is an over-all block diagram that shows the principal circuits of the Model 1821A and their relationship to each other.
- 4-3. The trigger generators each produce a fast-rise negative pulse at some point on the trigger signal. The gate generators are "fired" by these pulses and produce negative gates that are coupled to the integrators. Each integrator generates a positive sweep during the time it is unclamped by the gates.
- 4-4. The sweep comparator generates a positive pulse at some time after the start of the main sweep. This pulse "resets" the delayed gate generator to a pretrigger condition. Since the delayed gate generator can not be fired until it is reset, the delayed gate and sweep always start after the main gate and sweep.
- 4-5. The main and delayed gates from the gate generators, and the main and delayed sweeps from the

integrators are applied to the Sweep Display switch. This front panel control couples the main and delayed signals, in various combinations, to the Model 180-series Oscilloscope.

4-6. MAIN SWEEP.

4-7. The main sweep circuit is explained in the following paragraphs. The Block Diagram Description is a general explanation of circuit function while Circuit Details provides more complete information.

4-8. BLOCK DIAGRAM DESCRIPTION.

- 4-9. A block diagram of the main sweep circuit is shown in Figure 4-2.
- 4-10. NORMAL. Setting the SWEEP MODE switch to NORM disables the auto circuit and allows the main sweep circuit to operate normally. The selected trigger signal is applied to the trigger generator which produces a fast-rise negative pulse at some point on the trigger signal. The gate generator is "fired" by this pulse and produces a negative signal that is applied to the Sweep Display switch and to the integrator. When unclamped by this signal, the integrator begins to generate the main sweep. This linear positivegoing sweep is applied to the Sweep Display switch and

Figure 4-2. Main Sweep Circuit Block Diagram

to the Schmitt trigger. When the ramp (the positive-going portion of the sweep signal) reaches a predetermined amplitude, the Schmitt trigger changes state, causing the gate generator to turn off, terminating the main sweep. After a brief delay from the end of the sweep, the hold-off circuit generates a negative signal that switches the Schmitt trigger back to the pretrigger state. This action "resets" the gate generator. The next negative pulse from the trigger generator "fires" the gate generator again and the cycle repeats.

4-11. AUTO. Selecting AUTO with the SWEEP MODE switch activates the auto circuit. However, if a trigger signal greater than about 40 Hz is present, the signal from the trigger generator "locks out" the auto circuit. With the auto circuit "locked out", the main sweep circuit operates as it did in NORM. If the trigger signal drops below 40 Hz, or is removed, the auto circuit turns on. It is triggered by the Schmitt trigger at the same time the gate generator is "reset" and supplies the current necessary to "fire" the gate generator. This action causes the main sweep circuit to free-run -- its rate determined by the sweep speed.

4-12. SINGLE. Setting the SWEEP MODE switch to SINGLE disconnects the hold-off circuit from the Schmitt trigger. The gate generator must now be "reset" by depressing the RESET push button at the end of each sweep, manually switching the Schmitt trigger to the pretrigger state.

4-13. CIRCUIT DETAILS.

4-14. The following paragraphs provide more information about the main sweep circuit. Refer to the schematic diagram in Figures 7-4 and 7-6.

4-15. NORMAL. The trigger signal is obtained from one of three sources as determined by the Trigger Source Switch, S101. The external signal is obtained from a front-panel BNC connector; the line signal from the Model 180-series Oscilloscope; and the internal signal from the Vertical Plug-In through the internal trigger amplifier, Q101/Q102. Voltage divider R103/R104 attenuates the external signal by a factor of 10 when EXT: 10 is selected. Voltage divider R101/ R102 attenuates the line signal to 10 v pk-pk. selected trigger signal is coupled through the Trigger Coupling switch S102 to source follower Q103. Trigger Coupling switch S102 selects between direct coupling (DC) capacitive coupling (AC) a low-pass filter (ACS) and a high-pass filter (ACF). CR103 protects Q103 from excessive negative voltage. Q103 provides a high input impedance to the trigger signal and couples the signal to the trigger comparator, Q104/Q105.

4-16. The trigger comparator switches tunnel diode CR106 to a high-voltage state at a selected point on the trigger signal. Setting the SLOPE switch to + turns off CR104 and turns on CR105. Tunnel diode CR106 is connected through CR107 to the collector of Q104. The positive slope of the trigger signal, applied to the base of Q104, causes Q104 to eventually conduct hard enough to switch CR106 to a high-voltage state. The TRIGGER LEVEL control determines the base voltage of Q105 and therefore affects the bias on Q104. Adjusting the TRIGGER LEVEL control determines the voltage required to switch the tunnel diode. Diodes

CR109 and CR110 protect Q104 and Q105 from reverse breakdown, base to emitter.

4-17. Setting the SLOPE switch to - turns off CR105 and turns on CR104. Tunnel diode CR106 is connected through CR108 to the collector of Q105. The trigger signal is coupled through Q104 to the emitter of Q105. Eventually the negative slope of the trigger signal turns on Q105 hard enough to switch CR106 to a high-voltage state. Since the TRIGGER LEVEL control determines the bias on Q105, it also determines the voltage required to switch the tunnel diode.

4-18. The negative-going rectangular wave produced by CR106 is differentiated by C118 and the emitter circuit of Q107. The resulting signal is coupled to Q108. Since Q108 is biased below cut-off, only the positive pulses are amplified and inverted. The fastrise negative pulses from the collector of Q108 are coupled to the auto circuit "locking it out" and to the tunnel diode, CR201 (Figure 8-6). The current provided by the first negative pulse, combined with the current from Q204 is sufficient to switch CR201 to a high-voltage state. After the trigger pulse ends, the current from Q204 alone is sufficient to keep CR201 in this high-voltage state. The negative signal produced by CR201 is amplified and inverted by Q201 and Q202. Diodes CR202 through CR204 keep Q201 from saturating. The negative signal at the collector of Q202 is coupled to three places: (1) to P1 pin 14 and through the Model 180-series Oscilloscope to the rear panel, (2) to S502 as an intensity signal to unblank the CRT, and (3) to the Miller integrator circuit where it opens diode switch CR211/CR215.

4-19. When the diode switch opens, the timing capacitor (C501 through C510) begins charging through the timing resistor (R502 through R510) to the negative voltage on the wiper of R235. The TIME/DIV switch determines the slope of the negative-going ramp at the gate of Q207 in two ways: (1) by selecting various RC time constants; (2) by selecting the base voltage on Q206 which determines the charging voltage at R235. The VERNIER control, R235, adjusts the charging voltage between the calibrated steps of the TIME/DIV control. The positive-going linear ramp at the output of the Miller integrator is coupled to P1 pin 11 and through the Model 180-series Oscilloscope to a rearpanel connector, to R460 to arm the delayed sweep circuit, and to S502 for horizontal deflection.

4-20. The positive-going ramp is also picked off the wiper of R251 and applied to CR216. As the ramp goes positive, CR216 turns on and connects the ramp to the base of Q205. The ramp continues going positive until it reaches the upper hysteresis limit of the Schmitt trigger, when Q205 turns on, turning Q204 off. current from Q204 through CR201 is removed, and the tunnel diode switches to a low-voltage state. negative gate ends; the diode switch (CR211/CR215) closes and terminates the ramp. Disconnect diode CR216 opens when the ramp ends, disconnecting the sweep voltage from the Schmitt trigger. The base voltage of Q205 returns to a quiescent level and the Schmitt trigger remains in this new state. CR201 is now in a "no-trigger" condition and incoming negative trigger pulses have no effect.

4-2 02591-3

4-21. As the main sweep was being generated, the positive-going ramp was also applied to the hold-off emitter followers, Q210 and Q211. The positivegoing signal at the emitter of Q210 was coupled through CR218 and CR219 and discharged the selected hold-off capacitor (C514 through C520). When the ramp ended, CR218 turned off and the hold-off capacitor began to charge negatively. As the capacitor charges, CR217 turns on and connects the hold-off capacitor to the base of Q205. When the charge on the hold-off capacitor reaches the lower hysteresis limit of the Schmitt trigger, Q205 turns off, turning on Q204. Q204 now supplies current to CR201 "resetting" it to a pretrigger condition. The time between the end of one sweep and the turn-on of Q204 is called hold-off. A new sweep cannot be started until this time has elapsed. Hold-off is varied slightly as the Main TRIGGER LEVEL control is adjusted by varying the voltage at R254. This provides a stable display of certain discrete high frequency signals.

4-22. SINGLE. When SINGLE is selected with the SWEEP MODE switch, the output from the hold-off circuit is clamped to about 0 v by CR220. S201 must be depressed to provide the negative signal that turns off Q205, switching the Schmitt trigger to a pretrigger state and resetting CR201. At this time, Q203 is turned on, shorting R217 and lighting front-panel indicator DS201. RESET lamp DS201 therefore indicates that CR201 is "reset". The next trigger pulse will switch CR201 to a high-voltage state and the previous cycle will repeat.

4-23. AUTO. At the time Q205 is turned off, a positive pulse from the collector of Q205 is applied to the base of Q109 (Figure 8-4). If the SWEEP MODE switch is set to either NORM or SINGLE, the monostable multivibrator, Q110/Q111, is disabled, causing CR117 to open. Q112 is then biased into conduction, turning off Q109. The auto trigger from Q205 is blocked by Q109 and has no effect on the circuit.

4-24. If however, AUTO is selected (no trigger signal applied) Q110 turns on, turning off Q111. The negative voltage from the collector of Q111 turns off Q112. The relatively positive voltage from the collector of Q112 is blocked by CR114, and Q109 conducts when the auto trigger from Q205 is applied. The current from Q109 triggers CR201, and the main sweep circuit free-runs—CR201 being fired by the current from Q109 each time it is reset by the current from Q204.

4-25. When a trigger signal is applied, the negative pulses from the collector of Q108 are coupled to the base of Q111, switching the monostable multivibrator to its non-stable state (Q110 off — Q111 on). If the frequency of the trigger signal is above approximately 40 Hz, the multivibrator does not return to its stable state. The relatively positive voltage from the collector of Q111 is blocked by CR117 and Q112 is biased into conduction. The negative signal from the collector of Q112 turns off Q109, blocking the auto trigger. The next pulse from Q108 will fire the gate circuit and start a sweep. If the frequency of the trigger signal drops below 40 Hz, the sweep circuit will be alternately triggered and free-run, providing an unstable display.

4-26. DELAYED SWEEP.

4-27. A block diagram of the delayed sweep circuit is shown in Figure 4-3. The delayed sweep circuit is similar to the main sweep circuit. There are, however, three main differences: (1) the hold-off circuit is replaced by the sweep comparator; (2) there is no auto circuit; (3) triggering from the power-line waveform is replaced by automatic triggering.

4-28. BLOCK DIAGRAM DESCRIPTION.

4-29. The sweep comparator generates a positive pulse at a point on the main sweep, determined by the setting of the CM DELAY control. The pulse from the sweep comparator switches the delayed Schmitt trigger to a pretrigger state, resetting the gate generator. Setting the delayed Trigger Source switch to AUTO allows this same pulse to generate a trigger that fires the gate generator. In AUTO, the delayed sweep starts immediately at the end of the delay. Selecting either INT or EXT with the delayed Trigger Source switch, allows the selected trigger signal to produce the pulse that fires the gate generator. Using internal or external trigger signals cause the delayed sweep to start on the first trigger signal after the delay.

4-30. The negative output from the gate generator (when fired) is applied to the sweep display switch and to the integrator. The integrator, when unclamped by this signal, generates a positive-going ramp that is applied to the sweep display switch and to the Schmitt trigger. When the sweep reaches a preselected amplitude, the Schmitt trigger changes state, turning off the gate generator, terminating the sweep.

4-31. The sweep comparator will again generate a positive pulse at some time during the next main sweep and the previous cycle will repeat.

4-32. CIRCUIT DETAILS.

4-33. The following paragraphs contain more detailed information about the delayed sweep circuits. Refer to the schematic diagram in Figures 8-7 and 8-8.

4-34. The positive-going main sweep, applied to the base of Q411 (Figure 8-8) eventually causes the transistor to conduct hard enough to switch tunnel diode CR423 to a high-voltage state. Since the DELAY (DIV) control determines the gate voltage of Q412 it also determines the bias on Q411. As the DELAY (DIV) control is varied, Q411 switches the tunnel diode, CR423, to a high-voltage state at various times during each sweep. The negative signal generated by CR423 is inverted by Q410 and coupled to the base of Q403. The positive signal turns on Q403, switching the Schmitt trigger to a pretrigger state, resetting CR401. The positive signal from Q410 is also differentiated by C422 and R459 and coupled to the base of Q409. Since:Q409 is normally cut-off, only the positivegoing pulses are applied to the front-panel BNC connector, J401.

4-35. If AUTO is selected with the delayed Trigger Source switch (Figure 8-7) the positive pulse from Q410

Figure 4-3. Delayed Sweep Circuit Block Diagram

is also coupled through CR309 to the base of Q306. The negative pulse from the collector of Q306 fires CR401 starting the delayed gate. In AUTO, therefore, the delayed gate and the delayed sweep start immediately after the delay.

4-36. Setting the delayed Trigger Source switch to either EXT, EXT:10 or INT, reverse biases CR309. The auto trigger from Q410 is blocked and the gate circuit is not fired until the selected trigger signal produces a negative trigger pulse. In EXT, EXT:10 or INT the delayed gate and sweep start on the first trigger signal after the delay.

4-37. The delayed trigger generator, gate generator, and integrator operate similarly to the main sweep circuits which are explained in Paragraph 4-13 to 4-20.

4-38. When the main sweep ends (Figure 8-8), Q411 turns off, switching CR423 to a low-voltage state. The negative output from the collector of Q410 turns off Q403, switching the Schmitt trigger to its pretrigger state. The current to CR401 is removed, the gate ends, and the delayed sweep is terminated. This action insures that the delayed sweep ends with the main sweep, preventing the main sweep from being triggered again while the delayed sweep is being generated.

4-39. SWEEP DISPLAYS.

4-40. The main and delayed gates and the main and delayed sweeps are applied to the Sweep Display switch. As the switch is rotated between the MAIN, MIXED, and DELAYED positions, various combinations of the

applied signals are coupled to the Model 180-series Oscilloscope. A schematic diagram of the Sweep Display switch, S502, is given in Figure 8-10.

4-41. Figure 4-4 shows the displays obtained in the three positions of the Sweep Display switch. For illustration purposes, the vertical input signal is shown to be a repetitive series of six pulses. The first pulse has some minimum amplitude and each successive pulse is larger. The main gate and sweep start on the first pulse. The delayed gate and sweep are 2.5 times faster than the main, and start (at end of delay) just before the second pulse.

4-42. MAIN. Setting the Sweep Display switch to MAIN, couples the main sweep to the Oscilloscope for deflection. The main and delayed gates are combined and coupled to the Oscilloscope for intensity. The portion of the display that occurs during the delayed gate time is intensified. Diode CR502 limits the maximum amplitude of the delayed gate to a voltage selected by R525.

4-43. MIXED. Selecting MIXED, combines the main and delayed sweeps and applies them to the Oscilloscope. CR501 prevents the main sweep from feeding back into the delayed circuit. The delayed sweep however, couples through when it exceeds the amplitude of the main sweep. The main gate is coupled to the Oscilloscope for intensity. The first part of the display is on main sweep time and the last part on delayed sweep time. The display is an even intensity except for the difference caused by the different speeds of the main and delayed sweeps. When the delayed sweep

Figure 4-4. Sweep Displays

reaches maximum amplitude before the main sweep, the delayed sweep signal, feeding back into the main sweep circuitry, terminates the main sweep. This action insures that both sweeps terminate at the same time.

4-44. DELAYED. Selecting DELAYED, couples the delayed gate and sweep to the Oscilloscope. The portion of the vertical input signal that was intensified in MAIN, is now displayed at the delayed sweep speed.

Table 5-1. Required Test Equipment

Recommended Instrument		Required Characteristics	Par Ref.	Required for			
Туре	Model	requir ou outrester issues					
Signal Generator	hp Model 608 C/E or hp Model 3200 B	50 MHz & 90 MHz @ 1 v pk-pk	5-12	Triggering Check			
Oscillator	hp Model 200 CD	40 Hz & 100 kHz @ 6 v pk-pk	5-13 5-31 5-32 5-33	Trigger Point & Slope Check Trigger Symmetry Check Main Sweep Length Adj Delayed Sweep Length Adj			
Time Mark Generator	Tektronix Type 184	0.1 μsec to 1 sec @ 3 v pk-pk	5-14 5-15 5-16 5-17 5-18 5-19 5-20 5-21 5-22 5-23 5-34 5-35 5-36	Main Sweep Time Check Main Sweep Vernier Check Magnified Sweep Check Delayed Sweep Time Check Delayed Sweep Vernier Check Delay Time Accuracy Check Delay Time Linearity Check Jitter Check Delayed Trigger Output Check Mixed Sweep Check Main Sweep Time Adj Delayed Sweep Time Adj Sweep Comparator Adj			
Oscilloscope	hp Model 140A w/1402A and 1423A	Sensitivity 0.1 v/cm sweep speed 50 nsec/cm	5-22	Delayed Trigger Output Check			
10:1 Divider Probe	hp Model 10001A or hp Model 10004A	3% accuracy	5-22	Delayed Trigger Output Check			
RF Voltmeter	hp Model 411A	0.5 v pk-pk @50 MHz 1 v pk-pk @90 MHz	5-12	Triggering Check			
DC Voltmeter	hp Model 412A	1 v range 3% accuracy	5-30	Output Level Adj			

SECTION V PERFORMANCE CHECK AND ADJUSTMENTS

5-1. INTRODUCTION.

5-2. This section provides the performance check (Paragraph 5-5) and the adjustment procedures (Paragraph 5-24) for the Model 1821A. Trouble-shooting information, schematic diagrams, and component identification are in Section VIII.

5-3. TEST EQUIPMENT.

5-4. Test equipment required for maintaining and checking the performance of the Model 1821A is listed in Table 5-1. Test equipment with similar characteristics may be substituted if necessary.

5-5. PERFORMANCE CHECK.

- 5-6. The performance check verifies whether or not the Model 1821A is operating within the specifications as stated in Table 1-1. This check may be used as part of an incoming quality control inspection, as a periodic operational check, or after repairs and/or adjustments have been made. Recently calibrated test equipment should be used when performing this check.
- 5-7. A Performance Check Record is included in this manual on Page 5-7 and 5-8. As the initial performance check is accomplished, the actual reading should be entered on the form. The form should then be removed from the manual and filed in a safe place so that readings taken at a later date can be compared with the original readings.
- 5-8. The performance check must be performed in the sequence given. Do not attempt to start the procedure in mid-sequence as succeeding steps are dependent on control settings and results of previous steps.

5-9. PRELIMINARY SET-UP.

5-10. Lock plug-ins together and install in Model 180-series Oscilloscope. Apply power and allow a 15 minute warm-up. Make certain the Model 180-series Oscilloscope is calibrated. Perform Intensity Ratio Adjustment, Figure 3-7, before attempting performance check.

5-11. INITIAL CONTROL SETTING.

a.	Model 180-series (Os	Сi	11	os	c	р	e:						
	MAGNIFIER · · · · · Horizontal DISPLAY													
b.	Vertical Plug-In (se	et	(co	nt	\mathbf{r}_0	ls	а	s	a	pp	li	ca	able)
	Vertical Display · · Channel A Polarity Channel A Vernier Channel A Volts/cm Channel A Coupling	•			•	•	•	•	•	:	:			+UI CAI 0.

c. Model 1821A Time Base:

						· · · MAIN
SWEEP MODE · · · · ·	٠	•	٠	•	٠	· · · AUTO
DELAY (DIV)	•			•		1.00
Main VERNIER · · · · ·	•	•	•	•	•	$\cdots \cdots$ CAL
Main Trigger Source · ·	•	•	•	•	•	$\cdots $ EXT
Main SLOPE · · · · · ·						
Main Trigger Coupling .						
Main TIME/DIV · · · ·						
Delayed TIME/DIV · · ·	٠	•	•	•	٠	$\cdots $ OFF
Delayed VERNIER · · ·	•	•	•	•	٠	$\cdots \cdots$ CAL
Delayed Trigger Source						
Delayed SLOPE · · · · ·	•	•	•	•	•	+ (positive)
Delayed Trigger Coupling	٠	•	•	٠	•	$\cdots \cdots AC$

5-12. TRIGGERING.

a. Connect Signal Generator output and RF Voltmeter input to Channel A Input and Main EXT INPUT as shown is Figure 5-1.

Figure 5-1. Main Triggering Test Set-Up

- b. Adjust Signal Generator for a 50 MHz signal at 0.5 v pk-pk (0.35 v rms).
- c. Adjust Intensity and position controls if necessary to obtain a display.
- d. Adjust Main TRIGGER LEVEL to obtain a stable display.
- e. Adjust Signal Generator for a 90 MHz signal at 1 v pk-pk (0.7 v rms).
- f. Adjust Main TRIGGER LEVEL to obtain a stable display.
- g. Connect Signal Generator output and RF Voltmeter input to Channel A Input, Main EXT INPUT, and Delayed EXT INPUT as shown in Figure 5-2.
- h. Set Sweep Display to DELAYED and Delayed TIME/DIV to 0.1 μ SEC.
- i. Adjust Signal Generator for a 50 MHz signal at 0.5 v pk-pk (0.35 v rms).

- j. Adjust Delayed TRIGGER LEVEL to obtain a stable display.
- k. Adjust Signal Generator for a 90 MHz signal at 1 v pk-pk (0.7 v rms).
- m. Adjust Delayed TRIGGER LEVEL to obtain a stable display.

Figure 5-2. Delayed Triggering Test Set-Up

5-13. TRIGGER POINT AND SLOPE.

a. Set:	MAGNIFIER · · · ·	•	•	•	٠	•	٠	•	· · X1
	Sweep Display · · · ·								
	Main TIME/DIV · · ·	٠	•	•			•	5	MSEC
	Delayed TIME/DIV ·	•	٠	•	٠	٠	٠	•	· OFF
	Channel A Volts/div	٠	•	•	•	•	•	•	• 1

- b. Connect a 40 Hz, 5 volt pk-pk ac signal from Oscillator output to Channel A Input, Main EXT INPUT, and Delayed EXT INPUT.
- c. Adjust Main TRIGGER LEVEL. Note that display is stable as trigger point moves smoothly along positive slope of waveform.
 - d. Set Main SLOPE to (negative).
- e. Adjust Main TRIGGER LEVEL. Note that display is stable as trigger point moves smoothly along negative slope of waveform.
- f. Set Sweep Display switch to DELAYED and Delayed TIME/DIV switch to 2 MSEC.
- g. Adjust Delayed TRIGGER LEVEL. Note that display is stable as trigger point moves smoothly along positive slope of waveform.
 - h. Set Delayed SLOPE to (negative).
- i. Adjust Delayed TRIGGER LEVEL. Note that display is stable as trigger point moves smoothly along negative slope of waveform.
 - j. Disconnect Oscillator.

Note

The results of checks made in Paragraphs 5-14 through 5-19 are determined by the calibration of both the Model 1821A and the Model 180-series Oscilloscope.

5-14. MAIN SWEEP TIME.

a. Connect Time Mark Generator output to Channel A Input.

b. Set:	Sweep Display · · · · · · · · · MAIN
	Delayed TIME/DIV · · · · · · · OFF
	SWEEP MODE· · · · · · · · · · · · NORM
	Main Trigger Source · · · · · · INT
	Main SLOPE $\cdot \cdot \cdot \cdot \cdot \cdot \cdot + (positive)$
	Channel A Volts/div · · · · · · 0.5

- c. Set Time Mark Generator and Main TIME/CM switch according to Table 5-2. Adjust Main TRIGGER LEVEL for display.
- d. Adjust Horizontal POSITION to align first marker with left edge of graticule.
- e. The 11th or 21st marker (according to Table 5-2), is within 0.3 div of right edge of graticule.

Table 5-2. Main Sweep Performance

Time Mark Generator	Main TIME/DIV Setting	Time Mark to Check
$0.1~\mu { m sec}$ $1~\mu { m sec}$ $10~\mu { m sec}$ $0.1~m { m sec}$ $1~m { m sec}$ $10~m { m sec}$ $10~m { m sec}$ $1~m { m sec}$	$0.1~\mu { m SEC}$ $1~\mu { m SEC}$ $10~\mu { m SEC}$ $0.1~M { m SEC}$ $1~M { m SEC}$ $10~M { m SEC}$ $20~M { m SEC}$ $1~S { m EC}$	11 11 11 11 11 11 21

5-15. MAIN SWEEP VERNIER.

- a. Set Time Mark Generator for 0.5 sec markers.
- b. Set Main TIME/DIV to $50\,\mathrm{MSEC}$ and rotate Main VERNIER fully ccw.
 - c. Any two markers are displayed in less than 4 div.

5-16. MAGNIFIED SWEEP.

a. Set:	Horizontal MAGNIFIER · · · · · · X5
	Main TIME/DIV $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0.1 \mu SEC$
	Main VERNIER · · · · · · · · · · CAL

- b. Set Time Mark Generator to 20 nsec. Adjust Main TRIGGER LEVEL if necessary for display.
- c. Adjust Horizontal Position to align peak of first cycle with left edge of graticule.
- d. Peak of 11th cycle is within $0.5\ \mathrm{mm}$ of right edge of graticule.
- e. Set Horizontal MAGNIFIER to X10 and Time Mark Generator to 10 nsec. $\,$
- f. Adjust Horizontal Position to align peak of first cycle with left edge of graticule.
- g. Peak of 11th cycle is within $0.5\ \mathrm{div}$ of right edge of graticule.

5-17. DELAYED SWEEP TIME.

a.	Set:	Main VERNIER · · · · · · · · · · CAL
		Main TIME/DIV $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0.2 \mu SEC$
		Sweep Display · · · · · · · DELAYED
		Delayed Trigger Source · · · · · INT
		Delayed Slope $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot +$ (positive)

- b. Set Time Mark Generator and delayed TIME/DIV according to Table 5-3. Adjust Delayed TRIGGER LEVEL for display.
- c. Adjust Horizontal POSITION to align first marker with left edge of graticule.
- d. The 11th or 21st marker (according to Table 5-3) is within 0.3 div of right edge of graticule.

Table 5-3. Delayed Sweep Performance

Time Mark Generator	Delayed TIME/DIV Setting	Time Mark to Check
$0.1~\mu sec$ $1~\mu sec$ $10~\mu sec$ $0.1~m sec$ $1~m sec$ $1~m sec$ $1~m sec$ $50~m sec$	$egin{array}{ll} 0.1~\mu { m SEC} \\ 1~\mu { m SEC} \\ 10~\mu { m SEC} \\ 0.1~{ m MSEC} \\ 1~{ m MSEC} \\ 2~{ m MSEC} \\ 50~{ m MSEC} \end{array}$	11 11 11 11 11 21

5-18. DELAYED SWEEP VERNIER.

- a. Set Delayed TIME/DIV to 50 MSEC and rotate Delayed VERNIER fully ccw.
 - b. Set Time Mark Generator for 0.5 sec markers.
- $c.\ \mbox{Any}\ \mbox{two}\ \mbox{markers}\ \mbox{are}\ \mbox{displayed\ in\ less\ than}\ \mbox{4\ cm.}$

5-19. DELAY TIME ACCURACY.

- b. Set Time Mark Generator for 1 msec markers.
- c. Adjust Main TRIGGER LEVEL for display.
- d. Adjust DELAY (DIV) to intensify 2nd marker.
- e. Position Sweep Display to DELAYED.
- f. Adjust DELAY (DIV) to set visible marker 1 div from start of display. Note DELAY (DIV) settings.
- g. Set Sweep Display to MAIN and adjust DE-LAY (DIV) to intensify 10th marker.
 - h. Set Sweep Display to DELAYED.
- i. Adjust DELAY (DIV) to set visible marker 1 div from start of display. Note DELAY (DIV) setting.
- j. Difference between DELAY (DIV) settings in steps d and f is 8.00 ± 0.08 .

5-20. DELAY TIME LINEARITY.

- a. Rotate DELAY (DIV) cw from 0.00 and adjust to set first visible marker 1 div from start of display. Note DELAY (DIV) setting.
- b. Adjust DELAY (DIV) to set 5th visible marker 1 div from start of display. Note DELAY (DIV) setting.
- c. Adjust DELAY (DIV) to set 9th visible marker 1 div from start of sweep. Note DELAY (DIV) setting.
- d. Subtract the setting in step a from the setting in step c Divide the difference by 2 Add this

result to the setting in step a - Subtract from $\,$ this sum the setting of step b - Divide this result by 2.

e. Answer is 0 ± 0.02 .

$$A = \text{step a}$$

$$B = \text{step b}$$

$$C = \text{step c}$$

$$A + \frac{C - A}{2} - B$$

$$= 0 \pm .02$$

5-21. JITTER.

- a. Set Delayed TIME/DIV to 10SEC.
- b. Adjust DELAY (DIV) to view the 9th visible marker.
- c. Observe that horizontal jitter is less than 0.5 $\ensuremath{\mathrm{div}}.$

5-22. DELAYED TRIGGER OUTPUT.

- a. Connect DEL'D TRIGGER OUTPUT through a 10:1 Divider Probe to the monitor Oscilloscope.
- b. Observe a positive pulse greater than 1 volt in amplitude and with a rise time of less than 50 nsec.

5-23. MIXED SWEEP.

- b. Observe that first part of display is brighter than last part.
 - c. Disconnect Time Mark Generator.

5-24. SINGLE SWEEP.

- b. Depress RESET. RESET lamp lights.
- c. Rotate Main TRIGGER LEVEL fully $cw \, and \, then \, fully \, ccw$
- d. Beam should sweep only once. RESET lamp extinguishes at end of sweep.

5-25. ADJUSTMENTS.

5-26. Procedures for making adjustment in the Model 1821A are given in Paragraphs 5-27 through 5-36. Required test equipment is listed in Table 5-1. Test equipment with similar characteristics may be substituted if necessary. Figure 8-2 shows the location of adjustments in the Model 1821A.

5-27. PRELIMINARY.

5-28. Lock plug-ins together and install in Model 180-series Oscilloscope. Apply power and allow a fifteen minute warm-up. Set front panel adjustment, INTENS RATIO, to midrange before attempting adjustment procedure.

5-29. INITIAL CONTROL SETTINGS.

a. Model 180-series Oscilloscope:

MAGNIFIER · · · · · · · · · · · · X1
Horizontal DISPLAY · · · · · · · · INT

b.	Vertical	Plug-In	(set	controls	as	applicable)	•
	77 1! 1	DIGDI A	5.7				۸

vertical DISPLAY.	٠	•	•	•	•	•	٠	•	•	•	•	٠	· • • • • • • • • • • • • • • • • • • •
Channel A Polarity	•			•	•	•	•		•	•	•	٠	+UP
Channel A Vernier ·	•			•		•	٠	•	•	•	•	٠	CAL
Channel A Volts/div													. 05
Channel A Coupling													AC

c. Model 1821A Time Base:

Sweep I	Display															M	IAIN
SWEEP	MODE		•				•	•	•	•	•	•	•	•	SI	N	GLE
DELAY	(DIV)	•						•	•	٠			•				1.00
Main V																	
Main Ti	rigger	So	ur	сe	j			•	•	•	•	•	•	•		•	EXT
Main S	LOPE	•	•	•	•	•	٠	•	•	•	•	•	+	(po	si	tive)
Main Tr	rigger	Co	uŗ	li	ng	ŗ	٠	•	•	•	•	٠	٠	٠	•	٠	AC
Main Tl	ME/D	IV	•		•		•		٠	•			•		1	N.	ISEC
Delayed	l TIME	/r	ΙI	J	•	•	•	•	•	•	•	•	٠	•	٠	٠	OFF
Delayed	I VERN	ПΕ	R	•	•	٠	•	•	•	•	•	•	•	•	٠	•	CAL
Delayed	l Trigg	er	S	ou	r	сe	•	•	٠	•	•	•	٠	•	•	٠	EXT
Delayed																	
Delayed	l Trigg	er	C	οι	ıp	lir	ıg			•	•	•	•	•			AC

5-30. OUTPUT LEVEL.

- a. Monitor TP204 (see Figure 8-2) with DC Voltmeter.
 - b. Adjust R238 for 0 vdc ± 15 mv.
 - c. Set Delayed TIME/DIV to 0.1 MSEC.
- d. Monitor TP404 (see Figure 8-2)with a DC Voltmeter.
 - e. Adjust R422 for 0 vdc ± 15 mv.

5-31. TRIGGER SYMMETRY.

- a. Rotate Delayed TIME/DIV to OFF and set SWEEP MODE to AUTO.
- b. Connect a 1 kHz 200 mv pk-pk signal from Oscillator output to Channel A Input, Main EXT IN-PUT, and Delayed EXT INPUT.
 - c. Center Main TRIGGER LEVEL control exactly.
 - d. Adjust R127 to obtain a stable display.
- e. Set Sweep Display to DELAYED and Delayed TIME/DIV to 0.5 MSEC.
- f. Center Delayed TRIGGER LEVEL control exactly.
 - g. Adjust R318 to obtain a display.

5-32. MAIN SWEEP LENGTH.

a. Set:	Sweep Display · · · ·	•	•	•	•	•	٠		MAIN
	Delayed TIME/DIV ·	•	٠	٠	•	•	•	٠	\cdot OFF
	Channel A Volts/div.	•	•	٠	•	•	•	•	0.5

- b. Adjust Oscillator output for a 100 $\,\mathrm{kHz}$ 3v pk-pk signal.
- c. Set Main TRIGGER LEVEL for shortest horizontal display.
 - d. Adjust R251 for a horizontal display of 10 div.
- e. Adjust Horizontal POSITION to place right side of display on ninth graticule line. Readjust R251 to increase display length 0.4 div (this gives a total display length of 10.4 div).

5-33. DELAYED SWEEP LENGTH.

- a. Set Sweep Display to DELAYED and Delayed TIME/DIV to 0.5 MSEC.
- b. Set Delayed TRIGGER LEVEL for the shortest horizontal display.
 - c. Adjust R435 for a 10 cm horizontal display.
- d. Adjust Horizontal POSITION to place right side of display on eighth graticule line. Readjust R435 to increase display length 1.5 div(this gives a total display length of 11.5 div).
 - e. Disconnect Oscillator.

5-34. MAIN SWEEP TIME.

a.	Set:	Sweep Display · · · ·		•	•		•		 MAIN
		Delayed TIME/DIV ·	•	•	•				\cdot OF F
		SWEEP MODE · · ·	•		•	•	•	•	\cdot NORM
		Main Trigger Source	•	•	•	•	•	•	· · INT

- b. Connect Time Mark Generator to Channel A Input.
- c. Set Time Mark Generator and Main TIME/DIV switch as indicated in Table 5-4. Adjust Main TRIGGER LEVEL for display.
- d. Adjust Horizontal POSITION to align 1st marker with left edge of graticule.
- e. Perform adjustment specified in Table 5-4 to align 11th marker with right edge of graticule.

Table 5-4. Main Sweep Time

Time Mark Generator	Main TIME/DIV Setting	Time Mark to Adjust	Adjust
0.1 μ sec	0.1 μSEC	11	C510
1 μsec	1 μ SEC	11	C508
5 μ sec	$5 \mu SEC$	11	C506
50 μsec	50 μSEC	11	R516
500 μ sec	0.5 MSEC	11	R515
$5\mathrm{msec}$	5 MSEC	11	R514
50 msec	50 MSEC	11	R513

5-35. DELAYED SWEEP TIME.

a. Set:	Sweep Display	.DELAYED
	Main TIME/DIV · · · · ·	
	Delayed Trigger Source · · ·	$\cdots \cdots$ INT

- b. Set Time Mark Generator and Main TIME/CM as indicated in Table 5-5. Adjust Delayed TRIGGER LEVEL for display.
- c. Adjust Horizontal POSITION to align 1st marker with left edge of graticule.
- d. Perform adjustment specified in Table 5-5 to align 11th marker with right edge of graticule.

Table 5-5. Delayed Sweep Time

Time Mark Generator	Delayed TIME/DIV Setting	Time Mark to Adjust	Adjust			
0.1 μ sec 1 μ sec	0.1 μSEC 1 μSEC	11 11	C532 C530			
5 μ sec	$5 \mu \text{SEC}$	11	C528			
50 μsec	$50~\mu { m SEC}$	11	R539			
$500~\mu\mathrm{sec}$ $5\mathrm{msec}$	0.5 MSEC 5 MSEC	11 11	R538 R537			

5-36. SWEEP COMPARATOR.

a. Set:	Main TIME/DIV · · · · · · · ·		
	Delayed TIME/DIV · · · · ·	10	μSEC
	Delayed Trigger Source · · ·		AUTO
	DELAY (DIV) · · · · · · · ·		0.00

b. Set $\operatorname{\mathtt{Time}}$ Mark Generator for 1 msec markers.

- c. Rotate DELAY (DIV) cw from 0.00 until first marker appears. Set DELAY (DIV) to 1.00 and adjust R473 to set first marker 1 div from start of display.
- d. Rotate DELAY (DIV) cw from 0.00 until ninth marker appears. Set DELAY (DIV) to 9.00 and adjust R469 to set ninth marker 1 div from start of display.
- e. Repeat steps c and d until no further adjustment is necessary.

CUT ALONG DOTTED LINE

PERFORMANCE CHECK RECORD

Serial	Number	:		

	Charle	Result						
Paragraph	Check	Minimum	Reading	Maximum				
5-12	Triggering							
step d	main @ 50 MHz	0.5 v pk-pk						
'' f	main @ 90 MHz	1 v pk-pk						
'' j	delayed @ 50 MHz	0.5 v pk-pk						
'' m	delayed @ 90 MHz	1 v pk-pk	-					
5-13	Triggering Point and Slope							
step c	main + (positive)	stable on positive slope						
'' e	main - (negative)	stable on negative slope						
'' g	delayed + (positive)	stable on positive slope						
'' i	delayed - (negative)	stable on negative slope						
5-14	Main Sweep Time							
	0.1 µSEC	9.7 div		10.3 div				
	1 μSEC	9.7 div		10.3 div				
	10 μSEC	9.7 div		10.3 div				
	0.1 MSEC	9.7 div		10.3 div				
	1 MSEC	9.7 div		10.3 div				
	10 MSEC	9.7 div		10.3 div				
	20 MSEC	9.7 div		10.3 div				
	1 SEC	9.7 div		10.3 div				
5-15	Main Sweep Vernier			4 div				
5-16	Magnified Sweep							
step d	X 5	9.5 div		10.5 div				
'' g	X10	9.5 div	The state of the s	10.5 div				
5-17	Delayed Sweep Time							
	0.1 µSEC	9.7 div		10.3 div				
	1 uSEC	9.7 div		10.3 div				
	10 aSEC	9.7 div		10.3 div				
	0.1 MSEC	9.7 div	-	10.3 div				
	1 MSEC	9.7 div		10.3 div				
	2 MSEC	9.7 div		10.3 div				
	50 MSEC	9.7 div		10.3 div				
5-18	Delayed Sweep Vernier			4 div				
5-19	Delay Time Accuracy	7.92		8.08				
5-20	Delay Time Linearity	02		+. 02				
	_ J	<u>. 4 </u>		•				

Performance Check Record Model 1821A

PERFORMANCE CHECK RECORD (Cont'd)

Donognonh	Check	Result					
Paragraph	Check	Minimum	Reading	Maximum			
5-21	<u>Jitter</u>			0.5 div			
5-22	Delayed Trigger Output amplitude rise time	1.5 v		50 nsec			
5-23	Mixed Sweep	1st part brighter		• •••			
5-24 step b '' d	Single Sweep	lamp lights one sweep					

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION.

- 6-2. This section contains information for ordering replaceable parts for the instrument. Table 6-2 lists the parts in alpha-numerical order of their reference deisgnations and provides the following information for each item:
 - a. hp Part Number.
- b. Total quantity (TQ) used in instrument; given only first time a part number is listed.
- c. Description of part; see Table 6-1 for list of reference designators and abbreviations.
- 6-3. Parts not identified by a reference designation are listed at the end of Table 6-2, under Miscellaneous.

6-4. ORDERING INFORMATION.

6-5. To order replacement parts from the Hewlett-Packard Company, address the order or inquiry to the nearest Hewlett-Packard Sales/Service Office (list at the rear of manual) and supply the following information:

- a. hp Part Number of item(s).
- b. Model number and eight-digit number of the instrument.
 - c. Quantity of parts desired.
- 6-6. To order a part not listed in the table, provide the following information:
- a. Model number and eight-digit serial number of instrument.
 - b. Description of part including function and location.
- 6-7. Component descriptions given in Table 6-2 are as complete as possible to assist in obtaining replacement parts from manufacturers other than hp. However, many parts are manufactured only by hp, or are produced by other manufacturers to hp proprietary specifications, and are therefore available only from hp. Actual manufacturer and manufacturers part number for non-hp parts will be supplied upon request. Contact the nearest hp Sales/Service Office.

Table 6-1. Reference Designators and Abbreviations

				R	EFERENCE DESIG	NATOR	S				
Α	=	assembly	F	=	fuse	MP	_	mechanical part	TP	_	test point
В	=		FL	=	filter	P	=	plug	v		vacuum tube, neon
C		capacitor	J	=	jack	Q	-	transistor	•		bulb, photocell, et
CP		coupling	K	=	relay	R	=	resistor	VR	=	voltage regulator
CR		diode	L	=	inductor	RT	=	thermistor	* **		(diode)
DL	=	delay line	LS	=	speaker	S	=	switch	W	=	cable
DS	Ξ	device signaling (lamp)	M	=	meter	T	=	transformer	x	=	
E	=	misc electronic part	MC	=	microcircuit	TB	=	terminal board	Y		crystal
					ABBREVIATI	ONS					
A	=	amperes	GL	=	glass	MTG	=	mounting	RF	=	radio frequency
AMPL.	Ξ	amplifier	GRD		ground(ed)	MY	=		1(1	_	rauto rrequency
								,	S-B	-	slow-blow
			Н	=	henries	N	=	nano (10 ⁻⁹)	SCR	=	screw
BP	=	bandpass	HG	=	mercury	N/C	=	normally closed	SE	=	selenium
			HR	=	hour(s)	NE			SECT	_	
CAR		carbon	hp	=	Hewlett-Packard	N/O		normally open			= semiconductor
CCW	=	counterclockwise				NPO		negative positive zero	SI	=	
CER		ceramic	IF	=	intermediate freq.			(zero temperature	SIL	=	
COEF	=	coefficient	IMPG	=	impregnated			coefficient)	SL	_	
COM		common	INCD	22	incandescent	NSR	=	not separately	SPL	=	
COMP	=	composition	INCL	=	include(s)			replaceable	DIL	_	special
CONN		connector	INS	=	insulation(ed)			- opinocuoic	TA	=	tantalum
CRT		cathode-ray tube	INT	÷.	internal	OBD	=	order by description	TD	_	time delay
CW	=	clockwise				OX			TGL	_	toggle
			K	=	kilo = 1000				TI	_	titanium
DEPC	÷	deposited carbon				PC	=	printed circuit	TOL	=	tolerance
			LIN	=	linear taper	PF		picofarads =	TRIM	_	trimmer
ELECT		electrolytic	LOG	=	logarithmic taper			10 ⁻¹² farads	1 171141	_	trimmer
ENCAP	=	encapsulated	LPF		low pass filter	PIV	=	peak inverse voltage	μ		$micro = 10^{-6}$
EXT	77	external			•	P/O		part of	12		mero = 10
			M	=	$milli = 10^{-3}$	POLY	=	polystyrene	VAR	_	variable
F	=	farads	MEG	==	meg = 106	PORC		porcelain	VAR		
FET	=	field effect			metal film	POS		position(s)	VIDEW	=	de working volts
		transistor			metal oxide	POT		potentiometer	w/	_	with
FXD	=	fixed	MFR		manufacturer	PK-PK	_	peak-to-peak	W		
			MINAT		miniature	112 613	-	pean-to-pean	w WW	=	watts
GE		germanium	MOM		momentary	RECT	=	rectifier	ww w/o	=	wirewound without

02591-3 6-1

6-2

Table 6-2. Replaceable Parts

Ref	hp Part No.	RS	ТQ	Description (See Table 6-1.)		
Desig			 	(See Table 0-1.)		
	01001 00500		,	A more control bound		
A1 A2	01821-66508 01821-66507		1 1	A: sweep control board A: sweep board		
A2 A3	01821-66307		1	A: sweep board A: sweep time (includes A2, S591-S593)		
C100	0160-0134		1	C: fxd mica 220 pf 5%		
C100	0160-0134		1	C: fxd my 2.2 pf ±.25 pf 500vdcw		
C102	0180-0155		15	C: fxd ta elect 2.2 \(\mu \) f 20\% 20vdcw		
C103	0140-0145		3	C: fxd mica 22 pf 5% 500vdcw		
C104	0180-0155			C: fxd ta elect 2.2 \(\mu \)f 20\% 20vdcw	1	
C105	0150-0024		2	C: fxd cer .02 μ f -20% +80% 600vdcw		
0100	0150 0051		2	C: fxd cer 100 pf 600vdcw		
C106 C107	0150-0051 0160-0153		1	C: fxd cer 100 pf 600vdcw		
0108	0140-0149		2	C: FX MICA 4708-5% 300 Udcw		
C109	0160-0161		3	C: fxd my . 01 μ f 10%		
				•		
C111	0180-0155		ا , ا	C: fxd ta elect 2.2 \(\mu \) f 20\(20\) vdcw		
C112	0160-2959		4	C: fxd cer 1000 pf -0+100% 600vdcw		
C113	0160-2959			C: fxd cer 1000 pf $-0+100\%$ 600vdcw		
				6		
C117	0160-0168		4	C: fxd my . 1 µf 10%		
C118	0140-0176		7 5	C: fxd mica 100 pf 2 % 300vdcw C: fxd mica 30 pf 5 % 500vdcw		
C119	0140-0203		⁰			
C120 C121	0180-0155 0140-0176			C: fxd ta elect 2.2 \(\mu \) f 20\% 20vdcw C: fxd mica 100 pf 2\% 300vdcw		
C121	0140-0170			C. IXI IIICa 100 pi 2 % 500vacw		
C122	0180-0155			C: fxd ta elect 2.2 μ f 20% 20vdcw		
C123	0180-0155			C: fxd ta elect 2.2 μ f 20% 20vdcw		
			. 1			
C201	0140-0176			C: fxd mica 100 pf 2% 300vdcw		
C202	0140-0145			C: fxd mica 22 pf 5% 500vdcw		
C203	0180-0155			C: fxd ta elect 2.2 μ f 20% 20vdcw		
C204	0150-0042		2	C: fxd ti 4. 7 pf 5% 500vdcw		
C205	0140-0176			C: fxd mica $\hat{100}$ pf 2% 300vdcw		
C206	0160-0161			C: fxd my . 01 μ f 10%		
C207	0160-0161			C: fxd my 0.1 \(\mu \) 10%		
C208	0170-0040		1	C: fxd my . 047 μ f 10% 200vdcw		
C209	0140-0220		1	C: fxd mica 200 pf 1% 300vdcw		
C211	0140-0191	ļ	1	C: fxd mica 56 pf 5% 300vdcw		
C2 13	0160-0162		15	C: fxd my . 022 μ f 10%		
C213 C214	0180-0162	1	10	C: fixd my . 022 μ f 10% C: fixd ta elect 2.2 μ f 20% 20vdcw		
C214	0160-0162			C: fxd my . 022 \(\mu \)f 10\%		
C2 16	0160-0162			C: fxd my . 022 \(\mu\)f 10\%		
C2 17	0140-0203			C: fxd mica 30 pf 5% 500vdcw		
	0110 515			G		
C218	0140~0156		2	C: fxd mica 1500 pf 2% 300vdcw		
C219	0160-2263		2	C: fxd cer 18 pf 5% 500vdcw		
C220	0160-0162			C: fxd my . 022 μ f 10%		
9061	0100 0000			G () 1 0 4		
C301	C160-2239		1			
C302 C303	0150-0024 0150-0051			C: fxd cer .02 μ f -20% +80% 600vdcw C: fxd cer 100 pf 600vdcw		
C303	0100-0001			O. Ma Col 100 pl 000vacu		
	1			, , , , , , , , , , , , , , , , , , ,		
C307	0160-0161			C: fxd my . 01 μ f 10%		
C308	0180-0155			C: fxd ta elect 2.2 μ f 29% 20vdcw		
C310	0160-0162			C: fxd my . 022 μ f 10 $\%$	1	
C311	0160-2959	I	'	C: fxd cer 1000 pf -0+100% 600vdcw		
	1	Į	l	-	 	
	1	1	i	1	l	l

Table 6-2. Replaceable Parts (Cont'd)

Table 6-2. Replaceable Parts (Cont'd)									
Ref Desig	hp Part No.	RS	ТQ	Description (See Table 6-1.)					
C312	0160-2959			C: fxd cer 1000 pf -0+100% 600vdcw					
C316 C317 C318 C319 C320	0160-0168 0140-0176 0140-0203 0180-0155 0180-0155			C: fxd my . 1 μ f 10% C: fxd mica 100 pf 2% 300vdcw C: fxd mica 30 pf 5% 500vdcw C: fxd ta elect 2.2 μ f 20% 20vdcw C: fxd ta elect 2.2 μ f 20% 20vdcw					
C323 C324 C325 C326 C327 C328	0180-0155 0160-0162 0160-0162 0160-0162 0180-2104 0180-2104		2	C: fxd ta elect 2.2 μ f 20% 20vdcw C: fxd my . 022 μ f 10% C: fxd ta elect 40 μ f 20% 30vdcw C: fxd ta elect 40 μ f 20% 30vdcw					
C401 C402 C403 C404 C405	0140-0176 0140-0145 0160-0162 0160-0162 0160-0162			C: fxd mica 100 pf 2% 300vdew C: fxd mica 22 pf 5% 500vdew C: fxd my . 022 μ f 10% C: fxd my . 022 μ f 10% C: fxd my . 022 μ f 10%					
C406 C407 C408 C409	0140-0203 0140-0156 0140-0190 0160-0162		1	C: fxd mica 30 pf 5% 500vdew C: fxd mica 1500 pf 2% 300vdew C: fxd mica 39 pf 5% 300vdew C: fxd my . 022 μ f 10%					
C413 C414 C415 C416 C417	0140-0203 0140-0214 0160-0162 0150-0042 0140-0176		1	C: fxd mica 30 pf 5% 500vdcw C: fxd mica 60 pf 5% 300vdcw C: fxd my . 022 μ f 10% C: fxd ti 4.7 pf 5% 500vdcw C: fxd mica 100 pf 2% 300vdcw					
C418 C419 C420 C421 C422	0150-0055 0160-0162 0180-0155 0180-0155 0140-0145		1	C: fxd ti 10 pf 5% 500vdcw C: fxd my . 022 μ f 10% C: fxd ta elect 2.2 μ f 20% 20vdcw C: fxd ta elect 2.2 μ f 20% 20vdcw C: fxd mica 22 pf 5% 500vdcw					
C423 C424 C425 C426	0160-0168 0160-0162 0180-0341 0180-0216		1	C: fxd my . 1 μ f 10% C: fxd my . 022 μ f 10% C: fxd elect 25 μ f -10% +75% 12vdcw C: fxd ta elect 12 μ f 10% 35vdcw					
C501 C502 C503 C504 C505	0160-2433 0160-2432 0160-2431 0160-2430 0140-0215		1 2 2 2 2	C: fxd poly 1 μ f 5% 100vdew C: fxd poly .1 μ f 5% 100vdew C: fxd poly .01 μ f 5% 100vdew C: fxd poly .001 μ f 5% 100vdew C: fxd mica 80 pf 2% 300vdew					
C506 C507 C508 C509 C510	0121-0061 0160-2200 0121-0061 0160-2264 0121-0060		4 2 1 2	C: var cer 5. 5-18 pf 300vdcw C: fxd mica 43 pf 5% 500vdcw C: var cer 5. 5-18 pf 300vdcw C: fxd cer 20 pf 5% 500vdcw C: var cer 2-8 pf					
			- 1		ı	į.			

Table 6-2. Replaceable Parts (Cont'd)

Ref	T	r—	<u> </u>	Description	[<u> </u>
Desig	hp Part No.	RS	ΤQ	(See Table 6-1.)		
C514 C515 C516 C517 C518	0180-0155 0180-0218 0170-0024 0160-0299 0150-0072		1 1 1	C: fxd ta elect 2.2 μ f 20% 20vdcw C: fxd ta elect .15 μ f 10% 35vdcw C: fxd my .022 μ f 20% 200vdcw C: fxd my 1800 pf 10% 200vdcw C: fxd cer 200 pf 5% 500vdcw		
C519 C520	0150-0073 0150-0078		1	C: fxd cer 100 pf 10% 500vdcw C: fxd cer 56 pf 10% 1000vdcw		
C524 C525 C526 C527 C528	0160-2432 0160-2431 0160-2430 0140-0215 0121-0061			C: fxd poly .1 μ f 5% 100vdew C: fxd poly .01 μ f 5% 100vdew C: fxd poly .001 μ f 5% 100vdew C: fxd mica 80 pf 2% 300vdew C: var cer 5.5-18 pf 300vdew		
C529 C530 C531 C532	0160-2200 0121-0061 0160-2263 0121-0060			C: fxd mica 43 pf 5% 500vdcw C: var cer 5.5-18 pf 300vdcw C: fxd cer 18 pf 5% 500vdcw C: var cer 2-8 pf		
CR103 CR104 CR105	1901-0096 1910-0016 1910-0016		7 12	CR: si CR: ge CR: ge		
CR106 CR107 CR108 CR109 CR110	1912-0004 1901-0040 1901-0040 1901-0040 1901-0040		2 32	CR: ge tunnel 5 ma CR: si CR: si CR: si CR: si		
CR114 CR115 CR116 CR117	1901-0040 1901-0040 1901-0040 1901-0040			CR: si CR: si CR: si CR: si		
CR201 CR202 CR203 CR204 CR205 CR206 CR207	1912-0006 1910-0016 1901-0040 1901-0040 1910-0016 1910-0016 1901-0040		2	CR: ge tunnel 10 ma CR: ge CR: si CR: si CR: ge CR: ge CR: ge CR: ge CR: ge		
CR2 10 CR2 11 CR2 12 CR2 13 CR2 14	1901-0040 1901-0439 1901-0096 1901-0040 1901-0040		2	CR: si CR: si CR: si CR: si CR: si		
CR215 CR216 CR217 CR218 CR219 CR220	1901-0050 1901-0040 1901-0040 1901-0040 1901-0040 1901-0096		2	CR: si CR: si CR: si CR: si CR: si CR: si		
<u> </u>		<u>[_</u>]	l		<u> </u>	

6-4 02591-3

Table 6-2. Replaceable Parts (Cont'd)

Ref Desig hp Part No. RS TQ Description (See Table 6-1.)	
CR302 CR303 1910-0016 1910-0016 CR: ge CR: ge CR: ge CR: ge tunnel 5 ma CR304 CR305 1912-0004 1901-0040 CR: ge CR: ge tunnel 5 ma CR306 CR307 CR308 CR309 1901-0040 1901-0040 CR309 CR: si CR: si CR: si CR: si CR401 CR402 CR403 CR404 CR404 CR405 CR406 1912-0006 1910-0016 CR406 CR: ge tunnel 10 ma CR: ge CR: si CR: si CR: si CR: si CR: si CR: si CR: si	
CR307 CR308 CR309 1901-0040 1901-0096 CR: si CR: si CR: si CR401 CR402 CR403 CR404 CR405 CR406 1912-0006 1910-0016 CR: si CR: ge tunnel 10 ma CR: ge CR: si CR: si CR: si CR: si CR: si CR: si CR: si CR: si CR: si CR: ge CR: ge	
CR402 1910-0016 CR: ge CR403 1901-0040 CR: si CR404 1901-0040 CR: si CR405 1910-0016 CR: ge CR406 1910-0016 CR: ge CR: ge CR: ge CR: ge CR: ge CR: ge CR: ge	
CR410 1901-0040 CR411 1901-0439 CR412 1901-0040 CR413 1901-0050 CR414 1901-0096 CR: si	
CR415 1901-0040 CR: si CR416 1901-0040 CR: si	
CR420 1910-0016 CR421 1910-0016 CR422 1901-0040 CR423 1912-0007 CR424 1901-0040 CR425 1901-0040 CR: ge CR: ge CR: si CR: tunnel CR: si CR: si CR: si	
CR501 1901-0096 CR: si CR: si NSR: p o S201	i
J1 1251-0054 1 J: female 24 pin	
J101 1250-0083 3 J: BNC fe male	
J301 1250-0083 J: BNC fe male	
J: BNC female	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Table 6-2. Replaceable Parts (Cont'd)

r——-	· · · · · · · · · · · · · · · · · · ·	r — 1	₁ —,	Description	т —	
Ref Desig	hp Part No.	RS	TQ	(See Table 6-1.)		
L201 L202 L203	9140-0047 9140-0115 9170-0029		3	L: fxd 20 μ h L: fxd 22 μ h L: bead ferrite		
L301 L302 L303 L304 L305 L306	9170-0029 9140-0047 9170-0029 9140-0088 9140-0047 9140-0047			L: bead ferrite L: fxd 20 μ h L: bead ferrite L: fxd 0. 33 μ h L: fxd 20 μ h L: fxd 20 μ h		
L308 L309	9140-0115 9140-0115			L: fxd 22 μ h L: fxd 22 μ h		
L402	9170-0029			L: bead ferrite		
P1 P2 Q101 Q102 Q103 Q104 Q105	1251-0136 1250-0898 1854- 0206 ← 1853-0036 1855-0020 1854-0215 1854-0215	Z15	1 1 3 5 8	P: 32 pin male P: bulkhead connector 1 pin female Q: si npn Q: si pnp Q: si fet Q: si npn Q: si npn		
Q106 Q107 Q108 Q109 Q110	1853-0009 1850-0164 1854-0009 1854-0019 1853-0049		2 2 2 9	Q: si pnp Q: ge pnp Q: si npn Q: si npn Q: si pnp		
Q111 Q112	1853-0049 1854-0019			Q:si pnp Q:si npn		
Q201 Q202 Q203 Q204 Q205	1850-0099 1854-0019 1854-0022 1854-0019 1854-0019		2 5	Q: ge pnp Q: si npn Q: si npn Q: si npn Q: si npn Q: si npn		
Q206 Q207 Q208 Q209 Q210 Q211	1853-0036 1855-0020 1854-0215 1854-0022 1854-0215 1854-0215			Q: si pnp Q: si fet Q: si npn		
Q301 Q302 Q303 Q304 Q305	1855-0020 1854-0215 1854-0215 1853-0009 1850-0164			Q: si fet Q: si npn Q: si npn Q: si p np Q: ge pnp		
Q306	1854-0009			Q: si npn		
Q401 Q402 Q403 Q404 Q405	1850-0099 1854-0019 1854-0019 1854-0019 1853-0036			Q: ge pnp Q: si npn Q: si npn Q: si npn Q: si pnp		

Table 6-2. Replaceable Parts (Cont'd)

				Table 6-2. Replaceable Parts (Cont'd)		
Ref	hp Part No.	RS	TQ	Description (See Table 6-1.)		
Desig	· · · · · · · · · · · · · · · · · · ·	 —-	 —	(see Table 0-1.)	 	
Q406	1855-0020			Q: si fet		
Q407	1854-0215			Q: si npn	į	
Q408	1854-0022			Q: si npn	1	
Q409 Q410	1854-0019 1850-0158		1	Q: si npn Q: ge pnp		Ì
9,120	1000 0100		-	Ac. Be but		
Q411	1854-0022			Q: si npn		ļ
Q412	1855-0020			Q: si fet		
Q413	1854-0022			Q: si npn		
R101	0757-0290		1	R: fxd metflm 6. 19k ohms 1% 1/8w		
R102	0757-0290		3	R: fxd metflm 6. 19k ohms 1% $1/8$ w		1
R103	0698- 5472 0		2.	R: fxd metflm 900k ohms 1% 1/8w		
R104	0757-0466		4	R: fxd metflm 1 10k ohms 1% 1/8w		
R105	0683-0275		3	R: fxd metflm 2. 7 ohms $5\% 1/4$ w		
R106	0757-0438		8	R: fxd metflm 5. 11k ohms 1% 1/8w		
R107	0757-0401		11	R: fxd metflm 100 ohms $1\% 1/8$ w	1	
R108	0757-0414		7	R: fxd metflm 432 ohms 1% 1/8 w		
R109	0757-0346		3	R: fxd metflm 10 ohms 1% 1/8w		
R110	0757-0280		5	R: fxd metflm 1k ohms $1\% 1/8$ w		
R111	0757-0407		1	R: fxd metflm 200 ohms 1% 1/8w		
R112	0757-0344		2	R: fxd metflm 1 megohm 1% 1/4w		
R113	0757-0465		\$ 60 CO	R: fxd metflm 100k ohms 1% 1/8w		ł
R114	0757-0 465 ダゲチン		હ	R:fxd metflm 1997 ohms 1% 1/8w		
R117	0757-0465			R: fxd metflm 100k ohms 1% 1/8w		
R118	0757-0395		2	R: fxd metflm 56.2 ohms 1% $1/8$ w	ļ	
R119	0757-0388		3	R: fxd metflm 30.1 ohms $1\% 1/8$ w		
R120	0812-0051		2	R: fxd ww 15k ohms 3% 3w		
R121	2100-2001		2	R: var comp 5k ohms 10% 1/4w		
R122	0757-0447		2	R: fxd metflm 16.2k ohms 1% 1/8w		
R124	0757-0290			R: fxd metflm 6. 19k ohms $1\% 1/8$ w		
R125	0757-0461	ľ	3	R: fxd metflm 68. 1k ohms 1% 1/8w		
R126 R127	0811-1551 2100-2489		2 1	R: fxd ww 10k ohms 1% 3w R: var metflm 5k ohms 30% 1/2w lin		
11121	2100 2100		•			
R130	0757-0346		3	R: fxd metflm 10 ohms 1% 1/8w		
R131	0757-0392		3	R: fxd metflm 43. 2 ohms 1% 1/8w		
R132 R133	0757-0398 0757-0845		2	R: fxd metflm 75 ohms 1% 1/8w R: fxd metflm 18.2k ohms 1% 1/2w		
R133	0757-0421		6 2	R: 1xd metrim 18.2k onns 1% 1/2w R: fxd metflm 825 ohms 1% 1/8w		
			"	'		
R135	0757-0414			R: fxd metflm 432 ohms 1% 1/8w		
R136 R137	0757-0436 0757-0427			R: fxd metflm 4. 32k ohms 1% 1/8w R: fxd metflm 1. 5k ohms 1% 1/8w		
R137	0757-0427		6	R: IXG metirm 1. 5K onms $1\% 1/8$ W R: fxd metflm 221 ohms $1\% 1/8$ W	1	
R139	0757-0282		4	R: fxd metflm 392 ohms 1% 1/8w		
R140 R141	0757-0442 0757-0419		4	R: fxd metflm 10k ohms 1% 1/8w R: fxd metflm 681 ohms 1% 1/8w		
1/141	0101-0419		4	II. IAG INCUINI OUI OIIIIS I /// I/OW		
71/5	0858 0000			72 () () () () () () () () () (
R145 R146	0757-0200 0757-0481		1	R: fxd metflm 5. 62k ohms 1% $1/8$ w R: fxd metflm 475k ohms 1% $1/8$ w		
R146 R147	0757-0481		3	R: IXG metrim 475k onms $1\% 1/8$ w R: fxd metflm 432 ohms $1\% 1/8$ w		
R148	0757-0416		4	R: fxd metflm 511 ohms 1% 1/8w		
R149	0757-0283		1	R: fxd metflm 2k ohms 1% 1/8w		
						j
]	
					l	1.

Table 6-2. Replaceable Parts (Cont'd)

				rable 0-2. Replaceable Parts (Cont ti)		
Ref	hp Part No.	RS	TQ	Description		
Desig	·	∤ —	ļ	(See Table 6-1.)		
R150 R151 R152 R153 R154	0757-0438 0757-0401 0757-0427 0757-0461 0757-0419		11	R: fxd metflm 5. 11k ohms $1^{\frac{10}{6}}$ 1/8w R: fxd metflm 100 ohms $1^{\frac{10}{6}}$ 1/8w R: fxd metflm 1. 5k ohms $1^{\frac{10}{6}}$ 1/8w R: fxd metflm 68. 1k ohms $1^{\frac{10}{6}}$ 1/8w R: fxd metflm 681 ohms $1^{\frac{10}{6}}$ 1/8w		
R155 R156	0757-0444 0757-0273		1 7	R: fxd metflm 12. 1k ohms 1% 1/8w R: fxd metflm 3. 01k ohms 1% 1/8w		
R201 R202 R203 R204 R205	0757-0284 0757-0413 0757-0401 0757-0274 0757-0273		2	R: fxd metflm 150 ohms $1\% \ 1/8w$ R: fxd metflm 392 ohms $1\% \ 1/8w$ R: fxd metflm 100 ohms $1\% \ 1/8w$ R: fxd metflm 1.21k ohms $1\% \ 1/8w$ R: fxd metflm 3.01k ohms $1\% \ 1/8w$		
R206 R207 R208 R209 R210 R211	0758-0073 0757-0441 0757-0273 0757-0414 0757-0414 0757-0431		2 2 1	R: fxd metflm 24k ohms $5\% 1/2w$ R: fxd metflm 8. 25k ohms $1\% 1/8w$ R: fxd metflm 3.01k ohms $1\% 1/8w$ R: fxd metflm 432 ohms $1\% 1/8w$ R: fxd metflm 432 ohms $1\% 1/8w$ R: fxd metflm 2. 43k ohms $1\% 1/8w$		
R215 R216 R217 R218 R219 R220 R221 R222 R223 R224 R225	0757-0471 0757-0452 0757-0481 0757-0421 0757-0409 0757-0458 0757-0466 0757-0438 0757-0844 0757-0401 0757-0442		2 1 1 1 2 3	R: fxd metflm 182k ohms 1% 1/8w R: fxd metflm 27. 4k ohms 1% 1/8w R: fxd metflm 475k ohms 1% 1/8w R: fxd metflm 825 ohms 1% 1/8w R: fxd metflm 274 ohms 1% 1/8w R: fxd metflm 51. 1k ohms 1% 1/8w R: fxd metflm 110k ohms 1% 1/8w R: fxd metflm 15. 11k ohms 1% 1/8w R: fxd metflm 5. 11k ohms 1% 1/8w R: fxd metflm 16. 2k ohms 1% 1/2w R: fxd metflm 100 ohms 1% 1/8w R: fxd metflm 10k ohms 1% 1/8w R: fxd metflm 10k ohms 1% 1/8w		
R226 R227 R228 R229	0757-0465 0757-0280 0757-0461 0757-0768		1	R: fxd metflm 100k ohms 1% $1/8w$ R: fxd metflm 1k ohm 1% $1/8w$ R: fxd metflm 68. 1k ohms 1% $1/8w$ R: fxd metflm 47. 5k ohms 1% $1/4w$		
R232 R233 R234 R235 R236	0757-0438 0757-0417 0683-2205 2100-2002 0757-0450		3 6 2 1	R: fxd metflm 5. 11k ohms 1% 1/8w R: fxd metflm 562 ohms 1% 1/8w R: fxd comp 22 ohms 5% 1/4w R: var car comp 50k ohms 30% 1/4w R: fxd metflm 22. 1k ohms 1% 1/8w		
R237 R238 R239 R240 R241	0757-0388 2100-1773 0757-0428 0757-0419 0757-0846		2 2 1	R: fxd metflm 30.1 ohms 1% 1/8w R: var ww 1k ohm 10% 1/2w lin R: fxd metflm 1.62k ohms 1% 1/8w R: fxd metflm 681 ohms 1% 1/8w R: fxd metflm 22.1k ohms 1% 1/2w		
R2 45 R2 46 R2 47 R2 48	0683-2205 0757-0416 0757-0405 0757-0427		2	R: fxd comp 22 ohms 5% 1/4w R: fxd metflm 511 ohms 1% 1/8w R: fxd metflm 162 ohms 1% 1/8w R: fxd metflm 1.5k ohms 1% 1/8w		
R249 R250 R251 R252 R253	0757-0408 0757-0439 2100-1451 0757-0845 0683-2205		2 2 2	R: fxd metflm 243 ohms 1 \(^{\chi} 1/8\text{w}\) R: fxd metflm 6. 81k ohms 1 \(^{\chi} 1/8\text{w}\) R: var ww 2. 5k ohms 5 \(^{\chi} 1\text{w}\) R: fxd metflm 18. 2k ohms 1 \(^{\chi} 0 1/2\text{w}\) R: fxd comp 22 ohms 5 \(^{\chi} 1/4\text{w}\)		
l						

6-8 02591-4

Table 6-2. Replaceable Parts (Cont'd)

				Table 6-2. Replaceable Parts (Cont'd)			
Ref Desig	hp Part No.	RS	TQ	Description (See Table 6-1,)	1		
R254 R255 R256 R257	0757-0481 0757-0471 0757-0438 0757-0461		2	R: fxd metflm 475k ohms 1% 1/8w R: fxd metflm 182k ohms 1% 1/8w R: fxd metflm 5. 11k ohms 1% 1/8w R: fxd metflm 68. 1k ohms 1% 1/8w			
R301 R302 R303 R304 R305 R307 R308 R309	0698-5512 0757-0466 0757-0344 0757-0465 0757-0465 0757-0465 0757-0395 0757-0388		2	R: fxd metflm 900k ohms 1% 1/8w R: fxd metflm 110k ohms 1% 1/8w R: fxd metflm 1.00 megohms 1% 1/4w R: fxd metflm 100k ohms 1% 1/8w R: fxd metflm 100k ohms 1% 1/8w R: fxd metflm 100k ohms 1% 1/8w R: fxd metflm 56.2 ohms 1% 1/8w R: fxd metflm 30.1 ohms 1% 1/8w R: fxd metflm 30.1 ohms 1% 1/8w			
R310 R311 R312 R313 R314 R315	0812-0051 0757-0401 0811-1551 2100-2001 0757-0447 0757-0290			R: fxd ww 15k ohms 3% 3w R: fxd metflm 100 ohms 1% 1/8w R: fxd ww 10k ohms 1% 3w R: var comp 5k ohms 10% 1/4w R: fxd metflm 16.2k ohms 1% 1/8w R: fxd metflm 6.19k ohms 1% 1/8w			
R317 R318 R321 R322 R323 R324 R325	0757-0461 2100-2216 0757-0346 0757-0392 0757-0398 0757-0845 0757-0421		1	R: fxd metflm 68. 1k ohms 1% 1/8w R: var metflm 5k ohms 30% 1/2w lin R: fxd metflm 10 ohms 1% 1/8w R: fxd metflm 43. 2 ohms 1% 1/8w R: fxd metflm 75 ohms 1% 1/8w R: fxd metflm 18. 2k ohms 1% 1/2w			
R326 R327 R328 R329 R330	0757-0421 0757-0414 0757-0436 0757-0442 0757-0427 0757-0282		1	R: fxd metflm 825 ohms 1% 1/8w R: fxd metflm 432 ohms 1% 1/8w R: fxd metflm 4. 32k ohms 1% 1/8w R: fxd metflm 10k ohms 1% 1/8w R: fxd metflm 1. 5k ohms 1% 1/8w R: fxd metflm 221 ohms 1% 1/8w		<u> </u>	
R331 R332 R333	0757-0282 0757-0413 0757-0442 0757-0401			R: fxd metflm 221 ohms 1% 1/8w R: fxd metflm 392 ohms 1% 1/8w R: fxd metflm 10k ohms 1% 1/8w R: fxd metflm 100 ohms 1% 1/8w			
R337 R338 R339 R340	0757-0401 0757-0401 0683-0275 0683-0275			R: fxd metflm 100 ohms 1% 1/8w R: fxd metflm 100 ohms 1% 1/8w R: fxd comp 2. 7 ohms 5% 1/4w R: fxd comp 2. 7 ohms 5% 1/4w			
R401 R402 R403 R404 R405	0757-0284 0757-0413 0757-0401 0757-0273 0757-0441			R: fxd metflm 150 ohms 1% 1/8w R: fxd metflm 392 ohms 1% 1/8w R: fxd metflm 100 ohms 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 8.25k ohms 1% 1/8w			ļ
R406 R407 R408 R409 R410	0758-0073 0757-0392 0757-0426 0757-0273 0757-0465		1	R: fxd metflm 24k ohms 5% 1/2w R: fxd metflm 43.2 ohms 1% 1/8w R: fxd metflm 1.3k ohms 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 100k ohms 1% 1/8w			
		_l.				i	i

Table 6-2. Replaceable Parts (Cont'd)

				Table 6-2. Replaceable Parts (Cont d)	
Ref Desig	hp Part No.	RS	TQ	Description (See Table 6-1.)	
R411 R412 R413	0757-0431 0757-0414 0757-0412		1	R: fxd metflm 2. 43 k ohms 1% $1/8$ w R: fxd metflm 432 ohms 1% $1/8$ w R: fxd metflm 365 ohms 1% $1/8$ w	
R417 R418 R419 R420 R421	0757-0417 0757-0438 0683-2205 2100-2002 0757-0450		1	R: fxd metf1m 562 ohms 1% $1/8$ w R: fxd metf1m 5.11k ohms 1% $1/8$ w R: fxd comp 22 ohms 5% $1/4$ w R: var car comp 50k ohms 30% $1/4$ w w/switch R: fxd metf1m 22.1k ohms 1% $1/8$ w	
R422 R423 R424 R425	2100-1773 0757-04 2 8 0757-0419 0757-0846		1	R: var ww 1k ohm 10% 1/2w lin R: fxd metflm 1.62k ohms 1% 1/8w R: fxd metflm 681 ohms 1% 1/8w R: fxd metflm 22.1k ohms 1% 1/2w	
R429 R430 R431 R432 R433	0683-2205 0757-0416 0757-0405 0757-0427 0757-0408		:	R: fxd comp 22 ohms 5% 1/4w R: fxd metflm 511 ohms 1% 1/8w R: fxd metflm 162 ohms 1% 1/8w R: fxd metflm 1.5k ohms 1% 1/8w R: fxd metflm 243 ohms 1% 1/8w	
R434 R435 R436 R437	0757-0439 2100-1451 0757-0845 0683-2205		1	R: fxd metflm 6.81k ohms 1% $1/8w$ R: var ww 2.5k ohms 5% 1w R: fxd metflm 18.2k ohms 1% $1/2w$ R: fxd comp 22 ohms 5% $1/4w$	
R441 R442 R443 R444 R445	0757-0416 0757-0466 0757-0438 0757-0844 0757-0401			R: fxd metflm 511 ohms 1% $1/8$ w R: fxd metflm 110k ohms 1% $1/8$ w R: fxd metflm 5. 11k ohms 1% $1/8$ w R: fxd metflm 16. 2k ohms 1% $1/2$ w R: fxd metflm 100 ohms 1% $1/8$ w	
R446 R447 R448 R449 R450	0757-0274 0757-0288 0757-0465 0683-1005 0757-0388		3 1 1	R: fxd metflm 1.21k ohms 1% $1/8w$ R: fxd metflm 9.09k ohms 1% $1/8w$ R: fxd metflm 100k ohms 1% $1/8w$ R: fxd comp 10 ohms 5% $1/4w$ R: fxd metflm 30.1 ohms 1% $1/8w$	
R454 R455 R456 R457 R458	0757-0280 0757-0280 0757-0273 0757-0273 0757-0288			R: fxd metflm 1k ohm 1% 1/8w R: fxd metflm 1k ohm 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 3.01k ohms 1% 1/8w R: fxd metflm 9.09k ohms 1% 1/8w	
R459 R460 R461 R462 R463 R464	0757-0280 0757-0401 0757-0427 0757-0401 0757-0439 0757-0438			R: fxd metflm 1k ohm 1% 1/8w R: fxd metflm 100 ohms 1% 1/8w R: fxd metflm 1.5k ohms 1% 1/8w R: fxd metflm 100 ohms 1% 1/8w R: fxd metflm 6.81k ohms 1% 1/8w R: fxd metflm 5.11k ohms 1% 1/8w	
R468 R469 R470 R471 R472	0757-0455 2100-0896 0757-0451 2100-1443 0757-0417		1 1 1 1	R: fxd metflm 36.5k ohms 1% $1/8$ w R: var ww 15k ohms 5% 1w R: fxd metflm 24.3k ohms 1% $1/8$ w R: var ww 50k ohms 3% 10 turn . 1% lin 2w R: fxd metflm 562 ohms 1% $1/8$ w	
			:		

6-10 02591-2

Table 6-2. Replaceable Parts (Cont'd)

		. — .		Table 6-2. Replaceable Parts (Cont'd)	
Ref Desig	hp Part No.	RS	TQ	Description (See Table 6-1.)	
R473 R474	2100-1772 0757-0410		1	R: var ww 500 ohms $10\%~1/2\mathrm{w}$ lin R: fxd metflm 301 ohms $1\%~1/8\mathrm{w}$	
R502 R503 R504 R505	0698-3597 0698-5443 0698-5442 0698-5498		1 2 2 4	R: fxd metflm 15 megohms 1/2% 1/2w R: fxd metflm 9 megohms 1/2% 1/2w R: fxd metflm 6 megohms 1/2% 1/2w R: fxd metflm 1.5 megohms 0.1% 1/2w	
R506 R507 R508 R509 R510	0698-5498 0698-5497 0698-5496 0698-5496 0698-5495		2 4 2	R: fxd metflm 1.5 megohms 0. 1% 1/2w R: fxd metflm 600k ohms 0. 1% 1/2w R: fxd metflm 255k ohms 0. 1% 1/8w R: fxd metflm 255k ohms 0. 1% 1/8w R: fxd metflm 102k ohms 0. 1% 1/8w	
R513 R514 R515 R516 R517	2100-1777 2100-1777 2100-1777 2100-1777 0757-0441		7	R: var ww 20k ohms 10% $1/2$ w lin R: var ww 20k ohms 10% $1/2$ w lin R: var ww 20k ohms 10% $1/2$ w lin R: var ww 20k ohms 10% $1/2$ w lin R: fxd metflm 8. 25k ohms 1% $1/8$ w	
R518 R519 R520 R521 R522 R523 R524 R525 R526 R527 R528 R529 R530	0757-0288 0757-0845 0698-5437 0757-0399 0757-0462 0757-0280 2100-2063 0698-5443 0698-5442 0698-5498 0698-5498		1 1	R: fxd metflm 9.09k ohms 1% 1/8w R: fxd metflm 18.2k ohms 1% 1/2w R: fxd metflm 12k ohms 1% 1/2w R: fxd metflm 12k ohms 1% 1/8w R: fxd metflm 82.5 ohms 1% 1/8w R: fxd metflm 10k ohms 1% 1/8w R: fxd metflm 61.9k ohms 1% 1/8w R: fxd metflm 1k ohm 1% 1/8w R: fxd metflm 1k ohm 1% 1/2w R: fxd metflm 9 megohms 1/2 1/2w R: fxd metflm 6 megohms 1/2 1/2w R: fxd metflm 1.5 megohms 1/10% 1/2w R: fxd metflm 1.5 megohms 1/10% 1/2w R: fxd metflm 1.5 megohms 1/10% 1/2w R: fxd metflm 600k ohms 1/10% 1/2w	
R531 R532 R533	0698-5496 0698-5496 0698-5495			R: fxd metflm 255k ohms $1/10\%$ $1/8w$ R: fxd metflm 255k ohms $1/10\%$ $1/8w$ R: fxd metflm 102k ohms $1/10\%$ $1/8w$	
R537 R538 R539 R540 R541 R542	2100-1777 2100-1777 2100-1777 0757-0436 0757-0437 0757-0845		1	R: var ww 20k ohms 10% 1/2w lin R: var ww 20k ohms 10% 1/2w lin R: var ww 20k ohms 10% 1/2w lin R: fxd metflm 4.32k ohms 1% 1/8w R: fxd metflm 4.75k ohms 1% 1/8w R: fxd metflm 18.2k ohms 1% 1/2w	
S101 S102 S103 S104	3100-1341 3100-1356 3100-1342 3100-1343		1 2 2 1	S: lever 4 position S: lever 4 position S: lever 2 position S: lever 3 position	
S201	3101-0944		1	S: push button (includes DS201)	
S301 S302 S303	3100-1347 3100-1356 3100-1342		1	S: lever 4 position S: lever 4 position S: lever 2 position	

Table 6-2. Replaceable Parts (Cont'd)

Do f		r	ı — ı	Description	ı——	·
Ref Desig	hp Part No.	RS	TQ	(See Table 6-1.)		1
S501 S502 S503	3100-1349		1	NSR: p/o A3 S: sweep display NSR: p/o A3		
TP101 TP201 TP202 TP203 TP204 TP301 TP401 TP402 TP403 TP404	5020-0495 5020-0495 5020-0495 5020-0495 5020-0495 5020-0495 5020-0495 5020-0495 5020-0495		10	TP: square pin		
V201	2140-0018		1	V: neon 1/10w	1	
VR100 VR101 VR102	1902-0041 1902-3150 1902-0052		1 2 1	VR: breakdown 5.11v VR: breakdown 9.1v VR: breakdown 6.8v		
VR201	1902 - 921 4,		2	VR: breakdown 584 53. 6 V	}	
VR301	ማ ራ <i>ኛ የ</i> 1902-3150			VR: breakdown 9.1v		
VR401 VR402 VR403	1902-3288 1902-3288 1902- 0214 C&8		2	VR: breakdown 30.9v VR: breakdown 30.9v VR: breakdown 56v 53. € ✓		
				MISCELLANEOUS		
	0370-0341 0370-0342 0370-0432 0380-0022 0380-0059		1 1 7 2 4	Knob: black (Delayed time/div) Knob: black (Main time/div) Knob: black, lever Spacer: #5 x 3/8 (P1) Stand-off: 1/4"		
	0380-0144 0510-0942 5020-0495 1140-0036, 01801-01206 01821-00203 01821-00212 01821-01201 01821-01204 01821-01205		8 2 2 1 4 1 1 1	Stand-off: 3/16" Fastener: captive Pin: square Dial: 10 turn Bracket angle Panel: rear Panel: front Bracket: (A1) Bracket: plug (J1) Bracket: sweep dial		
	01821-04001 01821-04101 01821-04701 01821-21701 01821-21702 01821-25701		1 1 1 1 1 1	Dial: sweep Plate: mounting (P2) Support: right plug-in Bushing: push button Bushing: R525 Nut: bushing		

Table 6-2. Replaceable Parts (Cont'd)

		. —	. — .	Table 6-2. Replaceable Parts (Cont'd)	
Ref Desig	hp Part No.	RS	тQ	Description (See Table 6-1.)	
	01821-60101 5000-0470 5020-0496 5020-0497 5040-0456 5040-0457 01821-43101 01821-60203 01821-61627		1 1 2 2 1 1 1	Chassis: right Consists of: Bar: locking Guide: locking bar Button: locking bar Latch: release Latch: plug-in Guide: plug-in lock Panel: sub Cable: #1	
	01821-61612 01821-61613 01821-61619 01821-61626		1 1 1 1	Consists of: Coax: (Q402 to CR410) Coax: (Q410 to C414) Coax: (Q402 to P1 pin 13) Coax: (R214/R216 to DS201)	
	01821-61624 01821-61604 01821-61605 01821-61606 01821-61610 01821-61611 01821-61616 01821-61617 01821-61618		1 1 1 1 1 1 1 1 1 1 1 1 1	Cable: #2 Consists of: Coax: (P1 pin 16 & 32 to J1 pin 1 & 13) Coax: (R455 to J401) Coax: (P1 pin 6 to J1 pin 24) Coax: (J1 pin 16 to P1 pin 18) Coax: (J1 pin 14 to Q102) Coax: (R102 to S101) Coax: (R471 to Q412) Coax: (R434 to P1 pin 12) Coax: (R434 to S502)	
	01821-61603 01821-61614 01821-61615 01821-61620 01821-61621 01821-61622		1 1 1 1 1	Cable: #3 Consists of: Coax: (\$502 to R520) Coax: (R411 to S502) Coax: (R250 to P1 pin 11) Coax: (\$502 to P1 pin 1) Coax: (Q202 to P1 pin 14)	
	01821-61608 01821-61609 01821-61623 01821-67401 01821-67402 01821-67403		1 1 1 2 2 1 2 2	Cable: delayed sweep switch Cable: main sweep switch Coax: (R250 to S502) Knob: level Knob: sweep display Knob: Vernier	

SECTION VII MANUAL CHANGES AND OPTIONS

7-1. MANUAL CHANGES.

- 7-2. This manual applies directly to the Model 1821A Time Base and Delay Generator (as manufactured) with serials prefixed 809-. The following paragraphs explain how to adapt this manual to apply to newer instruments (higher serial prefix) or older instruments (lower serial prefix). Technical corrections to this manual (if any) are called errata and are listed on a separate "Manual Changes" sheet supplied with this manual.
- 7-3. NEWER INSTRUMENTS. If the serial prefix of your Model 1821A is above 809-, refer to a separate "Manual Changes" sheet supplied with this manual. Locate the serial prefix of your instrument and make the indicated changes.
- 7-4. OLDER INSTRUMENTS. If the serial prefix of your Model 1821A is below 809-, operating, service and adjustment information is contained in a previous edition of this manual. Contact your nearest HP Sales/

Service Office to obtain data applicable to your instrument, and be sure to refer to the serial prefix of your instrument.

7-5. OPTIONS.

7-6. Options are standard modifications performed on hp instruments at the factory. No options for the Model 1821A are offered at the present time.

7-7. SPECIAL INSTRUMENTS.

7-8. Special instruments are standard hp instruments that are modified at the factory according to customer specifications. These instruments are identified by a tag adjacent to the serial number tag. A separate insert sheet is included in the manual for each special instrument that has been modified in a manner that effects the replaceable parts list. Change the manual according to the insert sheet for proper instrument coverage.

02591-4 7-1/7-2

SECTION VIII SCHEMATICS AND TROUBLESHOOTING

8-1. INTRODUCTION.

8-2. This section contains schematic diagrams, component identification, and troubleshooting and repair information for the Model 1821A. Performance Check and Adjustment procedures are provided in Section V.

8-3. SCHEMATIC DIAGRAMS.

- 8-4. Schematic diagrams appear on right-hand pages that unfold outside the right edge of the manual. These "throw-clear" pages allow viewing the schematics while referring to other sections in the manual.
- 8-5. Schematics are primarily drawn to show circuit function. A given schematic may include all or part of several assemblies. Table 8-1 provides information about symbols and conventions used in the schematics. DC voltages and waveform test points are provided on the schematics. DC voltage measurement conditions, waveform measurement conditions, and waveforms applicable to each schematic are shown adjacent to that schematic.

8-6. COMPONENT IDENTIFICATION.

8-7. Whenever possible, the location of components appearing on a schematic is shown on the page opposite that schematic. When components on an assembly appear on more than one schematic, the location of all components on that assembly are identified opposite the first schematic showing that assembly. Adjustments, assemblies, and chassis mounted components are identified in Figure 8-2.

8-8. TROUBLESHOOTING.

- 8-9. The first and most important prerequisite for successful troubleshooting is a thorough understanding of instrument operation and function. Often, suspected malfunctions are caused by improper control settings such as: intensity set too low, display selector or mode switch in wrong position, trigger level maladjusted, etc. Read Section III, Operation, and Section IV, Principles of Operation, for this information.
- 8-10. DC voltages for most active components (transistors, FET's, etc.) are indicated on the schematics. Waveform test points are also shown on the schematic at various points along the main signal path. numbers inside the test point symbols are keyed to the proper waveform adjacent to the schematic. These voltages and waveforms are invaluable for troubleshooting the instrument. Applications include: checking stage gain, locating unbalance in differential amplifiers, locating faulty transistors, etc. Always refer to the specific measurement conditions before Allow the level to using dc voltages or waveforms. stabilize before ntoing dc voltages. Small dots are etched on circuit board assemblies next to the emitter

lead of transistors, the source lead of FET's, the cathode side of diodes, and the positive side of electrolytic capacitors as an aid to locating test points.

When taking waveform or dc measurements, use extreme care to avoid shorting supply voltages or components.

8-11. If a malfunction occurs, Figure 8-1 may help isolate the trouble to a particular circuit. Always begin troubleshooting with a visual inspection. Check for burned or loose components, loose wire connections, faulty switch contacts or any similar conditions suggesting a source of trouble.

8-12. REPAIR AND REPLACEMENT.

- 8-13. Almost all electrical components are accessible for replacement from the component side of the etched circuit board. Small dots are etched on circuit board assemblies next to the emitter lead of transistors, the source lead of FET's, the cathode side of diodes, and the positive side of electrolytic capacitors as an aid when replacing components. Section VI provides a detailed parts list to allow ordering replacement parts. Mechanical and miscellaneous electrical parts are listed at the end of Table 6-2. If satisfactory operation or repair cannot be accomplished, contact the nearest Hewlett-Packard Sales/Service Office (addresses at rear of this manual). If shipment for repair is required, see Section II for recommended packaging procedure.
- 8-14. Etched circuit boards in this instrument have components mounted on one side of the board, conductive surfaces on both sides, and plated-through component mounting holes. Hewlett-Packard Service Note M-20E contains useful information on servicing etched circuit boards. Important considerations are as follows:
- a. Use low heat (37 to 47.5 watts, less than 800°F idling temperature), slightly bent chisel tip (1/16 to 1/8 inch diameter) soldering iron; and a small diameter high tin content solder. If a rosin solder is used, clean the area thoroughly after soldering.
- b. Components may be removed by placing the soldering iron on the component lead from either side of the board, and pulling up on the lead. If heat is applied to the component side of the board, greater care is required to avoid damaging the component (especially true for semiconductors). If heat damage is likely to occur, grip the lead with a pair of pliers to provide a heat sink between the soldering iron and component.

- c. If a component is obviously damaged or faulty, clip the leads close to the component and then unsolder the leads from the board.
- d. Large components such as potentiometers may be removed by rotating the soldering iron from lead to lead and applying steady pressure to lift the part free (the alternative is to clip the leads of a damaged part).
- e. Since the conductor portion of the etched circuit board is a metal plated surface covered with solder, use care to avoid overheating which causes the conductor to lift away from the board. A lifted conductor may be cemented back in place with a quick-drying
- acetate base cement (use sparingly) having good insulating properties. Another method of repair is to solder a section of copper wire along the damaged area.
- f. Clear the solder from the component hole before inserting a new component lead. Heat the solder in the hole, remove the iron, and quickly insert a pointed non-metallic object, such as a toothpick.
- g. Shape the new component leads and clip to proper length. Insert the leads into the holes, apply heat and solder (preferably on the side opposite the component).

Table 8-1. Schematic Diagram Notes

Figure 8-1. Over-all Troubleshooting Tree

Figure 8-2. Adjustment Location and Component Identification.

F	•	G			H				J		K		
	R32	Para	R420	ا بعد	R445								1
		414 113 0403 1 13 R 6 CR 7	402 421	C418	040	02 02	R406 R412 R410 CR405 R407 R408		R411 R102 R101 R227 R215 R216 R219	-			2
\$6 5 34 35 05	R4 R2 CR2 C2	01 F CA 01 CR 02 CR2 01 5 020	102 04 CR 01 R2	R404 R405 203	P406 CR40 CR40 R6 C203	3		8 211 3209	R217 R21B 0203 R220 R229	203			3
0	CRIJ6 OIII CRIJE RI53 RI51 RI51	C C C C C C C C C C C C C C C C C C C	20 6 53 56 54 117 122 23	RI4 RI5 OII2 RI49 RI45	5 V	R210 U47 R102 R114	R14 0 R2	C20 R22 IO I2L C205	4 R221 R226 R224 C206	<u>-</u>			4
## A P P P P P P P P P P P P P P P P P P			(FO			46	4		R223				5
IID)C		GRID REF	GRID LOC [REF GR DESIG LO		GRID LOC	REF DESIG	GRID LOC					
	R117 B- R118 B- R119 C- R120 B- R122 E- R124 E- R125 E- R126 B- R127 D- R131 D- R131 D- R131 D- R132 B- R134 F- R136 E- R136 F- R136 F- R136 F- R137 F- R138 F- R136 H- R141 H- R141 H- R146 H-	-4 R148 R149 -3 R150 -5 R151 -4 R152 -4 R153 -3 R154 -4 R155 -5 R156 -4 R201 -4 R202 -4 R203 -3 R206 -4 R207 -4 R208 -4 R209 -4 R210	H-4 F-3 H-4 F-4 F-4 F-4 G-4 G-4 H-4 G-4 F-3 I-3 G-3 G-3 G-3 H-3 G-3 J-2 J-2	R217 J-3 R218 J-3 R219 J-2 R219 J-2 R220 J-4 R222 J-4 R222 J-4 R227 J-2 R228 J-4 R227 J-2 R308 B-2 R309 C-1 R310 B-3 R311 B-2 R312 B-3 R314 E-2 R315 E-2 R315 E-2 R317 E-2 R318 D-2	R322 R323 R324 R325 R326 R326 R327 R328 R330 R331 R331 R332 R336 R337 R338 R340 R401 R402 R403	D-1 D-2 D-3 E-2 F-3 F-3 F-1 F-2 F-2 F-2 C-5 B-4 E-4 E-2 F-3 G-3 H-3 H-3 I-2	R410 R411 R412 R413 R441 R442 R443 R444 R445 R446	E-4 G-3 G-4 J-4 E-2 G-3 H-3 G-2 I-2 F-4					
					ı		1					182IA-	- B - 2 B

1		R309	~ R	837	*	R3	21	The street of th					328
2	_C3IO	C308 Q301 3 302 Q30	6	325 CR3C C31 R3O	316)6 2	R32 L30	3 0 4 0 7	R3 03(R3	17 106 40	C R F	320 319 330 332 329	R B	328 R309 C4F3 441 443 416 447 446
3	R310 R312 R126 R120	CR3 CR3 CRIG CRIS	08 07 (9	R30 C3H CR30 CRIO CII2 CRIO	2 0	33 CR3 305 107 08 CR10	C	327 328 27 36	Q30 C31 CHS)6 v. 8	R331 R301 R326 R325 R134 R131		R401 R401 R201 R202 201 R201 R201
4	C326 R338 QI GR 693 R118 R317; C109	OIO3	6 5	CRIC CRIC CRIC)5 3	LIO RI32	: 9 - 0 1 27 1	RI33 R3 L2 RI2 OIO RI2	05 5 6 24		(10) [38 [37 [39 [20	CRIJI OI CR B	5
5		RII9	R	336		R13	Ö				. The Carl Carl Carl Carl Carl Carl Carl Carl		
		REF DESIG	GRID LOC	REF DES∤G	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRID LOC	REF DESIG	GRII LOC
		C120 C121 C122 C123 C201 C202 C203 C204 C205 C206 C208 C209 C307 C307	I -4 G-4 G-4 F-3 H-3 I -4 I -4 I -4 I -3 I -3 B-2 C-1 B-2	C324 C325 C326 C327 C328 C401 C402 C413 C414 C416 C417 C418 CR103 CR104 CR105	C-2 B-4 E-3 E-3 G-3 H-2 F-2 F-2 H-2 G-2 H-2 H-2 H-2 G-2	CR107 CR108 CR1100 CR1110 CR114 CR115 CR216 CR201 CR202 CR203 CR206 CR207 CR302 CR303 CR306 CR30	C-4 C-3 H-4 F-4 F-4 F-3 F-3 G-3 G-3 J-4 I-3 B-2 C-3 C-2 D-3 C-2	CR309 CR401 CR402 CR403 CR404 CR405 CR406 CR420 CR421 L107 L108 L109 L110 L201 L302 L304 L304 L305 Q103 Q104 Q105	F-3 G-3 H-3 H-3 I-2 I-2 G-1 G-2	Q202 Q203 Q204 Q205 Q301 Q302 Q303 Q304 Q306 Q401 Q402 Q403 Q404 R101	E-3 H-4 F-4 H-4 G-3 J-3 J-3 I-4 C-2 B-2 C-2 E-2 D-3 E-3 H-2 H-2 G-2	R126 R127 R130 R131 R132 R133 R134 R135 R136 R137 R138 R139 R140 R141 R145	B-4 B-4 C-5 B-3 E-5 E-4 E-4 D-4 D-5 D-4 E-4 F-3 E-3 F-4 F-4 I-4 H-4
		C311	C-3	CR106	D-3	CR308	C-3	Q106	F:-4	R102	J -2	R146	H-5

D

E

F

B

Figure 8-3. Component Identifi

DC VOLTAGE MEASUREMENT CONDITIONS

1. Initial Control Setting	itiai Cor	roi Sett	ings
----------------------------	-----------	----------	------

Horizontal DISPLAY · ·	•	٠	٠	•	٠	٠	\cdots INT
SWEEP MODE · · · · ·							
${\tt Main}\ {\tt TRIGGER}\ {\tt LEVEL}$	٠	٠	•	•	•	•	· · fully cw
Main Trigger Source · ·	٠	٠	•	•		•	EXT-10
Main SLOPE · · · · · ·	•	٠	٠	•	٠		+ (positive)
Main Trigger Coupling	•	٠	•	•		•	\cdots DC

Adjust Vertical Position control for 0 vdc at junction of R108 and R109.

- 2. All voltages <u>not</u> in parenthesis are measured after making initial control settings.
- 3. All voltages within parenthesis are measured after making initial control settings with the following differences:

Main TRIGGER LEVEL · · · · · · · fully ccw SWEEP MODE · · · · · · · · · · · SINGLE

4. All voltages are referenced to chassis ground.

WAVEFORM MEASUREMENT CONDITIONS

1. Initial Control Settings:

Horizontal DISPLAY •	 •	•	٠	٠	٠	٠		•		INT
SWEEP MODE· · · ·	 		•	•					N	ORM
Main TRIGGER LEVEL		•	•							. 0
Main Trigger Source ·										
Main SLOPE							+	(pa	osi	tive)
Main Trigger Coupling	 •	•		•	•	•	•	,		AC

- 2. Connect a 100 kHz 8 v pk-pk sine wave to Main EXT INPUT.
- 3. Adjust Main TRIGGER LEVEL to obtain waveform number 2.
- 4. All waveforms are referenced to chassis ground.

4 0.5 V/DIV 2USEC/DIV

1821A-8 -13 A

Figure 8-4. Main Trigger Schematic Diagram

8-6 02591-2

K 1	2	3	4	
K				
J	R468 R470 R472 R474 C426	0412 R473 CR423 R457 409 Q410 R458	 C423	
<u> </u>	R462 C424 R464 R461 C20 R463	C421 C421 C422 R455 04	О н299	
	R25 R25 R25 R2 C12 C12 C12 C12 C12 C12 C12 C12 C12 C1	G219 R2 R2 CR2 R2 CR2 R2 R2		
Н	/ 09	3 201		
		07 VR: 07 VR: 03 CR2H R245 R245		
	CZI CZI	020 39. ^{L 2} 6		
G	. C 246 246 R 24 1	R23 R2 C21 C41	CZI	
wE.			The second secon	
	519 R518 R5 C510 (650 9			
		2508 _p	02	

1821A - B - 3A

DC VOLTAGE MEASUREMENT CONDITIONS

1. Initial Control Settings:

Horizontal DISP	L	ΑY		٠	•	٠	٠	•				•	•	\cdot INT
Main VERNIER	•	•	•	٠	•	•	•	•	•	•	•	•	٠	· CAL
Sweep Display ·	•			•		•	•			•	•		•	MAIN
Main TIME/DIV	٠	•	•	٠	•	•	•	٠	•	•	•	•		1 µSEC
SWEEP MODE	•	•				•								NORM

- 2. All voltages not in parenthesis are measured after making initial control settings.
- 3. All voltages within parenthesis are measured after making initial control settings and connecting TP201 through a 1k ohm resistor to -12.6 v.
- 4. All voltages are referenced to chassis ground.

WAVEFORM MEASUREMENT CONDITIONS

1. Initial Control Settings:

Horizontal DISPLAY · · · · · · · · · · INT
Sweep Display · · · · · · · · · · MAIN
Main TIME/DIV · · · · · · · · 0.5 µSEC
SWEEP MODE · · · · · · · · · · · · NORM
Main VERNIER · · · · · · · · · · · · · CAL
Main TRIGGER LEVEL · · · · · · · · 0
Main Trigger Source · · · · · · · · · EXT

- 2. Connect a 100 kHz 8 v pk-pk sine wave to Main EXT INPUT.
- 3. All waveforms are referenced to chassis ground.

Figure 8-6. Main Sweep Schematic Diagram

Section VIII Model 1821A

8-8 02591-2

DC VOLTAGE MEASUREMENT CONDITIONS 1. Control Settings: Horizontal DISPLAY · · · · · · · · · · · · · INT Delayed TRIGGER LEVEL fully ccw Delayed Trigger Source EXT \div 10 Delayed SLOPE + (positive) Delayed Trigger Coupling DC 2. All voltages are measured after making control settings. 3. All voltages are referenced to chassis ground. WAVEFORM MEASUREMENT CONDITIONS 1. Initial Control Settings: Horizontal DISPLAY INT Sweep Display MAIN Main TIME/DIV · · · · · · · · · · · · 0.5 μSEC SWEEP MODE · · · · · · · · · · · · · · · · NORM DELAY (DIV) · · · · · · · · · · · · · · · · · 0.50 Main and Delayed VERNIER · · · · · · · · · CAL Main and Delayed TRIGGER LEVEL · · · · · · · · Main and Delayed Trigger Source EXT Main and Delayed SLOPE · · · · · · + (positive) 2. Connect a 100 kHz 8 v pk-pk sine wave to Main EXT INPUT and Delayed EXT INPUT. 3. Adjust Delayed TRIGGER LEVEL to obtain waveform number 14. 4. All waveforms are referenced to chassis ground. TRIGGER LEVEL 1-5V-IV/DIV 2 USEC/DIV O.5V/DIV 2USEC/DIV O.I W/DIV 2 USEC/DIV 0.5 V/DIV 2USEC/DIV

Figure 8-7. Delayed Trigger Schematic Diagram

Component Identification for A1 in Figure 8-3

Component Identification for A2 in Figure 8-5

8-10 02591-2

DC VOLTAGE MEASUREMENT CONDITIONS

1. Control Settings:

Horizontal DISPLAY							···INT
Sweep Display · · ·	•						· · MAIN
Delayed TIME/DIV ·		•	•				0.2 µSEC
SWEEP MODE · · ·		•					NORM
DELAY (DIV) · · ·							
Delayed VERNIER •			•				·· CAL
Delayed Trigger South	rce	е	•				EXT-10
							•

- All voltages <u>not</u> in parenthesis are measured after making control settings and connecting TP401 through a 1k ohm resistor to -12.6 v.
- 3. All voltages within parenthesis are measured after making control settings and connecting TP201 through a 1k ohm resistor to -12.6 v.
- 4. All voltages are referenced to chassis ground.

WAVEFORM MEASUREMENT CONDITIONS

1. Control Settings:

Horizontal DISPLAY · · · · · · · · · · · · · · · · · · ·	
Sweep Display · · · · · · · · M.	AIN
Main TIME/DIV · · · · · · · 0.5 µs	SEC
Delayed TIME/DIV····· 0.2 us	SEC
SWEEP MODE · · · · · · · · · · · · · · · NC	RM
DELAY (DIV) · · · · · · · · · · · · · · · · · · ·	
Main and Delayed VERNIER · · · · · · · · · · · · · · · · · · ·	
Main and Delayed TRIGGER LEVEL · · · ·	0
Main and Delayed Trigger Source · · · · · E	TXE
Mainaand Delayed SLOPE · · · · · + (position of the content of the	
Main Trigger Coupling	٠AĆ
Delayed Trigger Coupling · · · · · · · · · · · · · · · · · · ·	ACS

- 2. Connect a 100 kHz 8 v pk-pk sine wave to **M**ain EXT INPUT and Delayed EXT INPUT.
- 3. Adjust Delayed TRIGGER LEVEL to obtain waveform number 20.
- 4. All waveforms are referenced to chassis ground.

Figure 8-8. Delayed Sweep Schematic Diagram

Figure 8-9. Component Identification, Sweep Time Switch (p/o A3)

Figure 8-9. Co

Figure 8-10. Sweep Time Switch Schematic Diagram

01821- 90904 PRINTED IN U.S.A.

K4XL's BAMA

This manual is provided FREE OF CHARGE from the "BoatAnchor Manual Archive" as a service to the Boatanchor community.

It was uploaded by someone who wanted to help you repair and maintain your equipment.

If you paid anyone other than BAMA for this manual, you paid someone who is making a profit from the free labor of others without asking their permission.

You may pass on copies of this manual to anyone who needs it. But do it without charge.

Thousands of files are available without charge from BAMA. Visit us at http://bama.sbc.edu