ISPH-0767 PATENT

ANTISENSE OLIGONUCLEOTIDE MODULATION OF TUMOR NECROSIS FACTOR- α (TNF- α) EXPRESSION

5 INTRODUCTION

This application is a continuation of U.S. Application Serial No. 09/824,322, filed April 2, 2001, which is a continuation-in part of U.S. Application Serial No. 09/313,932, filed May 18, 1999 (U.S. Patent 6,228,642), which is a continuation-in-part of U.S. Application Serial No. 09/166,186 filed October 5, 1998 (U.S. Patent No. 6,080,580).

FIELD OF THE INVENTION

This invention relates to compositions and methods for modulating expression of the human tumor necrosis factor- α (TNF- α) gene, which encodes a naturally present cytokine involved in regulation of immune function and implicated in infectious and inflammatory disease. This invention is also directed to methods for inhibiting TNF- α mediated immune responses; these methods can be used diagnostically or therapeutically. Furthermore, this invention is directed to treatment of conditions associated with expression of the human TNF- α gene.

BACKGROUND OF THE INVENTION

Tumor necrosis factor α (TNF- α also cachectin) is an 25 important cytokine that plays a role in host defense. The cytokine is produced primarily in macrophages and monocytes in response to infection, invasion, injury, or inflammation. Some examples of inducers of TNF- α include bacterial endotoxins, bacteria, viruses, lipopolysaccharide (LPS) and 30 cytokines including GM-CSF, IL-1, IL-2 and IFN- γ .

 $_{\rm TNF-\alpha}$ interacts with two different receptors, TNF receptor I (TNFRI, p55) and TNFRII (p75), in order to

ISPH-0767 - 2 - PATENT

transduce its effects, the net result of which is altered gene expression. Cellular factors induced by TNF-α include interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (IFN-γ), platelet derived growth factor (PDGF) and epidermal growth factor (EGF), and endothelial cell adhesion molecules including endothelial leukocyte adhesion molecule 1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) (Tracey, K.J., et al., Annu. Rev. Cell Biol., 1993, 9, 317-343; Arvin, 10 B., et al., Ann. NY Acad. Sci., 1995, 765, 62-71).

Despite the protective effects of the cytokine, overexpression of TNF- α often results in disease states, particularly in infectious, inflammatory and autoimmune diseases. This process may involve the apoptotic pathways 15 (Ksontini, R., et al., J. Immunol., 1998, 160, 4082-4089). High levels of plasma TNF- α have been found in infectious diseases such as sepsis syndrome, bacterial meningitis, cerebral malaria, and AIDS; autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease (including 20 Crohn's disease), sarcoidosis, multiple sclerosis, Kawasaki syndrome, graft-versus-host disease and transplant (allograft) rejection; and organ failure conditions such as adult respiratory distress syndrome, conqestive heart failure, acute liver failure and myocardial infarction (Eigler, A., et al., 25 Immunol. Today, **1997**, 18, 487-492). Other diseases in which TNF- α is involved include asthma (Shah, A., et al., Clinical and Experimental Allergy, 1995, 25, 1038-1044), brain injury following ischemia (Arvin, B., et al., Ann. NY Acad. Sci., 1995, 765, 62-71), non-insulin-dependent diabetes mellitus 30 (Hotamisligil et al., Science, 1993, 259, 87-90), insulindependent diabetes mellitus (Yang et al., J. Exp. Med., 1994, 180, 995-1004), hepatitis (Ksontini et al., J. Immunol., 1998, 160, 4082-4089), atopic dermatitis (Sumimoto et al., Arch.

ISPH-0767 - 3 - PATENT

Dis. Child., 1992, 67, 277-279), and pancreatitis (Norman et al., Surgery, 1996, 120, 515-521). Further, inhibitors of TNF-α have been suggested to be useful for cancer prevention (Suganuma et al. (Cancer Res., 1996, 56, 3711-3715). Elevated TNF-α expression may also play a role in obesity (Kern, J. Nutr., 1997, 127, 1917s-1922s). TNF-α was found to be expressed in human adipocytes and increased expression, in general, correlated with obesity.

There are currently several approaches to inhibiting Approaches used to treat rheumatoid 10 TNF- α expression. arthritis include a chimeric anti-TNF- α antibody, a humanized monoclonal anti-TNF- α antibody, and recombinant human soluble TNF- α receptor (Camussi, Drugs, 1998, 55, 613-620). Other indirect TNF-α inhibitors including examples are 15 phosphodiesterase inhibitors (e.g., pentoxifylline) metalloprotease inhibitors (Eigler et al., Immunol. Today, 1997, 18, 487-492). An additional class of direct TNF- α inhibitors is oligonucleotides, including triplex-forming oligonucleotides, ribozymes, and antisense oligonucleotides. 20 Several publications describe the use of oligonucleotides targeting TNF- α by non-antisense mechanisms. U.S. Patent 5,650,316, WO 95/33493 and Aggarwal et al. (Cancer Research, 1996, 56, 5156-5164) disclose triplex-forming oligonucleotides WO 95/32628 discloses triplex-forming targeting TNF- α . 25 oligonucleotides especially those possessing one or more stretches of quanosine residues capable of forming secondary structure. WO 94/10301 discloses ribozyme compounds active against TNF- α mRNA. WO 95/23225 discloses enzymatic nucleic acid molecules active against TNF- α mRNA.

A number of publications have described the use of antisense oligonucleotides targeting nucleic acids encoding TNF- α . The TNF- α gene has four exons and three introns. WO 93/09813 discloses TNF- α antisense oligonucleotides conjugated to a radioactive moiety, including sequences targeted to the 5'-UTR, AUG start site, exon 1, and exon 4 including the stop

ISPH-0767 - 4 - PATENT

codon of human TNF- α . EP 0 414 607 B1 discloses antisense oligonucleotides targeting the AUG start codon of human TNF- α . WO 95/00103 claims antisense oligonucleotides to human TNF- α including sequences targeted to exon 1 including the AUG start 5 site. Hartmann et al. (Mol. Med., 1996, 2, 429-438) disclose uniform phosphorothioates and mixed backbone phosphorothioate/ phosphodiester oligonucleotides targeted to the AUG start site of human TNF- α . Hartmann et al. (Antisense Nucleic Acid Drug Devel., 1996, 6, 291-299) disclose antisense phosphorothioate 10 oligonucleotides targeted to the AUG start site, the exon 1/intron 1 junction, and exon 4 of human TNF- α . d'Hellencourt et al. (Biochim. Biophys. Acta, 1996, 1317, 168-174) designed and tested a series of unmodified oligonucleotides targeted to the 5'-UTR, and exon 1, including the AUG start site, of 15 human TNF- α . Additionally, one oligonucleotide each was targeted to exon 4 and the 3'-UTR of human $\text{TNF-}\alpha$ and one oligonucleotide was targeted to the AUG start site of mouse TNF- α . Rojanasakul et al. (*J. Biol. Chem.*, **1997**, 272, 3910-3914) disclose an antisense phosphorothioate oligonucleotide 20 targeted to the AUG start site of mouse TNF- α . Taylor et al. (J. Biol. Chem., 1996, 271, 17445-17452 and Antisense Nucleic Acid Drug Devel., 1998, 8, 199-205) disclose morpholino, methyl-morpholino, phosphodiester and phosphorothioate oligonucleotides targeted to the 5'-UTR and AUG start codon 25 of mouse TNF- α . Tu et al. (*J. Biol. Chem.*, **1998**, 273, 25125designed and tested 42 phosphorothioate oligonucleotides targeting sequences throughout the rat TNF- α gene.

Interestingly, some phosphorothioate 30 oligodeoxynucleotides have been found to enhance lipopolysaccharide-stimulated TNF- α synthesis up to four fold due to nonspecific immunostimulatory effects (Hartmann et al. Mol. Med., 1996, 2, 429-438).

ISPH-0767 - 5 - PATENT

Accordingly, there remains an unmet need for therapeutic compositions and methods for inhibiting expression of TNF- α , and disease processes associated therewith.

SUMMARY OF THE INVENTION

The present invention provides oligonucleotides which are targeted to nucleic acids encoding TNF- α and are capable of modulating TNF- α expression. The present invention also provides chimeric oligonucleotides targeted to nucleic acids encoding human TNF- α . The oligonucleotides of the invention are believed to be useful both diagnostically and therapeutically, and are believed to be particularly useful in the methods of the present invention.

The present invention also comprises methods of modulating the expression of human TNF- α in cells and tissues using the oligonucleotides of the invention. Methods of inhibiting TNF- α expression are provided; these methods are believed to be useful both therapeutically and diagnostically. These methods are also useful as tools, for example, for detecting and determining the role of TNF- α in various cell functions and physiological processes and conditions and for diagnosing conditions associated with expression of TNF- α .

The present invention also comprises methods for diagnosing and treating infectious and inflammatory diseases, particularly diabetes, rheumatoid arthritis, Crohn's disease, 25 pancreatitis, multiple sclerosis, atopic dermatitis and hepatitis using the oligonucleotides of the present invention. These methods are believed to be useful, for example, in diagnosing TNF- α -associated disease progression. These methods are believed to be useful both therapeutically, including prophylactically, and as clinical research and diagnostic tools.

One embodiment of the present invention is a method of treating an inflammatory disorder in an individual comprising administering to said individual an effective amount of an

ISPH-0767 - 6 - PATENT

oligonucleotide up to 30 nucleotides in length complementary to a nucleic acid molecule encoding human tumor necrosis factor- α , wherein the oligonucleotide inhibits the expression of said human tumor necrosis factor- α and comprises at least 5 an 8 nucleobase portion of SEQ ID NO: 24, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 34, SEQ ID NO: 39, SEQ ID NO: 88, SEQ ID NO: 90, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 93, SEQ ID NO: 97, SEQ ID NO: 98, SEQ ID NO: 149, SEQ ID NO: 157, SEQ ID NO: 264, SEQ ID NO: 271, 10 SEQ ID NO: 272, SEQ ID NO: 290, SEQ ID NO: 297, SEQ ID NO: 299, SEQ ID NO: 315, SEQ ID NO: 334, SEQ ID NO: 418, SEQ ID NO: 423, SEQ ID NO: 425, SEQ ID NO: 427, SEQ ID NO: 431, SEQ ID NO: 432, SEQ ID NO: 435, SEQ ID NO: 437, SEQ ID NO: 438, SEQ ID NO: 439, SEQ ID NO: 441, SEQ ID NO: 455, SEQ ID NO: 15 457, SEQ ID NO: 458, SEQ ID NO: 460, SEQ ID NO: 463, SEQ ID NO: 465, SEQ ID NO: 466, SEQ ID NO: 468, SEQ ID NO: 472, SEQ ID NO: 474, SEQ ID NO: 475, SEQ ID NO: 483, SEQ ID NO: 485, SEQ ID NO: 494 or SEQ ID NO: 496. Preferably, the antisense oligonucleotide is administered orally. In one aspect of this inflammatory disorder 20 preferred embodiment, the inflammatory bowel disease, Crohn's disease, colitis or rheumatoid arthritis. Preferably, the oligonucleotide least one modified intersugar linkage. comprises at Preferably, the modified intersugar linkage 25 phosphorothioate or methylene(methylimino) intersugar linkage. another aspect of this preferred embodiment, oligonucleotide comprises at least one 2'-0-methoxyethyl modification. Preferably, the oligonucleotide comprises at least one 5-methyl cytidine. In one aspect of this preferred 30 embodiment, every cytidine residue is a 5-methyl cytidine.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-B are graphs showing collagen-induced arthritis (CIA) onset as determined by percent incidence in 35 mice. Incidence=number of mice with at least one affected

ISPH-0767 - 7 - PATENT

paw/total number of mice per group. Figure 1A shows the effect of low dose range of ISIS 25302 anti-TNF- α antisense oligonucleotide in comparison to treatment by an anti-TNF- α mAb. Figure 1B shows the effect of high dose range treatment by ISIS 25302 in comparison to treatment by an 8 mismatch control oligonucleotide (ISIS 30782).

Figure 2 is a graph showing "total" histological scores for colon tissue from $IL-10^{-/-}$ mice treated with saline (vehicle), ISIS 25302 or 8MM Con. As recorded in Table 27.

10 Results are expressed as mean "standard deviation (n=6). The asterisk indicates a significant difference (p < 0.05) in comparison to the vehicle group.

Figures 3A-B show the basal (Fig. 3A) and LPS-induced (Fig. 3B) levels of TNF- α secretion from colon tissue of IL-15 $10^{-/-}$ mice post-treatment with ISIS 25302 and the 8 base mismatch control oligonucleotide 30782 (8MM). Doses of oligonucleotide are shown in parentheses (mg/kg). Secretion levels (pg/gm-tissue) are shown in the y-axis. The mean values "standard deviation (n=7 to 9) are shown.

Figures 4A-B show the basal (Fig. 4A) and LPS-induced (Fig. 4B) levels of IFN-y secretion from colon tissue of IL10-/- mice post-treatment with ISIS 25302 and the 8 base mismatch control oligonucleotide 30782 (8MM). Doses of oligonucleotide are shown in parentheses (mg/kg). Secretion levels (pg/gm-tissue) are shown in the y-axis. The mean values "standard deviation (n=6 to 9) are shown.

Figures 5A-B show the efficacy of ISIS 25302 versus anti-mouse TNF- α mAb in the acute model of DSS-induced colitis. Fig. 5A shows the disease activity index (DAI). 30 Fig. 5B shows the effect of different treatments on colon length. Results are expressed as the mean "S.E.M., where n=7. Asterisks show a significant difference from saline

Figures 6A-B show that the prevention of acute colitis 35 by ISIS 25302 in the DSS-induced colitis molecule is sequence-

treated (*) or normal (*') group (p<0.05).

ISPH-0767 - 8 - PATENT

dependent. Fig. 5A shows DAI versus treatment. Fig. 5B shows the effect of different treatments on colon length. Asterisks indicate significant differences from saline (*) or 1.0 mg/kg 8MM Con (*') treated group (p<0.05).

Figures 6A-B are graphs showing the efficacy of ISIS 25302 in the DSS-induced mouse model of chronic colitis based on DAI. Fig. 6A shows the mean DAI of each group over the course of the two cycle DSS-induced chronic colitis study. Fig. 6B shows the mean DAI at representative cycle times. The doses are indicated in parentheses (mg/kg). Results are expressed as the mean S.E.M., where n=8 to 10. Asterisks indicate statistical significance in comparison to the Vehicle group (P<0.05).

Figures 8A-B show histopathology of colon tissue from mice administered DSS in the two cycle chronic colitis model. Results are expressed as mean S.E.M. Fig. 8A shows the total inflammation and crypt scores. Acute inflammatory infiltrates consist of granulocytes, lymphocytes and plasma cells. Chronic inflammatory infiltrates consist of granulocytes, lymphocytes, plasma cells, monocytes and macrophages. Fig. 8B shows histological scores of different regions of the colon. PA=proximal acute inflammation score, DA=distal acute inflammation score, PC= proximal chronic inflammation score, DC=distal chronic inflammation score, PCS=proximal crypt score and DCS=distal crypt score. Asterisks indicate statistical significance in comparison to the Vehicle group (p<0.05).

Figure 9 shows TNF-α mRNA levels from longitudinal sections of colon tissue derived from each mouse at time of sacrifice in the chronic colitis model (mean S.E.M.). Group 30 A=0.25 mg/kg ISIS 25302, group B=Vehicle, group C=anti-TNF mAb, group D=no treatment, group E=2.5 mg/kg ISIS 25302, group F=12.5 mg/kg ISIS 25302.

ISPH-0767 - 9 - PATENT

DETAILED DESCRIPTION OF THE INVENTION

 $TNF-\alpha$ plays an important regulatory role in the immune response to various foreign agents. Overexpression of $TNF-\alpha$ results in a number of infectious and inflammatory diseases.

5 As such, this cytokine represents an attractive target for treatment of such diseases. In particular, modulation of the expression of TNF- α may be useful for the treatment of diseases such as Crohn's disease, diabetes mellitus, multiple sclerosis, rheumatoid arthritis, hepatitis, pancreatitis and 10 asthma.

The present invention employs antisense compounds, particularly oligonucleotides, for use in modulating the function of nucleic acid molecules encoding TNF- α , ultimately modulating the amount of TNF- α produced. This is accomplished by providing oligonucleotides which specifically hybridize with nucleic acids, preferably mRNA, encoding TNF- α .

This relationship between an antisense compound such as an oligonucleotide and its complementary nucleic acid target, to which it hybridizes, is commonly referred to "Targeting" an oligonucleotide to a chosen 20 "antisense". nucleic acid target, in the context of this invention, is a The process usually begins with multistep process. identifying a nucleic acid sequence whose function is to be modulated. This may be, as examples, a cellular gene (or mRNA 25 made from the gene) whose expression is associated with a particular disease state, or a foreign nucleic acid from an infectious agent. In the present invention, the targets are nucleic acids encoding TNF- α ; in other words, a gene encoding TNF- α , or mRNA expressed from the TNF- α gene. mRNA which 30 encodes TNF- α is presently the preferred target. The targeting process also includes determination of a site or sites within the nucleic acid sequence for the antisense interaction to occur such that modulation of gene expression will result.

In accordance with this invention, persons of ordinary 35 skill in the art will understand that messenger RNA includes

- 10 - PATENT

not only the information to encode a protein using the three letter genetic code, but also associated ribonucleotides which form a region known to such persons as the 5'-untranslated region, the 3'-untranslated region, the 5' cap region and 5 intron/exon junction ribonucleotides. Thus, oligonucleotides may be formulated in accordance with this invention which are targeted wholly or in part to these associated ribonucleotides as well as to the informational ribonucleotides. oligonucleotide may therefore be specifically hybridizable 10 with a transcription initiation site region, a translation initiation codon region, a 5' cap region, an intron/exon junction, coding sequences, a translation termination codon region or sequences in the 5'- or 3'-untranslated region. Since, as is known in the art, the translation initiation 15 codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon." A minority of genes have a translation initiation codon having the RNA sequence 20 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) 25 formylmethionine (prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more any one of which alternative start codons, preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of 30 conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding TNF- α , regardless of the sequence(s) of such codons. It is also 35 known in the art that a translation termination codon (or ISPH-0767 - 11 - PATENT

"stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region," "AUG region" and "translation initiation codon 5 region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. This region is a preferred target region. Similarly, the terms "stop codon region" and "translation 10 termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon. This region is a preferred target region. The open reading frame (ORF) or "coding 15 region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other preferred target regions include the 5' untranslated region (5'UTR), known in the art to refer to the 20 portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene and the untranslated region (3'UTR), known in the art to refer to the 25 portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated quanosine residue joined to the 30 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region.

ISPH-0767 - 12 - PATENT

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a pre-mRNA transcript to yield one or more mature mRNAs. The remaining (and therefore 5 translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., exon-exon or intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, 10 or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. Targeting particular exons in alternatively spliced mRNAs may also be preferred. It has also been found that introns can 15 also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once the target site or sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well 20 and with sufficient specificity, to give the desired modulation.

"Hybridization", in the context of this invention, means hydrogen bonding, also known as Watson-Crick base pairing, between complementary bases, usually on opposite nucleic acid strands or two regions of a nucleic acid strand. Guanine and cytosine are examples of complementary bases which are known to form three hydrogen bonds between them. Adenine and thymine are examples of complementary bases which form two hydrogen bonds between them.

"Specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarily such that stable and specific binding occurs between the DNA or RNA target and the oligonucleotide.

It is understood that an oligonucleotide need not be 35 100% complementary to its target nucleic acid sequence to be

ISPH-0767 - 13 - PATENT

specifically hybridizable. An oligonucleotide is specifically hybridizable when binding of the oligonucleotide to the target interferes with the normal function of the target molecule to cause a loss of utility, and there is a sufficient degree of complementarily to avoid non-specific binding of the oligonucleotide to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment or, in the case of in vitro assays, under conditions in which the assays are conducted.

Hybridization of antisense oligonucleotides with mRNA interferes with one or more of the normal functions of mRNA. The functions of mRNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in by the RNA. Binding of specific protein(s) to the RNA may also be interfered with by antisense oligonucleotide hybridization to the RNA.

The overall effect of interference with mRNA function is modulation of expression of TNF- α . In the context of this invention "modulation" means either inhibition or stimulation; i.e., either a decrease or increase in expression. 25 modulation can be measured in ways which are routine in the art, for example by Northern blot assay of mRNA expression, or reverse transcriptase PER, as taught in the examples of the instant application or by Western blot or ELIZA assay of protein expression, or by an immunoprecipitation assay of 30 protein expression. Effects of antisense oligonucleotides of the present invention on TNF- α expression can also be in the examples of the instant determined as taught application. Inhibition is presently a preferred form of modulation.

ISPH-0767 - 14 - PATENT

The oligonucleotides of this invention can be used in diagnostics, therapeutics, prophylaxis, and as research reagents and in kits. Since the oligonucleotides of this invention hybridize to nucleic acids encoding TNF- α , sandwich, colorimetric and other assays can easily be constructed to exploit this fact. Provision of means for detecting hybridization of oligonucleotides with the TNF- α gene or mRNA can routinely be accomplished. Such provision may include enzyme conjugation, radiolabelling or any other suitable detection systems. Kits for detecting the presence or absence of TNF- α may also be prepared.

The present invention is also suitable for diagnosing abnormal inflammatory states in tissue or other samples from patients suspected of having an inflammatory disease such as 15 rheumatoid arthritis. The ability of the oligonucleotides of the present invention to inhibit inflammatory processes may be employed to diagnose such states. A number of assays may be formulated employing the present invention, which assays will commonly comprise contacting a tissue sample with an 20 oligonucleotide of the invention under conditions selected to and, usually, quantitation permit detection inhibition. In the context of this invention, to "contact" tissues or cells with an oligonucleotide or oligonucleotides means to add the oligonucleotide(s), usually in a liquid 25 carrier, to a cell suspension or tissue sample, either in vitro or ex vivo, or to administer the oligonucleotide(s) to cells or tissues within an animal.

The oligonucleotides of this invention may also be used for research purposes. Thus, the specific hybridization 30 exhibited by the oligonucleotides may be used for assays, purifications, cellular product preparations and in other methodologies which may be appreciated by persons of ordinary skill in the art.

In the context of this invention, the term 35 "oligonucleotide" refers to an oligomer or polymer of

ISPH-0767 - 15 - PATENT

ribonucleic acid or deoxyribonucleic acid. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent intersugar (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced binding to target and increased stability in the presence of nucleases.

10 antisense compounds in accordance with this invention preferably comprise from about 5 to about nucleobases. Particularly preferred are antisense 8 to oligonucleotides comprising from about about 30 nucleobases (i.e., from about 8 to about 30 15 nucleosides). As is known in the art, a nucleoside is a basesugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidine. Nucleotides are nucleosides that further include a phosphate 20 group covalently linked to the sugar portion of the nucleoside. For those nucleosides that pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. forming oligonucleotides, the phosphate groups covalently link 25 adjacent nucleosides to one another to form a linear polymeric In turn the respective ends of this linear compound. polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, 30 phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal 3' linkage or backbone of RNA and DNA is а phosphodiester linkage.

Specific examples of preferred antisense compounds 35 useful in this invention include oligonucleotides containing

PATENT ISPH-0767 - 16 -

modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom 5 in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, 10 for example, phosphorothioates, choral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkylphosphotriesters, methyl and other alkyl phosphonates including 3'alkylene phosphonates and choral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and 15 aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' 20 or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to U.S. Patent 3,687,808; 25 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,541,306; 5,550,111; 5,476,925; 5,519,126; 5,536,821; 5,563,253; 5,571,799; 5,587,361; and 5,625,050.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, heteroatom and alkyl or cycloalkyl mixed internucleoside linkages, or one or more short chain 35 heteroatomic or heterocyclic internucleoside linkages. These

30

ISPH-0767 - 17 - PATENT

include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and and formacetyl thioformacetyl backbones; methylene alkene containing backbones; backbones; 5 thioformacetyl sulfamate backbones; methyleneimino and methylenehydrazino sulfonamide backbones; sulfonate and backbones; backbones; and others having mixed N, O, S and CH_2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S. Patent 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,677,437; and 5,677,439.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of 20 the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a 25 peptide nucleic acid (PNA). In PNA compounds, the sugarbackbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of 30 the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262. teaching of PNA compounds can be found in Nielsen et al. (Science, 1991, 254, 1497-1500).

Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleosides with heteroatom backbones, and in particular -CH₂-NH-O-CH₂-, -CH₂-N(CH₃)-O-CH-2 [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-,-CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH-2 [wherein the native phosphodiester backbone is represented as -O-P-O-CH₂-] of the above referenced U.S. Patent 5,489,677, and the amide backbones of the above referenced U.S. Patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. Patent 5,034,506.

Modified oligonucleotides may also contain one or more Preferred oligonucleotides substituted sugar moieties. comprise one of the following at the 2' position: OH; F; O-, 15 S-, or N-alkyl, O-alkyl-O-alkyl, O-, S-, or N-alkenyl, or O-, S- or N-alkynyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C_1 to C_{10} alkyl or C_2 to C_{10} alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nOCH_3$, $O(CH_2)_2ON(CH_3)_2$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and 20 $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH $_3$, OCN, Cl, Br, CN, CF $_3$, OCF $_3$, SOCH $_3$, SO $_2$ CH $_3$, ONO $_2$, NO $_2$, NO $_3$, NH $_2$, 25 heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group improving the pharmacodynamic properties for 30 oligonucleotide, and other substituents having similar preferred modification includes properties. methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta 1995, 78, 486-504) i.e., an alkoxyalkoxy group.

ISPH-0767 - 19 - PATENT

Other preferred modifications include 2'-methoxy (2'-0- CH_3), 2'-aminopropoxy (2'-OC $H_2CH_2CH_2NH_2$) and 2'-fluoro (2'-F). Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar 2'-5' terminal nucleotide or in the 5' terminal position of and the 5' oligonucleotides nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the 10 preparation of such modified sugars structures include, but are not limited to, U.S. Patent 4,981,957; 5,118,800; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,319,080; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,639,873; 5,646,265; 5,597,909; 5,610,300; 5,627,053; 15 5,658,873; 5,670,633; and 5,700,920.

Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or As used herein, "unmodified" or "natural" substitutions. nucleobases include the purine bases adenine (A) and guanine 20 (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C or m5c), hypoxanthine, xanthine, 5-hydroxymethyl cytosine, aminoadenine, 6-methyl and other alkyl derivatives of adenine 25 and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl other 8-substituted adenines and guanines, and other 5-trifluoromethyl 5-bromo, particularly substituted uracils and cytosines, 7-methylguanine and 7methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. 35 Further nucleobases include those disclosed in U.S. Patent ISPH-0767 - 20 - PATENT

3,687,808, those disclosed in the Concise Encyclopedia Of And Engineering 1990, pages 858-859, Polymer Science Kroschwitz, J.I., ed. John Wiley & Sons, those disclosed by Englisch et al. (Angewandte Chemie, International Edition 5 1991, 30, 613-722), and those disclosed by Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 289-302. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds 10 of the invention. These include 5-substituted pyrimidine, 6azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and propynylcytosine. 5-Methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C 15 (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications 1993, CRC Press, Boca Raton, pages 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Patent 3,687,808, as well as U.S. Patent 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; and 5,681,941.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA 1989, 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Lett. 1994, 4,

ISPH-0767 - 21 - PATENT

1053-1059), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci. 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let. 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res. 1992, 20, 5 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J. 1991, 10, 1111-1118; Kabanov et al., FEBS Lett. 1990, 259, Svinarchuk et al., Biochimie 1993, 75, 49-54), a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-10 hexadecyl-rac-glycero-3-H-phosphonate (Manoharan et Tetrahedron Lett. 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res. 1990, 18, 3777-3783), a polyamine or a polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides 1995, 14, 969-973), or adamantane acetic acid (Manoharan et 15 al., Tetrahedron Lett. 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta 1995, 1264, 229-237), or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther. 1996, 277, 923-937).

Representative United States patents that teach the 20 preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Patent 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,486,603; 5,512,439; 25 5,118,802; 5,138,045; 5,414,077; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,835,263; 4,876,335; 4,762,779; 4,789,737; 4,824,941; 5,112,963; 5,214,136; 4,904,582; 4,958,013; 5,082,830; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,262,536; 30 5,258,506; 5,272,250; 5,292,873; 5,317,098; 5,510,475; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,514,785; 5,567,810; 5,574,142; 5,512,667; 5,565,552; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,585,481; 5,599,928 and 5,688,941.

ISPH-0767 - 22 - PATENT

The present invention also includes oligonucleotides chimeric oligonucleotides. oligonucleotides or "chimeras," in the context of this invention, are oligonucleotides which contain two or more 5 chemically distinct regions, each made up of at least one nucleotide. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or 10 increased binding affinity for the target nucleic acid. additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA: DNA or RNA: RNA By way of example, RNase H is a cellular hybrids. endonuclease which cleaves the RNA strand of an RNA: DNA 15 duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of antisense inhibition of gene expression. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization 20 techniques known in the art. This RNAse H-mediated cleavage of the RNA target is distinct from the use of ribozymes to cleave nucleic acids. Ribozymes are not comprehended by the present invention.

Examples of chimeric oligonucleotides include but are not limited to "gapmers," in which three distinct regions are present, normally with a central region flanked by two regions which are chemically equivalent to each other but distinct from the gap. A preferred example of a gapmer is an oligonucleotide in which a central portion (the "gap") of the oligonucleotide serves as a substrate for RNase H and is preferably composed of 2'-deoxynucleotides, while the flanking portions (the 5' and 3' "wings") are modified to have greater affinity for the target RNA molecule but are unable to support nuclease activity (e.g., fluoro- or 2'-O-methoxyethyl-substituted). Chimeric oligonucleotides are not limited to

ISPH-0767 - 23 - PATENT

those with modifications on the sugar, but may also include oligonucleosides or oligonucleotides with modified backbones, regions of phosphorothioate with phosphodiester (P=O) backbone linkages or with regions of MMI 5 and P=S backbone linkages. Other chimeras include "wingmers," also known in the art as "hemimers," that is, oligonucleotides with two distinct regions. In a preferred example of a wingmer, the 5' portion of the oligonucleotide serves as a substrate for RNase H and is preferably composed of 2'-10 deoxynucleotides, whereas the 3' portion is modified in such a fashion so as to have greater affinity for the target RNA molecule but is unable to support nuclease activity (e.g., 2'fluoro- or 2'-O-methoxyethyl- substituted), or vice-versa. In one embodiment, the oligonucleotides of the present 15 invention contain a 2'-O-methoxyethyl (2'-O-CH₂CH₂OCH₃) modification on the sugar moiety of at least one nucleotide. This modification has been shown to increase both affinity of the oligonucleotide for its target and nuclease resistance of the oligonucleotide. According to the invention, one, a 20 plurality, or all of the nucleotide subunits of the oligonucleotides of the invention may bear a 2'-O-methoxyethyl (-O-CH₂CH₂OCH₃) modification. Oligonucleotides comprising a plurality of nucleotide subunits having a 2'-O-methoxyethyl modification can have such a modification on any of the 25 nucleotide subunits within the oligonucleotide, and may be chimeric oligonucleotides. Aside from or in addition to 2'-Omethoxyethyl modifications, oligonucleotides containing other modifications which enhance antisense efficacy, potency or target affinity are also preferred. Chimeric oligonucleotides 30 comprising one or more such modifications are presently preferred.

The oligonucleotides used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including Applied

ISPH-0767 - 24 - PATENT

Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the oligonucleotides is well within the talents of the routineer. It is well known to use similar techniques to prepare oligonucleotides such as the 5 phosphorothioates and 2'-alkoxy or 2'-alkoxyalkoxy derivatives, including 2'-0-methoxyethyl oligonucleotides (Martin, P., Helv. Chim. Acta 1995, 78, 486-504). It is also well known to use similar techniques and commercially available modified amidites and controlled-pore glass (CPG) 10 products such as biotin, fluorescein, acridine or psoralenmodified amidites and/or CPG (available from Glen Research, Sterling, VA) to synthesize fluorescently labeled, biotinylated or other conjugated oligonucleotides.

The antisense compounds of the present invention include 15 bioequivalent compounds, including pharmaceutically acceptable salts and prodrugs. This is intended to encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly 20 or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of the nucleic acids of the invention and prodrugs of such nucleic acids. APharmaceutically acceptable salts@ are physiologically and 25 pharmaceutically acceptable salts of the nucleic acids of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci. 1977, 66, 1-19).

For oligonucleotides, examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic

ISPH-0767 - 25 - PATENT

acid, sulfuric acid, phosphoric acid, nitric acid and the like; 8 salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

The oligonucleotides of the invention may additionally or alternatively be prepared to be delivered in a Aprodrug@ form. The term Aprodrug@ indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510.

For therapeutic or prophylactic treatment, oligonucleotides are administered in accordance with this invention. Oligonucleotide compounds of the invention may be formulated in a pharmaceutical composition, which may include pharmaceutically acceptable carriers, thickeners, diluents, buffers, preservatives, surface active agents, neutral or cationic lipids, lipid complexes, liposomes, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients and the like in addition to the oligonucleotide. Such compositions and formulations are comprehended by the present invention.

Pharmaceutical compositions comprising the oligonucleotides of the present invention may include penetration enhancers in order to enhance the alimentary delivery of the oligonucleotides. Penetration enhancers may

ISPH-0767 - 26 - PATENT

be classified as belonging to one of five broad categories, i.e., fatty acids, bile salts, chelating agents, surfactants and non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, 8, 91-192; Muranishi, 5 Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 1-33). One or more penetration enhancers from one or more of these broad categories may be included. Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid, 10 myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, recinleate, monoolein (a.k.a. 1-monooleoyl-rac-qlycerol), dilaurin, caprylic acid, arachidonic acid, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, 15 mono- and di-glycerides and physiologically acceptable salts thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 20 1; El-Hariri et al., J. Pharm. Pharmacol. 1992 44, 651-654). The physiological roles of bile include the facilitation dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 In: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et 25 al., eds., McGraw-Hill, New York, NY, 1996, pages 934-935). Various natural bile salts, and their synthetic derivatives, Thus, the term "bile salt" act as penetration enhancers.

Complex formulations comprising one or more penetration enhancers may be used. For example, bile salts may be used in combination with fatty acids to make complex formulations.

includes any of the naturally occurring components of bile as

well as any of their synthetic derivatives.

30

Chelating agents include, but are not limited to, disodium ethylenediaminetetraacetate (EDTA), citric acid, 35 salicylates (e.g., sodium salicylate, 5-methoxysalicylate and

ISPH-0767 - 27 - PATENT

homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of beta-diketones (enamines) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems 1990, 7, 1-33; Buur et al., J. Control Rel. 1990, 14, 43-51). Chelating agents have the added advantage of also serving as DNase inhibitors.

Surfactants include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl 10 ether (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92); and perfluorochemical emulsions, such as FC-43 (Takahashi et al., J. Pharm. Pharmacol. 1988, 40, 252-257).

Non-surfactants include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol. 1987, 39, 621-626).

As used herein, "carrier compound" refers to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. In contrast to a carrier compound, a "pharmaceutically acceptable

ISPH-0767 - 28 - PATENT

carrier" (excipient) is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to an animal. pharmaceutically acceptable carrier may be liquid or solid and 5 is selected with the planned manner of administration in mind so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutically acceptable carriers include, but are not limited to, binding (e.g., pregelatinized maize starch, pyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, gelatin, calcium sulfate, ethyl cellulose, pectin, polyacrylates or calcium hydrogen phosphate, etc.); lubricants 15 (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrates (e.g., starch, sodium starch glycolate, etc.); or wetting agents (e.g., 20 sodium lauryl sulphate, etc.). Sustained release oral and/or enteric coatings for orally delivery systems administered dosage forms are described in U.S. Patents 4,704,295; 4,556,552; 4,309,406; and 4,309,404.

The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional compatible pharmaceutically-active materials such as, e.g., antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added,

ISPH-0767 - 29 - PATENT

should not unduly interfere with the biological activities of the components of the compositions of the invention.

Regardless of the method by which the oligonucleotides of the invention are introduced into a patient, colloidal 5 dispersion systems may be used as delivery vehicles to enhance the in vivo stability of the oligonucleotides and/or to target the oligonucleotides to a particular organ, tissue or cell Colloidal dispersion systems include, but are not type. limited to, macromolecule complexes, nanocapsules, 10 microspheres, beads and lipid-based systems including oil-inwater emulsions, micelles, mixed micelles, liposomes and lipid:oligonucleotide complexes of uncharacterized structure. A preferred colloidal dispersion system is a plurality of Liposomes are microscopic spheres having an liposomes. 15 aqueous core surrounded by one or more outer layers made up of lipids arranged in a bilayer configuration (see, generally, Chonn et al., Current Op. Biotech. 1995, 6, 698-708).

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic, vaginal, rectal, intranasal, epidermal, and transdermal), oral or parenteral. Parenteral administration includes intravenous drip, subcutaneous, intraperitoneal or intramuscular injection, pulmonary administration, e.g., by inhalation or insufflation, or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

Formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

ISPH-0767 - 30 - PATENT

Compositions for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may 5 be desirable.

Compositions for parenteral administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives. In some cases it may be more effective to treat a patient with an oligonucleotide 10 of the invention in conjunction with other traditional therapeutic modalities in order to increase the efficacy of a treatment regimen. In the context of the invention, the term "treatment regimen" is meant to encompass therapeutic, palliative and prophylactic modalities. For example, a 15 patient may be treated with conventional chemotherapeutic agents such as those used for tumor and cancer treatment. When used with the compounds of the invention, chemotherapeutic agents may be used sequentially, or in combination with one or more other such 20 chemotherapeutic agents.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the 25 course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily 30 determine optimum dosages, dosing methodologies and repetition Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC_{50} s found to be effective in vitro and in in vivo animal models. In general, dosage is from 0.01 μg to 35 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μ g to 100 g per kg of body weight, once or more daily, to once every 20 years.

invention, by this context of the in Thus, "therapeutically effective amount" is meant the amount of the compound which is required to have a therapeutic effect on the treated individual. This amount, which will be apparent to 15 the skilled artisan, will depend upon the age and weight of the individual, the type of disease to be treated, perhaps even the gender of the individual, and other factors which are routinely taken into consideration when designing a drug treatment. A therapeutic effect is assessed in the individual 20 by measuring the effect of the compound on the disease state in the animal.

The following examples illustrate the present invention and are not intended to limit the same.

EXAMPLES

25 EXAMPLE 1: Synthesis of Oligonucleotides

Unmodified oligodeoxynucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine. β - cyanoethyldiisopropyl-phosphoramidites are purchased from Applied Biosystems (Foster City, CA). For phosphorothioate oligonucleotides, the standard oxidation bottle was replaced by a 0.2 M solution of $^3\text{H-1,2-benzodithiole-3-one}$ 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation

ISPH-0767 - 32 - PATENT

cycle wait step was increased to 68 seconds and was followed by the capping step. Cytosines may be 5-methyl cytosines. (5-methyl deoxycytidine phosphoramidites available from Glen Research, Sterling, VA or Amersham Pharmacia Biotech, 5 Piscataway, NJ)

2'-methoxy oligonucleotides are synthesized using 2'methoxy β-cyanoethyldiisopropyl-phosphoramidites (Chemgenes,
Needham, MA) and the standard cycle for unmodified
oligonucleotides, except the wait step after pulse delivery
10 of tetrazole and base is increased to 360 seconds. Other 2'alkoxy oligonucleotides are synthesized by a modification of
this method, using appropriate 2'-modified amidites such as
those available from Glen Research, Inc., Sterling, VA.

2'-fluoro oligonucleotides are synthesized as described 15 in Kawasaki et al. (*J. Med. Chem.* **1993**, *36*, 831-841). Briefly, the protected nucleoside N^6 -benzoyl-2'-deoxy-2'fluoroadenosine is synthesized utilizing commercially available $9-\beta-D$ -arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'- α -fluoro 20 atom is introduced by a S_N2 -displacement of a 2'- β -O-trifyl Thus N^6 -benzoyl-9- β -D-arabinofuranosyladenine is group. selectively protected in moderate yield as the 3',5'ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N^6 -benzoyl groups is accomplished using standard 25 methodologies. Standard methods are also used to obtain the 5'-dimethoxytrityl- (DMT) and 5'-DMT-3'-phosphoramidite intermediates.

2'-deoxy-2'-fluoroguanosine The synthesis of accomplished using tetraisopropyldisiloxanyl (TPDS) protected 30 $9-\beta-D$ -arabinofuranosylguanine as starting material, conversion to the intermediate diisobutyryl-Deprotection of the TPDS group is arabinofuranosylguanosine. followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. 35 Selective O-deacylation and triflation is followed by ISPH-0767 - 33 - PATENT

treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies are used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

Synthesis of 2'-deoxy-2'-fluorouridine is accomplished 5 by the modification of a known procedure in which 2, 2'-anhydro-1- β -D-arabinofuranosyluracil is treated with 70% hydrogen fluoride-pyridine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-deoxy-2'-fluorocytidine is synthesized via amination 10 of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N⁴-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures are used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-(2-methoxyethyl)-modified amidites were synthesized according to Martin, P. (Helv. Chim. Acta 1995, 78, 486-506). For ease of synthesis, the last nucleotide may be a deoxynucleotide. 2'-O-CH₂CH₂OCH₃-cytosines may be 5-methyl cytosines.

Synthesis of 5-Methyl cytosine monomers:

20 2,2'-Anhydro[1-(β-D-arabinofuranosyl)-5-methyluridine]:

5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenyl-carbonate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 mL). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide gas to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethylether (2.5 L), with stirring. The product formed a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60EC at 1 mm Hg for 24 hours) to give a solid which was crushed to a light tan

ISPH-0767 - 34 - PATENT

powder (57 g, 85% crude yield). The material was used as is for further reactions.

2'-O-Methoxyethyl-5-methyluridine:

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2-5 methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160EC. After heating for 48 hours at 155-160EC, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The 10 residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH.

15 The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product.

20 <u>2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine:</u>

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxytrityl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5

ISPH-0767 - 35 - PATENT

kg silica gel column, packed and eluted with EtOAc/-Hexane/Acetone (5:5:1) containing 0.5% $\rm Et_3NH$. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure 5 fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-uridine:

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 q, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture 10 prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by tlc by first quenching the tlc sample with the addition of MeOH. Upon completion of the reaction, as judged by tlc, MeOH 15 (50 mL) was added and the mixture evaporated at 35EC. residue was dissolved in CHCl₃ (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl3. The combined organics were dried with sodium 20 sulfate and evaporated to give 122 g of residue (approx. 90% product). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/Hexane(4:1). Pure product fractions were evaporated to yield 96 g (84%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-425 triazoleuridine:

A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5EC and stirred for 0.5 hours using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10EC, and the resulting mixture stirred for an additional 2 hours.

ISPH-0767 - 36 - PATENT

The first solution was added dropwise, over a 45 minute period, to the later solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

10 <u>2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine:</u>

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100EC for 2 hours (tlc showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N⁴-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-25 cytidine:

 $2'\text{-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine}\ (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, tlc showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl3 (700 mL) and extracted with saturated NaHCO3 (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO4 and$

evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/Hexane (1:1) containing 0.5% $\rm Et_3NH$ as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the 5 title compound.

N⁴-Benzoyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine-3'-amidite:

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L).

Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl)phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (tlc showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were back-extracted with CH₂Cl₂ (300 mL), and the extracts were combined, dried over MgSO₄ and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc\Hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

5-methyl-2'-deoxycytidine (5-me-C) containing oligonucleotides were synthesized according to published methods (Sanghvi et al., *Nucl. Acids Res.* **1993**, *21*, 3197-3203) using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

Oligonucleotides having methylene(methylimino) (MMI) backbones were synthesized according to U.S. Patent 5,378,825, which is coassigned to the assignee of the present invention and is incorporated herein in its entirety. For ease of synthesis, various nucleoside dimers containing MMI linkages were synthesized and incorporated into oligonucleotides. Other nitrogen-containing backbones are synthesized according to WO

ISPH-0767 - 38 - PATENT

92/20823 which is also coassigned to the assignee of the present invention and incorporated herein in its entirety.

Oligonucleotides having amide backbones are synthesized according to De Mesmaeker et al. (Acc. Chem. Res. 1995, 28, 366-374). The amide moiety is readily accessible by simple and well-known synthetic methods and is compatible with the conditions required for solid phase synthesis of oligonucleotides.

Oligonucleotides with morpholino backbones are synthesized according to U.S. Patent 5,034,506 (Summerton and Weller).

Peptide-nucleic acid (PNA) oligomers are synthesized according to P.E. Nielsen et al. (Science 1991, 254, 1497-1500). After cleavage from the controlled pore glass column 15 (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55EC for 18 hours, the oligonucleotides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and 20 judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by 31P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang 25 et al. (*J. Biol. Chem.* **1991**, 266, 18162). Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

EXAMPLE 2: Human TNF- α Oligodeoxynucleotide Sequences

Antisense oligonucleotides were designed to target human 30 TNF-α. Target sequence data are from the TNF-α cDNA sequence published by Nedwin,G.E. et al. (*Nucleic Acids Res.* 1985, 13, 6361-6373); Genbank accession number X02910, provided herein as SEQ ID NO: 1. Oligodeoxynucleotides were synthesized primarily with phosphorothioate linkages. Oligonucleotide

ISPH-0767 - 39 - PATENT

sequences are shown in Table 1. Oligonucleotide 14640 (SEQ ID NO. 2) is a published TNF-α antisense oligodeoxynucleotide targeted to the start site of the TNF-α gene (Hartmann,G., et al., Antisense Nucleic Acid Drug Dev., 1996, 6, 291-299). Oligonucleotide 2302 (SEQ ID NO. 41) is an antisense oligodeoxynucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated (negative) target control. Oligonucleotide 13664 (SEQ ID NO. 42) is an antisense oligodeoxynucleotide targeted to the Herpes Simplex Virus type 1 and was used as an unrelated target control.

NeoHK cells, human neonatal foreskin keratinocytes (obtained from Cascade Biologicals, Inc., Portland, OR) were cultured in Keratinocyte medium containing the supplied growth factors (Life Technologies, Rockville, MD).

At assay time, the cells were between 70% and 90% The cells were incubated in the presence of Keratinocyte medium, without the supplied growth factors added, and the oligonucleotide formulated in LIPOFECTIN7 20 (Life Technologies), a 1:1 (w/w) liposome formulation of the cationic lipid N-[1-(2,3-dioleyloxy)propyl]-n,n,n-(DOTMA), chloride and dioleoyl trimethylammonium phosphotidylethanolamine (DOPE) in membrane filtered water. For an initial screen, the oligonucleotide concentration was 25 300 nM in 9 $\mu g/mL$ LIPOFECTIN7. Treatment was for four hours. After treatment, the medium was removed and the cells were further incubated in Keratinocyte medium containing the supplied growth factors and 100 nM phorbol 12-myristate 13acetate (PMA, Sigma, St. Louis, MO). mRNA was analyzed 2 30 hours post-induction with PMA. Protein levels were analyzed 12 to 20 hours post-induction.

Total mRNA was isolated using the RNEASY7 Mini Kit (Qiagen, Valencia, CA; similar kits from other manufacturers may also be used), separated on a 1% agarose gel, transferred to HYBONDTM-N+ membrane (Amersham Pharmacia Biotech,

Piscataway, NJ), a positively charged nylon membrane, and probed. A TNF- α probe consisted of the 505 bp EcoRI-HindIII fragment from BBG 18 (R&D Systems, Minneapolis, MN), a plasmid containing human TNF- α cDNA. A glyceraldehyde 3-phosphate 5 dehydrogenase (G3PDH) probe consisted of the 1.06 kb HindIII fragment from pHcGAP (American Type Culture Collection, Manassas, VA), a plasmid containing human G3PDH cDNA. restriction fragments were purified from low-melting temperature agarose, as described in Maniatis, T., et al., 10 Molecular Cloning: A Laboratory Manual, 1989 and labeled with REDIVUE^{™ 32}P-dCTP (Amersham Pharmacia Biotech, Piscataway, NJ) and PRIME-A-GENE7 labeling kit (Promega, Madison, WI). mRNA was quantitated by a PhosphoImager (Molecular Dynamics, Sunnyvale, CA). Secreted TNF- α protein levels were measured 15 using a human TNF- α ELIZA kit (R&D Systems, Minneapolis, MN or Genzyme, Cambridge, MA).

TABLE 1 $\mbox{Nucleotide Sequences of Human TNF-α Phosphorothicate Oligodeoxynucleotides }$

20	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
	14640	<u>C</u> ATG <u>C</u> TTT <u>C</u> AGTG <u>C</u> T <u>C</u> AT	2	0796-0813	AUG
	14641	TGAGGGAG <u>C</u> GT <u>C</u> TG <u>C</u> TGG <u>C</u> T	3	0615-0634	5'-UTR
	14642	GTG <u>C</u> TCATGGTGT <u>CC</u> TTT <u>CC</u>	4	0784-0803	AUG
25	14643	TAAT <u>C</u> A <u>C</u> AAGTG <u>C</u> AAA <u>C</u> ATA	5	3038-3057	3'-UTR
	14644	TA <u>CCCC</u> GGT <u>C</u> T <u>CCC</u> AAATAA	6	3101-3120	3'-UTR
	14810	GTGCTCATGGTGTCCTTTCC	4	0784-0803	AUG
	14811	AGCACCGCCTGGAGCCCT	7	0869-0886	coding
	14812	GCTGAGGAACAAGCACCGCC	8	0878-0897	coding
30	14813	AGGCAGAAGAGCGTGGTGGC	9	0925-0944	coding
	14814	AAAGTGCAGCAGGCAGAAGA	10	0935-0954	coding
	14815	TTAGAGAGAGGTCCCTGG	11	1593-1610	coding

	14816	TGACTGCCTGGGCCAGAG	12	1617-1634	junction
	14817	GGGTTCGAGAAGATGATC	13	1822-1839	junction
	14818	GGGCTACAGGCTTGTCACTC	14	1841-1860	coding
	14820	CCCCTCAGCTTGAGGGTTTG	15	2171-2190	junction
5	14821	CCATTGGCCAGGAGGGCATT	16	2218-2237	coding
	14822	ACCACCAGCTGGTTATCTCT	17	2248-2267	coding
	14823	CTGGGAGTAGATGAGGTACA	18	2282-2301	coding
	14824	CCCTTGAAGAGGACCTGGGA	19	2296-2315	coding
	14825	GGTGTGGGTGAGGAGCACAT	20	2336-2355	coding
10	14826	GTCTGGTAGGAGACGGCGAT	21	2365-2384	coding
	14827	GCAGAGAGGAGGTTGACCTT	22	2386-2405	coding
	14828	GCTTGGCCTCAGCCCCCTCT	23	2436-2455	coding
	14829	CCTCCCAGATAGATGGGCTC	24	2464-2483	coding
	14830	CCCTTCTCCAGCTGGAAGAC	25	2485-2504	coding
15	14831	ATCTCAGCGCTGAGTCGGTC	26	2506-2525	coding
	14832	TCGAGATAGTCGGGCCGATT	27	2527~2546	coding
	14833	AAGTAGACCTGCCCAGACTC	28	2554-2573	coding
	14834	GGATGTTCGTCCTCCTCACA	29	2588-2607	STOP
	14835	ACCCTAAGCCCCCAATTCTC	30	2689-2708	3'-UTR
20	14836	CCACACATTCCTGAATCCCA	31	2758-2777	3'-UTR
	14837	AGGCCCCAGTGAGTTCTGGA	32	2825-2844	3'-UTR
	14838	GTCTCCAGATTCCAGATGTC	33	2860-2879	3'-UTR
	14839	CTCAAGTCCTGCAGCATTCT	34	2902-2921	3'-UTR
	14840	TGGGTCCCCCAGGATACCCC	35	3115-3134	3'-UTR
25	14841	ACGGAAAACATGTCTGAGCC	36	3151-3170	3'-UTR
	14842	CTCCGTTTTCACGGAAAACA	37	3161-3180	3'-UTR
	14843	GCCTATTGTTCAGCTCCGTT	38	3174-3193	3'-UTR
	14844	GGTCACCAAATCAGCATTGT	39	3272-3292	3'-UTR
	14845	GAGGCTCAGCAATGAGTGAC	40	3297-3316	3'-UTR
30	2302	G <u>CCC</u> AAG <u>C</u> TGG <u>C</u> AT <u>CC</u> GT <u>C</u> A	41	target c	ontrol
	13664	GCCGAGGTCCATGTCGTACGC	42	target c	ontrol

ISPH-0767 - 42 - PATENT

 1 "C" residues are 5-methyl-cytosines except "C" residues are unmodified cytidines; all linkages are phosphorothicate linkages.

² Co-ordinates from Genbank Accession No. X02910, locus name 5 "HSTNFA", SEQ ID NO. 1.

Results are shown in Table 2. Oligonucleotides 14828 (SEQ ID NO. 23), 14829 (SEQ ID NO. 24), 14832 (SEQ ID NO. 27), 14833 (SEQ ID NO. 28), 14834 (SEQ ID NO. 29), 14835 (SEQ ID NO. 30), 14836 (SEQ ID NO. 31), 14839 (SEQ ID NO. 34), 14840 (SEQ ID NO. 35), and 14844 (SEQ ID NO. 39) inhibited TNF- α expression by approximately 50% or more. Oligonucleotides 14828 (SEQ ID NO. 23), 14834 (SEQ ID NO. 29), and 14840 (SEQ ID NO. 35) gave better than 70% inhibition.

TABLE 2

Inhibition of Human TNF-α mRNA Expression by Phosphorothioate Oligodeoxynucleotides

	ISIS No:	SEQ ID NO:	GENE TARGET REGION	% mRNA EXPRESSION	% mRNA INHIBITION
	basal			16%	
20	induced			100%	0%
	13664	42	control	140%	
	14640	2	AUG	61%	39%
	14641	3	5'-UTR	95%	5%
	14642	4	AUG	131%	~
25	14810	4	AUG	1118	
	14815	11	coding	85%	15%
	14816	12	junction	106%	
	14817	13	junction	97%	3%
i	14818	14	coding	64%	36%
30	14820	15	junction	111%	
	14821	16	coding	91%	9%
	14822	17	coding	57%	43%

	14827	22	coding	67%	33%
	14828	23	coding	27%	73%
	14829	24	coding	33%	67%
	14830	25	coding	71%	29%
5	14831	26	coding	62%	38%
	14832	27	coding	40%	60%
	14833	28	coding	43%	57%
	14834	29	STOP	26%	74%
	14835	30	3'-UTR	32%	68%
10	14836	31	3'-UTR	40%	60%
	14837	32	3'-UTR	106%	
	14838	33	3'-UTR	70%	30%
	14839	34	5'-UTR	49%	51%
	14840	35	3'-UTR	28%	72%
15	14841	36	3'-UTR	60%	40%
	14842	37,	3'-UTR	164%	
	14843	38	3'-UTR	67%	33%
	14844	39	3'-UTR	46%	54%
	14845	40	3'-UTR	65%	35%

20 EXAMPLE 3: Dose response of antisense phosphorothioate oligodeoxynucleotide effects on human TNF- α mRNA levels in NeoHK cells

Four of the more active oligonucleotides from the initial screen were chosen for dose response assays. These 25 include oligonucleotides 14828 (SEQ ID NO. 23), 14833 (SEQ ID NO. 28), 14834 (SEQ ID NO. 29) and 14839 (SEQ ID NO. 34). NeoHK cells were grown, treated and processed as described in Example 2. LIPOFECTIN7 was added at a ratio of 3 μ g/mL per 100 nM of oligonucleotide. The control included LIPOFECTIN7 30 at a concentration of 9 μ g/mL. The effect of the TNF- α antisense oligonucleotides was normalized to the non-specific target control. Results are shown in Table 3. Each

oligonucleotide showed a dose response effect with maximal inhibition greater than 70%. Oligonucleotides 14828 (SEQ ID NO. 23) had an IC $_{50}$ of approximately 185 nM. Oligonucleotides 14833 (SEQ ID NO. 28) had an IC $_{50}$ of approximately 150 nM. Oligonucleotides 14834 (SEQ ID NO. 29) and 14839 (SEQ ID NO. 34) had an IC $_{50}$ of approximately 140 nM.

TABLE 3 $\label{eq:Dose Response of NeoHK Cells to TNF-} \Delta$ Antisense Phosphorothioate Oligodeoxynucleotides (ASOs)

		,			, 	
LO	ISIS #	SEQ ID	ASO Gene Target	Dose	% mRNA Express- ion	% mRNA Inhib- ition
	2302	41	control	25 nM	100%	
	11	11	11	50 nM	100%	
	11	11	11	100 nM	100%	
	11	11	f f	200 nM	100%	
15	77	TT	77	300 nM	100%	
	14828	23	coding	25 nM	122%	
	""	**	11	50 nM	97%	3%
	",	71	11	100 nM	96%	4 %
	11	"	11	200 nM	40%	60%
20	11	11	11	300 nM	22%	78%
	14833	28	coding	25 nM	89%	11%
	11	11	77	50 nM	8%	22%
	"	77	*1	100 nM	64%	36%
	"	ff	11	200 nM	36%	64%
25	11	11	77	300 nM	25%	75%
	14834	29	STOP	25 nM	94%	6%
	11	11	11	50 nM	69%	31%
	11	77	11	100 nM	65%	35%
	11	71	"	200 nM	26%	74%
30	11	11	11	300 nM	11%	89%
	14839	34	3'-UTR	25 nM	140%	
	11	77	"	50 nM	112%	
	71	11	"	100 nM	65%	35%
	11	FF	11	200 nM	29%	71%
35	**	ŦŦ	11	300 nM	22%	78%

EXAMPLE 4: Design and Testing of Chimeric (deoxy gapped) 2'-O-methoxyethyl TNF- α Antisense Oligonucleotides on TNF- α Levels in NeoHK Cells

Oligonucleotides having SEQ ID NO: 28 and SEQ ID NO: 5 29 were synthesized as uniformly phosphorothicate or mixed phosphorothicate/phosphodiester chimeric oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 4. All 2'-MOE cytosines were 5-methyl-cytosines.

Dose response experiments, as discussed in Example 3, were performed using these chimeric oligonucleotides. The effect of the TNF- α antisense oligonucleotides was normalized to the non-specific target control. Results are shown in Table 5. The activities of the chimeric oligonucleotides tested were comparable to the parent phosphorothicate oligonucleotide.

13PH-0767

TABLE 4

Nucleotide Sequences of TNF- α Chimeric (deoxy gapped) 2'-0-methoxyethyl Oligonucleotides

	ISIS NO.	NUCLEOTIDE SEQUENCE (5' -> 3')1	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
2	14833	AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC	28	2554-2573	coding
	16467	AOAOGOTOASGSASCSCSTSGSCSCSASGOAOCOTOC	28	2554-2573	coding
	16468	ASASGSTSASGSASCSCSTSGSCSCSASGSASCSTSC	28	2554-2573	coding
	16469	ASASGSTSASGSASCSCSTSGSCSCSASGSASCSTSC	28	2554-2573	coding
	16470	AsAsGsTsAsGsAsCsCsTsGsCsCsCsAsGsAsCsTsC	28	2554-2573	coding
10	16471	ASASGSTSASGSASCSCTSCSCSASGSASCSTSC	28	2554-2573	coding
_ _	14834	GSGSASTSGSTSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP
	16472	GOGOAOTOGSTSTSCSGSTSCSCSTSCSCSTOCOAOCOA	29	2588-2607	STOP
	16473	GSGSASTSTSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP
	16474	GSGSASTSGSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP
15	16475	GSGSASTSGSTSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP
	16476	GSGSASTSGSTSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP

¹Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkages.

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1. 20 ISPH-0767 - 47 - PATENT

TABLE 5

Dose Response of NeoHK Cells to TNF- α Chimeric (deoxy gapped) 2'-O-methoxyethyl Antisense Oligonucleotides

5	isis #	SEQ ID NO:	ASO Gene Target	Dose	% mRNA Express- ion	% mRNA Inhib- ition
	13664	42	Control	50 nM	100%	
	"	11	"	100 nM	100%	
	rr	11	11	200 nM	100%	
	"	"	"	300 nM	100%	
10	14833	28	Coding	50 nM	69%	31%
	11	11	11	100 nM	64%	36%
	11	11	11	200 nM	56%	44%
	11	"	"	300 nM	36%	64%
	16468	28	Coding	50 nM	66%	34%
15	11	"	11	100 nM	53%	47%
	11	"	"	200 nM	34%	66%
	"	**	"	300 nM	25%	75%
	16471	28	Coding	50 nM	77%	23%
	"	11	11	100 nM	56%	44%
20	"	π	п	200 nM	53%	47%
	"	11	71	300 nM	31%	69%
	14834	29	STOP	50 nM	74%	26%
	11	11	11	100 nM	53%	47%
	11	11	"	200 nM	24%	76%
25	11	11	rr	300 nM	11%	89%
	16473	29	STOP	50 nM	71%	29%
	11	11	11	100 nM	51%	49%
	11	11	11	200 nM	28%	72%
	11	"	"	300 nM	23%	77%
30	16476	29	STOP	50 nM	74%	26%
	11	11	"	100 nM	58%	42%
	11	11	11	200 nM	32%	68%
	rr	ff	11	300 nM	31%	69%

ISPH-0767 - 48 - PATENT

EXAMPLE 5: Design and Testing of Chimeric Phosphorothioate/MMI TNF- α Antisense Oligodeoxynucleotides on TNF- α Levels in NeoHK Cells

Oligonucleotides having SEQ ID NO. 29 were synthesized 5 as phosphorothioate/methylene(methylimino) chimeric oligodeoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Oligonucleotide 13393 (SEO ID NO. 49) is an antisense oligonucleotide targeted to the human intracellular adhesion 10 molecule-1 (ICAM-1) and was used as an unrelated target control. All cytosines were 5-methyl-cytosines.

Dose response experiments were performed using these chimeric oligonucleotides, as discussed in Example 3 except quantitation of TNF- α mRNA levels was determined by

15 real-time PER (RT-PER) using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain 20 reaction (PER) products in real-time. As opposed to standard PER, in which amplification products are quantitated after the PER is completed, products in RT-PER are quantitated as they accumulate. This is accomplished by including in the PER reaction an oligonucleotide probe that anneals specifically 25 between the forward and reverse PER primers, and contains two A reporter dye (e.g., JOE or FAM, fluorescent dyes. PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the 30 probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the

5'-exonuclease activity of Taq polymerase. During the

ISPH-0767 - 49 - PATENT

extension phase of the PER amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular (six-second) intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

RT-PER reagents obtained from PE-Applied were 15 Biosystems, Foster City, CA. RT-PER reactions were carried out by adding 25 µl PER cocktail (1x TAQMAN7 buffer A, 5.5 mM $MgCl_2$, 300 μM each of dATP, dCTP and dGTP, 600 μM of dUTP, 100 nM each of forward primer, reverse primer, and probe, 20 U RNAse inhibitor, 1.25 units AMPLITAQ GOLD7, and 12.5 U MuLV 20 reverse transcriptase) to 96 well plates containing 25 μ l poly(A) mRNA solution. The RT reaction was carried out by incubation for 30 minutes at 48°C. following a 10 minute incubation at 95°C to activate the AMPLITAQ GOLD7, 40 cycles of a two-step PER protocol were carried out: 95°C for 15 25 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

For TNF- α the PER primers were:

Forward: 5'-CAGGCGGTGCTTGTTCCT-3' SEQ ID NO. 43

Reverse: 5'-GCCAGAGGGCTGATTAGAGAGA-3' SEQ ID NO. 44 and the 30 PER probe was: FAM-CTTCTCCTTCCTGATCGTGGCAGGC-TAMRA (SEQ ID NO. 45) where FAM or JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

ISPH-0767 - 50 - PATENT

For GAPDH the PER primers were:

Forward primer: 5'-GAAGGTGAAGGTCGGAGTC-3' SEQ ID NO. 46
Reverse primer: 5'-GAAGATGGTGATGGGATTTC-3' SEQ ID NO. 47 and
the PER probe was: 5' JOE-CAAGCTTCCCGTTCTCAGCC - TAMRA 3' (SEQ
5 ID NO. 48) where FAM or JOE (PE-Applied Biosystems, Foster
City, CA) is the fluorescent reporter dye) and TAMRA
(PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Results are shown in Table 7. The oligonucleotide containing MMI linkages was more effective in reducing TNF- α 10 mRNA levels than the uniformly phosphorothicate oligonucleotide. The IC50 value was reduced from approximately 75 nM, for oligonucleotide 14834 (SEQ ID NO: 29), to approximately 30 nM for oligonucleotide 16922 (SEQ ID NO: 29).

Dose response experiments were also performed measuring the effect on TNF- α protein levels. Protein levels were measured as described in Example 2. Results are shown in Table 8. The oligonucleotide containing four MMI linkages on each end was more effective in reducing protein levels than the uniformly phosphorothicate oligonucleotide. The IC₅₀ value was reduced from approximately 90 nM, for oligonucleotide 14834 (SEQ ID NO: 29), to approximately 45 nM for oligonucleotide 16922 (SEQ ID NO: 29).

Nucleotide Sequences of Human TNF-lpha Chimeric Phosphorothioate/MMI Oligodeoxynucleotides TABLE 6

ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
5 14834	GSGSASTSGSTSCSGSTSCSCSTSCSASCSA	29	2588-2607	STOP
16922	GmGmAmTmGsTsTsCsGsTsCsCsTsCsCsTmCmAmCmA	29	2588-2607	STOP
16923	GmGmAmTmGmTmTsCsGsTsCsCsTsCmCmAmCmA	29	2588-2607	STOP
13393	TSCSTSGSASGSTSASGSCSASGSASGSCSTSC	49	target control	trol

¹ All cytosine residues are 5-methyl-cytosines; "s" linkages are phosphorothioate linkages, "m" linkages are methylene (methylimino) (MMI). 10

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

TABLE 7

Dose Response of Chimeric Phosphorothioate/MMI TNF- α Antisense Oligodeoxynucleotides on TNF- α mRNA Levels in PMA-Induced NeoHK Cells

5	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	% mRNA Express- ion	% mRNA Inhibit- ion
	induced	~~-			100%	~
	13393	49	control	25 nM	87.3%	12.7%
	11	11	=	50 nM	98.5%	1.5%
	"	11	11	100 nM	133.1%	
10	11	11	11	200 nM	139.6%	
İ	14834	29	STOP	25 nM	98.7%	1.3%
	11	,,	11	50 nM	70.8%	29.2%
	11	11	11	100 nM	36.0%	64.0%
	11	11	11	200 nM	38.2%	61.8%
15	16922	29	STOP	25 nM	58.9%	41.1%
	"	11	Ħ	50 nM	28.2%	71.8%
	11	11	11	100 nM	22.2%	77.8%
	11	67	£1	200 nM	18.9%	81.1%

TABLE 8

Dose Response of Chimeric Phosphorothioate/MMI TNF- α Antisense Oligodeoxynucleotides on TNF- α Protein Levels in PMA-Induced NeoHK Cells

	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	<pre>% protein Express- ion</pre>	% protein Inhibit- ion
	induced				100.0%	
25	13393	49	control	25 nM	117.0%	
	11	11	"	50 nM	86.6%	13.4%
	11	11	11	100 nM	98.7%	1.3%
	"	11	11	200 nM	78.0%	22.0%

ISPH-0767 - 53 - PATENT

	14834	29	STOP	25 nM	84.8%	15.2%
	"	"	"	50 nM	76.9%	23.1%
	11	II	11	100 nM	44.5%	55.5%
	11	11	11	200 nM	18.7%	81.3%
5	16922	29	STOP	25 nM	67.1%	32.9%
	11	TT	11	50 nM	48.6%	51.4%
	11	11	11	100 nM	20.0%	80.0%
	"	11	11	200 nM	7.9%	92.1%
	16923	29	STOP	25 nM	79.9%	20.1%
10	11	11	11	50 nM	69.9%	30.1%
	11	FT	18	100 nM	56.0%	44.0%
	11	71	11	200 nM	44.5%	55.5%

EXAMPLE 6: Additional Human TNF- α Antisense Oligonucleotide Sequences

of

human

 $TNF-\alpha$

antisense

second screening

15

Α

oligonucleotides was performed. Oligonucleotides were designed specifically against specific regions of the TNF- $\!\alpha$ gene. A series of oligonucleotides was designed to target introns 1 and 3, and exon 4. Sequences targeting introns 1 uniformly phosphorothioate 3 were synthesized as phosphorothioate/ oligodeoxynucleotides or mixed phosphodiester chimeric backbone oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. Sequences targeting exon 4 were synthesized 25 as mixed phosphorothioate/phosphodiester chimeric backbone oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences of the chimeric oligonucleotides are shown in Sequences of the uniformly phosphorothicate Table 9. 30 oligodeoxynucleotides are shown in Table 11. These oligonucleotides were screened at 50 nM and 200 nM for their ability to inhibit $TNF-\alpha$ protein secretion, essentially as described in Example 2. Results for the chimeric backbone oligonucleotides are shown in Table 10; results for the

ISPH-0767 - 54 ~ PATENT

uniformly phosphorothicate oligodeoxynucleotides are shown in Table 12.

For the chimeric backbone oligonucleotides targeting introns 1 or 3, oligonucleotide 21688 (SED ID NO. 69) gave 60% 5 inhibition or greater. For chimeric backbone oligonucleotides targeting exon 4, two-thirds of the oligonucleotides gave nearly 60% inhibition or greater (SEQ ID NOs. 88, 90, 91, 92, 93, 94, 97, and 98). See Table 10. For the uniformly phosphorothicate oligodeoxynucleotides, five of nine 10 oligonucleotides targeting intron 3 were effective in reducing TNF- α expression by nearly 60% or greater (SEQ ID NOs. 79, 80, 81, 82, and 84). See Table 12.

Oligonucleotides having SEQ ID NO. 91 and SEQ ID NO. 98 were synthesized as а uniformly phosphorothioate phosphorothioate/ 15 oligodeoxynucleotides or mixed phosphodiester chimeric backbone oligonucleotides having variable regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 13. All 2'-MOE cytosines and 20 2'-deoxy cytosines were 5-methyl-cytosines.

Dose response experiments, as discussed in Example 3, were performed using these oligonucleotides. Included in this experiment were two oligonucleotides targeting intron 1 and two oligonucleotides targeting intron 3. Results are shown 25 in Tables 14 and 15. The oligonucleotides targeting exon 4 2'-O-methoxyethyl (2'-MOE) variable regions of and/or uniformly nucleotides and deoxynucleotides Ophosphorothioate or mixed phosphorothioate/phosphodiester were, in general, comparable to the parent compound.

Oligonucleotides targeting introns 1 or 3 having SEQ ID NOs 66, 69 and 80 were effective in reducing TNF- α mRNA levels by greater than 80% and showed a dose response effect with an IC50 approximately 110 nM. See Tables 14 and 15.

- 55 -

PATENT

Nucleotide Sequences of TNF- α Chimeric Backbone (deoxy gapped) 2'-O-methoxyethyl Oligonucleotides TABLE 9

ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
21669	ToGoCoGoTsCsTsCsAsTsTsTsCsCoCoCoToT	20	1019-1038	intron 1
21670	ToCoCoCoAsTsCsTsCsTsCsCsCsToCoToCoT	51	1039-1058	intron 1
21671	COAOGOCOGSCSASCSASTSCSTSTSTSCSAOCOCOCOA	52	1059-1078	intron 1
21672	ToCoToCoTsCsAsTsCsCsCsTsCsCoCoToAoT	53	1079-1098	intron 1
21673	COGOTOCOTSTSTSCSTSCSTSTSTSTOTOTOT	54	1099-1118	intron 1
21674	COAOCOAOTSCSTSTSTSTSGSCSAOTOCOCOC	55	1119-1138	intron 1
21675	COTOCOTOCSTSTSCSCSCSASTSCSTSCOTOTOGOC	56	1139-1158	intron 1
21676	GOTOCOTOCSTSCSASTSCSTSTSTSCSCOTOTOCOT	57	1159-1178	intron 1
21677	ToToCoCoAsTsGsTsGsCsCsAsGsAsCsAoToCoCoT	58	1179-1198	intron 1
21678	AoToAoCoAsCsAsCsTsTsAsGsTsGsAsGoCoAoCoC	59	1199-1218	intron 1
21679	TOTOCOAOTSTSCSASTSTSCSAOCOTOCOC	09	1219-1238	intron 1

10

S

15

PATENT
1 296 1
ISPH-0767

21680	TOAOTOAOTSCSTSGSCSTSTSGSTSTSCSAOTOTOCOA	61	1239-1258	intron 1
21681	CoToGoToCsTsCsAsTsAsTsCsTsTsAoToToToA	62	1259-1278	intron 1
21682	ToCoToCoTsTsCsAsCsAsCsCsCsCoAoCoAoT	63	1279-1298	intron 1
21683	COAOCOTOTSGSTSTSTSCSTSTSCSCSCSCOCOAOTOC	64	1299-1318	intron 1
21684	CoToCoAoCsCsAsTsCsTsTsTsTsCoAoToAoT	65	1319-1338	intron 1
21685	AoToAoToTsTsCsCsCsGsCsTsCsTsTsToCoToGoT	99	1339-1358	intron 1
21686	COAOTOCOTSCSTSCSTSTSASGSCOTOGOTOC	29	1359-1378	intron 1
21687	ToCoToToCsTsCsCsTsTsAsTsCsToCoCoCo	89	1379-1398	intron 1
21688	GOTOGOTOGSCSCSASGSASCSASCSCSCSTOAOTOCOT	69	1399-1418	intron 1
21689	ToCoToToTsCsCsCsTsGsAsGsTsGsTsCoToToCoT	7.0	1419-1438	intron 1
21690	AoCoCoToTsCsCsAsGsCsAsTsTsCsAsAoCoAoGoC	71	1439–1458	intron 1
21691	COTOCOCOASTSTSCSASTSCSTSGSTSAOTOTOC	72	1459-1478	intron 1
21692	ToGoAoGoGsTsGsTsCsTsGsGsTsTsTsToCoToCoT	73	1479-1498	intron 1
21693	Aocoaocoastscscstscsasgsasgscstoctoroa	74	1871–1890	intron 3
21694	CoToAoGoCsCsCsTsCsCsAsAsGsTsTsCoCoAoAoG	75	1891-1910	intron 3
21695	CoGoGoGoCsTsTsCsAsAsTsCsCsCsAoAoAoToC	76	1911-1930	intron 3

PATENT - 57 -1SPH-0767

21696	AoAoGoToTsCsTsGsCsCsTsAsCsCsAsToCoAoGoC	77	1931-1950	intron 3
21697	GOTOCOCOTSTSCSASCSASTSTSGSTOCOTOCOC	78	1951-1970	intron 3
21698	CoCoToToCsCsTsTsGsAsGsCsTsCsAoGoCoGoA	62	1971-1990	intron 3
21699	GoGoCoCoTsGsTsGsCsTsGsTsCsCsToCoCoAoC	80	1991-2010	intron 3
21700	CoGoToToCsTsGsAsGsTsAsTsCsCsCsAoCoToAoA	81	2011-2030	intron 3
21701	CoAoCoAoTsCsCsAsCsCsTsGsGsCsCoAoToGoA	82	2031-2050	intron 3
21702	GOTOCOCOTSCSTSCSTSCSTSCOAOTOCOC	83	2051-2070	intron 3
21703	CoCoAoCoCsCsAsCsAsTsCsGsGsToToCoCoT	84	2071-2090	intron 3
21704	ToCoCoToGsGsCsCsTsCsGsAsGsCsToCoToGoC	85	2091-2110	intron 3
21705	AoToGoToCsGsGsTsTsCsAsCsTsCsTsCoCoAoCoA	86	2111-2130	intron 3
21706	AoGoAoGoGsAsGsAsGsTsCsAsGsTsGsToGoGoCoC	87	2131-2150	intron 3
21722	GoAoToCoCsCsAsAsAsGsTsAsGsAsCsCoToGoCoC	88	2561-2580	exon 4
21723	CoaoGoaoCsTsCsGsGsCsAsAsAsGsTsCoGoaoGoa	89	2541-2560	exon 4
21724	ToAoGoToCsGsGsCsCsGsAsTsTsGsAoToCoToC	06	2521-2540	exon 4

ı
ထ
58
ł
ISPH-0767

PATENT

21725	AoGoCoGoCsTsGsAsGsTsCsGsGsTsCsAoCoCoCoT	91	2501-2520	exon 4
21726	ToCoToCoCsAsGsCsTsGsGsAsAsGsAsCoCoCoT	92	2481-2500	exon 4
21727	CoCoCoAoGsAsTsAsGsAsTsGsGsGsCsToCoAoToA	93	2461-2480	exon 4
21728	CoCoAoGoGSGSCSTSTSGSGSCSCSTSCSAOGOCOCOC	94	2441-2460	exon 4
21729	CoCoToCoTsGsGsGsGsTsCsTsCsCsCsToCoToGoG	95	2421-2440	exon 4
21730	COAOGOGSGSCSTSCSTSGSASTSGSGOCOAOGOA	96	2401-2420	exon 4
21731	GOAOGOGOASGSGSTSTSGSASCSCSTSTSGOGOTOCOT	97	2381-2400	exon 4
21732	GOGOTOAOGSGSASGSASCSGSGSCSGSASTOGOCOGOG	86	2361-2380	exon 4
21733	CoToGoAoTSGSTSGSTSGSGSTSGSAOGOGOAOG	66	2341-2360	exon 4

Ŋ

1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkages.

10

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

TABLE 10 Dose Response of PMA-Induced neoHK Cells to Chimeric Backbone (deoxy gapped) 2'-O-methoxyethyl TNF- α Antisense Oligonucleotides

5	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	<pre>% protein Express- ion</pre>	% protein Inhibit- ion
	induced				100%	
!	14834	29	STOP	50 nM	76%	24%
	11	11	11	200 nM	16%	84%
!	21669	50	intron 1	50 nM	134%	
10	11	17	II	200 nM	114%	
:	21670	51	intron 1	50 nM	122%	
	11	FF	11	200 nM	101%	
	21671	52	intron 1	50 nM	90%	10%
	77	11	17	200 nM	58%	42%
15	21672	53	intron 1	50 nM	122%	
	11	ŧŧ	11	200 nM	131%	
	21673	54	intron 1	50 nM	102%	
	11	77	11	200 nM	110%	
	21674	55	intron 1	50 nM	111%	
20	11	**	11	200 nM	96%	4%
	21675	56	intron 1	50 nM	114%	
	11	11	. 11	200 nM	99%	1%
	21676	57	intron 1	50 nM	107%	~~-
	11	11	11	200 nM	96%	4.8
25	21677	58	intron 1	50 nM	86%	14%
	11	***	"	200 nM	95%	5%
	21678	59	intron 1	50 nM	106%	
	11	11	71	200 nM	107%	
	21679	60	intron 1	50 nM	75%	25%
30	11	11	11	200 nM	73%	27%
	21680	61	intron 1	50 nM	76%	24%
	11	11	11	200 nM	80%	20%
	21681	62	intron 1	50 nM_	79%	21%

1			 -		 -	
	11	łī -	11	200 nM	82%	18%
	21682	63	intron 1	50 nM	102%	
ļ	"	71	11	200 nM	888	12%
	21683	64	intron 1	50 nM	80%	20%
5	11	11	ŦŦ	200 nM	66%	34%_
	21684	65	intron 1	50 nM	91%	9%
	11	11	er	200 nM	698	31%
	21685	66	intron 1	50 nM	98%	2%
	11	77	11	200 nM	90%	10%
10	21686	67	intron 1	50 nM	97%	3%
	11	***	11	200 nM	72%	28%
	21687	68	intron 1	50 nM	103%	
	11	**	71	200 nM	64%	36%
	21688	69	intron 1	50 nM	87%	13%
15	"	**	**	200 nM	· 40%	60%
	21689	70	intron 1	50 nM	78%	22%
	11	"	¥1	200 nM	74%	26%
	21690	71	intron 1	50 nM	84%	16%
	11	**	ŦŦ	200 nM	80%	20%
20	21691	72	intron 1	50 nM	86%	14%
	11	11	11	200 nM	75%	25%
	21692	73	intron 1	50 nM	85%	15%
	11	11	11	200 nM	61%	39%
	21693	74	intron 3	50 nM	81%	19%
25	11	17	**	200 nM	83%	17%
	21694	75	intron 3	50 nM	99%	1%
!	17	**	17	200 nM	56%	44%
	21695	76	intron 3	50 nM	87%	13%
	"	11	11	200 nM	84%	16%
30	21696	77	intron 3	50 nM	103%	
	11	11	IT	200 nM	86%	14%
	21697	78	intron 3	50 nM	99%	1%
	11	11	"	200 nM	52%	48%
	21698	79	intron 3	50 nM	96%	4%
35	11	11	11	200 nM	47%	53%

	21699	80	intron 3	50 nM	73%	27%
	"	11	11	200 nM	84%	16%
	21700	81	intron 3	50 nM	80%	20%
	"	11	11	200 nM	53%	47%
5	21701	82	intron 3	50 nM	94%	6%
	**	11	"	200 nM	56%	44%
	21702	83	intron 3	50 nM	86%	14%
	11	***	Tf	200 nM	97%	3%
	21703	84	intron 3	50 nM	88%	12%
10	11	11	11	200 nM	74%	26%
	21704	85	intron 3	50 nM	69%	31%
	11	11	11	200 nM	65%	35%
	21705	86	intron 3	50 nM	92%	88
	11	FF	77	200 nM	77%	23%
15	21706	87	intron 3	50 nM	95%	5%
	77	11	77	200 nM	82%	18%
	21722	88	exon 4	50 nM	81%	19%
	77	11	***	200 nM	41%	59%
	21723	89	exon 4	50 nM	87%	13%
20	11	***	*1	200 nM	74%	26%
	21724	90	exon 4	50 nM	68%	32%
	11	*1	11	200 nM	33%	67%
	21725	91	exon 4	50 nM	55%	45%
	11	**	11	200 nM	30%	70%
25	21726	92	exon 4	50 nM	72%	28%
	*1	11	77	200 nM	40%	60%
	21727	93	exon 4	50 nM	67%	33%
	11	11	11	200 nM	40%	60%
	21728	94	exon 4	50 nM	62%	38%
30	71	11	11	200 nM_	41%	59%
	21729	95	exon 4	50 nM	78%	22%
	11	11	11	200 nM	53%	47%
	21730	96	exon 4	50 nM	68%	32%
	11	11	11	200 nM	48%	52%
35	21731	97	exon 4	50 nM	77%	23%

	11	Ħ	11	200 nM	41%	59%
	21732	98	exon 4	50 nM	62%	38%
	t i	11	11	200 nM	28%	72%
	21733	99	exon 4	50 nM	92%	8%
5	tr	"	11	200 nM	74%	26%

TABLE 11 Nucleotide Sequences of Additional Human TNF- $\!\alpha\!$ Phosphorothioate Oligodeoxynucleotides

10	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
	21804	TGCGTCTCTCATTTCCCCTT	50	1019-1038	intron 1
	21805	TCCCATCTCTCTCCCTCTCT	51	1039-1058	intron 1
	21806	CAGCGCACATCTTTCACCCA	52	1059-1078	intron 1
	21807	TCTCTCATCCCTCCCTAT	53	1079-1098	intron 1
15	21808	CGTCTTTCTCCATGTTTTTT	54	1099-1118	intron 1
	21809	CACATCTCTTTCTGCATCCC	55	1119-1138	intron 1
	21810	CTCTCTCCCCATCTCTTGC	56	1139-1158	intron 1
	21811	GTCTCCCATCTTTCCTTCT	57	1159-1178	intron 1
	21812	TTCCATGTGCCAGACATCCT	58	1179-1198	intron 1
20	21813	ATACACACTTAGTGAGCACC	59	1199-1218	intron 1
	21814	TTCATTCATTCACTCC	60	1219-1238	intron 1
	21815	TATATCTGCTTGTTCATTCA	61	1239-1258	intron 1
	21816	CTGTCTCCATATCTTATTTA	62	1259-1278	intron 1
	21817	TCTCTTCACACCCCACAT	63	1279-1298	intron 1
25	21818	CACTTGTTTCTTCCCCCATC	64	1299-1318	intron 1
	21819	CTCACCATCTTTATTCATAT	65	1319-1338	intron 1
	21820	ATATTTCCCGCTCTTTCTGT	66	1339-1358	intron 1
	21821	CATCTCTCCTTAGCTGTC	67	1359-1378	intron 1
	21822	TCTTCTCCTTATCTCCCC	68	1379-1398	intron 1
30	21823	GTGTGCCAGACACCCTATCT	69	1399-1418	intron 1
	21824	TCTTTCCCTGAGTGTCTTCT	70	1419-1438	intron 1
	21825	ACCTTCCAGCATTCAACAGC	71	1439-1458	intron 1

	21826	CTCCATTCATCTGTGTATTC	72	1459-1478	intron 1
	21827	TGAGGTGTCTGGTTTTCTCT	73	1479-1498	intron 1
	21828	ACACATCCTCAGAGCTCTTA	74	1871-1890	intron 3
5	21829	CTAGCCCTCCAAGTTCCAAG	75	1891-1910	intron 3
	21830	CGGGCTTCAATCCCCAAATC	76	1911-1930	intron 3
	21831	AAGTTCTGCCTACCATCAGC	77	1931-1950	intron 3
	21832	GTCCTTCTCACATTGTCTCC	78	1951-1970	intron 3
	21833	CCTTCCCTTGAGCTCAGCGA	79	1971-1990	intron 3
	21834	GGCCTGTGCTGTTCCTCCAC	80	1991-2010	intron 3
10	21835	CGTTCTGAGTATCCCACTAA	81	2011-2030	intron 3
	21836	CACATCCCACCTGGCCATGA	82	2031-2050	intron 3
	21837	GTCCTCTCTGTCTGTCATCC	83	2051-2070	intron 3
	21838	CCACCCACATCCGGTTCCT	84	2071-2090	intron 3
	21839	TCCTGGCCCTCGAGCTCTGC	85	2091-2110	intron 3
15	21840	ATGTCGGTTCACTCTCCACA	86	2111-2130	intron 3
	21841	AGAGGAGAGTCAGTGTGGCC	87	2131-2150	intron 3

¹ All "C" residues are 5-methyl-cytosines; all linkages are phosphorothicate linkages.

	isis #	SEQ ID NO:	ASO Gene Target	Dose	<pre>% protein Express- ion</pre>	% protein Inhibit- ion
25	induced				100%	
	14834	29	STOP	50 nM	80%	20%
	11	11	11	200 nM	13%	87%
	21812	58	intron 1	50 nM	110%	
	11	11	11	200 nM	193%	
30	21833	79	intron 3	50 nM	88%	12%
	11	11	11	200 nM	8%	92%
	21834	80	intron 3	50 nM	70%	30%

 $^{^{2}}$ Co-ordinates from Genbank Accession No. X02910, locus name 20 "HSTNFA", SEQ ID NO. 1.

	τŧ	11	11	200 nM	18%	82%
	21835	81	intron 3	50 nM	106%	
	17	11	11	200 nM	42%	58%
	21836	82	intron 3	50 nM	71%	29%
5	11	71	11	200 nM	12%	88%
	21837	83	intron 3	50 nM	129%	
	11	11	11	200 nM	74%	26%
	21838	84	intron 3	50 nM	85%	15%
	"	11	11	200 nM	41%	59%
10	21839	85	intron 3	50 nM	118%	
	11	11	11	200 nM	58%	42%
	21840	86	intron 3	50 nM	120%	
	"	11	11	200 nM	96%	4%
	21841	87	intron 3	50 nM	117%	
15	11	TT	11	200 nM	78%	22%

TABLE 13

Nucleotide Sequences of TNF- α Chimeric (deoxy gapped) 2'-0-Methoxyethyl Oligonucleotides

ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
21725	AoGoCoCoTsGsAsGsTsCsGsGsTsCsAoCoCoCoT	91	2501-2520	exon 4
25655	AsGsCsGsCsTsGsAsGsTsCsGsGsTsCsAsCsCsCsT	n.		ш
25656	AsGsCsTsGsAsGsTsCsGsGsTsCsAsCs CsCsT	"	н	11
25660	AoGoCoGSCSTSGSASGSTSCSASCoCoCoT	=	Ε	E
21732	GoGoToAoGSGSASCSGSGSCSGSASTOGOCOGOG	98	2361-2380	exon 4
25657	GSGSTSASGSASGSASCSGSGSASTSGSCSGSG	n	11	11
25658	GSGSTSASGSASCSGSGSCSGSASTSGSCSGSG	11	п	Ξ
25661	GoGoToAsGsAsGsAsCsGsGsCsGsAsTsGoCoGoG		ıı	=

10

Ŋ

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkages.

15

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

ISPH-0767 - 66 -PATENT

TABLE 14 Dose Response of 20 Hour PMA-Induced neoHK Cells to TNF- α Antisense Oligonucleotides (ASOs)

	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	% protein Express- ion	% protein Inhibit- ion
5	induced				100%	
	14834	29	STOP	75 nM	91.2%	8.8%
	11	11	**	150 nM	42.0%	58.0%
	TF	11	11	300 nM	16.9%	83.1%
	21820	66	intron 1	75 nM	79.0%	21.0%
10	11	11	11	150 nM	34.5%	65.5%
	11	11	77	300 nM	15.6%	84.4%
	21823	69	intron 1	75 nM	79.5%	20.5%
	11	"	77	150 nM	31.8%	68.2%
	11	11	11	300 nM	16.2%	83.8%
15	21725	91	exon 4	75 nM	74.8%	25.2%
	11	11	11	150 nM	58.4%	41.6%
	11	11	71	300 nM	45.2%	54.8%
	25655	91	exon 4	75 nM	112.0%	
	11	TT .	11	150 nM	55.0%	45.0%
20	"	11	11	300 nM	39.3%	60.7%
	25656	91	exon 4	75 nM	108.3%	÷
	11	"	"	150 nM	60.7%	39.3%
	11	11	11	300 nM	42.8%	57.2%
	25660	91	exon 4	75 nM	93.2%	6.8%
25	11	11	FF	150 nM	72.8%	27.2%
	11	11	11	300 nM	50.3%	49.7%

ISPH-0767 - 67 - PATENT

	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	<pre>% protein Express- ion</pre>	% protein Inhibit- ion
5	induced				100%	
	14834	29	STOP	75 nM	44.9%	55.1%
	11	11	11	150 nM	16.3%	83.7%
	11	11	11	300 nM	2.2%	97.8%
	21834	80	intron 3	75 nM	102.9%	
10	11	77	74	150 nM	24.5%	75.5%
	1)	79	11	300 nM	19.1%	80.9%
	21836	82	intron 3	75 nM	70.8%	29.2%
	11	***	17	150 nM	55.9%	44.1%
	Ħ	71	11	300 nM	32.7%	67.3%
15	21732	98	exon 4	75 nM	42.4%	57.6%
	11	tī	**	150 nM	34.9%	65.1%
	11	Ħ	71	300 nM	15.4%	84.6%
	25657	98	exon 4	75 nM	46.7%	53.3%
	11	11	27	150 nM	72.0%	28.0%
20	11	11	11	300 nM	50.6%	49.4%
	25658	98	exon 4	75 nM	83.7%	16.3%
	17	11	"	150 nM	56.6%	43.4%
	17	n	71	300 nM	36.9%	63.1%
	25661	98	exon 4	75 nM	54.9%	45.1%
25	11	71	11	150 nM	34.4%	65.6%
	11	11	Ŧ¥	300 nM	8.6%	91.4%

EXAMPLE 7: Activity of Fully 2'-MOE Modified TNF- α Antisense Oligonucleotides

A series of antisense oligonucleotides were synthesized targeting the terminal twenty nucleotides of each exon at 5 every exon-intron junction of the TNF-α gene. These oligonucleotides were synthesized as fully 2'-methoxyethoxy modified oligonucleotides. The oligonucleotide sequences are shown in Table 16. Oligonucleotide 12345 (SEQ ID NO. 106) is an antisense oligonucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated target control.

The oligonucleotides were screened at 50 nM and 200 nM for their ability to inhibit TNF- α mRNA levels, as described in Example 3. Results are shown in Table 17. Oligonucleotide 15 21794 (SEQ ID NO. 102) showed an effect at both doses, with greater than 75% inhibition at 200 nM.

TABLE 16 . Nucleotide Sequences of Human TNF- α Uniform 2'-MOE Oligonucleotides

20	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION ³
	21792	AGGCACTCACCTCTTCCCTC	100	0972-0991	E1/I1
	21793	CCCTGGGGAACTGTTGGGGA	101	1579-1598	I1/E2
	21794	AGACACTTACTGACTGCCTG	102	1625-1644	E2/I2
25	21795	GAAGATGATCCTGAAGAGGA	103	1812-1831	I2/E3
	21796	GAGCTCTTACCTACAACATG	104	1860-1879	E3/I3
	21797	TGAGGGTTTGCTGGAGGGAG	105	2161-2180	I3/E4
	12345	GATCGCGTCGGACTATGAAG	106	target con	trol

¹ Emboldened residues are 2'-methoxyethoxy residues, 2'30 methoxyethoxy cytosine residues are 5-methyl-cytosines; all
linkages are phosphorothioate linkages.

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

ISPH-0767 - 69 - PATENT

 3 Each target region is an exon-intron junction and is represented in the form, for example, I1/E2, where I, followed by a number, refers to the intron number and E, followed by a number, refers to the exon number.

5 **TABLE 17**

Dose Response of neoHK Cells to TNF- α Antisense 2'-MOE Oligonucleotides

	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	% mRNA Express- ion	% mRNA Inhibit- ion
10	induced				100%	
	12345	106	control	50 nM	121%	
	11	11	11	200 nM	134%	
	13393	49	control	50 nM	110%	
	17	11	11	200 nM	112%	
	14834	29	STOP	50 nM	92%	8%
15	11	11	11	200 nM	17%	83%
	21792	100	E1/I1	50 nM	105%	~~-
	11	31	17	200 nM	148%	
	21793	101	I1/E2	50 nM	106%	
	11	11	11	200 nM	172%	
20	21794	102	E2/I2	50 nM	75%	25%
	Ħ		11	200 nM	23%	77%
	21795	103	I2/E3	50 nM	79%	21%
25	11	**	11	200 nM	125%	
	21796	104	E3/I3	50 nM	56%	44%
	11	17	11	200 nM	150%	
	21797	105	I3/E4	50 nM	90%	10%
	**	11	11	200 nM	128%	

EXAMPLE 8: Mouse TNF- α Oligonucleotide Sequences

Antisense oligonucleotides were designed to target mouse TNF-α. Target sequence data are from the TNF-α cDNA sequence published by Semon et al. (Nucleic Acids Res. 1987, 15, 9083-9084); Genbank accession number Y00467, provided herein as SEQ ID NO: 107. Oligonucleotides were synthesized primarily as phosphorothicate oligodeoxynucleotides. Oligonucleotide sequences are shown in Table 18. Oligonucleotide 3082 (SEQ ID NO. 141) is an antisense oligodeoxynucleotide targeted to the human intracellular adhesion molecule-1 (ICAM-1) and was used as an unrelated target control. Oligonucleotide 13108 (SEQ ID NO. 142) is an antisense oligodeoxynucleotide targeted to the herpes simplex virus type 1 and was used as an unrelated target control.

P388D1, mouse macrophage cells (obtained from American Type Culture Collection, Manassas, VA) were cultured in RPMI 1640 medium with 15% fetal bovine serum (FBS) (Life Technologies, Rockville, MD).

assay time, cell were at approximately 20 confluency. The cells were incubated in the presence of OPTI-MEM7 medium (Life Technologies, Rockville, MD), and the LIPOFECTIN7 oligonucleotide formulated in Technologies), a 1:1 (w/w) liposome formulation of the N-[1-(2,3-dioleyloxy)propyl]-n,n,nlipid cationic dioleoyl and (DOTMA), chloride 25 trimethylammonium phosphotidylethanolamine (DOPE) in membrane filtered water. For an initial screen, the oligonucleotide concentration was 100 nM in 3 μ g/ml LIPOFECTIN7. Treatment was for four hours. After treatment, the medium was removed and the cells were 30 further incubated in RPMI medium with 15% FBS and induced with 10 ng/ml LPS. mRNA was analyzed 2 hours post-induction with PMA.

Total mRNA was isolated using the TOTALLY RNA $^{\text{TM}}$ kit (Ambion, Austin, TX), separated on a 1% agarose gel, 35 transferred to HYBOND $^{\text{TM}}$ -N+ membrane (Amersham, Arlington

Heights, IL), a positively charged nylon membrane, and probed. A TNF-α probe consisted of the 502 bp EcoRI-HindIII fragment from BBG 56 (R&D Systems, Minneapolis, MN), a plasmid containing mouse TNF-α cDNA. A glyceraldehyde 3-phosphate dehydrogenase (G3PDH) probe consisted of the 1.06 kb HindIII fragment from pHcGAP (American Type Culture Collection, Manassas, VA), a plasmid containing human G3PDH cDNA. The fragments were purified from low-melting temperature agarose, as described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, 1989 and labeled with REDIVUE^{TM 32}P-dCTP (Amersham Pharmacia Biotech, Piscataway, NJ) and PRIME-A-GENE7 labeling kit (Promega, Madison, WI). mRNA was quantitated by a PhosphoImager (Molecular Dynamics, Sunnyvale, CA).

Secreted TNF- α protein levels were measured using a 15 mouse TNF- α ELISA kit (R&D Systems, Minneapolis, MN or Genzyme, Cambridge, MA).

TABLE 18 $\label{eq:table_problem} \mbox{Nucleotide Sequences of Mouse TNF-α Phosphorothicate} \\ \mbox{Oligodeoxynucleotides}$

20	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
	14846	GAGCTTCTGCTGGCTGGCTG	108	4351-4370	5'-UTR
	14847	CCTTGCTGTCCTCGCTGAGG	109	4371-4390	5'-UTR
	14848	TCATGGTGTCTTTTCTGGAG	110	4511-4530	AUG
25	14849	CTTTCTGTGCTCATGGTGTC	111	4521-4540	AUG
	14850	GCGGATCATGCTTTCTGTGC	112	4531-4550	coding
	14851	GGGAGGCCATTTGGGAACTT	113	5225-5244	junction
	14852	CGAATTTTGAGAAGATGATC	114	5457-5476	junction
	14853	CTCCTCCACTTGGTGGTTTG	115	5799-5818	junction
30	14854	CCTGAGATCTTATCCAGCCT	116	6540-6559	3'-UTR
	14855	CAATTACAGTCACGGCTCCC	117	6927-6946	3'-UTR

		,	,	,	,	
	15921	CCCTTCATTCTCAAGGCACA	118	5521-5540	junction	
	15922	CACCCTCAACCCGCCCCCC	119	5551~5570	intron	
	15923	AGAGCTCTGTCTTTTCTCAG	120	5581-5600	intron	
	15924	CACTGCTCTGACTCTCACGT	121	5611-5630	intron	
5	15925	ATGAGGTCCCGGGTGGCCCC	122	5651-5670	intron	
	15926	CACCCTCTGTCTTTCCACAT	123	5681-5700	intron	
	15927	CTCCACATCCTGAGCCTCAG	124	5731-5750	intron	
	15928	ATTGAGTCAGTGTCACCCTC	125	5761-5780	intron	
	15929	GCTGGCTCAGCCACTCCAGC	126	5821-5840	coding	
10	15930	TCTTTGAGATCCATGCCGTT	127	5861-5880	coding	
	15931	AACCCATCGGCTGGCACCAC	128	5891-5910	coding	
	15932	GTTTGAGCTCAGCCCCCTCA	129	6061-6080	coding	
	15933	CTCCTCCCAGGTATATGGGC	130	6091-6110	coding	
	15934	TGAGTTGGTCCCCCTTCTCC	131	6121-6140	coding	
15	15935	CAAAGTAGACCTGCCCGGAC	132	6181-6200	coding	
	15936	ACACCCATTCCCTTCACAGA	133	6211-6230	STOP	
	15937	CATAATCCCCTTTCTAAGTT	134	6321-6340	3'-UTR	
	15938	CACAGAGTTGGACTCTGAGC	135	6341-6360	3'-UTR	
	15939	CAGCATCTTGTGTTTCTGAG	136	6381-6400	3'-UTR	
20	15940	CACAGTCCAGGTCACTGTCC	137	6401-6420	3'-UTR	
,	15941	TGATGGTGGTGCATGAGAGG	138	6423-6442	3'-UTR	
	15942	GTGAATTCGGAAAGCCCATT	139	6451-6470	3'-UTR	
	15943	CCTGACCACTCTCCCTTTGC	140	6501-6520	3'-UTR	
	3082	TG <u>C</u> AT <u>CCCCC</u> AGG <u>CC</u> A <u>CC</u> AT	141	target co	ntrol	
25	13108	GCCGAGGTCCATGTCGTACGC	142	target co		

 $^{^1}$ All "C" residues are 5-methyl-cytosines except underlined "C" residues are unmodified cytosines; all linkages are phosphorothioate linkages.

Results are shown in Table 19. Oligonucleotides 14853 (SEQ ID NO. 115), 14854 (SEQ ID NO. 116), 14855 (SEQ

²Co-ordinates from Genbank Accession No. Y00467, locus name 30 "MMTNFAB", SEQ ID NO. 107.

ISPH-0767 - 73 - PATENT

ID NO. 117), 15921 (SEQ ID NO. 118), 15923 (SEQ ID NO. 120), 15924 (SEQ ID NO. 121), 15925 (SEQ ID NO. 122), 15926 (SEQ ID NO. 123), 15929 (SEQ ID NO. 126), 15930 (SEQ ID NO. 127), 15931 (SEQ ID NO. 128), 15932 (SEQ ID NO. 129), 15934 (SEQ ID NO. 131), 15935 (SEQ ID NO. 132), 15936 (SEQ ID NO. 133), 15937 (SEQ ID NO. 134), 15939 (SEQ ID NO. 136), 15940 (SEQ ID NO. 137), 15942 (SEQ ID NO. 139), and 15943 (SEQ ID NO. 140) gave better than 50% inhibition. Oligonucleotides 15931 (SEQ ID NO. 128), 15932 (SEQ ID NO. 129), 15934 (SEQ ID NO. 131), and 15943 (SEQ ID NO. 140) gave 75% inhibition or better.

15	ISIS No:	SEQ ID NO:	GENE TARGET REGION	% mRNA EXPRESSION	% mRNA INHIBITION
i	Induced			100%	0%
	3082	141	control	129%	
	13664	42	control	85%	15%
20	14846	108	5'-UTR	84%	16%
:	14847	109	5'-UTR	88%	12%
i	14848	110	AUG	60%	40%
	14849	111	AUG	75%	25%
	14850	112	coding	67%	33%
25	14851	113	junction	62%	38%
	14852	114	junction	69%	31%
	14853	115	junction	49%	51%
	14854	116	3'-UTR	31%	698
	14855	117	3'-UTR	39%	61%
30	15921	118	junction	42%	58%
,	15922	119	intron	64%	36%

ISPH-0767 -	- 74	-	PATENT
101 0707		•	7 2 2 7 7 7 7 4

	15923	120	intron	31%	69%
	15924	121	intron	29%	71%
	15925	122	intron	30%	70%
	15926	123	intron	29%	71%
5	15928	125	intron	59%	41%
	15929	126	coding	38%	62%
	15930	127	coding	43%	57%
	15931	128	coding	23%	77%
	15932	129	coding	25%	75%
10	15933	130	coding	52%	48%
	15934	131	coding	21%	79%
	15935	132	coding	39%	61%
	15936	133	STOP	35%	65%
	15937	134	3'-UTR	45%	55%
15	15938	135	3'-UTR	76%	24%
	15939	136	3'-UTR	33%	67%
	15940	137	3'-UTR	38%	62%
	15941	138	3'-UTR	54%	46%
	15942	139	3'-UTR	42%	58%
20	15943	140	3'-UTR	25%	75%

EXAMPLE 9: Dose response of antisense phosphorothiaote oligodeoxynucleotide effects on mouse TNF- α mRNA levels in P388D1 cells

Four of the more active oligonucleotides from the 25 initial screen were chosen for dose response assays. These include oligonucleotides 15924 (SEQ ID NO. 121), 15931 (SEQ ID NO. 128), 15934 (SEQ ID NO. 131) and 15943 (SEQ ID NO. 140). P388D1 cells were grown, treated and processed as described in Example 8. LIPOFECTIN7 was added at a ratio of 30 3 µg/ml per 100 nM of oligonucleotide. The control included LIPOFECTIN7 at a concentration of 6 µg/ml. Results are shown

in Table 20. Each oligonucleotide tested showed a dose response effect with maximal inhibition about 70% or greater and IC_{50} values less than 50 nM.

TABLE 20

Dose Response of LPS-Induced P388D1 Cells to TNF-α
Antisense Phosphorothioate Oligodeoxynucleotides (ASOs)

	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	% mRNA Express- ion	% mRNA Inhibit- ion
	induced				100%	
	13108	142	control	25 nM	68%	32%
10	11	f1	11	50 nM	71%	29%
	"	11	ŦŦ .	100 nM	64%	36%
	**	11	77	200 nM	75%	25%
	15924	121	intron	25 nM	63%	37%
	"	11	11	50 nM	49%	51%
15	71	11	***	100 nM	36%	64%
	11	**	11	200 nM	31%	69%
	15931	128	coding	25 nM	42%	58%
	11	11	***	50 nM	30%	70%
	11	11	**	100 nM	17%	83%
20	11	11	***	200 nM	16%	84%
	15934	131	coding	25 nM	37%	63%
	11	11	**	50 nM	26%	74%
	11	11	**	100 nM	13%	87%
	11	11	71	200 nM	13%	87%
25	15943	140	3'-UTR	25 nM	38%	62%
	11	11	11	50 nM	38%	62%
	11	17	TF	100 nM	16%	84%
	17	tt	**	200 nM	16%	84%

ISPH-0767 - 76 - PATENT

EXAMPLE 10: Design and Testing of 2'-O-methoxyethyl (deoxy gapped) TNF- α Antisense Oligonucleotides on TNF- α Levels in P388D1 Cells

Oligonucleotides having SEQ ID NO: 128, SEQ ID NO: 131, and SEQ ID NO: 140 were synthesized as uniformly phosphorothioate oligodeoxynucleotides or mixed phosphorothioate/phosphodiester chimeric oligonucleotides having variable regions of 2'-0-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and the oligonucleotide chemistries are shown in Table 21. All 2'-MOE cytosines were 5-methyl-cytosines. Oligonucleotides were screened as described in Example 8. Results are shown in Table 22. All the oligonucleotides tested, except oligonucleotide 16817 (SEQ ID NO. 140) showed 44% or greater inhibition of TNF-α mRNA expression. Oligonucleotides 16805 (SEQ ID NO: 131), 16813 (SEQ ID NO: 140), and 16814 (SEQ ID NO: 140) showed greater than 70%

inhibition.

PATENT

Nucleotide Sequences of Mouse 2'-0-methoxyethyl (deoxy gapped) TNF- α Oligonucleotides

TABLE 21

	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
5	15931	AsAsCsCsAsTsCsGsGsCsTsGsGsCsAsCsCsAsC	128	5891-5910	coding
	16797	AoAoCoCsCsAsTsCsGsGsCsTsGsGsCsAsCoCoAoC	=	5891-5910	coding
	16798	ASASCSCSASTSCSGSGSCSTSGSGSCSASCSASC	=	5891-5910	coding
	16799	AOAOCOCOCSASTSCSGSGSCSAOCOCOCOAOC	=	5891-5910	coding
	16800	ASASCSCSASTSCSGSGSCSTSGSGSCSASCSCSASC	11	5891-5910	coding
10	16801	AoAoCoCoCoAoToCoGsGsCsTsGsGsCsAsCsCsAsC	=	5891-5910	coding
	16802	ASASCSCSASTSCSGSCSTSGSGSCSASCSCSASC	=	5891-5910	coding
	16803	ASASCSCSASTSCSGSGSCSTOGOGOCOAOCOCOAOC	=	5891-5910	coding
	16804	ASASCSCSASTSCSGSGSCSTSGSGSCSASCSASC	=	5891-5910	coding
	15934	TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC	131	6121-6140	coding
15	16805	ToGoAoGSTSTSGSGSTSCSCSCSTSTSCOTOCOC	=	6121-6140	coding
	16806	TsGsAsGsTsTsGsGsTsCsCsCsCsTsTsCsTsCsC	=	6121-6140	coding
	16807	ToGOAOGOTSTSGSGSTSCSCSCSCSTSTOCOTOCOC	=	6121-6140	coding
	16808	TSGSASGSTSTSGSGSTSCSCSCSTSTSCSTSCSC	=	6121-6140	coding
	16809	ToGOAOGOTOTOGOGOTSCSCSCSCSTSTSCSCSC	=	6121-6140	coding

•					
	16810	TSGSASGSTSTSGSGSTSCSCSCSTSTSCSC	"	6121-6140	coding
	16811	TSGSASGSTSTSGSGSTSCSCOCOCOTOTOCOTOCOC	1	6121-6140	coding
	16812	TSGSASGSTSTSGSGSTSCSCSCSCSTSTSCSTSCSC	11	6121-6140	coding
	15943	CSCSTSGSASCSCSTSCSTSCSCSCSTSTSGSC	140	6501-6520	3'-UTR
S	16813	CoCoToGsAsCsCsTsCsTsCsCsCsTsToToGoC	т.	6501-6520	3'-UTR
	16814	CSCSTSGSASCSCSTSCSTSCSTSTSGSC	1	6501-6520	3'-UTR
	16815	COCOTOGOASCSCSTSCSTSCSCSCSTOTOGOC	11	6501-6520	3'-UTR
	16816	CSCSTSGSASCSCSTSCSTSCSCSCSTSTSGSC	1	6501-6520	3'-UTR
	16817	COCOTOGOAOCOCOTSCSTSCSCSCSTSTSGSC	11	6501-6520	3'-UTR
10	16818	CSCSTSGSASCSCSTSCSTSCSCSCSTSTSGSC	1	6501-6520	3'-UTR
	16819	CSCSTSGSASCSCSTSCSTOCOCOCOTOTOGOC	=	6501-6520	3'-UTR
	16820	CSCSTSGSASCSCSTSCSTSCSCSCSTSTSTSGSC	-	6501-6520	3'-UTR

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines are 5-methyl-cytidines; "s" linkages are phosphorothioate linkages, "o" linkages are phosphodiester linkages. 15

²Co-ordinates from Genbank Accession No. Y00467, locus name "MMTNFAB", SEQ ID NO. 107.

TABLE 22 Inhibition of mouse TNF- α mRNA expression in P388D1 Cells by 2'-0-methoxyethyl (deoxy gapped) Oligonucleotides

5	ISIS No:	SEQ ID NO:	GENE TARGET REGION	% mRNA EXPRESSION	% mRNA INHIBITION
	induced			100%	0%
	13108	142	control	87%	13%
	15934	131	coding	28%	72%
	16797	128	coding	33%	67%
10	16798	**	coding	34%	66%
	16799	"	coding	56%	44%
	16800	"	coding	35%	65%
	16801	11	coding	34%	66%
	16802	11	coding	38%	62%
15	16803	"	coding	35%	65%
	16804	11	coding	39%	61%
	16805	131	coding	29%	71%
	16806	**	coding	31%	69%
	16807	11	coding	46%	54%
20	16808	11	coding	43%	57%
	16809	11	coding	33%	67%
	16810	11	coding	37%	63%
	16811	11	coding	40%	60%
	16812	"	coding	31%	69%
25	16813	140	3'-UTR	28%	72%
	16814	"	3'-UTR	28%	72%
	16815	11	3'-UTR	46%	54%
	16816	11	3'-UTR	49%	51%
	16817	"	3'-UTR	172%	
30	16818	11	3'-UTR	34%	66%

16819	71	3'-UTR	51%	49%
16820	11	3'-UTR	448	56%

EXAMPLE 11: Effect of TNF- α Antisense Oligonucleotides in a Murine Model for Non-Insulin-dependent Diabetes Mellitus

- The db/db mouse model, a standard model for noninsulin-dependent diabetes mellitus (NIDDM; Hotamisligil, G.S., et al., Science, 1993, 259, 87-90), was used to assess the activity of TNF- α antisense oligonucleotides on blood glucose levels and TNF- α mRNA 10 levels in whole mice. These mice have elevated blood glucose levels and TNF- α mRNA levels compared to wild type mice. Female db/db mice and wild-type littermates were purchased from Jackson Laboratories (Bar Harbor, ME). effect on oligonucleotide 15931 (SEQ ID NO. 128) on blood 15 glucose levels was determined. For determination of TNF- α mRNA levels, oligonucleotide 15931 (SEQ ID NO. 128), a uniformly modified phosphorothioate oligodeoxynucleotide, was compared to oligonucleotide 25302 (SEQ ID NO. 128), a mixed phosphorothioate/phosphodiester chimeric 20 oligonucleotide having regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides. The sequences and
- MOE) nucleotides and deoxynucleotides. The sequences and chemistries are shown in Table 23. Oligonucleotide 18154 (SEQ ID NO. 143) is an antisense mixed phosphorothioate/phosphodiester chimeric oligonucleotide, having regions of 2'-O-methoxyethyl (2'-MOE) nucleotides and deoxynucleotides, targeted to the human vascular cell adhesion molecule-1 (VCAM-1) and was used as an unrelated

target control.

ISPH-0767 - 81 - PATENT

ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
15931	AACCCATCGGCTGGCACCAC	128	5891-5910	coding
25302	AACCC ATCGGCTGGC ACCAC	128	5891-5910	coding
18154	TCAAGCAGTGCCACCGATCC	143	target co	ontrol

¹ All 2'-methoxyethyl cytosines and 2'-deoxy cytosines
10 residues are 5-methyl-cytosines; all linkages are
phosphorothioate linkages.

5

db/db mice, six to ten weeks old, were dosed

intraperitoneally with oligonucleotide every other day for

weeks at 10 mg/kg. The mice were fasted for seven hours

prior to administration of the oligonucleotide. The mice

were bled via retro orbital sinus every other day, and

glucose measurements were performed on the blood. Results

are shown in Table 24. Oligonucleotide 15931 (SEQ ID NO.

128) was able to reduce blood glucose levels in db/db mice

to levels comparable with wild type mice. Food intake

between wild type mice, treated and untreated, did not

differ. Food intake between db/db mice, treated and

untreated, although higher than wild type mice, did not

differ significantly.

Samples of the fat (adipose) tissue from the inguinal fat pads were taken for RNA extraction. RNA was extracted according to Current Protocols in Molecular Biology, 1997,

30 Ausubel, F., et al. ed., John Wiley & Sons. RNA was purified using the RNA clean up procedure of the RNEASY7 Mini kit (Qiagen, Valencia, CA). TNF-α mRNA levels were measured using the RIBOQUANT7 kit (PharMingen, San Diego, CA) with 15 μg of RNA per lane. The probe used was from the mCK-3b Multi-Probe Template set (PharMingen, San Diego,

² Co-ordinates from Genbank Accession No. Y00467, locus name "MMTNFAB", SEQ ID NO. 107.

CA) labeled with $[\alpha^{32}P]$ UTP (Amersham Pharmacia Biotech, Piscataway, NJ). Results are shown in Table 25. Both oligonucleotide 15931 (SEQ ID NO. 128) and 25302 (SEQ ID NO. 128) were able to reduce TNF- α levels in fat, with 25302 (SEQ ID NO. 128) reducing TNF- α to nearly wild-type levels.

TABLE 24

Level of Blood Glucose in Normal and db/db Mice After.

10

Treatment with TNF- α Antisense Oligonucleotides

Mouse Strain	isis #	SEQ ID NO:	ASO Gene Target	Time (days)	blood glucose (mg/dL)
wild type				1	140
"	15931	128	coding	11	138
db/db				1	260
n	15931	128	coding	17	254
wild type				9	175
††	15931	128	coding	11	163
db/db				9	252
11	15931	128	coding	11	128

TABLE 25 Level of TNF- α mRNA in Fat of db/db Mice After Treatment with TNF- α Antisense Oligonucleotides

ISIS No:	SEQ ID NO:	GENE TARGET REGION	% mRNA EXPRESSION
wt saline			100%
db/db saline			362%
18154	142	control	130%
15931	128	coding	210%
25302	128	coding	417%

25

30

15

20

ISPH-0767 - 83 - PATENT

EXAMPLE 12: Effect of TNF- α Antisense Oligonucleotides in a Murine Model for Rheumatoid Arthritis

Collagen-induced arthritis (CIA) was used as a murine model for arthritis (Mussener, A., et al., Clin. Exp. Immunol., 1997, 107, 485-493). Female DBA/1LacJ mice (Jackson Laboratories, Bar Harbor, ME) between the ages of 6 and 9 weeks were used to assess the activity of TNF- α antisense oligonucleotides. In all studies, 10 mice were used per treatment group.

On day 0, the mice were immunized at the base of the 10 tail with 100 µg of bovine type II collagen which was emulsified in Complete Freund's Adjuvant (CFA). On day 7, a second booster dose of collagen was administered by the same route. On day 14, the mice were injected subcutaneously with 100 Oligonucleotide was administered цq of LPS. 15 intraperitoneally (bolus) three times per week, starting on day 0, for the duration of the 7 week study at the indicated doses. The anti-TNF- α mAb (MM350D, Endogen, Woburn, MA) was administered intraperitoneally at 2 mg/kg once per week, starting on day 0. This antibody was formulated free of 20 preservatives and carrier, and had an endotoxin level of 9.06 EU/mg.

Weights were recorded weekly. Mice were inspected daily for the onset of CIA, characterized by erythema and edema. Upon the onset of the disease, an assessment chart for each 25 animal was started. Paw widths are rear ankle widths of affected and unaffected joints were measured three times a week using a constant tension caliper. Limbs were clinically evaluated and graded on a scale from 0-4, where o=normal, 1=one digit swollen, 2=inflammation present in more than one digit, 3=joint distortion with or without inflammation, and 4=ankylosis as detected by joint manipulation. The progression of all measurements recorded to day 50. On day 50, animals were euthanized by cervical dislocation. All paws were removed and fixed in 10% neutral buffered formalin, from 35 which histopathology slides were prepared.

ISPH-0767 - 84 - PATENT

Arthritis was classified into four stages based on histological evaluation of the degree of inflammation, cartilage damage, pannus formation, bone erosion, osteolysis, fibrosis and ankylosis. Stage I is described by inflammatory 5 cell infiltration in the tissues surrounding the joint and/or superficial layers of the synovium. Stage II is described by pannus formation with damage to the superficial layers of the cartilage. Stage III is described by subchondral bone erosion with some degree of osteoloysis. Stage IV is described by 10 severe destruction of cartilage and bone with areas of fibrosis and/or bony ankylosis. The clinical data was analyzed for differences in the incidence of disease, the onset of disease and the severity of the disease. Descriptive statistics and an analysis of variance (ANOVA) were performed. 15 If a statistically significant difference was detected, a Dunnett's test was performed.

Two independent studies, which differed in dose range, showed that mice treated with ISIS 25302 had a reduced incidence of arthritis (Figures 1A-1B). The two dose ranges 20 were 0.03 to 3.0 mg/kg (low range, Fig. 1A), and 2.5 to 20 mg/kg (high range, Fig. 1B). The lowest incidence of disease was observed in mice treated at doses of 3.0 (22%) and 2.5 mg/kg (38%) of ISIS 25302 respectively, as compared to the vehicle control incidence of 88% in both studies. No further 25 reduction in the incidence of disease occurred in mice treated at higher doses. The onset of disease was delayed in groups treated with ISIS 25302, but varied between experiments (Table The severity of the disease and the percent affected paws were also reduced by treatment with ISIS 25302. Best effects 30 on these clinical outcomes were observed at 3.0 mg/kg in the low dose range study, and 2.5 and 20 mg/kg in the high dose range study.

Treatment of mice with the eight mismatch control, ISIS 30782 (5'CACCAAGCTGCGGTCCCCAA 3'; SEQ ID NO: 502), yielded 35 variable results between the low dose (Table 26A) and high

dose (Table 26B) range studies. In the low dose range study, the one group treated with the control oligonucleotide, at a dose of 3.0 mg/kg, showed comparable improvements in the clinical outcome in comparison to the group treated with the anti-TNF- α oligonucleotide of equivalent dose. In contrast, the eight mismatch control oligonucleotide had minimal effects on the clinical outcome in the high dose range study, at doses of 2.5, 5.0, and 10 mg/kg; but did show effects in the clinic at the highest dose of 20 mg/kg.

TABLE 26A

Treatment	Schedule Dose	Dose	0/0	Day of	Severity	olo
		(mg/kg)	incidence onset	onset	("SEM)	affected
						paws
Vehicle	3x/wk	ſ	88	18.1"0.7	7.1"2.1	59
ISIS 25302 3x/wk	3x/wk	0.03	70	18.6"1.1	3.1"1.2	28
ISIS 25302 3x/wk	3x/wk	0.1	70	17.6"0.2	3.5"1.5	30
ISIS 25302 3x/wk	3x/wk	0.3	44	21.5"4.5	2.9"1.4	25
ISIS 25302 3x/wk	3x/wk	1.0	67	21.0"3.6	3.4"1.0	36
ISIS 25302 3x/wk	3x/wk	3.0	22	21.5"3.5	1.2"0.8	14
TNF mAb	1x/wk	2.0	30	28.0"1.5	1.3"0.7	8.3
8MM ctrl	3×/wk	3.0	_22	17.5"0.5	1.0.0.7	8.3

TABLE 26B

5 Vehicle 3x/wk - 88 17.6"0.4 6.0"1.6 53 19 paws ISIS 25302 3x/wk 2.5 38 28.3"10.8 2.1"1.5 19 15IS 25302 3x/wk 10 44 17.0"0.4 4.0"1.7 33 15IS 25302 3x/wk 2.6 50 50 23.2"5.7 4.5"1.7 40 15IS 25302 3x/wk 2.6 50 56 23.8"5.1 2.2"1.4 19 15IS 25302 3x/wk 2.5 71 17.0"0.4 4.0"1.7 33 18 15IS 25302 3x/wk 2.5 71 17.0"0.4 6.3"2.2 57 8MM ctrl 3x/wk 5.0 86 20.7"3.1 6.6"2.1 57 8MM ctrl 3x/wk 10 80 18.0"0.6 6.4"1.5 55 8MM ctrl 3x/wk 20 44 19.5"1.6 17"1.3 17		Treatment	Schedule D o s e	Dose	0/0	Day of	Severity %	0/0
3x/wk - 88 17.6"0.4 6.0"1.6 3x/wk 2.5 38 28.3"10.8 2.1"1.5 3x/wk 10 44 17.0"0.4 4.5"1.7 3x/wk 20 56 23.2"5.7 4.5"1.7 3x/wk 2.0 56 23.8"5.1 2.2"1.4 3x/wk 5.0 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3				(mg/kg)	incidence	Onset	("SEM)	affected
3x/wk - 88 17.6"0.4 6.0"1.6 3x/wk 2.5 38 28.3"10.8 2.1"1.5 3x/wk 10 44 17.0"0.4 4.0"1.7 3x/wk 20 56 23.8"5.1 2.2"1.4 3x/wk 2.5 71 17.4"0.7 6.3"2.2 3x/wk 10 86 20.7"3.1 6.6"2.1 3x/wk 20 44 19.5"1.6 1.7"1.3								paws
3x/wk 2.5 38 28.3"10.8 2.1"1.5 3x/wk 5.0 50 23.2"5.7 4.5"1.7 3x/wk 10 44 17.0"0.4 4.0"1.7 3x/wk 2.0 56 23.8"5.1 2.2"1.4 3x/wk 5.0 86 20.7"3.1 6.8"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3	5	Vehicle	3x/wk	ı	88	17.6"0.4	6.0"1.6	53
3x/wk 5.0 50 23.2"5.7 4.5"1.7 3x/wk 10 44 17.0"0.4 4.0"1.7 3x/wk 20 56 23.8"5.1 2.2"1.4 3x/wk 5.0 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3		ISIS 25302	3x/wk	2.5	38	28.3"10.8	2.1"1.5	19
3x/wk 10 44 17.0"0.4 4.0"1.7 3x/wk 20 56 23.8"5.1 2.2"1.4 3x/wk 2.5 71 17.4"0.7 6.3"2.2 3x/wk 10 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3		ISIS 25302	3x/wk	5.0	50	23.2"5.7	4.5"1.7	40
3x/wk 20 56 23.8"5.1 2.2"1.4 3x/wk 2.5 71 17.4"0.7 6.3"2.2 3x/wk 5.0 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3		ISIS 25302	3x/wk	10	44	17.0"0.4	4.0"1.7	33
3x/wk 2.5 71 17.4"0.7 6.3"2.2 3x/wk 5.0 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3		ISIS 25302	3x/wk	20	56	23.8"5.1	2.2"1.4	19
3x/wk 5.0 86 20.7"3.1 6.6"2.1 3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3	10		3x/wk	2.5	71	17.4"0.7	6.3"2.2	57
3x/wk 10 80 18.0"0.6 6.4"1.5 3x/wk 20 44 19.5"1.6 1.7"1.3		8MM ctrl	3x/wk	5.0	98	20.7"3.1	6.6"2.1	57
3x/wk 20 44		8MM ctrl	3x/wk	10	08	18.0"0.6	6.4"1.5	55
		8MM ctrl	3x/wk	20	44	19.5"1.6	1.7"1.3	17

ISPH-0767 - 88 - PATENT

In both tables, the incidence is the number of mice with at least one affected paw/total number of mice per group. Severity is the total clinical score/total number of mice in the group. Percent affected paws=(number of affected paws at termination/total number of paws in group) x 100. 8MM ctrl=eight mismatch control (ISIS 30782).

Efficacy of ISIS 25302 (3 mg/kg, three times per week) was found to be comparable to that of an anti-TNF- α mAb (2 mg/kg, once per week) as described in Table 26A. The disease incidence 10 in mice treated with ISIS 25302 was 22% versus 30% for the group treated with the anti-TNF- α mAb. Disease severity and percent affected paws were also reduced to a similar degree in the 3 mg/kg ISIS 25302 and anti-TNF- α mAb treated groups.

Mice treated with the anti-mTNF- α oligonucleotide, ISIS 25302, showed an improvement in the disease outcome when treated three times per week starting on the initial day of collageninduction. Reduction of symptoms by the ISIS 25302 was dose dependent, and showed equivalent effects when compared to mice treated with an anti-TNF- α monoclonal antibody once per week from the time of collagen-induction. Histological evaluation of the joints showed a reduction in the incidence and severity of arthritic lesions in mice treated with ISIS 25302, but to a lesser extent than those mice treated with the anti-TNF- α mAb.

The efficacy of ISIS 25302 compares favorably to other anti25 TNF biological agents which have been evaluated in the
"classical" CIA model. For instance, treatment of mice with the
recombinant human TNF receptor FC fusion protein prior to onset
of disease resulted in a 28% incidence of disease as compared to
86% incidence in the saline control treated animals (Wooley, J.
30 Immunol. 151:6602-6607, 1993). In addition, preventative
treatment by an anti-TNF-α antibody in the "classical" model
showed 40% reduction in paw swelling in the clinic, as well as
reduction in histopathological severity (Williams, Proc. Natl.
Acad. Sci. U.S.A. 89:9784-9788, 1992).

ISPH-0767 - 89 - PATENT

A marked difference was observed between the two independent studies of ISIS 25302 in this model of CIA, with respect to responsiveness of the animals to oligonucleotide treatment. Mice were more responsive to oligonucleotide treatment in the low dose 5 range study. This responsiveness was reflected in the histological results, where all oligonucleotide treated groups showed a notable reduction in paw incidence in comparison to the vehicle group. In comparison to the high dose study, mice in the low dose study overall displayed a lower percentage of paws with arthritic changes at the histological level.

In conclusion, evaluation of ISIS 25302 in the accelerated CIA model has shown that an anti-TNF- α oligonucleotide provides an alternative approach to treatment of related human disease indications. Potential advantages of the antisense oligonucleotide therapeutic approach, over the current antiarthritic (biological) agents, include ease of administration and a lower potential for adverse effects from long term usage.

EXAMPLE 13: Effect of TNF- α Antisense Oligonucleotides in a 20 Murine Model for Contact Sensitivity

Contact sensitivity is a type of immune response resulting from contact of the surface of the skin with a sensitizing chemical. A murine model for contact sensitivity is widely used to develop therapies for chronic inflammation, autoimmune disorder, and organ transplant rejection (Goebeler, M., et al., Int Arch. Allergy Appl. Immunol., 1990, 93, 294-299). One example of such a disease is atopic dermatitis. Female Balb/c mice between the ages of 8 and 12 weeks are used to assess the activity of TNF- α antisense oligonucleotides in a contact sensitivity model.

Balb/c mice receive injections of oligonucleotide drug in saline via i.v. injection into the tail vein. The abdomen of the mice is shaved using an Oster hair clipper. The animals are anesthetized using isoflurane, and 25 µl of 0.2% 2,4-35 dinitrofluorobenzene (DNFB) in 4:1 acetone:olive oil is applied

ISPH-0767 - 90 - PATENT

to the shaved abdomen two days in a row. After five days, 10 ml of 0.2% DNFB in the same vehicle is applied to the right ear. After each exposure, the mouse is suspended in air for two minutes to allow the DNFB to absorb into the skin. 24 and 48 hours after application of DNFB to the ear, the ear thickness is measured using a micrometer. Inflammation (dermatitis) is indicated by a ranked thickening of the ear. Thickness of the treated ear is compared to untreated (contralateral) ear thickness.

10

EXAMPLE 14: Effect of TNF- α Antisense Oligonucleotides in an IL10(-/-) Murine Model for Colitis

The effects of antisense oligonucleotide-inhibition of TNF- α was studied in the IL-10^{-/-} mouse model of colitis. IL10 deficient 15 mice IL-10^{-/-} display some of the features that are observed in Crohn's disease such as discontinuous lesions throughout the gastrointestinal tract and have a cytokine profile that is characteristic of a Th1 immune response. Unlike Crohn's disease, however, IL-10^{-/-} mice show a marked crypt hyperplasia and absence 20 of fissures and fistulas. In addition, IL-10^{-/-} mice have elevated levels of TNF- α expression.

Animals were treated in a prophylactic manner with one of four doses of ISIS 25302 or ISIS. Dosing extended from two weeks of age, before the development of colitis, to eight weeks of age, 25 a time at which IL-10-/- mice typically exhibit advanced stages of colitis. Colitis was assessed by histological evaluation at the conclusion of the study, and the basal and induced secretion of IFN- γ and TNF- α from colon organ culture supernatants was also measured at that time.

Homozygous Interleukin-10 gene-deficient mice, generated on a 129 Sv/Ev background, and 129 Sv/Ev controls were housed under specific pathogen-free conditions. Mice were housed in micro-isolator cages with tight-fitting lids containing spun-polyester fiber filters. Mice were injected every other day with either 35 ISIS 25302 or ISIS 30782 (the 8 mismatch control) at 0.01, 0.1,

1.0, and 10 mg/kg from 2-8 weeks of age via subcutaneous injection.

Animals were sacrificed using sodium pentobarbitol (160 mg/kg). Whole colons were harvested, cut lengthwise, and fixed 5 in 10% phosphate-buffered formalin, paraffin-embedded, sectioned at 4 µm, and stained with haematoxylin and eosin for light microscopic examination. The slides were reviewed independently by a pathologist in a blinded fashion and assigned a histological score for intestinal inflammation (Table 27). The total 10 histological score represents the numerical sum of the four scoring criteria: mucosal ulceration, epithelial hyperplasia, lamina propria mononuclear cell infiltration, and lamina propria neutrophilic infiltration.

15 **TABLE 27**

20

Score	Mucosal	Epithelial	LP mononuclear	LP
	ulceration	hyperplasia	infiltration	neutrophil
				infiltrate
0	Normal	Normal	Normal	Normal
1	Surface	Mild	Slight increase	Slight
	inflammation			increase
2	Erosions	Moderate	Marked increase	Marked
				increase
3	Ulcerations	Pseudopolyps		

Colonic organ cultures were prepared from IL-10 genedeficient mice treated for six weeks. Due to the patchy nature
25 of colitis in IL-10 gene-deficient mice, whole colons were
removed, cut lengthwise, flushed with PBS, and resuspended in
tissue culture plates (Falcon 3046; Becton Dickinson Labware,
Lincoln Park, NJ) in RPMI-1640 medium supplemented with 10% fetal
calf serum, 50 mM 2-mercaptoethanol, penicillin (100 U/mL), and
30 streptomycin (100 U/mL). Cultures were incubated at 37° C in 5%
CO₂. After 24 hours in the absence (basal) or presence of 10 μg/
mL LPS (E. coli, 0111:B4, Sigma), supernatants were harvested and
stored at -70° C for analysis of cytokine levels. TNF-α and IFNγ levels in cell supernatants were measured using ELISA kits
35 purchased from Biosource Cytoscreen (Montreal, Quebec).

ISPH-0767 - 92 - PATENT

Differences between treatment groups were evaluated by analysis of variance (ANOVA). Single arm analysis was performed by the Dunnett's test (SAS Institute Inc., Cary NC).

Over the 6-week treatment period, all treatment groups of 5 IL-10 deficient mice gained weight at a similar rate (data not shown). At 8 weeks of age, $IL-10^{-/-}$ mice displayed a patchy distribution of transmural acute and chronic inflammation, extensive mucosal ulceration, and epithelial hyperplasia. 28 shows the histological scores for colon tissue from IL-10-/-10 mice treated with saline (vehicle), ISIS 25302 or ISIS 30782 (8MM ctrl) from 2 to 8 weeks of age at the indicated doses (n=6). "total" histological score is the summation of the scores determined for each of the four histological parameters: mucosal ulceration, epithelial hyperplasia, lamina propia (LP) 15 mononuclear cell infiltration, and lamina propria neutrophilic infiltration. Mice receiving the 0.1 mg/kg dose of the anti-TNFα oligonucleotide, ISIS 25302, demonstrated a marked improvement mucosal architecture, which was their statistically significant (p < 0.05) in comparison to the Vehicle (saline) 20 group (Figure 2). No other group showed a significant histological difference in comparison to Vehicle.

TABLE 28

	Treatment	Score	Mucosal	Mucosal	Mononuclear	Neutrophil	Total
			ulceration	rplasia	infiltrate	infiltrate	
5	Saline	Mean	1.00		2.00	1.83	6.67
		Std.	68.0	0.41	00.0	0.41	1.21
		Dev.					
Ь	0.01	Mean	0.50	1.50	1.50	1.50	5.00
	mg/kg						
L	ISIS	Std.	0.55	0.55	0.55	0.55	0.63
10	25302	Dev.					
L_	0.1 mg/kg	Mean	0.50	0.83	1.33	1.00	3.67
Ļ	SISI	Std.	0.55	0.41	0.52	0.63	0.52
	25302	Dev.					
	1 mg/kg	Mean	0.67	2.00	1.67	1.67	6.00
15	SISI	Std.	1.21	0.89	0.52	0.52	2.61
	25302	Dev.					
<u> </u>	10 mg/kg	Mean	1.17	1.83	1.83	1.17	00.9
Ь	ISIS	Std.	1.47	86.0	0.41	0.75	2.83
	25302	Dev.					
20	0.01	Mean	0.83	1.83	1.33	1.67	5.67
	mg/kg						
	8MM ctrl	Std.	1.17	0.75	0.52	0.52	2.58
		Dev.					
L	0.1 mg/kg	Mean	1.00	1.67	1.33	1.17	5.17

- 94 -
ı
21
7
0
ISPH-
IS

PATENT

	•					
8MM ctrl S t		d . 0.63	0.52	0.52	0.52	0.63
	Dev.			:		
1 mg/kg	Mean	19.0	1.67	1.33	1.33	5.00
8MM ctrl	Std.				0.52	0.63
	Dev.					
10 mg/kg	Mean	0.83	2.00	1.33	1.50	5.67
8 MM ctrl Std					0.55	2.25
	Dev.					

5

Reduction of secreted TNF- α protein levels was observed in colon tissue isolated from mice treated every other day with 0.1 mg/kg of ISIS 25302 under both basal (Figure 3A) and LPS-induced 5 (Figure 3B) conditions. IFN- γ protein secretion from the isolated colon tissue was also reduced in the 0.1 mg/kg ISIS 25302 treated group relative to the saline treated group under both culture conditions (basal, Figure 4A; LPS-induced, Figure 4B). These effects were sequence specific, as the eight base mismatch oligonucleotide at the same dose of 0.1 mg/kg had no effect on basal or LPS-induced TNF- α protein secretion, or LPS-induced IFN- γ secretion.

Although treatment of $\rm IL-10^{-/-}$ mice with an antisense oligonucleotide targeted to TNF- α had no effect on the rate at 15 which these animals gained weight, anti-TNF- α oligonucleotide treatment did have effects on several key disease parameters. Most importantly, antisense treatment at a relatively low dose (0.1 mg/kg) significantly reduced histological signs of colitis in the mice. This included reductions in mucosal ulceration, 20 mucosal hyperplasia, and infiltrations of mononuclear cells and neutrophils into the lamina propria of the colon. These effects mismatch eight-base the with seen were oligonucleotide, ISIS 30782, which indicated that the effect was sequence specific.

The histological improvement is most likely due to specific reduction in TNF-α protein levels with antisense treatment. Both the basal and LPS-induced secretion of TNF-α from colons of mice treated with 0.1 mg/kg of ISIS 25302 were reduced, while the control oligonucleotide had no effect. A decrease in basal and induced IFN-γ levels also occurred in the mice treated with 0.1 mg/kg ISIS 25302. Interruption of the proinflammatory cytokine cascade by inhibition of TNF-α expression may have abrogated the recruitment and activation of CD4+ T cells that produce IFN-γ. TNF-α is known to activate expression of key inflammatory intermediates which promote this process, including expression

of cell adhesion molecules, chemokines, and other proinflammatory cytokines (Zhang et al. "Tumor necrosis factor" in *The Cytokine Handbook*, 3rd ed., Academic Press Ltd., pp. 517-547; van Deventer, *Gut* 40:443-448, 1997).

A biphasic response to the anti-TNF-α oligonucleotide was observed in this genetically engineered mouse model of colitis, where optimal efficacy of the anti-TNF-α oligonucleotide occurred at the mid range dose of 0.1 mg/kg. Treatment at the higher doses of 1.0 and 10 mg/kg resulted in complete loss of efficacy, as observed histologically and by cytokine expression levels. The basis of this response may lie in the undefined roles of the proand anti-inflammatory cytokines in the absence of IL-10; and/or the pharmacokinetics and mechanism of action of the oligonucleotide.

In conclusion, ISIS 25302 reduced TNF- α expression levels in a dose and sequence-dependent manner in the IL-10 deficient mice. Specific reduction of this proinflammatory molecule diminished the pathological features associated with the intestinal injury and inflammation which occurs in the absence of IL-10 in these mice. The results from this mouse model of colitis indicate that antisense oligonucleotides to TNF- α represent a new treatment of Crohn's disease in man.

EXAMPLE 15: Effect of TNF- α Antisense Oligonucleotides in a DSS- induced Murine Model for Colitis

The pathological features of DSS-induced colitis in mice are similar in many respects to human ulcerative colitis (UC) (Table 29). This model is characterized by ulceration, epithelial damage, mucosal or transmural inflammatory infiltrate, and lymphoid hyperplasia of the colon. These effects are attributed to inappropriate macrophage function, alterations of the lumina bacteria, and the direct toxic effects of DSS on the colonic epithelium (Okayasu, Gastroenterol. 98:694-702, 1990). Both acute and chronic colitis may be studied in this model, by alteration of the DSS administration schedule (Okayasu, 1990,

ISPH-0767 - 97 -PATENT

supra.; Cooper et al., Lab. Invest. 69:238-249, 1993). efficacy of an anti-TNF- α mAb has been shown in both the acute and chronic model of DSS-induced colitis (Murthy et al., Aliment. Pharmacol. Ther. 13:251-260, 1999; Kojougaroff et al., Clin. Exp. 5 Immunol. 107:353-358, 1997), as well as efficacy of an antisense oligonucleotide to ICAM-1 in the acute model of DSS-induced colitis (Bennett et al., J. Pharmacol. Exp. Ther. 280:988-1000, 1997).

10

TABLE 29

	Feature	Crohn's	Ulcerative	DSS-induced
			colitis	colitis
	Location	GI tract	Colon	Colon
15	Depth	Transmural	Mucosal	Mucosal
	Extent	Discontinuous	Continuous	Continuous
	Symptoms	Non-bloody	Bloody	BD, no
		diarrhea,	diarrhea, no	fistula
		fistula	fistula	
	Granuloma	Yes	No	No
	Genetic	Yes	Yes	Yes
20	Microbial	Yes	Yes	Yes
	Immunological	Yes	Yes	Yes
	Inflammation	Transmural	Epithelium	Epithelium
	TNF-α	Elevated	Elevated	Elevated

ISIS 25302 was evaluated for efficacy in both the acute and 25 chronic models of DSS-induced colitis. ISIS 25302 is similar in design to the human anti-TNF- α oligonucleotide, ISIS 104838, with respect to the phosphorothioate modified backbone, methylated cytosine residues, and modification of each of the five 5' and 3' sugar residues with 2'-0-(2-methoxyethyl).

Female Swiss-Webster mice, 7 to 8 weeks of age weighing 25 30 to 30 grams, were obtained from Taconic or Jackson Laboratory. The animals were housed at 22°C and 12 hours of dark and light cycles. Mouse chow and water were made available ab libitum.

Female Swiss-webster mice (n = 2) were intravenously 35 injected with 20 mg/kg of ISIS 13920 in saline or with saline alone on day 1, 3, and 5 of the acute DSS-induced colitis protocol as described below. ISIS 13920 is a fully modified

phosphorothioate oligodeoxynucleotide, 5' $\underline{\text{TCC}}$ GTCATCGCT $\underline{\text{CCTCAGGG}}$ 503), with 2'-O-(2-methoxyethyl) modified (SEQ ID NO: indicated by underline. This oligonucleotide is directed to the human ras-Ha gene. Two additional groups (n = 2) of normal mice oligonucleotide same were subjected to the 5 (no DSS) administration protocol. Mice were sacrificed on day 7. Colons were removed, trimmed longitudinally, fixed in 10% neutral buffered formaldehyde, and processed through paraffin. micron sections were cut from paraffin-embedded tissues, and 10 deparaffinized by standard histological procedures. Endogenous tissue peroxidase activity was quenched with Peroxidase Blocking Reagent (DAKO; Carpenteria, CA) for 10 min at room temperature (r.t.). Tissue was treated with proteinase K (DAKO) for 10 min at r.t. to make it permeable for staining. After blocking with 15 normal donkey serum (Jackson Laboratory; Bar Harbor, Maine), the sections were incubated for 45 min at r.t. with the 2E1-B5 antioligonucleotide mAb (Butler et al., Lab. Invest., 77:379-388, Sections were rinsed with PBS and then incubated with peroxidase conjugated rabbit anti-mouse IgG1 (Zymed Laboratories; 20 San Francisco, CA) diluted 1:200 for 30 min at r.t. Slides were washed thoroughly with PBS and then stained for peroxidase activity by addition of 3,3'-diamino-benzidine (DAKO) for 5 min at r.t.

Mice received 4% dextran sodium sulfate (MW 40,000, ICN 25 Biomedicals, Inc., Aurora OH) in double distilled water ad libitum from day 0 until day 5 to induce colitis. On day 5, the 4% DSS was replaced with plain drinking water.

Mice were first weighed and randomized into groups of seven or eight animals. Mice were administered oligonucleotide every other day (q2d) by i.v. or s.c. injection at the indicated doses from day -2 to day 6. The vehicle group was administered 1 mL/kg 0.9% saline (Baxter Healthcare Corporation, Deerfield, Illinois) under a similar treatment protocol.

Disease activity index was calculated on day 7 based on the 35 summation of the weight, hemoccult, and stool consistency scores

ISPH-0767 - 99 - PATENT

(Table 30). Mice were weighed initially on day 0, and then every day beginning on day 3 until time of sacrifice. The stool consistency from each mouse was evaluated daily by visible appearance, beginning on day 3. On the day of sacrifice, day 7, 5 stool from each mouse was evaluated for occult blood using the Hemoccult test (SmithKline Diagnostics, Inc., San Jose CA). After sacrifice, the colon was removed from the ileocecal junction to the anal verge. The entire colon was then measured and observed for gross changes in the appearance of the mucosa, 10 the total length of the colon was noted, and sections of the colon were dissected for histopathological evaluation.

TABLE 30

15	Score	Weight loss	Stool consistency	Hemoccult
	0	None	Normal	Negative
	1	1-5%		
	2	6-10%	Loose stool	Positive
	3	11-15%		
20	4	>15%	Diarrhea	Gross bleeding

Mice were first weighed and randomized into groups of eight to ten animals. Chronic colitis was induced by giving the mice 4% DSS in their drinking water for two cycles. For each cycle, 25 DSS was administered until the disease activity index (DAI) reached a score of 2.0 to 2.5 (see scoring criteria below) in at least one group, at which time the 4% DSS was replaced with plain drinking water. The first cycle of DSS administration was followed by 14 days of plain drinking water. The second cycle 30 of DSS was followed by 8 to 9 days of plain drinking water, at which time the mice were sacrificed.

Oligonucleotide was administered subcutaneously (s.c.) for four consecutive days starting on the second day of the first cycle, and then every other day thereafter at doses of 0.25 mg/kg, 2.5 mg/kg, and 12.5 mg/kg; or 0.5 and 2.5 mg/kg. TNF- α mAb was administered s.c. one time at the beginning of each cycle for a total of two treatments at 30 μ g/mouse.

Chronic colitis progression was determined by daily measurement of the Disease Activity Index (DAI), consisting of weight loss, stool consistency and hemoccult scores (Cooper et al., 1993, supra.). Each parameter was given a score (Table 30) and the combined score was divided by three to obtain the disease activity index (DAI). This method has been shown to correlate with the histological measures of inflammation and crypt damage.

The damage to the crypts and extent of recovery were determined by histological analysis of the proximal and distal sections of the colon based on the crypt grade and percent involvement in each section. Crypt grades were scored as Grade 0 = intact crypt; Grade 1 = loss of 1/3 crypt; Grade 2 = loss of 2/3 of crypt; Grade 3 = loss of entire crypt w/intact epithelium; and Grade 4 = loss of entire crypt w/loss of epithelium (ulceration). Percent involvement was scored as 1 = 1-25%; 2 = 26-50%; 3 = 51-75%; and 4 = 76-100%. Total crypt score is the combined scores of the distal and proximal colon sections. The inflammation score is the product of the grade of inflammation and the extent of involvement, where Grade 0 = normal; Grade 1 = mild; Grade 2 = moderate; Grade 3 = Severe; and Percent Involvement 1 = 1-25%; 2 = 26-50%; 3 = 51-75%; 4 = 76-100%.

Total RNA was isolated from a 1 mm full length colon strip from each animal using the RNeasy Mini Kit (Qiagen, Valencia CA). Mouse TNF- α and G3PDH mRNA levels were determined by standard northern blot procedures. TNF- α probe signals were normalized to G3PDH probe signal.

Differences between treatment groups were evaluated by analysis of variance (ANOVA). If a statistically significant difference was detected by ANOVA then the Dunnett's test was applied (SAS Institute Inc., Cary NC).

Previous studies have examined the distribution of the "first-generation" phosphorothioate oligodeoxynucleotides in colon tissue of normal and DSS-treated mice, and demonstrated localization of oligonucleotide in both the lamina propia and the epithelial cells of the mucosal layer (Bennett, 1997, supra.).

ISPH-0767 - 101 - PATENT

In this case, differences were observed between the two groups of mice with respect to degree of tissue accumulation as well as relative distribution between the lamina propia and epithelial cells. Disruption of the epithelial mucosa layer and influx of 5 immune cells into the lamina propia in the DSS-treated mice coincided with increased accumulation of the oligonucleotide in the tissue, particularly in the epithelial layer.

To obtain information on the localization of a 2'-O-(2methoxyethyl) modified (2'-MOE)phosphorothioate 10 oligodeoxynucleotide a similar experiment was performed using immunohistochemical staining techniques, instead autoradiographic or fluorescent techniques, to detect the oligonucleotide (Butler et al., 1997, supra.) in the colon tissue. Immunohistochemical staining allows for direct detection 15 of the oligonucleotide without further labeling steps during oligonucleotide synthesis. The previously identified antioligonucleotide monoclonal antibody, 2E1, was utilized for this purpose (Butler, 1997, supra.). Cumulative studies have shown that the strength of the signal obtained from histological 20 staining of an oligonucleotide with the 2E1 antibody is dependent on the oligonucleotide sequence. In this respect, the staining signal for ISIS 25302 proved to be modest. For this reason we 13920, utilized ISIS a 2'-MOE modified phosphorothioate oligodeoxynucleotide with enhanced histological staining 25 properties, to evaluate the distribution of this type of oligonucleotide in colon tissue of normal and DSS-treated mice. A similar distribution and accumulation profile was observed with "second-generation" 2'-MOE modified phosphorothioate oligodeoxynucleotide, as had previously been observed for a 30 rhodamine labeled "first-generation" phosphorothioate oligodeoxynucleotide (Bennett, 1997, supra.). Enhanced staining by the anti-oligonucleotide antibody, 2E1, was observed in the colon tissue of DSS-treated mice, in comparison to the normal mice.

ISPH-0767 - 102 - PATENT

Mice treated with ISIS 25302 every other day at a dose of 1 mg/kg in the acute model of DSS-induced colitis showed a 44%reduction in the disease activity index (DAI) relative to the saline treated control group $(1.4\pm0.2 \text{ vs } 2.6\pm0.2; \text{ Fig 5A}).$ 5 comparison, mice treated one time with 25 micrograms of the anti-TNF- α mAb, at the commencement of DSS-induction, showed a 57 %reduction in the DAI. In both cases, the reduction in DAI was significant (p < 0.05) in comparison to the saline treated group. In contrast to the other two treatments, mice treated with 50 10 micrograms of antibody showed no improvement in the DAI. Improvement in the DAI correlated with an increase in colon length (Fig 5B). The mean colon length of the saline treated DSS-induced mice was 57% the length of normal mice (see also Okayasu, 1990, supra.), whereas those of the ISIS 25302 and anti-15 TNF- α antibody (25 μ g) treated mice were 76% and 79% respectively. The mean colon lengths of each of the two anti-TNF- α treated groups were significantly different from both the saline treated DSS-induced mice and normal mice (p < 0.05).

The effect of ISIS 25302 on the development of acute colitis 20 was dose and sequence dependent (Fig. 6A-6B). A reduction of the clinical symptoms of DSS-induced colitis, as measured by the DAI, was observed in mice treated with 0.04 (60%), 0.2 (60%), and 1 mg/kg (80%) of ISIS 25302 relative to saline treated control Mice treated with the eight base mismatch control 25 oligonucleotide, ISIS 30782, showed no reduction in the DAI in comparison to the saline treated group. The reduction in DAI in mice treated with ISIS 25302 at 0.04, 0.2, and 1.0 mg/kg was statistically significant in comparison to mice treated with the eight base mismatch control oligonucleotide at 1.0 mg/kg (p <30 0.05). A statistically significant difference was also observed between the 1.0 mg/kg ISIS 25302 group and the saline treated group. Treatment of the mice with ISIS 25302 at the higher dose of 5 mg/kg, yielded no improvement in the DAI; as previously observed in mice treated with 50 micrograms of the anti-TNF- α mAb 35 (described below). A partial loss of efficacy was also observed ISPH-0767 - 103 - PATENT

in the acute DSS-induced colitis model with the anti-ICAM-1 oligonucleotide, ISIS 3082, at a dose of 5 mg/kg (Bennett, 1997, supra.). In the ICAM-1 study mice were administered oligonucleotide once a day for five consecutive days, instead of every other day for a total of five injections. Loss of efficacy, in all applications, may have resulted from an excessive accumulation of the oligonucleotide (or antibody) in the inflamed tissue, which in turn had an adverse effect on the animals (immune) response to intestinal injury by DSS.

ISIS 25302 was also tested for efficacy in the chronic model 10 In this model, DSS was of DSS-induced mouse colitis. administered a second time, fourteen days after the first period of DSS administration. Animals were treated with ISIS 25302 prior to establishment of disease, starting on Day 2 of the first 15 cycle of DSS administration. A dose-dependent reduction in the clinical signs of chronic colitis was observed in the mice treated with ISIS 25302 (Fig 7A). For example, a 49% reduction (0.88 ± 0.17) in the disease activity index (DAI) was observed in mice treated at the lowest dose of 0.25 mg/kg of ISIS 25302, in 20 comparison to the saline treated control group (1.7 ± 0.3) at the end of the second cycle (Day 10, Fig 7B). A greater reduction in the DAI, 86 to 87%, was observed in mice treated at the higher doses of 2.5 and 12.5 mg/kg of ISIS 25302 (0.22 \pm 0.11 and 0.27 ± 0.11 , respectively). In comparison, animals treated with 25 the anti-TNF- α mAb showed a 61% reduction in DAI (0.67 \pm 0.14). At this time the reductions in DAI scores were statistically significant (p < 0.05) in mice treated with either the anti-TNF- α mAb or ISIS 25302, at all three doses, in comparison to the vehicle group.

Mice that showed an improvement in DAI also showed a reduction in inflammatory infiltrates and crypt damage at the histological level as compared to the untreated and vehicle groups (Fig. 8A-B). For example, mice treated with ISIS 25302 at 2.5 and 12.5 mg/kg demonstrated a 43% and 52% reduction in total inflammatory infiltrates (respectively), and a 43% and 48%

reduction in total crypt damage relative to vehicle (Fig 8A). The proximal region of the colon was more responsive to treatment by ISIS 25302, than the distal region (Fig 8B). However, the severity of the disease was greater in the distal region of the colon.

Although not statistically significant, a thirty percent reduction in target TNF- α mRNA levels was observed in the colon tissue of mice treated at the higher doses of 2.5 and 12.5 mg/kg ISIS 25302 (Fig. 9). The TNF- α mRNA levels in colons from mice treated at the lower dose of 0.25 mg/kg of ISIS 25302 were not reduced in comparison to the vehicle group. The reduced levels of TNF- α mRNA observed for mice treated with the two higher doses of ISIS 25302 supports the dose-dependent response observed in the clinic, as measured by the DAI.

The anti-mTNF-α oligoncucleotide, ISIS 25302, showed dose and sequence-specific efficacy in both the acute and chronic indications of DSS-induced colitis. ISIS 25302 treatment was also comparable in effect to treatment with an anti-TNF mAb in both indications. The reduction in the clinical symptoms observed in DSS-induced mice treated with ISIS 25302 correlated with a reduction of inflammatory infiltrates and crypt damage. Target TNF-α mRNA levels were also reduced in colon tissue derived from DSS-induced animals treated with ISIS 25302, relative to vehicle controls. The efficacy of ISIS 25302 in both the acute and chronic models of DSS-induced mouse colitis indicates that an antisense oligonucleotide which targets TNF-α mRNA represents a novel approach for treatment of human inflammatory bowel disease.

EXAMPLE 16: Effect of TNF- α Antisense Oligonucleotides in a 30 Murine Model for Crohn's Disease

C3H/HeJ, SJL/JK and IL10-/- mice are used in a TNBS (2,4,5,-trinitrobenzene sulfonic acid) induced colitis model for Crohn's disease (Neurath,M.F., et al., J. Exp. Med., 1995, 182, 1281-1290). Mice between the ages of 6 weeks and 3 months are used to assess the activity of TNF- α antisense oligonucleotides.

ISPH-0767 - 105 - PATENT

C3H/HeJ, SJL/JK and IL10-/- mice are fasted overnight prior to administration of TNBS. A thin, flexible polyethylene tube is slowly inserted into the colon of the mice so that the tip rests approximately 4 cm proximal to the anus. 0.5 mg of the TNBS in 50% ethanol is slowly injected from the catheter fitted onto a 1 ml syringe. Animals are held inverted in a vertical position for approximately 30 seconds. TNF-α antisense oligonucleotides are administered either at the first sign of symptoms or simultaneously with induction of disease. Animals, 10 in most cases, are dosed every day. Administration is by i.v., i.p., s.q., minipumps or intracolonic injection. Experimental tissues are collected at the end of the treatment regimen for histochemical evaluation.

15 EXAMPLE 17: Effect of TNF- α Antisense Oligonucleotides in a Murine Model for Multiple Sclerosis

Experimental autoimmune encephalomyelitis (EAE) is a commonly accepted murine model for multiple sclerosis (Myers, K.J., et al., J. Neuroimmunol., 1992, 41, 1-8). SJL/H, 20 PL/J, (SJLxPL/J)F1, (SJLxBalb/c)F1 and Balb/c female mice between the ages of 6 and 12 weeks are used to test the activity of TNF-α antisense oligonucleotides.

The mice are immunized in the two rear foot pads and base of the tail with an emulsion consisting of encephalitogenic 25 protein or peptide (according to Myers, K.J., et al., J. of Immunol., 1993, 151, 2252-2260) in Complete Freund's Adjuvant supplemented with heat killed Mycobacterium tuberculosis. Two days later, the mice receive an intravenous injection of 500 ng Bordatella pertussis toxin and additional adjuvant.

Alternatively, the disease may also be induced by the adoptive transfer of T-cells. T-cells are obtained from the draining of the lymph nodes of mice immunized with encephalitogenic protein or peptide in CFA. The T cells are grown in tissue culture for several days and then injected intravenously into naive syngeneic recipients.

Mice are monitored and scored daily on a 0-5 scale for signals of the disease, including loss of tail muscle tone, wobbly gait, and various degrees of paralysis.

5 EXAMPLE 18: Effect of TNF- $\!\alpha$ Antisense Oligonucleotides in a Murine Model for Pancreatitis

Swiss Webster, C57BL/56, C57BL/6 lpr and gld male mice are used in an experimental pancreatitis model (Niederau, C., et al., Gastroenterology, 1985, 88, 1192-1204). Mice between the ages of 4 and 10 weeks are used to assess the activity of TNF- α antisense oligonucleotides.

Caerulin (5-200 $\mu g/kg$) is administered i.p. every hour for one to six hours. At varying time intervals, the mice are given i.p. injection of avertin and bled by cardiac puncture. The pancreas and spleen are evaluated for histopathology and increased levels of IL-1 β , IL-6, and TNF- α . The blood is analyzed for increased levels of serum amylase and lipase. TNF- α antisense oligonucleotides are administered by intraperitoneal injection at 4 hours pre-caerulin injections.

20

EXAMPLE 19: Effect of TNF- α Antisense Oligonucleotides in a Murine Model for Hepatitis

Concanavalin A-induced hepatitis is used as a murine model for hepatitis (Mizuhara, H., et al., J. Exp. Med., 1994, 179, 1529-1537). It has been shown that this type of liver injury is mediated by Fas (Seino, K., et al., Gastroenterology 1997, 113, 1315-1322). Certain types of viral hepatitis, including Hepatitis C, are also mediated by Fas (J. Gastroenterology and Hepatology, 1997, 12, S223-S226). Female Balb/c and C57BL/6 mice between the ages of 6 weeks and 3 months are used to assess the activity of TNF-α antisense oligonucleotides.

Mice are intravenously injected with oligonucleotide. The pretreated mice are then intravenously injected with 0.3 mg concanavalin A (Con A) to induce liver injury. Within 24 hours following Con A injection, the livers are removed from the

ISPH-0767 - 107 - PATENT

animals and analyzed for cell death (apoptosis) by in vitro methods. In some experiments, blood is collected from the retroorbital vein.

5 EXAMPLE 20: Effect of Antisense Oligonucleotide Targeted to TNF- α on Survival in Murine Heterotopic Heart Transplant Model

To determine the therapeutic effects of TNF- α antisense oligonucleotides in preventing allograft rejection, murine TNF- α -specific oligonucleotides are tested for activity in a murine 10 vascularized heterotopic heart transplant model. Hearts from Balb/c mice are transplanted into the abdominal cavity of C3H mice as primary vascularized grafts essentially as described by Isobe et al., Circulation 1991, 84, 1246-1255. Oligonucleotide is administered by continuous intravenous administration via a 15 7-day Alzet pump. The mean survival time for untreated mice is usually approximately 9-10 days. Treatment of the mice for 7 days with TNF- α antisense oligonucleotides is expected to increase the mean survival time.

20 EXAMPLE 21: Optimization of Human TNF- α Antisense Oligonucleotide

Additional antisense oligonucleotides targeted to intron 1 of human TNF- α were designed. These are shown in Table 31. Oligonucleotides are screened by RT-PCR as described in Example 5 hereinabove.

ISPH-0767 - 108 - PATENT

1.0	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
10	100181	AG TGTCTTCTGTGTGCCA GA	144	1409-1428	intron 1
	100201	AG TGTCTTCTGTGTGC CAGA	77	"	intron 1
15	100230	AGTG TCTTCTGTGTGCCA GA	11	11	intron 1
	100250	AGTG TCTTCTGTGTGC CAGA	11	11	intron 1
0.0	100182	GT GTCTTCTGTGTGCCAG AC	145	1408-1427	intron 1
20	100202	GT GTCTTCTGTGTGCC AGAC	11	11	intron 1
	100231	GTGTCTTCTGTGTGCCAGAC	11	11	intron 1
25	100251	GTGTCTTCTGTGTGCCAGAC	11	Ťī	intron 1
!	100183	TG TCTTCTGTGTGCCAGA CA	146	1407-1426	intron 1
20	100203	TGTCTTCTGTGTGCCAGACA	"	11	intron 1
30	100232	TGTCTTCTGTGTGCCAGACA	71	11	intron 1
	100252	TGTCTTCTGTGTGCCAGACA	**	"	intron 1
35	100184	GT CTTCTGTGTGCCAGAC AC	147	1406-1425	intron 1
	100204	GT CTTCTGTGTGCCAG ACAC	11	11	intron 1
4.0	100233	GTCTTCTGTGTGCCAGACAC	17	11	intron 1
40	100253	GTCTTCTGTGTGCCAGACAC	11	"	intron 1
	100185	TCTTCTGTGTGCCAGACACC	148	1405-1424	intron 1
45	100205	TCTTCTGTGTGCCAGACACC	"	11	intron 1
	100234	TCTTCTGTGTGCCAGACACC	11	11	intron 1
F 0	100254	TCTTCTGTGTGCCAGACACC	11	11	intron 1
50	100186	CT TCTGTGTGCCAGACAC CC	149	1404-1423	intron 1
1	100206	CT TCTGTGTGCCAGAC ACCC	11	11	intron 1
55	100235	CTTCTGTGTGCCAGACACCC	11	"	intron 1
	100255	CTTCTGTGTGCCAGACACCC	11	11	intron 1
60	100187	TTCTGTGTGCCAGACACCCT	150	1403-1422	intron 1
60	100207	TTCTGTGTGCCAGACACCCT	11	"	intron 1

		· · · · · · · · · · · · · · · · · · ·			
	100236	TTCTGTGTGCCAGACACCCT	11	***	intron 1
5	100256	TTCTGTGTGCCAGACACCCT	11	"	intron 1
5	100188	TCTGTGTGCCAGACACCCTA	151	1402-1421	intron 1
i	100208	TCTGTGTGCCAGACACCCTA	"	11	intron 1
10	100237	TCTGTGTGCCAGACACCCTA	11	"	intron 1
	100257	TCTGTGTGCCAGACACCCTA	11	11	intron 1
15	100189	CT GTGTGCCAGACACCCT AT	152	1401-1420	intron 1
10	100209	CTGTGTGCCAGACACCCTAT	11	11	intron 1
	100238	CTGTGTGCCAGACACCCTAT	11	11	intron 1
20	100258	CTGTGTGCCAGACACCCTAT	11	11	intron 1
;	100190	TG TGTGCCAGACACCCTA TC	153	1400-1419	intron 1
25	100210	TG TGTGCCAGACACCC TATC	11	11	intron 1
23	100239	TGTGTGCCAGACACCCTATC	11	11	intron 1
	100259	TGTGTGCCAGACACCCTATC	"	71	intron 1
30	100191	TG TGCCAGACACCCTATC TT	154	1398-1417	intron 1
ĺ	100211	TG TGCCAGACACCCTA TCTT	11	TT .	intron 1
35	100240	TGTG CCAGACACCCTATC TT	11	11	intron 1
	100260	TGTG CCAGACACCCTA TCTT	"		intron 1
	100192	GT GCCAGACACCCTATCT TC	155	1397-1416	intron 1
40	100212	GT GCCAGACACCCTAT CTTC	"	17	intron 1
	100241	GTGC CAGACACCCTATCT TC	11	11	intron 1
45	100261	GTGC CAGACACCCTAT CTTC	"	11	intron 1
	100193	TG CCAGACACCCTATCTT CT	156	1396-1415	intron 1
	100213	TG CCAGACACCCTATC TTCT	11	"	intron 1
50	100242	TGCC AGACACCCTATCTT CT	"	11	intron 1
ļ	100262	TGCCAGACACCCTATCTTCT	11	11	intron 1
55	100194	GC CAGACACCCTATCTTC TT	157	1395-1414	intron 1
	100214	GC CAGACACCCTATCT TCTT	11	11	intron 1
	100243	GCCA GACACCCTATCTTC TT	11	11	intron 1
60	100263	GCCA GACACCCTATCT TCTT	11	11	intron 1
	100195	CCAGACACCCTATCTTCTTC	158	1394-1413	intron 1
65	100215	CCAGACACCCTATCTTCTTC	11	"	intron 1
60	100244	CCAGACACCCTATCTTCTTC	. 17	11	intron 1

n 1
n 1 n 1 n 1
n 1 n 1
n 1
n 1
7 1
1
1
n 1
n 1
1
n 1
n 1
n 1
n 1
1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
n 1
110111111111111111111111111111111111111

5	100282	CAGACACCCTATCTTCTT	176	1395-1412	intron 1
	100283	AGA CACCCTATCTTC TTC	177	1394-1411	intron 1
	100284	GACACCCTATCTTCT	178	1393-1410	intron 1
	100285	ACA CCCTATCTTCTT CTC	179	1392-1409	intron 1

- 10 1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethyl cytosines and 2'-deoxy cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.
- 15 2 Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

EXAMPLE 22: Design of Antisense Oligonucleotides Targeting Human

20 TNF- α Intron 2

Additional antisense oligonucleotides targeted to intron 2 and coding regions of human TNF- α were designed. These are shown in Table 32. Oligonucleotides are screened by RT-PCR as described in Example 5 hereinabove.

25

3	0

35

40

45

ISIS No.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
100549	AGAGGTTTGGAGACACTTAC	180	1635-1654	intron 2
100566	AG AGGTTTGGAGACACTT AC	Ħ	11	intron 2
100550	GAATTAGGAAAGAGGTTTGG	181	1645-1664	intron 2
100567	GA ATTAGGAAAGAGGTTT GG	Ħ	11	intron 2
100551	CCCAAACCCAGAATTAGGAA	182	1655-1674	intron 2
100568	CC CAAACCCAGAATTAGG AA	11	11	intron 2
100552	TACCCCCAAACCCAAACCCA	183	1665-1684	intron 2
100569	TACCCCCAAACCCAAACCCA	71	tı	intron 2
100553	GTACTAACCCTACCCCCAAA	184	1675-1694	intron 2
100570	GTACTAACCCTACCCCCAAA	11	11	intron 2

	100554	TTCCATACCGGTACTAACCC	185	1685-1704	intron 2
۳	100571	TTCCATACCGGTACTAACCC	17	11	intron 2
5	100555	CCCCCACTGCTTCCATACCG	186	1695-1714	intron 2
	100572	CCCCCACTGCTTCCATACCG	11	11	intron 2
10	100556	CTTTAAATTTCCCCCACTGC	187	1705-1724	intron 2
	100573	CT TTAAATTTCCCCCACT GC	"	11	intron 2
15	100557	AAGACCAAAACTTTAAATTT	188	1715-1734	intron 2
10	100571	AA GACCAAAACTTTAAAT TT	"	"	intron 2
	100558	ATCCTCCCCCAAGACCAAAA	189	1725-1744	intron 2
20	100640	AT CCTCCCCCAAGACCAA AA	"	11	intron 2
	100559	ACCTCCATCCATCCTCCCCC	190	1735-1754	intron 2
25	100641	AC CTCCATCCATCCTCCC CC	"	11	intron 2
23	100560	CCCTACTTTCACCTCCATCC	191	1745-1764	intron 2
	100642	CCCTACTTTCACCTCCATCC	"	"	intron 2
30	100561	GAAAATACCCCCCTACTTTC	192	1755-1774	intron 2
	100643	GA AAATACCCCCCTACTT TC	11	11	intron 2
35	100562	AAACTTCCTAGAAAATACCC	193	1765-1784	intron 2
33	100644	AA ACTTCCTAGAAAATAC CC	11	ff	intron 2
	100563	TGAGACCCTTAAACTTCCTA	194	1775-1794	intron 2
40	100645	TG AGACCCTTAAACTTCC TA	"	11	intron 2
	100564	AAGAAAAAGCTGAGACCCTT	195	1785-1804	intron 2
45	100646	AA GAAAAAGCTGAGACCC TT	11	11	intron 2
43	100565	GGAGAGAGAAAAAAGC	196	1795-1814	intron 2
	100647	GG AGAGAGAAAAGAAAAG C	11	11	intron 2
50	100575	TGAGCCAGAAGAGGTTGAGG	197	2665-2684	coding
	100576	ATTCTCTTTTTGAGCCAGAA	198	2675-2694	coding
55	100577	TAAGCCCCCAATTCTCTTTT	199	2685-2704	coding
33	100578	GTTCCGACCCTAAGCCCCCA	200	2695-2714	coding
	100579	CTAAGCTTGGGTTCCGACCC	201	2705-2724	coding
60	100580	GCTTAAAGTTCTAAGCTTGG	202	2715-2734	coding
	100581	TGGTCTTGTTGCTTAAAGTT	203	2725-2744	coding
CE	100582	TTCGAAGTGGTGGTCTTGTT	204	2735-2754	coding
65	100583	AATCCCAGGTTTCGAAGTGG	205	2745-2764	coding

	100584	CACATTCCTGAATCCCAGGT	206	2755-2774	coding
5	100585	GTGCAGGCCACACATTCCTG	207	2765-2784	coding
5	100586	GCACTTCACTGTGCAGGCCA	208	2775-2794	coding
	100587	GTGGTTGCCAGCACTTCACT	209	2785-2804	coding
10	100588	TGAATTCTTAGTGGTTGCCA	210	2795-2814	coding
	100589	GGCCCCAGTTTGAATTCTTA	211	2805-2824	coding
15	100590	GAGTTCTGGAGGCCCCAGTT	212	2815-2834	coding
15	100591	AGGCCCCAGTGAGTTCTGGA	32	2825-2844	coding
	100592	TCAAAGCTGTAGGCCCCAGT	214	2835-2854	coding
20	100593	ATGTCAGGGATCAAAGCTGT	215	2845-2864	coding
	100594	CAGATTCCAGATGTCAGGGA	216	2855-2874	coding
25	100595	CCCTGGTCTCCAGATTCCAG	217	2865-2884	coding
23	100596	ACCAAAGGCTCCCTGGTCTC	218	2875-2894	coding
	100597	TCTGGCCAGAACCAAAGGCT	219	2885-2904	coding
30	100598	CCTGCAGCATTCTGGCCAGA	220	2895-2914	coding
	100599	CTTCTCAAGTCCTGCAGCAT	221	2905-2924	coding
35	100600	TAGGTGAGGTCTTCTCAAGT	222	2915-2934	coding
33	100601	TGTCAATTTCTAGGTGAGGT	223	2925-2944	coding
	100602	GGTCCACTTGTGTCAATTTC	224	2935-2954	coding
40	100603	GAAGGCCTAAGGTCCACTTG	225	2945-2964	coding
	100604	CTGGAGAGAGGAAGGCCTAA	226	2955-2974	coding
45	100605	CTGGAAACATCTGGAGAGAG	227	2965-2984	coding
43	100606	TCAAGGAAGTCTGGAAACAT	228	2975-2994	coding
	100607	GCTCCGTGTCTCAAGGAAGT	229	2985-3004	coding
50	100608	ATAAATACATTCATCTGTAA	230	3085-3104	coding
	100609	GGTCTCCCAAATAAATACAT	231	3095-3114	coding
55	100610	AGGATACCCCGGTCTCCCAA	232	3105-3124	coding
33	100611	TGGGTCCCCCAGGATACCCC	35	3115-3134	coding
	100612	GCTCCTACATTGGGTCCCCC	234	3125-3144	coding
60	100613	AGCCAAGGCAGCTCCTACAT	235	3135-3154	coding
	100614	AACATGTCTGAGCCAAGGCA	236	3145-3164	coding
65	100615	TTTCACGGAAAACATGTCTG	237	3155-3174	coding
	100616	TCAGCTCCGTTTTCACGGAA	238	3165-3184	coding

100617	AGCCTATTGTTCAGCTCCGT	239	3175-3194	coding
100618	ACATGGGAACAGCCTATTGT	240	3185-3204	coding
100619	ATCAAAAGAAGGCACAGAGG	241	3215-3234	coding
100620	GTTTAGACAACTTAATCAGA	242	3255-3274	coding
100621	AATCAGCATTGTTTAGACAA	243	3265-3284	coding
100622	TTGGTCACCAAATCAGCATT	244	3275-3294	coding
100623	TGAGTGACAGTTGGTCACCA	245	3285-3304	coding
100624	GGCTCAGCAATGAGTGACAG	246	3295-3314	coding
100625	ATTACAGACACAACTCCCCT	247	3325-3344	coding
100626	TAGTAGGGCGATTACAGACA	248	3335-3354	coding
100627	CGCCACTGAATAGTAGGGCG	249	3345-3364	coding
100628	CTTTATTTCTCGCCACTGAA	250	3355-3374	coding

10

15

20

25

40

45

50

55

1 Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethyl cytosines and 2'-deoxy cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

² Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

Several of these oligonucleotides were chosen for dose response studies. Cells were grown and treated as described in Example 3. Results are shown in Table 33. Each oligonucleotide tested showed a dose response curve with maximum inhibition greater than 75%.

TABLE 33

Dose Response of PMA-Induced neoHK Cells to TNF- α Antisense Oligonucleotides (ASOs)

isis #	SEQ ID	ASO Gene Target	Dose	% protein Expression	<pre>% protein Inhibition</pre>
induced				100%	
100235	149	intron 1	75 nM	77%	23%
11	17	n	150 nM	25%	75%
11	"	11	300 nM	6%	94%

	100243	157	intron 1	75 nM	68%	32%
5	11	11	11	150 nM	15%	85%
	11	11	Ħ	300 nM	6%	94%
	100263	157	intron 1	75 nM	79%	21%
10	11	11	FF	150 nM	30%	70%
	11	11	17	300 nM	23%	77%

15 EXAMPLE 23: Optimization of Human TNF- α Antisense Oligonucleotide Chemistry

Analogs of oligonucleotides 21820 (SEQ ID NO. 66) and 21823 (SEQ ID NO. 69) were designed and synthesized to find an optimum gap size. The sequences and chemistries are shown in 20 Table 34.

Dose response experiments were performed as described in Example 3. Results are shown in Table 35.

TABLE 34 Nucleotide Sequences of TNF- α Chimeric Backbone (deoxy gapped) Oligonucleotides

30	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
2.5	21820	ATATTTCCCGCTCTTTCTGT	66	1339-1358	intron 1
35	28086	AT ATTTCCCGCTCTTTCT GT	11	11	11
	28087	ATATTTCCCGCTCTTTCTGT	11	11	"
40	21823	GTGTGCCAGACACCCTATCT	69	1399-1418	intron 1
	28088	GT GTGCCAGACACCCTAT CT	11	"	11
45	28089	GTGT GCCAGACACCCT ATCT	11	11	11

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

ISPH-0767 - 116 - PATENT

TABLE 35

Dose Response of 20 Hour PMA-Induced neoHK Cells to TNF- α Chimeric (deoxy gapped) Antisense Oligonucleotides (ASOs)

10		SEQ ID	ASO Gene		% protein	% protein
	isis #	NO:	Target	Dose	Expression	Inhibition
1.5	induced				100%	-~-
15	13393	49	control	75 nM	150.0%	
	11	71	Ħ	150 nM	135.0%	
20	17	***	11	300 nM	90.0%	10.0%
	21820	66	intron 1	75 nM	65.0%	35.0%
25	11	11	TE	150 nM	28.0%	72.0%
23	Ττ	11	FT	300 nM	9.7%	90.3%
	28086	66	intron 1	75 nM	110.0%	
30	11	rr	rr .	150 nM	83.0%	17.0%
	tī	11	11	300 nM	61.0%	39.0%
35	28087	66	intron 1	75 nM	127.0%	
33	11	17	71	150 nM	143.0%	
	11	н	rr .	300 nM	147.0%	
40	21823	69	intron 1	75 nM	35.0%	65.0%
	11	ti	11	150 nM	30.0%	70.0%
45	11	11	F1	300 nM	6.4%	93.6%
4.7	28088	69	intron 1	75 nM	56.0%	44.0%
	11	11	ŧŧ	150 nM	26.0%	74.0%
50	71	11	11	300 nM	11.0%	89.0%
	28089	69	intron 1	75 nM	76.0%	24.0%
55	11	11	71	150 nM	53.0%	47.0%
, <u>,</u>	P	"	"	300 nM	23.0%	77.0%

 $^{^{\}rm 2}$ Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

ISPH-0767 - 117 - PATENT

EXAMPLE 24: Screening of additional TNF- α chimeric (deoxy gapped) antisense oligonucleotides

Additional oligonucleotides targeting the major regions of TNF-α were synthesized. Oligonucleotides were synthesized as 5 uniformly phosphorothicate chimeric oligonucleotides having regions of five 2'-0-methoxyethyl (2'-MOE) nucleotides at the wings and a central region of ten deoxynucleotides. Oligonucleotide sequences are shown in Table 36.

Oligonucleotides were screened as described in Example 5. 10 Results are shown in Table 37.

TABLE 36 Nucleotide Sequence of Additional Human TNF- α Chimeric (deoxy gapped) Antisense Oligonucleotides

20	ISIS NO.	NUCLEOTIDE SEQUENCE ¹ (5' -> 3')	SEQ ID NO:	TARGET GENE NUCLEOTIDE CO-ORDINATES ²	GENE TARGET REGION
	104649	CTGAGGGAGCGTCTGCTGGC	251	0616-0635	5'-UTR
25	104650	CCTTGCTGAGGGAGCGTCTG	252	0621-0640	5'-UTR
25	104651	CTGGTCCTCTGCTGTCCTTG	253	0636-0655	5'-UTR
	104652	CCTCTGCTGTCCTTGCTGAG	254	0631-0650	5'-UTR
30	104653	TTCTCTCCCTCTTAGCTGGT	255	0651-0670	5'-UTR
	104654	TCCCTCTTAGCTGGTCCTCT	256	0646-0665	5'-UTR
35	104655	TCTGAGGGTTGTTTTCAGGG	257	0686-0705	5'-UTR
33	104656	CTGTAGTTGCTTCTCTCCCT	258	0661-0680	5'-UTR
	104657	ACCTG CCTGGCAGCT TGTCA	259	0718-0737	5'-UTR
40	104658	GGATGTGGCGTCTGAGGGTT	260	0696-0715	5'-UTR
	104659	TGTGAGAGGAAGAGAACCTG	261	0733-0752	5'-UTR
45	104660	GAGGA AGAGAACCTG CCTGG	262	0728-0747	5'-UTR
45	104661	AGCCG TGGGTCAGTA TGTGA	263	0748-0767	5'-UTR
	104662	TGGGTCAGTATGTGAGAGGA	264	0743-0762	5'-UTR
50	104663	GAGAGGGTGAAGCCGTGGGT	265	0758-0777	5'-UTR

_					
	104664	TCATGGTGTCCTTTCCAGGG	266	0780-0799	AUG
_	104665	CTTTCAGTGCTCATGGTGTC	267	0790-0809	AUG
5	104666	TCATGCTTTCAGTGCTCATG	268	0795-0814	AUG
	104667	ACGTC CCGGATCATG CTTTC	269	0805-0824	coding
10	104668	GCTCCACGTCCCGGATCATG	270	0810-0829	coding
	104669	TCCTCGGCCAGCTCCACGTC	271	0820-0839	coding
3.5	104670	GCGCCTCCTCGGCCAGCTCC	272	0825-0844	coding
15	104671	aggaacaagcaccgc ctgga	273	0874-0893	coding
	104672	CAAGCACCGCCTGGAGCCCT	274	0869-0888	coding
20	104673	AAGGA GAAGAGGCTG AGGAA	275	0889-0908	coding
	104674	GAAGAGGCTGAGGAACAAGC	276	0884-0903	coding
0.5	104675	CCTGC CACGATCAGG AAGGA	277	0904-0923	coding
25	104676	CACGATCAGGAAGGAGAAGA	278	0899-0918	coding
	104677	AAGAGCGTGGTGGCGCCTGC	279	0919-0938	coding
30	104678	CGTGG TGGCGCCTGC CACGA	280	0914-0933	coding
	104679	AAGTG CAGCAGGCAG AAGAG	281	0934-0953	coding
0.5	104680	CAGCAGGCAGAAGAGCGTGG	282	0929-0948	coding
35	104681	GATCACTCCAAAGTGCAGCA	283	0944-0963	coding
	104682	GGGCC GATCACTCCA AAGTG	284	0949-0968	coding
40	104683	GGGCC AGAGGGCTGA TTAGA	285	1606-1625	coding
40	104684	AGAGG GCTGATTAGA GAGAG	286	1601-1620	coding
a =	104685	GCTACAGGCTTGTCACTCGG	287	1839-1858	coding
45	104686	CTGACTGCCTGGGCCAGAGG	288	1616-1635	E2/I2 ³
ı	104687	TACAACATGGGCTACAGGCT	289	1849-1868	coding
50	104688	AGCCA CTGGAGCTGC CCCTC	290	2185-2204	coding
	104689	AGGAACAAGCACCGCCTGGA 273 0874-0893 CAAGCACCGCCTGGAGCCCT 274 0869-0888 AAGGAGAAGAGGCCGAGGAA 275 0889-0908 GAAGAGGCTGAGGAA 276 0884-0903 CCTGCCACGATCAGGAAGGA 277 0904-0923 CACGATCAGGAAGGA 278 0899-0918 AAGAGCGTGGTGGCGCCTGC 279 0919-0938 CGTGGTGGCGCCTGCCACGA 280 0914-0933 AAGTGCAGCAGGAAGAG 281 0934-0953 CAGCAGGAGGAGAGAGG 282 0929-0948 GATCACTCCAAAGTGCAGCA 283 0944-0963 CGGCCGATCACTCCAAAGTG 284 0949-0968 GGGCCAGAGGGCTGATTAGA 285 1606-1625 AGAGGGCTGATTAGAAGAG 286 1601-1620 CTGACTGCCTGGGCCAGGAGGC 287 1839-1858 CTGACTGCCTGGGCCAGAGGC 289 1849-1868 AGCCACTGGAGCTGCCCCTC 290 2185-2204 CTGGAGCTGCCCTCAGCCT 291 2180-2199 TTGGCCCGGCGGTTCAGCCA 292 2200-2219 TTGGCCCGGCGGTTCAGCCA 294 2195-2214 CCCGGCGGTTCAGCCACTGGC 295 2230-2249 CCCGGCGGTTCAGCCCGCC 296 2210-2229	coding		
55	104690	TTGGCCCGGCGGTTCAGCCA	292	2200-2219	coding
55	104691	TTGGCCAGGAGGGCATTGGC	293	2215-2234	coding
	104692	CCGGCGGTTCAGCCACTGGA	294	2195-2214	coding
60	104693	CTCAGCTCCACGCCATTGGC	295	2230-2249	coding
	104694	CAGGAGGGCATTGGCCCGGC	296	2210-2229	coding
65	104695	CTCCACGCCATTGGCCAGGA	297	2225-2244	coding
65	104696	ACCAGCTGGTTATCTCTCAG	298	2245-2264	coding

				r	
	104697	CTGGTTATCTCTCAGCTCCA	299	2240-2259	coding
5	104698	CCCTCTGATGGCACCACCAG	300	2260-2279	coding
J	104699	TGATGGCACCACCAGCTGGT	301	2255-2274	coding
:	104700	TAGATGAGGTACAGGCCCTC	302	2275-2294	coding
10	104701	AAGAGGACCTGGGAGTAGAT	303	2290-2309	coding
,	104702	GAGGTACAGGCCCTCTGATG	304	2270-2289	coding
15	104703	CAGCCTTGGCCCTTGAAGAG	305	2305-2324	coding
12	104704	GACCTGGGAGTAGATGAGGT	306	2285-2304	coding
	104705	TTGGCCCTTGAAGAGGACCT	307	2300-2319	coding
20	104706	TGGTGTGGGTGAGGAGCACA	308	2337-2356	coding
	104707	CGGCGATGCGGCTGATGGTG	309	2352-2371	coding
25	104708	TGGGTGAGGAGCACATGGGT	310	2332-2351	coding
25	104709	TGGTCTGGTAGGAGACGGCG	311	2367-2386	coding
	104710	ATGCG GCTGATGGTG TGGGT	312	2347-2366	coding
30	104711	AGAGG AGGTTGACCT TGGTC	313	2382-2401	coding
	104712	TGGTAGGAGACGGCGATGCG	314	2362-2381	coding
35	104713	AGGTT GACCTTGGTC TGGTA	315	2377-2396	coding
35	104714	GGCTC TTGATGGCAG AGAGG	316	2397-2416	coding
	104715	TCATACCAGGGCTTGGCCTC	317	2446-2465	coding
40	104716	TTGAT GGCAGAGAGG AGGTT	318	2392-2411	coding
	104717	CCCAGATAGATGGGCTCATA	93	2461-2480	coding
45	104718	CCAGGGCTTGGCCTCAGCCC	94	2441-2460	coding
45	104719	AGCTGGAAGACCCCTCCCAG	319	2476-2495	coding
	104720	ATAGATGGGCTCATACCAGG	320	2456-2475	coding
50	104721	CGGTCACCCTTCTCCAGCTG	321	2491-2510	coding
	104722	GAAGACCCCTCCCAGATAGA	322	2471-2490	coding
55	104723	ATCTCAGCGCTGAGTCGGTC	26	2506-2525	coding
55	104724	ACCCTTCTCCAGCTGGAAGA	323	2486-2505	coding
	104725	TAGTCGGGCCGATTGATCTC	90	2521-2540	coding
60	104726	AGCGC TGAGTCGGTC ACCCT	91	2501-2520	coding
:	104727	TCGGCAAAGTCGAGATAGTC	324	2536-2554	coding
65	104728	GGGCCGATTGATCTCAGCGC	325	2516-2535	coding
65	104729	TAGACCTGCCCAGACTCGGC	326	2551-2570	coding

104730	AAAGT CGAGATAGTC GGGCC	327	2531-2550	coding
104731	GCAAT GATCCCAAAG TAGAC	328	2566-2585	coding
104732	CTGCCCAGACTCGGCAAAGT	329	2546-2565	coding
104733	CGTCCTCCTCACAGGGCAAT	330	2581-2600	stop
104734	GATCCCAAAGTAGACCTGCC	88	2561-2580	coding
104735	GGAAG GTTGGATGTT CGTCC	331	2596-2615	3'-UTR
104736	TCCTCACAGGGCAATGATCC	332	2576-2595	stop
104737	GTTGAGGGTGTCTGAAGGAG	333	2652-2671	3'-UTR
104738	GTTGGATGTTCGTCCTCCTC	334	2591-2610	stop
104739	TTTGAGCCAGAAGAGGTTGA	335	2667-2686	3'-UTR
104740	GAGGCGTTTGGGAAGGTTGG	AGGTTGG 336 2606-2625 TTTTTTGA 337 2682-2701 GAGGGTG 338 2662-2681 AAGCCCC 339 2697-2716 GAGCCAG 340 2677-2696 TTGGGTT 341 2712-2731 CCCAATT 342 2692-2711 GCTTAAAG 343 2727-2746	2606-2625	3'-UTR
104741	GCCCCCAATTCTCTT TTTGA	337	2682-2701	3'-UTR
104742	GCCAGAAGAGGTTGAGGGTG	338	2662-2681	3'-UTR
104743	GGGTT CCGACCCTAA GCCCC	339	2697-2716	3'-UTR
104744	CAATTCTCTTTTTGAGCCAG	340	2677-2696	3'-UTR
104745	TAAAGTTCTAAGCTTGGGTT	341	2712-2731	3'-UTR
104746	CCGACCCTAAGCCCCCAATT	342	2692-2711	3'-UTR
104747	GGTGGTCTTGTTGCTTAAAG	343	2727-2746	3'-UTR
104748	TTCTAAGCTTGGGTTCCGAC	344	2707-2726	3'-UTR
104749	CCCAGGTTTCGAAGTGGTGG	345	2742-2761	3'-UTR
104750	TCTTGTTGCTTAAAGTTCTA	346	2722-2741	3'-UTR
104751	CACACATTCCTGAATCCCAG	347	2757-2776	3'-UTR
104752	GTTTCGAAGTGGTGGTCTTG	348	2737-2756	3'-UTR
104753	CTTCACTGTGCAGGCCACAC	349	2772-2791	3'-UTR
104754	ATTCC TGAATCCCAG GTTTC	350	2752-2771	3'-UTR
104755	TAGTGGTTGCCAGCACTTCA	G 340 2677-2696 3' T 341 2712-2731 3' T 342 2692-2711 3' G 343 2727-2746 3' C 344 2707-2726 3' G 345 2742-2761 3' A 346 2722-2741 3' G 347 2757-2776 3' G 348 2737-2756 3' C 349 2772-2791 3' A 351 2787-2806 3'	3'-UTR	
104756	CCCAGTTTGAATTCTTAGTG	352	2802-2821	3'-UTR
104757	CTGTGCAGGCCACACATTCC	353	2767-2786	3'-UTR
104758	GTGAG TTCTGGAGGC CCCAG	354	2817-2836	3'-UTR
104759	GTTGCCAGCACTTCACTGTG	355	2782-2801	3'-UTR
104760	TTTGAATTCTTAGTGGTTGC	356	2797-2816	3'-UTR
104761	AAGCTGTAGGCCCCAGTGAG	357	2832-2851	3'-UTR
104762	TTCTGGAGGCCCCAGTTTGA	358	2812-2831	3'-UTR
	104731 104732 104733 104734 104735 104736 104737 104738 104739 104740 104741 104742 104743 104744 104745 104748 104747 104748 104749 104750 104751 104751 104752 104753 104753 104754 104755 104755 104756 104757 104758 104759 104760 104761	104731 GCAATGATCCCAAAGTAGAC 104732 CTGCCCAGACTCGGCAAAGT 104733 CGTCCTCCTCACAGGGCAAT 104734 GATCCCAAAGTAGACCTGCC 104735 GGAAGGTTGGATGTTCGTCC 104736 TCCTCACAGGGCAATGATCC 104737 GTTGAGGGTGTCTGAAGGAG 104738 GTTGGATGTTCGTCCTCCTC 104739 TTTGAGCCAGAAGAGGTTGA 104740 GAGGCGTTTGGGAAGGTTGA 104741 GCCCCCAATTCTCTTTTTGA 104742 GCCAGAAGAGGGTTGA 104743 GGGTTCCGACCCTAAGCCCC 104744 CAATTCTCTTTTTGAGCCAG 104745 TAAAGTTCTAAGCTTGGGTT 104746 CCGACCCTAAGCCCCAATT 104747 GGTGGTCTTGTTGCTTAAAG 104748 TTCTAAGCTTGGGTTCCGAC 104749 CCCAGGTTTCGAAGTGGTGG 104750 TCTTGTTGCTTAAAGTTCTA 104751 CACACATTCCTGAATCCCAG 104752 GTTTCGAAGTGGTGGTCTTG 104754 ATTCCTGAATCCCAGGTTTC 104755 TAGTGGTTGCCAGCACTTCA 104756 CCCAGTTTGAATTCTTAGTG 104	104731 GCAATGATCCCAAAGTAGAC 328 104732 CTGCCCAGACTCGGCAAAGT 329 104733 CGTCCTCCTCACAGGGCAAT 330 104734 GATCCCAAAGTAGACCTGCC 88 104735 GGAAGGTTGGATGTTCGTCC 331 104736 TCCTCACAGGGCAATGATCC 332 104737 GTTGAGGGTGTCTGAAGGAG 333 104738 GTTGGATGTTCGTCCTCC 334 104739 TTTGAGCCAGAAGAGGTTGA 335 104740 GAGGCGTTTGGGAAGGTTGG 336 104741 GCCCCCAATTCTCTTTTTGA 337 104742 GCCAGAAGAGGTTGAGGGTG 338 104743 GGCTTCCGACCCTAAGCCCC 339 104744 CAATTCTCTTTTTGAGCCAG 340 104745 TAAAGTTCTAAGCTTGGGTT 341 104746 CCGACCCTAAGCCCCAATT 342 104747 GGTGGTCTTGTTGCTTAAAG 343 104748 TTCTAAGCTTGGATTCCGAC 344 104750 TCTTGTTGCTTAAAGTTCTA 346 104751 CACACATTCCTGAATCCCAG 347	104731 GCAATGATCCCAAAGTAGAC 328 2566-2585 104732 CTGCCCAGACTCGGCAAAGT 329 2546-2565 104733 CGTCCTCCTCACAGGGCAAT 330 2581-2600 104734 GATCCCAAAGTAGACCTGCC 88 2561-2580 104735 GGAAGGTTGGATGTCCTCC 331 2596-2615 104736 TCCTCACAGGGCAATGATCC 332 2576-2595 104737 GTTGAGGGTGTCTGAAGGAG 333 2652-2671 104738 GTTGGATGTTCGTCCTCCTC 334 2591-2610 104739 TTTGAGCCAGAAGAGGTTGA 335 2667-2686 104740 GAGGCGTTTGGGAAGGTTGG 336 2606-2625 104741 GCCCCAATTCTCTTTTTGA 337 2682-2701 104742 GCCAGAAGAGGTTGAGGGTG 338 2667-2686 104743 GGGTTCCGACCTAAGCCCC 339 2697-2716 104744 CAATTCTCTTTTTGAGCCAG 340 2677-2696 104745 TAAAGTTCTAAGCTTGGGTT 341 2712-2731 104746 CCCAGCCTAAGCCCCCAATT 342 2707-2766

	104763	AGATG TCAGGGATCA AAGCT	359	2847-2866	3'-UTR
	104764	TGGTCTCCAGATTCCAGATG	360	2862-2881	3'-UTR
5	104765	GTAGG CCCCAGTGAG TTCTG	361	2827-2846	3'-UTR
	104766	GAACCAAAGGCTCCCTGGTC	362	2877-2896	3'-UTR
10	104767	TCAGGGATCAAAGCTGTAGG	363	2842-2861	3'-UTR
	104768	TCCAGATTCCAGATGTCAGG	364	2857-2876	3'-UTR
	104769	GCAGCATTCTGGCCAGAACC	365	2892-2911	3'-UTR
15	104770	GTCTTCTCAAGTCCTGCAGC	366	2907-2926	3'-UTR
	104771	AAAGG CTCCCTGGTC TCCAG	367	2872-2891	3'-UTR
20	104772	CAATTTCTAGGTGAGGTCTT	368	2922-2941	3'-UTR
	104773	ATTCT GGCCAGAACC AAAGG	369	2887-2906	3'-UTR
٥٢	104774	CTCAAGTCCTGCAGCATTCT	34	2902-2921	3'-UTR
25	104775	AAGGT CCACTTGTGT CAATT	370	2937-2956	3'-UTR
	104776	GAGAG AGGAAGGCCT AAGGT	371	2952-2971	3'-UTR
30	104777	TCTAGGTGAGGTCTTCTCAA	372	2917-2936	3'-UTR
	104778	CCACTTGTGTCAATTTCTAG	373	2932-2951	3'-UTR
2 E	104779	GTCTGGAAACATCTGGAGAG	374	2967-2986	3'-UTR
35	104780	CCGTGTCTCAAGGAAGTCTG	375	2982-3001	3'-UTR
	104781	AGGAA GGCCTAAGGT CCACT	376	2947-2966	3'-UTR
40	104782	GAGGGAGCTGGCTCCATGGG	377	3014-3033	3'-UTR
	104783	GAAACATCTGGAGAGGAA	378	2962-2981	3'-UTR
45	104784	GTGCAAACATAAATAGAGGG	379	3029-3048	3'-UTR
40	104785	TCTCAAGGAAGTCTGGAAAC	380	2977-2996	3'-UTR
	104786	AATAA ATAATCACAA GTGCA	381	3044-3063	3'-UTR
50	104787	GGGCTGGGCTCCGTGTCTCA	382	2992-3011	3'-UTR
	104788	TACCCCGGTCTCCCAAATAA	383	3101-3120	3'-UTR
55	104789	AACAT AAATAGAGGG AGCTG	384	3024-3043	3'-UTR
33	104790	TTGGGTCCCCCAGGATACCC	385	3116-3135	3'-UTR
	104791	ATAAT CACAAGTGCA AACAT	386	3039-3058	3'-UTR
60	104792	AAGGC AGCTCCTACA TTGGG	387	3131-3150	3'-UTR
	104793	CGGTCTCCCAAATAAATACA	388	3096-3115	3'-UTR
65	104794	AAACA TGTCTGAGCC AAGGC	389	3146-3165	3'-UTR
	104795	TCCCCCAGGATACCCCGGTC	390	3111-3130	3'-UTR

	104796	AGCTC CTACATTGGG TCCCC	391	3126-3145	3'-UTR
_	104797	CTCCGTTTTCACGGA AAACA	37	3161-3180	3'-UTR
5	104798	TGTCTGAGCCAAGGCAGCTC	392	3141-3160	3'-UTR
	104799	CAGCCTATTGTTCAGCTCCG	393	3176-3195	3'-UTR
10	104800	AGAAG GCACAGAGGC CAGGG	394	3209-3228	3'-UTR
	104801	TTTTCACGGAAAACATGTCT	395	3156-3175	3'-UTR
3 F	104802	TATTGTTCAGCTCCGTTTTC	396	3171-3190	3'-UTR
15	104803	AAAAA CATAATCAAA AGAAG	397	3224-3243	3'-UTR
	104804	CAGATAAATATTTTAAAAAA	398	3239-3258	3'-UTR
20	104805	TACATGGGAACAGCCTATTG	399	3186-3205	3'-UTR
	104806	TTTAGACAACTTAATCAGAT	400	3254-3273	3'-UTR
2.5	104807	CATAATCAAAAGAAGGCACA	401	3219-3238	3'-UTR
25	104808	ACCAA ATCAGCATTG TTTAG	402	3269-3288	3'-UTR
	104809	AAATATTTTAAAAAACATAA	403	3234-3253	3'-UTR
30	104810	GAGTG ACAGTTGGTC ACCAA	404	3284-3303	3'-UTR
	104811	ACAAC TTAATCAGAT AAATA	405	3249-3268	3'-UTR
2.5	104812	CAGAGGCTCAGCAATGAGTG	406	3299-3318	3'-UTR
35	104813	ATCAG CATTGTTTAG ACAAC	407	3264-3283	3'-UTR
	104814	AGGGC GATTACAGAC ACAAC	408	3331-3350	3'-UTR
40	104815	ACAGT TGGTCACCAA ATCAG	409	3279-3298	3'-UTR
	104816	TCGCCACTGAATAGTAGGGC	410	3346-3365	3'-UTR
4 E	104817	GCTCA GCAATGAGTG ACAGT	411	3294-3313	3'-UTR
45	104818	AGCAA ACTTTATTTC TCGCC	412	3361-3380	3'-UTR
	104819	GATTACAGACACAACTCCCC	413	3326-3345	3'-UTR
50	104820	ACTGA ATAGTAGGGC GATTA	414	3341-3360	3'~UTR
	104821	ACTTT ATTTCTCGCC ACTGA	415	3356-3375	3'-UTR
55	104822	GCTGTCCTTGCTGAGGGAGC	416	0626-0645	5'-UTR
55	104823	CTTAGCTGGTCCTCTGCTGT	417	0641-0660	5'-UTR
	104824	GTTGCTTCTCTCCCTCTTAG	418	0656-0675	5'-UTR
60	104825	TGGCGTCTGAGGGTTGTTTT	419	0691-0710	5'-UTR
	104826	AGAGAACCTGCCTGGCAGCT	420	0723-0742	5'-UTR
65	104827	CAGTATGTGAGAGGAAGAGA	421	0738-0757	5'-UTR
	104828	GGTGAAGCCGTGGGTCAGTA	422	0753-0772	5'-UTR

	104829	AGTGC TCATGGTGTC CTTTC	423	0785-0804	AUG
5	104830	CCGGATCATGCTTTCAGTGC	424	0800-0819	coding
5	104831	GGCCA GCTCCACGTC CCGGA	425	0815-0834	coding
	104832	GGCCC CCCTGTCTTC TTGGG	426	0847-0866	coding
10	104833	GGCTG AGGAACAAGC ACCGC	427	0879-0898	coding
	104834	TCAGGAAGGAGAGAGGCTG	428	0894-0913	coding
15	104835	TGGCGCCTGCCACGATCAGG	429	0909-0918	coding
13	104836	GGCAG AAGAGCGTGG TGGCG	430	0924-0943	coding
	104837	CTCCAAAGTGCAGCAGCAG	431	0939-0958	coding
20	104838	GCTGATTAGAGAGAGGTCCC	432	1596-1615	coding
	104839	TGCCTGGGCCAGAGGGCTGA	433	1611-1630	coding
25	104840	GCTGCCCCTCAGCTTGAGGG	434	2175-2194	coding
23	104841	GGTTC AGCCACTGGA GCTGC	435	2190-2209	coding
	104842	GGGCATTGGCCCGGCGGTTC	436	2205-2224	coding
30	104843	CGCCATTGGCCAGGAGGGCA	437	2220-2239	coding
	104844	TATCTCTCAGCTCCACGCCA	438	2235-2254	coding
35	104845	GCACCACCAGCTGGTTATCT	439	2250-2269	coding
33	104846	ACAGGCCCTCTGATGGCACC	440	2265-2284	coding
	104847	GGGAGTAGATGAGGTACAGG	441	2280-2299	coding
40	104848	CCTTGAAGAGGACCTGGGAG	442	2295-2314	coding
	104849	GAGGA GCACATGGGT GGAGG	443	2327-2346	coding
45	104850	GCTGATGGTGTGGGTGAGGA	444	2342-2361	coding
40	104851	GGAGA CGGCGATGCG GCTGA	445	2357-2376	coding
	104852	GACCTTGGTCTGGTAGGAGA	446	2372-2391	coding
50	104853	GGCAGAGAGGAGGTTGACCT	447	2387-2406	coding
	104854	GCTTGGCCTCAGCCCCCTCT	23	2436-2455	coding
	104855	TGGGCTCATACCAGGGCTTG	448	2451-2470	coding
55	104856	CCCTCCCAGATAGATGGGC	449	2466-2485	coding
	104857	TCTCCAGCTGGAAGACCCCT	92	2481-2500	coding
60	104858	TGAGTCGGTCACCCTTCTCC	450	2496-2515	coding
	104859	GATTGATCTCAGCGCTGAGT	451	2511-2530	coding
	104860	CGAGATAGTCGGGCCGATTG	452	2526-2545	coding

	104861	CAGACTCGGCAAAGTCGAGA	89	2541-2560	coding
	104862	CAAAGTAGACCTGCCCAGAC	453	2556-2575	coding
5	104863	ACAGG GCAATGATCC CAAAG	454	2571-2590	stop
	104864	ATGTTCGTCCTCCTCACAGG	455	2586-2605	stop
10	104865	GTTTG GGAAGGTTGG ATGTT	456	2601-2620	3'-UTR
	104866	AAGAG GTTGAGGGTG TCTGA	457	2657-2676	3'-UTR
	104867	CTCTTTTTGAGCCAGAAGAG	458	2672-2691	3'-UTR
15	104868	CCTAAGCCCCCAATTCTCTT	459	2687-2706	3'-UTR
	104869	AGCTT GGGTTCCGAC CCTAA	460	2702-2721	3'-UTR
20	104870	TTGCTTAAAGTTCTA AGCTT	461	2717-2736	3'-UTR
	104871	GAAGTGGTGGTCTTGTTGCT	462	2732-2751	3'-UTR
0.5	104872	TGAATCCCAGGTTTCGAAGT	463	2747-2766	3'-UTR
25	104873	CAGGCCACACATTCCTGAAT	464	2762-2781	3'-UTR
	104874	CAGCACTTCACTGTGCAGGC	465	2777-2796	3'-UTR
30	104875	ATTCT TAGTGGTTGC CAGCA	466	2792-2811	3'-UTR
	104876	GAGGCCCCAGTTTGAATTCT	467	2807-2826	3'-UTR
2.5	104877	CCCCAGTGAGTTCTGGAGGC	468	2822-2841	3'-UTR
35	104878	GATCAAAGCTGTAGGCCCCA	469	2837-2856	3'-UTR
	104879	ATTCC AGATGTCAGG GATCA	470	2852-2871	3'-UTR
40	104880	CTCCCTGGTCTCCAGATTCC	471	2867-2886	3'-UTR
	104881	GGCCA GAACCAAAGG CTCCC	453 2556-2575 46 454 2571-2590 45 455 2586-2605 47 456 2601-2620 48 457 2657-2676 48 459 2687-2706 48 460 2702-2721 47 461 2717-2736 47 462 2732-2751 463 2747-2766 47 464 2762-2781 467 2807-2826 48 468 2822-2841 48 469 2837-2856 47 2867-2886 47 2867-2886 47 2882-2901 47 2912-2931 47 2912-2931 47 2912-2931 47 2927-2946 47 2942-2961 47 2987-2976 48 2972-2991 48 3034-3053 48 48 3034-3053 48 48 3091-3110 48 3091-3110	3'-UTR	
45	104882	GTCCTGCAGCATTCTGGCCA	473	2897-2916	3'-UTR
43	104883	GTGAGGTCTTCTCAAGTCCT	474	2912-2931	3'-UTR
	104884	TGTGTCAATTTCTAGGTGAG	475	2927-2946	3'-UTR
50	104885	GGCCT AAGGTCCACT TGTGT	476	2942-2961	3'-UTR
	104886	ATCTG GAGAGAGGCCT	4532556-25754542571-25904552586-26054562601-26204572657-26764582672-26914592687-27064602702-27214612717-27364622732-27514632747-27664642762-27814652777-27964662792-28114672807-28264682822-28414692837-28564702852-28714712867-28864722882-29014732897-29164742912-29314752927-29464762942-29614772957-29764782972-29914792987-30064803019-30384813034-30534823091-31104833106-3125	3'-UTR	
55	104887	AGGAA GTCTGGAAAC ATCTG	478	2972-2991	3'-UTR
55	104888	GGGCT CCGTGTCTCA AGGAA	479	2987-3006	3'-UTR
	104889	AAATA GAGGGAGCTG GCTCC	480	3019-3038	3'-UTR
60	104890	CACAAGTGCAAACATAAATA	481	3034-3053	3'-UTR
	104891	TCCCAAATAAATACATTCAT	482	3091-3110	3'-UTR
65	104892	CAGGATACCCCGGTCTCCCA	483	3106-3125	3'-UTR
	104893	CTACATTGGGTCCCCCAGGA	467 2807-2826 468 2822-2841 469 2837-2856 470 2852-2871 471 2867-2886 472 2882-2901 473 2897-2916 474 2912-2931 475 2927-2946 476 2942-2961 477 2957-2976 478 2972-2991 479 2987-3006 480 3019-3038 481 3034-3053 482 3091-3110 483 3106-3125	3121-3140	3'-UTR

	104894	GAGCCAAGGCAGCTCCTACA	485	3136-3155	3'-UTR
_	104895	ACGGA AAACATGTCT GAGCC	486	3151-3170	3'-UTR
5	104896	TTCAGCTCCGTTTTCACGGA	487	3166-3185	3'-UTR
	104897	GGGAACAGCCTATTGTTCAG	488	3181-3200	3'-UTR
10	104898	TCAAAAGAAGGCACAGAGGC	489	3214-3233	3'-UTR
	104899	TTTTAAAAAACATAATCAAA	490	3229-3248	3'-UTR
1.5	104900	TTAATCAGATAAATATTTTA	491	3244-3263	3'-UTR
15	104901	CATTGTTTAGACAACTTAAT	492	3259-3278	3'-UTR
	104902	TGGTCACCAAATCAGCATTG	493	3274-3293	3'-UTR
20	104903	GCAATGAGTGACAGTTGGTC	494	3289-3308	3'-UTR
	104904	GGGAGCAGAGGCTCAGCAAT	495	3304-3323	3'-UTR
٥.	104905	ATAGT AGGGCGATTA CAGAC	496	3336-3355	3'-UTR
25	104906	ATTTC TCGCCACTGA ATAGT	497	3351-3370	3'-UTR

¹ Emboldened residues are 2'-O-methoxyethyl residues (others are 2'-deoxy-). All 2'-O-methoxyethyl cytosines and 2'-deoxy 30 cytosines residues are 5-methyl-cytosines; all linkages are phosphorothioate linkages.

40

45

TABLE 37

Inhibition of Human TNF-lpha mRNA Expression by Chimeric (deoxy gapped) Phosphorothioate Oligodeoxynucleotides

	ISIS No:	SEQ ID NO:	GENE TARGET REGION	% mRNA EXPRESSION	% mRNA INHIBITION
50	basal			0.0%	
	induced			100.0%	0.0%
55	28089	69	intron 1	42.3%	57.7%
	104649	251	5'-UTR	165.6%	

²Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

³ This target region is an exon-intron junction and is represented in the form, for example, I1/E2, where I, followed by a number, refers to the intron number and E, followed by a number, refers to the exon number.

104655 257 5'-UTR 94.3% 5.7% 104656 258 5'-UTR 78.4% 21.6% 104657 259 5'-UTR 87.4% 12.6% 104658 260 5'-UTR 213.4% 20 104659 261 5'-UTR 96.3% 3.7% 104660 262 5'-UTR 153.1% 25 104661 263 5'-UTR 90.0% 10.0% 104662 264 5'-UTR 33.3% 66.7% 104663 265 5'-UTR 144.2% 30 104664 266 AUG 76.3% 23.7% 104665 267 AUG 185.3% 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9%						
104652		104650	252	5'-UTR	75.8%	24.2%
104652 254 S'-UTR 114.5% 104653 255 S'-UTR 84.9% 15.1% 104654 256 5'-UTR 80.8% 19.2% 104655 257 5'-UTR 94.3% 5.7% 104656 258 5'-UTR 78.4% 21.6% 104657 259 S'-UTR 87.4% 12.6% 104658 260 5'-UTR 213.4% 20	_	104651	253	5'-UTR	58.2%	41.8%
10	5	104652	254	5'-UTR	114.5%	
104655		104653	255	5'-UTR	84.9%	15.1%
15	10	104654	256	5'-UTR	80.8%	19.2%
15		104655	257	5'-UTR	94.3%	5.7%
104657	1.5	104656	258	5'-UTR	78.4%	21.6%
20 104659 261 5'-UTR 96.3% 3.7% 104660 262 5'-UTR 153.1% 25 104661 263 5'-UTR 90.0% 10.0% 104662 264 5'-UTR 33.3% 66.7% 104663 265 5'-UTR 144.2% 30 104664 266 AUG 76.3% 23.7% 104665 267 AUG 185.3% 35 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 50.8% 49.2% 104671 273 Coding 51.8% 48.2% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 135.4% 55 104674 276 Coding <td< td=""><td>15</td><td>104657</td><td>259</td><td>5'-UTR</td><td>87.4%</td><td>12.6%</td></td<>	15	104657	259	5'-UTR	87.4%	12.6%
104660 262 5'-UTR 153.1%		104658	260	5'-UTR	213.4%	
25	20	104659	261	5'-UTR	96.3%	3.7%
25		104660	262	5'-UTR	153.1%	
104662 264 5'-UTR 33.3% 66.7% 104663 265 5'-UTR 144.2% 30 104664 266 AUG 76.3% 23.7% 104665 267 AUG 185.3% 35 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 43.7% 56.3% 104671 273 Coding 51.8% 48.2% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 55 104675 277 Coding 83.1% 16.9% 55 104676 278 Coding 75.2% 24.8% 60 104678 280 Co	0.5	104661	263	5'-UTR	90.0%	10.0%
30 104664 266 AUG 76.3% 23.7% 104665 267 AUG 185.3% 35 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 43.7% 56.3% 45 104671 273 Coding 52.2% 47.8% 45 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 55 104676 278 Coding 87.5% 12.5% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282	25	104662	264	5'-UTR	33.3%	66.7%
104665 268 AUG 185.3% 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 43.7% 56.3% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 55 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104663	265	5'-UTR	144.2%	
35 104666 268 AUG 67.4% 32.6% 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 43.7% 56.3% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 55 104676 278 Coding 87.5% 12.5% 56 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284	30	104664	266	AUG	76.3%	23.7%
35 104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 50.8% 49.2% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 55 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104665	267	AUG	185.3%	~~-
104667 269 Coding 94.3% 5.7% 104668 270 Coding 63.1% 36.9% 40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 50.8% 49.2% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 58.5% 41.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	25	104666	268	AUG	67.4%	32.6%
40 104669 271 Coding 50.8% 49.2% 104670 272 Coding 43.7% 56.3% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	30	104667	269	Coding	94.3%	5.7%
104670 272 Coding 43.7% 56.3% 104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104668	270	Coding	63.1%	36.9%
104671 273 Coding 52.2% 47.8% 104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	40	104669	271	Coding	50.8%	49.2%
104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104670	272	Coding	43.7%	56.3%
104672 274 Coding 51.8% 48.2% 104673 275 Coding 102.3% 50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	15	104671	273	Coding	52.2%	47.8%
50 104674 276 Coding 135.4% 104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	4 J	104672	274	Coding	51.8%	48.2%
104675 277 Coding 83.1% 16.9% 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104673	275	Coding	102.3%	
55 104676 278 Coding 87.5% 12.5% 104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	50	104674	276	Coding	135.4%	
104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104675	277	Coding	83.1%	16.9%
104677 279 Coding 53.6% 46.4% 104678 280 Coding 75.2% 24.8% 60 104679 281 Coding 114.0% 104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	55	104676	278	Coding	87.5%	12.5%
60	55	104677	279	Coding	53.6%	46.4%
104680 282 Coding 142.5% 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%		104678	280	Coding	75.2%	24.8%
65 104681 283 Coding 58.5% 41.5% 104682 284 Coding 101.9%	60	104679	281	Coding	114.0%	~
65 104682 284 Coding 101.9%	[104680	282	Coding	142.5%	
104682 284 Coding 101.9%	65	104681	283	Coding	58.5%	41.5%
104683 285 Coding 77.1% 22.9%		104682	284	Coding	101.9%	
		104683	285	Coding	77.1%	22.9%

	104684	286	Coding	61.0%	39.0%
5	104685	287	Coding	65.9%	34.1%
5	104686	288	E2/I2	59.2%	40.8%
	104687	289	Coding	77.0%	23.0%
10	104688	290	Coding	40.1%	59.9%
	104689	291	Coding	78.6%	21.4%
7.5	104690	292	Coding	90.9%	9.1%
15	104691	293	Coding	107.6%	
	104692	294	Coding	63.4%	36.6%
20	104693	295	Coding	74.1%	25.9%
	104694	296	Coding	108.3%	
2.5	104695	297	Coding	48.2%	51.8%
25	104696	298	Coding	120.3%	
	104697	299	Coding	45.0%	55.0%
30	104698	300	Coding	77.1%	22.9%
	104699	301	Coding	143.7%	
2.5	104700	302	Coding	96.1%	3.9%
35	104701	303	Coding	106.8%	
	104702	304	Coding	157.4%	
40	104703	305	Coding	84.3%	15.7%
	104704	306	Coding	182.8%	
4.5	104705	307	Coding	125.1%	
45	104706	308	Coding	81.8%	18.2%
	104707	309	Coding	104.8%	
50	104708	310	Coding	163.0%	
	104709	311	Coding	95.0%	5.0%
55	104710	312	Coding	182.1%	
55	104711	313	Coding	82.1%	17.9%
	104712	314	Coding	118.1%	
60	104713	315	Coding	31.1%	68.9%
	104714	316	Coding	90.5%	9.5%
65	104715	317	Coding	96.7%	3.3%
0.5	104716	318	Coding	180.7%	
	104717	93	Coding	71.6%	28.4%

	104718	94	Coding	187.0%	
r	104719	319	Coding	88.8%	11.2%
5	104720	320	Coding	166.5%	
	104721	321	Coding	65.0%	35.0%
10	104722	322	Coding	59.6%	40.4%
	104723	26	Coding	90.1%	9.9%
15	104724	323	Coding	88.7%	11.3%
13	104725	90	Coding	94.7%	5.3%
	104726	91	Coding	84.1%	15.9%
20	104727	324_	Coding	125.3%	
ļ	104728	325	Coding	221.7%	
25	104729	326	Coding	102.4%	
23	104730	327	Coding	151.6%	~
	104731	328	Coding	102.2%	
30	104732	329	Coding	53.2%	46.8%
!	104733	330	Stop	57.0%	43.0%
35	104734	88	Coding	119.2%	
33	104735	331	3'-UTR	71.2%	28.8%
	104736	332	Stop	79.0%	21.0%
40	104737	333	3'-UTR	87.4%	12.6%
	104738	334	Stop	36.8%	63.2%
45	104739	335	3'-UTR	106.0%	
10	104740	336	3'-UTR	130.9%	
	104741	337	3'-UTR	79.2%	20.8%
50	104742	338	3'-UTR	159.0%	
	104743	339	3'-UTR	96.1%	3.9%
55	104744	340	3'-UTR	129.9%	
	104745	341	3'-UTR	80.2%	19.8%
	104746	342	3'-UTR	168.8%	
60	104747	343	3'-UTR	89.2%	10.8%
	104748	344	3'-UTR	103.4%	
65	104749	345	3'-UTR	89.0%	11.0%
	104750	346	3'-UTR	160.0%	
	104751	347	3'-UTR	60.1%	39.9%

104752 348 3'-UTR 72.4% 27.6% 104753 349 3'-UTR 70.0% 30.0% 104754 350 3'-UTR 115.6% 104755 351 3'-UTR 71.7% 28.3% 10 104756 352 3'-UTR 91.5% 8.5% 104757 353 3'-UTR 97.6% 2.4% 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 97.6% 2.4% 104760 356 3'-UTR 182.4% 20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 110.9% 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 104766 362 3'-UTR 126.4% <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
5 104754 350 3'-UTR 115.6% 104755 351 3'-UTR 71.7% 28.3% 10 104756 352 3'-UTR 91.5% 8.5% 104757 353 3'-UTR 91.5% 8.5% 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 97.6% 2.4% 104760 356 3'-UTR 182.4% 20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 116.1% 35 104768 364 3'-UTR 177.7% 40 104770 366		104752	348	3'-UTR	72.4%	27.6%
104754 350 3'-UTR 115.6% 104755 351 3'-UTR 71.7% 28.3% 104756 352 3'-UTR 91.5% 8.5% 104757 353 3'-UTR 85.6% 14.4% 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 68.6% 31.4% 104760 356 3'-UTR 182.4% 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 102.0% 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	_	104753	349	3'-UTR	70.0%	30.0%
10 104756 352 3'-UTR 91.5% 8.5% 104757 353 3'-UTR 85.6% 14.4% 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 68.6% 31.4% 104760 356 3'-UTR 182.4% 20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 25 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 154.8% 104767 363 3'-UTR 154.8% 35 104768 364 3'-UTR 177.7% 35 104768 364 3'-UTR 177.7% 40 104770 366 3'-UTR 191.2% 104772 368 3'-UTR 191.2% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8%<	5	104754	350	3'-UTR	115.6%	
104757 353 3'-UTR 85.6% 14.4% 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 68.6% 31.4% 104760 356 3'-UTR 182.4% 20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 25 104764 360 3'-UTR 102.0% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 126.4% 35 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 177.7% 104769 365 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 133.9% 104774 34 3'-UTR 133.9% 50 104776 371 3'-UTR 94.8% 5.2% 104777 372 3'-UTR 80.6% 19.4% 50 104777 372 3'-UTR 80.6% 19.4% 55		104755	351	3'-UTR	71.7%	28.3%
15 104758 354 3'-UTR 97.6% 2.4% 104759 355 3'-UTR 68.6% 31.4% 104760 356 3'-UTR 182.4% 20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 25 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 35 104768 364 3'-UTR 177.7% 36 3'-UTR 177.7% 40 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 45 104772 368 3'-UTR 19.2% 45 104774 34 3'-UTR 133.9% 50 104776 371 3'-UTR 80.6% 19.4% 50 104776 3	10	104756	352	3'-UTR	91.5%	8.5%
15		104757	353	3'-UTR	85.6%	14.4%
104759 355 3'-UTR 68.6% 31.4% 104760 356 3'-UTR 182.4% 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30	1.5	104758	354	3'-UTR	97.6%	2.4%
20 104761 357 3'-UTR 110.9% 104762 358 3'-UTR 161.4% 25 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 191.2% 45 104773 369 3'-UTR 133.9% 45 104773 369 3'-UTR 133.9% 50 104776 371 3'-UTR 80.6% 19.4% 50 104776 37	15	104759	355	3'-UTR	68.6%	31.4%
104762 358 3'-UTR 161.4% 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30		104760	356	3'-UTR	182.4%	
25 104763 359 3'-UTR 102.0% 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 45 104773 369 3'-UTR 133.9% 45 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 55 104778 373	20	104761	357	3'-UTR	110.9%	
25 104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 35 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 19.7% 45 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104762	358	3'-UTR	161.4%	
104764 360 3'-UTR 113.5% 104765 361 3'-UTR 154.8% 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 80.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	0.5	104763	359	3'-UTR	102.0%	
30 104766 362 3'-UTR 126.4% 104767 363 3'-UTR 116.1% 35 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	25	104764	360	3'-UTR	113.5%	
104767 363 3'-UTR 116.1% 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104765	361	3'-UTR	154.8%	
35 104768 364 3'-UTR 177.7% 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	30	104766	362	3'-UTR	126.4%	
35 104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104767	363	3'-UTR	116.1%	
104769 365 3'-UTR 89.8% 10.2% 104770 366 3'-UTR 94.3% 5.7% 40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	2.5	104768	364	3'-UTR	177.7%	
40 104771 367 3'-UTR 191.2% 104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	35	104769	365	3'-UTR	89.8%	10.2%
104772 368 3'-UTR 80.3% 19.7% 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104770	366	3'-UTR	94.3%	5.7%
45 104773 369 3'-UTR 133.9% 104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	40	104771	367	3'-UTR	191.2%	
104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104772	368	3'-UTR	80.3%	19.7%
104774 34 3'-UTR 94.8% 5.2% 104775 370 3'-UTR 80.6% 19.4% 50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	4.5	104773	369	3'-UTR	133.9%	
50 104776 371 3'-UTR 90.1% 9.9% 104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%	45	104774	34	3'-UTR	94.8%	5.2%
104777 372 3'-UTR 84.7% 15.3% 104778 373 3'-UTR 121.3%		104775	370	3'-UTR	80.6%	19.4%
104778 373 3'-UTR 121.3%	50	104776	371	3'-UTR	90.1%	9.9%
55		104777	372	3'-UTR	84.7%	15.3%
	55	104778	373	3'-UTR	121.3%	
1 2017/3	55	104779	374	3'-UTR	97.8%	2.2%
104780 375 3'-UTR 67.6% 32.4%		104780	375	3'-UTR	67.6%	32.4%
60 104781 376 3'-UTR 141.5%	60	104781	376	3'-UTR	141.5%	
104782 377 3'-UTR 96.5% 3.5%		104782	377	3'-UTR	96.5%	3.5%
65 104783 378 3'-UTR 153.2%	65	104783	378	3'-UTR	153.2%	
104784 379 3'-UTR 85.4% 14.6%	0.5	104784	379	3'-UTR	85.4%	14.6%
104785 380 3'-UTR 163.9%		104785	380	3'-UTR	163.9%	

	104786	381	3'-UTR	82.9%	17.1%
5	104787	382	3'-UTR	89.7%	10.3%
5	104788	383	3'-UTR	103.9%	
	104789	384	3'-UTR	75.8%	24.2%
10	104790	385	: 3'-UTR	106.3%	
•	104791	386	3'-UTR	165.3%	
1.0	104792	387	3'-UTR	71.8%	28.2%
15	104793	388	3'-UTR	101.9%	
	104794	389	3'-UTR	70.7%	29.3%
20	104795	390	3'-UTR	68.8%	31.2%
	104796	391	3'-UTR	93.4%	6.6%
0.5	104797	37	3'-UTR	131.7%	
25	104798	392	3'-UTR	89.4%	10.6%
	104799	393	3'-UTR	89.6%	10.4%
30	104800	394	3'-UTR	89.0%	11.0%
	104801	395	3'-UTR	196.8%	
35	104802	396	3'-UTR	189.3%	~
33	104803	397	3'-UTR	119.7%	
	104804	398	3'-UTR	102.4%	
40	104805	399	3'-UTR	90.6%	9.4%
	104806	400	3'-UTR	89.1%	10.9%
45	104807	401	3'-UTR	152.6%	
45	104808	402	3'-UTR	96.8%	3.2%
	104809	403	3'-UTR	178.8%	
50	104810	404	3'-UTR	94.9%	5.1%
	104811	405	3'-UTR	234.4%	
55	104812	406	3'-UTR	114.3%	
55	104813	407	3'-UTR	153.7%	
	104814	408	3'-UTR	86.3%	13.7%
60	104815	409	3'-UTR	153.9%	
	104816	410	3'-UTR	79.9%	20.1%
65	104817	411	3'-UTR	196.5%	
	104818	412	3'-UTR	94.3%	5.7%
·	104819	413	3'-UTR	143.3%	

104820 414 3'-UTR 123. 104821 415 3'-UTR 129. 104822 416 5'-UTR 76. 104823 417 5'-UTR 63.	.2% 6% 23.4%
5 104822 416 5'-UTR 76.	6% 23.4%
104822 416 5'-UTR 76.	
104823 417 5'-UTR 63.	9% 36.1%
10 104824 418 5'-UTR 22.	0% 78.0%
104825 419 5'-UTR 109.	. 4%
104826 420 5'-UTR 45.	2% 54.8%
15 104827 421 .5'-UTR 68.	9% 31.1%
104828 422 5'-UTR 70.	9% 29.1%
20 104829 423 AUG 46.	6% 53.4%
104830 424 Coding 55.	0% 45.0%
104831 425 Coding 49.	5% 50.5%
25 104832 426 Coding 106.	.0%
104833 427 Coding 23.	7% 76.3%
30 104834 428 Coding 91.	8% 8.2%
104835 429 Coding 72.	3% 27.7%
104836 430 Coding 63.	4% 36.6%
104837 431 Coding 31.	0% 69.0%
104838 432 Coding 18.	0% 82.0%
40 104839 433 Coding 67.	9% 32.1%
104840 434 Coding 93.	8% 6.2%
104841 435 Coding 43.	0% 57.0%
104842 436 Coding 73.	2% 26.8%
104843 437 Coding 48.	1% 51.9%
50 104844 438 Coding 39.	2% 60.8%
104845 439 Coding 37.	6% 62.4%
104846 440 Coding 81.	7% 18.3%
104847 441 Coding 50.	8% 49.2%
104848 442 Coding 56.	7% 43.3%
60 104849 443 Coding 51.	8% 48.2%
104850 444 Coding 91.	8% 8.2%
65 104851 445 Coding 93.	9% 6.1%
104852 446 Coding 100.	.9%
104853 447 Coding 67.	7% 32.3%

	104854	23	Coding	11.0%	89.0%
r	104855	448	Coding	62.5%	37.5%
5	104856	449	Coding	67.8%	32.2%
	104857	92	Coding	28.1%	71.9%
10	104858	450	Coding	76.2%	23.8%
	104859	451	Coding	52.3%	47.7%
15	104860	452	Coding	93.6%	6.4%
13	104861	89	Coding	79.3%	20.7%
	104862	453	Coding	63.1%	36.9%
20	104863	454	Stop	64.5%	35.5%
	104864	455	Stop	43.2%	56.8%
25	104865	456	3'-UTR	83.1%	16.9%
23	104866	457	3'-UTR	49.4%	50.6%
	104867	458	3'-UTR	49.5%	50.5%
30	104868	459	3'-UTR	89.6%	. 10.4%
	104869	460	3'-UTR	21.4%	78.6%
35	104870	461	3'-UTR	118.0%	
33	104871	462	3'-UTR	55.8%	44.2%
	104872	463	3'-UTR	49.0%	51.0%
40	104873	464	3'-UTR	92.6%	7.4%
	104874	465	3'-UTR	33.4%	66.6%
45	104875	466	3'-UTR	36.2%	63.8%
10	104876	467	3'-UTR	73.4%	26.6%
	104877	468	3'-UTR	40.9%	59.1%
50	104878	469	3'-UTR	78.7%	21.3%
	104879	470	3'-UTR	75.4%	24.6%
55	104880	471	3'-UTR	50.2%	49.8%
33	104881	472	3'-UTR	47.0%	53.0%
	104882	473	3'-UTR	82.7%	17.3%
60	104883	474	3'-UTR	46.4%	53.6%
	104884	475	3'-UTR	46.1%	53.9%
65	104885	476	3'-UTR	156.9%	
	104886	477	3'-UTR	102.4%	
	104887	478	3'-UTR	59.1%	40.9%

1	104888	479	3'-UTR	64.7%	35.3%
5	104889	480	3'-UTR	83.7%	16.3%
כ	104890	481	3'-UTR	52.9%	47.1%
	104891	482	3'-UTR	87.9%	12.1%
10	104892	483	3'-UTR	39.8%	60.2%
	104893	484	3'-UTR	71.1%	28.9%
15	104894	485	3'-UTR	34.0%	66.0%
15	104895	486	3'-UTR	129.8%	
	104896	487	3'-UTR	57.6%	·42.4%
20	104897	488	3'-UTR	49.6%	50.4%
	104898	489	3'-UTR	71.7%	28.3%
25	104899	490	3'-UTR	101.5%	
25	104900	491	3'-UTR	142.1%	
	104901	492	3'-UTR	55.9%	44.1%
30	104902	493	3'-UTR	85.3%	14.7%
	104903	494	3'-UTR	46.0%	54.0%
25	104904	495	3'-UTR	59.9%	40.1%
35	104905	496	3'-UTR	47.2%	52.8%
	104906	497	3'-UTR	56.3%	43.7%

ISPH-0767 - 134 - PATENT

Oligonucleotides 104662 (SEQ ID NO: 264), 104669 (SEQ ID NO: 271), 104670 (SEQ ID NO: 272), 104688 (SEQ ID NO: 290), 104695 (SEQ ID NO: 297), 104697 (SEQ ID NO: 299), 104713 (SEQ ID NO: 315), 104738 (SEQ ID NO: 334), 104824 (SEQ ID NO: 418), 104826 5 (SEQ ID NO: 420), 104829 (SEQ ID NO: 423), 104831 (SEQ ID NO: 425), 104833 (SEQ ID NO: 427), 104837 (SEQ ID NO: 431), 104838 (SEQ ID NO: 432), 104841 (SEQ ID NO: 435), 104843 (SEQ ID NO: 437), 104844 (SEQ ID NO: 438), 104845 (SEQ ID NO: 439), 104847 (SEQ ID NO: 441), 104854 (SEQ ID NO: 23), 104857 (SEQ ID NO: 92), 10 104864 (SEQ ID NO: 455), 104866 (SEQ ID NO: 457), 104867 (SEQ ID NO: 458), 104869 (SEQ ID NO: 460), 104872 (SEQ ID NO: 463), 104874 (SEQ ID NO: 465), 104875 (SEQ ID NO: 466), 104877 (SEQ ID NO: 468), 104880 (SEQ ID NO: 471), 104881 (SEQ ID NO: 472), 104883 (SEQ ID NO: 474), 104884 (SEQ ID NO: 475), 104892 (SEQ ID 15 NO: 483), 104894 (SEQ ID NO: 485), 104897 (SEQ ID NO: 488), 104903 (SEQ ID NO: 494) and 104905 (SEQ ID NO: 496) gave approximately 50% or greater reduction in TNF- α mRNA expression in this assay. Oligonucleotides 104713 (SEQ ID NO: 315), 104824 (SEQ ID NO: 418), 104833 (SEQ ID NO: 427), 104837 (SEQ ID NO: 20 431), 104838 (SEQ ID NO: 432), 104854 (SEQ ID NO: 23), 104857 (SEQ ID NO: 92), and 104869 (SEQ ID NO: 460) gave approximately 70% or greater reduction in TNF- α mRNA expression in this assay.

EXAMPLE 25: Dose response of chimeric (deoxy gapped) antisense phosphorothicate oligodeoxynucleotide effects on TNF- α mRNA and protein levels

Several oligonucleotides from the initial screen were chosen for dose response assays. NeoHk cells were grown, treated and processed as described in Example 3. LIPOFECTIN7 was added 30 at a ratio of 3 µg/ml per 100 nM of oligonucleotide. The control included LIPOFECTIN7 at a concentration of 9 µg/ml.

The human promonocytic leukaemia cell line, THP-1 (American Type Culture Collection, Manassas, VA) was maintained in RPMI 1640 growth media supplemented with 10% fetal calf serum 35 (FCS; Life Technologies, Rockville, MD).

ISPH-0767 - 135 - PATENT

A total of 8 x 10⁵ cells were employed for each treatment by combining 50 μl of cell suspension in OPTIMEMTM, 1% FBS with oligonucleotide at the indicated concentrations to reach a final volume of 100 μl with OPTIMEMTM, 1% FBS. Cells were then 5 transferred to a 1 mm electroporation cuvette and electroporated using an Electrocell Manipulator 600 instrument (Biotechnologies and Experimental Research, Inc.) employing 90 V, 1000 μF, at 13 Ω. Electroporated cells were then transferred to 24 well plates. 400 μl of RPMI 1640, 10% FCS was added to the cells and the cells were allowed to recover for 6 hrs. Cells were then induced with LPS at a final concentration of 100 ng/ml for 2 hours. RNA was isolated and processed as described in Example 3. Results with NeoHK cells are shown in Table 38 for mRNA, and Table 39 for protein. Results with THP-1 cells are shown in Table 40.

Most of the oligonucleotides tested showed dose response effects with a maximum inhibition of mRNA greater than 70% and a maximum inhibition of protein greater than 85%.

TABLE 38 $\label{eq:Dose Response of NeoHK Cells to TNF-} \alpha$ Chimeric (deoxy gapped) Antisense Oligonucleotides

25		SEQ ID	ASO Gene		% mRNA	% mRNA
	ISIS #	NO:	Target	Dose	Expression	Inhibition
	induced		~		100%	
30	16798	128	coding	30 nM	87%	13%
	11	"	rr	100 nM	129%	
35	11	11	11	300 nM	156%	
33	21823	69	intron 1	30 nM	82%	18%
	11	11	11	100 nM	90%	10%
40	11	11	**	300 nM	59%	41%
	28088	68	intron 1	30 nM	68%	32%
45	11	ft .	11	100 nM	43%	57%
40	11	11		300 nM	42%	58%

	28089	69	intron 1	30 nM	59%	41%
_	11	11	11	100 nM	44%	56%
5	11	11	Ħ	300 nM	38%	62%
	104697	299	coding	30 nM	60%	40%
10	11	II .	11	100 nM	45%	55%
	11	77	FT	300 nM	27%	73%
1 5	104777	372	3'-UTR	30 nM	66%	34%
15	11	11	11	100 nM	55%	45%
	11	11	11	300 nM	43%	57%

TABLE 39 Dose Response of NeoHK Cells to TNF- $\!\alpha$ Chimeric (deoxy gapped) Antisense Oligonucleotides

2	5	

25						
		SEQ ID	ASO Gene	,	% Protein	% Protein
	ISIS #	NO:	Target	Dose	Expression	Inhibition
30	induced				100.0%	
	16798	128	coding	30 nM	115.0%	
35	11	11	11	100 nM	136.0%	
33	ff	ff	ff.	300 nM	183.0%	
	28089	69	intron 1	30 nM	87.3%	12.7%
40	11	11	11	100 nM	47.4%	52.6%
	11	11	11	300 nM	22.8%	77.2%
45	104681	283	coding	30 nM	91.3%	8.7%
45	11	n	11	100 nM	62.0%	38.0%
	n	11	PT .	300 nM	28.5%	71.5%
50	104697	299	coding	30 nM	87.1%	12.9%
	TI .	ff	fT .	100 nM	59.6%	40.4%
55	11	11	71	300 nM	29.1%	70.9%
55	104838	432	coding	30 nM	91.9%	8.1%
	11	11	11	100 nM	56.9%	43.1%
60	11	11	11	300 nM	14.8%	85.2%
	104854	23	coding	30 nM	64.4%	35.6%
	11	11	11	100 nM	42.3%	57.7%

	11	11	11	300 nM	96.1%	3.9%
5	104869	460	3'-UTR	30 nM	88.9%	11.1%
	11	11	11	100 nM	56.8%	43.2%
	11	27	77	300 nM	42.3%	57.7%

10 **TABLE 40**

Dose Response of LPS-Induced THP-1 Cells to Chimeric (deoxy gapped) TNF- α Antisense Phosphorothioate Oligodeoxynucleotides (ASOs)

15						
	ISIS #	SEQ ID NO:	ASO Gene Target	Dose	% mRNA Expression	% mRNA Inhibition
20	induced		~~~		100%	
	16798	128	coding	1 μΜ	102%	
25	11	11	71	3 μM	87%	13%
23	11	11	11	10 μΜ	113%	
	11	"		30 µM	134%	
30	28089	69	intron 1	1 μΜ	39%	61%
	11	"	11	3 µМ	79%	21%
35	ŧŧ	"	"	10 μΜ	91%	9%
33	tr	11	***	30 μM	63%	37%
	104697	299	coding	1 μΜ	99%	1용
40	**	18	11	3 μM	96%	4%
	**	11	11	10 μΜ_	92%	8%
45	11	11	. 11	30 μM	52%	48%
40	104838	432	coding	1 μΜ	31%	69%
	"	11	11	3 µM	20%	80%
50	17	11	11	10 μΜ	15%	85%
	11	11	11	30 μM	7%	93%
55	104854	23	coding	1 μΜ	110%	
J J	"	11	11	3 µМ	90%	10%
	"	**	11	10 μΜ	95%	5%
60	"	11	11	30 μM	61%	39%

ISPH-0767 - 138 - PATENT

EXAMPLE 26: Further Optimization of Human TNF- α Antisense Oligonucleotide Chemistry

Additional analogs of TNF- α oligonucleotides were designed and synthesized to find an optimum gap size. The sequences and 5 chemistries are shown in Table 36.

Dose response experiments are performed as described in Example 3. $\,$

15	ISIS	NUCLEOTIDE SEQUENCE1	SEQ	TARGET GENE	GENE TARGET
	NO.	(5' -> 3')	NO:	CO-ORDINATES ²	REGION
	110554	GCTGATTAGAGAGAGGTCCC	432	104838 analog	
20	110555	GCTGATTAGAGAGAGGTCCC	"	"	1109
	110556		"	"	
		GCTGATTAGAGAGAGGTCCC			
25	110557	G CTGATTAGAG AGAGGTCCC	"	"	
	110583	GCTGATTAGA GAGAGGTCCC	11	11	
30	110558	CTGATTAGAGAGAGGTCCC	498	1596-1614	coding
30	110559	CTGATTAGAGAGAGGTCCC	11	11	11
	110560	CTGATTAGAGAGAGGTCCC		11	11
35	110561	CTGATTAGAGAGAGGTCCC	17	"	"
	110562	CT GATTAGAGAGAGGTCCC	=	"	11
40	110563	CT GATTAGAGAG AGGTCCC	17	11	"
40	110564	CTGATTAGAGAGAGGTCCC	11	11	11
	110565	C TGATTAGAGAGAGGTCCC	17	11	11
45	110566	C TGATTAGAGAG AGGTCCC	2	11	n
	110567	C TGATTAGAGA GAGGTCCC	11	11	11
50	110584	CTGATTAGAG AGAGGTCCC	11	"	11
	108371	CTGA TTAGAGAGAG GTCC	499	1597-1614	coding
	110568	CTGATTAGAGAGAGGTCC	11	11	11
55	110569	CT GATTAGAGAG AGGTCC	"	11	11

				
110570	C TGATTAGAGA GAGGTCC	11	11	11
110585	CTGATTAGAG AGAGGTCC	"	"	
110571	CTGGTTATCTCTCAGCTCCA	299	104697 analog	
110572	CTGGTTATCTCTCAGCTCCA	11	"	
110573	CTGGTTATCTCTCAGCTCCA	11	n	
110586	CTGGTTATCTCTCAGCTCCA	11	11	
110574	GATCACTCCAAAGTGCAGCA	283	104681 ana	alog
110575	GATCACTCCAAAGTGCAGCA	11	11	
110576	GATCACTCCAAAGTGCAGCA	"	tr .	
110587	GATCACTCCA AAGTGCAGCA	"	11	
110577	AGCTTGG GTTCCGACCC TAA	460	104689 ana	alog
110578	AGCTTGGG TTCCGACCCT AA	11	11	
110579	AGC TTGGGTTCCG ACCCTAA	11	11	
110588	AGCTTGGGTT CCGACCCTAA	11	11	
110580	AGGTTGA CCTTGGTCTG GTA	315	104713 ana	alog
110581	AGGTTGAC CTTGGTCTGG TA	11	11	
110582	AGG TTGACCTTGG TCTGGTA	11	11	
110589	AGGTTGACCT TGGTCTGGTA	***	11	
110637	GTGTGCCAGACACCCTATCT	69	21823 analog	
110651	GTGT GCCAGACACC CTATCT	11	11	
110665	GTG TGCCAGACAC CCTATCT	11	11	
110679	GT GTGCCAGACA CCCTATCT	11	11	
110693	G TGTGCCAGAC ACCCTATCT	11	11	
110707	GTGTGCCAGA CACCCTATCT	11	***	
110590	TGAGTGTCTTCTGTGTGCCA	500	1411-1430	intron 1
110597	TGAGTGTCTTCTGTGTGCCA	11	71	11
110604	TGAGTGTCTTCTGTGTGCCA	"	11	11
110611	TGAGTGTCTTCTGTGTGCCA	11	11	11
110618	T GAGTGTCTTC TGTGTGCCA	"	11	11
110625	TGAGTGTCTT CTGTGTGCCA	"	11	11
110591	GAGTGTCTTCTGTGTGCCAG	501	1410-1429	intron 1
110598	GAGTGTCTTCTGTGTGCCAG	11	ff	11
110605	GAGTGTCTTCTGTGTGCCAG	71	11	77
	110585 110571 110572 110573 110586 110574 110575 110576 110577 110578 110577 110578 110588 110589 110581 110582 110589 110637 110651 110665 110679 110693 110707 110590 110597 110604 110611 110618 110625 110598	110585 CTGATTAGAGAGAGGTCC 110571 CTGGTTATCTCTCAGCTCCA 110572 CTGGTTATCTCTCAGCTCCA 110573 CTGGTTATCTCTCAGCTCCA 110586 CTGGTTATCTCTCAGCTCCA 110574 GATCACTCCAAAGTGCAGCA 110575 GATCACTCCAAAGTGCAGCA 110576 GATCACTCCAAAGTGCAGCA 110577 AGCTTGGGTTCCGACCCTAA 110578 AGCTTGGGTTCCGACCCTAA 110579 AGCTTGGGTTCCGACCCTAA 110580 AGCTTGGGTTCCGACCCTAA 110581 AGCTTGGTCTGGTCA 110582 AGGTTGACCTTGGTCTGGTA 110583 AGGTTGACCTTGGTCTGGTA 110584 AGGTTGACCTTGGTCTGGTA 110585 AGGTTGACCTTGGTCTGGTA 110637 GTGTGCCAGACACCCTATCT 110637 GTGTGCCAGACACCCTATCT 110659 GTGTGCCAGACACCCTATCT 110679 GTGTGCCAGACACCCTATCT 110693 GTGTGCCAGACACCCTATCT 110590 TGAGTGTCTTCTGTGTGCCA 110597 TGAGTGTCTTCTGTGTGCCA 110611 TGAGTGTCTTCTGTGTGCCA 11061	110570 CTGATTAGAGAGAGGTCC 110571 CTGGTTATCTCTCAGCTCCA 299 110572 CTGGTTATCTCTCAGCTCCA " 110573 CTGGTTATCTCTCAGCTCCA " 110586 CTGGTTATCTCTCAGCTCCA " 110574 GATCACTCCAAAGTGCAGCA " 110575 GATCACTCCAAAGTGCAGCA " 110576 GATCACTCCAAAGTGCAGCA " 110587 GATCACTCCAAAGTGCAGCA " 110578 AGCTTGGGTTCCGACCCTAA " 110579 AGCTTGGGTTCCGACCCTAA " 110580 AGCTTGGGTTCCGACCCTAA " 110581 AGCTTGGGTTCCGACCCTAA " 110582 AGCTTGACCTTGGTCTGGTA " 110581 AGGTTGACCTTGGTCTGGTA " 110582 AGGTTGACCTTGGTCTGGTA " 110583 AGGTTGACCTTGGTCTGGTA " 110634 GTGTGCCAGACACCCTATCT " 110655 GTGTGCCAGACACCCTATCT " 110679 GTGTGCCAGACACCCTATCT " 110590 TGAGTGTCTTCTGTGTGC	110585

	110612	GA GTGTCTTCTG TGTGCCAG	11	=	"
5	110619	G AGTGTCTTCT GTGTGCCAG	11	11	"
	110626	GAGTGTCTTC TGTGTGCCAG	11	11	"
	110592	AGTGTCTTCTGTGTGCCAGA	144	100181 and	alog
10	110599	AGTG TCTTCTGTGT GCCAGA	11	11	
	110606	AGT GTCTTCTGTG TGCCAGA	17	11	
	110613	AG TGTCTTCTGT GTGCCAGA	17	11	
15	110620	A GTGTCTTCTG TGTGCCAGA	77	11	
ŧ	110627	AGTGTCTTCT GTGTGCCAGA	17	"	
20	110593	GTGTCTTCTGTGTGCCAGAC	145	100182 and	alog
:	110600	GTGTCTTCTGTGTGCCAGAC	17	11	
0.5	110607	GTGTCTTCTGTGTGCCAGAC	11	"	
25	110614	GT GTCTTCTGTG TGCCAGAC	7	"	
	110621	G TGTCTTCTGT GTGCCAGAC	11	11	
30	110628	GTGTCTTCTG TGTGCCAGAC	11	11	
	110594	TGTCTTCTGTGTGCCAGACA	146	100183 and	alog
35	110601	TGTCTTCTGTGTGCCAGACA	ŤŤ	71	
35	110608	TGTCTTCTGTGTGCCAGACA	11	ŧτ	
	110615	TGTCTTCTGTGTGCCAGACA	11	ŧŧ	
40	110622	TGTCTTCTGTGTGCCAGACA	**	***	
	110629	TGTCTTCTGT GTGCCAGACA	"	11	
45	110595	GTCTTCTGTGTGCCAGACAC	147	100184 and	alog
45	110602	GTCTTCTGTGTGCCAGACAC	**	17	
	110609	GTC TTCTGTGTGC CAGACAC	"	11	
50	110616	GT CTTCTGTGTG CCAGACAC	"	***	
	110623	GTCTTCTGTGTGCCAGACAC	***	11	
55	110630	GTCTTCTGTG TGCCAGACAC	11	11	
	110596	TCTTCTGTGTGCCAGACACC	148	100185 and	alog
	110603	TCTTCTGTGTGCCAGACACC	"	"	
60	110610	TCTTCTGTGTGCCAGACACC	"	11	
	110617	TCTTCTGTGTGCCAGACACC	ff	ff f	
65	110624	TCTTCTGTGTGCCAGACACC	11	"	
	110631	TCTTCTGTGTGCCAGACACC	"	"	_

	110632	CTTCTGTGTGCCAGACACCC	149	100186 analog	
5	110646	CTTCTGTGTGCCAGACACCC	"	11	
	110660	CTTCTGTGTGCCAGACACCC	11	11	
	110674	CTTCTGTGTGCCAGACACCC	17	11	
10	110688	CTTCTGTGTGCCAGACACCC	11	n ·	
	110702	CTTCTGTGTGCCAGACACCC	77	11	
15	110633	TTCTGTGTGCCAGACACCCT	150	100187 analog	
10	110647	TTCTGTGTGCCAGACACCCT	"	17	
	110661	TTCTGTGTGCCAGACACCCT	TF	11	
20	110675	TTCTGTGTGCCAGACACCCT	11	11	
	110689	TTCTGTGTGCCAGACACCCT	11	11	
25	110703	TTCTGTGTGCCAGACACCCT	11	11	
25	110634	TCTGT GTGCCAGACA CCCTA	151	100188 analog	
	110648	TCTGTGTGCCAGACACCCTA	"	n .	
30	110662	TCTGTGTGCCAGACACCCTA	17	n .	
	110676	TCTGTGTGCCAGACACCCTA	77	11	
35	110690	TCTGTGTGCCAGACACCCTA	11	"	
35	110704	TCTGTGTGCCAGACACCCTA	11		
	110635	CTGTGTGCCAGACACCCTAT	152	100189 analog	
40	110649	CTGTGTGCCAGACACCCTAT	11	n .	
	110663	CTGTGTGCCAGACACCCTAT	7	11	
45	110677	CTGTGTGCCAGACACCCTAT	11	п	
45	110691	CTGTGTGCCAGACACCCTAT	=	"	
	110705	CTGTGTGCCAGACACCCTAT	77	11	
50	110636	TGTGTGCCAGACACCCTATC	153	100190 analog	
	110650	TGTGTGCCAGACACCCTATC	11	11	
55	110664	TGTGTGCCAGACACCCTATC	11	"	
33	110678	TGTGTGCCAGACACCCTATC	=	"	
	110692	TGTGTGCCAGACACCCTATC	11	11	
60	110706	TGTGTGCCAGACACCCTATC	=	"	
	110638	TGTGCCAGACACCCTATCTT	154	100191 analog	
65	110652	TGTGCCAGACACCCTATCTT	11	11	
	110666	TGTGCCAGACACCCTATCTT	"	11	

[110680	TGTGCCAGACACCCTATCTT	"	"
5	110694	TGTGCCAGACACCCTATCTT	11	11
	110708	TGTGCCAGACACCCTATCTT	- "	11
	110708	GTGCCAGACACCCTATCTTC GTGCCAGACACCCCTATCTTC	155	100192 analog
10	110653		133	100192 analog
10		GTGCCAGACACCCTATCTTC	"	"
	110667	GTGCCAGACACCCTATCTTC	"	"
15	110681	GTGCCAGACACCCTATCTTC		"
ļ	110695	GTGCCAGACACCCTATCTTC	"	
	110709	GTGCCAGACACCCTATCTTC	11	"
20	110640	TGCCAGACACCCTATCTTCT	156	100193 analog
	110654	TGCCAGACACCCTATCTTCT		"
25	110668	TGCCAGACACCCTATCTTCT	"	"
20	110682	TGCCAGACACCCTATCTTCT	11	11
	110696	TGCCAGACACCCTATCTTCT	11	"
30	110710	TGCCAGACACCCTATCTTCT	**	"
	110641	GCCAGACACCCTATCTTCTT	157	100194 analog
35	110655	GCCAGACACCCTATCTTCTT	71	"
35	110669	GCC AGACACCCTA TCTTCTT	71	"
	110683	GC CAGACACCCT ATCTTCTT	l i	"
40	110697	G CCAGACACCC TATCTTCTT	17	п
	110711	GCCAGACACCCTATCTTCTT	Tŧ	п
	110642	CCAGACACCCTATCTTCTTC	158	100195 analog
45	110656	CCAGACACCCTATCTTCTTC	11	n
	110670	CCAGACACCCTATCTTCTTC	71	n
50	110684	CCAGACACCCTATCTTCTTC	11	n
	110698	CCAGACACCCTATCTTCTTC	11	n n
	110712	CCAGACACCCTATCTTCTTC	11	"
55	110643	CAGACACCCTATCTTCTT	159	100196 analog
	110657	CAGACACCCTATCTTCTTCT	11	"
60	110671	CAGACACCCTATCTTCT	11	11
- !	110685	CAGACACCCTATCTTCT	"	11
65	110699	CAGACACCCTATCTTCTTCT	**	"
	110713	CAGACACCCTATCTTCT		11

	110644	AGACA CCCTATCTTC TTCTC	160	100197 analog	
5	110658	AGAC ACCCTATCTT CTTCTC	77	n	
	110672	AGA CACCCTATCT TCTTCTC	"	n n	
	110686	AG ACACCCTATC TTCTC	11	n .	
	110700	A GACACCCTAT CTTCTC	11	n	
	110714	AGACACCCTA TCTTCTC	"	п	
15	110645	GACACCCTATCTTCTTCTCT	161	100198 analog	
	110659	GACACCCTATCTTCTTCT	11	n .	
20	110673	GACACCCTATCTTCTCT	17	п	
	110687	GA CACCCTATCT TCTCT	"	11	
	110701	G ACACCCTATC TTCTCT	11	11	
	110715	GACACCCTAT CTTCTCT	17	"	
^-					

30

35 EXAMPLE 26: Effect of TNF- α antisense oligonucleotides in TNF- α transgenic mouse models

The effect of TNF-α antisense oligonucleotides is studied in transgenic mouse models of human diseases. Such experiments can be performed through contract laboratories (e.g., The 40 Laboratory of Molecular Genetics at The Hellenic Pasteur Institute, Athens, Greece) where such transgenic mouse models are available. Such models are available for testing human oligonucleotides in arthritis (Keffer, J., et al., EMBO J., 1991, 10, 4025-4031) and multiple sclerosis (Akassoglou et al., J. Immunol., 1997, 158, 438-445) models. A model for inflammatory bowel disease is available for testing mouse oligonucleotides (Kontoyiannis et al., Immunity, 1999, 10, 387-398).

Briefly, litters of the appropriate transgenic mouse strain are collected and weighed individually. Twice weekly from

¹ Emboldened residues are 2'-methoxyethoxy residues (others are 2'-deoxy-). All 2'-methoxyethoxy cytidines and 2'-deoxycytidines are 5-methyl-cytidines; all linkages are phosphorothicate linkages.

²Co-ordinates from Genbank Accession No. X02910, locus name "HSTNFA", SEQ ID NO. 1.

ISPH-0767 - 144 - PATENT

birth, oligonucleotide in saline is administered intraperitoneally or intravenously. Injections continue for 7 weeks. Each week the animals are scored for manifestations of the appropriate disease. After the final treatment, the mice are sacrificed and histopathology is performed for indicators of disease as indicated in the references cited for each model.