Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

-- Solution 6 (due 11th June) --

General Remarks

- The exercises are to be solved in groups of *three* students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair before 12:00. Do not hand in your solutions via L2P or via e-mail.

(1+2+3+4 Points)

Consider the transition system TS_{Sem} for mutual exclusion with a semaphore.

Figure 6.1: Mutual exclusion with semaphore (transition system representation).

Let P_{live} be the following ω -regular property over AP = { $wait_1, crit_1$ }:

"whenever process 1 is waiting for the critical section, it will eventually (potentially at the very same time) be in its critical section."

Check whether $TS_{Sem} \models P_{live}$ with the following steps:

- (a) Introduce the necessary labels in TS_{Sem} .
- (b) Depict an NBA $\overline{\mathcal{A}}$ for the complement property $\overline{P_{live}} = (2^{AP})^{\omega} \setminus P_{live}$. Hint: There is an NBA $\overline{\mathcal{A}}$ for $\overline{P_{live}}$ with 3 states.

- (c) Depict the reachable fragment of the product $TS_{Sem} \otimes \overline{\mathcal{A}}$.

 Hint: There is an NBA for $\overline{\mathcal{A}}$ with 3 states that is a solution to task (b) and will lead to a product transition system with 19 states.
- (d) Apply the nested depth-first search (lecture 11, slides 150 and 159) to $TS_{Sem} \otimes \overline{\mathcal{A}}$ for the persistence property "eventually forever $\neg F$ ", where F is the acceptance set of $\overline{\mathcal{A}}$. To illustrate the steps:
 - before each *Pop* operation give:
 - for the first DFS the contents of stack π and set U, and
 - for the second DFS the contents of stack ξ and set V.
 - indicate whenever $cycle_check()$ is called.

Does $TS_{Sem} \models P_{live}$ hold? In case the property is refuted, give the counterexample returned by the algorithm.

Solution:

(a) The transition system TS_{Sem} can be outlined as follows:

(b) The NBA $\overline{\mathcal{A}}$ for $\overline{P_{live}} = \left(2^{\text{AP}}\right)^{\omega} \setminus P_{live}$ is:

 $\overline{\mathcal{A}}$:

(c) Based on TS_{Sem} and \overline{A} , we construct the product transition system $TS_{Sem} \otimes \overline{A}$:

(d) To prove $TS_{Sem} \not\models P_{live}$, we check the persistence property P_{pers} = "eventually forever Φ " (where $F = \{q_1\}$ and $\Phi = \neg F$) for the transition system $TS_{Sem} \otimes \overline{\mathcal{A}}$. Using the nested depth-first search algorithm, we search for a reachable cycle in $TS_{Sem} \otimes \overline{\mathcal{A}}$ containing at least one $\neg \Phi$ -state (i.e., a state from F).

We denote the stack content from left to right and the top element is on the left. The algorithm yields the following:

• Initial state (1st DFS): $\langle s_0, q_0 \rangle$

$$\pi = \langle s_0, q_0 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \{ \}$$

• 1st descent (1st DFS):

$$\pi = \langle s_0, q_2 \rangle \langle s_3, q_2 \rangle \langle s_1, q_2 \rangle \langle s_7, q_2 \rangle \langle s_4, q_2 \rangle \langle s_2, q_2 \rangle \langle s_6, q_2 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_4, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \{ \}$$

 $\langle s_0, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_7, q_2 \rangle, \langle s_4, q_2 \rangle$ are popped from the stack as they have no successor states that are not visited yet and their state component is not a final state of $\overline{\mathcal{A}}$. This yields:

$$\pi = \langle s_2, q_2 \rangle \langle s_6, q_2 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_4, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \{ \}$$

• 2nd descent (1st DFS):

$$\pi = \langle s_5, q_2 \rangle \langle s_2, q_2 \rangle \langle s_6, q_2 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_4, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \{ \}$$

Again, all successor states of $\langle s_5, q_2 \rangle$ are already visited ($\in U$), therefore $\langle s_5, q_2 \rangle, \langle s_2, q_2 \rangle$ and $\langle s_6, q_2 \rangle$ are popped. This results in:

$$\pi = \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_4, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \varepsilon$$

$$V = \{ \}$$

• 3rd descent (1st DFS): The successor state $\langle s_7, q_1 \rangle$ of $\langle s_4, q_1 \rangle$ is not visited yet:

$$\begin{split} \pi &= \langle s_1, q_1 \rangle \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle \\ U &= \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \\ & \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \} \\ \xi &= \varepsilon \\ V &= \{ \} \end{split}$$

Now, all successor states of $\langle s_1, q_1 \rangle$ are already visited. However, since $\langle s_1, q_1 \rangle \not\models \Phi$ $(q_1 \in F)$, we start a nested depth-first search from here looking for a backward edge to $\langle s_1, q_1 \rangle$ and pop $\langle s_1, q_1 \rangle$ from π .

• cycle check($\langle s_1, q_1 \rangle$): Initial configuration (1st DFS):

$$\begin{split} \pi &= \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle \\ U &= \{ \langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \\ & \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \} \\ \xi &= \varepsilon \\ V &= \{ \} \end{split}$$

• 1st descent (2nd DFS):

$$\pi = \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{\langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_1, q_1 \rangle$$

$$V = \{\langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle \}$$

$$Post(\langle s_7, q_1 \rangle) = \{\langle s_1, q_1 \rangle\} \text{ and therefore we found a backward edge to } \langle s_1, q_1 \rangle.$$

$$\pi = \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_2, q_0 \rangle \langle s_0, q_0 \rangle$$

$$U = \{\langle s_0, q_0 \rangle, \langle s_2, q_0 \rangle, \langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle, \langle s_0, q_2 \rangle, \langle s_1, q_2 \rangle, \langle s_2, q_2 \rangle, \langle s_3, q_2 \rangle, \langle s_4, q_2 \rangle, \langle s_5, q_2 \rangle, \langle s_6, q_2 \rangle, \langle s_7, q_2 \rangle \}$$

$$\xi = \langle s_1, q_1 \rangle \langle s_7, q_1 \rangle \langle s_4, q_1 \rangle \langle s_1, q_1 \rangle$$

$$V = \{\langle s_1, q_1 \rangle, \langle s_4, q_1 \rangle, \langle s_7, q_1 \rangle \}$$

The generated counterexample now is:

$$Reverse(\xi \cdot \pi) = \langle s_0, q_0 \rangle \langle s_2, q_0 \rangle \langle s_4, q_1 \rangle \langle s_7, q_1 \rangle \langle s_1, q_1 \rangle \langle s_4, q_1 \rangle \langle s_7, q_1 \rangle \langle s_1, q_1 \rangle$$

Note that different state successors could be chosen during the DFS leading to different counterexamples. For example the following is also a valid counterexample:

$$\langle s_0, q_0 \rangle \langle s_1, q_1 \rangle \langle s_4, q_1 \rangle \langle s_7, q_1 \rangle \langle s_1, q_1 \rangle \langle s_4, q_1 \rangle \langle s_7, q_1 \rangle$$

Exercise 2^{*} (4 Points)

Recall the following LT properties from exercise sheet 3.

- (i) "Winter is coming." $P_1 = \emptyset^* \{winter\} (2^{AP})^{\omega}$
- (ii) "Everything is awesome." $P_2 = \{awesome\}^{\omega}$
- (iii) "I'll be back." $P_3 = \{here\}^+ \emptyset^+ \{here\}^+ (2^{AP})^{\omega}$
- (iv) "You either die a hero, or you live long enough to see yourself become the villain." $P_4 = \{live, hero\}^+ \{hero\} (2^{AP})^\omega + \{live, hero\}^+ \{live\} (2^{AP})^\omega$
- (v) "By night one way, by day another Thus shall be the norm Till you receive true love's kiss then, take love's true form."

$$P_{5} = ((\{form_{1}\}\{day, form_{2}\})^{+} + \{form_{1}\}(\{day, form_{2}\}\{form_{1}\})^{*}) \{kiss, true_form\} \{true_form, day\})^{\omega}$$

- (vi) "A Lannister always pays his debts." $P_6 = \emptyset^*(\{in \ debt\}^+ \emptyset^+)^*\emptyset^\omega$
- (vii) "Anything is possible [if you just believe]" $P_7 = (2^{\mathrm{AP}})^{\omega}$
- (viii) "It's gonna be legen... wait for it... dary!" $P_8 = \{legen\} \{wait \ for \ it\}^+ \{dary\} (2^{AP})^{\omega}$

Express each property P_i as an LTL formula φ_i .

Solution:

(i) "Winter is coming."

 $\varphi_1 = \lozenge winter$

 $\label{eq:constraint} \mbox{(ii) "Everything is awe$ $some."}$

 $\varphi_2 = \square \, awe some$

(iii) "I'll be back."

$$\varphi_3 = here \land \Big(here \lor (\neg here \land (\neg here \lor here))\Big) \text{ or } \varphi_3' = here \land \bigcirc \Big(\Diamond (\neg here \land \bigcirc \Diamond here)\Big)$$

- (iv) "You either die a hero, or you live long enough to see yourself become the villain." $\varphi_4 = (live \land hero) \land \Big(\big(live \land hero \big) \lor \big((\neg live \land hero) \lor (live \land \neg hero) \big) \Big)$
- (v) "By night one way, by day another Thus shall be the norm

Till you receive true love's kiss

then, take love's true form."

Let $NF = form_1 \land \neg day$, $DF = form_2 \land day$, $NT = true_form \land \neg day$, $DT = true_form \land day$. Further let $Alter_1 = ((NF \land \bigcirc DF) \lor (DF \land \bigcirc NF)) \land \neg kiss \land \neg true_form$ and $Alter_2 = ((NT \land \bigcirc DT) \lor (DT \land \bigcirc NT)) \land \neg form_1 \land \neg form_2$.

$$\varphi_7 = NF \wedge NotKiss \wedge \left((Alter_1) \cup \left(\bigcirc \left(kiss \wedge true_form \wedge \neg form_1 \wedge \neg form_2 \wedge \neg day \wedge \bigcirc \left(NT \wedge \Box \left(Alter_2 \right) \right) \right) \right)$$

- (vi) "A Lannister always pays his debts." $\varphi_6 = \lozenge \, \Box \, \neg in \ debt$
- (vii) "Anything is possible [if you just believe]" $\varphi_7 = true$
- (viii) "It's gonna be legen... wait for it... dary!" $\varphi_8 = (legen \land \neg wait_for_it \land \neg dary) \land \bigcirc \Big((wait_for_it \land \neg legen \land \neg dary) \land \Big((wait_for_it \land \neg legen \land \neg dary) \cup (dary \land \neg legen \land \neg wait_for_it) \Big) \Big)$

Exercise 3* (6 Points)

Consider the following transition system TS where we omit the transition labels, because they are all τ .

For each of the LTL formulae φ_i below, decide whether TS $\models \varphi_i$. Justify your answer and, in particular, provide a path $\pi_i \in Paths(TS)$ such that $\pi_i \not\models \varphi_i$ in case you find TS $\not\models \varphi_i$.

- $\varphi_1 = \Diamond \Box c$,
- $\varphi_2 = \Box \Diamond c$,
- $\varphi_3 = \bigcirc \neg c \rightarrow \bigcirc \bigcirc c$,
- $\varphi_4 = \square a$,
- $\varphi_5 = a \cup \Box (b \vee c),$
- $\varphi_6 = (\bigcirc \bigcirc b) \cup (b \vee c),$
- $\varphi_7 = c R b$,

where the release operator $\varphi R \psi$ for two LTL formulae φ, ψ is defined by $\varphi R \psi \equiv \neg(\neg \varphi U \neg \psi)$.

Solution:

- TS $\not\models \varphi_1$ since the path $\pi_1 = (s_2 s_4)^{\omega}$ has trace $\sigma_1 = (\{c\} \{b\})^{\omega}$ and $\sigma_1 \not\models \varphi_1$,
- TS $\models \varphi_2$. All paths in TS visit either s_4 or s_5 infinitely often and all their successors satisfy c.
- TS $\models \varphi_3$. If a trace in TS has $\bigcirc \neg c$ at some position i, the corresponding path must be in s_1, s_2, s_3 or s_5 at position i and in s_4 at position i+1. As all successors of s_4 are labeled with a set including c, we have c at position i+2.
- TS $\not\models \varphi_4$ since along the path $\pi_4 = \pi_1$ with $\sigma_4 = \sigma_1$ the atomic proposition a does not hold at the first position.
- TS $\models \varphi_5$. Once a path reaches s_2, s_3, s_4 or s_5 , the right-hand side $\Box (b \lor c)$ of the until formula is satisfied. In particular, all paths starting in s_2 have traces satisfying φ_5 . The traces of paths starting in s_1 start with an $\{a\}$ satisfying the left-hand side of the until formula and have $\Box b \lor x$ in all their successors.
- TS $\not\models \varphi_6$. Consider the path $\pi_6 = s_1(s_4s_2)^{\omega}$ with trace $\sigma_6 = \{a\} (\{b\} \{c\})^{\omega}$. Then $\sigma_6 \not\models b \lor c$. The until formula therefore requires $\bigcirc \bigcirc b$, but $\sigma_6 \not\models \bigcirc \bigcirc b$.
- TS $\not\models \varphi_7$ since the path $\pi_7 = s_1(s_4s_3)^{\omega}$ has trace $\sigma_7 = \{a\} (\{b\} \{b,c\})^{\omega}$ and $\sigma_7 \not\models c \ R \ b$, because neither b nor c hold at the first position.