Skript Mathe 2

25. April 2018

Inhaltsverzeichnis

1	Folg	ren 2
	1.1	Definition
	1.2	Beispiele
	1.3	Definition: Beschränkte und alternierende Folgen 4
	1.4	Beispiele
	1.5	Definition: Konvergente Folgen
	1.6	Bemerkung
	1.7	Beispiele
	1.8	Satz
	1.9	Bemerkung
	1.10	Beispiel: Geometrische Folge 6
		Beispiel
		Bemerkung: Dreiecksungleichung
	1.13	Rechenregeln für Folgen
		Beispiele: Rechenregeln
	1.15	Satz: Einschließungsregel
		Beispiele
	1.17	Satz
	1.18	Definition: Landau Symbole, O-Notation
		Beispiele
		Definition: Monotonie
	1.21	Beispiele
	1.22	Definition
		Satz: Monotone Konvergenz
	1.24	Bernoulli-Ungleichung
		Beispiel: Folgen mit Grenzwert e
	1.26	Satz: Intervallschachtelung
		Beispiel
		Definition: Eulersche Zahl
		Bemerkung
		Definition: Teilfolge
		Beispiel
		Bemerkung
		Definition: Häufungspunkt (HP)
		Beispiel
	1 25	Satz: Rongano Wojorstraß

1 Folgen

1.1 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung von den natürlichen Zahlen (\mathbb{N}) in eine beliebige Menge M (oft $M\subseteq\mathbb{R}$).

 a_n : n-tes Folgenglied

n: Index

Oft ist das erste Folgenglied nicht a_1 , sondern z.B: a_7 .

Schreibweise: $(a_n)_{n\in\mathbb{N}}$, $(a_n)_{n\geq n_0}$ oder (a_n)

1.2 Beispiele

a) $a_n = c \ \forall n \in \mathbb{N}$ (konstante Folge)

b) $a_n = n$ (Ursprungsgerade)

c) $a_n = (-1)^n, n \in \mathbb{N}$ (alternierend)

d) $a_n = \frac{1}{n}$ (Nullfolge)

e) Rekursive Folgen, z.B: Fiboacci-Folge.

$$f_1 = 1, f_2 = 1, \underbrace{f_{n+1} = f_n + f_{n-1}}_{\text{Rekursions formel}}$$

$$f_3 = 1 + 1 = 2, f_4 = 3, f_5 = 5, \dots$$

f) Exponentielles Wachstum (z.B von Bakterienstämmen)

q: Wachstumsfaktor

 X_0 : Startpopulation

Explizit: $X_n = q^n * X_0$

z.B:
$$X_0 = 5, q = 2$$

$$\rightarrow X_1 = 10, X_2 = 20, X_3 = 40, \dots$$

g) Logistisches Wachstum

$$X_{n+1} = r \cdot X_n \cdot (1 - X_n)$$

 $r \in [0, 4]$: Wachstums-/Sterbefaktor

 $X_n \in [0,1]$: Relative Anzahl der Individuen in Generation n

Anzahl der Individuen in Generation n+1 hängt ab von der aktuellen Populationsgröße X_n und den vorhandenen natürlichen Ressourcen, charakterisiert durch $(1-X_n)$

1.3 Definition: Beschränkte und alternierende Folgen

Sei $(a_n)_{n\in\mathbb{N}}$ mit $a_n\in\mathbb{R} \ \forall n\in\mathbb{N}$.

- a) (a_n) heißt beschränkt : $\Leftrightarrow |a_n| \leq K$ für ein $K \geq 0$.
- b) (a_n) heißt alternierend, falls die Folgenglieder abwechselnd positiv und negativ sind.

1.4 Beispiele

Aus 1.2):

- a, c, d, g) sind beschränkt
- b, e) sind unbeschränkt
- c) ist alternierend

1.5 Definition: Konvergente Folgen

a) Eine Folge $(a_n)_{n\in\mathbb{N}}$ reeller Zahlen konvergiert gegen $a\in\mathbb{R}$, wenn es zu jedem $\epsilon>0$ ein $N\in\mathbb{N}$ gibt (das von ϵ abhängig sein darf), so dass:

$$|a_n - a| < \epsilon \quad \forall n \ge N$$

Kurz:

$$\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N : |a_n - a| < \epsilon$$

b) $a \in \mathbb{R}$ heißt Grenzwert oder Limes der Folge. Man schreibt: $\lim_{n \to \infty} a_n = a \text{ oder } a_n \to a \text{ für } n \to \infty \text{ oder } a_n \xrightarrow[n \to \infty]{} a \text{ oder } a_n \to a.$

4

- c) Eine Folge (a_n) mit Limes 0 heißt Nullfolge.
- d) Eine Folge die nicht konvergent ist, heißt divergent.

1.6 Bemerkung

 $a_n \to a$ bedeutet anschaulich: Gibt man eine Fehlerschranke $\epsilon > 0$ vor, so sind ab einem bestimmten $N \in \mathbb{N}$ alle Folgenglieder weniger als ϵ von a entfernt. Je kleiner ϵ gewählt wird, desto größer muss im allgemeinen N gewählt werden.

Solch ein N muss sich für jedes noch so kleine ϵ finden lassen. Ansonsten ist (a_n) divergent.

1.7 Beispiele

- a) Behauptung: $a_n = \frac{1}{n}, (a_n)_{n \in \mathbb{N}}$ ist Nullfolge Beweis:
 - Wähle $\epsilon = \frac{1}{10}$. Dann ist für N > 10

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N} \le \frac{1}{N} \le \frac{1}{10} \quad \forall n \ge N$$

• Allgemein (beliebiges ϵ) Sei $\epsilon>0$. Dann ist für $N>\frac{1}{\epsilon}$

$$|a_n - 0| = \frac{1}{n} \leq \frac{1}{N \leq n} \frac{1}{N} < \frac{1}{\frac{1}{\epsilon}} \quad \forall n \geq N$$

b) Behauptung: $(a_n)_{n\in\mathbb{N}}$ mit $a_n=\frac{n+1}{3n}$ hat Limes $a=\frac{1}{3}$. Beweis: Sei $\epsilon>0$. Dann ist für $N\geq\frac{1}{3\epsilon}$

$$|a_n - n| = \left| \frac{n+1}{3n} \right| = \frac{n+1-n}{3n} = \frac{1}{3n} \le \frac{1}{3N} < \epsilon \quad \forall N \ge n$$

c) N muss nicht immer optimal gewählt werden.

$$\frac{1}{n^3+n+5} \xrightarrow[n \to \infty]{} 0$$

Sei $\epsilon > 0$, für $N > \frac{1}{\epsilon}$

$$|a_n - a| = \frac{1}{n^3 + n + 5} \le \frac{1}{N > n} \frac{1}{N^3 + N + 5} < \sqrt{\frac{1}{N}} < \epsilon$$

1.8 Satz

Jede konvergente Folge ist beschränkt.

Beweis: Sei (a_n) eine konvergente Folge mit Limes $a \in \mathbb{R}$.

Zu zeigen: $|a_n| \leq K \ \forall a \in \mathbb{N}$, für ein $K \geq 0$.

Sei $\epsilon = 1$, (a_n) konvergent.

$$\Rightarrow |a_n| = |a_n - a + a| \le \underbrace{|a_n - a| + |a|}_{\text{Dreiecksungleichung}} < 1 + |a| \ \forall n \ge N$$

Setze $K = max\{1 + |a|, |a_1|, |a_2|, ..., |a_{N-1}|\}$

$$\Rightarrow |a_n| \le K \ \forall n \in \mathbb{N} \quad \Box$$

1.9 Bemerkung

Wegen 1.8: (a_n) unbeschränkt $\Rightarrow (a_n)$ divergent.

Unbeschränkte Folgen sind also immer divergent.

1.10 Beispiel: Geometrische Folge

Für
$$q \in \mathbb{R} : \lim_{n \to \infty} q^n = \begin{cases} 0, \text{falls } |q| < 1 \\ 1, \text{falls } q = 1 \end{cases}$$

Für |q| > 1 oder q = -1 ist (q^n) divergent.

Beweis:

1.) |q| < 1. Sei $\epsilon > 0$ beliebig. Dann ist

$$(q^n - 0) = |q|^n < \epsilon \Leftrightarrow n \cdot \ln |q| < \ln(e) \quad |: \ln(q) < 0$$

$$\Leftrightarrow n > \frac{\ln(\epsilon)}{\ln |q|}$$

Für
$$N > \frac{\ln(\epsilon)}{\ln |q|} : |q|^n < \epsilon \quad \forall n \ge N$$

- 2.) q = 1. $q^n = 1$ $\forall n \in \mathbb{N} \Rightarrow q^n \to 1$
- 3.) $|q| > 1 \Rightarrow (q^n)$ unbeschränkt $\underset{1}{\Rightarrow} (q^n)$ divergent
- 4.) $q = -1 \Rightarrow q^n = (-1)^n$. Beweis der Divergenz später (Cauchyfolgen)

1.11 Beispiel

Wegen 1.10 sind $(\frac{1}{2^n})_{n\in\mathbb{N}}$ und $((\frac{-7}{8})^n)_{n\in\mathbb{N}}$ Nullfolgen.

1.12 Bemerkung: Dreiecksungleichung

Um Rechenregeln für Folgen in 1.13 beweisen zu können, braucht man folgende Version der Δ -Ungleichung:

$$\begin{aligned} &||a|-|b|| \leq |a-b| \quad \forall a,b \in \mathbb{R}, \text{ da:} \\ &\bullet |a-b+b| \leq |a-b|+|b| & ||-b| \\ &\Leftrightarrow |a|-|b| \leq |a-b| \\ &\bullet |b-a+a| \leq |b-a|+|a| & ||-a| \\ &\Leftrightarrow |b|-|a| \leq |b-a| \\ \\ &\Rightarrow ||a|-|b|| \leq |a-b| \end{aligned}$$

1.13 Rechenregeln für Folgen

Seien $(a_n), (b_n)$ konvergente Folgen mit $\lim_{n \to \infty} (a_n) = a$ und $\lim_{n \to \infty} (b_n) = b$.

Dann gilt:

1.)
$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

2.)
$$\lim_{n \to \infty} (\lambda \cdot a_n) = \lambda \cdot a \quad \forall \lambda \in \mathbb{R}$$

3.)
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$

4.)
$$b \neq 0 \Rightarrow \bullet \ \exists k \in \mathbb{N} : b_n \neq 0 \ \forall n \geq k$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n \geq k} \text{ konvergiert gegen } \frac{a}{b}$$

$$\bullet \left(\frac{a_n}{b_n}\right)_{n \ge k} \text{ konvergiert gegen } \frac{a}{b}$$

$$5.) \lim_{n \to \infty} |a_n| = |a|$$

Seien weiter $(d_n), (e_n)$ reelle Folgen, (d_n) ist Nullfolge

- 6.) (e_n) beschränkt $\Rightarrow (d_n \cdot e_n)$ ist Nullfolge
- 7.) $|e_n| \le d_n \Rightarrow |e_n|$ ist Nullfolge

Beweis:

1.) Sei
$$\epsilon > 0 \Rightarrow \exists N_a, N_b \in \mathbb{N}$$
:
$$\bullet |a_n - a| \leq \frac{\epsilon}{2} \quad \forall n \geq N_a$$

$$\bullet |b_n - b| \leq \frac{\epsilon}{2} \quad \forall n \geq N_b$$

$$\Rightarrow |a_n + b_n - (a + b)| \leq \underbrace{|a_n - a|}_{\leq \frac{\epsilon}{2}} + \underbrace{|b_n - b|}_{\leq \frac{\epsilon}{2}} < \epsilon$$

$$\forall n \geq \max\{N_a, N_b\}$$

- 2.) Für $\lambda = 0$ gilt auch $\lambda \cdot a_n \to 0 = \lambda \cdot a \checkmark$
 - Für $\lambda \neq 0$: Sei $\epsilon > 0$ $\Rightarrow \exists N \in \mathbb{N} : |a_n - a| \leq \frac{\epsilon}{|x|} \quad \forall n \geq N$ $\Rightarrow |\lambda a_n - \lambda a| = |\lambda| \cdot |a_n - a| < \epsilon \quad \forall n > N \checkmark$

3.) Satz
$$1.8 \Rightarrow (b_n)$$
 beschränkt.
$$\Rightarrow \exists k \geq 0 : |b_n| \leq k \quad \forall n \in \mathbb{N}$$

$$\Rightarrow |a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)|$$

$$\leq |a_n - a| \cdot k + |a| \cdot |b_n - b| \quad (*)$$
 Sei $\epsilon > 0 \Rightarrow$
$$\exists N_a, N_b \in \mathbb{N} : |a_n - a| < \frac{\epsilon}{2k} \quad \forall n \geq N_a$$

$$|b_n - b| < \frac{\epsilon}{2|a|} \quad \forall n \geq N_b$$

$$\Rightarrow |a_n b_n - ab| < \frac{\epsilon}{2k} \cdot k + |a| \cdot \frac{\epsilon}{|a|} = \epsilon$$

4.) • Z.z: $\exists k \in \mathbb{N} : b_n \neq 0 \quad \forall n \geq k$ Es ist $b \neq 0$ und |b| > 0.

 $\forall n \ge \max\{N_a, N_b\}$

$$\Rightarrow \exists l \in \mathbb{N} : \underbrace{|b_n - b|}_{\stackrel{\geq}{=} |b| - |b_n|} < \frac{|b|}{2} \quad \forall n \geq b$$

$$\Rightarrow \exists |b| - |b_n| < \frac{|b|}{2} \quad \forall n \geq k$$

$$\Rightarrow \frac{|b|}{2} < |b_n| > 0 \quad \forall n \geq k \text{ (**)}$$

$$\Rightarrow b_n \neq 0 \quad \forall n \geq k$$

• Z.z:
$$\left(\frac{a_n}{b_n}\right)_{n\geq k}$$
 hat $\frac{a}{b}$ als Limes.

a
$$\frac{a_n}{b_n}=a_n\cdot\frac{1}{b_n},$$
genügt es wegen 3.) zu zeigen, dass $\frac{1}{b_n}\to\frac{1}{b}.$

Sei
$$\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} : \underline{|b_n - b| < \frac{\epsilon}{2} \cdot |b|^2}$$

$$\Rightarrow \left| \frac{1}{b_n} - \frac{1}{b} \right| = \left| \frac{b - b_n}{b \cdot b_n} \right| \underset{(**)}{<} \frac{2}{|b|^2} \cdot |b - b_n| < \epsilon \quad \forall n \ge N$$

- 5.) mit 1.12
- 6,7.) Übung

1.14 Beispiele: Rechenregeln

a)
$$\frac{(-1)^n + 5}{n} = ((-1)^n + 5) \cdot \frac{1}{n} \xrightarrow[n \to \infty]{} 0 \text{ wegen } 1.13/6$$

$$\bullet \frac{1}{n} \to 0$$

$$\bullet |(-1)^n + 5| \le |(-1)|^n + 5 = 6$$

$$\Rightarrow (-1)^n + 5 \text{ beschränkt}$$

b)
$$\frac{3n^2 + 1}{-n^2 + n} \to -3, \text{ denn } \lim_{n \to \infty} \frac{3n^2 + 1}{-n^2 + n} = \lim_{n \to \infty} \frac{\varkappa^2 \left(3 + \frac{1}{n^2}\right)}{\varkappa^2 \left(-1 + \frac{1}{n}\right)}$$

$$= \frac{\lim_{n \to \infty} 3 + \frac{1}{n^2}}{\lim_{n \to \infty} 1 + \frac{1}{n}} = \frac{3}{-1} = -3$$

c) Sei $x \in \mathbb{R}$ mit |x| > 1 und $k \in \mathbb{N}_0$.

Beweis: Es ist |x| = 1 + t für t > 0.

Für n > k:

$$|x|^{n} = (1+t)^{n} = \sum_{j=0}^{n} \underbrace{\binom{n}{j} 1^{n-j} t^{j}}_{\geq 0}$$

$$\underset{j=k+1}{\geq} \binom{n}{k+1} t^{k+1} = \frac{n(n-1) \cdot \dots \cdot (n-k)}{(k+1)!}$$

$$= n^{k+1} \cdot \frac{t^{k+1}}{(k+1)!} \pm \dots$$

$$\Rightarrow \left| \frac{n^{k}}{x^{n}} \right| = \frac{n^{k}}{(1+t)^{n}} \leq \underbrace{\cancel{\varkappa}^{k} (k+1)!}_{n \nmid k+1} \xrightarrow[n \to \infty]{} 0$$

d) Sei $x\in\mathbb{R}_+$. $\left(\frac{x^n}{n!}\right)$ ist Nullfolge, d.h. Fakultät wächst schneller als exponentiell: Sei $m\in\mathbb{N}$ und n>m+1>x

$$\begin{split} &\Rightarrow \frac{x^n}{n!} = \frac{x^{n-m}}{n(n-1) \cdot \ldots \cdot (m+1)} \cdot \boxed{\frac{x^m}{m!}} = c > 0 \\ &\leq c \cdot \frac{x^{n-m}}{(m+1)^{n-m}} = c \cdot \underbrace{\left(\frac{x}{m+1}\right)}_{\text{geom. Folge, } < 1} \xrightarrow{\text{(}n-m)} \xrightarrow{\frac{1.13/6}{1.13/7}} 0 \end{split}$$

1.15 Satz: Einschließungsregel

Seien $(a_n), (b_n), (c_n)$ reelle Folgen mit

1. $\exists k \in \mathbb{N} : a_n \le b_n \le c_n \quad \forall n \ge k$

2.
$$(a_n), (c_n)$$
 konvergent und $\lim_{n \to \infty} (a_n) = \lim_{n \to \infty} (c_n)$

Dann ist auch (b_n) konvergent und $\lim_{n\to\infty}(b_n)=\lim_{n\to\infty}(a_n)$

Beweis: Sei $a := \lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n$ und $\epsilon > 0$.

$$\underset{2.}{\Rightarrow} N_a, N_c : \bullet |a_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_a$$
$$\bullet |c_n - a| < \frac{\epsilon}{3} \quad \forall n \ge N_c$$

us 1.:

$$|b_n - a_n| = b_n - a_n \le c_n - a_n = |c_n - a_n|$$

$$\forall n \ge k$$

$$\Rightarrow |b_n - a| \le \sum_{\Delta - Ungleichung} |b_n - a_n| + |a_n - a| \le |c_n - a_n| + |a_n - a|$$

$$\le \underbrace{|c_n - a|}_{\le \frac{\epsilon}{3}} + \underbrace{|a - a_n|}_{\le \frac{\epsilon}{3}} + \underbrace{|a_n - a|}_{\le \frac{\epsilon}{3}} < \epsilon \quad \forall \max\{k, N_a, N - c\} \quad \Box$$

1.16 Beispiele

a)
$$\sqrt[n]{n} \xrightarrow[n \to \infty]{} 1$$
, denn:

Sei
$$\epsilon > 0$$
. Da $\frac{n}{(1+\epsilon)^n} \to 0$ (1.14/c),

gibt es $N \in \mathbb{N}$ mit $\frac{n}{(1+\epsilon)^n} < 1 \quad \forall n \ge N$.

$$\Rightarrow (1+\epsilon)^n > n \quad \forall n \ge N$$
$$\Rightarrow 1+\epsilon > \sqrt[n]{n}$$

Da einerseits $\sqrt[n]{n} \ge 1 > 1 - \epsilon \ \forall n \in \mathbb{N}$, ist

$$1 + \epsilon > \sqrt[n]{n} > 1 - \epsilon \Leftrightarrow |\sqrt[n]{n} - 1| < \epsilon \quad \forall n \ge N$$

b)
$$\sqrt[n]{x} \to 1 \quad \forall x > 0$$

Sei
$$x > 0 \Rightarrow \exists N \in \mathbb{N} : \boxed{\frac{1}{n} \le x \le n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \le \sqrt[n]{x} \le \sqrt[n]{n} \quad \forall n \ge N$$

$$\Rightarrow \frac{1}{\sqrt[n]{n}} \to 1 \text{ und } \sqrt[n]{n} \to 1 \underset{1.15}{\Rightarrow} \sqrt[n]{x} \to 1$$

1.17 Satz

Sei (a_n) eine Folge nicht negativeer reeller Zahlen mit $a_n \to a$. Dann:

- 1. $\lim_{n \to \infty} \sqrt[m]{a_n} = \sqrt[m]{a_n} \quad \forall m \in \mathbb{N}$
- 2. $\lim_{n\to\infty} a_n^q = a^q \ \forall q \in \mathbb{Q} \text{ mit } q > 0 \text{ (ohne Beweis)}$

1.18 Definition: Landau Symbole, O-Notation

Sei (a_n) eine reelle Folge mit $a_n > 0 \quad \forall n \in \mathbb{N}$. Dann ist

a)
$$O(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{beschränkt} \right\}$$

b)
$$o(A_n) = \left\{ (b_n) \mid \left(\frac{b_n}{a_n}\right) \text{Nullfolge} \right\}$$

 $[a_n \text{ wächst schneller als } b_n]$

c)
$$a_n \sim b_n$$
, falls $\frac{a_n}{b_n} \to 1$

O, o heißen Landau-Symbole

1.19 Beispiele

- $(2n^2 + 3n + 1) \in O(n^2)$
- $(2n^2 + 3n + 1) \in o(n^3)$
- $(n_3) \in o(2^n)$
- $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ (Stirlingsche Formel)
- $\bullet~O(1)$ Menge aller beschränkten Folgen
- o(1) Menge aller Nullfolgen

1.20 Definition: Monotonie

Eine Folge reeller Zahlen (a_n) heißt

a) (streng) monoton steigend/wachsend, falls

$$a_n \ge (>) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \nearrow (\text{monoton wachsend})$

b) (streng) monoton fallend, falls

$$a_n \le (<) \ a_n \quad \forall n \in \mathbb{N}$$

Schreibweise: $(a_n) \searrow (\text{monoton fallend})$

1.21 Beispiele

- (a_n) mit $a_n = \frac{1}{n}$ streng monoton fallend
- (a_n) mit $a_n = 1$ monoton steigend und fallend
- (a_n) mit $a_n = (-1)^n$ nicht monoton

1.22 Definition

Eine reelle Folge (a_n) heißt nach oben (unten) beschränkt, falls $\{a_n|n\in\mathbb{N}\}$ von oben (unten) beschränkt ist.

1.23 Satz: Monotone Konvergenz

Sei (a_n) reelle Folge:

- Falls $(a_n) \nearrow$ und nach oben beschränkt, so konvergiert (a_n) gegen $\sup\{a_n|n\in\mathbb{N}\}$
- Falls $(a_n) \searrow$ und nach unten beschränkt, so konvergiert (a_n) gegen $\inf\{a_n|n\in\mathbb{N}\}$

Beweis:

1. Sei $(a_n) \nearrow$ und nach oben beschränkt

und seien
$$a = \sup\{a_n | n \in \mathbb{N}\}$$
 und $\epsilon > 0$.

$$\Rightarrow a_n \le a \quad \forall n \in \mathbb{N}$$

 \boldsymbol{a} kleinste obere Schranke

$$\Rightarrow a - \epsilon$$
 keine obere Schranke.

$$\Rightarrow \exists N \in \mathbb{N} : a - \epsilon < a_N \le a$$

$$\underset{\substack{a_n \geq a_N \\ \forall n \geq N}}{\Rightarrow} |a_n - a| = a - a_n \leq a - a_N$$

$$\Rightarrow a_n \to a$$

2. analog \square

1.24 Bernoulli-Ungleichung

Im folgenden Beispiel wird die Bernoulli-Ungleichung benötigt:

$$(1+h)^n \ge 1 + nh \quad \forall h \ge -1 \forall n \in \mathbb{N}$$

Beweis mit vollständiger Induktion

1.25 Beispiel: Folgen mit Grenzwert e

• $a_n = \left(1 + \frac{1}{n}\right)^n = \left(1 + \frac{n+1}{n}\right)$ ist monoton.

Zeigen dazu:
$$a_n \ge a_{n-1} \left(\Leftrightarrow \frac{a_n}{a_{n-1}} \ge 1 \right)$$

$$\frac{a_n}{a_{n-1}} = \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^{n-1}$$

$$= \left(\frac{n+1}{n}\right)^n \cdot \left(\frac{n-1}{n}\right)^n \cdot \frac{n}{n-1} = \left(\frac{n^2-1}{n^2}\right)^n \cdot \frac{n}{n-1}$$

$$= \left(1 - \frac{1}{n^2}\right)^n \left(\frac{n}{n-1}\right) \underset{1.24}{\geq} \underbrace{\left(1 - \frac{1}{n}\right) \cdot \frac{n}{n-1}}_{\frac{n-1}{n}} = 1$$

$$h = \frac{1}{n^2}$$

•
$$b_n = \left(1 + \frac{1}{n}\right)^{1+n} = \left(\frac{n+1}{n}_{n+1}\right)$$
 ist monoton fallend.

Zeige dazu:
$$b_n \leq b_{n-1} \left(\Leftrightarrow \frac{b_n}{b_{n-1}} \leq 1 \right)$$
Analog: $\frac{b_n}{b_{n-1}} = \left(1 + \frac{1}{n^2 - 1} \right)^n \left(\frac{n}{n+1} \right)$
Wegen $\left(1 + \frac{1}{n^2 - 1} \right)^n \geq 1 + \frac{n}{n^2 - 1} \geq \underbrace{1 + \frac{1}{n}}_{\frac{n+1}{n}}$ ist
$$\frac{b_n}{b_{n-1}} \geq \frac{1+1}{n} \cdot \frac{n}{n+1} = 1 \quad (?)$$

In Beispiel 1.27 werden wir sehen, dass

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$

Der Limes wird als Eulerische Zahl e bezeichnet. Dazu zunächst:

1.26 Satz: Intervallschachtelung

Seien $(a_n), (b_n)$ reelle Folgen mit

- $(a_n) \nearrow, (b_n) \searrow$
- $a_n \le b_n \quad \forall n \in \mathbb{N}$
- $b_n a_n \to 0$

Dann sind $(a_n),(b_n)$ konvergent und besitzen den selben Limes.

Beweis: Es ist $a_1 \le a_n \le b_n \le b_1 \quad \forall n \in \mathbb{N}$

- \Rightarrow (a_n) hat obere Schranke b_1 (b_n) hat untere Schranke a_1
- \Rightarrow $(a_n), (b_n)$ konvergent.

Da $(b_n - a_n)$ Nullfolge, sind auch die Grenzwerte gleich.

1.27 Beispiel

- $(a_n) \nearrow, (b_n) \searrow (\text{siehe } 1.25)$
- $(a_n) = (1 + \frac{1}{n})^n \le (1 + \frac{1}{n}) \cdot a_n = (1 + \frac{1}{n})^{n+1} = b_n$
- $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \underbrace{\left(1 + \frac{1}{n}\right)}_{\rightarrow 1} \cdot a_n = \lim_{1.13/3} \lim_{n \to \infty} a_n$

1.28 Definition: Eulersche Zahl

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \left(= \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1} \right)$$

1.29 Bemerkung

 (a_n) konvergent $\underset{1.8}{\Rightarrow} (a_n)$ beschränkt. **Die Umkehrung gilt nicht!** z.B besitzt jedoch $a_n = (-1)^n$ zwei konvergente Teilfolgen mit Limes +1 und -1.

1.30 Definition: Teilfolge

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und $(n_k)_{k\in\mathbb{N}}$ eine streng monoton steigende Folge von Indizes. Dann heißt die Folge $(a_{n_k})_{k\in\mathbb{N}}$ Teilfolge von $(a_n)_{n\in\mathbb{N}}$.

1.31 Beispiel

 $a_n = (-1)^n$

- $n_k = 2k \Rightarrow a_{n_k} = a_{2k} = (-1)^{2k} = 1 \quad \forall k \in \mathbb{N}$
- $n_k = 2k + 1 \Rightarrow a_{n_k} = a_{2k+1} = (-1)^{2k+1} = -1 \quad \forall k \in \mathbb{N}$

1.32 Bemerkung

 (a_n) konvergiert gegen $a \Rightarrow \text{Jede Teilfolge von } (a_n)$ konvergiert gegen a.

1.33 Definition: Häufungspunkt (HP)

Sei (a_n) reelle Folge. $h \in \mathbb{R}$ heißt Häufungspunkt von (a_n) , wenn es eine Teilfolge von (a_n) gibt, die gegen h konvergiert.

1.34 Beispiel

 (a_n) mit $a_n=(-1)^n+\frac{1}{n}$ hat zwei Häufungspunkte: -1 und 1.

1.35 Satz: Bonzano-Weierstraß

Sei (a_n) reelle Folge. (a_n) beschränkt $\Rightarrow (a_n)$ besitzt konvergente Teilfolge

Beweis: Konstruiere konvergente Teilfolge $(a_{nk})_{k \in \mathbb{N}}$,

 (a_n) beschränkt $\Rightarrow |a_n| \leq K \quad \forall n \in \mathbb{N}$ (K geeignet)

$$\Rightarrow a_n \in \underbrace{[-K,K]}_{=[A_0,B_0]} \quad \forall n \in \mathbb{N}$$

- k = 1: Halbiere $[A_0, B_0]$
 - Falls in der linken Folgenhälfte unendlich viele Folgeglieder liegen, wähle eines davon aus.
 - Falls nicht, liegen in der rechten Hälfte unendlich viele. Wähle eines davon aus.

Das ausgewählte Folgenglied nennen wir a_{n1} , die Intervallhälfte aus der es stammt $[A_1, B_1]$.

- $\underline{k}=\underline{2}$: Halbiere $[A_1,B_1]$. Wende obiges Verfahren an, um $a_{n2}\in [A_2,B_2]$ zu bestimmen.
- usw ...

Erhalte Intervallschachtelung mit

- $(A_k) \nearrow, (B_k) \searrow$
- $A_k \leq B_k$
- $\bullet \ A_k = B_k = \frac{K}{2^{k-1}} \to 0$

$$\Rightarrow \lim_{1.26} \lim_{k \to \infty} A_k = \lim_{k \to \infty} B_k$$

Da
$$A_k \le a_{nk} \le B_k$$
, ist $\lim_{n \to \infty} A_k = \lim_{1.15} (a_{n_k})$ \square