Оценка предпочтений на основе парных сравнений альтернатив с использованием методов тропической математики

Агеев Владимир Анатольевич, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н. Кривулин Н. К. Рецензент: д.ф.-м.н. Романовский И. В.

Санкт-Петербург 2016

Введение: парные сравнения

Процедура парных сравнений

- Задача: анализ предпочтений респондентов на основе парных сравнений альтернатив (Л.Л. Терстоун)
- ullet Сравнение альтернатив: во сколько раз A лучше B
- ullet Результат представляется матрицей парных сравнений ${f A}=(a_{ij})$, где a_{ij} показывает во сколько раз альтернатива i предпочтительнее j
- Конечный результат анализа вектор относительных предпочтений

Проблемы

- Нарушение транзитивности оценок
- Матрица может быть частично задана
- Матрица может содержать ошибки обработки данных

Задача о парных сравнениях

- Матрица ${f A}=(a_{ij})$ является согласованной при условиях:
 - \mathbf{Q} $a_{ij}=1/a_{ji}$ для всех i,j (обратная симметричность)
 - $a_{ik} = a_{ij}a_{jk}$ для всех i, j, k (транзитивность)
- ullet Если матрица ${f X}=(x_{ij})$ согласованная, то $x_{ij}=x_i/x_j$
- ullet Вектор ${f x}=(x_i)$ и есть вектор рейтингов альтернатив
- Если согласованность матрицы A нарушена, то возникает задача аппроксимации согласованной матрицей X:

$$\min_{\mathbf{X}} \rho(\mathbf{A}, \mathbf{X}),$$

где ho – величина отклонения ${f A}$ от ${f X}$

Известные подходы к решению задачи аппроксимации:

- ullet при помощи собственного вектора для максимального собственного числа матрицы ${f A}$ (Т. Саати)
- аппроксимация в евклидовой метрике
- аппроксимация в метрике Чебышева

Цели работы

Новый подход в терминах тропической математики

- Решение можно рассматривать как аппроксимацию в лог-чебышевской метрике
- Для многих задач оптимизации может быть получено полное решение в явном виде
- Решение записывается в компактной векторной форме

Цели работы

- Изучение методов тропической оптимизации
- Применение этих методов для анализа матриц парных сравнений
- Решение задач для произвольных матриц парных сравнений
- Разработка методов анализа решений в случае, когда неясно, как выбрать итоговый вектор рейтингов
- Разработка программных средств, реализующих решение задачи

Тропическая математика

Идемпотентое полуполе

- Алгебраическая система $(\mathbb{X}, \oplus, \otimes, \mathbb{0}, \mathbb{1})$
- Идемпотентность сложения: $x \oplus x = x$, для любого $x \in \mathbb{X}$
- \bullet Обратимость умножения: для любого $x \neq \mathbb{0}$ существует x^{-1} такой, что $x^{-1} \otimes x = \mathbb{1}$

Пусть $\mathbb{R}_{+} = \{x > 0 | x \in \mathbb{R}\}$. Примеры полуполей:

$$\mathbb{R}_{\max,\times} = (\mathbb{R}_+ \cup \{0\}, \max, \times, 0, 1), \ \mathbb{R}_{\max,+} = (\mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0).$$

Далее в работе используется полуполе $\mathbb{R}_{\max, \times}$.

Матрицы и векторы

- Матрицы над $\mathbb X$ и операции с ними замена обычного сложения на \oplus , а обычного умножения на \otimes
- Чебышевская норма: $\|\mathbf{X}\| = \mathbf{1}^T \mathbf{X} \mathbf{1}, \|\mathbf{x}\| = \mathbf{1}^T \mathbf{x}$, где $\mathbf{1} = (1, \dots, 1)^T$
- ullet Согласованная матрица ${f X}$ в терминах $\mathbb{R}_{\max, imes}$ представляется в форме ${f X}={f x}{f x}^-$, где ${f x}=(x_i)$ вектор-столбец, ${f x}^-=(x_i^{-1})^T$

Задача аппроксимации и ее решение

Нахождение вектора рейтингов сводится в $\mathbb{R}_{\max, imes}$ к задаче аппроксимации

$$\min_{\mathbf{x}} \rho(\mathbf{A}, \mathbf{x}\mathbf{x}^{-}),$$

где функция ho для матриц ${f A}$ и ${f B}$ с положительными элементами имеет вид

$$\rho(\mathbf{A}, \mathbf{B}) = \operatorname{tr}(\mathbf{A}^{-}\mathbf{B}) \oplus \operatorname{tr}(\mathbf{A}\mathbf{B}^{-}).$$

Задачу аппроксимации можно переформулировать так:

$$\min_{\mathbf{x}}(\mathbf{x}^{-}\mathbf{A}\mathbf{x}).$$

Решение (Кривулин, 2013)

- ullet Если матрица ${f B} = {f A} \oplus {f A}^-$ не содержит нулевых элементов, то
- ullet Минимум равен $\mu=igoplus_{m=1}^n {
 m tr}^{1/m}({f B}^m)$ и достигается на ${f x}={f B}_\mu^*{f u},\ {f u}>{f 0}$
- ullet ${f B}_{\mu}^*={f I}\oplus{f B}_{\mu}\oplus\ldots\oplus{f B}_{\mu}^{n-1}$, где ${f B}_{\mu}=\mu^{-1}{f B}$
- х определяет рейтинг

Результаты для матриц различных порядков

Обратно симметричная матрица порядка 2:

$$\mathbf{A} = \begin{pmatrix} \mathbb{1} & a \\ a^{-1} & \mathbb{1} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} a \\ \mathbb{1} \end{pmatrix} u, \ u > \mathbb{0}.$$

Обратно симметричная матрица порядка 3:

$$\mathbf{A} = \begin{pmatrix} \mathbb{1} & a & b \\ a^{-1} & \mathbb{1} & c \\ b^{-1} & c^{-1} & \mathbb{1} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} (ab)^{1/3} \\ (a^{-1}c)^{1/3} \\ (b^{-1}c^{-1})^{1/3} \end{pmatrix} v, \ v > 0.$$

Случай произвольной матрицы порядка 2

Матрица парных сравнений и минимум в задаче аппроксимации:

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \mu = (a \oplus a^{-1}) \oplus (d \oplus d^{-1}) \oplus (bc \oplus (bc)^{-1})^{1/2}.$$

ullet Если $\mu > (bc \oplus (bc)^{-1})^{1/2}$, то

$$\mathbf{x} = \begin{pmatrix} \mathbb{1} & \mu^{-1}(b \oplus c^{-1}) \\ \mu^{-1}(b^{-1} \oplus c) & \mathbb{1} \end{pmatrix} \mathbf{u}, \ \mathbf{u} > 0$$

ullet Если $\mu = (bc \oplus (bc)^{-1})^{1/2}$, то

$$\mathbf{x} = \begin{pmatrix} (b \oplus c^{-1})^{1/2} \\ (b^{-1} \oplus c)^{1/2} \end{pmatrix} v, \ v > 0$$

Проблема

• Неясно какой вектор выбрать в первом случае!

Задача анализа решений

Исходные данные

- А матрица парных сравнений
- ullet Полученный по ${f A}$ вектор рейтингов: ${f x}=({f A}\oplus{f A}^-)_\mu^*{f u},\ {f u}>{f 0}$
- ullet ${f B}\in {\mathbb X}^{m imes n}$ матрица, полученная из $({f A}\oplus {f A}^-)^*_\mu$ вычеркиванием линейно-зависимых столбцов

Найдем решения, максимально ("наилучшее") и минимально ("наихудшее") различающие альтернативы с максимальным и минимальным рейтингом. Целевая функция — максимум отношения между элементами вектора:

$$\bigoplus_{i=1}^{n} x_i \bigoplus_{j=1}^{n} x_j^{-1} = \mathbf{1}^{\mathrm{T}} \mathbf{x} \mathbf{x}^{-1} = \mathbf{1}^{\mathrm{T}} \mathbf{B} \mathbf{u} (\mathbf{B} \mathbf{u})^{-1} = \|\mathbf{B} \mathbf{u}\| \|(\mathbf{B} \mathbf{u})^{-}\|.$$

Возникают задачи оптимизации:

$$\max_{\mathbf{u}} \|\mathbf{B}\mathbf{u}\| \|(\mathbf{B}\mathbf{u})^-\|, \quad \min_{\mathbf{u}} \|\mathbf{B}\mathbf{u}\| \|(\mathbf{B}\mathbf{u})^-\|.$$

Методы решения таких задач предложены в работах (Кривулин, 2013) и (Кривулин, 2015).

Наилучшее решение

Решим задачу максимизации:

$$\max_{\mathbf{u}}\|\mathbf{B}\mathbf{u}\|\|(\mathbf{B}\mathbf{u})^{-}\|.$$

Решение

- ullet Максимум равен $\Delta = \| \mathbf{B} \mathbf{B}^- \|$
- Достигается на ${\bf u} = (u_i)$:

$$u_k=lpha\|\mathbf{b}_k^-\|$$
, где \mathbf{b}_k – k -й столбец матрицы $\mathbf{B},$ $u_j\le lpha b_{sj}^{-1},\ j\ne k,$ $lpha>0$

• Индексы k и s определяются из условий:

$$k = \underset{1 \le i \le n}{\operatorname{argmax}} \|\mathbf{b}_i\| \|\mathbf{b}_i^-\|, \qquad s = \underset{1 \le i \le m}{\operatorname{argmax}} b_{ik}^{-1}$$

Для произвольной матрицы ${f B}$ порядка 2 в работе показано, что максимум достигается на векторах

$$\mathbf{u} = \alpha \mathbf{b}_k, \ \alpha > 0.$$

Случай произвольной матрицы порядка 2

По матрице парных сравнений ${f A}$ найдем наилучшее решение,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Если вектор рейтингов альтернатив имеет вид

$$\mathbf{x} = \begin{pmatrix} \mathbb{1} & \mu^{-1}(b \oplus c^{-1}) \\ \mu^{-1}(b^{-1} \oplus c) & \mathbb{1} \end{pmatrix} \mathbf{u},$$

то, решив задачу $\max_{\mathbf{u}} \|\mathbf{B}\mathbf{u}\| \|(\mathbf{B}\mathbf{u})^{-}\|$, получим наилучшее решение:

 \bullet Если $b \le c$, то наилучшее решение

$$\mathbf{x} = \begin{pmatrix} \mathbb{1} \\ \mu(b \oplus c^{-1})^{-1} \end{pmatrix} v, \quad v > 0$$

ullet Если b>c, то наилучшее решение

$$\mathbf{x} = \begin{pmatrix} \mu(b^{-1} \oplus c)^{-1} \\ \mathbb{1} \end{pmatrix}, \quad v > 0$$

Наихудшее решение

Решим задачу минимизации:

$$\min_{\mathbf{u}} \|\mathbf{B}\mathbf{u}\| \|(\mathbf{B}\mathbf{u})^{-}\|.$$

Разреживание матрицы

- ullet Пусть $\Delta = (\mathbf{B}\mathbf{1})^{-}\mathbf{1}$
- ullet Разреженная матрица $\widehat{f B}=(\widehat{b}_{ij})$:

$$\widehat{b}_{ij} = egin{cases} b_{ij}, & b_{ij} \geq \Delta^{-1} \|\mathbf{b}_j\|, \ \mathbb{0}, & ext{иначе} \end{cases}$$

Решение

- ullet Минимум Δ , достигается на векторах ${f u}={f D}{f v},\ {f v}>{f 0}$
- ullet D матрица, столбцы которой являются максимальной линейно независимой системой столбцов всех матриц ${f I}\oplus\Delta^{-1}{f B}_i^-{f 1}{f 1}^T{f \hat B}$
- $f B_i$ матрица, полученная из $f \widehat{B}$ фиксацией одного ненулевого элемента в каждой строке с обнулением остальных элементов

Случай произвольной матрицы порядка 2

По матрице парных сравнений ${f A}$ найдем наихудшее решение,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Если вектор рейтингов альтернатив имеет вид

$$\mathbf{x} = \begin{pmatrix} \mathbb{1} & \mu^{-1}(b \oplus c^{-1}) \\ \mu^{-1}(b^{-1} \oplus c) & \mathbb{1} \end{pmatrix} \mathbf{u},$$

то, решив задачу $\min_{\mathbf{u}} \|\mathbf{B}\mathbf{u}\| \|(\mathbf{B}\mathbf{u})^-\|$, получим:

ullet Если $b \leq c$, то наихудшее решение

$$\mathbf{x} = \begin{pmatrix} \mathbb{1} \\ \mu^{-1}(b^{-1} \oplus c) \oplus \mathbb{1} \end{pmatrix} v, \quad v > 0$$

ullet Если b>c, то наихудшее решение

$$\mathbf{x} = \begin{pmatrix} \mu^{-1}(b \oplus c^{-1}) \oplus \mathbb{1} \\ \mathbb{1} \end{pmatrix} v, \quad v > 0$$

Численный пример

Матрица парных сравнений и полученный по ней вектор рейтингов:

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1/3 & 1/3 \\ 1 & 1 & 1 & 1 \\ 3 & 4 & 1 & 2 \\ 3 & 4 & 1/2 & 1 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} 1 & 1/2 \\ 3/4 & 1 \\ 3/2 & 2 \\ 3/2 & 2 \end{pmatrix} \mathbf{u}, \ \mathbf{u} > 0.$$

Наилучшее и наихудшее решения соответственно:

$$\mathbf{x}^* = \begin{pmatrix} 1\\2\\4\\4 \end{pmatrix} u, \quad \mathbf{x}_* = \begin{pmatrix} 1\\1\\2\\2 \end{pmatrix} v, \quad u, \ v > 0.$$

Результаты

- Изучена задача о нахождении вектора рейтингов альтернатив по матрице парных сравнений и ее решение, основанное на методах тропической математики
- Получены решения в общем виде для матриц порядков 2 и 3
- Построены процедуры анализа решений на основе методов тропической оптимизации
- Найден общий вид "наилучшего" и "наихудшего" решения для произвольной матрицы порядка 2
- Разработаны программные средства на языке С#, реализующие описанные методы