Chapter 3

COMBINATIONAL CIRCUITS LARGE DESIGNS

In this Chapter

- Design methodologies for large combinational circuits
 - Bit-parallel
 - Bit-serial
- Integer arithmetic as examples
 - Add, subtract, multiply, and divide as four basic arithmetic operations
- Carry Propagate Adder
 - A bit-serial adder

Top-Down Design Methodology

Bit-parallel

- Partition n-bit design problem into smaller n-bit design problems
- E.g., 8-bit ALU designed using 8-bit adder/subtractor and 8-bit bit-wise logic

Bit-serial

- Partition n-bit design problem into a fewer-bit design problem (called slice)
- E.g., 8-bit ALU designed using eight 1-bit ALU modules

Hybrid

Design uses bit-parallel and bit-serial modules

Carry Propagate Adder (A bit-serial adder)

- Use FA slices (key Design Aspects)
- Carry bits generated sequentially, one at a time
- Propagation delay proportional to number of carry bits
- Assuming SOP expressions for sum and carry bits and
 0.1 ns delay for NANDs determine:
 - **ΔCPA(8)**
 - **ΔCPA(32)**
- CPA is the slowest

 Δ CPA(8) = 1.7 ns

Carry Look-Ahead (CLA) Adder

- Goal: Generate carry bits in parallel
- Let's examine FA expressions
 - Easy to generate p and g bits in parallel
 - Carry bits are dependent, but can substitute carry expressions to break dependency
 - Once carry bits are known, easy to generate sum bits in parallel
 - $\Delta CLA(8) = ?$ 0.8 ns

FA expression from Ch2:

$$s_i = a_i \oplus b_i \oplus c_{i-1}$$
$$c_i = (a_i \oplus b_i)c_{i-1} + a_ib_i$$

Let,

$$p_i = a_i \oplus b_i$$

 $g_i = a_i b_i$

$$s_i = p_i \oplus c_{i-1}$$
$$c_i = g_i + p_i c_{i-1}$$

Observations

- If keep substituting previous carry expression in next carry expression will run into Fan-in and fan-out problems
- Solution: Generate some carry bits sequentially and some in parallel (next slide)

Large CLA Adder

- 1. Group carry bits into equal sized sets with sets resulting in no fanin or fanout problem
- 2. Generate carry bits in two steps
- What is the longest signal path from inputs to outputs?
- Determine ΔCLA(32)

 $\Delta CLA(32) = 1.2 \text{ ns}$

Example: For simplicity assume n = 8

Subtractor

• Similar expressions as FA:

$$d_{i} = x_{i} \oplus y_{i} \oplus b_{i-1}$$
$$b_{i} = (\overline{x_{i} \oplus y_{i}})b_{i-1} + \overline{x_{i}}y_{i}$$

- Can use adder to do subtraction if both are needed
 - 2's complement adder/subtractor

Twos Complement Adder/Subtractor

- A B can be viewed as adding A with -B
- Circuits for A + B and A + (-B) are similar except second input is negated when subtracting
- What do we known about converting negative numbers to 2's complement representation?
 - 1. Flip bits
 - Can be done with NOT gates
 - 2. Add 1
- Addition:
 - Do not flip B bits
 - Set carry-in to 0
 - Carry-out not part of the result
- Subtraction:
 - Flip B bits
 - Set carry-in to 1
 - Carry-out not part of the result
- How to combine into one circuit? Use a control bit m for mode.
 - Add when m = 0
 - Subtract when m = 1
 - Need an inverter circuit controlled by m
- Potential problem?
 - Result can overflow and become incorrect
 - Need overflow detection logic

Arithmetic Overflow

- When sum of two positive numbers is negative
 - I.e., Sign of result becomes 1
 - Applies to subtraction too
 - A B when A > 0 and B < 0
- When sum of two negative numbers is positive
 - Sign of result becomes 0
 - Applies to subtraction too
 - A B when A < 0 and B > 0
- A simple rule to detect overflow
 - Overflow when carry-in to sign bit position ≠ carry-out from sign bit position

Arithmetic Logic Unit (ALU)

- Performs arithmetic or bit-wise logic functions
 - A function code specifies which operation to perform
 - A complex combinational circuit
- Need to use bit-parallel or bit-serial design methodology
- Overflow flag (OVF) can only be active when performing arithmetic operations
 - Must be masked otherwise

Example

f1	f0	Function		
0	0	Add		
0	1	Sub		
1	0	Increment		
1	1	Decrement		
0	0	Bitwise AND		
0	1	Bitwise OR		
1	0	Bitwise NOT		
1	1	Not Defined		
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1		

ALU Bit-Parallel Design

- Identify different types of operations
 - n-bit Arithmetic
 - Add, subtract, increment, decrement
 - Can combine into one 2's complement adder/subtrcator
 - n-bit Bit-wise operators
 - NOT, AND, OR
- Assume you have these modules draw a data path
 - Use MUX to select only one output
 - Include other necessary circuits
 - Circuit to convert input F into internal data path signals
 - Circuit to mask OVF during bitwise operations
- Design modules and assemble

Example ALU Modules

- Design Arithmetic module
 - Use n-bit 2's complement adder/subtractor
 - Left input always A
 - Right input either B or 1
 - Need a circuit that outputs B if add/sub or 1 if inc/dec.
 - Use known modules when possible
- Design n-bit 4-to-1 MUX
 - Bit-parallel: Design using n-bit 2-to-1 MUXs (bit-parallel)
 - Bit-serial: Design using 1-bit 4-to-1 MUX slices
- Design Map and Mask circuits
 - Create truth tables
 - Find minimal SOP/POS expressions

ALU Bit-Serial Design

- Consider n copies of 1-bit ALU slices
 - Create truth table for 1-bit ALU slice
 - Use Espresso
- May use larger slices
 - 2-bit or 4-bit, for example
 - Larger slices may be designed bit-parallel
- Can be slow for large n

f2	f1	f0	а	b	ci	CO	r	Function
0	0	0	0	0	0	0	0	Add
			0	0	1	0	1	
			0	1	0	0	1	
			0	1	1	1	0	
			1	0	0	0	1	
			1	0	1	1	0	
			1	1	0	1	0	
			1	1	1	1	1	
0	0	1	0	0	0	0	0	
			0	0	1	1	1	Sub
			0	1	0	1	1	
			0	1	1	1	0	
			1	0	0	0	1	
			1	0	1	0	0	
			1	1	0	0	0	
			1	1	1	1	1	
0	1	0	0	d	1	0	1	
			1	d	0	0	1	Increment
			1	d	1	1	0	
0	1	1	0	d	1	1	1	Degramant
			1	d	0	0	1	Decrement
1	0	0	1	1	d	d	1	Bit-wised AND
1	0	1	0	1	d	d	1	Bit-wised OR
			1	0	d	d	1	
			1	1	d	d	1	
1	1	0	0	d	d	d	1	Bit-wised NOT
			1	d	d	d	0	
1	1	1	d	d	d	d	d	Not Defined
Twith Table for 1 bit AI II clies								

Truth Table for 1-bit ALU slice

Other design examples (unsigned multiplier)

Algorithm

Bit-parallel

- Addends are added one at a time after adding 1st two
- Less concurrency in the data path
- Slower, longer propagation delay

Bit-serial

- Addend bits are added vertically, the way numbers are added by hand
- More concurrency in the data path
- Faster, shorter propagation delay

Bit-parallel

Bit-serial

Unsigned Divider (restoring)

- Similar to how we divide by hand
 - In each step, remainder can be + or –
 - If remainder positive, use in the next step
 - Else, restore
 - Concatenate next numerator bit and repeat
- Bit-parallel
 - Requires subtractor and MUX modules
- Bit-serial
 - Can use 1-bit combined subtractor/MUX slices
 - See Exercise section

Bit-parallel

Real Number Arithmetic

IEEE 754 FP number Standards

- Single, 32 bits
 - 1-bit sign, 8-bit biased exponent (bias = 127), 23-bit fraction
 - Stored as a 32-bit number in memory
- double, 64 bits
 - 1-bit sign, 11-bit biased exponent (bias = 1023), 52-bit fraction
 - Stored as a 64-bit number in memory
- Extended, 80 bits
 - 1-bit sign, 15-bit bias exponent (bias = 16383), 64-bit fraction
 - Stored in 80-bit registers only (no memory representation)

FP number Data Space (assume 32-bit FP numbers)

- Normal
 - $1 \le Biased exponent \le 254$
- Denormal
 - Biased exponent = 0 and fraction $\neq 0$
- Zero
 - Biased exponent = 0 and fraction = 0
- Infinity
 - Biased exponent = 255 and fraction = 0
 - E.g., $\frac{1}{0}$
- Not-a-number (Nan)
 - Biased exponent = 255 and fraction $\neq 0$
 - E.g., $\sqrt{-1}$

Data Space Illustration (1-Dimensional)

- Bold and thin lines indicate real numbers stored as FP numbers in computer
- More fraction bits implies more thin lines
- More exponent bits implies more bold lines

Two-Dimensional Illustration

- Easier to identify data space regions
- Easier to mark specific FP numbers or domain or range of a function
 - Eg. The largest FP number
 - E.g., for test generation purposes
 - region identified by (-1, 1) or [-1, 1], for example

FP Arithmetic

- Requires integer arithmetic
 - Operates on exponent and fraction numbers independently
 - Typically combinational arithmetic circuits
- Requires shift operations
 - Typically combinational shifter circuits
 - Used to line up implicit decimal points
 - E.g., during FP add
 - Used for normalizing results
 - Result converted to standard format
 - Used for rounding results
 - 64-bit fraction in register is converted to 23 or 52 bits format for storage
 - "float" data type: 23-bit fraction
 - "double" data type: 52-bit fraction
 - The resultant fraction is rounded
 - Based on the value of the bits lost
 - May require another normalization step

FP Add (e.g., **S** = **A** + **B**)

- 1. Switch operands (if necessary)
 - For S = A + B, |A| must be $\geq |B|$
- 2. Align decimal points and compute result R.F = A.F + B.F
- 3. Normalize R.F
- 4. Round R.F to produce S.F
- Example

FP subtract, multiply, divide

- Subtraction
 - Lineup decimal points
 - Compute A B if A.s = B.s or A + B if A.s \neq B.s.
- Multiplication
 - Integer multiply fractions
 - Add exponents
 - XOR the sign bits
- Division
 - Integer divide fractions
 - Subtract exponents
 - XOR the sign bits
- The rounding and normalization steps are the same as in FP add