# Ebene Graphen

#### von YICHUAN SHEN

#### 5. Juli 2016

### 1 Maximale Planarität

**Definition.** Ein ebener Graph ist ein Paar G = (V, E) endlicher Mengen (Elemente von V heißen Knoten, Elemente von E heißen Kanten), so dass:

- (i) V ist Teilmenge von  $\mathbb{R}^2$ .
- (ii) Jedes Element in E ist ein Polygonzug zwischen zwei Knoten.
- (iii) Verschiedene Kanten haben verschiedene Mengen von Endpunkten.
- (iv) Das Innere einer Kante enthält keine Knote oder einen Punkt einer anderen Kante.
- Bemerkung.  $\bullet$  Ein ebener Graph G definiert in natürlicher Weise einen (abstrakten) Graphen, den wir ebenfalls mit G bezeichnen.
  - Die unterliegende Punktmenge eines ebenen Graphens bezeichnen wir auch mit G:

$$G = V \cup \bigcup_{e \in E} e$$

**Definition.** Sei G = (V, E) ein ebener Graph.

- Die Zusammenhangskomponenten von  $\mathbb{R}^2 \setminus G$  heißen Gebiete von G.
- Die Menge aller Gebiete von G bezeichnen wir mit F(G).
- Sei  $f \in F(G)$ . Der Rand von f bezeichnen wir mit G[f]. Wir können G[f] als Teilgraph von G auffassen.

**Definition.** Sei G ein ebener Graph.

- G heißt maximal eben, wenn durch das Hinzufügen einer Kante G kein ebener Graph mehr ist.
- G heißt  $ebener\ Dreiecksgraph$ , wenn jedes seiner Gebiete durch einen  $K^3$  berandet ist.

**Satz 1.** Ein ebener Graph G mit  $|G| \ge 3$  ist genau dann maximal eben, wenn er ein ebener Dreiecksgraph ist.

Beweis. Sei G ein ebener Dreiecksgraph und e eine zusätzliche Kante. Dann hat e ihr Inneres in einem Gebiet f von G und ihre Endpunkte auf dem Rand von f. Per Definition ist  $G[f] = K^3$  ein vollständiger Graph, also sind die Endpunkte von e bereits in G benachbart. Da Multikanten in einem ebenen Graphen nicht erlaubt sind, war G schon maximal eben.

Sei nun umgekehrt G ein maximal ebener Graph und f ein Gebiet von G. Setze H = G[f] und betrachte den induzierten Untergraphen G[H]. Angenommen, es gibt zwei Knoten x, y in G[H], die nicht benachbart sind. Aber dann könnten wir einen Polygonzug zwischen x und y in f konstruieren und diese als ebene Kante zu G hinzufügen, ein Widerspruch zur Maximalität von G. Also muss G[H] vollständig sein.

Sei n = |H|. Angenommen, H enthält keinen Kreis. Ist  $n \geq 3$ , so ist  $K^3 \subseteq G[H] \subseteq G$ , d.h. G enthält einen Kreis und daher  $G \setminus H \neq \emptyset$ . Für n < 3 gilt auch  $G \setminus H \neq \emptyset$ , da  $|G| \geq 3$ . Andererseits ist H ein Wald und hat daher genau einen Gebiet. f ist ein Gebiet von G[f] = H, also ist f das einzige Gebiet von H, d.h.  $f \cup H = \mathbb{R}^2$ . Insgesamt erhalten wir  $G \setminus H \subseteq f$  und es folgt der Widerspruch:

$$G \setminus H = G \setminus H \cap f \subseteq G \cap f = \emptyset$$

Also muss H einen Kreis enthalten.

Es bleibt noch zu zeigen, dass  $n \leq 3$  ist. Nehmen wir an, dass  $n \geq 4$ . Sei  $C = v_1v_2v_3v_4v_1$  ein Kreis in G[H]. Wegen  $C \subseteq G$  liegt f in einem Gebiet  $c \in F(C)$ . Sei  $c' \in F(C)$  das andere Gebiet.  $v_1$  und  $v_3$  liegen auf dem Rand von f. Wir können sie mit einem Polygonzug P in c verbinden, das sich mit G nicht schneidet. Daher muss die ebene Kante zwischen  $v_2$  und  $v_4$  in c' befinden, da sich diese mit P nicht schneiden darf. Das gleiche Argument für  $v_2$  und  $v_4$  zeigt, dass die ebene Kante zwischen  $v_1$  und  $v_3$  in c' befinden muss. Dies ein Widerspruch, da eine solche Kante mit der Kante zwischen  $v_2$  und  $v_4$  schneiden muss.

**Korollar 2.** Ein ebener Graph G der Ordnung  $n \geq 3$  hat höchstens 3n - 6 Kanten.

Beweis. Jeder ebene Dreiecksgraph mit n Ecken hat 3n-6 Kanten.

**Korollar 3.** Kein ebener Graph enthält einen  $K^5$  oder  $K_{3,3}$  als einen topologischen Minor.

Beweis.  $K^5$  hat  $10 > 3 \cdot 5 - 6$  Kanten. Für  $K_{3,3}$  kann man mithilfe der Euler-Charakteristik für ebene Graphen auch eine widersprüchliche Abschätzung für die Kantenzahl finden, siehe Korollar 3.2.11 in [Diestel: Graphentheorie]. Mit  $K^5$  und  $K_{3,3}$  können natürlich auch deren Unterteilungen nicht als ebene Graphen auftreten.

**Definition.** • Eine Einbettung in die Ebene eines (abstrakten) Graphen G ist ein abstrakter Graphenisomorphismus zwischen G und einem ebenen Graphen H.

- H nennen wir auch eine Zeichnung von G.
- Ein Graph G heißt plättbar, wenn es eine Einbettung in die Ebene für G gibt.

#### 2 Satz von Kuratowski

Interessanterweise gilt auch die Umkehrung von Korollar 3:

**Theorem 4** (Satz von Kuratowski, 1930). Die folgenden Aussagen sind für einen Graphen G äquivalent:

- (i) G ist plättbar.
- (ii) G enthält weder einen  $K^5$  noch einen  $K_{3,3}$  als Minor.
- (iii) G enthält weder einen  $K^5$  noch einen  $K_{3,3}$  als topologischen Minor.

Wir zeigen die Umkehrung zunächst für 3-zusammenhängende Graphen. Dazu brauchen wir zunächst die folgenden Lemmata:

**Lemma 5.** In einem 2-zusammenhängenden ebenen Graphen ist jedes Gebiet durch einen Kreis berandet.

Beweis. Siehe Lemma 3.2.6 in [Diestel: Graphentheorie].

**Lemma 6.** Ist G 3-zusammenhängend und |G| > 4, so hat G eine Kante e, so dass G/e wieder 3-zusammenhängend ist.

Beweis. Siehe Lemma 2.2.1 in [Diestel: Graphentheorie].

**Satz 7.** Ist ein Graph G 3-zusammenhängend, und enthält G weder einen  $K^5$  noch einen  $K_{3,3}$  als topologischen Minor, so ist G plättbar.

Beweis. Per Induktion nach |G|. Für |G| = 4 ist  $G = K^4$  und G plättbar:



Sei nun |G| > 4 und die Aussage wahr für kleinere Graphen. Nach Lemma 6 haben wir eine Kante xy, so dass G/xy wieder 3-zusammenhängend ist. Nun enthält G/xy ebenfalls weder  $K^5$  noch einen  $K_{3,3}$  als topologischen Minor. Nach Induktionsvoraussetzung ist G/xy plättbar. Sei also H eine Zeichnung von G/xy.

Sei v der Knoten in H, das die Kante xy repräsentiert. Betrachte das Gebiet f von H-v, das den Punkt v enthält, und sei C der Rand von f. Setze:

$$X = N(x) \setminus y, \quad Y = N(y) \setminus x$$

Dann gilt  $X \cup Y \subseteq N(v) \subseteq C$ . DaH - v2-zusammenhängend ist, ist C nach Lemma 5 ein Kreis. Seien  $x_1, \ldots, x_k$  die Elemente in X in natürlicher Reihenfolge entlang C und  $P_i$  der Verbindungsweg auf C zwischen  $x_i$  und  $x_{i+1}$ , wobei  $x_{k+1} = x_1$ . Betrachte den folgenden ebenen Graphen:

$$H' = H - \{vw \mid w \in Y \setminus X\}$$

Wir können H' auch als Zeichnung von G-y deuten, indem wir den Knoten v als x auffassen. Ziel ist es nun, auch y in der Zeichnung unterzubringen.

Dafür reicht es zu zeigen, dass ein i existiert, so dass  $Y \subseteq V(P_i)$ . Dann können wir y in dem Gebiet platzieren, der durch  $x_i P_i x_{i+1} x x_i$  definiert ist. Angenommen, es existiert kein i mit  $Y \subseteq V(P_i)$ . Wir unterscheiden drei Fälle:

- 1. Fall: Es gibt ein  $y' \in Y \setminus X$ . Sei etwa  $y' \in P_i$  und  $y'' \in C \setminus P_i$  ein weiterer Nachbar von y. Setze  $x' = x_i$  und  $x'' = x_{i+1}$ . Dann werden y' und y'' durch x' und x'' in C getrennt.
- 2. Fall: Es ist  $Y \subseteq X$  und  $|Y| \le 2$ , d.h. y hat genau zwei Nachbarn y' und y'' auf C, die nicht im gleichen  $P_i$  liegen. Diese werden durch zwei  $x', x'' \in X$  in C getrennt.
- 3. Fall: Es ist  $Y \subseteq X$  und  $|Y| \ge 3$ .

In den ersten beiden Fällen bilden x, y', y'' und y, x', x'' einen  $TK_{3,3}$  in G. Im dritten Fall haben y und x drei gemeinsame Nachbarn auf G. Diese bilden zusammen mit x und y einen  $TK^5$  in G.

Um den Beweis von Satz von Kuratowski abzuschließen, muss man noch die folgenden Lemmata beweisen:

**Lemma 8.** Ein Graph enthält genau dann einen  $TK^5$  oder einen  $TK_{3,3}$ , wenn er einen  $K^5$  oder einen  $K_{3,3}$  als Minor enthält.

Beweis. Siehe Lemma 3.4.2 in [Diestel: Graphentheorie].

**Lemma 9.** Ist G ein Graph mit |G| > 4, der kantenmaximal mit  $TK^5, TK_{3,3} \nsubseteq G$  ist, so ist G 3-zusammenhängend.

Beweis. Siehe Lemma 3.4.5 in [Diestel: Graphentheorie].

## 3 Algebraisches Plättbarkeitskriterium

**Definition.** Sei G = (V, E) ein Graph.

• Der Kantenraum von G ist definiert als den  $\mathbb{F}_2$ -Vektorraum

{Abbildungen 
$$h: E \to \mathbb{F}_2$$
}

mit komponentenweiser Addition. Wir identifizieren Vektoren darin mit Teilmengen von E. Somit ist die Addition von Teilmengen nichts anderes als das Bilden der symmetrischen Differenz der beiden Mengen:

$$E_1 + E_2 = (E_1 \cup E_2) \setminus (E_1 \cap E_2)$$

• Der Schnittraum  $C^*(G)$  von G ist definiert als der  $\mathbb{F}_2$ -Untervektorraum des Kantenraums, der nur aus den Schnittmengen in G besteht, d.h. Mengen der Form E(V', V'') für eine Partition  $\{V', V''\}$  in G.

- Der  $Zyklenraum \mathcal{C}(G)$  von G ist definiert als der  $\mathbb{F}_2$ -Untervektorraum des Kantenraums, der von den Kantenmengen von Kreisen in G erzeugt wird. Vektoren in  $\mathcal{C}(G)$  kann man als Summe von disjunkten Kreisen in G schreiben.
- Eine Teilmenge  $\mathcal{F}$  des Kantenraums von G heißt schlicht, wenn jede Kante in G in höchstens zwei Mengen aus  $\mathcal{F}$  liegt.

**Lemma 10.** Sei G ein zusammenhängender Graph mit n Knoten und m Kanten. Dann gilt für die Dimension des Zyklenraums:

$$\dim \mathcal{C}(G) = m - n + 1$$

Beweis. Siehe Satz 0.9.6 in [Diestel: Graphentheorie].

**Theorem 11** (*MacLane 1937*). Ein Graph G ist genau dann plättbar, wenn sein Zyklenraum  $\mathcal{C}(G)$  eine schlichte Basis besitzt.

Beweis. Für  $|G| \leq 2$  ist die Aussage trivial. Sei  $|G| \geq 3$ . Sei G zunächst einmal höchstens 1-zusammenhängend, d.h. G ist die Vereinigung zweier Untergraphen  $G', G'' \subset G$  mit  $|G' \cap G''| \leq 1$ . Ein Kreis in G ist entweder ein Kreis in G' oder ein Kreis in G'', also folgt:

$$\mathcal{C}(G) = \mathcal{C}(G') \oplus \mathcal{C}(G'')$$

Somit hat  $\mathcal{C}(G)$  genau dann eine schlichte Basis, wenn  $\mathcal{C}(G')$  und  $\mathcal{C}(G'')$  eine haben. Ferner ist G genau dann plättbar, wenn G' und G'' es sind. Somit folgt die Aussage induktiv. Sei ab jetzt G 2-zusammenhängend.

Sei G plättbar und wähle eine Zeichnung. Nach Lemma 5 sind alle Gebietsränder Kreise, liegen also in  $\mathcal{C}(G)$ . Wir zeigen, dass die Gebietsränder schon ganz  $\mathcal{C}(G)$  erzeugen. Da eine ebene Kante auf dem Rand höchstens zweier Gebiete liegen kann, besitzt  $\mathcal{C}(G)$  dann eine schlichte Basis.

Sei  $C \subset G$  ein Kreis und f sein Innengebiet. Jede Kante e liegt auf einem Kreis von G. Liegt das Innere von e in f, so liegt e auf dem Rand genau zweier Gebiete von G, die in f enthalten sind. Liegt e dagegen auf C, so liegt e genau auf einem Gebiet, das in f enthalten ist. Somit gilt:

$$C = \sum_{\substack{f' \in F(G) \\ f' \subseteq f}} E(G[f'])$$

Sei nun umgekehrt  $\{C_1, \ldots, C_k\}$  eine schlichte Basis von  $\mathcal{C}(G)$ . Für jede Kante e besitzt  $\mathcal{C}(G-e)$  auch eine schlichte Basis, denn:

- Liegt e in nur einem Basiszyklus, etwa  $C_1$ , so ist  $\{C_2, \ldots, C_k\}$  eine Basis von  $\mathcal{C}(G-e)$ .
- Liegt e in zwei Basiszyklen, etwa  $C_1$  und  $C_2$ , so ist  $\{C_1 + C_2, \ldots, C_k\}$  eine Basis von  $\mathcal{C}(G e)$ .

Angenommen, G ist nicht plättbar. Nach dem Satz von Kuratowski enthält G einen  $TK^5$  oder einen  $TK_{3,3}$ . Als Teilgraphen von G hat dann  $\mathcal{C}(TK^5)$  bzw.  $\mathcal{C}(TK_{3,3})$  eine schlichte Basis. Da topologische Minoren keine Kreise hinzufügen bzw. entfernen bleibt der Zyklenraum gleich, d.h.  $\mathcal{C}(K^5)$  bzw.  $\mathcal{C}(K_{3,3})$  hat eine schlichte Basis. Wir führen nun beide Fälle in den folgenden Lemmata zum Widerspruch.

**Lemma 12.**  $C(K^5)$  hat keine schlichte Basis.

Beweis. Nach der Dimensionsformel Lemma 10 gilt dim  $\mathcal{C}(K^5) = 6$ . Angenommen,  $\mathcal{C}(K^5)$  habe eine schlichte Basis  $B = \{C_1, \dots, C_6\}$ . Setze:

$$C_0 = C_1 + \ldots + C_6$$

Keines der  $C_0, C_1, \ldots, C_6$  sind leer und enthalten alle mindestens drei Kanten. Da eine Kante in höchstens zwei Zyklen aus B liegt, liegt jede Kante in  $C_0$  in nur einem der Basiszyklen in B. Daher ist die Menge  $\{C_0, C_1, \ldots, C_6\}$  ebenfalls schlicht, also folgt:

$$21 = 7 \cdot 3 \le |C_0| + \ldots + |C_6| \le 2 \cdot ||K^5|| = 20$$

**Lemma 13.**  $C(K_{3,3})$  hat keine schlichte Basis.

Beweis. Nach der Dimensionsformel Lemma 10 gilt  $\dim \mathcal{C}(K_{3,3}) = 4$ . Angenommen,  $\mathcal{C}(K_{3,3})$  habe eine schlichte Basis  $B = \{C_1, \ldots, C_4\}$ . Setze:

$$C_0 = C_1 + \ldots + C_4$$

Keines der  $C_0, C_1, \ldots, C_4$  sind leer und enthalten alle mindestens vier Kanten wegen der Bipartität. Mit dem gleichen Argument wie im vorherigen Lemma ist  $\{C_0, C_1, \ldots, C_4\}$  ebenfalls schlicht, also folgt:

$$20 = 5 \cdot 4 \le |C_0| + \ldots + |C_4| \le 2 \cdot ||K_{3,3}|| = 18$$

### 4 Plättbarkeit & Dualität

**Definition.** Ein ebener Multigraph ist ein Paar G = (V, E) endlicher Mengen (Elemente von V heißen Knoten, Elemente von E heißen Kanten), so dass:

- (i) V ist Teilmenge von  $\mathbb{R}^2$ .
- (ii) Jedes Element in E ist ein Polygonzug zwischen zwei Knoten oder ein Polygon, das genau eine Knote enthält.
- (iii) Das Innere einer Kante enthält keine Knote oder einen Punkt einer anderen Kante.

**Definition.** Sei G = (V, E) ein ebener Multigraph. Wir setzen in jedes ebiet von G einen neuen Knoten und verbinden diese zu einem neuen ebenen Multigraphen  $G^*$ :

- Für jede Kante e von G verbinden wir die neuen Knoten in den beiden Gebieten, auf deren Rand e liegt, durch eine neue Kante  $e^*$ .
- Liegt e nur auf dem Rand eines Gebiets, so legen wir an dessen neue Knote eine Schlinge  $e^*$  durch e.

Der neue Graph  $G^*$  heißt topologisches Dual zu G.

Wir finden den folgenden einfachen Zusammenhang zwischen einem Graphen und sein topologisches Dual:

**Satz 14.** Sei G ein zusammenhängender ebener Multigraph und  $E \subseteq E(G)$  eine Kantenmenge. E ist genau dann von einem Kreis induziert, wenn  $E^* = \{e^* \mid e \in E\}$  ein minimaler Schnitt in  $G^*$  ist.

Beweis. Siehe Proposition 3.6.1 in [Diestel: Graphentheorie].  $\Box$ 

**Definition.** Sei G ein abstrakter Multigraph. Ein abstrakter Multigraph  $G^*$  heißt zu G kombinatorisch dual, wenn  $E(G^*) = E(G)$  und die Minimalschnitte von  $G^*$  gerade die Kantenmengen von Kreise in G sind.

**Satz 15.** Sei  $G^*$  kombinatorisch dual zu G. Dann gilt:

$$\mathcal{C}^*(G^*) = \mathcal{C}(G)$$

Beweis.  $C^*(G^*)$  wird erzeugt durch die Minimalschnitte von  $G^*$ , während C(G) von den Kantenmengen von Kreise in G erzeugt wird.

**Lemma 16.** Sei G = (V, E) ein Graph. Dann wird  $\mathcal{C}^*(G)$  erzeugt von Schnitten der Form  $E(v) = \{vw \mid w \in V \setminus \{v\}\}, \ v \in V.$ 

Beweis. Sei  $\{V', V''\}$  eine Partition von G und betrachte den Schnitt E(V', V''). Da jede Kante vw in genau E(v) und E(w) liegt, gilt:

$$E(V', V'') = \sum_{v \in V'} E(v)$$

Korollar 17. Sei G ein Graph. Dann hat  $\mathcal{C}^*(G)$  eine schlichte Basis.

**Theorem 18** (Whitney 1993). Ein Graph G ist genau dann plättbar, wenn ein zu ihm kombinatorisch dualer Multigraph existiert.

Beweis. Eine Richtung folgt aus Satz 14. Sei  $G^*$  ein kombinatorisches Dual zu G. Nach Satz 15 gilt  $C^*(G^*) = C(G)$ . Nach MacLane Theorem 11 reicht es zu zeigen, dass  $C^*(G^*)$  eine schlichte Basis besitzt. Dies folgt aus Korollar 17.