US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250250226 A1 August 07, 2025 Adami; Roger et al.

IONIZABLE COMPOUNDS AND COMPOSITIONS AND USES THEREOF

Abstract

Ionizable compounds, and compositions and methods of use thereof. The ionizable compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, the compounds, compositions and methods are to provide nanoparticles to encapsulate active agents, such as nucleic acid agents, and to deliver and distribute the active agents to cells, tissues, organs, and subjects.

Inventors: Adami; Roger (Carlsbad, CA), Bai; Hao (San Diego, CA), Gaudette; John

(Poway, CA), Majeti; Bharat (San Diego, CA), Nukui; Seiji (San Diego, CA), Tsang; Kwok Yin (Irvine, CA), Wang; Hai (San Diego, CA), Yin; Haiqing (San

Marcos, CA), Ying; Wenbin (San Diego, CA)

Applicant: Nitto Denko Corporation (Osaka, JP)

Family ID: 57585619

Appl. No.: 19/186484

Filed: April 22, 2025

Related U.S. Application Data

parent US continuation 16228054 20181220 parent-grant-document US 11384051 child US 17658075

parent US continuation 15191511 20160623 parent-grant-document US 10167253 child US 16228054

parent US division 17658075 20220405 parent-grant-document US 12319643 child US 19186484 us-provisional-application US 62184188 20150624

Publication Classification

Int. Cl.: C07C271/16 (20060101); A61K9/127 (20250101); A61K9/51 (20060101); A61K31/7105 (20060101); A61K31/713 (20060101); A61K47/16 (20060101); A61K47/22 (20060101); A61K47/24 (20060101); C07C237/08 (20060101); C07C237/16 (20060101); C07C237/50 (20060101); C07D205/04 (20060101); C07D207/09 (20060101); C07D207/12 (20060101); C07D211/74 (20060101); C07D211/82 (20060101); C07D211/86 (20060101); C07F9/06 (20060101); C07F9/10 (20060101)

U.S. Cl.:

CPC C07C271/16 (20130101); A61K9/127 (20130101); A61K9/5123 (20130101); A61K31/7105 (20130101); A61K31/713 (20130101); A61K47/16 (20130101); A61K47/22 (20130101); A61K47/24 (20130101); C07C237/08 (20130101); C07C237/16 (20130101); C07C237/50 (20130101); C07D205/04 (20130101); C07D207/09 (20130101); C07D207/12 (20130101); C07D211/74 (20130101); C07D211/82 (20130101); C07D211/86 (20130101); C07F9/06 (20130101); C07F9/106 (20130101);

Background/Summary

BACKGROUND OF THE INVENTION

[0001] Therapeutic agents such as drug compounds, nucleic acid molecules and other active agents operate by uptake into cells, tissues, and organs of a subject. Transfection of agents and molecules into cells is often a limiting step in therapeutic action.

[0002] When the active agent molecules are sensitive to attack or degradation in serum or other biological settings, it becomes necessary to protect the molecules in order to achieve their medicinal effect.

[0003] For example, one way to carry out transfection of nucleic acids is to encapsulate the active molecules in a lipid nanoparticle. Drawbacks of this methodology include potential toxicity in various modalities of delivery, such as intravenous injection, and low rates of cell penetration. [0004] There is a long-standing need for molecules to provide nanoparticles that have favorable transfection properties to deliver active agents to cells.

[0005] What is needed are compositions and compounds for forming nanoparticles for active agents. There is a continuing need for lipid-like molecules and compositions for efficient transfection and distribution of nucleic acid molecules and other agents to cells and subjects.

BRIEF SUMMARY

[0006] This invention relates to molecules and compositions thereof for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to deliver and distribute active agents or drug compounds to cells, tissues, organs, and subjects.

[0007] This invention provides a range of ionizable compounds. The ionizable compounds of this invention can be used to form nanoparticles to deliver and distribute active agents.

[0008] Embodiments of this invention include a broad range of compounds having lipid-like or liposome-forming properties.

[0009] In some embodiments, a compound may have the structure shown in Formula I #STR00001# [0010] wherein R.sup.1 and R.sup.2 are [0011]

R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0012]

R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0013] wherein n and m are each

```
independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-
20) alkyl group, or a C(12-20) alkenyl group; [0014] wherein R.sup.3 is selected from
##STR00002## [0015] wherein [0016] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, and aminoalkyl; [0017] each R.sup.7 is
independently selected from H, alkyl, and hydroxyalkyl; [0018] each R.sup.8 is independently
selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring;
[0019] q is from zero to four; [0020] Q is O or NR.sup.7; [0021] p is from 1 to 4.
[0022] In further embodiments, a compound can have the structure shown in Formula II
##STR00003## [0023] wherein R.sup.1 and R.sup.2 are [0024]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0025]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0026] wherein n and m are each
independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-
20) alkyl group, or a C(12-20) alkenyl group; [0027] wherein R.sup.3 is a C(12-20) alkyl group or
a C(12-20) alkenyl group that is substituted with a carboxylic acid or ester group.
[0028] In additional embodiments, a compound may have the structure shown in Formula III
##STR00004## [0029] wherein R.sup.1 and R.sup.2 are [0030]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0031]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0032] wherein n and m are each
independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-
20) alkyl group, or a C(12-20) alkenyl group; [0033] wherein R.sup.3 is selected from alkyl,
hydroxyalkyl, alkoxyalkoxy, and carboxyalkyl; [0034] wherein R.sup.6 is selected from
NR.sub.2.sup.7, N.sup.+HR.sub.2.sup.7 and N.sup.+R.sup.73; [0035] wherein R.sup.7 is selected
from H, alkyl, hydroxyalkyl.
[0036] A compound of this invention may have the structure shown in Formula IV
##STR00005## [0037] wherein R.sup.1 and R.sup.2 are [0038] R.sup.1=C(=O)OR.sup.4 [0039]
R.sup.2=C(=O)OR.sup.5 [0040] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0041] wherein R.sup.3 is selected
from
##STR00006## [0042] wherein [0043] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0044] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl; [0045] each R.sup.8 is independently selected from H, alkyl,
hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0046] g is from zero to four;
[0047] Q is O or NR.sup.7; [0048] p is from 1 to 4.
[0049] In further embodiments, a compound can have the structure shown in Formula IV-B
##STR00007## [0050] wherein R.sup.1 and R.sup.2 are [0051] R.sup.1=C(=O)OR.sup.4 [0052]
R.sup.2=C(=O)OR.sup.5 [0053] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0054] wherein Z is S or O;
[0055] wherein R.sup.3 is selected from
##STR00008## [0056] wherein [0057] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0058] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl; [0059] p is from 1 to 4.
[0060] In further aspects, a compound may have the structure shown in Formula V
##STR00009## [0061] wherein R.sup.1 and R.sup.2 are [0062] R.sup.1=NHC(=O)R.sup.4 [0063]
R.sup.2=C(=O)OR.sup.5 [0064] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0065] wherein p is from 1 to 4;
[0066] wherein R.sup.3 is selected from
```

##STR00010## [0067] wherein [0068] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyl, aminoalkyl; [0069] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl; [0070] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0071] q is from zero to four;

```
[0072] Q is O or NR.sup.7.
[0073] A compound of this invention can have the structure shown in Formula VI
##STR00011## [0074] wherein R.sup.1 is [0075] R.sup.1=OC(=O)R.sup.4 [0076] wherein R.sup.2
and R.sup.4 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl
group; [0077] wherein R.sup.3 is selected from aminoalkyl, quaternary aminoalkyl.
[0078] In certain embodiments, a compound of this invention can have the structure shown in
Formula VII
##STR00012## [0079] wherein R.sup.1 and R.sup.2 are [0080] R.sup.1=OC(=O)R.sup.4 [0081]
R.sup.2=OC(=O)R.sup.5 [0082] wherein n and m are each independently from 1 to 2; and R.sup.4
and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl
group; [0083] wherein R.sup.3 is selected from H, alkyl, aminoalkyl, quaternary aminoalkyl,
hydroxyalkyl, alkoxyalkyl, alkoxyalkoxyalkyl.
[0084] In further aspects, a compound may have the structure shown in Formula VIII
##STR00013## [0085] wherein R.sup.1 and R.sup.2 are [0086] R.sup.1=OC(=O)R.sup.4 [0087]
R.sup.2=C(=O)ZR.sup.5 [0088] wherein Z is NH or O, [0089] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0090]
wherein R.sup.3 is selected from [0091] amino; [0092] quaternary amino; [0093] aminoalkyl;
[0094] quaternary aminoalkyl;
##STR00014## [0095] NHC(=OXCH.sub.2).sub.pR.sup.10; [0096] NHC(=O)SR.sup.9; [0097]
wherein R.sup.10 is selected from
##STR00015## [0098] carboxyalkyl; [0099] aminoalkyl;
##STR00016## [0100] wherein R.sup.9 is selected from [0101] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0102] and wherein [0103] each R.sup.6 is independently selected from
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0104] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0105] each R.sup.8 is independently selected
from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0106] q is
from zero to four; [0107] Q is O or NR.sup.7.
[0108] In certain aspects, a compound may have the structure shown in Formula VIII-B
##STR00017## [0109] wherein R.sup.1 and R.sup.2 are [0110]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0111]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0112] wherein n and m are each
independently from 1 to 2; [0113] R.sup.4 and R.sup.8 are independently for each occurrence a
C(12-20) alkyl group, or a C(12-20) alkenyl group; [0114] wherein Z is N, O; [0115] wherein
R.sup.3 is selected from [0116] alkyl, hydroxalkyl, alkoxy, alkoxy, aminoalkyl;
##STR00018## [0117] wherein [0118] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0119] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl; [0120] p is from 1 to 4.
[0121] In additional embodiments, a compound can have the structure shown in Formula IX
##STR00019## [0122] wherein R.sup.1 and R.sup.2 are [0123] R.sup.1=C(=O)OR.sup.4 [0124]
R.sup.2=NHC(=O)R.sup.5 [0125] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0126] wherein p is from 1 to 4;
[0127] wherein R.sup.3 is selected from
##STR00020## [0128] wherein [0129] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0130] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl; [0131] each R.sup.8 is independently selected from H, alkyl,
```

[0134] A compound of this disclosure can have the structure shown in Formula X ##STR00021## [0135] wherein R.sup.1 and R.sup.2 are [0136] R.sup.1=C(=O)OR.sup.4 [0137] R.sup.2=NHC(=O)R.sup.5 [0138] wherein R.sup.4 and R.sup.5 are independently for each

hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0132] q is from zero to four;

[0133] Q is O or NR.sup.7.

occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0139] wherein R.sup.3 is selected from [0140] amino; [0141] quaternary amino; [0142] aminoalkyl; [0143] quaternary aminoalkyl; [0144] hydroxyalkylamino.

[0145] In further embodiments, a compound may have the structure shown in Formula XI ##STR00022## [0146] wherein R.sup.1 and R.sup.2 are [0147] R.sup.1=C(=O)R.sup.4 [0148] R.sup.2=C(=O)OR.sup.5 [0149] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0150] wherein Z is O or NH; [0151] wherein p is from 1 to 4; [0152] wherein R.sup.3 is selected from ##STR00023## [0153] wherein [0154] each R.sup.6 is independently selected from H, alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0155] each R.sup.7 is independently selected from H, alkyl; [0156] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0157] q is from zero to four; [0158] Q is O or NR.sup.7.

[0159] This invention further contemplates compositions containing an ionizable compound above and a pharmaceutically acceptable carrier. In some embodiments, the composition may contain nanoparticles. This disclosure includes pharmaceutical compositions comprising an ionizable compound above, an active agent, and a pharmaceutically acceptable carrier. The ionizable compound may be from 15 mol % to 40 mol % of the lipids of the composition. In some embodiments, the composition may comprise nanoparticles.

[0160] An active agent of this disclosure may be one or more RNAi molecules. An active agent may be one or more RNAi molecules selected from small interfering RNAs (siRNA), double stranded RNAs (dsRNA) that are Dicer substrates, microRNAs (miRNA), short hairpin RNAs (shRNA), DNA-directed RNAs (ddRNA), Piwi-interacting RNAs (piRNA), repeat associated siRNAs (rasiRNA), and modified forms thereof.

[0161] An active agent of this disclosure may be one or more active pharmaceutical ingredients. [0162] In certain embodiments, this invention includes compositions for use in distributing an active agent for treating a condition or disease in a subject, the composition comprising an ionizable compound above, a structural lipid, a stabilizer lipid, and a lipid for reducing immunogenicity of the composition. The active agent can be one or more RNAi molecules and the composition may comprise nanoparticles that encapsulate the RNAi molecules.

[0163] This invention further contemplates compositions containing an ionizable compound, and one or more pharmaceutically acceptable excipients. In some embodiments, a composition of this invention can be a nanoparticle composed, at least in part, of an ionizable compound.

[0164] Compounds of this invention can be used to make compositions for use in distributing an active agent in a subject, where the composition includes an ionizable compound.

[0165] A composition of this invention can be used in distributing an active agent for treating a condition or disease in a subject.

[0166] A composition for use in distributing an active agent for treating a condition or disease in a subject can include an ionizable compound, a structural lipid, and a lipid for reducing immunogenicity of the composition.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0167] FIG. 1: FIG. 1 shows a scheme for the preparation of Compound A6.

[0168] FIG. 2: FIG. 2 shows a scheme for the preparation of Compound AB.

[0169] FIG. **3**: FIG. **3** shows a scheme for the preparation of Compound A4.

[0170] FIG. 4: FIG. 4 shows a scheme for the preparation of Compound B8.

[0171] FIG. **5**: FIG. **5** shows a scheme for the preparation of Compound A9.

```
[0172] FIG. 6: FIG. 6 shows a scheme for the preparation of Compound AA.
```

- [0173] FIG. 7: FIG. 7 shows a scheme for the preparation of Compound A5.
- [0174] FIG. 8: FIG. 8 shows a scheme for the preparation of Compound A1.
- [0175] FIG. **9**: FIG. **9** shows a scheme for the preparation of Compound D22.
- [0176] FIG. **10**: FIG. **10** shows a scheme for the preparation of Compounds A7 and A8.
- [0177] FIG. 11: FIG. 11 shows a scheme for the preparation of Compounds C3 and C2.
- [0178] FIG. 12: FIG. 12 shows a scheme for the preparation of Compound DD.
- [0179] FIG. 13: FIG. 13 shows a scheme for the preparation of Compound E4.
- [0180] FIG. 14: FIG. 14 shows a scheme for the preparation of Compound CA.
- [0181] FIG. **15**: FIG. **15** shows a scheme for the preparation of Compound D1.
- [0182] FIG. **16**: FIG. **16** shows a scheme for the preparation of Compound D7.
- [0183] FIG. **17**: FIG. **17** shows a scheme for the preparation of Compound F6.
- [0184] FIG. **18**: FIG. **18** shows a scheme for the preparation of Compounds F5 and F7.
- [0185] FIG. **19**: FIG. **19** shows a scheme for the preparation of Compounds F8 and F9.
- [0186] FIG. **20**: FIG. **20** shows a scheme for the preparation of Compounds C25 and C24.
- [0187] FIG. **21**: FIG. **21** shows a scheme for the preparation of Compound D16.
- [0188] FIG. 22: FIG. 22 shows a scheme for the preparation of Compound D17.
- [0189] FIG. 23: FIG. 23 shows a scheme for the preparation of Compound D18.
- [0190] FIG. **24**: FIG. **24** shows a scheme for the preparation of Compound D19.
- [0191] FIG. **25**: FIG. **25** shows a scheme for the preparation of Compound D20.
- [0192] FIG. **26**: FIG. **26** shows a scheme for the preparation of Compound D21.
- [0193] FIG. 27: FIG. 27 shows a scheme for the preparation of Compound E37.
- [0194] FIG. **28**: FIG. **28** shows a scheme for the preparation of Compounds E38 and E39.
- [0195] FIG. **29**: FIG. **29** shows a scheme for the preparation of Compound E40.
- [0196] FIG. **30**: FIG. **30** shows a scheme for the preparation of Compound A23.
- [0197] FIG. **31**: FIG. **31** shows a scheme for the preparation of Compound A24.
- [0198] FIG. **32**: FIG. **32** shows a scheme for the preparation of Compound A25.

DETAILED DESCRIPTION OF THE INVENTION

[0199] This invention provides a range of ionizable molecules that are amphiphiles with lipid-like properties. The ionizable compounds of this invention can be used in delivering therapeutic agents to cells, tissues or organs, organisms, and subjects.

[0200] In some aspects, this invention provides compounds for forming lipid nanoparticles for encapsulating and delivering active agents such as nucleic acid molecules to cells and subjects. [0201] This invention can provide a composition for use in distributing an active agent in cells, tissues or organs, organisms, and subjects, where the composition includes one or more of the ionizable molecules of this invention.

[0202] Compositions of this invention may include one or more of the ionizable molecules, along with a structural lipid, and one or more lipids for reducing immunogenicity of the composition. [0203] An ionizable molecule of this invention can be any mol % of a composition of this invention.

[0204] Compositions of this invention may include one or more of the ionizable molecules, along with a structural lipid, and one or more lipids for reducing immunogenicity of the composition. [0205] Compositions of this invention may include one or more of the ionizable molecules, along with a structural lipid, one or more stabilizer lipids, and one or more lipids for reducing immunogenicity of the composition.

[0206] This invention includes compositions containing one or more ionizable compounds and a pharmaceutically acceptable carrier. The composition may comprise nanoparticles.

[0207] This invention further contemplates pharmaceutical compositions containing one or more ionizable compounds, an active agent, and a pharmaceutically acceptable carrier.

[0208] A composition may contain an ionizable compound in a quantity from 15 mol % to 40 mol

% of the lipids of the composition.

[0209] An active agent can be one or more RNAi molecules. An active agent can be one or more RNAi molecules selected from small interfering RNAs (siRNA), double stranded RNAs (dsRNA) that are Dicer substrates, microRNAs (miRNA), short hairpin RNAs (shRNA), DNA-directed RNAs (ddRNA), Piwi-interacting RNAs (piRNA), repeat associated siRNAs (rasiRNA), and modified forms thereof.

[0210] In further aspects, this invention includes compositions for use in distributing an active agent for treating a condition or disease in a subject, where the composition contains one or more ionizable compounds, a structural lipid, a stabilizer lipid, and a lipid for reducing immunogenicity of the composition. The active agent can be one or more RNAi molecules, and the composition may comprise nanoparticles that encapsulate the RNAi molecules.

Compositions with Three Components

[0211] As used herein, a component of a formulation, such as a "lipid," can be a single compound, or can be a combination of one or more suitable lipid compounds. For example, "a stabilizer lipid" can refer to a single stabilizer lipid, or to a combination of one or more suitable stabilizer lipids. One skilled in the art can readily appreciate that certain combinations of the compounds described herein can be used without undue experimentation, and that various combinations of compounds are encompassed by the description of a component of a formulation.

[0212] The ionizable compounds of a composition of this invention can be from 50 mol % to 80 mol % of the lipid components of the composition. In certain embodiments, the ionizable molecules of a composition can be from 55 mol % to 65 mol % of the lipid components of the composition. In further embodiments, the ionizable molecules of a composition can be about 60 mol % of the lipid components of the composition.

[0213] The structural lipid of a composition of this invention can be from 20 mol % to 50 mol % of the lipid components of the composition. In certain embodiments, the structural lipid of a composition can be from 35 mol % to 45 mol % of the lipid components of the composition. [0214] The one or more lipids for reducing immunogenicity of the composition can be from a total of 1 mol % to 8 mol % of the lipid components of the composition. In certain embodiments, the one or more lipids for reducing immunogenicity of the composition can be from a total of 1 mol % to 5 mol % of the lipid components of the composition.

[0215] In additional aspects, a composition of this invention can further include a cationic lipid, which can be from 5 mol % to 25 mol % of the lipid components of the composition. In certain embodiments, a composition of this invention can further include a cationic lipid, which can be from 5 mol % to 15 mol % of the lipid components of the composition. In these aspects, the molar ratio of the concentrations of the cationic lipid to the ionizable molecules of a composition of this invention can be from 5:80 to 25:50.

[0216] In compositions of this invention, the entirety of the lipid components may include one or more of the ionizable compound molecular components, a structural lipid, and one or more lipids for reducing immunogenicity of the composition.

Compositions with Four Components

[0217] The ionizable molecules of a composition of this invention can be from 15 mol % to 40 mol % of the lipid components of the composition. In certain embodiments, the ionizable molecules of a composition can be from 20 mol % to 35 mol % of the lipid components of the composition. In further embodiments, the ionizable molecules of a composition can be from 25 mol % to 30 mol % of the lipid components of the composition.

[0218] The structural lipid of a composition of this invention can be from 25 mol % to 40 mol % of the lipid components of the composition. In certain embodiments, the structural lipid of a composition can be from 30 mol % to 35 mol % of the lipid components of the composition. [0219] The sum of the stabilizer lipids of a composition of this invention can be from 25 mol % to 40% mol % of the lipid components of the composition. In certain embodiments, the sum of the

stabilizer lipids of a composition can be from 30 mol % to 40 mol % of the lipid components of the composition.

[0220] In some embodiments, a composition of this invention can include two or more stabilizer lipids, where each of the stabilizer lipids individually can be from 5 mol % to 35 mol % of the lipid components of the composition. In certain embodiments, a composition of this invention can include two or more stabilizer lipids, where each of the stabilizer lipids individually can be from 10 mol % to 30 mol % of the lipid components of the composition.

[0221] In certain embodiments, the sum of the one or more stabilizer lipids can be from 25 mol % to 40 mol % of the lipids of the composition, wherein each of the stabilizer lipids individually can be from 5 mol % to 35% mol %.

[0222] In certain embodiments, the sum of the one or more stabilizer lipids can be from 30 mol % to 40 mol % of the lipids of the composition, wherein each of the stabilizer lipids individually can be from 10 mol % to 30% mol %.

[0223] The one or more lipids for reducing immunogenicity of the composition can be from a total of 1 mol % to 8 mol % of the lipid components of the composition. In certain embodiments, the one or more lipids for reducing immunogenicity of the composition can be from a total of 1 mol % to 5 mol % of the lipid components of the composition.

[0224] In additional aspects, a composition of this invention can further include a cationic lipid, which can be from 5 mol % to 25 mol % of the lipid components of the composition. In certain embodiments, a composition of this invention can further include a cationic lipid, which can be from 5 mol % to 15 mol % of the lipid components of the composition. In these aspects, the molar ratio of the concentrations of the cationic lipid to the ionizable molecules of a composition of this invention can be from 5:35 to 25:15.

[0225] In certain embodiments, the entirety of the lipid components of a composition may include one or more of the ionizable compound molecular components, a structural lipid, one or more lipids for reducing immunogenicity of the composition, and one or more stabilizer lipids. Examples of Lipid Compositions

[0226] In some embodiments, three lipid-like components, i.e. one or more ionizable molecules, a structural lipid, and one or more lipids for reducing immunogenicity of the composition can be 100% of the lipid components of the composition. In certain embodiments, a cationic lipid can be included.

[0227] Examples of compositions of this invention are shown in Table 1.

TABLE-US-00001 TABLE 1 Compositions of lipid components (each in mol % of total) Reduce Ionizable Cationic Structural immun. 60 0 32 8 60 0 35 5 55 0 44 1 65 0 32 3 60 0 36 4 65 0 32 3 70 0 25 5 74 0 20 6 78 0 20 2 50 10 35 5 55 15 25 5 55 20 20 5

[0228] In certain embodiments, four lipid-like components, i.e. one or more ionizable molecules, a structural lipid, and one or more lipids for reducing immunogenicity of the composition, and one or more stabilizer lipids can be 100% of the lipid components of the composition.

[0229] Examples of compositions of this invention are shown in Table 2.

TABLE-US-00002 TABLE 2 Compositions of lipid components (each in mol % of total) Reduce Ionizable Cationic Structural Stabilizer immun. 17 0 35 40 8 20 0 35 40 5 25 0 35 39 1 25 0 35 35 5 25 0 30 40 5 25 0 40 30 5 30 0 25 40 5 35 0 25 35 5 40 0 30 25 5 25 5 30 35 5 25 10 30 30 5 25 15 25 30 5

Compositions for Selective Biodistribution

[0230] Aspects of this invention can provide a range of compositions for use in distributing an active agent to various organs or tissues of a subject.

[0231] For example, compositions of this invention can contain an ionizable lipid, a structural lipid, and a lipid for reducing immunogenicity of the composition.

[0232] In some embodiments, compositions of this invention can contain an ionizable lipid, a structural lipid, one or more stabilizer lipids, and a lipid for reducing immunogenicity of the

composition.

[0233] Compositions of this invention may provide a surprisingly selective biodistribution of the active agent to a particular organ or tissue.

[0234] In some embodiments, a composition of this invention can provide a surprisingly selective biodistribution of the active agent to the lung of a subject.

[0235] In further embodiments, a composition of this invention can provide a surprisingly selective biodistribution of the active agent to the liver of a subject.

[0236] In some embodiments, a composition of this invention can provide a surprisingly selective biodistribution of the active agent to the colon of a subject.

[0237] In some embodiments, a composition of this invention can provide a surprisingly selective biodistribution of the active agent to the pancreas of a subject.

[0238] In certain embodiments, the ratio of the distribution of the active agent to the lung over the distribution of the active agent to the subject's liver can be at least 1.5.

[0239] In further embodiments, the ratio of the distribution of the active agent to the lung to the distribution of the active agent to the subject's liver can be at least 5.

Ionizable Compounds

[0240] The ionizable compounds of this invention can have lipid-like properties, for example, as amphiphiles.

[0241] Examples of an ionizable molecule include compounds having the structure shown in Formula I

##STR00024## [0242] wherein R.sup.1 and R.sup.2 are [0243]

R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0244]

R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0245] wherein n and m are each independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0246] wherein R.sup.3 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines, and 1,4-piperazines wherein the rings can be substituted at any carbon atom position,

##STR00025## [0247] and can also be selected from amino and aminoalkyl groups, which may be substituted,

##STR00026## [0248] wherein [0249] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, and aminoalkyl; [0250] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0251] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0252] q is from zero to four; [0253] Q is O or NR.sup.7; [0254] p is from 1 to 4.

[0255] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0256] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-

18) alkyl group, or a C(14-18) alkenyl group.

[0257] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.

[0258] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].

[0259] In some embodiments, p is 1, 2, 3 or 4.

[0260] In some embodiments, q is 0, 1, 2, 3 or 4.

[0261] In some embodiments, examples of an ionizable molecule include compounds having the structure shown in Formula I

##STR00027## [0262] wherein R.sup.1 and R.sup.2 are [0263]

R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0264]

R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0265] wherein n and m are each independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0266] wherein R.sup.3 is selected from

```
##STR00028## [0267] wherein [0268] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0269] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl; [0270] Q is O or NR.sup.7.
```

- [0271] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0272] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0273] In some embodiments, examples of an ionizable molecule include compounds having the structure shown in Formula I
- ##STR00029## [0274] wherein R.sup.1 and R.sup.2 are [0275]
- R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0276]
- R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0277] wherein n and m are each independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0278] wherein R.sup.3 is selected from ##STR00030## [0279] wherein [0280] each R.sup.6 is independently selected from H, alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0281] each R.sup.7 is independently selected from H, alkyl; [0282] Q is O or NR.sup.7.
- [0283] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0284] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0285] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.
- [0286] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0287] In some embodiments, n and m can be each independently from 3 to 6.
- [0288] In some embodiments, examples of an ionizable molecule include compounds having the structure shown in Formula I
- ##STR00031## [0289] wherein R.sup.1 and R.sup.2 are [0290]
- R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0291]
- R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0292] wherein n and m are each independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0293] wherein R.sup.3 is selected from ##STR00032## [0294] wherein [0295] each R.sup.6 is independently selected from H, alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0296] each R.sup.7 is independently selected from H, alkyl.
- [0297] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0298] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0299] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0300] In some embodiments, examples of an ionizable molecule include compounds having the structure shown in Formula I
- ##STR00033## [0301] wherein R.sup.1 and R.sup.2 are [0302]
- R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0303]
- R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0304] wherein n and m are each independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0305] wherein R.sup.3 is selected from
- ##STR00034## [0306] wherein [0307] each R.sup.6 is independently hydroxyl; [0308] each R.sup.7 is independently selected from H, alkyl.
- [0309] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0310] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-

```
18) alkyl group, or a C(14-18) alkenyl group.
[0311] Examples of an ionizable compound include the following compound A1:
##STR00035## [0312] which is ((2-(3-(hydroxymethyl)azetidin-1-yl)acetyl)azanediyl)bis(ethane-
2,1-diyl) (9 Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0313] Examples of an ionizable compound include the following compound A2:
##STR00036##
[0314] Examples of an ionizable compound include the following compound A3:
##STR00037##
[0315] Examples of an ionizable compound include the following compound A4:
##STR00038## [0316] which is ((2-((3S,4S)-3,4-dihydroxypyrrolidin-1-
yl)acetyl)azanediyl)bis(ethane-2,1-diyl) ditetradecanoate.
[0317] Examples of an ionizable compound include the following compound A5:
##STR00039##
which is ((2-((3R,4R)-3,4-dihydroxypyrrolidin-1-yl)acetyl)azanediyl)bis(ethane-2,1-diyl) (9
Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0318] Examples of an ionizable compound include the following compound A6:
##STR00040## [0319] which is ((2-((3S,4R)-3,4-dihydroxypyrrolidin-1-
yl)acetyl)azanediyl)bis(ethane-2,1-diyl) (9 Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0320] Examples of an ionizable compound include the following compound A7:
##STR00041## [0321] which is (((2-(dimethylamino)ethoxy)carbonyl)azanediyl)bis(ethane-2,1-
diyl) (9 Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0322] Examples of an ionizable compound include the following compound A8
##STR00042## [0323] which is 2-((bis(2-(((9 Z,12 Z)-octadeca-9,12-
dienoyl)oxy)ethyl)carbamoyl)oxy)-N,N,N-trimethylethan-1-aminium.
[0324] Examples of an ionizable compound include the following compound A9:
##STR00043## [0325] which is ((2-(3-(hydroxymethyl)azetidin-1-yl)acetyl)azanediyl)bis(ethane-
2,1-diyl) ditetradecanoate.
[0326] Examples of an ionizable compound include the following compound AA:
##STR00044## [0327] which is ((2-(4-(2-hydroxyethyl)piperazin-1-yl)acetyl)azanediyl)bis(ethane-
2,1-diyl) (9 Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0328] Examples of an ionizable compound include the following compound AB:
##STR00045## [0329] which is ((2-(4-(2-hydroxyethyl)piperazin-1-yl)acetyl)azanediyl)bis(ethane-
2,1-diyl) (9 Z,9'Z,12 Z,12'Z)-bis(octadeca-9,12-dienoate).
[0330] Examples of an ionizable compound include the following compound AC:
##STR00046##
[0331] Examples of an ionizable compound include the following compound AD:
##STR00047##
[0332] Examples of an ionizable compound include the following compound AE:
##STR00048##
[0333] Examples of an ionizable compound include the following compound AF:
##STR00049##
[0334] Examples of an ionizable compound include the following compound B1:
##STR00050##
[0335] Examples of an ionizable compound include the following compound B2:
```

[0336] Examples of an ionizable compound include the following compound B3:

[0337] Examples of an ionizable compound include the following compound B4:

[0338] Examples of an ionizable compound include the following compound B5:

##STR00051##

##STR00052##

##STR00053##

```
##STR00054##
[0339] Examples of an ionizable compound include the following compound B6
##STR00055##
[0340] Examples of an ionizable compound include the following compound B7:
##STR00056##
[0341] Examples of an ionizable molecule include compounds having the structure shown in
Formula II
##STR00057## [0342] wherein R.sup.1 and R.sup.2 are [0343]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0344]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0345] wherein n and m are each
independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-
20) alkyl group, or a C(12-20) alkenyl group; [0346] wherein R.sup.3 is a C(12-20) alkyl group or
a C(12-20) alkenyl group that is substituted with a carboxylic acid or ester group.
[0347] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0348] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
18) alkyl group, or a C(14-18) alkenyl group.
[0349] In some embodiments, R.sup.3 is a C(14-18) alkyl group, or a C(14-18) alkenyl group that
is substituted with a carboxylic acid or ester group.
[0350] Examples of an ionizable compound include the following compound B8:
##STR00058##
[0351] Examples of an ionizable compound include the following compound B9:
##STR00059##
[0352] Examples of an ionizable compound include the following compound BA:
##STR00060##
[0353] Examples of an ionizable compound include the following compound BB:
##STR00061##
structure shown in Formula III
##STR00062## [0355] wherein R.sup.1 and R.sup.2 are [0356]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0357]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0358] wherein n and m are each
20) alkyl group, or a C(12-20) alkenyl group; [0359] wherein R.sup.3 is selected from alkyl,
```

[0354] In certain embodiments, examples of an ionizable compound include compounds having the

independently from 1 to 2; and R.sup.4 and R.sup.5 are independently for each occurrence a C(12-

hydroxyalkyl, alkoxyalkoxy, and carboxyalkyl; [0360] wherein R.sup.6 is selected from

NR.sub.2.sup.7, N.sup.+HR.sub.2.sup.7 and N.sup.+R.sub.3.sup.7; [0361] wherein R.sup.7 is selected from H, alkyl, hydroxyalkyl, and aminoalkyl.

[0362] In some embodiments, each of the alkenyl groups can have from one to two double bonds.

[0363] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.

[0364] In some embodiments, each of the alkenyl groups can have from one to two double bonds.

[0365] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.

[0366] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].

[0367] Examples of an ionizable compound include the following compound BC: ##STR00063##

[0368] Examples of an ionizable compound include the following compound BD: ##STR00064##

[0369] Examples of an ionizable compound include the following compound BE: ##STR00065##

```
[0370] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0371] Examples of an ionizable compound include compounds having the structure shown in Formula IV
```

##STR00066## [0372] wherein R.sup.1 and R.sup.2 are [0373] R.sup.1=C(=O)OR.sup.4 [0374] R.sup.2=C(=O)OR.sup.5 [0375] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0376] wherein R.sup.3 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines, and 1,4-piperazines wherein the rings can be substituted at any carbon atom position, ##STR00067##

and can also be selected from amino and aminoalkyl groups which can be further substituted, ##STR00068## [0377] wherein [0378] each R.sup.6 is independently selected from H, alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0379] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0380] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0381] q is from zero to four; [0382] Q is O or NR.sup.7; [0383] p is from 1 to 4.

[0384] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0385] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.

[0386] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].

[0387] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.

[0388] In some embodiments, p is 1, 2, 3 or 4.

[0389] In some embodiments, q is 0, 1, 2, 3 or 4.

[0390] Examples of an ionizable compound include compounds having the structure shown in Formula ${\rm IV}$

##STR00069## [0391] wherein R.sup.1 and R.sup.2 are [0392] R.sup.1=C(=O)OR.sup.4 [0393] R.sup.2=C(=O)OR.sup.5 [0394] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0395] wherein R.sup.3 is selected from

##STR00070## [0396] wherein [0397] each R.sup.6 is independently selected from H, alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0398] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl; [0399] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0400] q is from zero to four; [0401] p is from 1 to 4.

[0402] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0403] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.

[0404] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].

[0405] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.

[0406] In some embodiments, p is 1, 2, 3 or 4.

[0407] In some embodiments, q is 0, 1, 2, 3 or 4.

[0408] Examples of an ionizable compound include compounds having the structure shown in Formula IV

##STR00071## [0409] wherein R.sup.1 and R.sup.2 are [0410] R.sup.1=C(=O)OR.sup.4 [0411] R.sup.2=C(=O)OR.sup.5 [0412] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0413] wherein R.sup.3 is selected from

- ##STR00072## [0414] wherein [0415] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyl, alkoxy, alkoxyl, aminoalkyl; [0416] each R.sup.7 is independently selected from H, alkyl, hydroxylkyl; [0417] p is from 1 to 4.
- [0418] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
- [0419] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0420] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0421] Examples of an ionizable compound include compounds having the structure shown in Formula IV
- ##STR00073## [0422] wherein R.sup.1 and R.sup.2 are [0423] R.sup.1=C(=O)OR.sup.4 [0424] R.sup.2=C(=O)OR.sup.5 [0425] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0426] wherein R.sup.3 is selected from
- ##STR00074## [0427] wherein [0428] each R.sup.6 is independently selected from H, hydroxyl, hydroxyalkyl, aminoalkyl; each R.sup.7 is independently selected from H, alkyl; [0429] p is from 1 to 4.
- [0430] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
- [0431] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0432] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0433] Examples of an ionizable compound include the following compound BF: #STR00075##
- [0434] Examples of an ionizable compound include the following compound C1: ##STR00076##
- [0435] Examples of an ionizable compound include the following compound C2:
- #STR00077## [0436] which is 2-((1-(((9 Z,12 Z)-heptadeca-9,12-dien-1-yl)oxy)-5-(((9 Z,12 Z)-octadeca-9,12-dien-1-yl)oxy)-1,5-dioxopentan-3-yl)amino)-N,N,N-trimethyl-2-oxoethan-1-aminium.
- [0437] Examples of an ionizable compound include the following compound C3:
- ##STR00078## [0438] which is 1-((9 Z,12 Z)-heptadeca-9,12-dien-1-yl) 5-((9 Z,12 Z)-octadeca-9,12-dien-1-yl) 3-(2-(dimethylamino)acetamido)pentanedioate.
- [0439] Examples of an ionizable compound include the following compound C4; ##STR00079##
- [0440] Examples of an ionizable compound include the following compound C5: ##STR00080##
- [0441] Examples of an ionizable compound include the following compound C6; ##STR00081##
- [0442] Examples of an ionizable compound include the following compound C7: ##STR00082##
- [0443] Examples of an ionizable compound include the following compound C8: ##STR00083##
- [0444] Examples of an ionizable compound include the following compound C9: #STR00084##
- [0445] Examples of an ionizable compound include the following compound CA: ##STR00085## [0446] which is di((9 Z,12 Z)-octadeca-9,12-dien-1-yl) 3-(2-(4-(2-hydroxyethyl)piperazin-1-yl)acetamido)pentanedioate.
- [0447] Examples of an ionizable compound include the following compound CB: ##STR00086##

```
[0448] Examples of an ionizable compound include the following compound CC:
##STR00087##
[0449] Examples of an ionizable compound include the following compound CD:
##STR00088##
[0450] Examples of an ionizable compound include the following compound CE:
##STR00089##
[0451] Examples of an ionizable compound include the following compound CF:
##STR00090##
[0452] Examples of an ionizable compound include the following compound DI:
##STR00091## [0453] which is di((9 Z,12 Z)-octadeca-9,12-dien-1-yl) 3-(2-((3S,4R)-3,4-
dihydroxypyrrolidin-1-yl)acetamido)pentanedioate.
[0454] Examples of an ionizable compound include the following compound D2:
##STR00092##
[0455] Examples of an ionizable compound include the following compound D3:
##STR00093##
[0456] Examples of an ionizable compound include the following compound D4:
##STR00094##
[0457] Examples of an ionizable compound include the following compound D5:
##STR00095##
[0458] Examples of an ionizable compound include the following compound D6:
##STR00096##
[0459] Examples of an ionizable compound include the following compound D7:
##STR00097##
[0460] Examples of an ionizable compound include compounds having the structure shown in
Formula IV-B
##STR00098## [0461] wherein R.sup.1 and R.sup.2 are [0462] R.sup.1=C(=O)OR.sup.4 [0463]
R.sup.2=C(=O)OR.sup.5 [0464] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0465] wherein Z is S or O;
[0466] wherein R.sup.3 is selected from
##STR00099## [0467] wherein [0468] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0469] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0470] p is from 1 to 4.
[0471] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0472] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
18) alkyl group, or a C(14-18) alkenyl group.
[0473] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0474] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-
18) alkyl group, or a C(16-18) alkenyl group.
[0475] In some embodiments, p is 1, 2, 3 or 4.
[0476] Examples of an ionizable compound include the following compound D8:
##STR00100##
[0477] Examples of an ionizable compound include the following compound D9:
```

[0477] Examples of an ionizable compound include the following compound D9: ##STR00101## [0478] Examples of an ionizable compound include the following compound DA:

##STR00102##

[0479] Examples of an ionizable compound include the following compound DB: #STR00103##

[0480] Examples of an ionizable compound include the following compound DC: ##STR00104##

```
##STR00105## [0482] which is di((9 Z,12 Z)-octadeca-9,12-dien-1-yl) 3-((((2-
(dimethylamino)ethyl)thio)carbonyl)amino)pentanedioate.
[0483] Examples of an ionizable compound include the following compound DE:
##STR00106##
[0484] Examples of an ionizable compound include the following compound DF:
##STR00107##
[0485] Examples of an ionizable compound include the following compound E1:
##STR00108##
[0486] Examples of an ionizable compound include the following compound E2:
##STR00109##
[0487] Examples of an ionizable compound include the following compound E3:
##STR00110##
[0488] Examples of an ionizable compound include the following compound E4:
##STR00111## [0489] which is di((9 Z,12 Z)-octadeca-9,12-dien-1-yl) 3-(((2-
(dimethylamino)ethoxy)carbonyl)amino)pentanedioate.
[0490] Embodiments of this invention include compounds having the structure shown in Formula
##STR00112## [0491] wherein R.sup.1 and R.sup.2 are [0492] R.sup.1=NHC(=O)R.sup.4 [0493]
R.sup.2=C(=O)OR.sup.5 [0494] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0495] wherein p is from 1 to 4;
[0496] wherein R.sup.3 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines,
and 1,4-piperazines wherein the rings can be substituted at any carbon atom position,
##STR00113## [0497] and can also be selected from amino and aminoalkyl groups which can be
substituted.
##STR00114## [0498] wherein [0499] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0500] each R.sup.7 is independently
selected from H, alkyl, hydroxyalkyl; [0501] each R.sup.8 is independently selected from H, alkyl,
hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0502] q is from zero to four;
[0503] Q is O or NR.sup.7.
[0504] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0505] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
18) alkyl group, or a C(14-18) alkenyl group.
[0506] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0507] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-
18) alkyl group, or a C(16-18) alkenyl group.
[0508] In some embodiments, p is 1, 2, 3 or 4.
[0509] In some embodiments, q is 0, 1, 2, 3 or 4.
[0510] Embodiments of this invention include compounds having the structure shown in Formula
V
##STR00115## [0511] wherein R.sup.1 and R.sup.2 are [0512] R.sup.1=NHC(=O)R.sup.4 [0513]
R.sup.2=C(=O)OR.sup.5 [0514] wherein R.sup.4 and R.sup.5 are independently for each
```

occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0515] wherein p is from 1 to 4;

[0521] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0522] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-

##STR00116## [0517] wherein [0518] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxy, aminoalkyl; [0519] each R.sup.7 is independently

selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0520] Q is O or NR.sup.7.

[0516] wherein R.sup.3 is selected from

[0481] Examples of an ionizable compound include the following compound DD:

```
18) alkyl group, or a C(14-18) alkenyl group.
[0523] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0524] Examples of an ionizable compound include the following compound E5:
##STR00117##
[0525] Examples of an ionizable compound include the following compound E6:
##STR00118##
[0526] Examples of an ionizable compound include the following compound E7:
```

- ##STR00119## [0527] Examples of an ionizable compound include the following compound E8: ##STR00120## [0528] Examples of an ionizable compound include the following compound E9: ##STR00121## [0529] Examples of an ionizable compound include the following compound EA: ##STR00122## [0530] Examples of an ionizable compound include the following compound EB: ##STR00123## [0531] Examples of an ionizable compound include the following compound EC: ##STR00124## [0532] Examples of an ionizable compound include the following compound ED: ##STR00125##
- [0533] Examples of an ionizable compound include the following compound EE: ##STR00126## [0534] Examples of an ionizable compound include the following compound EF:
- ##STR00127## [0535] Examples of an ionizable compound include the following compound F1:
- ##STR00128## [0536] Examples of an ionizable compound include the following compound F2:
- ##STR00129## [0537] Examples of an ionizable compound include the following compound F3: ##STR00130##
- [0538] Examples of an ionizable compound include the following compound F4: ##STR00131##
- [0539] Examples of an ionizable compound include compounds having the structure shown in Formula VI
- ##STR00132## [0540] wherein R.sup.1 is [0541] R.sup.1=OC(=O)R.sup.4 [0542] wherein R.sup.2 and R.sup.4 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0543] wherein R.sup.3 is selected from aminoalkyl, quaternary aminoalkyl.
- [0544] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
- [0545] In some embodiments, R.sup.2 and R.sup.4 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0546] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0547] Examples of an ionizable compound include the following compound F5:
- ##STR00133## [0548] which is 2-((9 Z,12 Z)—N-(3-(dimethylamino)propyl)octadeca-9,12dienamido)ethyl (9 Z,12 Z)-octadeca-9,12-dienoate.
- [0549] Examples of an ionizable compound include the following compound F6:
- ##STR00134## [0550] which is 2-((9 Z,12 Z)—N-(4-(dimethylamino)butyl)octadeca-9,12dienamido)ethyl (9 Z,12 Z)-octadeca-9,12-dienoate.
- [0551] Examples of an ionizable compound include the following compound F7:

```
##STR00135##
which is N,N,N-trimethyl-3-((9 Z,12 Z)—N-(2-(((9 Z,12 Z)-octadeca-9,12-dienoate.
dienoyl)oxy)ethyl)octadeca-9,12-dienamido)propan-1-aminium.
[0552] Examples of an ionizable compound include the following compound F8:
##STR00136## [0553] which is 2-(N-(3-(dimethylamino)propyl)tetradecanamido)ethyl
tetradecanoate.
[0554] Examples of an ionizable compound include the following compound F9:
##STR00137## [0555] which is N,N,N-trimethyl-3-(N-(2-
(tetradecanoyloxy)ethyl)tetradecanamido)propan-1-aminium.
[0556] Examples of an ionizable compound include compounds having the structure shown in
Formula VII
##STR00138## [0557] wherein R.sup.1 and R.sup.2 are [0558] R.sup.1=OC(=O)R.sup.4 [0559]
R.sup.2=OC(=O)R.sup.5 [0560] wherein n and m are each independently from 1 to 2; and R.sup.4
and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl
group; [0561] wherein R.sup.3 is selected from H, alkyl, aminoalkyl, quaternary aminoalkyl,
hydroxyalkyl, alkoxyalkyl, alkoxyalkoxyalkyl.
[0562] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0563] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
18) alkyl group, or a C(14-18) alkenyl group.
[0564] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0565] Examples of an ionizable compound include the following compound FA:
##STR00139##
[0566] Examples of an ionizable compound include the following compound FB:
##STR00140##
[0567] Examples of an ionizable compound include the following compound FC:
##STR00141##
[0568] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0569] In certain embodiments, a compound can have the structure shown in Formula VIII
##STR00142## [0570] wherein R.sup.1 and R.sup.2 are [0571] R.sup.1=OC(=O)R.sup.4 [0572]
R.sup.2=C(=O)ZR.sup.5 [0573] wherein Z is NH or O, [0574] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0575]
wherein R.sup.3 is selected from [0576] amino; [0577] quaternary amino; [0578] aminoalkyl;
[0579] quaternary aminoalkyl;
##STR00143## [0580] NHC(=OXCH.sub.2).sub.pR.sup.10; [0581] NHC(=O)SR.sup.9; [0582]
wherein R.sup.10 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines, and
1,4-piperazines wherein the rings can be substituted at any carbon atom position,
##STR00144## [0583] and can also be selected from amino and aminoalkyl groups which can be
substituted
##STR00145## [0584] carboxyalkyl; [0585] aminoalkyl;
##STR00146## [0586] wherein R.sup.9 is selected from [0587] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0588] and wherein [0589] each R.sup.6 is independently selected from
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0590] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0591] each R.sup.8 is
independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may
form a ring; [0592] g is from zero to four; [0593] p is from 1 to 4; [0594] Q is O or NR.sup.7.
```

[0595] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0596] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-

[0597] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,

18) alkyl group, or a C(14-18) alkenyl group.

```
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0598] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-
18) alkyl group, or a C(16-18) alkenyl group.
[0599] In some embodiments, p is 1, 2, 3 or 4.
[0600] In some embodiments, q is 0, 1, 2, 3 or 4.
[0601] In certain embodiments, a compound can have the structure shown in Formula VIII
##STR00147## [0602] wherein R.sup.1 and R.sup.2 are [0603] R.sup.1=OC(=O)R.sup.4 [0604]
R.sup.2=C(=O)ZR.sup.5 [0605] wherein Z is NH or O, [0606] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0607]
wherein R.sup.3 is selected from
##STR00148## [0608] NHC(=OXCH.sub.2).sub.pR.sup.10; [0609] NHC(=O)SR.sup.9; [0610]
wherein R.sup.10 is selected from
##STR00149## [0611] carboxyalkyl; [0612] aminoalkyl;
##STR00150## [0613] wherein R.sup.9 is selected from [0614] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0615] and wherein [0616] each R.sup.6 is independently selected from
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0617] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0618] each R.sup.8 is independently selected
from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0619] p is
from 1 to 4; [0620] q is from zero to four; [0621] Q is O or NR.sup.7.
[0622] In certain embodiments, a compound can have the structure shown in Formula VIII
##STR00151## [0623] wherein R.sup.1 and R.sup.2 are [0624] R.sup.1=OC(=O)R.sup.4 [0625]
R.sup.2=C(=O)ZR.sup.5 [0626] wherein Z is NH or O, [0627] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0628]
wherein R.sup.3 is selected from [0629] NHC(=OXCH.sub.2).sub.pR.sup.10; [0630]
NHC(=O)SR.sup.9; [0631] wherein R.sup.10 is selected from
##STR00152## [0632] carboxyalkyl; [0633] aminoalkyl;
##STR00153## [0634] wherein R.sup.9 is selected from [0635] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0636] and wherein [0637] each R.sup.6 is independently selected from
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0638] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0639] each R.sup.8 is independently selected
from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0640] p is
from 1 to 4; [0641] g is from zero to four; [0642] Q is O or NR.sup.7.
[0643] In certain embodiments, a compound can have the structure shown in Formula VIII
##STR00154## [0644] wherein R.sup.1 and R.sup.2 are [0645] R.sup.1=OC(=O)R.sup.4 [0646]
R.sup.2=C(=O)ZR.sup.5 [0647] wherein Z is NH or O, [0648] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0649]
wherein R.sup.3 is selected from [0650] NHC(=OXCH.sub.2).sub.pR.sup.1; [0651]
NHC(=O)SR.sup.9; [0652] wherein R.sup.10 is selected from
##STR00155## [0653] wherein R.sup.9 is selected from [0654] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0655] and wherein [0656] each R.sup.6 is independently selected from
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0657] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0658] Q is O or NR.sup.7.
[0659] In certain embodiments, a compound can have the structure shown in Formula VIII
##STR00156## [0660] wherein R.sup.1 and R.sup.2 are [0661] R.sup.1=OC(=O)R.sup.4 [0662]
R.sup.2=C(=O)ZR.sup.5 [0663] wherein Z is NH, [0664] wherein R.sup.4 and R.sup.5 are
independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0665]
wherein R.sup.3 is selected from [0666] NHC(=OXCH.sub.2).sub.pR.sup.10; [0667]
NHC(=O)SR.sup.9; [0668] wherein R.sup.10 is selected from
##STR00157## [0669] wherein R.sup.9 is selected from [0670] alkyl, hydroxyalkyl, alkoxy,
alkoxyalkoxy, aminoalkyl; [0671] and wherein [0672] each R.sup.6 is independently selected from
```

```
H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0673] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0674] Q is O or NR.sup.7.
[0675] Examples of an ionizable compound include the following compound FD:
##STR00158##
[0676] Examples of an ionizable compound include the following compound FE:
##STR00159##
[0677] Examples of an ionizable compound include the following compound FF:
##STR00160##
[0678] Examples of an ionizable compound include the following compound A11:
##STR00161##
[0679] Examples of an ionizable compound include the following compound A12:
##STR00162##
[0680] Examples of an ionizable compound include the following compound A13:
##STR00163##
[0681] Examples of an ionizable compound include the following compound A14:
##STR00164##
[0682] Examples of an ionizable compound include the following compound A15:
##STR00165##
[0683] Examples of an ionizable compound include the following compound A16:
##STR00166##
[0684] Examples of an ionizable compound include the following compound A17:
##STR00167##
[0685] Examples of an ionizable compound include the following compound A18:
##STR00168##
[0686] Examples of an ionizable compound include the following compound A19:
##STR00169##
[0687] Examples of an ionizable compound include the following compound A20:
##STR00170##
[0688] Examples of an ionizable compound include the following compound A21:
##STR00171##
[0689] Examples of an ionizable compound include the following compound A22:
##STR00172##
[0690] Examples of an ionizable compound include the following compound A23:
##STR00173## [0691] which is (S)-4-oxo-4-((1-oxo-3-(tetradecanoyloxy)-1-
(tetradecylamino)propan-2-yl)amino)butanoic acid.
[0692] Examples of an ionizable compound include the following compound A24:
##STR00174## [0693] which is (S)-2-(2-(4-(3-hydroxypropyl)piperazin-1-yl)acetamido)-3-(((9
Z,12 Z)-octadeca-9,12-dien-1-yl)oxy)-3-oxopropyl (97,12 Z)-octadeca-9,12-dienoate.
[0694] Examples of an ionizable compound include the following compound A25:
##STR00175##
[0695] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
[0696] In further embodiments, a compound can have the structure shown in Formula VIII-B
##STR00176## [0697] wherein R.sup.1 and R.sup.2 are [0698]
R.sup.1=CH.sub.2(CH.sub.2).sub.nOC(=O)R.sup.4 [0699]
R.sup.2=CH.sub.2(CH.sub.2).sub.mOC(=O)R.sup.5 [0700] wherein n and m are each
independently from 1 to 2; [0701] R.sup.4 and R.sup.5 are independently for each occurrence a
C(12-20) alkyl group, or a C(12-20) alkenyl group; [0702] wherein Z is N, O; [0703] wherein
R.sup.3 is selected from [0704] alkyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl;
##STR00177## [0705] wherein [0706] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, [0707] alkoxyalkoxy, aminoalkyl; [0708] each R.sup.7 is
```

- independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; p is from 1 to 4.
- [0709] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
- [0710] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0711] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0712] Examples of an ionizable compound include the following compound B11: #STR00178##
- [0713] Examples of an ionizable compound include the following compound B12: ##STR00179##
- [0714] Examples of an ionizable compound include the following compound B13: ##STR00180##
- [0715] Examples of an ionizable compound include the following compound B14: ##STR00181##
- [0716] In additional embodiments, a compound can have the structure shown in Formula IX ##STR00182## [0717] wherein R.sup.1 and R.sup.2 are [0718] R.sup.1=C(=O)OR.sup.4 [0719] R.sup.2=NHC(=O)R.sup.5 [0720] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0721] wherein p is from 1 to 4; [0722] wherein R.sup.3 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines, and 1,4-piperazines wherein the rings can be substituted at any carbon atom position, ##STR00183## [0723] and can also be selected from amino and aminoalkyl groups which can be substituted,
- ##STR00184## [0724] wherein [0725] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0726] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0727] q is from zero to four; [0728] Q is O or NR.sup.7.
- [0729] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0730] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0731] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0732] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.
- [0733] In some embodiments, p is 1, 2, 3 or 4.
- [0734] In some embodiments, q is 0, 1, 2, 3 or 4.
- [0735] In additional embodiments, a compound can have the structure shown in Formula IX ##STR00185## [0736] wherein R.sup.1 and R.sup.2 are [0737] R.sup.1=C(=O)OR.sup.4 [0738] R.sup.2=NHC(=O)R.sup.5 [0739] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0740] wherein p is from 1 to 4; [0741] wherein R.sup.3 is selected from
- ##STR00186##
- wherein [0742] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0743] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl; [0744] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0745] q is from zero to four.
- [0746] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0747] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].

```
[0748] In additional embodiments, a compound can have the structure shown in Formula IX
##STR00187## [0749] wherein R.sup.1 and R.sup.2 are [0750] R.sup.1=C(=O)OR.sup.4 [0751]
R.sup.2=NHC(=O)R.sup.5 [0752] wherein R.sup.4 and R.sup.5 are independently for each
occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0753] wherein p is from 1 to 4;
[0754] wherein R.sup.3 is selected from
##STR00188## [0755] wherein [0756] each R.sup.6 is independently selected from H, alkyl,
hydroxyl, hydroxyalkyl, alkoxy, [0757] alkoxyalkoxy, aminoalkyl; [0758] each R.sup.7 is
independently selected from H, alkyl, hydroxyalkyl; [0759] each R.sup.8 is independently selected
from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0760] q is
from zero to four.
[0761] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
18) alkyl group, or a C(14-18) alkenyl group.
[0762] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl,
hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
[0763] Examples of an ionizable compound include the following compound C11
##STR00189##
[0764] Examples of an ionizable compound include the following compound C12:
##STR00190##
[0765] Examples of an ionizable compound include the following compound C13:
##STR00191##
[0766] Examples of an ionizable compound include the following compound C14:
##STR00192##
[0767] Examples of an ionizable compound include the following compound
##STR00193##
[0768] Examples of an ionizable compound include the following compound C16:
##STR00194##
[0769] Examples of an ionizable compound include the following compound C17:
##STR00195##
[0770] Examples of an ionizable compound include the following compound C18:
##STR00196##
[0771] Examples of an ionizable compound include the following compound C19:
##STR00197##
[0772] Examples of an ionizable compound include the following compound C20:
##STR00198##
[0773] Examples of an ionizable compound include the following compound C21:
##STR00199##
[0774] Examples of an ionizable compound include the following compound C22:
##STR00200##
[0775] Examples of an ionizable compound include the following compound C23:
##STR00201##
[0776] Examples of an ionizable compound include the following compound C24:
##STR00202## [0777] which is N,N,N-trimethyl-2-(((S)-3-(((9 Z,12 Z)-octadeca-9,12-dien-1-
yl)oxy)-2-((9 Z,12 Z)-octadeca-9,12-dienamido)-3-oxopropyl)amino)-2-oxoethan-1-aminium.
[0778] Examples of an ionizable compound include the following compound C25:
```

##STR00203## [0779] which is (9 Z,12 Z)-octadeca-9,12-dien-1-yl (S)-3-(2-(dimethylamino)acetamido)-2-((9 Z,12 Z)-octadeca-9,12-dienamido)propanoate.

[0780] In some embodiments, a compound can have the structure shown in Formula X

##STR00204## [0781] wherein R.sup.1 and R.sup.2 are [0782] R.sup.1=C(=O)OR.sup.4 [0783]

occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0785] wherein R.sup.3 is selected

R.sup.2=NHC(=O)R.sup.5 [0784] wherein R.sup.4 and R.sup.5 are independently for each

```
from [0786] amino; [0787] quaternary amino; [0788] aminoalkyl; [0789] quaternary aminoalkyl; [0790] hydroxyalkylamino.
```

- [0791] In some embodiments, each of the alkenyl groups can have from one to two double bonds.
- [0792] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0793] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0794] Examples of an ionizable compound include the following compound D11: #TR00205#
- [0795] Examples of an ionizable compound include the following compound D12: ##STR00206##
- [0796] Examples of an ionizable compound include the following compound D13: #TR00207#
- [0797] Examples of an ionizable compound include the following compound D14: #STR00208##
- [0798] Embodiments of this invention include compounds having the structure shown in Formula XI
- ##STR00209## [0799] wherein R.sup.1 and R.sup.2 are [0800] R.sup.1=C(=O)R.sup.4 [0801] R.sup.2=C(=O)OR.sup.5 [0802] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0803] wherein Z is O or NH; [0804] wherein p is from 1 to 4; [0805] wherein R.sup.3 is selected from 1-azetidines, 1-pyrrolidines, 1-piperidines, 4-morpholines, and 1,4-piperazines wherein the rings can be substituted at any carbon atom position,
- ##STR00210## [0806] and can also be selected from amino and aminoalkyl groups which can be substituted,
- ##STR00211## [0807] wherein [0808] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0809] each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; [0810] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0811] q is from zero to four; [0812] Q is O or NR.sup.7.
- [0813] In some embodiments, each of the alkenyl groups can have from one to two double bonds. [0814] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-
- 18) alkyl group, or a C(14-18) alkenyl group.
- [0815] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0816] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(16-18) alkyl group, or a C(16-18) alkenyl group.
- [0817] In some embodiments, p is 1, 2, 3 or 4.
- [0818] In some embodiments, q is 0, 1, 2, 3 or 4.
- [0819] Embodiments of this invention include compounds having the structure shown in Formula $\rm XI$
- ##STR00212## [0820] wherein R.sup.1 and R.sup.2 are [0821] R.sup.1=C(=O)R.sup.4 [0822] R.sup.2=C(=O)OR.sup.5 [0823] wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; [0824] wherein Z is O or NH; [0825] wherein p is from 1 to 4; [0826] wherein R.sup.3 is selected from
- ##STR00213## [0827] wherein [0828] each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; [0829] each R.sup.7 is independently selected from H, alkyl; [0830] each R.sup.8 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl, and any two R.sup.8 may form a ring; [0831] q is from zero to four.
- [0832] In some embodiments, each of the alkenyl groups can have from one to two double bonds.

- [0833] In some embodiments, R.sup.4 and R.sup.5 are independently for each occurrence a C(14-18) alkyl group, or a C(14-18) alkenyl group.
- [0834] In some embodiments, the terms alkyl, hydroxyalkyl, and aminoalkyl refer to C(1-6)alkyl, hydroxyl[C(1-6)alkyl], and amino[C(1-6)alkyl].
- [0835] Examples of an ionizable compound include the following compound E11: ##STR00214##
- [0836] Examples of an ionizable compound include the following compound E12: ##STR00215##
- [0837] Examples of an ionizable compound include the following compound E13: ##STR00216##
- [0838] Examples of an ionizable compound include the following compound E14: ##STR00217##
- [0839] Examples of an ionizable compound include the following compound E15: ##STR00218##
- [0840] Examples of an ionizable compound include the following compound E16: ##STR00219##
- [0841] Examples of an ionizable compound include the following compound E17: ##STR00220##
- [0842] Examples of an ionizable compound include the following compound E18: #TR00221#
- [0843] Examples of an ionizable compound include the following compound E19: ##STR00222##
- [0844] Examples of an ionizable compound include the following compound E20: ##STR00223##
- [0845] Examples of an ionizable compound include the following compound E21: ##STR00224##
- [0846] Examples of an ionizable compound include the following compound E22: ##STR00225##
- [0847] Examples of an ionizable compound include the following compound E23: ##STR00226##
- [0848] Examples of an ionizable compound include the following compound E24; #STR00227##
- [0849] Examples of an ionizable compound include the following compound E25; ##STR00228##
- [0850] Examples of an ionizable compound include the following compound E26: ##STR00229##
- [0851] Examples of an ionizable compound include the following compound E27: ##STR00230##
- [0852] Examples of an ionizable compound include the following compound E28: ##STR00231##
- [0853] Examples of an ionizable compound include the following compound E29: #STR00232##
- [0854] Examples of an ionizable compound include the following compound E30: ##STR00233##
- [0855] Examples of an ionizable compound include the following compound E31: ##STR00234##
- [0856] Examples of an ionizable compound include the following compound E32: ##STR00235##
- [0857] Examples of an ionizable compound include the following compound E33: ##STR00236##

```
[0858] Examples of an ionizable compound include the following compound E34:
##STR00237##
[0859] Examples of an ionizable compound include the following compound E35:
##STR00238##
[0860] Examples of an ionizable compound include the following compound E36:
##STR00239##
[0861] Examples of an ionizable compound include the following compound E37:
##STR00240## [0862] which is (97,12 Z)-octadeca-9,12-dien-1-yl (2S,4R)-4-(3-
(dimethylamino)propanamido)-1-((9 Z,12 Z)-octadeca-9,12-dienoyl)pyrrolidine-2-carboxylate.
[0863] Examples of an ionizable compound include the following compound E38:
##STR00241## [0864] which is (9 Z,12 Z)-octadeca-9,12-dien-1-yl (2S,4R)-4-(4-
(dimethylamino)butanamido)-1-((9 Z,12 Z)-octadeca-9,12-dienoyl)pyrrolidine-2-carboxylate.
[0865] Examples of an ionizable compound include the following compound E39;
##STR00242## [0866] which is N,N,N-trimethyl-4-(((3R,5S)-5-((((9 Z,12 Z)-octadeca-9,12-dien-
1-yl)oxy)carbonyl)-1-((9 Z,12 Z)-octadeca-9,12-dienoyl)pyrrolidin-3-yl)amino)-4-oxobutan-1-
aminium.
[0867] Examples of an ionizable compound include the following compound E40:
##STR00243##
Structural Lipids
[0868] Examples of structural lipids include cholesterols, sterols, and steroids.
[0869] Examples of structural lipids include cholanes, cholestanes, ergostanes, campestanes,
poriferastanes, stigmastanes, gorgostanes, lanostanes, gonanes, estranes, androstanes, pregnanes,
```

and cycloartanes.

[0870] Examples of structural lipids include sterols and zoosterols such as cholesterol, lanosterol, zymosterol, zymosterol, stigmastanol, dihydrolanosterol, and 7-dehydrocholesterol.

[0871] Examples of structural lipids include pegylated cholesterols, and cholestane 3-oxo-(C1-22)acyl compounds, for example, cholesteryl acetate, cholesteryl arachidonate, cholesteryl butyrate, cholesteryl hexanoate, cholesteryl myristate, cholesteryl palmitate, cholesteryl behenate, cholesteryl stearate, cholesteryl caprylate, cholesteryl n-decanoate, cholesteryl dodecanoate, cholesteryl nervonate, cholesteryl pelargonate, cholesteryl n-valerate, cholesteryl oleate, cholesteryl elaidate, cholesteryl erucate, cholesteryl heptanoate, cholesteryl linolelaidate, and cholesteryl linoleate.

[0872] Examples of structural lipids include sterols such as phytosterols, beta-sitosterol, campesterol, ergosterol, brassicasterol, delta-7-stigmasterol, and delta-7-avenasterol. Stabilizer Lipids

[0873] Examples of stabilizer lipids include zwitterionic lipids.

[0874] Examples of stabilizer lipids include compounds such as phospholipids.

[0875] Examples of phospholipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidic acid, palmitoyloleoyl phosphatidylcholine, lysophosphatidylcholine, dipalmitoylphosphatidylcholine, dioleovlphosphatidylcholine, distearoylphosphatidylcholine and ordilinoleoylphosphatidylcholine. [0876] Examples of stabilizer lipids include phosphatidyl ethanolamine compounds and phosphatidyl choline compounds.

[0877] Examples of stabilizer lipids include 1,2-dioleoyl-sn-Glycero-3-Phosphocholine (DOPC). [0878] Examples of stabilizer lipids include diphytanoyl phosphatidyl ethanolamine (DPhPE) and 1,2-Diphytanoyl-sn-Glycero-3-Phosphocholine (DPhPC).

[0879] Examples of stabilizer lipids include 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). [0880] Examples of stabilizer lipids include 1,2-dilauroyl-sn-glycerol (DLG); 1,2-dimyristoyl-sn-glycerol (DLG); 1,2-dimyristoyl-sn-glycer

glycerol (DMG); 1,2-dipalmitoyl-sn-glycerol (DPG); 1,2-distearoyl-sn-glycerol (DSG); 1,2-diarachidoyl-sn-glycero-3-phosphocholine (DAPC); 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC); 1,2-dipalmitoyl-sn-glycero-O-ethyl-3-phosphocholine (DPePC); 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine (DLPE); 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE); 1,2-distearoyl-sn-glycero-3-phosphocholine; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC); 1-palmitoyl-2-lyso-sn-glycero-3-phosphocholine (P-Lyso-PC); and 1-Stearoyl-2-lyso-sn-glycero-3-phosphocholine (S-Lyso-PC) Lipids for Reducing Immunogenicity

[0881] Examples of lipids for reducing immunogenicity include polymeric compounds and polymer-lipid conjugates.

[0882] Examples of lipids for reducing immunogenicity include pegylated lipids having polyethyleneglycol (PEG) regions. The PEG regions can be of any molecular mass. In some embodiments, a PEG region can have a molecular mass of 200, 300, 350, 400, 500, 550, 750, 1000, 1500, 2000, 3000, 3500, 4000 or 5000 Da.

[0883] Examples of lipids for reducing immunogenicity include compounds having a methoxypolyethyleneglycol region.

[0884] Examples of lipids for reducing immunogenicity include compounds having a carbonyl-methoxypolyethyleneglycol region.

[0885] Examples of lipids for reducing immunogenicity include compounds having a multi-branched PEG region.

[0886] Examples of lipids for reducing immunogenicity include compounds having a polyglycerine region.

[0887] Examples of lipids for reducing immunogenicity include polymeric lipids such as DSPE-mPEG, DMPE-mPEG, DPPE-mPEG, and DOPE-mPEG.

[0888] Examples of lipids for reducing immunogenicity include PEG-phospholipids and PEG-ceramides.

Cationic Lipids

[0889] Examples of cationic lipids include cationic HEDC compounds as described in US 2013/0330401 A1. Some examples of cationic lipids are given in US 2013/0115274 A1.

Lipid Compositions

[0890] In some embodiments, a composition can contain the ionizable compound A6, the structural lipid cholesterol, the stabilizer lipids DOPC and DOPE, and the lipid for reducing immunogenicity DPPE-mPEG. In certain embodiments, compound A6 can be 15 to 25 mol % of the composition; the cholesterol, DOPC, and DOPE combined can be 75 to 85 mol % of the composition; and DPPE-mPEG can be 5 mol % of the composition.

[0891] In one embodiment, compound A6 can be 25 mol % of the composition; cholesterol can be 30 mol % of the composition, DOPC can be 20 mol % of the composition, DOPE can be 20 mol % of the composition; and DPPE-mPEG(**2000**) can be 5 mol % of the composition.

Nanoparticles

[0892] Embodiments of this invention can provide liposome nanoparticle compositions. The ionizable molecules of this invention can be used to form liposome compositions, which can have one or more bilayer structures of lipid-like molecules.

[0893] A nanoparticle composition can have one or more of the ionizable molecules of this invention in a liposomal structure, a bilayer structure, a micelle, a lamellar structure, or a mixture thereof.

[0894] In some embodiments, a composition can include one or more liquid vehicle components. A liquid vehicle suitable for delivery of active agents of this invention can be a pharmaceutically acceptable liquid vehicle. A liquid vehicle can include an organic solvent, or a combination of water and an organic solvent.

[0895] Embodiments of this invention can provide lipid nanoparticles having a size of from 10 to 1000 nm. In some embodiments, the liposome nanoparticles can have a size of from 10 to 150 nm. Pharmaceutical Compositions

[0896] This invention further contemplates methods for distributing an active agent to an organ of a subject for treating fibrosis by administering to the subject a composition of this invention. Organs that can be treated include lung, liver, pancreas, kidney, colon, heart, bone marrow, skin, intestine, brain and eye.

[0897] In some embodiments, this invention provides methods for treating a lung fibrosis disease by administering to the subject a composition of this invention.

[0898] Examples of fibrosis disease include idiopathic lung fibrosis and liver cirrhosis.

[0899] In further aspects, this invention provides a range of pharmaceutical formulations.

[0900] A pharmaceutical formulation herein can include an active agent, as well as a drug carrier, or a lipid of this invention, along with a pharmaceutically acceptable carrier or diluent. In general, active agents of this description include siRNAs, active agents for fibrosis, as well as any small molecule drug.

[0901] A pharmaceutical formulation of this invention may contain one or more of each of the following: a surface active agent, a diluent, an excipient, a preservative, a stabilizer, a dye, and a suspension agent.

[0902] Some pharmaceutical carriers, diluents and components for a pharmaceutical formulation, as well as methods for formulating and administering the compounds and compositions of this invention are described in Remington's Pharmaceutical Sciences, 18th Ed., Mack Publishing Co., Easton, Penn. (1990).

[0903] Examples of preservatives include sodium benzoate, ascorbic acid, and esters of phydroxybenzoic acid.

[0904] Examples of surface active agents include alcohols, esters, sulfated aliphatic alcohols. [0905] Examples of excipients include sucrose, glucose, lactose, starch, crystallized cellulose, mannitol, light anhydrous silicate, magnesium aluminate, magnesium metasilicate aluminate, synthetic aluminum silicate, calcium carbonate, sodium acid carbonate, calcium hydrogen phosphate, and calcium carboxymethyl cellulose.

[0906] Examples of suspension agents include coconut oil, olive oil, sesame oil, peanut oil, soya, cellulose acetate phthalate, methylacetate-methacrylate copolymer, and ester phthalates. Structures of Molecular Tails

[0907] A compound of this invention may have one or more lipophilic tails that contain one or more alkyl or alkenyl groups. Examples of lipophilic tails having alkenyl groups include C(14:1(5))alkenyl, C(14:1(9))alkenyl, C(16:1(7))alkenyl, C(16:1(9))alkenyl, C(18:1(3))alkenyl, C(18:1(5))alkenyl, C(18:1(7))alkenyl, C(18:1(9))alkenyl, C(18:1(11))alkenyl, C(18:1(12))alkenyl, C(18:2(9,12))alkenyl, C(18:3(9,12,15))alkenyl, C(18:3(9,12,15))alkenyl, C(18:3(9,11,13))alkenyl, C(18:4(6,9,12,15))alkenyl, C(18:4(9,11,13,15))alkenyl,

C(20:1(9))alkenyl, C(20:1(11))alkenyl, C(20:2(8,11))alkenyl, C(20:2(5,8))alkenyl,

C(20:2(11,14))alkenyl, C(20:3(5,8,11))alkenyl, C(20:4(5,8,11,14))alkenyl,

C(20:4(7,10,13,16))alkenyl, C(20:5(5,8,11,14,17))alkenyl, C(20:6(4,7,10,13,16,19))alkenyl,

C(22:1(9))alkenyl, C(22:1(13))alkenyl, and C(24:1(9))alkenyl. Some examples of tail structures are found at Donald Voet and Judith Voet, *Biochemistry*, 3rd Edition (2005), p. 383.

[0908] Some examples of lipophilic tails include the following structures:

##STR00244##

[0909] Any of these example structures of lipophilic tails may have one or more additional chemical branches.

Chemical Definitions

[0910] The term "alkyl" as used herein refers to a hydrocarbyl radical of a saturated aliphatic group, which can be of any length. An alkyl group can be a branched or unbranched, substituted or

unsubstituted aliphatic group containing from 1 to 22 carbon atoms. This definition also applies to the alkyl portion of other groups such as, for example, cycloalkyl, alkoxy, alkanoyl, and aralkyl, for example.

[0911] As used herein, for example, a term such as "C(1-5)alkyl" includes C(1)alkyl, C(2)alkyl, C(3)alkyl, C(4)alkyl, and C(5)alkyl. Likewise, for example, the term "C(3-22)alkyl" includes C(1)alkyl, C(2)alkyl, C(3)alkyl, C(4)alkyl, C(5)alkyl, C(6)alkyl, C(7)alkyl, C(8)alkyl, C(9)alkyl, C(10)alkyl, C(11)alkyl, C(12)alkyl, C(13)alkyl, C(14)alkyl, C(15)alkyl, C(16)alkyl, C(17)alkyl, C(18)alkyl, C(19)alkyl, C(20)alkyl, C(21)alkyl, and C(22)alkyl.

[0912] As used herein, an alkyl group may be designated by a term such as Me (methyl, — CH.sub.3), Et(ethyl, —CH.sub.2CH.sub.3), Pr (any propyl group), .sup.nPr (n-Pr, n-propyl), .sup.iPr (i-Pr, isopropyl), Bu (any butyl group), .sup.nBu (n-Bu, n-butyl), .sup.iBu (i-Bu, isobutyl), .sup.iBu (s-Bu, sec-butyl), and .sup.sBu (t-Bu, tert-butyl).

[0913] The term "alkenyl" as used herein refers to hydrocarbyl radical having at least one carbon-carbon double bond. An alkenyl group can be branched or unbranched, substituted or unsubstituted hydrocarbyl radical having 2 to 22 carbon atoms and at least one carbon-carbon double bond. An "alkenyl" group has one or more carbon-carbon double bonds.

[0914] The term "substituted" as used herein refers to an atom having one or more substitutions or substituents which can be the same or different and may include a hydrogen substituent. Thus, the terms alkyl, cycloalkyl, alkenyl, alkoxy, alkanoyl, and aryl, for example, refer to groups which can include substituted variations. Substituted variations include linear, branched, and cyclic variations, and groups having a substituent or substituents replacing one or more hydrogens attached to any carbon atom of the group.

[0915] In general, a compound may contain one or more chiral centers. Compounds containing one or more chiral centers may include those described as an "isomer," a "stereoisomer," a "diastereomer," an "enantiomer," an "optical isomer," or as a "racemic mixture." Conventions for stereochemical nomenclature, for example the stereoisomer naming rules of Cahn, Ingold and Prelog, as well as methods for the determination of stereochemistry and the separation of stereoisomers are known in the art. See, for example, Michael B. Smith and Jerry March, March's Advanced Organic Chemistry, 5th edition, 2001. The compounds and structures of this disclosure are meant to encompass all possible isomers, stereoisomers, diastereomers, enantiomers, and/or optical isomers that would be understood to exist for the specified compound or structure, including any mixture, racemic or otherwise, thereof.

[0916] This invention encompasses any and all tautomeric, solvated or unsolvated, hydrated or unhydrated forms, as well as any atom isotope forms of the compounds and compositions disclosed herein.

[0917] This invention encompasses any and all crystalline polymorphs or different crystalline forms of the compounds and compositions disclosed herein.

[0918] Abbreviations used: [0919] DMAP—4-N,N-Dimethylaminopyridine [0920] DCM—Dichloromethane [0921] TEA —Triethylamine [0922] EDC —1—(3-Dimethylaminopropyl)-3-ethylcarbodimimde hydrochloride [0923] Na.sub.2SO.sub.4—Sodium sulphate [0924] EtOAc — Ethyl acetate [0925] DMF —N,N-Dimethylformide [0926] ELSD —Evaporating Light Scattering Detector [0927] NaCl —Sodium chloride [0928] K.sub.2CO.sub.3— Potassium carbonate [0929] MeOH —Methanol [0930] TFA —Trifluoroacetic acid [0931] DIEA —N,N-Diisopropylethylamine [0932] MgSO.sub.4— Magnesium sulphate [0933] LCMS —Liquid chromatography-mass spectrometry [0934] NaHCO. —Sodium bicarbonate [0935] H.sub.2O—Water [0936] HCl — Hydrochloride [0937] KI —Potassium idoide [0938] DMSO —Dimethyl sulfoxide [0939] TBAF —tetra-N-Butylammonium fluoride [0940] NaBH.sub.4—Sodium borohydride [0941] THF — Tetrahydrofuran [0942] TBDMS —tert-Butyldimethylsilyl [0943] LiOH —Lithium hydroxide [0944] MeI —Methyl iodide [0945] BOC —tert-Butyloxycarbonyl [0946] Fmoc — Fluorenylmethyloxycarbonyl

Examples Example 1: A scheme for the preparation of Compound A6 is shown in FIG. 1 [0947] Intermediate 1: Linoleic acid (50.0 g, 178.30 mmol), N-Boc-diethanolamine (18.3 g, 89.10 mmol), and DMAP (1.1 g, 8.90 mmol) in an oven-dried flask (1 L) with a magnetic bar was added anhydrous DCM (400 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear solution. EDC (35.9 g, 187.20 mmol) was then added and the mixture was stirred at room temperature overnight (17 hours). The reaction was finally quenched with saturated NaCl aqueous solution (400 mL) and extracted with DCM twice (400 mL, 100 mL). Organic layers were combined, dried over Na.sub.2SO.sub.4 (20 g), and filtered. The filtrate was concentrated under reduced pressure. The crude was dissolved in 50 mL DCM and purified by flash chromatography purification system (330 g silica gel column) using a gradient of hexane for 5 min, then 0-20% EtOAc/hexane for 40 min under the flow rate at 100 mL/min. The product fractions were collected and concentrated to yield Intermediate 1 (59 g, 91% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.32-5.33 (8H, m, CH=), 4.13-4.17 (4H, m, OCH.sub.2), 3.43-3.49 (4H, m, NCH.sub.2), 2.73-2.74 (4H, m, =CHCH.sub.2CH=), 2.03-2.28 (4H, m, CH.sub.2CO), 2.00-2.01 (8H, m, =CHCH.sub.2), 1.60-1.70 (4H, m, CH.sub.2CH.sub.2CO), 1.43 (9H, S, C(CH.sub.3).sub.3), 1.28-1.31 (28H, m, CH.sub.2), 0.85-0.86 (6H, m, CH.sub.3). [0948] Intermediate 2: Intermediate 1 (50.0 g, 68.50 mmol) in an oven-dried flask (1000 mL) with a magnetic bar was added anhydrous DCM (100 mL). The mixture was stirred for 2 minutes to a clear solution. TFA (100 mL) was then added and the mixture was stirred at ambient temperature for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with saturated NaHCO.sub.3 aqueous solution (300 mL). The mixture was then extracted with DCM (2×200 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure to give an oily intermediate, which was then dissolved in anhydrous DCM (300 mL) and cooled down to 0° C. with an ice-water bath. Chloroacetyl chloride (6.0 mL, 75.30 mmol) followed by DIEA (14.3 mL, 82.20 mmol) were then added slowly at 0° C. After the addition was completed, the icewater bath was removed and the mixture was stirred at ambient temperature for 2 hours. Next, the reaction mixture was concentrated using a rotavapor, washed with saturated NaHCO.sub.3 aqueous solution (300 mL), and extracted with DCM (300 mL, 200 mL). The combined organic layers were then dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 20 mL DCM and purified with a 330 g silica column using a gradient of hexane for 5 min, then 10% EtOAc/hexane for 20 min followed by 20% EtOAc/hexane for 20 min under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield Intermediate 2 (41.4 g, 82% yield) as a clear yellow liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ:5.35-5.33 (8H, m, CH=), 4.24-4.22 (4H, m, OCH.sub.2),4.14 (2H, s, CH.sub.2Cl), 3.67-3.63 (4H, m, NCH.sub.2), 2.78-2.75 (4H, m, =CHCH.sub.2CH=), 2.30-2.29 (4H, m, CH.sub.2CO), 2.03-2.05 (8H, m, =CHCH.sub.2), 1.60-1.56 (4H, m, CH.sub.2CH.sub.2CO), 1.33-1.29 (28H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3). [0949] Compound A6: Intermediate 2 (5.0 g, 7.07 mmol), KI (1.2 g, 7.07 mmol) and cis-3,4dihydroxy-pyrrolidine hydrochloride (1.3 g, 9.20 mmol) in an oven-dried vial (200 mL) with a magnetic bar was added anhydrous DMF (20 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear solution. DIEA (3.0 mL, 9.91 mmol) was then added and the mixture was stirred at 30° C. for 2.5 hours. After removed the solvent by rotavapor under high vacuum, the residue was added with saturated NaHCO.sub.3 solution (100 mL) and extracted with DCM (100 mL, 50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 5 mL DCM and purified with a 120 g silica column using a gradient of hexane for 5 min, then 0-50% EtOAc/hexane for 10 min followed by 50% EtOAc/hexane for 10 min, then with DCM for 5 min and followed by 5%

MeOH/DCM for 30 min under the flow rate at 60 mL/min. The product fractions were collected

```
and concentrated to yield Compound A6 (3.5 g, 64% yield) as a yellow liquid. .sup.1H nmr (400
MHz, CDCl.sub.3) δ 5.34-5.29 (8H, m, CH=), 4.22-4.20 (6H, m, OCH.sub.2, OCH), 3.59-3.49
(6H, m, NCH.sub.2, COCH.sub.2N), 2.95-2.74 (6H, m, =CHCH.sub.2CH=, NCH.sub.Z), 2.30-2.29
(4H, m, CH.sub.2CO), 2.05-2.03 (8H, m, =CHCH.sub.2), 1.60 (4H, m, CH.sub.2CH.sub.2CO),
1.33-1.29 (28H, m, CH.sub.2), 0.90-0.88 (6H, m, CH.sub.3).
[0950] Example 2: A scheme for the preparation of Compound AB is shown in FIG. 2.
[0951] Intermediate 3: Intermediate 1 (10.0 g, 13.70 mmol) in an oven-dried flask (200 mL) with a
magnetic bar was added anhydrous DCM (15 mL). The mixture was stirred for 2 minutes to a clear
solution. TFA (15 mL) was then added and the mixture was stirred at ambient temperature for 2
hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was
first concentrated using a rotavapor. Residue was diluted with DCM (-50 mL) and 10%
K.sub.2CO.sub.3 (15 mL) was added and stirred for 10-15 minutes in an ice bath. pH of aqueous
layer was checked to ensure pH>8. Mixture was then transferred to a separatory funnel &
extracting with DCM (50 mL, 25 mL), dried over MgSO.sub.4, filtered, and concentrated under
reduced pressure to give an oily intermediate, which was then dissolved in anhydrous DCM (30
mL) and bromoacetyl bromide (1.2 mL, 13.70 mmol) followed by TEA (2.1 mL, 15.07 mmol) were
then added slowly. After the addition was completed, the mixture was stirred at ambient
temperature overnight. The reaction mixture was then concentrated using a rotavapor, washed with
water (30 mL), and extracted with DCM (30 mL, 20 mL). The combined organic layers were then
dried over MgSO.sub.4, filtered, and concentrated under reduced pressure. The crude was
dissolved in 20 mL DCM and purified with a 330 g silica column using a gradient of hexane for 0.5
min, then 0-20% EtOAc/hexane 30 min gradient followed by 30% EtOAc/hexane for 5 min under
the flow rate at 130 mL/min. The product fractions were collected and concentrated to yield
Intermediate 3 (8.1 g, 79% yield) as a clear yellow liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ
5.35-5.33 (8H, m, CH=), 4.24-422 (4H, m, OCH.sub.2), 3.93 (2H, s, CH.sub.2Br), 3.69-3.61 (4H,
m, NCH.sub.2), 2.78-2.74 (4H, m, =CHCH.sub.2CH=), 2.32-2.28 (4H, m, CH.sub.2CO), 2.06-2.02
(8H, m, =CHCH.sub.2), 1.62-1.60 (4H, m, CH.sub.2CH.sub.2CO), 1.36-1.26 (28H, m, CH.sub.2),
0.90-0.86 (6H, m, CH.sub.3).
[0952] Compound AB: Intermediate 3 (460 mg, 0.61 mmol) and 1-piperazine-propanol (89 mg,
0.61 mmol) in an oven-dried vial (100 mL) with a magnetic bar was added anhydrous DCM (10
mL). The mixture was stirred at ambient temperature for 2 minutes to a clear solution. TEA (103
μL, 0.74 mmol) was then added and the mixture was stirred at ambient temperature overnight.
After removed the solvent by a rotavapor under high vacuum, the residue was added with saturated
10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (50 mL, 25 mL). The organic
layers were then combined, dried over MgSO.sub.4, filtered, and concentrated under reduced
pressure. The crude was purified by flash chromatography purification system. Material directly
loaded onto a 24 g silica column and using a gradient of DCM for 3 min, then 0-8% MeOH/DCM
for 7 min followed by 8% MeOH/DCM for 20 min under the flow rate at 25 mL/min. The product
fractions were collected and concentrated to yield Compound AB (379 mg, 76% yield) as a yellow
liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 5.39-5.29 (8H, m, CH=), 4.22-4.21 (4H, m,
OCH.sub.2), 3.74-3.71 (2H, m, CH.sub.2OH), 3.59-3.49 (4H, m, NCH.sub.2), 3.23 (2H, s,
COCH.sub.2), 2.78-2.75 (2H, m, CH.sub.2CH.sub.2OH), 2.59-2.57 (8H, m,
NCH.sub.2CH.sub.2N), 2.32-2.27 (4H, m, CHCH.sub.2CH), 2.05-2.03 (8H, m,
=CHCH.sub.2CH.sub.2), 1.60 (4H, m, CH.sub.2CH.sub.2CO), 1.33-1.29 (28H, m, CH.sub.2),
0.90-0.88 (6H, m, CH.sub.3).
[0953] Example 3: A scheme for the preparation of Compound A4 is shown in FIG. 3.
[0954] Intermediate 4: Myristic acid (50.0 g, 218.90 mmol), N-Boc-diethanolamine (21.4 g, 218.90
mmol), and DMAP (3.8 g, 65.70 mmol) in an oven-dried flask (1 L) with a magnetic bar was added
anhydrous DCM (300 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear
solution. EDC (44.0 g, 481.70 mmol) was then added and the mixture was stirred at room
```

temperature overnight (17 hours). The reaction was finally quenched with saturated NaCl solution (400 mL) and extracted with DCM twice (400 mL, 100 mL). Organic layers were combined, dried over Na.sub.2SO.sub.4 (20 g), and filtered. The filtrate was concentrated under reduced pressure. The crude was dissolved in 50 mL DCM and purified by flash chromatography purification system (330 g silica gel column) using a gradient of 5-50% EtOAc/hexane for 40 min under the flow rate at 100 mL/min. The product fractions were collected and concentrated to yield Intermediate 4 (50.0 g, 71% yield) as a white solid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 4.14-4.17 (4H, m, OCH.sub.2), 3.44-3.50 (4H, m, NCH.sub.2), 2.27-2.30 (4H, m, CH.sub.2CO), 1.60-1.70 (4H, m, CH.sub.2CH.sub.2CO), 1.45 (9H, S, C(CH.sub.3)), 1.20-1.25 (40H, m, CH.sub.2), 0.81-0.88 (6H, m, CH.sub.3).

[0955] Intermediate 5: Intermediate 4 (10.0 g, 16.00 mmol) in an oven-dried flask (200 mL) with a magnetic bar was added anhydrous DCM (15 mL). The mixture was stirred for 2 minutes to a clear solution. TFA (15.0 mL) was then added and the mixture was stirred at ambient temperature for 2 hours. The reaction mixture was first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (100 mL). The mixture was then extracted with DCM (2×100 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure to give a residue, which was then dissolved in anhydrous DCM (50 mL) and cooled down to 0° C. with an ice-water bath. Triethylamine (2.5 mL, 17.60 mmol) followed by bromoacetyl bromide (1.4 mL, 16.00 mmol) were then added slowly at 0° C. After the addition was completed, the ice-water bath was removed and the mixture was stirred at ambient temperature for 2 hours. Next, the reaction mixture was concentrated using a rotavapor. The crude was dissolved in 10 mL DCM and purified with a 220 g silica column using a gradient of 0-50% EtOAc/hexane for 40 min under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield Intermediate 5 (8.2 g, 79% yield) as a pale yellow solid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 4.23-4.24 (4H, m, OCH.sub.2), 3.93 (2H, s, ClCH.sub.2), 3.60-3.69 (4H, m, NCH.sub.2), 2.28-2.30 (4H, m, CH.sub.2CO), 1.57-1.59 (4H, m, CH.sub.2CH.sub.2CO), 1.24-1.27 (40H, m, CH.sub.2), 0.85-0.89 (6H, m, CH.sub.3). [0956] Compound A4: Intermediate 5 (1.7 g, 2.57 mmol), (3S,4S)-dihydroxypyrrolidine (0.3 g, 2.57 mmol) in an oven-dried vial (40 mL) with a magnetic bar was added anhydrous DCM (20 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear solution. Triethylamine (0.4 mL, 2.57 mmol) was then added and the mixture was stirred at ambient temperature overnight (17 hours). After removed the solvent by rotavapor under high vacuum, the residue was added with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 5 mL DCM and purified with a 24 g silica column using a gradient of 0-20% MeOH/DCM for 30 min under the flow rate at 20 mL/min. The product fractions were collected and concentrated to yield Compound A4 (870 mg, 51% yield) as a white solid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 4.09-4.21 (6H, m, OCH.sub.2, OCH), 3.56-3.63 (6H, m, NCH.sub.2, COCH.sub.2N), 3.28-3.29 (2H, m, NCH.sub.2CH), 2.74-2.76 (2H, m, NCH.sub.2CH), 2.26-2.30 (4H, m, CH.sub.2CO), 1.59-1.60 (4H, m, CH.sub.2CH.sub.2CO), 1.24-1.27 (40H, m, CH.sub.2), 0.85-0.88 (6H, m, CH.sub.3). [0957] Example 4: A scheme for the preparation of Compound B8 is shown in FIG. 4. [0958] Compound B8: Intermediate 4 (1.0 g, 1.60 mmol) in an oven-dried vial (20 mL) with a magnetic bar was added anhydrous DCM (3 mL). The mixture was stirred for 2 minutes to a clear solution. TFA (3 mL) was then added and the mixture was stirred at ambient temperature for 2 hours. The reaction mixture was first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 agueous solution (20 mL). The mixture was then extracted with DCM (2×20 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (2 g), filtered, and concentrated under reduced pressure to give an intermediate, which was then dissolved in anhydrous DCM (7 mL). Glutaric anhydride (0.3 g, 2.40 mmol) followed by triethylamine (0.3 mL,

```
2.40 mmol) were then added at ambient temperature. The mixture was stirred at ambient
temperature overnight (17 hours). Next, the reaction mixture was concentrated using a rotavapor.
The crude was dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of
0-10% MeOH/DCM for 20 min under the flow rate at 25 mL/min. The product fractions were
collected and concentrated to yield Compound B8 (667 mg, 65% yield) as a white solid. .sup.1H
nmr (400 MHz, CDCl.sub.3) δ 4.18-4.23 (4H, m, OCH.sub.2), 3.59-3.62 (4H, m, NCH.sub.2),
2.44-2.49 (4H, m, CH.sub.2CO), 2.29-2.31 (4H, m, CH.sub.2CO), 1.97-2.00 (4H, m,
CH.sub.2CO), 1.57-1.62 (8H, m, CH.sub.2CH.sub.2CO, CH.sub.2), 1.26-1.31 (40H, m, CH.sub.2),
0.87-0.89 (6H, m, CH.sub.3).
[0959] Example 5: A scheme for the preparation of Compound A9 is shown in FIG. 5.
[0960] Compound A9: Intermediate 5 (2.4 g, 3.72 mmol), 3-azetidinemethanol hydrochloride (1.0
g, 8.09 mmol) in an oven-dried vial (40 mL) with a magnetic bar was added anhydrous DCM (20
mL) and DMSO (2 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear
solution. Triethylamine (1.6 mL, 11.12 mmol) was then added and the mixture was stirred at
ambient temperature for 1 hours. The reaction was quenched with saturated 10% K.sub.2CO.sub.3
solution (100 mL) and extracted with DCM (2×50 mL). The organic layers were then combined,
dried over Na.sub.2SO.sub.4 (20 g), filtered, and concentrated under reduced pressure. The crude
was dissolved in 5 mL DCM and purified with a 40 g silica column using a gradient of 0-15%
MeOH/DCM for 30 min under the flow rate at 20 mL/min. The product fractions were collected
and concentrated to yield Compound A9 (1.2 g, 49% yield) as a pale yellow solid. .sup.1H nmr
(400 MHz, CDCl.sub.3) δ: 4.18-4.21 (4H, m, OCH.sub.2), 3.76-3.77 (2H, m, CH.sub.2OH), 3.60-
3.50 (4H, m, NCH.sub.2), 3.46-3.47 (2H, m, NCH.sub.2), 3.38 (2H, s, COCH.sub.2N), 3.25-3.26
(2H, m, NCH.sub.2), 2.64-2.70 (OH, m, CH), 2.28-2.31 (4H, m, CH.sub.2CO), 1.59 (4H, m,
CH.sub.2CH.sub.2CO), 1.24-1.26 (40H, m, CH.sub.2), 0.85-0.87 (6H, m, CH.sub.3).
[0961] Example 6: A scheme for the preparation of Compound AA is shown in FIG. 6.
[0962] Compound AA: Intermediate 3 (460 mg, 0.61 mmol), 1-piperazinepropanol (88.5m g, 0.61
mmol) in an oven-dried vial (40 mL) with a magnetic bar was added anhydrous DCM (10 mL). The
mixture was stirred at ambient temperature for 2 minutes to a clear solution. Triethylamine (0.1)
mL, 0.74 mmol) was then added and the mixture was stirred at ambient temperature overnight (17
hours). The reaction was quenched with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted with
DCM (2×50 mL). The organic layers were then combined, dried over MgSO.sub.4 (5 g), filtered,
and concentrated under reduced pressure. The crude was dissolved in 5 mL DCM and purified with
a 12 g silica column using a gradient of 0-20% MeOH/DCM for 30 min under the flow rate at 20
mL/min. The product fractions were collected and concentrated to yield Compound AA (389 mg,
78% yield) as a colorless oil. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 5.29-5.34 (8H, m, CH=),
4.20-4.23 (4H, m, OCH.sub.2), 3.58-3.80 (6H, m, CH.sub.2OH NCH.sub.2), 3.21 (2H, s,
COCH.sub.2N), 2.75-2.78 (4H, m, =CHCH.sub.2CH=), 2.35-2.65 (8H, m, NCH.sub.2), 2.27-2.31
(4H, m, CH.sub.2CO), 2.02-2.06 (8H, m, =CHCH.sub.2), 1.70-1.73 (4H, m, CH.sub.2), 1.59-1.61
(4H, m, CH.sub.2CH.sub.2CO), 1.25-1.36 (28H, m, CH.sub.2), 0.87-0.90 (6H, m, CH.sub.3).
[0963] Example 7: A scheme for the preparation of Compound A5 is shown in FIG. 7.
[0964] Compound A5: Intermediate 3 (200 mg, 0.27 mmol), trans-3,4-pyrrolidinediol (28 mg, 0.27
mmol) in an oven-dried vial (40 mL) with a magnetic bar was added anhydrous DCM (10 mL) and
DMSO (1 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear solution.
Triethylamine (50 mL, 0.32 mmol) was then added and the mixture was stirred at ambient
temperature overnight (17 hours). The reaction was quenched with 10% K.sub.2CO.sub.3 solution
(50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined, dried over
MgSO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 5
mL DCM and purified with a 12 g silica column using a gradient of EtOAc for 5 min and 0-30%
MeOH/DCM for 30 min under the flow rate at 20 mL/min. The product fractions were collected
and concentrated to yield Compound A5 (389 mg, 78% yield) as a colorless liquid. .sup.1H nmr
```

```
(400 MHz, CDCl.sub.3) δ 5.29-5.39 (8H, m, CH=), 4.20-4.25 (4H, m, OCH.sub.2), 4.10-4.11 (2H,
m, CHOH), 3.55-3.62 (4H, m, NCH.sub.2. COCH.sub.2N), 3.28-3.31 (2H, m, NCH.sub.2), 2.75-
2.76 (6H, m, NCH.sub.2,=CHCH.sub.2CH=), 2.60 (2H, m, NCH.sub.2), 2.27-2.32 (4H, m,
CH.sub.2CO), 2.02-2.06 (8H, m, =CHCH.sub.2), 1.60-1.61 (4H, m, CH.sub.2CH.sub.2CO), 1.25-
1.36 (28H, m, CH.sub.2), 0.87-0.90 (6H, m, CH.sub.3).
[0965] Example 8: A scheme for the preparation of Compound A1 is shown in FIG. 8.
[0966] Compound A1: Intermediate 3 (1.0 g, 1.33 mmol), 3-azetidinemethanol hydrochloride (0.3
g, 2.66 mmol) in an oven-dried vial (40 mL) with a magnetic bar was added anhydrous DCM (20
mL) and DMSO (2 mL). The mixture was stirred at ambient temperature for 2 minutes to a clear
solution. Triethylamine (0.7 mL, 5.32 mmol) was then added and the mixture was stirred at
ambient temperature overnight (17 hours). The reaction was guenched with 10% K.sub.2CO.sub.3
solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined,
dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude
was dissolved in 5 mL DCM and purified with a 24 g silica column using a gradient of 0-50%
EtOAc/hexane for 10 min and 0-15% MeOH/DCM for 20 min under the flow rate at 20 mL/min.
The product fractions were collected and concentrated to yield Compound A1 (130 mg, 13% yield)
as a pale yellow liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.29-5.35 (8H, m, CH=), 4.18-4.21
(4H, m, OCH.sub.2), 3.40-3.77 (12H, m, CH.sub.2OH, CONCH.sub.2, NCH.sub.2,
NCH.sub.2CO), 2.74-2.77 (5H, m, CH.sub.2, =CHCH.sub.2CH=), 2.28-2.30 (4H, m,
CH.sub.2CO), 2.04-2.05 (8H, m, =CHCH.sub.2), 1.60 (4H, m, CH.sub.2CH.sub.2CO), 1.24-1.26
(40H, m, CH.sub.2), 0.85-0.87 (6H, m, CH.sub.3).
[0967] Example 9: A scheme for the preparation of Compound D22 is shown in FIG. 9.
[0968] Intermediate 6: Intermediate 1 (11.4 g, 15.6 mol) in an oven-dried flask (100 mL) with a
magnetic bar was added anhydrous DCM (10 mL). The mixture was stirred for 2 minutes to a clear
solution. TFA (10.0 mL) was then added and the mixture was stirred at ambient temperature for 2
hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was
first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (50
mL). The mixture was then extracted with DCM (2\times50 mL) and the organic layers were combined,
dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure to give an oily
residue, which was then dissolved in anhydrous DCM (100 mL) and added Fmoc-Glu(OtBu)-OH
(6.6 g, 15.60 mmol), EDC (4.5 g, 23.40 mmol) and DMAP (0.4 g, 3.10 mmol) in sequence. The
mixture was stirred at ambient temperature overnight (17 hours). Next day, the reaction mixture
was washed with brine (100 mL), extracted with DCM (2×50 mL), dried over Na.sub.2SO.sub.4,
filtered, and concentrated by rotavapor. The crude was dissolved in 5 mL DCM and purified with a
220 g silica column using a gradient of 0-50% EtOAc/hexane for 30 min under the flow rate at 50
mL/min. The product fractions were collected and concentrated to yield Intermediate 6 (8.3 g, 47%)
yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 7.75-7.76 (2H, d, J=6.4 Hz, ArH),
7.59 (2H, t, J=4.8 Hz, ArH), 7.38-7.41 (2H, m, ArH), 7.26-7.33 (2H, m, ArH), 5.62-5.64 (1H, d,
J=6.8 Hz, COCH.sub.2), 5.30-5.39 (8H, m, OCH.sub.2, =CH), 4.76-4.79 (1H, m, COCH.sub.2),
4.11-4.41 (6H, m, CH, OCH.sub.2), 3.35-3.98 (6H, m, NCH.sub.2), 2.74-2.78 (4H, m,
=CHCH.sub.2CH=), 2.25-2.36 (8H, m, CH.sub.2. CH.sub.2CO), 2.00-2.06 (8H, m,
=CHCH.sub.2), 1.54-1.77 (4H, m, CH.sub.2CH.sub.2CO), 1.45 (9H, s, O(CH.sub.3).sub.3), 1.24-
1.37 (28H, m, CH.sub.2), 0.87-0.90 (6H, i m, CH.sub.3).
[0969] Intermediate 7: Intermediate 6 (4.3 g, 4.14 mmol) was dissolved in acetonitrile (18 mL) in
an oven-dried vial (100 mL) with a magnetic bar, followed by adding piperidine (2 mL). The
mixture was stirred at ambient temperature for 2 hours. Then solvent was removed under vacuum.
The crude was dissolved in 5 mL DCM and purified with a 80 g silica column using a gradient of
0-5% MeOH/DCM for 30 min under the flow rate at 40 mL/min. The product fractions were
collected and concentrated to yield Intermediate 7 (2.1 g, 64% yield) as a clear liquid. LC-MS
analysis has confirmed the product - m/z of [M+H].sup.+=816.17.
```

```
[0970] Intermediate 8: To Intermediate 7 (2.1 g, 2.58 mol) in an oven-dried flask (100 mL) with a
magnetic bar were added anhydrous acetonitrile (30 mL), sodium cyanoborohydride (0.9 g, 1.48
mmol), formaldehyde (37% in water, 50 mL) and acetic acid (2 mL) in sequence. The mixture was
stirred for 2 hours. The reaction mixture was then treated with 10% K.sub.2CO.sub.3 aqueous
solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were combined, dried
over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduce pressure. The crude was
dissolved in 2 mL DCM and purified with a 40 g silica column using a gradient of 0-10%
MeOH/DCM for 30 min under the flow rate at 30 mL/min. The product fractions were collected
and concentrated to yield Intermediate 8 (1.4 g, 64% yield) as a clear liquid. LC-MS analysis has
confirmed the product - m/z of [M+H].sup.+=844.22.
[0971] Compound D22: Intermediate 8 (1.4 g, 1.66 mmol) in an oven-dried flask (100 mL) with a
magnetic bar was added anhydrous DCM (10 mL). The mixture was stirred for 2 minutes to a clear
solution. TFA (10.0 mL) was then added and the mixture was stirred at ambient temperature for 4
hours. Then the reaction mixture was concentrated with a rotavapor. The crude was dissolved in 5
mL DCM and purified with a 24 g silica column using a gradient of 0-15% MeOH/DCM for 25
min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to
yield Lp09 (200 mg, 15% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.30-5.39
(8H, m, OCH.sub.2, =CH), 4.59-4.61 (1H, m, COCHN), 4.23-4.34 (4H, m, OCH.sub.2), 3.54-3.77
(4H, m, NCH.sub.2), 2.90 (6H, s, NCH.sub.3), 2.76 (4H, t, J=5.2 Hz, =CHCH.sub.2CH=), 2.50-
2.55 (2H, m, CH.sub.2CO), 2.31-2.34 (4H, m, CH.sub.2CO), 2.22-2.27 (2H, m, CH.sub.2), 2.03-
2.07 (8H, m, =CHCH.sub.2), 1.59-1.60 (4H, m, CH.sub.2CH.sub.2CO), 1.26-1.37 (28H, m,
CH.sub.2), 0.88-0.90 (6H, m, CH.sub.3).
[0972] Example 10: A scheme for the preparation of Compounds A7 and A8 is shown in FIG. 10.
[0973] Intermediate 9: Intermediate 1 (1.0 g, 1.37 mmol) in an oven-dried flask (100 mL) with a
magnetic bar was added anhydrous DCM (10 mL). The mixture was stirred for 2 minutes to a clear
solution. TFA (10.0 mL) was then added and the mixture was stirred at ambient temperature for 2
hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was
first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (50
mL). The mixture was then extracted with DCM (2×50 mL) and the organic layers were combined,
dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure to give
Intermediate 9 as an oil, which was then used without further purification.
[0974] Intermediate 10: To 2-(dimethylamino)ethan-1-ol (0.1 mL, 1.39 mmol) in anhydrous DCM
(10 mL) was added 4-nitrophenyl carbonochloridate (0.3 g, 1.39 mmol) followed by DIEA (0.5
mL, 2.76 mmol). The mixture was stirred at ambient temperature overnight (17 hours) to give the
Intermediate 10 solution, which was used directly without further purification.
[0975] Compound A7: Intermediate 9 was dissolved in DCM (10 mL) and transferred into solution
of Intermediate 10 in a flask. The mixture was stirred at ambient temperature overnight (17 hours).
Next day, the reaction mixture was concentrated using a rotavapor. The crude was dissolved in 2
mL of DCM and purified with a 24 g silica column using a gradient of 0-50% EtOAc/hexane for 10
min, 2-20% MeOH/DCM for 20 min under the flow rate at 25 mL/min. The product fractions were
collected and concentrated to yield Compound A7 (540 mg, 54% yield) as a clear yellow liquid.
.sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.30-5.40 (8H, m, CH=), 4.20-4.40 (6H, m, OCH.sub.2),
3.45-3.55 (6H, m, NCH.sub.2), 2.75-2.78 (4H, m, =CHCH.sub.2CH=), 2.25-2.30 (1OH, m,
NCH.sub.3, CH.sub.2CO), 2.03-2.05 (8H, m, =CHCH.sub.2), 1.56-1.60 (4H, m,
CH.sub.2CH.sub.2CO), 1.29-1.33 (28H, m, CH.sub.2), 0.86-0.90 (6H, m, CH.sub.3).
[0976] Compound A8: Compound A7 (160 mg, 0.22 mmol) was added to methyl iodide (2 mL) in
an oven-dried vial (20 mL) with a magnetic bar. The mixture was stirred at ambient temperature for
2 hours. Next, methyl iodide was removed under vacuum. The crude was dissolved in 1 mL DCM
and purified with a 12 g silica column using a gradient of 2-20% MeOH/DCM for 30 min under the
flow rate at 20 mL/min. The product fractions were collected and performed iodide to chloride
```

anion exchange using resin Amberst 26. The resulting solution was finally concentrated under reduced pressure to give Compound A8 (100 mg, 59% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 5.29-5.34 (8H, m, CH=), 4.60-4.65 (2H, m, OCH.sub.2), 4.10-4.20 (6H, m, NCH.sub.2, OCH.sub.2), 3.50-3.55 (13H, m, NCH.sub.3, NCH.sub.2), 2.75-2.78 (4H, m, =CHCH.sub.2CH=), 2.25-2.30 (4H, m, CH.sub.2CO), 2.02-2.06 (8H, m, =CHCH.sub.2), 1.59-1.61 (4H, i m, CH.sub.2CH.sub.2CO), 1.25-1.36 (28H, m, CH.sub.2), 0.87-0.90 (6H, m, CH.sub.3).

[0977] Example 11: A scheme for the preparation of Compounds C3 and C2 is shown in FIG. 11. [0978] Intermediate 11: Boc-beta-H-Asp(OBz)-OH (35.0 g, 10.20 mmol) was dissolved in MeOH (45 mL) in a round-bottomed flask flushed with Argon gas.10% Pd/C (350 mg) was added and the flask was flushed with Argon gas once again. Next, all air was removed via vacuum pump and a balloon filled with hydrogen gas was attached. Reaction mixture was allowed to stir for -2 hours at ambient temperature. The hydrogen balloon was removed and the mixture was then filtered out Pd/C catalyst through a pad of celite, followed by rinsing with copious amounts of MeOH. The filtrate was finally concentrated by a rotovap to yield Intermediate 11 (2.5 g, 100% yield), which was used without further purification.

[0979] Intermediate 12: Intermediate 11 (2.5 g, 10.11 mmol), EDC (5.8 g, 30.30 mmol), and DMAP (494 mg, 4.04 mmol) in an oven-dried flask (200 mL) with a magnetic bar was added anhydrous DCM (50 mL). The mixture was stirred at ambient temperature for −5 minutes to a clear solution. Linoleyl alcohol (6.5 g, 24.20 mmol) was then added and the mixture was stirred at room temperature overnight. The reaction was finally quenched with H.sub.2O (50 mL) and extracted with DCM twice (2×50 mL). Organic layers were combined, dried over MgSO.sub.4, and filtered. The filtrate was concentrated under reduced pressure. The crude purified by flash chromatography purification system (80 g silica gel column) using a gradient of hexane for 2 min, then 0-25% EtOAc/hexane for 15 min, then 25% EtOAc/hexane for 5 min, then 75% EtOAc/hexane for 5 min under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield Intermediate 12 (7.0 g, 93% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 5.38-5.31 (8H, m, CH=), 4.28 (1H, bs, NH), 4.08-4.05 (4H, m, OCH.sub.2), 2.78-2.75 (4H, m, =CHCH.sub.2CH=), 2.69-2.59 (4H, m, COCH.sub.2N), 2.06-2.02 (4H, m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.43 (9H, s, C(CH.sub.3).sub.3), 1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3).

[0980] Intermediate 13: Intermediate 12 (2.3 g, 3.09 mmol) was dissolved in DCM (20 mL) and cooled in an ice-bath. TFA (20 mL) was added and the mixture was allowed to stir for ~1 hour under a blanket of argon gas. Afterwards, material was concentrated in vacuo. The residue was dissolved in DCM (20 mL) and then 10% K.sub.2CO.sub.3 (20 mL) was added. After stirred the mixture in an ice bath for ~1/2 hour, it was partitioned, checking the pH of the aqueous to ensure it was basic. The turbid aqueous layer was extracted with DCM (3×20 mL). The combined organic layers was added MgSO.sub.4, stirred once again in the ice bath for ~20 minutes, and filtered. The filtrate, Intermediate 13, was then carried forward without any further refinement (2.0 g, assumed quantitative yield).

[0981] Compound C3: N,N-Dimethyl glycine HCl salt (260 mg, 1.86 mmol), EDC (447 mg, 2.33 mmol), and DMAP (38 mg, 0.31 mmol) in an oven-dried flask (50 mL) with a magnetic bar was added anhydrous DCM (15 mL). The mixture was stirred at ambient temperature for −5 minutes. Intermediate 13 (1.0 g, 1.55 mmol) was then added and the mixture was stirred at room temperature overnight. The reaction was finally quenched with H.sub.2O (50 mL) and extracted with DCM twice (2×50 mL). Organic layers were combined, dried over MgSO.sub.4, and filtered. The filtrate was concentrated under reduced pressure. The crude purified by flash chromatography purification system (40 g silica gel column) using a gradient of hexane for 1 min, then 0-50% EtOAc/hexane for 25 min, then 50% EtOAc/hexane for 5 min under the flow rate at 40 mL/min. The product fractions were collected and concentrated to yield Lp12 (890 mg, 79% yield) as a clear

```
liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 7.76-7.74 (1H, d, NH), 5.40-5.30 (8H, m, CH=),
4.28 (OH, m, CHN), 4.08-4.05 (4H, m, OCH.sub.2), 2.92 (2H, s, COCH.sub.2N), 2.78-2.75 (4H,
m, =CHCH.sub.2CH=), 2.732.62 (4H, m, COCH.sub.2N), 2.27 (6H, s, N(CH.sub.3).sub.2), 2.06-
2.02 (4H, m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.43 (9H, s,
C(CH.sub.3).sub.3), 1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3).
[0982] Compound C2: Compound C3 (890 mg, 1.22 mmol) was dissolved in acetonitrile (9 mL)
and iodomethane (1 mL) was added. Vial was flushed with argon gas and allowed to stir at 50° C.
overnight. Next day, the reaction mixture was concentrated in vacuo and purified by flash
chromatography purification system (40 g silica gel column) using a gradient of DCM for 2 min,
then 0-8% MeOH/DCM for 20 min, then 8% MeOH/DCM for 5 min under the flow rate at 40
mL/min. The product fractions were collected and concentrated and subjected to Amberlyst A26
Anion Exchange resin to yield Compound C2 (623 mg, 66% yield) as oil. .sup.1H nmr (400 MHz,
CDCl.sub.3) δ: 9.69-9.66 (1H, d, NH), 5.40-5.30 (8H, m, CH=), 4.67 (1H, m, CHN), 4.57 (2H, s,
COCH.sub.2N), 4.08-4.05 (4H, m, OCH.sub.2), 3.43 (9H, s, N(CH.sub.3).sub.3), 2.78-2.75 (4H,
m, =CHCH.sub.2CH=), 2.73-2.62 (4H, m, COCH.sub.2N), , 2.06-2.02 (4H, m,
CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m. CH.sub.2CH.sub.2O), 1.43 (9H, s, C(CH.sub.3).sub.3),
1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3).
[0983] Example 12: A scheme for the preparation of Compound DD is shown in FIG. 12.
[0984] Intermediate 14: Intermediate 12 (4.4 g, 5.93 mmol) was dissolved in DCM (20 mL) and
cooled in an ice-bath. TFA (20 mL) was added and the mixture was allowed to stir for −1 hour
under a blanket of Argon gas. The reaction mixture was then concentrated in vacuo. The residue
was dissolved in DCM (20 mL) and then 10% K.sub.2CO.sub.3 (20 mL) was added. After stirred
the mixture in an ice bath for ^{\sim}1/2 hour, it was partitioned, checking the pH of the aqueous to ensure
it was basic. The turbid aqueous layer was extracted with DCM (3×20 mL). The combined organic
layers was added MgSO.sub.4, stirred once again in the ice bath for −20 minutes, and filtered. The
filtrate was then added diphosgene (1.1 mL, 8.90 mmol). The reaction mixture was allowed to stir
overnight at ambient temperatures under a blanket of argon gas. Next day, DCM and excess
diphosgene were removed in vacuo. The residue, Intermediate 14, was dried fully before carrying
forward without any further refinement (4.6 g, assumed quantitative yield).
[0985] Compound DD: 2-(Dimethylamino) ethanethiol HCl salt (2.1 g, 14.90 mmol) was
suspended in DCM (25 mL) and added to Intermediate 14 (2.3 g, 2.97 mmol) in DCM (25 mL).
TEA (2.7 mL, 19.30 mmol) was added slowly to the mixture. Reaction was allowed to stir
overnight at ambient temperature under a blanket of argon gas. Next day, the reaction mixture was
diluted with DCM (100 mL) and washed with H.sub.2O (100 mL) followed by 10%
K.sub.2CO.sub.3 (100 mL). Back-extraction was performed for both aqueous washes with DCM
(2×40 mL). The organic layers were combined, dried with MgSO.sub.4, filtered, and concentrated
in vacuo. The crude was purified by flash chromatography purification system (80 g silica gel
column) using a gradient of 10% EtOAc/hexane for 3 min, then 10-100% EtOAc/hexane for 15
min, then EtOAc for 5 minutes under the flow rate at 60 mL/min. The product fractions were
collected and concentrated to yield Compound DD (300 mg, 39% yield) as a clear liquid. .sup.1H
nmr (400 MHz, CDCl.sub.1) δ: 6.53-6.51 (1H, d, NH), 5.34-5.30 (8H, m, CH=), 4.57 (1H, m,
CHN), 4.08-4.05 (4H, m, OCH.sub.2), 2.75-2.68 (2H, m, SCH.sub.2CH.sub.2), 2.78-2.75 (4H, m,
=CH—CH.sub.2CH=), 2.73-2.62 (4H, m, COCH.sub.2N), 2.30-2.25 (2H, m, SCH.sub.2CH.sub.2)
2.15 (6H, s, N(CH.sub.3).sub.2), 2.06-2.02 (4H, m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m,
CH.sub.2CH.sub.2O), 1.43 (9H, s, C(CH.sub.3).sub.3), 1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86
(6H, m, CH.sub.3).
[0986] Example 13: A scheme for the preparation of Compound E4 is shown in FIG. 13.
[0987] Compound E4: Intermediate 14 (6.4 g, 8.22 mmol) was suspended in DCM (75 mL) in a
round bottom flask (500 mL) with a magnetic stir bar. 2-(Dimethylamino) ethanol (4.1 mL, 41.1
```

mmol) followed by TEA (7.4 mL, 53.4 mmol) was added slowly to the mixture. Reaction was

```
allowed to stir overnight at ambient temperature under a blanket of argon gas. Next day, the
reaction mixture was diluted with DCM (100 mL) and washed with H.sub.2O (100 mL) followed
by 10% K.sub.2CO.sub.3 (100 mL). Back-extraction was performed for both aqueous washes with
DCM (2×40 mL). The organic layers were combined, dried with MgSO.sub.4, filtered, and
concentrated in vacuo. The crude was purified by flash chromatography purification system (80 g
silica gel column) using a gradient of 10% EtOAc/hexane for 3 min, then 10-100% EtOAc/hexane
for 15 min, then EtOAc for 5 minutes under the flow rate at 60 mL/min. The product fractions were
collected and concentrated to yield Compound E4 (3.3 g, 53% yield) as a clear liquid. .sup.1H nmr
(400 MHz, CDCl.sub.3) δ 6.53-6.51 (1H, bs, NH), 5.40-5.20 (8H, m, CH=), 4.35 (1H, m, CHN),
4.20-4.10 (2H, m, COOCH.sub.2), 4.10-4.00 (4H, m, COOCH.sub.2), 2.78-2.75 (4H, m,
=CHCH.sub.2CH=), 2.732.62 (4H, m, COCH.sub.2N), 2.60-2.50 (2H, m, OCH.sub.2CH.sub.2)
2.25 (6H, s, N(CH.sub.3).sub.2), 2.06-2.02 (4H, m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m,
CH.sub.2CH.sub.2O), 1.43 (9H, s, C(CH.sub.3).sub.3), 1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86
(6H, m, CH.sub.3).
[0988] Example 14: A scheme for the preparation of Compound CA is shown in FIG. 14.
[0989] Intermediate 15: Intermediate 13 (1.0 g, 1.55 mmol) was dissolved in anhydrous DCM (15
mL) and bromoacetyl bromide (135 μL, 1.55 mmol) followed by TEA (238 sL, 1.71 mmol) were
then added slowly. After the addition was completed, the mixture was stirred at ambient
temperature overnight. Next day, the mixture was diluted with DCM (50 mL) and washed with
H.sub.2O (50 mL) and 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both
aqueous washes with DCM (2×25 mL). The organic layers were combined, dried with
MgSO.sub.4, filtered, and concentrated in vacuo. The crude was purified with a 40 g silica column
on flash chromatography system equipped with ESLD detector using a gradient of hexane for 0.5
min, then 0-50% EtOAc/hexane 30 min gradient followed by 50% EtOAc/hexane for 5 min under
the flow rate at 40 mL/min. The product fractions were collected and concentrated to yield
Intermediate 15 (950 mg, 80% yield) as a colorless liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ:
7.44-7.42 (OH, bs, NH), 5.40-5.32 (8H, m, CH=), 4.62-4.57 (1H, m, CHN), 4.10-4.07 (4H, m,
COOCH.sub.2), 3.83 (2H, s, CH.sub.2Br), 2.78-2.75 (4H, m, =CH—CH.sub.2CH=), 2.73-2.62
(4H, m, COCH.sub.2N), 2.60-2.50 (2H, m, OCH.sub.2CH.sub.2) 2.25 (6H, s, N(CH.sub.3).sub.2),
2.06-2.02 (4H, m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.43 (9H, s,
C(CH.sub.3).sub.3), 1.35-1.26 (36H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3).
[0990] Compound CA: Intermediate 16 (400 mg, 0.52 mmol) was suspended in DCM (10 mL) in a
round bottom flask (50 mL) with a magnetic stir bar and 1-(2-hydroxyethyl)piperazine (70 sL, 0.58
mmol) followed by TEA (91 µL, 0.65 mmol) was added. Mixture was stirred overnight at ambient
temperature under a blanket of argon gas. Next day, the mixture was diluted with DCM (25 mL)
and washed with H.sub.2O (25 mL) followed by 10% K.sub.2CO.sub.3 (25 mL). Back-extraction
was performed for both aqueous washes with DCM (2×25 mL). The organic layers were combined,
dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude purified by flash
chromatography purification system (40 g silica gel column) using a DCM for 1 min, then 10%
MeOH/DCM for 15 min under the flow rate at 40 mL/min. The product fractions were collected
and concentrated to yield Compound CA (400 mg, 94% yield) as a clear liquid. .sup.1H nmr (400
MHz, CDCl.sub.3) δ 7.82-7.80 (1H, bs, NH), 5.40-5.29 (8H, m, CH=), 4.61-4.57 (1H, m, CHN),
4.07-4.04 (4H, m, COOCH.sub.2), 3.63-3.61 (2H, m, CH.sub.2CH.sub.2OH), 2.97 (2H, s,
COCH.sub.2N), 2.78-2.75 (4H, m, =CHCH.sub.2CH=), 2.73-2.62 (4H, m, COCH.sub.2N), 2.62-
2.59 (2H, m, NCH.sub.2CH.sub.2OH), 2.59-2.50 (8H, i m, N(CH.sub.3).sub.2N), 2.06-2.02 (8H,
m, CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.35-1.26 (32H, m, CH.sub.2),
0.90-0.86 (6H, m, CH.sub.3).
[0991] Example 15: A scheme for the preparation of Compound D1 is shown in FIG. 15.
```

[0992] Compound D1: Intermediate 15 (500 mg, 0.653 mmol) was suspended in DCM (8.5 mL) in a scintillation vial with a magnetic stir bar. Cis-pyrrolidine-3,4-diol HCl salt (100 mg, 0.72 mmol)

```
in DMSO (1 mL) was added followed by TEA (229 sL, 1.64 mmol). The mixture was stirred
overnight at ambient temperature under a blanket of argon gas. Next day, the mixture was diluted
with DCM (25 mL) and washed with H.sub.2O (25 mL) followed by 10% K.sub.2CO.sub.3 (25
mL). Back-extraction was performed for both aqueous washes with DCM (2×10 mL). The organic
layers were combined, dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude was
purified by flash chromatography purification system (40 g silica gel column) using a DCM for 1
min, then 10% MeOH/DCM for 15 min under the flow rate at 40 mL/min. The product fractions
were collected and concentrated to yield Compound D1 (437 mg, 87% yield) as a clear liquid.
.sup.1H nmr (400 MHz, CDCl.sub.3) δ: 7.82-7.80 (OH, bs, NH), 5.40-5.29 (8H, m, CH=), 4.61-
4.57 (1H, m, CHN), 4.07-4.04 (4H, m, COOCH.sub.2), 3.63-3.61 (2H, m, CH.sub.2CH.sub.2OH),
3.10 (2H, s, CH.sub.2CHOH), 2.78-2.75 (4H, m, =CHCH.sub.2CH=), 2.73-2.62 (4H, m,
COCH.sub.2N), 2.62-2.58 (4H, m, N(CH.sub.2).sub.2CHOH), 2.06-2.02 (8H, m,
CH.sub.2CH.sub.2CH), 1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.35-1.29 (32H, m, CH.sub.2),
0.90-0.86 (6H, m, CH.sub.3).
[0993] Example 16: A scheme for the preparation of Compound D7 is shown in FIG. 16.
[0994] Compound D7: Intermediate 15 (750 mg, 0.98 mmol) was suspended in DCM (10 mL) in a
round bottom flask (50 mL) with a magnetic stir bar and Azetidine-3-yl-methanol HCl salt (149
mg, 1.18 mmol) was added followed by TEA (341 ILL, 2.45 mmol). The mixture was stirred
overnight at ambient temperature under a blanket of argon gas. Next day, the mixture was diluted
with DCM (25 mL) and washed with H.sub.2O (25 mL) followed by 10% K.sub.2CO.sub.3 (25
mL). Back-extraction was performed for both aqueous washes with DCM (2×10 mL). The organic
layers were combined, dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude
purified by flash chromatography purification system (40 g silica gel column) using a DCM for 2
min, then 10% MeOH/DCM for 20 min under the flow rate at 40 mL/min. The product fractions
were collected and concentrated to yield Compound D7 (350 mg, 46% yield) as a clear liquid.
.sup.1H nmr (400 MHz, CDCl.sub.3) δ: 7.71-7.68 (1H, bs, NH), 5.35-5.33 (8H, m, CH=), 4.57-
4.55 (1H, m, CHN), 4.07-4.04 (4H, m, COOCH.sub.2), 3.77 (2H, s, COCH.sub.2N), 3.38-3.35
(2H, m, CHCH.sub.2OH), 3.20-3.00 (4H, m, N(CH.sub.3).sub.2CH), 2.78-2.75 (4H, m,
=CHCH.sub.2CH=), 2.73-2.62 (4H, m, COCH.sub.2N), 2.06-2.02 (8H, m, CH.sub.2CH.sub.2CH),
1.62-1.58 (4H, m, CH.sub.2CH.sub.2O), 1.35-1.26 (32H, m, CH.sub.2), 0.90-0.86 (6H, m,
CH.sub.3).
[0995] Example 17: A scheme for the preparation of Compound F6 is shown in FIG. 17.
[0996] Intermediate 16: N,N-Dimethyl-1,4-butane-diamine (1.0 g, 8.60 mmol) was dissolved in
MeOH (15 mL). Mixture was placed in an ice-bath and (tert-butyl)-dimetholsiloxy)-acetaldehyde
(1.7 mL, 9.03 mmol) was added and stirred for 1 hour. NaBH.sub.4 (522 mg, 13.8 mmol) was then
added and the mixture was stirred for another hour 0° C. Next, the reaction was quenched with
H.sub.2O (1 mL) and concentrated in vacuo to yield Intermediate 16. The material was carried
forward with any further refinement (2.4 g, assumed quantitative yield).
[0997] Intermediate 17: Linoleic acid (1.2 g, 4.37 mmol), EDC (1.1 g, 5.46 mmol), and DMAP (89
mg, 0.73 mmol) in an oven-dried flask (50 mL) with a magnetic bar was added anhydrous DCM
(15 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution.
```

Intermediate 16 (1.0 g, 3.64 mmol) was then added and the mixture was stirred at room

The filtrate was concentrated under reduced pressure. The crude was purified by flash

liquid. The product was verified with LC-MS prior to executing the next step.

temperature overnight. The reaction was finally quenched with H.sub.2O (50 mL) and extracted with DCM twice (2×50 mL). Organic layers were combined, dried over MgSO.sub.4, and filtered.

chromatography purification system (24 g silica gel column) using a gradient of DCM for 1 min, then 0-10% MeOH/DCM for 2 min, then 10% MeOH/DCM for 7 min, then 10-30% MeOH/DCM

fractions were collected and concentrated to yield Intermediate 17 (460 mg, 24% yield) as a clear

for 2 min, then 30% MeOH/DCM for 7 min under the flow rate at 35 mL/min. The product

[0998] Intermediate 18: LOM TBAF/THF (2.6 mL, 2.57 mmol) was added to Intermediate 17 (460 mg, 0.86 mmol) dissolved in THF (5 mL) in an oven-dried flask (50 mL) with a magnetic bar and the mixture was allowed to stir at ambient temperature overnight under a blanket of argon gas. Next day, the mixture was concentrated in vacuo and carried forward without any further purification (361 mg, assumed quantitative yield). The product was verified with LC-MS prior to executing the next step.

[0999] Compound F6: Linoleic acid (289 mg, 1.0 mmol), EDC (247 mg, 1.29 mmol), and DMAP (21 mg, 0.171 mmol) in an oven-dried flask (50 mL) with a magnetic bar was added anhydrous DCM (20 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution. Intermediate 18 (361 mg, 0.86 mmol) was then added and the mixture was stirred at room temperature overnight. Next day, the mixture was diluted with DCM (50 mL) and washed with H.sub.2O (50 mL) followed by 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both aqueous washes with DCM (2×20 mL). The organic layers were combined, dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude was purified by flash chromatography purification system (80 g silica gel column) using a gradient of hexane for 2 min, then 0-250 EtOAc/hexane for 15 min, then 25% EtOAc/hexane for 5 min, then 75% EtOAc/hexane for 5 min under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield Compound F6 (385 mg, 65% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.40-5.30 (8H, m, CH=), 4.20-4.17 (2H, m, NCH.sub.2CH.sub.2O), 3.56-3.50 (2H, m, NCH.sub.2CH.sub.2O), 3.38-3.27 (2H, m, CO NCH.sub.2), 2.77-2.75 (2H, m, =CHCH.sub.2CH=), 2.66-2.56 (4H, m, N(CH.sub.3).sub.2CH.sub.I), 2.40-2.27 (10OH, m, COCH.sub.2, & N(CH.sub.3).sub.2), 2.06-2.02 (8H, m, CH.sub.2CH.sub.2CH), 1.85-1.58 (8H, m, CH.sub.2CH.sub.2CO & NCH.sub.2(CH.sub.2).sub.2CH.sub.2N), 1.36-1.26 (28H, m, CH.sub.2), 0.90-0.86 (6H, m, CH.sub.3).

[1000] Example 18: A scheme for the preparation of Compounds F5 and F7 is shown in FIG. 18. [1001] Intermediate 19: 3-(Dimethylamino)-1-propylamine (4.4 mL, 30.50 mmol) was dissolved in MeOH (20 mL). Mixture was placed in an ice-bath and (tert-butyl-dimethylsilyl)acetaldehyde (6.1 mL, 32.00 mmol) was added allowed to stir for 1 hour. NaBH.sub.4 (1.9 g, 48.79 mmol) was then added and the mixture was stirred for another hour at 0° C. Next, the reaction was quenched with H.sub.2O (5 mL), filtered out precipitate, and concentrated in vacuo to yield Intermediate 19. Material was carried forward with any further refinement (8.1 g, assumed quantitative yield). [1002] Intermediate 20: Linoleic Acid (10.4 g, 37.10 mmol), EDC (8.9 g, 46.42 mmol), and DMAP (755 mg, 6.22 mmol) in an oven-dried flask (200 mL) with a magnetic bar was added anhydrous DCM (50 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution. Intermediate 19 (8.1 g, 30.91 mmol) was then added and the mixture was stirred at room temperature overnight. Next day, diluted with DCM (50 mL) and washed with H.sub.2O (50 mL) followed by 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both aqueous washes with DCM (2×25 mL). The organic layers were combined, dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude purified by flash chromatography purification system (330 g silica gel column) using a gradient of DCM for 5 min, then 0-10% MeOH/DCM for 25 min, then 10.sup.0/MeOH/DCM for 15 min under the flow rate at 200 mL/min. The product fractions were collected and concentrated to yield Intermediate 20 (9.8 g, 60% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 5.37-5.29 (4H, m, CH=), 3.75-3.67 (2H, m, NCH.sub.2CH.sub.2O), 3.46-3.35 (4H, m, CONCH.sub.2), 2.77-2.74 (2H, m, =CHCH.sub.2CH=), 2.36-2.23 (4H, m, COCH.sub.2 & (CH.sub.3).sub.2NCH.sub.2), 2.21-2.20 (6H, d, (CH.sub.3).sub.2N), 2.04-2.00 (4H, m, CH.sub.2CH.sub.2CH), 1.71-1.59 (2H, m, NCH.sub.2CH.sub.2CH.sub.2N), 1.36-1.26 (14H, m, CH.sub.2), 0.89-0.86 (12H, s, SiC(CH.sub.3).sub.3& CH.sub.3), 0.36-0.28 (6H, m, Si(CH.sub.3).sub.2).

[1003] Intermediate 21: 1.0 M TBAF/THF (55.2 mL, 55.21 mmol) was added to Intermediate 20 (9.6 g, 18.43 mmol) in an oven-dried flask (50 mL) with a magnetic bar and allowed to stir for

```
three hours under a blanket of argon gas. Then, the mixture was concentrated in vacuo and carried
forward with any further refinement (7.5 g, assumed quantitative yield). The product was verified
with LC-MS prior to executing the next step.
[1004] Compound F5: Linoleic Acid (6.2 g, 22.13 mmol), EDC (5.3 g, 27.64 mmol), and DMAP
(450 mg, 3.68 mmol) in an oven-dried flask (50 mL) with a magnetic bar was added anhydrous
DCM (20 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution.
Intermediate 21 (7.5 g, 18.42 mmol) was then added and the mixture was stirred at room
temperature overnight. Next day, diluted with DCM (50 mL) and washed with H.sub.2O (50 mL)
flowed by 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both aqueous
washes with DCM (2×40 mL). The organic layers were combined, dried with MgSO.sub.4, filtered,
and concentrated in vacuo. The crude purified by flash chromatography purification system (330 g
silica gel column) using a gradient of DCM for 10 min, then 0-5% MeOH/DCM for 5 min, then 5%
MeOH/DCM for 15 min, then 5-20% MeOH/DCM for 10 min, then 20% MeOH/DCM for 2
minutes under the flow rate at 200 mL/min. The product fractions were collected and concentrated
to yield Compound F5 (8.0 g, 65% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ
5.40-5.20 (8H, m, CH=), 4.20-4.17 (2H, m, NCH.sub.2CH.sub.2O), 3.90-4.10 (2H, m,
NCH.sub.2CH.sub.2O), 3.50-3.60 (2H, m, CONCH.sub.2), 2.77-2.75 (4H, m,
=CHCH.sub.2CH=), 2.40-2.10 (14H, m, CH.sub.2CH.sub.2CH & N(CH.sub.3).sub.2), 2.10-1.90
(8H, m, COCH.sub.2, & N(CH.sub.2)& OCOCH.sub.2CH.sub.2), 2.06-2.02 (4H, m,
CH.sub.2CH.sub.2CH), 1.80-1.50 (4H, m, NCH.sub.2CH.sub.2CH.sub.2N &
NCOCH.sub.2CH.sub.2), 1.40-1.00 (28H, m, CH.sub.2), 0.99-0.71 (6H, m, CH.sub.3).
[1005] Compound F7: Compound F5 (6.1 g, 9.04 mmol) was dissolved in acetonitrile (18 mL) and
methyl iodide (2 mL) was added. Vial was flushed with argon gas and the mixture was allowed to
stir at 40° C. for 4 hours. Afterwards, the mixture was concentrated in vacuo and purified by flash
chromatography with loading the crude oil directly onto 120 g silica gel column and using a
gradient of DCM for 2 min, then 0-10% MeOH/DCM for 10 min, then 10% MeOH/DCM for 5
min, then 10-15% MeOH/DCM for 5 min, then 15% MeOH/DCM for 5 min under the flow rate at
85 mL/min. The product fractions were collected, concentrated, and subjected to Amberlyst A26
Anion Exchange resin to yield Compound F7 (3.2 g, 50% yield) as oil. .sup.1H nmr (400 MHz,
CDCl.sub.3) δ: 5.40-5.20 (8H, m, CH=), 4.30-4.20 (2H, m, NCH.sub.2CH.sub.2O), 3.80-3.60 (4H,
m, NCH.sub.2CH.sub.2O & CONCH.sub.2), 3.68-3.39 (9H, m, N(CH.sub.3).sub.3), 2.77-2.73
(4H, m, =CHCH.sub.2CH=), 2.40-2.30 (2H, m, COCH.sub.2), 2.30-2.20 (2H, m,
(CH.sub.3).sub.2NCH.sub.2), 2.20-1.10 (2H, m, OCOCH.sub.2CH.sub.2), 2.10-1.90 (8H, m,
CH.sub.2CH.sub.2CH), 1.70-1.50 (4H, m, NCH.sub.2CH.sub.2CH.sub.2N &
NCOCH.sub.2CH.sub.2), 1.40-1.10 (28H, m, CH.sub.2), 0.90-0.85 (6H, m, CH.sub.3).
[1006] Example 19: A scheme for the preparation of Compounds F8 and F9 is shown in FIG. 19.
[1007] Intermediate 22: Myristic Acid (2.0 g, 8.82 mmol), EDC (2.1 g, 11.02 mmol), and DMAP
(180 mg, 1.47 mmol) in an oven-dried flask (100 mL) with a magnetic bar was added anhydrous
DCM (20 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution.
Intermediate 19 (1.9 g, 7.35 mmol) was then added and the mixture was stirred at room
temperature overnight. Next day, the reaction mixture was diluted with DCM (50 mL) and washed
with H.sub.2O (50 mL) flowed by 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed
for both aqueous washes with DCM (2×25 mL). The organic layers were combined, dried with
MgSO.sub.4, filtered, and concentrated in vacuo. The crude was purified by flash chromatography
purification system (80 g silica gel column) using a gradient of DCM for 1 min, then 0-
10.sup.0/MeOH/DCM for 15 min, then 10% MeOH/DCM for 5 min, then 30% MeOH/DCM for 5
min under the flow rate at 60 mL/min. The product fractions were collected and concentrated to
yield Intermediate 22 (1.5 g, 39% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ
3.75-3.67 (2H, m, NCH.sub.2CH.sub.2O), 3.44-3.35 (4H, m, CONCH.sub.2), 2.36-2.21 (4H, m,
COCH.sub.2 & (CH.sub.3).sub.2NCH.sub.2), 2.26-2.21 (6H, d, (CH.sub.3).sub.2N), 1.71-1.59
```

```
(2H, m, NCH.sub.2CH.sub.2CH.sub.2N), 1.63-1.59 (2H, m, COCH.sub.2CH.sub.2), 1.28-1.24
(20H, m, CH.sub.2), 0.88-0.85 (12H, m, SiC(CH.sub.3).sub.3 & CH.sub.3), 0.38-0.30 (6H, m,
Si(CH.sub.3).sub.2).
[1008] Intermediate 23: 1.0 M TBAF/THF (6.4 mL, 6.36 mmol) was added to Intermediate 22 (1.0
g, 2.12 mmol) dissolved in THF (5 mL) in an oven-dried flask (25 mL) with a magnetic bar and
allowed to stir for three hours under a blanket of argon gas. Then, the mixture was concentrated in
vacuo and carried forward with any further refinement (728 mg, assumed quantitative yield). The
product was verified with LC-MS prior to executing the next step.
[1009] Compound F8: Linoleic Acid (659 mg, 2.35 mmol), EDC (631 mg, 3.29 mmol), and DMAP
(54 mg, 0.44 mmol) in an oven-dried flask (25 mL) with a magnetic bar was added anhydrous
DCM (5 mL). The mixture was stirred at ambient temperature for -5 minutes to a clear solution.
Intermediate 23 (781 mg, 2.19 mmol) was then added and the mixture was stirred at room
temperature overnight. Next day, diluted with DCM (50 mL) and washed with H.sub.2O (50 mL)
followed by 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both aqueous
washes with DCM (2×40 mL). The organic layers were combined, dried with MgSO.sub.4, filtered,
and concentrated in vacuo. The crude was purified by flash chromatography purification system
(80 g silica gel column) using a gradient of DCM for 1 min, then 0-30% MeOH/DCM for 30 min
under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield
Compound F8 (225 mg, 68% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 4.20-
4.15 (2H, m, NCH.sub.2CH.sub.2O), 3.57-3.54 (2H, m, NCH.sub.2CH.sub.2O), 3.40-3.33 (4H, m,
CONCH.sub.2), 2.42-2.21(12H, m, CH.sub.2CH.sub.2CH & CH.sub.2N(CH.sub.3).sub.2), 1.80-
1.71 (2H, m, NCH.sub.2CH.sub.2CH.sub.2N), 1.70-1.58 (4H, m, COCH.sub.2CH.sub.2), 1.29-
1.15 (20H, m, CH.sub.2), 0.93-0.86 (6H, m, CH.sub.3).
[1010] Compound F9: Compound F8 (620 mg, 1.09 mmol) was dissolved in acetonitrile (9 mL)
and methyl iodide (1 mL) was added. The vial was flushed with argon gas and allowed to stir at 40°
C. for 4 hours. Afterwards, the mixture was concentrated in vacuo and purified by flash
chromatography with loading the crude oil directly onto 24 g silica gel column and using a gradient
of DCM for 1 min, then 0-25% MeOH/DCM for 25 min under the flow rate at 32 mL/min. The
product fractions were combined, concentrated, and subjected to Amberlyst A26 Anion Exchange
resin to yield Compound F9 (325 mg, 48% yield) as a clear oil. .sup.1H nmr (400 MHz,
CDCl.sub.3) δ: 4.21-4.19 (2H, m, NCH.sub.2CH.sub.2O), 3.86-3.81 (2H, m,
NCH.sub.2CH.sub.2O), 3.47-3.44 (2H, m, CONCH.sub.2), 3.41 (9H, s, N(CH.sub.3)), 2.38-2.35
(2H, m, CH.sub.2N(CH.sub.3).sub.3), 2.28-2.25 (2H, m, NCH.sub.2CH.sub.2CH.sub.2N), 2.13-
2.08 (2H, m, NCOCH.sub.2CH.sub.2N), 1.58-1.56 (4H, m, COCH.sub.2CH.sub.2), 1.29-1.17
(44H, m, CH.sub.2), 0.87-0.85 (6H, m, CH.sub.2).
[1011] Example 20: A scheme for the preparation of Compounds C25 and C24 is shown in FIG. 20.
[1012] Intermediate 24: To Fmoc-Dap(Boc).Math.H.sub.2O (10.0 g, 22.50 mmol) in an oven-dried
flask (250 mL) with a magnetic bar were added anhydrous DCM (100 mL), linoleic acid (7.7 mL,
24.79 mmol), EDC (6.5 g, 33.80 mmol), and DMAP (0.6 g, 4.52 mmol) in sequence. The mixture
was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was
concentrated under reduced pressure, dissolved in 5 mL DCM and purified by flash
chromatography purification system (220 g silica gel column) using a gradient of 0-50%
EtOAc/hexane for 30 min under the flow rate at 60 mL/min. The product fractions were collected
and concentrated to yield Intermediate 24 (15.2 g, 100% yield) as a clear liquid. The product was
verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=675.98.
[1013] Intermediate 25: To intermediate 24 (3.0 g, 4.44 mmol) in an oven-dried flask (100 mL)
with a magnetic bar were added anhydrous acetonitrile (20 mL) and piperidine (2 mL). The mixture
was stirred at ambient temperature for 2 hours. The reaction mixture was concentrated, dissolved in
2 mL DCM and purified with a 40 g silica column using a gradient of 0-50% EtOAc/hexane for 10
min, 0-15% MeOH/DCM for 20 min under the flow rate at 40 mL/min. The product fractions were
```

collected and concentrated to yield Intermediate 25 (1.3 g, 65% yield) as a clear yellow liquid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=453.82. [1014] Intermediate 26: To intermediate 25 (1.3 g, 2.87 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (30 mL), linoleic acid (0.9 mL, 2.87 mmol), EDC (0.7 g, 3.44 mmol), and DMAP (0.1 g, 0.57 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was then concentrated under reduced pressure, dissolved in 2 mL DCM, and purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-20% EtOAc/hexane for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 26 (2.0 g, 97% yield) as a clear liquid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=716.16.

[1015] Compound C25: To Intermediate 26 (2.0 g, 2.80 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (20 mL) and TFA (4 mL) in sequence. The mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (50 mL). The mixture was then extracted with DCM (2×50 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure to give an oily residue, which was dissolved in anhydrous DCM (20 mL) and added DMA-Gly-OH.Math.HCl (0.5 g, 3.37 mmol), EDC.Math.HCL (0.8 g, 4.22 mmol), DMAP (0.2 g, 1.64 mmol), and TEA (0.2 mL, 1.50 mmol) in sequence. The mixture was stirred at ambient temperature for 2.5 hours. Next, the reaction mixture was washed with 10% aqueous K.sub.2CO.sub.3 solution (50 mL), extracted with DCM (2×50 mL), dried over Na.sub.2SO.sub.4 and concentrated by rotavapor. The crude was dissolved in 2 mL DCM and purified with a 40 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the flow rate at 40 mL/min. The product fractions were collected and concentrated to yield Compound C25 (1.5 g, 76.6% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 7.50 (OH, bs, NH), 6.75 (1H, bs, NH), 5.33-5.35 (8H, m, CH=), 4.60-4.65 (1H, m, COCHN), 4.10-4.15 (2H, m, OCH.sub.2), 3.70-3.75 (2H, m, NCH.sub.2), 2.90 (2H, s, NCH.sub.2), 2.74-2.76 (4H, m, =CHCH.sub.2CH=), 2.25 (6H, s, NCH.sub.3), 2.23-2.24 (2H, m, CH.sub.2CO), 2.03-2.04 (8H, m, =CHCH.sub.2), 1.65-1.66 (4H, m, CH.sub.2CH.sub.2CO), 1.29-1.31 (30H, m, CH.sub.2), 0.86-0.88 (6H, m, CH.sub.3).

[1016] Compound C24: Compound C25 (1.5 g, 2.14 mmol) was added to methyl iodide (2 mL) in an oven-dried vial (20 mL) with a magnetic bar. The mixture was stirred at ambient temperature overnight (17 hours). Next, the excess reagent was removed under vacuum. The crude was dissolved in 1 mL DCM and purified with a 40 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the flow rate at 30 mL/min. The product fractions were combined, concentrated, and subjected to Amberlyst A26 Anion Exchange resin to yield Compound C24 (1.6 g, 96% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 8.80 (1H, bs, NH), 6.90 (OH, bs, NH), 5.33-5.35 (8H, m, CH=), 4.80-4.85 (2H, m, COCH.sub.2N), 4.25-4.26 (1H, m, COCHN), 4.10-4.18 (2H, m, OCH.sub.2), 3.80-3.81 (1H, m, NCH.sub.2), 3.60-3.61 (1H, m, NCH.sub.2), 3.45 (9H, s, NCH.sub.3), 2.74-2.76 (4H, m, =CHCH.sub.2CH=), 2.37-2.38 (2H, m, CH.sub.2CO), 2.03-2.04 (8H, m, =CHCH.sub.2), 1.65-1.66 (4H, m, CH.sub.2CH.sub.2CO), 1.29-1.31 (30H, m, CH.sub.2), 0.86-0.88 (6H, m, CH.sub.3).

[1017] Example 21: A scheme for the preparation of Compound D16 is shown in FIG. **21**. [1018] Intermediate 27: To intermediate 26 (10.3 g, 14.44 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (20 mL) and TFA (4 mL) in sequence. The mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (50 mL). The mixture was then extracted with DCM (2×50 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g),

```
filtered, and concentrated under reduced pressure to give an oily residue, which was then dissolved
in anhydrous DCM (30 mL) and added bromoacetyl bromide (1.3 mL, 14.44 mmol), and TEA (2.2
mL, 15.85 mmol) slowly in sequence. The mixture was stirred at ambient temperature for 2.5
hours. Next, the reaction mixture was concentrated by rotavapor. The crude was dissolved in 10 mL
DCM and purified with a 220 g silica column using a gradient of 0-50% EtOAc/hexane for 30 min
under the flow rate at 60 mL/min. The product fractions were collected and concentrated to yield
Intermediate 27 (8.0 g, 76% yield) as a clear liquid. The product was verified with LC-MS prior to
executing the next step - m/z of [M+H].sup.+=736.03.
[1019] Compound D16: Intermediate 27 (1.0 g, 1.36 mmol) was added to anhydrous DCM (20 mL)
with DMSO (1 mL) in an oven-dried vial (40 mL) with a magnetic bar. Then were added cis-
pyrrolidine-3,4-diol hydrochloride (cDHP.Math.HCL) (0.3 g, 2.03 mmol) and TEA (0.5 mL, 3.41
mmol). The mixture was stirred at ambient temperature for 2 hours. After removed the solvent by
rotavapor under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and
extracted with DCM (2×50 mL). The organic layers were then combined, dried over
Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced pressure. The crude was
dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of 0-15%
MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected
and concentrated to yield Compound D16 (0.8 g, 78% yield) as a yellow liquid. .sup.1H nmr (400
MHz, CDCl.sub.3) δ: 8.264 (1H, bs, NH), 6.71 (1H, d, J=5.2 Hz, NH), 5.34-5.37 (8H, m, CH=),
4.60-4.70 (1H, m, COCHN), 4.154.24 (4H, m, OCH.sub.2, OCH), 3.83-3.86 (1H, m,
COCH.sub.2N), 3.36-3.40 (1H, m, COCH.sub.2N), 3.16 (2H, bs, COCH.sub.2N), 3.09 (1H, d,
J=8.4 Hz, NCH.sub.2), 2.92 (1H, d, J=8.4 Hz, NCH.sub.2), 2.77-2.93 (4H, m, =CHCH.sub.2CH=),
2.61 (2H, bs, NCH.sub.2), 2.28-2.31 (2H, m, CH.sub.2CO), 2.03-2.07 (8H, m, =CHCH.sub.2),
1.64-1.67 (4H, m, CH.sub.2CH.sub.2CO), 1.30-1.37 (30H, m, CH.sub.2), 0.87-0.90 (6H, m,
CH.sub.3).
[1020] Example 22: A scheme for the preparation of Compound D17 is shown in FIG. 22.
[1021] Compound D17: Intermediate 27 (1.0 g, 1.36 mmol) was added to anhydrous DCM (20 mL)
with DMSO (1 mL) in an oven-dried vial (40 mL) with a magnetic bar. Then were added trans-
pyrrolidine-3,4-diol hydrochloride (tDHP.Math.HCL) (0.3 g, 2.03 mmol), and TEA (0.5 mL, 3.41
mmol). The mixture was stirred at ambient temperature for 2 hours. After removed the solvent by
rotavapor under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and
extracted with DCM (2×50 mL). The organic layers were then combined, dried over
Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced pressure. The crude was
dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of 0-15%
MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected
and concentrated to yield Compound D17 (1.1 g, 100% yield) as a yellow liquid. .sup.1H nmr (400
MHz, CDCl.sub.3) \delta 8.23 (1H, bs, NH), 6.68 (1H, d, J=5.2 Hz, NH), 5.30-5.37 (8H, m, CH=),
4.64-4.67 (1H, m, COCHN), 4.12-4.18 (4H, m, OCH.sub.2, OCH), 3.91-3.94 (1H, m,
COCH.sub.2N), 3.17-3.31 (3H, m, COCH.sub.2N), 3.09-3.12 (2H, m, CH.sub.2OH), 2.76-2.78
(4H, m, =CHCH.sub.2CH=), 2.67-2.71 (2H, m, CH.sub.2OH), 2.25-2.28 (2H, m, CH.sub.2CO),
2.03-2.07 (8H, m, =CHCH.sub.2), 1.63-1.77 (4H, m, OCH.sub.2CH.sub.2),
CH.sub.2CH.sub.2CO), 1.27-1.37 (30H, m, CH.sub.2), 0.87-0.90 (6H, m, CH.sub.3).
[1022] Example 23: A scheme for the preparation of Compound D18 is shown in FIG. 23.
[1023] Compound D18: Intermediate 27 (1.0 g, 1.36 mmol) was added to anhydrous DCM (20 mL)
in an oven-dried vial (40 mL) with a magnetic bar. Then were added 1-(2-hydroxy)ethylpiperazine
(0.2 mL, 1.63 mmol) and TEA (0.2 mL, 1.5 mmol). The mixture was stirred at ambient temperature
for 2 hours. After removed the solvent by rotavapor under vacuum, the residue was treated with
10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (2×50 mL). The organic layers
were then combined, dried over Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced
```

pressure. The crude was dissolved in 2 mL DCM and purified with a 24 g silica column using a

```
gradient of 0-15%,0 MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product
fractions were collected and concentrated to yield Compound D18 (0.9 g, 84% yield) as a yellow
liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 7.48-7.50 (1H, m, NH), 6.68-6.70 (1H, s, NH), 5.29-
5.35 (8H, m, CH=), 4.59-4.62 (1H, m, COCHN), 4.10-4.12 (2H, m, OCH.sub.2), 3.59-3.66 (4H, m,
CH.sub.2OH, COCH.sub.2N), 2.99 (2H, s, COCH.sub.2N), 2.75-2.76 (4H, m,
=CHCH.sub.2CH=), 2.53-2.55 (1OH, m, CH.sub.2N), 2.20-2.21 (2H, m, CH.sub.2CO), 2.03-2.05
(8H, m, =CH—CH.sub.2), 1.61-1.63 (4H, m, OCH.sub.2CH.sub.2), CH.sub.2CH.sub.2CO), 1.29-
1.30 (30H, m, CH.sub.2), 0.86-0.89 (6H, m, CH.sub.3).
[1024] Example 24: A scheme for the preparation of Compound D19 is shown in FIG. 24.
[1025] Compound D19: Intermediate 27 (1.0 g, 1.36 mmol) was added to anhydrous DCM (20 mL)
in an oven-dried vial (40 mL) with a magnetic bar. Then were added 1-(2-
hydroxy)propylpiperazine (HPPip) (0.2 mL, 1.63 mmol) and TEA (0.2 mL, 1.50 mmol). The
mixture was stirred at ambient temperature for 2 hours. After removed the solvent by rotavapor
under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted
with DCM (2×50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (10
g), filtered, and concentrated under reduced pressure. The crude was dissolved in 2 mL DCM and
purified with a 24 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the
flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound
D19 (0.9 g, 84% yield) as a yellow liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 7.48-7.50 (1H,
m, NH), 6.68-6.70 (1H, s, NH), 5.29-5.35 (8H, m, CH=), 4.59-4.62 (1H, m, COCHN), 4.10-4.12
(2H, m, OCH.sub.2), 3.59-3.66 (4H, m, CH.sub.2OH, COCH.sub.2N), 2.99 (2H, s,
COCH.sub.2N), 2.75-2.76 (4H, m, =CHCH.sub.2CH=), 2.53-2.55 (10H, m, CH.sub.2N), 2.20-
2.21 (2H, m, CH.sub.2CO), 2.03-2.05 (8H, m, =CHCH.sub.2), 1.61-1.63 (4H, m,
OCH.sub.2CH.sub.2), CH.sub.2CH.sub.2CO), 1.29-1.30 (30H, m, CH.sub.2), 0.86-0.89 (6H, m,
CH.sub.3).
[1026] Example 25: A scheme for the preparation of Compound D20 is shown in FIG. 25.
[1027] Intermediate 28: To N,N-dimethylglycine hydrochloride (0.6 g, 3.94 mmol) in an oven-
dried flask (100 mL) with a magnetic bar were added anhydrous DCM (20 mL), H-Dap(Boc)-
OMe.Math.HCl (1.0 g, 3.94 mmol), EDC (1.0 g, 4.73 mmol), and DMAP (0.1 g, 0.80 mmol) in
sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction
mixture was concentrated under reduced pressure and purified by flash chromatography
purification system (24 g silica gel column) using a gradient of 2-20% MeOH/DCM for 30 min
under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield
Intermediate 28 (1.0 g, 84% yield) as a white solid. The product was verified with LC-MS prior to
executing the next step - m/z of [M+H].sup.+=304.51.
[1028] Intermediate 29: To Intermediate 28 (1.0 g, 3.30 mmol) in an oven-dried vial (40 mL) with a
```

magnetic bar were added methanol (10 mL) and LiGH (87 mg, 3.60 mmol). The mixture was stirred at ambient temperature overnight (17 hours). The reaction mixture was concentrated to deliver crude Intermediate 29 for next step without purification. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=209.44.

[1029] Intermediate 30: To crude Intermediate 29 (-1.1 g, -2.87 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (20 mL), linoleic acid (1.1 mL, 3.60 mmol), EDC (0.9 g, 4.80 mmol), and DMAP (0.1 g, 0.64 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-20% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 30 (22 mg, 13% yield) as a clear liquid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=538.84.

[1030] Compound D20: To Intermediate 30 (220 mg, 0.41 mmol) in an oven-dried flask (100 mL)

```
mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color
turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and
washed with 10% K.sub.2CO.sub.3 aqueous solution (50 mL). The mixture was then extracted with
DCM (2×50 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g),
filtered, and concentrated under reduced pressure to give an oily residue, which was then dissolved
in anhydrous DCM (30 mL) and added anhydrous DCM (20 mL), linoleic acid (0.2 mL, 0.49
mmol), EDC (118 mg, 0.62 mmol), and DMAP (10 mg, 0.08 mmol) in sequence. The mixture was
stirred at ambient temperature stirred for 4 hours. The reaction mixture was concentrated using a
rotavapor and washed with 10% K.sub.2CO.sub.3 aqueous solution (50 mL). The mixture was then
extracted with DCM (2×50 mL) and the organic layers were combined, dried over
Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was finally
purified with a 12 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the
flow rate at 20 mL/min. The product fractions were collected and concentrated to yield Compound
D20 (140 mg, 49% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 7.90 (1H, bs,
NH), 6.10 (1H, bs, NH), 5.60-5.70 (8H, m, CH=), 4.65 (1H, bs, COCHN), 4.20-4.25 (2H, m,
OCH.sub.2), 3.58-3.71 (2H, m, CH.sub.2N), 2.90-2.91 (2H, m, COCH.sub.2N), 2.75-2.76 (4H, m,
=CHCH.sub.2CH.sub.2), 2.30 (6H, s, NCH.sub.3), 2.10-2.11 (2H, m, COCH.sub.2), 2.0-2.1 (8H,
m, =CHCH.sub.2), 1.54-1.69 (4H, m, OCH.sub.2CH.sub.2), CH.sub.2CH.sub.2CO), 1.10-1.30
(30H, m, CH.sub.2), 0.80-0.82 (6H, m, CH.sub.3).
[1031] Example 26: A scheme for the preparation of Compound D21 is shown in FIG. 26.
[1032] Compound D21: To (2R)-3-(((2-(dimethylamino)ethoxy)
(hydroxy)phosphoryl)oxy)propane-1,2-diyl dioleate (450 mg, 0.58 mmol) in an oven-dried vial (40
mL) with a magnetic bar were added anhydrous DCM (8 mL), 2-Methoxyethoxymethyl chloride
(133 mL, 1.16 mmol) and potassium carbonate (332 mg, 2.32 mmol) in sequence. The mixture was
stirred at ambient temperature for one week. The reaction mixture was filtered, and concentrated
under reduced pressure, which was purified with a 12 g silica column using a gradient of 0-20%
MeOH/DCM for 30 min under the flow rate at 20 mL/min. The product fractions were collected
and concentrated to yield Compound D21 (150 mg, 30% yield) as a clear liquid. .sup.1H nmr (400
MHz, CDCl.sub.3) δ: 75.29-5.33 (8H, m, CH=), 5.20 (1H, bs, OCH), 4.92 (2H, s, OCH.sub.2O),
4.31-4.40 (2H, m, OCH.sub.2), 3.98-4.04 (4H, m, OCH.sub.2), 3.70-3.71 (2H, m, OCH.sub.2),
3.56-3.57 (2H, m, OCH.sub.2), 3.36 (3H, s, OCH.sub.3), 3.24 (6H, s, NCH.sub.3), 2.27-2.90 (2H,
m, COCH.sub.2), 1.99-2.00 (8H, m, =CHCH.sub.2), 1.54-1.69 (4H, m, COCH.sub.2CH.sub.2),
1.20-1.30 (40H, m, CH.sub.2), 0.85-0.88 (6H, m, CH.sub.3).
[1033] Example 27: A scheme for the preparation of Compound E37 is shown in FIG. 27.
[1034] Intermediate 31: To 1-(tert-butyl)-2-methyl (2S,4R)-4-aminopyrrolidine-1,2-dicarboxylate
hydrochloride (2.0 g, 7.12 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added
anhydrous DCM (25 mL), 3-(dimethylamino)-propanoic acid (1.3 g, 8.55 mmol), 1-
[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium-3-oxid- hexafluorophosphate
(4.1 g, 10.68 mmol), and DIEA (2.6 mL, 14.96 mmol) in sequence. The mixture was stirred at
ambient temperature stirred overnight (17 hours). The reaction mixture was concentrated under
reduced pressure and purified by flash chromatography purification system (24 g silica gel column)
using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product
fractions were collected and concentrated to yield Intermediate 31 (1.5 g, 85% yield) as a clear oil.
The product was verified with LC-MS prior to executing the next step - m/z of
[M+H].sup.+=344.57.
[1035] Intermediate 32: To Intermediate 31 (1.5 g, 4.25 mmol) in an oven-dried flask (50 mL) with
a magnetic bar were added lithium hydroxide (1.2 mg, 5.10 mmol), water (5 mL) and MeOH (5
```

mL). The mixture was stirred at ambient temperature overnight. Next solvents were removed under reduced pressure and the wet material was dried via lyophilization to give a crude Intermediate 32

with a magnetic bar were added anhydrous DCM (15 mL) and TFA (1 mL) in sequence. The

(1.3 g, 95% yield) as a white solid, which was used without further purification. The crude was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=330.00. [1036] Intermediate 33: To Intermediate 32 (1.3 g, 3.95 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DMF (20 mL), linoleyl alcohol (1.4 g, 5.14 mmol), EDC (1.5 g, 7.90 mmol), and DMAP (0.5 g, 3.95 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (25 mL), washed with sodium bicarbonate (20 mL), dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 33 (1.9 g, 85% yield) as a clear oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=578.91.

[1037] Intermediate 34: To Intermediate 33 (1.9 g, 3.33 mmol) in an oven-dried flask (25 mL) with a magnetic bar were added anhydrous DCM (10 mL) and TFA (2 mL) in sequence. The mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with 10% Na.sub.2CO.sub.3 solution (20 mL). The mixture was then extracted with DCM (2×20 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure to give an oily Intermediate 34 (1.5 g, 92% yield) which was used for the next step without further purification. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=478.82.

[1038] Compound E37: To Intermediate 34 (1.5 g, 3.14 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DMF (10 mL), linoleic acid (1.3 g, 4.71 mmol), and 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid- hexafluorophosphate (2.3 g, 6.28 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound E37 (2.0 g, 92% yield) as a clear oil. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 8.0 (1H, bs, NH) 5.54-5.25 (8H, m, CH=), 4.654.29 (2H, m, NHCH, NCHCO), 4.30-3.90 (2H, m, OCH.sub.2), 3.80-3.62 (2H, m, NCH.sub.2CHNH—), 3.60-3.45 (2H, m, CH.sub.3).sub.2NCH.sub.2), 2.84 (6H, s, N(CH.sub.3).sub.2), 2.80-2.60 (6H, m, CH.sub.2), 2.40-1.90 (12H, m, CH.sub.2CONH, CH.sub.2CH=), 1.65-1.48 (4H, m, CH.sub.2), 1.45-1.20 (30H, m, CH.sub.2), 0.86-0.85 (6H, m, CH.sub.3).

[1039] Example 28: A scheme for the preparation of Compounds E38 and E39 is shown in FIG. **28**. [1040] Intermediate 35: To 1-(tert-butyl)-2-methyl (2S,4R)-4-aminopyrrolidine-1,2-dicarboxylate hydrochloride (5.0 g, 17.81 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (25 mL), 3-(dimethylamino)butanoic acid (3.6 g, 21.37 mmol), EDC (6.8 g, 35.62 mmol), DMAP (2.2 g, 17.81 mmol), and DIEA (8.1 g, 62.34 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was then diluted with DCM (25 mL), washed with sodium bicarbonate (20 mL), dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (120 g silica gel column) using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 35 (6.1 g, 80% yield) as a clear oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=358.59.

[1041] Intermediate 36: To Intermediate 35 (6.1 g, 17.03 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added lithium hydroxide (0.5 g, 20.44 mmol), water (5 mL) and MeOH (20 mL). The mixture was stirred at ambient temperature overnight. Next solvents were removed under reduced pressure and the wet material was dried via lyophilization to give a crude

```
Intermediate 36 (5.6 g, 95% yield) as a white solid, which was used without further purification. The crude was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=344.55. [1042] Intermediate 37: To Intermediate 36 (2.8 g, 8.11 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DMF (10 mL), linoley alcohol (2.6 g, 9.73 mmol), and 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid- hexafluorophosphate (4.6 g, 12.16 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (25 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 37 (3.9 g, 82% yield) as a white solid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=592.91.

[1043] Intermediate 38: To Intermediate 37 (1.4 g, 2.31 mmol) in an oven-dried flask (25 mL) with a magnetic bar were added anhydrous DCM (20 mL) and TFA (5 mL) in sequence. The mixture
```

a magnetic bar were added anhydrous DCM (20 mL) and TFA (5 mL) in sequence. The mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with 10% Na.sub.2CO.sub.3 solution (20 mL). The mixture was then extracted with DCM (2×20 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure to give a light yellow oily Intermediate 38 (580 mg, 51% yield) which was used for the next step without further purification. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=492.81. [1044] Compound E38: To Intermediate 38 (580 mg, 1.18 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DMF (5 mL), linoleic acid (460 mg, 1.53 mmol), and 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid- hexafluorophosphate (898 mg, 2.36 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (24 g silica gel column) using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound E38 (750 mg, 95% yield) as a clear oil. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 5.45-5.25 (8H, m, CH=), 4.70-4.29 (2H, m, NHCH, NCHCO), 4.20-4.00 (2H, m, OCH.sub.2), 3.90-3.78 (2H, m, NCH.sub.2CHNH—), 3.75-3.62 (2H, m, Me.sub.2NCH.sub.2), 2.84 (6H, s, N (CH.sub.3).sub.2), 2.90-2.70 (4H, m, CH.sub.2), 2.60-2.55 (2H, m, CH.sub.2), 2.10-1.90 (12H, m, CH.sub.2CONH, CH.sub.2CH=), 1.65-1.40 (6H, m, CH.sub.2), 1.40-1.20 (30H, m, CH.sub.2), 0.90-0.80 (6H, m, CH.sub.3). [1045] Compound E39: Compound E38 (350 mg, 0.46 mmol) was added to methyl iodide (2 mL) in an oven-dried vial (20 mL) with a magnetic bar. The mixture was stirred at ambient temperature overnight (17 hours). Next, the excess reagent was removed under vacuum. The crude was dissolved in 1 mL DCM and purified with a 40 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the flow rate at 30 mL/min. The product fractions were combined, concentrated, and subjected to Amberlyst A26 Anion Exchange resin to yield Compound E39 (165 mg, 82% yield) as a clear liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ : 5.45-5.25 (8H, m, CH=), 4.70-4.35 (2H, m, NHCH, NCHCO), 4.20-4.00 (2H, m, OCH.sub.2), 3.90-3.40 (4H, m, NCH.sub.2CH.sub.2CH.sub.2CO—, NCH.sub.2CHNH—), 3.30 (9H, s, N.sup.+(CH.sub.3).sub.3), 2.85-2.70 (4H, m, CH.sub.2), 2.60-2.45 (2H, m, CH.sub.2), 2.45-2.10 (8H, m, CH.sub.2CH.sub.2CH=), 2.10-2.00 (6H, m, CH.sub.2), 1.70-1.40 (4H, m, CH.sub.2), 1.40-1.20 (30H, m, CH.sub.2), 0.90-0.70 (6H, m, CH.sub.3).

[1046] Example 29: A scheme for the preparation of Compound E40 is shown in FIG. 29.

acid (5.0 g, 21.62 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added

[1047] Intermediate 39: To (2S.4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-2-carboxylic

anhydrous acetonitrile (500 mL), TBDPS-C1 (11.9 g, 43.24 mmol) and 1,8-diazabicycloundec-7-ene (11.5 g, 75.67 mmol) in sequence. The mixture was refluxed at 50° C. for 4 hours. Then, the solvent was removed under reduced pressure. The residue was dissolved in 0.2 N HCl (50 mL), extracted with DCM (2×50 mL), dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (330 g silica gel column) using a gradient of 0-5% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 39 (9.9 g, 97% yield) as a clear oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=470.49.

[1048] Intermediate 40: To Intermediate 39 (9.9 g, 21.29 mmol) in an oven-dried flask (250 mL) with a magnetic bar were added anhydrous DCM (100 mL), linoleyl alcohol (6.8 g, 25.55 mmol), EDC (8.2 g, 42.58 mmol), and DMAP (1.3 g, 10.65 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (25 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (330 g silica gel column) using a gradient of 0-20% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 40 (12.8 g, 98% yield) as a white solid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=718.75.

[1049] Intermediate 41: To Intermediate 40 (5.8 g, 6.96 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added 4 N HCl in 1, 4-dioxane solution (20 mL). The mixture was then stirred at ambient temperature for 3 hours. Next, the reaction mixture was concentrated under reduced pressure to gain a clear oil, which was then dissolved in anhydrous DCM (20 mL) and added linoleic acid (2.3 g, 8.36 mmol), EDC (2.0 g, 10.45 mmol), and DMAP (0.6 g, 4.87 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (25 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (330 g silica gel column) using a gradient of 0-20% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 41 (5.8 g, 94% yield) as a colorless oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=880.91. [1050] Intermediate 42: To Intermediate 41 (5.8 g, 6.58 mmol) in an oven-dried flask (250 mL) with a magnetic bar were added THF (100 mL) and triethylamine trihydrofluoride (10.6 g, 65.8 mmol) sequentially. The mixture was then stirred at ambient temperature for 17 hours. Next, the reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (120 g silica gel column) using a gradient of 0-30% EtOAc/hexane for 10 min then 0-10% MeOH/DCM for 20 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 42 (4.3 g, 78% yield) as a colorless oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=642.91. [1051] Intermediate 43: To Intermediate 42 (2.3 g, 7.16 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added DCM(10 mL), 2-bromoacetyl bromide (0.9 g, 4.66 mmol) and TEA (0.7 g, 7.16 mmol) sequentially. The mixture was then stirred at ambient temperature for 3 hours. Next, the reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (120 g silica gel column) using a gradient of 0-30% EtOAc/hexane for 10 min then 0-10% MeOH/DCM for 20 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 43 (2.4 g, 82% yield) as a colorless oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=764.74.

[1052] Compound E40: Intermediate 43 (300 mg, 0.39 mmol) was added to anhydrous DCM (5 mL) in an oven-dried vial (40 mL) with a magnetic bar. Then 3-azetidinemethanol hydrochloride

(97 mg, 0.79 mmol) and TEA (0.2 mL, 1.18 mmol) were added in sequence. The mixture was stirred at ambient temperature for 17 hours. After removed the solvent by rotavapor under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of 0-15% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound E40 (196 mg, 65% yield) as a yellow liquid. The lipid's identity was confirmed with LC-MS analysis -m/z of [M+H].sup.+=769.17.

[1053] Example 30: A scheme for the preparation of Compound A23 is shown in FIG. **30**. [1054] Intermediate 44: To O-benzoyl-N-(tert-butoxycarbonyl)-L-serine (3.0 g, 10.16 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (40 mL), myristic amine (2.4 g, 11.17 mmol), EDC (2.9 g, 15.24 mmol), and DMAP (0.6 g, 5.08 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with EtOAc (300 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (330 g silica gel column) using 1:2 v/v EtOAc/hexane for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 44 (4.4 g, 89% yield) as a white solid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=491.61.

[1055] Intermediate 45: To Intermediate 44 (2.0 g, 4.08 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added MeOH (30 mL) and palladium on carbon (120 mg). The flask was then purge with hydrogen using a hydrogen balloon. The mixture was stirred at ambient temperature for 5 hours and filtered via a bed of celite. The filtrate was then concentrated under reduced pressure to gain Intermediate 45 (1.7 g, 95%) as a white solid, which was used for the next step without further purification. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=401.44.

[1056] Intermediate 46: To Intermediate 45 (1.7 g, 4.28 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added anhydrous DCM (20 mL), myristic acid (1.3 g, 5.56 mmol), EDC (1.6 g, 8.55 mmol), and DMAP (0.5 g, 4.28 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with EtOAc (100 mL), washed with 1 N HCl (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (120 g silica gel column) using 1:2 v/v EtOAc/hexane for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 46 (2.4 g, 94% yield) as a white solid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=612.02.

[1057] Compound A23: To Intermediate 46 (435 mg, 0.85 mmol) in an oven-dried flask (25 mL) with a magnetic bar were added anhydrous DCM (20 mL) and TFA (5 mL) in sequence. The mixture was stirred at ambient temperature stirred for 2 hours. During stirring, the solution color turned from clear to red. Next, the reaction mixture was first concentrated using a rotavapor and washed with 10% Na.sub.2CO.sub.3 solution (20 mL). The mixture was then extracted with DCM (2×20 mL) and the organic layers were combined, dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated to an oily residue, which was then in DCM (10 mL) and added succinic anhydride (118 mg, 1.17 mmol), and TEA (118 mg, 1.17 mmol). The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (100 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (120 g silica gel column) using 0-20% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound A23 (338 mg,

```
92% yield) as a white solid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ: 6.76-6.70 (1H, m, CHNHCO), 6.40-6.35 (1H, m, CH.sub.2NHCO), 4.70-4.60 (1H, m, NHCHCO), 4.42-4.20 (2H, m, CH.sub.2O), 3.26-3.12 (2H, m, NHCH.sub.2), 2.80-2.60 (2H, m, CH.sub.2CO.sub.2H), 2.57-2.50 (2H, m, CH.sub.2CONH), 2.30-2.20 (2H, m, CH.sub.2CO.sub.2), 1.60-1.50 (2H, m, CH.sub.2CH.sub.2CH.sub.2CO.sub.2), 1.50-1.40 (2H, CH.sub.2CH.sub.2NH), 1.35-1.15 (42H, m, NH(CH.sub.2).sub.2(CH.sub.2).sub.11Me, CO(CH.sub.2).sub.2(CH.sub.2).sub.10Me,), 0.90-0.83 (6H, m, CH.sub.3).
```

[1058] Example 31: A scheme for the preparation of Compound A24 is shown in FIG. 31. [1059] Intermediate 46: To N-(((9H-fluoren-9-yl)methoxy)carbonyl)-O-trityl-L-serine (3.0 g, 5.27 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (40 mL), linoleyl alcohol (1.5 g, 5.79 mmol), EDC (2.0 g, 10.54 mmol), and DMAP (3.7 g, 0.70 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (100 mL), washed with sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (120 g silica gel column) using 1:2 v/v EtOAc/hexane for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 46 (4.3 g, 90% yield) as a clear oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+NH.sub.4].sup.+=835.00. [1060] Intermediate 47: To Intermediate 46 (4.3 g, 5.19 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added 3 N HCl in MeOH solution (40 mL). The mixture was then stirred at ambient temperature for 3 hours. Next, the reaction mixture was concentrated under reduced pressure to gain Intermediate 47 (2.5 g, 86% yield) as a clear oil, which was then used for the next reaction without further purification. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=576.68.

[1061] Intermediate 48: To Intermediate 47 (2.5 g, 4.34 mmol) in an oven-dried flask (100 mL) with a magnetic bar were added anhydrous DCM (50 mL), linoleic acid (1.3 g, 4.78 mmol), EDC (1.7 g, 8.68 mmol), and DMAP (0.3 g, 2.17 mmol) in sequence. The mixture was stirred at ambient temperature stirred overnight (17 hours). The reaction mixture was diluted with DCM (100 mL), washed with 1 N sodium bicarbonate (20 mL) dried over Na.sub.2SO.sub.4 (5 g), filtered, and concentrated under reduced pressure. The crude was purified by flash chromatography purification system (120 g silica gel column) using 1:2 v/v EtOAc/hexane for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Intermediate 48 (2.1 g, 82% yield) as a white solid. The product was verified with LC-MS prior to executing the next step - m/z of [M+NH.sub.4L].sup.+=856.06.

[1062] Intermediate 49: To Intermediate 48 (2.9 g, 3.40 mmol) in an oven-dried flask (50 mL) with a magnetic bar were added anhydrous acetonitrile (20 mL) and piperidine (4 mL). The mixture was stirred at ambient temperature stirred overnight (17 hours). the reaction mixture was concentrated under reduced pressure and purified by flash chromatography purification system (120 g silica gel column) using 0-50% EtOAc/hexane for 30 min under the flow rate at 40 mL/min. The product fractions were collected and concentrated to yield Intermediate 49 (1.3 g, 900% yield) as a clear oil. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=617.06.

[1063] Intermediate 50: Intermediate 49 (500 mg, 0.81 mmol) was dissolved in anhydrous DCM (10 mL) and bromoacetyl bromide (0.1 mL, 0.81 mmol) followed by TEA (0.1 mL, 0.89 mmol) were then added slowly. After the addition was completed, the mixture was stirred at ambient temperature overnight. Next day, the mixture was diluted with DCM (50 mL) and washed with H.sub.2O (50 mL) and 10% K.sub.2CO.sub.3 (50 mL). Back-extraction was performed for both aqueous washes with DCM (2×25 mL). The organic layers were combined, dried with MgSO.sub.4, filtered, and concentrated in vacuo. The crude was purified with a 40 g silica column on flash chromatography system equipped with ESLD detector using a gradient of hexane for 0.5

min, then 0-50% EtOAc/hexane 30 min gradient followed by 50% EtOAc/hexane for 5 min under the flow rate at 40 mL/min. The product fractions were collected and concentrated to yield Intermediate 50 (445 mg, 80% yield) as a colorless liquid. The product was verified with LC-MS prior to executing the next step - m/z of [M+H].sup.+=737.01.

[1064] Compound A24: Intermediate 50 (150 mg, 0.20 mmol) was added to anhydrous DCM (5 mL) in an oven-dried vial (40 mL) with a magnetic bar. Then were added 3-(piperazin-1-yl)propan-1-ol (33 mg, 0.22 mmol) and TEA (40 mL, 0.25 mmol). The mixture was stirred at ambient temperature for 4 hours. After removed the solvent by rotavapor under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of 10-15% EtOAc/hexane for 10 min then 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound A24 (128 mg, 70% yield) as a colorless liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 6.50-6.40 (1H, m, NHCO), 5.45-5.20 (8H, m, CH=), 4.90-4.60 (2H, m, NHCHCO, HO) 4.60-4.50 (1H, m, CH.sub.2CHOC(O)), 4.45-4.30 (1H, m, CH.sub.2CHOC(O)), 4.20-4.10 (2H, m, C(O)OCH.sub.2CH.sub.2), 3.80-3.70 (2H, m, HOCH.sub.2CH.sub.2), 3.47 (2H, s, NCH.sub.2C(O)NH), 2.85-2.70 (4H, m, =CHCH.sub.2CH=), 2.70-2.45 (8H, m, HOCH.sub.2CH.sub.2CH.sub.2N, CH.sub.2NCH.sub.2C(O), O(CO)CH.sub.2CH.sub.2), 2.30-1.90 (12H, m, NCH.sub.2CH.sub.2NCH.sub.2C(O), CH.sub.2CH.sub.2CH=), 1.60-1.10 (36H, m, CH.sub.2), 0.90-0.75 (6H, m, CH.sub.3).

[1065] Example 32: A scheme for the preparation of Compound A25 is shown in FIG. 32. [1066] Compound A25: Intermediate 50 (208 mg, 0.28 mmol) was added to anhydrous DCM (5 mL) in an oven-dried vial (40 mL) with a magnetic bar. Then 3-azetidinemethanol hydrochloride (70 mg, 0.26 mmol) and TEA (120 mL, 0.85 mmol) were added. The mixture was stirred at ambient temperature for 2 hours. After removed the solvent by rotavapor under vacuum, the residue was treated with 10% K.sub.2CO.sub.3 solution (50 mL) and extracted with DCM (2×50 mL). The organic layers were then combined, dried over Na.sub.2SO.sub.4 (10 g), filtered, and concentrated under reduced pressure. The crude was dissolved in 2 mL DCM and purified with a 24 g silica column using a gradient of 0-10% MeOH/DCM for 30 min under the flow rate at 25 mL/min. The product fractions were collected and concentrated to yield Compound A25 (66 mg, 31% yield) as a colorless liquid. .sup.1H nmr (400 MHz, CDCl.sub.3) δ 6.60-6.50 (1H, m, NHCO), 5.40-5.20 (8H, m, CH=), 4.90-4.80 (2H, m, CH.sub.2CH.sub.2OC(O)), 4.52-4.45 (1H, m, NHCHCO), 4.13-4.02 (2H, m, CH.sub.2OC(O)), 3.60-3.40 (2H, m, CH.sub.2OH), 3.70-3.30 (4H, m, CHCH.sub.2N), 3.20 (2H, s, CH.sub.2N), 2.80-2.65 (5H, m, =CHCH.sub.2CH=, —OH), 2.70-2.40 (3H, m, CH.sub.2CH.sub.2CO(O), HOCH.sub.2CH), 2.30-1.90 (8H, m, CH.sub.2CH.sub.2CH=), 1.60-1.10 (34H, m, CH.sub.2), 0.90-0.83 (6H, m, CH.sub.3).

[1067] Example 33: Example formulations are prepared for encapsulating a small interfering nucleic acid agents (siRNA), as shown in Table 3.

TABLE-US-00003 TABLE 3 Lipid formulations for siRNA Compound DPPE- C2 Cholesterol DOPE DOPC mPEG(2000) EE* No. (mol %) (1 25 30 30 10 5 >90 2 25 30 25 15 5 >90 3 25 30 20 20 5 >90 4 25 30 15 25 5 >90 5 25 30 10 30 5 >90 6 25 35 15 20 5 >90 7 25 35 20 15 5 >90 8 30 30 15 20 5 >90 9 30 30 20 15 5 >90 10 35 30 15 15 5 >90 *Encapsulation efficiency for siRNA.

[1068] Example 34: Example formulations are prepared for encapsulating a small interfering nucleic acid agents (siRNA), as shown in Table 4.

TABLE-US-00004 TABLE 4 Lipid formulations for siRNA Compound DPPE- A9 Cholesterol DOPE DOPC mPEG(2000) EE* No. (mol %) (mol %) (mol %) (mol %) (mol %) (mol %) (1 25 30 30 10 5 >90 2 25 30 25 15 5 >90 3 25 30 20 20 5 >90 4 25 30 15 25 5 >90 5 25 30 10 30 5 >90 6 25 35 15 20 5 >90 7 25 35 20 15 5 >90 8 30 30 15 20 5 >90 9 30 30 20 15 5 >90 10 35 30 15 15 5

>90 *Encapsulation for efficiency siRNA.

[1069] Example 35: Example formulations are prepared for encapsulating a small interfering nucleic acid agents (siRNA), as shown in Table 5.

TABLE-US-00005 TABLE 5 Lipid formulations for siRNA Compound DPPE- AA Cholesterol DOPE DOPC mPEG(2000) EE* No. (mol %) (mol %) (mol %) (mol %) (mol %) (mol %) (%) 1 25 30 30 10 5 >90 2 25 30 25 15 5 >90 3 25 30 20 20 5 >90 4 25 30 15 25 5 >90 5 25 30 10 30 5 >90 6 25 35 15 20 5 >90 7 25 35 20 15 5 >90 8 30 30 15 20 5 >90 9 30 30 20 15 5 >90 10 35 30 15 15 5 >90 *Encapsulation efficiency for siRNA.

[1070] Example 36: Example formulations are prepared for encapsulating a small interfering nucleic acid agents (siRNA), as shown in Table 6.

TABLE-US-00006 TABLE 6 Lipid formulations for siRNA Compound DPPE- F5 Cholesterol DOPE DOPC mPEG(2000) EE* No. (mol %) (1 25 30 30 10 5 >90 2 25 30 25 15 5 >90 3 25 30 20 20 5 >90 4 25 30 15 25 5 >90 5 25 30 10 30 5 >90 6 25 35 15 20 5 >90 7 25 35 20 15 5 >90 8 30 30 15 20 5 >90 9 30 30 20 15 5 >90 10 35 30 15 15 5 >90 *Encapsulation efficiency for siRNA.

[1071] Example 37: Formulations were prepared for encapsulating a small interfering nucleic acid agents (siRNA), as shown in Table 7.

TABLE-US-00007 TABLE 7 Lipid formulations for siRNA Compound DPPE- A6 Cholesterol DOPE DOPC mPEG(2000) EE* No. (mol %) (mol %) (mol %) (mol %) (mol %) (mol %) (%) 1 25 30 30 10 5 92 2 25 30 25 15 5 91 3 25 30 20 20 5 87 4 75 30 15 25 5 93 5 25 30 10 30 5 92 6 25 35 15 20 5 93 7 25 35 20 15 5 95 8 30 30 15 20 5 87 9 30 30 20 15 5 92 10 35 30 15 15 5 88 *Encapsulation efficiency for siRNA.

[1072] Example 38: Formulations were prepared for encapsulating a small interfering nucleic acid agents (siRNA).

[1073] Lipid nanoparticle formulations were prepared with the following compositions:

[1074] (Ionizable compound/DOPE/DOPC/Cholesterol/DMPE-PEG) molo [1075] 50/28/0/21/1 [1076] 50/28/0/20/2 [1077] 26/21/21/31/1.

[1078] Characteristics of the nanoparticle formulations are shown in Table 8. The formulations had superior properties for encapsulating the siRNA, and in having small particle size.

TABLE-US-00008 TABLE 8 Lipid formulations for siRNA Compound Z (ave) EE* No. nm (%) C2 111 95 A6 121 96 A9 97 95 D15 117 96 C24 127 98 DD 137 92 E4 131 94 AA 120 90 *Encapsulation efficiency for siRNA.

[1079] Example 39: Formulations were prepared for encapsulating a small interfering nucleic acid agents (siRNA).

[1080] Lipid nanoparticle formulations were prepared with the following compositions:

[1081] (Ionizable compound/DOPE/Cholesterol/DMPE-PEG) mol % [1082] 50/28/21/1.

[1083] Serum stability and EC50 of nanoparticle formulations were measured and are shown in Table 9. The formulations were capable of encapsulating the siRNA, and retaining stability in human serum.

TABLE-US-00009 TABLE 9 Lipid formulations for siRNA t(½) (hr) EC50 GFP human serum Compound pKa siRNA (nM) 37 C. D23 4.8 23 D24 >200 D25 3.7, 9.5 D26 5.4 D27 4.2, 8.9 151 D28 4.5, 7.3 118 D29 6.7 >200 D30 >200 D31 >200 D32 5.4 61 D33 D34 6.0 91 D35 6.1 21 D36 D37 15 A4 5.8 93 D38 5.3 33 D39 >200 D40 >200 D41 D42 >200 D43 10.1 >200 D44 3.7, 9.1 26 D45 >200 D46 D47 D48 D49 D50 >200 D51 4.1, 9.1 39 D52 9.7 >200 D53 D54 8.2 >200 D55 4.5 14 D56 >200 D57 123 D58 D59 D60 D61 D62 9.4 92 D63 D64 8.8 41 D65 >200 C3 6.9 >200 D66 >200 D67 6.6 >200 D68 5.7 >200 C2 33 >200 D69 D70 3.0 130 D71 42 D72 4.7 >200 D73 >200 D74 4.3 85 F6 9.3 97 AA 7.4 22 81 D75 9.1 108 D76 4.5 B8 4.3 D77 7.5 D78 5.6 136 D79 D80 5.6 >200 D81 5.9 >200 D82 D83 4.8, 7.2 47 D84 6.4 80 A23 E37 9.2 79 A9 7.4 31 56 D85 >200 D86 7.7 >200 D87 >200 D88 82 F5 9.4 33 59 F8 72 F7 >200 F9 >200 D89 A6 6.3 11 A5 6.1 6.9 D90 AB 6.9 7.4 A7 7.6 35 A8 D91 D92 D93 D94 E38 D95 D96 6.0 5.1 DD 5.1 E4 2.7 D97 D98 C25

E39 D99 D9A 60 C24 92 D9B D9C D9D <50 CA <50 D1

C25 >50 E39 >50

[1084] Example 40: Example formulations are prepared for encapsulating a small interfering nucleic acid agents (siRNA).

[1085] Lipid nanoparticle formulations are prepared with the following compositions:

[1086] (Ionizable compound/DOPE/Cholesterol/DMPE-PEG) mol % [1087] 50/28/21/1.

[1088] Serum stability of a nanoparticle formulation is measured and is shown in Table 10. The formulations are capable of encapsulating the siRNA, and retaining stability in human serum. TABLE-US-00010 TABLE 10 Lipid formulations for siRNA t($\frac{1}{2}$) (hr) human serum Compound 37 C. C24 >50 AB >50 A6 >50 B8 >50 A23 >50 A5 >50 A7 >50 A8 >50 E38 >50 DD >50 E4 >50

[1089] The embodiments described herein are not limiting and one skilled in the art can readily appreciate that specific combinations of the modifications described herein can be tested without undue experimentation toward identifying nucleic acid molecules with improved RNAi activity. [1090] All publications, patents and literature specifically mentioned herein are incorporated by reference in their entirety for all purposes.

[1091] It is understood that this invention is not limited to the particular methodology, protocols, materials, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the description disclosed herein without departing from the scope and spirit of the description, and that those embodiments are within the scope of this description and the appended claims.

[1092] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. As well, the terms "a" (or "an"), "one or more" and "at least one" can be used interchangeably herein. It is also to be noted that the terms "comprises," "comprising", "containing," "including", and "having" can be used interchangeably, and shall be read expansively and without limitation.

[1093] Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. For Markush groups, those skilled in the art will recognize that this description includes the individual members, as well as subgroups of the members of the Markush group. [1094] A compound, molecule or composition of this invention may have an ionic form for which the corresponding counterion or counterions are not shown. A person of skill in the art will immediately understand that the counterion or counterions will exist as necessary. Examples of counterions include alkali metal ions, C1, and pharmaceutically acceptable counterions. [1095] For example, when a list of examples or components is given, such as a list of compounds, molecules or compositions suitable for this invention, it will be apparent to those skilled in the art that mixtures of the listed compounds, molecules or compositions may also be suitable. [1096] Without further elaboration, it is believed that one skilled in the art can, based on the above description utilize the present invention to its fullest extent. The following specific embodiments.

description, utilize the present invention to its fullest extent. The following specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

[1097] All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose.

Claims

1-12. (canceled)

- **13**. A compound comprising a structure shown in Formula IV-B: ##STR00245## wherein R.sup.1 and R.sup.2 are R.sup.1=C(=O)OR.sup.4 R.sup.2=C(=O)OR.sup.5 wherein R.sup.4 and R.sup.5 are independently for each occurrence a C(12-20) alkyl group, or a C(12-20) alkenyl group; wherein Z is S or O; wherein R.sup.3 is selected from: ##STR00246## wherein each R.sup.6 is independently selected from H, alkyl, hydroxyl, hydroxyalkyl, alkoxy, alkoxyalkoxy, aminoalkyl; each R.sup.7 is independently selected from H, alkyl, hydroxyalkyl, and aminoalkyl; p is from 1 to 4.
- **14**. The compound of claim 13, having a structure selected from the group consisting of: ##STR00247## ##STR00248##
- **15.** A composition comprising an ionizable compound of claim 13 and a pharmaceutically acceptable carrier.
- **16**. The composition of claim 15, wherein the composition comprises nanoparticles.
- **17**. A pharmaceutical composition comprising an ionizable compound of claim 13, an active agent, and a pharmaceutically acceptable carrier.
- **18**. The composition of claim 17, wherein said ionizable compound is from 15 mol % to 40 mol % of the lipids of the composition.
- **19**. The composition of claim 17, wherein the composition comprises nanoparticles.
- **20**. The composition of claim 17, wherein the active agent is one or more RNAi molecules.
- **21.** The composition of claim 17, wherein the active agent is one or more RNAi molecules selected from small interfering RNAs (siRNA), double stranded RNAs (dsRNA) that are Dicer substrates, microRNAs (miRNA), short hairpin RNAs (shRNA), DNA-directed RNAs (ddRNA), Piwi-interacting RNAs (piRNA), repeat associated siRNAs (rasiRNA), and modified forms thereof.
- **22**. A composition for use in distributing an active agent for treating a condition or disease in a subject, the composition comprising an ionizable compound of claim 13, a structural lipid, a stabilizer lipid, and a lipid for reducing immunogenicity of the composition.
- **23**. The composition of claim 22, wherein the active agent is one or more RNAi molecules and the composition comprises nanoparticles that encapsulate the RNAi molecules.
- **24**. The composition of claim 23, wherein the active agent is one or more RNAi molecules selected from small interfering RNAs (siRNA), double stranded RNAs (dsRNA) that are Dicer substrates, microRNAs (miRNA), short hairpin RNAs (shRNA), DNA-directed RNAs (ddRNA), Piwi-interacting RNAs (piRNA), repeat associated siRNAs (rasiRNA), and any modified forms thereof. **25**. A method of delivering or distributing an active agent for treating a disease or condition in a subject in need, comprising administering to the subject the pharmaceutical composition of claim 17 to the subject.