Knowledge-Grounded Pre-Training for Data-to-Text Generation

The goal is to solve the task of Natural language generation (NLG)

Context of study

Data-to-Text Generation: Generating text from structured data/knowledge

Diverse Forms of Structured Knowledge

- E2ENLG: generate response from dialog act
- WebNLG: generate description from RDF triples
- WikiBio: generate biography from info-box
- TOTTO: generate sentences from multi-row table

Metric: Bilingual Evaluation Understudy or BLUE Papineni et al. from IBM Watson Research Center.

BLEU-4 for NLG

Limitations

- 1. no unified model to solve all these tasks (one model per task according to SOTA)
- 2. different models have weak generalization (out of vocabulary entities, unseen relations, etc.)
- 3. rely on large amount of annotation, not suitable for few-shot settings

Can we use some pre-trained model such as GPT-2, BART, T5? No.

- GPT-2 is not encoder-decoder architecture
- BART, T5's encoders are not designed to encode structured knowledge

Proposal

Pre-trained paradigm: Knowledge-Grounded Language Pre-trained

Contributions

- 1. Universalize the knowledge representation:
 - unify knowledge triples, attribute-value pairs, infobox, tables into unified graph representation node --> entity/value/topic
 edge --> relation/attribute/table header

Example WebNLG:

Example E2ENLG:

Example WikiBio:

WikiBio Dataset

Born	Education	Employer	Article	
September 1972	Northwestern	Houston Rockets	Morey	

 data-2-text generation tasks modeled as graph-to-text problem graph to text model using GNN-based Encoder + Transformer Decoder

- GNN-based Encoder
 - 1. Map the lexicons of all the head tailed entities and relations into their vector representation

2. head-tail entities and the relations are aggregated into a triple representation

3. different triples sharing the same head entities are aggregated into a entity representation

4. different entities are aggregated into factor representation

• Transformer Decoder

After encoder we have sequences of representations over all the nodes and edges. Transformer decoder with copy mechanism to generate the final text token by token

- 2. Pretrain a large model on a knowledge-grounded text corpus
 - Construct Pseudo Graph-to-Text Pairs
 - WikiData (Knowledge Graph)
 - Wikipedia (text)

• WikiData (Hyperlink<-->Wikipedia)

Figure 1: An example from the constructed KGTEXT, which pairs a hyperlinked sentence from Wikipedia with a knowledge subgraph from WikiData.

Data selection
Some sentences could be not relevant to the case.
Lexical Overlap

Figure 2: Data denoising procedure for the KGTEXT.

#Sent	Length	#Ent	#Pred	#Triple	#Ent/Sent
7M	20.2	1.8M	1210	16M	3.0

Table 1: Statistics of collected KGText dataset

3. Fine-tune on downstream data-to-text task with only a few examples

• Pre-training the model on the KGText dataset

• fine-tune on the downstream task to solve individual problems

The KGLP model can achieve nearly the same performance with as few as 100 samples.

Results

Dataset

- E2ENLG (Dialog Act)
- WebNLG (RDF Triple)
- WikiBio (Table)

Setting

Fully-Supervised

Model	BLEU	METEOR	ROUGE
Seq2Seq [†]	54.0	37.0	64.0
Seq2Seq+Delex [†]	56.0	39.0	67.0
Seq2Seq+Copy [†]	61.0	42.0	71.0
GCN	60.80	42.76	71.13
KGPT-Graph w/o Pre	62.30	44.33	73.00
KGPT-Seq w/o Pre	61.79	44.39	72.97
KGPT-Graph w/ Pre	63.84	46.10	74.04
KGPT-Seq w/ Pre	64.11	46.30	74.57

Table 4: Experimental results on WebNLG's test set, w/ Pre refers to the model with pre-training, otherwise it refers to the model training from scratch. † results are copied from Shimorina and Gardent (2018).

Two types of encoder Graph-encoder and Sequential-encoder, both encoding schemes with a copy mechanism without copy loss.

• Few-Shot

Model	0.5%	1%	5%	10%
Seq2Seq	1.0	2.4	5.2	12.8
Seq2Seq+Delex	4.6	7.6	15.8	23.1
KGPT-Graph w/o Pre	0.6	2.1	5.9	14.4
KGPT-Seq w/o Pre	0.2	1.7	5.1	13.7
Template-GPT-2	8.5	12.1	35.3	41.6
KGPT-Graph w/ Pre	22.3	25.6	41.2	47.9
KGPT-Seq w/ Pre	21.1	24.7	40.2	46.5

Table 7: Few-shot results on WebNLG's test set.

• Zero-shot

Model	BLEU	METEOR	ROUGE
All Baselines	0	0	1.2
Template-GPT-2	0.3	0.5	3.4
KGPT-Graph w/ Pre	13.66	19.17	30.22
KGPT-Seq w/ Pre	13.86	20.15	30.23

Table 11: Zero-shot results on WebNLG's test set.

Conclusion

KGPT performs better than GPT-2 based models

- fewer compute resources for pre-training.
- pretraining boost few-shots performance task
- strong generalization to understand unseen knowledge inputs