PEFT

Jack Roberts
Transformers Reading Group
18th September 2023

I want to fine-tune* a LN

*our starting point is an existing pre-trained (foundation) model for everything we're talking about today

A GPU waiting to be used:

Load the largest model that fits:

Pre-trained Model

Gradients

Attempt to fine-tune:

Full Fine-tuning

PROS

Max performance (maybe)

CONS

Max resources (hardware + time)

Alternatives to Full Fine-tuning

Prompt engineering

Quantisation

Parameter-efficient fine-tuning (PEFT)

(or combinations of these)

Prompt Engineering

Don't change the model at all, find a prompt that maximises performance for your task.

(also deciding what data to include in the prompt, e.g. LlamaIndex https://github.com/jerryjliu/llama index)

Prompt Engineering

https://letsenhance.io/blog/article/ai-text-prompt-guide/

Quantisation

Load the model in lower precision (use fewer bits per parameter)

https://towardsdatascience.com/introduction-toweight-quantization-2494701b9c0c

https://huggingface.co/blog/hf-bitsandbytes-integration https://huggingface.co/blog/4bit-transformers-bitsandbytes

PEFT: Parameter-Efficient Fine-Tuning

- Fine-tune the model by only modifying/adding a small number of parameters (e.g. 0.1 1.0% of the parameters in the original model)
 - Majority of model frozen don't need to track gradients for frozen parameters – smaller memory footprint.
- Counter-intuitively, PEFT may add parameters to the model, so the overall model could be slightly larger (but training is much cheaper because of the reasons above)
- Can achieve performance close to full fine-tuning (maybe better than full fine-tuning in some cases, e.g. small datasets)

PEFT

Measuring the Intrinsic Dimension of Objective Landscapes (1)

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, Jason Yosinski (2018) https://arxiv.org/pdf/1804.08838.pdf

Fully-connected network, train on MNIST:

Represent parameters as flat vector:

Measuring the Intrinsic Dimension of Objective Landscapes (2)

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, Jason Yosinski (2018) https://arxiv.org/pdf/1804.08838.pdf

Training in lower dimensions:

$$\theta^{(D)} = \theta_0^{(D)} + P\theta^{(d)}$$

 $\theta^{(D)}$: Vector of tuned model parameters, dimensions $D \times 1$

 $\theta_0^{(D)}$: Vector of *initial* model parameters, dimensions $D \times 1$ (frozen)

P: Random projection matrix, dimensions $D \times d$ (frozen)

 $\theta^{(d)}$: Parameter vector in smaller space (d < D), dimensions $d \times 1$ (trained)

Measuring the Intrinsic Dimension of Objective Landscapes (3)

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, Jason Yosinski (2018) https://arxiv.org/pdf/1804.08838.pdf

- Fully-connected network with 199 210 parameters
- Train with varying subspace dimensions
- Baseline = well-trained model
- "Intrinsic dimension": Subspace dimension where performance 90% of baseline
- Measured intrinsic dimension depends on model architecture and dataset

Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning

Armen Aghajanyan, Luke Zettlemoyer, Sonal Gupta (2020) https://arxiv.org/abs/2012.13255

- Same approach applied to language models
- Intrinsic dimension of BERT/RoBERTa models on two datasets (MRPC, QQP)
 - MRPC: Binary classification (~are two sentences rewordings of each other)
 - QQP: Binary classification (~are two questions the same)

Model	MRPC	QQP
BERT-Base	1608	8030
BERT-Large	1037	1200
RoBERTa-Base	896	896
RoBERTa-Large	207	774

 Motivates potential to fine-tune LLMs using a subset of parameters / with small datasets.

LoRA: Low-Rank Adaptation of Large Language Models

EJ. Hu et al. (Microsoft), 2021

https://arxiv.org/abs/2106.09685 https://github.com/microsoft/LoRA

- One of the most established/most popular PEFT methods
- Uses the same intrinsic dimension concept, but applied to individual weight matrices in different layers of the model (rather than to the whole model at once)

Full Fine-Tuning

$$W_0 + \Delta W$$

 $W_0 \in \mathbb{R}^{d \times k}$ Initial weights (frozen) $\Delta W \in \mathbb{R}^{d \times k}$ Fine-tuned weight updates LoRA Fine-Tuning

$$W_0 + BA$$

$$W_0 \in \mathbb{R}^{d \times k}$$
 Initial weights (frozen)
$$B \in \mathbb{R}^{d \times r}$$
Fine-tuned LoRA weights
$$A \in \mathbb{R}^{r \times k}$$

LoRA Fine-tuning

$$W_0 + BA$$

 $W_0 \in \mathbb{R}^{d \times k}$ Initial weights (frozen) $B \in \mathbb{R}^{d \times r}$ Fine-tuned LoRA weights $A \in \mathbb{R}^{r \times k}$

- LoRA rank: $r \ll \min(d, k)$ (r = 8 is the default in the HuggingFace implementation)
 - Total number of parameters in B+A<< number of parameters in W_0
- In the original paper, LoRA applied to attention weights only (not weights in fully connected layers)
 - But can be applied to any weights in theory

LoRA vs. Normal Fine-tuning (FT) and Other PEFT Methods

	Model & Method	# Trainable Parameters		SST-2	MRPC	Da [.] CoLA	tasets QNLI	QQP	RTE	STS-B	Avg.
RoBERTa Base:	RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
0.3M LoRA parameters vs. 125M in model (0.24%)	RoB _{base} (BitFit)*	0.1M	84.7	93.7	92. 7	62.0	91.8	84.0	81.5	90.8	85.2
	$RoB_{base} (Adpt^{D})^*$		$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5_{\pm1.1}$	$60.8 \scriptstyle{\pm .4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5{\scriptstyle\pm2.7}$	$89.7_{\pm.3}$	84.4
	RoBboss (Adnt ^D)*								75 9		
	RoB _{base} (LoRA)	0.3M	$87.5_{+.3}$	$95.1_{+.2}$	$89.7_{+.7}$	$63.4_{\pm 1.2}$	93.3 _{+.3}	$90.8_{+.1}$	86.6 +.7	$91.5_{+.2}$	87.2
RoBERTa Large:	RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
0.8M LoRA parameters vs. 355M in model (0.23%)	RoB _{large} (LoRA)	0.8M	90.6 $_{\pm .2}$	$96.2_{\pm.5}$	90.9 $_{\pm 1.2}$	68.2 $_{\pm 1.9}$	94.9 $_{\pm .3}$	$91.6_{\pm .1}$	87.4 ± 2.5	92.6 $_{\pm .2}$	89.0
	RoB _{large} (Adpt ^P)†	3.0M	$90.2_{\pm .3}$	96.1 _{±.3}	$90.2_{\pm .7}$	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
	RoB _{large} (Adpt ^P)†		90.5 _{±.3}	96.6 _{±.2}	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 _{±.3}	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
	$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	$89.9_{\pm .5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
	$RoB_{large} (Adpt^{H})^{\dagger}$								$72.9_{\pm 2.9}$		
	RoB _{large} (LoRA)†	0.8M	$90.6_{\pm .2}$	$96.2_{\pm .5}$	90.2 $_{\pm 1.0}$	$68.2_{\pm 1.9}$	94.8 _{±.3}	$91.6_{\pm .2}$	85.2 ± 1.1	92.3 $_{\pm .5}$	88.6
DeBERTa XXL:	DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
4.7M LoRA parameters vs.	DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 _{±.6}	72.4 $_{\pm 1.1}$	96.0 $_{\pm .1}$	92.9 $_{\pm .1}$	94.9 $_{\pm .4}$	93.0 _{±.2}	91.3
1500M in model (0.31%)											

LoRA matches / outperforms full fine-tuning in many of the examples

LoRA Benefits

- Training uses much less GPU memory (GPT-3 175B example: 1.2TB reduced to 350GB)
- Training is faster don't need gradients for most parameters (GPT-3 175B example in paper: 25% speedup)
- Only need to save the LoRA weights to disk (not the whole model again)
 (GPT-3 175B example: full model 350 GB, LoRA weights 35 MB 10,000x smaller)
- Can have one deployed base model and quickly swap in/out LoRA adapters (much faster than redploying a new full LLM)
- Adds no inference latency (some PEFT methods do) (when loading the model, compute $W=W_0+BA-i.e.$ add the LoRA weights to the original model weights)

Other Applications of LoRA (1): QLoRA

- QLoRA: Efficient Finetuning of Quantized LLMs
 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, Luke Zettlemoyer (2023)

 https://arxiv.org/abs/2305.14314
- Combines LoRA and 4-bit (!) quantisation to fine-tune Llama (65B parameters) on a single GPU, and match 16-bit fine-tuning performance.
- HuggingFace blog: https://huggingface.co/blog/4bit-transformers-bitsandbytes

Other Applications of LoRA (2): Diffusion Models (DreamBooth)

Other Applications of LoRA (3): Long LoRA

- LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models Yukang Chen et al. (2023) https://arxiv.org/abs/2309.12307
- Shift-short attention: Attention in groups of tokens (mostly between neighbouring tokens rather than between all tokens)
- LoRA in embedding and normalization layers
- Adapts base model for much longer inputs ("context sizes") e.g. Llama2 7B from 4k tokens to 100k tokens

Categories of PEFT

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning Vladislav Lialin, Vijeta Deshpande, Anna Rumshisky (2023) https://arxiv.org/abs/2303.15647

Categories of PEFT

Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning Vladislav Lialin, Vijeta Deshpande, Anna Rumshisky (2023) https://arxiv.org/abs/2303.15647

BitFit

BitFit: Simple Parameter-efficient Fine-tuning for Transformer-based Masked Language-models
Elad Ben Zaken, Shauli Ravfogel, Yoav Goldberg (2021)

https://arxiv.org/abs/2106.10199

Train only the bias terms in the model

Attention layers:

$$egin{aligned} \mathbf{Q}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell} \ \mathbf{K}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell} \ \mathbf{V}^{m,\ell}(\mathbf{x}) &= \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell} \end{aligned}$$

Fully-connected layers:

$$\begin{aligned} \mathbf{h}_2^\ell &= \mathsf{Dropout}\big(\mathbf{W}_{m_1}^\ell \cdot \mathbf{h}_1^\ell \ + \ \mathbf{b}_{m_1}^\ell\big) \\ \mathbf{h}_3^\ell &= \mathbf{g}_{LN_1}^\ell \odot \frac{(\mathbf{h}_2^\ell + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^\ell \\ \mathbf{h}_4^\ell &= \mathsf{GELU}\big(\mathbf{W}_{m_2}^\ell \cdot \mathbf{h}_3^\ell \ + \ \mathbf{b}_{m_2}^\ell\big) \\ \mathbf{h}_5^\ell &= \mathsf{Dropout}\big(\mathbf{W}_{m_3}^\ell \cdot \mathbf{h}_4^\ell \ + \ \mathbf{b}_{m_3}^\ell\big) \\ \mathsf{out}^\ell &= \mathbf{g}_{LN_2}^\ell \odot \frac{(\mathbf{h}_5^\ell + \mathbf{h}_3^\ell) - \mu}{\sigma} + \mathbf{b}_{LN_2}^\ell \end{aligned}$$

Bias terms (in red) – typically ~0.1% of the parameters in the model

Adapters

Parameter-Efficient Transfer Learning for NLP Neil Houlsby et al. (2019) https://arxiv.org/abs/1902.00751

- Insert adapter layers in each transformer block
- Note this adds latency at inference time (unlike LoRA)

Prefix Tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation Xiang Lisa Li, Percy Liang (2021) https://arxiv.org/abs/2101.00190

- Learn a vector to prepend to the input prompt (with the whole model fixed in fine-tuning)
- Prefix is not limited to being tokens from the model they are continuous vectors e.g. the prefix is not "Summarise this text", it's (0.2, 0.5, 0.8, 0.3, ...)
- Use different prefixes for different tasks can even get the model to perform multiple tasks per batch
- Can also add a prefix in every transformer layer (not only input)

Prefix Tuning

Prefix-Tuning: Optimizing Continuous Prompts for Generation Xiang Lisa Li, Percy Liang (2021) https://arxiv.org/abs/2101.00190

Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Brian Lester, Rami Al-Rfou, Noah Constant (2021) https://arxiv.org/abs/2104.08691

P-Tuning

GPT Understands, Too

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, Jie Tang (2021) https://arxiv.org/abs/2103.10385

 All very similar, subtleties in where the soft prompt is inserted (e.g. only a prefix or throughout the prompt), and in which layers (e.g. only initial input prompt or throughout model layers) $(IA)^3$

Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning Haokun Liu et al. (2022) https://arxiv.org/abs/2205.05638

- Learn vectors (l_v, l_k) to rescale activations (applied to keys and values in attention layers)
- Claims to match/out-perform LoRA with fewer parameters

PEFT Performance

Revisiting Parameter-Efficient Tuning: Are We Really There Yet? Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, Shangsong Liang (2022) https://arxiv.org/abs/2202.07962

- FT (red dashed line) = full fine-tuning performance, different shapes = different PEFT methods
- Low data (resource) regime: PEFT may out-perform full fine-tuning

HuggingFace PEFT

- https://huggingface.co/docs/peft/index
- Has implementations for 5 PEFT methods (LoRA, prefix tuning, ptuning, prompt tuning, (IA)³)

 See notebook in repo: <u>https://github.com/alan-turing-institute/transformers-reading-group/tree/main/sessions/11-peft/peft.ipynb</u>