

Problème des p-centres avec contraintes de capacité, gestion de pannes et stratification

Antonin Carpentier, Laure Brisoux Devendeville, Corinne Lucet, Rui Sá Shibasaki et Sami Cherif

Problème des p-centres

Problème d'optimisation NP-Difficile

Soit un graphe G = (N,E) où:

- N est l'ensemble des noeuds (villes)
- E est l'ensemble des arêtes pondérées (des routes)

p centres (d'un service) à placer dans G, avec P l'ensemble des centres placés.

Déterminer l'emplacement de **p** centres de manière à minimiser la distance maximale entre les villes et leur centre le plus proche.

$$\min_{\substack{P \subseteq N \\ |P|=p}} \max_{i \in N} \min_{j \in P} d_{ij}$$

Variantes du problème traitées :

- Ajout de contraintes de capacité et de demandes
- Gestion de pannes
- Stratification

Combinaison de 3 variantes

Problème des p-centres avec contraintes de capacité, gestion de pannes et stratification

Contraintes de capacité et de demandes : Nous ajoutons des capacités dans chaque potentiel centre et de la demande dans chaque ville

Gestion de pannes : Les centres peuvent potentiellement tomber en panne, il faut ré-attribuer les villes qui y étaient assignées.

Stratification : Nous considérons plusieurs services différents au sein des centres et villes.

Nos contributions

- Modélisation sous forme d'un MIP et réduction de sa taille
- Génération d'instances et tests de faisabilité
- Benchmarking de 3 fonctions objectifs, en termes de :
 - Structure des solutions
 - Temps de résolution

A^s : distance maximale entre les villes et leur centre principal pour le service **s** B^s : distance maximale entre les villes et leur centre de secours pour le service **s**

Fonctions objectifs à minimiser:

$$h = \sum_{s \in S} (A^s) \qquad f = \sum_{s \in S} (B^s) \qquad g = \sum_{s \in S} (A^s + B^s)$$

: moyenne des meilleures valeurs objectives des sommes des A^s par famille d'instances

🔏 : moyenne des meilleures valeurs objectives des sommes des B^s par famille d'instances

	Instances	Size	F	\mathscr{A}	\mathscr{B}	$\mathscr{A}+\mathscr{B}$
Simultaenous	D_3^{sim}	21	f	421.2	436.7	858.0
			g	357.5	438.4	795.9
			h	354.0	951.3	1305.3
	D_4^{sim}	39	f	386.2	447.1	833.3
			g	304.6	465.6	770.6
			h	289.8	821.5	1111.3
	D_5^{sim}	42	f	156.8	171.6	328.4
			g	144.3	175.1	319.4
			h	140.6	251.4	392.0
Non simultaenous	D_1^{dif}	7	f	9441.8	12872.2	22313.9
			g	4609.3	7399.1	12008.4
			h	4030.0	19983.3	24013.3
	D_2^{dif}	31	f	1005.7	1098.1	2103.8
			g	866.5	1029.6	1896.1
			h	868.9	1435.0	2303.9
	D_3^{dif}	33	f	1125.7	1242.7	2368.5
			g	972.2	1211.2	2183.4
			h	944.9	2088.2	3033.1
	D_4^{dif}	60	f	542.1	651.3	1193.5
			g	378.7	583.6	962.2
			h	350.2	1262.8	1613.0

A. Carpentier, L. Brisoux Devendeville, C. Lucet, R. Sa Shibasaki et S. Cherif, Problème du p-centre avec contraintes de capacité, stratification et gestion des pannes, ROADEF 25, 2025 A. Carpentier, L. Brisoux Devendeville, C. Lucet, R. Sa Shibasaki et S. Cherif, Stratified p-Center Problem with Capacity Constraints and Failure Foresight, CoDiT, 2025

Perspectives

- Donner des priorités aux services
- Tester différents paradigmes (Programmation par contraintes, MaxSAT)
- Amélioration du modèle : Introduction d'inégalités valides
- Développer une heuristique / recherche locale pour résoudre le problème de manière approchée.