모델평가와성능향상

5.1~5.2

1770119 황서현

INDEX

- 1. 모델 평가
- 2. 교차 검증
- 3. 그리드 서치

모델평가

- Train_test_split 을 쓰는 이유 새로운 데이터를 모델이 얼마나 잘 일반화했는지 측정하기 위해
- 앞으로의 목표 평가 방법을 확장시켜 보자 -> 교차검증

교차 검증

교차 검증(cross-validation)

종류

- K겹 교차 검증 (K-fold cross-validation)
- 계층별 K겹 교차 검증

Scikit-learn CV 코드

```
In [2]: from sklearn.model_selection import cross_val_score
        from sklearn.datasets import load iris
        from sklearn.linear model import LogisticRegression
       iris=load iris()
       logreg=LogisticRegression()
        scores=cross val score(logreg,iris.data,iris.target,cv=5)
       print("교차검증 점수: ",scores)
       print("교차검증 평균점수: {:.2f}".format(scores.mean()))
       교차검증 점수: [1. 0.96666667 0.93333333 0.9
        교차검증 평균점수: 0.96
```

교차 검증 장단점

장점

- 랜덤 split의 단점 보완 (ex 분류가 어려운 샘플이 다 훈련데이터가 됨)
- 훈련 데이터가 모델에 얼마나 민감한지 (ex 훈련 데이터 정확도를 토대로 예측)
- 훈련 데이터량 증가(ex train_test_split[75%] < 10-fold cross_validation[90%]

단점

• 모델을 k번 더 만드므로 k배 더 느림

계층별 K-겹 교차 검증과 그 외 전략

- 데이터 순서대로 K를 나누면 안된다
- 클래스의 비율이 전체 데이터셋의 클래스 비율과 같도록!
- 보통 회귀는 기본 K겹 CV, 분류는 계층별 K겹 CV 이용함

LOOCV(import LeaveOneOut)

Fold 하나에 샘플 하나

```
In [3]: from sklearn.model_selection import LeaveOneOut loo = LeaveOneOut() scores = cross_val_score(logreg,iris.data,iris.target,cv=loo) print("교차검증 분할횟수: ",len(scores)) print("교차검증 평균점수: {:.2f}".format(scores.mean()))

교차검증 분할횟수: 150 교차검증 평균점수: 0.95
```

임의 분할 교차 검증(import ShuffleSplit)

Train과 test 세트 임의로 분할 가능

부분 샘플링에 많이 쓰임

Training set
Test set
Not selected

Train_size = 5 test_size = 2 n_split=4를 적용한 ShuffleSplit

그룹별 교차 검증(import GroupKFold)

Train과 test에 같은 group이 들어가면 안됨 Ex) 의료 데이터 / 표정 구분용 사진 데이터 / 음성 인식 등

반복 교차 검증(import RepeatedStratifiedKFold)

CV전체를 다시 반복하여 검증함

N_splits = 5 (fold값)

N_repeats = 10 (반복값)

총 50번 반복

그리드서치

그리드 서치

- 매개변수튜닝
- 관심있는 매개변수를 대상으로 가능한 모든 조합을 시도

	C = 0.001	C = 0.01	 C = 10					
gamma=0.001	SVC(C=0.001, gamma=0.001)	SVC(C=0.01, gamma=0.001)	 SVC(C=10, gamma=0.001)					
gamma=0.01	SVC(C=0.001, gamma=0.01)	SVC(C=0.01, gamma=0.01)	 SVC(C=10, gamma=0.01)					
gamma=100	SVC(C=0.001, gamma=100)	SVC(C=0.01, gamma=100)	 SVC(C=10, gamma=100)					

간단한 그리드 서치 코드

최적 매개변수: {'gamma': 0.001, 'C': 100}

```
In [7]: ##간단 그리드 서치 과정
        from sklearn.svm import SVC
        from sklearn.model selection import train test split
        X train, X test, y train, y test=train test split(iris.data, iris.target, random state=0)
        best score=0
        for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
            for C in [0.001, 0.01, 0.1, 1, 10, 100]:
                #매개변수 조합에 대해 SVC 훈련
                svm = SVC(gamma=gamma,C=C)
                svm.fit(X train,y train)
                #test세트로 SVC 평가
                score = svm.score(X test,y test)
                #점수가 높으면 best score에 저장
                if score>best score:
                    best score=score
                    best parameters = {"C":C, "gamma":gamma}
        print("최고점수: {:.2f}".format(best score))
        print("최적 매개변수: ",best parameters)
        최고점수: 0.97
```

매개변수 과대적합(overfit)과 검증세트

매개변수를 선택하기 위해 이미 테스트 세트를 이용해 버렸다?!

- == 처음 train vs test 나는 게 의미 없어짐
- → 세 개의 세트로 나눈다(훈련, 검증, 테스트 세트)

In[19]:

mglearn.plots.plot_threefold_split()

매개변수 과대적합(overfit)과 검증세트

```
In [7]: X trainval, X test, y trainval, y test=train test split(iris.data,iris.target,random state=0)
          X train, X valid, y train, y valid = train test split(iris.data,iris.target,random state=0)
          print("훈련세트 크기 = {} 검증세트 크기 = {} 테스트세트 크기 = {} \n".format(X train.shape[0], X valid.shape[0], X test.shape[0])
귀 ㄷ
           best score=0
           for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
              for C in [0.001, 0.01, 0.1, 1, 10, 100]:
                  #매개변수 조합에 대해 SVC 훈련
                  svm = SVC(gamma=gamma,C=C)
                  svm.fit(X train,y train) #######train으로 바뀜
                  #test세트로 SVC 평가
                  score = svm.score(X valid, y valid) ######valid로 바뀜
                  #점수가 높으면 best score에 저장
                  if score>best score:
                      best score=score
                     best_parameters = {"C":C, "gamma":gamma}
          #훈련 세트와 검증 세트를 합쳐 모델을 만들고 테스트 세트로 평가
          svm = SVC(**best parameters)
          svm.fit(X trainval, y trainval) #####trainval로 바뀜
          test score = svm.score(X test,y test) ######test로 바習
          print("검증 최고점수: {:.2f}".format(best score))
          print("최적 매개변수: ",best parameters)
          print("최적 매개변수에서 테스트 세트 점수: {:.2f}".format(test score))
           훈련세트 크기 = 112 검증세트 크기 = 38 테스트세트 크기 = 38
          검증 최고점수: 0.97
          최적 매개변수: {'C': 100, 'gamma': 0.001}
           최적 매개변수에서 테스트 세트 점수: 0.97
```

교차 검증(CV)을 이용한 그리드 서치

• 훈련+검증 데

In[22]:

mglearn.plots.


```
##교차검증을 이용한 그리드 서치
In [11]:
         import numpy as np
         for gamma in [0.001, 0.01, 0.1, 1, 10, 100]:
             for C in [0.001, 0.01, 0.1, 1, 10, 100]:
                 #매개변수 조합에 대해 SVC 훈련
                svm = SVC(gamma=gamma,C=C)
                 #교차검증을 적용
                scores = cross_val_score(svm, X_trainval, y_trainval, cv=5)
                #교차 검증 정확도의 평균
                score = np.mean(scores)
                 #점수가 높으면 best score에 저장
                if score>best score:
                    best score=score
                    best parameters = {"C":C, "gamma":gamma}
         svm = SVC(**best parameters)
         svm.fit(X trainval,y trainval)
```

```
In [17]: ##교차검증을 이용한 그리드 == GridSerachCV
        #매개변수를 딕셔너리 형태로 지정해야
        param grid={"C":[0.001,0.01,0.1,1,10,100], "gamma":[0.001,0.01,0.1,1,10,100]}
        print("매개변수 그리드: \n",param grid)
        from sklearn.model selection import GridSearchCV
        from sklearn.svm import SVC
         #gridSearchCV는 3세트로 나누고 CV도 해줌
         grid search = GridSearchCV(SVC(), param grid, cv=5, return train score=True)
         #테스트 세트는 따로 떼어두기
        X train, X test, y train, y test=train test split(iris.data,iris.target,random state=0)
        grid search.fit(X train, y train)
        print("\n 테스트 세트 점수: {:.2f}\n".format(grid search.score(X test,y test)))
         print("최적 매개변수: ",grid search.best params )
         print("\n 최고 교차 검증 점수 : {:.2f}n".format(grid search.best score ))
        매개변수 그리드:
         {'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}
         테스트 세트 점수: 0.97
        최적 매개변수: {'gamma': 0.01, 'C': 100}
         최고 교차 검증 점수 : 0.97n
```

교차 검증(CV) 결과 분석

• CV_results 에는 관련 정보가 다 들어있다.

0.011

Out[31]:

0.363

0.380

	param_C	param_gamma	params	mea	n_test_score																					
0	0.001	0.001	{'C': 0.001, '	gamma': 0.001}	0.366																					
1	0.001	0.01	{'C': 0.001, '	gamma': 0.01}	0.366																					
2	0.001	0.1	{'C': 0.001, '	gamma': 0.1}	0.366																					
3	0.001	1	{'C': 0.001, 'g	gamma': 1}	0.366	20	0.05	0.05	0 OE O	0E 0	95 0.95	2.0	0.70	0.05	0.06	0.05	0.02	156		0.37		0.70	0.02	0.05	0.07	
4	0.001	10	{'C': 0.001, '	gamma': 10}	0.366	2.0	0.93	U.33 (U.93 U.	30 U	.90 0.90	2.0	0.70	0.93	0.96	0.95	0.92	1.30 1	00.0	U.37	131	U.7U	0.93	1.90	0.97-	
	rank_	test_score s	plit0_test_score	split1_test_score	split2_test_score	1.8	0.95	0.95	0.95 0.	95 0	95 0.95	1.8	0.70	0.95	0.96	0.95	0.92	0.56	10.0	0.37	0.37	0.37	0.70	0.93	0.96-	
0		22	0.375	0.347	0.363	1.6	0.95	0.95 (0.95 0.	95 0	95 0.95	16	0.70	0.95	0.96	0.95	0.92	0.56	1.0	0.37	0.37	0.37	0.37	0.70	0.93-	
1		22	0.375	0.347	0.363							j						U								
2		22	0.375	0.347	0.363	1.4	0.95	0.95 (0.95 0.	95 0	95 0.95	1.4	0.70	0.94	0.96	0.95	0.92	0.56	0.1	0.37	0.37	0.37	0.37 (0.37	0.70	
3		22	0.375	0.347	0.363																					
4		22	0.375	0.347	0.363	12	0.95	0.95 (0.95 0.	95 0	95 0.95	1.2	0.70	0.93	0.96	0.95	0.92	0.56	0.01	0.37	0.37	0.37	0.37().37	0.37	
	split:	3_test_score	split4_test_score	e std_test_score		1.0	0.95	0.95	0.95 0.	95 0	95 0.95	1.0	0.70	0.93	0.96	0.95	0.92	0.51	0.001	0.37	0.37	0.37	0.37	0.37	0.37	
0		9.363	0.380	0.011			1.0	12	14 1	6 1	.8 2.0		0.001	0.01	0.1	10	10.0 1	00.0		e 071	a 061	le OST	.00010	001	0.01	
1		9.363	0.380	0.011			1.0	1.2			.0 2.0		0.001	0.01			10.0 1	00.0		E-0/1	E-001			.001	0.01	
2		9.363	0.380	0.011					gamm	d					gam	ma						gam	IIId			
3	(9.363	0.380	0.011																						

비대칭 매개변수 그리드 탐색

```
In [22]: ###/대칭 매개변수 그리드 탐색
          #매개변수를 딕셔너리 형태로 지정해야
         param grid=[{"kernel":['rbf'], "C":[0.001,0.01,0.1,1,10,100], "gamma":[0.001,0.01,0.1,1,10,100]},
                      {"kernel":['linear'], "C":[0.001, 0.01, 0.1, 1, 10, 100]}]
         print("매개변수 그리드: \n",param grid)
          #gridSearchCV는 3세트로 나누고 CV도 해줌
          grid search = GridSearchCV(SVC(), param grid, cv=5, return train score=True)
          grid search.fit(X train, y train)
          print("\n최적 매개변수: ",grid search.best params )
         print("\n 최고 교차 검증 점수 : {:.2f}".format(grid search.best score ))
         매개변수 그리드:
          [{'gamma': [0.001, 0.01, 0.1, 1, 10, 100], 'kernel': ['rbf'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}, {'kernel': ['lin
         ear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100]}]
         최적 매개변수: {'kernel': 'rbf', 'gamma': 0.01, 'C': 100}
          최고 교차 검증 점수 : 0.97
             split2_test_score 0.36
                                      0.36
                                              0.36
                                                     ... 1 1 1
                                                                          1
                               0.36
             split3_test_score 0.36
                                              0.36
                                                     ... 0.91
                               0.36
                                      0.36
                                                              0.95
                                                                    0.91
                                                                           0.91
             split4_test_score 0.38
                               0.38
                                      0.38
                                              0.38
                                                     ... 0.95
                                                              0.95
                                                                     0.95
                                                                          0.95
             std test score 0.011
                               0.011
                                      0.011
                                              0.011
                                                     ... 0.033
                                                              0.022
                                                                    0.034
                                                                           0.034
```

중첩(nested) 교차 검증(CV)

• 3개 세트로 나눈 것도 CV + (훈련+검증 세트)도 CV 하기 == 중첩

교차 검증과 그리드 서치 병렬화

- 데이터 용량이 큼
- 하지만 병렬화가 쉬움
- 왜?? 각 CV 모델을 만드는 게 동시에 일어날 수 있기 때문에
- 따라서, 여러 CPU에서 한 번에 돌리는 것이 가능하다.

감사합니다.