

Mathematical Foundations for Data Science

MFDS Team

DSECL ZC416, MFDS

Lecture No.11

Slides are adapted version of slides from McGraw Hill Education

Agenda

- Functions
 - Domain
 - Codomain and
 - Range
- Types of Functions
 - Injective,
 - Surjective
 - Bijective
- Inverse of functions
- Composition of functions
- Floor and Ceiling operators

Functions

Definition: Let A and B be nonempty sets. A *function* f from A to B, denoted $f: A \to B$ is an assignment of each element of A to exactly one element of B. We write f(a) = b if B is the unique element of B assigned by the function B to the element B of A.

Functions are sometimes called mappings or transformations.

Functions

A function $f: A \to B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.

Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

$$\forall x[x \in A \to \exists y[y \in B \land (x,y) \in f]]$$

$$\forall x, y_1, y_2[[(x,y_1) \in f \land (x,y_2) \in f] \to y_1 = y_2]$$

Functions

Given a function $f: A \rightarrow B$:

- We say f maps A to B or f is a mapping from A to B.
- *A* is called the *domain* of *f*.
- *B* is called the *co-domain* of *f*.

If
$$f(a) = b$$
,

- then *b* is called the *image* of *a* under *f*.
- − *a* is called the *preimage* of *b*.

The range of f is the set of all images of points in A under f. We denote it by f(A). Two functions are *equal* when they have the same domain, the same co-domain and map each element of the domain to the same element of the co-domain.

Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment.
 Students and grades example.
- A formula.

$$f(x) = x + 1$$

- A computer program.
 - A Java program that when given an integer *n*, produces the *n*th Fibonacci Number

innovate

Functions

- f(a) =
- The image of d is?
- The preimage(s) of z is (are) ? {a,c,d}
- The domain of f is ? A
- The co-domain of f is? B
- The preimage of y is ?b
- $f(A) = \{y,z\}$

Question on Functions & Sets

If $f: A \to B$ and S is a subset of A, then

$$f(S) = \{f(s) | s \in S\}$$

$$f\{a,b,c,\} \text{ is ? } \{y,z\}$$

$$f\{c,d\} \text{ is ?}$$
 {z}

Injection

Definition: A function f is said to be *one-to-one*, or *injective*, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.

Surjection

Definition: A function f from A to B is called *onto* or *surjective*, if and only if for every element $a \in A$ there is an element $b \in B$ with f(a) = b. A function f is called a *surjection* if it is *onto*.

Bijection

Definition: A function f is a *one-to-one correspondence*, or a *bijection*, if it is both one-to-one and onto (surjective and injective).

Different Types of Correspondences

Definitions

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Examples

Example 1: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Solution: No, *f* is not onto because there is no integer *x* with $x^2 = -1$, for example.

Inverse Functions

Definition: Let f be a bijection from A to B. Then the *inverse* of f, denoted f^{-1} , is the function from B to A defined as

$$f^{-1}(y) = x \text{ iff } f(x) = y$$

No inverse exists unless *f* is a bijection. Why?

Inverse Functions

Examples

Example 1: Let f be the function from $\{a,b,c\}$ to $\{1,2,3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1. Is f invertible and if so what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f, so $f^{-1}(1) = c$, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

Example 2: Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if so, what is its inverse?

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence so $f^{-1}(y) = y - 1$.

Contd...

Example 3: Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = x^2$. Is f invertible, and if so, what is its inverse?

Solution: The function f is not invertible because it is not one-to-one .

Composition

Definition: Let $f: B \to C$, $g: A \to B$. The *composition of f with g*, denoted $f \circ g$ is the function from A to C defined by

$$f \circ g(x) = f(g(x))$$

Composition

Examples

Example 1: If
$$f(x)=x^2$$
 and $g(x)=2x+1$, then
$$f(g(x))=(2x+1)^2$$

$$g(f(x))=2x^2+1$$

Example 2: Let g be the function from the set $\{a,b,c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a,b,c\}$ to the set $\{1,2,3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of f and g, and what is the composition of g and f.

Solution: The composition $f \circ g$ is defined by

$$f \circ g (a) = f(g(a)) = f(b) = 2.$$

 $f \circ g (b) = f(g(b)) = f(c) = 1.$
 $f \circ g (c) = f(g(c)) = f(a) = 3.$

Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Contd..

Example 3: Let f and g be functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2.

What is the composition of f and g, and also the composition of g and f?

Solution:

$$f \circ g(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 $g \circ f(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11$

Graphs

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs $\{(a,b) \mid a \in A \text{ and } f(a) = b\}$.

Graph of f(n) = 2n + 1 from Z to Z

Graph of $f(x) = x^2$ from Z to Z

Important Functions

The *floor* function, denoted f(x) = |x|

$$f(x) = \lfloor x \rfloor$$

is the largest integer less than or equal to *x*.

The *ceiling* function, denoted

$$f(x) = \lceil x \rceil$$

is the smallest integer greater than or equal to x

Example:

$$\lceil 3.5 \rceil = 4 \qquad \lfloor 3.5 \rfloor = 3$$

$$\lceil -1.5 \rceil = -1 \quad |-1.5| = -2$$

Floor and Ceiling Functions

Graph of (a) Floor and (b) Ceiling Functions

Properties

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

(1a)
$$\lfloor x \rfloor = n$$
 if and only if $n \le x < n + 1$

(1b)
$$\lceil x \rceil = n$$
 if and only if $n - 1 < x \le n$

(1c)
$$\lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$

(1d)
$$\lceil x \rceil = n$$
 if and only if $x \le n < x + 1$

(2)
$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$(3a) \quad \lfloor -x \rfloor = -\lceil x \rceil$$

$$(3b) \quad \lceil -x \rceil = -\lfloor x \rfloor$$

$$(4a) \quad \lfloor x + n \rfloor = \lfloor x \rfloor + n$$

(4b)
$$\lceil x + n \rceil = \lceil x \rceil + n$$

A Classical Proof

Example: Prove that x is a real number, then

$$[2x] = [x] + [x + 1/2]$$

Solution: Let $x = n + \varepsilon$, where n is an integer and $0 \le \varepsilon < 1$.

Case 1: $\varepsilon < \frac{1}{2}$

- $-2x = 2n + 2\varepsilon$ and |2x| = 2n, since $0 \le 2\varepsilon < 1$.
- |x + 1/2| = n, since $x + \frac{1}{2} = n + (\frac{1}{2} + \varepsilon)$ and $0 \le \frac{1}{2} + \varepsilon < 1$.
- Hence, |2x| = 2n and |x| + |x + 1/2| = n + n = 2n.

Case 2: $\varepsilon \geq \frac{1}{2}$

- $-2x = 2n + 2\varepsilon = (2n + 1) + (2\varepsilon 1)$ and |2x| = 2n + 1, since $0 \le 2\varepsilon 1 < 1$.
- $-|x+1/2| = |n+(1/2+\varepsilon)| = |n+1+(\varepsilon-1/2)| = n+1$ since $0 \le \varepsilon 1/2 < 1$.
- Hence, |2x| = 2n + 1 and |x| + |x + 1/2| = n + (n + 1) = 2n + 1.