

Al Immersion Workshop

May 9, 2017 | W Seattle Hotel, Seattle, WA

De-mystifying Deep Learning

Anusua Trivedi Data Scientist

Email: antriv@microsoft.com

Twitter: @anurive

Talk Outline

- ☐ Deep Learning (DL)
- Deep Neural Networks (DNN)
- ☐ Types of DNNs
- □ DL Frameworks
- ☐ Use Cases

Traditional ML Vs DL

Traditional ML requires manual feature extraction/engineering

Deep learning can automatically learn features in data

Feature extraction for unstructured data is very difficult

Deep learning is largely a "black box" technique, updating learned weights at each layer

Why is DL popular?

- □ DL models has been here for a long time
 - Fukushima (1980) Neo-Cognitron
 - LeCun (1989) Convolutional Neural Network
- □ DL popularity grew recently
 - With growth of Big Data
 - With the advent of powerful GPUs

Deep Neural Network (DNN)

Common DNNs

- Deep Convolutional Neural Network (DCNN)
 - To extract representation from images
- Recurrent Neural Network (RNN)
 - To extract representation from sequential data
- Deep Belief Neural Network (DBN)
 - To extract hierarchical representation from a dataset

Supervised: ConvNets are everywhere

Face Verification, Taigman et al. 2014 (FAIR)

e.g. Google Photos search

[Goodfellow et al. 2014]

Self-driving cars

Convolution Layer

Convolving a 3 X 3 kernel over a 4 X 4 input

Pooling layer

- ☐ makes the representations smaller and more manageable
- operates over each activation map independently

Max Pooling

Single depth slice

X	•	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Fully Connected Layer (FC layer)

Transfer Learning & Fine-tuning

Transfer Learning

2. Small dataset:

1. Train on Imagenet

image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

feature extractor image conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool Freeze conv-512 these conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 Train softmax this

3. Medium dataset: finetuning

Transfer Learning

CNN Features off-the-shelf: an Astounding Baseline for Recognition [Razavian et al, 2014]

GPUs in Azure

Azure GPU DSVM

- ☐ Used Ubuntu 16.04 N-Series VM
- NC24 VM with 4 NVIDIA Tesla K80

NVIDIA-SMI 367.18 Driver Version: 367.18								
	an Temp Perf		Pwr:Usage/Cap		ge/Cap		Volatile Uncorr. ECC GPU-Util Compute M.	
0 N/A	Tesla 43C					80F9:00:00.0 Off 0MiB / 11439MiB		
1 N/A	Tesla 35C	K80	34W	/	Off 149W	9A76:00:00.0 Off OMIB / 11439MIB	0%	0 Default
						9CC7:00:00.0 Off 0MiB / 11439MiB		0 Default
						A5DB:00:00.0 Off OMIB / 11439MIB		0 Default
	esses:	PID	Type I	Pro	ocess n	ame		GPU Memory Usage

The Microsoft Cognitive Toolkit (CNTK)

- CNTK expresses (nearly) **arbitrary neural networks** by composing simple building blocks into complex **computational networks**, supporting relevant network types and applications.
- CNTK is production-ready: State-of-the-art accuracy, efficient, and scales to multi-GPU/multi-server.

Microsoft Cognitive Toolkit

- · ease of use
 - · what, not how
 - powerful stock library
- fast
 - · optimized for NVidia GPUs & libraries
 - · best-in-class multi-GPU/multi-server algorithms
- flexible
 - · powerful & composable Python and C++ API
- Linux and Windows
- · Development is completely in the open

Anatomy of a training job

how to: reader

```
Pythox script configure and execute...

reader

reader

network

network

- institute hours

- state specific

- statement
- s
```

- · automatic on-the-fly randomization important for large data sets
- readers compose, e.g. image → text caption

how to: network

])

P = model(x)

ce = cross_entropy(P, y)

Microsoft

how to: network


```
M = 40 ; N = 512 ; J = 9000 ; L = 2
x = Input(M) ; y = Input(J) # feat/labels

from layers import *
model = Sequential ([
        [ Dense(N, activation=sigmoid)
            for i in range(L) ],
        Dense(J, activation=softmax)

])
P = model(x)
ce = cross entropy(P, y)
```

Microsoft Cognitive Toolkit

- Github: https://github.com/Microsoft/CNTK
- · Wiki https://github.com/Microsoft/CNTK/wiki
- |SSUES: https://github.com/Microsoft/CNTK/issues
- cntkhelp@Microsoft.com

Hands-on

