Homework Report

General

Author: Ruslan Sabirov **Group:** B17-DS-02

Changes

I have changed provided code for reading to support reading testing data.

I have placed Training data in the structure like ./data/Final_Training/Images/{image_class}/{image_name}.

I have placed Testing data in the structure like ./data/Final_Testing/{image_name}.

I have added one more picture to the class 33 track 19 so that there are 30 pics for each track.

Problems

I have faced these problems:

- 1) Not enough RAM to store all the data (only 8 Gb). Solved by reducing amount of proceeding data, making functions in-place and clearing lists after usage.
- 2) Code for reading files was not compatible for testing data. Added additional parameter (indicator) to the function and proceed it according to the value of the indication.
- 3) Could not found right values for max_lenght and n_estimators. Did hyperparameters tuning.

Padding

Added zero (black) pixels to make weight and height the same.

Frequencies

Augmentation

I have done 3 transformations on random sample:

- 1. Rotation to the angle from -25 to 25. Physical traffic signs could be really rotated because of bad binding or strong wind or some accident.
- 2. Noising random pixels (salt & pepper approach). This could happen when there are some problems during printing or problems with camera.
- 3. Changing brightness (increased or decreased from 1 to 3 times). This could happen during taking a picture beacause of wrong focus or problems with lighting.

Evaluation

Overall accuracy: 0.6209241848369674

This is table shown by sklearn.metrics.classification_report() on testing data

	precision	recall	f1-score	support		21	0.12	0.07	0.09	1290
						22	0.46	0.62	0.53	1806
0	0.00	0.00	0.00	1634		23	0.37	0.35	0.36	2365
1	0.54	0.70	0.61	12943		24	0.17	0.04	0.06	1204
2	0.42	0.65	0.51	12599		25	0.64	0.73	0.68	8686
3	0.36	0.35	0.35	6450		26	0.55	0.52	0.53	2580
4	0.48	0.60	0.53	11008		27	0.00	0.00	0.00	1075
5	0.39	0.43	0.41	10750		28	0.63	0.43	0.51	2709
						29	0.82	0.34	0.48	1763
6	0.50	0.30	0.37	2322		30	0.38	0.16	0.22	2752
7	0.48	0.51	0.49	8213		31	0.54	0.49	0.51	4601
8	0.38	0.35	0.36	7396		32	0.45	0.24	0.31	903
9	0.82	0.71	0.76	7869		33	0.65	0.67	0.66	3354
10	0.87	0.88	0.87	11782		34	0.74	0.73	0.73	2365
11	0.76	0.81	0.79	7095		35	0.78	0.50	0.61	6579
12	0.86	0.84	0.85	12470		36	0.76	0.65	0.70	1849
13	0.87	0.95	0.91	12083		37	0.93	0.72	0.81	774
14	0.89	0.82	0.86	4816		38	0.73	0.80	0.77	11137
15	0.54	0.54	0.54	3612		39	1.00	0.62	0.77	1720
						40	0.85	0.82	0.84	1720
16	0.98	0.95	0.97	2666		41	0.33	0.19	0.24	1118
17	0.95	0.73	0.82	6794		42	0.53	0.30	0.38	1419
18	0.48	0.42	0.45	6106						
19	0.00	0.00	0.00	1075	accur	racy			0.62	214957
20	0.00	0.00	0.00	1505	macro	avg	0.56	0.50	0.52	214957
21	0.12	0.07	0.09	1290	weighted	avg	0.62	0.62	0.61	214957

Incorrectly classified

Most of the images that were misclassified had low quality, low brightness or were taken from perspective with big angle.

Experiments and analysis

I have run algorithm 10 times to make experiments. If was either augmented or non-augmented data and there were 5 kind of image sizes: 10x10, 15x15, 20x20, 25x25, 30x30.

Augmented approach performs better, but needs to much time to perform. Thus if time is limited, augmentation should be ommitted or performed much better.

At the beginning as image size increases, accuracy increases much. But at the end not so much.

