Übungszettel 7 — bis 28.09.2017

Beispiel 7.1 (Ungleichungen)

Berechne alle reellen Lösungen der folgenden Ungleichungen:

i)
$$3(x-2)(x+1) \ge 2x^2 + 3$$

ii)
$$|x^4 - 2x^2 - 8| < |x - 1|$$

iii)
$$\frac{1}{2x^2 + 3x - 5} \le \frac{2}{x^2 - 4x + 3} - \frac{3}{2x^2 - x - 15}$$

Beispiel 7.2 (Funktionen)

Sei f_k die Funktion

$$f_k: \begin{cases} D_k \to \mathbb{R} \\ x \mapsto \frac{1}{x^k} & k \in \mathbb{Z} \end{cases} \qquad D_k = \begin{cases} \mathbb{R} \setminus \{0\} & k \ge 1 \\ \mathbb{R} & k \le 0 \end{cases}$$

Untersuche f_k auf Monotonie, Beschränktheit, Injektivität und Surjektivität in Abhängigkeit von k.

Beispiel 7.3 (Grenzwerte I)

Untersuche die Funktionen f, g auf ihren Grenzwert im Punkt 0 (ohne Verwendung von Satz 8.11!).

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x + 4 \end{cases} \quad g: \begin{cases} \mathbb{R} \setminus \{-1\} \to \mathbb{R} \\ x \mapsto \frac{2}{x + 1} \end{cases}$$

Beispiel 7.4 (Grenzwerte II)

Sei $\lfloor x \rfloor$ die Gauß'sche Treppenfunktion von Übungszettel 6. Untersuche die Funktion f auf ihre Grenzwerte in den Punkten $x_0 \in \{0, \frac{1}{2}, \frac{3}{2}, 2\}$ (ohne Verwendung von Satz 8.11!).

$$f: \begin{cases} \mathbb{R}_{\geq 0} \to [0, 1) \\ x \mapsto x - \lfloor x \rfloor \end{cases}$$

Zusatz: Untersuche den Grenzwert für ein beliebiges $x \in \mathbb{R}_{\geq 0}$. Was kannst du über die Stetigkeit von f sagen?