Loading Data

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
df = pd.read_csv("application_record.csv")
df.head()
```

Out[2]:

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INC
0	5008804	М	Υ	Υ	0	
1	5008805	М	Υ	Y	0	
2	5008806	М	Y	Υ	0	
3	5008808	F	N	Y	0	
4	5008809	F	N	Υ	0	
4						>

In [3]:

df.shape

Out[3]:

(438557, 18)

In [4]:

```
df. info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 438557 entries, 0 to 438556

Data columns (total 18 columns): # Column Non-Null Count Dtype 0 ID 438557 non-null int64 1 CODE GENDER 438557 non-null object 2 438557 non-null object FLAG_OWN_CAR 3 FLAG_OWN_REALTY 438557 non-null object 438557 non-null int64 4 CNT CHILDREN 5 438557 non-null float64 AMT_INCOME_TOTAL 6 NAME INCOME TYPE 438557 non-null object 7 NAME_EDUCATION_TYPE 438557 non-null object 8 NAME FAMILY STATUS 438557 non-null object 9 NAME_HOUSING_TYPE 438557 non-null object 10 DAYS BIRTH 438557 non-null int64 DAYS EMPLOYED 438557 non-null int64 11 FLAG MOBIL 438557 non-null int64

438557 non-null int64

438557 non-null int64 438557 non-null int64

304354 non-null object

17 CNT_FAM_MEMBERS 438557 non-null float64 dtypes: float64(2), int64(8), object(8)

memory usage: 60.2+ MB

OCCUPATION TYPE

13 FLAG_WORK_PHONE

14 FLAG_PHONE

15 FLAG_EMAIL

In [5]:

16 17

```
credit_df = pd. read_csv("credit_record. csv")
credit df. head()
```

Out[5]:

ID MONTHS BALANCE STATUS

0	5001711	0	Χ
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

In [6]:

```
credit_df.shape
```

Out[6]:

(1048575, 3)

In [7]:

credit_df.info()

 $\mbox{\ensuremath{<}}$ class 'pandas.core.frame.DataFrame' $\mbox{\ensuremath{>}}$ RangeIndex: 1048575 entries, 0 to 1048574

Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	ID	1048575 non-null	int64
1	MONTHS_BALANCE	1048575 non-null	int64
2	STATUS	1048575 non-null	object

dtypes: int64(2), object(1)
memory usage: 24.0+ MB

Exploratory Data Analysis (EDA)

On File - Application Record.csv

In [8]:

df.describe()

Out[8]:

	ID	CNT_CHILDREN	AMT_INCOME_TOTAL	DAYS_BIRTH	DAYS_EMPLOYED
count	4.385570e+05	438557.000000	4.385570e+05	438557.000000	438557.000000
mean	6.022176e+06	0.427390	1.875243e+05	-15997.904649	60563.675328
std	5.716370e+05	0.724882	1.100869e+05	4185.030007	138767.799647
min	5.008804e+06	0.000000	2.610000e+04	-25201.000000	-17531.000000
25%	5.609375e+06	0.000000	1.215000e+05	-19483.000000	-3103.000000
50%	6.047745e+06	0.000000	1.607805e+05	-15630.000000	-1467.000000
75%	6.456971e+06	1.000000	2.250000e+05	-12514.000000	-371.000000
max	7.999952e+06	19.000000	6.750000e+06	-7489.000000	365243.000000
4					•

```
In [9]:
df.isnull().sum()
Out[9]:
                             0
ID
CODE GENDER
                             0
FLAG_OWN_CAR
                             0
FLAG OWN REALTY
                             0
CNT CHILDREN
                             ()
AMT INCOME TOTAL
NAME_INCOME_TYPE
                             0
NAME_EDUCATION_TYPE
                             0
NAME_FAMILY_STATUS
                             0
NAME HOUSING TYPE
                             0
DAYS BIRTH
                             0
DAYS_EMPLOYED
                             0
FLAG MOBIL
                             0
FLAG_WORK_PHONE
                             0
FLAG PHONE
                             0
FLAG EMAIL
                             0
OCCUPATION TYPE
                        134203
CNT_FAM_MEMBERS
                             0
dtype: int64
   [10]:
In
# dropping occupation type which has many null values
df.drop('OCCUPATION_TYPE', axis=1, inplace=True)
In [11]:
# Checking duplicates in 'ID' column
len(df['ID']) - len(df['ID'].unique())
Out[11]:
47
In [12]:
# Dropping duplicate entries from ID column
df = df.drop_duplicates('ID', keep='last')
In [13]:
# Checking Non-Numerical Columns
cat_columns = df.columns[(df.dtypes =='object').values].tolist()
{\tt cat\_columns}
Out[13]:
['CODE GENDER'
 'FLAG OWN CAR',
 'FLAG OWN REALTY',
 'NAME INCOME TYPE',
 'NAME EDUCATION TYPE',
 'NAME_FAMILY_STATUS',
 'NAME HOUSING TYPE']
```

In [14]:

```
# Checking Numerical Columns
df.columns[(df.dtypes !='object').values].tolist()
Out[14]:
```

```
['ID',
'CNT_CHILDREN',
'AMT_INCOME_TOTAL',
'DAYS_BIRTH',
'DAYS_EMPLOYED',
'FLAG_MOBIL',
'FLAG_WORK_PHONE',
'FLAG_PHONE',
'FLAG_EMAIL',
'CNT_FAM_MEMBERS']
```

```
In [15]:
```

```
# Checking unique values from Categorical Columns
for i in df.columns[(df.dtypes == 'object').values].tolist():
    print(i, '\n')
    print(df[i].value counts())
    print ('--
CODE GENDER
F
     294412
M
     144098
Name: CODE GENDER, dtype: int64
FLAG_OWN_CAR
     275428
N
Y
     163082
Name: FLAG_OWN_CAR, dtype: int64
FLAG_OWN_REALTY
Y
     304043
N
     134467
Name: FLAG_OWN_REALTY, dtype: int64
NAME_INCOME_TYPE
Working
                         226087
Commercial associate
                         100739
Pensioner
                          75483
State servant
                          36184
Student
                             17
Name: NAME_INCOME_TYPE, dtype: int64
NAME_EDUCATION_TYPE
Secondary / secondary special
                                  301789
Higher education
                                  117509
                                   14849
Incomplete higher
Lower secondary
                                    4051
                                     312
Academic degree
Name: NAME EDUCATION TYPE, dtype: int64
NAME_FAMILY_STATUS
                         299798
Married
Single / not married
                          55268
Civil marriage
                          36524
Separated
                          27249
Widow
                          19671
Name: NAME_FAMILY_STATUS, dtype: int64
NAME_HOUSING_TYPE
House / apartment
                        393788
With parents
                         19074
Municipal apartment
                         14213
                          5974
```

3922

Rented apartment

Office apartment

```
Co-op apartment 1539
Name: NAME_HOUSING_TYPE, dtype: int64
```

In [16]:

```
# Checking unique values from Numerical Columns
df['CNT_CHILDREN'].value_counts()
```

Out[16]:

```
0
       304038
1
        88518
2
        39879
3
         5430
4
          486
          133
5
7
             9
             5
9
             4
6
12
             4
14
             3
19
             1
```

Name: CNT_CHILDREN, dtype: int64

In [17]:

```
# Checking Min , Max values from 'DAYS_BIRTH' column
print('Min DAYS_BIRTH :', df['DAYS_BIRTH'].min(),'\nMax DAYS_BIRTH :', df['DAYS_BIRTH'].max())
```

Min DAYS_BIRTH : -25201 Max DAYS_BIRTH : -7489

In [18]:

```
# Converting 'DAYS_BIRTH' values from Day to Years
df['DAYS_BIRTH'] = round(df['DAYS_BIRTH']/-365,0)
df.rename(columns={'DAYS_BIRTH':'AGE_YEARS'}, inplace=True)
# Checking unique values greater than 0
df[df['DAYS_EMPLOYED']>0]['DAYS_EMPLOYED'].unique()
```

Out[18]:

array([365243])

In [19]:

As mentioned in document, if 'DAYS_EMPLOYED' is positive no, it means person currently unemployed, df['DAYS_EMPLOYED'].replace(365243, 0, inplace=True)

In [20]:

```
# Converting 'DAYS_EMPLOYED' values from Day to Years
df['DAYS_EMPLOYED'] = abs(round(df['DAYS_EMPLOYED']/-365,0))
df.rename(columns={'DAYS_EMPLOYED': 'YEARS_EMPLOYED'}, inplace=True)
```

```
In [21]:
df['FLAG MOBIL'].value counts()
Out[21]:
     438510
Name: FLAG_MOBIL, dtype: int64
   [22]:
In
# As all the values in column are 1, hence dropping column
df.drop('FLAG_MOBIL', axis=1, inplace=True)
In [23]:
df['FLAG_WORK_PHONE'].value_counts()
Out [23]:
     348118
1
      90392
Name: FLAG WORK PHONE, dtype: int64
In [24]:
# This column only contains 0 & 1 values for Mobile no submitted, hence dropping column
df.drop('FLAG WORK PHONE', axis=1, inplace=True)
In [25]:
df['FLAG_PHONE'].value_counts()
Out[25]:
()
     312323
     126187
Name: FLAG_PHONE, dtype: int64
In [26]:
# This column only contains 0 & 1 values for Phone no submitted, hence dropping column
df.drop('FLAG_PHONE', axis=1, inplace=True)
In [27]:
df['FLAG EMAIL'].value counts()
Out [27]:
     391062
      47448
Name: FLAG_EMAIL, dtype: int64
In [28]:
# This column only contains 0 & 1 values for Email submitted, hence dropping column
df.drop('FLAG EMAIL', axis=1, inplace=True)
```

```
In [29]:
```

```
df['CNT_FAM_MEMBERS'].value_counts()
Out[29]:
2.0
        233867
         84483
1.0
3.0
         77119
4.0
         37351
5.0
          5081
           459
6.0
           124
7.0
             9
9.0
             5
11.0
8.0
             4
             4
14.0
             3
15.0
20.0
Name: CNT_FAM_MEMBERS, dtype: int64
```

In [30]:

df. head()

Out[30]:

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INC
0	5008804	М	Υ	Υ	0	
1	5008805	М	Υ	Υ	0	
2	5008806	М	Υ	Y	0	
3	5008808	F	N	Y	0	
4	5008809	F	N	Υ	0	
4						•

Visualization

In [31]:

```
#create plot to detect outliers
sns.boxplot(df['CNT_CHILDREN'])
```

Out[31]:

<AxesSubplot:xlabel='CNT_CHILDREN'>

In [32]:

```
sns.boxplot(df['AMT_INCOME_TOTAL'])
```

Out[32]:

<AxesSubplot:xlabel='AMT_INCOME_TOTAL'>

In [33]:

sns.boxplot(df['AGE_YEARS'])

Out[33]:

<AxesSubplot:xlabel='AGE_YEARS'>

In [34]:

sns.boxplot(df['YEARS_EMPLOYED'])

Out[34]:

<AxesSubplot:xlabel='YEARS_EMPLOYED'>


```
In [35]:
```

```
sns.boxplot(df['CNT_FAM_MEMBERS'])
```

Out[35]:

<AxesSubplot:xlabel='CNT_FAM_MEMBERS'>

Data cleansing (Removing Outliers)

```
In [36]:
```

```
high_bound = df['CNT_CHILDREN'].quantile(0.999)
print('high_bound :', high_bound)
low_bound = df['CNT_CHILDREN'].quantile(0.001)
print('low_bound :', low_bound)
```

high_bound : 4.0 low_bound : 0.0

In [37]:

```
df = df[(df['CNT_CHILDREN']>=low_bound) & (df['CNT_CHILDREN']<=high_bound)]
```

In [38]:

```
high_bound = df['AMT_INCOME_TOTAL'].quantile(0.999)
print('high_bound :', high_bound)
low_bound = df['AMT_INCOME_TOTAL'].quantile(0.001)
print('low_bound :', low_bound)
```

high_bound : 990000.0 low_bound : 36000.0

```
In [39]:
```

```
df = df[(df['AMT_INCOME_TOTAL']>=low_bound) & (df['AMT_INCOME_TOTAL']<=high_bound)]</pre>
```

In [40]:

```
high_bound = df['YEARS_EMPLOYED'].quantile(0.999)
print('high_bound :', high_bound)
low_bound = df['YEARS_EMPLOYED'].quantile(0.001)
print('low_bound :', low_bound)
```

high_bound : 40.0 low_bound : 0.0

In [41]:

```
df = df[(df['YEARS_EMPLOYED']>=low_bound) & (df['YEARS_EMPLOYED']<=high_bound)]</pre>
```

In [42]:

```
high_bound = df['CNT_FAM_MEMBERS'].quantile(0.999)
print('high_bound :', high_bound)
low_bound = df['CNT_FAM_MEMBERS'].quantile(0.001)
print('low_bound :', low_bound)
```

high_bound : 6.0 low bound : 1.0

In [43]:

```
df = df[(df['CNT_FAM_MEMBERS']>=low_bound) & (df['CNT_FAM_MEMBERS']<=high_bound)]
```

In [44]:

df. head()

Out [44]:

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INC
0	5008804	М	Υ	Υ	0	
1	5008805	М	Υ	Y	0	
2	5008806	М	Y	Υ	0	
3	5008808	F	N	Y	0	
4	5008809	F	N	Υ	0	
4						•

On File - Credit Record.csv

```
In [45]:
```

```
credit_df.head()
```

Out[45]:

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	Х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С

In [46]:

```
df.isnull().sum()
```

Out[46]:

```
ID
                        0
CODE GENDER
                        0
FLAG_OWN_CAR
                        0
FLAG_OWN_REALTY
                        0
CNT_CHILDREN
                        0
AMT_INCOME_TOTAL
                        0
NAME_INCOME_TYPE
                        0
NAME EDUCATION TYPE
NAME_FAMILY_STATUS
                        0
NAME_HOUSING_TYPE
                        0
                        0
AGE_YEARS
YEARS_EMPLOYED
                        0
CNT FAM MEMBERS
                        0
dtype: int64
```

In [47]:

```
credit_df['STATUS'].value_counts()
```

Out[47]:

```
C
     442031
0
     383120
X
     209230
1
      11090
5
       1693
2
        868
3
        320
        223
4
Name: STATUS, dtype: int64
```

In [48]:

```
# categorizing 'STATUS' column to binary classification 0 : Good Client and 1 : bad client
credit_df['STATUS'].replace(['C', 'X'],0, inplace=True)
```

```
In [49]:
```

```
credit_df['STATUS'].replace(['2','3','4','5'],1, inplace=True)
```

In [50]:

```
credit_df['STATUS'] = credit_df['STATUS'].astype('int')
```

In [51]:

```
credit_df. info()
```

 $\mbox{\ensuremath{$<$}}$ class 'pandas.core.frame.DataFrame' $\mbox{\ensuremath{$>$}}$ RangeIndex: 1048575 entries, 0 to 1048574

Data columns (total 3 columns):

#	Column	Non-Null Count	Dtype
0	ID	1048575 non-null	int64
1	MONTHS_BALANCE	1048575 non-null	int64
2	STATUS	1048575 non-null	int64
.1 4	+ :-+G1(2)		

dtypes: int64(3) memory usage: 24.0 MB

In [52]:

```
credit_df['STATUS'].value_counts(normalize=True)*100
```

Out[52]:

0 98. 646353 1 1. 353647

Name: STATUS, dtype: float64

In [53]:

```
credit_df_trans = credit_df.groupby('ID').agg(max).reset_index()
```

In [54]:

```
credit_df_trans.drop('MONTHS_BALANCE', axis=1, inplace=True)
credit_df_trans.head()
```

Out[54]:

	ID	STATUS
0	5001711	0
1	5001712	0
2	5001713	0
3	5001714	0
4	5001715	0

```
In [55]:
credit_df_trans['STATUS'].value_counts(normalize=True)*100

Out[55]:
0    88.365771
1    11.634229
Name: STATUS, dtype: float64
```

Merging Dataframes

```
In [56]:
```

```
# merging the two datasets based on 'ID'
data = pd.merge(df, credit_df_trans, on='ID', how='inner')
data.head()
```

Out[56]:

	ID	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INC
0	5008804	М	Υ	Υ	0	
1	5008805	М	Υ	Y	0	
2	5008806	М	Y	Υ	0	
3	5008808	F	N	Υ	0	
4	5008809	F	N	Y	0	
4						•

```
In [57]:
```

```
data. shape
```

Out[57]:

(36326, 14)

In [58]:

```
data.drop('ID', axis=1, inplace=True)
```

In [59]:

```
# checking if there are still duplicate rows in Final Dataframe
len(data) - len(data.drop_duplicates())
```

Out[59]:

25268

In [60]:

```
# Dropping duplicate records
data = data.drop_duplicates()
data.reset_index(drop=True ,inplace=True)
```

In [61]:

data. shape

Out[61]:

(11058, 13)

In [62]:

data.isnull().sum()

Out[62]:

CODE GENDER FLAG_OWN_CAR 0 FLAG_OWN_REALTY 0 CNT_CHILDREN 0 AMT_INCOME_TOTAL 0 NAME INCOME TYPE 0 NAME_EDUCATION_TYPE 0 NAME_FAMILY_STATUS 0 NAME_HOUSING_TYPE 0 AGE_YEARS 0 YEARS_EMPLOYED 0 CNT FAM MEMBERS 0 **STATUS** 0 dtype: int64

In [63]:

data['STATUS'].value_counts(normalize=True)*100

Out[63]:

0 78. 513294 1 21. 486706

Name: STATUS, dtype: float64

Feature Engineering

In [64]:

data. head()

Out[64]:

	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOT
0	М	Υ	Y	0	42750(
1	М	Y	Υ	0	11250(
2	F	N	Υ	0	27000(
3	F	N	Υ	0	283500
4	М	Υ	Y	0	27000(
4					+

In [65]:

```
cat_columns = data.columns[(data.dtypes =='object').values].tolist()
cat_columns
```

Out [65]:

```
['CODE_GENDER',
'FLAG_OWN_CAR',
'FLAG_OWN_REALTY',
'NAME_INCOME_TYPE',
'NAME_EDUCATION_TYPE',
'NAME_FAMILY_STATUS',
'NAME_HOUSING_TYPE']
```

In [66]:

Out[66]:

	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOT
0	1	1	1	0	427500
1	1	1	1	0	112500
2	0	0	1	0	270000
3	0	0	1	0	283500
4	1	1	1	0	270000
4					•

In [67]:

```
for col in cat columns:
   print(col , " : ", globals()['LE {}'.format(col)].classes )
            : ['F' 'M']
CODE GENDER
             : ['N' 'Y']
FLAG OWN CAR
                 : ['N' 'Y']
FLAG_OWN_REALTY
NAME INCOME TYPE : ['Commercial associate' 'Pensioner' 'State servant' 'Student'
'Working']
NAME_EDUCATION_TYPE : ['Academic degree' 'Higher education' 'Incomplete higher'
'Lower secondary' 'Secondary / secondary special']
NAME FAMILY STATUS : ['Civil marriage' 'Married' 'Separated' 'Single / not marrie
d''Widow']
NAME_HOUSING_TYPE : ['Co-op apartment' 'House / apartment' 'Municipal apartment'
 'Office apartment' 'Rented apartment' 'With parents']
```

In [68]:

data.corr()

Out[68]:

	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDF
CODE_GENDER	1.000000	0.348307	-0.052647	0.052
FLAG_OWN_CAR	0.348307	1.000000	-0.000126	0.087
FLAG_OWN_REALTY	-0.052647	-0.000126	1.000000	0.001
CNT_CHILDREN	0.052351	0.087407	0.001740	1.000
AMT_INCOME_TOTAL	0.199358	0.218026	0.036549	0.027
NAME_INCOME_TYPE	0.072725	0.030008	-0.034673	0.086
NAME_EDUCATION_TYPE	0.013080	-0.085706	0.003771	-0.025
NAME_FAMILY_STATUS	-0.075315	-0.125707	-0.011871	-0.166
NAME_HOUSING_TYPE	0.052185	-0.011203	-0.178070	0.010
AGE_YEARS	-0.157507	-0.106634	0.121351	-0.326
YEARS_EMPLOYED	-0.043657	0.006570	-0.011665	0.033
CNT_FAM_MEMBERS	0.078853	0.138978	0.009698	0.884
STATUS	0.002039	-0.003826	-0.022887	0.004
4				•

In [69]:

```
top_corr_features = data.corr().index
plt.figure(figsize=(20, 20))
sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdY1Gn")
```

Out[69]:

<AxesSubplot:>


```
In [70]:
features = data.drop(['STATUS'], axis=1)
label = data['STATUS']
In [71]:
```

Out[71]:

features. head()

	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOT
0	1	1	1	0	427500
1	1	1	1	0	112500
2	0	0	1	0	270000
3	0	0	1	0	283500
4	1	1	1	0	270000
4					•

In [73]:

label. head()

Out[73]:

Name: STATUS, dtype: int64

Machine Learning Model

```
In [74]:
```

In [75]:

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
log_model = LogisticRegression()
log_model.fit(x_train, y_train)
print('Logistic Model Accuracy: ', log_model.score(x_test, y_test)*100, '%')
prediction = log_model.predict(x_test)
print('\nConfusion matrix:')
print(confusion_matrix(y_test, prediction))
print('\nClassification_report(y_test, prediction))
```

Logistic Model Accuracy : 78.84267631103074 %

Confusion matrix :

[[1744 0] [468 0]]

Classification report:

	precision	recal1	f1-score	support
0 1	0.79 0.00	1.00 0.00	0.88 0.00	1744 468
accuracy macro avg weighted avg	0. 39 0. 62	0. 50 0. 79	0. 79 0. 44 0. 70	2212 2212 2212

Balancing dataset

```
In [77]:
```

```
# scaling all features
from sklearn.preprocessing import MinMaxScaler
MMS = MinMaxScaler()
x_train_scaled = pd. DataFrame(MMS.fit_transform(x_train), columns=x_train.columns)
x_test_scaled = pd. DataFrame(MMS.transform(x_test), columns=x_test.columns)
```

```
In [78]:
# adding samples to minority class using SMOTE
from imblearn.over_sampling import SMOTE
oversample = SMOTE()
x_train_oversam, y_train_oversam = oversample.fit_resample(x_train_scaled, y_train)
x_test_oversam, y_test_oversam = oversample.fit_resample(x_test_scaled, y_test)
In [79]:
# Original majority and minority class
y_train.value_counts(normalize=True)*100
Out[79]:
     78.430929
     21.569071
Name: STATUS, dtype: float64
In [80]:
# after using SMOTE
y_train_oversam.value_counts(normalize=True)*100
```

Out[80]:

0 50. 0 1 50. 0

Name: STATUS, dtype: float64

Machine Learning Model after Balancing

In [81]:

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification report, accuracy score, confusion matrix
log model = LogisticRegression()
log model. fit (x train oversam, y train oversam)
print('Logistic Model Accuracy : ', log_model.score(x_test_oversam, y_test_oversam)*100, '%')
prediction = log_model.predict(x_test_oversam)
print('\nConfusion matrix :')
print(confusion_matrix(y_test_oversam, prediction))
print('\nClassification report:')
print(classification report(y test oversam, prediction))
Logistic Model Accuracy: 49.856651376146786 %
```

Confusion matrix:

[[968 776] [973 771]]

Classification report:

	precision	recal1	f1-score	support
0 1	0. 50 0. 50	0. 56 0. 44	0. 53 0. 47	1744 1744
accuracy macro avg weighted avg	0. 50 0. 50	0. 50 0. 50	0. 50 0. 50 0. 50	3488 3488 3488

The effect of the over-sampled (SMOTE) model is not as good as that of the previous one, so this model is not used here and the previous model is still used