

Geralmente, os vetores são representados no espaço de coordenadas euclidiano R^2 e R^3 , ou simplesmente V^2 e V^3 . O conceito de vetor geométrico nesses espaços é sempre realizado da mesma forma, o que diferencia um do outro é a riqueza de aplicações existentes no espaço R^3 . No espaço R^3 um vetor \vec{u} é definido pelo terno ordenado (a, b, c), denotado por $\vec{u} = (a,b,c)$.

Como um ponto no espaço também é representado por um terno ordenado, a diferença entre um ponto e um vetor é conceitual, além do fato de que um ponto é geralmente definido formalmente por uma letra maiúscula do alfabeto, como $Q=(a,\,b,\,c)$, e um vetor é formalmente definido por uma letra do alfabeto com uma seta sobre a letra, como $\vec{u}=(a,b,c)$ ou $\vec{F}=(a,b,c)$.

Um vetor representa um conjunto de segmentos de reta que possuem a mesma orientação/direção, mesmo sentido, mesma intensidade e pode ser posicionado em qualquer lugar do espaço, desde que sua direção, sentido e intensidade sejam preservados.

Quando a origem de um vetor ou de um segmento orientado não é a origem do sistema R³, realizamos a diferença entre a sua extremidade e a origem. Por exemplo, se um vetor \vec{u} tem origem no ponto P = (2, 1, 4) e extremidade no ponto Q = (-1, 3, 10), ele é dado por:

$$\vec{u} = Q - P = (-1, 3, 10) - (2, 1, 4) \Rightarrow \vec{u} = (-3, 2, 6)$$

Sendo os vetores e segmentos orientados formados por ternos ordenados (a, b, c) é possível calcular o seu tamanho/intensidade/norma através da seguinte fórmula

$$\|\vec{v}\| = \|\overline{AB}\| = \sqrt{a^2 + b^2 + c^2}$$

Por exemplo, o tamanho do vetor $\vec{u} = (-3, 2, 6)$ é $\|\vec{u}\| = \sqrt{(-3)^2 + 2^2 + 6^2}$

$$\Rightarrow \|\vec{u}\| = \sqrt{9 + 4 + 36} \Rightarrow \|\vec{u}\| = \sqrt{49} \Rightarrow \|\vec{u}\| = 7 u. m.$$
 (unidade de medida).

$$\overline{AB} = B - A \Rightarrow (2, -1, 0) - (1, -2, 2) = (1, 1, -2)$$

$$\overline{DC} = C - D \Rightarrow (3, -2, 2) - (4, -1, 0) = (-1, -1, 2)$$

$$\overline{HG} = G - H \Rightarrow (9, -2, 0) - (10, -1, -2) = (-1, -1, 2)$$

$$\overline{IJ} = J - I \Rightarrow (13, -1, 2) - (13, -2, 2) = (0, 1, 0)$$

Ainda em relação a figura 1 e as coordenadas dos segmentos orientados obtidos é possível observar que o segmento orientado $\overline{AB}=(1,1,-2)$ é o oposto dos segmentos \overline{DC} e \overline{HG} , pois todas as coordenados do segmento \overline{AB} possuem sinais contrários as coordenadas dos segmentos \overline{DC} e \overline{HG} .

Existem grandezas, chamadas escalares, que são caracterizadas por um número e pela unidade correspondente: 100 Km, 33 m de comprimento, 500 ml de leite.

Essas grandezas são chamadas **vetores**.

• Equipolência

- Mesmo Comprimento
- Mesma Direção
- Mesmo Sentido

ou

- Ambos são nulos

Notação: (A, B) ~ (C, D)

Observando a Figura 1 e as coordenadas dos segmentos orientados notamos que $\overline{DC} \sim \overline{HG}$.

Segmentos paralelos

Dois segmentos orientados que possuem a mesma direção (AB // CD).

• Classe de equipolência

Conjunto de todos os segmentos orientados que são equipolentes entre si.

Observando a Figura 1 e as coordenadas dos segmentos orientados notamos

que os segmentos orientados \overline{DC} e \overline{HG} pertencem à mesma classe de equipolência.

Vetor

Um vetor é uma classe de equipolência de segmentos orientados de E³.

Observando a Figura 1 e as coordenadas dos segmentos orientados notamos

que o vetor \vec{u} representa os segmentos orientados \overline{DC} , \overline{HG} e todos os outros segmentos orientados que possuem mesmo sentido, mesma direção e mesmo comprimento.

Vetor nulo

Vetor representado por um segmento orientado nulo.

Vetores paralelos

Vetores não nulos que possuem a mesma direção.

Vetor oposto

Vetor que difere-se de outro vetor apenas por possuir sentido contrário. Ex.: Oposto de \overline{AB} : \overline{BA} = - \overline{AB}

Analisando a Figura 1, observamos que o vetor \vec{u} é o oposto do vetor que representa o segmento orientado \overline{AB} , pois as coordenadas de $\vec{u}=(-1,-1,2)$ são opostas as coordenadas do vetor que representa $\overline{AB}=(1,1,-2)$.

Para definir em V³ a operação de adição, deve-se tomar o cuidado de escolher a origem do segundo termo da soma coincidindo com a extremidade do primeiro termo.

Sendo o vetor $\vec{u}=AB=B-A$ e o vetor $\vec{v}=BC=C-B$, teremos $\vec{u}=(a_1,a_2,a_3)\ \ \text{e}\ \ \vec{v}=(b_1,b_2,b_3)\ .$ Somando esses vetores, teremos $\vec{u}+\vec{v}=(a_1+b_1,a_2+b_2,a_3+b_3)\ .$

Por exemplo: Dado um vetor \vec{u} com origem no ponto F = (2, 1, 4) e extremidade em G = (-1, 3, 10), \vec{u} = G - F = (-1, 3, 10) - (2, 1, 4) \Rightarrow \vec{u} = (-3, 2, 6). Dado um vetor \vec{v} com origem no ponto P = (-1, 0, 1) e extremidade em Q = (-1, 2, -1), \vec{v} = Q - P \Rightarrow \vec{v} = (-1, 2, -1) - (-1, 0, 1) \Rightarrow \vec{v} = (0, 2, -2). Sendo $\vec{x} = \vec{u} + \vec{v} \Rightarrow \vec{x} = (-3, 4, 4)$.

$$P' = O + \vec{T} \Rightarrow \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} \Rightarrow P' = \begin{bmatrix} x + t_1 \\ y + t_2 \\ z + t_3 \end{bmatrix}$$

Exemplo de aplicação prática: Na figura 2, uma pessoa está sendo empurrada pelos ombros por outras duas pessoas nas direções, forças e sentidos expressos pelos vetores $ec{F}_{\!\scriptscriptstyle 1}$ e $ec{F}_{\!\scriptscriptstyle 2}$. Considerando hipoteticamente que a pessoa que está sendo empurrada encontra-se espacialmente posicionada no ponto A = (0, 0, -1) e os vetores \vec{F}_1 = (2, 4, 4) e \vec{F}_2 = (4, 6, 2), é possível afirmar qual será a nova posição da pessoa após os empurrões e as intensidades dos empurrões. O vetor vermelho na figura representa simbolicamente o deslocamento resultante da aplicação das forças \vec{F}_1 e \vec{F}_2 , tendo sido obtido através da adição entre os dois vetores. Note que, para obter este vetor, a extremidade do vetor \vec{F}_1 coincide com a origem do vetor \vec{F}_2 possibilitando a realização da operação de adição.

Este deslocamento (fator de translação) é dado por

$$\vec{T} = \vec{F}_1 + \vec{F}_2 \Rightarrow \vec{T} = (2, 4, 4) + (4, 6, 2) = (6, 10, 6)$$

A nova posição do corpo no espaço, será dado por

$$A' = A + \vec{T} \Rightarrow \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 6 \\ 10 \\ 6 \end{bmatrix} \Rightarrow P' = \begin{bmatrix} 0+6 \\ 0+10 \\ -1+6 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \\ 5 \end{bmatrix}$$

$$\|\vec{F}_1\| = \sqrt{2^2 + 4^2 + 4^2} \implies \sqrt{4 + 16 + 16} = \sqrt{36} \implies \|\vec{F}_1\| = 6u.m.$$

$$\|\vec{F}_2\| = \sqrt{4^2 + 6^2 + 2^2} \Rightarrow \sqrt{16 + 36 + 4} = \sqrt{56} \Rightarrow \|\vec{F}_2\| = 7,48u.m.$$

$$\|\vec{T}\| = \sqrt{6^2 + 10^2 + 6^2} \implies \sqrt{36 + 100 + 36} = \sqrt{172} \implies \|\vec{T}\| = 13,11u.m.$$

u.m. (unidade de medida)

• "Regra do paralelogramo"

Auxilia na operação de soma de dois vetores. Basta tomar representantes de \vec{u} e \vec{v} com a mesma origem e construir o paralelogramo.

Esta multiplicação é definida como uma operação "externa" em V^3 , onde um número α multiplica um vetor \vec{u} .

- Se α = 0 ou \vec{u} = $\vec{0}$, então α \vec{u} = $\vec{0}$ (por definição).
- Se $\alpha \neq 0$ e $\vec{u} \neq \vec{0}$, então $\alpha \ \vec{u}$ é caracterizado por

Figura 2 - Demonstração de proporcionalidade e paralelismo entre vetores.

Dada a Figura 2, sendo o vetor $\vec{u}=(3,0,0)$ e o vetor $2 \cdot \vec{u}=2 \cdot (3,0,0) \Rightarrow$ (6, 0, 0) é **paralelo** ao vetor \vec{u} , também sendo representado por $\vec{u}//\vec{v}$, pois eles

são **proporcionais**. Uma regra para auxiliar na verificação de proporcionalidade entre vetores e segmentos orientados é fazer

$$\vec{u} = \alpha \cdot \vec{v}$$
, ou seja, $(x_1, y_1, z_1) = \alpha \cdot (x_2, y_2, z_2) \Rightarrow \alpha = \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$

Sendo $\vec{u} = (3, 0, 0) \text{ e } \vec{v} = (6, 0, 0), \ \vec{u} = \alpha \cdot \vec{v} \Rightarrow (3, 0, 0) = \alpha \cdot (6, 0, 0) \Rightarrow$

 $\alpha = \frac{3}{6} = \frac{0}{0} = \frac{0}{0}$. Como não existe divisão por 0, as frações onde ocorrem essas

divisões devem ser desconsideradas. Portanto, $\alpha = \frac{3}{6} \Rightarrow \alpha = \frac{1}{2}$, consequentemente

 \vec{u} e \vec{v} são proporcionais, pois ao multiplicar o vetor \vec{v} por $\frac{1}{2}$, obtém-se o vetor \vec{u} .

Quando dois vetores são paralelos podemos obter as coordenadas de um

vetor em função das coordenadas do outro, sendo $ec{u}=lpha\cdotec{v}$ ou $ec{v}=rac{ec{u}}{lpha}$. Esta relação

de DEPENDÊNCIA entre dois vetores paralelos é chamada de **Dependência Linear**.

No exemplo citado anteriormente, os vetores $\vec{u}=(3,0,0)$ e $\vec{v}=(6,0,0)$ são **Linearmente Dependentes (L.D.)**.

Quando dois vetores são concorrentes, NÃO podemos obter as coordenadas de um vetor em função das coordenadas do outro, sendo $\vec{u} \neq \alpha \cdot \vec{v}$ ou $\vec{v} \neq \frac{\vec{u}}{\alpha}$. Esta relação de INDEPENDÊNCIA entre dois vetores concorrentes é chamada de Independência Linear.

No exemplo citado anteriormente, os vetores $\vec{u}=(3,-1,3)$ e $\vec{v}=(6,2,4)$ são **Linearmente Independentes (L.I.)**, pois eles não são proporcionais.

Quando **três vetores** estão contidos no **mesmo plano**, eles são chamados de vetores **Linearmente Dependentes (L.D.)**, pois um vetor pode ser obtido através de **combinação linear em função dos outros dois vetores**.

Por exemplo, dados os vetores $\vec{u}=(1,-1,2),\ \vec{v}=(0,1,3)$ e $\vec{w}=(4,-3,11),$ é possível verificar se esses vetores são coplanares realizando o seguinte cálculo

$$Det(\vec{u}, \vec{v}, \vec{w}) = 0 \Rightarrow \begin{vmatrix} 1 & -1 & 2 & 1 & -1 \\ 0 & 1 & 3 & 0 & 1 & = 0 \\ 4 & -3 & 11 & 4 & -3 \end{vmatrix}$$
$$\Rightarrow (11-12+0) + ((-1)\cdot0+(-1)\cdot(-9)+(-1)\cdot(8))$$

$$\Rightarrow$$
 (-1) + (9-8) \Rightarrow (-1) + (1) = 0

Portanto $(\vec{u}, \vec{v}, \vec{w})$ são coplanares.

$$\vec{u} \neq \alpha \cdot \vec{v} + \beta \cdot \vec{w} \implies (x_1, y_1, z_1) \neq \alpha \cdot (x_2, y_2, z_2) + \beta \cdot (x_3, y_3, z_3)$$
ou
$$Det(\vec{u}, \vec{v}, \vec{w}) \neq 0 \implies \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} \neq 0$$

Quando dois vetores se cruzam, eles são chamados de Linearmente Independentes (L.I.), pois NÃO é possível obter um vetor em função dos outros dois vetores.

Por exemplo, dados os vetores $\vec{u} = (1, 0, 0), \ \vec{v} = (0, 1, 0)$ e $\vec{w} = (0, 0, 1)$, é possível afirmar que esses vetores NÃO são coplanares, pois

$$Det(\vec{u}, \vec{v}, \vec{w}) \neq 0 \implies \begin{vmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{vmatrix}$$

$$\Rightarrow (1+0+0) + (-0-0-0)$$

$$\Rightarrow 1$$

$$Det(\vec{u}, \vec{v}, \vec{w}) \neq 0 \implies 1 \neq 0$$

Portanto $(\vec{u}, \vec{v}, \vec{w})$ NÃO são coplanares, ou seja, o vetor \vec{u} fura o plano formado pelos vetores \vec{v} e \vec{w} ; o vetor \vec{v} fura o plano formado pelos vetores \vec{u} e \vec{w} ; o vetor \vec{w} fura o plano formado pelos vetores \vec{u} e \vec{v} .