

Information Retrieval

Feedback Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Exploiting interactions

Exploiting interactions

Eliciting feedback

Eliciting feedback

Explicit feedback

- Explicit relevance judgments
- Reliable, but costly

Implicit feedback

- Positive-only "judgments" (e.g., clicks, dwell time)
- Noisy and biased, but cheap and abundant

Simulating feedback

Simulating feedback

Pseudo-relevance feedback

- Top-k results are assumed to be relevant
- Very sensitive to ranking quality, but automatic

Exploiting feedback

Machine-learned ranking

- User feedback can be treated as supervision for learning effective ranking models
- See classes on *Learning to Rank*

Exploiting feedback

Query expansion

 Feedback documents can help enhance the user's query by providing related expansion terms

Example: [information retrieval]

 Relevant or pseudo-relevant documents may provide related terms like "search engine", "ranking"

Feedback in vector space models

General idea: query modification

- Adding new (weighted) terms
- Adjusting weights of old terms

Rocchio (1971): most well-known approach

Also effective and robust in practice

Rocchio method

Rocchio method

Standard operation in vector space

Rocchio example

 $V = \{news, about, presidential, campaign, food, text\}$

$$\vec{q} = \{1, 1, 1, 1, 0, 0\}$$

		{	news	about	pres.	campaign	food	text	}
_	d_1	{	1.5	0.1	0.0	0.0	0.0	0.0	}
_	d_2	{	1.5	0.1	0.0	2.0	2.0	0.0	}
+	d_3	{	1.5	0.0	3.0	2.0	0.0	0.0	}
+	d_4	{	1.5	0.0	4.0	2.0	0.0	0.0	}
_	d_5	{	1.5	0.0	0.0	6.0	2.0	0.0	}

Rocchio example

		{	news	about	pres.	campaign	food	text	}		
_	d_1	{	1.5	0.1	0.0	0.0	0.0	0.0	}		
_	d_2	{	1.5	0.1	0.0	2.0	2.0	0.0	}		
+	d_3	{	1.5	0.0	3.0	2.0	0.0	0.0	}		
+	d_4	{	1.5	0.0	4.0	2.0	0.0	0.0	}		
_	d_5	{	1.5	0.0	0.0	6.0	2.0	0.0	}		
		{	new	7 S	about	pres.	campaig	gn	food	text	}
+	C_r	{	$\frac{1.5+1}{2}$	<u>1.5</u>	0.0	$\frac{3.0+4.0}{2}$	$\frac{2.0+2.0}{2}$		0.0	0.0	}
_	C_n	{	$\frac{1.5+1.5}{3}$	+1.5 0.1	1+0.1+0.0 3	0.0	$\frac{0.0+2.0+6}{3}$	<u>5.0</u> <u>0</u>	3	0.0	}

Rocchio example

{ news about pres. campaign food text } +
$$C_r$$
 { $\frac{1.5+1.5}{2}$ 0.0 $\frac{3.0+4.0}{2}$ $\frac{2.0+2.0}{2}$ 0.0 0.0 } - C_n { $\frac{1.5+1.5+1.5}{3}$ $\frac{0.1+0.1+0.0}{3}$ 0.0 $\frac{0.0+2.0+6.0}{3}$ $\frac{0.0+2.0+2.0}{3}$ 0.0 }

$$\vec{q} = \{1, 1, 1, 1, 0, 0\}$$

$$\vec{q}_m = \alpha \cdot \vec{q} + \beta \cdot C_r - \gamma \cdot C_n$$

$$= \{\alpha + 1.5\beta - 1.5\gamma, \alpha - 0.067\gamma, \alpha + 3.5\beta, \alpha + 2\beta - 2.67\gamma, -1.33\gamma, 0\}$$

Rocchio in practice

Non-relevant documents lack coherence

 \circ Keep low weight for negative examples (γ)

Training set is small and noisy and may be biased

 \circ Keep relatively high weight on the original query (α)

Feedback in language models

Query likelihood model

$$f(q,d) = P(q|\theta_d)$$

$$\propto \log P(q|\theta_d)$$

$$= \sum_{t \in q} \operatorname{tf}_{t,q} \log P(t|\theta_d)$$

Difficulty

Query as fixed sample (documents modeled instead)

Extended approaches

Relevance models

Language model representing information need

- Query and feedback documents are samples
- $P(d|\theta_G)$: probability of generating the text in a document d given a relevance model θ_G
- \circ Kind of document likelihood model (ext. of $P(d| heta_q)$)
- Less effective than query likelihood hard to compare documents as samples with different lengths

Divergence-based ranking

Estimate relevance model from query and feedback

Rank documents by similarity to relevance model
 Kullback-Leibler divergence (KL-divergence)

$$\circ f(q,d) = -D_{\mathrm{KL}}(\theta_G||\theta_d)$$

Divergence-based ranking

$$f(q,d) = -D_{KL}(\theta_G||\theta_d)$$

$$= -\sum_{t} P(t|\theta_G) \log \frac{P(t|\theta_G)}{P(t|\theta_d)}$$

$$= \sum_{t} P(t|\theta_G) \log P(t|\theta_d) - \sum_{t} P(t|\theta_G) \log P(t|\theta_G)$$

document independent

Divergence-based ranking

$$f(q,d) \propto \sum_{t} P(t|\theta_G) \log P(t|\theta_d)$$

- Without feedback, under MLE: $P(t|\theta_G) \propto \mathrm{tf}_{t,q}$
- Relevance model degenerates to query likelihood

Estimating relevance models

Probability of pulling a word t out of the "bucket" representing the relevance model depends on the query terms we have just pulled out

$$P(t|\theta_G) \approx P(t|q)$$

$$= \frac{P(t,q)}{P(q)}$$

Estimating relevance models

$$P(t,q) = \sum_{d \in G} p(d)P(t,q|d)$$

$$= \sum_{d \in G} p(d)P(t|q,d)P(q|d)$$

$$\approx \sum_{d \in G} p(d)P(t|d) \prod_{t_i \in q} P(t_i|d)$$

Estimating relevance models

$$P(t,q) \approx \sum_{d \in G} P(d)P(t|d) \prod_{t_i \in q} P(t_i|d)$$

Assuming uniform P(d)

 \circ P(t,q) is an average of query likelihood scores across feedback documents, weighted by P(t|d)

Example from top 10 docs

president lincoln	abraham lincoln	fishing	tropical fish	
lincoln	lincoln	fish	fish	
president	america	farm	tropic	
room	president	salmon	japan	
bedroom	faith	new	aquarium	
house	guest	wild	water	
white	abraham	water	species	
america	new	caught	aquatic	
guest	room	catch	fair	
serve	christian	tag	china	
bed	history	time	coral	
washington	public	eat	source	
old	bedroom	raise	tank	
office	war	city	reef	
war	politics	people	animal	
long	old	$\operatorname{fishermen}$	tarpon	
abraham	national	boat	fishery	

Example from top 50 docs

president lincoln	abraham lincoln	fishing	tropical fish	
lincoln	lincoln	fish	fish	
president	president	water	tropic	
america	america	catch	water	
new	abraham	reef	storm	
national	war	$\operatorname{fishermen}$	species	
great	man	river	boat	
white	civil	new	sea	
war	new	year	river	
washington	history	time	country	
$\operatorname{clinton}$	two	bass	tuna	
house	room	boat	world	
history	booth	world	million	
time	time	farm	state	
center	politics	angle	time	
kennedy	public	fly	japan	
room	guest	trout	mile	

Summary

Acquiring feedback

- Explicit, implicit, simulated (pseudo) feedback
- Exploiting feedback via query expansion
- Rocchio for VSM
- Feedback language models for LM

Challenges

Long queries are inefficient for typical search engines

- Only reweight certain prominent terms
- Users are often reluctant to provide explicit feedback
- Effective pseudo-relevance feedback is challenging
- Implicit feedback is abundant, yet often biased

Feedback is also useful as a learning signal

References

Text Data Management: A Practical Introduction to Information Retrieval and Text Mining, Ch. 6
Zhai and Massung, 2016

Introduction to Information Retrieval, Ch. 9 Manning et al., 2008

Search Engines: Information Retrieval in Practice, Ch. 7 Croft et al., 2009

References

Relevance feedback in information retrieval

Rocchio, 1971

Relevance based language models

Lavrenko and Croft, SIGIR 2001

A survey of automatic query expansion in information retrieval

Carpineto and Romano, ACM Comp. Surveys 2012

Coming next...

Diversification Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br