

*	Note: Gibbs Sampler is special case of M-H
	draw from $q(\theta_i, \delta) = P(\theta_i \theta_{-j})$ the conditional is the known transitional distribution not including j
	$\frac{P(\theta_{j}=\theta_{j,+1} \theta_{-j})}{P(\theta_{j}=\theta_{j,+1} \theta_{-j})}=1$
	$\frac{P(\theta_{i} = \theta_{j}, +-1 \mid \theta_{-j})}{P(\theta_{i} = \theta_{i}, +-1 \mid \theta_{-j})} = 1$
	for $q = N(\theta_{+-1}, 1^2)$: $f_q(a_{+} a_{+-1}, \phi) = f_q(a_{+-1} a_{+}, \phi)$ the metropolis model/algorithm
•	* so we use M-H(or Metropolis) when given a conditional kernel
	Bayesian protocol: ① Collect data
	@ Pick I : likelihood model } These are ASSUMED
	3 Pick P(0): prior) what if they are wrong?
~~~	B) Get posterior: use for interence
	- Compute - Grid sample
-	- Gibbs sample

* We model check P(X10) & P(0) to ensure X makes sense

- M-H algorithm

• Check #1: passing Prior Predictive distribution check?

• does X make sense based on distribution P(X)

• X must fall in P(X)

• Check #2: passing posterior replicate distribution check?

• P(X*|X) = P(X|0) P(0|X) d0 • can X come from X*|X?

• does our model generate new X* that resembles our actual data.