Ethics in Information Technology, Fourth Edition

Chapter 3
Computer and Internet Crime

Objectives

- As you read this chapter, consider the following questions:
 - What key trade-offs and ethical issues are associated with the safeguarding of data and information systems?
 - Why has there been a dramatic increase in the number of computerrelated security incidents in recent years?
 - What are the most common types of computer security attacks?

Why Computer Incidents Are So Prevalent

- Increasing complexity increases vulnerability
 - Computing environment is enormously complex
 - Continues to increase in complexity
 - Number of entry points expands continuously
 - Cloud computing and virtualization software
- Higher computer user expectations
 - Computer help desks under intense pressure
 - Forget to verify users' IDs or check authorizations
- Computer users share login IDs and passwords

Why Computer Incidents Are So Prevalent (cont'd.)

- Increased reliance on commercial software with known vulnerabilities
 - Exploit
 - Attack on information system
 - Takes advantage of system vulnerability
 - Due to poor system design or implementation
 - Patch
 - "Fix" to eliminate the problem
 - Users are responsible for obtaining and installing
 - Delays expose users to security breaches
- Zero-day attack
 - Before a vulnerability is discovered or fixed

Why Computer Incidents Are So Prevalent (cont'd.)

Diagram 1: Number of new malware programs per year since 2005 and in first half of 2010

Types of Exploits

- Computers as well as smartphones can be target
- Types of attacks
 - Virus
 - Worm
 - Trojan horse
 - Distributed denial of service
 - Rootkit
 - Spam
 - Phishing (spear-phishing, smishing, and vishing)

Viruses

- Pieces of programming code
- Usually disguised as something else
- Cause unexpected and undesirable behavior
- Often attached to files
- Deliver a "payload"
- Spread by actions of the "infected" computer user
 - Infected e-mail document attachments
 - Downloads of infected programs
 - Visits to infected Web sites

Worms

- Harmful programs
 - Reside in active memory of a computer
 - Duplicate themselves
- Can propagate without human intervention
- Negative impact of worm attack
 - Lost data and programs
 - Lost productivity
 - Additional effort for IT workers

Trojan Horses

- Malicious code hidden inside seemingly harmless programs
- Users are tricked into installing them
- Delivered via email attachment, downloaded from a Web site, or contracted via a removable media device
- Logic bomb
 - Executes when triggered by certain event

Distributed Denial-of-Service (DDoS) Attacks

- Malicious hacker takes over computers on the Internet and causes them to flood a target site with demands for data and other small tasks
 - The computers that are taken over are called zombies
 - Botnet is a very large group of such computers
- Does not involve a break-in at the target computer
 - Target machine is busy responding to a stream of automated requests
 - Legitimate users cannot access target machine

Rootkits

- Set of programs that enables its user to gain administratorlevel access to a computer without the end user's consent or knowledge
- Attacker can gain full control of the system and even obscure the presence of the rootkit
- Fundamental problem in detecting a rootkit is that the operating system currently running cannot be trusted to provide valid test results

Spam

- Abuse of email systems to send unsolicited email to large numbers of people
 - Low-cost commercial advertising for questionable products
 - Method of marketing also used by many legitimate organizations
- Controlling the Assault of Non-Solicited Pornography and Marketing (CAN-SPAM) Act
 - Legal to spam if basic requirements are met

Spam (cont'd.)

- Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA)
 - Software generates tests that humans can pass but computer programs cannot

Phishing

- Act of using email fraudulently to try to get the recipient to reveal personal data
- Legitimate-looking emails lead users to counterfeit Web sites
- Spear-phishing
 - Fraudulent emails to an organization's employees
- Smishing
 - Phishing via text messages
- Vishing
 - Phishing via voice mail messages

FIGURE 3-3 Example of phishing

Source Line: Course Technology/Cengage Learning.

Types of Perpetrators (cont'd.)

TABLE 3-4 Classifying perpetrators of computer crime

Type of perpetrator	Typical motives
Hacker	Test limits of system and/or gain publicity
Cracker	Cause problems, steal data, and corrupt systems
Malicious insider	Gain financially and/or disrupt company's information systems and business operations
Industrial spy	Capture trade secrets and gain competitive advantage
Cybercriminal	Gain financially
Hacktivist	Promote political ideology
Cyberterrorist	Destroy infrastructure components of financial institutions, utilities, and emergency response units

Source Line: Course Technology/Cengage Learning.

Hackers and Crackers

Hackers

- Test limitations of systems out of intellectual curiosity
 - Some smart and talented
 - Others inept; termed "lamers" or "script kiddies"

Crackers

- Cracking is a form of hacking
- Clearly criminal activity

Malicious Insiders

- Major security concern for companies
- Fraud within an organization is usually due to weaknesses in internal control procedures
- Collusion
 - Cooperation between an employee and an outsider
- Insiders are not necessarily employees
 - Can also be consultants and contractors
- Extremely difficult to detect or stop
 - Authorized to access the very systems they abuse
- Negligent insiders have potential to cause damage

Industrial Spies

- Use illegal means to obtain trade secrets from competitors
- Trade secrets are protected by the Economic Espionage Act of 1996
- Competitive intelligence
 - Uses legal techniques
 - Gathers information available to the public
- Industrial espionage
 - Uses illegal means
 - Obtains information not available to the public

Cybercriminals

- Hack into corporate computers to steal
- Engage in all forms of computer fraud
- Chargebacks are disputed transactions
- Loss of customer trust has more impact than fraud
- ▶ To reduce potential for online credit card fraud:
 - Use encryption technology
 - Verify the address submitted online against the issuing bank
 - Request a card verification value (CVV)
 - Use transaction-risk scoring software

Cybercriminals (cont'd.)

Smart cards

- Contain a memory chip
- Updated with encrypted data each time card is used
- Used widely in Europe
- Not widely used in the U.S.

Hacktivists and Cyberterrorists

Hacktivism

Hacking to achieve a political or social goal

Cyberterrorist

- Attacks computers or networks in an attempt to intimidate or coerce a government in order to advance certain political or social objectives
- Seeks to cause harm rather than gather information
- Uses techniques that destroy or disrupt services

Federal Laws for Prosecuting Computer Attacks

TABLE 3-5 Federal laws that address computer crime

Federal law	Subject area				
USA Patriot Act	Defines cyberterrorism and penalties				
Identity Theft and Assumption Deterrence Act (U.S. Code Title 18, Section 1028)	Makes identity theft a Federal crime with penalties up to 15 years imprisonment and a maximum fine of \$250,000				
Fraud and Related Activity in Connection with Access Devices Statute (U.S. Code Title 18, Section 1029)	False claims regarding unauthorized use of credit cards				
Computer Fraud and Abuse Act (U.S. Code Title 18, Section 1030)	 Fraud and related activities in association with computers: Accessing a computer without authorization or exceeding authorized access Transmitting a program, code, or command that causes harm to a computer Trafficking of computer passwords Threatening to cause damage to a protected computer 				
Stored Wire and Electronic Communica- tions and Transactional Records Access Statutes (U.S. Code Title 18, Chapter 121)	Unlawful access to stored communications to obtain, alter, or prevent authorized access to a wire or electronic communication while it is in electronic storage				

Source Line: Course Technology/Cengage Learning.

Implementing Trustworthy Computing

- Trustworthy computing
 - Delivers secure, private, and reliable computing
 - Based on sound business practices

FIGURE 3-4 Microsoft's four pillars of trustworthy computing Source Line: Course Technology/Cengage Learning.

Risk Assessment (cont'd.)

TABLE 3-7 Risk assessment for hypothetical company

Risk	Business objective threatened	Estimated probability of such an event occurring	Estimated cost of a successful attack	Probability × cost = expected cost	Assessment of current level of protection	Relative priority to be fixed
Distributed denial-of- service attack	24/7 operation of a retail Web site	40%	\$500,000	\$200,000	Poor	1

(Continued)

Risk Assessment (cont'd.)

Risk	Business objective threatened	Estimated probability of such an event occurring	Estimated cost of a successful attack	Probability × cost = expected cost	Assessment of current level of protection	Relative priority to be fixed
Email attachment with harmful worm	Rapid and reliable communications among employees and suppliers	70%	\$200,000	\$140,000	Poor	2
Harmful virus	Employees' use of personal productivity software	90%	\$50,000	\$45,000	Good	3
Invoice and payment fraud	Reliable cash flow	10%	\$200,000	\$20,000	Excellent	4

Source Line: Course Technology/Cengage Learning.

Prevention

- Implement a layered security solution
 - Make computer break-ins harder
- Installing a corporate firewall
 - Limits network access
- Intrusion prevention systems
 - Block viruses, malformed packets, and other threats
- Installing antivirus software
 - Scans for sequence of bytes or virus signature
 - United States Computer Emergency Readiness Team (US-CERT) serves as clearinghouse

Prevention (cont'd.)

- Safeguards against attacks by malicious insiders
 - Departing employees and contractors
 - Promptly delete computer accounts, login IDs, and passwords
 - Carefully define employee roles and separate key responsibilities
 - Create roles and user accounts to limit authority

Computer Forensics

- Combines elements of law and computer science to identify, collect, examine, and preserve data and preserve its integrity so it is admissible as evidence
- Domputer forensics investigation requires extensive training and certification and knowledge of laws that apply to gathering of criminal evidence

Summary

- Ethical decisions in determining which information systems and data most need protection
- Most common computer exploits
 - Viruses
 - Worms
 - Trojan horses
 - Distributed denial-of-service attacks
 - Rootkits
 - Spam
 - Phishing, spear-fishing, smishing, vishing

Summary (cont'd.)

Perpetrators include:

- Hackers
- Crackers
- Malicious insider
- Industrial spies
- Cybercriminals
- Hacktivist
- Cyberterrorists

Summary (cont'd.)

- Personal safety on internet:
 - Bank accounts, data accounts with multilayer security verification
- Company/business accounts:
 - Reputed financial institutions only
 - Limit access
 - Layered security through anti-virus, firewalls, VPNs
 - Mandatory to protect data related to financial institution, health and federal agencies

Summary (cont'd.)

- Must implement multilayer process for managing security vulnerabilities, including:
 - Assessment of threats
 - Identifying actions to address vulnerabilities
 - User education
- IT must lead the effort to implement:
 - Security policies and procedures
 - Hardware and software to prevent security breaches