

Assignment Phys 2-06-2020

Physics 2 (Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh)

THE INTERNATIONAL UNIVERSITY (IU) VIETNAM NATIONAL UNIVERSITY - HCMC

ASSIGNMENT

SUBJECT: PHYSICS 2

GROUP: 8 - 10 STUDENTS

(Submit: 09:40, 20/06/ 2020, Room A2.205, IU)

- 1/ (30 pts) You have two identical containers, one containing gas A and the other gas B. The masses of these molecules are $m_A = 3.34 \times 10^{-27}$ kg and $m_B = 5.34 \times 10^{-26}$ kg. Both gases are under the same pressure and at 10.0°C.
- (a) Which molecules (A or B) have greater translational kinetic energy per molecule and rms speeds? Now you want to raise the temperature of only one of these containers so that both gases will have the same rms speed.
- (b) For which gas should you raise the temperature?
- (c) At what temperature will you accomplish your goal?
- (d) Once you have accomplished your goal, which molecules (A or B) now have greater average translational kinetic energy per molecule?
- 2/ (20 pts) A gas undergoes two processes. In the first, the volume remains constant at 0.200 m³ and the pressure increases from 2.00×10^5 Pa to 5.00×10^5 Pa. The second process is a compression to a volume of 0.120 m³ at a constant pressure of 5.00×10^5 Pa.
- (a) In a pV-diagram, show both processes.
- (b) Find the total work done by the gas during both processes.
- 3/ (25 pts) Two moles of an ideal monatomic gas go through the cycle abc. For the complete cycle, 800 J of heat flows out of the gas. Process ab is at constant pressure, and process bc is at constant volume. States a and b have temperatures $T_a = 200$ K and $T_b = 300$ K.
- (a) Sketch the **all possible** pV-diagrams for the cycle.
- (b) What is the work W for the process ca?
- 4/ (25 pts) A cylinder 1.00 m tall with inside diameter 0.120 m is used to hold propane gas (molar mass 44.1 g/mol) for use in a barbecue. It is initially filled with gas until the gauge pressure is 1.30×10^6 Pa and the temperature is 22.00C. The temperature of the gas remains constant as it is partially emptied out of the tank, until the gauge pressure is 2.50×10^5 Pa.

Calculate the mass of propane that has been used.

END OF QUESTION PAPER

