## Static analysis of rod structures using the Finite Element Method·(FEM)



For the truss structure shown in the diagram, nodal displacements caused by the concentrated force P will be calculated using the Finite Element Method (FEM). The masses of the bars are treated as small and will be neglected. The stiffness matrix of the typical rod element used in the model is given by

$$\mathbf{k}^{e} = \begin{bmatrix} EA/_{h} & 0 & -EA/_{h} & 0\\ 0 & 0 & 0 & 0\\ -EA/_{h} & 0 & EA/_{h} & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$

where, h - lenght of the element, E - Young's modulus, A - crosssectional area (treated as constant symbolic value)

> restart; with(LinearAlgebra):

# The stiffness matrix

$$ke := Matrix \left( \left[ \left[ \frac{E \cdot A}{h}, 0, -\frac{E \cdot A}{h}, 0 \right], [0, 0, 0, 0], \left[ -\frac{E \cdot A}{h}, 0, \frac{E \cdot A}{h}, 0 \right], [0, 0, 0, 0] \right] \right);$$

$$ke := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(1)$$

> n := 11; # number of elements

$$n \coloneqq 11$$
 (2)

# STEP 1 : Transform the stiffness matrices of individual elements into the global coordinate system using the following relationship:

$$\mathbf{K}_{i}^{e} = \mathbf{R}_{i}^{T} \mathbf{k}^{e} \mathbf{R}_{i}$$

where Ri denotes the element number i=1,...,n, and Ri is the transformation matrix in the form:

$$R_i = \begin{bmatrix} \cos(\alpha_i) & \sin(\alpha_i) & 0 & 0\\ -\sin(\alpha_i) & \cos(\alpha_i) & 0 & 0\\ 0 & 0 & \cos(\alpha_i) & \sin(\alpha_i)\\ 0 & 0 & -\sin(\alpha_i) & \cos(\alpha_i) \end{bmatrix}$$



in which  $\alpha i$  represents the angle formed between the local reference frame of the i-th element and the global coordinate system. For

example, this angle for element number 5 is  $\alpha = \frac{\pi}{3}$ .

> 
$$\alpha[1] := 0; \alpha[2] := 0; \alpha[3] := 0; \alpha[4] := \frac{Pi}{3}; \alpha[5] := \frac{2}{3}Pi; \alpha[6] := \frac{Pi}{3}; \alpha[7] := \frac{2}{3}Pi;$$
  
 $\alpha[8] := \frac{Pi}{3}; \alpha[9] := \frac{2}{3}Pi; \alpha[10] := 0; \alpha[11] := 0;$ 

$$\alpha_{1} := 0$$

$$\alpha_{2} := 0$$

$$\alpha_{3} := 0$$

$$\alpha_{4} := \frac{\pi}{3}$$

$$\alpha_{5} := \frac{2\pi}{3}$$

$$\alpha_{6} := \frac{\pi}{3}$$

$$\alpha_{7} := \frac{2\pi}{3}$$

$$\alpha_8 := \frac{\pi}{3}$$

$$\alpha_9 := \frac{2\pi}{3}$$

$$\alpha_{10} \coloneqq 0$$

$$\alpha_{11} := 0 \tag{3}$$

 $\rightarrow$  for *i* from 1 to *n* do:

 $R[i] := Matrix([[\cos(\alpha[i]), \sin(\alpha[i]), 0, 0], [-\sin(\alpha[i]), \cos(\alpha[i]), 0, 0], [0, 0, \cos(\alpha[i]), \sin(\alpha[i])], [0, 0, -\sin(\alpha[i]), \cos(\alpha[i])]]);$  end do;

$$R_1 := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_1 := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_2 := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_3 := \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$R_{4} := \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$R_{5} := \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$R_{5} := \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$R_{6} \coloneqq \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$R_{7} \coloneqq \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$R_{8} \coloneqq \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

$$R_{9} \coloneqq \begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{bmatrix}$$

$$R_{10} := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{11} := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\rightarrow$  for *i* from 1 to *n* do:

 $Ke[i] := Transpose(R[i]) \cdot ke \cdot R[i];$  end do;

$$Ke_{1} := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Ke_{2} := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Ke_{3} := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

**(4)** 

$$Ke_{4} \coloneqq \begin{bmatrix} \frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & -\frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} \\ \frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} & -\frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} \\ -\frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} & \frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} \\ -\frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} & \frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} \\ -\frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} & \frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} \\ -\frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} & -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} \\ -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} & -\frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} \\ -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & -\frac{A}{4h} & \frac{3EA}{4h} & \frac{3EA}{4h} \\ -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{3EA}{4h} \\ -\frac{A}{4h} & \frac{3EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{3EA}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & \frac{A}{4h} & -\frac{A}{4h} & \frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & \frac{A}{4h} & -\frac{A}{4h} & \frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & \frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{EA}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{4h} \\ -\frac{A}{4h} & -\frac{A}{4h} & -\frac{A}{$$

$$Ke_{8} := \begin{bmatrix} \frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & -\frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} \\ \frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} & -\frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} \\ -\frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} & \frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} \\ -\frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} & \frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} \\ -\frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} & -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} \\ -\frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} & -\frac{EA}{4h} & -\frac{3EA}{4h} \\ -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & \frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} \\ -\frac{EA}{4h} & \frac{\sqrt{3}EA}{4h} & \frac{EA}{4h} & -\frac{\sqrt{3}EA}{4h} \\ \frac{\sqrt{3}EA}{4h} & -\frac{3EA}{4h} & -\frac{\sqrt{3}EA}{4h} & \frac{3EA}{4h} \\ \end{bmatrix}$$

$$Ke_{10} := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Ke_{11} := \begin{bmatrix} \frac{EA}{h} & 0 & -\frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{EA}{h} & 0 & \frac{EA}{h} & 0 \\ -\frac{E$$

# STEP 2 : Assembly of the global stiffness matrix and force vector

# Numbering of nodal coordinates in individual elements

> W := Matrix([[1, 2, 3, 4], [3, 4, 5, 6], [5, 6, 7, 8], [1, 2, 9, 10], [3, 4, 9, 10], [3, 4, 11, 12], [5, 6, 11, 12], [5, 6, 13, 14], [7, 8, 13, 14], [9, 10, 11, 12], [11, 12, 13, 14]]);

```
W := \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 6 \\ 5 & 6 & 7 & 8 \\ 1 & 2 & 9 & 10 \\ 3 & 4 & 9 & 10 \\ 3 & 4 & 11 & 12 \\ 5 & 6 & 11 & 12 \\ 5 & 6 & 13 & 14 \\ 7 & 8 & 13 & 14 \\ 9 & 10 & 11 & 12 \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}
(6)
```

11 x 4 Matrix

>  $m \ e := 4;$ 

# number of coordinatesnumber of nodal coordinates in the element

m g := 14; # number of nodal coordinates in the entire truss.

$$m_e = 4$$
 $m_g = 14$  (7)

**(8)** 

# Creating logical matrices.

**> for** *i* **from** 1 **to** *n* **do**:

 $b := Matrix(1..m \ e, 1..m \ g)$ :

for j from 1 to m e do:

 $b[j, W[i,j]] := \overline{1}$ :

B[i] := b;

end do:

end do:

> B[1];

4 × 14 Matrix

# Assembly of the global stiffness matrix

>  $K := add(Transpose(B[i]) \cdot Ke[i] \cdot B[i], i = 1..n);$ 

| Ī    |                           |                            |                          |                          |                     |                     |                           |                           |                             |
|------|---------------------------|----------------------------|--------------------------|--------------------------|---------------------|---------------------|---------------------------|---------------------------|-----------------------------|
|      | $\frac{5 E A}{4 h}$       | $\frac{\sqrt{3} EA}{4 h}$  | $-\frac{EA}{h}$          | 0                        | 0                   | 0                   | 0                         | 0                         | $-\frac{EA}{4h}$            |
|      | $\frac{\sqrt{3} EA}{4h}$  | $\frac{3 E A}{4 h}$        | 0                        | 0                        | 0                   | 0                   | 0                         | 0                         | $-\frac{\sqrt{3} E A}{4 h}$ |
|      | $-\frac{EA}{h}$           | 0                          | $\frac{5 E A}{2 h}$      | 0                        | $-\frac{EA}{h}$     | 0                   | 0                         | 0                         | $-\frac{EA}{4h}$            |
|      | 0                         | 0                          | 0                        | $\frac{3 E A}{2 h}$      | 0                   | 0                   | 0                         | 0                         | $\frac{\sqrt{3} EA}{4h}$    |
|      | 0                         | 0                          | $-\frac{EA}{h}$          | 0                        | $\frac{5 E A}{2 h}$ | 0                   | $-\frac{EA}{h}$           | 0                         | 0                           |
| K := | 0                         | 0                          | 0                        | 0                        | 0                   | $\frac{3 E A}{2 h}$ | 0                         | 0                         | 0                           |
|      | 0                         | 0                          | 0                        | 0                        | $-\frac{EA}{h}$     | 0                   | 5 E A<br>4 h              | $-\frac{\sqrt{3} EA}{4h}$ | 0                           |
|      | 0                         | 0                          | 0                        | 0                        | 0                   | 0                   | $-\frac{\sqrt{3} EA}{4h}$ | $\frac{3 E A}{4 h}$       | 0                           |
|      | $-\frac{EA}{4h}$          | $-\frac{\sqrt{3} EA}{4 h}$ | $-\frac{EA}{4h}$         | $\frac{\sqrt{3} EA}{4h}$ | 0                   | 0                   | 0                         | 0                         | $\frac{3 E A}{2 h}$         |
|      | $-\frac{\sqrt{3} EA}{4h}$ | $-\frac{3 E A}{4 h}$       | $\frac{\sqrt{3} EA}{4h}$ | $-\frac{3 E A}{4 h}$     | 0                   | 0                   | 0                         | 0                         | 0                           |
|      | :                         | :                          | ÷                        | ÷                        | ÷                   | ÷                   | :                         | :                         | ÷                           |

# Introduction of the vector F  $F := Vector(1..m_g);$ 

**(10)** 



14 element Vector[column]

# Introduction of the load P

> 
$$F[4] := -P;$$

$$F_4 := -P \tag{11}$$

14 element Vector[column]

# STEP 3 : Solution of the system of equations

# Incorporating boundary conditions by removing rows and columns in matrix K corresponding to the constrained coordinates

> 
$$K\_conds\_included := K([3, 4, 5, 6, 9, 10, 11, 12, 13, 14], [3, 4, 5, 6, 9, 10, 11, 12, 13, 14]);$$

$$K\_conds\_included := \left[ \left[ \frac{5EA}{2h}, 0, -\frac{EA}{h}, 0, -\frac{EA}{4h}, \frac{\sqrt{3}EA}{4h}, -\frac{EA}{4h}, -\frac{\sqrt{3}EA}{4h}, 0, 0 \right], \quad (13)$$

$$\left[0, \frac{3EA}{2h}, 0, 0, \frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, -\frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, 0, 0\right],$$

$$\left[ -\frac{EA}{h}, 0, \frac{5EA}{2h}, 0, 0, 0, -\frac{EA}{4h}, \frac{\sqrt{3}EA}{4h}, -\frac{EA}{4h}, -\frac{\sqrt{3}EA}{4h} \right],$$

$$\left[ 0, 0, 0, \frac{3EA}{2h}, 0, 0, \frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, -\frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h} \right],$$

$$\left[ -\frac{EA}{4h}, \frac{\sqrt{3}EA}{4h}, 0, 0, \frac{3EA}{2h}, 0, -\frac{EA}{h}, 0, 0, 0 \right],$$

$$\left[ \frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, 0, 0, 0, \frac{3EA}{2h}, 0, 0, 0, 0 \right],$$

$$\left[ -\frac{EA}{4h}, -\frac{\sqrt{3}EA}{4h}, -\frac{EA}{4h}, \frac{\sqrt{3}EA}{4h}, -\frac{EA}{4h}, 0, \frac{5EA}{2h}, 0, -\frac{EA}{h}, 0 \right],$$

$$\left[ -\frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, \frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, 0, 0, 0, \frac{3EA}{2h}, 0, 0 \right],$$

$$\left[ 0, 0, -\frac{EA}{4h}, -\frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, 0, 0, 0, \frac{3EA}{2h}, 0 \right],$$

$$\left[ 0, 0, -\frac{\sqrt{3}EA}{4h}, -\frac{3EA}{4h}, 0, 0, 0, 0, 0, \frac{3EA}{2h}, 0 \right],$$

- > # Similar procedure with the force vector  $\mathbf{F}$ >  $F\_conds\_included := F([3, 4, 5, 6, 9, 10, 11, 12, 13, 14]);$

$$F\_conds\_included := \begin{bmatrix} 0 \\ -P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(14)

# Solving the system of equations Kq=F, where q is the vector of unknown nodal displacements.

 $\rightarrow$   $q := LinearSolve(K\_conds\_included, F\_conds\_included);$ 

$$q := \begin{bmatrix} 0 \\ -\frac{70 Ph}{27 E A} \\ \frac{\sqrt{3} Ph}{9 E A} \\ -\frac{41 Ph}{27 E A} \\ \frac{11 \sqrt{3} Ph}{27 E A} \\ -\frac{35 Ph}{27 E A} \\ -\frac{\sqrt{3} Ph}{27 E A} \\ -\frac{19 Ph}{9 E A} \\ -\frac{19 Ph}{27 E A} \end{bmatrix}$$

(15)