PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-260682

(43)Date of publication of application: 13.09.2002

(51)Int.CI.

H01M 8/02 CO8K 3/04 CO8K 5/357 CO8K C08L101/00 H01M 8/10

(21)Application number: 2001-057587

(71)Applicant: NISSHINBO IND INC

(22)Date of filing:

02.03.2001

(72)Inventor: HASEGAWA TAKASHI

MASUDA GEN YANO YUKIKO SAITO KAZUO

HAGIWARA ATSUSHI

(54) COMPOSITION FOR FUEL CELL SEPARATOR, THE FUEL CELL SEPARATOR, METHOD OF MANUFACTURE AND SOLID HIGH POLYMER FUEL CELL

(57)Abstract:

PROBLEM TO BE SOLVED: To efficiently massproduce a fuel cell separator, having high elasticity, superior dimensional accuracy, and gas impermeability, and to provide a high performance solid high polymer fuel cell causing no crack or split at assembling time, and having high gas sealing performance, superior vibration resistance, and impact resistance by using this fuel cell separator for a part or the whole.

SOLUTION: A composition for the fuel cell separator, the fuel cell separator, a manufacturing method therefor, and the solid high polymer fuel cell are characterized by using a mixture of thermosetting resin and a polyvalent oxazine compound, having a plurality of oxazine rings in a molecule as a binding material in the composition for the fuel cell separator, composed mainly of conductive carbon power and the binding material.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-260682 (P2002-260682A)

(43)公開日 平成14年9月13日(2002.9.13)

(51) Int,Cl,7		識別記号	FΙ	テーマコード(参考)				
H 0 1 M	8/02		H 0 1 M	8/02 B 4 J 0 0 2				
C 0 8 K	3/04		C 0 8 K	3/04 5 H 0 2 6				
	5/357			5/357				
	7/04			7/04				
C 0 8 L 1			C08L 10	01/00				
	01, 00	審査請求	未請求 請求功	項の数9 〇L (全 11 頁) 最終頁に続く				
(21)出願番号		特願2001-57587(P2001-57587)	(71)出願人	000004374 日清紡績株式会社				
(22)出願日		平成13年3月2日(2001.3.2)		東京都中央区日本橋人形町2丁目31番11号				
			(72)発明者	長谷川 俊				
				千葉県千葉市緑区大野台1-2-3 日清				
			紡績株式会社研究開発センター内					
			(72)発明者	常 増田 現				
			千葉県千葉市緑区大野台1-2					
				紡績株式会社研究開発センター内				
			(74)代理人	100079304				
				弁理士 小島 隆司 (外1名)				
				最終頁に続く				

(54) 【発明の名称】 燃料電池セパレータ用組成物、燃料電池セパレータ及びその製造方法並びに固体高分子型燃料電池

(57)【要約】

【解決手段】 導電性炭素粉末と結合材とを主成分とする燃料電池セパレータ用組成物において、上記結合材として熱硬化性樹脂と分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物を用いることを特徴とする燃料電池セパレータ用組成物、燃料電池セパレータ及びその製造方法並びに固体高分子型燃料電池。

【効果】 高弾性と優れた寸法精度、ガス不透過性を有する燃料電池セパレータを効率よく、大量生産できると共に、この燃料電池セパレータを一部又は全部に用いることにより、組み立て時のヒビや割れの発生がなく、高いガスシール性と優れた耐振動性及び耐衝撃性を有する高性能な固体高分子型燃料電池が得られる。

【特許請求の範囲】

【請求項1】 導電性炭素粉末と結合材とを主成分とする燃料電池セパレータ用組成物において、上記結合材として熱硬化性樹脂と分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物を用いることを特徴とする燃料電池セパレータ用組成物。

1

【請求項2】 上記熱硬化性樹脂100質量部に対して 多価オキサジン化合物を5~200質量部添加した請求 項1記載の燃料電池セパレータ用組成物。

【請求項3】 上記導電性炭素粉末の平均粒径が10 nm~500μmであり、この導電性炭素粉末を熱硬化性樹脂100質量部に対して100~6000質量部添加した請求項1又は2記載の燃料電池セパレータ用組成物。

【請求項4】 熱硬化性樹脂100質量部に対して繊維基材を500質量部以下添加した請求項1,2又は3記載の燃料電池セバレータ用組成物。

【請求項 5 】 請求項 1 乃至 4 のいずれか 1 項記載の燃料電池セパレータ用組成物を片面又は両面にガス供給排出用溝を有するセパレータ形状に成形してなる燃料電池 20 セパレータであって、上記燃料電池セパレータから切り出した 3.5 gの試験片を 3 0 5 m L の純水中に入れて、90℃で 5 0 0 時間加熱した後の水の電気伝導度が20 μ S / c m以下であることを特徴とする燃料電池セパレータ。

【請求項 6 】 上記燃料電池セパレータのJIS H0 6 0 2 に準拠して測定した固有抵抗が 5 0 m Ω · c m 以下であり、かつJIS K7126 のB 法に準拠して測定したガス透過率が 5 0 m 1 / m 2 · 2 4 h r · a t m 以下である請求項 5 1 記載の燃料電池セパレータ。

【請求項7】 導電性炭素粉末と熱硬化性樹脂と多価オキサジン化合物との混合物からなる結合材とを主成分とする燃料電池セパレータ用組成物を成形してなる片面又は両面にガス供給排出用溝を有する燃料電池セパレータの製造方法であって、上記熱硬化性樹脂100質量部に対して多価オキサジン化合物を5~200質量部と、導電性炭素粉末を100~6000質量部と、繊維基材を0~500質量部とを添加混合した混合物を用いて成形することを特徴とする燃料電池セパレータの製造方法。

【請求項8】 固体高分子電解質膜を挟む一対の電極*40

燃料電極反応 : H₂ → 2 H + 2 e

... (1)

酸化剤電極反応: 2 H + 2 e + 1 / 2 O₂ → H₂ O ... (2)

30

全体反応 : H₂ + 1 / 2 O₂ → H₂ O

【0005】即ち、燃料電極上で水素(H₂)はプロトン(H¹)となり、このプロトンが固体高分子電解質膜中を酸化剤電極上まで移動し、酸化剤電極上で酸素(O₂)と反応して水(H₂O)を生ずる。従って、固体高分子型燃料電池の運転には、反応ガスの供給と排出、電流の取り出しが必要となる。また、固体高分子型燃料電池は、通常、室温~120℃以下の範囲での湿潤雰囲気下 50

*と、該電極を挟んでガス供給排出用流路を形成する一対のセパレータとから構成される単位セルを多数並設した構造を有する固体高分子型燃料電池において、上記燃料電池中の全セパレータの一部又は全部として請求項5又は6記載の燃料電池セパレータを用いたことを特徴とする固体高分子型燃料電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、燃料電池セパレータ用組成物、この燃料電池セパレータ用組成物からなる燃料電池セパレータ及びその製造方法並びにこの燃料電池セパレータを一部又は全部に用いて組み立てた固体高分子型燃料電池に関する。

[0002]

【従来技術及び発明が解決しようとする課題】燃料電池は、電解質を介して一対の電極を接触させ、これら電極のうちの一方に燃料を、他方に酸化剤を供給し、燃料の酸化を電池内で電気化学的に行うことにより、化学エネルギーを直接電気エネルギーに変換する装置である。この燃料電池には電解質によりいくつかのタイプがあるが、近年、高出力が得られる燃料電池として、電解質に固体高分子電解質膜を用いた固体高分子型燃料電池が注目されている。

【0003】このような固体高分子型燃料電池は、図1に示したように、左右両側面に複数個の凸部(リブ)1 aを備えた2枚の燃料電池セパレータ1,1と、これらセパレーター間に固体高分子電解質膜2と、ガス拡散電極(燃料電極と酸化剤電極)3、3とを介在させてなる単電池(単位セル)を数十個~数百個並設してなる電池本体(セルスタック)から構成されている。

【0004】この固体高分子型燃料電池は、燃料電極に 流体である水素ガスを、酸化剤電極に流体である酸素ガ スを供給することにより、外部回路より電流を取り出す ものであるが、この際、各電極においては下記式に示し たような反応が生じている。

での運転が想定されており、そのため水を液体状態で扱うことになるので、燃料電極への水の補給管理と酸化剤 電極からの水の排出が必要となる。

【0006】このような燃料電池を構成する部品のうち、燃料電池セパレータは、図2(A),(B)に示したように、薄肉の板状体の片面又は両面に複数個のガス供給排出用溝4を有する特異な形状を有しており、燃料

2

電池内を流れる燃料ガス、酸化剤ガス及び冷却水が混合しないように分離する働きを有すると共に、燃料電池セルで発電した電気エネルギーを外部へ伝達したり、燃料電池セルで生じた熱を外部へ放熱するという重要な役割を担っている。このため、燃料電池セパレータにはガスバリア性、導電性、耐蝕性、更には燃料電池に組み立て時のボルトとナットによる締め付けでセパレータに割れやヒビが生じない機械的強度を有すること、特に自動車等の移動用電源として用いる場合には優れた耐振動性及び耐衝撃性を有することが強く望まれている。

【0007】このような固体高分子型燃料電池のセパレータとしては、生産性やコストの面から有利な各種の熱可塑性樹脂又は熱硬化性樹脂をバインダーとして用いた炭素複合材料が提案されている。例えば特開昭59-26907号公報ではフェノール樹脂等の熱硬化性樹脂、また、特開昭55-61752号公報及び特開昭56-116277号公報ではポリプロピレン、ナイロン等の熱可塑性樹脂がバインダーとして用いられている。

【0008】しかしながら、これら熱可塑性樹脂又は熱硬化性樹脂をバインダーとして用いた炭素複合材料から 20なる燃料電池セパレータは以前から使用されていたグラファイト板を機械加工して製造するセパレータよりも、生産性やコストの面では優れているものの、機械的強度、耐薬品性、ガス透過性、寸法安定性等の性能面において十分満足できるものではなく、また、成形時の脱ガス処理が必要になるという問題がある。

【0009】本発明は、上記事情に鑑みなされたもので、大量生産が可能であることは勿論、導電性、機械的強度、耐薬品性、ガス不透過性、低イオン溶出性、成形加工性に優れた燃料電池セパレータを得ることができる30燃料電池セパレータ用組成物、この燃料電池セパレータ用組成物からなる燃料電池セパレータ及びその製造方法並びにこの燃料電池セパレータを一部又は全部に用いて組み立てた高性能な固体高分子型燃料電池を提供することを目的とする。

[0010]

【課題を解決するための手段及び発明の実施の形態】本発明者は、上記目的を達成するため鋭意検討を重ねた結果、導電性炭素質粉末に対して熱硬化性樹脂と分子内に複数のオキサジン環を持つ多価オキサジン化合物との混 40 合物をバインダーとして使用した燃料電池セパレータ用組成物が、従来の熱可塑性樹脂又は熱硬化性樹脂単独によるバインダーにおいて問題となっていた高温耐久性が改善されるだけでなく、機械的強度、耐薬品性、ガスバリア性、耐水性、低イオン溶出性、寸法安定性が向上すると共に、成形時の脱ガス性に優れた燃料電池セパレータを得ることができることを見出し、本発明を完成するに至った。

【0011】また、本発明の固体高分子型燃料電池は、 導電性、機械的強度、耐薬品性、ガス不透過性、低イオ 50

ン溶出性、及び成形加工性に優れた本発明燃料電池セパレータを一部又は全部に用いて組み立てられているので、高いガスバリア性と長時間連続運転した場合でも、電池出力の低下が少なく、高い運転効率を有し、特に自動車、ハイブリッドカー、小型船舶等の移動用電源として最適なものである。

【0012】従って、本発明は、下記の燃料電池セパレータ用組成物、燃料電池セパレータ及びその製造方法並びに固体高分子型燃料電池を提供する。

10 請求項1: 導電性炭素粉末と結合材とを主成分とする燃料電池セパレータ用組成物において、上記結合材として熱硬化性樹脂と分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物を用いることを特徴とする燃料電池セパレータ用組成物。

請求項2:上記熱硬化性樹脂100質量部に対して多価 オキサジン化合物を5~200質量部添加した請求項1 記載の燃料電池セパレータ用組成物。

請求項3:上記導電性炭素粉末の平均粒径が10nm~ 500μmであり、この導電性炭素粉末を熱硬化性樹脂 100質量部に対して100~6000質量部添加した 請求項1又は2記載の燃料電池セパレータ用組成物。

請求項4: 熱硬化性樹脂100質量部に対して繊維基材を500質量部以下添加した請求項1,2又は3記載の燃料電池セパレータ用組成物。

請求項 5 : 請求項 1 乃至 4 のいずれか 1 項記載の燃料電池セパレータ用組成物を片面又は両面にガス供給排出用溝を有するセパレータ形状に成形してなる燃料電池セパレータであって、上記燃料電池セパレータから切り出した 3 . 5 gの試験片を 3 0 5 m L の純水中に入れて、 9 0 $\mathbb C$ で 5 0 0 時間加熱した後の水の電気伝導度が 2 0 μ S $\mathcal C$ m以下であることを特徴とする燃料電池セパレータ

請求項6:上記燃料電池セバレータのJ1S H0602に準拠して測定した固有抵抗が50m Ω ・c m以下であり、かつJ1S K71260B法に準拠して測定したガス透過率が50m1 $/m^2$ ・24hr・at m以下である請求項5記載の燃料電池セバレータ。

請求項7:導電性炭素粉末と熱硬化性樹脂と多価オキサジン化合物との混合物からなる結合材とを主成分とする燃料電池セパレータ用組成物を成形してなる片面又は両面にガス供給排出用溝を有する燃料電池セパレータの製造方法であって、上記熱硬化性樹脂100質量部に対して多価オキサジン化合物を5~200質量部と、導電性炭素粉末を100~6000質量部と、繊維基材を0~500質量部とを添加混合した混合物を用いて成形することを特徴とする燃料電池セパレータの製造方法。

請求項8:固体高分子電解質膜を挟む一対の電極と、該電極を挟んでガス供給排出用流路を形成する一対のセパレータとから構成される単位セルを多数並設した構造を有する固体高分子型燃料電池において、上記燃料電池中

の全セパレータの一部又は全部として請求項5又は6記載の燃料電池セパレータを用いたことを特徴とする固体高分子型燃料電池。

請求項9:上記固体高分子型燃料電池を200~500時間連続運転した後の電圧V2の初期電圧V1に対する比率 ((V2/V1)×100)が80%以上である請求項8記載の固体高分子型燃料電池。

【0013】以下、本発明について更に詳しく説明する。本発明の燃料電池セパレータ用組成物は、(A)結合材と(B)導電性炭素粉未とを主成分とする。この場 10合、(A)成分の結合材としては、(A-1)熱硬化性樹脂と(A-2)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物を用いる。

【0014】上記(A-1)成分の熱硬化性樹脂としては、特に制限されず、例えばレゾール型フェノール樹脂、ノボラック型フェノール樹脂に代表されるフェノール系樹脂、フルフリルアルコール樹脂、フルフリルアルコールフェノール樹脂などのフラン系樹脂、ポリイミド樹脂、ポリカルボジイミド樹脂、ポリアクリロニトリル樹脂、ピレン 20 - フェナントレン樹脂、ボリ塩化ビニル樹脂、エポキシ樹脂、ユリア樹脂、ジアリルフタレート樹脂、不飽和ポ

リエステル樹脂、メラミン樹脂などが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。中でも、フェノール系樹脂、エポキシ樹脂又はこれらの混合樹脂が好ましい。

【0015】上記(A-2)成分の分子内に複数のオキサジン環を持つ多価オキサジン化合物としては、下記一般式(1)で示されるものが好適である。

[0016]

【化1】

(但し、式中、 R^1 はアルキル基又はアリール基、 R^2 は下記式 (2) ~ (19) で示される有機基であり、nは 1 ~ 4 の整数である。)

20 [0017]

【化2】

【0018】上記(1)式中、R'は炭素数 $1\sim5$ のアルキル基、例えばメチル基、エチル基、又はフェニル基、トリル基、ナフチル基等のアリール基を示す。 R^2 は上記式(2) \sim (19)で示される有機基を示し、 R^2 は $1\sim4$ の整数である。

【0019】このような多価オキサジン化合物は、フェノール化合物1モルとそのフェノール性水酸基1個に対して少なくとも2モル以上のホルマリン及び脂肪族又は芳香族第一アミンを反応させることにより合成することができる(特開平11-256009号公報参照)。

【0020】上記多価フェノール化合物の例としては、例えばビス(4-ヒドロキシフェニル)メタン〔ビスフェノールF〕、2、2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4-ヒドロキシフェニル)スルホン〔ビスフェノールS〕、1, 5-ジヒドロキシナフタレン、4, 4'-ジヒドロキシビフェニルなどが挙げられる。

【0021】上記第一級アミンの例としては、メチルアミン、エチルアミン、ブチルアミン、プロピルアミン、 シクロヘキシルアミン等の脂肪族アミン類、アニリン、 トルイジン等の芳香族アミンなどが挙げられる。

【0022】上記(A-2)成分の多価オキサジン化合物の添加量は(A-1)成分の熱硬化性樹脂100質量部に対して5~200質量部であり、好ましくは10~150質量部、より好ましくは50~150質量部、更に好ましくは50~100質量部である。(A-2)成分の多価オキサジン化合物の添加量が少なすぎるとセパレータの強度及びガス不透過性が低下する場合がある。一方、多すぎると成形材料の接着力が強くなりすぎて、成形後の離型性が悪化し、金型汚染等の不具合が生じる場合がある。

【0023】上記(B)成分の導電性炭素粉末としては、例えばカーボンブラック、アセチレンブラック、ケッチェンブラック(登録商標)、鱗片状黒鉛、土塊状黒鉛、人造黒鉛、キッシュ黒鉛、非晶質炭素、膨張黒鉛等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、特に鱗片状黒鉛、人造黒鉛が好ましい。

【0024】導電性炭素粉末の平均粒径は10nm~5 50 00μm、好ましくは30μm~300μmである。な

お、平均粒径が上記範囲より大きい場合には、例えばミ キサー、ジェットミル、ボールミル、ピンミル、凍結粉 砕等の粉砕方法により、又は振動ふるい、ローステック ススクリーナー、音波ふるい、マイクロクラッシュファ イアー、スペスディッククラッシファイアー等の分級方*

10μm未満

10 µm以上700 µm未満 700 µ m以上

【0026】上記(B)成分の導電性炭素粉末の添加量 は、(A-1)成分の熱硬化性樹脂100質量部に対し て100~6000質量部であり、好ましくは200~ 2000質量部、より好ましくは400~900質量部 である。(B) 成分の導電性炭素粉末が多すぎるとセパ レータのガスバリア性、強度が低下する場合がある。一 方、少なすぎると導電性が低下する場合がある。

【0027】本発明の導電性樹脂組成物には、上記(A - 1) 、(A-2) 、(B) 成分以外にも、必要に応じ て強度、離型性、耐加水分解性、導電性等の向上を目的 として繊維基材、充填材、離型剤、金属粉末、耐加水分 解剤などを添加することができる。

【0028】上記繊維基材としては、例えば鉄、銅、真 鍮、青銅、アルミニウム等の金属繊維、セラミック繊 維、チタン酸カリウム繊維、ガラス繊維、炭素繊維、石 コウ繊維、ロックウール、ウォラストナイト、セピオラ イト、アタパルジャイト、人工鉱物質繊維等の無機質繊 維、アラミド繊維、ポリイミド繊維、ポリアミド繊維、 フェノール繊維、セルロース、アクリル繊維等の有機質 繊維などが挙げられ、これらの1種を単独で又は2種以 上を組み合わせて用いることができる。この場合、繊維 基材の配合量は (A-1) 成分の熱硬化性樹脂 100質 量部に対して0~500質量部、好ましくは10~50 0質量部、特に10~300質量部である。

【0029】上記充填材としては、粒状の有機又は無機 フィラーを用いることができる。例えばワラステナイ ト、セリサイト、マイカ、クレー、ベントナイト、アス ベスト、タルク、アルミナシリケート等の珪酸塩;アル ミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウ ム、酸化チタン等の金属酸化物;炭酸カルシウム、炭酸 マグネシウム、ドロマイト等の炭酸塩;硫酸カルシウ 素、炭化珪素、シリカなどが挙げられ、これらは中空又 は多孔質であってもよい。これら充填材は、バインダー である上記熱硬化性樹脂との密着性を上げるため、予め シランカップリング剤、カルボジイミド、各種エマルジ ョン等の表面処理剤で処理しておいても構わない。この 場合、充填材の添加量は、(A-1)成分の熱硬化性樹 脂100質量部に対して0~500質量部である。

【0030】上記離型剤としては、特に制限されず、シ リコーン系雕型剤、フッ素系雕型剤、脂肪酸金属系雕型 剤、アマイド系離型剤、ワックス系離型剤などが挙げら 50 方法は、射出成形、圧縮成形、射出一圧縮成形、トラン

*法を用いて、粉砕、整粒して上記平均粒径範囲とするこ とができる。

10

【0025】また、導電性炭素粉末は、上記平均粒径範 囲を満たし、かつ下記粒度分布を有することが好まし

1質量%未満

50~99質量%

残部

れ、特にカルナバワックス、ステアリン酸、ステアリン 酸亜鉛、モンタン酸等の内部離型剤が用いられる。この 場合、離型剤の配合量は(A-1)成分の熱硬化性樹脂 100質量部に対して0~30質量部である。

【0031】上記金属粉末としては、ステンレス、金、 銀、銅、白金、チタン、アルミニウム、ニッケル等を用 いることができる。この場合、金属粉末の平均粒径は通 常5~30 µmである。

【0032】本発明の燃料電池セパレータの製造方法 は、導電性炭素粉末と(A-1)成分の熱硬化性樹脂と (A-2) 成分の多価オキサジン化合物との混合物から 20 なる結合材とを主成分とし、上記熱硬化性樹脂100質 量部に対して多価オキサジン化合物を5~200質量部 と、導電性炭素粉末を100~600質量部と、繊維 基材を0~500質量部とを添加混合した混合物を用い て成形するものであり、、これにより成形時のガス発生 が少なく、効率よく片面又は両面にガス供給排出用溝を 有する燃料電池セパレータを製造できるものである。

[0033] この場合、(A-1), (A-2), (B) 成分、及び必要に応じて他の成分を溶融混練する ことが好ましい。溶融混練は、例えばバンバリミキサ 30 一、ゴムロール機、ニーダー、単軸又は二軸押出機等を 用いて、150℃~450℃の温度で行うことができ

【0034】なお、溶融混練を行う前に、熱硬化性樹脂 と多価オキサジン化合物、導電性炭素質粉末、充填材の 分散性をより一層向上させるために攪拌棒、ボールミ ル、サンプルミキサー、スタティックミキサー、リボン ブレンダー等の公知の混合方法による混合工程を入れて も構わない。

【0035】このようにして得られる本発明燃料電池セ ム、硫酸バリウム等の硫酸塩;ガラスビーズ、窒化ホウ 40 パレータ用組成物は、溶融状態のままセパレータ形状に 成形する工程に適用してもよいが、必要に応じて、一旦 ペレットとしてもよく、更にはこのペレットを流動層乾 燥、温風循環乾燥、真空乾燥、真空流動層乾燥等のよう な従来公知の方法によって乾燥させてもよい。

> 【0036】得られた混合物を、片面又は両面にガス供 給排出用溝を有するセパレータ形状に成形することがで きる金型を備えた射出成形機を用いて成形することによ り燃料電池セパレータが得られる。

【0037】なお、本発明の燃料電池セパレータの製造

スファー成形、押出成形、静水圧成形、ベルトプレス、ロール成形等の従来公知の成形方法から選ばれる1種又は2種以上の成形方法を組み合わせることにより行うことができる。

【0038】このようにして得られる燃料電池セパレータは、そのセパレータから切り出した3.5gの試験片を305mLの純水中に入れて、90℃に加熱して経時的に水の電気伝導度を測定し、500時間加熱した後の水の電気伝導度が20 μ S/cm以下であり、好ましくは15 μ S/cm以下、より好ましくは10 μ S/cm以下、更に好ましくは5 μ S/cm以下である。なおこの場合、下限値は特に制限されないが2 μ S/cm以上であることが好ましい。水の電気伝導度が大きすぎるとこのセパレータを用いて燃料電池に組み立てた際に電池出力が低下し、運転効率が劣り、本発明の目的及び作用効果を奏することができない。

【0039】 本発明の燃料電池セバレータは、JIS H 0602 のシリコン単結晶及びシリコンウェーハの4 探針法による抵抗率測定方法に準拠して測定した固有抵抗が 50 m Ω · c m以下、好ましくは 30 m Ω · c m以 20 下、より好ましくは $2\sim30$ m Ω · c m である。

【0040】また、本発明の燃料電池セパレータは、J IS K 6911の「熱硬化性プラスチック一般試験方法」に基づき、燃料電池セパレータ用組成物で100mm×10mm×4mmの試験片を作成した場合の曲げ強度が好ましくは $20\sim100$ MPa、より好ましくは $25\sim100$ MPaである。曲げ弾性率が好ましくは $3.1\sim100$ GPa、より好ましくは $5\sim50$ GPaである。歪みは好ましくは $0.5\sim15$ mm、より好ましくは $0.8\sim12$ mmである。

【0041】更に、本発明の燃料電池セパレータは、J IS K7126の「プラスチックフィルムのガス透過度評価方法」のB法(等圧法)に準じて、燃料電池セパレータ用組成物から2 mm厚 ϕ 100の試験片を作製し、23 $\mathbb C$ での N_2 ガス透過度を測定した結果、50 m 1 / m^2 · 24 h r · a t m以下であり、好ましくは3 0 m 1 / m^2 · 24 h r · a t m以下、より好ましくは20 m 1 / m^2 · 24 h r · a t m以下である。

【0042】次に、本発明の固体高分子型燃料電池は、 固体高分子電解質膜を挟む一対の電極と、該電極を挟ん 40 でガス供給排出用流路を形成する一対のセパレータとか ら構成される単位セルを多数並設した構造を有する固体 高分子型燃料電池において、上記燃料電池中の全セパレ ータの一部又は全部として上記本発明の燃料電池セパレ ータを用いたことを特徴とするものである。

【0043】この場合、固体高分子型燃料電池は、図1に示したように、板状体の両側面に水素、酸素などのガス供給排出用溝4を形成するための複数個の凸部1aを備えた2枚のセバレータ1、1と、これらセパレーター間に固体高分子電解質膜2と、ガス拡散電極(カーボン 50

ペーパー) 3, 3とを介在させてなる単電池(単位セル)を数十個以上並設して(これをスタックという)なる電池本体(モジュール)から構成されている。

【0044】本発明の燃料電池は、その燃料電池の全セパレータの一部又は全部として上記本発明の高弾性及び優れたガス不透過性の燃料電池セパレータを用いるものである。

【0045】具体的には、燃料電池中の全セパレータの50%以上、好ましくは50~100%、より好ましくは70~100%、更に好ましくは80~100%が本発明の燃料電池セパレータであることが好ましい。燃料電池中の全セパレータに占める本発明の燃料電池セパレータの割合が少なすぎると、長時間連続運転時に電池出力が低下したり、燃料電池に組み立てる際のボルトとナットによる締め付けでセパレータにヒビや割れが生じ、ガスシール性及び耐衝撃性が低下し、本発明の目的及び作用効果を達成できなくなる場合がある。なお、本発明燃料電池セパレータ以外のセパレータとしては燃料電池に普通に用いられているセパレータを用いることができる。

【0046】ここで、上記固体高分子電解質膜としては、固体高分子型燃料電池に普通に用いられているものを使用することができる。例えばフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であるポリトリフルオロスチレンスルフォン酸、パーフルオロカーボンスルフォン酸(商品名:Nafion)などを用いることができる。この電解質膜の表面には、触媒としての白金又は白金と他の金属からなる合金を担持したカーボン粉をパーフルオロカーボンスルフォン酸を含む低級脂肪酸族アルコールと水の混合溶液(Nafionl17溶液)等の有機溶剤に分散させたペーストを塗布している。

【0047】上記固体高分子電解質膜を挟む一対の電極としては、カーボンペーパー、カーボンフェルト、炭素 繊維からなる糸で織成したカーボンクロスなどにより形成することができる。

【0048】これら電解質膜及び電極は、一対の電極の間に電解質膜を介在させ、120~130℃で熱圧着することにより一体化する。なお、接着剤を用いて電解質膜と一対の電極とを接合して一体化することもできる。

【0049】このようにして一体化された電解質膜及び電極を一対のセパレータの間に燃料ガスを供給排出可能な流路を形成するように取り付けて、単位セルが得られる。この場合、セパレータの電極と接する部分(リブ)に接着剤を塗布して取り付ける方法などを採用することができる。

【0050】本発明の固体高分子型燃料電池は、この燃料電池中の全セパレータの一部(好ましくは50%以上)又は全部として高弾性及び優れたガス不透過性を有する本発明の燃料電池セパレータを用いることにより、

組み立て時の締め付けによりセパレータに割れやヒビが 生じることがなく、長時間連続運転時の電池出力が小さ く、高い運転効率を有すると共に、高いガスシール性と 優れた耐振動性及び耐衝撃性を有するので、特に自動 車、ハイブリッドカー、小型船舶等の移動用として好適 なものである。

【0051】本発明の固体高分子型燃料電池は、固体高分子型燃料電池を $200\sim500$ 時間連続運転した後の電圧 V_2 の初期電圧 V_1 に対する比率 [$(V_2/V_1)\times 100$]が80%以上、好ましくは90%以上、より好ま 10しくは $95\sim100\%$ であり、長時間連続運転しても電池出力の低下が生じないものである。

【0052】なお、本発明の固体高分子型燃料電池は、 自動車、ハイブリッドカー、小型船舶等の移動用電源以 外にも、小規模地域発電、家庭用発電、キャンプ場等で の簡易電源、人工衛星、宇宙開発用電源等の各種用途に 幅広く用いることができるものである。

[0053]

【発明の効果】本発明によれば、高い弾性と優れた離型性、寸法精度、ガス不透過性、及び低イオン溶出性を有 20 する燃料電池セパレータを効率よく、成形時のガス発生がなく大量生産できると共に、この燃料電池セパレータを一部又は全部に用いることにより、長時間連続運転時に電池出力が小さく、組み立て時のヒビや割れの発生がなく、高いガスシール性と優れた耐振動性及び耐衝撃性を有する高性能な固体高分子型燃料電池が得られる。

[0054]

【実施例】以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、表1~3中の各成分の配合量はいず 30れも質量部である。

【0055】 (実施例 $1\sim19$ 、比較例 $1\sim5$)表 $1\sim3$ に示す組成を混合し、コンパウンドを得た。得られたコンパウンドをセパレータ成形用金型に充填し、150 \mathbb{C} 、1.96 G P a で5 分間圧縮成形して長さ 100 m

14

 $m \times m = 100 mm \times 厚み2.0 mm の図2(A),$ (B) に示したような片面又は両面にガス供給排出用溝を有する実施例 $1 \sim 19$ 、比較例 $1 \sim 5$ の燃料電池セパレータを作製した。

【0056】作製した燃料電池セパレータについて、下記方法により諸特性を評価した。結果を表1~3に示す

【0057】(曲げ試験)インストロン社製万能試験機5544型を使用し、JIS K 6911に準じて、100×10×4mmの試験片を用いて、支持間距離80mm、試験速度0.5mm/分で曲げ強度及び曲げ弾性率を測定した。

【0058】(固有抵抗)ナカムラセイミツ社製2-10型を使用し、φ100×2mmの試験片を用いて、4端子法(JIS H0602)で測定した。

【0059】(成形性)

◎:非常に良好

○:良好

△:やや劣る

 \emptyset ×:硬化せず

【0060】〈ガス透過率〉JIS K7126 B法 (等圧法) に準拠し、φ100×2mmの試験片を用い て測定した。

【0061】〈500時間後の水の電気導電度〉燃料電池セパレータから切り出した3.5gの試験片を305m しの純水中に入れて、90℃に加熱し、経時的に水の電気伝導度を測定し、500時間加熱した後の水の電気伝導度を測定した。

【0062】また、得られた実施例1~19、比較例1~5の燃料電池セパレータを使用して常法により固体高分子型燃料電池を組み立て、200時間連続発電試験を行った後、電圧を測定して初期電圧に対する電圧降下率を算出した。結果を表1~3に示す。

[0063]

【表 1 】

16

2.0										
-P // /66 El hp)	実 施 例									
成分(質量部)	1	2	3	4	5	6	7	8	9	10
熱硬化性樹脂	100	100	100	100	100	100	100	100	100	100
多価オキサジン化合物	10	50	100	150	200	10	200	100	100	100
鱗片状黒鉛	470	640	860	1070	1280	260	5000	3800	2710	1800
曲げ強度 (MPa)	40	44	47	45	41	40	40	47	50	53
曲げ弾性率(GPa)	37	37	38	37	38	38	38	40	38	35
固有抵抗 (mΩ·cm)	30	23	20	21	30	30	10	6	8	9
成形性	0	0	0	0	0	0	0	0	0	0
ガス透過率 (ml/m²・day・atm)	20	6	5	5	6	10	10	28	24	16
500時間後の水の 電気伝導度(μS/c m)	2.0	8.0	0.7	0.8	2.0	5.0	2.5	2.5	2.1	1.8
電圧降下率(%)	99	99	98	98	99	99	99	99	98	98

*熱硬化性樹脂:ノボラック型フェノール樹脂

* [0064]

*多価オキサジン化合物:B-a型ベンゾオキサジン

【表 2 】

(四国化成工業社製)

(미수 트 관측 / 시 선급				実	施	例			
成分(質量部)	11	12	13	14	15	16	17	18	19
熱硬化性樹脂	100	100	100	100	100	100	100	100	100
多価オキサジン化合物	100	100	100	100	100	100	100	100	100
鱗片状黒鉛	1340	1133	710	600	860	860	860	860	860
炭素繊維	_	_	_	_	32	53	106	160	212
曲げ強度(MPa)	47	49	50	52	48	56	60	54	48
曲げ弾性率(GPa)	37	38	38	37	38.5	39	40	42	43
固有抵抗 (mΩ·cm)	12	16	19	22	21	23	26	28	34
成形性	0	0	0	0	0	0	0	0	0
ガス透過率 (ml/m²·day·atm)	15	16	19	19	5	10	12	18	25
500時間後の水の電気 伝導度(μS/cm)	1.5	1.7	1.9	2.1	1.5	1.7	1.8	1.9	2.0
電圧降下率(%)	99	98	97	96	99	99	98	95	90

*熱硬化性樹脂: ノボラック型フェノール樹脂 50 *多価オキサジン化合物: B - a 型ベンゾオキサジン

17

(四国化成工業社製)

*【表3】

[0065]

比較例 成分(質量部) 1 2 3 4 5 熱硬化性樹脂 100 100 100 100 100 多価オキサジン化合物 5 500 100 100 100 鱗片状黒鉛 450 2560 50 9000 860 炭素繊維 __ ___ 1000 曲げ強度(MPa) 20 25 50 4 10 曲げ弾性率(GPa) **3**7 37 42 10 10 固有抵抗 30 40 1000 50 100 $(m\Omega \cdot cm)$ 成形性 × × 0 × × ガス透過率 1000 1200 10 10000 20000 (ml/m²·day·atm) 500時間後の水の電気 40 30 2 20 50 伝導度(μS/cm) 電圧降下率(%) 50 55 30 3 3

*熱硬化性樹脂:ノボラック型フェノール樹脂

*多価オキサジン化合物: B-a型ベンゾオキサジン 30

(四国化成工業社製)

【図面の簡単な説明】

【図1】燃料電池の一例を示した斜視図である。

【図2】本発明の一実施例にかかる燃料電池セパレータの斜視図を示し、(A)は両面にガス供給排出用溝を有するもの、(B)は片面にガス供給排出用溝を有するも

のである。

【符号の説明】

1 セパレータ

1 a リブ

2 固体高分子電解質膜

3 ガス拡散電極

4 ガス供給排出用溝(流路)

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 7

識別記号

H 0 1 M 8/10

(72)発明者 矢野 由希子

千葉県千葉市緑区大野台1-2-3 日清

紡績株式会社研究開発センター内

(72)発明者 斎藤 一夫

千葉県千葉市緑区大野台1-2-3 日清

紡績株式会社研究開発センター内

(72)発明者 萩原 敦

千葉県千葉市緑区大野台1-2-3 日清

紡績株式会社研究開発センター内

FΙ

H 0 1 M 8/10

テーマコード(参考)

F 夕一ム(参考) 4J002 AB012 BD041 BF051 BG002 BG101 CC031 CC032 CC041 CC051 CC161 CC181 CD001 CF211 CL002 CL062 CM041 CM042 CM051 DA008 DA026

DA036 DA078 DA088 DA098

DC008 DE188 DG058 DJ008

DJ028 DL008 EU237 FA042 FA048 FD010 FD116 FD170

GQ00

5H026 AA06 BB00 BB08 CC03 CX02 CX05 EE05 EE17 EE18 HH01

нно5 нно6