# Fracking AGU

Jordan Landers

Thinkful Final Capstone | July 12, 2019



```
AGU Fall Meeting
```

There once was an earth scientist with an accepted abstract...

### Organizing AGU



25699 abstracts distributed across 1993 sessions that belong to 27 sections



#### As a matter of practicality, our scientist will likely limit itinerary planning to...

(1) the section their abstract is in

#### **Atmospheric Science** Sub-Km Grid Spacing Simulations Over the Vale do Cobro Using the WRF-ARW During Perdigao 2017 Stratification Effects on Flow through a Microscale Gap A Comparison of Atmospheric Profilers and Environmental Soundings in Complex Terrain during the 2017 VORTEX-SE Field Campaign Characteristics of Boundary-Layer Convection in a Deep and Wide Valley: A Large-Eddy Simulation Study Weather Patterns Associated with the US-Bangla BS211 Aircraft Accident at TIA, Kathmandu Valley, Nepal as Revealed by WRF-ARW Simulation Fast-response, high-resolution wind modeling over complex terrain Effects of Topography on Residence Time and Export Fraction of Gases **Emitted within Forests** On the Parameterization of Turbulence in Katabatic Flow etc...

(2) the sections instinctively similar to the section their abstract is in



# AGI) Fall Meeting

Stratification Effects on Flow through a Microscale Gap

SESSION

Boundary Layer Processes and Turbulence III

['Vassallo, D\*, University of Notre Dame, Notre Dame, IN, AUTHORS: United States'], ['Krishnamurthy, R, University of Notre Dame, Notre Dame, IN, United States'],...]

ABSTRACT TEXT:

While the flow effects of mesoscale gaps and passes in mountains are

well documented, studies into flow response to microscale topographic anomalies under various stability conditions are few and far between. Small gaps between localized peaks on a ridge may play an important role in the immediate surrounding environment by causing flow distortion and jetting, thus changing potential loads on wind turbines, affecting the dispersion of pollutants, and modifying the spread of forest fires.

The Perdigão Campaign, which occurred in the Spring of 2017, aimed to study flow in/over a parallel double ridge configuration, with a focus on microscale flow. One of the ridges had a densely instrumented gap that was approximately 700 m in length and 60 m in depth, allowing for an analysis of microscale gap flows. A novel triple Doppler lidar system was used to obtain data both within the gap region and on the leeward slope, while a dual Doppler lidar system collected flow information on the windward slope. Additionally, well instrumented

They will review abstracts based on:

title text and author list

 $\mathsf{OR}$ 

title text, author list AND abstract text

Section labels make the conference program less daunting, but do they help an attendee accurately build an itinerary consistent with their interests?

Do they reflect the underlying structure of the content presented at the AGU Fall Annual Meeting?

#### Study Design

- Acquire data and process into title\_features and abstract features
- 2. Are all ways of picking abstracts to investigate created equal?

  Here we simulate the scientist's similar-abstract-search strategies using doc2vec representations of the abstracts and compare them to the average similarity across the set of abstracts returned from an analysis of the whole program.
- 3. All else equal, are section labels the best way to cluster abstracts?

  Here we algorithmically cluster abstracts and compare them to section label clustering
- 4. With training, can a classifier learn to predict section labels?

  Here we compare the performance of classifiers trained on cluster labels and section labels

#### Collecting and Cleaning Data

- Abstract text and metadata from the 2018 Fall Meeting was scraped using scrapy and selenium
- Raw HTML data were stripped of tags, stop words, numbers, and punctuation, set to lower case and lemmatized using nltk

```
"title": ["<h2>Unexpected and significant biospheric CO<sub>2</sub> significant biospheric co2 fluxes in the Los Angeles Basin indicated by atmospheric radiocarbon (<sup>14</sup>CO<sub>2</sub>)</h2>"] "title": unexpected significant biospheric co2 fluxes los angeles basin indicated by atmospheric radiocarbon 14co2
```

Author names and institutions were formatted to create unique identifiers

Miller, J B\*, Global Monitoring Division,
NOAA/ESRL, Boulder, CO, United States'

millerjbglobalmonitoringdivisionnoaa
esrlbouldercounitedstates

#### Concept of Doc2Vec

"The bug in her code caused her computer to crash."

"The little kid spent the afternoon in the backyard digging in the dirt and putting bugs in her jar."

- Word2Vec uses these examples to build word context for "bug"
- 2. Doc2Vec adds information about each sentence

Ex: "The bug in her \_\_\_\_ caused her computer to crash."

The model might predict "code" rather than "dirt"



#### Building Doc2Vec models

*Train Doc2Vec models for* abstract\_features **and** title\_features **on each of 22 parameter sets**.

Doc2Vec parameters combinations were created from:

- min\_alpha = [.0001, .0003], min\_count = [8, 12, 16], vector\_size = [15, 35], window = [3, 6]



# Doc2Vec Similarity Analysis

Experiment 1:

#### **Experiment 1: Overview**

Does "filter by my section and maybe a few similar sections" yield the most similar set of abstracts to my seed?



#### Experiment 1: "Closest 4 sections"

The data structure to keep in mind: { Atmospheric Sciences: { Ocean Sciences: [ ], Natural Hazards: [ ]

(all sections) }

For every **section**:

(all sections) }

For every abstract:

- 1. calculate the 50 most similar abstracts by doc2vec.most\_similar()
- Identify the section for each add the *corresponding score* to the corresponding section list

Average the lists for each section

Pick the four top scoring sections to be the "closest 4"

For each model (call it model n):

- For each of the 25699 abstracts:
  - 1. Identify the 60 most similar abstracts to seed (subject to section limitation)



2. Calculate the mean and standard deviation of those similarity scores

| Model n                                  |                       |  |  |
|------------------------------------------|-----------------------|--|--|
| Limitation: Seed section only            |                       |  |  |
| Seed Mean of similarity between seed and |                       |  |  |
| 1                                        | 4, 11, 14, 20, 21, 23 |  |  |
| 25699                                    |                       |  |  |
| Model avg.                               |                       |  |  |

| Model n                     |                            |  |
|-----------------------------|----------------------------|--|
| Limitation                  | : Seed section + 4 similar |  |
| Seed                        | Mean of similarity         |  |
|                             | between seed and           |  |
| 1 1,3,4,5,6,7,8,10,11,13,14 |                            |  |
|                             | 16,19,20,21,22,23          |  |
| 25699                       |                            |  |
| Model avg.                  |                            |  |

| Model n    |                                                                 |  |
|------------|-----------------------------------------------------------------|--|
|            | Limitation: All sections                                        |  |
| Seed       | Mean of similarity between seed and                             |  |
| 1          | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1<br>7,18,19,20,21,22,23 |  |
| 25699      |                                                                 |  |
| Model avg. |                                                                 |  |

[Example: Doc2Vec parameter set 5, title\_features, abstract 6085]

```
df_agu.iloc[agu_inds][['title2', 'section', 'session']][:60]
```

| session                                           | section                               | title2                                         |       |
|---------------------------------------------------|---------------------------------------|------------------------------------------------|-------|
| Plate Motion, Continental Deformation, and Int    | Geodesy                               | Have we seen the largest earthquakes in easter | 1666  |
| Earthquake Source Physics Inferred from Macros    | Seismology                            | Energetic onset of earthquakes                 | 5584  |
| Induced Seismicity in the United States and Ca    | Seismology                            | Aftershock density decay in space and time: Ob | 5634  |
| Seismotectonic Processes Along Active Latin Am    | Tectonophysics                        | Slip Distribution of the 1960 Chile Earthquake | 12822 |
| The Hazards of Hazard Communication: Importanc    | Public Affairs                        | Sifting Fact from Science Fiction for the Publ | 18756 |
| Leveraging Social Media, Crowdsourcing, Citize    | Public Affairs                        | Hey Alexa, Open USGS Did You Feel It? Explori  | 25653 |
| The 2018 Eruptions of Klauea Volcano, Hawaii,     | Volcanology, Geochemistry, Petrology  | Shear Wave Splitting Tomography at Kilauea     | 18604 |
| Extracting Information from Geophysical and Ge    | Seismology                            | Rapid Characterization of Large Earthquakes wi | 5430  |
| Earthquake Source Physics: Unified Perspective    | Seismology                            | The Weak Determinism of Large Earthquakes      | 5892  |
| Shallow Subduction Zone Structure and Dynamics II | Tectonophysics                        | Quantifying seismic hazard from interseismic I | 13149 |
| Recent Progress in Nuclear Test Monitoring Cap    | Seismology                            | Earthquake Similarity through Graphical Modeli | 6266  |
| Whose Fault Is It? Relating Structural and Com    | Tectonophysics                        | Uncovering the physical controls of episodic t | 14392 |
| Three-Dimensional Fault Architecture and Geome    | Tectonophysics                        | Normal fault connectivity through time: an exa | 14479 |
| Integrated Approach for Earth, Ocean, Atmosphe    | Natural Hazards                       | Hydroacoustic records from non-tsunamigenic ev | 9111  |
| The KPg Mass Extinction and the Chicxulub Impa    | Paleoceanography and Paleoclimatology | The Chicxulub Impact Produced a Powerful Globa | 5283  |
| Seismology Contributions: Earthquakes II Posters  | Seismology                            | Increasing complexity of earthquake cycle with | 5391  |
| Science to Action: Education for Community/Sci    | Public Affairs                        | Bridging the Gap between Earthquake Hazards Re | 25617 |
| Numerical and Laboratory Analogue Models of Dy    | Tectonophysics                        | Vent location forecasts at calderas: a physics | 14898 |
| New Frontiers in Global Seismic Monitoring and    | Seismology                            | The USGS National Earthquake Information Cente | 5872  |

| Model n                  |                               |  |  |
|--------------------------|-------------------------------|--|--|
| Limitati                 | Limitation: Seed section only |  |  |
| Seed                     | Mean of similarity            |  |  |
|                          | between seed and              |  |  |
| 1 5584, 5634, 5430, 5892 |                               |  |  |
|                          |                               |  |  |
| 25699                    |                               |  |  |
| Model avg.               |                               |  |  |

[Example: Doc2Vec parameter set 5, title\_features, abstract 6085]

```
df_agu.iloc[agu_inds][['title2', 'section', 'session']][:60]
```

title2

|       | uuez                                           | section                               | session                                           |
|-------|------------------------------------------------|---------------------------------------|---------------------------------------------------|
| 1666  | Have we seen the largest earthquakes in easter | Geodesy                               | Plate Motion, Continental Deformation, and Int    |
| 5584  | Energetic onset of earthquakes                 | Seismology                            | Earthquake Source Physics Inferred from Macros    |
| 5634  | Aftershock density decay in space and time: Ob | Seismology                            | Induced Seismicity in the United States and Ca    |
| 12822 | Slip Distribution of the 1960 Chile Earthquake | Tectonophysics                        | Seismotectonic Processes Along Active Latin Am    |
| 18756 | Sifting Fact from Science Fiction for the Publ | Public Affairs                        | The Hazards of Hazard Communication: Importanc    |
| 25653 | Hey Alexa, Open USGS Did You Feel It? Explori  | Public Affairs                        | Leveraging Social Media, Crowdsourcing, Citize    |
| 18604 | Shear Wave Splitting Tomography at Kilauea     | Volcanology, Geochemistry, Petrology  | The 2018 Eruptions of Klauea Volcano, Hawaii,     |
| 5430  | Rapid Characterization of Large Earthquakes wi | Seismology                            | Extracting Information from Geophysical and Ge    |
| 5892  | The Weak Determinism of Large Earthquakes      | Seismology                            | Earthquake Source Physics: Unified Perspective    |
| 13149 | Quantifying seismic hazard from interseismic I | Tectonophysics                        | Shallow Subduction Zone Structure and Dynamics II |
| 6266  | Earthquake Similarity through Graphical Modeli | Seismology                            | Recent Progress in Nuclear Test Monitoring Cap    |
| 14392 | Uncovering the physical controls of episodic t | Tectonophysics                        | Whose Fault Is It? Relating Structural and Com    |
| 14479 | Normal fault connectivity through time: an exa | Tectonophysics                        | Three-Dimensional Fault Architecture and Geome    |
| 9111  | Hydroacoustic records from non-tsunamigenic ev | Natural Hazards                       | Integrated Approach for Earth, Ocean, Atmosphe    |
| 5283  | The Chicxulub Impact Produced a Powerful Globa | Paleoceanography and Paleoclimatology | The KPg Mass Extinction and the Chicxulub Impa    |
| 5391  | Increasing complexity of earthquake cycle with | Seismology                            | Seismology Contributions: Earthquakes II Posters  |
| 25617 | Bridging the Gap between Earthquake Hazards Re | Public Affairs                        | Science to Action: Education for Community/Sci    |
| 14898 | Vent location forecasts at calderas: a physics | Tectonophysics                        | Numerical and Laboratory Analogue Models of Dy    |
| 5872  | The USGS National Earthquake Information Cente | Seismology                            | New Frontiers in Global Seismic Monitoring and    |

section

session

| Model n              |                                      |  |  |
|----------------------|--------------------------------------|--|--|
| Limitation           | Limitation: Seed section + 4 similar |  |  |
| Seed                 | inoun or ominanty                    |  |  |
| 1                    | between seed and                     |  |  |
| 1 2004, 3004, 12022, |                                      |  |  |
| <del>25</del> 699    |                                      |  |  |
| Model avg.           |                                      |  |  |

title2

[Example: Doc2Vec parameter set 5, title\_features, abstract 6085]

```
df_agu.iloc[agu_inds][['title2', 'section', 'session']][:60]
```

|       | uuez                                           | Section                               | Session                                           |
|-------|------------------------------------------------|---------------------------------------|---------------------------------------------------|
| 1666  | Have we seen the largest earthquakes in easter | Geodesy                               | Plate Motion, Continental Deformation, and Int    |
| 5584  | Energetic onset of earthquakes                 | Seismology                            | Earthquake Source Physics Inferred from Macros    |
| 5634  | Aftershock density decay in space and time: Ob | Seismology                            | Induced Seismicity in the United States and Ca    |
| 12822 | Slip Distribution of the 1960 Chile Earthquake | Tectonophysics                        | Seismotectonic Processes Along Active Latin Am    |
| 18756 | Sifting Fact from Science Fiction for the Publ | Public Affairs                        | The Hazards of Hazard Communication: Importanc    |
| 25653 | Hey Alexa, Open USGS Did You Feel It? Explori  | Public Affairs                        | Leveraging Social Media, Crowdsourcing, Citize    |
| 18604 | Shear Wave Splitting Tomography at Kilauea     | Volcanology, Geochemistry, Petrology  | The 2018 Eruptions of Klauea Volcano, Hawaii,     |
| 5430  | Rapid Characterization of Large Earthquakes wi | Seismology                            | Extracting Information from Geophysical and Ge    |
| 5892  | The Weak Determinism of Large Earthquakes      | Seismology                            | Earthquake Source Physics: Unified Perspective    |
| 13149 | Quantifying seismic hazard from interseismic I | Tectonophysics                        | Shallow Subduction Zone Structure and Dynamics II |
| 6266  | Earthquake Similarity through Graphical Modeli | Seismology                            | Recent Progress in Nuclear Test Monitoring Cap    |
| 14392 | Uncovering the physical controls of episodic t | Tectonophysics                        | Whose Fault Is It? Relating Structural and Com    |
| 14479 | Normal fault connectivity through time: an exa | Tectonophysics                        | Three-Dimensional Fault Architecture and Geome    |
| 9111  | Hydroacoustic records from non-tsunamigenic ev | Natural Hazards                       | Integrated Approach for Earth, Ocean, Atmosphe    |
| 5283  | The Chicxulub Impact Produced a Powerful Globa | Paleoceanography and Paleoclimatology | The KPg Mass Extinction and the Chicxulub Impa    |
| 5391  | Increasing complexity of earthquake cycle with | Seismology                            | Seismology Contributions: Earthquakes II Posters  |
| 25617 | Bridging the Gap between Earthquake Hazards Re | Public Affairs                        | Science to Action: Education for Community/Sci    |
| 14898 | Vent location forecasts at calderas: a physics | Tectonophysics                        | Numerical and Laboratory Analogue Models of Dy    |
| 5872  | The USGS National Earthquake Information Cente | Seismology                            | New Frontiers in Global Seismic Monitoring and    |

section

session

| Model n    |                                 |  |  |
|------------|---------------------------------|--|--|
| Limitat    | Limitation: None (all sections) |  |  |
| Seed       | Mean of similarity              |  |  |
|            | between seed and                |  |  |
| 1          | 1 1666, 5584, 5634, 12822,      |  |  |
| 18756      |                                 |  |  |
| 25699      |                                 |  |  |
| Model avg. |                                 |  |  |

### Experiment 1a: How many sections to search?

| 1_title_feat_S1 | 1_title_feat_S5 | 1_title_feat_SA | 1_abstract_feat_S1 | 1_abstract_feat_S5 | 1_abstract_feat_SA |
|-----------------|-----------------|-----------------|--------------------|--------------------|--------------------|
| index mean std  | index mean std  | index mean std  | index mean std     | index mean std     | index mean std     |
| 1               | 1               | 1               | 1                  | 1                  | 1                  |
| 2               | 2               | 2               | 2                  | 2                  | 2                  |
| etc             | etc             | etc             | etc                | etc                | etc                |
| 25699           | 25699           | 25699           | 25699              | 25699              | 25699              |

Run t-test between sets, record significant set(s) w/ higher mean score(s)



T-tests between param set # winners

#### Experiment 1a: Results



- Combing through all abstracts yielded more similar sets (on average) for every doc2vec parameterization for both full abstract text features and just title features.
- Except for models 19 and 23, title features were more predictive of similar titles than abstracts were of similar abstracts. For models 19 and 23, the abstract and title features were not significantly different.

#### Experiment 1b: Search based on title or abstract text?

| 1_title_feat_S1 | 1_abstract_feat_S1 | 1_title_feat_S5 | 1_abstract_feat_S5 | 1_title_feat_SA | 1_abstract_feat_SA |
|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| index mean std  | index mean std     | index mean std  | index mean std     | index mean std  | index mean std     |
| 1               | 1                  | 1               | 1                  | 1               | 1                  |
| 2               | 2                  | 2               | 2                  | 2               | 2                  |
| etc             | etc                | etc             | etc                | etc             | etc                |
| 25699           | 25699              | 25699           | 25699              | 25699           | 25699              |

Run t-test between sets, record significant set(s) w/ higher mean score(s)



T-tests between param set # winners performing models

### Experiment 1b: Results



| S1 | S5 SAII | Title | Abstract |
|----|---------|-------|----------|
|----|---------|-------|----------|

#### **Experiment 1: Summary**



#### Results Breakdown by Section



#### Checking the results

Seed: Fully Physics-Based PSHA: Coupling RSQSim with Deterministic Ground Motion Simulations

Section: Seismology, Session: 'Beyond the Earthquake Cycle: Field and Modeling Constraints of Earthquake

Rupture Along Complex-Geometry Fault Systems and Implications for Seismic Hazard Assessment II'

df\_agu.iloc[agu\_inds][['title2', 'section', 'session']][:60]

|       | title2                                         | 10 sections            | section         | session                                           |
|-------|------------------------------------------------|------------------------|-----------------|---------------------------------------------------|
| 1666  | Have we seen the largest earthquakes in easter | featured in top 60!    | Geodesy         | Plate Motion, Continental Deformation, and Int    |
| 5584  | Energetic onset of earthquakes                 |                        | Seismology      | Earthquake Source Physics Inferred from Macros    |
| 5634  | Aftershock density decay in space and time: Ob | •                      | Seismology      | Induced Seismicity in the United States and Ca    |
| 12822 | Slip Distribution of the 1960 Chile Earthquake | Te                     | ectonophysics   | Seismotectonic Processes Along Active Latin Am    |
| 18756 | Sifting Fact from Science Fiction for the Publ |                        | Public Affairs  | The Hazards of Hazard Communication: Importanc    |
| 25653 | Hey Alexa, Open USGS Did You Feel It? Explori  |                        | Public Affairs  | Leveraging Social Media, Crowdsourcing, Citize    |
| 18604 | Shear Wave Splitting Tomography at Kilauea     | Volcanology, Geochemis | stry, Petrology | The 2018 Eruptions of Klauea Volcano, Hawaii,     |
| 5430  | Rapid Characterization of Large Earthquakes wi |                        | Seismology      | Extracting Information from Geophysical and Ge    |
| 5892  | The Weak Determinism of Large Earthquakes      |                        | Seismology      | Earthquake Source Physics: Unified Perspective    |
| 13149 | Quantifying seismic hazard from interseismic I | Te                     | ectonophysics   | Shallow Subduction Zone Structure and Dynamics II |
| 6266  | Earthquake Similarity through Graphical Modeli |                        | Seismology      | Recent Progress in Nuclear Test Monitoring Cap    |
| 14392 | Uncovering the physical controls of episodic t | Te                     | ectonophysics   | Whose Fault Is It? Relating Structural and Com    |

Experiment 2:

Clustering

#### **Experiment 2: Overview**

Are Section Labels the best description of the underlying group structure of the AGU offerings?



### Results Summary



# of clusters for the three highest scoring models for each feature\_type-cluster\_alg-doc2vec configurations

#### Results Summary



#### Results Summary



## **Supervised Classifiers**

Experiment 3:

#### Experiment 3: Overview

#### Given training, are section labels the most intuitive labels for abstracts?



### Results: Overall Classifier Accuracy



### Results: Classifier Accuracy by Label



Doc2Vec param set 8, K-means cluster labels (n=8), Gradient Boosting Classifier

#### Final Thoughts

- "Similar abstracts" vary considerably with Doc2Vec parameterization
- Can tune parameters to improve d2v similarity score, but haven't yet calibrated with a human so usefulness varies
- Spot checks do suggest that there are abstracts outside of closest four that are relevant and were otherwise undiscovered
- Section labels are useful but potentially not the only or best way to describe the structure of the AGU program (seen by both clustering coherence and classifier study)
- Different models may perform better for different sections, sessions, or even abstracts