

流体力学实验报告

学院:	xxxx 学院				
专业班级:	xxxxxxxxxxxx 班				
学生姓名:	XXX				
学号 :	XXXXXXXXX				
授课教师:	XXX				

圆管沿程损失实验报告

$\mbox{\sc int} T_{\mbox{\sc E}} X$ by xxxxx xxx xxxxxxxxx

2024年12月31日

目录

1	圆管	沿程损失实验	2
	1.1	实验目的	2
	1.2	实验装置	2
	1.3	实验原理	2
	1.4	实验步骤	3
	1.5	数据整理与实验报告	3
	1.6	思考	4
	1.7	实验数据记录及处理表::::::::::::::::::::::::::::::::::::	6

1 圆管沿程损失实验

1.1 实验目的

- 1. 巩固对圆管稳定的均匀流动中沿程损失规律的认识。
- 2. 掌握沿程阻力系数 的测试原理及测定方法。
- 3. 熟悉实验中数据处理及图形绘制的基本知识。

1.2 实验装置

流体力学综合试验台中的沿程损失的管道

图 1: 流体力学综合试验台结构示意图

1.3 实验原理

• 由实际流体伯努利方程:

$$\frac{P_1}{\rho g} + \frac{\alpha_1 \nu_1^2}{2g} = \frac{P_2}{\rho g} + \frac{\alpha_2 \nu_2^2}{2g} + h_f$$

$$\alpha_1 = \alpha_2 = 1, \quad \nu_1 = \nu_2 \qquad h_f = \frac{\Delta P}{\rho g}$$
(1)

• 由沿程损失:

$$h_f = \lambda \frac{L}{d} \frac{\nu^2}{2g}, \quad v = \frac{4q_v}{\pi d^2} \tag{2}$$

• 当 Δh 为水柱时:

$$\lambda = \frac{\pi^2 g d^5}{8L} \Delta h_{\mathcal{K}} q_v^2 = A \Delta h_{\mathcal{K}} q_v^2 \tag{3}$$

其中:

$$A = \frac{\pi^2 g d^5}{8L} \tag{4}$$

• Re = $\frac{\nu d}{v} = \frac{4q_v d}{\pi d^2 v} = \frac{4q_v}{\pi dv} = Bq_v$ 其中:

$$B = \frac{4}{\pi dv} \tag{5}$$

• 根据已知 d、L 及 h,算出 A、B 值备用,注意 Δh 单位为 mm , q_v 单位为 $\mathrm{ml/s}$ 。

1.4 实验步骤

- 1. 准备阶段
 - 对照装置图和说明,搞清各组成部件的名称、作用及其工作原理
 - 检查蓄水箱水位是否够高。否则予以补水并关闭阀门
 - 记录有关实验常数: 工作管内径 d 和实验管长 L
- 2. 启动与调试
 - 接通电源,启动水泵。打开供水阀
 - 调通量测系统:
 - 启动水泵排除管道中的气体
 - 关闭出水阀,排除其中的气体。随后,关闭进水阀,开出水阀,使水压计的液面降至标尺零附近
 - 再次开启进水阀并立即关闭出水阀,稍候片刻检查水位是否齐平,如不平则需重调
 - 气---水压差计水位齐平
 - 实验装置通水排气后,即可进行实验测量
- 3. 测量过程
 - 在进水阀全开的前提下,逐次开大出水阀
 - 每次调节流量时,均需稳定 2-3 分钟
 - 流量愈小,稳定时间愈长
 - 测流量时间不小于 8-10 秒
 - 测流量的同时, 需测记压差计读数
 - 开启调节阀门,测读测压面差
 - 用体积法测流量,并记录流量
 - 反复进行步骤 4, 共测出 10-15 组数据
- 4. 实验结束
 - 试验结束后关闭进水阀门, 然后关闭电源

1.5 数据整理与实验报告

- 1. 水温和运动粘度确定
 - 根据测出水温, 求出平均水温值
 - 使用插值法查取对应的运动粘度值

T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8	T_9	T_{10}	T_{11}	T_{12}
15°C	16°C	14°C	16°C	15°C	14°C	15°C	14°C	15°C	16°C	14°C	15°C
1.155	1.150	1.160	1.150	1.155	1.160	1.155	1.160	1.155	1.150	1.160	1.155

平均 $T=15^{\circ}$ C

平均 $\nu = 1.155 \, \text{mm}^2/\text{s}$

- 2. 参数计算
 - 根据实验原理, 计算 A 和 B 值

$$A = \frac{\pi^2 g d^5}{8L}$$

$$B = \frac{4}{\pi d\nu}$$

$$(6)$$

$$(7)$$

$$B = \frac{4}{\pi d\nu} \tag{7}$$

注意: 需严格检查各参数的计量单位

- 3. 数据计算
 - 分别计算下列数值并记入表 2:
 - $-\Delta h$ (压降)、Q (流量)、Re (雷诺数)、 $\log(\text{Re})$ 、 $\log(100\lambda)$
- 4. 坐标绘制
 - 在坐标纸上根据 $\log(\text{Re})$ 和 $\log(100\lambda)$ 的实际范围,绘制坐标系
 - 根据测量结果, 在图中找到实验点位置
 - 使用符号 × 标记实验点,点位置取在 × 中心
- 5. 趋势线绘制
 - 根据图中实验点位置的平均变化规律绘制圆滑曲线
 - 不考虑误差较大的点
 - 保持曲线的平滑性和连续性

1.6 思考

- 1. 本实验的目的是什么?
 - (a) 验证理论模型:通过实验数据,检验经典的沿程水头损失公式是否准确。
 - (b) 确定沿程水头损失系数 λ: 实验可以帮助我们确定在不同管径、不同粗糙度和不同流速 条件下的沿程水头损失系数 λ ,这一系数对于计算管道系统中的能量损失至关重要。
 - (c) 研究流态对沿程损失的影响: 通过改变流速,实验可以研究层流和紊流两种流态下的沿 程水头损失的变化规律。对于层流,水头损失与流速成线性关系,而在紊流状态下,水头 损失通常依赖于流速的平方。
 - (d) 掌握实验测量方法:实验过程中需要精确测量流量、压差等参数。常见的实验工具包括 流量计、压差计、温度计等,熟练掌握这些测量方法为后续更复杂的流体力学实验奠定 基础。
 - (e) 为工程设计提供数据支持:实验结果可以为实际工程设计(如管道设计、水力计算等)提 供有力的数据支持。尤其是能够根据实际数据优化管道的设计,降低能量损失和提高输 送效率。

- 2. 数据处理和画实验曲线时应注意什么问题?
 - (a) 数据准确性和一致性: 确保实验数据的精确测量,并通过多次实验保证数据的一致性。
 - (b) 流态判定: 根据雷诺数判断流态,正确识别层流和紊流对水头损失的影响。
 - (c) 数据处理: 合理整理和处理实验数据,进行数据平滑或拟合以消除波动。
 - (d) 实验曲线绘制:根据流速和水头损失的关系绘制准确的实验曲线,并比较不同实验条件下的结果。
 - (e) 误差分析: 进行系统误差和随机误差分析,确保实验结果的可靠性并进行拟合误差评估。
- 3. 实验中的误差主要由哪些环节产生?
 - (a) 测量仪器误差: 仪器的精度限制、校准不准确和读数误差可能导致测量误差。
 - (b) 管道安装误差: 管道的安装不准确或连接处泄漏会影响实验结果。
 - (c) 流体特性误差: 温度变化和流体的不均匀性可能影响流体的物理性质, 进而影响实验数据。
 - (d) 雷诺数判定误差: 流态分类不准确或过渡区模糊会导致误判流态, 影响水头损失的计算。
 - (e) 环境因素误差: 实验室温度、湿度和气压的波动可能对实验结果产生影响。
 - (f) 数据处理误差: 数据采集不准确或数据拟合方法不当可能导致误差。
 - (g) 实验设计和操作误差: 实验条件不一致或操作不当可能引入误差。
 - (h) 外部扰动因素: 振动、气泡或其他外界干扰可能增加测量的不稳定性。
- 4. 本实验画出的曲线和尼古拉兹实验曲线(图书上 P265 图 9-22)是否吻合,不吻合分析原因。
 - (a) 实验装置误差: 测量工具和仪器可能存在误差, 影响结果的准确性。
 - (b) 实验条件不同:环境因素如温度、湿度等可能导致实验条件的差异。
 - (c) 流体动力学模型的差异: 理论模型和实际实验流动特性可能不完全一致。
 - (d) 实验数据的偏差:数据处理方法不当或异常数据未被剔除,导致曲线不一致。
 - (e) 操作误差: 操作不当或数据记录错误可能导致实验数据偏差。

图 2: 尼古拉斯实验曲线

1.7 实验数据记录及处理表

序号	$h_1 (\mathrm{mm})$	$h_2 (\mathrm{mm})$	$\Delta h (\mathrm{mm})$	$Q\left(\mathrm{ml}\right)$	t (s)	$q_V (\mathrm{ml/s})$	$\nu(\mathrm{mm/s})$	Re	log Re	$\log(100\lambda)$
1	110	60	50	675	3.26	207.32	8.59	85900	4.93	0.301
2	104	57.5	46.5	665	3.15	211.11	8.95	83205	4.92	0.301
3	98	55	43	580	3.21	180.06	7.45	74800	4.87	0.301
4	92	53	39	610	3.35	181.79	7.54	78955	4.90	0.301
5	86	50.5	35.5	605	3.48	173.43	7.23	78360	4.89	0.301
6	80	48	32	675	4.21	160.33	6.69	82080	4.91	0.301
7	74	45.5	28.5	600	4.06	147.53	6.17	74045	4.87	0.301
8	68	43.5	24.5	555	4.05	137.04	5.83	68130	4.83	0.301
9	62	40.5	21.5	550	4.45	123.59	5.50	63600	4.80	0.301
10	56	38.5	17.5	485	4.10	118.29	5.39	58590	4.77	0.301
11	50	36.5	13.5	420	4.40	95.45	4.72	52045	4.71	0.301
12	42	34	8	310	4.41	70.21	4.27	45580	4.66	0.301

