Chapter 9

RV32/64G Instruction Set Listings

One goal of the RISC-V project is that it be used as a stable software development target. For this purpose, we define a combination of a base ISA (RV32I or RV64I) plus selected standard extensions (IMAFD) as a "general-purpose" ISA, and we use the abbreviation G for the IMAFD combination of instruction-set extensions. This chapter presents opcode maps and instruction-set listings for RV32G and RV64G.

inst[4:2]	000	001	010	011	100	101	110	111
inst[6:5]								(> 32b)
00	LOAD	LOAD-FP	custom-0	MISC-MEM	OP-IMM	AUIPC	OP-IMM-32	48b
01	STORE	STORE-FP	custom-1	AMO	OP	LUI	OP-32	64b
10	MADD	MSUB	NMSUB	NMADD	OP-FP	reserved	custom-2/ $rv128$	48b
11	BRANCH	JALR	reserved	JAL	SYSTEM	reserved	custom-3/ $rv128$	$\geq 80b$

Table 9.1: RISC-V base opcode map, inst[1:0]=11

Table 9.1 shows a map of the major opcodes for RVG. Major opcodes with 3 or more lower bits set are reserved for instruction lengths greater than 32 bits. Opcodes marked as reserved should be avoided for custom instruction set extensions as they might be used by future standard extensions. Major opcodes marked as custom-0 and custom-1 will be avoided by future standard extensions and are recommended for use by custom instruction-set extensions within the base 32-bit instruction format. The opcodes marked custom-2/rv128 and custom-3/rv128 are reserved for future use by RV128, but will otherwise be avoided for standard extensions and so can also be used for custom instruction-set extensions in RV32 and RV64.

We believe RV32G and RV64G provide simple but complete instruction sets for a broad range of general-purpose computing. The optional compressed instruction set described in Chapter 14 can be added (forming RV32GC and RV64GC) to improve performance, code size, and energy efficiency, though with some additional hardware complexity.

As we move beyond IMAFDC into further instruction set extensions, the added instructions tend to be more domain-specific and only provide benefits to a restricted class of applications, e.g., for multimedia or security. Unlike most commercial ISAs, the RISC-V ISA design clearly separates the base ISA and broadly applicable standard extensions from these more specialized additions. Chapter 10 has a more extensive discussion of ways to add extensions to the RISC-V ISA.

31	27	26	25	24	20	19	15	14	12	11	7	6	0	
	funct7				rs2	r	s1	fun	ct3	1	rd	opc	ode	R-type
	ir	nm[11:0)]		r	s1	fun	ct3	1	rd	opc	ode	I-type
	imm[11:5	5]			rs2	r	s1	fun	ct3	imn	n[4:0]	opc	ode	S-type
iı	nm[12 10]):5]			rs2	r	s1	fun	ct3	imm[4:1 11]	opc	ode	SB-type
				im	m[31:12]					1	rd	opc	ode	U-type
			imn	a[20]	10:1 11	[19:12]				1	rd	opc	ode	UJ-type

RV32I Base Instruction Set imm[31:12]

	imm[31:12]			rd	0110111	LUI
	imm[31:12]			rd	0010111	AUIPC
imi	m[20 10:1 11 19	9:12]		rd	1101111	JAL
imm[11:		rs1	000	rd	1100111	JALR
imm[12 10:5]	rs2	rs1	000	imm[4:1 11]	1100011	BEQ
imm[12 10:5]	rs2	rs1	001	imm[4:1 11]	1100011	BNE
imm[12 10:5]	rs2	rs1	100	imm[4:1 11]	1100011	BLT
imm[12 10:5]	rs2	rs1	101	imm[4:1 11]	1100011	BGE
imm[12 10:5]	rs2	rs1	110	imm[4:1 11]	1100011	BLTU
imm[12 10:5]	rs2	rs1	111	imm[4:1 11]	1100011	BGEU
imm[11:		rs1	000	rd	0000011	LB
imm[11:		rs1	001	rd	0000011	LH
imm[11:		rs1	010	rd	0000011	LW
imm[11:		rs1	100	rd	0000011	LBU
imm[11:		rs1	101	rd	0000011	LHU
imm[11:5]	rs2	rs1	000	imm[4:0]	0100011	brack SB
imm[11:5]	rs2	rs1	001	imm[4:0]	0100011	SH
imm[11:5]	rs2	rs1	010	imm[4:0]	0100011	SW
imm[11:		rs1	000	rd	0010011	ADDI
imm[11:		rs1	010	rd	0010011	SLTI
imm[11:		rs1	011	rd	0010011	SLTIU
imm[11:		rs1	100	rd	0010011	XORI
imm[11:	0]	rs1	110	rd	0010011	ORI
imm[11:	0]	rs1	111	rd	0010011	ANDI
0000000	shamt	rs1	001	rd	0010011	SLLI
0000000	shamt	rs1	101	rd	0010011	SRLI
0100000	shamt	rs1	101	rd	0010011	SRAI
0000000	rs2	rs1	000	rd	0110011	ADD
0100000	rs2	rs1	000	rd	0110011	SUB
0000000	rs2	rs1	001	rd	0110011	SLL
0000000	rs2	rs1	010	rd	0110011	SLT
0000000	rs2	rs1	011	rd	0110011	SLTU
0000000	rs2	rs1	100	rd	0110011	XOR
0000000	rs2	rs1	101	rd	0110011	SRL
0100000	rs2	rs1	101	rd	0110011	SRA
0000000	rs2	rs1	110	rd	0110011	OR
0000000	rs2	rs1	111	rd	0110011	AND
0000 pre		00000	000	00000	0001111	FENCE
	0000 0000 0000			00000	0001111	FENCE.I
	00000000000			00000	1110011	ECALL
000000000	00000000001			00000	1110011	EBREAK
csr				rd	1110011	CSRRW
csr				rd	1110011	CSRRS
csr	rs1	011	rd	1110011	CSRRC	
csr	zimm	101	rd	1110011	CSRRWI	
csr		zimm	110	rd	1110011	CSRRSI
csr		zimm	111	rd	1110011	CSRRCI

31	27	26	25	24	20	19	15	14	12	11	7	6	0	
	funct	7			rs2	r	s1	fun	ct3	rd		op	code	R-type
		imm	[11:0]			r	s1	fun	ct3	rd		op	code	I-type
i	imm[11]	L:5]			rs2	r	s1	fun	ct3	imm[4:0]	op	code	S-type

RV64I Base Instruction Set (in addition to RV32I)

imm[1]	1:0]	rs1	110	$^{\mathrm{rd}}$	0000011	LWU
imm[1]	1:0]	rs1	011	$^{\mathrm{rd}}$	0000011	LD
imm[11:5]	rs2	rs1	011	imm[4:0]	0100011	SD
000000	shamt	rs1	001	$^{\mathrm{rd}}$	0010011	SLLI
000000	shamt	rs1	101	rd	0010011	SRLI
010000	shamt	rs1	101	rd	0010011	SRAI
imm[1]	1:0]	rs1	000	rd	0011011	ADDIW
0000000	shamt	rs1	001	$^{\mathrm{rd}}$	0011011	SLLIW
0000000	shamt	rs1	101	rd	0011011	SRLIW
0100000	shamt	rs1	101	$^{\mathrm{rd}}$	0011011	SRAIW
0000000	rs2	rs1	000	$^{\mathrm{rd}}$	0111011	ADDW
0100000	rs2	rs1	000	$^{\mathrm{rd}}$	0111011	SUBW
0000000	rs2	rs1	001	$^{\mathrm{rd}}$	0111011	SLLW
0000000	rs2	rs1	101	$_{ m rd}$	0111011	SRLW
0100000	rs2	rs1	101	$^{\mathrm{rd}}$	0111011	SRAW

RV32M Standard Extension

0000001	rs2	rs1	000	$^{\mathrm{rd}}$	0110011	MUL
0000001	rs2	rs1	001	$^{\mathrm{rd}}$	0110011	MULH
0000001	rs2	rs1	010	$_{ m rd}$	0110011	MULHSU
0000001	rs2	rs1	011	$^{\mathrm{rd}}$	0110011	MULHU
0000001	rs2	rs1	100	$^{\mathrm{rd}}$	0110011	DIV
0000001	rs2	rs1	101	$^{\mathrm{rd}}$	0110011	DIVU
0000001	rs2	rs1	110	$^{\mathrm{rd}}$	0110011	REM
0000001	rs2	rs1	111	$^{\mathrm{rd}}$	0110011	REMU

RV64M Standard Extension (in addition to RV32M)

0000001	rs2	rs1	000	$^{\mathrm{rd}}$	0111011	MULW
0000001	rs2	rs1	100	$^{\mathrm{rd}}$	0111011	DIVW
0000001	rs2	rs1	101	$^{\mathrm{rd}}$	0111011	DIVUW
0000001	rs2	rs1	110	rd	0111011	REMW
0000001	rs2	rs1	111	$^{\mathrm{rd}}$	0111011	REMUW

RV32A Standard Extension

00010	aq	rl	00000	rs1	010	$^{\mathrm{rd}}$	0101111	LR.W
00011	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	SC.W
00001	aq	rl	rs2	rs1	010	rd	0101111	AMOSWAP.W
00000	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOADD.W
00100	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOXOR.W
01100	aq	rl	rs2	rs1	010	rd	0101111	AMOAND.W
01000	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOOR.W
10000	aq	rl	rs2	rs1	010	rd	0101111	AMOMIN.W
10100	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOMAX.W
11000	aq	rl	rs2	rs1	010	$^{\mathrm{rd}}$	0101111	AMOMINU.W
11100	aq	rl	rs2	rs1	010	rd	0101111	AMOMAXU.W

31	27	26	25	24		20	19	15	14	12	11	7	6	0	
	funct	7			rs2		rs1		func	et3	ro	l	opco	ode	R-type
r	rs3	fun	ct2		rs2		rs1		func	et3	ro	l	opco	ode	R4-type
		imm[[11:0]				rs1		func	et3	ro	l	opco	de	I-type
	imm[11]	L:5]			rs2		rs1		func	et3	$_{ m imm}$	4:0]	opco	de	S-type

RV64A Standard Extension (in addition to RV32A)

00010	aq	rl	00000	rs1	011	rd	0101111	LR.D
00011	aq	rl	rs2	rs1	011	rd	0101111	SC.D
00001	aq	rl	rs2	rs1	011	rd	0101111	AMOSWAP.D
00000	aq	rl	rs2	rs1	011	rd	0101111	AMOADD.D
00100	aq	rl	rs2	rs1	011	rd	0101111	AMOXOR.D
01100	aq	rl	rs2	rs1	011	rd	0101111	AMOAND.D
01000	aq	rl	rs2	rs1	011	rd	0101111	AMOOR.D
10000	aq	rl	rs2	rs1	011	rd	0101111	AMOMIN.D
10100	aq	rl	rs2	rs1	011	rd	0101111	AMOMAX.D
11000	aq	rl	rs2	rs1	011	rd	0101111	AMOMINU.D
11100	aq	rl	rs2	rs1	011	rd	0101111	AMOMAXU.D

RV32F Standard Extension

	imm[11:0]		rs1	010	rd	0000111	FLW
imm[11	.:5]	rs2	rs1	010	imm[4:0]	0100111	FSW
rs3	00	rs2	rs1	$^{\mathrm{rm}}$	rd	1000011	FMADD.S
rs3	00	rs2	rs1	rm	rd	1000111	FMSUB.S
rs3	00	rs2	rs1	$_{ m rm}$	rd	1001011	FNMSUB.S
rs3	00	rs2	rs1	rm	rd	1001111	FNMADD.S
000000	00	rs2	rs1	rm	rd	1010011	FADD.S
000010	00	rs2	rs1	rm	rd	1010011	FSUB.S
000100	00	rs2	rs1	rm	rd	1010011	FMUL.S
000110	00	rs2	rs1	rm	rd	1010011	FDIV.S
010110	00	00000	rs1	rm	rd	1010011	FSQRT.S
001000	00	rs2	rs1	000	rd	1010011	FSGNJ.S
001000	00	rs2	rs1	001	rd	1010011	FSGNJN.S
001000	00	rs2	rs1	010	rd	1010011	FSGNJX.S
001010	00	rs2	rs1	000	rd	1010011	FMIN.S
001010	00	rs2	rs1	001	rd	1010011	FMAX.S
110000	00	00000	rs1	rm	rd	1010011	FCVT.W.S
110000	00	00001	rs1	$_{ m rm}$	rd	1010011	FCVT.WU.S
111000	00	00000	rs1	000	rd	1010011	FMV.X.S
101000	00	rs2	rs1	010	rd	1010011	FEQ.S
101000	00	rs2	rs1	001	rd	1010011	FLT.S
101000	00	rs2	rs1	000	rd	1010011	FLE.S
111000	00	00000	rs1	001	rd	1010011	FCLASS.S
110100	00	00000	rs1	rm	rd	1010011	FCVT.S.W
110100	00	00001	rs1	rm	rd	1010011	FCVT.S.WU
111100	00	00000	rs1	000	rd	1010011	FMV.S.X

	31	27	2	26	25	24		20	19		15	14	12	11		7	6	0	
ſ		func	t7				rs2			rs1		fun	ct3		rd		opc	ode	R-type
Ī		rs3	j	fun	ct2		rs2			rs1		fun	ct3		rd		opc	ode	R4-type
Ī			im	ım	[11:0]]			:	rs1		fun	ct3		rd		opc	ode	I-type
Ī		imm[1	1:5				rs2			rs1		fun	ct3	im	m[4:0])]	opc	ode	S-type

RV64F Standard Extension (in addition to RV32F)

1100000	00010	rs1	rm	rd	1010011	FCVT.L.S
1100000	00011	rs1	$_{ m rm}$	$^{\mathrm{rd}}$	1010011	FCVT.LU.S
1101000	00010	rs1	rm	rd	1010011	FCVT.S.L
1101000	00011	rs1	$_{ m rm}$	rd	1010011	FCVT.S.LU

RV32D Standard Extension

Ī	j	mm[11:0]		rs1	011	rd	0000111	FLD	
ĺ	imm[11]	:5]	rs2	rs1	011	imm[4:0]	0100111	FSD	
	rs3	01	rs2	rs1	$_{ m rm}$	rd	1000011	FMADD.D	
	rs3	01	rs2	rs1	rm	$_{ m rd}$	1000111	FMSUB.D	
	rs3	01	rs2	rs1	rm	$^{\mathrm{rd}}$	1001011	FNMSUB.D	
	rs3	01	rs2	rs1	rm	$_{ m rd}$	1001111	FNMADD.D	
	000000)1	rs2	rs1	$_{ m rm}$	rd	1010011	FADD.D	
	000010)1	rs2	rs1	$_{ m rm}$	$^{\mathrm{rd}}$	1010011	FSUB.D	
	000100)1	rs2	rs1	$^{\mathrm{rm}}$	rd	1010011	FMUL.D	
	000110)1	rs2	rs1	$_{ m rm}$	$^{ m rd}$	1010011	FDIV.D	
ĺ	010110)1	00000	rs1	$_{ m rm}$	$_{ m rd}$	1010011	FSQRT.D	
	001000)1	rs2	rs1	000	$_{ m rd}$	1010011	FSGNJ.D	
	001000)1	rs2	rs1	001	$^{\mathrm{rd}}$	1010011	FSGNJN.D	
	001000)1	rs2	rs1	010	rd	1010011	FSGNJX.D	
	001010)1	rs2	rs1	000	rd	1010011	FMIN.D	
	001010)1	rs2	rs1	001	rd	1010011	FMAX.D	
	010000	00	00001	rs1	$_{ m rm}$	rd	1010011	FCVT.S.D	
ĺ	010000)1	00000	rs1	$_{ m rm}$	rd	1010011	FCVT.D.S	
	101000)1	rs2	rs1	010	rd	1010011	FEQ.D	
	101000)1	rs2	rs1	001	rd	1010011	FLT.D	
	101000)1	rs2	rs1	000	$_{ m rd}$	1010011	FLE.D	
	111000)1	00000	rs1	001	$^{\mathrm{rd}}$	1010011	FCLASS.D	
	110000)1	00000	rs1	rm	rd	1010011	FCVT.W.D	
	110000)1	00001	rs1	$_{ m rm}$	$^{\mathrm{rd}}$	1010011	FCVT.WU.D	
	110100)1	00000	rs1	$_{ m rm}$	rd	1010011	FCVT.D.W	
	110100)1	00001	rs1	rm	rd	1010011	FCVT.D.WU	

RV64D Standard Extension (in addition to RV32D)

1100001	00010	rs1	$_{ m rm}$	$^{\mathrm{rd}}$	1010011	FCVT.L.D
1100001	00011	rs1	rm	rd	1010011	FCVT.LU.D
1110001	00000	rs1	000	rd	1010011	FMV.X.D
1101001	00010	rs1	$_{ m rm}$	rd	1010011	FCVT.D.L
1101001	00011	rs1	$_{ m rm}$	rd	1010011	FCVT.D.LU
1111001	00000	rs1	000	rd	1010011	FMV.D.X

Table 9.2: Instruction listing for RISC-V