Digital Signal Processing

Assignment 2: frequency analysis, z-transforms

Frequency analysis

We can already apply our knowledge of DSP to create a guitar tuning program. Read in the audio file and determine which open guitar string is being struck. The sampling frequency of the audio signal is 44100 Hz.

- 1. Plot the single-sided frequency spectrum from 0 Hz till 1 kHz.
- 2. Determine the frequency of the guitar string. Which string is it?

Useful MATLAB commands: audioread(), fft(), xlim()

Z-transform

When applicable use sample time $T_s = 0.1s$

Z-transform: manual work

In this part all calculations are to be done **manually**, without use of MATLAB. Show how you calculated the answers. Where necessary use the table of transforms, available in in the sheets of lecture 2.

1. What is the z-transform of the following series:

$$x[n] = \{0, 1, 2, 3, 2, 7, 0, 0, 0, 0, \cdots\}$$

2. Given the following function:

$$x(t) = 4t - 4t \cdot e^{-3t}$$

- a. Find x_0 , x_1 , x_2 , x_3 (numerical values in x[n])
- b. Find the z-transform of this function
- 3. Find the z-transform of the following function:
 - a. $x(t) = 3\sin(4t) + 4\cos(4t)$
 - b. $x_k = 7.4^k$
 - c. $x_k = 7k \cdot 7^{k-1}$
- 4. Given the following transfer function in the Laplace domain:

$$H(s) = \frac{2s+1}{(s+1)(s+2)}$$

a. Perform a partial fraction expansion (NL: breuksplitsen)

Z-transform: MATLAB

Use MATLAB as much as possible for the following questions.

1	Ref, question 1. Plot the samples like "needles" ("dirac pulses")	stem
2	Ref, question 2. Plot the first 10 samples as a staircase	stairs
3	Ref, question 3. Let MATLAB find the answer	syms, ztrans, pretty,
4	Ref, question 3a. Let MATLAB find the answer	simple, simplify
5	Ref, question 3b. Let MATLAB find the answer	
6	Let MATLAB expand $\frac{2s+1}{s(s+1)(s+2)}$ in partial fractions	residue
	Attention: Numerator in this expression differs from numerator	
	in number 4 above.	