Removing Noise from Speech with Deep Learning

Andor Kiss Balázs Glávits Márk Konrád

Introduction

Our task was to reduce noise from speech using deep learning.

Preserve sound quality.

Motivation

Cool noise reducing hardware.

Figure 1: Sennheiser GSP-500

But this is hardware, and we are computer scientists, not electrical engineers.

Motivation

Noise cancelling software.

Figure 2: NoiseGator Software

If sound is above the treshold, it goes through. Else it is cancelled.

Not flexible enough.

Deep learning could do a better job.

Existing implementations

- Autoencoder based
- GAN based
- WaveNet based

Autoencoder based

Denoising Autoencoder

Figure 3: DAE

Autoencoder based

Denoising Autoencoder with Multi-branched Encoders

Figure 4: DAEME

GAN based

• Speech Enhancement Generative Adversarial Network

Figure 5: SEGAN

WaveNet based

Wavenet for Speech Denoising

Figure 6: Speech denoising WaveNet

Training and testing data

- ~23000 samples
- 56 different voices and noise conditions

Figure 7: Noisy data

Figure 8: Clean data

Data pipeline

Training phase.

Figure 9: Training preprocessing

We do this on the noisy and clean data as well.

Input: Noisy slices Output: Clean slices

Data augmentation: Overlapping slices

Full data pipeline

Figure 10: Full pipeline

Model is a black box now, it will be elaborated later.

Original WaveNet

Figure 11: WaveNet

Causal convolutions, mu-law transform and softmax distribution.

Modified wavenet

Figure 12: Modified WaveNet

Non-causal convolutions, and dense output layer.

Regression with dense layer

Figure 13: Regression with dense layer

WaveNet with non-causal convolutions, regression, and flatten + dense output layers

WaveNet based autoencoder

Figure 14: Wavenet based autoencoder

Autoencoder surrounded by WaveNets

Figure 15: WaveNet + autoencoder

Regression with convolutional layers

Figure 16: WaveNet + regression

WaveNet with non-causal convolutions, regression, and extra one dimensional convolutional layers on the output.

Training

- Google Cloud Platform
- Clean & Noisy slice generator
- MAE loss
- SGD optimizer
- ReduceLROnPlateau

Demo

Separately, in an .ipynb

Summary

Success, but...

Thank you for your attention

Sources:

- Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. "WaveNet: A GenerativeModel for Raw Audio". In: (2016) [arXiv:1609.03499]
- Dario Rethage, Jordi Pons, and Xavier Serra. "A Wavenet for Speech Denoising". In: (2018) [arXiv:1706.07162]
- Xugang lu, Yu Tsao, Shigeki Matsuda, and C. Hori. "Ensemble modeling of denoising autoencoder for speech spectrum restoration". In: (2014)
- Santiago Pascual, Antonio Bonafonte, and Joan Serrà. "SEGAN: Speech Enhancement Generative Adversarial Network". In: (2017). [arXiv: 1703.09452]
- Cheng Yu, Ryandhimas E. Zezario, Jonathan Sherman, Yi-Yen Hsieh, Xugang Lu, Hsin-Min Wang, and Yu Tsao. "Speech Enhancement based on Denoising Autoencoder with Multibranched Encoders". In: (2020). [arXiv: 2001.01538]