2. For the equation $\tan x + \lambda x = 0$, where $0 < \lambda < 1$, show graphically that there is exactly one root p in $\left[\frac{\pi}{2}, \pi\right]$. Does the Newton's method converge to the root p in $\left[\frac{\pi}{2}, \pi\right]$ if we start with initial approximation $p_0 = \pi$? Justify your answer

tenx + 1x =0

= 1"(n) Sec 7+ 0.5 +U

L' f'(n): diec'hlan FO

c P is on (a,b)

٢ ١ ١٥ : ٥

If an the about unditias or

satying then wa

erul 570 such the

by Neuten method competo .

311/2

y 2 & Ax

2. Let x_n be the iterative sequence generated by the Newton-Raphson method in finding the root of the equation $e^{-ax} = x$, where a in the range $0 < a \le 1$. If x^* denoted the exact root of this equation and $x_0 > 0$, then show that

1 - xn - e xn - xn - xn - xn -

4. Find the largest error that occurs if linear Lagrange interpolation is used to approximate $f(x) = x^2$ for $N \le x \le N + 1$, where N is an integer.

Finally
$$f(x) = x^{2}$$
 for $N \le x \le N + 1$, where N is an integer.

[Oscalo]

$$f(N) = N \text{ for } N \le x \le N + 1$$
, where N is an integer.

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N \le x \le N + 1$$

$$f(N) = N \text{ for } N = N \text{ f$$