CENG 3005 Database Management Systems Week 5

Relational Algebra

Summary of our course so far

- Introduction to databases
- ER diagram
- Relational Algebra
- Basic SQL commands (select, insert, delete, inner join, set operations)
- Advanced SQL commands (stored procedures, views, aggregate functions with group by)
- How to design a database (0 NF, 1NF, 2NF,3NF)
- Secondary Storage file structures, B+ Trees
- Indexing
- Transactions

Query (expression) on set of relations produces relation as a result

What is an "Algebra"

- ➤ Mathematical system consisting of:
 - Operands --- variables or values from which new values can be constructed.
 - Operators --- symbols denoting procedures that construct new values from given values.

What is Relational Algebra?

- > An algebra whose operands are relations/tables
- ➤ Operators are designed to do the most common things that we need to do with relations in a database.
 - The result is an algebra that can be used as a *query language* for tables.

Core Relational Algebra

- ➤ Union, intersection, and difference.
 - Usual set operations, but require both operands have the same relation schema (same column names!)
- > Select: picking certain rows.
- > Project: picking certain columns.
- > Cartesian products and joins: combining relations.
- > Renaming of relations and attributes.

Core Relational Algebra

- ➤ Six basic operators to filter / slice / combine relations
 - select: σ
 - project: ∏
 - union: ∪
 - set difference: -
 - Cartesian product: x
 - rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Selection operator σ

- > R1 := SELECT_C (R2)
 - C is a condition (as in "if" statements) that refers to attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

Select (σ) Operation – Example

□ Relation r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\blacksquare \sigma_{A=B \land D > 5}(r)$$

Α	В	С	D
α	α	1	7
β	β	23	10

Select Example

Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

JoeMenu := $SELECT_{bar="Joe's"}(Sells)$:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75

Projection [[

- \gt R1 <- PROJ_L (R2)
 - L is a list of attributes from the schema of R2.
 - NOT A CONDITION!!
 - R1 is constructed by looking at each tuple of R2, extracting the attributes on list *L*, in the order specified, and creating from those components a tuple for R1.
 - Eliminate duplicate tuples, if any.

Project (\$\sumsymbol{\Pi}\$)Operation - Example

 \triangleright Relation r:

A	В	С
α	10	1
α	20	1
β	30	1
β	40	2

$$\prod_{A,C} (r)$$

Another Project II Example

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Prices := PROJ_{beer,price}(Sells):

beer	price
Bud	2.50
Miller	2.75
Miller	3.00

Cartesian Product *

- > R3 := R1 * R2
 - Pair each tuple t1 of R1 with each tuple t2 of R2.
 - Concatenation t1t2 is a tuple of R3.
 - Schema of R3 is the attributes of R1 and then R2, in order.
 - But beware attribute *A* of the same name in R1 and R2: use R1.*A* and R2.*A*.

Cartesian Product R1 * R2

R1(Α,	B)
	1	2
	3	4

R2(В,	C)
	5	6
	7	8
	9	10

R3(Α,	R1.B,	R2.B,	. C
	1	2	5	6
	1	2	7	8
	1	2	9	10
	3	4	5	6
	3	4	7	8
	3	4	9	10

Cartesian-Product Operation *

☐ Relations *r*, *s*:

С	D	Ε
$\begin{array}{c} \alpha \\ \beta \\ \beta \\ \gamma \end{array}$	10 10 20 10	a a b b

S

 \Box r^*s :

Α	В	С	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Union Operation - ∪

 \triangleright Relations r, s:

Α	В	
α	1	
α	2	
β	1	
r		

 \square r \cup s:

Α	В
α	1
α	2
β	1
β	3

Set Difference Operation -

 \triangleright Relations r, s:

 \Box r-s:

Rename Operation ρ

Composition of Operations

> You can build expressions using multiple operations

 \triangleright Example: $\sigma_{A=C}(r * s)$

Α	В	С	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

A	В	
α	1	
β	2	
1	•	

С	D	E
$\begin{bmatrix} \alpha \\ \beta \\ \beta \\ \gamma \end{bmatrix}$	10 10 20 10	a a b

 $\triangleright r \times s$

Α	В	С	D	E
α	1	α	10	а
β	2	β	10	a
β	2	β	20	b

☐ Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan\ number} (\sigma_{amount > 1200} (loan))$$

Find the names of all customers who have a loan, an account, or both, from the bank

$$\Pi_{customer\ name}$$
 (borrower) $\cup \Pi_{customer\ name}$ (depositor)

Example Queries

Find the names of all customers who have a loan at the Perryridge branch.

```
\Pi_{customer\_name} (\sigma_{branch\_name="Perryridge} \\ (\sigma_{borrower.loan\_number=loan.loan\_number} (borrower*loan)))
```

Find the names of all customers who have a loan at the NY branch but do not have an account at any branch of the bank

```
\Pi_{customer\_name} (\sigma_{branch\_name = "NY"} (\sigma_{borrower.loan\_number = loan.loan\_number} (borrower * loan)))
```

- $\prod_{customer_name}$ (depositor)

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
 - $\Pi_{customer_name} (\sigma_{branch_name} = \text{``Perryridge''} (\sigma_{borrower.loan_number} = \text{loan.loan_number} (borrower * loan)))$
 - $\Pi_{\text{customer_name}}(\sigma_{\text{loan.loan_number}} = \text{borrower.loan_number} (\sigma_{\text{branch name}} = \text{``Perryridge''}(\text{loan})) * \text{borrower}))$

Set-Intersection Operation ∩

 \triangleright Relation r, s:

3	Α
	α
	α
	β

A B
α 2
β 3

r

S

Natural-Join Operation \square Notation: r \bowtie s \triangleright Let r and s be relations on schemas R and S

Let *r* and *s* be **relations** on schemas *R* and *S* respectively.

Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:

- Consider each pair of tuples t_r from r and t_s from s.
- If t_r and t_s have the same value on each of the attributes in R $\cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s

> Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- $r \bowtie s$ is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} \left(\sigma_{r.B = s.B} \wedge_{r.D = s.D} \left(r * s \right) \right)$$

Natural Join Operation

➤ Relations r, s:

Α	В	С	D
α	1	α	а
β	2	γ	а
γ	4	β	b
α	1	γ	а
δ	2	β	b
r			

В	D	E
1	а	α
1 3	а	β
1	а	$egin{array}{c} eta \ \gamma \ \delta \end{array}$
2	b	
3	b	\in
	S	

 \square $r \bowtie s$

Α	В	С	D	E
α	1	α	а	α
α	1	α	а	γ
α	1	γ	а	α
α	1	γ	а	γ
δ	2	β	b	δ

Difference between Select (σ) and Project (Π)

- $-\sigma$ is a commutative operation
 - \bullet Order of two σ is NOT important
- Π is an associative operation (ORDER is important)

$$\prod_{list1}(\prod_{list2}(R)) = \prod_{list1}(R)$$

list1 must be a subset of list 2!

- ->that's why not commutative
- Usually we use select and project together
 - First we σ based on a *condition* and select the **rows**
 - Then we Π the necessary **columns** for the "answer"

General Strategy for Intersections and Unions

For intersections and unions, it's useful to

- reduce everything to a common column set (like customer name) and
- take $\cap \cup$ or , and then
- use \times to fill in additional fields and then
- project with \prod for the answer

Outline

- Relational Algebra examples
- Relational Algebra (aggregate functions)

$\mathcal{G}_{\mathbf{sum}(salary)}(pt\text{-}works)$

employee-name	branch-name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

Figure 3.27 The *pt-works* relation

employee-name	branch-name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Figure 3.28 The *pt-works* relation after grouping.

Aggregate Functions and Operations

➤ **Aggregation function** takes a collection of values and returns a single value as a result.

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

> Aggregate operation in relational algebra

$$g_{G_1,G_2,...,G_n} g_{F_1(A_1),F_2(A_2,...,F_n(A_n)}(E)$$

E is any relational-algebra expression

- G_1 , G_2 ..., G_n are the list of attributes to **group**
- F_i are aggregate functions
- A_i are attribute names

Aggregate Operation - Example

➤ Relation *account* grouped by *branch-name*:

branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

 $branch_name \ \mathcal{G}_{sum(balance)} \ (account)$

branch_name	sum(balance)
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Operation - Example

➤ Relation *r*:

 $\Box g_{\text{sum(c)}}(\mathbf{r})$

$\mathcal{G}_{\mathbf{sum}(salary)}(pt\text{-}works)$

employee-name	branch-name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

Figure 3.27 The *pt-works* relation

employee-name	branch-name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Figure 3.28 The *pt-works* relation after grouping.