CS & IT ENGINEERING

Theory of Computation

Finite Automata

Lecture No.

TOPICS TO BE COVERED

NFA

I) Every DFA is NFA.

	No. of Pales	Valid Invalid P
: 3	1	Invalid
a	2	valid
b	1	Valid
aa	2	Valid
ab	1	valid
69	0	Invalid
66	0	Invalid
•		

$$\delta(1,a) = \{1,2\}$$

 $\delta(1,b) = \{1,2\}$
 $\delta(1,b) = \{1,3\}$
 $\delta(2,a) = \{1,2\}$
 $\delta(2,b) = \{2\}$

$$Q = \{ \phi, \{i\}, \{2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$

NFA

① L= { } over Σ={a,b}

(I

Regular Exp:

$$R = \Phi$$

DFP: Oal

Note:

For every Resular Set,

i) No. of DFAs = Infinite

ii) No. of min DFAs = 1

iii) No. of NFAs = Infinite

iv) No. of min NFAs = 1 or more

(2) L= E* over I=da, b}

$$R = (a+b)^{*}$$

$$= (a*b)^{*} = (b*a*)^{*}$$

DFA:

-> (a, b)
1 state

NFA

30 parlo 1state

only of the six

Regular Exp:

$$R = (a+b)^{+} = (a+b).(a+b)^{*}$$

$$=(a+b)^*(a+b)$$

min DFA:

2 States

PW

Regular Exp:

$$R = \epsilon$$

$$= \phi^* = \epsilon^* = \epsilon^+$$

Min DFA:

2 Stake

NFA

SXAX

(5) L= fw weda, by w starts with a'

Regular Exp:

$$R = a(a+b)^*$$

= $(ab^*)^+$

M'm
DFA:

Regular Exp:

$$R = (a+b)^{*}b$$

$$= (a^{*}b)^{+}$$

MIN DFA:

$$R = \sum_{b}^{*} a \sum_{a}^{*}$$

$$= \sum_{b}^{*} a (a+b)^{*}$$

NFA:
$$a_{a}^{b}$$
 a_{a}^{b} a_{a}^{b}

Regular Exp:

DFA:

NFA:

then i)
$$n(min DFA) = K+2$$
ii) $n(min NFA) = K+1$

Regular Exp:

NFA:

DFA:

If $|\omega| \leq K$ then

i) $\Upsilon(Min DFA) = K+2$ ii) $\Upsilon(Min NFA) = K+1$

DFA:

3 Staty

		2	. 4
		(atb) a	a LLY
(1)	~=	(uto) a	UTO)

4 states

8 States

a,b 4 states

4 States

3 States of a

4 state

3 State

3 Stake

3 Statu

KIE symbol from end is a

Pw

Not: \square K^{lk} Symbol from begin is a $\Gamma = \{a, b\}$ i) N(Min DFA) = K+2ii) N(Min NFA) = K+1

i) N (Min DFA) = 2K ii) N (Min NFA) = K+1

$$= \int W_{1} \times W_{2} \cdot Y \cdot W_{3} | W_{1}, X_{1} \cdot W_{2}, Y_{1} \cdot W_{3} \in (a+b)^{*},$$

$$X = a_{1}, Y = b_{1},$$

$$|W_{1}| = 2_{1}, |W_{2}| = 3_{1}$$

(21) L = (ab)*

= {E, ab, abab, (ab),...}

(22) L=(ba)*

(23) L= a(ba)*
= [a, aba, ababa, .]

I = School all shorts with a little of the $\alpha(\alpha+b)^{*}$ Starting Willie's a(ba)An stony Heating wilk a Some stains Starty wilt a

NFA Wilkout Emoves NFA Wilk & moves

 $S: QX \Sigma \rightarrow 2^{Q}$

→(<u>)</u>

not "NFA without grander & made

 $S.QX = 0{\epsilon} \longrightarrow 2^{8}$

NFA Wilk Emnles

O E TOWERDE

(e/=0)

Transition with zero 1/2 11
Transition with Zero 1/2 11
Transition with E

not DFA
not NFA willow
Emnui

It is NFA.

S QX EUJE	$\rightarrow 2^{\circ}$
(1,0)	ASI I
$(1, \varepsilon)$ $(2, \alpha)$	133
(2,6) $(2,5)$ $(3,a)$	d1,24 d1,34 ad2,34
(3,6)	d1,2,3}

1 (a+b) b (a+b) L= (a+b) a (a+b)* = (a+b) a (a+b) + (a+b)b(a+b)b(a+b)

Meltod 2: 0 9, 90 94 96 90 9/3 94 9/6 er?

Stake My Stakes

Summary

DFA, NFA, RyEIP

DFA V, NFA

RyEIP

WF WILK E-MINU

