An essential skill in Turing reductions involves constructing a Turing machine for a given language or behaviour. Let's practice this concept. Note that most one them have multiple answers, so it's time for you to be creative!

- 1. Construct a Turing machine M such that
 - (a) $L(M) = \Sigma^*$

Solution:

M =on input w:

- 1: Ignore w
- 2: accept"
- (b) $L(M) = \emptyset$

Solution:

M =on input w:

- 1: Ignore w
- 2: reject"
- (c) $L(M) = \{3, 7, 6\}$

Solution:

M =on input w:

- 1: if $w \in \{3,7,6\}$ then accept
- ▶ Iterate through the set and check if match

- 2: else reject"
- (d) L(M) is finite

Solution: There are a lot of ways to construct a TM with finite language. We could reuse our TM from (c) because the set $\{3,7,6\}$ is finite.

(e) |L(M)| is even

Solution: Notice that 0 is even, so we can reuse our TM from (b).

(f) M loops on x if $x \notin \{3, 7, 6\}$

Solution: Again, there are multiple TMs for this language. One example is as follows:

M =on input w:

- 1: if $w \in \{3,7,6\}$ then accept
- 2: else loop"

Note that we could reject on line 1 instead, as long as M halts if $w \in \{3, 7, 6\}$ (but we need to specify clearly). On line 2, we don't necessarily have to explicitly describe how we want the machine to loop, it could be something simple like

M =on input w:

- 1: **for** $x = 1, 2, \dots$ **do**
- 2: PRINT(x)
- 2. Construct two Turing machines M_1 and M_2 such that
 - (a) $L(M_1) \cup L(M_2) = \Sigma^*$

Solution: There are a lot of ways to make the union of two languages Σ^* . For instance,

- \bullet $L \cup \bar{L}$
- $\Sigma^* \cup \{\varepsilon\}$
- $\Sigma^* \cup \Sigma^*$

For $\Sigma^* \cup \Sigma^*$, we can just reuse our TM from 1(a) for both M_1 and M_2 .

(b) $L(M_1) \cup L(M_2) = \emptyset$

Solution: Example: $\emptyset \cup \emptyset = \emptyset$. We can reuse our TM from 1(b) for both M_1 and M_2 .

(c) $L(M_1) \cap L(M_2) = \emptyset$

Solution: Some useful facts: For any language L, $L \cap \overline{L} = \emptyset$ and $\emptyset \cap L = \emptyset$. So we can do the same thing as in 2(b) by having $L(M_1) = L(M_2) = \emptyset$. Of course, you could also pick any two languages that does not intersect ad $L(M_1)$ and $L(M_2)$.

(d) $L|(M_1) \cap L(M_2)| = 1$

```
Solution: Example: \{a, b, c\} \cap \{a, d, e\} = \{a\}, which has a size of 1.
```

```
M_1 = \text{on input } w:
```

- 1: if $w \in \{a, b, c\}$ then accept
- 2: else reject"

$M_2 =$ on input w:

- 1: if $w \in \{a, d, e\}$ then accept
- 2: else reject"

2 Decidability and Turing Reductions

- 1. Which of the following languages is decidable?
 - $\bigcirc L_{\text{HALT}} = \{(\langle M \rangle, x) : M \text{ is a Turing machine and } M \text{ loops on } x\}$
 - \bigcirc $L_{203} = \{\langle M \rangle : M \text{ is a Turing machine that halts on input '203'}\}$
 - $\sqrt{L_{376C}} = \{\langle M \rangle : M \text{ is a Turing machine that halts on input '376' in exactly 376 steps} \}$
 - \bigcirc $L_{376D} = \{\langle M \rangle : M \text{ is a Turing machine that halts on input '376' after a number of steps which is a multiple of 376 \}$
 - $\bigcirc L_{376E} = \{\langle M \rangle : M \text{ is Turing machine that halts (on empty input) on the 376th tape cell}\}$

Solution:

- \bullet Option A is undecidable. We have proven in lecture that L_{HALT} is undecidable.
- Option B is undecidable. Similarly to how we had shown that $L_{\varepsilon-\text{HALT}}$ is undecidable, we could replace the ε in that proof with 203 and everything else would be the same.
- Option C is decidable. We can make a decider for L_{376C} by on input $\langle M \rangle$, simulate M on '376' for 376 steps and see what happens. Regardless of what happens, we would know what to return from the function in 376, or more importantly, a finite number of steps.
- Option D is undecidable. Intuitively, this would be undecidable since we M might keep running on an input and we would never be able to say with certainty that M would either loop or halt. A reduction to prove that this language is undecidable would likely use $L_{\rm HALT}$.
- Option E is undecidable. There would be no way to determine in general what cell a Turing Machine would halt on since there is no way to tell if a Turing Machine will halt in the first place. A reduction to prove that this language is undecidable would likely also use $L_{\rm HALT}$

2. Show that $L_{ACC} \leq_T \overline{L_{ACC}}$, where $\overline{L_{ACC}}$ is the complement of

$$L_{ACC} = \{(\langle M \rangle, x) : M \text{ is a Turing machine and } M \text{ accepts } x\}.$$

Then, conclude that $\overline{L_{ACC}}$ is undecidable.

Solution: Let E be a black box decider that decides $\overline{L_{\text{ACC}}}$. By definition, $E(\langle M \rangle, x)$ accepts if M does not accept x, and $E(\langle M \rangle, x)$ rejects if M accepts x. We can construct a decider D for L_{ACC} as follows:

```
D = on input \langle M \rangle, x:
```

- 1: Run E on $(\langle M \rangle, x)$
- 2: if $E(\langle M \rangle)$ accepts then reject
- 3: else accept"

Analysis:

- $(\langle M \rangle, x) \in L_{ACC} \implies M$ accepts $x \implies (\langle M \rangle, x) \notin \overline{L_{ACC}} \implies E$ rejects $x \implies D$ accepts x
- $(\langle M \rangle, x) \notin L_{ACC} \implies M$ does not accept $x \implies (\langle M \rangle, x) \in \overline{L_{ACC}} \implies E$ accepts $x \implies D$ rejects x

Since E is a decider, it necessarily halts on all inputs. Thus, D must halt on all inputs. Since D accepts all $(\langle M \rangle, x) \in L_{ACC}$ and rejects all $(\langle M \rangle, \notin L_{ACC})$, D is a decider for L_{ACC} .

We have shown that $L_{ACC} \leq_T \overline{L_{ACC}}$, since L_{ACC} is undecidable, $\overline{L_{ACC}}$ is also undecidable.

3. Let L_{LOOPS} be defined as follows:

$$L_{\text{LOOPS}} = \{(\langle M \rangle, x) : M \text{ is a Turing machine and } M \text{ loops on } x\}.$$

Prove via the reduction $L_{\text{HALT}} \leq_T L_{\text{LOOPS}}$ that L_{LOOPS} is undecidable.

Solution: Let E be a black box decider that decides L_{LOOPS} . By definition, $E(\langle M \rangle, x)$ accepts if M loops on x, and $E(\langle M \rangle, x)$ rejects if M halts on x. We can construct a decider D for L_{ACC} as follows:

$$D =$$
on input $\langle M \rangle, x$:

- 1: Run E on $(\langle M \rangle, x)$
- 2: if $E(\langle M \rangle)$ accepts then reject
- 3: else accept"

Analysis:

- $(\langle M \rangle, x) \in L_{\text{HALT}} \Longrightarrow M$ halts on $x \Longrightarrow (\langle M \rangle, x) \notin L_{\text{LOOPS}} \Longrightarrow E$ rejects $x \Longrightarrow D$ accepts x
- $(\langle M \rangle, x) \notin L_{\text{HALT}} \Longrightarrow M \text{ loops on } x \Longrightarrow (\langle M \rangle, x) \in L_{\text{LOOPS}} \Longrightarrow E \text{ accepts } x \Longrightarrow D \text{ rejects } x$

Since E is a decider, it necessarily halts on all inputs. Thus, D must halt on all inputs. Since D accepts all $(\langle M \rangle, x) \in L_{\text{HALT}}$ and rejects all $(\langle M \rangle, \notin L_{\text{HALT}})$, D is a decider for L_{HALT} .

We have shown that $L_{\text{HALT}} \leq_T L_{\text{LOOPS}}$, since L_{HALT} is undecidable, L_{LOOPS} is also undecidable.

4. Suppose A and B are languages over $\{a, b\}$ defined as follows:

$$A = \{a^n : n \ge 0\}, B = \{b^n : n \ge 0\}.$$

Show that $A \leq_T B$ (which implies that if B is decidable, then A is decidable). Although not necessary for a correct reduction, we require that you use the blackbox decider for B in your solution.

Solution: Given a black box M_B that decides B, we can construct a machine M_A that decides A as follows:

 $M_A =$ "on input w"

 $M_A = \text{on input } w$:

- 1: Create a new string w': Iterate through input w. If the cell reads a, append a b to w'; if the cell reads b, append an a to w'.
- 2: Run M_B on w'
- 3: if $M_B(w')$ accepts then accept
- 4: else reject"

Analysis:

- $w \in A \implies w = a^n \implies w' = b^n \implies M_B(w')$ accepts $\implies M_A(w)$ accepts
- $w \notin A \implies w \in \{a,b\}^*$: some of the characters are b or the length of w is not $n \implies w' \in \{a,b\}^*$: some of the characters are a of the length of w' is not $n \implies w' \notin B \implies M_B(w')$ rejects $\implies M_B(w')$ rejects

Both machines will always halt since inputs are finite length. Now we can say M_A decides A. We are able to construct a decider for A using a black box decider for B, so we conclude that $A \leq_T B$.

3 Turing Reductions Involving Creating TMs

1. Let $L_{\text{singleton}}$ be defined as follows:

$$L_{\text{singleton}} = \{\langle M \rangle : L(M) = \{\text{"eecs376"}\}\}.$$

Prove via the reduction $L_{ACC} \leq_T L_{\text{singleton}}$ that $L_{\text{singleton}}$ is undecidable.

Solution: Let $D_{L_{\text{singleton}}}$ be a black-box decider for $L_{\text{singleton}}$.

```
D_{L_{\mathrm{ACC}}} = \mathrm{on\ input}\ (\langle M \rangle, x)):

1: Construct a machine M' as follows:

\begin{bmatrix} M' = \mathrm{on\ input}\ \langle w \rangle : \\ 1: \ \mathbf{if}\ w \neq \mathrm{``eecs376''}\ \mathbf{then}, \mathrm{reject} \\ 2: \mathrm{Run\ } M(x) \mathrm{\ and\ output}\ \mathrm{the\ same} \end{bmatrix}

2: Run D_{L_{\mathrm{singleton}}} on input \langle M' \rangle

3: \mathbf{if}\ D_{L_{\mathrm{singleton}}}(\langle M' \rangle) accepts \mathbf{then} accept

4: \mathbf{else}\ \mathrm{reject''}
```

Analysis: We claim that $D_{L_{ACC}}$ is a decider for L_{ACC} .

Suppose $\langle M, x \rangle \in L_{ACC}$. Then M' on input w accepts if and only if M(x) accepts (otherwise, it rejects or loops). This implies that $L(M') = \{\text{``eecs 376''}\}$. This implies that $D_{L_{\text{singleton}}}(M')$ accepts, so $D_{L_{ACC}}$ accepts $\langle M, x \rangle$.

Suppose $\langle M, x \rangle \not\in L_{ACC}$. Then M' on input w does not accept if $w \neq$ "eecs376", or M(x) does not accept. This implies that $L(M') = \emptyset$, so $D_{L_{\text{singleton}}}(M')$ rejects, and $D_{L_{ACC}}$ rejects.

- 2. For each of the following languages, state whether it is decidable or undecidable. If decidable, describe and analyze a program that decides it. If undecidable, show that it is Turing reducible from an undecidable language L of your own choice.
 - (a) $L_{\text{OnlyOnes}} = \{x \in \{0, 1\}^* : x \text{ consists only of 1's}\}.$

Solution: Yes, the language is decidable. We will show this by constructing a decider that checks if x contains 0-s:

- 1: **function** D(x)
- 2: Let x_i be ith character in x
- 3: for $x_i \in x$ do
- 4: **if** $x_i = 0$ **then** reject
- 5: accept

D always halts since it makes one pass through a finite string. Now we must prove that D is a decider $L_{OnlyOnes}$:

- $x \in L_{OnlyOnes} \implies x$ consists of only 1's $\implies D$ accepts
- $x \notin L_{OnlyOnes} \implies x$ contains a $0 \implies D$ rejects
- (b) $L_{\text{TuringOnlyOnes}} = \{ \langle M \rangle : L(M) = L_{\text{OnlyOnes}} \}.$

Solution: We will show that $L_{\text{TuringOnlyOnes}}$ is undecidable via Turing Reduction from L_{ACC} . Let T be a black box for $L_{\text{TuringOnlyOnes}}$ and let D be a decider for $L_{OnlyOnes}$. Define a decider A for L_{ACC} as follows:

 $A = \text{on input } (\langle M \rangle, x))$:

1: Construct a machine M' as follows:

M' =on input $\langle w \rangle$:

- 1: if D(w) accepts then, run M(x) and output same
- 2: **else** reject"
- 2: Run T on input $(\langle M' \rangle)$
- 3: if T accepted then accept
- 4: **else** reject"

Since T is a decider, A necessarily halts. Therefore it remains to show that A is a decider for $L_{\rm ACC}$:

- $(\langle M \rangle, x) \in L_{ACC} \implies M \text{ accepts } x \implies M' \text{ accepts all strings in } L_{OnlyOnes} \implies T(\langle M' \rangle) \text{ accepts } \implies A \text{ accepts}$
- $(\langle M \rangle, x) \notin L_{ACC} \implies M$ rejects or loops on $x \implies M'$ rejects or loops on all strings in $L_{OnlyOnes} \implies T(\langle M' \rangle)$ rejects $\implies A$ rejects
- 3. Let L_{EVEN} be defined as follows:

$$L_{\text{EVEN}} = \{ \langle M \rangle : |L(M)| \text{ is even} \}.$$

Prove via the reduction $L_{\text{ACC}} \leq_T L_{\text{EVEN}}$ that L_{EVEN} is undecidable.

Solution: L_{EVEN} is undecidable, thus we are going to do a proof via Turing reduction from L_{ACC} to L_{EVEN} ($L_{\text{ACC}} \leq_T L_{\text{EVEN}}$). Assume that there is some decider D of L_{EVEN} .

We are going to use the decider D to construct a decider T for L_{ACC} . Given a Turing Machine M and an input x as input, T works as follows:

1: Construct Turing machine M_x as follows:

 $M_x = \text{on input } w$:

- 1: if w = x and M(w) accepts then accept
- 2: else reject"
- 2: **if** $D(M_x)$ accepts **then reject**
- 3: else accept "

Note that

$$L(M_x) = \begin{cases} \{x\}, & \text{if } x \in L(M) \\ \emptyset, & \text{if } x \notin L(M), \end{cases}$$

and in particular $|L(M_x)|$ is even if and only if $x \notin L(M_x)$. That is, $(\langle M \rangle, x) \in L_{\text{ACC}}$ if and only if $|L(M_x)|$ is not even. From this idea, if we have a $\langle M \rangle, x \in L_{\text{ACC}}$, then $|L(M_x)|$ will not be even, and D will reject, so T will accept. If we have a $\langle M \rangle, x \notin L_{\text{ACC}}$, then $|L(M_x)|$ will be even, and D will accept, so T will reject. Ultimately, we can see that T decides L_{ACC} , so $L_{\text{ACC}} \leq_T L_{\text{EVEN}}$. Since L_{ACC} is undecidable, we may conclude that L_{EVEN} is undecidable.

4. Let L_u be defined as follows:

$$L_u = \{ (\langle M_1 \rangle, \langle M_2 \rangle) : L(M_1) \cup L(M_2) = \emptyset \}$$

Prove via the reduction $L_{ACC} \leq_T L_u$ that L_u is undecidable.

Solution: We show the Turing reduction $L_{ACC} \leq_T L_u$, meaning that given a black-box U that decides L_u , we can construct a machine A that decides L_{ACC} .

 $A = \text{on input } (\langle M \rangle, x))$:

1: Construct a machine M' as follows:

 $M' = \text{on input } \langle w \rangle$:

- 1: Run M(x) and output same
- 2: Query $U(\langle M' \rangle, \langle M' \rangle)$
- 3: **if** U accepted **then** reject
- 4: **else** accept"

Analysis:

• $(\langle M \rangle, x) \in \mathcal{L}_{ACC \Rightarrow} M$ accepts $x \Rightarrow M'$ accepts all inputs $\Rightarrow L(M') = \Sigma^* \Rightarrow L(M') \cup L(M') = L(M') = \Sigma^* \Rightarrow (\langle M' \rangle, \langle M' \rangle) \notin L_u \Rightarrow U$ rejects input $(\langle M' \rangle, \langle M' \rangle) \Rightarrow A$ accepts

• $(\langle M \rangle, x) \notin LACC \Rightarrow M$ does not accept $x \Rightarrow M'$ does not accept any input $\Rightarrow L(M') = \emptyset \Rightarrow L(M') \cup L(M') = L(M') = \emptyset \Rightarrow (\langle M' \rangle, \langle M' \rangle) \in L_u \Rightarrow U$ accepts input $(\langle M' \rangle, \langle M' \rangle) \Rightarrow A$ rejects

Therefore, $L_{ACC} \leq_T L_u$, but since we know that L_{ACC} is undecidable, then L_u is undecidable as well.