Week 2 Day 1

Led by: Emily Crose

for

Oakland University

INTRODUCTION TO SOFTWARE BUSINESS PRODUCT MANAGEMENT

TERMS TO LISTEN FOR

- Cache
 - A small portion of RAM set aside for temporary storage for frequently accessed data
- Process Register
 - A quickly accessible location available to a computer processor
- Heap & Stack
 - Memory management methods

APPLICATIONS & OPERATING SYSTEMS

DEEP DISH PIZZA

Operating System

WELL-KNOWN OPERATING SYSTEMS

Application Software Spreadsheets Word processors System Software Computer Databases games Utilities Operating Hardware system CPU, motherboard, video adapter, etc.

OPERATING SYSTEM VERSUS

APPLICATION SOFTWARE

OPERATING SYSTEM

APPLICATION SOFTWARE

A system software that manages computer hardware and software resources and provides common services for computer programs A software designed to perform a group of coordinated functions, tasks or activities for the benefit of the user

Works as the interface between the user and hardware, performs process management, memory management, task scheduling, hardware device controlling and many more Performs a single specific task

Developed using C, C++, Assembly languages Developed using Java, Visual Basic, C, C++

Boots up when the user switches on the computer and runs till he switches off the machine Runs only when the user requests to run the application

Necessary for the proper functioning of the computer

Cannot be installed without an operating system

Ex: Windows, Unix, Linux, DOS

Ex: Word, Spreadsheet, Presentation, Multimedia tools, Database Management Systems

Visit www.PEDIAA.com

OS & APP DIFFERENCES

WHAT DO PERMISSIONS DO?

- Allow read, write, and execute permissions for files and folders
- Can be changed with those who have rights to change file and folder permissions levels
- Can be customized for users, groups, and "others"

LINUX PERMISSIONS IN PRACTICE

Understanding The Linux File Permissions

While the first column defines a directory, file or link, the next 3 columns (2, 3, 4) define the permissions for the User, Group and Others (everyone else) groups.

UNDERSTANDING PERMISSIONS

Linux Permissions Made Easy

Final calculated permissions

This example shows us how the permissions can be calculated using the simple method of addition, where each permission is assigned a number. Adding them will produce the appropriate number for the rights given.

LINUX PERMISSIONS :(

Your PC ran into a problem and needs to restart. We'll restart for you.

For more information about this issue and possible fixes, visit https://www.windows.com/stopcode

If you call a support person, give them this info: Stop code: KERNEL SECURITY CHECK FAILURE

POWER-ON SELF-TEST (POST)

Layers of operating system

KERNEL OPERATION

TYPES OF APPLICATIONS

Mobile applications

Desktop applications

Embedded applications

Web applications

MOBILE APPLICATIONS

Horrible Therapist
Random comic generator

How venting is supposed to feel

WEBSITE

Industrial Robots

GPS Receivers

Digital Cameras

DVD Players

Embedded Systems

Wireless Routers

Set top Boxes

Gaming Consoles

Photocopiers

Microwave Ovens

WHERE DOES IOT FIT?

- What do we know about IoT?
 - Inside of consumer electronics
 - Embedded applications?
- Can IoT be more than one category?

J •--- S ••• A •— K —•— B —••• T — U ••— L •—•• $C \longrightarrow \bullet$ $M -- V \cdot \cdot \cdot -$ D —•• **E** • w •—— N —• F ••—• \circ --- \times $-\cdots$ $P \bullet - - \bullet Y - \bullet - -$ G ——• Q ——•— Z ——•• H ••••

LETTER	ASCII	LETTER		ASCII	BINARY
	VALUES	VALUES		VALUES	VALUES
A	65	01000001	A	97	01100001
C	67	01000011	C	99	01100011
D	68	01000100	D	100	01100100
E	69	01000101	E	101	01100101
F	70	01000110	F	102	01100110
G	71	01000111	G	103	01100111
H	72	01001000	H	104	01101000
I	73	01001001	I	105	01101001
J	74	01001010	J	106	01101010
K	75	01001011	K	107	01101011
L	76	01001100	L	108	01101100
M	77	01001101	M	109	01101101
N	78	01001110	N	110	01101110
O	79	01001111	O	111	01101111
P	80	01010000	P	112	01110000
Q	81	01010001	Q	113	01110001
R	82	01010010	R	114	01110010
S	83	01010011	S	115	01110011
T	84	01010100	T	116	01110100
U	85	01010101	U	117	01110101
V	86	01010110	V	118	01110110
W	87	01010111	W	119	01110111
X	88	01011000	X	120	01111000
Y	89	01011001	Y	121	01111001
Z	90	01011010	Z	122	01111010

ASCII Code

Char.	ASCII	Char.	ASCII	Char.	ASCII
@	64	U	85	j	106
A	65	V	86	k	107
В	66	W	87	1	108
C	67	×	88	m	109
D	68	У	89	n	110
Ε	69	Z	90	0	111
F	70	1	91	P	112
G	71	1	92	9	113
H	72]	93	r	114
I	73	^	94	s	115
J	74		95	Ť	116
K	75	•	96	u	117
L	76	а	97	V	118
M	77	ь	98	w	119
N	78	С	99	×	120
0	79	d	100	У	121
P	80	e	101	z	122
Q	81	f	102	{	123
R	82	g	103	1	124
5	83	h	104	}	125
Т	84	i	105	~	126

OTHER BASE FORMATS

- Binary Base 2 numbering (1, 0)
- Decimal base 10 communication (0-9)
- Hexadecimal base 16 (0-9, A-F)

FUN WITH TRANSLATIONS!

https://gchq.github.io/CyberChef/

PROCESSOR CLASSIFICATIONS

- Architecture
- Processed bits
- Design
- Registers

COMMON CPU ARCHITECTURES

- X86
 - Desktop PCs
 - Most Intel chips are built on this
 - More cores
- Arm/A32
 - Small consumer electronic devices
- Arm/A64
 - New Macbook Pro M1 & M2
- RISC-V

QUESTION OR CLARIFICATIONS?

PREVIEW NEXT SESSION

SEE YOU NEXT TIME!