This is the notebook where you can test the best MLP and SVM models on the test set Importing the Train, Validation and Test Sets In [1]: | import torch import pickle import numpy as np import pandas as pd from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc import matplotlib.pyplot as plt import seaborn as sns #We import the necessary libraries. In [2]: X_test_df = pd.read_csv('X_Test.csv') Y_test_df = pd.read_csv('Y_Test.csv') X_val_df = pd.read_csv('X_Val.csv') Y_val_df = pd.read_csv('Y_Val.csv') X_train_df = pd.read_csv('X_Train.csv') Y_train_df = pd.read_csv('Y_Train.csv') #We import the train, validation and test sets. In [3]: X_Test_Tensor = torch.tensor(X_test_df.values).float() Y_Test_Tensor = torch.tensor(Y_test_df.values).float() X_Val_Tensor = torch.tensor(X_val_df.values).float() Y_Val_Tensor = torch.tensor(Y_val_df.values).float() X_Train_Tensor = torch.tensor(X_train_df.values).float() Y_Train_Tensor = torch.tensor(Y_train_df.values).float() #We convert the values of each dataframe to tensors. Testing the Best MLP Model In [4]: **import** torch import torch.nn as nn import torch.optim as optim import matplotlib.pyplot as plt class FireAlarmNN(nn.Module): def __init__(self, input_size, hidden_sizes, output_size): #We set three parameters for our neural network class. The input #size, the number of hidden neurons and the output size. super(FireAlarmNN, self).__init__() self.f_c_1 = nn.Linear(input_size, hidden_sizes[0], bias=True) #This is the first fully connected layer. We pass the input #features to the first hidden layer. We also include a bias term for each neuron in the hidden layer. $self.f_c_2 = nn.Linear(hidden_sizes[0], hidden_sizes[1], bias=True)$ #This is the second fully connected layer. We pass #the features from the first hidden layer to the second one and include a bias term for each neuron in the hidden layer. self.f_c_3 = nn.Linear(hidden_sizes[1], hidden_sizes[2], bias=True) #This is the third fully connected layer. We pass the #features from the second hidden layer to the third hidden layer and inlcude a bias term for each neuron in the hidden $self.f_c_4 = nn.Linear(hidden_sizes[2], output_size, bias=True)$ #This is the fourth fully connceted layer. We pass the #features from the third hidden layer to the output layer and incude a bias term for the single neuron in the output self.relu = nn.ReLU() #This is the rectified linear unit activation function. The recitified linear unit activation #is a calculation that returns the value 0 if the input value is 0 or less and then for the positive values and returns #the input value itself if the input value is positive. def forward(self, x): #This is the function that shows the forward propagation of the MLP neural network. $x = self.f_c_1(x)$ x = self.relu(x) $x = self.f_c_2(x)$ x = self.relu(x) $x = self.f_c_3(x)$ x = self.relu(x)output = $self.f_c_4(x)$ return output #We pass the input features through the first fully connected layer and activate the relu activation function in each #forward pass. Then the output of the first fully connected layer becomes the input of the next fully connected layer #etc. After each forward pass we activate the relu function. def fit_training_validating(self, train_input_data, train_targets, val_input_data, val_targets, learning_rate, epochs, momentum, weight_decay, patience): #This is the part of the neural network which is used to train and validate the model on the given input data and #targets. It applies weight decay for regularization, momentum for optimization and acceleration of the convergence of #gradient descent and early stopping by tracking the validation loss to prevent early stopping during training. criterion = nn.BCEWithLogitsLoss() #This is the loss function. We select binary cross-entropy with logits loss since we #are dealing with a binary classification problem. optimizer = optim.Adam(self.parameters(), lr=learning_rate, weight_decay=weight_decay) #This is the optimizer that will #update the weights and biases based on the loss function. The adam optimizer is a popular choice for binary #classification problems. We also specify the learning rate, momentum terms (betas) and weight decay for regularization. highest_val_loss = float('inf') early_stopping_count = 0 train_losses = [] #We track the training loss for each epoch. val_losses = [] #We track the validation loss for each epoch. for epoch in range(epochs): self.train() #We first enter training mode. predictions = self(train_input_data) #we make predictions on the training set to track the loss. loss = criterion(predictions, train_targets.view(-1, 1)) optimizer.zero_grad() loss.backward() optimizer.step() train_losses.append(loss.item()) #This is the training process of the neural network. For every epoch we feed the inputs forward through the layers, #we get the predictions, we calculate the loss function, we then perform backpropagation to get the gradients and #then update the weights and biases with the adam function. self.eval() #We enter validation mode and stop training mode. with torch.no_grad(): val_predictions = self(val_input_data) #We make predictions on the validation set for every epoch. val_loss = criterion(val_predictions, val_targets.view(-1, 1)) #We calculate the validation loss. val_losses.append(val_loss.item()) #We store every validation loss in the list we created above. if val_loss.item() < highest_val_loss:</pre> highest_val_loss = val_loss.item() early_stopping_count = 0 else: early_stopping_count +=1 if early_stopping_count > patience: print(f'Early Stopping at Epoch {epoch}') break return train_losses, val_losses #In the above code we implement the early stopping criteria. If the validation loss keeps increasing over 10 epochs #(patience=10) then we stop training because we are overfitting to the training data. def predicting(self, X): #This function will be applied on the validation and test set to see how well the model is able to #predict. We will track down the validation accuracies for each model we validate and then calculate the accuracy of the #best model with the test set. self.eval() #We enter validation mode. with torch.no_grad(): predictions = self(X)final_predictions = torch.sigmoid(predictions) #When the forward propagation is complete, we apply the sigmoid #activation function. This transforms the numbers into probabilities of belonging either in class 0 or 1. return (final_predictions >= 0.5).int() #We set the threshold to 0.5 . This means that the probabilities that #are equal or over 0.5 are more likely to belong to class 1 and the probabilities that are lower than 0.5 are more #likely to belong to class 0. By calling the .int() we transform the probabilities that are over or equal to 0.5 to 1, #and the probabilities under 0.5 to 0. #Reference link for BCEWithLogitsLoss() function: https://pytorch.org/docs/stable/generated/torch.nn.functional.binary_cross_entropy_with_logits.html #Reference link for Adam optimizer: https://www.analyticsvidhya.com/blog/2023/09/what-is-adam-optimizer/#:~:text=The%20Adam%20optimizer%2C%20short%20for,Developed%20by%20Diederik%20P. In [5]: optimal_lr = 0.01 optimal_epochs = 310 momentum = 0.9 $weight_decay = 0.0001$ patience = 10 #We set the same values of the parameters and hyperparameters as we did in the original notebook. In [6]: import pickle #We load the pickle filed with the best model that we saved in the original notebook. pickle1_file_path = '/Desktop/Masters/Neural Networks/Individual Coursework/Data & Coding/Best_MLP_Model.pkl' with open(pickle1_file_path, 'rb') as file: Best_MLP_Model = pickle.load(file) #Reference link for pickle files: https://www.tutorialspoint.com/how-to-use-pickle-to-save-and-load-variables-in-python In [7]: Best_MLP_Model #This is the structure of the best MLP model. FireAlarmNN(Out[7]: (f_c_1): Linear(in_features=7, out_features=30, bias=True) (f_c_2): Linear(in_features=30, out_features=15, bias=True) (f_c_3): Linear(in_features=15, out_features=7, bias=True) (f_c_4): Linear(in_features=7, out_features=1, bias=True) (relu): ReLU() In [8]: torch.manual_seed(100) test_predictions = Best_MLP_Model.predicting(X_Test_Tensor) test_accuracy = accuracy_score(Y_Test_Tensor.numpy(), test_predictions.numpy()) #We test the best model on the test set and generate the accuracy score. In [9]: test_accuracy #This is the test set accuracy for the best MLP model. 0.9527383043269998 Out[9]: In [10]: from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score plt.figure(figsize=(8,6)) conf_matrix = confusion_matrix(Y_Test_Tensor.numpy(), test_predictions.numpy()) sns.heatmap(conf_matrix, annot=True, fmt='d', cmap='cividis') plt.xlabel('Predicted Labels') plt.ylabel('True Labels') plt.title('Confusion Matrix for the Best Model') plt.show() t_n , f_p , f_n , $t_p = conf_matrix.ravel()$ test_precision = precision_score(Y_Test_Tensor.numpy(), test_predictions.numpy()) test_recall = recall_score(Y_Test_Tensor.numpy(), test_predictions.numpy()) test_f1_score = f1_score(Y_Test_Tensor.numpy(), test_predictions.numpy()) print(f"True Negatives: {t_n}") print(f"False Positives: {f_p}") print(f"False Negatives: {f_n}") print(f"True Positives: {t_p}") print('*' * 100) print(f'The test accuracy is {test_accuracy}') print(f'The test precision is {test_precision}') print(f'The test recall is {test_recall}') print(f'The test f1-score is {test_f1_score}') #We display the confusion matrix of the best MLP model. #Reference link for confusion matrix: https://proclusacademy.com/blog/practical/confusion-matrix-accuracy-sklearn-seaborn/ Confusion Matrix for the Best Model 4000 - 3500 1789 3000 2500 - 2000 1500 296 4178 1000 500 0 Predicted Labels True Negatives: 1789 False Positives: 0 False Negatives: 296 True Positives: 4178 ************************* The test accuracy is 0.9527383043269998 The test precision is 1.0 The test recall is 0.9338399642378185 The test f1-score is 0.965788257050393 In [11]: from sklearn.metrics import roc_curve, auc false_positive_rates, true_positive_rates, thresholds = roc_curve(Y_Test_Tensor, test_predictions) AUC_Score = auc(false_positive_rates, true_positive_rates) plt.figure(figsize=(10,5)) plt.plot(false_positive_rates, true_positive_rates, color='red', lw=3.5, label=f'ROC Curve for the Best Model') plt.plot([0,1], [0,1], color='black', lw=1.5, linestyle='--', label='Equal True and False Positive Rates') plt.xlabel('False Positive Rates') plt.ylabel('True Positive Rates') plt.title(f'ROC Curve for AUC Score = {round(AUC_Score, 3)}', fontsize=13) plt.legend(loc='lower right') plt.show() #We display the ROC Curve for the best MLP model to compare the true and false positive rates. We want to see the trade-offs between #the true and false positive rates. #Reference link for ROC Curve: https://www.w3schools.com/python/python_m1_auc_roc.asp ROC Curve for AUC Score = 0.9671.0 0.8 Positive Rates 0.2 ROC Curve for the Best Model --- Equal True and False Positive Rates 0.0 0.2 0.4 0.8 1.0 False Positive Rates Testing the Best SVM Model In [12]: **import** pickle #We load the pickle filed with the best model that we saved in the original notebook. pickle2_file_path = '/Desktop/Masters/Neural Networks/Individual Coursework/Data & Coding/Best_SVM_Model.pkl' with open(pickle2_file_path, 'rb') as file: Best_SVM_Model = pickle.load(file) #Reference link for pickle files: https://www.tutorialspoint.com/how-to-use-pickle-to-save-and-load-variables-in-python In [13]: Best_SVM_Model #This is the best SVM model Out[13]: ▼ SVC SVC(C=100, gamma=0.1) In [14]: torch.manual_seed(100) Test_Predictions = Best_SVM_Model.predict(X_Test_Tensor) Test_Accuracy = accuracy_score(Y_Test_Tensor, Test_Predictions) print("Test Accuracy With the Best Parameters:", Test_Accuracy) #We calculate and print the test accuracy. Test Accuracy With the Best Parameters: 0.8958965352067699 In [15]: from sklearn.metrics import confusion_matrix from sklearn.metrics import precision_score, recall_score, f1_score Confusion_Matrix = confusion_matrix(Y_Test_Tensor, Test_Predictions) plt.figure(figsize=(8,6)) sns.heatmap(Confusion_Matrix, annot=True, fmt='d', cmap='cividis') plt.xlabel('Predicted Labels') plt.ylabel('True Labels') plt.title('Confusion Matrix for the Best Model') plt.show() t_n, f_p, f_n, t_p = Confusion_Matrix.ravel() Test_Precision = precision_score(Y_Test_Tensor.numpy(), Test_Predictions) Test_Recall = recall_score(Y_Test_Tensor.numpy(), Test_Predictions) Test_F1_Score = f1_score(Y_Test_Tensor.numpy(), Test_Predictions) #We display the confusion matrix. print(f"True Negatives: {t_n}") print(f"False Positives: {f_p}") print(f"False Negatives: {f_n}") print(f"True Positives: {t_p}") print('*' * 100) print(f'The test accuracy is {Test_Accuracy}') print(f'The test precision is {Test_Precision}') print(f'The test recall is {Test_Recall}') print(f'The test f1-score is {Test_F1_Score}') #Reference link for confusion matrix: https://proclusacademy.com/blog/practical/confusion-matrix-accuracy-sklearn-seaborn/ Confusion Matrix for the Best Model 3500 - 3000 1758 - 2500 - 2000 - 1500 621 1000 3853 500 0 Predicted Labels True Negatives: 1758 False Positives: 31 False Negatives: 621 True Positives: 3853 ******************************* The test accuracy is 0.8958965352067699 The test precision is 0.9920185375901133 The test recall is 0.8611980330800179 The test f1-score is 0.92199090691553 In [16]: from sklearn.metrics import roc_curve, auc false_positive_rates, true_positive_rates, thresholds = roc_curve(Y_Test_Tensor, Test_Predictions) AUC_Score = auc(false_positive_rates, true_positive_rates) plt.figure(figsize=(10,5)) plt.plot(false_positive_rates, true_positive_rates, color='red', lw=3.5, label=f'ROC Curve for best model') plt.plot([0,1], [0,1], color='black', lw=1.5, linestyle='--', label='Equal True and False Positive Rates') plt.xlabel('False Positive Rates') plt.ylabel('True Positive Rates') plt.title(f'ROC Curve for AUC Score = {round(AUC_Score, 3)}', fontsize=13) plt.legend(loc='lower right') plt.show() #We display the ROC Curve for the best SVM model to compare the true and false positive rates. We want to see the trade-offs between #the true and false positive rates. #Reference link for ROC Curve: https://www.w3schools.com/python/python_m1_auc_roc.asp ROC Curve for AUC Score = 0.922 1.0 0.8 Rates 9.0 True Positive 0.2 ROC Curve for best model --- Equal True and False Positive Rates 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rates