Sprawozdanie z czwartego laboratorium WSI

Michał Goławski, 325158

1. Opis algorytmu

Algorytm wykorzystuje podejście one vs all do klasyfikacji wieloklasowej. Oznacza to, że algorytm wykorzystuje 10 maszyn wektorów nośnych z czego każda z nich jest wykorzystywana do klasyfikacji jednej cyfry. Trenowanie modelu odbywa się poprzez trenowanie każdej maszyny wektorów nośnych do klasyfikacji innej cyfry. Po wytrenowaniu modelu, algorytm jest w stanie sklasyfikować jaką cyfrę przedstawia zdjęcie. Decyzja do jakiej klasy przypisać zdjęcie odbywa się poprzez sprawdzenie wszystkich wartości jakie przyjmują maszyny wektorów nośnych (podstawienie wektora pikseli zdjęcia X do równania $X \cdot w^T - b$) i wybranie tej klasy która jest reprezentowana przez SVM o największej wartości równania. Każdy z SVM w metodzie 'fit' wykorzystuje metodę gradientu prostego by znaleźć odpowiednie parametry 'w' i 'b' tak aby długość hiperpłaszczyzny była jak najdłuższa. Algorytm przyjmuje dwa parametry β i Λ . Parametr β odpowiada za wielkość kroku w kierunku najszybszego spadku, który jest wykonywany przez algorytm gradientu prostego. Parametr Λ określa wagę jaką przykładamy do karania za przekroczenie hiperpłaszczyzny na złą stronę przez punkt (im mniejszy parametr Λ tym większa kara).

2. Opis eksperymentów

Algorytm użył do treningu bazy danych MNIST losując z niego 10000 obrazów. Dane z pikselami zostały zamienione z macierzy o rozmiarze 28x28 na wektor o 784 składowych. Ponadto wartości pikseli zostały przeskalowane by były w zakresie liczbowym 0-1. W ten sposób algorytm mógł uzyskać lepsze efekty. Do testowania użyto losowych 1000 obrazów z bazy danych MNIST.

3. Wyniki eksperymentów

3.1. Skuteczność

Skuteczność wynosiła 0.897 co w połączeniu z faktem, że klasy były rozłożone mniej więcej równomiernie pokazuje, że algorytm działa dobrze.

3.2. Raport klasyfikacji

Class	Precision	Recall	F1-score
0	0.89	0.98	0.93
1	0.98	0.98	0.98
2	0.87	0.88	0.88
3	0.91	0.82	0.86
4	0.89	0.94	0.91
5	0.88	0.74	0.80
6	0.91	0.93	0.92
7	0.89	0.91	0.90
8	0.85	0.85	0.85
9	0.89	0.91	0.90

Jak widzimy na tabeli powyżej wszystkie parametry dla każdej klasy są większe od 0.74 co oznacza, że algorytm klasyfikując elementy danej klasy rzadko się myli przydzielając do niej elementy z innej klasy (parametr precision). Ponadto algorytm klasyfikując elementy danej klasy rzadko przydziela je do innej klasy (parametr recall). Średnia harmoniczna z tych dwóch parametrów czyli f1-score pokazuje wyraźnie, że algorytm działa zadowalająco.

3.3. Confusion Matrix

Jak widać na confusion matrix algorytm poprawnie klasyfikuje obrazy liczb, zaciemniony obszar układa się w przekątną co oznacza, że obrazki zostały sklasyfikowane poprawnie w znacznej większości dla danej klasy.