

Figure 3-47. Images from selected clusters found by agglomerative clustering when setting the number of clusters to 40—the text to the left shows the index of the cluster and the total number of points in the cluster

Here, the clustering seems to have picked up on "dark skinned and smiling," "collared shirt," "smiling woman," "Hussein," and "high forehead." We could also find these highly similar clusters using the dendrogram, if we did more a detailed analysis.

Summary of Clustering Methods

This section has shown that applying and evaluating clustering is a highly qualitative procedure, and often most helpful in the exploratory phase of data analysis. We looked at three clustering algorithms: k-means, DBSCAN, and agglomerative clustering. All three have a way of controlling the granularity of clustering. k-means and agglomerative clustering allow you to specify the number of desired clusters, while DBSCAN lets you define proximity using the eps parameter, which indirectly influences cluster size. All three methods can be used on large, real-world datasets, are relatively easy to understand, and allow for clustering into many clusters.

Each of the algorithms has somewhat different strengths. *k*-means allows for a characterization of the clusters using the cluster means. It can also be viewed as a decomposition method, where each data point is represented by its cluster center. DBSCAN allows for the detection of "noise points" that are not assigned any cluster, and it can help automatically determine the number of clusters. In contrast to the other two methods, it allow for complex cluster shapes, as we saw in the two_moons example. DBSCAN sometimes produces clusters of very differing size, which can be a strength or a weakness. Agglomerative clustering can provide a whole hierarchy of possible partitions of the data, which can be easily inspected via dendrograms.

Summary and Outlook

This chapter introduced a range of unsupervised learning algorithms that can be applied for exploratory data analysis and preprocessing. Having the right representation of the data is often crucial for supervised or unsupervised learning to succeed, and preprocessing and decomposition methods play an important part in data preparation.

Decomposition, manifold learning, and clustering are essential tools to further your understanding of your data, and can be the only ways to make sense of your data in the absence of supervision information. Even in a supervised setting, exploratory tools are important for a better understanding of the properties of the data. Often it is hard to quantify the usefulness of an unsupervised algorithm, though this shouldn't deter you from using them to gather insights from your data. With these methods under your belt, you are now equipped with all the essential learning algorithms that machine learning practitioners use every day.

We encourage you to try clustering and decomposition methods both on twodimensional toy data and on real-world datasets included in scikit-learn, like the digits, iris, and cancer datasets.