# Современные архитектуры CNN

Павел Остяков

### Как будем сравнивать?

- Датасет ImageNet
- 1000 классов
- 1 млн изображений
- Метрика качества Accuracy



### Residual neural networks (ResNet)



### Что сделали

- Взяли обычную VGG
- Добавили туда residual connections
- Всего получилось 34 слоя
- Оно заработало!

|           | plain | ResNet |
|-----------|-------|--------|
| 18 layers | 27.94 | 27.88  |
| 34 layers | 28.54 | 25.03  |

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.

# Что делать дальше?





| method                     | top-1 err. | top-5 err.        |
|----------------------------|------------|-------------------|
| VGG [41] (ILSVRC'14)       | -          | 8.43 <sup>†</sup> |
| GoogLeNet [44] (ILSVRC'14) | =          | 7.89              |
| VGG [41] (v5)              | 24.4       | 7.1               |
| PReLU-net [13]             | 21.59      | 5.71              |
| BN-inception [16]          | 21.99      | 5.81              |
| ResNet-34 B                | 21.84      | 5.71              |
| ResNet-34 C                | 21.53      | 5.60              |
| ResNet-50                  | 20.74      | 5.25              |
| ResNet-101                 | 19.87      | 4.60              |
| ResNet-152                 | 19.38      | 4.49              |

Table 4. Error rates (%) of **single-model** results on the ImageNet validation set (except † reported on the test set).

### Wide ResNet

- Меньше слоёв
- Больше фильтров
- Получили лучший результат на CIFAR



### ResNeXt



Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

|                                       | 224×224   |           | 320×320 / 299×29 |           |
|---------------------------------------|-----------|-----------|------------------|-----------|
|                                       | top-1 err | top-5 err | top-1 err        | top-5 err |
| ResNet-101 [14]                       | 22.0      | 6.0       | =                | 12        |
| ResNet-200 [15]                       | 21.7      | 5.8       | 20.1             | 4.8       |
| Inception-v3 [39]                     | 121       | -         | 21.2             | 5.6       |
| Inception-v4 [37]                     | -         | -         | 20.0             | 5.0       |
| Inception-ResNet-v2 [37]              | _         | _         | 19.9             | 4.9       |
| ResNeXt-101 ( <b>64</b> × <b>4d</b> ) | 20.4      | 5.3       | 19.1             | 4.4       |

Table 5. State-of-the-art models on the ImageNet-1K validation set (single-crop testing). The test size of ResNet/ResNeXt is  $224 \times 224$  and  $320 \times 320$  as in [15] and of the Inception models is  $299 \times 299$ .

# Inception



(a) Inception module, naïve version



(b) Inception module with dimensionality reduction

Figure 2: Inception module

| Team        | Year | Place | Error (top-5) | Uses external data |
|-------------|------|-------|---------------|--------------------|
| SuperVision | 2012 | 1st   | 16.4%         | no                 |
| SuperVision | 2012 | 1st   | 15.3%         | Imagenet 22k       |
| Clarifai    | 2013 | 1st   | 11.7%         | no                 |
| Clarifai    | 2013 | 1st   | 11.2%         | Imagenet 22k       |
| MSRA        | 2014 | 3rd   | 7.35%         | no                 |
| VGG         | 2014 | 2nd   | 7.32%         | no                 |
| GoogLeNet   | 2014 | 1st   | 6.67%         | no                 |

Table 2: Classification performance.

### Inception-V4



Figure 4. The schema for 35 × 35 grid modules of the pure Inception-v4 network. This is the Inception-A block of Figure 9.



Figure 5. The schema for 17 × 17 grid modules of the pure Inception-v4 network. This is the Inception-B block of Figure 9.



Figure 6. The schema for  $8 \times 8$  grid modules of the pure Inception-v4 network. This is the Inception-C block of Figure 9.



Figure 7. The schema for  $35\times35$  to  $17\times17$  reduction module. Different variants of this blocks (with various number of filters) are used in Figure 9, and 15 in each of the new Inception( $\cdot$ 4, -ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l, m, n numbers represent filter bank sizes which can be looked up in Table 1.



Figure 8. The schema for  $17\times17$  to  $8\times8$  grid-reduction module. This is the reduction module used by the pure Inception-v4 network in Figure 9.

### Inception-ResNet-v2

- Добавили residual connections к Inception-V4
- Получилось примерно такое же качество
- Скорость сходимости улучшилась

| Network             | Top-1 Error | Top-5 Error |
|---------------------|-------------|-------------|
| BN-Inception [6]    | 25.2%       | 7.8%        |
| Inception-v3 [15]   | 21.2%       | 5.6%        |
| Inception-ResNet-v1 | 21.3%       | 5.5%        |
| Inception-v4        | 20.0%       | 5.0%        |
| Inception-ResNet-v2 | 19.9%       | 4.9%        |

Table 2. Single crop - single model experimental results. Reported on the non-blacklisted subset of the validation set of ILSVRC 2012.

## **Xception**

Figure 1. A canonical Inception module (Inception V3).



Figure 2. A simplified Inception module.



### **Xception**

Figure 3. A strictly equivalent reformulation of the simplified Inception module.



Figure 4. An "extreme" version of our Inception module, with one spatial convolution per output channel of the 1x1 convolution.



### Слайд без названия

## 4.4. Training infrastructure

All networks were implemented using the TensorFlow framework [1] and trained on 60 NVIDIA K80 GPUs each.

Table 1. Classification performance comparison on ImageNet (single crop, single model). VGG-16 and ResNet-152 numbers are only included as a reminder. The version of Inception V3 being benchmarked does not include the auxiliary tower.

|                     | Top-1 accuracy | Top-5 accuracy |
|---------------------|----------------|----------------|
| VGG-16              | 0.715          | 0.901          |
| ResNet-152          | 0.770          | 0.933          |
| <b>Inception V3</b> | 0.782          | 0.941          |
| Xception            | 0.790          | 0.945          |

# Densely Connected Convolutional Networks (DenseNet)



**Figure 2:** A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change feature-map sizes via convolution and pooling.

$$\mathbf{x}_{\ell} = H_{\ell}([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{\ell-1}])$$

## DenseNet



### **DenseNet**

| Layers             | Output Size | DenseNet-121                                                                                             | DenseNet-169                                                                                             | DenseNet-201                                                                                             | DenseNet-264                                                                                             |  |  |  |
|--------------------|-------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Convolution        | 112 × 112   |                                                                                                          | $7 \times 7$ cor                                                                                         | v, stride 2                                                                                              |                                                                                                          |  |  |  |
| Pooling            | 56 × 56     |                                                                                                          | $3 \times 3 \max p$                                                                                      | oool, stride 2                                                                                           |                                                                                                          |  |  |  |
| Dense Block (1)    | 56 × 56     | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$  | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$              | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$  | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$  |  |  |  |
| Transition Layer   | 56 × 56     |                                                                                                          | 1 × 1                                                                                                    | conv                                                                                                     |                                                                                                          |  |  |  |
| (1)                | 28 × 28     |                                                                                                          | 2 × 2 average                                                                                            | pool, stride 2                                                                                           |                                                                                                          |  |  |  |
| Dense Block<br>(2) | 28 × 28     | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$ |  |  |  |
| Transition Layer   | 28 × 28     | $1 \times 1 \text{ conv}$                                                                                |                                                                                                          |                                                                                                          |                                                                                                          |  |  |  |
| (2)                | 14 × 14     |                                                                                                          | $2 \times 2$ average pool, stride 2                                                                      |                                                                                                          |                                                                                                          |  |  |  |
| Dense Block (3)    | 14 × 14     | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 64$ |  |  |  |
| Transition Layer   | 14 × 14     |                                                                                                          | $1 \times 1 \text{ conv}$                                                                                |                                                                                                          |                                                                                                          |  |  |  |
| (3)                | 7 × 7       | 10                                                                                                       | 2 × 2 average                                                                                            | pool, stride 2                                                                                           | 111                                                                                                      |  |  |  |
| Dense Block<br>(4) | 7 × 7       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$             | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 32$ | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 48$             |  |  |  |
| Classification     | 1 × 1       |                                                                                                          | 7 × 7 global                                                                                             | average pool                                                                                             |                                                                                                          |  |  |  |
| Layer              |             |                                                                                                          | 1000D fully-cor                                                                                          | nnected, softmax                                                                                         |                                                                                                          |  |  |  |

**Table 1:** DenseNet architectures for ImageNet. The growth rate for all the networks is k=32. Note that each "conv" layer shown in the table corresponds the sequence BN-ReLU-Conv.

### DenseNet-121

| Output Size | DenseNet-121                                                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112 × 112   |                                                                                                                                                         |
| 56 × 56     |                                                                                                                                                         |
| 56 × 56     | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 6$                                                 |
| 56 × 56     |                                                                                                                                                         |
| 28 × 28     |                                                                                                                                                         |
| 28 × 28     | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 12$                                                            |
| 28 × 28     |                                                                                                                                                         |
| 14 × 14     |                                                                                                                                                         |
| 14 × 14     | $\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 24$                                                |
| 14 × 14     | 11                                                                                                                                                      |
| 7 × 7       |                                                                                                                                                         |
| 7 × 7       | $\begin{bmatrix} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 16$                                                            |
|             | $112 \times 112$ $56 \times 56$ $56 \times 56$ $56 \times 56$ $28 \times 28$ $28 \times 28$ $14 \times 14$ $14 \times 14$ $14 \times 14$ $14 \times 14$ |



**Figure 3:** Comparison of the DenseNets and ResNets top-1 error rates (single-crop testing) on the ImageNet validation dataset as a function of learned parameters (*left*) and FLOPs during test-time (*right*).

### Squeeze-and-Excitation



### Squeeze

- Shrinking feature maps ∈
   R<sup>w×h×c2</sup> through spatial
   dimensions (w × h)
- Global distribution of channelwise responses

#### Excitation

- Learning  $W \in \mathbb{R}^{c_2 \times c_2}$  to explicitly model channel-association
- Gating mechanism to produce channel-wise weights

#### Scale

• Reweighting the feature maps  $\in \mathbb{R}^{w \times h \times c_2}$ 



**SE-Inception Module** 

|                          | original         |                 | re-implementation |               |        | SENet                   |                        |        |
|--------------------------|------------------|-----------------|-------------------|---------------|--------|-------------------------|------------------------|--------|
|                          | top-1<br>err.    | top-5<br>err.   | top-1<br>err.     | top-5<br>err. | GFLOPs | top-1<br>err.           | top-5<br>err.          | GFLOPs |
| ResNet-50 [9]            | 24.7             | 7.8             | 24.80             | 7.48          | 3.86   | 23.29(1.51)             | 6.62 <sub>(0.86)</sub> | 3.87   |
| ResNet-101 [9]           | 23.6             | 7.1             | 23.17             | 6.52          | 7.58   | $22.38_{(0.79)}$        | $6.07_{(0.45)}$        | 7.60   |
| ResNet-152 [9]           | 23.0             | 6.7             | 22.42             | 6.34          | 11.30  | 21.57 <sub>(0.85)</sub> | $5.73_{(0.61)}$        | 11.32  |
| ResNeXt-50 [43]          | 22.2             | -               | 22.11             | 5.90          | 4.24   | 21.10(1.01)             | $5.49_{(0.41)}$        | 4.25   |
| ResNeXt-101 [43]         | 21.2             | 5.6             | 21.18             | 5.57          | 7.99   | $20.70_{(0.48)}$        | $5.01_{(0.56)}$        | 8.00   |
| BN-Inception [14]        | 25.2             | 7.82            | 25.38             | 7.89          | 2.03   | 24.23(1.15)             | 7.14 <sub>(0.75)</sub> | 2.04   |
| Inception-ResNet-v2 [38] | $19.9^{\dagger}$ | $4.9^{\dagger}$ | 20.37             | 5.21          | 11.75  | $19.80_{(0.57)}$        | $4.79_{(0.42)}$        | 11.76  |

Table 2. Single-crop error rates (%) on the ImageNet validation set and complexity comparisons. The *original* column refers to the results reported in the original papers. To enable a fair comparison, we re-train the baseline models and report the scores in the *re-implementation* column. The *SENet* column refers the corresponding architectures in which SE blocks have been added. The numbers in brackets denote the performance improvement over the re-implemented baselines. † indicates that the model has been evaluated on the non-blacklisted subset of the validation set (this is discussed in more detail in [38]), which may slightly improve results.

### **NASNet**

"In our experiments, the pool of workers in the workqueue consisted of 500 GPUs"



Figure 4. Architecture of the best convolutional cells (NASNet-A) with B=5 blocks identified with CIFAR-10 . The input (white) is the hidden state from previous activations (or input image). The output (pink) is the result of a concatenation operation across all resulting branches. Each convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and a combination operation (green). Note that colors correspond to operations in Figure 3.

| Model                      | image size       | # parameters | <b>Mult-Adds</b> | Top 1 Acc. (%) | Top 5 Acc. (%) |
|----------------------------|------------------|--------------|------------------|----------------|----------------|
| Inception V2 [29]          | 224×224          | 11.2 M       | 1.94 B           | 74.8           | 92.2           |
| NASNet-A (5 @ 1538)        | 299×299          | 10.9 M       | 2.35 B           | 78.6           | 94.2           |
| Inception V3 [59]          | 299×299          | 23.8 M       | 5.72 B           | 78.0           | 93.9           |
| Xception [9]               | 299×299          | 22.8 M       | 8.38 B           | 79.0           | 94.5           |
| Inception ResNet V2 [57]   | $299 \times 299$ | 55.8 M       | 13.2B            | 80.4           | 95.3           |
| NASNet-A (7 @ 1920)        | 299×299          | 22.6 M       | 4.93 B           | 80.8           | 95.3           |
| ResNeXt-101 (64 x 4d) [67] | 320×320          | 83.6 M       | 31.5 B           | 80.9           | 95.6           |
| PolyNet [68]               | $331 \times 331$ | 92 M         | 34.7 B           | 81.3           | 95.8           |
| DPN-131 [8]                | $320 \times 320$ | 79.5 M       | 32.0 B           | 81.5           | 95.8           |
| SENet [25]                 | $320\times320$   | 145.8 M      | 42.3 B           | 82.7           | 96.2           |
| NASNet-A (6 @ 4032)        | $331 \times 331$ | 88.9 M       | 23.8 B           | 82.7           | 96.2           |

Table 2. Performance of architecture search and other published state-of-the-art models on ImageNet classification. Mult-Adds indicate the number of composite multiply-accumulate operations for a single image. Note that the composite multiple-accumulate operations are calculated for the image size reported in the table. Model size for [25] calculated from open-source implementation.

### Основные тенденции

- Сети становятся всё глубже
- Обычно состоят из некоторого количества одинаковых блоков
- Автоматическая генерация архитектуры
- Простому смертному обучать это становится всё сложнее

### Обучение очень глубоких сетей

- Нужно сделать много эпох до сходимости
- Каждая эпоха занимает много времени
- Зачастую дают качество хуже

### Некоторые неформальные правила

- Чем больше слоев, тем меньше параметров
- Чем больше классов, тем больше параметров
- Чем больше данных, тем больше параметров
- Зачастую архитектура практически не имеет значения

### Рецепт решения задачи классификации

- 1. Берем предобученную на ImageNet CNN
- 2. Меняем последний слой на нужное количество классов
- 3. Обучаем с пониженным LR / повышенным batch size
- 4. Получаем хороший результат

### Ссылки

https://link.springer.com/article/10.1007/s11263-015-0816-y

https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1605.07146.pdf

https://arxiv.org/pdf/1611.05431.pdf

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

https://arxiv.org/pdf/1602.07261.pdf

https://arxiv.org/pdf/1610.02357.pdf

https://arxiv.org/pdf/1608.06993.pdf

https://arxiv.org/pdf/1709.01507.pdf

https://arxiv.org/pdf/1707.07012.pdf