Lecture 15. Dimensionality Reduction

COMP90051 Statistical Machine Learning

Semester 2, 2018 Lecturer: Ben Rubinstein

Copyright: University of Melbourne

This lecture

- Principal components analysis
 - * Linear dimensionality reduction method
 - Diagonalising covariance matrix

Dimensionality reduction

- Previously in unsupervised learning: Clustering
- <u>Dimensionality reduction</u> refers to representing the data using a smaller number of variables (dimensions) while preserving the "interesting" structure of the data
- Such a reduction can serve several purposes
 - * Visualisation (e.g., mapping multidimensional data to 2D)
 - Computational efficiency in a pipeline
 - Data compression or statistical efficiency in a pipeline

Exploiting data structure

- Dimensionality reduction in general results in loss of information
- The trick is to ensure that most of the "interesting" information (signal) is preserved, while what is lost is mostly noise
- This is often possible because real data may have inherently fewer dimensions than recorded variables
- Example: GPS coordinates are 3D, while car locations on a flat road are actually on 2D manifold
- Example: Marks* for Knowledge Technology and Statistical Machine Learning

SML mark

^{*} synthetic data:)

Principal Component Analysis

Finding a rotation of data that minimises covariance between (new) variables

Principal component analysis

- Principal component analysis (PCA) is a popular method for dimensionality reduction and data analysis in general
- Given a dataset $x_1, ..., x_n, x_i \in \mathbb{R}^m$, PCA aims to find a new coordinate system such that most of the variance is concentrated along the first coordinate, then most of the remaining variance along the second coordinate, etc.
- Dimensionality reduction is then based on discarding coordinates except the first l < m

Naïve PCA algorithm

- 1. Choose a direction as new axis, such that the variance along this axis is maximised
- Choose the next direction/axis perpendicular to all axes so far, such that the (remaining) variance along this axis is maximised
- 3. Repeat 2, until you have the same number of axes (i.e., dimensions) as in the original data
- Project original data on the new axes. This gives new coordinates ("PCA coordinates")
- 5. For each point, keep only the first l coordinates

Such an algorithm if implemented directly would work, but there's a better solution

Formulating the problem

- The core of PCA is finding the new coordinate system, such that most of the variation is captured by "earlier" axes
- Let's write down this aim formally and see how it can be achieved
- First, recall the geometric definition of a dot product $\boldsymbol{u} \cdot \boldsymbol{v} = u_{\boldsymbol{v}} || \boldsymbol{v} ||$
- Suppose $\|\boldsymbol{v}\| = 1$, so $\boldsymbol{u} \cdot \boldsymbol{v} = u_{\boldsymbol{v}}$
- Vector $m{v}$ can be considered a candidate coordinate axis, and $u_{m{v}}$ the coordinate of point $m{u}$

Data transformation

- So the new coordinate system is a set of vectors $p_1, ..., p_m$, where each $||p_i|| = 1$
- Consider an original data point x_j , $j=1,\ldots,n$, and a principal axis p_i , $i=1,\ldots,m$
- The corresponding i^{th} coordinate for the first point after the transformation is $(\boldsymbol{p}_i)'(\boldsymbol{x}_1)$
 - * For the second point it is $(p_i)'(x_2)$, etc.
- Collate all these numbers into a vector $[(\boldsymbol{p}_i)'(\boldsymbol{x}_1),...,(\boldsymbol{p}_i)'(\boldsymbol{x}_n)]' = ((\boldsymbol{p}_i)'\boldsymbol{X})' = \boldsymbol{X}'\boldsymbol{p}_i$, where \boldsymbol{X} has original data points in columns

Refresher: basic stats

- Consider a random variable U and the corresponding sample ${\pmb u}=[u_1,\dots,u_n]'$
- Sample mean $\bar{u} \equiv \frac{1}{n} \sum_{i=1}^{n} u_i$. Sample variance $\frac{1}{n-1} \sum_{i=1}^{n} (u_i \bar{u})^2$
- Suppose the mean was subtracted beforehand (the sample is centered). In this case, the variance is a scaled dot product $\frac{1}{n-1}u'u$
- Similarly, if we have a centered random sample v from another random variable, sample covariance is $\frac{1}{n-1}u'v$
- Finally, if our data is $x_1 = [u_1, v_1]'$, ..., $x_n = [u_n, v_n]'$ organised into a matrix X with data in columns and centered variables in rows, we have that covariance matrix is $\Sigma_X \equiv \frac{1}{n-1} X X'$

The objective of PCA

- We shall assume that the data is centered
- Let's start with the objective for the first principal axis. The data projected on this axis is $X'p_1$
- Accordingly, the variance along this principal axis is $\frac{1}{n-1}(X'\boldsymbol{p}_1)'(X'\boldsymbol{p}_1) = \frac{1}{n-1}\boldsymbol{p}_1'XX'\boldsymbol{p}_1 = \boldsymbol{p}_1'\boldsymbol{\Sigma}_X\boldsymbol{p}_1$
 - * Here Σ_X is the covariance matrix of the original data
- PCA should therefore find $m{p}_1$ to maximise $m{p}_1' m{\Sigma}_X m{p}_1$, subject to $\|m{p}_1\| = 1$

Solving the optimisation

- PCA aims to find $m{p}_1$ that maximises $m{p}_1' m{\Sigma}_X m{p}_1$, subject to $\|m{p}_1\| = m{p}_1' m{p}_1 = 1$
- Constrained \rightarrow Lagrange mulitipliers. Introduce multiplier λ_1 ; set derivatives of Lagrangian to zero, solve
- $L = p_1' \Sigma_X p_1 \lambda_1 (p_1' p_1 1)$
- $\frac{\partial L}{\partial \boldsymbol{p}_1} = 2\boldsymbol{\Sigma}_X \boldsymbol{p}_1 2\lambda_1 \boldsymbol{p}_1 = 0$
- $\Sigma_X \boldsymbol{p}_1 = \lambda_1 \boldsymbol{p}_1$
- The latter is precisely the definition of an eigenvector with λ_1 being the corresponding eigenvalue

Refresher on eigenvectors (1/2)

Given a square matrix A, a column vector e is called an eigenvector if Ae = λe. Here λ is the corresponding eigenvalue

• Geometric interpretation: compare Ae with Px_i from previous slides. Here A is a transformation matrix ("new axes") for some vector e. Vector e is such that it still points to the same direction after transformation

Refresher on eigenvalues (2/2)

- Algebraic interpretation: if $Ae = \lambda e$ then $(A \lambda I)e = 0$, where I is the identity matrix
- This equation has a non-zero solution e if and only if the determinant is zero $|A \lambda I| = 0$. Eigenvalues are roots of this equation called characteristic equation
- Eigenvectors and eigenvalues are prominent concepts in linear algebra and arise in many practical applications
- Spectrum of a matrix is a set of its eignevalues
- There are efficient algorithms for computing eigenvectors (not covered)

Variance captured by PCs

- In summary: we choose p_1 as the eigenvector with largest eigenvalue, of centered covariance matrix Σ_X
- Variance of data captured by p_1 :
 - * Note we've shown $\lambda_1 = p_1' \Sigma_X p_1$,
 - * But $p_1'\Sigma_X p_1$ is var of projected data
 - → First eigenvalue is variance captured
- Choose dimensions to keep from "knee" in scree plot

Efficient solution for PCA

- The same pattern can be used to find all PCs
 - * Constraint $\|m{p}_i\|=1$ prevents var $m{p}_i'm{\Sigma}_Xm{p}_i$ diverging by rescaling $m{p}_i$
 - Each time we add additional constraints that next PC be orthogonal to all previous PCs. Equivalently, we search in their complement.
- Solution is to: setting p_i as all eigenvectors of centered data covariance matrix Σ_X in decreasing eigenvalue order
- Really possible with any Σ_X ?
- <u>Lemma</u>: a real symmetric $m \times m$ matrix has m real eigenvalues and corresponding eigenvectors are orthogonal
- Lemma: a PSD matrix further has non-negative eigenvalues.

Summary of PCA (1/2)

- Assume data points are arranged in columns of X. That means that the variables are in rows
- Ensure that the data is centered: subtract the mean row (the data centroid) from each row
- We seek an *orthonormal* basis $oldsymbol{p}_1$, ..., $oldsymbol{p}_m$
 - Each basis vector is of unit length and perpendicular to every other
- Find eigenvalues of centered data cov matrix $\Sigma_X \equiv \frac{1}{n-1} X X'$
 - Always possible, relatively efficiently

Summary of PCA (2/2)

- Sort eigenvalues from largest to smallest
 - Each eigenvalue equals to variance of data along corresponding PC
- Set $oldsymbol{p}_1$, ..., $oldsymbol{p}_m$ as corresponding eigenvectors
- Project data X onto these new axes to get coordinates of the transformed data
- Keep only the first s coordinates to reduce dimensionality

 Another view of PCA: s-dim plane minimising residual sumsquares to data. (This is exactly spanned by s chosen PCs)

Additional effect of PCA

- PCA aims to find axes such that the variance along each subsequent axis is maximised
- Consider candidate axes i and (i + 1). Informally, if there's a correlation between them, this means that axis i can be rotated further to capture more variance
- PCA should end up finding new axes (i.e., the transformation) such that the transformed data is uncorrelated

Spectral theorem for symmetric matrices

- In order to explore this effect further, we need to refer to one
 of the fundamental results in linear algebra
 - * The proof is outside the scope of this subject
 - * This is a special case of the singular value decomposition theorem
- Theorem: for any real symmetric matrix Σ_X there exists a real orthogonal matrix P with eigenvectors of Σ_X arranged in rows and a diagonal matrix of eigenvalues Λ such that $\Sigma_X = P' \Lambda P$

Diagonalising covariance matrix (1/2)

- Form transformation matrix P with evects (new axes) as rows
 - * By our problem formulation, **P** is an orthonormal matrix
- Note that P'P = I, where I is the identity matrix
 - * To see this recall that each element of the resulting matrix multiplication is a dot product of the corresponding row and column
 - * So element (i,j) of P'P is the dot product p'_ip_j , which is 1 if i=j, and 0 otherwise
- The transformed data is PX
 - * Similar to above, note that element (i,j) of PX is the dot product $p_i'x_j$, which is the projection of x_j on axis p_i , i.e., the new i^{th} coordinate for j^{th} point

Diagonalising covariance matrix (2/2)

- The covariance of the transformed data is
- $\Sigma_{PX} \equiv \frac{1}{n-1} (PX)(PX)' = \frac{1}{n-1} (PX)(X'P') = P\Sigma_X P'$
- By spectral decomposition theorem we have $\Sigma_X = P' \Lambda P$
- Therefore $\Sigma_{PX} = PP'\Lambda PP' = \Lambda$
- The covariance matrix of the transformed data is diagonal with eigenvalues on the diagonal of Λ
- The transformed data is uncorrelated

Non-linear data and kernel PCA

- Low dimensional approximation need not be linear
- Kernel PCA: map data to feature space, then run PCA
 - * Express principal components in terms of data points. Solution uses X'X that can be kernelised $(X'X)_{ij} = K(x_i, x_j)$
 - The solution strategy differs from regular PCA
 - Modular: Changing kernel leads to a different feature space transformation

This lecture

- Principal components analysis
 - Linear dimensionality reduction method
 - Diagonalising covariance matrix

After non-teaching break: full Bayes ahead