

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM150400210901

Email: ee.shenzhen@sgs.com Page: 1 of 31

FCC REPORT

Application No. : SZEM1504002109CR **Applicant:** Audio Resource Group, Inc

Manufacturer:Shenzhen Alors Technology Co., Ltd.Factory:Shenzhen Alors Technology Co., Ltd.

Product Name: 72MHz audio transmitter

Model No.(EUT): ARG-TX72M

Add Model No.: RAW-TX72M, ARG-TX72M-X, RAW-TX72M-X, ARG-TX72M-XX, RAW-

TX72M-XX, ARG-TX72M-XXX, RAW-TX72M-XXX

Trade Mark: ARG

FCC ID: 2ACGI-TX72M

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-04-28

Date of Test: 2015-05-06 to 2015-05-07

Date of Issue: 2015-05-15

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM150400210901

Page : 2 of 31

2 Version

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00		2015-05-15		Original	

Authorized for issue by:		
Tested By	Eric Fu	2015-05-07
	(Eric Fu) /Project Engineer	Date
Prepared By	Hedy Wen.	2015-05-15
	(Hedy Wen) /Clerk	Date
Checked By	Jim Hog	2015-05-15
	(Jim Huang) /Reviewer	Date

Report No.: SZEM150400210901

Page : 3 of 31

3 Test Summary

Test Item Test Requirement		Test method	Result	
Antenna	47 CFR Part 15, Subpart C Section	ANCI C62 10 (2000)	DACC	
Requirement	15.203	ANSI C63.10 (2009)	PASS	
AC Power Line	47 CFR Part 15, Subpart C Section	ANCI C62 10 (2000)	DACC	
Conducted Emission	15.207	ANSI C63.10 (2009)	PASS	
Field Strength of the	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	DACC	
Fundamental Signal	15.237 (c)	ANSI C65.10 (2009)	PASS	
Spurious Emissions	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	DACC	
Spurious Ellissions	15.237 (c)/15.209	ANSI C65.10 (2009)	PASS	
20dB Occupied	47 CFR Part 15, Subpart C Section	ANSI C63.10 (2009)	PASS	
Bandwidth	15.237 (b)	AINSI 003.10 (2009)	PASS	

Remark:

Model No.: ARG-TX72M, RAW-TX72M, ARG-TX72M-X, RAW-TX72M-X, ARG-TX72M-XX, RAW-TX72M-XXX, RAW-TX72M-XXX

Only the model ARG-TX72M was tested, since the circuitry design, PCB layout, electrical components used, internal wiring and functions were identical for all above models. Only different on model number.

Report No.: SZEM150400210901

Page : 4 of 31

4 Contents

1	COVER PAGE		Page 1
2	VERSION		5
3	TEST SUMMAR	RY	3
4	CONTENTS		
5	GENERAL INEC	DRMATION	ı
	5.1 CLIENT INFORM	MATIONCRIPTION OF EUT	5
		IMENT AND MODE	
		OF SUPPORT UNITS	
		N	
	5.6 TEST FACILITY.	,	9
		DM STANDARDS	
		S FROM STANDARD CONDITIONS	
	5.9 OTHER INFORM	MATION REQUESTED BY THE CUSTOMER	
		LIST	
6	TEST RESULTS	S AND MEASUREMENT DATA	13
		UIREMENT	
		MISSIONS	
		JRIOUS EMISSIONS	
	6.4 20dB Bandwig	DTH	29-31

Report No.: SZEM150400210901

Page : 5 of 31

5 General Information

5.1 Client Information

Applicant:	Audio Resource Group, Inc			
Address of Applicant:	405 Main Ave W, Suite 4G, West Fargo, ND58078, USA			
Manufacturer:	Shenzhen Alors Technology Co., Ltd.			
Address of Manufacturer:	South of 4th Floor, BLDG23, LianChuang Sci&Tech Park, Bulan Road, LongGang District, Shenzhen			
Factory:	Shenzhen Alors Technology Co., Ltd.			
Address of Factory:	South of 4th Floor, BLDG23, LianChuang Sci&Tech Park, Bulan Road, LongGang District, Shenzhen			

5.2 General Description of EUT

Product Name:	72MHz audio transmitter
Model No.:	ARG-TX72M
Trade Mark:	ARG
Operating Frequency:	72.0-73.0; 74.6-74.8 and 75.2-76.0 MHz
Modulation Type:	FM
Number of Channels:	9 Channels from 72.1 to 72.9MHz
	1 Channel from 74.6 to 74.8MHz
	7 Channels from 75.3 to 75.9 MHz
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	0dBi
Power Supply:	Lithium-ion battery: DC 3.7V 600mAh
	USB Charge

Report No.: SZEM150400210901

Page : 6 of 31

Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	72.1MHz	7	75.9MHz	13	72.8MHz	
2	72.5MHz	8	72.2MHz	14	75.4MHz	
3	72.9MHz	9	72.3MHz	15	75.5MHz	
4	75.7MHz	10	72.4MHz	16	75.6MHz	
5	74.7MHz	11	72.6MHz	17	75.8MHz	
6	75.3MHz	12	72.7MHz			

Note:

The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	72.1MHz
The Middle channel(CH5)	74.7MHz
The Highest channel(CH7)	75.9MHz

Report No.: SZEM150400210901

Page : 7 of 31

5.3 Test Environment and Mode

	Operating Environment:				
	Temperature:	24.0 °C			
	Humidity:	52 % RH			
	Atmospheric Pressure:	1010 mbar			
	Test mode:				
A	Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s).			
В	AC Charge + Transmitting mode:	The EUT transmitted the continuous modulation test signal at the specific channel(s) and AC charge it.			

Report No.: SZEM150400210901

Page : 8 of 31

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

= 0 :				
Description	Manufacturer	Model No.		
USB Cable(unshielded	Supply by lab	None		
100cm)				
AC adapter(Output DC 5V	Supply by lab	None		
1A)				
Earphone	Supply by lab	None		

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150400210901

Page : 9 of 31

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150400210901

Page : 10 of 31

5.10 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2016-05-13	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2016-05-13	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2016-05-13	
8	Coaxial Cable	SGS	N/A	SEL0025	2016-05-13	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13	

Report No.: SZEM150400210901

Page : 11 of 31

RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2016-05-13
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2016-05-13
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2016-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2016-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2016-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2016-05-29
13	Band filter	Amindeon	82346	SEL0094	2016-05-13
14	Barometer	Chang Chun	DYM3	SEL0088	2016-05-13
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2016-05-13
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2016-05-13

Report No.: SZEM150400210901

Page : 12 of 31

	RF connected test		. ago		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2016-05-13
5	Coaxial cable	SGS	N/A	SEL0179	2016-05-13
6	Barometer	ChangChun	DYM3	SEL0088	2016-05-13
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2016-04-25
8	Band filter	amideon	82346	SEL0094	2016-05-13
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2016-04-25
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM150400210901

Page : 13 of 31

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Report No.: SZEM150400210901

Page : 14 of 31

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207	
Test Method:	ANSI C63.10: 2009		
Test Frequency Range:	150kHz to 30MHz		
Limit:	Francisco (MIII-)	Limit (c	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithn	n of the frequency.	
Test Procedure:	 The mains terminal disturb shielded room. The EUT was connected to Impedance Stabilization Ne linear impedance. The pow connected to a second L reference plane in the sameasured. A multiple sock power cables to a single Liexceeded. The tabletop EUT was placed the ground reference plane EUT was placed on the houndary of the EUT shall be 0. plane. The vertical ground horizontal ground reference the boundary of the unit unplane for LISNs mounted of distance was between the All other units of the EUT am from the LISN 2. In order to find the maximule equipment and all of the into ANSI C63.10: 2009 on center of the EUT 2009 on center of the	twork) which provides ver cables of all other units and associated equipments of the LISN 1 was been as the LISN and for floor-stand rizontal ground reference plane was been as the LISN 1 which was been as the plane. The LISN 1 which was the plane was been top of the ground reference plane was been top of the plane was been top of the ground reference plane was been	bugh a LISN 1 (Line is a 50Ω/50μH + 5Ω units of the EUT were conded to the ground 1 for the unit being id to connect multiple ig of the LISN was not incident to capacity the conded to the line arrangement, the ince plane. The ground reference conded to the incident as placed 0.8 m from the arrangement. This is SN 1 and the EUT. Item was at least 0.8 we positions of the changed according

Report No.: SZEM150400210901

Page : 15 of 31

Report No.: SZEM150400210901

Page : 16 of 31

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 2109CR

Test Mode : B

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.20833	0.02	9.70	16.92	26.64	63.27	-36.63	QP
2	0.20833	0.02	9.70	7.28	17.00	53.27	-36.28	Average
3	0.24682	0.02	9.70	17.08	26.80	61.86	-35.07	QP
4	0.24682	0.02	9.70	7.93	17.65	51.86	-34.22	Average
5	0.62715	0.02	9.80	2.98	12.79	46.00	-33.21	Average
6	0.62715	0.02	9.80	13.71	23.53	56.00	-32.47	QP
7	1.065	0.02	9.80	7.47	17.29	56.00	-38.71	QP
8	1.065	0.02	9.80	-0.72	9.10	46.00	-36.90	Average
9	2.358	0.02	9.82	3.66	13.50	56.00	-42.50	QP
10	2.358	0.02	9.82	-2.61	7.23	46.00	-38.77	Average
11	8.683	0.01	9.90	2.99	12.90	50.00	-37.10	Average
12	8.683	0.01	9.90	9.53	19.44	60.00	-40.56	QP

Report No.: SZEM150400210901

Page : 17 of 31

Neutral Line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 2109CR Test Mode : B

		Freq	Cable Loss	LISN Factor	Read Level		Limit Line	Over Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1		0.19447	0.02	9.70	17.53	27.25	63.84	-36.59	QP
2		0.19447	0.02	9.70	10.42	20.14	53.84	-33.71	Average
3		0.27442	0.01	9.70	17.91	27.62	60.98	-33.36	QP
4		0.27442	0.01	9.70	8.46	18.17	50.98	-32.81	Average
5	@	0.63383	0.02	9.80	16.16	25.98	56.00	-30.02	QP
6		0.63383	0.02	9.80	5.36	15.17	46.00	-30.83	Average
7		2.334	0.02	9.82	6.49	16.33	56.00	-39.67	QP
8		2.334	0.02	9.82	-1.16	8.68	46.00	-37.32	Average
9		8.637	0.01	10.00	3.05	13.06	50.00	-36.94	Average
10		8.637	0.01	10.00	11.53	21.54	60.00	-38.46	QP
11		18.721	0.02	10.08	5.64	15.74	60.00	-44.26	QP
12		18.721	0.02	10.08	-2.42	7.67	50.00	-42.33	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150400210901

Page : 18 of 31

6.3 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.237 (c) and 15.209							
Test Method:	ANSI C63.10: 2009								
Test Site:	Measurement Distance:	3m (Semi-Anec	hoic Chamb	er)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/mete)		Remark	Measurement distance (m)				
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio fre emissions is 20dB above the maximum permitted average emission applicable to the equipment under test. This peak limit applies to the peak emission level radiated by the device.								
Limit:	Frequency	Limit (dBu	uV/m @3m)	Rema	ark				
(Field strength of the	72.0MHz-73.0MHz	8	3.5	Average	Value				
fundamental signal)	74.6MHz-74.8MHz 75.2MHz-76.0MHz	1 1 -	18.1	Peak V	alue				

Report No.: SZEM150400210901

Page : 19 of 31

Test Setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM150400210901

Page : 20 of 31

Exploratory Test Mode:	Transmitting mode, AC Charge +Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode and AC Charge +Transmitting mode, found the AC Charge + Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Report No.: SZEM150400210901

Page : 21 of 31

Measurement Data

6.3.1.1 Field Strength Of The Fundamental Signal

Peak value:

i dan valad.								
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
72.100	0.86	7.07	0	79.57	87.50	118.1	-30.60	Horizontal
72.100	0.86	7.07	0	84.89	92.82	118.1	-25.28	Vertical
74.700	0.94	7.28	0	80.64	88.86	118.1	-29.24	Horizontal
74.700	0.94	7.28	0	84.48	92.70	118.1	-25.40	Vertical
75.900	0.98	7.37	0	76.02	84.37	118.1	-33.73	Horizontal
75.900	0.98	7.37	0	81.10	89.45	118.1	-28.65	Vertical

Average value:

Average valu	Average value.									
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
72.100	0.86	7.07	0	57.89	65.82	98.1	-32.28	Horizontal		
72.100	0.86	7.07	0	62.78	70.71	98.1	-27.39	Vertical		
74.700	0.94	7.28	0	57.89	66.11	98.1	-31.99	Horizontal		
74.700	0.94	7.28	0	62.82	71.04	98.1	-27.06	Vertical		
75.900	0.98	7.37	0	54.89	63.24	98.1	-34.86	Horizontal		
75.900	0.98	7.37	0	60.02	68.37	98.1	-29.73	Vertical		

Report No.: SZEM150400210901

Page : 22 of 31

6.3.1.2 Spurious Emissions

30MHz~1GHz	
Test mode:	AC Charge +Transmitting mode

QP value:

Lowest Channel

Vertical:

Condition: 47 CFR PART 15.209 3m Vertical

Job No. : 2109CR Test mode: TX 72.1MHz

	Freq			Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.77	0.60	14.91	27.33	19.24	7.42	40.00	-32.58
2	140.34	1.30	8.13	26.95	29.35	11.83	43.50	-31.67
3	294.11	1.87	13.64	26.42	23.26	12.35	46.00	-33.65
4	411.82	2.25	16.35	27.21	20.87	12.26	46.00	-33.74
5	649.66	2.80	20.60	27.47	22.21	18.14	46.00	-27.86
6	900.15	3.60	23.20	26.78	21.65	21.67	46.00	-24.33

Report No.: SZEM150400210901

Page : 23 of 31

Horizontal:

Condition: 47 CFR PART 15.209 3m Horizontal

Job No. : 2109CR Test mode: TX 72.1MHz

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35.50	0.60	15.62	27.34	21.98	10.86	40.00	-29.14
2	147.40	1.31	8.77	26.92	34.41	17.57	43.50	-25.93
3	210.79	1.46	10.76	26.66	25.38	10.94	43.50	-32.56
4	368.11	2.11	15.42	26.93	21.97	12.57	46.00	-33.43
5	517.25	2.62	18.28	27.67	25.23	18.46	46.00	-27.54
6	679.96	2.86	21.44	27.43	24.94	21.81	46.00	-24.19

Report No.: SZEM150400210901

Page : 24 of 31

Middle Channel

Vertical:

Condition: 47 CFR PART 15.209 3m Vertical

Job No. : 2109CR Test mode: TX 74.7MHz

	Freq			Preamp Factor				Over Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.90	0.60	14.84	27.33	21.40	9.51	40.00	-30.49
2	148.44	1.31	8.86	26.91	31.51	14.77	43.50	-28.73
3	294.11	1.87	13.64	26.42	22.38	11.47	46.00	-34.53
4	531.96	2.63	18.61	27.65	22.85	16.44	46.00	-29.56
5	691.99	2.89	21.54	27.42	23.78	20.79	46.00	-25.21
6	884.50	3.54	23.08	26.85	22.31	22.08	46.00	-23.92

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM150400210901

Page : 25 of 31

Horizontal:

Condition: 47 CFR PART 15.209 3m Horizontal

Job No. : 2109CR Test mode: TX 74.7MHz

	Fnoa			Preamp				
			-actor	Factor	rever	revei	Line	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35.13	0.60	15.83	27.34	21.58	10.67	40.00	-29.33
2	149.49	1.32	8.95	26.91	32.89	16.25	43.50	-27.25
3	219.84	1.52	11.23	26.63	24.75	10.87	46.00	-35.13
4	378.58	2.14	16.04	26.99	24.30	15.49	46.00	-30.51
5	519.06	2.62	18.33	27.67	24.93	18.21	46.00	-27.79
6	906.48	3.61	23.23	26.75	22.67	22.76	46.00	-23.24

Report No.: SZEM150400210901

Page : 26 of 31

Highest Channel

Vertical:

Condition: 47 CFR PART 15.209 3m Vertical

Job No. : 2109CR Test mode: TX 75.9MHz

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB		——dB		dBul//m	dBuV/m	dB
	PHIZ	ub	ub/III	ub	ubuv	ubuv/III	ubuv/III	ub
1	37.42	0.60	14.55	27.33	20.33	8.15	40.00	-31.85
2	149.49	1.32	8.95	26.91	31.32	14.68	43.50	-28.82
3	299.32	1.90	13.87	26.41	21.99	11.35	46.00	-34.65
4	537.59	2.64	18.70	27.63	24.41	18.12	46.00	-27.88
5	689.56	2.88	21.52	27.43	23.58	20.55	46.00	-25.45
6	982.62	3.68	23.60	26.40	21.20	22.08	54.00	-31.92

Report No.: SZEM150400210901

Page : 27 of 31

Horizontal:

Condition: 47 CFR PART 15.209 3m Horizontal

Job No. : 2109CR Test mode: TX 75.9MHz

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35.87	0.60	15.41	27.33	22.95	11.63	40.00	-28.37
2	107.51	1.22	8.72	27.15	22.36	5.15	43.50	-38.35
3	154.28	1.33	9.26	26.89	34.10	17.80	43.50	-25.70
4	225.31	1.55	11.51	26.61	24.48	10.93	46.00	-35.07
5	383.93	2.16	16.11	27.03	24.56	15.80	46.00	-30.20
6	588.91	2.69	19.49	27.56	23.33	17.95	46.00	-28.05

Report No.: SZEM150400210901

Page : 28 of 31

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 1GHz, The disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM150400210901

Page : 29 of 31

6.4 20dB Bandwidth

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results
Lowest	0.163	Pass
Middle	0.127	Pass
Highest	0.116	Pass

Report No.: SZEM150400210901

Page : 30 of 31

Test plot as follows:

Test channel: Lowest

Test channel: Middle

Report No.: SZEM150400210901

Page : 31 of 31

Test channel: Highest

