Predicting
Airline
Passenger
Satisfaction

Airin Konno

Aim

- Given survey data from an airline, predict customer satisfaction (satisfied or dissatisfied)
 using ML algorithms.
- · Conduct EDA and data visualization to better understand the data.
- · Potential business value:
 - Understand which features have the biggest impact on customer satisfaction and work towards improving those features.

Data Collection

Dataset from Kaggle.

Already split into train (80% of data) and test (20% of data) files.

Total Dataset: 129,880 records with 25 columns

• Train: 103,904 records

• Test: 25,976 records

Categorical variables include:

• Gender, customer type, type of travel, class

• Target variable: Satisfaction

Data Preprocessing

EDA – Categorical Variables Distribution

EDA – Relationship with Satisfaction

EDA – Numerical Variables Distribution

EDA -Correlation Heat Map

- Shows which features correlate well with customer satisfaction.
- · Best features
 - Online Booking, Class, and Inflight Entertainment
- · Worst features
 - Type of Travel, Arrival Delay in Minutes, Departure/Arrival time convenient

Machine Learning Algorithms

KNN

92.89% accuracy

<u> 1</u>

Decision Trees

Classifier

94.93%

accuracy

Random Forest Classifier

> 96.35% accuracy

2

XGB Classifier

96.33% accuracy

ADA Boost

92.63% accuracy

Logistic Regression

87.17% accuracy

Random Forest Classifier Accuracy: 96.35%

Next steps: PCA, Grid Search

		precision	recall	f1-score	support
	0.0	0.96	0.98	0.97	14573
	1.0	0.97	0.94	0.96	11403
accuracy				0.96	25976
macro	avg	0.96	0.96	0.96	25976
weighted	avg	0.96	0.96	0.96	25976

Model 1: Dimensionality Reduction PCA

First PCA application

- PCA(n components = 5)
- Accuracy = 89.01%

Second PCA application

- PCA(0.95)
- Accuracy = 93.28%

Proceeded with the original X_train and X_test value.

Grid Search

Model 1: Grid Search

6 parameters were tuned.

There were a total of 144 combinations.

Fitted 2 folds, creating 288 fits in total.

Model 1:

Grid Search Results

XGB Classifier

Accuracy: 96.33%

Next steps: PCA, Randomized Search

		precision	recall	f1-score	support
	0.0	0.96	0.98	0.97	14573
	1.0	0.97	0.94	0.96	11403
accuracy				0.96	25976
macro	avg	0.96	0.96	0.96	25976
weighted	avg	0.96	0.96	0.96	25976

Model 2: Dimensionality Reduction PCA

First PCA application

- PCA(n components = 5)
- Accuracy = 88.36%

Second PCA application

- PCA(0.95)
- Accuracy = 93.81%

Proceeded with the original X_train and X_test value.

Randomized Search CV

Model 1: Randomized Search

5 parameters were tuned.

Fitted 5 folds for each of the 5 candidates

Total = 25 fits

Model 2:

Randomized Search Results

```
base model xgb = xgb.XGBClassifier()
base_model_xgb.fit(X_train, y_train)
base_accuracy_xgb = evaluate(base_model_xgb, X_test, y_test)
Accuracy is: 96.33122882660918 %
best_random = rs_model.best_estimator_
print(best_random)
random_accuracy = evaluate(best_random, X_test, y_test)
XGBClassifier(base_score=None, booster=None, callbacks=None,
              colsample_bylevel=None, colsample_bynode=None,
              colsample_bytree=0.7, early_stopping_rounds=None,
              enable_categorical=False, eval_metric=None, feature_types=None,
              gamma=0.1, gpu_id=None, grow_policy=None, importance_type=None,
              interaction_constraints-None, learning_rate-0.3, max_bin-None,
              max_cat_threshold=None, max_cat_to_onehot=None,
              max_delta_step=None, max_depth=8, max_leaves=None,
              min_child_weight=5, missing=nan, monotone_constraints=None,
              n_estimators=100, n_jobs=None, num_parallel_tree=None,
              predictor=None, random_state=None, ...)
Model Performance
Accuracy is: 96.29658145980905 %
print('Improvement of {:0.2f}%.'.format( 100 * (random_accuracy - base_accuracy_xgb) / base_accuracy_xg
Improvement of -0.04%.
```


Modelling Conclusions

- Model 1 Random Forest Classifier with Grid Search worked best (99.92% accuracy achieved).
- Even though PCA was conducted, I still proceeded with using the original X_train and X_test value.
- Randomized search also did not help Model 2.
 - Perhaps there were too few iterations.
 - Can try to increase the iterations next time to have more fits, which could help with the accuracy.

Insights & Conclusions

- Ease of online booking, class, inflight entertainment had the most impact on satisfaction.
 - Some potential business strategies may include:
 - · Improve mobile app and website to make it accessible and easy to book flights.
 - Ensure that inflight entertainment are up-to-date with what is popular amongst the crowd in their 20s to 50s.
 - Business class were mostly satisfied, whilst eco and eco plus need significant improvement in general.