Konstrukcija skupa \mathbb{Z}

Skup $\mathbb{N} = \{1, 2, 3, \ldots\}$ nazivamo skupom prirodnih brojeva. Skup prirodnih brojeva uz zbrajanje je komutativna polugrupa (zbrajanje je definirano i jedinstveno za svaki $a, b \in \mathbb{N}$, zatim $a + b \in \mathbb{N}$, za svaki $a, b \in \mathbb{N}$; također vrijedi i asocijativnost). Za sada nećemo ulaziti u detaljnija obrazloženja, no pretpostavit ćemo, ukoliko ne prihvaćamo ova svojstva sama po sebi očitima, da je \mathbb{N} definiran pomoću Peanovih aksioma. Tada se iz njih može formalno definirati zbrajanje i slično. Također, \mathbb{N} uz \leq je potpuno uređen skup. Pretpostavit ćemo kako za svaki $a, b, c \in \mathbb{N}$, gdje je a > c (ili b > c), iz a = b slijedi a - c = b - c i obratno. Također pretpostavit ćemo kako je (a + b) - c = a + (b - c), za svaki $a, b, c \in \mathbb{N}$ i b > c. Također, neka je a = a + (b - b) i a = (a - b) + b, za svaki $a, b \in \mathbb{N}$. Detaljnija pojašnjenja ostavljam za jedan drugi put.

Lema. Neka su $a, b, c, d \in \mathbb{N}$ i neka vrijedi a + d = b + c. Neka je a > b. Tada je c > d.

Dokaz. Kako je a > b, tada je i a + d > b pa vrijedi (a + d) - b = (b + c) - b. Kako je zbrajanje komutativno, to je (a + d) - b = (c + b) - b. Po pretpostavci imamo (a + d) - b = c + (b - b), a to je (a + d) - b = c. Opet, po komutativnosti zbrajanja, to je ekvivalentno (d + a) - b = c. Po prethodnoj pretpostavci slijedi d + (a - b) = c, iz čega imamo c > d.

Lema. Neka su $a, b, c, d \in \mathbb{N}$ i neka vrijedi a + d = b + c. Neka je a = b. Tada je c = d.

Dokaz. Imamo a + d = b + c. Kako je a = b to je a + d = a + c. Iz toga slijedi, jer je (a + d) > a i (a + c) > c, da je (a + d) - a = (a + c) - a. Po komutativnosti imamo (d + a) - a = (c + a) - a, tj. d + (a - a) = c + (a - a) i napokon d = c, tj. c = d.

Definicija. Neka je za svaki $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$ definirana relacija $(a, b) \sim (c, d)$ ako i samo ako a + d = b + c.

Propozicija. Relacija \sim iz prethodne definicije je relacija ekvivalencije.

Dokaz. Refleksivnost. Vrijedi a+b=a+b pa je $(a,b)\sim(a,b)$. Simetričnost. Neka je $(a,b)\sim(c,d)$. Tada vrijedi a+d=b+c, što je ekvivalentno b+c=a+d. Kako je zbrajanje komutativno, prethodan izraz ekvivalentan je c+b=d+a, što povlači $(c,d)\sim(a,b)$. Tranzitivnost. Neka je $(a,b)\sim(c,d)$ i $(c,d)\sim(e,f)$. To znači

a+d=b+c i c+f=d+e. Pretpostavimo kako je a>b. Tada po prethodnoj lemi imamo c>d. To opet povlači e>f. Stoga, iz a+d=b+c slijedi d+a=c+b, zatim (d+a)-b=(c+b)-b pa d+(a-b)=c+(b-b) i napokon c=(a-b)+d. Iz c+f=d+e slijedi (c+f)-f=(d+e)-f te c+(f-f)=d+(e-f), što je c=(e-f)+d. Dakle, (a-b)+d=(e-f)+d, tj. a-b=e-f. Iz toga imamo (a-b)+b=(e-f)+b, a to je a=(e-f)+b, tj. a=b+(e-f). Zatim iz toga slijedi a+f=(b+(e-f))+f, što je po asocijativnosti a+f=b+((e-f)+f). Iz toga napokon dobivamo a+f=b+e što povlači $(a,b)\sim(e,f)$. Dokaz za a< b se provodi analogno. Ukoliko je a=b, po prethodnoj lemi mora biti c=d, a zatim i e=f. Stoga je a+e=b+e pa a+f=b+e, pa je opet $(a,b)\sim(e,f)$.

Definicija. Neka je $[(a,b)] = \{(c,d) \in \mathbb{N} \times \mathbb{N} : (a,b) \sim (c,d)\}$. Neka su $a,m \in \mathbb{N}$. Definiramo:

$$m^+: = [(a+m,a)],$$

 $0: = [(a,a)],$
 $m^-: = [(a,a+m)].$

Nadalje, neka je $\mathbb{Z} := \{m^+: m \in \mathbb{N}\} \cup \{0\} \cup \{m^-: m \in \mathbb{N}\}.$

Propozicija. Neka su $a, m \in \mathbb{N}$ i $\pi : \mathbb{N} \to \mathbb{N}$ funkcija definirana s $\pi(x) = x + 1$. Tada je $[(a, a + m)] = [(1, \pi(m))], [(a, a)] = [(1, 1)]$ i $[(a + m, a)] = [(\pi(m), 1)].$

Dokaz. Direktno slijedi iz svojstva $x \in [y]$ povlači [x] = [y]. Imamo $(1, \pi(m)) \sim (a, a+m)$ jer $1+(a+m)=\pi(m)+a$, tj. $1+(m+a)=\pi(m)+a$ što nas dovodi do $(1+m)+a=\pi(m)+a$; to je ekvivalentno $(m+1)+a=\pi(m)+a$, tj. $\pi(m)+a=\pi(m)+a$. Stoga, $(1,\pi(m))\in [(a,a+m)]$ pa je [(a,a+m)]=[(1,1+m)]. Ostali se dokazi provode analogno.

Definicija. Neka su $(x, y), (z, w) \in \mathbb{N} \times \mathbb{N}$. Definiramo binarnu operaciju $+ : \mathbb{Z} \to \mathbb{Z}$ kao [(x, y)] + [(z, w)] := [(x + z, y + w)].

Propozicija. Skup \mathbb{Z} uz operaciju iz prethodne definicije je komutativna grupa.

Dokaz. Zatvorenost i definiranost (uz nasljedstvo definiranosti zbrajanja iz \mathbb{N}) vrijede po definiciji; kako je $(x+z, y+w) \in \mathbb{N} \times \mathbb{N}$, imamo $[X] \in \mathbb{Z}$ takav da je $(x+z, y+w) \in [X]$

što povlači [X] = [(x+z, y+w)]. Zatim, operacija je jedinstveno definirana, jer, uzmemo li $(x_1, y_1), (x_2, y_2), (z_1, w_1), (z_2, w_2) \in \mathbb{N} \times \mathbb{N}$ takve da je $(x_1, y_1) = (x_2, y_2)$ i $(z_1, w_1) =$ (z_2, w_2) , imamo $[(x_1, y_1)] + [(z_1, w_1)] = [(x_1 + z_1, y_1 + w_1)]$ te $[(x_2, y_2)] + [(z_2, w_2)] =$ $[(x_2+z_2,y_2+w_2)]$. No, kako je $(x_1,y_1)=(x_2,y_2)$ i $(z_1,w_1)=(z_2,w_2)$, također je i $[(x_1,y_1)] = [(x_2,y_2)]$ te $[(z_1,w_1)] = [(z_2,w_2)]$ (po običnoj supstituciji). Tada imamo $[(x_1, y_1)] + [(z_1, w_1)] = [(x_2 + z_2, y_2 + w_2)], \text{ tj. } [(x_1 + z_1, y_2 + w_2)] = [(x_2 + z_2, y_2 + w_2)].$ Asocijativnost. Imamo ([(x,y)] + [z,w]) + [(p,q)] = [(x+z,y+w)] + [(p,q)] = [((x+z)+w)] + [(x+z)+w] + [(x+z)+w][p, (y+w)+q]. Obzirom da vrijedi asocijativnost u \mathbb{N} , imamo [((x+z)+p, (y+w)+q)] =[(x + (z + p), y + (w + q))] = [(x, y)] + [(z + p, w + q)] = [(x + y)] + ([(z, w)] + [(p, q)]).Neutralan element. Imamo [(x,y)] + [(1,1)] = [(x+1,y+1)]. No, kako je x + (y+1) =y + (x + 1), vrijedi $(x, y) \sim (x + 1, y + 1)$ što implicira [(x, y)] = [(x + 1, y + 1)]. Dakle, [(x,y)] + [(1,1)] = [(x,y)]. Isto se pokaže i za [(1,1)] + [(x,y)] = [(x,y)]. Stoga je $[(1,1)] \in \mathbb{Z}$ neutralan element. Inverzni elementi. Neka je $[(x,x+m)] \in \mathbb{Z}$. Tada je $[(x+m,x)] \in \mathbb{Z}$ i imamo [(x,x+m)] + [(x+m,x)] = [(x+m,x+m)] = [(1,1)](po prethodnoj propoziciji). Slično se pokaže i za $[(x, x + m)] \in \mathbb{Z}$, te za $[(x, x)] \in \mathbb{Z}$. Komutativnost. Neka je $[(x,y)],[(z,w)] \in \mathbb{Z}$. Tada je [(x,y)]+[(z,w)]=[(x+z,y+z)][w] = [(z + x, w + y)] = [(z, w)] + [(x, y)].

Primjedba. Primijetimo kako iz gornje propozicije slijedi da je $0 \in \mathbb{Z}$ neutralan element obzirom na operaciju zbrajanja u \mathbb{Z} . Također, uzmemo li $m^+ \in \mathbb{Z}$, njegov inverzan element obzirom na zbrajanje je $m^- \in \mathbb{Z}$, tj. vrijedi $m^+ + m^- = m^- + m^+ = 0$.

Definicija. Neka je \leq relacija na skupu \mathbb{Z} takva da $[(x,y)] \leq [(z,w)]$ ako i samo ako $x+w \leq y+z$, za svaki $[(x,y)],[(z,w)] \in \mathbb{Z}$.

Propozicija. Skup \mathbb{Z} uz \leq je potpuno uređen skup.

Dokaz. Po definiciji relacije, relacija je definirana za svaka dva elementa skupa \mathbb{Z} . Refleksivnost. Vrijedi $x+y \leq x+y$ pa je $[(x,y)] \leq [(x,y)]$. Antisimetričnost. Neka je $[(x,y)] \leq [(z,w)]$ i $[(z,w)] \leq [(x,y)]$. Tada je $x+w \leq y+z$ i $z+y \leq w+x$, iz čega slijedi x+w=y+z, tj. $[(x,y)] \sim [(z,w)]$ pa onda [(x,y)] = [(z,w)]. Tranzitivnost. $[(x,y)] \leq [(z,w)]$ i $[(z,w)] \leq [(p,q)]$ je ekvivalentno $x+w \leq y+z$ i $z+q \leq w+p$. Vrijedi $w \leq y+z-x$ i $z+q-p \leq w$. Stoga imamo $z+q-p \leq y+z-x$ i $q+x \leq y+p$, tj. $x+q \leq y+p$ što povlači $[(x,y)] \leq [(p,q)]$.

Primjedba. Slično se definira slabija relacija < uz koju je skup \mathbb{Z} parcijalno uređen skup. Dakle, [(x,y)] < [(z,w)] ako i samo ako x+w < y+z, za svaki $[(x,y)], [(z,w)] \in \mathbb{Z}$.

Propozicija. Vrijedi $m^- < 0 < n^+$, za svaki $m^-, n^+ \in \mathbb{Z}$.

Dokaz. Imamo $m^- = [(1, \pi(m))], \ 0 = [(1, 1)]$ i $n^+ = [(\pi(m), 1)]$. Vrijedi $1 + 1 < \pi(m) + 1$, tj. $1 < \pi(m)$, što je istinito za svaki $m \in \mathbb{N}$ (jer broj 1 nije sljedbenik nijednom prirodnom broju). Dakle, $m^- < 0$. Također, $1 + 1 < \pi(m) + \pi(n)$, tj. $2 < \pi(m) + \pi(n)$. Obzirom da je $1 < \pi(m)$ i $1 < \pi(n)$ očito je $2 < \pi(m) + \pi(n)$ pa je i $m^- < n^+$, za svaki $m^-, n^+ \in \mathbb{Z}$. Također, $1 + 1 < 1 + \pi(m)$, tj. $1 < \pi(m)$ pa je i $0 < n^+$.

Napomena. Uvedimo sada oznaku $m := m^+$ i $-m := m^-$.

Propozicija. Neka je $m \in \mathbb{Z}$. Ako je m < 0 tada je -m > 0 (u smislu aditivnog inverza). Također, ako je m > 0 tada je -m < 0.

Dokaz. Pretpostavimo da je m < 0. Tada je, po prethodnoj propoziciji, $m = [(1, \pi(m))], 0 = [(1, 1)]$ pa zbog m < 0 vrijedi $1 + 1 < \pi(m) + 1$, tj. $1 < \pi(m)$. Pretpostavimo kako je $-m \le 0$. Tada bi, zbog $-m = [(\pi(m), 1)]$ vrijedilo $\pi(m) + 1 \le 1 + 1$, tj. $\pi(m) \le 1$, što je u suprotnosti s $\pi(m) > 1$. Dakle, m < 0 povlači -m > 0. Po rezultatu iz teorije grupa, kako je -m aditivni inverz od m, vrijedi -(-m) = m. Dokaz za m > 0 se provodi analogno.

Propozicija. Neka su $m, n \in \mathbb{Z}$. Ako je $m \leq n$, tada $-n \leq -m$ (u smislu aditivnih inverza).

Dokaz. Pretpostavimo kako je m>0 i n>0. Tada je $m=[(\pi(m),1)]$ i $n=[(\pi(n),1)]$. Tada je $-m=[(1,\pi(m))]$ i $-n=[(1,\pi(n))]$. Iz $[(\pi(m),1)]\leq [(\pi(n),1)]$ slijedi $\pi(m)+1\leq \pi(n)+1$, tj. $\pi(m)\leq \pi(n)$. Pretpostavimo da je -m<-n. Tada vrijedi $1+\pi(n)<1+\pi(m)$, tj. $\pi(n)<\pi(m)$. No, to je u suprotnosti s pretpostavkom $\pi(m)\leq \pi(n)$. Dokaz za m<0 i n<0 slijedi analogno. Slučaj kada je m>0 i n<0 uz $m\leq n$ je nemoguć po prethodnoj propoziciji. Pretpostavimo kako je -n<-m. No, tada je -n>0 i -m<0. No, uz -n<-m to je nemoguće pa može biti samo $-m\leq -n$.

Teorem (Well Ordering of \mathbb{Z}^+). Neka je $A \subseteq \mathbb{Z}^+$ i $A \neq \emptyset$. Tada postoji $m \in A$ takav da je $m \leq a$ za svaki $a \in A$.

Dokaz. Dokaz se provodi matemematičkom indukcijom. Prvo pokažimo kako tvrdnja vrijedi za sve konačne podskupove od \mathbb{Z}^+ . Neka je $|A_1|=1$ i $A_1\subseteq\mathbb{Z}^+$, i.e. $A_1=\{a\}$. Tada je očito min $A_1=a$. Pretpostavimo kako tvrdnja vrijedi za neki $k\in\mathbb{N}$; neka za svaki skup $A_k\subseteq\mathbb{Z}^+$, gdje je $|A_k|=k$, postoji $m\in A$ takav da je $m\le a$, za svaki $a\in A_k$. Neka je $A_{k+1}\subseteq\mathbb{Z}^+$ takav da je $|A_{k+1}|=k+1$. Neka je $a'\in A_{k+1}$. Tada je $|A-\{a'\}|=k$ pa postoji $m\in A-\{a'\}$ takav da je $m\le a$, za svaki $a\in A-\{a'\}$. Vrijedi $m\le a'$ ili $m\le a'$. U prvom slučaju je očito min $A_{k+1}=m$ (jer je tada i dalje $m\le a$, za svaki $a\in A_{k+1}$), a u drugom slučaju je min $A_{k+1}=a'$ (jer je tada $a'\le m\le a$, za svaki $a\in A_{k+1}$). Stoga tvrdnja vrijedi za sve skupove veličine $n\in\mathbb{N}$.

Pokažimo sada kako tvrdnja vrijedi i za beskonačne podskupove od \mathbb{Z}^+ . Neka je $A \in \mathbb{Z}^+$. Neka je $A_x = \{0, \dots, x\}$, za $x \in \mathbb{Z}^+$. Tada je $A \cap A_x$ konačan skup i vrijedi kako postoji $m \in A \cap A_x$ takav da je $m \le a$, za svaki $a \in A \cap A_x$. Po definiciji presjeka, ako je $a \in A \cap A_x$ tada je $a \in A$ i $a \cap A_x$. Stoga, slabljenjem tvrdnje, postoji $m \in A$ takav da je $m \le a$, za svaki $a \in A$.

Djeljivost

Definicija. Neka je $x \in \mathbb{R}$. Tada funkciju $|\cdot|: \mathbb{R} \to \mathbb{R}_0^+$ definiranu formulom

$$|x| = x\mathcal{I}_{[0,\infty]}(x) + (-x)\mathcal{I}_{\langle -\infty,0\rangle}(x),$$

gdje je $\mathcal{I}_S : \mathbb{R} \to \{0,1\}$ indikator funkcija za skup S, nazivamo apsolutna vrijednost (broja x).

Primjedba. Iz definicije je lako vidjeti kako vrijedi $|x| \geq 0$, za svaki $x \in \mathbb{R}$.

Propozicija. Za svaki $a \in \mathbb{R}$ vrijedi $a \leq |a|$.

Dokaz. Ako je $a \ge 0$ tada je |a| = a, po definiciji. Ako je a < 0 tada je |a| = -a i vrijedi |a| > 0 pa tako i |a| > a (jer je a < 0). Uzevši oba slučaja u obzir to je $|a| \ge a$.

Propozicija. Neka su $a, b \in \mathbb{R}$. Ako je a = b tada je |a| = |b|. Obrat općenito ne vrijedi.

Dokaz. Neka je a = b. Uzmimo prvo $a \ge 0$. Tada je i $b \ge 0$ pa je |a| = a i |b| = b. Iz pretpostavke propozicije direktno slijedi |a| = a = b = |b|, tj. |a| = |b| (ako su $a, b \in \mathbb{R}_0^+$). Dalje, uzmimo a < 0. Tada je i b < 0 pa je |a| = -a i |b| = -b. Vrijedi -(-a) = a i -(-b) = b. Iz pretpostavke je -|a| = -(-a) = a = b = -(-b) = -|b|, i.e. -|a| = -|b|. To je |a| = |b| za a < 0 i b < 0 pa uzevši i prvi slučaj u obzir vrijedi |a| = |b|, za svaki $a, b \in \mathbb{R}$.

Propozicija. Neka su $a, b \in \mathbb{Z}$. Vrijedi $|a| \cdot |b| = |a \cdot b|$.

Dokaz. Neka je $a \ge 0$ i $b \ge 0$. Tada je ab > 0 i stoga |ab| = ab. Isto tako je i |a| = a i |b| = b pa je |a||b| = ab. Iz oba izraza slijedi |ab| = |a||b| za $a, b \ge 0$. Ukoliko su a, b < 0 vrijedi ab > 0 pa je |ab| = ab. Isto tako je |a| = -a i |b| = -b pa je $|a||b| = -a \cdot (-b) = ab = |ab|$. Ako je $a \ge 0$ i b < 0 (isto se pokaže i za a < 0 i $b \ge 0$), vrijedi ab < 0 pa je |ab| = -ab. No, isto tako |a| = a i |b| = -b pa je $|a||b| = a \cdot (-b) = -ab = |ab|$. Time smo iscrpili sve mogućnosti i vrijedi tvrdnja propozicije.

Definicija. Neka je $a \in \mathbb{Z}$ i $b \in \mathbb{Z} \setminus \{0\}$. Reći ćemo kako b dijeli a, odnosno da je a djeljiv s b (i to zapisati kao b|a) ukoliko postoji $k \in \mathbb{Z}$ takav da vrijedi a = bk. Također tada kažemo da je b djelitelj od a ili da je a višekratnik broja b.

Primjer. Pogledajmo par primjera kako bi nam bilo jasnije. Broj 6 je djeljiv s 3 jer vrijedi $6 = 3 \cdot 2$ (ovdje je k = 2 i vrijedi 3|6). No što ako imamo -6 i 3? Tada je k = -2 pa će vrijediti 3|(-6) jer je $-6 = 3 \cdot (-2)$. Slično, ako imamo -6 i -3 vrijedit će -3|(-6) jer je $-6 = -3 \cdot 2$ (dakle, ovdje je opet k = 2).

Propozicija. Ako je $b \in \mathbb{Z} \setminus \{0\}$ djelitelj od $a \in \mathbb{Z}$ vrijedi $b \leq |b| \leq |a|$.

Dokaz. Po prethodnoj propoziciji, ako je a = kb tada je i |a| = |kb| = |k||b|. Kako su |a|, |k| i |b| nenegativni (što je lako uočiti iz definicije apsolutne vrijednosti), tada je $|b| \le |a|$. Po prethodnoj propoziciji je $b \le |b|$ pa je $b \le |b| \le |a|$.

Propozicija. Postoji konačno mnogo djelitelja za svaki $a \in \mathbb{Z}$.

Dokaz. Za svaki b koji je djelitelj od a vrijedi, po prethodnoj propoziciji, da je $b \leq |a|$. To je $-a \leq b \leq a$, tj. $b \in [-a,a] \cap \mathbb{Z}$. U ovom intervalu ima konačno mnogo cijelih brojeva (najviše 2a jer 0 ne može biti djelitelj, po definiciji).

Teorem (o dijeljenju s ostatkom). Za svaki $a, b \in \mathbb{Z}, b \neq 0$, postoje jedinstveni $q \in \mathbb{Z}$ (kvocijent) i $r \in \mathbb{N}_0$ (ostatak) takvi da vrijedi a = bq + r i $0 \leq r < |b|$.

Dokaz. Egzistencija. Promotrimo prvo koje slučajeve moramo uzeti u obzir. Prvo može biti a,b>0, zatim a,b<0. No, isto tako može biti i a<0, b>0 te a>0 i b<0. Pogledajmo neke primjere prije nego prosudimo što nam je činiti. Uzmimo brojeve čije su apsolutne vrijednosti 7 i 3. Vrijedit će $7=3\cdot 2+1$. Zatim, $-7=3\cdot (-3)+2$ (želimo da r bude pozitivan i manji od |b|, što ne bismo dobili u slučaju da smo uzeli 3; ostatak bi morao biti negativan). Također, $7=-3\cdot (-2)+1$ i $-7=-3\cdot 3+2$. Vidimo kako slučajevi kada su ili oboje pozitivni ili a>0, a b<0 nisu problem. Dakle, slučaj ako je a>0 i b<0 možemo lako svesti na prvi tako da jednostavno uzmemo b'=-b i a'=a. Tada će vrijediti (ukoliko dokažemo za slučaj kada su oba pozitivna) a'=b'q'+r, gdje je $0 \le r < |b'|$ a time i a=-bq'+r, gdje je $0 \le r < |-b|=|b|$. Uzmemo li q=-q' lako dobivamo $a=-b\cdot (-q)+r$, tj. a=bq+r. No, uzmimo još jedan primjer

za ostale slučajeve. Znamo kako je $27 = 6 \cdot 4 + 3$. No, tako je $-27 = 6 \cdot (-5) + 3$ (ne može biti -4 jer bi ostatak bio negativan). Slično i kada su oba negativna vrijedi $-27 = -6 \cdot 5 + 3$. Dakle, ako je a < 0, a b > 0 uzmemo a' = -a i b' = b. Imat ćemo (opet, uz pretpostavku da dokažemo za oba pozitivna) a' = b'q' + r' te $0 \le r' < |b'|$. Tada je i -a = bq' + r' i vrijedi $0 \le r' < b$, te $q' \ge 0$. Pomnožimo jednakost s -1 i dobivamo a = -bq' - r'. Želimo se riješiti minusa uz b, a za to će nam trebati negativan kvocijent. Uzmemo li, po uzoru na primjer, supstituciju q' = -(q+1) imat ćemo a=b(q+1)-r', to je a=bq+b-r'. Vidimo da je dovoljno uzeti r=b-r'. Naš r' je manji od b pa vrijedi r > 0, a time i $r \ge 0$. Kako je $r' \ge 0$ i r + r' = b vrijedi r < b. Tako je zadovoljen i uvjet da je $0 \le r < b = |b|$. Ukoliko imamo a, b < 0, uzimamo a' = -a i b' = -b. Tada je a' = b'q' + r', gdje je $q' \ge 0$ i $0 \le r' < b' = -b$. Tada vrijedi i -a = -bq' + r'. Pomnožimo jednakost s -1 i dobivamo a = bq' - r'. No, opet, ne možemo imati negativan ostatak, pa uzimamo q' = (q-1). Tada je a = bq - b - r'. Isto kao i u prethodnom primjeru, kako je r' < -b, tako je 0 < -r' - b = r, a time i $r \geq 0$. Slično, $r' \geq 0$ i r + r' = -b (zapamtimo -b je pozitivan), vrijedi i r < -b, a zbog b < 0, to je r < |b|. Stoga imamo a = bq + r, gdje je $0 \le r < |b|$. Ovim smo pokazali kako se oba slučaja mogu svesti na prvi, kada su oba pozitivna.

Pokažimo sada da tvrdnja vrijedi za slučaj kada je a > 0 i b > 0. Uzmimo R = $\{a-bm: m\in\mathbb{Z}\}\cap\mathbb{Z}_0^+$ i $r=\min R$. Po well-ordering principu, ako je R neprazan i sadrži samo nenegativne elemente, tada ima i najmanji element, odnosno minimum. Kako je R zapravo definiran kao presjek sa skupom nenegativnih cijelih brojeva, on će sadržavati samo nenegativne cijele brojeve - ukoliko takvi postoje u presjeku. Pokažimo da postoje, tj. da je R neprazan. Uzmemo li m=-1, imat ćemo $a-b\cdot (-1)\in \mathbb{Z}_0^+$ a tako i $a+b \in R$. Dakle, skup R sadrži barem a+b (oba su nenegativna pa im je i zbroj nenegativan). Dakle, R ima minimum, a tako i njemu pridružen broj $m \in \mathbb{Z}$ takav da vrijedi r = a - bm. Obzirom da je $r \in R$, vrijedi $r \geq 0$. Sada pretpostavimo da je $r \geq b$. Tada bi vrijedilo $a - bm \geq b$, a time i $a - b(m+1) \geq 0$. No, bm < bm + b = 0b(m+1) (jer je, ne zaboravimo, b>0) pa je-bm>-b(m+1). Iz toga slijedi kako je $a-bm>a-b(m+1)\geq 0$, a tako i $a-b(m+1)\in R$. No, to je u suprotnosti s pretpostavkom da je a-bm minimum skupa R (a-b(m+1) ne može biti manji). Stoga mora biti r < b, a time i $0 \le r < b = |b|$. Promotrimo samo još slučaj kada je a=0. Za primjer uzmimo $0=7\cdot 0+0$. Dakle, u tom slučaju, q=0 i r=0 pa vrijedi i dalje a = bq + r, gdje je $0 \le r < |b|$.

Jedinstvenost. Pretpostavimo da postoji neki $q' \neq q$ i $r' \neq r$ takvi da vrijedi a = bq + r i a = bq' + r', gdje je $r, r' \in [0, b) \cap \mathbb{N}_0$. To implicira bq + r = bq' + r'. Prebacimo sve na desnu stranu i imamo 0 = bq' + r' - bq - r, tj. 0 = b(q - q') + (r' - r). Kako je $b \neq 0$ i b|0, vrijedi $0 = b \cdot 0 + 0$. Stoga mora biti q - q' = 0, tj. q = q' i r' - r = 0, tj. r = r'.

Primjedba. (i) Neka za neke $a,b\in\mathbb{Z},\ b\neq 0$ vrijedi a=qb+r gdje je $q,r\in\mathbb{Z}$ i $0\leq r<|b|$. Ako je r=0 lako je vidjeti kako $b\mid a$; tada postoji $q\in\mathbb{Z}$ takav da je a=bq. Ako je r>0, tada možemo vidjeti kako $b\nmid a$, tj. ne postoji $k\in\mathbb{Z}$ za koji bi vrijedilo a=bk. To se vidi iz definicije skupa $R=\{a-bm:\ m\in\mathbb{Z}\}\cap\mathbb{N}_0$ i definicije $r=\min R$. Ako bi postojao neki $m\in\mathbb{Z}$ takav da je a=bm tada bi bilo a-bm=0 pa bi i ostatak bio jednak nuli, tj. bilo bi r=0 jer za svaki $x\in R$ po definiciji skupa R vrijedi $x\geq 0$. No, to je u suprotnosti s pretpostavkom da je r>0 pa ne postoji $m\in\mathbb{Z}$ takav da bude a=bm. (ii) Ako su $a,b,q,r\in\mathbb{Z},\ b\neq 0,\ 0\leq r<|b|$ takvi da vrijedi a=bq+r. Tada je očito kako b|(a-r) jer je a-r=bq, a $q\in\mathbb{Z}$.

Korolar. Neka je $x \in \mathbb{Q}$. Tada postoje jedinstveni $k \in \mathbb{Z}$, $m \in \mathbb{N}_0$, i $n \in \mathbb{N}$, takvi da vrijedi $x = k + \frac{m}{n}$ i $0 \le m < n$ (tj. $\frac{m}{n}$ je pravi razlomak).

Dokaz. Egzistencija. Kako je $x \in \mathbb{Q}$, možemo ga zapisati u obliku $x = \frac{a}{b}$ gdje je $a \in \mathbb{Z}$ i $b \in \mathbb{N}$. Tada, po teoremu o dijeljenju s ostatkom postoje jedinstveni $q, r \in \mathbb{Z}$ takvi da je a = bq + r i $0 \le r < |b| = b$ (pretpostavili smo kako je $b \in \mathbb{N}$). Podijelimo li izraz za a s b dobivamo $\frac{a}{b} = q + \frac{r}{b}$. Uzmemo k = q, r = m i b = n te zbog $x = \frac{a}{b}$ i $\frac{a}{b} = q + \frac{r}{b}$ imamo $x = k + \frac{m}{n}$, gdje, zbog $0 \le r < b$, dobivamo i $0 \le m < n$.

Jedinstvenost. Prepostavimo kako $x=k+\frac{m}{n}$ i $x=k'+\frac{m'}{n'}$ i $0\leq m,m'< n,n'.$ Uzmimo $r=\frac{m}{n}$ i $r'=\frac{m'}{n'}.$ Tada je $0\leq r,r'<1$ (zbog m< n i m'< n'. Izjednačimo li obzirom na x ove dvije jednakosti dobivamo k+r=k'+r' i iz toga r=k'+r'-k, tj. r=(k'-k)+r'. Kako je r<1 i r'<1 mora biti i |k'-k|<1, a to je jedino moguće samo kada je k-k'=0, tj. k=k'. Tada imamo r=0+r' i napokon r=r'.

Definicija. Neka su zadani $a, b \in \mathbb{Z} \setminus \{0\}$. Prirodan broj $x \in \mathbb{N}$ za koji vrijedi da x|a i x|b zovemo **zajednički djelitelj** od a i b. Najveći takav broj zovemo **najveći zajednički djelitelj** (eng. greatest common divisor) od a i b. Činjenicu da je x najveći zajednički djelitelj od a i b zapisujemo kao $\gcd(a,b) = x$ (dakle, $\gcd(a,b) = \min\{x \in \mathbb{N}: x|a \land x|b\}$.).

Definicija. Brojeve $a, b \in \mathbb{Z} \setminus \{0\}$ za koje vrijedi gcd(a, b) = 1 kažemo da su **relativno prosti**. Za broj $p \in \mathbb{N} \setminus \{1\}$ kažemo da je **prost** ukoliko ne postoji $n \in \mathbb{N} \setminus \{1, p\}$ takav da n|p. U suprotnom kažemo da je **složen**.

Propozicija. Neka su $a, b, c \in \mathbb{Z}$, takvi da c|a i c|b. Tada c|(ax+by), za svaki $x, y \in \mathbb{Z}$.

Dokaz. Kako c|a i c|b, postoje $k_1, k_2 \in \mathbb{Z}$ takvi da vrijedi $a = ck_1$ i $b = ck_2$. Neka su $x, y \in \mathbb{Z}$. Pokažimo da postoji $k \in \mathbb{Z}$ takav da je ax + by = ck. Uzmemo w = ax + by i zamijenimo a i b s jednakostima iz početka dokaza. Dobivamo $w = ck_1x + ck_2y$.

Po distributivnosti množenja prema zbrajanju, to je $w = c(k_1x + k_2y)$. Pronašli smo $k_1x + k_2y = k \in \mathbb{Z}$ takav da vrijedi w = ck, tj. ax + by = ck pa c|(ax + by).

Propozicija. Neka su $a, b, q, r \in \mathbb{Z}$ te $a, b, r \neq 0, 0 < r < |b|$ takvi da vrijedi a = bq + r. Tada je gcd(a, b) = gcd(b, r).

Dokaz. Uzmimo a = bq + r pa je to r = a - bq. Neka je $g = \gcd(a, b)$. Tada g|a i g|b i to je najveći takav cijeli broj. Tada g po prethodnoj propoziciji dijeli i svaku cjelobrojnu kombinaciju od a i b, tj. vrijedi da g|(ax + by), za svaki $x, y \in \mathbb{Z}$. Tako vrijedi i za x = 1 i y = -q, tj. g|(a - bq). To je jednako ostatku pa g|r. Dakle, g je zajednički djelitelj od b i r. Uzmimo $g' = \gcd(b, r)$. Očito vrijedi $g' \geq g$. No, g'|b i g'|(a - bq) pa tako i g'|a. Stoga je g' zajednički djelitelj od a i b. No, kako je g najveći zajednički djelitelj od a i b vrijedi $g \geq g'$. Dakle, g = g'.

Teorem (Bezoutova lema). Neka su $a, b \in \mathbb{Z} \setminus \{0\}$. Vrijedi:

 $\gcd(a,b) = \min \{ax + by : x, y \in \mathbb{Z}\} \cap \mathbb{N}.$

Dokaz. Neka je $L = \{ax + by : x, y \in \mathbb{Z}\} \cap \mathbb{N}$. Uzmimo $g_1 = \gcd(a, b)$ i $g_2 = \min L$. Pokažimo da je $g_1 = g_2$. No, prvo moramo pokazati da g_2 postoji. Ako su a, b > 0, dovoljno je uzeti x = 1 i y = 1 jer će tada biti a + b > 0, a time i $(a + b) \in L$. Ako je a, b < 0, uzimamo x = y = -1 i tada je -a - b > 0 i $-a - b \in L$. Ako je a > 0 i a > 0 i a > 0 i a > 0 i a > 0 i a > 0 i a > 0 i a > 0 tada je a > 0 i a > 0 i a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 i a > 0 tada je a > 0 tada

Pretpostavimo da g_2 ne dijeli a (ili g_2 ne dijeli b). Tada postoje jedinstveni $q, r \in \mathbb{Z}$ takvi da vrijedi $a = g_2q + r$, gdje je $0 < r < g_2$ (ako bi bilo $0 \le r$, uzeli bismo u obzir i to da je a djeljiv s g_2). To znači da je a = aqx + bqy + r. Imamo a - aqx - bqy = r. Izlučimo faktore tako da bude a(1 - qx) + b(-qy) = r. Kako su $1 - qx, -qy \in \mathbb{Z}$ vrijedi da je $r = a(1 - qx) + b(-qy) \in L$. No, kako je $0 < r < g_2 = ax + by$, tj. 0 < a(1 - qx) + b(-qy) < ax - by, došli smo u kontradikciju s pretpostavkom da je ax - by najmanji element u L. Dakle, $g_2|a$ i $g_2|b$.

Promotrimo sada $g_1 = \gcd(a, b)$. Kako $g_2|a$ i $g_2|b$ oboje su zajednički djelitelji od a i b. No, g_1 je najveći zajednički djelitelj pa vrijedi $g_1 \geq g_2$. Ipak, vrijedi i da $g_1|a$ i $g_1|b$. Po definiciji djeljivosti postoje $k_1, k_2 \in \mathbb{Z}$ takvi da $a = k_1g_1$ i $b = k_2g_1$. Za neke $x, y \in \mathbb{Z}$ imamo $g_2 = ax + by = k_1g_1x + k_2g_1y$. Nakon izlučivanja to je $g_2 = g_1(k_1x + k_2y)$, dakle $g_1|g_2$ te je $g_2 \geq g_1$. Kako imamo $g_2 \geq g_1$ i $g_1 \geq g_2$, slijedi da je $g_1 = g_2$, tj. $\gcd(a, b) = \min(\{ax + by : x, y \in \mathbb{Z}\} \cap \mathbb{N})$.

Korolar. Neka su $a, b \in \mathbb{Z} \setminus \{0\}$. Cijeli broj n jednak je linearnoj kombinaciji od a i b ako i samo ako je višekratnik od gcd (a, b).

Dokaz. Neka je $g = \gcd(a, b)$. Nužnost. Neka je $n \in \mathbb{Z}$ te neka je ax + by = n, za neki $x, y \in \mathbb{Z}$. Treba pokazati kako postoji $k \in \mathbb{Z}$ takav da je n = gk. Vrijedi g|a i g|b pa možemo zapisati a = ga' i b = gb', za $a', b' \in \mathbb{Z}$. Stoga imamo n = a'gx + b'gy. To je n = g(a'x + b'y) pa g|n, tj. postoji $k \in \mathbb{Z}$ takav da je n = gk.

Dovoljnost. Neka je n=gk, za neki $k\in\mathbb{Z}$. Za g po Bezoutovoj lemi vrijedi g=ax+by za neki $x,y\in\mathbb{Z}$. Pomnožimo li taj izraz sk dobivamo gk=axk+byk, tj. n=a(xk)+b(yk). Kako su $xk,yk\in\mathbb{Z}$, radi se o linearnoj kombinaciji brojeva a i b koja je jednaka broju n.

Teorem (Euklidova lema). Neka su zadani brojevi $a, b, c \in \mathbb{Z}$ takvi da vrijedi gcd(a, b) = 1 i a|bc. Tada a|c.

Dokaz. Budući da a|bc, tada postoji $k \in \mathbb{Z}$ takav da vrijedi bc = ka. Kako je $\gcd(a,b) = 1$, tada postoje $x,y \in \mathbb{Z}$ takvi da je ax+by = 1, tj. by = 1-ax. Pomnožimo bc = ka s y i imamo bcy = kay. Uvršavajući izraz za by dobivamo c(1-ax) = kay. To je c-cax = kay. Premjestimo članove tako da bude c = kay + cax. Izlučimo s desne strane a i imamo c = a(ky + cx). Kako su $k, y, c, x \in \mathbb{Z}$ tako je i $l = (ky + cx) \in \mathbb{Z}$ pa smo pronašli $l \in \mathbb{Z}$ takav da vrijedi c = al što znači da a|c.

Korolar. Neka je p prost broj i $a, b \in \mathbb{Z}$ i neka p|ab. Tada p|a ili p|b (ili oboje).

Dokaz. Pretpostavimo da $p \nmid a$. Tada je gcd(p, a) = 1, što po Euklidovoj lemi znači da p|b. Slično, pretpostavimo da $p \nmid b$. Tada je gcd(p, b) = 1 što znači da p|a. Pretpostavimo da je a = b. Tada je očito kako, ukoliko $p|a^2$, onda (po prethodna dva dokazana slučaja) p|a (a time i p|b).

Korolar. Neka su $p, q, r \in \mathbb{N}$ prosti brojevi. Ako $p \mid qr$ tada vrijedi ili p = q ili p = r (ili oboje).

Dokaz. Kako su p, q i r prosti brojevi, tako su i u parovima relativno prosti pa vrijedi gcd(p,q) = 1 i gcd(p,r) = 1. Tako po prethodnom korolaru slijedi da $p \mid q$ odnosno $p \mid r$. No, kako je $p \neq 1$, a q i r su djeljivi samo s jedan ili sami sa sobom, ostaje da mora biti ili p = r ili p = q. U slučaju da je r = q vrijedi p = r = q.

Propozicija. Neka je $a \in \mathbb{Z} \setminus \{-1, 0\}$. Tada vrijedi gcd(a, a + 1) = 1.

Dokaz. Pretpostavimo da je $g = \gcd(a, a+1)$ i g > 1. Tada g|a i g|(a+1). To znači da postoje $k, l \in \mathbb{Z}$ takvi da je a = gk i a+1=gl. Odatle slijedi kako mora biti gk+1=gl, a to je gk-gl=-1. Dakle, g(l-k)=1. No, kako g>1 ne mogu postojati cijeli brojevi k i l takvi da vrijedi g(l-k)=1. Zato mora biti g=1, tj. $\gcd(a,a+1)=1$.

Lema. Neka je $a \in \mathbb{Z} \setminus \{0\}$. Najveći djelitelj od a je |a|, a najmanji 1.

Dokaz. Uzmimo $S = \{d \in \mathbb{Z} \setminus \{0\} : a = kd\} \cap \mathbb{N}$. Očito je kako je min S = 1 jer $a = a \cdot 1$. Upravo iz toga slijedi i max S = |a| jer a = -|a| za a < 0 i a = |a| za a > 0. Nijedan drugi cijeli broj k ne postoji u intervalu $\langle -1, 1 \rangle \setminus \{0\}$, za koje bi max S bio veći, a min S manji.

Lema. Neka su $a, b \in \mathbb{Z} \setminus \{0\}$ takvi da a|b. Tada je gcd (a, b) = |a|. Vrijedi i obrat.

Dokaz. Nužnost. Znamo kako a|b, ali i da a|a. To je najveći broj koji dijeli a i vrijedi a|b i a|a pa je gcd(a,b)=|a| (dodajemo apsolutnu vrijednost kako bismo osigurali da je $gcd(a,b) \in \mathbb{N}$).

Dovoljnost. Pretpostavimo kako je gcd (a,b) = |a|. To znači kako |a| dijeli a i |a| dijeli b, tj. postoji $k \in \mathbb{Z}$ takav da je b = |a|k. Ukoliko je b negativan, tada mora biti da je k negativan. Stoga, ako je a negativan, uzimamo b = ak', gdje je $k' \in \mathbb{Z}$ i k' = |k| pa vrijedi a|b. Ukoliko je a pozitivan, jednostavno imamo b = ak i vrijedi a|b. Ako je b pozitivan, mora biti i da je k pozitivan pa za pozitivan a uzimamo b = ak i onda a|b. Ako je a pak negativan, dovoljno je uzeti k' = -k i imamo b = ak', gdje je $k' \in \mathbb{Z}$ pa opet a|b. Kako smo u svim slučajevima dobili a|b vrijedi pretpostavka obrata tvrdnje.

Teorem (Euklidov algoritam). Neka su zadani $a, b \in \mathbb{Z} \setminus \{0\}$. Tada, postupkom

$$a = bq_0 + r_1,$$

$$b = r_1q_1 + r_2,$$

$$r_1 = r_2q_2 + r_3,$$

$$\vdots$$

$$r_{n-2} = r_{n-1}q_{n-1} + r_n,$$

$$r_{n-1} = r_nq_n,$$

gdje je $0 < r_i < r_{i-1}$, za $i \in \{2, ..., n\}$ te $0 < r_1 < |a|$, dobivamo $gcd(a, b) = r_n$.

Dokaz. Ovaj postupak traje konačno upravo zbog uzastopne primjene teorema o dijeljenju s ostatkom. Obzirom da je $0 < r_1 < |a|$ i $0 < r_i < r_{i-1}$, za $i \in \{2, \ldots, n\}$ zbog well-ordering svojstva skupa \mathbb{Z}^+ , moramo doći do nule (što se vidi u $r_{n-1} = r_n q_n$). Zatim, po prethodnoj propoziciji vrijedi $\gcd(a,b) = \gcd(b,r_1)$. No, tako vrijedi i, po drugom koraku, $\gcd(b,r_1) = \gcd(r_1,r_2)$. Tako za n-ti ostatak vrijedi $\gcd(r_{n-2},r_{n-1}) = \gcd(r_{n-1},r_n)$. Tako je $\gcd(a,b) = \gcd(r_{n-1},r_n)$. No, kako $r_n|r_{n-1}$, po prethodnoj lemi vrijedi $\gcd(r_{n-1},r_n) = r_n$. Tako je $\gcd(a,b) = r_n$.

Propozicija. Neka su $a, b \in \mathbb{Z}^*$. Iz Euklidovog algoritma možemo dobiti $x, y \in \mathbb{Z}$ takve da je gcd (a, b) = ax + by.

Dokaz. Primijenimo li Euklidov algoritam na a i b, dobivamo:

$$\begin{array}{rcl} a & = & bq_0 + r_1, \\ b & = & r_1q_1 + r_2, \\ r_1 & = & r_2q_2 + r_3, \\ \vdots & & & \\ \vdots & & & \\ r_{n-3} & = & r_{n-2}q_{n-2} + r_{n-1}, \\ r_{n-2} & = & r_{n-1}q_{n-1} + r_n, \\ r_{n-1} & = & r_nq_n. \end{array}$$

Uzmemo $r_n = r_{n-2} - r_{n-1}q_{n-1}$. Zatim, $r_n = r_{n-2} - (r_{n-3} - r_{n-2}q_{n-2})q_{n-1}$, tj. $r_n = r_{n-2}(1+q_{n-2}) - r_{n-3}q_{n-1}$. Pretpostavimo kako $r_n = r_{i+1}x' + r_iy'$. Tada, jer je $r_{i-1} = r_iq_i + r_{i+1}$ imamo $r_n = x'(r_{i-1} - r_iq_i) + r_iy'$, tj. $r_n = x'r_{i-1} + r_i(y' - q_ix')$. Dakle, nastavimo li tom analogijom, dolazimo i da $r_n = x'r_2 + y'r_1$. No, $r_2 = b - r_1q_1$ pa imamo $r_n = x'(b - r_1q_1) + y'r_1$, tj. $r_n = x'b + r_1(y' - q_1x')$. Uzmimo $y' - q_1x' = x$. Dalje, $r_1 = a - bq_0$ pa je $r_n = x'b + (a - bq_0)x$, tj. $r_n = b(x' - q_0z) + ax$. Uzemo li $y = (x' - q_0z)$ imamo $r_n = ax + by$, tj. $\gcd(a, b) = ax + by$ za $x, y \in \mathbb{Z}$.

Propozicija. Neka je $a \in \mathbb{Z}$. Tada je gcd(a, 0) = a.

Dokaz. Vrijedi da a|a i a|0. To je najveći takav broj koji dijeli a pa je gcd(a,0) = a.

Propozicija. Za $a, b, k \in \mathbb{Z}$, $a, b \neq 0$, vrijedi gcd(a, b) = gcd(a, b + ak).

Dokaz. Uzmimo $g = \gcd(a, b)$. Tada g|a i g|b i to je najveći takav broj. Tada g dijeli i cjelobrojnu kombinaciju od a i b pa i b + ak. Stoga g|a i g|(b + ak). Uzmimo $g' = \gcd(a, b + ak)$. Tada vrijedi $g' \geq g$ jer je g djelitelj od a i b + ak, a g' je najveći takav. No, kako g'|a i g'|(b + ak), tada je a = g'x, za neki $x \in \mathbb{Z}$ i b + ak = g'y, za neki $y \in \mathbb{Z}$. Tako je b + g'xk = g'y, tj. b = g'y - g'xk = g'(y - xk). Dakle, g'|b. Kako g'|a i g'|b on je zajednički djelitelj od a i b pa je $g' \leq g$ jer je g najveći takav. No, imamo $g' \leq g$ i $g' \geq g$ pa je g' = g.

Drugi način da se pokaže ova propozicija je ovisan o prethodno dokazanoj propoziciji. Uzmemo li c = b + ak, očito je kako je b ostatak pri dijeljenju c s a. Pa ako je $g = \gcd(a, c)$ tada je, po prethodno dokazanoj propoziciji $\gcd(a, c) = \gcd(a, b)$. To je $\gcd(a, b) = \gcd(a, b)$.

Propozicija. Neka su $m, n, k \in \mathbb{Z}^*$ takvi da gcd (m, n) = 1 i k | n. Tada je gcd (m, k) = 1.

Dokaz. Kako k|n, postoji $q \in \mathbb{Z}$ takav da je n = qk. Pretpostavimo kako postoji $r, m', k' \in \mathbb{Z}$ tako da vrijedi m = rm' i k = rk'. Kako je $\gcd(m, n) = 1$, postoje $x, y \in \mathbb{Z}$ takvi da je xm + yn = 1. No, tada imamo xrm' + yqrk' = 1, tj. r(xm' + yqk') = 1. No kako je $r \in \mathbb{Z}$ i $(xm' + yqk') \in \mathbb{Z}$, oba broja moraju biti jednaka ili 1 ili -1. Dakle $r = \pm 1$, što znači da su brojevi m i k relativno prosti.

Propozicija. Neka su $m, n, k \in \mathbb{Z}^*$ takvi da $\gcd(mn, k) = 1$. Tada $\gcd(m, k) = 1$ i $\gcd(n, k) = 1$.

Dokaz. Imamo $\gcd(mn,k)=1$. Neka je $\gcd(m,k)=q$. To znači kako postoje $u,v\in\mathbb{Z}$ takvi da je m=qu i k=qv. Iz toga slijedi kako je mn=qun. Jer je $\gcd(mn,k)=1$, postoje $w,z\in\mathbb{Z}$ takvi da vrijedi mnw+kz=1. Imamo qunw+qvz=1, tj. q(unw+vz)=1 pa je $q=\frac{1}{unw+vz}$. No, $(unw+vz)\in\mathbb{Z}$ pa stoga mora biti i unw+vz=1 i imamo q=1. Dakle, jedini zajednički djelitelj od m i k je 1 pa mora biti $\gcd(m,k)=1$. Analogno se dokazuje i za $\gcd(n,k)=1$.

Propozicija. Neka su $k, n, m \in \mathbb{Z}^*$ takvi da je gcd (n, m) = 1. Tada je gcd (kn, km) = k.

Dokaz. Neka je $g = \gcd(kn, km)$. Pokažimo da je g = k. Očito je kako k|(kn) i k|(km), stoga je k zajednički djelitelj od kn i km pa k|g. Pokažimo da g|k. Vrijedi da g|(kn) i g|(km). Imamo kn = gx i km = gy, za $x, y \in \mathbb{Z}$. Pomnožimo li prvu jednadžbu s y dobivamo kny = gxy te je kny = kmx, tj. ny = mx. To znači kako n|(mx). No, po Euklidovoj lemi mora biti da n|x, tj. $\frac{x}{n} \in \mathbb{Z}$. Uzmimo $c = \frac{x}{n}$. Stoga iz kn = gx imamo $k = g\frac{x}{n}$, i.e. k = gc, za $c \in \mathbb{Z}$ pa po definiciji g|k. Stoga je g = k.

Propozicija. Neka su $m, n \in \mathbb{Z}^*$. Tada je $\gcd(mn, m) = m$.

Dokaz. Uzmimo $g = \gcd(mn, m)$. Pokažimo kako je g = m. Očito g|(mn) i g|m (iz toga slijedi $g \le m$). No, isto tako m|(mn) i m|m pa je m zajednički djelitelj od mn i m te vrijedi, obzirom da je g po pretpostavci najveći, $m \le g$. Kako imamo $g \le m$ i $m \le g$, vrijedi g = m.

Propozicija. Neka su $k, l, n \in \mathbb{Z}^*$ takvi da je $\gcd(k, n) = 1$ i $\gcd(l, n) = 1$. Tada je $\gcd(kl, n) = 1$.

Dokaz. Pretpostavimo da postoji $q \in \mathbb{Z}$ takav da q|(kl) i q|n te $q \neq \pm 1$. To znači kako je kl = qx i n = qy, za $x, y \in \mathbb{Z}$. Pomnožimo li prvu jednadžbu s y dobivamo kly = nx. To znači kako n|(kly). No, po Euklidovoj lemi, $n \nmid k$ stoga n|(ly). Ali, opet po Euklidovoj lemi, $n \nmid l$ pa n|y. Stoga je $\frac{y}{n} \in \mathbb{Z}$. Iz n = qy dobivamo $1 = q\frac{y}{n}$. No, to znači da q|1 i $\frac{y}{n}|1$, a to može biti samo ako $q = \frac{y}{n} = \pm 1$ (fali preciznosti, ali bit je tu). To je u suprotnosti s pretpostavkom da je gcd $(kl, n) \neq \pm 1$.

Napomena. Od sada ćemo u tekstu uzeti oznaku $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

Definicija. Neka je $a, b \in \mathbb{Z}^*$. Svaki broj $m \in \mathbb{Z}^*$ takav da m|a i m|b zovemo **zajednički višekratnik** od a i b. Najmanji takav broj zovemo **najmanji zajednički višekratnik** od a i b te pišemo m = lcm(a, b).

Propozicija. Za svaki $a, b \in \mathbb{Z}^*$ ne postoji najveći zajednički višekratnik.

Dokaz. Pretpostavimo da je m zajednički višekratnik od a i b i to najveći takav. No,

uzmemo li m' = m|a|, vrijedi da m'|m i m'|a, pa tako i m'|b. Stoga je m' zajednički višekratnik od a i b. No, kako je m' = m|a|, vrijedi $m \leq m'$ što je u suprotnosti s pretpostavkom da je m najveći zajednički višekratnik.

Propozicija. Za svaki $a, b \in \mathbb{Z}^*$ vrijedi:

$$lcm(a,b) = \frac{|ab|}{\gcd(a,b)}.$$

Dokaz. Neka je l = lcm(a, b) i $l' = \frac{|ab|}{\gcd(a, b)}$. Po definiciji vrijedi a|l, b|l i $l \leq l'$ (jer je to najmanji zajednički višekratnik - ukoliko je l' zajednički višekratnik). Pokažimo kako je l' uistinu zajednički višekratnik od a i b, tj. da a|l i b|l. Uzmimo $g = \gcd(a, b)$. Tada po definiciji najvećeg zajedničkog djelitelja g|a i g|b, tj. $\exists x,y \in \mathbb{Z}$ takvi da a = gx i b = gy. Uzmemo li $l' = \frac{|ab|}{g} = \frac{|agx|}{g}$. Kako je g pozitivan, vrijedi l' = |ax| pa a|l'. Na isti način se pokaže da b|l' pa je l' zajednički višekratnik od a i b. Pokažimo da l|l'. Uzmemo li $\frac{l}{l'}$ imamo:

$$\frac{l}{l'} = \frac{lg}{|ab|}.$$

Po prethodno dokazanoj propoziciji vrijedi g=az+bw za neki $z,w\in\mathbb{Z}^*$. Tada je lg=alz+blw. Kako a|l i b|l postoje $m,n\in\mathbb{Z}$ takvi da je l=am i l=bn. Stoga je lg=abnz+abmw=ab(nz+mw) pa (ab)|(lg). Stoga je lg=u, gdje je $u\in\mathbb{Z}$ takav da je lg=abu. Dakle, l=l'u, i.e. l'|l pa mora biti $l'\leq l$ (ne moramo paziti na apsolutnu vrijednost jer uzimamo u obzir samo pozitivne višekratnike). Kako je $l\leq l'$ (l je najmanji zajednički višekratnik) i $l'\leq l$ vrijedi l=l' i time je dokazana propozicija.

Korolar. Ako za $a, b \in \mathbb{Z}^*$ vrijedi gcd(a, b) = 1 tada je lcm(a, b) = |ab|.

Dokaz. Slijedi direktno iz prethodne propozicije. Ako je gcd(a, b) = 1, tada je:

$$lcm(a,b) = \frac{|ab|}{\gcd(a,b)} = \frac{|ab|}{1} = |ab|.$$

Korolar. Neka su $a, b \in \mathbb{Z}^*$ takvi da b|a. Tada je lcm(a, b) = |a|.

Dokaz. Vrijedi da je, po prethodnoj lemi, gcd(a, b) = |b| (ako b|a) pa direktnim uvršavanjem u formulu iz prethodne propozicije dobivamo:

$$\operatorname{lcm}(a,b) = \frac{|ab|}{\gcd a,b} = \frac{|a| \cdot |b|}{|b|} = |a|.$$

Teorem (Fundamentalni teorem aritmetike). Svaki se prirodan broj veći od 2 može prikazati kao umnožak prostih brojeva (ili je prost broj) na jedinstven način do na poredak.

Dokaz. Egzistencija Dokaz se provodi jakom matematičkom indukcijom. Neka je n = 2. Tada je n prost broj pa vrijedi baza indukcije. Pretpostavimo da se svaki k < n može prikazati kao umnožak prostih brojeva ili je sam prost broj. Ako je n prost, tada smo gotovi. Ako n nije prost, tada postoji neki n_1 i n_2 , različiti od 1, takvi da je $n = n_1 n_2$. No, $n_1 < n$ i $n_2 < n$, pa se po pretpostavci indukcije mogu prikazati kao umnošci prostih brojeva.

Jedinstvenost. Pretpostavimo da je $p_1p_2\cdots p_n=q_1q_2\cdots q_m$, gdje su $m,n\in\mathbb{N}$ i m>n. Po Euklidovoj lemi, ukoliko podijelimo cijeli izraz s p_1 , i kako su svi p_i i q_j prosti, mora biti da je p_1 jednak nekom q_j (bez smanjenja općenitosti možemo pretpostaviti kako je to upravo q_1). Tako dijeleći sa svakim p_i (isto, bez smanjenja općenitosti možemo pretpostaviti da će odgovarati upravo broju q_i), dobivamo $1=q_{n+1}q_{n+2}\cdots q_m$. No, tada $q_{n+1},q_{n+2},\ldots,q_m$ moraju biti jednaki 1. Po tome imamo $p_i=q_i$, za svaki $i\in\{1,\ldots,n\}$ dok su ostali $q_j=1$ i time nebitni.

Lema. Neka su $p \neq q$ prosti brojevi te $i, j \in \mathbb{N}$. Tada je $\gcd(p^i, q^j) = 1$.

Dokaz. Očito je kako $p^i = \underbrace{p \cdot p \cdots p}_{i \text{ puta}}$ i $q^j = \underbrace{q \cdot q \cdots q}_{j \text{ puta}}$ ne sadrže nijedan zajednički djelitelj.

Propozicija. Neka je $n \in \mathbb{N}$. Ako $p^i|n$ i $q^j|n$, za neke proste brojeve $p \neq q$, te prirodne brojeve i, j. Tada $p^iq^j|n$.

Dokaz. Kako $p^i|n$, postoji $k \in \mathbb{N}$ (radimo u skupu prirodnih brojeva, i p^i i n su prirodni pa mora biti i k) takav da je $n = p^i k$. Također, za $q^j|n$ postoji $l \in \mathbb{N}$ takav da je $n = q^j l$. Primijetimo kako odavdje trivijalno slijedi $p^i \nmid k$ i $q^j \nmid l$. Također, bitna opaska jeste da su p^i i q^j relativno prosti. Imamo $p^i k = q^j l$. Ukoliko podijelimo jednadžbu s p^i , po Euklidovoj lemi (i prethodnoj opasci) mora biti $p^i|l$. Za neki $l' \in \mathbb{N}$ je $l = l'p^i$. Tada je $n = q^j l'p^i$, za neki $l' \in \mathbb{N}$, pa stoga $p^i q^j |n$.

Teorem (Euklidov teorem). Postoji beskonačno mnogo prostih brojeva.

Dokaz. Pretpostavimo da postoji n prostih brojeva p_1, p_2, \ldots, p_n . Tada postoji složen broj $a = p_1 p_2 \cdots p_n$. Uzmimo b = a + 1. Tada je po prethodno dokazanoj propoziciji $\gcd(a,b) = 1$, tj. a i b nemaju zajedničkih djelitelja. No, kako se svaki prirodan broj, po fundamentalnom teoremu aritmetike, može prikazati kao umnožak prostih faktora ili je sam prost broj, vrijedi da je ili b prost ili je b umnožak nekih prostih faktora. Ukoliko je b prost, a nijedan $p_i \nmid b$, tada b mora biti prost broj različit od svih p_i . Ako b nije prost, a nijedan $p_i \nmid b$, b mora biti umnožak nekih prostih faktora različitih od p_i .

Kongruencija

Definicija. Neka su $a, b \in \mathbb{Z}$, $m \in \mathbb{N} \setminus \{1\}$. Kažemo kako je a kongruentan b modulo m i pišemo $a \equiv b \pmod{m}$ ako vrijedi $m \mid (a - b)$.

Primjer. Očito je $17 \equiv 2 \pmod{5}$ jer $5 \mid (17-2)$. Isto tako i $2 \equiv 17 \pmod{5}$ jer $5 \mid (2-17)$. Slično, $-17 \equiv -2 \pmod{5}$ i $-2 \equiv -17 \pmod{5}$, ali nije $-17 \equiv 2 \pmod{5}$ i nije $-2 \equiv 17 \pmod{5}$. Ipak bi bilo npr. $-13 \equiv 2 \pmod{5}$.

Primjedba. Iako jeste $15 \equiv 0 \pmod{5}$ u biti ekvivalentno izjavi 5|15, ipak nije preporučljivo gledati na to u istom svjetlu.

Propozicija. Relacija kongruencije je relacija ekvivalencije.

Dokaz. (i) Refleksivnost. Znamo kako m|0 jer za $0 \in \mathbb{Z}$ vrijedi $0 = 0 \cdot m$. Kako je, očito, a - a = 0 za svaki $a \in \mathbb{Z}$, vrijedi da m|(a - a). Tako $a \equiv a \pmod{m}$ što dokazuje reflektivnost relacije kongruencije.

- (ii) Simetričnost. Ukoliko imamo $a \equiv b \pmod{m}$ to znači da m|(a-b), dakle postoji $k \in \mathbb{Z}$ takav da je a-b=mk. To je -(b-a)=mk pa pomnoživši sve s -1 dobivamo $b-a=m\cdot(-k)$. Stoga postoji $k'\in\mathbb{Z}$, k'=-k takav da b-a=k'm pa m|(b-a). Tj. $b\equiv a \pmod{m}$. Simetričnost, dakle, vrijedi.
- (iii) Tranzitivnost. Ako je $a \equiv b \pmod{m}$ i $b \equiv c \pmod{m}$, tada vrijedi m | (a b) i m | (b c). To znači kako postoje $k, l \in \mathbb{Z}$ takvi da a b = mk i b c = ml. Zbrojimo li te dvije jednakosti dobivamo a c = m(k + l). Uzevši k' = k + l imamo a c = k'm pa m | (a c). To znači da $a \equiv c \pmod{m}$. Time je dokazana i tranzitivnost relacije kongruencije.

Propozicija. Neka su $a, b, c \in \mathbb{Z}$ i $m \in \mathbb{N}$. Ako je $a \equiv b \pmod{m}$, tada je

- (i) $ac \equiv bc \pmod{m}$,
- (ii) $a + c \equiv b + c \pmod{m}$.

Dokaz. Kako je $a \equiv b \pmod{m}$ to znači da m|(a-b), tj. da postoji $k \in \mathbb{Z}$ takav da je a-b=km. (i) Pomnožimo li tu jednakost s c dobivamo (a-b)c=kmc, što možemo grupirati tako da bude ac-bc=m(kc). Uzmemo li $k' \in \mathbb{Z}$ takav da je k'=kc imamo ac-bc=k'm pa m|(ac-bc). To znači da je $ac \equiv bc \pmod{m}$. (ii) Dodamo li jednakosti a-b=km broj c tada je a-b+c=km+c, tj. a-b+c-c=km. Nakon grupiranja to je (a+c)-(b+c)=km pa m|((a+c)-(b+c)). Stoga je $a+c \equiv b+c \pmod{m}$.

Propozicija. Vrijedi $a \equiv a + km \pmod{m}$, za svaki $a, k \in \mathbb{Z}$ i $m \in \mathbb{N}$.

Dokaz. Vrijedi m|(a-km) a to je ekvivalentno m|(a-a-km), tj. m|(a-(a+km)) pa je $a \equiv a+km \pmod{m}$.

Propozicija. Neka su $a, b, k \in \mathbb{Z}$ i $m \in \mathbb{N}$. Tada, $a \equiv b + km \pmod{m}$ ako i samo ako $a \equiv b \pmod{m}$.

Dokaz. Nužnost. Ako je $a \equiv b + mk \pmod{m}$, tada m | (a - b - mk), tj. postoji $q \in \mathbb{Z}$ takav da je a - b - mk = mq. Iz toga dobivamo a - b = m(q + k) pa m | (a - b), tj. $a \equiv b \pmod{m}$. Dovoljnost. Ako je $a \equiv b \pmod{m}$, tada postoji $q \in \mathbb{Z}$ takav da je mq = a - b. Uzmimo $k \in \mathbb{Z}$. Tada je mq = a - b + km - km. Iz toga dobivamo m(q - k) = a - b - km, tj. m(q - k) = a - (b + km). Iz toga slijedi $a \equiv b + km \pmod{m}$.

Propozicija. Neka su $a, b \in \mathbb{Z}$ i $k, m \in \mathbb{N}$. Tada iz $a \equiv b \pmod{k}m$ slijedi $a \equiv b \pmod{m}$.

Dokaz. Po definiciji km|(a-b), tj. postoji $q \in \mathbb{Z}$ takav da je a-b=kmq. To možemo zapisati kao a-b=m(kq) pa očito m|(a-b), tj. $a\equiv b\pmod{m}$.

Propozicija. Neka su $a, b \in \mathbb{Z}$ i $0 \le a, b < m$. Tada iz $a \equiv b \pmod{m}$ slijedi a = b.

Dokaz. Iz $a \equiv b \pmod{m}$ slijedi m | (a - b), tj. postoji $q \in \mathbb{Z}$ takav da je a - b = mq. Drugim riječima, a = mq + b. Kako je $0 \le b < m$, imamo $mq \le mq + b < m$, iz čega slijedi $mq \le a < m$, što je moguće samo ako je q = 0. Stoga, mora biti $a = m \cdot 0 + b$ pa je a = b.

Propozicija. Neka su $a, b, c, d \in \mathbb{Z}$ i $m \in \mathbb{N}$ Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$ tada je $a + c \equiv b + d \pmod{m}$.

Dokaz. Kako je $a \equiv b \pmod{m}$ tada m|(a-b) pa postoji $k \in \mathbb{Z}$ takav da je a-b=mk. Isto tako postoji $l \in \mathbb{Z}$ takav da je c-d=ml. Zbrojimo li ova dva izraza dobivamo (a+c)-(b+d)=m(k+l) pa m|((a+c)-(b+d)). Stoga je $a+c\equiv b+d\pmod{m}$.

Propozicija. Neka su $a, b, c, d \in \mathbb{Z}$ i $m \in \mathbb{N}$ Ako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$ tada je $ac \equiv bd \pmod{m}$.

Dokaz. Kako je $a \equiv b \pmod{m}$ i $c \equiv d \pmod{m}$, postoje $k, l \in \mathbb{Z}$ takvi da je a - b = mk i c - d = ml. Iz zadnje jednakosti imamo c = d + ml. Pomnožimo prvu jednadžbu s c i dobivamo ac - bc = mkc. Zatim, uvrstimo izraz za c tako da dobijemo ac - bd - ml = mkc. To je pak ekvivalentno izrazu ac - bd = mkc + ml. Zajednički faktor m možemo izlučiti te dobivamo ac - bd = m(kc + l). Kako su $k, c, l \in \mathbb{Z}$, tada je i $(kc + l) \in \mathbb{Z}$ pa vrijedi $m \mid (ac - bd)$ što je po definiciji kongruencije $ac \equiv bd \pmod{m}$.

Propozicija. Neka su $x, y \in \mathbb{Z}$ i $a \in \mathbb{Z}^*$. Ako je $ax \equiv ay \pmod{a}m$, tada je $x \equiv y \pmod{m}$.

Dokaz. Imamo am|(ax-ay), tj. postoji $q \in \mathbb{Z}$ takav da je ax-ay=amq. Izlučimo zajednički faktor a i dobivamo a(x-y)=a(mq). Obzirom da je $a \neq 0$ po pretpostavci propozicije, cijeli izraz možemo podijeliti s a i dobiti x-y=mq. Po definiciji to je $x \equiv y \pmod{m}$.

Propozicija. Neka su $x, y \in \mathbb{Z}$ i $a \in \mathbb{Z}^*$. Ako je $ax \equiv ay \pmod{m}$ i $\gcd(a, m) = 1$ vrijedi $x \equiv y \pmod{m}$.

Dokaz. Iz $ax \equiv ay \pmod{m}$ dobivamo m|(ax - ay), tj. m|a(x - y). Po Euklidovoj lemi, obzirom da je $\gcd(m, a) = 1$, mora biti m|(x - y), tj. $x \equiv y \pmod{m}$.

Propozicija. Neka je $m \in \mathbb{Z}$. Tada $m|(qm+1)^n-1$, za svaki $q \in \mathbb{Z}$ i $n \in \mathbb{N}$.

Dokaz. Neka je $m, q \in \mathbb{Z}$ i $n \in \mathbb{N}$. Pokažimo da $m|(qm+1)^n - 1$. Neka je n = 1. Imamo $(qm+1)^1 - 1 = qm + 1 - 1 = qm$, iz čega je očito kako m|qm. Pretpostavimo kako tvrdnja vrijedi za n = k, tj. neka postoji $q' \in \mathbb{Z}$ takav da je $(qm+1)^k - 1 = q'm$. Dokažimo da tvrdnja vrijedi za n = k + 1. Imamo:

$$(qm+1)^{k+1} - 1 = (qm+1)^k (qm+1) - 1 = qm(qm+1)^k + (qm+1)^k - 1.$$

Primijetimo kako iz pretpostavke indukcije možemo iskoristiti $(qm+1)^k-1=q'm$. Stoga je:

$$(qm+1)^{k+1} - 1 = qm(qm+1)^k + q'm.$$

Gornjem izrazu možemo dodati i oduzeti m pa je:

$$(qm+1)^{k+1} - 1 = qm(qm+1)^k - m + m + q'm = m\left((qm+1)^k - 1 + 1 + q'\right).$$

Opet iskoristimo pretpostavku indukcije i dobivamo:

$$(qm+1)^{k+1} - 1 = m(q'm+1+q') = m(q'(m+1)+1).$$

Iz toga slijedi kako $m|(qm+1)^{k+1}$ te je tvrdnja dokazana za svaki $n \in \mathbb{N}$. Stoga iz $a^n - 1 = (qm+1)^n - 1$ imamo $m|(qm+1)^n - 1$, a tako i $m|a^n - 1$, što je ekvivalentno, po definiciji kongruencije, $a^n \equiv 1 \pmod{m}$.

Propozicija. Neka je $a \equiv b \pmod{m}$. Tada je $a^n \equiv b^n \pmod{m}$, za svaki $n \in \mathbb{N}$.

Dokaz. Za n=1 očito vrijedi $a \equiv b \pmod{m}$, po pretpostavci propozicije. Pretpostavimo kako je $a^k \equiv b^k \pmod{m}$, za neki $k \in \mathbb{N}$. Pokažimo kako tvrdnja vrijedi za k+1. Koristeći prethodno dokazanu propoziciju, pretpostavku i bazu indukcije, slijedi $aa^k \equiv bb^k \pmod{m}$, tj. $a^{k+1} \equiv b^{k+1} \pmod{m}$.

Propozicija. Ako je $a \equiv 1 \pmod{m}$, tada je $a^n \equiv 1 \pmod{m}$, za svaki $n \in \mathbb{N}$.

Dokaz. Iz prethodne propozicije, uvrštavanjem b = 1 i koristeći činjenicu kako je $1^n = 1$, direktno slijedi $a^n \equiv 1 \pmod{m}$.

Propozicija. Neka je $x \equiv y \pmod{m}$. Tada vrijede sljedeće tvrdnje:

- 1. Ako je $z \equiv x + w \pmod{m}$, tada je $z \equiv y + w \pmod{m}$.
- 2. Ako je $z \equiv xw \pmod{m}$, tada je $z \equiv yw \pmod{m}$.

Dokaz. Ad 1. Postoje $k, l \in \mathbb{Z}$ takvi da je mk = x - y i ml = z - (x + w). Imamo x = mk + y i ml = z - x - w. Iz toga slijedi kako je ml = z - mk - y - w, tj. m(l + k) = z - (y + w) što je ekvivalentno $z \equiv y + w \pmod{m}$.

 $Ad\ 2$. Postoje $k, l \in \mathbb{Z}$ takvi da je mk = x - y i ml = z - xw. Tada je x = mk + y pa uvrštavanjem dobivamo ml = z - (mk + y)w, tj. ml = z - mkw - yw. To je ekvivalentno m(l + kw) = z - yw što implicira $z \equiv yw \pmod{m}$.

Propozicija. Neka je $a \in \mathbb{Z}^*$ i $m \in \mathbb{N}$. Tada, $\gcd(a, m) = 1$ ako i samo ako postoji $b \in \mathbb{Z}$ takav da je $ab \equiv 1 \pmod{m}$.

Dokaz. Nužnost. Neka je gcd (a, m) = 1. Tada po Bezoutovoj lemi postoje $x, y \in \mathbb{Z}$ takvi da je ax + my = 1. To je ekvivalentno izrazu my = 1 - ax, što znači kako m|(1-ax) pa je po definiciji $1 \equiv ax \pmod{m}$. Po simetričnosti relacije kongruencije vrijedi $ax \equiv 1 \pmod{m}$. Uzmemo li b = x, imamo da postoji $b \in \mathbb{Z}$ takav da je $ab \equiv 1 \pmod{m}$.

Dovoljnost. Neka postoji $b \in \mathbb{Z}$ takav da je $ab \equiv 1 \pmod{m}$. Tada, po definiciji kongruencije, m|(ab-1), tj. postoji $q \in \mathbb{Z}$ takav da je ab-1=mq. Uzmemo li q'=-q, imamo 1-ab=mq' i to je ekvivalentno 1=mq'+ab. Uzmimo $\gcd(a,b)=g$. Tada g|m i g|a, te postoje $m', a' \in \mathbb{Z}$ takvi da je m=m'g i a=a'g. Uvrštavajući to u prethodnu jednakost dobivamo m'gq'+a'gb=1. Izlučimo zajednički faktor te imamo g(m'q'+a'b)=1, što znači da g|1. Dakle, |g|=1, što znači kako su a i m relativno prosti.

Napomena. Primijetimo kako, ukoliko je $\gcd(a, m) = 1$, te $ab \equiv 1 \pmod{m}$, mora biti i $\gcd(b, m) = 1$. Jer, kada dobijemo $ab \equiv 1 \pmod{m}$, to je ekvivalentno ab - 1 = mq, za $q \in \mathbb{Z}$, pa je 1 = mq' + ab, za q' = -q. Pretpostavimo li $\gcd(b, m) = g$, imamo 1 = m'gq' + ab'g, za $m', b' \in \mathbb{Z}$. Tada je g(m'q' + ab') = 1 pa mora biti g|1 i |g| = 1 pa su b i m također relativno prosti.

Propozicija. Neka su $a, b \in \mathbb{Z}^*$ i $m \in \mathbb{N}$. Ako je $ab \equiv 1 \pmod{m}$, tada je $a(b+km) \equiv 1 \pmod{m}$, za svaki $k \in \mathbb{Z}$.

Dokaz. Neka je $ab \equiv 1 \pmod{m}$. To znači kako je ab - 1 = mq, za neki $q \in \mathbb{Z}$. Uzmemo li a(b + km) = ab + akm imamo a(b + km) = mq + 1 + akm, a iz toga a(b + km) = 1 + m(q + ak). To je pak ekvivalentno a(b + km) - 1 = m(q + ak), pa je $a(b + km) \equiv 1 \pmod{m}$.

Propozicija. Neka je $a \in \mathbb{Z}^*$ i $m \in \mathbb{N}$. Ako je $\gcd(a, m) \neq 1$, onda ne postoji $b \in \mathbb{Z}^*$ takav da je $ab \equiv 1 \pmod{m}$.

Dokaz. Neka je $g = \gcd(a, m)$ i $g \neq 1$. Tada je a = a'g i m = m'g za $a', m' \in \mathbb{Z}$. Pretpostavimo da postoji $b \in \mathbb{Z}^*$ takav da je $ab \equiv 1 \pmod{m}$. Imamo ab - 1 = mq, za neki $q \in \mathbb{Z}$. No, također a'gb - 1 = m'gq. Iz toga dobivamo g(a'b - m'q) = 1. No, to znači kako mora biti $g = \pm 1$, što je u suprotnosti s pretpostavkom da je $g \neq 1$. Dakle, ne postoji $b \in \mathbb{Z}^*$ takav da je $ab \equiv 1 \pmod{m}$.

Propozicija. Neka je $x \in \mathbb{Z}^-$ i $m \in \mathbb{N}$. Tada postoji $k \in \mathbb{N}$ takav da je $0 \le x + km < m$.

Dokaz. Po teoremu o dijeljenju s ostatkom x = qm + r, gdje je $0 \le r < |m| = m$. Dovoljno je uzeti q = -k te dobivamo x = -km + r. Iz toga je r = x + km i $0 \le r < m$.

Napomena. Primijetimo kako pomoću Euklidovog algoritma možemo dobiti $x, y \in \mathbb{Z}$ takve da je $ax + my = \gcd(a, m)$, tj. ax + my = 1. Tada je $ax \equiv 1 \pmod{m}$. Ukoliko je x < 0, koristeći prethodnu propoziciju, lagano možemo uzeti b = x + km. Po prethodnoj propoziciji također možemo uzeti takav b, po teoremu o dijeljenju s ostatkom, tako da bude $0 \ge b < m$. Ovo je jedan efikasan algoritam za pronalaženje (multiplikativnog) inverza u $(\mathbb{Z}/n\mathbb{Z})^*$.

Propozicija. Neka je $n \in \mathbb{N} - 2\mathbb{N}$. Tada vrijedi $(n+1)^2 \equiv n+1 \pmod{2n}$.

Dokaz. Kako je $n \in \mathbb{Z}^+ - 2\mathbb{Z}$, možemo uzeti n = 2k + 1, gdje je $k \in \mathbb{Z}_0^+$. Imamo:

$$(n+1)^2 = ((2k+1)+1)^2 = (2k+2)^2 = 4k^2 + 8k + 4.$$

Također imamo n+1=(2k+1)+1=2k+2 i 2n=2(2k+1)=4k+2. Pokazat ćemo kako $4k+2|(4k^2+8k+4)-(2k+2)$, tj. kako $4k+2|4k^2+6k+2$. Po formuli za rješenja kvadratne jednadžbe imamo:

$$k_{1,2} = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4}$$

$$= \frac{-6 \pm \sqrt{36 - 32}}{8} = \frac{-6 \pm \sqrt{4}}{8}$$

$$= \frac{-6 \pm 2}{8}.$$

Iz toga dobivamo:

$$k_1 = \frac{-6-2}{8} = \frac{-8}{8} = -1$$
 $k_2 = \frac{-6+2}{8} = \frac{-4}{8} = -\frac{1}{2}$.

Po tome je:

$$4k^{2} + 6k + 2 = 4(k+1)\left(k + \frac{1}{2}\right) = (k+1)(4k+2).$$

Iz gornjeg rezultata vidljivo je kako $(4k+2)|(4k^2+6k+2)$ te je time propozicija dokazana.

Propozicija. Neka je $n, k \in \mathbb{Z}^+$ i n > k. Tada je:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

Dokaz. Primijetimo kako po ograničenjima propozicije na n i k, u nijednom retku ispod nećemo dobiti negativan faktorijel. Imamo:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(n-(k-1))!(k-1)!} + \frac{(n-1)!}{(n-k)!k!}$$

$$= \frac{(n-1)!}{(n-(k-1))(n-k)!(k-1)!} + \frac{(n-1)!}{(n-k)!k(k-1)!}$$

$$= \frac{(n-1)!k + (n-1)!(n-k)}{(n-k)!k!} = \frac{(n-1)!(k + (n-k))}{(n-k)!k!}$$

$$= \frac{(n-1)!n}{(n-k)!k!} = \frac{n!}{(n-k)!k!} = \binom{n}{k}.$$

Propozicija. Neka je $n \in \mathbb{Z}_0^+$. Tada je:

$$\binom{n}{0} = \binom{n}{k} = 1.$$

Dokaz. Po definiciji je:

$$\binom{n}{0} = \frac{n!}{(n-0)!0!} = \frac{n!}{n!0!} = 1,$$

$$\binom{n}{n} = \frac{n!}{(n-n)!n!} = \frac{n!}{0!n!} = 1.$$

Propozicija. Neka su $n, k \in \mathbb{Z}_0^+$ i $n \leq k$. Tada je $\binom{n}{k} \in \mathbb{Z}^+$.

Dokaz. Dokaz se provodi matematičkom indukcijom. Ako je n = k ili k = 0, imamo $\binom{n}{0} = \binom{n}{n} = 1$ pa je $\binom{n}{0}$, $\binom{n}{n} \in \mathbb{Z}^+$. Za n = 0 imamo $\binom{0}{k} = 1 \in \mathbb{Z}^+$, za svaki $0 \le k \le n$ (tj. za k = 0). Pretpostavimo kako je tvrdnja istinita za neki $n \in \mathbb{Z}_0^+$ (i za sve $0 \le k \le n$; po bazi indukcije smo pokazali kako je točno za n = 0 i sve $0 \le k \le n$, tj. za k = 0). Za n + 1, obzirom da ćemo promatrati 0 < k < n (za k = 0 i k = n je dokazano) i jer je $n + 1 \in \mathbb{Z}^+$, po prethodnoj propoziciji imamo:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$

Po pretpostavci indukcije, oba su člana pozitivni cijeli brojevi pa je i njihov zbroj pozitivan cijeli broj te je $\binom{n+1}{k} \in \mathbb{Z}^+$.

Propozicija. Neka je $p \in P$ i $n \in \mathbb{N}$, n < p. Tada:

$$\binom{p}{n} \equiv 0 \pmod{p}.$$

Dokaz. Po formuli za binomni koeficijent imamo:

$$\binom{p}{n} = \frac{p!}{(p-n)!n!} = \frac{p(p-1)\cdots(p-n+1)(p-n)!}{(p-n)!n!} = \frac{p(p-1)\cdots(p-n+1)}{n!}.$$

Obzirom da u nazivniku imamo n faktora, a svi su strogo manji od p i manji od n, oni ne mogu dijeliti p, jer je p prost broj (osim u slučaju kada je n=1, no tada je binomni koeficijent očito jednak p). No, jer je binomni koeficijent cijeli broj, po Euklidovoj lemi, n! mora dijeliti preostale članove, tj. $n!|(p-1)\cdots(p-n+1)$. Dakle, razlomak $\frac{(p-1)\cdots(p-n+1)}{n!}=k$ je cijeli broj pa imamo:

$$\binom{p}{n} = pk.$$

Po definiciji djeljivosti, $p|\binom{p}{n}$. Drugim riječima, $p|\binom{p}{n}-0$ pa je po definiciji kongruencije:

$$\binom{p}{n} \equiv 0 \pmod{p}.$$

Rješavanje kongruencija

Propozicija. Neka je $m \in \mathbb{N}$ i $a \in \mathbb{Z}$. Rješenje od $x \equiv a \pmod{m}$ je svaki $x \in \{a + km : k \in \mathbb{Z}\}.$

Dokaz. Za svaki $k \in \mathbb{Z}$ definiramo $x_k = a + km$. Tada, uvrstimo to u kongruenciju i dobivamo $x_k \equiv a \pmod{m}$, tj. $a + km \equiv a \pmod{m}$. Po prethodnoj propoziciji to je ekvivalentno $a \equiv a \pmod{m}$.

Propozicija. Neka je $m \in \mathbb{N}$ i $a, b \in \mathbb{Z}$ takvi da je $\gcd(a, m) = 1$. Linearna kongruencija $ax \equiv b \pmod{m}$ tada ima jedinstveno rješenje modulo m.

Dokaz. Postojanje. Kako je gcd (a, m) = 1, po Bezoutovoj lemi postoje $a', m' \in \mathbb{Z}$ takvi da je a'a + m'm = 1, tj. m'm = 1 - a'a. To je ekvivalentno, po definiciji kongruencije, $1 \equiv a'a \pmod{m}$. Uzmemo li dakle $ax \equiv b \pmod{m}$ i pomnožimo li tu kongruenciju s dobivenim $a' \in \mathbb{Z}$, dobivamo $a'ax \equiv a'b \pmod{m}$. No, $a'a \equiv 1 \pmod{m}$ pa imamo $x \equiv a'b \pmod{m}$.

Jedinstvenost. Pretpostavimo kako postoji $x' \in \mathbb{Z}$ takav da je $ax' \equiv b \pmod{m}$, ali x' nekongruentno s x_0 . To znači kako $m \nmid x' - x_0$ tj. po teoremu o dijeljenju s ostatkom postoje $q, r \in \mathbb{Z}$, takvi da je $x' - x_0 = qm + r$, gdje je $0 \le r < |m| = m$. Stoga je $x' - x_0 \equiv r \pmod{m}$. No, obzirom da je $ax' \equiv b \pmod{m}$, dobivamo $x' \equiv a_0 b \pmod{m}$ (po prethodnom postupku). No $x_0 = a_0 b$ pa imamo $0 \equiv r \pmod{m}$, tj. r = mr', za neki $r' \in \mathbb{Z}$. Stoga imamo $x' - x_0 = qm + mr'$, tj. $x' - x_0 = m(q + r')$. Dakle, $x' \equiv x_0 \pmod{m}$, što je u kontradikciji s pretpostavkom da $m \nmid x' - x_0$.

Teorem (Kineski teorem o ostatcima). Neka su $a, b \in \mathbb{Z}$ i $m, n \in \mathbb{Z}^+$ takvi da je gcd (m, n) = 1. Tada sustav $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$ ima jedinstveno rješenje modulo mn.

Dokaz. Postojanje. Kako je gcd (m, n) = 1, po Bezoutovoj lemi postoje $p, q \in \mathbb{Z}$ takvi da je mp + nq = 1. Odatle slijedi $mp \equiv 1 \pmod{n}$ i $nq \equiv 1 \pmod{m}$. Uzmemo li $x_0 = mpb + nqa$, lako se vidi kako će takav x_0 zadovoljavati obje kongruencije. Prvo, $mpb + nqa \equiv a \pmod{m}$ daje mpb + nqa - a = ms, za neki $s \in \mathbb{Z}$. Iz toga slijedi nqa - a = m(s - pb), tj. $nqa \equiv a \pmod{m}$. No, zbog $nq \equiv 1 \pmod{m}$, imamo $a \equiv a \pmod{m}$. Slično, $mpb + nqa \equiv b \pmod{n}$ daje mpb + nqa - b = nt, za neki $t \in \mathbb{Z}$. Tada je mpb - b = n(t - qa) što je ekvivalentno kongruenciji $mpb \equiv b \pmod{n}$. Zbog

 $mp \equiv 1 \pmod{n}$ imamo $b \equiv b \pmod{n}$. Dakle, $x_0 = mpb + nqa$ je rješenje sustava, a brojevi p i q se mogu dobiti pomoću Euklidovog algoritma.

Jedinstvenost. Pretpostavimo kako postoji i $y_0 \in \mathbb{Z}$ takav da je $y_0 \equiv a \pmod{m}$ i $y_0 \equiv b \pmod{n}$. Iz toga slijedi $x_0 \equiv y_0 \pmod{m}$ i $x_0 \equiv y_0 \pmod{n}$. To znači kako $m|x_0 - y_0$ i $n|x_0 - y_0$. Iz prvog uvjeta dobivamo da postoji $q \in \mathbb{Z}$ takav da je $x_0 - y_0 = mq$. No, kako $n|x_0 - y_0$, tj. n|mq, obzirom da je gcd (m, n) = 1, po Euklidovoj lemi imamo n|q, tj. postoji $p \in \mathbb{Z}$ takav da je mq = mnp. Stoga je $x_0 - y_0 = mnp$, tj. $x_0 \equiv y_0 \pmod{mn}$.

Korolar. Neka je $k \in \mathbb{Z}^+ - \{1\}$ i neka su $a_1, \ldots, a_k \in \mathbb{Z}$ i $m_1, \ldots, m_k \in \mathbb{Z}$ takvi da je $\gcd(m_i, m_j) = 1$, za svaki $i \neq j$, $i, j \in \{1, \ldots, k\}$. Tada sustav $x \equiv a_1 \pmod{m_1}, \ldots, x \equiv a_k \pmod{m_k}$ ima jedinstveno rješenje modulo $m_1 \cdots m_k$.

Dokaz. Provodi se po indukciji. Neka je k=2. Tada sustav $x\equiv a_1\pmod{m_1}$, $x\equiv a_2\pmod{m_2}$ po prethodnom teoremu ima jedinstveno rješenje x_0 modulo m_1m_2 . Prepostavimo kako tvrdnja vrijedi za neki $k\in\mathbb{Z}$. Pokažimo da vrijedi za k+1. Imamo $x\equiv a_1\pmod{m_1},\ldots,x\equiv a_k\pmod{m_k}, x\equiv a_{k+1}\pmod{m_k}$. Po pretpostavci indukcije, sustav $x\equiv a_1\pmod{m_1},\ldots,x\equiv a_k\pmod{m_k}$ ima jedinstveno rješenje $x_0\pmod{M}$ modulo $M=m_1\cdots m_k$. Kako je gcd $(m_{k+1},m_i)=1$, za svaki $i\in\{1,\ldots,k\}$, tada je i gcd $(M,m_{k+1})=1$. Iz toga imamo $Mq+m_{k+1}p=1$. Uzmemo:

$$y_0 = Mqa_{k+1} + m_{k+1}px_0.$$

Vidimo kako će biti $Mqa_{k+1} + m_{k+1}px_0 \equiv a_i \pmod{m_i}$, za svaki $i \in \{1, \dots, k\}$ jer $Mqa_{k+1} + m_{k+1}px_0 - a_i = m_is_i$, gdje je $s_i \in \mathbb{Z}$. No, obzirom da $m_i|M$ (po definiciji broja M), imamo $M = m_it_i$, za neki $t_i \in \mathbb{Z}$. Stoga imamo $m_it_iqa_{k+1} + m_{k+1}px_0 - a_i = m_is_i$ što je ekvivalentno $m_{k+1}px_0 - a_i = m_i(s_i - t_iqa_{k+1})$, odnosno $m_{k+1}px_0 \equiv a_i \pmod{m_i}$. Sada još moramo primijetiti kako je, zbog $Mq + m_{k+1}p \equiv 1$, zapravo $1 - m_{k+1}p = Mq$, tj. $1 - m_{k+1}p = m_it_iq$. Iz toga dobivamo $m_{k+1}p \equiv 1 \pmod{m_i}$ pa iz $m_{k+1}px_0 \equiv a_i \pmod{m_i}$ slijedi $x_0 \equiv a_i \pmod{m_i}$, što je u skladu s pretpostavkom. Nadalje, pokazat ćemo i kako $y_0 \equiv a_{k+1} \pmod{m_k+1}$. Imamo $Mqa_{k+1} + m_{k+1}px_0 \equiv a_{k+1} \pmod{m_{k+1}}$, tj. $Mqa_{k+1} + m_{k+1}px_0 - a_{k+1} = m_{k+1}s_{k+1}$, gdje je $s_{k+1} \in \mathbb{Z}$. To je pak ekvivalentno $Mqa_{k+1} - a_{k+1} = m_{k+1}(s_{k+1} - px_0)$, tj. $Mqa_{k+1} \equiv a_{k+1} \pmod{m_{k+1}}$. Još ostaje primijetiti kako iz $Mq + m_{k+1}p = 1$ slijedi $1 - Mq = m_{k+1}p$, tj. $Mq \equiv 1 \pmod{m_{k+1}}$. Stoga iz $Mqa_{k+1} \equiv a_{k+1} \pmod{m_{k+1}}$ slijedi $a_{k+1} \equiv a_{k+1} \pmod{m_{k+1}}$, što je istinito. Dakle y_0 je rješenje zadanog sustava. Pretpostavimo još kako postoji $z_0 \in \mathbb{Z}$ takav da je $z_0 \equiv a_1 \pmod{m_1}, \dots, z_0 \equiv a_{k+1} \pmod{m_{k+1}}$. No, tada je i $z_0 \equiv y_0 \pmod{m_1}, \dots, z_0 \equiv y_0 \pmod{m_{k+1}}$ pa $m_i|z_0 - y_0$ za svaki $i \in \{1, \dots, k+1\}$. To

naravno povlači kako $m_1 \cdots m_{k+1} | z_0 - y_0$, tj. $z_0 \equiv y_0 \pmod{m_1 \cdots m_{k+1}}$. Time je jedinstvenost rješenje modulo $m_1 \cdots m_{k+1}$ dokazana i tvrdnja vrijedi za svaki $k \in \mathbb{Z}$.

Eulerova funkcija

Definicija. Neka je $x \in \mathbb{R}$. Definiramo $\lfloor x \rfloor = \max \{k \in \mathbb{Z} : k \leq x\}$.

Primjedba. Neka je $\frac{n}{m} \in \mathbb{Q}$. Tada je:

$$\left\lfloor \frac{n}{m} \right\rfloor = \max \left\{ k \in \mathbb{Z} : \ k \le \frac{n}{m} \right\}.$$

No, obzirom da je $m \in \mathbb{Z}^+$ (ako i nije, možemo namjestiti da bude; za sada nećemo biti toliko precizni niti ćemo dokazivati postojanje maksimuma i slično), imamo:

$$\left\lfloor \frac{n}{m} \right\rfloor = \max \left\{ k \in \mathbb{Z} : \ km \le n \right\}.$$

Lako se vidi kako je $\left\lfloor \frac{n}{m} \right\rfloor$ jednak koeficijentu k koji daje najveći višekratnik broja m manji od n. Stoga je najveći višekratnik broja m manji od n u stvari $m \left\lfloor \frac{n}{m} \right\rfloor$.

Propozicija. Neka je $m \in \mathbb{Z}^+$. Broj višekratnika od m u skupu $\{1, \ldots, n\}$, gdje je $n \in \mathbb{N}$, je $\left|\frac{n}{m}\right|$.

Dokaz. Neka je $S = \{1, \ldots, n\}$ i $m \in \mathbb{Z}^+$. Višekratnici broja m iz skupa S se tada nalaze u skupu $V = \{km \in S : k \in \mathbb{Z}\}$. Želimo znati |V|. Znamo kako je najveći višekratnik broja m manji od n jednak $v = m \left\lfloor \frac{n}{m} \right\rfloor$. Stoga je max V = v. Ukoliko $m \notin V$, tada je (jer V ne sadrži nulu, tj. $0 \cdot m$), vrijedi $V = \emptyset$ pa je |V| = 0. Ako $m \notin V$, to znači u biti n < m pa je lako uočiti kako je $\left\lfloor \frac{n}{m} \right\rfloor = 0$ (jer je $\frac{n}{m} < 1$ za n < m). Ako m = n, očito je v = 1. No, ako je m > n, sigurno je i $m \in V$ i min $\{V\} = m$. Tada je broj višekratnika u V (ne zaboravimo uključiti i najveći) jednak

$$|V| = \frac{m \left\lfloor \frac{n}{m} \right\rfloor - m}{m} + 1 = \left\lfloor \frac{n}{m} \right\rfloor.$$

Definicija. Neka je zadan skup:

$$\varphi_m = \{ n \in \mathbb{Z}^+ : (\gcd(m, n) = 1) \land (n \le m) \}.$$

Tada je Eulerova funkcija $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ definirana kao $\varphi(m) = |\varphi_m|$.

Teorem (Euler¹). Neka su $a \in \mathbb{Z} - \{0\}$ i $m \in \mathbb{Z}^+ - \{1\}$ takvi da je $\gcd(a, m) = 1$. Tada vrijedi:

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

Dokaz. Neka je $S = \{k \in \mathbb{Z}^+ \cap [1, m-1] : \gcd(a, k) = 1\}$. Očito je kako je $|S| = \varphi(m)$ jer za svaka dva $k_1 \neq k_2$, $k_1, k_2 \in S$, vrijedi $k_1 \neq k_2$ (mod m) (ako bi bili jednaki modulo m, obzirom da su oba manji od m, bilo bi $k_1 = k_2$, što je u suprotnosti s pretpostavkom da su različiti). No, promotrimo sada skup $aS = \{ak \in \mathbb{Z}^+ : k \in S\}$. Svi su elementi u aS različiti modulo m jer, ako to ne bi bilo tako, postojali bi $k_1 \neq k_2$, $k_1, k_2 \in S$, $k \leq \varphi(m)$ takvi da je $ak_1 \equiv ak_2 \pmod{m}$. No, obzirom da je $\gcd(a,m)=1$, po Bezoutovoj lemi postoje $x,y \in \mathbb{Z}^+$ takvi da je ax+my=1, tj. my=1-ax, što implicira $1 \equiv ax \pmod{m}$. Stoga, pomnožimo li $ak_1 \equiv ak_2 \pmod{m}$ dobivamo $axk_1 \equiv axk_2 \pmod{m}$, tj. $k_1 \equiv k_2 \pmod{m}$. No, obzirom da su $k_1, k_2 \in S$, vrijedi $0 < k_1, k_2 < m$, pa mora biti $k_1 = k_2$, što je u suprotnosti s pretpostavkom da su različiti. Stoga vrijedi da su svi elementi u aS različiti modulo m pa je $|aS| = |S| = \varphi(m)$. To znači kako se svi elementi iz S nalaze u aS modulo m i obratno. Dakle, elementi iz S i aS su jednaki modulo m pa su produkti tih elemenata opet jednaki modulo m. Ako je $S = \{a_1, \ldots, a_{\varphi(m)}\}$ imamo:

$$a_1 a_2 \cdots a_{\varphi(m)} \equiv (a a_1)(a a_2) \cdots (a a_{\varphi(m)}) \pmod{m}.$$

Ukoliko preuredimo te elemente s desne strane, dobivamo produkt od $\varphi(m)$ elemenata a, pa je:

$$a_1 a_2 \cdots a_{\varphi(m)} \equiv a^{\varphi(m)} a_1 a_2 \cdots a_{\varphi(m)} \pmod{m}.$$

No, obzirom da je gcd $(a_i, m) = 1$, tada je također gcd (A, m) = 1, gdje je $A = a_1 \cdots a_{\varphi(m)}$. Po Bezoutovoj lemi postoje $p, q \in \mathbb{Z}$ takvi da je Ap + mq = 1, što implicira $Ap \equiv 1 \pmod{m}$. Stoga, pomožimo li obje strane gornje kongruencije s p, dobivamo:

$$1 \equiv a^{\varphi(m)} \pmod{m}.$$

No, to je zbog simetričnosti relacije kongruencije isto što i $a^{\varphi(m)} \equiv 1 \pmod{m}$, što je i trebalo dokazati.

¹Ovaj teorem sam dokazao pomoću teorije grupa u svojoj skripti *Abstract Algebra*. Dokaz je, uz poznavanje teorije grupa, vrlo izravan i očigledan.

Lema. Neka je $p \in P$ te $m, n \in \mathbb{Z}^+$. Tada, $\gcd(p^m, n) = 1$ ako i samo ako $\gcd(p, n) = 1$.

Dokaz. Nužnost. Neka je gcd $(p^m, n) = 1$. Tada postoje $x, y \in \mathbb{Z}$ takvi da je $p^m x + ny = 1$. Iz toga dobivamo $p(p^{m-1}x) + ny = 1$. Pretpostavimo li da gcd (p, n) = g i $g \neq 1$, tada je p = p'g i n = n'g. No iz toga slijedi, obzirom da je p prost i $g \neq 1$, kako je g = p pa je n = n'p. Stoga imamo $p(p^{m-1}x) + n'py = 1$. Tada je $p(p^{m-1}x + n'y) = 1$ i mora biti p = 1, što je nemoguće jer $1 \notin P$. Dakle, gcd (p, n) = 1. Dovoljnost. Neka je gcd (p, n) = 1. Pretpostavimo li kako je gcd $(p^m, n) = g$, gdje je $g \neq 1$, tada $g|p^m$ i g|n. Iz $g|p^m$, po Euklidovoj lemi, slijedi kako je $g = p^k$, gdje je $1 < k \leq m$. Iz toga bi slijedilo kako $p^k|n$ i da postoji $n' \in \mathbb{Z}$ takav da je $n = n'p^k$, tj. $n = p(n'p^{k-1})$. Stoga p|n. No, kako i p|p slijedi gcd (p, n) = p, što je u suprotnosti s pretpostavkom.

Teorem. Vrijedi $\varphi(p^m) = p^{m-1}(p-1)$, za svaki $p \in P$ i $m \in \mathbb{Z}^+$.

Dokaz. Promotrimo skup:

$$\varphi_{p^m} = \{ n \in \mathbb{Z}^+ : (\gcd(p^m, n) = 1) \land (n \le p^m) \}.$$

Po prethodnoj lemi, $gcd(p^m, n) = 1$ ako i samo ako gcd(p, n) = 1. Stoga prethodni skup zapisati na ekvivalentan način:

$$\varphi_{p^m} = \{ n \in \mathbb{Z}^+ : (\gcd(p, n) = 1) \land (n \le p^m) \}.$$

Skup φ_{p^m} ne sadrži samo višekratnike broja p manje od p^m (i veće od 1). Po prethodnoj propoziciji, broj višekratnika u $\{1,\ldots,p^m\}$ je $\left\lfloor \frac{p^m}{p} \right\rfloor = \lfloor p^{m-1} \rfloor$. No, jer je $m \geq 1$, tada je $p^{m-1} \in \mathbb{Z}^+$ pa mora biti $\lfloor p^{m-1} \rfloor = p^{m-1}$. Kako skup $\{1,\ldots,p^m\}$ sadrži p^m članova, broj članova u tom skupu koji nisu višekratnici broja p je $p^m - p^{m-1}$. Dakle,

$$|\varphi_{p^m}| = p^m - p^{m-1} = p^{m-1}(p-1).$$

Dakle, $\varphi(p^{m}) = p^{m-1}(p-1)$.

Primjedba. Primijetimo da zbog ovog svojstva, multiplikativnosti Eulerove funkcije (tj. $\varphi(mn) = \varphi(m)\varphi(n)$ ako i samo ako gcd (m,n) = 1; dokaz ću ostaviti za svoje spise iz algebre) i fundamentalnog teorema aritmetike, Eulerovu funkciju možemo računati kao:

$$\varphi(n) = \varphi\left(\prod_{\substack{p \in P \\ \alpha(p) \ge 1}} p^{\alpha(p)}\right) = \prod_{\substack{p \in P \\ \alpha(p) \ge 1}} \varphi\left(p^{\alpha(p)}\right) = \prod_{\substack{p \in P \\ \alpha(p) \ge 1}} \left(p^{\alpha(p)-1}(p-1)\right).$$

Propozicija. Neka su $m, n \in \mathbb{Z}^+$. Ako n|m tada $\varphi(n)|\varphi(m)$.

Dokaz. Zapišimo kvocijent brojeva m i n po fundamentalnom teoremu aritmetike kao:

$$\frac{m}{n} = \frac{\prod_{\substack{p \in P \\ \alpha(p) \ge 1}} p^{\alpha(p)}}{\prod_{\substack{p \in P \\ \beta(p) > 1}} p^{\beta(p)}}.$$

Slično, možemo promotriti i kvocijent:

$$\frac{\varphi(m)}{\varphi(n)} = \frac{\prod_{\substack{p \in P \\ \alpha(p) \ge 1}} p^{\alpha(p)-1}(p-1)}{\prod_{\substack{p \in P \\ \beta(p) \ge 1}} p^{\beta(p)-1}(p-1)}.$$

Obzirom da n|m, tada za svaki $p \in P$ vrijedi $\alpha(p) - \beta(p) \geq 0$. Također, $\alpha(p) - 1 - (\beta(p) - 1) = \alpha(p) - \beta(p) \geq 0$. Članovi (p - 1) se također pokrate uz odgovarajuće $p \in P$, pa je $\frac{\varphi(m)}{\varphi(n)} = q$, gdje je $q \in \mathbb{Z}^+$. Iz toga slijedi $\varphi(m) = q\varphi(n)$, tj. $\varphi(n)|\varphi(m)$.

Primitivni korijen

Definicija. Neka je $m \in \mathbb{Z}^+ - \{1\}$ i $g \in \mathbb{Z}$, $\gcd(g, m) = 1$. Ako za svaki $a \in \mathbb{Z}$, gdje je $\gcd(a, m) = 1$, postoji $k \in \mathbb{Z}$ takav da vrijedi $g^k \equiv a \pmod{m}$, kažemo da je g primitivan korijen modulo m.

Primjedba. Kroz teoriju grupa, mogli bismo reći kako je primitivan korijen generator grupe $(\mathbb{Z}/m\mathbb{Z})^*$, tj. $g \in \mathbb{Z}/m\mathbb{Z}$ takav da vrijedi $\langle g \rangle = (\mathbb{Z}/m\mathbb{Z})^*$ (gdje $\langle g \rangle$ označava cikličku grupu generiranu elementom g, a ne principalan ideal polja $\mathbb{Z}/m\mathbb{Z}$ generiran elementom g).

Definicija. Neka je $m \in \mathbb{Z}^+ - \{1\}$. **Redom elementa** $a \in \mathbb{Z}$ nazivamo nenegativan broj $n = \min \{k \in \mathbb{Z}^+ : a^k \equiv 1 \pmod{m}\}$ i pišemo $\operatorname{ord}_m(a) = n$. Ukoliko takav broj ne postoji pišemo $\operatorname{ord}_m(a) = 0$ i kažemo kako je element a beskonačnog reda.

Propozicija. Neka je $m \in \mathbb{Z}^+ - \{1\}$. Tada, ord_m (a) > 0 ako i samo ako gcd (a, m) = 1.

Dokaz. Nužnost. Neka je ord_m (a) > 0. Tada je ord_m $(a) \neq 0$ i postoji $k \in \mathbb{Z}^+$ takav da je $a^k \equiv 1 \pmod{m}$. Po definiciji relacije kongruencije, postoji $q \in \mathbb{Z}$ takav da je $a^k - 1 = qm$. Pretpostavimo kako je gcd (a, m) = g > 1. Tada a = bg i m = ng, za neke $b, n \in \mathbb{Z}$. Iz $a^k - 1 = qm$ dobivamo $(bg)^k - 1 = q(ng)$. To je pak ekvivalentno izrazu $b^k g^k - 1 = qng$, tj. $g(g^{k-1}b^k - qn) = 1$. Obzirom da je $g \in \mathbb{Z}^+$ i $g^{k-1}b^k - qn \in \mathbb{Z}$, može samo biti g = 1, što je u kontradikciji s pretpostavkom da je gcd (a, m) > 1 i mora biti gcd (a, m) = 1. Dovoljnost. Pretpostavimo kako je gcd (a, m) = 1. Po Eulerovom teoremu, $a^{\varphi(m)} \equiv 1 \pmod{m}$. Kako je $\varphi(m) > 0$, za svaki $m \in \mathbb{Z}^+$, postoji barem jedan element skupa min $\{k \in \mathbb{Z}^+ : a^k \equiv 1 \pmod{m}\}$, pa red elementa a ne može biti nula. Stoga, ord_m (a) > 0.

Teorem. Neka je $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$. Ako je $a^k \equiv 1 \pmod{m}$, za neki $k \in \mathbb{Z}$, tada ord_m $(a) \mid k$.

Dokaz. Pretpostavimo kako je $a^k \cong 1 \pmod{m}$, gdje je $k \in \mathbb{Z}$. Po teoremu o dijeljenju s ostatkom postoje $q, r \in \mathbb{Z}$ takvi da je $k = q \operatorname{ord}_m(a) + r$, gdje je $0 \leq r < \operatorname{ord}_m(a)$. Tada je $a^k = a^{q \operatorname{ord}_m(a) + r} = a^{q \operatorname{ord}_m(a)} a^r = \left(a^{\operatorname{ord}_m(a)}\right)^q a^r$. Kako je $a^k \equiv 1 \pmod{m}$, tada je $\left(a^{\operatorname{ord}_m(a)}\right)^q a^r \equiv 1 \pmod{m}$. Također, obzirom da je $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$, imamo $1^q a^r \equiv 1 \pmod{m}$, tj. $a^r \equiv 1 \pmod{m}$. No, obzirom da je $0 \leq r < \operatorname{ord}_m(a)$, a ordm (a) je po definiciji najmanji takav broj da je $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$, mora biti r = 0. Tada iz $k = q \operatorname{ord}_m(a) + r$ slijedi $k = q \operatorname{ord}_m(a)$, tj. ordm (a) $k = q \operatorname{ord}_m(a) + r$ slijedi $k = q \operatorname{ord}_m(a)$, tj. ordm (b) $k = q \operatorname{ord}_m(a)$.

Korolar. Neka su $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$ takvi da je $\gcd(a, m) = 1$. Tada $\operatorname{ord}_m(a) | \varphi(m)$.

Dokaz. Kako je $\gcd(a, m) = 1$, po Eulerovom teoremu vrijedi $a^{\varphi(m)} \equiv 1 \pmod{m}$. Po prethodnom teoremu tada $\operatorname{ord}_m(a) | \varphi(m)$.

Teorem. Neka je $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$ takvi da je $\gcd(a, m) = 1$. Tada, $\operatorname{ord}_m(a) = \varphi(m)$ ako i samo ako za svaki $p \in P$ takav da $p|\varphi(m)$ vrijedi:

$$a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m}$$
.

Dokaz. Nužnost. Pretpostavimo kako je ord_m $(a) = \varphi(m)$, ali kako postoji $p \in P$ takav da $p|\varphi(m)$ i $a^{\frac{\varphi(m)}{p}} \equiv 1 \pmod{m}$. Obzirom da je $\frac{\varphi(m)}{p} \in \mathbb{Z}^+$ i kako je $\frac{phi(m)}{p} < \varphi(m) = \operatorname{ord}_m(a)$, dolazimo u kontradikciju s činjenicom da je $\varphi(m)$ red od a. Stoga mora biti $a^{\frac{\varphi m}{p}} \not\equiv 1 \pmod{m}$, za svaki $p \in P$ takav da $p|\varphi(m)$.

Dovoljnost. Pretpostavimo da je $a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m}$ za svaki $p \in P$ takav da $p|\varphi(m)$. Po korolaru prethodnog teorema, jer je $\gcd(a,m)=1$, slijedi $\operatorname{ord}_m(a)|\varphi(m)$, tj. postoji $q \in \mathbb{Z}$ takav da je $\varphi(m)=\operatorname{qord}_m(a)$. Ako je q=1, tada je $\varphi(m)=\operatorname{ord}_m(a)$ pa smo gotovi. Ako je q>1, tada $q|\varphi(m)$ pa postoji $p\in P$ takav da p|q i $p|\varphi(m)$. Stoga imamo:

$$a^{\frac{\varphi(m)}{p}} = a^{\frac{q \operatorname{ord}_m(a)}{p}}.$$

Obzirom da p|q, možemo to preslagati tako da bude:

$$a^{\frac{\varphi(m)}{p}} = \left(a^{\operatorname{ord}_m(a)}\right)^{\frac{q}{p}}.$$

Kako je $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$, tada je $\left(a^{\operatorname{ord}_m(a)}\right)^{\frac{q}{p}} \equiv 1^{\frac{q}{p}} \pmod{m} \equiv 1 \pmod{m}$ te dobivamo:

$$a^{\frac{\varphi(m)}{p}} = \left(a^{\operatorname{ord}_m(a)}\right)^{\frac{q}{p}} \equiv 1 \pmod{m}.$$

Iz toga naravno slijedi $a^{\frac{\varphi(m)}{p}} \equiv 1 \pmod{m}$, što je u suprotnosti s pretpostavkom da za svaki $p \in P$ takav da $p|\varphi(m)$ vrijedi $a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{p}$. Dakle, mora biti q = 1 pa opet dobivamo ord_m $(a) = \varphi(m)$.

Korolar. Neka su $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$ takvi da je $\gcd(a, m) = 1$. Tada, $\operatorname{ord}_m(a) = \varphi(m)$ ako i samo ako je a primitivni korijen modulo m.

Dokaz. Nužnost. Neka je ord_m $(a) = \varphi(m)$. Prisjetimo se kako je $(\mathbb{Z}/m\mathbb{Z})^*$ grupa s $\varphi(m)$ elemenata. Obzirom da je $\gcd(a,m) = 1$, vrijedi $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^*$. Tada je $\overline{a}^{\operatorname{ord}_m(a)} = \overline{1}$, jer je $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$. To znači kako ord $(\overline{a}) \mid \operatorname{ord}_m(a)$. No, također, $\overline{a}^{\operatorname{ord}(\overline{a})} = \overline{1}$ što implicira $a^{\operatorname{ord}(\overline{a})} \equiv 1 \pmod{m}$ pa vrijedi $\operatorname{ord}_m(a) \mid \operatorname{ord}(\overline{a})$ i na kraju ord $(\overline{a}) = \operatorname{ord}_m(a) = \varphi(m)$. Stoga, uzmemo li $\langle \overline{a} \rangle \leq (\mathbb{Z}/m\mathbb{Z})^*$, vrijedi $|\langle \overline{a} \rangle| = \varphi(m)$. Zbog prethodne dvije jednakosti, i jer su $\langle a \rangle$ i $(\mathbb{Z}/m\mathbb{Z})^*$ konačni skupovi, slijedi $\langle \overline{a} \rangle = (\mathbb{Z}/m\mathbb{Z})^*$. Uzmimo $b \in \mathbb{Z}$, $\gcd(b,m) = 1$ i pokažimo kako postoji $k \in \mathbb{Z}$ takav da je $a^k \equiv b \pmod{m}$. Kako je $\gcd(b,m) = 1$, vrijedi $\overline{b} \in (\mathbb{Z}/m\mathbb{Z})^*$ pa je i $\overline{b} \in \langle \overline{a} \rangle$. To znači kako postoji $k \in \mathbb{Z}$ takav da je $\overline{a}^k = \overline{b}$, drugim riječima $a^k \equiv b \pmod{m}$. Dakle a je primitivni korijen modulo m.

Dovoljnost. Neka je a primitivni korijen modulo m. Tada je $\overline{a} \in (\mathbb{Z}/m\mathbb{Z})^*$. Uzmimo $\langle \overline{a} \rangle \leq (\mathbb{Z}/m\mathbb{Z})^*$. Pretpostavimo kako postoji $\overline{b} \in (\mathbb{Z}/m\mathbb{Z})^* - \langle a \rangle$. To bi značilo kako ne postoji $k \in \mathbb{Z}$ takav da vrijedi $\overline{b} = \overline{a}^k$, tj. $a^k \equiv b \pmod{m}$, što je u suprotnosti s pretpostavkom da je a primitivni korijen modulo m. To znači da je $\langle \overline{a} \rangle = (\mathbb{Z}/m\mathbb{Z})^*$. No, to povlači i $|\langle \overline{a} \rangle| = |(\mathbb{Z}/m\mathbb{Z})^*| = \varphi(m)$, a također i ord $(\overline{a}) = \varphi(m)$. Kako je $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$, to znači da je $\overline{a}^{\operatorname{ord}_m(a)} = \overline{1}$, pa slijedi da ord $(\overline{a}) | \operatorname{ord}_m(a)$, tj. $\varphi(m) | \operatorname{ord}_m(a)$. No, po prethodnoj propoziciji imamo $\operatorname{ord}_m(a) | \varphi(m)$, pa to implicira $\operatorname{ord}_m(a) = \varphi(m)$.

Primjedba. Prethodni teorem uz korolar govori također kako je a primitivni korijen modulo m ako i samo ako za svaki $p \in P$ takav da $p|\varphi(m)$ vrijedi $a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod m$. Ovu činjenicu koristimo za provjeru je li a primitivni korijen modulo m.

Teorem. Neka su $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$ takvi da je $\gcd(a, m) = 1$. Neka je $k \in \mathbb{Z}^+$. Tada vrijedi:

$$\operatorname{ord}_{m}\left(a^{k}\right) = \frac{\operatorname{ord}_{m}\left(a\right)}{\gcd\left(\operatorname{ord}_{m}\left(a\right),k\right)}.$$

Dokaz. Kako je $(a^k)^{\operatorname{ord}_m(a^k)} \equiv 1 \pmod m$, vrijedi $(a^k)^{\operatorname{ord}_m(a^k)} = a^{k\operatorname{ord}_m(a^k)} \equiv 1 \pmod m$. Stoga po prethodnom teoremu $\operatorname{ord}_m(a) | k\operatorname{ord}_m(a^k)$ pa postoji $q \in \mathbb{Z}$ takav da je $k\operatorname{ord}_m(a^k) = q\operatorname{ord}_m(a)$. Neka je $g = \gcd(\operatorname{ord}_m(a), k)$. Tada je k = k'g i $\operatorname{ord}_m(a) = o'g$. Tada iz $k\operatorname{ord}_m(a^k) = q\operatorname{ord}_m(a)$ dobivamo $k'g\operatorname{ord}_m(a^k) = qo'g$, tj. $k'\operatorname{ord}_m(a^k) = qo'$. Kako je $\gcd(k', o') = 1$, i kako $o' | k'\operatorname{ord}_m(a^k)$, po Euklidovoj lemi mora biti $o' | \operatorname{ord}_m(a^k)$. Dalje, $(a^k)^{o'} = a^{ko'} = a^{k'o'g} = a^{k'\operatorname{ord}_m(a)} \equiv 1 \pmod m$. Po

prethodnom teoremu, ord_m (a^k) | o'. To, uz o'|ord_m (a^k) , implicira ord_m $(a^k) = o'$. Iz ord_m (a) = o'g vidimo kako je ord_m $(a^k) = o' = \frac{\text{ord}_m(a)}{g}$.

Lema. Neka su $m\in\mathbb{Z}^+-\{1\}$ i $a\in\mathbb{Z}$ takvi da je $\gcd{(a,m)}=1.$ Ako je

$$a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m},$$

za neki $p \in P$ takav da $p|\varphi(m)$, tada je

$$a^{\frac{\varphi(m)}{p^k}} \not\equiv 1 \pmod{m},$$

za svaki $k \in \mathbb{Z}^+$ takav da $p^k | \varphi(m)$.

Dokaz. Pretpostavimo kako je:

$$a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m},$$

ali da za neki $p^k|\varphi(m)$ vrijedi:

$$a^{\frac{\varphi(m)}{p^k}} \equiv 1 \pmod{m}.$$

Primijetimo kako je $k \geq 1$, pa je $k-1 \geq 0$. Tada imamo:

$$\left(a^{\frac{\varphi(m)}{p^k}}\right)^{p^{k-1}} \equiv 1 \pmod{m}.$$

No, to je u kontradikciji s

$$\left(a^{\frac{\varphi(m)}{p^k}}\right)^{p^{k-1}} = a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m},$$

pa naša pretpostavka nije bila valjana.

Teorem. Neka su $m \in \mathbb{Z}^+ - \{1\}$ i $a \in \mathbb{Z}$ takvi da je gcd (a,m) = 1. Ako je

$$a^{\frac{\varphi(m)}{p}} \not\equiv 1 \pmod{m},$$

za neki $p \in P$ takav da $p|\varphi(m)$, tada je

$$\operatorname{ord}_m\left(a^{\frac{\varphi(m)}{p^{\alpha}}}\right) = p^{\alpha}.$$

Dokaz. Neka je po fundamentalnom teoremu aritmetike $\varphi(m) = \prod_{i=1}^n p_i^{\alpha_i}$. Uzmimo $p = p_1$ i $\alpha = \alpha_1$. Tada $\operatorname{ord}_m(a) | \varphi(m)$ pa je $\operatorname{ord}_m(a) = p_1^{\beta_1} \cdots p_n^{\beta_n}$. Vidimo kako je:

$$\operatorname{ord}_{m}\left(a^{\frac{\varphi(m)}{p^{\alpha_{1}}}}\right) = \frac{p_{1}^{\beta_{1}} \cdots p_{n}^{\beta_{n}}}{p_{2}^{m_{2}} \cdots p_{n}^{m_{n}}},$$

gdje je $m_i = \min \{\alpha_i, \beta_i\}$. Ako je $m_i = \alpha_i$ tada je $\alpha_1 \leq \beta_1$ pa ne može biti $p^{\beta_1}|p^{\alpha_1}$. Dakle, mora biti $m_i = \beta_i$. Stoga je:

$$\operatorname{ord}_m\left(a^{\frac{\varphi(m)}{p^{\alpha_1}}}\right) = \frac{p_1^{\beta_1} \cdots p_n^{\beta_n}}{p_2^{\beta_2} \cdots p_n^{\beta_n}} = p_1^{\beta_1}.$$

Pretpostavimo kako je $\beta_1 < \alpha_1$. Tada je:

$$\left(a^{\frac{\varphi(m)}{p^{\alpha_1}}}\right)^{p_1^{\beta}} = a^{\frac{\varphi(m)}{p^{\alpha_1-\beta_1}}} \equiv 1 \pmod{m}.$$

Po prethodnoj lemi, obzirom da je $\alpha_1-\beta_1>0$ i jer je

$$a^{\frac{\varphi(m)}{p_1}} \not\equiv 1 \pmod{m},$$

slijedi kako je:

$$a^{\frac{\varphi(m)}{p^{\alpha_1-\beta_1}}} \not\equiv 1 \pmod{m}.$$

Dakle, ne može biti $\beta_1 < \alpha_1$ pa mora biti $\beta_1 \ge \alpha_1$, što uz $\beta_1 \le \alpha_1$ daje $\beta_1 = \alpha_1$. Stoga je:

$$\operatorname{ord}_m\left(a^{\frac{\varphi(m)}{p^{\alpha_1}}}\right) = p_1^{\alpha_1}.$$

Primjedba. Gornji teorem je osnova postupka za pronalaženje primitivnih korijena modulo m. No, ostaje još pitanje postoji li primitivan korijen modulo m, za svaki $m \in \mathbb{Z}^+ - \{1\}$ te, ukoliko postoji, koliko ih postoji? Ukoliko m nije prost broj, primitivni

korijeni modulo m ne moraju nužno postojati. No, ako je m prost broj, postojat će, i o tome, kao i o njihovom broju, govorit će sljedeći teorem.

Lema. Neka je $m \in \mathbb{Z}^+ - \{1\}$ i neka su $a, b \in \mathbb{Z}$ takvi da je gcd $\{\operatorname{ord}_m(a), \operatorname{ord}_m(b)\} = 1$. Tada vrijedi $\operatorname{ord}_m(ab) = \operatorname{ord}_m(a) \operatorname{ord}_m(b)$.

Dokaz. Uzmimo $\operatorname{ord}_m(a) = p$ i $\operatorname{ord}_m(b) = q$. Također, neka je $l = \operatorname{lcm}(p,q) = pq$. Tada je $(ab)^l = a^l b^l = a^{pq} b^{pq} = (a^p)^q (b^q)^p \equiv 1 \pmod{p}$, jer su p i q redovi elemenata a i b, istim redoslijedom. To povlači kako $\operatorname{ord}_m(ab) | l$, tj. postoji $t \in \mathbb{Z}$ takav da je $l = \operatorname{tord}_m(ab)$. Iz toga dobivamo $\operatorname{ord}_m(ab) = \frac{pq}{t}$. Neka je $t_1 = \gcd(t,p)$. Tada $t_1 | t$ pa postoji $t_2 \in \mathbb{Z}$ takav da je $t = t_1 t_2$. Kako je $\operatorname{ord}_m(ab) \in \mathbb{Z}$, tada je $\frac{p}{t_1} \in \mathbb{Z}$ i $\frac{q}{t_2} \in \mathbb{Z}$. Pretpostavimo da je $\gcd(t_1, t_2) = t'$. Tada je $t_1 = t's_1$ i $t_2 = t's_2$. To bi impliciralo, jer $t_1 | p$ i $t_2 | q$, da t' | p i t' | q, što je u suprotnosti s pretpostavkom da su p i q relativno prosti. Dakle, $\gcd(t_1, t_2) = 1$. Tada imamo:

$$(ab)^{\frac{pq}{t_1t_2}} \equiv 1 \pmod{p}.$$

No, također vrijedi i:

$$(ab)^{t_1 \frac{pq}{t_1 t_2}} \equiv 1 \pmod{p},$$

$$(ab)^{t_2 \frac{pq}{t_1 t_2}} \equiv 1 \pmod{p}.$$

Iz tih kongruencija, istim redoslijedom, dobivamo:

$$a^{p\frac{q}{t_2}}b^{p\frac{q}{t_2}} \equiv 1 \pmod{p},$$

$$a^{q\frac{p}{t_1}}b^{q\frac{p}{t_1}} \equiv 1 \pmod{p}.$$

No, kako je p red od a, a q red od b, te dvije kongruencije možemo, istim redoslijedom zapisati kao:

$$b^{p\frac{q}{t_2}} \equiv 1 \pmod{p},$$

$$a^{q\frac{p}{t_1}} \equiv 1 \pmod{p}.$$

No, to znači kako $q|p\frac{q}{t_2}$ i $p|q\frac{p}{t_1}$. Po Euklidovoj lemi, zbog gcd (p,q)=1, i jer je $\frac{q}{t_2}, \frac{p}{t_1} \in \mathbb{Z}$, imamo $q|\frac{q}{t_2}$ i $p|\frac{p}{t_1}$, tj. postoje $r_1, r_2 \in \mathbb{Z}$ takvi da je $\frac{q}{t_2} = r_1 q$ i $\frac{p}{t_1} = r_2 p$. To implicira $r_1 t_2 = 1$ i $t_1 r_2 = 1$, što je moguće samo ako je $r_1 = t_2 = r_2 = t_1 = 1$. Dakle, ord_m $(ab) = \frac{pq}{t} = \frac{pq}{t_1 t_2} = pq = \operatorname{ord}_m(a) \operatorname{ord}_m(b)$.

Teorem. Neka je $p \in P$. Tada je $(\mathbb{Z}/p\mathbb{Z})^*$ ciklička grupa².

Dokaz. Neka su $\{p_1, \dots, p_m\} \subset P$ djelitelji od $\varphi(p) = p-1$. Neka je $p_i \in \{p_1, \dots, p_m\}$. Pretpostavimo kako ne postoji element $a \in \mathbb{Z}$, gcd (a, p) = 1, takav da je:

$$a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}.$$

Tada, za svaki $a \in \mathbb{Z}$ vrijedi:

$$a^{\frac{p-1}{p_i}} \equiv 1 \pmod{p}.$$

No, obzirom da je $(\mathbb{Z}/p\mathbb{Z})^*$ polje, možemo uzeti $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^*$ i tada bi

$$a^{\frac{p-1}{p_i}} \equiv 1 \pmod{p}$$

bilo ekvivalentno upravo

$$\overline{a}^{\frac{p-1}{p_i}} - \overline{1} = \overline{0}.$$

To implicira kako je svaki $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^*$ korijen polinoma:

$$p(x) = x^{\frac{p-1}{p_i}} - \overline{1}.$$

No, kako je $|(\mathbb{Z}/p\mathbb{Z})^*| = p-1$, to bi značilo da p(x) ima p-1 korijena, što je nemoguće jer je deg $p(x) = \frac{p-1}{p_i} < p-1$. Dakle, mora postojati $\overline{a_i} \in (\mathbb{Z}/p\mathbb{Z})^*$ takav da vrijedi:

$$\overline{a_i}^{\frac{p-1}{p}} \neq \overline{1}$$

što je ekvivalentno izrazu:

Obzirom da je ciklička, postoji element $\overline{g} \in (\mathbb{Z}/p\mathbb{Z})^*$ takav da je $\langle \overline{g} \rangle = (\mathbb{Z}/p\mathbb{Z})^*$, tj. za svaki $\overline{a} \in (\mathbb{Z}/p\mathbb{Z})^*$ postoji $k \in \mathbb{Z}$ takav da je $\overline{g}^k = \overline{a}$, tj. $g^k \equiv a \pmod{p}$.

$$a_i^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}.$$

Po prethodnom teoremu je tada:

$$\operatorname{ord}_p\left(a_i^{\frac{p-1}{p_i^{\alpha}}}\right) = p_i^{\alpha},$$

gdje je $\alpha = \max\{k \in \mathbb{Z} : p_i^k | p-1\}$. Obzirom da je izbor p_i bio arbitraran, za svaki p_i postoji a_i čiji je red jednak najvećoj potenciji p_i koja dijeli p-1. Po prethodnoj lemi, jer je gcd $\left(p_i^{\alpha_i}, p_j^{\alpha_j}\right) = 1$, za svaki $i \neq j, i, j \in \{1, \ldots, m\}$, vrijedi:

$$\operatorname{ord}_p(a_1 \cdots a_m) = p^{\alpha_1} \cdots p^{\alpha_m} = p - 1.$$

Korolar. Neka je $p \in P$. Tada, za svaki $d \in \mathbb{Z}$ takav da d|p-1 postoji $a \in \mathbb{Z}$ takav da je ord_p (a) = d.

Dokaz. Po prethodnom teoremu, postoji $a \in \mathbb{Z}$ takav da je ord $_p(a) = p - 1$. Kako d|p-1, postoji $q \in \mathbb{Z}$ takav da je p-1 = qd. Primijetimo kako je, jer q|p-1, tada $\gcd(p-1,q) = q$. Po formuli za red potencije elementa a imamo:

$$\operatorname{ord}_{p}(a^{q}) = \frac{p-1}{\gcd(p-1,q)} = \frac{p-1}{q} = d.$$

Korolar. Neka je $p \in P$. Tada, za svaki $d \in \mathbb{Z}$ takav da d|p-1, postoji $\varphi(d)$ elemenata, nekongruentnih p, reda d modulo p.

Dokaz. Po prethodnom korolaru, postoji $a \in \mathbb{Z}$ takav da je ord $_p(a) = d$. Promotrimo skup $C(a) = \{a^k : k \in \{0, \dots, d-1\}\}$. Pretpostavimo kako je $a^i \equiv a^j \pmod p$, za neki $i \neq j, i, j \in \{0, \dots, d-1\}$. Bez smanjenja općenitosti pretpostavimo i > j. Obzirom da je $0 \leq i, j < d$, tada je $0 \leq i - j < d = \operatorname{ord}_p(a)$. Tada iz $a^i \equiv a^j \pmod p$ slijedi $a^{i-j} \equiv 1 \pmod p$. No, to bi značilo kako $\operatorname{ord}_p(a) \mid i-j$, tj. postoji $q \in \mathbb{Z}$ takav da je $i-j=q\operatorname{ord}_p(a) < \operatorname{ord}_p(a)$. Kako je $\operatorname{ord}_p(a) > 0$ dobivamo i-j=q < 1, što je moguće, obzirom da je $i-j \in \mathbb{Z}_0^+$, samo ako je i-j=0. No iz toga bi slijedilo i=j, što je u suprotnosti s pretpostavkom da je $i \neq j$. Dakle, svi elementi u C(a) su nekongruentni modulo p i ima ih upravo d. Po prethodnoj formuli imamo:

$$\operatorname{ord}_{p}\left(a^{k}\right) = \frac{\operatorname{ord}_{p}\left(a\right)}{\gcd\left(\operatorname{ord}_{p}\left(a\right),k\right)}.$$

Lako je vidjeti kako će biti $\operatorname{ord}_p(a^k) = \operatorname{ord}_p(a) (=d)$ ako i samo ako je:

$$\gcd\left(\operatorname{ord}_{p}\left(a\right),k\right)=1,$$

tj. $\gcd(d,k)=1$. Takvih elemenata nekongruentno p (koji se nalaze u C(a)) ima upravo, najmanje, $\varphi(d)$ (očigledno iz same definicije Eulerove funkcije). No, postoji li mogućnost da postoji neki element reda d modulo p a da nije u C(a)? Promotrimo jednadžbu $x^d-1\equiv 0\pmod{p}$. Očito je kako $(a^k)^d\equiv 1\pmod{p}$ (jer je ord $_p(a)=d$, pa je $(a^d)^k\equiv 1\pmod{p}$). Dakle, svi elementi iz C(a) su rješenja kongruencije $x^d-1\equiv 0\pmod{p}$. No, obzirom da se i dalje radi o polju $\mathbb{Z}/p\mathbb{Z}$, polinom $x^d-\overline{1}$ takvih rješenja može imati najviše d. Stoga, sva su rješenja u C(a) i ne mogu biti u nijednom drugom skupu. To implicira kako je broj elemenata reda d modulo p točno $\varphi(d)$.