

质量工具

帕累托图,用于识别造成大多数问题的少数重要原因。

因果图, 又称鱼骨图或石川图。问题陈述放在鱼骨的头部, 作为起点, 用来追溯问题来源, 回推到可行动的根本原因。

控制图,用来确定一个过程是否稳定,或者是否具有可预测的绩效。如果(1)某个数据点超出控制界限,或(2)连续7个点落在均值上方,或(3)连续7个点落在均值下方,就认为过程已经失控。

直方图,用于描述集中趋势、分散程度和统计分布形状。与控制图不同,直方图不考虑时间对分布内的变化的影响。

图C 负相关性

散点图, 又称相关图, 解释因变量相对于自变量的变化。

图D 不相关性

流程图,也称过程图(SPIOC模型),用来显示在一个或多个输入转化成一个或多个输出的过程中,所需要的步骤顺序和可能分支。流程图可能有助于了解和估算一个过程的质量成本。 SIPOC模型是一代质量大师戴明提出来的组织系统模型,是一门最有用而且最常用的,用于流程管理和改进的技术。是过程管理和改进的常用技术,作为识别核心过程的首选方法。

SIPOC - 最宏观的流程图 供应商输入流程 输出 输入

S _{供应商}	/ ₁₉₀ 2	P _{流程}		O輸出s	C _{≅P}	
提供所需资源的供应者	过程需要的资源	对于输入的流程要求	活动的宏观描述	漁程的可交付結果	春户对于输出的要 求	接受流程交付结果的对象
		į:				

SIPOC是一个定义流程范围的工具,它提供了对业务或工业流程的宏观定义

类别	结果	频率
属性-1		
属性-2		
属性-n		