Operave 1:	X har hype	- cennetrisk	ordeling	ellers	an Au	ne tew	. ut	4			
7 00	fisk os lesser	de til boke	da for	øket e	r Over						
Oppsove 2:	Y har bionomi										
	fisk for so a		tilbaki	e, 05	forsoke	l har					
	bore to mulige	ut fall.									
Oppscue 3:	(10) = 210										
Oppsone J.	(4) - 210										
	$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$										
			C								
	$\binom{10}{4} = \frac{10!}{4! \cdot (10-4)!} = \frac{10!}{10!}$	1! 6! = 10.9.8.7 = 4!	5040 =	210							
	$P(X=0) = \frac{\binom{M}{X}\binom{N}{M}}{\binom{M}{M}}$	-M) (4) (10-4)	1 · 15	(5							
Oppsave 4:	$P(x=0) = \frac{1}{2} (x)$	= (10)	210	210 = (3,07						
	4!	$\frac{u!}{-0!} = \frac{u!}{4!} = 1$			_						
	$\binom{4}{5} = 0! \cdot \binom{4}{5}$	$\frac{-0!}{0!} = \frac{6.5 \cdot 4 \cdot 3 \cdot 2!}{4! \cdot 2!} = \frac{30}{2!}$	56 - 15								
	(4) = 2(0	Callarde utregnet	i opps. 5)								
	P(Y=0) = (") p"	'l- 2 ^{n-y} = (!\ 2.º (!	1-04)								
	$\rho = \frac{M}{N} = \frac{4}{10} = 0.4$										
	P 10 10 91	= 0,6									
	(4) (10-4)	4! 6! 3! (6-3)!	1: · 3. · 3	5.4.3t 1.3t	1 · 20						
Oppsave S:	$P(x=1) = \frac{\binom{n}{2}\binom{n-n}{2}}{\binom{n}{2}} = \frac{n}{2}$	210	210	= {	210 -	0,38					
							-				
Oppsave 6:	P(Y=1) = (1).0,41.($(-0,4)^{-1} = 1! \cdot (1-1)! \cdot (1-1)!$	0,6 • (0,6)							
		= 1.1 0,4	1 · 1								
		= 1 · 0,4 ·	1								
		-0,40									
Oppsave 7:	$P(\chi = 1) = \frac{\binom{H_0}{1}\binom{100-40}{4-1}}{\binom{100}{4}}$	40.34220 = 2921226 = 17 36									
Oppsave J			=								
	(40) = 40! 11 · (40 ·1)!	10.39! = 40 = 40									
	$\binom{60}{3} = \frac{60}{3! \cdot (60 - 3)!} =$	(60 94 95 - 524) 3! · \$7+ = 205 320 100. 99. 99. 99. 96! = 94 109 4 14! · 96! = 24	34 220								
	$\binom{100}{4} = \frac{100!}{4! \cdot (100-4)!}$	100.99.98.97.96! = 94 109 4 4! .96! = 24	+00 = 3 92	1 225							

forteling. It homendus. Vi regimes at P(V+1) of spekker most we dientil P(K+1). P(V+1) ≈ (1) on (1-0,0) = 1-0,4-0,6 = 1-0,4-0 0,35 ≈ 0,40, sin ja. R(x+1) er en tilnamet und P(X+1). Oppose 9: We a secondant todall attessor Base approximate most also are biseconst totall attessor and the size should not be seconstally to the lite and also industry to the lite and also industry to the lite and also industry to the lite and also forte fixthe med to. Oppose 9: We a secondant to the same base approximate most also are biseconst total attention of the lite and also are biseconst total attention of the lite and also are biseconst total attention of the lite and also are biseconst total attention of the lite and also are biseconst total attention of the lite and also are biseconst total attention of the lite and also are biseconst to the lite and also are biseconst total attention of the lite and also are biseconst to the literature of the lit	ercoue 8:	Resel S.S sicr of huis "N > 10 n" er haper seometrisk (N, M, n) os bionomisk (n,p)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0300		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$P(Y=1) = \binom{1}{1} 0.4^{1} (1-0.4)^{1-1} = 1 \cdot 0.4 \cdot 0.6^{0}$	
0,35 ≈ 0,40 , si ja P(y=1) er en t.l. normet vard; P(x=1). Pregave 9: War seometriek fordelt ettersom Bous opprimolise vnetode var bionomisk fordelt Og disse er knyttet med at Bon sjær forsøk med lite samoynlishet. Bon ekal Glisi undarsøke en os en til har for den færste fisken med lus. P(w=w) = p. (1-p) ^{w-1} P(w=w) = p. (1-p) ^{w-1} P(w=4) = 0,4 · (1-0,4) ⁴⁻¹ = 0,4 · 0,6³ = 0,4 · 0,216 = 0.086 P(w>4) = 6,4 · 0,6° + 0,4 · 0,6° + 0,4 · 0,6² + 0,4 · 0,6³ = 0,4 + 0,24 + 0,144 + 0,086 = 0.87		= 1.0,4-1	
Propose 9: We seemelist fordell efferson Bous oppositionalize unatode var biomomisk fordell Of disse or knythet med at Bon sjør forsøk med lite samsynlighet. Bon skal altsie undersøke en os en til har for den forste fisken med lus. P(W=w) = p · ((-p) ^{w-1} P(W=1) = 0,4 · (1-0,4) ⁴⁻¹ = 0,4 · 0,6 ³ = 0,4 · 0,216 = 0.086 P(W>4) = 0,4 · 0,6° + 0,4 · 0,6' + 0,4 · 0,6 ² + 0,4 · 0,6 ³ = 0,4 + 0,24 + 0,144 · 0,086 = 0.87		= 0,40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$0.35 \approx 0.40$, si ja $P(Y=1)$ er en tilnærnet vordi $P(X=1)$.	
OG disse ex knyttet med at Ben sjør forsøk med lite schwynlighet. Ben skal altse undersøke én og én fil han får den færste fisken med lus. $P(w = w) = p \cdot (1 - p)^{w-1}$ $P(w = 1) = 0, 4 \cdot (1 - 0, 4)^{4-1} = 0, 4 \cdot 0, 6^3 = 0, 4 \cdot 0, 216 = 0.086$ $P(w > 4) = 0, 4 \cdot 0, 6^0 + 0, 4 \cdot 0, 6^1 + 0, 4 \cdot 0, 6^2 + 0, 4 \cdot 0, 6^3$ $= 0, 4 + 0, 144 + 0, 086$ $= 0, 87$	ppgave 9:	War seometrick fordelt effersom Bous opporinnelise metode var bionomiak fordelt	
$P(w = w) = p \cdot (1 - p)^{w - 1}$ $P(w = 4) = 0,4 \cdot (1 - 0,4)^{4 - 1} = 0,4 \cdot 0,6^{3} = 0,4 \cdot 0,216 \Rightarrow 0,086$ $P(w > 4) = 0,4 \cdot 0,6^{\circ} + 0,4 \cdot 0,6^{\circ} + 0,4 \cdot 0,6^{\circ} + 0,4 \cdot 0,6^{\circ}$ $= 0,4 + 0,24 + 0,144 + 0,086$		05 disse er knyttet med at Ben sjør forsøk med lite schwyhlighet. Ben skal	
$P(w \neq 1) = 0, 4 \cdot (1 - 0, 4)^{4 - 1} = 0, 4 \cdot 0, 6^{3} = 0, 4 \cdot 0, 216 \Rightarrow 0,086$ $P(w > 4) = 6, 4 \cdot 0, 6^{9} + 0, 4 \cdot 0, 6^{1} + 0, 4 \cdot 0, 6^{2} + 6, 4 \cdot 0, 6^{3}$ $= 0, 4 + 0, 24 + 6, 144 + 0,086$ $= 0,87$		tillså undersøke en og én til har før den færste tisken med lus.	
$P(w = 4) = 0,4 \cdot (1 - 0,4)^{4-1} = 0,4 \cdot 0,6^{3} = 0,4 \cdot 0,216 = 0,086$ $P(w > 4) = 0,4 \cdot 0,6^{\circ} + 0,4 \cdot 0,6^{'} + 0,4 \cdot 0,6^{2} + 0,4 \cdot 0,6^{3}$ $= 0,4 + 0,24 + 0,144 + 0,086$ $= 0,87$	Decore 10:	$P(w=w) = p \cdot (l-p)^{w-1}$	
$P(w>4) = 0, 4 \cdot 0, 6^{\circ} + 0, 4 \cdot 0, 6^{\circ} + 0, 4 \cdot 0, 6^{\circ} + 0, 4 \cdot 0, 6^{\circ}$ $= 0, 4 + 0, 24 + 0, 144 + 0,086$ $= 0.87$			
= 0,4 + 0,24 + 6,144 + 0,086 = 0,87		P(w=4) = 0,4 · (1-0,4) = 0,4 · 0,6 = 0,4 · 0,216 = 0,086	
$F(w) = \frac{1}{P} = \frac{1}{2\sqrt{2}} = \frac{1}{2\sqrt{2}}$		= <u>0,87</u>	
		$E(w) = \frac{1}{P} = \frac{1}{64} = \frac{2.5}{2.5}$	