Lógica elementar

Respostas à 1ª lista de exercícios

1.

(a)
$$(q \wedge \lnot r) o p$$

"Se o céu está estrelado e não está fazendo frio então Eva vai sair para uma caminhada"

(b)
$$q o (
eg r o p)$$

A proposição acima equivale à q o (r ee p), conforme demonstra a seguinte **tabela verdade**:

r	p	eg r ightarrow p	ree p
F	F	F	F
F	V	V	V
V	F	V	V
V	V	V	V

Logo, a oração fica: "Se o céu está estrelado então está fazendo frio ou Eva vai sair para uma caminhada."

(c)
$$\neg (p \iff (q \lor r))$$

Abordemos a proposição em partes:

- $p \iff (q \lor r)$: Eva vai sair para uma caminhada se, e somente se, o céu está estrelado ou está fazendo frio.
- $\neg(p \iff (q \lor r))$ (a negação da proposta anterior): Eva **não** vai sair para uma caminhada se, e somente se, o céu está estrelado ou está fazendo frio.

(d)
$$p \iff q$$

(e)
$$(r \wedge
eg q) o
eg p$$

(f)
$$r \wedge p$$

2.

p	q	p o q	$\neg p \vee q$
F	F	V	V
F	V	V	V
V	F	F	F
V	V	V	V

Se q é uma tautologia, $q\equiv V$ sempre. Enquanto, se r é uma contradição, $r\equiv F$ sempre. Logo,

p	q	r	p ee q	$p \wedge r$
V	V	F	V	F
F	V	F	V	F

4.

(a) Nota-se que o valor verdade de tais proposições são equivalentes na tabela verdade:

p	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
F	F	F	F	F
F	V	F	F	F
F	F	V	F	F
F	V	V	F	F
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	F	F

(b) Tal qual anterioremente,

p	q	r	$p\vee (q\wedge r)$	$(p\vee q)\wedge (p\vee r)$
F	F	F	F	F
F	V	F	F	F
F	F	V	F	F
F	V	V	V	V
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V

Demonstração da segunda lei de Morgan:

p	q	$\neg (p \vee q)$	$ eg p \wedge eg q$
V	V	F	F
V	F	F	F
F	V	F	F
F	F	V	V

6.

A Lei de Morgan aplica-se de maneira equivalente na teoria dos conjuntos e na lógica proposicional. Veja que o complemento à intercessão entre dois conjuntos A e B é a união dos complementos de A e B:

$$A \cap B$$

Assim o sendo, para n conjuntos P tem-se que:

$$\left(\bigcap_{i=1}^{n} P_i\right)^c = \bigcup_{i=1}^{n} P_i^{\ c}$$

e também:

$$\left(\bigcup_{i=1}^n P_i\right)^c = \bigcap_{i=1}^n P_i^{\ c}$$

7.

(a) Tautologia

p	q	$(p \to q) \lor p$
V	V	V
V	F	V
F	V	V
F	F	V

(b) Reescrevendo a equação em termos de \wedge e \vee :

$$egin{aligned} (p
ightarrow (q
ightarrow r))
ightarrow ((p
ightarrow q)
ightarrow (p
ightarrow r)) &\equiv \
egin{aligned} \neg(\neg pee(\neg qee r))ee((\neg pee q)ee((\neg pee r))) &\equiv \
egin{aligned} (p\wedge\neg(\neg qee r))ee((p\wedge q)ee((\neg pee r))) &\equiv \
egin{aligned} (p\wedge(q\wedge\neg r))ee((p\wedge q)ee((\neg pee r))) &\equiv \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q)ee((\neg pee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q)ee((\neg pee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q))ee((\neg pee r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q))ee((\neg pee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q))ee((\neg p\vee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q))ee((\neg p\vee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r))ee((p\wedge q))ee((\neg p\vee r))) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge r)) &= \
egin{aligned} ((p\wedge q)\wedge(p\wedge\neg r)) &= \
egin{aligned} ((p$$

p	q	r	$((p \wedge q) \wedge (p \wedge \neg r)) \vee ((p \wedge q) \vee (\neg p \vee r))$
F	F	F	$(F \wedge F) \vee (F \vee V) \equiv V$
F	V	F	$(F \wedge F) \vee (F \vee V) \equiv V$
F	F	V	$(F \wedge F) \vee (F \vee V) \equiv V$
F	V	V	$(F \wedge F) \vee (F \vee V) \equiv V$
V	V	V	$(V \wedge F) ee (V ee V) \equiv V$
V	V	F	$(V \wedge V) ee (V ee F) \equiv V$
V	F	V	$(F \wedge F) ee (F ee V) \equiv V$
V	F	F	$(F \wedge V) \vee (F \vee V) \equiv V$

p	$p ee \lnot p$	$p \wedge \neg p$
F	$F \lor V \equiv V$	$F \wedge V \equiv F$
V	$V ee F \equiv V$	$V\wedge F\equiv F$

$$p
ightarrow (q
ightarrow r) \equiv
eg p ee (
eg q ee r) \equiv
eg (p \wedge q) ee (
eg p ee r) \ (p
ightarrow q)
ightharpoonup r \equiv (p \wedge
eg q) ee r \equiv (p ee r) \wedge (r ee
eg q)$$

p	q	r	$ eg(p \wedge q) \lor (eg p \lor r)$	$(p \vee r) \wedge (r \vee \neg q)$
F	F	F	$V ee V \equiv V$	$F \wedge V \equiv F$
F	V	F	$V ee V \equiv V$	$F\wedge F\equiv F$
F	F	V	$V ee V \equiv V$	$V \wedge V \equiv V$
F	V	V	$V ee V \equiv V$	$V \wedge V \equiv V$
V	V	V	$F ee V \equiv V$	$V \wedge V \equiv V$
V	V	F	$F\vee F\equiv F$	$V \wedge F \equiv F$
V	F	V	$V ee V \equiv V$	$V \wedge V \equiv V$
V	F	F	$V ee F \equiv V$	$V \wedge V \equiv V$

10.

Conforme a seguinte tabela verdade, isso pode ser feito de duas formas: reunindo-se apenas com o representante turco ou, senão, apenas com os representantes turco e russo.

a	t	r	$(a \wedge \neg t) \vee (\neg a \wedge t)$	(ree t)	$ eg(a \wedge r)$
F	F	F	F	F	V
F	V	F	V	V	V
F	F	V	F	V	V
F	V	V	V	V	V
V	V	V	F	V	F
V	V	F	F	V	V
V	F	V	V	V	F
V	F	F	V	F	V

11.

O **princípio da equivalência** descreve que para quaisquer proposições p e q equivalentes entre si que contenham os conectivos \neg , \land ou \lor , mas não necessariamente todos, as proposições **duais** destas

(proposições obtidas pela substituição de cada \land por \lor e vice-versa; e de cada constante V por F e vice versa) também são equivalentes entre si.

Por exemplo,

$$p \wedge (p \vee p) \iff p$$

Como, por hipótese, temos que $p \equiv q$, então

$$p \wedge (p \vee q) \iff p$$

Podemos ainda adicionar à formulação anterior o elemento neutro $\vee F$:

$$(p \lor F) \land (p \lor q) \iff p$$

E então simplificá-la:

$$\underbrace{p \vee \underbrace{\left(F \wedge q\right)}_{\text{Identidade}}} \iff p$$

Distributiva

$$\begin{array}{ccc} p \vee F & \Longleftrightarrow & p \\ p & \Longleftrightarrow & p \end{array}$$

Consideremos agora a formulação dual deste mesmo teorema: $p \lor (p \land q) \iff p$

$$(p \wedge V) \vee (p \wedge q) \iff p$$

 $p \wedge (V \vee q) \iff p$

$$p \wedge (V \lor q) \longleftrightarrow p$$

$$p \iff p$$

Fica demonstrado que realizando as substituições propostas, "duais", alcançamos resultados equivalentes.

12.

Podemos descrever o XOR em termos de conjunção e disjunção da seguinte forma:

$$p ee q \equiv (p \wedge
eg q) ee (
eg p \wedge q)$$

Assim, para este temos a seguinte tabela verdade:

p	q	$(p \wedge \neg q) \vee (\neg p \wedge q)$
F	V	V
F	F	F
V	V	F
V	F	V

(a) Vamos simplificar a proposição e admitir que esta seja falsa:

$$(p \iff (\neg q \lor r)) \to (\neg p \to q) \equiv (p \iff (\neg q \lor r)) \to (p \lor q) \equiv F$$

Analizemos a tabela verdade para identificar os valores de $(p \iff (\neg q \lor r))$ e $(p \lor q)$ que levam a este resultado:

$(p \iff (\neg q \lor r))$	$(p\vee q)$	$(p \iff (\neg q \lor r)) \to (p \lor q)$
V	V	V
V	F	F
F	V	V
F	F	V

Apenas quando $(p \iff (\neg q \lor r)) \equiv V$ e $(p \lor q) \equiv F$ obtêm-se tal resultado. Para $(p \lor q) \equiv F$, $p \equiv q \equiv F$. Substituindo estes valores, temos:

$$(F \iff (\neg F \lor r)) \equiv V$$

 $(F \iff (V \lor r)) \equiv V$
 $F \iff V \equiv V$

Chegamos a um absurdo. Assim o sendo, não é possível que esta expressão seja falsa: trata-se de uma **tautologia**.

(b)
$$(p o (q \lor r)) \lor (p \lor q) \equiv (p o q) \lor (p o r) \lor (p o q) \equiv p o (q \lor r) \equiv F$$

Para produzir esse resultado bastaria que $p\equiv V$ e $q\equiv r\equiv F$. Qualquer outra configuração não produziria resultado verdadeiro. Não se reduziu ao absurdo, esta não se trata de uma tautologia ou contradição.

14.

(a)
$$p \wedge q \equiv \neg (\neg p \vee \neg q)$$

(b)
$$p o q \equiv \neg p \lor q$$

(c)
$$p o q \equiv \neg (p \wedge \neg q)$$

(d)
$$p \wedge q \equiv \neg(p o \neg q)$$

(e)
$$p \lor q \equiv \neg p o q$$

(a)

p	q	$p \uparrow q$	$ eg p \uparrow eg q$
V	V	F	V
V	F	V	V
F	V	V	V
F	F	V	F

(b)

$$\neg p \iff p \uparrow p$$

$$p \wedge q \iff (p \uparrow q) \uparrow (p \uparrow q)$$

$$p \lor q \iff (p \uparrow p) \uparrow (q \uparrow q)$$

(c)

$$(p o q) \iff p \uparrow (q \uparrow q) \iff p \uparrow (p \uparrow q)$$

$$(p \iff q) \iff (p \uparrow q) \uparrow ((p \uparrow p) \uparrow (q \uparrow q))$$

16.

(a)
$$(p \iff (((\neg q) \lor r) \to p)) \equiv$$
 $p \iff ((\neg q \lor r) \to p) \equiv$
 $(p \iff \neg q \lor r) \to (p \iff p) \equiv$
 $p \iff \neg q \lor r \xrightarrow{\text{redundante}} p \implies \neg q \lor r$

$$p \iff \neg q \vee r$$

(b) Como assim? O próprio enunciado demonstrou.