Performance Analysis Report: MPI Latency and Bandwidth Regression Tests

Submitted by:

Paul Timileyin Aromolaran – <u>paul.aromolaran.001@student.uni.lu</u>

Jabin Tasnim Khan Urmy – <u>jabin.urmy.001@student.uni.lu</u>

Ngu Frerashyno Ndah – <u>frerashyno.ngu.001@student.uni.lu</u>

Abstract & Introduction

Abstract

- This report details a ReFrame-based regression testing suite for MPI intranode and internode communication performance on ULHPC clusters (Aion, Iris).
- Utilizes OSU MicroBenchmarks (osu_latency, osu_bw) for point-to-point measurements.
- Evaluated four process placement scenarios and three binary sourcing methods (Source, EasyBuild, EESSI).
- Presents latest performance results, including several instances where performance deviated from expectations, and critically examines the baseline reference values used in ReFrame for future regression testing.

Introduction

- Goal: Develop a robust regression testing suite to monitor MPI latency and bandwidth, detecting performance variations due to software/hardware changes or configuration drift.
- Importance: Consistent MPI performance is critical for HPC application scalability and efficiency.

Benchmarks & Core Aim

Benchmarks Used

- osu_latency: Measures small message latency
- osu_bw: Measures large message bandwidth

Core Aim

Compare current data to references to spot regressions or improvements.

ReFrame scripts contain reference values; measured performance is compared, determining whether performance aligned with expectations or warranted further review. The results.txt file, reflecting latest runs, now indicates various performance outcomes.

System Architecture (AION)

Methodology - Test Design

Target Systems

- Aion: AMD EPYC based cluster.
- Iris: Intel Skylake based cluster (regular CPU nodes).
 - Note:
 SameSocketDifferentNuma
 scenario is not applicable/tested
 on Iris.

Benchmarks & Messages

- osu_latency:
 - Message Size: 8192 bytes (typical small message latency).
 - Iterations: 100 warm-up, 1000 measurement.
- osu_bw:
 - Message Size: 1,048,576 bytes (1MB) (peak bandwidth scenario).
 - Iterations: 100 warm-up, 1000 measurement.

Process Placement Process Placement Scenarios (2 MPI processes):

- 1. Same NUMA Node (SameNumaNode): Processes on cores within the same NUMA node, memory local. (Best-case intra-node)
- 2. Same Socket, Different NUMA Nodes (SameSocketDifferentNuma): (Aion-specific) Processes on same socket, different NUMA nodes.
- **3. Different Sockets (DifferentSockets):** Processes on same compute node, different physical sockets.
- **4. Different Nodes (DifferentNodes):** Processes on different physical compute nodes. (Inter-node)

Methodology - Compilation & ReFrame Implementation

OSU MicroBenchmarks (Version 7.2) Sourcing:

- Source Compilation (SOURCE):
 Compiled directly from source using foss/2023b toolchain.
- 2. EasyBuild Compilation (EASYBUILD): Compiled using an EasyBuild recipe with foss/2023b toolchain.
- 3. EESSI Binaries (EESSI): Precompiled binaries from EESSI software stack (OSU-Micro-Benchmarks/7.2-gompi-2023b).

ReFrame Implementation:

- Regression tests implemented using the ReFrame framework.
- Specific SLURM options and OpenMPI MCA parameters enforced process placement.
- Performance extracted by parsing benchmark output.
- Crucially: ReFrame scripts contain reference values. Measured performance is compared against these, determining if the measurement is within the expected range or if it signals a deviation.
 - The results.txt file, reflecting the latest runs, shows a variety of performance outcomes relative to these references, forming the basis of this analysis.

Results Overview: NUMA Performance Benchmarks

Results - Overview & General Trends

General Performance Trends Observed:

Bandwidth (Higher is Better):

- Typically highest for SameNumaNode (with exceptions on Iris).
- Decreases for DifferentSockets, SameSocketDifferentNuma (Aion), and lowest for DifferentNodes.

Latency (Lower is Better):

- Generally lowest for SameNumaNode.
 - Note: These often indicated performance better than very strict reference values, thus highlighting them for review.
- Increases as communication crosses NUMA, socket, and inter-node boundaries.

Latest results.txt shows a variety of performance outcomes relative to reference values.

• This presentation will analyze observed values and critically discuss the appropriateness of the underlying ReFrame reference values that led to these outcomes.

MPI Bandwidth Comparison (Higher is Better)

MPI Latency Comparison (Lower is Better)

Reproducibility of Regression Testing

All ReFrame tests, configuration files, EasyBuild recipe, and report are stored in a Git repository:

https://github.com/PaulAroo/Regression-testing

Instructions for cloning, loading modules, and running tests are detailed in the <u>README.md</u>.


```
#!/bin/bash
#SBATCH -- job-name="rfm OsuDifferentNodes bf0b4b03"
#SBATCH -- ntasks=2
#SBATCH ---ntasks-per-node=1
#SBATCH -- cpus-per-task=1
#SBATCH -- output=rfm job.out
#SBATCH --error=rfm job.err
#SBATCH --exclusive
#SBATCH -- nodes=2
#SBATCH -- partition=batch
#SBATCH -- gos=normal
#SBATCH -- time=0-00:10:00
module load env/testing/2023b
module load toolchain/foss/2023b
module load tools/EasyBuild
export OMPI MCA hwloc base report bindings=1
srun --cpus-per-task=1 --nodes=2 /mnt/aiongpfs/users/paromolaran/project playground/stage/
   aion/batch/foss-2023b/OsuBuildSource 0de34a51/osu-micro-benchmarks-7.2/c/mpi/pt2pt/
   standard/osu bw -m 1048576:1048576 -x 100 -i 1000
```

THANK YOU