PROPRIÉTÉS DE LA TRANSFORMÉE DE LAPLACE

Transformée de Laplace:

$$\mathfrak{L}(f)(z) = F(z) = \int_{0}^{+\infty} f(t)e^{-zt}dt$$

PROPRIÉTÉS:

- 1) Linéarité: $\mathfrak{L}(af + bg) = a\mathfrak{L}(f) + b\mathfrak{L}(g)$ $a \in \mathbb{R}, b \in \mathbb{R}$
- 2) Transformée de Laplace des dérivées de f:

$$\mathfrak{L}(f')(z) = z\mathfrak{L}(f)(z) - f(0)$$

$$\mathfrak{L}(f'')(z) = z^2\mathfrak{L}(f)(z) - zf(0) - f'(0)$$

$$\mathfrak{L}(f^{(n)})(z) = z^n\mathfrak{L}(f)(z) - z^{n-1}f(0) - \dots - f^{(n-1)}(0)$$

3) Transformée de Laplace d'une primitive de f:

$$\mathfrak{L}\left(\int_{0}^{t} f(s)ds\right)(z) = \frac{1}{z}\mathfrak{L}(f)(z)$$

4) Décalage:

$$\mathfrak{L}(e^{-bt}f(t))(z) = \mathfrak{L}(f)(z+b) \quad b \in \mathbb{R}$$

5) Dérivation de la transformée de Laplace:

$$\mathfrak{L}(tf(t))(z) = -\mathfrak{L}(f)'(z)$$

6) Convolution:

$$(f * g)(t) = \int_{0}^{t} f(s)g(t - s)ds = \int_{0}^{t} g(s)f(t - s)ds$$

Alors $\mathfrak{L}(f * g) = \mathfrak{L}(f)\mathfrak{L}(g)$

TRANSFORMÉES DE LAPLACE

	f(t)	$\mathfrak{L}(f)(z) = F(z)$	
1	$f_{\alpha}(t) = \begin{cases} 1/\alpha & \text{si } t \in [0, \alpha] \\ 0 & \text{sinon} \end{cases} $ (impulsion de Dirac)	$\frac{1 - e^{-\alpha z}}{\alpha z} \xrightarrow[\alpha \to 0]{} 1$	$\forall z$
2	$\varepsilon(t) = \begin{cases} 1 & \text{si } t \ge 0 \\ 0 & \text{sinon} \end{cases} $ (échelon unité)	$\frac{1}{z}$	$\operatorname{Re} z > 0$
3	$e^{-\alpha t}$	$\frac{1}{z+\alpha}$	$\operatorname{Re} z > -\alpha$
4	$\sin \omega t$	$\frac{\omega}{z^2 + \omega^2}$	$\operatorname{Re} z > 0$
5	$\cos \omega t$	$\frac{z}{z^2 + \omega^2}$	$\operatorname{Re} z > 0$
6	$e^{\alpha t} \sin \omega t$	$\frac{\omega}{(z-\alpha)^2 + \omega^2}$	$\operatorname{Re} z > \alpha$
7	$e^{\alpha t}\cos\omega t$	$\frac{z-\alpha}{(z-\alpha)^2+\omega^2}$	$\mathrm{Re}z > \alpha$
8	$\frac{t^n}{n!}$	$\frac{1}{z^{n+1}}$	Rez > 0
9	$te^{-\alpha t}$	$\frac{1}{(z+\alpha)^2}$	$\operatorname{Re} z > -\alpha$
10	$\cosh \omega t$	$\frac{z}{z^2 - \omega^2}$	$\operatorname{Re} z > \omega $
11	$\sinh \omega t$	$\frac{\omega}{z^2 - \omega^2}$	$\operatorname{Re} z > \omega $
12	$e^{\alpha t} \cosh \omega t$	$\frac{z-\alpha}{(z-\alpha)^2-\omega^2}$	$\mathrm{Re}z > \alpha + \omega $
13	$e^{\alpha t} \sinh \omega t$	$\frac{\omega}{(z-\alpha)^2 - \omega^2}$	$\mathrm{Re}z > \alpha + \omega $
14	$t\cos\omega t$	$\frac{z^2 - \omega^2}{(z^2 + \omega^2)^2}$	$\operatorname{Re} z > 0$