Introduction to Python for Social Science Lecture 3 - Data Structures and Pandas II

Musashi Harukawa, DPIR

3rd Week Hilary 2020

Last Week

- ► Graph, Tree and Tabular Data Structures
- ► Representations of information
- ▶ Introduction to pandas

This Week

This week we learn more advanced methods for working with data:

- Functions
- apply and vectorization
- GroupBy: Split-apply-combine
- Combining dataframes: append, concat and merge
- Long- vs wide-form data; melting data

Functions

- ▶ A function is a mapping of two sets that relates each element of the first set to exactly one element of the second set.
 - Formally, a function f is a mapping of elements of a set X to set Y defined by ordered pairs G = (x, y) such that $x \in X$ and $y \in Y$.
 - ▶ X is referred to as the *domain* of f, and Y is the *codomain*.
 - \triangleright y is the *image* or *value* of f applied to the argument x.
- Practically, a function is an operation that takes one or more inputs, and returns zero or more outputs.
 - For instance, the function f(a, b) defined as a + b takes two arguments, a and b, and returns a value a + b.
 - y can be the null set, in the sense that functions can return nothing.

Functions and Vectors

There are several ways to think about applying a function to a vector X_i of i values.

Transformation

The vector of all values in X_i , $[x_1, x_2, ...x_i]$ is in the domain of f, and a vector Y_i of equal length i is returned.

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \end{bmatrix} = f \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \end{bmatrix}$$

Element-wise Operations

Individual elements of X_i are in the domain of f, and f is applied to each element of X_i to return a vector of length i where the ith element is the value of $f(x_i)$.

$$\begin{bmatrix} f(x_1) \\ f(x_2) \\ \vdots \\ f(x_i) \end{bmatrix} = f \odot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \end{bmatrix}$$

Summaries

A summary reduces a vector X_i of length i to a single value θ . Thus vector X_i is within the domain of f, and θ is value of f applied to X_i .

$$\theta = f \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_i \end{bmatrix}$$

Functions

Functions

- ▶ A function is a structure takes one or more inputs, and gives zero or more outputs.
- ➤ You have already encountered many functions, such as sum(), which takes the sum of an series.

Functions in Python

```
Here's a simple function that adds 1 to the input:

def add_one(x):
    """
    This function adds 1 to the input.
    """
    y = x+1
    return y
```

def add_one(x):

```
def add_one(x):
    """
    This function adds 1 to the input.
    """
    y = x+1
    return y
```

- ► The command def followed by a space tells Python that you are defining a function.
- This function is given the name followed by def; in this case add_one.
- ► The *arguments* of the function are given after the function name, inside ().
- The : says that the definition line is done. The following line must be indented by four spaces.

Docstrings

- A string immediately after a function definition is automatically assigned as the **docstring** for that function.
- ► The docstring is the documentation that appears when you use the func? command.
- ► This is optional, but a great way to document your code. It also helps you remember and read your code faster.
- NB: I use a triple-double quote """ to create a multiline string. This is convenient, but not necessary (you can use a simple " or ').