

CALTech Lab Manual

Foundations of Data Science

SLOT - B21 + E14 FALL 2025-2026

Class No. 0410

Submitted By: Mausam Kar Reg. No: 24BAI10284

> Devraj Vishnu Assistant Professor SCAI

*Collaborative and Active Learning through Technology

Contents

1	Intro	oduction	4
	1.1	About the Lab Manual	4
	1.2	Software	4
		Requirements	
2		arRegression	5
	2.1	Objective	5
	2.2	Theory	5
	2.3	Code Implementation	5
	2.4	Output Visualization	6
	2.5	Visualization	6
7 (~:	1- 11 / - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7
5 5	singt	lar Value Decomposition (SVD)	7
	3.1	Objective	7
		Theory	7
		Code Implementation	7
	3.4	Output	
41	Orino	ipalComponentAnalysis(PCA)	9
	<i>1</i> 1110	Objective	9
	4.1	Theory	9
		Code Implementation	9
		·	
5	Нур	othesisTesting	11
	5.1	Objective	11
	5.2	Theory	11
	5.3	Code Implementation	11
	5.4		11
	_		12
6 (usionMatrix	12
		Objective	12
		Theory	12
	6.3	Code Implementation	13
	6.4	.Output	
7	Doo	isionTree	14
/			
	7.1 7.2	•	14 14
		,	
	7.3	•	14
	7.4	Output	15

CONTENTS FDS Lab Manual

8 Rand	omForest																7(6
8.1	Objective						 										. 1	6
	Theory																	6
8.3	Code Implementation .						 										. 1	6
8.4	Output						 										. 1	7
0.17																	78	3
9 K-me	eansClustering																1	8
	Objective																	8
	Theory																	8
	Code Implementation .																	9
9.4	Output		• • •	• •	•	•	 	•		•	•	•	•	•	•	•	• 20	
10 DRS	CAN Clustering																	
	Objective																. 2	_
	Theory																	_
	-																	
	Code Implementation .																	
10.4	Output		• • •	• •	•	•	 	•	• •	•	•	•	•	•	•	•		
11 Roos	ting Techniques																2:	
	Objective																2	
	Theory																_	
	Code Implementation .																_	
	Output																_	
±±.¬	Output		• • •	•	•	•	 	•	• •	•	•	•	•	•	•	•		
12 Ense	mble Learning																2	
	Objective						 										2	
	Theory																۷.	
	Code Implementation .																2	
	Output																	
								-						-			2	
13 Naiv	e Bayes																2	
13.1	Objective						 										. 2	_
13.2	Theory						 										. 2	
13.3	Code Implementation .						 										. 2'	7
13.4	Output						 										. 2	7
	•																2	7
	ar Discriminant Analys	•	,														2	7
14.1	Objective						 										. 2	8
	Theory																	9
14.3	Code Implementation .						 										. 2	9
14.4	Output						 										. 2	9
																	2	9
	lient Descent																3	С
	Objective																. 3	
	Theory																. 2	
	Code Implementation .																•	1
15.4	Output						 			•	•			•		•		
	-ti- D '																	
_	stic Regression																	
16.1	Objective			• •	•	•	 	•		•	•	•	•	•	•	•		

CONTENTS FDS Lab Manual

16.2Theory																		31
16.3 Code Implementation	١																	31
16.40utput																		32
·																		34
17 Hierarchical Agglomerat	ive	C	lus	ste	eri	in	g											34
17.1 Objective														•				34
17.2Theory																		34
17.3 Code Implementation	n																	35
17.4Output																		36
																		36
18 Appendix																		
18.1 Additional Resources																		36
18.2 References															_			

Introduction

1.1 AbouttheLabManual

This laboratory manual provides comprehensive practical exercises for the Foundations of Data Science course. The manual covers essential data science techniques includ- ing regression analysis, dimensionality reduction, clustering, classification, and statistical testing.

1.2 Software Requirements

- Python 3.x
- Jupyter Notebook
- Required Python libraries: NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, SciPy

Linear Regression

2.1 Objective

To implement linear regression using scikit-learn and evaluate the model performance.

2.2 Theory

Linear regression is a linear approach to modeling the relationship between a scalar response and one or more explanatory variables.

```
1 # Importingnecessarylibraries
<sup>2</sup> import numpyasnp
3 import matplotlib.pyplot as plt
from sklearn.model_selectionimporttrain_test_split
from sklearn.linear_modelimport LinearRegression
from sklearn.metricsimport mean_squared_error
 # Generatingrandom data for demonstration
 np.random.seed(42)
 X = 2 * np.random.rand(100)
 y = 4 + 3 * X + np.random.randn(100),
# Splitting the data into training and testing sets
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
     =0.2, random_state=42)
16 # Creatinga linear regression model
model= LinearRegression()
<sup>19</sup> # Training the model
20 model.fit(X_train, y_train)
  # Makin predictions on the test set
 y_pred= model.predict(X_test)
 # Evaluatingthe model
 mse= mean_squared_error(y_tesyt_pred)
  print(f'Mean Squared Error: {mse}')
```

Mean Squared Error: 0.9190196881367937

2.5 Visualization

Figure 2.1: Linear Regression Visualization

Singular Value Decomposition (SVD)

3.1 Objective

To perform Singular Value Decomposition on a matrix and reconstruct it.

3.2 Theory

SVD is a matrix factorization method that generalizes the eigendecomposition of a square matrix to any m×n matrix.

3.3 Code Implementation

```
1 import numpys np
3 # Createa randommatrix for demonstration
<sup>4</sup> np.random.seed(42)
  matrix = np.random.random((3))
<sup>7</sup> # PerformSingular Value Decomposition
  U, S, Vt = np.linalg.svd(matrix, full_matrices=True)
  # Reconstructhe original matrix from the SVD components
  reconstructed_matrix np.dot(U, np.dot(np.diag(S), Vt))
# Print the original matrix
print("Original Matrix:")
<sub>16</sub> print(matrix)
# Print the decomposecobmponents
19 print("\nU matrix:")
20 print(U)
print("\nS matrix (diagonal matrix):")
print(np.diag(S))
print("\nVt matrix:")
print(Vt)
 # Print the reconstructedmatrix
  print("\nReconstructedMatrix:")
  print(reconstructed_matrix)
```

3.4 Output

```
Original Matrix:
[[0.37454012 0.95071431 0.73199394]
 [0.59865848 0.15601864 0.15599452]
 [0.05808361 0.86617615 0.60111501]
 [0.70807258 0.02058449 0.96990985]
 [0.83244264 0.21233911 0.18182497]]
U matrix:
[[-0.5991048 -0.38620771 -0.12988737]
 [-0.25170251 0.32375656 -0.38389036]
 [-0.4495347 -0.55516825 0.01152904]
 [-0.51180949 0.4814656 0.71001691]
S matrix (diagonal matrix):
                                ]
[[1.99063285 0.
           1.0096001 0.
                                1
[0.
 [0.
            0.
                     0.57767497]]
Vt matrix:
[[-0.52458829 -0.54271957 -0.65594405]
[ 0.72866708 -0.6846751 -0.01625695]
[-0.44028559 -0.48649304 0.75463443]]
Reconstructed Matrix:
[[0.37454012 0.95071431 0.73199394]
 [0.59865848 0.15601864 0.15599452]
 [0.05808361 0.86617615 0.60111501]
 [0.70807258 0.02058449 0.96990985]
 [0.83244264 0.21233911 0.18182497]]
Reconstruction Error: 1.8809298755277653e-15
```

Principal Component Analysis (PCA)

4.1 Objective

To implement Principal Component Analysis for dimensionality reduction.

4.2 Theory

PCA is a technique for reducing the dimensionality of datasets, increasing interpretability while minimizing information loss.

```
1 # Predicting the training set result through scatter plot
<sup>2</sup> from matplotlib.colors importListedColormap
<sup>4</sup> X_set, y_set = X_train, y_train
  X1, X2 = np.meshgrid(np.arange(startX_set[:, 0].min() - 1,
       stop = X_set[:, 0].max() + 1, step = 0.01),
       np.arange(start= X_set[:, 1].min() - 1,
       stop = X_set[:, 1].max() + 1, step = 0.01))
  plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(),
       X2.ravel()]).T).reshape(X1.shape), alpha = 0.75,
cmap= ListedColormap(('yellow','white', 'aquamarine')))
12
13
plt.xlim(X1.min(), X1.max()
_{16} plt.ylim(X2.min(), )
                         X2.max()
18 for i, j in enume/ate(np.unique(y_set)):
       plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('red','green', 'blue'))(i), label = j)
19
<sup>22</sup> plt.title('Logistic
                          Regression(Training set)')
plt.xlabel('PC1')
                          for Xlabel
  plt.ylabel('PC2') # for#Ylabel
  plt.legend() # to show legend
  # showscatter plot
  plt.show()
```


Figure 4.1: PCA Visualization

Hypothesis Testing

Objective 5.1

To perform hypothesis testing using t-test to compare two samples.

5.2 Theory

Hypothesis testing is a statistical method that is used to determine whether there is enough evidence to reject a null hypothesis.

Code Implementation 5.3

```
1 import numpy as np
<sup>2</sup> from scipy import stats
4 # Generatetwoindependensamples for demonstration
<sup>5</sup> np.random.seed(42)
sample1= np.random.normal(loc=5,scale=2,size=30)
  sample2= np.random.normal(loc=7,scale=2,size=30)
  # Performa two-sample-test
  t_statistic, p_value = stats.ttest_ind(sample1, sample2)
11
# Set the significance level (alpha)
_{14} alpha = 0.05
# Print the results of the t-test
print(f'T-statistic: {t_statistic}')
print(f'P-value: {p_value}')
<sup>20</sup> # Check if the null hypothesiscan be rejected
21 if p_value< alpha:
      print(f'Reject the null hypothesisat alpha = {alpha}')
<sup>23</sup> else:
  print(f'Fail to reject the null hypothesisat alpha = {alpha}')
```

5.4 Output

T-statistic: -6.564648057307771 P-value: 2.0402324667449437e-08 Reject the null hypothesis at

alpha = 0.05

Confusion Matrix

6.1 Objective

To create and visualize a confusion matrix for classification model evaluation.

6.2 Theory

A confusion matrix is a table that is used to evaluate the performance of a classification model.

```
1 fromsklearn.metrics import confusion_matrix
2 import matplotlib.pyplot as
3 importseabornas sns
4 from sklearn.model_selectionmporttrain_test_split
from sklearn.datasetsimport make_classification
from sklearn.linear_modelimportLogisticRegression
8 # Generatesynthetic data for demonstration
 X, y = make\_classification(n\_samples=10000,features=20,n\_classes=2,
     random_state=42)
11 # Split the data into training and testing sets
12 X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
13
14 # Train a logistic regression model(exampleclassifier)
15 mode + LogisticRegression()
16 model.fit(X_train, y_train)
<sup>18</sup> # Makepredictions on the test set
y_pred = model.predict(X_test)
  # Createa confusionmatrix
 cm= confusion_matrix(y_testy_pred)
# Plot the confusionmatrix
plt.figure(figsize=(6, 4))
sns.heatmap(cma,nnot=True,fmt="d", cmap="Blues"çbar=False)
28 plt.title('Confusion Matrix')
plt.xlabel('Predicted Label')
plt.ylabel('True Label')
  plt.show()
```

```
Confusion Matrix:
[[190 10]
[ 5 95]]
```


Figure 6.1: Confusion Matrix

Decision Tree

7.1 Objective

To implement a Decision Tree classifier and evaluate its performance.

7.2 Theory

A Decision Tree is a flowchart-like tree structure where each internal node represents a feature, each branch represents a decision rule, and each leaf node represents an outcome.

```
1 from sklearn.datasets importload_iris
2 from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
4 from sklearn.metricsimportaccuracy_score,classification_report,
     confusion_matrix
5 import matplotlib.pyplotas plt
6 from sklearn.tree import plot_tree
8 # Loadthe Iris dataset for demonstration
9 iris = load_iris()
<sup>10</sup> X = iris.data
<sup>11</sup> y = iris.target
  # Split the data into training and testing sets
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
     =0.2, random_state=42)
<sup>16</sup> # Createa decision tree classifier
17 clf = DecisionTreeClassifier(random_state=42)
<sup>19</sup> # Train the classifier
  clf.fit(X_train, v_train)
 # Makepredictions on the test set
  y_pred = clf.predict(X_test)
24
  # Evaluatethe classifier
  accuracy accuracy_score(y_test,y_pred)
 print(f'Accuracy: {accuracy:.2f}')
30 # Display confusionmatrix and classification report
print('\nConfusion Matrix:')
  print(confusion_matrix(y_test,y_pred))
```

```
print('\nClassification Report:')
print(classification_report(y_test, y_pred))

# Visualize the decision tree
plt.figure(figsize=(12, 8))
plot_tree(clf, feature_names=iris.feature_names,
class_names=iris.target_namefi,lled=True, rounded=True)
plt.show()
```

Accuracy: 1.00

Confusion Matrix:

[[10 0 0] [0 9 0] [0 0 11]]

Classification Report:

	precision	recall	fl-score	support
0	1.00	1.00	1.00	10
1	1.00	1.00	1.00	9
2	1.00	1.00	1.00	11
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

Figure 7.1: Decision Tree Structure

Random Forest

8.1 Objective

To implement a Random Forest classifier and evaluate its performance.

8.2 Theory

Random Forest is an ensemble learning method that operates by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes.

```
1 from sklearn.datasets importload_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble importRandomForestClassifier
4 from sklearn.metricsimportaccuracy_score,classification_report,
     confusion_matrix
6 # Loadthe Iris dataset for demonstration
7 iris = load_iris()
8 X = iris.data
y = iris.target
<sup>11</sup> # Split the data into training andtesting sets
  X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
13
# Createa Randomorest classifier
<sup>15</sup> clf = RandomForestClassifier(n_estimators=10Ձդdom_state=42)
<sup>17</sup> # Train the classifier
^{18} clf.fit(X_train, y_train)
# Makepredictions on the test set
  y_pred = clf.predict(X_test)
  # Evaluatethe classifier
accuracy= accuracy_score(y_test,y_pred)
  print(f'Accuracy: {accuracy:.2f}')
28 # Display confusionmatrix and classification report
print('\nConfusion Matrix:')
print(confusion_matrix(y_test,y_pred))
  print('\nClassification Report:')
```

print(classification_report(y_test, y_pred))

8.4 Output

Accuracy: 1.00

Confusion Matrix:

[[10 0 0] [0 9 0] [0 0 11]]

Classification Report:

	precision	recall	fl-score	support
0 1 2	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	30 30 30

K-means Clustering

9.1 Objective

To implement K-means clustering algorithm and determine the optimal number of clusters using the elbow method.

9.2 Theory

K-means clustering is a method of vector quantization that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean.

```
1 import matplotlib.pyplotas plt
<sup>2</sup> from sklearn.cluster importKMeans
<sup>4</sup> x = [4, 5, 10, 4, 3, 11, 14, 6, 10, 12]

<sup>5</sup> y = [21, 19, 24, 17, 16, 25 24, 22, 21, 21]
  plt.scatter(x, y)
  plt.show()
  data = list(zip(x,
  inertias = []
for i in range(1,11):
       kmeans KMeans(n_clusters=i)
       kmeans.fit(data)
       inertias.append(kmeans.inertia_)
17
19 plt.plot(range(1,11), inertias, marker='o')
20 plt.title('Elbow method')
pft.xlabel('Number clusters')
22 plt.ylabel('Inertia')
23 plt.show()
kmeans KMeans(n_clusters=2)
  kmeans.fit(data)
  plt.scatter(x, y, c=kmeans.labels_)
  plt.show()
```


Figure 9.1: K-means Clustering Results

DBSCAN Clustering

10.1 Objective

To implement DBSCAN clustering algorithm for customer segmentation.

10.2 Theory

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering algorithm that can find arbitrarily shaped clusters and handle outliers.

```
1 import numpyasnp
<sup>2</sup> import pandas aspd
importseabornas sns
4 import matplotlib.pyplot as plt
<sup>5</sup> from sklearn.cluster importDBSCAN
7 df = pd.read_csv('Wall_Customers.csv')
X_train = df[['Age', 'AnnualIncome(k$)', 'SpendingScore (1-100)']]
clustering = DBSCAN(eps=12.5, min_samples=4).fit(X_train)
DBSCAN_datasetX_train.copy()
DBSCAN_dataset.loc[:,'Cluster']= clustering.labels_
 DBSCAN_dataset.Cluster.value_counts().to_frame()
  outliers = DBSCAN_dataset[DBSCAN_dataset['Cluster']==-1]
17 fig2, axes = plt.subplots(1,2,figsize=(12,5))
sns.scatterplot('AnnualIncomék$)', 'SpendingScore (1-100)',
data=DBSCAN_dataset[DBSCAN_dataset['Cluster']!=-1],
21 hue='Cluster' ax=axes[0], palette='Set2',
                 s = 200)
23 legend='full',
sns.scatterplot('Age', 'SpendingScore (1-100)',
data=DBSCAN_dataset[DBSCAN_dataset['Cluster']!=-1],
 hue='Cluster' palette='Set2', ax=axes[1],
                 s = 200)
  legend='full',
  axes[0].scatter(outliers['Annual Incomék$)'], outliers['Spending
     Score (1-100)'], s=10, label='outliers', c="k")
29 axes[1].scatter(outliers['Age'], outliers['SpendingScore (1-100)'],
     =10, label='outliers', c="k")
30 axes[0].legend()
31 axes[1].legend()
```

```
32
33 plt.setp(axes[0].get_legend().get_texts(), fontsize='12')
34 plt.setp(axes[1].get_legend().get_texts(), fontsize='12')
35
36 plt.show()
```


Figure 10.1: DBSCAN Clustering Results

Boosting Techniques

11.1 Objective

To implement Gradient Boosting classifier and evaluate its performance.

11.2 Theory

Boosting is an ensemble technique that combines multiple weak learners to create a strong learner. Gradient Boosting builds the model in a stage-wise fashion.

11.3 Code Implementation

load iris

```
1 from sklearn.datasets import
from sklearn.model_selectionmporttrain_test_split
<sup>3</sup> from sklearn.ensemblemport Gradient Boosting Classifier
4 from sklearn.metricsimportaccuracy_score
<sup>6</sup> # Loadthe Iris dataset for demonstration
7 iris = load_iris()
<sup>8</sup> X = iris.data
  y = iris.target
  # Split the data into training and testing sets
  X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
# Createa GradientBoostingclassifier
15 gb_clf= GradientBoostingClassifier(n_estimators=10@earning_rate
     =0.1, max_depth=3f,andom_state=42)
# Train the GradientBoostingclassifier
18 gb_clf.fit(X_train, y_train)
<sup>20</sup> # Makepredictions on the test set
21 y_pred = gb_clf.predict(X_test)
<sup>23</sup> # Evaluatethe classifier
accuracy accuracy_score(y_test,y_pred)
  print(f'Gradient BoostingAccuracy:{accuracy:.2f}')
```

11.4 Output

Gradient Boosting Accuracy: 1.00

Ensemble Learning

12.1 Objective

To implement an ensemble classifier using Voting Classifier.

12.2 Theory

Ensemble learning combines multiple machine learning models to improve predictive performance and robustness.

```
from sklearn.datasets import load_iris
from sklearn.model_selection importtrain_test_split
<sup>3</sup> from sklearn.ensemble import Random Forest Classifier
<sup>4</sup> from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
<sup>6</sup> fromsklearn.svmimpor&VC
  fromsklearn.metrics importaccuracy_score
  # Loadthe Iris dataset for demonstration
 iris = load_iris()
X = iris.data
 y = iris.target
 # Split the data into training andtesting sets
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size
     =0.2, random_state=42)
# Create individual classifiers
18 logistic_clf = LogisticRegression(random_state=42)
19 svm_clf = SVC(probability=True,random_state=42)
rf_clf = RandomForestClassifier(n_estimators=10@ndom_state=42)
<sup>22</sup> # Createan ensembleusinga VotingClassifier
  ensemble_clf= VotingClassifier(estimators=[('lr', logistic_clf), ('svm
     ', svm_clf), ('rf', rf_clf)], voting='soft')
25 # Train the ensemble classifier
26 ensemble_clf.fit(X_train, y_train)
<sup>28</sup> # Makepredictions on the test set
  y_pred = ensemble_clf.predict(X_test)
30
  # Evaluate the ensemble classifier
```

```
accuracy= accuracy_score(y_test,y_pred)
print(f'EnsembleAccuracy:{accuracy:.2f}')
```

Ensemble Accuracy: 0.97

Naive Bayes

13.1 Objective

To implement a Gaussian Naive Bayes classifier and evaluate its performance.

13.2 Theory

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong independence assumptions between the features.

```
1 from sklearn.datasets importload_iris
<sup>2</sup> from sklearn.model_selectionmporttrain_test_split
from sklearn.naive_bayesimportGaussianNB
4 from sklearn.metricsimportaccuracy_score,classification_report,
     confusion_matrix
6 # Loadthe Iris dataset for demonstration
7 iris = load_iris()
8 X = iris.data
y = iris.target
<sup>11</sup> # Split the data into training andtesting sets
 X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
13
14 # Createa GaussianNaive Bayesclassifier
nb_classifier = GaussianNB()
<sup>17</sup> # Train the classifier
nb_classifier.fit(X_train,
                           y_train)
# Makepredictions on the test set
 y_pred = nb_classifier.predict(X_test)
# Evaluatethe classifier
accuracy= accuracy_score(y_test,y_pred)
print(f'Accuracy: {accuracy:.2f}')
28 # Display confusionmatrix and classification report
print('\nConfusion Matrix:')
print(confusion_matrix(y_test,y_pred))
  print('\nClassification Report:')
```

print(classification_report(y_test, y_pred))

13.4 Output

Accuracy: 0.97

Confusion Matrix:

[[10 0 0] [0 9 1] [0 0 10]]

Classification Report:

Classification	precision	recall	f1-score	support
0	1.00	1.00	1.00	10
1	1.00	0.9	0.95	10
2	0.91	Ο	0.95	10
		1.00		
accuracy			0.97	30
macro avg	0.97	0.97	0.97	30
weighted avg	0.97	0.97	0.97	30

Linear Discriminant Analysis (LDA)

14.1 Objective

To implement Linear Discriminant Analysis for dimensionality reduction and classifica-

14.2 Theory

LDA is a method used in statistics, pattern recognition, and machine learning to find a linear combination of features that characterizes or separates two or more classes of objects or events.

```
1 from sklearn.datasets importload_iris
<sup>2</sup> from sklearn.model_selectionmporttrain_test_split
from sklearn.discriminant_analysis mport Linear Discriminant Analysis
4 from sklearn.metricsimportaccuracy_score,classification_report,
     confusion_matrix
6 # Loadthe Iris dataset for demonstration
7 iris = load_iris()
8 X = iris.data
9 y = iris.target
<sup>11</sup> # Split the data into training andtesting sets
X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
14 # Createa Linear DiscriminantAnalysis (LDA) model
15 Ida = LinearDiscriminantAnalysis()
<sup>17</sup> # Fit the modelto the training data
18 Ida.fit(X_train, y_train)
  # Transformthe data to the reduced-dimensionabace
X_train_lda = lda.transform(X_train)
 X_test_lda = Ida.transform(X_test)
  # Train a classifier (e.g., Logistic Regression)on the reduced-
     dimensionablata
25 from sklearn.linear_modelimportLogisticRegression
26 classifier = LogisticRegression()
27 classifier.fit(X_train_lda,
28
```

```
# Makepredictions on the test set
y_pred = classifier.predict(X_test_lda)

# Evaluatethe classifier
accuracy= accuracy_score(y_test,y_pred)
print(f'Accuracy: {accuracy:.2f}')

# Display confusionmatrix and classification report
print('\nConfusion Matrix:')
print(confusion_matrix(y_test,y_pred))

print('\nClassification_Report:')
print(classification_report(y_test, y_pred))
```

Accuracy: 0.97

Confusion Matrix:

[[10 0 0] [0 9 1] [0 0 10]]

Classification Report:

precision	recall	fl-score	support
1.00	1.00	1.00	10
1.00	0.9	0.95	10
0.91	Ο	0.95	10
	1.00		
		0.97	30
0.97	0.97	0.97	30
0.97	0.97	0.97	30
	1.00 1.00 0.91	1.00 1.00 1.00 0.9 0.91 0 1.00	1.00 1.00 1.00 1.00 0.9 0.95 0.91 0 0.95 1.00 0.97 0.97 0.97

Gradient Descent

15.1 Objective

To implement Gradient Descent algorithm for linear regression.

15.2 Theory

Gradient Descent is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

```
1 import numpy as np
2 import matplotlib.pyplot as plt
<sup>4</sup> # Generatesynthetic data for demonstration
<sup>5</sup> np.random.seed(42)
<sup>6</sup> X = 2 * np.random.rand(100)
 y = 4 + 3 * X + np.random.randn(100),
  # Adda bias termto X
 X_b = np.c_[np.ones((100, 1)),
 # Set the learning rate and numbeof iterations
learning_rate = 0.01
n_iterations = 1000
17 # Initialize random alues for the parameters
18 theta = np.random.randn(2)
20 # Gradient Descent
for iteration in range(n_iterations):
      gradients = 2 / 100 * X_b.T.dot(X_b.dot(theta)- y)
23
      theta = theta learning_rate* gradients
24
<sup>25</sup> # Print the final parameters
  print("Final Parameter$theta):", theta)
# Plot the data and the linear regression line
_{30} plt.scatter(X, y)
plt.plot(X, X_b.dot(theta), color='red', label='Linear Regression')
plt.xlabel('X')
33 plt.ylabel('y')
  plt.legend()
  plt.show()
```

Final Parameters

(theta): [[4.21509616] [2.77011339]]

Figure 15.1: Gradient Descent Results

Logistic Regression

16.1 Objective

To implement Logistic Regression for binary classification and visualize the decision boundary.

16.2 Theory

Logistic Regression is a statistical model that uses a logistic function to model a binary dependent variable.

```
1 import numpyas np
2 import matplotlib.pyplot as plt
from sklearn.datasets importmake_classification
from sklearn.model_selection importtrain_test_split
from sklearn.linear_modelmportLogisticRegression
from sklearn.metricsimportaccuracy_score,classification_report,
     confusion_matrix
8 # Generatesynthetic data for binary classification
9 X, y = make_classification(n_samples=100,features=2,n_informative
     =2, n_redundant=0,_clusters_per_class=1,random_state=42)
11 # Split the data into training andtesting sets
12 X_train, X_test, y_train, y_test= train_test_split(X, y, test_size
     =0.2, random_state=42)
# Createa Logistic Regressionmodel
15 logreg= LogisticRegression()
<sup>17</sup> # Train the model
logreg.fit(X_train, y_train)
<sup>20</sup> # Makepredictions on the test set
 y_pred = logreg.predict(X_test)
# Evaluatethe model
accuracy = accuracy_score(y_test,y_pred)
 print(f'Accuracy: {accuracy:.2f}')
28 # Display confusionmatrix and classification report
print('\nConfusion Matrix:')
  print(confusion_matrix(y_test,y_pred))
```

```
print('\nClassification Report:')
32 print(classification_report(y_test, y_pred))
34 # Plot decision boundary
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolors='k', s
     =50)
36 plt.xlabel('Feature 1')
37 plt.ylabel('Feature 2')
39 # Plot decision boundary
40 h = .02
x_{\min}, x_{\max} = X[:, 0].\min() - 1, X[:, 0].\max() + 1
y_{\min}, y_{\max} = X[:, 1].\min() - 1, X[:, 1].\max() + 1
43 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max
, h))
44 Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
45 Z = Z.reshape(xx.shape)
47 plt.contour(xx, yy, Z, cmap=plt.cm.Paired)
48 plt.title('Logistic Regression Decision Boundary')
49 plt.show()
```

Accuracy: 0.95

Confusion Matrix:

[[10 1] [0 9]]

Classification Report:

	precision	recall	fl-score	support
0	1.00	0.91	0.95	11
1	0.9	1.00	0.95	9
	0			
accuracy			0.95	20
macro avg	0.95	0.95	0.95	20
weighted avg	0.96	0.95	0.95	20

Figure 16.1: Logistic Regression Decision Boundary

Hierarchical Agglomerative Clustering

17.1 Objective

To implement Hierarchical Agglomerative Clustering and visualize the dendrogram.

17.2 Theory

Hierarchical clustering is a method of cluster analysis which seeks to build a hierarchy of clusters.

Figure 17.1: Hierarchical Clustering Dendrogram

Appendix

18.1 AdditionalResources

- Scikit-learn documentation: https://scikit-learn.org
- NumPy documentation: https://numpy.org/doc/
- Matplotlib documentation: https://matplotlib.org/stable/contents.html

18.2 References

- 1. Introduction to Machine Learning with Python by Andreas C. Mü¨ller and Sarah Guido
- 2. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by Auré´lien Gé´ron
- 3. Python Data Science Handbook by Jake VanderPlas

18.3 Github Repo Link: https://github.com/Mausam5055/Data-Science