Tutorial 4: (Complex Numbers)

For each of the following, find all the solutions and plot all the roots on an Argand diagram, in each case comment on the position of the roots.

a)
$$z^2 - 9 = 0$$

b)
$$z^2 + 4 = 0$$

c)
$$z^2 = -5 + 12i$$

d)
$$z^2 + 7 = 24i$$

e)
$$z^3 + 8i = 0$$

f)
$$z^3 + 27 = 0$$

g)
$$z^4 + 64 = 0$$

h)
$$z^4 - 4 = 0$$

Solve each of the following equations over C:

a)
$$z^2 + 36 = 0$$

b)
$$z^2 + 8 = 0$$

c)
$$z^2 + 6z + 58 = 0$$

d)
$$z^2 - 10z + 29 = 0$$

e)
$$z^2 - 2\sqrt{3}z + 7 = 0$$

f)
$$z^2 + 6z + 14 = 0$$

Form a quadratic with real coefficients having amongst its roots

b)
$$-2, 3$$

c)
$$-2 + 5i$$

d)
$$3 - 4i$$

e)
$$-\frac{1}{2}, \frac{3}{4}$$

f)
$$2 - \sqrt{7}i$$

4 Find the roots of each of the following

a)
$$z^3 + 3z^2 + 7z + 5 = 0$$

b)
$$z^3 + 3z^2 + 49z + 147 = 0$$

c)
$$z^3 + 6z^2 + 21z + 26 = 0$$

d)
$$z^3 - 8z^2 + 46z - 68 = 0$$

e)
$$z^4 - 7z^3 + 11z^2 + 123z = 0$$

f)
$$z^4 + 9z^3 + 49z^2 + 41z = 0$$

5 Form a cubic with real coefficients having amongst its roots

a)
$$-3, 2i$$

b)
$$2, -3i$$

c)
$$3, 2+3i$$

d)
$$-2$$
, $4-5i$

e)
$$\frac{3}{4}$$
, $-3 + 7i$

f)
$$-\frac{2}{3}$$
, $-5-2i$

6 Reduce the following to linear factors, hence solve

a)
$$z^4 - 3z^2 - 4 = 0$$

b)
$$z^4 - 5z^2 - 36 = 0$$

c)
$$z^4 - 9z^2 - 400 = 0$$

d)
$$z^4 + 13z^2 + 36 = 0$$

- 7 a) Find the value of a for ai is a root of the equation $z^4 2z^3 + 7z^2 4z + 10 = 0$
 - b) Show that -2+3i is a root of the equation $2z^4 + 3z^3 + 3z^2 + bz 39 = 0$ find the real number b and all the roots.

- Show that -3-2i is a root of the equation $z^4 + 2z^3 + cz^2 - 22z + 65 = 0$ find the real number c and all the roots.
- Show that 5-4i is a root of the equation $z^4 + dz^3 + 114z^2 - 376z + 533 = 0$ find the real number d and all the roots.

Answers

1 a)
$$\pm 3$$
 b) $\pm 2i$

$$\pm (2+3i)$$
 d) $\pm (3+4i)$

c)
$$\pm (2+3i)$$
 d) $\pm (3+4i)$
e) $\pm \sqrt{3}-i$, $2i$ f) $\frac{3}{2}(1\pm\sqrt{3}i)$, -3

g)
$$2(1 \pm i), -2(1 \pm i)$$
 h) $\pm \sqrt{2}, \pm \sqrt{2}i$

2 a)
$$\pm 6i$$
 b) $\pm 2\sqrt{2}i$ c) $-3 \pm 7i$

d)
$$5 \pm 2i$$
 e) $\sqrt{3} \pm 2i$ f) $-3 \pm \sqrt{5}i$

3 a)
$$z^2 + 4 = 0$$
 b) $z^2 - z - 6 = 0$ c) $z^2 + 4z + 29 = 0$
d) $z^2 - 6z + 25 = 0$ e) $8z^2 - 2z - 3 = 0$ f) $z^2 - 4z + 11 = 0$

d)
$$z^2 - 6z + 25 = 0$$
 e) $8z^2 - 2z - 3 = 0$ f) $z^2 - 4z + 11 = 0$

4 a)
$$-1, -1 \pm 2i$$
 b) $-3, \pm 7i$ c) $-2, -2 \pm 3i$

d)
$$2, 3 \pm 5i$$
 e) $0, -3, 5 \pm 4i$ f) $0, -1, -4 \pm 5i$

5 a)
$$z^3 + 3z^2 + 4z + 12 = 0$$
 b) $z^3 - 2z^2 + 9z - 18 = 0$

c)
$$z^3 - 7z^2 + 25z - 39 = 0$$
 d) $z^3 - 6z^2 + 25z + 82 = 0$

e)
$$4z^3 + 21z^2 + 214z - 174 = 0$$
 f) $3z^3 + 32z^2 + 107z + 58 = 0$

6 a)
$$\pm 2$$
, $\pm i$ b) ± 3 , $\pm 2i$ c) ± 5 , $\pm 4i$ d) $\pm 2i$, $\pm 3i$

7 a)
$$a = \sqrt{2} \pm \sqrt{2}i$$
, $1 \pm 2i$

b)
$$b = -77 \quad 3, -\frac{1}{2}, -2 \pm 3i$$

c)
$$c = -6 \quad 2 \pm i \quad , \quad -3 \pm 2i$$

d)
$$d = -16 \quad 5 \pm 4i$$
 , $3 \pm 2i$