BMED 2210

Fall 2015, Midterm II Instructor: G. Kwong Name: ANSWER KEY

This is a closed book exam. Paper notes are allowed as well as calculators. Show ALL work and express numeric answers using the correct number of significant figures. Reference tables are found on the last page of the exam.

Good luck!

Question #1	/25
(

$$\bar{\chi} = 52.2$$

1. [25 pts] Gas within a chamber undergoes the complete cycle shown in the PV diagram below. If the cycle is operated at 20 Hz, calculate the net heat added to the system in one hour.

2a. [18 pts] Two identical rectangular rods of metal are welded end to end as shown in (a), and 10 J of heat flows through the rods in 2.0 min. How long would it take 30 J to flow through the rods if they are welded as shown in (b)?

b. [7 pts] The heat that flows across the wet suit of a scuba diver may be modeled as a compound slab where T_2 is the core body temperature, L_2 is the average thickness of skin, L_1 is the thickness of the wet suit, and T₁ is the temperature of the ocean. Circle one equation that correctly expresses the outer surface temperature T_x of the skin (Hint: use reasoning, not math).

a.
$$T_{x} = \frac{R_{1}T_{1} + R_{2}T_{2}}{R_{1} + R_{2}}$$

c.
$$T_x = \frac{R_1 T_1 + R_2 T_2}{R_1 R_2}$$

b.
$$T_{x} = \frac{R_{1}T_{2} + R_{2}T_{1}}{R_{1} + R_{2}}$$
 d. $T_{x} = \frac{R_{1}T_{2} + R_{2}T_{1}}{R_{1}R_{2}}$

d.
$$T_x = \frac{R_1 T_2 + R_2 T_1}{R_1 R_2}$$

When R, = 0, then Tx = T, when R2 = 0, then Tx = T2

(b) circled 3/9 (cand d doesn't make sense when Re or Rz =0 Since dividing by (b) circled

3. [25 pts total] A cylinder has a well-fitted 2.0-kg metal piston whose cross-sectional area is 2.0 cm^2 . The cylinder contains water and steam at constant temperature. The piston is observed to fall slowly at a rate of 0.30 cm/s because heat flows out of the cylinder through the cylinder walls. As this happens, some steam condenses in the chamber. The density of the steam inside the chamber is $6.0 \times 10^{-4} \text{ g/cm}^3$ and the atmospheric pressure is 1.0 atm.

a. [10 pts] Calculate the rate of condensation of steam (Hint: What properties of the steam, which behaves like an ideal gas, are not changing?).

For the steam, we know that PV = nRT here the pressure is constant (since piston falls slowly, i.e. reversible process > Pint = Pext) and temperature is constant from the problem statement. $\frac{n}{V} = constant$ $\Rightarrow \left(\frac{n}{V}\right) = \frac{P}{RT} = constant \left(t \ge for noticing P and T are constant\right)$ since from = $\frac{M_{H_20} \, n_s}{V} = \frac{M_{H_20} \, n_s}{V} = M_{H_20} \left(\frac{m_s}{V}\right)$ then the fetern inside chamber is constant, during conversion to water. $\frac{dms}{dt} = -(6.0 \times 10^{-4} \text{ g/cm}^3)(2.0 \text{ cm}^2)(0.30 \text{ cm/s})$ = | - 3.6 × 10-4 g stem 4/9 +2 for correct answer

cans. of energy +5 for energy balance a. [15 pts] At what rate is heat leaving the chamber? Esys= water (steam DEsys = D-W work heat flowing out of system internal energy of steam / water $\Delta Esys = (heat of condensation)(\frac{dms}{dt})$ = (2256 kJ/kg)(-3.6×10-4 g/s)(\frac{1kg}{1000g}) = [-8.1 × 10-4 KJ/s] + 2 for AEGYS W = - PA & (volume contracting) - (1 atm + \(\frac{ma}{A}\))(A) \(\frac{dx}{dx}\) $= -\left(\frac{1.01 \times 10^{5} \text{ Pa}}{(2 \text{ cm}^{2}) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^{2}}\right) \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^{2} \left(\frac{0.003 \text{ m}}{5}\right)^{2}$ - (1.99 × 105 Pa) (6 × 10-7, m3/s) = [-0.12 J/s] (+4 for correct approach but wrong values) A Esys +W = (-8.1×10-4 kJ/s) -0.12 J/s = [-0.93 J/s] (i.e. vast majority of heat flow out is used to lower pisten)

4. [25 pts total] An industrial two-step process to make dry ice starts with the combustion of n-Butane with dry air (79.0% nitrogen and 21.0% oxygen by volume) to form $CO_2(g)$ in Process A, which is then converted to $CO_2(s)$ in a second Process B. n-Butane is fed at 10 kg per second and dry air at 200.0 kg per second, and n-Butane flows out at Process A at 1.2 kg per second. The standard heat of formation of dry ice is -427.4 kJ/mol. Both processes are conducted at 25°C.

a. [15 pts] Find the reaction rate R for Process A.

First balance staichiometry for the combustion process in A:

$$C_4 H_{10}(g) + \frac{13}{2}O_{2}(g) \longrightarrow 4CO_{2}(g) + 5H_{2}O_{(e)}$$

Find limiting reagent:

$$\min \left\{ \frac{M_{1,5}}{\sigma_{5}} \right\} \Rightarrow \text{ in lowtone} = \left(\frac{10,000}{5}\right) \left(\frac{1 \text{ mol}}{58 \text{ g/mol}}\right) = \frac{172.4 \text{ mol}}{5}$$

for $O_{2}(g)$, heed $W_{02} + 5$ for calculating W_{02}

$$\Rightarrow W_{02} = \frac{(0.21)(32 \text{ g/mol})}{(0.21)(32 \text{ g/mol})} + (0.74)(28 \text{ g/mol})$$

$$\Rightarrow m_{02} = W_{02} \frac{m_{\text{mir}}}{M_{02}} + \frac{M_{02}}{5} = \frac{(0.233)(200,000 \text{ kg})(\frac{1 \text{ mol} O_{2}}{32 \text{ g/mol}})}{\frac{32 \text{ g/mol}}{5}}$$

$$= \frac{1.46 \times 10^{3} \text{ mol}/5}{5} = 224$$

$$\left\{ \frac{m_{1,02}}{\sigma_{02}} \right\} = \frac{1.72.4 \text{ mol/s}}{13/2} = 172.4 \Rightarrow \text{ butane limiting reagent.}$$

$$\Rightarrow R = \frac{M_{1,\text{butane}}}{T_{\text{butane}}} - \frac{172.4 \text{ mol/s}}{5} = 172.4 \Rightarrow \frac{172.4 \text{ mol/s}}{5} = \frac{172.4$$

b. [10 pts] Determine the heat released into the environment every hour for the entire process.

Process A:
ΔHrxn = ΔHc₁butane R
=
$$(-2878.52 \text{ k-J/mol})$$
 (151.7 mol/s)
= $[-4.4 \times 10^5 \text{ k-J/s}]$ + $[-4.4 \times 10^5 \text{ k-J/mol}]$ + $[-4.4 \times 10^5 \text{ k-J/mol}]$ + $[-4.4 \times 10^5 \text{ k-J/mol}]$ + $[-4.4 \times 10^5 \text{ k-J/s}]$ + $[-4.4 \times 10^5 \text{ k-J/s}]$

Reference Tables

Factors for Unit Conversion

Quantity	Equivalent Values						
Mass	1 kg = 1000 g = 0.001 metric ton = 2.20462 lb _m = 35.27392 oz 1 lb _m = 16 oz = 5×10^{-4} ton = 453.593 g = 0.453593 kg						
Length	1 m = 100 cm = 1000 mm = 10^6 microns (μ m) = 39.37 in = 3.2808 ft = 1.0936 yd = 0.0006214 mile 1 ft = 12 in = $1/3$ yd = 0.3048 m = 30.48 cm						
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL}$ = 35.3145 ft ³ = 220.83 imperial gallons = 264.17 gal = 1056.68 qt						
	1 ft ³ = 1728 in ³ = 7.4805 gal = 0.028317 m ³ = 28.317 L = 28,317 cm ³						
Force	$1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 = 10^5 \text{ dynes} = 10^5 \text{ g} \cdot \text{cm/s}^2 = 0.22481 \text{ lb}_f$ $1 \text{ lb}_f = 32.174 \text{ lb}_m \cdot \text{ft/s}^2 = 4.4482 \text{ N} = 4.4482 \times 10^5 \text{ dynes}$						
Pressure	1 atm = 1.01325×10^{5} N/m ² (Pa) = 101.325 kPa = 1.01325 bar = 1.01325×10^{6} dynes/cm ² = 760 mmHg at 0°C (torr) = 10.333 m H ₂ O at 4°C = 14.696 lb _f /in ² (psi) = 33.9 ft H ₂ O at 4°C = 29.921 in Hg at 0°C						
Energy	1 J = 1 N·m = 10^7 ergs = 10^7 dyne·cm = 2.778×10^{-7} kW·hr = 0.23901 cal = 0.7376 ft-lb _f = 9.486×10^{-4} Btu						
Power	1 W = 1 J/s = 0.23901 cal/s = 0.7376 ft · lb _f /s = 9.486×10^{-4} Btu/s = 1.341×10^{-3} hp						

Example: The factor to convert grams to lb_m is $\bigg(\frac{2.20462\ lb_m}{1000\ g}\bigg)$

IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	Noble Gases
1 IH 1.00794												/	- The	Nonm	etals -		2 He 4.00260
3	4											5	6	7	8	9	10
Li 6.941	Be 9.01218											10.81	12.011	N 14.0067	15.9994	F 18.9984	Ne 20.1797
11	12											13	14	15	16	17	18
Na	Mg				- Tra	nsition	Elem	ents —				Al	Si	P	S	CI	Ar
22.98977	24.305	/										26.98154	28.0855	30.9738	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.88	50.9415	51.996	54.9380	~~~~~~~~	58.9332	58.69	63.546	65.39	69.72	72.59	74.9216	78.96	79,904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	100,0045	Xe
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.9055	106.42	107.8682	112.41	114.82	118.710		COOKE STANDARD CHOSE	126.9045 85	131.29 86
55	56	57*	72	73	74	75	76	77	78	79	80	81 Ti	82 Pb	83 B i	84 Po	At	Rn
Cs	Ba	La	Hf	Ta	W	Re	Os		Pt 105.00	Au 196.9665	Hg	204.383	207.2	208.9804		(210)	(~222)
132.9054	137.33	138.9055	178.49	180.9479	183.85	186.207	190.2	192.22	193.00	190,9003	200.39	204.303	207.2	200.7004	(209)	(210)	(~222)
87 Fr	88 Ra	89† Ac	104 Una	Unp	106 Unh												
(223)		227.0278	(261)	(262)	(263)												

Compound	Formula	Mol. wt.	State	$\Delta \hat{H}_{\mathrm{f}}^{\mathrm{o}}$ (kJ/g mol)	$\Delta \hat{H}_{c}^{\circ}$ (kJ/g mol)
n-Butane	C_4H_{10}	58.12	1	-147.6	-2855.6
Isobutane	C_4H_{10}	58.12	g	-124.73 -158,5	-2878.52 -2849.0
1-Butene	C_4H_8	56.104	g g	-134.5 1.172	-2868.8 -2718.58
Calcium arsenate	$Ca_3(AsO_4)_2$	398.06	c	-3330.5	=7.10.00
Calcium carbide	CaC ₂	64.10	C	-62.7	
Calcium carbonate	CaCO ₃	100.09	Ċ	-1206.9	
Calcium chloride	CaCl ₂	110.99	c	-794.9	
Calcium cyanamide	CaCN ₂	80.11	C	-352	
Calcium hydroxide	Ca(OH) ₂	74.10	c	-986.56	
Calcium oxide	CaO	56.08	C	-635.6	
Calcium phosphate	$Ca_3(PO_4)_2$	310.19	C	-4137.6	
Calcium silicate	CaSiO ₃	116.17	c	-1584	
Calcium sulfate	CaSO ₄	136.15	C	-1432.7	
C-1:			aq	-1450.5	
Calcium sulfate (gypsum)	CaSO ₄ · 2H ₂ O	172.18	c	-2021.1	
Carbon	C	12.01	c	0	-393.51
Carbon dioxide	CO ₂	Gr. 44.01	aphite (β)	-393.51	
Carbon disulfide	CS ₂	76.14	1	-412.92 87.86	-1075.2

TABLE 2	SOME HEATS OF TRANSFORMATION						
Substance ^a	Melting Point (K)	Heat of Fusion (kJ/kg)	Boiling Point (K)	Heat of Vaporization (kJ/kg)			
Hydrogen	14.0	58.6	20.3	452			
Oxygen	54.8	13.8	90.2	213			
Mercury	234	11.3	630	296			
Water	273	333	373	2256			
Lead	601	24.7	2013	858			
Silver	1235	105	2485	2336			
Copper	1356	205	2840	4730			