Lecture19: Digital CMOS circuits (2)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Review of last lecture

- Numeric calculation can be done with a binary system.
- Inverters and NAND gates are important.
- And, the NMOS inverter was introduced.

Noise margin

Verbatim

 "Noise margin is the maximum amount of degradation (noise) at the input that can be tolerated before the output is affected significantly."

Noise margin of CS stage

- Let's calculate NM_L .
 - In this case, (blue curve)

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})^2$$

- Taking the differentiation w. r. t. V_{in} ,

$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})$$

- At $V_{in} = NM_L$, the slope becomes -1,

$$NM_L = \frac{1}{\mu_n C_{ox} \frac{W}{L} R_D} + V_{TH}$$

- (Stronger NMOS yields a reduces NM_L .)

Common-source

- Common-source configuration
 - It can be used as an amplifier. The slope, $\frac{dV_{out}}{dV_{in}}$, is the voltage gain.
 - It can be also used as an inverter.

