(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平4-279690

(43)公開日 平成4年(1992)10月5日

(51) Int.Cl.⁵ C 0 9 K 5/00 識別記号 庁内整理番号 C 8930-4H 技術表示箇所

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号	特願平3-41872	(71)出願人	590000455
			財団法人石油産業活性化センター
(22)出願日	平成3年(1991)3月7日		東京都港区麻布台2丁目3番22号
		(71)出願人	000105567
			コスモ石油株式会社
			東京都港区芝浦1丁目1番1号
		(72)発明者	水谷 昇
			埼玉県草加市花栗4-20-3-101
		(72)発明者	金井 作信
			茨城県岩井市矢作3004-67
		(72)発明者	山田 重久
			埼玉県越谷市大沢2856-1 センチユリー
			マンシヨン嵯峨403号
		(74)代理人	弁理士 有賀 三幸 (外2名)

(54) 【発明の名称】 液冷式内燃機関用ロングライフクーラント組成物

(57)【要約】

【構成】 防錆剤およびヒドラジンを含有し、炭素数2~9のグリコールを主成分とする液冷式内燃機関用ロングライフクーラント組成物。

【効果】 この液冷式内燃機関用ロングライフクーラント組成物は高温条件で使用しても長時間安定であり、優れた耐熱性および耐食性を有し、ディーゼル機関等の内燃機関に使用される冷却液のクーラントとして極めて有用である。

1

【特許請求の範囲】

【請求項1】 防錆剤およびヒドラジンを含有し、炭素 数2~9のグリコールを主成分とする液冷式内燃機関用 ロングライフクーラント組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ディーゼル機関等の内 燃機関の液冷式冷却装置に使用される、優れた耐熱性及 び耐食性を有する液冷式内燃機関用ロングライフクーラ ント組成物(以下「LLC」という)に関する。

[0002]

【従来の技術および発明が解決しようとする課題】近 年、省エネルギーを目的として様々なトータルエネルギ ーシステムの開発が盛んに行われている。例えば、ディ ーゼル機関等の内燃機関においては、高温になった冷却 液の熱を他の熱源に利用している。この場合、冷却装置 としてはエネルギー効率の向上を目的として、通常従来 の開放循環式に代えて、密閉循環式の冷却装置が使用さ れ、また冷却液の温度も約 100~130 ℃の高温で使用さ れることがある。従って、一般にこの高温の冷却液によ 20 る冷却装置の防食を目的として種々の防錆剤が添加され ているが、使用温度が高温であるため防錆剤の熱劣化あ るいは酸化劣化が発生し、冷却液の色相悪化、スラッジ 生成および防錆能力低下等の問題が生じている。また、 この問題を解決することを目的として、耐熱性の防錆剤 およびそれを含有するLLC 等の開発もなされてきたが、 未だ十分満足し得るものは得られていなかった。

【0003】従って、本発明は約100~130℃の高温条 件で使用しても長時間安定で、耐熱性および耐食性に優 れたLLC を開発することを課題とする。

[0004]

【課題を解決するための手段】斯かる実情において、本 発明者らは前記課題を解決すべく鋭意検討した結果、防 **錆剤およびヒドラジンを含有し、炭素数2~9のグリコ** ールを主成分とするクーラント組成物が高温条件下で使 用しても長期間安定で、耐熱性および耐食性に優れるこ とを見出し本発明を完成した。

【0005】すなわち、本発明は防錆剤およびヒドラジ ンを含有し、炭素数2~9のグリコールを主成分とする LLC を提供するものである。

【0006】本発明に用いられる防錆剤は、通常の内燃 機関用冷却液の防錆剤として使用できるものであれば、 いずれをも使用することができ、例えばメルカプトベン ゾチアゾール、メチルベンゾトリアゾール、アルキルイ ミダゾリン、ジエタノールアミン、安息香酸ソーダおよ びそれらの混合物等を挙げることができる。斯かる防錆 剤の、本発明LLC 全量中の配合割合は、使用する防錆剤 の種類によって異なるが、一般的には約 0.1~7重量% (以下単に「%」と称する)であり、特に約0.5~6%

十分得られず、また7%を超えても著しい防錆効果の向 上は見られない。

【0007】また、本発明に用いられるヒドラジンは、 前述の防錆剤が、高温下で熱劣化あるいは酸化劣化する のを防止し、耐食性の向上を目的として添加するもので ある。ヒドラジンの本発明LLC 全量中の配合割合は、約 0.001~1%、特に約0.01~0.05%が好ましい。配合割 合が 0.001%未満であると防錆剤の劣化防止効果が十分 得られず、また1%を超えても著しい劣化防止効果の向 10 上は見られない。

【0008】更に、本発明のLLCの主成分である炭素数 2~9のグリコールは、内燃機関を停止し、冷却液が低 温となった場合の凍結防止を目的とする凍結防止剤とし て使用されるもので、具体的にはエチレングリコール、 ジエチレングリコール、トリエチレングリコール、プロ ピレングリコール、ジプロピレングリコール、トリプロ ピレングリコール等を挙げることができる。斯かるグリ コールの本発明LLC 全量中における配合割合は約90~9 9.899%が好ましい。

【0009】本発明のLLCは、通常のクーラント組成物 と同様、上述の各成分を混合することにより得ることが できる。

【0010】斯くして得られた本発明のLLC をディーゼ ル機関等の冷却液(通常は水が用いられる。)に用いる 場合、単に本発明のLLC を冷却液中に添加すればよい。 その添加量は通常の不凍液の添加量と同程度でよく、一 般に冷却液全量中、約10~50%であり、特に約20~40% が好ましい。

【0011】本発明のLLCは、約100~130℃の高温条 30 件下で使用しても長時間安定で、優れた耐熱性および耐 食性を有しているが、これはヒドラジンの添加により高 温下における防錆剤の熱劣化あるいは酸化劣化を防止で きるとともにヒドラジン自体が防錆剤として作用してい るためと考えられる。

[0012]

【発明の効果】本発明のLLC は高温条件で使用しても長 時間安定であり、優れた耐熱性および耐食性を有し、デ ィーゼル機関等の内燃機関に使用される冷却液のクーラ ントとして極めて有用である。

40 [0013]

【実施例】以下、実施例により本発明を更に詳細に説明 するが、本発明はこれら実施例によって何ら限定される ものではない。

【0014】実施例1

表1に示す組成のLLC 各々120cc を水道水280cc に添加 した水溶液を用いて、温度 120℃にて、空気吹き込みを 行わず加圧密閉系とし、サンプル充填率を40%、試験時 間を 336時間とした以外はJIS K-2234に示す金属腐食性 試験法に従って、スラッジ量の測定および試験後の色相 が好ましい。配合割合が 0.1%未満であると防錆効果が 50 の目視判定を行うことにより、耐食性能の評価を行っ

(3)

特開平4-279690

3

た。その結果を表2に示す。

[0015]

【表1】

(配合量:%)

組成物No		*	英	発 明 品	-			=	北	田		
聚 谷		2	က	4	52	9		2	က	4	5	9
メルカプトペンプチTゾール		ന		3		9				3		9
アルキルイミダゾリン	m		60		9				3		9	
ヒドラジン	0.03	0.03	0.02	0.03 0.03 0.05 0.05 0.03 0.03	0.03	0.03		0.5				
エチレングリコール	96.97	96. 97	96.95	96.97 96.97 96.95 96.95 93.97 93.97 100 99.5	93.97	93. 97	100	99.5	97	97	94	94
		1										

【0016】 【表2】

10

20

30

40

6

5

組成物Na	スラッジ量 (ppm)	試験後の式相
本発明品1	70	淡黄色
本発明品 2	80	淡黄色
本発明品3	30	透明
本発明品 4	40	透明
本発明品 5	60	淡黄色
本発明品 6	70	淡黄色
比較品1	280	茶
比較品 2	270	濃黄
比較品3	250	濃 黄
比較品 4	350	茶
比較品 5	220	濃 黄
比較品 6	300	茶

【0017】表2の結果から明らかな如く、本発明品を 用いた場合の方が比較品を用いた場合よりもスラッジ発 生量および色相の変化が少ない。このことより本発明の LLCは、 120℃の高温で長期間使用しても安定で、耐熱性および耐防食性に優れていることがわかる。