1 Explicit parts of Lindhard function

We want to find the explicit real and imaginary parts of the Lindhard function. To begin with, we can start with the case where $\nu \to 0$, which means long relaxation times.

We have our Lindhard form

$$\epsilon_l = 1 + \frac{3\omega_p^2}{k^2 v_F^2} \frac{(\omega + i\nu) f_l((\omega + i\nu)/k v_f)}{\omega + i\nu f_l((\omega + i\nu)/k v_f)},$$
(1)

where

$$f_l(x) = 1 - \frac{x}{2} \ln \frac{x+1}{x-1}.$$
 (2)

1.1 Pines result

From Pines, we have the forms

$$\operatorname{Re}[\epsilon_{l}] = 1 + \frac{k_{TF}^{2}}{k^{2}} \left(\frac{1}{2} + \frac{k_{F}}{4k} \left[\left(1 - \frac{\left(\omega - \frac{\hbar k^{2}}{2m}\right)^{2}}{k^{2}v_{F}^{2}} \right) \ln \left[\frac{\omega - kv_{F} - \frac{\hbar k^{2}}{2m}}{\omega + kv_{F} - \frac{\hbar k^{2}}{2m}} \right] + \left(1 - \frac{\left(\omega + \frac{\hbar k^{2}}{2m}\right)^{2}}{k^{2}v_{F}^{2}} \right) \ln \left[\frac{\omega + kv_{F} + \frac{\hbar k^{2}}{2m}}{\omega - kv_{F} + \frac{\hbar k^{2}}{2m}} \right] \right)$$

$$(3)$$

$$\operatorname{Im}[\epsilon_{l}] = \begin{cases} \frac{\pi}{2} \frac{\omega}{k v_{F}} \frac{k_{TF}^{2}}{k^{2}}, & \omega \leq k v_{F} - \frac{\hbar k^{2}}{2m} \\ \frac{\pi}{4} \frac{k_{F}}{k} \left(1 - \frac{\left(\omega - \frac{\hbar k^{2}}{2m}\right)^{2}}{k^{2} v_{F}^{2}} \right) \frac{k_{TF}^{2}}{k^{2}}, & k v_{F} - \frac{\hbar k^{2}}{2m} \leq \omega \leq k v_{F} + \frac{\hbar k^{2}}{2m} \\ 0, & \omega \geq k v_{F} + \frac{\hbar k^{2}}{2m} \end{cases}$$

$$(4)$$

1.2 Long relaxation time forms of the logs

In order to analyse the $\nu \to 0$ limit, we can start by looking at what happens to the logarithms in the Lindhard function:

$$\ln \frac{\omega + i\nu + kv_F}{\omega + i\nu - kv_F} \tag{5}$$

The first thing to note is that the numerator will always have a very small, positive argument, while the denominator will have a small argument which may be positive or negative. As Lindhard mentions, these logarithms should all have imaginary parts between $\pm i\pi$. This effectively means we can treat each logarithm as giving the principal value, which give us a result that looks like

$$\ln \frac{\sqrt{(\omega + kv_F)^2 + \nu^2}}{\sqrt{(\omega - kv_F)^2 + \nu^2}} + i(\theta_+ - \theta_-), \qquad (6)$$

where θ_+ and θ_- are the arguments of the numerator and denominator. For small ν , θ_+ is proportional to ν , as it'll be determined by an arcsine. However, the denominator may be negative, which would contribute a factor of $\theta_- = +i\pi$ (with a plus sign because ν would be just above the real line).

$$\ln \frac{\omega + i\nu + kv_F}{\omega + i\nu - kv_F} = \ln \frac{\sqrt{(\omega + kv_F)^2 + \nu^2}}{\sqrt{(\omega - kv_F)^2 + \nu^2}} + i(\theta_+ - \theta_-)$$
 (7)

$$= \ln \frac{\sqrt{(\omega + kv_F)^2}}{\sqrt{(\omega - kv_F)^2}} - \sigma i\pi \tag{8}$$

$$= \ln \left| \frac{\omega + kv_F}{\omega - kv_F} \right| - \sigma i\pi, \tag{9}$$

where $\sigma = 1$ if $\omega < kv_F$, and 0 otherwise.

1.3 Taking long scattering time limit

To make our constants line up with the Pines form, we'll use the definition $k_{TF}^2 = \frac{3\omega_p^2}{v_F^2}$, giving us

$$\epsilon_l = 1 + \frac{k_{TF}^2}{k^2} \frac{(\omega + i\nu) f_l((\omega + i\nu)/kv_f)}{\omega + i\nu f_l((\omega + i\nu)/kv_f)},$$
(10)

We can't simply set $\nu = 0$, as we need to respect the relation

$$\frac{1}{x+i\delta} = \frac{1}{x} - i\pi\delta(x) \tag{11}$$

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{\left(\omega + i\nu\right) \left(1 - \frac{\omega + i\nu}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}{\omega + i\nu\left(1 - \frac{\omega + i\nu}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}.$$
(12)

We can eliminate all the terms proportional to ν in the numerator, as they will disappear as we take our limit:

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{(\omega + i\nu) \left(1 - \frac{\omega + i\nu}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}{\omega + i\nu \left(1 - \frac{\omega + i\nu}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}$$
(13)

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{\omega \left(1 - \frac{\omega}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}{\omega + i\nu \left(1 - \frac{\omega + i\nu}{2kv_{F}} \left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}$$
(14)

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{\omega}{2kv_{F}} \frac{2kv_{F} - \omega \ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| + i\omega\pi\sigma}{\omega + i\nu\left(1 - \frac{\omega + i\nu}{2kv_{F}}\left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}$$
(15)

We can now look at just the denominator:

$$= \omega + i\nu \left(1 - \frac{\omega + i\nu}{2kv_F} \left(\ln \left| \frac{\omega + kv_F}{\omega - kv_F} \right| - \sigma i\pi \right) \right)$$
 (16)

$$= \omega + i\nu - i\nu \frac{\omega + i\nu}{2kv_F} \left(\ln \left| \frac{\omega + kv_F}{\omega - kv_F} \right| - \sigma i\pi \right)$$
 (17)

$$= \omega + i\nu + \frac{\nu^2 - i\nu\omega}{2kv_F} \left(\ln \left| \frac{\omega + kv_F}{\omega - kv_F} \right| - \sigma i\pi \right)$$
 (18)

$$=\omega + \frac{\nu^2}{2kv_F}L - \frac{\nu\omega\pi\sigma}{2kv_F} + i\nu - i\frac{\nu\omega}{2kv_F}L - i\frac{\nu^2\sigma\pi}{2kv_F},\tag{19}$$

where $L = \ln \left| \frac{\omega + kv_F}{\omega - kv_F} \right|$. We can notice here that all the imaginary terms are proportional to ν . We can ignore the ν^2 term, as it will go to zero faster than the other terms. We can see that we essentially have two regimes: if $\omega < 2kv_F$, this will have a positive imaginary part, and if $\omega > 2kv_F$, the imaginary part will be negative.

We can also notice that the only real part that will survive the limiting process is simply ω (which is of course clear from the original form of the denominator anyway). This lets us essentially write the denominator as

$$\omega + i\nu\zeta C,\tag{20}$$

where I'm defining ζ as 1 if $\omega < 2kv_F$, and -1 otherwise. We also can note that C is an irrelevant positive constant; when we take the long scattering time limit, all that matters is that the imaginary part is proportional to ν .

Plugging this back into (15) gives us

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{\omega}{2kv_{F}} \frac{2kv_{F} - \omega \ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| + i\omega\pi\sigma}{\omega + i\nu\left(1 - \frac{\omega + i\nu}{2kv_{F}}\left(\ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| - \sigma i\pi\right)\right)}$$
(21)

$$\epsilon_{l} = 1 + \frac{k_{TF}^{2}}{k^{2}} \frac{\omega}{2kv_{F}} \frac{2kv_{F} - \omega \ln\left|\frac{\omega + kv_{F}}{\omega - kv_{F}}\right| + i\omega\pi\sigma}{\omega + i\nu\zeta C}$$
(22)

$$=1+\frac{k_{TF}^{2}}{k^{2}}\frac{\omega}{2kv_{F}}\left(2kv_{F}-\omega\ln\left|\frac{\omega+kv_{F}}{\omega-kv_{F}}\right|+i\omega\pi\sigma\right)\left(\frac{1}{\omega}-i\pi\zeta\delta(\omega)\right)$$
(23)

$$=1+\frac{k_{TF}^{2}}{k^{2}}\frac{\omega}{2kv_{F}}\left(\frac{2kv_{F}}{\omega}-L+i\pi\sigma-i\pi\zeta2kv_{F}\delta(\omega)+(iL\zeta+\sigma\zeta)\pi\omega\delta(\omega)\right)$$
(24)

We can eliminate the terms proportional to $\omega\delta(\omega)$:

$$\epsilon_l = 1 + \frac{k_{TF}^2}{k^2} \frac{\omega}{2kv_F} \left(\frac{2kv_F}{\omega} - L + i\pi\sigma - i\pi\zeta 2kv_F \delta(\omega) \right)$$
 (25)

$$=1+\frac{k_{TF}^{2}}{k^{2}}\left(1-\frac{\omega}{2kv_{F}}L+\frac{\omega}{2kv_{F}}i\pi\sigma-i\pi\zeta\omega\delta(\omega)\right) \tag{26}$$

$$=1+\frac{k_{TF}^{2}}{k^{2}}\left(1-\frac{\omega}{2kv_{F}}L+\frac{\omega}{2kv_{F}}i\pi\sigma\right) \tag{27}$$