倒立振子の安定化制御

前田 拓

2017年7月12日

目 次

第1章	はじめに	3
1.1	目的	3
1.2	実験装置	3
第2章	モデリング	5
2.1	数式モデル	5
第3章	制御系設計	7
第4章	シミュレーション	9
第5章	実験	11
第6章	おわりに	13

図目次

1.1	図 1.1: 倒立振子系	 													4
2.1	図??	 													5

表目次

第1章 はじめに

1.1 目的

本実験の目的は、倒立振子系を状態空間表現を用いて安定化制御し、線形不変システムを設計することである。具体的に、次のことを目的とする。

- 倒立振子が安定化制御を行っている状態において、外乱による影響で振子が傾いたとき、倒立状態に戻すことができる(不安定平衡点の安定化)。
- 倒立振子系に一定周期のパルス入力を与え、台車を目的の変位へ移動させる。
- 倒立振子が入力なしで静止している状態から、台車を動かすことにより振子を振り上げ、倒立状態にする(振り上げ制御)。

1.2 実験装置

図 1.1 は本実験で使用する倒立振子系である。系は、モータ、ベルト、プーリ系から成り、台車はモータからの入力によりベルト上を水平方向に動くことができる。台車の初期状態からの変位をrとする。また、鉛直方向上向きから時計回りを正の方向として、台車に取り付けられた振子が回転した角度を θ とする。ポテンショメータにより、rと θ を測定し、入力uを与える。

第1章 はじめに

図 1.1: 倒立振子系

第2章 モデリング

2.1 数式モデル

制御器の設計のため、倒立振子系の状態方程式、観測方程式から数式モデルを導出する。 図 2.1 から導出した倒立振子系の運動方程式を式に示す.

図??

第3章 制御系設計

第4章 シミュレーション

第5章 実験

第6章 おわりに