TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2018/19

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozent: W. König

Assistent: A. Schmeding Abgabe: 10.-14.12.2018

8. Übung Analysis III für Mathematiker(innen)

(Lebesgue-Messbarkeit, σ -Algebren)

Themen der großen Übung am 03.12.

Sei Ω eine Menge und $\{A_n\}_{n\in\mathbb{N}}\subseteq\mathcal{P}(\Omega)$. Dann betrachten wir die Mengen

$$\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \quad \text{und} \quad \liminf_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Wir werden sehen

- (i) $\limsup_{n\to\infty} A_n = \{\omega \in \Omega \mid \omega \text{ liegt in unendlich vielen } A_n\},\ \lim\inf_{n\to\infty} A_n = \{\omega \in \Omega \mid \omega \text{ liegt in fast allen } A_n\}.$
- (ii) $\limsup_{n\to\infty} (A_n\cap B_n) \subseteq (\limsup_{n\to\infty} A_n) \cap (\limsup_{n\to\infty} B_n)$, und im Allgemeinen gilt hier nicht Gleichheit.

Wir berechnen dann $\limsup_{n\to\infty} A_n$ für $A_n := \begin{cases} (-\frac{1}{n},1], & n \text{ ungerade,} \\ (-1,\frac{1}{n}], & n \text{ gerade.} \end{cases}$

Wir untersuchen $\mathbb{Q}^2 \cap E$ und $E \setminus \mathbb{Q}^2$ auf Lebesgue-Messbarkeit und berechnen ggf. ihr Lebesgue-Maß.

Für Lebesgue-messbare Mengen $A, B \subseteq \mathbb{R}^2$ zeigen wir

$$\lambda(A \cup B) + \lambda(A \cap B) = \lambda(A) + \lambda(B).$$

Tutoriumsvorschläge

22. Aufgabe

Sei $A \in \mathcal{F}_E$ eine Lebesgue-messbare Teilmenge des Einheitsquadrats $E = [0,1]^2$ mit $\lambda_E(A) = 0$. Zeigen Sie, dass dann auch jede Teilmenge $B \subseteq A$ Lebesgue-messbar ist mit $\lambda_E(B) = 0$. Folgern Sie, dass das Lebesgue Maß λ auf $(\mathbb{R}^2, \mathcal{F})$ vollständig ist, d.h. dass jede Teilmenge $M \subseteq N$ einer Lebesgue-messbaren Menge $N \in \mathcal{F}$ mit $\lambda(N) = 0$ Lebesgue-messbar ist mit $\lambda(M) = 0$.

Hinweis: In Aufgabe 27 (i) werden Sie zeigen, dass jede Menge N mit $\lambda_E^*(N) = 0$ Lebesguemessbar ist.

23. Aufgabe

Wie viele Elemente muss eine Teilmenge $\mathcal{A} \subseteq \mathcal{P}(\{1,2,3,4\})$ haben, damit die von ihr erzeugte σ -Algebra mit $\mathcal{P}(\{1,2,3,4\})$ übereinstimmt?

24. Aufgabe

Wir betrachten die Borel- σ -Algebra \mathcal{B} auf \mathbb{R} , welche von den offenen Teilmengen von \mathbb{R} erzeugt wird. Die Elemente von \mathcal{B} nennt man auch Borelmengen.

- (i) Zeigen Sie, dass jede abzählbare Teilmenge A von \mathbb{R} eine Borelmenge ist.
- (ii) Zeigen Sie, dass die folgenden Mengen Erzeuger der Borel- σ -Algebra sind

$$I_a := \{(a, b): -\infty \le a < b \le \infty\}$$
 und $I_a := \{(-\infty, t]: t \in \mathbb{Q}\}.$

Hausaufgaben

27. Aufgabe (5 Punkte)

Eine Menge $N\subseteq E=[0,1]^2$ mit $\lambda_E^*(N)=0$ heißt (Lebesgue-)Nullmenge. Zeigen Sie Folgendes.

- (i) Jede Nullmenge ist Lebesgue-messbar.
- (ii) Jede abzählbare Vereinigung von Nullmengen ist eine Nullmenge.
- (iii) Überabzählbare Vereinigungen von Nullmengen sind im Allgemeinen keine Nullmengen.
- (iv) Jede abzählbare Teilmenge von E ist eine Nullmenge.
- (v) Die Verbindungsstrecke von zwei beliebigen Punkten aus E ist eine Nullmenge.

Äußeres Maß auf \mathbb{R}^2 : In Aufgabe 28 verwenden wir das äußere Maß $\lambda^* \colon \mathcal{P}(\mathbb{R}^2) \to [0, \infty]$, welches definiert ist durch

$$\lambda^*(A) := \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^*(A \cap E_{i,j}) = \sum_{i,j \in \mathbb{Z}} \lambda_{i,j}^*(A \cap E_{i,j}^0),$$

wobei wir an $E_{i,j} = [i, i+1] \times [j, j+1]$ und $E_{i,j}^0 = [i, i+1) \times [j, j+1)$ erinnern. Machen Sie sich klar, dass auch das Analogon von (2.1.5) aus dem Skript gilt, d.h. dass gilt:

$$\lambda^*(A) = \inf \Big\{ \sum_{n \in \mathbb{N}} \lambda(R_n) \colon R_n \in \mathcal{R} \ \forall n \in \mathbb{N}, A \subset \bigcup_{n \in \mathbb{N}} R_n \Big\}.$$

Hierbei definieren wir inf $\{\infty\} = \infty$; außerdem benutzen wir die Regel $\infty + \infty = \infty$.

28. Aufgabe (6 Punkte)

Zeigen Sie die Translationsinvarianz des Lebesgue-Maßes auf dem \mathbb{R}^2 : Für eine Menge $A \subseteq \mathbb{R}^2$ und ein $x \in \mathbb{R}^2$ sei $A + x := \{a + x : a \in A\}$ die Verschiebung von A um x.

- (i) Zeigen Sie, dass für jede Menge $A \subseteq \mathbb{R}^2$ und jedes $x \in \mathbb{R}^2$ gilt: $\lambda^*(A) = \lambda^*(A+x)$.
- (ii) Zeigen Sie, dass für jede Lebesgue-messbare Menge $A \subseteq \mathbb{R}^2$ und jedes $x \in \mathbb{R}^2$ die Menge A + x ebenfalls Lebesgue-messbar ist und dass gilt $\lambda(A) = \lambda(A + x)$.

29. Aufgabe (4 Punkte)

Seien $\Omega, \widetilde{\Omega}$ beliebige Mengen und sei $f: \Omega \to \widetilde{\Omega}$. Beweisen oder widerlegen Sie:

- (i) Ist $\widetilde{\mathcal{F}}$ eine σ -Algebra über $\widetilde{\Omega}$, so ist $f^{-1}(\widetilde{\mathcal{F}}) := \{f^{-1}(A) \colon A \in \widetilde{\mathcal{F}}\}$ eine σ -Algebra über Ω .
- (ii) Ist \mathcal{F} eine σ -Algebra über Ω , so ist $f(\mathcal{F}) := \{f(A) : A \in \mathcal{F}\}$ eine σ -Algebra über $\widetilde{\Omega}$.

30. Aufgabe (5 Punkte)

Zeigen Sie, dass jede σ -Algebra entweder endlich viele oder bereits überabzählbar viele Elemente enthalten muss. Sei dazu $\mathcal{F} = (F_n)_{n \in \mathbb{N}}$ eine abzählbare σ -Algebra auf einer Menge X.

- (i) Sei $x \in X$ und $M_x := \bigcap_{F \in \mathcal{F}: x \in F} F$. Zeigen Sie, dass $M_x \in \mathcal{F}$ gilt und dass für $x, y \in X$ gelten muss $M_x \cap M_y = \emptyset$ oder $M_x = M_y$.
- (ii) Zeigen Sie, dass \mathcal{F} endlich viele Elemente enthält oder andernfalls nicht abzählbar ist.

Gesamtpunktzahl: 20