Project 3 (0.2 points)

- Input: non-zero natural number n
- Output:
 - 1. the number of bases of the vector space \mathbb{Z}_2^n over \mathbb{Z}_2
 - 2. the vectors of each such basis (for $n \leq 4$)

Example: The vector space \mathbb{Z}_2^2 over \mathbb{Z}_2 has 4 vectors, namely (0,0),(0,1),(1,0),(1,1). Its dimension is 2, so every basis has two vectors. The first vector v_1 may be chosen in 3 ways $(v_1 \neq 0)$, while the second vector v_2 may be chosen in 2 ways $(v_2 \neq (0,0))$ and v_2 different of any linear combination of other non-zero vectors, which in this case means $v_2 \neq v_1$. Hence there are $3 \cdot 2 = 6$ bases.

- Input: n=2
- Output:
 - 1. the number of bases of the vector space \mathbb{Z}_2^2 over \mathbb{Z}_2 is 6
 - 2. the vectors of each such basis are:

$$\begin{array}{c} ((0,1),(1,0)) \\ ((0,1),(1,1)) \\ ((1,0),(0,1)) \end{array} \qquad \qquad \begin{array}{c} ((1,0),(1,1)) \\ ((1,1),(0,1)) \\ ((1,1),(1,0)) \end{array}$$