Assignment - I

Name: Gavali Deshabhakt Nagnath

Subject: Machine Learning

Specialization: Computational and Data Sciences

Notherestical and Computational

Department: Mathematical and Computational

Sciences

Course Instructor: Dr. Jidesh P.

Data: 14/04/2021

Q1. Write codes to perform, LU, LDU, QR, and SV Decomposition.

A. LU - Decomposition:

A = np.array([

```
Program:
import numpy as np
import copy
def inputMatrix():
                             # Function to take matrix input from user
  print("Enter the size of matrix: ")
  n= int(input())
  A = np.zeros((n,n),dtype=float)
  print("Now enter elements of matrix 'A':")
  for i in range(n):
     print("Enter elements for row:",i+1)
     for j in range(n):
       A[i][j]=int(input())
  return A
def printMatrix(V):
                       # Function to print Matrix
  for i in range(n):
     for j in range(n):
       print(f'{V[i][j]:15.08f}', end="")
     print()
  print()
def LUDecomposition(A): #LU-Decomposition function definition
  n = len(A)
  L= np.zeros((n,n),dtype=float)
  for i in range(len(L)):
     L[i][i]=1
  U = copy.copy(A) # copying matrix A into U
  for i in range(0,n-1):
     for j in range(i+1,n):
       L[j][i] = (U[j][i]/U[i][i])
       U[i][:]=U[i][:]-L[i][i]*U[i][:]
  return L,U
# Default input
n = 3
```

```
[1,2,4],
     [3,8,14],
     [2,6,13]
  1)
  # Uncomment below line to take input from user
  # A = inputMatrix()
  # Calling Function of matrix A
  L,U = LUDecomposition(A)
  # Printing Results
  print("A = ")
  printMatrix(A)
  print("L = ")
  printMatrix(L)
  print("U = ")
  printMatrix(U)
  Output:
  A =
     1.00000000
                    2.00000000
                                    4.00000000
     3.00000000
                    8.00000000
                                   14.00000000
     2.00000000
                    6.00000000
                                   13.00000000
  L =
     1.00000000
                    0.00000000
                                    0.00000000
     3.00000000
                    1.00000000
                                    0.00000000
     2.00000000
                    1.00000000
                                    1.00000000
  U=
     1.00000000
                    2.00000000
                                    4.00000000
     0.00000000
                    2.00000000
                                    2.00000000
     0.00000000
                    0.00000000
                                    3.00000000
B. LDU – Decomposition
  Program:
  import numpy as np
  import copy
  def inputMatrix():
                              # Function to take matrix input from user
     print("Enter the size of matrix: ")
     n= int(input())
    A = np.zeros((n,n),dtype=float)
    print("Now enter elements of matrix 'A':")
```

```
for i in range(n):
     print("Enter elements for row:",i+1)
     for j in range(n):
       A[i][j]=int(input())
  return A
def printMatrix(V):
                             # Function to print matrix
  for i in range(n):
     for j in range(n):
       print(f'{V[i][j]:15.08f}', end=" ")
     print()
  print()
def LUDecomposition(A):
                                     # LDU – Decomposition Function Definition
  n = len(A)
  L = np.zeros((n,n),dtype=float)
  D = np.zeros((n,n),dtype=float)
  for i in range(len(L)):
     L[i][i]=1
  U = copy.copy(A) # copying matrix A into U
  for i in range(0,n-1):
     for j in range(i+1,n):
       L[i][i] = (U[i][i]/U[i][i])
       U[j][:]=U[j][:]-L[j][i]*U[i][:]
  for i in range(n):
     if(U[i][i]!=0):
       D[i][i] = copy.copy(U[i][i])
       U[i,:] = copy.copy(U[i,:]/U[i][i])
  return L,D,U
# Default Input
n = 3
A = np.array([
  [1,2,4],
  [3,8,14],
  [2,6,13]
1)
```

```
# Calling LDU decomposition function
  L, D, U = LUDecomposition(A)
  print("A = ")
  printMatrix(A)
  print("L = ")
  printMatrix(L)
  print("D = ")
  printMatrix(D)
  print("U = ")
  printMatrix(U)
  Output:
  A =
     1.00000000
                    2.00000000
                                   4.00000000
     3.00000000
                    8.00000000
                                  14.00000000
     2.00000000
                    6.00000000
                                  13.00000000
  L =
     1.00000000
                    0.00000000
                                   0.00000000
     3.00000000
                    1.00000000
                                   0.00000000
     2.00000000
                    1.00000000
                                   1.00000000
  D =
     1.00000000
                    0.00000000
                                   0.00000000
     0.00000000
                    2.00000000
                                   0.00000000
     0.00000000
                    0.00000000
                                   3.00000000
  U=
     1.00000000
                    2.00000000
                                   4.00000000
     0.00000000
                    1.00000000
                                   1.00000000
     0.00000000
                    0.00000000
                                   1.00000000
C. QR – Decomposition
  Program:
  import numpy as np
  def matrixInput():
    m = int(input("Enter row size :"))
    n = int(input("Enter column size :"))
    A = np.zeros((m,n), dtype=float)
```

```
print("Enter elements of matrix: ")
  for i in range(m):
    for j in range(n):
       A[i][j] = float(input())
  return A
def Normalize(v):
  sum = 0.0
  for i in v:
    sum+=i**2
  v=v/(sum**0.5)
  return v
def QRDecomp(A):
  n = len(A[0]) # Columns/Vectors
  m = len(A) # Rows/Components
  q = []
  q.append(Normalize(A[:,0].reshape(m,1)))
  for i in range(1,n):
    vec = A[:,i].astype('float64').reshape(m,1)
    temp = np.zeros((m,1),dtype=float)
    for j in range(i):
       multiplier = (((vec.transpose()).dot((q[j]))))/(q[j].transpose().dot(q[j]))
       temp -= (multiplier)*q[j]
    vec = vec + temp
    normalizedvec = Normalize(vec)
    q.append(normalizedvec)
  Q = np.array(q).transpose().reshape(m,n) # typecasting python list to numpy array and taking
np.array's transpose
  # Calculating R
  R = np.zeros((n,n))
  for i in range(n):
    for j in range(n):
       if i<=j:
          R[i][j] = A[:,j].transpose().dot(Q[:,i])
  return Q,R
```

```
def printMatrix(V):
  m = len(V)
  n = len(V[0])
  for i in range(m):
    for j in range(n):
         print(f'{V[i][j]:10.05f}', end=" ")
    print()
  print()
# Default Input
A = np.array(((
  (1, -1, 4),
  (1, 4, -2),
  (1, 4, 2),
  (1, -1, 0)
)))
# Uncomment following lines for custom input
# A = matrixInput()
# Calling QR-decomposition function
Q,R = QRDecomp(A)
print("A = ")
printMatrix(A)
print("Q =")
printMatrix(Q)
print("R =")
printMatrix(R)
Output:
A =
 1.00000
            -1.00000
                       4.00000
  1.00000
            4.00000 -2.00000
  1.00000
            4.00000
                       2.00000
  1.00000
           -1.00000
                       0.00000
Q =
 0.50000
           -0.50000
                       0.50000
 0.50000
            0.50000
                      -0.50000
 0.50000
            0.50000
                       0.50000
 0.50000
            -0.50000
                      -0.50000
R =
 2.00000
            3.00000
                       2.00000
```

```
0.00000 5.00000 -2.00000
0.00000 0.00000 4.00000
```

D. SVD

```
Program:
## SVD Implementation
### Importing libraries
# In[1]:
import numpy as np
import copy
### SVD function Definition
# In[2]:
def printMatrix(V):
                           # function to print matrix
  m = len(V)
  n = len(V[0])
  for i in range(m):
    for j in range(n):
       print(f'{V[i][j]:10.05f}', end="")
    print()
  print()
def SVD(A):
                            # SVD – decomposition function
  m = len(A)
  n = len(A[0])
  At = A.transpose()
  AtA = np.matmul(At,A)
  AAt = np.matmul(A,At)
  # Finding Eigen Values and Vectors of AAt and AtA
  eigValuesAAt, eigVectorsAAt = np.linalg.eig(AAt)
  eigValuesAtA, eigVectorsAtA = np.linalg.eig(AtA)
  # Forming U, D and VT
  U = eigVectorsAAt
  # Sorting eigen values in descending order
  for i in range(len(eigValuesAAt)-2,0,-1):
```

```
for j in range(len(eigValuesAAt)-1,i,-1):
       if(eigValuesAAt[i]<eigValuesAAt[j]):</pre>
          temp = copy.copy(eigValuesAAt[i])
          eigValuesAAt[i] = copy.copy(eigValuesAAt[j])
          eigValuesAAt[j] = copy.copy(temp)
  D = np.zeros((m,n))
  for i in range(m):
     for j in range(n):
       if i==j:
          D[i][j] = (eigValuesAAt[i])**(1/2)
       else:
          D[i][j] = 0
  Vt = eigVectorsAtA.transpose()
  return U,D,Vt
# In[3]:
A = np.array(((
  (1,2,3),
  (4,5,6),
  (7,8,9)
)))
#A = np.array(((
# (1, -1, 4),
# (1, 4, -2),
# (1, 4, 2),
   (1, -1, 0)
# )))
# Calling SVD-decomposition function
U,D,Vt = SVD(A)
# In[4]:
print("A = ")
printMatrix(A)
print("U = ")
printMatrix(U)
print("D = ")
printMatrix(D)
```

print("VT = ") printMatrix(Vt)

Output:

-		
A =		
1.00000	2.00000	3.00000
4.00000	5.00000	6.00000
7.00000	8.00000	9.00000
U =		
_	0.00500	0.40005
-0.21484	-0.88723	0.40825
-0.52059	-0.24964	-0.81650
-0.82634	0.38794	0.40825
D =		
16.84810	0.00000	0.00000
0.00000	1.06837	0.00000
0.00000	0.00000	0.00000
VT =		
-0.47967	-0.57237	-0.66506
-0.77669	-0.07569	0.62532
0.40825	-0.81650	0.40825

Q2.1 PCA of Yale Face Database **Importing Libraries** In [1]: import numpy as np from matplotlib.image import imread import matplotlib.pyplot as plt import scipy.io import copy plt.rcParams['figure.figsize'] = [8,4] Importing Yale Faces Database from .mat file scipy.io.loadmat() function imports .mat file as dictonary In [2]: data = scipy.io.loadmat('./Yale_64x64.mat') print(type(data)) <class 'dict'> Dictonary to Numpy Array In [3]: A = np.array(data['fea']).T In [4]: print(A.shape) (4096, 165)Sample Image/Face from database In [5]: img = plt.imshow(A[:,1].reshape(64,64).transpose()) img.set_cmap('gray')
plt.axis('off') plt.show() Centering Matrix in terms of Columns and Rows 1. Subtracting Column Mean In [6]: Amean = A.mean(axis=1, keepdims=True) Am = A - AmeanIn [7]: img = plt.imshow(Am[:,1].reshape(64,64).transpose()) img.set_cmap('gray')
plt.axis('off') plt.show() 2. Subtracting Row Mean In [8]: Amean = Amean.mean(axis=0, keepdims=True) Am = Am - AmeanIn [9]: img = plt.imshow(Am[:,1].reshape(64,64).transpose()) img.set_cmap('gray') plt.axis('off') plt.show() Calculating SVD In [10]: U, D, Vt = np.linalg.svd(Am)# Complete SVD i.e. calculation corresponding to ze # U,D,Vt = np.linalg.svd(Am, full_matrices=False) # Economy SVD i.e. Calculations D = np.diag(D)In [11]: print(U.shape, D.shape, Vt.shape) (4096, 4096) (165, 165) (165, 165) Finding number of eigen values with least significance In [12]: i = 0n = len(D)while(i<n):</pre> if abs(D[i][i]) <10:</pre> i += 1 $eig_vals_with_least_significance = n - i$ In [13]: print(eig_vals_with_least_significance) 2 Visualizing singular values by plotting graph 1. Singular values vs Count 2. (Cumulative sum/Total sum) vs Count In [14]: d = D[150:, 150:]plt.figure(1) plt.semilogy(np.diag(d)) plt.title('Singular Values') plt.show() plt.figure(2) plt.plot(np.cumsum(np.diag(d))/np.sum(np.diag(d))) plt.title('Singular Values: Cumulative Sum') plt.show() Singular Values 10² 10^{0} 10^{-2} 10^{-4} 10^{-6} 10^{-8} 10^{-10} 10^{-12} 2 4 6 8 10 12 0 14 Singular Values: Cumulative Sum 1.0 -8.0 0.6 0.4 0.2 2 6 12 10 14 In Sample Projection and Prediction In [15]: sample_size = 150 def InSampleProjectionAndReconstruction(image_number): j **=** 0 for r in (50, 100, 200, 500, 800, 2000, 4096, 4096-eig_vals_with_least_significance # Construct approximate image u = U[:,:r]# Projection A_train_model = np.matmul(u.T, A[:,:sample_size]) # Reconstruction A_train_pred = np.matmul(u, A_train_model) $Fimg = A_train_pred$ plt.figure(j+1) j **+=** 1 plot1 = plt.subplot(121) img = plt.imshow(A[:,image_number].reshape(64,64).transpose()) img.set_cmap('gray') plt.title(f'Original Image') plt.axis('off') plot2 = plt.subplot(122) img2 = plt.imshow(Fimg[:,image_number].reshape(64,64).transpose()) img2.set_cmap('gray') plt.axis('off') plt.title(f'Approximate Image (r = {r})') plt.show() In [16]: InSampleProjectionAndReconstruction(0) Original Image Approximate Image (r = 50)Approximate Image (r = 100)Original Image Approximate Image (r = 200)Original Image Original Image Approximate Image (r = 500)Original Image Approximate Image (r = 800)Original Image Approximate Image (r = 2000)Original Image Approximate Image (r = 4096)Original Image Approximate Image (r = 4094)Out off Sample Projection and Prediction $\textbf{def} \ \ \textbf{outOffSampleProjectionAndReconstruction(image_number):}$ if(image_number>=sample_size): j **=** 0 for r in (50, 100, 200, 500, 800, 2000,4096, 4096-eig_vals_with_least_signific # Construct approximate image u = U[:,:r]# Projection A_test_model = np.matmul(u.T,A[:,image_number]) # Reconstruction A_test_pred = np.matmul(u,A_test_model) $Fimg = A_test_pred$ plt.figure(j+1) j **+=** 1 plt.subplot(121) img = plt.imshow(A[:,image_number].reshape(64,64).transpose()) img.set_cmap('gray') plt.axis('off') plt.title(f'Original Image (r = {r})') plt.subplot(122) img2 = plt.imshow(Fimg.reshape(64,64).transpose()) img2.set_cmap('gray')
plt.axis('off') plt.title($f'Approximate Image (r = {r})'$) plt.show() else: print("Object Belongs to Sample") In [18]: outOffSampleProjectionAndReconstruction(155) Approximate Image (r = 50)Original Image (r = 50)Original Image (r = 100)Approximate Image (r = 100)Original Image (r = 200)Approximate Image (r = 200)Original Image (r = 500)Approximate Image (r = 500)Original Image (r = 800)Approximate Image (r = 800)Original Image (r = 2000)Approximate Image (r = 2000)Approximate Image (r = 4096)Original Image (r = 4096)Original Image (r = 4094)Approximate Image (r = 4094)

In	[35]:	Q2.2 Dual PCA of Yale Face Database Importing Libraries
	[33].	<pre>import numpy as np import matplotlib.pyplot as plt import scipy.io plt.rcParams['figure.figsize'] = [10,5] Importing Yale Face Dababase</pre>
In	[36]:	data = scipy.io.loadmat('./YaleFaceDataBase/Yale_64x64.mat') In Dual PCA if A has dimensions n by t then n >> t
In	[37]:	Taking only t-number of samples for Analysis t = 100 x = np.array(data['fea'])[:t,:].T
In	[38]:	print(X.shape) (4096, 100) Visualizing one of the sample image
In	[39]:	<pre>img = plt.imshow(X[:,1].reshape(64,64).transpose()) img.set_cmap('gray') plt.axis('off') plt.show()</pre>
In	[40]:	Calculating At*A xtx = np.matmul(x.T,x)
In	[41]:	print(XtX.shape) (100, 100) Calculating Eigen values of At*A
	[42]: [43]:	<pre>eigValues, eigVectors = np.linalg.eigh(XtX) print(eigValues.shape) (100,)</pre>
In	[44]:	print(eigValues) [-1.44213332e+03 -1.32446410e+03 -1.30623412e+03 -1.24429096e+03 -1.21678564e+03 -1.19797082e+03 -1.11729236e+03 -1.06525344e+03 -1.05588651e+03 -1.04058313e+03 -9.76025720e+02 -9.18680023e+02
		-8.97465034e+02 -8.84722094e+02 -8.75651691e+02 -8.37038678e+02 -8.14724711e+02 -7.79495263e+02 -7.38948305e+02 -7.15844200e+02 -6.91368810e+02 -6.71493309e+02 -6.58297084e+02 -6.00216821e+02 -5.79281157e+02 -5.36942209e+02 -5.10119884e+02 -5.03721547e+02 -4.50460504e+02 -4.40144652e+02 -4.31936255e+02 -4.05144336e+02 -3.76509059e+02 -3.47656317e+02 -3.10738072e+02 -2.98757430e+02 -2.82611833e+02 -2.22261329e+02 -2.11557931e+02 -1.90942705e+02 -1.68230865e+02 -1.63777417e+02 -1.15412219e+02 -8.18540193e+01 -6.54047420e+01 -4.83431968e+01 -3.63863311e+01 -2.96248105e+01
		4.63655445e-14 1.78288084e-13 1.11059645e+01 4.91114620e+01 6.64342907e+01 9.25994971e+01 1.01413404e+02 1.48782785e+02 1.87128456e+02 2.21946170e+02 2.34283584e+02 2.62349975e+02 2.80922163e+02 2.92709212e+02 2.99399922e+02 3.39613235e+02 3.58319602e+02 4.04102718e+02 4.23277169e+02 4.38690758e+02 4.72931541e+02 5.07492373e+02 5.11577217e+02 5.40440401e+02 5.62420730e+02 5.90376424e+02 6.19289307e+02 6.23520739e+02 6.62120820e+02 6.80666083e+02 6.87894811e+02 7.19088198e+02
		7.34998271e+02 7.85210254e+02 7.99554795e+02 8.40891654e+02 8.59706496e+02 9.04948515e+02 9.23296090e+02 9.70877545e+02 9.86367520e+02 1.01280301e+03 1.07439711e+03 1.10354195e+03 1.13845770e+03 1.21809367e+03 1.27040551e+03 1.30376543e+03 1.39149840e+03 1.40632623e+03 1.49057913e+03 1.28139567e+04] Sorting eigen values in descending values and changing
In	[45]:	order of eigen vectors correspondingly idx = eigValues.argsort()[::-1]
In	[46]:	<pre>eigValues = eigValues[idx] eigVectors = eigVectors[:,idx] print(eigValues) [1.28139567e+04 1.49057913e+03 1.40632623e+03 1.39149840e+03</pre>
		1.30376543e+03
		3.39613235e+02 2.99399922e+02 2.92709212e+02 2.80922163e+02 2.62349975e+02 2.34283584e+02 2.21946170e+02 1.87128456e+02 1.48782785e+02 1.01413404e+02 9.25994971e+01 6.64342907e+01 4.91114620e+01 1.11059645e+01 1.78288084e-13 4.63655445e-14 -2.96248105e+01 -3.63863311e+01 -4.83431968e+01 -6.54047420e+01 -8.18540193e+01 -1.15412219e+02 -1.63777417e+02 -1.68230865e+02 -1.90942705e+02 -2.11557931e+02 -2.22261329e+02 -2.82611833e+02 -2.98757430e+02 -3.10738072e+02 -3.47656317e+02 -3.76509059e+02
		-4.05144336e+02 -4.31936255e+02 -4.40144652e+02 -4.50460504e+02 -5.03721547e+02 -5.10119884e+02 -5.36942209e+02 -5.79281157e+02 -6.00216821e+02 -6.58297084e+02 -6.71493309e+02 -6.91368810e+02 -7.15844200e+02 -7.38948305e+02 -7.79495263e+02 -8.14724711e+02 -8.37038678e+02 -8.75651691e+02 -8.84722094e+02 -8.97465034e+02 -9.18680023e+02 -9.76025720e+02 -1.04058313e+03 -1.05588651e+03 -1.06525344e+03 -1.11729236e+03 -1.19797082e+03 -1.21678564e+03 -1.24429096e+03 -1.30623412e+03 -1.32446410e+03 -1.44213332e+03]
	[47]:	eigvals = eigvalues.copy() Finding out number of least significant eigen Values
an a	[48]:	<pre>r = 0 index_of_small_eig_values = [] while(r<len(eigvalues)): +="1</pre" eigvalues[r]<1:="" if="" index_of_small_eig_values.append(eigvalues[r])="" r=""></len(eigvalues)):></pre>
In	[49]:	Here that number turns out to be 50 small_eig_vals = len(index_of_small_eig_values) print(small_eig_vals) 50
In	[50]:	eigvals = np.array(eigvals) Creating Singular value matrix
	[51]: [52]:	<pre>D = eigVals[:-small_eig_vals]**(1/2)</pre> Visualizing Singular values matrix pattern plt.figure(1)
		<pre>plt.semilogy(D) plt.title('Singular Values') plt.show() plt.figure(2) plt.plot(np.cumsum(D)/np.sum(D)) plt.title('Singular Values: Cumulative Sum')</pre>
		Singular Values 102
		Singular Values: Cumulative Sum
		0.6 -
		0.4 -
In	[53]:	0 10 20 30 40 50 Formint V.transpose() Matrix Vt = eigVectors.copy().T
		Reconstruction of Training data xcap = X V Vt
	[54]: [55]:	<pre>Xcap = (X.dot(Vt.T)).dot(Vt) print(Xcap.shape) (4096, 100)</pre>
In	[56]:	<pre>Visualizing Reconstructed Data plt.figure(figsize=(16,20)) for i in range(1,81): plt.subplot(10,8,i,xticks=[],yticks=[]) img = plt.imshow(Xcap[:,i-1].reshape(64,64).T.astype('uint8'),cmap='gray')</pre>
		plt.plot()
In	[57]:	Reconstruction of Test Data $ycap = XV(\Sigma^{-2})VtXtx$ $D_{temp} = np.zeros((len(D), len(D)))$
In	[58]:	<pre>for i in range(len(D)): D_temp[i][i] = D[i] D = D_temp for i in range(len(D)):</pre>
		print(D[i][i]) 113.19874858014401 38.608019036836296 37.50101635278476 37.302793485663805 36.10769217838276 35.64274829061269
		34.90119875071728 33.741038839022025 33.21960183939981 32.777997404141246 31.824566061490245 31.40648850212336 31.158907953977785 30.385787625614764
		30.0823621968586 29.320751967869843 28.998131908246993 28.276399959960777 28.021603345223525 27.11085153717597 26.81581991334121 26.227748880385747
		26.089578056453934 25.731708462098233 24.970397256256746 24.885524047988394 24.297662938058185 23.715411233093413 23.24737407555087 22.618072787836233
		22.527591375113797 21.746989243648752 20.944945890945384 20.573700896829767 20.102306292414788 18.929331786546687 18.428598304297516 17.303176645659565
		17.108746638795072 16.76073275974999 16.19722121171101 15.306324969058053 14.897857891115656 13.679490338037773 12.197654899409132 10.07042222643836
In	[59]:	9.622863246118387 8.150723322988473 7.007957045914438 3.3325612515534706 invD_sq = np.linalg.inv(np.matmul(D,D))
In	[60]:	<pre>print(invD_sq) [[7.80399080e-05 0.00000000e+00 0.00000000e+00 0.00000000e+00</pre>
		0.00000000e+00 0.00000000e+00] [0.00000000e+00 0.00000000e+00 0.00000000e+00 1.50524675e-02 0.00000000e+00 0.00000000e+00] [0.0000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 2.03618455e-02 0.00000000e+00] [0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00 9.00417069e-02]]
In	[61]:	<pre>print(X.shape) print(Vt.T.shape) print(invD_sq.shape) print(Vt.shape) print(X.T.shape) print(X.T.shape)</pre>
		(4096, 100) (100, 100) (50, 50) (100, 100) (100, 4096) (4096, 100)
	[62]: [63]:	<pre>X_approx = X[:,:t-small_eig_vals] Vt_approx = Vt[:t-small_eig_vals,:t-small_eig_vals] print(X_approx.shape) print(Vt_approx.T.shape) print(invD_sq.shape)</pre>
		<pre>print(invD_sq.shape) print(Vt_approx.shape) print(X_approx.T.shape) print(X_approx.shape) (4096, 50) (50, 50) (50, 50)</pre>
	[64]: [65]:	(50, 50) (50, 4096) (4096, 50) UUt = np.matmul(X_approx[:,:],np.matmul(Vt_approx.T,np.matmul(invD_sq,np.matmul(Vt_approx.T))
In	[65]: [66]:	<pre>y = np.matmul(UUt,X[:,0]) print(y.shape) (4096,)</pre>
In	[67]:	<pre>img = plt.imshow(y.reshape(64,64).astype('uint8').T) img.set_cmap('gray')</pre>
		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
		30
		0 10 20 30 40 50 60
		In Dual PCA, in most cases reconstruction of test data i.e. out of sample reconstruction is not possible

Q3.1 Linear Least Square Fitting

Importing Libraries

```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from prettytable import PrettyTable as ptbl
```

Importing Database

```
In [2]:
           data = pd.read_csv('Salary_Data.csv')
In [3]:
           data.describe()
                 YearsExperience
                                         Salary
Out[3]:
          count
                       30.000000
                                      30.000000
                                   76003.000000
          mean
                        5.313333
            std
                        2.837888
                                   27414.429785
                                   37731.000000
            min
                        1.100000
                                  56720.750000
           25%
                        3.200000
                                  65237.000000
           50%
                        4.700000
```

Extracting Dependent and independent data from database int X and y variables

```
In [4]:
         X = data.iloc[:,0].values
         y = data.iloc[:,-1].values
```

Function for Linear Least Square Fitting

7.700000 100544.750000

10.500000 122391.000000

```
In [5]:
```

In [7]:

In [8]:

In [9]:

In [10]:

 $y_pred = m*X + b$

y = mx + b

def linearfitting(x,y):

75%

max

```
n = len(x)
x_sq_sum = sum(x^{**2})
x_sum = sum(x)
yx_sum = sum(x*y)
y_sum = sum(y)
A = np.array([
    [x_sq_sum, x_sum],
    [x_sum, n]
    ])
b = np.array([
    [yx_sum],
    [y_sum]
invA = np.linalg.inv(A)
M = np.matmul(invA,b)
return M
```

Calling Linear Least Square fitting function on given database

```
In [6]:
       M = linearfitting(X, y)
       m = M[0][0]
        b = M[1][0]
      Visualizing Calculated Coefficient and constant
```

print("m = ", m, "\tb = ", b)

```
m = 9449.962321455096 b = 25792.200198668637
Calculating Approximate Values
```

table = ptbl(['X','y','y-predicted']) for i in range(len(X)):

Table of actual values and predicted values

```
table.add_row([X[i],y[i],y_pred[i]])
    print(table)
       X | y | y-predicted
 | 4.0 | 55794.0 | 63592.04948448902

      | 4.0
      | 56957.0
      | 63592.04948448902

      | 4.1
      | 57081.0
      | 64537.04571663453

      | 4.5
      | 61111.0
      | 68317.03064521657

      | 4.9
      | 67938.0
      | 72097.0155737986

      | 5.1
      | 66029.0
      | 73987.00803808963

      | 5.3
      | 83088.0
      | 75877.00050238064

      | 5.9
      | 81363.0
      | 81546.9778952537

      | 6.0
      | 93940.0
      | 82491.97412739921

      | 6.8
      | 91738.0
      | 90051.94398456329

      | 7.1
      | 98273.0
      | 92886.93268099982

      | 7.9
      | 101302.0
      | 100446.9025381639

      | 8.2
      | 113812.0
      | 103281.89123460042

      | 8.7
      | 109431.0
      | 108006.87239532797

      | 9.0
      | 105582.0
      | 110841.8610917645

      | 9.5
      | 116969.0
      | 115566.84225249205

   | 4.0 | 56957.0 | 63592.04948448902
   9.5 | 116969.0 | 115566.84225249205
   9.6 | 112635.0 | 116511.83848463756 |
  | 10.3 | 122391.0 | 123126.81210965612 |
  | 10.5 | 121872.0 | 125016.80457394714 |
Visualizing Best Fit Line
```

$plt.plot(X,y_pred,color = 'red', linewidth = 0.5)$ plt.title('Linear Least Square Fitting') plt.xlabel('X') plt.ylabel('Y')

plt.scatter(X, y, marker = '.')

```
plt.show()
                         Linear Least Square Fitting
  120000
```

100000 80000 60000 40000 10 2 6 Χ

Evaluating Error in reconstruction

```
In [11]:
           max\_error = max(abs(y-y\_pred)/y)
           print(max_error)
          0.17590842513666785
```

Q3.2 Quadratic Least Square Fitting

```
Importing Libraries
```

```
In [1]:
        import numpy as np
        import matplotlib.pyplot as plt
        import pandas as pd
        from prettytable import PrettyTable as ptbl
       Importing database
```

```
In [2]:
         data = pd.read_csv('Quadratic_curve_fitting_dataset.csv')
```

```
Visualizing database
In [3]:
```

data.head() Out[3]:

 $y = c1x^2 + c2x + c3$

database

c1, c2, c3 = QuadraticFitting(X,y)

In [6]:

In [9]:

 $x_{three_sum} = sum(x**3)$ $x_sq_sum = sum(x^{**2})$

5

140

455

950

1 5

3 11

2 8

In [4]:

```
4 14 1625
Extracing Dependent and independent variables from
database in X and y variables respectively
```

X = data.iloc[:,0].valuesy = data.iloc[:,1].values

```
Quadratic Least square fitting function
```

In [5]: def QuadraticFitting(x,y): $x_{sum} = sum(x^{**4})$

```
x_sum = sum(x)
n = len(x)
y_x = sum(y^*(x^{**2}))
yx_sum = sum(x*y)
y_sum = sum(y)
A = np.array([
    [x_four_sum, x_three_sum, x_sq_sum],
    [x_three_sum, x_sq_sum,
                                x_sq_sum],
    [x\_sq\_sum, x\_sum,
                                 n],
    ])
b = np.array([
    [y_xsq_sum],
    [yx_sum],
    [y_sum]
    ])
invA = np.linalg.inv(A)
M = np.matmul(invA, b)
return M
```

Calling Quadratic least square fitting function on given

In [7]: print(c1,c2,c3) [9.99671939] [-24.47209128] [-0.008132]

Visualizing coefficients and constants

Calculating Approximate Values

table = ptbl(['X','y','y-predicted'])

table.add_row([X[i],y[i],y_pred[i]])

1625 | 1616.7395905811015

for i in range(len(X)):

print(table)

5 | 8 | 11 |

14 |

```
In [8]:
         y_pred = c1*(X**2) + c2*X + c3
```

```
| X | y | y-predicted
            -----+-----
           5 | -8.965437008384214 |
140 | 127.54939634349978 |
455 | 444.00517872570873 |
950 | 940.4019101382426 |
   2 |
```

Table of actual values and predicted values

```
2480 | 2473.0182200542854
 17 |
 20 |
        3515 | 3509.2377985577946
23 | 4730 | 4725.3983260916275
26 | 6125 | 6121.499802655787
29 | 7700 | 7697.5422282502695
32 | 9455 | 9453.52560287508
35 | 11390 | 11389.449926530213
 38 | 13505 | 13505.31519921567
 41 | 15800 | 15801.121420931455
 44 | 18275 | 18276.868591677565
47 | 20930 | 20932.556711454

50 | 23765 | 23768.18578026076

53 | 26780 | 26783.75579809784

56 | 29975 | 29979.26676496525

59 | 33350 | 33354.718680862985

62 | 36905 | 36910.11154579104
 65 | 40640 | 40645.44535974943
 68 | 44555 | 44560.72012273813
 71 | 48650 | 48655.93583475717
 74 | 52925 | 52931.09249580652
77 | 57380 | 57386.190105886206
80 | 62015 | 62021.22866499622
83 | 66830 | 66836.20817313655
 86 | 71825 | 71831.12863030721
 89 | 77000 | 77005.99003650818
 92 | 82355 | 82360.7923917395
 95 | 87890 | 87895.53569600113
 98 | 93605 | 93610.2199492931
101 | 99500 | 99504.84515161537
101
      | 105575 | 105579.41130296799
104
107
        111830
                      111833.91840335092
110
      | 118265 | 118268.36645276417
113 | 124880 | 124882.75545120776
116 | 131675 | 131677.08539868164
119 | 138650 | 138651.3562951859
122 | 145805 | 145805.56814072045
125
        153140 | 153139.72093528532
128 | 160655 | 160653.81467888053
131 | 168350 | 168347.84937150608
```

plt.title('Quadratic Least Square Fitting') plt.xlabel('X') plt.ylabel('Y')

plt.plot(X,y_pred,color = 'red',linewidth = 0.5)

plt.scatter(X,y, marker = '.')

134 | 176225 | 176221.82501316193 137 | 184280 | 184275.74160384812 140 | 192515 | 192509.5991435646 143 | 200930 | 200923.39763231145 146 | 209525 | 209517.1370700886 149 | 218300 | 218290.8174568961

Visualizing Best Fit Curve

EXCEL

plt.show()

50000

0

2.7930874016768428

In [10]:

Quadratic Least Square Fitting

Note: The database used here was generated by me using Microsoft

that's why the actual points are perfectly overlapping with approximate line

```
200000
150000
100000
```

60

80

40

100

120

140

In [11]: $max_error = max(abs(y-y_pred)/y)$ print(max_error)

that's why the error is too large

Evaluating Error in reconstruction

20

```
here the first approximate value is way off from the actual
value
```

```
for i in range(5):
     print(f"y[\{i\}] = \{y[i]\} \setminus ty\_predict[\{i\}] = \{y\_pred[i]\}")
y[0] = 5
                y_predict[0] = -8.965437008384214
y[1] = 140
                y_predict[1] = 127.54939634349978
y[2] = 455
                y_predict[2] = 444.00517872570873
y[3] = 950
                y_predict[3] = 940.4019101382426
y[4] = 1625
                y_predict[4] = 1616.7395905811015
Also it can be seen that as we go on calculating the
```

approximate values the error goes on decreasing

Q4. Denoising Using L2-Regularisation

```
from matplotlib.image import imread
import matplotlib.pyplot as plt
import numpy as np
import os
plt.rcParams['figure.figsize'] = [12,6]
```

Importing and Visualizing input image

```
In [2]:
    Oimg = imread('dog.jpg')
    print(Oimg.shape)
    img = plt.imshow(Oimg)
    plt.axis('off')
    img.set_cmap('gray')
    plt.title("Original Image")

Out[2]: Text(0.5, 1.0, 'Original Image')
```

Original Image


```
In [3]: Oimg = np.mean(Oimg,-1) # Converting to Grayscale
```

Adding Gaussian Noise

```
In [4]:
    mean = 0
    sigma = 3

Noise = np.random.normal(mean, sigma, (0img.shape[0],0img.shape[1])).astype('uint8')
    OimgNoisey = 0img + Noise  # Add some noise
```

Visualizing Noise and original image

```
plt.figure(1)
   plt.subplot(121)
   img = plt.imshow(0img)
   plt.axis('off')
   img.set_cmap('gray')
   plt.title("Original Image")

plt.subplot(122)
   img2 = plt.imshow(0imgNoisey)
   plt.axis('off')
   img2.set_cmap('gray')
   plt.title("Noisey Image")
   plt.show()
```

Original Image

Noisey Image

L2-regularisation Function

```
In [6]:
         def L2Regularisation(NoiseyInput, ExpectedOutput, factor):
             n = len(ExpectedOutput)
             I = np.identity(n)
             A = I
             At = A.T
             AtA = np.matmul(At,A)
             M = (AtA - factor*I)
             T = np.matmul(np.linalg.inv(M),At)
             pred = np.matmul(T,NoiseyInput)
             plt.figure()
             plt.subplot(131)
             img1 = plt.imshow(NoiseyInput)
             img1.set_cmap('gray')
             plt.axis('off')
             plt.title(f'Noisey Image')
             plt.subplot(132)
             img2 = plt.imshow(pred)
             img2.set_cmap('gray')
             plt.axis('off')
             plt.title(f'Denoised Image (lambda = {factor})')
             plt.subplot(133)
             img3 = plt.imshow(ExpectedOutput)
             img3.set_cmap('gray')
             plt.axis('off')
             plt.title('Original Image')
             plt.show()
```

Noisey Image

Denoised Image (lambda = 0.0)

Original Image

Q5 Linear Discriminant Analysis of IRIS database Iris dataset contains 4-features (i.e. Sepal length, Sepal width, Petal length, Petal Width) of flowers of 3 - species (i.e. Setosa, Versicolor, Virginica) Importing Libraries In [1]: import math import copy import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder Importing IRIS Dataset In [2]: dataset = pd.read_csv('Iris.csv') X = dataset.iloc[:,1:-1].valuesy = dataset.iloc[:,-1].values Encoding Class Labels using sklearn's labe encoder In [3]: $y_prev = copy.copy(y)$ le = LabelEncoder() $le_y = le.fit(y)$ $y = le_y.transform(y) + 1$ $y_prev_vs_y_encoded = np.hstack((y_prev.reshape(len(y_prev),1), y.reshape(len(y),1)))$ print(y_prev_vs_y_encoded) [['Iris-setosa' 1] 'Iris-setosa' 1] ['Iris-setosa' 1] Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] 'Iris-setosa' 1] 'Iris-setosa' 1] Iris-setosa' ['Iris-setosa' ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] 'Iris-setosa' 1] Iris-setosa' ['Iris-setosa' ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] ['Iris-setosa' 1] 'Iris-setosa' 1] 'Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 'Iris-versicolor' Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] 'Iris-versicolor' Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 'Iris-versicolor' Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] 'Iris-versicolor' 'Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 'Iris-versicolor' Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] ['Iris-versicolor' 2] 'Iris-versicolor' 2] 'Iris-versicolor' ['Iris-versicolor' ['Iris-virginica' 3] ['Iris-virginica' ['Iris-virginica' ['Iris-virginica' 3] ['Iris-virginica' ['Iris-virginica' 'Iris-virginica' Iris-virginica' 'Iris-virginica' ['Iris-virginica' ['Iris-virginica' 3] ['Iris-virginica' 3] ['Iris-virginica' 3] ['Iris-virginica' 3] ['Iris-virginica' ['Iris-virginica' ['Iris-virginica' 3] ['Iris-virginica' 3]] Creating Feature and Class Label Dictonaries In [4]: label_dict = {1: 'Setosa', 2: 'Versicolor', 3:'Virginica'} feature_dict = {i:label for i,label in zip(range(4), ('Sepal length', 'Sepal width', 'Petal length', 'Petal width',))} Visualizing Dataset using histogram In [5]: fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(14, 7)) for ax,cnt in zip(axes.ravel(), range(4)): # set bin sizes min_b = math.floor(np.min(X[:,cnt])) max_b = math.ceil(np.max(X[:,cnt])) bins = np.linspace(min_b, max_b, 25) # plottling the histograms for lab,col in zip(range(1,4), ('red', 'green', 'blue')): ax.hist(X[y==lab, cnt], color=col, label=f'class {label_dict[lab]}', bins=bins, alpha=0.5,)ylims = ax.get_ylim() # plot annotation leg = ax.legend(loc='upper right', fancybox=True, fontsize=10) leg.get_frame().set_alpha(0.5) ax.set_ylim([0, max(ylims)+2]) ax.set_xlabel(feature_dict[cnt]+' (in cm)', fontsize=12) ax.set_title(f'Count Vs {feature_dict[cnt]}', fontsize=16) # hide axis ticks ax.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on") # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) axes[0][0].set_ylabel('Count', fontsize=12) axes[1][0].set_ylabel('Count', fontsize=12) fig.tight_layout() plt.show() Count Vs Sepal width Count Vs Sepal length class Setosa class Setosa class Versicolor class Versicolor 15.0 class Virginica class Virginica 12.5 - 12.5 -10.0 - 10.0 -7.5 -7.5 -5.0 5.0 -2.5 2.5 -4.0 4.5 Sepal width (in cm) Sepal length (in cm) Count Vs Petal length Count Vs Petal width class Setosa class Setosa 25 class Versicolor class Versicolor class Virginica 20 -15 -10 -2.5 Petal width (in cm) Petal length (in cm) Peforming Linear Discriminant Analysis Step 1: Computing the d-dimensional mean vectors In [6]: np.set_printoptions(precision = 4) $mean_vectors = []$ for col in range(1,4): mean_vectors.append(np.mean(X[y==col], axis=0)) print(f'Mean Vector class {col}: {mean_vectors[col-1]}\n') Mean Vector class 1: [5.006 3.418 1.464 0.244] Mean Vector class 2: [5.936 2.77 4.26 Mean Vector class 3: [6.588 2.974 5.552 2.026] Step 2: Computing the Scatter Matrices 2.1 Within-class scatter matrix S_W $S_W = np.zeros((4,4))$ mean_vectors): for cl, mv in zip(range(1,4), $class_sc_mat = np.zeros((4,4))$ # scatter matrix for every class for row in X[y == cl]: row, mv = row.reshape(4,1), mv.reshape(4,1) # make column vectors class_sc_mat += (row-mv).dot((row-mv).T) S_W += class_sc_mat # sum class scatter matrices print('Within-class Scatter Matrix:\n', S_W) Within-class Scatter Matrix: [[38.9562 13.683 24.614 5.6556] [13.683 17.035 8.12 4.9132] 8.12 27.22 [24.614 6.2536] [5.6556 4.9132 6.2536 6.1756]] 2.2 Between-class scatter matrix S B In [8]: overall_mean = np.mean(X, axis=0) $S_B = np.zeros((4,4))$ for i, mean_vec in enumerate(mean_vectors): n = X[y==i+1,:].shape[0]mean_vec = mean_vec.reshape(4,1) # make column vector overall_mean = overall_mean.reshape(4,1) # make column vector S_B += n * (mean_vec - overall_mean).dot((mean_vec - overall_mean).T) print('between-class Scatter Matrix:\n', S_B) between-class Scatter Matrix: [[63.2121 -19.534 165.1647 71.3631] [165.1647 -56.0552 436.6437 186.9081] [71.3631 -22.4924 186.9081 80.6041]] Step 3: Solving the generalized eigenvalue problem for the matrix ($S W^-1$)*(S B) In [9]: eig_vals, eig_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) for i in range(len(eig_vals)): eigvec_sc = eig_vecs[:,i].reshape(4,1) print('\nEigenvector {}: \n{}'.format(i+1, eigvec_sc.real)) print('Eigenvalue {:}: {:.2e}'.format(i+1, eig_vals[i].real)) Eigenvector 1: [[0.2049] [0.3871][-0.5465][-0.7138]] Eigenvalue 1: 3.23e+01 Eigenvector 2: [[-0.009] [-0.589] [0.2543] [-0.767]] Eigenvalue 2: 2.78e-01 Eigenvector 3: [[-0.8379][0.1696][0.1229][0.5041]Eigenvalue 3: -4.13e-15 Eigenvector 4: [[0.2 [-0.3949][-0.4567] [0.7717]] Eigenvalue 4: 1.20e-14 Checking Eigen Value and Eigen Vector Calculations In [10]: for i in range(len(eig_vals)): eigvec = eig_vecs[:,i].reshape(4,1) np.testing.assert_array_almost_equal(np.linalg.inv(S_W).dot(S_B).dot(eigvec), eig_vals[i] * eigvec, decimal=6, err_msg='', verbose=True) print('ok') ok Step 4: Selecting linear discriminants for the new feature subspace 4.1. Sorting the eigenvectors by decreasing eigenvalues In [11]: # Make a list of (eigenvalue, eigenvector) tuples eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eig_pairs = sorted(eig_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for i in eig_pairs: print(i[0]) Eigenvalues in decreasing order: 32.27195779972981 0.27756686384004264 1.1953730364935478e-14 4.1311796919088535e-15 In [12]: print('Variance Cotained by Eigen Values (in percentage):\n') eigv_sum = sum(eig_vals) for i,j in enumerate(eig_pairs): print('eigenvalue {0:}: {1:.2%}'.format(i+1, (j[0]/eigv_sum).real)) Variance Cotained by Eigen Values (in percentage): eigenvalue 1: 99.15% eigenvalue 2: 0.85% eigenvalue 3: 0.00% eigenvalue 4: 0.00% 4.2. Choosing k eigenvectors with the largest eigenvalues In [13]: $W = np.hstack((eig_pairs[0][1].reshape(4,1), eig_pairs[1][1].reshape(4,1)))$ print('Matrix W:\n', W.real) Matrix W: [[0.2049 -0.009] [0.3871 -0.589] [-0.5465 0.2543] [-0.7138 -0.767]] Step 5: Transforming the samples onto the new subspace In [14]: $X_lda = X.dot(W)$ In [15]: def lda_plot(): plt.rcParams['figure.figsize'] = [14,7] ax = plt.subplot(111)for label, marker, color in zip(range(1,4),('^', 's', 'o'),('red', 'green', 'blue')): plt.scatter(x=X_lda[:,0].real[y == label], $y=X_lda[:,1].real[y == label],$ marker=marker, color=color, alpha=0.5,label=label_dict[label] plt.xlabel('LD1', fontsize=14) plt.ylabel('LD2', fontsize=14) leg = plt.legend(loc='upper right', fancybox=True, fontsize=14) leg.get_frame().set_alpha(0.5) plt.title('LDA on IRIS Dataset (projection onto the first 2 LDs)', fontsize=18) # hide axis ticks plt.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="off", la # remove axis spines ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) ax.spines["left"].set_visible(False) plt.grid() plt.tight_layout plt.show() In [16]: lda_plot() LDA on IRIS Dataset (projection onto the first 2 LDs) Setosa Versicolor -1.2 Virginica -1.4 --1.6 -LD2 -1.8 -2.0-2.2 -2.4 --2.6 -LD1 We get perfect separation/Classification of data of all 3classes.