DYNAMIC LINEAR MODELS

Dynamic linear models (DLMs) arise via state-space formulation of standard time series models as natural structures for modeling time series with nonstationary components.

BASIC NORMAL DLMS

We start with describing the class of normal DLMs for univariate time series of equally spaced observations. Specifically, assume that y_t is modeled over time by the equation

$$y_t = \mathbf{F}_t' \mathbf{\theta}_t + \nu_t, \qquad (1)$$

$$\boldsymbol{\theta}_t = \boldsymbol{G}_t \boldsymbol{\theta}_{t-1} + \boldsymbol{w}_t, \quad (2)$$

with the following components assumptions:

- 1. $\boldsymbol{\theta}_{t} = (\theta_{t,1}, \dots, \theta_{t,p})^{'}$ is the $p \times 1$ state vector at time t;
- 2. F_t is the p dimensional vector of known constants or regressors at time t;
- 3. v_t is the observation noise, with $N(v_t|0, v_t)$;
- 4. G_t is a known $p \times p$ matrix, usually referred to as the state evolution matrix at time t;
- 5. \mathbf{w}_t is the state evolution noise, or innovation, at time t, distributed as $N(\mathbf{w}_t | \mathbf{0}, \mathbf{W}_t)$;
- 6. The noise sequences v_s and w_t are independent and mutually independent¹.

A shorthand notation for the structure described above is given by the quardrupe $\{F_t, G_t, v_t, \mathbf{W}_t\}$.

EXAMPLES OF BASIC NDLMS

- 1. Regressions. Take $G_t = I_p$, the $p \times p$ identity matrix, to give a linear regression y_t on regressors in F_t , for all t, but in which the regression parameters are now time-varying according to a random walk, i.e., $\theta_t = \theta_{t-1} + \mathbf{w}_t$. Traditional static regression is the special case in which $\mathbf{w}_t = 0$ for all t, arising (with probability one) by specifying $\mathbf{W}_t = \mathbf{0}$ for all t.
- Autoregressions. A particular class of static regression is the class of autoregressions (AR)
 described by

$$y_t = \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p} + v_t,$$

in which $F'_t = (y_{t-1}, \dots, y_{t-n}), \theta'_t = (\phi_{t,1}, \dots, \phi_{t,n}), \text{ and } G_t = I_n, \text{ with } \mathbf{W}_t = \mathbf{0} \text{ for all } t.$

3. Autoregressive moving average (ARMA) models. Consider a zero-mean ARMA model described by

 $^{^1}$ Generalizations of the basic DLM assumptions to allow for known, nonzero means for innovations and for independencies between v_t and w_t .

$$y_t = \sum_{j=1}^p \phi_j y_{t-j} + \sum_{j=1}^q \theta_j \epsilon_{t-j} + \epsilon_t,$$

with $N(\epsilon_t|0, w_t)$. Set $m = \max(p, q+1)$, extend the ARMA coefficients to $\phi_j = 0$ for j > p and $\theta_j = 0$ for j > q, and write $\mathbf{u} = (1, \theta_1, ..., \theta_{m-1})'$. Then, the DLM form holds with $\mathbf{F}' = (1, 0, ..., 0), v_t = 0, \mathbf{W}_t = w_t \mathbf{u} \mathbf{u}'$, and

$$G_{p} = \begin{bmatrix} \phi_{1} & 1 & 0 & \cdots & 0 \\ \phi_{2} & 0 & 1 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ \phi_{p-1} & 0 & 0 & \cdots & 1 \\ \phi_{p} & 0 & 0 & \cdots & 0 \end{bmatrix}_{p \times p}$$

and

$$\boldsymbol{G} = \begin{bmatrix} \boldsymbol{G}_p & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{\phi}_{p+1} & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & 0 \\ \boldsymbol{\phi}_m & 0 & \cdots & 0 \end{bmatrix}_{m \times m}.$$

The AR model is a special case when q = 0.

RECURSIVE ESTIMATION PROCEDURE

The term "Kalman filter" or "Kaman filtering" refers to a recursive procedure for inference about the state of nature θ_t . The key notion here is that given the data $y_t = (y_t, ..., y_1)'$, inference about θ_t can be carried out through a direct application of Bayes's theorem:

 $Prob\{$ State of Nature|Data $\} \propto Prob\{$ Data|State of Nature $\} \times Prob\{$ State of Nature $\}$ which can also be written as

$$\underbrace{P(\boldsymbol{\theta}_t|\boldsymbol{y}_t)}_{\text{posterior}} \propto \underbrace{P(\boldsymbol{y}_t|\boldsymbol{\theta}_t,\boldsymbol{y}_{t-1})}_{\text{likelihood}} \times \underbrace{P(\boldsymbol{\theta}_t|\boldsymbol{y}_{t-1})}_{\text{prior}}. \quad (3)$$

At time t-1, our state of knowledge about θ_{t-1} is embodied in the posterior distribution of θ_{t-1}

$$(\boldsymbol{\theta}_{t-1}|\boldsymbol{y}_{t-1}) \sim N(\widehat{\boldsymbol{\theta}}_{t-1}, \Sigma_{t-1}), \quad (4)$$

where $\hat{\theta}_{t-1}$ and Σ_{t-1} denote the expectation and the variance of the posterior distribution. We now at time t but in two stages:

- 1. Prior to observing y_t , and
- 2. after observing y_t

<u>Stage 1</u>: Prior to observing y_t , our best choice for θ_t is governed by eqn. (2) and is given as $G_t\theta_{t-1} + w_t$. Since θ_{t-1} is described by eqn. (4), our knowledge about θ_t is embodied in

$$(\boldsymbol{\theta}_t | \boldsymbol{y}_{t-1}) \sim N(\boldsymbol{G}_t \widehat{\boldsymbol{\theta}}_{t-1}, R_t = \boldsymbol{G}_t \Sigma_{t-1} \boldsymbol{G}_t' + \mathbf{W}_t).$$
 (4)

This is our prior distribution.

<u>Stage 2</u>: On observing y_t , our goal is to compute the posterior of θ_t using eqn. (3). However, to do so, we need to know the likelihood $P(y_t|\theta_t,y_{t-1})$, and the determination of which is under taken via the following arguments.

Let e_t denote the one-step ahead forecast error in predicting y_t ; thus

$$e_t = y_t - \hat{y}_t = y_t - \mathbf{F}_t' \mathbf{G}_t \widehat{\boldsymbol{\theta}}_{t-1}. \quad (5)$$

Since F_t , G_t and $\widehat{\theta}_{t-1}$ are all known, observing y_t is equivalent to observing e_t . Thus, eqn. (3) can be rewritten as

$$\underbrace{P(\boldsymbol{\theta}_t|\boldsymbol{y}_t)}_{\text{posterior}} = P(\boldsymbol{\theta}_t|e_t,\boldsymbol{y}_{t-1}) \propto \underbrace{P(e_t|\boldsymbol{\theta}_t,\boldsymbol{y}_{t-1})}_{\text{likelihood}} \times \underbrace{P(\boldsymbol{\theta}_t|\boldsymbol{y}_{t-1})}_{\text{prior}}. \quad (6)$$

Using eqn. (1), eqn. (5) can be written as $e_t = F_t'(\theta_t - G_t\widehat{\theta}_{t-1}) + \nu_t$, so that $E(e_t|\theta_t, y_{t-1}) = F_t'(\theta_t - G_t\widehat{\theta}_{t-1})$. Since $\nu_t \sim N(0, \nu_t)$, it follows that the likelihood is described by

$$(e_t|\boldsymbol{\theta}_t, \boldsymbol{y}_{t-1}) \sim N(\boldsymbol{F}_t'(\boldsymbol{\theta}_t - \boldsymbol{G}_t\widehat{\boldsymbol{\theta}}_{t-1}), v_t).$$
 (7)

We can now use Bayes's theorem (eqn. (6)) to obtain the posterior distribution as follows

$$P(\boldsymbol{\theta}_t|\boldsymbol{y}_t,\boldsymbol{y}_{t-1}) = \frac{P(e_t|\boldsymbol{\theta}_t,\boldsymbol{y}_{t-1}) \times P(\boldsymbol{\theta}_t|\boldsymbol{y}_{t-1})}{\int_{\boldsymbol{\theta}_t} P(e_t,\boldsymbol{\theta}_t|\boldsymbol{y}_{t-1}) d\boldsymbol{\theta}_t}.$$
 (8)

Once eqn. (8) is computed, we can go back to eqn. eqn. (4) for the next cycle of the recursive procedure.