COMP 3005 – Assignment 1

NAME: Nem Zutkovic STUDENT#: 101085982

PART 1 (CONCEPTS)

TERM	DEFINITION
Mini World	Some part of the real world for which the database system is developed with its data
	stored in the database.
Data Model	Used to hide storage details and present the users with conceptual view of the
	database. Specifies how data is structured and operated. Consists of concepts,
	operations and constraints.
Relational Data Model	A data model where the data is represented in terms of tuples (records), grouped into
	relations (files).
Database	A collection of related data stored on a computer.
Database Management System	Software to facilitate the creation and maintenance of a computerized database.
Database System	The database and the application programs developed on top of the DBMS (Database
	Management System).
Database Schema	Description of data at some abstraction level. Each level has its own schema. Three
	levels of schema include physical, conceptual and external.
Atomic Value	Values that are indivisible.
Attribute	Designates the role played by a domain in a relation.
Tuple	Ordered set of values (enclosed in angled brackets '<>'), where each value is derived
	from an appropriate domain.
Domain	Consists of a name, data-type/format and set of atomic values.
Relation	A table of values that contains a set of rows (tuples).
Key	Each row has an attribute (or a set of attributes) that uniquely identifies that row in the
	table. Keys are underlined.
Primary Key	A chosen key. Primary key attributes are underlined.
Foreign Key	An attribute that references a primary key of the same or different relation.
DBA	Responsible for acquiring software and hardware resources, controlling its use and
	monitoring efficiency of operations and authorizing access to the database, for
	coordinating and monitoring use.
End User	Use the database on a day-to-day basis and do not know how the DB is structured.
Entity Integrity Rule	The primary key attributes of each relation schema R in S cannot have null values in any
	tuple of r(R).
Logical Data Independence	The capacity to change the conceptual schema without having to change the external
	schemas and their associated application programs.
Query Language (QL)	Used to specify database retrievals.

PART 2

```
Create table PART2(
    entity varchar(6) primary key,
    dependent varchar(9),
    foreign key (dependent) references PART2(entity));

insert into PART2 values('E1',null);
insert into PART2 values('E2,'null);
insert into PART2 values('E3','E1');

update PART2 set dependent = 'E3' where entity = 'E2';
update PART2 set dependent = 'E2' where entity = 'E1';
select * from PART2;
```

```
SQL> create table PART2(
    entity varchar(6) primary key,
  2
    dependent varchar(9),
  3
     foreign key (dependent) references PART2(entity));
  4
Table created.
SQL> insert into PART2 ∨alues ('E1',null);
1 row created.
SQL> insert into PART2 values ('E2', null);
1 row created.
SQL> insert into PART2 values ('E3','E1');
1 row created.
SQL> update PART2 set dependent = 'E3' where entity = 'E2';
1 row updated.
SQL> update PART2 set dependent = 'E2' where entity = 'E1';
1 row updated.
SQL> select * from PART2;
ENTITY DEPENDENT
E1
       EZ
EZ
       E3
```

E3

E1

PART 3

```
create table SAILER(
 S# char(2) primary key,
 Name varchar(8) default 'Lastname',
 Age integer check(Age > 0),
 check(Name in ('Smith','Jones','Blake','Zutkovic','Adams')));
create table BOAT(
 B# char(2) primary key,
 Name varchar(8) not null unique,
 Color varchar(6),
 check(Name in('Freedom','Paradise','Miracle','Splendor')),
 check(Color in('Blue','Green','Red','Yellow')));
create table RESERVATION(
 S# char(2),
 B# char(2),
 Day date not null,
 foreign key(S#) references SAILER(S#) on delete cascade,
 foreign key(B#) references BOAT(B#) on delete cascade);
SQL> create table SAILER(
      S# char(2) primary key,
      Name varchar(8) default 'Lastname',
      Age integer check(Age > 0),
      check(Name in ('Smith', 'Jones', 'Blake', 'Zutkovic', 'Adams')));
Table created.
SQL> create table BOAT(
      B# char(2) primary key,
  2
      Name varchar(8) not null unique,
      Color varchar(6),
      check(Name in('Freedom','Paradise','Miracle','Splendor')),
      check(Color in('Blue','Green','Red','Yellow')));
Table created.
SQL> create table RESERVATION(
      S# char(2),
  2
  3
      B# char(2),
      Day date not null,
      foreign key(S#) references SAILER(S#) on delete cascade,
      foreign key(B#) references BOAT(B#) on delete cascade);
Table created.
```

```
insert into BOAT values('B1','Freedom','Blue');
insert into BOAT values('B2','Paradise','Green');
insert into BOAT values('B3','Miracle','Red');
insert into BOAT values('B4','Splendor','Yellow');
```

insert into SAILER values('S1','Smith','20'); insert into SAILER values('S2','Jones','30'); insert into SAILER values('S3','Blake','25'); insert into SAILER values('S4','Zutkovic','20'); insert into SAILER values('S5','Adams','30');

insert into RESERVATION values('S1','B1','1-Jan-15'); insert into RESERVATION values('S1','B2','2-Jan-16'); insert into RESERVATION values('S1','B3','3-Feb-17'); insert into RESERVATION values('S1','B4','4-Feb-18'); insert into RESERVATION values('S2','B1','5-Mar-16'); insert into RESERVATION values('S2','B2','6-Mar-17'); insert into RESERVATION values('S2','B3','7-Apr-18'); insert into RESERVATION values('S3','B1','8-May-17'); insert into RESERVATION values('S3','B2','9-Jul-17'); insert into RESERVATION values('S4','B1','10-Sep-17');