Caio Dantas Farias 24026710

Eduardo Araujo de Oliveira 24026678

Saulo Ribeiro Santos 24026911

Sistema de monitoramento de enchentes em áreas de risco.

Protocolo de Comunicação para Sistema de Monitoramento de Enchentes usando Blynk IoT

O Blynk é uma plataforma popular para o desenvolvimento de soluções IoT, que oferece uma interface de usuário baseada em aplicativo móvel e integração fácil com dispositivos como microcontroladores, sensores e gateways. Para o seu projeto de monitoramento de enchentes em áreas de risco, o Blynk pode ser utilizado para monitorar, visualizar e controlar remotamente os dados coletados pelos sensores, enviando alertas e visualizando gráficos em tempo real.

Abaixo está um protocolo de comunicação adaptado para o Blynk IoT, contemplando a coleta de dados dos sensores de monitoramento de enchentes e envio para a interface do Blynk.

Objetivo

Desenvolver um sistema de monitoramento de enchentes usando a plataforma Blynk para coletar dados de sensores, monitorar condições em tempo real e enviar alertas aos usuários por meio do aplicativo Blynk.

Arquitetura do Sistema

- Sensores (no campo): Sensores de nível d'água, pluviômetros, sensores de temperatura.
- Microcontrolador/Gateway**: Dispositivos como Arduino, ESP32 ou ESP8266 conectados aos sensores e configurados para se comunicar com o servidor Blynk.
- Servidor Blynk: Plataforma Blynk para visualização e análise de dados.
- Aplicativo Blynk: Interface gráfica móvel para visualização de dados em tempo real e notificações de alertas.

Fluxo de Comunicação

- Sensores de monitoramento de enchentes (nível de água, intensidade de chuva, temperatura) são conectados a microcontroladores (e.g., ESP32 ou Arduino).
- Os sensores capturam as variáveis ambientais e enviam os dados ao microcontrolador.

Envio de Dados para Blynk

- O microcontrolador usa a biblioteca Blynk para enviar os dados coletados diretamente para a plataforma Blynk por meio da internet (Wi-Fi ou dados móveis).
- O microcontrolador envia os dados de forma periódica para o servidor Blynk, onde as variáveis podem ser exibidas em tempo real em gráficos e widgets.

Interação com o Aplicativo Blynk:

- O usuário visualiza os dados dos sensores no aplicativo Blynk, onde pode acompanhar o nível da água, a chuva acumulada, a temperatura, e o status dos sensores em tempo real.
- Em caso de risco de enchente (exemplo: nível de água acima de um limite crítico), o Blynk pode enviar notificações de alerta aos usuários.

Tecnologias e Ferramentas Usadas

- Microcontrolador/Gateway: ESP32 ou ESP8266, devido à conectividade Wi-Fi embutida.
- Sensores: Sensores de nível de água (como o sensor de nível ultrassônico), pluviômetros (sensor de chuva), sensores de temperatura e umidade.
- Blynk: Plataforma de IoT para comunicação entre os sensores e a interface do usuário (app Blynk).

Bibliotecas e Comunicação

Biblioteca Blynk: A biblioteca Blynk é essencial para a comunicação entre o microcontrolador e a plataforma Blynk. Para isso, você precisa adicionar a biblioteca Blynk no código do Arduino (ou similar).

```
    Copiar código

#include <BlynkSimpleEsp32.h> // Para ESP32
// Winclude <BlynkSimpleEsp8266.h> // Para ESP8266
// Defina o token do seu projeto Blynk
char auth[] = "YOUR_BLYNK_AUTH_TOKEN";
// Defina os pinos dos sensores (exemplo)
const int sensorNivelAgua = A0; // Sensor de nível de água
const int sensorChuva = A1; // Sensor de chuva
// Defina os widgets do Blynk (por exemplo, V1 para o nível de água, V2 para chuva)
void setup() {
 // Iniciar conexão com o Blynk
 Blynk.begin(auth, "SSID", "PASSWORD");
void loop() {
 // Coleta dos dados dos sensores
 int nivelAgua = analogRead(sensorNivelAgua); // Leitura do sensor de nível de água
 int chuva = analogRead(sensorChuva); // Leitura do sensor de chuva
 // Envía os dados para os widgets do Blynk
 Blynk.virtualWrite(V1, nivelAgua); // Envía o nível de água para o app
 Blynk.virtualWrite(V2, chuva); // Envia a chuva acumulada para o app
 // Função de controle de tempo (atualização dos dados)
  timer.run();
  Blynk.run();
                                   (4)
```

- Widgets Blynk: A plataforma Blynk oferece diversos tipos de widgets para visualização de dados em tempo real, como:
- Value Display: Exibe valores em tempo real (ex.: nível de água, intensidade de chuva).
 - Graph: Exibe gráficos com valores históricos ou em tempo real (para monitoramento contínuo).
- LED: Indica status de alertas, como riscos de enchente.
- Notification: Envia notificações para os usuários.

Estrutura de Dados

O envio de dados do microcontrolador para o Blynk ocorre através de virtual pins configurados no aplicativo Blynk, e os dados podem ser estruturados conforme necessário.

Exemplo de envio de dados para Blynk:

- V1 (Nível de Água): Dados do sensor de nível de água.
- V2 (Pluviômetro): Dados do sensor de chuva.
- V3 (Temperatura): Dados do sensor de temperatura.

Esses dados podem ser coletados em intervalos regulares e enviados ao aplicativo Blynk.

Notificações de Risco de Enchente

Usando o Blynk, você pode configurar notificações automáticas quando um nível crítico de água ou um padrão de chuva for detectado. Isso pode ser feito da seguinte forma:

Configuração no código: Defina limites críticos para o nível de água e o valor do pluviômetro. Quando esses limites forem atingidos, acione uma notificação para o aplicativo Blynk.

```
int limiteCriticoNivelAgua = 500; // Valor ficticio de limite para nivel de dgua
int limiteCriticoChuva = 700; // Valor ficticio de limite para chuva acumulada

void loop() {
    int nivelAgua = analogRead(sensorNivelAgua);
    int chuva = analogRead(sensorChuva);

    // Verifique se o nivel de dgua ou chuva excedem o limite critico
    if (nivelAgua > limiteCriticoNivelAgua) {
        Blynk.notify("ALERTA! Nivel de água elevado. Risco de enchente!");
    }

    if (chuva > limiteCriticoChuva) {
        Blynk.notify("ALERTA! Chuva intensa detectada. Atenção com a previsão de enchente!");
    }

    // Envia os dados para os widgets
    Blynk.virtualWrite(V1, nivelAgua);
    Blynk.virtualWrite(V2, chuva);

    timer.run();
    Blynk.run();
}
```

Segurança e Autenticação

Autenticação: O sistema utiliza um auth token único gerado pelo Blynk para cada dispositivo. Este token deve ser mantido seguro e nunca exposto em código público.

Conexão Segura: O Blynk usa SSL/TLS para comunicação segura entre o dispositivo e os servidores Blynk.

Escalabilidade e Manutenção

- O sistema pode ser facilmente escalado para incluir mais sensores em diferentes locais. Basta adicionar novos widgets ao aplicativo Blynk e configurar os pinos virtuais adicionais no código do microcontrolador.
- O sistema também suporta a atualização over-the-air (OTA), permitindo a atualização do firmware sem necessidade de acesso físico ao dispositivo.