[과제1] Color Conversion

2024-03-18 (월)

@ 2024-1 컴퓨터비젼

Contents

- 과제 개요
- 컬러 포맷
 - 영상 데이터 포맷
 - RGB 포맷
 - YCbCr 포맷
- 과제 세부 설명
- OpenCV 환경 구성

과제 개요

- ① RGB 4:4:4 컬러 포맷 영상을 YCbCr 4:4:4와 YCbCr 4:2:0 컬러 포맷 영상으로 변환하는 프로그래밍 수행
- ② YCbCr 4:2:0 동영상을 입력 받아 화면에 출력하는 프로그래밍 수행

컬러 포맷

영상 데이터 포맷

- 영상의 데이터
 - 가로 M개, 세로 N개의 픽셀로 구성
 - 일반적으로 2차원 배열
 - 각 (x, y)번째 위치한 인덱스의 값은 해당 위치에서의 픽셀 값을 의미
- RAW 데이터 포맷
 - 별도의 헤더 정보 없이, 영상 데이터(픽셀 값)로만 구성
 - 영상의 크기 정보 필요

RGB 포맷

- RGB 포맷
 - 컬러 영상: 각 픽셀은 Red, Green, Blue의 3개의 원소로 구성
 - 흑백 영상: 각 픽셀은 1개의 원소로 구성

Color & Gray RAW 데이터

■ Color RAW 데이터

■ Gray RAW 데이터

YCbCr 포맷

- YCbCr 포맷
 - 휘도(밝기)에 비해 색차 성분에 덜 민감하다는 인간의 시각 시스템특성을 반영한 포맷
- YCbCr 샘플링 포맷
 - -4:4:4
 - 2x2 픽셀을 기준으로 Y, Cb, Cr 성분이 4개씩 모두 존재하는 형태
 - -4:2:2
 - 2x2 픽셀을 기준으로 Y와 Cb, Cr 성분을 2:1 비율로 샘플링한 형태
 - -4:2:0
 - 2x2 픽셀을 기준으로 Y와 Cb, Cr 성분을 4:1 비율로 샘플링한 형태

4:4:4 4:2:2 4:2:0

YCbCr 샘플링 포맷

4:4:4

4:2:2

4:2:0

RGB 포맷과 YCbCr 포맷 간 변환

- 디지털 RGB 영상과 디지털 YCbCr 영상 간 변환식
 - * JEPG color space conversion formula
 - RGB (8-bit) to YCbCr (8-bit)

$$Y = 0.299R + 0.587G + 0.114B$$

 $Cb = 128 - 0.169R - 0.331G + 0.500B$
 $Cr = 128 + 0.500R - 0.419G - 0.0813B$

YCbCr (8-bit) to RGB (8-bit)

$$R = 1.000Y + 1.402(Cr - 128)$$

$$G = 1.000Y - 0.714(Cr - 128) - 0.344(Cb - 128)$$

$$B = 1.000Y + 1.772(Cb - 128)$$

과제 세부 설명

① RGB 4:4:4 컬러 포맷 영상을 YCbCr 4:4:4와 YCbCr 4:2:0 컬러 포맷 영상으로 변환하는 프로그래밍 수행

- 구현 시 주의 사항
 - RGB 데이터 포맷과 YCbCr 데이터 포맷 간 변환하는 과정은 OpenCV 함수 사용하지 않고, 직접 구현
 - RGB와 YCbCr의 각 채널 영상과 컬러 영상을 opencv의 imshow()함수를 이용하여 화면에 출력하고, 보고서에 첨부
 - 변환된 YCbCr 4:4:4 & 4:2:0 데이터를 .yuv 파일로 저장

■ RGB와 YCbCr의 각 채널 영상과 컬러 영상 출력 예시

② YCbCr 4:2:0 동영상을 입력 받아 화면에 출력하는 프로그래밍 수행

- 구현 시 주의 사항
 - YUV 4:2:0 동영상을 입력으로 받아 각 프레임 당 OpenCV의 imshow() 함수를 사용하여 화면에 출력 수행
 - 변환된 30 frame RGB 데이터를 .raw 파일로 저장

■ YCbCr 4:2:0 동영상 출력 예시

과제 유의 사항

- 입력 테스트 파일
 - 제공된 테스트 파일 사용
 - ① Suzie_CIF_352x288.raw
 - ② RaceHorses_416x240_30.yuv

(8-bit RGB RAW 파일) (8-bit YCbCr 4:2:0 30 frame 파일)

- 구현 환경
 - Visual Studio 2022 버전에서 C++ 언어로 구현
 - 하나의 프로젝트에서 과제 ①, ② 구현
 - OpenCV 버전 4.9.0 사용 권장
 - ※ 채점 과정에서 OpenCV 버전 문제로 인한 불이익이 발생할 수 있음

과제 제출

- 제출물 코드, 보고서 압축한 파일 제출 (학번_이름_ver#.zip) (예: 2024123456_홍길동_ver2.zip)
 - 코드
 - 과제 수행한 visual studio project (Debug 폴더 제외)
 - 코드에 주석 작성
 - 보고서
 - 과제 개요, 과제 수행 방법, 결과 분석, 고찰
- ■제출처
 - FTP Sever
- 마감일
 - **2022년 4월 7일 (일요일) 23:59:59** (서버 시간 기준)
 - 마감일 이후 ~ 일주일: 채점 점수의 50%만 실제 과제 점수로 반영
 - 일주일 이후: 0점 처리

과제 제출 방법

- FTP Server
 - Windows 파일 탐색기 또는 FileZilla 이용해 서버 접속
 - URL: ftp://223.194.44.54:1321
 - Username: CV_2024
 - Password: CV_2024

과제 제출 방법

- FTP Server
 - 과제 폴더에 과제 압축 파일 업로드
 - 업로드 후 파일 삭제 불가능함 → 과제 수정 시, 새로운 버전으로 업로드
 - 마지막 버전의 과제 압축 파일로 과제 채점 예정
 - ➤ Ex. 2024123456_홍길동_ver1.zip 2024123456_홍길동_ver2.zip 2024123456_홍길동_ver3.zip
 - → "2024123456_홍길동_ver3.zip" 파일로 과제 채점

OPENCV 환경 구성

OpenCV

- OpenCV (Open Source Computer Vision)
 - 오픈 소스 컴퓨터 비젼 라이브러리 중 하나
 - C/C++, python, JAVA 등 다양한 프로그래밍 언어 지원
 - 윈도우, 리눅스, iOS 등 다양한 플랫폼 지원

OpenCV 환경 구성 [1/12]

- OpenCV 라이브러리 사이트 접속
 - https://opencv.org/releases/

OpenCV is the world's biggest computer vision library.

It's open source, contains over 2500 algorithms and is operated by the non-profit Open Source Vision Foundation.

OpenCV 환경 구성 [2/12]

■ opencv-4.9.0-windows.exe 파일 실행

■ 설치 경로 설정 후 Extract

OpenCV 환경 구성 [3/12]

■ Visual studio 세팅 – 프로젝트 생성

OpenCV 환경 구성 [4/12]

■ Visual studio 세팅 – 프로젝트 생성

OpenCV 환경 구성 [5/12]

■ Visual studio 세팅 – 소스 파일 추가

OpenCV 환경 구성 [6/12]

■ 프로젝트(alt+P) → 프로젝트 속성(P)

OpenCV 환경 구성 [7/12]

- C/C++탭 → 일반 → 추가 포함 디렉터리
 - OpenCV include 파일 경로 설정
 - EX) C:₩opencv₩build₩include

OpenCV 환경 구성 [8/12]

- 링커 탭 → 일반 → 추가 라이브러리 디렉터리
 - OpenCV lib 파일 경로 설정 후 적용
 - EX) C:₩opencv₩build₩x64₩vc16₩lib

OpenCV 환경 구성 [9/12]

- 링커 탭 → 입력 → 추가 종속성 (구성 Debug로 변경)
 - OpenCV lib 이름 설정 후 적용
 - EX) opencv_world490d.lib

OpenCV 환경 구성 [10/12]

- 링커 탭 → 입력 → 추가 종속성 (구성 Release로 변경)
 - OpenCV lib 이름 설정 후 적용
 - EX) opencv_world490.lib

OpenCV 환경 구성 [11/12]

- 프로젝트에 .dll 파일 추가
 - 파일 추가 경로: 솔루션 → 파일 탐색기에서 폴더 열기(X)
 - EX) opencv_world490.dll, opencv_world490d.dll 파일 추가

OpenCV 환경 구성 [12/12]

■ 소스 파일에 라이브러리 include 하여 사용 가능

```
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
```


END OF PRESENTATION

Q&A

