MM54HC365/MM74HC365 Hex TRI-STATE® Buffer MM54HC366/MM74HC366 Inverting Hex TRI-STATE Buffer MM54HC367/MM74HC367 Hex TRI-STATE Buffer MM54HC368/MM74HC368 Inverting Hex TRI-STATE Buffer

General Description

These TRI-STATE buffers are general purpose high speed inverting and non-inverting buffers that utilize advanced silicon-gate CMOS technology. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. All 4 circuits are capable of driving up to 15 low power Schottky inputs.

The MM54/74HC366 and the MM54/74HC368 are inverting buffers, where as the MM54/74HC365 and the MM54/74HC365 and the MM54/74HC366 and the MM54/74HC366 have two TRI-STATE control inputs ($\overline{G1}$ and $\overline{G2}$) which are NORed together to control all

six gates. The MM54/74HC367 and the MM54/74HC368 also have two output enables, but one enable ($\overline{\text{G1}}$) controls 4 gates and the other ($\overline{\text{G2}}$) controls the remaining 2 gates. All inputs are protected from damage due to static discharge by diodes to V $_{\text{CC}}$ and ground.

Features

- Typical propagation delay: 15 ns
- Wide operating voltage range: 2V-6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum (74 Series)
- Output drive capability: 15 LS-TTL loads

Connection Diagrams Dual-In-Line Packages/Top Views Vcc GZ A6 Y6 A5 Y5 A4 Y4 I6 15 14 13 12 11 10 9 Order Number MM54HC365 or MM74HC365 Order Number M54HC365 or MM74HC365

Order Number MM54HC367 or MM74HC367

Order Number MM54HC366 or MM74HC366

Order Number MM54HC368 or MM74HC368

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 35 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Supply Voltage (V_{CC}) DC Input or Output Voltage 0 V_{CC} ٧ (V_{IN}, V_{OUT}) Operating Temp. Range (T_A) MM74HC -40 +85°C -55 MM54HC +125°C Input Rise or Fall Times

Max

Units

Operating Conditions

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	T _A =	= 25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed Limits		
V_{IH}	Minimum High Level Input		2.0V		1.5	1.5	1.5	V
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V_{IL}	Maximum Low Level Input		2.0V		0.5	0.5	0.5	V
	Voltage**		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V_{OH}	Minimum High Level Output	$V_{IN} = V_{IH}$ or V_{IL}						
	Voltage	I _{OUT} ≤20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		I _{OUT} ≤6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V_{OL}	Maximum Low Level Output	$V_{IN} = V_{IH}$ or V_{IL}						
	Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		I _{OUT} ≤6.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤7.8 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{OZ}	Maximum TRI-STATE Output Leakage Current	$V_{OUT} = V_{CC}$ or GND $\overline{G} = V_{IH}$	6.0V		±0.5	±5.0	±10	μΑ
Icc	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μΑ

 $[\]textbf{Note 1:} \ \textbf{Maximum Ratings are those values beyond which damage to the device may occur.}$

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**} V_{IL} limits are currently tested at 20% of V_{CC} . The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics MM54HC365/MM74HC365

 $V_{CC} = 5V$, $T_A = 25$ °C, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L =45 pF	15	22	ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 45 \text{ pF}$	29	40	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	25	36	ns

AC Electrical Characteristics MM54HC365/MM74HC365

 $V_{CC} = 2.0 - 6.0 \text{V}, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$ $C_L = 50 \text{ pF}$ $C_L = 150 \text{ pF}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	35 45 14 17 11	105 135 24 29 19 24	130 168 30 36 24 30	150 205 36 45 28 36	ns ns ns ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$\begin{aligned} R_L &= 1 \ k\Omega \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	90 98 31 38 25 29	230 245 44 53 35 41	287 306 55 66 43 51	345 367 66 80 52 62	ns ns ns ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	58 26 22	175 44 37	218 55 46	260 66 55	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	Any Enabled A Input Any Disabled A Input		45 8				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			10	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

'HC365

	Inputs	Output	
G1	G2	Α	Υ
Н	Х	Χ	Z
X	Н	X	Z
L	L	Н	Н
L	L	L	L

AC Electrical Characteristics (Continued) MM54HC366/MM74HC366

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_L = 45 pF$	12	18	ns
t _{PZL} , t _{PZH}	Maximum Output Enable Time	$R_L = 1 k\Omega$ $C_L = 45 pF$	29	40	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	25	36	ns

AC Electrical Characteristics MM54HC366/MM74HC366

 V_{CC} =2.0-6.0V, C_L =50 pF, t_r = t_f =6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$\begin{aligned} &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	33 43 12 16 10	82 107 19 26 16 22	102 134 24 32 20 27	125 160 30 39 24 33	ns ns ns ns ns
tpzH, tpzL	Maximum Output Enable Time	$\begin{aligned} R_L &= 1 \ k\Omega \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	90 98 31 38 25 29	230 245 44 53 35 41	287 306 55 66 43 51	345 367 66 80 52 62	ns ns ns ns ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	58 26 22	175 44 37	218 55 46	260 66 55	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	Any Enabled A Input Any Disabled A Input		45 6				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			10	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

'HC366

	Inputs		Output
G1	G2	Α	Υ
Н	Х	Χ	Z
X	Н	X	Z
L	L	Н	L
L	L	L	Н

AC Electrical Characteristics (Continued) MM54HC367/MM74HC367

 $V_{CC} = 5V$, $T_A = 25$ °C, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L =45 pF	13	22	ns
t _{PZL} , t _{PZH}	Maximum Output Enable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 45 \text{ pF}$	23	37	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	25	33	ns

AC Electrical Characteristics MM54HC367/MM74HC367

 $V_{CC} = 2.0 - 6.0 \text{V}, C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$\begin{aligned} &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	35 45 14 17 11 15	105 135 24 29 19 24	130 168 30 36 24 30	150 205 36 45 28 36	ns ns ns ns ns
t _{PZH} , t _{PZL}	Maximum Output Enable Time	$\begin{aligned} R_L &= 1 \ k\Omega \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	69 75 24 29 22 26	172 187 38 46 35 42	216 233 47 57 43 52	250 280 57 69 52 63	ns ns ns ns ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	47 22 19	117 35 31	146 44 39	220 52 46	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	Any Enabled A Input Any Disabled A Input		45 8				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Output Capacitance			10	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

'HC367

Inp	uts	Output
G	Α	Υ
Н	Х	Z
L	Н	Н
L	L	L

AC Electrical Characteristics (Continued) MM54HC368/MM74HC368

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_L = 45 pF$	11	18	ns
t _{PZL} , t _{PZH}	Maximum Output Enable Time	$R_L = 1 k\Omega$ $C_L = 45 pF$	23	37	ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 k\Omega$ $C_L = 5 pF$	19	33	ns

AC Electrical Characteristics MM54HC368/MM74HC368

 $V_{CC}\!=\!2.0\text{--}6.0\text{V},\,C_L\!=\!50$ pF, $t_r\!=\!t_f\!=\!6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$\begin{aligned} &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \\ &C_L\!=\!50 \text{ pF} \\ &C_L\!=\!150 \text{ pF} \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	33 43 12 16 10	82 107 19 26 16 22	102 134 24 32 20 27	125 160 30 39 24 33	ns ns ns ns ns
tpzH, tpzL	Maximum Output Enable Time	$\begin{aligned} R_L &= 1 \ k\Omega \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \\ C_L &= 50 \ pF \\ C_L &= 150 \ pF \end{aligned}$	2.0V 2.0V 4.5V 4.5V 6.0V 6.0V	69 75 24 29 22 26	172 187 38 46 35 42	216 233 47 57 43 52	250 280 57 69 52 63	ns ns ns ns ns ns
t _{PHZ} , t _{PLZ}	Maximum Output Disable Time	$R_L = 1 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	2.0V 4.5V 6.0V	47 22 19	117 35 31	146 44 39	220 52 46	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time	C _L =50 pF	2.0V 4.5V 6.0V	25 7 6	60 12 10	75 15 13	90 18 15	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	Any Enabled A Input Any Disabled A Input		45 6				pF pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{OUT}	Maximum Input Capacitance			10	20	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

'HC368

Inp	outs	Output		
G	Α	Y		
Н	Х	Z		
L	Н	L		
L	L	Н		

Logic Diagrams

MM54HC365/MM74HC365

MM54HC366/MM74HC366

MM54HC367/MM74HC367

MM54HC368/MM74HC368

Order Number MM54HC365J, MM54HC366J, MM54HC367J, MM54HC368J, MM74HC365J, MM74HC366J, MM74HC367J, or MM74HC368J, NS Package J16A

Order Number MM74HC365N, MM74HC366N, MM74HC367N, or MM74HC368N NS Package N16E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017

1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: cnjwgs@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon

Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408