- \rightarrow plotdf(r + 1*sin(y), [x, -50, 50], [parameters, "r=0.9"], [sliders, "r=0:10"])\$
- \rightarrow plot2d(0.9 + 1*sin(y), [y, -10, 10])\$;
- /* harmonic oscillator */ plotdf([v,-k*x/m], [x,v], [parameters,"m=2,k=2"], [sliders,"m=1:5"], [trajectory_at,6,0])\$
- /* damped harmonic oscillator */ plotdf([v,-k*x/m 0.1*v], [x, v], [parameters,"m=2,k=2"], [sliders,"m=1:5"], [trajectory_at,6,0])\$
- /* Example 5.1.2 */ kill(a)\$; eq1: a*x\$; eq2: -y\$; plotdf([eq1, eq2], [x, y], [x, -50, 50], [y, -50, 50], [parameters,"a=1"], [sliders,"a=-5:5"], [trajectory_at,0.5,0.5])\$
- /* Example 5.2.2 */ eq1: x + y\$; eq2: 4*x 2*y\$; plotdf([eq1, eq2], [x, y], [x, -50, 50], [y, -50, 50], [trajectory_at, 0.5, 0.5])\$
- /* Exercise 5.3.2 */ R_: J\$; J_: -R + J\$; plotdf([R_, J_], [R, J], [R, -5000, 5000], [J, -5000, 5000], [trajectory_at, 0.5, 0.5])\$
- /* Exercise 5.3.3 */ kill(a)\$; kill(b)\$; R_: a*J\$; J_: b*R\$; plotdf([R_, J_], [R, J], [R, -5000, 5000], [J, -5000, 5000], [parameters,"a=1, b=1"], [sliders,"a=-5:5, b=-5:5"], [trajectory_at,0.5,0.5])\$
- /* Exercise 5.3.4 */ kill(a)\$; kill(b)\$; R_: a*R + b*J\$; J_: -b*R a*J\$; plotdf([R_, J_], [R, J], [R, -5000, 5000], [J, -5000, 5000], [parameters,"a=1, b=1"], [sliders,"a=-5:5, b=-5:5"], [trajectory_at,0.5,0.5])\$
- /* Exercise 5.3.5 */ kill(a)\$; kill(b)\$; R_: a*R + b*J\$; J_: b*R + a*J\$; plotdf([R_, J_], [R, J], [R, -5000, 5000], [J, -5000, 5000], [parameters,"a=1, b=1"], [sliders,"a=-5:5, b=-5:5"], [trajectory_at,0.5,0.5])\$
- /* Exercise 5.3.6 */ kill(a)\$; kill(b)\$; R_: 0\$; J_: a*R + b*J\$; plotdf([R_, J_], [R, J], [R, -5000, 5000], [J, -5000, 5000], [parameters,"a=1, b=1"], [sliders,"a=-5:5, b=-5:5"], [trajectory_at,0.5,0.5])\$
- /* Example 6.1.1 */ X_: x + %e**(-y)\$; Y_: -y\$; scale: 5\$; plotdf([X_, Y_], [x, y], [x, -scale, scale], [y, -scale, scale], [trajectory_at,-2,0], [trajectory_at,-0.5,0])\$
- /* Example 6.3.1 */ X_: -x + x**3\$; Y_: -2*y\$; scale: 5\$; plotdf([X_, Y_], [x, y], [x, -scale, scale], [trajectory_at,-2,0], [trajectory_at,-0.5,0])\$
- /* Rabbits and Sheeps */ X_: x * (3 x 2*y)\$; Y_: y * (2 x y)\$; scale0: 0\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, -scale0, scale1], [trajectory_at,-2,0])\$
- /* Example 6.5.1 */ X.: y\$; Y.: x x**3\$; scale0: -5\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [trajectory_at,-2,0])\$
- /* Pendulum */ %theta_: v\$; V_: $-\sin(\% theta)$ \$; scale0: -5\$; scale1: 5\$; plotdf([%theta_, V_], [%theta, v], [v, scale0, scale1], [%theta, scale0, scale1], [trajectory_at,-2,0])\$
- /* Damped Pendulum */ %theta_: v\$; V_: -0.1*v -sin(%theta)\$; scale0: -5\$; scale1: 5\$; plotdf([%theta_, V_], [%theta, v], [v, scale0, scale1], [%theta, scale0, scale1], [trajectory_at,-2,0])\$

- -> load(physical_constants);
- /* Exercise 6.3.8 */ kill(a)\$; m1: 10E10\$; m2: 20E10\$; G: 6.673e-11\$ X_: y\$; Y_: G * m2/(x a) * G * m1/(x**2)\$; scale0: -5\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [parameters,"a=3"], [sliders,"a=-50:50"], [trajectory_at,-2,0])\$
- /* Example 7.1.1 */ R_: r * (1 r**2)\$; %theta_: 1\$; scale0: -5\$; scale1: 5\$; plotdf([R_-, %theta_-], [r, %theta], [r, scale0, scale1], [%theta, scale0, scale1], [trajectory_at,-2,0])\$
- /* Van Der Pol Oscillator */ kill(MU)\$; X_: y\$; Y_: -MU*(x**2 1)*y -x\$; scale0: -5\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [parameters,"MU=3"], [sliders,"MU=-10:10"], [trajectory_at,-2,0])\$
- /* Example 7.1.1 */ R_: r * (1 r**2)\$; %theta_: 1\$; scale0: -5\$; scale1: 5\$; plotdf([R_-, %theta_-], [r, %theta], [r, scale0, scale1], [%theta, scale0, scale1], [trajectory_at,-2,0])\$
- /* Example 7.3.3 */ kill(a)\$; kill(b)\$; X_: -x + a*y + x^(2)*y\$; Y_: b a*y $x^(2)*y$$; scale0: -1\$; scale1: 3\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [parameters,"a=0.08,b=0.6"], [sliders,"a=0:10,b=0:10"], [trajectory_at,-2,0])\$
- /* Example 8.1.3 */ kill(MU)\$; X_: MU*x + y + sin(x)\$; Y_: x y\$; scale0: -5\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [parameters,"MU=3"], [sliders,"MU=-10:10"], [trajectory_at,-2,0])\$
- /* Example 8.2.1 */ kill(MU)\$; X_: MU*x y + + x*y^2\$; Y_: x + MU*y + y^3\$; scale0: -5\$; scale1: 5\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [parameters,"MU=-0.2"], [sliders,"MU=-0.5:0.5"], [trajectory_at,-2,0])\$
- /* Example 8.3.3 */ kill(a)\$; kill(b)\$; X_: a x 4*x*y/(1 + x**2)\$; Y_: b*x*(1 y/(1 + x**2))\$; scale0: 0\$; scale1: 500\$; plotdf([X_, Y_], [x, y], [x, scale0, 20], [y, scale0, scale1], [nsteps, 4000], [tstep, 0.01], [parameters,"a=50,b=29.4"], [sliders,"a=0:100,b=0:100"])\$
- /* Homoclinic Bifurcation */ kill(MU)\$; X_: y\$; Y_: MU*y + x x**2 + x*y\$; scale0: -2\$; scale1: 2\$; plotdf([X_, Y_], [x, y], [x, scale0, scale1], [y, scale0, scale1], [parameters,"MU=-0.92"], [sliders,"MU=-5:5"])\$

/* Lorenz equations */ load(draw)\$; latractor: [10*(y-x), -x*z+100*x-y, x*y-8*z/3]\$ linitial: [-2, 8, 27]\$ lsolution:rk(latractor,[x,y,z],linitial,[t,0,50,0.01])\$ lpoints: map(lambda([x], rest(x)), lsolution)\$ wxdraw3d(point_type=none,points_joined=true,color=orange, xlabel="x(t)",ylabel="y(t)",zlabel="z(t)",xtics=10,ytics=10,ztics=10,points(lpoints));

(%o42)

/* Rossler System */ load(draw)\$; latractor: [-y-z, x+0.2*z, 0.2+z*(x-5.7)]\$ linitial: [-7, 8, 6]\$ lsolution:rk(latractor,[x,y,z],linitial,[t,0,500,0.01])\$ lpoints: map(lambda([x], rest(x)), lsolution)\$ wx-draw3d(point_type=none,points_joined=true,color=orange, xlabel="x(t)",ylabel="y(t)",zlabel="z(t)", xtics=10,ytics=10,ztics=10,points(lpoints));

(%090)

/* Example 12.5.1 */ kill(x)\$; kill(t)\$; delta: 0.25\$ w: 1\$ F: 0.18\$ dxdt: y\$ dydt: F*cos(w*t) - delta*y + x - x**3\$ points: rk([dxdt, dydt], [x, y], [0.2, 0], [t, 0, 200, 0.01])\$ txL: makelist ([points[i][1], points[i][2]], i, 1, length(points))\$ tyL: makelist ([points[i][1], points[i][3]], i, 1, length(points))\$ wxplot2d([[discrete,txL], [discrete,tyL]],[t,0,280], [style,[lines,3]],[xlabel,"t"], [legend, "x", "y"], [gnuplot_preamble,"set key bottom left;"], [gnuplot_term, aqua]);

(%t85)

(%085)

/* Example 12.5.2 */ kill(x)\$; kill(t)\$; delta: 0.25\$ stepSize: 2*float(%pi)/10.0\$ w: 1\$ F: 0.4\$ dxdt: y\$ dydt: F*cos(w*t) - delta*y + x - x**3\$ rkRes : rk([dxdt, dydt], [x, y], [0, 0], [t, 0, 20000, stepSize])\$ txL : makelist ([rkRes[i][1], rkRes[i][2]], i, 1, length(rkRes))\$ tyL : makelist ([rkRes[i][1], rkRes[i][3]], i, 1, length(rkRes))\$ wxplot2d([[discrete,txL], [discrete,tyL]],[t,0,280], [style,[lines,3]],[xlabel,"t"], [legend, "x", "y"], [gnuplot_preamble,"set key bottom left;"], [gnuplot_term, aqua]); /* Phase */ xyL : makelist ([rkRes[i][2], rkRes[i][3]], i, 1, length(rkRes))\$ wxplot2d ([discrete, xyL],[x, -1.6, 1.6],[y, -1.5, 1.5], [style, [lines, 3]], [ylabel, ""],[xlabel, " x vs y "])\$ /* Poincaré */ pL : makelist ([rkRes[i][2], rkRes[i][3]], i, 1, length(rkRes), floor(2*float(%pi)/stepSize))\$ wxplot2d ([discrete, pL],[x, -1.6, 1.6],[y, -1.5, 1.5], [style, [points, 0.5]], [ylabel, ""],[xlabel, " x vs y "])\$

(%o731)

6

(%t733)

(%t735)