ASSIGNMENT-5

FINANCIAL MATHEMATICS

Submitted by-

Md. Ashik Hassan Bhuiyan

4th year
class Roll: FH-020-026
Department of Applied Mathematics
January 13, 2019

Consider the equation for geometric Brownian motion, as used to model the path of an underlying asset:

$$dS = \mu S dt + \sigma S dt \tag{1}$$

where dX is the increment of a Wiener process (drawn from a Normal distribution with mean zero and standard deviation \sqrt{dt}); we may then write that

$$dX = \phi \sqrt{dt} \tag{2}$$

where ϕ is a random variable drawn from a normalised Normal distribution. Utilising eq(2) and risk neutrally, (1) can be integrated exactly over a timescale δt (NOT necessarily small) to yield

$$S(t + \delta t) = S(t)exp((r - \frac{1}{2}\sigma^2)\delta t + \sigma\phi\sqrt{\delta t})$$
(3)

equation (3) then generates a random path. Since δt need not be small, in the case of European options, it is possible to generate a (random) value of S at expiry (t=T) in just one step (i.e $\delta t = T$). From this value (say S(T)), the payoff can be easily calculated (max(S(T)X,0) in the case of call option). If this payoff is denoted as, $Payoff_i$ (for the i^th simulation), then the value of this payoff at t=0 is

$$C_i(t=0) = Payof f_i e^{-rT} = max(S(T) - X, 0)e^{-rT}$$
 (4)

If N simulations are performed, then we merely average out the $C_i(t=0)$ to yield an approximation for the value of the call, i.e

$$C = \frac{\sum_{i=1}^{N} C_i(t=0)}{N} \tag{5}$$

We have to calculate the value of a European call and put option, with S(t=0)=5, X=5, r=0.04, σ =0.2, T=0.5 .

We have to plot the value of the two options with increasing N (N=1000,2000,.....,50000 or more!).

We have to compare the obtained values with the exact values.

And we have to determine how accurately the values of our call and put options satisfy the put-call parity relationship with increasing N (N=1000,2000,....,50000 or more).

File Name: callput.m

```
10
11 end
12 price1=sum(C)/N;
13 price2=sum(P)/N;
14 cpay=price1;
15 ppay=price2;
16 spot=sum(S)/N;
17 end
```

File Name: cppayoff.m

```
1 clc;
2 clear all;
3 f=fopen('CPData.txt', 'w');
4 f1=fopen('output.txt', 'w');
_{5} [BSCall, BSPut] = blsprice (5,5,.04,.5,.2)
6 fprintf(f1, 'i\t\t MC-call\t
                                                   MC-Put\t
                Error\%(r n');
7 for i=1:50
       [cpayoff, ppayoff, spot]=callput(5,5,.5,.04,.2, i
          *1000);
       cp(i) = cpayoff;
       pp(i)=ppayoff;
10
       sp(i)=spot;
       parity = abs(cp(i) + 5*exp(-.04*.5) - pp(i) - sp(i))
12
          /100;
                                           \%3.4\,\mathrm{f}\,\mathrm{\backslash}\,\mathrm{t}
       fprintf(f1, '%d \setminus t)
                                                                \%3.4\,\mathrm{f}
13
                       parity);
       fprintf(f, '%d\t
                                 \%3.4 \,\mathrm{f} \,\mathrm{t} \%3.4 \,\mathrm{f} \,\mathrm{r} \,\mathrm{n}, i
14
          *1000, cp(i), pp(i));
15 end
16 \text{ N} = |1000:1000:50000|;
17 plot (N, cp)
18 hold on
19 plot (N, pp)
20 legend('Call Payoff', 'Put Payoff')
```

File Name: output.txt

i MC-call	MC-Put	Error%	
1000	0.3268	0.2246	0.0010%
2000 3000	0.3396	0.2236 0.2312	0.0010% 0.0010%
4000	0.3369 0.3300	0.2312	0.0010%
5000	0.3233	0.2320	0.0010%
6000	0.3228	0.2388	0.0010%
7000 8000	0.3332 0.3363	0.2356 0.2300	0.0010% 0.0010%
9000	0.3360	0.2311	0.0010%
10000	0.3361	0.2292	0.0010%
11000 12000	0.3311 0.3324	0.2304 0.2341	0.0010% 0.0010%
13000	0.3342	0.2321	0.0010%
14000	0.3288	0.2330	0.0010%
15000 16000	0.3344 0.3326	0.2322 0.2308	0.0010% 0.0010%
17000	0.3315	0.2351	0.0010%
18000	0.3376	0.2286	0.0010%
19000 20000	0.3307	0.2350	0.0010% 0.0010%
21000	0.3289 0.3278	0.2333 0.2338	0.0010%
22000	0.3300	0.2325	0.0010%
23000 24000	0.3271	0.2341 0.2358	0.0010% 0.0010%
25000	0.3263 0.3301	0.2290	0.0010%
26000	0.3295	0.2279	0.0010%
27000	0.3308	0.2335	0.0010%
28000 29000	0.3297 0.3323	0.2313 0.2326	0.0010% 0.0010%
30000	0.3318	0.2308	0.0010%
31000	0.3301	0.2301	0.0010%
32000 33000	0.3350 0.3326	0.2325 0.2313	0.0010% 0.0010%
34000	0.3309	0.2341	0.0010%
35000	0.3270	0.2314	0.0010%
36000 37000	0.3295 0.3287	0.2329 0.2312	0.0010% 0.0010%
38000	0.3338	0.2314	0.0010%
39000	0.3315	0.2310	0.0010%
40000 41000	0.3321 0.3343	0.2303 0.2304	0.0010% 0.0010%
42000	0.3328	0.2331	0.0010%
43000	0.3295	0.2329	0.0010%
44000 45000	0.3280 0.3315	0.2323 0.2319	0.0010% 0.0010%
46000	0.3321	0.2307	0.0010%
47000	0.3347	0.2316	0.0010%
48000 49000	0.3313 0.3298	0.2319 0.2328	0.0010% 0.0010%
50000	0.3298	0.2317	0.0010%

