

بقدم لكم اتحاد طلبت قسم الرياضيات بالتعاون مع فريق Omega أفضل ما يمكن من أسئلت السنوات طادة :

اللهم علَّمنا ما بنفعنا .. وانفعنا مجا علَّمننا

Part 1: Fill in the rectangular box with the correct answer. Show your work. Answers without solution details are not accepted.

1) (2 marks) Find the 60^{th} percentile P_{60} for following grouped sample data.

1) /2 mar	ks) Find the 60 percentile . 80	
NK = 12	Po = 8.5 + (12-5)) *5/
100	= 8.5 + 3.89	
	= 12.39	

	Class	Frequency	5.4
L		5	5
	4-8	3	1.4
١	9-13!	9	1 .
	14-18	2	16
	19-23	4	120
	Total	. 20]
-			

12.39

P = a + (nk - Pc) x

·1)

2) (2 marks) The mean of 50 observations is 85. If an observation was incorrectly recorded 150 instead of 15, then he correct mean equals

 $\frac{7}{\sqrt{1}} = \frac{2 \times L}{N} \Rightarrow 85 = \frac{2}{5}$ $\frac{2 \times L}{N} \Rightarrow 85 = \frac{2}{5}$

$$P(A \cap B) = \frac{P(A \cap B)}{P(B)}$$

$$(1) (2 \text{ marks}) P(A \cup \overline{B}) = P(A) = P(A)B) \qquad (2 \text{ marks}) P(A \cup \overline{B}) = P(A) + P(\overline{B}) - P(A)B) \qquad (3 \text{ marks}) P(A \cup \overline{B}) = P(A) + (1 - P(B)) - [P(A) - P(A)B) \qquad (4 \text{ marks}) = P(A) +$$

Part 2: Identify the choice that best completes the statement or answers the question.

	Q1	Q2	Q3	Q4	Q5 .	Q6	Q7	Q8
	a	a	a	21/	(Cal	A	а	a/
(Q	,b	io	Ъ	b	K	b	b /	by
	181	č	C	С	С	C	12	С
	d	d	d,	d	d	· d	d	đ
	100	е	1	е	е	е	е	c

Find the median of the sample represented by the following relative frequency table

Х	relative frequency
1	0.15
2	0.25
3 .	،, 0.40
4	0.10
5	0.10

2) The grades of a Math test are bell shaped. If 95% of students grades are in the interval [48,72], then the mean and the standard deviation of the math grades are

a)
$$\vec{X} = 62, S = 6$$
 (b) $\vec{X} = 60, S = 6$ c) $\vec{X} = 65, S = 5$ d) $\vec{X} = 60, S = 10$

e)
$$\bar{X} = 64.S = 8$$

 $\frac{x}{x} + \frac{2}{3} = \frac{x}{x}$ $\frac{x}{x} - \frac{2}{3} = \frac{120}{x}$ $\frac{x}{x} = \frac{120}{x}$ $\frac{x}{x} = \frac{120}{x}$ $\frac{x}{x} = \frac{120}{x}$

0.15

3)	The mean and the standard deviation of a set of data observation is multiplied by 3 and then 4 is added to t	are 30 and 5 reache result. Then	spectively., the mean	If each md the s	tandard
	deviation of the transformed data are:	s to the second		7	
	a) $\bar{X} = 120, S = 20$ b) $\bar{X} = 30, S = 5$	c) $\bar{X} = 123$	S, S = 20		

d) \$\overline{X}\$ = 120,\$S = 5 \$\overline{X}\$ = 94,\$S = 15
4) According to Chebyshev's rule, the proportion of observations within 2 standard deviations of the mean is:

At Teast 75% *b) At most 75% c) At least 25% d) At most 25% e) Exactly 25%

5) A password consists of digits is to be formed from the numbers 2, 3, 4, 5, 6, 7. What is the probability that the first digit in the password is even?

2) 1/2 b) 3/7 c) 1/7 d) 3/14 e) 1/6

6) If two balls are selected at random without replacement from a box containing 5 red and 7 black balls, then the probability that the two balls are of different colors is: 7 black balls, then the probability that the two balls are of different colors is: 62/132 b) 35/132 c) 70/144 d) 35/144 e) 62/132

7) If the upper class limits of the first two classes in a frequency table with equal class widths are 20 and 30, respectively, then, the midpoint (center) of the first class is

a) 14.5 b) 15 c) 15.5 d) 14 £ 26

a) 14.5 b) 13 13.3 lif P(A) = 0.2, P(B) = 0.5, and if A and B are independent, then P(A UB) equals c) 0.9 d) 0.3 e) 0.7

P(AVB) = P(A)P(B) - P(A)B)

0.240.0 - 01

1.1 20 2\$ 30

(=10

وقت المحاضرة: - ١٨٨ بيد ١٩٠٣. الرقم الجامعي:....

Part 1: Fill in the rectangular box with the correct answer. Show your work. Answers without solution details are not accepted.

1) Based on the following grouped sample data, answer a and b

<u> </u>			
Class	Frequency	χ:	xi Fi
3 –9	4	6.	24
10-16	8	13	
17-23	10	20	200
24 – 30	3	27	81
Total	25		409

a) Find the mean of the sample.

$$=\frac{409}{25}=16.36$$

A.C	C.F.	د الایالیات
2.5 - 9.5	4	
16.5 - 23.5	12,18.75	
23.5 - 30.5	25	

erder
$$Q_3 = \frac{3}{25}$$
 $\frac{3}{4}$ $(25) = 18.75$.
 $\frac{Q_3 - 16.5}{23.5 = 16.5} = \frac{18.75 - 12}{22 - 12}$

$$\frac{Q_3 - 16.5}{23.5 = 16.5} = \frac{18.75 - 1.2}{22 - 12}$$

$$23.5 = 10.0$$

$$22 - 12$$

$$0 - 16.5 = \frac{6.75}{20.0000} \Rightarrow 0.3 - 21.225$$

(24)

data tal Second Passo 18-12-2012

	Name	Student romber	Section	· Averbanainan
	identify the choi	ne that best commute, the stateme	nt or superior the car	The opt oats
votes, whi	parliament election le in Ajloun this per le country, answer	ns 53% of Jordanians who have the righten reentage was 72%. If Ajloun holds 5% of a and b:	f the total registered	6
131 % ٧٢ .:	ذه النسبة كانت في عجلو	أدلى ٥٣% من الأردنيين باصواتهم في حين ان ه لون هي ٥% من مجموع الأصوات في المملكة. أ. (P(A)	ى الانتخابات البراماتية الأخيرة كالت نسبة التسجيل في عج	0/0
a. What i	s the proportion of	voting in the other country areas?	0.236	5x1=5x
"	X mont /	CAME)	ماهي شكة الافتراع في مذ (13) (13) (13) (13) (13) (13) (13) (13)	25 25 1-072
REFE		P(B) = P(B/A, 1) P(A, 1) + P = (0.72)(0.05) + (0.	10/A2) P A2) (0.95)	
	dividual is selected	= 0.036 at random and asked if he voted, he an	swered yes. What is t	
P($A_1/B) =$	P(B/Ai) P(Ai)	0.37	
			.375	a :
		0.036		: 1

Part 2: Identify the choice that best completes the statement or answers the question.

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
in the	186	a	a	а	Mar	a	A
b	Ъ	Ъ	15	Ъ	Ъ	Ъ	b
С	С	С	С	С	С	R. C.	С
d	d	A	d	X	d	d	d
е	649	е	е	` е	е	е	е

1) One of the following is not a measure of variation:

(a) median (b) standard deviation c) inter-quartile range d) mean deviation e) range 2

The median of the sample represented by the following frequency table is: relative frequency 25 2 15 70 15 20 20 10 b) 1.5 d) 4 X=VL (3) The average Calculus grade is 12 with standard deviation 3. Assuming that the grades are bellshaped distributed, then the proportion of students with grades 9 to 18 is: a) 0.185 b) 0.975 c) 0.84 d 0.815 4) The first and the third quartiles of a set of data are 15 and 45 respectively. If each observation is multiplied by 4 and then 200 is added to the result, then the first quartile of the transformed a) 120 c) 80 d) -120 f) If 2 red and 5 blue balls (all similar except for color) are randomly laid out in a row روضع<mark>ت في صف), then</mark> the pr<mark>obabilit</mark>y that the red balls are next to each other is: b) 4/7 c) 1/7 e) 4/21 6) If two balls are selected at random without replacement from a box containing 4 red and 6 black balls, then the probability that the two balls are of different colors is: c) 24/100 7) If $P(A \cap \overline{B}) = 0.6$, $P(A \mid B) = 0.4$, and P(A) = 0.7, then $P(A \cup B) = \rho(A) + P(B) - P(A \cap B) = \rho(A \cap B) = \rho(A$ a) 0.65 b) 0.75 © 0,85 d) 0.6 8) If P(A) = 0.4, P(B) = 0.75, and if A and B are independent, then $P(A \cap \overline{B})$ equals $P(A) - P(A \cap B) = 0.6 \cdot / P(A / B) = \frac{P(A \cap B)}{P(B)}$ e) 0.25 P(ANB) = 0.1

Second Exam

Summer 10-11

Math 131

· //	* *		, will are a sometime received
	number 0101034	Section 1514- 11:4.8	erial number
1. Given the bivariate distribution of the second of the	bution X $ \begin{array}{c c} & & & & & \\ & -1 & & 0.3 \\ \hline & 0 & & 0.1 \end{array} $	0.4 0.7	
(b) (2 pts) Find <i>E</i> (<i>Y</i>).	-0.4 -1(0	٥,٧١٠(٥,٤)	· iY
(c) (2 pts) Covariance(X,Y) E(xy) ⇒	-15-11(0,3)+-1(0)((0.4) + 0.7 = E(xy) (0.4) + 0.7 = E(xy) (0.4) = 0.3 - (9y) (0.3 - 0.18)	± -0.7)
		9 P	44

2. Assume that X is distributed as Binomial (10, 0.3). Use the Binomial table to find

(a) (3 pts)
$$P(X = 2)$$

O.234

P($X \le 2$) - P($X \le 1$) \Rightarrow 0.234

- (b) (3 pts) $P(2 \le X < 5)$ 0.701 $P(X \le Y) P(X \le Y) \Rightarrow 0.850 0.149$
- (c) (3 pts) E(X) + Var(X) $3 + 21 = 5 \cdot 1$ $E(X) = n \rho = 10(0.3) = 3$ $Var = n \rho(1-\rho) \leq 10(0.3) = 2.1$

(24)

Math 131 Second Exam 18-12 -2012

د ، احد الذعو ل

		18-12 -2012	•	. احدد الرحو	٠
Name	Student number	· ,	Section: 11-	12 5, ú. 21 Ser	rial number
Identify the choice	that best completes	the statement or	answers the que	Q2 Q3	Q4 Q5 Q6 a a # b b b c c c c
P	f the students in Unive	reity of Jordan own	d e	d d e e	d d e e e e
let $X = \#$ of studer	its who own cars, then	the distribution of >	(is		i E) P(20)
A)Bin(20,0.1)	B)Bin(30, 0.2)	9)Bin(30, 0.1)	D)Bin(20	, 0.15)	E) F(20)
			2		20
(T) X 1	ing is (or are) not a product of the second	bability function of $\begin{array}{c cccc} X & 1 & 2 \\ \hline P(X) & 0.2 & 0.3 \\ \hline \end{array}$ (I) and (III)	a random variable 3 4 0.3 0.2 (II D) (III) or	$\mathbf{I}) \begin{array}{ c c } \hline X \\ \hline P(X) & 0 \\ \hline \end{array}$	1 2 3 4 0.2 0.3 0.3 0.3 E) all of them
4. Consider the follows A) 0.5 B) 0	ing bivariate probability	Si di	1 2 3 0.2 0.3 0.1 0.2 0.1 0.1 E) None	and $P(X+Y)$	3 +0.2
probability of getting		and 3 red balls. If $ \begin{array}{ccc} $			element; then the $\frac{3}{3}$ R $0 = \binom{k}{k} \binom{N-k}{n-k} \stackrel{3}{3} \frac{B}{B}$
S. Let $X \sim Poisson(4)$ $A = \frac{A}{2} \cdot 16$ $B = \frac{B}{2} \cdot 8$	117	•			(N) (N) (N) (N) (N) (N) (N) (N) (N) (N)
	Ervin Fryl	6. U			
ac "	11V146141				

				37.7	1 10	Sc. 14 61,	. 8
	1	Q7	Q8	Q9	Q10	Q11	ľ
		a	COL	8.	8.	a	
. Hydriging - Syddin State Charles (1977 - 1777) (1985 - 177	grade the contract of the cont	b	b **	以	18	18	ł
gist managana	0.01 0.0	C	2	C	C_	_ C	
man 3 Sam (c	10.9801 0.96	d	· d	d	d	d O	
	10.9999 0 99	W	e	L	е	е	1
9	31.0000 1.0 0	سيمنا	770	1,777 107	1.3957	J. J.	. 1

be random variables such that Var(X) = 2, Var(Y) = 4, Cov(X, -Y) = 3, then Var(2X+Y-1) = 3E) 0 10.300 co u(x, y) = 3

B) 4

C) 12

4 varx + vary + 2+2 cove xxy)

= 3, Var(X) = 9, Var(Y) = 4, then Corr(1 - 3X, 3Y - 1) = 3

 $B^{\prime})^{\frac{1}{2}}$

 $D) - \frac{1}{6}$

x pois(H)

the number of accidents on a highway follows a poisson distribution with an average of 2 accidents and the probability of having at least 4 accidents on this highway during 3 week period. XN POIS (2) N= 6

(B) 0.849

C) 0.143

D) 0.567

E) 0.958

ns (10)-(11). Let X and Y be random variables such that Cov(X,Y) = 16, E(XY) = 18, $(X^2 - 1) = 36$, $(X^2 - 1) = 3$

p(XE4) 41 16 = B - H, I- P(x

C) 3

D) 4

E) None

*2*57 33

C) 28

D) 21

E) None

COU (1-3x, 34-1)

o(1-3x) + o(3y-1) cov(3y) - cov(-1) -9cov(xy) - 3 cov(x)

1298

D(X < u)

Q12	Q13	Q14	Q15	Q16	Q17
a	8.	8.	C&	8 /	CH
b	Ъ	b	b	co	b.
00	CH	A	С	C .	С
d	d	d	d	d	d
98	е	е	81	е	е

	d d d d d
₩ P .	g e e g e e
12. If X is distributed as $Binomial(40, 0.2)$. Use normal approximation to find $P(1, 0.2)$	$10 \le X < 12$) change the answers
using tables	
A) 0.1236 B) 0.2874 C) 0.1938 D) 0.4024	110110
	= 7.529
For questions (13)-(14). Suppose X is normally distributed with mean $\mu = \frac{1}{2}$: 50 and standard deviation $\sigma = 4$
then 4~ 1/ (50, u	$p(x < P_{qo}) = 0.9$
13. The 90 th percentile of the distribution of X	
A) 56.4 B) 57.68 55.12 D) 53.84 E)None	$\frac{x-50}{1.28}$ $\frac{p_{0}-50}{1.28}$
	4
14. For a random sample of size 25, $P(53 < \bar{X} < 54) =$	
A) 0.1359 B) 0.0413 Ø) 0.000 D) 0.0471	E) None
"	(3) -F(2) 1-F(0)
15. Let $X \sim Binomial(3, 0.1)$, then $p(X = 3 X \ge 1) = \frac{D(3 = 3)}{D(4 \ge 1)}$ A) 0.004 B) 0.027 C) 0.010 D) 0.069 E) No	(3) -F(2) 1-F(1)
(A) 0.004 B) 0.027 C) 0.010 D) 0.069 E) No	one
	(4)
16. Let X has a poisson distribution such that $p(x=0) = 3p(x=1)$, then $p(x=0) = 1/3$	0) = y ~ poiscini
A) $e^{-1/2}$ E) $e^{-1/3}$ E) None	ne <u>e</u> <u>u</u> eo = 3 e/ H
	P(Y = 4) = P(Y = 4)
17. Suppose $X \sim N(10, 16)$ and $Y \sim Geometric(p)$ where $p = P(X < 10)$, then $P(X < 10)$	P(Y=4) =
A) 1/16 B) 1/32 C) 1/4 D) 1/8 E) None	H=1 3 -1/3 3
	e
10- 10-8 62 5 12-8	
$\frac{10-8}{2.5} < Z \leq \frac{12-8}{2.5}$	p (x<10)
	0 (25%)
0.8 < Z < 1.8 0.79	$p(z < \frac{10 - 10}{16}) p(z < 0)$
P (1.6) - \$(0.8)	
	(p) (1-p) ⁵
0.9452 -0.7881	- (-) (- 5)
(53-50) 5" < 2 < $(54-50)$	(0.5) (0.5)
$\frac{0.9452 - 0.7881}{(53 - 50) 5'} < 2 < (54 - 50)$	
, ,	0.0 625
3.75 < 2 5	$O(\lambda=3)$
(5) - € (3,75)	= 1
= (64-50)5	5 1-F(0)-F(1) 1-0.9703-0994
53-50 (5-) = 2 = 2	
4 ×=3 ×≥1	$\frac{p(x=3)}{1-F(0)-F(1)} = \frac{1}{1-0.9703-6.994}$ $\frac{p(x=3)}{xy_1} = \frac{1}{1-0.9703-6.994}$ $\frac{F(3)-F(2)}{xy_1}$
κ=3	1
	~7\
· 3	1-86
	1- Fcoj
	. (32)

Binomial Tables

jp≒		0.01	0.02	0.09	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
	x= 0	0.01	0.9604	0.0004	0.1	0.7225	0.6400	0.5625	0.4900	0.4225	0.3600	0.3025	0.2500
n- 2	x-0	0.9001	0.9996	0.8281	0.6100	0.1220	0.0400	0.0025	0.4000	0.8775	0.8400	0.7975	0.7500
	1				0.9900	0.9775	4.0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000
1 1	2	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0460	0.1664	0.1250
n= 3	x=0	0.9703	0.9412	0.7536	0.7290	0.6141	0.5120	0.4219	0.3430	0.2746	0,2100	0.1004	0.1230
	1	0.9997	0.9988	0.7330	0.9720	0.9393	0.8960	0.8438	0.7840	0.7183	0.6480	0.0748	0.5000
	2	1.0000	1.0000	0 9993	0.9990	0.9966	0.9920	0.9844	0.9730	0.9571	0.9360	0.9089	0.0150
	3		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
n= 4	x= 0	0.9606	0.9224	0.6057	0.8561	0.5220	0.4096	0.3164	0.2401	0.1785	0.1296	0.0915	0.0625
" "	1		0.9977	0.0570	0.9477	0.8905	0.8192	0.7383	0.6517	0.5630	0.4/52	0.3910	0.3120
1	,		1.0000	0.0073	0.0063	0.9880	0.9728	0.9492	0.9163	0.8735	0.8208	0.7585	0.0875
٠	2	******	1.0000	0,000	0000	0 0005	0.9984	0.9961	0.9919	0.9850	0.9744	0.9590	0.93/5
	4		1.0000	4 0000	1 0000	1 0000	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000
	*			1.0000	1.0000	0.4407	0.0077	0.2272	0.1681	0.1160	0.0778	0.0503	0.0313
n= 5	x=0		0.9039	0.6240	0.5905	0.4437	0.3211	0.2373	0.1001	0.1100	0.3370	0.2562	0.1875
1	1		0.9962	0.9326	0.9185	0.8352	0.7373	0.6328	0.0202	0.4204	0.5576	0.2002	0.1875
	2	1.0000	0.9999	0.9937	0.9914	0.9734	0.9421	0.8965	0.8369	0.7040	0.0020	0.0001	0.5000
	3	1.0000	1.0000	0.9997	0.9995	0.9978	0.9933	0.9844	0.9692	0.9460	0.9130	0.0000	0.8125
	4'	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9976	0.9947	0.9898	4.0000	0.9688
1	5	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Poisson Tables

1_				9		and a design of the same of				-				
	Đ	M=	2.0	3.8	4.0	4.5	6.0	6.5	*,*	8.0	8.5	9.0	9.5	
F	x	- 0	0.1353.	0.0224	0.0183	0.0111	0.0025	0.0015		0.0003	0.0002	0.0001	0.0001	
	-	1	0.4060	0.1074	0.0916	0.0611	0.0174	0.0113		0.0030	0.0019	0.0012	0.0008	(
1	-	2	0.6767	0.2689	0.2381	0.1736	0.0620	0.0430	4	0.0138	0.0093	0.0062	0.0042	°C
		3	0.8571	0.4735	0.4335	0.3423	0.1512	0.1118	٠	0.0424	0.0301	0.0212	0.0149	С
ŀ	М	4	0.9473	0.6678	0.6288	0.5321	0.2851	0.2237		0.0996	0.0744	0.0550	0.0403	0
1		5	0.9834	0.8156	0.7851	0.7029	0.4457	0.3690		0.1912	0.1496	0.1157	0.0885	0
ı		6	0.9955	0.9091	0.8893	0.8311	0.6063	0.5265		0.3134	0.2562	0.2068	0.1649	0
	- [7	0.9989	0.9599	0.9489	0.9134	0.7440	0.6728	•	0.4530	0.3856	0.3239	0.2687	0
-	i	8	0.9998	0.9840	0.9786	0.9597	0.8472	0.7916		0.5925	0.5231	0.4557	0.3918	0
	-	9	1.0000	0.9942	0.9919	0.9829	0.9161	0.8774	•	0.7166	0.6530	0.5874	0.5218	0
		10	1.0000	0.9981	0.9972	0.9933	0.9574	0.9332		0.8159	0.7634	0.7060	0.6453	0
	1	11	1.0000	0.9994	0.9991	0.9976	0.9799	0.9661		0.8881	0.8487	0.8030	0.7520	. 0.
1	-	12	1.0000	0.9998	0.9997	0.9992	0.9912	0.9840		0.9362	0.9091	0.8758	0.8364	.o.
-	Ì	13	1.0000	1.0000	0.9999	0.9997	0.9964	0.9929		0.9658	0.9486	0.9261	0.8981	0.
-	: 1	14	1.0000	1.0000	1.0000	0.9999	0.9986	0.9970		0.9827	0.9726	0.9585	0.9400	0.
		15	1.0000	1.0000	1.0000		0.9995			0.9918	0.9862	0.9780	0.9665	0.
F	1	16	1.0000	1.0000	1.00 00	- 1:0000-i				0:9963	0.9934	0.9889	0.9823	0.
		17	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	:	0.9984	0.9970	0.9947	0.9911	0.

Table III: Normal Distribution

The following table presents the standard normal distribution. The probabilities tabled are

$$P(X \le x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-w^2/2} dw$$

Note that only the probabilities for $x \ge 0$ are tabled. To obtain the probabilities for x < 0, use the identity $\Phi(-x) = 1 - \Phi(x)$.

\overline{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	, .5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700 /	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	. 7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	-8907	.8925	.8944	.8962	-8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	4.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998