Chapter 11: Vector Spaces $_{\text{April }27,\ 2023}$

Contents

1	Introduction 1.1 General approach	1 1
	1.4 Properties	2
2	Vector Sub-Spaces	2
	2.1 Definition	
3	Relations between V. Space and V. SubSpace	3
	3.1 Linear Combinations	3
	3.2 Vector SubSpace Intersection	3
	3.3 Vector SubSpace Sum	3
4	Families	3
	4.1 Free Family	3
	4.2 Spanning Family	4
5	Basis	4
6	Dimension of a Vector SubSpace	4
7	Proofs	5
	7.1 Intersection of linear subspaces	5
	7.2 Sum of linear subspaces	
	7.3 Spanned linear subspaces	5
	7.4 Basis	
	7.5 Existence of a basis in a finite dimention	5

Mathematics 1 Introduction

1 Introduction

1.1 General approach

Studying Vector spaces will allow us to notice general theorems that can be applied to many mathematical structures.

1.2 Definition

A vector space is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars.

1.3 Notation

A $\mathbb{K} - VectorSpace$ is non-empty set E that has :

• An internal law, which is an map of $E \times E$ in E:

$$E \times E \longrightarrow E$$

 $(u, v) \longmapsto u + v$

• An external law, which is an map of $\mathbb{K} \times E$ in E:

$$\mathbb{K} \times E \longrightarrow E$$
$$(\lambda, u) \longmapsto \lambda \cdot u$$

 $(\mathbb{K} \text{ is a set, often } \mathbb{R})$

The elements of E are called <u>vectors</u>

The elements of \mathbb{K} are called scalars

The neutral element 0_E is also called the null vector

The symmetrical -u is also called the opposite

The internal composition law on E, denoted +, is the addition

The external composition law on E is the multiplication by a scalar

axioms relative to the internal law:

- 0_E is unique
- -u is unique

1.4 Properties

To know is a space is a vector space, there is properties that need to match up.

- The internal law
- The external law
- Both laws together
- The neutral element
- It's symmetrical

This makes up 8 laws that need to be respected:

- 1. $u + v = v + u(\forall (u, v) \in E)$
- 2. $u + (v + w) = (u + v) + w(\forall (u, v, w) \in E)$
- 3. There exists a neutral element $0_E \in E$ so that $u + 0_E = u(\forall u \in E)$
- 4. All elements admit a symmetric u' so that $u + u' = 0_E$. This element u' is denoted -u
- 5. $1 \cdot u = u(\forall u \in E)$
- 6. $\lambda \cdot (\mu \cdot u) = (\lambda \mu) \cdot u(\forall \lambda, \mu \in \mathbb{K}, u \in E)$
- 7. $\lambda \cdot (v+u) = (\lambda \cdot v) + (\lambda \cdot u)(\forall \lambda \in \mathbb{K}, v, u \in E)$
- 8. $(\lambda + \mu) \cdot u = (\lambda \cdot u) + (\mu \cdot u)(\forall \lambda, \mu \in \mathbb{K}, u \in E)$

2 Vector Sub-Spaces

A sub space is very useful to prove that a set is a Vector space. We will see that a vector sub-space is vector space.

2.1 Definition

Let E be a vector space, F is a subspace if and only if

- $0_E \in F$
- $u + v \in F \ \forall (u, v) \in F^2$
- $\lambda \cdot u \in F \ \forall \lambda \in \mathbb{K}, v \in F$

2.2 Properties

Showing that a space is a subspace of a bigger (or equal) vector space if enough to prove that it is itself a vector space.

Mathematics 4 Families

3 Relations between V. Space and V. SubSpace

3.1 Linear Combinations

Let $v_1, v_2, ..., v_n, n$ vectors from a vector space E. Then : Any vector of the form :

$$u = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n$$

is called a Linear Combination of the vectors $v_1, v_2, ..., v_n$

The scalars $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ are the coefficients of the linear combination.

Let E be a vector space. Then F is a vector sub-space if and only if all linear combination of two element of F also belongs to E.

3.2 Vector SubSpace Intersection

- the intersection \cap of two vector sub spaces is also a sub space
- the union \cup of two vector sub spaces is not a sub space

3.3 Vector SubSpace Sum

Let F and G be two vectorial sub spaces of E

The sum of two vectorial sub spaces is also a vss, in fact, it is the smallest vss including both F and G

F and G are in direct sum in E if

- $F \cap G = \{0_E\}$
- \bullet F+G=E

We then denote $F \oplus G = E$

F and G are called additional sub-spaces

F and G are additional sub-spaces in E if and only if any element of E is uniquely written as the sum of an element of F and an element of G SYSTEM TO DO HERE

4 Families

4.1 Free Family

A family $\{v_1, v_2, ..., v_p\}$ of E is called a *free family* (or *linearly independent family*) if all null linear combination

$$\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_p v_p = 0$$

is such that all λ coefficients are null.

The opposite (there exists a null linear combination with at least 1 coefficient that is not null) is called a linked family or a linearly dependent family.

Let E a \mathbb{K} -vector space,

A family $F = \{v_1, v_2, ..., v_p\}$ with $p \geq 2$ vectors of E is a linked family iff at least one vector is a linear combination of the other vectors

4.2 Spanning Family

A family $\{v_1, v_2, ..., v_p\}$ is a generative family of E if all vector of E is a linear combination of the vectors $v_1, v_2, ..., v_p$

$$\forall x \in E, \exists (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n : x = \lambda_1 x_1 + \lambda_2 x_2 + ... + \lambda_n x_n$$

To prove that a family spans a vector space, we need to find the solutions $\lambda_1, ..., \lambda_n$ of the equation given just above.

5 Basis

A family of vectors of E is a basis if it is both a free family and a spanning family. It acts as a reference for the vector space

Every basis of a finite dimension vector space E as the same number of elements. This number is called the **dimension** (dim E) of the vector space. TO COMPLETE!

6 Dimension of a Vector SubSpace

Let E be a \mathbb{K} -vector space of dimension n. Then :

- \bullet Any free family of E as at most n elements.
- Any spanning family of E as at least n elements.

Let E be a \mathbb{K} -vector space of dimension n. Then :

- A v.s.s of dimension 1 is called a vector line
- A v.s.s of dimension 2 is called a vector plane
- A v.s.s of dimension n-1 is called an hyperplan

Let F and G be two v.s.s of E, a finite vector space.

- \bullet F is of a finite dimension too
- $\dim F \leq \dim E$
- $\dim F = \dim E \iff F = E$

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cup G)$$

Mathematics 7 Proofs

7 Proofs

- 7.1 Intersection of linear subspaces
- 7.2 Sum of linear subspaces
- 7.3 Spanned linear subspaces
- 7.4 Basis
- 7.5 Existence of a basis in a finite dimention