Title. METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s). Koji YOSHIDA, et al
DOCKET NO . 061807-0137

Fig. 1

Title METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s) Koji YOSHIDA, et al
DOCKET NO. 061807-0137

Fig.2

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig.6

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig.7

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s)· Koji YOSHIDA, et al DOCKET NO. 061807-0137

Fig.8

ATTRIBUTE		VALUE OF PARAMETER SET IN EMBODIMENT	
START POINT ST	X Y	186.5 (mm) 155.5 (mm)	
END POINT EN	X Y	215 (mm) 133 (mm)	
ACCELERATION OF WAFER STAGE 10	X Y	0.34g 0.2g	
MAX SPEED OF WAFER STAGE 10	X Y	270 (mm/sec) 200 (mm/sec)	
SETTLING TIME OF WAFER STAGE		0.032 (sec)	
TIME NECESSARY FOR MEASURING COORDINATES OF ONE ALIGNMENT MARK		0.5 (sec)	

g:ACCELERATION OF GRAVITY (=9.80m/sec)

Fig.9

CHIP AREA	COORDINATES OF CENTER	CHIP AREA	COORDINATES OF CENTER
12	(83, 105)	4 1	(149, 83)
1 3	(83, 127)	4 6	(149, 193)
1 4	(83, 149)	5 1	(171, 83)
1 5	(83, 171)	5 2	(171, 105)
21 .	(105, 83)	5 5	(171, 171)
22	(105, 105)	5 6	(171, 193)
2 5	(105, 171)	6 2	(193, 105)
2 6	(105, 193)	6 3	(193, 127)
3 1	(127, 83)	6 4	(193, 149)
3 6	(127, 193)	6 5	(193, 171)

Tide: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s)⁻ Koji YOSHIDA, et al DOCKET NO.. 061807-0137

	1: SEC) 39407 39407 39407 39407 39407 13481 13481 122981 322981 122981
	65(4) 0.439407 0.513481 0.513481 0.439407 0.439407 0.132981 0.132981 0.132981 0.132981 X 0.132981 0.132981
3(2) 0.142 0.242 0.242 0.109449 0.513481 0.513481 0.439407 0.439407 0.439407 0.513481 0.513481 0.557926	65(3) 0.365333 0.439407 0.365333 0.439407 0.132981 0.132981 0.132981 0.172981
	5(2) 0.365333 0.439407 0.462 0.462 0.365333 0.439407 0.132981 0.132981 0.132981
3(1) 0.142 0.242 0.242 0.43407 0.365333 0.438407 0.365333 0.438407 0.438407 0.438407 0.438407	0.10 0.10 0.13 0.13 0.13 0.13
1 × 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5(1) 0.439307 0.513481 0.513481 0.439407 0.439407 0.242 0.242 0.132981 0.132981 0.132981 0.132981
2(4) 0.132981 0.132981 0.132981 0.132981 0.242 0.242 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.462 0.483852	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 000 X 1 00 100 1	4(4) 0.439407 0.513481 0.439407 0.439407 0.109449 × 0.242 0.109449 0.109492 0.1094992
12(3) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	64(3) 0.455333 0.439407 0.365333 0.365333 0.439407 0.109449 0.142 0.1242 0.126513
0.103448 0.132981 0.132981 0.132981 0.142 0.142 0.142 0.143407 0.439407 0.557926	8 00000 X9
2(1) 0.103449 0.132981 0.132981 0.142 0.439407 0.439407 0.439407 0.439407 0.439407 0.439407 0.439407 0.483852	
12(1) X 103449 0.109449 0.132981 0.132981 0.142 0.439407 0.439407 0.439407 0.439407 0.439407 0.483852	
ART 0.45237 0.45237 0.45237 0.45237 0.45237 0.1535 0.1535 0.1535	
START 0.0378 0.1278 0.1278 0.008	0
END EST	7. g

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s) Koji YOSHIDA, et al
DOCKET NO 061807-0137

Fig.11

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO: 061807-0137

Fig. 12

Fig. 13

Title. METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO . 061807-0137

Fig. 14

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD lnventor(s)^{*} Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig. 15

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s): Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig. 16

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s). Koji YOSHIDA, et al
DOCKET NO. 061807-0137

Fig. 17

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO · 061807-0137

Fig. 18

Title METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig. 19

Title. METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s)* Koji YOSHIDA, et al DOCKET NO.: 061807-0137

Fig.20

Title METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s). Koji YOSHIDA, et al
DOCKET NO.: 061807-0137

Fig.21

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO · 061807-0137

Fig.22

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO.. 061807-0137

Title- METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO . 061807-0137

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO 061807-0137

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s): Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig.26

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO 061807-0137

Fig.27

Fig. 28

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO 061807-0137

Fig.29

Fig.30

Title. METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s) Koji YOSHIDA, et al
DOCKET NO.. 061807-0137

Fin 31

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO. 061807-0137

į . v., (s...)

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO 061807-0137

Fig. 33

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO 061807-0137

Fig.34

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO . 061807-0137

Fig. 35

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s) Koji YOSHIDA, et al
DOCKET NO . 061807-0137

Fig. 36

TITLE METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
INVENTOR(S) KOJI YOSHIDA, et al
DOCKET NO · 061807-0137

Title METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO.: 061807-0137

Title METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO.. 061807-0137

Fig. 39

Fig.41

GENE REPRESENTATION: d b c d e

a b c d e d1 d2 d3 d4 d5

Title: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s) Koji YOSHIDA, et al
DOCKET NO: 061807-0137

۵

Fig. 40

TITLE METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO. 061807-0137

Fig. 42

Title: METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s): Koji YOSHIDA, et al DOCKET NO . 061807-0137

Fig. 43

GENE POPULATION

Title METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s). Koji YOSHIDA, et al DOCKET NO . 061807-0137

Fig. 44

TIILE. METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA, et al DOCKET NO . 061807-0137

Fig. 45

Tide: METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO.: 061807-0137

Title. METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s)* Koji YOSHIDA, et al DOCKET NO . 061807-0137

Fig. 47

Title METHOD OF DETERMINING MOVEMENT SEQUENCE, ALIGNMENT APPARATUS, METHOD AND APPARATUS OF DESIGNING OPTICAL SYSTEM, AND MEDIUM IN WHICH PROGRAM REALIZING THE DESIGNING METHOD Inventor(s) Koji YOSHIDA. et al DOCKET NO · 061807-0137

Title METHOD OF DETERMINING MOVEMENT
SEQUENCE, ALIGNMENT APPARATUS, METHOD
AND APPARATUS OF DESIGNING OPTICAL
SYSTEM, AND MEDIUM IN WHICH PROGRAM
REALIZING THE DESIGNING METHOD
Inventor(s): Koji YOSHIDA, et al
DOCKET NO.: 061807-0137

Fig. 45

