

$$V_{out} = V_{in}$$

Transistor in saturation

$$I_{DS} = \left(KP_N \times \frac{W}{L}\right) \times \frac{\left(V_{out} - V_{THN}\right)^2}{2} = \frac{V_{DD} - V_{out}}{R_D}$$

For
$$R_D = 72k$$
, $V_{out} = V_{in} = V_{inv} = 1.5V$

Shift characteristics to right to improve NM_L

- Decrease R_D
- 2. Decrease W/L

Shift characteristics to right to improve NM_L

- Decrease R_D
- Decrease W/L

Decreasing the pull down resistor shifts characteristics left

$$R_D = 72k \Rightarrow V_{OL} = 0.1V; V_{OH} = 3.3V$$
 $R_D = 32k \Rightarrow V_{OL} = 0.22V; V_{OH} = 3.3V$ $V_{IL} = 1.07V; V_{IH} = 1.7V$ $V_{IL} = 1.16V; V_{IH} = 2V$ $NM_L \sim 0.97V; NM_H \sim 1.6V$ $NM_L \sim 0.94V; NM_H \sim 1.3V$ $V_{inv} = 1.72V$

- Area
- 2. Delay
- 3. Power
- 4. Noise Margins

$$\frac{A_{RD}}{A_{tr1}} \sim 35$$

Propagation Delay

$$\tau_R$$
 ; τ_F ; τ_{PHL} ; τ_{PLH}

Param eter	NMOS	PMOS
V _{THNO} (V)	0.69	-0.869
λ (for L = 1μm)	0.015	0.065
7	0.696	0.456
KP (μΑ/V²)	100	40
CGSO (pF)	281	252
CGDO(pF/ m)	281	252
CJ (μF/m²)	467.7	932
PB	0.9	0.92
MJ	0.5	0.466
CJSW(pF/m)	616.95	181
MJSW	0.235	0.5

$$C_T = \left(C_{gd1} + C_{db1}\right) + \left(C_{gs2} + C_{gd2}\right)$$

$$C_{gd1} = C_{GDO}.W_1$$
 $C_{gd2} = C_{GDO}.W_2$

$$\begin{split} C_{db1} &= \frac{\pmb{C}_{j\text{SW}}.P_{D}}{\left(1 + \frac{\pmb{V}_{DB}}{\pmb{P}_{BSW}}\right)^{\pmb{M}_{j\text{SW}}}} + \frac{\pmb{C}_{j}.A_{D}}{\left(1 + \frac{\pmb{V}_{DB}}{\pmb{P}_{B}}\right)^{\pmb{M}_{j}}} \\ & \qquad \qquad V_{\text{DB}} = 0 {\rightarrow} 0.5 \text{VDD} \end{split}$$

$$C_{gs1} \cong \left(\frac{C_{gso}}{S} . W \right) \rightarrow \frac{2}{3} \frac{C_{ox'}}{S} . W . L + \frac{C_{gso}}{S} . W$$

$$A_D = 4 \times 1 + 6 \times 6 = 40;$$

 $P_D = 2 \times (1 + 1 + 6) + 6 = 22$

$$C_{db1} = \frac{C_{jsw}.P_{D}}{\left(1 + \frac{V_{DB}}{P_{BSW}}\right)^{M_{jsw}}} + \frac{C_{j}.A_{D}}{\left(1 + \frac{V_{DB}}{P_{B}}\right)^{M_{j}}} = 5.7 fF$$

$$\sim 4 fF$$

$$\tau_{PLH} \cong 137 ps$$
 if C_{db} is not considered

M1 : linear →cutoff

$$C_T = (C_{gd1} + C_{db1}) + (C_{gs2} + C_{gd2} + C_{gb2})$$

M2: cutoff→sat→Linear

$$I = \sum \frac{dQ_j}{dt}$$

$$\begin{split} I &= C_{gd1} \times \frac{d \left(V_{D1} - V_{G1} \right)}{dt} + C_{gd2} \times \frac{d \left(V_{D1} - V_{D2} \right)}{dt} + C_{db1} \times \frac{d V_{D1}}{dt} + \left(C_{gs2} + C_{gb2} \right) \times \frac{d V_{D1}}{dt} \\ &\sim -1 \\ I &= \left(C_{gd1} \times \left(1 - \frac{d V_{G1}}{d V_{D1}} \right) + C_{gd2} \times \left(1 - \frac{d V_{D2}}{d V_{D1}} \right) + C_{db1} + C_{gs2} + C_{gb2} \right) \times \frac{d V_{D1}}{dt} \end{split}$$

$$I_{pu} = C_T \times \frac{dV_{out}}{dt}$$

$$I_{pu} = C_T \times \frac{dV_{out}}{dt} \qquad \qquad \tau_{plh} = \int_{0}^{0.5V_{DD}} \frac{C_T}{I_{pu}} \times dV_{out}$$

$$\tau_{plh} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pu}}$$

$$\tau_{plh} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pu}}$$

$$I_{pu} = \frac{V_{DD}}{R_D} \rightarrow \frac{0.5V_{DD}}{R_D} \qquad \qquad \tilde{I}_{pu} \cong 0.75 \frac{V_{DD}}{R_D}$$

$$\tau_{plh} \cong 0.67 \times R_D \tilde{C}_T$$

$$\tilde{I}_{pu} \cong 0.75 \frac{V_{DD}}{R_D}$$

$$\tau_{plh} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{pu}} \qquad I_{pu} \propto V_{DD}^m; m > 1 \qquad P_{diss} \propto V_{DD}$$

In general delay decreases with increase in supply voltage

There is a power delay tradeoff

$$I_{pu} = \frac{V_{DD}}{R_D} \to \frac{0.5V_{DD}}{R_D}$$

Ideally should be like a current source which switches on during charging.

High to Low delay propagation Delay

$$\tau_{phl} \cong 0.5 \times \frac{\tilde{C}_T V_{DD}}{\tilde{I}_{dis.}}$$

$$I_{dis.} = I_{DS1} - \frac{V_{DD} - V_{D1}}{R_D}$$

M1 : sat
$$(3.3 \rightarrow 2.3)$$

lin. $(2.3 \rightarrow 1.65)$

$$I_{DS}(t=0) = \left(KP_N \times \frac{W}{L}\right) \times \frac{\left(V_{DD} - V_{THN}\right)^2}{2}$$

$$I_{DS}(t=\tau_{phl}) = \left(KP_N \times \frac{W}{L}\right) \times \left((V_{DD} - V_{THN})\frac{V_{DD}}{2} - \frac{V_{DD}^2}{4}\right) - \frac{V_{DD}}{2R_D}$$

High to Low delay propagation Delay

Power dissipation

 $P = V_{\rm DD} \times I_{\rm leakage}$

Source

Gate

13 14

Drain

p-well

2. Dynamic

Energy should be drawn only to change the state

Contribution of new leakage currents with scaled technologies

Half of it is dissipated in the resistor and the other half is stored in capacitor

When the inverter switches back to zero, the energy stored on capacitor is also dissipated

$$P_{dynamic} = \frac{0.5C_T \times V_{DD}^2 + 0.5C_T \times V_{DD}^2}{T} = C_T \times V_{DD}^2 \times f$$

$$P_{dynamic} = \sum (0.5C_j \times V_j^2) \times f \times \alpha_j$$