Document classes:

- 1. Anime
- 2. Arduino
- 3. Astronomy
- 4. Biology
- 5. Chess
- 6. Coffee

Reason of choice: Laptop crushed while working for larger classes numbers than 6.

K Nearest Neighbour:

	K=1	K=3	K=5
Hamming	60.77396657871592	58.83905013192612	57.34388742304309
Euclidean	70.2726473175022	70.09674582233949	69.74494283201408
TF-IDF	89.62181178540017	90.67722075637643	91.38082673702726

Table 1: the validation accuracy under different types and neighbour count

As the accuracy for tf-idf and k=5 is the highest. We will use it as the final configuration and report our test accuracy.

```
88.33333333333333
                                                   91.666666666666666667,
88.33333333333333, 85.0, 88.33333333333333, 80.0,
                                            98.333333333333333
98.3333333333333.
                 91.66666666666667. 90.0. 93.333333333333333
91.6666666666667, 90.0,
96.666666666667.
                 98.33333333333333
                                  93.33333333333333
                                                   90.0,
                                                        95.0.
98.3333333333333, 90.0, 83.333333333333, 78.3333333333333,
                71.66666666666667, 58.333333333333333
88.33333333333333
73.33333333333333
                 71.66666666666667, 78.33333333333333, 96.66666666666667,
95.0, 91.66666666666667, 95.0, 93.3333333333333, 96.6666666666667,
96.6666666666667,
                 98.3333333333333, 90.0,
                                       100.0, 95.0,
                                                   98.333333333333333
98.33333333333333, 95.0, 98.33333333333333,
                                       95.0. 100.0
```

Table 2: the test accuracy of 50 non-overlapping segments that consist of the whole testset.

Naive bayes:

Smoothing Factor, a	Validation accuracy
0.1	96.48197009674583
0.2	96.21811785400176
0.3	96.39401934916447
0.4	96.3060686015831
0 5	96.3060686015831
0.6	96.3060686015831
0.7	96.3060686015831
0.8	96.1301671064204
0.9	96.04221635883906
1	95.9542656112577

Table 3: the validation accuracy under different smoothing factors for Naive Bayes.

As the accuracy for smoothing factor, α = 0.1 is the highest. We will use it as the final configuration and report our test accuracy.

```
89.65517241379311,
                          98.27586206896552,
                                               96.55172413793103,
94.54545454545455,
                    96.49122807017544,
                                         100.0,
                                                100.0,
                                                        95.0,
                                                               100.0,
98.27586206896552,
                    98.14814814814815,
                                         94.91525423728814,
                                                              96.49122807017544,
                                                              91.6666666666667,
96.6666666666667,
                    96.61016949152543,
                                         93.22033898305085,
98.33333333333333
                    98.33333333333333
                                         91.6666666666667,
                                                              96.6666666666667,
                                                             89.65517241379311,
94.82758620689656,
                    96.6666666666667,
                                         91.2280701754386,
93.10344827586206,
                    98.24561403508773,
                                         96.66666666666666667,
                                                              96.61016949152543,
91.52542372881356,
                    91.66666666666667,
                                         94.91525423728814,
                                                              94.91525423728814,
93.33333333333333
                    91.66666666666667,
                                         98.27586206896552,
                                                              94.91525423728814,
98.30508474576271,
                    94.91525423728814,
                                         96.66666666666666667,
                                                              98.30508474576271,
93.333333333333333
                    94.91525423728814,
                                         96.6666666666667,
                                                              95.0,
96.6666666666667,
                                               93.3333333333333
                    93.333333333333333
                                         90.0,
```

Table 4: the test accuracy of 50 non-overlapping segments that consist the whole testset.

T-statistics:

We calculate t-test using the values illustrated in table 2 and 4.

Combination	Statistics	Pvalue
(Naive Bayes, KNN)	3.8906065136808343	0.00030169724059368736

Table 5: Statistical Hypothesis Testing Result

Significance Level	Decision	Which one is better?
0.005	Reject null hypothesis, Statistically significant	Naive Bayes
0.01	Reject null hypothesis, Statistically significant	Naive Bayes
0.05	Reject null hypothesis, Statistically significant	Naive Bayes