Jung Hee Cheon^{1,2}, **Hyeongmin Choe**¹, Julien Devevey³, Tim Güneysu⁴, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Marc Möller⁴, Junbum Shin², Damien Stehlé⁵, MinJune Yi^{1,2}

 $^1 \mbox{Seoul National University, 2CryptoLab Inc.,} \ ^3 \mbox{ANSSI (FR), 4Ruhr Universität Bochum (DE), 5CryptoLab Inc. (FR)} \$

February 27, 2024 2024 KpqC Winter Camp

Table of Contents

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- 4. Changes after Round 1

- Digital signature scheme
- Secure against quantum attacks!
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short!
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Bimodal rejection sampling
 - Hyperball distribution
- Candidate in KpqC 2nd round & NIST PQC Additional Signatures²

NIST 2022 PQC signature standards

NIST's on-ramp PQC signature competition, from 2023.

- Digital signature scheme
- Secure against quantum attacks!
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short!
 - ullet simpler than Falcon 1 & shorter than Dilithium 1
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Bimodal rejection sampling
 - Hyperball distribution
- Candidate in KpqC 2nd round & NIST PQC Additional Signatures²

¹NIST 2022 PQC signature standards

NIST's on-ramp PQC signature competition, from 2023.

- Digital signature scheme
- Secure against quantum attacks!
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short!
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Bimodal rejection sampling
 - Hyperball distribution
- Candidate in KpqC 2nd round & NIST PQC Additional Signatures²

¹NIST 2022 PQC signature standards

- Digital signature scheme
- Secure against quantum attacks!
 - based on lattice hard problems MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Simple but short!
 - simpler than Falcon 4 & shorter than Dilithium 1
 - optimal rejection rate with simple rejection condition
- Design rationale
 - Bimodal rejection sampling
 - Hyperball distribution
- Candidate in KpqC 2nd round & NIST PQC Additional Signatures²

²NIST's on-ramp PQC signature competition, from 2023.

¹NIST 2022 PQC signature standards

Figure: KpqC round 2, signature schemes

40 submissions

- Code-based
 - Enhanced pqsigRM
 - Fulleeca
 - LESS
 - MEDS Wave
- Isogenies
 - SQISign
- Lattices
 - - FHT
 - EagleSign
 - HAFTAF
 - HAWK HuFu
 - Raccoon

 - Squirrels

- · MPC-in-the-Head CROSS
 - MIRA
 - MQQM
 - MiRitH PERK

 - RYDE
 - SDitH
 - Symmetric

 - AIMer
 - Ascon-Sign
 - FAEST
 - SPHINCS-alpha

- Multivariate 3WISE
 - Biscuit
 - DME-Sign HPPC
 - MAYO
 - PROV
 - OR-UOV
 - SNOVA TUOV
 - UOV
 - VOX

- Other
 - ALTEO
 - KAZ-Sign PREON
 - · Xifrat1-Sign.I
 - eMLE-Sig 2.0

Public - POShield / Cloudflare - CC-BY

40 submissions: the first eliminations (July 19th)

Public - POShield / Cloudflare - CC-BY

 Code-based 	 MPC-in-the-Head 	 Multivariate 	 Other
Enhanced pqsigRM	 CROSS 	← 3WISE	 ALTEQ
 FuLeeca LESS 	 MIRA 	← Biscuit ?	 KAZ Sign
MEDS	 MQOM 	 DME-Sign 	 PREON
• Wave	 MiRitH 	← HPPC	 Xifrat1 Sign.I
 Isogenies 	 PERK 	 MAYO 	 eMLE Sig 2.0
 SQIsign 	 RYDE 	 PROV 	
 Lattices 	 SDitH 	 QR-UOV 	
 EHT EagleSign 	 Symmetric 	 SNOVA 	
HAETAE	AlMer	 TUOV 	
 HAWK 	Ascon-Sign	• UOV	
• /HuFu	FAEST	 VOX 	
RaccoonSquirrels	SPHINCS-alpha		
/ / /			

Submissions: verification < 5ms

- Code-based
 - Enhanced pgsigRM
 - LESS
 - Wave
- Isogenies SQIsign
- Lattices
 - EHT
 - HAFTAF
 - HAWK
 - HuFu
 - Raccoon
 - Squirrels

- MPC-in-the-Head
 - CROSS MIRA
 - MQOM
 - MiRitH PERK
 - RYDE

 - SDitH
- Symmetric
 - - AIMer
 - Ascon-Sign
 - FAEST

 - SPHINCS-alpha

- Multivariate DME-Sign
 - MAYO
 - ◆ PROV ← OR UOV
 - SNOVA
 - TUOV
 - UOV
 - VOX

- Other

Note: based on current, often not exactly optimized, performance metrics.

Public - PQShield / Cloudflare - CC-BY

Submissions: signature < 3000 bytes

- Code-based
 - Enhanced pgsigRM
- Lattices
 - EHT
 - HAETAE
 - HAWK HuFu
 - Raccoon

 - Squirrels

- MPC-in-the-Head
 - ← CROSS MQOM
 - MiRitH
 - PERK
 - RYDE SDitH
- Symmetric
 - AlMer Ascon Sign

- Multivariate
 - DME-Sign MAYO
 - TUOV
 - UOV
 - VOX

Public - POShield / Cloudflare - CC-BY

Certificate usage: public key + sig < 4 KB (Dilithium)

- · Code-based
 - Enhanced pgsigRM
- Lattices
 - EHT
 - HAETAE
 - HAWK

- Multivariate
 - · DME-Sign
 - MAYO
 - ► TUOY ~ UOV

 - VOX

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures

4. Changes after Round 1

Conventional signatures:

Some images are from https://kr.freepik.com/search?format=search&last_filter=type&last_value=icon&query=

magnifier&selection=1&type=icon

Conventional signatures:

Some images are from https://kr.freepik.com/search?format=search&last_filter=type&last_value=icon&query=

magnifier&selection=1&type=icon

Conventional signatures:

Digital signatures:

$$(\mathsf{sk},\mathsf{vk}) \leftarrow \mathsf{KeyGen} \text{ and broadcast } \mathsf{vk}$$

$$\mathsf{Alice} \; (\mathsf{knows} \; \mathsf{sk}) \qquad \qquad \mathsf{Bob} \; (\mathsf{knows} \; \mathsf{vk})$$

$$\mathsf{signature} \; \sigma \leftarrow \mathsf{Sign}(\mathsf{sk},m) \qquad \qquad \mathsf{Verify}(\mathsf{vk},m,\sigma) \\ \qquad \qquad = \mathsf{accept} \; (\mathsf{or} \; \mathsf{reject})$$

Digital signatures:

Anyone (who can access vk) can verify that (m, σ) is from Alice or not!

Correctness: Verify(vk, m, Sign(sk, m)) = accept

Unforgeability: No one but Alice can make a new signature

Digital signatures:

Anyone (who can access vk) can verify that (m, σ) is from Alice or not!

Correctness: Verify(vk, m, Sign(sk, m)) = accept

Unforgeability: No one but Alice can make a new signature.

Digital signatures:

(sk, vk) ← KeyGen and broadcast vk

Anyone (who can access vk) can verify that (m, σ) is from Alice or not!

Correctness: Verify(vk, m, Sign(sk, m)) = accept

Unforgeability: No one but Alice can make a new signature.

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures

4. Changes after Round 1

Lattice hard problems

Lattice-based cryptography is \dots are currently important candidates for post-quantum cryptography.

- Wikipedia -

Lattice-based cryptography bases its security on lattice hard problems, which have strong theoretical backgrounds:

- \bullet SVP and GapSVP $_{\lambda}$: NP-hard! [Ajt96, HR07]
- Worst-case to average-case reductions [Ajt96]
- Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc

Lattice hard problems

Lattice-based cryptography is ... are currently important candidates for post-quantum cryptography.

- Wikipedia -

Lattice-based cryptography bases its security on lattice hard problems, which have strong theoretical backgrounds:

- SVP and GapSVP $_{\lambda}$: NP-hard! [Ajt96, HR07]
- Worst-case to average-case reductions [Ajt96]
- Useful hard problems: NTRU, LWE, SIS, MLWE, MSIS, etc

Lattice hard problems

Figure: Category of hard problems when $P \neq NP$ and P = NP.

No proofs for Quantum Poly (QP), but is believed to be separated to NP-Hard problems.

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3 HAFTAF

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures

4. Changes after Round 1

Fiat-Shamir with abort

Hash-and-Sign

Fiat-Shamir with abort

Hash-and-Sign

Fiat-Shamir with abort:

For secret s, random y, c, signature $\sigma = (c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

(High-level) With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we may collect \mathbf{z} for same c

 \Rightarrow Recover s from cs

How to make it safe

$$(c,\mathbf{z}=\mathbf{y}+c\mathbf{z})\xrightarrow[\text{Rejection Sampling}]{\text{several trials}}\sigma=(c,\mathbf{z}=\mathbf{y}+c\mathbf{z})$$
 not safe
$$\text{safe}$$

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

(High-level) With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we may collect \mathbf{z} for same c:

 \Rightarrow Recover s from cs

How to make it safe

$$(c, \mathbf{z} = \mathbf{y} + c\mathbf{z}) \xrightarrow{\text{several trials}} \sigma = (c, \mathbf{z} = \mathbf{y} + c\mathbf{z})$$

not safe safe

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

(High-level) With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we may collect \mathbf{z} for same c:

 \Rightarrow Recover s from cs.

How to make it safe

$$(c,\mathbf{z}=\mathbf{y}+c\mathbf{z}) \xrightarrow[\text{Rejection Sampling}]{\text{several trials}} \sigma = (c,\mathbf{z}=\mathbf{y}+c\mathbf{z})$$
 not safe

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

(High-level) With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we may collect \mathbf{z} for same c:

 \Rightarrow Recover s from cs.

How to make it safe?

$$(c, \mathbf{z} = \mathbf{y} + c\mathbf{z}) \xrightarrow{\text{Several trials}} \sigma = (c, \mathbf{z} = \mathbf{y} + c\mathbf{z})$$

ot sate

Leakage from $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$?

(High-level) With ∞ pairs of $(c, \mathbf{z} = \mathbf{y} + c\mathbf{s})$, we may collect \mathbf{z} for same c:

 \Rightarrow Recover s from cs.

How to make it safe?

$$(c,\mathbf{z}=\mathbf{y}+c\mathbf{z}) \xrightarrow[\text{Rejection Sampling}]{\text{several trials}} \sigma = (c,\mathbf{z}=\mathbf{y}+c\mathbf{z})$$
 not safe

Rejection sampling

Rejection sampling

$$D_{ ext{source}} = \{(c, \mathbf{z})\}$$
 $\xrightarrow{ ext{reject with}}$ $D_{ ext{target}}$ distribution of (c, \mathbf{z}) , new distribution, independent of \mathbf{z} independent of \mathbf{z}

reject with

Rejection sampling

Rejection sampling

$$D_{ ext{source}} = \{(c, \mathbf{z})\}$$
 $\xrightarrow{ ext{reject with}}$ $D_{ ext{target}}$ distribution of (c, \mathbf{z}) , new distribution, independent of \mathbf{s} $y \leftarrow \mathcal{N}(0, \sigma^2)$ $y \leftarrow U[-a, a]$

reject with

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s}$:

Note, no change for the uniform case.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s}$:

$$y \leftarrow \mathcal{N}(0, \sigma^2)$$

$$y \leftarrow U[-a, a]$$

Note, no change for the uniform case.

Bimodal rejection sampling

Run-time $\propto M$ (\approx green area / purple area).

To decrease M, [DDLL13] uses

$$\mathbf{z} = \mathbf{y} + (-1)^b c\mathbf{s}$$

instead of $\mathbf{z} = \mathbf{y} + c\mathbf{s}$:

Note, no change for the uniform case.

Bimodal rejection sampling

However, this makes "secure" implementation³ much harder. It is basically due to "reject with probability a (transcendental) function of sk."

For e.g., for \approx 120 bits security⁴⁵,

³an implementation secure against physical attacks (side-channel attacks)

⁴core-SVP hardness

 $^{^{5}}$ size= |sig| + |vk|

Bimodal rejection sampling

However, this makes "secure" implementation³ much harder. It is basically due to "reject with probability a (transcendental) function of sk."

For e.g., for \approx 120 bits security⁴⁵,

³an implementation secure against physical attacks (side-channel attacks)

 $^{^{4}}$ core-SVP hardness 5 size= |sig| + |vk|

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- 4. Changes after Round 1

Previously, the randomness ${\bf y}$ was chosen from either discrete Gaussian or uniform hypercube⁶.

 $^{^6}$ The vectors ${\bf y}$ and ${\bf z}$ are high-dimensional vectors, so uniform in an interval is indeed a uniform hypercube.

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- ullet to exploit optimal M,
- to reduce signature and verification key sizes,

based on the bimodal approach [DDLL13].

We, instead, use $uniform\ hyperball\ distribution\ for\ sampling\ y\ [DFPS22];$

- ullet to exploit optimal M,
- to reduce signature and verification key sizes,

based on the bimodal approach [DDLL13].

We reject $(c, \mathbf{z}) \sim D_s$ (with p.d.f. p_s) to a target distribution D_t (with p.d.f. p_t), where

- ullet $p_{
 m s}$: uniform in hyperballs of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- ullet p_{t} : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

We reject $(c, \mathbf{z}) \sim D_s$ (with p.d.f. p_s) to a target distribution D_t (with p.d.f. p_t), where

- ullet $p_{
 m s}$: uniform in hyperballs of radii B centered at $\pm c{
 m s}$
 - union of two large balls
- p_t : uniform in a smaller hyperball of radii B' centered at zero
 - a smaller ball in the middle

$$\begin{aligned} \bullet \ \ p_{\mathbf{s}}(\mathbf{x}) &= \frac{1}{2 \cdot \mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \frac{1}{2 \cdot \mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}, \\ \bullet \ \ p_{\mathbf{t}}(\mathbf{x}) &= \frac{1}{\mathsf{vol}(\mathcal{B}(B))} \cdot \chi_{\parallel \mathbf{z} \parallel < B'}. \end{aligned}$$

$$\Rightarrow p(\mathbf{x}) = \frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\|\mathbf{z}\| < B'}}{\chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \chi_{\|\mathbf{z} + c\mathbf{s}\| < B}}$$

$$0 \quad \text{if } \mathbf{z} \notin \mathcal{B}(B'),$$

$$= 1/2 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}),$$

$$1 \quad \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B, c\mathbf{s}) \cap \mathcal{B}(B, -c\mathbf{s}))$$

for some M > 0.

•
$$p_{\mathbf{s}}(\mathbf{x}) = \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\|\mathbf{z} - c\mathbf{s}\| < B} + \frac{1}{2 \cdot \text{vol}(\mathcal{B}(B))} \cdot \chi_{\|\mathbf{z} + c\mathbf{s}\| < B},$$

• $p_{\mathbf{t}}(\mathbf{x}) = \frac{1}{\text{vol}(\mathcal{B}(B))} \cdot \chi_{\|\mathbf{z}\| < B'}.$

$$\mathcal{L}(\mathcal{L}) = \mathsf{Vol}(\mathcal{B}(B)) = \mathcal{L}||\mathbf{Z}|| \leq D$$

$$\Rightarrow p(\mathbf{x}) = \frac{p_{\mathsf{t}}(\mathbf{x})}{M \cdot p_{\mathsf{s}}(\mathbf{x})} = \frac{\chi_{\parallel \mathbf{z} \parallel < B'}}{\chi_{\parallel \mathbf{z} - c\mathbf{s} \parallel < B} + \chi_{\parallel \mathbf{z} + c\mathbf{s} \parallel < B}}$$

$$\begin{array}{ccc} 0 & \text{if } \mathbf{z} \notin \mathcal{B}(B'), \\ = & 1/2 & \text{if } \mathbf{z} \in \mathcal{B}(B') \cap \mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s}), \\ & 1 & \text{if } \mathbf{z} \in \mathcal{B}(B') \setminus (\mathcal{B}(B,c\mathbf{s}) \cap \mathcal{B}(B,-c\mathbf{s})), \end{array}$$

for some M>0.

That is, we return $\mathbf{x} = (c, \mathbf{z})$ with probability

- 0: if $\|\mathbf{z}\| \ge B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

1. Brief Introduction to HAETAE

2. Preliminaries:

- Digital signatures
- Lattice hard problems
- Lattice-based signatures
 - Bimodal rejection sampling

3. HAETAE:

- Hyperball bimodal rejection sampling
- Comparison to SotA lattice signatures
- 4. Changes after Round 1

Comparison to SotA lattice signatures.

For 120-bit classical security. Sizes are in bytes.

Scheme	sig	vk	KeyGen	Sign	
				sampling	rejection
Dilithium-2	2420	1312	fast	Hypercube	$\ \cdot\ _{\infty} < B$
Bliss-1024 ⁷	1700	1792	fast	dGaussian at 0	reject with prob. $f(sk,Sig)$
HAETAE120	1468	1056	fast	dHyperball at 0	$\ \cdot\ _2 < B$
Mitaka-512 ⁸	713	896	slow	dGaussian at 0 & intGaussian at $H(m)$	none
Falcon-512	666	897	slow	d $Gaussian$ at $H(m)$	none

Table: Comparison between different lattice-based signature schemes.

⁷modified Bliss (to ≥ 120 bit-security) in Dilithium paper.

⁸Mitaka-512 has 102 bits of security

Numbers - Updated Reference Implementation

Size

Performance

Numbers - AVX2 optimized Implementation

Size Performance

Numbers - Embedded Implementation on Cortex-M4

Stack-size of HAETAE and others on Cortex-M4.

Numbers - Embedded Implementation on Cortex-M4

Speed of HAETAE and others on Cortex-M4.

Update Logs after Round 1

Nov, 2022 (v0.9): KpqC round 1

May 2023 (v1 (

- spec: missing parts inclusion, min-entropy analysis
- improved: rANS, secret key rejection
- implementation: fixed-point, constant-time

Nov, 2023 (v2.0)

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)

Feb 2024 (v2.1): KngC round 3

• spec: HVZK for compressed HAETAE, more precise security bound,

Update Logs after Round 1

Nov, 2022 (v0.9): KpqC round 1

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: rANS, secret key rejection
- implementation: fixed-point, constant-time

Nov, 2023 (v2.0)

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)

Feb, 2024 (v2.1): KpqC round 2

• spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation

4 D > 4 B > 4 B > 4 B > 9 Q P

Update Logs after Round 1

Nov, 2022 (v0.9): KpqC round 1

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: rANS, secret key rejection
- implementation: fixed-point, constant-time

Nov, 2023 (v2.0)

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)

Feb, 2024 (v2.1): KpqC round 2

• spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation

Update Logs after Round 1

Nov, 2022 (v0.9): KpqC round 1

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: rANS, secret key rejection
- implementation: fixed-point, constant-time

Nov, 2023 (v2.0)

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)

Feb, 2024 (v2.1): KpqC round 2

 spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation

4 D > 4 B > 4 B > 4 B > 9 Q P

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: hint compression, secret key rejection
- implementation: fixed-point, constant-time
- **Hint vector compression:** The hint vector h, a part of the signature, is compressed via LowBits^h, HighBits^h, and rANS encoding.
- Secret key rejection: Bounding $||c\mathbf{s}||_2 \le \gamma \sqrt{\tau}$ via bounding $\mathcal{N}(\mathbf{s}) \le \gamma^2 n$:

$$\mathcal{N}(\mathbf{s}) := \tau \cdot \sum_{i=1}^{m} \max_{0 \le j < 2n} \|\mathbf{s}(\omega_j)\|_2^2 + r \cdot \max_{0 \le j < 2n} \|\mathbf{s}(\omega_j)\|_2^2,$$

which can be efficiently checked.

- Fixed-Point everywhere

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: hint compression, secret key rejection
- implementation: fixed-point, constant-time
- **Hint vector compression:** The hint vector h, a part of the signature, is compressed via LowBits h , HighBits h , and rANS encoding.
- Secret key rejection: Bounding $||c\mathbf{s}||_2 \le \gamma \sqrt{\tau}$ via bounding $\mathcal{N}(\mathbf{s}) \le \gamma^2 n$:

$$\mathcal{N}(\mathbf{s}) := \tau \cdot \sum_{i=1}^{m} \max_{0 \leq j < 2n} \|\mathbf{s}(\omega_j)\|_2^2 + r \cdot \max_{0 \leq j < 2n} \|\mathbf{s}(\omega_j)\|_2^2,$$

which can be efficiently checked.

- Fixed-Point everywhere!

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: hint compression, secret key rejection
- implementation: fixed-point, constant-time
- **Hint vector compression:** The hint vector h, a part of the signature, is compressed via LowBits h , HighBits h , and rANS encoding.
- Secret key rejection: Bounding $||c\mathbf{s}||_2 \le \gamma \sqrt{\tau}$ via bounding $\mathcal{N}(\mathbf{s}) \le \gamma^2 n$:

$$\mathcal{N}(\mathbf{s}) := \tau \cdot \sum_{i=1}^{m} \max_{0 \le j < 2n}^{i \text{-th}} \|\mathbf{s}(\omega_j)\|_2^2 + r \cdot \max_{0 \le j < 2n}^{(m+1) \text{-th}} \|\mathbf{s}(\omega_j)\|_2^2,$$

which can be efficiently checked.

Fixed-Point everywhere

May, 2023 (v1.0)

- spec: missing parts inclusion, min-entropy analysis
- improved: hint compression, secret key rejection
- implementation: fixed-point, constant-time
- **Hint vector compression:** The hint vector h, a part of the signature, is compressed via LowBits h , HighBits h , and rANS encoding.
- Secret key rejection: Bounding $||c\mathbf{s}||_2 \le \gamma \sqrt{\tau}$ via bounding $\mathcal{N}(\mathbf{s}) \le \gamma^2 n$:

$$\mathcal{N}(\mathbf{s}) := \tau \cdot \sum_{i=1}^{m} \max_{0 \le j < 2n}^{i \text{-th}} \|\mathbf{s}(\omega_j)\|_2^2 + r \cdot \max_{0 \le j < 2n}^{(m+1) \text{-th}} \|\mathbf{s}(\omega_j)\|_2^2,$$

which can be efficiently checked.

- Fixed-Point everywhere!

H. Choe Changes after Round 1

Update Logs after Round 1

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)

Update Logs after Round 1

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)
- **Implementation security:** Mainly on *Fix-Point Arithmetic* with no fix-point multiplication and *Protecting the Hyperball Sampler*.
- Reduced precomputation table: Cut off the extremely low-frequency symbols (<0.1% in total):

Update Logs after Round 1

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: Bug-fix, AVX2 optimized, embedded (Cortex-M4)
- **Implementation security:** Mainly on *Fix-Point Arithmetic* with no fix-point multiplication and *Protecting the Hyperball Sampler*.
- Reduced precomputation table: Cut off the extremely low-frequency symbols (<0.1% in total):

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: AVX2 optimized, embedded (Cortex-M4)
- **Bug-fix:** Implementation-specific bugs (reported via KpqC workshops/bulletin/PQC forum/ourselves) are fixed.
- AVX2 optimization: Mainly on Vectorized Hyperball Sampling (as Keccak and NTT use existing optimized code) via parallel polynomial samplings. For HAETAE-120, 4.6x speed-up.
- Embedded Cortex-M4 implementation: Stack/speed optimizations, resulting in 40 to 54 KiB maximum stack size for HAETAE-120.

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: AVX2 optimized, embedded (Cortex-M4)
- **Bug-fix:** Implementation-specific bugs (reported via KpqC workshops/bulletin/PQC forum/ourselves) are fixed.
- **AVX2 optimization:** Mainly on *Vectorized Hyperball Sampling* (as Keccak and NTT use existing optimized code) via parallel polynomial samplings. For HAETAE-120, 4.6x speed-up.
- **Embedded Cortex-M4 implementation:** Stack/speed optimizations, resulting in 40 to 54 KiB maximum stack size for HAETAF-120.

Update Logs after Round 1

- spec: implementation security
- improved: reduced precomputation table for rANS
- implementation: AVX2 optimized, embedded (Cortex-M4)
- **Bug-fix:** Implementation-specific bugs (reported via KpqC workshops/bulletin/PQC forum/ourselves) are fixed.
- **AVX2 optimization:** Mainly on *Vectorized Hyperball Sampling* (as Keccak and NTT use existing optimized code) via parallel polynomial samplings. For HAETAE-120, 4.6x speed-up.
- **Embedded Cortex-M4 implementation:** Stack/speed optimizations, resulting in 40 to 54 KiB maximum stack size for HAFTAF-120.

Feb, 2024 (v2.1)

- spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation
- **HVZK for compressed HAETAE:** Proof for HVZK is extended to cover the compressed HAETAE.
- Precise security bound and "refined" security estimation: Along with the original security bounds with BKZ block size based on GSA and Core-SVP analysis, we also give a security estimation for MLWE based on the leaky LWE estimator [DDGR20].

Feb, 2024 (v2.1)

- spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation
- **HVZK for compressed HAETAE:** Proof for HVZK is extended to cover the compressed HAETAE.
- Precise security bound and "refined" security estimation: Along with the original security bounds with BKZ block size based on GSA and Core-SVP analysis, we also give a security estimation for MLWE based on the leaky LWE estimator [DDGR20].

Feb, 2024 (v2.1)

- spec: HVZK for compressed HAETAE, more precise security bound, "refined" security estimation
- **HVZK for compressed HAETAE:** Proof for HVZK is extended to cover the compressed HAETAE.
- Precise security bound and "refined" security estimation: Along with the original security bounds with BKZ block size based on GSA and Core-SVP analysis, we also give a security estimation for MLWE based on the leaky LWE estimator [DDGR20].

Thanks!

Check http://kpqc.cryptolab.co.kr/haetae!

Check https://github.com/mupq/pqm4 for the embedded code!

Any question?

References I

[Ajt96] M. Ajtai.

Generating hard instances of lattice problems (extended abstract).

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, page 99–108, New York, NY, USA, 1996. Association for Computing Machinery.

[BG14] Shi Bai and Steven D Galbraith.

An improved compression technique for signatures based on learning with errors.

In Cryptographers' Track at the RSA Conference, pages 28–47. Springer, 2014.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe with side information: Attacks and concrete security estimation, 2020.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal gaussians. In Annual Cryptology Conference, pages 40–56. Springer, 2013.

[DFPS22] Julien Devevey, Omar Fawzi, Alain Passelègue, and Damien Stehlé. On rejection sampling in lyubashevsky's signature scheme. Cryptology ePrint Archive, Number 2022/1249, 2022. To be appeared in Asiacrypt, 2022. https://eprint.iacr.org/2022/1249.

References II

[DKL+18] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

Crystals-dilithium: A lattice-based digital signature scheme.

IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 238–268, 2018.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest.

Efficient identity-based encryption over ntru lattices.

In International Conference on the Theory and Application of Cryptology and Information Security, pages 22–41. Springer, 2014.

[DP16] Léo Ducas and Thomas Prest.

Fast fourier orthogonalization.

In Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, pages 191–198, 2016.

[Duc14] Léo Ducas.

Accelerating bliss: the geometry of ternary polynomials.

Cryptology ePrint Archive, Paper 2014/874, 2014. https://eprint.iacr.org/2014/874.

References III

- [EFG+22] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
 Mitaka: A simpler, parallelizable, maskable variant of.
 In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 222–253. Springer, 2022.
- [ETWY22] Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Shorter hash-and-sign lattice-based signatures. In Yevgeniy Dodis and Thomas Shrimpton, editors, <u>Advances in Cryptology – CRYPTO</u>, 2022.
- [FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang.

 Falcon: Fast-fourier lattice-based compact signatures over ntru.

 Submission to the NIST's post quantum greaters apply standardization process.
 - Submission to the NIST's post-quantum cryptography standardization process, 36(5), 2018.
- [GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann.
 Practical lattice-based cryptography: A signature scheme for embedded systems.
 In International Workshop on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.

References IV

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.

Trapdoors for hard lattices and new cryptographic constructions.

In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 197–206, 2008.

 $[{\rm HHGP}^+03]$ Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice.

In Cryptographers' track at the RSA conference, pages 122–140. Springer, 2003.

[HR07] Ishay Haviv and Oded Regev.

Tensor-based hardness of the shortest vector problem to within almost polynomial factors.

In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC '07, page 469–477, New York, NY, USA, 2007. Association for Computing Machinery.

[Lyu09] Vadim Lyubashevsky.

Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In International Conference on the Theory and Application of Cryptology and Information Security, pages 598–616. Springer, 2009.

References V

[Lyu12] Vadim Lyubashevsky.

Lattice signatures without trapdoors.

In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 738–755. Springer, 2012.

HAETAE description (high-level)

```
\mathsf{KeyGen}(1^{\lambda})
```

- 1: $\mathbf{A}_{\text{gen}} \leftarrow \mathcal{R}_q^{k \times (\ell-1)}$ and $(\mathbf{s}_{\text{gen}}, \mathbf{e}_{\text{gen}}) \leftarrow S_\eta^{\ell-1} \times S_\eta^k$ 2: $\mathbf{b} = \mathbf{A}_{\text{gen}} \cdot \mathbf{s}_{\text{gen}} + \mathbf{e}_{\text{gen}} \in \mathcal{R}_n^k$
 - 3: $\mathbf{A} = (-2\mathbf{b} + q\mathbf{j} \mid 2\mathbf{A}_{gen} \mid 2\mathbf{Id}_k) \mod 2q$ and write $\mathbf{A} = (\mathbf{A}_1 \mid 2\mathbf{Id}_k)$
 - 4: $\mathbf{s} = (1, \mathbf{s}_{gen}, \mathbf{e}_{gen})$
 - 5: **if** $\sigma_{\max}(\operatorname{rot}(\mathbf{s}_{gen})) > \gamma$, then restart
 - 6: Return sk=s, vk=A

$\mathsf{Sign}(\mathsf{sk}, M)$

- 1: $\mathbf{y} \leftarrow U(\mathcal{B}_{(1/N)\mathcal{R},(k+\ell)}(B))$
- 2: $c = H(\mathsf{HighBits}^{\mathsf{hint}}_{2a}(\mathbf{A}[\mathbf{y}], \alpha), \mathsf{LSB}([y_0]), M) \in \mathcal{R}_2$
- 3: $\mathbf{z} = (\mathbf{z}_1, \mathbf{z}_2) = \mathbf{y} + (-1)^b c \cdot \mathbf{s} \text{ for } b \leftarrow U(\{0, 1\})$
- 4: $\mathbf{h} = \mathsf{HighBits}_{2q}^{\mathsf{hint}}(\mathbf{A}\lfloor \mathbf{z} \rceil qc\mathbf{j}, \alpha) \mathsf{HighBits}_{2q}^{\mathsf{hint}}(\mathbf{A}_1 \lfloor \mathbf{z}_1 \rceil qc\mathbf{j}, \alpha) \bmod^+ \frac{2(q-1)}{\alpha}$
- 5: **if** $\|\mathbf{z}\|_2 \ge B'$, then restart
- 6: **if** $||2\mathbf{z} \mathbf{y}||_2 < B$, then restart with probability 1/2
- 7: Return $\sigma = (\text{Encode}(\text{HighBits}(|\mathbf{z}_1|, a)), \text{LowBits}(|\mathbf{z}_1|, a), \text{Encode}(\mathbf{h}), c)$

Verify(vk, $M, \sigma = (x, \mathbf{v}, h, c)$)

- 1: $\tilde{\mathbf{z}}_1 = \mathsf{Decode}(x) \cdot a + \mathbf{v}$ and $\tilde{\mathbf{h}} = \mathsf{Decode}(h)$
- 2: $\mathbf{w} = \tilde{\mathbf{h}} + \text{HighBits}_{2a}^{\text{hint}} (\mathbf{A}_1 \tilde{\mathbf{z}}_1 qc\mathbf{j}, \alpha) \text{ mod}^+ \frac{2(q-1)}{q}$
- 3: $w' = LSB(\tilde{z}_0 c)$
- 4: $\tilde{\mathbf{z}}_2 = [\mathbf{w} \cdot \alpha + w' \mathbf{j} (\mathbf{A}_1 \tilde{z}_1 qc \mathbf{j})]/2 \mod^{\pm} q$
- 5: $\tilde{\mathbf{z}} = (\tilde{\mathbf{z}}_1, \tilde{\mathbf{z}}_2)$
- 6: Return $(c=H(\mathbf{w}, w', M)) \land (\|\tilde{\mathbf{z}}\| < B'')$