

What are colors?

- The colors that humans and cameras perceive are determined by the nature of the light reflected from an object!
- Green objects reflect "green" light!

What are colors?

- Achromatic: Only intensities (amount of light)
 - Gray levels as seen on black/white TV-monitor
 - Ranges from black to white

Chromatic: Light waves; Visual range: 400nm-700nm

What are colors?

- Achromatic: Only intensities (amount of light)
 - Gray levels as seen on black/white TV-monitor
 - Ranges from black to white

Chromatic: Light waves; Visual range: 400nm-700nm

Colors on displays

- Red, green, blue are called **Primary Colors**
- R,G,B were chosen due to the structure of the human eye
- R,G,B are used in cameras

Receptivity of the eye cells

- Rods (DK = Stave): Light sensitive (intensity)
- Cones (DK = Tappe): Color sensitive

R+G+B = White?!

- So why don't we get white, when we use paint? Subtractive Color.
- But why does it work for the TV? Additive Color.
- Additive Color: Sum of light of different wave lengths. That light reaches our eye directly.
 - Examples: TVs, projectors
- Subtractive Color: White Color is emitted by the sun and is only partly reflected from an object
 - Red paint filters all light, except red
 - Yellow paint absorbs blue, but reflects red and green
 - Examples: Paint, prints

RGB color space

- The "classical" Computer Color space
- 3 different colors: Red, Green, Blue
- Similar to the human visual system!
- If R,G,B have the same energy, we perceive a shade of grey

A single pixel consists of three components: [0,255]. Each pixel is a **Vector**.

180 219 93

Pixel-Vector in the computer memory

Final pixel in the image

RGB example

Original Image

G-Component

R-Component

B-Component

AALBORG UNIVERSITY
DENMARK

Capturing colors digitally – 3CCD camera

https://youtu.be/Aggi0g67uXM

Fig. 4.8 Refraction through a prism.

Single sensor color (most cameras)

- Use achromatic sensors but filter the light in a certain pattern: The Bayer pattern.
- Demosaicing: Finding the RGB-value for a particular pixel.
 - Set the color component for the filter color directly.
 - Set the two other values by averaging the neighbors with that filter.
 - Examples: For a G pixel, set G = value, R = mean(R_{neighbors}) and B = mean(B_{neighbors})

Bayer pattern

Converting color to grayscale

$$\mathbf{OI} = (R+G+B) / 3$$

