CS 181 - Decidability

Alexander A. Sherstov

UCLA

Buridan's donkey

Part 1

Basic notions

Definitions

Definition

A Turing machine *M* decides language *L* if:

- M halts in q_{accept} on every input $x \in L$; and
- M halts in q_{reject} on every input $x \notin L$.

Definitions

Definition

A Turing machine *M* decides language *L* if:

- M halts in q_{accept} on every input $x \in L$; and
- M halts in q_{reject} on every input $x \notin L$.

Such M is called a **decider** for L, and L is called **decidable**.

Deciding L = recognizing L + halting on every input.

Examples

We showed earlier that the following languages are decidable:

- $| \{ w \# w : w \in \{0,1\}^* \}$
- $\{0^{2^n}: n \geq 0\}$
- $\{a^n b^{kn} : n, k \ge 1\}$
- $\{w_1 \# w_2 \# \cdots \# w_k : w_1, \dots, w_k \in \{0, 1\}^* \text{ pairwise distinct}\}$

Examples

We showed earlier that the following languages are decidable:

- $| \{ w \# w : w \in \{0,1\}^* \}$
- $\{0^{2^n}: n \geq 0\}$
- $\{a^n b^{kn} : n, k \ge 1\}$
- $\{w_1 \# w_2 \# \cdots \# w_k : w_1, \dots, w_k \in \{0, 1\}^* \text{ pairwise distinct}\}$

Today, we will look at languages that encode various **computational problems** other than text processing.

Part 2

Problems about automata

As a finite discrete-mathematical object, every DFA can be encoded as a binary string!

As a finite discrete-mathematical object, every DFA can be encoded as a binary string!

■ Fix a DFA: $(Q, \Sigma, \delta, q_0, F)$

As a finite discrete-mathematical object, every DFA can be encoded as a binary string!

- Fix a DFA: $(Q, \Sigma, \delta, q_0, F)$
- Represent the states by consecutive strings:

$$\underbrace{\overbrace{00\ldots00}^{\lceil\log|Q|\rceil},\overbrace{00\ldots01}^{\lceil\log|Q|\rceil},\ldots}$$

As a finite discrete-mathematical object, every DFA can be encoded as a binary string!

- Fix a DFA: $(Q, \Sigma, \delta, q_0, F)$
- Represent the states by consecutive strings:

$$\underbrace{00\dots00}_{[\log |Q|]},\underbrace{00\dots01}_{[\log |Q|]},\dots$$

■ Represent the symbols by consecutive strings:

$$\underbrace{\overbrace{00\ldots00}^{\lceil\log|\Sigma|\rceil},\overbrace{00\ldots01}^{\lceil\log|\Sigma|\rceil},\ldots}$$

Complete encoding

```
0000010111000011100
00000 0000 00111
00000 0001 00101
: : : :
01110 1100 00001
01010 00011 00101 ...
```

Encoding explained

Encoding other objects

Can similarly encode regular expressions, NFAs, PDAs, CFGs, TMs.

Encoding other objects

Can similarly encode regular expressions, NFAs, PDAs, CFGs, TMs.

Definition

- $lackbox{ } \langle A \rangle =$ the standard binary encoding of the object A
- L(M) = the language recognized by the device M

DFA acceptance problem

Problem

Decide $L_1 = \{\langle D, w \rangle : \text{the DFA } D \text{ accepts the string } w\}.$

■ Reject if encoding is invalid.

- Reject if encoding is invalid.
- Initialize tapes:

- Reject if encoding is invalid.
- Initialize tapes:

- Until end of w is reached:
 - scan description of *D* for next action
 - update *D*'s state and advance to next symbol of *w*

- Reject if encoding is invalid.
- Initialize tapes:

- Until end of w is reached:
 - scan description of D for next action
 - update *D*'s state and advance to next symbol of *w*
- Accept iff D's current state is in F.

Problem

Decide $L_2 = \{\langle N, w \rangle : \text{the NFA } N \text{ accepts the string } w\}.$

Problem

Decide $L_2 = \{\langle N, w \rangle : \text{the NFA } N \text{ accepts the string } w\}.$

Solution

- Convert *N* to an equivalent DFA *D*.
- \blacksquare Check whether D accepts w.

Problem

Decide $L_3 = \{\langle R, w \rangle : \text{regular expression } R \text{ generates string } w \}.$

Problem

Decide $L_3 = \{\langle R, w \rangle : \text{regular expression } R \text{ generates string } w \}$.

Solution

- Convert *R* to an equivalent NFA *N*.
- \blacksquare Check whether N accepts w.

Problem

Decide $L_4 = \{\langle N \rangle : N \text{ is an NFA with } L(N) = \varnothing\}.$

Problem

Decide $L_4 = \{\langle N \rangle : N \text{ is an NFA with } L(N) = \emptyset\}.$

Solution

View N as a graph. Check whether an accept state is reachable from start state.

Problem

Decide $L_5 = \{\langle D', D'' \rangle : D', D'' \text{ are DFAs with } L(D') = L(D'')\}.$

Problem

Decide $L_5 = \{\langle D', D'' \rangle : D', D'' \text{ are DFAs with } L(D') = L(D'')\}.$

Solution

- Construct DFA D for $L(D') \oplus L(D'')$ using Cartesian product.
- Check whether $L(D) = \emptyset$.

Problem

Decide $L_5 = \{\langle D', D'' \rangle : D', D'' \text{ are DFAs with } L(D') = L(D'')\}.$

Solution

- Construct DFA D for $L(D') \oplus L(D'')$ using Cartesian product.
- Check whether $L(D) = \emptyset$.

Similar: equivalence testing for NFAs and regular expressions.

Problem

On input a DFA D, decide if D accepts a string of even length.

Problem

On input a DFA D, decide if D accepts a string of even length.

Solution

- Construct DFA D' for $L(D) \cap (\Sigma \Sigma)^*$ using Cartesian product.
- Check whether $L(D') \neq \emptyset$.

Problem

On input a DFA D, decide if D accepts w^R whenever D accepts w.

Problem

On input a DFA D, decide if D accepts w^R whenever D accepts w.

Solution

- Construct DFA D' for $L(D)^R$.
- Check whether L(D') = L(D).

Problem

On input a DFA D, decide whether L(D) is infinite.

Problem

On input a DFA D, decide whether L(D) is infinite.

Solution

- Let k = number of states in D.
- By pumping lemma, L(D) is infinite iff D accepts a string of length $\geq k$.

Other problems about automata

Problem

On input a DFA D, decide whether L(D) is infinite.

- Let k = number of states in D.
- By pumping lemma, L(D) is infinite iff D accepts a string of length $\geq k$.
- Build a DFA D' for $L(D) \cap \Sigma^k \Sigma^*$ using Cartesian product.
- Check whether $L(D') \neq \emptyset$.

Part 3

Problems about CFGs and PDAs

Theorem

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. If $L(G) \neq \emptyset$, then some $w \in L(G)$ has a parse tree of depth $\leq |V|$.

Theorem

Let $G = (V, \Sigma, R, S)$ be a context-free grammar. If $L(G) \neq \emptyset$, then some $w \in L(G)$ has a parse tree of depth $\leq |V|$.

Proof.

Take smallest parse tree for G. If depth > |V|, then some path repeats a variable, so smaller tree exists!

Problem

On input a CFG G, decide if $L(G) \neq \emptyset$.

Problem

On input a CFG G, decide if $L(G) \neq \emptyset$.

- Let v = number of variables in G.
- **E**xhaustively search for a valid parse tree of depth $\leq v$.
- Accept iff such tree is found.

Problem

On input a CFG G and string w, decide if G generates w.

Problem

On input a CFG G and string w, decide if G generates w.

- Convert G to an equivalent PDA P.
- Construct PDA P' for $L(P) \cap \{w\}$ using Cartesian product.
- Convert P' to an equivalent CFG G'.
- Check whether $L(G') \neq \emptyset$.

Corollary

Every context-free language is decidable.

Corollary

Every context-free language is decidable.

Problem

On input a PDA P, decide if P has an unreachable state.

Problem

On input a PDA P, decide if P has an unreachable state.

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$.
- For each $q \in Q$, define $P_q = (Q, \Sigma, \Gamma, \delta, q_0, \{q\})$.

Problem

On input a PDA P, decide if P has an unreachable state.

- Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$.
- For each $q \in Q$, define $P_q = (Q, \Sigma, \Gamma, \delta, q_0, \{q\})$.
- Convert each P_q to a CFG and check if $L(P_q) \neq \emptyset$.
- Accept iff $L(P_q) \neq \emptyset$ for all $q \in Q$.

Problem

On input a DFA D, decide if D accepts a palindrome.

Problem

On input a DFA D, decide if D accepts a palindrome.

- Let P = PDA that recognizes palindromes.
- Construct PDA P' for $L(P) \cap L(D)$ using Cartesian product.
- Convert P' to an equivalent CFG G'.
- Check whether $L(G') \neq \emptyset$.

Part 4

Computation of functions

Definition

Let $f \colon \Sigma^* \to \Sigma^*$. Turing machine M computes f iff when started on input w, TM M eventually enters q_{HALT} with f(w) written on the tape.

Computes componentwise complement.

Increments binary string, written starting with least significant bit.