CAPÍTULO 3. Combinatoria

Diagrama de Carroll

Es una variante del diagrama de Venn-Euler que posibilita la clasificación de un conjunto de objetos según tres o más propiedades o atributos. La clasificación es dicotómica, es decir, cada elemento del conjunto tiene la propiedad o bien **no la posee.**

Por ejemplo, dada los siguientes datos:

Primos	No primos	
2, 3, 5, 7,	1, 4, 6, 8,	
11, 13, 17, 19,	9, 10, 12, 14,	
23, 29, 31, 27,	15, 16, 18, 20,	
41, 43, 47, 53,	21, 22, 24, 25,	
59, 61,	26, 28,	

Los diagramas de Carroll, permiten representan de una manera ordenada y útil de categorizar y exhibir ciertos tipos de información.

	Primos	No primos	
Pares	2,	4, 6, 8, 10, 12, 14, 16, 18,	
No pares	3, 5, 7, 11, 13, 17, 23, 29,	1, 9, 15, 21, 25, 27, 33, 35,	

Pero si se consideran las los cardinales de cada conjunto se tiene:

Atributos	Primos	No primos	Totales
Pares	1	8	9
No pares	8	8	16
Totales	9	16	25

Principio Fundamental del Conteo (PFC)

Principio Fundamental del Conteo. Se supone un proceso que comprende una sucesión de k etapas. De modo que n_1 la cantidad finita de maneras diferentes en que pueda darse la primera etapa y n_2 la cantidad finita de maneras distintas en que pueda ocurrir la segunda etapa luego de la primera. Y así sucesivamente, tal que sea n_k la cantidad de formas diferentes en que la k-esima etapa pueda darse. Entonces, la cantidad total de maneras diferentes en el suceso pueda ocurrir resulta de:

$$n_1.n_2...n_k$$

El diagrama de árbol es una representación gráfica del PFC. Es utilizado en situaciones de conteo y en el cálculo de probabilidades.

Diagrama de árbol horizontal y vertical

Factorial de un número No

Se define como el *factorial* de un número n, que se denota n! de la siguiente manera:

$$n! = \begin{cases} Si \ n = 0, \ 0! = 1 \\ Si \ n = 1, \ 1! = 1 \\ Si \ n > 1, \ n! = n.(n-1)! \end{cases}$$

Ejemplo: 3!=3(3-1)!=3.2!=3.2(2-1)!=3.2.1=6

Permutaciones y combinaciones simples.

Permutación simple: Se define como un arreglo *ordenado* de r objetos, *sin repetición*, que se seleccionan entre n objetos distintos. La cantidad de tales permutaciones se denota ${}_{n}P_{r}$ y se obtiene:

$$n. (n-1). (n-2)... (n-r+1) con r \le n$$

r factores

Si r < n entonces se tiene:

$${}_{n}P_{r} = n. (n-1). (n-2)... (n-r+1) =$$

$$= n. (n-1). (n-2)... (n-r+1). \frac{(n-r)(n-r-1)...2.1}{(n-r)(n-r-1)...2.1}$$

Finalmente resulta:

$$_{n}P_{r} = \frac{n!}{(n-r)!}$$

Este tipo de permutaciones simples también suelen ser llamadas también variaciones simples.

MATEMATICA PARA LA TECNICATURA SUPERIOR EN PROGRAMACIÓN

Si r = n entonces se tiene: ${}_{n}P_{n} = n$. (n-1). (n-2)....l De modo que:

$$P_n = n!$$

Combinación simple: Se define como un arreglo r objetos, donde carece de importancia el orden y sin repetición, que se seleccionan entre n objetos distintos. La cantidad de tales permutaciones se denota ${}_{n}C_{r}$ y se obtiene: ${}_{n}C_{r}$. $r! = {}_{n}P_{r}$

Por lo tanto, resulta que:

$${}_{n}C_{r}=\frac{n!}{r!.(n-r)!}$$

Resumiendo:

