Домашняя работа № 5

Автор: Минеева Екатерина

Задача А. Через В

Основная идея:

Представим граф в виде сети с истоком в вершине B, стоком в вершине S, соединяющий вершины A и B. Тогда если существует поток из вершины B размера 2 (на всех остальных ребрах пропустные способности по 1), то существует и путь из B в A и из B в C. Поскольку изначально сеть не ориентирована, это то же самое, что существование пути из A в C через B.

Детали:

Для того, чтобы через одну вершину не проходило одного пути, разделим каждую врешину v на две: v_{in} и v_{out} .

Из v_{out} исходят все ребра, которые изначально исходили из v. Пропускные способности ребер не меняются.

В v_{in} входят все ребра, которые изначально входили в вершнину v. Пропускные способности те же. Вершины v_{in} и v_{out} соединены ребром $v_{in} \to v_{out}$ с пропускной способностью 1. Таким образом, мы обеспечим условие на то, что через одну клетку нельзя проходить более одного раза.

(3амечание: для $v=B,\,B_{in}$ и B_{out} соединены ребром $B_{in}\to B_{out}$ с пропускной способностью 2.)

Оценка сложности:

Создание сети по входным данным — O(nm).

Количество вершин в получившейся сети $\underline{O}(nm)$. Количество ребер в этой сети $\underline{O}(nm)$ — так как степень каждой вершины ≤ 5 .

Для поиска максимального потока применялся алгоритм Эдмундса-Карпа. Заметим, однако, что будет запушено не более 3 итераций алгоритма, поскольку размер максимального потока не превосходит 2, а каждый раз при добавлении увеличивающего пути к потоку размер самого потока увеличивается хотя бы на 1.

Таким образом, не более 3 раз будет запушен поиск в ширину, который в свою очередь занимает $\underline{O}(nm)$ времени, дальнейшее обновления значений в потоке и остаточной сети – тоже $\underline{O}(nm)$. Итого сложность алгоритма $\underline{O}(nm)$.