First we introduce Cauthy criteria for real numbers and random variables.

Proposition 1 (Cauthy criterion for real numbers). Let $a_n = \sum_{j=0}^n a_j$ be a sequence of real numbers. The Cauthy criterion states that $\sum_{j=0}^{\infty} a_j$ converges (i.e., $a_n \to a$ as $n \to \infty$) if and only if for any M > N,

$$\left| \sum_{j=0}^{M} a_j - \sum_{j=0}^{N} a_j \right| \longrightarrow 0 \quad as \quad M, N \longrightarrow \infty$$

Proposition 2 (Cauthy criterion for random variables). Let $\{X_n\}$ be a sequence of random variables. The Cauthy criterion states that X_n converges in mean square (i.e., $X_n \xrightarrow{m.s.} X$) if and only if for any M > N,

$$E[(X_M - X_N)^2] \longrightarrow 0$$
, as $M, N \longrightarrow \infty$

We then establish the following propositions.

Proposition 3. Absolute summability implies square summability. That is,

$$\sum_{j=0}^{\infty} |\psi_j| < \infty \quad implies \quad \sum_{j=0}^{\infty} \psi_j^2 < \infty$$

Proof. Suppose that $\{\psi_j\}_{j=0}^{\infty}$ is absolutely summable: $\sum_{j=0}^{\infty} |\psi_j| < \infty$. Then there exist an $N < \infty$ such that

$$|\psi_j| < 1, \ \forall \ j \ge N,$$

which implies that

$$\psi_j^2 < |\psi_j|, \ \forall \ j \ge N.$$

Then

$$\sum_{j=0}^{\infty} \psi_j^2 = \sum_{j=0}^{N-1} \psi_j^2 + \sum_{j=N}^{\infty} \psi_j^2$$

$$< \sum_{j=0}^{N-1} \psi_j^2 + \sum_{j=N}^{\infty} |\psi_j|$$

Since N is finite, $\sum_{j=0}^{N-1} \psi_j^2$ is also finite. Moreover, $\sum_{j=N}^{\infty} |\psi_j|$ is finite since $\{\psi_j\}_{j=0}^{\infty}$ is absolutely summable. Hence,

$$\sum_{j=0}^{\infty} \psi_j^2 < \infty.$$

Finally, we show the following proposition.

Proposition 4. An $MA(\infty)$ process with square-summable MA coefficients converges (in mean square). That is, for some random variable y_t ,

$$\sum_{j=0}^{n} \psi_j e_{t-j} \xrightarrow{m.s.} y_t \text{ as } n \longrightarrow \infty.$$

Proof. According to the Cauchy criterion, $\sum_{j=0}^{\infty} \psi_j e_{t-j}$ converges if and only if for any integers M > N,

$$E\left[\left(\sum_{j=0}^{M} \psi_{j} e_{t-j} - \sum_{j=0}^{N} \psi_{j} e_{t-j}\right)^{2}\right] \longrightarrow 0 \text{ as } M, N \longrightarrow \infty.$$

Note that

$$E\left[\left(\sum_{j=0}^{M} \psi_{j} e_{t-j} - \sum_{j=0}^{N} \psi_{j} e_{t-j}\right)^{2}\right] = E\left[\left(\sum_{j=N+1}^{M} \psi_{j} e_{t-j}\right)^{2}\right]$$

$$= (\psi_{N+1}^{2} + \psi_{N+2}^{2} + \dots + \psi_{M}^{2})\sigma^{2}$$

$$= \left[\sum_{j=0}^{M} \psi_{j}^{2} - \sum_{j=0}^{N} \psi_{j}^{2}\right]\sigma^{2}$$

Since $\sum_{j=0}^{\infty} \psi_j^2$ converges, then

$$\left[\sum_{j=0}^{M} \psi_j^2 - \sum_{j=0}^{N} \psi_j^2\right] = \left|\sum_{j=0}^{M} \psi_j^2 - \sum_{j=0}^{N} \psi_j^2\right| \longrightarrow 0 \text{ as } M, N \longrightarrow \infty,$$

by Cauchy criterion. Hence,

$$E\left[\left(\sum_{j=0}^{M} \psi_{j} e_{t-j} - \sum_{j=0}^{N} \psi_{j} e_{t-j}\right)^{2}\right] = \left[\sum_{j=0}^{M} \psi_{j}^{2} - \sum_{j=0}^{N} \psi_{j}^{2}\right] \sigma^{2} \longrightarrow 0 \text{ as } M, N \longrightarrow \infty$$

which implies that

$$\sum_{j=0}^{n} \psi_{j} e_{t-j} \xrightarrow{m.s.} y_{t} \text{ as } n \longrightarrow \infty.$$

Summary In sum, by Propositions 3 and 4, we establish that an $MA(\infty)$ process with absolutely summable MA coefficients converges.

Inverting Lag Polynomials Given a p-th degree lag polynomial

$$\beta(L) = 1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p$$

Let the inverse of $\beta(L)$ be defined as

$$\psi(L) = \beta(L)^{-1}.$$

That is,

$$\beta(L)\psi(L) = 1,$$

or

$$(1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p)(\psi_0 + \psi_1 L + \psi_2 L^2 + \dots) = 1$$

The above equation yields

constant:
$$\psi_{0} = 1$$

$$L : \qquad \psi_{1} - \beta_{1}\psi_{0} = 0$$

$$L^{2} : \qquad \psi_{2} - \beta_{1}\psi_{1} - \beta_{2}\psi_{0} = 0$$

$$L^{3} : \qquad \psi_{3} - \beta_{1}\psi_{2} - \beta_{2}\psi_{1} - \beta_{3}\psi_{0} = 0$$

$$\vdots$$

$$L^{p-1} : \qquad \psi_{p-1} - \beta_{1}\psi_{p-2} - \beta_{2}\psi_{p-3} - \dots - \beta_{p-1}\psi_{0} = 0$$

$$L^{p} : \qquad \psi_{p} - \beta_{1}\psi_{p-1} - \beta_{2}\psi_{p-2} - \dots - \beta_{p-1}\psi_{1} - \beta_{p}\psi_{0} = 0$$

$$L^{p+1} : \qquad \psi_{p+1} - \beta_{1}\psi_{p} - \beta_{2}\psi_{p-1} - \dots - \beta_{p-1}\psi_{2} - \beta_{p}\psi_{1} = 0$$

$$L^{p+2} : \qquad \psi_{p+2} - \beta_{1}\psi_{p+1} - \beta_{2}\psi_{p} - \dots - \beta_{p-1}\psi_{3} - \beta_{p}\psi_{2} = 0$$

$$\vdots$$

These equations can be solved successively for $(\psi_0, \psi_2,...)$ as

$$\psi_{0} = 1$$

$$\psi_{1} = \beta_{1}$$

$$\psi_{2} = \beta_{2} + \beta_{1}^{2}$$

$$\psi_{3} = \beta_{1}[\beta_{2} + \beta_{1}^{2}] + \beta_{2}\beta_{1} + \beta_{1}$$

$$\vdots$$

For $j \geq p, \, \psi_j$ follows the *p*-th order homogeneous difference equation:

$$\psi_j - \beta_1 \psi_{j-1} - \dots - \beta_p \psi_{j-p} = 0. \tag{1}$$

Hence, once the first p coefficients $(\psi_0, \psi_1, \dots, \psi_{p-1})$ are obtained, we can use this pth order homogeneous difference equation to calculate the rest of the coefficients $(\psi_j, j \geq p)$ with the initial condition, $(\psi_0, \psi_1, \dots, \psi_{p-1})$.

Lemma 1. Let $0 \le \xi < 1$ and let n be a non-negative integer. Then there exist two real numbers, A and b, such that $\xi < b < 1$ and

$$(j)^n \xi^j < Ab^j$$
, for $j = 0, 1, 2, \dots$

Proof. Pick any b such that $\xi < b < 1$. Since $j \log \left(\frac{b}{\xi}\right)$ eventually gets larger than $n \log(j)$ as j increases, b^j eventually gets larger than $(j)^n \xi^j$ as j increases. Hence, there exists a large J, such that

$$(j)^n \xi^j < b^j$$
, for all $j \ge J$. (2)

Moreover, let

$$B_j = \frac{(j)^n \xi^j}{b^j},$$

and define

$$B = \max\{B_0, B_1, B_2, \dots, B_{J-1}\}\$$

Then, by construction, for $j = 0, 1, 2, \dots, (J-1)$,

$$B \ge B_j = \frac{(j)^n \xi^j}{b^j},$$

or

$$(j)^n \xi^j \le Bb^j. \tag{3}$$

Now choose A such that A > 1 and A > B. Then by equation (2),

$$(j)^n \xi^j < b^j < Ab^j$$
, for $j \ge J$.

By equation (3),

$$(j)^n \xi^j \le Bb^j < Ab^j$$
, for $j = 0, 1, 2, \dots, (J-1)$.

That is,

$$(j)^n \xi^j < Ab^j$$

for
$$j = 0, 1, 2, \dots$$

Theorem 1 (Absolutely summable inverses of lag polynomials). Consider a p-th degree lag polynimial

$$\beta(L) = 1 - \beta_1 L - \beta_2 L^2 - \dots - \beta_p L^p$$

and let

$$\psi(L) = \beta(L)^{-1}.$$

If all the roots of $\beta(z) = 0$ lie outside the unit circle, then the coefficient sequence $\{\psi_j\}$ of $\psi(L)$ is absolutely summable.

Proof. Recall from equation (1) that for $j \geq p$,

$$\psi_j - \beta_1 \psi_{j-1} - \dots - \beta_p \psi_{j-p} = 0.$$

with the initial condition that $(\psi_0, \psi_1, \dots, \psi_{p-1})$ are given. The associated polynomial equation is

$$\beta(z) = 1 - \beta_1 z - \beta_2 z^2 - \dots - \beta_{p-1} z^{p-1} - \beta_p z^p = 0.$$
 (4)

Let λ_k (k = 1, 2, ..., K) be the distinct roots of equation (4), and r_k be the multiplicity of λ_k . Clearly,

$$\sum_{k=1}^{K} r_k = r_1 + r_2 + \dots + r_K = p.$$

The polynomial equation can be rewritten as

$$1 - \beta_1 z - \beta_2 z^2 - \dots - \beta_{p-1} z^{p-1} - \beta_p z^p = \left(1 - \frac{z}{\lambda_1}\right)^{r_1} \left(1 - \frac{z}{\lambda_2}\right)^{r_2} \dots \left(1 - \frac{z}{\lambda_K}\right)^{r_K} = 0$$

Or

$$\prod_{k=1}^{K} (1 - \lambda_k^{-1} z)^{r_k} = 0.$$

It is well-known that the solution of the p-th order homogeneous difference equation is (check any textbook on mathematical economics)

$$\psi_j = \sum_{k=1}^K \sum_{n=0}^{r_k-1} c_{kn} \cdot (j)^n \cdot \lambda_k^{-j},$$

where c_{kn} are constants that can be determined by the initial condition, $(\psi_0, \psi_1, \dots, \psi_{p-1})$. Hence,

$$|\psi_{j}| = \left| \sum_{k=1}^{K} \sum_{n=0}^{r_{k}-1} c_{kn} \cdot (j)^{n} \cdot \lambda_{k}^{-j} \right|$$

$$\leq \sum_{k=1}^{K} \sum_{n=0}^{r_{k}-1} |c_{kn}| \cdot (j)^{n} \cdot |\lambda_{k}^{-1}|^{j}$$

$$\leq c \sum_{k=1}^{K} \sum_{n=0}^{r_{k}-1} (j)^{n} \cdot |\lambda_{k}^{-1}|^{j},$$

where $c = \max\{|c_{kn}|\}.$

Since $|\lambda_k^{-1}| < 1$ by the condition that all roots of $\beta(z) = 0$ lie outside the unit circle, we can apply Lemma 1 with $\xi = |\lambda_k^{-1}|$ and claim that for some $A_k > 0$ and $|\lambda_k^{-1}| < b_k < 1$,

$$(j)^n |\lambda_k^{-1}|^j < A_k(b_k)^j$$
, for all j, k

Set $\tilde{A} = \max\{A_k\}$ and $b = \max\{b_k\}$, so that

$$A_k(b_k)^j \leq \tilde{A}b^j$$
, for all k .

That is,

$$|\psi_j| \le c \sum_{k=1}^K \sum_{n=0}^{r_k-1} (j)^n \cdot |\lambda_k^{-1}|^j < c \sum_{k=1}^K \sum_{n=0}^{r_k-1} A_k(b_k)^j \le c \sum_{k=1}^K \sum_{n=0}^{r_k-1} \tilde{A}b^j = cp\tilde{A}b^j.$$

Define $A = cp\tilde{A}$, we then obtain

$$|\psi_j| < Ab^j$$
, for all j .

Hence,

$$\sum_{j=0}^{\infty} |\psi_j| < \sum_{j=0}^{\infty} Ab^j = \frac{A}{1-b} < \infty,$$

which suggests that $\{\psi_j\}$ is absolutely summable.