RoutePlacer: An End-to-End Routability-Aware Placer with Graph Neural Network

Yunbo Hou, Haoran Ye, Yingxue Zhang, Siyuan Xu, Guojie Song*

National Key Laboratory of General Artificial Intelligence, Peking University.

Huawei Noah's Ark Lab

Deep Learning for EDA

Integrated circuits (ICs) are extensively used in modern electronic products like computers, smart-phones, and cars.

Due to the rapid growth in the scale of circuits, deep learning technologies have been widely exploited in Electronic Design Automation (EDA) to:

- speed up circuit design
- save labor costs

Target of Placement

- Assign cell Position
- Optimizing Objective
 - Wirelength
- Satisfy Constraint
 - No Overlap

A graph placement methodology for fast chip design, A. Mirhoseini et.al, Nature, vol. 594, no. 7862, pp.207–212, 2021

Chip RL Agent Places Macros One at a Time Force-Directed Method Places Standard Cells

To a second s

Chip Design Flow

Auto Placement and Route (APR) Flow

Challenges of Routability-Aware Placement

- Optimize routability in placement
- Model routability in objective function

Challenges of Routability-Aware Placement

- Optimize routability in placement
- Model routability in objective function

Routing is a **NP-hard problem**.

Challenges of Routability-Aware Placement

- Optimize routability in placement
- Model routability in objective function

Existing methods are two-stages:

- Isolated stages
- Limited ability to jointly optimize routability metric

RoutePlacer

We propose an end-to-end routability-driven placement framework

- Forward Propagation: RouteGNN to predict routability
- Backward Propagation: Integrate predicted routability into objective to enable end-to-end optimization

Forward Propagation

RouteGNN takes RouteGraph as input which contains three types of edges:

- Topo-edges: topological connections between cells and nets
- Geom-edges: geometrical adjacencies among grid cells
- Grid-edges: geometrical adjacencies between grid cells and cells

Forward Propagation

Multi-layer message-passing & fusing:

Pass topological/route-geometrical message and fuse them at the end of

each layer

Backward Propagation

Construct differentiable geometrical feature for backward

Current geometrical features(RUDY) are non-differentiable w.r.t. the cell positions

Experiments

Routing results on ISPD2011 benchmark:

• Our method can optimize routability across various circuits.

Table 1: Comparsion results on ISPD2011.

Netlist	#cell	#nets	TOF↓		MOF↓		H-CR↓		V-CR↓		WL(×10 ⁶ um)↓	
			RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace
superblue1	848K	823K	72380	74694	16	20	0.22	0.22	0.19	0.20	12.90	12.91
superblue2	1014K	991K	709172	895270	46	40	0.54	0.51	0.26	0.31	25.19	25.29
superblue4	600K	568K	114232	119732	36	44	0.45	0.53	0.21	0.25	9.18	9.19
superblue5	773K	787K	348976	363260	32	34	0.43	0.43	0.26	0.24	15.31	15.36
superblue10	1129K	1086K	142986	251602	20	20	0.29	0.28	0.15	0.16	24.10	24.33
superblue12	1293K	1293K	2112070	2201282	104	112	1.13	1.22	0.59	0.55	15.47	15.56
superblue15	1124K	1080K	115962	116112	16	16	0.25	0.26	0.13	0.13	14.51	14.52
superblue18	484K	469K	100336	104162	16	16	0.25	0.27	0.19	0.18	8.65	8.67
Average ratio	0)		1.00	1.15	1.00	1.06	1.00	1.04	1.00	1.04	1.00	1.01

Experiments

Routing results on ISPD2011 benchmark with additionally implemented cell inflation methods:

- RoutePlacer can be extended to traditional two-stage pipelines.
- Incorporating RouteGNN into two-stage methods can yield improved routability-aware placers

Table 2: Comparsion results on ISPD2011. RoutePlacer and DREAMPlace additionally implement cell inflation methods.

Netlist	#cell	#nets	TOF↓		MOF↓		H-CR↓		V-CR↓		WL(×10 ⁶ um)↓	
			RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace	RoutePlacer	DREAMPlace
superblue1	848K	823K	4612	5340	36	16	0.14	0.19	0.32	0.19	13.72	12.97
superblue2	1014K	991K	45338	64464	12	16	0.19	0.14	0.14	0.18	26.23	25.40
superblue4	600K	568K	6632	7242	8	8	0.18	0.13	0.13	0.13	9.79	9.35
superblue5	773K	787K	36726	108106	18	26	0.23	0.35	0.19	0.19	17.09	16.47
superblue10	1129K	1086K	44116	45158	12	12	0.20	0.21	0.13	0.13	24.91	24.66
superblue12	1293K	1293K	26296542	28714180	184	456	1.39	1.34	1.12	1.83	39.67	41.89
superblue15	1124K	1080K	15904	41430	8	8	0.18	0.19	0.09	0.09	15.07	15.30
superblue18	484K	469K	91388	22412	18	16	0.27	0.20	0.19	0.16	8.98	9.21
Average ratio			1.00	1.45	1.00	1.20	1.00	1.02	1.00	1.04	1.00	0.99

