Lab Report: Analysis of Various Oils Using Different Analytical Techniques

Introduction

The purpose of this report is to thoroughly analyze the properties of different oil mixtures using a variety of analytical instruments. This analysis was conducted to evaluate the composition, miscibility, and other physical properties of oil combinations, including Almond Oil, Jojoba Oil, and Coconut Oil, and their interaction with substances such as Cetyl Alcohol, Glycerin, and Vitamin E. The oils were tested utilizing advanced laboratory equipment, each method providing unique insights into their characteristics.

Experimental Setup

Each sample was prepared by combining oils and additives in controlled conditions. Each set was subjected to diverse analysis techniques, as shown in the following data.

Equipment and Materials

Sample Composition

Sample	Components
А	Almond Oil, Cetyl Alcohol, Vitamin E
В	Jojoba Oil, Vitamin E
С	Coconut Oil, Glycerin

Analytical Procedures

Observations and Results

Table 1: Liquid Chromatograph LC-400 on Almond Oil Mixture

	Measurement	Value	
	Cetyl Alcohol Concentration	312 ug/mL	
Ī	Additional Note Pl	nenolphthalein test conducted, results irrelevant to this analysi	s

Table 2: X-Ray Diffractometer on Jojoba Oil Blend

Temperature (°C)	Results	
75 Minim	al crystallinity detected. Irrelevant Camden Park incident rep	orted.

Table 3: Centrifuge X100 on Almond Oil Mixture

RPM		Observations	
5000	Homogeneous r	nixture separation at these rotations. Random humming detec	cted at

Table 5: Spectrometer Alpha-300 Data for Jojoba Oil Composition

Wavelength (nm)	Peak Absorbance
950	Detected

Table 7: Titrator T-905 on Almond Oil

Substance	Molarity
Almond Oil	0.008 M

Table 9: Four Ball Test for Jojoba Oil with Cetyl Alcohol

Measurement	Results
Scar Diameter (mm)	0.8

Table 11: HPLC System on Almond Oil Mixture

Detected Components	Concentration (mg/L)
Cetyl Alcohol	45

Table 14: Viscometer VS-300 Results

Mixture	Viscosity (cP)
Coconut Oil, Glycerin	5207.89
Almond Oil, Cetyl Alcohol, Vitamin E	7347.18

Conclusion

The analytical evaluations successfully characterized the different oils and their admixtures. The utilization of precise instrumentation such as Liquid Chromatography and X-Ray Diffraction elucidated the compositional elements and molecular dynamics. The viscosity and friction analyses demonstrated notable variations between oil mixtures, enhancing understanding of potential applications. Irrelevant incidental data was excluded unless directly impacting results.

Additional Observations

Random fluctuations in measurements were occasionally obscured by external interferences unrelated to the study. It is crucial to filter these anomalies during data interpretation.

Further studies are recommended to determine the commercial applicability of these mixtures based on varying environmental conditions not explored in this experiment.