Mạng máy tính

cuu duong than cong . com

Giảng viên: Ngô Hồng Sơn

Bộ môn Truyền thông và Mạng máy tính Khoa CNTT- ĐHBK Hà Nội

Nội dung

2

- Giới thiệu môn học
- Cơ bản về mạng máy tính
- Lược sử mạng máy tính và Internet
- Internet ở Việt Nam

cuu duong than cong . com

Giới thiệu môn học

cuu duong than cong Mục đích Chủ đề và lịch học Đánh giá Liên hệ giáo viên

cuu duong than cong . com

3

Mục đích môn học

4

Source: Hung Q Ngo'course CuuDuongThanCong.com

Mục đích môn học

5

Kết thúc môn học này, các sinh viên ngành CNTT sẽ có khả năng:

- Nêu và giải thích các công nghệ liên quan đến mạng máy tính và Internet cong com
 - Nguyên lý cơ bản của mạng máy tính
 - Họ giao thức TCP/IP
- Giải thích được Internet hoạt động như thế nào
- Sử dụng hiệu quả Internet, vận dụng để có thể cài đặt các công nghệ và dịch vụ mới

Lịch học dự kiến

1	22-Aug-08	Giới thiệu môn học, lịch sử mạng máy tính
2	29-Aug-08	Cơ bản về mạng máy tính
3	5-Sep-08	Tầng mạng, IP
4	12-Sep-08	Bài toán và các giao thức chọn đường đi
5	19-Sep-08	Tầng giao vận, TCP, UDP
6	26-Sep-08	Tầng ứng dụng, Web, Mail, FTP, DNS
7	3-Oct-08	Tầng liên kết dữ liệu

Lịch học dự kiến

8	10-Oct-08	LAN (VLAN, WLAN), WAN ()
9	17-Oct-08	Tầng vật lí, các vấn đề về truyền số liệu
10	24-Oct-08	Advanced topic: Mạng thế hệ mới
11	31-Oct-08	Advanced topic: An toàn an ninh mạng
12	7-Nov-08	Topic presentation
13	14-Nov-08	Topic presentation
14	21-Nov-08	Topic presentation
15	28-Nov-08	Tổng kết và ôn tập

Đánh giá kết quả

Bài tập lớn

40%

- Hai bài
- Thi cuối kỳ

60%

cuu duong than cong . com

cuu duong than cong . com

8

Cách làm việc

- Để học tốt
 - Đọc tài liệu trước khi đến lớp
 - Tham gia tích cực vào bài giảng
 - Thảo luận, trả lời và ĐặT câu hỏi.
 - Tìm kiếm câu trả lời trên Web hoặc thảo luận với bạn bè
- Liên hệ với giáo viên
 - 8:30 10:00 sáng thứ 2 hàng tuần.
 - Bộ môn TTM Khoa CNTT, 329 C1
 - ĐT: 8680896
 - Mail: sonnh@it-hut.edu.vn

9

- [1] Nguyễn Thúc Hải, "Mạng máy tính và các hệ thống mở"
- [2] W. Stallings, "Data and Computer Communications", Mac Millan,
- [3] James F. Kurose, Keith W. Ross, "Computer networks: a top-down approach featuring the Internet", Addison Wesley.

cuu duong than cong . com

Cơ bản về mạng máy tinh

Khái niệm mạng máy tính Kiến trúc mạng Chuyển mạch gói vs. chuyển mạch kênh

cuu duong than cong . com

Mạng máy tính là gì

cuu duong than cong . com

cuu duong than cong . com

Khái niệm

- Tập hợp các máy tính kết nối với nhau dựa trên một kiến trúc nào đó để có thể trao đổi dữ liệu
 - Máy tính: máy trạm, máy chủ, bộ định tuyến
 - Kết nối bằng một phương tiện truyền
 - Theo một kiến trúc mạng
- Các dạng máy tính?

CuuDuongThanCong.com

Ví dụ về mạng máy tính

- Mang Internet
- Mang Ethernet
- Mang LAN không dây: 802:11
- Hệ thống mạng ngân hàng: mạng lưới máy rút tiền
- Hệ thống bán vé tàu qua mạng

• ...

Internet ngày nay

PC

server

wireless laptop

cellular handheld

Hàng triệu thiết bị kết nối:

hosts = end systems

 chạy các ứng dụng mạng

Đường truyền

 Cáp quang, đồng, vệ tinh, ...

Tốc độ truyền =
 băng thông uong than con

 Bộ định tuyến: chuyển tiếp các gói tin (dữ liệu)

16

Xử lý tập trung hay phân tán

- Mạng điện thoại công cộng, tập trung: mạng xử lý mọi thứ
- Máy tính có khả năng lớn hơn
- Hầu hết các chức năng tập trung ở mạng máy tính
- Mạng: Truyền dữ liệu

17

Kiến trúc mạng

- Kiến trúc mạng: Hình trạng (topology) và giao thức (protocol)
- Hình trạng mạng
 - Trục (Bus), Vòng (Ring), Sao (Star)...
 - Thực tế là sự kết hợp của nhiều hình trạng khác nhau

https://fb.com/tailieudientucntt

Giao thức là gì?

Giao thức người-người

Giao thức máy-máy

Giao thức mạng

20

- Protocol: Quy tắc để truyền thông
 - Gửi một thông điệp với yêu cầu hoặc thông tin
 - Nhận một thông điệp với thông tin, sự kiện hoặc hành động
- Định nghĩa khuôn dạng và thứ tự truyền, nhận thông điệp giữa các thực thể trên mạng hoặc các hành động tương ứng khi nhận được thông điệp
- Ví dụ về giao thức mạng: TCP, UDP, IP, HTTP, Telnet, SSH, Ethernet, ...

Mô hình truyền thông

Chuyển mạch gói vs. Chuyển mạch kênh Hướng liên kết vs. Không liên kết

21

cuu duong than cong . com

Chuyển mạch gói vs. Chuyển mạch kênh

- Chuyển mạch kênh
 - Trao đổi dữ liệu sử dụng một kênh riêng.
 - Mỗi liên kết sử dụng một kênh. Tài nguyên cho kênh đó không được sử dụng bởi người khác trừ khi đóng liên kết
- Chuyển mạch gói
 - Dữ liệu được chia thành các gói nhỏ (packets), và được chuyển qua mạng
 - Nhiều liên kết có thể chia sẻ một kênh
 - Internet (với giao thức IP Internet Protocol) sử dụng chuyển mạch gói

Chuyển mạch kênh

Chuyển mạch gói

Chuyển mạch gói vs. Chuyển mạch kênh

- Chuyển mạch kênh
 - Mỗi kênh chỉ dùng cho duy nhất 1 liên kết
 - Bảo đảm băng thông (cần cho các ứng dụng audio/video)
 - Lãng phí nếu liên kết đó không sử dụng hết khả năng của kênh
- Chuyển mạch gói
 - Tăng hiệu quả sử dụng băng thông
 - Tốt cho các dạng dữ liệu đến ngâu nhiên, không định trước
 - Hạn chế: Tắc nghẽn làm trễ và mất gói tin, không bảo đảm băng thông

Truyền thông hướng liên kết vs. không liên kết

- Truyền thông hướng liên kết :
 - Dữ liệu được truyền qua một liên kết đã được thiết lập
 - Ba giai đoạn: Thiết lập liên kết, truyền dữ liệu, Hủy bỏ liên kết
 - Tin cậy
- Truyền thông không liên kết
 - Không thiết lập liên kết, chỉ có giai đoạn truyền dữ liệu
 - Không tin cậy "Best effort"

Một số tham số trong mạng

cuu duong than cong . com

cuu duong than cong . com

28

- Băng thông Bandwidth
- Thông lượng Throughput
- Độ trễ- Delay duong than cong . com
- Độ mất gói tin Loss

cuu duong than cong . com

Băng thông

29

- Khái niệm
- Đơn vị
 - bps, kbps, Mbps, Gbps, Tbps
- Uplink/downlink

cuu duong than cong . com

Vì sao có mất và trễ tin?

Các gói tin phải xếp hàng trong bộ định tuyến!

- Tốc độ đến của các gói tin vượt quá khả năng đường ra
- Các gói tin phải xếp hàng chờ đến lượt

30

4 nguyên nhân gây trễ tin

- 1. Xử lý tại nút mạng:
 2. Xếp hàng
 - Kiểm soát lỗi
 - Tìm đường ra

- - Thời gian chờ đi ra
 - Phụ thuộc độ tắc nghên của router

cuu duong than cong . com

4 nguyên nhân gây trễ tin

- 3. Trễ truyền tin:
- R= băng thông (bps)
- L= độ dài packet (bits)
 s = tốc độ tín hiệu
- Trễ truyền tin = L/R

4. Trễ lan truyền:

- d = độ dài đường truyền
- Trễ lan truyền = d/s

Tổng thời gian trễ

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

- d_{proc} = processing delay
 - Vài microsecs hay ít hơn han cong
- d_{queue} = queuing delay
 - Phụ thuộc vào độ tắc nghẽn
- d_{trans} = transmission delay
- d_{prop} = propagation delay
 - vài microsecs tới hàng trăm msecs

Trễ hàng đợi

- R= băng thông (bps)
- L= độ dài gói tin (bits)
- a= tốc độ đến của gói
 tin

Lưu lượng đến = La/R

- La/R ~ 0: trễ hàng đợi nhỏ
- La/R -> 1: trễ lớn dần lên
- La/R > 1: quá khả năng, trễ vô cùng

Độ trễ và đường đi thực tế trên Internet

- Làm thế nào để biết đường đi và độ trễ?
- Traceroute program: cung cấp độ trễ và đường đi end-to-end.
- For all *i*:
 - Gửi 3 gói tin tới router i trên đường tới đích
 - router i trả lại một gói tin cho người gửi
 - Bên gửi đo khoảng thời gian giữa gửi và nhận

traceroute: gaia.cs.umass.edu to www.eurecom.fr

```
Three delay measurements from
                                      gaia.cs.umass.edu to cs-gw.cs.umass.edu
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
                                                                trans-oceanic
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
                                                                link
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
   renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
                    means no response (probe lost, router not replying)
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Mất tin (loss)

- Hàng đợi (vùng đệm) của mỗi đường truyền có kích thước giới hạn
- Gói tin nào tới hàng đợi đầy sẽ bị mất
- Gói tin bị mất có thể được truyền lại hoặc không.

Thông lượng

- Thông lượng: tốc độ (đơn vị bits/sec) mà tại đó các bits được truyền giữa bên gửi/bên nhận
 - Tức thời: tốc độ tại một thời điểm
 - Trung bình: trong một khoảng thời gian

Bên gửi: gửi dòng bits lên trên kênh Kênh có khả năng R_s bits/sec)

Kênh có khả năng R_c bits/sec)

Thông lượng

R_s < R_c Thông lượng trung bình?

cuu duong than cong . com

• $R_s > R_c$ Thông lượng trung bình?

Nút thắt cổ chai

Đường truyền mà tại đó giới hạn toàn bộ băng thông của tuyến

Thông lượng: Ví dụ trên Internet

 Thông lượng của mỗi kết nối min(R_c,R_s,R/10)

 Thực tế: R_c hoặc R_s thường xuyên bị thắt cổ "chai" duong 1

10 liên kết chia sẻ 1 đường R bits/sec

40

Lược sử mạng & Internet

cuu duong than cong . com

cuu duong than cong . com

Thời kỳ đầu

1961-1972: Các nguyên lý mạng chuyển mạch gói

- 1960s: Mạng điện thoại & sự phát triển của máy tính
- 1961: Kleinrock Lý thuyết hàng đợi, hiệu quả của chuyển mạch gói
- 1964: Baran mang chuyên mach gói
- 1967: ARPAnet được phê duyệt (Advanced Research Projects Agency)

THE ARPA NETWORK

CuuDuongThanCong.com

Nguồn gốc Internet

- Bắt đầu từ một thí nghiệm của dự án của ARPA
- Một liên kết giữa hai nút mạng cuu duong th (IMP tại UCLA và IMP tại SRI).

ARPA: Advanced Research Project Agency UCLA: University California Los Angeles

SRI: Stanford Research Institute

Interface Message Processor

HODE

Drawing of September 1969 (Courtesy of Alex McKenzie)

3 tháng sau, 12/1969

Một mạng hoàn chỉnh với 4 nút,

56kbps

cuu duong than cong . com THE

THE ARPA NETWORK

DEC 1969

UCSB:University of California, Santa Barbara UTAH:University of Utah

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex, McKenzie) dientucnt

source: http://www.cybergeography.org/atlas/historical.html

ARPANET thời kỳ đầu, 1971

Source: MAP 4 September 1971

http://www.cybergeography.org/atlas/historical.html

Mạng phát triển với tốc độ thêm mỗi nút một tháng

Thập niên 70: Kết nối liên mạng, kiến trúc mạng mới và các mạng riêng

cuu duong than cong . com

cuu duong than cong . com

Sự mở rộng của ARPANET, 1974

Abb. 4 ARPA NETwork, topologische Karte. Stand Juni 1974.

Thập niên 70

48

- Từ đầu 1970 xuất hiện các mạng riêng:
 - ALOHAnet tại Hawaii
 - DECnet, IBM SNA, XNA
- 1974: Cerf & Kahn nguyên lý kết nối các hệ thống mở (Turing Awards)
- 1976: Ethernet, Xerox PARC
- Cuối 1970: ATM

Thập niên 80: Các giao thức mới, kết nối thêm mạng mới

cuu duong than cong . com

cuu duong than cong . com

1981: Xây dựng mạng NSFNET

NSF: National Science Foundation

Phục vụ cho nghiên cứu khoa học, do sự quá tải của ARPANET

1986: Nối kết USENET& NSFNET

Thêm nhiều mạng và giao thức mới

- Thêm nhiều mạng mới nối vào: MFENET, HEPNET (Dept. Energy), SPAN (NASA), BITnet, CSnet, NSFnet, Minitel ...
- TCP/IP được chuẩn hóa và phổ biến vào 1980
- Berkeley tích hợp TCP/IP vào BSD Unix
- Dịch vụ: FTP, Mail, DNS

Thập niên 90: Web và thương mại hóa Internet

cuu duong than cong . com

cuu duong than cong . com

Thập niên 90

- Đầu 90: ARPAnet chỉ là một phần của Internet
- Đầu 90: Web
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, Netscape
- Cuối 90: Thương mại hóa Internet

Cuối 1990's - 2000's:

- Nhiều ứng dụng mới: chat, chia sẻ file P2P...
- E-commerce, Yahoo, Amazon, Google...
 - > 50 triệu máy trạm, > 100 triệu NSD
 - Vấn đề an toàn an ninh than cthông tin!
 - Internet dành cho tất cả mọi người
 - Tất cả các dịch vụ phải quan tâm tới vấn đề này

Lược sử Internet Việt Nam

- 1991: Nỗ lực kết nối Internet không thành.
 (Vì một lý do nào đó)
- 1996: Giải quyết các cản trở, chuấn bị hạ tầng Internet
 - ISP: VNPT cuu duong than cong . com
 - 64kbps, 1 đường kết nối quốc tế, một số NSD
- 1997: Việt Nam chính thức kết nối Internet
 - 1 IXP: VNPT
 - 4 ISP: VNPT, Netnam (IOT), FPT, SPT
- 2007: "Mười năm Internet Việt Nam"
 - 20 ISPs, 4 IXPs
 - 19 triệu NSD, 22.04% dân số

55

Phát triển Internet ở VN

Ước tính số người dùng bằng hai lần số thuê bao

56

Source: Vietnam Internet Case Study, http://www.itu.int/asean2001/reports/material/VNM%20CS.pdf

Thống kê gần đây

Băng thông kết nối đi quốc tế (Mbps), Q.3 2007

Tổng cộng: 12115.0 Mbps

Internet những năm 2000s: Tương lai là của các bạn

- Ứng dụng và công nghệ mới
 - Youtube, Skype, Bittorrent, Video & VoIP...
 - Mạng không dây, mạng quang học, thông tin di động
 -
- Internet sẽ tiếp tục cải tiến dịch vụ và biến đổi không ngừng duong than cong . com
 - Mang lại sự thuận tiện cho mọi người
 - Các bạn (sinh viên CNTT) sẽ làm được điều đó!

59

Tóm tắt

60

- Giới thiệu môn học
- Lược sử Internet
- Khái niệm mạng máy tính
- Kiến trúc mạng u duong than cong . com
 - Topology
 - Protocol
- Mô hình truyền thông
 - Chuyển mạch kênh vs. chuyển mạch gói
 - Không liên kết vs. Hướng liên kết
- Các tham số cơ bản

Tuần tới...

61

- Kiến trúc phân tầng
- Mô hình tham chiếu OSI
- Địa chỉ IP, MAC, số hiệu cổng
- DNS và dịch vụ tên miền

cuu duong than cong . com