# Enhancing Inductive Programming by Function Ranking

A Machine Learning Application for Data Wrangling Automation

Lidia Contreras-Ochando, Cèsar Ferri, José Hernández-Orallo, Susumu Katayama, Fernando Martínez-Plumed, María José Ramírez-Quintana



# Introduction

Ways Artificial Intelligence systems learn (by data-intensive they are):

- Data-driven bottom-up → Appropriate from large volumes of data.:
- Theory-driven top-down → Better for learning from a few examples.

#### THEORY-DRIVEN TOP-DOWN SYSTEMS

- Specially useful if information about the domain can be incorporated as background knowledge (BK).
- Scalability issues because of a combinatorial explosion of the hypothesis space.
- Inductive Programming (IP) [1] is a clear example of this family of techniques.

## **EXAMPLE**

| Id | Input      | Output |  |  |
|----|------------|--------|--|--|
| 1  | 25-03-74   | 25     |  |  |
| 2  | 03/29/86   | 29     |  |  |
| 3  | 1998/12/25 | 25     |  |  |
| 4  | •••        |        |  |  |

Table 1. Example of a dataset with an input column of dates in very different formats and the output where the day has been extracted.

We consider IP for the automation of **data wrangling** problems (Data preparation tasks for transforming their raw format to a structured and valuable form), as the example in Table 1. This problem can be solved by computers if they recognise (1) they are handling dates and (2) have a sufficiently rich set of functions to deal with dates. This size of the BK in terms of number of functions is known as **breadth** (b), the minimum number of functions that have to be combined in the solution is known as the **depth** (d). Hardness depends on d and b, in a way that is usually exponential,  $O(b^{\Lambda}d)$  [2].

How can we keep both, and especially b, at very low levels?

# Goal

(Semi) Automation of data wrangling tasks, controlling the depth and breadth of the inductive inference by choosing a domainspecific background knowledge (DSBK) for the problem and selecting the right primitives from it in theory-driven learning.

| Id    | Station | Date                         | Output  |            |
|-------|---------|------------------------------|---------|------------|
| 1     | 001     | 6-10-16 20:35                | 2016    | IP System  |
| •••   |         |                              |         |            |
| 69851 | 001     | 06/10/2016 00:25:45          | 2016    |            |
| 4     | 001     | 06/10/2016 00:18:36          | 2016    | Domain?    |
|       |         |                              | Functio | ns?        |
| tran  |         | oLongYear<br>getDate Date))) |         | Dates (BK) |

Figure 1. Overall idea for automating data wrangling with an IP system. The first row (Data and Output) is used as a input predicate for the IP system. The functions returned using the correct domain are applied to the rest of the instances (Date) to fill the rest of the outputs.

# **Experiments**

#### **DOMAINS**

- **Dates** (222 functions)
- **Emails** (207 functions)
- Names (215 functions)
- Phones (227 functions)Times (239 functions)
- Units (213 functions)

#### **DATA**

### Data (datasets of data wrangling problems):

- Training: 124 datasets.
- Test: 33 datasets.

**Metafeatures:** 54 descriptive characteristics of the problems.

IP Learning System: MagicHaskeller [3]

#### output 10 12 69 10-12-69 04/05/99 04-05-99 dates-7 31/03/75 31-03-75 fourthcoffee.com Nancy.FreeHafer@fourthcoffee.com northwindtraders.com Andrew.Cenici@northwindtraders.com Laura.Giussani@adventure-works.com adventure-works.com Dr. B. Schdur Prof. R. G. H Laabertink Prof. names-5 PhD H. Huifen, PhD 3237087700 323-708-7700 163-587-9240 1635879240 phones-1 1854379620 185-437-9620 1:34:00 PM CST 01:55 times-16 08:40 UTC 56.77cl Volume units-5 84Kg Mass 87 s Time

Table 2. Some examples from the 33 datasets used for testing. The first row of each dataset Is the example given to the system to learn.

## **RESULTS**

| Pred \<br>Actual | dates | emails | names | phones | times | units | text |
|------------------|-------|--------|-------|--------|-------|-------|------|
| dates            | 321   | 0      | 0     | 0      | 0     | 2     | 7    |
| emails           | 0     | 155    | 1     | 0      | 0     | 0     | 0    |
| names            | 0     | 1      | 234   | 0      | 0     | 0     | 0    |
| phones           | 2     | 0      | 0     | 309    | 0     | 0     | 0    |
| times            | 45    | 0      | 0     | 15     | 432   | 30    | 30   |
| units            | 0     | 0      | 0     | 0      | 0     | 118   | 2    |
| text             | 28    | 24     | 35    | 0      | 0     | 30    | 393  |
| Error            | 0.19  | 0.14   | 0.09  | 0.13   | 0.05  | 0     | 0.34 |

Table 3. Confusion matrix of the domain classifier model with 10-fold cross-validation. "text" contains datasets of basic string manipulation problems (as baseline problems).

## **METHODOLOGY**

#### Strategies:

- 1. Default (baseline): Using the default BK.
- 2. Global (baseline): BK composed by all the domains.
- 3. User Domain (reference): Using the correct DSBK.
- 4. Ranking (4): Ranking all the functions of the global BK.
- Inferred Domain (3) + Ranking (4): Ranking functions of the DSBK predicted by the domain classifier.

#### (1) Take the first example from a dataset

| Id | Input                   | Output           |  |
|----|-------------------------|------------------|--|
| 1  | Damian Gobbee           | D.Gobbee -       |  |
| 2  | Damancio Hivser-Kleiner | D.Hivser-Kleiner |  |
| 3  | Prof. Edward Davis      | E.Davis          |  |
| 4  | <b></b>                 |                  |  |

#### (3) Detect the domain



# (4) Predict &Score functions

(2) Extract its metafeatures

| reduceName | educeSpaces<br>educeSpaces<br>getTitle | Dot         |   |
|------------|----------------------------------------|-------------|---|
| reduc      | reduces<br>getTitle                    | getAfterDot | : |
| 0,99 0,    | ,95 0,03                               | 36 0,024    | ļ |

| domain | strategy    | avg_time | avg_acc |  |
|--------|-------------|----------|---------|--|
|        | default     | 77.85    | 0.2     |  |
|        | global      | 63.71    | 0.56    |  |
| dates  | user-domain | 34.89    | 0.56    |  |
|        | ranking     | 1.84     | 1       |  |
|        | infer+rank  | 1.78     | 1       |  |
|        | default     | 88.42    | 0.16    |  |
|        | global      | 68.6     | 0       |  |
| emails | user-domain | 87,81    | 0.56    |  |
|        | ranking     | 35,55    | 0.74    |  |
|        | infer+rank  | 90,21    | 0.8     |  |
|        | default     | 63.12    | 0.12    |  |
|        | global      | 2.27     | 0.92    |  |
| names  | user-domain | 1.84     | 1       |  |
|        | ranking     | 1.59     | 1       |  |
|        | infer+rank  | 1.52     | 1       |  |
|        | default     | 61.12    | 0       |  |
|        | global      | 79.46    | 0.32    |  |
| phones | user-domain | 39.06    | 0.4     |  |
|        | ranking     | 2.74     | 0.8     |  |
|        | infer+rank  | 2.26     | 1       |  |
|        | default     | 36.46    | 0.2     |  |
|        | global      | 85.78    | 0.4     |  |
| times  | user-domain | 50.53    | 0.4     |  |
|        | ranking     | 3.96     | 0.8     |  |
|        | infer+rank  | 2.56     | 1       |  |
|        | default     | 67.47    | 0.33    |  |
|        | global      | 61.36    | 0.66    |  |
| units  | user-domain | 8.16     | 1       |  |
|        | ranking     | 3.43     | 1       |  |
|        | infer+rank  | 2.75     | 1       |  |

Table 4. Average results for the 33 testing datasets by domain using the first example of each dataset as input for the system. "avg\_time" is the average induction time (in seconds). "avg\_acc" is the average accuracy transforming the rest of instances of the datsets. Best results in bold. Note:A penalisation (in seconds) is applied to the emails domain since the first predicted domain is incorrect in three cases.

# Conclusions

We have a system that:

- (1) uses off-the-self IP and ML techniques
- (2) has short response time
- (3) it can work on any device and architecture (as API)
- (4) is fully automated
- (5) covers a wide range of manipulation problems
- (6) is replicable to other domains and systems.

All the datasets are published:

http://users.dsic.upv.es/~flip/datawrangling/

#### **FUTURE WORK**

- Study the strategies over other systems.
- Consider the relationships between functions.
- Exploring the use of a hierarchical classifier.

# References

- [1] Gulwani, S. et al. Inductive programming meets the real world. *Communications of the ACM 2015*.
- [2] Henderson, R. Incremental learning in inductive programming. Workshop on Approaches and Applications of Inductive Programming, 2009.
- [3] Katayama, S. An analytical inductive functional programming system that avoids unintended programs. Whorkshop on Partial evaluation and program manipulation, 2012..

# Acknowledgements

This work has been partially supported by the EU (FEDER) and Spanish MINECO grant TIN2015-69175-C4-1-R, by Generalitat Valenciana PROMETEOII/2015/013, and by INCIBE (Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad). L. Contreras-Ochando is supported by FPU-MECD grant REF FPU15/03219.









**DOWNLOAD THE POSTER** 

