From textbook Semiconductor Physics and Devices: Basic Principles 4th edition. P716-718 (Appendix B)

Table B.2 | Conversion factors

	Prefixes		
$1 \text{ Å (angstrom)} = 10^{-8} \text{ cm} = 10^{-10} \text{ m}$	10^{-15}	femto-	= f
$1 \mu\text{m} (\text{micrometer}) = 10^{-4} \text{cm}$	10^{-12}	pico-	= p
$1 \text{ mil} = 10^{-3} \text{ in.} = 25.4 \ \mu\text{m}$	10^{-9}	nano-	= n
2.54 cm = 1 in.	10^{-6}	micro-	$=\mu$
$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$	10^{-3}	milli-	= m
$1 \mathrm{J} = 10^7 \mathrm{erg}$	10^{+3}	kilo-	= k
	10^{+6}	mega-	= M
	10^{+9}	giga-	= G
	10^{+12}	tera	= T

Table B.3 | Physical constants

$N_A = 6.02 \times 10^{+23}$ atoms per gram
molecular weight
$k = 1.38 \times 10^{-23} \text{J/K}$
$= 8.62 \times 10^{-5} \mathrm{eV/K}$
$e = 1.60 \times 10^{-19} \mathrm{C}$
$m_0 = 9.11 \times 10^{-31} \mathrm{kg}$
$\mu_0=4\pi imes 10^{-7}$ H/m
$\epsilon_0 = 8.85 \times 10^{-14} \mathrm{F/cm}$
$= 8.85 \times 10^{-12} \mathrm{F/m}$
$h = 6.625 \times 10^{-34} \text{J-s}$
$=4.135 \times 10^{-15} \mathrm{eV}$ -s
$\frac{h}{2\pi} = \hbar = 1.054 \times 10^{-34} \text{J-s}$
$M = 1.67 \times 10^{-27} \mathrm{kg}$
$c = 2.998 \times 10^{10} \mathrm{cm/s}$
l-T
$V_t = \frac{kT}{e} = 0.0259 \text{ V}$
kT = 0.0259 eV

Table B.4 | Silicon, gallium arsenide, and germanium properties (T = 300 K)

Property	Si	GaAs	Ge
Atoms (cm ⁻³)	5.0×10^{22}	4.42×10^{22}	4.42×10^{22}
Atomic weight	28.09	144.63	72.60
Crystal structure	Diamond	Zincblende	Diamond
Density (g/cm ³)	2.33	5.32	5.33
Lattice constant (Å)	5.43	5.65	5.65
Melting point (°C)	1415	1238	937
Dielectric constant	11.7	13.1	16.0
Bandgap energy (eV)	1.12	1.42	0.66
Electron affinity, χ (V)	4.01	4.07	4.13
Effective density of states in conduction band, N_c (cm ⁻³)	2.8×10^{19}	4.7×10^{17}	1.04×10^{19}
Effective density of states in valence band, N_{ν} (cm ⁻³)	1.04×10^{19}	7.0×10^{18}	6.0×10^{18}
Intrinsic carrier concentration (cm ⁻³)	1.5×10^{10}	1.8×10^{6}	2.4×10^{13}
Mobility (cm²/V-s)			
Electron, μ_n	1350	8500	3900
Hole, μ_p	480	400	1900
Effective mass $\left(\frac{m^*}{m_0}\right)$			
Electrons	$m_I^* = 0.98$	0.067	1.64
	$m_t^* = 0.19$		0.082
Holes	$m_{th}^* = 0.16$	0.082	0.044
	$m_{hh}^* = 0.49$	0.45	0.28
Density of states effective mass			
Electrons $\frac{\left(m_{dn}^*\right)}{m_o}$	1.08	0.067	0.55
$ ext{Holes}\left(rac{m_{dp}^*}{m_o} ight)$	0.56	0.48	0.37
Conductivity effective mass			
Electrons $\left(\frac{m_{co}^*}{m_o}\right)$	0.26	0.067	0.12
$ ext{Holes}\left(rac{m_{cp}^*}{m_o} ight)$	0.37	0.34	0.21

Table B.5 | Other semiconductor parameters

Material	$E_g(\mathrm{eV})$	a (Å)	ϵ_r	χ	\overline{n}
Aluminum arsenide	2.16	5.66	12.0	3.5	2.97
Gallium phosphide	2.26	5.45	10	4.3	3.37
Aluminum phosphide	2.43	5.46	9.8		3.0
Indium phosphide	1.35	5.87	12.1	4.35	3.37

Table B.6 | Properties of SiO_2 and Si_3N_4 (T = 300 K)

1				
Property	SiO ₂	Si_3N_4		
Crystal structure	[Amorphous for most integrated circuit applications]			
Atomic or molecular	2.2×10^{22}	1.48×10^{22}		
density (cm ⁻³)				
Density (g/cm ³)	2.2	3.4		
Energy gap	$\approx 9 \text{ eV}$	4.7 eV		
Dielectric constant	3.9	7.5		
Melting point (°C)	≈1700	≈1900		