

Algèbre et Arithmétique 3

Examen terminal, session 1, 10 Mai 2016

Documents et calculatrices non autorisés

Exercice 1

Soit σ la permutation de S_{12} définie par

- 1 Donner la décomposition de σ en produit de cycles à supports disjoints.
- 2 Calculez la signature de σ , et son ordre.
- 3 Calculez σ^{2016} .

Exercice 2

Montrez que $(\mathbf{Z}/5\mathbf{Z})[X]/(X^2+2)$ est un corps fini, dont on donnera le nombre d'éléments.

Exercice 3

Montrez que l'idéal I de l'anneau $\mathbf{Z}[X]$,

$$I = 2\mathbf{Z}[X] + X\mathbf{Z}[X],$$

n'est pas un idéal principal.

Exercice 4

- 1 Calculez explicitement les cardinaux des groupes multiplicatifs $(\mathbf{Z}/5\mathbf{Z})^{\times}$, $(\mathbf{Z}/25\mathbf{Z})^{\times}$, et $(\mathbf{Z}/36\mathbf{Z})^{\times}$.
- **2** Donnez l'ordre de la classe de 2 dans le groupe multiplicatif $(\mathbf{Z}/5\mathbf{Z})^{\times}$, ainsi que l'ordre de la classe de 6 dans $(\mathbf{Z}/25\mathbf{Z})^{\times}$.
- 3 Montrez qu'il existe un morphisme d'anneaux Ψ de ${\bf Z}/625{\bf Z}$ dans ${\bf Z}/25{\bf Z}$.
- 4 Montrez que

$$\Psi\left((\mathbf{Z}/625\mathbf{Z})^{\times} \right) \subset (\mathbf{Z}/25\mathbf{Z})^{\times}.$$

5 Montrez (sans calculs trop compliqués !) qu'il existe un élément d'ordre 5 dans $(\mathbf{Z}/625\mathbf{Z})^{\times}$. On ne demande pas l'élément explicitement.

Exercice 5

On considère l'ensemble

$$\mathbf{Z}[i\sqrt{2}] = \{a + bi\sqrt{2} : (a, b) \in \mathbf{Z}^2\}.$$

- 1 Montrez que $\mathbf{Z}[i\sqrt{2}]$ est un anneau intègre.
- 2 Montrez que la fonction module au carré,

$$N: z \in \mathbf{Z}[i\sqrt{2}] \mapsto N(z) = z\bar{z},$$

est à valeur dans ${\bf N}.$

- Déterminez le groupe des inversibles $\mathbf{Z}[i\sqrt{2}]^{\times}$. Montrez que pour tout nombre complexe z, il existe $z' \in \mathbf{Z}[i\sqrt{2}]$ avec
- Montrez que $\mathbf{Z}[i\sqrt{2}]$ est euclidien pour le stathme $N(z)=z\bar{z}$. Est-il principal?
- Montrez que $i\sqrt{2}$ et $1+i\sqrt{2}$ sont irréductibles dans $\mathbf{Z}[i\sqrt{2}]$. Les éléments 2 et 3 sont-ils irréductibles dans $\mathbf{Z}[i\sqrt{2}]$?
- Montrez qu'aucune des deux équations d'inconnues (x, y)

$$x^2 + 2y^2 = 5$$
,

$$x^2 + 2y^2 = 7$$
,

n'ont de solutions dans $\mathbb{Z}/8\mathbb{Z}$.

- En déduire qu'un nombre premier $p \in \mathbf{Z}$ congru à 5 ou 7 modulo 8 est encore irréductible dans $\mathbf{Z}[i\sqrt{2}]$.
- Donnez 5 exemples d'éléments irréductibles (non-associés) de l'anneau $\mathbf{Z}[i\sqrt{2}]$.
- 10 Décomposez 30 en facteurs premiers dans l'anneau $\mathbf{Z}[i\sqrt{2}]$.