Team Performance Pressure @ SemEval Task 8

Evaluation of Multilingual News Article Similarity leveraging Pre-trained Models

Adarsh Kumar, Animesh Jain, Abhinav Bohra, Ishan Sharma, Tanuj Saraf

IIT Kharagpur

Introduction and Task Overview

Dataset Distribution

Language	Number of Pairs
En - En	1800
De - De	857
De - En	577
Es - Es	570
Tr - Tr	465
PI - PI	349
Ar - Ar	274
Fr - Fr	72

Structure of the Task

Dataset

Language Pair	Train Set	Val Set	Test Set
Monolingual	3603	784	3462
Cross-lingual	515	62	1440
Unseen pairs	NA	346	3131

Counts of different types of language pairs

Baseline

Baseline approach for the Given Dataset

Baseline Approach

- Finetune Multilingual Bert Model followed by a regressor layer, using MSE Loss
- Contextual Embeddings from [CLS] token output for each sentence in pair concatenated and fed into Regressor
- Regressor Layer: (Dropout + Linear Layer)

Methodology

A discussion on Our Final Approach

Our Approach

- Sentence Transformer Based Approach (Bert + Mean Pooling Layer)
- Cosine Similarity (Encode_Article+Title_1, Encode_Article+Title_2)
- > Renormalisation of Cosine Similarity Score to [4-1], least to most
- Finetuning Encodings with Cosine Similarity Loss

$$MSE(y_{true_n m}, y_{pred}) = \sqrt{\left(\frac{1}{n}\right) \sum_{i=1}^{n} (y_{true_n mi} - y_{pred_i})^2}$$

where y_{true_nm} are the normalised gold-standard and y_{pred} being the predicted scores for similarity.

Model Used for Final results: paraphrase-multilingual-mpnet-base-v2

(These input can either be in their original form or translated form.)

Performance of Regression Model Experiments

Regression			
Approach Category	Approach	Model	Pearson Correlation
Daniel Co.		mBERT	0.3089
Baseline	_	XLM-R	0.2852
Baseline	+ Validation	mBERT	0.3164
	+ validation	XLM-R	0.3246
Baseline + Validation	. T I .:	mBERT	0.3371
	+ Translation	XLM-R	0.3045
B	. Tal	mBERT	0.3187
Baseline + Validation	+ Title	XLM-R	0.3345
Baseline + Losses + Validation	.C. F. LUI. I	mBERT	0.3346
	+ CosineEmbeddingLoss	XLM-R	0.3336
Baseline + Losses + Validation	. C . C . J MCC.	mBERT	0.3621
	+ Cosine Similarity + MSE Loss	XLM-R	0.3454
Sentence Transformer	sformer + Translation + Title + MSE Loss		0.2864

Table 2: Results with Regressor layer (Dropout layer followed by a feed forward layer) for final prediction as described in Section 4.3. Note that here we feeding the concatenated contexualized embeddings from Model to the regressor layer

Performance of Similarity Based Models (Ablation)

Similarity			
Approach	Model	Pearson Correlation	
ST Multilingual CS	S-BERT	0.5866	
ST Translated CS	S-BERT	0.6058	
ST Multilingual + "Title" CS	S-BERT	0.6778	
ST Translated + "Title" CS	S-BERT	0.7086	
**ST Multilingual + "Title" + CosSimLoss Finetuned CS	S-BERT	0.7518	
**ST Translated + "Title" + CosSimLoss Finetuned CS	S-BERT	0.7492	
ST(mBERT) + "Title" + Translation + CosSimLoss Finetuned CS	mBERT	0.6874	
ST(XLM) +"Title" + Translation + CosSimLoss Finetuned CS	XLM-R	0.6357	

Table 3: Results of the Consine Similarity based approach, where final score was evaluated using cosine similarity between embeddings and then scaling to 1 to 4. ** represents the models we used for our final submission on codalab as described in Section 3. Table also represent the ablation study for various elements included in our final approach along with our final approach experimented on mBERT in the ST framework. Note: CS: Cosine Similarity

17	Anonymous	3	01/30/22	Andi	0.726 (17)	View
18	Anonymous	4	01/27/22	BUT	0.726 (18)	View
19	Anonymous	3	04/02/22		0.721 (19)	View
20	Anonymous	3	02/01/22	TCU	0.715 (20)	View
24	A	7	04/20/22		0.700 (24)	A P. w

CODALAB Submission Results: 19th Rank on Leader Board

Result Analysis

Error Analysis

- Poor Regression Scores
 - Possible Explanation: Limited Data to train Regressor Layer alongside the
 - Similar results seen with changing regressor layer to ML based layers like SVR, RFR etc.
- Not much improvement with Multitasking based approach
 - Possible Explanation: Not much extra knowledge obtained with shared Parameter training, also less experimented upon task

Pearson Score Distribution

Language Pair	Pearson Correlation	
Monolingual	0.7386	
Cross-lingual	0.7739	
Unseen pairs	0.7459	

Path Not Taken

Path not taken

• Dropped Approaches:

- Multi Task based approach
- Summarisation
- Concatenation with non finetuned model embeddings
- Didn't work out as expected

Conclusion

Conclusion

- We successfully leveraged knowledge of Sentence based transformers for Similarity prediction
- Addition of Cosine Similarity Loss and Metadata "Title" improved performance
- Similarity based approach outperformed Regressor based
- Stand 19th on Codalab leaderboard for SemEval Task 8
- Experiments also include tasks that didn't work out positively in our case

What Next??

- Adversarial Finetuning
- Data Augmentation
- Hierarchical Modelling with LSTMs
- Extensive Experiments on Ensembling

Thanks!

It's been a great learning experience!

Any questions?

Feel free to ask....