Problemas probabilidad y variables aleatorias. Laboratorio software y problemas 2

Contents

1	Pro	oblemas de probabilidad y variables aleatorias lab2	1
	1.1	Problema	1
	1.2	Problema	1
	1.3	Problema	2
	1.4	Problema	2
	1.5	Problema	2
	1.6	Problema	3
	1.7	Problema	3
	1.8	Problema	3
	1.9	Problema Ley de Bendford	3
	1.10	Problema Distribución de Pareto (Power law)	3
	1.11	Problema Distribución de Gumbel (teoría del valor extremo)	4

1 Problemas de probabilidad y variables aleatorias lab2

1.1 Problema

Un estuche contiene 2 lápices azules y 3 rojos. Se extraen dos lápices del estuche.

- a. Escribe los resultados elementales que definen los sucesos. M= "Solo ha salido un lápiz rojo" y N= "El segundo lápiz extraído es azul". (0.5 puntos)
- b. Halla las probabilidades de M, N y $M \cap N$. (1 punto.)
- c. ¿Son los sucesos M y N independientes? (1 punto.)

1.2 Problema

En promedio, 3 servidores de cada 20 se bloquea durante una tormenta eléctrica. La compañía Amazonas tiene numerosos servidores repartidos en varios Data Centers. Responder, modelando con una distribución notable las siguientes cuestiones:

a. ¿Calcula la probabilidad de que menos de 5 servidores se bloqueen en un Data Center con 20 servidores? (0.5 puntos.)

- b. ¿Calcula la probabilidad de que exactamente 5 servidores se hayan bloqueado en un Data Center de 20 servidores? (1 punto.)
- c. En un Data Center de 60 servidores ¿Cuál es la probabilidad de más de 10 (> 10) servidores se bloqueen? Hacerlo utilizando aproximación por una distribución de Poisson. (1 punto.)

1.3 Problema

El profesor de estadística repite la palabra muestra a un ritmo de 20 veces por cada 60 minutos. Sea X_t la variable que cuenta el número de veces que el profesor ha dicho muestra en t minutos.

- a. Modelizad X_t mediante una distribución Poisson. De X_t dad su parámetro, su valor esperado y varianza. (0.5 puntos.)
- b. ¿Cuál es la probabilidad de que diga muestra más de 10 veces en media hora? (1 punto.)
- c. Sea T= el tiempo transcurrido entre la última vez que el profesor dice muestra hasta la siguiente vez ¿Cuál es la probabilidad de que T>15? (1 punto)

1.4 Problema

Consideremos la va. X con densidad, donde α es un parámetro real.

$$f(x) = \begin{cases} \alpha \cdot e^{1-x} & \text{si } -1 < x < 1 \\ 0 & \text{en otro caso} \end{cases}$$

- 1. Calculad α para que f sea densidad. (1 punto.)
- 2. Calculad la función de distribución de X. (1 punto.)
- 3. Calculad $P(|X| > \frac{1}{2})$. (0.5 puntos.)
- 4. Calculad E(X). (Punto extra de esta entrega. Indicación: hay que integrar por partes)

1.5 Problema

(1 punto.) Lanzamos un dado de 12 caras numeradas con enteros del 1 al 12 sobre una mesa plana. Observamos el número superior del dado. Calcular la probabilidad de que salga mayor que 8 si el resultado es par.

1.6 Problema

Lanzamos una moneda con probabilidad de cara $p = \frac{1}{2}$ hasta que sale cara dos veces o bien la hemos lanzamos 5 veces, lo primero que ocurra.

Denotemos por X la variable aleatoria que determina el número de tiradas de la moneda.

Se pide:

- 1. Describir adecuadamente el espacio muestral de la variable X (0.5 punto.)
- 2. Calcular su función de densidad.(1 punto.)
- 3. Calcular E(X).(1 punto.)

1.7 Problema

Sea X una variable con distribución uniforme en el intervalo (1,10). Consideremos la variable $Y = \log_{10}(X)$. Se pide

- 1. Calcular la función de distribución de Y (1 punto.)
- 2. Calcular la función de densidad de X. (0.5 puntos.)
- 3. Calcular el cuantil 0.95 de X. (0.5 puntos.)

1.8 Problema

Consideremos los siguientes sucesos A y B tales que $P(A \cup B) = 0.8$, P(A - B) = 0.4 y P(B - A) = 0.3. Calcular $P(A \cap B)$, si es posible. (0.5 puntos.).

1.9 Problema Ley de Bendford

La ley de Benford es una curiosa distribución de probabilidad que suele aparecer en la distribución del primer dígito de las cantidades registradas en contabilidades y en observaciones científicas o datos numéricos. La variable X sigue una distribución discreta Benford con dominio $D_X = \{1, 2, 3, 4, 5, 7, 8, 9\}$ son 9 dígitos (se elimina el cero) y sin función de probabilidad es

$$P_X(x) = P(X = x) = \log(d+1) - \log(d).$$

- 1. Calcular la media y la varianza de X.
- 2. Calcular la función de distribución de X.
- 3. ¿Cuál es el dígito más frecuente (moda)?
- 4. Construid con R las funciones de probabilidad y de distribución de X.
- 5. Dibujar con R las funciones del apartado anterior.

1.10 Problema Distribución de Pareto (Power law)

Esta distribución que aparece en muchos ámbitos. Consideremos el económico. Supongamos que en un gran país consideramos la población activa económicamente; desde el más humilde becario al directivo más adinerado.

Escogemos un individuo al azar de esta población y observamos la variable X = sus ingresos en euros (digamos que anuales).

Un modelo razonable es el que supone que:

- Hay un ingreso mínimo $x_m > 0$.
- La probabilidad de un ingreso mayor que x decrece de forma inversamente proporcional al ingreso x, es decir proporcional a $\left(\frac{x_m}{x}\right)^{\gamma \cdot x}$ para algún número real $\gamma > 1$.

Más formalmente. dado $x > x_m$

$$P(X > x) = k \cdot \left(\frac{x_m}{x}\right)^{\gamma}.$$

Luego su función de distribución es

$$F_X(X) = P(X \le x) = \begin{cases} 1 - P(X > x) = 1 - k \cdot \left(\frac{x_m}{x}\right)^{\gamma} & \text{si } x > x_m \\ 0 & \text{si } x \le x_m \end{cases}$$

Se pide

- 1. Calcular en función de k y γ la densidad de la variable X.
- 2. Para $\gamma > 1$ calcular E(X) y Var(X) y su desviación típica.
- 3. ¿Qué sucede con E(X) si $0 < \gamma < 1$.
- 4. ¿Cómo se calcula está distribución con R y con python?
- 5. Dibujar las gráficas de su densidad y distribución para $\gamma=3$ y $\gamma=5$.
- 6. Explorar por internet (wikipedia) cómo es la distribución **power law** y qué relación tiene el concepto de *scale free* con los resultados del apartado c).

1.11 Problema Distribución de Gumbel (teoría del valor extremo).

La distribución de Gumbel aparece en variables que miden lo que se llama un valor extremo: precipitación máxima de lluvia, tiempo máximo transcurrido entre dos terremotos, o en métodos de machine learning el máximo de las puntuaciones de una algoritmo; por ejemplo comparar pares de objetos (fotos, proteínas, etc.).

Una variable aleatoria sigue una ley de distribución Gumbel (de TIPO I) si su distribución es:

$$F_X(x) = \begin{cases} e^{-e^{-\frac{x-\mu}{\beta}}} & \sin x \ge 0\\ 0 & \sin x < 0 \end{cases}$$

Para μ y $\beta > 0$ parámetros reales. Llamaremos distribución Gumbel estándar a la que tiene por parámetros $\mu = 0$ y $\beta = 1$.

- 1. Si X es una Gumbel estándar calcular su función de densidad y dibujar su gráfica.
- 2. Consideremos la función $F(x) = e^{-e^{-x}}$ para $x \ge 0$ y que vale cero en el resto de casos. Comprobar que es la función de distribución $P(X \le x)$ de una v.a. Gumbel estándar.
- 3. Buscad un paquete de R que implemente la distribución Gumbel. Aseguraros de que es la (Gumbel Tipo I). Dejando fijo el parámetro $\beta=1$ dibujar la densidad Gumbel para varios valores de μ y explicad en que afecta a la gráfica el cambio de μ .
- 4. Dejando fijo el parámetro μ dibujad la densidad Gumbel para varios valores de $\beta > 0$ y explicar en que afecta a la gráfica el cambio de este parámetro.
- 5. Buscad cuales son las fórmulas de la esperanza y varianza de una distribución Gumbel en función de α y β .