Question Number	Answer		Mark
16(a)(i)	$\bullet \text{Use } v^2 = u^2 + 2as$	(1)	
	• $a = (-) 10.6 \text{ (m s}^{-2})$	(1)	2
	Example of calculation		
	$(75 \text{ m s}^{-1})^2 = (460 \text{ m s}^{-1})^2 + (2 \times a \times 9700 \text{ m})$ $a = -10.6 \text{ m s}^{-2}$		
16(a)(ii)	• Use of $F = ma$ Or $W = mg$	(1)	
	• Use of $mg - F\cos 6 = ma$	(1)	
	• $F = 8700 \text{ N}$	(1)	3
	(ecf from (a)(i), direction of a must be negative for MP2, $F = 8900 \text{ N}$ using the show that value)		
	Example of calculation $600 \text{ kg} \times (3.8 \text{ N kg}^{-1}) - F\cos 6 = 600 \text{ kg} \times (-10.6 \text{ m s}^{-2})$ F = 8690 N		

16(b)	Either		
. ,	Free fall means that weight/gravity is the only force acting on the		
	object/probe	(1)	
	There will also be resistive forces acting on the probe	(1)	
	• Use $v^2 = u^2 + 2as$ to determine the acceleration	(1)	
	• $a = 2.4 \text{ m s}^{-2}$	(1)	
	• Acceleration (of free-fall on Mars) = 3.8 (m s^{-2})	(1)	
	Comparison of their calculated acceleration to acceleration of free-fall		
	with reason e.g. 2.4 m s^{-2} is lower than 3.8 m s^{-2} so it was not in free fall.	(1)	
	Or		
	Free fall means that weight/gravity is the only force acting on the		
	object/probe	(1)	
	There will also be resistive forces acting on the probe	(1)	
	• Use $v^2 = u^2 + 2as$ to determine the final velocity	(1)	
	• using $a = 3.8 \text{ (m s}^{-2})$	(1)	
	• $v = 181 \text{ m s}^{-1}$	(1)	
	• Comparison of their calculated velocity to 150 m s ⁻¹ with reason	(1)	
	Or		
	Free fall means that weight/gravity is the only force acting on the		
	object/probe	(1)	
	There will also be resistive forces acting on the probe	(1)	
	• Use $v^2 = u^2 + 2as$ to determine the displacement	(1)	
	• Using $a = 3.8 \text{ (m s}^{-2})$	(1)	
	• $s = 2.4 \text{ km}$	(1)	
	Comparison of their calculated displacement to 3.7 km with reason	(1)	6
	Example of calculation		
	$(150 \text{ m s}^{-1})^2 = (68 \text{ m s}^{-1})^2 + (2 \times a \times 3700 \text{ m})$		
	$a = 2.42 \text{ m s}^{-2}$		

11

Total for question 16