# $12n_{0290} (K12n_{0290})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$I_1^u = \langle -2.68465 \times 10^{94} u^{40} - 9.84743 \times 10^{94} u^{39} + \dots + 1.38333 \times 10^{95} b - 5.11987 \times 10^{96},$$

$$-4.36327 \times 10^{94} u^{40} - 1.61063 \times 10^{95} u^{39} + \dots + 2.76666 \times 10^{95} a - 8.27022 \times 10^{96},$$

$$u^{41} + 4u^{40} + \dots + 544u + 64 \rangle$$

$$I_2^u = \langle b, \ a - 1, \ u + 1 \rangle$$

$$I_1^v = \langle a, \ 26v^5 + 33v^4 + 317v^3 + 123v^2 + 413b + 89v + 685, \ v^6 + 3v^5 + 15v^4 + 24v^3 + 11v^2 + 6v + 1 \rangle$$

\* 3 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 48 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -2.68 \times 10^{94} u^{40} - 9.85 \times 10^{94} u^{39} + \dots + 1.38 \times 10^{95} b - 5.12 \times 10^{96}, -4.36 \times 10^{94} u^{40} - 1.61 \times 10^{95} u^{39} + \dots + 2.77 \times 10^{95} a - 8.27 \times 10^{96}, \ u^{41} + 4u^{40} + \dots + 544u + 64 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.157709u^{40} + 0.582157u^{39} + \dots + 171.531u + 29.8924 \\ 0.194072u^{40} + 0.711864u^{39} + \dots + 205.306u + 37.0112 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0560706u^{40} - 0.198690u^{39} + \dots - 50.1633u - 10.2342 \\ 0.220015u^{40} + 0.806259u^{39} + \dots + 232.028u + 41.7645 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0860026u^{40} - 0.314486u^{39} + \dots - 88.7056u - 16.8751 \\ 0.244795u^{40} + 0.889941u^{39} + \dots + 248.405u + 43.2805 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0998198u^{40} - 0.360991u^{39} + \dots - 89.6766u - 14.8006 \\ 0.137856u^{40} + 0.501525u^{39} + \dots + 141.893u + 24.7433 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0860026u^{40} - 0.314486u^{39} + \dots - 88.7056u - 16.8751 \\ 0.253986u^{40} + 0.501525u^{39} + \dots + 141.893u + 24.7433 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0860026u^{40} - 0.314486u^{39} + \dots - 88.7056u - 16.8751 \\ 0.253986u^{40} + 0.923580u^{39} + \dots + 258.962u + 45.1700 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.214458u^{40} - 0.770687u^{39} + \dots - 201.880u - 34.5510 \\ 0.344343u^{40} + 1.25111u^{39} + \dots + 349.391u + 60.8829 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.158792u^{40} - 0.575454u^{39} + \dots - 159.700u - 26.4054 \\ 0.269010u^{40} + 0.976627u^{39} + \dots + 270.728u + 47.1022 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.357088u^{40} + 1.31046u^{39} + \dots + 376.594u + 66.5801 \\ -0.262269u^{40} - 0.954859u^{39} + \dots - 266.063u - 46.3657 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-2.16290u^{40} 7.86224u^{39} + \dots 2195.29u 401.897$

#### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing             |
|-----------------------|--------------------------------------------|
| $c_1, c_6$            | $u^{41} + 10u^{40} + \dots + 124u + 1$     |
| $c_2, c_5$            | $u^{41} + 4u^{40} + \dots - 8u + 1$        |
| <i>c</i> <sub>3</sub> | $u^{41} - 2u^{40} + \dots - 56802u + 4129$ |
| $c_4, c_8$            | $u^{41} + 4u^{40} + \dots + 544u + 64$     |
| $c_7,c_{10}$          | $u^{41} + 4u^{40} + \dots - 2u + 2$        |
| $c_9, c_{11}, c_{12}$ | $u^{41} - 5u^{40} + \dots - 11u - 1$       |

#### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                    |
|-----------------------|-------------------------------------------------------|
| $c_1, c_6$            | $y^{41} + 46y^{40} + \dots + 12420y - 1$              |
| $c_2, c_5$            | $y^{41} - 10y^{40} + \dots + 124y - 1$                |
| <i>c</i> <sub>3</sub> | $y^{41} + 106y^{40} + \dots + 3427830276y - 17048641$ |
| $c_4, c_8$            | $y^{41} - 36y^{40} + \dots + 46080y - 4096$           |
| $c_7, c_{10}$         | $y^{41} + 42y^{39} + \dots + 24y - 4$                 |
| $c_9, c_{11}, c_{12}$ | $y^{41} - 29y^{40} + \dots + 141y - 1$                |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.900371 + 0.275130I  |                                       |                     |
| a = -0.07966 - 1.47335I   | -1.03538 + 3.10516I                   | -9.19728 - 4.58914I |
| b = 0.570501 + 0.849499I  |                                       |                     |
| u = 0.900371 - 0.275130I  |                                       |                     |
| a = -0.07966 + 1.47335I   | -1.03538 - 3.10516I                   | -9.19728 + 4.58914I |
| b = 0.570501 - 0.849499I  |                                       |                     |
| u = -0.863117 + 0.163519I |                                       |                     |
| a = 0.530392 - 1.038990I  | -0.434343 - 0.606208I                 | -8.36824 + 3.20718I |
| b = 0.906841 + 0.441301I  |                                       |                     |
| u = -0.863117 - 0.163519I |                                       |                     |
| a = 0.530392 + 1.038990I  | -0.434343 + 0.606208I                 | -8.36824 - 3.20718I |
| b = 0.906841 - 0.441301I  |                                       |                     |
| u = -1.118190 + 0.134810I |                                       |                     |
| a = 0.285482 + 1.154880I  | 2.14754 - 4.46827I                    | -5.46325 + 6.31020I |
| b = -0.692354 - 0.679657I |                                       |                     |
| u = -1.118190 - 0.134810I |                                       |                     |
| a = 0.285482 - 1.154880I  | 2.14754 + 4.46827I                    | -5.46325 - 6.31020I |
| b = -0.692354 + 0.679657I |                                       |                     |
| u = -0.208887 + 0.817072I |                                       |                     |
| a = 0.191298 - 0.000456I  | -6.67711 + 2.45351I                   | -15.2931 - 1.4222I  |
| b = -1.390780 + 0.124154I |                                       |                     |
| u = -0.208887 - 0.817072I |                                       |                     |
| a = 0.191298 + 0.000456I  | -6.67711 - 2.45351I                   | -15.2931 + 1.4222I  |
| b = -1.390780 - 0.124154I |                                       |                     |
| u = -0.142298 + 0.686085I |                                       |                     |
| a = 0.754137 - 0.156560I  | -0.95163 + 1.08981I                   | -8.28855 - 6.14268I |
| b = 0.609820 - 0.257002I  |                                       |                     |
| u = -0.142298 - 0.686085I |                                       |                     |
| a = 0.754137 + 0.156560I  | -0.95163 - 1.08981I                   | -8.28855 + 6.14268I |
| b = 0.609820 + 0.257002I  |                                       |                     |

|                | Solutions to $I_1^u$    | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|----------------|-------------------------|---------------------------------------|---------------------|
| $\overline{u}$ | = 1.320790 + 0.205247I  |                                       |                     |
| a:             | = 0.272392 + 0.830191I  | 3.58935 + 0.36497I                    | 0                   |
| b :            | = -0.359803 - 0.924561I |                                       |                     |
| $\overline{u}$ | = 1.320790 - 0.205247I  |                                       |                     |
| a :            | = 0.272392 - 0.830191I  | 3.58935 - 0.36497I                    | 0                   |
| b :            | = -0.359803 + 0.924561I |                                       |                     |
| $\overline{u}$ | = -1.47758 + 0.08314I   |                                       |                     |
| a:             | = -0.028558 + 0.821385I | 7.32002 + 1.31400I                    | 0                   |
| b :            | = 1.27898 - 1.15594I    |                                       |                     |
| $\overline{u}$ | = -1.47758 - 0.08314I   |                                       |                     |
| a              | = -0.028558 - 0.821385I | 7.32002 - 1.31400I                    | 0                   |
| b :            | = 1.27898 + 1.15594I    |                                       |                     |
| u:             | = 1.47211 + 0.17758I    |                                       |                     |
| a              | = -0.081855 - 0.839711I | 7.22140 + 5.18811I                    | 0                   |
| b :            | = 1.19530 + 1.24551I    |                                       |                     |
| $\overline{u}$ | = 1.47211 - 0.17758I    |                                       |                     |
| a:             | = -0.081855 + 0.839711I | 7.22140 - 5.18811I                    | 0                   |
| b :            | = 1.19530 - 1.24551I    |                                       |                     |
| $\overline{u}$ | =-0.493631              |                                       |                     |
| a              | = 1.54896               | -1.40989                              | -5.76550            |
| b              | =-0.291712              |                                       |                     |
| $\overline{u}$ | = 0.55563 + 1.40865I    |                                       |                     |
| a:             | = 0.332513 + 0.052129I  | 4.81513 + 1.29204I                    | 0                   |
|                | = -0.033282 - 0.910556I |                                       |                     |
| u:             | = 0.55563 - 1.40865I    |                                       |                     |
| a:             | = 0.332513 - 0.052129I  | 4.81513 - 1.29204I                    | 0                   |
|                | = -0.033282 + 0.910556I |                                       |                     |
| u:             | = 0.279316 + 0.386457I  |                                       |                     |
| a:             | = -3.05813 - 4.36695I   | -2.86863 - 0.30349I                   | 1.29089 - 11.45256I |
| b :            | = -0.098053 + 0.379909I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = 0.279316 - 0.386457I  |                                       |                     |
| a = -3.05813 + 4.36695I   | -2.86863 + 0.30349I                   | 1.29089 + 11.45256I |
| b = -0.098053 - 0.379909I |                                       |                     |
| u = -0.012640 + 0.387805I |                                       |                     |
| a = -8.88584 + 0.60443I   | 1.80837 - 2.87388I                    | -39.8656 + 3.3819I  |
| b = -0.500213 + 0.034819I |                                       |                     |
| u = -0.012640 - 0.387805I |                                       |                     |
| a = -8.88584 - 0.60443I   | 1.80837 + 2.87388I                    | -39.8656 - 3.3819I  |
| b = -0.500213 - 0.034819I |                                       |                     |
| u = -0.64609 + 1.49909I   |                                       |                     |
| a = 0.280505 - 0.050822I  | 4.34862 + 5.20839I                    | 0                   |
| b = -0.227266 + 0.902339I |                                       |                     |
| u = -0.64609 - 1.49909I   |                                       |                     |
| a = 0.280505 + 0.050822I  | 4.34862 - 5.20839I                    | 0                   |
| b = -0.227266 - 0.902339I |                                       |                     |
| u = -0.353952             |                                       |                     |
| a = 0.190811              | -9.84381                              | 14.6310             |
| b = -1.66327              |                                       |                     |
| u = -1.50019 + 0.69974I   |                                       |                     |
| a = -0.107163 - 0.866028I | -1.34409 - 8.57415I                   | 0                   |
| b = 0.797327 + 0.867883I  |                                       |                     |
| u = -1.50019 - 0.69974I   |                                       |                     |
| a = -0.107163 + 0.866028I | -1.34409 + 8.57415I                   | 0                   |
| b = 0.797327 - 0.867883I  |                                       |                     |
| u = -0.305001             |                                       |                     |
| a = 1.67143               | -1.10346                              | -8.70760            |
| b = 0.580690              |                                       |                     |
| u = -1.63935 + 0.45660I   |                                       |                     |
| a = -0.069974 + 0.912206I | 11.66750 - 7.74036I                   | 0                   |
| b = -1.19023 - 1.18604I   |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -1.63935 - 0.45660I   |                                       |            |
| a = -0.069974 - 0.912206I | 11.66750 + 7.74036I                   | 0          |
| b = -1.19023 + 1.18604I   |                                       |            |
| u = 1.56194 + 0.67841I    |                                       |            |
| a = 0.009027 + 0.726408I  | 1.69219 + 4.01190I                    | 0          |
| b = 0.492906 - 0.964772I  |                                       |            |
| u = 1.56194 - 0.67841I    |                                       |            |
| a = 0.009027 - 0.726408I  | 1.69219 - 4.01190I                    | 0          |
| b = 0.492906 + 0.964772I  |                                       |            |
| u = 1.67787 + 0.37565I    |                                       |            |
| a = -0.035629 - 0.893097I | 11.97710 + 1.09300I                   | 0          |
| b = -1.10249 + 1.25882I   |                                       |            |
| u = 1.67787 - 0.37565I    |                                       |            |
| a = -0.035629 + 0.893097I | 11.97710 - 1.09300I                   | 0          |
| b = -1.10249 - 1.25882I   |                                       |            |
| u = -1.49517 + 0.90641I   |                                       |            |
| a = 0.139383 - 0.997291I  | 7.3447 - 13.9917I                     | 0          |
| b = 1.11424 + 1.19188I    |                                       |            |
| u = -1.49517 - 0.90641I   |                                       |            |
| a = 0.139383 + 0.997291I  | 7.3447 + 13.9917I                     | 0          |
| b = 1.11424 - 1.19188I    |                                       |            |
| u = 1.54232 + 0.88599I    |                                       |            |
| a = 0.131039 + 0.948244I  | 8.03425 + 7.41571I                    | 0          |
| b = 1.03138 - 1.24212I    |                                       |            |
| u = 1.54232 - 0.88599I    |                                       |            |
| a = 0.131039 - 0.948244I  | 8.03425 - 7.41571I                    | 0          |
| b = 1.03138 + 1.24212I    |                                       |            |
| u = -1.63054 + 0.83010I   |                                       |            |
| a = -0.034959 - 0.425949I | -3.12842 - 0.82148I                   | 0          |
| b = 0.284331 + 0.549059I  |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -1.63054 - 0.83010I   |                                       |            |
| a = -0.034959 + 0.425949I | -3.12842 + 0.82148I                   | 0          |
| b = 0.284331 - 0.549059I  |                                       |            |

II. 
$$I_2^u = \langle b, a-1, u+1 \rangle$$

(i) Arc colorings

$$a_5 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

#### (iv) u-Polynomials at the component

| Crossings                         | u-Polynomials at each crossing |
|-----------------------------------|--------------------------------|
| $c_1, c_2, c_3$<br>$c_4, c_9$     | u-1                            |
| $c_5, c_6, c_8 \\ c_{11}, c_{12}$ | u+1                            |
| $c_7, c_{10}$                     | u                              |

# (v) Riley Polynomials at the component

| Crossings                                                   | Riley Polynomials at each crossing |  |
|-------------------------------------------------------------|------------------------------------|--|
| $c_1, c_2, c_3$ $c_4, c_5, c_6$ $c_8, c_9, c_{11}$ $c_{12}$ | y-1                                |  |
| $c_{7}, c_{10}$                                             | y                                  |  |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| u = -1.00000         |                                       |            |
| a = 1.00000          | -3.28987                              | -12.0000   |
| b = 0                |                                       |            |

$$I_1^v = \langle a, \ 26v^5 + 33v^4 + \dots + 413b + 685, \ v^6 + 3v^5 + 15v^4 + 24v^3 + 11v^2 + 6v + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0629540v^{5} - 0.0799031v^{4} + \dots - 0.215496v - 1.65860 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0629540v^{5} + 0.0799031v^{4} + \dots + 0.215496v + 1.65860 \\ -0.0629540v^{5} - 0.0799031v^{4} + \dots - 0.215496v - 1.65860 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.0629540v^{5} - 0.0799031v^{4} + \dots - 0.215496v - 2.65860 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.108959v^{5} - 0.176755v^{4} + \dots + 3.28087v - 0.0629540 \\ 0.326877v^{5} + 0.530266v^{4} + \dots - 5.84262v + 0.188862 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.150121v^{5} - 0.421308v^{4} + \dots - 0.590799v + 0.891041 \\ -0.0629540v^{5} - 0.0799031v^{4} + \dots - 0.215496v - 2.65860 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.600484v^{5} - 1.68523v^{4} + \dots - 2.36320v - 1.43584 \\ 1.26392v^{5} + 3.45036v^{4} + \dots + 4.94189v + 3.53027 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.0629540v^{5} + 0.0799031v^{4} + \dots + 0.215496v + 2.65860 \\ 0.0629540v^{5} + 0.0799031v^{4} + \dots + 0.215496v - 1.65860 \\ 0.0629540v^{5} + 0.0799031v^{4} + \dots + 0.215496v - 1.65860 \\ 0.0629540v^{5} + 0.0799031v^{4} + \dots + 0.215496v - 1.65860 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes = 
$$-\frac{3042}{413}v^5 - \frac{8817}{413}v^4 - \frac{44523}{413}v^3 - \frac{68494}{413}v^2 - \frac{24042}{413}v - \frac{18195}{413}v^3 - \frac{18195}{413}$$

#### (iv) u-Polynomials at the component

| Crossings                | u-Polynomials at each crossing |
|--------------------------|--------------------------------|
| $c_1, c_3$               | $(u^3 - u^2 + 2u - 1)^2$       |
| $c_2$                    | $(u^3 + u^2 - 1)^2$            |
| $c_4, c_8$               | $u^6$                          |
| <i>C</i> <sub>5</sub>    | $(u^3 - u^2 + 1)^2$            |
| <i>C</i> <sub>6</sub>    | $(u^3 + u^2 + 2u + 1)^2$       |
| $c_{7}, c_{9}$           | $(u^2+u-1)^3$                  |
| $c_{10}, c_{11}, c_{12}$ | $(u^2 - u - 1)^3$              |

# (v) Riley Polynomials at the component

| Crossings                            | Riley Polynomials at each crossing |
|--------------------------------------|------------------------------------|
| $c_1, c_3, c_6$                      | $(y^3 + 3y^2 + 2y - 1)^2$          |
| $c_2, c_5$                           | $(y^3 - y^2 + 2y - 1)^2$           |
| $c_4, c_8$                           | $y^6$                              |
| $c_7, c_9, c_{10} \\ c_{11}, c_{12}$ | $(y^2 - 3y + 1)^3$                 |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| v = -1.49186              |                                       |                      |
| a = 0                     | -2.10041                              | -19.6940             |
| b = 0.618034              |                                       |                      |
| v = -0.082153 + 0.499284I |                                       |                      |
| a = 0                     | -5.85852 + 2.82812I                   | -6.54788 - 4.14885I  |
| b = -1.61803              |                                       |                      |
| v = -0.082153 - 0.499284I |                                       |                      |
| a = 0                     | -5.85852 - 2.82812I                   | -6.54788 + 4.14885I  |
| b = -1.61803              |                                       |                      |
| v = -0.217660             |                                       |                      |
| a = 0                     | -9.99610                              | -38.1750             |
| b = -1.61803              |                                       |                      |
| v = -0.56309 + 3.42214I   |                                       |                      |
| a = 0                     | 2.03717 + 2.82812I                    | 0.982489 + 0.847836I |
| b = 0.618034              |                                       |                      |
| v = -0.56309 - 3.42214I   |                                       |                      |
| a = 0                     | 2.03717 - 2.82812I                    | 0.982489 - 0.847836I |
| b = 0.618034              |                                       |                      |

IV. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                        |
|-----------------------|-----------------------------------------------------------------------|
| $c_1$                 | $ (u-1)(u^3 - u^2 + 2u - 1)^2(u^{41} + 10u^{40} + \dots + 124u + 1) $ |
| $c_2$                 | $(u-1)(u^3+u^2-1)^2(u^{41}+4u^{40}+\cdots-8u+1)$                      |
| <i>c</i> 3            | $(u-1)(u^3-u^2+2u-1)^2(u^{41}-2u^{40}+\cdots-56802u+4129)$            |
| C <sub>4</sub>        | $u^{6}(u-1)(u^{41}+4u^{40}+\cdots+544u+64)$                           |
| <i>C</i> <sub>5</sub> | $(u+1)(u^3-u^2+1)^2(u^{41}+4u^{40}+\cdots-8u+1)$                      |
| $c_6$                 | $(u+1)(u^3+u^2+2u+1)^2(u^{41}+10u^{40}+\cdots+124u+1)$                |
| c <sub>7</sub>        | $u(u^{2} + u - 1)^{3}(u^{41} + 4u^{40} + \dots - 2u + 2)$             |
| c <sub>8</sub>        | $u^{6}(u+1)(u^{41}+4u^{40}+\cdots+544u+64)$                           |
| <i>c</i> <sub>9</sub> | $(u-1)(u^2+u-1)^3(u^{41}-5u^{40}+\cdots-11u-1)$                       |
| $c_{10}$              | $u(u^{2} - u - 1)^{3}(u^{41} + 4u^{40} + \dots - 2u + 2)$             |
| $c_{11}, c_{12}$      | $(u+1)(u^2-u-1)^3(u^{41}-5u^{40}+\cdots-11u-1)$                       |

#### V. Riley Polynomials

| Crossings             | Riley Polynomials at each crossing                                                           |  |
|-----------------------|----------------------------------------------------------------------------------------------|--|
| $c_1, c_6$            | $(y-1)(y^3+3y^2+2y-1)^2(y^{41}+46y^{40}+\cdots+12420y-1)$                                    |  |
| $c_2,c_5$             | $(y-1)(y^3-y^2+2y-1)^2(y^{41}-10y^{40}+\cdots+124y-1)$                                       |  |
| $c_3$                 | $(y-1)(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^{41} + 106y^{40} + \dots + 3427830276y - 17048641)$ |  |
| $c_4, c_8$            | $y^{6}(y-1)(y^{41} - 36y^{40} + \dots + 46080y - 4096)$                                      |  |
| $c_7, c_{10}$         | $y(y^2 - 3y + 1)^3(y^{41} + 42y^{39} + \dots + 24y - 4)$                                     |  |
| $c_9, c_{11}, c_{12}$ | $(y-1)(y^2-3y+1)^3(y^{41}-29y^{40}+\cdots+141y-1)$                                           |  |