Dr. AI

Machine Learning for Cancer Prediction

Avinash Lal, Raahil Sha, Julio Mendez Cabrera

Background

Cancer

- General term for uncontrolled cell growth
- Not one disease a category over a broad range of diseases
- Cancer cells have very diverse origins, making cancer highly heterogeneous at the population level
- Tumor Heterogeneity different tumor cells can show very distinct genetic, epigenetic, and phenotypic profiles
- Research into cancer heterogeneity could help inform treatment strategies to improve survivability

Data

- Because cancer occurs at a late developmental stage, it is highly linked to developmental control mechanisms and epigenetics
- The Cancer Genome Atlas (TCGA) NIH Project to catalogue bioinformatics data on a broad range of cancers (currently ~35 different cancers)
- Two Main Epigenetic Factors
 - Methylation
 - \circ RNA

Methylation

- Methylation is the addition of a methyl group to a cytosine base
- Excessive methylation can cause transcription to fail (key proteins don't bind or fall off of the DNA strand)
- Methylation of certain tumor suppressor genes, like p16 and p57, has been shown to play a role in cancer growth

- Profiled using Illumina 450k technology, which measures methylation percent of 450,000 locii in the DNA
- TCGA has 9,756 samples (1.38 terabytes) too large to quickly download so we didn't study methylation

Ribonucleic Acid (RNA)

- When a cell creates proteins, it first takes DNA and transcribes it into RNA
- The RNA then exits the nucleus and get translated into proteins
- Profiled using RNA-Seq technology, which relates RNA content of a cell for around 60,000 locii
- Measured using FPKM (Fragments per Kilobase of Transcript per Million Mapped Reads) - relative, normalized RNA expression level
- TCGA has 11,574 samples (6.2 gigabytes compressed) data is a lot less to download and easier to work with and manipulate
- We chose to use RNA-Seq data in our project

Question

• Our Project: Given an epigenetic profile of a cell, is it possible to predict if the cell has cancer? Going further, is it possible to predict the specific type of cancer that the cell has?

Data and Methods

RNA-Seq Dataset (Post-process)

Transcript	e6bb1330-c761-43a 5-9d17-16da72723 2f1.FPKM.txt	1a13663e-9015-4e eb-ab6a-8f40a8bbf 403.FPKM.txt	50f3b3d3-dba8-4d4 8-bf8d-16d7ebaa18 fd.FPKM.txt	b1558748-bec9-4be a-a35b-040ca9a1f4 cd.FPKM.txt
ENSG00000242268.2	0	0.05955585	0.369784719	0
ENSG00000270112.3	0	0.008263563	0	0.005879084
ENSG00000167578.15	5.301041137	1.498275119	10.0475245	4.855961155

Sample Label File

file_name	cases.0.samples.0.sample_type	cases.0.project.project_id
7a494c60-48a3-486a-83c2-aefb4c160a2c.FPKM.txt	Primary Tumor	TCGA-BRCA
33fef46f-c248-4d58-bb6e-3a4a55272334.FPKM.txt	Primary Tumor	TCGA-BRCA
0d44ebee-ebdf-442b-82ce-ce78b8b0afb4.FPKM.txt	Primary Tumor	TCGA-UCEC
d65a7cb6-4b1f-4976-990e-c4f47ae11986.FPKM.txt	Primary Tumor	TCGA-COAD
e328b8e9-2ffa-4cca-af04-5a96f09b9e04.FPKM.txt	Blood Derived Normal	TCGA-ESCA
89105180-9922-43bc-81a9-7b43b11e5e20.FPKM.txt	Primary Tumor	TCGA-LUAD

Estimator Evaluation

- Accuracy How many predictions were accurate?
- Precision How many predictions that are in-class were accurate?
 - True Positive / (True Positive + False Positive)
- Recall How accurate was prediction on in-class data?
 - True Positive / (True Positive + False Negative)
- F1 Score Combination of precision and recall into one metric
- All of these can be evaluated either per-class or over all classes

Confusion Matrix (Accuracy Matrix)

Estimator Roadmap

k-Nearest Neighbor Classification

kNN Algorithm

Simple example:

Results (kNN, n = 1)

• Accuracy: 0.717

• Recall: 0.717

Results (kNN, n = 10)

• Accuracy: 0.752

• Recall: 0.752

Results (kNN, n = 25)

• Accuracy: 0.696

• Recall: 0.696

kNN Hyperparameter Tuning

Naive Bayes Classification

Naive Bayes Algorithm

Gaussian Naive Bayes Results

• Accuracy: 0.837

• Recall: 0.837

Support Vector Classification

SVC Algorithm

SVC Results

• Accuracy: 0.926

• Recall: 0.926

Random Forest Classification

Random Forest Algorithm

Results (Random Forest, n = 5)

• Accuracy: 0.848

• Recall: 0.848

Results (Random Forest, n = 50)

• Accuracy: 0.926

• Recall: 0.926

Choosing Number of Trees

Analysis and Conclusions

Classifier Model Comparison

Model	Accuracy	Time to Train	Time to Predict
k-Nearest Neighbors	75.2%	75 seconds	277 seconds
Naive Bayes	83.7%	98 seconds	20 seconds
Support Vector	92.6%	1758 seconds	315 seconds
Random Forest (50)	92.6%	33 seconds	0.32 seconds
Random Forest (100)	94%	62 seconds	0.36 seconds
Ensemble	N/A	Broke our computer	

Future Work

- Higher-level Ensemble Methods
 - Have a group of 4-5 classifiers "vote" on the final classification to try to overcome individual classifier error
- Alternative Classification Models
 - Deep learning, neural networks?
- Evaluation of Performance on other data types
 - Methylation Dataset was too large so we didn't use methylation data
 - DNA Can we predict if a person has cancer from DNA of a non-cancerous cell?
- Estimation of Cancer Dangerousness
 - How long does a person have to live given their epigenome?
 - Will a group of stationary cancer cells metastasize?