Sesión #2

Problemas, solución de problemas y tipos de problemas

Problemas

Se tiene un problema cuando se desea encontrar uno o varios objetos desconocidos (ya sean estos números, símbolos, diagramas, figuras u otras entidades), que cumplen condiciones o relaciones, previamente definidas, respecto a uno o varios objetos.

Computable

Solución de problemas

Solucionar un problema es encontrar los objetos desconocidos. Para solucionar un problema se debe determinar:

Objetos conocidos y desconocidos - Condiciones - Relación entre ellos

Problemas bien condicionados

Se cuenta con la información necesaria para resolver el problema y la solución no depende de una elección personal de índole emocional.

entre conejos y gallinas. Si la cantidad de patas de los animales es ciento cuarenta, ¿Cuántos conejos y cuántas gallinas tiene el granjero?

Un granjero tiene cincuenta animales

Si a es un número real positivo, entonces ¿Cuál es la solución a la ecuación?

En ambos casos se presentan problemas bien

condicionados.

No se cuenta con la información necesaria para resolver el problema, o

Problemas mal condicionados

la respuesta está sujeta a una elección personal de cada ser humano (que depende de los sentimientos, emociones, cultura, religión, política, tradición, etc.).

ciento cuarenta, ¿Cuántos caballos y cuántos patos tiene el granjero?. En ambos casos se presentan problemas mal

Un granjero tiene cincuenta animales

entre conejos y gallinas. Si la

cantidad de patas de los animales es

sol a la tierra.

Juanito tiene 5 manzanas, le da 2 a

Pedro, calcule la distancia media del

condicionados.

tratables y solucionables

Tratables:

Problemas computables,

Computables: Existe una secuencia finita de

pasos "bien definidos" que permiten describir la relación entre entrada y salida, y que al ser aplicados a la entrada terminan en algún momento produciendo la salida.

la relación entre entrada y salida.

Los recursos espacio) que se necesitan

para su solución son finitos y no crecen exponencialmente a medida que aumenta el tamaño de la entrada.

(tiempo

puede encontrar) para la entrada

Solucionables:

dada.

Existe una salida valida (se

falten objetos conocidos, mientras que en los no solucionables se tienen claras tanto la entrada como

Los problemas intratables son solucionables cuando el tamaño de la entrada es pequeño, pero resultan no solucionables para entradas medianas y/o grandes.

No solucionable \neq intratable

No solucionable \neq mal condicionado En los problemas mal condicionados es posible que la relación no esté bien dada, no sea clara, sobren o

Sesión #2

Programación, algoritmos y recursos de un algoritmo

Características de un Algoritmo

Precisión

Hay un orden

preciso en el cual deben ejecutarse las tareas que conforman el algoritmo.

Determinismo

Cada vez que se ejecuten las tareas o pasos de un algoritmo, con las mismas condiciones iniciales, se deben obtener mismos los resultados.

algoritmo

Finitud

debe usar una cantidad de recursos.

Estructura de un Algoritmo

Donde se almacena la información de entrada, salida o intermedia.

Datos

que el algoritmo realiza sobre los datos.

nstrucciones

Estructuras de control

La que determinan el orden en que se

Las acciones, procesos u operaciones

algoritmo.

ejecutarán las instrucciones del

Tiempo Espacio

algoritmo.

Recursos de un Algoritmo Un algoritmo cuenta con dos recursos para su ejecución: tiempo y

espacio

del algoritmo.

velocidad, los Hertz del procesador), por lo tanto el tiempo requerido por un algoritmo será T = t *o donde o es el número de operaciones básicas

Definido en el número de tareas primitivas y/o

básicas que debe ejecutar (definido por la

2 Ubicar el gato mecánico en su

tanto el espacio requerido por un algoritmo será S = s * v donde v es el número de variables del

Definido en cantidad de memoria (variables) que

debe mantener. Esto ya que las variables son

almacenadas en un número fijos de bytes por lo

pinchada con la llave inglesa.

Ejemplo de Algoritmo

en buen estado, una rueda de reemplazo y una llave inglesa. 1 Aflojar los tornillos de la rueda

Cambiar la rueda pinchada de un automóvil teniendo un gato mecánico

sitio.

3 Levantar el gato hasta que la rueda pinchada pueda girar

4 Quitar los tornillos con la llave inglesa.

5 Quitar la rueda pinchada.

libremente.

6 Poner la rueda de repuesto y los tornillos.

7 Bajar el gato hasta que se

pueda liberar.

8 Sacar el gato de su sitio.

9 Apretar los tornillos con la llave