

Department of Computer Science & Engineering (Data Science)

AY: 2025-26

Class:	BE- CSE(DS)	Semester:	VII
Course Code:	CSDOL7011	Course Name:	NLP Lab

Name of Student:	Hitesh Shetye	
Roll No. :	49	
Experiment No.:	9	
Title of the Experiment:	Training and Evaluating a Text Classification Model Using Proper Experimental Methodology	
Date of Performance:		
Date of Submission:		

Evaluation

Performance Indicator	Max. Marks	Marks Obtained
Performance	5	
Understanding	5	
Journal work and timely submission	10	
Total	20	

Performance Indicator	Exceed Expectations (EE)	Meet Expectations (ME)	Below Expectations (BE)
Performance	4-5	2-3	1
Understanding	4-5	2-3	1
Journal work and timely submission	8-10	5-8	1-4

Checked by

Name of Faculty :

Signature :

Date :

Aim: To implement a text classification model and evaluate its performance using standard experimental procedures including data splitting, cross-validation, and evaluation metrics.

Objective: To build and evaluate a text classification model using standard machine learning methodology and evaluation metrics.

Tools Required:

- 1. Python (Jupyter Notebook or Google Colab)
- 2. scikit-learn
- 3. pandas, matplotlib
- 4. Dataset: SMS Spam Collection Dataset or any labeled text classification dataset

Procedure:

- 1. Import required libraries:
 - a. import pandas as pd
 - b. from sklearn.feature_extraction.text import TfidfVectorizer
 - c. from sklearn.model_selection import train_test_split, cross_val_score
 - d. from sklearn.naive_bayes import MultinomialNB
 - e. from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
 - f. import matplotlib.pyplot as plt
 - g. import seaborn as sns
- 2. Load the dataset:
 - a. For SMS Spam Dataset: Download from UCI ML Repository
- 3. Preprocess the text:

Lowercase conversion, stopword removal (optional), and TF-IDF feature extraction

4. Split the dataset:

Use train_test_split() to divide into training and testing sets (e.g., 80%-20%)

5. Train the model:

Use MultinomialNB() or LogisticRegression() classifier

- 6. Evaluate the model:
 - a. Predict on test data
 - b. Use the following evaluation metrics:
 - i. Accuracy
 - ii. Precision
 - iii. Recall
 - iv. F1-Score
 - v. Confusion Matrix
- 7. (Optional): Perform 5-fold cross-validation and compare with hold-out evaluation.
- 8. Visualize results:

Plot confusion matrix using seaborn.heatmap()

Description of the Experiment:

This experiment teaches students how to build and evaluate a complete text classification system using real-world data. It emphasizes experimental methodology, including the importance of data splits, model evaluation, and fair performance comparison.

Detailed Description of the NLP Technique:

1. Text Classification:

The task of assigning a category or label to a given text (e.g., spam vs. ham). It's widely used in:

Department of Computer Science & Engineering (Data Science)

- a. Spam filtering
- b. Sentiment analysis
- c. Topic categorization

2. Pipeline Stages:

- a. Text Preprocessing & Vectorization: Convert raw text into numeric features using TF-IDF.
- b. Model Training: Use supervised machine learning algorithms like Naive Bayes or SVM.
- c. Model Evaluation: Use appropriate metrics to evaluate the model's generalization on unseen data.

3. Evaluation Metrics:

- a. Accuracy: Ratio of correctly predicted instances
- b. Precision: True Positives / (True Positives + False Positives) Recall: True
 Positives / (True Positives + False Negatives) F1-Score: Harmonic mean of precision and recall
- c. Confusion Matrix: Shows TP, TN, FP, FN counts

4. Best Practices in Experimental Methodology:

- a. Train-test split ensures model evaluation on unseen data.
- b. Cross-validation helps in robust performance estimation.
- c. Random seed control improves reproducibility.

OUTPUT:

Department of Computer Science & Engineering (Data Science)

1. Import required libraries from sklearn.feature extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score import matplotlib.pyplot as plt import seaborn as sns 2. Load the dataset [2] url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip" import zipfile, requests, io r = requests.get(url) r = requests.get(url)
z = zipfile(16.BytesIO(r.content))
df = pd.read_csv(z.open("SMSSpamCollection"), sep='\t', names=["label", "message"]) print(df.head()) → Dataset shape: (5572, 2) message

ham Go until jurong point, crazy.. Available only ...

ham Go until jurong point, crazy.. Available only ...

klam Ok lar... Joking wif u oni...

spam Free entry in 2 a wkly comp to win FA Cup fina...

ham U dun say so early hor... U c already then say...

ham Nah I don't think he goes to usf, he lives aro... 3. Preprocess the text 3.1 Convert labels: ham=0, spam=1 [4] df['label_num'] = df['label'].map({'ham': 0, 'spam': 1}) [5] ✓ 0s df.head() label message label_num 7 0 ham Go until jurong point, crazy.. Available only ... Ok lar... Joking wif u oni... 0 ham 1 2 spam Free entry in 2 a wkly comp to win FA Cup fina... U dun say so early hor... U c already then say ... 3 ham 0 Nah I don't think he goes to usf, he lives aro... 0 ham

3.2 TF-IDF Vectorization

```
tfidf = TfidfVectorizer(stop_words='english', lowercase=True)

X = tfidf.fit_transform(df['message'])
y = df['label_num']
```


Department of Computer Science & Engineering (Data Science)

4. Split the dataset (80-20 split)

5. Train the model

```
model = MultinomialNB()
model.fit(X_train, y_train)

MultinomialNB  
MultinomialNB()
```

6. Evaluate the model

```
[9]

✓ Os
          y_pred = model.predict(X_test)
          print("\n--- Evaluation Metrics ---")
          print("Accuracy:", accuracy_score(y_test, y_pred))
          print("\nClassification Report:\n", classification_report(y_test, y_pred))
          --- Evaluation Metrics ---
          Accuracy: 0.9704035874439462
          Classification Report:
                        precision recall f1-score support
                          0.97 1.00
1.00 0.78
                    1
                                               0.97
                                                         1115
             accuracy
                         0.98 0.89 0.93
0.97 0.97 0.97
             macro avg
          weighted avg
                                                         1115
```

Confusion Matrix

Department of Computer Science & Engineering (Data Science)

7. Perform 5-fold cross-validation

```
cv_scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
print("\n5-Fold Cross Validation Accuracy:", cv_scores)
print("Mean CV Accuracy:", cv_scores.mean())

5-Fold Cross Validation Accuracy: [0.97847534 0.96681614 0.96319569 0.97127469 0.97217235]
Mean CV Accuracy: 0.970386841745095
```

8. Visualize results

Conclusion:

- Using text preprocessing along with TF-IDF and MultinomialNB proves to be an efficient approach for classifying spam messages.
- The pipeline delivers strong accuracy with a good balance of precision and recall, making it well-suited for real-world SMS spam detection.