Tópicos de Matemática

Licenciatura em Ciências da Computação - 1º ano

teste global - 18 dez 2015

- 1. Diga, justificando, se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Sejam p,q e r proposições. Se as proposições $r\Rightarrow p,\ p\Rightarrow q$ e $\sim q$ são verdadeiras, então, a proposição r é verdadeira.
 - (b) Sejam A e B conjuntos disjuntos. Então, $R=\omega_A\cup\omega_B$ é uma relação de equivalência em $A\cup B$.
 - (c) Sejam (A, \leq) um c.p.o. Se existe ínfimo de \emptyset em A então A admite um elemento maximal.
 - (d) Sejam $A, B \in C$ conjuntos. Então, se $A \cup C \sim B \cup C$ então $A \sim B$.
- 2. Dê exemplo, ou justifique que não existe, de:
 - (a) um conjunto A tal que $\emptyset \in A$ e $\emptyset \subseteq A$;
 - (b) uma família de conjuntos $(A_i)_{i\in\mathbb{N}}$ tal que $\bigcup_{i\in\mathbb{N}}A_i=\mathbb{R}$ e $\bigcap_{i\in\mathbb{N}}A_i=\{0\}$;
 - (c) Uma relação de equivalência \mathcal{R} em $A = \{1, 2, 3, 4\}$ tal que $(1, 3), (1, 4) \in \mathcal{R}$ e $[4]_{\mathcal{R}} = \{1, 4\}$;
 - (d) Uma função $f:\{1,2\}\to \mathcal{P}(\{1,2\})$ sobrejetiva.
- 3. Usando indução matemática, prove que, para todo o natural n, $\sum_{k=1}^n (3k-2) = \frac{n(3n-1)}{2}$.
- 4. Considere a aplicação $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$, definida por $f(m,n) = (mn,m^2)$, para todo $(m,n) \in \mathbb{Z} \times \mathbb{Z}$.
 - (a) Se $A = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid |x| = |y| = 1\}$, determine f(A).
 - (b) Se $B = \{0, 2\} \times \{2, 0\}$, determine $f^{\leftarrow}(B)$.
 - (c) Diga, justificando, se f é sobrejetiva e/ou é injetiva.
 - (d) Considere a relação de equivalência associada à igualdade de imagem por f, definida por

$$(x,y) \mathcal{R}_f(a,b) \Leftrightarrow f(x,y) = f(a,b).$$

Determine $[(2,0)]_{\mathcal{R}_f}$ e $[(0,2)]_{\mathcal{R}_f}$.

- 5. Considere o c.p.o. (A, \leq) definido pelo seguinte diagrama de Hasse:
 - (a) Indique, caso exista:
 - i. Maj $\{7, 10\}$;
 - ii. sup∅;
 - iii. um subconjunto de A com 5 elementos que admita máximo e mínimo.

Duração: 2 horas

- Cotação: 1. 4×1.0
- **2.** 4×1.0
- **3.** 1.5
- **4.** $3 \times 1.5 + 2.0$
- **5.** 4×1.0