КУРСОВОЙ ПРОЕКТ по дисциплине «Теория автоматов»

ПРОЕКТИРОВАНИЕ

Николаев Д.Е.

Репин С.А.

СОДЕРЖАНИЕ

1. АБСТРАКТНЫЙ СИНТЕЗ

Будем использовать следующие алфавиты:

$$\begin{array}{lcl} A_{\text{bx}} & = & \{0,1,2,3,\$\} \\ B_{\text{bhx}} & = & \{0,1,2,3,\mathrm{i}\} \end{array}$$

Составим информативное дерево

Построим таблицу входов и выходов для автомата Мили:

	q_0	q_1	q_2	q_3
0	q_0 i	q_1 i	q_2 i	q_3 i
1	q_1 i	q_1 i	q_2 i	q_3 i
2	q_2 i	q_2 i	q_2 i	q_3 i
3	q_3 i	q_3 i	q_3 i	q_3 i
\$	q_0 0	q_0 1	q_0 2	q_0 3

В соответствии с таблицей составим диаграмму автомата:

Минимизируем автомат Мили. Для этого найдем все эквивалентные состояния:

q_1	×		
q_2	×	×	
q_3	×	X	X
	q_0	q_1	q_2

Из таблица видно, что в автомате отсутствуют эквивалентные состояния, то есть он уже минимален.

2. СТРУКТУРНЫЙ СИНТЕЗ

Проведем структурный синтез получившегося автомата Мили в базисе $\{\land,\lor,\lnot\}$ с использованием D-триггеров.

Закодируем входы и выходы двоичными числами:

Вход	$x_2x_1x_0$
0	000
1	001
2	010
3	011
\$	100

Выход	$x_2x_1x_0$
0	000
1	001
2	010
3	011
i	100

Закодируем состояния автомата метод минимизирующий число переключений элементов памяти. Для этого сперва найдем вершину, имеющую наибольшую полустепень захода, а также построим таблицу, в ячейках которой запишем число ребер между q_i и q_i :

Выход	$x_2x_1x_0$
q_0	5
q_1	3
q_2	5
q_3	7

	q_0	q_1	q_2	q_3
q_0	2	2	2	2
q_1	2	1	1	1
q_2	2	2	3	1
q_3	2	1	1	4

Из таблица видно, что вершина, имеющая наибольшую полустепень — q_3 :

$$q_3 \rightarrow 00$$

Состояние наиболее связанное с $q_3 - q_0$:

$$q_0 \to 01$$

Состояние наиболее связанное с $\{q_3, q_0\}$ — q_1 :

Выход	$2d_{10} + 1 \cdot d_{31}$
10	5
11	4

$$q_1 \rightarrow 11$$

Оставшееся состояние — q_2 :

$$q_2 \to 10$$

5

Построим таблицу входов и выходов для автомата Мили:

	01	11	10	00
000	01	11	10	00
000	100	100	100	100
001	11	11	10	00
001	100	100	100	100
010	10	10	10	00
010	100	100	100	100
011	00	00	00	00
011	100	100	100	100
100	01	01	01	01
100	000	001	010	011

Теперь постоим таблицу переходов и выходов:

Bx	x_2	x_1	x_0	q_i	Q_1	Q_0	Вых	y_2	y_1	y_0	q_i'	Q_1'	Q_0'	D_1	D_0
0	0	0	0	q_3	0	0	i	1	0	0	q_0	0	0	0	0
0	0	0	0	q_0	0	1	i	1	0	0	q_1	0	1	0	1
0	0	0	0	q_2	1	0	i	1	0	0	q_2	1	0	1	0
0	0	0	0	q_1	1	1	i	1	0	0	q_3	1	1	1	1
1	0	0	1	q_3	0	0	i	1	0	0	q_0	0	0	0	0
1	0	0	1	q_0	0	1	i	1	0	0	q_1	1	1	1	1
1	0	0	1	q_2	1	0	i	1	0	0	q_2	1	0	1	0
1	0	0	1	q_1	1	1	i	1	0	0	q_3	1	1	1	1
2	0	1	0	q_3	0	0	i	1	0	0	q_0	0	0	0	0
2	0	1	0	q_0	0	1	i	1	0	0	q_1	1	0	1	0
2	0	1	0	q_2	1	0	i	1	0	0	q_2	1	0	1	0
2	0	1	0	q_1	1	1	i	1	0	0	q_3	1	0	1	0
3	0	1	1	q_3	0	0	i	1	0	0	q_0	0	0	0	0
3	0	1	1	q_0	0	1	i	1	0	0	q_1	0	0	0	0
3	0	1	1	q_2	1	0	i	1	0	0	q_2	0	0	0	0
3	0	1	1	q_1	1	1	i	1	0	0	q_3	0	0	0	0
\$	1	0	0	q_3	0	0	3	0	1	1	q_0	0	1	0	1
\$	1	0	0	q_0	0	1	0	0	0	0	q_0	0	1	0	1
\$	1	0	0	q_2	1	0	2	0	1	0	q_0	0	1	0	1
\$	1	0	0	q_1	1	1	1	0	0	1	q_0	0	1	0	1
-	1	0	1	-	-	-	-	-	-	-	-	-	-	-	-
-	1	1	0	_	_	-	-	-	-	_	_	-	-	_	-
							• •	•							
-	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-

Проведем минимизацию полученных СДН Φ с помощью карт Карно.

	00	01	11	10		00	01	11	10		00	01	11	10
000	1	1	1	1	000	0	0	0	0	000	0	0	0	0
001	1	1	1	1	001	0	0	0	0	001	0	0	0	0
011	1	1	1	1	011	0	0	0	0	011	0	0	0	0
010	1	1	1	1	010	0	0	0	0	010	0	0	0	0
110	-	-	-	-	110	_	-	-	-	110	-	-	-	-
111	-	-	-	-	111	_	-	-	-	111	-	-	-	-
101	-	-	-	-	101	_	-	-	-	101	-	-	-	-
100	0	0	0	0	100	1	0	0	1	100	1	0	1	0
(a) $\overline{y_2}$					(b) $\overline{y_1}$					(c) y_0				

	00	01	11	10			00	01	11	10
000	0	0	1	1		000	0	1	1	0
001	0	1	1	1		001	0	1	1	0
011	0	0	0	0		011	0	0	0	0
010	0	1	1	1		010	0	0	0	0
110	-	-	-	-		110	_	-	-	-
111	-	-	-	-		111	_	-	-	-
101	-	-	-	-		101	_	-	-	-
100	0	0	0	0		100	1	1	1	1
(d) \overline{D}_1					((e) D_0)			

Итоговая система логических уравнений:

$$D_{0} = Q_{0}\bar{x}_{2}\bar{x}_{1} \quad \forall \quad x_{2}$$

$$D_{1} = Q_{1}\bar{x}_{2}\bar{x}_{1} \quad \forall \quad Q_{0}\bar{x}_{2}\bar{x}_{1}x_{0} \quad \forall \quad Q_{0}x_{1}\bar{x}_{0} \quad \forall \quad Q_{1}x_{1}\bar{x}_{0}$$

$$y_{0} = \bar{Q}_{1}\bar{Q}_{0}x_{2} \quad \forall \quad Q_{1}Q_{0}x_{2}$$

$$y_{1} = \bar{Q}_{0}x_{2}$$

$$y_{2} = \bar{x}_{2}$$

На основе этой системы можно построить логическую схему устройства:

Рис. 2.1