Examen del Bloque 2 de Sistemas Inteligentes

ETSINF, Universitat Politècnica de València, 13 de enero de 2016

Apellidos:							Nombre	Nombre:		
Campor D	9 A	□ 9 D	\Box 2 C	□ 2 D	□ 2 Γ	□ 2 ₽	□ ori id		\Box DF 9	

Marca cada recuadro con una única opción de entre las dadas.

1 $\boxed{\mathrm{D}}$ ¿Cuál de las siguientes expresiones es correcta?

A)
$$P(x | y) = \frac{1}{P(z)} \sum_{x} P(x, y, z).$$

B)
$$P(x | y) = \frac{1}{P(z)} \sum_{z} P(x, y, z).$$

C)
$$P(x | y) = \frac{1}{P(y)} \sum_{x} P(x, y, z).$$

D)
$$P(x | y) = \frac{1}{P(y)} \sum_{z} P(x, y, z).$$

2 A Un médico sabe que:

- La enfermedad de la meningitis causa rigidez de nuca en un 70 % de los casos.
- La probabilidad a priori de que un paciente tenga meningitis es de 1/100000.
- La probabilidad a priori de que un paciente tenga rigidez de nuca es del 1%.

Con base en el conocimiento anterior, la probabilidad P de que un paciente con rigidez de nuca tenga meningitis es:

A)
$$0.000 \le P < 0.001$$
. $P = P(m \mid r) = \frac{P(m) P(r \mid m)}{P(r)} = \frac{1/100 000 \cdot 70/100}{1/100} = 0.0007$

- B) $0.001 \le P < 0.002$.
- C) $0.002 \le P < 0.003$.
- D) $0.003 \le P$.
- 3 D Considérese un problema de clasificación convencional, esto es, de C clases y objetos representados mediante vectores D-dimensionales de características reales. En términos generales, podemos decir que el problema será más difícil...
 - A) cuanto menor sean C y D.
 - B) cuanto menor sea C y mayor sea D.
 - C) cuanto mayor sea C y menor sea D.
 - D) cuanto mayor sean C y D.
- 4 B Se tiene un problema de clasificación para el cual se han aprendido dos clasificadores diferentes, c_A y c_B . La probabilidad de error de c_A se ha estimado empíricamente, a partir de un cierto conjunto de 100 muestras de test, obteniéndose un valor de $\hat{p}_A = 0.10$ (10%). La probabilidad de error de c_B se ha estimado análogamente, si bien en este caso se ha empleado un conjunto de test diferente, compuesto por 200 muestras, obteniéndose también un 10% de error ($\hat{p}_B = 0.10$). Con base en estas estimaciones, podemos afirmar que, para un nivel de confianza del 95%:
 - A) Los intervalos de confianza de \hat{p}_A y \hat{p}_B serán idénticos.
 - B) El intervalo de confianza de \hat{p}_A será mayor que el de \hat{p}_B . $I_A = \hat{p}_A \pm 1.96 \sqrt{\frac{\hat{p}_A (1-\hat{p}_A)}{100}} = 0.10 \pm 0.06$
 - C) El intervalo de confianza de \hat{p}_B será mayor que el de \hat{p}_A . $I_B = \hat{p}_B \pm 1.96 \sqrt{\frac{\hat{p}_B (1 \hat{p}_B)}{200}} = 0.10 \pm 0.04$
 - D) Los intervalos de confianza de \hat{p}_A y \hat{p}_B son en este caso irrelevantes ya que las tasas de error estimadas coinciden.

- 5 C En la figura de la derecha se representan cuatro muestras de aprendizaje bidimensionales de 2 clases: ○ y •. A estas muestras se les aplica el algoritmo Perceptrón con pesos iniciales $\mathbf{a}_0 = (0,1,0)^t$ y $\mathbf{a}_{\bullet} = (0,0,1)^t$, una constante de aprendizaje $\alpha > 0$ y un margen b. Indica cuál de las siguientes afirmaciones es correcta:

- A) El algoritmo convergerá para algún b > 0.
- B) El algoritmo solo puede converger si $b \leq 0$.
- C) Si b>0, no hay convergencia, pero se puede ajustar el valor de α tal que, tras un número finito de iteraciones, se obtengan buenas soluciones (con 25 % de error de resustitución).
- D) El algoritmo no es aplicable a estas muestras porque no son linealmente separables.
- 6 B ¿Cuál sería el número mínimo de errores de un clasificador lineal en el conjunto de muestras de la cuestión anterior?
 - A) 0.
 - B) 1.
 - C) 2.
 - D) 3.
- 7 B Dado un clasificador lineal de 2 clases \circ y definido por su conjunto de pesos $\mathbf{a}_{\circ} = (3, 1, 1)^t$ y $\mathbf{a}_{\bullet} = (1, 2, 1)^t$ (en notación homogénea, cuya primera componente es el término independiente de la función lineal correspondiente). ¿Cuál de las siguientes afirmaciones es correcta?
 - A) Como hay dos vectores de pesos y el espacio de representación es bi-dimensional, tendremos 4 regiones de decisión.
 - B) Los vectores de pesos $\mathbf{a}_{\circ} = (2, -2, -2)^t$ y $\mathbf{a}_{\bullet} = (-2, 0, -2)^t$ determinan la misma frontera de decisión que la del clasificador dado. La ecuación de la frontera es: $\mathbf{a}_{\circ}^{t}\mathbf{y} = \mathbf{a}_{\bullet}^{t}\mathbf{y}$. En ambos casos se obtiene: $y_{1} = 2$.
 - C) Un clasificador equivalente al dado es el definido por $\mathbf{a}_{\circ} = (1,2,1)^t$ y $\mathbf{a}_{\bullet} = (3,1,1)^t$. Regiones de decisión opuestas.
 - D) Como los vectores de pesos son de tres dimensiones, la frontera viene dada por la ecuación de un plano en \mathbb{R}^3 .
- 8 D Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de dos clases, A y B. El algoritmo ha alcanzado un nodo t que incluye dos datos: uno de la clase A y otro de la clase B. La impureza de t, $\mathcal{I}(t)$, medida como la entropía de la distribución emprírica de las probabilidades a posteriori de las clases en t, es:
 - A) I(t) < 0.0.
 - B) $0.0 \le \mathcal{I}(t) < 0.5$.
 - C) $0.5 < \mathcal{I}(t) < 1.0$.
 - D) $1.0 \le \mathcal{I}(t)$.
- $\mathcal{I}(t) = -\hat{P}(A \mid t) \log_2 \hat{P}(A \mid t) \hat{P}(B \mid t) \log_2 \hat{P}(B \mid t) = -\frac{1}{2} \log_2 \frac{1}{2} \frac{1}{2} \log_2 \frac{1}{2} = 1$
- 9 D La figura a la derecha muestra una partición de 4 puntos bidimensionales en 2 clústers (representados mediante los símbolos \bullet y \circ). La suma de errores cuadráticos (SEC) de esta partición es $J = \frac{30}{9}$. La transferencia del punto $(2,3)^t$ del clúster \bullet al \circ conduce a un incremento de la SEC, ΔJ , tal que:

- A) $\Delta J > 0$.
- B) $0 \ge \Delta J > -1$.
- C) $-1 \ge \Delta J > -2$.
- D) $-2 \ge \Delta J$ $\Delta J = -\frac{21}{9} = -2.33 \quad (J = \frac{30}{9} \to J = 1)$
- $10 \mid B \mid$ Dos versiones bien conocidas del algoritmo C-medias son la de Duda y Hart (DH) y la "popular". Suponiendo que ambas versiones se aplican a partir de un misma partición inicial, indica cuál de las siguientes afirmaciones sobre sus resultados es cierta:
 - A) Ambas versiones obtendrán la misma partición optimizada.
 - B) La versión DH obtendrá una partición final que no podrá mejorarse mediante la versión popular.
 - C) La versión popular obtendrá una partición final que no podrá mejorarse mediante la versión DH.
 - D) La partición final obtenida mediante la versión DH podrá mejorarse mediante la versión popular, y viceversa.

- 11 A Dado el modelo de Markov M_A de la pregunta 12, la aproximación de Viterbi a la probabilidad exacta que este modelo asigna a la cadena "bba" es:
 - A) 0.003200. $\tilde{P}(bba, q_1q_2q_3 = 111 \mid M_A) = 0.2 \cdot 0.8 \cdot 0.5 \cdot 0.8 \cdot 0.5 \cdot 0.2 \cdot 0.5 = 0.0032$
 - B) 0.004328.
 - C) 0.006400.
 - D) Ninguno de los resultados anteriores es correcto.
- 12 B Se tiene un problema de clasificación en dos clases equiprobables $(A \ y \ B)$ de objetos representados mediante cadenas de símbolos en el alfabeto $\Sigma = \{a, b\}$. Las funciones de probabilidad condicional de las clases vienen caracterizadas por los modelos de Markov:

Por mínima probabilidad de error, la cadena "bba" quedaría clasificada en la clase:

- A) Indistintamente en A ó B ya que las clases son equiprobables.
- B) En la clase A. $\hat{c} = \arg\max_{c} P(c \mid "bba") = \arg\max_{c} P(c)P("bba" \mid c) = \arg\max_{c} P("bba" \mid c)$
- C) En la clase B. $P("bba" \mid A) \approx \tilde{P}("bba" \mid A) = 0.0032 \gg P("bba" \mid B) \approx \tilde{P}("bba" \mid B) = 0.0012 \rightarrow \hat{c} = A$
- D) No se puede determinar ya que M_B no cumple las condiciones de normalización.
- 13 $\boxed{\mathrm{C}}$ Dado el modelo de Markov M_A de la pregunta 12, si aplicamos el algoritmo forward con la cadena "bba", se cumple que:
 - A) $\alpha(q=1, t=3) = \alpha(q=0, t=2) \cdot A_{01} \cdot B_{1a}$
 - B) $\alpha(q=1,t=3) = \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$.
 - C) $\alpha(q=1,t=3) = \alpha(q=0,t=2) \cdot A_{01} \cdot B_{1a} + \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$.
 - D) $\alpha(q=1,t=3) = \alpha(q=0,t=2) \cdot A_{01} \cdot B_{1a} \cdot \alpha(q=1,t=2) \cdot A_{11} \cdot B_{1a}$.
- 14 D Dado el modelo de Markov M_A de la pregunta 12, tras una iteración de re-estimación por Viterbi a partir de las cadenas de entrenamiento "bba" y "ab" se cumple que:
 - A) $\pi_0 = 1$.
 - B) No se produce ningún cambio en el modelo.
 - C) Todas las probabilidades de transición modifican su valor.
 - D) El estado 0 tiene algunas probabilidades de emisión y/o transición nulas.

- El modelo de Markov de conjunto de estados $Q = \{0, 1, F\}$ y alfabeto $\Sigma = \{a, b\}$ estimado mediante una inicialización con una segmentación lineal a partir de las cadenas de entrenamiento "bbaa" y "ab":
 - A) Tiene algunas probabilidades de emisión nulas.
 - B) Cumple que $A_{00} = A_{11}$ y $A_{01} = A_{1F}$.
 - C) Cumple que $\pi_0 = \pi_1$.
 - D) Cumple que $B_{0a} = B_{1a}$.

