Mărime fizică / lege / teoremă / principiu	Formulă de definiție / relație matematică	Semnificații ale mărimilor fizice, unități de măsură în SI
Vectorul viteză medie Vectorul viteză momentană	$\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t}$ $\vec{v} = \frac{\Delta \vec{r}}{\Delta t}, \text{ când } \Delta t \to 0$	$\Delta \vec{r}$: vectorul deplasare (variația vectorului de poziție) Δt : durata (intervalul de timp)
(instantanee)		
Viteza medie (în mișcarea rectilinie)	$v_m = \frac{\Delta x}{\Delta t}$	Δx : deplasare (variația coordonatei x) Δt : durata (intervalul de timp)
Viteza momentană (instantanee) (în mișcarea rectilinie)	$v = \frac{\Delta x}{\Delta t}$, când $\Delta t \to 0$	$\left[v\right]_{SI} = \frac{m}{s}$
Viteză relativă	$\vec{v}_{21} = \vec{v}_2 - \vec{v}_1$	\vec{v}_1, \vec{v}_2 : vitezele a două mobile față de un referențial fix (de exemplu, față de Pământ)
		\vec{v}_{21} : viteza relativă a celui de-al doilea mobil față de primul
Vectorul accelerație medie	$\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t}$	$\Delta \vec{v}$: variația vectorului viteză Δt : durata (intervalul de timp)
Vectorul accelerație momentană (instantanee)	$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$, când $\Delta t \to 0$	
Accelerația medie (în mișcarea rectilinie)	$a_m = \frac{\Delta v}{\Delta t}$	Δv : variația vitezei Δt : durata (intervalul de timp)
Accelerația momentană (instantanee) (în mișcarea rectilinie)	$a = \frac{\Delta v}{\Delta t}$, când $\Delta t \to 0$	$\left[a\right]_{SI} = \frac{\mathrm{m}}{\mathrm{s}^2}$
Mișcare rectilinie uniformă: legea/ecuația mișcării	$x = x_0 + v(t - t_0)$	x_0 : coordonata iniţială, la momentul iniţial, t_0 x : coordonata la momentul t v : viteza mobilului
Mișcare rectilinie uniform variată: legea/ecuația mișcării	$x = x_0 + v_0 (t - t_0) + \frac{a(t - t_0)^2}{2}$	x_0 : coordonata inițială, la momentul inițial, t_0 x : coordonata la momentul t v_0 : viteza inițială, la momentul inițial, t_0 a : accelerația mobilului
Mișcare rectilinie uniform variată: legea/ecuația vitezei	$v = v_0 + a(t - t_0)$	v_0 : viteza inițială, la momentul inițial, t_0 v : viteza la momentul t a : accelerația mobilului

Formule - MECANIC	CA (BAC)	
Mișcare rectilinie uniform variată: ecuația lui Galilei	$v^2 = v_0^2 + 2a(x - x_0)$	v_0 : viteza inițială, la momentul inițial, t_0 , când coordonata mobilului este x_0 . v : viteza finală, momentul t , când coordonata mobilului este x . $x-x_0=\Delta x$: deplasarea mobilului
Principiul fundamental al dinamicii	$\vec{F} = m \cdot \vec{a}$	\vec{F} : vectorul forță (forța rezultantă) $ [F]_{SI} = \frac{\text{kg} \cdot \text{m}}{\text{s}^2} = 1 \text{N (Newton)} $
*Forța de inerție, $\vec{F}_{ m i}$	$\vec{F}_{i} = -m \cdot \vec{a}_{SRN}, F_{i} = m \cdot a_{SRN}$	m : masa corpului a cărui mișcare este studiată în raport cu un Sistem de Referință Neinerțial \vec{a}_{SRN} : accelerația Sistemului de Referință Neinerțial
Principiul acțiunilor reciproce	$\vec{F}_{12} = -\vec{F}_{21}, \ F_{12} = F_{21}$	$ec{F}_{12}$: forța cu care primul corp acționează asupra celui de-al doilea $ec{F}_{21}$: forța cu care al doilea corp acționează asupra primului
Forța de frecare la alunecare, $F_{\rm f}$	$F_{\rm f} = \mu N$	μ : coeficientul de frecare la alunecare (adimensional) N : forța de apăsare normală la suprafața de contact
Unghiul de frecare la alunecare, φ	$tg\varphi = \mu$	φ : unghiul planului înclinat pe care corpul, lăsat liber, alunecă uniform
Legea deformărilor elastice (legea lui Hooke)	$\Delta l = \frac{Fl_0}{ES_0}, \sigma = E \cdot \varepsilon$	$\Delta l: \text{ deformare absolută}$ $F: \text{ forța deformatoare}$ $l_0: \text{ lungimea firului nedeformat}$ $S_0: \text{ aria secțiunii transversale a firului nedeformat}$ $E: \text{ modulul de elasticitate longitudinal / modulul lui Young (constantă de material)}$ $[E]_{SI} = \frac{N}{m^2} = 1 \text{Pa (Pascal)}$ $\varepsilon = \frac{\Delta l}{l_0}: \text{ deformare relativă (adimensională)}$ $\sigma = \frac{F}{S_0}: \text{ efort unitar, } [\sigma]_{SI} = \frac{N}{m^2} = 1 \text{Pa (Pascal)}$
Constanta elastică a unui fir elastic omogen, <i>k</i>	$k = \frac{ES_0}{l_0}$	$\left[k\right]_{\mathrm{SI}} = \frac{\mathrm{N}}{\mathrm{m}}$

nare absolută ntele elastice ale celor <i>n</i> resorturi/fire pate în serie
ntele elastice ale celor <i>n</i> resorturi/fire
pate în serie
•
ntele elastice ale celor n resorturi/fire
pate în paralel
ıl forță
ıl deplasare
l dintre vectorul forță și vectorul deplasare
m = 1J(Joule)
necanic efectuat în intervalul de timp Δt
1W (Watt)
(wait)
ıl forță
l viteză momentană
l dintre vectorul forță și vectorul viteză
i dilitie vectorar rorşa şir vectorar viteza
l planului înclinat
entul de frecare la alunecarea corpului pe
nat
a cinetică
o motontială (amoritatională accelei alori **)
a potențială (gravitațională sau/și elastică)
orpului
orpului
orpului
rația gravitațională
ea la care se află corpul față de nivelul ales
ootențială gravitațională nulă
ta elastică a resortului/firului elastic
1.10.1.1.1.0.7.1
area resortului/firului elastic față de starea

Formule – MECANIC	LA (BAC)	
Teorema variației energiei cinetice	$\Delta E_{ m c} = L_{ m tot}$	$\Delta E_{\rm c}=E_{\rm c2}-E_{\rm c1}$: variația energiei cinetice $L_{\rm tot}$: lucrul mecanic al forței rezultante (lucru mecanic total)
Variația energiei potențiale, în câmp conservativ de forțe	$\Delta E_{\rm p} = -L_{ m conservativ} \Longrightarrow$ $\Delta E_{ m p_grav.} = -L_G$ $\Delta E_{ m p_el.} = -L_{Fe}$	$\Delta E_{\rm p} = E_{\rm p2} - E_{\rm p1}$: variația energiei potențiale (gravitaționale sau elastice) $L_{\rm conservativ}$: lucrul mecanic al forței conservative (greutate/forță elastică)
Variația energiei mecanice	$\Delta E = L_{ m neconservativ}$	$\Delta E = E_2 - E_1$: variația energiei mecanice $L_{\rm neconservativ}$: lucrul mecanic al forțelor neconservative
Legea conservării energiei mecanice	$E = E_{\rm c} + E_{\rm p} = const.$	Energia mecanică a unui sistem fizic izolat, în care acționează numai forțe conservative, rămâne constantă (se conservă).
Impulsul punctului material, \vec{p}	$\vec{p} = m \cdot \vec{v}$	m : masa punctului material \vec{v} : viteza punctului material $[p]_{SI} = \mathbf{N} \cdot \mathbf{s} = \mathbf{kg} \cdot \mathbf{m} \cdot \mathbf{s}^{-1}$
Teorema variației impulsului punctului material	$\Delta \vec{p} = \vec{F} \cdot \Delta t$	$\Delta \vec{p}$: variația impulsului punctului material $\vec{F} \cdot \Delta t = \vec{H}$: impulsul forței rezultante, \vec{F} , care acționează asupra punctului material în intervalul de timp Δt
Legea conservării impulsului punctului material	$\vec{p} = m \cdot \vec{v} = const.$	Impulsul punctului material izolat rămâne constant (se conservă).
Teorema variației impulsului sistemului de puncte materiale	$\Delta \vec{P} = \vec{F}_{ m ext} \cdot \Delta t$	$\Delta \vec{P}$: variația impulsului total al sistemului de puncte materiale $\vec{F}_{\rm ext} \cdot \Delta t = \vec{H}_{\rm ext} : {\rm impulsul} \ {\rm rezultantei} \ {\rm forțelor} \ {\rm externe},$ $\vec{F}_{\rm ext}$, care acționează asupra sistemului de puncte materiale în intervalul de timp Δt
Legea conservării impulsului sistemului de puncte materiale	$\vec{P} = const.$ sau $\vec{P}_{initial} = \vec{P}_{final}$	Impulsul total al sistemului izolat de puncte materiale rămâne constant (se conservă).
Ciocnire plastică: conservarea impulsului	$m_1 \vec{v}_1 + m_2 \vec{v}_2 = (m_1 + m_2) \vec{u}$	$m_1\vec{v}_1, m_2\vec{v}_2$: impulsurile corpurilor imediat înainte de ciocnire $ (m_1 + m_2)\vec{u} : \text{impulsul corpurilor cuplate imediat după ciocnire} $