Feuille 2

Exercice 1.

Déterminer si les séries suivantes sont convergentes

- 1. $\sum_{k\geq 2} \frac{1}{k^2-1}$,
- 2. $\sum_{k\geq 1} \frac{1}{k(k+1)(k+2)}$,
- 3. $\sum_{k>2} \ln\left(1 \frac{1}{k^2}\right)$,
- 4. $\sum_{k\geq 0} \ln\left(\cos\left(\frac{1}{2^k}\right)\right)$.
- 5. $\sum_{n\geq 1} \frac{n^2}{(1+n^2)^2}$,
- 6. $\sum_{n>0} \left(1 + \frac{1}{n}\right)^n e$,
- 7. $\sum_{n\geq 0} \frac{n^2+3n}{n^3+1}$,
- 8. $\sum_{n\geq 0} \frac{(n!)^2}{(2n)!}$,
- 9. $\sum_{n\geq 2} \frac{1+\ln(n)}{n^{\alpha} \ln(n)^{\beta}} \text{ pour } \alpha > 1 \text{ et } \beta \in \mathbb{R},$
- 10. $\sum_{n\geq 1} \frac{(-1)^n \sin(n)}{n \ln(n)^2}$,
- 11. $\sum_{n\geq 0} e^{-n^2}$,
- 12. $\sum_{n\geq 1} \frac{\sum_{k=1}^{n} k}{\sum_{k=1}^{n} k^2}$.

Exercice 2.

- 1. Rappeler pourquoi la série $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n}$ converge. Montrer que sa somme vaut $\ln{(2)}$ (Indication: on pourra calculer $\int_0^1 (-t)^{k-1} dt$).
- 2. Donner un équivalent de $\sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$ (Indication: Comparer avec une integrale).

Exercice 3.

Déterminer si les séries suivantes sont convergentes.

- 1. $\sum_{n\geq 0} \frac{(-1)^n}{3n+2}$,
- 2. $\sum_{n\geq 1} \frac{(-1)^n}{\sqrt{n}}$,
- $3. \sum_{n\geq 1} \frac{\cos\left(\frac{\pi n}{5}\right)}{n},$
- 4. $\sum_{n\geq 2} \frac{(-1)^n \ln(n)}{\sqrt{n}}$,
- 5. $\sum_{n\geq 2} \frac{(-1)^n + 1}{\ln(n)}$,
- 6. $\sum_{n\geq 2} \frac{1}{3+(-1)^n n^2}$.

Exercice 4.

Soit u_n une suite décroissante dont la série converge, montrer que $u_n = o(1/n)$. **Exercice 5.**

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites telles que $\sum u_n^2$ et $\sum v_n^2$ convergent. Montrer que $\sum u_n v_n$ converge.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive telle que $\sum \frac{1}{1+n^2u_n}$ converge. Montrer que $\sum u_n$ diverge.

Exercice 6. Soit (u_n) une suite telle que $u_n \neq 0$ pour presque tout n. On souhaite montrer critère de Raabe: Si pour une certaine constante C > 1 et un certain réel $\varepsilon > 0$ on a

$$\left| \frac{u_{n+1}}{u_n} \right| = 1 - \frac{C}{n} + O(n^{-1-\varepsilon})$$

alors $\sum u_n$ converge absolument.

1. Soit (a_n) et (b_n) des suites de nombres réels strictement positifs. On suppose que pour un certain $N \in \mathbb{N}$ on ait

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n} \quad \text{pour tout} \quad n \geqslant N.$$

Montrer que si $\sum b_n$ converge, alors $\sum a_n$ converge aussi. (Indication: Étudier la suite (a_n/b_n)).

2. Utiliser le critère précédent appliqué aux suites (a_n) et (n^{-s}) , où 1 < s < C, pour montrer le critère de Raabe.

Exercice 7. Dans cet exercice on trouve une suite $(a_n)_{n\in\mathbb{N}}$ et une permutation des nombres naturels $\sigma\colon\mathbb{N}\to\mathbb{N}$ telles que les series $\sum_{n\in\mathbb{N}}a_n, \sum_{n=1}^\infty a_{\sigma(n)}$ convergent mais $\sum_{n=1}^\infty a_n \neq \sum_{n\in\mathbb{N}}a_{\sigma(n)}$.

- 1. Calcular $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$
- 2. Montrer la convergence de $\sum_{n=1}^{\infty} \frac{(-1)^{\sigma(n)+1}}{\sigma(n)} = 1 + \frac{1}{3} \frac{1}{2} + \frac{1}{5} + \frac{1}{7} \frac{1}{4} + \frac{1}{9} + \frac{1}{11} \frac{1}{6} + \dots$ où $\sigma(3m+1) = 4m+1$, $\sigma(3m+2) = 4m+3$ et $\sigma(3m+3) = 2m+2$, pour $m \ge 0$.
- 3. Monter que la limite de la deuxieme serie est strictement plus grande que celle de la premiere. (Indication: Il n'y a pas besoin de calculer la valeur explicite de la deuxieme serie).