Data Structures and Algorithms CSC 201

SK Hafizul Islam

CSE, IIIT Kalyani

April 25, 2020

Agenda

- Circularly Doubly Linked List
 - Insert a Node at the Beginning
 - Insert a Node at the End
 - Delete the First Node
 - Delete the Last Node
- Header Linked Lists
 - Traverse a Circular Header Linked List
 - Search a Node in a Circular Header Linked List
 - Application of Linked Lists
- Sparse Matrix
 - Representation of Structured Sparse Matrices
 - Representation of Unstructured Sparse Matrices

Circularly Doubly Linked List

Figure 1: Circularly Doubly Linked List

- A circular doubly linked list or a circular two-way linked list does not contain NULL
 in the PREV field of the first node and the NEXT field of the last node.
- The NEXT field of the last node stores the address of the first node of the list, i.e.,
 START.
- The **PREV** field of the first field stores the address of the last node.

Insert a Node at the Beginning of a Circular Doubly Linked List

Algorithm 1: INSCDLLFIRST(INFO,PREV,NEXT,START,AVAIL,ITEM)

This algorithm inserts ITEM as first node

1. IF AVAIL = NULL

WRITE: OVERFLOW and Exit.

- 2. NEW:=AVAIL and AVAIL:=NEXT[AVAIL]//GETNODE()
- 3. INFO[NEW]:=ITEM.
- 4. PTR:=PREV[START].
- 5. NEXT[PTR]:=NEW.
- 6. PREV[NEW]:=PTR.
- 7. NEXT[NEW]:=START.
- 8. PREV[START]:=NEW.
- 9. START:=NEW.
- 10. Exit
- Time complexity for doubly linked list of size n: O(1).

4 / 27

Insert a Node at the End of a Circular Doubly Linked List

Algorithm 2: INSCDLLEND(INFO,PREV,NEXT,START,AVAIL,ITEM)

This algorithm inserts ITEM as last node

1. IF AVAIL = NULL

WRITE: OVERFLOW and Exit.

- 2. NEW:=AVAIL and AVAIL:=NEXT[AVAIL]//GETNODE()
- 3. INFO[NEW]:=ITEM.
- 4. PTR:=PREV[START].
- 5. NEXT[PTR]:=NEW.
- 6. PREV[NEW]:=PTR.
- 7. NEXT[NEW]:=START.
- 8. PREV[START]:=NEW.
- 9. Exit
- Time complexity for doubly linked list of size n: O(1).

Delete the First Node from a Circular Doubly Linked List

Algorithm 3: DELCDLLFIRST(INFO,PREV,NEXT,START,AVAIL)

This algorithm deletes the first node from a circular doubly linked list

- 1. IF START = NULL
 - WRITE: UNDERFLOW and Exit.
- 2. PTR:=PREV[START] and SAVE:=START.
- 3. NEXT[PTR]:=NEXT[START].
- 4. PREV[NEXT[START]]:=PTR.
- 5. PREV[START]:=NULL.
- 6. START:=NEXT[START].
- 7. NEXT[SAVE]:=AVAIL and AVAIL:=SAVE.//FREENODE(SAVE)
- 8. Exit
- Time complexity for doubly linked list of size n: O(1).

Delete the Last Node from a Circular Doubly Linked List

Algorithm 4: DELCDLLEND(INFO, PREV, NEXT, START, AVAIL)

This algorithm deletes the last node from a circular doubly linked list

1. IF START = NULL

WRITE: UNDERFLOW and Exit.

- 2. PTR:=PREV[START].
- 3. NEXT[PREV[PTR]]:=START.
- 4. PREV[START]:=PREV[PTR].
- 5. PREV[PTR]:=NULL.
- 6. NEXT[PTR]:=AVAIL and AVAIL:=PTR.//FREENODE(PTR)
- 7. Exit
- Time complexity for doubly linked list of size n: O(1).

Header Linked List

- It is a special kind of linked list that includes a special node, called header node, at the front of the list.
- Here, **START** will point the **header node** not the first node of the list.
 - Grounded header linked list: It stores NULL in the LINK/NEXT field of the last node.
 - LINK[START]= NULL indicates the grounded header linked list is empty.
 - Circular header linked list: It stores the address of the header node in the LINK/NEXT field of the last node. In this case, the header node will denote the end of the list.
 - LINK[START] = START indicates the circular header linked list is empty.

Figure 2: Grounded Header Linked List

Figure 3: Circular Header Linked List

Traverse a Circular Header Linked List

Algorithm 5: TRAVERSECHLL(LIST,START,INFO,LINK)

LIST is a circular header linked list. This algorithm traverses LIST.

- 1. PTR:=LINK[START].
- 2. Repeat Step 3 and Step 4 while PTR≠START
- 3. PRINT: INFO[PTR].
- PTR:=LINK[PTR].
 [End of Loop at Step 2]
- 5. Exit
- Time complexity for circular header linked list of size n: O(n).

Search a Node in a Circular Header Linked List

Algorithm 6: SRCHCHLL(LIST,START,INFO,LINK,ITEM,LOC)

LIST is a circular header linked list. This algorithm find the location LOC of a node ITEM first appear in the LIST.

- 1. PTR:=LINK[START].
- 2. Repeat Step 3 while INFO[PTR]≠ITEM and PTR≠START
- 3. PTR:=LINK[PTR].

[End of Loop at Step 2]

4. If INFO[PTR] = ITEM, then

LOC:=PTR.

Flse

LOC:=NULL.

- 5. Return LOC.
- 6. Exit

Application of Linked Lists: Polynomial Representation

- Header Linked lists can be used to represent polynomials and the different operations that can be performed on them.
- Consider a polynomial $p(x) = 6x^3 + 9x^2 + 7x + 1$.
- Every individual term in p(x) consists of two parts, a coefficient and a exponent. Here, 6, 9, 7, and 1 are the coefficients of the terms that have 3, 2, 1, and 0 as their exponents, respectively.

Figure 4: Header linked representation of a polynomial $p(x) = 6x^3 + 9x^2 + 7x + 1$

Application of Linked Lists: Polynomial Representation

```
struct node
{
  int coeff;
  int expo;
  struct node *link;
};
```

```
struct node *addnode(struct node *start, int c, int n)
struct node *ptr, *newp;
 if(start == NULL)
   newp = (struct node *)malloc(sizeof(struct node));
   newp -> coeff = c;
   newp -> expo = n:
   newp \rightarrow link = NULL;
   start = newp:
 else
   ptr = start:
   while(ptr -> link != NULL)
      ptr = ptr -> link
   newp = (struct node *)malloc(sizeof(struct node)):
   newp -> coeff = c;
   newp -> expo = n;
   newp \rightarrow link = NULL;
   ptr -> link = newp;
  } start; }
```

```
struct node *addheadpol(struct node *start1, struct node *start2, struct node *start3)
 struct node *ptr1, *ptr2;
 int sumcoff:
 start3 = addnode(start3, 0, -1);//Header Node
 ptr1 = start1->link,
 ptr2 = start2->link;
 while(ptr1!= NULL && ptr2!= NULL)
   if(ptr1->expo==ptr2->expo)
      sumcoff = ptr1->coeff + ptr2->coeff:
      start3 = addnode(start3, sumcoff, ptr1->expo);
      ptr1 = ptr1->link;
      ptr2 = ptr2->link:
```

```
else if(ptr1->expo > ptr2->expo)
      start3 = addnode(start3, ptr1->coeff, ptr1->expo);
     ptr1 = ptr1 -> link;
   else if(ptr1->expo<ptr2->expo)
      start3 = addnode(start3, ptr2->coeff, ptr2->expo);
      ptr2 = ptr2 -> link;
if(ptr1 == NULL)
 while(ptr2 != NULL)
   start3 = addnode(start3, ptr2->coeff, ptr2->expo);
   ptr2 = ptr2 -> link;
```

```
if(ptr2 == NULL)
{
  while(ptr1 != NULL)
  {
    start3 = addnode(start3, ptr1->coeff, ptr1->expo);
    ptr1 = ptr1 -> link;
  }
}
return start3;
}
```

• Time Complexity: O(m+n), where m and n are number of nodes in first and second lists, respectively.

Sparse Matrix

- Sparse matrix is a square matrix with a relatively high proportion of zero values¹.
- Rather than store such a matrix as a two-dimensional array with lots of zeroes, a common strategy is to save space by explicitly storing only the non-zero elements.
- If the operations using standard matrix structures and algorithms are applied to sparse matrices, then the execution will slow down and the matrix will consume large amount of memory.
- Sparse data can be easily compressed, which in turn can significantly reduce memory usage.

Structured sparse matrix

- Tridiagonal matrix
- Lower triangular matrix
- Upper triangular matrix

Unstructured sparse matrix

Structured Sparse Matrix

	$\lceil 1 \rceil$	1	0	0	0		
	2	2	8	0	0		
	0	1	3	6	0		
	0	0	2	9	8		
	0	0	0	3	5]		
(a) Tridiagonal matrix							

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & 3 & 0 & 0 & 0 \\ 1 & 3 & 7 & 0 & 0 \\ 3 & 5 & 13 & 9 & 0 \\ 3 & 5 & 13 & 9 & 7 \end{bmatrix}$$
 (b) Lower Triangular matrix

```
\begin{bmatrix} 1 & 1 & 3 & 1 & 2 \\ 0 & 2 & 8 & 4 & 5 \\ 0 & 0 & 3 & 6 & 7 \\ 0 & 0 & 0 & 9 & 8 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix} (c) Upper triangular matrix
```

Figure 5: Different types of structured sparse matrix

Lower Triangular Sparse Matrix

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

- Assume that we want to store the lower-triangular sparse matrix A. Therefore, it would be wastage to store all the zeros (above the main diagonal) of A. We only store non-zero values.
- The number of non-zero values in A is

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Lower Triangular Sparse Matrix

- Assume that B[] is linear array, which will store all the non-zero elements of the matrix A.
- Therefore, $B[1] = a_{11}$, $B[2] = a_{21}$, $B[3] = a_{22}$, $B[4] = a_{31}$, ...
- Assume that $B[i] = a_{jk}$. Therefore, i represents the number of elements in the list up to and including a_{jk} . Now these are

$$1+2+\cdots+(j-1)=\frac{j(j-1)}{2}$$

elements in the row above a_{jk} and there are k elements in the row j up to and including a_{jk} . Accordingly,

$$i = \frac{j(j-1)}{2} + k$$

Representation of Unstructured Sparse Matrices²

• Single linear list in row-major order: Scan the nonzero elements of the sparse matrix in row-major order each nonzero element is represented by a triple (row, column, value) the list of triples may be an array list or a linked list (chain)

	6	0	0	2	0	5	
	4	4	0	0	0	1	
	0	1	0	0	2	0	
	0	0	0	1	1	0	
(a)	Unst	ruct	urec	d 9	spars	56

Row	0	0	0	1	1	1	2	2	3	3
Col	0	3	5	0	1	5	1	4	3	4
Val	6	2	5	4	4	1	1	2	1	1

(b) linear list

Figure 6: Linear list representation of unstructured sparse matrix

matrix

Linked List Representation of Sparse Matrices³

$$A = \begin{bmatrix} 0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 5 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 6 & 0 & 0 \end{bmatrix}$$

Figure 7: Structure of a Node

Figure 8: Linked List Representation

Array of Row Chains Representation of Sparse Matrices⁴

⁴Lecture 11: https://www.cise.ufl.edu/~sahni/cop3530/presentations.htm

Orthogonal List Representation of Sparse Matrices⁵

0	0	3	0	4
0 0 0	0 0	5	7	0
0	0	0	0	0
0	2	6	0	4 0 0 0

Figure 9: Node Structure

Orthogonal List Representation of Sparse Matrices⁶

Figure 10: Row list

Figure 11: Column list

⁶Lecture 11: https://www.cise.ufl.edu/~sahni/cop3530/presentations.htm ←□→←♂→←≧→←≧→←≧→

Orthogonal List Representation of Sparse Matrices⁷

[0	0	3	0	4
0	0 0 0	5	7	0
0	0	0	0	0
0 0 0 0	2	6	0	4 0 0 0 0

Figure 12: Orthogonal List

Thank You