Frühjahr 12 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $f:\mathbb{R}^2\to\mathbb{R}$ zweimal stetig differenzierbar. Beweisen oder widerlegen Sie folgende Aussagen.

- a) $\lim_{|x|\to+\infty} f(x) = 0 \implies f$ nimmt Maximum oder Minimum an.
- b) f beschränkt $\implies f$ nimmt Maximum oder Minimum an.
- c) f beschränkt und $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} = 0 \implies f$ nimmt Maximum und Minimum an.

Hinweis: Bei Teil (c) hilft Funktionentheorie.

Lösungsvorschlag:

a) Diese Aussage ist wahr. Falls f konstant ist, muss $f \equiv 0$ gelten und in (0,0) werden Maximum und Minimum angenommen. Andernfalls gibt es ein $x_0 \in \mathbb{R}^2$ mit $f(x_0) \neq 0$. Falls $f(x_0) > 0$ ist, wird ein Maximum angenommen:

Per Voraussetzung gibt es ein K > 0 mit $|z| > K \implies |f(z)| < f(x_0)$. Auf der kompakten Menge $\{(x,y) \in \mathbb{R}^2 : |(x,y)| \leq K\}$ ist f stetig als zweimal stetig differenzierbare Funktion, nimmt dort also ein Maximum an. Sei $z_0 \in \mathbb{R}^2$ mit $|z_0| \leq K$ eine Stelle, an der das lokale Maximum angenommen wird, also eine Stelle mit $f(x,y) \leq f(z_0)$ für alle $(x,y) \in \{(x,y) \in \mathbb{R}^2 : |(x,y)| \leq K\}$. Insbesondere muss $|x_0| \leq K$ also $f(x_0) \leq f(z_0)$ gelten. Dann folgt für alle $(x,y) \in \{(x,y) \in \mathbb{R}^2 : |(x,y)| > K\}$ ebenfalls $f(x,y) < f(x_0) \leq f(z_0)$, also ist z_0 eine globale Maximalstelle von f.

Ist stattdessen $f(x_0) < 0$, so wird ein Minimum angenommen, was man analog zeigen kann. Stattdessen kann man aber auch g := -f betrachten, was immer noch zweimal stetig differenzierbar ist und $g(x) \to 0$ für $|x| \to \infty$ erfüllt. Also besitzt nach dem bisher gezeigten g ein globales Maximum, das an einer Stelle $y_0 \in \mathbb{R}^2$ angenommen wird. Wegen $g(x,y) \leq g(z_0) \iff f(x,y) \geq f(z_0)$ für alle $(x,y) \in \mathbb{R}^2$ nimmt f in z_0 ein globales Minimum an.

- b) Diese Aussage ist falsch. Die Funktion $f(x,y) := \arctan x$ ist zweimal stetig differenzierbar, beschränkt gegen $\frac{\pi}{2}$, nimmt aber kein Extremum an, weil der Gradient $\nabla f(x,y) = (\frac{1}{1+x^2},0)^{\mathrm{T}}$ nirgends verschwindet.
- c) Diese Aussage ist wahr. Weil f harmonisch ist, gibt es eine Funktion $F: \mathbb{R}^2 \to \mathbb{R}$, sodass g(x+iy):=f(x,y)+iF(x,y) holomorph auf \mathbb{C} ist. Die Funktion $h: \mathbb{C} \to \mathbb{C}$, $h(z):=e^{g(z)}$ ist ebenfalls ganz. Weil f beschränkt ist, gibt es K>0 mit $f(x,y)\leq K$ und folglich ist $|h(z)|=e^{\operatorname{Re} g(z)}\leq e^K$, also ist h beschränkt. Nach dem Satz von Liouville ist h konstant und wegen $0=h'(z)=g'(z)e^{g(z)}$ und $e^{g(z)}\neq 0$ ist auch $g'\equiv 0$ und auch g konstant. Damit ist auch f konstant und f besitzt trivialerweise Maximum und Minimum in (0,0).

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$