Arabic (SYR)

الهيروغليفية

يدرس فريق من العلماء التشابه بين سلاسل من الأحرف الهيروغريفية. سيتم تمثيل كل حرف هيروغريفي بعدد صحيح غير سالب. ولكي يقوموا بدراستهم سيستخدمون المفاهيم التالية حول السلاسل:

S من أجل سلسلة محددة A نقول عن السلسلة S أنها سلسلة جزئية من A إذا وفقط إذا كان يمكن الحصول على عن طريق حذف بعض العناصر (من الممكن عدم حذف شيء) من A.

A = [3,2,1,2] يوضح الجدول أدناه بعض الأمثلة عن السلاسل الجزئية من السلسلة

سلسلة جزئية	كيف يمكن الحصول عليها من A	
[3, 2, 1, 2]	لم يتم حذف أي عنصر.	
[2, 1, 2]	[3 , 2, 1, 2]	
[3, 2, 2]	[3, 2, 1 , 2]	
[3, 2]	[3, 2 , 1 , 2] or [3, 2, 1 , 2]	
[3]	[3, 2 , 1 , 2]	
[]	[3 , 2 , 1 , 2]	

A من جهة أخرى، [3,3] أو [1,3] ليست سلاسل جزئية من

B و A و B و S أنها سلسلة جزئية مشتركة ل A و B و B . نقول عن السلسلة S أنها سلسلة جزئية مشتركة ل B أنها سلسلة D أنها سلسلة D أنها سلسلة D أنها سلسلة D أنها سلسلة جزئية مشتركة شاملة إذا وفقط إذا تحقق الشرطان التاليان:

- B هې سلسلة جزئية مشتركة من A و U •
- .U كل السلاسل الجزئية المشتركة للسلسلتين A و B هي سلسلة جزئية أيضاً من ullet

. يمكن إثبات أن أي سلسلتين A و B سيكون لهما سلسلة جزئية مشتركة شاملة واحدة على الأكثر

وجد الباحثون سلسلتين من الأحرف الهيروغريفية A و B السلسلة A مكونة من N حرفاً، والسلسلة B مكونة من M حرفاً. ساعد الباحثين على حساب السلسلة الجزئية المشتركة الشاملة للسلسلتين A و B أو تحديد أنه لا يوجد هكذا سلسلة.

تفاصيل البرمجة

يجب عليك برمجة التابع التالي.

std::vector<int> ucs(std::vector<int> A, std::vector<int> B)

- مصفوفة بطول N تصف السلسلة الأولى. $\cdot A$
- مصفوفة بطول M تصف السلسلة الثانية. $\cdot B$
- إذا كان هناك سلسلة جزئية مشتركة شاملة ل A و B، يجب على التابع أن يعيد مصفوفة تحوي هذه السلسلة. وإلا، يجب على التابع أن يعيد [-1] (أي مصفوفة طولها 1، تحوي عنصر وحيد هو -1).
 - يتم استدعاء هذا التابع مرة واحدة بالنسبة لكل حالة اختبار.

القيود

- $1 \le N \le 100\,000$ •
- $1 \le M \le 100\,000$ •
- $0 \leq i < N$ من أجل كل i حيث أن $0 \leq A[i] \leq 200\,000$ •
- $0 \leq j < M$ من أجل كل j حيث أن $0 \leq B[j] \leq 200\,000$ •

المسائل الجزئية

المسألة الجزئية	العلامة	القيود الإضافية
1	3	N=M; مكونة من N عدداً صحيحاً مختلفاً بين 0 و $N-1$ و كلا من A و الطرفين)
2	15	من أجل أي عدد صحيح k , عدد العناصر من A والتي تساوي k بالإضافة إلى عدد 3 . العناصر من B والتي تساوي k هو على الأكثر
3	10	$A[i] \leq 1$ من أجل كل j حيث أن $B[j] \leq 1$; $0 \leq i < N$ من أجل كل i حيث أن $0 \leq j < M$
4	16	من المؤكد وجود سلسلة جزئية مشتركة شاملة لـ B .
5	14	$N \leq 3000$; $M \leq 3000$
6	42	.لا يوجد قيود إضافية

الأمثلة

المثال 1

ليكن لدينا الاستدعاء التالي.

```
ucs([0, 0, 1, 0, 1, 2], [2, 0, 1, 0, 2])
```

هنا، السلاسل الجزئية المشتركة لـ A و B هي التالي: $[\]$, $[\]$

حيث أن [0,1,0,2] هي سلسلة جزئية مشتركة لـ A و B و كل السلاسل الجزئية المشتركة لـ A و B هي سلاسل جزئية مشتركة لـ [0,1,0,2] ، يجب على التابع أن يعيد [0,1,0,2].

المثال 2

ليكن لدينا الاستدعاء التالي.

```
ucs([0, 0, 2], [1, 1])
```

هنا، السلسلة الجزئية المشتركة الوحيدة لـ A و B هي السلسلة الفارغة $[\,]$. هذا يعني، أنه يجب على التابع أن يعيد مصفوفة فارغة $[\,]$.

المثال 3

ليكن لدينا الاستدعاء التالي.

```
ucs([0, 1, 0], [1, 0, 1])
```

هنا، السلاسل الجزئية المشتركة لـ A و B هي [0,1],[0],[1],[0] و [0,1]. يمكنك استنتاج أنه لا يوجد سلسلة جزئية مشتركة شاملة، وبالتالي يجب على التابع أن يعيد [-1].

Sample Grader

:Input format

```
N M
A[0] A[1] ... A[N-1]
B[0] B[1] ... B[M-1]
```

:Output format

```
T
R[0] R[1] ... R[T-1]
```

.Here, R is the array returned by ucs and T is its length