Math 611 Homework 5

Paul Hacking

October 17, 2013

Reading: Dummit and Foote, Chapter 8. Justify your answers carefully.

- (1) Let R be an integral domain and $a, b \in R$. Recall that we say a and b are associates if a divides b and b divides a. Show that the following are equivalent.
 - (a) a and b are associates.
 - (b) The principal ideals generated by a and b are equal: (a) = (b).
 - (c) a = ub where $u \in R$ is a unit.
- (2) Let $d \in \mathbb{N}$ be a positive integer, and consider the subring

$$R = \mathbb{Z}[\sqrt{-d}] := \{a + b\sqrt{-d} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

Define the norm $N: R \to \mathbb{Z}_{\geq 0}$ as follows: for $\alpha = a + b\sqrt{-d} \in R$,

$$N(\alpha) = \alpha \bar{\alpha} = |\alpha|^2 = a^2 + db^2.$$

- (a) Show that the norm is multiplicative: $N(\alpha\beta) = N(\alpha)N(\beta)$.
- (b) Show that $\alpha \in R$ is a unit iff $N(\alpha) = 1$.
- (c) Determine the units in R for each d.
- (3) Prove that $\mathbb{Z}[\sqrt{-2}]$ is a unique factorization domain (UFD).
- (4) Prove that $\mathbb{Z}[\sqrt{-7}]$ is not a UFD.
- (5) Exhibit an ideal $I \subset \mathbb{Z}[\sqrt{-5}]$ which is not principal.

(6) Let $d \in \mathbb{N}$, $d \equiv 3 \mod 4$. Let

$$R = \mathbb{Z}[(1 + \sqrt{-d})/2] := \{a + b((1 + \sqrt{-d})/2) \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

- (a) Show that $R \subset \mathbb{C}$ is a subring.
- (b) Determine the units of R.
- (c) Show that if d = 3 then R is a UFD.
- (7) Let R be an integral domain.
 - (a) Let $a, b \in R$. Show that a divides b iff $(b) \subset (a)$.
 - (b) Let $a \in R$ be an irreducible element. Show that if R is a principal ideal domain (PID) then R/(a) is a field.
 - (c) Using part (b) or otherwise, prove that $\mathbb{Z}[x]$ and $\mathbb{C}[x,y]$ are not PIDs.
- (8) Prove that there are infinitely many prime elements in $\mathbb{F}_p[x]$.
- (9) Let $R = \mathbb{C}[t]$ and $S \subset R$ the subset of polynomials

$$f(t) = a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n$$

such that $a_1 = 0$ (equivalently, f'(t) = 0).

- (a) Prove that $S \subset R$ is a subring.
- (b) Show that S is not a UFD.