Redes de computadores

Camada de transporte

Prof. Luís Eduardo Tenório Silva luis.silva@garanhuns.ifpe.edu.br

Estimativa de RTT

- RTT (Round trip time): Tempo de ida e volta de um pacote;
- TCP utiliza um mecanismo de controle de temporização para retransmissão de dados;
 - » Tempo de retransmissão deverá ser superior ao RTT;
- Tempo de retransmissão de dados é estimado baseado na média de RTTs de cada segmento não repetido (SampleRTT);
- A média é utilizada para remover variações decorrente de atrasos nos sistemas intermediários
- Fórmula para estimar RTT (RFC 6298):
 - » EstimatedRTT = (1α) EstimatedRTT + α SampleRTT
 - » Onde:
 - $\alpha = 0.125 \text{ (ou } 1/8)$

Estimativa de RTT

Retransmissão de reconhecimento perdido

Atraso no reconhecimento

Reconhecimento cumulativo

Controle de fluxo

- Evita estouro de buffer do destinatário pelo grande fluxo de dados que chega em uma conexão TCP;
 - » Compatibiliza velocidade de envio do remetente com a capacidade de leitura do destinatário (velocidade de consumo);
- Utiliza o campo janela de recepção do cabeçalho TCP;
 - » Dar ao remetente a ideia da quantidade de buffer livre no destinatário;

Controle de fluxo

- Destinatário mantém as variáveis:
 - » LastByteRead: Último byte lido pela aplicação;
 - » LastByteRcvd: Último byte recebido pela aplicação;
 - » RcvBuffer: Tamanho do buffer de recepção;
 - » RcvBuffer >= LastByteRcvd LastByteRead
 - Não sobrecarregar o buffer
- O tamanho da janela (RcvWindow) é definido por:
 - » RcvWindow = RcvBuffer (LastByteRcvd LastByteRead)
 - · Próximo de 0, pouco espaço no buffer do destinatário.

Controle de fluxo

Controle de congestionamento

- Evita o congestionamento da rede percebido, limitando a taxa à qual os sistemas finais encaminham os segmentos;
 - » Modificação do valor de janela de congestionamento.
- Como identificar o congestionamento?
 - » Perda de segmentos: Esgotamento do temporizador (timeout);
 - » Atrasos: Recebimento de 3 ACKs duplicados.
- Como determinar a taxa de envido do TCP?
 - » Algoritmo de controle de congestionamento TCP
 - Partida lenta;
 - Prevenção de congestionamento;
 - Recuperação rápida;

Partida lenta

- O valor da janela(*cwnd*) começa em 1 MSS;
- Aumenta em 1 MSS sempre que recebe um reconhecimento;
- A taxa de envio cresce exponencialmente;

Partida lenta

- Perda de segmento:
 - » define um limiar (ssthresh)com a metade do cwnd
 - » cwnd == 1MSS;
- Quando o cwnd == ssthresh
 - » Finaliza o modo de partida lenta
 - » Inicia o modo de prevenção de congestionamento;

Prevenção de congestionamento

- Aumento linear do cwnd;
- Timeout
 - » ssthresh == cwnd / 2
 - » cwnd == 1MSS;
 - » Volta ao modo de partida lenta.
- 3 ACK duplicados
 - » cwnd == cwnd / 2
 - » Inicia o modo de recuperação rápida;

Recuperação rápida

 3 ACKs duplicados determina uma perda (e não atraso nos pacotes).

Ação:

- » Não aguarda o timeout e já reenvia o segmento perdido;
- » cwnd == cwnd / 2;
- » Aumento linear do cwnd (prevenção de congestionamento);

Timeout

- » ssthresh == cwnd / 2;
- » cwnd == 1MSS;
- » Volta ao modo de partida lenta.

Sem ACK duplicado

- » cwnd == ssthresh;
- » Inicia o modo de prevenção de congestionamento;

Recuperação rápida

Visão macro da vazão do TCP

Variantes do TCP

Tahoe

- » Base para outras variantes;
- » Qualquer tipo de perda volta à partida lenta.

Reno

» Usa partida lenta, prevenção de congestionamento e recuperação rápida.

Vegas

» Detecta congestionamento através da variação de atraso em vez de perdas de pacotes.

New Reno

- » Evolução do RENO;
- Introduz o recurso de Reconhecimento seletivo para recuperação mais precisa.

Variantes do TCP

Westwood

» Melhora desempenho em redes sem fio, onde há mais perdas de pacotes.

BBR (Bottleneck Bandwidth and RTT)

- » Desenvolvido pelo Google;
- » Baseado em estimativas de largura de banda e RTT.

Referências

Capítulo 3 do Livro do Kurose.

Dúvidas?