Отчет о выполнении работы №2.1.1.

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2022

1 Аннотация

В работе измеряется повышение температуры воздуха в зависимоти от мощности подводимого тепла и расхода при стационарном течении через трубу. После исключения тепловых потерь по результатам измерений определяется теплоемкость воздуха при постоянном давлении.

2 Теоретические сведения

Уравнение теплоемкости тела для какого-то процесса имеет вид:

$$C = \frac{\delta Q}{dT},\tag{1}$$

где C — теплоемкость тела, δQ — количество теплоты, полученное телом, dT — изменение температуры тела. В нашем же случае в качестве тела выступает воздух, а нагрев недостаточен для того, чтобы привести к значительному увеличению давления. Следовательно, в опыте измеряется теплоемкость воздуха при постоянном давлении.

Удельная же теплоемкость определятеся по следующей формуле:

$$c_p = \frac{N - N_{\text{пот}}}{q\Delta T},\tag{2}$$

где c_p — удельная теплоемкость воздуха при постоянном давлении, N и $N_{\text{пот}}$ — мощности нагрева и потерь соответственно, q — массовый расход воздуха, а ΔT — изменение температуры воздуха до и после нагрева. Изменение температуры найдем по формуле:

$$\varepsilon = \beta \Delta T \quad \Rightarrow \quad \Delta T = \frac{\varepsilon}{\beta},$$
 (3)

где ε – Э. Д. С., образовавшаяся на концах термопары, а $\beta=40,7~\frac{\text{мкB}}{\circ C}$ – чувствительность термопары при рабочем диапазоне температур (20 – 30 °C).

Расход воздуха найдем по формуле:

$$q = \rho \frac{\Delta V}{\Delta t},\tag{4}$$

где Δt – время, за которое некоторый объем ΔV прошел через нагреватель, а ρ – плотность воздуха, которую можно получить путем сложения плотности сухого воздуха $\rho_0 = \frac{\mu P}{RT}$, где P – атмосферное давление, T – температура воздуха, $\mu = 29, 0 \frac{\Gamma}{\text{моль}}$ – средняя молярная масса сухого воздуха; и абсолютной влажности воды $\rho_{\rm B} = \phi \rho_{\rm max}$, где ϕ – относительная влажность, $\rho_{\rm max}$ – максимальная влажность воздуха при данной температуре воздуха: $\rho = \rho_0 + \rho_{\rm B}$.

Предполагая, что в условиях, когда $\Delta T << T$, зависимость мощности

потерь $N_{\text{пот}}$ от изменения температуры ΔT можно считать линейной, получаем:

$$N_{\text{пот}} = \alpha \Delta T, \tag{5}$$

где α – некоторая константа.

Поскольку вся электрическая мощность нагревателя расходуется на нагрев проходящего воздуха и на потери, справедливо следующее уравнение:

$$N = c_p q \Delta T + N_{\text{not}} = (c_p q + \alpha) \Delta T \tag{6}$$

Отсюда можно получить c_n :

$$c_p = \frac{N/\Delta T - \alpha}{q} \tag{7}$$

3 Оборудование

В работе используются: теплоизолированная стеклянная трубка; электронагреватель; источник питания постоянного тока; амперметр; вольтметр; термопара, подключенная к микровольтметру; компрессор; газовый счётчик; секундомер.

4 Результаты измерений и и обработка данных

4.1 Измерение температуры, давления и влажности

Измерим температуру воздуха и его влажность, используя термометры психрометра.

$$T = 24.2 \, ^{\circ}C \pm 0.2 \, ^{\circ}C = 297.2 \, \text{K} \pm 0.2 \, \text{K}$$

$$\phi = 48\% \pm 2\%$$

Измерим давление при помощи цифрового барометра.

$$P_a = 734, 6$$
 мм рт. ст. $\pm 0, 1$ мм рт. ст. $= 9, 77 \cdot 10^4 \text{ Па} \pm 0, 01 \cdot 10^4 \text{ Па}$

Найдем плотность воздуха в комнате.

•
$$\rho_0 = \frac{\mu P_a}{RT} = \frac{29 \cdot 9.77 \cdot 10^4}{8.31 \cdot 297.2} = 1.15 \cdot 10^3 \frac{\Gamma}{M^3} = 1.15 \frac{K\Gamma}{M^3}$$

$$\bullet \ \Delta \rho_0 = \frac{\mu}{R} \cdot \frac{P_a \Delta T + T \Delta P_a}{T^2} = \frac{29}{8,31} \cdot \frac{9,77 \cdot 10^4 \cdot 0,2 + 297,2 \cdot 0,01 \cdot 10^4}{297,2^2} = 2 \frac{\Gamma}{M^3}$$

•
$$\rho_{\rm B} = \phi \rho_{\rm max} = 0.48 \cdot 20.57 = 9.87 \frac{\Gamma}{M^3} = 0.01 \frac{{\rm KF}}{M^3}$$

•
$$\Delta \rho_{\text{B}} = \rho_{\text{max}} \Delta \phi = 0,02 \cdot 20,57 = 0,4 \frac{\Gamma}{\text{M}^3}$$

•
$$\rho = \rho_0 + \rho_B = 1,15+0,01=1,16 \frac{K\Gamma}{M^3}$$

•
$$\Delta \rho = \Delta \rho_0 + \Delta \rho_B = 2,4 \frac{\Gamma}{M^3}$$

Погрешность вычисления плотности воздуха оказалась незначительной по сравнению с интересующим нас порядком величины, поэтому в дальнейших расчетах учитываться не будет.

4.2 Первая серия измерений, с максимальным расходом воздуха

4.2.1 Измерение расхода воздуха

Измерения расхода произведем путем измерения времени, за которое через счетчик пройдет 5 л воздуха.

За погрешность измерения времени будем считать среднюю скорость реакции человека -0.3 с.

Погрешностью измерения объема будем считать 0,1 л – цену деления счетчика.

Результаты занесем в таблицу 1.

В нее же занесем расход воздуха, вычесленный по формуле (1), и с погрешностью, вычесленной по следующей формуле: $\Delta q = \rho \frac{V \Delta t}{t^2}$.

$N_{\overline{0}}$	Время t , с	Расход $q, \cdot 10^{-2} \frac{\Gamma}{c}$
1	$24,7 \pm 0,3$	$23, 4 \pm 0, 3$
2	$25, 3 \pm 0, 3$	$22,8 \pm 0,3$
3	$25, 1 \pm 0, 3$	$23,0 \pm 0,3$
4	$25, 1 \pm 0, 3$	$23,0 \pm 0,3$
5	$25, 1 \pm 0, 3$	$23,0 \pm 0,3$

Таблица 1: Результаты изменения расхода воздуха в установке в первой серии измерений.

Средний расход: $\overline{q_1}=0,231\ \frac{\Gamma}{c}$. Ошибка среднего: $\sigma_{\overline{q_1}}=\pm 0,001\ \frac{\Gamma}{c}$. Таким образом, $q_1=0,231\pm 0,001\ \frac{\Gamma}{c}$

4.2.2 Изменение изменения температуры

Произведем измерение изменения температуры при различных мощностях нагревателя.

Результаты занесем в таблицу 2.

Nº	Ток через	Напряжение	Мощность
	нагреватель, мА	на нагревателе V , В	нагревателя N , Вт
1	$166, 5 \pm 0, 1$	$5,91 \pm 0,01$	984 ± 2
2	$143, 3 \pm 0, 1$	$5,07 \pm 0,01$	726 ± 2
3	$171,7\pm0,1$	$6,08 \pm 0,01$	1044 ± 2
4	$153, 8 \pm 0, 1$	$5,45 \pm 0,01$	838 ± 2
5	$129, 1 \pm 0, 1$	$4,57\pm0,01$	590 ± 2
No	Сопротивление	ЭДС	Разность
	нагревателя R , Ом	термопары ϵ , мкВ	температур ΔT , К
1	$35, 5 \pm 0, 1$	144 ± 1	$3,53 \pm 0,02$
2	$35, 4 \pm 0, 1$	107 ± 1	$2,63 \pm 0,02$
3	$35, 4 \pm 0, 1$	149 ± 1	$3,66 \pm 0,02$
$\parallel 4$	$35, 4 \pm 0, 1$	123 ± 1	$3,02 \pm 0,02$
5	$35, 4 \pm 0, 1$	90 ± 1	$2,21 \pm 0,02$

Таблица 2: Результаты изменения мощности нагревателя и ЭДС термопары в первой серии измерений.

В качестве погрешностей измерения тока, ЭДС термопары и напряжения указанны не инструментальные погрешности, а погрешности сокращения величин, так как инструментальные погрешности значительно менее существенны. То же самое касается и погрешности измерения сопротивления.

4.3 Вторая серия измерений

Уменьшим расход воздуха и повторим измерения.

4.3.1 Расход воздуха

Занесем результаты в таблицу 3.

Nº	Время t , с	Расход $q, \cdot 10^{-2} \frac{\Gamma}{c}$
1	$36,5 \pm 0,3$	$15,82 \pm 0,02$
2	$36, 3 \pm 0, 3$	$15,89 \pm 0,02$
3	$36,5 \pm 0,3$	$15,83 \pm 0,02$
4	$36,5 \pm 0,3$	$15,81 \pm 0,02$

 Таблица 3: Результаты изменения расхода воздуха в установке во второй серии измерений.

Средний расход: $\overline{q_2} = 0,158 \frac{\Gamma}{c}$. Ошибка среднего: $\sigma_{\overline{q_2}} = \pm 0,0002 \frac{\Gamma}{c}$.

Ошибка среднего оказалась меньше интереующего нас порядка, в дал-

нейших вычислениях использоваться будет погрешность округления, равная $0,001~{\rm \frac{r}{c}}$. Таким образом, $q_2=0,158\pm0,001{\rm \frac{r}{c}}$.

4.3.2 Изменение изменения температуры

Результаты занесем в таблицу 4.

№	Ток через	Напряжение	Мощность
	нагреватель I , м A	на нагревателе V , В	нагревателя N , Вт
1	$121, 1 \pm 0, 1$	$4,30 \pm 0,01$	521 ± 2
2	$161, 3 \pm 0, 1$	$5,73 \pm 0,01$	924 ± 2
3	$176, 1 \pm 0, 1$	$6,24 \pm 0,01$	1098 ± 2
$\parallel 4$	$143, 7 \pm 0, 1$	$5,09 \pm 0,01$	732 ± 2
5	$134, 6 \pm 0, 1$	$4,76 \pm 0,01$	642 ± 2
Nº	Сопротивление	ЭДС	Разность
	нагревателя R , Ом	термопары ϵ , мкВ	температур ΔT , К
1	$35, 5 \pm 0, 1$	103 ± 1	$2,53 \pm 0,02$
2	$35, 5 \pm 0, 1$	185 ± 1	$4,54 \pm 0,02$
3	$35, 4 \pm 0, 1$	222 ± 1	$5,45 \pm 0,02$
$\parallel 4$	$35, 4 \pm 0, 1$	156 ± 1	$3,83 \pm 0,02$
5	$35, 4 \pm 0, 1$	136 ± 1	$3,34 \pm 0,02$

Таблица 4: Результаты изменения мощности нагревателя и ЭДС термопары во второй серии измерений.

В качестве погрешностей измерения тока, ЭДС термопары и напряжения указанны не инструментальные погрешности, а погрешности сокращения величин, так как инструментальные погрешности значительно менее существенны. То же самое касается и погрешности измерения сопротивления.

4.4 Третья серия измерений

Увеличим расход воздуха и повторим измерения.

4.4.1 Расход воздуха

Занесем данные в таблицу 5.

Средний расход: $\overline{q_3} = 0,207 \frac{\Gamma}{c}$.

Ошибка среднего: $\sigma_{\overline{q_3}} = \pm 0,0003 \frac{\Gamma}{c}$.

Ошибка среднего оказалась меньше интереующего нас порядка, в далнейших вычислениях использоваться будет погрешность округления, равная $0,001\frac{\Gamma}{c}$. Таким образом, $q_3=0,207\pm0,001\frac{\Gamma}{c}$.

	Nº	Время t , с	Расход $q, \cdot 10^{-2} \frac{\Gamma}{c}$
ĺ	1	$27,8 \pm 0,3$	$20,8 \pm 0,2$
ĺ	2	$27,9 \pm 0,3$	$20,7 \pm 0,2$
	3	$27,85 \pm 0,3$	$20,7 \pm 0,2$
	4	$28,95 \pm 0,3$	$20,6 \pm 0,2$

Таблица 5: Результаты изменения расхода воздуха в установке в третей серии измерений.

4.4.2 Изменение изменения температуры

Результаты занесем в таблицу 6.

No	Ток через	Напряжение	Мощность
	нагреватель I , м A	на нагревателе V , В	нагревателя N , Вт
1	$131, 6 \pm 0, 1$	$4,60 \pm 0,01$	605 ± 2
2	$153, 9 \pm 0, 1$	$5,40 \pm 0,01$	831 ± 2
3	$166,75 \pm 0,1$	$5,89 \pm 0,01$	981 ± 2
$\parallel 4$	$177, 5 \pm 0, 1$	$6,27 \pm 0,01$	1112 ± 3
5	$140, 0 \pm 0, 1$	$4,94 \pm 0,01$	691 ± 2
Nº	Сопротивление	ЭДС	Разность
	нагревателя R , Ом	термопары ϵ , мкВ	температур ΔT , К
1	$35,0 \pm 0,1$	87 ± 1	$2,14 \pm 0,02$
2	$35, 1 \pm 0, 1$	120 ± 1	$2,95 \pm 0,02$
3	$35, 3 \pm 0, 1$	146 ± 1	$3,59 \pm 0,02$
$\parallel 4$	$35, 3 \pm 0, 1$	171 ± 1	$4,20 \pm 0,02$
5	$35, 3 \pm 0, 1$	110 ± 1	$2,70 \pm 0,02$

Таблица 6: Результаты изменения мощности нагревателя и ЭДС термопары в третьей серии измерений.

В качестве погрешностей измерения тока, ЭДС термопары и напряжения указанны не инструментальные погрешности, а погрешности сокращения величин, так как инструментальные погрешности значительно менее существенны. То же самое касается и погрешности измерения сопротивления.

4.5 Обработка данных

4.5.1 Зависимости разности температур от мощности нагревателя

Построим графики зависимоти нагрева воздуха от мощности нагревателя. Аппроксимируем зависимость прямой y=kx, и найдем коэффицент

k. График для первой серии измерений изображен на рисунке 1, для второй серии — на рисунке 2, для третей серии — на рисунке 3.

 $k_1 = 0,00359 \pm 0,00003 \frac{K}{BT}$.

Рисунок 1: График зависимоти нагрева воздуха от мощности нагревателя в первой серии измерений.

 $k_2 = 0,00502 \pm 0,00006 \frac{\text{K}}{\text{Bt}}.$

Рисунок 2: График зависимоти нагрева воздуха от мощности нагревателя во второй серии измерений.

 $k_3 = 0,00370 \pm 0,00006 \frac{K}{BT}$.

Рисунок 3: График зависимоти нагрева воздуха от мощности нагревателя в третьей серии измерений.

4.5.2 Анализ зависимости угла наклона графиков от расхода воздуха

Занесем результаты измерения расхода воды q и вычисления соответствующего коэффицента k в таблицу 7.

Nº	Расход $q, \cdot 10^{-2} \frac{\Gamma}{c}$	Коэффицент $k, \cdot 10^{-3} \frac{K}{BT}$	Величина $\frac{1}{k}, \frac{\mathrm{Br}}{\mathrm{K}}$
1	$23, 1 \pm 0, 3$	$3,57 \pm 0,03$	279 ± 2
$\parallel 2$	$15,8 \pm 0,1$	$5,02 \pm 0,06$	199 ± 2
3	$20,7 \pm 0,1$	$3,70 \pm 0,06$	271 ± 4

Таблица 7: Результаты измерения расхода воды q и вычисления соответствующего коэффицента k, а также величины $\frac{1}{k}$.

Посколку теоретическая зависимость величины 1/k от расхода воздуха – линейная, построим график зависимости $\frac{1}{k}$ от q. Построим на основе этих данных график 4.

Рисунок 4: График зависимоти коэффицента k от расхода воды.

4.5.3 Вычисление удельной теплоемкости воздуха при постоянном давлении и коэффицента тепловых потерь

Аппроксимация по трем значениям будет крайне неточной, но за неимением более точных способов найти коэффиценты c_p и α уравнения $\frac{1}{k}$ =

$$lpha + c_p q$$
, воспользуемся им.
$$c_p = 1,15 \ \cdot \ 10^4 \pm 0,3 \ \cdot \ 10^4 \ {{\rm \frac{{\it Дж}}{{\rm r} \cdot {\rm K}}}}.$$
 $lpha = 21 \pm 7 \ {{\rm \frac{{\it Br}}{{\rm K}}}}.$

Таким образом, чтобы найти отношение $\frac{N_{\rm nor}}{N}$, нужно разделить α на $\frac{1}{k}$. Занесем результаты измерений в таблицу 8.

N⁰	Величина $\frac{1}{k}, \frac{\mathrm{Br}}{\mathrm{K}}$	Коэффицент тепловых потерь $\frac{N_{\text{пот}}}{N}, \%$
1	279 ± 2	$6,64 \pm 2,26$
2	199 ± 2	$10,6 \pm 3,64$
3	271 ± 4	$7,75\pm2,70$

Таблица 8: Результаты вычисления коэффицента тепловых потерь.