Réaction acide base et de précipitation

#chapitre12 #chimie

Définitions

Acide

Espèce capable de céder un proton H^+ .

Base

Espèce capable de capter un proton H^+ .

Couple acide - base

$$AH/A^-: egin{cases} AH = A^- + H^+ \ AH + H_2O = A^- + H_3O^+ \end{cases}$$

• AH: acide

ullet A^- : base

Cas de l'eau

 H^+/H_2O , H_2O/HO^-

pH

$$pH = -\log[H^+]$$

Constante d'acidité Ka

La constante d'équilibre de la réaction entre l'acide étudie et l'eau.

$$ullet \ AH+H_2O=A^-+H^+ \quad \longrightarrow \quad Ka=rac{[A^-][H^+]}{[AH]}$$

•
$$pKa = -\log(Ka)$$

Produit ionique de l'eau

$$H_2O = H^+ + HO^-$$

- $Ka(H_2O/HO^-) = [H^+][HO^-] = Ke$
- $pH + pOH = pK_e$
- $Ke = 10^{-14} \Rightarrow pKe = 14$

Quelque valeurs de référence

- pH = 7: Solution neutre.
- pH < 7: Solution acide car $[H^+] > [HO^-]$.
- pH > 7: Solution basique car $[H^+] < [HO^-]$.

Diagrammes de prédominance et courbes de distribution

•
$$pKa = pH - \log\left(\frac{[A^-]}{AH}\right)$$

ullet Au point du croissement des courbes, $[AH]=[A^-],\quad pH=pKa$

Forces d'une acide ou d'une base

D'autant plus forte qu'elle cède / capte des protons.

Acide forte

Dissociation en sa base et un proton totale.

• pKa < 0

Base forte

Capte les protons de manière totale.

• pKa > 14

Réactions acido-basiques

Prévision du sens

L'acide le plus forte réagit avec la base la plus forte.

ullet On a les couples : AH_1/A_1^- et AH_2/A_2^-

• La réaction : $A_1H+A_2^-
ightleftharpoons A_1^- + AH_2$

Réaction totale

• Règle du gamma

Réaction limité

Gamma inversé

Calcule du pH

- Conservation de la masse.
- Conservation de la charge.
- Equilibres des réactions susceptibles de se produire

Réaction de précipitation et de dissolution

Précipité

C'st une solide en équilibre avec la phase aqueuse, forme par une réaction de précipitation.

Déclenché par :

- Modification de la température.
- Mélange de deux solution qui contiennent une espèce formant.

Equilibre de dissolution de $A_pB_{q\ (s)}$

$$A_{p}B_{q\;(s)}=pA_{(aq)}^{n+}+qB_{(aq)}^{m-}$$

Produit de solubilité

- c'est la constante d'équilibre de une réaction de dissolution.
- $\bullet \ \ Ks=[A^{n+}]^p[B^{m-}]^q$
- $pKs = -\log(Ks)$

Condition de précipitation

$$Q_0 = [A^{n+}]_0^p [B^{m-}]_0^q$$

Si
$$Q_0 < Ks$$
:

Evolution sens directe, formation des ions.

- Si il y a consommation totale du solide \Rightarrow pas d'équilibre : $Q_f \neq Ks$.
- ullet Si il y a du solide dans la solution finale \Rightarrow équilibre : $Q_f = Ks$

Si
$$Q_0 > Ks$$
:

Evolution sens indirecte, précipitation.

• Etat d'équilibre donc $Q_f = Ks$.

Diagramme d'existence

L'existence du solide dépend uniquement des concentrations des espèces dissoutes à une température donné.

• Le diagramme de $A_pB_{q\,(s)}$ traduit la présence ou absence du solide en fonction de $pA=-\log[A^{n+}]$ ou $pB=-\log[B^{m-}]$

Solubilité

Notée s en $mol \cdot L^{-1}$ ou $g \cdot L^{-1}$, c'est la quantité maximale de solide que l'on peut dissoudre par volume de solution.

$$ullet \ [A^{n+}] = rac{\xi_f}{V_{sol}} = s$$

Facteurs influençant la solubilité

- Température.
- Effet d'ion commun.
- pH : si un des ions présente un comportement acide / basique à l'équilibre $Ks=s^2$