Théorie des Ondelettes

Distributions et Applications

Benjamin, Athanase, Zhan, Tanguy

November 4, 2024

1 Introduction

- Des résultats sur l'analyse de Fourier
- Les imperfections de la transformation de Fourier
- La tranformée de Fourier fenêtrée

2 Ondelettes de Morlet

- Définition
- Analyse et synthèse
- Ondelettes complexes

Des résultats sur l'analyse de Fourier

pour $f \in L^1$.

$$\mathcal{F}(f)(\xi) = \int_{-\infty}^{+\infty} f(t)e^{-i\xi t}dt \tag{1}$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \mathcal{F}(f)(\xi) e^{i\xi t} d\xi$$
 (2)

La dérivation pour $f \in L^1$, $\frac{d}{dx}f \in L^1$,

$$\mathcal{F}\left(\frac{d}{dx}f\right)(\xi) = i\xi \mathcal{F}(f)(\xi) \tag{3}$$

La reconstruction de Parseval pour $f \in L^2$.

$$\int_{-\infty}^{\infty} |\mathcal{F}(f)(\xi)e^{i\xi t}|^2 d\xi \le \int_{-\infty}^{\infty} |\mathcal{F}(f)(\xi)|^2 d\xi \le (2\pi) \int_{-\infty}^{\infty} |f(x)|^2 dx$$

4)3 / 15

Problème 1: Localisation

La transformée de Fourier apporte une information sur le contenu fréquentiel d'un signal, mais pas sur la localisation temporelle des différentes composantes fréquentielles.

Figure: Perte de l'information temporelle de la TF

Problème 2 : Impact des irrégularités

Si l'on prend pour exemple une fonction f à support compact avec une discontinuité en t_0 , on a :

$$\hat{f}(\xi) \underset{\xi \to \infty}{\sim} \frac{f(t_0^+) - f(t_0^-)}{i\xi} e^{-i\xi t_0}$$
 (5)

Ce qui rend instable la reconstruction de f avec l'expression (2) pour tout t.

On peut donc être amenés à chercher à apporter une dimension temporelle à l'information apportée par la transformée de Fourier, et à se placer sur des intervalles où le signal étudié est régulier.

L'exemple : la reconstruction de Heavyside

Figure: la fonction temporelle, les gains fréquentiels et la reconstruction de 100.Heavyside

$$Cste * \frac{d}{dt}{}^{d}H_{t=0} = Cste * \delta_{t=0}$$

$$|i\xi * F(Cste * H)(\xi)| = |\langle Cste * \frac{d}{dt}{}^{d}H_{t=0}, t \mapsto e^{it\xi} \rangle| = Cste$$

La tranformée de Fourier fenêtrée

On choisit comme fenêtre une fonction g symétrique, et on définit pour un temps x et une fréquence ξ réels :

$$C(x,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-x)e^{-it\xi}dt$$
 (6)

On a également :

$$C(x,\xi) = \int_{-\infty}^{+\infty} \hat{f}(\omega)\hat{g}(\omega - \xi)e^{i(\omega - \xi)x}d\omega$$
 (7)

Ainsi $C(x,\xi)$ donne une indication du comportement de f autour du temps x et de la fréquence ξ .

Résolution

On définit l'écart type temporel et fréquentiel de $g_{x,\xi}:t\mapsto g(t-x)e^{-it\xi}$ normalisée:

$$\sigma_t(x,\xi)^2 = \int_{-\infty}^{+\infty} (t-x)^2 |g_{x,\xi}(t)|^2 dt = \int_{-\infty}^{+\infty} t^2 |g(t)|^2 dt$$
 (8)

$$\sigma_{\omega}(x,\xi)^{2} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\omega - \xi)^{2} |\hat{g}_{x,\xi}(\omega)|^{2} d\omega = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \omega^{2} |\hat{g}(\omega)|^{2} d\omega$$
(9)

 σ_t et σ_ω ne dépendent ni de x ni de ξ . Cela signifie que la résolution en temps et en fréquence est la même partout, et dépend uniquement de l'étalement en temps et en fréquence de la fonction g initiale.

L'incertitude et le compromis temps-fréquences

Figure: L'image de $(f, t) \mapsto \cos(ft)$

Figure: STFT sur 100Heavyside

L'incertitude de Heisenberg: $\frac{1}{2} \leq \sigma_t \sigma_\omega$

Définition

Définition

Soit a > 0, $b \in \mathbb{R}$, on définit :

$$g_{a,b}(t) = \frac{1}{\sqrt{a}}g\left(\frac{t-b}{a}\right)$$

$$C(a,b) = < f|g_{a,b}> = \frac{1}{\sqrt{a}} \int f(t)\bar{g}\left(\frac{t-b}{a}\right)dt$$

C(a,b) donne une information sur le comportement de ${\bf f}$:

- \blacksquare au voisinage de $\xi=\frac{\xi}{a}$ (information fréquentielle) avec une résolution $\frac{1}{a}\sigma_{\xi}$
- **a** au voisinage de t=b (information temporelle) avec une résolution $a\sigma_t$

Analyse et synthèse

- On introduit la condition $C_g = \int_0^{+\infty} |\hat{g}|^2 \frac{d\xi}{\xi} < +\infty$ (g suffisamment plate en 0)
- Alors on utilise les ondelettes analysantes $g_{a,b}(t)=\frac{1}{\sqrt{a}}g\left(\frac{t-b}{a}\right)$ avec a>0 et $b\in\mathbb{R}$ de sorte que :
 - Analyse :

$$C(a,b) = \frac{1}{\sqrt{a}} \int f(t)\bar{g}\left(\frac{t-b}{a}\right) dt$$

Synthèse :

$$f(t) = \frac{1}{C_q} \int_0^{+\infty} \int_{-\infty}^{+\infty} C(a, b) g_{a,b}(t) \frac{da}{a^2} db$$

Plancherel :

$$||f||_2^2 = \frac{1}{C_a} \int_0^{+\infty} \int_{-\infty}^{+\infty} |C(a,b)|^2 \frac{da}{a^2} db$$

Gabor vs Ondelettes de Morlet

Figure: Limitatons de la TG : (a) Sinus a 5 Hz puis sinus a 15 Hz + deux masses de Dirac, (b) module de sa transformee de Gabor pour s = 0.1, (c) module de sa transformee de Gabor pour s = 0.01

Figure: (a) Sinus a 5 Hz puis sinus a 15 Hz + deux masses de Dirac, (b) module de sa transformee en ondelettes continue

Ondelettes complexes

Pour a>0, $b\in\mathbb{R}$, on peut exprimer $\hat{C}(a,b)$ à partir de \hat{f} et \hat{g} :

$$C(a,b) = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{a}} \bar{g}\left(\frac{t-b}{a}\right) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\xi) \sqrt{a} \hat{g}^*(a\xi) e^{ib\xi} d\xi$$

Pour les fonctions f réelles, on a: $\hat{f}(-\xi) = \hat{f}^*(\xi)$.

On construit une ondelette complexe $\gamma=g+iG$ de sorte que:

$$\hat{\gamma} = 1_{]0,+\infty]} 2\hat{g}$$

G est la transformée de Hilbert: $G = \frac{1}{\pi} vp\left(\frac{1}{x}\right) * g$

Discrétisation

Rappel:

- Résolution en fréquence autour de $ar{\xi}/a$: $\frac{1}{a}\sigma_{\xi}$
- Résolution en temps autour de t=b: $a\sigma_t$

Échantillonnage: $g_{a_0^m,na_0^mb_0}, m \in \mathbb{Z}, n \in \mathbb{Z}, a_0 > 0, b_0 > 0$

Figure 5.8: Time-frequency decomposition using wavelets.

Références et remerciements

- Lemarié, P.G. (1990). Introduction a la theorie des ondelettes. In: Lemarié, P.G. (eds) Les Ondelettes en 1989. Lecture Notes in Mathematics, vol 1438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0083511
- Meyer, Y. (1990). Ondelettes, filtres miroirs en quadrature et traitement numerique de l'image. In: Lemarié, P.G. (eds) Les Ondelettes en 1989. Lecture Notes in Mathematics, vol 1438. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0083512
 - 11ttp3.//d01.01g/10.1001/D1 b0005512
- Jérémie, B. (2009). Analyse par ondelettes. Notes de cours.
- Merci à Olivier pour son enseignement dans Distribution et Applications.