DATE: April 17, 2019 - Duration: 90 minutes

Question 1 (20 marks)

- a) Consider the signal $x(t) = |6\sin(100\pi t)|$. Sketch the signal x(t) for $0 \le t \le 0.06$ seconds. Determine the period T_0 and calculate the power of the signal x(t).
- b) The analog signal $x(t) = 5\cos(10\pi t)$ is sampled at the sampling frequency $f_s = 20$ Hz. Determine the discrete-time signal x[n]. Sketch the signal x[n] for n=0,1,2...20. Calculate the power of the signal x[n].

Question 2 (20 marks)

A continuous-time system is described the following equation

$$y(t) = x(t-2) + x(2-t)$$

where x(t) is the system input and y(t) is the system output.

- a) Discuss the linearity and time-invariance properties of the system.
- b) If a system is bounded-input, bounded-output (BIBO) stable, then the output will be bounded for every input to the system that is bounded. Discuss the BIBO stability of the system.

Question 3 (20 marks)

Consider the discrete-time LTI system which has the unit impulse response

$$h[n] = [2, -1, 0, 2]$$

Let x[n] be the input signal and y[n] be the output signal.

- a) Write the equation to describe the input-output relationship.
- b) Find the output y[n] for the input x[n] = [2,1,0,1,3].

Question 4 (20 marks)

An LTI analog system has the following unit impulse response

$$h(t) = e^{-t/2}u(t)$$

- a) Using convolution, determine and sketch the response $y_1(t)$ of the system for the input $x_1(t) = u(t)$.
- b) Determine and sketch the response $y_2(t)$ of the system for the input $x_2(t) = 2[u(t) u(t-3)]$.

Question 5 (20 marks)

Consider an analog system whose input-output relationship is defined by

$$\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = 6x(t)$$

where x(t) is the input and y(t) is the output.

- a) Find the natural response $y^{(h)}(t)$ which is the solution to the homogeneous equation.
- b) Assuming that x(t) = u(t), find the forced response $y^{(p)}(t)$ for $t \ge 0$. Then, find the total response y(t) for $t \ge 0$ if the initial conditions y(0) = 10 and y'(0) = -2 (i.e., $\frac{dy(t)}{dt} = -2$).