Quiz 3

Due May 1 at 11:42am **Time Limit** None

Points 5

Questions 5

Available May 1 at 11:32am - May 1 at 11:42am 10 minutes

Instructions

This quiz is based on local search, real time search, constraint satisfaction, and adversarial search. It is closed book and closed notes.

This quiz was locked May 1 at 11:42am.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	8 minutes	1.5 out of 5

Score for this quiz: **1.5** out of 5 Submitted May 1 at 10:13am This attempt took 8 minutes.

	Hill climbing finds a locally optimal solution.			
Correct Answer	○ It employs much less memory than A*			
	Question 2	0.5 / 1 pts		
	Select all variants of local search below that address the problem of local optima of hill climbing.			
You Answered	✓ Backtracking search			
	Backtracking search is not a local search because it maintains a stack to revert back to and searches exhaustively in finite spaces.			
Correct!	Random restart hill climbing			
	☐ A* search			
Correct!	☑ Simulated annealing			
	Question 3	0 / 1 pts		
	What environments is Learning Real-time A* (LRTA*) search suitable for?			
You Answered	Partially observable, deterministic, unknown environments			

	Partially observable, stochastic, unknown environments				
	Stochastic, fully observable, multi-agent environments				
Correct Answer	O Unknown, fully observable, and deterministic environments				
	Question 4	1 / 1 pts			
	The variable pair (X, Y) is arc-consistent if and only if:				
	There is a value in the domain of X and a value in the domain of Y that together satisfy all constraints.				
	For every value in the domain of Y there is a value in the domain of X that satisfies all constraints.				
	For every value in the domain of X all values in the domain of Y satisfy all constraints.				
Correct!	For every value in the domain of X there is a value in the domain of Y that satisfies all constraints.				
	Question 5	0 / 1 pts			
	When does pruning happen under a MAX node?				
You Answered	When the current value of the Max node is higher than the alpha value inherited from its ancestors.				
Correct Answer	When the current value of a Max node is higher than the beta value inherited from its ancestors.				

When the current value of the Max node is lower than the beta value inherited from its ancestors.	
When the current value of the Max node is lower than the alpha value inherited from its ancestors.	

Quiz Score: **1.5** out of 5