

6장 파이썬 자료구조 I(리스트)

리스트

- □ 리스트는 항목(item)들을 저장하는 컨테이너로서 그 안에 항목들이 순서를 가지고 저장된다.
- 리스트는 어떤 타입의 항목라도 저장할 수 있다. 파이썬에서 리스트 는 정말 유용하고 많이 사용된다.

리스트를 사용하는 예

□ 지난 1주일 중에서 가장 더운 날을 찾으려고 한다고 하자.

temps = [28, 31, 33, 35, 27, 26, 25]

리스트 만들기

```
Syntax: 리스트

형식 리스트_이름 = [ 요소1, 요소2, ... ]

예 ,temps = [28, 31, 33, 35, 27, 26, 25]

e = temps[3]

대괄호를 사용하여 요소에 접근한다.
```

리스트의 항목 접근하기

temps = [28, 31, 33, 35, 27, 26, 25]

리스트 인덱스

- □ 인덱스(index)란 리스트에서의 항목의 위치(번호)이다.
- □ 0부터 시작한다.

temps = [28, 31, 33, 35, 27, 26, 25]

리스트 요소 변경

temps[3] = 36

음수 인덱스

□ 음수 인덱스는 리스트의 끝에서부터 매겨진다.

인덱스 오류

□ 인덱스를 사용할 때는 인덱스가 적정한 범위에 있는지를 항상 신경 써야 한다.

리스트 방문

```
temps =[28,31,33,35,27,26,25]

for i in range(len(temps)):

print(temps[i], end=', ')
```

28, 31, 33, 35, 27, 26, 25,

```
temps =[28,31,33,35,27,26,25]

for element in temps:

print(element, end=', ')
```

28, 31, 33, 35, 27, 26, 25,

zip() 함수

□ zip() 함수는 2개의 리스트를 받아서 항목 2개를 묶어서 제공한다.

```
questions =['name','quest','color']
answers =['Kim','파이썬','blue']
for q, a in zip(questions, answers):
print(f"What is your {q}? It is {a}")
```

What is your name? It is Kim What is your quest? It is 파이썬 What is your color? It is blue

append()

```
# 공백 리스트를 생성한다.
heroes = []
heroes.append("아이언맨")
                                         # 리스트에 "아이언맨"을 추가한다
                                         # 리스트에 "토르"를 추가한다.
heroes.append("토르")
nrint(hernes)
['아이언맨', '토르']
                                               ② heroes.append("아이언맨")
                    ① heroes=[]
                                                                "아이언맨"
                       heroes
                               새로운 공백 리스트를 생성한다.
                                                           리스트에 하나의 항목을 추가한다.
                    ③ heroes.append("토르")
```

heroes [0] "아이언맨" [1] "토르"

리스트에 하나의 항목을 추가한다.

insert()

heroes=["아이언맨", "토르", 헐크"]

heroes.insert(1, "스파이더맨")

리스트 탐색하기

```
heroes = [ "아이언맨", "토르", "헐크", "스칼렛 위치", "헐크"] n = heroes.index("헐크") # n은 2가 된다.
```


탐색할 때 오류를 발생시키지 않으려면

```
if "헐크" in heroes:
print(heroes.index("헐크"))
```

시작 위치 지정

```
heroes = [ "아이언맨", "토르", "<mark>헐크</mark>", "스칼렛 위치", "<mark>헐크</mark>"] n = heroes.index("헐크", 3) # n은 4가 된다.
```

요소 삭제하기

- □ 항목이 저장된 위치를 알고 있다면 pop(i)을 사용한다.
- □ 항목의 값만 알고 있다면 remove(value)를 사용한다.

remove()

```
heroes = [ "아이언맨", "토르", "헐크" ]
heroes.remove("토르")
```

만약 삭제하고자 하는 항목이 없다면 오류(예외)가 발생된다.

if "토르" in heroes: heroes.remove("토르")

확인후 삭제한다.

리스트 연산 정리

연산의 예	설명
mylist[2]	인덱스 2에 있는 요소
mylist[2] = 3	인덱스 2에 있는 요소를 3으로 설정한다.
mylist.pop(2)	인덱스 2에 있는 요소를 삭제한다.
len(mylist)	mylist의 길이를 반환한다.
"value" in mylist	"value"가 mylist에 있으면 True
"value" not in mylist	"value"가 mylist에 없으면 True
mylist.sort()	mylist를 정렬한다.
mylist.index("value")	"value"가 발견된 위치를 반환한다.
mylist.append("value")	리스트의 끝에 "value"요소를 추가한다.
mylist.remove("value")	mylist에서 "value"가 나타나는 위치를 찾아서 삭제한다.

리스트 항목의 최대값과 최소값

values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

min(values) # 1 max(values) # 10

> max()와 min()은 내장 함수로서 거의 모든 객체에 사용 가능

리스트 정렬 #1

```
a = [ 3, 2, 1, 5, 4 ]
a.sort() # [1, 2, 3, 4, 5]
```

```
heroes =['아이언맨','헐크','토르']
heroes.sort()    # ['아이언맨', '토르', '헐크']
```

```
a =[3,2,1,5,4]
a.sort(reverse=True) # [5, 4, 3, 2, 1]
```

역순으로 정렬할때

리스트 정렬 #2

numbers =[10,3,7,1,9,4,2,8,5,6]

ascending_numbers =sorted(numbers)
print(ascending_numbers)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

내장 함수

리스트 메소드 정리

메소드	설명
append()	요소를 리스트의 끝에 추가한다.
extend()	리스트의 모든 요소를 다른 리스트에 추가한다.
insert()	지정된 위치에 항목을 삽입한다.
remove()	리스트에서 항목을 삭제한다.
pop()	지정된 위치에서 요소를 삭제하여 반환한다.
clear()	리스트로부터 모든 항목을 삭제한다.
index()	일치되는 항목의 인덱스를 반환한다.
count()	인수로 전달된 항목의 개수를 반환한다.
sort()	오름차순으로 리스트 안의 항목을 정렬한다.
reverse()	리스트 안의 항목의 순서를 반대로 한다.
copy()	리스트의 복사본을 반환한다.

리스트에서 사용할 수 있는 내장 함수

함수	설명
round()	주어진 자리수대로 반올림한 값을 반환한다.
reduce()	특정한 함수를 리스트 안의 모든 요소에 적용하여 결과값을 저장하고 최종 합계값만을 반환한다.
sum()	리스트 안의 숫자들을 모두 더한다.
ord()	유니코드 문자의 코드값을 반환한다.
cmp()	첫 번째 리스트가 두 번째 보다 크면 1을 반환한다.
max()	리스트의 최대값을 반환한다.
min()	리스트의 최소값을 반환한다.
all()	리스트의 모든 요소가 참이면 참을 반환한다.
any()	리스트 안의 한 요소라도 참이면 참을 반환한다.
len()	리스트의 길이를 반환한다.
enumerate()	리스트의 요소들을 하나씩 반환하는 객체를 생성한다.
accumulate()	특정한 함수를 리스트의 요소에 적용한 결과를 저장하는 리스트를 반환한다.
filter()	리스트의 각 요소가 참인지 아닌지를 검사한다.
map()	특정한 함수를 리스트의 각 요소에 적용하고 결과를 담은 리스트를 반환한다.

내장 함수 예

```
numbers =[10,20,30,40,50]

print("합=",sum(numbers)) # 항목의 합계를 계산한다.
print("최대값=",max(numbers)) # 가장 큰 항목을 반환한다.
print("최소값=",min(numbers)) # 가장 작은 항목을 반환한다
```

```
합= 150
최대값= 50
최소값= 10
```

리스트에서 랜덤으로 선택하기

import random

numberList = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] print("랜덤하게 선택한 항목=", random.choice(numberList))

랜덤하게 선택한 항목= 6

import random

movie_list = ["Citizen Kane", "Singin' in the Rain", "Modern Times", "Casablanca", "City Lights"]

item = random.choice(movie_list) print ("랜덤하게 선택한 항목=", item)

랜덤하게 선택한 항목= Citizen Kane

Lab: 성적 처리 프로그램

학생들의 성적을 사용자로부터 입력받아서 리스트에 저장한다. 성적의 평균을 구하고 최대점수, 최소점수, 80점 이상 성적을 받은 학생의 숫자를 계산하여 출력해보자.

성적을 입력하시요: 10

성적을 입력하시요: 20

성적을 입력하시요: 60

성적을 입력하시요: 70

성적을 입력하시요: 80

성적 평균= 48.0

최대점수= 80

최소점수= 10

80점 이상= 1

Solution:

```
STUDENTS = 5
Ist = []
count=0
for i in range(STUDENTS):
  value = int(input("성적을 입력하시요: "))
  lst.append(value)
print("\n성적 평균=", sum(lst) / len(lst))
print("최대점수=", max(lst))
print("최소점수=", min(lst))
for score in lst:
  if score \geq 80:
     count += 1
print("80점 이상=", count)
```

Lab: 리스트에서 2번째로 큰 수 찾기

□ 정수들이 저장된 리스트에서 두 번째로 큰 수를 찾아보자.

두 번째로 큰 수= 15

Solution:

```
list1 = [1, 2, 3, 4, 15, 99]
# 리스트를 정렬한다.
list1.sort()
# 뒤에서 두 번째 요소를 출력한다.
print("두 번째로 큰 수=", list1[-2])
```

```
list1 = [1, 2, 3, 4, 15, 99]
# 제일 큰 수는 삭제한다.
list1.remove(max(list1))
# 그 다음으로 큰 수를 출력한다. 리스트는 변경되었다.
print("두 번째로 큰 수=", max(list1))
```

Lab: 콘테스트 평가

심판들의 점수가 리스트에 저장되어 있다고 가정하고 최소값과 최 대값을 리스트에서 제거하는 프로그램을 작성해보자.

```
제거전 [10.0, 9.0, 8.3, 7.1, 3.0, 9.0]
제거후 [9.0, 8.3, 7.1, 9.0]
```

Solution:

```
scores = [10.0, 9.0, 8.3, 7.1, 3.0, 9.0]
print("제거전", scores)
scores.remove(max(scores))
scores.remove(min(scores))
print("제거후", scores)
```

Lab: 리스트로 스택 흉내내기

 스택(Stack)은 데이터 구조 중의 하나로서 데이터를 추가한 순서와 삭제하는 순서가 완전히 반대인 데이터 구조이다. 파이썬에는 내장 스택 유형이 없지만, 스택을 리스트로 구현할 수 있다.

과일을 입력하시오: apple

과일을 입력하시오: orange

과일을 입력하시오: grape

grape orange

apple

Solution:

```
stack = []

for i in range(3) :
    f = input("과일을 입력하시오: ")
    stack.append(f)

for i in range(3) :
    print( stack.pop() )
```

Lab: 친구 관리 프로그램

파이썬을 이용하여 친구들을 관리하는 프로그램을 작성하여 보자.친구 관리 프로그램은 다음과 같은 메뉴를 가져야 한다.

```
1. 친구 리스트
출력
2. 친구추가
3. 친구삭제
4. 이름변경
9. 종료
메뉴를
선택하시오: 2
이름을
입력하시오:
홍길동
1. 친구 리스트
출력
2. 친구추가
3. 천구삭제
```

```
menu = 0
friends = []
while menu != 9:
  print("-----")
  print("1. 친구 리스트 출력")
  print("2. 친구추가")
  print("3. 친구삭제")
  print("4. 이름변경")
  print("9. 종료")
  menu = int(input("메뉴를 선택하시오: "))
  if menu == 1:
    print(friends)
  elif menu== 2:
    name = input("이름을 입력하시오: ")
    friends.append(name)
```

Solution:

```
elif menu == 3:
    del_name = input("삭제하고 싶은 이름을 입력하시오: ")
    if del_name in friends:
      friends.remove(del_name)
    else:
      print("이름이 발견되지 않았음")
elif menu == 4:
    old_name = input("변경하고 싶은 이름을 입력하시오: ")
    if old_name in friends:
      index = friend.index(old_name)
      new_name = input("새로운 이름을 입력하시오: ")
      friends[index] = new_name
    else:
      print("이름이 발견되지 않았음")
```

리스트 합병과 복제

```
heroes1 = [ "아이언맨", "토르" ]
heroes2 = [ "헐크", "스칼렛 위치" ]
avengers = heroes1 + heroes2
```

avengers는 ['아이언맨', '토르', '헐크', '스칼렛 위치']가 된다.

```
numbers = [ 1, 2, 3, 4 ] * 3 # 리스트는 [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
```

리스트 비교

```
list1 = [ 1, 2, 3 ]
list2 = [ 1, 2, 3 ]
print(list1 == list2) # True
```

list1 = [3, 4, 5] list2 = [1, 2, 3] print(list1 > list2) # True

참고:

리스트와 리스트를 비교할 때, 요소들이 기초 자료형(정수, 실수, 문자열)이 아니고 사용자가 정의한 객체인 경우에는, 사용자가 객체 안에 == 연산과!= 연산을 정의하여야 한다.

리스트 복사하기 (얕은 복사)

```
temps = [28, 31, 33, 35, 27, 26, 25]
values = temps

print(temps) # temps 리스트 출력
values[3] = 39 # values 리스트 변경
print(temps) # temps 리스트가 변경되었다.
```

[28, 31, 33, 35, 27, 26, 25] [28, 31, 33, 39, 27, 26, 25]

리스트 깊은 복사

list()는 리스트 객체의 생성자임, 객체를 생성하고 초기화하는 함수임 다른 객체들을 받아서 리스트로 변환함

temps = [28, 31, 33, 35, 27, 26, 25]

values = list(temps)

슬라이싱(slicing)

```
Syntax: 슬라이싱 #1
      리스트[ start : stop ]
      numbers = [ 10, 20, 30, 40, 50, 60, 70, 80, 90 ]
      sublist = numbers[2:7]
                                     numbers
                           start
                                                        stop
                10
                      20
                           30
                                 40
                                       50
                                             60
                                                   70
                                                        80
                                                              90
                 0
                                  3
                                   numbers[2:7]
                                     sublist
                            30
                                 40
                                       50
                                             60
                                                   70
```

시작과 끝 인덱스는 생략이 가능하다.

numbers[:3] # [10, 20, 30]

numbers[3:] # [40, 50, 60, 70, 80, 90]

numbers[:] # [10, 20, 30, 40, 50, 60, 70, 80, 90]

new_numbers = numbers[:]

깊은 복사가 된다.

고급 슬라이싱

리스트를 역순으로 만드는 방법

```
>>> numbers = [ 10, 20, 30, 40, 50, 60, 70, 80, 90 ]
```

>>> numbers[:: -1]

[90, 80, 70, 60, 50, 40, 30, 20, 10]

리스트 변경

```
>>> lst = [1, 2, 3, 4, 5, 6, 7, 8]
>>> lst[0:3] = ['white', 'blue', 'red']
>>> lst
['white', 'blue', 'red', 4, 5, 6, 7, 8]
```

```
>>> lst = [1, 2, 3, 4, 5, 6, 7, 8]
>>> lst[::2] = [99, 99, 99, 99]
>>> lst
[99, 2, 99, 4, 99, 6, 99, 8]
```

```
>>> lst = [1, 2, 3, 4, 5, 6, 7, 8]
>>> lst[:] = []
>>> lst
[]
리스트의 모든 요소를 삭제한다.
```

리스트 변경

```
numbers = list(range(0, 10)) # 0에서 시작하여 9까지를 저장하는 리스트 print(numbers) # 마지막 항목을 삭제한다. print(numbers)
```

리스트의 특정 요소 삭제

```
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8]
```

문자열과 리스트

□ 문자열은 문자들이 모인 리스트라고 생각할 수 있다.

Lab: 리스트 슬라이싱

```
numbers = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
```

🗖 리스트의 요소들의 순서를 거꾸로 하면서 하나씩 건너뛰어 보자.

[10, 8, 6, 4, 2]

```
numbers = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
reversed = numbers[::-2]
print(reversed)
```

□ 첫 번째 요소만을 남기고 전부 삭제할 수 있는가?

[1]

```
numbers = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
numbers[1:] = [ ]
print(numbers)
```

불변 객체가 함수로 전달되면

변경이 불가능한 객체는 값으로 전달된다고 볼 수 있다.
 객체의 참조값이 함수의 매개 변수로 전달되지만 함수 안에서 객체
 의 값을 변경하면 새로운 객체가 생성되기 때문이다.

```
def func1(x):
    print( "x=",x," id=",id(x))
    x = 42
    print( "x=",x," id=",id(x))

y = 10
func1(y)
print( "y=",y," id=",id(y))
```

x= 10 id= 2535289875024 x= 42 id= 2535289876048 y= 10 id= 2535289875024

리스트가 함수로 전달되면

```
def func2(list):
    list[0] = 99

values = [0, 1, 1, 2, 3, 5, 8]
func2(values)
print(values)
```

[99, 1, 1, 2, 3, 5, 8]

Lab: 리스트 변경 함수

 어떤 회사에서 리스트에 직원들의 월급을 저장하고 있다. 회사에서 일괄적으로 30%의 월급 인상을 하기로 하였다. 리스트의 모든 요소 들을 30% 증가시키는 함수 modify()를 작성하고 테스트 해보자.

```
인상전 [200, 250, 300, 280, 500]
인상후 [260.0, 325.0, 390.0, 364.0, 650.0]
```

Solution:

```
salaries = [200, 250, 300, 280, 500]

def modify(values, factor):
   for i in range(len(values)):
     values[i] = values[i] * factor

print("인상전", salaries)
modify(salaries, 1.3)
print("인상후", salaries)
```

리스트 함축 (list comprehension)

집합의 조건제시법 $\{x^2 \mid 0 \le x < 10, x \in \mathcal{S}\}$

```
      Syntax: 리스트 함축

      형식 [ 수식 for (변수 in 리스트) if (조건) ]

      예 squares = [ x*x for x in range(10) ]

      새로운 리스트 출력식으로 새로운 리스트의 요소가 된다.
      입력 리스트에 있는 요소 x에 대하여
```

```
squares = []

for x in range(10):
    squares.append(x*x)
```

리스트 함축

□ 리스트 함축에는 if를 사용하여 조건이 추가될 수 있다.

다양한 리스트 함축

```
>>> prices = [135, -545, 922, 356, -992, 217]
>>> mprices = [i if i > 0 else 0 for i in prices]
>>> mprices
[135, 0, 922, 356, 0, 217]
```

```
>>> words = ["All", "good", "things", "must", "come", "to", "an", "end."]
>>> letters = [ w[0] for w in words ]
>>> letters
['A', 'g', 't', 'm', 'c', 't', 'a', 'e']
```

```
>>> numbers = [x+y for x in ['a','b','c'] for y in ['x','y','z']]
>>> numbers
['ax', 'ay', 'az', 'bx', 'by', 'bz', 'cx', 'cy', 'cz']
```

Lab: 리스트 함축 사용하기

0부터 99까지의 정수 중에서 2의 배수이고 동시에 3의 배수인 수들을 모아서 리스트로 만들어보자.

[0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96]

Solution:

numbers = [x for x in range(100) if x % 2 == 0 and x % 3 == 0] print(numbers)

0부터 9까지의 정수 중에서 짝수이면 "짝수"를 리스트에 추가하고 홀수이면 "홀수"를 리스트에 추가하는 리스트 함축도 만들어보자.

○ 실행결과

['짝수', '홀수', '짝수', '홀수', '짝수', '홀수', '짝수', '홀수', '짝수', '홀수']

Lab: 누적값 리스트 만들기

□ i번째 요소가 원래 리스트의 0부터 i번째 요소까지의 합계인 리스트를 생성하는 프로그램을 작성하라.

원래 리스트: [10, 20, 30, 40, 50]

새로운 리스트: [10, 30, 60, 100, 150]

- 1. 빈 리스트를 선언하고 초기화한다.
- 2. 리스트 함축을 사용하여 리스트에 있는 요소 0부터 x+1까지의 누적 합계를 계산하여 새로운 리스트로 만든다.
- 3. 원래 리스트와 새로운 리스트를 출력한다.

Solution:

list1=[10, 20, 30, 40, 50]

list2=[sum(list1[0:x+1]) for x in range(0, len(list1))]

print("원래 리스트: ",list1)
print("새로운 리스트: ",list2)

Lab: 피타고라스 삼각형

피타고라스의 정리를 만족하는 삼각형들을 모두 찾아보자.
 삼각형 한 변의 길이는 1~29인 정수이다.

```
[(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9, 12, 15), (10, 24, 26), (12, 16, 20), (15, 20, 25), (20, 21, 29)]
```

Solution:

```
[(x,y,z) for x in range(1,30) for y in range(x,30) for z in range(y,30) if x^*2 + y^*2 == z^*2]
```

2차원 리스트

□ 2차원 리스트 == 2차원 테이블

[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]

2차원 리스트의 구현

□ 리스트의 리스트로 구현된다.

```
s = [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]]
print(s[1])
print(s[1][2])
```

[6, 7, 8, 9, 10] 8

2차원 리스트의 동적 생성

□ 실제로는 동적으로 2차원 리스트를 생성하는 경우가 더 많다.

```
# 동적으로 2차원 리스트를 생성한다.
                                # 동적으로 1차원 리스트를 생성한다.
rows = 3
                                rows = 3
cols = 5
                                cols = 5
S = []
                                S = []
                                for row in range(rows):
for row in range(rows):
 s += [[0]*cols] # 2차원 리스트끼리
                                  s += [0]*cols # 1차원 리스트끼리 합
                                쳐진다.
합쳐진다.
print(s)
                                print(s)
```

리스트 함축을 이용하는 방법

□ 실제로는 동적으로 2차원 리스트를 생성하는 경우가 더 많다.

```
rows = 3

cols = 5

s = [([0] * cols) for row in range(rows)]

print(s)
```

```
# 동적으로 2차원 리스트를 생성한다.
rows = 3
cols = 5

s = []
for row in range(rows):
    s += [[0]*cols] # 2차원 리스트끼리 합쳐진다.

print(s)
```

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

2차원 리스트 요소 접근

```
s = [ [1, 2, 3, 4, 5],
        [6, 7, 8, 9, 10],
        [11, 12, 13, 14, 15]]
# 행과 열의 개수를 구한다.
rows = len(s)
cols = len(s[0])
for r in range(rows):
        for c in range(cols):
            print(s[r][c], end=",")
        print()
```

```
1,2,3,4,5,
6,7,8,9,10,
11,12,13,14,15,
```

2차원 리스트를 함수로 넘기기

□ 2차원 리스트도 함수로 전달할 수 있다. 함수 안에서는 2차원 리스 트의 차원을 추출할 수 있다. 2차원 리스트를 s라고 하면 len(s)는 행 의 개수이고 len(s[0])는 열의 개수이다.

```
def sum(numbers) :
    total = 0
    for i in range(len(numbers)) :
        for j in range(len(numbers[0])) :
            total = total + numbers[i][j]
    return total
```

체커 보드 패턴 만들기

 1과 0이 반복되는 체커보드 형태의 10×10 크기의 2차원 리스트를 초기화하는 함수 init()를 작성하고 테스트하자.

```
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
```

```
table = []
# 2차원 리스트를 화면에 출력한다.
def printList(mylist):
  for row in range(len(mylist)):
     for col in range(len(mylist[0])):
       print(mylist[row][col], end=" ")
     print()
# 2차원 리스트를 체커보드 형태로
초기화한다.
def init(mylist):
  for row in range(len(mylist)):
     for col in range(len(mylist[0])):
       if (row+col)\%2 == 0:
         table[row][col] = 1
# 2차원 리스트를 생성한다.
table = [[0] * 10] * 10
init(table)
printList(table)
```

2차원 리스트와 리스트 함축

```
matrix = [[i for i in range(5)] for _ in range(6)]
print(matrix)
```

[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]

```
matrix = [ [0, 0, 0], [1, 1, 1], [2, 2, 2] ]
result = [num for row in matrix for num in row]
print(result)
```

[0, 0, 0, 1, 1, 1, 2, 2, 2]

Lab: 전치 행렬 계산

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$

```
원래 행렬= [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
전치 행렬= [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
```

Solution:

```
transposed = []
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print("원래 행렬=", matrix)
# 열의 개수만큼 반복한다.

for i in range(len(matrix[0])):
    transposed_row = []
    for row in matrix: # 행렬의 각 행에 대하여 반복
        transposed_row.append(row[i])# i번째 요소를 row에 추가한다.
    transposed.append(transposed_row)

print("전치 행렬=", transposed)
```

Lab: Tic-Tac-Toe

□ 다음과 같이 텍스트 모드에서 컴퓨터와 사람이 Tic-Tac-Toe 게임을 할 수 있는 프로그램을 작성하여 보자.

```
다음 수의 x좌표를 입력하시오: 0
다음 수의 y좌표를 입력하시오: 0
```

Solution:

```
board= [[' ' for x in range (3)] for y in range(3)]
while True:
  #게임 보드를 그린다.
  for r in range(3):
    print(" " + board[r][0] + "| " + board[r][1] + "| "
                       + board[r][2])
    if (r != 2):
      print("---|---")
  # 사용자로부터 좌표를 입력받는다.
  x = int(input("다음 수의 x좌표를 입력
  y = int(input("다음 수의 y좌표를 입력፣
                                  다음 수의 x좌표를 입력하시오: 1
                                  다음 수의 y좌표를 입력하시오: 1
```

Solution:

```
# 사용자가 입력한 좌표를 검사한다.
 if board[x][y] != ' ':
   print("잘못된 위치입니다. ")
   continue
 else:
   board[x][y] = 'X'
 #컴퓨터가 놓을 위치를 결정한다. 첫 번째로 발견하는 비어있는 칸에 놓는다.
 done =False
 for i in range(3):
   for j in range(3):
      if board[i][j] == ' ' and not done:
        board[i][j] = 'O';
        done=True
        break;
```