A Camada Física

Capítulo 2

- Base Teórica para Comunicação de Dados
- Meio de Transmissão Guiado
- Transmissão Sem-Fio
- Satélites de Comunicação
- Modulação Digital e Multiplexação
- Rede Telefônica Pública Comutada
- Sistema de Telefonia Móvel
- TV a Cabo

Revisado: Agosto de 2011

A Camada Física

Fundação sobre a qual outras camadas são construídas

 Propriedades dos fios, da fibra, e do ar (sem-fio) limitam o que a rede pode fazer Aplicação
Transporte
Rede
Enlace
Física

O problema chave é como enviar bits (digitais) usando apenas sinais (analógicos)

Isto é chamado de modulação

Base Teórica para Comunicação de Dados

Taxas de comunicação têm limites fundamentais

- Análise de Fourier »
- Sinais Limitados pela Banda »
- Taxa de Dados Máxima de um Canal »

Análise de Fourier

Um sinal que varia no tempo pode ser representado de maneira equivalente por uma série de componentes de frequência (harmônicos):

$$\mathbf{g}(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Sinais Limitados pela Banda

Usar menos banda (harmônicos) degrada o sinal

Taxa de Dados Máxima de um Canal

O teorema de Nyquist diz que a taxa de dados depende da largura de banda (B) e do número de níveis de sinal (V):

Taxa de dados Máx. = 2B log₂V bits/seg

O teorema de Shannon diz que taxa de dados máxima depende da largura de banda (B) e da razão entre a força do sinal (S) e o nível de ruído (N):

Taxa de dados Máx.= B log₂(1 + S/N) bits/sec

Quão rápido Quantos níveis
o sinal muda podem ser vistos

Transmissão Guiada (Fios & Fibra)

Os meios têm propriedades diferentes, bem como desempenho

- Verificação da realidade
 - Mídia de Armazenamento »
- Fios:
 - Par trançado »
 - Cabo Coaxial »
 - Linhas de Força »
- Fibra »

Verificação da Realidade: Mídia de Armazenamento

Envie dados em fita / disco / DVD por um enlace de alta taxa de transmissão

- Mande pelo correio uma caixa com 1000 fitas magnéticas de 800GB (6400 Tbits)
- Leva um dia para enviar (86,400 secs)
- Taxa de transmissão é de 70 Gbps.

A taxa de transmissão é melhor que uma rede de longa distância!

Entretanto, o atraso de envio é muito alto.

Fios – Par Trançado

Muito comuns; usados em LANs, linhas telefônicas

O trançado reduz os sinais irradiados (interferência)

Terminologia de Enlaces

Enlace Full-duplex

- Usado para transmissão em ambas as direções simultaneamente
- e.g., usa diferentes pares trançados por cada direção

Enlace Half-duplex

- Ambas as direções, mas não simultaneamente
- e.g., nós alternam-se em um canal sem-fio

Enlace Simplex

Apenas uma direção, em qualquer momento; incomum

Fios – Cabo Coaxial ("Co-ax")

Também comum. Tem melhor blindagem e mais largura de banda, permitindo maiores distâncias e maiores taxas de transmissão que o par trançado.

Fios – Linhas de Energia

Cabeamento elétrico caseiro também é exemplo de fios

Conveniente para usar, mas horrível para enviar dados

Cabo de Fibra (1)

Comum para altas taxas em longas distâncias

- Enlaces de ISPs de longa distância, Fiber-to-the-Home
- Luz enviada em um longo e fino cordão de vidro

Cabo de Fibra (2)

A fibra tem alta largura de banda (THz) e baixa perda de sinal – permite altas taxas de transmissão em grandes distâncias

Cabo de Fibra (3)

Monomodo

- Núcleo tão fino (10um) que a luz mal consegue sair do caminho
- Usada com lasers para longas distâncias, e.g., 100km

Multimodo

- Outro tipo de fibra
- Luz pode quicar (núcleo de 50um)
- Usada com LEDs para enlaces mais baratos e em distâncias mais curtas

Cabo de Fibra (4)

Comparação das propriedades dos fios e da fibra:

Propriedade	Fios	Fibra
Distância	Curta (100s de m)	Longa (vários kms)
Taxa de Transmissão	Moderada	Muito alta
Custo	Barato	Menos barato
Conveniência	Fácil de usar	Menos fácil
Segurança	Fácil de interceptar	Difícil de interceptar

Transmissão Sem-Fio

- Espectro Eletromagnético »
- Transmissão de Rádio »
- Transmissão de Microondas »
- Transmissão de Luz »
- Sem-fio vs. Fios/Fibra »

Espectro Electromagnético (1)

Bandas diferentes, usos diferentes:

- Rádio: broadcast abrangente; Infravermelho/Luz: linha-devisada
- Microondas: LANs e 3G/4G; Foco em conectividade de rede

Espectro Electromagnético (2)

Para gerenciar a interferência, o espectro é dividido com cuidado, e seu uso regulado e licenciado, e.g., cedido em leilões.

Parte das alocações de frequência nos EUA

Espectro Electromagnético (3)

Também há faixas de banda não-licenciáveis ("ISM"):

- Livre para uso com baixas potências; dispositivos gerenciam interferência
- Amplamente usada para redes, e.g., WiFi, Bluetooth, Zigbee.

Transmissão de Rádio

Sinais de rádio são capazes de atravessar prédios bem e propagam-se por longas distâncias, com perda de sinal

Nas bandas VLF, LF e MF, ondas de rádio propagam-se diretamente

Na banda HF, ondas de rádio são refletidas pela ionosfera

Transmissão de Microondas

Microondas têm muita largura de banda e são amplamente usadas em ambientes internos (WiFi) e externos (3G, satélites)

- O sinal é atenuado/refletido por objetos comuns
- Potência varia com a mobilidade em virtude da atenuação multi-caminhos

Transmissão de Luz

Luz com linha-de-visada (sem fibra) pode ser usada para enlaces de dados

- Luz é altamente direcional e tem muita banda
- Uso de LEDs/câmeras e lasers/fotodetectores

Sem-Fio vs. Fios/Fibra

Sem-fio:

- + Instalação fácil e barata
- + Suporte natural à mobilidade
- + Suporte natural à difusão
- Há interferência entre transmissões que deve ser gerida
- Potências de sinal e portanto taxas de transmissão variam muito

Fios/Fibra:

- + É fácil para um engenheiro criar uma taxa de dados fixa em enlace ponto-a-ponto
- Pode ser cara para instalar, especialmente em grandes distâncias
- Não dá suporte fácil a mobilidade e difusão

Satélites de Comunicação

Satélites são um meio efetivo para difusão e distribuição a qualquer lugar em qualquer momento

- Tipos de Satélites »
- Satélites Geoestacionários (GEO) »
- Satélites de Baixa Órbita (LEO) »
- Satélites vs. Fibra »

Tipos de Satélites

Satélites e suas propriedades variam com a altitude:

 Geoestacionário (GEO), de Órbita Média (MEO), e de Órbita Baixa (LEO)

Satélites Geoestacionários

Satélites GEO orbitam 35.000 km acima de um ponto fixo na superfície da terra

- VSAT (computadores) podem se comunicar com a ajuda de um ponto central (hub)
- São usadas bandas diferentes (L, S, C, Ku, Ka) mas algumas estão totalmente alocadas e outras são suscetíveis à chuva.

Satélites de Baixa Órbita (LEO)

Sistemas como o Iridium usam vários satélites de baixa latência para atingir boa cobertura e fazer roteamento

Satélite vs. Fibra

Satélite:

- + É fácil e rápido estabelecer uma comunicação a qualquer momento e para qualquer lugar (após lançar o satélite)
- + Pode fazer difusão para grandes regiões
- Largura de banda limitada e necessidade de gerenciamento de interferência

Fibra:

- + Grande largura de banda sobre longas distâncias
- Instalação é mais custosa e difícil

Modulação Digital e Multiplexação

Esquemas de <u>Modulação</u> enviam bits na forma de sinais; Esquemas de <u>Multiplexação</u> dividem um canal entre usuários.

- Transmissão de banda base »
- Transmissão de banda passante »
- Multiplexação por Divisão na Frequência »
- Multiplexação por Divisão no Tempo »
- Acesso Múltiplo por Divisão em Códigos »

Transmissão de Banda Base

Códigos de Linha enviam símbolos que representam um ou mais bits

- NRZ é o mais simples e literal (+1V="1", -1V="0")
- Outros códigos balanceiam largura de banda e transições de sinal

Quadro tipos diferentes de codificação

Recuperação de Relógio

Para decodificar símbolos, os sinais precisam de transições suficientes

Senão, sequências de 0s (ou 1s) ficam confusas, e.g.:

Estratégias:

- Codificação Manchester troca o sinal a cada símbolo
- 4B/5B mapeia 4 bits de dados em 5 bits codificados com

1s e 0s:

Data	Code	Data	Code	Data	Code	Data	Code
0000	11110	0100	01010	1000	10010	1100	11010
0001	01001	0101	01011	1001	10011	1101	11011
0010	10100	0110	01110	1010	10110	1110	11100
0011	10101	0111	01111	1011	10111	1111	11101

Misturador com XOR de bits pseudoaleatórios nos dados

Transmissão de Banda Passante (1)

A Modulação da amplitude, frequência ou fase de uma onda portadora envia bits em um faixa de frequência (não-zero)

Sinal de bits NRZ

Chaveamento na Amplitude

Chaveamento na Frequência

Chaveamento na Fase

Transmissão de Banda Passante (2)

Diagramas de Constelação são uma forma abreviada de capturar a amplitude e fase moduladas em um símbolo:

Transmissão de Banda Passante (3)

Codificação-Cinza atribui bits para símbolos de forma que pequenos erros de símbolo resultem em erros de poucos bits:

When 1101 is sent:

Point	Decodes as	Bit errors		
Α	1101	0		
В	110 <u>0</u>	1		
С	1 <u>0</u> 01	1		
D	11 <u>1</u> 1	1		
Е	<u>0</u> 101	1		

Multiplexação na Frequência - FDM (1)

FDM (Multiplexação por Divisão na Frequência) divide o canal ao colocar diferentes usuários em diferentes frequências:

Multiplexação na Frequência - FDM (2)

OFDM (FDM Ortogonal) é uma eficiente técnica FDM usada em comunicações 802.11, celular 4G e outras

 Subportadoras são coordenadas para compactação fina do uso da banda

Multiplexação no Tempo - TDM

Multiplexação por divisão no tempo compartilha um canal em função do tempo:

- Usuários usam a banda em turnos alocados; não é comutação de pacotes nem STDM (TDM Estatístico)
- Amplamente usado em sistemas telefônicos / celulares

Acesso Múltiplo por Divisão em Códigos (CDMA)

O CDMA compartilha o canal dando aos usuários um código

- Códigos são ortogonais; podem ser usados ao mesmo tempo
- Amplamenta usados em redes 3G

Rede Telefônica Pública Comutada

- Estrutura do Sistema Telefônico »
- A Política dos Telefones »
- Enlace final: modems, ADSL e FTTH »
- Troncos e Multiplexação »
- Comutação »

Estrutura do Sistema Telefônico

Um sistema hierárquico para enviar voz composto de:

- Enlaces locais, principalmente linha analógicas de pares trançados indo para as casas
- Troncos, fibra óptica que envia chamadas digitais
- Centrais de comutação que direcionam chamadas

A Política dos Telefones

Nos EUA, há uma distinção entre servir uma área local (LECs) e conectar áreas locais para chamadas de longa distância (IXCs)

Clientes em um LEC podem discar via qualquer IXC

Enlace Final (1): modems

Modems de linhas de voz enviam sinais digitais em um canal de voz de 3.3 KHz (POTS)

Taxas <56 kbps; primeiras conexões à Internet

Enlace Final (2): Linha Digital (DSL)

DSL de <u>banda larga</u> envia dados em linhas de usuário (POTS) usando frequências que não são usadas para voz

- Telefones e computadores conectam-se ao mesmo tipo de linha (POTS)
- Taxas variam com a linha
 - ADSL2 vai até 12 Mbps
- OFDM é usado até 1.1 MHz no ADSL2
 - Maior largura de banda para "downlink"

Enlace Final (3): Fibra (FTTH)

FTTH depende da instalação de cabos de fibra óptica para prover altas taxas de transmissão aos usuários

 Um comprimento de onda pode ser dividido entre vários usuários

Troncos e Multiplexação (1)

Chamadas são enviadas em troncos PSTN usando TDM

- Uma chamada é uma amostra PCM de 8 bits a cada 125 µs (64 kbps)
- Uma portadora E1 tradicional tem 32 canais (2,048 Mbps) com símbolos baseados em AMI

Troncos e Multiplexação (2)

SONET (Synchronous Optical NETwork) é o padrão internacional para enviar sinais digitais em troncos ópticos

- Quadro de 125 µs; quadro básico: 810 bytes (52Mbps)
- Carga útil "flutua" dentro do quadro para flexibilidade

Troncos e Multiplexação (3)

Hierarquia taxas é usada para atingir altas taxas

- Cada nível aumenta o enquadramento
- Taxas de 50 Mbps (STS-1) a 40 Gbps (STS-768)

SONET		SDH	Data rate (Mbps)		
Electrical	Optical	Optical	Gross	SPE	User
STS-1	OC-1		51.84	50.112	49.536
STS-3	OC-3	STM-1	155.52	150.336	148.608
STS-12	OC-12	STM-4	622.08	601.344	594.432
STS-48	OC-48	STM-16	2488.32	2405.376	2377.728
STS-192	OC-192	STM-64	9953.28	9621.504	9510.912
STS-768	OC-768	STM-256	39813.12	38486.016	38043.648

Hierarquia de taxas SONET/SDH

Troncos e Multiplexação (4)

WDM (Wavelength Division Multiplexing), outro nome para FDM, é usada para enviar diversos snais em uma única fibra:

Comutação (1)

PSTN usa comutação de circuitos; Internet usa comutação de pacotes

Comutação (2)

Comutação de circuitos requer estabelecimento de chamada (conexão) antes do envio de dados

 Também requer desconexão ao final (não mostrada)

Comutação de pacotes trata mensagens independentemente

 Sem estabelecimento, mas com atraso de enfileiramento variável nos roteadores

Comutação (3)

Comparação entre comutação de circuitos e de pacotes

Item	Comutação de Circuitos	Comutação de Pacotes
Estabelecimento de chamada	Requerido	Não necessário
Caminho físico dedicado	Sim	Não
Todo pacote segue a mesma rota	Sim	Não
Pacotes chegam em ordem	Sim	Não
Falha no comutador/roteador é fatal	Sim	Não
Taxa de transmissão disponível	Fixo	Dinâmico
Momento de possível congestionamento	No estabelecimento	A cada pacote
Taxa de transmissão desperdiçada	Sim	Não
Modo de Transmissão armazena-e-envia	Não	Sim
Modo de tarifação	Por minuto	Por pacote

Sistema de Telefonia Móvel

- Gerações dos Sistemas de Telefonia Móvel »
- Sistemas de Telefonia Móvel Celular »
- GSM, um sistema 2G »
- UMTS, um sistema 3G »

Gerações dos Sistemas de Telefonia Móvel

1G: voz analógica

 AMPS (Advanced Mobile Phone System) é um exemplo, implantado nos anos 1980. Modulação baseada no FM (como rádio)

2G: voz digital

 GSM (Global System for Mobile communications) é um exemplo, implantado na década de 1990. Modulação baseada no QPSK

3G: voz e dados digitais

 UMTS (Universal Mobile Telecommunications System) é um exemplo, implantado nos anos 2000. Modulação baseada no CDMA

4G: dados digitais, incluindo voz

 LTE (Long Term Evolution) é um exemplo, implantado na década de 2010. Modulação baseada no OFDM

Sistemas de Telefonia Móvel Celular

Todos baseados na noção de regiões chamadas células

- Cada aparelho usa um canal na célula; movimento resulta em <u>handoff</u>
- Frequências são reusadas em células não-adjacentes
- Para suportar mais aparelhos, usam-se células menores

Padrão de reuso celular

Célular menores para locais de maior densidade de usuários

GSM – Sistema Global para Comunicações Móveis (1)

- Nó móvel é composto de aparelho e cartão SIM (Subscriber Identity Module) com credenciais
- Nó móvel informa ao HLR (Home Location Register) a sua localização para recebimento de chamadas
- Células rastreiam nós móveis visitantes (base <u>Visitor LR</u>)

GSM – Sistema Global para Comunicações Móveis (2)

A interface aérea é baseada em canais FDM de 200 KHz divididos em <u>quadros</u> TDM de 8 partes, <u>um</u> cada 4,615 ms

- Ao nó módel é alocada 1 parte de downlink e 1 de uplink
- Cada parte tem 148 bits, resultando na taxa de 27.4 kbps

UMTS – Sistema de Telecomunicações Móveis Universal (1)

Esta arquitetura é uma evolução do GSM; termos diferentes Pacotes vai para (e vem da) Internet via SGSN/GGSN

UMTS – Sistema de Telecomunicações Móveis Universal (2)

A interface aérea é baseada em CDMA com canais de 5 MHz

- Taxas de usuário <14.4 Mbps (HSPDA) a cada 5 MHz
- CDMA permite o reuso de frequência em outras células
- CDMA permite o soft handoff (conectado em ambas as células)

TV a Cabo

- Internet a Cabo »
- Alocação de Espectro »
- Modem a Cabo »
- Cabo vs. ADSL »

Internet a Cabo

Internet a cabo reutiliza os cabos de TV a cabo

 Os dados são enviados no cabo compartilhados por assinantes desde o headend, não em uma linha dedicada por assinante (DSL)

Alocação de Espectro

Dados de upload e download são alocados em canais de frequências não alocados para canais de TV:

Modems a Cabo

Os modems a cabo que ficam na casa do assinante implementam a camada física do padrão DOCSIS

 Modulação QPSK/QAM é usada em janelas de tempo nas frequências usadas para uplink/downlink

Cabo vs. ADSL

Cabo:

- + Usa cabo coaxial até o usuário (altas taxas de transmissão)
- Usa difusão de dados aos usuários (menos seguro)
- Taxas de transmissão são compartilhadas pelos usuários e por isso variam

ADSL:

- + Taxa de transmissão é dedicada para cada usuário
- Enlace ponto-a-ponto não usa difusão
- Usa pares trançados até os usuários (menor taxa de transmissão)

Fim

Capítulo 2