

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ: 09.03.01 Информатика и Вычислительная техника

Отчет

по лабораторной работе №2

Дисциплина: электротехника

	Вариант №6					
Студент гр. ИУ6-33Б		В.К. Залыгин				
	(Подпись, дата)	(И.О. Фамилия)				
Преподаватель		Н.В. Аксенов				
	(Подпись, дата)	(И.О. Фамилия)				

Цель работы:

Исследование неразветвленной и разветвленной электрических цепей синусоидального тока при наличии потребителей с активно-реактивными сопротивлениями; проверка соблюдения I и II законов Кирхгофа для цепи переменного тока; определение параметров цепей, установление условий возникновения резонансов напряжений и токов.

Часть 1.

Задание:

- 1. Ознакомиться с основными теоретическими положениями и законами цепей переменного тока и ответить на контрольные вопросы.
- 2. Собрать электрическую цепь, состоящую из идеального источника синусоидального напряжения, питающего последовательно подключенные к нему конденсатор, катушку индуктивности и резистор. Напряжение и частоту источника, а также сопротивление резистора и индуктивность катушки взять из таблицы с исходными данными в соответствии с своим порядковым номером в списке группы. Емкость конденсатора определяется по наступлению резонанса в цепи.
- 3. Для регистрации напряжений на элементах исследуемой цепи к каждому подключить параллельно вольтметр, а для регистрации входного тока последовательно амперметр, настроив приборы для работы на переменном токе. Кроме того, необходимо во входной цепи установить ваттметр для регистрации потребляемой мощности.
- 4. Изменяя емкость конденсатора, установить в цепи такой режим, когда ток в ней достигнет наибольшей величины. При этом напряжение на катушке индуктивности и конденсаторе окажутся примерно одинаковыми.
- 5. По показаниям ваттметра, амперметра и вольтметра на входе цепи рассчитать коэффициент мощности Cosφ = P/UI. Попытаться повысить коэффициент мощности слегка изменяя емкость конденсатора в ту или иную сторону. При значении Cos близком к 1 можно считать, что в цепи имеет место резонанс напряжений.

- 6. Отклоняя емкость конденсатора в обе стороны на 50 процентов от найденного в п.5 значения, зафиксировать соответствующие показания приборов во второй и третьей строке таблицы с экспериментальными и расчетными данными.
- 7. Заполнить правую часть таблицы, сделав необходимые вычисления на основе результатов измерений.
- 8. По полученным опытным и расчетным данным построить в масштабе векторные диаграммы для трех режимов работы цепи. Построить также в масштабе кривые изменения тока, коэффициента мощности и полного сопротивления цепи в зависимости от емкости конденсатора.

Входные данные:

 $L = 0.075 \, \Gamma$ н, $R = 20 \, O$ м, Um $= 15 \, B$, $f = 100 \, \Gamma$ ц. $C = 33.7 \, M$ кф (резонанс).

Выполнение:

На рисунках 1, 2 и 3 показаны результаты измерений для C = 33.7, 50.6 и 16.9 мкф соответственно:

Рисунок 1 - данные при С = 33.7мкф

Рисунок 2 - данные при С = 50.6мкф

Рисунок 3 - данные при C = 16.9мкф

По результатам измерений, используя формулы из методического пособия можно получить таблицу:

Таблица 1 - часть 1

	Измерения						Вычисления											
Nº	U	I	Р	IK	IC	UR	UC	ZK	XL	R	XC	Х	QL	QC	Q	φK	φ	F
n/n	В	Α	Вт	Α	Α	В	В	ОМ	OM	OM	ОМ	OM	Вар	Bap	Bap	Град	Град	Гц
1	15	0,75	11,25	0,75	0,75	15	35,42	51,192	47,124	20	47,227	-0,103	26,507	26,565	-0,058	67,003	-0,295	100
2	15	0,59	6,971	0,59	0,59	11,8	18,558	51,192	47,124	20	31,454	15,67	16,404	10,949	5,4548	66,976	38,043	100
3	15	0,293	1,722	0,293	0,293	5,86	27,593	51,192	47,124	20	94,175	-47,05	4,0455	8,0848	-4,039	66,943	-66,91	100

Векторные диаграммы

Рисунок 4 - режим работы при резонансе

Рисунок 6 - режим работы после резонанса

Рисунок 4 - режим работы до резонанса

Графики зависимостей от емкости конденсатора

Емкость в микрофарадах, сила тока в амперах, сопротивление в омах.

Рисунок 5 - силы тока

Рисунок 6 - полное сопротивление

Рисунок 7 - коэффициент мощности

Часть 2

Задание:

- 9. Исследовать явление резонанса токов в цепи. Для этого собрать схему, в которой к источнику синусоидального напряжения подключены параллельно катушка индуктивности с сопротивлением и конденсатор. Параметры источника и других элементов цепи взять из таблицы в соответствии со своим порядковым номером в списке группы.
- 10. Для наблюдения токов в ветвях цепи и падения напряжения на элементах, а также регистрации потребляемой мощности исследуемой цепью подключить соответствующие приборы и настроить их для работы на переменном токе.
- 11. Изменять емкость конденсатора пока в цепи не возникнет резонанс токов (при этом ток в неразветвленной части цепи станет минимальным, а у конденсатора и катушки токи станут приблизительно одинаковы). Проверить по коэффициенту мощности соответствие режима резонансу токов. Измерить и занести в таблицу значения указанных в ней величин Uвх, Iвх, Рпотр, Ik, Ic.
- 12. Отклоняя емкость конденсатора на 50 процентов в разные стороны от ее значения при резонансе токов, зафиксировать вышеназванные в п. величины во

второй и третьей строках таблицы. Произвести подсчет указанных в правой части таблицы величин и занести их в нее.

13. На основании произведенных измерений и расчетов построить в масштабе векторные диаграммы для трех режимов: до резонанса, при резонансе и после резонанса, а также графики зависимости входного тока цепи и токов конденсатора и катушки от емкости конденсатора.

Входные данные:

 $L = 0.075 \, \Gamma$ н, $R = 20 \, O$ м, $Um = 15 \, B$, $f = 100 \, \Gamma$ ц. $C = 28.6 \, \text{мкф}$ (резонанс).

Выполнение:

На рисунках 10, 11 и 12 показаны результаты измерений для C = 28.6, 42.9 и 14.3 мкф соответственно:

Рисунок 8 - показания при С = 28.6мкф

Рисунок 9 - показания при С = 42.9мкф

Рисунок 10 - показания при C = 14.3мкф

Теперь по результатам измерений, используя формулы из методического пособия можно получить таблицу:

Таблица 2 - часть 2

	Измерения					Вычисления												
Nº	U	- 1	Р	IK	IC	IA	IL	IP	YK	G	BL	ВС	В	Υ	Q	φK	φ	F
n/n	В	Α	Вт	Α	Α	Α	Α	Α	См	См	См	См	См	См	Вар	Град	Град	Гц
1	15	0,114	1,717	0,293	0,27	0,1145	0,2697	-3E-04	0,0195	0,0076	0,018	0,018	3E-05	0,0076	0,0061	67,003	0,205	100
2	15	0,177	1,717	0,293	0,404	0,1145	0,2697	-0,134	0,0195	0,0076	0,018	0,0226	-0,005	0,0089	-1,048	67,003	-31,4	100
3	15	0,177	1,717	0,293	0,135	0,1145	0,2697	0,1347	0,0195	0,0076	0,018	0,0102	0,0078	0,0109	1,7598	67,003	45,703	100

Векторные диаграммы:

Рисунок 11 - до резонанса

Рисунок 12 - при резонансе

Рисунок 15 - после резонанса

Графики зависимостей от емкостей:

Ось X – емкость конденсатора, мкф; ось Y – ток, A;

Рисунок 13 - входной ток

Рисунок 14 - ток конденсатора

Рисунок 15 - ток катушки

Вывод:

Исследованы неразветвленные и разветвленные электрические цепи синусоидального тока при наличии потребителей с активно-реактивными сопротивлениями; проверена опытным путем работа I и II законов Кирхгофа для цепи переменного тока; определены параметры цепей, установлены условия возникновения резонансов напряжений и токов.