MODEL – Basic algebraic structures

September 29, 2017

This course is taught by:

- Mohab safey El Din, Mohab.Safey@lip6.fr
- Jeremy Berthomieu, Jeremy.Berthomieu@lip6.fr

The evaluation is done through:

- short exams (at least 5 during the semester), evaluating how you learnt the course;
- one mid-term exam evaluating your ablity to manipulate the concepts taught during the first half of the semester;
- one final exam evaluating your ability to manipulate the concepts taught during the whole semester (but with an emphasis on the second half).

All these items count for 1/3 of the final grade.

Objectives of the course and outline. The course provides an introduction to fundamental and basic computing methodologies used in many areas of computer science (cryptography, high-performance computing, big data, operational research, imagery, etc.). These methods rely either on *exact* or *approximate* computation.

The first half of the course focuses on exact computation. The plan is as follows:

- 1. basic mathematical notions which are needed at the Master degree level;
- 2. arithmetic algorithms on numbers, polynomials, and matrices;
- 3. Euclide's algorithm and its applications;
- 4. Algorithms in linear algebra and complexity equivalences;
- 5. Algorithms for solving bivariate systems.

Groups.

Definition 1 (Group). Let G be a set equipped with the binary operation \star . One says that (G, \star) is a group if the following hold:

- 1. the operation \star is associative (i.e. $\mathbf{x} \star (\mathbf{y} \star \mathbf{z}) = (\mathbf{x} \star \mathbf{y}) \star \mathbf{z}$);
- 2. there exists $e \in G$ (called identity element) such that for all $x \in G$, $x \star e = e \star x = x$;
- 3. for all $\mathbf{x} \in G$, there exists $\mathbf{y} \in G$ (called invert of \mathbf{x}) such that $\mathbf{x} \star \mathbf{y} = \mathbf{e}$. Usually, such an element \mathbf{y} is denoted by \mathbf{x}^{-1} .

A group is said to be abelian (or commutative) if the binary operation is commutative. Also, a group is said to be finite when its cardinality is finite.

Proposition 2. Let (G,.) be a group and, a and b be in G. Then $(a.b)^{-1} = b^{-1}.a^{-1}$.

Proof. It suffices to check that $(a.b).(b^{-1}.a^{-1}) = e_G$ (where e_G is the identity element of G). This is immediate

$$(a.b)^{-1}.b^{-1}.a^{-1} = a.(b.b^{-1}).a^{-1} = a.e_G.a^{-1} = a.a^{-1} = 1.$$

Definition 3 (Group homomorphism). Let (G, \star) and (G', \cdot) be two groups. A map $f: (G, \star) \to (G', \cdot)$ is a group homomorphism if for any couple $(a, b) \in G \times G$, $f(a \star b) = f(a) \cdot f(b)$.

Moreover, when f is a bijection, then f is said to be a group isomorphism; besides G and G' are said to be isomorphic.

Rings.

Definition 4 (Ring). Let R be a set equipped with two binary operations + and \times . One says that $(R, +, \times)$ is a ring if the following holds:

- 1. (R, +) is an abelian group;
- 2. \times is an associative binary operation;
- 3. \times is distributive with respect to +.
- Unitary rings are those rings which contain an identity element for \times this one is usually denoted by 1_R ;
- A ring is said to be commutative when \times is commutative;
- A ring is said to be integral when it is commutative and when for all $(x, y) \in R \times R$, $x \times y = 0$ implies x = 0 or y = 0.

When this occurs, one says that R does not admit a zero divisor.

Definition 5 (Ring homomorphisms). Let $(R, +, \times)$ and (S, \star, \circ) be two rings. One says that a map ϕ : $R \to S$ is a ring homomorphism if for all $(a_1, a_2) \in R \times S$, the following holds:

- $\phi(a_1 + a_2) = \phi(a_1) \star \phi(a_2)$;
- $\phi(a_1 \times a_2) = \phi(a_1) \circ \phi(a_2)$.

The set $\ker \phi = \{a \in R \mid \phi(a) = 0_S\}$ is called the kernel of ϕ . When a ring homomorphism is bijective, one says that it is a ring isomorphism and both rings R and S are isomorphic to each other.

Observe that not all rings are ordered. This yields some difficulty for defining a (Euclidean) division over rings. To bypass this difficulty, one introduces a function which embeds the considered ring in \mathbb{N} .

Definition 6 (Euclidean division). Let (R, +, .) be a ring. One says that R is equipped with a Euclidean division if there exists a map $h : R - \{0\}$ in \mathbb{N} such that for all (a, b) in $R - \{0\}$ the following holds:

- $h(a.b) \ge h(a)$;
- there exists a couple $(q,r) \in R \times R$ such that a = b.q + r with either r = 0 or h(r) < h(b).

Using the above notations, q is said to be the quotient and r is said to be the remainder of the Euclidean division.

Definition 7. A ring R is said to be Euclidean if it is integral and is equipped with a Euclidean division.

Fields.

Definition 8 (Field). Let \mathbb{K} be a set equipped with two binary operations + and \times . On says that $(\mathbb{K}, +, \times)$ is a field if the following holds:

- 1. $(\mathbb{K}, +, \times)$ is a unitary commutative ring;
- 2. the identity elements of + and × (denoted respectively $0_{\mathbb{K}}$ and $1_{\mathbb{K}}$) do not coincide;
- 3. (\mathbb{K}^*, \times) is a group (where $\mathbb{K}^* = \mathbb{K} \{0\}$).

A field is said to be finite when its cardinality is finite.

Theorem 9. Any field is an integral ring. Any finite integral ring is a field.

Definition 10 (Subfield). A subset \mathbb{L} of a field $(\mathbb{K}, +, \times)$ is a subfield of \mathbb{K} if the following holds:

- $1_{\mathbb{K}} \in \mathbb{L}$
- $(\mathbb{L}, +)$ is a subgroup of \mathbb{K}
- $(\mathbb{L} \{0_{\mathbb{K}}\}, \times)$ is a subgroup of $\mathbb{K} \{0\}$.

Proposition 11. Let $(\mathbb{K}, +, \times)$ be a field and $(\mathbb{L}+, \times)$ be a subfield of \mathbb{K} . Then, \mathbb{K} is a \mathbb{L} -vector space.

Vector spaces.

Definition 12 (Vector space). A set $(E_{\mathbb{K}}, +, .)$ is a vector space over a field $(\mathbb{K}, \oplus, \star)$ (also called \mathbb{K} -vector space) if the following holds, for all $\alpha \in \mathbb{K}$, and $(u, v) \in E \times E$:

- vector addition satisfies the standard axioms of addition in a number system (commutativity, associativity, identity element, inversion);
- $\alpha.(\boldsymbol{u} + \boldsymbol{v}) = \alpha.\boldsymbol{u} + \alpha.\boldsymbol{v}$;
- $(\alpha + \beta).\mathbf{v} = \alpha.\mathbf{v} + \beta.\mathbf{v}$;
- $(\alpha \star \beta).\mathbf{v} = \alpha.(\beta.\mathbf{v})$;
- $1_{\mathbb{K}}\boldsymbol{v} = \boldsymbol{v}$.

Elements of the field \mathbb{K} will be called scalars.

Definition 13. Let E be a \mathbb{K} -vector space. One says that elements $\mathbf{v}_1, \ldots, \mathbf{v}_\ell$ are linearly dependent if there exist $\alpha_1, \ldots, \alpha_\ell$ in \mathbb{K} , not all zero, which satisfy

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_\ell \mathbf{v}_\ell = 0.$$

Vectors of the above form are called linear combinations of v_1, \ldots, v_ℓ .

Lemma 14. We reuse the notations introduced above. The vectors $\mathbf{v}_1, \dots, \mathbf{v}_\ell$ in E are linearly dependent if either $\mathbf{v}_1 = \mathbf{0}$ or for some r, $\mathbf{v}_r = is$ a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_{r-1}$.

Definition 15. The vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ span the \mathbb{K} -vector space E if for any $\mathbf{v} \in E$, there exist $\alpha_1, \dots, \alpha_n$ in \mathbb{K} such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n.$$

They form a basis of E if they are linearly independent. The cardinality of a basis of E is called the dimension of the vector space E. A vector space with a finite basis is called finite dimensional.