Overfitting and Solutions

- Overfitting: Model performs well on training data, but poorly on test data
- Causes
- Solutions:
 - Cross-Validation
 - Proper Validation Set
 - Regularization (Bias-Variance tradeoff)
 - 1 Ridge: $f(\theta) = L(\theta) + \lambda \|\theta\|_2^2$ 2 Lasso: $f(\theta) = L(\theta) + \lambda \|\theta\|_1^2$

 - **3** Group lasso: $f(\theta) = L(\theta) + \lambda \sum_{q=1}^{G} \|\beta_q\|_2$

Yijia Zhao

Proximal Gradient Descent

• Designed for optimization problems of the form:

$$\min_{x} F(x) = f(x) + g(x), \quad x \in \mathbb{R}^{n}$$

where f and g has global minimum, f is differentiable, g is not differentiable.

• The proximal operator

$$\operatorname{prox}_{t,g}(z) = \arg\min_{x} \left\{ g(x) + \frac{1}{2t} ||x - z||_{2}^{2} \right\}$$

- Proximal gradient descent algorithm:
 - Regular GD update: $y_k = x_k \eta_k \nabla f(x_k)$
 - ② Proximal based update: $x_{k+1} = \operatorname{prox}_{\eta_k, g}(y_k)$
- The proximal operator for ℓ_1 norm is the soft-thresholding function: $\operatorname{prox}_{t,\lambda||.||_1}(z) = S_{t,\lambda}(z) = \operatorname{sign}(z) \cdot \max(|z| t\lambda, 0)$

 ✓□ → ✓□ → ✓□ → ✓□ → ✓□ → ✓□ → ✓□ → ✓□
 Yiia Zhao

 May 23, 2025
 2 / 4

Newton's Algorithm and Variants

- Intuition: Take the curvature of the target function into consideration.
- Update rule: $x_{k+1} = x_k \left[\nabla^2 f(x_k)\right]^{-1} \nabla f(x_k)$.
- Damped/guarded version of Newton's algorithm:

$$x_{k+1} = x_k - \eta_k \left[\nabla^2 f(x_k) \right]^{-1} \nabla f(x_k).$$

- Issues with the Newton algorithm:
 - 4 Hessian is not strictly positive definite or Hessian is ill-conditioned. Levenberg-Marquardt algorithm: $x_{k+1} = x_k - \left[\nabla^2 f(x_k) + \mu_k I\right]^{-1} \nabla f(x_k)$.
 - Expensive computation cost to calculate the inverse of the Hessian matrix.
 - Use $H_0 = \nabla^2 f(x_0)$ or update the Hessian every ℓ iterations.
 - Use $\tilde{H}_k \equiv \operatorname{diag}\left(\frac{\partial^2 f(x_k)}{(\partial x_k)^2}\right)^n$.

May 23, 2025

Coordinate Descent Algorithm

- Coordinate Descent updates one coordinate (parameter) at a time while keeping others fixed.
- Widely used for high dimensional problems where full gradient methods can be expensive.
- Coordinate descent for linear/ridge/lasso regression.
- Advantages and Limitations

Yijia Zhao