

研途考研数学零基础

——概率论与数理统计(数一、数三)

主讲: 朱祥和

新浪微博: 祥和老师

0 概率论的前世今生

1 概率论部分考察内容

2 数理统计部分考察内容

第一章 随机事件和概率

§1 随机事件与运算

【1. 随机试验】

随机试验的定义: 概率论中将具有以下三个特点的试验称为随机试验,简称实验,常记为E.

- (1) 可以在相同的条件下重复地进行;
- (2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;
- (3) 进行一次试验之前不能确定哪一个结果会出现.
- 【2. **样本空间**】随机试验的所有可能结果组成的集合称为样本空间记为 Ω , Ω 中的元素称为样本点.

【3. 随机事件】

- (1) 随机事件的定义: 样本空间 Ω 的子集,即试验的结果称为随机事件,简称事件,通常用大写字母 A , B , C 等表示.
 - (2) 随机事件的分类

基本事件: 由一个样本点组成的单点集称为基本事件;

复合事件:由两个或两个以上样本点组成的事件称为复合事件;

必然事件: 样本空间 Ω 包含所有样本点,它是 Ω 自身的子集,在每次试验中它总是发生的,称为必然事件,记为 Ω :

不可能事件:空集 Ø 不包含任何样本点,它也作为样本空间的子集,在每次试验中都不发生,称为不可能事件,记为 Ø.

(3)事件发生:在每次试验中,事件有且仅有一个样本点出现时,称事件发生或者出现.

【4. 事件的关系与运算】

- (1) 包含关系: $A \subset B \Leftrightarrow$ 事件 A 发生一定导致 B 发生;
- (2) 事件相等: $A \subset B \perp B \subset A$, 则事件 A = B;
- (3) A和 B的和事件: 记为 A B或 A+B \Leftrightarrow A , B 至少有一个发生时事件 A B发生,

类似地,称 A_k 为n个事件 A_1 , A_2 , , A_n 的和事件;

(4) $A \cap B$ 的积事件: 记为 $A \cap B$ 或 $AB \Leftrightarrow A \cap B$ 同时发生时事件 $A \cap B$ 发生,

类似地,称 A_k 为n个事件 A_1 , A_2 , , A_n 的积事件;

- (6) 互斥(互不相容)事件: $AB = \emptyset \Leftrightarrow A 与 B$ 不能同时发生;
- (7) 对立(互逆)事件: A $B = \Omega \perp A$ $B = \emptyset \Leftrightarrow A$ A B 在一次试验中必然发生
 日只能发生一个,A 的对立事件记为A :
- $(8) 完全(备)事件组:若事件 <math>A_1$ $A_n=\Omega, A_iA_j=\phi, 1\leq i\neq j\leq n \ , \ 则称事件$ A_1,\quad ,A_n 是一个完全事件组.

【5. 事件的运算律】

- (1) 交換律: A B = B A, A B = B A;
- (2) 结合律: A (B C) = (A B) C, A (B C) = (A B) C;
- (3) 分配律: A (B C) = (A B) (A C), A (B C) = (A B) (A C);
- (4) 德摩根律 (对偶律): $\overline{A} \quad B = \overline{A} \quad \overline{B}, \overline{A} \quad B = \overline{A} \quad \overline{B}$.
- 【例 1】 向指定目标射三枪,观察射中目标的情况。用 A_1 、 A_2 、 A_3 分别表示事件"第 1、
- 2、3 枪击中目标",试用 A_1 、 A_2 、 A_3 表示以下各事件:
 - (1) 只击中第一枪;
 - (2) 只击中一枪;
 - (3) 三枪都没击中;
 - (4) 至少击中一枪;
 - (5) 至少击中两枪;
 - (6) 至多击中两枪。

(A) $A \subset B$. (B) $\overline{B} \subset \overline{A}$. (C) $A\overline{B} = \emptyset$. (D) $\overline{AB} = \emptyset$.

【例 3】 设 A, B 为任意两个事件,则下列选项错误的是()

- (A) $AB = \emptyset$,则 \overline{A} , \overline{B} 可能不相容. (B) $AB \neq \emptyset$,则 \overline{A} , \overline{B} 也可能相容.
- (C) $AB = \emptyset$,则 \overline{A} , B也可能相容. (D) $AB \neq \emptyset$,则 \overline{A} , B一定不相容.

§2 概率的定义与性质

【定义】设E 是随机试验, Ω 是它的样本空间,对于E 的每一个事件A赋予一个实数,记 为P(A), 称为事件A的概率, 如果集合函数P()满足下列条件:

- 1) 非负性:对于每一个事件 A,有 $P(A) \ge 0$;
- 2) 规范性:对于必然事件 Ω ,有 $P(\Omega)=1$;
- 3) 可列可加性: 设 A_1,A_2 , 是两两互不相容的事件, 即对于

【概率的性质】

- 1) 非负性: $\forall A \subseteq \Omega$, $0 \le P(A) \le 1$;
- 2) 规范性: $P(\emptyset) = 0, P(\Omega) = 1$;
- 3) 有限可加性: 设 A_1, A_2, A_n 是两两互不相容的事件,即对于

$$i \neq j, A_i A_j = \phi, i, j = 1, 2, ,n$$

则有
$$P(A_1 A_2 A_n) = P(A_1) + P(A_2) + P(A_n)$$
;

- 4) 逆事件的概率对于任一事件 A,有 P(A) = 1 P(A);
- 5) 可比性: 设A,B是两个事件, 若 $A \subset B$, 则有

$$P(A) \le P(B) \perp P(B-A) = P(B) - P(A)$$
,

一般地:
$$P(B-A) = P(B) - P(AB)$$
 (减法公式);

6) 加法公式对于任意两随机事件 A, B 有: $P(A \mid B) = P(A) + P(B) - P(AB)$.

注: 3 个事件的概率加法公式:

$$P(A \ B \ C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC)$$
.

【例 1】 设事件 A,B 的概率分别为 $\frac{1}{3},\frac{1}{2}$. 在下列三种情况下分别求 P(BA) 的值:

- (1) A与B 互斥;
- (2) $A \subset B$;

$$(3) P(AB) = \frac{1}{4}.$$

【例 2】 设随机事件 A,B, P(A)=0.5, P(A-B)=0.8, 若 A,B 互不相容,则 P(B)=______.

【例 3】 己知
$$P(A) = 0.8$$
, $P(A-B) = 0.1$,则 $P(\overline{AB}) = \underline{\hspace{1cm}}$

【例 4】已知 A,B 两个随机事件满足 $P(AB) = P(\overline{AB})$,且 P(A) = p,则 P(B) =_______

【例 5】 若
$$A \supset B$$
, $A \supset C$, 且 $P(A) = 0.9$, $P(\overline{B} \quad \overline{C}) = 0.8$, 求 $P(A - BC) = \underline{\hspace{1cm}}$

【例 6】 已知随机事件 A, B 满足条件 $P(AB \cup \overline{AB}) = 0$, 则有:

(3) 研選

(A) *A*, *B* 为对立事件;

(B) *A*, *B* 为互斥;

(C) P(A) = P(B); (D) $P(A) = P(\overline{B})$.

已知 $P(A) = P(B) = P(C) = \frac{1}{4}$, P(AB) = 0 , $P(AC) = P(BC) = \frac{1}{6}$, 则事件 A,B,C全不发生的概率为_____.

§3 条件概率公式与乘法公式

【条件概率】

① 定义: 设 A, B 是两个事件,且 P(A) > 0 ,称 $P(B|A) = \frac{P(AB)}{P(A)}$ 为

在事件 A 发生的条件下事件 B 发生的条件概率.

- (2) 性质:
 - 1) $0 \le P(B \mid A) \le 1$;
 - 2) $P(\Omega | A) = 1$;
 - 3) $P(\overline{A} | B) = 1 P(A | B)$;
 - 4) $P\{(A_1 + A_2) | B\} = P(A_1 | B) + P(A_2 | B) P(A_1 A_2 | B);$

【乘法公式】 P(A) > 0, P(AB) = P(B|A)P(A);

推广: A,B,C 为事件, 且 P(AB) > 0, 则有 P(ABC) = P(C|AB)P(B|A)P(A).

【例 1】 已知 $P(B) = 0.4, P(A+B) = 0.5, \bar{x} P(A|B)$.

【例 2】 已知 0 < P(B) < 1, 且 $P[(A_1 + A_2) | B] = P(A_1 | B) + P(A_2 | B)$,则下列选项成立的是()

(A)
$$P[(A_1 + A_2) \mid \overline{B}] = P(A_1 \mid \overline{B}) + P(A_2 \mid \overline{B})$$

(B)
$$P(A_1B + A_2B) = P(A_1B) + P(A_2B)$$

(C)
$$P(A_1 + A_2) = P(A_1 \mid B) + P(A_2 \mid B)$$

(D)
$$P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2)$$

【例 3】 设
$$0 < P(A) < 1, 0 < P(B) < 1, P(A|B) + P(\overline{A}|\overline{B}) = 1$$
,则

A,
$$AB = \phi$$
 B, $B = \overline{A}$ C, $P(AB) \neq P(A)P(B)$ D, $P(AB) = P(A)P(B)$

【例 4】 已知
$$P(A) = 0.4$$
, $P(B|A) = 0.5$, $P(A|B) = 0.25$,则 $P(B) =$ ______.

【例 5】 一盒中装有 5 只产品,其中有 3 只正品, 2 只次品,从中取产品两次,每次取一只,作不放回抽样,求在第一次取到正品条件下,第二次取到的也是正品的概率.

【例 6】 某人忘记了电话号码的最后一个数字,因而他随意拨号,求他拨号不超过三次能接通所需电话的概率,若已知最后一个数字是奇数,此概率是多少?

【思考】证明: 己知P(A) > 0, $P(AB|A) \ge P(AB|A \cup B)$.

§4 全概率公式与贝叶斯公式

【全概率公式】

$$A_1, A_2,$$
 , A_n 是完全事件组,且 $P(A_i) > 0, i = 1, 2,$, $n 则 P(B) = \sum_{i=1}^n P(A_i) P(B \mid A_i)$.

【贝叶斯公式】(逆概公式)

 A_1, A_2, A_n 是完全事件组, $P(B) > 0, P(A_i) > 0, i = 1, 2, n$.

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)} \qquad i = 1, 2, \quad , n.$$

【例1】 一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不放回,则第二次抽出的是次品的概率为_____.

【例 2】 有 1 台机床,当其正常时,产品的合格率为 90%,当其不正常时,产品的合格率为 40%。由历史数据分析显示:每天上班开动机床时,机床是正常的概率为 80%。现有某检验人员为了检验机床是否正常,开动机床生产出了一件产品,经检验,该产品为合格。问此时机床处于正常状态的概率为多少?

【例 3】根据以往的记录,某种诊断肝炎的试验有如下效果:对肝炎病人的试验呈阳性的概率为 0.95;非肝炎病人的试验呈阴性的概率为 0.95.对自然人群进行普查的结果为:有千分之五的人患有肝炎。现有某人做此试验结果为阳性,问此人确有肝炎的概率为多少?

【例 4】三个箱子,第一个箱子中有 4 个黑球 1 个白球,第二个箱子中有 3 个黑球 3 个白球,第三个箱子中有 3 个黑球 5 个白球。现随机地取一个箱子,再从这个箱子中取出 1 个球,这个球为白球的概率等于______. 已知取出的球是白球,此球属于第二个箱子的概率为______.

【例 5】假设有两箱同种零件:第一箱内装 50件,其中 10件一等品;第二箱内装 30件,其中 18件一等品,现从两箱中随机挑出一箱,然后从该箱中先后取出两个零件(取出的零件均不放回),试求:

① 先取出的零件是一等品的概率 p;

② 在先取出的零件是一等品的条件下,后取出的零件仍然是一等品的条件概率q.

§5 事件的独立性

- ①定义: 设A,B是两个事件,如果满足等式P(AB) = P(A)P(B),则称事件A,B相互独立,简称事件A,B独立.
- ② 独立的等价说法

若
$$0 < P(A) < 1$$
,则事件 A, B 独立 \Leftrightarrow $P(B) = P(B \mid A) \Leftrightarrow P(AB) = P(A)P(B)$ $\Leftrightarrow P(B) = P(B \mid \overline{A}) \Leftrightarrow P(B \mid A) = P(B \mid \overline{A})$.

③独立的性质

若事件 A, B 相互独立,则 $A = \overline{B}$, $\overline{A} = B$, $\overline{A} = \overline{B}$ 也相互独立.

④三个事件的独立性

设 A, B, C 是三个事件, 如果满足等式

$$P(AB) = P(A)P(B)$$

 $P(AC) = P(A)P(C)$
 $P(BC) = P(B)P(C)$
 $\Rightarrow A, B, C$ 两两独立.

如果满足等式

$$P(AB) = P(A)P(B)$$

 $P(AC) = P(A)P(C)$
 $P(BC) = P(B)P(C)$
 $P(ABC) = P(A)P(B)P(C)$ $\Rightarrow A, B, C$ 相互独立.

【例1】 盒中有编号为1, 2, 3, 4的4只球,随机地从盒中取1只球,事件 A: 取得的是1号球

或2号球,事件B:取得的是1号或3号球,事件C:取得的是1号或4号球,证明:事件A,B,C两两独立,但A,B,C三事件不独立.

【例2】 设A、B是两个随机事件,且0 < P(A) < 1, P(B) > 0, P(B|A) = P(B|A)则必有 ()

- (A) $P(A \mid B) = P(\overline{A} \mid B)$
- (B) $P(A \mid B) \neq P(\overline{A} \mid B)$
- (C) P(AB) = P(A)P(B)
- (D) $P(AB) \neq P(A)P(B)$

【例 3】 对于任意二事件 A 和 B ()

- (A) 若 $AB \neq \emptyset$, 则 A,B 一定独立 (B) 若 $AB \neq \emptyset$, 则 A,B 有可能独立
- (C) 若 $AB = \emptyset$, 则 A, B 一定独立 (D) 若 $AB = \emptyset$, 则 A, B 一定不独立

【**例** 4】 设 A, B, C 三个事件两两独立,则 A, B, C 相互独立的充分必要条件是()

(A) A 和 BC 独立

(B) AB 与 A C 独立

(C) AB 与 AC 独立

(D) A B与A C独立

【思考】三人独立去破译一份密码,已知各人能译出的概率分别为 $\frac{1}{5}$, $\frac{1}{3}$, $\frac{1}{4}$,问三人中至少 有一人能将此密码译出的概率为?

§6 三大概型(1)

古典概型

- (1) 定义: 具有以下两特点的试验称为古典概型:
 - 1) 样本空间有限 $\Omega = \{e_1, e_2, e_n\}$;

- 2) 等可能性 $P\{e_1\} = P\{e_2\} = = P\{e_n\}$.
- (2) 计算方法: $P(A) = \frac{k}{n}$, 其中 $k = \{A$ 中基本事件的个数}, $n = \{\Omega$ 中基本事件的个数}.
- (3) 古典概率的性质

非负性: $\forall A \subset \Omega$, $0 \le P(A) \le 1$;

规范性: $P(\emptyset) = 0, P(\Omega) = 1$;

有限可加性:设 A_1, A_2 , A_n 是两两互不相容的事件,

即对于 $i \neq j, A_i A_j = \phi, i, j = 1, 2, ,n$

则有 $P(A_1 A_2 A_n) = P(A_1) + P(A_2) + + P(A_n)$.

古典概型计算常见模型及处理问题的方法:

要领: 利用乘法原理和加法原理,熟练掌握有关排列、组合的计数公式.

- (1) 摸球模型
- 【**例1(1)**】一袋中有5个大小形状相同的球,其中3个黑色球,2个白色球。现从袋中随机地取两次,每次取出1个球,求取出的两个球都是黑色球的概率。
- 【例 1 (2) 】一袋中有 5 个大小形状相同的球,其中 3 个黑色球,2 个白色球。现从袋中随机地取出 2 个球,求取出的两个球都是黑色球的概率。
- 【练习】在一个装有 n_1 只白球, n_2 只黑球, n_3 只红球的袋中任取m 只球,其中白、黑、红球分别为 $m_1, m_2, m_3(m_1+m_2+m_3=m)$ 只的概率为_____.

(2) 分球入杯问题

【例 2】 将 N 个球随机地放入 n 个盒子中 (n > N), 求:

- (1)每个盒子最多有一个球的概率;
- (2) 某指定的盒子中恰有m (m < N) 个球的概率。

【思考】将3只球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率.

(3) 取数问题

【例3】 在1~9的整数中可重复的随机取3个数组成3位数,求下列事件的概率:

- (1)3个数完全不同;
- (2)3个数不含偶数;

【思考】 求在数字0,1,2, ,9中不重复地任取四个组成一个四位偶数的概率.

(4) 配对问题

【例4】从5双不同的鞋子中任取4只,问这4只鞋子中至少有2只配成一双的概率.

§7 三大概型 (2)

2. 几何概型

【定义】如果试验 E 是从某一线段(或平面、空间中有界区域) Ω 上任取一点,并且 所取得点位于 Ω 中任意两个长度(或面积、体积)相等的子区间(或子区域)内的可能性 相同,则所取得点位于 Ω 中任意子区间(或子区域) A 内这一事件(仍记作 A)的概率为:

$$P(A) = \frac{m(A)}{m(\Omega)}$$

 $m(A) = \{A \text{ 的测度(长度、面积、体积等)}, m(\Omega) = \{\Omega \text{ 的测度(长度、面积、体积等)}.$

【例1】(会面问题)

两人相约在某天下午 2:00~3:00 在预定地方见面,先到者要等候 20 分钟,过时则 离去.如果每人在这指定的一小时内任一时刻到达是等可能的,求约会的两人能会到面的概 率.

随机的向半圆 $0 < v < \sqrt{2ax - x^2}$ (a为正常数)内掷一点,点落在半圆内任何 【例 2】 区域的概率与区域的面积成正比,则原点和该点的连线与x轴的夹角小于 $\frac{\pi}{4}$ 的概率 为 .

3.伯努利概型

①定义:只有两个结果 A和A 的试验称为伯努利试验,若将伯努利试验独立重复地进 行n次,则称为n 重伯努利实验.

②二项概率公式

设在每次实验中,事件 A 发生的概率 P(A) = p(0 ,则在 <math>n 重伯努利实验中, 事件 A 发生 k 次记为 A_k , 其概率为 $P(A_k) = C_n^k p^k (1-p)^{n-k} (k=0,1,2, ,n)$, 此公式称为 二项概率公式.

【例 3】 某人打靶的命中率为 0.5, 当他连续射击三次后,发现靶已命中,则他在第一次 射击时就已命中的概率是

【例 4】某人向同一目标独立重复射击,每次射击命中目标的概率为p(0 ,则此人第4次射击恰好第2次命中目标的概率为().

- (A) $3p(1-p)^2$ (B) $6p(1-p)^2$ (C) $3p^2(1-p)^2$ (D) $6p^2(1-p)^2$

第二章 一维随机变量及分布

§1 随机变量与分布函数

1、随机变量的概念

(1) 随机变量定义

定义:在样本空间 $\Omega=\{e\}$ 上的实值函数 X=X(e) $e\in\Omega$,则该变量 X(e) 称为随机变量。随机变量常用大写字母 X,Y,Z 等表示,即 $\forall e\in\Omega$ — $\stackrel{P}{\longrightarrow}$ X=X(e),其取值用小写字母 x,y,z 等表示。

- (2) 随机变量的分类
 - ① 离散型随机变量;
 - ② 连续型随机变量;
 - ③ 非离散型也非连续型.

2、随机变量的分布函数

(1) 定义:设X是一个随机变量,对于任意实数x,令 $F(x) = P\{X \le x\}$ ($-\infty < x < +\infty$)称 F(x) 为随机变量 X 的概率分布函数,简称分布函数。

- (2) 分布函数的性质
 - ① 非负性: $0 \le F(x) \le 1$;
 - ② 规范性: $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$, $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;
 - ③ 单调不减性: 对于任意 $x_1 < x_2$, 有 $F(x_1) \le F(x_2)$;
 - ④ 右连续性: $F(x_0) = F(x_0 + 0)$.

【例 1】 设随机变量的分布函数
$$F(x) = \begin{cases} a + \frac{b}{(1+x)^2} & x > 0 \\ c & x \le 0 \end{cases}$$
,求 a,b,c 的值.

【例 2】 已知 X 的分布函数为 F(x),可以下列可作为随机变量分布函数的是(

(A) 2F(x)

(B) F(2x)

(C) $F(x^2)$

(D) F(|x|)

【思考】下列函数中,可以作为随机变量分布函数的是(

(A) $F(x) = \frac{1}{1+x^2}$

- (B) $F(x) = \frac{3}{4} + \frac{1}{2\pi} \arctan x$
- (c) $F(x) = \begin{cases} 0, & x \le 0 \\ \frac{x}{1+x}, & x > 0 \end{cases}$
- (D) $F(x) = \frac{2}{\pi} \arctan x + 1$

【 例 3 】 设 $F_1(x), F_2(x)$ 分 别 为 随 机 变 量 X_1, X_2 的 分 布 函 数 , 为 使 $F(x) = aF_1(x) + bF_2(x)$ 也是分布函数,则()

(A) $a = \frac{3}{5}, b = -\frac{2}{5}$ (B) $a = \frac{2}{3}, b = \frac{2}{3}$ (C) $a = -\frac{1}{2}, b = \frac{3}{2}$ (D) $a = \frac{1}{2}, b = \frac{3}{2}$

(3) 利用分布函数求各种随机事件的概率

已知 $X \sim F(x)$,则有

- ① $P\{X \le a\} = F(a)$;
- ② $P\{X > a\} = 1 F(a)$;
- ③ $P\{X < a\} = F(a-0) = \lim_{x \to a^{-}} F(x)$;
- (4) $P\{X \ge a\} = 1 F(a 0)$;
- $(5) P\{X = a\} = P\{X \le a\} P\{X < a\} = F(a) F(a 0);$

⑥
$$P\{a < X \le b\} = P\{X \le b\} - P\{X \le a\} = F(b) - F(a)$$
;

7
$$P\{a < X < b\} = P\{X < b\} - P\{X \le a\} = F(b-0) - F(a);$$

(8)
$$P\{a \le X \le b\} = P\{X \le b\} - P\{X < a\} = F(b) - F(a - 0)$$
;

【例 4】 设随机变量的分布函数
$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1, \ \, 则 \, P\big\{X = 1\big\} = \underline{\hspace{1cm}}. \\ 1 - e^{-x}, & x \ge 1 \end{cases}$$

- (A) 0 (B) $\frac{1}{2}$ (C) $\frac{1}{2} e^{-1}$ (D) $1 e^{-1}$

§2 离散型随机变量

离散型随机变量的定义:取值为有限个或可数无穷多个.

(1) 分布律

定义: 设X 为离散型随机变量,其可能取值为 x_1 , x_2 , x_k , , x_k 和各个值 x_k 的概 率为

$$P\{X=x_k\}=p_k(k=1,2,), \quad \text{if } p_k\geq 0 \ (k=1,2,), \quad \sum_{k=1}^{\infty}p_k=1),$$

则称 $P\{X=x_k\}=p_k(k=1,2,)$ 为随机变量 X 的概率分布或分布律,也可记为

$$X$$
 x_1 x_2 x_3 x_k

 $p \qquad p_1 \qquad p_2 \qquad p_3 \qquad p_k$

(2) 离散型随机变量的分布函数

定义:
$$F(x) = P\{X \le x\} = \sum_{x_i \le x} P\{X = x_i\} = \sum_{x_i \le x} p_i \ x \in R$$
.

若 X 的分布律为 $P\{X = x_k\} = p_k (k = 1, 2, ,n)$, 不妨设 $x_1 < x_2 < x_k < x_n$,

则

$$F(x) = \begin{cases} 0, & x < x_1, \\ p_1, & x_1 \le x < x_2, \\ p_1 + p_2, & x_2 \le x < x_3, \end{cases}$$

$$1, & x \ge x_n.$$

【例2】设随机变量
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < -1 \\ 0.4, & -1 \le x < 1 \\ 0.8, & 1 \le x < 3 \\ 1, & 3 \le x \end{cases}$,则 X 的分布律为______.

【练习】 从 1,2,3,4 中随机取 2 个数,其中最小的数记为 X,则 X 的分布律为:_____.

§3 常见的离散型分布

(1) 0-1分布

若随机变量 X 只有两个可能的取值 0 和 1, 其概率分布为

X 0 1

	72
1-p	ρ
- P	

或 $P(X = k) = p^k (1-p)^{1-k} (0 , <math>k = 0,1$ 则称 X 服从 0-1 分布.

【例 1】设 X 服从 0-1 分布,其分布律为 $P\{X=k\}=p^k(1-p)^{1-k}, k=0,1$,求 X 的分布函数。

(2) 二项分布 B(n,p)

设事件 A 在任意一次实验中出现的概率都是 p(0 , <math>X 表示 n 重伯努利试验中事件 A 发生的次数,则 X 所有可能的取值为 0,1,2,,n,且相应的概率为 $P\{X=k\}=C_n^kp^k(1-p)^{n-k}~(k=0,1,\dots,n)$.

注: 二项分布与 0-1 分布的关系.

【例 2】 设随机变量 X 服从于参数为(2,p)的二项分布,随机变量 Y 服从于参数为(3,p)

的二项分布,若
$$P\{X \ge 1\} = \frac{5}{9}$$
,则 $P\{Y \ge 1\} = _____$.

【 \mathbf{M} 3】 设X 的分布律为

X	0	1	2
P	1/3	1/6	1/2

现对 X 进行三次独立观测, 求至少有两次观测值大于 1 的概率.

(3) 泊松分布

设随机变量 X 的概率分布为: $P\{X=k\}=rac{\lambda^k e^{-\lambda}}{k!}(\lambda>0), k=0,1,2$, 则称 X 服从参数为 λ 的泊松分布,记为 $X\sim P(\lambda)$.

【例 4】设某段时间内通过路口车流量服从泊松分布,已知该时段内没有车通过的概率为 $\frac{1}{e}$,则这段时间内至少有两辆车通过的概率为

【例 5】 设随机变量
$$X \sim P(\lambda)$$
, $Y \sim P(2\lambda)$, $P(X < 1) = \frac{1}{5}$, 则 $P(Y \ge 1) = \underline{\hspace{1cm}}$.

(4) 几何分布

若 X 的分布律为 $P\{X = k\} = (1-p)^{k-1} p, (0 X$ 服从几何分布.

注:在独立重复的做一系列伯努利试验中,若每次试验成功的概率为p(0 ,则在第<math>k次试验时才首次试验成功的概率服从几何分布.

(5) 超几何分布

设随机变量 X 的概率分布为: $P\{X=k\}=\frac{C_M^kC_{N-M}^{n-k}}{C_N^n}, k=0,1,2,\quad n$,其中 M , N , n 都是 正整 数,且 n \leq M \leq N ,则称 X 服 从 参数 为 M , N 和 n 的超 几 何 分 布,记 为

 $X \sim H(n,M,N)$.

注: 如果 N 件产品中含有 M 件次品,从中任意一次取出 n 件,令 X = 抽取的 n 件产品中的次品件数,则 X 服从参数为 n, N, M 的超几何分布.

泊松定理

设随机变量序列 X_n 服从二项分布 $B(n,p_n)$ (这里概率 p_n 与 n 有关),若 p_n 满足 $\lim_{n\to +\infty} n \, p_n = \lambda > 0$ (λ 为常数),

则有:
$$\lim_{n\to+\infty} P\{X=k\} = \lim_{n\to+\infty} C_n^k p^k (1-p)^{n-k} = \frac{\lambda^k}{k!} e^{-\lambda} (k=0,1,2,)$$
.

§4 连续型随机变量

(1) 概率密度函数定义

如果对于随机变量 X 的分布函数 F(x),存在非负可积函数 $f(x) \ge 0$ $(-\infty < x < +\infty)$,使得对于任意实数 x,有 $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$,则称 X 为连续型随机变量,函数 f(x) 称为 X 的概率密度函数(简称密度函数).

(2) 性质

- ① 非负性: $f(x) \ge 0$ ($-\infty < x < +\infty$);
- ② 规范性: $\int_{-\infty}^{+\infty} f(x) dx = 1$;
- ③ 对于任意实数 a 和 b(a < b),有 $P\{a < X \le b\} = \int_a^b f(x) dx$;
- ④ 在 f(x) 的连续点处,有 F'(x) = f(x);
- ⑤ 连续型随机变量的分布函数 F(x) 是连续函数;
- ⑥ 对于连续型随机变量 X , $\forall x \in R$ 都有 $P\{X = x\} = 0$.

【例 1】下列函数中可以作为连续型随机变量X的密度函数的是().

A.
$$f(x) = \begin{cases} \sin x, & \pi \le x \le (3\pi/2), \\ 0, & 其他, \end{cases}$$
 B. $g(x) = \begin{cases} -\sin x, & \pi \le x \le (3\pi/2), \\ 0, & 其他, \end{cases}$

C.
$$\varphi(x) = \begin{cases} \cos x, & \pi \le x \le (3\pi/2), \\ 0, & 其他, \end{cases}$$

D.
$$h(x) = \begin{cases} 1 - \cos x, & \pi \le x \le (3\pi/2), \\ 0, &$$
其他,

- **【例 3】** 设 X_1 , X_2 为任意两个连续型随机变量,它们的分布函数分别为 $F_1(x)$ 和 $F_2(x)$,密度函数分别为 $f_1(x)$ 和 $f_2(x)$,则()
 - (A) $F_1(x)+F_2(x)$ 必为某随机变量的分布函数
 - (B) $F_1(x) F_2(x)$ 必为某随机变量的分布函数
 - (C) $f_1(x) f_2(x)$ 必为某随机变量的密度函数
 - (D) $\frac{1}{3} f_1(x) + \frac{2}{3} f_2(x)$ 必为某随机变量的密度函数

【例 4】 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他. \end{cases}$,以 Y 表示对 X 的三次独立

重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数,则 $P\{Y = 2\} =$ ______.

【例 5】 设随机变量 X 的概率密度为
$$f(x) = \begin{cases} \frac{1}{3}, x \in [0,1] \\ \frac{2}{9}, x \in [3,6], 若常数 k 使得 $P(X \ge k) = \frac{2}{3}, 0$ 0,其他$$

则k的取值范围是_____.

§5 常见连续型分布

(1) 均匀分布

如果随机变量 X ,其密度函数为 $f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & 其他. \end{cases}$,则称 X 服从 [a,b] 上的均匀

分布,

记作 $X \sim U[a,b]$. 其中 a,b 是分布的参数.

性质 设X 服从[a,b]上的均匀分布,则对 $a \le c < d \le b$,有 $P(c \le X \le d) = \frac{d-c}{b-a}$,

即随机变量 X 落入区间 [c,d] 的概率等于该区间长度与 [a,b] 长度之比.

$$X$$
的分布函数为:
$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x < b, . \\ 1, & x \ge b. \end{cases}$$

【例 1】随机变量 K 在 [0,5] 上服从于均匀分布,则方程 $4x^2 + 4Kx + K + 2 = 0$ 有实根的概率为______.

【思考】 设随机变量 X 在区间 (a,b) 上服从均匀分布,已知 $P(X<0)=P(X>2)=\frac{1}{4}$,则 b=____.

(2) 指数分布

如果随机变量 X , 其密度函数为: $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \le 0. \end{cases}$, 其中 $\lambda > 0$ 为参数,则称

X 服从参数为 λ 的指数分布,记作 $X \sim E(\lambda)$.

性质:设 $X \sim E(\lambda)$,

(1)
$$P(X > t) = \int_{t}^{+\infty} \lambda e^{-\lambda t} dt = e^{-\lambda t}, t > 0$$
;

(2)
$$P(X > t + s | X > s) = \frac{P(X > t + s)}{P(X > s)} = \frac{e^{-\lambda(t + s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t), t, s > 0.$$

指数分布的分布函数: $F(x) = \begin{cases} 1 - e^{-\lambda x}, x > 0, \\ 0, x \le 0. \end{cases}$

【例 2】 假设随机变量 X 服从参数为 λ 的指数分布,且 X 落入区间 (1,2) 内的概率达到最大,则 $\lambda =$ ______.

【思考】设随机变量 X 服从参数为 1 的指数分布,a 为常数且大于 0,则 $P(X \le a+1|X>a) =$

(3) 正态分布

1) 一般正态分布

一个连续型随机变量 X ,如果其密度函数为 $f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-u)^2}{2\sigma^2}}(-\infty < x < +\infty)$,其中 μ,σ 为常数, $-\infty < \mu < +\infty,\sigma > 0$,则称 X 服从参数为 μ 和 σ^2 的正态分布,记作 $X \sim N(\mu,\sigma^2)$.

2) 标准正态分布

i)定义: 当 $\mu=0$, $\sigma=1$ 时的正态分布称为标准正态分布,记作N(0,1),其密度函数用 $\varphi(x)$ 表示,分布函数用 $\Phi(x)$ 表示。其中 $\varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(-\infty < x < +\infty)$.

- ii) 性质
- ① $\varphi(-x) = \varphi(x)$ 关于 y 轴对称;

- (4) $P\{|X| \le a\} = 2\Phi(a) 1$.
- iii) 上一 α 分位点

设 $X\sim N(0,1)$,对于给定的 $\alpha(0<\alpha<1)$,如果 u_{α} 满足条件: $P\{X>u_{\alpha}\}=\alpha$,则 称 u_{α} 为标准正态分布的上一 α 分位点。

3) 正态分布的标准化

一般正态分布 $X \sim N(u, \sigma^2)$,可以通过线性变换 $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ 转化为标准正态分布.

【例 3】
$$X \sim N(\mu, \sigma^2)$$
,若 $P(X > 4) = \frac{1}{2}$,则 $\mu = \underline{\hspace{1cm}}$.

【例 4】 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)(\sigma > 0)$,且二次方程 $y^2 + 4y + X = 0$ 无 实根的概率为 $\frac{1}{2}$,则 $\mu =$ _____.

【例 5】 设随机变量 X 与 Y 均服从正态分布, $X \sim N\left(\mu,4^2\right), Y \sim N\left(\mu,5^2\right)$; 记 $p_1 = P\{X \le \mu - 4\}, p_2 = P\{Y \ge \mu + 5\}, 则($)

- (A)对任何实数 μ ,都有 $p_1 = p_2$ (B)对任何实数 μ ,都有 $p_1 < p_2$
- (C)只对 μ 的个别值,都有 $p_1=p_2$ (D)对任何实数 μ ,都有 $p_1>p_2$

【例 6】 设随机变量 X 服从正态分布 N(0,1) ,对给定的 $\alpha(0<\alpha<1)$,数 u_{α} 满足

 $P\{X > u_{\alpha}\} = \alpha \stackrel{.}{\times} P\{|X| < x\} = \alpha$,则 x 等于______.

- (A) $u_{\frac{\alpha}{2}}$ (B) $u_{1-\frac{\alpha}{2}}$ (C) $u_{\frac{1-\alpha}{2}}$

§6 随机变量函数的分布

1. 离散型随机变量的函数分布

设X 是离散型随机变量,概率分布为 $P\{X=x_k\}=p_k, k=1,2,$,则随机变量X的函 数 Y = g(X) 取值 $g(x_k)$ 的概率为 $P\{Y = g(x_k)\} = p_k, k = 1, 2, \dots, 1$

如果 $g(x_k)$ 中出现相同的函数值,则将它们相应的概率之和作为随机变量 Y = g(X) 取该值的概率,就可以得到 Y = g(X) 的概率分布.

【 \mathbf{M} 1】 随机变量 X 的分布律为

X	-1	0	1	2
p	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{6}$

则 $Y = X^2$ 的分布律为?

【思考】设随机变量 ξ 的分布列为 $P\{\xi=k\}=rac{1}{2^k},k=1,2,$,求 $\eta=\sin\left(rac{\pi}{2}\,\xi
ight)$ 的分布律.

2. 连续型随机变量函数的概率密度

1) 公式法:

已知 $X \sim f_X(x), Y = g(X)$,且恒有g'(x) > 0或g'(x) < 0,其值域为 (α, β) ,则

$$f_{Y}(y) = \begin{cases} f_{X}[g^{-1}(y)] | [g^{-1}(y)] |, & y \in (\alpha, \beta), \\ 0, & 其他. \end{cases}$$

特别的,当 $Y = aX + b, a \neq 0$ 时,有 $f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$.

【例 2】 设随机变量 $X \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,求 $Y = \sin X$ 的概率密度函数 $f_Y(y)$.

2) 分布函数法:

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = \int_{g(x) \le y} f_X(x) dx$$
,再求 $f_Y(y) = F_Y(y)$,可得密度函数.

【例 3】 设随机变量 X 服从(0,2)上的均匀分布,则随机变量 $Y = X^2$ 在(0,4)内的概率分布密度 $f_Y(y) =$ _____.

【例 4】 设随机变量 X 的概率密度函数为 $f_X(x)=\frac{1}{\pi(1+x^2)}$,求随机变量 $Y=1-\sqrt[3]{X}$ 的概率密度函数 $f_Y(y)$.

第三章 二维随机变量及分布

§1 二维随机变量及分布函数

(1) 二维随机变量定义

设 $X = X(\omega), Y = Y(\omega)$ 是定义在样本空间 $\Omega = \{\omega\}$ 上的两个随机变量,则称向量 (X,Y) 为二维随机变量(或随机向量).

- (2) 联合分布函数
- 二维随机变量分布函数的定义:设(X, Y)是二维随机变量,对于任意实数x, y,称二元函数 $F(x,y) = P\{X \le x, Y \le y\}$ 为二维随机变量(X, Y)的联合分布函数,它表示随机事件 $\{X \le x\}$ 与 $\{Y \le y\}$ 同时发生的概率.
 - (3) 二维随机变量分布函数的性质
 - ① 非负性: 对于任意实数 $x, y \in R$, $0 \le F(x, y) \le 1$;

② 规范性:
$$F(-\infty, y) = \lim_{x \to -\infty} F(x, y) = 0$$
, $F(x, -\infty) = \lim_{y \to -\infty} F(x, y) = 0$,
$$F(-\infty, -\infty) = \lim_{\substack{x \to -\infty \\ y \to -\infty}} F(x, y) = 0$$
, $F(+\infty, +\infty) = \lim_{\substack{x \to +\infty \\ y \to +\infty}} F(x, y) = 1$;

- ③ 单调不减性: F(x, v) 分别关于 x 和 v 单调不减;
- ④ 右连续性: F(x, y) 分别关于x和y右连续,即

$$F(x, y) = F(x+0, y), F(x, y) = F(x, y+0), x, y \in \mathbb{R}$$
.

【例 1】设随机变量(X,Y)的分布函数为

$$F(x,y) = \begin{cases} a(b + \arctan x)(c - e^{-y}) & x \in R, y > 0, \\ 0 & 其它. \end{cases}$$

求常数 a,b,c 的值.

(4) 二维随机变量的边缘分布函数

设二维随机变量(X, Y)的分布函数为F(x,y),分别称 $F_X(x) = \lim_{y \to +\infty} F(x,y)$,

 $F_Y(y) = \lim_{x \to +\infty} F(x, y)$ 分别为(X, Y) 关于 X 和关于 Y 的边缘分布函数.

【例 2】设二维随机变量的分布函数为F(x,y), X, Y的边缘分布函数分别为 $F_X(x)$, $F_Y(y)$,

则概率
$$P(X > a, Y > b) = ($$
)

- (A) 1-F(a,b) (B) $1-F_X(a)-F_Y(b)$
- (c) $1 F_X(a) F_Y(b) + F(a,b)$ (d) $F(a,b) + F_X(a) + F_Y(b) 1$

【例 3】设二维随机变量
$$(X,Y)$$
的分布函数为 $F(x,y)=\begin{cases} (1-e^{-2x})(1-e^{-y}), x>0, y>0, \\ 0, \\ \text{其他.} \end{cases}$

(5) 二维随机变量的独立性

设二维随机变量(X,Y)的分布函数为F(x,y), 关于X和关于Y的分布函数分别为 $F_X(x)$ 和 $F_Y(y)$,如果对于任意实数x和y有: $F(x,y)=F_X(x)F_Y(y)$,则称随机变量X和 Y 相互独立.

【例 4】一电子仪器由两个部件构成,以X = Y分别表示两个部件的寿命(单位:千小时), 已知 X 与 Y 的联合分布函数为:

- ①问X与Y是否独立?
- ②求两个部件的寿命都超过100小时的概率.

§2 二维离散型随机变量

- (1) 定义:如果二维随机变量(X,Y)可能取的值为有限对或无限可列多对实数,则称(X,Y)为二维离散型随机变量.
 - (2) 联合分布律

设二维离散型随机变量(X,Y)所有可能的取值为 $(x_i,y_i)(i,j=1,2,\dots)$,且对应的概率为

$$P(X = x_i, Y = y_j) = p_{ij}, (i, j = 1, 2,)$$
 $\sharp : p_{ij} \ge 0, i, j = 1, 2, ,$

则称为二维离散型随机变量(X,Y)的概率分布或随机变量X和Y的联合概率分布.

(3) 边缘分布律

定义:对于二维离散型随机变量(X,Y),设其概率分布为:

$$P\left\{X=x_{i},Y=y_{j}\right\}=p_{ij}$$
, $i,j=1,2$, .则 X 的边缘分布为:

$$P\{X = x_i\} = P\{X = x_i, Y < +\infty\} = \sum_{i=1}^{+\infty} P\{X = x_i, Y = y_j\} = \sum_{i=1}^{\infty} p_{ij} = p_{i.}(i = 1.2.)$$

Y 的边缘分布为:

$$P\{Y = y_i\} = P\{X < +\infty, Y = y_i\} = \sum_{i=1}^{+\infty} P\{X = x_i, Y = y_j\} = \sum_{i=1}^{\infty} p_{ij} = p_j (j = 12,)$$

边缘分布函数:

$$F_X(x) = P\{X \le x\} = \sum_{x_i \le x} P\{X = x_i\} = \sum_{x_i \le x} p_i$$

$$F_Y(y) = P\{Y \le y\} = \sum_{y_i \le y} P\{Y = y_j\} = \sum_{y_i \le y} p_{.j}$$

(4) 条件分布律

设二维离散型随机变量(X,Y)的概率分布为 $P\left\{X=x_i,Y=y_j\right\}=p_{ij}$, i,j=1,2, .

①对于给定的
$$j$$
 , 如果 $P\left\{Y=y_{j}\right\}>0$ $(j=1,2,)$,则称

$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{.j}}, i = 1, 2,$$

为在 $Y = y_i$ 条件下随机变量X的条件概率分布.

②对于给定的i,如果 $P\{X = x_i\} > 0(i = 1, 2,)$,则称

$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i.}}, i = 1, 2,$$

为在 $X = x_i$ 条件下随机变量Y的条件概率分布.

(5) 离散型随机变量 X 与 Y 的独立性

如果(X,Y)是二维离散型随机变量,则随机变量X和Y相互独立的充分必要条件是

$$P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}, i, j = 1,2,$$

【例 1】设(X,Y)的分布律为

Y	1	2	3
-1	0.2	0.1	0
0	0.1	0	0.3
1	0.1	0.1	0.1

- (1) 求X和Y的边缘分布律;
- (2) 求(X,Y)的分布函数F(1,1)的值.

【例 2】 某箱装有 100 件产品,其中一、二和三等品分别为 80,10 和 10 件,现从中随机

抽取一件,记
$$X_i = \begin{cases} 1, & \text{若抽到i} \\ \text{5}, & \text{5} \end{cases}$$
, $i = 1, 2, 3$,试求 $X_1 \subseteq X_2$ 的联合分布律.

【例 3】 一射手对同一目标进行射击,每次击中目标的概率为 p(0 ,射击进行到第二次击中目标为止,设 <math>X 表示第一次击中目标时所进行的射击次数,Y 表示第二次击中目标时所进行的射击次数,求 (X,Y) 的联合分布律及两个条件分布律.

【例4】 已知随机变量
$$X_1$$
和 X_2 的概率分布 X_1
$$\begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix}, X_2$$

$$\begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix},$$
 且

 $P\{X_1X_2=0\}=1.$

- ①求 X_1 和 X_2 的联合分布;
- ②问 X_1 和 X_2 是否独立?为什么?

§3 二维连续型随机变量

(1) 定义

设二维随机变量(X,Y)的分布函数为F(x,y),如果存在非负可积的二元函数f(x,y),使得对任意实数x,y,有 $F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv$,则称(X,Y)为二维连续型随机变量,称函数f(x,y)为二维随机变量(X,Y)的概率密度函数或随机变量X和Y的联合密度函数。

- (2) 性质
- ① $f(x,y) \ge 0$;
- ③ 若 f(x,y) 在点 (x,y) 处连续,则有 $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$;

④ 设 $D \in xoy$ 平面上任一区域,则点(x,y)落在D内的概率为:

$$P\{(X,Y)\in D\} = \iint_D f(x,y)d\sigma.$$

- 【例 1】 设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} kx, 0 \le x \le y \le 1, \\ 0, \quad$ 其它.
 - ①求常数k.
 - ②计算 $P\{X + Y \le 1\}$.

(3) 边缘概率密度

定义:设(X,Y)为连续型随机变量,它的概率密度函数为f(x,y),则X的边缘密度函数为: $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$.

Y 的边缘密度函数为: $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$.

- 【例 2】 设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & 其他. \end{cases}$
 - ①求X的概率密度 $f_{x}(x)$.
 - ②求 $P\{X+Y\leq 1\}$.

(4) 条件概率密度

设二维随机变量(X,Y)的概率密度为 f(x,y)

- ①对于给定的实数 y , 边缘概率密度 $f_Y(y)>0$, 则称 $f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)}$ 为在条件 Y=y下 X 的条件概率密度函数.
- ②对于给定的实数 x ,边缘概率密度 $f_X(x)>0$,则称 $f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)}$ 为在条件 X=x 下 Y 的条件概率密度函数.

【例 3】 设二维随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} 2(x+y), 0 < y < x < 1 \\ 0, 其他 \end{cases}$,求(1)

边缘概率密度 $f_{\scriptscriptstyle X}(x), f_{\scriptscriptstyle Y}(y)$;(2)条件概率密度 $f_{\scriptscriptstyle Y|\scriptscriptstyle X}(y\, \big| x), f_{\scriptscriptstyle X|\scriptscriptstyle Y}(x\, \big| y)$.

【例 4】设随机变量 X U(0,1), 当给定 X = x 时, 随机变量 Y 的条件概率密度为:

$$f_{Y|X}(y|x) = \begin{cases} x, 0 < y < \frac{1}{x}, \\ 0, 其它 \end{cases}$$

①求X,Y的联合概率密度函数f(x,y);②求边缘概率密度 $f_{y}(y)$;③P(X>Y).

(5) 二维连续型随机变量(X,Y)的独立性

如果二维随机变量 (X,Y) 的联合密度为 f(x,y),边缘概率密度分别为 $f_X(x)$ 和 $f_Y(y)$,则随机变量 X 和 Y 相互独立的充要条件是,对一切 x,y 均有 $f(x,y)=f_X(x)*f_Y(y)$.

【例 5】设二维随机变量
$$(X,Y)$$
概率密度为 $f(x,y) = \begin{cases} 6xy^2, 0 < x < 1, 0 < y < 1 \\ 0, 其他 \end{cases}$

求(1)求边缘概率密度 $f_X(x)$, $f_Y(y)$; (2) X 与 Y 是否独立,为什么 ?

【思考】 设X和Y是两个相互独立的随机变量,X在(0,1)区间上服从均匀分布,Y的密

度函数为
$$f_Y(y) = \begin{cases} \frac{1}{2}e^{-\frac{y}{2}}, & y > 0\\ 0, & 其它 \end{cases}$$

求: ①(X,Y)的联合密度.

②设含有a的二次方程 $a^2 + 2Xa + Y = 0$,求a没有实根的概率(用 $\Phi(x)$ 表示).

§4 两个特殊二维连续型分布

①二维均匀分布

定义:设G是平面上有界可求面积的区域,其面积为 S_G ,若二维随机变量(X,Y)具有

密度函数
$$f(x,y) = \begin{cases} \frac{1}{S_G}, (x,y) \in G, \\ 0, \quad (x,y) \notin G. \end{cases}$$
,则称 (X,Y) 服从区域 G 上的二维均匀分布.

性质:若在各边平行于坐标轴的矩形区域 $D = \{(x,y) | a \le x \le b, c \le y \le d\}$ 上服从均匀分布的随机变量(X,Y),则它的两个分量X和Y是独立的,并且分别服从区间[a,b],[c,d]上的一维均匀分布.

【例 1】设平面区域D由曲线 $y=\frac{1}{x}$ 及直线 $y=0,x=1,x=e^2$ 所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.

【思考】 设随机变量 (X,Y) 在 $D = \{(x,y) | x \ge 0, y \ge 0, x + y \le 1\}$ 上服从均匀分布,若分布函数满足 $F(\frac{1}{2},y) = \frac{3}{4}$,则 y 满足_____.

② 二维正态分布

如果二维连续型随机变量(X, Y)的概率密度为:

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{\frac{-1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\right\}, x, y \in \mathbb{R}$$

其中 $\mu_1, \mu_2, \sigma_1 > 0, \sigma_2 > 0, -1 < \rho < 1$ 均为常数,则称(X, Y)服从参数为 $\mu_1, \mu_2, \sigma_1, \sigma_2$ 和 ρ

的二维正态分布,记作 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$,也称(X, Y)为二维正态随机变量.

性质: ① $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$.

- ② X与Y 独立的充分必要条件是 $\rho = 0$.
- ③ X与Y 非零线性组合仍服从正态分布,且

当 X与Y 独立时: $k_1X + k_2Y \sim N(k_1\mu_1 + k_2\mu_2, k_1^2\sigma_1^2 + k_2^2\sigma_2^2)$.

当 X与Y 不独立时: $k_1X + k_2Y \sim N(k_1\mu_1 + k_2\mu_2, k_1^2\sigma_1^2 + k_2^2\sigma_2^2 + 2k_1k_2\rho\sigma_1\sigma_2)$.

④若 (X_1,X_2) 服从二维正态分布,设 (Y_1,Y_2) 是 (X_1,X_2) 的线性函数,则 (Y_1,Y_2) 也服从二维正态分布.

- 【例 2】 设二维随机变量 $(X,Y) \sim N(0,0;1,1;0)$,则概率 $P\left(\frac{X}{Y} < 0\right)$ 为(

- (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2\pi}$

【练习】设两个相互独立的随机变量 X 和 Y 分别服从正态分布 N(0,1) 和 N(1,1),则(

(A)
$$P\{X + Y \le 0\} = \frac{1}{2}$$

(B)
$$P{X + Y \le 1} = \frac{1}{2}$$

(C)
$$P\{X - Y \le 0\} = \frac{1}{2}$$

(D)
$$P{X-Y \le 1} = \frac{1}{2}$$

【例3】

设二维随机变量(X,Y)的概率密度为 $f(x,y) = \frac{1}{\pi}e^{-2x^2+2xy-y^2}$, $-\infty < x < +\infty$, $-\infty < y < +\infty$,

§5 随机变量函数的分布(1)

一、两个离散型随机变量函数的分布

已知 (X,Y) 的联合分布律为 $P\{X=x_i,Y=y_j\}=p_{ij}$, i,j=1,2, .则 Z=g(X,Y) 的分布律为:

Z = g(X, Y)	$g(X_1,Y_1)$	 $g(X_i,Y_j)$	
p	p_{11}	 p_{ij}	

【例 1】 设相互独立的两个随机变量 $X \times Y$ 服从同一分布,且 X 的分布律为

则随机变量 $Z = \max\{X,Y\}$ 的分布律为?

【例 2】 将两封信随意地投入 3 个邮筒,设 X, Y 分别表示投入第 **1,2** 号邮筒中信的数目,求: $Z_1 = X + Y, Z_2 = X - Y$ 的概率分布.

二、离散型与连续型随机变量(混合型)函数的分布

【例 3】 设随机变量 X 与 Y 独立,其中 X 的概率分布为 $X \sim \begin{pmatrix} 1 & 2 \\ 0.3 & 0.7 \end{pmatrix}$,而 Y 的概率密度为 f(y),求随机变量 U = X + Y 的概率密度 g(u).

§6 随机变量函数的分布(2)

三、两个连续型随机变量函数的分布

- 1、四则运算函数的分布
- (1) 和的分布: Z = X + Y,

Z的密度函数为: $f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx$ 或 $f_Z(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy$.

若 X与Y 独立,则 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$ 或 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$,这个公式称为独立和卷积公式.

【例1】

设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 2-x-y, & 0 < x < 1, 0 < y < 1. \\ 0, & 其他 \end{cases}$,求

- (1) P(X > 2Y); (2) Z = X + Y 的概率密度 $f_Z(z)$.
- (2) 差的分布 Z = X Y

Z 的密度函数为: $f_Z(z) = \int_{-\infty}^{+\infty} f(x, \mathbf{x} - \mathbf{z}) dx$ 或 $f_Z(z) = \int_{-\infty}^{+\infty} f(z + y, y) dy$.

若 X与Y 独立,则 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(\mathbf{x} - \mathbf{z}) dx$ 或 $f_Z(z) = \int_{-\infty}^{+\infty} f_X(z + y) f_Y(y) dy$,这个公式称为独立和卷积公式.

(3) 线性函数的分布 $Z = aX + bY (a \neq 0, b \neq 0)$

Z 的密度函数为: $f_Z(z) = \frac{1}{|b|} \int_{-\infty}^{+\infty} f(x, \frac{z-ax}{b}) dx$ 或 $f_Z(z) = \frac{1}{|a|} \int_{-\infty}^{+\infty} f(\frac{z-by}{a}, y) dy$.

【例 2】设二维随机变量的联合密度函数为 $f(x,y) = \begin{cases} 1,0 < x < 1,0 < y < 2x \\ 0,其他 \end{cases}$

求 Z = 2X - Y 的概率密度.

(4) 积的分布 Z = XY

Z 的密度函数为: $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f(x, \frac{z}{x}) dx$ 或 $f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|y|} f(\frac{z}{y}, y) dy$.

【例 3】设二维随机变量的联合密度函数为: $f(x,y) = \begin{cases} xe^{-x(1+y)}, x > 0, y > 0 \\ 0, 其他 \end{cases}$

求Z = XY的概率密度.

(5) 商的分布
$$Z = \frac{Y}{X}$$

Z 的密度函数为: $f_Z(z) = \int_{-\infty}^{+\infty} |x| f(x, zx) dx$.

2、一般方法:分布函数法

设二维连续型随机变量 (X, Y) 的概率密度为 f(x, y) ,则随机变量的函数 Z = g(X, Y) 的分布函数为:

$$F_Z(z) = P\{Z \le z\} = P\{g(X,Y) \le z\} = \iint_{g(x,y) \le z} f(x,y) dx dy.$$

【例 4】

设二维随机变量 (X,Y) 的概率密度为 $f(x,y)=\begin{cases} 2-x-y, & 0< x<1,0< y<1. \\ 0, & 其他 \end{cases}$,求 Z=X+Y 的概率密度 $f_z(z)$.

3、最值函数的分布

问题: 设 X_1 , , X_n 相互独立,其分布函数分别为 $F_{X_1}(x_1)$, $F_{X_2}(x_2)$, , $F_{X_n}(x_n)$, 求

$$M = \max_{1 \le i \le n} \left\{ X_i \right\}, \quad N = \min_{1 \le i \le n} \left\{ X_i \right\}.$$

$$\begin{split} F_{M}(z) &= P \big\{ \max(X_{1}, X_{2}, \quad , X_{n}) \leq z \big\} = P \big\{ X_{1} \leq z, X_{2} \leq z, \quad , X_{n} \leq z \big\} \\ &= P \big\{ X_{1} \leq z \big\} P \big\{ X_{2} \leq z \big\} \quad P \big\{ X_{n} \leq z \big\} = F_{X_{1}}(z) F_{X_{2}}(z) \quad F_{X_{n}}(z) \\ F_{N}(z) &= P \big\{ \min(X_{1}, X_{2}, \quad , X_{n}) \leq z \big\} = 1 - P \big\{ \min(X_{1}, X_{2}, \quad , X_{n}) > z \big\} \\ &= 1 - P \big\{ X_{1} > z, X_{2} > z, \quad , X_{n} > z \big\} = 1 - P \big\{ X_{1} > z \big\} P \big\{ X_{2} > z \big\} \quad P \big\{ X_{n} > z \big\} \end{split}$$

$$= 1 - \left[1 - F_{X_1}(z)\right] \left[1 - F_{X_2}(z)\right] \quad \left[1 - F_{X_n}(z)\right]$$

特别地,当 X_1 , X_n 独立同分布,即 $X_i \sim F(x)$ (i=1,2, n)时

$$F_M(z) = F^n(z), F_N(z) = 1 - [1 - F(z)]^n.$$

【 例 5 】 设 随 机 变 量 X与Y 独 立 , 且 均 服 从 $\begin{bmatrix} 0,3 \end{bmatrix}$ 上 的 均 匀 分 布 , 则 $P\{\max(X,Y) \leq 1\} = \underline{\hspace{1cm}}$, $P\{\min(X,Y) \leq 1\} = \underline{\hspace{1cm}}$.

- 【例 6】 设相互独立的随机变量 X_i 的分布函数为 $F_i(x)$,概率密度为 $f_i(x)$, i=1,2 ,则随机变量 $Y=\max(X_1,X_2)$ 的概率密度为()
- (A) $f_1(x)f_2(x)$ (B) $f_1(x)+f_2(x)$
- (C) $f_1(x)F_1(x) + f_2(x)F_2(x)$ (D) $f_1(x)F_2(x) + f_2(x)F_1(x)$

第四章 随机变量的数字特征

§1 期望的定义与性质

1. 期望的定义

(离散型)数学期望: 设随机变量 X 的分布律为 $P\{X=x_k\}=p_k(k=1,2,\dots)$,则其数学期望为

$$EX = \sum_{k=1}^{\infty} x_k p_k$$
 , (要求无穷级数绝对收敛).

(连续型) 数学期望: 设随机变量 X 的概率密度为 f(x),则其数学期望为

$$EX = \int_{-\infty}^{+\infty} x f(x) dx$$
, (要求广义积分绝对收敛).

【典型问题】已知随机变量 X 的密度函数为 $f(x) = \frac{1}{\pi} \cdot \frac{1}{1+x^2}$,则 $EX = \underline{\hspace{1cm}}$.

【例 1】 盒中有 5 个球,其中有 3 个白球,2 个红球. 从中任取两球,求取出白球个数 X 的平均值.

【例 2】 设随机变量
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{x^n}{n!} e^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$,求 $E(X)$.

2. 期望的性质

- (1) E(C) = C (C为常数);
- (2) E(CX) = CE(X);

(3) E(X+C) = E(X) + C;

- (4) E(X + Y) = E(X) + E(Y);
- (5) 若 X 与 Y 相互独立,则 E(XY) = E(X)E(Y).

【例 3】设 X 是随机变量且 $E(X) = \mu, D(X) = \sigma^2(\mu, \sigma > 0)$,则对任意常数 c,

下列等式成立的是(

(A)
$$E(X-c)^2 = EX^2 - c^2$$
 (B) $E(X-c)^2 = E(X-\mu)^2$

(B)
$$E(X-c)^2 = E(X-\mu)^2$$

(C)
$$E(X-c)^2 < E(X-\mu)^2$$

(C)
$$E(X-c)^2 < E(X-\mu)^2$$
 (D) $E(X-c)^2 \ge E(X-\mu)^2$

3. 随机变量函数的期望

- (1) 一维随机变量函数:
- ①设X的分布律 $P(X=x_i)=p_i$,则Y=g(x)的数学期望 $E(Y)=\sum_i g(x_i)P(X=x_i)$;
- ②设X的概率密度为 $f_X(x)$,则Y = g(x)的数学期望 $E(Y) = \int_{-\infty}^{+\infty} g(x)f(x)dx$.
- (2) 二维随机变量函数 Z = g(X,Y):
- ①若(X,Y)的概率密度为f(x,y),则 $E(Z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$;

特别,
$$E(X) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f(x, y) dx dy$$
; $E(Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f(x, y) dx dy$;

②若(X,Y)为离散型随机变量,则先求Z = g(X,Y)的分布律,再求Z的数学特征.

【例 4】 设随机变量 X 的概率密度
$$f(x) = \begin{cases} 2e^{-2x} & x > 0 \\ 0 & x \le 0 \end{cases}$$
, 求 $E(e^{-x})$.

【 $\mathbf{0}$ 5】 设(X,Y)的概率密度函数为

$$f(x,y) = \begin{cases} (x+y)/3, & 0 \le x \le 2, & 0 \le y \le 1 \\ 0, & 其他 \end{cases}$$

求E(X),E(XY), $E(X^2 + Y^2)$.

§2 方差的定义与性质

1. 方差的定义: $D(X) = E(X - EX)^2 = E(X^2) - E^2(X)$. 一般的,

(离散型) 方差: 设随机变量 X 的分布律为 $P\{X = x_k\} = p_k(k = 1,2,)$,则其方差为

$$D(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$$
,(要求无穷级数绝对收敛).

(连续型) 方差: 设随机变量 X 的概率密度为 f(x),则其方差为

$$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$
 , (要求广义积分绝对收敛).

根据方差的定义显然有 $D(X) \ge 0$,我们称方差的算术根 $\sqrt{D(X)}$ 为随机变量X 的标准差(或均方差). 这样,随机变量的标准差、数学期望与随机变量本身有相同的计量单位.

2. 方差的性质

- (1) D(C) = 0 (C为常数);
- (2) D(C+X) = D(X);
- (3) $D(CX) = C^2D(X)$; D(-X) = D(X);
- (4) 若X与Y相互独立,则 $D(X \pm Y) = D(X) + D(Y)$.
- (5) $D(aX + bY) = a^2DX + b^2DY + 2ab\cos(X, Y)$.

【例 1】 设 3 个球随机地放入 4 个杯子中去,用 X 表示杯子中球的最多个数,求: (1) X 的分布律; (2) E(X); (3) D(X).

- 【例 2】 设随机变量 X 的概率分布为 P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 3) = 0.5.
 - ①写出其分布函数;
 - ②求 X 的期望与方差.
- 【 \mathbf{M} 3】 设随机变量 X 的概率密度为

$$f(x) = \frac{1}{2}e^{-|x|} \quad (-\infty < x < +\infty),$$

求(1) EX 及 DX: (2) $D(X^2)$.

【例 4】 设随机变量 X 的概率密度函数为

$$f(x) = \begin{cases} 1+x, & -1 \le x < 0, \\ 1-x, & 0 \le x < 1, \\ 0, & \sharp \text{.} \end{cases}$$

求D(x).

【练习】 设 X_1, X_2, \quad , X_n 是相互独立且同分布的随机变量, $E(X_i) = \mu$, $D(X_i) = \sigma^2$,

§3 常见分布的期望与方差

分布	分布律或概率密度	数学期望	方差
1. (0-1) 分布	$P(X = k) = p^{k}q^{1-k}, k = 0,1$ 0	p	pq
2. 二项分布	$P(X = k) = C_n^k p^k q^{n-k}, k = 0,1,2, ,n$	пр	npq
3. 泊松分布	0 , $p + q = 1P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,2, , \lambda > 0$	λ	λ
4. 正态分布	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \ \sigma > 0, -\infty < x < +\infty$	μ	σ^2
5. 均匀分布	$\varphi(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{其他} \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
6. 指数分布	$\varphi(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}, (\lambda > 0 \text{ 为参数})$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
7. 几何分布	$P(X = k) = (1 - p)^{k-1} p$, $k = 1, 2, 0$	$\frac{1}{p}$	$\frac{1-p}{p^2}$

【例 1】 设随机变量 X_1,X_2,X_3 相互独立且 $X_1\sim U[0,6],X_2\sim N(0,2^2),X_3\sim P(3)$, 若 $Y=X_1-2X_2+3X_3$,则 D(Y)=_____.

【例 2】 设 $X \sim B(4,0.5)$, Y 服从参数为 λ 的泊松分布,且满足 E[(X+1)(X-1)] = 2E[(Y-1)(Y-2)],求参数 λ 。

【例 3】 设随机变量 X $N(\mu, \sigma^2)$, 求 $E(|X - \mu|)$.

【例 4】 设 $X\sim N$ (1,2), $Y\sim N$ (2,4) 且 X, Y 相互独立,求 Z=2X+Y-3 的分布密 度函数 f_Z (z).

【**例** 5】 设两个随机变量 X, Y 相互独立, 都服从 $N(0,\frac{1}{2})$, 求 D(|X-Y|).

【例 6】 设随机变量 X 的概率密度函数 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x - 1}$, 则

$$E(X)$$
______, $\sqrt{D(X)} =$ _____.

【练习】 设随机变量 X 服从标准正态分布 N (0,1),则 $E(e^{2X})=$ _____.

§4 协方差与相关系数

1. 协方差的定义及性质

协方差: Cov(X,Y) = E[(X - EX)(Y - EY)] = EXY - EXEY 性质:

- (1) Cov(X, X) = D(X);
- (2) Cov(X,Y) = Cov(Y,X); Cov(X,C) = 0;
- (3) Cov(aX,bY) = abCov(X,Y);
- (4) $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$;
- (5) 若随机变量 X, Y 相互独立,则 Cov(X, Y) = 0;

2. 相关系数定义及性质

相关系数:
$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{DX}\sqrt{DY}} = \frac{E(XY) - E(X) \cdot E(Y)}{\sqrt{DX} \cdot \sqrt{DY}}$$
,若 $\rho_{XY} = 0$,称随机变量 X,Y 不

相关。

性质:

- (1) $-1 \le \rho_{XY} \le 1$, $\rho_{XY} = \rho_{YX}$, $\rho_{XX} = 1$;
- (2) 若 X, Y 相互独立,则 $\rho_{XY} = 0$;
- (3) $|\rho|$ =1 ⇔ X 与 Y 以概率 1 线性相关,即 ∃常数 a,b 且 $a \neq 0$,使 $P\{X = aY + b\} = 1$;

3. 几个常用结论

(1) $D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$, 特别当 X = Y 独立时, $D(X \pm Y) = D(X) + D(Y)$;

- (2) $Cov(X,Y) = 0 \Leftrightarrow \rho_{XY} = 0 \Leftrightarrow E(XY) = E(X)E(Y) \Leftrightarrow D(X \pm Y) = D(X) + D(Y)$;
- (3) X 与 Y 独立 $\Rightarrow \rho_{xy} = 0$, 即 X 与 Y 不相关,但反过来不正确;
- (4) 若(X,Y)服从二维正态分布,则X与Y独立 $\Leftrightarrow X$ 与Y不相关.

4. 随机变量的矩

(1)对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为 V_k ,即

$$v_k = E(X^k), k=1,2,...$$

于是,我们有

$$\mathbf{v}_{k} = \begin{cases} \sum_{i} x_{i}^{k} p_{i,} & \exists X$$
为离散型时,
$$\int_{-\infty}^{+\infty} x^{k} p(x) dx, & \exists X$$
为连续型时,

(2)对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为

$$\mu_k$$
, $\mu_k = E[X-E(X)]^k, (k=2,...)$.

于是,我们有

$$\mu_{k} = \begin{cases} \sum_{i} (x_{i} - E(X))^{k} p_{i,} & \exists X$$
 为离散型时,
$$\int_{-\infty}^{+\infty} (x - E(X))^{k} p(x) dx, & \exists X$$
 为连续型时,

(3) 对于随机变量 X 与 Y ,如果有 $E(X^kY^l)$ 存在,则称之为 X 与 Y 的 k+l 阶混合原点矩,记为 v_{kl} ,即

$$v_k = E(X^k Y^l)$$
.

如果有 $E[(X-E(X))^k(Y-E(Y))^l]$ 存在,则称之为 X 与 Y 的 k+l 阶混合中心矩,记为 μ_{kl} ,即

$$\mu_{kl} = E[(X - E(X))^k (Y - E(Y))^l].$$

【例 1】设随机变量 X 和 Y 的方差存在且不等于 0,则 D(X+Y)=D(X)+D(Y) 是 X 和 Y

- (A) 不相关的充分条件, 且不是必要条件
- (B)独立的充分条件,但不是必要条件
- (C) 不相关的充分必要条件
- (D)独立的充分必要条件

【**例 2**】若E(XY) = E(X)E(Y),则下列各式正确的是(

(A)
$$D(XY) = D(X)D(Y)$$

(B)
$$D(X+Y) = D(X) + D(Y)$$

(C) X 与 Y 独立

(D) X与Y不独立

- ① E(Z), D(Z);
- $2\rho_{XZ}$;

【例 4】 设随机向量(X,Y)服从二维正态分布,则随机变量 $\xi = X + Y 与 \eta = X - Y$ 不相 关的充要条件为()

- (A) E(X) = E(Y) (B) $E(X^2) [E(X)]^2 = E(Y^2) [E(Y)]^2$
- (C) $E(X^2) = E(Y^2)$ (D) $E(X^2) + [E(X)]^2 = E(Y^2) + [E(Y)]^2$

【例 5】 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则

$$P(XY - Y < 0) =$$
_____.

【例 6】将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于()

- (A) -1 (B) 0
- (C) **0.5**
- (D) 1

【练习】设(X,Y)的概率密度为

$$f(x,y) = \begin{cases} x+y & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

求Cov(X,Y).

第五章 大数定律与中心极限定理

一、基本概念

1. 切比雪夫不等式

设随机变量 X 具有数学期望 μ 和方差 σ^2 ,则对于任意给定的正数 $\varepsilon > 0$,下列切比雪夫不等式成立: $P\{|X - \mu| \ge \varepsilon\} \le \frac{DX}{\varepsilon^2}$ 或者 $P\{|X - \mu| < \varepsilon\} \ge 1 - \frac{D(X)}{\varepsilon^2}$.

【**例** 1】设 X 的概率密度为 f(x),DX=1,Y 的概率密度 f(-y),且 X 与 Y 的相关系数为 $-\frac{1}{4}$,用切比雪夫不等式估计 $P(|X+Y| \ge 2) = ______.$

【例 2】 设随机变量 X 和 Y 的数学期望分别为 -2 和 2,方差分别为 1 和 4,而相关系数为 -0.5,则根据切比雪夫不等式,有 $P(|X+Y| \ge 6) \le _____.$

2. (依概率收敛) 设 $X_n(n=1,2,...)$ 为随机变量列,若存在随机变量 X ,对于任意 $\varepsilon>0$, 有 $\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0$ 或 $\lim_{n\to\infty} P(|X_n-X|<\varepsilon)=1$, 则称随机变量列 $\left\{X_n\right\}$ 依概率 收敛于随机变量 X ,并用下面符号表示: $X_n \xrightarrow{P} X$ 或 $\lim_{n\to\infty} X_n = X(P)$.

【例 3】 设总体 X 服从参数为 2 的指数分布, X_1 , X_2 …, X_n 为来自总体 X 的简单随机样本,则当 $n \to \infty$ 时, $Y_n = \frac{1}{n} \sum_{i=1}^n X_i^2$ 依概率收敛于______.

二、大数定律

1. 切比雪夫大数定律

设随机变量 X_1 , X_2 ,... 相互独立的随机变量序列,期望和方差均存在,且方差有界,则对于任意的正数 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n E(X_i) \right| < \varepsilon \right\} = 1.$$

特殊情形: 若 X_1 , X_2 ,...具有相同的数学期望 $E(X_i) = \mu$,则上式成为

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| < \varepsilon \right\} = 1.$$

切比雪夫大数定律指出,n个相互独立,且具有有限的相同的数学期望与方差的随机变量,当n很大时,它们的算术平均以很大的概率接近它们的数学期望.

2. 辛钦大数定律

设 X_1 , X_n , 是独立同分布的随机变量序列,且 $EX_i = \mu$,则对任意给定的正数 $\varepsilon > 0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^n X_i - \mu \right| < \varepsilon \right\} = 1.$$

即
$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \xrightarrow{P} \mu = E(X_{i})$$
 更一般地, $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k} \xrightarrow{P} E(X_{i}^{k})$.

3. 伯努利大数定律

设 f_A 是 n 次独立重复试验中事件 A 发生的次数, p 是事件 A 在每次试验中发生的概率,则对于任意正数 $\varepsilon>0$,有

$$\lim_{n\to\infty} P\left\{ \left| \frac{f_A}{n} - p \right| < \varepsilon \right\} = 1.$$

伯努利大数定律说明了当试验次数很多的时候,事件发生的频率依概率收敛到事件的概率,即频率无限接近概率.

三、中心极限定理

1. 列维一林德伯格中心极限定理

设 $X_1,X_2,\quad X_n$, 为 独 立 同 分 布 的 随 机 变 量 序 列 , $E(X_i)=\mu$, $D(X_i)=\sigma^2$, $i=1,2,\ldots$,则对任意实数 x, 有

$$\lim_{n \to \infty} P\left\{ \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n\sigma}} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

即当
$$n$$
 较大时,
$$\frac{\sum_{i=1}^{n} X_{i} - E\left(\sum_{i=1}^{n} X_{i}\right)}{\sqrt{D\left(\sum_{i=1}^{n} X_{i}\right)}} \approx N(0,1).$$

2. 棣莫弗一拉普拉斯定理

设随机变量 X_1, X_2, X_n , 均服从参数为 n, p(0 的二项分布,则对于任意实数 <math>x ,有

$$\lim_{n \to \infty} P(\frac{X_n - np}{\sqrt{np(1 - p)}} \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = \Phi(x)$$

即当n较大时, $\frac{X_n - np}{\sqrt{np(1-p)}} \approx N(0,1)$.

【例 4】设 X_1 , X_2 ,..., X_n ,.... 为独立且均服从 $B(1,\frac{1}{2})$ 的随机变量列,记 $\Phi(x)$ 为标准正态分布函数,则().

(A)
$$\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - 2n}{2\sqrt{n}} \le x\right\} = \Phi(x).$$
 (B) $\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - 2\lambda}{\sqrt{2n}} \le x\right\} = \Phi(x).$

(C)
$$\lim_{n \to \infty} P\left\{\frac{2\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x).$$
 (D) $\lim_{n \to \infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x).$

第六章 统计基础

§1 数理统计的基本概念

1. 统计量的概念

样本 $(X_1, X_2, ..., X_n)$ 的不含未知参数的函数 $T = T(X_1, X_2, ..., X_n)$,如果 $x_1, x_2, ..., x_n$ 是样本 $X_1, X_2, ..., X_n$ 的样本值,则数值 $T(x_1, x_2, ..., x_n)$ 为统计量 $T(X_1, X_2, ..., X_n)$ 的观测值.

2. 常用统计量及其数字特征

(1) 样本均值
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
;

(2) 样本方差
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
,样本标准差 $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$;

(3) 样本
$$k$$
 阶原点矩 $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ $k = 1, 2$

(4) 样本
$$k$$
 阶中心矩 $B_k = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^k$ $k = 1, 2$

(5) 统计量的数字特征

$$E(\overline{X}) = E(X) = \mu, \quad D(\overline{X}) = \frac{D(X)}{n} = \frac{\sigma^2}{n}, \quad E(S^2) = D(X) = \sigma^2$$
如果 $E(X^k) = \mu_k, \quad A_n = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} \mu_k.$

【例 1】 设总体 X 服从正态分布 $N(\mu,\sigma^2)$ $(\sigma>0)$,从中抽取简单随机样本 X_1 ,, X_{2n} ,

$$(n \ge 2)$$
,其样本均值为 $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$, 求统计量 $Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2$ 的数学期望 EY .

○ 研選

【例 2】 设总体 X 的数学期望和方差都存在,且 $EX=\mu, DX=\sigma^2$,来自总体 X 的样本 X_1, X_2, \quad , X_n ,求:

(1)
$$E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}\right];$$
 (2) $E\left[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right].$

§2 三大抽样分布

(1) χ^2 分布

①典型模式: $X_1, X_2, ... X_n$ 相互独立且均服从 N(0,1) ,则称

 $\chi^2 = X_1^2 + X_2^2 + ... + X_n^2$ 服从自由度为n的 χ^2 分布,记 χ^2 $\chi^2(n)$

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, & x > 0\\ \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} & x < 0 \end{cases}$$

 $E(\chi^2) = n , \quad D(\chi^2) = 2n ;$

- ② 可加性: 设 χ_1^2 $\chi^2(n_1)$, χ_2^2 $\chi^2(n_2)$, 且 χ_1^2 和 χ_2^2 相互独立,则 $\chi_1^2+\chi_2^2$ $\chi^2(n_1+n_2)$;
 - ③上 α 分位点 $\chi^2_{\alpha}(n)$:设 χ^2 $\chi^2(n)$,对于给定的 $\alpha(0<\alpha<1)$,称满足条件 $P\{\chi^2>\chi^2_{\alpha}(n)\}=\alpha$ 的点 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上 α 分位点.
- 【 **例** 1 】 设 X_1, X_2, X_3 是 来 自 正 态 总 体 $N(0,2^2)$ 的 简 单 随 机 样 本 , 记 $X = a(X_1 2X_2 + 3X_3)^2$ 服从卡方分布,则常数 a =______.

(2) t分布

①典型模式: X, Y 独立, X N(0,1), $Y \chi^2(n)$, 则

$$T = \frac{X}{\sqrt{\frac{Y}{n}}} \quad t(n) \qquad f(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-\frac{n+1}{2}}, \qquad -\infty < x < +\infty$$

f(x) 是偶函数,n 充分大时,t(n) 近似 N(0,1).

②上 α 分位点 $t_{\alpha}(n)$

$$T \sim t(n) \;,\;\; 0 < \alpha < 1 \;,\;\; P(T > t_{\alpha}(n)) = \alpha \;,\;\; t_{1-\alpha}(n) = -t_{\alpha}(n) \;,\;\; P(\left|T\right| > t_{\alpha/2}(n)) = \alpha$$

【例 2】 设随机变量 X 与 Y 相互独立同服从 $N(0.3^2)$ 分布, X_1 , X_2 ,..., X_9 以及

$$Y_1$$
, Y_2 ,..., Y_9 是分别来自总体 X , Y 的样本,求统计量 $K = \frac{\sum\limits_{i=1}^9 X_i}{\sqrt{\sum\limits_{i=1}^9 Y_i^2}}$ 的分布.

(3) F 分布

①典型模式: X, Y独立, X $\chi^2(n_1), Y \sim \chi^2(n_2)$, 则 $F = \frac{X/n_1}{Y/n_2}$ $F(n_1, n_2)$.

$$f(x) = \begin{cases} \frac{\Gamma(\frac{n_1 + n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} n_1^{\frac{n_1}{2}} n_2^{\frac{n_2}{2}} \frac{x^{\frac{n_1}{2} - 1}}{(n_1 x + n_2)^{\frac{n_1 + n_2}{2}}}, & x > 0\\ 0, & x \le 0 \end{cases}.$$

如果 F $F(n_1, n_2)$, 则 $\frac{1}{F}$ $F(n_2, n_1)$.

② α 分位点 $F_{\alpha}(n_1,n_2)$

$$F \quad F(n_1,n_2) \; , \;\; 0 < \alpha < 1 \; , \;\; P(F > F_\alpha(n_1,n_2)) = \alpha \; , \label{eq:final}$$

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

设随机变量 X t(n) (n>1) ,求 $Y=\frac{1}{X^2}$ 的分布.

§3 正态总体的抽样分布

(1) 单个正态总体

设X $N(\mu,\sigma^2)$, $X_1,X_2,...X_n$ 来自总体X的样本,样本均值 \overline{X} ,样本方差 S^2 ,则

①
$$\overline{X}$$
 $N(\mu, \frac{\sigma^2}{n})$, $U = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ $N(0,1)$;

②
$$\overline{X} \ni S^2$$
 相互独立, 且 $X^2 = \frac{(n-1)S^2}{\sigma^2}$ $\chi^2(n-1)$;

(4)
$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \quad \chi^2(n)$$
.

【例 1】 设 (X_1,X_2, \quad ,X_n) 是来自总体 $N(\mu,\sigma^2)$ 的简单随机样本, \overline{X} 是样本均值,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$, $S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2$,

 $S_4^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$ 则服从自由度 n-1 的 t 分布的随机变量是 T = ()

(A)
$$\frac{\overline{X} - \mu}{S_1/\sqrt{n-1}}$$
 (B) $\frac{\overline{X} - \mu}{S_2/\sqrt{n-1}}$

(B)
$$\frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$$

(C)
$$\frac{\overline{X} - \mu}{S_3 / \sqrt{n}}$$
 (D) $\frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$

(D)
$$\frac{\overline{X} - \mu}{S_4 / \sqrt{n}}$$

【**例 2**】 设 X_1, X_2, X_3, X_4 为来自总体 $N(1, \sigma^2)$ ($\sigma > 0$) 的简单随机样本,则统计量

$$\frac{X_1 - X_2}{|X_3 + X_4 - 2|}$$
的分布为()

- (A) N (0,1) (B) t(1) (C) $\chi^2(1)$
- (D) F(1,1)

(2) 两个正态总体

设X $N(\mu_1, \sigma_1^2)$,Y $N(\mu_2, \sigma_2^2)$, $X_1, X_2, ... X_{n_1}$ 和 $Y_1, Y_2, ... Y_{n_2}$,分别来自X, Y的样 本,相互独立,样本均值与样本方差分别为 \overline{X} , \overline{Y} , S_1^2 , S_2^2 ,则有,

①
$$(\overline{X} - \overline{Y})$$
 $N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$, $U = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $N(0,1)$

如果 $\sigma_1^2 = \sigma_2^2$,则

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \quad t(n_1 + n_2 - 2) , \quad \sharp + S_{\omega}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

【例 3】 设总体 X 和 Y 均服从 $N(\mu,\sigma^2),\sigma>0$, X_1,X_2 ,, X_n 和 Y_1,Y_2 ,, Y_n 分别来自总 体 X, Y 的两个相互独立的简单随机样本,样本方差分别为 S_X^2, S_Y^2 ,则统计量 $T = \frac{n-1}{2}(S_X^2 + S_Y^2)$ 服从______分布.

§4 点估计

1. 点估计的概念

用样本 $X_1,X_2,...,X_n$ 构造的统计量 $\hat{\theta}(X_1,X_2,...,X_n)$ 来估计未知参数 θ ,统计量 $\hat{\theta}(X_1,X_2,...,X_n)$ 称为估计量,它所取得的观测值 $\hat{\theta}(x_1,x_2,...,x_n)$ 称为估计值,估计量和估计值统称 θ 的估计.

2. 矩估计法

用样本估计相应的总体矩, 用样本矩的函数估计总体矩相应函数

- (1)矩估计不必知道分布形式,只要矩存在.
- (2)可用中心矩,也可用原点矩.
- (3) k 个参数要求列出一阶至k 阶矩方程.
- (4) α_1 , α_2 为一阶、二阶原点矩, $\hat{\alpha}_1$ 和 $\hat{\alpha}_2$ 为一阶、二阶样本原点矩, $g(\hat{\alpha}_1,\hat{\alpha}_2)$ 就是 $g(\alpha_1,\alpha_2)$ 的矩估计量.

【例 1】 设总体 $X \sim P(\lambda)$, X_1 , X_2 … , X_n 是取自总体 X 的样本,求对 λ 的矩估计量.

【 \mathbf{M} 2】 设总体 X 的概率密度为

$$p(x) = \begin{cases} \frac{6x}{\theta^3}(\theta - x), & 0 < x < \theta, \\ 0, & 其他, \end{cases}$$

 X_1 , X_2 ,..., X_n 为取自总体X的简单随机样本,

求: (1) θ 的矩估计量 $\hat{\theta}$.

(2) $D(\hat{\theta})$.

3. 最大似然估计法

(1)似然函数

离散型
$$P(X = a_i) = p(a_i; \theta)$$
 $i = 1, 2, ...,$

$$L(\theta) = L(X_1, X_2, ..., X_n; \theta) = \prod_{i=1}^{n} p(X_i; \theta)$$
.

连续型 $f(x;\theta)$

$$L(\theta) = L(X_1, X_2, ..., X_n; \theta) = \prod_{i=1}^n f(X_i; \theta).$$

(2) 最大似然估计思想

使似然函数 $L(X_1,X_2,...,X_n;\theta)$ 达到最大值的参数值 $\hat{\theta}(X_1,X_2,...,X_n)$.

(3)似然方程

$$heta$$
为一维时, $\dfrac{dL(heta)}{d heta} = 0$ 或 $\dfrac{d(\ln L(heta))}{d heta} = 0$.
$$heta$$
 为二维时,
$$\begin{cases} \dfrac{\partial L(heta_1, heta_2)}{\partial heta_1} = 0 \\ \dfrac{\partial L(heta_1, heta_2)}{\partial heta_2} = 0 \end{cases}$$
 或
$$\begin{cases} \dfrac{\partial \ln L(heta_1, heta_2)}{\partial heta_1} = 0 \\ \dfrac{\partial \ln L(heta_1, heta_2)}{\partial heta_2} = 0 \end{cases}$$
.

【例 3】 设总体X的分布律为

X	1	2	3
P	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

已知样本 X_1, X_2, X_3 来自总体X,其取值为 $x_1 = 1, x_2 = 2, x_3 = 1$,

分别求未知参数 θ 的矩估计值 $\overset{\wedge}{ heta_1}$ 和极大似然估计值 $\overset{\wedge}{ heta_2}$.

【例 4】 设总体 $X\sim E(\lambda)$, X_1 , X_2 ,…, X_n 为X的一个样本,求: λ 的矩估计量及最大似然估计量.

【练习】设总体X的概率密度为

$$f(x) = \begin{cases} \frac{1}{1-\theta}, \theta_{\cdot \cdot} & x_{\cdot \cdot} & 1, \\ 0, & \text{ 其他.} \end{cases}$$

其中 θ 为未知参数, X_1 , X_2 ,, X_n 为来自该总体的简单随机样本.

- (I) 求 θ 的矩估计量;
- (II) 求 θ 的最大似然估计量.

第七章 数一专项

§1 估计量的评选标准

(1) 无偏性: $E(\hat{\theta}) = \theta$.

【例 1】 设 X_1 , X_2 …, X_n 是来自正态分布总体 $N(\mu$, σ^2) 的一个简单随机样本,适当选取 C, 使得 $C\sum_{i=1}^{n-1}(X_{i+1}-X_i)^2$ 为 σ^2 的无偏估计量.

- (2) 有效性: 如果 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都是 θ 的无偏估计量,且 $D(\hat{\theta}_1) \leq D(\hat{\theta}_2)$,则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效.
- 【例 2】 设 X_1 , X_2 ,..., X_n 是总体的一个样本, 试证:

(1)
$$\hat{\mu}_1 = \frac{1}{5}X_1 + \frac{3}{10}X_2 + \frac{1}{2}X_3$$
.

(2)
$$\hat{\mu}_2 = \frac{1}{3}X_1 + \frac{1}{4}X_2 + \frac{5}{12}X_3$$
.

(3)
$$\hat{\mu}_3 = \frac{1}{3}X_1 + \frac{3}{4}X_2 - \frac{1}{12}X_3$$
.

都是总体均值 μ 的无偏估计,并比较哪一个最有效?

(3)一致性 (相合性): $\hat{\theta} \xrightarrow{P} \theta$, 称 $\hat{\theta}$ 为 θ 的一致估计量.

【例 3】 设 X_1 , X_2 ,..., X_n 是取自总体 $X \sim N(\mu, \sigma^2)$ 的样本,试证 $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ 是 σ^2 的一致估计量.

§2 区间估计

1. 置信区间

对于给定的 α (0 < α < 1),如果两个统计量 θ_1 , θ_2 满足 $P(\theta_1 < \theta < \theta_2) = 1 - \alpha$,则称随机区间 (θ_1, θ_2) 为参数 θ 的置信水平(或置信度)为 $1 - \alpha$ 的置信区间(或区间估计),简称为 θ 的 $1 - \alpha$ 的置信区间, θ_1 和 θ_2 分别称为置信下限和置信上限.

2. 一个正态总体参数的区间估计

未知参数		1-α 置信区间		
μ	σ^2 已知	$(\overline{X} - U_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + U_{\alpha/2} \frac{\sigma}{\sqrt{n}})$		
ļ ļ	σ^2 未知	$(\overline{X} - t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$		
σ^2	μ 已知	$\left(\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}, \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}\right)$		
	μ未知	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)})$		

3. 两个正态总体参数的区间估计

未知参数		1-α 置信区间		
	$\sigma_{_{1}}^{^{2}},\sigma_{_{2}}^{^{2}}$ 已	$(\overline{X} - \overline{Y} - u_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}, \overline{X} - \overline{Y} + u_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}})$		
$\mu_1 - \mu_2$	σ_1^2, σ_2^2 未 知,但 $\sigma_1^2 = \sigma_2^2$	$(\overline{X} - \overline{Y} - t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}), \overline{X} - \overline{Y} + t_{\alpha/2}(n_1 + n_2 - 2)S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}})$		
$\frac{{\sigma_{\rm l}}^2}{{\sigma_{\rm r}}^2}$	1 2	$\frac{n_2 \sum_{i=1}^{n_1} (X_i - \mu_1)^2}{(n_1 \sum_{j=1}^{n_2} (Y_j - \mu_2)^2} \cdot \frac{1}{F_{\alpha/2}(n_1, n_2)}, \frac{n_2 \sum_{i=1}^{n_1} (X_i - \mu_1)^2}{n_1 \sum_{j=1}^{n_2} (Y_j - \mu_2)^2} \cdot F_{\alpha/2}(n_2, n_1))$		
2	$\mu_{\!\scriptscriptstyle 1}, \mu_{\!\scriptscriptstyle 2}$ 未知	$(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} \cdot F_{\alpha/2}(n_2 - 1, n_1 - 1))$		

$$S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

【例 1】 由来自正态总体 $X\sim N(\mu,0.9^2)$,容量为 9 的简单随机样本,若得到样本均值 $\overline{X}=5$,则未知参数 μ 的置信度为 0.95 的置信区间为_____. $(u_{0.025}=1.96)$

【例 2】设 x_1 , x_2 , , x_n 为来自总体 $N(\mu,\sigma^2)$ 的简单随机样本,样本均值x=9.5,参数 μ 的置信度为0.95的双侧置信区间的置信上限为10.8,则 μ 的置信度为0.95的双侧置信区间为______.

§3 假设检验

1. 假设检验

假设:关于总体分布的未知参数的假设,所提出的假设称为零假设或原假设,记为 H_0 ,对立于零假设的假设称为独立假设或备择假设,记为 H_1 .

假设检验:根据样本,按照一定规则判断所做假设 H_0 的真伪,并作出接受还是拒绝接受 H_0 的决定.

2. 两类错误

拒绝实际真的假设 H_0 (弃真)称为第一类错误;

接受实际不真的假设 H_0 (纳伪) 称为第二类错误.

3. 显著性检验

在确定检验法则时,应尽可能地使犯两类错误的概率都小些,但是一般来说,当样本容量取定后,如果要减少犯某一类错误的概率,则犯另一类错误的概率往往要增大。要使犯两类错误的概率都减少,只好加大样本容量。在给定样本容量的情况下,我们总是控制犯第一类错误的概率,使它不大于给定的 $\alpha(0<\alpha<1)$,这种检验问题称为显著性检验问题,给定的 α 称为显著性水平,通常取 $\alpha=0.1,0.05,0.01,0.001$.

在对假设 H_0 进行检验时,常使用某个统计量T,称为检验统计量。当检验统计量在某个区域W取值时,我们就拒绝假设 H_0 ,称区域W为拒绝域.

4. 显著性检验的一般步骤

- (1) 根据问题要求提出原假设 H_0 和对立假设 H_1 ;
- (2) 给出显著性水平 $\alpha(0 < \alpha < 1)$ 及样本容量n;
- (3) 确定检验统计量及拒绝域形式;
- (4) 按犯第一类错误的概率等于 α , 求出拒绝域W;
- (5) 根据样本值计算检验统计量T 的观测值t,当 $t \in W$ 时,拒绝原假设 H_0 ,否则

接受原假设 H_0 .

5. 正态总体参数的假设检验

设显著性水平为 α ,单个正态总体为 $N(\mu,\sigma^2)$ 的参数的假设检验以及两个正态总体 $N(\mu_1,\sigma_1^2) 与 N(\mu_2,\sigma_2^2)$ 的 $\mu_1-\mu_2$ 和 $\sigma_1^2=\sigma_2^2$ 的假设检验,列表如下:

LA 3A 🛆		假设			H_0 为真时检	
检验参 数	情形	H_0	H_{1}	检验统计量	验统计量的分 布	拒绝域
μ	σ² 已知	$\mu = \mu_0$ $\mu \le \mu_0$ $\mu \ge \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	N(0,1)	$ U \ge u_{\alpha/2}$ $U \ge u_{\alpha}$ $U \le -u_{\alpha}$
	σ² 未知	$\mu = \mu_0$ $\mu \le \mu_0$ $\mu \ge \mu_0$	$\mu \neq \mu_0$ $\mu > \mu_0$ $\mu < \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$	t(n-1)	$ T \ge t_{\alpha/2}(n-1)$ $T \ge t_{\alpha}(n-1)$ $T \le -t_{\alpha}(n-1)$
σ^2	<i>μ</i> 已知	$\sigma^2 = \sigma_0^2$ $\sigma^2 \le \sigma_0^2$ $\sigma^2 \ge \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$ $\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}}$	$\chi^2(n)$	$\chi^{2} \leq \chi^{2}_{1-\alpha/2}(n)$
	μ 未知	1	$\sigma^{2} \neq \sigma_{0}^{2}$ $\sigma^{2} > \sigma_{0}^{2}$ $\sigma^{2} < \sigma_{0}^{2}$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^2(n-1)$	$\chi^{2} \leq \chi_{1-\alpha/2}^{2}(n-1)$

○ 研選

$u_1 - u_2$	$\sigma_1^{2},\sigma_2^{2}$ 己知	$\mu_1 - \mu_2 = \mu_0$ $\mu_1 - \mu_2 \le \mu_0$ $\mu_1 - \mu_2 \ge \mu_0$	$\mu_{1} - \mu_{2} \neq \mu_{0}$ $\mu_{1} - \mu_{2} > \mu_{0}$ $\mu_{1} - \mu_{2} < \mu_{0}$	$U = \frac{X - Y - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)	$ U \ge u_{\alpha/2}$ $U \ge u_{\alpha}$ $U \le -u_{\alpha}$
1 2	σ_1^2, σ_2^2 未知但 $\sigma_1^2 = \sigma_2^2$	$\mu_1 - \mu_2 = \mu_0$ $\mu_1 - \mu_2 \le \mu_0$ $\mu_1 - \mu_2 \ge \mu_0$	$\mu_1 - \mu_2 \neq \mu_0$ $\mu_1 - \mu_2 > \mu_0$ $\mu_1 - \mu_2 < \mu_0$	$T = \frac{X - Y - \mu_0}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t(n_1+n_2-2)$	$ T \ge t_{\alpha/2} (n_1 + n_2 - 2)$ $T \ge t_{\alpha} (n_1 + n_2 - 2)$ $T \le -t_{\alpha} (n_1 + n_2 - 2)$
$\sigma_1^2 = \sigma$	μ ₁ ,μ ₂ 己知	$\sigma_1^2 = \sigma_2^2$ $\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$ $\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$	$F = \frac{n_2 \sum_{i=1}^{n_1} (X_i - \mu_1)^2}{n_1 \sum_{j=1}^{n_2} (Y_j - \mu_2)^2}$	$F(n_1, n_2)$	$F \leq F_{1-\alpha/2}(n_1, n_2)$
	μ ₁ , μ ₂ 未知	$\sigma_1^2 = \sigma_2^2$ $\sigma_1^2 \le \sigma_2^2$ $\sigma_1^2 \ge \sigma_2^2$	-	$F = \frac{S_1^2}{S_2^2}$	$F(n_1-1,n_2-1)$	$F \le F_{1-\alpha/2}(n_1-1,n_2-1)$ 或 $F \ge F_{\alpha/2}(n_1-1,n_2-1)$ $F \ge F_{\alpha}(n_1-1,n_2-1)$ $F \le F_{1-\alpha}(n_1-1,n_2-1)$

注: 表中
$$S_w = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}}$$
.

【例 1】给定总体X $N(\mu,\sigma^2)$, σ^2 已知,给定样本 X_1,X_2 , X_n ,对总体均值 μ 进行

检验,令 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,则

- A. 若显著性水平 $\alpha=0.05$ 时拒绝 $H_{\scriptscriptstyle 0}$,则 $\alpha=0.01$ 时也拒绝 $H_{\scriptscriptstyle 0}$.
- B. 若显著性水平 $\alpha=0.05$ 时接受 H_0 ,则 $\alpha=0.01$ 时拒绝 H_0 .
- C. 若显著性水平 $\alpha=0.05$ 时拒绝 $H_{\scriptscriptstyle 0}$,则 $\alpha=0.01$ 时接受 $H_{\scriptscriptstyle 0}$.
- D. 若显著性水平 $\alpha = 0.05$ 时接受 H_0 ,则 $\alpha = 0.01$ 时也接受 H_0 .