

Inteligência Artificial

Sistemas Especialistas

Prof. Dr^a. Andreza Sartori <u>asartori@furb.br</u>

Documentos Consultados/Recomendados

- ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 1. ed. São Paulo: Livraria da Física, 2008.
- Carvalho, Cedric Luiz de. Sistemas Especialistas. Instituto de Informática. UFG 2006.
- COPPIN, Ben. Inteligência artificial. Rio de Janeiro: LTC, 2013.
- KLEIN, Dan; ABBEEL, Pieter. Intro to AI. UC Berkeley. Disponível em: http://ai.berkeley.edu.
- LIA, Laboratório de Inteligência Artificial. Manual Expert Sinta. UFC, 1998.
- LIMA, Edirlei Soares. Inteligência Artificial. PUC-Rio, 2015.
- LINDER, Marcelo Santos. Sistemas Especialistas. UNIVASF, 2011.
- RUSSELL, Stuart J. (Stuart Jonathan); NORVIG, Peter. Inteligência artificial. Rio de Janeiro: Campus, 2013. 1021p.

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

Unidade 4: Aprendizado de Máquina e Redes Neurais

Unidade 5: Tópicos especiais

Plano de Ensino da disciplina

Unidade 1: Fundamentos de Inteligência Artificial

Unidade 2: Busca

Unidade 3: Sistemas baseados em conhecimento

- 3.1. Agentes Lógicos
- 3.2. Representação do Conhecimento
 - 3.2.1 Lógica de Primeira Ordem
- 3.3. Sistemas Especialistas

Recapitulando: Componentes Principais dos Sistemas Baseados em Conhecimento

Base de conhecimento (BC)

- É formada por um conjunto de **sentenças** expressadas através de uma **Linguagem de Representação de Conhecimento**.
 - Através da representação lógica das sentenças.
- Exemplo:
 - S1. Todos os animais respiram;
 - S2. Todos os gatos são animais;

Mecanismo de Inferência

- Derivação de novas sentenças a partir de sentenças antigas (extraidas da BC).
 - Dada S1 e S2, Podemos deduzir que: Todos os gatos respiram.

O que é um especialista?

- Aquele que:
 - possui o conhecimento, experiência, métodos e a habilidade para aplicá-los, para dar conselhos e resolver problemas.

Sistemas Especialistas (SE)

 Sistema computacional destinado a representar o conhecimento de um ou mais especialistas humanos sobre um dominio específico.

 A partir do processamento da base de conhecimento, busca soluções para problemas que normalmente requerem grande volume de conhecimento

especializado.

SE: Componentes

- Para ajudar na tomada de decisões os SE devem:
 - Manter o alto nível de conhecimento para ajudar na solução de problemas, isto é, devem dar soluções similares a de especialistas humanos;
 - Auxiliar tanto a tarefa em que a base de conhecimento é alimentada por especialistas na área, quanto a tarefa de processamento, quando um usuário do sistemas interage com ele;
 - Fornecer explicações referentes às conclusões alcançadas ou as linhas de raciocínio utilizadas para alcançar uma possível conclusão;
 - Facilitar a atualização, visualização e compreensão do conhecimento (Sistema flexível).

SE: Pessoas Envolvidas

Usuário final

 Exemplo: em um sistema de diagnóstico médico, pode ser um médico ou um indivíduo que tenha alguma queixa que deseje diagnosticar.

Engenheiro de conhecimento:

 Projeta as regras para o sistema baseado tanto em observar o especialista em ação como em formular questões sobre como ele atua.

Especialista de domínio:

 Explica ao engenheiro de conhecimento como faz para resolver determinado problema.

Fonte: ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 2008.

Fonte: ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 2008.

- Interface de Aquisição
 - Permite o especialista definir e manipular regras.
 - Deve apoiar a construção inicial da base de conhecimento.
 - Dever permitir atualizações (correção e adição de regras).
 - Fases da Aquisição
 - Identificar características do problema;
 - Isolar os conceitos principais e suas relações;
 - Identificar inferências sobre estes conceitos.

Fonte: ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 2008.

- Base de Conhecimento (BC)
 - Contém o conhecimento específico de um domínio, para derivar conclusões a partir de fatos.
 - Utiliza uma linguagem de representação do conhecimento.
 - Lógica;
 - Regras de Produção;
 - Redes Semânticas, etc.
 - As informações podem ser obtidas por meio de:
 - Livros, estudos de casos, relatórios, dados empíricos, experiência do especialista.
 - Atualmente utiliza-se uma aquisição automática do conhecimento.

- Base de Conhecimento (BC) contém:
 - Conhecimento ontológico (regras, redes semânticas, etc.)
 - Ex: O homem é um animal.
 - Regras (estrutura de inferência)
 - Ex: Todo animal tem uma mãe.
 - Fatos
 - Ex: Existem muitos meninos abandonados.
 - Heurísticas (para resolução de conflitos)
 - Exemplos:
 - Prefira a regra adicionada a base de dados mais recentemente.
 - Na medicina, novas regras podem contradizer regras antigas.
 - Prefira a regra mais longa.
 - Prefira a regra com maior nível de prioridade.

Fonte: ARTERO, Almir Olivette. **Inteligência artificial: teórica e prática.** 2008.

- Interface de Usuário
 - Responsável pela interação do usuário com o sistema.
 - Onde o usuário utiliza o conhecimento armazenado na base de conhecimento para obter as respostas às suas perguntas e também explicações referentes às linhas de raciocínio que o sistema usa para alcançar a conclusão.

Fonte: ARTERO, Almir Olivette. Inteligência artificial: teórica e prática. 2008.

- Máquina de Inferência
 - Responsável por:
 - processamento das perguntas do usuário;
 - processamento dos fatos armazenados na base de conhecimento;
 - Obtenção das conclusões e explicações que serão fornecidas ao usuário.
 - Transforma uma situação dada (estado inicial) em uma situação desejada (estado final) usando um conjunto de operadores.
 - Usando regras de produção para representar o conhecimento, pode operar usando o encadeamento direto ou o encadeamento reverso.

Encadeamento Direto (ou Para Frente)

- Também conhecido como Raciocínio Guiado por Dados;
- O raciocínio começa a partir de um conjunto de dados e termina em um objetivo (conclusão).

Passos:

- Considerar os fatos
- Verificar se alguma combinação de fatos coincide com todos os antecedentes de uma das regras da base de conhecimento;
- Se os antecendentes de uma regra coincidem com fatos da base de conhecimento, então, regra é selecionada.
- Se a regra é selecionada, então é ativada a seguir (adicionar a conclusão dela à base de conhecimento)
- 5. Se a conclusão da regra ativada for uma ação ou recomendação, apresenta a recomendação ou provoca a ocorrência da ação.

Exemplo: Encadeamento Direto (ou Para Frente)

Regra 1:

SE no primeiro andar e botão for apertado no primeiro andar ENTÃO abrir a porta.

Regra 2:

SE no primeiro andar

E botão for apertado no segundo andar

ENTÃO ir para o segundo andar

Regra 3:

SE no primeiro andar

E botão for apertado no terceiro andar

ENTÃO ir para o terceiro andar

Regra 4:

SE no segundo andar

E botão for apertado no primeiro andar

E já estiver indo para o terceiro andar

• ENTÃO lembrar de ir ao primeiro andar depois

Fato 1

No primeiro andar.

Fato 2

Botão apertado no terceiro andar.

Fato 3

Hoje é terça-feira.

Exemplo: Encadeamento Direto (ou Para Frente)

- 1. Sistema examina as regras;
- Constata que os Fatos 1 e 2 correspondem aos antecedentes da Regra 3;
- Regra 3 é ativada;
- Sua conclusão "ir para o terceiro andar" é adicionada à base de conhecimento.
- 5. Ação: deslocamento do elevador até o terceiro andar.

Regra 3:

SE no primeiro andar

botão for apertado no terceiro andar

ENTÃO ir para o terceiro andar

Fato 1

No primeiro andar.

Fato 2

- Botão apertado no terceiro andar.
- Fato 3
 - Hoje é terça-feira.

Encadeamento Reverso (ou Para Trás)

- Casos onde apenas uma conclusão específica deve ser provada.
- Se parte de uma conclusão, que é a hipótese que queremos provar, e se mostra como aquela conclusão pode ser alcançada a partir das regras e fatos da base do conhecimento.
- Raciocínio guiado por objetivo, onde o objetivo é a conclusão que queremos provar.

Exemplo: Encadeamento Reverso (ou Para Trás)

Regras:

• Regra 1: $A \wedge B \rightarrow C$

Regra 2: A → D

• Regra 3: $C \land D \rightarrow E$

• Regra 4: $B \wedge E \wedge F \rightarrow G$

Regra 5: A ^ E → H

Regra 6: D ∧ E ∧ H → I

Fatos:

• Fato 1: A

• Fato 2: B

• Fato 3: F

· Conclusão:

• H

Fatos	Base de Objetivos	Regra Ativada
A, B, F	Н	5
A, B, F	E	3
A, B, F	C, D	1
A, B, C, F	D	2
A, B, C, D, F		PARAR

SE: Vantagens X Desvantagens

Vantagens

- capacita não-especialistas
- serve de assistente a especialistas
- serve de repositório de conhecimento "valioso" para a empresa (informações permanentes)

Desvantagens

- É difícil extrair conhecimento do especialista
- Engenheiros de Conhecimento são raros e caros
- Transferência de conhecimento está sujeita a falhas
 - Dificuldade do especialista em explicitar o conhecimento que utiliza
 - Multiplos especialistas = abordagens diferentes

SE: Aplicações

- Diagnóstico de infecções (análise sanguínea) MYCIN
- Fornecer informação sobre a estrutura molecular de compostos desconhecidos – DENTRAL (1º SE)
- Diagnóstico Médico
- Auxílio de geólogos na procura de depósitos minerais (PROSPECTOR)

SE: Aplicações

- Diagnóstico de defeitos em subsistemas eletrônicos de carros (IDEA)
 - Utilizado pela Fiat / Lancia / Alfa Romeo
- Auxílio à tarifação em seguros (EXPERTAX)
- Apoio na decisão de concessão de crédito por parte de instituições bancárias (LENDING ADVISOR)
- Auxílio dos controladores de terra na atribuição das portas de chegada e partida dos vôos (GATES)

SE: Aplicações

TCC - Trabalho de Conclusão de Curso

Home

Apresentações Públicas Pesquisa Simples Pesquisa Avançada Listar por Semestre

Home

O Trabalho de Conclusão de Curso - TCC é uma atividade obrigatória que consiste de trabalho final de graduação, abordando temas das áreas de estudo relacionados ao Plano Político Pedagógico - PPP do curso no qual o acadêmico está se graduando e às linhas de pesquisa da área de formação

O TCC é desenvolvido individualmente, iniciando na disciplina de TCC I e finalizando na disciplina de TCC II, sendo elaborado pelo acadêmico, sob a orientação de um professor escolhido pelo mesmo, aprovado pelo Departamento de Sistemas e Computação - DSC.

Utilize a ferramenta de pesquisa simples ou pesquisa avançada para localização de TCCs.

Estão cadastrados os TCCs desenvolvidos pelos acadêmicos dos cursos de Ciências da Computação (desde 1999-II) e Sistemas de Informação (desde 2004-II) pertencentes ao Departamento de Sistemas e Computação. Os trabalhos datados a partir de 1999-I possuem a monografia e a apresentação disponíveis para download.

Parte dos TCCs está também disponível na Biblioteca da Furb.

- Desenvolvido no laboratório de IA da Universidade Federal do Ceará (UFC)
- Ferramenta visual para criação de sistemas especialistas
- Utiliza regras de produção (SE... ENTÃO...)
 - Premissas: SE, OU, E
 - Conclusão: ENTÃO

Download: http://www.lia.ufc.br/~bezerra/exsinta

- Permite que o próprio analista de conhecimento implemente a base desejada.
- O usuário não necessita de conhecimento de programação, apenas dever saber como interagir em ambientes visuais.
- Uma base de conhecimento no Expert SINTA envolve os seguintes conjuntos de atributos a serem indicados pelo projetista da base:
 - Variáveis
 - Regras
 - Perguntas
 - Objetivos
 - Informações adicionais
- Como padrão, grava as bases de conhecimento geradas em arquivos
 *.BCM.

- base de conhecimentos representa a informação (fatos e regras) que um especialista utiliza, representada computacionalmente;
- editor de bases é o meio pelo qual a shell permite a implementação das bases desejadas;
- máquina de inferência é a parte do SE responsável pelas deduções sobre a base de conhecimentos;
- banco de dados global são as evidências apontadas pelo usuário do sistema especialista durante uma consulta.

Arquitetura simplificada do Expert SINTA

Estrutura de cada premissa:

<conectivo> <atributo> <operador> <valor></valor></operador></atributo></conectivo>

- conectivo: NÃO, E, OU
- atributo: variável capaz de assumir uma ou múltiplas instanciações no decorrer da consulta à base de conhecimentos
- operador: =, >, <=, <>,...
- valor: item de uma lista a qual foi previamente criada e relacionada a um atributo.

Estrutura de cada conclusão:

<atributo></atributo>	=	<valor></valor>	<grau confiança="" de=""></grau>
-----------------------	---	-----------------	----------------------------------

- <atributo>: variáveis
- "=": operador de atribuição e não de igualdade
- <valor>: item relacionado ao atributo
- <grau de confiança>: porcentagem indicando a confiabilidade daquela conclusão específica da regra.
 - Varia de 0% a 100%

Expert SINTA

Lista de regras: um duplo-clique abre a regra. É possível arrastar o nome da regra até a posição desejada, para alterar a ordem na qual elas aparecem.

Expert SINTA

Passos para construção do SE no Expert SINTA:

- 1. Estabelecer Variáveis
- 2. Estabelecer Objetivos (variáveis de saída)
- 3. Gerar Regras
- 4. Estabelecer Interfaces (perguntas a serem feitas)
- 5. Executar

1. Estabelecer Variáveis

 Antes de criar regras, é necessário que todas as variáveis utilizadas, bem como seus respectivos valores, sejam criados.

Variáveis Univaloradas x Variáveis Multivaloradas

- Uma única variável pode receber vários valores em uma única consulta ao sistema.
- Sistemas de diagnóstico médico:
 - O paciente pode apresentar mais de uma doença.
- Quando a máquina de inferência está procurando instanciações para uma variável univalorada, ela irá procurar até encontrar um valor ou até esgotar todas as possibilidades da base de conhecimento.
 - Se, durante a busca de uma outra variável, uma variável univalorada receber um valor quando já possuía outro, esse valor antigo será descartado e o novo vigorará.

Variáveis Univaloradas x Variáveis Multivaloradas

- A busca de valores para variáveis multivaloradas prossegue até que toda a base de conhecimento seja explorada.
 - Os valores permanecem acumulados.
 - É preciso ter cuidado com contradições presentes na base.
 - O Expert SINTA, na presente versão, não faz verificações de inconsistências lógicas.
- Variáveis numéricas são tratadas como lista de intervalo:
 - a; b
 - representa um número entre a e b
 - ;b
 - · um número maior ou igual a b
 - a;
 - um número menor ou igual a a

1. Definição das variáveis

- Carburador tem gasolina (univalorada)
- Diagnostico (multivalorada)
 - Valores
 - bateria ou cabos
 - ignicao
 - carro sem combustivel
 - mangueira bloqueada
 - vela de ignicao
- Farois ligam (univalorada)
- Motor liga (univalorada)
- Tanque vazio (univalorada)

2. Estabelecer Objetivos (variáveis de saída)

 O objetivo de uma consulta a um especialista é encontrar a resposta para um determinado problema. O mesmo é para um sistema especialista.

2. Estabelecer Objetivos (variáveis de saída)

 O Expert SINTA trabalha naturalmente com encadeamento para trás, mas é possível manipular a máquina de inferência de modo a simular encadeamento para frente.

Para isso:

- As variáveis que deseja encontrar inicialmente devem ser colocadas na lista de objetivos.
- Como não é desejado que uma janela de resultados apareça a cada variável encontrada, é possível desabilitar essa exibição simplesmente desmarcando a caixa "Mostrar resultados" relativo à variável desejada na janela de edição de objetivos.

2. Definição dos Objetivos

Diagnóstico

3. Gerar Regras

3. Regras:

REGRA 1

SE

tanque vazio = sim

ENTAO

diagnostico = Carro sem combustivel CNF 100%

REGRA 2

SE

tanque vazio = Nao

E carburador tem gasolina = Nao

ENTAO

diagnostico = magueira bloqueada CNF 100%

REGRA3

SE

tanque vazio = Nao

E motor_liga = Nao

E farois ligam = nao

ENTAO

diagnostico = Bateria ou cabos CNF 100%

REGRA 4

SE

tanque vazio = Nao

E motor_liga = Nao

E farois ligam = Sim

ENTAO

diagnostico = Ignicao CNF 100%

REGRA 5

SE

tanque vazio = Nao

E motor_liga = sim

E farois ligam = nao

ENTAO

diagnostico = vela de ignição CNF 100%

4. Estabelecer Interfaces (perguntas a serem feitas)

- A comunicação com o usuário final: através de menus de múltipla escolha (ou escolha simples, se a variável em questão for univalorada).
- Estes menus são construídos automaticamente pela shell, mas alguns detalhes devem ser fornecidos pelo criador da base.

A pergunta realizada pela máquina de inferência deve ser personalizada para que seja inteligível.

4. Interface (VARIÁVEIS COM PERGUNTAS)

- carburador tem gasolina = O carburador tem gasolina?
- farois ligam = Os faróis ligam?
- motor liga = O motor liga?
- tanque vazio = O tanque esta vazio?

5. Executar

Diagnóstico

