Final year project

Potato disease classification using deep learning

PRAMOD (18GAEC9086)

8th Semester, CSE

Under the guidance of

Prof Prathibhavani P M Dept. of CSE UVCE

Department of Computer Science and Engineering

UNIVERSITY OF VISVESVARAYA COLLEGE OF ENGINEERING

K.R. Circle, Bengaluru- 560001

2023-2024 Bangalore University

Scope/ Objectives of the Project:

Utilization of Convolutional Neural Network (CNN):

- Develop a system that employs a CNN for the classification of potato leaf illnesses.
- Explore the capabilities of deep learning in accurately identifying and categorizing diseases in
 - potato plants.
- Investigate and implement effective preprocessing techniques for the leaf image data.
- Ensure that the input data is appropriately formatted and optimized for training the CNN model.

Performance Evaluation on Test Set:

- Train the CNN model on the pre-processed leaf image data to learn patterns associated with potato diseases.
- Optimize the model architecture and parameters to enhance classification performance.
- Assess the success of the trained CNN model on a separate test set of potato leaf images.
- Measure various performance metrics such as accuracy, precision, recall, and F1 score to gauge the model's effectiveness.

Practical Application in Agriculture:

- Emphasize the practical application of the proposed method in agriculture.
- Provide a trustworthy and effective solution for identifying potato diseases, contributing to food

security and minimizing financial losses in potato farming

Methodology:

Data Collection:

• Gather a diverse dataset of potato leaf images, including instances of Early Blight, Late Blight, and Healthy leaves.

Data Preprocessing:

 Apply preprocessing techniques to enhance the quality of leaf images, including normalization, resizing, and noise reduction.

Data Splitting:

Divide the dataset into training and test sets to facilitate model training and evaluation.

Model Architecture Design:

 Define the architecture of the Convolutional Neural Network (CNN), specifying the number of layers,

filters, and activation functions.

Model Training:

 Train the CNN model on the training dataset, using appropriate optimization algorithms and loss functions.

Hyperparameter Tuning:

 Optimize hyperparameters such as learning rate and batch size to enhance the model's learning capabilities.

Performance Evaluation:

• Evaluate the trained model on the test set, calculating metrics such as accuracy, precision, recall, and F1 score.

Disease Identification:

 Analyse the model's performance in accurately identifying Early Blight, Late Blight, and Healthy leaves.

Robustness Testing:

• Test the model's robustness by introducing images with severe infections, assessing its ability to handle challenging conditions.

Result Analysis:

• Interpret the experimental findings, emphasizing the model's overall accuracy (99.1%) and its effectiveness in disease classification.

Practical Application Assessment:

• Discuss the potential practical application of the developed model in identifying potato diseases for real-world agricultural scenarios.

Accuracy of the model

THIS IS SYNOPSIS OF OUR PROJECT REPORT IS STILL WORKING ON IT.