Diskretna matematika

Ivica Nakić

predavanja ak. god. 2009/2010

PMF-MATEMATIČKI ODJEL

Sadržaj

0	Uvo	od									
	0.1	Neki primjeri	3								
1	Preb	projavanja	7								
	1.1	Uvod i osnovni principi	7								
	1.2	Broj podskupova	10								
	1.3	Broj podskupova fiksirane veličine (binomni koeficijenti)	13								
	1.4	Permutacije	19								
	1.5	Multiskupovi i multinomni koeficijenti	22								
	1.6	Particije skupova (Relacije na skupovima)	26								
	1.7	Generiranje kombinatornih objekata	29								
2	Rek	urzije, funkcije izvodnice i formula uključivanja–isključivanja	35								
	2.1	Uvod	35								
	2.2	Fibonaccijevi brojevi	36								
	2.3	Linearne rekurzije	38								
	2.4	Funkcije izvodnice	43								
		2.4.1 Catalanovi brojevi	44								
		2.4.2 Bellovi brojevi	48								
	2.5	Složenost algorirtama za sortiranje	50								
		2.5.1 Bubblesort	50								
		2.5.2 Mergesort	51								
		2.5.3 Quicksort	51								
	2.6	Formula uključivanja—isključivanja	53								
3	Teo	rija grafova	5 7								
	3.1	Uvod i osnovne definicije	57								
	3.2	Stabla i šume	63								
		3.2.1 Minimalna razapinjuća stabla	70								
	3.3	Planarnost	71								

	3.3.1	Platonova tijela	75
3.4	Eulero	vi i Hamiltonovi grafovi	77
	3.4.1	Eulerovi grafovi	77
	3.4.2	Hamiltonovi grafovi	78
	3.4.3	Problem trgovačkog putnika	78
Indeks			81

Uvod

Sadržaj kolegija se sastoji od dviju cjelina: kombinatorike i teorije grafova. Sam naziv diskretna matematika dolazi od toga što obuhvaća proučavanje ne-kontinuniranih matematičkih objekata (koji se proučavaju u analizi i geometriji).

Kombinatorika (lat. *combinare*) se bavi razmještanjem objekata po određenim pravilima. U pravilu nas zanima da li je određeni razmještaj moguć, i ukoliko jest, na koliko se načina može postići.

Teorija grafova se bavi matematičkom strukturom zvanom *graf* koja opisuje povezanost sustava; tipično pomoću grafova modeliramo transportne ili komunikacijske sustave, električne ili internetske mreže, ali i molekule ...

0.1 Neki primjeri

Primjer 0.1.1 (Deranžmani) Ukoliko imamo *n* pisama i *n* adresiranih omotnica, na koliko načina možemo staviti pisma u omotnice, tako da ni jedno pismo ne dođe u odgovarajuću omotnicu?

Rješenje: Ukupan broj načina na koje možemo staviti pisma u omotnice je broj permutacija n objekata, a taj broj je n!. Odgovor na gornje pitanje je najbliži cijeli broj broju n!/e.

Primjer 0.1.2 (Kirkmanove školarke) Petnaest školarki se šeta svakog dana u pet grupa po tri. Složite njihove šetnje u jednom tjednu tako da svaki par djevojčica šeta zajedno u grupi samo jednom.

Rješenje: Ukoliko je to uopće moguće, trebat će im sedam dana. To je stoga što svaka djevojka mora šetati jednom s ostalih četrnaest, a svaki dan šeta s dvije. Ali pitanje da li su takve šetnje uopće moguće je dosta teže. Problem je postavio i riješio Kirkman 1847. Tek 1967. je dokazano da rješenje postoji točno onda kad je broj djevojčica kongruentan s 3 modulo 6.

Primjer 0.1.3 (Eulerovi časnici) Dano nam je 36 časnika, koji pripadaju u 6 pukovnija i imaju 6 činova (svakoj kombinaciji čina i pukovnije odgovara točno jedan časnik). Mogu li časnici biti posloženi u 6 × 6 matricu, tako da se u svakom retku i stupcu svaki čin i svaka pukovnija javljaju točno jednom?

Rješenje: Euler je ovaj problem postavio 1782. Problem nije bio riješen sve do 1900. Odgovor je ne (Euler je vjerovao da je odgovor ne, ali to nije uspio dokazati). Generalizirani problem s n^2 časnika s n činova i pukovnija je rješen tek 1960. Rješenje postoji za sve n osim n = 2 i n = 6.

Primjer 0.1.4 (Ramseyeva igra) Ova igra za dvije osobe zahtijeva list papira i dva pisala različitih boja. Najprije se nacrta 6 točaka na papiru, tako da ni jedna trojka točaka ne leži na istom pravcu. Tada igrači uzimaju svoja pisala i svaki naizmjenice povlači crtu između dviju točaka. Prvi igrač koji nacrta trokut gubi igru (računaju se samo trokuti s vrhovima u odabranim točkama). Da li ova igra može završiti remijem?

Rješenje: Ne. Probajte igrati ovu igru. Koja je dobra strategija?

Primjer 0.1.5 (Königsberški mostovi) U 17. stoljeću postojalo je sedam mostova na rijeci Pregel u istočnopruskom gradu Königsbergu (današnji Kalinjgrad u Rusiji). Građani tog grada su pokušavali napraviti šetnju od svoje kuće tako da svaki od sedam mostova prijeđu točno jednom i da se vrate kući. Kako nikako nisu uspijevali, pitali su Eulera je li to uopće moguće. Skica situacije u Königsbergu je bila:

Rješenje: Euler je gornju skicu sveo na nešto što se danas zove graf:

Onda je rezonirao ovako: ukoliko željena šetnja postoji, tada svaki put kad neki vrh posjetimo pomoću jednog brida, drugi brid bi trebali upotrijebiti da bi smo napustili taj vrh. To znači da bi svaki vrh trebao imati paran broj bridova. Kako to u ovom slučaju nije istina, tražena šetnja nije moguća.

Zadatak 0.1

Može li se skica "kućice"

nacrtati u jednom potezu bez podizanja olovke s papira?

Prebrojavanja

1.1 Uvod i osnovni principi

Primjer 1.1.1 Ana je pozvala na rođendansku zabavu Peru, Karla, Dijanu, Evu, Zdenka i Franju. Kad su gosti stigli, međusobno su se rukovali. Do koliko rukovanja je došlo?

Rješenje: Kako se svaki od njih sedmero rukovao s preostalih šestero, dolazimo do broja

$$\underbrace{6 + \dots + 6}_{7 \text{ puta}} = 6 \cdot 7 = 42.$$

Ali time smo svako rukovanje brojali dvaput, pa je pravi odgovor $\frac{42}{2} = 21$.

Tada krenu sjesti za stol. Ana sjedne za čelo stola, a ostali se dogovore da će se razmještati za stolom svakih pola sata sve dok ne isprobaju sve različite razmještaje. Koliko će trajati njihova zabava?

Rješenje: Dakle, treba odrediti broj različitih razmještaja. Krenimo od stolice koja je zdesna Ani. Na tu stolicu može sjesti bilo tko od šestoro gostiju. Ukoliko je, recimo, Pero sjeo do Ane, na sljedeću stolicu zdesna može sjesti bilo tko od preostalih petoro gostiju. Ako Karlo sjedne na stolicu zdesna Ani, opet imamo pet mogućnosti za sljedeću stolicu, dakle broj načina na koje možemo posjesti ljude na prve dvije stolice je

$$\underbrace{5 + \dots + 5}_{6 \text{ puta}} = 6 \cdot 5 = 30.$$

Slično, bez obzira tko je sjeo na prve dvije stolice, na treću stolicu može sjesti bilo tko od preostalih četvero gostiju, što nam daje $6 \cdot 5 \cdot 4$ mogućnosti. Nastavimo li tim putem rezonirati, stižemo do $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 6! = 720$ mogućnosti. Dakle, njihova zabava će trajati 360 sati. što je 15 dana.

Poslije večere dolazi ples (radi se o staromodnim ljudima koji plešu u parovima i par uvijek čine ljudi različitih spolova). Koliko se mogućih parova može formirati?

Rješenje: Kako postoje tri djevojke, a svaka može odabrati jednog od četvorice dečkiju, dolazimo do broja od $3 \cdot 4 = 12$ različitih parova.

Poslije nekoliko dana plesanja Ana, Pero, Karlo i Dijana odluče igrati bridge. U nekom trenutku Karlo kaže: čini mi se da sam dobio iste karte kao i u prethodnom dijeljenju. To mi se čini teško moguće, odvrati Dijana. Koliko je to vjerojatno? (Špil ima 52 karte, svaki igrač dobija 13 karata.)

Rješenje: Rezoniramo na sljedeći način. Zamislimo da Karlo vuče jednu po jednu kartu iz špila. Prva karta može biti bilo koja od 52 karte, druga karta bilo koja od preostalih 51, ... Dakle, dolazimo do 52 · 51···40 mogućnosto za 13 karata. Ali ovdje smo ubrojili i mnogo istih "ruku". Ukoliko, na primjer, Eva kibicira i gleda u Karlove karte nakon što ih je on posložio i pokuša pogoditi kojim ih je redom izvukao, dolazi do 13 · 12···1 = 13! mogućnosti. To znači da je broj različitih "ruku" u bridge–u jednak

$$\frac{52 \cdot 51 \cdots 40}{13!} = 635013559600.$$

Dakle, stvarno je mala vjerojatnost da je Karlo izvukao dvaput za redom iste karte. □

Na koncu odluče igrati šah. Ana, koja je odlučila da će samo gledati, namjesti tri šahovske ploče. Na koliko načina se mogu složiti parovi? (Ne računamo kao različito sparivanje ukoliko dva čovjeka za istom pločom zamijene mjesta i nije važno koji par sjedi za kojom pločom.)

Rješenje (prva verzija): Krenemo od broja 720 koji nam je dao broj različitih razmještaja za stolom. Taj broj ćemo podijeliti s brojem razmještaja za stolom koje smatramo istim u kontekstu šahovskih parova. Najprije, možemo tri šahovske ploče posložiti na šest različitih načina tako da ne mijenjamo šahovske parove. Također, svaki par može, ali i ne mora, promijeniti strane, što daje $2 \cdot 2 \cdot 2 = 8$ različitih načina. Dakle, 720 razmještaja dolazi u grupu od $6 \cdot 8 = 48$, pa je traženi broj 720/48 = 15.

Rješenje (druga verzija): Kako je Pero najmlađi, pustimo njega prvog da odredi svog partnera. On to može učiniti na pet načina. Tko je najmlađi među ostalim bira sljedeći i može odabrati partnera na tri načina, i time smo odredili parove. Dakle, traženi broj je $5 \cdot 3 = 15$.

Ostatak ovog poglavlja ćemo potrošiti na formalizaciju i generalizaciju problema iz prethodnog primjera.

Ono što možemo uočiti je da umjesto Ane i njenog društva možemo gledati bilo koji skup od sedam elemenata, na primjer $\{1,2,\ldots,7\}$. Očita generalizacija gornjih problema je da umjesto broja sedam uzmemo proizvoljan $n \in \mathbb{N}$. Stoga ćemo se u nastavku poglavlja (a i cijelog kolegija) baviti prebrojavanjem različitih objekata vezanih za skup $\{1,2,\ldots,n\}$ za proizvoljan prirodan broj n. Osnovni principi kojima ćemo se služiti su sljedeći.

Princip dvostrukog brojanja Ukoliko isti skup prebrojimo na dva različita načina, odgovori će se poklapati.

Princip bijekcije Dva skupa su iste veličine (imaju isti broj elemenata, isti kardinalitet) akko postoji bijekcija između njih.

Princip sume Broj elemenata unije međusobno disjunktnih skupova jednak je sumi broja elemenata skupova. Formalno, za $S_1, \ldots, S_n, S_i \cap S_j = \emptyset$ za $i \neq j$, vrijedi

$$\left| \bigcup_{i=1}^n S_i \right| = \sum_{i=1}^n |S_i|.$$

Princip produkta (jednostavna formulacija) Broj elemenata unije *m* međusobno disjunktnih skupova, od kojih svaki ima *n* elemenata je *nm*.

Princip produkta (općenita formulacija)

Skupovna verzija Neka je $n \in \mathbb{N}$, a S_1, \ldots, S_n konačni skupovi. Tada vrijedi

$$\left| \prod_{i=1}^n S_i \right| = \prod_{i=1}^n |S_i|,$$

gdje $\prod_{i=1}^n S_i = S_1 \times \cdots \times S_n$ označava Kartezijev produkt skupova S_1, \ldots, S_n .

Funkcijska verzija Neka je S skup funkcija f s $\{1, 2, ..., n\}$ u neki skup X. Prepostavimo da postoji k_1 izbora za vrijednost f(1), k_2 izbora za vrijednost f(2), ..., k_n izbora za vrijednost f(n). Tada je broj elemenata skupa S $k_1 \cdots k_n$.

Računalna verzija Neka je S skup lista duljine n sa svojstvima:

- postoji izbor od k_1 različitih prvih elemenata liste u S,
- za svaki i > 1 i svaki izbor prvih i 1 elemenata liste u S, postoji izbor od k_i različitih i-tih elemenata liste

Tada postoji $k_1 \cdots k_n$ listi u S.

Princip kvocijenta Ukoliko skup S ima particiju od q skupova, od kojih svaki ima r elemenata, onda vrijedi q = |S|/r.

Princip kvocijenta je zapravo samo reformulacija principa produkta, ali dobro ga je imati na umu kao zaseban princip.

Princip razlike Ukoliko je X konačan skup i $S \subseteq X$, onda je $|X \setminus S| = |X| - |S|$.

Svi ovi principi su jednostavne posljedice osnovnih svojstava skupova.

 $^{^{1}}$ Ovdje (a tako ćemo i nadalje) koristimo notaciju |S| = broj elemenata skupa S.

Zadatak 1.1

Koje smo principe zapravo koristili pri rješavanju problema iz Primjera 1.1.1?

Još dva principa ćemo koristiti u ovom kolegiju. Prvi smo već sreli pa ćemo ga samo navesti.

Princip (matematičke) indukcije

Drugi princip je

Dirichletov princip Ukoliko skup *S* koji ima više od *n* elemenata particioniramo u *n* skupova (tj. odaberemo particiju skupa *S* koja ima *n* elemenata), tada barem jedan element particije ima više od jednog elementa.

Dokaz trivijalno slijedi po kontrapoziciji.

Postoji i generalizacija ovog principa. Ukoliko skup S koji ima više od kn elemenata particioniramo u n skupova, tada barem jedan element particije ima barem k+1 elemenata. Dokaz je, naravno, identičan.

Zadatak 1.2

Pokažite da u skupu od šestero ljudi postoji barem troje ljudi koji se svi međusobno znaju, ili barem troje ljudi od kojih se nitko međusobno ne pozna (Pretpostavljamo da ukoliko osoba A zna osobu B, onda i osoba B zna osobu A.)

1.2 Broj podskupova

Sada ćemo formulirati naš prvi opći kombinatorni problem: Koliko ima podskupova skupa s n elemenata? Ili formalnije: Koji je kardinaltet partitivnog skupa skupa S, ako je |S| = n? Krenimo od malih skupova.

Prazan skup (koji je isto skup) ima samo jedan podskup: Ø.

Jednočlan skup, recimo $\{a\}$, ima dva podskupa: \emptyset , $\{a\}$.

Dvočlani skup, recimo $\{a, b\}$, ima četiri podskupa: \emptyset , $\{a\}$, $\{b\}$, $\{a, b\}$.

Tročlani skup, recimo $\{a, b, c\}$, ima osam podskupova: \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{b, c\}$, $\{a, c\}$, $\{a, b, c\}$.

Dakle, imamo sljedeću tablicu:

broj elemenata	0	1	2	3	-
broj podskupova	1	2	4	8	•

Pomoću ove tablice možemo lako naslutiti da je traženi broj 2^n , što ćemo i dokazati (i to na više načina).

Pretpostavimo da je skup koji nas zanima $A = \{a_1, \ldots, a_n\}$. Kreirajmo sada neki podskup od A. U njega možemo, ali i ne moramo uključiti element a_1 , dakle u ovom koraku možemo donijeti dvije različite odluke. Bez obzira što odlučili o a_1 , možemo ali i ne moramo uključiti a_2 u taj podskup, znači opet imamo dvije različite odluke, stoga po principu produkta broj mogućnosti vezanih za a_1 i a_2 je $2 \cdot 2 = 4$. Sada nastavimo ovim rezoniranjem i dolazimo do 2^n . Time smo dokazali sljedeći teorem.

Teorem 1.2.1 Skup od n elemenata ima 2^n podskupova.

Prethodni dokaz ovog teorema možemo ilustrirati sljedećim dijagramom za slučaj skupa $\{a,b,c\}$.

Dokaz (druga verzija): U ovom dokazu ćemo numerirati podskupove, tj. naći ćemo bijekciju s $\{0, 1, \ldots, 2^n - 1\}$ u $\mathcal{P}(S)$. Ideju ćemo opet ilustrirati na skupu $\{a, b, c\}$. Za odgovarajući podskup gledamo njegove elemente jedan po jedan i pišemo 1 ukoliko podskup sadrži a, a 0 ukoliko ne sadrži, i tako dalje za b i c. Dakle, podskupu $\{a, c\}$ pridružujemo trojku brojeva 101. Na taj način svakom podskupu pridružujemo jedan niz od tri brojke. Kako se ti nizovi sastoje od nula i jedinica, trebali bi nas podsjetiti na binarni zapis brojeva. Ukoliko izbrišemo vodeće nule iz našeg zapisa, uistinu i dobijemo binarni zapis:

$$\varnothing \iff 000 \iff (0)_2 = 0$$

$$\{c\} \iff 001 \iff (1)_2 = 1$$

$$\{b\} \iff 010 \iff (10)_2 = 2$$

$$\{b, c\} \iff 011 \iff (11)_2 = 3$$

$$\{a\} \iff 100 \iff (100)_2 = 4$$

$$\{a, c\} \iff 101 \iff (101)_2 = 5$$

$$\{a, b\} \iff 110 \iff (110)_2 = 6$$

$$\{a, b, c\} \iff 111 \iff (111)_2 = 7$$

Time smo konstrirali traženu bijekciju za n = 3.

Lako se vidi da ovaj postupak možemo proširiti na proizvoljan n. Formalno, konstruiramo bijekciju između partitivnog skupa skupa S i skupa funkcija sa S u $\{0,1\}$. Funkcija f_V koja odgovara skupu Y je zadana pomoću

$$f_Y(x) = \begin{cases} 1 & x \in Y, \\ 0 & x \notin Y. \end{cases}$$

Obratno, funkciji $f: S \to \{0, 1\}$ odgovara skup $Y = \{x \in S : f(x) = 1\}$. Funkcija f_Y se zove karakteristična funkcija skupa Y.

Ukoliko je (a uvijek to možemo pretpostaviti) $S = \{0, 1, ..., n-1\}$, tada funkciju $f: S \to \{0, 1\}$ možemo predstaviti pomoću n-torke (f(0), ..., f(n-1)). Dakle, podskupove od S možemo predstaviti n-torkama koje se sastoje od nula i jedinica.

Sljedeći korak je da predstavimo te n-torke kao zapis u bazi 2 cijelog broja $N = f(n-1)2^{n-1} + \dots + f(1)2 + f(0)$.

Zadatak 1.3

Dovršite prethodni dokaz.

Ova verzija dokaza nam daje zgodnu numeraciju podskupova od $\{0, \ldots, n-1\}$. Odgovarajući podskup S_k lako konstruiramo iz binarnog zapisa broja k. Također, skup S_k ovisi samo o k, a ne o n.

Dokaz (**treća verzija**): Dokazat ćemo teorem pomoću indukcije. Baza indukcije je očito zadovoljena. Pretpostavimo da tvrdnja teorema vrijedi za skupove s n-1 elemenata. Neka je S skup s n elemenata. Fiksirajmo neki element $a \in S$. Podijelimo podskupove od S u dvije klase: oni koji sadrže a i oni koji ne sadrže a. Oni podskupovi koji ne sadrže a su podskupovi skupa $S' = S \setminus \{a\}$ koji ima n-1 elemenata, stoga takvih podskupova ima 2^{n-1} . Oni podskupovi koji sadrže a se mogi napisati kao unija od $\{a\}$ i nekog podskupa iz S', stoga i takvih ima 2^{n-1} . Dakle, po principu sume, broj poskupova od S je $2^{n-1} + 2^{n-1} = 2^n$, čime smo dokazali korak indukcije.

Dokaz (četvrta verzija): Neka je F(n) broj podskupova n–članog skupa. Uočimo da sve podskupove od $\{0, \ldots, n\}$ možemo dobiti iz podskupova skupa $\{0, \ldots, n-1\}$ tako da svaki takav skup proširimo na dva moguća načina: ili ništa ne dirajući ili ubacujući element n. Dakle, vrijedi relacija F(n) = 2F(n-1). Kako je F(0) = 1, lako se vidi da je $F(n) = 2^n$.

Zbog čega smo dokazivali teorem 1.2.1 na toliko različitih načina? Zbog toga što je svaki dokaz ilustrirao jednu tehniku dokazivanja kombinatornih teorema:

prvi dokaz svođenje dokaza na prebrojavanje nezavisnih odluka

drugi dokaz svođenje dokaza na nalaženje bijekcije s podskupa prirodnih brojeva u skup koji prebrojavamo

treći dokaz dokazivanje pomoću matematičke indukcije

četvrti dokaz kreiranje rekurzivne formule

Sve te metode ćemo često koristiti u nastavku kolegija.

1.3 Broj podskupova fiksirane veličine (binomni koeficijenti)

Teorem 1.3.1 Neka je S n–člani skup. Broj podskupova s k $(0 \le k \le n)$ elemenata od S je $\binom{n}{k} = \binom{n!}{k!} \binom{(n-k)!}{n}$.

Napomena: Podsjetimo se da je po konvenciji 0! = 1.

Dokaz: Na koliko načina možemo iz skupa S odabrati k elemenata? Očito postoji n mogućih izbora za "prvi" element, (n-1) za "drugi" element,..., te (n-k+1) za "k-ti" element, tj. po principu produkta $n(n-1)\cdots(n-k+1)=\frac{n!}{(n-k)!}$ mogućnosti. Ali mi smo riječi prvi, drugi, ... stavili u navodnike zbog toga što u podskupu elementi nisu uređeni, tj. ne razlikujemo koji element je prvi, drugi itd. Stoga dobijeni broj moramo podijeliti s brojem različitih redoslijeda k elemenata koje smo izabrali. Rezonirajući kao gore, vidimo da imamo k izbora za "prvi" element, k-1 izbora za "drugi" element, itd. Dakle, ukupno imamo k! izbora za redoslijed. Time smo dokazali teorem.

S ovom kombinatornom interpretacijom binomnih koeficijenata, cijeli niz identiteta s binomnim koeficijentima se može i kombinatorno dokazati.

Propozicija 1.3.2 Vrijede sljedeće identitete:

(a)
$$\binom{n}{k} = \binom{n}{n-k}$$
,

(b)
$$k\binom{n}{k} = n\binom{n-1}{k-1}$$
,

$$(c) \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k},$$

(d)
$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$
,

(e)
$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$
.

Dokaz: (a) Odabir podskupa s k elemenata je ekvivalentan odabiru n - k elemenata (odabiru podskupa $A \subset S$ odgovara odabir podskupa $S \setminus A$).

(b) Poslužit ćemo se sportskim žargonom pri dokazu. Između n sportaša želimo odabrati k-članu ekipu u kojoj će jedan sportaš biti kapetan momčadi. Iz teorema 1.3.1 znamo da ekipu možemo odabrati na $\binom{n}{k}$ načina. Za svaki mogući izbor ekipe, kapetana možemo izabrati na k načina. To odgovara lijevoj strani izraza. Alternativno, možemo najprije izabrati kapetana (to možemo učiniti na n načina), a onda izabrati ostatak ekipe (njih k-1 između preostalih n-1 sportaša.) To odgovara desnoj strani izraza. Princip dvostrukog brojanja kaže da dva razičita brojanja moraju dovesti do istog rezultata, čime smo dokazali tvrdnju.

- (c) Pretpostavimo da imamo razred s n+1 učenika, od kojih je jedan na neki način izdvojen od ostalih, te (opet) želimo izabrati ekipu od k učenika. To možemo napraviti ili tako da uključimo tog izdvojenog učenika (a u tom slučaju trebamo izabrati preostalih k-1 učenika između preostalih n), ili ga možemo izbaciti iz kombinacija za ekipu (u tom slučaju trebamo izabrati cijelu ekipu između preostalih n učenika).
- (d) Ovo je jednostavno svih podskupova po teoremu 1.2.1 ima 2^n .
- (e) Desna strana odgovara broju načina na koji možemo izabrati ekipu od n članova od 2n sportaša. Pretpostavimo sada da se među 2n sportaša nalazi n dječaka i n djevojčica. Na koliko načina možemo odabrati ekipu od k djevojčica i n-k dječaka? Ovaj broj je očito $\binom{n}{k}\binom{n}{n-k}=po$ dijelu (a) $=\binom{n}{k}^2$. Sada samo sumiramo po mogućem broju djevojčica u ekipi (formalno gledano, primjenimo princip sume).

Zadatak 1.4

Probajte dokazati propoziciju 1.3.2 koristeći algebarske tehnike.

Katkada se k–člani podsup skupa S naziva k–kombinacija skupa S. Dakle, $\binom{n}{k}$ je broj k–kombinacija n–članog skupa.

Prošle godine smo sreli binomne koeficijente u tzv. binomnom teoremu.

Teorem 1.3.3 (Binomni teorem)

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k, \ za \ n \in \mathbb{N}, \qquad a,b \in \mathbb{C}.$$
 (1.1)

Relaciju (1.1) nazivamo binomnom formulom.

Dokaz: Promotrimo izraz

$$\underbrace{(a+b)\cdots(a+b)}_{n \text{ puta}}.$$

Ovaj izraz možemo raspisati tako da iz svake zagrade odaberemo ili a ili b, i to na sve moguće načine, te pomnožimo izabrane članove i onda sve sumiramo. Izraz b^k se dobija kada je b odabrano iz k zagrada, a a iz n-k zagrada (čim smo izabrali b iz k zagrada, odmah smo izabrali i a iz n-k zagrada). Postoji $\binom{n}{k}$ načina na koji možemo izabrati tih k b-ova, pa je koeficijent uz $a^{n-k}b^k$ upravo $\binom{n}{k}$.

Zadatak 1.5

Dajte algebarski dokaz teorema 1.3.3. Uputa: indukcija!

Cijeli niz činjenica o binomnim koeficijentima se može dobiti koristeći binomni teorem. Na prijer, propozicija 1.3.2 (d) odmah slijedi ukoliko u binomnu formulu uvrstimo a=1, b=1.

Korolar 1.3.4 Za n > 0, broj podskupova n–članog skupa s parnim i neparnim brojem elemenata je jednak (dakle, 2^{n-1}).

Dokaz (algebarski): Ubacimo a = 1, b = -1 u binomnu formulu:

$$0 = (1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k \quad \text{povlači} \quad \sum_{\substack{0 \le k \le n \\ k \text{ paran}}} \binom{n}{k} = \sum_{\substack{0 \le k \le n \\ k \text{ neparan}}} \binom{n}{k}.$$

Dokaz (kombinatorni): Ukoliko je n neparan, tada je k paran akko je n-k neparan, stoga svaki odabir skupa s parnim brojem elemenata je (uzimanjem komplementa) automatski i odabir skupa s neparnim brojem elemenata, tj. imamo bijekciju sa skupa podskupova s parnim brojem elemenata u skup podskupova s neparnim brojem elemenata, čime smo dokazali tvrdnju za slučaj da je n neparan.

Ukoliko je n paran, gornji postupak nije moguć. Stoga promotrimo preslikavanje $A \mapsto A \triangle \{n\}$, gdje je $A \subset \{1, \ldots, n\}$, a \triangle označava simetričnu razliku (ovo preslikavanje ubacuje n u A ukoliko $n \notin A$, a ukoliko je $n \in A$. onda ga izbacuje). Ovo preslikavanje je bijekcija na partitivnom skupu od $\{1, \ldots, n\}$, te mijenja kardinalitet skupa za 1, tj. prebacuje skupove s parnim brojem elemenata u skupove s neparnim brojem elemenata i obrnuto. Time smo dokazali tvrdnju korolara.

Zadatak 1.6

Dokažite da je $A \mapsto A \triangle \{n\}$ bijekcija na partitivnom skupu od $\{1, \ldots, n\}$.

Korolar 1.3.4 možemo i generalizirati.

Korolar 1.3.5 Neka je n djeljiv s 8. Tada je broj podskupova čiji je broj elemenata djeljiv s 4 jednak $2^{n-2} + 2^{(n-2)/2}$.

Dokaz: Označimo s A traženi broj, a s B broj podskupova čiji je broj elemenata kongruentan s 2 (mod 4). Iz korolara 1.3.4 slijedi $A + B = 2^{n-1}$.

Uvrstimo a=1,b=i u binomnu formulu. Budući je $1+i=\sqrt{2}e^{i\pi/4}$, a n je višekratnik broja 8, slijedi $(1+i)^n=2^{n/2}$. Dakle, $2^{n/2}=\sum_{k=0}^n\binom{n}{k}i^k$. Uzimajući u obzir da je $i^k=1,i,.1,-i$ za redom $k\equiv 0,1,2,3\pmod 4$, slijedi $A-B=2^{n/2}$. Rješavanjem linearnog sustava dvije jednadžbe s dvije nepoznanice dolazimo do tražene formule.

Propozicija 1.3.2 (c) omogućava da konstruiramo tzv. "Pascalov trokut" (ne, Pascal nije prvi koji ga je konstruirao).

Svaki element osim prvog i zadnjeg u retku je dobijen zbrajanjem dva broja koja su iznad njega. k-ti element u n-tom retku je $\binom{n}{k}$ (krećemo od nultog retka i nultog stupca).

Nešto rijeđa verzija Pascalovog trokuta je Pascalov desni trokut:

									0	1	2	3	4	5	6
								0	$\binom{0}{0}$						
1								1	$\binom{1}{0}$	$\binom{1}{1}$					
1 1	1 2	1					+ :	2	$\binom{2}{0}$	$\binom{2}{1}$	$\binom{2}{2}$				
1 1	3 4	3	1 4	1			tj.	3	$\binom{3}{0}$	$\binom{3}{1}$	$\binom{3}{2}$	$\binom{3}{3}$			
1	5		10 20	5 15		1		4	$\binom{4}{0}$	$\binom{4}{1}$	$\binom{4}{2}$	$\binom{4}{3}$	$\binom{4}{4}$		
1	O	1)	20	1)	O	1		5	$\binom{5}{0}$	$\binom{5}{1}$	$\binom{5}{2}$	$\binom{5}{3}$	$\binom{5}{4}$	$\binom{5}{5}$	
								6	$\binom{6}{0}$	$\binom{6}{1}$	$\binom{6}{2}$	$\binom{6}{3}$	$\binom{6}{4}$	$\binom{6}{5}$	(⁶ ₆)

Sada se na primjer Propozicija 1.3.2 (d) može iskazati kao tvrdnja da je suma elemenata u n-tom retku Pascalovog trokuta jednaka 2^n (opet krećemo od nultog retka).

Što dobijemo kad zbrajamo elemente po stupcima? Probajmo npr. zbrojiti elemente u drugom stupcu (i tu krećemo od nultog): 1 + 3 + 6 + 10 = 20, a taj broj se javlja u sljedećem retku i sljedećem stupcu zdesna. To nas dovodi do sljedećeg rezultata.

Teorem 1.3.6 (Chu Shih–Chieh) Neka je $n \ge k$. Tada vrijedi

$$\sum_{r=k}^{n} \binom{r}{k} = \binom{n+1}{k+1}. \tag{1.2}$$

Dokaz (algebarski):

$$\sum_{r=k}^{n} \binom{r}{k} = \left[\binom{k}{k} + \binom{k+1}{k} \right] + \binom{k+2}{k} + \dots + \binom{n}{k}$$

$$= \left[\binom{k+1}{k+1} + \binom{k+1}{k} \right] + \binom{k+2}{k} + \dots + \binom{n}{k}$$

$$= \left[\binom{k+2}{k+1} + \binom{k+2}{k} \right] + \binom{k+3}{k} + \dots + \binom{n}{k}$$

$$= \binom{k+3}{k+1} + \dots + \binom{n}{k} = \dots = \binom{n}{k+1} + \binom{n}{k}$$

$$= \binom{n+1}{k+1}.$$

Ovdje smo na više mjesta koristili propoziciju 1.3.2 (c).

Dokaz (kombinatorni): Neka je zadan skup $S = \{x_1, \ldots, x_{n+1}\}$. Tada desna strana formule (1.2) odgovara broju k+1-članih podskupova skupa S. Označimo s P skup k+1-članih podskupova od S, te definirajmo sljedeće skupove:

$$\mathcal{P}_{1} = \{ A \subseteq \mathcal{P} : x_{1} \in A \},$$

$$\mathcal{P}_{2} = \{ A \subseteq \mathcal{P} : x_{1} \notin A, \ x_{2} \in A \},$$

$$\mathcal{P}_{3} = \{ A \subseteq \mathcal{P} : x_{1}, x_{2} \notin A, \ x_{3} \in A \},$$

$$\vdots$$

$$\mathcal{P}_{n-k+1} = \{ A \subseteq \mathcal{P} : x_{1}, x_{2}, \dots, x_{n-k} \notin A, \ x_{n-k+1} \in A \}.$$

Lako se vidi da skupovi \mathcal{P}_i , $i=1,\ldots,n-k+1$ čine particiju skupa \mathcal{P} , te da vrijedi $|\mathcal{P}_i|=\binom{n+1-i}{k}$, čime smo našli kombinatorni prikaz lijeve strane formule (1.2).

Specijalan slučaj teorema 1.3.6 je formula za zbroj prvih *n* brojeva:

$$1+2+\cdots+n=\binom{1}{1}+\binom{2}{1}+\binom{3}{1}+\cdots+\binom{n}{1}=\binom{n+1}{2}=\frac{n(n+1)}{2}.$$

Ali pomoću teorema 1.3.6 možemo naći formulu za $\sum_{k=1}^{n} k^{p}$, za bilo kakav $p \in \mathbb{N}$! Na primjer, za p = 2 postupak je sljedeći. Služeći se formulom

$$k^{2} = k + k(k-1) = {k \choose 1} + 2 {k \choose 2}$$

traženu sumu možemo ovako izračunati:

$$\sum_{k=1}^{n} k^2 = \sum_{k=1}^{n} \binom{k}{1} + 2 \sum_{k=1}^{n} \binom{k}{2} = \binom{n+1}{2} + 2 \binom{n+1}{3} = \frac{n(n+1)(2n+1)}{6}.$$

Zadatak 1.7

Kako bi ste došli do formule za p > 2?

Često se javlja potreba da se da približna ocjena za faktorijel nekog broja. U tu svrhu se obično koristi **Stirlingova formula**

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Preciznije, vrijedi

$$\lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}(n/e)^n}=1.$$

Primjer 1.3.7 Dokažite kombinatornim argumentima relaciju $\binom{n}{m}\binom{m}{k} = \binom{n}{k}\binom{n-k}{m-k}$.

Rješenje: Lijeva strana: neka je dan n-člani skup S. Biramo uređeni par (X, Y), gdje je X m-člani podskup od S, a Y k-člani podskup od X.

Desna strana: najprije odabiremo k–člani podskup Y od S, onda od preostalih elemenata biramo m-k-člani podskup Z, te kreiramo uređeni par $(Z \cup Y, Y)$.

Primjer 1.3.8 Dokažite kombinatornim argumentima relaciju (tzv. Vandermondeovu konvoluciju)

$$\sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r}.$$

Rješenje: Desna strana odgovara broju odabira r–članog podskupa m+n–članog skupa S. Lijeva strana također odgovara broju odabira r–članog podskupa m+n–članog skupa S, s time da odabiremo r–člane podskupove na sljedeći način. Particioniramo skup S na dva skupa A i B, gdje je A m–člani, a B n–člani skup. Svaki odabir r–članog skupa od S odgovara odabiru k–članog podskupa od A i r-k–članog podskupa od B, za proizvoljan k između (i uključivo) S0 i S1.

Primjer 1.3.9 Dokažite kombinatornim argumentima relaciju

$$\sum_{i>0} \binom{n}{2i} = 2^{n-1}, \ \forall n \in \mathbb{N}.$$

Rješenje: Po konvenciji $\binom{n}{m} = 0$ za m > n.

Lijeva strana odgovara broju odabira parnog podskupa n-članog skupa $S = \{a_1, \ldots, a_n\}$.

Do nekog parnog podskupa skupa S, možemo doći i tako da biramo hoće li a_1 biti element tog skupa, hoće li a_2 biti element tog skupa, ... Kada dođemo do elementa a_n , više nemamo mogućnost odabira: ili smo do sada odabrali neparan broj elemenata te moramo odabrati a_n , ili smo da sada odabrali paran broj elemenata te ne možemo odabrati a_n . Dakle, donijeli smo n-1 odabira između dviju opcija.

Primjer 1.3.10 Dokažite kombinatornim argumentima relaciju

$$\sum_{i=0}^{n} \binom{n}{i} = n2^{n-1}, \ \forall n \in \mathbb{N}.$$

Rješenje: Desna strana odgovara broju odabira uređenog para (x, A), gdje je x element n–članog skupa S, a A je podskup skupa $S \setminus \{x\}$.

Lijeva strana odgovara broju odabira uređenog para (x, B), gdje je Bi-člani podskup od S, a x neki element iz B, gdje je i bilo koji broj između (i uključivo) 0 i n.

No, svaki odabir uređenog para (x, A), gdje je x element n-članog skupa S, a A je podskup skupa $S \setminus \{x\}$ odgovara odabiru uređenog para (x, B), gdje je $B = A \cup \{x\}$, i obrnuto: svaki odabir uređenog para (x, B), gdje je B i-člani podskup od S, a x neki element iz B, gdje je i bilo koji broj između (i uključivo) 0 i n odgovara odabiru uređenog para (x, A), gdje je $A = B \setminus \{x\}$.

Primjer 1.3.11 Neka su $k, n \in \mathbb{N}$. Izračunajte kombinatornim argumentom

$$\sum_{r=k}^{n} \binom{n}{r} \binom{r}{k}.$$

Rješenje: Izraz možemo intepretirati kao broj odabira r–članih skupova n–članog skupa, te k–članih podkupova odabranog r–članog skupa, gdje je r prozvoljan broj između (i uključivo) k i n.

No mogli smo prvo odabrati k–člani podskup n–članog skupa (što možemo napraviti na $\binom{n}{k}$ načina), a zatim odlučiti koje ćemo preostale elemente uključiti u nadskup izabranog k–članog skupa (što, zaključujući kao u primjeru 1.3.9, možemo napraviti na 2^{n-k} načina).

Zadatak 1.8

Dokažite kombinatornim argumentima relaciju

$$\sum_{i=0}^{r+1} \binom{m-i}{r-i+1} = \binom{m}{r}, \ \forall n \in \mathbb{N}.$$

Zadatak 1.9

Dokažite kombinatornim argumentima relaciju

$$\sum_{i=0}^{k} \binom{n+i}{n} = \binom{n+k+1}{n+1}, \ \forall k, n \in \mathbb{N}_0.$$

1.4 Permutacije

Postoje dva načina na koja možemo shvatiti pojam permutacije. Neka je X konačan skup. Permutacija od X (u aktivnom smislu) je bijekcija s X u X. Da bi smo objasnili pasivan smisao, pretpostavimo da su elementi u X uređeni, npr. $X = \{x_1, \ldots, x_n\}$. Tada je pasivna

reprezentacija permutacije π uređena n-torka $(\pi(x_1), \ldots, \pi(x_n))$. Katkad koristimo i ovakav zapis za permutaciju:

$$\begin{pmatrix} x_1 & x_2 & \dots & x_n \\ y_1 & y_2 & \dots & y_n \end{pmatrix}, \text{ gdje je } y_i = \pi(x_i), i = 1, \dots, n.$$

Teorem 1.4.1 Broj permutacija n-članog skupa je n!.

Dokaz: Pretpostavimo da je n–člani skup skup $\{1, \ldots, n\}$. Tada je permutacija uređena n–torka brojeva iz $\{1, \ldots, n\}$. Postoji n–mogućnosti za izbor prvog elementa, n-1 mogućnosti za izbor drugog elementa, itd.

Postoji još jedan, kraći zapis permutacije, tzv. **ciklički zapis**. Najprije ćemo uvesti pojam ciklusa. Kažemo da je permutacija π **ciklus** ili ciklička permutacija ukoliko vrijedi

$$x_1 \mapsto x_2 \mapsto \cdots \mapsto x_n \mapsto x_1$$

gdje su x_1, \ldots, x_n elementi od X u nekom redoslijedu. Ciklus zapisujemo $(x_1 \ x_2 \ \ldots \ x_n)$ (ne miješati s pasivnom formom permutacije!).

Kako je $(x_i \ldots x_n x_1 \ldots x_{i-1})$ očito isti ciklus kao i $(x_1 x_2 \ldots x_n)$, ciklički zapis nije jedinstven.

Propozicija 1.4.2 Svaka se permutacija može zapisati kao kompozicija ciklusa na međusobno disjunktnim skupovima. Ta reprezentacija je jedinstvena, do na redoslijed ciklusa i odabira početnih točaka ciklusa.

Napomena: U ovom slučaju svaki ciklus nadopunjavamo do funkcije na cijelom početnom skupu tako da na ostatku skupa ciklus djeluje kao identiteta.

Dokaz: Dokaz će biti konstruktivne prirode. Neka je π permutacija na skupu X. Sljedeći algoritam konstruira tražene cikluse:

SVE DOK postoji element iz X koji nije ni u jednom ciklusu

- ▶ odaberi neki takav *x*
- ▶ neka je *m* najmanji prirodan broj takav da je $\pi^m(x) = x$
- \blacktriangleright konstruiraj ciklus $(x \pi(x) \dots \pi^{m-1}(x))$

VRATI sve konstruirane cikluse

Pokažimo sada da ovaj algoritam zaista generira tražene cikluse. Najprije ćemo pokazati da je $(x \pi(x) \dots \pi^{m-1}(x))$ zaista ciklus. Problem može nastati jedino ukoliko $\pi^i(x) = \pi^j(x)$ za 0 < i < j < m. Ali budući je π bijekcija, slijedilo bi $x = \pi^{j-i}(x)$, što je u kontradikciji s izborom broja m.

Pokažimo sada da konstruirani ciklusi koriste međusobno disjunktne skupove elemenata iz X. Pretpostavimo da je

$$\pi^{i}(x) = \pi^{j}(y) \tag{1.3}$$

i pretpostavimo da je x izabran prije y. Ukoliko je $\pi^m(y) = y$, tada iz (1.3) slijedi

$$\pi^{m}(x) = \pi^{j+(m-i)}(y) = \pi^{j-i}(\pi^{m}(y)) = \pi^{j-i}(y),$$

dakle $\pi^{m+i-j}(x) = y$, što je u kontradikciji s činjenicom da smo pretpostavili da y nije u ciklusu od x.

Očito je da svaki element od X leži u nekom od konstruiranih ciklusa.

Konačno, kompozicija ovih ciklusa jednaka je π . Zaista, neka je $z \in X$ proizvoljan. Tada postoji y iz nekog ciklusa i $i \in \mathbb{N}$ takav da vrijedi $z = \pi^i(y)$. Tada se djelovanje permutacije π na element z podudara s djelovanjem ciklusa koji sadrži y, dok drugi ciklusi nemaju efekta na z (u svjetlu dane napomene).

Primjer 1.4.3 Permutacija

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2
\end{pmatrix}$$

se u cikličkoj notaciji može zapisati kao $(1\ 3\ 4)(2\ 6)(5)$. To je jedna od 36 različitih verzija za ovu permutaciju (ima 3!=6 načina da posložimo cikluse i $3\cdot 2\cdot 1=6$ mogućnosti za izbor početnih točaka). Katkada se jednočlani ciklusi, kao gore (5) ne zapisuju.

Broj permutacija n-članog skupa koji se sastoji od k ciklusa se naziva Stirlingov broj prve vrste, u oznaci s(n,k) (katkada se koristi definicija po kojoj je $(-1)^{n-k}s(n,k)$ broj permutacija n-članog skupa koji se sastoji od k ciklusa).

Neka je S skup od n elemenata, a $k \le n$. Za uređenu k-torku (x_1, \ldots, x_k) međusobno različitih elemenata iz S kažemo da je k-permutacija (ili parcijalna permutacija).

Na k-permutaciju možemo gledati kao na pasivnu formu injekcije $\{1,\ldots,k\} \to S$ (očito $\{1,\ldots,k\}$ možemo zamijeniti s bilo kojim k-članim skupom kojem smo nekako poredali elemente). Stoga je pitanje koliko ima k-permutacija skupa S ekvivalentno pitanju koliko ima injekcija s k-članog u n-člani skup.

Teorem 1.4.4 Broj k-permutacija n-članog skupa je n!/(n-k)!.

Dokaz: Promotrimo injekciju $f: \{1, \ldots, k\} \to S$, gdje je |S| = n. Za f(1) možemo uzeti bilo koji element iz S, dakle imamo n mogućnosti. Za f(2) možemo uzeti bilo koji element iz $S \setminus \{f(1)\}$, dakle imamo n-1 mogućnosti. Nastavljajući ovaj postupak, u konačnici dolazimo do izbora f(k) za koji možemo uzeti bilo koji element iz $S \setminus \{f(1), \ldots, f(k-1)\}$, dakle imamo n-(k-1) mogućnosti. Princip produkta nam daje $n \cdot (n-1) \cdots (n-k+1) = n!/(n-k)!$ mogućnosti odabira funkcije f.

Katkada se broj k-permutacija n-članog skupa zapisuje kao P(n, k) ili P_k^n .

Primjer 1.4.5 Dokažite kombinatornim argumentima relaciju

$$P(n,k) = nP(n-1,k-1).$$

Rješenje: Lijeva strana odgovara broju odabira uređenih k-torki n-članog skupa S. Desnu stranu možemo interpretirati opet kao broj odabira uređenih k-torki skupa S, s time da najprije odaberemo prvi element k-torke, recimo x, a onda odaberemo uređenu (k-1)-torku skupa $S \setminus \{x\}$.

Primjer 1.4.6 Dokažite kombinatornim argumentima relaciju P(n+1,k) = P(n,k) + P(n,k-1).

Rješenje: Lijeva strana odgovara broju odabira uređenih k-torku n+1-članog skupa S. Neka je $x \in S$ proizvoljan, ali fiksiran element iz S. Desnu stranu možemo interpretirati kao broj odabira uređenih k-torki skupa S, s time da da skup uređenih k-torku podijelimo u dvije klase: klasu onih k-torki sastavljenu od elemenata skupa $S \setminus \{x\}$, i klasu onih k-torki skupa S koje sadrže x. Kako x može doći na bilo koje od k mjesta u k-torci, dolazimo do traženog izraza.

1.5 Multiskupovi i multinomni koeficijenti

Na općenito pitanje:

Na koliko načina se može odabrati k objekata iz skupa od n objekata? odgovor možemo dati tek ukoliko preciziramo:

- (a) da li je redoslijed važan ili ne?
- (b) smije li se neki objekt više puta pojaviti kao izbor (dozvoljavamo li ponavljanja)?

To nas dovodi do sljedećeg teorema.

Teorem 1.5.1 Broj odabira k objekata iz skupa od n objekata je dan sljedećom tablicom

	redoslijed važan	("kombinacije") redoslijed nevažan
ponavljanja dozvoljena	n^k	$\binom{n+k-1}{k}$
ponavljanja nisu dozvoljena	n!/(n-k)!	$\binom{n}{k}$

Dokaz: Stupac "redoslijed važan" je lako riješiti. Ukoliko su ponavljanja dozvoljena, postoji n izbora za svaki od k objekata. Ukoliko ponavljanja nisu dozvoljena, traženi broj je broj k-permutacija n-članog skupa.

U stupcu "redoslijed nevažan" ukoliko ponavljanja nisu dozvoljena, zapravo brojimo k-podskupove n-skupa. Preostali element tablice je nešto teže izračunati, pa ćemo dokaz napraviti pomoću dvije leme.

Lema 1.5.2 Broj mogućnosti izbora k objekata iz n–članog skupa uz mogućnost ponavljanja i nevažan redoslijed je jednak broju načina odabira n nenegativnih cijelih brojeva čiji je zbroj jednak k.

Dokaz: Neka nam je dano k objekata iz skupa a_1, \ldots, a_n . Neka je x_i broj ponavljanja objekta a_i . Tada je $x_i \ge 0$, $\sum_{r=1}^n x_i = k$.

Obrnuto, brojevima $x_1, \ldots, x_n, x_i \ge 0$, $i = 1, \ldots, n, x_1 + \cdots + x_n = k$ pridružimo izbor objekata tako da objekt a_i izaberemo x_i puta.

Lema 1.5.3 Broj n-torki nenegativnih cijelih brojeva x_1, \ldots, x_n za koje vrijedi $x_1 + \cdots + x_n = k$ je dan $s \binom{n+k-1}{k}$.

Dokaz: Zamislimo n+k-1 praznina, i onda njih n-1 označimo. Neka je x_1 broj praznina prije prve oznake, x_i broj praznina između (i-1)–e i i–te oznake, za $2 \le i \le n-1$ i x_n broj praznina poslije (n-1)–e oznake. Tada je $x_i \ge 0$, $\sum x_i = (n+k-1)-(n-1) = k$.

Obrnuto, neka su dani x_1, \ldots, x_n koji zadovoljavaju uvjete iz iskaza leme. Tada stavimo oznaku poslije x_1 praznina, poslije x_2 praznina, ..., poslije x_{n-1} daljnjih praznina. Dakle, ostalo je još x_n praznina, budući je broj preostalih praznina dan s

$$n + k - 1 - (x_1 + \dots + x_{n-1}) - (n-1) = n + k - 1 - (k - x_n) - (n-1) = x_n$$

Grafički prikaz postupka je dan na sljedećoj slici:

$$\underbrace{\square \cdots \square}_{x_1} \boxtimes \underbrace{\square \cdots \square}_{x_2} \boxtimes \underbrace{\square \cdots \square}_{x_3} \boxtimes \cdots \square \boxtimes \underbrace{\square \cdots \square}_{x_n}$$
Broj izbora oznaka je očito $\binom{n+k-1}{n-1} = \binom{n+k-1}{n+k-1-(n-1)} = \binom{n+k-1}{k}$.

Primjer 1.5.4 Neka je n=3, k=4. Tada \square \square \square \square \square odgovara vrjednostima $x_1=2, x_2=1, x_3=1$. Obrnuto, $x_1=0, x_2=0, x_3=4$ odgovara sljedećoj slici: \square \square \square \square \square .

Primjer 1.5.5 Dokažite kombinatornim argumentom relaciju $n^3 = \binom{n}{1} + 6\binom{n}{2} + 6\binom{n}{3}$ za sve $n \in \mathbb{N}$.

Rješenje: Lijeva strana odgovara broju odabira uređene trojke n-članog skupa S, uz moguća ponavljanja.

Skup uređenih trojaka skupa S, uz moguće ponavljanja, možemo podijeliti u tri klase:

- trojke u kojima su svi elementi isti takvih očito ima $n = \binom{n}{1}$,
- trojke u kojima su dva elementa ista takvih ima $2 \cdot \binom{n}{2} \cdot 3$, budući dva elementa možemo odabrati na $\binom{n}{2}$ načina, na dva načina možemo odlučiti koji će se element ponavljati, te postoji tri načina kako ih poredati ((x, x, y), (x, y, x), (y, x, x)),

• trojke u kojima su svi elementi različiti — takvih ima $3! \cdot \binom{n}{3}$, budući tri elementa možemo odabrati na $\binom{n}{3}$ načina, te ih možemo poredati na 3! načina.

Katkada se odabir k objekata iz n–članog skupa, uz ponavljanja i nevažan redoslijed zove k–kombinacija s ponavljanjem.

Da bi smo formalizirali pristup kombinatornim problemima koja uključuju ponavljanja, uvesti ćemo pojam multiskupa. To je objekt poput skupa, ali u kojem se elementi mogu ponavljati. Precizno, **konačni multiskup** M na skupu S je uređeni par M=(S,m), gdje je $m:S\to\mathbb{N}_0$ funkcija za koju je $\sum_{x\in S}m(x)$ konačan broj. Za $x\in S$ se broj m(x) zove kratnost od x. Broj elemenata multiskupa M, u oznaci |M| je $\sum_{x\in S}m(x)$.

Obično umjesto $\{a, a, b, c, c, d, d, d\}$ pišemo $\{a^2, b, c^2, d^3\}$.

Ako su M = (S, m) i M' = (S, m') dva multiskupa na istom skupu, onda kažemo da je M' podmultiskup od M (u oznaci $M' \subseteq M$) ako je $m'(x) \le m(x)$ za sve $x \in S$.

Sada možemo prethodni rezultat ovako formulirati:

Neka je $k \in \mathbb{N}$ i S n-člani skup. Neka je M = (S, m) multiskup takav da je $m(x) \ge k$ za svaki $x \in S$. Tada je broj k-podmultiskupova od M jednak $\binom{n+k-1}{k}$.

Uvedimo sada pojam permutacije multiskupova. Neka je M = (S, m) multiskup. Analogno pojmu permutacije skupa, svaku uređenu n-torku (x_1, \ldots, x_n) , gsje su $x_i \in S$ zovemo **permutacija multiskupa** M. Za razliku od permutacija skupa, ovdje je dozvoljeno da neki elementi x_i budu isti, ali ne smije biti više ponavljanja od kratnosti tog elememta.

Teorem 1.5.6 Neka je $M = \{x_1^{n_1}, x_2^{n_2}, \dots, x_k^{n_k}\}$ zadani multiskup. Neka je $n = n_1 + \dots + n_k$. Tada je broj permutacija od M jednak

$$\frac{n!}{n_1!n_2!\cdots n_k!}.$$

Napomena: Katkada se koristi oznaka

$$\binom{n}{n_1,\ldots,n_k}=\frac{n!}{n_1!n_2!\cdots n_k!},$$

uz $n = n_1 + \cdots + n_k$, i taj broj zovemo **multinomni koeficijent.**

Dokaz: Trebamo odrediti na koliko načina možemo sastaviti uređenu n-torku s elementima iz M. Prvo odaberemo na koja ćemo mjesta staviti elemente x_1 (njih n_1), tj. trebamo odabrati n_1 mjesta od njih n, a to možemo napraviti na $\binom{n}{n_1}$ načina. Dalje odredimo na koja ćemo mjesta staviti elemente x_2 ; sada trebamo odabrati n_2 mjesta od njih $n-n_1$, što možemo napraviti na $\binom{n-n_1}{n_2}$ načina. Nastavljanjem ovog postupka, te pomoću principa

produkta dolazimo do zaključka da je broj permutacija dan s

$$\binom{n}{n_{1}} \binom{n-n_{1}}{n_{2}} \binom{n-n_{1}-n_{2}}{n_{3}} \cdots \binom{n-n_{1}-n_{2}-\cdots-n_{k-1}}{n_{k}} = \frac{n!}{(n-n_{1})! \cdot (n-n_{1}-n_{2})! \cdot (n-n_{1}-n_{2})!} \cdot \frac{(n-n_{1}-n_{2})!}{(n-n_{1}-n_{2}-n_{3})! \cdot n_{3}!} \cdots \cdot \frac{(n-n_{1}-n_{2}-n_{2})!}{(n-n_{1}-n_{2}-\cdots-n_{k})! \cdot n_{k}!} = \frac{n!}{n_{1}! \cdot n_{2}! \cdots n_{k}!} . \quad \Box$$

Slično kao i binomni koeficijenti, i multinomni koeficijenti se javljaju pri raspisivanju algebarskih izraza.

Teorem 1.5.7 (Multinomni teorem) Vrijedi

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{0 \le r_1, r_2, \dots, r_k \le n \\ r_1 + \dots + r_k = n}} {n \choose r_1, r_2, \dots, r_k} x_1^{r_1} x_2^{r_2} \cdots x_k^{r_k},$$

 $za sve x_1, x_2, \ldots, x_k \in \mathbb{C}, n \in \mathbb{N}.$

Zadatak 1.10

Dokažite kombinatorno teorem 1.5.7. Dokaz je analogan dokazu binomnog teorema 1.3.3.

Često se u enigmatskim časopisima pojavljuju anagrami, tj. pitanja koliko se različitih riječi može formirati pomoću slova iz neke zadane riječi. Naravno, bit zagonetke je da riječi trebaju pripadati nekom zadanom jeziku (tj. trebaju se nalaziti u standardnom rječniku tog jezika). Postoje dvije strategije za rješavanje ovog problema:

- (a) najprije formiramo sve potencijalne riječi, a onda potražimo nalazi li se neka od njih u rječniku,
- (b) prolazimo kroz rječnik, i provjeravamo za svaku riječ da li je sastavljena od slova iz zadane riječi.

Da bismo procijenili koja je metoda bolja, trebamo znati broj potencijalnih riječi i broj riječi u rječniku. Broj potencijalnih riječi možemo izračunati pomoću teorema 1.5.6.

Primjer 1.5.8 Ukoliko je zadana riječ MATEMATIKA, broj potencijalnih riječi je $\binom{10}{2,3,2,1,1,1} = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = 151200.$

Zadatak 1.11

Koliko ima potencijalnih riječi ukoliko ne moramo iskoristiti sva slova?

1.6 Particije skupova (Relacije na skupovima)

Prisjetimo se sljedećeg rezultata.

Teorem 1.6.1 Neka je R relacija ekvivalencije na skupu X. Tada klase ekvivalencije formiraju particiju skupa X. Obrnuto, za danu particiju skupa X, postoji jedinstvena relacija ekvivalencije čije su klase elementi particije.

Dakle, broj particija skupa jednak je broju relacija ekvivalencije na tom skupu. Taj broj ćemo zvati **Bellov broj**.

Prije nego li se pozabavimo Bellovim brojevima, prisjetimo se još jednog pojma vezanog za relacije. Kažemo da je relacija R totalni uređaj ukoliko je relacija refleksivna, antisimetrična, tranzitivna i zadovoljava svojstvo trihotomije (za x, y vrijedi ili (x, y) $\in R$ i/ili (y, x) $\in R$ i/ili x = y).

Teorem 1.6.2 Broj totalnih uređaja na n-skupu je n!.

Napomena: Zapravo ćemo pokazati da za dani uređaj R na n-skupu, njegove elemente možemo numerirati x_1, \ldots, x_n tako da vrijedi $(x_i, x_j) \in R$ akko $i \leq j$, i to možemo učiniti na jedinstveni način.²

Dokaz: Neka je X n–člani skup i R uređaj na X. Prvo ćemo pokazati da postoji "zadnji" element u X, element x takav da, ukoliko je $(x,y) \in R$, onda nužno y = x. Pretpostavimo da takav x ne postoji. Tada za svaki x postoji $y \neq x$ takav da $(x,y) \in R$. Krenimo s $x = x_1$, i odaberimo x_2, x_3, \ldots takve da vrijedi $(x_i, x_{i+1}) \in R$, za sve i. Iz tranzitivnosti i refleksivnosti slijedi $(x_i, x_j) \in R$ za sve $i \leq j$. Kako je X konačan, u nekom trenutku dolazimo do x_j takvog da vrijedi $x_i = x_j$ za neki i < j. No tada $(x_{j-1}, x_j) \in R$ i $(x_j, x_{j-1}) = (x_i, x_{j-1}) \in R$, budući je $i \leq j-1$. Iz antisimetričnosti slijedi $x_j = x_{j-1}$, što je u kontradikciji s konstrukcijom niza.

Taj "zadnji" element niza je jedinstven. Zaista, pretpostavimo da je i z "zadnji" element. Tada ili $(x, z) \in R$ ili $(z, x) \in R$. U oba slučaja slijedi x = z.

Označimo "zadnji" element s x_n . Tada zbog trihotomije vrijedi $(x, x_n) \in R$ za sve x. Sada nastavljamo tako da nađemo "zadnji" element skupa $X \setminus \{x_n\}$, koji označimo s x_{n-1} , itd

U konačnici smo dobili jedinstveni način numeracije elemenata iz X. Nadalje, očito svakoj numeraciji elemenata iz X odgovara jedan totalni uređaj (zadan s $(x_i, x_j) \in R$ ako $i \le j$). Dakle, broj totalnih uređaja odgovara broju uređenih n-torki iz X, tj. broju permutacija.

Vratimo se pitanju broja particija. S B_n ćemo označavati n-ti Bellov broj (to je broj particija n-skupa ili broj relacija ekvivalencije n-skupa). Lako se vidi da je $B_3=5$ (particije od $\{1,2,3\}$ su $\{\{1,2,3\}\}$, $\{\{1,2\},\{3\}\}$, $\{\{1,3\},\{2\}\}$, $\{\{2,3\},\{1\}\}$, $\{\{1\},\{2\},\{3\}\}$). Slično vidimo da je $B_2=2$, $B_1=1$, a po definiciji stavljamo $B_0=1$.

²To znači i da se naš intuitivni pojam uređaja poklapa s formalnom definicijom.

Za razliku od broja podskupova i permutacija, ne postoji jednostavna formula za Bellove brojeve. Jedan način računanja Bellovih brojeva je dan sljedećim teoremom.

Teorem 1.6.3 Vrijedi

$$B_{n} = \sum_{k=1}^{n} {n-1 \choose k-1} B_{n-k}, \quad \text{za sve } n \in \mathbb{N}.$$
 (1.4)

Dokaz: Neka je $X = \{1, \ldots, n\}$ i uzmimo neku particiju A_1, \ldots, A_l od X. Neka je A_j skup koji sadrži element n. Dakle, $A_j = Y \cup \{n\}$, gdje je $Y \subseteq \{1, \ldots, n-1\}$. Ostali A_i , $i \neq j$ čine particiju skupa $\{1, \ldots, n-1\} \setminus A_j$. Skupovi Y i A_i , $i \neq j$ potpuno određuju particiju.

Ukoliko je |Y| = k - 1 postoji $\binom{n-1}{k-1}$ mogućnosti za izbor skupa Y, te B_{n-k} mogućnosti za izbor ostalih elemenata particije. Kako za k možemo uzeti bilo koji broj između (i uključivo) 1 i n, slijedi tražena formula.

Pojam particije možemo povezati s još jednim fundamentalnim pojmom u matematici: sa surjekcijama. Neka je $f: A \to B$ surjekcija, |A| = m, |B| = n. Na primjer, $A = \{1, \ldots, m\}$, $B = \{1, \ldots, n\}$. Tada $A = \bigcup_{j=1}^n f^{-1}(j)$, i $f^{-1}(i) \cap f^{-1}(j) = \emptyset$ za $i \neq j$. Zaista, prvo svojstvo slijedi iz surjektivnosti, dok $k \in f^{-1}(i) \cap f^{-1}(j)$ povlači f(k) = i i f(k) = j, dakle i = j. Zapravo, vrijedi i više.

Propozicija 1.6.4 Funkcija $f: A \to B$ je surjekcija akko je $\{f^{-1}(y): y \in B\}$ particija od A.

Zadatak 1.12

Dovršite dokaz propozicije 1.6.4.

Kod surjekcija vidimo da je broj elemenata particije jednak kardinalitetu kodomene.

Broj particija od k elemenata n-skupa označava se sa S(n,k) i zove **Stirlingovim brojem druge vrste**. Očito je S(n,k)=0 za k=0 ili k>n. Također se lako vidi da vrijedi S(n,1)=S(n,n)=1. Nadalje, $B_n=\sum_{k=1}^n S(n,k)$.

Teorem 1.6.5 Vrijedi

$$S(n+1,k) = S(n,k-1) + kS(n,k)$$
, za sve $k, n \in \mathbb{N}$.

Dokaz: Particije skupa $X = \{1, 2, ..., n+1\}$ od k elemenata možemo podijeliti u dvije skupine: one za koje je skup $\{n+1\}$ element particije, i ostale. Brojanje particija u prvoj skupini je jednostavno: ostalih n elemenata od X možemo particionirati u k-1 skupova na S(n, k-1) načina.

Ukoliko $\{n+1\}$ nije član particije, tada izbacivanjem elementa n+1 iz elementa particije u kojoj se nalazi dovodi do stvaranja particije od k elemenata skupa $\{1, \ldots, n\}$, recimo A_1, \ldots, A_k . Tu istu particiju skupa $\{1, \ldots, n\}$ bi dobili da smo izbacili element

n+1 iz bilo kojeg od skupova A_1, \ldots, A_k . Drugim riječima, svakoj k–članoj particiji od $\{1, \ldots, n\}$ odgovara točno k različitih k–članih particija skupa X. Dakle, postoji točno kS(n,k) particija od X kod kojih $\{n+1\}$ nije član particije.

Teorem 1.6.5 nam daje mogućnost zapisa "Stirlingovog trokuta".

n k	1	2	3	4	5
1	1				
2	1	1			
3	1	3	1		
4	1	7	6	1	
5	1	15	25	10	1

Teorem 1.6.6 Broj surjekcija sa skupa A, |A| = n u skup B, |B| = k je k! S(n, k).

Dokaz: Možemo pretpostaviti $k \le n$, $A = \{1, \ldots, n\}$, $B = \{1, \ldots, k\}$. Svaka surjekcija f generira particiju $\bigcup_{i=1}^k f^{-1}(i)$. Ali toj particiji odgovara više surjekcija; da bi A_1 bio element particije generirane funkcijom f, nije nužno da je $A_1 = f^{-1}(1)$. Kako particije nisu uređene, skup A_1 može odgovarati skupu $f^{-1}(j)$ za bilo koji $j \in \{1, \ldots, k\}$. Dakle, postoji k mogućnosti za izbor broja j_1 takvog da je $A_1 = f^{-1}(j_1)$, k-1 mogućnosti za izbor broja j_2 takvog da je $A_2 = f^{-1}(j_2)$, itd. Stoga se svaka od S(n,k) k-članih particija n-članog skupa može urediti na k! načina, tj. postoji k! različitih surjekcija koje odgovaraju toj particiji.

Zadatak 1.13

Dokažite: broj rasporeda n različitih kuglica u k jednakih kutija tako da niti jedna kutija ne ostane prazna je S(n,k).

Primjer 1.6.7 Dokažite relaciju $S(n, 2) = 2^{n-1} - 1$.

Rješenje: Relaciju ćemo dokazati kombinatornim argumentom. Lijeva strana odgovara broju particija n–članog skupa S na dva dijela. Dvočlanu particiju $\{A, B\}$ skupa S možemo odrediti tako da za svaki element skupa S biramo da li se nalazi u A ili B. Takvih odabiramo imamo 2^n . No time smo računali i odabire $\{S, \emptyset\}$ i $\{\emptyset, S\}$. Konačan broj odabira dobijemo kad broj odabira $2^n - 2$ podijelimo s 2, budući smo dvaput brojali svaku particiju $\{A, B\}$ je jednaka particiji $\{B, A\}$).

Primjer 1.6.8 Dokažite relaciju $S(n, n-1) = \binom{n}{2}$

Rješenje: Koliko ima n-1-članih particija n-članog skupa? U svakom članu particije se nalazi točno jedan element, osim u jednom koji sadrži točno dva elementa. Broj traženih particija odgovara broju odabira ta dva elementa.

Primjer 1.6.9 Dokažite analogon Chu Shih-Chiehovog teorema:

$$S(n+1, k+1) = \sum_{i=k}^{n} {n \choose i} S(i, k)$$
, za sve $n \ge k$.

Rješenje: Lijeva strana odgovara broju odabira k+1–članih particija n+1–članog skupa S.

Neku k+1–članu particiju skupa S možemo odabrati na sljedeći način. Izdvojimo neki element $x \in S$. On se mora nalaziti u nekom članu particije A. Ako A ima m elemenata, onda ga možemo odabrati na $\binom{n}{m-1}$ načina. Preostaje nam particionirati skup $S \setminus A$ na k dijelova, što možemo napraviti na S(n+1-m,k) načina. Dakle lijeva strana je jednaka broju

$$\sum_{m=1}^{n+1} {n \choose m-1} S(n+1-m,k).$$

Zamijenom indeksa $i \rightarrow n + 1 - m$ dobijamo

$$\sum_{i=0}^{n} \binom{n}{n-i} S(i,k) = \sum_{i=0}^{n} \binom{n}{i} S(i,k) = \sum_{i=k}^{n} \binom{n}{i} S(i,k),$$

budući S(i, k) = 0 za i < k.

1.7 Generiranje kombinatornih objekata

Ukolko neki problem zahtjeva ispitivanje svih objekata neke vrste (podskupovi, permutacije, ...) potreban nam je algoritam koji će generirati te objekte. Obično je konceptualno najjednostavniji rekurzivni algoritam. Npr. sljedeći algoritam generira partitivni skup od $\{1, \ldots, n\}$. Uočite kako algoritam nalikuje dokazu rekurzivne relacije F(n+1) = 2F(n), F(0) = 1 iz teorema 1.2.1.

Ako je n = 0, vrati $\{\emptyset\}$.

INAČE

- \blacktriangleright generiraj partitivni skup od $\{1,\ldots,n-1\}$
- ▶ napravi kopiju svakog podskupa i dodaj mu element *n*
- ▶ vrati sve kreirane skupove

Simbolički se ovaj algoritam može prikazati na sljedeći način:

$$|\mathcal{P}(\varnothing) = \{\varnothing\}$$

$$|\mathcal{P}(\{1,\ldots,n\}) = \{Y,Y \cup \{n\} : Y \in \mathcal{P}(\{1,\ldots,n-1\})\} \text{ za } n > 0$$

Na sličan način, koristeći rekurzivne relacije

- $\bullet \quad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k},$
- n! = n(n-1)!,

•
$$B_n = \sum_{k=1}^n \binom{n-1}{k-1} B_{n-k}$$

možemo konstruirati algoritme za k-podskupove, permutacije i particije.

Ali postoji problem s ovim pristupom: čak i za nevelike vrijednosti broja *n*, broj objekata je vrlo velik, te može biti toliko velik da ne stane u memoriju. Ono što trebamo su algoritmi koji generiraju jedan po jedan objekt, dakle nerekurzivno. Takvi algoritmi će imati ovakav oblik:

Generiraj prvi objekt

PONAVLJAJ

- ▶ procesiraj dani objekt
- ▶ generiraj novi objekt SVE DOK nisu izgenerirani svi objekti

Važno je primjetiti da ovakav algoritam pretpostavlja da objekti imaju nekakav poredak (uređaj), tj. sam algoritam generira neki poredak (uređaj) objekata.

Za podskupove jedan nerekurzivan algoritam je opisan sljedećim kôdom:

```
Prvi podskup je Y = \emptyset
SLJEDEĆI PODSKUP poslije Y
```

- ▶ nađi zadnji element *i* koji nije u *Y* (gledajući od kraja)
- ▶ ukoliko nema takvog objekta, onda je Y zadnji podskup
- \blacktriangleright izbaci iz Y sve elemente poslije i, dodaj i u Y, te vrati ovaj skup

Primjer 1.7.1 Za $\{1, 2, 3\}$ generirani skupovi će biti redom \emptyset , $\{3\}$, $\{2\}$, $\{2, 3\}$, $\{1\}$, $\{1, 3\}$, $\{1, 2\}$, $\{1, 2, 3\}$.

Drugi način generiranja podskupova je da iskoristimo drugu verziju dokaza teorema 1.2.1: za svaki broj N između 0 i $2^n - 1$, napišimo broj N u bazi 2, dani zapis interpretirajmo kao niz (a_1, \ldots, a_n) , te kreirajmo podskup $Y = \{j : a_j = 1\}$. Ovaj postupak ima dodatnu prednost što nam omogućava "slučajan pristup" podskupovima; nismo ovisni o njihovom poretku.

Važno je uočiti da ova dva algoritma ne kreiraju isti poredak podskupova.

U slučaju k-podskupova postoje dva "prirodna" uređaja. Npr. za n=5, k=3:

Prvi niz možemo generirati sljedećim algoritmom (za k = 3, n proizvoljan):

```
ZA i IZ (1, ..., n-2)

ZA j IZ (i+1, ..., n-1)

ZA j IZ (i+1, ..., n-1)

ZA l IZ (j+1, ..., n)

\blacktriangleright procesiraj \{i, j, l\}
```

Problem s ovim algoritmom je što ovisi o izboru broja k (postoji kompliciranija verzija koja nema tu manu).

Drugi uređaj ima jednu prednost: najprije dolaze 3–podskupovi od $\{1,2,3,4\}$ u njihovom prirodnom poretku, onda dolaze podskupovi koji sadrže 5, dobijeni tako da dodajemo 52–podskupovima od $\{1,2,3,4\}$. Sljedeći algoritam opisuje generiranje k–podskupova u ovom poretku.

Prvi podskup je $Y=\{1,\ldots,k\}$ SLJEDEĆI PODSKUP poslije $Y=\{y_1,\ldots,y_k\}$ (gdje je $y_1<\ldots< y_k$) je

- ▶ nađi prvi i takav da je $y_i + 1 \notin Y$
- ightharpoonup povećaj y_i za 1, stavi $y_j = j$ za j < i i vrati novi Y
- \blacktriangleright ovaj postupak propada ukoliko je $i=k,\,y_k=n;$ u tom slučaju $Y=\{n-k+1,\ldots,n\}$ je zadnji skup

Primjer 1.7.2

Prvi poredak nazivamo **leksikografskim** poretkom: ukoliko simbole $1, \ldots, n$ shvatimo kao slova alfabeta, a svaki k-podskup kao riječ, onda prvi poredak odgovara leksikografskom uređaju. Drugi poredak nazivamo **obrnutim leksikografskim** poretkom: opet simbole $1, \ldots, n$ shvatimo kao slova alfabeta, ali u obrnutom poretku (npr. $5 \rightarrow a, 4 \rightarrow b, 3 \rightarrow c, 2 \rightarrow d, 1 \rightarrow e$), obrnemo ih, te ih upišemo u rječnik u obrnutom redoslijedu.

Primjer 1.7.3	abc	abd	abe	acd	ace	ade	bcd	bce	bde	cde
	543	542	541	532	531	521	432	431	421	321
	345	245	145	235	135	125	234	134	124	123

I za permutacije postoji više "prirodnih" poredaka. Sljedeći algoritam generira permutacije u leksikografskom poretku:

Prva permutacija je dana s $x_i = i, i = 1, \dots, n$ SLJEDEĆA PERMUTACIJA poslije (x_1, \dots, x_n) je

- ▶ nađi najveći j za koji je $x_i < x_{i+1}$ (idući od kraja)
- ▶ ako takav *j* ne postoji, gotovi smo
- ▶ izmjeni vrijednost od x_j s vrijednošću najmanjeg x_k koji je veći od x_j uz k > j
- ightharpoonup obrni niz vrijednosti od x_{i+1}, \ldots, x_n i vrati permutaciju

Kako točno radi ovaj algoritam?

Prva dva koraka j je najmanji indeks takav da smo već generirali sve permutacije koje počinju s $(x_1, \ldots, x_j, \ldots)$. Dakle, sljedeća permutacija će povećati vrijednost od x_j . **Zadnja dva koraka** Budući $x_{j+1} > \ldots > x_n$, element x_k je najmanji element veći od x_j koji može doći poslije x_1, \ldots, x_{j-1} u permutaciji. Prije promjene imamo

$$x_{j+1} > \ldots > x_{k-1} > x_k > x_j > x_{k+1} > \ldots > x_n$$

a poslije promjene imamo

$$x_{i+1} > \ldots > x_{k-1} > x_i > x_k > x_{k+1} > \ldots > x_n$$
.

Primjer 1.7.4 Neka je trenutna permutacija (4,3,6,5,2,1). Algoritam prvo nalazi $j=2, x_j=3$. Trenutna permutacija je zadnja (u leksikografskom poretku) od permutacija oblika $(4,3,\ldots)$, te treba slijediti prva oblika $(4,5,\ldots)$, tj. (4,5,1,2,3,6). Zaista, algoritam nalazi $k=4, x_k=5$ (kako su vrijednosti poslije x_j opadajuće, možemo ići od kraja tražeći prvi broj veći od x_j). Tada zamjenimo vrijednosti na drugoj i četvrtoj poziciji, što nam daje (4,5,6,3,2,1); te konačno obrnemo vrijednosti na pozicijama od 3 do 6, što nam daje (4,5,1,2,3,6).

Primjer 1.7.5

$$12 \stackrel{?}{\cancel{3}} \stackrel{4}{\cancel{4}} \longrightarrow 1243$$

$$1 \stackrel{?}{\cancel{2}} \stackrel{4}{\cancel{3}} \longrightarrow 1342 \longrightarrow 1324$$

$$13 \stackrel{?}{\cancel{2}} \stackrel{4}{\cancel{4}} \longrightarrow 1342 \longrightarrow 1423$$

$$1 \stackrel{?}{\cancel{3}} \stackrel{4}{\cancel{2}} \longrightarrow 1432 \longrightarrow 1423$$

Napomena: Ovaj algoritam vrijedi i za permutacije multiskupova, a poznavali su ga još u staroj Indiji (Nārāyaṇa Paṇḍita, 14. stoljeće).

Leksikografski poredak se obično generira sljedećim algoritmom:

- 1. Nađi najveći j takav da se x_i može povećati.
- 2. Povećaj x_i , ali što je moguće manje.
- 3. Nađi leksikografski "najkraći" način da se x_1, \ldots, x_i nadopuni.

Što učiniti ako želimo doći do npr. 2092–te permutacije (u leksikografskom poretku) brojeva 1, . . . , 9?

Pretpostavimo da je prvi broj u permutaciji 1 (najmanji koji imamo). Ostaje nam 8 brojeva. Kako se maksimalna permutacija koja počinje s 1 nalazi na 40320-om mjestu (8! = 40320), a 2092 < 40320, znamo da se u našoj permutaciji na prvom mjestu nalazi 1.

Sada stavimo sljedeći najmanji broj na drugo mjesto, dakle 2. Maksimalna permutacija koja počinje s $(1,2,\ldots)$ zauzima 5040-to mjesto. Budući je 2092 < 5040, 2 se zaista nalazi na drugom mjestu u našoj permutaciji. Sada stavimo 3 na treće mjesto. Maksimalna permutacija koja počinje s $(1,2,3,\ldots)$ se nalazi na 720-om mjestu. Kako je 2092 > 720, to znači da je permutacija na 2092-om mjestu "veća" od svih permutacija koje počinju s $(1,2,3,\ldots)$.

Stoga zamijenimo 3 s 4. Maksimalna permutacija koja počinje s (1, 2, 4, ...) se nalazi na mjestu 720 + 720 = 1440, što je i dalje manje od 2092. Zato umjesto 4 stavimo 5. Maksimalna permutacija koja počinje s (1, 2, 5, ...) se nalazi na mjestu broj 1440 + 720 = 2160, što je veće od 2092. Dakle, naša permutacija počinje s (1, 2, 5, ...).

Stavljajući minimalni slobodan broj u našu permutaciju, dolazimo do permutacije koja počinje s $(1,2,5,3,\ldots)$. Maksimalna permutacija koja tako počinje se nalazi na mjestu broj 1440+5!=1570, stoga zamijenimo 3 s 4, što nas dovodi do maksimalne pozicije broj 1440+120+120=1690. Kako smo dobili broj koji je i dalje manji od 2092, umjesto 4 stavljamo 6, što nam daje maksimalnu poziciju broj 1810. Stavljajući umjesto 6 broj 7, dolazimo do maksimalne pozicije broj 1930. Kako i 8 daje broj koji je manji od 2092, stavljamo na koncu 9, i dobijamo maksimalnu poziciju broj 2170, što znači da naša permutacija počinje s $(1,2,5,9,\ldots)$.

Nastavljanjem ovog postupka, stižemo do permutacije (1, 2, 5, 9, 6, 3, 7, 8, 4).

Zadatak 1.14

Probajte obrazložiti gornji "algoritam".

Rekurzije, funkcije izvodnice i formula uključivanja-isključivanja

2.1 Uvod

U ovom poglavlju ćemo proučavati tri važne tehnike koje se često koriste pri rješavanju kombinatornih problema.

Rekurzivna relacija izražava vrijednost funkcije f u točki $n, n \in \mathbb{N}$ u terminima vrijednosti funkcije f u točkama k, k < n. Jedan jednostavan primjer smo već vidjeli: broj F(n) podskupova n-skupa zadovoljava relaciju F(n+1) = 2F(n). Ova relacija, zajedno s početnom vrijednosti F(0) = 1, jedinstveno određuje vrijednost od F(n) za svaki $n \in \mathbb{N}$.

Korištenje funkcija izvodnica je često povezano s rekurzivnim relacijama, ali su takve funkcije i drugdje vrlo korisne. **Funkcija izvodnica** je formalni red potencija čiji su koeficijenti članovi nekog brojevnog niza. Osnovnu ideju ćemo ilustrirati na prethodnoj rekurziji. Definiramo (formalno) funkciju $\varphi(t) = \sum_{n=0}^{\infty} F(n)t^n$. Tada je

$$2t\varphi(t) = \sum_{n=0}^{\infty} 2F(n)t^{n+1} = \sum_{n=0}^{\infty} F(n+1)t^{n+1} = \varphi(t) - 1.$$

Dakle, $\varphi(t) = \frac{1}{1-2t}$. Ova funkcija ima (geometrijski) razvoj $\varphi(t) = \sum_{n=0}^{\infty} (2t)^n$. Usporedimo li ovaj red s početnim, slijedi $F(n) = 2^n$. Kako red $\sum_{n=0}^{\infty} (2t)^n$ konvergira za |t| < 1/2, naša manipulacija je bila korektna.

Pretpostavimo da je zadana familija skupova, te da je dan broj elemenata koji se nalaze u presjeku bilo koje moguće podfamilije. Tada imamo dovoljno podataka da izračunamo koliko elemenata se ne nalazi ni u jednom od skupova zadane familije skupova. Formula uključivanja—isključivanja, skraćeno FUI (eng. PIE) je formula za izračunavanje tog broja. U najjednostavnijem slučaju FUI se svodi na sljedeću skupovnu relaciju:

$$|X \setminus (A \cup B)| = |X| - |A| - |B| + |A \cap B|.$$

2.2 Fibonaccijevi brojevi

U 13. stoljeću je talijanski matematičar Leonardo da Pisa, zvan Fibonacci, proučavao sljedeći (nerealističan) problem.

Seljak uzgaja zečeve. Svaki par zečeva, starih barem dva mjeseca, dobiju svakog mjeseca par mladih: zeca i zečicu. Zečevi nikad ne umiru. Ako na početku krećemo s jednim novorođenim parom, koliko će biti ukupno parova zečeva nakon n mjeseci?

Za male vrijednosti od n možemo lako izračunati traženi broj. Za općeniti n možemo ovako razmišljati: broj novih parova je jednak broju parova koji su mjesec dana prije imali barem dva mjeseca. Ukoliko s F_n označimo broj parova u n-tom mjesecu, onda iz prethodnog razmišljanja slijedi rekurzivna formula

$$F_{n+1} = F_n + F_{n-1}, \quad n = 2, 3, 4, \dots$$
 (2.1)

Kako znamo da je $F_1 = F_2 = 1$, možemo izračunati F_n , za bilo koji n. Zgodno je definirati $F_0 = 0$, tako da (2.1) vrijedi za sve $n \in \mathbb{N}_0$. Brojeve F_n zovemo Fibonaccijevim brojevima (ime im je dao francuski matematičar Lucas).

Fibonaccijevi brojevi su jako česti u matematici, a naročito u kombinatorici. Na primjer, promotrimo sljedeći problem. Na koliko načina se može prirodni broj n zapisati kao suma jedinica i dvojki?

Označimo s J_n taj broj. Očito je $J_1=1,J_2=2,J_3=3$. Neka je $n\geq 2$. Svaki rastav od n mora završavati s 1 ili 2. Ako završava s 1, preostali brojevi daju n-1, a ako završava s 2 preostali brojevi daju n-2. Dakle, $J_n=J_{n-1}+J_{n-2}$. Ukoliko definiramo $J_0=1$, opet dobijemo Fibonaccijeve brojeve (pomaknute za jedno mjesto, tj. $J_n=F_{n+1}$).

Formula za Fibonaccijeve brojeve je jedan primjer rekurzivne relacije, točnije, tročlane rekurzivne relacije s konstantnim koeficijentima. Općenito, (k+1)–člana rekurzivna relacija (ili kraće rekurzija), izražava vrijednost F(n) funkcije F u terminima k prethodnih vrijednosti $F(n-1), F(n-1), \ldots, F(n-k)$; koja je linearna ukoliko ima oblik

$$F(n) = a_1(n)F(n-1) + a_2(n)F(n-2) + \dots + a_k(n)F(n-k),$$

a s konstantnim koeficijentima ukoliko su a_1, \ldots, a_k konstantne funkcije.

ČINJENICA: Funkcija koja zadovoljava (k+1)-članu rekurziju je jedinstveno određena svojim vrijednostima u prvih k prirodnih brojeva.

Fibonaccijevi brojevi zadovoljavaju cijeli niz identiteta koji se obično dokazuju matematičkom indukcijom.

Propozicija 2.2.1 Vrijede sljedeće relacije:

(a)
$$\sum_{k=0}^{n} F_k = F_{n+2} - 1$$
,

(b)
$$\sum_{k=0}^{n} F_{2k+1} = F_{2n+2}$$
,

(c)
$$F_n^2 + F_{n-1}^2 = F_{2n-1}$$
.

Dokaz: Identitete (a) i (b) se jednostavno dokazuju korištenjem matematičke indukcije, dok je dokaz relacije (c) nešto složeniji. Najprije raspišemo lijevu stranu relacije (c).

$$F_n^2 + F_{n-1}^2 = (F_{n-1} + F_{n-2})^2 + F_{n-1}^2 = F_{n-1}^2 + F_{n-2}^2 + 2F_{n-1}F_{n-2} + F_{n-1}^2$$

$$= F_{n-1}^2 + F_{n-2}^2 + F_{n-1}(F_{n-2} + F_{n-1}) + F_{n-1}F_{n-2}$$

$$= F_{n-1}^2 + F_{n-2}^2 + F_nF_{n-1} + F_{n-1}F_{n-2}.$$

Odavde vidimo da nam, da bi smo iskoristili princip matematičke indukcije, treba i relacija

$$F_n F_{n-1} + F_{n-1} F_{n-2} = F_{2n-2}$$
.

Sada ćemo simultano dokazati ove dvije relacije koristeći matematičku indukciju. Baze se lako provjere. Pretpostavimo sada da vrijedi

$$F_{n-1}^2 + F_{n-2}^2 = F_{2n-3}$$
 i $F_n F_{n-1} + F_{n-1} F_{n-2} = F_{2n-2}$.

Tada

$$F_{n}^{2} + F_{n-1}^{2} = F_{n-1}^{2} + F_{n-2}^{2} + F_{n}F_{n-1} + F_{n-1}F_{n-2} = F_{2n-3} + F_{2n-2}$$

$$= F_{2n-1},$$

$$F_{n+1}F_{n} + F_{n}F_{n-1} = (F_{n} + F_{n-1})F_{n} + (F_{n-1} + F_{n-2})F_{n-1}$$

$$= F_{n}^{2} + F_{n-1}^{2} + F_{n-1}F_{n} + F_{n-2}F_{n-1} = F_{2n-1} + F_{2n-2}$$

$$= F_{2n}.$$

Pogledajmo sada kako možemo riješiti rekurziju za Fibonaccijeve brojeve. Dati ćemo dvije metode, koje ćemo kasnije generalizirati.

Prva metoda: Kako je naša rekurzija linearna, ukoliko nađemo neka rješenja, tada će i njihova linearna kombinacija opet biti rješenje.

Zaista, neka F i G zadovoljavaju rekurziju. Definiramo $H_n = aF_n + bG_n$. Tada

$$H_n = a(F_{n-1} + F_{n-2}) + b(G_{n-1} + G_{n-2}) = (aF_{n-1} + bG_{n-1}) + (aF_{n-2} + bG_{n-2})$$

= $H_{n-1} + H_{n-2}$.

Vrijednosti od a i b možemo odabrati tako što iskoristimo početne vrijednosti od F.

No kako naći bilo kakvo rješenje naše rekurzije?

Probajmo se malo igrati kalkulatorom. Znamo da Fibonaccijevi brojevi brzo rastu. Ali koliko brzo? Izračunajmo omjere susjednih Fibonaccijevih brojeva:

$$\frac{1}{1} = 1, \frac{2}{1} = 2, \frac{3}{2} = 1.5, \frac{5}{3} = 1.6, \frac{8}{5} = 1.6, \frac{13}{8} = 1.625, \frac{21}{13} = 1.615, \frac{34}{21} = 1.619 \dots, \frac{55}{34} = 1.617 \dots, \frac{89}{55} = 1.618 \dots, \frac{144}{89} = 1.617 \dots, \frac{233}{144} = 1.618 \dots, \frac{377}{233} = 1.618 \dots$$

Izgleda da je taj omjer približno 1.618, ako ignoriramo prvih nekoliko vrijednosti. To znači da se Fibonaccijevi brojevi ponašaju (otprilike) kao geometrijski niz. Stoga je razumno probati s $F_n = c\alpha^n$.

Iz rekurzije (2.1) slijedi $\alpha^{n-1}(\alpha^2-\alpha-1)=0$. Rješenja kvadratne jednadžbe $\alpha^2-\alpha-1=0$ su $\alpha_1=\frac{1+\sqrt{5}}{2}$, $\alpha_2=\frac{1-\sqrt{5}}{2}$. Kako i $F_n^1=c_1\alpha_1^n$ i $F_n^2=c_2\alpha_2^n$ zadovoljavaju rekurziju, to je i $F_n=c_1\alpha_1^n+c_2\alpha_2^n$ rješenje rekurzije (2.1). Uvrštavanjem početnih uvjeta $F_0=0$, $F_1=1$ slijedi $c_1+c_2=0$, $c_1\alpha_1+c_2\alpha_2=1$, odakle slijedi $c_1=\frac{1}{\sqrt{5}}$, $c_2=-\frac{1}{\sqrt{5}}$. Stoga

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$

Napomena: Vrijedi $\frac{1+\sqrt{5}}{2} = 1.618..., \frac{1-\sqrt{5}}{2} = -0.618...$ Dakle, $\left(\frac{1+\sqrt{5}}{2}\right)^n$ je dominantan član.

Druga metoda: Definiramo funkciju φ pomoću reda potencija $\varphi(t) = \sum_{n=0}^{\infty} F_n t^n$. Tada vrijedi

$$t\varphi(t) = \sum_{n=0}^{\infty} F_n t^{n+1} = \sum_{n=1}^{\infty} F_{n-1} t^n,$$

$$t^2 \varphi(t) = \sum_{n=0}^{\infty} F_n t^{n+2} = \sum_{n=2}^{\infty} F_{n-2} t^n.$$

Kako je $F_n = F_{n-1} + F_{n-2}$, "skoro" pa da vrijedi $\varphi(t) = (t + t^2)\varphi(t)$. Lako se provjeri da vrijedi $(t + t^2)\varphi(t) = \varphi(t) - t$, dakle $\varphi(t) = \frac{t}{1-t-t^2}$. Sada rastavimo $\frac{t}{1-t-t^2}$ na parcijalne razlomke. Neka je $1 - t - t^2 = (1 - \alpha t)(1 - \beta t)$.

Sada rastavimo $\frac{t}{1-t-t^2}$ na parcijalne razlomke. Neka je $1-t-t^2=(1-\alpha t)(1-\beta t)$. Tada su α i β rješenja jednadžbe $x^2-x-1=0$, dakle $\alpha=\frac{1+\sqrt{5}}{2}$, $\beta=\frac{1-\sqrt{5}}{2}$. Sljedeći korak je da nađemo koeficijente α i β tako da vrijedi

$$\frac{t}{1-t-t^2} = \frac{a}{1-\alpha t} + \frac{b}{1-\beta t}.$$

Standardnim postupkom dolazimo do $a = \frac{1}{\sqrt{5}}, b = -\frac{1}{\sqrt{5}}$.

Dakle

$$\varphi(t) = \frac{a}{1-\alpha t} + \frac{b}{1-\beta t} = a\sum_{n=0}^{\infty} \alpha^n t^n + b\sum_{n=0}^{\infty} \beta^n t^n = \sum_{n=0}^{\infty} (a\alpha^n + b\beta^n) t^n.$$

Uspoređivanjemm koeficijenata u dva rastava funkcije φ u red potencija slijedi

$$F_n = a\alpha^n + b\beta^n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

2.3 Linearne rekurzije

Procedura za rješavanje opće linearne rekurzije s konstantnim koeficijentima je slična onoj za Fibonaccijeve brojeve. Promotrimo rekurziju

$$F(n) = a_1 F(n-1) + a_2 F(n-2) + \dots + a_k F(n-k).$$
 (2.2)

Kao i kod Fibonaccijevih brojeva, pokušajmo naći rješenje oblika $F(n) = \alpha^n$. Uvrštavanjem slijedi da α mora biti korijen jednadžbe

$$x^{k} - a_{1}x^{k-1} - a_{2}x^{k-2} - \dots - a_{k} = 0.$$
 (2.3)

Jednadžbu (2.3) zovemo karakterističnom jednadžbom pridruženoj (2.2).

Ukoliko ova jednadžba ima k različitih realnih korijena, dobivamo k nezavisnih rješenja rekurzije. Uzimanjem njihove linearne kombinacije, i ubacivanjem k početnih vrijednosti od F, dobivamo k linearnih jednadžbi s k nepoznanica, koje imaju jedinstveno rješenja (kao što ste vidjeli na kolegiju Linearna algebra 1). Time smo dobili traženo rješenje.

No ukoliko se neki korijeni ponavljaju (zanemarit ćemo slučaj nerealnih korijena), nećemo dobiti odgovarajući broj rješenja. U tom slučaju radimo sljedeće. Neka je, na primjer, α korijen kratnosti d. Tada se može lako provjeriti da d funkcija $n \mapsto \alpha^n$, $n \mapsto n\alpha^n$, ..., $n \mapsto n^{d-1}\alpha^n$ zadovoljava rekurziju (2.2). Na taj način dolazimo do traženog broja (partikularnih) rješenja.

Općenito, nema jednstavne formule za rješenje linearne rekurzije. No ako je rekurzija oblika

$$F(n) = a_1 F(n-1) + a_2 F(n-2) + \dots + a_k F(n-k) + g(n),$$

onda znamo da se opće rješenje može dobiti kao suma općeg rješenja pripadne homogene rekurzije (2.2) i nekog partikularnog rješenja (analogno situaciji kod rješenja nehomogenog sustava linearnih jednadžbi). Ukoliko je g polinom, onda će partikularno rješenje biti oblika: rj. hom. rekurzije + polinom.

Primjer 2.3.1 (Hanojski tornjevi) Imamo *n* kolutova, različitih veličina, koji se nalaze poslagani na štapu, od najvećeg prema najmanjem, s tim da je najveći na dnu. Imamo još dva štapa, i želimo sve kolutove prebaciti na drugi štap, jedan po jedan, tako da kolutovi budu u istom rasporedu. Ni u jednom trenutku ni jedan kolut ne smije biti smješten iznad manjeg koluta. Pitanje je koji je minimalan potreban broj koraka?

Drveni model Hanojskih tornjeva za n = 8 možete vidjeti na slici 2.1.

Označimo s a_n traženi broj koraka za n kolutova. Očito je $a_1 = 1$. Nadalje, $a_2 = 3$: prebacimo prvi kolut na drugi štap, drugi kolut na treći štap, a onda manji kolut prebacimo na veći.

A za proizvoljan n? Jasno je da bi smo mogli pomaknuti najmanji kolut, treba nam jedan prazan štap, što znači da smo svih n-1 ostalih kolutova pomakli na drugi štap. Da bi smo došli u ovu fazu, treba nam a_{n-1} koraka. Tada pomaknemo najveći kolut na slobodni štap, i onda nam još treba a_{n-1} koraka da stavimo n-1 ostalih kolutova na najveći kolut.

Dakle,
$$a_n = 2a_{n-1} + 1$$
.

Rješenje pripadne homogene rekurzije je očito $c2^n$. Trebamo još naći neko partikularno rješenje. Probajmo s $a_n = c2^n + b$. Uvrštavanjem slijedi b = -1, a iz $a_1 = 1$ slijedi c = 1. Dakle, $a_n = 2^n - 1$.

Ovaj problem je povezan s legendom o vijetnamskom ili indijskom hramu u kojem svećenici prebacuju 64 zlatna diska s jednog stupa na drugi po gore opisanim pravilima.

Slika 2.1: Hanojski tornjevi

Legenda kaže da će u trenutku kada dovrše proces doći do smaka svijeta. Uz pretpostavku da se jedno prebacivanje može napraviti za jednu sekundu, proces bi trajao otprilike $5.82 \cdot 10^{11}$ godina. Više o problemu Hanojskih tornjeva možete pročitati u Wikipedijinom članku http://en.wikipedia.org/wiki/Towers_of_hanoi.

Primjer 2.3.2 (Deranžmani) Deranžman nekog skupa je permutacija tog skupa koja nema fiksnih točaka.

Neka je d(n) broj deranžmana skupa $\{1, 2, \ldots, n\}$. Svaki deranžman broj n preslikava u neki broj i < n. Očito je da se isti broj deranžmana dobije za svaku vrijednost od i $(1 \le i \le n-1)$, stoga možemo doći do d(n) tako da izračunamo broj deranžmana koji preslikavaju n u i, te taj broj pomnožimo s n-1. Neka je π deranžman takav da je $\pi(n)=i$. Tada imamo dva slučaja:

- **1. slučaj**: $\pi(i) = n$, tj. i i n se zamijenjuju. Tada se π na ostatku skupa opet ponaša kao deranžman. Dakle, takvih deranžmana ima d(n-2).
- **2. slučaj**: $\pi(i) \neq n$; recimo $\pi(j) = n, j \neq i$. Definiramo permutaciju π' na $\{1, \ldots, n-1\}$ formulom

$$\pi'(k) = \begin{cases} \pi(k), & k \neq j, \\ i, & k = j. \end{cases}$$

Permutacija π' je opet deranžman. S druge strane, svaki deranžman π' skupa $\{1, \ldots, n-1\}$ se može "proširiti" do deranžmana skupa $\{1, \ldots, n\}$ na sljedeći način:

$$\pi(k) = \begin{cases} \pi'(k), & k \text{ takav da je } \pi'(k) \neq i, \\ i, & k = n, \\ n, & k \text{ takav da je } \pi'(k) = i. \end{cases}$$

Dakle, takvih deranžmana ima d(n-1).

Dobili smo rekurziju

$$d(n) = (n-1)(d(n-1) + d(n-2)). (2.4)$$

Početne vrijednosti za ovu rekurziju su d(1) = 0, d(2) = 1.

Teorem 2.3.3 Broj deranžmana n–skupa je dan formulom

$$d(n) = n! \left(\sum_{i=0}^{n} \frac{(-1)^i}{i!} \right) = \left\lfloor \frac{n!}{e} \right\rfloor, \ n \in \mathbb{N}.$$
 (2.5)

Napomena: U teoremu 2.3.3 [·] je oznaka za najbliži cijeli broj.

Dokaz: Da bi smo dokazali teorem, trebamo pokazati da funkcija $f(n) = n! \left(\sum_{i=0}^{n} \frac{(-1)^i}{i!}\right)$ zadovoljava rekurziju za d(n) i pripadne početne uvjete.

Lako se provjerif(1) = 0, f(2) = 1. Nadalje

$$(n-1) (f(n-1) + f(n-2)) = (n-1)(n-1)! \sum_{i=0}^{n-1} \frac{(-1)^i}{i!} + (n-1)(n-2)! \sum_{i=0}^{n-2} \frac{(-1)^i}{i!}$$

$$= (n-1)(n-2)! ((n-1)+1) \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (n-1)(n-1)! \frac{(-1)^{n-1}}{(n-1)!}$$

$$= n! \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^n (n-1) = n! \sum_{i=0}^{n-2} \frac{(-1)^i}{i!} + (-1)^{n-1} \frac{n!}{(n-1)!} + (-1)^n \frac{n!}{n!} = f(n).$$

Još treba dokazati drugu jednakost u (2.5):

$$\left| d(n) - \frac{n!}{e} \right| = n! \left| \sum_{i=0}^{\infty} \frac{(-1)^i}{i!} - \sum_{i=0}^{n} \frac{(-1)^i}{i!} \right| < n! \left| \frac{(-1)^{n+1}}{(n+1)!} \right| = \frac{1}{n+1} \le \frac{1}{2}.$$

(Red $\sum_{i=0}^{\infty} \frac{(-1)^i}{i!}$ alternira i opadajući je pa apsolutnoj vrijednosti; stoga je razlika između n-tog člana i sume reda manja od (n+1)-og člana.)

No kako smo uopće došli do formule (2.5)?

Krenimo od rekurzije (2.4) koju možemo zapisati u obliku

$$d(n) - nd(n-1) = -(d(n-1) - (n-1)d(n-2)).$$

Iteriranjem ove relacije slijedi

$$d(n) - nd(n-1) = -(d(n-1) - (n-1)d(n-2))$$

$$= (-1)^{2}(d(n-2) - (n-2)d(n-3))$$

$$= \dots$$

$$= (-1)^{n-2}(d(2) - 2d(1)) = (-1)^{n-2}$$

$$= (-1)^{n}.$$

Dakle

$$d(n) - nd(n-1) = (-1)^n.$$

Odavde slijedi

$$\frac{d(i)}{i!} - \frac{d(i-1)}{(i-1)!} = \frac{(-1)^i}{i!}.$$

Sumiranjem gornje relacije po svim *i* od 2 do *n*, dobijamo

$$\frac{d(n)}{n!} - \frac{d(1)}{1!} = \sum_{i=2}^{n} \frac{(-1)^i}{i!} = \sum_{i=0}^{n} \frac{(-1)^i}{i!}.$$

Primjer 2.3.4 (Involucije) Koliko ima permutacija n-skupa sa svojstvom da su svi pripadni ciklusi duljine 1 ili 2?

Označimo taj broj sa s(n). Lako se vidi da vrijedi s(3) = 4 (takve permutacije su (1) (2) (3), (1 2) (3), (1 3) (2), (1) (2 3)), s(2) = 2, s(1) = 1.

Opet ćemo takve permutacije podijeliti u dvije klase:

 \mathbf{A} one kojima je n fiksna točka, i

B one kojima *n* nije fiksna točka.

Involucija u klasi **A** ima očito s(n-1). Za involucije u klasi **B** razmišljamo na sljedeći način. Ako takva permutacija preslikava n u i, tada, po pretpostavci, sadrži ciklus $(i \ n)$, a na preostalih n-2 brojeva djeluje kao permutacija s ciklusima duljine 1 ili 2. Kako postoji n-1 izbora za i, takvih permutacija ima (n-1)s(n-2).

Dakle, rekurzija za s(n) je

$$s(n) = s(n-1) + (n-1)s(n-2)$$

Propozicija 2.3.5 Vrijedi

- (a) broj s(n) je paran za $n \ge 2$,
- (b) $s(n) > \sqrt{n!} za n \ge 2$.

Dokaz: Obje tvrdnje ćemo dokazati matematičkom indukcijom. Za bazu uzimamo n = 2, 3. Lako se provjeri da su u oba slučaja baze zadovoljene.

- (a) Pretpostavimo da su s(n-1) i s(n-2) parni brojevi. Tada je broj s(n) očito paran.
- (b) Pretpostavimo da vrijedi $s(n-1) > \sqrt{(n-1)!}$ i $s(n-2) > \sqrt{(n-2)!}$. Tada

$$s(n) = s(n-1) + (n-1)s(n-2) > \sqrt{(n-1)!} + (n-1)\sqrt{(n-2)!}$$

= $\sqrt{(n-1)!} \left(1 + \sqrt{n-1}\right) > \sqrt{(n-1)!}\sqrt{n} = \sqrt{n!}$.

(Relacija
$$1 + \sqrt{n-1} > \sqrt{n}$$
 slijedi iz $(1 + \sqrt{n-1})^2 = n + 2\sqrt{n-1}$.)

Napomena: (b) je prilično dobra ocjena.

2.4 Funkcije izvodnice

S redovima koji će se javljati pri korištenju funkcija izvodnica baratati ćemo isključivo kao s formalnim redovima potencija, tj. neće nas zanimati pitanje konvergencije redova. Također, koristiti ćemo operacije zbrajanja, množenja, integriranja i deriviranja redova koristeći sljedeće formule:

$$\left(\sum_{n=0}^{\infty} a_n t^n\right) + \left(\sum_{n=0}^{\infty} b_n t^n\right) = \left(\sum_{n=0}^{\infty} (a_n + b_n) t^n\right),$$

$$\left(\sum_{n=0}^{\infty} a_n t^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n t^n\right) = \left(\sum_{n=0}^{\infty} c_n t^n\right), \text{ gdje su } c_n = \sum_{i=0}^{n} a_i b_{n-i},$$

$$\frac{d}{dt} \left(\sum_{n=0}^{\infty} a_n t^n\right) = \sum_{n=1}^{\infty} n a_n t^{n-1} = \sum_{n=0}^{\infty} (n+1) a_{n+1} t^n,$$

$$\int \sum_{n=0}^{\infty} a_n t^n = \sum_{n=0}^{\infty} \frac{a_n}{n+1} t^{n+1} = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n} t^n.$$

Primjer 2.4.1 Odredite funkcije izvodnice za sljedeće nizove:

a)
$$a_n = 1$$
,
b) $a_n = n$,
c) $a_n = 3n + 5$,
d) $a_n = 2^n$,
e) $a_n = \begin{cases} 0, & n \text{ paran}, \\ 1, & n \text{ neparan.} \end{cases}$,

Rješenje: a) U ovom slučaju formulu za funkciju izvodnica direktno dobijemo korištenjem formule za sumu geometrijskog reda: $f_1(x) = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$. b) Funkcija izvodnica je dana redom $f_2(x) = \sum_{n=0}^{\infty} n x^n$. Krenut ćemo od geometrijskog reda (tj. reda iz a) dijela), koji ćemo najprije derivirati, te potom pomnožiti s x:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \Longrightarrow \sum_{n=0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2} \Longrightarrow \sum_{n=0}^{\infty} nx^n = \frac{x}{(1-x)^2} = f_2(x).$$

c) Očito za traženu funkciju izvodnicu $f_3(x) = \sum_{n=0}^{\infty} (3n+5)x^n$ vrijedi $f_3(x) = 3f_2(x) + 5f_1(x) = \frac{3x}{(x-1)^2} + \frac{5}{1-x}$ d) I ovdje ćemo se poslužiti geometrijskim redom:

$$f_4(x) = \sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2x)^n = \frac{1}{1-2x}.$$

 $f_4(x) = \sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} (2x)^n = \frac{1}{1-2x}$. e) I ovdje se postupak svodi na korištenje formule za sumu geometrijskog reda: $f_5(x) = \sum_{n=0}^{\infty} x^{2n+1} = x \sum_{n=0}^{\infty} (x^2)^n = \frac{x}{1-x^2}$.

$$f_5(x) = \sum_{n=0}^{\infty} x^{2n+1} = x \sum_{n=0}^{\infty} (x^2)^n = \frac{x}{1-x^2}.$$

f) Opet krećemo od geometrijskog reda, koji ćemo najprije pomnožiti s x, potom integrirati (po x), te na koncu podijeliti s x^2 :

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \Longrightarrow \sum_{n=0}^{\infty} x^{n+1} = \frac{x}{1-x} \Longrightarrow \sum_{n=0}^{\infty} \frac{x^{n+2}}{n+2} = \int \frac{x}{1-x} \, \mathrm{d}x = -x - \ln(1-x)$$

$$\Longrightarrow \sum_{n=0}^{\infty} \frac{x^n}{n+2} = \frac{x - \ln(1-x)}{x^2}. \quad \Box$$

Primjer 2.4.2 Nađite funkciju izvodnicu za niz (a_n) koji zadovoljava rekurzivnu relaciju $a_n - 5a_{n-1} + 6a_{n-2} = 5^n$, uz početne uvjete $a_0 = 0$, $a_1 = 1$. Uz pomoć funkcije izvodnice nađite formulu za opći član niza (a_n) .

Rješenje: Definiramo $f(x) = \sum_{n=0}^{\infty} a_n$. Lako se vidi da vrijedi $xf(x) = \sum_{n=1}^{\infty} a_{n-1}x^n$, $x^2 f(x) = \sum_{n=2}^{\infty} a_{n-2} x^n$. Stoga

$$\sum_{n=2}^{\infty} (a_n - 5a_{n-1} + 6a_{n-2}) = f(x) - a_0 - a_1 x - 5(xf(x) - a_0 x) + 6x^2 f(x) = f(x)(1 - 5x + 6x^2) - x.$$

S druge strane

$$\sum_{n=2}^{\infty} 5^n x^n = \sum_{n=2}^{\infty} (5x)^n = (5x)^2 \sum_{n=0}^{\infty} (5x)^n = \frac{25x^2}{1 - 5x}.$$

Dakle vrijedi $f(x)(1-5x+6x^2)-x=\frac{25x^2}{1-5x}$, odakle slijedi $f(x)=\frac{20x^2+x}{(1-5x)(1-5x+6x^2)}$. Rastavimo funkciju f na parcijalne razlomke: $f(x)=\frac{A}{1-5x}+\frac{B}{1-2x}+\frac{C}{1-3x}$ (budući $1-5x+6x^2=(1-2x)(1-3x)$). Standardnim postupkom dobijamo $A=\frac{25}{6}$, $B=\frac{22}{3}$, $C = -\frac{23}{2}$, dakle $f(x) = \frac{25}{6} \sum_{n=0}^{\infty} (5x)^n + \frac{22}{3} \sum_{n=0}^{\infty} (3x)^n - \frac{23}{2} \sum_{n=0}^{\infty} (3x)^n$, što povlači $a_n = \frac{25}{65^n} + \frac{22}{32^n} - \frac{23}{23^n}.$

Catalanovi i Bellovi brojevi će nam poslužiti kao ilustracije upotrebe funkcija izvodnica u kombinatorici.

2.4.1 Catalanovi brojevi

Catalanovi brojevi se javljaju pri prebrojavanju zapanjujuće mnogo kombinatornih objekata. Jedan od problema gdje se javljaju Catalanovi brojevi je sljedeći.

Na koliko različitih načina možem doći od A do B, koristeći se crtama, tako da uvijek idemo desno ili gore, te tako da se nikad ne prelazi dijagonala AB?

Drugi problem gdje se javljaju Catalanovi brojevi je sljedeći. Na koliko načina možemo napisati sumu od n članova korištenjem zagrada, a tako da sumu možemo izračunati zbrajanjem po dva člana u svakom koraku? Na primjer, za n=4 imamo pet mogućnosti: (((a+b)+c)+d), ((a+(b+c))+d), (a+((b+c)+d)), (a+(b+(c+d))) i ((a+b)+(c+d)). (U slučaju algebarskih sustava koji nisu asocijativni, ovi izrazi bi u pravilu imali različite vrijednosti.)

Riješimo najprije ovaj problem, pa ćemo se onda vratiti na problem broja puteva.

Neka je Z_n traženi broj. Svaki izraz u zagradi ima oblik $(E_1 + E_2)$, gdje su E_1 i E_2 izrazi u zagradama koji imaju (recimo) k i n - k članova, za neki $1 \le k \le n - 1$. Postoji Z_k mogućnosti za E_1 i Z_{n-k} za E_2 . Zbrajanjem po svim mogućim k-ovima dolazimo do sljedeće (nelinearne) rekurzije:

$$Z_n = \sum_{k=1}^{n-1} Z_k Z_{n-k}, \ n \ge 2.$$

Vratimo se na problem puteva.

Odgovor na pitanje je 5, a ti putevi su: *DGDGDG*, *DGDDGG*, *DDGGGG*, *DDGGGG*, gdje je *D* oznaka za "desno", a G za "gore".

Što je s brojem "desno—gore" puteva u kvadratu $n \times n$ koji se nalaze ispod dijagonale? Označimo taj broj puteva s p_n . Svaki "dobar" put od A(0,0) do B(n,n) mora "dotaći" dijagonalu barem jedanput (u A) prije dolaska u točku B. Pretpostavimo da je C(m,m) točka u kojoj je put zadnji put dotakao dijagonalu prije dolaska u točku B. Očito je $0 \le m < n$. Postoji p_m mogućnosti za izbor puta od A do C. Tada put mora doći do D(m+1,m), te na koncu doći do E(n-1,n-1), ali ne smije otići iznad linije DE, jer inače C ne bi bila zadnja točka gdje se dotiče dijagonala. Kako su D i E nasuprotni vrhovi kvadrata sa stranicama duljine n-m-1, postoji p_{n-m-1} "dobrih" puteva od D do E. Kako je $0 \le m \le n-1$, slijedi

$$p_n = \sum_{m=0}^{n-1} p_m p_{n-m-1}. (2.6)$$

Skicu gornjeg postupka možete pogledati na slici 2.2.

Koja je veza između p_n i Z_n ? Kako je $Z_{n+1} = \sum_{k=1}^n Z_k Z_{n-k+1} = \sum_{k=0}^{n-1} Z_{k+1} Z_{n-k}$, uz oznaku $C_k = Z_{k+1}$, slijedi $C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}$. Dakle, rekurzija za brojeve C_n je ista kao i za brojeve p_n . Kako je $C_1 = Z_2 = p_1 = 1$, $C_2 = Z_3 = p_2 = 2$, slijedi $C_n = Z_{n+1} = p_n$, i te brojeve zovemo **Catalanovim brojevima**. Konvencija je da definiramo $C_0 = 1$.

Nađimo sada formulu za C_n . Neka je $F(t) = \sum_{n=0}^{\infty} C_n t^n$. Tada je

$$F^{2}(t) = \sum_{n=0}^{\infty} a_{n}t^{n}$$
, gdje je $a_{n} = \sum_{k=0}^{n} C_{k}C_{n-k} = C_{n+1}$.

Ovdje smo iskoristili relaciju (2.6). Dakle,

$$tF^{2}(t) = \sum_{n=0}^{\infty} C_{n+1}t^{n+1} = F(t) - 1,$$

Slika 2.2: broj "dobrih" puteva

tj. $tF^2(t) - F(t) + 1 = 0$. Rješavanjem ove kvadratne jednadžbe slijedi

$$F(t)=\frac{1\pm\sqrt{1-4t}}{2t}.$$

Koji predznak odabrati? Znamo da vrijedi $F(0) = C_1 = 1$. Ako odaberemo + predznak, tada vrijedi

$$1 = F(0) = \lim_{t \to 0} F(t) = \lim_{t \to 0} \frac{1 + \sqrt{1 - 4t}}{2t} = \lim_{t \to 0} \frac{1 + \sqrt{1 - 4t}}{2t} \cdot \frac{1 - \sqrt{1 - 4t}}{1 - \sqrt{1 - 4t}}$$
$$= \lim_{t \to 0} \frac{4t}{2t(1 - \sqrt{1 - 4t})} = \infty.$$

S druge strane, ako odaberemo – predznak, dobijemo $\lim_{t\to 0} F(t) = 1$. Dakle

$$F(t)=\frac{1-\sqrt{1-4t}}{2t}.$$

Još nam ostaje razviti ovu funkciju u red. Ovdje ćemo se poslužiti **poopćenim binomnim teoremom**, koji kaže

$$(1+t)^r = \sum_{n=0}^{\infty} {r \choose n} t^n$$
, za svaki $r \in \mathbb{R}$,

gdje je "binomni koeficijent" $\binom{r}{n}$ definiran s

$$\binom{r}{n} = \frac{r(r-1)\cdots(r-n+1)}{n!}$$
, uz konvenciju $\binom{r}{0} = 1$.

Dakle,

$$F(t) = \frac{1}{2t} \left(1 - (1 - 4t)^{1/2} \right) = \frac{1}{2t} \left(1 - \sum_{n=0}^{\infty} {1/2 \choose n} (-4t)^n \right)$$

$$= \frac{1}{2t} \left(1 - 1 - \sum_{n=1}^{\infty} {1/2 \choose n} (-1)^n 4^n t^n \right) = \frac{1}{2} \sum_{n=1}^{\infty} {1/2 \choose n} (-1)^{n+1} 4^n t^{n-1}$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} {1/2 \choose n+1} (-1)^n 4^{n+1} t^n.$$

Stoga

$$C_{n} = \frac{1}{2} {\binom{1/2}{n+1}} (-1)^{n} 4^{n+1} = \frac{1}{2} (-1)^{n} 4^{n+1} \frac{\frac{1}{2} (\frac{1}{2} - 1) \cdots (\frac{1}{2} - n)}{(n+1)!}$$

$$= \frac{1}{2} (-1)^{n} 4^{n+1} \frac{1}{2} \frac{1}{(n+1)!} (-\frac{1}{2}) \cdots (-\frac{2n-1}{2})$$

$$= (-1)^{n} 4^{n} \frac{1}{(n+1)!} \frac{1 \cdot 3 \cdots (2n-1)}{2^{n}} (-1)^{n} = \frac{1}{(n+1)!} 2^{n} (2n-1)!!$$

$$= (\text{vidi Zadatak 2.3}) = \frac{1}{(n+1)!} 2^{n} \frac{(2n)!}{2^{n} n!} = \frac{1}{n+1} {\binom{2n}{n}}.$$

Dakle,
$$Z_n = C_{n-1} = \frac{1}{n} {2n-2 \choose n-1}, p_n = C_n = \frac{1}{n+1} {2n \choose n}.$$

Zadatak 2.1

Korištenjem poopćenog binomnog teorema dokažite da za svaki $k \in \mathbb{N}$ vrijedi

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{n} x^n.$$

Zadatak 2.2

Korištenjem poopćenog binomnog teorema dokažite da vrijedi

$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{\infty} \binom{n-3/2}{n} x^n.$$

Zadatak 2.3

Dokažite
$$(2n-1)!! = \frac{(2n)!}{2^n n!}$$
.

Gdje se još javljaju Catalanovi brojevi?

Na primjer, C_{n-2} je broj načina na koji možemo podijeliti konveksan n-terokut u trokute povlačeći n-3 međusobno nepresijecajućih dijagonala, što je prvi dokazao Euler. Za n=5 postoji $C_3=5$ načina:

2.4.2 Bellovi brojevi

Probajmo sada naći funkciju izvodnicu za Bellove brojeve.

Lako se vidi da se rekurzija (1.4) može i ovako napisati:

$$B_n = \sum_{i=0}^{n-1} \binom{n-1}{i} B_i. \tag{2.7}$$

Definiramo $F(t) = \sum_{n=0}^{\infty} B_n t^n$. Ovdje se ispostavlja da uobičajeni "trikovi" ne prolaze. Stoga je potreban novi pristup: pomnožimo funkciju F s funkcijom $t \mapsto e^t$. Tada

$$F(t)e^{t} = \left(\sum_{n=0}^{\infty} B_{n}t^{n}\right) \left(\sum_{n=0}^{\infty} \frac{1}{n!}t^{n}\right) = \sum_{n=0}^{\infty} \left(\sum_{r=0}^{n} B_{r} \frac{1}{(n-r)!}\right) t^{n}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{r=0}^{n} B_{r} \frac{n!}{(n-r)!}\right) t^{n}.$$

Sada smo vrlo blizu situacije u kojoj bi mogli iskoristiti (2.7), ali nema načina da ubacimo nedostajući r! u desnu stranu. Stoga, promijenimo malo pravila: ako ne možemo naći zatvorenu formulu za $F(t) = \sum_{n=0}^{\infty} B_n t^n$, probajmo naći zatvorenu formulu za $F(t) = \sum_{n=0}^{\infty} \frac{B_n}{n!} t^n$.

S novom funkcijom F dobivamo slijedeće

$$F(t)e^{t} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{r=0}^{n} \frac{B_{r}}{r!} \frac{n!}{(n-r)!} \right) t^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{r=0}^{n} \binom{n}{r} B_{r} \right) t^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} B_{n+1} t^{n}$$

$$= \sum_{n=0}^{\infty} (n+1) \frac{B_{n+1}}{(n+1)!} t^{n} = \sum_{n=1}^{\infty} n \frac{B_{n}}{n!} t^{n-1} = F'(t).$$

Stoga $F'(t)/F(t) = e^t$, što povlači $\ln F(t) = e^t + C$, tj.

$$F(t) = e^{e^t + C}.$$

 $\operatorname{Iz} F(0) = B_0 = 1 \operatorname{slijedi} C = -1, \operatorname{dakle}$

$$F(t) = e^{e^t - 1}.$$

Funkcije izvodnice oblika $F(t) = \sum_{n=0}^{\infty} \frac{a_n}{n!} t^n$ zovemo **eksponencijalnim funkcijama izvodnica** (EFI). EFI je zapravo funkcija izvodnica za niz $\frac{a_n}{n!}$.

Čemu uvoditi novu vrstu funkcija izvodnica? Ukoliko ne možemo naći običnu funkciju izvodnica, i EFI moži dobro doći. Na primjer, iz

$$\sum_{n=0}^{\infty} \frac{B_n}{n!} t^n = e^{e^t - 1} = e^{\sum_{r=1}^{\infty} \frac{t^r}{r!}} = \prod_{r=1}^{\infty} e^{\frac{t^r}{r!}} = \prod_{r=1}^{\infty} \left(\sum_{k=0}^{\infty} \left(\frac{t^r}{r!} \right)^k \frac{1}{k!} \right)$$

$$= \left(1 + \frac{t^1}{1!} + \left(\frac{t^1}{1!} \right)^2 \frac{1}{2!} + \left(\frac{t^1}{1!} \right)^3 \frac{1}{3!} + \cdots \right) \times \left(1 + \frac{t^2}{2!} + \left(\frac{t^2}{2!} \right)^2 \frac{1}{2!} + \left(\frac{t^2}{2!} \right)^3 \frac{1}{3!} + \cdots \right) \times \left(1 + \frac{t^3}{3!} + \left(\frac{t^3}{3!} \right)^2 \frac{1}{2!} + \left(\frac{t^3}{3!} \right)^3 \frac{1}{3!} + \cdots \right) \times \cdots,$$

uspoređujući koeficijente od t^n na objema stranama, slijedi

$$B_n = \sum_{1 \cdot r_1 + 2 \cdot r_2 + \dots + k \cdot r_k = n} \frac{n!}{(1!)^{r_1} r_1! (2!)^{r_2} r_2! \cdots (k!)^{r_k} r_k!}.$$

Kao i za obične funkcije izvodnice, i kod eksponencijalnih funkcija izvodnica često pripadne redove deriviramo (npr. kao u slučaju Bellovih brojeva), integriramo, zbrajamo, množimo itd. Ulogu geometrijskog reda ovdje igra red $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Za eksponencijalnu funkciju izvodnicu $f(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ vrijedi

$$f'(x) = \sum_{n=-1}^{\infty} \frac{a_{n+1}}{n!} x^{n},$$
$$\int f(x) \, dx = \sum_{n=1}^{\infty} \frac{a_{n-1}}{n!} x^{n},$$

dakle, deriviranje i integriranje eksponencijalne funkcije izvodnice se svodi na pomak pripadnog niza za jedno mjesto ulijevo ili udesno.

Primjer 2.4.3 Odredite eksponencijalne funkcije izvodnice za sljedeće nizove:

- a) $a_n = n!$,
- b) $a_n = a^n$,
- c) $a_n = n^2$,

d)
$$a_n = \begin{cases} 0, & n \text{ neparan,} \\ 1, & n \text{ paran.} \end{cases}$$

Rješenje: a)
$$f(x) = \sum_{n=0}^{\infty} \frac{n!}{n!} x^n = \frac{1}{1-x}$$
.
b) $f(x) = \sum_{n=0}^{\infty} \frac{a^n}{n!} x^n = e^{ax}$.

c) Uvrštavanjem dobijamo $f(x) = \sum_{n=0}^{\infty} \frac{n^2}{n!} x^n = \sum_{n=0}^{\infty} \frac{n}{(n-1)!} x^n$. Da bi smo došli do zatvorene formule za f krenut ćemo od reda za eksponecijalnu funkciju, kojeg ćemo najprije derivirati, potom pomnožiti s x, ponovno derivirati, te na koncu opet pomnožiti s x:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \Longrightarrow \sum_{n=0}^{\infty} \frac{x^{n-1}}{(n-1)!} = e^x \Longrightarrow \sum_{n=0}^{\infty} \frac{x^n}{(n-1)!} = xe^x \Longrightarrow \sum_{n=0}^{\infty} \frac{nx^{n-1}}{(n-1)!} = e^x + xe^x$$

$$\Longrightarrow \sum_{n=0}^{\infty} \frac{nx^n}{(n-1)!} = xe^x + x^2e^x.$$

Dakle,
$$f(x) = xe^x + x^2e^x$$
.
d) $f(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = \operatorname{ch} x$.

Primjer 2.4.4 Odredite niz čija je ekspoencijalna funkcija izvodnica dana funkcijom $f(x) = (1-2x)^{-3/2}$.

Rješenje: Razvit ćemo funkciju f u red korištenjem poopćenog binomnog teorema: $(1-2x)^{-3/2} = \sum_{n=0}^{\infty} {-3/2 \choose n} (-2x)^n$. Raspišimo izraz ${-3/2 \choose n}$:

$$\binom{-3/2}{n} = \frac{-\frac{3}{2}(-\frac{3}{2}-2)\cdots(\frac{-2n-1}{2})}{n!} = \frac{1}{2^n}(-1)^n\frac{(2n+1)!!}{n!}.$$

Stoga
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} (-1)^n \frac{(2n+1)!!}{n!} (-1)^n 2^n x^n = \sum_{n=0}^{\infty} \frac{(2n+1)!!}{n!} x^n$$
, dakle traženi niz je $a_n = (2n+1)!!$.

I neki drugi nizovi osim Bellovih brojeva imaju EFI jednostavnog oblika, na primjer

Zadatak 2.4

Dokažite da je EFI za deranžmane dana s $F(t) = e^{-t}(1-t)^{-1}$.

Zadatak 2.5

Dokažite da je EFI za Stirlingove brojeve druge vrste S(n, r) dana s $F(t) = \frac{1}{r!}(e^t - 1)^r$.

U pravilu, rijetki su nizovi za koje je bilo koja vrsta funkcije izvodnice dana lijepom zatvorenom formulom.

Još jedna vrsta funkcija izvodnica koje imaju važnu ulogu u matematici je **Dirichletova funkcija izvodnica**, koja nizu (a_n) pridružuje funkciju $f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$. Ukoliko je, na primjer, $a_n = 1$, za svaki $n \in \mathbb{N}$, pridružena Dirichletova funkcija izvodnica se zove **Riemannova zeta funkcija**, u oznaci $\zeta(s)$, koja ima važnu ulogu u teoriji brojeva budući

$$\zeta(s) = \prod_{p \text{ prost}} \frac{1}{1 - p^{-s}}.$$

2.5 Složenost algorirtama za sortiranje

Kao ilustraciju korištenja rekurzija i funkcija izvodnica u primjenjenoj matematici, izračunati ćemo složenost za tri popularna algoritma za sortiranje: bubblesort, megesort i quicksort.

2.5.1 Bubblesort

Usporedimo prva dva elementa iz liste, zamijenjujući ih ukoliko nisu u traženom poretku. Tada usporedimo drugi i treći element liste, opet ih zamijenjujući ukoliko nisu u traženom poretku. Ovaj postupak provodimo dok ne dođemo do kraja liste. Tada ponovimo isti postupak za prvih n-1 brojeva, pa za prvih n-2, ...

Ukupan broj uspoređivanja je

$$(n-1)+(n-2)+\cdots+1=\frac{1}{2}n(n-1)=\frac{1}{2}n^2-\frac{1}{2}n,$$

dakle bubblesort ima složenost $O(n^2)$.

2.5.2 Mergesort

Ideja algoritma je da podijelimo listu na dva (otprilike) jednaka dijela, koja sortiramo, a onda ih spojimo.

Proces spajanja dviju lista duljina l i m zahtijeva najviše l+m-1 uspoređivanja. Zaista, pretpostavimo da imamo dvije takve liste, složene u rastućem poretku. Usporedimo prve elemente u listama i manji upišemo u novu listu, izbacujući ga iz stare liste. Sada ponovimo ovaj proces, ...

Prije nego što dođe do spajanja, dvije liste možemo sortirati rekurzivno koristeći gornju metodu. Neka je t_n broj uspoređivanja potrebnih da sortiramo listu od n elemenata ovom metodom. Ukoliko n podijelimo u l+k, tada $t_n=t_l+t_k+l+k-1=t_l+t_k+n-1$. Ukoliko uzmemo $n=2^m$ (da bi smo uvijek mogli podijeliti listu na dva jednaka dijela), dolazimo do rekurzije

$$t_{2^m} = 2t_{2^{m-1}} + (2^m - 1).$$

Stavimo $a_m = t_{2^m}$. Tada vrijedi $a_m = 2a_{m-1} + (2^m - 1)$. Rješenje pripadne homogene rekurzije je očito $A2^m$.

Nađimo sada neko partikularno rješenje. Probat ćemo s rješenjem oblika $a_m = Bm2^m + C$ (rješenje oblika $a_m = B2^m + C$ neće proći budući je $a_m = 2^m$ rješenje homogene rekurzije):

$$Bm2^m + C = 2B(m-1)2^{m-1} + 2C + 2^m - 1 \Rightarrow 0 = -B2^m + 2^m - 1 + C$$

odakle slijedi B = C = 1, tj. $a_m = m2^m + 1$.

Dakle, opće rješenje je $a_m = A2^m + m2^m + 1$. Iz $a_1 = 1$ (za sortiranje liste koja se sastoji od dva elementa je potrebno samo jedno uspoređivanje) slijedi A = -1, stoga $a_m = 2^m(m-1) + 1$. Dakle,

$$t_{2^m} = 1 + 2^m (m-1)$$
, tj. $t_n = 1 + n(\log_2 n - 1)$.

Stoga mergesort ima složenost $O(n \log_2 n)$, što je bitno bolje od $O(n^2)$ složenosti bubblesorta.

2.5.3 Quicksort

Algoritam za quicksort se može zapisati na sljedeći način:

Neka je *a* prvi element liste.

- ▶ Podijelimo ostatak liste u dva dijela L^- , L^+ koji se sastoje od elemenata manjih, tj. većih od a.
- ightharpoonup Sortiramo L^- i L^+ .
- \blacktriangleright Vratimo (sortirane) L^- i L^+ .

Želimo izračunati prosječan broj uspoređivnja, uz uvjet da su svi poretci liste jednako vjerojatni. Sljedeće pretpostavke su važne za izračunavanje (prosječne) složenosti:

- prvi element a ima jednaku vjerojatnost da bude prvi, drugi, ..., n-ti najmanji element,
- liste L^- i L^+ imaju slučajan poredak (svi poretci su jednko vjerojatni).

Neka je q_n prosječan broj uspoređivanja potrebnih da sortiramo listu od n elemenata. Tada vrijedi

$$q_n = n - 1 + \frac{1}{n} \sum_{k=1}^{n} (q_{k-1} + q_{n-k}).$$

Zaista, prvi korak zahtijeva n-1 uspoređivanja; ukoliko je $a\,k$ -ti najmanji element, drugi korak zahtijeva u prosjeku $q_{k-1}+q_{n-k}$ uspoređivanja, te taj broj moramo usrednjiti po svim mogućim vrijednostima od k.

Ova rekurzija se može pojednostaviti (raspisivanjem sume) na

$$q_n = n - 1 + \frac{2}{n} \sum_{k=0}^{n-1} q_k, \tag{2.8}$$

gdje je $q_0 = 0$.

Želimo naći funkciju izvodnicu niza (q_n) . Neka je $Q(t) = \sum_{n=0}^{\infty} q_n t^n$. Množenjem relacije (2.8) s nt^n i sumiranjem po n dolazimo do sljedeće relacije

$$\sum_{n=0}^{\infty} nq_n t^n = \sum_{n=0}^{\infty} n(n-1)t^n + 2\sum_{n=0}^{\infty} \left(\sum_{i=0}^{n-1} q_i\right) t^n.$$

$$(2.9)$$

$$tQ'(t) = \frac{2t^2}{(1-t)^3} + \frac{2tQ(t)}{1-t}.$$

Iz (2.9) slijedi

Zadatak 2.6

Provjerite da relacija (2.10) zaista odgovara relaciji (2.9).

Množeći relaciju (2.10) s $\frac{(1-t)^2}{t}$ dolazimo do jednadžbe

$$(1-t)^2 Q'(t) = \frac{2t}{1-t} + 2Q(t)(1-t),$$

odakle slijedi

$$\frac{2t}{1-t} = (1-t)^2 Q'(t) - 2Q(t)(1-t) = ((1-t)^2 Q(t))',$$

što, uz Q(0) = 0 povlači

$$(1-t)^2 Q(t) = -2(t + \ln(1-t)),$$

dakle

$$Q(t) = \frac{-2(t + \ln(1 - t))}{(1 - t)^2}.$$
 (2.11)

Kako iz (2.11) slijedi

$$Q(t) = 2\left(\frac{t^2}{2} + \frac{t^3}{3} + \cdots\right) (1 + 2t + 3t^2 + \cdots),$$

dobijamo

$$q_n = 2\sum_{i=2}^n \frac{1}{i}(n-i+1) = 2(n+1)\sum_{i=1}^n \frac{1}{i} - 4n.$$

Dobru aproksimaciju za q_n možemo dobiti ako zamjenimo $\sum_{i=1}^n \frac{1}{i} \operatorname{s} \ln n$ (suma je aproksimacija površine ispod krivulje y = 1/x od x = 1 do x = n), što nam daje $q_n \sim 2(n+1) \ln n - 4n$, dakle $q_n = 2n \ln n + O(n)$.

2.6 Formula uključivanja-isključivanja

Primjer 2.6.1 U skupini od 100 studenata, njih 45 igraju nogomet, 53 igraju košarku i 55 igraju Tetris. Nadalje, njih 28 igraju nogomet i košarku, 32 igraju nogomet i Tetris, 35 igraju košarku i Tetris, te njih 20 igraju sve tri igre. Koliko studenata ne igra ni jednu igru? Ovaj problem možemo riješiti tako da nacrtamo pripadni Vennov dijagram:

Brojeve upisujemo u odgovarajuća područja tako što krenemo od broja elemenata presjeka sva tri skupa, onda računamo broj elemenata za presjeke dvaju skupova dok na koncu ne dođemo do broja elemenata koji nisu ni u jednom skupu.

Formula uključivanja–isključivanja (skraćeno FUI) je formula koja formalizira gornji postupak.

Neka je X univerzalni skup i neka je A_1, \ldots, A_n familija podskupova od X. Ukoliko je $I \subseteq \{1, \ldots, n\}$ pišemo

$$A_I = \bigcap_{i \in I} A_i$$
, uz konvenciju $A_\emptyset = X$.

Teorem 2.6.2 Neka je A_1, \ldots, A_n familija podskupova skupa X. Tada je broj elemenata od X koji ne leže ni u jednom od skupava A_i , $i = 1, \ldots, n$, dan s

$$\sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} |A_I|. \tag{2.12}$$

Dokaz: Za svaki $x \in X$ izračunati ćemo koliko je njegov "doprinos" sumi u (2.12), tj. koji je zbroj koeficijenata skupova A_I u (2.12) koji ga sadrže.

Pri tome pod "doprinosom" sumi, mislimo na sljedeću elementarnu činjenicu:

$$\sum_{x \in X} \begin{cases} 1, & x \in A, \\ 0, & x \notin A \end{cases} = |A|,$$

koja povlači sljedeći zapis sume u (2.12):

$$\sum_{I\subseteq\{1,\dots,n\}} (-1)^{|I|} |A_I| = \sum_{I\subseteq\{1,\dots,n\}} (-1)^{|I|} \sum_{x\in X} \begin{cases} 1, & x\in A_I, \\ 0, & x\notin A_I \end{cases}$$
$$= \sum_{x\in X} \sum_{I\subseteq\{1,\dots,n\}} (-1)^{|I|} \begin{cases} 1, & x\in A_I, \\ 0, & x\notin A_I \end{cases}.$$

Pretpostavimo da $x \in X$ nije ni u jednom od skupova A_i , i = 1, ..., n. Tada je jedini član sume kojem x pridonosi $I = \emptyset$, i doprinos je $(-1)^0 = 1$.

Inače, neka je $J=\{i:x\in A_i\}$ neprazan, j=|J|. Tada je $x\in A_I$ točno onda kada je $I\subseteq J$. Dakle, doprinos od x je dan s

$$\sum_{I \subseteq I} (-1)^{|I|} = \sum_{i=0}^{j} (-1)^{i} {j \choose i} = 0,$$

budući postoji $\binom{j}{i}$ skupova oblika A_I za |I| = i.

Dakle, elementi od X koji se ne nalaze ni u jednom od skupova A_i , $i=1,\ldots,n$ pridonose 1 sumi, dok ostali elementi pridonose 0 sumi, što znači da suma (2.12) daje broj elemenata skupa X koji se ne nalaze ni u jednom od skupova A_i , $i=1,\ldots,n$.

Teorem 2.6.3 Broj surjekcija s n-skupa u k-skup je dan formulom

$$\sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}. \tag{2.13}$$

Dokaz: Neka je X skup svih preslikavanja s $\{1, \ldots, n\}$ u $\{1, \ldots, k\}$. Dakle, $|X| = k^n$. Za $i = 1, \ldots, k$ neka je A_i skup preslikavanja f za koje se i ne nalazi u slici od f.

Tada za svaki x, f(x) može biti bilo koji od k-1 brojeva različitih od i, dakle $|A_i| = (k-1)^n$. Općenito, A_I će se sastojati od svih preslikavanja čija slika ne sadrži elemente od I, dakle $|A_I| = (k-|I|)^n$.

Preslikavanje iz X je surjekcija ako i samo ako ne leži ni u jednom od skupova A_i . Stoga iz teorema 2.6.2 slijedi da je broj surjekcija dan s

$$\sum_{I\subseteq\{1,\ldots,k\}} (-1)^{|I|} (k-|I|)^n = \sum_{i=0}^k \binom{k}{i} (-1)^i (k-i)^n,$$

budući postoji $\binom{k}{i}$ skupova *I* kardinalnosti *i*, gdje *i* ide od 0 do *k*.

Teorem 2.6.4 Broj deranžmana skupa $\{1, \ldots, n\}$ je dan s

$$n! \sum_{i=0}^{n} \frac{(-1)^i}{i!}.$$

Dokaz: Ovoga puta je X skup svih permutacija skupa $\{1, \ldots, n\}$, a A_i je skup permutacija kojima je i fiksna točka, $i = 1, \ldots, n$. Vrijedi $|A_i| = (n-1)!$, te $|A_I| = (n-|I|)!$.

Permutacija skupa $\{1, ..., n\}$ je deranžman ako i samo ako ne leži ni u jednom od skupova A_i , i = 1, ..., n. Stoga je po teoremu 2.6.2 broj deranžmana dan s

$$\sum_{I \subseteq \{1,\dots,n\}} (-1)^{|I|} (n-|I|)! = \sum_{i=0}^{n} {n \choose i} (-1)^{i} (n-i)! = \sum_{i=0}^{n} (-1)^{i} \frac{n!}{i!}.$$

Jedna od posljedica teorema 2.6.3 je i sljedeća formula za Stirlingove brojeve druge vrste:

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}.$$
 (2.14)

Zaista, formula odmah slijedi iz teorema 1.6.6.

Nadalje, iz (2.14) slijedi sljedeća formula za Bellove brojeve

$$B_n = \sum_{k=0}^n \frac{1}{k!} \sum_{i=0}^k (-1)^i \binom{k}{i} (k-i)^n.$$

Teorija grafova

3.1 Uvod i osnovne definicije

S pojmom grafa smo se već sreli u primjeru 0.1.5. Taj graf je ovako izgledao:

Ovom slikom smo opisali strukturu koja se sastoji od četiri objekta, koja ćemo zvati vrhovi, koji su povezani sa sedam krivulja, koje ćemo zvati bridovi.

Formalno, **graf** definiramo kao uređeni par skupova (V, E), gdje je V skup **vrhova**, a E skup 2-podskupova od V, koje zovemo **bridovi**. Katkada ovu definiciju proširujemo tako da dopustimo **petlje** (bridove koje spajaju vrh sa samim sobom), **višestruke bridove** (više bridova između para vrhova, npr. kod problema Königsberških mostova) i **usmjerene bridove** (bridovi koji imaju orijentaciju tako da idu od jednog vrha prema drugome). Naravno, usmjerene bridove reprezentiramo uređenim parovima, a ne 2-podskupovima, dok kod višestrukih bridova E postaje multiskup. Graf koji ima usmjerene bridove zvati ćemo **usmjereni graf** ili **digraf**, a graf koji ima višestruke bridove zvati ćemo **multigraf**. Katkada, da naglasimo da ne govorimo o digrafu ili multigrafu, koristiti ćemo izraz **jednostavni graf**.

Grafovi se često opisuju svojim grafičkim prikazom, koji treba biti takav da iz njega možemo rekonstruirati formalni zapis grafa oblika (V, E). Općenito, smatramo da je graf zadan, ukoliko su nam zadani njegovi vrhovi, te ukoliko znamo koji su vrhovi međusobno povezani. Stoga graf možemo promatrati kao binarnu relaciju susjedstva na skupu vrhova, gdje kažemo da su dva vrha **susjedna** ukoliko postoji brid koji ih spaja, ili formalno, vrhovi $u, v \in V$ su susjedni ukoliko postoji $e = \{u, v\} \in E$. Za jednostavne grafove ta je relacija irefleksivna i simetrična.

Dva najjednostavnija primjera grafova su **potpuni graf**, graf u kojemu je svaki par vrhova brid, i **nul graf**, koji uopće nema bridova. Potpuni i nul graf s n vrhova označavamo s K_n i N_n . Na primjer, na slici 3.1 je prikaz grafa K_{10} , a ovo je prikaz grafa N_7 • • • • • • • . Kažemo da je vrh v incidentan s bridom e ukoliko je $e = \{*, v\}$ ili $e = \{v, *\}$. Katkada se brid $\{u, v\}$ skraćeno zapisuje kao uv.

Slika 3.1: Graf K_{10}

Očito je da jedan te isti graf možemo grafički prikazati na različite načine. Stoga moramo definirati kada dva grafa smatramo istim, tj. izomorfnim. Kažemo da su dva grafa G_1 i G_2 izomorfna ukoliko je moguće označiti vrhove oba grafa na isti način, i to tako da za svaki označeni par u, v vrhova, broj bridova koji spajaju u i v u G_1 je jednak broju bridova koji spajaju u i v u G_2 . Drugim riječima, grafovi $G_1 = (V_1, E_1)$ i $G_2 = (V_2, E_2)$ su izomorfni ukoliko postoje bijekcije $\vartheta: V_1 \to V_2, \varphi: E_1 \to E_2$ takve da je v incidentan s bridom e u G_1 ako i samo ako je $\vartheta(v)$ incidentan s bridom $\varphi(e)$ u G_2 . Na primjer, grafovi na slikama 3.2 i 3.3 su izomorfni.

Slika 3.2: Graf izomorfan s grafom na slici 3.3

Zadatak 3.1

Dokažite da su grafovi na slikama 3.2 i 3.3 izomorfni.

Dokazivanje (ne)izomorfnosti dvaju grafova je općenito vrlo težak problem, a spada u klasu tzv. problema skrivene podgrupe (eng. hidden subgroup problem).

Slika 3.3: Graf izomorfan s grafom na slici 3.2

Neka je \mathcal{G} grupa, te neka je dano preslikavanje $f: \mathcal{G} \to X$, gdje je X neki konačni skup. Za preslikavanje f vrijedi f(x) = f(y) akko x = yh, za $h \in H$, gdje je H neka (nepoznata) podgrupa od \mathcal{G} . Problem skrivene podgrupe je problem određivanja podgrupe H, uz (što manje) korištenje funkcije f.

U slučaju izomorfizma grafova G_1 , G_2 , G_3 = S_n , gdje je S_n grupa permutacija reda n, a n je broj vrhova grafova (ukoliko grafovi nemaju isti broj vrhova, očito nisu izomorfni), X je skup grafova s n vrhova, $f(\pi) = \pi(G_1)$, gdje je $\pi(G_1)$ graf dobijen permutiranjem vrhova grafa G_1 s obzirom na permutaciju π , a $H = \{\pi : \pi(G_1) \cong G_1\}$, gdje je \cong oznaka za izomorfnost grafova.

Podgraf grafa G = (V, E) je graf kojemu se skup vrhova i skup bridova podskupovi od V i E, respektivno. Ukoliko je G' = (V', E') podgraf od G, tada za svaki brid $e \in E'$ vrijedi da su oba njegova vrha u V'. Jedan podgraf grafa sa slike 3.3 (ili slike 3.2) je dan na slici 3.4. Dvije vrste podgrafova su naročito važne. **Inducirani podgraf** grafa G induciran skupom V' je podgraf G' = (V', E'), gdje se E' sastoji od svih bridova od G čija oba kraja leže u V', dok je V' neki (zadani) podskup od V. Jedan primjer induciranog podgrafa grafa sa slike 3.3 je dan na slici 3.5. **Razapinjući podgraf** je podgraf oblika G' = (V, E'). Jedan primjer razapinjućeg podgrafa grafa sa slike 3.3 je dan na slici 3.6. Dakle, svaki graf s najviše n vrhova je podgraf od K_n , svaki graf s točno n vrhova je razapinjući podgraf od K_n , te su svi inducirani podgrafovi od K_n potpuni grafovi.

Slika 3.4: Podgraf grafa sa slike 3.3 (ili slike 3.2)

Sada ćemo definirati neke načine "kretanja" po grafu. Šetnja u grafu je niz $(v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n)$, gdje je e_i brid $\{v_{i-1}, v_i\}$, za $i = 1, \dots, n$. Kažemo da je

Slika 3.5: Inducirani podgraf grafa sa slike 3.3 (ili slike 3.2)

Slika 3.6: Razapinjući podgraf grafa sa slike 3.3 (ili slike 3.2)

to šetnja od v_0 do v_n . Duljina šetnje je broj bridova u nizu (tj. broj vrhova u nizu manje jedan). Kažemo da je šetnja zatvorena ukoliko je $v_n = v_0$. U jednostavnom grafu bridovi šetnje su potupuno određeni vrhovima, pa često govorimo o šetnji (v_0, v_1, \ldots, v_n) , gdje se podrazumijeva da su vrhovi v_{i-1} i v_i susjedni. Sada ćemo definirati neke specijalne vrste šetnji. **Staza** je šetnja u kojoj su svi bridovi različiti, dok je **put** šetnja u kojoj su svi vrhovi različiti (osim eventualno prvog i zadnjeg). Ideja je da stazom može ići istraživač koji nije zainteresiran da ponovo prolazi bridom koji je već istražio, dok je put način da se dođe od jednog mjesta u drugo, bez ikakvog ponavljanja. Nadalje, zatvoreni put zovemo **ciklus**. Uočite da je put uvijek i staza. Na slici 3.7 je zelenom bojom označen ciklus $(v_2, e_2, v_3, e_3, v_4, e_{11}, v_6, e_7, v_5, e_6, v_2)$. Jedan primjer staze koja nije put je šetnja $(v_3, e_3, v_4, e_4, v_7, e_{12}, v_6, e_{11}, v_4)$.

Što se tiče povezanosti u grafu, tj. mogućnosti dolaska iz jednog vrha u drugi, nema suštinskih razlika između putova, staza i šetnji.

Propozicija 3.1.1 (a) Za dva različita vrha x, y grafa G uvjeti da postoji šetnja, staza ili put između x i y su ekvivalentni.

(b) Za bilo koji graf G, uvjeti da G sadrži zatvorenu stazu ili put su ekvivalentni.

Slika 3.7: Šetnje po grafu

Dokaz: Neka nam je dana šetnja od x do y. Dovoljno je pokazati da tada postoji i put od x do y. Neka je naša šetnja dana s $(v_0, e_1, v_1, \ldots, v_i, e_{i+1}, \ldots, v_j, e_{j+1}, \ldots, e_n, v_n)$ i pretpostavimo da je $v_i = v_j$. Tada je i $(v_0, e_1, v_1, \ldots, v_i, e_{j+1}, \ldots, e_n, v_n)$ šetnja od x do y. Na taj način možemo ukloniti sve vrhove u šetnji koji se ponavljaju.

Ukoliko postoje putevi od x do y i od y do z, tada postoji i put od x do z, ali šetnja dobijena spajanjem puteva od x do y i od y do z ne mora biti put.

Zadatak 3.2

Nađite graf koje ima vrhove x, y i z takve da postoje putevi od x do y i od y do z, ali da šetnja dobijena spajanjem puteva od x do y i od y do z nije put.

Sada ćemo definirati jednu važnu relaciju ekvivalencije \equiv na skupu vrhova V grafa $G: x \equiv y$ ako postoji put (ili staza ili šetnja) od x do y.

Zadatak 3.3

Dokažite da je ≡ zaista relacija ekvivalencije.

Ova relacija ekvivalencije definira jednu particiju skupa V, te definiramo **komponente povezanosti** (ili kraće, **komponente**) grafa kao podgrafove inducirane klasama ekvivalencije. Graf sa slike 3.4 očito ima dvije komponente, dok, recimo, graf sa slike 3.5 ima samo jednu komponentu.

Kažemo da je graf **povezan** ako postoji samo jedna komponenta.

Stupanj (ili **valencija**) vrha *x* grafa *G* definiramo kao broj bridova grafa *G* koji sadrže vrh *x*. Ukoliko svaki vrh grafa ima isti stupanj, kažemo da je graf **regularan**. Kažemo da je graf **d-regularan** ukoliko svaki vrh ima stupanj *d*. Nadalje, kažemo da je vrh **izoliran** ukoliko je stupnja nula, a **list** ukoliko je stupnja jedan.

Alternativni naziv valencija dolazi iz kemije: na primjer molekula etana (C_2H_6) se može reprezentirati grafom na slici 3.8.

Ukoliko graf ima petlju, uzimamo da ta petlja povećava stupanj pripadnog vrha za dva. Ta konvencija nam omogućava da dokažemo sljedeći rezultat.

Teorem 3.1.2 Suma stupnjeva vrhova grafa jednaka je dvostrukom broju bridova.

Dokaz: Svaki brid doprinosi dvaput sumi stupnjeva.

Stupanj pojedinog vrha (atoma) točno odgovara njegovoj valenciji. Teorija grafova igra važnu ulogu u kemiji.

Slika 3.8: Graf molekule etana

Korolar 3.1.3 Suma stupnjeva vrhova je paran broj.

Korolar 3.1.4 *Broj vrhova s neparnim stupnjem je paran.*

Često ćemo modificirati graf G tako što ćemo iz njega izbaciti vrh v i sve bridove koji ga sadrže, ili ćemo izbaciti neki brid e, ili ćemo dodati brid e koji spaja dva vrha koji prije nisu bili spojeni. Te ćemo operacije zapisivati kao G - v, G - e, G + e. Na slikama 3.9, 3.10 i 3.11 su dani primjeri ovih operacija na grafu prikazanom na slici 3.7.

Slika 3.9: $G - v_8$

Slika 3.10: $G - e_1$

Katkada će naši grafovi sadržavati i dodatne informacije: npr. brid može predstavljati cjevovod, kojem je pridružen njegov kapacitet, ili cijena građenja. Formalno takve grafove

Slika 3.11: G + e, gdje je $e = \{v_1, v_5\}$

opisujemo uz pomoć težinskih funkcija. Težinska funkcija na skupu X je funkcija s X u \mathbb{R} (obično \mathbb{R}_0^+). **Vršno-težinski**, te **bridno-težinski** graf je graf s težinskom funkcijom na skupu vrhova, odnosno bridova. Bridno-težinski grafovi su mnogo češći u primjenama.

3.2 Stabla i šume

Stablo je povezan graf bez ciklusa. Na sljedećoj slici je dan jedan primjer stabla.

Šuma je graf bez ciklusa: komponente šume su stabla. Jedan primjer šume je dan na slici 3.4.

Intuitivno je jasno da povezan graf ima "puno" vrhova, a graf bez ciklusa "malo". Teorem 3.2.2 pokazuje da su stabla ekstremalne strukture što se tiče ovih svojstava. Najprije ćemo pokazati sljedeću korisnu lemu.

Lema 3.2.1 Stablo s više od jednog vrha ima barem jedan list.

Dokaz: Budući je stablo povezano, ono nema izoliranih vrhova. Stoga pretpostavimo da je svaki vrh stupnja barem dva. No tada postoje proizvoljno duge šetnje čiji su susjedni bridovi različiti: kad dođemo do nekog vrha jednim bridom, napustimo ga drugim. Ali kako je graf konačan, u nekom trenutku moramo doći do vrha kojeg smo već prije posjetili. No to nije moguće budući stablo nema cikluse.

Teorem 3.2.2 (a) Povezani graf s n vrhova ima barem n-1 bridova, a točno n-1 bridova ako i samo ako je stablo.

(b) Šuma s n vrhova i m komponenti ima n-m bridova. Dakle, šuma ima najviše n-1 bridova, a točno n-1 bridova ako i samo ako je stablo.

Dokaz: Najprije ćemo pokazati da stablo ima n-1 bridova. Tvrdnju ćemo dokazati matematičkom indukcijom po broju vrhova stabla.

Baza je očita. Pretpostavimo da stablo s n-1 vrhova ima n-2 bridova. Neka je v list u stablu T s n vrhova (postojanje takvog vrha garantira Lema 3.2.1). Tada T-v ima n-1 vrhova i ne sadrži cikuse. Također, T-v je povezan graf. Zaista, put u T između x i y, gdje je $x, y \neq v$, ne može prolaziti kroz v. Dakle, T-v je stablo. Sada iz pretpostavke indukcije slijedi da T-v ima n-2 bridova, dakle T ima n-1 brid.

Pokažimo sada (b). Neka je F šuma s n vrhova i m komponenti T_1, \ldots, T_m s a_1, \ldots, a_m vrhova. Tada je $\sum_{i=1}^m a_i = n$. Kako je T_i stablo za svaki $i = 1, \ldots, m$ slijedi da T_i ima $a_i - 1$ bridova. Stoga F ima $\sum_{i=1}^m (a_i - 1) = n - m$ bridova.

Pokažimo sada (a). Neka je G neki povezan graf s n vrhova i pretpostavimo da G nije stablo. Tada G sadrži ciklus. Neka je e brid u tom ciklusu, i neka je $G_1 = G - e$. Tada je G_1 i dalje povezan. Nastavljajući ovaj postupak, u nekom trenutku moramo doći do stabla, recimo poslije r koraka. Dakle, G ima n-1+r bridova.

Specijalno, ukoliko G ima n-1 bridova, slijedi da G ne sadrži ciklus, dakle G je stablo.

- **Korolar 3.2.3** (a) Graf je stablo ako i samo ako je povezan graf, ali izbacivanjem bilo kojeg od bridova dobijamo nepovezan graf.
 - (b) Graf je stablo ako i samo ako ne sadrži cikluse, ali dodavanjem bilo kojeg novog brida dobijamo ciklus.

Dokaz: (a) Neka je G stablo s n vrhova. Tada je G povezan i ima n-1 bridova. Izbacimo li bilo koji brid, Teorem 3.2.2 (a) povlači da novi graf više nije povezan.

Obrnuto, neka je G povezan graf sa svojstvom da izbacivanje bilo kojeg brida dovodi do nepovezanog grafa. Trebamo pokazati da G ne sadrži ciklus. Stoga, pretpostavimo da G sadrži ciklus. No tada brisanjem nekog brida iz ciklusa i dalje dobivamo povezan graf, što je u kontradikciji s danim svojstvom.

Zadatak 3.4

Dokažite korolar 3.2.3 (b).

Neka je G graf. **Razapinjuća šuma** od G je razapinjući podgraf od G koji je šuma. Analogno definiramo **razapinjuće stablo**.

Korolar 3.2.4 Svaki povezan graf ima razapinjuće stablo.

Dokaz: Neka graf G ima n vrhova i m bridova. Ukoliko je m = n - 1, tada je G stablo po teoremu 3.2.2 (a). Ukoliko je $m \ge n$ (teorem 3.2.2 (a) povlači da uvijek vrijedi $m \ge n - 1$), tada G ima ciklus. Izbacimo neki brid e iz tog ciklusa. Graf G - e je i dalje povezan. Ponavljamo postupak dok ne dođemo na n - 1 bridova.

Sljedeći algoritam daje konstrukciju razapinjućeg stabla grafa G = (V, E):

Neka je $S = \emptyset$.

SVE DOK je graf (V, S) nepovezan

- ▶ nađi brid *e* brid koji povezuje vrhove u različitim komponentama.
- ▶ dodaj *e* u *S*.

VRATI (V, S)

Zadatak 3.5

Dokažite da gornji algoritam doista konstruira razapinjuće stablo.

Rješenje: Da bi smo pokazali da algoritam radi, trebamo pokazati da je uvijek moguće izabrati odgovarajući brid, i da njegovo dodavanje neće stvoriti ciklus.

Neka je Y komponenta povezanosti od (V, S) i neka je $Z = Y \setminus Y$; odaberemo vrhove y, z iz Y, Z. Budući je G povezan, postoji put od y do z, i neki brid mora "prijeći" iz Y u Z, i to je dobar odabir brida. Dakle, dokle god je (V, S) nepovezan, uvijek će se moći odabrati odgovarajući brid.

Označimo odabrani brid s e. Pretpostavimo sada da (V, S) + e sadrži ciklus. Ako krenemo iz Y, i pratimo ovaj ciklus, u nekom trenutku ćemo prijeći u Z pomoću brida e, ali tada nema načina da se vratimo u Y, a da ne koristimo brid e.

Koliko ima različitih (dakle neizomorfnih) stabala s n vrhova? Formula za taj broj postoji, ali je komplicirana. Mi ćemo izvesti (jednostavniju) formulu za broj označenih stabala, kojih ima više. Na primjer, broj neizomorfnih stabala s tri vrha je jedan: • • • • , no postoje tri različita označena stabla:

Teorem 3.2.5 (Cayley) Broj označenih stabala s n vrhova je n^{n-2} .

Dokaz (pomoću FUI): Neka je X skup svih stabala s vrhovima označenim s $1, 2, \ldots, n$, te neka je T(n) = |X|. Neka A_i označava skup svih stabala iz X kojima je vrh i list. Iz leme 3.2.1 slijedi da svako stablo ima barem jedan list za $n \ge 2$. Dakle $\bigcap_{i=1}^n A_i^c = \emptyset$, tj. $\bigcup_{i=1}^n A_i = X$ za $n \ge 2$. FUI možemo napisati na sljedeći način

$$\left| \bigcap_{i=1}^{n} A_{i}^{c} \right| = \sum_{I \subseteq \{1, \dots, n\}} (-1)^{|I|} |A_{I}|.$$

Primjenimo li ovu formulu na naš problem slijedi

$$0 = \sum_{I \subseteq \{1,...,n\}} (-1)^{|I|} |A_I| = |X| + \sum_{\emptyset \neq I \subseteq \{1,...,n\}} (-1)^{|I|} |A_I|,$$

$$|X| = \sum_{\emptyset \neq I \subseteq \{1,...,n\}} (-1)^{|I|-1} |A_I|.$$

Vrijedi $|A_i| = (n-1)T(n-1)$, budući ukoliko je *i* list, njegov pripadajući brid može biti incidentan s bilo kojim od preostalih n-1 vrhova, a tih n-1 vrhova su spojeni u stablo.

Situacija za $|A_i \cap A_j|$ je ilustrirana slikom 3.12. Pripadajući bridovi vrhova i i j mogu biti incidentni s bilo kojima od preostalih n-2 vrhova, a tih n-2 vrhova su spojeni u stablo.

označeno stablo s n-2 vrhova

Slika 3.12: prikaz situacije za $|A_i \cap A_j|$

Dakle, $|A_i \cap A_j| = (n-2)^2 T(n-2)$. Analogno zaključujemo da vrijedi $|A_I| = (n-|I|)^{|I|} T(n-|I|)$.

Dakle, za $n \ge 3$ vrijedi

$$T(n) = \sum_{i=1}^{n} (-1)^{i-1} \binom{n}{i} (n-i)^{i} T(n-i).$$
 (3.1)

Sada trebamo riješiti ovu rekurziju. Trik kojim ćemo to napraviti se bazira na činjenici da je desna strana ove rekurzije slična formuli (2.13) koja nam daje broj surjekcija. Ukoliko u (2.13) ubacimo $n \rightarrow n-2$ i $k \rightarrow n$ (tj. ukoliko tražimo broj surjekcija s (n-2)-članog u n-člani skup), dolazimo do relacije

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} (n-i)^{n-2} = 0,$$

odakle slijedi

$$n^{n-2} = \sum_{i=1}^{n} \binom{n}{i} (-1)^{i-1} (n-i)^{n-2} = \sum_{i=1}^{n} \binom{n}{i} (-1)^{i-1} (n-i)^{i} (n-i)^{n-i-2}.$$
 (3.2)

Usporedimo formule (3.1) i (3.2). Ukoliko formula $T(k) = k^{k-2}$ vrijedi za $k = 1, \ldots, n-1$, tada iz (3.1) i (3.2) slijedi $T(n) = n^{n-2}$. Kako smo već prije vidjeli da formula vrijedi za

n=3, matematičkom indukcijom slijedi da formula vrijedi za svaki $n\geq 3$. Očito formula vrijedi i za n=1,2.

Dokaz (pomoću Prüferovog koda): Prüferov kod (ili Prüferov niz) duljine n-2, za $n \ge 2$, je (n-2)-torka brojeva iz skupa $\{1, \ldots, n\}$ (uz dozvoljena ponavljanja). Očito ima n^{n-2} Prüferovih kodova duljine n-2. Pokazat ćemo da postoji bijekcija između Prüferovih kodova duljine n-2 i označenih stabala s n vrhova.

Za dano stablo označeno brojevima $1, \ldots, n$ Prüferov algoritam za kodiranje generira jedinstveni Prüferov kod duljine n-2. Algoritam radi na sljedeći način:

i = 1. SVE DOK JE $i \le n - 2$

- \blacktriangleright nađi list v s najmanjom oznakom.
- ▶ stavi oznaku (jedinstvenog) susjeda od *v* na *i*−to mjesto u kodu.
- ▶ izbaci *v* iz stabla.

POVEĆAJ i ZA 1

Može se pokazati da različita označena stabla generiraju različite Prüferove kodove.

Neka je $P=(p_1,p_2,\ldots,p_{n-2})$ Prüferov kod označenog stabla T. Uočite da se svaki vrh v od T javlja točno $\operatorname{st}(v)-1$ puta u P, gdje je $\operatorname{st}(v)$ stupanj vrha v. Specijalno, upravo oni vrhovi koji se ne javljaju u P su lišće od T. Prüferov algoritam za dekodiranje nam daje inverzni algoritam, koji konstruira jedinstveno označeno stablo s n vrhova iz Prüferovog koda duljine n-2.

 $T = N_n$, $V = \{1, ..., n\}$, i = 1. SVE DOK JE $i \le n - 2$

- \blacktriangleright nađi v najmanji element skupa V koji se ne nalazi u P.
- ightharpoonup poveži vrhove v i p_i u T.
- ightharpoonup izbaci v iz skupa V.
- ▶ izbaci p_i iz niza P (sada je $P = (p_{i+1}, p_{i+2}, \dots, p_{n-2})$).

POVEĆAJ i ZA 1

Poveži vrhove koji odgovaraju dvama brojevima u V.

Može se pokazati da različiti Prüferovi kodovi generiraju različita označena stabla. □

Zadatak 3.6

- (a) Dokažite da Prüferov algoritam za dekodiranje doista generira označeno stablo s vrhovima $\{1, \ldots, n\}$.
- (b) Dokažite da je Prüferov algoritam za dekodiranje doista "inverzan" Prüferovom algoritmu za kodiranje.

Primjer 3.2.6 Zadano nam je sljedeće stablo:

Na slici 3.13 je prikazan postupak generiranja pripadnog Prüferovog koda.

Slika 3.13: Generiranje Prüferovog koda

Primjer 3.2.7 Kreirajmo stablo koje odgovara Prüferovom kodu P = (3, 3, 4, 5, 4, 6). Postupak je opisan na slici 3.14.

Prüferov kod nam, između ostalog, daje efikasan način generiranja svih označenih stabala sn vrhova, te je to najekonomičniji način spremanja informacija o označenim stablima.

Slika 3.14: Kreiranje stabla iz Prüferovog koda

Cayleyev teorem 3.2.5 se može i ovako iskazati: Potpun graf K_n ima n^{n-2} razapinjućih stabala.

Zaista, svako stablo sa skupom vrhova $\{1, \ldots, n\}$ je razapinjuće stablo od K_n . Postoji i generalizacija Cayleyevog teorema, tzv. Kirchhoffov teorem, koji daje formulu za broj razapinjućih stabala (zadanog) povezanog grafa.

3.2.1 Minimalna razapinjuća stabla

Pretpostavimo da nam je postavljen sljedeći problem: *n* gradova trebamo povezati telekomunikacijskom mrežom. Za svaki par gradova je poznata cijena postavljanja kabla između ta dva grada. Koji je najjeftiniji način povezivanja svih gradova?

Ovo je jedan primjer problema nalaženja minimalnog razapinjućeg stabla: podatke možemo predstaviti kao opis jednog bridno-težinskog (potpunog) grafa; rješenje ovog problema je povezan razapinjući podgraf s minimalnom totalnom težinom (tj. sumom težina bridova podgrafa). Taj podgraf mora biti stablo, inače bi smo mogli izbrisati neki brid, smanjujući težinu, a ne pokvarivši povezanost. Problem se riješava primjenom vrlo jednostavnog "pohlepnog" algoritma, koji se obično zove **Kruskalov algoritam**. Algoritam glasi: u svakom koraku, izgradi najjeftiniju vezu koja spaja dva grada koja već nisu povezana putom. Formalno, neka je G = (V, E) povezan graf, ω nenegativna težinska funkcija na E. Tada Kruskalov algoritam možemo ovako zapisati:

```
S = \varnothing.

SVE DOK (V, S) nije povezan

• odaberi brid e minimalne težine koji spaja vrhove iz različitih komponenti.

VRATI (V, S)
```

Drugim riječima, u svakom koraku odabiremo brid najmanje težine takav da njegovo ubacivanje ne stvara ciklus.

Teorem 3.2.8 Kruskalov algoritam generira razapinjuće stablo minimalne težine.

Dokaz: Iz zadatka 3.5 je jasno da ovaj algoritam konstruira razapinjuće stablo. Trebamo još pokazati da je to stablo minimalne težine.

Neka su $e_1, e_2, \ldots, e_{n-1}$ bridovi u S, sortirani po redu u kojem ih Kruskalov algoritam uzima. Uočite da vrijedi $\omega(e_1) \leq \ldots \leq \omega(e_{n-1})$, budući iz $\omega(e_j) < \omega(e_i)$ za j > i slijedi da smo u i-tom koraku trebali odabrati e_j koji spaja vrhove iz različitih komponenti.

Pretpostavimo da postoji razapinjuće stablo manje težine, s bridovima f_1,\ldots,f_{n-1} složenih tako da vrijedi $\omega(f_1)\leq\ldots\leq\omega(f_{n-1})$. Tada vrijedi

$$\sum_{i=1}^{n-1} \omega(f_i) < \sum_{i=1}^{n-1} \omega(e_i).$$

Neka je k najmanji broj takav da vrijedi

$$\sum_{i=1}^k \omega(f_i) < \sum_{i=1}^k \omega(e_i).$$

Svakako je k > 1. Stoga

$$\sum_{i=1}^{k-1} \omega(f_i) \ge \sum_{i=1}^{k-1} \omega(e_i),$$

te

$$\omega(f_1) \leq \ldots \leq \omega(f_k) < \omega(e_k).$$

Kako Kruskalov algoritam u k-tom koraku bira brid e_k , a ne bridove f_1, \ldots, f_k koji imaju manju težinu, slijedi da su komponente od $(V, \{f_1, \ldots, f_k\})$ podskupovi komponenti od $(V, \{e_1, \ldots, e_{k-1}\})$; dakle $(V, \{f_1, \ldots, f_k\})$ imaju jednako ili više komponenti od $(V, \{e_1, \ldots, e_{k-1}\})$. No to nije moguće, budući su to šume, pa iz teorema 3.2.2 (b) slijedi $n - k \ge n - (k-1)$.

Mana ovog algoritma je to što nije jednostavno naći brid minimalne težine koji spaja vrhove iz različitih komponenti. Stoga postoji modifikacija Kruskalovog algoritma koja se zove **Primov algoritam**: sada u svakom koraku biramo brid najmanje težine koji spaja neki vrh koji je već spojen s nekim vrhom koji još nije spojen.

Zadatak 3.7

Dokažite da Primov algoritam zaista generira razapinjuće stablo minimalne težine.

3.3 Planarnost

Iako su grafovi apstraktni objekti, intuitivno ih doživljavamo kao točke i linije, na način kako ih vizualiziramo na ploči/papiru. Drugim riječima, mi odabiremo neki poznati geometrijski prostor kao npr. crtaću ploču, prikazujemo vrhove kao različite točke u prostoru, a bridove kao linije ili krivulje čiji krajevi odgovaraju danim vrhovima. Nadalje, zbog primjena grafova u npr. modeliranju cestovnog prometa, poželjno je da vrijedi da su krivulje koje predstavljaju dva brida disjunktne osim u točki koja predstavlja njihov zajednički vrh (ukoliko takvog ima).

Crtež grafa G koji zadovoljava ove uvjete zovemo **ulaganje grafa** G u prostor.

Nije uvijek jasno da li se neki graf možemo uložiti u dani prostor. Ali u slučaju prostora \mathbb{R}^3 vrijedi sljedeći rezultat.

Propozicija 3.3.1 *Svaki graf se može uložiti u* \mathbb{R}^3 .

Dokaz: Odaberimo neki pravac p, i prikažimo vrhove grafa s međusobno različitim točkama na pravcu p. Za svaki brid e, odaberimo različitu ravninu π_e koja sadrži p, i spojimo točke koje prikazuju vrhove iz e s polukružnicom u π_e . Ovdje je dana skica konstrukcije za graf ($\{A, B, C, D, E\}$, $\{\{A, C\}, \{B, D\}, \{B, E\}\}$), gdje je p x-os:

Što je s ulaganjem u \mathbb{R}^2 ? Na žalost, ne mogu se svi grafovi uložiti u \mathbb{R}^2 . Graf koji se može uložiti u \mathbb{R}^2 zovemo **planarnim grafom**. Npr. potpuni graf K_5 nije planaran, što ćemo dokazati u teoremu 3.3.5.

Svaki planarni graf očito dijeli ravninu u disjunktna područja, od kojih je jedno beskonačno. Osnovni rezultat o planarnim grafovima je tzv. Eulerova formula.

Teorem 3.3.2 (Eulerova formula) Svako ulaganje povezanog planarnog grafa s p vrhova i q bridova u ravninu dijeli rvninu u r područja, gdje vrijedi

$$p - q + r = 2.$$

Dokaz: Ukoliko graf ima ciklus, izbacimo jedan brid iz ciklusa. Time smo smanjili broj bridova za jedan, kao i broj područja (budući smo dva područja spojili u jedno), a broj vrhova je ostao isti. Npr. za graf G na sljedećoj slici vrijedi p=8, q=11 i r=5, dok za graf G-e vrijedi p=8, q=10, r=4.

Dakle novi graf ima p'=p vrhova, q'=q-1 bridova i r'=r-1 područja, te p'-q'+r'=p-q+r. Ponavljamo ovaj proces sve dok postoje ciklusi. Na koncu ćemo doći do stabla, koje će imati p''=p vrhova, q''=p-1 bridova i r''=1 područja, dakle p-q+r=p''-q''+r''=2.

$$p = 5, q = 8, r = 5,$$

 $p - q + r = 2.$

Definirajmo **stupanj područja** planarnog grafa kao broj bridova na koje naiđemo pri šetnji oko ruba područja.

Područja C i D imaju stupanj 3, područje A ima stupnaj 5, a područje B ima stupanj 9. **Teorem 3.3.4** U povezanom grafu, zbroj stupnjeva područja je jednak dvostrukom broju bridova.

Dokaz: Svaki brid pridonosi s dva zbroju stupnjeva područja.

Teorem 3.3.5 K_n je planaran ako i samo ako je $n \le 4$.

Dokaz: Crtežom se lako pokaže da su K_n , $n \le 4$ planarni grafovi. Da bi pokazali da K_n nije planaran za n > 4, dovoljno je pokazati da K_5 nije planaran.

Kada bi K_5 bio planaran, tada bi njegovo ulaganje dijelilo ravninu na r=2-5+10=7 područja. Svako od 7 područja mora imati stupanj veći ili jednak od 3 (područje s jedan ili dva brida se može pojaviti samo ako postoje petlje ili paralelni beskonačni bridovi u grafu), stoga iz teorema 3.3.4 slijedi $20 \ge 7 \cdot 3 = 21$.

Zadatak 3.8

Dokažite da je dovoljno pokazati da K_5 nije planaran da bi smo dokazali da K_n nije planaran za n > 4.

Za graf G = (V, E) kažemo da je **bipartitan graf** ukoliko se skup V može particionirati u dva skupa B, C tako da svaki brid iz E spaja vrh iz B s vrhom iz C. Particiju $\{B, C\}$ skupa vrhova V zovemo **biparticijom** od G.

Primjer 3.3.6 Dva primjera bipartitnih grafova.

Teorem 3.3.7 Povezani graf je bipartitan ako i samo ako ne sadrži cikluse neparne duljine.

Zadatak 3.9

Dokažite teorem 3.3.7.

Ukoliko *B* i *C* interpretiramo kao bijelo i crno, vidimo da je graf bipartitan točno onda kada možemo njegove vrhove obojati s dvije boje tako da ni jedan brid ne spaja vrhove s istom bojom. Stoga katkada bipartitne grafove nazivamo i bikromatskim.

Zadatak 3.10

Dokažite da su stabla bipartitni grafovi.

Bipartitni graf G = (V, E), $V = B \cup C$ je **potpun bipartitni graf** ukoliko je svaki vrh iz B spojen sa svakim vrhom iz C. Ukoliko je |B| = m, |C| = n, taj graf označavamo s $K_{m,n}$ ili $K_{n,m}$. Desni graf iz primjera 3.3.6 je graf $K_{3,3}$.

Teorem 3.3.8 $K_{3,3}$ nije planaran.

Dokaz: $K_{3,3}$ ima šest vrhova i 3+3+3=9 bridova, stoga, ukoliko bi bio planaran, dijelio bi ravninu na r=2-6+9=5 područja. Budući je bipartitan, svako područje ima stupanj veći ili jednak od četiri (teorem 3.3.7), stoga iz teorema 3.3.4 slijedi $18 \ge 4 \cdot 5 = 20$.

Korolar 3.3.9 $K_{m,n}$ je planaran ako i samo ako je $\min(m,n) \leq 2$.

Primjer 3.3.10 (Petersenov graf) Na slici 3.15 Petersonov graf je nacrtan na dva različita načina.

Slika 3.15: Petersenov graf

Pokazati ćemo da Petersenov graf nije planaran. Prepostavimo da jest. Budući je broj vrhova p=10, a broj bridova q=15, slijedi r=2-10+15=7. Budući najkraći ciklus u grafu očito ima duljinu 5, svako područje mora imati stupanj veći ili jednak od 5, što nije moguće zbog $30=2q\geq 7\cdot 5=35$.

Što čini graf neplanarnim? Očito, ukoliko sadrži K_5 ili $K_{3,3}$ kao podgraf, ne može biti planaran. Kuratowski je dokazao 1930. da je to u principu i nužno za neplanarnost. Promotrimo sljedeći graf:

Kako K_5 nije planaran, ni ovaj graf nije planaran. Zaista, kada bi bio planaran, mogli bi iz (planarnog) crteža grafa izbaciti vrh b i ubaciti brid $\{a,c\}$, čime bi došli do ulaganja K_5 u ravninu.

Ubacivanje novog vrha u postojeći brid grafa zovemo **subdivizijom brida**, a jedna ili više subdivizija bridova stvara **subdiviziju grafa**.

Teorem 3.3.11 (Kuratowski) Graf je planaran ako i samo ako ne sadrži subdiviziju od K_5 ili $K_{3,3}$ kao podgraf.

3.3.1 Platonova tijela

Euler je formulu iz teorema 3.3.2 originalno dokazao za konveksne poliedre (tijela čije su stranice poligoni). Naime, svakome je konveksnom poliedru P na prirodan način pridružen graf G(P) čiji su vrhovi vrhovi poliedra, a bridovi bridovi poliedra. Taj graf je planaran. (Pretpostavimo da je poliedar napravljen od gume. Probušimo ga nasred neke stranice i napušimo ga kao da je balon. Naš poliedar će postati kugla. Sada projicirajmo pripadnu sferu na ravninu koristeći tzv. stereografsku projekciju s polom u točki u kojoj smo probušili poliedar. Projekcije vrhova i bridova će činiti ulaganje traženog grafa.)

Ukoliko poliedar ima p vrhova, q bridova i r stranica, onda G(P) ima p vrhova, q bridova, te njegovo ulaganje u ravninu dijeli ravninu na r područja. Stoga i za poliedre vrijedi Eulerova formula p-q+r=2.

Kažemo da je poliedar pravilan ukoliko postoje $m \ge 3$, $n \ge 3$ takvi da svaki vrh ima m bridova, a svaka stranica n bridova. Npr. za kocku je m = 3, n = 4. Konveksne pravilne poliedre nazivamo **Platonovim tijelima**.

Teorem 3.3.12 Postoji točno pet Platonovih tijela.

Dokaz: Očito vrijedi 2q = mp = nr. Uvrstimo li te relacije u Eulerovu formulu, slijedi

$$2\frac{q}{m}-q+2\frac{q}{n}=2 \Leftrightarrow (2n-mn+2m)q=2mn.$$

Stoga vrijedi 2m + 2n - mn > 0, tj. (m-2)(n-2) < 4, odakle slijedi da (m-2)(n-2) iznosi 1, 2 ili 3. Za svaki mogući par (m,n) možemo izračunati p,q i r. Na taj način dolazimo do sljedeće tablice:

m	n	р	q	r	naziv
3	3	4	6	4	tetraedar
3	4	8	12	6	kocka
4	3	6	12	8	oktaedar
3	5	20	30	12	dodekaedar
5	3	12	30	20	ikozaedar

Na slici 3.16 su prikazani grafovi Platonovih tijela.

(a) tetraedar (b) kocka (c) oktaedar

(d) dodekaedar (e) ikozaedar

Slika 3.16: Grafovi Platonovih tijela

3.4 Eulerovi i Hamiltonovi grafovi

3.4.1 Eulerovi grafovi

U ovoj sekciji ćemo generalizirati problem 0.1.5, problem Königsberških mostova. Kažemo za stazu da je **Eulerova staza** ukoliko prolazi svim bridovima grafa. Zatvorenu Eulerovu stazu zovemo **Eulerova tura**. Graf je **Eulerov** ako dopušta Eulerovu turu.

Prirodan okvir za proučavanje Eulerovih grafova su multigrafovi, budući se i kod problema Königsberških mostova pojavio multigraf. Generalizaciju Eulerovog rezultata možemo ovako iskazati:

Teorem 3.4.1 (Eulerov teorem) (a) Multigraf bez izoliranih vrhova je Eulerov ako i samo ako je povezan, te je svaki vrh parnog stupnja.

(b) Multigraf bez izoliranih vrhova ima nezatvorenu Eulerovu stazu ako i samo ako je povezan i ima točno dva vrha neparnog stupnja.

Dokaz: Uvjet povezanosti je očito nužan. Pokažimo najprije da su i drugi uvjeti nužni.

Promotrimo najprije graf s Eulerovom turom. Krećući se stazom, svaki put kad dođemo do nekog vrha pomoću nekog brida, moramo napustiti taj vrh drugim bridom, dakle iskoristiti ćemo dva brida tog vrha. Budući posjetimo svaki brid tog vrha, stupanj mora biti paran. Isto vrijedi i za početni vrh, budući se on poklapa s krajnjim vrhom.

Analogno, za nezatvorenu Eulerovu stazu stupnjevi prvog i zadnjeg vrha moraju biti neparni, dok ostali vrhovi moraju biti parni.

Pokažimo sada i dovoljnost tih uvjeta. Argument će biti konstruktivne prirode. Neka je G = (V, E) graf koji zadovoljava (a) ili (b) iz iskaza teorema.

U slučaju (a), neka je v bilo koji vrh, a u slučaju (b) neka je v vrh neparnog stupnja. Sada konstruiramo stazu s početkom u vrhu v, dakle krećemo se iz vrha v, nikad ne prelazeći bridom kojim smo već prošli, dokle god je to moguće.

Neka je S skup bridova te staze. Za bilo koji vrh x različit od v (u slučaju (a)) ili bilo koji vrh parnog stupnja ili x = v (u slučaju (b)), kad god staza dođe do x postojat će neparan broj neiskorištenih bridova od x. Dakle, ne možemo "zaglaviti" u takvom vrhu x. Stoga staza mora završiti u v (u slučaju (a)) ili u drugom vrhu neparnog stupnja (u slučaju (b)).

Ukoliko je S = E, gotovi smo. Stoga pretpostavimo $S \neq E$. Tada postoji vrh u koji je incidentan s nekim bridom iz S i nekim bridom iz $E \setminus S$ (zbog povezanosti). Nadalje, u grafu $(V, E \setminus S)$ svaki vrh je parnog stupnja. Stoga, krećući iz u, i koristeći samo bridove iz $E \setminus S$, možemo naći zatvorenu stazu pomoću gornjeg postupka. Sada možemo spojiti ove dvije staze: krećemo iz v i pratimo prvu stazu do vrha u, tada se krećemo drugom stazom sve dok se ne vratimo u vrh u, a onda nastavimo prvom stazom do njenog kraja.

Poslije konačno mnogo primjena ove konstrukcije, dolazimo do željene staze. 🗆

U slučaju Königsberških mostova graf je , dakle sva četiri vrha su neparnog stupnja, te ne postoji Eulerova staza.

3.4.2 Hamiltonovi grafovi

Problem analogan problemu nalaženja Eulerove staze je problem nalaženja Hamiltonovog puta. **Hamiltonov put** je put koji prolazi kroz sve vrhove grafa. Ukoliko je Hamiltonov put zatvoren, govorimo o **Hamiltonovom ciklusu**. Kažemo da je graf **Hamiltonov** ukoliko dopušta Hamiltonov ciklus. Kako kod ovog problema višestruki bridovi ne igraju nikakvu ulogu, uvijek možemo pretpostaviti da je graf jednostavan.

Za n > 2 postoji jedinstveni 2-regularan graf s n vrhova, koji zovemo n-ciklus i

označavamo s C_n . Npr. C_6 možemo ovako prikazati: . C_n možemo predstaviti kao vrhove i bridove n-terokutnika. Očito je graf G s n vrhova Hamiltonov ako i samo ako je C_n podgraf od G.

Provjeriti da li je graf Hamiltonov je puno teže nego provjeriti da li je Eulerov. Ne postoji jednostavan nužan i dovoljan uvjet za provjeru je li graf Hamiltonov. Jedan od jednostavnijih dovoljnih uvjeta je dan sljedećim teoremom.

Teorem 3.4.2 (Ore) Neka je dan graf G s n vrhova. Ukoliko za svaka dva nesusjedna vrha u G vrijedi da je suma njihovih stupnjeva barem n, onda je graf Hamiltonov.

Dokaz: Pretpostavimo da graf G zadovoljava uvjet iz teorema, ali nije Hamiltonov. Također pretpostavimo da je G maksimalan graf s tim svojstvom, tj. da dodavanje bilo kojeg brida u G dovodi do Hamiltonovog grafa (ukolio G nije maksimalan, dodajemo bridove dok ne postane; to dodavanje neće pokvariti svojstvo da je suma srupnjeva nesusjednih vrhova veća ili jednaka od n).

Kako G nije potpun (inače bi bio Hamiltonov), postoje vrhovi x, y koji nisu susjedni. Kako je G maksimalan, dodavanjem brida $e = \{x, y\}$ graf postaje Hamiltonov, i pripadni Hamiltonov ciklus mora sadržavati e. Stoga G svakako sadrži Hamiltonov put $(x = v_1, e_2, v_2, \dots, v_n = y)$.

Neka je A skup vrhova koji su susjedni sx, i neka je $B = \{v_i : v_{i-1} \text{ je susjedan s} y\}$. Kako je |B| jednak stupnju od y, slijedi $|A| + |B| \ge n$. Nadalje, budući $x \notin A \cup B$, slijedi $|A \cup B| \le n - 1$. Odavde zaključujemo $|A \cap B| \ge 1$, dakle postoji indeks i takav da je $v_i \in A \cap B$.

Sada možemo konstruirati Hamiltonov ciklus u G: krećemo od $x=v_1$, slijedimo Hamiltonov put do v_{i-1} , iz v_{i-1} idemo u y, tada se vraćamo "natraške" putem do v_i , a iz v_i dolazimo do x.

Korolar 3.4.3 (Dirac) Neka je dan graf s n vrhova. Ukoliko svaki vrh ima stupanj veći ili jednak od n/2, graf je Hamiltonov.

3.4.3 Problem trgovačkog putnika

Trgovački putnik želi obići *n* gradova, tako da se na koncu vrati u početni grad. Kako odabrati itinerer tako da ukupan prevaljeni put bude minimalan?

Ovaj problem možemo predstaviti kao problem nalaženja minimalnog Hamiltonovog ciklusa u bridno-težinskom (potpunom) grafu (uvijek možemo dodati nepostojeće bridove kojima stavimo ogromne težine).

Jedan način rješavanja problema bi bilo računanje ukupne težine za sve Hamiltonove cikluse, ali potpuni graf K_n ima (n-1)! različitih Hamiltonovih ciklusa (1/2(n-1)! ukoliko ne razlikujemo ciklus i njegov "inverz"). Čak i za mali n, recimo n=10, 1/2(n-1)!=181440. Na žalost, ne postoji bitno bolji algoritam za egzaktno rješavanje ovog problema.

Ali postoje aproksimacijski algoritmi. U nastavku ćemo opisati algoritam koji generira Hamiltonov ciklus koji je najviše $^{3}/_{2}$ puta "teži" of optimalnog ciklusa. Pretpostavljamo da težinska funkcija ω zadovoljava sljedeću relaciju:

$$\omega(\lbrace x, z \rbrace) \le \omega(\lbrace x, y \rbrace) + \omega(\lbrace y, z \rbrace), \quad \forall x, y, z. \tag{3.3}$$

Postupak generiranja suboptimalnog Hamiltonovog ciklusa je sljedeći.

Najprije nađimo minimalno razapinjuće stablo S (npr. pomoću Kruskalovog ili Primovog algoritma). Stablo S ima, po korolaru 3.1.4 paran broj 2m vrhova neparnog stupnja. Sparimo tih 2m vrhova u m bridova M, tako da M ima najmanju ukupnu težinu. (Multi)graf S+M ima sve vrhove parnog stupnja, pa po teoremu 3.4.1 posjeduje Eulerovu turu. Sada Eulerovu turu pretvorimo u Hamiltonov ciklus tako što, prateći Eulerovu turu, "preskačemo" one bridove koji nas dovode do vrhova koje smo već obišli, tj. na tim mjestima odabiremo brid koji nas dovodi do sljedećeg vrha na Eulerovoj turi koji još nismo posjetili.

Primjer 3.4.4 Na slici 3.17 je dan prikaz konstrukcije suboptimalnog Hamiltonovog ciklusa za bridno-težinski potpuni graf K_5 . U ovom primjeru je $M = \{\{v_1, v_3\}, \{v_0, v_4\}\}$, Eulerova tura je $(v_1, v_2, v_4, v_0, v_4, v_3, v_1)$, a konstruirani Hamiltonov ciklus je $(v_1, v_2, v_4, v_0, v_3, v_1)$ s ukupnom težinom 26.

Zadatak 3.11

Pokušajte naći Hamiltonov ciklus manje težine za graf iz prethodnog primjera.

Pokažimo sada da gornji algoritam doista konstruira ciklus koji je najviše ³/2 puta "teži" of optimalnog ciklusa.

Neka su MHC, ET, MRS i $\omega(M)$ redom totalne težine minimalnog Hamiltonovog ciklusa, te Eulerove ture, minimalnog razapinjućeg stabla i skupa bridova M danih gornjim algoritmom. Zbog (3.3), dovoljno je pokazati ET $\leq 3/2$ MHC. Vrijedi ET = MRS + $\omega(M)$, te MHC > MRS (ako iz minimalnog Hamiltonovog ciklusa uklonimo neki brid, dobijamo razapinjuće stablo). Neka se 2m vrhova iz M javlja u sljedećem poretku u minimalnom Hamiltonovom ciklusu: x_1, x_2, \ldots, x_{2m} . Ukoliko za svaki i < 2m zamijenimo dio (minimalnog Hamiltonovog) ciklusa između x_i i x_{i+1} s bridom $\{x_i, x_{i+1}\}$, a dio ciklusa između x_{2m} i x_1 bridom $\{x_{2m}, x_1\}$, iz (3.3) slijedi

$$\omega(\{x_1, x_2\}) + \omega(\{x_2, x_3\}) + \dots + \omega(\{x_{2m}, x_1\}) \leq MHC.$$

Slika 3.17: Konstrukcija suboptimalnog Hamiltonovog ciklusa

Prethodnu relaciju možemo napisati na sljedeći način

$$(\omega(\{x_1, x_2\}) + \omega(\{x_3, x_4\}) + \dots + \omega(\{x_{2m-1}, x_{2m}\})) + (\omega(\{x_2, x_3\}) + \dots + \omega(\{x_{2m}, x_1\})) \le MHC.$$

Dakle, suma težina ova dva sparivanja je manja ili jednaka od MHC, pa jedno od ovih sparivanja ima totalnu težinu manju ili jednaku od $^1/_2$ MHC, odakle slijedi $\omega(M) \leq ^1/_2$ MHC. Stoga

$$\mathrm{ET} = \mathrm{MRS} + \omega(M) < \mathrm{MHC} + {}^{1}\!/_{2}\mathrm{MHC} = {}^{3}\!/_{2}\mathrm{MHC}.$$

Indeks

В	Н
Bellov broj	Hamiltonov ciklus72
biparticija 67	Hamiltonov graf
bipartitan graf 67	Hamiltonov put72
bridno-težinski graf 57	•
bridovi grafa51	I
o de la companya de	incidentan vrh 51
C	inducirani podgraf53
Catalanovi brojevi 40	izolirani vrh
ciklički zapis18	izomorfni grafovi52
ciklus18, 54	-
<i>n</i> -ciklus	J
	jednostavni graf 51
D	
deranžman	K
digraf51	karakteristična jednadžba
Dirichletova funkcija izvodnica 44	<i>k</i> –kombinacija14
_	k–kombinacija s ponavljanjem 21
E	kombinatorika
eksponencijalna funkcija izvodnica 43	komponente grafa 55
Eulerov graf	Kruskalov algoritam 64
Eulerova formula	
Eulerova staza71	L
Eulerova tura	list
F	M
Fibonaccijevi brojevi	multigraf51
formula uključivanja - isključivanja 31	multinomni koeficijent
funkcija izvodnica	multiskup
G	N
graf	nul graf

P	Stirlingov broj prve vrste	19
Pascalov trokut15	Stirlingov trokut	25
permutacija18	Stirlingova formula	18
<i>k</i> –permutacija	stupanj područja	66
permutacija multiskupa22	stupanj vrha	55
Petersenov graf68	subdivizija brida	
petlja51	subdivizija grafa	
planarni graf66	susjedni vrhovi	
Platonova tijela	, ·	
podgraf53	Š	
poopćeni binomni teorem 41	šetnja	
poredak	šuma	57
leksikografski poredak27	Т	
obrnuti leksikografski poredak 27		2
potpun bipartitni graf68	teorija grafova	3
potpuni graf	${f U}$	
povezan graf55	ulaganje grafa	65
Primov algoritam	usmjereni brid	
princip	usmjereni graf	
Dirichletov princip 10	g	
princip bijekcije 9	${f v}$	
princip dvostrukog brojanja 9	višestruki brid	51
princip kvocijenta9	vrhovi grafa	51
princip matematičke indukcije 10	vršno–težinski graf	57
princip produkta		
princip razlike9		
princip sume9		
Prüferov kod 61		
put		
put		
R		
razapinjuća šuma		
razapinjuće stablo 58		
razapinjući podgraf 53		
d-regularan graf55		
regularan graf		
rekurzivna relacija		
Riemannova zeta funkcija		
S		
stablo		
staza		
Stirlingov broj druge vrste 25		
, ,		