PHYS-C0252 - Quantum Mechanics

Exercise set 1

Due date: May 1, 2024 by 23:59 on MyCourses

Return the exercises as a .pdf.

You can write by hand and take pictures, use digital note-taking or LaTeX etc.

- 1. Consider the vectors $|\psi\rangle = 4|\phi_1\rangle + i|\phi_2\rangle$ and $|\chi\rangle = 2|\phi_1\rangle + (1-4i)|\phi_2\rangle$, where $|\phi_1\rangle$ and $|\phi_2\rangle$ are orthonormal, i.e. $\langle\phi_k|\phi_m\rangle = \delta_{km}$, where $\delta_{km} = 1$ for k=m and $\delta_{km} = 0$ for $k \neq m$.
 - (a) Express $|\psi\rangle + |\chi\rangle$ and $\langle\psi| + \langle\chi|$ in their simplest form using $|\phi_1\rangle$ and $|\phi_2\rangle$.
 - (b) Express $|\phi_1\rangle$ in terms of $|\psi\rangle$ and $|\chi\rangle$.
 - (c) Calculate the inner products $\langle \psi | \chi \rangle$ and $\langle \chi | \psi \rangle$. Are they equal?
 - (d) Show that $|\psi\rangle$ and $|\chi\rangle$ satisfy the Cauchy–Schwarz inequality and the triangle inequality.
- 2. Consider the so-called Pauli operators $\hat{\sigma}_x = |0\rangle\langle 1| + |1\rangle\langle 0|$, $\hat{\sigma}_y = -i|0\rangle\langle 1| + i|1\rangle\langle 0|$ and $\hat{\sigma}_z = |0\rangle\langle 0| |1\rangle\langle 1|$, where $\{|0\rangle, |1\rangle\}$ form an orthonormal basis of the considered Hilbert space.
 - (a) Show that each Pauli operator is Hermitian.
 - (b) Write down the matrix representation of the Pauli operators. Hint: for an operator \hat{A} and an orthonormal basis $\{|\phi_k\rangle\}_k$, the matrix element A_{jk} is defined as $\langle \phi_j | \hat{A} | \phi_k \rangle$.
 - (c) Solve the eigenvalues and the corresponding eigenstates of each Pauli operator using the matrix form, and write the eigenstates using the ket vectors $|0\rangle$ and $|1\rangle$.
 - (d) For each Pauli operator, show that the eigenstates are orthogonal.
- 3. (a) Show that for a Hermitian bounded linear operator $\hat{H}: \mathcal{H} \to \mathcal{H}$, all of its eigenvalues are real and the eigenvectors corresponding to different eigenvalues are orthogonal. Hint: start by calculating $\langle \phi | \hat{H} | \phi \rangle$ for an eigenstate $| \phi \rangle$. In a similar fashion, show that the eigenvalues of an anti-Hermitian linear bounded operator $\hat{A}: \mathcal{H} \to \mathcal{H}$ are either purely imaginary or equal to zero. Note that for anti-Hermitian operators \hat{A} , we have $\hat{A}^{\dagger} = -\hat{A}$.

(b) An important class of Hermitian operators is the *projectors*. Consider a Hilbert space $\mathcal H$ with an orthonormal basis $\{|\phi_i\rangle\}_{i\in I}$, where I is a suitable finite (or infinite) index set. A subset of these basis vectors $\{|\phi_j\rangle\}_{j\in J}$, where $J\subset I$ will form an orthonormal basis for a subspace $\mathcal H'$ of $\mathcal H$. Projector P onto the subspace $\mathcal H'$ is then defined as

$$P \equiv \sum_{j \in J} |\phi_j\rangle \langle \phi_j|.$$

Show that P is indeed a Hermitian operator, and that it satisfies the equation $P^2 = P$.

- (c) Consider any linear bounded operator $\hat{B}: \mathcal{H} \to \mathcal{H}$
 - i. Show that $\hat{B} \hat{B}^{\dagger}$ is anti-Hermitian and $\hat{B} + \hat{B}^{\dagger}$ is Hermitian.
 - ii. Show that \hat{B} can be expressed as a linear combination of a Hermitian and an anti-Hermitian operator.
- 4. (a) Prove the Cauchy–Schwarz inequality $|\langle \psi | \phi \rangle| \le ||\psi|| \, ||\phi||$. Here we use the shorthand notation $||\psi|| \ (= || \, |\psi\rangle||)$ for the norm of $|\psi\rangle$ as on lectures. Hint: Start from $0 \le || \, |\psi\rangle + \lambda |\phi\rangle \, ||$ and choose the scalar $\lambda \propto \langle \phi | \psi \rangle$ in a clever way.
 - (b) Prove the triangle inequality $|| |\psi \rangle + |\phi \rangle || \le ||\psi|| + ||\phi||$. Hint: Calculate $|| |\psi \rangle + |\phi \rangle ||^2$ and use (a). You may also use the fact that $\text{Re}(z) \le |z|$ for a complex number z.
 - (c) Demonstrate the necessary and sufficient conditions for these inequalities to become equalities. Hint: Let $a \mid \psi \rangle = \frac{\langle \psi \mid \phi \rangle}{\langle \psi \mid \psi \rangle} \mid \psi \rangle$ be the *projection* of $\mid \phi \rangle$ on to $\mid \psi \rangle$. You can write $\mid \phi \rangle$ in terms of the projection and the *rejection* $\mid \chi \rangle = \mid \phi \rangle \frac{\langle \psi \mid \phi \rangle}{\langle \psi \mid \psi \rangle} \mid \psi \rangle$ as $\mid \phi \rangle = a \mid \psi \rangle + \mid \chi \rangle$. Note that the rejection is orthogonal to $\mid \psi \rangle$, i.e. $\langle \chi \mid \psi \rangle = 0$.