CSC411: Assignment 2

Due on Sunday, November $12^{\rm th},\,2017$

Student Name: Gokul K. Kaushik

Student Number: 999878191

Table of Contents

1	- Class Conditional Gaussians
	1 - Using Bayes rule to derive an expression for $p(y = kx, \mu, \sigma)$
	2 - Expression for the negative likelihood function (NLL)
	3 - Partial Derivatives of the Likelihood
	4 - Find the maximum likelihood estimates for μ and σ
4	- Handwritten Digit Classification 0 - Loading the data and Plotting the Feature Means
	Train and Test Classification Accuracy for K=1 and K=15
	Tie Breaker Method
	2 - Conditional Gaussian Classifier Training
	3 - Naive Bayes Classifier Training
	4 - Model Comparison

1 - Class Conditional Gaussians

- 1 Using Bayes rule to derive an expression for $p(y = kx, \mu, \sigma)$
- 2 Expression for the negative likelihood function (NLL)
- 3 Partial Derivatives of the Likelihood
- 4 Find the maximum likelihood estimates for μ and σ

2 - Handwritten Digit Classification

0 - Loading the data and Plotting the Feature Means

The means (from 700 samples per digit) for each feature (64 features in total for an 8-by-8 pixel image) for 10 digits (digit 0 to digit 9) are plotted below:

1 - K-NN Classifier

Train and Test Classification Accuracy for K=1 and K=15

	Accuracy	
K Value	Train Classification	Test Classification
K = 1		
K = 15		

Tie Breaker Method

There are cases in K-Nearest Neighbours where there isn't one most frequent neighbours (there might be two neighbours that occur equally frequently).

Therefore, in such cases a tie breaking decision needs to be made. I have chosen to reduce the number of nearest neighbours by one - effectively removing the last neighbour and repeating the check until a decision can be made.

The algorithm's psuedo-code is:

```
Data: K Nearest Neighbours Array with a tie
Result: Nearest Neighbours Decided
initialization;
while not at end of this document do

read current;
if understand then

go to next section;
current section becomes this one;
else

go back to the beginning of current section;
end
end
```

Algorithm 1: How to write algorithms

This method was chosen because:

- 1. The tie remains until the *most distant* neighbour from one of the most frequent neighbours is removed. This rewards the neighbour with the closest value in such cases.
- 2. This decision making method is intuitive to understand and easy to implement.

2 - Conditional Gaussian Classifier Training

3 - Naive Bayes Classifier Training

4 - Model Comparison