Nonlinear Methods

Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Laplacian Eigenmaps

Linear methods – Lower-dimensional linear projection that preserves distances between **all** points

Laplacian Eigenmaps (key idea) – preserve local information only

the graph"

Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points

G(V,E) V – Vertices (Data points)

(2) E – Edge if k-NN,
yields directed graph
connect A with B if A → B OR A ← B
connect A with B if A → B AND A ← B

(symmetric kNN graph) (mutual kNN graph)

Directed nearest neighbors

(symmetric) kNN graph

mutual kNN graph

Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points

Choice of ε and k:

Chosen so that neighborhood on graphs represent neighborhoods on the manifold (no "shortcuts" connect different arms of the swiss roll)

Mostly ad-hoc

Step 1 - Graph Construction

Similarity Graphs: Model local neighborhood relations between data points

$$G(V,E,W)$$
 V – Vertices (Data points) E – Edges (nearest neighbors)

W - Edge weights

E.g. 1 if connected, 0 otherwise (Adjacency graph)

Gaussian kernel similarity function (aka Heat kernel)

$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$

 $\sigma^2 \rightarrow \infty$ results in adjacency graph

Graph Laplacian (unnormalized version)

$$L = D - W$$

W – Weight matrix

D – Degree matrix =
$$diag(d_1, ..., d_n)$$

 $d_i = \sum_j w_{ij}$ degree of a vertex

Note: If graph is connected,

1 is an eigenvector

$$\mathbf{L1} = \begin{vmatrix} d_1 - \sum_j w_{1j} \\ d_2 - \sum_j w_{2j} \\ \dots \\ d_n - \sum_j w_{nj} \end{vmatrix} = 0$$

Graph Laplacian (unnormalized version)

$$L = D - W$$

Solve generalized eigenvalue problem $Lf = \lambda Df$

$$Lf = \lambda Df$$

Order eigenvalues
$$0 = \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots \le \lambda_n$$

To embed data points in d-dim space, project data points onto eigenvectors associated with λ_2 , λ_3 , ..., λ_{d+1}

ignore 1st eigenvector – same embedding for all points

Original Representation Transformed representation data point projections \rightarrow (f₂(i), ..., f_{d+1}(i)) X_i (d-dimensional vector) (D-dimensional vector)

Understanding Laplacian Eigenmaps

- Best projection onto a 1-dim space
 - Put all points in one place (1st eigenvector all 1s)
 - If two points are close on graph, their embedding is close (eigenvector values are similar – captured by smoothness of eigenvectors)

Laplacian eigenvectors of swiss roll example (for large # data points)

 Justification – points connected on the graph stay as close as possible after embedding

$$\min_{\mathbf{f}} \sum_{ij} w_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \equiv \min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f}$$

RHS =
$$f^{T}(D-W) f = f^{T}D f - f^{T}W f = \sum_{i} d_{i}f_{i}^{2} - \sum_{i,j} f_{i}f_{j}w_{ij}$$

$$= \frac{1}{2} \left(\sum_{i} (\sum_{j} w_{ij})f_{i}^{2} - 2 \sum_{ij} f_{i}f_{j}w_{ij} + \sum_{j} (\sum_{i} w_{ij})f_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{ij} w_{ij} (f_{i} - f_{j})^{2} = LHS$$

 Justification – points connected on the graph stay as close as possible after embedding

$$\min_{\mathbf{f}} \sum_{ij} w_{ij} (\mathbf{f}_i - \mathbf{f}_j)^2 \equiv \min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \qquad s.t. \ \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

constraint removes arbitrary scaling factor in embedding

Lagrangian:
$$\min_{\mathbf{f}} \mathbf{f}^{\mathbf{T}} \mathbf{L} \mathbf{f} - \lambda \mathbf{f}^{\mathbf{T}} \mathbf{D} \mathbf{f}$$

Wrap constraint into the objective function

$$\partial/\partial \mathbf{f} = 0$$
 $(\mathbf{L} - \lambda \mathbf{D})\mathbf{f} = 0$

$$Lf = \lambda Df$$

Example – Unrolling the swiss roll

N=number of nearest neighbors, t = the heat kernel parameter (Belkin & Niyogi'03)

Example – Understanding syntactic structure of words

300 most frequent words of Brown corpus

Information about the frequency of its left and right neighbors (600

Dimensional space.)

PCA vs. Laplacian Eigenmaps

PCA

Linear embedding

based on largest eigenvectors of D x D correlation matrix $\Sigma = XX^T$ between features

eigenvectors give latent features
- to get embedding of points,
project them onto the latent
features

Laplacian Eigenmaps

Nonlinear embedding

based on smallest eigenvectors of n x n Laplacian matrix L = D - Wbetween data points

eigenvectors directly give embedding of data points

$$x_i \rightarrow [f_2(i), ..., f_{d+1}(i)]^T$$
D x1 d x1

Dimensionality Reduction Methods

- Feature Selection Only a few features are relevant to the learning task
 Score features (mutual information, prediction accuracy, domain knowledge)
 Regularization
- Latent features Some linear/nonlinear combination of features provides a more efficient representation than observed feature

Linear: Low-dimensional linear subspace projection

PCA (Principal Component Analysis),

MDS (Multi Dimensional Scaling),

Factor Analysis, ICA (Independent Component Analysis)

Nonlinear: Low-dimensional nonlinear projection that preserves local information along the manifold

Laplacian Eigenmaps

ISOMAP, Kernel PCA, LLE (Local Linear Embedding),

Many, many more ...