PROPHYLACTIC TREATMENT

KIRAN PRASANNADAS

INTRODUCTION

- Each year, nearly 900,000 Americans die prematurely from the five leading causes of death
- Heart disease, Cancer, Chronic lower respiratory diseases, Stroke, and Unintentional injuries
- Together they accounted for 63% of all U.S. deaths

Courtesy: Centers for Disease Control and Prevention

https://cdc.gov

SAVE LIFE

- 20% 40% of the 900,000 deaths due to the leading causes are preventable
- Identify who is at risk!
- Proper screening

PROBLEM STATEMENT

- Prophylactic treatment against a future bad outcome may be possible if some knowledge or intelligence is available to predict the onset.
- A patient once admitted is observed across time.
- We focus on to predict the onset of bad outcome after 12 hours.

DATASET

- 13,178,226 observations, Each row is a time-stamped observation entry
- 146 variables
- Target : Outcome_I2hr
- Location details, dates, admit source, discharge disposition, LOS, ethnicity, marital status, lab values, Charlson Comorbidity indexes

FEATURE & OBSERVATION SELECTION

- Removed the features with majority NA values
- Highly correlated features (LOS, LOS hours, marital status, age..)
- Factors with high number of levels (Drug name)
- Removed the observations that are marked as Exclude (Exclude==1)
- Deteriorating Patient Eligible is "in"
- Reduced the dataset to 12,004,396 obs. &
 32 variables

```
str(df)
                    : Factor w/ 3 levels "", "dnrdni", "full code": 3 3 3 3 3 3 3 3 3 3 ...
$ code status
$ combined_category: Factor w/ 8 levels "","dialysis",..: 3 3 3 3 4 4 4 4 3 3 ...
$ dx2
$ dx3
$ dx4
$ dx5
$ dx7
$ dx8
$ dx9
$ dx10
$ dx11
$ dx12
$ dx13
$ dx14
$ dx15
$ dx16
$ dx17
                    : Factor w/ 12 levels "", "H", "HA", "HC", ...: 9 9 9 9 9 9 9 9 9 9 9 ...
$ ethncity
$ dschgdsp
                    : Factor w/ 33 levels "","2","21","3",..: 20 10 10 10 10 10 10 10 10 10 ...
                    : Factor w/ 18 levels "","1","2","3",..: 15 10 10 10 9 9 9 9 15 9 ...
$ admsour
                   : Factor w/ 3 levels "", "N", "Y": 2 2 2 2 2 2 2 2 3 ...
$ surgery
$ admtype
                    : Factor w/ 7 levels "", "E", "N", "R", ...: 2 5 5 5 4 4 4 4 2 4 ...
                    : Factor w/ 8 levels "", "D", "M", "P", ...: 5 3 3 3 5 5 5 5 5 5 ...
                   : int 19 22 22 22 18 18 18 18 21 23 ...
$ ageyear
$ los
                   : int 1333222213...
                   : Factor w/ 2 levels "0", "1": 2 1 1 1 1 1 1 1 2 1 ...
$ male
                   : Factor w/ 7 levels "", "ER", "Exclude", ...: 2 4 4 4 6 6 6 6 2 6 ...
$ admit source
                    : Factor w/ 7 levels "", "Death", "Home", ...: 3 3 3 3 3 3 3 3 3 3 ...
$ discharge
$ los hours
                    : num 9.18 36.08 66.4 57.28 2.43 ...
$ episode_cnt
                   : int 111111111 ...
$ outcome 12hr
                   : Factor w/ 2 levels "0", "1": 1 1 1 1 1 1 1 1 1 1 ...
$ agebracket
                    : Factor w/ 10 levels "", "Between 16 and 25",...: 2 2 2 2 2 2 2 2 2 2 ...
```

CORRELATION: CHARLSON COMORBIDITY INDEXES

	dx1	dx2	dx3	dx4	dx5	dx6	dx7	dx8	dx9	dx10	dx11	dx12	dx13	dx14	dx15	dx16	dx17
dx1	1.00	0.16	0.11	0.07	0.00	0.05	0.00	-0.02	0.06	0.06	-0.03	0.10	-0.04	-0.02	0.00	0.01	-0.05
dx2	0.16	1.00	0.10	0.07	0.00	0.25	-0.01	0.02	0.09	0.14	-0.05	0.34	-0.01	-0.09	-0.01	0.03	-0.07
dx3	0.11	0.10	1.00	0.15	0.01	0.09	0.02	-0.02	0.03	0.14	-0.01	0.16	-0.03	-0.04	-0.01	0.03	-0.05
dx4	0.07	0.07	0.15	1.00	0.09	0.02	0.02	0.00	0.03	0.06	0.08	0.06	0.00	-0.03	0.00	0.01	-0.03
dx5	0.00	0.00	0.01	0.09	1.00	0.00	-0.01	-0.02	0.01	0.00	0.04	0.02	-0.01	-0.02	0.00	0.00	-0.02
dx6	0.05	0.25	0.09	0.02	0.00	1.00	0.01	0.01	0.06	0.04	-0.03	0.15	0.00	-0.04	-0.01	0.03	-0.04
dx7	0.00	-0.01	0.02	0.02	-0.01	0.01	1.00	0.05	0.01	0.02	-0.01	0.04	0.06	0.00	0.00	0.01	-0.01
dx8	-0.02	0.02	-0.02	0.00	-0.02	0.01	0.05	1.00	0.05	0.02	-0.01	0.04	0.46	-0.02	0.02	-0.02	0.02
dx9	0.06	0.09	0.03	0.03	0.01	0.06	0.01	0.05	1.00	-0.09	0.01	0.09	0.04	-0.02	-0.01	-0.01	-0.01
dx10	0.06	0.14	0.14	0.06	0.00	0.04	0.02	0.02	-0.09	1.00	-0.02	0.28	0.02	-0.05	0.00	-0.02	-0.05
dx11	-0.03	-0.05	-0.01	0.08	0.04	-0.03	-0.01	-0.01	0.01	-0.02	1.00	-0.03	-0.01	-0.01	0.00	-0.02	-0.01
dx12	0.10	0.34	0.16	0.06	0.02	0.15	0.04	0.04	0.09	0.28	-0.03	1.00	0.04	-0.08	0.00	0.01	-0.04
dx13	-0.04	-0.01	-0.03	0.00	-0.01	0.00	0.06	0.46	0.04	0.02	-0.01	0.04	1.00	-0.02	0.01	-0.02	0.01
dx14	-0.02	-0.09	-0.04	-0.03	-0.02	-0.04	0.00	-0.02	-0.02	-0.05	-0.01	-0.08	-0.02	1.00	0.00	-0.02	0.19
dx15	0.00	-0.01	-0.01	0.00	0.00	-0.01	0.00	0.02	-0.01	0.00	0.00	0.00	0.01	0.00	1.00	0.00	0.00
dx16	0.01	0.03	0.03	0.01	0.00	0.03	0.01	-0.02	-0.01	-0.02	-0.02	0.01	-0.02	-0.02	0.00	1.00	-0.02
dx17	-0.05	-0.07	-0.05	-0.03	-0.02	-0.04	-0.01	0.02	-0.01	-0.05	-0.01	-0.04	0.01	0.19	0.00	-0.02	1.00

dx I	Myocardial Infarct
dx2	Congestive Heart Failure
dx3	Peripheral Vascular Disease
dx4	Cerebrovascular Disease
dx5	Dementia
dx6	Chronic Pulmonary Disease
dx7	Ulcer
dx8	Mild Liver Disease
dx9	Diabetes
dx10	Diabetes with Organ Damage
dxII	Hemiplegia
dx12	Moderate/Severe Renal Disease
dx13	Moderate/Severe Liver Disease
dx14	Metastatic Solid Tumor
dx15	Aids
dx16	Rheumatologic Disease
dx17	Other Cancer

HIGHLY IMBALANCED TARGET DISTRIBUTION

SYNTHETIC MINORITY OVER SAMPLING TECHNIQUE – SMOTE (DMWR)

MODEL – DECISION TREE

DISCHARGE DISPOSITION, LOS, DISCHARGE, AGEBRACKET, COMBINED CATEGORY

PREDICTION ACCURACY:

Accuracy: 66.74% Sensitivity: 70.09%

AUC: 68.41%

```
Confusion Matrix and Statistics
             Reference
   Prediction
            0 2394208
            1 1194137 10547
                  Accuracy: 0.6674
                    95% CI: (0.6669, 0.6678)
       No Information Rate: 0.9958
       P-Value [Acc > NIR] : 1
                      Kappa : 0.0091
    Mcnemar's Test P-Value : <2e-16
               Sensitivity: 0.700984
               Specificity: 0.667218
            Pos Pred Value: 0.008755
            Neg Pred Value : 0.998124
                 Prevalence: 0.004176
            Detection Rate: 0.002927
      Detection Prevalence : 0.334320
          Balanced Accuracy: 0.684101
           'Positive' Class : 1
Call:
roc.default(response = test$outcome_12hr, predictor = pred_tree_n)
Data: pred_tree_n in 3588345 controls (test$outcome_12hr 0) < 15046 cases (test$outcome_12hr 1).
Area under the curve: 0.6841
```

MODEL – RANDOM FOREST

LOS, DISCHDSP, DISCHARGE

PREDICTION ACCURACY: RF

Accuracy: 94.78% Sensitivity: 94.77%

AUC: 94.77%

```
Confusion Matrix and Statistics
          Reference
  Prediction
          0 3400939
          1 187406 14259
               Accuracy: 0.9478
                95% CI: (0.9475, 0.948)
     No Information Rate: 0.9958
     P-Value [Acc > NIR] : 1
                  Kappa : 0.1248
  Mcnemar's Test P-Value : <2e-16
            Sensitivity: 0.947694
            Specificity: 0.947774
          Pos Pred Value : 0.070706
          Neg Pred Value: 0.999769
             Prevalence: 0.004176
          Detection Rate: 0.003957
    Detection Prevalence: 0.055965
       Balanced Accuracy: 0.947734
        'Positive' Class : 1
Call:
roc.default(response = test$outcome_12hr, predictor = pred2)
Data: pred2 in 3588345 controls (test$outcome_12hr 0) < 15046 cases (test$outcome_12hr 1)
Area under the curve: 0.9477
```

CONCLUSION

- Developed a model that could predict the onset of a bad outcome within 12 hours.
- Random forest with 70:30 split gave good accuracy.
- The model prediction of the onset of bad outcome can save lives by giving urgent attention and taking preventive measures.