Math 4317 (Prof. Swiech, S'18): HW #2

Peter Williams 2/08/2018

Section 8

D. If w_1 and w_2 are strictly positive, show that the definition, $(x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 w_1 + x_2 y_2 w_2$, yields an inner product on \mathbb{R}^2 , generalize this for \mathbb{R}^p .

Checking the properties of inner products, we have, based on definition above, (i) $x \cdot x \geq 0$, since $(x_1, x_2)(x_1, x_2) = w_1x_1^2 + w_2x_2^2 \geq 0$, since $w_1, w_2 > 0$, and $x_i^2 > 0$, i = 1, 2. For $x \in \mathbb{R}^p$, we have $x \cdot x = \sum_{j=1}^p w_j x_j^2 \geq 0$, since each element in the summation $w_i, x_i^2 > 0$. For property (ii), we have $x \cdot x = 0$, if and only if x = 0. In this case, since $w_1, w_2 > 0$, $w_1x_2^2 + w_2x_2^2 = 0$, when x_1^2 and x_2^2 equal zero, that is when x = 0. This holds for $x \in \mathbb{R}^p$, since for $w_i > 0$, i = 1, ..., p we have $\sum_{j=1}^p w_j x_j^2 = 0$, only when each element $w_i x_i 2 = 0$, since each element is greater than or equal to zero. For property (iii), we show $x \cdot y = y \cdot x$ since $x \cdot y = w_1x_1y_1 + w_2x_2y_2 = w_1x_1y_1 + w_2x_2y_2 = w_1y_1x_2 + w_2y_2x_2 = y \cdot x$. Extending to $x \in \mathbb{R}^p$, we have again, by commutative property, $x \cdot y = \sum_{j=1}^p w_j x_j y_j = \sum_{j=1}^p w_j y_j x_j = y \cdot x$. Property (iv), $x \cdot (y+z) = x \cdot y + x \cdot z$, $x, y, z \in \mathbb{R}^p$. In this case we have $\sum_{j=1}^p w_j x_j (y_j + z_j) = \sum_{j=1}^p w_j x_j y_j + w_j x_j z_j = \sum_{j=1}^p w_j x_j y_j + \sum_{j=1}^p w_j x_j z_j = x \cdot y + x \cdot z$, which clearly holds for base case, p = 2 as well. For property (v), we have $(ax) \cdot y = x \cdot (ay)$, $a \in \mathbb{R}$. We have $(ax) \cdot y = \sum_{j=1}^p w_j a x_j y_j = a \sum_{j=1}^p w_j x_j y_j = a(x \cdot y) = \sum_{j=1}^p w_j x_j a y_j = x \cdot (ay)$. Since all five properties are satisfied, an inner product is yielded here.

E. $(x_1, x_2) \cdot (y_1, y_2) = x_1 y_1$ is not an inner product on \mathbb{R}^2 . Why?

By property (ii), i.e. $x \cdot x = 0$ if and only if x = 0, the definition above, $(x_1, x_2) \cdot (y_1, y_2) = x_1 y_1 = 0 \Leftrightarrow x = 0$, however, we can't say x = 0, since in this case if $x_1 y_1 = 0 \implies x_1 = 0$, but we don't have information about x_2 , or $x_i, i = 3, ..., p$, for $x_i n \mathbb{R}^p$. Thus for this operation $x \cdot x = 0$ does not necessarily mean x = 0.

F.

G.

Н.

P.

Q.

Section 9

Section 10

Section 11