Victor Kitov

v.v.kitov@yandex.ru

#### Table of contents

- Support vector machines
  - Linearly separable case
  - Linearly non-separable case

- Support vector machines
  - Linearly separable case
  - Linearly non-separable case









#### Main idea

Select hyperplane maximizing the margin - the sum of distances from nearest  $\omega_1$  object to hyperplane and from nearest  $\omega_2$  object to hyperplane.

Objects  $x_i$  for i = 1, 2, ...n lie at distance b/|w| from discriminant hyperplane if

$$\begin{cases} x_i^T w + w_0 \ge b, & y_i = +1 \\ x_i^T w + w_0 \le -b, & y_i = -1 \end{cases} i = 1, 2, ...N.$$

This can be rewritten as

$$y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N.$$

The margin is equal to 2b/|w|. Since  $w, w_0$  and b are defined up to multiplication constant, we can set b = 1.

### Problem statement

#### Problem statement:

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1, \quad i = 1, 2, ...N. \end{cases}$$

# Support vectors

### non-informative observations: $y_i(x_i^T w + w_0) > 1$

do not affect the solution

support vectors: 
$$y_i(x_i^T w + w_0) = 1$$

- ullet lie at distance 1/|w| to separating hyperplane
- affect the the solution.



### Solution

Denote  $\mathcal{SV}$  - the set of indexes of support vectors.

For some  $\alpha_i$  (which stand for dual variables) weights are equal to:

$$\mathbf{w} = \sum_{i \in \mathcal{SV}} \alpha_i \mathbf{y}_i \mathbf{x}_i$$

 $w_0$  can be found from any edge equality for support vectors:

$$y_i(x_i^T w + w_0) = 1, i \in \mathcal{SV}$$

Solution from summation over  $n_{SV}$  equation provides a more robust estimate of  $w_0$ :

$$n_{SV}w_0 + \sum_{i \in SV} x_i^T w = \sum_{i \in SV} y_i$$

- Support vector machines
  - Linearly separable case
  - Linearly non-separable case





$$\begin{cases} \frac{1}{2} w^T w \to \min_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1, \quad i = 1, 2, ...N. \end{cases}$$



$$egin{cases} rac{1}{2} w^T w 
ightarrow \min_{w,w_0} \ y_i(x_i^T w + w_0) \geq 1, \quad i = 1, 2, ... N. \end{cases}$$

#### **Problem**

Constraints become incompatible and give empty set!

No separating hyperplane exists. Errors are permitted by including slack variables  $\xi_i$ :

$$\begin{cases} \frac{1}{2}w^{T}w + C\sum_{i=1}^{N}\xi_{i} \to \min_{w,\xi} \\ y_{i}(w^{T}x_{i} + w_{0}) \geq 1 - \xi_{i}, i = 1, 2, ...N \\ \xi_{i} \geq 0, i = 1, 2, ...N \end{cases}$$

- Parameter C is the cost for misclassification and controls the bias-variance trade-off.
- It is chosen on validation set.
- Other penalties are possible, e.g.  $C \sum_{i} \xi_{i}^{2}$ .



# Classification of training objects

- Non-informative objects:
  - $y_i(w^Tx_i + w_0) > 1$
- Support vectors SV:
  - $y_i(w^Tx_i + w_0) \leq 1$
  - boundary support vectors SV:
    - $y_i(w^Tx_i + w_0) = 1$
  - violating support vectors:
    - $y_i(w^Tx_i + w_0)] > 0$ : violating support vector is correctly classified.
    - $y_i(w^Tx_i + w_0)] < 0$ : violating support vector is misclassified.

### Solution

Denote  $\mathcal{SV}$  - the set of indexes of support vectors with  $\alpha_i > 0$  ( $\Leftrightarrow y(w^Tx_i + w_0) = 1 - \xi_i$ ) and  $\widetilde{\mathcal{SV}}$  - the set of indexes of support vectors with  $\alpha_i \in (0, C)$  ( $\Leftrightarrow \xi_i = 0, y(w^Tx_i + w_0) = 1$ ) Optimal  $\alpha_i$  determine weights directly:

$$\mathbf{w} = \sum_{i \in \mathcal{SV}} \alpha_i \mathbf{y}_i \mathbf{x}_i$$

 $w_0$  can be found from any edge equality for support vectors:

$$y_i(x_i^T w + w_0) = 1, i \in \widetilde{SV}$$

Solution from summation of equations for each  $i \in SV$  provides a more robust estimate of  $w_0$ :

$$n_{\widetilde{SV}}w_0 + \sum_{i \in \widetilde{SV}} x_i^T w = \sum_{i \in \widetilde{SV}} y_i$$

### Another view on SVM

#### Optimization problem:

$$\begin{cases} \frac{1}{2}w^{T}w + C\sum_{i=1}^{N}\xi_{i} \to \min_{w,\xi} \\ y_{i}(w^{T}x_{i} + w_{0}) = M_{i}(w, w_{0}) \geq 1 - \xi_{i}, \\ \xi_{i} \geq 0, i = 1, 2, ...N \end{cases}$$

can be rewritten as

$$\frac{1}{2C}|w|^2 + \sum_{i=1}^{N} [1 - M_i(w, w_0)]_+ \to \min_{w, \xi}$$



Thus SVM is linear discriminant function with cost approximated with  $\mathcal{L}(M) = [1 - M]_+$  and  $L_2$  regularization.