Matematica discreta e Probabilità

Leonardo Mengozzi

Le voci dell'indice, " \leftarrow Indice" e i nomi delle dimostrazioni sono dei link alle rispettive sezioni.

Indice

1	Combinatoria	4
	Insiemi	4
	Definizione 1.1 (Cardinalità)	4
	Definizione 1.2 (Insieme finito)	4
	Definizione 1.3 (Cardinalità insiemi infiniti)	4
	Definizione 1.4 (Insieme numerabile)	4
	Definizione 1.5 (Insieme Discreto)	4
	Definizione 1.6 (Combinatoria di base)	4
	Definizione 1.7 (Prodotto Cartesiano)	5
	Definizione 1.8 (Sequenza)	5
	Definizione 1.9 (Insieme delle parti)	5
	Teorema 1.1 (Insieme delle parti)	5
	Principi di base	5
	Definizione 1.10 (Prodotto Condizionato)	6
	Definizione 1.11 (Disposizioni)	6
	Proposizione 1.1 (Fattoriale Discendente)	6
	Definizione 1.12 (Permutazioni)	7
	Definizione 1.13 (Combinazioni)	7
	Proposizione 1.2 (Numero Combinazioni)	7
	Definizione 1.14 (Combinazione di 1n)	8
	Definizione 1.15 (Combinazione tipo (a,b))	8
	Definizione 1.16 (Combinazione tipo (a,b,c))	8
	Definizione 1.17 (Anagramma)	8
	Proposizione 1.3 (Binomio Combinazioni tipo (a,b,c))	9
	Proposizione 1.4 (Somma binomi)	9
	- /	9
		10

	Definizione 1.18 (Principio di inclusione esclusione)	11
	Definizione 1.19 (Sequenze k-piene)	11
	Definizione 1.20 (Scombussolamenti)	
	Definizione 1.21 (Partizione)	
	Definizione 1.22 (Numero di Bell)	
		13
		13
		14
2	Statistica Descrittiva	15
	Definizione 2.1 (Popolazione)	15
	Definizione 2.2 (Carattere)	
	,	15
		15
		15
		15
		15
		16
		16
		16
		17
		17
		17
		18
		18
		18
		18
		18
		19
		19
3	Probabilità	20
	Definizione 3.1 (Fenomeno)	20
		20
		20
	_ ,	20
	,	21
		21
		21
		21
		22

←Indice	INDICE	3/23
Definizione 3.9	(Formula delle probabilità totali)	22
Definizione 3.10	O (Formula di Bayes)	22
Definizione 3.11	1 (Eventi indipendenti)	23

1 Combinatoria

"Serve a contare quanti elementi ci sono in un insieme. (risponde alla domanda "Quante sono?")."

Insiemi

Negli insiemi non conta l'ordine (infatti si usano le " $\{\}$ ", se contava l'ordine si usavano le "()") e gli elementi ripetuti. Insieme finito $\{1, \ldots, n\}$. Insieme infinito $\{1, \ldots\}$.

Definizione 1.1 (Cardinalità)

Un insieme A ha cardinalità n se contiene esattamente n elementi, o equivalentemente se \exists una corrispondenza biunivoca $A \longleftrightarrow \{1, 2, \dots, n\}$.

La cardinalità si indica |A| = n.

Definizione 1.2 (Insieme finito)

Un insieme A si dice finito se $\exists n \in \mathbb{N}$ t.c. A contiene esattamente n elementi distinti.

Osservazione: L'insieme vuoto è l'unico insieme finito di cardinalità 0.

Definizione 1.3 (Cardinalità insiemi infiniti)

Due insiemi infiniti hanno la stessa cardinalità se \exists una biezione (Corrispondenza biunivoca) tra di loro.

Definizione 1.4 (Insieme numerabile)

Un insieme A si dice numerabile se ha la stessa cardinalità di $\{1, 2, 3, \dots\}$.

In altre parole un insieme è numerabile se i suoi elementi possono essere messi in un a fila infinità.

Insiemi numerabili sono \mathbb{N} (anche se più grande di $\{1, 2, 3, \dots\}$), $\mathbb{Z} = \{0, 1, -1, 2, -2, 3, \dots\}$, $\mathbb{Q}_{>0}$ dalla dimostrazione classica di Cantor.

Un insieme non numerabile sono delle sequenze infinite di bit 0/1. Dimostrazione non riportata.

Definizione 1.5 (*Insieme Discreto*)

Un insieme è discreto se è finito o numerabile.

Definizione 1.6 (Combinatoria di base)

Costruisce schemi "complessi" partendo da schemi semplici riuscendo a controllarne la cardinalità. (si opera solo con insiemi finiti).

Definizione 1.7 (Prodotto Cartesiano)

Siano A, B insiemi il cui prodotto cartesiano $A \times B$ è l'insieme delle coppie ordinate $(a, b), a \in A, b \in B$.

generalizzando:

$$A_1 \times A_2 \times \cdots \times A_k = \{(a_1, \dots, a_k) \mid a_i \in A_i, \forall i \in 1, \dots, k\}$$

n-esima potenza cartesiana di n, ovvero $A \times \cdots \times A = A^n$.

Definizione 1.8 (Sequenza)

Una sequenza (o lista) finita di lunghezza n di elementi di A è un elemento (a_1,\ldots,a_n) del prodotto cartesiano A^n .

Sono **successioni** delle sequenze di lunghezza ∞ , tipo $\{a_1, \dots\}$.

Definizione 1.9 (*Insieme delle parti*)

Sia A un insieme, l'insieme delle parti $\mathcal{P}(A)$ è l'insieme i cui elementi sono tutti i sotto insiemi di A, inclusi l'insieme vuoto Ø e A stesso. (insieme i cui elementi sono insiemi).

La cardinalità dell'insieme delle parti è $|\mathcal{P}A| = 2^{|A|}$.

Teorema 1.1 (Insieme delle parti)

Sia A un insieme di |A| = n, allora \exists una corrispondenza biunivoca tra $\mathcal{P}(A) \ e \ \{0,1\}^n$.

Dimostrazione Teorema 1.1: Vediamo un caso particolare $A = \{1, 2, 3\}$

$$\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \emptyset, A$$

$$\updownarrow$$

$$100 = (1, 0, 0), 010, 001, 110, 101, 011, 000, 111$$

Per il caso generale $|A| = n, A = \{a_1, \dots, a_n\}$ procediamo come prima facendo corrispondere ad'un sotto insieme $S \subseteq A$ la sequenza binaria B il uci i-esimo bit è $1 \iff a_i \in S$.

Principi di base

1. **Principio di ugualianza:** Siano A, B insiemi qualunque in corrispondenza biunivoca allora questi hanno lo stesso numero di elementi.

Generalizzazione del Principio di ugualianza: $F: A \to B$ si dice k: 1 (k a 1) se è surriettiva e a ogni elemento di B corrispondono esattamente k elementi di A. In questo caso |A|=k|B|. Il principio di ugualianza corrisponde al caso k=1.

2. **Principio della somma:** Siano A, B insiemi qualunque disgiunti (non hanno elementi in comune), allora $|A \cup B| = |A| + |B|$.

Ricorda: Si dice Distinti se gli insiemi sono diversi per almeno un elemento.

3. **Principio del prodotto:** Siano A, B insiemi qualunque, allora $|A \times B| = |A| \cdot |B|$.

Definizione 1.10 (Prodotto Condizionato)

Siano A, B insiemi. $C \subseteq A \times B$ è sotto insieme del prodotto cartesiano e si dice prodotto condizionato di tipo (n, m) se sono soddisfatte queste condizioni:

- 1. $\exists n$ elementi di A che compaiono come 1° coefficente in un elemento di C.
- 2. Fissata la 1° coordinata di un elemento di C, $\exists m$ elementi di B che possono essere aggiunti come 2° coordinata.

In altri termini possiamo scegliere la 1° coordinata in n modi e fissata questa scelta possiamo scegliere la 2° in m modi.

Se per tutti i primi n coefficenti si hanno m secondi coefficienti si ha il prodotto condizionato, altrimenti no.

Nota: Una coordinata può non essere scelta.

Definizione 1.11 (Disposizioni)

Sia $A = \{1, ..., n\}$ una disposizione di lungheza k in A, è una sequenza $(a_1, ..., a_k)$ di A t.c. $a_i \neq a_j, \forall i \neq j$.

Proposizione 1.1 (Fattoriale Discendente)

Le disposizioni di lunghezza k in $\{1, \ldots, n\}$ sono

$$\underbrace{n(n-1)\cdots(n-k+1)}_{k} = (n)_{k}$$

Dimostrazione Proposizione 1.1: Abbiamo n scelte per la prima coordinata. Fissata la prima coordinata ho n-1 scelte per la seconda coordinata. Fissate le prime due coordinate ho n-2 scelte per la terza

coordinata, e cosi via. Abbiamo quindi un prodotto condizonato di tipo $(n, n-1, \ldots, n-k+1)$.

Definizione 1.12 (Permutazioni)

Una permutazione di lunghezza n è una disposizione di lunghezza n in $\{1, \ldots, n\}$.

Conseguenza: Dal Fattoriale Discreto, il numero di permutazioni di lunghezza $n \ earrow (n)_n = 1 \cdot 2 \dots n = n!$.

Definizione 1.13 (Combinazioni)

Sia $A = \{1, ..., n\}$, una combinazione è un sotto insieme di A con a elementi. (l'ordine non importa).

Proposizione 1.2 (Numero Combinazioni)

Siano a, b, n con a + b = n, allora questi 3 insiemi sono in biezione tra loro.

- 1. Sotto insieme di $\{1, \ldots, n\}$ con a elementi.
- 2. Sotto insieme di $\{1, \ldots, n\}$ con b elementi.
- 3. Sequenza binarie lunghezza n con a volte 1 e b volte 0.

Questi insiemi hanno esattamente $\frac{(n)_a}{a!} = \frac{(n)_b}{b!} = \frac{n!}{a!b!}$ elementi. Questo numero $\frac{(n)_a}{a!} = \binom{n}{a} = \binom{n}{a}$ (coefficente binomiale).

Coefficente binomiale:

$$(x+y)^n = \sum_{a=0}^n \binom{n}{a} x^a y^{n-a} = \sum_{a,b|a+b=n} \binom{n}{a,b} x^a y^b$$

Osservazione: Negli esercizi considerare il numero sopra con "l'insieme di elementi" e quello sotto "quante posizioni in cui metterli".

Dimostrazione Proposizione 1.2: (Parte1) La corrispondenza tra 1 e 3 la si dimostra con il seguene esempio: n=5, a=3

$$\begin{aligned} &\{1,2,3\} \leftrightarrow 11100 \\ &\{1,2,4\} \leftrightarrow 11010 \\ &\{1,2,5\} \leftrightarrow 11001 \\ &\{1,3,4\} \leftrightarrow 10110 \end{aligned}$$

Tutte le sequenze hanno 3 "1" e 2 "0". Poi 1 e 2 sono in biezione data dal completamento. (Parte2) Pensiamo di avere una funzione fatta

cosi: Nel dominio abbiamo le disposizioni di lunghezza a in $\{1, \ldots, n\}$ e nel codominio abbiamo i sotto insiemi di $\{1, \ldots, n\}$ con a elementi. Per esempio:

$$(2,5,1) \mapsto \{1,2,5\}$$

$$(3,5,4) \mapsto \{3,4,5\}$$

$$(3,4,5) \mapsto \{3,4,5\}$$

Non è in biezione perchè non è ignettiva. (Nel caso generale abbiamo una funzione a!:1).

Quindi le disposizioni sono A! volte i sotto insiemi e quindi i sotto insiemi con a elementi sono $\frac{(n)_a}{a!} = \frac{n(n-1)...(b+1)}{a!} = \frac{n(n-1)...3\cdot 2\cdot 1}{a!b!} = \frac{n!}{a!b!}$.

Definizione 1.14 (Combinazione di 1...n)

Una combinazione di lunghezza a in $\{1, \ldots, n\}$ è un sotto insieme di $\{1, \ldots, n\}$ con a elementi.

Definizione 1.15 ($Combinazione\ tipo\ (a,b)$)

Una combinazione di tipo (a,b) con (a+b=n) è una coppia ordinata (A,B) di sotto insiemi di $\{1,\ldots,n\}$ con $|A|=a,|B|=b,A\cup B=\{1,\ldots,n\}$.

Definizione 1.16 (Combinazione tipo (a,b,c))

Una combinazione di tipo (a,b,c) con (a+b+c=n) è una terna ordinata (A,B,C) di sotto insiemi di $\{1,\ldots,n\}$ con $|A|=a,|B|=b,|C|=c,A\cup B\cup C=\{1,\ldots,n\}.$

Definizione 1.17 (Anagramma)

Sequenze binarie, ternarie, quaternarie, ecc, ordinate di numeri $\{1, \ldots, n\}$, con $n = a + b + \ldots$, di tipo (a, b, c, \ldots) in biezione con le sequenze in cui compare a volte "1", b volte "2", c volte "3", ecc.

Esempio di riferimento (terna):

$$(\{1,2\},\{3\},\{4\}) \leftrightarrow (1,1,2,3)$$

$$(\{1,2\},\{4\},\{3\}) \leftrightarrow (1,1,3,2)$$

$$(\{1,3\},\{2\},\{4\}) \leftrightarrow (1,2,1,3)$$

$$(\{2,4\},\{1\},\{3\}) \leftrightarrow (2,1,3,1)$$

Proposizione 1.3 ($Binomio\ Combinazioni\ tipo\ (a,b,c)$)

Le combinazioni di tipo (a, b, c) con (a + b + c = n) sono $\binom{n}{a, b, c} = \frac{n!}{a!b!c!}$.

Dimostrazione Proposizione 1.3: Posso scegliere A in $\binom{n}{a}$ modi. Fissato A posso sciegliere B in $\binom{n-a}{b}$ modi. C è univocamente determinato da A, B.

Il numero di combinazioni di tipo
$$(a,b,c)$$
 è $\binom{n}{a}\cdot\binom{n-a}{b}=\frac{n!}{a!(n-a)!}\cdot\frac{(n-a)!}{b!(n-a-b)!}=\frac{n!}{a!b!c!}$.

Osservazione: $\binom{n}{a,b,c} = \binom{n}{b,c,a} = \ldots$, in particolare con due indici abbiamo $\binom{n}{a} = \binom{n}{b}$ se (a+b=n).

Proposizione 1.4 (Somma binomi)

$$\binom{n}{a,b} = \binom{n-1}{a-1,b} + \binom{n-1}{a,b-1} \text{ che è uguale a } \binom{n}{a} = \binom{n-1}{a-1} + \binom{n-1}{a}.$$
Più in generale $\binom{n}{a,b,c} = \binom{n-1}{a-1,b,c} + \binom{n-1}{a,b-1,c} + \binom{n-1}{a,b,c-1}.$

Dimostrazione Proposizione 1.4: Le combinazioni di tipo (a,b,c) sono in biezione con le combinazioni di tipo:

- $\{(A, B, C) \mid n \in A\}$ sono $\binom{n-1}{a-1.b.c}$.
- $\{(A, B, C) \mid n \in B\}$ sono $\binom{n-1}{a, b-1, c}$.
- $\{(A, B, C) \mid n \in C\}$ sono $\binom{n-1}{a, b, c-1}$.

Cammino Reticolare

Il cammino reticolare nel piano cartesiano è il percorso che congiunge l'orgine degli assi a un punto (a,b) tramite passi verticali o orrizontali di 1.

Ottima interpretazione grafica di una combinazione di tipo (a,b). Quanti sono i cammini reticolari da (0,0) a (a,b)?

Possiamo codificare i passi inverticali con "1" e i passi orrizontali con "0". Cosi i cammini grafici diventano sequenze binarie. La lunghezza di tali sequenze è a + b, con a volte "0" e b volte "1". Abbiamo ottenuto un anagramma di tipo (a,b).

Osserviamo che abbiamo una biezione tra cammini e anagrammi e i cammini sono quindi $\binom{a+b}{a,b}$.

Numeri di Fibonacci

Conta i sotto insiemi di $\{1, \ldots, n\}$ che non hanno 2 numeri consecutivi.

- F_n = numero sotto insiemi di $\{1, \ldots, n\}$ senza consecutivi.
- $F_{n,k}$ = numero sotto insiemi di $\{1, \ldots, n\}$ di cardinalità k senza consecutivi.

$$F_n = \sum_{k=0}^{n} F_{n,k} = \sum_{k=0}^{n} {n-k+1 \choose k}$$

Dimostrazione: Arriviamo alla formula con un esempio, $F_{8,3}$. Vediamo questi insiemi come sequenze di lunghezza 8 con 3 "1" non consecutivi (astrazione simile Camminio Reticolare). Devo riuscire ad'usare il principio d'equivalenza con un insieme di cui so la cardinalità. Sò che dopo il primo e secondo "1" c'è sempre uno "0", quindi cancello questo "0" così ho sequenze da 6. Ora "1" possono essere consecutivi ma posso tornare univocamente alla precedente rappresentazione, quindi è biunivoco. Deduciamo che $F_{8,3} = \binom{6}{3} = 20$.

In generale $F_{n,k}$ sono le sequenze di lunghezza n con k volte "1", non consecutivi. Cancellando gli "0" che seguono i primi k-1 "1" otteniamo una sequenza binaria lunga n-k+1, con k "1".

Tali sequenze sono $F_{n,k} = \binom{n-k+1}{k}$ e quindi $F_n = \sum_{k=0}^n \binom{n-k+1}{k}$. A n non ci arrivo perchè il coefficente binomiale da 0 quando k > n - k + 1.

Versione ricorsiva di $F_n, \forall n \geq 3$ si ha

$$F_n = F_{n-1} + F_{n-2}$$

Dimostrazione: Suddividiamo i sotto insiemi di $\{1, ..., n\}$ senza consecutivi in due gruppi.

- 1. A_n quelli che contengono n.
- 2. B_n quelli che non contengono n.

Notare che $F_n=|F_{n-1}|+|F_{n-2}|$. In generale gli elementi di B_n non contengono n, quindi $B_n=F_{n-1}$ e togliendo n agli elementi di A_n rimane un qualunque sotto insiemi di $\{1,\ldots,n-2\}$ senza consecutivi. Quindi $|A_n|=F_{n-2}$.

Definizione 1.18 (Principio di inclusione esclusione)

La cardinalità dell'unione di due insiemi:

$$|A \cup B| = |A| - |B| - |A \cap B|$$

La cardinalità dell'unione di tre insiemi:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

La cardinalità dell'unione di n insiemi:

$$|A_1 \cup \dots \cup A_n| = \sum_{\emptyset \neq I \subseteq \{1,\dots,n\}}^n (-1)^{|I|-1} |\bigcap_{i \in I} A_i|$$

Definiamo l'insieme complementare con $(A_1, \ldots, A_n)^C$. Permette di risolvere tanti quesiti più facilmente.

Per convenzine definiamo $\bigcap_{i\in\emptyset}=U$, l'intero insieme. Quindi otteniamo che $|(A_1,\ldots,A_n)^C|=|\bigcap_{i\in\emptyset}A_i|+\sum_{\emptyset\neq I\subseteq\{1,\ldots,n\}}^n(-1)^{|I|-1}|\bigcap_{i\in I}A_i|$ che è come dire $\sum_{I\subseteq\{1,\ldots,n\}}^n(-1)^{|I|}|\bigcap_{i\in I}A_i|$.

Definizione 1.19 (Sequenze k-piene)

Una sequenza k-piena è una sequenza in cui ogni numero da 1 a k compare almeno una volta. (non compaiono altri numeri).

Usando il principio di inclusione esclusione scopro che il numero di sequenze k-piene lunghe n e con coefficenti in $\{1, \ldots, k\}$ è

$$|S| = \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$$

Definizione 1.20 (Scombussolamenti)

Uno scombussolamento è una permutazione di $\{1, \ldots, n\}$ in cui per ogni i il numero non sta al posto i.

Usando il principio di inclusione esclusione scopro che il numero di scombussolamenti di n coefficenti è

$$|S| = \sum_{j=0}^{n} (-1)^{j} (n)_{n-j}$$

Definizione 1.21 (Partizione)

Una partizione di A è una suddivisione in sotto insiemi di A. Cioè un insieme di sotto insiemi detti blocchi della partizione $\{s_1, s_2, s_3, ...\}$ tale che:

1.
$$S_i \cap S_j = \emptyset, \forall i \neq j$$

2.
$$\bigcup_i S_i = A$$

In altre parole la partizione è la suddivisione e i blocchi sono i pezzi della partizione.

Nota: Le partizioni possono essere usate per "raggruppare" le permutazioni degli stessi elementi. Non è una fuzione biunivoca.

Definizione 1.22 (Numero di Bell)

Il numero di partizioni di $\{1, ..., n\}$ si dice numero di Bell e si indica con B_n . Si calcola con la formula ricorsiva per $\forall n \geq 2$:

$$B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_n$$

Si assume $B_0 = 1$ per convenzione.

Dimostrazione Definizione 1.22: Poniamo $B_{n,k}$ come il numero di partizioni di $\{1,\ldots,n\}$ in cui n compare in un blocco con k elementi.

Calcoliamo $B_{n,k}$:

I numeri nel blocco che contiene n li possiamo scegliere in $\binom{n-1}{k-1}$ modi. Gli altri n-k numeri li possiamo partizionare in B_{n-k} modi. Implicando:

$$B_{n,k} = \binom{n-1}{k-1} B_{n-k}$$

Ottenendo così

$$B_n = \sum_{k=1}^n \binom{n-1}{k-1} B_{n-k}$$

Equivalente a quella dell'enunciato ponendo h = n - k:

$$B_h = \sum_{h=0}^{n-1} \binom{n-1}{n-h-1} B_h = B_h = \sum_{h=0}^{h-1} \binom{h-1}{h} B_h$$

Triangolo di Bell

Trucco per calcolare il numero di Bell:

Definizione 1.23 (Numero di Stirling)

Indichiamo con $S_{n,k}$ il numero di partizioni di $\{1,\ldots,n\}$ in k blocchi. Si calcola con la formula ricorsiva:

$$S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}$$

Si assume $S_{n,n} = 1$ e $S_n, 1 = 1$.

Dimostrazione Definizione 1.23: Contiamo le partizioni in k blocchi in cui n è da solo. Gli altri n-1 numeri devono essere partizionati in k-1 blocchi: $S_{n-1,k-1}$ scelte.

Contiamo ora quelle in cui n non è in blocco da solo (procedendo per scelte successive):

- Partizioniamo i numeri da 1 a n-1 in k blocchi: $S_{n-1,k}$ scelte.
- Scegliamo in quale blocco inserire n: k scelte.

Triangolo di Stirling

Trucco per calcolare i numeri di Stirling:

Ogni numero è la somma di quello in alto a sinistra più quello in alto a destra moltiplicato per il numero di diagonale.

2 Statistica Descrittiva

"Si occupa di presentare/descrivere i dati raccoli in un indiagine nel modo migliore possibile (sintetico, comunicativo)."

Definizione 2.1 (Popolazione)

Insieme su cui vogliamo effettuare un'indagine.

Definizione 2.2 (Carattere)

Un carattere è quello che vogliamo studiare dalla popolazione.

- Carattere Quantitativo se assumiamo valori numerici che esprimono una misura.
- Carattere Qualitativo se non è qualitativo.

I caratteri sarebbero distinguibili anche in discreti e continui.

Definizione 2.3 (*Unità (Statistica)*)

Un unità (statistica) è un elemento della popolazione.

Definizione 2.4 (Campione)

Un campione è un sotto insieme (rappresentativo) della popolazione del quale possiamo determinare il valore del campione.

Definizione 2.5 (Modalità)

La modalità sono i valori che può assumere il carattere.

Definizione 2.6 (Classi)

Se le modalità sono molto numerose (o infinite) è conveniente raggrupparle in **classi**.

Una classe, solitamente, è determinata dal **confine inferiore e superiore**. Il **valore centrale** di una classe è la media dei confini.

Se abbiamo un solo confine chi fa l'indagine può decidere un valore rappresentativo come valore centrale.

Definizione 2.7 (Frequenza (assoluta))

La frequenza (assoluta) di una modalità è il numero di volte in cui compare nel campione.

Definizione 2.8 (Frequenza relativa)

La frequenza relativa è il rapporto fra la frequenza assoluta e la cardinalità del campione.

$$F_R = \frac{F_A}{|campione|}$$

Definizione 2.9 (Istogramma)

L 'istogramma è un grafico che rappresenta i risultati di un'indagine.

Ad'ogni modalità (classe) è associato un rettangolo con base proporzionale all'ampiezza e area proporzionale alla frequenza.

Definizione 2.10 (Media Campionaria)

La media campionaria si effettua su un carattere quantitativo su un campione di n elementi.

$$\overline{x} = \overline{x}_n = \frac{1}{n}(x_1 + \dots + x_n)$$

Ricordiamo delle proprietà delle sommatorie:

•
$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

•
$$\sum_{i=1}^{n} c = nc$$

$$\bullet \ \sum_{i=1}^{n} (ca_i) = c \sum_{i=1}^{n} a_i$$

•
$$\sum_{i=1}^{n} (\sum_{j=1}^{n} (a_i b_j)) = (\sum_{i=1}^{n} a_i) \cdot (\sum_{i=1}^{n} b_i)$$

Definizione 2.11 (Linearità della media)

Siano x, y, z tre caratteri legati dalla relazione z = ax + by con costanti a, b.

$$\overline{z} = a\overline{x} + b\overline{y}$$

Caso particolare è con y=1 ottenendo così z=ax+b e quindi $\overline{z}=a\overline{x}+b$. Può essere usato per semplificare i conti.

Dimostrazione Definizione 2.11:

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i = \frac{1}{n} \sum_{i=1}^{n} (ax_i + by_i) = \frac{1}{n} a \sum_{i=1}^{n} x_i + \frac{1}{n} b \sum_{i=1}^{n} y_i = a\overline{x} + b\overline{y}$$

Definizione 2.12 (Media Ponderata)

La media ponderata si usa per dare diversa importanza (peso) ai vari elementi d'un campione.

$$\overline{x_w} = \frac{x_1 w_1 + \dots + x_n w_n}{w_1 + \dots + w_n}$$

Osservazione: La media campionaria si ottiene dando peso 1 a tutti gli elementi.

Definizione 2.13 (Varianza)

La varianza di x è la media dei quadrati della distanza da \overline{x} .

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

In altre parole indica la dispersione dei valori, ovvero da una misura di qunato i dati sono lontanti tra dolo.

Dimostrazione Definizione 2.13: Ricordiamo la formula della parabola $at^2 + bt + c = 0, a > 0$ e con vertice d'ascissa -b/2a.

Possiamo fissare un punto a caso t. Consideriamo la media dei quadrati delle distanze date come:

$$\frac{(x_1-t)^2+\cdots+(x_n-t)^2}{n}$$

Per quale t questa quantità è minima? $\frac{1}{n} \sum_{i=1}^{n} (x_i - t)^2 = \frac{1}{n} (\sum_{i=1}^{n} (t^2 - 2x_1t + x_1^2)) = t^2 - \frac{2t}{n} \sum_{i=1}^{n} x_i + \frac{1}{n} \sum_{i=1}^{n} x_i^2 = t^2 - 2\overline{x}t + \frac{1}{n} \sum_{i=1}^{n} x_i^2$. Il valore minimo lo otteniamo per $t = \frac{-(-2\overline{x})}{2\cdot 1} = \overline{x}$.

Osservazione: Dal calcolo precedente con \overline{x} , $\sigma_x^2 = \overline{x}^2 - 2\overline{x}\overline{x} - \overline{x}^2 = \overline{x}^2 - \overline{x}^2$. Osservazione: La varianza è sempre positiva.

Proprietà 2.1 (1° varianza)

La varianza rimane invariata per traslazioni di costanti.

$$\sigma_y^2 = \sigma_x^2$$

Dimostrazione Proprietà 2.1: Sia y = x + c con c costante. Otteniamo $\overline{y} = \overline{x} + c$ ovvero $\overline{y^2} = \overline{x^2 + 2cx + c^2} = \overline{x^2} + 2c\overline{x} + c^2$ che ci da $\sigma_y^2 = \overline{y^2} - \overline{y}^2 = \overline{x^2} + 2c\overline{x} + c^2 - (\overline{x}^2 + 2c\overline{x} + c^2) = \sigma_x^2$.

Proprietà 2.2 (2° varianza)

La varianza aumenta per prodotto con costanti.

$$\sigma_y^2 = a^2 \sigma_x^2$$

Dimostrazione Proprietà 2.2: Sia y = ax con a costante. Otteniamo $\overline{y} = a\overline{x}$ ovvero $\overline{y^2} = \overline{a^2x^2} = a^2\overline{x^2}$ che ci da $\sigma_y^2 = \overline{y^2} - \overline{y}^2 = a^2\overline{x^2} - a^2\overline{x}^2 = a^2\sigma_x^2$.

Definizione 2.14 (Correlazione Positiva)

Dati due caratteri x e y diciamo che sono positivamente correlati se al crescere di uno ci aspettiamo che cresca anche l'altro.

Definizione 2.15 (Correlazione Negativa)

Dati due caratteri x e y diciamo che sono negativamente correlati se al crescere di uno ci aspettiamo che l'altro diminuisca.

Definizione 2.16 (Covarianza)

La covarianza di x e y è

$$\sigma_{x,y} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \overline{xy} - \overline{xy}$$

In altre parole se x e y sono positivamente correlate allora $(x_i - \overline{x})$ e $(y_i - \overline{y})$. Ci aspettiamo che siano concordi e quindi che il prodotto sia maggiore di zero.

Osservazione: $\sigma_{x,x} = \sigma_x^2$.

Dimostrazione Definizione 2.16:
$$\sigma_{x,y} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i) - x_i \overline{y} - \overline{x} y_i + \overline{x} \overline{y} = \overline{x} \overline{y} - \overline{x} \overline{y}.$$

Definizione 2.17 (Retta ai minimi quadrati)

La retta ai minimi quadratici è la retta che minizza i quadrati degli errori (cioè delle lunghezze dei segmenti verticali.)

La somma dei quadrati degli errori è

$$S(m,q) = \sum_{i=1}^{n} (y_i - mx_i - q)^2$$

vogliamo m e q in modo che queta quantità sia minima.

$$S(m,q) = \sigma_y^2 + m^2 \sigma_x^2 - em\sigma_{x,y} + (\overline{y} - q - m\overline{x})^2$$

Osservazione: Sia $\overline{y} = m\overline{x} + q$, il punto $(\overline{x}, \overline{y}) \in \text{retta}$ è $S(m,q) = \sigma_y^2 + m^2\sigma_x^2 - 2m\sigma_{x,y} \implies m = \frac{-b}{2a} = -\sigma_{x,y}\frac{1}{2\sigma_x^2} = \frac{\sigma_{x,y}}{\sigma_x^2}$.

Definizione 2.18 (Media geometrica)

La media geometrica permette di ottenere la variazione percentile media dei fattori moltiplicativi:

$$\overline{x_g} = \sqrt[n]{x_1 \cdot \dots \cdot x_n}$$

$$\overline{x_g}^n = x_1 \cdot \dots \cdot x_n$$

 ${\it Osservazione}:$ Ogni variazione percentile corrisponde ad'una moltiplicazione.

La **media armonica** è l'inverso della media degli inversi.

3 Probabilità

"Si occupa di prevedere quanto è facile/possibile che qualcosa accada. Consiste in passaggi logici rigorosi partendo da un modello fisso (spazio di probabilità)."

Definizione 3.1 (Fenomeno)

Un fenomeno è qualcosa che acacde e che porta ad'un esito o risultato.

Un fenomeno può essere:

- Deterministico se il risultato può essere predetto con esattezza.
- Aleatorio se il risultato è imprevedibile.

Definizione 3.2 (Evento)

Un evento è un insieme di possibili risultati.

Definizione 3.3 (Valutazione di probabilità)

La valutazione di probabilità è una funzione che ad'ogni evento associa un numero tanto più grande quanto riteniamo che l'evento possa accadere.

Definizione 3.4 (Evento coerente)

Sia Ω l'insieme dei risultati. Un evento è un sotto insieme di Ω di cui ha senso calcolare la valutazione di probabilità, ossia:

- 1. Se A_1, \ldots sono eventi allora $\bigcup_i A_i$ è un evento.
- 2. Se A è un evento allora A^C è un evento.
- 3. Ω è un evento $(\Omega \in \mathcal{A})$.

Osservazione: Una collezione di sotto insiemi di ω che soddisfa tutti i presupposti si dice **famiglia coerente d'eventi**, con simbolo \mathscr{A} .

Osservazione: Non tutti i sotto insiemi di Ω sono eventi.

La valutazione di probabilità, $P,\ P:\mathscr{A}\to\mathbb{R}_{\geqslant 0},$ deve soddisfare le proprietà:

- 1. $P(\Omega) = 1$.
- 2. $P(A) \ge 0, \forall evento A$.

3. Se A_1, \ldots sono eventi disgiunti allora

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Osservazione: P non ha dominio Ω ma l'insieme degli eventi. Non calcoliamo la P di un risultato ma di un evento.

Definizione 3.5 (Probabilità uniforme)

La probabilità è uniforme se:

- 1. Se Ω è finito con $|\Omega| = n$.
- 2. Se ogni sotto insieme di Ω è un evento.
- 3. Se ω_1 e ω_2 sono due risultati allora $P(\{\omega_1\}) = P(\{\omega_2\})$.

Dalle proprietà della valutazione di probabilità deduciamo anche

$$P(\omega_1) + \cdots + P(\omega_n) = P(\Omega) = 1$$

In generale abbiamo quindi

$$P(\omega) = \frac{1}{n}, \forall \omega \in \Omega$$

Definizione 3.6 (Probabilità eventi)

Sia
$$A \in \Omega, A = \{\omega_1, \ldots, \omega_k\}$$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\#risultatifavorevoli}{\#risultatipossibili}$$

Ragionamento: $P(A) = P(\omega_1) + \cdots + P(\omega_k) = \frac{1}{n} + \cdots + \frac{1}{n} = \frac{k}{n}$, se |A| = k. Osservazione: Vale uno spazio con proprietà uniforme.

Definizione 3.7 (Non-esempio)

Un non-esempio è qualcosa che non funziona.

Considerazioni elementari

- Se E è un evento allora E^C è un evento.
- $E \cup E^C = \Omega$ è un uninoe disguinta.

• Se $P(E) + P(E^C) = 1$ allora $P(E^C) = 1 - P(E)$.

Osservazione: Il principio di inclusione-esclusione vale anche per l'unione di più di due probabilità.

Definizione 3.8 (Probabilità condizionata)

Chiamiamo probabilità condizionata la probabilità che accada l'evento B sapendo che accade l'evento A prima di B.

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

In altre parole riparametrizziamo la probabilità di B da Ω al sotto insieme codiviso con A.

Osservazione: Ponendo $P'(B) = P(B \mid A)$ allora P' soddisfa le proprietà delle valutazioni di probabilità:

- $P'(\Omega) = P(\Omega \mid A) = \frac{P(\Omega \cap A)}{P(A)} = 1.$
- $P'(A_1 \cup A_2) = P'(A_1) + P'(A_2)$ se A_1, A_2 sono disgiunti.

Osservazione: $P(A \cap B) = P(B \mid A)P(A)$.

Definizione 3.9 (Formula delle probabilità totali)

Sia Ω partizionato in $\{A_1, A_2, \dots\}$. Per sapere la probabilità d'un evento B condizionato da un qualsiasi altro evento.

$$P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B \mid A)P(A)$$

Definizione 3.10 (Formula di Bayes)

Siano A, B eventi.

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Dimostrazione Definizione 3.10: Siano
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 e $P(B \mid A) = \frac{P(A \cap B)}{P(A)}$. Allora $P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A) = P(A \cap B)$.

Definizione 3.11 (Eventi indipendenti)

A e B sono eventi indipendenti se sapere che accade uno dei due non cambia la probabilità che accada l'altro.

$$P(B \mid A) = P(B)$$

$$P(A \mid B) = P(A)$$

Dato che $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = P(A)$ allora $P(A \cap B) = P(A)P(B)$.

Definizione 3.12 (Variabili Aleatorie)

Sia Ω uno spazio di probabilità, A un insieme coerente di eventi e P la valutazione di probabilità.

Una variabile aleatoria è una funzione $X : \Omega \to \mathbb{R}$ tale che $\forall a \in \mathbb{R}, \{\omega \in \Omega \mid X(\omega) \leq a\}$, oppure $X \leq a$, deve essere un evento.

Per una variabile aleatoria non ha senso scrivere P(X), ma ha senso scrivere $P(X \leq a)$.

Definizione 3.13 (Funzione di ripartizione)

Sia X una variabile aleatoria. La sua funzione di ripartizione F_X è una funzione F_X : $\mathbb{R} \to \mathbb{R}$ definita come $F_X(t) = P(X \leqslant t)$.