Mathematik I

Lineare Algebra WS 2024

1 Logik

Definition 1.1. Logik ist die *Lehre vom Argumentieren*, bzw. die *Lehre vom Schlussfolgern*. Sie hat das Ziel, die Regeln des Argumentierens so streng zu setzen, dass Widersprüche und Paradoxen möglichst ausgeschlossen sind.

1.1 Begriffe in der Logik

Aussage: Ein Satz, der in einem gegebenen Kontext eindeutig wahr oder falsch ist

Konjunktion: Eine logische Verknüpfung (z. B. "und", "oder") Negation: Umkehrung des Wahrheitswertes einer Aussage

Implikation: Aus Aussage A folgt Aussage B

Tautologie: Eine Aussage, die immer wahr ist

Kontradiktion Eine widersprüchliche Aussage, die immer falsch ist

1.2 Logische Gesetze

De-Morgansche Gesetze: $\neg (A \land B) \iff \neg A \lor \neg B$

 $\neg (A \lor B) \Longleftrightarrow \neg A \land \neg B$

Kommutativgesetz: $A \wedge B \iff B \wedge A$

 $A \lor B \iff B \lor A$

Assoziativgesetz: $A \wedge (B \wedge C) \iff (A \wedge B) \wedge C$

 $A \lor (B \lor C) \iff (A \lor B) \lor C$

Distributivgesetz: $A \wedge (B \vee C) \iff (A \wedge B) \vee (A \wedge C)$

 $A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C)$

Absorptions gesetz: $A \land (A \lor B) \iff A$

 $A \vee (A \wedge B) \iff A$

Quantoren 1.3

Existenzquantor: $\exists n \in \mathbb{N}$ Es existiert ein n in der Menge der natürlichen Zahlen, für das gilt ...

Allquantor: $\forall n \in \mathbb{N}$ Für alle Zahlen n in der Menge der natürlichen Zahlen gilt, ...

Beweisarten 1.4

1.4.1 Direkter und Indirekter Beweis

Direkter Beweis: $A \longrightarrow B$ Beispiel n ist gerade $\longrightarrow n^2$ ist gerade $\exists n \in \mathbb{N} : n = 2k \Longrightarrow n^2 = (2k)^2 = 4k^2 = \underbrace{2(2k)}_{\in \mathbb{N}}$

Indirekter Beweis (Widerspruchsbeweis): $\neg A \longrightarrow \text{Widerspruch}$

Beispiel Behauptung: $\sqrt{2}$ ist irrational Annahme: $\sqrt{2}$ ist rational

 $\sqrt{2} = \frac{a}{b} \Longrightarrow 2 = \frac{a^2}{b^2} \Longrightarrow a^2 = 2b^2$ $\Longrightarrow a^2 \text{ ist gerade} \Longrightarrow a \text{ ist gerade}$ $\Longrightarrow a = 2k \Longrightarrow 2b^2 = 4k^2 \Longrightarrow b^2 = 2k^2$

 $\implies b^2$ ist gerade $\implies b$ ist gerade

 \Longrightarrow Widerspruch, da a und b beide gerade sind

Beweis durch vollständige Induktion

Die vollständige Induktion besteht aus folgenden Schritten:

- 1. Induktionsanfang: Zeige, dass die Aussage für ein beliebiges n gilt (meist n=0 oder n=1).
- 2. Induktionsvoraussetzung: durch den Induktionsanfang ist bewiesen, dass es mindestens ein ngibt, für das die Aussage stimmt.
- 3. Induktionsbehauptung: Es wird angenommen, dass wenn die Aussage für n stimmt, dass sie auch für n+1 stimmen muss.
- 4. Induktionsschritt: Beweis, dass die Induktionsbehauptung richtig ist.

Das genaue Vorgehen beim Induktionsbeweis hängt von der konrekten Aussage ab.

Beispiel (Gaußsche Summenformel):

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsanfang (IA):
$$n = 1 \quad 1 = \frac{2}{2} \quad \checkmark$$
Induktionsvoraussetzung (IV):
$$\exists n \in \mathbb{N} : \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
Induktionsbehauptung (IB):
$$\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$$
Induktionsschritt (IS):
$$\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1)+2(n+1)}{2}$$

$$= \frac{n^2+n+2n+2}{2}$$

$$= \frac{(n+1)(n+2)}{2} \quad \square$$

2 Mengenlehre

Definition 2.1. Eine Menge ist eine Zusammenfassung von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres Denkens zu einem Ganzen.

2.1 Beispiele von Mengen

$$\mathbb{N} = \{1,2,3,4,\ldots\} \qquad \qquad \text{(Natürliche Zahlen)}$$

$$\mathbb{Z} = \{\ldots,-3,-2,-1,0,1,2,3,\ldots\} \qquad \text{(Ganze Zahlen)}$$

$$\mathbb{M} = \{1,\pi,a\}$$

$$\mathbb{N} = \{x \in \mathbb{Z} | x = k^2\}$$

$$\mathbb{O} = \emptyset \text{ oder } \{\} \qquad \qquad \text{(Leere Menge)}$$

2.2 Definitionen

Eine Menge A ist eine **Teilmenge** von B, wenn jedes Element von A auch in B enthalten ist.

$$A \subseteq B \iff \forall x (x \in A \Longrightarrow x \in B)$$

Die **Schnittmenge** von A und B ist die Menge aller Elemente, die sowohl Teil von A als auch Teil von B sind.

$$A\cap B=\{x|x\in A\wedge x\in B\}$$

Wenn $A \cap B = \emptyset$, dann heißen A und B **disjunkt**.

Die **Vereinigungsmenge** von A und B ist die Menge aller Elemente, die in A oder in B enthalten sind.

$$A \cup B = \{x | x \in A \lor x \in B\}$$

Sind $A, B, C \subseteq$ gilt:

Kommutativgesetz: $A \cap B = B \cap A$ $A \cup B = B \cup A$

Assoziativgesetz: $A \cap (B \cap C) = (A \cap B) \cap C$ $A \cup (B \cup C) = (A \cup B) \cup C$ Distributivgesetz: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Absorptions gesetz: $A \cap (A \cup B) = A$ $A \cup (A \cap B) = A$

Die **Differenzmenge** von A und B besteht aus allen Elementen der Menge A, die nicht in B enthalten sind.

$$A \setminus B = \{x | x \in A \land x \notin B\}$$