FLOP - FREE LIST OF OPEN PROBLEMS

Contents

1.	Notation	1
2.	Factoring Invertible Matrices over $\mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle y \rangle$	1
3.	Free Lüroth Theorem	2
4.	Jacobian Tame	2
5.	Tensor Product of Free Skew Fields	4
6.	Rational Automorphisms	4
7.	Lifting Automorphisms	6
8.	Rational Derivatives - SOLVED!	7

1. Notation

 $\begin{array}{ll} \mathbb{C}\langle x_1,\ldots,x_{\mathsf{g}}\rangle & \text{free }\mathbb{C}\text{-algebra generated by }x_1,\ldots,x_{\mathsf{g}} \\ \mathbb{C}\langle x_1,\ldots,x_{\mathsf{g}}\rangle & \text{free skew field (nc rationals) of }\mathbb{C}\langle x_1,\ldots,x_{\mathsf{g}}\rangle \\ \mathbb{C}\langle x\rangle_0 & \text{algebra of rationals regular at }0 \\ \mathbb{C}\langle x\leftrightarrow y\rangle & \text{universal skew field of fractions of }\mathbb{C}\langle x\rangle\otimes\mathbb{C}\langle y\rangle \end{array}$

2. Factoring Invertible Matrices over $\mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle y \rangle$

sec:Elem_Mats

Problem 2.1. Suppose $A \in M_n(\mathbb{C}\langle \mathbb{x} \rangle \otimes \mathbb{C}\langle \mathbb{y} \rangle)$. If A is invertible over the \mathbb{C} -algebra $\mathbb{C}\langle \mathbb{x} \rangle \otimes \mathbb{C}\langle \mathbb{y} \rangle$ then do there exist $D \in M_n(\mathbb{C})$ and $E_1, \ldots, E_k \in M_n(\mathbb{C}\langle \mathbb{x} \rangle \otimes \mathbb{C}\langle \mathbb{y} \rangle)$ such that D is diagonal, each E_i is an elementary matrix and $A = DE_1 \ldots E_k$?

Remark 2.2. The above problem is false when n = 2. Cohn gave the following matrix that is not a product of elementary matrices over $\mathbb{C}[x] \otimes \mathbb{C}[y]$:

$$\begin{pmatrix} 1\otimes 1 + x\otimes y & 1\otimes y^2 \\ -x^2\otimes 1 & 1\otimes 1 - x\otimes y \end{pmatrix}.$$

The above counterexample is nonexistent when our matrices are over $\mathbb{C}\langle x \rangle$ instead. The proof of this uses results from $\frac{\text{SuslinCohn06}}{|\text{Coh06}|}$.

Theorem 2.3. If $A \in M_n(\mathbb{C}\langle \mathbb{x} \rangle)$ is invertible, then there exist $D \in M_n(\mathbb{C})$ and $E_1, \ldots, E_k \in M_n(\mathbb{C}\langle \mathbb{x} \rangle)$ such that D is diagonal, each E_i is an elementary matrix and $A = DE_1 \ldots E_k$.

The Cohn counterexample is essentially the only issue:

Theorem 2.4 (Suslin's Stability Theorem). Suppose $A \in M_n(\mathbb{C}[t_1, \ldots, t_g])$ where $n \geq 3$. If $\det(A) = 1$ then there exist $E_1, \ldots, E_k \in M_n(\mathbb{C}[t_1, \ldots, t_g])$ such that $A = E_1 \ldots E_k$.

An "algorithmic" proof of the above theorem can be found in [PW95].

Remark 2.5. An idea related to this is the notion of Jacobian Tame, see 4.

References

[Coh06] P.M. Cohn. Free Ideal Ring and Localizations in General Rings. Cambridge University Press, 2006.

[PW95] H.J. Park and C. Woodburn. An algorithmic proof of Suslin's stability theorem for polynomial rings. *Journal of Algebra*, 178(1):277 – 298, 1995.

sec:Luroth

3. Free Lüroth Theorem

Problem 3.1 (Free Lüroth Theorem). Suppose k is an algebraically closed infinite field and x_1, \ldots, x_g are freely noncommuting indeterminates $(g \ge 2)$. If $k \subseteq D \subseteq k \not \langle x_1, \ldots, x_g \rangle$ is a subfield, then do there exist $q_1, \ldots, q_h \in \mathbb{C} \not \langle x_1, \ldots, x_g \rangle$ such that $D = \mathbb{C} \not \langle q_1, \ldots, q_h \rangle$?

In other words, is every non-trivial subfield of $\mathbb{C}\langle x \rangle$ a free skew field?

Theorem 3.2 (Lüroth's Theorem). Suppose k is a field. If $k \subseteq D \subseteq k(t)$ is a subfield, then there exists $q \in k(t)$ such that D = k(q(t)).

Remark 3.3. If k is algebraically closed and infinite, then Lüroth's Theorem holds as well for $k(t_1, t_2)$.

On the other hand, there are counterexamples to Lüroth's Theorem for $k(t_1, t_2, t_3)$.

Remark 3.4. Schofield ref? shows that if $f, g \in \mathbb{C}\langle x \rangle$, then either [f, g] = 0 or $\mathbb{C}\langle f, g \rangle$ is free.

sec:Jac Tame

4. Jacobian Tame

An automorphism τ of the free algebra $\mathbb{C}\langle x_1,\ldots,x_{\mathsf{g}}\rangle$ is **elementary** if $\tau:x_i\mapsto x_i$ for $i\neq j$ and $\tau:x_j\mapsto cx_j+f$, where $c\in\mathbb{C}$ and $f\in\mathbb{C}\langle x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_{\mathsf{g}}\rangle$. We say an automorphism is **tame** if it is a composition of elementary automorphisms. If the automorphism is not tame, then it is **wild**.

In Umi07 it is shown that the Anick automorphism,

$$\delta(x, y, z) = (x + z(xz - zy), y + (xz - zy)z, z) \in \mathbb{C}\langle x, y, z \rangle$$

is wild. Looking at it, the Anick automorphism doesn't seem particularly "wild," so maybe this can be improved? Perhaps it is something about Jacobian matrices?

Definition 4.1. We say an automorphism τ of $\mathbb{C}\langle x_1, \ldots, x_{\mathsf{g}} \rangle$ is **Jacobian Tame** if $J_{\tau} = DE_1 \ldots E_k$, where $D \in M_{\mathsf{g}}(\mathbb{C}\langle \mathbb{x}' \rangle^{opp} \otimes \mathbb{C}\langle \mathbb{x} \rangle)$ is diagonal and $E_1, \ldots, E_k \in M_{\mathsf{g}}(\mathbb{C}\langle \mathbb{x}' \rangle^{opp} \otimes \mathbb{C}\langle \mathbb{x} \rangle)$ are elementary matrices.

If such a factorization does not exist, then we say τ is **Jacobian wild**.

Problem 4.2. Are there any Jacobian wild automorphisms of the free algebra? The only known (to me) example of a wild automorphism of $\mathbb{C}\langle x,y,z\rangle$ is Jacobian tame (this is explained below).

In the commutative case there are no Jacobian wild automorphisms. Every automorphism of $\mathbb{C}[t_1,t_2]$ is tame, hence Jacobian tame. If ϕ is an automorphism of $\mathbb{C}[t_1,\ldots,t_{\mathsf{g}}]$ with $\mathsf{g}>2$, then its Jacobian matrix $J_{\phi}\in M_{\mathsf{g}}(\mathbb{C}[t_1,\ldots,t_{\mathsf{g}}],t_1,\ldots,t_{\mathsf{g}}]$ factors into such a product by Suslin's Stability Theorem (see 2), thus is Jacobian tame.

Throughout this I will be using the transposed Jacobian matrix: $J_{\tau} \in M_{\mathbf{g}}(\mathbb{C}\langle \mathbf{x}'\rangle^{opp} \otimes \mathbb{C}\langle \mathbf{x}\rangle)$ where the i^{th} column of J_{τ} corresponds to the derivatives of τ_i .

It turns out that the Anick automorphism

$$\delta(x, y, z) = (x + z(xz - zy), y + (xz - zy)z, z) \in \mathbb{C}\langle x, y, z \rangle$$

has a Jacobian matrix that can be written as a product of elementary matrices. The Jacobian matrix of δ is

$$J_{\delta} = \begin{pmatrix} 1 \otimes 1 + z' \otimes z & 1 \otimes z^2 & 0 \\ -(z')^2 \otimes 1 & 1 - z' \otimes z & 0 \\ \zeta_1 & \zeta_2 & 1 \end{pmatrix}$$

where $\zeta_1 = 1 \otimes xz + x'z' \otimes 1 - 1 \otimes zy - z' \otimes y$ and $\zeta_2 = x \otimes z + z'x' \otimes 1 - 1 \otimes yz - y'z' \otimes 1$. Let $E_{i,j}(\alpha) = I + \alpha e_{i,j}$ ($e_{i,j}$ has a 1 in the i,j entry and 0's elsewhere) and observe

$$J_{\delta}E_{3,1}(-\zeta_1)E_{3,2}(-\zeta_2) = \begin{pmatrix} 1 \otimes 1 + z' \otimes z & 1 \otimes z^2 & 0 \\ -(z')^2 \otimes 1 & 1 - z' \otimes z & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

In 1966, Cohn proved that

$$\mathfrak{C} = \begin{pmatrix} 1 \otimes 1 + z' \otimes z & 1 \otimes z^2 \\ -(z')^2 \otimes 1 & 1 - z' \otimes z \end{pmatrix}$$

cannot be written as a product of elementary matrices over $\mathbb{F}[z'\otimes 1,1\otimes z]$. This is a crucial aspect of Umirbaev's $([Umirbaev^*])$ proof that the Anick automorphism is wild. However, Park and Woodburn [PW95] give a decomposition of $(\begin{smallmatrix} \mathfrak{C} & 0 \\ 0 & 1 \end{smallmatrix})$ into a product of elementary matrices:

$$J_{\delta}E_{3,1}(-\zeta_{1})E_{3,2}(-\zeta_{2}) = \begin{pmatrix} 1 \otimes 1 + z' \otimes z & 1 \otimes z^{2} & 0 \\ -(z')^{2} \otimes 1 & 1 - z' \otimes z & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$=E_{2,3}(-z' \otimes 1)E_{1,3}(1 \otimes z)E_{3,2}(1 \otimes z)E_{3,1}(z' \otimes 1)$$
$$E_{2,3}(z' \otimes 1)E_{1,3}(-1 \otimes z)E_{3,2}(-1 \otimes z)E_{3,1}(-z' \otimes 1).$$

Thus

$$J_{\delta} = E_{2,3}(-z' \otimes 1)E_{1,3}(1 \otimes z)E_{3,2}(1 \otimes z)E_{3,1}(z' \otimes 1)$$

$$E_{2,3}(z' \otimes 1)E_{1,3}(-1 \otimes z)E_{3,2}(-1 \otimes z)E_{3,1}(-z' \otimes 1)E_{3,2}(\zeta_2)E_{3,1}(\zeta_1).$$

Thus, the Jacobian matrix of δ factors as a product of elementary matrices even though it is wild.

I am not yet sure where to go with **Jacobian Tame** since I cannot think of any nice properties that such automorphisms would satisfy.

Naturally, a positive answer to the Problem in 2 would show that every automorphisms. Sec: Elem_Mats

Naturally, a positive answer to the Problem in $\[\]$ would show that every automorphism is Jacobian Tame. On the other hand, a negative answer to the Problem in $\[\]$ would only serve to complicate things since a Jacobian matrix will certainly look quite different from a generic matrix in $\mathrm{GL}_{\mathbf{g}}(\mathbb{C}\langle \mathbf{x}'\rangle^{opp}\otimes\mathbb{C}\langle \mathbf{x}\rangle)$.

References

[PW95] H.J. Park and C. Woodburn. An algorithmic proof of Suslin's stability theorem for polynomial rings. *Journal of Algebra*, 178(1):277 – 298, 1995.

[Umi07] U. U. Umirbaev. The Anick automorphism of free associative algebras. J. Reine Angew. Math., 605:165–178, 2007. sec:TPFSF

5. Tensor Product of Free Skew Fields

Problem 5.1. Classify the invertible elements of $\mathbb{C}\langle \mathbb{x} \rangle \otimes \mathbb{C}\langle \mathbb{y} \rangle$. The expectation is that if Q and Q^{-1} are in $\mathbb{C}\langle \mathbb{x} \rangle \otimes \mathbb{C}\langle \mathbb{y} \rangle$, then $Q = r \otimes s$, for some nonzero elements $r \in \mathbb{C}\langle \mathbb{x} \rangle$ and $s \in \mathbb{C}\langle \mathbb{y} \rangle$.

The following was proven in $\begin{bmatrix} \hat{Swe70} \\ \hat{Swe70} \end{bmatrix}$ using techniques that seemingly don't translate well to the noncommutative setting.

Theorem 5.2. Suppose A and B are commutative domains over an algebraically closed field \mathbf{k} and \mathbf{k} is algebraically closed in A and B. If $z \in A \otimes B$ is invertible, then $z = a \otimes b$ for some invertible elements $a \in A$ and $b \in B$.

The following two simplifications have been proven using Complex Analysis and Realization Theory:

Proposition 5.3. Suppose $r \in \mathbb{C} \langle x \rangle$ and $s \in \mathbb{C} \langle y \rangle$. If $(1 \otimes 1 - r \otimes s)^{-1} \in \mathbb{C} \langle x \rangle \otimes \mathbb{C} \langle y \rangle$ then either r or s is constant.

Suppose $r_1, \ldots, r_h \in \mathbb{C}\langle x \rangle$, $C\langle s_1, \ldots, s_h \rangle$ is isomorphic as a skew field to $\mathbb{C}\langle w_1, \ldots, w_h \rangle$. If $(1 \otimes 1 - \sum_{i=1}^k r_i \otimes s_i)^{-1} \in \mathbb{C}\langle x \rangle \otimes \mathbb{C}\langle y \rangle$ then r_1, \ldots, r_k are all constant.

The tensor product membership problem is strongly related to the rational automorphism problem as well, although that may require an understanding of domains.

References

[Swe70] Moss Eisenberg Sweedler. A units theorem applied to Hopf algebras and Amitsur cohomology. American Journal of Mathematics, 92(1):259–271, 1970.

sec:RatAuts

6. Rational Automorphisms

Problem 6.1. Suppose $\mathbb{r} \in (\mathbb{C} \langle x_1, \dots, x_g \rangle)^g$. Find an evaluation criterion that is necessary and sufficient for the induced map $\rho : \mathbb{C} \langle x_1, \dots, x_g \rangle \to \mathbb{C} \langle x_1, \dots, x_g \rangle$ $(\rho(x_i) = \mathbb{r}_i)$ to be an automorphism.

An evaluation criterion is some condition on r when we treat it as a function. For example, injective, surjective, etc.

conj:rats auts conj

Conjecture 6.2. Suppose $\mathbf{r} \in (\mathbb{C} \langle x_1, \dots, x_g \rangle)^g$. The following are equivalent:

- (1) there exists a free, Euclidean open and Euclidean dense set Ω such that $\mathbb{r}|_{\Omega}$ is injective;
- (2) J_r is an invertible element of $M_g(\mathbb{C}\langle \mathbb{x}' \rangle^{opp} \otimes \mathbb{C}\langle \mathbb{x} \rangle)$;
- (3) the induced map $\rho: \mathbb{C}\langle x \rangle \to \mathbb{C}\langle x \rangle$ given by $\rho(x_i) = \mathbb{r}_i$ is an automorphism.

This is simply a best guess conjecture at the moment. Clearly, $(3) \Rightarrow (1), (2)$. Condition (1) is seemingly strange, but the naïve attempt of requiring injective on its domain is insufficient.

Example 6.3. Let $\mathbb{r}(x,y)=(x,y-x^2y)$. This induces a rational automorphism, however $\mathbb{r}(1,\alpha)=\mathbb{r}(1,\beta)$, hence \mathbb{r} is not injective on its domain (in fact, the points where it is not injective are exactly the points where \mathbb{r}^{-1} is not defined). If $\Omega=\left\{(X,Y)\in M_n(\mathbb{C})^2:\det(I_n-X^2)\neq 0\right\}$, then Ω is free, Euclidean open and dense and \mathbb{r} is injective on Ω .

Let us see a slightly harder example.

Example 6.4. Let $\mathbb{r}(x,y) = (x,y-xyx)$. Naturally \mathbb{r} is not injective on \mathbb{C}^2 since $\mathbb{r}(1,\alpha) = \mathbb{r}(1,\beta)$. Moreover, \mathbb{r} does not induce a rational automorphism and this fact is a bit harder to see.

The first observed reason why is found by using formal power series. Since the derivative of r is invertible on some free neighborhood of 0, it must have a local inverse that we can find as a power series. It turns out that

$$f(x,y) = \left(x, \sum_{n=0}^{\infty} x^n y x^n\right)$$

is the formal power series representation of \mathbb{r}^{-1} . If one tries to write down a realization for f, then a contradiction is eventually attained showing that f is not a rational power series. Thus, \mathbb{r} does not induce a rational automorphism. This doesn't give us too much information at the moment, since it reveals little about the injectivity of \mathbb{r} .

Our alternative approach is to use the idea behind the conception of hyporationals: the matrix identity $\mathbf{vec}(AXB) = \mathbf{vec}(X)(A^T \otimes B)$. Let $f = (\mathfrak{r}^{-1})_2$. Since f(x,y) satisfies the equation f(x,y) = y + xf(x,y)x, we evaluate on a pair of matrices (X,Y) (when it makes sense) and note we have

$$f(X,Y) = Y + Xf(X,Y)X.$$

Taking the vectorization of both sides and rearranging, we have

$$\mathbf{vec}(f(X,Y))(I_n \otimes I_n - X^T \otimes X) = \mathbf{vec}(I_n)(I_n \otimes Y).$$

Multiplying on the right by an inverse we see

$$\mathbf{vec}(f(X,Y)) = \mathbf{vec}(I_n)(I_n \otimes Y) (I_n \otimes I_n - X^T \otimes X)^{-1}.$$

Thus, for any matrix X where $(I_n \underset{sec_1:\overline{TPFSF}}{\otimes I_{?}\overline{TPFSF}} X^T \otimes X)$ is invertible we have (X,Y) is in the domain of \mathbb{r}^{-1} . As pointed out in S, the function $(1 \otimes 1 - x' \otimes x)^{-1} \notin \mathbb{C} \notin x' \geqslant \otimes \mathbb{C} \notin x \geqslant X$. However, a consequence of its (first) proof is that there is no free Euclidean open and Euclidean dense set upon which $(1 \otimes 1 - x' \otimes x)$ is invertible. Thus, \mathbb{r} fails to satisfy requirement (1) from the Conjecture and \mathbb{r} does not induce a rational automorphism.

To see why $q=(1\otimes 1-x'\otimes x)$ fails to be injective on a "big" set, suppose Ω is any nonempty free open set upon which q is invertible. If λ and μ are any eigenvalues of X then $\lambda\mu$ is an eigenvalue of $X^T\otimes X$ and $1-\lambda\mu$ is an eigenvalue of $q(X^T,X)$. Hence, if $X\in\Omega$, then for each eigenvalue λ of X, λ^{-1} is not an eigenvalue of any matrix in Ω . Thus, the eigenvalues of $q(X^T,X)$, taken over all $X\in\Omega$ partition the complex plane.

For any $X \in M_n(\mathbb{C})$ let $\sigma(X)$ denote its set of eigenvalues and for any $U \subset M_n(\mathbb{C})$ let $\sigma(U) = \bigcup_{X \in U} \sigma(X)$. Since Ω is assumed to open, $\Omega[n]$ is open and $\sigma(\Omega[n])$ must contain an open set. Hence, if $\lambda \in \sigma(\Omega[n])$ is nonzero, then there exists an open set W containing λ^{-1} such that $W \cap \sigma(\Omega[n]) = \emptyset$.

However, $\sigma^{-1}(W)$ contains an open set of matrices, thus Ω cannot be free, open and dense.

Condition (1) is currently a best guess (the density was used to invoke complex analytic methods). Understanding the domains of elements of $\mathbb{C}\langle x' \rightarrow x \rangle$ seems to be quite important.

sec:LiftingAuts

7. Lifting Automorphisms

In the noncommutative setting, a free polynomial mapping p is injective iff it is invertible iff its Jacobian matrix is invertible (over tensor product of polynomial algebras) iff (Dp(y)[x], y) is injective.

If $p \in \mathbb{C}[t]^g = \mathbb{C}[t_1, \dots, t_g]^g$ has an invertible Jacobian matrix, then the polynomial in 2g variables P(t)[s] = (Dp(t)[s], t) is invertible. Exactly as one would expect, we see that

$$P(t)[s] = (s,t) egin{pmatrix} J_p(t) & 0 \ 0 & I_{
m g} \end{pmatrix}$$

where (s,t) are taken as a row vector (and J_p is potentially the transposed Jacobian to make this work) and we let

$$\mathcal{J}(\boldsymbol{t}) = \begin{pmatrix} J_p(\boldsymbol{t}) & 0\\ 0 & I_{\mathsf{g}} \end{pmatrix}$$

and note that \mathcal{J} is invertible. Assume $g \geq 3$. Hence Suslin's Stability Theorem says that $J_p(t)$ factors as a product of elementaries hence $\mathcal{J}(t) = DE_1 \dots E_k$, where D is a diagonal matrix in $M_{2g}(\mathbb{C})$ (and is of the form $D' \oplus I_g$) and each $E_i \in M_{2g}(\mathbb{C}[\mathfrak{t}])$ is elementary (and is of the form $E'_i \oplus I_g$). Thus, we obtain elementary automorphisms δ and $\varepsilon_1, \dots, \varepsilon_k$ given by

$$\delta(s,t) = (s,t)D$$
 and $\varepsilon_i(s,t) = (s,t)E_i$.

Composing shows us

$$\varepsilon_k(\varepsilon_{k-1}(s,t)) = \varepsilon_{k-1}(s,t)E_k(t) = (s,t)E_{k-1}E_k.$$

Thus, $F = \varepsilon_k \circ \cdots \circ \varepsilon_1 \circ \delta$ and F is a tame automorphism. Hence, F lifts to \mathcal{F} , an automorphism of $\mathbb{C}\langle x, y \rangle$ that is linear in x. The (probably extremely difficult) question is, of course, can we choose \mathcal{F} so that it is a derivative as well?

Problem 7.1. Suppose $\mathcal{F} = \alpha_1 \circ \dots \circ \alpha_k \in (\mathbb{C}\langle \mathbb{x}, \mathbb{y} \rangle)^g$ where each α_i is an elementary automorphism of the form $(\alpha'_i(\boldsymbol{y})[\boldsymbol{x}], \boldsymbol{y})$ with $\alpha'_i(\boldsymbol{y})[\boldsymbol{x}]$ an \boldsymbol{x} -linear polynomial. If \mathcal{F} agrees with the derivative of $p \in \mathbb{C}[\mathfrak{t}]^g$ on \mathbb{C}^g then can we find invertible $\beta_1, \dots, \beta_{k+1} \in (\mathbb{C}\langle \mathbb{x}, \mathbb{y} \rangle)^g$ (with $\beta_i = (\beta'_i(\boldsymbol{y})[\boldsymbol{x}], \boldsymbol{y})$) such that

$$p = \beta_1 \circ \alpha_1 \circ \dots \circ \alpha_k \circ \beta_{k+1}$$

and p agrees with the derivative of p on \mathbb{C}^g and p is a derivative?

GENERAL WARNING: LIFTING AN INVERTIBLE DERIVATIVE TO THE DERIVATIVE OF A FREE AUTOMORPHISM STRAYS VERY CLOSE TO THE JACOBIAN CONJECTURE. BE WARNED THAT PROVING THAT AN INVERTIBLE DERIVATIVE ALWAYS LIFTS TO THE DERIVATIVE OF A FREE AUTOMORPHISM IMPLIES THE JACOBIAN CONJECTURE, THUS IT IS EITHER FALSE (AND PROBABLY HARD TO SHOW IT IS FALSE) OR IT IS INCREDIBLY DIFFICULT.

Conjecture 7.2 (Jacobian Conjecture '39). Suppose $p: \mathbb{C}^g \to \mathbb{C}^g$ is a polynomial. If the Jacobian matrix J_p has a nonzero constant determinant (equivalently, J_p is invertible over $\mathbb{C}[t]$), then p is invertible.

Open for 80+ years so very very difficult.

A more mild form of the problem is to try and do this for the Nagata automorphism.

Remark 7.3. A potential way to generate a counter-example is to find a polynomial whose derivative is a Cohn-type matrix:

$$I_{\mathsf{g}} + a \boldsymbol{v} \cdot (v_j \boldsymbol{e}_i - v_i \boldsymbol{e}_j)$$

where
$$\boldsymbol{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_{\mathsf{g}} \end{pmatrix} \in (\mathbb{C}[t_1, \dots, t_{\mathsf{g}}])^{\mathsf{g}}, \ i < j \in \{1, \dots, \mathsf{g}\}, \ a \in \mathbb{C}[\mathsf{t}] \text{ and } \boldsymbol{e}_i \text{ is the } i^{\mathsf{th}}$$

standard basis (row) vector. With g = 2, we get

$$I_2 + a \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} v_2 \\ v_2 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 + av_1v_2 & -av_1^2 \\ av_2^2 & 1 - av_1v_2 \end{pmatrix}.$$

Can this be a Jacobian?

sec:RatDeriv

8. Rational Derivatives - SOLVED!

Let $\mathbb{x} = \{x_1, \dots, x_{\mathsf{g}}\}$ and $\mathbb{h} = \{h_1, \dots, h_{\mathsf{g}}\}$ be a sets of freely noncommuting indeterminates. Let $\mathbb{C}\langle \mathbb{x} \rangle$ denote the formal power series in \mathbb{x} and let $\mathbb{C}\langle \mathbb{x} \rangle_0$ denote the rational formal power series. If $S \in \mathbb{C}\langle \mathbb{x} \rangle$ and w is a word, then [S, w] is the coefficient of w appearing in S. For any word w and series $S \in \mathbb{C}\langle \mathbb{x} \rangle$, we let $w^{-1}S = \sum_{v \in \langle \mathbb{x} \rangle} [S, wv]v$.

Proposition 8.1. Suppose $f \in \mathbb{C}\langle\!\langle x \rangle\!\rangle$. If $Df(x)[h] \in \mathbb{C}\langle\!\langle x, h \rangle\!\rangle_0$ then $f \in \mathbb{C}\langle\!\langle x \rangle\!\rangle_0$.

Proof. For each $1 \leq i \leq g$ we let $\partial_i f := Df(\boldsymbol{x})[0,\ldots,0,h_i,0,\ldots,0]$ and note $\partial_i f \in \mathbb{C} \langle x,h \rangle_0$. Next, we write

$$f = c_0 + \sum_{i=1}^{\mathsf{g}} x_i f_i$$

where each $f_i \in \mathbb{C}\langle\!\langle \mathbb{x} \rangle\!\rangle$. Hence,

$$\partial_i f = h_i f_i + \sum_{j=1}^{\mathsf{g}} x_j \partial_i f_j \in \mathbb{C} \langle x, h \rangle_0$$

and it follows that $h_i^{-1}\partial_i f_i = f_i \in \mathbb{C}\langle \mathbb{x}, \mathbb{h} \rangle_0$ since $\partial_i f_i$ is contained in a stable submodule. Therefore, $f = c_0 + \sum_{i=1}^{\mathsf{g}} x_i f_i \in \mathbb{C}\langle \mathbb{x} \rangle_0$ since each f_i is rational. \square

I think the argument below shows it for generalized series.

Remark 8.2. Let $\mathcal{A} = M_n(\mathbb{C})$ for some n. If $f \in \mathcal{A}(x)$ then

$$f = f_0 + \sum_{i=1}^{\mathsf{g}} L_{x_i} f$$

and

$$Df(oldsymbol{x})[oldsymbol{h}] = \sum_{i=1}^{\mathsf{g}} L_{h_i} Df(oldsymbol{x})[oldsymbol{h}] + \sum_{i=1}^{\mathsf{g}} L_{x_i} Df(oldsymbol{x})[oldsymbol{h}].$$

If $f_i(\boldsymbol{x}, h_i) = L_{h_i} Df(\boldsymbol{x})[\boldsymbol{h}]$, then $f_i(\boldsymbol{x}, x_i) = L_{x_i} f$. Hence, if $Df(\boldsymbol{x})[\boldsymbol{h}]$ is rational, then so is $L_{h_i} Df(\boldsymbol{x})[\boldsymbol{h}]$ and consequently so is $L_{x_i} f$. Therefore, f is rational since it is a sum of rational series.