Famílias de Circuitos Lógicos

Famílias de Circuitos Lógicos

- As características construtivas dos circuitos integrados permitem a divisão em categorias chamadas de famílias.
- Cada família possui características de operação bem definidas.

Famílias de Circuitos Lógicos

- Famílias em uso:
 - CMOS (Complementary Mosfet)
 - TTL (Transistor-Transistor Logic)
- Famílias obsoletas:
 - DCTL (Direct-Coupled Transistor Logic)
 - RTL (Resistor-Transistor Logic)
 - RCTL (Resistor-Capacitor Transistor Logic)
 - DTL (Diode-Transistor Logic)
 - HTL (High-Treshold Logic)
 - ECL (Emitter-Coupled Logic)

Principais Parâmetros das Famílias Lógicas

- Tensões limites que serão reconhecidas como nível lógico alto ou baixo.
- Correntes mínimas e máximas que as entradas ou saídas das portas lógicas devem consumir ou fornecer.
- Tempos de atraso de propagação do sinais pelas portas lógicas.

■ Níveis de Tensão

- v_{IL} (entrada, nível baixo): máxima tensão que será reconhecida como nível baixo pela entrada.
- v_{IH} (entrada, nível alto): mínima tensão que será reconhecida como nível alto pela entrada.
- v_{OL} (saída, nível baixo): maior tensão na saída quando a mesma representar nível lógico baixo.
- v_{OH} (saída, nível alto): menor tensão na saída quando a mesma representar nível lógico alto.

■ Níveis de Corrente

- I_{IL} (entrada, nível baixo): máxima corrente fornecida pela entrada quando é aplicado nível lógico baixo.
- I_{IH} (entrada, nível alto): máxima corrente consumida pela entrada quando é aplicado nível lógico alto.
- I_{OL} (saída, nível baixo): máxima corrente que a saída pode receber, mantendo o nível lógico baixo.
- I_{OH} (saída, nível alto): máxima corrente que a saída pode fornecer, mantendo o nível lógico alto.

■ Fan-Out

- Como as entradas das portas lógicas consomem corrente, a saída de uma porta pode ser conectada a um número limitado de entradas de outras portas.
- O número de entradas que podem ser ligadas à uma única saída é dado pelo Fan-Out.
- Se o Fan-Out não for respeitado, o nível lógico na saída pode entrar para a região indefinida.

$$Fan-Out_{(n\'{i}vel\, 0)} = \frac{I_{OL}}{I_{IL}}$$
 $Fan-Out_{(n\'{i}vel\, 1)} = \frac{I_{OH}}{I_{IH}}$

- Atraso de propagação
 - Tempo que a saída de um bloco lógico leva para mudar de estado após uma alteração em sua entrada.
 - São definidos dois tempos de atraso:
 - t_{PLH}: atraso na mudança de nível baixo para alto.
 - t_{PHL}: atraso na mudança de nível alto para baixo.

Características Internas: TTL x CMOS

Características Internas: Portas TTL e CMOS

- TTL (*Transistor-Transistor Logic*).
 - Uso de transistores bipolares de junção NPN ou PNP.
- CMOS (Complementary MOSFET).
 - Uso de pares de transistores MOSFET canais P e N.
 - Facilidade de integração em relação à tecnologia TTL.
 Menos componentes.

Família TTL

- Duas séries comerciais:
 - 74XXX (série comum): garantia de funcionamento com tolerâncias de 5% para temperaturas entre 0 e 70°C.
 - 54XXX (série militar): garantia de funcionamento com tolerâncias de 10% para temperaturas entre -55 e 125°C.

- Tensões de alimentação permitidas:
 - Série 74: 4,75 a 5,25 V.
 - Série 54: 4,5 a 5,5 V.

■ Tensões de entrada e saída para versão padrão:

Parâmetro	Valor	Unidade
V_{IL}	0,8	V
V _{IH}	2,0	V
V _{OL}	0,4	V
V _{OH}	2,4	V

Correntes de entrada e saída para versão padrão:

Parâmetro	Valor	Unidade
I _{IL}	1,6	mA
I _{IH}	40	μΑ
I _{OL}	16	mA
I _{OH}	400	μΑ

■ Fan-Out:

$$Fan-Out_{(n\'{i}vel\ 0)} = \frac{I_{OL}}{I_{IL}}$$
 $Fan-Out_{(n\'{i}vel\ 1)} = \frac{I_{OH}}{I_{IH}}$

$$Fan-Out_{(nivel\,0)} = Fan-Out_{(nivel\,1)} = 10$$

- Tempo de Atraso:
 - Em média é em torno de 10 ns, podendo variar em diferentes versões.

Parâmetro	Valor	Unidade
t _{PLH}	11	ns
t _{PHL}	7	ns

- Potência dissipada:
 - Em média é de 10 mW por porta.

■ Diferentes Versões

Versão	Código	Atraso de propagação típico	Consumo por porta	Frequência máxima para flip-flop
Standard	54/74	10 ns	10 mW	35 MHz
Low power	54L/74L	33 ns	1 mW	3 MHz
High speed	54H/74H	6 ns	22 mW	50 MHz
Schottky	54S/74S	3 ns	19 mW	125 MHz
Advanced Schottky	54AS/ 74AS	1,5 ns	8,5 mW	200 MHz
Low power Schottky	54LS/ 74LS	10 ns	2 mW	45 MHz
Advanced low power Schottky	54ALS/ 74ALS	4 ns	1 mW	70 MHz

- Três séries comerciais:
 - 4000A
 - 4000B
 - 54/74: Pinagem compatível com série TTL
 - 74C: Série padrão.
 - 74HC/74HCT: Versão de alta velocidade (High Speed CMOS). Versão HCT possui parâmetros de tensão compatíveis com família TTL-LS.
 - 74LV/LVC: Baixa tensão (Low Voltage CMOS)

- Operação com temperaturas entre -40° e 85° C nas séries comuns e -55 e 125° C nas séries militares.
- Tensões de alimentação permitidas (v_{DD}):
 - Séries 4000 e 74C: 3 a 15 V.
 - Série 74HC: 2 a 6 V.
 - Série 74HCT: 4,5 a 5,5 V.
 - Série 74LV: 1 a 3,6 V.
 - Série 74LVC: 1,2 a 3,6 V.

- Tensões de entrada e saída:
 - Em geral, v_{IL} (máx.) e v_{IH} (mín.) correspondem a 30% e 70% de v_{DD} .
 - Para a série 74 HCT, os valores são iguais aos da série TTL-LS.
- Tensões de entrada e saída para série 4000B alimentada com 5 V.

Parâmetro	Valor	Unidade
V_{IL}	1,5	V
V _{IH}	3,5	V
V _{OL}	0,05	V
V _{OH}	4,95	V

Correntes de entrada e saída para série 4000B alimentada com 5 V.

Parâmetro	Valor	Unidade
I _{IL}	1	μΑ
I _{IH}	1	μΑ
I _{OL}	400	μΑ
I _{OH}	400	μΑ

■ Fan-Out:

- Em média, próximo a 50.
- Para série 4000B:

$$Fan-Out_{(nivel\,0)} = Fan-Out_{(nivel\,1)} = 400$$

■ Tempo de Atraso:

- Em média é em torno de 90 ns, podendo variar em diferentes versões.
- Exemplo para alimentação com 5 V.

Versão	Atraso de propagação típico	Frequência máxima para flip-flop
4000B	90 ns	12 MHz
HC/HCT	8 ns	55 MHz

■ Potência dissipada:

 Em média é de 1 nW por porta (série 4000) ou 2,5 nW por porta (série 74HC).

- A família CMOS é suscetível à danos por eletricidade estática, devendo ser manuseada com os devidos cuidados.
- O consumo da família CMOS é muito inferior ao da família TTL.
- A alta impedância de entrada dos transistores CMOS faz com que a corrente de entrada nas portas seja muito baixa.
- O circuitos CMOS estão disponíveis numa ampla faixa de tensões de alimentação.
- A família CMOS possui atrasos de propagação mais elevados que a família TTL, sendo sua principal desvantagem.

