Enumeration of (unique reduced alternating) knot diagrams

Ciaran McCreesh, Alice Miller, Patrick Prosser, **Craig Reilly**, James Trimble

What is a knot?

■ A *knot* is an embedding of the circle in \mathbb{R}^3 .

What is a knot?

- A *knot* is an embedding of the circle in \mathbb{R}^3 .
- An intuitive way to think about this is to consider a knot as a knotted piece of string with the ends glued together.

- A function $f: \mathbb{R}^3 \to \mathbb{R}^2$ where f(x, y, z) = f(x, y), is called a *projection map*, and the image of a knot K under f is called the *projection* of K.
- Such a projection is often referred to as the *shadow* of K.

• Information regarding the orientation of arcs at crossings is given by leaving gaps in a knot's shadow..

Representations of knots

- Knot diagrams are really just 4-valent planar graphs.
 - The vertices in the graph correspond to the crossings in the knot diagram.
 - The arcs between vertices correspond to arcs between crossings in the knot diagram.
 - The arcs are decorated with their orientation at their source and target crossings.
- Other data structures familiar to computer scientists can be used, linked lists of crossings were popular in the 1950's.

Representations of knots

- The representations used by topologists are typically also used for representing knots in a computer.
- Examples are Dowker-Thistlethwait codes (DT codes), Gauss codes, braid representatives, Conway notation, and many more.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
 - **1** Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

_1

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
 - **1** Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

-1 , 4

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

-1 , 4 , -3

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

-1 . 4 . -3 . 1

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

-1 , 4 , -3 , 1 , -2

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
 - **1** Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

-1 , 4 , -3 , 1 , -2 , 3

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

$$-1$$
 , 4 , -3 , 1 , -2 , 3 , -4

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
 - 1 Label the crossings with the numbers 1 to *n*.
 - Pick a point on the knot.
 - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

$$-1$$
 , 4 , -3 , 1 , -2 , 3 , -4 , 2

- There are three sensible questions to ask:
 - Do all knots give rise to a Gauss code?
 - Can two Gauss codes correspond to the same knot?
 - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
 - Do all knots give rise to a Gauss code? Yes.
 - Can two Gauss codes correspond to the same knot?
 - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
 - Do all knots give rise to a Gauss code? Yes. Trivially.
 - Can two Gauss codes correspond to the same knot?
 - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
 - Do all knots give rise to a Gauss code? Yes. Trivially.
 - Can two Gauss codes correspond to the same knot? Yes.
 - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
 - Do all knots give rise to a Gauss code? Yes. Trivially.
 - Can two Gauss codes correspond to the same knot? Yes.
 - Do all Gauss codes represent a knot? No!

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

- 2, -4, 3, -2, 1, -3, 4, -1
- 1, -4, 3, -1, 2, -3, 4, -2

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

- 1, -4, 3, -1, 2, -3, 4, -2
- -1, 3, -4, 1 -2, 4, -3, 2

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

- 2, -4, 3, -2, 1, -3, 4, -1
- 1, -4, 3, -1, 2, -3, 4, -2
- -1, 3, -4, 1 -2, 4, -3, 2
- Our candidate is a code with the lexicographically minimum shadow (where a shadow corresponds to an unsigned code). For this knot the shadow is:
- **1**, 2, 3, 1, 4, 3, 2, 4.

$$-1$$
, 4, -3 , 1 -2 , 3, -4 , 2

$$-1$$
, 3, -4 , 1 -2 , 4, -3 , 2

- Our candidate is a code with the lexicographically minimum shadow (where a shadow corresponds to an unsigned code). For this knot the shadow is:
- **1**. 2. 3. 1. 4. 3. 2. 4.
- For which the diagram now shows the labelling giving rise to the signed code:

■ Is this new?

■ Is this new? Kinda.

- Is this new?
- Topologists don't seem to care about labelling a knot in a canonical manner when determining a knot's Gauss code.
- But such a lexicographically minium representation of a the shadow code is necissary in the input of an algorithm which follows.

- Is this new?
- Topologists don't seem to care about labelling a knot in a canonical manner when determining a knot's Gauss code.
- But such a lexicographically minium representation of a the shadow code is necissary in the input of an algorithm which follows.

Name	Gauss Notation
$3_{-}1$	-1, 3 , -2 , 1 , -3 , 2
4_1	1 , -4 , 3 , -1 , 2 , -3 , 4 , -2
$5_{-}1$	-1, 4, -2 , 5, -3 , 1, -4 , 2, -5 , 3
5_{-2}	-1, 5 , -2 , 1 , -3 , 4 , -5 , 2 , -4 , 3
$6_{-}1$	-1, 4, -3 , 1, -5 , 6, -2 , 3, -4 , 2, -6 , 5
6_2	-1, 4, -3 , 1, -2 , 6, -5 , 3, -4 , 2, -6 , 5
6_3	1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3

Symmetries involved in Gauss code enumeration

stuff