Heuristics for the TSP²

- Phase 1 Tour construction (nearest neighbor)
- Phase 2 Improvement (subtour reversal)

²This example comes from Goetschalckx, p. 223

An Introduction to Heuristics 7 / 2

Euclidean (and symmetric) Distances

	1	2	3	4	5	6
1	-	608	566	860	985	1,204
2	608	-	361	412	825	762
3	566	361	-	316	500	640
4	860	412	316	-	500	361
5	985	825	500	500	-	510
6	1,204	762	640	361	510	-

Nearest Neighbor

- 1) Choose a starting node, i. $N = \{1, ..., n\} \setminus i$.
- 2) Choose the nearest node to i. Call this node j. $N \leftarrow N \setminus j$ (remove j from the list of candidate nodes) $i \leftarrow j$ (The current node is now j)
- 3) Repeat Step 2 until $N = \emptyset$. Connect the first and last nodes.

Textbook example starts in node 3:

Suppose we start in node 5:

Another TSP Instance (from H&L)

An Introduction to Heuristics 10 / 25

A Subtour Reversal Heuristic for TSP (from H&L)

- **Step 1** Start with any feasible tour.
 - ► We'll try: 1-2-3-4-5-6-7-1

Total Distance = 69.

An Introduction to Heuristics $11 \ / \ 25$

A Subtour Reversal Heuristic for TSP

• **Step 2** – For the current solution, consider all ways of reversing the order of a subset of cities. Select the one that provides the largest decrease in the travel distance. Break ties arbitrarily.

	1-2-3-4-5-6-7-1	Distance = 69
Reverse 2-3:	1-3-2-4-5-6-7-1	Distance = 68
Reverse 2-3-4:	1-4-3-2-5-6-7-1	Infeasible (1-4 is invalid)
Reverse 3-4:	1-2-4-3-5-6-7-1	Distance = 65
Reverse 4-5:	1-2-3-5-4-6-7-1	Distance = 65
Reverse 5-6:	1-2-3-4-6-5-7-1	Distance = 66

We'll choose 1-2-4-3-5-6-7-1.

Repeat Step 2 until no subtour reversal will improve the current solution.

An Introduction to Heuristics $12\ /\ 25$

A Subtour Reversal Heuristic for TSP

• Step 2 (again)

$$1-2-4-3-5-6-7-1$$
 Distance = 65 Reverse 3-5-6: $1-2-4-6-5-3-7-1$ Distance = 64

• **Step 2** (for the 3rd time): There are no subtour reversals that give us a distance of less than 64. The heuristic stops.

The optimal solution is 1-2-4-6-7-5-3-1 (distance of 63). However, there was no way to get to this solution with subtour reversal moves.

An Introduction to Heuristics

Local vs. Global Optimum

- The subtour reversal heuristic for the TSP is known as a local improvement procedure.
- One drawback is that local improvement procedures (or local search procedures) can lead to **local optima**.

An Introduction to Heuristics

Metaheuristics

- Traditionally, new heuristics were created to solve each new problem type.
- Metaheuristics are more general solution methods that can be applied to a variety of different problems.
 - ► "A metaheuristic is a general kind of solution method that orchestrates the interaction between local improvement procedures and higher level strategies to create a process that is capable of escaping from local optima and performing a robust search of a feasible region." (H&L)
 - ► Metaheuristics provide a general framework and some basic rules to follow.
 - Many popular metaheuristics are inspired by natural phenomena.

Metaheuristics, continued

- Examples:
 - Simulated Annealing (SA)
 - ► Tabu Search (TS)
 - ► Genetic Algorithms (GA)
 - ► Ant Colony Optimization (ACO)
 - ► Particle Swarm Optimization (PSO)
- These are iterative procedures.

Simulated Annealing

- Physical Annealing Forming Metal
 - ► Heat it, form it, cool it (according to a schedule), repeat
- Simulated Annealing Metaheuristic
 - 1) Start with a feasible trial solution. Choose a **starting temperature** and a **temperature schedule**.
 - 2) Use a local search procedure to find a neighboring solution.
 - 3) When the temperature is hot, we have a high probability of accepting "bad" neighbors. As the temperature cools, we're more selective.
 - 4) Repeat Steps 2 and 3 until
 - We can't find an acceptable neighbor, or
 - Our temperature has cooled to its minimum value, or
 - We run out of time.

Simulated Annealing Procedure - Phase I

- Initialize Parameters:
 - ▶ Pick T_0 (initial temperature)
 - ► Pick *I* (number of iterations per temperature)
 - ightharpoonup Pick δ (cooling schedule temperature reduction)
 - ightharpoonup Pick T_{final} (minimum allowable temperature)
 - Pick cutoffTime (maximum allowable runtime)
- Start the Procedure:
 - Find X_O (an initial solution)
 - Set $X_{cur} = X_0$ (current solution)
 - ► Set $Z_{cur} = Z(X_{cur})$ (current OFV)
 - Set $T_{\text{cur}} = T_0$ (current temperature)
 - ▶ Set $X_{\text{best}} = X_{\text{cur}}$ (best known solution)
 - ► Set $Z_{\text{best}} = Z_{\text{cur}}$ (best known OFV)

Simulated Annealing Procedure - Phase II

The code below assumes we are solving a minimization problem.

```
for count = 1 to T:
Generate a neighbor solution, X_{\mathtt{count}}
if (Z(X_{\text{count}}) < Z_{\text{cur}}):
    X_{\rm cur} = X_{\rm count}
    Z_{\text{cur}} = Z(X_{\text{count}})
                                              The exponent should be NEGATIVE.
else:
                                              See the WebEx video from May 7,
    \Delta C = Z(X_{	exttt{count}}) - Z_{	exttt{cur}}^{	exttt{2020 for an explanation.}}
    if (\text{rand}() \leqslant \bar{e}^{\Delta C/T_{\text{cur}}}):
         X_{\rm cur} = X_{\rm count}
         Z_{\text{cur}} = Z(X_{\text{count}})
if (Z(X_{\text{cur}}) < Z_{\text{best}}):
    Z_{\mathtt{best}} = Z(X_{\mathtt{cur}})
    X_{\text{best}} = X_{\text{cur}}
```

Simulated Annealing Procedure - Phase III

```
T_{	ext{cur}} = T_{	ext{cur}} - \delta if ((T_{	ext{cur}} < T_{	ext{final}}) or (	ext{runTime} \geq 	ext{cutoffTime}): STOP else: Return to Phase II
```

Law of Thermodynamics

ullet At temperature t, the probability of an increase in energy of magnitude ΔE is given by

$$P\{\Delta E\} = e^{\frac{-\Delta E}{kt}},$$

where k is a constant known as Boltzmann's constant.

Improving SA Performance

- (Some) Things you can change:
 - initial solution
 - ► local search procedure / neighborhood structure
 - starting temperature
 - cooling schedule (cool at a different rate)
 - number of iterations per temperature
 - ► do a re-start with a new/random solution

Simulated Annealing Terminology

- Local Search Procedure An approach to find new candidate solutions in the neighborhood of the current solution (e.g., subtour reversal).
- Neighborhood All solutions that may be found by applying a local search procedure to the current solution.
- Move Selection Rule A procedure to select one of the candidate/neighboring solutions.
 - ▶ $P\{accept\} = e^x$ where $x = (Z_{count} Z_{cur})/T_{cur}$
- Temperature Schedule A procedure for determining the starting temperature and the rate at which the temperature cools over time.