Assignment 3-probability and Random Variable

Aravind-BM19MTECH11007

March 12, 2021

problem statement: Suppose we have $Pr(Y=0|X=2)=\frac{8}{10}$ four box A,B,C and D containing coloured marbles as given below: one of the box has

Table 1:						
Box	Red	White	Black			
A	1	6	3			
В	6	2	2			
С	8	1	1			
D	0	6	4			

been selected at random and a single marble is drawn from it. If the marble is red. What is the probability that it was drawn from box A?Box B?Box C?

Solution: Here we are having 4 boxes with 10 balls each. There is a equal likelihood of selecting four boxes

 $X \in (0, 1, 2, 3)$ where 0 represents Box A,1 represents Box B,2 represents Box C,3 represents Box D

	A	В	С	D
X	0	1	2	3

 $Y \in (0,1,2)$ where 0 represents Red marble,1 represents White marble,2 represents Black marble

	Red	White	Black
Y	0	1	2

$$\begin{array}{l} Pr(X\!=\!0) = \frac{1}{4} \\ Pr(Y\!=\!0|X\!=\!0) = \frac{1}{10} \\ Pr(X\!=\!1) = \frac{1}{4} \\ Pr(Y\!=\!0|X\!=\!1) = \frac{6}{10} \\ Pr(X\!=\!2) = \frac{1}{4} \end{array}$$

$$Pr(Y=0|X=2) = \frac{8}{10}$$

 $Pr(X=3) = \frac{1}{4}$.
 $Pr(X=0|Y=3) = 0$

Since red balls are in all the three boxes. The probability that selected ball is red is given by Pr(Y=0):Probability of getting a Red marble

$$\begin{split} &= Pr(X=0)Pr(Y=0|X=0) + Pr(X=1) \\ ⪻(Y=0|X=1) + Pr(X=2)Pr(Y=0|X=2) \\ &+ Pr(X=3)Pr(Y=0|X=3) \\ &= \frac{1}{4} \times \frac{1}{10} + \frac{1}{4} \times \frac{6}{10} + \frac{1}{4} \times \frac{8}{10} \\ &= \frac{1}{4} (\frac{1}{10} + \frac{6}{10} + \frac{8}{10}) \\ &= \frac{1}{4} \times \frac{3}{2} \end{split}$$

Part A 1

Pr(X = 0|Y = 0):probability that marble is drawn from box A given it is Red marble.By using bayes theorem

$$= \frac{Pr(Y = 0|X = 0).Pr(X = 0)}{Pr(Y = 0)}$$

$$= \frac{\frac{1}{10} \times \frac{1}{4}}{\frac{1}{4} \times \frac{3}{2}}$$

$$= \frac{1}{15}$$

Part B 2

Pr(X = 1|Y = 0):probability that marble is drawn from box B given it is Red marble.By using bayes theorem

$$= \frac{Pr(Y = 0|X = 1).Pr(X = 1)}{Pr(Y = 0)}$$

$$= \frac{\frac{6}{10} \times \frac{1}{4}}{\frac{1}{4} \times \frac{3}{2}}$$

$$= \frac{2}{5}$$

3 part C

Pr(X=2|Y=0): probability that marble is drawn from box C given it is Red marble. By using bayes theorem

$$= \frac{Pr(Y = 0|X = 2).Pr(X = 2)}{Pr(Y = 0)}$$

$$= \frac{\frac{8}{10} \times \frac{1}{4}}{\frac{1}{4} \times \frac{3}{2}}$$

$$= \frac{8}{15}$$