In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

Out[2]:		date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN	2
	1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	2
	2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2	2
	3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN	2
	4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN	2
	209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN	2
	209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN	2
	209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN	2
	209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN	2
	209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN	2

209928 rows × 14 columns

In [3]: data.head(10)

\sim			г э :	т.
11	ш	т.		
v	u	·		

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	stati
0	2011-11- 01 01:00:00	NaN	1.0	NaN	NaN	154.0	84.0	NaN	NaN	NaN	6.0	NaN	NaN	280790
1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	280790
2	2011-11- 01 01:00:00	2.9	NaN	3.8	NaN	96.0	99.0	NaN	NaN	NaN	NaN	NaN	7.2	280790
3	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	60.0	83.0	2.0	NaN	NaN	NaN	NaN	NaN	280790
4	2011-11- 01 01:00:00	NaN	NaN	NaN	NaN	44.0	62.0	3.0	NaN	NaN	3.0	NaN	NaN	280790
5	2011-11- 01 01:00:00	0.5	0.8	0.3	NaN	102.0	75.0	2.0	35.0	NaN	5.0	NaN	4.3	280790
6	2011-11- 01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1.7	280790
7	2011-11- 01 01:00:00	NaN	NaN	NaN	0.36	83.0	78.0	6.0	NaN	NaN	NaN	1.80	NaN	280790
8	2011-11- 01 01:00:00	NaN	0.7	NaN	NaN	80.0	91.0	5.0	NaN	NaN	8.0	NaN	NaN	280790
9	2011-11- 01 01:00:00	NaN	0.6	NaN	NaN	63.0	71.0	NaN	33.0	NaN	6.0	NaN	NaN	280790

In [4]: data.tail(20)

Out[4]:		date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	209908	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	19.0	41.0	NaN	NaN	5.0	NaN	NaN	28
	209909	2011- 09-01 00:00:00	0.2	0.3	0.2	NaN	1.0	18.0	42.0	14.0	NaN	5.0	NaN	0.6	28
	209910	2011- 09-01 00:00:00	0.7	0.1	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	1.25	0.9	28
	209911	2011- 09-01 00:00:00	NaN	NaN	NaN	0.18	4.0	27.0	42.0	NaN	NaN	NaN	1.28	NaN	28
	209912	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	1.0	24.0	45.0	NaN	NaN	6.0	NaN	NaN	28
	209913	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	8.0	37.0	NaN	14.0	NaN	6.0	NaN	NaN	28
	209914	2011- 09-01 00:00:00	0.3	NaN	0.7	NaN	12.0	33.0	NaN	16.0	9.0	5.0	NaN	1.4	28
	209915	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	8.0	29.0	35.0	NaN	NaN	NaN	NaN	NaN	28
	209916	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	5.0	28.0	NaN	12.0	NaN	5.0	NaN	NaN	28
	209917	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	1.0	17.0	NaN	11.0	7.0	NaN	NaN	NaN	28
	209918	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	NaN	19.0	10.0	NaN	NaN	NaN	28
	209919	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	20.0	39.0	NaN	NaN	NaN	NaN	NaN	28
	209920	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	21.0	40.0	NaN	17.0	10.0	NaN	NaN	NaN	28
	209921	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	9.0	20.0	43.0	NaN	NaN	NaN	NaN	NaN	28
	209922	2011- 09-01 00:00:00	0.3	NaN	0.3	0.11	3.0	32.0	NaN	20.0	NaN	NaN	1.34	2.0	28
	209923	2011- 09-01 00:00:00	NaN	0.2	NaN	NaN	5.0	19.0	44.0	NaN	NaN	NaN	NaN	NaN	28
	209924	2011- 09-01 00:00:00	NaN	0.1	NaN	NaN	6.0	29.0	NaN	11.0	NaN	7.0	NaN	NaN	28

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	
209925	2011- 09-01 00:00:00	NaN	NaN	NaN	0.23	1.0	21.0	28.0	NaN	NaN	NaN	1.44	NaN	28
209926	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	3.0	15.0	48.0	NaN	NaN	NaN	NaN	NaN	28
209927	2011- 09-01 00:00:00	NaN	NaN	NaN	NaN	4.0	33.0	38.0	13.0	NaN	NaN	NaN	NaN	28

In [5]: data.describe()

Out[5]:

	BEN	со	EBE	NMHC	NO	NO_2	
count	51393.000000	87127.000000	51350.000000	43517.000000	208954.000000	208973.000000	1:
mean	0.815311	0.367868	0.970255	0.193821	28.146736	44.882243	
std	0.965508	0.281651	1.086046	0.097582	56.213615	32.495967	
min	0.100000	0.100000	0.100000	0.000000	1.000000	1.000000	
25%	0.200000	0.200000	0.300000	0.130000	3.000000	21.000000	
50%	0.400000	0.300000	0.600000	0.180000	8.000000	38.000000	
75%	1.000000	0.400000	1.300000	0.250000	25.000000	61.000000	
max	11.300000	4.400000	15.000000	4.810000	1126.000000	408.000000	
4							

In [6]: np.shape(data)

Out[6]: (209928, 14)

In [7]: np.size(data)

Out[7]: 2938992

In [8]: data.isna()

Out[8]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL
0	False	True	False	True	True	False	False	True	True	True	False	True	True
1	False												
2	False	False	True	False	True	False	False	True	True	True	True	True	False
3	False	True	False	True	True	False	False	False	True	True	True	True	True
4	False	True	True	True	True	False	False	False	True	True	False	True	True
209923	False	True	False	True	True	False	False	False	True	True	True	True	True
209924	False	True	False	True	True	False	False	True	False	True	False	True	True
209925	False	True	True	True	False	False	False	False	True	True	True	False	True
209926	False	True	True	True	True	False	False	False	True	True	True	True	True
209927	False	True	True	True	True	False	False	False	False	True	True	True	True

209928 rows × 14 columns

In [9]: data.dropna()

ıt[9]:		date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	1	2011-11- 01 01:00:00	2.5	0.4	3.5	0.26	68.0	92.0	3.0	40.0	24.0	9.0	1.54	8.7	280
	6	2011-11- 01 01:00:00	0.7	0.3	1.1	0.16	17.0	66.0	7.0	22.0	16.0	2.0	1.36	1.7	280
	25	2011-11- 01 02:00:00	1.8	0.3	2.8	0.20	34.0	76.0	3.0	34.0	21.0	8.0	1.71	7.4	280
	30	2011-11- 01 02:00:00	1.0	0.4	1.3	0.18	31.0	67.0	5.0	25.0	18.0	3.0	1.40	2.9	280
	49	2011-11- 01 03:00:00	1.3	0.2	2.4	0.22	29.0	72.0	3.0	33.0	20.0	8.0	1.75	6.2	280
	209862	2011- 08-31 22:00:00	0.4	0.1	1.0	0.06	1.0	13.0	33.0	21.0	6.0	5.0	1.26	0.7	280
	209881	2011- 08-31 23:00:00	0.9	0.1	1.8	0.16	11.0	45.0	30.0	32.0	17.0	3.0	1.34	4.9	280
	209886	2011- 08-31 23:00:00	0.6	0.1	1.1	0.05	1.0	12.0	48.0	19.0	7.0	5.0	1.26	0.9	280
	209905	2011- 09-01 00:00:00	0.6	0.1	1.3	0.15	6.0	35.0	34.0	21.0	12.0	3.0	1.32	3.8	280
	209910	2011- 09-01 00:00:00	0.7	0.1	1.1	0.04	1.0	12.0	46.0	8.0	5.0	5.0	1.25	0.9	280
	16460 rd	ows × 14 o	colum	ns											
	1														>
10]:	data.co	lumns													

```
In [11]: sd=data[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
```

In [12]: dd=sd.head(20) dd

Out[12]:

	BEN	со	EBE	NMHC	NO_2
0	NaN	1.0	NaN	NaN	84.0
1	2.5	0.4	3.5	0.26	92.0
2	2.9	NaN	3.8	NaN	99.0
3	NaN	0.6	NaN	NaN	83.0
4	NaN	NaN	NaN	NaN	62.0
5	0.5	8.0	0.3	NaN	75.0
6	0.7	0.3	1.1	0.16	66.0
7	NaN	NaN	NaN	0.36	78.0
8	NaN	0.7	NaN	NaN	91.0
9	NaN	0.6	NaN	NaN	71.0
10	0.3	NaN	1.4	NaN	81.0
11	NaN	0.6	NaN	NaN	82.0
12	NaN	NaN	NaN	NaN	61.0
13	NaN	NaN	NaN	NaN	79.0
14	NaN	NaN	NaN	NaN	85.0
15	NaN	NaN	NaN	NaN	65.0
16	NaN	NaN	NaN	NaN	90.0
17	NaN	NaN	NaN	NaN	51.0
18	2.3	NaN	1.9	0.27	87.0
19	NaN	8.0	NaN	NaN	92.0

In [13]: dd.plot.bar()

Out[13]: <AxesSubplot:>


```
In [14]: dd.plot.bar(color='r')
```

Out[14]: <AxesSubplot:>


```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO_2'>


```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO_2'>

In [17]: dd.plot.box()

Out[17]: <AxesSubplot:>


```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: | dd.plot.line()

Out[19]: <AxesSubplot:>


```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>

In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>

In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x193ef976cd0>

In [23]: sns.distplot(dd['NO_2'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>

In [24]: ds=data.fillna(20)
In [25]: ssd=ds.head(20)
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'NMHC', 'NO_2']]
In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>


```
In [28]: | x= ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         y=ssd['station']
In [29]: from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]:
         print(lr.intercept_)
         28079024.239080243
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
In [32]:
         coeff
Out[32]:
                 Co-efficient
            BEN
                  -2.046027
             CO
                   0.487406
            EBE
                   2.861552
          NMHC
                   0.636439
```

```
In [33]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[33]: <matplotlib.collections.PathCollection at 0x193f2635e50>

NO_2

-0.264777


```
In [34]: |print(lr.score(x_test,y_test))
         -1.6962359363999515
In [35]: |lr.score(x_test,y_test)
Out[35]: -1.6962359363999515
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.4453702958576773
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -1.4253625975304316
In [40]: |dr.score(x_train,y_train)
Out[40]: 0.44425698909440503
In [41]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: -1.00815353490863
In [43]: la.score(x_train,y_train)
Out[43]: 0.42952965002635835
         ElasticNet
```

```
In [45]: |print(en.coef_)
         [ 0.26269544  0.51638978  0.4739114
                                                0.60125289 -0.23748442]
In [46]:
         print(en.intercept_)
         28079024.00224517
In [47]: prediction=en.predict(x_test)
In [48]: |print(en.score(x_test,y_test))
         -1.4097436233275866
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: | from sklearn.linear model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE','NMHC', 'NO_2']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 5)
In [53]: target_vector.shape
Out[53]: (20,)
In [54]: from sklearn.preprocessing import StandardScaler
In [55]: | fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3]]
In [58]: | prediction=logr.predict(observation)
         print(prediction)
         [28079050]
```

```
In [59]: logr.classes
Out[59]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056], dtype=int64)
In [60]: logr.predict_proba(observation)[0][0]
Out[60]: 0.004028609623069467
In [62]: | ged=data[['BEN','CO','EBE','NMHC','NO_2','O_3','PM10','SO_2','TCH','TOL','stati
In [63]: | d=ged.fillna(20)
In [64]: | dg=d.head(100)
In [65]: | x=dg[['BEN','CO','EBE','NMHC','NO 2','O 3','PM10','SO 2','TCH','TOL']]
         y=dg['station']
In [66]: print(len(x))
         print(len(y))
         100
         100
In [67]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [68]: | from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[68]: RandomForestClassifier()
In [69]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min_samples_leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
```

In [73]: from sklearn.tree import plot_tree
 plt.figure(figsize=(50,40))
 plot_tree(rfc_best.estimators_[5],filled=True)

Out[73]: [Text(697.5, 1993.2, 'X[3] <= 0.26\ngini = 0.921\nsamples = 43\nvalue = [5,</pre> $8, 3, 3, 1, 6, 7, 2, 9, 1, 3, 0, 5, 0 \setminus 1, 1, 4, 0, 1, 0, 1, 2, 7]'),$ Text(348.75, 1630.8000000000002, 'gini = 0.498\nsamples = 7\nvalue = [0, 8,]0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'), Text(1046.25, 1630.8000000000000, 'X[5] <= 2.5 lngini = 0.91 lnsamples = 36 lnvalue = $[5, 0, 3, 3, 1, 6, 0, 2, 9, 1, 3, 0, 5, 0 \ 1, 4, 0, 1, 0, 1, 2,$ 7]'), Text(697.5, 1268.4, 'gini = 0.561\nsamples = 6\nvalue = [0, 0, 0, 0, 0, 6, 0]0, 0, 0, 0, 0, 0, 0\n1, 0, 0, 0, 0, 0, 0, 7]'), Text(1395.0, 1268.4, $'X[7] \leftarrow 14.0 \neq 0.889 \Rightarrow = 30 \neq = 5$, $0, 3, 3, 1, 0, 0, 2, 9, 1, 3, 0, 5, 0 \setminus 0, 1, 4, 0, 1, 0, 1, 2, 0]'),$ Text(697.5, 906.0, $X[4] \le 69.0$ in = 0.578 nsamples = 10 nvalue = [5, 0, 0]0, 0, 1, 0, 0, 0, 9, 1, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'), Text(348.75, 543.59999999999, 'gini = 0.656\nsamples = 5\nvalue = [2, 0, 0, 0, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0]'), Text(1046.25, 543.599999999999, 'gini = 0.469\nsamples = 5\nvalue = [3, 0, $0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0 \setminus 0, 0, 0, 0, 0, 0, 0, 0, 0]'),$ Text(2092.5, 906.0, $'X[6] \le 23.5 \cdot = 0.874 \cdot = 20 \cdot = [0, 1]$ 0, 3, 3, 0, 0, 0, 2, 0, 0, 3, 0, 5, 0\n0, 1, 4, 0, 1, 0, 1, 2, 0]'), value = $[0, 0, 3, 3, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0 \land 0, 0, 4, 0, 1, 0, 1, 2,$ 0]'), Text(1395.0, 181.199999999999, 'gini = 0.806\nsamples = 10\nvalue = [0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 0]'),Text(2092.5, 181.199999999999, 'gini = 0.49\nsamples = 5\nvalue = [0, 0, 0] $3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \setminus 0, 0, 4, 0, 0, 0, 0, 0]'),$ Text(2441.25, 543.599999999999, 'gini = 0.278\nsamples = 5\nvalue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0\n0, 1, 0, 0, 0, 0, 0, 0, 0]')]

Conclusion : LogisticRegression() [28079050] HIGH RANGE

In []: