第 1 章

線形写像の性質と像・核

線形写像とベクトルの線型独立性

- $oldsymbol{\$}$ 線形写像とベクトルの線形独立性 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像、 $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_n \in \mathbb{R}^n$ とする
 - i. $\{f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n)\}$ が線型独立ならば、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ は線型独立
 - ii. $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ が線形従属ならば、 $\{f(oldsymbol{v}_1),\ldots,f(oldsymbol{v}_n)\}$ は線形従属

ref: 行列と行列式の基 礎 p65~

[Todo 1: ref: 行列と行列式の基礎 p65 問 2.11]

ii は、平行なベクトルを線型写像で写した結果、平行でなくなったりはしないということを述べている

Zebra Notes

Туре	Number
todo	1