次世代シークエンサ実習I

2014/9/10

講義内容

- ファイル形式
- データの可視化
- データのクオリティチェック
- ・マッピング
- アセンブル

資料の見方

\$ pwd

※実際に入力するコマンドを黄色い四角の中に示します

ファイル形式

• NGS解析でよく使われるファイル形式

ファイル形式	サンプルデータの場所
fastq /home/admin1409/amelieff/ngs/1K_ERR038793_1.fastq	
bam/sam /home/admin1409/amelieff/ngs/test/1K_ERR038793.bam	
vcf /home/admin1409/amelieff/ngs/test/1K_ERR038793_sor	
bed	/home/admin1409/amelieff/ngs/test/1K_ERR038793.bed (講義中に作成)
fasta	/home/admin1409/genome/Saccharomyces_cerevisiae/NCBI/b uild3.1/Sequence/WholeGenomeFasta/genome.fa

ファイル形式 |fastq

シーケンサから出力されるリード情報

\$ less 1K_ERR038793_1.fastq

4行で1リード

```
@ERR038793.1 HS19_6178:5:1208:12689:35298#1 length=100
GGACAAGGTTACTTCCTAGATGCTATATGTCCCTACGGCCTTGTCTAACACCATCG
+ERR038793.1 HS19_6178:5:1208:12689:35298#1 length=100
D/DDBD@B>DFFEEEEEEEEEEEEEEEEBEDBBDDD:AEEE<>>CB?FCFF@F?FBFI
:
```

	必須の情報	オプション
1行め	@から始まる配列ID	付加情報
2行め	リードの塩基配列	
3行め	+	配列ID、または1行めと同じ情報
4行め	リードのクオリティ	

ファイル形式 | fastq

fastqのクオリティは、「記号のASCIIコード-33」と対応する。
 (例) クオリティ値: **%** → 37-33=**4**

ASCIIコード表

33:!	34:"	35:#	36:\$	37:%	38:&	39:'	40:(
41:)	42:*	43:+	44:,	45:-	46:.	47:/	48:0
49:1	50:2	51:3	52:4	53:5	54:6	55:7	56:8
57:9	58::	59:;	60:<	61:=	62:>	63:?	64:0
65:A	66:B	67:C	68:D	69:E	70:F	71:G	72:H
73 : I	74:J	75:K	76:L	77:M	78:N	79:0	80:P
81:Q	82:R	83 : S	84:T	85 ∶ ℧	86 : V	87:W	88:X
89 : Y	90:Z	91:[92:\	93:]	94:^	95:_	96:`
97:a	98:b	99:c	100:d	101:e	102:f	103 : g	104:h
105:i	106 : j	107:k	108:1	109:m	110:n	111:0	112 : p
113 : q	114:r	115:s	116:t	117:u	118:v	119:w	120:x
121 : y	122 : z	123:{	124:	125:}	126:~		

Copyright © Amelieff Corporation All Rights Reserved.

- リードをゲノムにマッピングしたアライメント情報
 - **sam**: テキストデータ
 - bam: 圧縮したsam。コンピュータが扱いやすいバイナリデータ
- 相互変換には主にsamtoolsというソフトを用いる
- samからbam 入力がsam、出力がbam

samtools view -Sb sam > bam

■ bamからsam

ヘッダ付で出力

samtools view -h bam > sam

\$ samtools view -h 1K_ERR038793.bam >
1K_ERR038793.sam
\$ ls

- samファイルの中身
 - @から始まるヘッダ行と、1行に1リードの情報がタブ区切りで 記載されているデータ行からなる

- samファイルの中身
 - @から始まるヘッダ行と、1行に1リードの情報がタブ区切りで 記載されているデータ行からなる

\$ less 1K_ERR038793.sam

1行で1リード

```
ERR038793.1 113 XII 1065143 4 12M4I84M I 150 0

AGGGTGTGTGTGTGTGGGTATATCTATGTCACCTTATTGCATGCTGGATGGTGTTAG

ACAAGGCCGTAGGGACATATAGCATCTAGGAAGTAACCTTGTCC

CD;?C@FEFEFFFFDC8=DA=?>>.EEE=BEEEBEE:EEE:?@FFBF?F@FFCF?

BC><EEEA:DDDBBDEBEEEDF@FEEEEEEEEFFD>B@DBDD/D NM:i:6

MD:Z:0T93A1 AS:i:83 XS:i:80 RG:Z:ERR038793 XA:Z:V,-

570330,18S82M,1;
```

- samファイルの中身
 - 最初の11列は必須である

列	項目	意味	例
1	QNAME	リード名	ERR038793.1
2	FLAG	フラグ	113
3	RNAME	染色体名	XII
4	POS	リードのスタートポジション	1065143
5	MAPQ	マッピングクオリティ	4
6	CIGAR	CIGAR	12M4I84M
:	:	:	:

• samファイルの中身

列	項目	意味	例
:	:	:	:
7	RNEXT	ペアリードがある染色体名	I
8	PNEXT	ペアリードのスタート位置	150
9	TLEN	ペア間の距離+各リード長	0
10	SEQ	リード配列	AGGGTGTGGTGTGGGTATATCTATGTCACCTTAT TGCATGCTGGATGGTGTTAGACAAGGCCGTAGGGA CATATAGCATCTAGGAAGTAACCTTGTCC
11	QUAL	リードクオリティ	CD;?C@FEFEFFFFDC8=DA=?>>.EEE=BEEEBEE :EEE:?@FFBF?F@FFCF?BC> <eeea:dddbbdebe EEDF@FEEEEEEEFFD>B@DBDD/D</eeea:dddbbdebe
•	:	:	:

ファイル形式 | v c f

- 変異の情報
 - # で始まるヘッダ行と、1行に1つの変異の情報がタブ区切りで 記載されているデータ行から成る

\$ less 1K_ERR038793_sort.vcf

ファイル形式 | v c f

- 変異の情報
 - # で始まるヘッダ行と、1行に1つの変異の情報がタブ区切りで 記載されているデータ行から成る

```
$ less 1K_ERR038793_sort.vcf
```

1行で1変異

```
I 111 . C T 105.93 .

AC=1;AF=0.50;AN=2;BaseQRankSum=0.729;DP=9;Dels=0.00;FS
=0.000;HRun=1;HaplotypeScore=0.0000;MQ=59.16;MQ0=0;MQRankS
um=-1.159;QD=11.77;ReadPosRankSum=-0.361;SB=-0.01
GT:AD:DP:GQ:PL 0/1:5,4:9:99:136,0,173
```

:

ファイル形式 Vcf

- 変異の情報
 - # で始まるヘッダ行と、1行に1つの変異の情報がタブ区切りで 記載されているデータ行から成る

列	項目	説明	例
1	#CHROM	変異がある染色体名	I
2	POS	変異のポジション	111
3	ID	rsID、COSMIC IDなど	•
4	REF	該当ポジションにおけるリファ レンスゲノムのアリル	С
5	ALT	変異のアリル	Т
:	:	:	:

ファイル形式 | v c f

・ 変異の情報

列	項目	説明	例
:	:	:	:
6	QUAL	変異のクオリティ	105.93
7	FILTER	変異検出ソフトが変異につけ る変異のクオリティ	•
8	INFO	検出ソフトやアノテーション ソフトが変異につける変異の 情報やアノテーション。記述 は自由	AC=1;AF=0.50;AN=2;BaseQRankSu m=0.729;DP=9;Dels=0.00;FS=0.00 0;HRun=1;HaplotypeScore=0.0000; MQ=59.16;MQ0=0;MQRankSum=- 1.159;QD=11.77;ReadPosRankSum =-0.361;SB=-0.01
9	FORMAT	以降の列に記載されるサンプ ルごとの変異情報の書式説明	GT:AD:DP:GQ:PL
:	サンプル列	変異の情報。書式はFORMAT に従う	0/1:5,4:9:99:136,0,173

copyright & Amerien corporation An Rights Reserved.

ファイル形式 bed

- ゲノム上の領域の情報
 - エクソームシーケンスなどのターゲットシーケンスで解析範囲 を指定するために用いられるほか、ChIP-seqで検出されたピー クを示すのに用いる
 - 例としてbamファイルをbedファイルに変換した場合

```
$ bamToBed -i 1K_ERR038793.bam > 1K_ERR038793.bed
$ less 1K_ERR038793.bed
```

```
XII 1065142 1065238 ERR038793.1/1 4 -
I 149 248 ERR038793.1/2 60 -
XIII 923961 924028 ERR038793.2/1 40 +
:
```

ファイル形式 | bed

- ゲノム上の領域の情報
 - エクソームシーケンスなどのターゲットシーケンスで解析範囲 を指定するために用いられるほか、ChIP-seqで検出されたピー クを示すのに用いる

列		項目	説明	例
1		chrom	染色体	XII
2	必須	chromStart	開始ポジション。最初の塩基は0	1065142
3		chromEnd	終了ポジション	1065238
4		name	遺伝子名や任意の文字列	ERR038793.1/1
5	オプション	score	0-1000までの数値	4
6		strand	順鎖なら+、逆鎖なら-	_
		:	:	:

ファイル形式 fasta

- NGS解析以外でもよく使われる、塩基配列やアミノ酸配列の情報。 ここではリファレンスゲノム配列のfastaについて説明する
 - 拡張子が統一されておらず、.fa、.fasta、.fna、.fasなどが使われていることがあるが、中身は同じ
- 1行めは「>」で始まるヘッダ、2行めから配列

\$ less genome.fa

>I

データの可視化

- Integrative Genomics Viewer (IGV)
 - 米 Broad Instituteが開発したゲノムブラウザ
 - GUIで直感的な操作が行える
 - bam、bed、vcfなどのファイル形式に対応(可視化できる形式一覧は http://www.broadinstitute.org/software/igv/FileFormats)
 - Windows、MacOS、LinuxのいずれのOSでも動作する
 - クローズドな環境で使用でき、セキュリティ上安全

データの可視化

IGVの起動

\$ igv.sh

データの可視化 インデックスの作成

サイズの大きなデータを高速に扱うため、サイズの大きなファイルにはインデックス(目次)ファイルが必要なことが多い

```
- bamファイル
                                インデックス作成前に
$ 1s
                                   ソートが必要
1K ERR038793.bam
$ samtools sort 1K ERR038793.bam 1K ERR038793 sort
$ 1s
1K ERR038793.bam
                       1K ERR038793 sort.bam
$ samtools index 1K ERR038793 sort.bam
$ 1s
                       1K ERR038793 sort.bam
1K ERR038793.bam
1K ERR038793 sort.bam.bai
```

データの可視化 インデックスの作成

Temp Directory

Max Records 500000

サイズの大きなデータを高速に扱うため、サイズの大きなファイルにはインデックス(目次)ファイルが必要なことが多い

Close Run

どは出ません)

データの可視化

- 1. リファレンスゲノムを選択する
- 2. 可視化したいファイルを選択する
 - 「<u>F</u>ile」 > 「<u>L</u>oad from File」からファイルを選択する
- 3. 詳細に見たい領域を選択する

- FastQC: fastqまたはbamのクオリティを確認するソフトウェア
 - fastqファイル1つに対して実行する

\$ 1s

1K_ERR038793_1.fastq

\$ fastqc -f fastq 1K_ERR038793_1.fastq

Started analysis of 1K_ERR038793_1.fastq
Approx 5% complete for 1K_ERR038793_1.fastq
Approx 10% complete for 1K_ERR038793_1.fastq
:

Approx 100% complete for 1K_ERR038793_1.fastq Analysis complete for 1K ERR038793 1.fastq

- FastQC
 - クオリティチェックのレポートがあるディレクトリと、ディレクトリの圧縮ファイルが生成される

\$ 1s

```
1K_ERR038793_1.fastq 1K_ERR038793_1_fastqc
1K_ERR038793_1_fastqc.zip
```

- 解析レポート

```
$ cd 1K_ERR038793_1_fastqc
$ ls
```

```
Icons fastqc_data.txt summary.txt
Images fastqc_report.html
```

FastQC

\$ firefox fastqc_report.html

fastqc_report.htmlを、ウェブブラウザで開く

FastQC

Measure	Value
Filename	1K_ERR038793_1.fastq
File type	Conventional base calls
Encoding	Sanger / Illumina 1.9
Total Sequences	1000
Filtered Sequences	0
Sequence length	100
%GC	34

Basic Statistics

ファイルの基本的な情報。 ファイルタイプや、リード数、リード長などの情報が表示される。 ここではwarning, failureは出ない。

Per Base Sequence Quality

横軸はリード長、縦軸はquality valueを表す。

リードの位置における全体のクオリティの中央値や平均を確認できる。赤線は中央値、青線は平均値、黄色のボックスは25%~75%の領域を表す。上下に伸びた黒いバーが10%~90%の領域を意味する。

Per sequence quality scores

Per Sequence Quality Scores

縦軸がリード数、横軸がPhred quality scoreの平均値。

Per base sequence content

リードにおける位置での各塩基の割 合を示す。

Per Base Sequence Content

いずれかの位置で、AとTの割合の差、 もしくはGとCの割合の差が10%以上 だとwarning,20%以上でfailureとな る。

Per Base GC Content

リードにおける位置でのGC含量を表す。

いずれかの位置で、全体でのGC含量 の平均値より5%以上の差が開くと warning, 10%でfailureとなる。

Per sequence GC content

Per Sequence GC Content

各リードにおけるGC含量の平均の分布(赤線) と、理論分布(青線)。

理論分布との偏差の合計が、総リードの15% 以上でwarning, 30%以上でfailureとなる。

Per base N content

Per Base N Content

"N"はシーケンサーの問題でATGCいずれの塩基にも決定出来なかった場合に記述される。 リードのいずれかの位置で5%以上Nが存在するとwarning, 20%以上でfailureとなる。

Sequence Length Distribution

Sequence Length Distribution

リード長の全体の分布。

全てのリードの長さが同じであることを前提 としており、一定でなければwarning、ゼロ のものが含まれているとfailureになる。

Sequence Duplication Levels

Sequence Duplication Levels

リードの重複レベルを見ている。 1~10はそれぞれ重複のレベルで、全体の20% 以上がユニークでないものだとwarning, 50% 以上がユニークでないとfailureとなる。

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
AGTATTAATATTTCACTGTCTTGATATCGTTATCCCCATCGTAACGTGAA	2	0.2	No Hit
GCTTTAAACGGCTTCCGCGGAAGAAATATTTCCATCTCTTGAATTCGTAC	2	0.2	No Hit
CTTTTACACCATATACTAACCACTCAATTTATATACACTTATGCCAATAT	2	0.2	No Hit
CCTGTCCCATTCAACCATACCACTCCGAACCACCATCCAT	2	0.2	No Hit
$\tt AACCCGCTACGTTGACTACAAGCTCAAACCCGAATACCACATCTGCACGT$	2	0.2	No Hit
GTCAATTTCTACTTGCCTCATTAGGGAAAAATTTAATAGCAGTTGTTATA	2	0.2	No Hit
CCATTATGACAAAGTTAAGGAGTTACGCGTGCTACATCACCGTAAAAATT	2	0.2	No Hit
C44CCTTTC44C4T4T44C4T4CC444T4CCCCTTC4T44TTCC4TC4C4	n	0.0	NA UII

Kmer Content

Overrepresented Sequences

重複している配列とその割合を表す。 特定の配列が全リードの0.1%を超えると warning、1%を超えるとfailureとなる。

K-mer Content

5 bpの任意の配列(5mer)を考えた時、ライブラリに含まれるATGCの割合を元に「実際に観測された値/理論的に観測される期待値」を計算している。

それぞれの任意の配列について、実測が期待値を大きく上回っている時、それはライブラリに配列的な偏りがあると解釈される。

「実測値/期待値」は、リード長全体における計算と、リードのある位置での計算を行い、全体における値が3倍、リードのある位置における値が5倍になるとwarning、リードのある位置における値が10倍になるとfailureとなる。

テキストデータによるレポートも 出力される

\$ less fas	stqc_data.txt	0 123456789 11 13 :	15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 5 Position in read (bp)	9 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 9
		<u> </u>		
>>Per base	sequence con	tent fail		
#Base G	А	Т	С	
1	17.4	35.8	28.9	17.9
2	17.9	35.9	32.8	13.4
3	14.4	35.1	34.5	16
4	16.03206	33.16633	35.97194	14.82966
5	17.8	33.3	32	16.9
6	17.7	35.5	28.8	18
7	16.9	33.3	33.3	16.5
8	15.1	32.6	34.9	17.4
9	15.8	32.5	33	18.7

マッピング

- シーケンサから得られたリード(DNA配列)を、リファレンスゲノムや転写産物上の類似した配列に対して並べること
 - BLASTのような従来のマッピングソフトは正確だが時間がかかり、NGS解析に向かないため、NGS解析用の高速なマッピングソフトが使われる

リファレンスゲノム

マッピング

- 各解析で使われるマッピングソフトの特徴と主なマッピングソフト
 - Reseq:データの大きなゲノムファイルに対して数カ所のミスマッチを許容して高速にマッピングする。BWAやBowtieなど
 - RNA-seq:スプライシングにより生じるギャップを考慮してマッピングする。TopHatなど
 - Methyl-seq:メチル化を考慮してマッピングする。BSMAPなど

アセンブリング

- ゲノムde novoアセンブリングで主に使われるソフト
 - Velvet
 - SOAPdenovo
 - AbySS
 - Trinity
- トランスクリプトームde novoアセンブリングで主に使われるソフト
 - Oases
 - SOAPdenovo-Trans
 - Trans-ABySS