Interpolacja wielomianowa

Zadania

- 1. Napisz funkcję, która dla zadanego wielomianu w, wektora węzłów (x_0, x_1, \ldots, x_n) oraz wektora odpowiadających im wartości (y_0, y_1, \ldots, y_n) sprawdza, czy podany wielomian jest wielomianem Lagrange'a interpolującym te dane.
- 2. (* 4 pkt) Napisz funkcję, która dla wektora n+1 różnych punktów (x_0, x_1, \ldots, x_n) i wartości pewnej funkcji f w tych punktach zwraca wektor (b_0, b_1, \ldots, b_n) współczynników wielomianu interpolacyjnego Lagrange'a funkcji f w postaci Newtona opartego na węzłach x_0, x_1, \ldots, x_n .
- 3. (* 3 pkt) Napisz funkcję, która dla danych liczb rzeczywistych $a, b \ (a < b)$ i liczby naturalnej n oblicza wartości n+1 węzłów Czebyszewa w przedziale [a,b], czyli wartości:

 $x_j = \frac{b-a}{2}\cos(\frac{2j+1}{2n+2}\pi) + \frac{a+b}{2}$ dla $j = 0, 1, \dots, n$.

- 4. (* 2 pkt) Rozważmy funkcję $f(x) = \frac{1}{1+x^2}$ w przedziale I = [-5, 5].
 - (a) Znajdź współczynniki b_i wielomianu interpolacyjnego Lagrange'a tej funkcji opartego na 6 równoodległych węzłach w przedziale I.
 - (b) Znajdź współczynniki b_i wielomianu interpolacyjnego Lagrange'a tej funkcji opartego na 11 równoodległych węzłach w przedziale I.
 - (c) Narysuj w jednym oknie wykresy funkcji f i dwóch obliczonych w poprzednich podpunktach wielomianów interpolacyjnych tej funkcji w przedziale I.
- 5. (* 2 pkt) Dla funkcji f z poprzedniego zadania wyznacz współczynniki wielomianów interpolacyjnych Lagrange'a w postaci Newtona opartych na 6 i 11 węzłach Czebyszewa w przedziale [-5,5]. Następnie narysuj w jednym oknie wykresy tych wielomianów i wyjściowej funkcji w tym przedziale.