Total No.	of Ou	estions : 5]			
		estions . 5]	3	SEAT No.:	
P3347		[6	027]-25	[Total	No. of Pages: 7
		F.Y.M.C.A		ment)	
		MT - 21 : OPTIMI2	-	· ·	
		(2020 Patter)		
Time: 21/		-		[.	Max. Marks : 50
Instruction 1)		he candidates: estions are compulsory.			
2)		statastical table and non	programmabl	e calculator is allow	ved.
3)	Figure	es to the right indicate full	marks.		
O1) A++	amnt t	b following MCOs (0	5 montes and	a)	[10]
Q1) Au a)	-	he following MCQs (0. he LPP set of basic var			[10]
a)	,	sist of	iauies willeli	are appeared in I	illear problem
		Slack & real variables	ii)	Slack & artificial	variables
		Departing basic variab	,		
	J.X				
b)	Obje	ective of sequencing p	oroblem is t	o find possible _	which
	mini	mize total elapsed time	5		
	i)	Sequence	ii	Ratio	
	iii)	Solution	(iv)	Order	
2)	Elec	to for oritical activities	vvil Bo olyyor	10	
c)	• \	ts for critical activities Zero	win be arway ii)	One .	200
	1) iii)	Smallest	iv)	Largest	
	m <i>)</i>	Smartest	10)	Largest	
d)	Туре	e of decision making en	vironment is		S. V.
,	i)	Risk	ii)	Certainty	
	iii)	Uncertainty	iv)	All of these	
				, m	
e)	A ga	ame is said to be fair if		200	
	i)	both upper and lower			z zero
	ii)	Upper & lower values	_		
	iii)	Upper value is more th	an lower val	ue of game	
	iv)	None of these		7 73	
f)	The	determine (s) the equil	ihrium of M	arkov process	
1)	i)	Original state probabili		State vector	·
	iii)	Transition matrix	iv	Fundamental ma	trix
	,		8		P.T.O.

g)	LPF	involving more than two varia	ables	can be solved by
	i)	Simplex method)ii)	Graphical method
	iii)	Matrix minima method	iv)	Hungerian method
h)	Tim	e during which machine rema	ains v	vaiting or vacant in sequencing
	prob	olem is called time.		
	i)	Processing	ii)	Waiting
	iii)	Idle	iv)	Free
		00,00		
i)	Full	form of CPM is		
	i)	Cruical path method	ii)	Control path method
	iii)	Critical plan management	iv)	Control path management
				:.C'
j)			s not	used for decision making under
	unce	ertainty	***	
	19\) Ozis	Maximin	11)	Minimax
1	× ^{III})	Maximax	IV)	Minimize expected loss
12)	Λπ	gived strategy game can be salv	zodeby),
k)		nixed strategy game can be solv	vea b	
	i) iii)	algebraic method matrix method	iv)	graphical method all of these
	ш)	maura memod	10)	an of these
1)	Ass	igning random numbers in Mor	nte ca	rlo simulation it is important
-/	to		100 00	
	i)	Develop cumulative probabili	ty dis	tribution n number table abers
	ii)	Use random numbers from ra		n number table
	iii)	Use only single set of randon	nun	nbers
	iv)	Use excel spreadsheets		
				W
m)	In si	implex method feasible basic s	olutic	on must satisfied
	i)	Non negativity constraint	ii)	Negativity constraint
	iii)	Basic constraint	iv)	Common constraint
n)			the j	bs in a job sequencing problem
		nown		6.
	i)	elapsed time	ii)	idle time
	iii)	processing time	iv)>	processing order
_	_	-	0.	

	o)		est possible time in which an mstances is known as	activ	ity can be achieved under ideal
		i) l	Pessimistic time estimate	ii)	Optimistic time estimate
		iii) l	Expected time estimate	iv)	Most likely time estimate
	p)	pected i) l	d profit with perfect informati EvPI		EMI
		iii) l	EV S	iv)	None of these
	q)	Game	e theory models are classified	by th	e
		i) 1	no. of players	ii)	sum of payoff
		iii) (i	no, of strategies	iv)	all of these
	r)	The c	ondition that system can be in	only	one state at any point in time is
		know		•	
		, ()	Fransient state	ii)	Absorbent condition
		iii)	Mutually exclusive condition	iv)	Collectively exhaustive condition
	s) (Objec	ctive function of linear program	nmin	g problem is
		- 1	Constraint	ii)	Eunction to be optimized
		iii) l	Relation between variables	iv)	None of these
	t)	Full f	form of PERT is	201	
	•)		Program evaluation & Rate te	hnol	ogy
			Program evaluation & Robot t		
		iii) l	Project evaluation & robot tec	hnolo	ogy
		iv) l	Program evaluation & review t	techn	ique.
<i>Q</i> 2)	a)	Solve	following LPP		ptimal strategies for the game[4]
		Maxi	mize $z = 50 x_1 + 100 x_2$		
		Subje	ect to constraints		
		$x_1 + x$	$\frac{1}{2} \leq 150$		
		$2x_1 +$	$3 x_2 \le 360$		
		x_1, x_2	≥ 0		
	b)	Find t	he saddle point and determine	the o	ptimal strategies for the game[4]
			$B_1 B_2 B_3 B$		
		A_{1}	$\begin{bmatrix} 4 & 0 & 2 \end{bmatrix}$	~	7 %
		$A A_{\alpha}$	$\begin{bmatrix} 6 & -1 & 4 \end{bmatrix}$		
		A	$\begin{bmatrix} 4 & 0 & 2 \\ 6 & -1 & 4 \\ 8 & -5 & -3 \end{bmatrix}$		
		- - 3	OD.	Q N	ptimal strategies for the game[4]
F / A 4		_	OR		
[602	27]-2	5	3	×′	

a) Solve following LPP. Maximize $z = 7 x_1 + 6 x_2$ Subject to constraints

$$x_1 + x_2 \le 4 2x_1 + x_2 \le 6 x_1, x_2 \ge 0$$

b) Solve the following game

Pla	yer B
Player A B1	B2
A1 3	5
A2 4	1

Q3) a) Small project consist 7 activities whose time estimates are as follows[6]

[6]

[4]

Activity	Estimated Duration (weeks)				
(i-j)	Optimistic	Most likely	Pessimistic		
(1-2)	1	1	7		
(1-3)	1	4	7		
(1-4)	2	2.7	8		
(2-5)	1	7 2	1		
(3-5)	2	5	14		
(2-5) (3-5) (4-6) (5-6)	2	5	8		
(5-6)		6	15		

Determine:

- i) Draw network diagram & identify critical path.
- ii) Identify critical activities & duration of project.
- iii) Determine probability of completing project in 13 weeks.
- b) In a toy manufacturing company suppose product acceptance probability are not known but following data known. [6]

Anticipated 1st year profit (Rs. '000')

		Acceptance Acceptance
Product	Full	Partial Minimal
Good	8	70 50
Fair	50	45 40
Poor	-25	-10,

Determine optimal decision under

- i) Maximax
- ii) Maximin
- iii) Minimax regret criteria

OR

Q3) a) The time & cost estimates of different activities are as given below. [6]

Activity	Tim	e(weeks)	Cost (Rs.)	
(i-j)	Normal	CRash	Normal	Crash
(1-2)	3	2	300	400
(2-3)	3	3	30	30
(2-4)	77	5	420	580
(2-5)	0,00	7	720	810
(3-5)	5.0	4	250	300
(4-5)	9	0	0	0 %
(5-6)	6	4	320	410
(6-7)	4	3	400	470
(6-8)	13	10	780	900
(7-8)	10	9	1000	1200

Indirect cost is Rs. 50 per weeks.

- i) Draw the net work & identify critical path.
- ii) Crash relevant activities systematically & find optimal project duration & cost.
- b) A major consumer goods manufacturer wishes to decide new product bring out in the market which of the profit table is as follows (Profit per in units of Rs. 10000).

	` \/	
Strategies	8.	States
	S ₁ (0.4)	$S_2(0.5)$ $S_3(0.1)$
A1	140	100
A2	160	130 120
A3	200	160 140
1		7

Determine:-

- i) Expected monetary value (EMV).
- ii) Expected monetary value with-perfect information (EMVPI).
- iii) Value of perfect information

Q4) a) Seven jobs are to be processed through 2 machines A & B processing time (in hrs) are as follows. [6]

Jobs	1	2	3 :	Ú4	5	6	7
Machine-A	10	9	7	15	18	20	14
Machine-B	12	8	18	12	10	6	13

Determine:

- i) Sequence of jobs
- ii) Idle time for machine A & B.

b) A market survey is made on 3 brands of breakfast foods *x*, *y*, *z*. Every time customer purchases new package following estimates for shift (in percent) are obtained. [4]

	Next 9					
Present	X	Y	γ z			
6.X	70	20	10			
Y	30	50	20			
Z	30	30	40			

It is estimated that 30% people buy brand x, 20% buy brand y & 50% buy brand z. What will be the distribution of the customers for first and second period.

a) 5 Jobs are to be processed through 3 machines processing time (in hrs) are as follows. [6]

Determine:

- i) Sequence of jobs.
- ii) Elapsed time for machine A, B & C.

			*		
Jobs	1	2	3	4	5
Machine-A	10	711	8	7	6
Machine-B	6	4	5	3	2
Machine-C	Ø).	5	4	6	8

b) Market share of brands A, B & C are 50%, 30% & 20% eustomers shift their brands in matrix as below. [4]

From		To	
	A	В	C
A	50%	30%	20%
В	20%	70%	10%
C	20%	20%	60%

Find:

- i) Transition matrix for brands.
- ii) Find share at the end of period 1 & 2

Q5) a) Distribution of demand for books has been found following information.

[4] 18 Demand 15 19 22 16 17 20 21 No. of Copies 0.20 0.05 0.08 0.45 0.10 0.07 0.02 0.03

Generate demand for 20 times period using following random numbers, also calculate average no. of copies demand.

14, 2, 93, 99, 18, 71, 37, 30, 12, 10, 88, 13, 00, 57, 69, 32, 18, 8, 92, 73

Explain the terms. b)

[4]

- Basic solution.
- Dummy activity.

OR

A confectioner sells items past data of demand per week is given below.

[4]

Demand in (kg)	0	5	210	15	20	25
Probability	0.04	0.22	0.16	0.42	0.10	0.06

Aus Aus August A Generate demand for next 10 weeks & average demand per week using random numbers-

78, 99, 43, 62, 44, 2, 67, 32

- Explain the terms: b)
 - i) Degenerate solution.
 - Float. ii)

