Pandas bowling: convierte tus datos en información

Introducción a la manipulación de datos utilizando pandas contra un set de datos públicos. Data munging: filtering, merging, grouping, estadísticas comunes e introducción al plotting.

Pandas bowling

```
In [1]: import pandas as pd
import csv
import re
import unicodedata
```

```
In [2]: # Delimiter;
# Awkward encoding

dialect = csv.excel()
    dialect.delimiter = ';'
# Source: http://www.datosabiertos.jcyl.es/web/jcyl/risp/es/directorio/ba
    res/1284211832884.csv
    bars = pd.read_csv('bares.csv', dialect=dialect, encoding='cp1252')

to_ascii = lambda text: unicodedata.normalize('NFKD', text).encode('ASCII
', 'ignore').upper()
```

```
In [3]: bars
Out[3]: <class 'pandas.core.frame.DataFrame'>
```

Int64Index: 13984 entries, 0 to 13983

```
Data columns (total 15 columns):
Nombre
               13984 non-null values
Dirección
                     non-null values
               13915
C.Postal
               13958 non-null values
               13984
Provincia
                     non-null values
Municipio
              13984 non-null values
Localidad
               13984 non-null values
Nucleo
              9786 non-null values
Teléfono 1
              11849 non-null values
Teléfono 2
              658 non-null values
Teléfono 3
              21 non-null values
Fax
               45
                  non-null values
Email
              255 non-null values
web
               39 non-null values
Q Calidad
                 non-null values
               0
Unnamed: 14
               0
                 non-null values
```

dtypes: float64(2), object(13)

In [4]: bars.tail(1)

Out[4]:

	Nombre	Dirección	C.Postal	Provincia	Municipio	Localidad	Nuclec
13983	ARCO DE TRIUNFO	VILLAR Y MACIAS, 7	37003	Salamanca	Salamanca	SALAMANCA	SALAN

```
In [5]: bars.Localidad.apply(lambda x: x.find('LA ') != -1)
```

```
Out[5]:
         0
                False
         1
                False
         2
                False
         3
                False
         4
                False
         5
                False
         6
                False
         7
                False
         8
                False
         9
                False
         10
                False
         11
                False
         12
                False
         13
                False
         14
                False
```

```
False
        13970
        13971
                 False
        13972
                 False
        13973
                  True
                 False
        13974
                 False
        13975
        13976
                 False
        13977
                 False
        13978
                 False
        13979
                 False
        13980
                 False
        13981
                 False
        13982
                 False
        13983
                 False
        Name: Localidad, Length: 13984, dtype: bool
In [6]: bars[bars.Localidad.apply(lambda x: x.find('LA ') != -1)]
Out[6]: <class 'pandas.core.frame.DataFrame'>
        Int64Index: 805 entries, 46 to 13973
        Data columns (total 15 columns):
        Nombre
                       805 non-null values
        Dirección
                       795 non-null values
        C.Postal
                       803 non-null values
        Provincia
                       805 non-null values
                       805 non-null values
        Municipio
        Localidad
                       805 non-null values
        Nucleo
                       574 non-null values
                       685 non-null values
        Teléfono 1
                       51 non-null values
        Teléfono 2
                       0 non-null values
        Teléfono 3
        Fax
                        3 non-null values
                        17 non-null values
        Email
        web
                        1 non-null values
                       0 non-null values
        O Calidad
                       0 non-null values
        Unnamed: 14
        dtypes: float64(2), object(13)
In [7]: # Selección de filas
        bars.iloc[0]
        bars.loc[0]
        bars.ix[0]
        bars.T[0]
```

Out[7]: Nombre CASA PEDRO
Dirección NUÑEZ DE ARCE 4

13969

False

```
Municipio
                             Valladolid
        Localidad
                             VALLADOLID
        Nucleo
                             VALLADOLID
        Teléfono 1
                              983000000
        Teléfono 2
                                    NaN
        Teléfono 3
                                    NaN
        Fax
                                    NaN
        Email
                                    NaN
        web
                                    NaN
        O Calidad
                                    NaN
        Unnamed: 14
                                    NaN
        Name: 0, dtype: object
In [8]: bars[0]
        KeyError
                                                    Traceback (most recent call las
        t)
        <ipython-input-8-4cadcae3962b> in <module>()
        ---> 1 bars[0]
        //anaconda/lib/python2.7/site-packages/pandas/core/frame.pyc in getitem
         (self, key)
                             # get column
            2001
            2002
                             if self.columns.is unique:
        -> 2003
                                 return self. get item cache(key)
            2004
                             # duplicate columns
            2005
        //anaconda/lib/python2.7/site-packages/pandas/core/generic.pyc in get it
        em cache(self, item)
                             return cache[item]
             665
             666
                         except Exception:
                             values = self. data.get(item)
        --> 667
                             res = self. box item values(item, values)
             668
             669
                             cache[item] = res
        //anaconda/lib/python2.7/site-packages/pandas/core/internals.pyc in get(s
        elf, item)
            1653
                     def get(self, item):
                         if self.items.is unique:
            1654
                             _, block = self._find_block(item)
        -> 1655
                             return block.get(item)
            1656
            1657
                         else:
```

Valladolid

C.Postal

Provincia

```
//anaconda/lib/python2.7/site-packages/pandas/core/internals.pyc in _find
         block(self, item)
            1933
            1934
                     def find block(self, item):
                          self. check have(item)
         -> 1935
                         for i, block in enumerate(self.blocks):
            1936
            1937
                              if item in block:
         //anaconda/lib/python2.7/site-packages/pandas/core/internals.pyc in chec
         k have(self, item)
            1940
                     def check have(self, item):
                         if item not in self.items:
            1941
                              raise KeyError('no item named %s' % com.pprint_thing(
         -> 1942
         item))
            1943
                     def reindex axis(self, new axis, method=None, axis=0, copy=Tr
            1944
         ue):
         KeyError: u'no item named 0'
  In []: bars.tail(1)
  In []: | web_only = bars.dropna(subset=['web'])
         len(web_only)
         web_only[web_only.Localidad == 'BURGOS']
 In []: bars["C.Postal"]
 In []: bars.Provincia
In [9]: by_provincia_gb = bars.groupby('Provincia')
         by_provincia_qb
Out[9]: <pandas.core.groupby.DataFrameGroupBy object at 0x108cf5f50>
In [10]: by_provincia_qb.web.get_group(u'León').dropna()
Out[10]: 11406
                  seaki.com
         Name: web, dtype: object
In [11]:
         by_provincia = pd.DataFrame({'Bares': by_provincia_gb.size()})
         by_provincia
Out[11]:
```

Bares

1796
2224
1057
1341
804
353
3724
1282
1403

```
In [12]: by_provincia.index
```

Out[12]: Index([u'Burgos', u'León', u'Palencia', u'Salamanca', u'Segovia', u'Soria ', u'Valladolid', u'Zamora', u'Ávila'], dtype=object)

In [13]: by_provincia.sort('Bares', ascending=False)

Out[13]:

	Bares
Provincia	
Valladolid	3724
León	2224
Burgos	1796
Ávila	1403
Salamanca	1341
Zamora	1282
Palencia	1057
Segovia	804
Soria	353

In [14]: by_provincia.plot(rot=20)

Out[14]: <matplotlib.axes.AxesSubplot at 0x108d913d0>

4000 _____ Bares

In [15]: population = pd.read_excel('poblacion_por_provincias.xls', 'poblacion')
 population['Provincia'] = population.Provincia.apply(to_ascii)
 population.columns = 'Provincia', 'Población'
 population = population.set_index('Provincia')
 population

Out[15]:

	Población
Provincia	
AVILA	169505
BURGOS	367906
LEON	488991
PALENCIA	168721
SALAMANCA	347377
SEGOVIA	161640
SORIA	93389
VALLADOLID	530590
ZAMORA	189037

In [16]: joined = population.join(by_provincia)
 joined

Out[16]:

	Población	Bares
Provincia		
AVILA	169505	NaN
BURGOS	367906	NaN

LEON	488991	NaN
PALENCIA	168721	NaN
SALAMANCA	347377	NaN
SEGOVIA	161640	NaN
SORIA	93389	NaN
VALLADOLID	530590	NaN
ZAMORA	189037	NaN

In [18]: joined = population.join(by_provincia)
 joined

Out[18]:

	Población	Bares
Provincia		
AVILA	169505	1403
BURGOS	367906	1796
LEON	488991	2224
PALENCIA	168721	1057
SALAMANCA	347377	1341
SEGOVIA	161640	804
SORIA	93389	353
VALLADOLID	530590	3724
ZAMORA	189037	1282

```
In [19]: joined['Población'].sum()
```

Out[19]: 2517156.0

In [20]: joined.Bares.std()

Out[20]: 975.3478581739156

In [21]: joined[['Población', 'Bares']].corr()

Out[21]:

	Población	Bares
Población	1.000000	0.890913
Bares	0.890913	1.000000

In [22]: joined['Habitantes por bar'] = joined['Población'].astype(float) / joined .Bares

joined['Habitantes por bar'] = joined['Habitantes por bar'].apply(round)
joined['% Bares'] = joined.Bares.apply(lambda number: round(100 * number
/ joined.Bares.sum().astype(float), 1))

joined['% Población'] = joined['Población'].apply(lambda people: round(10
0 * people / joined['Población'].sum().astype(float), 1))
joined

Out[22]:

	Población	Bares	Habitantes por bar	% Bares	% Población
Provincia					
AVILA	169505	1403	121	10.0	6.7
BURGOS	367906	1796	205	12.8	14.6
LEON	488991	2224	220	15.9	19.4
PALENCIA	168721	1057	160	7.6	6.7
SALAMANCA	347377	1341	259	9.6	13.8
SEGOVIA	161640	804	201	5.7	6.4
SORIA	93389	353	265	2.5	3.7
VALLADOLID	530590	3724	142	26.6	21.1
ZAMORA	189037	1282	147	9.2	7.5

In [23]: joined[['% Población', '% Bares']].plot()

Out[23]: <matplotlib.axes.AxesSubplot at 0x108d43650>


```
5 AVILA BURGOS LEON PALENCIALAMANCSEGOVIA SORIA/ALLADOLIZAMORA
Provincia
```

```
In [24]: pob_bar = joined[['Población', 'Bares']]
    pob_bar.Bares.plot()
    pob_bar['Población'].plot(secondary_y=True, style='g')
```

Out[24]: <matplotlib.axes.AxesSubplot at 0x108df1690>

In [25]: pd.tools.plotting.scatter_plot(joined, 'Población', 'Bares')


```
In [26]: pd.tools.plotting.scatter_plot(joined, 'Población', 'Bares')

for label, x, y in zip(joined.index, joined['Población'], joined['Bares']
):
    plt.annotate(
        label,
        xy = (x, y), xytext = (-10, 10),
        textcoords = 'offset points', ha = 'center', va = 'bottom')
        #bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0
.2))
```



```
In [27]: def scatter_and_fit(joined, figsize=(8, 6)):
    from pylab import polyfit, poly1d

fit = polyfit(joined['Población'], joined['Bares'], 1)
    fit_fn = poly1d(fit)

plt.figure(figsize=figsize, dpi=160)
    plt.plot(
        joined['Población'],
        joined['Bares'],
        'bo',
```

```
joined['Población'],
   fit_fn(joined['Población']),
   '--k');

for label, x, y in zip(joined.index, joined['Población'], joined['Bar
es']):
   plt.annotate(
        label,
        xy = (x, y), xytext = (-10, 10),
        textcoords = 'offset points', ha = 'center', va = 'bottom',)

scatter_and_fit(joined)
```



```
In [46]: initial_length = len(bars)

capitals = [to_ascii(provincia) for provincia in bars.Provincia.unique()]
bars_caps = bars[bars.Localidad.apply(lambda x: x in capitals)]

print initial_length - len(bars_caps), '/', initial_length, "bars not in capitals discarded.",
print len(bars_caps), "bars left."
```

8268 / 13984 bars not in capitals discarded. 5716 bars left.

```
In [47]: by_municipio_gb = bars_caps.groupby('Municipio')
by_municipio = pd.DataFrame({'Bares': by_municipio_gb.size()})
```

by_municipio.set_index(by_municipio.index.map(to_ascii), inplace=True)
by_municipio

Out[47]:

	Bares
BURGOS	756
LEON	728
PALENCIA	405
SALAMANCA	589
SEGOVIA	209
SORIA	138
VALLADOLID	2276
ZAMORA	380
AVILA	235

In [48]: population_caps = pd.read_excel('poblacion_por_provincias.xls', 'capitale
 s', header=0, index_col='Capital')
 population_caps.set_index(population_caps.index.map(to_ascii), inplace=Tr
 ue)
 population_caps = population_caps.rename_axis({'Total': 'Población'})
 population_caps

Out[48]:

	Población
AVILA	59008
BURGOS	178966
LEON	134305
PALENCIA	82651
SALAMANCA	155619
SEGOVIA	55220
SORIA	39528
VALLADOLID	317864
ZAMORA	65525

In [49]: population_caps.reset_index()

Out[49]:

index Población

	шисл	i obiacion
0	AVILA	59008
1	BURGOS	178966
2	LEON	134305
3	PALENCIA	82651
4	SALAMANCA	155619
5	SEGOVIA	55220
6	SORIA	39528
7	VALLADOLID	317864
8	ZAMORA	65525

Out[50]:

	Bares	Población
index		
BURGOS	756	178966
LEON	728	134305
PALENCIA	405	82651
SALAMANCA	589	155619
SEGOVIA	209	55220
SORIA	138	39528
VALLADOLID	2276	317864
ZAMORA	380	65525
AVILA	235	59008

In [51]: scatter_and_fit(joined)

In [52]: scatter_and_fit(joined2[joined2.index != 'VALLADOLID'], (7, 4))

In [53]: scatter_and_fit(joined[joined.index != 'VALLADOLID'], (7, 4))

In [54]: joined2['Bares por 10K hab'] = 10**4 * joined2['Bares'] / joined2['Poblac
ión']
joined2['Bares por 10K hab'] = joined2['Bares por 10K hab'].apply(round)

Out[54]: <matplotlib.axes.AxesSubplot at 0x10ae7f650>


```
In [55]: localidades = bars.copy()
    localidades['Localidad'] = localidades['Localidad'].apply(
        lambda x: to_ascii(x.split(' (')[0]).upper()) + ', ' + localidades['P rovincia'].apply(lambda x: to_ascii(x).upper())
    por_localidad = pd.DataFrame({'Bares': localidades.groupby('Localidad').s ize()})
    por_localidad[por_localidad.Bares >= 10]
    por_localidad
```

Out[55]: <class 'pandas.core.frame.DataFrame'>
 Index: 2025 entries, ABADES, SEGOVIA to ZUZONES, BURGOS
 Data columns (total 1 columns):
 Bares 2025 non-null values
 dtypes: int64(1)

In [56]: por_localidad.head(10)

Out[56]:

	Bares
Localidad	
ABADES, SEGOVIA	4
ABEJAR, SORIA	1
ABEJERA, ZAMORA	1
ABELGAS DE LUNA, LEON	1
ABELON, ZAMORA	2

ABRAVESES DE TERA, ZAMORA	1
ABUSEJO, SALAMANCA	1
ACEBEDO, LEON	1
ACEBES DEL PARAMO, LEON	1
ADANERO, AVILA	4

248 + 371 619 + 211 830 + 191 1021 + 362

0 + 248

1383 + 209 1592 + 183

1775 + 225

2000 + 248

In [58]: population_locs.head()

Out[58]:

	Población
ADANERO, AVILA	266
ADRADA, AVILA	2704
ALBORNOS, AVILA	218
ALDEANUEVA DE SANTA CRUZ, AVILA	136
ALDEASECA, AVILA	273

```
In [59]: print len(por_localidad), len(population_locs)
print sum([ix in por_localidad.index for ix in population_locs.index])

2025 2248
1382
```

```
In [60]: df = por_localidad.join(population_locs, how='inner')
df
```

Bares 1382 non-null values Población 1382 non-null values

dtypes: float64(1), int64(1)

In [61]: df.columns

Out[61]: Index([u'Bares', u'Población'], dtype=object)

Out[62]:

	Bares	Población	Habitantes por bar
Localidad			
ADANERO, AVILA	4	266	66.50
ADRADA, AVILA	25	2704	108.16
ALBORNOS, AVILA	2	218	109.00
ALDEANUEVA DE SANTA CRUZ, AVILA	2	136	68.00
ALDEASECA, AVILA	1	273	273.00

In [63]: df[df.Bares >= 50].sort('Habitantes por bar').head(10)

Out[63]:

	Bares	Población	Habitantes por bar
Localidad			
MEDINA DEL CAMPO, VALLADOLID	185	21594	116.724324
VALLADOLID, VALLADOLID	2276	311501	136.863357
BENAVENTE, ZAMORA	127	19259	151.645669
ZAMORA, ZAMORA	380	65362	172.005263

,			
LEON, LEON	728	131680	180.879121
PALENCIA, PALENCIA	405	81198	200.488889
ARANDA DE DUERO, BURGOS	150	33459	223.060000
BURGOS, BURGOS	756	179906	237.970899
AVILA, AVILA	235	58915	250.702128
SALAMANCA, SALAMANCA	589	152048	258.146010

Back to top

More info on IPython website (http://ipython.org). The code for this site (https://github.com/ipython/nbviewer) is licensed under BSD (https://github.com/ipython/nbviewer/blob/master/LICENSE.txt). Some icons from Glyphicons Free (http://glyphicons.com), built thanks to Twitter Bootstrap (http://twitter.github.com/bootstrap/)

This web site does not host notebooks, it only renders notebooks available on other websites. Thanks to all our contributors (https://github.com/ipython/nbviewer/contributors) and to Rackspace (http://www.rackspace.com) for hosting.

nbviewer version: e3a7f5b (https://github.com/ipython/nbviewer/commit/e3a7f5babbd25ba939ec88fd59162f59829bf7ca) (Sun, 5 Jan 2014 11:24:48 -0800)