EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Review: Generative Models

1. Reparameterization Trick

Formally, a latent variable model p is a probability distribution over observed variables z (variables that are not directly observed but inferred), $p_{\theta}(x,z)$. Because we know z is unobserved, using learning methods learned in class (like supervised learning methods) is unsuitable. Indeed, our learning problem of maximizing the log-likelihood of the data turns from:

$$\theta \leftarrow arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log[p_{\theta}(x_i)]$$

to:

$$\theta \leftarrow arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log[\int p_{\theta}(x_i \mid z) p(z) dz]$$

where p(x) has become $\int p_{\theta}(x_i \mid z)p(z)dz$.

(a) Instead of directly optimizing the likelihood of p(x), we define the proxy likelihood as:

$$\mathcal{L}(x_i, \theta, \phi) = E_{z \sim q_{\phi}(z|x_i)} \left[\log[p_{\theta}(x_i \mid z)] \right] - D_{KL} \left[q_{\phi}(z \mid x_i) || p(z) \right]$$

This proxy term is a *lower bound* of the original likelihood. In order to optimize this variational lower bound, which distribution do we sample from?

Solution: We sample from $q_{\phi}(z \mid x_i)$

(b) How do we take gradients through samples? To do we, we need to show how sampling can be done as a deterministic and continuous function of the model parameters θ and the independent source of randomness (ie. the *prior*). Such an explicit representation of sampling is called **reparameterization**. Consider the case where the data x is sampled from a normal distribution with its mean parameterized by parameters θ and variance of 1, with our objective being a quadratic function of x:

$$\min_{\theta} E_q[x^2]$$

Review: Generative Models @ 2023-05-02 18:36:33Z

Write x as a function of ϵ , a vector sampled from a standard Normal $\mathcal{N}(0,1)$, and compute the gradient of the expectation term above:

Solution: We can first make the stochastic element in q independent of θ , and rewrite x as:

$$x = \theta + \epsilon, \epsilon \sim \mathcal{N}(0, 1)$$

$$E_q[x^2] = E_{\epsilon}[(\theta + \epsilon)^2]$$

Hence we can write the derivative of $E_q[x^2]$ as:

$$\nabla_{\theta} E_q[x^2] = \nabla_{\theta} E_{\epsilon}[(\theta + \epsilon)^2]$$
$$= E_{\epsilon}[2(\theta + \epsilon)]$$

2. Latent Variable Models

- (a) Describe what the encoder and decoder of the VAE are respectively doing to capture and encode this information into a latent representation of space z. Is the latent space dimension smaller that the input space? How is the information bottleneck created in VAE as opposed to Autoencoder. Solution:
 - i. **Encoder** Encoder maps a high-dimensional input x (like the pixels of an image) and then (most often) outputs the parameters of a Gaussian distribution that specify the hidden variable z. In other words, they output $\mu_{z|x}$ and $\Sigma_{z|x}$. We will implement this as a deep neural network, parameterized by ϕ , which computes the probability $q_{\phi}(z|x)$. We could then sample from this distribution to get noisy values of the representation z.
 - ii. **Decoder** Decoder maps the latent representation back to a high dimensional reconstruction, denoted as \hat{x} , and outputs the parameters to the probability distribution of the data. We will implement this as another neural network, parametrized by θ , which computes the probability $p_{\theta}(x|z)$. In the MNIST dataset example, if we represent each pixel as a 0 (black) or 1 (white), the probability distribution of a single pixel can be then represented using a Bernoulli distribution. Indeed, the decoder gets as input the latent representation of a digit z and outputs 784 Bernoulli parameters, one for each of the 784 pixels in the image.

(b) Once the VAE is trained, how do we use it to generate a new fresh sample from the learned ap-

proximation of the data-generating distribution?

Solution: We can now use only the Decoder network $(p_{\theta}(x \mid z))$. Here, instead of sampling z from the posterior that we had during training, we sample from our true generative process which is the prior that we had specified $(z \sim \mathcal{N}(0, I))$ and we proceed to use the network to sample \hat{x} from there.

(c) In the previous question we have used a proxy likelihood:

$$\mathcal{L}(x_i, \theta, \phi) = E_{z \sim q_{\phi}(z|x_i)} \left[\log[p_{\theta}(x_i \mid z)] \right] - D_{KL} \left[q_{\phi}(z \mid x_i) || p(z) \right]$$

Please show that $\mathcal{L}(x_i, \theta, \phi)$ is always a lower bound to the true log likelihood for x_i .

Solution:

$$\begin{split} \log p_{\theta}(x_{i}) &= E_{z \sim q_{\phi}(z|x_{i})} \Big[\log p_{\theta}(x_{i}) \Big] \\ &= E_{z \sim q_{\phi}(z|x_{i})} \Big[\log \frac{p_{\theta}(x_{i} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x_{i})} \Big] \\ &= E_{z \sim q_{\phi}(z|x_{i})} \Big[\log \frac{p_{\theta}(x_{i} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x_{i})} \frac{q_{\phi}(z \mid x_{i})}{q_{\phi}(z \mid x_{i})} \Big] \\ &= E_{z \sim q_{\phi}(z|x_{i})} \Big[\log p_{\theta}(x_{i} \mid z) \Big] - E_{z \sim q_{\phi}(z|x_{i})} \Big[\log \frac{q_{\phi}(z \mid x_{i})}{p_{\theta}(z)} \Big] + E_{z \sim q_{\phi}(z|x_{i})} \Big[\log \frac{q_{\phi}(z \mid x_{i})}{p_{\theta}(z \mid x_{i})} \Big] \\ &= E_{z \sim q_{\phi}(z|x_{i})} \Big[\log p_{\theta}(x_{i} \mid z) \Big] - D_{KL}(q_{\phi}(z \mid x_{i}) || p_{\theta}(z)) + D_{KL}(q_{\phi}(z \mid x_{i}) || p_{\theta}(z \mid x_{i})) \\ &= \mathcal{L}(x_{i}, \theta, \phi) + D_{KL}(q_{\phi}(z \mid x_{i}) || p_{\theta}(z \mid x_{i})) \end{split}$$

Because $D_{KL}(q_{\phi}(z\mid x_i)||p_{\theta}(z\mid x_i)) \geq 0$, and is not tractable due to $p_{\theta}(z\mid x_i)$ we can conclude that: $\log p_{\theta}(x_i) \geq \mathcal{L}(x_i, \theta, \phi) = E_{z \sim q_{\phi}(z\mid x_i)} \Big[\log p_{\theta}(x_i\mid z)\Big] - D_{KL}(q_{\phi}(z\mid x_i)||p_{\theta}(z))$

Alternatively we could use Jensen's Inequality, which states, $\log E[X] \ge E[\log X]$ to show that:

$$\sum_{i=1}^{N} \log[p_{\theta}(x_i)] \ge \sum_{i=1}^{N} E_{q(z|x_i)}[\log(p_{\theta}(z)) - \log(p_q(z \mid x_i)) + \log(p_{\theta}(x_i \mid z))]$$

That is:

We first write out the log-likelihood objective of a discrete latent variable model.

$$arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log[p_{\theta}(x_i)] = arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} log[\sum_{z} p_{\theta}(x_i \mid z) p_{\theta}(z)]$$

then,

$$\Sigma_{i=1}^{N} \log[p_{\theta}(x_i)] = \Sigma_{i=1}^{N} \Big(\Sigma_z \log[p_{\theta}(z) p_{\theta}(x_i \mid z)] \Big)$$

Review: Generative Models @ 2023-05-02 18:36:33Z

$$\begin{split} & = \Sigma_{i=1}^{N} \Big(\Sigma_{z} \log[\frac{q_{\phi}(z \mid x_{i})}{q_{\phi}(z \mid x_{i})} p_{\theta}(z) p_{\theta}(x_{i} \mid z)] \Big) \\ & = \Sigma_{i=1}^{N} \Big(\Sigma_{z} \log E_{q_{\phi}(z \mid x_{i})} [\frac{1}{q_{\phi}(z \mid x_{i})} p_{\theta}(z) p_{\theta}(x_{i} \mid z)] \Big) \\ & \Sigma_{i=1}^{N} \log[p_{\theta}(x_{i})] \geq \Sigma_{i=1}^{N} E_{q(z \mid x_{i})} [\log(p_{\theta}(z)) - \log(p_{q}(z \mid x_{i})) + \log(p_{\theta}(x_{i} \mid z))] \end{split}$$

3. Diffusion Models

In the previous question we considered sampling from a discrete distribution. Let's now see how iteratively adding Gaussian noise to a data point leads to a noisy sequence, and how the reverse process refines noise to generate realistic samples.

The classes of generative models we've considered so far (VAEs, GANs), typically introduce some sort of bottleneck (*latent representation* \mathbf{z}) that captures the essence of the high-dimensional sample space (\mathbf{x}). An alternate view of representing probability distributions $p(\mathbf{x})$ is by reasoning about the *score function* i.e. the gradient of the log probability density function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$.

Given a data point sampled from a real data distribution $\mathbf{x}_0 \sim q(\mathbf{x})$, let us define a forward diffusion process iteratively adding small amount of Gaussian noise to the sample in T steps, producing a sequence of noisy samples $\mathbf{x}_1, ... \mathbf{x}_T$.

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t I) \qquad q(\mathbf{x}_{1:T}|x_0) = \prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$
(1)

The data sample \mathbf{x}_0 gradually loses its distinguishable features as the step t becomes larger. Eventually when $T \to \infty$, \mathbf{x}_T is equivalent to an isotropic Gaussian distribution. (You can assume \mathbf{x}_0 is Gaussian).

To generative model is therefore the *reverse diffusion process*, where we sample noise from an isotropic Gaussian, and iteratively refine it towards a realistic sample by reasoning about $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$.

(a) Anytime Sampling from Intermediate Distributions

Given x_0 and the stochastic process in eq. (1), show that there exists a closed form distribution for sampling directly at the t^{th} time-step of the form

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t}\mathbf{x}_0, (1-\alpha_t)I)$$

Solution: Recall the reparameterization trick, where to sample from a Gaussian $\mathbf{x} \sim \mathcal{N}(\mu, \sigma^2)$, we could consider the following sampling process:

$$\mathbf{x} = \mu + \sigma \epsilon$$
 where $\epsilon \sim \mathcal{N}(0, 1)$

Therefore, defining $\gamma_t = 1 - \beta_t$, we have

$$\begin{split} \mathbf{x}_t &= \sqrt{\gamma_t} \mathbf{x}_{t-1} + \sqrt{(1-\gamma_t)} \epsilon_{t-1} & \text{where } \epsilon_{t-1} \sim \mathcal{N}(0, I) \\ &= \sqrt{\gamma_t} \Big(\sqrt{\gamma_{t-1}} \mathbf{x}_{t-2} + \sqrt{(1-\gamma_{t-1})} \epsilon_{t-2} \Big) + \sqrt{(1-\gamma_t)} \epsilon_{t-1} & \text{where } \epsilon_{t-2} \sim \mathcal{N}(0, I) \end{split}$$

To simplify this, recall the following lemma, where mixing two Gaussians $\mathcal{N}(0, \sigma_1^2)$ and $\mathcal{N}(0, \sigma_2^2)$ gives a Gaussian $\mathcal{N}(0, \sigma_1^2 + \sigma_2^2)$. Therefore, mixing samples ϵ_1, ϵ_2 . Building on this insight, we can combine the noise components ϵ_1, ϵ_2 into a new random variable:

$$\hat{\epsilon}_{t-2} \sim \mathcal{N}(0, (\gamma_t(1 - \gamma_{t-1}) + (1 - \gamma_t))I)$$

$$\sim \mathcal{N}(0, (1 - \gamma_t \gamma_{t-1})I)$$

$$\therefore \mathbf{x}_t = \sqrt{\gamma_t \gamma_{t-1}} \mathbf{x}_{t-2} + \sqrt{(1 - \gamma_t \gamma_{t-1})} \hat{\epsilon}_{t-2}$$

Unrolling this recursion, we would get the base case, where for x_0 the samples are

$$\mathbf{x}_t = \sqrt{\prod_{i=1}^t \gamma_i} \mathbf{x}_0 + \sqrt{1 - \prod_{i=1}^t \gamma_i} \epsilon$$

Therefore, by introducting $\alpha_t = \prod_{i=1}^t \gamma_i$ we get that

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\alpha_t}\mathbf{x}_0, (1-\alpha_t)I)$$

(b) Reversing the Diffusion Process

Reversing the diffusion process from *real* to *noise* would allow us to sample from the real data distribution. In particular, we would want to draw samples from $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$. Show that given \mathbf{x}_0 , the reverse conditional probability distribution is tractable and given by

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\mu(\mathbf{x}_t,\mathbf{x}_0),\hat{\beta}_t I)$$

- Hint: Use Bayes Rule on eq. (1), assuming that \mathbf{x}_0 is drawn from Gaussian $q(\mathbf{x})$
- Hint: When applying Bayes rule to compute $q(x_{t-1}|x_t, x_0)$, don't expand the entire Gaussion pdf. Instead just compute the exponent parts to simplify your work.
- Hint: Scalar form of Gaussian pdf is given as $f(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(\frac{z-\mu}{\sigma})^2\right\}$

Solution: Applying Bayes rule on $q(x_t|x_{t-1},x_0)$ we get the following expression

$$q(x_{t-1}|x_t, x_0) = q(x_t|x_{t-1}, x_0) \frac{q(x_{t-1}|x_0)}{q(x_t|x_0)}$$

From part (a) we know the densities as

$$q(x_t|x_0) \sim \mathcal{N}(\sqrt{\alpha_t}x_0, (1-\alpha_t)I)$$
$$q(x_t|x_{t-1}, x_0) \sim \mathcal{N}(\sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

Therefore by plugging into the Bayes rule, we recover (upto proportionality constants)

$$q(x_{t-1}|x_t, x_0) \propto \exp\left(-\frac{1}{2} \left\{ \frac{(x_t - \sqrt{1 - \beta_t} x_{t-1})^2}{\beta_t} + \frac{(x_{t-1} - \sqrt{\alpha_{t-1}} x_0)^2}{1 - \alpha_{t-1}} - \frac{(x_t - \sqrt{\alpha_t} x_0)^2}{1 - \alpha_t} \right\} \right)$$

$$\propto \exp\left(-\frac{1}{2} \left\{ \frac{x_t^2 - 2\sqrt{1 - \beta_t} x_{t-1} x_t + (1 - \beta_t) x_{t-1}^2}{\beta_t} + \frac{x_{t-1}^2 - 2\sqrt{\alpha_{t-1}} x_0 x_{t-1} + \alpha_{t-1} x_0^2}{1 - \alpha_{t-1}} - \frac{(x_t - \sqrt{\alpha_t} x_0)^2}{1 - \alpha_t} \right\} \right)$$

Simplifying the expression we get

$$q(x_{t-1}|x_t, x_0) \propto \exp\left(-\frac{1}{2}\left\{\left(\frac{1-\beta_t}{\beta_t} + \frac{1}{1-\alpha_t}\right)x_{t-1}^2 - \left(\frac{2\sqrt{1-\beta_t}}{\beta_t}x_t + \frac{2\sqrt{\alpha_t}}{1-\alpha_t}x_0\right)x_{t-1} + H(x_t, x_0)\right\}\right)$$

where $H(x_t, x_0)$ is independent of x_{t-1} and therefore would be normalized out. Comparing to the expression for Gaussian $\mathcal{N}(\mu, \sigma^2)$

$$\mathcal{N}(\mu, \sigma^2) \propto \exp\left(-\frac{1}{2}\left\{\frac{x^2 - 2\mu x + \mu^2}{\sigma^2}\right\}\right)$$

we recover the expression for mean, variance of $q(x_{t-1}|x_t,x_0)$ as

$$\hat{\beta}_t = 1 / \left(\frac{1 - \beta_t}{\beta_t} + \frac{1}{1 - \alpha_t} \right)$$

$$= \frac{1 - \alpha_{t-1}}{1 - \alpha_t} \beta_t \qquad \left(\text{recall } \alpha_t = \prod_{i=1}^T (1 - \beta_t) \right)$$

$$\mu(x_t, x_0) = \left(\frac{\sqrt{1 - \beta_t}}{\beta_t} x_t + \frac{\sqrt{\alpha_t}}{1 - \alpha_t} x_0 \right) / \left(\frac{1 - \beta_t}{\beta_t} + \frac{1}{1 - \alpha_t} \right)$$

$$= \frac{\sqrt{1 - \beta_t} (1 - \alpha_t)}{1 - \alpha_t} x_t + \frac{\beta_t \sqrt{\alpha_{t-1}}}{1 - \alpha_t} x_0$$

Therefore, under our assumptions, the distribution of $q(x_{t-1}|x_t,x_0) \sim \mathcal{N}(\mu(x_t,x_0),\hat{\beta}_t I)$.