Erdős-Ko-Rado type problems: old and new

Norihide Tokushige (University of the Ryukyus)

Number Theory, Geometry, Randomness and their development October 27th – 31st, 2025 @RIMS Kyoto

Shadow functions and their limit

Erdős-Ko-Rado theorem

Cross intersecting EKR

t-intersecting families

Cross t-intersecting EKR, and more

Shadow functions

and their limit

The shadow function f_9

The Takagi function (a nowhere differentiable continuous function)

Theorem (Matsumoto, 1990)

By normalizing appropriately, the shadow functions f_k converges to the Takagi function uniformly (as $k \to \infty$).

Theorem (Ruzsa, 1991)

The left functions converges to the right function uniformly.

- P. Frankl, M. Matsumoto, I. Ruzsa, N. Tokushige.
- Minimum shadows in uniform hypergraphs and a generalization of the Takagi function.
- Journal of Combinatorial Theory (A), Vol 69, (1995) 125–148.
- D. E. Knuth, The art of computer programming, Vol. 4, Fasc. 3, (2005) p.21.

Discrete isoperimetric problem

- For given x > 0, what is $\min \partial X$ such that $\operatorname{vol}(X) = x$?
- $\cdot \ \binom{\mathbb{N}}{k} := \{ u \subset \mathbb{N} : |u| = k \}.$
- · For $X \subset {\mathbb{N} \choose k}$ and k > l, let $\partial_l^k X := \{ v \in {\mathbb{N} \choose l} : v \subset \exists u \in X \}$.

Discrete isoperimetric problem

- For given x > 0, what is $\min \partial X$ such that $\operatorname{vol}(X) = x$?
- $\cdot \binom{\mathbb{N}}{k} := \{ u \subset \mathbb{N} : |u| = k \}.$
- · For $X \subset {\mathbb{N} \choose k}$ and k > l, let $\partial_l^k X := \{ v \in {\mathbb{N} \choose l} : v \subset \exists u \in X \}$.
- · For given positive integers k > l and x, Kruskal-Katona theorem tells us $\min |\partial_l^k X|$ such that $X \subset \binom{\mathbb{N}}{k}$ with |X| = x.
- · Let $\partial_l^k(x)$ denote this minimal size of boundary (or l-shadow).
- · Then, the shadow function is defined by $f_k(x) := \partial_{k-1}^k(x) x$.

$$\begin{pmatrix}
\mathbb{N} \\
3
\end{pmatrix}
\begin{pmatrix}
\mathbb{N} \\
2
\end{pmatrix}$$
123
124
13
13
23
14
125
14
125
135
15
...

$$\partial_2^3(1) = 3$$
, $\partial_2^3(2) = 5$, $\partial_2^3(3) = 6$, $\partial_2^3(4) = 6$.

k-cascade form of m:

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$$
 with $a_k > a_{k-1} > \dots > a_s \ge s \ge 1$.

Example. 3-cascade form of 100.
$$100 = \binom{9}{3} + \binom{6}{2} + \binom{1}{1}$$
.

k-cascade form of m:

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$$
 with $a_k > a_{k-1} > \dots > a_s \ge s \ge 1$.

Example. 3-cascade form of 100.
$$100 = \binom{9}{3} + \binom{6}{2} + \binom{1}{1}$$
.

• Choose maximal a_3 such that $\binom{a_3}{3} \leq 100$. $\binom{9}{2} = 84$, $\binom{10}{2} = 120$, so $a_3 = 9$.

k-cascade form of m:

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$$
 with $a_k > a_{k-1} > \dots > a_s \ge s \ge 1$.

Example. 3-cascade form of 100.
$$100 = \binom{9}{3} + \binom{6}{2} + \binom{1}{1}$$
.

- Choose maximal a_3 such that $\binom{a_3}{3} \leq 100$.
 - $\binom{9}{3} = 84$, $\binom{10}{3} = 120$, so $a_3 = 9$.
- 100 84 = 16. Choose maximal a_2 such that $\binom{a_2}{2} \le 16$.

$$\binom{6}{2} = 15$$
, $\binom{7}{2} = 21$, so $a_2 = 6$.

k-cascade form of m:

$$m = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$$
 with $a_k > a_{k-1} > \dots > a_s \ge s \ge 1$.

Theorem (Kruskal 1963, Katona 1968)

If
$$X \subset \binom{\mathbb{N}}{k}$$
 with $|X| = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_s}{s}$, then
$$|\partial_l^k X| \geq \binom{a_k}{l} + \binom{a_{k-1}}{l-1} + \dots + \binom{a_s}{s-(k-l)}.$$

Erdős-Ko-Rado theorem

Erdős-Ko-Rado theorem

- Let $[n] := \{1, 2, \dots, n\}$.
- · A family of subsets $F \subset 2^{[n]}$ is called intersecting if $u \cap v \neq \emptyset$ for all $u, v \in F$.
- ex. $F = \{\{1, 2\}, \{1, 3\}, \{1, 4\}\}, F = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\}.$

Erdős-Ko-Rado theorem

- Let $[n] := \{1, 2, \dots, n\}$.
- · A family of subsets $F \subset 2^{[n]}$ is called intersecting if $u \cap v \neq \emptyset$ for all $u, v \in F$.
- · ex. $F = \{\{1,2\},\{1,3\},\{1,4\}\}, F = \{\{1,2\},\{1,3\},\{2,3\}\}.$

Theorem (Erdős-Ko-Rado, 1930')

If $n \geq 2k$ and $F \subset {[n] \choose k}$ is intersecting, then $|F| \leq {n-1 \choose k-1}$.

ex.
$$F = \{u \in {[n] \choose k} : 1 \in x\}.$$

Hoffman's bound

- · Let G = (V, E) be a regular graph.
- · Let $A \in \mathbb{R}^{|V| \times |V|}$ be the adjacency matrix, i.e., $(A)_{u,v}$ is 1 if $u \sim v$, and 0 if $u \not\sim v$.
- $F \subset V$ is called independent if $u \not\sim v$ for all $u, v \in F$.

Hoffman's bound

- · Let G = (V, E) be a regular graph.
- · Let $A \in \mathbb{R}^{|V| \times |V|}$ be the adjacency matrix, i.e., $(A)_{u,v}$ is 1 if $u \sim v$, and 0 if $u \not\sim v$.
- $F \subset V$ is called independent if $u \not\sim v$ for all $u, v \in F$.

Theorem (Hoffman 1974? cf. Haemers 2021)

If
$$F \subset V$$
 is independent, then $|F| \leq \frac{-\lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} |V|$.

Kneser graph

Kneser graph $G = G_{n,k}$:

$$V(G) = \binom{[n]}{k}$$
,

$$u \sim v \iff u \cap v = \emptyset.$$

Kneser graph

Kneser graph $G_{5,2}$:

- $F = \{12, 13, 14, 15\}$ is independent.
- · $\lambda_{\text{max}} = 3$, $\lambda_{\text{min}} = -2$.
- $|F| \le \frac{-\lambda_{\min}}{\lambda_{\max} \lambda_{\min}} |V| = 4$

EKR from Hoffman's bound of Kneser graph

- · Kneser graph $G = G_{n,k} : V(G) = {[n] \choose k}$, and $u \sim v \Longleftrightarrow u \cap v = \emptyset$.
- · In this case, $F \subset V(G)$ is independent iff it is intersecting.
- · $\lambda_{\max} = \binom{n-k}{k}$, $\lambda_{\min} = -\binom{n-k-1}{k-1}$.
- · Hoffman's bound is $\frac{-\lambda_{\min}}{\lambda_{\max}-\lambda_{\min}}\binom{n}{k}=\binom{n-1}{k-1}.$
- · Thus, if $F \subset {[n] \choose k}$ is intersecting, then $|F| \leq {n-1 \choose k-1}$.

• Two families $F,G\subset 2^{[n]}$ are called cross intersecting if $u\cap v\neq\emptyset$ for all $u\in F,\,v\in G$.

Theorem (Pyber, 1986)

If $n \geq 2k$, and $F, G \subset {[n] \choose k}$ are cross int., then $|F||G| \leq {n-1 \choose k-1}^2$.

· Two families $F,G\subset 2^{[n]}$ are called cross intersecting if $u\cap v\neq\emptyset$ for all $u\in F,\,v\in G$.

Theorem (Pyber, 1986)

If $n \geq 2k$, and $F, G \subset \binom{[n]}{k}$ are cross int., then $|F||G| \leq \binom{n-1}{k-1}^2$.

Hoffman-like bound

$$\sqrt{|F||G|} \leq \frac{\lambda_2}{\lambda_{\max} + \lambda_2} \binom{n}{k}$$
, where $\lambda_2 = \max\{|\lambda| : \lambda \neq \lambda_{\max}\}$.

Theorem (Pyber, 1986)

If $n \geq 2k$, and $F, G \subset \binom{[n]}{k}$ are cross int., then $|F||G| \leq \binom{n-1}{k-1}^2$.

- · What about if $F \subset {[n] \choose k}$ ard $G \subset {[n] \choose l}$ are cross intersecting?
- Pyber showed that if $n \geq n_0(k,l)$ then $|F||G| \leq {n-1 \choose k-1} {n-1 \choose l-1}$.

Theorem (Pyber, 1986)

If $n \geq 2k$, and $F, G \subset \binom{[n]}{k}$ are cross int., then $|F||G| \leq \binom{n-1}{k-1}^2$.

- · What about if $F \subset {[n] \choose k}$ ard $G \subset {[n] \choose l}$ are cross intersecting?
- · Pyber showed that if $n \geq n_0(k,l)$ then $|F||G| \leq {n-1 \choose k-1}{n-1 \choose l-1}$.

Theorem (Matsumoto-T, 1987)

If $n \ge 2k \ge 2l$, and $F \subset {[n] \choose k}$ and $G \subset {[n] \choose l}$ are cross intersecting, then $|F||G| \le {n-1 \choose k-1} {n-1 \choose l-1}$.

Homological isoperimetry in the torus. Let X be the N-torus. Then $A = H^*(\mathbb{T}^N; \mathbb{F})$ is isomorphic to the exterior algebra $\wedge^*\mathbb{F}^N = \mathbb{F}[\Delta_0^{N-1}]$ for the graded semigroup $G_0 = \Delta_0^{N-1}$ associated to the simplex Δ^{N-1} on N-vertices (see 2.1).

Namely, G_0 equals $2^{\{1,\ldots,N\}}$ that is the set of subsets g in $\{1,\ldots,N\}$, where $G(n) \subset G_0$ consists of all subsets of cardinality n and where the product $g_i \smile g_2$ for $g_i \subset \{1,\ldots,N\}$ is defined as follows:

If g_1 intersects g_2 , then $g_1 \smile g_2 = 0$; otherwise, $g_1 \smile g_2 = \pm g_1 \cup g_2$.

(If char $\mathbb{F}=2$ one does not have to bother with the specification of the \pm sign.) Thus,

bounds on cardinalities of subsets $G_i \subset 2^{\{1,\dots,N\}}$ established in extremal set theory in terms of the numbers of non-intersecting members $g_i \in 2^{\{1,\dots,N\}}$ regarded as subsets $g_i \subset \{1,\dots,N\}$ imply corresponding inequalities between the cohomology masses of subsets $X_i \subset \mathbb{T}^N$ and of their intersections.

EXAMPLE: MATSUMOTO-TOKUSHIGE INEQUALITY [MatT1].

Let $G_i \subset G(n_i) \subset G_0 = 2^{\{1,\dots,N\}}$, i = 0,1, be subsets such that the intersections $g_0 \cap g_1$ in $\{1,\dots,N\}$ are non-empty for all $g_0 \in G_0$ and $g_1 \in G_1$. If $n_0, n_1 \leq N/2$, then the cardinalities of these sets satisfy

$$|G_0| \cdot |G_1| \le {N-1 \choose n_0-1} {N-1 \choose n_1-1}.$$

Original proof ideas

- · Suppose that $F \subset \binom{[n]}{k}$ ard $G \subset \binom{[n]}{l}$ are cross intersecting.
- · Let $F^c := \{[n] \setminus u : u \in F\} \subset {[n] \choose n-k}$.

$$\begin{array}{l} \cdot \ \partial_l^{n-k} F^c = \{v \in {[n] \choose l} : \exists \, w \in F^c, \, v \subset w\} \\ = \{v \in {[n] \choose l} : \exists \, u \in F, \, v \cap u = \emptyset\}. \end{array}$$

Original proof ideas

- · Suppose that $F \subset \binom{[n]}{k}$ ard $G \subset \binom{[n]}{l}$ are cross intersecting.
- · Let $F^c := \{[n] \setminus u : u \in F\} \subset {[n] \choose n-k}$.
- $\begin{array}{l} \cdot \ \partial_l^{n-k}F^c = \{v \in {[n] \choose l}: \exists \, w \in F^c, \, v \subset w\} \\ = \{v \in {[n] \choose l}: \exists \, u \in F, \, v \cap u = \emptyset\}. \end{array}$
- · We have $G \cap \partial_l^{n-k} F^c = \emptyset$.
- Let $x := |F| = |F^c|$. Then $|F||G| \le x \cdot (\binom{n}{l} \partial_l^{n-k}(x))$.
- · We can compute $\partial_l^{n-k}(x)$ using Kruskal–Katona (in principle).
- The actual computation is not easy.

- We have $|F||G| \leq x \cdot (\binom{n}{l} \partial_l^{n-k}(x))$.
- We want to show that the RHS is $\leq \binom{n-1}{k-1}\binom{n-1}{l-1}$.
- The hardest part is the case $\binom{n-1}{k-1} < x \le \binom{n-1}{k-1} + \binom{n-2}{n-k-1}$.
- For $y \in \mathbb{R}$ and $k \in \mathbb{N}$, let $\binom{y}{k} := y(y-1) \cdots (y-k+1)/k!$.

- We have $|F||G| \le x \cdot (\binom{n}{l} \partial_l^{n-k}(x))$.
- We want to show that the RHS is $\leq \binom{n-1}{k-1}\binom{n-1}{l-1}$.
- The hardest part is the case $\binom{n-1}{k-1} < x \le \binom{n-1}{k-1} + \binom{n-2}{n-k-1}$.
- · For $y \in \mathbb{R}$ and $k \in \mathbb{N}$, let $\binom{y}{k} := y(y-1) \cdots (y-k+1)/k!$.

Lemma (Matsumoto, 1987)

Let $n \ge 2k \ge 2l$ and $n-k-1 \le y \le n-2$. Then

$$\left(\binom{n-1}{k-1}+\binom{y}{n-k-1}\right)\left(\binom{n-1}{l-1}-\binom{y}{l-1}\right)<\binom{n-1}{k-1}\binom{n-1}{l-1}.$$

· Legendre multiplier is utilized in the proof.

Theorem (Matsumoto-T, 1987)

If $n \geq 2k \geq 2l$, and $F \subset {[n] \choose k}$ and $G \subset {[n] \choose l}$ are cross intersecting, then $|F||G| \leq {n-1 \choose k-1} {n-1 \choose l-1}$.

"We give only a brief outline of their proof, since it involves careful and detailed manipulations with binomial coefficients"

Alternative proof

- · Suda and Tanaka translated the problem into a semidefinite programming problem.
- Then they constructed an optimal solution to the dual problem. They also solved the vector space version.

Theorem (Suda-Tanaka, 2014)

Let $\Omega = \mathbb{F}_q^n$. If $n \geq 2k \geq 2l$, and $F \subset {\Omega \brack k}$ and $G \subset {\Omega \brack l}$ are cross intersecting, then $|F||G| \leq {n-1 \brack k-1}{n-1 \brack l-1}$.

t-intersecting families

EKR for *t*-intersecting families

· A family of subsets $F \subset 2^{[n]}$ is called *t*-intersecting if $|u \cap v| \ge t$ for all $u, v \in F$.

Problem: Let $F \subset {[n] \choose k}$ be t-intersecting. Is $\max |F| = {n-t \choose k-t}$?

EKR for *t*-intersecting families

· A family of subsets $F \subset 2^{[n]}$ is called t-intersecting if $|u \cap v| \ge t$ for all $u, v \in F$.

Problem: Let $F \subset {[n] \choose k}$ be t-intersecting. Is $\max |F| = {n-t \choose k-t}$?

- EKR (1930') Yes, if $n \ge n_0(k, t)$.
- Frankl (1978) Yes, if $t \ge 15$ and $n \ge (t+1)(k-t+1)$.
- · Wilson (1983) Yes, if $t \ge 1$ and $n \ge (t+1)(k-t+1)$.
- · Ahlswede-Khachatrian (1996) determined $\max |F|$ for ALL n. It is called "the complete intersection theorem."

Wilson's proof

- · Kneser graph $G = G_{n,k,t}$: $V = {[n] \choose k}$, and $u \sim v \iff |u \cap v| < t$.
- · In this case, $F \subset V$ is independent iff it is t-intersecting.
- · Let $A \in \mathbb{R}^{V \times V}$ be a symmetric matrix with $(A)_{u,v} = 0$ if $u \not\sim v$ with a constant row sum. (pseudo-adjacency matrix)

Wilson's proof

- · Kneser graph $G = G_{n,k,t}$: $V = {[n] \choose k}$, and $u \sim v \iff |u \cap v| < t$.
- · In this case, $F \subset V$ is independent iff it is t-intersecting.
- · Let $A \in \mathbb{R}^{V \times V}$ be a symmetric matrix with $(A)_{u,v} = 0$ if $u \not\sim v$ with a constant row sum. (pseudo-adjacency matrix)

An SDP problem for independent sets in $G_{n,k,t}$ minimize α , subject to $S := \alpha I - J + A \succeq 0$. (variables are α , A.)

- · A feasible solution satisfies $|F| \le \alpha$ if F is independent.
- · Wilson constructed an A with $\alpha = \binom{n-t}{k-t}$.

positive semidefinite matrix

- · Let $M = \mathbb{R}^{V \times V}$ be a real symmetric matrix.
- · M is positive semidefinite if $\mathbf{x}^\mathsf{T} M \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^V$.
- We write $M \succeq 0$ if M is positive semidefinite.
- $M \succeq 0$ iff all eigenvalues are non-negative.

positive semidefinite matrix

- · Let $M = \mathbb{R}^{V \times V}$ be a real symmetric matrix.
- · M is positive semidefinite if $\mathbf{x}^T M \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^V$.
- We write $M \succeq 0$ if M is positive semidefinite.
- $M \succeq 0$ iff all eigenvalues are non-negative.
- For symmetric matrices A,B, let $A \bullet B = \sum_{u,v} (A)_{u,v}(B)_{u,v}$. ex. $\left[\begin{smallmatrix} a & b \\ b & c \end{smallmatrix} \right] \bullet \left[\begin{smallmatrix} x & y \\ y & z \end{smallmatrix} \right] = ax + 2by + cz$.
- $\cdot \boldsymbol{x}^{\mathsf{T}} M \boldsymbol{x} = M \bullet (\boldsymbol{x} \boldsymbol{x}^{\mathsf{T}}).$
- If $M \succeq 0$ then $M \bullet (\boldsymbol{x}\boldsymbol{x}^{\mathsf{T}}) \geq 0$.

Bounding independent sets in $G_{n,k,t}$

- · Kneser graph $G = G_{n,k,t}$: $V = {[n] \choose k}$, and $u \sim v \Longleftrightarrow |u \cap v| < t$.
- · Let A be a pseudo-adjacency matrix of G.
- · Let $F \subset V$ be an independent set in G.
- Let x be the indicator of F, and let $X = xx^T$.
- · If $u \sim v$ then $(X)_{u,v} = 0$, and if $u \not\sim v$ then $(A)_{u,v} = 0$.

Bounding independent sets in $G_{n,k,t}$

- · Kneser graph $G = G_{n,k,t}$: $V = {[n] \choose k}$, and $u \sim v \Longleftrightarrow |u \cap v| < t$.
- Let A be a pseudo-adjacency matrix of G.
- · Let $F \subset V$ be an independent set in G.
- · Let x be the indicator of F, and let $X = xx^{\mathsf{T}}$.
- · If $u \sim v$ then $(X)_{u,v} = 0$, and if $u \not\sim v$ then $(A)_{u,v} = 0$.
- $\cdot I \bullet X = |F|.$
- $\cdot \ J \bullet X = |F|^2.$
- · $A \bullet X = 0$ because $(A)_{u,v}(X)_{u,v} = 0$ for all u, v.
- Let $S := \alpha I J + A$. Then $S \bullet X = \alpha |F| |F|^2$.
- · If $S \succeq 0$, then $S \bullet X \geq 0$, and so $|F| \leq \alpha$.

and more

Cross t-intersecting EKR,

• Two families $F,G\subset 2^{[n]}$ are called cross t-intersecting if $|u\cap v|\geq t$ for all $u\in F,\,v\in G$.

Let $F, G \subset {[n] \choose k}$ be cross t-intersecting. Is $\max |F||G| \leq {n-t \choose k-t}^2$?

• Two families $F,G\subset 2^{[n]}$ are called cross t-intersecting if $|u\cap v|\geq t$ for all $u\in F,\,v\in G$.

Let $F, G \subset {[n] \choose k}$ be cross t-intersecting. Is $\max |F| |G| \leq {n-t \choose k-t}^2$?

- Yes, if $n > k/(1-2^{-1/t})$ by the Hoffman-like bound. (T 2013)
- · Yes, if $n \ge (t+1)k$ and $t \ge 14$ by probabilistic method. (Frankl-Lee-Siggers-T, 2014)
- Yes, if $n \ge (t+1)(k-t+1)$ and $t \ge 3$ using ideas by Ahlswede and Khachatrian. (Zhang-Wu 2024, arXiv:2410.22792)
- Yes, if t = 2 and $n \ge 3(k 1)$ by solving a SDP problem. (Tanaka-T 2025, arXiv:2503.14844)
- · The cases $t \geq 2$ and n < (t+1)(k-t+1) are wide open. (Some partial results by Lee–Siggers–T, 2015, 2019)

Let $F \subset {[n] \choose k}$ and $G \subset {[n] \choose l}$ be cross t-intersecting. Suppose that $k \geq l$ and $n \geq (t+1)(k-t+1)$. Is it true that $|F||G| \leq {n-t \choose k-t} {n-t \choose l-t}$?

- Yes?, if $t \ge 3$. The proof is similar to Zhang–Wu. (Bao–Ji 2025, arXiv:2510.11724)
- · Is it true that if t=2, $k\geq l$, $n\geq 3(k-1)$, and $F\subset \binom{[n]}{k}$ and $G\subset \binom{[n]}{l}$ are cross 2-intersecting, then $|F||G|\leq \binom{n-2}{k-2}\binom{n-2}{l-2}$?
- · Yes? if t=2 and $n\geq 3.38k$. (Chen-Li-Wu-Zhang 2025, arXiv:2503.15971)

More families

- Three families $F_1, F_2, F_3 \subset 2^{[n]}$ are called 3-cross intersecting if $u_1 \cap u_2 \cap u_3 \neq \emptyset$ for all $u_1 \in F_1, u_2 \in F_2, u_3 \in F_3$.
- · If $n\geq \frac32 k$, and $F_1,F_2,F_3\subset {[n]\choose k}$ are 3-cross intersecting, then $|F_1||F_2||F_3|\leq {n-1\choose k-1}^3$. (Frankl-T 2011)

More families

- Three families $F_1, F_2, F_3 \subset 2^{[n]}$ are called 3-cross intersecting if $u_1 \cap u_2 \cap u_3 \neq \emptyset$ for all $u_1 \in F_1, u_2 \in F_2, u_3 \in F_3$.
- · If $n \geq \frac{3}{2}k$, and $F_1, F_2, F_3 \subset {[n] \choose k}$ are 3-cross intersecting, then $|F_1||F_2||F_3| \leq {n-1 \choose k-1}^3$. (Frankl-T 2011)
- · Is it true that if $k_1 \geq k_2 \geq k_3$, $n \geq \frac{3}{2}k_1$, and $F_1 \subset \binom{[n]}{k_1}$, $F_2 \subset \binom{[n]}{k_2}$, $F_3 \subset \binom{[n]}{k_3}$ are 3-cross intersecting, then $|F_1||F_2||F_3| \leq \binom{n-1}{k_1-1}\binom{n-1}{k_2-1}\binom{n-1}{k_3-1}$?

- · Let q be a fixed prime power.
- \cdot For $x\in\mathbb{R}$ and $k\in\mathbb{N}$, let $\begin{bmatrix}x\\k\end{bmatrix}:=\prod_{j=0}^{k-1}rac{q^{x-j}-1}{q^{k-j}-1}.$

Theorem (Suda-Tanaka, 2014)

Let $\Omega=\mathbb{F}_q^n$. If $n\geq 2k\geq 2l$, and $F\subset {\Omega\brack k}$ and $G\subset {\Omega\brack l}$ are cross intersecting, then $|F||G|\leq {n-1\brack k-1}{n-1\brack l-1}$.

· Let q be a fixed prime power.

$$\cdot$$
 For $x\in\mathbb{R}$ and $k\in\mathbb{N}$, let $egin{bmatrix}x\\k\end{bmatrix}:=\prod_{j=0}^{k-1}rac{q^{x-j}-1}{q^{k-j}-1}.$

Theorem (Suda-Tanaka, 2014)

Let $\Omega=\mathbb{F}_q^n$. If $n\geq 2k\geq 2l$, and $F\subset {\Omega\brack k}$ and $G\subset {\Omega\brack l}$ are cross intersecting, then $|F||G|\leq {n-1\brack k-1}{n-1\brack l-1}$.

- Three families $F_1, F_2, F_3 \subset \Omega$ are called 3-cross intersecting if $\dim(u_1 \cap u_2 \cap u_3) \geq 1$ for all $u_1 \in F_1, u_2 \in F_2, u_3 \in F_3$.
- Let $n \geq \frac{3}{2}k$, and $F_1, F_2, F_3 \subset {\Omega \brack k}$ be 3-cross intersecting. Is it true that $|F_1||F_2||F_3| \leq {n-1 \brack k-1}^3$?

- · Let n=3l, $V=\mathbb{F}_q^n$, $G_1,G_2,G_3\subset {V\brack l}$.
- · Define $y_i \in \mathbb{R}$ by $|G_i| = \begin{bmatrix} y_i \\ l \end{bmatrix}$.
- · Let S be the set of geometric l-spreads on V.

Conjecture

Suppose that $g_1+g_2+g_3\neq V$ for all $S\in\mathcal{S}$ and $g_i\in G_i\cap S$. Then we have $y_1+y_2+y_3\leq 3(n-1)$. (Equality holds if $G_1=G_2=G_3={t\brack 1}$ for some $U\cong\mathbb{F}_q^{n-1}$.)

If this is true, then the answer to the problem in the previous slide is affirmative.