General Instructions:

All questions are compulsory.

The marks intended for questions are given in brackets []. Select the correct option for each of the following questions.

SECTION-A (16 Marks)

 $[16 \times 1]$

- 1. The order of transpose of a matrix of order 3×2 is :
 - (A) 2×3

- (B) 3×2
- (C) 2×2
- (D) 3×3

- 2. Which of the following is a direct tax?
 - (A) Sales Tax

(B) Wealth Tax

(C) Exicise Duty

- (D) Entertainment Tax
- 3. If in triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{FD}$, then, they will be similar if:
 - (A) $\angle A = \angle C$
- (B) \angle B = \angle C
- (C) $\angle B = \angle D$
- (D) $\angle C = \angle D$

- 4. The third proportional to 4 and 8 is:
 - (A) 16

(B) 64

- (C) 32
- (D) 8
- 5. A man deposits ₹1000 per month in a recurring deposit account for 2 years. If the rate of interest is 6% p.a., then the interest earned at the time of maturity is :
 - (A) ₹1,000
- (B) ₹1,200
- (C) ₹1,500
- (D) ₹1,800

- **6.** If $-a \ge 10$, then :
 - (A) $a \ge 10$
- (B) $a \ge -10$
- (C) $a \le 10$
- (D) $a \le -10$

- 7. If a, b, c are in AP, then:

 - (A) $a = \frac{b+c}{2}$ (B) $b = \frac{a+c}{2}$
- $(C) c = \frac{a+b}{2}$
- (D) none of these
- 8. The perimeter of two similar triangles are 32 cm and 24 cm. If one side of first triangle is 16 cm, then the corresponding side of the second triangle is :
 - (A) 10 cm

- (B) 12 cm
- (C) 15 cm
- (D) 18 cm
- 9. For the inequality $-2 < x \le 2$, $x \in \mathbb{R}$, the solution set is represented as:

- 10. The discriminant of $x^2 5x + 8 = 0$ is :
 - (A) +ve

(B) -ve

(C) 0

(D) imaginary

- 11. If 1:3::x:7, then the value of x is:

(B) 3

(C) 2

12. When the polynomial $f(x)$ is divided by $5x$, then the remainder is:			
(A) $f(5)$	B) f(0)	(C) $f\left(\frac{1}{5}\right)$	(D) $f\left(-\frac{1}{5}\right)$
13. The <i>n</i> th term of the AP -5 , (A) $3n + 2$	-8, -11 , is: B) $3n - 2$	(C) -2 - 3n	(D) $2n - 3$
14. The quadratic equation whose $(A) x^{2} + 5x + 4 = 0$ $(C) x^{2} - 5x - 4 = 0$	se roots are -1 and -	-4, is: (B) $x^2 - 5x + 4 = 0$ (D) $x^2 + 5x - 4 = 0$	
15. If A is a matrix of order 2 ×(A) AB exists(C) both AB and BA exist	3 and B is a matri	ix of order 3 × 2, then (B) BA exists (D) none of these	
16. If $x^3 - 5x^2 + 4x - 1$ is divide (A) 0 (E)	d by $(x - 1)$, then the $x = 1$	ne remainder is: (C) -1	(D) 2
	SECTION-B (12 Marks)	[6 × 2]
17. Sanjana deposited ₹4000 per interest is 8% p.a., then the an	month in a recurrir	the time of indicarry	
(A) ₹4,560 (B)	₹4,650	(C) ₹4,700	(D) ₹4,850
18. If $(x - 4)$ is a factor of $x^2 - 3x$ (A) -4 (B)	2	(C) -3	(D) 4
19. An article is sold from Kanpur (UP) to Rudrapur (Uttarakhand) for ₹10,000 and then from Rudrapur to Nainital (Uttarakhand) at a profit of ₹3000. If the rate of GST is 12%, then net GST paid by the dealer in Rudrapur is:			
	₹360	(C) ₹1560	(D) ₹780
20. The solution set $\{-2 \le x < 2, x \in I\}$ can be represented on the number line as:			
$(A) \leftarrow \frac{1}{-3} - \frac{1}{-2} - \frac{1}{0} $ $\frac{1}{1}$	2 3	(B) $\leftarrow \frac{1}{-3} - \frac{1}{-2}$	0 1 2 3
$(C) \leftarrow \frac{1}{-3} \frac{1}{-2} \frac{1}{-1} 0 1$	1 1 > 2 3	(D) $\leftarrow \frac{1}{-3} - \frac{1}{-2}$	0 1 2 3
21. The mean proportion between $\sqrt{26} - \sqrt{17}$ and $\sqrt{26} + \sqrt{17}$ is:			
(A) 3 (B) 9		(C) 4	(D) 8
22. The value of the product $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 2 & -1 \\ 4 & 1 \end{bmatrix}$ is:		
$(A)\begin{bmatrix} 2 & -1 \\ 16 & 1 \end{bmatrix} \qquad (B)\begin{bmatrix} 2 \\ -1 \end{bmatrix}$	2 16]	(C) $\begin{bmatrix} 16 & 2 \\ 1 & -1 \end{bmatrix}$	$(D)\begin{bmatrix} 4 & 1 \\ -5 & 8 \end{bmatrix}$

- 23. The quadratic equation $kx^2 6x 2 = 0$ has real roots.
 - (i) The smallest integer value of k is:
 - (A) -3
- (B) -4

- (C) -1
- (D) 2
- (ii) The smallest value of k, where k is a whole number, is:
 - (A) 0

(B) 1

- (C) 2
- (D) 3

- (iii) For k = 1, the roots are:
 - (A) $-3 \pm \sqrt{11}$ (B) $3 \pm \sqrt{11}$
- (C) 2 ±√11
- (D) $-2 \pm \sqrt{11}$

- (iv) For k = -1, the roots are:
 - (A) $-3 \pm \sqrt{7}$ (B) $3 \pm \sqrt{7}$
- (C) 2 ±√5
- (D) $-2 \pm \sqrt{3}$

- 24. For an AP, $S_n = 3n^2 + 5n$ and $t_n = 164$.
 - (i) The first term of the AP is:
 - (A) 10
- (B) 9

- (C) 8
- (D) 7

- (ii) The common difference of the AP is:
 - (A) 6

(B) 15

- (C) -6
- (D) 4

- (iii) The value of k is:
 - (A) 20
- (B) 25

- (C) 26
- (D) 27

- (iv) The sum of first 20 terms of the AP is:
 - (A) 1300
- (B) 1250
- (C) 1200
- (D) 1190

25. In the figure, $\angle ABC = \angle ADB = 90^\circ$, AD = 4 cm and BD = 6 cm.

- (i) ΔABC is similar to:
 - (A) ΔBCD
- (B) ΔBDC
- (C) Δ CDB
- (D) Δ CBD

- (ii) The length of CD is:
 - (A) 9 cm
- (B) 8 cm
- (C) 7.5 cm
- (D) 7 cm

- (iii) ΔABD is similar to :
 - (A) $\triangle ACB$
- (B) ΔBCA
- (C) \triangle ABC
- (D) ΔCBA

- (iv) The length of BC is:
 - (B) √91 cm
- (C) √117 cm
- (D)
- √120 cm

(A) √110 cm