RECURSION

> Sum of digits
> Power of a number

- Optimize power function
- Time complexity analysis (substitution, Recursive tree)

* Sum of digits:

n = 124

9 need all digits of the above mentioned number.

Sum = 1+2+4 => 7

Quiz :

n = 123

n % 10 => remainder => 3

Quiz:

$$\#$$
 n = 124

if
$$n == 0$$
:

return 0

$$= 124$$

$$7$$
 n 1/- 10 + add(n 1/10)
 4 + add(12)

```
def add (n):

# Base condition

if n == 0:

return 0

return n \cdot 1 \cdot 10 + add(n/110)
```

```
def sum_of_digits(n):
    # base condition
    if n == 0:
        return 0

return n % 10 + sum_of_digits(n // 10)
```

$$7$$

$$3 + sum-sf-digits(120)$$

$$3$$

$$2 + sum-of-digits(12)$$

$$1 + sum-of-digits(0)$$

......

power
$$(2,3)$$
 => power $(base, pur)$

8

power $(2,2)$

power $(2,2)$

2 $\times 2^2$

power $(2,1)$

2 power $(2,0)$

base andition

4
$$2 \times \text{power}(2, 2)$$
 2×2^2 $2 \times \text{power}(2, 1)$ $2 \times \text{power}(2, 0)$ # base and then

Base condition:

if
$$pwr = = 0$$
:
$$retam 1$$

recurrence relation

```
H power (base, pur)
              base x power (base, pur -1)
   Optimized power function:
2) power (2, 16)
           powser (2, 15)
                power (2, 14)
                    power (2, 13)
                          poner (2,0)
# Here it will take 16 recursive cells.
   number of cells of Time Complexity
    In above case we will be doing almost n recursive calls. (if power = w).
      power = 128 => 128 recursive ally
     power = n >) n recursive calls
```

$$\#$$
 $T(c) = O(n)$

$$q^{128} \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$

$$(7 cells)$$

$$A \qquad Q^{19} = \qquad Q \qquad X \qquad Q^{18} \qquad \Rightarrow \qquad Q \qquad X \qquad Q^{9} \qquad$$

Recurrence relation:

$$a^n = a^n \times a^{n \times n} \times a^$$

```
def opt_power(a, n):
    # base condition
    if n == 0:
        return 1

    half = opt_power(a, n // 2)

# Check for even odd
    if n % 2 == 0:
        return half * half
    else:
        return a * half * half
```

power
$$(2, 16)$$

half = 2^8
 $2^8 \times 2^8$
 $2^4 \times 2^4 \rightarrow \text{half} \Rightarrow 2^4$
 $2^4 \times 2^4 \rightarrow \text{half} \Rightarrow 2^4$

Therefore
$$S \Rightarrow O(1)$$
 TC $\Rightarrow O(N)$ $O(N)$

Graphs, frees, BST > Recursion

i) Substitution:

def add (n):

if
$$n = 1$$
:

return 1 } $o(1) \rightarrow C_1$

$$T(n) = T(n-1) + C_1 + C_2$$

$$T(n) = T(n-1) + C$$

Recursive relation

$$T(n-1) = T(n-1-1) + C$$

= $T(n-2) + C$

Substitute value of 2 in egn 1

! -- K recursive Cells -- :

after k grecursive all base condit hits

Substitute value of
$$K$$
 in eq. (3)

$T(n) = T(n-(n-1)) + (n-1)C$

$$= T(n-n+1) + nC-C$$

$$= T(i) + nei - i$$
$T(C) = O(n)$

add (5)
$$add (4)$$

$$add (3)$$

$$add (2)$$

$$add (1)$$

$$add (0)$$

if
$$n = 5$$
, height = 5

it is height = n

$$T(c) = Height of bee$$

$$= 0 (n)$$