Die Normalverteilung

Die Dichtefunktion der Normalverteilung - die Gaußkurve

Die Dichtefunktion einer Normalverteilung mit Mittelwert μ und Standardabweichung $\sigma>0$ lautet:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 für $x \in \mathbb{R}$.

Es kann gezeigt werden, dass $\mathbb{E}[X] = \mu$ und $\mathrm{std}(X) = \sigma$, wenn X normalverteilt ist.

Plot

- Glockenform: Auch "Bell curve" genannt
- Mathebuch S. 362, Fig. 3 zeigt eine Normalverteilung mit $\mu=178$ und $\sigma=7.5$

f(x) ist eine Dichtefunktion

- 1. **Positivität**: $f(x) \ge 0 \ \forall x \in \mathbb{R}$, da Exponential- und Wurzelfunktionen positiv sind.
- 2. Normierung: Das Integal über alle Werte ergibt 1:

$$\int_{-\infty}^{\infty} f(x) \, dx = 1.$$

Globales Maximum

- Das Maximum liegt bei $x = \mu$.
- Der Funktionswert ist:

$$f(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}.$$

Wendestellen

• Die Wendestellen liegen bei $x = \mu \pm \sigma$.

Extremverhalten

• Für $x \to \pm \infty$ gilt: $f(x) \to 0$.

Die Sigma-Regeln

- 68%-Regel: Etwa 68% der Werte liegen im Intervall $[\mu \sigma, \mu + \sigma]$.
- 95%-Regel: Etwa 95% der Werte liegen im Intervall $[\mu 2\sigma, \mu + 2\sigma]$.
- 99.7%-Regel: Etwa 99.7% der Werte liegen im Intervall $[\mu 3\sigma, \mu + 3\sigma]$.

Beispiele für Normalverteilungen in der Wissenschaft

- **Biologie**: Verteilung der Körpergröße von Menschen innerhalb einer Population.
- Medizin: Blutdruckwerte in einer gesunden Bevölkerungsgruppe.
- Sozialwissenschaften: IQ-Werte in einer Bevölkerung.

Quelle: Mathebuch