

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Profesor: Giancarlo Urzúa – Ayudante: Benjamín Mateluna

Introducción a la Geometría - MAT1304 Ayudantía 6 27 de agosto de 2025

Problema 1. Sea $\triangle ABC$ un triángulo cualquiera y puntos D, E, F en los lados $\overline{BC}, \overline{AB}$ y \overline{AC} respectivamente. Muestre que las circunferencias circunscritas a los triángulos $\triangle AEF, \triangle BED$ y $\triangle CFD$ son concurrentes.

Problema 2. Sea $\triangle ABC$ escaleno. Sean P y Q en \overline{AB} y \overline{AC} respectivamente tales que \overline{PQ} es paralela a \overline{BC} . La circunferencia que pasa por P y es tangente a \overline{AC} en Q intersecta nuevamente a \overline{AB} en R. Demuestre que RQCB es cíclico.

Problema 3. Sean A y B puntos en la circunferencia. Sean P y Q puntos en el arco BA y sea X el punto en AB donde la bisectriz del ángulo $\angle APB$ corta a la circunferencia. Demuestre que \overline{QX} es la bisectriz del ángulo $\angle AQB$.

Problema 4. Sea $\triangle ABC$ inscrito en una circunferencia de centro O. Sea D la intersección de la bisectriz de $\angle BAC$ con \overrightarrow{BC} y P la intersección de \overrightarrow{AB} con la perpendicular de a \overrightarrow{OA} que pasa por D. Demostrar que $\overline{AC} = \overline{AP}$.

Problema 5. Sea $\triangle ABC$ inscrito en una circunferencia, considerar M y N en \overline{AC} tales que $\angle ABM = \angle MBN = \angle NBC$. Sea Q en la intersección de \overrightarrow{BM} y la circunferencia, por útimo, sea $P \in \overrightarrow{BN} \cap \overline{QC}$. Demuestre que

$$\frac{\overline{AM}}{\overline{AN}} + \frac{\overline{CP}}{\overline{CQ}} = 1$$