# Travel Time Optimization Problem via Ant Colony and Genetic Evolution

Michael Peechatt and James Le





#### NYC Taxi and Limousine Commission Trip Record

- 1.5 Million Trips
- Year 2016
- 11 Attributes:
  - $\circ$  Id
  - Vendor\_id
  - Pickup\_datetime
  - Dropoff\_datetime
  - Passenger\_count
  - Pickup\_longitude
  - Pickup\_latitude
  - Dropoff\_longitude
  - Dropoff\_latitude
  - Store\_and\_fwd\_flag
  - Trip\_duration



## Pick-Up Times





## Pick-Up Times



## **Trip Duration**



#### Trip Duration



## Pickup and Dropoff Locations





#### Machine Learning

- Features: passenger\_count, pickup\_longitude, pickup\_latitude, dropoff\_longitude, dropoff\_latitude, store\_and\_fwd\_flag
- Target: trip\_duration
- XGBoost's Hyperparameters:
  - Learning\_rate = 0.05
  - Max\_depth = 14
  - Subsample = 0.9
  - Silent = 1
  - Feval = rmsle



# **Proposed Solutions**

Ant Colony & Genetic Evolution Optimization

## Traveling Salesman Problem (TSP)



$$O\left(n\right) = \left\lceil \frac{1}{2} \left(n-1\right)! \right\rceil$$



$$p_{ij} = \frac{\left[\tau_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{h \in \mathcal{E}} \left[\tau_{ih}\right]^{\alpha} \left[\eta_{ih}\right]^{\beta}}$$

```
# Update phermones based on total path cost
self.pheromone_delta[i][j] =
    self.colony.Q /
    self.total_cost
```

```
graph.pheromone[i][j] *= self.rho
for ant in ants:
    graph.pheromone[i][j] += ant.pheromone_delta[i][j]
```

$$p_{ij} = \frac{\left[\tau_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{h \in \mathcal{E}} \left[\tau_{ih}\right]^{\alpha} \left[\eta_{ih}\right]^{\beta}}$$

#### Genetic Evolution Optimization

- 1. Create a population of routes
- 2. Mutate
- 3. Crossover
- 4. Determine the fitness (travel time)
- 5. Select parent for next generation
- 6. Repeat from step 2



#### Mutation

```
Original Path:
[4, 5, 3, 9, 7, 12, 13, 8, 0, 14, 6, 1, 10, 11, 2]
[4, 5, 3, 9, 7, 12, 13, 8, 0, 14, 6, 1, 10, 11, 2]
[5, 4, 9, 7, 3, 12, 13, 8, 0, 14, 6, 10, 11, 2, 1]
```

```
Mutated Path: [5, 4, 9, 7, 3, 12, 13, 8, 0, 14, 6, 10, 11, 2, 1]
```

#### Crossover

```
Current Path:
[2, 6, 10, 0, 7, 3, 14, 11, 1, 9, 8, 4, 5, 13, 12]
Mutated Path:
[14, 12, 13, 10, 11, 8, 0, 3, 7, 1, 5, 4, 2, 6, 9]
Offspring Path:
[14, 12, 13, 0, 7, 8, 14, 11, 1, 1, 5, 4, 2, 6, 12]
```

#### Crossover

```
Offspring path with duplicates removed:
[14, 12, 13, 0, 7, 8, 11, 1, 5, 4, 2, 6]
Missing locations:
[3, 9, 10]
Final offspring path:
[14, 12, 13, 0, 7, 8, 11, 1, 5, 4, 2, 6, 3, 9, 10]
```

#### **Evaluate Fitness**

```
# Selection
# Select parent based on smaller path cost
candidate_cost = total_cost_from_path(candidate)
curr_cost = total_cost_from_path(curr_element)
if candidate_cost < curr_cost:</pre>
    population[i] = copy.copy(candidate)
```

# Experimental Results

Ant Colony & Genetic Evolution Optimization

#### Generated Optimal Paths





#### Optimal Cost Per Generation





#### Average Cost Per Generation





#### **Generated Paths**





