# Topic 11

Score-Informed Source Separation (chroma slides adapted from Meinard Mueller)

### Why Score-informed Source Separation?

- Audio source separation is useful
  - Music transcription, remixing, search
- Non-satisfying results if only using audio
- Score provides some info that one can use
  - E.g., conductor, learn to sing in a choir
- Lots of scores are out there

#### **Musical Score in MIDI**



ECE 477 - Computer Audition, Zhiyao Duan 2019

### Would it be trivial?



 Is map-informed tourism trivial (for machine)?



### Remaining Tasks

 Score tells us what musical objects to look for, but not where to look nor what they sound like.

- Problems
  - How to align audio with score?
    - How to represent them?
  - How to separate the signal?

#### Audio/Score representations for alignment

- Represent in the same way
  - Spectrum
    - Only good for monophonic music
  - Chroma feature
    - Good for polyphonic music
  - Pitch info
    - Ideal for both monophonic and polyphonic music
    - Relies on good multi-pitch estimation techniques

#### **Chroma Feature**

- Spectral energy of the 12 pitch classes
  - 12-d vector



ECE 477 - Computer Audition, Zhiyao Duan 2019

## **Spectrogram**



## Log-frequency Spectrogram



# Chromagram



ECE 477 - Computer Audition, Zhiyao Duan 2019

## **Normalized Chromagram**



### **Chromagram of Polyphonic Music**



## **Dynamic Time Warping**



ECE 477 - Computer Audition, Zhiyao Duan 2019

### **Possible Progression**

 Three ways for a path to get to (n,m) in one step



ECE 477 - Computer Audition, Zhiyao Duan 2019

## **A Nice Property**

- Let d(i,j) be the distance matrix
- Let C(n,m) be the lowest cost from (1,1) to (n,m)
  - Then C(1,1) = d(1,1)

$$C(n,m) = \min \begin{cases} C(n-1,m) + d(n,m) \\ C(n-1,m-1) + d(n,m) \\ C(n,m-1) + d(n,m) \end{cases}$$



ECE 477 - Computer Audition, Zhiyao Duan 2019

## **Dynamic Programming!**

• Calculate the lowest cost matrix C(i, j)

- Starting from C(1,1)
- Then calculate C(1,2), C(2,1)
- Then C(1,3), C(2,2), C(3,1)
- **–** .....
- Finally, calculate C(n, m)
- Remember how you calculated, and trace back to get the path



### **Two SISS Systems for Polyphonic Music**

Score-informed NMF

- [Ewert et al., 2009] [Ewert & Muller, 2012]
- Chroma feature to represent audio
- Dynamic time warping for alignment
- NMF-based separation
- Offline

#### Soundprism

- Multi-pitch info of audio
- Particle filtering for alignment
- Pitch-based separation
- Online

[Duan & Pardo, 2011]

### **Score-informed NMF**

[Ewert & Muller, 2012]

Polyphonic audio



Aligned MIDI score



Score sheet



ECE 477 - Computer Audition, Zhiyao Duan 2019

### When score info is not used



ECE 477 - Computer Audition, Zhiyao Duan 2019

#### When dictionary is initialized by score notes



ECE 477 - Computer Audition, Zhiyao Duan 2019

#### When activation is initialized by score notes



ECE 477 - Computer Audition, Zhiyao Duan 2019

### When both W and H are initialized



ECE 477 - Computer Audition, Zhiyao Duan 2019

## **Also Considering Onset Models**



ECE 477 - Computer Audition, Zhiyao Duan 2019

### **Experiments**

- MIDI-synthesized piano music with randomly imposed alignment errors
  - Audio has accurate pitch, simple timbre
- Separate left/right hand notes



#### **Discussions**

#### Advantages

- "smart initialization" of W and H
- Detailed timbre model using NMF
- Onset modeling

#### Disadvantages

- May be hard to deal with multi-instrument polyphonic audio
- The same note can have different pitch and timbre
- How many dictionary elements do we need then?

## Soundprism

Multi-pitch info of audio

[Duan & Pardo, 2011]

Particle filtering for alignment

Pitch-based separation

Online

# Align Audio with Score



ECE 477 - Computer Audition, Zhiyao Duan 2019

## A State Space Model



Inference by particle filtering

ECE 477 - Computer Audition, Zhiyao Duan 2019

### **Transition Model**



#### Dynamical system

- Position: 
$$x_n = x_{n-1} + l \cdot v_{n-1}$$

- Tempo: 
$$v_n = \left\{ \begin{array}{ll} v_{n-1} + n_v \\ v_{n-1} \end{array} \right.$$

where 
$$n_v \sim \mathcal{N}(0, \sigma_v^2)$$

If the score position  $x_n$  just passed a score note onset

otherwise

### **Observation Model**



•  $p(y_n|\theta_n)$  is the multi-pitch estimation model trained from thousands of random chords

## Online Inference by Particle Filtering

- In *n*-th frame, estimate posterior  $p(s_n|Y_{1:n})$  from past observations  $Y_{1:n} = (y_1, ..., y_n)$
- Update  $p(s_n|Y_{1:n})$  from  $p(s_{n-1}|Y_{1:n-1})$  with a fixed number of particles
  - Move by  $p(s_n|s_{n-1})$  (i.e. the dynamic equations), resample by  $p(y_n|s_n)$



### **Source Separation**

- 1. Accurately estimate performed pitches  $\hat{\theta}_n$ 
  - Around score pitches  $\theta_n$

$$\hat{\theta}_n = \arg\max p(\mathbf{y}_n \mid \theta)$$

s.t. 
$$\theta \in [\theta_n - 50 \text{cents}, \theta_n + 50 \text{cents}]$$



### Reconstruct Source Signals

- 2. Allocate mixture's spectral energy
  - Non-harmonic bins
    - To all sources, evenly
  - Non-overlapping harmonic bins
    - To the active source, solely
  - Overlapping harmonic bins
    - To active sources, in inverse proportion to the square of harmonic numbers



Harmonic positions for Source 2

• 3. IFFT with mixture's pahse to time domain

### **Experiments**

- 10 pieces of J.S. Bach 4-part chorales
- Audio played by violin, clarinet, saxophone and bassoon, separately recorded and then mixed.
- MIDI score downloaded
- Ground-truth alignment manually annotated
- 150 combinations = 40 solos + 60 duets + 40 trios + 10 quartets

### **Source Separation Results**

- 1. Proposed
- 2. Ideally-aligned
- 3. Ganseman et al'10 (offline algorithm)
- (offline algorithm)

  4. Multi-pitch estimation & streaming-based separation (without score)



• 5. Oracle

Average odB -3dB -4.78dB

### Soundprism



J. Brahms, Clarinet Quintet in B minor, op.115. 3rd movement





ECE 477 - Computer Audition, Zhiyao Duan 2019

## **Interactive Music Editing**



### **Discussions**

#### Advantages

- Online system, potential for real-time applications
- Can deal with multi-instrument polyphonic audio
- Multi-pitch info is used

#### Disadvantages

- Multi-pitch model cannot distinguish different parts of a note
- No onset modeling, alignment not precise
- No timbre modeling in separation