$12n_{0843} (K12n_{0843})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u,\ a-1,\ u^6+3u^5+5u^4+4u^3+3u^2+2u+1\rangle \\ I_2^u &= \langle 6910924u^{19}+111764718u^{18}+\cdots+18467014b+50164092, \\ &-12541023u^{19}-199375543u^{18}+\cdots+36934028a-54583614,\ u^{20}+17u^{19}+\cdots-58u^2+8\rangle \\ I_3^u &= \langle b-u,\ 201231u^{19}-801753u^{18}+\cdots+26914a-196045,\ u^{20}-4u^{19}+\cdots-4u+1\rangle \\ I_4^u &= \langle 3171u^{19}-102100u^{18}+\cdots+26914b-201231,\ a-1,\ u^{20}-4u^{19}+\cdots-4u+1\rangle \\ I_5^u &= \langle b+u,\ a+1,\ u^8+3u^7+4u^6+u^5-2u^4-2u^3+1\rangle \\ I_6^u &= \langle -47u^{11}-28u^{10}+\cdots+592b-663,\ 663u^{11}a+949u^{11}+\cdots-913a-2279, \\ u^{12}-3u^{11}+4u^{10}+3u^9-9u^8+5u^7+15u^6-23u^5+20u^4-9u^3+4u^2-u+1\rangle \\ I_7^u &= \langle b+u,\ 2u^7-6u^6+7u^5-2u^4-4u^2+a+5u-3,\ u^8-3u^7+4u^6-2u^5+u^4-2u^3+3u^2-2u+1\rangle \\ I_8^u &= \langle -u^6+2u^5-2u^4-u^2+b+u-2,\ a+1,\ u^8-3u^7+4u^6-2u^5+u^4-2u^3+3u^2-2u+1\rangle \\ I_9^u &= \langle -u^7-4u^6-7u^5-5u^4+u^2+b-u,\ -u^6-4u^5-7u^4-5u^3+a+u-1, \\ u^8+5u^7+12u^6+16u^5+13u^4+7u^3+4u^2+2u+1\rangle \\ I_{10}^u &= \langle -u^4+2u^3-2u^2+b+2u-2,\ u^4-2u^3+u^2+a+1,\ u^6-3u^5+4u^4-4u^3+4u^2-2u+1\rangle \\ I_{10}^u &$$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$I_{11}^u = \langle u^5 - 2u^4 + u^3 + b + u, \ 2u^5 - 6u^4 + 7u^3 - 6u^2 + a + 6u - 2, \ u^6 - 3u^5 + 4u^4 - 4u^3 + 4u^2 - 2u + 1 \rangle$$

$$I_{12}^u = \langle b - u, \ a - 1, \ u^3 + u^2 + u - 1 \rangle$$

* 12 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 137 representations.

 $^{^{2}}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, a - 1, u^6 + 3u^5 + 5u^4 + 4u^3 + 3u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{2}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}-u^{2}+1 \\ -u^{4}-2u^{3}-u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5}-2u^{4}-3u^{3}-u^{2}+1 \\ -u^{3}+u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}+u+1 \\ -u^{4}-u^{3}+u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4}+2u^{3}+4u^{2}+3u+2 \\ u^{5}+2u^{4}+3u^{3}+3u^{2}+3u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3}+2u^{2}+u \\ u^{3}+u^{2}+u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5}+3u^{4}+5u^{3}+5u^{2}+3u+1 \\ u^{5}+2u^{4}+4u^{3}+3u^{2}+2u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $3u^5 + 9u^4 + 12u^3 + 3u^2 + 3u + 3u^2 + 3u + 3u^2 + 3u^2$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_8, c_9, c_{12}	$u^6 - 2u^5 + 5u^4 - 4u^3 + 5u^2 - u + 1$
c_2, c_6, c_{10}	$u^6 - 4u^5 + 9u^4 - 11u^3 + 10u^2 - 5u + 1$
c_3, c_7, c_{11}	$u^6 - 3u^5 + 5u^4 - 4u^3 + 3u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8, c_9, c_{12}	$y^6 + 6y^5 + 19y^4 + 32y^3 + 27y^2 + 9y + 1$
c_2, c_6, c_{10}	$y^6 + 2y^5 + 13y^4 + 21y^3 + 8y^2 - 5y + 1$
c_3, c_7, c_{11}	$y^6 + y^5 + 7y^4 + 4y^3 + 3y^2 + 2y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.662897 + 0.491150I		
a = 1.00000	0.95398 - 1.33057I	1.54996 + 3.49130I
b = -0.662897 + 0.491150I		
u = -0.662897 - 0.491150I		
a = 1.00000	0.95398 + 1.33057I	1.54996 - 3.49130I
b = -0.662897 - 0.491150I		
u = 0.233407 + 0.727795I		
a = 1.00000	5.70894 + 1.27621I	-0.24770 - 2.88719I
b = 0.233407 + 0.727795I		
u = 0.233407 - 0.727795I		
a = 1.00000	5.70894 - 1.27621I	-0.24770 + 2.88719I
b = 0.233407 - 0.727795I		
u = -1.07051 + 1.17004I		
a = 1.00000	1.5618 - 18.5814I	-2.80226 + 9.65875I
b = -1.07051 + 1.17004I		
u = -1.07051 - 1.17004I		
a = 1.00000	1.5618 + 18.5814I	-2.80226 - 9.65875I
b = -1.07051 - 1.17004I		

TT

$$I_2^u = \langle 6.91 \times 10^6 u^{19} + 1.12 \times 10^8 u^{18} + \dots + 1.85 \times 10^7 b + 5.02 \times 10^7, -1.25 \times 10^7 u^{19} - 1.99 \times 10^8 u^{18} + \dots + 3.69 \times 10^7 a - 5.46 \times 10^7, \ u^{20} + 17 u^{19} + \dots - 58 u^2 + 8 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.339552u^{19} + 5.39815u^{18} + \dots + 7.20308u + 1.47787 \\ -0.374231u^{19} - 6.05213u^{18} + \dots + 1.47787u - 2.71642 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0346787u^{19} - 0.653974u^{18} + \dots + 8.68095u - 1.23855 \\ -0.374231u^{19} - 6.05213u^{18} + \dots + 1.47787u - 2.71642 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.692665u^{19} + 11.3252u^{18} + \dots - 16.9750u + 4.33805 \\ -0.450082u^{19} - 7.21967u^{18} + \dots + 5.33805u - 5.54132 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0222967u^{19} - 0.221327u^{18} + \dots - 4.64076u - 3.18001 \\ -0.274012u^{19} - 4.37474u^{18} + \dots + 1.36131u - 3.42229 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.601980u^{19} - 9.66925u^{18} + \dots - 3.10107u - 7.86403 \\ -0.161223u^{19} - 2.34621u^{18} + \dots - 3.27616u - 0.168684 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.275116u^{19} + 4.43129u^{18} + \dots + 5.96453u + 1.75530 \\ -0.359034u^{19} - 5.59838u^{18} + \dots + 0.962383u - 1.68803 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.721282u^{19} + 11.6179u^{18} + \dots + 1.3408u + 1.99349 \\ -1.07481u^{19} - 17.4491u^{18} + \dots + 10.4961u - 10.9836 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.224229u^{19} + 3.63613u^{18} + \dots - 13.8402u - 3.14393 \\ -0.0183541u^{19} - 0.469426u^{18} + \dots - 0.203268u - 1.94066 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.19321u^{19} + 19.7559u^{18} + \dots - 15.6737u + 8.67976 \\ 0.0354594u^{19} + 0.212840u^{18} + \dots + 6.93641u - 5.05504 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{26183957}{18467014}u^{19} - \frac{212046660}{9233507}u^{18} + \dots + \frac{52565092}{9233507}u - \frac{114548582}{9233507}u^{18} + \dots$$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_9 \ c_{12}$	$u^{20} + 4u^{19} + \dots + 6u + 1$
c_2	$u^{20} - 21u^{19} + \dots - 5888u + 512$
c_3	$u^{20} - 17u^{19} + \dots - 58u^2 + 8$
c_5, c_8	$u^{20} - 10u^{19} + \dots - 432u + 64$
c_6, c_{10}	$u^{20} + 4u^{19} + \dots + 9u + 1$
c_7, c_{11}	$u^{20} + 4u^{19} + \dots + 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_9 c_{12}	$y^{20} + 14y^{19} + \dots + 18y + 1$
c_2	$y^{20} - y^{19} + \dots + 8454144y + 262144$
c_3	$y^{20} - 3y^{19} + \dots - 928y + 64$
c_5, c_8	$y^{20} + 6y^{19} + \dots - 256y + 4096$
c_6, c_{10}	$y^{20} - 8y^{19} + \dots - 29y + 1$
c_7, c_{11}	$y^{20} + 4y^{19} + \dots + 10y + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.591919 + 0.779585I		
a = 1.47738 + 0.32947I	5.94853 - 3.83843I	-3.28174 + 4.00815I
b = -1.13134 + 0.95673I		
u = -0.591919 - 0.779585I		
a = 1.47738 - 0.32947I	5.94853 + 3.83843I	-3.28174 - 4.00815I
b = -1.13134 - 0.95673I		
u = -0.824428 + 0.175693I		
a = -1.38094 + 0.73565I	7.45841 - 1.00347I	0.36457 - 2.52329I
b = 1.009240 - 0.849113I		
u = -0.824428 - 0.175693I		
a = -1.38094 - 0.73565I	7.45841 + 1.00347I	0.36457 + 2.52329I
b = 1.009240 + 0.849113I		
u = 0.193762 + 0.533092I		
a = -0.90006 - 1.24975I	-1.94038 + 0.72654I	-7.43882 + 4.55749I
b = 0.491834 - 0.721967I		
u = 0.193762 - 0.533092I		
a = -0.90006 + 1.24975I	-1.94038 - 0.72654I	-7.43882 - 4.55749I
b = 0.491834 + 0.721967I		
u = -0.86298 + 1.15143I		
a = -1.069020 - 0.121423I	-2.00404 - 10.90100I	-3.44699 + 8.30760I
b = 1.06235 - 1.12612I		
u = -0.86298 - 1.15143I		
a = -1.069020 + 0.121423I	-2.00404 + 10.90100I	-3.44699 - 8.30760I
b = 1.06235 + 1.12612I		
u = -1.01532 + 1.20528I		
a = -0.852629 + 0.003707I	-3.04305 - 6.67086I	-5.21791 + 2.63870I
b = 0.861225 - 1.031420I		
u = -1.01532 - 1.20528I		
a = -0.852629 - 0.003707I	-3.04305 + 6.67086I	-5.21791 - 2.63870I
b = 0.861225 + 1.031420I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.51357 + 0.59051I		
a = 0.228246 + 0.440024I	-0.09983 + 3.38858I	-2.41701 - 8.48871I
b = -0.605304 - 0.531225I		
u = -1.51357 - 0.59051I		
a = 0.228246 - 0.440024I	-0.09983 - 3.38858I	-2.41701 + 8.48871I
b = -0.605304 + 0.531225I		
u = 0.198279 + 0.120648I		
a = 1.30829 + 4.75906I	3.52200 - 3.40437I	-3.46913 + 3.36431I
b = -0.314766 + 1.101470I		
u = 0.198279 - 0.120648I		
a = 1.30829 - 4.75906I	3.52200 + 3.40437I	-3.46913 - 3.36431I
b = -0.314766 - 1.101470I		
u = -1.53446 + 1.05621I		
a = 0.254710 - 0.346615I	0.49272 - 7.72234I	-10.36662 + 6.86541I
b = -0.024746 + 0.800894I		
u = -1.53446 - 1.05621I		
a = 0.254710 + 0.346615I	0.49272 + 7.72234I	-10.36662 - 6.86541I
b = -0.024746 - 0.800894I		
u = -1.01845 + 1.57478I		
a = -0.288306 + 0.080384I	-2.57404 - 2.62147I	-15.2857 + 10.0855I
b = 0.167038 - 0.535886I		
u = -1.01845 - 1.57478I		
a = -0.288306 - 0.080384I	-2.57404 + 2.62147I	-15.2857 - 10.0855I
b = 0.167038 + 0.535886I		
u = -1.53091 + 1.32244I		
a = -0.027667 - 0.334313I	2.10928 + 9.64745I	-6.0000 - 14.3164I
b = 0.484465 + 0.475215I		
u = -1.53091 - 1.32244I		
a = -0.027667 + 0.334313I	2.10928 - 9.64745I	-6.0000 + 14.3164I
b = 0.484465 - 0.475215I		

III.
$$I_3^u = \langle b-u, \ 2.01 \times 10^5 u^{19} - 8.02 \times 10^5 u^{18} + \cdots + 2.69 \times 10^4 a - 1.96 \times 10^5, \ u^{20} - 4 u^{19} + \cdots - 4 u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -7.47682u^{19} + 29.7894u^{18} + \cdots - 36.6305u + 7.28413 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -7.47682u^{19} + 29.7894u^{18} + \cdots - 35.6305u + 7.28413 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 17.3713u^{19} - 71.0832u^{18} + \cdots + 123.789u - 31.5849 \\ 3.32229u^{19} - 11.0375u^{18} + \cdots + 8.00554u + 0.117820 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1.59423u^{19} - 2.41343u^{18} + \cdots - 10.6391u - 1.01835 \\ -1.44965u^{19} + 5.33845u^{18} + \cdots - 2.84978u + 0.253994 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2.19796u^{19} - 6.68247u^{18} + \cdots + 0.770751u - 4.72784 \\ 0.505759u^{19} - 2.02586u^{18} + \cdots + 5.17032u - 1.60010 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4.15453u^{19} + 18.7520u^{18} + \cdots - 28.6249u + 7.40195 \\ -0.502415u^{19} + 2.36568u^{18} + \cdots - 4.68433u + 2.25165 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 6.35220u^{19} - 16.2202u^{18} + \cdots - 3.98086u + 4.50119 \\ -0.391989u^{19} + 3.27629u^{18} + \cdots - 8.30244u + 3.34528 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 24.0158u^{19} - 93.1582u^{18} + \cdots + 137.800u - 31.3493 \\ 3.32229u^{19} - 11.0375u^{18} + \cdots + 8.00554u + 0.117820 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.498439u^{19} - 6.37475u^{18} + \cdots + 38.7268u - 18.0626 \\ 3.19473u^{19} - 11.9776u^{18} + \cdots + 16.8010u - 4.49101 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{182014}{13457}u^{19} + \frac{673876}{13457}u^{18} + \dots - \frac{1440624}{13457}u + \frac{66848}{13457}u$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{20} - 10u^{19} + \dots - 432u + 64$
c_2, c_6	$u^{20} + 4u^{19} + \dots + 9u + 1$
c_{3}, c_{7}	$u^{20} + 4u^{19} + \dots + 4u + 1$
c_5, c_8, c_9 c_{12}	$u^{20} + 4u^{19} + \dots + 6u + 1$
c_{10}	$u^{20} - 21u^{19} + \dots - 5888u + 512$
c_{11}	$u^{20} - 17u^{19} + \dots - 58u^2 + 8$

Crossings	Riley Polynomials at each crossing
c_1,c_4	$y^{20} + 6y^{19} + \dots - 256y + 4096$
c_{2}, c_{6}	$y^{20} - 8y^{19} + \dots - 29y + 1$
c_{3}, c_{7}	$y^{20} + 4y^{19} + \dots + 10y + 1$
c_5, c_8, c_9 c_{12}	$y^{20} + 14y^{19} + \dots + 18y + 1$
c_{10}	$y^{20} - y^{19} + \dots + 8454144y + 262144$
c_{11}	$y^{20} - 3y^{19} + \dots - 928y + 64$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.491834 + 0.721967I		
a = -0.379455 - 0.526881I	-1.94038 - 0.72654I	-7.43882 - 4.55749I
b = 0.491834 + 0.721967I		
u = 0.491834 - 0.721967I		
a = -0.379455 + 0.526881I	-1.94038 + 0.72654I	-7.43882 + 4.55749I
b = 0.491834 - 0.721967I		
u = -0.314766 + 1.101470I		
a = 0.053706 - 0.195362I	3.52200 - 3.40437I	-3.46913 + 3.36431I
b = -0.314766 + 1.101470I		
u = -0.314766 - 1.101470I		
a = 0.053706 + 0.195362I	3.52200 + 3.40437I	-3.46913 - 3.36431I
b = -0.314766 - 1.101470I		
u = -0.605304 + 0.531225I		
a = 0.92890 + 1.79077I	-0.09983 - 3.38858I	-2.41701 + 8.48871I
b = -0.605304 + 0.531225I		
u = -0.605304 - 0.531225I		
a = 0.92890 - 1.79077I	-0.09983 + 3.38858I	-2.41701 - 8.48871I
b = -0.605304 - 0.531225I		
u = -0.024746 + 0.800894I		
a = 1.37667 + 1.87340I	0.49272 - 7.72234I	-10.36662 + 6.86541I
b = -0.024746 + 0.800894I		
u = -0.024746 - 0.800894I		
a = 1.37667 - 1.87340I	0.49272 + 7.72234I	-10.36662 - 6.86541I
b = -0.024746 - 0.800894I		
u = 1.009240 + 0.849113I		
a = -0.564068 + 0.300488I	7.45841 + 1.00347I	0.36457 + 2.52329I
b = 1.009240 + 0.849113I		
u = 1.009240 - 0.849113I		
a = -0.564068 - 0.300488I	7.45841 - 1.00347I	0.36457 - 2.52329I
b = 1.009240 - 0.849113I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.484465 + 0.475215I		
a = -0.24586 + 2.97086I	2.10928 + 9.64745I	-3.9407 - 14.3164I
b = 0.484465 + 0.475215I		
u = 0.484465 - 0.475215I		
a = -0.24586 - 2.97086I	2.10928 - 9.64745I	-3.9407 + 14.3164I
b = 0.484465 - 0.475215I		
u = 0.861225 + 1.031420I		
a = -1.172820 + 0.005099I	-3.04305 + 6.67086I	-5.21791 - 2.63870I
b = 0.861225 + 1.031420I		
u = 0.861225 - 1.031420I		
a = -1.172820 - 0.005099I	-3.04305 - 6.67086I	-5.21791 + 2.63870I
b = 0.861225 - 1.031420I		
u = 0.167038 + 0.535886I		
a = -3.21835 + 0.89733I	-2.57404 + 2.62147I	-15.2857 - 10.0855I
b = 0.167038 + 0.535886I		
u = 0.167038 - 0.535886I		
a = -3.21835 - 0.89733I	-2.57404 - 2.62147I	-15.2857 + 10.0855I
b = 0.167038 - 0.535886I		
u = -1.13134 + 0.95673I		
a = 0.644805 - 0.143797I	5.94853 - 3.83843I	-3.28174 + 4.00815I
b = -1.13134 + 0.95673I		
u = -1.13134 - 0.95673I		
a = 0.644805 + 0.143797I	5.94853 + 3.83843I	-3.28174 - 4.00815I
b = -1.13134 - 0.95673I		
u = 1.06235 + 1.12612I		
a = -0.923523 - 0.104897I	-2.00404 + 10.90100I	-3.44699 - 8.30760I
b = 1.06235 + 1.12612I		
u = 1.06235 - 1.12612I		
a = -0.923523 + 0.104897I	-2.00404 - 10.90100I	-3.44699 + 8.30760I
b = 1.06235 - 1.12612I		

$$\text{IV. } I_4^u = \\ \langle 3171u^{19} - 102100u^{18} + \dots + 26914b - 201231, \ a-1, \ u^{20} - 4u^{19} + \dots - 4u + 1 \rangle$$

(i) Arc colorings

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{182014}{13457}u^{19} + \frac{673876}{13457}u^{18} + \dots - \frac{1440624}{13457}u + \frac{66848}{13457}u$$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \ c_8$	$u^{20} + 4u^{19} + \dots + 6u + 1$
c_2, c_{10}	$u^{20} + 4u^{19} + \dots + 9u + 1$
c_3, c_{11}	$u^{20} + 4u^{19} + \dots + 4u + 1$
c_6	$u^{20} - 21u^{19} + \dots - 5888u + 512$
c ₇	$u^{20} - 17u^{19} + \dots - 58u^2 + 8$
c_9, c_{12}	$u^{20} - 10u^{19} + \dots - 432u + 64$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \ c_8$	$y^{20} + 14y^{19} + \dots + 18y + 1$
c_2, c_{10}	$y^{20} - 8y^{19} + \dots - 29y + 1$
c_3,c_{11}	$y^{20} + 4y^{19} + \dots + 10y + 1$
c_6	$y^{20} - y^{19} + \dots + 8454144y + 262144$
c ₇	$y^{20} - 3y^{19} + \dots - 928y + 64$
c_9, c_{12}	$y^{20} + 6y^{19} + \dots - 256y + 4096$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.491834 + 0.721967I		
a = 1.00000	-1.94038 - 0.72654I	-7.43882 - 4.55749I
b = 0.193762 - 0.533092I		
u = 0.491834 - 0.721967I		
a = 1.00000	-1.94038 + 0.72654I	-7.43882 + 4.55749I
b = 0.193762 + 0.533092I		
u = -0.314766 + 1.101470I		
a = 1.00000	3.52200 - 3.40437I	-3.46913 + 3.36431I
b = 0.198279 + 0.120648I		
u = -0.314766 - 1.101470I		
a = 1.00000	3.52200 + 3.40437I	-3.46913 - 3.36431I
b = 0.198279 - 0.120648I		
u = -0.605304 + 0.531225I		
a = 1.00000	-0.09983 - 3.38858I	-2.41701 + 8.48871I
b = -1.51357 - 0.59051I		
u = -0.605304 - 0.531225I		
a = 1.00000	-0.09983 + 3.38858I	-2.41701 - 8.48871I
b = -1.51357 + 0.59051I		
u = -0.024746 + 0.800894I		
a = 1.00000	0.49272 - 7.72234I	-10.36662 + 6.86541I
b = -1.53446 + 1.05621I		
u = -0.024746 - 0.800894I		
a = 1.00000	0.49272 + 7.72234I	-10.36662 - 6.86541I
b = -1.53446 - 1.05621I		
u = 1.009240 + 0.849113I		
a = 1.00000	7.45841 + 1.00347I	0.36457 + 2.52329I
b = -0.824428 - 0.175693I		
u = 1.009240 - 0.849113I		
a = 1.00000	7.45841 - 1.00347I	0.36457 - 2.52329I
b = -0.824428 + 0.175693I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.484465 + 0.475215I		
a = 1.00000	2.10928 + 9.64745I	-3.9407 - 14.3164I
b = -1.53091 + 1.32244I		
u = 0.484465 - 0.475215I		
a = 1.00000	2.10928 - 9.64745I	-3.9407 + 14.3164I
b = -1.53091 - 1.32244I		
u = 0.861225 + 1.031420I		
a = 1.00000	-3.04305 + 6.67086I	-5.21791 - 2.63870I
b = -1.01532 - 1.20528I		
u = 0.861225 - 1.031420I		
a = 1.00000	-3.04305 - 6.67086I	-5.21791 + 2.63870I
b = -1.01532 + 1.20528I		
u = 0.167038 + 0.535886I		
a = 1.00000	-2.57404 + 2.62147I	-15.2857 - 10.0855I
b = -1.01845 - 1.57478I		
u = 0.167038 - 0.535886I		
a = 1.00000	-2.57404 - 2.62147I	-15.2857 + 10.0855I
b = -1.01845 + 1.57478I		
u = -1.13134 + 0.95673I		
a = 1.00000	5.94853 - 3.83843I	-3.28174 + 4.00815I
b = -0.591919 + 0.779585I		
u = -1.13134 - 0.95673I		
a = 1.00000	5.94853 + 3.83843I	-3.28174 - 4.00815I
b = -0.591919 - 0.779585I		
u = 1.06235 + 1.12612I		
a = 1.00000	-2.00404 + 10.90100I	-3.44699 - 8.30760I
b = -0.86298 - 1.15143I		
u = 1.06235 - 1.12612I		
a = 1.00000	-2.00404 - 10.90100I	-3.44699 + 8.30760I
b = -0.86298 + 1.15143I		

V.
$$I_5^u = \langle b + u, a + 1, u^8 + 3u^7 + 4u^6 + u^5 - 2u^4 - 2u^3 + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u - 1 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3} - u^{2} + 1 \\ -u^{4} - 2u^{3} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - 2u^{4} - 3u^{3} - u^{2} + 1 \\ u^{7} + 2u^{6} + 2u^{5} - u^{4} - 2u^{3} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{2} - u - 1 \\ u^{4} + u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} + 3u^{5} + 4u^{4} + 2u^{3} - u^{2} - u - 1 \\ u^{6} + 2u^{5} + 3u^{4} + u^{3} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{3} + 2u^{2} + u \\ u^{3} + u^{2} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{6} - 2u^{5} - 2u^{4} + u^{3} + 2u^{2} + u \\ -u^{7} - 3u^{6} - 4u^{5} - 2u^{4} + u^{3} + u^{2} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^7 + 3u^6 3u^4 + 9u^3 + 9u^2 9$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_9	$u^8 - 2u^7 + 4u^6 - 2u^5 + 3u^3 - 2u^2 - u + 1$
c_2, c_6, c_{10}	$u^8 + 2u^7 + u^6 - 3u^5 - 2u^4 + u^3 + 5u^2 + 4u + 2$
c_3, c_7, c_{11}	$u^8 + 3u^7 + 4u^6 + u^5 - 2u^4 - 2u^3 + 1$
c_4, c_8, c_{12}	$u^8 + 2u^7 + 4u^6 + 2u^5 - 3u^3 - 2u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8, c_9, c_{12}	$y^8 + 4y^7 + 8y^6 + 4y^5 - 6y^4 - 5y^3 + 10y^2 - 5y + 1$
c_2, c_6, c_{10}	$y^8 - 2y^7 + 9y^6 - 7y^5 + 8y^4 + 7y^3 + 9y^2 + 4y + 4$
c_3, c_7, c_{11}	$y^8 - y^7 + 6y^6 - 5y^5 + 10y^4 + 4y^3 - 4y^2 + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.103931 + 0.718671I		
a = -1.00000	-2.30991 + 1.50082I	-12.82887 - 5.43370I
b = 0.103931 - 0.718671I		
u = -0.103931 - 0.718671I		
a = -1.00000	-2.30991 - 1.50082I	-12.82887 + 5.43370I
b = 0.103931 + 0.718671I		
u = 0.694301 + 0.211526I		
a = -1.00000	1.98217 - 8.48228I	-3.44672 + 5.24976I
b = -0.694301 - 0.211526I		
u = 0.694301 - 0.211526I		
a = -1.00000	1.98217 + 8.48228I	-3.44672 - 5.24976I
b = -0.694301 + 0.211526I		
u = -1.122430 + 0.641983I		
a = -1.00000	9.81320 - 5.60717I	4.40282 + 4.85815I
b = 1.122430 - 0.641983I		
u = -1.122430 - 0.641983I		
a = -1.00000	9.81320 + 5.60717I	4.40282 - 4.85815I
b = 1.122430 + 0.641983I		
u = -0.96794 + 1.10283I		
a = -1.00000	-2.90573 - 8.64274I	-4.62723 + 6.48607I
b = 0.96794 - 1.10283I		
u = -0.96794 - 1.10283I		
a = -1.00000	-2.90573 + 8.64274I	-4.62723 - 6.48607I
b = 0.96794 + 1.10283I		

VI.
$$I_6^u = \langle -47u^{11} - 28u^{10} + \dots + 592b - 663, \ 663u^{11}a + 949u^{11} + \dots - 913a - 2279, \ u^{12} - 3u^{11} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0793919u^{11} + 0.0472973u^{10} + \cdots + 0.422297u + 1.11993 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.0793919u^{11} + 0.0472973u^{10} + \cdots + a + 1.11993 \\ 0.0793919u^{11} + 0.0472973u^{10} + \cdots + 0.422297u + 1.11993 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0793919au^{11} - 0.322635u^{11} + \cdots + 0.422297u + 1.11993 \\ 0.346284u^{11} - 1.40541u^{10} + \cdots - 0.280405u - 0.322635 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.596284au^{11} - 0.346284u^{11} + \cdots - 0.427365a + 1.07264 \\ -\frac{3}{4}u^{11} + \frac{7}{4}u^{10} + \cdots + \frac{9}{4}u^{2} + \frac{1}{4}u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.395270au^{11} - 0.145270u^{11} + \cdots - 0.543919a - 0.0439189 \\ 0.217905au^{11} - 0.532095u^{11} + \cdots - 0.0591216a - 0.0591216 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0793919u^{11} + 0.0472973u^{10} + \cdots + a + 1.11993 \\ -0.351351u^{11} + 1.21622u^{10} + \cdots + 0.216216u + 1.40541 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.520270au^{11} + 0.712838u^{11} + \cdots + 0.831081a + 0.0236486 \\ -0.118243au^{11} + 0.282095u^{11} + \cdots - 0.402027a + 0.309122 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.351351au^{11} - 0.00506757u^{11} + \cdots + 1.40541a + 2.08277 \\ -0.430743au^{11} - 0.0287162u^{11} + \cdots + 0.285473a + 0.802365 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.280405au^{11} - 0.518581u^{11} + \cdots + 0.7753378a + 0.886824 \\ -0.712838au^{11} + 0.172297u^{11} + \cdots + 0.976351a + 0.685811 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{489}{74}u^{11} + \frac{566}{37}u^{10} - \frac{448}{37}u^9 - \frac{2875}{74}u^8 + \frac{1670}{37}u^7 + \frac{943}{74}u^6 - \frac{4507}{37}u^5 + \frac{5645}{74}u^4 - \frac{1385}{74}u^3 - \frac{1039}{37}u^2 + \frac{233}{37}u - \frac{597}{74}$$

Crossings	u-Polynomials at each crossing	_
c_1, c_4, c_5 c_8, c_9, c_{12}	$(u^{12} + 3u^{11} + \dots + 9u + 7)^2$	_
c_2, c_6, c_{10}	$ (u^{12} + 2u^{11} + 2u^{10} - 4u^9 - u^8 + 4u^6 + 24u^5 + 6u^4 - 10u^3 + 6u^2 - 4u^6 + 24u^6 + 24u^$	$+6u+1)^2$
c_3, c_7, c_{11}	$(u^{12} + 3u^{11} + \dots + u + 1)^2$	-

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_8, c_9, c_{12}	$(y^{12} + 7y^{11} + \dots + 227y + 49)^2$
c_2, c_6, c_{10}	$(y^{12} + 18y^{10} + \dots - 24y + 1)^2$
c_3, c_7, c_{11}	$(y^{12} - y^{11} + \dots + 7y + 1)^2$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.660686 + 0.508519I		
a = 1.63037 + 0.35251I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = -1.33481 - 0.55559I		
u = 0.660686 + 0.508519I		
a = -1.67518 + 0.44843I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = 0.897901 + 1.061970I		
u = 0.660686 - 0.508519I		
a = 1.63037 - 0.35251I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = -1.33481 + 0.55559I		
u = 0.660686 - 0.508519I		
a = -1.67518 - 0.44843I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = 0.897901 - 1.061970I		
u = 0.247330 + 0.683605I		
a = -0.601210 + 0.100710I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = 1.24643 - 1.36934I		
u = 0.247330 + 0.683605I		
a = -1.18793 - 2.25312I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = -0.217544 - 0.386081I		
u = 0.247330 - 0.683605I		
a = -0.601210 - 0.100710I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = 1.24643 + 1.36934I		
u = 0.247330 - 0.683605I		
a = -1.18793 + 2.25312I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = -0.217544 + 0.386081I		
u = 0.897901 + 1.061970I		
a = -0.924786 + 0.475002I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = 0.660686 + 0.508519I		
u = 0.897901 + 1.061970I		
a = 0.585965 - 0.126695I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = -1.33481 - 0.55559I		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.897901 - 1.061970I		
a = -0.924786 - 0.475002I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = 0.660686 - 0.508519I		
u = 0.897901 - 1.061970I		
a = 0.585965 + 0.126695I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = -1.33481 + 0.55559I		
u = -1.33481 + 0.55559I		
a = -0.855605 + 0.439468I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = 0.660686 - 0.508519I		
u = -1.33481 + 0.55559I		
a = -0.557033 + 0.149112I	6.76819 - 5.97824I	2.38371 + 7.63117I
b = 0.897901 - 1.061970I		
u = -1.33481 - 0.55559I		
a = -0.855605 - 0.439468I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = 0.660686 + 0.508519I		
u = -1.33481 - 0.55559I		
a = -0.557033 - 0.149112I	6.76819 + 5.97824I	2.38371 - 7.63117I
b = 0.897901 + 1.061970I		
u = -0.217544 + 0.386081I		
a = -1.61791 + 0.27102I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = 1.24643 + 1.36934I		
u = -0.217544 + 0.386081I		
a = 1.31133 - 3.96730I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = 0.247330 - 0.683605I		
u = -0.217544 - 0.386081I		
a = -1.61791 - 0.27102I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = 1.24643 - 1.36934I		
u = -0.217544 - 0.386081I		
a = 1.31133 + 3.96730I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = 0.247330 + 0.683605I		

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24643 + 1.36934I		
a = -0.183104 - 0.347289I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = -0.217544 + 0.386081I		
u = 1.24643 + 1.36934I		
a = 0.075109 + 0.227234I	-1.83339 - 2.29825I	-8.3837 + 11.7360I
b = 0.247330 - 0.683605I		
u = 1.24643 - 1.36934I		
a = -0.183104 + 0.347289I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = -0.217544 - 0.386081I		
u = 1.24643 - 1.36934I		
a = 0.075109 - 0.227234I	-1.83339 + 2.29825I	-8.3837 - 11.7360I
b = 0.247330 + 0.683605I		

$$VII. \\ I_7^u = \langle b+u, \ 2u^7 - 6u^6 + 7u^5 - 2u^4 - 4u^2 + a + 5u - 3, \ u^8 - 3u^7 + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{7} + 6u^{6} - 7u^{5} + 2u^{4} + 4u^{2} - 5u + 3 \\ -u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2u^{7} + 6u^{6} - 7u^{5} + 2u^{4} + 4u^{2} - 6u + 3 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2u^{7} + 7u^{6} - 8u^{5} + 2u^{4} + u^{3} + 6u^{2} - 6u + 3 \\ -u^{7} + 2u^{6} - 2u^{5} - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 2u^{7} - 4u^{6} + 3u^{5} + 2u^{3} - 3u^{2} + u - 1 \\ -u^{7} + 3u^{6} - 3u^{5} + u^{4} + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{7} - 5u^{6} + 4u^{5} + u^{3} - 4u^{2} + 2u - 2 \\ u^{7} - u^{6} + u^{4} + u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{7} + 4u^{6} - 5u^{5} + 2u^{4} + u^{3} + 3u^{2} - 4u + 3 \\ -u^{7} + 2u^{6} - 2u^{5} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{7} + 3u^{6} - 2u^{5} - u^{4} - u^{3} + u^{2} - 2u + 1 \\ -2u^{7} + 3u^{6} - 2u^{5} - u^{4} - u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -4u^{7} + 11u^{6} - 12u^{5} + 2u^{4} + 8u^{2} - 10u + 3 \\ -u^{7} + 2u^{6} - 2u^{5} + u^{2} - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{7} - 2u^{5} + 2u^{4} + 3u^{3} - 2u \\ -2u^{7} + 5u^{6} - 5u^{5} + u^{4} - u^{3} + 4u^{2} - 3u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-15u^7 + 37u^6 35u^5 + 2u^4 7u^3 + 29u^2 29u + 7u^3 + 20u^2 20u + 7u^3 + 20u + 7u^2$

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 4u^7 + 10u^6 - 18u^5 + 20u^4 - 15u^3 + 8u^2 - 2u + 1$
c_2, c_6	$u^8 - 2u^6 + u^5 + u^4 - 4u^3 + 3u + 1$
c_3, c_7	$u^8 - 3u^7 + 4u^6 - 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1$
c_4	$u^{8} + 4u^{7} + 10u^{6} + 18u^{5} + 20u^{4} + 15u^{3} + 8u^{2} + 2u + 1$
c_5, c_9	$u^8 - u^7 + 3u^6 - 4u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1$
c_8,c_{12}	$u^8 + u^7 + 3u^6 + 4u^5 + 4u^4 + 4u^3 + 3u^2 + 2u + 1$
c_{10}	$u^8 + 4u^7 + 8u^6 + 10u^5 + 10u^4 + 3u^3 - u^2 + u + 1$
c_{11}	$u^8 + 5u^7 + 12u^6 + 16u^5 + 13u^4 + 7u^3 + 4u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_4	$y^8 + 4y^7 - 4y^6 - 28y^5 + 6y^4 + 43y^3 + 44y^2 + 12y + 1$		
c_2, c_6	$y^8 - 4y^7 + 6y^6 - 5y^5 + 11y^4 - 26y^3 + 26y^2 - 9y + 1$		
c_{3}, c_{7}	$y^8 - y^7 + 6y^6 - 2y^5 + 7y^4 + 2y^3 + 3y^2 + 2y + 1$		
c_5, c_8, c_9 c_{12}	$y^8 + 5y^7 + 9y^6 + 6y^5 - 2y^3 + y^2 + 2y + 1$		
c_{10}	$y^8 + 4y^6 + 34y^5 + 18y^4 - 33y^3 + 15y^2 - 3y + 1$		
c_{11}	$y^8 - y^7 + 10y^6 - 6y^5 + 23y^4 + 15y^3 + 14y^2 + 4y + 1$		

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.883954 + 0.567268I		
a = 1.52507 + 0.35374I	7.95377 + 2.68532I	3.33468 - 4.18449I
b = -0.883954 - 0.567268I		
u = 0.883954 - 0.567268I		
a = 1.52507 - 0.35374I	7.95377 - 2.68532I	3.33468 + 4.18449I
b = -0.883954 + 0.567268I		
u = -0.704204 + 0.626099I		
a = -0.144311 + 0.603307I	-1.49979 + 1.51030I	-2.66904 - 3.09158I
b = 0.704204 - 0.626099I		
u = -0.704204 - 0.626099I		
a = -0.144311 - 0.603307I	-1.49979 - 1.51030I	-2.66904 + 3.09158I
b = 0.704204 + 0.626099I		
u = 0.228862 + 0.666962I		
a = -0.38534 - 1.93462I	-2.24789 + 1.12072I	-12.14274 - 5.83810I
b = -0.228862 - 0.666962I		
u = 0.228862 - 0.666962I		
a = -0.38534 + 1.93462I	-2.24789 - 1.12072I	-12.14274 + 5.83810I
b = -0.228862 + 0.666962I		
u = 1.09139 + 0.92852I		
a = 0.504583 + 0.133700I	5.66352 + 5.68496I	-6.02290 - 6.27011I
b = -1.09139 - 0.92852I		
u = 1.09139 - 0.92852I		
a = 0.504583 - 0.133700I	5.66352 - 5.68496I	-6.02290 + 6.27011I
b = -1.09139 + 0.92852I		

VIII. $I_8^u = \langle -u^6 + 2u^5 - 2u^4 - u^2 + b + u - 2, \ a+1, \ u^8 - 3u^7 + \dots - 2u + 1 \rangle$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} - 2u^{5} + 2u^{4} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - 2u^{5} + 2u^{4} + u^{2} - u + 1 \\ u^{6} - 2u^{5} + 2u^{4} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} + 2u^{6} - 2u^{5} - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7} - 2u^{6} + 2u^{5} + u^{3} - 2u^{2} + 2u \\ -u^{7} + 3u^{6} - 3u^{5} + u^{4} + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{7} - u^{6} + u^{5} + 2u^{3} - u^{2} + 2u \\ -3u^{7} + 7u^{6} - 6u^{5} + u^{4} - 2u^{3} + 5u^{2} - 3u + 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{6} - 2u^{5} + 2u^{4} - u + 1 \\ -u^{7} + 3u^{6} - 4u^{5} + 3u^{4} - u^{3} + 2u^{2} - 3u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{6} - 2u^{5} + 2u^{4} - u + 1 \\ -u^{7} + 3u^{6} - 4u^{5} + 3u^{4} - u^{3} + 2u^{2} - 3u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{7} - 4u^{6} + 3u^{5} + u^{4} + u^{3} - 3u^{2} + 2u - 1 \\ u^{7} - u^{6} + 2u^{4} + u^{3} + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7} - 2u^{6} + u^{5} + u^{4} - 2u^{2} + u - 1 \\ 2u^{7} - 4u^{6} + 3u^{5} + u^{4} + u^{3} - 3u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 3u^{7} - 7u^{6} + 6u^{5} + 2u^{3} - 5u^{2} + 4u - 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-15u^7 + 37u^6 35u^5 + 2u^4 7u^3 + 29u^2 29u + 7u^3 + 37u^6 35u^5 + 20u^4 35u^5 + 30u^6 + 30u^$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^8 - u^7 + 3u^6 - 4u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1$
c_2,c_{10}	$u^8 - 2u^6 + u^5 + u^4 - 4u^3 + 3u + 1$
c_3,c_{11}	$u^8 - 3u^7 + 4u^6 - 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1$
c_4, c_8	$u^8 + u^7 + 3u^6 + 4u^5 + 4u^4 + 4u^3 + 3u^2 + 2u + 1$
<i>C</i> ₆	$u^8 + 4u^7 + 8u^6 + 10u^5 + 10u^4 + 3u^3 - u^2 + u + 1$
	$u^8 + 5u^7 + 12u^6 + 16u^5 + 13u^4 + 7u^3 + 4u^2 + 2u + 1$
<i>c</i> ₉	$u^8 - 4u^7 + 10u^6 - 18u^5 + 20u^4 - 15u^3 + 8u^2 - 2u + 1$
c_{12}	$u^8 + 4u^7 + 10u^6 + 18u^5 + 20u^4 + 15u^3 + 8u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing		
$c_1, c_4, c_5 \ c_8$	$y^8 + 5y^7 + 9y^6 + 6y^5 - 2y^3 + y^2 + 2y + 1$		
c_2, c_{10}	$y^8 - 4y^7 + 6y^6 - 5y^5 + 11y^4 - 26y^3 + 26y^2 - 9y + 1$		
c_3,c_{11}	$y^8 - y^7 + 6y^6 - 2y^5 + 7y^4 + 2y^3 + 3y^2 + 2y + 1$		
c_6	$y^8 + 4y^6 + 34y^5 + 18y^4 - 33y^3 + 15y^2 - 3y + 1$		
c ₇	$y^8 - y^7 + 10y^6 - 6y^5 + 23y^4 + 15y^3 + 14y^2 + 4y + 1$		
c_9, c_{12}	$y^8 + 4y^7 - 4y^6 - 28y^5 + 6y^4 + 43y^3 + 44y^2 + 12y + 1$		

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.883954 + 0.567268I		
a = -1.00000	7.95377 + 2.68532I	3.33468 - 4.18449I
b = 1.14742 + 1.17781I		
u = 0.883954 - 0.567268I		
a = -1.00000	7.95377 - 2.68532I	3.33468 + 4.18449I
b = 1.14742 - 1.17781I		
u = -0.704204 + 0.626099I		
a = -1.00000	-1.49979 + 1.51030I	-2.66904 - 3.09158I
b = -0.276106 - 0.515204I		
u = -0.704204 - 0.626099I		
a = -1.00000	-1.49979 - 1.51030I	-2.66904 + 3.09158I
b = -0.276106 + 0.515204I		
u = 0.228862 + 0.666962I		
a = -1.00000	-2.24789 + 1.12072I	-12.14274 - 5.83810I
b = 1.202130 - 0.699769I		
u = 0.228862 - 0.666962I		
a = -1.00000	-2.24789 - 1.12072I	-12.14274 + 5.83810I
b = 1.202130 + 0.699769I		
u = 1.09139 + 0.92852I		
a = -1.00000	5.66352 + 5.68496I	-6.02290 - 6.27011I
b = 0.426552 + 0.614435I		
u = 1.09139 - 0.92852I		
a = -1.00000	5.66352 - 5.68496I	-6.02290 + 6.27011I
b = 0.426552 - 0.614435I		

IX.
$$I_9^u = \langle -u^7 - 4u^6 - 7u^5 - 5u^4 + u^2 + b - u, -u^6 - 4u^5 - 7u^4 - 5u^3 + a + u - 1, u^8 + 5u^7 + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{6} + 4u^{5} + 7u^{4} + 5u^{3} - u + 1 \\ u^{7} + 4u^{6} + 7u^{5} + 5u^{4} - u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{7} + 5u^{6} + 11u^{5} + 12u^{4} + 5u^{3} - u^{2} + 1 \\ u^{7} + 4u^{6} + 7u^{5} + 5u^{4} - u^{2} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{7} + 8u^{6} + 15u^{5} + 13u^{4} + 5u^{3} + u^{2} + 2u - 1 \\ -2u^{7} - 9u^{6} - 19u^{5} - 21u^{4} - 13u^{3} - 6u^{2} - 4u - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{7} - 11u^{6} - 27u^{5} - 35u^{4} - 24u^{3} - 9u^{2} - 6u - 3 \\ -2u^{7} - 8u^{6} - 14u^{5} - 11u^{4} - 3u^{3} - 2u^{2} - 2u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -2u^{7} - 10u^{6} - 23u^{5} - 28u^{4} - 18u^{3} - 6u^{2} - 4u - 2 \\ -u^{7} - 3u^{6} - 4u^{5} - u^{4} + 2u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{7} - 10u^{6} - 23u^{5} - 28u^{4} - 18u^{3} - 6u^{2} - 4u - 2 \\ -u^{7} - 3u^{6} - 4u^{5} - u^{4} + 2u^{3} + u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{7} - 8u^{6} - 14u^{5} - 10u^{4} - u^{3} + u^{2} - 2u + 1 \\ u^{7} + 6u^{6} + 15u^{5} + 19u^{4} + 12u^{3} + 4u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{7} - 5u^{6} - 12u^{5} - 16u^{4} - 13u^{3} - 8u^{2} - 6u - 3 \\ -u^{7} - 4u^{6} - 8u^{5} - 8u^{4} - 5u^{3} - 3u^{2} - 2u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{7} - 11u^{6} - 28u^{5} - 39u^{4} - 31u^{3} - 16u^{2} - 10u - 6 \\ -u^{7} - 4u^{6} - 8u^{5} - 7u^{4} - 3u^{3} - u^{2} - 2u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^7 + 23u^6 + 50u^5 + 54u^4 + 23u^3 + 5u^2 + 8u$

Crossings	u-Polynomials at each crossing
c_1, c_9	$u^8 - u^7 + 3u^6 - 4u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1$
c_2	$u^8 + 4u^7 + 8u^6 + 10u^5 + 10u^4 + 3u^3 - u^2 + u + 1$
c_3	$u^8 + 5u^7 + 12u^6 + 16u^5 + 13u^4 + 7u^3 + 4u^2 + 2u + 1$
c_4, c_{12}	$u^8 + u^7 + 3u^6 + 4u^5 + 4u^4 + 4u^3 + 3u^2 + 2u + 1$
c_5	$u^8 - 4u^7 + 10u^6 - 18u^5 + 20u^4 - 15u^3 + 8u^2 - 2u + 1$
c_6, c_{10}	$u^8 - 2u^6 + u^5 + u^4 - 4u^3 + 3u + 1$
c_7, c_{11}	$u^8 - 3u^7 + 4u^6 - 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1$
c_8	$u^{8} + 4u^{7} + 10u^{6} + 18u^{5} + 20u^{4} + 15u^{3} + 8u^{2} + 2u + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_4, c_9 c_{12}	$y^8 + 5y^7 + 9y^6 + 6y^5 - 2y^3 + y^2 + 2y + 1$		
c_2	$y^8 + 4y^6 + 34y^5 + 18y^4 - 33y^3 + 15y^2 - 3y + 1$		
c_3	$y^8 - y^7 + 10y^6 - 6y^5 + 23y^4 + 15y^3 + 14y^2 + 4y + 1$		
c_5, c_8	$y^8 + 4y^7 - 4y^6 - 28y^5 + 6y^4 + 43y^3 + 44y^2 + 12y + 1$		
c_6, c_{10}	$y^8 - 4y^7 + 6y^6 - 5y^5 + 11y^4 - 26y^3 + 26y^2 - 9y + 1$		
c_7, c_{11}	$y^8 - y^7 + 6y^6 - 2y^5 + 7y^4 + 2y^3 + 3y^2 + 2y + 1$		

Solutions to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.426552 + 0.614435I		
a = 1.85182 + 0.49068I	5.66352 - 5.68496I	-6.02290 + 6.27011I
b = -1.09139 + 0.92852I		
u = -0.426552 - 0.614435I		
a = 1.85182 - 0.49068I	5.66352 + 5.68496I	-6.02290 - 6.27011I
b = -1.09139 - 0.92852I		
u = -1.202130 + 0.699769I		
a = -0.099027 + 0.497173I	-2.24789 + 1.12072I	-12.14274 - 5.83810I
b = -0.228862 - 0.666962I		
u = -1.202130 - 0.699769I		
a = -0.099027 - 0.497173I	-2.24789 - 1.12072I	-12.14274 + 5.83810I
b = -0.228862 + 0.666962I		
u = 0.276106 + 0.515204I		
a = -0.37502 - 1.56783I	-1.49979 + 1.51030I	-2.66904 - 3.09158I
b = 0.704204 - 0.626099I		
u = 0.276106 - 0.515204I		
a = -0.37502 + 1.56783I	-1.49979 - 1.51030I	-2.66904 + 3.09158I
b = 0.704204 + 0.626099I		
u = -1.14742 + 1.17781I		
a = 0.622232 + 0.144327I	7.95377 - 2.68532I	3.33468 + 4.18449I
b = -0.883954 + 0.567268I		
u = -1.14742 - 1.17781I		
a = 0.622232 - 0.144327I	7.95377 + 2.68532I	3.33468 - 4.18449I
b = -0.883954 - 0.567268I		

X.
$$I_{10}^u = \langle -u^4 + 2u^3 - 2u^2 + b + 2u - 2, \ u^4 - 2u^3 + u^2 + a + 1, \ u^6 - 3u^5 + 4u^4 - 4u^3 + 4u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} + 2u^{3} - u^{2} - 1 \\ u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} - 2u + 1 \\ u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2u^{5} - 6u^{4} + 7u^{3} - 5u^{2} + 4u - 1 \\ -u^{5} + 2u^{4} - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{5} + 3u^{4} - 4u^{3} + 4u^{2} - 4u + 2 \\ -u^{5} + 4u^{4} - 6u^{3} + 5u^{2} - 5u + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - 4u^{4} + 6u^{3} - 4u^{2} + u \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} + 2u^{3} - u^{2} - 1 \\ u^{4} - 2u^{3} + 2u^{2} - 2u + 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$u^6 + 3u^5 + 4u^4 + 4u^3 + 4u^2 + 2u + 1$
c_2, c_6, c_{10}	$u^6 + 4u^5 + 5u^4 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$y^6 - y^5 + 6y^3 + 8y^2 + 4y + 1$
c_2, c_6, c_{10}	$y^6 - 6y^5 + 25y^4 - 14y^3 + 10y^2 - 4y + 1$

Solutions to I_{10}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198713 + 0.922132I		
a = 0.28582 - 1.57759I	-1.64493	-6.00000
b = 0.300767 - 0.633156I		
u = -0.198713 - 0.922132I		
a = 0.28582 + 1.57759I	-1.64493	-6.00000
b = 0.300767 + 0.633156I		
u = 0.300767 + 0.633156I		
a = -1.309910 - 0.308397I	-1.64493	-6.00000
b = 1.39795 - 0.57705I		
u = 0.300767 - 0.633156I		
a = -1.309910 + 0.308397I	-1.64493	-6.00000
b = 1.39795 + 0.57705I		
u = 1.39795 + 0.57705I		
a = 0.024087 - 0.462862I	-1.64493	-6.00000
b = -0.198713 + 0.922132I		
u = 1.39795 - 0.57705I		
a = 0.024087 + 0.462862I	-1.64493	-6.00000
b = -0.198713 - 0.922132I		

XI.
$$I_{11}^u = \langle u^5 - 2u^4 + u^3 + b + u, \ 2u^5 - 6u^4 + 7u^3 - 6u^2 + a + 6u - 2, \ u^6 - 3u^5 + 4u^4 - 4u^3 + 4u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -2u^{5} + 6u^{4} - 7u^{3} + 6u^{2} - 6u + 2 \\ -u^{5} + 2u^{4} - u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -3u^{5} + 8u^{4} - 8u^{3} + 6u^{2} - 7u + 2 \\ -u^{5} + 2u^{4} - u^{3} - u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -3u^{5} + 8u^{4} - 8u^{3} + 6u^{2} - 7u + 1 \\ -u^{5} + 2u^{4} - u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{5} + 6u^{4} - 7u^{3} + 6u^{2} - 6u + 4 \\ -u^{3} - u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} + 4u^{4} - 6u^{3} + 6u^{2} - 5u + 4 \\ -2u^{3} + 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{5} + 6u^{4} - 6u^{3} + 4u^{2} - 5u + 2 \\ -2u^{5} + 4u^{4} - 2u^{3} - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{5} - 4u^{4} + 3u^{3} - 3u^{2} + 4u + 1 \\ -u^{5} + 2u^{4} - u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -6u^{5} + 15u^{4} - 14u^{3} + 11u^{2} - 13u + 1 \\ -2u^{5} + 5u^{4} - 5u^{3} + 4u^{2} - 3u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -5u^{5} + 11u^{4} - 8u^{3} + 6u^{2} - 8u - 2 \\ -u^{5} + 2u^{4} - 2u^{3} + u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$u^6 + 3u^5 + 4u^4 + 4u^3 + 4u^2 + 2u + 1$
c_2, c_6, c_{10}	$u^6 + 4u^5 + 5u^4 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$y^6 - y^5 + 6y^3 + 8y^2 + 4y + 1$
c_2, c_6, c_{10}	$y^6 - 6y^5 + 25y^4 - 14y^3 + 10y^2 - 4y + 1$

Solutions to I_{11}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.198713 + 0.922132I		
a = -0.723320 - 0.170295I	-1.64493	-6.00000
b = 1.39795 + 0.57705I		
u = -0.198713 - 0.922132I		
a = -0.723320 + 0.170295I	-1.64493	-6.00000
b = 1.39795 - 0.57705I		
u = 0.300767 + 0.633156I		
a = 0.11213 - 2.15464I	-1.64493	-6.00000
b = -0.198713 - 0.922132I		
u = 0.300767 - 0.633156I		
a = 0.11213 + 2.15464I	-1.64493	-6.00000
b = -0.198713 + 0.922132I		
u = 1.39795 + 0.57705I		
a = 0.111193 + 0.613734I	-1.64493	-6.00000
b = 0.300767 - 0.633156I		
u = 1.39795 - 0.57705I		
a = 0.111193 - 0.613734I	-1.64493	-6.00000
b = 0.300767 + 0.633156I		

XII.
$$I_{12}^u = \langle b-u, \ a-1, \ u^3+u^2+u-1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u+1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{2}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{2}-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2}+u+1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2}+1 \\ 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$u^3 - u^2 + u + 1$
c_2, c_6, c_{10}	$u^3 - 2u^2 + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_7, c_8 c_9, c_{11}, c_{12}	$y^3 + y^2 + 3y - 1$
c_2, c_6, c_{10}	$y^3 - 4y^2 + 8y - 4$

Solutions to I_{12}^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.771845 + 1.115140I		
a = 1.00000	-1.64493	-6.00000
b = -0.771845 + 1.115140I		
u = -0.771845 - 1.115140I		
a = 1.00000	-1.64493	-6.00000
b = -0.771845 - 1.115140I		
u = 0.543689		
a = 1.00000	-1.64493	-6.00000
b = 0.543689		

XIII. u-Polynomials

Crossings	u-Polynomials at each crossing
	$(u^3 - u^2 + u + 1)(u^6 - 2u^5 + 5u^4 - 4u^3 + 5u^2 - u + 1)$
c_1, c_5, c_9	$\cdot (u^6 + 3u^5 + 4u^4 + 4u^3 + 4u^2 + 2u + 1)^2$
c_1, c_5, c_9	$(u^8 - 4u^7 + 10u^6 - 18u^5 + 20u^4 - 15u^3 + 8u^2 - 2u + 1)$
	$\cdot (u^8 - 2u^7 + 4u^6 - 2u^5 + 3u^3 - 2u^2 - u + 1)$
	$(u^8 - u^7 + 3u^6 - 4u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1)^2$
	$((u^{12} + 3u^{11} + \dots + 9u + 7)^2)(u^{20} - 10u^{19} + \dots - 432u + 64)$
	$\frac{(u^{20} + 4u^{19} + \dots + 6u + 1)^2}{(u^3 - 2u^2 + 2)(u^6 - 4u^5 + 9u^4 - 11u^3 + 10u^2 - 5u + 1)}$
	$ (u^3 - 2u^2 + 2)(u^6 - 4u^5 + 9u^4 - 11u^3 + 10u^2 - 5u + 1) $
c_2, c_6, c_{10}	$(u^6 + 4u^5 + 5u^4 + 2u + 1)^2(u^8 - 2u^6 + u^5 + u^4 - 4u^3 + 3u + 1)^2$
	$\cdot (u^8 + 2u^7 + u^6 - 3u^5 - 2u^4 + u^3 + 5u^2 + 4u + 2)$
	$\cdot (u^8 + 4u^7 + 8u^6 + 10u^5 + 10u^4 + 3u^3 - u^2 + u + 1)$
	$(u^{12} + 2u^{11} + 2u^{10} - 4u^9 - u^8 + 4u^6 + 24u^5 + 6u^4 - 10u^3 + 6u^2 + 6u + 1)^2$
	$\frac{(u^{20} - 21u^{19} + \dots - 5888u + 512)(u^{20} + 4u^{19} + \dots + 9u + 1)^2}{(u^3 - u^2 + u + 1)(u^6 - 3u^5 + 5u^4 - 4u^3 + 3u^2 - 2u + 1)}$
c_3, c_7, c_{11}	$\cdot (u^6 + 3u^5 + 4u^4 + 4u^3 + 4u^2 + 2u + 1)^2$
23, 27, 211	$ (u^8 - 3u^7 + 4u^6 - 2u^5 + u^4 - 2u^3 + 3u^2 - 2u + 1)^2 $
	$\cdot (u^8 + 3u^7 + 4u^6 + u^5 - 2u^4 - 2u^3 + 1)$
	$(u^8 + 5u^7 + 12u^6 + 16u^5 + 13u^4 + 7u^3 + 4u^2 + 2u + 1)$
	$((u^{12} + 3u^{11} + \dots + u + 1)^2)(u^{20} - 17u^{19} + \dots - 58u^2 + 8)$
	$\frac{(u^{20} + 4u^{19} + \dots + 4u + 1)^2}{(u^3 - u^2 + u + 1)(u^6 - 2u^5 + 5u^4 - 4u^3 + 5u^2 - u + 1)}$
c_4, c_8, c_{12}	$\cdot (u^6 + 3u^5 + 4u^4 + 4u^3 + 4u^2 + 2u + 1)^2$
	$\cdot (u^8 + u^7 + 3u^6 + 4u^5 + 4u^4 + 4u^3 + 3u^2 + 2u + 1)^2$
	$\cdot (u^8 + 2u^7 + 4u^6 + 2u^5 - 3u^3 - 2u^2 + u + 1)$
	$\cdot (u^8 + 4u^7 + 10u^6 + 18u^5 + 20u^4 + 15u^3 + 8u^2 + 2u + 1)$
	$((u^{12} + 3u^{11} + \dots + 9u + 7)^2)(u^{20} - 10u^{19} + \dots - 432u + 64)$
	$(u^{20} + 4u^{19} + \dots + 6u + 1)^2$

XIV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
	$(y^3 + y^2 + 3y - 1)(y^6 - y^5 + 6y^3 + 8y^2 + 4y + 1)^2$
c_1, c_4, c_5 c_8, c_9, c_{12}	$(y^6 + 6y^5 + 19y^4 + 32y^3 + 27y^2 + 9y + 1)$
	$(y^8 + 4y^7 - 4y^6 - 28y^5 + 6y^4 + 43y^3 + 44y^2 + 12y + 1)$
	$(y^8 + 4y^7 + 8y^6 + 4y^5 - 6y^4 - 5y^3 + 10y^2 - 5y + 1)$
	$(y^8 + 5y^7 + 9y^6 + 6y^5 - 2y^3 + y^2 + 2y + 1)^2$
	$((y^{12} + 7y^{11} + \dots + 227y + 49)^2)(y^{20} + 6y^{19} + \dots - 256y + 4096)$
	$(y^{20} + 14y^{19} + \dots + 18y + 1)^2$
	$(y^3 - 4y^2 + 8y - 4)(y^6 - 6y^5 + 25y^4 - 14y^3 + 10y^2 - 4y + 1)^2$
	$(y^6 + 2y^5 + 13y^4 + 21y^3 + 8y^2 - 5y + 1)$
c_2, c_6, c_{10}	$(y^8 + 4y^6 + 34y^5 + 18y^4 - 33y^3 + 15y^2 - 3y + 1)$
	$(y^8 - 4y^7 + 6y^6 - 5y^5 + 11y^4 - 26y^3 + 26y^2 - 9y + 1)^2$
	$(y^8 - 2y^7 + 9y^6 - 7y^5 + 8y^4 + 7y^3 + 9y^2 + 4y + 4)$
	$((y^{12} + 18y^{10} + \dots - 24y + 1)^2)(y^{20} - 8y^{19} + \dots - 29y + 1)^2$
	$(y^{20} - y^{19} + \dots + 8454144y + 262144)$
	$(y^3 + y^2 + 3y - 1)(y^6 - y^5 + 6y^3 + 8y^2 + 4y + 1)^2$
	$(y^6 + y^5 + 7y^4 + 4y^3 + 3y^2 + 2y + 1)$
c_3, c_7, c_{11}	$(y^8 - y^7 + 6y^6 - 5y^5 + 10y^4 + 4y^3 - 4y^2 + 1)$
	$(y^8 - y^7 + 6y^6 - 2y^5 + 7y^4 + 2y^3 + 3y^2 + 2y + 1)^2$
	$(y^8 - y^7 + 10y^6 - 6y^5 + 23y^4 + 15y^3 + 14y^2 + 4y + 1)$
	$((y^{12} - y^{11} + \dots + 7y + 1)^2)(y^{20} - 3y^{19} + \dots - 928y + 64)$
	$(y^{20} + 4y^{19} + \dots + 10y + 1)^2$