Apellidos......Nombre.....

- 1) (4/12) Si v_i es una fuente de tensión variable:
 - a) Obtener la tensión en el colector del transistor en función de la tensión de entrada para cada uno de los estados posibles del mismo, corte, activa y saturación.

Tomando V_{EE} =5V, R_1 =9k Ω , R_2 =1k Ω , y para el transistor β =100, V_y =0,7V, $V_{CE,sat}$ =0,2V:

- b) Determinar el valor de v_i para el cual el transistor cambia de corte a activa
- c) Hallar el valor que debe tener la resistencia R_C para que el paso de activa a saturación se produzca para v_i=4,16V.

Corte
$$\rightarrow 1_{c=0}$$
 $\rightarrow 1_{c=0}$ $\rightarrow 1_{c=0}$ Schomeron $\rightarrow 1_{c=0}$ $\rightarrow 1_{c=0}$

Active-Schor.
$$V_{c}(szt) = -4/8 = V_{c}(zchive) = -\frac{R_{c}P}{qx}(V_{i}-2V)$$

$$-4/8V = -\frac{R_{c}P}{qx}(4/16V-2V)$$

$$R_{c} = \frac{4/8V}{2/16V} \cdot \frac{qx}{p} = 200 \text{ sc}$$

2) (4/12) El circuito de la figura se alimenta con tensiones de entrada positivas y utiliza un LED como testigo de que la tensión de entrada supera un cierto umbral, y un diodo Zener para evitar corrientes excesivas por el LED si aumenta mucho dicha tensión de entrada. Supóngase un modelo de conducción para el LED con Vγ en serie con r_d=0, y para el Zener con V_Z en serie con r_z=0, y considerar V_Z>Vγ.

- a) Para cada una de las tres posibles situaciones en las que no conduce ningún diodo, conduce sólo el LED o conducen los dos determinar la expresión de la corriente por el LED, I_L, en función de la tensión de entrada; dibujar en cada caso el circuito, sustituyendo los diodos por el modelo lineal correspondiente.
- b) Determinar el rango de tensiones de entrada en el que se da cada una de las situaciones anteriores.
- c) Suponiendo $V\gamma=2V$, $V_Z=5V$, $R_2=1$ kohm y $R_1=100$ ohm, dibujar esquemáticamente el comportamiento de la corriente I_L en función de la tensión de entrada para valores de ésta última comprendidos entre 0 y 10V

3) (4/12) a) Suponiendo un amplificador operacional ideal, hallar la expresión de la tensión de salida del circuito, V_S , en función de las fuentes y resistencias dadas.

b) Hallar asimismo la expresión de la tensión de

salida del operacional, Vop.

0)

c) Suponiendo V_A =10V, todas las resistencias iguales a 1kohm e I_1 =5mA, y que el operacional está alimentado con tensiones de +/-15V, dibujar esquemáticamente el comportamiento de la tensión V_{op} en función de I_2 , cuando ésta varía entre -15mA y +15mA

$$V_{5} = V_{-} - \underline{\Gamma}_{4} R_{2} - V_{A}$$

$$V_{-} = V_{+} = \underline{\Gamma}_{1} R_{1}$$

$$\underline{\Gamma}_{1} = \underline{\Gamma}_{2} - \underline{\Gamma}_{3} \quad ; \quad \underline{\Gamma}_{3} = \frac{V_{-}}{R_{1}} = \frac{\underline{\Gamma}_{1} R_{1}}{R_{1}} = \underline{\Gamma}_{1}$$

$$V_{5} = \underline{\Gamma}_{1} R_{1} - \underline{\Gamma}_{2} R_{2} + \underline{\Gamma}_{1} R_{2} - V_{A} = \underline{\Gamma}_{1} (R_{1} + R_{2}) - \underline{\Gamma}_{2} R_{2} - V_{A}$$
b)
$$V_{0} = V_{3} - \underline{\Gamma}_{4} R_{3} = \underline{\Gamma}_{1} (R_{1} + R_{2} + R_{3}) - \underline{\Gamma}_{2} (R_{2} + R_{3}) - V_{A}$$

Voy= 5mA.3KR- 12.2KR-10V = 5V-2KR.I2

