Об одном разбиении прямоугольника

А. Т. Колотов

В этой заметке решается задача М144.

Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α, β , чтобы прямоугольник $a \times b$ можно было разрезать на несколько прямоугольников $\alpha \times \beta$.

a) 20×15 ; b) 5×8 ; e) $6, 25 \times 15$;

e)
$$(2-\sqrt{2}) \times (2+\sqrt{2})$$
.

Решение обобщает решение задачи 1 из статьи Сойфера "Клетчатые .доски и полимино" ("Квант" \mathbb{N}_2 11, 1972).

Полное решение задачи M144 дает следующая

T е о p е m а. Для того чтобы прямоугольник $a \times b$ можно было разбить на прямоугольники $\alpha \times \beta$, необходимо и достаточно, чтобы одновременно выполнялись следующие условия:

- 1. из чисел α и β должно быть в целое число раз меньше хотя бы одного из чисел a, b.
- 2. Каждое из чисел a и b должно допускать представление a виде a a b должно допускать неотрицательные целые числа.

 $\ensuremath{\mathcal{A}}$ о к а з а т е л ь с т в о. Обозначим большой прямоугольник через R, а маленький через р.

Д о с т а т о ч н о с т ь. Если $a=n\alpha$, $b=m\beta$ (т и п - натуральные числа), то, разбив одну из сторон прямоугольника R на т, а смежную с ней сторону на п равных частей, и затем проведя через точки деления прямые, паралельные сторонам R, мы тем самым разобьем его на прямоугольники, равные р (рис. 1).

Если же а=n $\alpha = m\beta$, то в силу второго условия b допускает представление $b = k\alpha + l\beta$,

где k и l можно считать положительными целыми числами. Тогда, разбив прямоугольник R на два прямоугольника P и Q размерами $a \times k\alpha$ и $a \times l\beta$ соответственно, мы сведем этот случай к уже рассмотренному (рис. 2).

Необходимость второго условия очевидна. Докажем необходимость первого условия. Возможны два случая:

1) Числа α и β соизмеримы. Тогда без ограничения общности можно считать числа α, β , а и b целыми, так как этого всегда можно добится

Рис. 1(Ширина одной ячейки - α , длина одной ячейки - β , ширина общая - α , длина общая - α)

выбором подходящей единицы масштаба. Предположим теперь, что наше утверждение не верно, и для определенности пусть ни а, ни b не делятся нацело на α . Разбив прямоугольник R на единичные квадраты, осуществим следующим образом правильную раскраску получаемой сетки в α различных цветов (раскраска называется правильной, если любые рядом стоящие α квадратов по вер->)

Рис.2