Basic principle	Event 1: m possible outcomes. Event 2: n possible outcomes & indep from event 1 Total: mn possible outcomes							
of counting	- Can be generalized to more evts							
Permutations	Num of diff arrangements of n objs		n!					
(Order matters)	Permute n objs, of which n_1 are same objs, n_2 are same objs and n_r are same	ame objs	$\frac{n!}{n_1!n_2!n_r!}$					
	n men sitting in a circle		(n-1)!					
Combination (Order not	Select m objs from n objs when order not impt(e.g. AB, AC, AD, BC, BD, CD)		$\binom{n}{m} = \frac{n!}{(n-m)!m!} = \binom{n}{n-m}$					
impt)	Combinatorial arg proof. If obj 1 chosen: $\binom{n-1}{r-1}$ ways of selecting r-1 objs	from remaining n-1 ob	js. $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$,					
	If obj 1 not chosen: $\binom{n-1}{r}$ ways of selecting r objs from remaining n-1 obj	1 ≤ r ≤ n						
	Binomial Theorem. $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ $\binom{n}{0} + \binom{n}{2} + \binom{n}{4}$	$+ \dots = {n \choose 1} + {n \choose 3} + {n \choose 5}$	+ $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$					
	Num of subsets of set with n elems	$\sum_{k=0}^{n} {n \choose k} = 2^n$ (let x =	y = 1)					
Multinomial	Num of divisions of n distinct objs into r distinct grps of size n ₁ , n ₂ ,n _r	$\binom{n}{n_1}\binom{n-n_1}{n_2}\dots\binom{n-n_1}{n_2}$	$\begin{pmatrix} -\dots -n_{r-1} \\ n_r \end{pmatrix} = \begin{pmatrix} n \\ n_1 & n_2 & \dots & n_m \end{pmatrix}$					
Theorem	where $n_1 + n_2 + + n_r = n$ (grp matters)	$\frac{n!}{(n-n_1)!} \frac{(n-n_1)!}{(n-n_1)!}$	$ \dots \binom{n-n_1-\dots-n_{r-1}}{n_r} = \binom{n}{n_1, n_2,\dots, n_r} $ $ \frac{(n-n_1)!}{-n_1-n_2 n_2 } \dots \frac{(n-n_1-\dots-n_{r-1})!}{(n-n_1-n_2-\dots-n_r)!n_r!} = \frac{n!}{n_1!n_2!\dots n_r!} $					
	Divide n objs into r grps of m each (grp don't matter) (e.g. AB CD, AC BD, AD BC)	$\frac{\binom{n}{m}\binom{n-m}{m}\binom{m}{m}}{r!} = \frac{\frac{n!}{m!m!n}}{r!}$	mi (m! r times)					
	$(x_1 + x_2 + \ldots + x_r)^n = \sum_{(n_1, \dots, n_r): n_1 + \ldots + n_r = n} \binom{n}{n_1, n_2, \dots, n_r} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r}$							
Num of integer solns of egns	There are $\binom{n-1}{r-1}$ distinct +ve integer-valued vectors $(x_1, x_2,, x_r)$ satisfying $x_1 + + x_r = n$							
303 3. Eq.13	There are $\binom{n+r-1}{r-1}$ distinct non-negative integer-valued vectors (x ₁ , x ₂ ,	, x_r) satisfying $x_1 + +$	+ x _r = n					
	OR n identical objs into r distinct grps							

Sample	Experiment: outcome not predictable with certainty				Event: subset of sample space					
Space	Sample space: set of all possible outcomes of the experiment					periment	Just draw venn diagram for everything			
	EUF	event containir	ng all outco	mes eithei	r in E or F o	r both E	& F	EU	$F = \{x : x \in E \text{ or } x \in E \}$	∃ F }
	E∩F	OR EF: event co	ntaining all	outcomes	that are bo	oth in E 8	§ F	EΛ	$iF = \{ x: x \in E \text{ and } i \}$	x ∈ F } OR Ø
	E ^c : e	vent containing	all outcom	es not in E	(compleme	ent)		EC	= {x: x ∉ E}	
	E⊂F	: all outcomes in	E are in F	(subset)				If E	E⊂F and F⊂E, the	n E = F
	Com	mutative Laws		EUF = FU	JE	E∩F = I	F∩E	As	sociative Laws	(E ∪ F) ∪ G = E ∪ (F ∪ G) (EF)G = E(FG)
	Dist	ributive Laws	(E ∪ F) ∩ (G = EG U F	G EF U G	G = (EUG)) ∩ (FUG)	De	Morgan's Laws	$(\bigcup_{i=1}^{n} E_i)^c = \bigcap_{i=1}^{n} E_i^c (\bigcap_{i=1}^{n} E_i)^c = \bigcup_{i=1}^{n} E_i^c$
Axioms	S = s	ample space. E	event in S	;	Axiom 2: F	P(S) = 1				
of Prob	Axio	$m 1: 0 \le P(E) \le 1$			3: For any	seq of m	nutually exc	clusiv	ve events E ₁ , E ₂ ,	(i.e. $E_i E_j = \emptyset$ when $i \neq j$), $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$
Simple		(Ø) = 0						E_i)	$= \sum_{i=1}^{n} P(E_i) \text{ (wh}$	en sample space is finite)
Propo-	3. St	rong law of larg	e nums sho	ws $\frac{n(E)}{n}$ co	nverges to	P(E) with	n prob 1			
sitions	Usin	g axioms, if expe	eriment is r	epeated n	nany times,	by stron	g law of lar	ge n	umbers, P(E) = pr	oportion which E will occur
	4. If	sample space is	finite, Axio	m 3 becon	nes P $(\bigcup_{i=1}^n$	E_i) = $\sum_{i=1}^n$	$P(E_i)$ fo	or mutually exclusive events E ₁ , E ₂ ,		
	5. 3 axioms are basic properties of relative frequencies 6. Us				6. Use 3 a:	xiom	ns to check wheth	er given fn P(E) is prob fn		
	7. P($(E^{C}) = 1 - P(E)$					8. If $E \subset F$, then $P(E) \leq P(F)$			
	9. P(EUF) = P(E) + P(C)	F) - P(E∩F)				10. $P(EUFUG) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$			
	11. Inclusion-exclusion identity						$P(E_1 \cup E_2 \cup \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) +$			
							+ $(-1)^{r+1}\sum_{i_1 < i_2 < < i_r} P(E_{i_1}E_{i_2}E_{i_r}) + + (-1)^{n+1}P(E_1E_2E_n)$			
	12i.	$P(\bigcup_{i=1}^n E_i) \le \sum_{i=1}^n E_i$	$P(E_i)$				12ii. $P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j)$			
	12iii	$P(\bigcup_{i=1}^n E_i) \leq \sum_{i=1}^n E_i$	$\sum_{i=1}^{n} P(E_i) -$	$\sum_{j < i} P(E_i)$	$(E_j) + \sum_{k < j}$	$< i P(E_i E)$	(E_k)		result can be	generalized further on
Sample		If all events in	sample spa	ce are equ	ually likely to	o occur,	i.e. S = {e ₁ ,	e ₂ ,	, e_n }. $P(\{e_1\}) = P(\{e_1\})$	$\{e_2\}$) = = $P(\{e_n\})$
spaces wit		Then for any e	vent E, take	$P(E) = \frac{nu}{nu}$	m of outcom m of outcom	$\frac{es\ in\ E}{es\ in\ S} = \frac{r}{r}$	n n	mes	in E. Since P(.) sat	isfy all 3 axioms, thus P(.) is a probability fn.
	equally likely outcomes $e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$						$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$			
Prob as a	In	cr seq: $E_1 \subset E_2 \subset$	E ₃ ⊂ ⊂	$E_n \subset E_{n+1}$. Hence lim	$E_n = \bigcup_{i=1}^n E_i$	$\sum_{i=1}^{\infty} E_i$	If {	$\{E_n, n \ge 1\}$ is either	r incr or decr seq, then $\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$
cts set fn	D ₄	ecr seq: $E_1 \supset E_2$	ר ה די	F _{n+1} ⊃ Δr	nd $\lim_{E \to \infty} \stackrel{n \to \infty}{E}$	$= \bigcap_{n=1}^{\infty} F_n$			-	$n \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$
		55. 56 4 . E ₁ = E ₂ .	= [,, 3 ,	1 / 11	$n \to \infty$	· 'l=1 Bl				

Conditional Prob If $P(F) > 0$, $P(E F) = \frac{P}{F}$			$\frac{P(EF)}{P(E)}$	1	Finding conditional prob using reduced sample space easier		
and Reduc		Multiplication rule:			$P(E_1E_2E_n) = P(E_1) P(E_2 E_1)P(E_3 E_1E_2)P(E_n E_1E_2E_{n-1})$		
Sample Sp		-					
Thrm of	Con	ditioning formula: P(E	$) = P(E F)P(F) + P(E F^{c})P(F^{c})$	1	$P(F E) = \frac{P(EF)}{P(E)} = \frac{P(F)P(E F)}{P(E)}$ $P(F^{C} E) = \frac{P(EF^{C})}{P(E)} = \frac{P(F^{C})P(E F^{C})}{P(E)}$		
Total prob							
and Bayes			se F_1 , F_2 ,, F_n are mutually exclusi		Bayes Thrm: $P(F_j E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E F_j)}{\sum_{i=1}^{n} P(F_i)P(E F_i)}$		
Thrm	s.t.	$\bigcup_{i=1}^n F_i = S$, then P(E)	$= \sum_{i=1}^{n} P(EF_i) = \sum_{i=1}^{n} P(F_i) P(E F_i)$		$P(E) \qquad \sum_{i=1}^{n} P(F_i) P(E F_i)$		
Indep	E and F	are independent ⇔ P	$(EF) = P(E)P(F) \Leftrightarrow P(E F) = P(E)$	E and F	F are independent ⇒ E and F ^c are independent		
Events	E, F and	G are indep if P(EF) =	P(E)P(F), $P(EG) = P(E)P(G)$, $P(FG)$	E, F inde	ndep and E, G indep ≠ E, FG indep		
	= P(F)P(G), $P(EFG) = P(E)P(F)P$	(G)	If E, F, G	F, G are indep, then E will be indep of any event formed from F and G		
P(E F) is	Conditio	onal prob satisfies 3	a. $0 \le P(E F) \le 1$. b. $P(S E) =$	1			
a prob	axioms		c. If E_i , $i = 1,2,$ are mutually excl	usive ever	ents, then $P(\bigcup_{i=1}^{\infty} E_i F) = \sum_{i=1}^{\infty} P(E_i F)$.		
	Note: Results that are true $ \text{Let } Q(E) = P(E F)$, then $Q(E)$ is a prob. fn on events of S. Then						
	for unconditional prob also E.g. $Q(E_1 \cup E_2) = Q(E_1) + Q(E_2) - Q(E_1E_2) \Rightarrow P(E_1 \cup E_2 F) = P(E_1 F) + P(E_2 F) - P(E_1E_2 F)$						
	true for conditional prob E.g. $Q(E_1) = Q(E_1 E_2)Q(E_2) + Q(E_1 E_2^C)Q(E_2^C)$. So $P(E_1 F) = P(E_1 E_2F)P(E_2 F) + P(E_1 E_2^CF)P(E_2^C F)$						

	$P(X = i+1) = \frac{(i+1)}{e^{-\lambda} \frac{\lambda^{i}}{\lambda^{i}}}$	$\frac{1}{1} = \frac{\lambda}{i+1} P(X = i), i = 0,1,$		 2. a) Prob only 1 event occuring in interval of length h = λh + o(h) b) Prob ≥ 2 events occuring in interval of length h = o(h) 					
		1 N A		Poisson approximation still valid even if trials are not indep, provided their dependence is weak					
	X^{\sim} Poisson(λ).	k!, K 0,1,2				oisson(λ) approximately, where λ = np.			
r.v.		k) = $e^{-\lambda} \frac{\lambda^k}{k!}$, k = 0,1,2		2. Num of events occuring at random at certain points in time					
Poisson	R v X is Poisson w	ith parameter λ if for		Approximation to bino		(n)			
	Hypergeometric	X ~ H(n, N, m)		m red, N-m blue. Choos num of red balls chos	se n balls w/o	$P(X = k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{N}}, k = 0,1,,n$			
	Negative binomial	X ~ NB(r, p) Geo(p) = NB(1, p)	k = num or Berni	ouiii triais to obtain r st		$P(X = k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, k \ge r$			
	Geometric	X ~ Geo(p)		oulli trials until success oulli trials to obtain r su		$P(X = k) = (1-p)^{k-1}p, k = 1,2,$			
(r.v.)	Binomial	X ~ Bin(n, p)		ess in n Bernoulli trials		$P(X = k) = {n \choose k} p^{k} (1-p)^{n-k}, k = 0,1,,n$			
Variables			,			$P(X = x) = \begin{cases} p, & x = 1, 'success' \\ 1 - p, x = 0, 'failure' \end{cases}$			
Random	Bernoulli	X~Be (p)		ccess (p) or failure (1-p	Binomiai(n,p), P(x	$(x = k) = \frac{(n-k+1)p}{k(1-p)} P(X = k-1), k = 1,2,, n$			
Variance Formulas		$\frac{1}{2} = \sum_{x_i} (x_i - \mu)^2 p(x_i) = 0$ n, p) and Y ~ Binomial(n-		$Var(aX + b) = a^2Var(X)$)	σ = standard deviation (SD)			
E[g(X)]		E(aX + b)				k^{th} central moment = $E[(X - \mu)^k]$			
E(x) or μ	$E(X) = \sum_{x} x P(X)$			For a nonnegative int	teger-valued r.v. Y	$E(Y) = \sum_{i=1}^{\infty} P(Y \ge i) = \sum_{i=0}^{\infty} P(Y > i)$			
	For r.v., Cumula	tive dist fn (cdf), $F(x) = F$	$_{X}(x) = P(X \leq x), x \in \mathbb{R}$		$P(a) = \sum_{all \ x \le a} P(a)$	(IC)			
		$(x), x = x_1, x_2, \dots$ otherwise		To check Bin nmf		= 1. $: \sum_{k=0}^{n} {n \choose k} p^k q^{n-k} = (p+q)^n = 1^n$.			
Pmf & Cdf		, Prob mass fn (pmf) or x x), $x = x_1, x_2,$	1100 III (pi), p(x) –	3) $\sum_{x} P(X = x) =$		7. 2) $P(X = x_i) = 0$ for $i \notin \mathbb{Z}^+$.			

			· · ·		EST(3)p(3), WIII		, .,						
Intro	X is a	Continuou	ıs r.v. if∃ a	nonnegative	fn f, defined ∀	x ∈ (-∞, ∞), h	naving	propert	y that P(X ∈ I	$B) = \int_{B} f(x)$	dx, $f(x) = pro$	ob density	fn (pdf)
	Prope pdf	Properties of $P(X \in (-\infty, \infty)) = $ $P(a \le X \le b) = $ pdf $P(a \le X \le b) = $			$P(a \le X \le b) = \int$	$\int_{a}^{b} f(x)dx \qquad \text{P(X = a)} = \int_{a}^{a} f(x)dx = 0$		dist fn = F _X (a) = P(X < a) = P(X ≤ f(x) = $\frac{d}{dx}$ F(x) = $\frac{d}{dx}$ F(x) = cdf x)d(x) (area of rectangle). f(x) $\approx \frac{P(x < X < x + dx)}{dx}$			$f(x) = \frac{d}{dx} F(x),$ $F(x) = cdf$		
-	Inter	pretation o	f pdf at x =	= f(x)		P(x < X < x	(+ dx)	$=\int_{x}^{x+dx}$	$f(y)dy \approx f(x)$	()d(x) (area	of rectangle)	$f(x) \approx \frac{P(x \cdot x)}{x}$	$\langle X < x + dx \rangle$
•				J ~ uniform(0	.1)			$X = F^{-1}$	U) $\sim cdf F(x)$				
Expectat and Varia			$= \int_{-\infty}^{\infty} xf(y) = \int_{-\infty}^{\infty$	l = aF(X) + h	Lemma	a. If Y ≥ 0, E(Y	$()=\int_0^\infty$	P(Y > 1)	$\frac{y)dy}{= E[(X - \mu)^2] =$	If X ~ pdf = E(X ²) - [E(X	f(x), E[g(X)] =	$=\int_{-\infty}^{\infty}g(x)g(x)$	f(x)dx
Uniform r.v.	Х	~ Uniform	(α, β)	$pdf f(x) = \begin{cases} \overline{\beta} \end{cases}$	$\frac{1}{-\alpha}$, $\alpha < x < \beta$			E(X) = -	$\frac{\alpha+\beta}{2}$, Var(X) =	$\frac{(\beta-\alpha)^2}{12}$	If X ~ Uniform $\frac{X-\alpha}{\beta-\alpha}$ ~ Uniform	orm ($lpha$, eta), form(0,1)	then
Normal r.v.		$\Gamma \sim N (\mu, \sigma^2)$		pdf f(x) = $\frac{1}{\sqrt{2}}$	$\frac{0, otherwise}{\frac{1}{\overline{\sigma}} \sigma} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}, -\infty$	< x < ∞			μ , Var(X) = σ	-2	If X ~ N (μ,	σ^2), then	
		tandard no :~ N (0,1)	rmal dist:		$\leq z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-z}$	$\frac{1}{2}y^2 dz$				s constant,	$F_{y}(a) = P(Y \le a)$	$a) = P(\frac{Y-\mu}{\sigma} \le$	$\leq \frac{a-\mu}{\sigma}$) = $F(\frac{a-\mu}{\sigma})$
		$P(Z \ge 0) = P(Z \ge 0)$. ,				$P(Z \leq -x)$	= P(Z ≥ x)		aZ + b ~ N((b, a²)	
	T	he normal	approxima		inomial distribut			If S _n ~ Bir	nomial(n,p), 1	then $\frac{S_n - np}{\sqrt{np(1-p)}}$	$\frac{1}{p}$ ~ N(0,1) a ₁	pproximate	ely for large n
Exponen tial r.v.	S	2^{-} Exponen ome $\lambda > 0$		$\exp(\lambda)$ for	$pdf f(x) = \begin{cases} \lambda e^{-\lambda} \\ 0, oti \end{cases}$	$x, x \ge 0$ herwise		dist fn,	$F_{X}(x) = 1 - e^{-x}$	$-\lambda x$, $x \ge 0$	P(X > s)	$=e^{-\lambda s}$	
					$>$ t) = P(X $>$ s) \forall				+ t) = P(X > s			ed from (1))
Other cts dist	x ~	$X \sim \operatorname{Gamma}(\alpha, \lambda) \text{ where } \alpha > 0 \text{ and } \lambda > 0 \text{ if pdf f(x)} = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, x \geq 0 \\ 0, & x < 0 \end{cases} \text{ where gamma fn } \Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha - 1} dy$											
		α) = (α - 1) Γ	•		$\Gamma(1/2) = \sqrt{\pi}$					• ,			ssumptions of
		If α is an int, say α = n, then Γ (n) = (n-1)!						poisson r.v. N(t) \sim Poisson(λ t), then amt of time one has to wait until total of n events has occurred is a gamma r.v. with parameters (n, λ)					
		If X ~ Gamma(1, λ), then X ~ Exponential(λ) If X ~ Gamma(α , λ), then E(X) = α/λ and Var(X) = α/λ^2											
		If $X \sim \text{Gamma}(\frac{n}{2}, \frac{1}{2})$, then $X \sim \text{Chi-square}$ dist with n deg of freedom						$X_i \sim \text{Exp}(\lambda)$, $i = 1,2,$ and X_i are indep. Then $X_1 + X_2 + + X_n \sim$ Gamma(n, λ). Similar to negative binomial for discrete case					
		$X \sim \text{Beta(a,b) if pdf f(x)} = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}, 0 < x < 1 \\ 0, & \text{otherwise} \end{cases} \text{ where } B(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx \qquad E(X) = \frac{a}{a+b}, \text{ Var}(X) = \frac{ab}{(a+b)^2(a+b+1)}$ $Beta(1,1) = \text{Uniform}(0,1) \qquad B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \qquad X \sim \text{Cauchy}(\theta) \text{ with } -\infty < \theta < \infty \text{ if pdf f(x)} = \frac{1}{\pi} \frac{1}{1+(x-\theta)^2}, -\infty < x < \infty \qquad E(X^n) \text{ DNE for n = 1,2,}$											
	Bet	Beta(1,1) = Uniform(0,1) $B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} X \sim \text{Cauchy}(\theta) \text{ with } -\infty < \theta < \infty \text{ if pdf f}(x) = \frac{1}{\pi} \frac{1}{1+(x-\theta)^2}, -\infty < x < \infty E(X^n) \text{ DNE for n = 1,2,}$								for n = 1,2,			
	We	Weibull Dist W(ν , a, b), $f_X(x) = \begin{cases} \frac{b}{a} \left(\frac{x-\nu}{a}\right)^{b-1} e^{-\left(\frac{x-\nu}{a}\right)^b}, x > \nu \\ 0, if x \le \nu \end{cases}$					E(X)	= aΓ(1 +	$\frac{1}{b}$). Var(X) = a	$a^2 \left[\Gamma \left(1 + \frac{2}{b} \right) \right]$	$-\left(\Gamma\left(1+\frac{1}{l}\right)\right)$	$\left(\frac{1}{b}\right)^2$. W(1)	$(\lambda, 0) = Exp(\lambda)$
Approxi-				Assume n is la					2. Poisson d	list. Used w	hen n is large	e, p is small	and np is
mation o		'			$(n,p) \approx N(np, npc$				moderate.				
Binomial					oximation good								< 0.1 and put rms of 'failure'
r.v.					g prob of X using $(2 k) = P(X \ge k-1/2)$			(+1/2)	л – пр. п р .	- υ.϶, put λ	– 11(1-h) aliu	workinte	ins or ranure

5.		F() B()()				N 1 (V				
Joint Dis	st	$F(x,y) = P(X \le x)$				Note $\{X > a, Y > b\} \neq \{X \le a, Y \le b\}^C$				
Fn		Marginal cdf of	$f X, F_X(x) = \lim_{y \to \infty} F(x, y)$			Marginal cdf of Y, $F_Y(y) = \lim_{x \to \infty} F(x, y)$				
			= 1 - F _X (a) - F _y (b) + F(a,b)			$P(a_1 \le X \le a_2, b_1 \le Y \le b_2) = F(a_2, b_2) + F(a_1, b_1) - F(a_1, b_2) - F(a_2, b_1)$				
			iscrete r.v. then their joint pmf p		Y = j)					
			of X, $P(X = i) = \sum_{j} P(X = i, Y = j)$			Marginal pmf of Y, $P(Y = j) = \sum_{i} P(X = i, Y = j)$				
			ts r.v., then their joint $pdf P[(X, Y)]$			If C = {(x,y): $x \in A$, $y \in B$ }, then P(X $\in A$, $y \in B$) = $\int_{a}^{b} \int_{a}^{b} f(x,y) dxdy$				
		· C	dy = vol under the surface f(x, y)	_		<i>B A</i>				
		Joint cdf F(a, b) = P(X ∈ (-∞, a], Y ∈ (-∞, b]) = \int_{-}^{1}	$\int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y)$	dxdy	$f(a, b) = \frac{\partial^2}{\partial a \partial b} F(a, b)$				
		•	of joint pdf f(a, b) (density)		P(a < X	< a + da, b < Y < b + db) = $\int_{b}^{b+db} \int_{a}^{a+da} f(x,y) \ dxdy \approx f(a,b) \ da \ db$				
		Marginal pdf o	$f X, f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$			Marginal pdf of Y, $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$				
Indep r.	v.	X and Y are ind	ep: $P(X \in A, Y \in B) = P(X \in A)P(Y$	∈ B)		X and Y indep: $P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$ OR $F(a, b) = F_X(a)F_Y(b)$				
		Discrete case:	X and Y indep: $P(X = x, Y = y) = P(x = x, Y = y)$	$X = x)P(Y = y) \forall$	′ x,y	Cts case: X and Y indep: $f(x, y) = f_X(x)f_Y(y) \forall x,y$				
		X and Y are ind	ep if knowing value of one does	not change dis	t of	X and Y indep iff their joint pdf/pmf can be expressed as f(x, y) =				
		other				$g(x)h(y)$, **- ∞ < x < ∞ , - ∞ < y < ∞ **				
			is a symmetric relation. If X is inc							
Sum	Sup	oose X and Y are	e indep cts r.v., then $F_{X+Y}(a) = \int_{-\infty}^{\infty}$	$_{\circ}F_{X}(a-y)f_{y}($	$y) dy, f_x$	$f_{+Y}(a) = \int_{-\infty}^{\infty} f_X(a - y) f_y(y) dy$				
of	Dist	st of $1. X_i \sim \text{Gamma}(t_i, \lambda), i = 1,,n \Rightarrow \sum_{i=1}^n X_i \sim \text{Gamma}(\sum_{i=1}^n t_i, \lambda)$				3. $Z_i \sim N(0, 1)$, $i = 1,,n \Rightarrow \sum_{i=1}^n Z_i^2 \sim \chi_n^2$ (chi-square w n deg of				
indep r.v.		s of 2. X _i ~ E	$xp(\lambda)$, i = 1,,n $\Rightarrow \sum_{i=1}^{n} X_i \sim Gam$	$ma(n, \lambda)$	freedom)					
1.v.	ind r.v.	$1 4. X_i \sim N(\mu_i, \sigma_i^2)$, $i = 1,, n \Rightarrow \sum_{i=1}^{n} X_i \sim N(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2)$				5. $X \sim Poisson(\lambda_1)$, $Y \sim Poisson(\lambda_2) \Rightarrow X + Y \sim Poisson(\lambda_1 + \lambda_2)$ 6. $X \sim Binomial(n, p)$, $Y \sim Binomial(m, p) \Rightarrow X + Y \sim Binomial(n + m, p)$				
Conditio	L.,	If P(F) > 0, P(E	P(EF)		f - f V	given Y = y is $p_{X Y}(x y) = P(X = x Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_X(y)}, \forall y \text{ s.t.}$				
dist for	, i i u i	IT P(F) > 0, P(E)	$FJ = \frac{1}{P(F)}$			A given $Y = Y$ is $p_{X Y}(X Y) = P(X = X Y = Y) = \frac{1}{P(Y = Y)} = \frac{1}{p_Y(Y)}$, $\forall Y$ s.t.) is joint pmf of X and Y				
Discrete	:	If X is indep of Y, then $p_{X Y}(x y) = p_x(x)$, i.e. Conditional dist fn o			of X given Y = y is $F_{X Y}(x,y) = P(X \le x \mid Y = y) = \sum_{\alpha \le x} P(X = \alpha $					
Case		P(X=x Y=y) = P(X=x) \forall x,y Conditional dist in of $\sum_{a \le x} p_{X Y}(a y)$				of A given $1-y$ is $1\chi[\gamma(x,y)-r(x)] = r(x-y)-\sum_{a\leq x} r(x-a)r(x-y)-\sum_{a\leq x} r(x-a)r(x-y)$				
Conditio	nal		joint pdf f(x,y), then conditional			$f(x,y) = \frac{f(x,y)}{y} \forall y \in f(y) > 0$				
dist for	Cts					$\mathcal{H}(\mathcal{Y})$				
case						$a Y=y = \int_{-\infty}^{a} f_{X Y}(x y) dx \qquad X \text{ and Y indep: } f_{X Y}(x y) = f_{X}(x)$				
Joint Pro					se $Y_1 = g_1$	(X_1, X_2) and $Y_2 = g_2(X_1, X_2)$ and assume Y_1 and Y_2 satisfy:				
Dist of f	of fns $1. x_1$ and x_2 can be uniquely expressed in terms of y_1 and y_2									
of r.v.		2. y_1 and y_2 have cts partial derivatives at all point (x_1, x_2) and $J(x_1, x_2) = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{vmatrix} = \frac{\partial y_1}{\partial x_1} \frac{\partial y_2}{\partial x_2} = \frac{\partial y_1}{\partial x_2} \frac{\partial y_2}{\partial x_2} \neq 0$ at all point (x_1, x_2)								
		Then Y ₁ and Y ₂	are jointly cts w joint pdf f_{Y_1,Y_2} (y	$(y_1, y_2) = f_{X_1, X_2}(x_1, y_2)$	$_{1}, X_{2}) \frac{1}{ J(x_{1}) }$	$\frac{ x_2 }{ x_2 }$, where x_1 , x_2 are expressed in terms of y_1 y_2				

Expectation	$P(a \le X \le b) \Rightarrow a \le E(X) \le b$		If X and Y h	If X and Y have a joint pmf p(x,y), then $E[g(X, Y)] = \sum_{y} \sum_{x} g(x, y) p(x, y)$				
of Sums of	$X \ge Y \Rightarrow E(X) \ge E(Y)$		If X and Y h	ave a joint pdf	$f(x,y)$, then $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$	$\int_{-\infty}^{\infty} g(x,y)f(x,y) dx dy$		
r.v.	If $E(X) \& E(Y)$ are finite, $E(X + Y)$	= E(X) + E(Y)			n, then $E(X_1 + + X_n) = E(X_1) +$	**		
Covariance,	X and Y indep \Rightarrow E[g(X)h(Y)] = E	[g(X)]E[h(Y)]	Cov(X, Y) =	E[(X - E[X])(Y -	E[Y])] (measure dirn of linear r	relationship btw X and Y)		
Variance of	Cov(X, Y) = E(XY) - E(X)E(Y)		X and Y ind	$ep \Rightarrow Cov(X, Y)$	= 0. (opp not necessary; can I	have non linear r/s)		
Sums,	Cov(X, Y) = Cov(Y, X)	cov(X, X) = Var(X)	Cov(aX, Y) =	aCov(X, Y)	$Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{m} Y_i$	$\sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$		
Correlations	$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + \sum_{i=1}^{n} Var(X_i)$	$2\sum \sum_{i< j} Cov(X_i, Y_j)$	If X ₁ ,,X _n are pa	airwise indep,	i.e. X _i , X _j indp for i≠j, then Var($\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$		
	Correlation of 2 r.v X and Y, ρ ()	$(, Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$	if Var(X)Var(Y) > 0	ho measure s	trength and dir ⁿ of linear r/s	$-1 \le \rho(X, Y) \le 1$		
	$\rho(X, Y) = 1 \Rightarrow Y = a + bX, b = \frac{\sigma_Y}{\sigma_X}$		Y) = -1 \Rightarrow Y = a + bX,	$b = -\frac{\sigma_Y}{\sigma_Y} < 0$	$X, Y \text{ indep} \Rightarrow \rho(X, Y) = 0.$	X, Y indep $\Rightarrow \rho(X, Y) = 0$. (converse not true)		
	$E(\overline{X}) = \mu$ $Var(\overline{X}) =$	$\frac{1}{-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$		$E(s^2) = \sigma^2$	$E(s^2) = \sigma^2$			
Conditional	$E(X Y = y) = \sum_{x} xP(X = x Y =$	$y) = \sum_{x} x p_{X Y}(x y)$, for $p_Y(y) > 0$		$E(X Y=y) = \int_{-\infty}^{\infty} x f_{X Y}(x)$	$(y) dx$, for $f_Y(y) > 0$		
Expectation	$E(g(X) Y=y) = \sum_{x} g(x)P(X=x)$	$x Y=y) = \sum_{x} g(x)$	$p_{X Y}(x y)$		$E(g(X) Y=y) = \int_{-\infty}^{\infty} g(x)$	$f_{X Y}(x y) dx$		
	E(X) = E(E(X Y)) (wrt Y, wrt X Y)	=y)	$\sum_{y} E(X Y=y)P(X Y=y)$	Y = y		$\int_{-\infty}^{\infty} E(X Y=y) f_Y(y) dy$		
	$P(A) = \sum_{y} P(A Y = y)P(Y = y)$). If $F_i = \{Y = y_i\}$. The	$n P(A) = \sum_{i=1}^{n} P(A A)$	$F_i)P(F_i)$	$P(A) = \int_{-\infty}^{\infty} P(A Y = y) f(A)$	$P(A) = \int_{-\infty}^{\infty} P(A Y=y) f_Y(y) dy$		
	Conditional Var, Var(X Y) = E[()	(– E(X Y)) ² Y] Va	$ar(X Y) = E(X^2 Y) - [I$	E(X Y)] ²		Var(X) = E[Var(X Y)] + Var[E(X Y)]		
Moment	Moment Generating Fn: M(t) =	E(e ^{tX}) X is disc	rete w pmf p(x), M	$(t) = \sum_{x} e^{tx} p(x)$	Y is cts w pdf $f(x)$: $M(t) =$	$\int_{-\infty}^{\infty} e^{tx} f(x) dx$		
Generating	$M^n(t) = E(X^n e^{tX}), n \ge 1$	Mn(0)	= E(X ⁿ), n ≥ 1		mgf unique to each distribut			
Functions	X and Y indep \Rightarrow $M_{X+Y}(t) = M_X(t)$	M _Y (t)						

Markov's Inequa	ality	If X is a r.v. that takes only nonnegative values, then for any $a > 0$, $P(X \ge a) \le \frac{E(X)}{a}$						
Chebyshev's Inequality		If X is a r.v. w finite mean μ and var σ^2 , then for any value of k > 0, $P(X-\mu \ge k) \le \frac{\sigma^2}{k^2}$ If $Var(X) = 0$, then $P(X = E[X]) = 1$						
Weak Law of lar numbers	rge	Let $X_1, X_2,$ be a seq of indep and identically distributed r.v. each having finite mean $E[X_i] = \mu$. Then for any $\varepsilon > 0$, $P\{\left \frac{X_1+\cdots+X_n}{n}-\mu\right \ge \varepsilon\} \to 0$ as $n\to\infty$						
Central Limit theorem	Let X ₁ , X ₂ , be a seq of indep and identically distributed r.v. each having mean μ and var σ^2 . Then $\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} \to N(0,1)$ as $n \to \infty$. i.e. for $-\infty < a < \infty$, $P(\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} \le a) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-\frac{1}{2}y^2} dy$ as $n \to \infty$. Note $\frac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}} = \frac{X_1 + \cdots + X_n - n\mu}{\sigma/\sqrt{n}} = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \bar{$							

		emma. Let Z_1 , Z_2 , be a seq of r.v. having distribution fns F_{Z_n} mgf M_{Z_n} , $n \ge 1$ and let Z be a r.v. w dist fn F_Z and mgf M_Z . If $M_{Z_n}(t) \to Z_n(t)$ for all t, then $Z_n(t) \to Z_n(t)$ for all t at which $Z_n(t)$ is cts					
Strong Law of large nums	Let X_1 , X_2 , be a seq of indep and identically distributed r.v. each having finite mean $E[X_i] = \mu$. Then w prob 1, $\frac{X_1 + \dots + X_n}{n} \to \mu$ as $n \to \infty$						
One-sided Cheby	shev's Inequality	X is r.v. w mean 0, var σ^2 , $P(X \ge a) \le \frac{\sigma^2}{\sigma^2 + a^2}$					
Chernoff bounds	P(X ≥ a) ≤ e ⁻¹	$^{a}M(t)$ for all $t > 0$.	$P(X \le a) \le e^{-ta}M(t)$ for all $t < 0$				
Jensen's Inequali	A twice-differentiable real-valued fn $f(x)$ is convex if $f''(x) \ge 0$ for all x ; concave = $f''(x)$, 0 If $f(x)$ is a convex fn, then $E[f(X)] \ge f(E(X))$, if $E(X)$ exists and is finite						

	Pmf $p(x)$, pdf $f(x)$	Mgf M(t)	Mean	Variance
Bernoulli			р	p(1-p)
Binomial w param n,p; $0 \le p \le 1$	$\binom{n}{x}$ p ^x (1-p) ^{n-x} , x = 0,1,,n	(pe ^t + 1 - p) ⁿ	np	np(1-p)
Poisson w param $\lambda > 0$	$e^{-\lambda} \frac{\lambda^x}{x!}$, x = 0,1,2	$e^{\lambda(e^t-1)}$	λ	λ
Geometric w param p; $0 \le p \le 1$	$p(1-p)^{x-1}, x = 1,2,$	$\frac{pe^t}{1-(1-p)e^t}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Negative binomial w param r, p; $0 \le p \le 1$	$\frac{(x-1)!}{(x-r)!(r-1)!}p^{r}(1-p)^{x-r}, n = r, r+1,$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Hypergeometric	$P(X = k) = \frac{\binom{m}{k} \binom{N-m}{n-k}}{\binom{N}{n}}, k = 0,1,,n$		$\frac{nm}{N}$	$\frac{nm(N-m)(N-n)}{N^2(N-1)}$
Discrete uniform (a,b)			$\frac{\alpha+\beta}{2}$	$\frac{(\beta-\alpha+1)^2-1}{12}$
Uniform over (a, b)	$\begin{cases} \frac{1}{b-a}, a < x < b \\ 0, otherwise \end{cases}$	$\frac{e^{tb}-e^{ta}}{t(b-a)}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential w param $\lambda > 0$	$\begin{cases} \lambda e^{-\lambda x}, x \ge 0 \\ 0, otherwise \end{cases}$	$\frac{\lambda}{\lambda - t}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma w param (s, λ), λ > 0	$\begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{s-1}}{\Gamma(s)}, x \ge 0\\ 0, & x < 0 \end{cases}$	$\left(\frac{\lambda}{\lambda-t}\right)^{S}$	$\frac{s}{\lambda}$	$\frac{s}{\lambda^2}$
Normal w param (μ, σ^2)	$ \begin{array}{c} \left(0, x < 0\right) \\ \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}, -\infty < \chi < \infty \end{array} $	$e^{t\mu + \frac{\sigma^2 t^2}{2}}$	μ	σ^2