■ ■ série de livros didáticos informática ufrgs

Matemática discreta para computação e informática

Paulo Blauth Menezes

Matemática Discreta para Ciência da Computação

P. Blauth Menezes

- 1 Introdução e Conceitos Básicos
- 2 Lógica e Técnicas de Demonstração
- 3 Álgebra de Conjuntos
- 4 Relações
- **5** Funções Parciais e Totais
- 6 Endorrelações, Ordenação e Equivalência
- 7 Cardinalidade de Conjuntos
- 8 Indução e Recursão
- 9 Álgebras e Homomorfismos
- 10 Reticulados e Álgebra Booleana
- 11 Conclusões

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - 3.4.1 União
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.4 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.1 Introdução

- ♦ Álgebra, desde a sua origem até a sua forma atual
 - refere-se a cálculos
- Desenvolvida de forma informal ou formal
 - praticamente em todos os níveis de escolaridade
 - exemplo: operações aritméticas (adição, multiplicação...) sobre R
- ♦ Álgebras, em CC, destaca-se a partir de 1950
 - Teoria dos Autômatos e Linguagens Formais

◆ De certa forma, toda a CC é construída sobre álgebras

- Álgebra: denominação alternativa para a Matemática Discreta
 * Diretrizes Curriculares do MEC para Computação e Informática
- ◆ Conceito de Álgebra é introduzido adiante
 - informalmente: operações definidas sobre um conjunto
 - Álgebra de Conjuntos: operações definidas sobre todos os conjunto
- ◆ Desejável para o estudo da Álgebra de Conjuntos
 - Diagramas de Venn: representação diagramática
 * auxilia o entendimento dos conceitos e raciocínios
 - Paradoxo de Russell: importante!

♦ Operações sobre conjuntos

- Não-Reversíveis: mais usuais
 - * União
 - * Intersecção
- Reversíveis: especialmente importantes para CC
 - * Complemento
 - * Conjunto das Partes
 - * Produto Cartesiano
 - * União Disjunta

Obs: Lógica × Álgebra dos Conjuntos

Relação direta entre conetivos lógicos e operações sobre conjuntos

• facilita muito o estudo da Álgebra de Conjuntos

Conetivo Lógico	Operação sobre Conjuntos
negação	complemento
disjunção	união
conjunção	intersecção

Relação Lógica	Relação sobre Conjuntos
implicação	continência
equivalência	igualdade

Propriedades sobre os conetivos são válidas na Teoria dos Conjuntos

- substituindo cada conetivo
- pela correspondente operação sobre conjuntos
- exemplo
 - * idempotência do ∧ e do ∨ (da ∩ e da ∪)
 - * comutatividade do ∧ e do ∨ (da ∩ e da ∪)
 - * associatividade do ∧ e do ∨ (da ∩ e da ∪)
 - * distributividade do ∧ sobre o ∨ (da ∩ sobre a ∪) e vice-versa

- * dupla negação (duplo complemento)
- * DeMorgan
- ◆ Pode-se intuir que provas na Teoria dos Conjuntos
 - são, em grande parte, baseadas em resultados da lógica

3 – Álgebra de Conjuntos

- 3.1 Introdução
- 3.2 Diagramas de Venn
- 3.3 Paradoxo de Russell
- 3.4 Operações Não-Reversíveis
 - 3.4.1 União
 - 3.4.2 Intersecção
- 3.5 Operações Reversíveis
 - 3.5.1 Complemento
 - 3.5.2 Conjunto das Partes
 - 3.5.3 Produto Cartesiano
 - 3.5.5 União Disjunta
- 3.6 Relação entre Lógica e Álgebra de Conjuntos
- 3.7 Álgebra de Conj. nas Linguagens de Programação
- 3.8 Álgebra de Conj. e Teoria da Computação

3.2 Diagramas de Venn

Linguagem diagramática

- auxilia o entendimento de definições
- facilita o desenvolvimento de raciocínios
- permite identificação e compreensão fácil e rápida dos
 - * componentes e relacionamentos

Diagramas de Venn

- universalmente conhecidos e largamente usados
- usam figuras geométricas, em geral representadas no plano

Exp: Diagramas de Venn

- um dado conjunto A
- um determinado elemento b ∈ B
- o conjunto C = { 1, 2, 3 }

Exp: Diagramas de Venn

- $\{a, b\} \subseteq \{a, b, c\}$
- A ⊆ B
- para um dado conjunto universo ∪, um conjunto C ⊆ ∪

Em geral

- U é representado por um retângulo
- demais conjuntos por círculos, elipses, etc
- emC ⊆ U, o conjunto C é destacado, para auxiliar visualmente

Exp: Aplicação dos Diagramas de Venn

Considere que

pode-se intuir que a noção de subconjunto é transitiva, ou seja

$$A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$$