

Unidade II

REDES DE COMPUTADORES E TELECOMUNICAÇÃO

Prof. Roberto Macias

- O principal modelo/referência de arquitetura de camadas utilizados nas redes, é o <u>Modelo OSI (Open Systems</u> Interconnections).
- Criado pela <u>ISO</u> (Internacional
 Organization for Standardization) e pela <u>ITU-T</u> (International Telecommunication Union) para desenvolver padrões de rede de dados que facilitem a interoperabilidade de equipamentos de vários fabricantes.

Vantagens:

Enlace

Física

2

- ◆ Reduz a complexidade
- · Padroniza as interfaces
- Facilita a engenharia modular
- · Garante a tecnologia interoperável
- Acelera a evolução
- Simplifica o ensino e a aprendizagem

Funções das camadas:

7	Aplicação	→ Processos da rede para aplicações
6	Apresentação	→ Representação de dados
5	Sessão	→ Comunicação interhosts
4	Transporte	Conexões ponto a ponto
3	Rede	→ Endereços e melhor caminho
2	Enlace	→ Acesso aos meios
1	Física	Transmissão binária • Fios, conectores, voltagens, taxas
		de dados

- Iniciaremos o estudo das camadas do modelo OSI com uma abordagem que se inicia pela camada de aplicação e, de cima para baixo, desce até a camada física (top-down).
- Isto facilita o entendimento, pois a camada de aplicação é a mais próxima dos usuários e compreendendo as aplicações, compreende-se os serviços necessários para suportar tais aplicações, identificando também as diversas maneiras de como estes serviços são fornecidos pelas camadas mais baixas.

Camada de aplicação

As aplicações de rede são a "razão de ser" da Internet, permitindo que os usuários possam fazer coisas úteis e interessantes na rede. Sem as aplicações, a Internet não teria sentido.

7	Aplicação	<
6	Apresentação	
5	Sessão	
4	Transporte	
3	Rede	
2	Enlace	
1	Física	

Figura 16: Camada de Aplicação do Modelo OSI. Fonte: Kovach, 2009.

Camada de aplicação

- As aplicações de rede são programas ou, como dizemos no jargão dos sistemas operacionais, processos que se comunicam entre si pela da troca de mensagens através da rede.
- Uma determinada aplicação quando quer efetuar uma transmissão pela rede, primeiramente "entra em contato" com a camada de aplicação do protocolo de rede, efetuando este pedido.

Camada de aplicação

 Exemplo: O envio de um e-mail, utilizando-se de uma aplicação cliente (Outlook, Thunderbird etc.), que por sua vez utiliza os serviços do protocolo smtp da camada de aplicação.

Alguns exemplos de aplicativos/protocolos da camada de apresentação:

 Telnet / HTTP / FTP / Navegadores web / NFS / Gateways SMTP (clientes de email) / SNMP.

Camada de aplicação – Clientes e servidores

Uma aplicação de rede tem tipicamente duas partes, um lado cliente e um lado servidor que se comunicam entre si. Por exemplo, um navegador web implementa o lado cliente do HTTP, e um servidor Web implementa o lado servidor http.

Camada de aplicação – Clientes e servidores

- É intitulado cliente aquele que inicia contato com o servidor (quem "fala primeiro"), ou seja, quem tipicamente solicita serviço do servidor, como, por exemplo, para a www, o cliente implementado no browser.
- Um servidor provê ao cliente o serviço requisitado (responde as requisições dos clientes).

Camada de aplicação – Processos e portas

- Para identificar na origem e no destino os processos com os quais se quer comunicar, é necessário que eles se identifiquem, através de endereços.
- Endereçamento dos processos é como chamamos quando um processo identifica o outro com o qual se quer comunicar.
- Duas informações são essenciais nessa identificação: endereço IP do hospedeiro do outro processo e o "número de porta". Isso permite que o hospedeiro receptor determine a qual processo deve ser entregue a mensagem.

Interativa

Modelo OSI - Subdivisões

 Dentre as 7 camadas do Modelo OSI, temos uma subdivisão importante a ser ressaltada: as 3 camadas superiores são chamadas de "Camadas do Nível de Aplicação" e as 3 camadas inferiores são chamadas de "Camadas do Nível Físico" – com a camada 4 (Transporte) fazendo a interligação entre estas.

	Aplicação
	Apresentação
	Sessão
7	Transporte
10	Rede
2	Enlace
1	Física

Camada de aplicação – Requisitos das aplicações

Sendo assim, existe naturalmente uma utilização dos serviços da camada de transporte pela camadas do nível de aplicação (7, 6 e 5) - inclusive para a utilização das "portas" lógicas.

Requisitos das aplicações quanto aos protocolos da camada de transporte:

- Perda de dados: algumas aplicações toleram.
- <u>Largura de banda</u>: algumas aplicações requerem um mínimo.
- Sensibilidade a atraso: algumas toleram, outras não.

Camada de aplicação – Requisitos das aplicações

Aplicação	Perda de dados	Largura de banda	Sensibilidade temporal
Transferência de arquivos	Não tolera	Elástica	Não é sensível
Correio eletrônico	Não tolera	Elástica	Não é sensível
Objetos da www (HTTP)	Não tolera	Elástica	Não é sensível
Áudio ou vídeo em tempo real	Tolerante	Áudio: 5 Kb - 1 Mb Vídeo: 10 Kb - 5 Mb	Sensivel, acima de 100 mseg
Áudio ou vídeo gravado	Tolerante	Áudio: 5 Kb - 1 Mb Vídeo: 10 Kb - 5 Mb	Sensível, acima de alguns seg
Jogos interativos on-line	Tolerante	Maior que alguns Kbps	Sensivel, acima de 100 mseg
Aplicações bancárias	Não tolera	Elástica	Pode ou não ser sensível

Tabela 1: Exemplos de aplicações e seus requisitos na rede

Camada de aplicação – Requisitos das aplicações

A tabela a seguir mostra algumas aplicações típicas e os respectivos protocolos de transporte utilizados:

APLICAÇÃO	Protocolo de aplicação	Protocolo de transporte
Correio eletrônico	SMTP	TCP
Login remoto	Telnet	TCP
www	HTTP	TCP
Transferência de arquivos	FTP	TCP
Servidor de arquivos remoto	NFS	tipicamente UDP
Gerenciamento de rede	SNMP	tipicamente UDP
Protocolo de roteamento	RIP	tipicamente UDP
Tradução de nomes	DNS	tipicamente UDF
Multimidia	proprietário	TCP on UDP
Telefonia na Internet	proprietário	tipicamente UDP

Interatividade

Quais camadas do Modelo OSI são consideradas como "camadas do nível lógico ou do nível das aplicações"?

- a) Transporte, rede e enlace.
- b) Aplicação, enlace e física.
- c) Sessão, transporte e aplicação.
- d) Apresentação, sessão e rede.
- e) Aplicação, apresentação e sessão.

Resposta

Quais camadas do Modelo OSI são consideradas como "camadas do nível lógico ou do nível das aplicações"?

- a) Transporte, rede e enlace.
- b) Aplicação, enlace e física.
- c) Sessão, transporte e aplicação.
- d) Apresentação, sessão e rede.
- e) Aplicação, apresentação e sessão.

No início da década de 1990, entrou em cena a aplicação chave da Internet: a www (world wide web). Ela foi considerada a terceira grande tecnologia de comunicação (depois do rádio e da televisão) que transformou drasticamente a maneira como as pessoas interagem dentro e fora de seus ambientes de trabalho.

- A www é uma aplicação de rede que permite aos usuários obterem "documentos", ou páginas web, sob demanda.
- Uma página web consiste de objetos, os quais podem ser arquivos HTML (hypertext markup language), imagens JPEG, imagens GIF, applets Java, clipes de áudio e vídeo etc., endereçados por um URL (Universal Resource Locator).

- A maioria das páginas web consiste de uma página base HTML e várias referências, conhecidas como hiperlinks, para outros objetos. Páginas pessoais dos usuários são conhecidas como home pages.
- Um navegador web (como o Internet Explorer, Firefox, Chrome, Safari) é o agente usuário para a aplicação www e implementa o lado cliente do protocolo HTTP.

Um servidor web hospeda as páginas web, as quais são acessadas por seu endereço URL. Um servidor web implementa o lado servidor do protocolo HTTP, sendo que, dentre os servidores mais utilizados, temos o Apache, o IIS da Microsoft e o Netscape Server.

O protocolo HTTP usa o TCP como protocolo de transporte usando a seguinte rotina para troca de mensagens:

- 1. O cliente inicia conexão TCP (cria socket) com o servidor, na porta 80 (porta padrão do HTTP).
- 2. O servidor aceita a conexão TCP do cliente.

- 3. As mensagens HTTP (mensagens do protocolo da camada de aplicação) são trocadas entre navegadores (cliente HTTP) e servidor www (servidor HTTP).
- 4. A conexão TCP é encerrada.
- Dizemos que o protocolo HTTP é "sem estado", ou seja, o servidor não mantém nenhuma informação sobre pedidos anteriores do cliente. Assim, a cada vez que um objeto é solicitado, ele o reenvia.

Camada de aplicação – Principais protocolos – FTP

- A transferência de arquivos é uma aplicação que existe desde 1971, quando a Internet ainda era uma experiência. <u>FTP</u> (*File Transfer Protocol*) é o protocolo utilizado para transferir um arquivo de um hospedeiro a outro.
- Numa sessão FTP, um usuário pode transferir arquivos de um computador remoto para um computador local e viceversa (download e upload). O usuário interage com o FTP através de um agente usuário.

Camada de aplicação – Principais protocolos – FTP

Primeiro fornece o nome (ou o endereço IP) do computador remoto, estabelecendo com isto uma conexão TCP entre o processo FTP cliente e servidor, procedendo então para a autenticação para poder transferir os arquivos.

Camada de aplicação – Principais protocolos – FTP

O protocolo FTP utiliza duas portas para conexão:

- Porta 21: para troca de comandos entre cliente/usuário e servidor.
- Porta 20: para troca de dados entre cliente/usuário e servidor – seja download ou upload.

 O correio eletrônico, ou e-mail (electronic mail), é uma das aplicações mais populares da Internet. É uma aplicação assíncrona, onde os usuários enviam e leem suas mensagens quando acharem conveniente.

Ela existe desde o início da Internet e é composta de três grandes componentes:

- Agentes de usuário.
- Servidores de correio.
- Protocolos.

- Agentes de usuário: são os leitores de email, onde os usuários leem, respondem, encaminham ou compõem uma mensagem. Exemplos: Outlook, Thunderbird, Eudora etc.
- Servidores de correio: são os componentes centrais da infraestrutura do correio eletrônico. Para enviar uma mensagem à caixa postal de uma pessoa, uma vez que o remetente digitou mensagem, seu agente usuário a envia ao seu servidor de e-mail, que coloca a mensagem em uma fila de saída.

<u>Protocolos</u>: Os protocolos de correio eletrônico mais importantes são:

 SMTP (Simple Mail Transfer Protocol): utilizado na entrega e no armazenamento de mensagens no servidor do receptor.

Protocolos de acesso ao correio (recuperam mensagens do servidor):

- POP (Post Office Protocol).
- IMAP (Internet Mail Access Protocol): mais comandos que o POP, porém mais complexo com relação ao manuseio de mensagens armazenadas no servidor.

 HTTP (Hypertext Transfer Protocol): apresentam mensagens recuperadas do servidor através de páginas web. Exemplos: Gmail, Hotmail, Yahoo! Mail, Webmail etc.

Interatividade

Qual protocolo da camada de transporte o protocolo HTTP (da camada de aplicação) utiliza para envio e recebimento dos seus dados?

- a) FTP.
- b) TCP.
- c) IP.
- d) www.
- e) SMTP.

Resposta

Qual protocolo da camada de transporte o protocolo HTTP (da camada de aplicação) utiliza para envio e recebimento dos seus dados?

- a) FTP.
- b) TCP.
- c) IP.
- d) www.
- e) SMTP.

- Sabemos que a "nuvem da Internet" é composta de roteadores, responsáveis por encaminhar (rotear) as mensagens entre origem e destino.
- Roteadores não identificam o destino da mensagem pelo "nome" (como por exemplo www.unip.br) e sim pelo endereço IP.
- Seria muito complicado para os usuários, saberem todos os endereços IP dos servidores e clientes espalhados pela Internet.

- Existem duas maneiras de identificar os hospedeiros na Internet: por meio de seu nome, como nós preferimos, e por meio de endereços IP, que é como os roteadores preferem.
- Visando conciliar essas preferências, é que surge o serviço de diretório de nomes ou sistema de nomes de domínio (DNS – Domain Name System), que tem por objetivo traduzir os nomes dados aos hospedeiros para endereços IP.

- Dizemos que o DNS é uma base de dados distribuída e implementada na hierarquia de muitos servidores de nomes.
- O DNS é função imprescindível da Internet e é implementado como protocolo de camada de aplicação.
- O DNS é um serviço que roda sobre UDP e TCP (protocolos da camada de transporte) e utiliza a porta 53.

Nenhum servidor DNS mantém todos os mapeamentos de nomes para um endereço IP. Existe uma base de dados hierárquica, distribuída por todo o mundo. São servidores padrões considerados:

 Servidor de nomes local: cada provedor ou empresa tem um servidor de nomes local (padrão). O pedido DNS de hospedeiro vai primeiro ao servidor de nomes local.

Camada de aplicação – Serviços de diretório de nomes – DNS

- Servidor de nomes oficial: para hospedeiros, guarda o nome e o endereço IP dele e pode realizar tradução nome/endereço para esse nome.
- <u>Servidores de domínio de alto nível</u> (*Top-Level Domain* TLD): responsáveis por domínios de alto nível genéricos e de países, como com, org, net, edu, gov, br, uk, ca etc.
- Servidores de nomes com autoridade: responsáveis por domínios das organizações e domínios de segundo nível.

Camada de aplicação – Serviços de diretório de nomes – DNS

Também chamada camada de tradução, é a camada responsável por converter o formato do dado recebido pela camada de aplicação (camada 7) em um formato comum entre transmissor e receptor, ou seja, em um formato entendido pelo protocolo utilizado.

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Enlace
1	Física

Principais funções da camada de apresentação:

- Compressão de dados.
- Criptografia.
- Padrão de caracteres codificação.

Compressão de dados:

Os dados recebidos da camada de aplicação (7) são comprimidos, e a camada de apresentação (6) do dispositivo receptor fica responsável por descomprimir esses dados. A transmissão dos dados torna-se mais rápida, já que haverá menos dados a serem transmitidos: os dados recebidos da camada 7 foram "encolhidos" e enviados à camada 5.

Criptografia:

- Para aumentar a segurança, pode-se usar algum esquema de criptografia neste nível, sendo que os dados só serão decodificados na camada 6 do dispositivo receptor.
- Exemplo: SSL (Secure Socket Layer) que pode implementar o protocolo HTTPS.

Codificação:

- Computadores e outros sistemas digitais trabalham com sistema binário, entretanto, o mundo exterior utiliza-se de alfabetos e sistemas decimais para a tarefa da comunicação.
- Portanto, torna-se necessária a representação dos códigos alfanuméricos (e outros caracteres) no sistema binário.

Codificação:

- O principal padrão de codificação utilizado em sistemas digitais é o padrão ASCII (American Standard Code for Information Interchange).
- O padrão ASCII é uma codificação de caracteres de oito bits baseada no alfabeto inglês.
- A codificação é uma das tarefas da camada de apresentação nas redes de computadores.

Interatividade

Qual a principal função de um servidor DNS na Internet?

- a) Prover um serviço de transferência de arquivos.
- b) A associação de códigos binários em caracteres alfanuméricos.
- c) A tradução de um nome para o endereço IP e vice-versa.
- d) A compressão e a criptografia de dados.
- e) O roteamento das mensagens na Internet.

Resposta

Qual a principal função de um servidor DNS na Internet?

- a) Prover um serviço de transferência de arquivos.
- b) A associação de códigos binários em caracteres alfanuméricos.
- c) A tradução de um nome para o endereço IP e vice-versa.
- d) A compressão e a criptografia de dados.
- e) O roteamento das mensagens na Internet.

Camada criada pela ISO, não sendo encontrada em redes de computadores que antecedem esse modelo. O principal objetivo da camada de sessão é oferecer às camadas de apresentação cooperantes meios de organizar e sincronizar sua comunicação, permitindo que duas aplicações em computadores diferentes estabeleçam uma sessão de comunicação.

- A camada de sessão é a última das camadas superiores (as camadas de nível lógico ou de aplicação).
- De forma sucinta, ela administra e sincroniza diálogos entre dois processos de aplicação.

7	Aplicação	
6	Apresentação	
5	Sessão	-
4	Transporte	
3	Rede	
2	Enlace	
1	Física	

Na sessão, as aplicações definem como será feita a transmissão de dados e coloca marcações nos dados que estão sendo transmitidos. Se porventura a rede falhar, os computadores reiniciam a transmissão dos dados a partir da última marcação recebida pelo computador receptor.

Principais serviços oferecidos pela camada de sessão:

- Intercâmbio de dados: estabelecer conexão com outro usuário, trocar dados e fechar a conexão.
- Gerenciamento de diálogos: negociar a utilização de tokens para troca de dados, sincronização e liberação da conexão de sessão.
- Sincronização: definir pontos de sincronização em diálogos possibilitando interrupções e retornos.

- Gerenciamento de atividades: permite que mensagens sejam divididas pelo usuário em unidades lógicas menores independentes (atividades).
- Relatório de exceções: caso ocorram problemas, estes podem ser relatados ao parceiro de um determinado usuário.

- É na camada de sessão também que se define o modo de transmissão (controle de diálogo), se este será Half-Duplex ou Full-Duplex.
- <u>Modos de transmissão</u>: são três os principais modos de transmissão da informação – Simplex, Half-Duplex ou Full-Duplex.

Simplex: nesse tipo de transmissão de dados, um dispositivo é o transmissor (também chamado de TX) e outro é o receptor (também chamado de RX), sendo que esse papel não se inverte, isto é, o dispositivo A é sempre o transmissor e o B é sempre o receptor. A transmissão de dados Simplex é, portanto, unidirecional. Exemplo: comunicação entre duas pessoas com uma lanterna utilizando o código Morse, supondo que o receptor não tenha como responder à mensagem enviada.

Modo de transmissão Simplex:

- <u>Half-Duplex</u>: esse tipo de transmissão de dados é bidirecional, mas por compartilharem um mesmo canal de comunicação, não é possível transmitir e receber dados ao mesmo tempo.
- Exemplo da transmissão half-duplex: comunicação usando um walkie-talkie (as duas pessoas podem conversar, mas uma só de cada vez). Tradicionalmente a comunicação em redes é do tipo halfduplex.

Modo de transmissão half-duplex: na figura abaixo, o dispositivo A transmite, ou então o B transmite; não há como os dois transmitirem simultaneamente.

 <u>Full-Duplex</u>: é a verdadeira transmissão de dados bidirecional. A e B podem transmitir e receber dados ao mesmo tempo. Exemplo de utilização: o aparelho telefônico.

Interatividade

Tomando como base que as primeiras soluções de redes de computadores adotavam a topologia de barramento, com o compartilhamento do meio físico, qual o modo de transmissão destas?

- a) Simplex.
- b) Half-Duplex.
- c) Full-Duplex.
- d) Paralela.
- e) Serial.

Resposta

Tomando como base que as primeiras soluções de redes de computadores adotavam a topologia de barramento, com o compartilhamento do meio físico, qual o modo de transmissão destas?

- a) Simplex.
- b) Half-Duplex.
- c) Full-Duplex.
- d) Paralela.
- e) Serial.

