Estructura de Computadores Curso 2018/2019 - Grupo: C

Ejercicio de memoria SDRAM

Nombre y apel	lidos:	_Vladyslav_Mazurkevych
Fecha:	_14/01/2019	

Ejercicio 1

Sea el chip de memoria DDR2, modelo MT47H256M8 de la casa Micron, de capacidad 256Mx8 bits. Internamente este chip está formado por 8 bancos con 1024 columnas cada uno. Los parámetros temporales del chip se indican a continuación (CL = CAS Latency):

		Símbolo	Mínimo	Unidades
Periodo de reloj	CL = 6	Tclk	2.5	ns
·	CL = 5	Tclk	3.0	ns
	CL = 4	Tclk	3.75	ns
Tiempo entre órdenes ACTIVE y	Tras	40	ns	
Tiempo entre órdenes ACTIVE y	Trc	55	ns	
Tiempo entre órdenes ACTIVE y	Trcd	15	ns	
Periodo de PRECHARGE	Trp	15	ns	

Indique:

1. El tamaño en bytes de cada banco del chip:

Tenemos 256MB de capacidad total, también sabemos que tenemos 8 bancos, dividiendo la capacidad total, sabremos la de cada banco: $256MB / 8 = 2^{8*} 2^{20} / 2^3 = 2^{5*} 2^{20} = 32MB$ cada banco del chip.

2. El número de filas de cada banco:

Partimos de la formula de P(capacidad) = B(banco)*C(columna)*F(fila) 256MB = 8 * 1024 * F 2²⁸ = 8 *1024 * F F = 2²⁸ / (8 * 1024) F = **32768** = **32K Filas**

3. El número de líneas de dirección que tiene el chip para seleccionar fila/columna y banco:

Bancos: tiene 8 bancos = 2^3 , por tanto 3 lineas para el banco. Filas: tiene 32768 filas > $\log_2(32768)$ = 15, por tanto tiene 15 lineas para las filas. Columnas: $1024 > 2^{10}$, por lo tanto tiene 10 lineas para las columnas.

Por tanto la solución es:

3 lineas para el banco.

15 lineas para filas/columnas (ya que se saca como el máximo entre filas y columnas)

4. La frecuencia máxima de funcionamiento de este chip:

trc=55ns es el tiempo de un ciclo.

$$F_{max} = 1/T_{ciclo} = 1/55ns = ...18.18...MHz$$

5. El ancho de banda máximo del chip:

$$B = \dots 2 * 18.18 * 1 = 36,36 MBps$$

6. Describa la temporización óptima para la lectura de un bloque de 8 palabras cuando el reloj es de 266 MHz. Indique en qué ciclo hay que dar la orden de precarga (precarga explícita) y en qué ciclo se puede iniciar una nueva lectura de un bloque en otra fila distinta del mismo banco

(Nota: Marque sobre la tabla los tiempos utilizados)

Para F=266 MHz

T = 1/f = 1000/266 = 3.759GHz

Entonces nos coincide con el inmediatamente inferior de la tabla CL4

- CL= 4 ciclos.
- $T_{RAS} = 11$ ciclos
- $T_{RC} = 15 \text{ ciclos}$
- $T_{RCD} = 4$ ciclos
- $T_{RP} = 4$ ciclos

Ciclo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Orden	Act	nop	nop	Rd	nop	nop	nop	nop	nop	nop	Pr	nop	nop	nop	Act				
Dir	Row			Col															
Datos								D1/	D3/	D5/	D7/								
								D2	D4	D6	D8								

7. Cuál sería la latencia de lectura resultante:

8. Con el reloj a 266 MHz, describa la temporización para concatenar de forma óptima la lectura de dos bloques de 8 palabras ubicados en la misma fila del mismo banco. Indique en qué ciclo hay que dar la orden de precarga (precarga explícita). (Nota: Marque sobre la tabla los tiempos utilizados)

Ciclo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Orden	Act	nop	nop	Rd	nop	nop	nop	nop	nop	nop	Pr	nop	nop	nop	Act					
Dir	Row			Col																
Datos								D1/	D3/	D5/	D7/									
								D2	D4	D6	D8									

Suponga que se quiere realizar un módulo estándar DIMM de 4 GB de capacidad utilizando chips DDR2 como el anterior. Indique:

9. Cuántos chips serían necesarios:

$$4GB/256MB = 2^{32}/2^{8*}2^{20} = 2^{4} = 16 \text{ chips}$$

10. La denominación estándar de este módulo sería PC2-XXX, indique el valor de XXX Antes de nada sabemos que tenemos un modulo de 4GB DIMM, con lo que tenemos 64b = W.

Como es una DDR, su PC se calculara como el ancho de banda, por lo cual, el ancho de banda de este chip será:

11. Indique la especificación temporal de este módulo (CL – TRCD – TRP – TRAS) en ciclos de reloj a la máxima frecuencia de funcionamiento.

• CL= 4 ciclos.

- $T_{RAS} = 11$ ciclos
- $T_{RC} = 15$ ciclos
- $T_{RCD} = 4$ ciclos
- $T_{RP} = 4$ ciclos