Nirma University Institute of Technology

Computer Science and Engineering Department

Course Policy Template

2CS501 Machine Learning [3 2 - 4]

B.Tech. (CSE)

Semester: V, Academic Year: 2021-22, Term: Odd

Course Code & Name	:	2CS501 - Machine Learning
<u>Credit Details</u>	:	4
Course Faculty	: Dr. Swati Jain (Course Coordinator)	
		Dr. Priyanka Sharma
		Dr. Rupal Kapdi
Contact No. & Email	:	swati.jain@nirmauni.ac.in
<u>Office</u>	:	New building 11 th Floor
Visiting Hours	:	Monday to Friday - 8:45 to 4:00,
		Saturday (Odd) - 8:45 to 4:45
Course Blog	:	https://ce623rak.wordpress.com/
Course Site	:	https://lms.nirmauni.ac.in/course/view.php?id=1031

Introduction to Course:

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us self-driving cars, practical speech recognition, effective web search, and a vastly improved understanding of the human genome.

Course Learning Outcomes:

At the end of the course, students will be able to -

- 1. comprehend statistical methods as basis of machine learning domain
- 2. apply and evaluate variety of learning algorithms for appropriate applications
- 3. implement machine learning techniques to solve problems in applicable domains

Program Outcomes: PO1: an ability to apply knowledge of mathematics, science and engineering

PO2 : an ability to identify, critically analyze, formulate and solve engineering problems with comprehensive knowledge in the area of specialization

PO3: an ability to select modern engineering tools and techniques and use them with appropriate skills

PO4: an ability to design a system and process to meet desired needs within realistic constraints such as health, safety, security and manufacturability

PO5: an ability to contribute by research and innovation to solve engineering problems

P06: an ability to understand the impact of engineering solutions in a contemporary, global, economical, environmental, and societal context for sustainable development

P07: an ability to function professionally with ethical responsibility as an individual as well as in multidisciplinary teams with positive attitude

PO8: an ability to communicate effectively

in practice

PO9 : an ability to appreciate the importance of goal setting and to recognize the need for life-long reflective learning

Program Specific Outcomes:

PSO 1: To apply the theoretical concepts of computer engineering and practical knowledge in analysis, design and development of computing systems and interdisciplinary applications

PSO 2: To work as a socially responsible professional by applying computer engineering principles and management practices

Program Educational Objectives:

PEO I: To prepare graduates who will be successful professionals in industry, government, academia, research, entrepreneurial pursuit and consulting firms.

PEO II: To prepare graduates who will contribute to society as broadly educated, expressive, ethical and responsible citizens with proven expertise.

PEO III: To prepare graduates who will achieve peer-recognition; as an individual or in a team; through demonstration of good analytical, design and implementation skills.

PEO IV: To prepare graduates who will thrive to pursue life-long learning to fulfill their goals.

Mapping of COs to POs and PSOs

	P01	P02	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	0
CO2	2	0	0	3	0	0	0	0	0	0	1	0	3	0
CO3	0	3	0	0	2	0	0	0	1	0	0	1	3	2

Syllabus

Syllabus:	Teaching Hours
Unit I	3
Introduction: Motivation and Applications, importance of Data Visualization, Basics of Supervised and Unsupervised Learning	
Unit II	14
Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques	
Unit III	10
Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees.	
Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick, Evaluation Measures for Classification Techniques	
Unit IV	9
Artificial Neural Networks: Biological Neurons and Biological Neural Networks, Perceptron Learning, Activation Functions, Multilayer Perceptrons, Back-propagation Neural Networks, Competitive Neural Networks	
Unit V	4
Clustering: Hierarchical Agglomerative Clustering, k-means Algorithm, Self-Organizing Maps	
Unit VI	5
Advanced Concepts: Basics of Semi-Supervised and Reinforcement Learning, Linear Discriminant Analysis, Introduction to Deep Learning	

${\bf Self\text{-}Study}:$

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on applications of above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Tom Mitchell, Machine Learning, TMH
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. Kishan Mehrotra, Chilukuri Mohan and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Athem Ealpaydin, Introduction to Machine Learning, PHI

<u>Component wise Continuous Evaluation & Semester End Examination weightage:</u>

									gnments		Clas s Test	Clas s Test			
			_					Тур	e (*)		-1	- II			Ter
Branc	Cours e	Cours e	Course Co- ordinat					Assignme	Assignme	W			No. of Practic		m End viva
h	Code	name	or	L	Т	Р	С	-	nt-2	Т	WT	WT	al	WT	-WT
CSE	2CS50 1	Machin e Learni ng	Dr. Swati Jain	3	-	2	4	1 Project		0.3	0.35	0.35	10	0.7 5	0.25

Course Code	2CS501	Semester	5	Year	2021	Credit	4
Lectures/we	3	Practicals/	2	Tutorials	0		
ek		week		/week			

Exam Weightag	<u>ge</u>	Exam Hours			
<u>CE</u>	<u>LPW</u>	<u>SEE</u>	<u>SEE</u>	<u>Practical</u>	
0.4	0.2	<u>0.4</u>	<u>3</u>	_	

Breakup of CE

	Unit 1	Unit 2	Unit 3
	Classtest-1	Classtest-2	Assignment
			Project
Inter Component	0.35	0.35	0.3
Weightage			

Lesson Plan

Sr.	Topics	Hours	CLOs
No			

1	Introduction:	[03]	CLO 1
	Theory and practices in machine learning	[01]	
	 Overview of machine learning along with its definition and 	[01]	
	its application area		
	 Types of machine learning techniques 		
	Significance of Model Training		
	Importance of Data Visualization	[01]	
2	Supervised learning for Prediction	[14]	CLO1, CLO2
	 Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method 	[05]	
	 Multiple Linear Regression, Non-Linear Regression 	[03]	
	 Linear Regression with Regularization, Hyper-parameters tuning 	[02]	
	 Importance of feature scaling 	[01]	
	 Loss Functions 	[02]	
	 Evaluation Measures for Regression Techniques 	[01]	
2	Unsupervised Learning : Clustering	[05]	CLO 1, CLO
	K-nearest Neighbor Classification	[01]	2
	K-means Clustering	[02]	
	Fuzzy - C means Clustering	[02]	
	Density Based Clustering		
3	Classification Techniques	[10]	CLO1, CLO2
	Naïve Bayes Classification	[01]	
	 Fitting Multivariate Bernoulli Distribution, 	[02]	
	Gaussian Distribution and Multinomial Distribution	[02]	
	K-Nearest Neighbours	[01]	
	• Decision trees: ID3,C4.5, CART	[02] [02]	
	 Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick, Evaluation Measures for Classification Techniques 	[02]	
4	Artificial Neural Networks	[09]	CLO1, CLO2
''	Biological Neurons and Networks	[01]	
	Artificial Neuron Model	[01]	
	 At thicked Neuron Model Activation Functions (Linear, step, ramp, log sigmoid and 	[01]	
	tan sigmoid, ReLU, Leaky ReLU)	[~~]	
	Architectures of ANN	[01]	
	Linear Separability	[01]	
	Feed Forward ANN	[01]	
	Back Propagation	[02]	
	 Various Loss Functions (Binary and Categorical cross- 	[01]	
	entropy)	_	
5	Unsupervised Learning: Clustering	[04]	CLO1,CLO2
	K-means Clustering	[01]	
	Fuzzy - C means Clustering	[02]	
	Expectation Maximization	[01]	
	——————————————————————————————————————		

6	Advanced Concepts	[05]	CLO1,CLO2
	 Basics of Semi-Supervised and Reinforcement Learning 	[02]	
	Linear Discriminant Analysis		
	 Introduction to Deep Learning 	[01]	
	·	[02]	
	Total	45	

List of Practical

Sr.	Week	List of Experiments	Mapped			
NO.	No.		with CO			
1	1	Introduction to Python and Numpy (2 Hrs)*	3			
2	2	Introduction to Pandas, Matplotlib and Sklearn (2 Hrs) *	3			
3	3,4 Simple and Multiple Linear Regression using Gradient Descent & Normal Equation Method (without using sklearn or equivalent library for both) (4 Hrs)					
4	Linear Regression with Regularization (without using sklearn or equivalent library) and Simple and Multiple Linear Regression with and without regularization using Sklearn (2 Hrs)					
5	6	Naïve-Bayes – Multivariate Bernoulli, Multinomial and Gaussian using sklearn (2 Hrs)	3			
6	7	Decision Trees – ID3, C4.5 using sklearn (2 Hrs)	3			
7	8	Support Vector Classification and Regression with Grid Search for Hyper-parameter tuning using sklearn (2 Hrs)	3			
8	9	AND gate using Perceptron Learning (self-implementation) (2 Hrs)	3			
9	10,11	Ex-OR Gate/any other problem using Backpropagation Neural Networks (self-implementation) (4 Hrs)	3			
10	12	Backpropagation Neural Network and K-means using sklearn (2 Hrs)	3			
11	13,14,15	Reinforcement Learning for some game. (self-implementation) (6 Hrs)	3			
		Total	30			

Note: Practical 1 and 2 are of 5 marks, each of the rest is of 10 marks.

- * Those who are already good at Python, Numpy, Pandas, Matplotlib and Sklearn, they can perform following 2 practical instead:
- 1. Use pytesseract library in Python for optical character recognition from (i) an image file (ii) a multi-page pdf file
- 2. Download financial report of some company in a pdf format. Using Tabula library in Python extract multiple tables from the financial report and save each table in a separate csv file. Repeat the entire task using Camelot library.

1. Course Assessment Schemes

(Course with Laboratory component)

Assessment scheme		СЕ		SEE
Component weightage		0.6		0.4
	Quiz 30%	Exhaustive Evaluation 40%	Assignment 30%	

Teaching-learning methodology: (Proposed)

Lectures: Use of Black board, PPT, Discussion, Case Studies

• Practical: Use of python for implementing and doing

Active learning techniques:(Proposed)

- Flipped classroom
- Active discussions

Types of Special/Innovative Assignments, Term Papers, mini Projects etc.

- Satellite image classification using feature extraction
- Deep feature Based image classification
- Reinforcement learning for robotic arm.

Course Material: (In the website)

- Course Policy
- PPTs, Notes, other Material
- Assignments, Tutorials, Lab Manuals
- Question bank
- Web-links, Blogs, Video Lectures, Journals
- Animations / Simulations, Software
- Advanced topics
- Industries/Organizations

Course Outcome Attainment:

- Use of formal evaluation components of continuous evaluation, laboratory work, semester end examination.
- Informal feedback during course conduction.