

- A VPC network is a global resource which consists of a list of regional virtual subnetworks (subnets) in data centers
- They are all connected by a global wide area network.
- VPC networks are logically isolated from each other in GCP.
- All Compute Engine VM instances, GKE clusters, and App Engine Flex instances rely on a VPC network for communication.
- The network connects the resources to each other and to the Internet.



#### Global

- Single VPC across all regions
- No cross region VPNs required
- No peering of regional VPCs required

#### Shareable

- Single shared VCP
- Firewalls, Routes, VPN configured once
- Private IP space managed centrally

#### Private

- Private access to Google APIs
- No need for public lps to access Google services



#### Secure

- Encryption of data in transit
- Cloud Armor secure the VPC perimeter
- Distributed firewalls

#### Scalable

- Distributed network
- No choke points

#### Performance

- High bandwidth and availability
- Andromeda control plane
- Support for Kubernetes via GKE



# WHO WAS TO A CONCEPTS

- VPC networks and their associated routes/firewall rules, are global resources - not associated with any particular region or zone.
- A network must have at least one subnet before you can use it.
- Subnets are regional resources. Each subnet defines a range of IP addresses.
- When you create an instance or resource you select a zone, a network, and a subnet.
- GCP assigns the instance an IP address from the range of available addresses in the subnet.
- Traffic to and from instances can be controlled with network firewall rules.

# WHO WE CONCEPTS





## SUBNET CREATION MODE

- GCP offers two types of VPC networks auto mode and custom mode
- When an auto mode network is created, one subnet from each region is automatically created within it's predefined IP ranges and new subnets are added when new regions become available
- Each project starts with a default auto mode network.
- The predefined IP ranges of the subnets do not overlap with IP ranges you would use for different purposes (except for manually added ones)
- When a custom mode network is created, no subnets are automatically created.
- This type of network provides you with complete control over its subnets and IP ranges.
- You decide which subnets to create, in regions you choose, and using IP ranges you specify.



### DEMO: CREATING AN AUTO MODE NETWORK

- 1. Go to the VPC networks page in the Google Cloud Platform Console.
- 2. Click Create VPC network.
- 3. Enter a Name for the network.
- 4. Choose Automatic for the Subnet creation mode.
- 5. In the Firewall rules section, select one or more predefined firewall rules that address common use cases for connectivity to VMs. (Or no rules).
- 6. Choose the Dynamic routing mode for the VPC network.
- 7. For more information, see dynamic routing mode. You can change the dynamic routing mode later.
- 8. Click Create.



## SUBNETS AND IP RANGES

- When you create a subnet, you must define a primary IP address range and optionally up to five secondary IP address ranges
- Primary IP address range: These IP addresses can be used for VM primary internal IP addresses, VM alias IP addresses, and the IP addresses of internal load balancers.
- Secondary IP address ranges: These IP address ranges are used only for alias IP addresses.
- **Reserved Ips**: Every subnet has four reserved IP addresses in its primary IP range (no reserved IP addresses in the secondary IP ranges) e.g. 10.1.2.0/24
  - Network: First address in the primary IP range 10.1.2.0
  - Default Gateway: Second address in the primary IP range 10.1.2.1
  - Second-to-last Reservation: Second-to-last address range 10.1.2.254
  - Broadcast: Last address in the primary IP range 10.1.2.255



#### Listing and describing subnets

- 1. Go to the VPC networks page in the Google Cloud Platform Console.
- 2. Click the name of a network then click the **Subnets** tab on the **VPC network details** page to view subnets for just that network, instead of for all networks.
- To focus on subnets for a particular network, click the name of a network. On its VPC network details page, click the name of a subnet in the **Subnets** tab to view its Subnet details page.

#### Adding subnets

- 1. Click the name of a VPC network to show its VPC network details page.
- 2. Click Add subnet. In the panel that appears: Provide a Name, select a Region.
- 3. Enter an IP address range.
- 4. To define a secondary range for the subnet, click Create secondary IP range.
- 5. Private Google access: You can enable Private Google Access for the subnet when you create it or later by editing it.
- 6. Flow logs: You can enable VPC flow logs for the subnet when you create it or later by editing it.
- 7. Click Add.



### INTERFACES AND IP ADDRESSES

#### IP addresses

GCP resources, such as Compute Engine VM instances, forwarding rules, GKE containers, and App Engine, rely on IP addresses to communicate.

#### Alias IP ranges

- You can give each service a different internal IP address using Alias IP Ranges for multiple services.
- The VPC network forwards packets destined for each configured alias IP to the corresponding VM.

#### Multiple Network Interfaces

- You can add multiple network interfaces to a VM instance
- Each interface resides in a unique VPC network.
- Multiple network interfaces enable a network appliance VM to act as a gateway for securing traffic among different VPC networks or to and from the Internet.



## MULTIPLE NETWORK INTERFACES



# ROUTES

- Routes define paths for packets leaving instances (egress traffic).
- Every new network starts with two types of system-generated routes:
  - The default route defines a path for traffic to leave the VPC network, provides general Internet access to VMs and provides the typical path for Private Google Access
  - A subnet route is created for each of the IP ranges associated with a subnet.
  - Every subnet has at least one subnet route for its primary IP range, and additional subnet routes are created for a subnet if you add secondary IP ranges to it.
  - Subnet routes define paths for traffic to reach VMs that use the subnets.
- Each VPC network has an associated *dynamic routing mode* that controls the behavior of all of its Cloud Routers.

# FIREWALL RULES

- Firewall rules apply to both outgoing (egress) and incoming (ingress) traffic in the network.
- Firewall rules control traffic even if it is entirely within the network, including communication among VM instances.
- Every VPC network has two implied firewall rules One rule allows most egress traffic, and the other denies all ingress traffic.
- For one instance to be able to communicate with another, appropriate firewall rules must also be configured because of the implied deny firewall rule for ingress traffic.
- For an instance to have outgoing Internet access, Firewall rules must allow egress traffic from the instance and it must have an external IP address.



## HYBRID CLOUD & LOAD BALANCING

#### **VPN**

 Allows you to connect your VPC network to your physical, on-premises network or another cloud provider using a secure Virtual Private Network.

#### Interconnect

 Allows you to connect your VPC network to your on-premises network using a high speed physical connection.

### Load balancing

- Global external load balancing, including HTTP(S) load balancing, SSL Proxy, and TCP Proxy offerings.
- Regional, external network load balancing
- Regional internal load balancing

## VPC SHARING AND PEERING

#### Shared VPC

- You can share a VPC network from one project (called a host project) to other projects in your GCP organization.
- You can grant access to entire Shared VPC networks or select subnets

### VPC Network Peering

- Allows you to build SaaS ecosystems in GCP, making services available privately across different VPC networks
- The networks can be in the same project, different projects, or projects in different organizations.
- With VPC Network Peering, all communication happens using private, IP addresses. Subject to firewall rules



## VPC SHARING AND PEERING



## Enable a host project and attach service projects

- 1. Go to the Shared VPC page in the Google Cloud Platform Console.
- 2. Select the project you want to enable as a Shared VPC host project from the project picker.
- 3. Click Set up Shared VPC.
- 4. On the next page, click Save & continue under Enable host project.
- 5. Under Select subnets Click Share all subnets (project-level permissions)
- 6. Click Continue.
  - In Project names, specify the service projects to attach to the host project.
- 7. In the **Select users by role** section, add Service Project Admins.
- 8. Click Save.