Linear Algebra-A

Assignments - Week 13

Supplementary Problem Set

1. Suppose there exist a 3×3 matrix A and a 3-dimensional column vector x such that the set of vectors x, Ax, A^2x are linearly independent, and

$$A^3x = 3Ax - 2A^2x$$

- (1) Let $P = [x, Ax, A^2x]$. Find a matrix B, such that $A = PBP^{-1}$.
- (2) Compute the determinant $|A^2 + A + I|$.

[Hint: You may use the following fact:

Please show that if $P^{-1}AP = B$, then $P^{-1}f(A)P = f(B)$, i.e., if A is similar to B, then f(A) is similar to f(B), where f(x) is a polynomial of degree n: $f(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$, and $a_n, a_{n-1}, \cdots a_1, a_0$ are constants.

Please prove it before applying it.

 λ_0 .

- 2. Suppose $\mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$, and \mathbf{A} is similar to \mathbf{B} . Find a, b and an invertible matrix \mathbf{S} , such that $\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \mathbf{B}$.
- 3. Suppose $A = \begin{bmatrix} 1 & -2 & -1 \\ -a & a & -a \\ -1 & 2 & 1 \end{bmatrix}$ cannot be diagonalized (不能相似对角化), please find the value of a.
- 4. If $\mathbf{A} = \begin{bmatrix} a & -1 & c \\ 5 & b & 3 \\ 1 c & 0 & -a \end{bmatrix}$, and the determinant of $|\mathbf{A}| = -1$. The matrix \mathbf{A}^* (A的伴随矩阵) has an eigenvector $\mathbf{x} = (-1, -1, 1)^{\mathrm{T}}$ corresponding to it eigenvalue λ_0 . Find a, b, c and

5. (1) Find an orthogonal matrix Q (and a unitary matrix U) to diagonalize the following matrix A (and B):

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & -1 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 1 & 0 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & -i & 0 \\ i & 1 & i \\ 0 & -i & 0 \end{bmatrix}.$$

(2) Find all the eigenvalues of the matrix $\mathbf{C} = \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}$, and a unitary matrix to diagonalize \mathbf{C} .

[Hint: You may use the following fact:

For a block matrix

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{C}_{21} & \mathbf{C}_{22} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_{m1} & \mathbf{C}_{m2} & \cdots & \mathbf{C}_{mm} \end{bmatrix}, \text{ (the block } \mathbf{C}_{ii} \text{ is a matrix of order } r_i)$$

the eigenvalues of C come from the union set of the eigenvalues of C_{ii} ($i=1,2,\cdots,m$).

Please prove it before applying it.

$$|\lambda I - C| = |\lambda I - A| = |\lambda I - A| = |\lambda I - A| |\lambda I - B|$$

 $= (\lambda - D^{2}(\lambda + 3)(\lambda + 1)(\lambda - 2)\lambda$