estas ideas. Consideremos la función concreta $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = -1 si $x \leq 0$ y f(x) = 1 si x > 0. La gráfica de f se muestra en la Figura 2.2.12(a). El pequeño círculo blanco denota el hecho de que el punto (0, 1) no está en la gráfica de f. Claramente, la gráfica de f se interrumpe en f = 0. Consideremos también la función f: f = f

Si examinamos ejemplos de funciones como f, cuyas gráficas se interrumpen en algún punto x_0 y funciones como g, cuyas gráficas no se interrumpen, vemos que la principal diferencia entre ellas es que para una función como g, los valores de g(x) se aproximan a $g(x_0)$ cuando x se acerca más y más a x_0 . La misma idea es aplicable a funciones de varias variables. Pero la noción de más y más cerca no es suficiente como definición matemática; por tanto, formularemos estos conceptos de forma precisa en términos de límites.

Ya que la condición $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$ significa que $f(\mathbf{x})$ está cerca de $f(\mathbf{x}_0)$ cuando \mathbf{x} está cerca de \mathbf{x}_0 , vemos que esta condición de límite coincide ciertamente con el requisito de la no interrupción de la gráfica

Figura 2.2.12 La función f de la parte (a) no es continua porque su valor salta cuando x cruza el punto 0, mientras que la función g de la parte (b) es continua.

Figura 2.2.13 (a) Función discontinua en la que $\lim_{x\to x_0} f(x)$ no existe. (b) Función continua en la que el límite existe y es igual a $f(x_0)$.