Cliques and Independent Sets

Alexander Golovnev

Outline

Graph Cliques

Cliques and Independent Sets

Connections to Coloring

Mantel's Theorem

Outline

Graph Cliques

Cliques and Independent Sets

Connections to Coloring

Mantel's Theorem

 A Clique of a graph is a set of vertices such that every two vertices are connected by an edge.

- A Clique of a graph is a set of vertices such that every two vertices are connected by an edge.
- A Maximal Clique is a clique which is not contained in any other clique (i.e., cannot be extended to a larger clique).

- A Clique of a graph is a set of vertices such that every two vertices are connected by an edge.
- A Maximal Clique is a clique which is not contained in any other clique (i.e., cannot be extended to a larger clique).
- A Maximum Clique is a clique such that there are no cliques with more vertices.

- A Clique of a graph is a set of vertices such that every two vertices are connected by an edge.
- A Maximal Clique is a clique which is not contained in any other clique (i.e., cannot be extended to a larger clique).
- A Maximum Clique is a clique such that there are no cliques with more vertices.
- The Clique Number $\omega(G)$ of a graph G is the number of vertices in its maximum clique.

A Clique

A Clique

Not a Maximal Clique

A Maximal
Clique: cannot be extended to
a larger
clique

A Maximum Clique:

there are no cliques with more than 4 vertices

 An Independent Set (IS) of a graph is a set of vertices such that no two vertices are connected by an edge.

- An Independent Set (IS) of a graph is a set of vertices such that no two vertices are connected by an edge.
- A Maximal Independent Set is an IS which is not contained in any other IS (i.e., cannot be extended to a larger IS).

- An Independent Set (IS) of a graph is a set of vertices such that no two vertices are connected by an edge.
- A Maximal Independent Set is an IS which is not contained in any other IS (i.e., cannot be extended to a larger IS).
- A Maximum Independent Set is an IS such that there are no IS's with more vertices.

- An Independent Set (IS) of a graph is a set of vertices such that no two vertices are connected by an edge.
- A Maximal Independent Set is an IS which is not contained in any other IS (i.e., cannot be extended to a larger IS).
- A Maximum Independent Set is an IS such that there are no IS's with more vertices.
- The Independence Number $\alpha(G)$ of a graph G is the number of vertices in its maximum IS.

An IS

An IS

Not a Maximal IS

A Maximal
IS: cannot be extended to a
larger IS

Independent Sets: Examples

A Maximum IS: there are no IS's with more than 4 vertices

Cliques and IS's

Cliques and IS's

Cliques and IS's

Outline

Graph Cliques

Cliques and Independent Sets

Connections to Coloring

Mantel's Theorem

Theorem

For every graph G on n vertices it holds that:

$$\chi(G) \cdot \alpha(G) \geq n$$
.

Theorem

For every graph G on n vertices it holds that:

$$\chi(G) \cdot \alpha(G) \geq n$$
.

Proof:

• *n* vertices can be partitioned into $\chi(G)$ IS's

Theorem

For every graph G on n vertices it holds that:

$$\chi(G) \cdot \alpha(G) \geq n$$
.

- *n* vertices can be partitioned into $\chi(G)$ IS's
- Each IS is of size $\leq \alpha(G)$

Theorem

For every graph G on n vertices it holds that:

$$\chi(G) \cdot \alpha(G) \geq n$$
.

- *n* vertices can be partitioned into $\chi(G)$ IS's
- Each IS is of size $\leq \alpha(G)$
- Therefore, $n \le \chi(G) \cdot \alpha(G)$

Outline

Graph Cliques

Cliques and Independent Sets

Connections to Coloring

Mantel's Theorem

Theorem

If a graph G on n vertices contains no triangles, then it has at most $\lfloor n^2/4 \rfloor$ edges.

Theorem

If a graph G on n vertices contains no triangles, then it has at most $\lfloor n^2/4 \rfloor$ edges.

Proof:

Induction on n

Theorem

If a graph G on n vertices contains no triangles, then it has at most $\lfloor n^2/4 \rfloor$ edges.

- Induction on n
- Base cases. n = 1, 2: trivial

Theorem

If a graph G on n vertices contains no triangles, then it has at most $\lfloor n^2/4 \rfloor$ edges.

- Induction on n
- Base cases. n = 1, 2: trivial
- Induction hypothesis. Holds for all graphs of size $\leq n-2$

Theorem

If a graph G on n vertices contains no triangles, then it has at most $\lfloor n^2/4 \rfloor$ edges.

- Induction on n
- Base cases. n = 1, 2: trivial
- Induction hypothesis. Holds for all graphs of size < n-2
- Induction step will prove the statement for all graphs of size $\leq n$. Step of size 2, this is why we did base cases for n = 1, 2

 Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v
- By Induction Hypothesis, H has at most $|(n-2)^2/4|$ edges

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v
- By Induction Hypothesis, H has at most $|(n-2)^2/4|$ edges
- The number of edges in G is

$$\leq \lfloor (n-2)^2/4 \rfloor + (n-1)$$

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v
- By Induction Hypothesis, H has at most $|(n-2)^2/4|$ edges
- The number of edges in G is

$$\leq \lfloor (n-2)^2/4 \rfloor + (n-1)$$

= $\lfloor (n^2 - 4n + 4)/4 \rfloor + (n-1)$

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v
- By Induction Hypothesis, H has at most $|(n-2)^2/4|$ edges
- The number of edges in G is

$$\leq \lfloor (n-2)^2/4 \rfloor + (n-1)$$

$$= \lfloor (n^2 - 4n + 4)/4 \rfloor + (n-1)$$

$$= \lfloor n^2/4 \rfloor - (n-1) + (n-1)$$

- Pick a pair of connected vertices u, v. Then deg(u) + deg(v) ≤ n
- Let H be G without u and v
- By Induction Hypothesis, H has at most $|(n-2)^2/4|$ edges
- The number of edges in G is

$$\leq \lfloor (n-2)^2/4 \rfloor + (n-1)$$

$$= \lfloor (n^2 - 4n + 4)/4 \rfloor + (n-1)$$

$$= \lfloor n^2/4 \rfloor - (n-1) + (n-1)$$

$$= \lfloor n^2/4 \rfloor$$

Turán's Theorem

Theorem

If a graph G on n vertices contains no K_{r+1} , then it has at most $\left(1 - \frac{1}{r}\right) \frac{n^2}{2}$ edges.

Turán's Theorem

Theorem

If a graph G on n vertices contains no K_{r+1} , then it has at most $\left(1 - \frac{1}{r}\right) \frac{n^2}{2}$ edges.

Tight Example: $K_{n/r,...,n/r}$

