# Probability Distributions

# (Discrete) Uniform

Each integer value in a specified range is assigned the same value.

 $\text{lower bound } a \in \mathbb{Z},$ 

upper bound  $b \in \mathbb{Z}$  s.t. a < b

Possible values  $\{a, a+1, \dots, b-1, b\}$ 

Notation U(a,b)

Probability function  $p(x) = \frac{1}{b-a+1}$ 

Expectation  $\frac{a+b}{2}$ 

Variance  $\frac{(b-a)(b-a+2)}{12}$ 

MGF  $M(t) = \frac{1}{b-a+1} \sum_{k=a}^{b} e^{kt}$ 

Kernel



### Bernoulli

Represents the success of a single experiment as a binary outcome.

Parameters probability of success  $0 \le p \le 1$ 

Possible values  $\{0,1\}$ Notation Bern (p)

Probability function  $p(x) = p^x (1-p)^{1-x}$ 

Expectation p

Variance p(1-p)

 $M(t) = 1 + p(e^t - 1)$ 

Kernel  $p^x(1-p)^{-x}$ 



#### Binomial

Represents the number of successes in a fixed number of independent and repeated trials of the same Bernoulli experiment.



number of trials  $n \in \mathbb{N}$ ,

probability of success on a single trial

 $0 \leq p \leq 1$ 

Possible values  $\{0,1,2,\ldots,n\}$ 

Notation Bin(n, p)

Probability function  $p(x) = \binom{n}{x} p^x (1-p)^{n-x}$ 

Expectation np

Variance np(1-p)

MGF  $M(t) = \left[1 + p\left(e^t - 1\right)\right]^n$ 

Kernel  $\binom{n}{x}p^x(1-p)^{-x}$ 

#### **Related Distributions**

• If  $X \sim \text{Bin}(n, p)$ , then

$$X = \sum_{i=1}^{n} X_i,$$

where the  $X_i \sim \text{Bern}(p)$  independently.

# Hypergeometric

Represents the number of when drawing a fixed number of samples from a population containing a known number of successes.



size of population  $N \in \mathbb{N}$ ,

Parameters number of successes in population 
$$k \in$$

 $\mathbb{N}$ ,

number of samples drawn  $n \in \mathbb{N}$ 

Notation Hypergeometric (N, k, n)

Probability function  $p(x) = \frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}}$ 

Expectation  $\frac{nk}{N}$ 

Variance  $n\left(\frac{k}{N}\right)\left(\frac{N-k}{N}\right)\left(\frac{N-n}{N-1}\right)$ 

MGF No useful expression

Kernel  $\binom{k}{x}\binom{N-k}{n-x}$ 



#### Poisson

Represents the number of events occuring in a fixed interval.

Possible values  $\{0, 1, 2, \ldots\}$ 

Parameters average number of events in interval

 $\lambda > 0$ ,

Notation  $Po(\lambda)$ 

Probability function  $p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$ 

Expectation  $\lambda$ 

Variance  $\lambda$ 

 $M(t) = e^{\lambda (e^t - 1)}$ 

Kernel  $\frac{\lambda^x}{x!}$ 



#### Geometric

Represents the number of failed Bernoulli trials preceeding the first success.

Parameters probability of success on a single trial

 $0 \le p \le 1$ ,

Possible values  $\{0, 1, 2, \ldots\}$ 

Notation Geom(p)

Probability function  $p(x) = (1-p)^x p$ 

Expectation  $\frac{1-p}{p}$ Variance  $\frac{1-p}{n^2}$ 

MGF  $M(t) = \frac{p}{1 - (1 - p)e^t}$  for  $t < -\ln(1 - p)$ 

Kernel  $(1-p)^x$ 



# Geometric (alternative)

Represents the position of the first success in a sequence of Bernoulli trials.

Parameters probability of success on a single trial

 $0 \le p \le 1$ ,

 $\{1, 2, \ldots\}$ Possible values

Geom(p)Notation

Probability function  $p(x) = (1-p)^{x-1}p$ 

Expectation Variance

 $M(t) = \frac{pe^t}{1 - (1 - p)e^t}$  for  $t < -\ln(1 - p)$ MGF

 $(1-p)^{x}$ Kernel



# **Negative Binomial**

Represents the number of Bernoulli trials preceding the rth success.

number of desired successes  $r \in \mathbb{N}$ , Parameters

probability of success on a single trial

 $0 \le p \le 1$ ,

 $\{r, r + 1, \ldots\}$ Possible values

Notation NB(r, p)

Probability function  $p(x) = {x-1 \choose r-1} (1-p)^{x-r} p^r$ 

Expectation

 $\frac{\frac{r}{p}}{r(1-p)}$ Variance

 $M(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r \text{ for } t < -\ln p$ MGF

 $\binom{x-1}{r-1}(1-p)^x$ Kernel



#### Related Distributions

• If  $X \sim NB(r, p)$ , then

$$X = \sum_{i=1}^{n} X_i,$$

where the  $X_i \sim \text{Geom}(p)$  independently.

# Negative Binomial (Alternative)

Represents the number of failures preceeding the rth success in a sequence of Bernoulli trials.



probability of success on a single trial

 $0 \le p \le 1$ ,

Possible values  $\{0, 1, 2, \ldots\}$ 

NB(r, p)Notation

 $p(x) = {x+r-1 \choose x} (1-p)^x p^r$ Probability function

Expectation Variance

 $p(x) = \binom{x}{x} (1-p) p$   $\frac{r(1-p)}{p}$   $\frac{r(1-p)}{p^2}$   $M(t) = \left[\frac{p}{1-(1-p)e^t}\right]^r \text{ for } t < -\ln p$   $\binom{x+r-1}{x} (1-p)^x$ MGF

Kernel



# Continuous

# (Continuous) Uniform

Each value in a specified interval has the same probability density.

Parameters lower bound  $a \in \mathbb{R}$ ,

upper bound  $b \in \mathbb{R}$  s.t. a < b

Possible values (a, b)

Notation U(a, b)

Probability density function  $f(x) = \frac{1}{b-a}$ 

Cumulative distribution function  $F(x) = \begin{cases} 0, & \text{if } x \leq a, \\ \frac{x-a}{b-a}, & \text{if } a < x < b, \\ 1, & \text{if } b \leq x. \end{cases}$ 

Expectation  $\frac{a+b}{2}$  Variance  $\frac{(b-a)^2}{12}$ 

MGF  $M(t) = \begin{cases} 1, & \text{if } t = 0, \\ \frac{e^{tb} - e^{ta}}{t(b-a)}, & \text{if } t \neq 0. \end{cases}$ 

Kernel



# Exponential

Represents the waiting time until an event occurs.

Parameters rate of events  $\lambda > 0$ 

Possible values  $(0, \infty)$ Notation  $\operatorname{Exp}(\lambda)$ 

Probability density function  $f(x) = \lambda e^{-\lambda x}$ 

Cumulative distribution function  $F(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ 1 - e^{-\lambda x}, & \text{if } x > 0. \end{cases}$ 

Expectation  $\frac{1}{\lambda}$  Variance  $\frac{1}{12}$ 

MGF  $M(t) = \frac{\lambda}{\lambda - t}$  for  $t < \lambda$ 

Kernel  $e^{-\lambda x}$ 



# Exponential (Alternative)

Characterised by average time until the first event  $\beta = 1/\lambda$ .

Parameters average time until event  $\beta > 0$ 

Possible values  $(0, \infty)$ Notation  $\exp(\beta)$ 

Probability density function  $f(x) = \frac{1}{\beta}e^{-\frac{x}{\beta}}$ 

Cumulative distribution function  $F(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ 1 - e^{-\frac{x}{\beta}}, & \text{if } x > 0. \end{cases}$ 

Expectation  $\beta$ Variance  $\beta^2$ 

MGF  $M(t) = \frac{1}{1-\beta t}$  for  $t < \frac{1}{\beta}$ 

Kernel  $e^{-\frac{x}{\beta}}$ 



#### Gamma

Generalisation of the exponential distribution. For integer shape parameter, represents the waiting time until the rth event.

shape r > 0Parameters scale  $\lambda > 0$ 

Possible values  $(0,\infty)$ 

Gamma(a, b)Notation

 $f(x) = \frac{\lambda^r}{\Gamma(r)} x^{r-1} e^{-\lambda x}$ Probability density function Cumulative distribution function no simple expression

Expectation Variance

 $\begin{aligned} &\frac{r}{\lambda^2}\\ &M(t) = \left(\frac{\lambda}{\lambda - t}\right)^r \text{ for } t < \lambda\\ &x^{r-1}e^{-\lambda x} \end{aligned}$ MGF

Kernel



# **Properties**

• If  $X \sim \text{Gamma}(r, \lambda)$ , then for any k > 0,  $kX \sim \text{Gamma}(r, \frac{\lambda}{k})$ 

# Related Distributions

• If  $r \in \mathbb{N}$  and  $X \sim \text{Gamma}(r, \lambda)$ , then

$$X = \sum_{i=1}^{n} X_i,$$

where  $X_i \sim \text{Exp}(\lambda)$  independently.

• If  $X \sim \chi_r^2$ , then  $X \sim \text{Gamma}\left(\frac{r}{2}, \frac{1}{2}\right)$ .

#### Beta

Represents a random variable which is positive and bounded. Useful for modelling proportions and percentages.

Parameters shape  $\alpha > 0$ 

shape  $\beta > 0$ 

Possible values (0,1)

Notation Beta (a, b)

Probability density function  $f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$ 

Cumulative distribution function no simple expression

Expectation  $\frac{\alpha}{\alpha+\beta}$ 

Variance  $\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$ 

MGF exists but no simple expression

Kernel  $x^{\alpha-1}(1-x)^{\beta-1}$ 



# Related Distributions

- If  $X \sim \text{Gamma}(\alpha, \lambda)$  and  $Y \sim \text{Gamma}(\beta, \lambda)$  independently, then  $\frac{X}{X+Y} \sim \text{Beta}(\alpha, \beta)$ .
- The Beta distribution can be generalised to any bounded interval [a, b], with properties

# Normal

The classic bell-shaped curve.

Parameters  $\max \, \mu \in \mathbb{R}$ 

variance  $\sigma^2 > 0$ 

Possible values  $\mathbb{R}$ 

Notation  $\mathcal{N}\left(\mu,\sigma^2\right)$ 

Probability density function  $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ 

Cumulative distribution function no simple expression

Expectation  $\mu$ 

Variance  $\sigma^2$ 

MGF  $e^{\mu t + \frac{\sigma^2 t^2}{2}}$ 

Kernel  $e^{-rac{(x-\mu)^2}{2\sigma^2}}$ 



$$\chi^2$$

The sum of the squares of n independent standard normal random variables.

Parameters degrees of freedom  $n \in \mathbb{N}$ 

Possible values  $(0,\infty)$  if n=1;  $[0,\infty)$  otherwise

Notation

Probability density function

 $f(x) = \frac{1}{2^{n/2} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}$   $F(x) = \begin{cases} 0, & \text{if } x \le 0, \\ \frac{1}{\Gamma(\frac{n}{2})} \int_0^{x/2} t^{\frac{n}{2} - 1} e^{-\frac{t}{2}} dt. & \text{if } x > 0 \end{cases}$ Cumulative distribution function

Expectation

Variance 2n

 $(1-2t)^{-\frac{n}{2}}$ MGF $x^{\frac{n}{2}-1}e^{-\frac{x}{2}}$ Kernel



# Related Distributions

• If 
$$X \sim \chi_n^2$$
, then

$$X = \sum_{i=1}^{n} Z_i^2,$$

where  $Z_i \sim \mathcal{N}(0,1)$  independently.

- If  $X \sim \chi_r^2$ , then  $X \sim \text{Gamma}\left(\frac{r}{2}, \frac{1}{2}\right)$ .
- If  $Y \sim F_{\nu_1,\nu_2}$ , then  $\lim_{\nu_2 \to \infty} \nu_1 Y \sim \chi^2_{\nu_1}$ .

# Cauchy

The ratio of two independent, identically distributed and central normal random variables.

The sum of the squares of n independent standard normal random variables.



scale 
$$\sigma > 0$$

Possible values 
$$\mathbb{R}$$

Notation Cauchy 
$$(\mu, \sigma)$$

Probability density function 
$$f(x) = \frac{1}{\pi \sigma \left(1 + \frac{2(x-\mu)}{\sigma}\right)}$$

Cumulative distribution function 
$$F(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-\mu}{\sigma}\right), & \text{if } x > 0 \end{cases}$$



# Related Distributions

- If  $Z_1, Z_2 \sim \mathcal{N}(0, 1)$  independently, then  $Z_1/Z_2 \sim \text{Cauchy}(0, 1)$ .
- If  $X \sim \text{Cauchy}(\mu, \sigma)$  then  $X \sim t_n(\mu, \sigma)$ .

t

The ratio of a standard normal random variable and  $\chi^2$  random variable.

location  $\mu \in \mathbb{R}$ 

Parameters scale  $\sigma > 0$ 

degrees of freedom  $\nu \in \mathbb{N}$ 

Possible values  $(0, \infty)$  if n = 1;  $[0, \infty)$  otherwise

Notation  $t_n(\mu, \sigma^2)$ 

Probability density function  $f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sigma\sqrt{\pi\nu}} \left[ 1 + \frac{1}{\nu} \left( \frac{x-\mu}{\sigma} \right)^2 \right]^{-\frac{\nu+1}{2}}$ 

Cumulative distribution function no simple expression

 $\begin{array}{ll} \text{Expectation} & \mu \text{ for } \nu \geq 2 \\ & \text{Variance} & \frac{\sigma^2 \nu}{\nu-2} \text{ for } \nu \leq 3 \\ & \text{MGF} & \text{does not exist} \end{array}$ 

MGF does not exist  $\left[ 1 + \frac{1}{\nu} \left( \frac{x - \mu}{\sigma} \right)^2 \right]^{-\frac{\nu + 1}{2}}$  Kernel

# Related Distributions

• If  $Z \sim \mathcal{N}\left(0,1\right)$  and  $W \sim \chi^2_{\nu}$  independently, then

$$\mu + \sigma \frac{Z}{\sqrt{\frac{W}{\nu}}} \sim t_{\nu} \left(\mu, \sigma^2\right).$$

F

The ratio of the sample variance of two normal random variables.

degrees of freedom  $\nu_1 \in \mathbb{N}$ Parameters

degrees of freedom  $\nu_2 \in \mathbb{N}$ 

Possible values  $(0,\infty)$  $F_n\mu,\sigma^2$ Notation

 $f(x) = \frac{\Gamma(\frac{\nu_1\nu_2}{2})\nu_1^{\nu_1/2}\nu_2^{\nu_2}x^{\nu_1/2-1}}{\Gamma(\frac{\nu_1}{2})\Gamma\nu_2 2(\nu_1x+\nu_2)\frac{\nu_1+\nu_2}{2}}$ Probability density function

Cumulative distribution function no simple expression

Expectation

 $\begin{array}{l} \frac{\nu_2}{\nu_2-2} \text{ for } \nu \geq 2 \\ \frac{2\nu_2^2(\nu_1+\nu_2-2)}{\nu_1(\nu_2-2)^2(\nu_2-4)} \text{ for } \nu \geq 4 \end{array}$ Variance

MGF does not exist  $\frac{x^{\nu_1/2-1}}{(\nu_1 x + \nu_2)^{\frac{\nu_1 + \nu_2}{2}}}$ Kernel



# Related Distributions

• If  $U \sim \chi^2_{\nu_1}$  and  $V \sim \chi^2_{\nu_2}$  independently, then

$$\frac{U/\nu_1}{V/\nu_2} \sim F_{\nu_1,\nu_2}.$$

• If  $X_1 \sim \text{Gamma}(\alpha_1, \beta_1)$  and  $X_2 \sim \text{Gamma}(\alpha_2, \beta_2)$  independently, then

$$\frac{\alpha_1 \beta_1 X_1}{\alpha_2 \beta_2 X_2} \sim F_{2\alpha_1, 2\alpha_2}.$$

• If  $X \sim \text{Beta}(\alpha/2, \beta/2)$  then

$$\frac{\beta X}{\alpha(1-X)} \sim F_{\alpha,\beta}.$$

• If  $X \sim t_{\nu}$ , then  $X^2 \sim F_{1,\nu}$ .

# Multivariate

### Discrete

### **Trinomial**

A generalisation of the binomial distribution to 3 possible outcomes.

number of trials  $n \in \mathbb{N}$ Parameters

probabilities of success  $\pi_1, \pi_2 > 0$  such that  $\pi_1 + \pi_2 < 1$ 

Possible values  $x_1, x_2 \in \{0, 1, \dots, n\}$  such that  $x_1 + x_2 \le n$ 

Notation  $\operatorname{Tri}(n, \pi_1, \pi_2)$ 

Probability function  $p(x_1, x_2) = \frac{n!}{x_1! x_2! (n - x_1 - x_2)!} \pi_1^{x_1} \pi_2^{x_2} (1 - \pi_1 - \pi_2)^{n - \pi_1 - \pi_2}$ 

 $\mathbb{E}[X_i] = n\pi_i$ Expectation

 $var(X_i) = n\pi_i(1 - \pi_i)$ Variance

 $cov(X_1, X_2) = -n\pi_1\pi_2$ Covariance

 $X_1 \sim \operatorname{Bin}(n, \pi_1)$ Marginal

 $X_2 \sim \text{Bin}(n, \pi_2)$ 

$$\begin{split} X_1 \, | \, X_2 &= x_2 \sim \mathrm{Bin} \left( n - x_2, \frac{\pi_1}{1 - \pi_2} \right) \\ X_2 \, | \, X_1 &= x_1 \sim \mathrm{Bin} \left( n - x_1, \frac{\pi_2}{1 - \pi_1} \right) \end{split}$$
Conditional

# Multinomial

Generalisation of the binomial distribution to r possible outcomes.

number of trials  $n \in \mathbb{N}$ Parameters

probabilities of success  $\boldsymbol{\pi} = (\pi_1, \dots, \pi_r \text{ such that } \pi_i \geq 0 \text{ and } \sum_{i=1}^r \pi_i = n$ 

 $x_1, ..., x_r \in \{0, 1, ..., n\}$  such that  $\sum_{i=1}^r x_i = n$ Possible values

 $\operatorname{Multi}_r(n, \boldsymbol{\pi})$ Notation

Probability function  $p(x_1, \ldots, x_r) = \frac{n!}{x_1! \cdots x_r!} \pi_1^{x_1} \cdots \pi_r^{x_r}$ 

 $\mathbb{E}\left[X_i\right] = n\pi_i$ Expectation

 $var(X_i) = n\pi_i(1 - \pi_i)$ Variance

 $\operatorname{cov}(X_i, X_i) = -n\pi_i\pi_i \text{ for } i \neq j$ Covariance

# Continuous

# Uniform on Unit Square

A bivariate extension of the univariate (continuous) uniform distribution.

Parameters none

Possible values  $0 < x_1, x_2 < 1$ 

Probability density function  $f(x_1, x_2) = 1$ 

### Uniform on Unit Circle

Another bivariate extension of the univariate (continuous) uniform distribution.

Parameters

 $-1 < x_1, x_2 < 1$  such that  $x_1^2 + x_2^2 < 1$ Possible values

 $f(x_1, x_2) = \frac{1}{\pi}$ Probability density function

#### Dirichlet

Generalisation of the Beta distribution.

 $\alpha_1, \ldots, \alpha_{r+1} > 0$ Parameters

 $x_1, \ldots, x_r > 0$  such that  $\sum_{i=1}^r x_i < 1$ Possible values

Notation

 $f(x_1, \dots, x_r) = \frac{\Gamma(\alpha_1 + \dots + \alpha_{r+1})}{\Gamma(\alpha_1) \dots \Gamma(\alpha_{r+1})} \prod_{i=1}^r x_i^{\alpha_i - 1}$ Probability density function

 $\mathbb{E}\left[X_i\right] = \frac{\alpha_i}{\alpha_0}$ Expectation

Variance

 $\operatorname{var}(X_i) = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$   $\operatorname{cov}(X_1, X_2) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)} \text{ where } \alpha_0 = \sum_{i=1}^{r+1} \alpha_i$ Covariance

Marginal  $X_i \sim \text{Beta}(\alpha_i, \alpha_0 - \alpha_i)$ 

### Multivariate Normal

Generalisation of the normal distribution.

mean  $\boldsymbol{\mu} \in \mathbb{R}^r$ Parameters

non-negative definite variance matrix  $\Sigma$ 

 $oldsymbol{x} \in \mathbb{R}^r$ Possible values

 $\mathcal{N}_r(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ Notation

Probability density function  $p(\boldsymbol{x}) = (2\pi)^{-\frac{r}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}$ 

 $\mathbb{E}[X] = \mu$ Expectation

 $\operatorname{var}(\boldsymbol{X}) = \Sigma$ Variance

 $e^{t^T \mu + \frac{1}{2} t^T \Sigma t}$ MGF