Lecture 2: Sequential Networks and Finite State Machines

John Eldon University of California, San Diego

Outline

- Specification: Finite State Machine
 - State Table, State Diagram, Behavior
- Implementation
 - Excitation Table
 - Mealy and Moore Machines
 - Examples

Sequential Networks

- 1. Gray: DFFs = "registers"
- 2. Specification: What does it do?
- 3. Implementation: Excitation or Transition Table

Specification

- Combinational Logic
 - Truth Table
 - Boolean Expression
 - Logic Diagram (No feedback loops)
- Sequential Networks:
 - State Diagram, State Assignment, State
 Table
 - Excitation Table and Characteristic Expression
 - Logic Diagram (FFs and feedback loops)

Implementation: Design Flow

- Input-Output Relation
- State Diagram (Transition of states)
- State Assignment (Map states into binary code)
- State Table (Truth table of states)
- Excitation Table (Truth table of FF inputs)
- Boolean Expression
- Logic Diagram

Implementation: Design Flow

- Input Output Relation
- State Diagram (Transition of states)
 - State minimization (Reduction)
 - Finite state machine partitioning
- State Assignment (Map states into binary code)
 - Binary code, Gray encoding, One hot encoding, Coding optimization
- State Table (Truth table of states)
- Excitation Table (Truth table of FF inputs)

Implementation: Examples

- Example 1: a circuit with D Flip Flops
- Example 2: a circuit with other Flip Flops
- Example 3: analysis of a sequential machine

State: What is it? Why do we need it?

What is the expected output of the counter over time?

Finite State Machines: Describing circuit behavior over time

Symbol/ Circuit

2 bit Counter

Diagram that depicts behavior over time

Implementing the 2 bit counter

State Table: Symbol

Current state	Next State
S_0	S_1
S_1	S_2
S_2	S_3
S_3	S_0

Assignment

State	Q_1	Q_0
S_0	0	0
S_1	0	1
S_2	1	0
S_3	1	1

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$

State Table: Binary

Implementing the 2 bit counter

State Diagram

Current state	Next State
S_0	S_1
S_1	S_2
S_2	S_3
S_3	S_0

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

State Table

State Table

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

$$D_0(t) = Q_0(t)'$$

 $D_1(t) = Q_0(t) Q_1(t)' + Q_0(t)' Q_1(t)$

Circuit with 2 flip flops

$Q_1(t)$	$Q_0(t)$	$Q_1(t+1)$	$Q_0(t+1)$
0	0	0	1
0	1	1	0
1	0	1	1
1	1	0	0

State Table

Truth table→K map→Switching function

$$Q_0(t+1) = Q_0(t)$$
'
 $Q_1(t+1) = Q_0(t) Q_1(t)' + Q_0(t)' Q_1(t)$

Implementation of 2-bit counter

We store the current state using D-flip flops so that:

- •Inputs to this combinational circuit don't change while the next output is being computed (free-running).
- •The transition to the next state occurs only at rising edge of clock.
- •Skip the K map & logic optimization and let the synthesizer do it.
- •Revisit by hand if not meeting timing.

Generalized Model of Sequential Circuits

Netlist ⇔ State Table ⇔ State Diagram ⇔ Input Output Relation

PS\Input	X=0	X=1
S0	S0,0	S2,0
S1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,1	S0,1

Example: Output sequence

Time	0	1	2	3	4	5
Input	0	1	1	0	1	_
State	S0					
Output						

Netlist ⇔ State Table ⇔ State Diagram ⇔ Input Output Relation

PS\Input	X=0	X=1
S0	S0,0	S2,0
S1	S3,0	S3,0
S2	S2,0	S1,0
S3	S1,1	S0,1

Example: Output sequence

Time	0	1	2	3	4	5
Input	0	1	1	0	1	-
State	S0	S0	S2	S1	S3	S0
Output	0	0	0	0	1	0

Implementation

State Diagram => State Table => Logic Diagram

- Canonical Form: Mealy and Moore Machines
 - Mealy machines: General
 - Moore machines: Output is independent of current input (subset of Mealy).
- Excitation Table
 - Truth Table of the F-F Inputs
 - Boolean algebra, K-maps for combinational logic
- •Examples
- Timing

Canonical Form: Mealy and Moore Machines

e.g., Traffic Light Controller:

C1 = brains

C2 maps state to lights themselves

Canonical Form: Mealy and Moore Machines

Mealy Machine: $y_i(t) = f_i(X(t), S(t))$

Moore Machine: $y_i(t) = f_i(S(t))$

$$s_i(t+1) = g_i(X(t), S(t))$$

Mealy Machine

Moore Machine

often C2=wire →
output is synchronous w/ CLK

Canonical Form: Mealy and Moore Machines

Mealy Machine: $y_i(t) = f_i(X(t), S(t))$

Moore Machine: $y_i(t) = f_i(S(t))$

$$s_i(t+1) = g_i(X(t), S(t))$$

	Input	
PS	NS, output	

	Input	
PS	NS	Output

Life on Mars?

Mars rover has a binary input x. When it receives the input sequence $x(t-2, t) = 001^*$ from its life detection sensors, it means that it has detected life on Mars \odot and the output y(t) = 1; otherwise y(t) = 0 (no life on Mars \odot).

Implement the Life-on-Mars Pattern Recognizer!

^{*} Think if Binary Phase Shift Keying. To send a 0, don't invert the sinusoidal carrier. To send a 1, invert the sinusoidal carrier (phase shift 180 degrees) for the duration of the 1. Narrow-band: symbol (data bit) duration >> carrier cycle time. Ultrawideband (UWB) -- modulation frequency might be only about 1/3 of carrier frequency.

The WAR of the WORLDS By H. G. Wells Author of "Under the Knife," "The Time Machine," etc.

Mars Life Recognizer FSM

Which of the following diagrams is a correct Mealy solution for the 001 pattern recognizer on the Mars rover?

D. None of the above

Mars Life Recognizer FFs

Pattern Recognizer '001' x(t) x(t) C1 C2 y(t)

S2

What does state table need to show to design controls of C1?

- A. next state S(t+1) vs. input x(t), and present state S(t)
- B. output y(t) vs. input x(t), and present state S(t)
- C. output y(t) vs. present state S(t)

S1

D. None of the above

S0

CLK

State Diagram => State Table with State Assignment

$S(t)\x$	0	1
S0	S1,0	S0,0
S1	S2,0	S0,0
S2	S2,0	S0,1

State Assignment

S0: 00

S1: 01

S2: 10

$S(t)\x$	0	1
00	01,0	00,0
01	10,0	00,0
10	10,0	00,1

 $Q_1(t+1)Q_0(t+1), y$

State Diagram => State Table => Excitation Table => Circuit

$Q_1(t) Q_0(t) \setminus x$	0	1
00	01,0	00,0
01	10,0	00,0
10	10,0	00,1

id	Q_1Q_0x	D_1	D_0	у
0	000	0	1	0
1	001	0	0	0
2	010	1	0	0
3	011	0	0	0
4	100	1	0	0
5	101	0	0	1
6	110			
7	111			

State Diagram => State Table => Excitation Table =>

Circuit

$Q_1(t) Q_0(t) \setminus x$	0	1
00	01,0	00,0
01	10,0	00,0
10	10,0	00,1

Fill in	rows 6	5 and 7	of excita	tion	table

A.All 0s

B.All 1s

C.All Don't Cares

id	Q_1Q_0x	D_1	D_0	y
0	000	0	1	0
1	001	0	0	0
2	010	1	0	0
3	011	0	0	0
4	100	1	0	0
5	101	0	0	1
6	110			
7	111			

State Diagram => State Table => Excitation Table => Circuit

id	Q_1Q_0x	D_1	D_0	у
0	000	0	1	0
1	001	0	0	0
2	010	1	0	0
3	011	0	0	0
4	100	1	0	0
5	101	0	0	1
6	110	X	X	X
7	111	X	X	X

$$D_1(t) = x'Q_0 + x'Q_1$$

 $D_0(t) = Q'_1Q'_0x'$
 $y = Q_1x$

State Diagram => State Table => Excitation Table => Circuit

Moore FSM for the Mars Life Recognizer

Which of the following diagrams is a correct Moore solution to the '001' pattern recognizer?

- C. Both A and B are correct
- D. None of the above

Moore Mars Life Recognizer: FF Input Specs

What does state table need to show to design controls of C2?

- A. (current input x(t), current state S(t) vs. next state, S(t+1))
- B. (current input, current state vs. current output y(t))
- C. (current state vs. current output y(t) and next state)
- D. (current state vs. current output y(t))
- E. None of the above

Moore Mars Life Recognizer: State Table

Mars Life Recognizer: Circuit Design

id	Q_1Q_0x	D_1	D_0	у
0	000	0	1	0
1	001	0	0	0
2	010	1	0	0
3	011	0	0	0
4	100	1	0	0
5	101	1	1	0
6	110	0	1	1
7	111	0	0	1

$D_1(t)$:	Q_0			
``,	0 0	2 1	6 0	4 1
x(t)	0	0	7 0	5 1
		-		$\overline{Q_1}$
$D_0(t)$:		Q)	
	0 1	2 0	1	4 0
x(t)	0	3 0	7 0	5 1
		-		$\overline{Q_1}$
y(t):			Q_0	
	0	0	6 1	4 0
x(t)	0	3 0	7 1	5 0

 \mathbf{Q}_1

Mars Life Recognizer Circuit Implementation

State Diagram => State Table => Excitation Table => Circuit

$$\begin{split} D_1(t) &= Q_1(t)Q_0(t)' + Q_1(t)'Q_0(t) \ x(t) \\ D_0(t) &= Q_1(t)'Q_0(t)'x(t)' + \\ Q_1(t)Q_0(t) \ x(t)' + Q_1(t)Q_0(t)' \ x(t) \\ y(t) &= Q_1(t)Q_0(t) \end{split}$$

Moore Machine

Conversion from Mealy to Moore Machine

$S(t)\x$	0	1
S0	S1,0	S0,0
S1	S2,0	S0,0
S2	S2,0	S0,1

$S(t)\x$	0	1	
S0	S1,0	S0,0	
S1	S2,0	S0,0	
S2	S2,0	S3,0	
S3	S1,1	S0,1	

Conversion from Mealy to Moore Machine

$S(t)\x$	0	1	
S0	S1,0	S0,0	
S1	S2,0	S0,0	
S2	S2,0	S0,1	

$S(t)\x$	0	1	У
S0	S1	S0	0
S1	S2	S0	0
S2	S2	S3	0
S3			

Algorithm

- 1. Identify distinct (NS, y) pair
- 2. Replace each distinct (NS, y) pair with distinct new states
- 3. Insert rows of present state = new states

Mealy

$S(t)\x$	0	1
S0	S1,0	S0,0
S1	S2,0	S0,0
S2	S2,0	S0,1

$S(t)\x$	0	1	У
S0	S1	S0	0
S1	S2	S0	0
S2	S2	S3	0
S3			

Moore

- 1. Find distinct NS, y
- 2. Add new states to represent distinct NS, y

For the above Moore machine, what are the next states with respect to present state S3?

A.S2, S3, 1

B.S2, S0, 1

C.S1, S0, 1

D.S1, S0.0

E. None of the above.

$S(t)\x$	0	1
S0	S1,0	S0,0
S1	S2,0	S0,0
S2	S2,0	S3,0
S3	S1,1	S0,1

Time	0	1	2	3	4	5	6	7	8
X	0	1	0	0	1	1	0	0	1
Smealy	S0	S1	S0	S1	S2	S0	S0	S1	S2
y mealy									
Smoore	S0								
y moore									

S0 0 1	S1 0 0	$\frac{1}{2}$	$\begin{bmatrix} 0 \\ S \\ 3 \\ 1 \end{bmatrix}$
$S(t)\x$	0	1	
S0	S1,0	S0,0	
S1	S2,0	S0,0	
S2	S2,0	S3,0	
S3	S1,1	S0,1	

Time	0	1	2	3	4	5	6	7	8
X	0	1	0	0	1	1	0	0	1
Smealy	S0	S1	S0	S1	S2	S0	S0	S1	S2
y mealy									
Smoore	S0								
y moore									

iClicker S_{moore}[0-5]

A. S0,S1,S0,S1,S2,S3

B. S0,S1,S0,S1,S2,S0

C. S3,S1,S0,S1,S2,S3

D. S3,S1,S0,S1,S2,S0

E. None of the above

(S1 0 0	$ \begin{array}{c c} & 0 \\ & S \\ & 1 \\ & 0 \end{array} $	
	$S(t)\x$	0	1	
	S0	S1,0	S0,0	
	S1	S2,0	S0,0	
	S2	S2,0	S3,0	
	S3	S1,1	S0,1	

Time	0	1	2	3	4	5	6	7	8
X	0	1	0	0	1	1	0	0	1
Smealy	S0	S1	S0	S1	S2	S0	S0	S1	S2
Ymealy									
Smoore	S0								
Ymoore									

y_{moore}[0-5] A.0,0,0,0,1,0 B.0,0,0,0,0,1 C.0,1,0,0,0,0 D.0,0,0,0,0,0, E.None of the above

Algorithm

- 1. Identify distinct (NS, y) pair
- 2. Replace each distinct (NS, y) pair with distinct new states
- 3. Insert rows of present state = new states
- 4. Append each present state with its output y

Finite State Machine Example

- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)
 - Lights: L_A , L_B

FSM Black Box

• Inputs: CLK, Reset, T_A , T_B

• Outputs: L_A , L_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Table

PS	Inp	NS	
	T_A	T_B	
S0	0	X	S 1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

State Transition Table

P	S	Inputs		NS		
$Q_1(t)$	$Q_0(t)$	T_A	T_B	$Q_1(t+1)$	$Q_0(t+1)$	
0	0	0	X	0	1	
0	0	1	X	0	0	
0	1	X	X	1	0	
1	0	X	0	1	1	
1	0	X	1	1	0	
1	1	X	X	0	0	

State	Encoding
S0	00
S 1	01
S2	10
S3	11

$$Q_{1}(t+1) = Q_{1}(t) \oplus Q_{0}(t)$$

$$Q_{0}(t+1) = Q'_{1}(t)Q'_{0}(t)T'_{A} + Q_{1}(t)Q'_{0}(t)T'_{B}$$

FSM Output Table

P	S	Outputs				
Q_1	Q_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = Q_1$$
 $L_{A0} = Q'_1 Q_0$
 $L_{B1} = Q'_1$
 $L_{B0} = Q_1 Q_0$

FSM Schematic: State Register

state register

Logic Diagram

50

FSM Schematic: Output Logic

Summary: Implementation

- Set up canonical form
 - Mealy or Moore machine
- Identify the next states
 - state diagram ⇒ state table
 - state assignment
- Derive excitation table
 - Inputs of flip flops
- Design the combinational logic
 - don't care set utilization