Knots, Links, and a Little Magic

Amethyst Price UCSC Graduate Student Spring 2022

Department of Mathematics UCSC Undergraduate Colloquium by AWM

Case 1:

Amazing! Why does it work?

Tools we will need

- ⋄ Some Topology
- ⋄ Some (Abstract) Algebra
- ♦ Knots and Links
- Knot and Link Complements
- ⋄ The Knot Group
- ⋄ The Wirtinger Presentation

Definitions

•0000000000

♦ **Topology** is the study of geometric properties and spatial relations unaffected by the continuous change of shape or size of figures.

Background

- Topology is the study of geometric properties and spatial relations unaffected by the *continuous* change of shape or size of figures.
- \diamond We define the **0**-sphere, **1**-sphere, **2**-sphere, and **3**-sphere (resp.) as follows: $\mathcal{S}^0 = \{-1,1\}$, $\mathcal{S}^1 =$ the unit circle, $\mathcal{S}^2 =$ the unit sphere, and $\mathcal{S}^3 = \mathcal{S}^1 \times \mathcal{S}^1 \times \mathcal{S}^1 = \{(x,y,z)|x,y,z \in \mathcal{S}^1\}$.

Background

- ⋄ Topology is the study of geometric properties and spatial relations unaffected by the *continuous* change of shape or size of figures.
- \diamond We define the **0**-sphere, **1**-sphere, **2**-sphere, and **3**-sphere (resp.) as follows: $\mathcal{S}^0 = \{-1,1\}$, $\mathcal{S}^1 =$ the unit circle, $\mathcal{S}^2 =$ the unit sphere, and $\mathcal{S}^3 = \mathcal{S}^1 \times \mathcal{S}^1 \times \mathcal{S}^1 = \{(x,y,z)|x,y,z \in \mathcal{S}^1\}$.
- ♦ A homeomorphism is a continuous bijective map f: X → Y between topological spaces X and Y. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are "the same".

•0000000000

Definitions

Background

- ⋄ Topology is the study of geometric properties and spatial relations unaffected by the *continuous* change of shape or size of figures.
- \diamond We define the **0**-sphere, **1**-sphere, **2**-sphere, and **3**-sphere (resp.) as follows: $\mathcal{S}^0 = \{-1,1\}$, $\mathcal{S}^1 =$ the unit circle, $\mathcal{S}^2 =$ the unit sphere, and $\mathcal{S}^3 = \mathcal{S}^1 \times \mathcal{S}^1 \times \mathcal{S}^1 = \{(x,y,z)|x,y,z \in \mathcal{S}^1\}$.
- \diamond A **homeomorphism** is a continuous bijective map $f: X \to Y$ between topological spaces X and Y. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are "the same".
- ⋄ Two continuous functions from one topological space to another are called **homotopic** if one can be "continuously deformed" into the other. This is a weaker notion than being homeomorphic.

0000000000

While a homeomorphism takes one object and continuously distorts it into another, an ambient isotopy is a distortion of the ambient space surrounding an object which morphs the object into another.

0000000000

♦ While a homeomorphism takes one object and continuously distorts

- it into another, an **ambient isotopy** is a distortion of the ambient space surrounding an object which morphs the object into another.
- ♦ This is a stronger notion than being homeomorphic.

Background

- While a homeomorphism takes one object and continuously distorts it into another, an **ambient isotopy** is a distortion of the ambient space surrounding an object which morphs the object into another.
- ♦ This is a stronger notion than being homeomorphic.
- ♦ A (topological) embedding is an injective continuous map

$$f: X \to Y$$

that yields a homeomorphism between X and f(X)

What is a knot?

Definitions

What is a knot?

Definitions

0000000000

A subset K in \mathbb{R}^3 (or S^3) is a **knot** if it is an embedding of S^1 .

What is a knot?

A subset K in \mathbb{R}^3 (or S^3) is a **knot** if it is an embedding of S^1 .

We call K the **unknot** if $K = S^1$. In otherwords, K is a trivial embedding in a 3-dimensional space.

0000000000

A subset K in \mathbb{R}^3 (or S^3) is a **knot** if it is an embedding of S^1 .

We call K the **unknot** if $K = S^1$. In otherwords, K is a trivial embedding in a 3-dimensional space.

What is the difference?

The Trefoil:

A Trivial Knot:

Knot Diagrams

In $X = \mathbb{R}^3$ to draw knots, we use **regular projections** to some plane in X with corresponding *over-under crossings*.

0000000000

In $X = \mathbb{R}^3$ to draw knots, we use **regular projections** to some plane in X with corresponding *over-under crossings*.

Example

Examples

Definitions

What is a link?

Definitions

00000000000

A subset L of a 3-dimensional space X is a **link** if it is an embedding of $S^0 \cup ... \cup S^0 \cup S^1 \cup ... \cup S^1$.

What is a link?

Definitions

00000000000

A subset L of a 3-dimensional space X is a **link** if it is an embedding of $S^0 \cup ... \cup S^0 \cup S^1 \cup ... \cup S^1$.

Remark: The number of components need not be finite.

00000000000

Two knots (links) K and K' are **equivalent**, denoted $K \sim K'$, if there exits a homeomorphism

$$h: X \to X$$
 $K \hookrightarrow K'$

What makes two knots (or links) the "same"?

Two knots (links) K and K' are **equivalent**, denoted $K \sim K'$, if there exits a homeomorphism

$$h: X \to X$$
 $K \mapsto K'$

Equivalent knots are said to have the same knot type.

00000000000

Two knots (links) K and K' are **equivalent**, denoted $K \sim K'$, if there exits a homeomorphism

$$h: X \to X$$
 $K \mapsto K'$

Equivalent knots are said to have the same knot type.

We are often more interested in knot types modulo ambient isotopies.

00000000000

What about knots/links in 2D spaces?

00000000000

Example: Non-Equivalent links in S^2

What about knots/links in 2D spaces?

Example: Non-Equivalent links in S^2

However, all knots in \mathbb{R}^2 are trivial.

00000000000

Example: Non-Equivalent links in S^2

However, all knots in \mathbb{R}^2 are trivial.

A Trivial Knot in \mathbb{R}^3

Definitions

Reidemeister Moves

Definitions

0000000000

In the previous example we used what we call **Reidemeister moves** to re-draw the knot:

Reidemeister Moves

In the previous example we used what we call **Reidemeister moves** to re-draw the knot:

Type I

Reidemeister Moves

In the previous example we used what we call **Reidemeister moves** to re-draw the knot:

Reidemeister Moves

In the previous example we used what we call **Reidemeister moves** to re-draw the knot:

Torus Knots

More Background

⋄ A (simple) loop in a space X is a non self-intersecting path that begins and ends at the same point. We define paths using functions.

More Background

- ♦ A (simple) loop in a space X is a non self-intersecting path that begins and ends at the same point. We define paths using functions.
- The loops on a space modulo homotopy equivalence give us a lot of information about the space itself.

Definitions

- ♦ A (simple) loop in a space X is a non self-intersecting path that begins and ends at the same point. We define paths using functions.
- The loops on a space modulo homotopy equivalence give us a lot of information about the space itself.
- \diamond The group of all loops on a space X modulo homotopy equivalence is called the **fundamental group of** X, and is denoted $\pi_1(X)$.

Background

♦ A group, G, is a set of elements with an associated binary operator (like multiplication or addition) that follow certain axioms.

Background

- ♦ A group, G, is a set of elements with an associated binary operator (like multiplication or addition) that follow certain axioms.
- A group's elements may commute or they may not! If a group is commutative we call it **Abelian**, otherwise we call it **non-Abelian**.

Definitions

- ♦ A group, G, is a set of elements with an associated binary operator (like multiplication or addition) that follow certain axioms.
- ♦ A group's elements may commute or they may not! If a group is commutative we call it **Abelian**, otherwise we call it **non-Abelian**.
- \diamond For elements $x, y \in G$, there is a special element $[x, y] = xyx^{-1}y^{-1} \in G$ called the **commutator**. If G is Abelian, then $[x, y] = yxx^{-1}y^{-1} = yy^{-1} = 1$.

Definitions

- ♦ A group, G, is a set of elements with an associated binary operator (like multiplication or addition) that follow certain axioms.
- ♦ A group's elements may commute or they may not! If a group is commutative we call it **Abelian**, otherwise we call it **non-Abelian**.
- \diamond For elements $x, y \in G$, there is a special element $[x, y] = xyx^{-1}y^{-1} \in G$ called the **commutator**. If G is Abelian, then $[x, y] = yxx^{-1}y^{-1} = yy^{-1} = 1$.
- ♦ A **group presentation** is a way to specify a group with a set of generators, S, and a set of relations, R, denoted $G = \langle S | R \rangle$.

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $[\ell] = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $\lceil \ell \rceil = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$[M] = \langle 1, 0 \rangle$$

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $\lceil \ell \rceil = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$[M] = \langle 1, 0 \rangle$$
 $[L] = \langle 0, 1 \rangle$

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $[\ell] = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$[M] = \langle 1, 0 \rangle$$

$$[L] = \langle 0, 1 \rangle$$

$$[M] = \langle 1, 0 \rangle$$
 $[L] = \langle 0, 1 \rangle$ $[J] = \langle 0, 0 \rangle$

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $[\ell] = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$[M] = \langle 1, 0 \rangle$$

$$[L] = \langle 0, 1 \rangle$$

$$[M] = \langle 1, 0 \rangle$$
 $[L] = \langle 0, 1 \rangle$ $[J] = \langle 0, 0 \rangle$

$$\langle 3, 0 \rangle$$

$$\pi_1(\mathbb{T}) = \mathbb{Z}^2 = \langle x, y \mid xy = yx \rangle$$

For a loop on the torus, ℓ , the associated element in π_1 is denoted $[\ell] = \langle a, b \rangle$ where $a, b \in \mathbb{Z}$.

$$[M] = /1 0$$

$$[L] = \langle 0, 1 \rangle$$

$$[M] = \langle 1, 0 \rangle$$
 $[L] = \langle 0, 1 \rangle$ $[J] = \langle 0, 0 \rangle$

$$\langle 3, 0 \rangle$$

$$\langle 3, 1 \rangle$$

Torus Knots

Claim: There are only two knot types modulo ambient isotopy on the torus.

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

Torus Knots

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

An important observation: Simple loops are knots!

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

An important observation: Simple loops are knots!

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

An important observation: Simple loops are knots!

$$[M] = [\mathsf{Meridian}]$$

= $\langle 0, 1 \rangle$

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

An important observation: Simple loops are knots!

$$[M] = [Meridian]$$
$$= \langle 0, 1 \rangle$$

$$[L] = [Longitude]$$
$$= \langle 1, 0 \rangle$$

Torus Knots

Claim: There are only two knot types modulo ambient isotopy on the torus.

Any guesses what they are?

An important observation: Simple loops are knots!

$$[M] = [Meridian]$$
$$= \langle 0, 1 \rangle$$

$$[L] = [Longitude]$$
$$= \langle 1, 0 \rangle$$

$$[J] = [Inessential]$$
$$= \langle 0, 0 \rangle$$

 $M \sim J$

We can see that $M \sim J$ because J is a separating curve and M is not.

 $M \sim J$

We can see that $M \sim J$ because J is a separating curve and M is not.

 $M \sim J$

We can see that $M \sim J$ because J is a separating curve and M is not.

L ≈ J

We can see that $L \sim J$ for the same reason.

L ~ J

We can see that $L \sim J$ for the same reason.

Torus Knots

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

Results

 \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

- \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.
- \diamond There exists a composition of twist homeomorphisms taking L to M. Therefore $L \sim M$.

Torus Knots

Definitions

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

- \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.
- \diamond There exists a composition of twist homeomorphisms taking L to M. Therefore $L \sim M$.
- \diamond For all $\langle a,b\rangle\in\pi_1(\mathbb{T}^2)$, \exists a composition of twist homeomorphisms taking $\langle a, b \rangle$ to $\langle 0, d \rangle$ for gcd(a, b) = d (unless a = 0 or b = 0).

Definitions

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

- \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.
- \diamond There exists a composition of twist homeomorphisms taking L to M. Therefore $L \sim M$.
- \diamond For all $\langle a,b\rangle\in\pi_1(\mathbb{T}^2)$, \exists a composition of twist homeomorphisms taking $\langle a, b \rangle$ to $\langle 0, d \rangle$ for gcd(a, b) = d (unless a = 0 or b = 0).
- \diamond For any K such that $[K] \neq \langle 0, 0 \rangle$, \exists a homeomorphism taking K to M.

Definitions

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

- \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.
- \diamond There exists a composition of twist homeomorphisms taking L to M. Therefore $L \sim M$.
- \diamond For all $\langle a,b\rangle\in\pi_1(\mathbb{T}^2)$, \exists a composition of twist homeomorphisms taking $\langle a, b \rangle$ to $\langle 0, d \rangle$ for gcd(a, b) = d (unless a = 0 or b = 0).
- \diamond For any K such that $[K] \neq \langle 0, 0 \rangle$, \exists a homeomorphism taking K to M.
- \diamond Knots K and K' are ambient isotopic \iff $[K] = [\pm K'] \in \pi_1(\mathbb{T}^2)$.

Torus Knots

Behind the Scenes: We exploit more topology, abstract algebra, and some linear algebra.

Results

- \diamond Any two knots of class $\langle 0, \pm 1 \rangle$ are ambient isotopic.
- \diamond There exists a composition of twist homeomorphisms taking L to M. Therefore $L \sim M$.
- \diamond For all $\langle a,b\rangle\in\pi_1(\mathbb{T}^2)$, \exists a composition of twist homeomorphisms taking $\langle a, b \rangle$ to $\langle 0, d \rangle$ for gcd(a, b) = d (unless a = 0 or b = 0).
- \diamond For any K such that $[K] \neq \langle 0, 0 \rangle$, \exists a homeomorphism taking K to M.
- \diamond Knots K and K' are ambient isotopic \iff $[K] = [\pm K'] \in \pi_1(\mathbb{T}^2)$.

Therefore, there are only two knot types on \mathbb{T}^2 : the inessential, and everything else!

Let
$$V = S^1 \times D^1 = a$$
 solid torus.

Let $V = S^1 \times D^1 = a$ solid torus.

We still consider a meridian M and a longitude L, simple closed curves on ∂V .

Let $V = S^1 \times D^1 = a$ solid torus.

We still consider a meridian M and a longitude L, simple closed curves on ∂V .

Any two meridians are ambient isotopic.

Let $V = S^1 \times D^1 = a$ solid torus.

We still consider a meridian M and a longitude L, simple closed curves on ∂V .

- Any two meridians are ambient isotopic.
- There are infinitely many ambient isotopies of longitudes.

Let $V = S^1 \times D^1 = a$ solid torus.

We still consider a meridian M and a longitude L, simple closed curves on ∂V .

- Any two meridians are ambient isotopic.
- There are infinitely many ambient isotopies of longitudes.
- \diamond If we embedded V into \mathcal{S}^3 and take the **complement** $X = \mathcal{S}^3 \setminus V$, $\pi_1(X)$ can tell us a lot about the embedding.

The complement X may or may not also be a solid torus.

The complement X may or may not also be a solid torus.

Theorem

The complement X is a solid torus $\iff \pi_1(X) = \mathbb{Z}$

The complement X may or may not also be a solid torus.

Theorem

The complement X is a solid torus $\iff \pi_1(X) = \mathbb{Z}$

If X is not a solid torus, it is sometimes called a **cube-with-knotted-hole**

The Knot Group

The Knot Group

A thickened knot is an embedding of a solid torus. So it is enlightening to consider the fundamental group of **knot complements**, $X = \mathbb{R}^3 \setminus K$ (or $S^3 \setminus K$).

A thickened knot is an embedding of a solid torus. So it is enlightening to consider the fundamental group of **knot complements**, $X = \mathbb{R}^3 \setminus K$ (or $S^3 \setminus K$).

We call $\pi_1(X)$ the **knot group** of K.

The Knot Group

Definitions

A thickened knot is an embedding of a solid torus. So it is enlightening to consider the fundamental group of **knot complements**, $X = \mathbb{R}^3 \setminus K$ (or $S^3 \setminus K$).

We call $\pi_1(X)$ the **knot group** of K.

Remark: The knot complement is a complete topological invariant for knots, but not for links. Though we still utilize this for many examples.

An algorithm to compute the knot group:

An algorithm to compute the knot group:

 \diamond Choose an orientation for K.

An algorithm to compute the knot group:

 \diamond Choose an orientation for K.

 \diamond The knot diagram consists of n arcs, separated by n over-under crossings. Label each arc $\alpha_1, \alpha_2, ..., \alpha_n$ so that α_i connects to α_{i+1} and α_n to α_1 .

 \diamond At each α_i , draw an arrow labeled x_i passing under the arc using a *right-hand rule*. These arrows represent loops in the knot complement.

 \diamond At each α_i , draw an arrow labeled x_i passing under the arc using a right-hand rule. These arrows represent loops in the knot complement.

At each over-under crossing, observe the relations described by the x_i 's.

Case 1:

The Knot Group

00000

$$r_i$$
: $x_k x_{i+1} = x_i x_k$

At each α_i, draw an arrow labeled x_i passing under the arc using a *right-hand rule*. These arrows represent loops in the knot complement.

 At each over-under crossing, observe the relations described by the x_i's.

$$\mathsf{r}_i: \ x_k x_{i+1} = x_i x_k$$

Case 2:

$$r_i$$
: $x_{i+1}x_k = x_kx_i$

 \diamond At each α_i , draw an arrow labeled x_i passing under the arc using a right-hand rule. These arrows represent loops in the knot complement.

At each over-under crossing, observe the relations described by the x_i 's.

$$\mathbf{r}_i: \ x_k x_{i+1} = x_i x_k$$

Case 2:

$$r_i$$
: $x_{i+1}x_k = x_kx_i$

This yeilds $\pi_1(X) = \langle x_1, ..., x_n | r_1, ..., r_n \rangle$.

 $r_1: x_1x_3 = x_2x_1$

$$r_1: x_1x_3 = x_2x_1$$

 $r_1: x_1x_3 = x_3x_2$

$$r_1: x_1x_3 = x_2x_1$$

$$r_1: x_1x_3 = x_3x_2$$

$$r_1: x_3x_2 = x_2x_1$$

$$r_1: x_1x_3 = x_2x_1$$

$$r_1: x_1x_3 = x_3x_2$$

$$r_1: x_3x_2 = x_2x_1$$

$$\implies \pi_1(X) = \langle x_1, x_2, x_3 | x_1 x_3 = x_2 x_1 = x_3 x_2 \rangle$$
$$= \langle x_1, x_2 | x_1 x_2 x_1 = x_2 x_1 x_2 \rangle$$

Case 1:

Case 2:

Let
$$L_1 = A \cup B$$
 and $X_1 = \mathbb{R}^3 \setminus L_1$.

We have
$$\pi_1(X_1) = \langle x, y | - \rangle$$
.

Let
$$L_1 = A \cup B$$
 and $X_1 = \mathbb{R}^3 \setminus L_1$.

Now consider what $C \in \pi_1(X_1)$:

Let $L_1 = A \cup B$ and $X_1 = \mathbb{R}^3 \setminus L_1$.

We have
$$\pi_1(X_1) = \langle x, y | - \rangle$$
.

Now consider what $C \in \pi_1(X_1)$:

By observation $C = xyx^{-1}y^{-1} = [x, y] \in \pi_1(X_1)$, the commutator.

Now let
$$L_2 = A \cup B$$
 with A and B linked and $X_2 = \mathbb{R}^3 \setminus L_2$.

linked and $X_2 = \mathbb{R}^3 \setminus L_2$.

Now let $L_2 = A \cup B$ with A and B

Consider the relation defined at the over-under crossings.

Now let $L_2 = A \cup B$ with A and B linked and $X_2 = \mathbb{R}^3 \setminus L_2$.

Consider the relation defined at the over-under crossings.

This yields
$$\pi_1(X_2) = \langle x, y | xy = yx \rangle$$
.

 \diamond We preserved the configuration of how C was linked to $A \cup B$, and therefore C still represents the commutator in $\pi_1(X_2)$.

- \diamond We preserved the configuration of how C was linked to $A \cup B$, and therefore C still represents the commutator in $\pi_1(X_2)$.
- \diamond Since the knot group if L_2 is abelian, the commutator is trivial and therefore C is unlinked from $A \cup B$.

- \diamond We preserved the configuration of how C was linked to $A \cup B$, and therefore C still represents the commutator in $\pi_1(X_2)$.
- \diamond Since the knot group if L_2 is abelian, the commutator is trivial and therefore C is unlinked from $A \cup B$.

References

[1] D. Rolfsen, *Knots and Links*. AMS Chelsea Publishing, Rhode Island, 1990, Reprinted with corrections: 2003, pp. 1–65.

Thank you!

