Comilla University Faculty of Engineering

Department of Computer Science and Engineering

2nd Year 1st Semester Final Examination - 2020 Course Code: CSE 2105 Session: 2018 - 2019

Course Title: Digital Logic Design

[Answer any Five of the following questions. Figures in the right-hand margin indicate full marks.]

	Time: 3 Hours Writing anything on the question paper is strictly prohibited.	
1	a) What is meant by the base of a number system? Explain principle of Duality.	1+2
	b) Which of the codes are called invalid codes in BCD and why?	3
1	Why is Gray code not suitable for arithmetic operations? Explain with example.	4
	d) Convert the binary code 101101 to Gray code.	2
		2
W	a) Distinguish between a Half-Adder and a Full-Adder.	2
7	b) Implement a Full-Adder using two Half-Adders and an External OR gate.	3
1	© Construct a 16-bit Parallel Binary Adder using 4-bit Parallel Binary Adder ICs.	3
7	d) Represent the decimal number -27 as an 8-bit number in i) sign-magnitude representation,	4
	ii) 1's complement representation, and iii) 2's complement representation.	
	Grand and Sequential Circuit	3
3	a) Differentiate between Combinational circuit and Sequential Circuit. b) Design a combinational logic circuit that controls the passage of a signal A according to the	3
		1 1
	following requirement:	
	i) Output Y will equal A when control inputs B and C are same.	
1	ii) Y will remain HIGH when B and C are different.	
	c) Implement the following function using only NAND gates:	3
	$f(A,B,C) = A\bar{B} + \bar{A}B + C$	
4	a) Minimize the following function using k-map and realize using NOR gates only	5
7	П М (J, 2, 3, 8, 9, 10, 11, 14). d(6, 7, 15)	
	b) Design a 2-bit magnitude comparator circuit.	2
	c) What are the difference between a ripple carry adder and a look-ahead carry adder?	
	c) What are the difference between a ripple carry mass as a second	
-/	a) Using binary arithmetic evaluate the binary arithmetic expression:	
Y		
	10111011111	3
	b) The binary ripple-carry addition algorithm used in (a), can be implemented using a one-bit	
	full adder that takes two input bits a and b and a carry-in bits c and compute a sum bit z and a	1. 1
	carry-out bit d. The diagram below illustrates the input and outputs of a one-bit adder.	
	i. Draw a truth table for the one-bit full adder.	
	ii Based on the truth table obtained in (i) write the logical expressions for the sum bit z and	

carry-out bit d

ifi. Simplify the logical expressions obtained in (ii), and draw one circuit diagram for one-bit full adder.

6/ a) Design a 16:1 multiplexer using 4:1 multiplexer ICs. Mention some applications of multiplexers

b) Implement a full adder logic circuit using multiplexers.

c) Design a 1-to-8-line Demultiplexer.

a) What is the difference between a Latch and a Flip-Flop?

b) Design an S-R latch using two 2-input NAND gates.

c) How can Race-Around Condition be eliminated with necessary diagram

d) Draw the logic diagram with truth table of a clocked D-type Flip-Flop

@ diff by shift region and counter

Dexplain -> siso shift region operate