IN THE CLAIMS:

1	1.	(Currently Amended) A method of decoupling a drive signal from a pickoff	
2	signal to atter	nuate the effect of electrical cross-coupling between the drive signal and the pickoff	
3	signal, the method comprising:		
4		providing a drive signal at a first frequency that is represented by a plurality of	
5	data values;		
6		altering at least one of the plurality of data values of the drive signal; and	
7		producing a pickoff signal at a second frequency different from the first frequency	
8	of the drive signal;		
9		whereby the pickoff signal is distinguished from any cross-coupled drive signal.	
1	2.	(Currently Amended) The method as defined in claim 1, further comprising:	
2		providing a second secondary drive signal that is derived from the drive signal;	
3		applying a first polarity randomization to the drive signal; and	
4		applying a second polarity randomization to the secondary drive signal.	
1	3.	(Currently Amended) The method as defined in claim 1, 2, wherein:	
2		the first polarity randomization is substantially identical to the second polarity	
3	randomization; and		
4		the first polarity randomization is applied at substantially the same time as the	
5	second polarity randomization.		

(Original) The method as defined in claim 1, wherein: 1 4. the drive signal is a half-frequency sinusoidal signal and the plurality of data 2 3 values are analog data values or digital data values; and 4 the altering at least one of the plurality of data values includes inverting the at 5 least one of the plurality of data values. 1 5. (Original) The method as defined in claim 1, wherein the first frequency is about $\frac{1}{2}\omega$ and the second frequency is about ω . 2 (Original) The method as defined in claim 1, wherein the altering at least one of 6. 1 the plurality of data values includes randomly or pseudo-randomly inverting at least one of the 2 3 plurality of data values. 7. (Original) The method as defined in claim 1, wherein the altering at least one of 1 2 the plurality of data values includes randomly or pseudo-randomly switching from a positive state to a negative state or from a negative state to a positive state at least one of the plurality of 3 data values. 4 (Original) The method as defined in claim 1, wherein the altering at least one of 8. 1 2 the plurality of data values occurs at approximately a zero crossing of the drive signal. (Original) The method as defined in claim 1, wherein the altering at least one of 1 9. the plurality of data values occurs for at least approximately a half-cycle of the drive signal. 2

3

34261.8400\GESSA\IRV\389881 .

1	10.	(Original) The method as defined in claim 1, wherein the altering at least one of
2	the plurality of data values occurs for at least approximately an integer number of half cycles of	
3	the drive signal.	
1	11.	(Original) A method of distinguishing an analog drive signal from a pickoff
2	signal for attenuating the effect of electrical cross-coupling between the analog drive signal and	
3	the pickoff signal, the method comprising:	
4		receiving a periodic digital signal at a first frequency in the form of a stream of
5	digital data values;	
6		randomly inverting at least one of the digital data values;
7		converting the stream of digital data values to a stream of analog data values to
8	form an analog drive signal;	
9		driving a sensor, physically coupled to a resonant member configured to oscillate
10	at a second frequency, using the analog drive signal; and	
11		sensing changes in the movement of the resonant member detected by the sensor
12	for producing	g a pickoff signal.
1	12.	(Original) The method as defined in claim 11, wherein the randomly inverting at
2		the digital data values occurs at approximately a zero crossing of the periodic digital
		the digital data values occurs at approximatory a zero crossing of the periodic digital
3	signal.	
1	. 13.	(Original) The method as defined in claim 11, wherein the randomly inverting at
2	least one of the digital data values occurs for at least approximately a half-cycle of the periodic	
3	digital signal.	

34261.8400\GESSA\IRV\389881 4

(Original) The method as defined in claim 11, wherein the randomly inverting at 1 14. least one of the digital data values occurs for at least approximately an integer number of half 2 3 cycles of the periodic digital signal. (Original) The method as defined in claim 11, wherein the randomly inverting at 15. 1 least one of the digital data values includes randomly or pseudo-randomly switching at least one 2 of the digital data values from a positive number to a negative number or from a negative 3 number to a positive number. 4 (Original) A method of distinguishing a drive signal from a pickoff signal for 1 16. attenuating the effect of electrical cross-coupling between the drive signal and the pickoff signal, 2 3 the method comprising: receiving an input signal at a first frequency in the form of a plurality of data 4 5 values; randomly changing the polarity of at least one of the plurality of data values of the 6 input signal to form a sensor drive signal; 7 driving a sensor, physically coupled to a resonant member, using the sensor drive 8 9 signal; and detecting movements of the resonant member by the sensor for producing a 10 11 pickoff signal.

(Original) The method as defined in claim 16, further comprising receiving a

34261.8400\GESSA\IRV\389881 , 5

secondary input signal in the form of a plurality of data values.

1

2

17.

- 1 18. (Original) The method as defined in claim 16, further comprising configuring the resonant member to oscillate at a second frequency.
- 1 19. (Original) The method as defined in claim 16, wherein the resonant member is 2 selected from a group consisting of a micro-electromechanical system and a gyroscope.
- 1 20. (Original) The method as defined in claim 16, wherein the randomly changing 2 the polarity of at least one of the plurality of data values includes randomly changing the polarity 3 of all the data values within a defined half-cycle of the input signal.