Proposition 11.13. Suppose $A = \lim_{n\to\infty} a_n$ and $B = \lim_{n\to\infty} b_n$.

(i) For any $c \in \mathbb{R}$, $\lim_{n \to \infty} (c a_n) = c A$.

(ii)
$$\lim_{n\to\infty} (a_n + b_n) = A + B$$
.

(iii)
$$\lim_{n\to\infty} (a_n b_n) = AB$$
.

(iv) If
$$A \neq 0$$
, then $\lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{A}$.

Proof. Suppose $A = \lim_{n \to \infty} a_n$ and $B = \lim_{n \to \infty} b_n$.

(ii) By assumption,

for all
$$\epsilon > 0$$
, there exists $N_1 \in \mathbb{N}$, such that for all $n \geq N_1$, $|a_n - A| < \frac{\epsilon}{2}$,

and

for all
$$\epsilon > 0$$
, there exists $N_2 \in \mathbb{N}$, such that for all $n \geq N_2$, $|b_n - B| < \frac{\epsilon}{2}$.

Now given $\epsilon > 0$, choose $N = \max(N_1, N_2)$. Then for all $n \geq N$,

$$|(a_n + b_n) - (A + B)| = |(a_n - A) + (b_n - B)| \le |a_n - A| + |b_n - B| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Here the penultimate inequality follows from Proposition 11.6(iv), and the last inequality follows from our assumptions.

(iii) By Proposition 11.12, (b_n) is bounded because it converges. So suppose M > 0 is a bound for (b_n) , that is, $|b_n| \leq M$ for all $n \in \mathbb{N}$.

Now we distinguish two cases, namely A=0 and $A\neq 0$. In the first case A=0, we use that

for all
$$\epsilon > 0$$
, there exists $N_1 \in \mathbb{N}$, such that for all $n \geq N_1$, $|a_n| < \frac{\epsilon}{M}$.

Now given $\epsilon > 0$, choose $N = N_1$. Then for all $n \geq N$,

$$|a_n b_n - AB| = |a_n b_n| = |a_n| |b_n| < \frac{\epsilon}{M} M = \epsilon.$$

In the second case $A \neq 0$, we use that

for all
$$\epsilon > 0$$
, there exists $N_1 \in \mathbb{N}$, such that for all $n \geq N_1$, $|a_n - A| < \frac{\epsilon}{2M}$,

and

for all
$$\epsilon > 0$$
, there exists $N_2 \in \mathbb{N}$, such that for all $n \geq N_2$, $|b_n - B| < \frac{\epsilon}{2|A|}$.

Now given $\epsilon > 0$, choose $N = \max(N_1, N_2)$. Then for all $n \geq N$,

$$|a_n b_n - AB| = |a_n b_n - Ab_n + Ab_n - AB| = |(a_n - A)b_n + (b_n - B)A|$$

$$\leq |a_n - A||b_n| + |b_n - B||A| < \frac{\epsilon}{2M}M + \frac{\epsilon}{2|A|}|A| = \epsilon.$$