

Semester: July 2023 -October 2023 **Maximum Marks: 100 Examination: ESE Examination Duration:3 Hrs.** Programme code: 01 Class: TY Semester: V (SVU 2020) Programme: B.Tech Name of the department: Computer Name of the Constituent College: K. J. Somaiya College of Engineering Engg. Course Code: 116U01E514 Name of the Course: Soft Computing Instructions: 1)Draw neat diagrams 2) All questions are compulsory 3) Assume suitable data wherever necessary

Que. No.	Question							
Q1	Solve any Four		20					
i)	Explain Biological Neuron and its working with the help of diagram. Diagram: 2M Description of parts: 3M							
ii)	explanation. x_1 x_2 y	Neuron with proper architecture and	5					
	Case 1: Assume that both weights w_1 and w_2 are excitatory, i.e., $w_1 = w_2 = 1$ Then for the four inputs calculate the net input using $y_{in} = x_1w_1 + x_2w_2$ For inputs $(1,1), y_{in} = 1 \times 1 + 1 \times 1 = 2$ $(1,0), y_{in} = 1 \times 1 + 0 \times 1 = 1$ $(0,1), y_{in} = 0 \times 1 + 1 \times 1 = 1$ $(0,0), y_{in} = 0 \times 1 + 0 \times 1 = 0$ From the calculated net inputs, it is not possible to fire the neuron for input $(1,0)$ only. Hence, these weights are not suitable. Assume one weight as excitatory and the other as inhibitory, i.e., $w_1 = 1, w_2 = -1$	Now calculate the net input. For the inputs $(1,1), y_{in} = 1 \times 1 + 1 \times -1 = 0$ $(1,0), y_{in} = 1 \times 1 + 0 \times -1 = 1$ $(0,1), y_{in} = 0 \times 1 + 1 \times -1 = -1$ $(0,0), y_{in} = 0 \times 1 + 0 \times -1 = 0$ From the calculated net inputs, now it is possible to fire the neuron for input (1, 0) only by fixing a threshold of 1, i.e., $\theta \ge 1$ for Y unit. Thus, $w_1 = 1; w_2 = -1; \theta \ge 1$ Note: The value of θ is calculated using the following: $\theta \ge nw - p$ $\theta \ge 2 \times 1 - 1 \qquad \text{[for "p" inhibitory only magnitude considered]}$ $\theta \ge 1$ Thus, the output of neuron Y can be written as $y = f(y_{in}) = \begin{cases} 1 & \text{if } y_{in} \ge 1 \\ 0 & \text{if } y_{in} < 1 \end{cases}$						

iii)	Explain ANN and give its advantages. ANN Definition: 2M Diagram: 1M Advantages: 2M	5
iv)	Explain Fuzzification methods. Atleast 3 Methods	5
v)	Obtain the output of the neuron Y using activation functions as: (i) Binary sigmoidal (ii) Bipolar sigmoidal 0.8 0.5 0.4 0.3 Net = 0.08+0.18-0.08+0.35 = 0.53 Sigmoidal = 0.629	5
	Bipolar = 0.258	
vi)	Consider a fuzzy set A defined on the interval $x=[0, 10]$ of integers by the membership function. $\mu A(x) = x / x + 2$ Find α -cut corresponding to $\alpha = 0.5$. Ans = $\{2,3,4,5,6,7,8,9,10\}$	5

Que.	Question	Max.
No.		Marks
Q2 A	Solve the following	10
i)	The height of the building term set, h, comprises tall and low buildings. A building that is below 12.7 metres is definitely a low building and it is definitely not low if the height is greater than 31.88 meters. Contrariwise, a tall building should measure more than 12.44 meters and a building with a height greater than or equal to 34.49 meters is definitely a tall building. Derive the membership functions for the linguistic variables tall and low from the description given above. Tall – Ramp – 2.5 M (0,12.7,31.88) Low - Ramp – 2.5 M (12.44,34.49,infinity)	5
ii)	Describe the process of Simulated Annealing in Neural Network and its application. Description: 2M Diagram: 2M Application:1M	5
	OR	
Q2 A	Design a Hebb net to implement logical AND function (use bipolar inputs and targets).	10

Que.	Question	Max.
No.		Marks
Q3	Solve any Two	20
i)	Construct an ART 1 network for clustering two input vectors with low vigilance parameter = 0.4 into two clusters. The two input vectors are [0 0 0 1] and [0 1 0 1].	10

Solution: The values assumed in this case are ρ = 0.4, $\alpha = 2$. Also it can be noted that n = 4 and m = 3. Hence, Bottom-up-weights, $b_{ij}(0) = 1/1 + n = 1/1 + 4 =$ Top-down-weights $t_{ji}(0) = 1$. For i = 1 to 4 and j = 1 to 2,

 $b_{ij} = \begin{bmatrix} 0.2 & 0.2 \\ 0.2 & 0.2 \\ 0.2 & 0.2 \\ 0.2 & 0.2 \\ 0.2 & 0.2 \end{bmatrix}$

Step 0: Initialize the parameters:

$$\rho = 0.4; \quad \alpha = 2$$

Initialize weights:

$$b_{ij}(0) = 0.2; \quad t_{ji}(0) = 1$$

Step 1: Start computation.

Step 2: For the first input vector [0 0 0 1], perform Steps 3-12.

Step 3: Set activations of all F2 units to zero. Set activations of F₁(a) units to input vector $s = [0\ 0\ 0\ 1].$

Step 4: Compute norm of s:

$$||s|| = 0 + 0 + 0 + 1 = 1$$

Step 5: Compute activations for each node in the F1 layer:

$$x = [0 \ 0 \ 0 \ 1]$$

Step 6: Compute net input to each node in the

$$y_j = \sum_{i=1}^4 b_{ij} x_i$$

For j = 1 to 3,

$$y_1 = 0.2(0) + 0.2(0) + 0.2(0) + 0.2(1)$$

$$= 0.2$$

$$y_2 = 0.2(0) + 0.2(0) + 0.2(0) + 0.2(1)$$

$$y_3 = 0.2(0) + 0.2(0) + 0.2(0) + 0.2(1)$$

Step 7: When reset is true, perform Steps 8-11. Step 8: Since all the inputs pose same net input, there exists a tie and the unit with the smallest index is the winner, i.e., J=1.

Step 9: Recompute the F₁ activations (for J=1):

$$x_i = x_i t_{ji}$$

 $x_1 = x_1 t_{ji} = [0 \ 0 \ 0 \ 1][1 \ 1 \ 1]$
 $x_2 = [0 \ 0 \ 0 \ 1][1 \ 1 \ 1]$

Step 10: Calculate norm of x:

$$||x|| = 1$$

Step 11: Test for reset condition:

$$\frac{\|x\|}{\|s\|} = \frac{1}{1} = 1.0 \ge 0.4 \ (\rho)$$

Hence reset is false. Proceed to Step 12.

Step 12: • Update bottom-up weights for $\alpha = 2$:

Step 12: • Update bottom-up weights for
$$\alpha = 2$$

$$\frac{\alpha x_i}{\alpha - 1 + \|x\|} = \frac{2x_i}{2 - 1 + \|x\|} = \frac{2x_i}{1 + \|x\|}$$

$$b_{11} = \frac{2 \times 0}{1 + 1} = 0;$$

$$b_{21} = \frac{2 \times 0}{1 + 1} = 0;$$

$$b_{31} = \frac{2 \times 0}{1 + 1} = 0;$$

$$b_{4i} = \frac{2 \times 1}{1 + 1} = \frac{2}{2} = 1$$

Therefore, the bottom-up weight matrix b_{ij} becomes

$$b_{ij} = \begin{bmatrix} 0 & 0.2 \\ 0 & 0.2 \\ 0 & 0.2 \\ 1 & 0.2 \\ & & t_{ji} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

For second Input [0101]

Step 4: Compute norm of s:

$$||s|| = 0 + 1 + 0 + 1 = 2$$

Step 5: Compute activations of each node in the F_1 layer:

$$x = [0 \ 1 \ 0 \ 1]$$

Step 6: Compute net input to each node in the F₂ layer:

$$y_j = \sum_{i=1}^4 b_{ij} x_i$$

For j = 1 to 3,

 $y_1 = 0(0) + 0(1) + 0(0) + i(1) = 1$

 $y_2 = 0.2(0) + 0.2(1) + 0.2(0) + 0.2(1)$

 $y_3 = 0.2(0) + 0.2(1) + 0.2(0) + 0.2(1)$ = 0.4

Step 7: When reset is true, perform Steps 8-11.

Step 8: The unit with largest net input is the winner, i.e., J = 1.

Step 9: Recompute F_1 activations (for J = 1): $x_i = s_i t_{fi} = [0\ 1\ 0\ 1][0\ 0\ 0\ 1] = [0\ 0\ 0\ 1]$

Step 10: Calculate norm of x:

$$||x|| = 0 + 0 + 0 + 1 = 1$$

Step 11: Test for reset condition:

$$\frac{\|x\|}{\|s\|} = \frac{1}{2} = 0.5 \ge 0.4 \; (\rho)$$

Hence reset is false. Proceed to Step 12.

Step 12: • Update bottom-up weights for
$$\alpha=2$$
:
$$b_{ij} (\text{new}) = \frac{2x_j}{1+\|x\|}$$

$$b_{11} = \frac{2\times 0}{1+1} = 0;$$

$$b_{21} = \frac{2\times 0}{1+1} = 0;$$

$$b_{31} = \frac{2 \times 0}{1+1} = 0;$$

$$b_{41} = \frac{2 \times 1}{1+1} = \frac{2}{2} = 1$$

Therefore, the bottom-up weight matrix by becomes

Step 2: For the second input vector [0 1 0 1], perform Steps 3-12.

Step 3: Set activations of all F2 units to zero. Set activations of F1(a) units to input vector $s = [0 \ 1 \ 0 \ 1].$

 Update the top-down weights: $t_{ji}(\text{new}) = x_i$ $b_{ij} = \begin{bmatrix} 0 & 0.2 \\ 0 & 0.2 \end{bmatrix}$ $t_{fi} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

First Input: 5M Second Input: 5M

ii)	Explain Kohonen Self Organizing Feature Map in detail with suitable diagrams. Also give its training algorithm.	10
	Network Architecture : 2M	
	Explanation: 4M	
	Training algorithm: 4M	
iii)	With the help of a block diagram explain the working of a Fuzzy Logic Air	10
	Conditioner Controller. (Assume suitable input and output)	
	Input: 1M	
	Output: 1M	
	Fuzzification: 3M	
	Fuzzy Rules: 2M	
	Defuzzification: 3M	

Que.	Question						
lo.							
Q4	Solve any Two						
i)	Train a Heteroas s2, s3, s4) to the the performance	e out	tput	vect	ors t	= (t	t1, t
	Input and targets	<i>s</i> 1		 \$3	54	t ₁	
	Input and targets	5 ₁			54	<i>t</i> ₁	
		5 ₁	52	\$3	54	t ₁	
	1 st	I 1 0	52	s ₃	<i>5</i> 4	<i>t</i> ₁	1 1 0

$$\chi_{Neg}(x) = \begin{cases} 0 & \text{if } x \geq 0, \\ 1 & \text{if } x = -1, \\ \alpha_1 + \beta_1 \, x & \text{otherwise.} \end{cases}$$

$$\chi_{Pos}(x) = \begin{cases} 0 & \text{if } x \leq 0, \\ 1 & \text{if } x = 1 \\ \alpha_2 + \beta_2 \, x & \text{otherwise.} \end{cases}$$

$$\chi_{zero}(x) = \max \left(\min(-(x+1), 1-x), 0 \right)$$
 (\$\alpha\$ and \$\beta\$ are constatnts.) Compute the control values \$\eta\$ for \$(\lambda1, \lambda2) = (-1, 0)\$ Show all the four stages of the computation: fuzzification, inference, composition and defuzzification.

Input: {-1,0}, Fuzzification: \lambda1\$ is Neg and \lambda2\$ is Zero, inference Rules Fired: If \lambda1\$ is Neg and \lambda2\$ is Zero 5 composition: \$\eta\$ is Zero defuzzification \$\eta\$; \$\eta\$ is 0

2 M each

Que.	Question	Max.
No.		Marks
Q5	Write Short notes on any four	20
i)	ANFIS	5
	Explanation: 3M	
	Diagram: 2M	
ii)	Hopfield Network	5
	Explanation: 3M	
	Diagram: 2M	
iii)	Discrete BAM	5
	Explanation: 3M	
	Diagram: 2M	
iv)	Neocognitron	5
	Explanation: 3M	
	Diagram: 2M	
v)	Defuzzification	5
	Explanation: 3M	
	Diagram: 2M	
vi)	Full Counter Propagation Network	5
	Explanation: 3M	
	Diagram: 2M	