殺

东南大学成贤学院考试卷 (A卷)

课程名称	概率论与	概率论与数理统计			用	专	业	工科各专业				
考试学期	20-21-2	考试形	式	开 ^有 半3	告□ F卷	闭着 □	∳ ☑	考	试	时	间	120 分钟
学 号		姓	名						得		分	

题	号	_	=	Ξ	四	五
得	分					

备用数据: Φ(-1.645) = 0.05;

 $\Phi(1) = 0.8413$;

 $\Phi(1.5) = 0.9332$;

 $\Phi(1.96) = 0.975$;

 $\Phi(2) = 0.9772$;

 $\Phi(2.84) = 0.997;$

$$\chi_n^2 \sim \chi^2(n)$$
: $P(\chi_{50}^2 \ge 67.5) = 0.05$;

$$P(\chi_{50}^2 \ge 34.8) = 0.95$$
;

$$P(\chi_{51}^2 \ge 68.7) = 0.05;$$

$$P(\chi_{51}^2 \ge 35.6) = 0.95;$$

$$T_n \sim t(n)$$
 $P(T_{99} \ge 1.66) = 0.05;$ $P(T_{99} \ge 1.98) = 0.025;$

$$P(T_{00} \ge 1.98) = 0.025$$

一、 选择题(共5小题,每小题3分,共15分)

- 1、设 P(A) = 0.6, P(B) = 0.5, P(A|B) = 0.8,则 $P(A \cup \overline{B}) = 0.8$
 - (*A*) 0.4
- $(B) \quad 0.7 \qquad (C) \quad 0.8$
- (D) 0.9

2、设随机变量 *X* 的密度函数为

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, & 1 \le x < 2 \\ 0, & \text{其他} \end{cases}$$

则 $F(\frac{1}{2}) =$

- (A) $\frac{1}{2}$ (B) $\frac{3}{2}$ (C) $\frac{1}{8}$ (D) $\frac{7}{8}$

- 3、设随机变量 X 和 Y 相互独立, X 服从正态分布 N(3,3), Y 服从 参数 $\lambda = 2$ 的指数分布 E(2), 则 $P(X \le 3, Y > 0) =$

(A)
$$e^{-1}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{2}(1-e^{-1})$ (D) 1

- 4、设随机变量 $X \times Y \times Z \times W$ 独立都服从标准正态分布N(0,1),则 $\frac{1}{2}[(X-Y)^2+(Z+W)^2]$ 服从_____分布.
- (A) t(2) (B) $\chi^2(2)$ (C) $\chi^2(4)$
- (D) F(2,2)
- 5、设 (X_1, \dots, X_n) 是来自正态总体 $N(\mu, \sigma^2)$ 的容量 n 为的简单随机样本, σ^2 已知,对检验问题: H_0 : $\mu \geq \mu_0 \leftrightarrow H_1$: $\mu < \mu_0$,若在显著水平 $\alpha = 0.01$ 下接受 H_0 ,则在显著水平 $\alpha = 0.05$ 下,下列结论正确的是
 - (A) 可能接受,也可能拒绝 H_0 ; (B) 必拒绝 H_0 ;
 - (C) 必接受H₀;

(D) 不接受也不拒绝.

二、填空题(本题共5小题,每小题3分,满分共15分)

- 1、三个人随机地走进编号分别为1、2、3、4的四个房间,则恰好有1人 走进2号房间的概率为
- 2、设 X,Y 是两个相互独立的随机变量, $X \sim N(3, 1)$, $Y \sim N(1, 4)$, 则 -3X+2Y 服从 分布(写出参数).
- 3、设随机变量 X与Y相互独立, 目DX = 4, DY = 9,则 cov(2X + 1, X - Y) =.
- 4、设 X_1, X_2, \dots, X_n …为独立同分布的随机变量序列,其分布律为

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

则 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$ 依概率收敛于_____.

5、设总体 X 服从参数 $\lambda=3$ 的指数分布, (X_1, \dots, X_{40}) 是来自X 的容量 为 40 的简单随机样本,样本均值 $\overline{X} = \frac{1}{40} \sum_{i=1}^{40} X_{i}$,则 $D(\overline{X}) = 1$.

如

三、(共2小题,每小题10分,共20分)

1、(10分)某厂一、二、三车间生产同类产品,已知三个车间生产的产品分别占总量的50%,25%,25%,又知一、二、三车间产品的次品率分别为 1%,2%,4%;求:

- (1)、从该厂产品中任取一件是次品的概率;
- (2)、若从该厂产品中任取一件是次品,求它是三车间生产的概率.

2、(10分)设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2 \\ 0, & \text{其他} \end{cases}$$

(1)、求 Y = 2X+1 的分布函数 $F_Y(y)$; (2)、 $E(\frac{1}{X})$.

四、(共3小题,每小题5分,共15分)

设二维连续型随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} x, & 0 \le x \le 1, 0 < y < 3x \\ 0, & \text{ } \sharp \dot{\Xi} \end{cases}$$

求:1、Y 的边缘分布密度; 2、条件分布密度 $f_{X|Y}(x|y)$;

$$3 \cdot P(X < \frac{1}{2})$$
.

如

五、(本题共 4 小题,满分共 35 分)

1、(8分)设随机向量(X,Y)的联合分布律为

<i>Y X</i>	1	2	3
1	0.1	0	0.1
2	0.2	0.1	0.2
3	0	0.2	0.1

求: (1)、关于X 的边缘分布律. (2)、Z = XY 的分布律.

2、(10分) 某生产线生产的一批产品成箱包装,共有100箱,每箱质量是随机的;假设每箱平均重50千克,标准差为5,若用载重为5吨的汽车承运,试用中心极限定理计算不超载的概率近似值.

3、 (10分) 设总体 *X* 的分布律为

$$f(x,\theta) = \theta^{\frac{x-1}{2}} (1-\theta)^{\frac{3-x}{2}}, x=1, 3$$

 (X_1, \dots, X_n) 是来自总体 X 的容量为 n 的简单随机样本,求: (1)、 θ 的矩估计量 $\hat{\theta}$; (2)、 θ 的最大似然估计量 $\hat{\theta_L}$.

4、(7分)设一批晶体管的寿命X 服从正态分布 $N(\mu, \sigma^2)$,从中抽取 100 只作寿命试验,测得其平均寿命 \bar{x} 为 1000 小时,标准差s=40小时. 求 这批晶体管的平均寿命 μ 的置信度为 95% 的置信区间.