Laurea in Informatica A.A. 2021-2022

Corso "Base di Dati"

Introduzione alle Basi di Dati

Aziende e Sistemi Informativi

Organizzazione

gestisce le informazioni di interesse per il perseguimento degli scopi dell'organizzazione

deliveroo

Sistema informativo

Sistema informatico

Porzione automatizzata del sistema informativo con tecnologie informatiche

Sistemi Informativi e Basi di Dati

(automatizzate = con il supporto del sistema informatico)

Informazioni e dati

(definizioni dal Vocabolario della lingua italiana 1987)

dato: ciò che è immediatamente presente alla conoscenza, prima di ogni elaborazione;

informazione: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere.

Dati

Dati:

- Misurazione delle numero di abitanti nei diversi continenti
- Stime della popolazione fino al 2050 per continente.

Dati + Elaborazione = Informazione

Dati:

- Misurazione delle numero di abitanti nei diversi continenti
- Stime della popolazione fino al 2050 per continente.

Informazione:

- Nel 2050, la popolazione mondiale sarà 4 volte
- La polazione in Europa tenderà a scendere

I dati sono inutili senza elaborazione.

I sistemi informativi generano

mondiale

Gestione delle informazioni

I dati codificano le informazioni

Ad esempio, nei servizi anagrafici e nel riferimento a persone

- descrizioni discorsive
- nome e cognome
- estremi anagrafici
- codice fiscale
- La rappresentazione precisa di forme più ricche di informazione e conoscenza è difficile

Base di dati

Insieme organizzato di dati utilizzati per il supporto allo svolgimento delle attività di un ente (azienda, ufficio, comuni, ecc...)

DataBase Management System (DBMS)

- Le basi di dati sono gestiti da un DBMS (Database Management System)
- Una basi di dati è:
- 1. Grande
- 2. Persistente
- 3. Condivisa
- Un DBMS garantisce alla base di dati:
- 1. Privacy
- 2. Affidabilità
- 3. Efficienza
- 4. Efficacia

Le basi di dati sono ...

- Grandi: Il limite deve essere solo quello fisico dei dispositivi (>100 miliardi di record, >10 Terabyte di dati);
- Persistenti: indipendente dalle singole esecuzioni dei programmi;
- Condivise: Applicazioni e utenti diversi accedono ad una porzione (sovrapponibile) delle basi di dati

Problemi delle condivisioni

Ridondanza: informazioni ripetute;

 Rischio di incoerenza: le versioni possono non coincidere;

 Problemi di privacy: i fruitori delle basi di dati devono accedere ai dati per cui sono autorizzati;

Problemi delle condivisioni: La Soluzione!

- Attività diverse su dati condivisi:
 - meccanismi di autorizzazione
- Accessi di più utenti ai dati condivisi:
 - -controllo della concorrenza
 - uso di lock e semafori

I DBMS garantiscono ... privacy

- Si possono definire meccanismi di autorizzazione
- Esempio:

l'utente A è autorizzato a leggere tutti i dati e a modificare X

l'utente B è autorizzato a leggere dati X e a modificare Y

I DBMS garantiscono... affidabilità

 Affidabilità: resistenza a malfunzionamenti hardware e software

- Affidabilita

 Gestione delle transazioni
 - -Transazioni = Insieme di operazioni da considerare indivisibile corretto anche in presenza di <u>concorrenza</u> e con effetti <u>definitivi</u>

Affidabilità → Gestione delle transazioni: Un esempio

- Trasferimento di fondi da un conto A ad un conto B:
 - 1. Prelevamento da A
 - 2. Versamento su B

 Si fanno il prelevamento da A e il versamento su B o nessuno dei due

Le transazioni sono ... concorrenti

- Esempi:
 - se due assegni emessi sullo stesso conto corrente vengono incassati contemporaneamente
 - ... si deve evitare di trascurarne uno
 - 2. se due agenzie rischiedono lo stesso posto (libero) su un treno
 - ... si deve evitare di assegnarlo due volte

Quindi:

Transazioni $T_1,...,T_n$

Fare $T_1,...,T_n$ concorrentemente = - Fare T_1 , poi T_2 , ...,poi T_n

Affidabilità: i risultati delle transazioni sono permanenti

 La conclusione positiva di una transazione corrisponde ad un impegno (in inglese commit) a mantenere traccia del risultato in modo definitivo, anche in presenza di guasti e di esecuzione concorrente

I DBMS debbono essere... efficienti

 Utilizzare al meglio le risorse memoria, disco e tempo

 Se un DBMS non è efficiente, il sistema informativo non è efficiente!

I DBMS debbono essere... efficaci

 Cercano di rendere produttive le attività dei loro utilizzatori, offrendo funzionalità articolate, potenti e flessibili:

 Il corso è in buona parte dedicato ad illustrare come i DBMS perseguono l'efficacia

DBMS vs file system

- DBMS si construiscono sopra i file system
- I DBMS estendono le funzionalità dei file system, garantendo alle base di dati:
 - 1. Privatezza
 - 2. Affidabilità
 - 3. Efficienza
 - 4. Efficacia

Modello dei dati

- Insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
- Questo corso usa il modello relazionale
- Il modello relazionale prevede il costruttore relazione, che permette di definire insiemi di record omogenei

Esempio di (porzione di) base di dati

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi inform.	Piero Rossi	N3	8:00

Basi di dati: schema e istanza

Lo schema della base di dati

()	ra	rio
	<u> </u>	

Insegnamento	Docente	Aula	Ora	
Analisi matem. I	Luigi Neri	N1	8:00	
Basi di dati	Piero Rossi	N2	9:45	
Chimica	Nicola Mori	N1	9:45	
Fisica I	Mario Bruni	N1	11:45	
Fisica II	Mario Bruni	N3	9:45	
Sistemi inform.	Piero Rossi	N3	8:00	

L'istanza della base di dati

Esempio di (porzione di) base di dati

(Orario			Domir	1
	Insegnamento	Docente	Aula	Ora	
	Analisi matem. i	Luigi Neri	N1	8:00	
	Basi di dati	Piero Rossi	N2	9:45	
	Chimica	Nicola Mori	N1	9:45	
	Fisica I	Mario Bruni	N1	11:45	
	Fisica II	Mario Bruni	N3	9:45	
	Sistemi inform.	Piero Rossi	N3	8:00	

Esempio di (porzione di) base di dati

Orario

Insegnamento	Docente	Aula	Ora
Analisi matem. I	Luigi Neri	N1	8:00
Basi di dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi inform.	Piero Rossi	N3	8:00

Insegnamento = String

Docente = String

Aula = {N1, N2, N3}

Ora = {0:01,0:02,...,23:58,23:59}

Orario ⊆ **Insegnamento** X **Docente** X **Aula** X **Ora**

Schema e istanza

- In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura (aspetto intensionale)
 - es.: le intestazioni delle tabelle
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente (aspetto estensionale)
 - es.: il "corpo" di ciascuna tabella

Due tipi (principali) di modelli

- modelli <u>logici</u>
- modelli concettuali

Modelli logici

- Adottati nei DBMS esistenti per l'organizzazione dei dati
 - utilizzati dai programmi
 - -indipendenti dalle strutture fisiche
- Esempi: relazionale, reticolare, gerarchico, a oggetti, basato su XML

Modelli concettuali

- Permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione
- Il più diffuso è il modello Entity-Relationship

Architettura (semplificata) di un DBMS

Indipendenza dei dati

 Il livello logico è indipendente da quello fisico.

 In questo corso vedremo solo il livello logico e non quello fisico

Architettura standard (ANSI/SPARC) a tre livelli per DBMS

Una vista

Corsi

Corso	Docente	Aula
Basi di dati	Rossi	DS3
Sistemi	Neri	N3
Reti	Bruni	N3
Controlli	Bruni	G

Aule

Nome	Edificio	Piano
DS1	OMI	Terra
N3	OMI	Terra
G	Pincherle	Primo

Corsi Sedi

Corso	Aula	Edificio	Piano
Sistemi	N3	OMI	Terra
Reti	N3	OMI	Terra
Controlli	G	Pincherle	Primo

Linguaggi per basi di dati

- Un altro contributo all'efficacia: disponibilità di vari linguaggi e interfacce
 - ⇒linguaggi testuali interattivi (SQL)
 - ⇒comandi (SQL) immersi in un linguaggio ospite (Pascal, Java, C ...)
 - con interfacce amichevoli (senza linguaggio testuale)

SQL, un linguaggio interattivo

Corsi

Corso	Docente	Aula
Basi di dati	Rossi	DS3
Sistemi	Neri	N3
Reti	Bruni	N3
Controlli	Bruni	G

Aule

Nome	Edificio	Piano
DS1	OMI	Terra
N3	OMI	Terra
G	Pincherle	Primo

 "Trovare i corsi tenuti in aule a piano terra"

SQL, un linguaggio interattivo

"Trovare i corsi tenuti in aule a piano terra" SELECT Corso, Aula, Piano FROM Aule, Corsi WHERE Nome = Aula

Corsi

Corso	Docente	Aula
Basi di dati	Rossi	DS3
Sistemi	Neri	N3
Reti	Bruni	N3
Controlli	Bruni	G

Aule

Non	ne	Edifici	io l	Piano
DS	1	OMI		Terra
N3	3	OMI		Terra
G		Pinche	rle l	Primo

SQL, un linguaggio interattivo

"Trovare i corsi tenuti in aule a piano terra" SELECT Corso, Aula, Piano FROM Aule, Corsi WHERE Nome = Aula

Corso	Docente	Aula	Nome	Edificio	Piano
Sistemi	Neri	N3	N3	OMI	Terra
Reti	Bruni	N3	N3	OMI	Terra
Controlli	Bruni	G	G	Pincherle	Primo

SQL, un linguaggio interattivo

"Trovare i corsi tenuti in aule a piano terra" SELECT Corso, Aula, Piano FROM Aule, Corsi WHERE Nome = Aula AND Piano = "Terra"

Corso	Doc ente	e Aula	No ne	Edi cio	Piano
Sistemi	N⇒ri	N3	NB	0 /11	Terra
Reti	Br ini	N3	NB	0 /11	Terra
Controll					

SQL immerso in linguaggio ospite (es. Java)

```
import java.sql.*;
public class FirstExample {
   public static void main(String[] args) {
        Class.forName("com.mysql.jdbc.Driver");
        Connection conn=
        DriverManager.getConnection("jdbc:mysql://localhost/EMP",
                 "user", "pass");
        Statement stmt= conn.createStatement();
        ResultSet rs =
              stmt.executeQuery("SELECT id, first, last, age FROM Employees");
        while(rs.next()){
                 int id = rs.getInt("id");
                 int age = rs.getInt("age");
                 String first = rs.getString("first");
                 String last = rs.getString("last");
                 System.out.print("ID: " + id);
                 System.out.print(", Age: " + age);
                 System.out.print(", First: " + first);
                 System.out.println(", Last: " + last);
```

SQL in linguaggio ad hoc (Oracle PL/SQL)

```
declare Stip number;
begin
   SELECT STIPENDIO INTO STIP FROM IMPIEGATO
   WHERE MATRICOLA = '575488' FOR UPDATE OF STIPENDIO;
   if Stip > 30 then
     UPDATE IMPIEGATO SET STIPENDIO = STIPENDIO * 1.1
        WHERE MATRICOLA = '575488';
   else
     UPDATE IMPIEGATO SET STIPENDIO = STIPENDIO * 1.15
        WHERE MATRICOLA = '575488';
   end if:
   commit;
 exception
   when no_data_found then
    INSERT INTO ERRORI
        VALUES('MATRICOLA INESISTENTE', SYSDATE);
 end;
```

Interazione Grafica (Postgres)

Linguaggio SQL: Non solo per Query

data manipulation language (DML)

per l'interrogazione e l'aggiornamento di (istanze di) basi di dati

data definition language (DDL)

per la definizione di schemi (logici, esterni, fisici) e altre operazioni generali

Un'operazione DDL (sullo schema)

```
CREATE TABLE orario (
insegnamento CHAR(20),
docente CHAR(20),
aula CHAR(4),
ora CHAR(5))
```

Vantaggi dei DBMS

- DBMS permettono ai dati di essere una risorsa comune, condivisa nell'organizzazione
- Gestione centralizzata con possibilità di standardizzazione ed "economia di scala"
- Disponibilità di servizi integrati
- Riduzione di ridondanze e inconsistenze
- Indipendenza dei dati → favorisce lo sviluppo e la manutenzione delle applicazioni

Svantaggi dei DBMS

- I DBMS possono essere complessi e costosi
 - Ne vale la pena solo per grandi organizzazioni
 - Non utilizzare senza:
 - tanti utenti;
 - accessi concorrenti e stabili;

A volte: meglio file semplici!

Riferimenti

Capitolo 1 del libro di riferimento

Organizzazione

Obiettivi del corso

- Conoscenze di base per la progettazione,
 l'implementazione e l'utilizzo di sistemi di gestione di basi di dati (DBMSs = Database Management Systems)
 - 1. Creazione di una BD, Base di Dati (inglese database)
 - 2. Interrogazione di una BD per l'estrazione di dati
 - Progettazione di una BD
 - 4. Ottimizzazione di una BD (tramite «normalizzazione»)
 - 5. Gestione degli accessi concorrenti ad una BD
 - 6. Accesso ad una BD da software C/C++
- Laboratori per «sporcarsi le mani con le BD»

Organizzazione del corso

- Crediti: 9 CFU di cui:
 - 6 CFU Introduzione Concetti (~48 ore)
 - 2 CFU Didattica Laboratorio (16 ore)
 - 1 CFU Esercitazioni (~8 ore)
- Nessuna registrazione delle lezioni per massimizzare partecipazione sincrona
- Esercitazioni e Didattica Laboratorio solo in presenza (https://www.unipd.it/node/86476)
- Supporto alle attività di laboratorio:
 - Dott. Samuel Congolato
 - Dott. Alessandro Padella

Materiale

- Libro di testo:
 - P. Atzeni, S. Ceri, P. Fraternali,
 - S. Paraboschi, R. Torlone. *Basi di dati.* McGraw-Hill Education; 5a edizione
- Sulla pagina Moodle del corso:
 - 1. Annunci
 - 2. Slides del Corso
 - 3. Materiale Esercitazioni e Laboratorio
 - 4. Esempi di Esame
 - 5. ...

Registratevi su Moodle se non lo siete già!

Come fare pratica?

- Numerosi esercizi alla fine di ogni capitolo del libro
- Soluzioni disponibili su:
 https://highered.mheducation.com/sites/8838694451/stu
 dent_view0/soluzioni_per_gli_esercizi_.html
- Numerosi esercizi «per casa» alla fine dei laboratori

Come contattare i docenti?

- Non utilizzare la email!
 - Circa 150 studenti
 - Se ogni studente invia una email al mese ed ogni risposta richiede 20 minuti
 - \rightarrow 20*150 = 50 ore > 1 settimana lavorativa (40h)
 - Discussioni per email sono meno efficienti di quelle verbali
- Ricevimento dopo lezione del mercoledì: in LUM250 [Via Luzzatti]

Orari ed aula

- Giorni/Orario (pausa di 15 minuti dopo ca. 45 minuti) :
 - Martedì: 12.30 14.15
 - Mercoledì: 14.30 16.15
 - Giovedì: 12.30 14.15
- Lezioni ed Esercitazioni: Aula LUM250
- Laboratorio: P140 + P036
- Non sempre lezione: Consultare il Calendario delle lezioni sulla pagina Moodle del corso per sapere se e quando lezione, esercitazione o laboratorio

Criteri di Valutazione / 1

Due parti:

- Progetto (25%)
 - Gruppi da due persone (salvo casi eccezionali e documentabili)
 - Definizione di un Dominio Applicativo e dei Requisiti
 - Progettazione e Realizzazione di una Base di Dati
 - Interrogazione ed Accesso da software
- Prova Scritta (75%)
 - Esercizi sulla Esecuzione di Interrogazioni in SQL e/o Algebra Relazionale
 - Esercizi sulla Progettazione e Realizzazione di una Base di Dati
 - Esercizi sulla Normalizzazione o Gestione delle Transazioni
 - Quiz Scelta Multipla

Criteri di Valutazione / 2

- Occorre raggiungere la sufficienza (≥ 18/30) in ciascuna prova
 - Nessuna possibilità di fare l'orale
 - Rifiutare il voto del progetto e/o della prova scritta equivale a ripetere la prova
 - Esame → Nuovo Esame in un appello successivo
 - Progetto → Nuovo Progetto su un nuovo dominio
- Non è possibile fare lo scritto senza aver consegnato il Progetto
- Dopo due insufficienze allo scritto, occorre fare un nuovo progetto!
- È possibile comunque consegnare il progetto e fare lo scritto in appelli successivi

Criteri di Valutazione / 3

- Progetto:
 - Scadenza per il Primo Scritto: 6 Gennaio alle 22.00
 - Scadenze dal Secondo Scritto: a partire dal secondo scritto, 10 giorni prima di ogni scritto alle 22.00 anche se weekend (per esempio se lo scritto fosse il 12/2, la scadenza sarebbe 2/2 alle 22.00)
- Non farti sorprendere (negativamente) dal voto del progetto!
 - (Porzioni di) Laboratori dedicati al feedback sul progetto
- Quando chiedi feedback:
 - A domanda precisa, risposta precisa
 - A domanda generica (per es. «Va bene il progetto?»), risposta generica

Considerazioni Conclusive

Capire un Modello ≠ Essere in grado di modellare Modellare ed Interrogare una Base di Dati

non è banale!

Distribuzione voti A.A 20-21

(ca. 20% non è passato dopo 5 appelli)

Anno Lezioni in Presenza vs Anno Lezioni Duale

