Ridge & Lasso Regression

What are Ridge and Lasso Regression?

Both **Ridge** and **Lasso** are **regularization techniques** used in **linear regression** to prevent **overfitting** by adding a **penalty term** to the cost function.

Why Regularization?

In Linear Regression, the model tries to minimize:

$$J(\theta) = \sum (yi - y^i) 2J(\theta) = \sum (yi - y^i) 2J(\theta) = \sum (yi - y^i) 2J(\theta)$$

If the model becomes too complex (too many features, or large coefficients), it can **overfit**.

Regularization adds a **penalty term** to keep coefficients small and improve generalization.

1. Ridge Regression (L2 Regularization)

Ridge adds the **square of the magnitude** of coefficients as a penalty term.

Cost Function:

 $J(\theta)=\sum(yi-y^i)2+\lambda\sum\theta j2J(\theta)=\sum(yi-y^i)2+\lambda\sum\theta j2J(\theta)=\sum(yi-y^i)2+\lambda(yi$

- Here, λ (lambda) is the regularization parameter.
- Larger $\lambda \rightarrow$ more penalty \rightarrow smaller coefficients.

Ridge regression **shrinks coefficients** but **never makes them exactly zero**. It's useful when you have **many correlated features**.

2. Lasso Regression (L1 Regularization)

Lasso adds the absolute value of coefficients as a penalty term.

Cost Function:

 $J(\theta) = \sum (yi - y^i)^2 + \lambda \sum |\theta j| J(\lambda \theta) = \sum (y_i - \lambda y_i)^2 + \lambda \sum |\theta j| J(\theta) = \sum (y_i - y^i)^2 + \lambda \sum (y_i -$

• Larger $\lambda \rightarrow$ more penalty \rightarrow some coefficients become **exactly zero**.

Lasso can perform feature selection, as it removes less important features automatically.

• 3. Key Differences

Feature	Ridge (L2)	Lasso (L1)
---------	------------	------------

Penalty Term
$$\lambda * \Sigma(\theta^2)$$
 $\lambda * \Sigma$

Coefficient Shrinkage Small, but never zero Can become exactly zero

Feature Selection X No Yes

Best For Multicollinearity Reducing number of features

Optimization Differentiable Not differentiable at 0

When to Use What

- **Use Ridge** when:
 - You have many correlated features.
 - o You don't want to remove any feature but want to reduce their impact.
- **Use Lasso** when:
 - You want feature selection.
 - o You believe only a few features are important.

Example:

Suppose we have 5 features:

X1, X2, X3, X4, X5.

If Lasso determines only X1 and X3 are useful, it will set:

$$\theta 2 = \theta 4 = \theta 5 = 0$$

Summary

Property	Ridge Regression	Lasso Regression
Regularization Type	L2 (squared weights)	L1 (absolute weights)
Coefficients	Shrinks but never zero	Some become exactly zero
Feature Selection	× No	✓ Yes
Best For	Multicollinearity	Sparse data or many irrelevant features

What Feature Selection Means

Feature selection = choosing only the most relevant features (variables) for your model and **ignoring or removing** the unimportant ones.

In Lasso Regression, this happens automatically because the L1 regularization can force some coefficients to exactly zero, effectively removing those features from the model.

Benefits of Feature Selection by Lasso

1. Reduces Overfitting

When your dataset has many features, some of them might add **noise** instead of useful information.

By removing irrelevant features, Lasso helps the model generalize better on unseen data.

Example:

If only 5 out of 50 features are truly useful, Lasso will keep those 5 and drop the rest \rightarrow the model becomes simpler and more robust.

2. | Improves Model Interpretability

A model with fewer features is easier to understand and explain.

Instead of a black box using 100 variables, you might get a model like:

 $y^{3.2X1+1.8X4}hat{y} = 3.2X_1 + 1.8X_4y^{3.2X1+1.8X4}$

That's much easier to explain to a non-technical person or a business stakeholder.

3. Partial Enhances Training Efficiency

With fewer active features:

- Less computation time
- Faster training and prediction
- · Reduced memory usage

This is especially helpful in **high-dimensional datasets** (e.g., genomic data, text embeddings, etc.).

4. * Helps Identify Key Drivers

In many applications (e.g., healthcare, finance, marketing), knowing *which* variables matter most is crucial.

Lasso helps pinpoint the **key drivers** — the features that have real predictive power — aiding **insight discovery** and **strategic decision-making**.

5. 💠 Automatic Dimensionality Reduction

Instead of manually testing subsets of features (which can be tedious and computationally expensive), Lasso automatically performs this during model training.

This means:

- You get a cleaner, smaller feature space
- No need for separate feature selection algorithms like backward elimination or recursive feature elimination.

When the number of features (\mathbf{p}) is greater than the number of samples (\mathbf{n}) — like in genetics or image recognition — ordinary regression fails.

But **Lasso can still work effectively**, selecting only the most useful features and ignoring the rest.

In Short

Benefit Description ✓ Reduces Overfitting Eliminates noisy or irrelevant features ✓ Improves Interpretability Simpler models are easier to explain ✓ Speeds Up Computation Fewer active features = faster training ✓ Identifies Key Features Highlights the most impactful variables ✓ Handles High Dimensions Works even when features > samples