7 Случайные величины. Распределение случайных величин

Пусть (Ω, \mathcal{F}, P) — некоторое вероятностное пространство.

Определение 7.1. Функция $\xi(\cdot):\Omega\mapsto\mathbb{R}$ называется случайной величиной, $ec \lambda u \; \{\xi \leqslant x\} \in \mathcal{F} \; \partial \lambda \mathcal{F} \; \lambda \mathcal{F} \; \delta \mathcal{F} \; \lambda \mathcal{F} \; \lambda$

Определение 7.2. *Если* X — конечное или счетное подмножество \mathbb{R} , $\xi - c$ лучайная величина и $\mathsf{P}(\xi \in X) = 1$ (т. е. множество значений ξ не более чем счетно), то ξ называется дискретной случайной величиной, а набор вероятностей

$$p_{\xi}(x) = \mathsf{P}(\xi = x), \quad x \in X,$$

называется дискретным распределением ξ .

Теорема 7.1. Пусть X — конечное или счетное подмножество \mathbb{R} . Набор вещественных чисел $\{p(x)\}_{x\in X}$ является дискретным распределением некоторой случайной величины тогда и только тогда, когда $\{p(x)\}_{x\in X}$ удовлетворяет следующим условиям: 1) $p(x)\geqslant 0 \ \forall x\in X$; $2) \sum_{x \in X} p(x) = 1.$

Определение 7.3. Функцией распределения случайной величины ξ называется $F_{\xi}(x) = \mathsf{P}(\xi \leqslant x), \ x \in \mathbb{R}$.

Теорема 7.2. Функция распределения случайной величины обладает следующими свойствами:

1) $ecnu -\infty < a < b < +\infty$, mo

$$F_{\xi}(a) \leqslant F_{\xi}(b), \quad \mathsf{P}(a < \xi \leqslant b) = F_{\xi}(b) - F_{\xi}(a);$$

- 2) $\lim_{x\to -\infty} F_{\xi}(x)=0$, $\lim_{x\to +\infty} F_{\xi}(x)=1$; 3) функция $F_{\xi}(x)$ непрерывна справа;
- 4) $\mathsf{P}(\xi < x) = F_{\xi}(x 0)$, где $F_{\xi}(x 0) = \lim_{y \uparrow x} F_{\xi}(y)$ предел слева функции F_{ξ} в точке x; 5) $\mathsf{P}(\xi = x) = F_{\xi}(x) - F_{\xi}(x - 0)$.

Теорема 7.3. Если $\xi - \partial u \kappa pemhas случайная величина и <math>Y - \kappa o heven$ ное или счетное множество ее значений, то $F_{\xi}(x) = \sum_{y \in Y, \, y \leqslant x} \mathsf{P}(\xi = \ y)$

— кусочно-постоянная возрастающая непрерывная справа функция со скачками величины $\mathsf{P}(\xi=y)$ в точках $y\in Y$.

Теорема 7.4. Функция $F \colon \mathbb{R} \mapsto \mathbb{R}$ является функцией распределения некоторой случайной величины тогда и только тогда, когда F— возрастающая непрерывная справа функция и $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1.$

- 7.1. Пусть $\mathsf{P}(\xi=k)=1/5$ при $k=0,\pm 1,\pm 2$. Найти распределения случайной величины $\eta=|\xi|$.
- **7.2.** Стрелок делает 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывается 5 очков. Найдите закон распределения случайной величины ξ , где ξ —число набранных очков, и постройте график функции распределения.
- **7.3.** Среди 10 лотерейных билетов имеется 4 билета с выигрышем. Наудачу покупают 2 билета. Пусть случайная величина ξ число выигрышных билетов среди купленных. Найдите закон распределения случайной величины ξ .
 - **7.4.** Дискретная случайная величина ξ имеет закон распределения:

ξ	0	$\pi/6$	$\pi/2$	$5\pi/6$	π
Р	1/10	3/10	1/10	2/10	3/10

Найдите закон распределения случайной величины $\eta = \sin \xi$ и постройте график функции распределения.

- **7.5.** При приеме на работу проводится три этапа собеседования. Вероятность успешного прохождения первого этапа 0,6, второго 0,4, третьего 0,2. К следующему этапу претенденты допускаются только в случае успешной сдачи предыдущего. Составьте закон распределения числа этапов, пройденных претендентом.
- 7.6. Пусть $F_1(x)$ и $F_2(x)$ функции распределения некоторых случайных величин. Определить условия, которым должны удовлетворять неотрицательные константы c_1 и c_2 , чтобы функция $F(x)=c_1F_1(x)+c_2F_2(x)$ также являлась функцией распределения.
- 7.7. Подбрасывается три монеты достоинством 1, 2 и 5 рублей. Пусть ξ случайная величина, равная сумме выпавших цифр. Если на монете выпадает орел, то считается, что на монете выпала цифра 0. Записать распределение данной случайной величины. Найти функцию распределения этой случайной величины и построить ее график.
- **7.8.** Подбрасывается три монеты достоинством 1, 2 и 5 рублей. Пусть ξ случайная величина, равная произведению выпавших цифр. Если на монете выпадает орел, то считается, что на монете выпала цифра 0. Записать распределение данной случайной величины. Найти функцию распределения этой случайной величины и построить ее график.
- **7.9.** Является ли распределением некоторой дискретной случайной величины последовательность: а) $p^k(1-p)^2$, $k=1,2,\ldots,\ 0< p<1$; б) $\frac{1}{n(n+1)}$, $n=1,2,\ldots$; в) $p(1-p)^{n-1}$, $n=1,\ldots,\ 0< p<1$; г) $\frac{2^k}{k!}$, $k=0,1,\ldots$?

Решение. Пусть сначала $p_k=p^k(1-p)^2$. Ясно, что в условиях задачи $0< p_k<1$. Проверим выполнение условия $\sum\limits_k p_k=1$.

$$\sum_{k} p_k = \sum_{k=1}^{\infty} p^k (1-p)^2 = (1-p)^2 \sum_{k=1}^{\infty} p^k = \frac{p(1-p)^2}{1-p} = p(1-p) < 1.$$

Требуемое условие не выполнено, значит данная последовательность не может задавать распределение дискретной случайной величины.

Далее пусть $p_k = \frac{1}{k(k+1)}$. Условие $0 < p_k < 1$ выполнено. Проверим выполнение второго условия

$$\sum_{k} p_{k} = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} =$$

$$= \lim_{n \to \infty} \left[\left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right] =$$

$$= \lim_{n \to \infty} \left[1 - \frac{1}{n+1} \right] = 1.$$

Второе условие также выполнено. Значит, вторая последовательность является распределением некоторой дискретной случайной величины.

Решение оставшихся пунктов рекомендуется провести самостоятельно.

7.10. Подбрасывается симметричная монета. Обозначим через ξ бросок, при котором герб выпадет второй раз. Найдите закон распределения случайной величины ξ .

8 Случайные векторы. Независимость величин

Определение 8.1. Пусть $X_{\xi} = \{x_1, \dots, x_n\}$ множество значений дискретной случайной величины ξ . Обозначим через $A_k = \{\omega \in \Omega \colon \xi(\omega) = x_k\}$, $k = 1, \dots, n$, подмножество исходов Ω , благоприятствующих значению x_k .

Тогда $\mathcal{D}_{\xi} = \{A_1, \dots, A_n\}$ называется разбиением, порожденным дискретной случайной величиной ξ , а события A_k — атомами разбиения.

Определение 8.2. Будем говорить, что разбиения \mathcal{D}_1 и \mathcal{D}_2 независимы, если для произвольных $i \in \{1, 2, \dots m\}$ и $j \in \{1, 2, \dots n\}$ независимы атомы разбиений:

$$\mathsf{P}\left(D_i^{(1)}\cap D_j^{(2)}\right) = \mathsf{P}\left(D_i^{(1)}\right) \cdot \mathsf{P}\left(D_j^{(2)}\right),$$

где
$$D_i^{(1)} \in \mathcal{D}_1, \ D_j^{(2)} \in \mathcal{D}_2$$
.

Определение 8.3. Дискретные случайные величины ξ_1, \ldots, ξ_n называются независимыми, если независимы порожденные ими разбиения $\mathcal{D}_{\xi_1}, \ldots, \mathcal{D}_{\xi_n}$.

Определение 8.4. Случайным вектором называется вектор (ξ_1, \ldots, ξ_n) , состоящий из случайных величин ξ_1, \ldots, ξ_n .

Определение 8.5. Совместным распределением пары случайных величин ξ и η называется:

ξη	y_1	y_2		y_n	$P(\xi=x_k)$
x_1	p_{11}	p_{12}		p_{1n}	p_1
x_2	p_{21}	p_{22}		p_{2n}	p_2
:	;	:	٠	:	:
x_m	p_{m1}	p_{m2}		p_{mn}	p_m
$P(\eta=y_j)$	q_1	q_2		q_n	1

где
$$X_{\xi} = \{x_1, \dots, x_m\}, \ X_{\eta} = \{y_1, \dots, y_n\}, \ p_{ij} = \mathsf{P}(\xi = x_i, \eta = y_j).$$

Определение 8.6. Функцией распределения случайного вектора (ξ_1, \ldots, ξ_n) *или* (совместной функцией распределения) *называется*

$$F_{\xi_1,\ldots,\xi_n}(x_1,\ldots,x_n) = \mathsf{P}(\xi_1 \leqslant x_1,\ldots,\xi_n \leqslant x_n).$$

Определение 8.7. Случайные величины ξ_1, \ldots, ξ_n называются независимыми, если функция распределения случайного вектора (ξ_1, \ldots, ξ_n) равна произведению функций распределений случайных величин ξ_1, \ldots, ξ_n :

$$F_{\xi_1,...,\xi_n}(x_1,...,x_n) = F_{\xi_1}(x_1) \cdot ... \cdot F_{\xi_n}(x_n).$$

8.1. Задан закон распределения двумерного случайного вектора (ξ,η)

$y_j \setminus x_i$	3	10	12
4	0,17	0,13	0,25
5	0,10	0,30	0,05

Найти законы распределений каждой случайной величины.

Решение. Найдем вероятности возможных значений случайной величины ξ , сложив вероятности "по столбцам":

$$p_1 = P\{\xi = 3\} = 0,17 + 0,10 = 0,27;$$

$$p_2 = P\{\xi = 10\} = 0, 13 + 0, 30 = 0, 43;$$

$$p_3 = P\{\xi = 12\} = 0,25 + 0,05 = 0,30.$$

Запишем закон распределения случайной величины ξ :

x_i	3	10	12
p_i	$0,\!27$	$0,\!43$	0,30

Легко проверить, что сумма вероятностей возможных значений равна 1.

Складывая вероятности "по строкам", найдем вероятности возможных значений случайной величины η :

$$q_1 = P{\eta = 4} = 0,17 + 0,13 + 0,25 = 0,55;$$

$$q_2 = P{\eta = 5} = 0, 1 + 0, 3 + 0, 05 = 0, 45.$$

Запишем закон распределения случайной величины η :

y_j	4	5
q_{j}	0,55	$0,\!45$

Проверяем, что сумма вероятностей возможных значений также равна 1.

8.2. Задан закон распределения двумерного случайного вектора (ξ, η)

$\eta \setminus \xi$	-1	0	1
1	$0,\!15$	0,3	0,35
2	$0,\!05$	0,05	0,1

Найти законы распределений каждой случайной величины. Выяснить зависимость случайных величин.

8.3. Даны законы распределения двух независимых случайных величин ξ и η :

$\xi_i = x_i$	3	4	5
p_i	1/3	1/3	1/3

$\eta_i = y_i$	1	2
p_i	1/2	1/2

Найдите закон распределения случайной величины $\zeta = \xi + \eta$.

8.4. Даны законы распределения двух независимых случайных величин ξ и η :

ξ	0	2	4
Р	0,5	0,2	0,3

Найдите законы распределения случайных величин:

- a) $\zeta_1 = \xi + \eta$;
- 6) $\zeta_2 = \xi \eta$;
- B) $\zeta_3 = \xi \cdot \eta$.
- **8.5.** Доказать, что случайная величина ξ не зависит от ξ в том и только в том случае, когда ξ является константой.
- **8.6.** Пусть ξ и η случайные величины. Обязаны ли они быть независимыми, если независимы ξ^2 и η^2 ?
- **8.7.** $P(\omega_1) = P(\omega_2) = P(\omega_3) = 1/3$. Доказать, что на $\Omega = \{\omega_1, \omega_2, \omega_3\}$ нельзя определить две независимые случайные величины, не равные с вероятностью 1 постоянным.

- **8.8.** Пусть ξ и η независимые случайные величины. Доказать, что случайные величины $\min\{\xi,1\}$ и $\min\{\eta,1\}$ также независимы.
- **8.9.** $P(\omega_1) = \ldots = P(\omega_4) = 1/4$. Построить на $\Omega = \{\omega_1, \ldots, \omega_4\}$ две независимые случайные величины, не равные с вероятностью 1 постоянным.
- **8.10.** Пусть ξ_1,\dots,ξ_n независимые одинаково распределенные случайные величины, $\mathsf{P}(\xi_i=1)=\mathsf{P}(\xi_i=-1)=1/2$. Найти распределение случайной величины $\eta=\prod_{i=1}^n \xi_i$. Указание: следует воспользоваться индукцией.