CSCE 448/748 – Computational Photography Pyramids

Nima Kalantari

Fourier domain

Basis functions:

Tells you what is in the image....

... but not where it is

Spatial Domain

Basis functions:

Tells you where things are....

... but no concept of what it is

Image Analysis

- Want representation that combines what and where
 - Image Pyramids

GAUSSIAN PYRAMID

Practical uses

- Searching
- Image blending
- Compression
 - Capture important structures with fewer bytes
- Denoising
 - Model statistics of pyramid sub-bands

Outline

- Gaussian
- Laplacian
- Image blending

Gaussian Pyramid

Image half-sizing

How to generate a half-sized version?

Image sub-sampling

- □ Throw away every other row and column to create a 1/2 size image
 - Image sub-sampling
- Problem
 - Aliasing

Extreme example

Aliasing

- High frequency signal sampled slowly
 - Sample more often
 - Cannot be done; goal is to downsize
 - Get rid of high frequencies
 - Filter the image and then subsample

Gaussian (lowpass) pre-filtering

1/2

1/4

1/8

Direct subsampling

1/4

1/8

Extreme case

Gaussian pyramid

Gaussian pyramid construction

- Repeat
 - Filter
 - Subsample
- □ Until minimum resolution reached
 - can specify desired number of levels (e.g., 3-level pyramid)

Gaussian pyramid construction

- Repeat
 - Filter
 - Subsample
- □ Until minimum resolution reached
 - can specify desired number of levels (e.g., 3-level pyramid)

Gaussian pyramid

- A bar in the pyramid
 - Big images, a hair on nose
 - Smaller images, a stripe
 - Smallest image, zebra's nose
- The whole pyramid is only 4/3 of the original image

What are they good for?

- Improve Search
 - Search over translations
 - Classic coarse-to-fine strategy
 - Project 2!
 - Search over scale
 - Template matching
 - E.g., find a face at different scales

Outline

- Gaussian
- Laplacian
- Image blending

Laplacian pyramid algorithm

Collapsing the pyramid

Outline

- Gaussian
- Laplacian
- Image blending

Image Blending

Feathering

Affect of Window Size

Affect of Window Size

Good Window Size

 $0+\sum_{i=1}^{n}$

"Optimal" Window: smooth but not ghosted

However...

One window may not work for every region

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

Pyramid Blending

A Multiresolution Spline with Application to Image Mosaics, Burt and Adelson, SIGGRAPH 83

Blending Regions

- Input: Images X and Y as well as a mask A
- Output: blended image

Laplacian Pyramid/Stack Blending

- General Approach:
 - 1. Build Laplacian pyramid LX and LY from images X and Y
 - 2. Build a Gaussian pyramid GA from the binary alpha mask A
 - 3. Form a combined pyramid LBlend from LX and LY using the corresponding levels of GA as weights:
 - LBlend(i, j) = GA(i, j) * LX(i, j) + (1 GA(i, j)) * LY(i,j)
 - 4. Collapse the LBlend pyramid to get the final blended image

Laplacian Pyramid/Stack Blending

Laplacian LX

Gaussian GA

Laplacian LY

Blended

Horror Photo

© david dmartin (Boston College)

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.
 - Blends low freq. smoothly
 - Blend high freq. with no smoothing: use binary alpha

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Linear Blending

2-band Blending

