127 Exemples de nombres remarquables. Exemples d'anneaux de nombres remarquables. Applications.

I - Nombres remarquables

1. Deux exemples fondamentaux : e et π

Définition 1. On définit la fonction **exponentielle complexe** pour tout $z \in \mathbb{C}$ par

[**QUE**] p. 4

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

on note cette somme e^z ou parfois $\exp(z)$.

Remarque 2. Cette somme est bien définie pour tout $z \in \mathbb{C}$ d'après le critère de d'Alembert.

Proposition 3. (i) $\forall z, z' \in \mathbb{C}, e^{z+z'} = e^z e^{z'}$.

- (ii) exp est holomorphe sur \mathbb{C} , de dérivée elle-même.
- (iii) exp ne s'annule jamais.

Définition 4. On définit e le **nombre d'Euler** par $e = e^1 > 0$.

p. 383

Proposition 5. La fonction $\varphi: t \mapsto e^{it}$ est un morphisme surjectif de \mathbb{R} sur \mathbb{U} , le groupe des nombres complexes de module 1.

p. 7

Proposition 6. En reprenant les notations précédentes, $Ker(\varphi)$ est un sous-groupe fermé de \mathbb{R} , de la forme $Ker(\varphi) = a\mathbb{Z}$. On note $a = 2\pi$.

2. Nombres algébriques, transcendants

Définition 7. Un nombre complexe (resp. réel) z est dit **nombre algébrique complexe** (resp. **nombre algébrique réel**) s'il existe $P \in \mathbb{Z}[X] \setminus \{0\}$ tel que P(z) = 0.

[**GOZ**] p. 40

Exemple 8. $\pm \sqrt{2}$ et $\pm i$ sont des nombres algébriques.

p. 40

Théorème 9 (Liouville). Soit α un nombre algébrique réel, racine d'un polynôme $P \in \mathbb{Z}[X]$ de degré supérieur ou égal à 2. Alors,

[**QUE**] p. 391

$$\exists C_{\alpha} > 0 \text{ tel que } \forall \frac{p}{q} \in \mathbb{Q}, \ \left\| x - \frac{p}{q} \right\| \ge \frac{C}{q^d}$$

Application 10. Le nombre de Liouville,

$$\sum_{n=1}^{+\infty} \frac{1}{10^{n!}}$$

est transcendant.

Théorème 11 (Hermite). *e* est transcendant.

[**GOZ**] p. 41

Théorème 12 (Lindemann). π est transcendant.

Application 13. Les nombres $\zeta(2k)$ sont transcendants pour $k \in \mathbb{N}^*$.

[**QUE**] p. 385

II - Anneaux de nombres algébriques

Notation 14. On note \mathbb{A} l'ensemble des nombres algébriques complexes. $\mathbb{A} \cap \mathbb{R}$ est alors l'ensemble des nombres algébriques réels.

[**GOZ**] p. 40

Théorème 15. (i) \mathbb{A} est un sous-corps de \mathbb{C} qui contient \mathbb{Q} .

(ii) $A \cap \mathbb{R}$ est un sous-corps de \mathbb{R} qui contient \mathbb{Q} .

Corollaire 16. A est la clôture algébrique de Q.

p. 63

Remarque 17. Toute extension de Q de degré fini est alors un sous-corps de A.

1. Corps de nombres quadratiques

Proposition 18. Soit $d \in \mathbb{N}$ tel que $d \ge 2$. Les assertions suivantes sont équivalentes.

- (i) $\sqrt{d} \notin \mathbb{Q}$.
- (ii) $\sqrt{d} \notin \mathbb{N}$.
- (iii) Il existe p premier tel que $v_p(d)$ (la valuation p-adique de d) est impair.
- (iv) $\mathbb{Q}[\sqrt{d}]$ est une extension de \mathbb{Q} de degré 2.

Définition 19. On appelle **corps quadratique** toute extension de degré 2 de \mathbb{Q} dans \mathbb{C} .

Théorème 20. Soit \mathbb{L} un corps quadratique. Alors, il existe un entier relatif $d \notin \{0,1\}$, sans facteur carré tel que

$$\mathbb{L} = \mathbb{Q}[\sqrt{d}]$$

où \sqrt{d} désigne un complexe dont le carré est égal à d.

Définition 21. Soit d un entier non nul qui n'est pas un carré dans \mathbb{Z} et $z = x + y\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ avec $x, y \in \mathbb{Q}$. La **norme** de z est

$$N(z) = x^2 - y^2 d$$

Proposition 22. Soit d un entier non nul qui n'est pas un carré dans \mathbb{Z} . Pour $z = x + y\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ avec $x, y \in \mathbb{Q}$. Posons $\widetilde{z} = x - y\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$.

- (i) L'application $z\mapsto \widetilde{z}$ est un automorphisme des anneaux $\mathbb{Q}[\sqrt{d}]$ et $\mathbb{Z}[\sqrt{d}]$. Pour tout $z\in\mathbb{Q}[\sqrt{d}]$, nous avons $\widetilde{\widetilde{z}}=z$ et $N(z)=z\widetilde{z}$. Si $z\in\mathbb{Z}[\sqrt{d}]$, alors $N(z)\in\mathbb{Z}$.
- (ii) $\mathbb{Q}[\sqrt{d}] = \mathbb{Q}[X]/(X^2 d)$ est un corps.
- (iii) Dans $\mathbb{Q}[\sqrt{d}]$ et $\mathbb{Z}[\sqrt{d}]$, nous avons $N(z_1z_2) = N(z_1)N(z_2)$ et $N(z) = 0 \iff z = 0$.

Proposition 23. Soit d un entier non nul qui n'est pas un carré dans \mathbb{Z} .

- (i) Les inversibles de $\mathbb{Z}[\sqrt{d}]$ avec $N(z) = \pm 1$.
- (ii) Tout élément non nul, non inversible possède une décomposition en irréductibles dans $\mathbb{Z}(\sqrt{d})$.

p. 33

[ULM18]

p. 67

2. Anneau des entiers de Gauss

Définition 24. L'anneau $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i]$ est **l'anneau des entiers de Gauss**.

Exemple 25. Pour $z = x + iy \in \mathbb{Z}[i]$, nous avons $N(z) = x^2 + y^2$ et donc les inversibles de $\mathbb{Z}[i]$ sont ± 1 et $\pm i$.

Notation 26. On note Σ l'ensemble des entiers qui sont somme de deux carrés.

[**I-P**] p. 137

[GOZ]

p. 67

Remarque 27. $n \in \Sigma \iff \exists z \in \mathbb{Z}[i]$ tel que N(z) = n.

Lemme 28. $\mathbb{Z}[i]$ est euclidien de stathme N.

Lemme 29. Soit p un nombre premier. Si p n'est pas irréductible dans $\mathbb{Z}[i]$, alors $p \in \Sigma$.

[DEV]

Théorème 30 (Deux carrés de Fermat). Soit $n \in \mathbb{N}^*$. Alors $n \in \Sigma$ si et seulement si $v_p(n)$ est pair pour tout p premier tel que $p \equiv 3 \mod 4$ (où $v_p(n)$ désigne la valuation p-adique de n).

3. Corps cyclotomiques

Soit *m* un entier supérieur ou égal à 1.

Définition 31. On définit

$$\mu_m = \{ z \in \mathbb{C}^* \mid z^m = 1 \}$$

l'ensemble des **racines** m-ièmes de l'unité. C'est un groupe (cyclique) pour la multiplication dont l'ensemble des générateurs, noté μ_m^* , est formé des **racines primitives** m-ièmes de l'unité.

Proposition 32. (i) $\mu_m^* = \{e^{\frac{2ik\pi}{m}} \mid k \in [0, m-1], \operatorname{pgcd}(k, m) = 1\}.$

(ii) $|\mu_m^*| = \varphi(m)$, où φ désigne l'indicatrice d'Euler.

Proposition 33. Le sous-corps $\mathbb{Q}(\xi)$ de \mathbb{C} ne dépend pas de la racine m-ième primitive ξ de l'unité considérée.

Définition 34. On appelle **corps cyclotomique**, un corps de la forme de la Proposition 33 (ie. engendré par une racine primitive de l'unité).

Définition 35. On appelle *m*-ième polynôme cyclotomique le polynôme

$$\Phi_m = \prod_{\xi \in \mu_m^*} (X - \xi)$$

Théorème 36. (i) $X^m - 1 = \prod_{d|m} \Phi_d$.

- (ii) $\Phi_m \in \mathbb{Z}[X]$.
- (iii) Φ_m est irréductible sur \mathbb{Q} .

Corollaire 37. Le polynôme minimal sur \mathbb{Q} de tout élément ξ de μ_m^* est Φ_m . En particulier, le degré de $\mathbb{Q}(\xi)$ sur \mathbb{Q} est $\varphi(m)$.

Application 38 (Théorème de Wedderburn). Tout corps fini est commutatif.

Application 39 (Dirichlet faible). Pour tout entier n, il existe une infinité de nombres premiers congrus à 1 modulo n.

[**GOU21**] p. 99

III - Application à la constructibilité à la règle et au compas

On note \mathscr{P} un plan affine euclidien muni d'un repère orthonormé direct $\mathscr{R} = (O, \vec{i}, \vec{j})$. On s'autorise à identifier chaque point $M \in \mathscr{P}$ avec ses coordonnées $(x, y) \in \mathbb{R}^2$ dans \mathscr{R} .

[**GOZ**] p. 47

Définition 40. On dit qu'un point $M \in \mathcal{P}$ est **constructible** (sous-entendu à la règle et au compas) si on peut le construire en utilisant uniquement la règle et le compas, en supposant O et I = (1,0) déjà construits.

Proposition 41. Soient *A*, *B* deux points constructibles distincts.

- (i) Si *A* est constructible, son symétrique par rapport à *O* l'est aussi.
- (ii) J = (0,1) est constructible.
- (iii) Si C est un point constructible, on peut construire à la règle et au compas la perpendiculaire à (AB) passant par C.
- (iv) Si C est un point constructible, on peut construire à la règle et au compas la parallèle à (AB) passant par C.

Proposition 42. Soit $x \in \mathbb{R}$.

(x,0) est constructible \iff (0,x) est constructible

Définition 43. Un nombre vérifiant la proposition précédente est dit **nombre constructible**.

Proposition 44. (i) Tout élément de \mathbb{Q} est constructible.

(ii) (x, y) est constructible si et seulement si x et y le sont.

Théorème 45. L'ensemble \mathbb{E} des nombres constructibles est un sous-corps de \mathbb{R} stable par racine carrée.

[DEV]

Théorème 46 (Wantzel). Soit $t \in \mathbb{R}$. t est constructible si et seulement s'il existe une suite fini (L_0, \dots, L_p) de sous-corps de \mathbb{R} vérifiant :

- (i) $L_0 = \mathbb{Q}$.
- (ii) $\forall i \in [1, p-1], L_i$ est une extension quadratique de L_{i-1} .
- (iii) $t \in L_p$.

Corollaire 47. (i) Si x est constructible, le degré de l'extension $\mathbb{Q}[x]$ sur \mathbb{Q} est de la forme 2^s pour $s \in \mathbb{N}$.

(ii) Tout nombre constructible est algébrique.

Contre-exemple 48. — $\sqrt[3]{2}$ est algébrique, non constructible.

— $\sqrt{\pi}$ est transcendant et n'est donc pas constructible.

Application 49 (Quadrature du cercle). Il est impossible de construire, à la règle et au compas, un carré ayant même aire qu'un disque donné.

Application 50 (Duplication du cube). Il est impossible de construire, à la règle et au compas, l'arête d'un cube ayant un volume double de celui d'un cube donné.

Bibliographie

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

Théorie de Galois [GOZ]

Ivan Gozard. *Théorie de Galois. Niveau L3-M1*. 2^e éd. Ellipses, 1^{er} avr. 2009.

https://www.editions-ellipses.fr/accueil/4897-15223-theorie-de-galois-niveau-l3-m1-2e-edition-9782729842772.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Analyse complexe et applications

[QUE]

Martine Quefféllec et Hervé Queffélec. *Analyse complexe et applications. Nouveau tirage.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/analyse-complexe-et-applications/.

Anneaux, corps, résultants

[ULM18]

Felix Ulmer. *Anneaux, corps, résultants. Algèbre pour L3/M1/agrégation*. Ellipses, 28 août 2018. https://www.editions-ellipses.fr/accueil/9852-20186-anneaux-corps-resultants-algebre-pour-13-m1-agregation-9782340025752.html.