MATH 335 S2019 Midterm Exam II

2019-03-28

Read the problems carefully and be sure to show your work. No cell phones or calculators are allowed. Please turn off your phone to avoid any disturbances.

Reference

• The following identity may be used in the exam without the need to prove it:

$$\epsilon_{ijk}\epsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{jl}$$

Exam

- 1. (Del and suffix notation)
 - (a) (10 pts) Find the unit normal to the surface $z = x^2 + 2y^2$ at the point (1,1,3).
 - (b) (10 pts) Let \vec{a} and \vec{b} be vectors. Write $\vec{a} \cdot \vec{b}$ and $[\vec{a} \times \vec{b}]_i$ using suffix notation.
 - (c) (10 pts) Let \vec{u} be a vector field. Show that

$$\nabla \times (\nabla \times \vec{u}) = \nabla(\nabla \cdot \vec{u}) - \nabla^2 \vec{u}$$

using suffix notation.

- (d) (10 pts) Let \vec{u} be a vector field. Show that $\nabla \cdot (\nabla \times \vec{u}) = 0$ using suffix notation.
- (e) (2 pts) Extra credit. Use the physical definition of the divergence to explain why $\nabla \cdot (\nabla \times \vec{u})$ is zero.
- 2. (30 pts) Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot \hat{n} \, dS$$

where $\vec{F} = (xz, yz, z(x^2+y^2)^2)$ and S is the surface of the cylinder $x^2+y^2 \le 1$ with $-1 \le z \le 1$ (this includes the tubular outer part and disc-shaped caps) using the divergence theorem.

3. (30 pts) Let $\vec{F} = (x^2, 2xy + x, z)$. Let C be the circle $x^2 + y^2 = 1$ with z = 0 be oriented counter-clockwise (standard direction) with S the disc $x^2 + y^2 \le 1$ with z = 0 so that the normal vector on S is $\hat{n} = (0, 0, 1)$ (the positive z direction). Validate Stokes' theorem by (1) computing the line integral of \vec{F} around C directly and (2) computing the flux of $\nabla \times \vec{F}$ over S.