Lecture 5 key concepts

- Decimal value of a number represented in 2's complement
- Sign extension in 2's complement representation
- 2's complement addition and subtraction: concept and circuit implementation
- Arithmetic overflow: concept and detection

Which concepts are unclear to you after viewing L5?

- A. 2's complement
- B. Sign extension
- C. 2's complement add/subtract
- D. Arithmetic overflow
- E. None

Give the decimal value of this signed number represented in 2's complement: 0101010

$$A. +38$$

$$C. +42$$

Give the decimal value of this signed number represented in 2's complement: 101010

A. -22

B. -24

C. -26

D. -28

Sign extension in 2's comp

When more bits are available than needed to represent a numerical value:

Unsigned representation	Fill msbs with 0
Sign-magnitude representaion	Only MSB is sign bit. The rest are plain magnitude.
2's complement representation	Must apply sign extension.

Examples

	4-bit	8-bit	Decimal
Unsigned	1101	0000 1101 (0D hex)	13
Sign- magnitude	0101	0000 0101 (05 hex)	+5
	1101	1000 0101 (85 hex)	-5
2's complement	0101	0000 0101 (05 hex)	+5
	1101	1111 1101 (FD hex)	-3

Sign extension (cont)

Show that these numbers in 2's complement representation have the same value.

(a) 1001

(b) 11001

(c) 111001

1001	1 1001	1 11001
1000 + 0001	10000 + 01001	100000 + 011001
	-16 + 9 (dec)	-32 + 25 (dec)
-7 (dec)	-7 (dec)	-7 (dec)

1	0	0	0	0	0	0	0	0	0
1									
1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1
0									
0	1	1	1	1	1	1	1	1	1

1	0	0	0	0	0	0	0	0	0
1									
1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1
0									
0	1	1	1	1	1	1	1	1	1

1	0	0	0	0	0	0	0	0	0
1									
1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1/
0									
0	1	1	1	1	1	1	1	1	1

1	0	0	0	0	0	0	0	0	0
1									1
1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	0
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1 /
0									
0	1	1	1	1	1	1	1	1	1

1	0	0	0	0	0	0	0	0	0
1									
1	1	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	0	1	1
			1	1	1	1	1	0	0
			1	1	1	1	1	0	1
		l	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	1	1/
0									
0	1	1	1	1	1	1	1	1	1

Which one of the following 8-bit 2's complement arithmetic operations will result in overflow?

- A. 19h + A0h
- B. 90h 8Ch
- C. 39h A0h

h denotes hexadecimal

2's comp addition example

Perform this signed 8-bit addition in 2's complement representation.

19(hex) + A0(hex) : no overflow

2's comp subtraction example

Perform this signed 8-bit subtraction in 2's complement representation.

2's comp overflow example

Perform this signed 8-bit subtraction in 2's complement representation.

39(hex) - A0(hex)

	unsigned			
	0	0111001	+57 (dec)	57 (dec)
	0	1011111	+95 (dec)	95 (dec)
+		1	+1 (dec)	1 (dec)
0	1	0011001	-103 (dec)	153 (dec)

Overflow has occurred because +153 (dec) cannot be represented in 8 bits 2's comp

2's comp Arithmetic Overflow

- Addition and subtraction are both performed as addition in the circuit
- Adding 2 values of opposite signs will NEVER lead to overflow
- Adding 2 values of same sign <u>may</u> lead to overflow
- Overflow is detected when the sign bit of the result is different from that of the values being added

End of L5 summary

Lecture 6 key concepts

- Combined circuit with addition and subtraction
- 4-bit parallel adder with registers
- Binary multiplication
- BCD addition and correction

Which concepts are unclear to you after viewing L6?

- A. Circuit for add/subtract
- **B.** Parallel addition with registers
- C. Multiplication
- D. BCD addition
- E. None

Subtraction performed as addition

$$X - Y = X + (-Y)$$

- Y is simply the 2's complement of Y
- X, Y can be negative or positive
- 2's complement of Y can be <u>easily</u> obtained by adding 1 to the 1's complement of Y
- 1's complement of Y is <u>easily</u> obtained by inverting each bit of Y
- Easy for digital circuits

Addition/Subtraction

Addition example

Example 1: +5(dec) + -8(dec) = -3(dec)

Subtraction example

Example 2: 2(dec) - -5(dec) = +7(dec)

Subtraction example (overflow)

Example 3: +5(dec) - -8(dec) = -3(dec)?

Overflow detection

Same method regardless of addition or subtraction.

Check MSB Full Adder:

- No overflow if A ≠ B
- Overflow if A = B but ≠ S

Optional exercise: use a truth table to show that
 V = Co XOR Ci

FA

F56-27

Parallel adders with registers

Let x be the 1st value loaded from memory, y be the 2nd

What will be the FA's output

- shortly before t4?
- shortly after t5?

Unsigned binary multiplication

Multiplication – shift left (x2) and add

Do we need a 5-bit adder?

Unsigned multiplication (cont)

Multiplication – shift left (x2) and add

We need a 3-bit adder plus registers

2's complement multiplication

Multiplication – shift left (x2) and add

					1	0	1
-1				X	1	1	1
1x 101		1	1	1	1	0	1
2x 101		1	1	1	0	1	
-4x 101	+	0	0	1	1		
-1x 101		0	0	0	0	1	1

$$-1 = -4 + 3$$

$$101x(-1) = 101x(-4+3) = 101x(-4) + 101x(+3)$$

Binary division

Basically the reverse of multiplication: by shift and subtract.

Binary division will not be tested

http://courses.cs.vt.edu/~cs1104/Division/ShiftSubtract/Shift.Subtract.html

https://www.calculatorsoup.com/calculators/math/longdivision.php

BCD addition example

BCD addition/correction (479 + 461 = 940)

Without correction

BCD addition example

BCD addition/correction (479 + 461 = 940)

With correction

What is the total number of FAs needed for 3-digit BCD addition (including possible correction)?

- A. 24
- B. 21
- C. 18
- D. 15

Results that need correction

Decimal	Cout	S3	S2	S1	S0
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	0	0	0	0
17	1	0	0	0	1
18	1	0	0	1	0

F56-36

Image from http://implement-logic.blogspot.sg/2011/11/bcd-adder.html-56-37

End of L6 summary