CarMatch

A singular car buying solution

Thomas Noriega

Car Buying is for Experts

Sign In | Create Account

Car Buying is for Experts

Need to know exactly what you want

Car Buying is for Experts

Need to know several constraints

Select PRICE RANGE

<\$15K \$15K-20K \$20K-25K \$25K-30K \$30K-35K >\$35K

FIND MY NEXT CAR

K CONVERTIBLE COUPE WAGO

CarMatch

Just needs a single, understandable input

Inception 2D Neural Network

Modified and progressively fine-tuned to classify 196 different car classes

- No feature extraction
- Minimal pre-processing
- Could be trained on a small dataset

Dataset

Each class a unique combination of:

MAKE: Dodge

MODEL: RAM 3500

YEAR: 2009

Approximately 80 photos/class (~16,000 photos total)

Multiple Angles

Variable Quality

Validation on Test Set

Top-1 accuracy: **77.1%**

Top-5 accuracy: 94.8%

Validation on Test Set

Top-1 accuracy: **77.1%**

Top-5 accuracy: 94.8%

So if the user just wants to identify the uploaded car they almost certainly will

Validation on Test Set

Top-1 accuracy: **77.1%**

Top-5 accuracy: 94.8%

So if the user just wants to identify the uploaded car they almost certainly will

But results are most useful if they also *look* like the submitted photo

Input: sedan

output: sedans

Input: sedan

output: sedan-like

Incorrect ID: 5.2%

Incorrect ID: 5.2%

Correct ID

Incorrect ID: 5.2%

Correct ID AND styles

Incorrect ID: 5.2%

Correct ID AND styles: 15.8%

Incorrect ID: 5.2%

Correct ID AND styles: 15.8%

Correct ID AND wrong styles: 79.0%

Instead of absolute top-5 ranking

Algorithm that balances

- most represented body-styles and
- 2) the highest confidence results

Improved results by 4x

Correct ID AND styles:

New algorithm: 71.4%

Correct ID AND wrong styles:

New algorithm: 21.5%

4x improvement

Incorrect ID:

New algorithm: 7.1%

1.4x compromise

And that's how CarMatch helps

customers use a single photo to buy a car

Thomas Noriega

San Francisco

SUPPLEMENTAL SLIDES

training set

in-memory augmentation

Pre-trained GoogleNet (Inception)
2D convolutional neural network

training set

in-memory augmentation

2D convolutional neural network add/train new prediction layer

training set

in-memory augmentation

2D convolutional neural network progressive fine-tuning

training set

in-memory augmentation

2D convolutional neural network progressive fine-tuning

training set

in-memory augmentation

2D convolutional neural network progressive fine-tuning

Inception Model

Modify

Fine-tune

Why such high wrong style results?

Top-5 ignores probability assignments:

Why such high wrong style results?

Top-5 ignores probability assignments:

1) Start with all predictions

- 1) Start with all predictions
- Consider predictions with 95% confidence

0.2

0.10

0.02

- 1) Start with all predictions
- Consider predictions with 95% confidence
- 3) Limit to top-2 body-styles

0.30

0.10

0.05

0.2 0.10

0.03

0.2

0.10

10

0.02

- 1) Start with all predictions
- Consider predictions with 95% confidence
- 3) Limit to top-2 body-styles
- 4) Present top-5 remaining results

0.10

0.05

0.2

0.10

0.03

0.2

0.10

0.02