ECE 278A: Digital Image Processing

# Q-Sweep for Triangulation and Multi-View Projective Matching

Anirban Banik, Utso Majumder

## Overview



# Pipeline

## Pipeline



# Matching

## The Matching Problem

#### Overview:

- Fundamental problem in computer vision.
- Align two or more point sets in the same coordinate system.

#### Objective:

• Find the optimal transformation aligning two or more point sets.

#### Applications:

- Robotic path planning, localization.
- 3D Reconstruction.



## Iterative Closest Point

- Find the optimal rigid transformation (R, t), aligning one point cloud P with another Q.
- ICP is an iterative process:
- Estimate correspondences between P & Q
- Optimizes the rigid transformation between them, until convergence.
- Requires a good initial estimate.

• Mathematical formulation:

$$\min_{R,\ t} \sum_{i=1}^M D_i(R,\ t)^2$$

Where 
$$D_i\left(R,\,t
ight) = \min_{q\,\epsilon\,Q} ||Rp_i + t - q||$$



## Variant - Projective ICP

- Matches point sets obtained from different perspectives.
- Optimizes the projective transformation (homography) between the point sets.

 $S = \{s_1, \ldots, s_{N_s}\}, \mathcal{M}$  is the corresponding 2D model. Let  $d_p(s, m)$  be the projective distance between point  $s \in S$  and  $m \in \mathcal{M}$ . Let  $CP(s, \mathcal{M})$  be the 'closest' point in  $\mathcal{M}$  to the scene point s

#### **Algorithm 1** Projective ICP algorithm (PICP)

Let  $\mathbf{T}^{[0]}$  be an initial estimate of the homography Repeat for  $k = 1, \dots, k_{\text{max}}$  or until convergence:

- 1. Compute the set of correspondences  $C = \bigcup_{i=1}^{N_s} \{(s_i, CP(\mathbf{T}^{[k-1]}(s_i), \mathcal{M}))\}.$
- 2. Compute the new homography  $\mathbf{T}^{[k]}$  between point pairs in  $\mathcal{C}$

## Summary

#### **SIFT**

- Scale-Invariant Feature Transform
- Match local features in the images
- Not a good estimate due to outliers.
- Limited correspondences in absence of colour gradient.

#### **RANSAC-SIFT**

- Random Sample Consensus.
- Robust homography estimate in the presence of outliers

#### **Projective-ICP**

- Use homography obtained from RANSAC-SIFT as initial estimate.
- Refined homography estimate.
- Correspondence between all points.

## Results



Original 3D Point Cloud

Reconstructed 3D Point Cloud with PICP Matching

## Reconstruction

## Formulations

Given a set of N 2D image measurements,

$$\min_{\mathbf{x} \in \mathbb{R}^3} \quad \underset{i \in \{1, \dots, N\}}{\operatorname{maximum}} \left\| \mathbf{u}_i - \frac{\mathbf{P}_i^{1:2} \tilde{\mathbf{x}}}{\mathbf{P}_i^3 \tilde{\mathbf{x}}} \right\|_p,$$
s.t. 
$$\mathbf{P}_i^3 \tilde{\mathbf{x}} > 0 \ \, \forall i \in \{1, \dots, N\},$$

where, x is the 3D point in inhomogeneous coordinates,

u<sub>i</sub> is the 2D point visualized by the i<sup>th</sup> camera,

P<sup>1:2</sup> is the matrix containing first and second rows of the camera matrix, P

Now, we proceed to see how the model works under p = 1, 2, infinity

## Reconstruction Pipeline



## L-BFGS-B

(Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints)

#### **Initialization:**

- \* Initial guess  $x_0$ .
- \* Objective function f(x) and its gradient  $\nabla f(x)$ .
- \* Bounds  $l \le x \le u$ .

#### Iteration:

- \* Calculate  $\nabla f(x_k)$  at the current position  $x_k$ .
- \* Approximate the inverse Hessian matrix  $H_k^{-1}$ .
- \* Update the position:

$$x_{k+1} = x_k - \alpha_k H_k^{-1} \nabla f(x_k)$$

where  $\alpha_k$  is the step size.

\* Apply the box constraints:  $l \le x \le u$ .

#### Convergence criteria:

$$\|\nabla f(x_k)\| < \epsilon$$

where  $\epsilon$  is a small threshold.

## Least Median Squares

Given a set of N 2D image measurements,

$$\min_{\mathbf{x} \in \mathbb{R}^3} \quad \underset{i \in \{1, ..., N\}}{\operatorname{median}} \left\| \mathbf{u}_i - \frac{\mathbf{P}_i^{1:2} \tilde{\mathbf{x}}}{\mathbf{P}_i^3 \tilde{\mathbf{x}}} \right\|_p,$$
s.t. 
$$\mathbf{P}_i^3 \tilde{\mathbf{x}} > 0 \quad \forall i \in \{1, ..., N\}$$

However, the non-differentiability of the median also complicates the usage of standard gradient-based optimization

## Q-Sweep

- A technique designed for efficient, accurate depth estimation and stereo matching in computer vision tasks.
- Enhances traditional plane sweep methods by leveraging the properties of quasiconvex functions.

#### **Advantages:**

- <u>Efficiency</u>: Reduces computational complexity compared to traditional methods.
- Accuracy: Improves the precision of depth maps by focusing on quasiconvex properties.
- Flexibility: Applicable to various stereo vision tasks, including real-time applications.

## Q-Sweep

#### **Algorithm 1** Q-sweep method for LMS triangulation.

**Require:** Input data  $\{\mathbf{A}_i, \mathbf{b}_i, \mathbf{c}_i, d_i\}_{i=1}^N$ , initial soln.  $\hat{\mathbf{x}}$ .

- 1:  $\Delta \mathbf{x} \leftarrow \text{DESCENTDIR}(\{\mathbf{A}_i, \mathbf{b}_i, \mathbf{c}_i, d_i\}_{i=1}^N, \hat{\mathbf{x}}).$
- 2: **while**  $\Delta x$  is not null **do**
- 3:  $\alpha \leftarrow \text{STEPSIZE}(\{\mathbf{A}_i, \mathbf{b}_i, \mathbf{c}_i, d_i\}_{i=1}^N, \hat{\mathbf{x}}, \Delta \mathbf{x}).$
- 4:  $\hat{\mathbf{x}} \leftarrow \hat{\mathbf{x}} + \alpha \Delta \mathbf{x}$ .
- 5:  $\Delta \mathbf{x} \leftarrow \text{DESCENTDIR}(\{\mathbf{A}_i, \mathbf{b}_i, \mathbf{c}_i, d_i\}_{i=1}^N, \hat{\mathbf{x}}).$
- 6: end while
- 7: return  $\hat{\mathbf{x}}$ .

## Summary

#### L<sub>2</sub> with L-BFGS-B

- Least squares problem
- Second-lowest runtime among all the methods
- Performance worse than
   L<sub>∞</sub> in accuracy terms

#### $L_{\infty}$ with L-BFGS-B

- Double sorting-searching problem
- Maximum runtime among all the methods
- Performance best among all the methods

#### LMS with Q-Sweep

- Estimates p-norm formulation to fit into a plane sweeping algorithm
- Least runtime among the nonlinear solutions
- Performance is comparable to L<sub>∞</sub> method

## Results





Accuracy through MAPE

Runtime (in minutes)

# Discussion

## Discussion

#### Challenges

- Slow runtime of PICP.
- PICP sensitive to initial estimate which is hard to obtain in challenging environments.
- Q-Sweep has slow update routine for small point clouds

#### **Future Directions**

- Fast and Robust PICP.
- Using machine learning methods, obtain a good initial coarse matching for challenging environments.
- Validating Q-Sweep for outliers with non-matched linear 3D estimations

### References

- 1. Fisher, R.B. (2001). Projective ICP and Stabilizing Architectural Augmented Reality Overlays. In: Virtual and Augmented Architecture (VAA'01). Springer, London
- 2. J. Zhang, Y. Yao and B. Deng, "Fast and Robust Iterative Closest Point," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3450-3466, 1 July 2022
- 3. R. Hartley and F. Schaffalitzky,  $L\infty$  minimization in geometric reconstruction problems, presented at the CVPR, Washington, DC, USA, 2004.
- 4. Q. Zhang, T.-J. Chin and D. Suter, "Quasiconvex Plane Sweep for Triangulation with Outliers," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 920-928
- 5. Liu, D.C., Nocedal, J. "On the limited memory BFGS method for large scale optimization". Mathematical Programming 45, 503–528 (1989)
- 6. J. Chen, D. Wu, P. Song, F. Deng, Y. He and S. Pang, "Multi-View Triangulation: Systematic Comparison and an Improved Method," in IEEE Access, vol. 8, pp. 21017-21027, 2020