Estadística en Analítica

2023-2

Pablo A. Saldarriaga psaldar2@eafit.edu.co

Programación del curso

Evaluación:

- ✓ Parcial (25%)
- ✓ Seguimiento (40%)
 - ✓ Taller 1 (20%)
 - √ Taller 2 (20%)
- ✓ Proyecto Integrador (35%)

Sesiones de Clase

Fecha	Comentario
Octubre 20	Inicio del curso
Octubre 21	
Octubre 27	
Octubre 28	
Noviembre 3	Entrega Taller 1
Noviembre 4	
Noviembre 10	
Noviembre 11	Ultima clase teorica
Noviembre 17	Parcial y Entrega Taller 2
·	

Texto guía: The Elements of Statistical Learning (2009)

Contenido del Curso

0. Preliminares y pre-procesamiento de datos

- Repaso de probabilidad
- ✓ Variables aleatorias
- ✓ Inferencia Estadistica (estimadores y propiedades)
- ✓ Intervalos de confianza y pruebas de hipotesis
- Estadísticos univariados y multivariados

1. Técnicas Supervisadas

- ✓ Modelos de regresión
- Modelos de clasificación
- Estrategia de regularización
- Métricas de desempeño de regresión y clasificación
- ✓ Sesgo VS Varianza
- ✓ Validación Cruzada

2. Técnicas No Supervisadas

- Reduccion de Dimensionalidad
 - ✓ PCA
 - ✓ Umap
- Análisis de cluster
 - Métodos jerárquicos
 - Métodos no jerárquicos
 - ✓ Selección de cantidad de grupos
 - Métricas de validación de cluster

Metodología CRISP-DM

(Cross Industry Standard Process for Data Mining)

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C. & Wirth, R. Step-by-step data mining guide (2000).

Preliminares: Probabilidad e Inferencia

Probabilidad

Qué tan frecuente ocurre algo

```
# de registros que
cumplen la condición
en estudio

¡Enfoque frecuentista!

# Casos Posibles
# Casos Totales

Tamaño de la muestra 	— — —
```

Probabilidad Condicional

Es el cálculo de una probabilidad acotando el espacio muestral que se considera

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

	Ocurre B	No ocurre B
Ocurre A	N1	N2
No ocurre A	N3	N4

	N1/(N1 + N2 + N3 + N4)	
((N1 + N3)/(N1 + N2 + N3 + N4)	1)

$$\frac{N1}{N1 + N3}$$

Probabilidad Condicional

	Credito Rechazado	Credito Aprobado	Totales
Cliente Nuevo	210.000	140.000	350.000
Cliente Recurrente	1.500	28.500	30.000
Totales	211.500	168.500	380.000

Probabilidad Total

Sean $A_1, A_1, ..., A_1$ eventos excluyentes, tal que $U_{i=1}^n A_i = S$, además B es un evento de S

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

Teorema de Bayes

$$P(A_{j}|B) = \frac{P(B|A_{j})P(A_{j})}{P(B)}$$

$$P(A_{j}|B) = \frac{P(B|A_{j})P(A_{j})}{\sum_{i=1}^{n} P(A_{i})P(B|A_{i})}$$

Variables Aleatorias

Una variable aleatoria X es una función real definida en espacio de probabilidad asociado a un experimento aleatorio

 $X: \Omega \to \mathbb{R}$

Función de densidad y distribución

Para cualquier distribución de probabilidad discreta, lo siguiente debe ser verdadero:

- 1. $0 \le p(y) \le 1$ para toda y.
- 2. $\sum_{y} p(y) = 1$, donde la sumatoria es para todos los valores de y con probabilidad diferente de cero.

Propiedades de una función de densidad Si f(y) es una función de densidad para una variable aleatoria continua, entonces

- 1. $f(y) \ge 0$ para toda $y, -\infty < y < \infty$.
- $2. \int_{-\infty}^{\infty} f(y) \, dy = 1.$

Las probabilidades puntuales son 0

Distribuciones de Probabilidad

Función Generadora de Momentos

Dist. Discreta: Uniforme

 $X \sim Unif\{x1, x2, ..., xn\}$

$$P(X = x) = \begin{cases} \frac{1}{n} & si \ x = x1, x2, ..., x2 \\ 0 & En \ otro \ caso \end{cases}$$

$$\mu = \frac{n+1}{2}$$

$$\sigma^2 = \frac{n^2 - 1}{12}$$

Dist. Discreta: Binomial

 $X \sim Bin(n, p)$

$$P(X=x) = \begin{cases} \frac{n!}{x! (n-x)!} p^x (1-p)^{n-x} & si \ x = x1, x2, \dots, x2 \\ 0 & En \ otro \ caso \end{cases}$$

$$\mu = np$$

$$\sigma^2 = np(1-p)$$

Modela la cantidad de éxitos en n sucesos

Dist. Discreta: Poisson

 $X \sim Poisson(\lambda)$

$$P(X = x) = \begin{cases} \frac{\lambda^x e^{-\lambda}}{x!} & si \ x = 0, 1, \dots \\ 0 & En \ otro \ caso \end{cases}$$

$$\mu = \lambda$$
 $\sigma^2 = \lambda$

Modela la cantidad de eventos que ocurren en un periodo de tiempo

Dist. Continua: Uniforme

 $X \sim Unif(a, b)$

$$f(x) = \begin{cases} \frac{1}{b-a} & si \ a < x < b \\ 0 & En \ otro \ caso \end{cases}$$

$$\mu = \frac{a+b}{2}$$

$$\sigma^2 = \frac{(b-a)^2}{12}$$

Dist. Continua: Normal

$$X \sim N(\mu, \sigma)$$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \mu$$

$$\sigma^2 = \sigma^2$$

Dist. Continua: Exponencial

 $X \sim Exp(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x > 0\\ 0 & \text{En otro caso} \end{cases}$$

$$\mu = \frac{1}{\lambda}$$

$$\sigma^2 = \frac{1}{\lambda^2}$$

Modela tiempos de espera para la ocurrencia de eventos

De binomial a Normal

Inspira Crea Transforma

