Model A:

1) Consider the following CFG , what is the equivalent RE for this CFG?

$$S \rightarrow aX$$

 $X \rightarrow aX|bX|\epsilon$

2) Eliminate left factoring from the following grammar:

$$E \rightarrow int \mid int + E \mid int - E \mid E - (E)$$

Answer:

- 1- a(a+b)*
- 2- Left factoring

$$E \rightarrow int E' \mid E - (E)$$

$$E' \rightarrow \epsilon | + E | - E$$

left recursion:

- $E \rightarrow int E' B$
- $B \rightarrow -(E) B \mid \epsilon$
- $E' \rightarrow \epsilon | + E | E$

Model B:

1) Consider the following CFG , what is the equivalent RE for this CFG?

2) Eliminate left recursion from the following grammar:

$$A \rightarrow A + B \mid B$$

 $B \rightarrow int \mid (A)$

Answer:

1- (a+b)* a (a+b)* a (a+b)* 2- $A \rightarrow B A'$ $A' \rightarrow + B A' | \epsilon$

 $B \rightarrow int | (A)$

Model C:

- 1) Consider the following CFG, what is the equivalent RE for this CFG?
 - $S \rightarrow XY$ $X \rightarrow aX \mid \epsilon$ $Y \rightarrow bY \mid \epsilon$
- 2) Remove the right factoring and right recursion from this grammar.
 - $S \rightarrow T \mid U$ $U \rightarrow b \mid U \mid c$ $T \rightarrow T \mid a \mid X \mid a \mid z$ $X \rightarrow x \mid b$

Answer:

- 1- a*b*
- 2- $S \rightarrow T \mid U$
 - $U \rightarrow U'c$
 - $U' \rightarrow U' b \mid \epsilon$
 - $T \rightarrow T' a \mid z$
 - $T' \rightarrow T \mid X$
 - $X \rightarrow x \mid b$