

1.2.1 Newton's laws and inertial frame

Space Mission Design and Operations

Prof. Claude Nicollier

Credits: PD, Wikipedia, Sir Godfrey Kneller

Newton's laws

- 1. In the absence of a force, a body either is at rest or moves in a straight line with constant speed.
- 2. A body experiencing a force \vec{F} will be subject to an acceleration \vec{a} such that $\vec{F}=m\vec{a}$, where m is the mass of the body.
- 3. Whenever a first body exerts a force \vec{F} on a second body, the second body exerts a force $-\vec{F}$ on the first body. The two forces are of equal magnitude and opposite in direction.

Generalization of Newton's second law

The force is equal to the time derivative of momentum:

$$ec{F} = rac{dec{p}}{dt}$$

where

$$\vec{p} = m\vec{v}$$

This formulation is important in case m does not remain constant (rocket equation for instance, or any leaking system)

Concept of inertial frame

• Inertial frame:

- It is a frame with respect to which the laws of Newton are valid.
- An inertial frame has direction, direction of the axes which are towards distant stars, nodes moving on very slowly.
- The center of the inertial frame, which is orthogonal coordinate system, will depend on the application.

Validity of Newton's laws:

- Motions of celestial bodies and man-made spacecraft.
- In the vicinity of the Earth and in the solar system.
- Speeds smaller than 10⁻³ c.
- Lorentz factor is negligible.

Lorentz factor =
$$\frac{1}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

1.2.2 Laws of gravitation and rotating bodies

Space Mission Design and Operations

Prof. Claude Nicollier

Credits: Adapted from Georgia State University Department of Physics and Astronomy, *Hyperphysics*, « Larmor precession »

Gravitation's law

$$F = G \frac{Mm}{r^2}$$

$$\frac{F}{m} = \frac{\mu}{r^2}$$

$$\mu = GM$$

$$\mu = GM$$

$$G = 6.673 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$$

Laws of mechanics for rotations

- Torque = moment of force: $\vec{T} = \vec{r} \times \vec{F}$
- Angular momentum:

 Newton's second law for rotations:

$$\vec{T} = \frac{d\vec{L}}{dt}$$

 $\vec{L} = \vec{r} \times \vec{p}$

Angular momentum and inertia

• \vec{L} for a solid body, with a fixed rotation axis Δ :

$$\vec{L} = I_{\Delta} \vec{\omega}$$

Moment of inertia:

$$I_{\Delta} = \sum_{i} m_{i} r_{i}^{2}$$

$$I_{\Delta} = \iiint_{V} r^{2} \rho(r) dV$$

With the moment of inertia I_{Δ} around the axis Δ .

- Where the r_i are distances of mass elements to the axis of rotation Δ .
- Where r is the distance of the mass element to the axis of rotation Δ .

Precession of a spinning top

Credits: Adapted from Georgia State University Departement of Physics and Astronomy, *Hyperphysics*, « Larmor precession »

1.2.3 Conservation laws

Space Mission Design and Operations

Prof. Claude Nicollier

Potential energy of a spacecraft

• Potential energy of a spacecraft of mass m in the gravitational field of a much larger mass M:

• Potential energy (*m* << *M* - the center of mass of the two bodies is at the center of the large mass M):

$$E_{\text{pot}} = -GM \frac{m}{r}$$

$$\frac{E_{\rm pot}}{m} = -\frac{\mu}{r}$$

Potential energy of a spacecraft

• Kinetic energy of a spacecraft of mass m in the gravitational field of a much larger mass M:

Kinetic energy:

$$E_{\rm kin} = \frac{1}{2}mv^2$$

$$\frac{E_{\rm kin}}{m} = \frac{1}{2}v^2$$

Conservation's laws

- Conservation of momentum: in an isolated system (absence of forces).
- Conservation of angular momentum for a rotation: in an isolated system (absence of torques).
- Conservation of mechanical energy:
 Potential and kinetic in an isolated system, in a conservative force field (gravitational force field is OK, in the absence of dissipative forces).

Conservation of mechanical energy

• Conservation of mechanical energy in a gravitational field (m << M):

$$E_{\text{pot1}} + E_{\text{kin1}} = E_{\text{pot2}} + E_{\text{kin2}}$$

• E is in joules.

Translation of important terms

Maths	English	Français	Deutsch	Español
$ec{ec{F}}$	force	force	Kraft	fuerza
m	mass	masse	Masse	masa
$ec{ u}$	speed or velocity	vitesse	Geschwindigkeit	velocidad
$\vec{p} = m\vec{v}$	momentum	quantité de mouvement	Impuls	cantidad de movimiento
$\vec{L} = \vec{r} \times m\vec{v}$	angular momentum	moment cinétique	Drehimpuls	momento angular
$ec{T}$	torque	moment de force	Moment	torque o momento
I_{Δ}	moment of inertia	moment d'inertie	Trägheitsmoment	momento de inercia