Reglas básicas para derivar.

Función	Derivada	
Derivada de una constante		
f(x) = k	f'(x)= 0	
Ejemplos:		
f(x)=5	f(x) = 0	
f(x) = -3	f(x) = 0	
Derivada de x		
f(x) = x	f'(x)= 1	
Derivadas funciones potenciales		
$\mathbf{f}(\mathbf{x}) = \mathbf{u}^{\mathbf{k}}$	$f'(x) = k. u^{k-1}.u'$	
Ejemplos		
$f(x) = x^2$	f'(x) = 2.x	
$f(x) = x^5$	$f'(x) = 5.x^4$	
$f(x) = 1/x^5 = x^{-5}$	$f'(x) = -5x^{-6} = -5/x^{6}$	
$f(x) = \sqrt{x} = x^{\frac{1}{2}}$	$f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$	
$f(x) = (2.x^2 + 3)^2$	$f'(x) = 2.(2.x^2 + 3).4x$	
Derivadas de funciones exponenciales		
$f(x) = e^{u}$	$f'(x) = u'. e^{u}$	
$f(x) = a^{u}$	$f'(x) = u' \cdot a^u \cdot Ln a$	

$f(x) = e^x$	$f'(x) = e^x$
$f(x)=2^x$	f'(x) =. 2 ^x . Ln 2
Derivadas de funciones logarítmicas	
f(x) = Ln u	f '(x) = u' /u
$f(x) = \log_a u$	$f'(x) = \frac{u'}{u} \log_a e$
Ejo	emplos
f(x) = Ln x	f '(x) = 1 /x
$\mathbf{f}(\mathbf{x}) = \log_2 x$	$f'(x) = \frac{1}{x} \log_2 e$
Derivadas de funciones trigonométricas	
f(x)= sen u	f '(x)= u' . cos u
$f(x) = \cos u$	f '(x)= - u' . sen u
f(x) = tg u	$f'(x)=u'$. $sec^2 u$
f(x) = cotg u	$f'(x) = -u' \cdot cosec^2 u$
$f(x) = \sec u$	f'(x)= u'. sec u . tg u
f(x) = cosec u	f '(x)= - u' . cosec u . cotg u
f(x) = arcsen u	$f'(x) = \frac{u'}{\sqrt{1 - u^2}}$
f(x) = arccos u	$f'(x) = \frac{-u'}{\sqrt{1 - u^2}}$
f(x) = arctg u	$f'(x) = \frac{u'}{1 + u^2}$

f(x) = sen x	f '(x)= cos x
$f(x) = \cos x$	f '(x)= - sen x
$\mathbf{f}(\mathbf{x}) = \mathbf{t}\mathbf{g} \ \mathbf{x}$	$f'(x) = \sec^2 x$
$f(x) = \cot x$	$f'(x) = -\csc^2 x$
$f(x) = \sec x$	$f'(x) = \sec x \cdot tg x$
$\mathbf{f}(\mathbf{x}) = \mathbf{cosec} \ \mathbf{x}$	$f'(x) = -\csc x \cdot \cot x$
f(x) = arcsen x	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$
$f(x) = \arccos x$	$f'(x) = \frac{-1}{\sqrt{1 - x^2}}$
$\mathbf{f}(\mathbf{x}) = \mathbf{arctg} \ \mathbf{x}$	$f'(x) = \frac{1}{1 + x^2}$

Derivadas de sumas, restas, productos y cocientes de funciones

$\mathbf{f}(\mathbf{x}) = \mathbf{K}.\mathbf{u}$	f '(x) = K.u'
f(x) = u + v - w	f'(x) = u' + v' - w'
$\mathbf{f}(\mathbf{x}) = \mathbf{u} \cdot \mathbf{v}$	f'(x) = u'. v + v'. u
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'.v - v'.u}{v^2}$
Ejemplos	
$f(x) = 3x^2$	f'(x) = 3.2.x = 6x
$f(x) = x^4 + x^3 - 2x$	$f'(x) = 3x^3 + 3x^2 - 2$
$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 \cdot \mathbf{sen} \ \mathbf{x}$	$f'(x) = 3x^2 \cdot \text{sen } x + x^3 \cdot \text{cos} x$