

Introduction à pandas

Un tableur à la Python

Plan de la présentation

- Présentation et gestion des objets
 - pd.Series, pd.DataFrame
- Premiers traitements
- Création et gestion des figures
- Introduction aux séries temporelles

Présentation des objets

pd.Series et pd.DataFrames

pd.Series: présentation

Séries de valeurs avec des indices

Indice des valeurs

Liste de valeurs d'une variable

Elfe
Nain
Hobbit

Elfe	200
Nain	120
Hobbit	110
dtype:	int64

pd.Series: quels indices et quelles valeurs?

Les variables peuvent être typées ou non

```
valeur 1
                                          1.000000
valeur 1
                                                                   valeur 1
                              valeur 2
                                          0.540302
valeur 2
                                                                   valeur 2
                              valeur 3
                                         -0.416147
                                                                               Open office
valeur 3
                                                                   valeur 3
valeur 4
                              valeur 4
                                         -0.989992
                                                                   valeur 4
                              valeur 5
                                         -0.653644
                                                                                Powerpoint
valeur 5
            16
                                                                   valeur 5
                              valeur 6
                                          0.283662
valeur 6
                                                                   valeur 6
                                                                                 Photoshop
            25
                              valeur 7
                                          0.960170
                                                                  valeur 7
valeur 7
                              valeur 8
                                          0.753902
valeur 8
                                                                  valeur 8
                                                                               Virtual Box
                              dtype: float64
dtype: int64
                                                                   dtype: object
```

valeur 1 Word valeur 2 124 valeur 3 3.14159 valeur 4 Bonjour valeur 5 [1, 2, 3]valeur 6 Photoshop valeur 7 valeur 8 45.3 dtype: object

Plusieurs types d'indices possibles

0	0
1	1
2	4
3	9
4	16
5	25
6	36
7	49
dty	pe: int64

valeur	1	0
valeur	2	1
valeur	3	4
valeur	4	9
valeur	5	16
valeur	6	25
valeur	7	36
valeur	8	49
dtype:	int	64

2012-01-03	6	9
2012-01-04	1	L
2012-01-05	4	1
2012-01-06	9	9
2012-01-07	16	5
2012-01-08	25	5
2012-01-09	36	5
2012-01-10	49	9
Freq: D, dtype	2:	int64

Word

Excel

Word

Dolphin

pd.Series: Création d'un objet

Source: une liste de valeur + une liste d'indices

```
personnages = ['Elfe', 'Nain', 'Hobbit']
taille = [200, 120, 110]
```

Utiliser pd.Series()

Atelier Numérique de l'OMP 2023

7-8 Novembre 2023

```
series_taille = pd.Series(data=taille, index=personnages, name='taille')
Elfe
          200
                              Nécessaire
                                                Facultatif,
                                                                     Facultatif
Nain
          120
                                                si non
Hobbit
          110
Name: taille, dtype: int64
                                                précisé:
                                                0,1,2,...
```


pd.Series: Accéder aux valeurs

```
Elfe 200
Nain 120
Hobbit 110
```

Name: taille, dtype: int64

 Accès aux valeurs par l'indice (comme un dictionnaire)

```
taille_elfe = series_taille.loc['Elfe']
```

 Accès aux valeurs par la position (comme une liste)

```
taille_elfe = series_taille.iloc[0]
```

 Accéder au tableau de valeur series taille.values

pd.DataFrame: présentation

- Une collection de Series sur les mêmes indices
- Les series ont des noms

pd.DataFrame: Création d'un objet

- Sources:
 - une liste d'indices
 - Un ensemble de valeurs
 - Un ensemble de listes
 - Un tableau de valeurs

```
personnages = ['Elfe', 'Nain', 'Hobbit']
taille = [200, 120, 110]
poids = [80, 120, 40]
duree_de_vie = [1000, 300, 120]
lieux_de_vie = ['Rivendale', 'La Moria', 'La Comtée']
```

pd.DataFrame()

Atelier Numérique de l'OMP 2023

7-8 Novembre 2023

pd.DataFrame: Accès aux données

	taille	poids	duree_de_vie	lieu_de_vie
Elfe	200	80	1000	Rivendale
Nain	120	120	300	La Moria
Hobbit	110	40	120	La Comtée

- Accéder aux valeurs d'un indice
 - Par l'indice

```
infos_elfe = personnages_lotr.loc['Elfe']
```

Par la position

```
infos_elfe = personnages_lotr.iloc[0]
```

Renvoie une pd.Series

```
taille 200
poids 80
duree_de_vie 1000
lieu_de_vie Rivendale
Name: Elfe, dtype: object
```

- Accéder aux valeurs d'une pd.Series
 - Par le nom de variable

```
poids = personnages_lotr['poids']
poids = personnages_lotr.poids
```

- Par la positionpoids = personnages_lotr.iloc[:,1]
- Renvoie une pd.Series

```
Elfe 80
Nain 120
Hobbit 40
Name: poids, dtype: int64
```


pd.DataFrame: Ajouter des données

Ajouter une colonne

Il faut une autre liste de valeurs

```
exemple_de_personnage = ['Legolas', 'Gimli', 'Frodon']
```

Ajouter la colonne comme si on voulait accéder aux valeurs

```
personnages_lotr['exemple_de_personnage'] = exemple_de_personnage
```

	taille	poids	duree_de_vie	lieu_de_vie	exemple_de_personnage
Elfe	200	80	1000	Rivendale	Legolas
Nain	120	120	300	La Moria	Gimli
Hobbit	110	40	120	La Comtée	Frodon

On peut aussi écraser une colonne de cette manière

pd.DataFrame: Ajouter des données

- Ajouter une ligne
 - Créer une dataframe similaire avec les valeurs à ajouter

• Concaténer les deux dataframes ensemble ATTENTION: nouvel objet

```
personnages_lotr = pd.concat([personnages_lotr, dataframe_humain])
```

	taille	poids	durée_de_vie	lieu_de_vie	exemple_de_personnage
Elfe	200	80	1000	Rivendale	Legolas
Nain	120	120	300	La Moria	Gimli
Hobbit	110	110	40	La Comtée	Frodon
Humain	175	75	80	Gondor	Aragorn

Résumé: les objets pandas

pd.Series: une seule variable

pd.DataFrame: plusieurs variables alignées

- Accès facile aux valeurs en fonction des indices
- Objets modifiables

Lire et écrire des fichiers

Format supportés

- Pandas supporte de nombreux formats en lecture et écriture
 - CSV
 - excel (xls, xlsx): requiert openpyxl
 - txt
 - json
 - •
- Tout ce qui ressemble à un tableau de valeurs
- Possibilité d'ouvrir directement depuis internet

Ouvrir un fichier

Pour ouvrir un fichier on utilise pd.read_format()

```
penguins = pd.read_json('../data/penguins_dataset.json')
planets = pd.read_excel('../data/exoplanets_discoveries.xlsx')
boats = pd.read_csv('../data/fishing_boats.csv')
```

- Quelques arguments important
 - index_col → indiquer la colonne correspondant aux indices
 - skiprows → ne pas ouvrir les n premières lignes
 - nrows → ouvrir seulement n premières lignes

```
boats = pd.read_csv('../data/fishing_boats.csv', index_col=1, skiprows=5, nrows=10)
```

Plen d'autres possibilités

Sauvegarder un fichier

Pour sauvegarder un fichier on utilise pd.to_format()

```
personnages_lotr.to_csv('.../data/lotr_personnages.csv')
personnages_lotr.to_json('.../data/lotr_personnages.json')
personnages_lotr.to_excel('.../data/lotr_personnages.xlsx')
```


Présentation des exemples

Présentation des dataframes exemples

• Penguins: caractéristiques de manchots

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	None
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

Souce: dataset exemple Seaborn

Présentation des dataframes exemples

Planets: découverte d'exoplanètes

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011
3	Radial Velocity	1	326.030	19.40	110.62	2007
4	Radial Velocity	1	516.220	10.50	119.47	2009

Souce: dataset exemple Seaborn

Présentation des dataframes exemples

• Boats: bateaux de pêche norvégiens

	ID	peche_reussie	age_moteur	taille_bateau	puissance_moteur	port	poids_prises	valeur_prises
0	1993001257	1.0	10.0	10.50	367.0	RISØR	5.0	95.70
1	1993005128	1.0	26.0	21.30	970.0	BÅTSFJORD	19.0	564.59
2	1996007882	0.0	32.0	12.13	190.0	ØKSNES	0.0	0.00
3	1999009281	0.0	8.0	27.45	1014.0	AVERØY	0.0	0.00
4	1986007228	1.0	31.0	9.22	80.0	BRØNNØY	12.5	816.34
199995	1996009732	1.0	16.0	10.66	152.0	TRONDHEIM	40.0	204.44
199996	2012057209	0.0	4.0	8.30	230.0	GISKE	0.0	0.00
199997	1986006960	0.0	19.0	7.40	53.0	VEGA	0.0	0.00
199998	1982010538	0.0	34.0	7.47	22.0	TORSKEN	0.0	0.00
199999	2008040308	0.0	0.0	27.48	1000.0	HAREID	0.0	0.00
200000	rows × 13 co	lumns						

• Source: https://www.kaggle.com/datasets/alexanderbader/fishing-data-north-atlantic

Premières analyses

Sélection de données

- Sélection par indice ou position
 - Par position:

```
boats.iloc[3,2]
```

Par indice/colonne

```
boats.valeur_prises.loc[1920009055]
boats['valeur_prises'].loc[1920009055]
```

Plusieurs indices/colonnes

	taille_bateau	puissance_moteur	valeur_prises
ID			
204027474	7.90	86.0	0.000000
1920004082	18.84	235.0	0.000000
1920004897	14.15	156.0	1496.407500
1920009055	10.36	100.0	1077.495833
1923010500	13.78	150.0	1733.734286
2018103253	38.65	1050.0	0.000000
2018103353	6.62	22.0	1304.160000
2018103393	5.35	40.0	2844.820000
2018103413	10.95	400.0	0.000000
2018103493	6.20	50.0	463.050000

boats[['taille_bateau','valeur_prises']].loc[[2014064112,1998003078]]

Sélection de données par condition

Données avec taille du bateau > 10m?

Extraction de données

```
boats.loc[boats.taille_bateau > 10]
```

Masquage des données

```
boats.where(boats.taille_bateau > 10, np.nan)
```

Multi conditions?

Atelier Numérique de l'OMP 2023

7-8 Novembre 2023

OII boats.loc[(boats.taille_bateau > 10)&(boats.puissance_moteur>1000)]
 DII boats.loc[(boats.taille_bateau > 10)|(boats.puissance_moteur>1000)]

	taille_bateau	puissance_moteur	valeur_prises
ID			
204027474	7.90	86.0	0.000000
1920004082	18.84	235.0	0.000000
1920004897	14.15	156.0	1496.407500
1920009055	10.36	100.0	1077.495833
1923010500	13.78	150.0	1733.734286
2018103253	38.65	1050.0	0.000000
2018103353	6.62	22.0	1304.160000
2018103393	5.35	40.0	2844.820000
2018103413	10.95	400.0	0.000000
2018103493	6.20	50.0	463.050000

taille bateau nuiceance moteur valeur prices

Opérations à la numpy

 Calcul sous la forme Series.mean()

Ignore les nans par defaut

mean_mass_penguins = penguins.body_mass_g.mean()

- Opérations possibles:
 - mean()
 - sum()
 - min(), max()
 - median()
 - idxmax(), idxmin()
 - quantile([q1,q2, ...])
 - count() → valeurs non nan

Applicable sur des dataframes

```
boats.max()

taille_bateau 9.429419e+01
puissance_moteur 1.100000e+04
valeur_prises 1.722900e+06
dtype: float64
```


Tri des données

• Trier les données en fonction des indices

boats.sort_index()

Trier les données en fonction d'une colonne

boats.sort_values('puissance_moteur', ascending=False)

	taille_bateau	puissance_moteur	valeur_prises
ID			
2014064112	71.100000	11000.0	605459.368750
2015071414	75.228571	10200.0	505773.928571
2017098553	81.200000	9400.0	263008.740000
2004027185	74.200000	9000.0	399144.750000
1998003078	70.000000	8920.0	226050.106061

Sélection de groupes: groupby

 On peut créer des groupes en fonction d'une colonne puis on peut appliquer les fonctions précédentes

<pre>penguins.groupby('sex').mean()</pre>						
bill_length_mm bill_depth_mm flipper_length_mm body_mass_g						
se	x					
Fema	e 42.096970	16.425455	197.363636	3862.272727		
Ma	e 45.854762	17.891071	204.505952	4545.684524		

panguing gnouphy(['say' 'spacies']) modian()

 Fonctionne aussi pour plusieurs critères

penguins.groupby(['sex', species']).median()							
	bill_length_mm bill_depth_mm flipper_length_mm						
sex	species						
Female	Adelie	37.00	17.60	188.0	3400.0		
	Chinstrap	46.30	17.65	192.0	3550.0		
	Gentoo	45.50	14.25	212.0	4700.0		
Male	Male Adelie	40.60	18.90	193.0	4000.0		
	Chinstrap	50.95	19.30	200.5	3950.0		
	Gentoo	49.50	15.70	221.0	5500.0		

Sélection de groupes: fonctions perso

 On peu utiliser data.groupby().apply(fonction) avec une fonction personnalisée

```
def std_perso(data):
    return np.sqrt(((data - data.mean())**2).mean())

penguins.groupby('sex').bill_depth_mm.apply(std_perso)

sex
Female    1.790231
Male    1.857797
Name: bill_depth_mm, dtype: float64
```


Combiner des dataframes

Concaténer par les indices

pd.concat([df1,df2])

df1

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011

df2

	method	number	orbital_period	mass	distance	year
3	Radial Velocity	1	326.03	19.4	110.62	2007
4	Radial Velocity	1	516.22	10.5	119.47	2009
5	Radial Velocity	1	185.84	4.8	76.39	2008

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011
3	Radial Velocity	1	326.030	19.40	110.62	2007
4	Radial Velocity	1	516.220	10.50	119.47	2009
5	Radial Velocity	1	185.840	4.80	76.39	2008

Combiner des dataframes

Concaténer par les colonnes

pd.concat([df1,df2], axis=1)

	method	number	orbital_period
0	Radial Velocity	1	269.300000
1	Radial Velocity	1	874.774000
2	Radial Velocity	1	763.000000
3	Radial Velocity	1	326.030000
4	Radial Velocity	1	516.220000

mass	distance	year
7.10	77.40	2006
2.21	56.95	2008
2.60	19.84	2011
19.40	110.62	2007
10.50	119.47	2009
	7.10 2.21 2.60 19.40	2.21 56.95 2.60 19.84 19.40 110.62

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300000	7.10	77.40	2006
1	Radial Velocity	1	874.774000	2.21	56.95	2008
2	Radial Velocity	1	763.000000	2.60	19.84	2011
3	Radial Velocity	1	326.030000	19.40	110.62	2007
4	Radial Velocity	1	516.220000	10.50	119.47	2009

df1

df2

Une opération avancée

 Calculer le coefficient de corrélation pour chaque paire de variables

boats[['peche_reussie', 'age_moteur', 'puissance_moteur', 'taille_bateau', 'valeur_prises']].corr() peche_reussie age_moteur puissance_moteur taille_bateau valeur_prises -0.003450 -0.001844 -0.000991 0.120867 peche_reussie 1.000000 age_moteur -0.0034501.000000 -0.244228 -0.179130 -0.077828 0.345274 puissance_moteur -0.001844-0.2442281.000000 0.915077 taille_bateau 0.334019 -0.000991-0.179130 0.915077 1.000000 valeur prises 0.120867 -0.0778280.345274 0.334019 1.000000

Résumé: premières analyses

Quelques fonctionnalités disponibles:

Sélection de données par indice/conditions

df.loc[indice]/df.loc[condition]

Opérations comme avec numpy

df.mean()

Tri des données par colonnes/indices

df.sort_values()/df.sort_index()

Opérations/sélections par groupe

df.groupby(colonne).mean()

Combinaison de dataframes par alignement

pd.concat([df1, df2])

Calcul de corrélation

df.corr()

Et bien plus encore ...

Bonus: les « One liners »

- Une commande renvoie un nouvel objet (Series, DataFrame)
- On peut donc enchainer les commandes sur une seule ligne

```
boats.loc[boats.taille_bateau < 10]\
    .groupby('ID').mean()\
    .sort_values('poids_prises', ascending=False)\
    .iloc[:10]\
    .corr()</pre>
```


Premières visualisations

Interface de plots de pandas

 Intègre directement des librairies de plots avec une interface haut niveau

- Matplotlib par défaut
- Plotly/Bokeh/hvplot possible

Visualisation statistiques pour les Series

Code sous la forme Series.plot.[type de plot]()

Pandas appelle la fonction de matplotlib: mêmes arguments

Plots catégoriques: barplot

Pour un nombre de donnée limité


```
boats.sort_values('poids_prises', ascending=False)\
    .iloc[:10][['valeur_prises','valeur_prises_ajustee']]\
    .plot.bar()
```


Plots relationnels: scatterplot et hexbin

```
penguins.plot.scatter(x='bill_length_mm', y='body_mass_g')
<AxesSubplot:xlabel='bill_length_mm', ylabel='body_mass_g'>
   6000
   5500
5000
4500
4000
   3500
   3000
                                               55
              35
                           bill length mm
```


Intégration à matplotlib

```
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1,2, figsize=(10,4),dpi=80)
penguins.plot.scatter(x='bill_length_mm', y='body_mass_g',ax=axs[0])
penguins.loc[penguins.sex=='Male'].body mass g.plot.kde(ax=axs[1], label='Male', color='tab:green')
penguins.loc[penguins.sex=='Female'].body mass g.plot.kde(ax=axs[1], label='Female', color='tab:orange')
axs[1].legend()
axs[0].set title('Relation entre masse et taille du bec')
axs[1].set_title('Distribution de la masse des pingouins')
axs[0].set ylabel('Masse du pingouin (g)')
axs[1].set_ylabel('PDF')
axs[0].set xlabel('Longueur du bec (mm)')
axs[1].set xlabel('Masse du pingouin (g)')
plt.tight layout()
                                                                  Distribution de la masse des pingouins
             Relation entre masse et taille du bec
                                                       0.0007
   6000
                                                                                                   Female
                                                        0.0006
                                                       0.0005
   5000
                                                       0.0004
   4500
                                                       0.0003
   4000
                                                       0.0002
                                                        0.0001
                                                        0.0000
             35
                                          55
                                                 60
                                                                 2000
                                                                       3000
                                                                             4000
                                                                                    5000
                                                                                          6000
                                                                                                7000
                     Longueur du bec (mm)
                                                                           Masse du pingouin (g)
```


Résumé: premières figures

Visualisations statistiques: Series.plot.hist() Series.plot.kde() Series.plot.box()

Visualisations catégoriques : df.plot.bar()

Visualisations relationnelles: df.plot.scatter() df.plot.hexbin() df.plot.kde()

Intégration à matplotlib / bokeh / plotly...

Bonus: intégration à

Librairie de visualisation optimisée pour les dataframes.

Exemple:

```
cylinders displacement horsepower weight acceleration model year origin
                                             3504
                                                           12.0
18.0
                        307.0
                                    130.0
                                                                                usa
15.0
                        350.0
                                    165.0
                                                           11.5
                                             3693
                                                                         70
                                                                                usa
18.0
                        318.0
                                    150.0
                                             3436
                                                           11.0
16.0
                        304.0
                                    150.0
                                             3433
                                                           12.0
                                                                         70
                                                                                usa
17.0
                                                                         70
                        302.0
                                    140.0
                                             3449
                                                           10.5
```


Figure de www.seaborn.pydata.org

Introduction aux séries temporelles

Exemple de données

- Series ou DataFrame avec un indice temporel
- Pas de temps constant ou non
- Exemple: capteur de température in situ dans l'océan

	Temperature
2019-04-13 14:00:00	28.4728
2019-04-13 14:00:10	28.4780
2019-04-13 14:00:20	28.4818
2019-04-13 14:00:30	28.5127
2019-04-13 14:00:40	28.5199
2020-10-02 03:19:09	28.6340
2020-10-02 03:19:19	28.6339
2020-10-02 03:19:29	28.6339
2020-10-02 03:19:39	28.6341
2020-10-02 03:19:49	28.6339

Datetime Index: utiliser pd.to_datetime()

• On utilise pd.to_datetime(string) pour créer un timestamp

```
pd.to_datetime('2012-01-25')
Timestamp('2012-01-25 00:00:00')
```

Idem avec une list de string pour un DatetimeIndex:

```
pd.to_datetime(['2012','2013','2014'])

DatetimeIndex(['2012-01-01', '2013-01-01', '2014-01-01'], dtype='datetime64[ns]', freq=None)
```


Datetime Index: à partir de liste de données

	Date	Time	Temperature	
Sample Number				
1	13-04-2019	14:00:00	28.4728	
2	13-04-2019	14:00:10	28.4780	
3	13-04-2019	14:00:20	28.4818	
4	13-04-2019	14:00:30	28.5127	
5	13-04-2019	14:00:40	28.5199	

 Créer une liste avec les informations de dates

Utiliser pd.to_datetime

Changer l'indice

df.index = pd.t	<pre>pd.to_datetime(df.Date + ' ' + d</pre>				
	Date	Time	Temperature		
2019-04-13 14:00:00	13-04-2019	14:00:00	28.4728		
2019-04-13 14:00:10	13-04-2019	14:00:10	28.4780		
2019-04-13 14:00:20	13-04-2019	14:00:20	28.4818		
2019-04-13 14:00:30	13-04-2019	14:00:30	28.5127		
2019-04-13 14:00:40	13-04-2019	14:00:40	28.5199		

Datetime Index: créer un indice

On utilise pd.date_range()

- Fréquences?
 - y, q, m, w, d, h, min, s, ms, us,ns
 - On peut ajouter un nombre: 10h

Afficher la série temporelle

Visualisation rapide

Sélection de données par le temps

• On utilise df.loc[time] pour un moment précis

7-8 Novembre 2023

Sélection de données par le temps

• On utilise df.loc[time1 : time2] pour les données entre 1 et 2

Atelier Numérique de l'OMP 2023

7-8 Novembre 2023

Rééchantillonage

En utilisant les mêmes fréquences que pour date_range:

```
df.Temperature.resample('H')
```

- Renvoie un objet comme groupby: attend une opération
 - Mean, max, min, median, quantile, count, ... ou apply()

```
df.Temperature.resample('D').mean()
2019-04-13
              29.869072
2019-04-14
              29.883743
2019-04-15
              29.671858
2019-04-16
              29.371685
2019-04-17
              29.896633
```


Opérations en fenêtres glissantes

- Intérêt: garde le même taux d'échantillonage, regarde ce qu'il se passe autour
- Renvoie un objet comme groupby: attend une opération
 - Mean, max, min, median, quantile, count, ... ou apply()
- Dataframe.rolling(taille_fenetre)

```
df.Temperature.rolling(5, center=True).mean()

2019-04-13 14:00:00 NaN

2019-04-13 14:00:10 NaN

2019-04-13 14:00:20 28.49304

2019-04-13 14:00:30 28.50608

2019-04-13 14:00:40 28.52274
```

Positionne l'indice du résultat: fin ou centre

Gestion de données manquantes/irrégulières

	Temperature
2019-04-14 01:04:09	29.8508
2019-04-14 16:16:29	29.8557
2019-04-15 05:10:19	30.0335
2019-04-15 07:51:29	29.4874
2019-04-15 14:08:49	29.8838

 Obtenir des données journalières? series.interpolate()

Accéder aux information de dates

- De nombreux attributs disponibles sur un DatetimeIndex
 - Month, year, dayofweek, is_month_start, is_leap_year, ...

```
df.index.month
Int64Index([13, 13, 13, 13, 13, 13, 13, 13, 13,
           30, 30, 30, 30, 30, 30, 30, 30, 30, 30],
          dtype='int64', length=677521)
```


Groupby avec des données temporelles

Cycle journalier de la température

Résumé: séries temporelles

series/dataframe avec indice temporelle (numpy datetime/pandas date_range, ...)

Quelques fonctionnalités disponibles :

Sélection temporelle : df.loc["2012-10-04"]

Sélection d'une période : df.loc["2008-07" : "2015-07"]

Rééchantillonage : df.resample("D").mean()

Fenêtres glissantes : df.rolling(5).mean()

Remplir les NaN: df.interpolate()

Informations temporelles: df.index.hour / df.index.day_of_year / ...

Atelier Numérique de l'OMP 2023

7-8 Novembre 2023

Des questions?

