Лекция 4.

Изоморфизм групп

Определение 1. Две группы G и G' изоморфны, если существует биекция $\varphi: G \to G'$, сохраняющая групповую операцию:

$$\varphi(g_1\circ g_2)=\varphi(g_1)*\varphi(g_2),$$

$$g_1,g_2,g_1\circ g_2\in G,\ \varphi(g_1\circ g_2)\in G',\ \varphi(g_1)\in G',\varphi(g_2)\in G'.$$

Пример 1.
$$G = <\mathbb{R}^+, *, 1>$$
, $G' = <\mathbb{R}, +, 0>$

G и G' изоморфны: $\varphi(x) = \ln x$ – биекция

$$ln e^n \leftrightarrow n$$
:

$$ln e^2 \leftrightarrow 2$$
,

$$ln e^{-2} \leftrightarrow -2$$
.

$$ln(e^2)^{-1} = -2$$

Единица переходит в единицу: $ln1 \leftrightarrow 0$ $e_{\times} \rightarrow e_{+}$ $1 \rightarrow 0$.

Обратный элемент в обратный: $g^{-1} \in G \to \ln g^{-1} \in G'$.

Пример 2. Рассмотрим группы G_{Δ} и S_3 .

Покажем, что группа самосовмещений треугольника G_{Δ} и группа подстановок S_3 изоморфны. Установим взаимно-однозначное соответствие между элементами групп, сохраняющее групповую операцию.

$$S_3 = {\pi_0, (123), (132), (12), (13), (23)}.$$

$$G_{\Delta} = \left\{ \varphi_0, \varphi_1 = \varphi_{\frac{2\pi}{3}}, \varphi_2 = \varphi_{\frac{4\pi}{3}}, \psi_1, \psi_2, \psi_3 \right\}$$

0	$oldsymbol{arphi}_0$	$arphi_1$	$oldsymbol{arphi}_2$	ψ_1	ψ_2	ψ_3
φ_0	$oldsymbol{arphi}_0$	φ_1	$oldsymbol{arphi}_2$	ψ_1	ψ_2	ψ_3
$arphi_1$	$arphi_1$	$oldsymbol{arphi}_2$	$oldsymbol{arphi}_0$	ψ_2	ψ_3	ψ_1
φ_2	$oldsymbol{arphi}_2$	$oldsymbol{arphi}_0$	φ_1	ψ_3	ψ_1	ψ_2
ψ_1	ψ_1	ψ_3	ψ_2	$oldsymbol{arphi}_0$	$oldsymbol{arphi}_2$	$arphi_1$
ψ_2	ψ_2	ψ_1	ψ_3	φ_1	φ_0	$oldsymbol{arphi}_2$
ψ_3	ψ_3	ψ_2	ψ_1	φ_2	$arphi_1$	$arphi_0$

1. Установим биекцию между элементами групп G_{Δ} и S_3 следующим образом:

$$\varphi_0 \leftrightarrow \pi_0$$

$$\varphi_{\frac{2\pi}{3}} \leftrightarrow (1\ 2\ 3)$$

$$\varphi_{\frac{4\pi}{3}} \leftrightarrow (1\ 3\ 2)$$

$$\psi_1 \leftrightarrow (1\ 2)$$

$$\psi_2 \leftrightarrow (1\ 3)$$

$$\psi_3 \leftrightarrow (2\ 3)$$

Легко убедиться, что единичный элемент переходит в единичный, а обратные группы G_{Δ} в обратные группы S_3 .

$$\varphi_{\frac{2\pi}{3}}^{-1} = \varphi_{\frac{4\pi}{3}} \quad (1\ 2\ 3)^{-1} = (1\ 3\ 2) \qquad \psi_i^{-1} = \psi_i \quad (2\ 3)^{-1} = (2\ 3) \ \dots$$

Проверим сохранение групповой операции.

$$\varphi_{\frac{2\pi}{2}} \cdot \psi_1 = \psi_2 \quad \leftrightarrow \ (1\ 2\ 3)(1\ 2) = (1\ 3)$$

$$\varphi_{\frac{2\pi}{3}} \cdot \psi_2 = \psi_3 \quad \leftrightarrow \ (1\ 2\ 3)(1\ 3) = (2\ 3)$$

$$\varphi_{\frac{2\pi}{2}} \cdot \psi_3 = \psi_1 \quad \leftrightarrow \ (1\ 2\ 3)(2\ 3) = (1\ 2)$$

$$\psi_1 \cdot \psi_2 = \varphi_{\frac{4\pi}{3}} \leftrightarrow (1\ 2)(1\ 3) = (1\ 3\ 2)$$

$$\psi_1 \cdot \psi_3 = \varphi_{\frac{2\pi}{2}} \leftrightarrow (1\ 2)(2\ 3) = (1\ 2\ 3)$$

И т. д. Следует учесть, что группа не коммутативна.

Вывод: группы G_{Δ} и S_3 изоморфны.

2. Теперь попробуем установить биекцию по другому:

$$\varphi_0 \leftrightarrow \pi_0$$

$$\varphi_{\frac{2\pi}{2}} \leftrightarrow (1\ 2\ 3)$$

$$\varphi_{\frac{4\pi}{3}} \leftrightarrow (1\ 3\ 2)$$

$$\psi_1 \leftrightarrow (13)$$

$$\psi_2 \leftrightarrow (1\ 2)$$

$$\psi_3 \leftrightarrow (2\ 3)$$

Установленная таким образом биекция не позволяет сохранить групповую операцию:

$$\varphi_{\frac{2\pi}{3}} \cdot \psi_1 = \psi_2 \quad \leftrightarrow \quad (1\ 2\ 3)(1\ 3) = (2\ 3) \leftrightarrow \psi_3.$$

Свойства изоморфизма

1. Единичный элемент переходит в единичный: $e \to e', \quad e \in G, e' \in G'$.

Доказательство.

Обозначим групповые операции, соответственно, (G, \circ) и (G', *).

$$e' = \varphi(e)$$
, (по определению: $e \circ a = a \circ e = a$).

$$\varphi(e) * \varphi(g) = \varphi(e \circ g) = \varphi(g) = \varphi(g \circ e) = \varphi(g) * \varphi(e)$$
 для $\forall g \in G$.

2. Обратный элемент переходит в обратный: $(\varphi(g))^{-1} = \varphi(g^{-1})$.

Доказательство.

(по определению:
$$a \circ a^{-1} = a^{-1} \circ a = e$$
).

$$\varphi(g^{-1}) * \varphi(g) = \varphi(g^{-1} \circ g) = \varphi(e) = e'$$

$$\varphi(g) * \varphi(g^{-1}) = \varphi(g \circ g^{-1}) = \varphi(e) = e'.$$

Количество групп второго, третьего и четвертого порядков с точностью до изоморфизма.

Утверждение 1. Групп второго порядка с точностью до изоморфизма одна, она циклическая: $a^2 = e$.

Доказательство. Составим таблицу Кэли

*	e	а
e	e	а
а	а	e

$$a \cdot a \neq a$$
, т.к. $a \neq e \Rightarrow a \cdot a = e$, $G = < a > -$ группа циклическая.

Например, группа второго порядка $G=<\{0,1\}$, \sim , 1>=<0>. Каждый элемент сам себе обратный.

Утверждение 2. Групп третьего порядка с точностью до изоморфизма одна, она циклическая, порожденная любым не единичным элементом:

$$G = = \{a, a^2 = b, a^3 = a \cdot b = e\} \quad G = = \{b, b^2 = a, b^3 = b \cdot a = e\}.$$

Доказательство. Составим таблицу Кэли

*	e	а	b
e	e	а	b
а	а	b	е
b	b	e	а

$$a \cdot b \neq a$$
, т.к. $b \neq e$ и $a \cdot b \neq b$, т.к. $a \neq e \Rightarrow a \cdot b = e$.

Аналогично $b \cdot a = e$, следовательно, группа коммутативна.

$$a \cdot a \neq a$$
, $a \cdot a \neq e$, T.K. $a^{-1} = b$.

Эта группа циклическая, так же, как и группа второго порядка.

Например, группы третьего порядка:

$$G_{\varphi_{\Delta}} = \left\{ \varphi_0, \varphi_{\frac{2\pi}{3}}, \varphi_{\frac{4\pi}{3}} \right\}$$
 – группа вращений треугольника с операцией композиция;

$$C = \{C_0, C_1, C_2\}$$
 – группа классов вычетов по модулю 3 с операцией сложения.

Группы четвертого порядка

Утверждение 3. Любая группа четвертого порядка коммутативна.

Доказательство. Пусть $G = \{e, a, b, c\}$, и предположим, что какие-то два элемента не перестановочны: $b \cdot c \neq c \cdot b$. Имеем $b \cdot c \neq b$ и $b \cdot c \neq c$, т.к. $c \neq e, b \neq e \Rightarrow b \cdot c = a$ или $b \cdot c = e$: $b \cdot c \in \{a, e\}$. Аналогично получаем $c \cdot b \in \{a, e\}$. Пусть $b \cdot c = e$, а $c \cdot b = a$. Из того, что $b \cdot c = e$ следует, что $b^{-1} = c \Rightarrow c \cdot b = b^{-1} \cdot b = e$. А это противоречит предположению, что $c \cdot b = a$, следовательно, любая группа четвертого порядка коммутативна.

Утверждение 4. Групп четвертого порядка с точностью до изоморфизма две: четвертная группа Клейна и циклическая.

Доказательство.

1. Введем условие – все элементы группы сами себе обратные: $a^{-1} = a, b^{-1} = b, c^{-1} = c \Rightarrow a^2 = e, b^2 = e, c^2 = e$.

*	е	а	b	С
e	е	а	b	С
а	а	е		
b	b		е	
С	С			e

Воспользуемся тем, что в группе в каждой строке и в каждом столбце все элементы различны (легко доказать от противного), а также, что все группы 4-го порядка коммутативны.

*	е	а	b	С
e	е	а	b	С
а	а	е	x	у
b	b	х	е	Z
С	С	у	Z	е

Из второй строки: $x, y \in \{b, c\}$. Из третьего столбца: $x, z \in \{a, c\}$. Следовательно, $x = c, \ y = b, \ z = a$.

*	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

Эта группа называется *четвертная группа Клейна*. Ее характерная особенность – все элементы сами себе обратны.

Пример четвертной группы Клейна:

группа самосовмещений прямоугольника.

Два поворота, две симметрии.

$$G_{W} = \{\varphi_{0}, \varphi_{\pi}, \psi_{1}, \psi_{2}\}$$

 $L \subseteq S_4$ — подгруппа перестановок, изоморфная группе самосовмещений прямоугольника: $L = \{\pi_0, (1\ 3)(2\ 4), (1\ 4)(2\ 3), (1\ 2)(3\ 4)\}.$

$$\varphi_0 \to \pi_0, \varphi_\pi \to (1\ 3)(2\ 4), \psi_1 \to (1\ 4)(2\ 3), \psi_2 \to (1\ 2)(3\ 4)$$

2. Предположим, что не все элементы сами себе обратны. Пусть для определенности $a^{-1} = b$.

*	е	а	b	С
е	е	а	b	С
а	а		е	
b	b	е		
С	С			

Заполним таблицу Кэли, исходя из этого предположения и коммутативности группы четвертого порядка. Тогда $a \cdot b = e = b \cdot a$. (Предполагая перестановочность других элементов, аналогично получим так же, как и в этом случае, циклическую группу).

*	е	а	b	С
е	е	а	b	С
а	а	х	е	и
b	b	е	у	v
С	С	и	v	Z

Из второй строки: $x, u \in \{b, c\}$. Из четвертого столбца: $u, v, z \in \{e, a, b\}$

Очевидно, что $u=b\Rightarrow x=c$. Из третьей строки: $y,v\in\{a,c\}\Rightarrow v=a,y=c$.

*	e	а	b	С
e	е	а	b	С
а	а	С	е	b
b	b	е	С	а
С	С	b	а	е

$$< a> = \{a,a^2=c,a^3=a\cdot c=b,a^4=c^2=e\}$$
 $G=< a> -$ циклическая группа $< b> = \{b,b^2=c,b^3=b\cdot c=a,b^4=c^2=e\}$ $G=< b> < c> = \{c,c^2=e\}$ $G\neq < c> -$ циклическая подгруппа группы G : $H=< c>$.

Например, циклические группы четвертого порядка:

- Группа вращений квадрата

$$G_{W} = \left\{ \varphi_{0}, \varphi_{\frac{\pi}{2}}, \varphi_{\pi}, \varphi_{\frac{3\pi}{2}} \right\} = <\varphi_{\frac{\pi}{2}}> = <\varphi_{\frac{3\pi}{2}}>.$$

Подгруппа $H = \langle \varphi_{\pi} \rangle = \{ \varphi_{0}, \varphi_{\pi} \}.$

- Группа классов вычетов по модулю 4

$$C = \{C_0, C_1, C_2, C_3\} = < C_1 > = < C_3 >$$

Подгруппа $H = < C_2 >$.

Теорема 1. Все циклические группы одного порядка изоморфны.

Доказательство.

1. Рассмотрим произвольную циклическую группу бесконечного порядка

$$G = \{a^0, a^1, ..., a^n, ...\} = < a >.$$

Покажем, что она изоморфна аддитивной группе целых чисел

$$G_{\mathbb{Z}} = <\mathbb{Z}, +, 0> = <1>,$$

т.е. существует биекция, сохраняющая групповую операцию.

$$\exists \boldsymbol{\varphi} \colon \boldsymbol{G} \to \boldsymbol{G}_{\mathbb{Z}}$$
 -- биекция:

$$a^n \in G$$
: $a^n \leftrightarrow n$.

Сохраняется групповая операция:

$$a^n o n$$
 , $a^m o m$. Покажем, что $\varphi(a^n \cdot a^m) = \varphi(a^n) + \varphi(a^m)$.

$$\varphi(a^n \cdot a^m) = \varphi(a^{n+m}) = n + m$$

$$\varphi(a^n) + \varphi(a^m) = n + m$$

Ч.т.д.

Все циклические группы бесконечного порядка изоморфны между собой, т.к. они изоморфны группе $G_{\mathbb{Z}} = <\mathbb{Z}$, +, 0 >.

2. Теперь покажем, что все циклические группы одного и того же конечного порядка изоморфны. Рассмотрим произвольную циклическую группу G конечного порядка n. Докажем, что она uзоморфна группе классов вычетов по модулю n.

$$G \to C \colon \qquad C = \{C_0, C_1, \dots, C_{n-1}\}$$

(Напомним, что, например, для n=4 группа классов вычетов по модулю 4 содержит следующие элементы:

$$C_0 = \{0, \pm 4, \pm 8, \dots\}$$

$$C_1 = \{\ldots -7, -3, 1, 5, 9\ldots\}$$

$$C_2 = \{... - 6, -2, 2, 6, 10 ...\}$$

$$C_3 = \{\ldots -5, -1, 3, 7, 11\ldots\}$$
).

Рассмотрим группы:
$$G = \{a^0, a^1, \dots, a^{n-1}\}$$
 и $C = \{C_0, C_1, \dots, C_{n-1}\}$

Установим биекцию следующим образом:

$$a^m \leftrightarrow C_m \ (m=0,\dots,n-1).$$

Покажем, что при этом сохраняется групповая операция:

$$\varphi(a^k \cdot a^m) = \varphi(a^k) + \varphi(a^m);$$

$$\varphi(a^{k+m}) = C_{k+m} = C_r, \quad r = (k+m) \pmod{n};$$

$$\varphi(a^k) + \varphi(a^m) = C_k + C_m = C_r, \quad r = (k+m) \pmod{n}.$$

Теорема доказана.

Пример 3.

Покажем, что группа вращений квадрата $G_W = \left\{ \varphi_0, \varphi_{\frac{\pi}{2}}, \varphi_{\pi}, \varphi_{\frac{3\pi}{2}} \right\} = <\varphi_{\frac{\pi}{2}}> = <\varphi_{\frac{3\pi}{2}}>$ изоморфна группе классов вычетов по модулю 4.

1. Установим биекцию:

$$\varphi_0 \leftrightarrow C_0,$$
 $\varphi_{\frac{\pi}{2}} \leftrightarrow C_1,$

$$\varphi_{\pi} \leftrightarrow C_2$$
,

$$\varphi_{\frac{3\pi}{2}} \leftrightarrow C_3$$
.

Убедимся, что она сохраняет групповую операцию:

$$\varphi_{\frac{\pi}{2}} \circ \varphi_{\pi} = \varphi_{\frac{3\pi}{2}} \leftrightarrow C_3 = C_1 + C_2$$

$$\varphi_{\frac{\pi}{2}}\circ\varphi_{\frac{3\pi}{2}}=\varphi_0\leftrightarrow C_0=C_1+C_3$$

И т.д.

Теорема 2 (Кэли). Всякая конечная группа порядка n изоморфна некоторой подгруппе симметрической группы S_n .

Доказательство.

$$G = \{g_1 = e, g_2, \dots, g_n\}$$
$$\exists \varphi : G \to L, \quad L \subseteq S_n$$

- 1) φ биекция;
- 2) φ сохраняет групповую операцию.

Построим отображение φ (изоморфизм):

$$g_i \leftrightarrow L_{g_i} = \begin{pmatrix} g_1 & g_2 & ... & g_n \\ g_i g_1 & g_i g_2 & ... & g_i g_n \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & ... & n \\ i_1 & i_2 & i_3 & ... & i_n \end{pmatrix}$$

(т.е. для всякого элемента $g_i \in G$ $L_{g_i}(g_k) = g_i g_k$).

Покажем, что L_{g_i} — подстановка, т.е. все элементы нижнего уровня различны. Предположим, что это не так: $g_ig_k=g_ig_t$, т.е. два элемента совпали. Но, т.к. G — группа, существуют обратные: $\exists g_i^{-1} \colon g_i^{-1}g_ig_k=g_i^{-1}g_ig_t\Rightarrow g_k=g_t$, а это по предположению различные элементы группы. Противоречие.

Покажем, что φ – биекция.

 φ сюрьективно, т.к. у каждого L_{g_i} есть прообраз g_i .

 φ инъективно: $g_i \neq g_j \Rightarrow L_{g_i} \neq L_{g_j}$. Единичный элемент переходит в различные элементы, т.к. $g_1 = e : e \to g_i, e \to g_j$. Следовательно, подстановки разные.

Таким образом, $L=\{L_{g_1}=L_e$, ... , $L_{g_n}\}$

$$L_{g_1} = L_e;$$
 $(L_{g_i})^{-1} = L_{g_i^{-1}},$ т. к. $L_{g_ig_i^{-1}} = L_{g_i^{-1}g_i} = L_e.$

Покажем сохранение групповой операции: $\varphi(g_ig_k) = \varphi(g_i) \circ \varphi(g_k)$

$$L_{g_ig_k}=L_{g_i}\circ L_{g_k}$$

Равенство следует из ассоциативности групповой операции. $\forall g_t : (g_i g_k) g_t = g_i (g_k g_t)$:

$$L_{g_ig_k}(g_t) = (g_ig_k)g_t = g_i(g_kg_t) = L_{g_i}(L_{g_k}(g_t)).$$

Теорема доказана.

Пример 4.

Группа самосовмещений прямоугольника – группа Клейна. Два поворота, две симметрии.

$$G_{W} = \{\varphi_{0}, \varphi_{\pi}, \psi_{1}, \psi_{2}\} \sim \{1, 2, 3, 4\}$$

Построим изоморфную ей подгруппу подстановок $L \subseteq S_4$.

$$\varphi_{0} \leftrightarrow L_{\varphi_{0}} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \varphi_{0}\varphi_{0} & \varphi_{0}\varphi_{\pi} & \varphi_{0}\psi_{1} & \varphi_{0}\psi_{2} \end{pmatrix} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = \pi_{0}$$

$$\varphi_{\pi} \leftrightarrow L_{\varphi_{\pi}} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \varphi_{\pi} \varphi_{0} & \varphi_{\pi} \varphi_{\pi} & \varphi_{\pi} \psi_{1} & \varphi_{\pi} \psi_{2} \end{pmatrix} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \varphi_{\pi} & \varphi_{0} & \psi_{2} & \psi_{1} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (1 & 2)(3 & 4)$$

$$\psi_{1} \leftrightarrow L_{\psi_{1}} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \psi_{1}\varphi_{0} & \psi_{1}\varphi_{\pi} & \psi_{1}\psi_{1} & \psi_{1}\psi_{2} \end{pmatrix} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \psi_{1} & \psi_{2} & \varphi_{0} & \varphi_{\pi} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (1 & 3)(2 & 4)$$

$$\psi_{2} \leftrightarrow L_{\psi_{2}} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \psi_{2}\varphi_{0} & \psi_{2}\varphi_{\pi} & \psi_{2}\psi_{1} & \psi_{2}\psi_{2} \end{pmatrix} = \begin{pmatrix} \varphi_{0} & \varphi_{\pi} & \psi_{1} & \psi_{2} \\ \psi_{2} & \psi_{1} & \varphi_{\pi} & \varphi_{0} \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (1 & 4)(2 & 3)$$

$$L = {\pi_0, (12)(34), (13)(24), (14)(23)}$$