

Sumário

Sumário

- Definição intuitiva e aplicação das notações $\Theta, O, \Omega, o, \omega.$
- Definição formal.

Sumário

- Definição intuitiva e aplicação das notações $\Theta, O, \Omega, o, \omega$.
- Definição formal.
- ullet Principais propriedades da notação Θ .

• $f(n) \in \Theta(g(n))$ significa que f(n) e g(n) crescem iguais.

- $f(n) \in \Theta(g(n))$ significa que f(n) e g(n) crescem iguais.
- $f(n) \in o(g(n))$ significa que f(n) cresce menos que g(n).

- $f(n) \in \Theta(g(n))$ significa que f(n) e g(n) crescem iguais.
- $f(n) \in o(g(n))$ significa que f(n) cresce menos que g(n).
- $f(n) \in \omega(g(n))$ significa que f(n) cresce mais que g(n).

- $f(n) \in \Theta(g(n))$ significa que f(n) e g(n) crescem iguais.
- $f(n) \in o(g(n))$ significa que f(n) cresce menos que g(n).
- $f(n) \in \omega(g(n))$ significa que f(n) cresce mais que g(n).

• $f(n) \in O(g(n))$ significa que f(n) cresce igual ou cresce menos que g(n).

$$f(n) \in O(g(n)) \Leftrightarrow f(n) \in \Theta(g(n)) \lor f(n) \in o(g(n))$$

- $f(n) \in \Theta(g(n))$ significa que f(n) e g(n) crescem iguais.
- $f(n) \in o(g(n))$ significa que f(n) cresce menos que g(n).
- $f(n) \in \omega(g(n))$ significa que f(n) cresce mais que g(n).

• $f(n) \in O(g(n))$ significa que f(n) cresce igual ou cresce menos que g(n).

$$f(n) \in O(g(n)) \Leftrightarrow f(n) \in \Theta(g(n)) \lor f(n) \in o(g(n))$$

• $f(n) \in \Omega(g(n))$ significa que f(n) cresce igual ou cresce mais que g(n).

$$f(n) \in \Omega(g(n)) \Leftrightarrow f(n) \in \Theta(g(n)) \vee f(n) \in \omega(g(n))$$

Ex.:
$$T(n) = 5n^2 + 3n$$
.

Permite vários níveis de detalhe.

Ex.:
$$T(n) = 5n^2 + 3n$$
.

• $T(n) \in n^{\Theta(1)}$ (polinomial)

Ex.:
$$T(n) = 5n^2 + 3n$$
.

- $T(n) \in n^{\Theta(1)}$ (polinomial)
- $T(n) \in \Theta(n^2)$ (quadrático)

Ex.:
$$T(n) = 5n^2 + 3n$$
.

- $T(n) \in n^{\Theta(1)}$ (polinomial)
- $T(n) \in \Theta(n^2)$ (quadrático)
- $T(n) \in 5n^2 + o(n^2)$ (5n² mais algo que cresce menos que n²)

Ex.:
$$T(n) = 5n^2 + 3n$$
.

- $T(n) \in n^{\Theta(1)}$ (polinomial)
- $T(n) \in \Theta(n^2)$ (quadrático)
- $T(n) \in 5n^2 + o(n^2)$ (5n² mais algo que cresce menos que n²)
- $T(n) \in 5n^2 + O(n)$ (5n² mais algo com crescimento no máximo linear)

$$\underbrace{\exists n_0, \ \forall n \geq n_0}_{\forall n \text{ "suficientemente grande"}} f(n) > 0$$

$$\exists n_0, \ \forall n \geq n_0, \ f(n) > 0$$
 $\forall n \text{ "suficientemente grande"}$

$$f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \underbrace{\exists n_0, \forall n \geq n_0}_{\forall n \text{ "suficientemente grande"}} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \underbrace{\exists n_0, \forall n \geq n_0}_{\forall n \text{ "suficientemente grande"}} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \underbrace{\exists n_0, \forall n \geq n_0}_{\forall n \text{ "suficient emente grande"}} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \underbrace{\exists n_0, \ \forall n \geq n_0,}_{\forall n \text{ "suficientemente grande"}} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

$$f(n) \in \Theta(g(n)) \quad \Leftrightarrow \quad \exists c_1, c_2 > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0,}_{\text{"suficientemente grande"}} c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$$

Ex.: Provar que $2n^2 + 100n \in \Theta(n^2)$ usando a definição formal.

• Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.
- Seu objetivo é mostrar que $2n^2 \le 2n^2 + 100n \le 3n^2$ para todo $n \ge 100$.

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.
- Seu objetivo é mostrar que $2n^2 \le 2n^2 + 100n \le 3n^2$ para todo $n \ge 100$.

$$100 \le n \Rightarrow 0 \le 100n$$

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.
- Seu objetivo é mostrar que $2n^2 \le 2n^2 + 100n \le 3n^2$ para todo $n \ge 100$.

$$100 \le n \implies 0 \le 100n \implies 2n^2 \le 2n^2 + 100n$$

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.
- Seu objetivo é mostrar que $2n^2 \le 2n^2 + 100n \le 3n^2$ para todo $n \ge 100$.

$$100 \le n \implies 0 \le 100n \implies 2n^2 \le 2n^2 + 100n$$

$$100 \le n \implies 100n \le n^2$$

- Você fornece as constantes positivas c_1, c_2 , e a constante n_0 .
- O adversário fornece algum n maior ou igual a n_0 .
- Você mostra que $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ para qualquer n fornecido pelo adversário.
- Suponha que você escolheu $c_1 = 2, c_2 = 3$ e $n_0 = 100$.
- Seu objetivo é mostrar que $2n^2 \le 2n^2 + 100n \le 3n^2$ para todo $n \ge 100$.

$$100 \le n \implies 0 \le 100n \implies 2n^2 \le 2n^2 + 100n$$

$$100 \le n \implies 100n \le n^2 \implies 2n^2 + 100n \le 3n^2$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{sufficient emente grande}} f(n) \leq c \cdot g(n)$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{sufficient emente grande"}} f(n) \leq c \cdot g(n)$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \underbrace{\exists n_0, \forall n \geq n_0}_{\forall n \text{ "suficientemente grande"}} f(n) \leq c \cdot g(n)$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \underbrace{\exists n_0, \forall n \geq n_0}_{\forall n \text{ "suficientemente grande"}} f(n) \leq c \cdot g(n)$$

$$f(n) \in O(g(n)) \Leftrightarrow \exists c > 0, \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{ "suficientemente grande"}} f(n) \leq c \cdot g(n)$$

$$f(n) \in \Omega(g(n)) \Leftrightarrow \exists c > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{ 'suficientemente grande''}} c \cdot g(n) \leq f(n)$$

$$f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \quad \exists n_0, \ \forall n \geq n_0, \quad f(n) < c \cdot g(n)$$

$$f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \quad \exists n_0, \ \forall n \geq n_0, \quad f(n) < c \cdot g(n)$$

$$f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{sufficient emente grande}}, f(n) < c \cdot g(n)$$

$$f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \quad \exists n_0, \ \forall n \geq n_0, \quad f(n) < c \cdot g(n)$$

$$f(n) \in o(g(n)) \Leftrightarrow \forall c > 0, \quad \underbrace{\exists n_0, \ \forall n \geq n_0}_{\text{ "suficientemente grande"}} f(n) < c \cdot g(n)$$

$$f(n) \in \omega(g(n)) \Leftrightarrow \forall c > 0, \quad \exists n_0, \ \forall n \geq n_0, \quad c \cdot g(n) < f(n)$$

Alguns pares de funções não possuem crescimento comparável.

Alguns pares de funções não possuem crescimento comparável.

• Ex.: $n \in n^{1+\sin n}$, pois o expoente $1 + \sin n$ oscila entre $0 \in 2$.

Alguns pares de funções não possuem crescimento comparável.

• Ex.: $n \in n^{1+\sin n}$, pois o expoente $1 + \sin n$ oscila entre $0 \in 2$.

Não vamos encontrar este problema em análise de algoritmo, mas é importante saber.

Alguns pares de funções não possuem crescimento comparável.

• Ex.: $n \in n^{1+\sin n}$, pois o expoente $1 + \sin n$ oscila entre $0 \in 2$.

Não vamos encontrar este problema em análise de algoritmo, mas é importante saber.

• Ex.: $f(n) \notin \Omega(g(n))$ não é equivalente a $f(n) \in o(g(n))$.

Propriedades da notação Θ

Constante multiplicativa: Para toda constante a > 0, temos que $a \cdot f(n) \in \Theta(f(n))$.

Propriedades da notação Θ

Constante multiplicativa: Para toda constante a > 0, temos que $a \cdot f(n) \in \Theta(f(n))$.

Ex.: $3n^2 \in \Theta(n^2)$, fazendo a = 3 e $f(n) = n^2$.

Dominação: Se
$$f(n) \in o(g(n))$$
 então $f(n) + g(n) \in \Theta(g(n))$.

Dominação: Se
$$f(n) \in o(g(n))$$
 então $f(n) + g(n) \in \Theta(g(n))$.

Ex.: $n^2 + n \in \Theta(n^2)$, pois $n \in o(n^2)$.

Transitividade: Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Transitividade: Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$, então $f(n) \in \Theta(h(n))$.

Ex.: Como $3n^2 + n \in \Theta(3n^2)$ e $3n^2 \in \Theta(n^2)$, concluímos que $3n^2 + n \in \Theta(n^2)$.

Adição: Se
$$f_1(n) \in \Theta(g_1(n))$$
 e $f_2(n) \in \Theta(g_2(n))$, então $f_1(n) + f_2(n) \in \Theta(g_1(n) + g_2(n))$.

$$\textbf{Adição} \text{: Se } f_1(n) \in \Theta(g_1(n)) \text{ e } f_2(n) \in \Theta(g_2(n)) \text{, então } f_1(n) + f_2(n) \in \Theta(g_1(n) + g_2(n)).$$

Ex.: Como $3n^2 \in \Theta(n^2)$ e $2n^2 + n \in \Theta(n^2)$, temos $(3n^2) + (2n^2 + n) \in \Theta(n^2 + n^2) = \Theta(n^2)$.

 $\textbf{Produto} \text{: Se } f_1(n) \in \Theta(g_1(n)) \text{ e } f_2(n) \in \Theta(g_2(n)) \text{, então } f_1(n) \cdot f_2(n) \in \Theta(g_1(n) \cdot g_2(n)).$

Produto: Se
$$f_1(n) \in \Theta(g_1(n))$$
 e $f_2(n) \in \Theta(g_2(n))$, então $f_1(n) \cdot f_2(n) \in \Theta(g_1(n) \cdot g_2(n))$.

Ex.:

 $\mathsf{Como}\ 2^n + n^3 \in \Theta(2^n) \ \mathsf{e}\ \mathsf{log}(5n^2 + n) \in \Theta(\mathsf{log}\ n), \ \mathsf{temos}\ (2^n + n^3) \ \mathsf{log}(5n^2 + n) \in \Theta(2^n \ \mathsf{log}\ n).$

Produto: Se
$$f_1(n) \in \Theta(g_1(n))$$
 e $f_2(n) \in \Theta(g_2(n))$, então $f_1(n) \cdot f_2(n) \in \Theta(g_1(n) \cdot g_2(n))$.

Ex.:

Como
$$2^n + n^3 \in \Theta(2^n)$$
 e $\log(5n^2 + n) \in \Theta(\log n)$, temos $(2^n + n^3)\log(5n^2 + n) \in \Theta(2^n \log n)$.

Ex.: Como $5n^3 + n \in \Theta(n^3)$, temos $(5n^3 + n)^2 = (5n^3 + n)(5n^3 + n) \in \Theta(n^3 \cdot n^3) = \Theta(n^6)$.

$$\textbf{Produto} \text{: Se } f_1(n) \in \Theta(g_1(n)) \text{ e } f_2(n) \in \Theta(g_2(n)) \text{, então } f_1(n) \cdot f_2(n) \in \Theta(g_1(n) \cdot g_2(n)).$$

Ex.:

Como
$$2^n + n^3 \in \Theta(2^n)$$
 e $\log(5n^2 + n) \in \Theta(\log n)$, temos $(2^n + n^3)\log(5n^2 + n) \in \Theta(2^n \log n)$.

Ex.: Como $5n^3 + n \in \Theta(n^3)$, temos $(5n^3 + n)^2 = (5n^3 + n)(5n^3 + n) \in \Theta(n^3 \cdot n^3) = \Theta(n^6)$. De modo geral, polinômio de grau d elevado a k será $\Theta(n^{d \cdot k})$.

Inverso: Se $f(n) \in \Theta(g(n))$, então $1/f(n) \in \Theta(1/g(n))$.

Inverso: Se $f(n) \in \Theta(g(n))$, então $1/f(n) \in \Theta(1/g(n))$.

Ex.: Como $5n^2 + n \in \Theta(n^2)$, temos que

$$\frac{1}{5n^2+n}\in\Theta\left(\frac{1}{n^2}\right).$$

Inverso: Se $f(n) \in \Theta(g(n))$, então $1/f(n) \in \Theta(1/g(n))$.

Ex.: Como $5n^2 + n \in \Theta(n^2)$, temos que

$$\frac{1}{5n^2+n}\in\Theta\left(\frac{1}{n^2}\right).$$

Ex.: Combinando com a propriedade do produto:

$$\frac{n^3-2n}{5n^2+n}=(n^3-2n)\cdot\left(\frac{1}{5n^2+n}\right)\in\Theta\left(n^3\cdot\frac{1}{n^2}\right)=\Theta(n)$$

Logaritmo: Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \omega(1)$, então $\log f(n) \in \Theta(\log g(n))$.

Logaritmo: Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \omega(1)$, então $\log f(n) \in \Theta(\log g(n))$.

Ex.: Como $5n^2 + n \in \Theta(n^2)$ e $n^2 \in \omega(1)$, temos que $\log(5n^2 + n) \in \Theta(\log n^2) = \Theta(\log n)$.

Logaritmo: Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \omega(1)$, então $\log f(n) \in \Theta(\log g(n))$.

Ex.: Como
$$5n^2+n\in\Theta(n^2)$$
 e $n^2\in\omega(1)$, temos que $\log(5n^2+n)\in\Theta(\log n^2)=\Theta(\log n)$.

Quando g(n) é constante pode não funcionar.

Logaritmo: Se
$$f(n) \in \Theta(g(n))$$
 e $g(n) \in \omega(1)$, então $\log f(n) \in \Theta(\log g(n))$.

Ex.: Como
$$5n^2+n\in\Theta(n^2)$$
 e $n^2\in\omega(1)$, temos que $\log(5n^2+n)\in\Theta(\log n^2)=\Theta(\log n)$.

Quando g(n) é constante pode não funcionar.

Ex.: $1/2 \in \Theta(1)$, mas $\log_2(1/2) < 0$ (deveria ser assintoticamente positiva).

Podemos generalizar para qualquer composição de funções?

$$f(n) \in \Theta(g(n))$$
 implica em $h(f(n)) \in \Theta(h(g(n)))$?

Podemos generalizar para qualquer composição de funções?

$$f(n) \in \Theta(g(n))$$
 implica em $h(f(n)) \in \Theta(h(g(n)))$?

Funcionou para $h(n) = \log n$.

Propriedades

Podemos generalizar para qualquer composição de funções?

$$f(n) \in \Theta(g(n))$$
 implica em $h(f(n)) \in \Theta(h(g(n)))$?

Funcionou para $h(n) = \log n$.

Para algumas funções não funciona.

Contraexemplo (fazendo $h(n) = 2^n$): $2n \in \Theta(n)$, mas $2^{2n} \notin \Theta(2^n)$.

• Assuma um valor positivo arbitrário para a constante a.

- Assuma um valor positivo arbitrário para a constante a.
- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0 > 0$, $\forall n \geq n_0$, $c_1 f(n) \leq a f(n) \leq c_2 f(n)$.

- Assuma um valor positivo arbitrário para a constante a.
- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0 > 0$, $\forall n \geq n_0$, $c_1 f(n) \leq a f(n) \leq c_2 f(n)$.
- Como a > 0, basta escolher $c_1 = a$, $c_2 = a$ e qualquer valor para n_0 .

• Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \leq f(n)$$

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n)$$
 (use $c_1 = 1$ e $n_0 = m$)

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n) \quad (use c_1 = 1 e n_0 = m)$$

• Usando a premissa $\forall c' > 0$, $\exists n'_0$, $\forall n \geq n'_0$, f(n) < c'g(n).

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \leq f(n) \ \Rightarrow \ g(n) \leq f(n) + g(n) \quad (\text{use } c_1 = 1 \text{ e } n_0 = m)$$

- Usando a premissa $\forall c' > 0$, $\exists n'_0$, $\forall n \ge n'_0$, f(n) < c'g(n).
 - Sejam c'' e n_0'' valores particulares de c' e n_0' que tornam f(n) < c''g(n) para todo $n \ge n_0''$.

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n) \quad \text{(use } c_1 = 1 \text{ e } n_0 = m)$$

- Usando a premissa $\forall c' > 0$, $\exists n'_0$, $\forall n \ge n'_0$, f(n) < c'g(n).
 - Sejam c'' e n_0'' valores particulares de c' e n_0' que tornam f(n) < c''g(n) para todo $n \ge n_0''$.

$$f(n) < c''g(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n) \quad \text{(use } c_1 = 1 \text{ e } n_0 = m)$$

- Usando a premissa $\forall c' > 0$, $\exists n'_0, \ \forall n \geq n'_0, \ f(n) < c'g(n)$.
 Seiam $c'' \in n''$ valores particulares de $c' \in n'$ que tornam f(n) < c''g(n) para todo $n \geq n'$
 - Sejam c'' e n_0'' valores particulares de c' e n_0' que tornam f(n) < c''g(n) para todo $n \ge n_0''$.

$$f(n) < c''g(n) \Rightarrow f(n) + g(n) < (c'' + 1)g(n)$$

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n) \quad \text{(use } c_1 = 1 \text{ e } n_0 = m)$$

- Usando a premissa $\forall c' > 0$, $\exists n'_0$, $\forall n \ge n'_0$, f(n) < c'g(n).
 - Sejam c'' e n_0'' valores particulares de c' e n_0' que tornam f(n) < c''g(n) para todo $n \ge n_0''$.

$$f(n) < c''g(n) \Rightarrow f(n) + g(n) < (c'' + 1)g(n)$$
 (use $c_2 = c'' + 1$ e $n_0 = n_0''$)

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 g(n) \leq f(n) + g(n) \leq c_2 g(n)$.
- Como f(n) é assintoticamente positiva $(\exists m, \ \forall n \geq m, \ f(n) > 0)$,

$$0 \le f(n) \Rightarrow g(n) \le f(n) + g(n) \quad \text{(use } c_1 = 1 \text{ e } n_0 = m\text{)}$$

- Usando a premissa $\forall c' > 0, \ \exists n'_0, \ \forall n \geq n'_0, \ f(n) < c'g(n).$
 - Sejam c'' e n_0'' valores particulares de c' e n_0' que tornam f(n) < c''g(n) para todo $n \ge n_0''$.

$$f(n) < c''g(n) \Rightarrow f(n) + g(n) < (c'' + 1)g(n) \text{ (use } c_2 = c'' + 1 \text{ e } \frac{n_0}{0} = \frac{n_0''}{0})$$

• Devemos usar então $\max(m, n_0'')$ como valor de n_0 .

• Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 h(n) \leq f(n) \leq c_2 h(n)$.

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \ge n_0', \ c_1'g(n) \le f(n) \le c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

$$c_1'g(n) \leq f(n)$$

- Queremos provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c_1''h(n) \leq g(n) \leq c_2''h(n)$$

$$c_1'c_1''h(n) \leq c_1'g(n) \leq f(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

$$c_1'c_1''h(n) \le c_1'g(n) \le f(n)$$
 (faça $c_1 = c_1'c_1'' > 0$)

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \ge n_0', \ c_1'g(n) \le f(n) \le c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

$$c_1'c_1''h(n) \le c_1'g(n) \le f(n)$$
 (faça $c_1 = c_1'c_1'' > 0$)

$$f(n) \leq c_2'g(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 h(n) \leq f(n) \leq c_2 h(n)$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

$$c_1'c_1''h(n) \le c_1'g(n) \le f(n)$$
 (faça $c_1 = c_1'c_1'' > 0$)

$$f(n) \leq c_2' g(n) \leq c_2' c_2'' h(n)$$

- Queremos provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 h(n) \leq \frac{f(n)}{f(n)} \leq \frac{c_2 h(n)}{f(n)}$.
- Pelas premissas,

$$\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n)$$

$$\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1'' h(n) \le g(n) \le c_2'' h(n)$$

$$c_1'c_1''h(n) \leq c_1'g(n) \leq f(n)$$
 (faça $c_1 = c_1'c_1'' > 0$)

$$f(n) \le c_2' g(n) \le c_2' c_2'' h(n)$$
 (faça $c_2 = c_2' c_2'' > 0$)

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
- $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c_1''g_2(n) \leq f_2(n) \leq c_2''g_2(n)$
- Provar que

$$\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(g_1(n) + g_2(n)) \leq f_1(n) + f_2(n) \leq c_2(g_1(n) + g_2(n)).$$

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
- $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c_1''g_2(n) \leq f_2(n) \leq c_2''g_2(n)$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(g_1(n) + g_2(n)) \leq f_1(n) + f_2(n) \leq c_2(g_1(n) + g_2(n)).$
- Escolha n_0 que satisfaça simultaneamente as premissas, como $n_0 = \max(n_0', n_0'')$.
- Somando as premissas, obtemos

$$c_1'g_1(n) + c_1''g_2(n) \le f_1(n) + f_2(n) \le c_2'g_1(n) + c_2''g_2(n)$$

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \ge n_0'$, $c_1'g_1(n) \le f_1(n) \le c_2'g_1(n)$ • $\exists c_1'', c_2'' > 0$, $\exists n_0'', \forall n > n_0''$, $c_1''g_2(n) < f_2(n) < c_2''g_2(n)$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(g_1(n) + g_2(n)) \leq f_1(n) + f_2(n) \leq c_2(g_1(n) + g_2(n)).$
- Escolha n_0 que satisfaça simultaneamente as premissas, como $n_0 = \max(n'_0, n''_0)$.
- Somando as premissas, obtemos

$$c_1'g_1(n) + c_1''g_2(n) \le f_1(n) + f_2(n) \le c_2'g_1(n) + c_2''g_2(n)$$

$$\Rightarrow \quad \min(c_1', c_1'')(g_1(n) + g_2(n)) \le f_1(n) + f_2(n) \le \max(c_2', c_2'')(g_1(n) + g_2(n))$$

Adição: Se
$$f_1(n) \in \Theta(g_1(n))$$
 e $f_2(n) \in \Theta(g_2(n))$, então $f_1(n) + f_2(n) \in \Theta(g_1(n) + g_2(n))$.

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \ge n_0', c_1'g_1(n) \le f_1(n) \le c_2'g_1(n)$ • $\exists c_1'', c_2'' > 0$, $\exists n_0'', \forall n > n_0'', c_1''g_2(n) < f_2(n) < c_2''g_2(n)$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n > n_0, \ c_1(g_1(n) + g_2(n)) < f_1(n) + f_2(n) < c_2(g_1(n) + g_2(n)).$
- Escolha n_0 que satisfaça simultaneamente as premissas, como $n_0 = \max(n_0', n_0'')$.
- Somando as premissas, obtemos

$$c_1'g_1(n) + c_1''g_2(n) \le f_1(n) + f_2(n) \le c_2'g_1(n) + c_2''g_2(n)$$

$$\Rightarrow \quad \min(c_1', c_1'')(g_1(n) + g_2(n)) \leq f_1(n) + f_2(n) \leq \max(c_2', c_2'')(g_1(n) + g_2(n))$$

• Então basta escolher $c_1 = \min(c_1', c_1'')$ e $c_2 = \min(c_2', c_2'')$.

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c_1''g_2(n) \leq f_2(n) \leq c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c_1''g_2(n) \leq f_2(n) \leq c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \le f_1(n) \le c_2'g_1(n) \Rightarrow c_1'g_1(n)f_2(n) \le f_1(n)f_2(n) \le c_2'g_1(n)f_2(n)$$

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0$, $\exists n_0'', \forall n \ge n_0'', c_1''g_2(n) \le f_2(n) \le c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \le f_1(n) \le c_2'g_1(n) \Rightarrow c_1'g_1(n)f_2(n) \le f_1(n)f_2(n) \le c_2'g_1(n)f_2(n)$$

$$c_1'g_1(n)(c_1''g_2(n)) \le c_1'g_1(n)f_2(n) \le f_1(n)f_2(n)$$

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1''g_2(n) \le f_2(n) \le c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \le f_1(n) \le c_2'g_1(n) \ \Rightarrow \ c_1'g_1(n)f_2(n) \le f_1(n)f_2(n) \le c_2'g_1(n)f_2(n)$$

$$c_1'g_1(n)(c_1''g_2(n)) \le c_1'g_1(n)f_2(n) \le f_1(n)f_2(n)$$
 (basta escolher $c_1 = c_1'c_1'' > 0$)

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1''g_2(n) \le f_2(n) \le c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n) \ \Rightarrow \ c_1'g_1(n)f_2(n) \leq f_1(n)f_2(n) \leq c_2'g_1(n)f_2(n)$$

$$c_1'g_1(n)(c_1''g_2(n)) \le c_1'g_1(n)f_2(n) \le f_1(n)f_2(n)$$
 (basta escolher $c_1 = c_1'c_1'' > 0$)

$$f_1(n)f_2(n) \leq c_2'g_1(n)f_2(n) \leq c_2'g_1(n)(c_2''g_2(n))$$

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1''g_2(n) \le f_2(n) \le c_2''g_2(n)$
- Queremos provar $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n) \ \Rightarrow \ c_1'g_1(n)f_2(n) \leq f_1(n)f_2(n) \leq c_2'g_1(n)f_2(n)$$

$$c_1'g_1(n)(c_1''g_2(n)) \le c_1'g_1(n)f_2(n) \le f_1(n)f_2(n)$$
 (basta escolher $c_1 = c_1'c_1'' > 0$)

$$f_1(n)f_2(n) \le c_2'g_1(n)f_2(n) \le c_2'g_1(n)(c_2''g_2(n))$$
 (basta escolher $c_2 = c_2'c_2'' > 0$)

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n)$
 - $\exists c_1'', c_2'' > 0, \ \exists n_0'', \ \forall n \ge n_0'', \ c_1''g_2(n) \le f_2(n) \le c_2''g_2(n)$
- $\bullet \ \ \mathsf{Queremos} \ \ \mathsf{provar} \ \ \exists c_1, c_2 > 0, \ \ \exists n_0, \ \ \forall n \geq n_0, \ \ c_1g_1(n)g_2(n) \leq f_1(n)f_2(n) \leq c_2g_1(n)g_2(n).$
- Como $f_2(n) > 0$ para n_0 suf. grande, multiplicar por $f_2(n)$ não altera as desigualdades.

$$c_1'g_1(n) \leq f_1(n) \leq c_2'g_1(n) \ \Rightarrow \ c_1'g_1(n)f_2(n) \leq f_1(n)f_2(n) \leq c_2'g_1(n)f_2(n)$$

$$c_1'g_1(n)(c_1''g_2(n)) \le c_1'g_1(n)f_2(n) \le f_1(n)f_2(n)$$
 (basta escolher $c_1 = c_1'c_1'' > 0$)

$$f_1(n)f_2(n) \leq c_2'g_1(n)f_2(n) \leq c_2'g_1(n)(c_2''g_2(n))$$
 (basta escolher $c_2 = c_2'c_2'' > 0$)

• Para n_0 escolhemos o menor valor que satisfaz as premissas e torna $f_2(n)$ positiva.

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n))$.

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0$, $\exists n_0, \ \forall n \geq n_0, \ c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n))$.
- Como f(n) e g(n) são assintoticamente positivas, 1/f(n) e 1/g(n) também são.

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n)).$
- Como f(n) e g(n) são assintoticamente positivas, 1/f(n) e 1/g(n) também são.
- Como a função 1/n é decrescente, aplicando na premissa inverte as desigualdades:

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \ge n_0', c_1'g(n) \le f(n) \le c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n)).$
- Como f(n) e g(n) são assintoticamente positivas, 1/f(n) e 1/g(n) também são.
- Como a função 1/n é decrescente, aplicando na premissa inverte as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \frac{1}{c_2'g(n)} \leq \frac{1}{f(n)} \leq \frac{1}{c_1'g(n)}$$

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n)).$
- Como f(n) e g(n) são assintoticamente positivas, 1/f(n) e 1/g(n) também são.
- Como a função 1/n é decrescente, aplicando na premissa inverte as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \frac{1}{c_2'g(n)} \leq \frac{1}{f(n)} \leq \frac{1}{c_1'g(n)}$$

- Premissa: $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1(1/g(n)) \leq 1/f(n) \leq c_2(1/g(n)).$
- Como f(n) e g(n) são assintoticamente positivas, 1/f(n) e 1/g(n) também são.
- Como a função 1/n é decrescente, aplicando na premissa inverte as desigualdades:

$$c_1'g(n) \le f(n) \le c_2'g(n) \ \Rightarrow \ \frac{1}{c_2'g(n)} \le \frac{1}{f(n)} \le \frac{1}{c_1'g(n)}$$

ullet Como $1/c_1'$ e $1/c_2'$ são positivos, basta fazer $c_1=1/c_2'$, $c_2=1/c_1'$ e $n_0=n_0'$.

- Premissas:
 - $\exists c_1', c_2' > 0$, $\exists n_0', \forall n \geq n_0', c_1'g(n) \leq f(n) \leq c_2'g(n)$.
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0$, $c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$. • Escalhames n_1 to f(n) > 1 or g(n) > 1. $\forall n > n_2$ termindo $\log f(n)$ or g(n) positives
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0$, $\exists n_0, \forall n \geq n_0, c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c'_1g(n) \le f(n) \le c'_2g(n) \Rightarrow \log(c'_1) + \log g(n) \le \log f(n) \le \log(c'_2) + \log g(n)$$

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n).$
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \log(c_1') + \log g(n) \leq \log f(n) \leq \log(c_2') + \log g(n)$$

• Se $\log(c_1') \geq 0$, basta escolher $c_1 = 1$.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \log(c_1') + \log g(n) \leq \log f(n) \leq \log(c_2') + \log g(n)$$

- Se $\log(c_1') \geq 0$, basta escolher $c_1 = 1$.
- Se $\log(c_1') < 0$, faça $c_1 = 1/2$ e n_0'' tal que $g(n) \ge 1/c_1'^2$ para todo $n \ge n_0''$.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \log(c_1') + \log g(n) \leq \log f(n) \leq \log(c_2') + \log g(n)$$

- Se $\log(c_1') \geq 0$, basta escolher $c_1 = 1$.
- Se $\log(c_1') < 0$, faça $c_1 = 1/2$ e n_0'' tal que $g(n) \ge 1/c_1'^2$ para todo $n \ge n_0''$.
- Se $\log(c_2') \leq 0$, basta escolher $c_2 = 1$.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \log(c_1') + \log g(n) \leq \log f(n) \leq \log(c_2') + \log g(n)$$

- Se $\log(c_1') \geq 0$, basta escolher $c_1 = 1$.
- Se $\log(c_1') < 0$, faça $c_1 = 1/2$ e n_0'' tal que $g(n) \geq 1/c_1'^2$ para todo $n \geq n_0''$.
- Se $\log(c_2') \leq 0$, basta escolher $c_2 = 1$.
- Se $\log(c_2')>0$, faça $c_2=2$ e n_0'' tal que $g(n)\geq c_2'$ para todo $n\geq n_0''$.

- Premissas:
 - $\exists c_1', c_2' > 0, \ \exists n_0', \ \forall n \geq n_0', \ c_1'g(n) \leq f(n) \leq c_2'g(n).$
 - $\forall c'' > 0, \ \exists n_0'', \ \forall n \geq n_0'', \ c'' < g(n).$
- Provar que $\exists c_1, c_2 > 0, \ \exists n_0, \ \forall n \geq n_0, \ c_1 \log g(n) \leq \log f(n) \leq c_2 \log g(n)$.
- Escolhemos n_0 tq f(n) > 1 e g(n) > 1, $\forall n \ge n_0$, tornando $\log f(n)$ e $\log g(n)$ positivas.
- ullet Para base >1 a função log é crescente, e portanto não altera as desigualdades:

$$c_1'g(n) \leq f(n) \leq c_2'g(n) \quad \Rightarrow \quad \log(c_1') + \log g(n) \leq \log f(n) \leq \log(c_2') + \log g(n)$$

- Se $\log(c_1) \geq 0$, basta escolher $c_1 = 1$.
- Se $\log(c_1') < 0$, faça $c_1 = 1/2$ e n_0'' tal que $g(n) \ge 1/c_1'^2$ para todo $n \ge n_0''$.
- Se $\log(c_2') \leq 0$, basta escolher $c_2 = 1$.
 - Se $\log(c_2') > 0$, faça $c_2 = 2$ e n_0'' tal que $g(n) \ge c_2'$ para todo $n \ge n_0''$.
 - Escolha para n_0 o menor valor que satisfaça todas as condições.