OPERF

HM-TRLR-S Series 100mW LoRa Transceiver

1. General

HM-TRLR-S series is a low cost, high performance transparent transceiver with operating at 433/470/868/915MHz. It is LoRa/FSK/GFSK/OOK modulation variety. It features small size, high output power, high sensitivity, long transmission distance and most of the parameters can be set via the command. Receive and send data to automatically switch. Use generic UART interface. It is easy to realize the wireless data transmission with only providing the UART data. It is flexible for the users to set the UART baud rate, output power, data rate, frequency select, modulation mode select etc parameters. It is your ideal choice for designing wireless data transmission products which can be widely used on wireless data transmission field.

HM-TRLR-S-XXX

2. Features

- Low cost, high performance, high reliability
- LoRa/FSK/GFSK/OOK modulation, 2-way half –duplex communication, strong anti-interfere
- 433/470/868/915MHz ISM band, globally license free.
- Maximal output power100mW(20dBm), output power adjustable between 2-20dBm
- LORA Sensitivity -139dBm
- Supply current for Tx 130mA@20dBm, 35mA@13dBm
- Supply current for Rx 16mA
- Low current sleep mode 2uA
- Standard UART interface, extendable to RS232 or other interface
- Operation frequency can be configured, acceptable for several modules working in different frequency with no disturbance on each other.
- RF parameters as needed, users can be modulated by software.
- Easily use, auto exchange on communication & transceiver
- Communication speed 1.2kbps -115.2kbps, can be modulated through software
- Afford Sleep control signal, user self control work duty cycle
- With LED indication
- Longer transmission distance, over 5Km in open air
- Small size 16*20*2mm, 10PIN SMD package, easy for assembly.
- Tuning free
- Accord FCC,ETSI standard

3. Application

- Remote control, remote measurement
- Access control
- Data collection
- Intelligence household appliance

- Wireless meter
- Identification system
- IT household appliance
- Baby monitoring system

4. Pin Description

TOP VIEW

Figure 2. HM-TRLR-S(SMD) Pin Description

	i igui o zi ini i itten s(siie) i in e escription
Name	Note
VCC	Power supply,2.4-3.6V DC power, recommendation 3.3V DC power
TXD	Data transmission
GND	Ground
RXD	Data receiving
CONFIG	Set low for configuration mode, while set high for communication
SLEEP	Set low for normal mode for data transceiver, while back to sleep if set high
STATUS	Dis-connected
RESET	Reset trigger input, Active low
ANT	Input/output interface with 50 ohm antenna
GND	Ground

5. Maximum specifiction

Parameter	Min	Max	Unit
Power supply(VCC)	-0.3	+3.6	V
Storage temperature	-40	+150	${\mathbb C}$
Operate temperature	-20	+85	℃
Reflow temperature		+260	${\mathbb C}$

6. Parameter

Parameter	Condition	Min	Typical	Max	Unit	
Power supply(VCC)		2.4	3.3	3.6	V	
Operate temperature		-20		85	$^{\circ}$	
	HM-TRLR-S-433	414	434	454		
	HM-TRLR-S-470	450	470	490		
Operate frequency	HM-TRLR-S-868	849	869	889	MHz	
	HM-TRLR-S-915	895	915	935		
Max output power		18	20		dBm	
Output range		2		20	dBm	
	FSK,Fdev=35KHz, DR=1.2Kbps,		-117			
	FSK,Fdev=35KHz, DR=9.6Kbps,		-114			
Receive Sensitivity (FSK/LoRa)	LoRa SBW= 62.5KHz SF=12		-139		dBm	
	LoRa SBW= 500KHz SF=12		-130			
	20dBm output power		120			
Tx Current	13dBm output power		35		mA	
Rx Current		15	16	18	mA	
Sleep Current		1.2	2	3	uA	
Modulate deviation FSK mode		10		50	KHz	
Receive bandwidth FSK mode		42		166	KHz	
UART Data Rate		1.2		115.2	Kbps	
UART data bit			8		bit	
UART stop bit			1		bit	

7. TTL & RS232 Typical Application

Figure 3.HM-TRLR-S TTL UART Application

In Figure 3, connect the TXD pin of HM-TRLR-S with UART RX Pin of MCU, connect the RXD pin of HM-TRLR-S with the UART TX pin of MCU. Then the CONFIG/SLEEP/RESET/STATUS of HM-TRLR-S connects with the GPIO of MCU.

Figure 4. HM-TRLR-S extends to RS232 application

In Figure 4, you can extend the HM-TRLR-S to RS232 with adding the MAX3232, then you can directly connect the COM to the PC.

8. Mechanical Dimension (size unit: mm)

9. Ordering Information

Part Number=Module type - Package type - Interface type - Operation band

Part Number	Operation Band
HM-TRLR-S-433	433MHZ
HM-TRLR-S-470	470MHZ
HM-TRLR-S-868	868MHZ
HM-TRLR-S-915	915MHZ

Table 4: Part Number list

(二) Operation and Applications

1. Modulation mode

HM-TRLR series transceiver module can work with the traditional FSK/GFSK modulation mode, also can work in LoRa modulation mode. The user according to the application requirements, can easily switch in modulation mode. Use principle need large quantities of data use FSK/GFSK modulation; The occasion of long distance transmission is required, use LoRa modulation.

2.Work mode

HM-TRLR series transceiver module has three work modes: running mode, configuration mode and sleep mode. When the module work in the running mode, the user can send and receive data. When the module work in configuration mode, the user can according to his requirement, through the AT command to change configuration parameters. Sleep mode module into low power consumption mode.

Running mode timing scheme

Attention: During the modulation mode in LoRa receive buffer is full, the STATUS will lower the output to prompt the user.

Configuration mode scheme

Attention: When enter to the configuration mode ,through to pull down the the CONFIG ,while the STATUS goes low. The user can change the parameter by AT command.

Sleep mode timing scheme

Attention: Sleep mode is control by SLEEP.

Reset mode timing scheme

3. Channel frequency

HM-TRLR series module have different working frequencies according to its model. The frequencies have divided to 16 channel. Frequencies list is as follow.

Channel	434MHz Band	470MHz Band	868MHz Band	915MHZ Band
0	430000000.00	470000000.00	863000000.00	915000000.00
1	430500000.00	470400000.00	863500000.00	915500000.00
2	431000000.00	470800000.00	864000000.00	916000000.00
3	431500000.00	471200000.00	864500000.00	916500000.00
4	432000000.00	471600000.00	865000000.00	917000000.00
5	432500000.00	472000000.00	865500000.00	917500000.00
6	433000000.00	472400000.00	866000000.00	918000000.00
7	433500000.00	472800000.00	866500000.00	918500000.00
8	434000000.00	473200000.00	867000000.00	919000000.00
9	434500000.00	473600000.00	867500000.00	919500000.00
10	435000000.00	474000000.00	868000000.00	920000000.00
11	435500000.00	474400000.00	868500000.00	920500000.00
12	436000000.00	474800000.00	869000000.00	921000000.00
13	436500000.00	475200000.00	869500000.00	921500000.00
14	437000000.00	475600000.00	870000000.00	922000000.00
15	437500000.00	476000000.00	870500000.00	922500000.00

4. Wireless rate

- When the HM-TRLR module is working on FSK modulation. The wireless rate conform to baud rate. Theoretically it can transmit data boundless. We suggest that if the data package is too large ,you should use the subcontract transmission in order to avoid the air data interference.
- When the HM-TRLR module is working on LoRa modulation. The wireless rate is depend on signal bandwidth, spreading factor, coding rate, payload length. However the receiver sensitivity is depend on signal bandwidth and spreading factor. The following table shows the relationship between the wireless rate and parameter.

Test conditions:

- Supply voltage = 3.3 V
- Temperature = 25° C
- ◆ CRC on payload enabled
- ◆ Payload length = 64 bytes
- ◆ Coding Rate = 1

SingnalBandWidth	SpreadingFactor	Sensitivity(dbm)	ActualBandRate(pbs)
62.5kHz	SF=7	-126	2169
62.5kHz	SF=8	-129	1187
62.5kHz	SF=9	-132	656
62.5kHz	SF=10	-135	296
62.5kHz	SF=11	-137	164
62.5kHz	SF=12	-139	91
125kHz	SF=7	-123	4338
125kHz	SF=8	-126	2375
125kHz	SF=9	-129	1312
125kHz	SF=10	-132	733
125kHz	SF=11	-133	328
125kHz	SF=12	-136	183
250kHz	SF=7	-120	8676
250kHz	SF=8	-123	4750
250kHz	SF=9	-125	2624
250kHz	SF=10	-128	1466
250kHz	SF=11	-130	778
250kHz	SF=12	-133	366
500kHz	SF=7	-118	17353
500kHz	SF=8	-121	9501
500kHz	SF=9	-124	5249
500kHz	SF=10	-127	2932
500kHz	SF=11	-129	1557
500kHz	SF=12	-130	830

5. Frequency Hopping with LoRa

Frequency hopping spread spectrum (FHSS) is typically employed when the duration of a single packet could exceed regulatory requirements relating to the maximum permissible channel dwell time. This is most notably the case in US operation where the 902 to 928 MHz ISM band which makes provision for frequency hopping operation. To ease the implementation of FHSS systems the frequency hopping mode of the LoRa $\,$ modem can be enabled by setting hopping period and Frequency step .

The formula relations:

HoppingPeriod(ms) = (2^{SF}/BW)* FreqHoppingValue

SF = SpreadingFactor BW = SingnalBandWidth FreqHoppingValue = 1~255

FreqStep = 61Hz*FreqStepValue FreqStepValue = 0~65535

6.Node ID Function with FSK

When HM-TRLR working in FSK. The module can be set up the node ID. When the ID function is enable, The sender first send the receiver node ID bytes, The receiver only receive with its node ID that matches the data. When the Node ID function enable cases, The module can also set the broadcast ID function, If broadcast function enable, The receiver can receive node ID of the data, but also receives the broadcast data.

Note: when the ID function is enabled, Interval time of two frame greater than Td time, The first byte of each frame is a node ID or broadcast ID.

7. Td Delay time

• FSK modulate Td time

Data into RXD pin of module 1,Then data from module 2 TXD pin out, The time spent The diagram below:

BandRate(bps)	Td
1200	73ms
2400	37ms
4800	19ms
9600	10ms
14400	7ms
19200	6ms
38400	4ms
56000	3ms
57600	3ms
115200	2ms

• LoRa modulate Td time

In LoRa modulation, Wireless data transmission is the subcontract, If the length of data is more than payload length and wireless rate less than the rate of serial port, The receiver of data will be interrupted. In the sending end, If the receive buffer is full the STATUS will lower the output to prompt the user.

Wireless rate is greater than the rate of serial port, As the following figure.

Wireless rate is less than the rate of serial port, As the following figure.

Testing Conditions:

- \bullet Spread Factor = 9
- ♦ Singal Band Width = 250kHz
- lacktriangle Code Rate = 1
- ◆ PayLoad = 32 bytes

BaudRate (bps)	Td
1200	Max 410ms
2400	Max 270ms
4800	Max 200ms
9600	Max 166ms
14400	Max 153ms
19200	Max 146ms
38400	Max 138ms
56000	Max 136ms
57600	Max 135ms
115200	Max 134ms

(三) HM-TRLR-S AT Instruction

1.Introduction

The controller through IO port make HM-TRLR-S transceiver been to configuration mode. Then through serial port send AT command to Modify the performance parameters.

2.Command format

Command used capital letter ASCII to write and used <CR> to end. When to module receive command it will explain and reply it.

2.1 Set the command format

The controller use command to set up HM-TRLR-S transceiver parameters. Command set AT as the beginning,then command type and parameters, etc.

Command format: AT+CmdType=Para1,Para2...<CR>

Successfuly command reply: OK<CR>
Command fail reply:ERROR:n<CR>

2.2 Read Command format

The controller read command format to HM-TRLR-S transceiver parameter. Command set AT as the beginning, then command type and question marks, etc.

Command format: AT+CmdType=?<CR>

Successfuly command reply: CmdType:Para1,Para2...<CR>

Command fail reply:ERROR:m<CR>

2.3 Return error parameters

When command execution error, the module will return ERROR: n.

parameter	Value	remark
		m = 0: The command format is wr ng.
m	0~2	m = 1: The parameter is wrong.
		m = 2: The command is failed.

3. Command type

3.1 Set Uart BaudRate command

The baudrate refers to the controller communication speed, when set, after the completion of new baudrate takes effect immediately, The controller should with new baudrate and communication module.

Table 3-1.1 AT+SPR(SerialPortRate) command

Command type	Command	response	remark
Set command	AT+SPR=n	OK	Succeed:OK ,
Set command		ERROR:m	Failure:ERROR:m
		+SPR:n	Succeed: +SPR:n,
Read command	AT+SPR=?	ERROR:m	Failure:ERROR:m

Table 3-1.2 Parameters

Parameter	Range	remark	
		01200bps	519200bps
		12400bps	638400bps
n	0~9	24800bps	756000bps
		39600bps	857600bps
		414400bps	9115200bps

3.2. Serial port check command

Module and controller using UART, we can select check mode, when set, after the completion of the new configuration take effect immediately.

Table 3-2.1 AT + SPC (Serial Port Check) command

Command type	Command	response	remark
Set command	AT+SPC=n	OK	Succeed :OK ,
Set command	AI+SPC=II	ERROR:m	Failure:ERROR:m
		+SPC:n	Succeed: +SPC:n,
Read command	AT+SPC=?	ERROR:m	Failure:ERROR:m

Table 3-2.2 Parameters

Parameter	Range	remark
n	0~2	0none 1even 2old

3.3 Transmit power command

Transmit power command means the Transmit power of module.It will work When the setting is completed and exit the configuration mode.

Table 3-3.1 AT+POWER command

Command type	Command	response	remark
Set command	AT+POWER=n	ОК	Succeed:OK
		ERROR:m	Failure:ERROR:m
Dand samenad	AT+POWER=?	+POWER:n	Succeed:+POWER:n ,
Read command		ERROR:m	Failure:ERROR:m

Table 3-3.2 Parameters

Parameter	Range	remark	
	00:7	0—20dbm	5—8dbm
		1—17dbm	6—5dbm
n	0~7	2—15dbm	7—2dbm
		3—10dbm	

3.4 Channel select

A total of 16 channels. The module can communicate in same channel.

Table 3-4.1 AT+CS(Channel Select) command

Command type	Command	response	remark
Set command	AT+CS=n	OK	Succeed:OK
		ERROR:m	Failure:ERROR:m
Read command	AT+CS=?	+CS:n	Succeed:+CS:n
		ERROR:m	Failure:ERROR:m

Table 3-4.2 Parameters

Paramete	Rang		
1 aramete	_	remark	
r	e		
		0—0 channel	8—8 channel
		11 channel	9—9 channel
		22 channel	A—10 channel
n	0~F	33 channel	B—11 channel
11		44 channel	C—12 channel
		55 channel	D—13 channel
		66 channel	E—14 channel
		77 channel	F—15 channel

3.5 AT+SYNW command

Module sync word can be set by 1-8 bytes. Module can't communicate with different sync word.

Table 3-5.1 AT+SYNW Command

Tuble 5 5.1741 (B 11) W Command					
Command type	Command	response	remark		
Set command	AT+SYNW=XXYYZZ	OK	Succeed:OK		
Set command	AI+SINW=XXIIZZ	ERROR:m	Failure:ERROR:m		
Read command	AT - CVNW -9	+SYNW: XXYYZZ	Failure:ERROR:m		
Read Command	AI + SINW =	ERROR:m	Fallule.EKKOK.III		

Table 3-5.2 Parameters

Parameter	Range	remark
XXYYZZ	Less than 16 characters	Used 0~9, A~F character to express
• • •		

For example :if sync word is "0x12,0x34,0xAB,0xEF", Then AT command is : "AT+SYNW=1234ABEF\r\n"

3.6 AT+SYNL (Syncwordlength) Command

Module sync word can be set by 0-8 bytes. Module can't communicate with different sync word. Suggest that the sync word should more than 2. if is '0', there is no sync word.

Table 3-6.1 AT+SYNL Command

Command type	Command	response	remark
Set command	AT+SYNL=n	OK	Succeed:OK
		ERROR:m	Failure:ERROR:m
Dood commond	AT+ SYNL =?	+SYNL: n	Failure:ERROR:m
Keau Collillallu		ERROR:m	Fallule.EKKOK.III

Table 3-6.2 parameter

Parameter	Range	remark
n	0~8	

3.7 AT+NODE command

In FSK mode. The node function can be set.

Table 3-7.1 AT+NODE command

	Tuble 5 7.11 II 11 10 BE command					
	Command type	Command	response	remark		
	Set command	AT+NODE=n,mode	OK	Succeed:OK		
			ERROR:m	Failure:ERROR:m		
	Read command	AT+ NODE =?	+NODE: n,mode	Failure:ERROR:m		
			ERROR:m	ranule.EKKOK.III		

HM-TRLR-S Series 100mW LoRa Transceiver

Table 3-7.2 parameter

Parameter	Range	remark
n 0~1		0—Node function disable
11	0,-1	1—Node function enable
mode	0~1	0—only match NID 1-match NID and BID

3.8 Node ID command

In FSK mode. The node ID can be set.

Table 3-8.1 AT+NID Command

Tuble 5 0.1711 TVID Command				
Command type	Command	response	remark	
Set command	AT+NID=n	OK	Succeed:OK	
		ERROR:m	Failure:ERROR:m	
Read command	AT+ NID =?	+NID:n	Failure:ERROR:m	
		ERROR:m		

Table 3-8.2 parameter

Parameter	Range	Instruction
0	0~255	

3.9 AT+BID command

In FSK mode, AT+BID can be set.

Table 3-9.1 AT+BID command

Command type	Command	response	remark
Set command	AT+BID=n	OK	Succeed:OK
Set Command		ERROR:m	Failure:ERROR:m
Dood command	AT+ BID =?	+BID:n	Failure:ERROR:m
Read Command		ERROR:m	

Table 3-9.2 parameter

	Tuote 6 7.12 Garanteet				
ĺ	Parameter	Range	remark		
	0	0~255			

3.10 AT+LRCRC command

In LoRA mode, CRC Function enable or disable

Table 3-10.1 AT+LRCRC command

Command type	Command	response	remark		
Set command	AT+LRCRC=n	OK	Succeed:OK		
Set Command		ERROR:m	Failure:ERROR:m		
Read command	AT+LRCRC=?	+LRCRC:n	Failure:ERROR:m		
Read Command		ERROR:m	raliule.ERROR:III		

Table 3-10.2 parameter

10010 3 10.2	able 5 10.2 parameter					
Parameter	Range	remark				
n	0~1	0-disabe CRC function 1-enable CRC function				

3.11 LoRa Signal Band Width choose command.

In the LoRa mode, According to the demand to set signal band width. The larger this value, then Wireless rate is faster.

Table 3-11.1 AT+LRSBW(Signal Band Width)command

14010 0 1111111 11100 11 (0.8.14.10.1114.170011114114					
Command type	Command	response	remark		
Set command	AT+LRSBW=n	ОК	Succeed:OK		
Set Command		ERROR:m	Failure:ERROR:m		
Dood command	AT+LRSBW=?	+LRBW:n	Succeed: +LRSBW:n,		
Read command		ERROR:m	Failure:ERROR:m		

Table 3-11.2 parameter

Parameter	Range	remark
n	6~9	6—62.5KHZ 7—125KHZ 8—250KHZ 9—500KHZ

3.12 LoRa spreading factor choose command

When the module in the Lora mode. You can set spreading factor according to the demand. If the larger the value of SF, The higher receiving sensitivity and the slower of wireless rate

Table 3-12.1 AT+LRSF(Spreading Factor) command

There is 12/11/11 (Spreading 1 deter) verification					
Command type	Command	response	remark		
Cat command	AT+LRSF=n	OK	Succeed:OK		
Set command		ERROR:m	Failure:ERROR:m		
Dood command	AT+LRSF=?	+LRSF:n	Succeed: +LRSF:n,		
Read Collilland		ERROR:m	Failure:ERROR:m		

Table 3-12.2 Parameter

Param eter	Range	remark	
n	7~C	8—SF=8	A—SF=10 B—SF=11 C—SF=12

3.13 LoRa Forward Error Correction Code choose command.

When the module in the LoRa mode.Data transfer adopt Forward Error Correction Code ,this command is choose it Coding Rate.

Table 3-13.1 AT+LRCR(Coding Rate)Command

Command type	Command	response	remark
Set command	AT+LRCR=n	OK	Succeed:OK
Set command		ERROR:m	Failure:ERROR:m
Read command	AT+LRCR=?	+LRCR:n	Succeed: +LRCR:n,
Keau collillaliu	AI+LKCK=!	ERROR:m	Failure:ERROR:m

Table 3-13.2 Parameter

14010 0 1012 1 4141110101				
Parameter	Range	remark		
n	0~3	0—CR4/5 1—CR4/6 2—CR4/7 3—CR4/8		

3.14 LoRa hopping enable command.

When the module in the LoRa mode, module has FHSS function.

Table 3-14.1 AT+LRHF(HFSS) Command

Command type	Command	response	remark			
Set command	AT+LRHF=n	OK	Succeed:OK			
Set command		ERROR:m	Failure:ERROR:m			
Dood command	AT+LRHF=?	+HFSS:n	Succeed: +HFSS:n,			
Keau Command		ERROR:m	Failure:ERROR:m			

Table 3-14.2 Parameter

Param eter	Rang	remark		
n	0~1	0-disable HFSS function 1- enable HFSS function note: when SBW=500 and SF=7,HFSS function disable		

3.15 LoRa Data packet Length set command.

When the module in the LoRa mode.Data transmission in the form of subcontract, this command to set the length of data packet.

Table 3-15.1 AT+LRPL(Packet Length) Command

Command type	Command	response	Instruction	
Set command	AT+LRPL=n	OK	Succeed:OK	
Set command		ERROR:m	Failure:ERROR:m	
Read command	AT+LRPL=?	+LRPL:n	Succeed: +LRPL:n	
Keau Collillaliu		ERROR:m	Failure:ERROR:m	

Table 3-15.2 Parameter

Paramete r	Range	Instruction
n	1~127	1~127 data rang is 1~127byte suggest: more than 16

3.16 LoRa hopping period value command.

When the module in the LoRa mode, the hopping period value can be set.

Table 3-16.1 AT+LRHPV(Hopping Period Value) Command

Command type	Command	response	remark
Set command	AT+LRHPV=n	OK	Succeed:OK
Set Command		ERROR:m	Failure:ERROR:m
Pand command	AT+LRHPV=?	+LRHPV:n	Succeed: +LRHPV:n
Read Command		ERROR:m	Failure:ERROR:m

Table 3-16.2 Parameter

I	Parameter	Range	remark
	n	0~255	Suggest: More than 5

3.17 LoRa Frequency Step Value command.

When the module in the Lora mode, Frequency Step Value can be set.

Table 3-17.1 AT+LRFSV(Frequency Step Value) command

Twell to 1771 111 1211 5 (110 delite) Step (ulue) commune					
Command type	Command	response	remark		
Set command	AT+LRFSV=n	OK	Succeed:OK		
Set command		ERROR:m	Failure:ERROR:m		
Read command	AT+LRFSV=?	+LRFSV:n	Failure:ERROR:m		
Read Command		ERROR:m	ranule.EKKOK.iii		

Table 3-17.2 Parameter

Parameter	Range	remark
n	0~65535	

3.18 Mode command

The modulation of HM-TRLR can be changed,

Table 3-18.1 AT+MODE Command

Command type	Command	response	remark
Set command	AT+MODE=n	OK	Succeed:OK
Set command		ERROR:m	Failure:ERROR:m
Read command	AT+MODE =?	+MODE:n	Failure:ERROR:m
Keau Command		ERROR:m	Panule.ERROR.III

Table 3-18.2 Parameter

Parameter	Range	remark
		0-LoRa Mode
		1-OOK Mode
n	0~3	2-FSK Mode
		3-GFSK Mode
		In the OOK mode, baudrate no more than 9600 bps

3.19 AT+BAND Command

Frequence band can be changed.

Table 3-19.1 AT+BAND Command

Command type	Command	response	remark
Set command	AT+BAND=n	OK	Succeed:OK
Set command		ERROR:m	Failure:ERROR:m
Read command	AT+BAND=?	+BAND:n	Failure:ERROR:m
Read Collilland	AI+BAND=?	ERROR:m	Fallule.ERROR.III

Table 3-19.2 Parameter

Tuble 5 17.2 I drumeter			
Parameter	Range	remark	
		0434MHZ Band	
,	0~3	1470MHZ Band	
n	0~3	2868MHZ Band	
		3915MHZ Band	

3.20 Test command

Connect test.

Table 3-20.1 AT Command

Tuble 5 20:1711 Commune					
Command type	Command	response	remark		
aammand	ΛT	OK	Failed: ERROR:m		
command	AI	ERROR:m			

3.21 AT&W command

When parameters were changed, HM-TRLR can't save parameters into Flash Memory automatically . If you want to permanently save the parameters, use the AT&W command for save.

Notice: written times of Flash memory are limited. To avoid damage, the written times within 10000 times are best. Table 3-20.1 AT&W command

Command type	Command	response	remark
Set command	AT&W	OK	Failed: ERROR:m
		ERROR:m	

3.22 Default setting

1)HM-TRLR-S-433 Module default setting

Command	default	remark
AT+SPR=n	n=3	Baud rate 9600pbs
AT+SPC=n	n=0	None check
AT+POWER=n	n=0	Power 20dbm
AT+CS=n	n=8	434MHz
AT+SYNL=n	n=6	6 bytes
AT+NODE=n,mode	n=0,mode=0	Disable ID Node function
AT+LRCRC=n	n=1	Lora mode,CRC enable
AT+LRSBW=n	n=7	SBW = 125KHz
AT+LRSF=n	n=9	SF = 9
AT+LRCR=n	n=0	CodeRate=4/5
AT+LRHF=n	n=0	FHSS is disable
AT+LRPL=n	n=32	Package lenth 32bytes
AT+LRHPV=n	n=10	Hopping period
AT+LRFSV=n	n=1638	Frequence step 100KHz
AT+MODE=n	n=0	LoRa mode
AT+BAND=n	n=0	433MHz band

2)HM-TRLR-S-470 Module default setting

Command	default	remark
AT+SPR=n	n=3	Baud rate 9600pbs
AT+SPC=n	n=0	None check
AT+POWER=n	n=0	Power 20dbm
AT+CS=n	n=0	470MHz
AT+SYNL=n	n=6	6 bytes
AT+NODE=n,mode	n=0,mode=0	Disable ID Node function
AT+LRCRC=n	n=1	Lora mode,CRC enable
AT+LRSBW=n	n=7	SBW = 125KHz
AT+LRSF=n	n=9	SF = 9
AT+LRCR=n	n=0	CodeRate=4/5
AT+LRHF=n	n=0	FHSS is disable
AT+LRPL=n	n=32	Package lenth 32bytes
AT+LRHPV=n	n=10	Hopping period
AT+LRFSV=n	n=1638	Frequence step 100KHz
AT+MODE=n	n=0	LoRa mode
AT+BAND=n	n=1	470 MHz band

HM-TRLR-S Series 100mW LoRa Transceiver

3)HM-TRLR-S-868 Module default setting

Command	default	remark
AT+SPR=n	n=3	Baud rate 9600pbs
AT+SPC=n	n=0	None check
AT+POWER=n	n=0	Power 20dbm
AT+CS=n	n=A	868MHz
AT+SYNL=n	n=6	6 bytes
AT+NODE=n,mode	n=0,mode=0	Disable ID Node function
AT+LRCRC=n	n=1	Lora mode,CRC enable
AT+LRSBW=n	n=7	SBW = 125KHz
AT+LRSF=n	n=9	SF = 9
AT+LRCR=n	n=0	CodeRate=4/5
AT+LRHF=n	n=0	FHSS is disable
AT+LRPL=n	n=32	Package lenth 32bytes
AT+LRHPV=n	n=10	Hopping period
AT+LRFSV=n	n=1638	Frequence step 100KHz
AT+MODE=n	n=0	LoRa mode
AT+BAND=n	n=2	868MHz band

4)HM-TRLR-S-915 Module default setting

Command	default	remark
AT+SPR=n	n=3	Baud rate 9600pbs
AT+SPC=n	n=0	None check
AT+POWER=n	n=0	Power 20dbm
AT+CS=n	n=0	915MHz
AT+SYNL=n	n=6	6 bytes
AT+NODE=n,mode	n=0,mode=0	Disable ID Node function
AT+LRCRC=n	n=1	Lora mode,CRC enable
AT+LRSBW=n	n=7	SBW = 125KHz
AT+LRSF=n	n=9	SF = 9
AT+LRCR=n	n=0	CodeRate=4/5
AT+LRHF=n	n=0	FHSS is disable
AT+LRPL=n	n=32	Package lenth 32bytes
AT+LRHPV=n	n=10	Hopping period
AT+LRFSV=n	n=1638	Frequence step 100KHz
AT+MODE=n	n=0	LoRa mode
AT+BAND=n	n=3	915MHz band

HOPE MICROELECTRONICS CO.,LTD

Add: 2/F, Building 3, Pingshan Private Enterprise Science and Technology Park, Lishan Road, XiLi Town, Nanshan District, Shenzhen, Guangdong, China Tel: 86-755-82973805

Fax: 86-755-82973550

Email: sales@hoperf.com

Website: http://www.hoperf.com

http://www.hoperf.cn

This document may contain preliminary information and is subject to change by Hope Microelectronics without notice. Hope Microelectronics assumes no responsibility or liability for any use of the information contained herein. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Hope Microelectronics or third parties. The products described in this document are not intended for use in implantation or other direct life support applications where malfunction may result in the direct physical harm or injury to persons. NO WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MECHANTABILITY OR FITNESS FOR A ARTICULAR PURPOSE, ARE OFFERED IN THIS DOCUMENT.

©2006, HOPE MICROELECTRONICS CO.,LTD. All rights reserved.