G. Alberti, F. Leonardi

Numerical Methods for CSE

Problem Sheet 6

Problem 1. Evaluating the derivatives of interpolating polynomials (core problem)

In [1, Section 3.2.3.2] we learned about an efficient and "update-friendly" scheme for evaluating Lagrange interpolants at a single or a few points. This so-called Aitken-Neville algorithm, see [1, Code 3.2.31], can be extended to return the derivative value of the polynomial interpolant as well. This will be explored in this problem.

$$dp = dipoleval(t, y, x)$$

that returns the row vector $(p'(x_1), \dots, p'(x_m))$, when the argument x passes (x_1, \dots, x_m) , $m \in \mathbb{N}$ small. Here, p' denotes the *derivative* of the polynomial $p \in \mathcal{P}_n$ interpolating the data points (t_i, y_i) , $i = 0, \dots, n$, for pairwise different $t_i \in \mathbb{R}$ and data values $y_i \in \mathbb{R}$.

HINT: Differentiate the recursion formula [1, Eq. (3.2.30)] and devise an algorithm in the spirit of the Aitken-Neville algorithm implemented in [1, Code 3.2.31].

Solution: Differentiating the recursion formula [1, (3.2.30)] we obtain

$$p_{i}(t) \equiv y_{i}, \qquad i = 0, \dots, n,$$

$$p'_{i}(t) \equiv 0, \qquad i = 0, \dots, n,$$

$$p_{i_{0},\dots,i_{m}}(t) = \frac{(t - t_{i_{0}})p_{i_{1},\dots,i_{m}}(t) - (t - t_{i_{m}})p_{i_{0},\dots,i_{m-1}}(t)}{t_{i_{m}} - t_{i_{0}}},$$

$$p'_{i_{0},\dots,i_{m}}(t) = \frac{p_{i_{1},\dots,i_{m}}(t) + (t - t_{i_{0}})p'_{i_{1},\dots,i_{m}}(t) - p_{i_{0},\dots,i_{m-1}}(t) - (t - t_{i_{m}})p'_{i_{0},\dots,i_{m-1}}(t)}{t_{i_{m}} - t_{i_{0}}}.$$

The implementation of the above algorithm is given in file dipoleval_test.m.

- (1c) For validation purposes devise an alternative, less efficient, implementation of dipoleval (call it dipoleval_alt) based on the following steps:
 - 1. Use MATLAB's polyfit function to compute the monomial coefficients of the Lagrange interpolant.
 - 2. Compute the monomial coefficients of the derivative.
 - 3. Use polyval to evaluate the derivative at a number of points.

```
Use dipoleval_alt to verify the correctness of your implementation of dipoleval with t = linspace(0, 1, 10), y = rand(1, n) and x = linspace(0, 1, 100). Solution: See file dipoleval test.m.
```

Problem 2. Piecewise linear interpolation

- [1, Ex. 3.1.8] introduced piecewise linear interpolation as a simple linear interpolation scheme. It finds an interpolant in the space spanned by the so-called tent functions, which are *cardinal basis functions*. Formulas are given in [1, Eq. (3.1.9)].
- (2a) Write a C++ class LinearInterpolant representing the piecewise linear interpolant. Make sure your class has an efficient internal representation of a basis. Provide a constructor and an evaluation operator () as described in the following template:

HINT: Recall that C++ provides containers such as std::vector and std::pair.

Solution: See linearinterpolant.cpp.

(2b) • Test the correctness of your code.

Problem 3. Evaluating the derivatives of interpolating polynomials (core problem)

This problem is about the Horner scheme, that is a way to efficiently evaluate a polynomial in a given point, see [1, Rem. 3.2.5].

(3a) Using the Horner scheme, write an efficient C++ implementation of a function

```
1 template <typename CoeffVec>
2 std::pair<double, double> evaldp ( const CoeffVec & c, double x )
```

which returns the pair (p(x), p'(x)), where p is the polynomial with coefficients in c. The vector c contains the coefficient of the polynomial in the monomial basis, using Matlab convention (leading coefficient in c [0]).

Solution: See file horner.cpp.

(3b) • For the sake of testing, write a naive C++ implementation of the above function

```
template <typename CoeffVec>
std::pair<double,double> evaldp_naive ( const CoeffVec & c, double x )
```

which returns the same pair (p(x), p'(x)). This time, p(x) and p'(x) should be calculated with the simple sums of the monomials constituting the polynomial.

Solution: See file horner.cpp.

(3c) • What are the asymptotic complexities of the two implementations?

Solution: In both cases, the algorithm requires $\approx n$ multiplications and additions, and so the asymptotic complexity is O(n). The naive implementation also calls the pow() function, which may be costly.

(3d) \odot Check the validity of the two functions and compare the runtimes for polynomials of degree up to $2^{20} - 1$.

Solution: See file horner.cpp.

Problem 4. Lagrange interpolant

Given data points $(t_i, y_i)_{i=1}^n$, show that the Lagrange interpolant

$$p(x) = \sum_{i=0}^{n} y_i L_i(x), \quad L_i(x) := \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - t_j}{t_i - t_j}$$

is given by:

$$p(x) = \omega(x) \sum_{j=0}^{n} \frac{y_j}{(x - t_j)\omega'(t_j)}$$

with $\omega(x) = \prod_{j=0}^{n} (x - t_j)$.

Solution: Simply exploiting the chain rule of many terms:

$$\omega'(x) = \sum_{i=0}^{n} \prod_{\substack{j=0\\j\neq i}}^{n} (x - t_j)$$

Since $(t_i - t_j) = \delta_{i,j}$, it follows $\omega'(t_i) = \prod_{\substack{j=0 \ j \neq i}}^n (t_i - t_j)$. Therefore:

$$p(x) = \omega(x) \sum_{j=0}^{n} \frac{y_j}{(x - t_j)\omega'(t_j)} = \sum_{j=0}^{n} \frac{y_j}{(x - t_j) \prod_{\substack{j=0 \ j \neq i}}^{n} (t_i - t_j)} \prod_{\substack{j=0 \ j \neq i}}^{n} (x - t_j)$$
$$= \sum_{j=0}^{n} \frac{y_j}{\prod_{\substack{j=0 \ j \neq i}}^{n} (t_i - t_j)} \prod_{\substack{j=0 \ j \neq i}}^{n} (x - t_j) = \sum_{j=0}^{n} y_j \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - t_j}{t_i - t_j}.$$

Issue date: 22.10.2015

Hand-in: 29.10.2015 (in the boxes in front of HG G 53/54).

Version compiled on: October 29, 2015 (v. 1.0).