ÁRBOLES DE DERIVACIÓN

símbolo ::= cadena

Una grámatica me permite construir expresiones de un lenguaje

Estas expresiones se crean a partir de <u>reglas de reescritura</u>, reglas sintácticas

$$S ::= E$$
 $E ::= var$
 $E ::= const$
 $E ::= \triangleright E$
 $E ::= E \diamond E$
 $E ::= (E)$
 $var ::= a | b | ...$
 $const ::= 0 | 1 | 2 | 17 | 3.5 | ...$
 $\triangleright ::= + | \diamond ::= + | - | * | \div$

Expresiones aritméticas

<u>Símbolos terminales</u> - no aparecen del lado izquierdo, terminan la cadena de reescritura.

<u>Variables</u> - símbolos no terminales.

<u>Subexpresión</u> - expresión que aparece dentro de otra

$$-(a * (b + c))$$

Derivación

S := E
E := var
E := const
$E := \triangleright E$
$E := E \diamond E$
E := (E)
$7 var ::= \mathbf{a} \mid \mathbf{b} \mid \dots$
8 $const := 0 1 2 17 3.5 \dots$
9 > ::=+ -
10

En ca	ida paso solo se sustituye un	
símb	olo símbolo, de izquierda a derec	ha

Frase	Regla
S	
E	1
>E	4
-E	9
-(E)	6
-(E@E)	5
-(VAR @E)	2
-(a @E)	7
-(a * E)	10
-(a * (E))	6
-(a * (E @ E))	5
-(a * (VAR @ E))	2
-(a * (b @ E))	7
-(a * (b + E))	10
-(a * (b + VAR))	2
-(a * (b + C))	7

-(a * (b + c))

```
S ::= E
     E ::= var
   E ::= const
   E ::= \triangleright E
  E ::= E \diamond E
  E ::= (E)
   var ::= a | b | \dots
8 const := 0 | 1 | 2 | 17 | 3.5 | ...
9 > ::=+ | -
```

En cada paso solo se sustituye un símbolo símbolo, de izquierda a derecha

Derivación

Frase	Regla usada
$oldsymbol{S}$	inicio
$oldsymbol{E}$	$\boldsymbol{S} ::= \boldsymbol{E}$
$ hd {f E}$	$E ::= \rhd E$
$-oldsymbol{E}$	⊳ :: =−
$-(oldsymbol{E})$	$\boldsymbol{E}::=(\boldsymbol{E})$
$-(oldsymbol{E} \diamond oldsymbol{E})$	$E ::= E \diamond E$
$-(\boldsymbol{var}\diamond \boldsymbol{E})$	E ::= var
$-(\mathbf{a}\diamondoldsymbol{E})$	var ::=a
$-(\mathbf{a}*oldsymbol{E})$	⋄::=*
$-(\mathbf{a}*(oldsymbol{E}))$	E ::= (E)
$-(\mathbf{a}*(oldsymbol{E}\diamondoldsymbol{E}))$	$E ::= E \diamond E$
$-(\mathbf{a}*(\boldsymbol{var}\diamond \boldsymbol{E}))$	$oldsymbol{E} ::= oldsymbol{var}$
$-(\mathbf{a}*(\mathbf{b} \diamond \boldsymbol{E}))$	var::=
$(\mathbf{a}*(\mathbf{b} \diamond \boldsymbol{E}))+\boldsymbol{E}))$	
$-(\mathbf{a}*(\boldsymbol{var}+\boldsymbol{var}))$	$oldsymbol{E} ::= oldsymbol{var}$
$-(\mathbf{a}*(\mathbf{b}+\mathbf{c}))$	var :=

Árboles de derivación

- Cada nodo tiene un símbolo.
- Si el símbolo aparece del lado izquierdo de alguna producción
 -> sus hijos son los símbolos del lado derecho y aparecen en el orden de la regla.
- Un nodo tiene un único símbolo asociado
- Si un nodo no tiene hijos es una hoja, un símbolo terminal

- Los símbolos terminales son los únicos que pueden aparecer en una expresión correcta.
- Una expresión es correcta si podemos construir el árbol de derivación.

```
S ::= E
    E ::= var
    E ::= const
    E ::= \triangleright E
    E := E \diamond E
    E := (E)
  var ::= a | b | \dots
const := 0 | 1 | 2 | 17 | 3.5 | \dots
    \triangleright ::=+ \mid -
```

-(a * (b + c))

```
S ::= E
      E ::= var
     E ::= const
3
    E ::= \triangleright E
   E := E \diamond E
     E := (E)
    var ::= a | b | \dots
8 const := 0 | 1 | 2 | 17 | 3.5 | ...
     ⊳ ::=+ | -
9
10 \diamond :=+ |-| * | \div
```


Ejercicio. Paréntesis balanceados

- Define una gramática para paréntesis bien balanceados
- Da un árbol de derivación para la expresión:

```
S:=E
E:=(),
E:= E E,
E:=(E)
```

Ejercicio. Paréntesis balanceados

- Define una gramática para paréntesis bien balanceados
- Da un árbol de derivación para la expresión:

$$E ::=(E)$$

$$E ::=EE$$

