

Ù&@^œ^¦ÊÁQ}&È		HÍ »Á√ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ą̃, *ÁÛ^•c^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	14.43 psf	(ASCE 7-10, Eq. 7.4-1)
$I_s =$	1.00	
$C_s =$	0.64	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	130 mph	Exposure Category = C
Heiaht <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 26.53 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.200	
Cf+ BOTTOM	=	1.200 2.000 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.700	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.100 (Suction)	applied away from the surface.
Cf- portou	_	-1 200	applied and, nomine surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S $_{\rm s}$ of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S 0.9D + 1.0W M 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>88.49</u>	<u>6591.43</u>	k
Compressive Load =	<u>2851.99</u>	<u>5008.16</u>	k
Lateral Load =	<u>13.95</u>	4625.59	k
Moment (Weak Axis) =	0.03	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 161879.6 in-lbs Resisting Force Required = 2452.72 lbs A minimum 132in long x 32in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 4087.87 lbs to resist overturning. Minimum Width = Weight Provided = 6380.00 lbs Sliding Force = 1066.93 lbs Use a 132in long x 32in wide x 18in tall Friction = 0.4 Weight Required = 2667.33 lbs ballast foundation to resist sliding. Resisting Weight = 6380.00 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 1066.93 lbs Cohesion = 130 psf Use a 132in long x 32in wide x 18in tall 29.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3190.00 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft

2500 psi

8 in

f'c = Length =

Bearing Pressure Ballast Width 32 in 33 in 34 in 35 in $P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.67 \text{ ft}) =$ 6380 lbs 6579 lbs 6779 lbs 6978 lbs

ASD LC		1.0D	+ 1.0S			1.0D+	+ 0.6W		1	.0D + 0.75L +	0.45W + 0.75	S		0.6D +	- 0.6W	
Width	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in	32 in	33 in	34 in	35 in
FA	1022 lbs	1022 lbs	1022 lbs	1022 lbs	1045 lbs	1045 lbs	1045 lbs	1045 lbs	1424 lbs	1424 lbs	1424 lbs	1424 lbs	66 lbs	66 lbs	66 lbs	66 lbs
F _B	916 lbs	916 lbs	916 lbs	916 lbs	2167 lbs	2167 lbs	2167 lbs	2167 lbs	2200 lbs	2200 lbs	2200 lbs	2200 lbs	-3034 lbs	-3034 lbs	-3034 lbs	-3034 lbs
F _V	162 lbs	162 lbs	162 lbs	162 lbs	1945 lbs	1945 lbs	1945 lbs	1945 lbs	1562 lbs	1562 lbs	1562 lbs	1562 lbs	-2134 lbs	-2134 lbs	-2134 lbs	-2134 lbs
P _{total}	8318 lbs	8518 lbs	8717 lbs	8916 lbs	9592 lbs	9792 lbs	9991 lbs	10190 lbs	10004 lbs	10203 lbs	10403 lbs	10602 lbs	860 lbs	980 lbs	1099 lbs	1219 lbs
M	3039 lbs-ft	3039 lbs-ft	3039 lbs-ft	3039 lbs-ft	2888 lbs-ft	2888 lbs-ft	2888 lbs-ft	2888 lbs-ft	4071 lbs-ft	4071 lbs-ft	4071 lbs-ft	4071 lbs-ft	4254 lbs-ft	4254 lbs-ft	4254 lbs-ft	4254 lbs-ft
е	0.37 ft	0.36 ft	0.35 ft	0.34 ft	0.30 ft	0.29 ft	0.29 ft	0.28 ft	0.41 ft	0.40 ft	0.39 ft	0.38 ft	4.95 ft	4.34 ft	3.87 ft	3.49 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	227.1 psf	226.8 psf	226.5 psf	226.3 psf	273.3 psf	271.6 psf	270.0 psf	268.5 psf	265.3 psf	263.9 psf	262.5 psf	261.2 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	340.1 psf	336.4 psf	332.9 psf	329.6 psf	380.7 psf	375.8 psf	371.1 psf	366.7 psf	416.7 psf	410.7 psf	405.0 psf	399.7 psf	388.6 psf	205.2 psf	158.7 psf	138.6 psf

Shear key is not required.

Maximum Bearing Pressure = 417 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 815.0 \text{ ft-lbs}$

Resisting Force Required = 611.23 lbs S.F. = 1.67

Weight Required = 1018.71 lbs Minimum Width = 32 in in Weight Provided = 6380.00 lbs A minimum 132in long x 32in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		32 in			32 in			32 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	245 lbs	592 lbs	245 lbs	625 lbs	1659 lbs	625 lbs	72 lbs	173 lbs	72 lbs		
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	1 lbs	0 lbs	1 lbs		
P _{total}	8143 lbs	6380 lbs	8143 lbs	8144 lbs	6380 lbs	8144 lbs	2381 lbs	6380 lbs	2381 lbs		
M	7 lbs-ft	0 lbs-ft	7 lbs-ft	19 lbs-ft	0 lbs-ft	19 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft	0.44 ft		
f _{min}	277.1 psf	217.5 psf	277.1 psf	276.2 psf	217.5 psf	276.2 psf	81.0 psf	217.5 psf	81.0 psf		
f _{max}	278.1 psf	217.5 psf	278.1 psf	279.1 psf	217.5 psf	279.1 psf	81.3 psf	217.5 psf	81.3 psf		

Maximum Bearing Pressure = 279 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 32in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 32in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.194 k	Maximum Axial Load =	4.346 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>30%</u>	Utilization =	<u>59%</u>
Diagonal Strut			
Maximum Axial Load =	2.909 k		

Maximum Axial Load = 2.909 k
M12 Bolt Shear Capacity = 12.808 k
Strut Bearing Capacity = 7.421 k
Utilization = 39%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{sx} = & 53.78 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{sx} \\ \text{1.076 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.05 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

 $L_b =$

Strong Axis:

3.4.14

$$J = 0.432$$

$$315.377$$

$$1 = \left(\frac{Bc - \frac{\theta_y}{\theta_y} Fcy}{\frac{\theta_y}{\theta_y} Fcy}\right)^2$$

114 in

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 27.5 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 114$$
 $J = 0.432$
 200.561

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_{L} = 28.8$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$

$$lx = 897074 \text{ mm}^4$$

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$M_{max}St = 2.788 \text{ k-ft}$$

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$SZ = \frac{1}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

$$ly = 446476 \text{ mm}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max}Wk = 1.152 k-ft$$

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: 3.4.14

88.9 in $L_b =$ J= 1.08

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.4 \text{ ksi}$$

Weak Axis:

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$\phi F_1 = 29.2$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used

Rb/t = 18.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$

31.1 ksi

3.4.16.1N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\psi = 923544 \text{ mms}^2$$

$$\begin{array}{lll} \phi F_L St = & 29.4 \text{ ksi} \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

43.2 ksi

$$\begin{split} \phi F_L W k &= & 33.3 \text{ ksi} \\ ly &= & 923544 \text{ mm}^4 \\ & & 2.219 \text{ in}^4 \\ x &= & 40 \text{ mm} \\ Sy &= & 1.409 \text{ in}^3 \\ M_{max} W k &= & 3.904 \text{ k-ft} \end{split}$$

Compression

 $\phi F_L =$

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

 $P_{max} =$

Rev. 11.05.2015

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

24.8 in

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}$$

$$\phi F_L = 31.4 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used Rb/t =
$$0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

24.5

3.4.18

h/t =

S1 = 36.9
m = 0.65

$$C_0$$
 = 27.5
 Cc = 27.5
 $S2 = \frac{k_1 B b r}{m D b r}$
S2 = 77.3
 ϕF_L = 1.3 $\phi \gamma F_C \gamma$
 ϕF_L = 43.2 ksi
 ϕF_L = 28.2 ksi
 ϕF_L = 27.5 mm

0.621 in³

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

m =

$$\begin{array}{cccc} C_0 = & 27.5 \\ Cc = & 27.5 \\ S2 = & \frac{k_1 Bbr}{mDbr} \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L Wk = & 28.2 \text{ ksi} \\ y = & 279836 \text{ mm}^4 \\ & & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ \\ M_{max}Wk = & 1.460 \text{ k-ft} \\ \end{array}$$

24.5

0.65

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$ mDbr

Sx=

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 28.85 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 86.60 \text{ in}$	$L_b = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})]}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

b/t = 24.5

3.4.16.1

4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

3.4.16

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

A.16
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \ ksi \\ lx = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ y = & 27.5 \ mm \\ Sx = & 0.621 \ in^3 \\ M_{max} St = & 1.460 \ k\text{-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ l y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ S y = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 78.03 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

$$L_b = 78.03$$

 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Bc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$S2 = C_t$$

 $S2 = 141.0$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = mDbr$$

$$77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$Sx = 0.621 \text{ in}^3$$

$$M_{max}St = 1.460 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

$$3.4.18 \\ h/t = 24.5 \\ S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ S1 = 36.9 \\ m = 0.65 \\ C_0 = 27.5 \\ Cc = 27.5 \\ S2 = \frac{k_1Bbr}{mDbr} \\ S2 = 77.3 \\ \phi F_L = 1.3\phi y Fcy \\ \phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$λ = 1.80509$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.83271$

$$\phi F_{L} = 8.94465 \text{ ksi}$$

3.4.9
$$b/t = 24.5$$

 $\phi F_L = (\phi cc Fcy)/(\lambda^2)$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.94 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.21 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-32.97	-32.97	0	0
2	M14	Υ	-32.97	-32.97	0	0
3	M15	Υ	-32.97	-32.97	0	0
4	M16	Y	-32 97	-32 97	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-88.797	-88.797	0	0
2	M14	V	-88.797	-88.797	0	0
3	M15	V	-147.995	-147.995	0	0
4	M16	V	-147.995	-147.995	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	199.793	199.793	0	0
2	M14	V	155.395	155.395	0	0
3	M15	V	88.797	88.797	0	0
4	M16	V	88 797	88 797	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	937.365	2	1189.692	2	.568	1	.002	1	Ō	1	0	1
2		min	-1124.19	3	-1560.862	3	.035	15	0	15	0	1	0	1
3	N7	max	.034	3	887.292	1	612	15	001	15	0	1	0	1
4		min	192	2	44.002	15	-10.731	1	02	1	0	1	0	1
5	N15	max	.226	3	2193.841	1	0	1	0	1	0	1	0	1
6		min	-1.968	2	90.931	15	0	2	0	2	0	1	0	1
7	N16	max	3288.719	2	3852.427	2	0	14	0	1	0	1	0	1
8		min	-3558.146	3	-5070.334	3	0	9	0	2	0	1	0	1
9	N23	max	.034	3	887.292	1	10.731	1	.02	1	0	1	0	1
10		min	192	2	44.002	15	.612	15	.001	15	0	1	0	1
11	N24	max	937.365	2	1189.692	2	035	15	0	15	0	1	0	1
12		min	-1124.19	3	-1560.862	3	568	1	002	1	0	1	0	1
13	Totals:	max	5161.096	2	9672.25	2	0	1	·		·		·	
14		min	-5806.233	3	-7773.578	3	0	2						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	97.327	1	393.491	2	-9.357	15	.001	3	.233	1	0	2
2			min	5.447	15	-696.355	3	-168.538	1	013	2	.013	15	0	3
3		2	max	97.327	1	275.265	2	-7.194	15	.001	3	.075	1	.626	3
4			min	5.447	15	-490.096	3	-129.429	1	013	2	.004	15	353	2
5		3	max	97.327	1	157.04	2	-5.03	15	.001	3	0	3	1.035	3
6			min	5.447	15	-283.837	3	-90.32	1	013	2	041	1	581	2
7		4	max	97.327	1	38.815	2	-2.867	15	.001	3	005	12	1.225	3
8			min	5.447	15	-77.578	3	-51.21	1	013	2	115	1	684	2
9		5	max	97.327	1	128.682	3	704	15	.001	3	008	12	1.198	3
10			min	5.447	15	-79.41	2	-12.101	1	013	2	149	1	663	2
11		6	max	97.327	1	334.941	3	27.008	1	.001	3	008	15	.954	3
12			min	5.447	15	-197.636	2	.494	12	013	2	141	1	517	2
13		7	max	97.327	1	541.2	3	66.117	1	.001	3	005	15	.491	3
14			min	5.447	15	-315.861	2	2.657	12	013	2	092	1	246	2
15		8	max	97.327	1	747.459	3	105.226	1	.001	3	.002	2	.15	2
16			min	5.447	15	-434.086	2	4.82	12	013	2	005	3	189	3
17		9	max	97.327	1	953.718	3	144.336	1	.001	3	.13	1	.671	2
18			min	5.447	15	-552.312	2	6.983	12	013	2	.003	12	-1.087	3
19		10	max	97.327	1	670.537	2	-9.146	12	.013	2	.303	1	1.316	2
20			min	5.447	15	-1159.977	3	-183.445	1	001	3	.012	12	-2.202	3
21		11	max	97.327	1	552.312	2	-6.983	12	.013	2	.13	1	.671	2
22			min	5.447	15	-953.718	3	-144.336	1	001	3	.003	12	-1.087	3
23		12	max	97.327	1	434.086	2	-4.82	12	.013	2	.002	2	.15	2
24			min	5.447	15	-747.459	3	-105.226	1	001	3	005	3	189	3
25		13	max	97.327	1	315.861	2	-2.657	12	.013	2	005	15	.491	3
26			min	5.447	15	-541.2	3	-66.117	1	001	3	092	1	246	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]									
27		14	max	97.327	1	197.636	2	494	12	.013	2	008	15	<u>.954</u>	3
28			min	5.447	15	-334.941	3	-27.008	1	001	3	141	1	517	2
29		15	max	97.327	1	79.41	2	12.101	1	.013	2	008	12	1.198	3
30		1.0	min	5.447	15	-128.682	3	.704	15	001	3	149	1	663	2
31		16	max	97.327	1	77.578	3	51.21	1	.013	2	005	12	1.225	3
32			min	5.447	15	-38.815	2	2.867	15	001	3	115	1	<u>684</u>	2
33		17	max	97.327	1	283.837	3	90.32	1	.013	2	0	3	1.035	3
34		10	min	5.447	15	-157.04	2	5.03	15	001	3	041	1	<u>581</u>	2
35		18	max	97.327	1	490.096	3	129.429	1	.013	2	.075	1_	.626	3
36		10	min	5.447	15	-275.265	2	7.194	15	001	3	.004	15	<u>353</u>	2
37		19	max	97.327	1	696.355	3	168.538	1	.013	2	.233	1	0	2
38			min	5.447	15	-393.491	2	9.357	15	001	3	.013	15	0	3
39	M14	1	max	46.561	1	423.948	2	-9.659	15	.009	3	.267	1	0	1
40			min	2.605	15	-557.707	3	-173.992	1	01	2	.015	15	0	3
41		2	max	46.561	1	305.722	2	-7.496	15	.009	3	.104	1	.505	3
42			min	2.605	15	-398.313	3	-134.883	1_	01	2	.006	15	385	2
43		3	max	46.561	1	187.497	2	-5.332	15	.009	3	.003	3	.841	3
44			min	2.605	15	-238.918	3	-95.774	1_	01	2	018	1	645	2
45		4	max	46.561	1	69.272	2	-3.169	15	.009	3	004	12	1.009	3
46			min	2.605	15	-79.524	3	-56.665	1_	01	2	098	1	781	2
47		5	max	46.561	1	79.871	3	-1.006	15	.009	3	007	12	1.009	3
48			min	2.605	15	-48.953	2	-17.556	1	01	2	137	1	792	2
49		6	max	46.561	1_	239.266	3	21.554	1	.009	3	008	15	.84	3
50			min	2.605	15	-167.179	2	.15	3	01	2	135	1	678	2
51		7	max	46.561	1	398.66	3	60.663	1_	.009	3	005	15	.504	3
52			min	2.605	15	-285.404	2	2.368	12	01	2	092	1	439	2
53		8	max	46.561	1	558.055	3	99.772	1	.009	3	0	10	001	15
54			min	2.605	15	-403.629	2	4.531	12	01	2	007	1	075	2
55		9	max	46.561	1	717.449	3	138.881	1	.009	3	.119	1	.413	2
56			min	2.605	15	-521.855	2	6.693	12	01	2	.003	12	674	3
57		10	max	46.561	1	640.08	2	-8.856	12	.01	2	.286	1	1.027	2
58			min	2.605	15	-876.844	3	-177.99	1	009	3	.011	12	-1.516	3
59		11	max	46.561	1	521.855	2	-6.693	12	.01	2	.119	1	.413	2
60			min	2.605	15	-717.449	3	-138.881	1	009	3	.003	12	674	3
61		12	max	46.561	1	403.629	2	-4.531	12	.01	2	0	10	001	15
62			min	2.605	15	-558.055	3	-99.772	1	009	3	007	1	075	2
63		13	max	46.561	1	285.404	2	-2.368	12	.01	2	005	15	.504	3
64			min	2.605	15	-398.66	3	-60.663	1	009	3	092	1	439	2
65		14	max	46.561	1	167.179	2	15	3	.01	2	008	15	.84	3
66			min	2.605	15	-239.266	3	-21.554	1	009	3	135	1	678	2
67		15	max	46.561	1	48.953	2	17.556	1	.01	2	007	12	1.009	3
68			min	2.605	15	-79.871	3	1.006	15	009	3	137	1	792	2
69		16	max	46.561	1	79.524	3	56.665	1	.01	2	004	12	1.009	3
70			min	2.605	15	-69.272	2	3.169	15	009	3	098	1	781	2
71		17	max	46.561	1	238.918	3	95.774	1	.01	2	.003	3	.841	3
72			min	2.605	15	-187.497	2	5.332	15	009	3	018	1	645	2
73		18	max	46.561	1	398.313	3	134.883	1	.01	2	.104	1	.505	3
74			min	2.605	15	-305.722	2	7.496	15	009	3	.006	15	385	2
75		19	max	46.561	1	557.707	3	173.992	1	.01	2	.267	1	0	1
76			min	2.605	15	-423.948	2	9.659	15	009	3	.015	15	0	3
77	M15	1	max	-2.733	15	634.862	2	-9.656	15	.011	2	.267	1	0	2
78			min	-48.705	1	-320.61	3	-173.979	1	008	3	.015	15	0	3
79		2	max	-2.733	15	454.15	2	-7.493	15	.011	2	.104	1	.291	3
80			min	-48.705	1	-231.513	3	-134.869	1	008	3	.006	15	575	2
81		3	max	-2.733	15	273.438	2	-5.33	15	.011	2	.002	3	.489	3
82			min	-48.705	1	-142.417	3	-95.76	1	008	3	018	1	959	2
83		4	max	-2.733	15	92.726	2	-3.166	15	.011	2	004	12	.592	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
84			min	-48.705	1	-53.32	3	-56.651	1	008	3	098	1	-1.152	2
85		5	max	-2.733	15	35.777	3	-1.003	15	.011	2	007	12	.601	3
86			min	-48.705	1	-87.987	2	-17.542	1	008	3	138	1	-1.155	2
87		6	max	-2.733	15	124.873	3	21.567	1	.011	2	008	15	.517	3
88			min	-48.705	1	-268.699	2	.281	3	008	3	135	1	966	2
89		7	max	-2.733	15	213.97	3	60.677	1	.011	2	005	15	.338	3
90			min	-48.705	1	-449.411	2	2.447	12	008	3	092	1	587	2
91		8	max	-2.733	15	303.067	3	99.786	1	.011	2	0	10	.065	3
92			min	-48.705	1	-630.123	2	4.61	12	008	3	007	1	024	1
93		9	max	-2.733	15	392.163	3	138.895	1	.011	2	.119	1	.743	2
94			min	-48.705	1	-810.835	2	6.773	12	008	3	.003	12	302	3
95		10	max	-2.733	15	991.547	2	-8.936	12	.008	3	.286	1	1.694	2
96			min	-48.705	1	-481.26	3	-178.004	1	011	2	.011	12	763	3
97		11	max	-2.733	15	810.835	2	-6.773	12	.008	3	.119	1	.743	2
98			min	-48.705	1	-392.163	3	-138.895	1	011	2	.003	12	302	3
99		12	max	-2.733	15	630.123	2	-4.61	12	.008	3	0	10	.065	3
100			min	-48.705	1	-303.067	3	-99.786	1	011	2	007	1	024	1
101		13	max	-2.733	15	449.411	2	-2.447	12	.008	3	005	15	.338	3
102			min	-48.705	1	-213.97	3	-60.677	1	011	2	092	1	587	2
103		14	max	-2.733	15	268.699	2	281	3	.008	3	008	15	.517	3
104			min	-48.705	1	-124.873	3	-21.567	1	011	2	135	1	966	2
105		15	max	-2.733	15	87.987	2	17.542	1	.008	3	007	12	.601	3
106			min	-48.705	1	-35.777	3	1.003	15	011	2	138	1	-1.155	2
107		16	max	-2.733	15	53.32	3	56.651	1	.008	3	004	12	.592	3
108			min	-48.705	1	-92.726	2	3.166	15	011	2	098	1	-1.152	2
109		17	max	-2.733	15	142.417	3	95.76	1	.008	3	.002	3	.489	3
110			min	-48.705	1	-273.438	2	5.33	15	011	2	018	1	959	2
111		18	max	-2.733	15	231.513	3	134.869	1	.008	3	.104	1	.291	3
112			min	-48.705	1	-454.15	2	7.493	15	011	2	.006	15	575	2
113		19	max	-2.733	15	320.61	3	173.979	1	.008	3	.267	1	0	2
114			min	-48.705	1	-634.862	2	9.656	15	011	2	.015	15	0	3
115	M16	1	max	-5.897	15	605.619	2	-9.366	15	.009	2	.234	1	0	2
116			min	-105.348	1_	-295.48	3	-168.826	1	012	3	.013	15	0	3
117		2	max	-5.897	15	424.907	2	-7.203	15	.009	2	.077	1	.265	3
118			min	-105.348	1	-206.384	3	-129.717	1	012	3	.004	15	544	2
119		3	max	-5.897	15	244.195	2	-5.039	15	.009	2	0	3	.436	3
120			min	-105.348	1	-117.287	3	-90.608	1	012	3	04	1	897	2
121		4	max	-5.897	15	63.483	2	-2.876	15	.009	2	005	12	.512	3
122			min	-105.348	1	-28.19	3	-51.498	1	012	3	115	1	-1.059	2
123		5	max	-5.897	15	60.906	3	713	15	.009	2	008	12	.495	3
124			min	-105.348	1_	-117.229		-12.389	1	012	3	148	1	-1.031	2
125		6	max		15	150.003	3	26.72	1	.009	2	008	15	.384	3
126			min	-105.348	1_	-297.941	2	.758	12	012	3	141	1	812	2
127		7	max	-5.897	15	239.1	3	65.829	1	.009	2	005	15	.179	3
128				-105.348	1	-478.653	2	2.921	12	012	3	092	1	402	2
129		8	max		15	328.196	3	104.938	1	.009	2	.001	2	.199	2
130			min	-105.348	1_	-659.365	2	5.084	12	012	3	004	3	121	3
131		9	max	-5.897	15	417.293	3	144.048	1	.009	2	.129	1_	.99	2
132				-105.348	1	-840.077	2	7.247	12	012	3	.004	12	514	3
133		10	max	-5.897	15	1020.789	2	-9.41	12	.012	3	.302	1_	1.972	2
134				-105.348	1_	-506.39	3	-183.157	1	009	2	.013	12	-1.002	3
135		11	max		15	840.077	2	-7.247	12	.012	3	.129	1	.99	2
136				-105.348	1_	-417.293	3	-144.048	1	009	2	.004	12	514	3
137		12	max	-5.897	15	659.365	2	-5.084	12	.012	3	.001	2	.199	2
138				-105.348	1	-328.196	3	-104.938		009	2	004	3	121	3
139		13	max		15	478.653	2	-2.921	12	.012	3	005	15	.179	3
140			min	-105.348	1	-239.1	3	-65.829	1	009	2	092	1	402	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

141	3 2 3 2 3 2 3 2 3 2 2 3 1 1 15 4
143 15 max -5.897 15 117.229 2 12.389 1 .012 3 008 12 .495 144 min -105.348 1 -60.906 3 .713 15 009 2 148 1 -1.031 145 16 max -5.897 15 28.19 3 51.498 1 .012 3 005 12 .512 146 min -105.348 1 -63.483 2 2.876 15 009 2 115 1 -1.059 147 17 max -5.897 15 117.287 3 90.608 1 .012 3 0 3 .436 148 min -105.348 1 -244.195 2 5.039 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826	3 2 3 2 3 2 3 2 2 2 3 1 1 15
144 min -105.348 1 -60.906 3 .713 15 009 2 148 1 -1.031 145 16 max -5.897 15 28.19 3 51.498 1 .012 3 005 12 .512 146 min -105.348 1 -63.483 2 2.876 15 009 2 115 1 -1.059 147 17 max -5.897 15 117.287 3 90.608 1 .012 3 0 3 .436 148 min -105.348 1 -244.195 2 5.039 15 009 2 04 1 897 149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -605.619 2 9.366 15 -	2 3 2 3 2 3 2 2 2 3 1 1 15
145 16 max -5.897 15 28.19 3 51.498 1 .012 3 005 12 .512 146 min -105.348 1 -63.483 2 2.876 15 009 2 115 1 -1.059 147 17 max -5.897 15 117.287 3 90.608 1 .012 3 0 3 .436 148 min -105.348 1 -244.195 2 5.039 15 009 2 04 1 897 149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1	3 2 3 2 3 2 2 2 3 1 1 15
146 min -105.348 1 -63.483 2 2.876 15 009 2 115 1 -1.059 147 17 max -5.897 15 117.287 3 90.608 1 .012 3 0 3 .436 148 min -105.348 1 -244.195 2 5.039 15 009 2 04 1 897 149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 0	2 3 2 3 2 2 2 3 1 1 15
147 17 max -5.897 15 117.287 3 90.608 1 .012 3 0 3 .436 148 min -105.348 1 -244.195 2 5.039 15 009 2 04 1 897 149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33	3 2 3 2 2 3 1 1 15
148 min -105.348 1 -244.195 2 5.039 15 009 2 04 1 897 149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0<	2 3 2 2 3 1 1 15
149 18 max -5.897 15 206.384 3 129.717 1 .012 3 .077 1 .265 150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 157 3 max 970.019	3 2 2 3 1 1 15
150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1	2 2 3 1 1 15
150 min -105.348 1 -424.907 2 7.203 15 009 2 .004 15 544 151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1	3 1 1 1 15
151 19 max -5.897 15 295.48 3 168.826 1 .012 3 .234 1 0 152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3	3 1 1 1 15
152 min -105.348 1 -605.619 2 9.366 15 009 2 .013 15 0 153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15	1 1 15
153 M2 1 max 968.978 2 2.018 4 .33 1 0 3 0 3 0 154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0	1 1 15
154 min -1337.133 3 .475 15 .018 15 0 1 0 2 0 155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 <td>15</td>	15
155 2 max 969.498 2 1.899 4 .33 1 0 3 0 1 0 156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 <	
156 min -1336.743 3 .447 15 .018 15 0 1 0 15 0 157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	
157 3 max 970.019 2 1.78 4 .33 1 0 3 0 1 0 158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	_
158 min -1336.352 3 .419 15 .018 15 0 1 0 15 001 159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	15
159 4 max 970.54 2 1.661 4 .33 1 0 3 0 1 0 160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	4
160 min -1335.962 3 .391 15 .018 15 0 1 0 15 002 161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	15
161 5 max 971.06 2 1.542 4 .33 1 0 3 0 1 0 162 min -1335.571 3 .363 15 .018 15 0 1 0 15 003	4
162 min -1335.571 3 .363 15 .018 15 0 1 0 15003	15
	4
	15
164 min -1335.181 3 .335 15 .018 15 0 1 0 15003	4
165 7 max 972.102 2 1.305 4 .33 1 0 3 0 1 0	15
166 min -1334.79 3 .307 15 .018 15 0 1 0 15004	4
	15
167 8 max 972.622 2 1.186 4 .33 1 0 3 0 1 0 168 min -1334.4 3 .279 15 .018 15 0 1 0 15004	4
	15
	4
170	15
171	4
	$\overline{}$
	15
	4
175	15
	4
177	15
	4
179	15
180 min -1332.057 3 .007 3 .018 15 0 1 0 15006	4
181	15
182 min -1331.666 3063 3 .018 15 0 1 0 15006	4
183	15
184 min -1331.276 3132 3 .018 15 0 1 0 15006	4
185	15
186 min -1330.885 3201 3 .018 15 0 1 0 15006	4
187	12
188 min -1330.495 3271 3 .018 15 0 1 0 15006	4
189	12
190 min -1330.104 334 3 .018 15 0 1 0 15006	1
191 M3 1 max 798.798 2 7.661 4 .3 1 0 5 0 1 .006	4
192 min -925.452 3 1.801 15 .017 15 0 1 0 15 .001	4
193 2 max 798.627 2 6.9 4 .3 1 0 5 0 1 .004	_
194 min -925.58 3 1.622 15 .017 15 0 1 0 15 0	4 12 2
195 3 max 798.457 2 6.139 4 .3 1 0 5 0 1 .001	12
196 min -925.708 3 1.443 15 .017 15 0 1 0 15001	4 12 2 3 2
197 4 max 798.287 2 5.378 4 .3 1 0 5 0 1 0	4 12 2 3

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-925.836	3	1.265	15	.017	15	0	1	0	15	003	3
199		5	max	798.116	2	4.617	4	.3	1	0	5	0	1	0	15
200			min	-925.963	3	1.086	15	.017	15	0	1	0	15	004	4
201		6	max	797.946	2	3.856	4	.3	1	0	5	.001	1	001	15
202			min	-926.091	3	.907	15	.017	15	0	1	0	15	006	4
203		7	max	797.776	2	3.096	4	.3	1	0	5	.001	1	002	15
204			min	-926.219	3	.728	15	.017	15	0	1	0	15	007	4
205		8	max	797.605	2	2.335	4	.3	1	0	5	.001	1	002	15
206			min	-926.347	3	.549	15	.017	15	0	1	0	15	008	4
207		9	max	797.435	2	1.574	4	.3	1	0	5	.001	1	002	15
208			min	-926.474	3	.37	15	.017	15	0	1	0	15	009	4
209		10	max	797.264	2	.813	4	.3	1	0	5	.002	1	002	15
210			min	-926.602	3	.178	12	.017	15	0	1	0	15	01	4
211		11	max	797.094	2	.209	2	.3	1	0	5	.002	1	002	15
212			min	-926.73	3	201	3	.017	15	0	1	0	15	01	4
213		12	max	796.924	2	166	15	.3	1	0	5	.002	1	002	15
214			min	-926.858	3	709	4	.017	15	0	1	0	15	01	4
215		13	max	796.753	2	345	15	.3	1	0	5	.002	1	002	15
216			min	-926.985	3	-1.47	4	.017	15	0	1	0	15	009	4
217		14	max	796.583	2	524	15	.3	1	0	5	.002	1	002	15
218			min	-927.113	3	-2.231	4	.017	15	0	1	0	15	009	4
219		15	max	796.413	2	703	15	.3	1	0	5	.002	1	002	15
220			min	-927.241	3	-2.992	4	.017	15	0	1	0	15	008	4
221		16	max	796.242	2	882	15	.3	1	0	5	.002	1	001	15
222			min	-927.369	3	-3.753	4	.017	15	0	1	0	15	006	4
223		17	max	796.072	2	-1.061	15	.3	1	0	5	.002	1	001	15
224			min	-927.497	3	-4.514	4	.017	15	0	1	0	15	004	4
225		18	max	795.902	2	-1.24	15	.3	1	0	5	.003	1	0	15
226			min	-927.624	3	-5.275	4	.017	15	0	1	0	15	002	4
227		19	max	795.731	2	-1.419	15	.3	1	0	5	.003	1	0	1
228			min	-927.752	3	-6.036	4	.017	15	0	1	0	15	0	1
229	M4	1	max	884.225	1	0	1	613	15	0	1	.002	1	0	1
230			min	43.077	15	0	1	-10.989	1	0	1	0	15	0	1
231		2	max	884.396	1	0	1	613	15	0	1	.001	1	0	1
232			min	43.128	15	0	1	-10.989	1	0	1	0	15	0	1
233		3	max	884.566	1	0	1	613	15	0	1	0	3	0	1
234			min	43.179	15	0	1	-10.989	1	0	1	0	1	0	1
235		4	max	884.736	1	0	1	613	15	0	1	0	15	0	1
236			min	43.231	15	0	1	-10.989	1	0	1	001	1	0	1
237		5	max	884.907	1	0	1	613	15	0	1	0	15	0	1
238			min	43.282	15	0	1	-10.989	1	0	1	003	1	0	1
239		6	max	885.077	1	0	1	613	15	0	1	0	15	0	1
240			min	43.333	15	0	1	-10.989	1	0	1	004	1	0	1
241		7	max	885.247	1	0	1	613	15	0	1	0	15	0	1
242			min	43.385	15	0	1	-10.989	1	0	1	005	1	0	1
243		8	max	885.418	1	0	1	613	15	0	1	0	15	0	1
244			min	43.436	15	0	1	-10.989	1	0	1	006	1	0	1
245		9	max		1	0	1	613	15	0	1	0	15	0	1
246			min		15	0	1	-10.989	1	0	1	008	1	0	1
247		10	max	885.758	1	0	1	613	15	0	1	0	15	0	1
248			min	43.539	15	0	1	-10.989	1	0	1	009	1	0	1
249		11	max	885.929	1	0	1	613	15	0	1	0	15	0	1
250			min	43.59	15	0	1	-10.989	1	0	1	01	1	0	1
251		12	max	886.099	1	0	1	613	15	0	1	0	15	0	1
252			min	43.642	15	0	1	-10.989	1	0	1	011	1	0	1
253		13	max		1	0	1	613	15	0	1	0	15	0	1
254			min	43.693	15	0	1	-10.989	1	0	1	013	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14	max	886.44	1	0	1	613	15	0	1	0	15	0	1
256 257		15	min	43.745 886.61	<u>15</u> 1	0	1	-10.989 613	1 15	0	<u>1</u> 1	014 0	1 15	0	1
258		13	max min	43.796	15	0	1	-10.989	1	0	1	015	1	0	1
259		16	max	886.781	1 1	0	1	613	15	0	1	0	15	0	1
260		10	min	43.847	15	0	1	-10.989	1	0	1	016	1	0	1
261		17	max		1	0	1	613	15	0	1	0	15	0	1
262			min	43.899	15	0	1	-10.989	1	0	1	018	1	0	1
263		18	max		1	0	1	613	15	0	1	001	15	0	1
264			min	43.95	15	0	1	-10.989	1	0	1	019	1	0	1
265		19	max	887.292	1	0	1	613	15	0	1	001	15	0	1
266			min	44.002	15	0	1	-10.989	1	0	1	02	1	0	1
267	M6	1	max		2	2.248	2	0	1	0	1	0	1	0	1
268			min	-4346.398	3	.27	12	0	1	0	1	0	1	0	1
269		2	max	3095.711	2	2.156	2	0	1	0	1	0	1	0	12
270			min	-4346.008	3	.224	12	0	1	0	1	0	1	0	2
271		3	max	3096.231	2	2.063	2	0	1	0	_1_	0	1	0	12
272			min	-4345.617	3	.177	12	0	1	0	1	0	1	002	2
273		4		3096.752	2	1.97	2	0	1	0	1	0	1	0	12
274		_	min	-4345.227	3	.11	3	0	1	0	1	0	1	002	2
275		5		3097.273	2	1.878	2	0	1	0	1	0	1	0	12
276			min	-4344.836	3	.04	3	0	1	0	1_	0	1	003	2
277		6		3097.793	2	1.785	2	0	1	0	1	0	1	0	3
278		-	min		3	029	3	0	1	0	1_	0	1	004	2
279		7		3098.314	2	1.693	2	0	1	0	1	0	1	0	3
280		0	min		3	099	3	0	1	0		0	1	004	2
281 282		8	min	3098.835 -4343.665	3	1.6 168	3	0	1	0	<u>1</u> 1	0	1	005	2
283		9		3099.356	<u> </u>	1.507	2	0	1	0	1	0	1	005 0	3
284		9	min	-4343.274	3	238	3	0	1	0	1	0	1	005	2
285		10		3099.876	2	1.415	2	0	1	0	1	0	1	005	3
286		10	min	-4342.884	3	307	3	0	1	0	1	0	1	006	2
287		11		3100.397	2	1.322	2	0	1	0	1	0	1	0	3
288				-4342.493	3	377	3	0	1	0	1	0	1	006	2
289		12		3100.918	2	1.229	2	0	1	0	1	0	1	0	3
290		·-	min		3	446	3	0	1	Ö	1	0	1	007	2
291		13		3101.438	2	1.137	2	0	1	0	1	0	1	0	3
292			min		3	516	3	0	1	0	1	0	1	007	2
293		14		3101.959	2	1.044	2	0	1	0	1	0	1	0	3
294			min	-4341.321	3	585	3	0	1	0	1	0	1	008	2
295		15	max	3102.48	2	.952	2	0	1	0	1	0	1	0	3
296			min	-4340.931	3	654	3	0	1	0	1	0	1	008	2
297		16	max		2	.859	2	0	1	0	1	0	1	.001	3
298				-4340.54	3	724	3	0	1	0	1	0	1	008	2
299		17		3103.521	2	.766	2	0	1	0	1	0	1	.001	3
300		4.0		-4340.15	3	793	3	0	1_	0	1	0	1	009	2
301		18		3104.042	2	.674	2	0	1	0		0	1	.002	3
302		4.0		-4339.759	3	863	3	0	1_	0	1_	0	1	009	2
303		19		3104.562	2	.581	2	0	1	0	1_	0	1	.002	3
304	N 47	4		-4339.369	3	932	3	0	1_	0	1	0	1	009	2
305	M7	1		2858.789	2	7.689	4 1E	0	1	0	1	0	1	.009	2
306		2	min	-2906.469	3	1.806	<u>15</u>	0	1	0	1	0	1	002	3
307		2		2858.618 -2906.597	2	6.928	4	0	1	0	1	0	1	.006	2
308		3			3	1.627	15		<u>1</u> 1	0	<u>1</u> 1	0	1	003	3
309		3	min	2858.448 -2906.725	3	6.167 1.448	<u>4</u> 15	0	1	0	1	0	1	.004 005	3
311		4		2858.278	2	5.406	4	0	1	0	1	0	1	.002	2
		_ +	шах	2000.210		J.700		U		U				.002	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-2906.852	3	1.269	15	0	1	0	1	0	1	006	3
313		5	max	2858.107	2	4.645	4	0	1	0	1	0	1	0	2
314			min	-2906.98	3	1.09	15	0	1	0	1	0	1	007	3
315		6	max	2857.937	2	3.884	4	0	1	0	1	0	1	001	15
316			min	-2907.108	3	.911	15	0	1	0	1	0	1	007	3
317		7	max	2857.767	2	3.123	4	0	1	0	1	0	1	002	15
318			min	-2907.236	3	.732	15	0	1	0	1	0	1	008	3
319		8	max	2857.596	2	2.399	2	0	1	0	1	0	1	002	15
320			min	-2907.363	3	.467	12	0	1	0	1	0	1	008	4
321		9	max	2857.426	2	1.806	2	0	1	0	1	0	1	002	15
322			min	-2907.491	3	.171	12	0	1	0	1	0	1	009	4
323		10	max	2857.256	2	1.213	2	0	1	0	1	0	1	002	15
324			min	-2907.619	3	263	3	0	1	0	1	0	1	01	4
325		11	max	2857.085	2	.62	2	0	1	0	1	0	1	002	15
326			min	-2907.747	3	708	3	0	1	0	1	0	1	01	4
327		12	max	2856.915	2	.027	2	0	1	0	1	0	1	002	15
328			min	-2907.874	3	-1.153	3	0	1	0	1	0	1	01	4
329		13	max	2856.745	2	341	15	0	1	0	1	0	1	002	15
330			min	-2908.002	3	-1.597	3	0	1	0	1	0	1	009	4
331		14	max	2856.574	2	52	15	0	1	0	1	0	1	002	15
332			min	-2908.13	3	-2.204	4	0	1	0	1	0	1	009	4
333		15	max	2856.404	2	699	15	0	1	0	1	0	1	002	15
334			min	-2908.258	3	-2.965	4	0	1	0	1	0	1	007	4
335		16	max	2856.234	2	878	15	0	1	0	1	0	1	001	15
336			min	-2908.385	3	-3.726	4	0	1	0	1	0	1	006	4
337		17	max	2856.063	2	-1.056	15	0	1	0	1	0	1	001	15
338			min	-2908.513	3	-4.487	4	0	1	0	1	0	1	004	4
339		18	max	2855.893	2	-1.235	15	0	1	0	1	0	1	0	15
340			min	-2908.641	3	-5.248	4	0	1	0	1	0	1	002	4
341		19	max	2855.723	2	-1.414	15	0	1	0	1	0	1	0	1
342			min	-2908.769	3	-6.009	4	0	1	0	1	0	1	0	1
343	M8	1	max	2190.775	1	0	1	0	1	0	1	0	1	0	1
344			min	90.006	15	0	1	0	1	0	1	0	1	0	1
345		2	max	2190.946	1	0	1	0	1	0	1	0	1	0	1
346			min	90.057	15	0	1	0	1	0	1	0	1	0	1
347		3	max	2191.116	1	0	1	0	1	0	1	0	1	0	1
348			min	90.108	15	0	1	0	1	0	1	0	1	0	1
349		4	max	2191.286	1	0	1	0	1	0	1	0	1	0	1
350			min	90.16	15	0	1	0	1	0	1	0	1	0	1
351		5	max	2191.457	1	0	1	0	1	0	1	0	1	0	1
352			min	90.211	15	0	1	0	1	0	1	0	1	0	1
353		6		2191.627	1	0	1	0	1	0	1	0	1	0	1
354			min	90.263	15	0	1	0	1	0	1	0	1	0	1
355		7	max	2191.797	1	0	1	0	1	0	1	0	1	0	1
356			min		15	0	1	0	1	0	1	0	1	0	1
357		8	max	2191.968	1	0	1	0	1	0	1	0	1	0	1
358			min	90.365	15	0	1	0	1	0	1	0	1	0	1
359		9	max	2192.138	1	0	1	0	1	0	1	0	1	0	1
360			min		15	0	1	0	1	0	1	0	1	0	1
361		10	max	2192.308	1	0	1	0	1	0	1	0	1	0	1
362			min		15	0	1	0	1	0	1	0	1	0	1
363		11	max	2192.479	1	0	1	0	1	0	1	0	1	0	1
364			min		15	0	1	0	1	0	1	0	1	0	1
365		12	max	2192.649		0	1	0	1	0	1	0	1	0	1
366			min		15	0	1	0	1	0	1	0	1	0	1
367		13		2192.819	1	0	1	0	1	0	1	0	1	0	1
368			min		15	0	1	0	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	2192.99	1	0	1	0	1	0	1	0	1	0	1
370			min	90.674	15	0	1	0	1	0	1	0	1	0	1
371		15	max	2193.16	1	0	1	0	1	0	1	0	1	0	1
372			min	90.725	15	0	1	0	1	0	1_	0	1	0	1
373		16	max	2193.33	1	0	1	0	1	0	1	0	1	0	1
374		4-	min	90.776	15	0	1	0	1_	0	1	0	1	0	1
375		17		2193.501	1	0	1	0	1	0	1	0	1	0	1
376		40	min	90.828	15	0	1	0	1_	0	1_	0	1	0	1
377		18	_	2193.671	1	0	1	0	1	0	1	0	1	0	1
378		19	min	90.879	15	0	1	0	<u>1</u> 1	0	_	0	1	0	1
379 380		19		2193.841 90.931	1 15	0	1	0	1	0	1	0	1	0	1
381	M10	1	min max	968.978	2	2.018	4	018	15	0	1	0	2	0	1
382	IVITO		min	-1337.133	3	.475	15	33	1	0	3	0	3	0	1
383		2	max	969.498	2	1.899	4	018	15	0	1	0	15	0	15
384			min	-1336.743	3	.447	15	33	1	0	3	0	1	0	4
385		3	max		2	1.78	4	018	15	0	1	0	15	0	15
386			min	-1336.352	3	.419	15	33	1	0	3	0	1	001	4
387		4	max	970.54	2	1.661	4	018	15	0	1	0	15	0	15
388			min	-1335.962	3	.391	15	33	1	0	3	0	1	002	4
389		5	max	971.06	2	1.542	4	018	15	0	1	0	15	0	15
390			min	-1335.571	3	.363	15	33	1	0	3	0	1	003	4
391		6	max	971.581	2	1.423	4	018	15	0	1	0	15	0	15
392			min	-1335.181	3	.335	15	33	1	0	3	0	1	003	4
393		7	max	972.102	2	1.305	4	018	15	0	1	0	15	0	15
394			min	-1334.79	3	.307	15	33	1	0	3	0	1	004	4
395		8	max	972.622	2	1.186	4	018	15	0	1	0	15	0	15
396			min	-1334.4	3	.279	15	33	1	0	3	0	1	004	4
397		9	max	973.143	2	1.067	4	018	15	0	1	0	15	001	15
398			min	-1334.009	3	.251	15	33	1	0	3	0	1	004	4
399		10	max	973.664	2	.948	4	018	15	0	_1_	0	15	001	15
400			min	-1333.619	3	.208	12	33	1_	0	3	001	1	005	4
401		11	max	974.185	2	.842	2	018	15	0	1_	0	15	001	15
402			min	-1333.228	3	.162	12	33	1_	0	3	001	1	005	4
403		12	max		2	.75	2	018	15	0	1	0	15	001	15
404		40	min	-1332.838	3	.115	12	33	1_	0	3	001	1_	005	4
405		13	max		2	.657	2	018	15	0	1	0	15	001	15
406		4.4	min	-1332.447	3	.069	12	33	1_	0	3	001	1	006	4
407		14	max	975.747 -1332.057	3	.564	3	018	<u>15</u>	0	3	0	1 <u>5</u>	001	15
408 409		15		976.267		.007 .472		33 018	15	_		002		006 001	15
410		15	min		3	063	3	33	1	0	<u>1</u> 3	002	1 <u>5</u>	006	15
411		16		976.788	2	.379	2	018	15	0	<u> </u>	0	15	006 001	15
412		10		-1331.276	3	132	3	33	1	0	3	002	1	006	4
413		17	max		2	.287	2	018	15	0	1	0	15	000 001	15
414		17	min	-1330.885	3	201	3	33	1	0	3	002	1	006	4
415		18		977.829	2	.194	2	018	15	0	1	0	15	001	12
416			min	-1330.495	3	271	3	33	1	0	3	002	1	006	4
417		19	max	978.35	2	.101	2	018	15	0	1	0	15	001	12
418				-1330.104	3	34	3	33	1	0	3	002	1	006	4
419	M11	1		798.798	2	7.661	4	017	15	0	1	0	15	.006	4
420				-925.452	3	1.801	15	3	1	0	5	0	1	.001	12
421		2		798.627	2	6.9	4	017	15	0	1	0	15	.004	2
422			min	-925.58	3	1.622	15	3	1	0	5	0	1	0	3
423		3		798.457	2	6.139	4	017	15	0	1	0	15	.001	2
424				-925.708	3	1.443	15	3	1	0	5	0	1	001	3
425		4	max	798.287	2	5.378	4	017	15	0	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-925.836	3	1.265	15	3	1	0	5	0	1	003	3
427		5	max		2	4.617	4	017	15	00	1	0	15	0	15
428			min	-925.963	3	1.086	15	3	1	0	5	0	1	004	4
429		6	max	797.946	2	3.856	4	017	15	0	1	0	15	001	15
430			min	-926.091	3	.907	15	3	1	0	5	001	1_	006	4
431		7	max	797.776	2	3.096	4	017	15	0	1_	0	15	002	15
432			min	-926.219	3	.728	15	3	1	0	5	001	1_	007	4
433		8	max	797.605	2	2.335	4	017	15	0	1	0	15	002	15
434			min	-926.347	3	.549	15	3	1	0	5	001	1	008	4
435		9	max	797.435	2	1.574	4	017	15	0	1	0	15	002	15
436		40	min	-926.474	3	.37	15	3	1	0	5	001	1	009	4
437		10	max	797.264	2	.813	12	017	15	0	1	0	15	002	15
438		11	min	<u>-926.602</u>	3	.178		3	1 1 5	0	<u>5</u>	002	1 1 5	01	15
439 440		11	max	797.094 -926.73	3	.209 201	3	017 3	15	0 0	5	002	15 1	002 01	15
441		12	min max	796.924	2	201 166	15	017	15	0	1	002 0	15	002	15
442		12	min	-926.858	3	709	4	3	1	0	5	002	1	002	4
443		13	max	796.753	2	70 9 345	15	017	15	0	1	0	15	002	15
444		13	min	-926.985	3	-1.47	4	3	1	0	5	002	1	002	4
445		14	max	796.583	2	524	15	017	15	0	1	0	15	002	15
446		17	min	-927.113	3	-2.231	4	3	1	0	5	002	1	009	4
447		15	max	796.413	2	703	15	017	15	0	1	0	15	002	15
448			min	-927.241	3	-2.992	4	3	1	0	5	002	1	008	4
449		16	max	796.242	2	882	15	017	15	0	1	0	15	001	15
450			min	-927.369	3	-3.753	4	3	1	0	5	002	1	006	4
451		17	max	796.072	2	-1.061	15	017	15	0	1	0	15	001	15
452			min	-927.497	3	-4.514	4	3	1	0	5	002	1	004	4
453		18	max	795.902	2	-1.24	15	017	15	0	1	0	15	0	15
454			min	-927.624	3	-5.275	4	3	1	0	5	003	1	002	4
455		19	max	795.731	2	-1.419	15	017	15	0	1_	0	15	0	1
456			min	-927.752	3	-6.036	4	3	1	0	5	003	1	0	1
457	M12	1	max	884.225	1	0	1	10.989	1	0	1	0	15	0	1
458			min	43.077	15	0	1	.613	15	0	1	002	1	0	1
459		2	max	884.396	1	0	1	10.989	1	0	1_	0	15	0	1
460			min	43.128	15	0	1	.613	15	0	1	001	1	0	1
461		3	max	884.566	1	0	1	10.989	1	0	1	0	1	0	1
462			min	43.179	15	0	1	.613	15	0	1	0	3	0	1
463		4	max		1	0	1	10.989	1	0	1	.001	1	0	1
464		_	min	43.231	15	0	1	.613	15	0	1	0	15	0	1
465		5	max	884.907	1	0	1	10.989	1	0	1	.003	1	0	1
466		_		43.282		0	1	.613	15	0	1	0	15		1
467		6	max		1	0	1	10.989	1	0	1	.004	1	0	1
468		7	min	43.333	15	0	1	.613	15 1	0	1	0	<u>15</u>	0	1
469			max	885.247 43.385	1	0	1	10.989	15	0	1	.005	15	0 0	1
470 471		8	min		1 <u>5</u> 1	0	1	<u>.613</u> 10.989	1	<u> </u>	1	.006	1	0	1
471		0	max min	43.436	15	0	1	.613	15	0	1	0	15	0	1
473		9	max		1	0	1	10.989	1	0	1	.008	1	0	1
474		9	min	43.488	15	0	1	.613	15	0	1	0	15	0	1
474		10	max	885.758	1	0	1	10.989	1	0	1	.009	1	0	1
476		10	min	43.539	15	0	1	.613	15	0	1	0	15	0	1
477		11	max		1	0	1	10.989	1	0	1	.01	1	0	1
478			min	43.59	15	0	1	.613	15	0	1	0	15	0	1
479		12	max		1	0	1	10.989	1	0	1	.011	1	0	1
480		1,2	min	43.642	15	0	1	.613	15	0	1	0	15	0	1
481		13		886.27	1	0	1	10.989	1	0	1	.013	1	0	1
482			min	43.693	15	0	1	.613	15	0	1	0	15	0	1
						·						•			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	886.44	1	0	1	10.989	1	0	1	.014	1	0	1
484			min	43.745	15	0	1	.613	15	0	1	0	15	0	1
485		15	max	886.61	1	0	1	10.989	1	0	1	.015	1	0	1
486			min	43.796	15	0	1	.613	15	0	1	0	15	0	1
487		16	max	886.781	1	0	1	10.989	1	0	1	.016	1	0	1
488			min	43.847	15	0	1	.613	15	0	1	0	15	0	1
489		17	max	886.951	1	0	1	10.989	1	0	1	.018	1	0	1
490			min	43.899	15	0	1_	.613	15	0	1	0	15	0	1
491		18	max	887.121	1	0	1	10.989	1	0	1	.019	1	0	1
492			min	43.95	15	0	1	.613	15	0	1	.001	15	0	1
493		19	max	887.292	1	0	1	10.989	1	0	1	.02	1	0	1
494			min	44.002	15	0	1	.613	15	0	1	.001	15	0	1
495	M1	1	max	168.545	1	696.309	3	-5.447	15	0	2	.233	1	.001	3
496			min	9.357	15	-392.868	2	-97.213	1	0	3	.013	15	013	2
497		2	max	169.366	1	695.429	3	-5.447	15	0	2	.181	1	.194	2
498			min	9.605	15	-394.041	2	-97.213	1	0	3	.01	15	366	3
499		3	max	580.731	3	480.484	2	-5.429	15	0	3	.13	1	.392	2
500			min	-332.1	2	-521.599	3	-97.039	1	0	2	.007	15	718	3
501		4	max	581.347	3	479.311	2	-5.429	15	0	3	.079	1	.139	2
502			min	-331.278	2	-522.479	3	-97.039	1	0	2	.004	15	442	3
503		5	max	581.963	3	478.137	2	-5.429	15	0	3	.028	1	003	15
504			min	-330.457	2	-523.359	3	-97.039	1	0	2	.002	15	166	3
505		6	max	582.579	3	476.964	2	-5.429	15	0	3	001	15	.11	3
506			min	-329.635	2	-524.239	3	-97.039	1	0	2	024	1	366	2
507		7	max	583.195	3	475.79	2	-5.429	15	0	3	004	15	.387	3
508				-328.814	2	-525.119	3	-97.039	1	0	2	075	1	617	2
509		8	max		3	474.617	2	-5.429	15	0	3	007	15	.664	3
510				-327.992	2	-525.999	3	-97.039	1	0	2	126	1	868	2
511		9	max	600.499	3	52.739	2	-8.034	15	0	9	.075	1	.773	3
512			min	-251.85	2	.359	15	-143.64	1	0	3	.004	15	995	2
513		10	max	601.116	3	51.565	2	-8.034	15	0	9	0	15	.755	3
514			min	-251.028	2	.005	15	-143.64	1	0	3	0	1	-1.023	2
515		11	max	601.732	3	50.392	2	-8.034	15	0	9	004	15	.738	3
516				-250.207	2	-1.431	4	-143.64	1	0	3	077	1	-1.05	2
517		12	max	618.289	3	356.83	3	-5.302	15	0	2	.125	1	.644	3
518			min	-174.02	2	-584.101	2	-94.976	1	0	3	.007	15	932	2
519		13	max		3	355.95	3	-5.302	15	0	2	.074	1	.456	3
520				-173.198	2	-585.274	2	-94.976	1	0	3	.004	15	623	2
521		14	max		3	355.07	3	-5.302	15	0	2	.024	1	.268	3
522			min	-172.377	2	-586.447	2	-94.976	1	0	3	.001	15	314	2
523		15	max	620.138	3	354.19	3		15	0	2	001	15	.081	3
524				-171.555	2	-587.621	2	-94.976	1	0	3	026	1	023	1
525		16		620.754	3	353.31	3	-5.302	15	0	2	004	15	.306	2
526				-170.733	2	-588.794	2	-94.976	1	0	3	076	1	105	3
527		17	max		3	352.43	3	-5.302	15	0	2	007	15	.617	2
528				-169.912	2	-589.967	2	-94.976	1	0	3	126	1	292	3
529		18	max		15	607.317	2	-5.897	15	0	3	01	15	.311	2
530				-169.642	1	-294.692	3	-105.458		0	2	178	1	144	3
531		19	max		15	606.144	2	-5.897	15	0	3	013	15	.012	3
532			min	-168.82	1	-295.572	3	-105.458	1	0	2	234	1	009	2
533	M5	1		366.876	1	2319.798	3	0	1	0	1	0	1	.027	2
534	.,,,,		min	18.293	12	-1337.496	2	0	1	0	1	0	1	003	3
535		2		367.698	1	2318.918	3	0	1	0	1	0	1	.733	2
536				18.704	12	-1338.67	2	0	1	0	1	0	1	-1.227	3
537		3		1857.103	3	1435.599	2	0	1	0	1	0	1	1.406	2
538		J		-1138.628	2	-1658.951	3	0	1	0	1	0	1	-2.402	3
539		4		1857.72	3	1434.426	2	0	1	0	1	0	1	.649	2
JJJ		- +	παλ	1001.12	<u> </u>	1707.420		U	1	U			1	.∪+3	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-1137.806	2	-1659.831	3	0	1	0	1	0	1	-1.527	3
541		5	max	1858.336	3	1433.253	2	0	1	0	1	0	1	.006	9
542			min	-1136.985	2	-1660.711	3	0	1	0	1	0	1	651	3
543		6	max	1858.952	3	1432.079	2	0	1	0	1	0	1	.226	3
544			min	-1136.163	2	-1661.591	3	0	1	0	1	0	1	864	2
545		7	max	1859.568	3	1430.906	2	0	1	0	1	0	1	1.103	3
546			min	-1135.342	2	-1662.471	3	0	1	0	1	0	1	-1.619	2
547		8	max	1860.184	3	1429.732	2	0	1	0	1	0	1	1.98	3
548			min	-1134.52	2	-1663.351	3	0	1	0	1	0	1	-2.374	2
549		9	max	1887.057	3	176.9	2	0	1	0	1	0	1	2.273	3
550			min	-975.61	2	.354	15	0	1	0	1	0	1	-2.71	2
551		10	max	1887.673	3	175.727	2	0	1	0	1	0	1	2.208	3
552			min	-974.788	2	0	15	0	1	0	1	0	1	-2.803	2
553		11	max	1888.289	3	174.554	2	0	1	0	1	0	1	2.144	3
554			min	-973.966	2	-1.325	4	0	1	0	1	0	1	-2.895	2
555		12	max	1915.422	3	1121.251	3	0	1	0	1	0	1	1.886	3
556			min	-815.145	2	-1788.803	2	0	1	0	1	0	1	-2.596	2
557		13	max	1916.038	3	1120.371	3	0	1	0	1	0	1	1.295	3
558			min	-814.323	2	-1789.976	2	0	1	0	1	0	1	-1.652	2
559		14	max	1916.654	3	1119.491	3	0	1	0	1	0	1	.704	3
560			min	-813.502	2	-1791.149	2	0	1	0	1	0	1	707	2
561		15	max	1917.27	3	1118.611	3	0	1	0	1	0	1	.238	2
562			min	-812.68	2	-1792.323	2	0	1	0	1	0	1	003	13
563		16	max	1917.887	3	1117.731	3	0	1	0	1_	0	1	1.184	2
564			min	-811.859	2	-1793.496	2	0	1	0	1	0	1	476	3
565		17	max	1918.503	3	1116.851	3	0	1	0	1	0	1	2.131	2
566			min	-811.037	2	-1794.67	2	0	1	0	1	0	1	-1.066	3
567		18	max	-19.229	12	2045.567	2	0	1	0	1	0	1	1.098	2
568			min	-367.147	1	-1012.41	3	0	1	0	1	0	1	558	3
569		19	max	-18.818	12	2044.394	2	0	1	0	1	0	1	.018	2
570			min	-366.325	1	-1013.29	3	0	1	0	1	0	1	023	3
571	<u>M9</u>	1	max		1_	696.309	3	97.213	1	0	3	013	15	.001	3
572			min	9.357	15	-392.868	2	5.447	15	0	2	233	1	013	2
573		2	max		1	695.429	3	97.213	1	0	3	01	15	.194	2
574			min	9.605	15	-394.041	2	5.447	15	0	2	181	1	366	3
575		3	max		3	480.484	2	97.039	1	0	2	007	15	.392	2
576			min	-332.1	2	-521.599	3	5.429	15	0	3	13	1	718	3
577		4	max		3	479.311	2	97.039	1_	0	2	004	15	.139	2
578			min	-331.278	2	-522.479	3	5.429	15	0	3	079	1	442	3
579		5	max	581.963	3	478.137	2	97.039	1	0	2	002	15	003	15
580				-330.457				5.429	15		3	028	1	166	3
581		6		582.579	3	476.964	2	97.039	1	0	2	.024	1	11	3
582			min		2	-524.239		5.429	15	0	3	.001	15	366	2
583		7		583.195	3	475.79	2	97.039	1	0	2	.075	1	.387	3
584			min	-328.814	2	-525.119	3	5.429	15	0	3	.004	15	<u>617</u>	2
585		8		583.812	3	474.617	2	97.039	1	0	2	.126	1	.664	3
586			min		2	-525.999	3	5.429	15	0	3	.007	15	868	2
587		9		600.499	3	52.739	2	143.64	1	0	3	004	15	<u>.773</u>	3
588				-251.85	2	.359	15	8.034	15	0	9	075	1	<u>995</u>	2
589		10	max		3	51.565	2	143.64	1	0	3	0	1	.755	3
590		4.	min		2	.005	15	8.034	15	0	9	0	15	<u>-1.023</u>	2
591		11		601.732	3	50.392	2	143.64	1	0	3	.077	1	.738	3
592		4.0	min		2	-1.431	4	8.034	15	0	9	.004	15	<u>-1.05</u>	2
593		12		618.289	3	356.83	3	94.976	1	0	3	007	15	.644	3
594		4.0	min	-174.02	2	-584.101	2	5.302	15	0	2	125	1	<u>932</u>	2
595		13		618.906	3	355.95	3	94.976	11	0	3	004	15	<u>.456</u>	3
596			min	-173.198	2	-585.274	2	5.302	15	0	2	074	1	623	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	619.522	3	355.07	3	94.976	1	0	3	001	15	.268	3
598			min	-172.377	2	-586.447	2	5.302	15	0	2	024	1	314	2
599		15	max	620.138	3	354.19	3	94.976	1	0	3	.026	1	.081	3
600			min	-171.555	2	-587.621	2	5.302	15	0	2	.001	15	023	1
601		16	max	620.754	3	353.31	3	94.976	1	0	3	.076	1	.306	2
602			min	-170.733	2	-588.794	2	5.302	15	0	2	.004	15	105	3
603		17	max	621.37	3	352.43	3	94.976	1	0	3	.126	1	.617	2
604			min	-169.912	2	-589.967	2	5.302	15	0	2	.007	15	292	3
605		18	max	-9.614	15	607.317	2	105.458	1	0	2	.178	1	.311	2
606			min	-169.642	1	-294.692	3	5.897	15	0	3	.01	15	144	3
607		19	max	-9.366	15	606.144	2	105.458	1	0	2	.234	1	.012	3
608			min	-168.82	1	-295.572	3	5.897	15	0	3	.013	15	009	2

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
1	M13	1	max	0	1	.103	2	.01	3 8.738e-3	2	NC	_1_	NC	1
2			min	0	15	02	3	006	2 -2.205e-3	3	NC	1_	NC	1
3		2	max	0	1	.262	3	.033	1 9.986e-3	2	NC	5	NC	2
4			min	0	15	042	1	0	10 -2.341e-3		806.878	3	6945.989	
_ 5		3	max	0	1	.491	3	.08	1 1.123e-2	2	NC	5	NC	3
6			min	0	15	148	2	.005	15 -2.476e-3	3	445.851	3	2863.19	1
7		4	max	0	1	.63	3	.12	1 1.248e-2	2	NC	5_	NC	3
8			min	0	15	208	2	.007	15 -2.612e-3	3	350.598	3	1902.921	1
9		5	max	0	1	.662	3	.14	1 1.373e-2	2	NC	5	NC	3
10			min	0	15	208	2	.008	15 -2.748e-3	3	334.059	3	1627.324	1
11		6	max	0	1	.59	3	.135	1 1.498e-2	2	NC	5	NC	5
12			min	0	15	151	2	.008	15 -2.884e-3	3	373.554	3	1694.29	1
13		7	max	0	1	.435	3	.105	1 1.623e-2	2	NC	5	NC	5
14			min	0	15	059	1	.006	10 -3.019e-3	3	500.579	3	2179.722	1
15		8	max	0	1	.238	3	.059	1 1.747e-2	2	NC	4	NC	2
16			min	0	15	.001	15	002	10 -3.155e-3	3	881.138	3	3868.887	1
17		9	max	0	1	.183	2	.032	3 1.872e-2	2	NC	4	NC	1
18			min	0	15	.004	15	012	2 -3.291e-3	3	2837.996	3	NC	1
19		10	max	0	1	.231	2	.031	3 1.997e-2	2	NC	3	NC	1
20			min	0	1	021	3	022	2 -3.426e-3	3	1773.83	2	NC	1
21		11	max	0	15	.183	2	.032	3 1.872e-2	2	NC	4	NC	1
22			min	0	1	.004	15	012	2 -3.291e-3	3	2837.996	3	NC	1
23		12	max	0	15	.238	3	.059	1 1.747e-2	2	NC	4	NC	2
24			min	0	1	.001	15	002	10 -3.155e-3	3	881.138	3	3868.887	1
25		13	max	0	15	.435	3	.105	1 1.623e-2	2	NC	5	NC	5
26			min	0	1	059	1	.006	10 -3.019e-3	3	500.579	3	2179.722	1
27		14	max	0	15	.59	3	.135	1 1.498e-2	2	NC	5	NC	5
28			min	0	1	151	2	.008	15 -2.884e-3	3	373.554	3	1694.29	1
29		15	max	0	15	.662	3	.14	1 1.373e-2	2	NC	5	NC	3
30			min	0	1	208	2	.008	15 -2.748e-3	3	334.059	3	1627.324	1
31		16	max	0	15	.63	3	.12	1 1.248e-2	2	NC	5	NC	3
32			min	0	1	208	2	.007	15 -2.612e-3	3	350.598	3	1902.921	1
33		17	max	0	15	.491	3	.08	1 1.123e-2	2	NC	5	NC	3
34			min	0	1	148	2	.005	15 -2.476e-3	3	445.851	3	2863.19	1
35		18	max	0	15	.262	3	.033	1 9.986e-3	2	NC	5	NC	2
36			min	0	1	042	1	0	10 -2.341e-3	3	806.878	3	6945.989	1
37		19	max	0	15	.103	2	.01	3 8.738e-3	2	NC	1	NC	1
38			min	0	1	02	3	006	2 -2.205e-3		NC	1	NC	1
39	M14	1	max	0	1	.237	3	.009	3 5.032e-3	2	NC	1	NC	1
40			min	0	15	337	2	005	2 -4.044e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
41		2	max	0	1	.529	3	.022	1	6.003e-3	2	NC	5	NC	1
42			min	0	15	592	2	0	10	-4.905e-3	3	780.561	3	NC	1
43		3	max	0	1	.778	3	.064	1	6.973e-3	2	NC	5	NC	3
44			min	0	15	814	2	.004	15	-5.766e-3	3	421.579	3	3604.694	1
45		4	max	0	1	.954	3	.102	1	7.944e-3	2	NC	15	NC	3
46			min	0	15	98	2	.006	15	-6.627e-3	3	318.24	3	2238.243	1
47		5	max	0	1	1.041	3	.124	1	8.914e-3	2	NC	15	NC	3
48			min	0	15	-1.078	2	.007	15	-7.489e-3	3	283.55	3	1844.1	1
49		6	max	0	1	1.041	3	.122	1	9.885e-3	2	NC	15	NC	3
50			min	0	15	-1.107	2	.007	15	-8.35e-3	3	283.656	3	1874.885	1
51		7	max	0	1	.968	3	.096	1	1.086e-2	2	NC	15	NC	3
52			min	0	15	-1.077	2	.006	10	-9.211e-3	3	307.815	2	2371.289	1
53		8	max	0	1	.851	3	.055	1	1.183e-2	2	NC	15	NC	2
54			min	0	15	-1.009	2	002	10	-1.007e-2	3	338.895	2	4147.357	1
55		9	max	0	1	.736	3	.028	3	1.28e-2	2	NC	5	NC	1
56			min	0	15	936	2	01	2	-1.093e-2	3	380.554	2	NC	1
57		10	max	0	1	.681	3	.027	3	1.377e-2	2	NC	5	NC	1
58			min	0	1	9	2	02	2	-1.179e-2	3	405.01	2	NC	1
59		11	max	0	15	.736	3	.028	3	1.28e-2	2	NC	5	NC	1
60			min	0	1	936	2	01	2	-1.093e-2	3	380.554	2	NC	1
61		12	max	0	15	.851	3	.055	1	1.183e-2	2	NC	15	NC	2
62			min	0	1	-1.009	2	002			3	338.895	2	4147.357	1
63		13	max	0	15	.968	3	.096	1	1.086e-2	2	NC	15	NC	3
64		''	min	0	1	-1.077	2	.006	10	-9.211e-3	3	307.815	2	2371.289	
65		14	max	0	15	1.041	3	.122	1	9.885e-3	2	NC	15	NC	3
66		17	min	0	1	-1.107	2	.007	15	-8.35e-3	3	283.656	3	1874.885	1
67		15	max	0	15	1.041	3	.124	1	8.914e-3	2	NC	15	NC	3
68		13	min	0	1	-1.078	2	.007		-7.489e-3	3	283.55	3	1844.1	1
69		16	max	0	15	.954	3	.102	1	7.944e-3	2	NC	15	NC	3
		10		0	1	98	2	.006		-6.627e-3	3	318.24	3	2238.243	
70		17	min max	0	15	<u>98</u> .778	3	.064	1	6.973e-3	2	NC	5	NC	3
72		17	min	0	1	814	2	.004	15	-5.766e-3	3	421.579	3	3604.694	
73		18			15	.529	3	.022	1			NC	5	NC	1
		10	max	0						6.003e-3	2		3		
74		40	min	0	1	592	2	0	10	-4.905e-3	3	780.561		NC NC	1
75		19	max	0	15	.237	3	.009	3	5.032e-3	2	NC NC	1	NC NC	1
76	N 14 C	4	min	0	1	337	2	005	2	-4.044e-3	3	NC NC	_	NC NC	•
77	M15	1	max	0	15	.241	3	.008	3	3.586e-3	3	NC NC	1_	NC NC	1
78			min	0	1	336	2	005	2	-5.295e-3	2	NC NC	1_	NC NC	1
79		2	max	0	15	.438	3	.022	1	4.356e-3	3	NC CCO OFO	5	NC NC	1
80			min	0	1	676	2	0	10	-6.323e-3	2	668.953	2	NC NC	1
81		3	max		15	.609	3	.064	1	5.125e-3		NC 000.047	5	NC 0500 040	3
82		-	min	0	1	968	2	.004	15	-7.35e-3	2	360.617	2	3593.212	
83		4	max	0	15	.738	3	.102	1	5.895e-3	3	NC 074 00	<u>15</u>	NC 2000 000	3
84		-	min	0	1	<u>-1.176</u>	2	.006		-8.377e-3	2	271.33	2	2232.296	
85		5	max	0	15	<u>.816</u>	3	.124	1	6.665e-3	3_	NC 040.50	<u>15</u>	NC	3
86			min	0	1	-1.283	2	.007	15	-9.405e-3	2	240.53		1839.297	1
87		6	max	0	15	.841	3	.122	1	7.435e-3	3_	NC 000.704	<u>15</u>	NC 4000 004	3
88		-	min	0	1	-1.29	2	.007		-1.043e-2	2	238.784	2	1869.364	
89		7	max	0	15	.821	3	.097	1_	8.205e-3	3_	NC	<u>15</u>	NC	3
90			min	0	1	<u>-1.213</u>	2	.006		-1.146e-2	2	259.757	2	2361.884	
91		8	max	0	15	.771	3	.056	1	8.975e-3	3	NC	<u>15</u>	NC	2
92			min	0	1	-1.086	2	001		-1.249e-2	2	303.948	2	4117.653	
93		9	max	0	15	.717	3	.026	3	9.744e-3	3	NC	5_	NC	1
94			min	0	1	958	2	009	2	-1.351e-2	2	366.341	2	NC	1
95		10	max	0	1	.69	3	.025	3	1.051e-2	3	NC	5_	NC	1
96			min	0	1	897	2	019	2	-1.454e-2	2	405.9	2	NC	1
97		11	max	0	1	.717	3	.026	3	9.744e-3	3	NC	5	NC	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) I /v Ratio	I C	(n) I /z Ratio	
98			min	0	15	958	2	009	2 -1.351e-2	2	366.341	2	NC	1
99		12	max	0	1	.771	3	.056	1 8.975e-3	3	NC	15	NC	2
100			min	0	15	-1.086	2	001	10 -1.249e-2	2	303.948	2	4117.653	
101		13	max	0	1	.821	3	.097	1 8.205e-3	3	NC	15	NC	3
102			min	0	15	-1.213	2	.006	15 -1.146e-2	2	259.757	2	2361.884	1
103		14	max	0	1	.841	3	.122	1 7.435e-3	3	NC	15	NC	3
104			min	0	15	-1.29	2	.007	15 -1.043e-2	2	238.784	2	1869.364	1
105		15	max	0	1	.816	3	.124	1 6.665e-3	3	NC	15	NC	3
106			min	0	15	-1.283	2	.007	15 -9.405e-3	2	240.53	2	1839.297	1
107		16	max	0	1	.738	3	.102	1 5.895e-3	3	NC	15	NC	3
108			min	0	15	-1.176	2	.006	15 -8.377e-3	2	271.33	2	2232.296	1
109		17	max	0	1	.609	3	.064	1 5.125e-3	3	NC	5	NC	3
110			min	0	15	968	2	.004	15 -7.35e-3	2	360.617	2	3593.212	1
111		18	max	0	1	.438	3	.022	1 4.356e-3	3	NC	5	NC	1
112			min	0	15	676	2	0	10 -6.323e-3	2	668.953	2	NC	1
113		19	max	0	1	.241	3	.008	3 3.586e-3	3	NC	1	NC	1
114			min	0	15	336	2	005	2 -5.295e-3	2	NC	1	NC	1
115	M16	1	max	0	15	.09	2	.007	3 6.298e-3	3	NC	1	NC	1
116			min	0	1	077	3	004	2 -7.082e-3	2	NC	1	NC	1
117		2	max	0	15	.025	3	.033	1 7.373e-3	3	NC	5	NC	2
118			min	0	1	14	2	.002	10 -7.941e-3	2	988.41	2	6989.594	1
119		3	max	0	15	.104	3	.08	1 8.449e-3	3	NC	5_	NC	3
120			min	0	1	324	2	.005	15 -8.8e-3	2	549.842	2	2869.787	1
121		4	max	0	15	.146	3	.12	1 9.524e-3	3	NC	5	NC	3
122			min	0	1	431	2	.007	15 -9.658e-3	2	437.83	2	1902.744	1
123		5	max	0	15	.142	3	.141	1 1.06e-2	3	NC	5_	NC	3
124			min	0	1	444	2	.008	15 -1.052e-2	2	426.51	2	1623.572	1
125		6	max	0	15	.096	3	.135	1 1.167e-2	3	NC	5	NC	3
126			min	0	1	368	2	.008	15 -1.138e-2	2	497.124	2	1685.511	1
127		7	max	0	15	.017	3	.106	1 1.275e-2	3	NC	5_	NC	3
128			min	0	1	222	2	.006	15 -1.223e-2	2	730.015	2	2157.274	1
129		8	max	0	15	.013	9	.06	1 1.382e-2	3	NC	3_	NC	2
130			min	0	1	078	3	0	10 -1.309e-2	2	1729.045	2	3777.084	
131		9	max	0	15	.12	2	.023	3 1.49e-2	3	NC	4_	NC	1
132			min	0	1	161	3	007	2 -1.395e-2	2	2716.942	3	NC	1
133		10	max	0	1	.192	2	.022	3 1.598e-2	3	NC	4	NC	1
134			min	0	1	198	3	017	2 -1.481e-2	2	1884.946	3	NC	1
135		11	max	0	1	.12	2	.023	3 1.49e-2	3	NC	4	NC	1
136			min	0	15	161	3	007	2 -1.395e-2	2	2716.942	3	NC	1
137		12	max	0	1	.013	9	.06	1 1.382e-2	3	NC 4700.045	3_	NC 0777 004	2
138		40	min	0	15	078	3	0	10 -1.309e-2	2	1729.045		3777.084	
139		13	max	0	1	.017	3	.106	1 1.275e-2	3	NC 720 045	5	NC	3
140		4.4	min	0	15	222	2	.006	15 -1.223e-2	2	730.015	2	2157.274	
141		14	max	0	1	.096	3	.135	1 1.167e-2	3	NC	5	NC 1005 F11	3
142		4.5	min	0	15	368	2	.008	15 -1.138e-2	2	497.124	2	1685.511	1
143		15	max	0	1	.142	3	.141	1 1.06e-2	3	NC 426 F1	5	NC	3
144		10	min	0	15	<u>444</u>	2	.008	15 -1.052e-2	2	426.51	2	1623.572	_
145		16	max	0	1	.146	3	.12	1 9.524e-3	3	NC	5	NC	3
146		17	min	0	15	431	2	.007	15 -9.658e-3	2	437.83	2	1902.744	
147		17	max	0	15	.104	2	.08	1 8.449e-3	3	NC 540.842	5	NC	3
148		10	min	0		324		.005	15 -8.8e-3	2	549.842	2	2869.787	1
149		18	max	0	1	.025	3	.033	1 7.373e-3	3	NC	5	NC 6090 504	2
150		10	min	0	15	14	2	.002	10 -7.941e-3		988.41	2	6989.594	
151		19	max	0	15	.09	2	.007	3 6.298e-3	3	NC NC	1	NC NC	1
152	M2	1	min	0		077	2	004	2 -7.082e-3	15	NC NC	1	NC NC	1
153	IVIZ		max	.007	2	.01		.008	1 -1.214e-5				NC NC	
154			min	01	3	015	3	0	15 -2.168e-4	1	8020.918	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC) LC
155		2	max	.007	2	.008	2	.007	1	-1.15e-5	15	NC	_1_	NC	1
156			min	009	3	01 <u>5</u>	3	0	15	-2.053e-4	1_	9361.221	2	NC	1
157		3	max	.006	2	.007	2	.006	1	-1.085e-5	15	NC	_1_	NC	1
158			min	009	3	014	3	0	15	-1.938e-4	1_	NC	1_	NC	1
159		4	max	.006	2	.006	2	.006	1	-1.021e-5	15	NC	_1_	NC	1
160			min	008	3	014	3	0	15		1_	NC	1_	NC	1
161		5	max	.006	2	.004	2	.005	1_	-9.566e-6	<u>15</u>	NC	_1_	NC	1
162			min	008	3	013	3	0	15		1_	NC	1_	NC	1
163		6	max	.005	2	.003	2	.005	1	-8.922e-6	15	NC	_1_	NC	1
164			min	007	3	013	3	0	15	-1.593e-4	1_	NC	1_	NC	1
165		7	max	.005	2	.002	2	.004	1_	-8.278e-6	<u>15</u>	NC	_1_	NC	1
166			min	007	3	012	3	0	15	-1.478e-4	1_	NC	1_	NC	1
167		8	max	.004	2	.001	2	.003	1	-7.635e-6	<u>15</u>	NC	<u>1</u>	NC	1
168			min	006	3	012	3	0	15		1	NC	1	NC	1
169		9	max	.004	2	0	2	.003	1_	-6.991e-6	<u>15</u>	NC	1_	NC	1
170			min	005	3	011	3	0	15	-1.248e-4	1_	NC	1_	NC	1
171		10	max	.004	2	0	2	.002	1_	-6.347e-6	<u>15</u>	NC	_1_	NC	1
172			min	005	3	01	3	0	15	-1.133e-4	1_	NC	1_	NC	1
173		11	max	.003	2	001	2	.002	1	-5.704e-6	15	NC	1	NC	1
174			min	004	3	009	3	0	15	-1.018e-4	1	NC	1	NC	1
175		12	max	.003	2	001	15	.002	1_	-5.06e-6	<u>15</u>	NC	_1_	NC	1
176			min	004	3	008	3	0	15	-9.032e-5	1_	NC	1_	NC	1
177		13	max	.002	2	001	15	.001	1	-4.416e-6	<u>15</u>	NC	<u>1</u>	NC	1
178			min	003	3	007	3	0	15		1	NC	1	NC	1
179		14	max	.002	2	001	15	0	1_	-3.773e-6	<u>15</u>	NC	1_	NC	1
180			min	003	3	006	3	0	15	-6.731e-5	1	NC	1	NC	1
181		15	max	.002	2	001	15	0	1	-3.129e-6	15	NC	1_	NC	1
182			min	002	3	005	3	0	15	-5.581e-5	1	NC	1	NC	1
183		16	max	.001	2	0	15	00	1	-2.485e-6	15	NC	_1_	NC	1
184			min	002	3	004	3	0	15	-4.431e-5	1_	NC	1_	NC	1
185		17	max	0	2	0	15	0	1	-1.842e-6	<u>15</u>	NC	_1_	NC	1
186			min	001	3	003	4	0	15	-3.28e-5	1_	NC	1_	NC	1
187		18	max	0	2	0	15	0	1	-1.198e-6	15	NC	_1_	NC	1
188			min	0	3	001	4	0	15	-2.13e-5	1_	NC	1_	NC	1
189		19	max	0	1	0	1	0	1_	-5.544e-7	<u>15</u>	NC	_1_	NC	1
190			min	0	1	0	1	0	1	-9.8e-6	1_	NC	1_	NC	1
191	M3	1	max	0	1	0	1	0	1	1.945e-6	_1_	NC	_1_	NC	1
192			min	0	1	0	1	0	1	1.106e-7	15	NC	1_	NC	1
193		2	max	0	3	0	15	0	15	2.125e-5	1_	NC	1_	NC	1
194			min	0	2	002	4	0	1	1.186e-6	15	NC	1_	NC	1
195		3	max	0	3	0	15	0		4.056e-5		NC	1_	NC	1
196			min	0	2	004	4	0	1	2.262e-6	15	NC	1_	NC	1
197		4	max	.001	3	001	15	0	15	5.987e-5	_1_	NC	_1_	NC	1
198			min	001	2	006	4	0	1	3.337e-6	15	NC	1_	NC	1
199		5	max	.002	3	002	15	0	10	7.918e-5	_1_	NC	_1_	NC	1
200			min	002	2	008	4	0	3	4.413e-6	15	NC	1_	NC	1
201		6	max	.002	3	002	15	0	1_	9.848e-5	_1_	NC	_1_	NC	1
202			min	002	2	01	4	0	3	5.489e-6	15	9248.133	4	NC	1
203		7	max	.003	3	003	15	0	1_	1.178e-4	1_	NC	_1_	NC	1
204			min	002	2	012	4	0	12	6.564e-6	15	7997.693	4	NC	1
205		8	max	.003	3	003	15	0	1_	1.371e-4	_1_	NC	2	NC	1
206			min	003	2	013	4	0	12	7.64e-6	15	7228.179	4	NC	1
207		9	max	.004	3	003	15	0	1	1.564e-4	1_	NC	5	NC	1
208			min	003	2	014	4	0	15		15	6779.251	4	NC	1
209		10	max	.004	3	003	15	0	1	1.757e-4	1_	NC	5	NC	1
210			min	003	2	014	4	0	15	9.791e-6		6573.716	4	NC	1
211		11	max	.004	3	003	15	.001	1	1.95e-4	1	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		LC
212			min	004	2	014	4	0	15	1.087e-5	15	6581.563	4	NC	1
213		12	max	.005	3	003	15	.002	1	2.143e-4	_1_	NC	5	NC	1
214			min	004	2	014	4	0	15	1.194e-5	15	6808.441	4	NC	1
215		13	max	.005	3	003	15	.002	1	2.336e-4	_1_	NC	2	NC	1
216			min	005	2	<u>013</u>	4	0	15	1.302e-5	15	7299.328	4_	NC	1
217		14	max	.006	3	003	15	.003	1	2.529e-4	1_	NC	1	NC NC	1
218		45	min	005	2	012	4	0	15	1.409e-5	15	8161.29	4	NC NC	1
219		15	max	.006	3	002	15	.003	1	2.723e-4	1_	NC	1_	NC NC	1
220		4.0	min	005	2	01	4	0	15	1.517e-5		9629.533	4	NC NC	1
221		16	max	.007	3	002 008	15	004	15	2.916e-4 1.624e-5	1_	NC NC	<u>1</u> 1	NC NC	1
223		17	min	006 .007	3		15	<u> </u>		3.109e-4	<u>15</u>	NC NC	1	NC NC	1
224		17	max	007 006	2	001 006	4	<u>.005</u>	15	1.732e-5	<u>1</u> 15	NC NC	1	NC NC	1
225		18	max	.008	3	<u>006</u> 0	15	.006	1	3.302e-4	1 1	NC NC	1	NC NC	1
226		10	min	007	2	004	3	<u>.000</u>	15	1.84e-5	15	NC	1	NC	1
227		19	max	.008	3	004	10	.007	1	3.495e-4	1 1	NC	1	NC	1
228		13	min	007	2	003	3	0	15	1.947e-5	15	NC	1	NC	1
229	M4	1	max	.002	1	.007	2	0	15		1	NC	1	NC	3
230	IVIT	•	min	0	15	008	3	007	1	6.963e-6	15	NC	1	3444.569	1
231		2	max	.002	1	.006	2	0	15	1.246e-4	1	NC	1	NC	3
232			min	0	15	008	3	007	1	6.963e-6	15	NC	1	3733.779	1
233		3	max	.002	1	.006	2	0	15	1.246e-4	1	NC	1	NC	3
234			min	0	15	007	3	006	1	6.963e-6	15	NC	1	4078.758	1
235		4	max	.002	1	.006	2	0	15	1.246e-4	1	NC	1	NC	2
236			min	0	15	007	3	006	1	6.963e-6	15	NC	1	4493.856	1
237		5	max	.002	1	.005	2	0	15	1.246e-4	1	NC	1	NC	2
238			min	0	15	007	3	005	1	6.963e-6	15	NC	1	4998.589	1
239		6	max	.002	1	.005	2	0	15	1.246e-4	1	NC	1	NC	2
240			min	0	15	006	3	004	1	6.963e-6	15	NC	1	5620.022	1
241		7	max	.001	1	.004	2	0	15	1.246e-4	1_	NC	1_	NC	2
242			min	0	15	006	3	004	1	6.963e-6	15	NC	1	6396.573	1
243		8	max	.001	1	.004	2	0	15	1.246e-4	_1_	NC	_1_	NC	2
244			min	0	15	005	3	003	1	6.963e-6	15	NC	1_	7384.263	1
245		9	max	.001	1	.004	2	0	15	1.246e-4	_1_	NC	_1_	NC	2
246			min	0	15	005	3	003	1	6.963e-6	15	NC	_1_	8667.403	1
247		10	max	.001	1	.003	2	0	15	1.246e-4	_1_	NC	_1_	NC	1
248			min	0	15	004	3	002	1	6.963e-6	<u>15</u>	NC	1_	NC	1
249		11	max	0	1	.003	2	0	15	1.246e-4	_1_	NC	1_	NC NC	1
250		40	min	0	15	004	3	002	1_	6.963e-6	15	NC	_1_	NC NC	1
251		12	max	0	1	.003	2	0	15	1.246e-4	1_	NC NC	1_	NC NC	1
252		40	min	0	15	003	3	002		6.963e-6			1	NC NC	1
253		13	max	0	1	.002	2	0		1.246e-4	1_	NC NC	1	NC NC	1
254		1.1	min	0	15	003	2	<u>001</u>	1 1 5	6.963e-6	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
255		14	max	0 0	15	.002	3	0	1	1.246e-4	1_		1	NC NC	1
256 257		15	min max	0	1	002 .001	2	<u> </u>	15	6.963e-6 1.246e-4	<u>15</u> 1	NC NC	1	NC NC	1
258		15	min	0	15	002	3	0	1	6.963e-6	15	NC	1	NC	1
259		16		0	1	.002	2	0		1.246e-4	1	NC	1	NC	1
260		10	max min	0	15	001	3	0	1	6.963e-6	15	NC	1	NC	1
261		17	max	0	1	0	2	0	15	1.246e-4	1	NC	1	NC	1
262		17	min	0	15	0	3	0	1	6.963e-6	15	NC	1	NC	1
263		18	max	0	1	0	2	0	15	1.246e-4	1	NC	1	NC	1
264		1.0	min	0	15	0	3	0	1	6.963e-6	15	NC	1	NC	1
265		19	max	0	1	0	1	0	1	1.246e-4	1	NC	1	NC	1
266		1.0	min	0	1	0	1	0	1	6.963e-6	15	NC	1	NC	1
267	M6	1	max	.023	2	.035	2	0	1	0	1	NC	4	NC	1
268	Ť		min	032	3	049	3	0	1	0	1	1579.564	3	NC	1
					_		_			_	_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
269		2	max	.022	2	.032	2	0	1	0	1	NC	4	NC	1
270			min	03	3	046	3	0	1	0	1	1672.377	3	NC	1
271		3	max	.02	2	.029	2	0	1	0	1	NC	4	NC	1
272			min	029	3	043	3	0	1	0	1	1776.91	3	NC	1
273		4	max	.019	2	.026	2	0	1	0	1	NC	4	NC	1
274			min	027	3	041	3	0	1	0	1	1895.646	3	NC	1
275		5	max	.018	2	.023	2	0	1	0	1	NC	4	NC	1
276			min	025	3	038	3	0	1	0	1	2031.782	3	NC	1
277		6	max	.017	2	.02	2	0	1	0	1	NC	4	NC	1
278			min	023	3	035	3	0	1	0	1	2189.496	3	NC	1
279		7	max	.015	2	.017	2	0	1	0	1	NC	1	NC	1
280			min	021	3	032	3	0	1	0	1	2374.361	3	NC	1
281		8	max	.014	2	.015	2	0	1	0	1	NC	1	NC	1
282			min	02	3	03	3	0	1	0	1	2593.981	3	NC	1
283		9	max	.013	2	.012	2	0	1	0	1	NC	1	NC	1
284			min	018	3	027	3	0	1	0	1	2859.007	3	NC	1
285		10	max	.011	2	.01	2	0	1	0	1	NC	1	NC	1
286			min	016	3	024	3	0	1	0	1	3184.832	3	NC	1
287		11	max	.01	2	.008	2	0	1	0	1	NC	1	NC	1
288			min	014	3	021	3	0	1	0	1	3594.559	3	NC	1
289		12	max	.009	2	.006	2	0	1	0	1	NC	1	NC	1
290			min	013	3	019	3	0	1	0	1	4124.509	3	NC	1
291		13	max	.008	2	.004	2	0	1	0	1	NC	1	NC	1
292			min	011	3	016	3	0	1	0	1	4835.248	3	NC	1
293		14	max	.006	2	.003	2	0	1	0	1	NC	1	NC	1
294			min	009	3	013	3	0	1	0	1	5835.835	3	NC	1
295		15	max	.005	2	.002	2	0	1	0	1	NC	1	NC	1
296			min	007	3	01	3	0	1	0	1	7344.457	3	NC	1
297		16	max	.004	2	0	2	0	1	0	1	NC	1	NC	1
298			min	005	3	008	3	0	1	0	1	9870.32	3	NC	1
299		17	max	.003	2	0	2	0	1	0	1	NC	1	NC	1
300			min	004	3	005	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	2	0	2	0	1	0	1	NC	1	NC	1
302			min	002	3	003	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	.001	3	0	2	0	1	0	1	NC	1	NC	1
308			min	001	2	003	3	0	1	0	1	NC	1	NC	1
309		3	max	.003	3	0	2	0	1	0	1	NC	1	NC	1
310			min	003	2	006	3	0	1	0	1	NC	1	NC	1
311		4	max	.004	3	001	15	0	1	0	1	NC	1	NC	1
312			min	004	2	008	3	0	1	0	1	NC	1	NC	1
313		5	max	.006	3	002	15	0	1	0	1	NC	1	NC	1
314			min	005	2	01	3	0	1	0	1	NC	1	NC	1
315		6	max	.007	3	002	15	0	1	0	1	NC	1	NC	1
316			min	007	2	012	3	0	1	0	1	8781.016	3	NC	1
317		7	max	.008	3	003	15	0	1	0	1	NC	1	NC	1
318			min	008	2	014	3	0	1	0	1	7848.687	3	NC	1
319		8	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
320			min	01	2	015	3	0	1	0	1	7297.906	3	NC	1
321		9	max	.011	3	003	15	0	1	0	1	NC	1	NC	1
322			min	011	2	016	3	0	1	0	1	6876.676	4	NC	1
323		10	max	.013	3	003	15	0	1	0	1	NC	1	NC	1
324			min	012	2	017	3	0	1	0	1	6663.087	4	NC	1
325		11	max	.014	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	_LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	014	2	017	3	0	1	0	1	6666.709	4	NC	1
327		12	max	.015	3	003	15	0	1	0	1_	NC	_1_	NC	1
328			min	015	2	017	3	0	1	0	1	6892.722	4	NC	1
329		13	max	.017	3	003	15	0	1	0	1_	NC	1_	NC	1
330			min	016	2	016	3	0	1	0	1	7386.247	4	NC	1
331		14	max	.018	3	003	15	0	1	0	1	NC	1	NC	1
332			min	018	2	015	3	0	1	0	1	8255.26	4	NC	1
333		15	max	.02	3	002	15	0	1	0	1	NC	1	NC	1
334			min	019	2	014	3	0	1	0	1	9737.307	4	NC	1
335		16	max	.021	3	002	15	0	1	0	1_	NC	1	NC	1
336			min	021	2	013	3	0	1	0	1	NC	1	NC	1
337		17	max	.022	3	0	2	0	1	0	1	NC	1_	NC	1
338			min	022	2	011	3	0	1	0	1	NC	1_	NC	1
339		18	max	.024	3	0	2	0	1	0	1	NC	1	NC	1
340			min	023	2	01	3	0	1	0	1	NC	1	NC	1
341		19	max	.025	3	.002	2	0	1	0	1	NC	1	NC	1
342			min	025	2	008	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.005	1	.024	2	0	1	0	1	NC	1	NC	1
344			min	0	15	026	3	0	1	0	1	NC	1	NC	1
345		2	max	.005	1	.023	2	0	1	0	1	NC	1	NC	1
346			min	0	15	025	3	0	1	0	1	NC	1	NC	1
347		3	max	.005	1	.022	2	0	1	0	1	NC	1	NC	1
348			min	0	15	023	3	0	1	0	1	NC	1	NC	1
349		4	max	.004	1	.02	2	0	1	0	1	NC	1	NC	1
350			min	0	15	022	3	0	1	0	1	NC	1	NC	1
351		5	max	.004	1	.019	2	0	1	0	1	NC	1	NC	1
352			min	0	15	02	3	0	1	0	1	NC	1	NC	1
353		6	max	.004	1	.018	2	0	1	0	1	NC	1	NC	1
354			min	0	15	019	3	0	1	0	1	NC	1	NC	1
355		7	max	.003	1	.016	2	0	1	0	1	NC	1	NC	1
356			min	0	15	018	3	0	1	0	1	NC	1	NC	1
357		8	max	.003	1	.015	2	0	1	0	1	NC	1	NC	1
358			min	0	15	016	3	0	1	0	1	NC	1	NC	1
359		9	max	.003	1	.014	2	0	1	0	1	NC	1	NC	1
360			min	0	15	015	3	0	1	0	1	NC	1	NC	1
361		10	max	.003	1	.012	2	0	1	0	1	NC	1	NC	1
362			min	0	15	013	3	0	1	0	1	NC	1	NC	1
363		11	max	.002	1	.011	2	0	1	0	1	NC	1	NC	1
364			min	0	15	012	3	0	1	0	1	NC	1	NC	1
365		12	max	.002	1	.009	2	0	1	0	1	NC	1	NC	1
366			min	0	15	01	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
368			min	0	15	009	3	0	1	0	1	NC	1	NC	1
369		14	max	.001	1	.007	2	0	1	0	1	NC	1	NC	1
370			min	0	15	007	3	0	1	0	1	NC	1	NC	1
371		15	max	.001	1	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	15	006	3	0	1	0	1	NC	1	NC	1
373		16	max	0	1	.004	2	0	1	0	1	NC	1	NC	1
374			min	0	15	004	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.003	2	0	1	0	1	NC	1	NC	1
376			min	0	15	003	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	.001	2	0	1	0	1	NC	1	NC	1
378		T.	min	0	15	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	2	.01	2	0	15	2.168e-4	1	NC	1	NC	1
382	.,,,,,	T '	min	01	3	015	3	008	1	1.214e-5		8020.918	2	NC	1
002			111111	.01		1010		.000		1.21700	.0	3020.010		110	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
383		2	max	.007	2	.008	2	0	15	2.053e-4	_1_	NC	_1_	NC	_1_
384			min	009	3	015	3	007	1	1.15e-5	15	9361.221	2	NC	1
385		3	max	.006	2	.007	2	0	15	1.938e-4	_1_	NC	_1_	NC	1
386			min	009	3	014	3	006	1	1.085e-5	15	NC	1	NC	1
387		4	max	.006	2	.006	2	0	15	1.823e-4	1_	NC	_1_	NC	1_
388			min	008	3	014	3	006	1	1.021e-5	15	NC	1_	NC	1
389		5	max	.006	2	.004	2	0	15	1.708e-4	_1_	NC	_1_	NC	1
390			min	008	3	013	3	005	1	9.566e-6	15	NC	1_	NC	1
391		6	max	.005	2	.003	2	0	15	1.593e-4	1_	NC	1_	NC	1
392			min	007	3	013	3	005	1	8.922e-6	15	NC	1_	NC	1
393		7	max	.005	2	.002	2	0	15	1.478e-4	_1_	NC	_1_	NC	1_
394			min	007	3	012	3	004	1	8.278e-6	15	NC	1	NC	1
395		8	max	.004	2	.001	2	0	15	1.363e-4	_1_	NC	_1_	NC	1
396			min	006	3	012	3	003	1	7.635e-6	15	NC	1	NC	1
397		9	max	.004	2	0	2	0	15	1.248e-4	1_	NC	_1_	NC	1
398			min	005	3	011	3	003	1	6.991e-6	15	NC	1	NC	1
399		10	max	.004	2	0	2	0	15	1.133e-4	1_	NC	_1_	NC	1_
400			min	005	3	01	3	002	1	6.347e-6	15	NC	1	NC	1
401		11	max	.003	2	001	2	0	15	1.018e-4	1	NC	1	NC	1
402			min	004	3	009	3	002	1	5.704e-6	15	NC	1	NC	1
403		12	max	.003	2	001	15	0	15	9.032e-5	1_	NC	1_	NC	1
404			min	004	3	008	3	002	1	5.06e-6	15	NC	1	NC	1
405		13	max	.002	2	001	15	0	15	7.881e-5	1_	NC	1_	NC	1
406			min	003	3	007	3	001	1	4.416e-6	15	NC	1	NC	1
407		14	max	.002	2	001	15	0	15	6.731e-5	1	NC	1_	NC	1
408			min	003	3	006	3	0	1	3.773e-6	15	NC	1	NC	1
409		15	max	.002	2	001	15	0	15	5.581e-5	1_	NC	1	NC	1
410			min	002	3	005	3	0	1	3.129e-6	15	NC	1	NC	1
411		16	max	.001	2	0	15	0	15	4.431e-5	1	NC	1	NC	1
412			min	002	3	004	3	0	1	2.485e-6	15	NC	1	NC	1
413		17	max	0	2	0	15	0	15	3.28e-5	1	NC	1	NC	1
414			min	001	3	003	4	0	1	1.842e-6	15	NC	1	NC	1
415		18	max	0	2	0	15	0	15	2.13e-5	1	NC	1	NC	1
416			min	0	3	001	4	0	1	1.198e-6	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	9.8e-6	1	NC	1	NC	1
418			min	0	1	0	1	0	1	5.544e-7	15	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	-1.106e-7	15	NC	1	NC	1
420			min	0	1	0	1	0	1	-1.945e-6	1	NC	1	NC	1
421		2	max	0	3	0	15	0	1	-1.186e-6	15	NC	1	NC	1
422			min	0	2	002	4	0	15	-2.125e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	1	-2.262e-6	15	NC	1	NC	1
424			min	0	2	004	4	0	15	-4.056e-5	1	NC	1	NC	1
425		4	max	.001	3	001	15	0	1	-3.337e-6		NC	1	NC	1
426			min	001	2	006	4	0	15	-5.987e-5	1	NC	1	NC	1
427		5	max	.002	3	002	15	0	3	-4.413e-6	15	NC	1	NC	1
428			min	002	2	008	4	0	10	-7.918e-5	1	NC	1	NC	1
429		6	max	.002	3	002	15	0	3	-5.489e-6	15	NC	1	NC	1
430			min	002	2	01	4	0	1	-9.848e-5	1	9248.133	4	NC	1
431		7	max	.003	3	003	15	0	12		15		1	NC	1
432			min	002	2	012	4	0	1	-1.178e-4	1	7997.693	4	NC	1
433		8	max	.003	3	003	15	0	12	-7.64e-6	15	NC	2	NC	1
434			min	003	2	013	4	0	1	-1.371e-4	1	7228.179	4	NC	1
435		9	max	.004	3	003	15	0	15		15	NC	5	NC	1
436			min	003	2	014	4	0	1	-1.564e-4	1	6779.251	4	NC	1
437		10	max	.004	3	003	15	0		-9.791e-6	•	NC	5	NC	1
438			min	003	2	014	4	0	1	-1.757e-4	1	6573.716	4	NC	1
439		11	max	.004	3	003	15	0		-1.087e-5	_	NC	5	NC	1
															$\overline{}$

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC		LC
440			min	004	2	014	4	001	1	-1.95e-4	1_	6581.563	4	NC	1
441		12	max	.005	3	003	15	0	15		15	NC	5	NC	1
442			min	004	2	014	4	002	1	-2.143e-4	1_	6808.441	4	NC	1
443		13	max	.005	3	003	15	0	15		15	NC	2	NC	1
444			min	005	2	<u>013</u>	4	002	1	-2.336e-4	1_	7299.328	4_	NC	1
445		14	max	.006	3	003	15	0	15		<u>15</u>	NC	1	NC NC	1
446		45	min	005	2	012	4	003	1	-2.529e-4	1_	8161.29	4	NC NC	1
447		15	max	.006	3	002	15	0	15		<u>15</u>	NC	1_	NC	1
448		4.0	min	005	2	01	4	003	1 1	-2.723e-4	1_	9629.533	4	NC NC	1
449		16	max	.007	3	002 008	15	0 004	15	-1.624e-5 -2.916e-4	<u>15</u>	NC NC	<u>1</u> 1	NC NC	1
450 451		17	min	006 .007	3		15	004 0	15		1_	NC NC	1	NC NC	1
451		11/	max	007 006	2	001 006	4	005	15	-1.732e-5 -3.109e-4	<u>15</u> 1	NC NC	1	NC NC	1
453		18		.008	3	<u>006</u> 0	15	<u>005</u> 0	15	-3.109e-4 -1.84e-5		NC NC	1	NC NC	1
454		10	max min	007	2	004	3	006	1	-3.302e-4	<u>15</u> 1	NC NC	1	NC NC	1
455		19	max	.008	3	004	10	000	15		15	NC	1	NC	1
456		13	min	007	2	003	3	007	1	-3.495e-4	1	NC	1	NC	1
457	M12	1	max	.002	1	.007	2	.007	1	-6.963e-6	15	NC	1	NC	3
458	IVITZ		min	0	15	008	3	0		-1.246e-4	1	NC	1	3444.569	1
459		2	max	.002	1	.006	2	.007	1	-6.963e-6	15	NC	1	NC	3
460		_	min	0	15	008	3	0	15		1	NC	1	3733.779	1
461		3	max	.002	1	.006	2	.006	1	-6.963e-6	15	NC	1	NC	3
462			min	0	15	007	3	0	15	-1.246e-4	1	NC	1	4078.758	1
463		4	max	.002	1	.006	2	.006	1	-6.963e-6	15	NC	1	NC	2
464			min	0	15	007	3	0	15	-1.246e-4	1	NC	1	4493.856	1
465		5	max	.002	1	.005	2	.005	1	-6.963e-6	15	NC	1	NC	2
466			min	0	15	007	3	0	15		1	NC	1	4998.589	1
467		6	max	.002	1	.005	2	.004	1	-6.963e-6	15	NC	1	NC	2
468			min	0	15	006	3	0	15	-1.246e-4	1	NC	1	5620.022	1
469		7	max	.001	1	.004	2	.004	1	-6.963e-6	<u>15</u>	NC	1_	NC	2
470			min	0	15	006	3	0	15		1_	NC	1	6396.573	1
471		8	max	.001	1	.004	2	.003	1	-6.963e-6	15	NC	_1_	NC	2
472			min	0	15	005	3	0	15		1_	NC	1_	7384.263	1
473		9	max	.001	1	.004	2	.003	1	-6.963e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	15	005	3	0	15	-1.246e-4	_1_	NC	_1_	8667.403	1
475		10	max	.001	1	.003	2	.002	1	-6.963e-6	<u>15</u>	NC	_1_	NC	1
476			min	0	15	004	3	0	15		_1_	NC	1_	NC	1
477		11	max	0	1	.003	2	.002	1	-6.963e-6	<u>15</u>	NC	1_	NC NC	1
478		40	min	0	15	004	3	0		-1.246e-4	1_	NC	_1_	NC NC	1
479		12	max	0	1	.003	2	.002	1	-6.963e-6	<u>15</u>	NC	1_	NC NC	1
480		40	min	0	15	003	3	0		-1.246e-4		NC NC	1	NC NC	1
481		13	max	0	1	.002	2	.001	1	-6.963e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	15	003	2	0	15		1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0 0	15	.002	3	0 0	1	-6.963e-6 -1.246e-4		NC NC	1	NC NC	1
484 485		15	min max	0	1	002 .001	2	0	1 <u>5</u>	-6.963e-6	1_	NC NC	1	NC NC	1
486		10	min	0	15	002	3	0		-1.246e-4	1	NC	1	NC	1
487		16	max	0	1	.002	2	0	1	-6.963e-6		NC	1	NC	1
488		10	min	0	15	001	3	0		-1.246e-4	1	NC	1	NC	1
489		17	max	0	1	<u>001</u> 0	2	0	1		15	NC NC	1	NC NC	1
490		11/	min	0	15	0	3	0		-0.963e-6	1	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-6.963e-6		NC	1	NC	1
492		10	min	0	15	0	3	0	15		1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-6.963e-6	•	NC	1	NC	1
494		'	min	0	1	0	1	0	1	-1.246e-4	1	NC	1	NC	1
495	M1	1	max	.01	3	.103	2	0	1	1.158e-2	2	NC	1	NC	1
496			min	006	2	02	3	0		-2.315e-2	3	NC	1	NC	1
					_					Z			_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio I	LC		LC
497		2	max	.01	3	.047	2	0	15	5.677e-3	2		4	NC	1
498			min	006	2	006	3	005	1	-1.145e-2	3		2	NC	1
499		3	max	.01	3	.016	3	0	15	1.746e-5	10		5	NC	1
500			min	006	2	012	2	008	1	-1.489e-4	1		2	NC	1
501		4	max	.01	3	.051	3	0	15	3.824e-3	2		5	NC	1
502			min	006	2	079	2	007	1	-4.499e-3	3	635.221	2	NC	1
503		5	max	.009	3	.096	3	0	15	7.654e-3	2		5	NC	1
504			min	005	2	148	2	005	1	-8.87e-3	3		2	NC	1
505		6	max	.009	3	.143	3	0	15	1.148e-2	2		15	NC	1
506			min	005	2	215	2	002	1	-1.324e-2	3	362.475	2	NC	1
507		7	max	.009	3	.188	3	0	1	1.531e-2	2	NC ·	15	NC	1
508			min	005	2	275	2	0	12	-1.761e-2	3	305.158	2	NC	1
509		8	max	.009	3	.226	3	0	1	1.914e-2	2	NC	15	NC	1
510			min	005	2	322	2	0	15	-2.199e-2	3	271.225	2	NC	1
511		9	max	.009	3	.25	3	0	15	2.198e-2	2		15	NC	1
512			min	005	2	352	2	0	1	-2.226e-2	3	253.549	2	NC	1
513		10	max	.008	3	.258	3	0	1	2.417e-2	2		15	NC	1
514			min	005	2	362	2	0	15	-1.982e-2	3		2	NC	1
515		11	max	.008	3	.252	3	0	1	2.636e-2	2		<u>-</u> 15	NC	1
516			min	005	2	352	2	0	15	-1.738e-2	3		2	NC	1
517		12	max	.008	3	.231	3	0	15	2.565e-2	2		15	NC	1
518		12	min	005	2	32	2	0	1	-1.474e-2	3		2	NC	1
519		13	max	.008	3	.196	3	0	15	2.057e-2	2		<u>-</u> 15	NC	1
520		10	min	005	2	27	2	0	1	-1.179e-2	3		2	NC	1
521		14	max	.008	3	.153	3	.002	1	1.55e-2	2		15	NC	1
522		14	min	005	2	207	2	0	15	-8.852e-3	3		2	NC	1
523		15	max	.007	3	.104	3	.005	1	1.043e-2	2		5	NC	1
524		13	min	005	2	138	2	<u>.005</u>	15	-5.91e-3	3		2	NC	1
525		16		.005	3	.054	3	.007	1	5.357e-3			5	NC NC	1
		10	max		2		2		15		3		2		1
526		17	min	005		069		0		-2.968e-3	_			NC NC	
527		17	max	.007	3	.006	3	.007	1	4.852e-4	1		5	NC NC	1
528		40	min	004	2	007	2	0	15	-2.534e-5	3		2	NC NC	1
529		18	max	.007	3	.045	2	.005	1	9.448e-3	2		4	NC NC	1
530		40	min	004	2	037	3	0	15	-4.136e-3	3		2	NC NC	1
531		19	max	.007	3	.09	2	0	15	1.894e-2	2		1_	NC	1
532			min	004	2	077	3	0	1	-8.412e-3	3	NC	1_	NC	1
533	<u>M5</u>	1	max	.031	3	.231	2	0	1	0	1		1_	NC	1
534			min	022	2	021	3	0	1	0	1		1	NC	1
535		2	max	.031	3	.104	2	0	1	0	1_		5	NC	1
536			min	022	2	.002	15	0	1	0	1_	906.641	2	NC	1
537		3	max	.031	3	.051	3	0	1	0	1		5	NC	1
538			min	022	2	039	2	0	1	0	1_		2	NC	1
539		4	max	.03	3	.145	3	0	1	0	_1_		<u> 15</u>	NC	1
540			min	021	2	208	2	0	1	0	1		2	NC	1
541		5	max	.029	3	.268	3	0	1	0	1		15	NC	1
542			min	021	2	389	2	0	1	0	1		2	NC	1
543		6	max	.029	3	.405	3	0	1	0	1		15	NC	1
544			min	021	2	568	2	0	1	0	1	144.466	2	NC	1
545		7	max	.028	3	.537	3	0	1	0	1	5203.16	15	NC	1
546			min	02	2	73	2	0	1	0	1		2	NC	1
547		8	max	.028	3	.647	3	0	1	0	1		15	NC	1
548			min	02	2	86	2	0	1	0	1		2	NC	1
549		9	max	.027	3	.718	3	0	1	0	1		15	NC	1
550			min	019	2	942	2	0	1	0	1		2	NC	1
551		10	max	.026	3	.742	3	0	1	0	1		15	NC	1
552			min	019	2	97	2	0	1	Ö	1		2	NC	1
553		11	max	.026	3	.723	3	0	1	0	1		15	NC	1
			,αл												

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 18, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
554			min	019	2	942	2	0	1	0	1	98.961	2	NC	1
555		12	max	.025	3	.66	3	0	1	0	1_	4572.043	15	NC	1
556			min	019	2	855	2	0	1	0	1	107.223	2	NC	1
557		13	max	.024	3	.56	3	0	1	0	1_	5204.085	15	NC	1
558			min	018	2	717	2	0	1	0	1	123.593	2	NC	1
559		14	max	.024	3	.434	3	0	1	0	_1_	6291.452	15	NC	1
560			min	018	2	545	2	0	1	0	1	152.294	2	NC	1
561		15	max	.023	3	.293	3	0	1	0	<u>1</u>	8175.209	<u>15</u>	NC	1
562			min	018	2	359	2	0	1	0	1_	203.354	2	NC	1
563		16	max	.022	3	.151	3	0	1	0	_1_	NC	15	NC	1
564			min	017	2	178	2	0	1	0	1_	302.069	2	NC	1
565		17	max	.022	3	.018	3	0	1	0	_1_	NC	5	NC	1
566			min	017	2	021	2	0	1	0	1_	523.232	2	NC	1
567		18	max	.022	3	.097	2	0	1	0	1_	NC	5	NC	1
568			min	017	2	096	3	0	1	0	1	1164.122	2	NC	1
569		19	max	.022	3	.192	2	0	1	0	1_	NC	1	NC	1
570			min	017	2	198	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.01	3	.103	2	0	15	2.315e-2	3	NC	1	NC	1
572			min	006	2	02	3	0	1	-1.158e-2	2	NC	1	NC	1
573		2	max	.01	3	.047	2	.005	1	1.145e-2	3	NC	4	NC	1
574			min	006	2	006	3	0	15	-5.677e-3	2	2078.781	2	NC	1
575		3	max	.01	3	.016	3	.008	1	1.489e-4	1	NC	5	NC	1
576			min	006	2	012	2	0	15	-1.746e-5	10	1003.694	2	NC	1
577		4	max	.01	3	.051	3	.007	1	4.499e-3	3	NC	5	NC	1
578			min	006	2	079	2	0	15	-3.824e-3	2	635.221	2	NC	1
579		5	max	.009	3	.096	3	.005	1	8.87e-3	3	NC	5	NC	1
580			min	005	2	148	2	0	15	-7.654e-3	2	459.45	2	NC	1
581		6	max	.009	3	.143	3	.002	1	1.324e-2	3	NC	15	NC	1
582			min	005	2	215	2	0	15	-1.148e-2	2	362.475	2	NC	1
583		7	max	.009	3	.188	3	0	12	1.761e-2	3	NC	15	NC	1
584			min	005	2	275	2	0	1	-1.531e-2	2	305.158	2	NC	1
585		8	max	.009	3	.226	3	0	15	2.199e-2	3	NC	15	NC	1
586			min	005	2	322	2	0	1	-1.914e-2	2	271.225	2	NC	1
587		9	max	.009	3	.25	3	0	1	2.226e-2	3	9780.533	15	NC	1
588			min	005	2	352	2	0	15	-2.198e-2	2	253.549	2	NC	1
589		10	max	.008	3	.258	3	0	15	1.982e-2	3	9572.742	15	NC	1
590			min	005	2	362	2	0	1	-2.417e-2	2	248.395	2	NC	1
591		11	max	.008	3	.252	3	0	15	1.738e-2	3	9780.018	15	NC	1
592			min	005	2	352	2	0	1	-2.636e-2	2	254.553	2	NC	1
593		12	max	.008	3	.231	3	0	1	1.474e-2	3	NC	15	NC	1
594			min		2	32	2	0	15	-2.565e-2		274.284	2	NC	1
595		13	max	.008	3	.196	3	0	1	1.179e-2	3	NC	15	NC	1
596			min	005	2	27	2	0	15	-2.057e-2	2	312.607	2	NC	1
597		14	max	.008	3	.153	3	0	15	8.852e-3	3	NC	15	NC	1
598			min	005	2	207	2	002	1	-1.55e-2	2	378.391	2	NC	1
599		15	max	.007	3	.104	3	0	15	5.91e-3	3	NC	5	NC	1
600			min	005	2	138	2	005	1	-1.043e-2	2	492.214	2	NC	1
601		16	max	.007	3	.054	3	0	15	2.968e-3	3	NC	5	NC	1
602	_	T.	min	005	2	069	2	007	1	-5.357e-3	2	704.337	2	NC	1
603		17	max	.007	3	.006	3	0	15	2.534e-5	3	NC	5	NC	1
604			min	004	2	007	2	007	1	-4.852e-4	1	1160.582	2	NC	1
605		18	max	.007	3	.045	2	0	15	4.136e-3	3	NC	4	NC	1
606			min	004	2	037	3	005	1	-9.448e-3	2	2478.647	2	NC	1
607		19	max	.007	3	.09	2	0	1	8.412e-3	3	NC NC	1	NC	1
608		T.,	min	004	2	077	3	0		-1.894e-2	2	NC	1	NC	1
		-			_	.011				IO	_		-	.,0	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Seismic design: No

Load factor source: ACI 318 Section 9.2 Load combination: not set

Anchors subjected to sustained tension: No Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 31-	-33 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2559.0	1783.5	0.0	1783.5
2	2559.0	1783.5	0.0	1783.5
Sum	5118.0	3567.0	0.0	3567.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 5118 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	lc / A _{Nco}) Ψ _{ec,N} Ψ _{ea}	$_{I,N}\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
408 24	324 00	1 000	1 000	1.00	1 000	12492	0.65	10231

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_N$	a / A_{Na0}) $\Psi_{\sf ed,Na}$ $\Psi_{\sf g}$	$_{ extstyle I,Na}arPsi_{ extstyle ec,Na}arPsi_{ extstyle p,Na} \Lambda$	I _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 31	-33 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_e)$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.5}$	5 (Eq. D-24)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	$_{Vc}/A_{Vco})\Psi_{ec,V}\Psi_{e}$	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ղ. D-22)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\mathscr{V}_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (lb)
558.00	648.00	1.000	0.919	1.000	1.000	15593	0.70	8641

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}c_{a1}^{1.5}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	c _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	13.16	17908		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
710.64	779.34	1.000	1.000	1.000	17908	0.70	22862

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	in <i>kcpNag</i> ; <i>kcpN</i>	$ c_{cbg} = \phi \min k_{cp} $	(A Na / A Na0) Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arPsi_{ec,Na}$	$\Psi_{p,Na}N_{a0}$; $K_{cp}(A_{cp})$	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$Y_{ed,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b} $	(Eq. D-30b)
K cp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
408.24	324.00	1.000	1.000	1.000	1.000	12492	15740	0.70

φV_{cpg} (lb) 20601

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2559	6071	0.42	Pass
Concrete breakout	5118	10231	0.50	Pass
Adhesive	5118	8093	0.63	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1784	3156	0.57	Pass (Governs)
T Concrete breakout x+	3567	8641	0.41	Pass
Concrete breakout y-	1784	22862	0.08	Pass
Pryout	3567	20601	0.17	Pass
Interaction check Nuc	a/φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 31-33 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.63 0.57 119.8 % 1.2	Sec. D.7.3	0.63	0.57	119.8 %	1.2	Pass
----------------------------------	------------	------	------	---------	-----	------

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.