US Patent & Trademark Office Patent Public Search | Text View

United States Patent Application Publication Kind Code Publication Date Inventor(s) 20250254884 A1 August 07, 2025 Young; Bo-Feng et al.

Memory Array Including Epitaxial Source Lines and Bit Lines

Abstract

A 3D memory array in which epitaxial source/drain regions which are horizontally merged and vertically unmerged are used as source lines and bit lines and methods of forming the same are disclosed. In an embodiment, a memory array includes a first channel region over a semiconductor substrate; a first epitaxial region electrically coupled to the first channel region; a second epitaxial region directly over the first epitaxial region in a direction perpendicular to a major surface of the semiconductor substrate; a dielectric material between the first epitaxial region and the second epitaxial region, the second epitaxial region being isolated from the first epitaxial region by the dielectric material; a gate dielectric surrounding the first channel region; and a gate electrode surrounding the gate dielectric.

Inventors: Young; Bo-Feng (Taipei, TW), Yeong; Sai-Hooi (Zhubei, TW), Chang; Chih-Yu

(New Taipei, TW), Chui; Chi On (Hsinchu, TW), Lin; Yu-Ming (Hsinchu, TW)

Applicant: Taiwan Semiconductor Manufacturing Co., Ltd. (Hsinchu, TW)

Family ID: 78238156

Appl. No.: 19/190989

Filed: April 28, 2025

Related U.S. Application Data

parent US division 17884348 20220809 parent-grant-document US 12317505 child US 19190989 parent US division 17138152 20201230 parent-grant-document US 11974441 child US 17884348 us-provisional-application US 63065128 20200813

Publication Classification

Int. Cl.: H10B51/20 (20230101); H10B51/10 (20230101); H10D62/10 (20250101)

U.S. Cl.:

CPC **H10B51/20** (20230201); **H10B51/10** (20230201); **H10D62/116** (20250101); **H10D62/119** (20250101);

Background/Summary

PRIORITY CLAIM AND CROSS-REFERENCE [0001] This application is a divisional of U.S. patent application Ser. No. 17/884,348, filed on Aug. 9, 2022, which is a divisional of U.S. patent application Ser. No. 17/138,152, filed on Dec. 30, 2020, now U.S. Pat. No. 11,974,441 issued Apr. 30, 2024, which claims the benefit of U.S. Provisional Application No. 63/065,128, filed on Aug. 13, 2020, each application is hereby incorporated herein by reference.

BACKGROUND

[0002] Semiconductor devices are used in a variety of electronic applications, such as, for example, personal computers, cell phones, digital cameras, and other electronic equipment. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductor layers of material over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon.

[0003] The semiconductor industry continues to improve the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continual reductions in minimum feature size, which allow more components to be integrated into a given area. However, as the minimum features sizes are reduced, additional problems arise that should be addressed.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.

[0005] FIGS. 1A and 1B illustrate a perspective view and a circuit diagram of a memory array in accordance with some embodiments.

[0006] FIGS. 2, 3, 4A, 4B, 4C, 5A, 5B, 5C, 6A, 6B, 6C, 7A, 7B, 7C, 8, 9A, 9B, 10A, 10B, 10C, 10D, 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D, 13A, 13B, 13C, 13D, 14A, 14B, 14C, 14D, 15A, 15B, 15C, 15D, 15E, 15F, 16A, 16B, 16C, 16D, 17A, 17B, 17C, 17D, 18A, 18B, 18C, 18D, 19A, 19B, 19C, 19D, 20A, 20B, 20C, 20D, 21A, 21B, 21C, 21D, 22A, 22B, 22C, 22D, and 23 illustrate varying views of manufacturing a semiconductor device including a memory array in accordance with some embodiments.

[0007] FIGS. 24A, 24B, 24C, 25A, 25B, 25C, 26A, 26B, 26C, 27A, 27B, 27C, 28A, 28B, 28C, 29A, 29B, 29C, 29D, 30A, 30B, 30C, 30D, 31A, 31B, 31C, 31D, and 32 illustrate varying views of manufacturing a semiconductor device including a memory array in accordance with some embodiments.

DETAILED DESCRIPTION

[0008] The following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely

examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.

[0009] Further, spatially relative terms, such as "beneath," "below," "lower," "above," "upper" and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.

[0010] Various embodiments provide a 3D memory array in which epitaxially grown source/drain regions merge in a horizontal direction and are isolated in a vertical direction and methods of forming the same. The method may include forming channel regions, which may be nanostructures or the like. Portions of the channel regions may be etched and the source/drain regions may be epitaxially grown from remaining portions of the channel regions. The channel regions may be formed such that source/drain regions which are adjacent in a horizontal direction merge with one another, while source/drain regions which are adjacent in a vertical direction remain unmerged. The source/drain regions may then be etched to form a staircase structure such that separate connections may be made to each set of merged source/drain regions. The source/drain regions may be used as source lines and bit lines in the 3D memory array. This method for forming the 3D memory array is compatible with existing nanostructure field-effect transistors (nanoFET) processes and allows for the 3D memory array to be formed in a reduced area, increasing device density and reducing costs. [0011] Embodiments are described below in a particular context, namely, a die comprising nano-FETs. Various embodiments may be applied, however, to dies comprising other types of transistors (e.g., fin field effect transistors (FinFETs), planar transistors, or the like) in lieu of or in combination with the nano-FETs.

[0012] FIGS. 1A and 1B illustrate examples of a memory array 200, according to some embodiments. FIG. 1A illustrates an example of a portion of the memory array 200 in a three-dimensional view, in accordance with some embodiments, and FIG. 1B illustrates a circuit diagram of the memory array 200. The memory array 200 includes a plurality of memory cells 202, which may be arranged in a grid of rows and columns. The memory cells 202 may further stacked vertically to provide a three dimensional memory array, thereby increasing device density. In some embodiments, the memory array 200 may be disposed in the back end of line (BEOL) of a semiconductor die. For example, the memory array 200 may be disposed in the interconnect layers of the semiconductor die, such as above one or more active devices (e.g., transistors) formed on a semiconductor substrate.

[0013] In some embodiments, the memory array **200** is a flash memory array, such as a NOR flash memory array or the like. Each of the memory cells **202** may include a transistor **204** with a gate dielectric layer **100**. The gate dielectric layer **100** may serve as a gate dielectric. In some embodiments, a gate electrode **102** of each transistor **204** may correspond to or be electrically coupled to a respective word line. A first epitaxial source/drain region **92** of each transistor **204** may correspond to or be electrically coupled to a respective bit line, and a second epitaxial source/drain region **92** of each transistor **204** may correspond to or be electrically coupled to a respective source line. The memory cells **202** in a same horizontal row of the memory array **200** may share a common epitaxial source/drain region **92** corresponding to a common source line and a

common epitaxial source/drain region **92** corresponding to a common bit line, while the memory cells **202** in a same vertical column of the memory array **200** may share a common gate electrode **102** corresponding to a common word line.

[0014] The memory array **200** includes a plurality of vertically stacked epitaxial source/drain regions **92** with a first ILD **96** being disposed between vertically adjacent ones of the epitaxial source/drain regions **92**. The epitaxial source/drain regions **92** extend in a direction parallel to a major surface of an underlying substrate **50**. The epitaxial source/drain regions **92** may have a staircase configuration such that lower epitaxial source/drain regions 92 are longer than and extend laterally past endpoints of upper epitaxial source/drain regions **92**. For example, in FIG. **1**A, multiple stacked layers of the epitaxial source/drain regions **92** are illustrated with topmost epitaxial source/drain regions **92** being the shortest and bottommost epitaxial source/drain regions **92** being the longest. Respective lengths of the epitaxial source/drain regions **92** may increase in a direction towards the underlying substrate. In this manner, a portion of each of the epitaxial source/drain regions **92** may be accessible from above the memory array **200**, and conductive contacts may be made to an exposed portion of each of the epitaxial source/drain regions 92. [0015] The memory array **200** further includes a plurality of gate electrodes **102**. The gate electrodes **102** may each extend in a direction perpendicular to the epitaxial source/drain region **92**. Dielectric materials **106** are disposed between and isolate adjacent ones of the gate electrodes **102**. Pairs of the epitaxial source/drain regions **92** along with an intersecting gate electrode **102** define boundaries of each memory cell **202**, and dielectric materials **106** are disposed between and isolate adjacent pairs of the epitaxial source/drain regions **92**. In some embodiments, alternating stacks of the epitaxial source/drain regions **92** may be electrically coupled to ground and a voltage source. [0016] The memory array **200** may also include nanostructures **54**. The nanostructures **54** may provide channel regions for the transistors **204** of the memory cells **202**. For example, when an appropriate voltage (e.g., higher than a respective threshold voltage (Vth) of a corresponding transistor **204**) is applied through a gate electrode **102**, a nanostructure **54** that intersects the gate electrode **102** may allow current to flow from a first epitaxial source/drain region **92** on a first side of the nanostructure **54** to a second epitaxial source/drain region **92** on a second side of the nanostructure **54** opposite the first side of the nanostructure **54**.

[0017] The gate dielectric layers **100** are disposed between the gate electrodes **102** and the nanostructures **54**, and the gate dielectric layers **100** provide gate dielectrics for the transistors **204**. In some embodiments, the gate dielectric layers **100** comprise ferroelectric (FE) materials, such as hafnium oxide, hafnium zirconium oxide, silicon-doped hafnium oxide, or the like. Accordingly, the memory array **200** may be referred to as a ferroelectric random access memory (FERAM) array. Alternatively, the gate dielectric layers **100** may be multilayer structures, different ferroelectric materials, different types of memory layers (e.g., capable of storing a bit), or the like. Using ferroelectric materials for the gate dielectric layers **100** may result in a threshold voltage (Vth) shift and provide memory reliability and improved performance.

[0018] In embodiments in which the gate dielectric layers **100** comprise FE materials, the gate dielectric layers **100** may be polarized in one of two different directions. The polarization direction may be changed by applying an appropriate voltage differential across the gate dielectric layers **100** and generating an appropriate electric field. Depending on a polarization direction of a particular gate dielectric layer **100**, a threshold voltage of a corresponding transistor **204** varies and a digital value (e.g., a 0 or a 1) can be stored. For example, when a gate dielectric layer **100** has a first electrical polarization direction, the corresponding transistor **204** may have a relatively low threshold voltage, and when the gate dielectric layer **100** has a second electrical polarization direction, the corresponding transistor **204** may have a relatively high threshold voltage. The difference between the two threshold voltages may be referred to as the threshold voltage shift. A larger threshold voltage shift makes it easier (e.g., less error prone) to read the digital value stored in the corresponding memory cell **202**.

[0019] To perform a write operation on a memory cell **202**, a write voltage is applied across a gate dielectric layer **100** corresponding to the memory cell **202**. The write voltage can be applied, for example, by applying appropriate voltages to a gate electrode **102** (e.g., through a corresponding word line) and the corresponding epitaxial source/drain regions **92** (e.g., through corresponding bit and source lines). By applying the write voltage across the gate dielectric layer **100**, a polarization direction of the gate dielectric layer **100** can be changed. As a result, the corresponding threshold voltage of the corresponding transistor **204** can be switched from a low threshold voltage to a high threshold voltage or vice versa and a digital value can be stored in the memory cell **202**. Because the gate electrodes **102** intersect the epitaxial source/drain regions **92**, individual memory cells **202** may be selected for the write operation.

[0020] To perform a read operation on the memory cell **202**, a read voltage (e.g., a voltage between the low and high threshold voltages) is applied to the corresponding gate electrode **102** (e.g., through the corresponding word line). Depending on the polarization direction of the corresponding gate dielectric layer **100**, the transistor **204** of the memory cell **202** may or may not be turned on. As a result, the corresponding epitaxial source/drain region **92** (e.g., the corresponding epitaxial source/drain region electrically coupled to the source line) may or may not be discharged through the corresponding epitaxial source/drain region **92** (e.g., the corresponding epitaxial source/drain region electrically coupled to ground), and the digital value stored in the memory cell **202** can be determined. Because the gate electrodes **102** intersect the epitaxial source/drain regions **92**, individual memory cells **202** may be selected for the read operation.

[0021] FIG. **1**A further illustrates reference cross-sections of the memory array **200** that are used in later figures. Cross-section A-A' is along longitudinal axes of the nanostructures **54** and in a direction parallel to the direction of current flow across the nanostructures **54** of the transistors **204**. Cross-section B-B' is perpendicular to the cross-section A-A' and extends through the gate electrodes **102** in a direction parallel to longitudinal axes of the epitaxial source/drain regions **92**. Cross-section C-C' is parallel to the cross-section B-B' and extends through the epitaxial source/drain regions **92**. Subsequent figures refer to these reference cross-sections for clarity. [0022] Some embodiments discussed herein are discussed in the context of nano-FETs formed using a gate-last process. In other embodiments, a gate-first process may be used. Also, some embodiments contemplate aspects used in planar devices, such as planar FETs or in fin field-effect transistors (FinFETs).

[0023] FIGS. 2 through 32 are cross-sectional and top-down views of intermediate stages in the manufacturing of the memory array 200, in accordance with some embodiments. FIGS. 2, 3, 4A, 5A, 6A, 7A, 8, 9A, 9B, 10A, 11A, 12A, 13A, 14A, 15A, 16A, 17A, 18A, 19A, 20A, 21A, 22A, 24A, 25A, 26A, 27A, 28A, 29A, 30A, and 31A illustrate reference cross-section A-A' illustrated in FIG. 1A. FIGS. 4B, 5B, 6B, 7B, 10B, 11B, 12B, 13B, 14B, 15B, 15E, 15F, 16B, 17B, 18B, 19B, 20B, 21B, 22B, 24B, 25B, 26B, 27B, 28B, 29B, 30B, and 31B illustrate reference cross-section B-B' illustrated in FIG. 1A. FIGS. 10C, 11C, 12C, 13C, 14C, 15C, 16C, 17C, 18C, 19C, 20C, 21C, 22C, 29C, 30C, and 31C illustrate reference cross-section C-C' illustrated in FIG. 1A. FIGS. 4C, 5C, 6C, 7C, 10D, 11D, 12D, 13D, 14D, 15D, 16D, 17D, 18D, 19D, 20D, 21D, 22D, 23, 24C, 25C, 26C, 27C, 28D, 29D, 30D, 31D, and 32 illustrate a top-down view.

[0024] In FIG. **2**, a substrate **50** is provided. The substrate **50** may be a semiconductor substrate, such as a bulk semiconductor, a semiconductor-on-insulator (SOI) substrate, or the like, which may be doped (e.g., with a p-type or an n-type dopant) or un-doped. The substrate **50** may be an integrated circuit die, such as a logic die, a memory die, an ASIC die, or the like. The substrate **50** may be a complementary metal oxide semiconductor (CMOS) die and may be referred to as a CMOS under array (CUA). The substrate **50** may be a wafer, such as a silicon wafer. Generally, an SOI substrate is a layer of a semiconductor material formed on an insulator layer. The insulator layer may be, for example, a buried oxide (BOX) layer, a silicon oxide layer, or the like. The insulator layer is provided on a substrate, typically a silicon or glass substrate. Other substrates,

such as a multi-layered or gradient substrate may also be used. In some embodiments, the semiconductor material of the substrate **50** may include silicon; germanium; a compound semiconductor including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, and/or indium antimonide; an alloy semiconductor including silicon-germanium, gallium arsenide phosphide, aluminum indium arsenide, aluminum gallium arsenide, gallium indium arsenide phosphide; or combinations thereof.

[0025] FIG. **2** further illustrates circuits that may be formed over the substrate **50**. The circuits include transistors at a top surface of the substrate **50**. The transistors may include gate dielectric layers **302** over top surfaces of the substrate **50** and gate electrodes **304** over the gate dielectric layers **302**. Source/drain regions **306** are disposed in the substrate **50** on opposite sides of the gate dielectric layers **302** and the gate electrodes **304**. Gate spacers **308** are formed along sidewalls of the gate dielectric layers **302** and separate the source/drain regions **306** from the gate electrodes **304** by appropriate lateral distances. The transistors may comprise fin field effect transistors (FinFETs), nanostructure (e.g., nanosheet, nanowire, gate-all-around, or the like) FETS (nano-FETs), planar FETs, the like, or combinations thereof, and may be formed by gate-first processes or gate-last processes.

[0026] A first ILD **310** surrounds and isolates the source/drain regions **306**, the gate dielectric layers **302**, and the gate electrodes **304** and a second ILD **312** is over the first ILD **310**. Source/drain contacts **314** extend through the second ILD **312** and the first ILD **310** and are electrically coupled to the source/drain regions 306 and gate contacts 316 extend through the second ILD **312** and are electrically coupled to the gate electrodes **304**. An interconnect structure 320 including one or more stacked dielectric layers 324 and conductive features 322 formed in the one or more dielectric layers 324 is over the second ILD 312, the source/drain contacts 314, and the gate contacts **316**. The interconnect structure **320** may be electrically connected to the gate contacts **316** and the source/drain contacts **314** to form functional circuits. In some embodiments, the functional circuits formed by the interconnect structure **320** may comprise logic circuits, memory circuits, sense amplifiers, controllers, input/output circuits, image sensor circuits, the like, or combinations thereof. Although FIG. 2 discusses transistors formed over the substrate 50, other active devices (e.g., diodes or the like) and/or passive devices (e.g., capacitors, resistors, or the like) may also be formed as part of the functional circuits. The transistors, the ILDs, and the interconnect structure **320** formed over the substrate **50** may be omitted from subsequent drawings for the purposes of simplicity and clarity. The substrate **50** along with the transistors (e.g., the source/drain regions **306**, the gate dielectric layers **302**, and the gate electrodes **304**), the gate spacers **308**, the first ILD **310**, the second ILD **312**, and the interconnect structure **320** may be a CMOS under array (CUA), a logic die, or the like.

[0027] In some embodiments, the substrate **50** may include an n-type region and a p-type region (not separately illustrated). The n-type region can be for forming n-type devices, such as NMOS transistors, e.g., n-type nano-FETs, and the p-type region can be for forming p-type devices, such as PMOS transistors, e.g., p-type nano-FETs. The n-type region may be physically separated from the p-type region, and any number of device features (e.g., other active devices, doped regions, isolation structures, etc.) may be disposed between the n-type region and the p-type region. Any number of n-type regions and p-type regions may be provided.

[0028] In FIG. **3**, a multi-layer stack **64** is formed over the structure of FIG. **2**. The transistors, the ILDs, and the interconnect structure **320** may be omitted from subsequent drawings for the purposes of simplicity and clarity. Although the multi-layer stack **64** is illustrated as contacting the substrate **50**, any number of intermediate layers may be disposed between the substrate **50** and the multi-layer stack **64**. For example, one or more interconnect layers comprising conductive features in insulting layers (e.g., low-k dielectric layers) may be disposed between the substrate **50** and the multi-layer stack **64**. In some embodiments, the conductive features may be patterned to provide

power, ground, and/or signal lines for the active devices on the substrate **50** and/or the memory array **200** (see FIGS. **1**A and **1**B). In some embodiments, the multi-layer stack **64** may be formed directly over the substrate **50**.

[0029] The multi-layer stack **64** includes alternating layers of first semiconductor layers **51**A-C (collectively referred to as first semiconductor layers **51**) and second semiconductor layers **53**A-C (collectively referred to as second semiconductor layers 53). For purposes of illustration and as discussed in greater detail below, the first semiconductor layers 51 will be removed and the second semiconductor layers **53** will be patterned to form channel regions of nano-FETs in both the p-type region and the n-type region. In some embodiments the second semiconductor layers 53 may be removed and the first semiconductor layers 51 may be patterned to form channel regions of nano-FETs in either the n-type region, the p-type region, or both the n-type region and the p-type region. In embodiments in which the channel regions are formed from the first semiconductor layers **51** or the second semiconductor layers **53** in both the n-type region and the p-type region, the channel regions in both the n-type region and the p-type region may have a same material composition (e.g., silicon or the another semiconductor material) and may be formed simultaneously. [0030] The multi-layer stack **64** is illustrated as including three layers of each of the first semiconductor layers **51** and the second semiconductor layers **53** for illustrative purposes. In some embodiments, the multi-layer stack **64** may include any number of the first semiconductor layers **51** and the second semiconductor layers **53**. Each of the layers of the multi-layer stack **64** may be epitaxially grown using a process such as chemical vapor deposition (CVD), atomic layer deposition (ALD), vapor phase epitaxy (VPE), molecular beam epitaxy (MBE), or the like. In some embodiments, the first semiconductor layers **51** may be formed of first semiconductor materials, such as silicon germanium or the like, and the second semiconductor layers 53 may be formed of second semiconductor materials, such as silicon, silicon carbon, silicon germanium, germanium, or the like. In embodiments in which the first semiconductor materials and the second semiconductor materials are formed of silicon germanium, the first semiconductor materials and the second semiconductor materials may have different concentrations of silicon and germanium from one another such that the first semiconductor materials and the second semiconductor materials can be selectively etched with respect to one another. The multi-layer stack **64** is illustrated as having a one of the first semiconductor layers **51** as a bottommost semiconductor layer for illustrative purposes. In some embodiments, the multi-layer stack **64** may be formed such that the bottommost layer is one of the second semiconductor layers **53**.

[0031] The first semiconductor materials and the second semiconductor materials may be materials having a high-etch selectivity to one another. As such, the first semiconductor layers 51 of the first semiconductor materials may be removed without significantly removing the second semiconductor layers 53 of the second semiconductor materials, thereby allowing the second semiconductor layers 53 to be patterned to form channel regions of the nano-FETs. Similarly, in embodiments in which the second semiconductor layers 53 of the second semiconductor material are removed, the second semiconductor layers 53 of the second semiconductor material may be removed without significantly removing the first semiconductor layers 51 of the first semiconductor material, thereby allowing the first semiconductor layers 51 to be patterned to form channel regions of the nano-FETs.

[0032] The first semiconductor layers **51** may be formed with thicknesses T.sub.1 ranging from about 100 nm to about 500 nm, while the second semiconductor layers **53** may be formed with thicknesses T.sub.2 ranging from about 10 nm to about 50 nm. In some embodiments, a ratio of the thicknesses T.sub.1 of the first semiconductor layers **51** to the thicknesses T.sub.2 of the second semiconductor layers **53** may range from about 2 to about 10. Forming the first semiconductor layers **51** and the second semiconductor layers **53** with the prescribed thicknesses may help to allow horizontally adjacent ones of subsequently formed epitaxial source/drain regions (such as the epitaxial source/drain regions **92**, discussed below with respect to FIGS. **10**A through **10**D) to

merge, while vertically adjacent ones of the subsequently formed epitaxial source/drain regions are unmerged. This allows for the horizontally merged epitaxial source/drain regions to be used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions. Using the merged epitaxial source/drain regions as source lines and bit lines reduces device size, improves device density, and reduces costs.

[0033] In FIGS. 4A through 4C, nanostructures 55 are formed in the multi-layer stack 64. In some embodiments, the nanostructures **55** may be formed in the multi-layer stack **64** by etching trenches in the multi-layer stack **64**. The etching may be any acceptable etch process, such as a reactive ion etch (RIE), neutral beam etch (NBE), the like, or a combination thereof. The etching may be anisotropic. Forming the nanostructures **55** by etching the multi-layer stack **64** may define first nanostructures **52**A-C (collectively referred to as the first nanostructures **52**) from the first semiconductor layers **51** and may define second nanostructures **54**A-C (collectively referred to as the second nanostructures **54**) from the second semiconductor layers **53**. The first nanostructures **52** and the second nanostructures **54** may be collectively referred to as the nanostructures **55**. [0034] The nanostructures 55 may be patterned by any suitable method. For example, the nanostructures 55 may be patterned using one or more photolithography processes, including double-patterning or multi-patterning processes. Generally, double-patterning or multi-patterning processes combine photolithography and self-aligned processes, allowing patterns to be created that have, for example, pitches smaller than what is otherwise obtainable using a single, direct photolithography process. For example, in one embodiment, a sacrificial layer is formed over a substrate and patterned using a photolithography process. Spacers are formed alongside the patterned sacrificial layer using a self-aligned process. The sacrificial layer is then removed, and the remaining spacers may then be used to pattern the nanostructures 55.

[0035] In some embodiments, the nanostructures **55** in the n-type region and the p-type region may have substantially equal widths; however, widths of the nanostructures **55** may be greater in either the n-type region or the p-type region. Further, while each of the nanostructures **55** are illustrated as having a consistent width throughout, in some embodiments, the nanostructures **55** may have tapered sidewalls such that a width of each of the nanostructures **55** continuously increases in a direction towards the substrate **50**. In such embodiments, each of the nanostructures **55** may have a different width and be trapezoidal in shape.

[0036] The nanostructures **55** may have widths W.sub.1 ranging from about 10 nm to about 50 nm. The nanostructures **55** may be separated by distances D.sub.1 ranging from about 50 nm to about 100 nm. Forming the first nanostructures **55** with the prescribed widths and pitches may help to allow horizontally adjacent ones of subsequently formed epitaxial source/drain regions (such as the epitaxial source/drain regions **92**, discussed below with respect to FIGS. **10**A through **10**D) to merge, while vertically adjacent ones of the subsequently formed epitaxial source/drain regions are unmerged. This allows for the horizontally merged epitaxial source/drain regions to be used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions. Using the merged epitaxial source/drain regions as source lines and bit lines reduces device size, improves device density, and reduces costs.

[0037] The process described above with respect to FIGS. 3 through 4C is just one example of how the nanostructures 55 may be formed. In some embodiments, the nanostructures 55 may be formed using a mask and an epitaxial growth process. For example, a dielectric layer can be formed over a top surface of the substrate 50, and trenches can be etched through the dielectric layer to expose the underlying substrate 50. Epitaxial structures can be epitaxially grown in the trenches, and the dielectric layer can be recessed such that the epitaxial structures protrude from the dielectric layer to form the nanostructures 55. The epitaxial structures may comprise the alternating semiconductor materials discussed above, such as the first semiconductor materials and the second semiconductor materials. In some embodiments where epitaxial structures are epitaxially grown, the epitaxially grown materials may be in situ doped during growth, which may obviate prior and/or subsequent

implantations, although in situ and implantation doping may be used together.

[0038] Additionally, the first semiconductor layers **51** (and the resulting first nanostructures **52**) and the second semiconductor layers **53** (and the resulting second nanostructures **54**) are illustrated and discussed herein as comprising the same materials in the p-type region and the n-type region for illustrative purposes only. As such, in some embodiments one or both of the first semiconductor layers **51** and the second semiconductor layers **53** may be different materials or formed in a different order in the p-type region and the n-type region.

[0039] Further in FIGS. 4A through 4C, appropriate wells (not separately illustrated) may be formed in the nanostructures **55**. In embodiments with different well types, different implant steps for the n-type region and the p-type region may be achieved using a photoresist or other masks (not separately illustrated). For example, a photoresist may be formed over the nanostructures **55** and the substrate **50** in the n-type region and the p-type region. The photoresist is patterned to expose the p-type region. The photoresist can be formed by using a spin-on technique and can be patterned using acceptable photolithography techniques. Once the photoresist is patterned, an n-type impurity implant is performed in the p-type region, and the photoresist may act as a mask to substantially prevent n-type impurities from being implanted into the n-type region. The n-type impurities may be phosphorus, arsenic, antimony, or the like implanted in the region to a concentration in a range from about 10.sup.13 atoms/cm.sup.3 to about 10.sup.14 atoms/cm.sup.3. After the implant, the photoresist is removed, such as by an acceptable ashing process. This process may then be repeated to perform a p-type impurity implant in the n-type region with a photoresist being formed and patterned to substantially prevent p-type impurities from being implanted into the p-type region. The p-type impurities may be boron, boron fluoride, indium, or the like implanted in the region to a concentration in a range from about 10.sup.13 atoms/cm.sup.3 to about 10.sup.14 atoms/cm.sup.3. After the implants of the n-type region and the p-type region, an anneal may be performed to repair implant damage and to activate the p-type and/or n-type impurities that were implanted. In some embodiments, the grown materials of epitaxial fins may be in situ doped during growth, which may obviate the implantations, although in situ and implantation doping may be used together. [0040] In FIGS. 5A through 5C, a dummy dielectric layer **70** is formed on the nanostructures **55**. The dummy dielectric layer **70** may be, for example, silicon oxide, silicon nitride, a combination thereof, or the like, and may be deposited or thermally grown according to acceptable techniques. A dummy gate layer **72** is formed over the dummy dielectric layer **70**, and a mask layer **74** is formed over the dummy gate layer 72. The dummy gate layer 72 may be deposited over the dummy dielectric layer **70** and then planarized, such as by a CMP. The mask layer **74** may be deposited over the dummy gate layer **72**. The dummy gate layer **72** may be a conductive or non-conductive material and may be selected from a group including amorphous silicon, polycrystalline-silicon (polysilicon), poly-crystalline silicon-germanium (poly-SiGe), metallic nitrides, metallic silicides, metallic oxides, and metals. The dummy gate layer 72 may be deposited by physical vapor deposition (PVD), CVD, sputter deposition, or other techniques for depositing the selected material. The dummy gate layer 72 may be made of other materials that have a high etching selectivity from the etching of isolation regions. The mask layer **74** may include, for example, silicon nitride, silicon oxynitride, or the like. In this example, a single dummy gate layer 72 and a single mask layer **74** are formed across the n-type region and the p-type region. It is noted that the dummy dielectric layer **70** is shown covering only the nanostructures **55** for illustrative purposes only. In some embodiments, the dummy dielectric layer **70** may be deposited such that the dummy dielectric layer **70** covers the substrate **50**, such that the dummy dielectric layer **70** extends between the dummy gate layer **72** and the substrate **50**.

[0041] In FIGS. **6**A through **6**C, the mask layer **74** (see FIGS. **5**A through **5**C) may be patterned using acceptable photolithography and etching techniques to form masks **78**. The pattern of the masks **78** then may be transferred to the dummy gate layer **72** and to the dummy dielectric layer **70** to form dummy gates **76** and dummy gate dielectrics **71**, respectively. The dummy gates **76** cover

respective channel regions of the nanostructures **55**. The pattern of the masks **78** may be used to physically separate each of the dummy gates **76** from adjacent dummy gates **76**. The dummy gates **76** may also have a lengthwise direction substantially perpendicular to the lengthwise direction of respective nanostructures **55**.

[0042] Further in FIGS. **6**A through **6**C, first spacers **80** are formed over the nanostructures **55**, adjacent the dummy gate dielectrics **71**, the dummy gates **76**, and the masks **78**. The first spacers **80** may act as spacers for forming self-aligned source/drain regions. The first spacers **80** may be formed by depositing a first spacer layer (not separately illustrated) on top surfaces of the substrate **50**; top surfaces and sidewalls of the nanostructures **55** and the masks **78**; and sidewalls of the dummy gates **76** and the dummy gate dielectric **71**. The first spacer layer may be formed of silicon oxide, silicon nitride, silicon oxynitride, or the like, using techniques such as thermal oxidation or deposited by CVD, ALD, or the like.

[0043] After the first spacer layer is formed, implants for lightly doped source/drain (LDD) regions (not separately illustrated) may be performed. In embodiments with different device types, similar to the implants discussed above in FIGS. **4**A through **4**C, a mask, such as a photoresist, may be formed over the n-type region, while exposing the p-type region, and appropriate type (e.g., p-type) impurities may be implanted into the exposed nanostructures **55** in the p-type region. The mask may then be removed. Subsequently, a mask, such as a photoresist, may be formed over the p-type region while exposing the n-type region, and appropriate type impurities (e.g., n-type) may be implanted into the exposed nanostructures **55** in the n-type region. The mask may then be removed. The n-type impurities may be the any of the n-type impurities previously discussed, and the p-type impurities may be the any of the p-type impurities previously discussed. The lightly doped source/drain regions may have a concentration of impurities in a range from about 1×10.sup.15 atoms/cm.sup.3 to about 1×10.sup.19 atoms/cm.sup.3. An anneal may be used to repair implant damage and to activate the implanted impurities.

[0044] The first spacer layer may then be etched to form the first spacers **80**. As will be discussed in greater detail below, the first spacers **80** act to self-align subsequently formed source drain regions, as well as to protect sidewalls of the nanostructure **55** during subsequent processing. The first spacer layer may be etched using a suitable etching process, such as an isotropic etching process (e.g., a wet etching process), an anisotropic etching process (e.g., a dry etching process), or the like. As illustrated in FIG. **6**A, the first spacers **80** may be disposed on sidewalls of the masks **78**, the dummy gates **76**, and the dummy gate dielectrics **71**. As illustrated in FIG. **6**C, the first spacers **80** may be further disposed on sidewalls of the nanostructures **55**.

[0045] It is noted that the above disclosure generally describes a process of forming spacers and LDD regions. Other processes and sequences may be used. For example, fewer or additional spacers may be utilized, different sequence of steps may be utilized, additional spacers may be formed and removed, and/or the like. Furthermore, the n-type and p-type devices may be formed using different structures and steps.

[0046] In FIGS. 7A through 7C, first recesses **86** are formed in the nanostructures **55**. In some embodiments, the first recesses **86** may also extend at least partially into the substrate **50**. Epitaxial source/drain regions will be subsequently formed in the first recesses **86**. The first recesses **86** may extend through the first nanostructures **52** and the second nanostructures **54**. As illustrated in FIG. **7**A, the first recesses **86** may extend to top surfaces of the substrate **50**. The first recesses **86** may be formed by etching the nanostructures **55** using anisotropic etching processes, such as RIE, NBE, or the like. The first spacers **80** and the masks **78** mask portions of the nanostructures **55** during the etching processes used to form the first recesses **86**. A single etch process or multiple etch processes may be used to etch each layer of the nanostructures **55**. Timed etch processes may be used to stop the etching of the first recesses **86** after the first recesses **86** reach a desired depth. [0047] In FIG. **8**, portions of sidewalls of the layers of the multi-layer stack **64** formed of the first semiconductor materials (e.g., the first nanostructures **52**) exposed by the first recesses **86** are

etched to form sidewall recesses **88**. Although sidewalls of the first nanostructures **52** adjacent the sidewall recesses **88** are illustrated as being straight in FIG. **8**, the sidewalls may be concave or convex. The sidewalls may be etched using isotropic etching processes, such as wet etching or the like. In an embodiment in which the first nanostructures **52** include, e.g., silicon germanium, and the second nanostructures **54** include, e.g., silicon or silicon carbide, a wet or dry etch process with hydrogen fluoride, another fluorine-based etchant, or the like may be used to etch sidewalls of the first nanostructures **52**.

[0048] In FIGS. **9**A and **9**B, first inner spacers **90** are formed in the sidewall recess **88**. The first inner spacers **90** may be formed by depositing an inner spacer layer (not separately illustrated) over the structures illustrated in FIG. **8**. The first inner spacers **90** act as isolation features between subsequently formed source/drain regions and a gate structure. As will be discussed in greater detail below, the source/drain regions will be formed in the first recesses **86**, while the first nanostructures **52** will be replaced with corresponding gate structures.

[0049] The inner spacer layer may be deposited by a conformal deposition process, such as CVD, ALD, or the like. The inner spacer layer may comprise a material such as silicon nitride or silicon oxynitride, although any suitable material, such as low-dielectric constant (low-k) materials having a k-value less than about 3.5, may be utilized. The inner spacer layer may then be anisotropically etched to form the first inner spacers **90**. Although outer sidewalls of the first inner spacers **90** are illustrated as being flush with sidewalls of the second nanostructures **54**, the outer sidewalls of the first inner spacers **90** may extend beyond or be recessed from sidewalls of the second nanostructures **54**.

[0050] Moreover, although the outer sidewalls of the first inner spacers **90** are illustrated as being straight in FIG. **9**A, the outer sidewalls of the first inner spacers **90** may be concave or convex. As an example, FIG. **9**B illustrates an embodiment in which sidewalls of the first nanostructures **52** are concave, outer sidewalls of the first inner spacers **90** are concave, and the first inner spacers **90** are recessed from sidewalls of the second nanostructures **54**. The inner spacer layer may be etched by an anisotropic etching process, such as RIE, NBE, or the like. The first inner spacers **90** may be used to prevent damage to subsequently formed source/drain regions (such as the epitaxial source/drain regions **92**, discussed below with respect to FIGS. **10**A through **10**D) by subsequent etching processes, such as etching processes used to form gate structures.

[0051] In FIGS. **10**A through **10**D, epitaxial source/drain regions **92**A-C are formed in the first recesses **86**. The epitaxial source/drain regions **92**A-C may be collectively referred to as epitaxial source/drain regions **92**. In some embodiments, the epitaxial source/drain regions **92** may exert stress on the second nanostructures **54**, thereby improving performance. As illustrated in FIG. **10**A, the epitaxial source/drain regions **92** are formed in the first recesses **86** such that each dummy gate **76** is disposed between respective neighboring pairs of the epitaxial source/drain regions **92**. In some embodiments, the first spacers **80** are used to separate the epitaxial source/drain regions **92** from the dummy gates **76** and the first inner spacers **90** are used to separate the epitaxial source/drain regions **92** from the first nanostructures **52** by appropriate lateral distances so that the epitaxial source/drain regions **92** do not short out with subsequently formed gates of the resulting nano-FETs.

[0052] As illustrated in FIGS. **10**A, **10**C, and **10**D, the epitaxial source/drain regions **92**A-C (collectively referred to as epitaxial source/drain regions **92**) may be epitaxially grown from the second nanostructures **54**A-C, respectively. The epitaxial source/drain regions **92** may be grown such that horizontally adjacent epitaxial source/drain regions **92** (e.g., epitaxial source/drain regions **92** which are adjacent to one another in a direction parallel to a major surface of the substrate **50**), exemplified by epitaxial source/drain regions **92**A. i and **92**A.ii, epitaxial source/drain regions **92**B.i and **92**B.ii, epitaxial source/drain regions **92**C.i and **92**C.ii, and corresponding dashed lines, merge with one another. On the other hand, vertically adjacent epitaxial source/drain regions **92** (e.g., epitaxial source/drain regions **92** which are directly over/under one another in a direction

perpendicular to the major surface of the substrate **50**), exemplified by the epitaxial source/drain regions **92**A-C, remain separated from one another. The epitaxial source/drain regions **92** may extend from sidewalls of the second nanostructures **54** and may extend along sidewalls of the first inner spacers **90** and the first spacers **80**.

[0053] The epitaxial source/drain regions **92** may be epitaxially grown to have thicknesses T.sub.3 ranging from about 30 nm to about 200 nm. The epitaxial source/drain regions 92 may have heights H.sub.1 ranging from about 50 nm to about 400 nm and may be separated from one another by gaps 93 having heights H.sub.2 ranging from about 50 nm to about 200 nm. The spacing and dimensions of the first nanostructures **52** and the second nanostructures **54** may be selected along with the thickness T.sub.3 in order to allow the horizontally adjacent epitaxial source/drain regions **92** to merge with one another, while the vertically adjacent epitaxial source/drain regions **92** remain unmerged. In some embodiments, this may be accomplished by forming the first semiconductor layers **51** with thicknesses T.sub.1 greater than distances D.sub.1 between adjacent ones of the nanostructures **55**, such that horizontally adjacent ones of the second nanostructures **54** are spaced closer together than vertically adjacent ones of the second nanostructures **54**. Horizontally adjacent second nanostructures **54** may be separated from one another by distances D.sub.1 ranging from about 50 nm to about 200 nm, while vertically adjacent second nanostructures **54** may be separated from one another by distances D.sub.2 which are more than the distances D.sub.1 and range from about 100 nm to about 500 nm. This allows for the horizontally merged epitaxial source/drain regions **92** to be used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions **92**. Using the merged epitaxial source/drain regions **92** as source lines and bit lines reduces device size, improves device density, and reduces costs. [0054] Although the epitaxial source/drain regions **92** are illustrated as having rectangular shapes in the cross-sectional view illustrated in FIG. **10**A and round shapes in the cross-sectional view illustrated in FIG. 10C, the epitaxial source/drain regions 92 may have any appropriate crosssectional shapes, such as hexagonal, octagonal, or other shapes. In some embodiments, the epitaxial source/drain regions **92** may have facets. In some embodiments, the epitaxial source/drain regions **92** in both the n-type region and the p-type region may include materials such as silicon, silicon carbide, phosphorous doped silicon carbide, silicon phosphide, silicon-germanium, boron doped silicon-germanium, germanium, germanium tin, or the like [0055] The epitaxial source/drain regions **92** in the n-type region, e.g., the NMOS region, may be formed by masking the p-type region, e.g., the PMOS region. Then, the epitaxial source/drain regions **92** are epitaxially grown in the first recesses **86** in the n-type region. The epitaxial source/drain regions **92** may include any acceptable material appropriate for n-type nano-FETs. For example, if the second nanostructures **54** are silicon, the epitaxial source/drain regions **92** may include materials exerting a tensile strain on the second nanostructures **54**, such as silicon, silicon carbide, phosphorous doped silicon carbide, silicon phosphide, or the like. [0056] The epitaxial source/drain regions **92** in the p-type region, e.g., the PMOS region, may be formed by masking the n-type region, e.g., the NMOS region. Then, the epitaxial source/drain regions **92** are epitaxially grown in the first recesses **86** in the p-type region. The epitaxial source/drain regions **92** may include any acceptable material appropriate for p-type nano-FETs. For example, if the second nanostructures **54** are silicon, the epitaxial source/drain regions **92** may comprise materials exerting a compressive strain on the second nanostructures 54, such as silicongermanium, boron doped silicon-germanium, germanium, germanium tin, or the like. [0057] The epitaxial source/drain regions **92**, second nanostructures **54**, and/or the substrate **50** may be implanted with dopants to form source/drain regions, similar to the process previously discussed for forming lightly-doped source/drain regions, followed by an anneal. The source/drain regions may have an impurity concentration of between about 1×10.sup.19 atoms/cm.sup.3 and about 1×10.sup.21 atoms/cm.sup.3. The n-type and/or p-type impurities for source/drain regions may be any of the impurities previously discussed. In some embodiments, the epitaxial

source/drain regions **92** may be in situ doped during growth.

of the dummy gates **76**.

Other insulation materials formed by any acceptable process may be used. As illustrated in FIGS. 11A and 11C, the first ILD 96 may be formed surrounding the epitaxial source/drain regions 92 and filling the gaps **93**. The first ILD **96** may be formed along top surfaces, side surfaces, and bottom surfaces of the epitaxial source/drain regions 92; side surfaces of the first inner spacers 90; side surfaces and top surfaces of the first spacers **80**; and top surfaces of the masks **78**. [0059] In FIGS. 12A through 12D, a planarization process, such as a CMP, may be performed to level the top surface of the first ILD **96** with the top surfaces of the dummy gates **76** or the masks **78.** The planarization process may also remove the masks **78** on the dummy gates **76**, and portions of the first spacers **80** along sidewalls of the masks **78**. After the planarization process, top surfaces of the dummy gates **76**, the first spacers **80**, and the first ILD **96** are level within process variations. Accordingly, the top surfaces of the dummy gates **76** are exposed through the first ILD **96**. In some embodiments, the masks **78** may remain, in which case the planarization process levels top surfaces of the first ILD **96** with top surfaces of the masks **78** and the first spacers **80**. [0060] In FIGS. **13**A through **13**D, the dummy gates **76** and the masks **78**, if present, are removed in one or more etching steps, so that second recesses **98** are formed. Portions of the dummy gate dielectrics **71** in the second recesses **98** are also be removed. In some embodiments, the dummy gates **76** and the dummy gate dielectrics **71** are removed by an anisotropic dry etch process. For example, the etching process may include a dry etch process using reaction gas(es) that selectively etch the dummy gates **76** at a faster rate than the first ILD **96** or the first spacers **80**. Each of the second recesses **98** exposes and/or overlies portions of nanostructures **55**, which act as channel regions in subsequently completed nano-FETs. Portions of the nanostructures 55 which act as the channel regions are disposed between neighboring pairs of the epitaxial source/drain regions 92. During the removal, the dummy gate dielectrics **71** may be used as etch stop layers when the dummy gates **76** are etched. The dummy gate dielectrics **71** may then be removed after the removal

[0058] In FIGS. 11A through 11D, a first interlayer dielectric (ILD) 96 is deposited over the

CVD (PECVD), ALD, or the like. The dielectric materials may include silicon nitride, silicon oxide, silicon carbonitride, silicon oxycarbonitride, silicon carbide, silicon oxynitride, or the like.

structure illustrated in FIGS. **10**A through **10**D, respectively. The first ILD **96** may be formed of a dielectric material, and may be deposited by any suitable method, such as CVD, plasma-enhanced

[0061] In FIGS. **14**A through **14**D, the first nanostructures **52** are removed extending the second recesses **98**. The first nanostructures **52** may be removed by performing an isotropic etching process such as wet etching or the like using etchants which are selective to the materials of the first nanostructures **52**, while the second nanostructures **54**, the substrate **50**, the STI regions **58** remain relatively unetched as compared to the first nanostructures **52**. In embodiments in which the first nanostructures **52** include, e.g., silicon germanium, and the second nanostructures **54**A-C include, e.g., silicon or silicon carbide, hydrogen fluoride, another fluorine-based etchant, or the like may be used to remove the first nanostructures **52**. After the first nanostructures **52** are removed, the second nanostructures **54** which are adjacent in a vertical direction (e.g., a direction perpendicular to a major surface of the substrate **50**) may be separated from one another by distances equal to the thicknesses of the first nanostructures (e.g., the thicknesses T.sub.1). [0062] In FIGS. 15A through 15D, gate dielectric layers 100 and gate electrodes 102 are formed for replacement gates. The gate dielectric layers **100** are deposited conformally in the second recesses **98**. The gate dielectric layers **100** may be formed on top surfaces of the substrate **50** and on top surfaces, side surfaces, and bottom surfaces of the second nanostructures 54. The gate dielectric layers 100 may also be deposited on top surfaces of the first ILD 96, top surfaces and side surfaces of the first spacers **80**, and side surfaces of the first inner spacers **90**. The gate dielectric layers **100** may be deposited by CVD, PVD, ALD, molecular-beam deposition (MBD), PECVD, or the like. [0063] In some embodiments, the gate dielectric layers **100** may comprise materials that are

capable of switching between two different polarization directions by applying an appropriate voltage differential across the gate dielectric layers 100. The gate dielectric layers 100 may be high-k dielectric materials, such as a hafnium (Hf) based dielectric material or the like. In some embodiments, the gate dielectric layers 100 comprise ferroelectric (FE) materials, such as hafnium oxide, hafnium zirconium oxide, silicon-doped hafnium oxide, or the like. In some embodiments, the gate dielectric layers 100 may comprise different ferroelectric materials or different types of dielectric materials. In some embodiments, the gate dielectric layers 100 may be multilayer dielectric structures comprising a layer of SiN.sub.x between two SiO.sub.x layers (e.g., ONO structures). The structure of the gate dielectric layers 100 may be the same or different in the n-type region and the p-type region. The gate dielectric layers 100 may have thicknesses ranging from about 5 nm to about 20 nm. Forming the gate dielectric layers 100 with thicknesses less than 5 nm may harm performance, while forming the gate dielectric layers 100 with thicknesses greater than 20 nm may take up an excessive amount of space.

[0064] The gate electrodes **102** are deposited over the gate dielectric layers **100** and fill the remaining portions of the second recesses **98**. The gate electrodes **102** may include a metal-containing material such as titanium nitride, titanium oxide, tantalum nitride, tantalum carbide, cobalt, ruthenium, aluminum, tungsten, combinations thereof, or multi-layers thereof. For example, although single layer gate electrodes **102** are illustrated in FIGS. **15**A through **15**D, the gate electrodes **102** may comprise any number of liner layers, any number of work function tuning layers, and a fill material. Any combination of the layers which make up the gate electrodes **102** may be deposited between adjacent ones of the second nanostructures **54** and between the second nanostructures **54**A and the substrate **50**.

[0065] The formation of the gate dielectric layers **100** in the n-type region and the p-type region may occur simultaneously such that the gate dielectric layers **100** in each region are formed from the same materials, and the formation of the gate electrodes **102** may occur simultaneously such that the gate electrodes **102** in each region are formed from the same materials. In some embodiments, the gate dielectric layers **100** in each region may be formed by distinct processes, such that the gate dielectric layers 100 may be different materials and/or have a different number of layers, and/or the gate electrodes **102** in each region may be formed by distinct processes, such that the gate electrodes **102** may be different materials and/or have a different number of layers. Various masking steps may be used to mask and expose appropriate regions when using distinct processes. [0066] After the filling of the second recesses **98**, a planarization process, such as a CMP, may be performed to remove the excess portions of the gate dielectric layers **100** and the material of the gate electrodes **102**, which excess portions are over top surfaces of the first ILD **96** and the first spacers **80**. The remaining portions of material of the gate electrodes **102** and the gate dielectric layers **100** thus form replacement gate structures of the resulting nano-FETs. The gate electrodes **102** and the gate dielectric layers **100** may be collectively referred to as "gate structures." [0067] Although the second nanostructures **54** are illustrated as having rectangular cross-sectional shapes in FIGS. **14**B and **15**B, the second nanostructures **54** may have round, circular, square, or other cross-sectional shapes after removing the dummy gate dielectrics **71**, the dummy gates **76**, and the first nanostructures **52**. As examples, FIG. **15**E illustrates an embodiment in which the second nanostructures **54** have circular shapes in a cross-sectional view and FIG. **15**F illustrates an embodiment in which the second nanostructures **54** have square shapes in a cross-sectional view. The shapes of the second nanostructures **54** may be controlled by controlling the thicknesses of the second semiconductor layers **53**, the widths of the second nanostructures **54**, and parameters of the etching processes used to pattern the second nanostructures **54**, remove the dummy gate dielectrics 71, the dummy gates 76, and the first nanostructures 52. The gate dielectric layers 100 are formed conformally and thus have cross-sectional shapes similar to the cross-sectional shapes of the second nanostructures **54**. For example, in the embodiment illustrated in FIG. **15**E, the gate dielectric layers **100** have circular shapes in a cross-sectional view and, in the embodiment

illustrated in FIG. **15**E, the gate dielectric layers **100** have square shapes in a cross-sectional view. [0068] In FIGS. **16**A through **16**D, trenches **104** are patterned through the gate electrodes **102**, the gate dielectric layers **100**, and the first spacers **80**. The trenches **104** may also be patterned through the second nanostructures **54**. The trenches **104** may be patterned through a combination of photolithography and etching. The etching may be any acceptable etching processes, such as wet or dry etching, RIE, NBE, the like, or a combination thereof. The etching may be anisotropic. The trenches **104** may be disposed between opposing sidewalls of the first ILD **96** and the epitaxial source/drain regions **92** and the trenches **104** may physically separate adjacent stacks of the memory cells **202** in the memory array **200** (see FIG. **1**A). The trenches **104** may also be patterned through the gate electrodes **102**, the gate dielectric layers **100**, the first spacers **80**, and the second nanostructures **54** in portions of the structure in which a staircase structure (such as the staircase structure **110**, discussed below with respect to FIGS. **21**A through **21**D) will subsequently be formed.

[0069] In FIGS. 17A through 17D, dielectric materials 106 are deposited in and fill the trenches 104. The dielectric materials 106 may include, for example, silicon nitride, silicon oxide, silicon carbonitride, silicon oxycarbonitride, silicon carbide, silicon oxynitride, or the like, which may be deposited by CVD, PVD, ALD, PECVD, or the like. The dielectric materials 106 may fill the trenches 104 and may be deposited extending along top surfaces of the first ILD 96, the first spacers 80, the gate dielectric layers 100, the gate electrodes 102, and the substrate 50 and along sidewalls of the gate dielectric layers 100, the gate electrodes 102, the first ILD 96, and the epitaxial source/drain regions 92. After deposition, a planarization process (e.g., a CMP, an etchback, or the like) may be performed to remove excess portions of the dielectric materials 106. In the resulting structure, top surfaces of the first ILD 96, the first spacers 80, the gate dielectric layers 100, the gate electrodes 102, and the dielectric materials 106 may be substantially level (e.g., within process variations) with one another.

[0070] FIGS. **18**A through **21**D illustrate patterning the first ILD **96** and the epitaxial source/drain regions **92** to form a staircase structure **110** (illustrated in FIGS. **21**A through **21**D). In FIGS. **18**A through **18**D a photoresist **108** is formed over the first ILD **96**, the dielectric materials **106**, the first spacers **80**, the gate dielectric layers **100**, and the gate electrodes **102**. The photoresist **108** can be formed by using a spin-on technique and can be patterned using acceptable photolithography techniques. Patterning the photoresist **108** may expose portions of the first ILD **96** and the dielectric materials **106** in a region **111**, while masking remaining portions of the first ILD **96**, the dielectric materials **106**, the first spacers **80**, the gate dielectric layers **100**, and the gate electrodes **102**.

[0071] Further in FIGS. **18**A through **18**D, the exposed portions of the first ILD **96** in the region **111** are etched using the photoresist **108** as a mask and portions of the epitaxial source/drain regions **92**C underlying the exposed portions of the first ILD **96** in the region **111** are etched using the first ILD **96** as a mask. The etching may be any acceptable etch process, such as wet or dry etching, RIE, NBE, the like, or a combination thereof. The etching may be anisotropic. The etching may remove portions of the first ILD **96** and the epitaxial source/drain regions **92**C in the region **111** and define an opening **109**. Because the first ILD **96** and the epitaxial source/drain regions **92**C have different material compositions, etchants used to remove exposed portions of these layers may be different. In some embodiments, the epitaxial source/drain regions 92C acts as an etch stop layer while etching the first ILD 96, and the first ILD 96 acts as an etch stop layer while etching the epitaxial source/drain regions **92**C. As a result, the portions of the first ILD **96** and the epitaxial source/drain regions **92**C may be selectively removed without removing remaining portions of the first ILD **96** and the epitaxial source/drain regions **92**, and the opening **109** may be extended to a desired depth. Alternatively, a timed etch processes may be used to stop the etching of the opening **109** after the opening **109** reaches a desired depth. In the resulting structure, a portion of the first ILD **96** over the epitaxial source/drain regions **92**B is exposed in the region **111**.

[0072] In FIGS. **19**A through **19**D, the photoresist **108** is trimmed to expose additional portions of the first ILD **96** and the dielectric materials **106**. The photoresist **108** can be trimmed using acceptable photolithography techniques. As a result of the trimming, a width of the photoresist **108** is reduced, and portions of the first ILD **96** and the dielectric materials **106** in the region **111** and a region **113** are exposed. For example, top surfaces of the first ILD **96** and the dielectric materials **106** in the region **113** and the region **111** may be exposed.

[0073] Exposed portions of the first ILD **96** and the epitaxial source/drain regions **92** may then be etched using the photoresist **108** and portions of the first ILD **96** and the epitaxial source/drain regions **92**C as masks. The etching may be any suitable etching process, such as wet or dry etching, RIE, NBE, the like, or a combination thereof. The etching process may be anisotropic. The etching may extend the opening **109** further into the first ILD **96** and the epitaxial source/drain regions **92**. Because the first ILD **96** and the epitaxial source/drain regions **92** have different material compositions, etchants used to remove exposed portions of these layers may be different. In some embodiments, the epitaxial source/drain regions 92B-C act as etch stop layers while etching portions of the first ILD **96**, and portions of the first ILD **96** act as etch stop layers while etching the epitaxial source/drain regions **92**B-C. As a result, the first ILD **96** and the epitaxial source/drain regions **92**B-C may be selectively etched without etching remaining portions of the first ILD **96** and the epitaxial source/drain regions **92**, and the opening **109** may be extended to a desired depth. Alternatively, timed etch processes may be used to stop the etching of the opening 109 after the opening **109** reaches a desired depth. Further, during the etching process, un-etched portions of the first ILD **96** and the epitaxial source/drain regions **92** act as masks for underlying layers, and as a result a previous pattern of the first ILD **96** and the epitaxial source/drain regions **92**C (see FIGS. **18**A through **18**D) may be transferred to the underlying first ILD **96** and the underlying epitaxial source/drain regions **92**B. In the resulting structure, a portion of the first ILD **96** over the epitaxial source/drain regions **92**A is exposed in the region **111** and a portion of the first ILD **96** over the epitaxial source/drain regions **92**B is exposed in the region **113**.

[0074] In FIGS. **20**A through **20**D, the photoresist **108** is trimmed to expose additional portions of the first ILD **96** and the dielectric materials **106**. The photoresist **108** can be trimmed using acceptable photolithography techniques. As a result of the trimming, a width of the photoresist 108 is reduced, and portions of the first ILD **96** and the dielectric materials **106** in the region **111**, the region 113, and a region 115 are exposed. For example, top surfaces of the first ILD 96 and the dielectric materials **106** in the region **115**, the region **113**, and the region **111** may be exposed. [0075] Exposed portions of the first ILD **96** and the epitaxial source/drain regions **92** may then be etched using the photoresist **108**, portions of the first ILD **96**, the epitaxial source/drain regions 92C, and the epitaxial source/drain regions 92B as masks. The etching may be any suitable etching process, such as wet or dry etching, RIE, NBE, the like, or a combination thereof. The etching process may be anisotropic. The etching may extend the opening 109 further into the first ILD 96 and the epitaxial source/drain regions **92**. Because the first ILD **96** and the epitaxial source/drain regions **92** have different material compositions, etchants used to remove exposed portions of these layers may be different. In some embodiments, the epitaxial source/drain regions **92**A-C act as etch stop layers while etching portions of the first ILD **96**, and portions of the first ILD **96** act as etch stop layers while etching the epitaxial source/drain regions **92**A-C. As a result, the first ILD **96** and the epitaxial source/drain regions **92**A-C may be selectively etched without etching remaining portions of the first ILD **96**, and the opening **109** may be extended to a desired depth. Alternatively, timed etch processes may be used to stop the etching of the opening 109 after the opening 109 reaches a desired depth. Further, during the etching process, un-etched portions of the first ILD 96 and the epitaxial source/drain regions 92 act as masks for underlying layers, and as a result a previous pattern of the first ILD **96** and the epitaxial source/drain regions **92**B-C (see FIGS. **19**A) through **19**D) may be transferred to the underlying first ILD **96** and the underlying epitaxial source/drain regions **92**A-B. In the resulting structure, a portion of the first ILD **96** over the

substrate **50** is exposed in the region **111**, a portion of the first ILD **96** over the epitaxial source/drain regions **92**A is exposed in the region **113** and a portion of the first ILD **96** over the epitaxial source/drain regions **92**B is exposed in the region **115**.

[0076] In FIGS. **21**A through **21**D the photoresist **108** is removed by an acceptable ashing or wet strip process. Thus, a staircase structure **110** is formed. The staircase structure **110** comprises a stack of alternating layers of the first ILD **96** and the epitaxial source/drain regions **92**. As illustrated in FIG. **21**C, the lengths of the epitaxial source/drain regions **92** increase in a direction towards the substrate **50** such that the epitaxial source/drain regions **92**A are longer and extend laterally past the epitaxial source/drain regions **92**B and the epitaxial source/drain regions **92**B are longer and extend laterally past the epitaxial source/drain regions **92**C. As a result, conductive contacts can be made from above the staircase structure **110** to each of the epitaxial source/drain regions **92** in subsequent processing steps.

[0077] In FIGS. 22A through 22D, an inter-metal dielectric (IMD) 112 is deposited over the structure of FIGS. 21A through 21D. The IMD 112 may be formed along top surfaces of the first ILD 96, the first spacers 80, the gate dielectric layers 100, the gate electrodes 102, the dielectric materials 106, and the epitaxial source/drain regions 92A-C and along side surfaces of the first ILD 96 and the epitaxial source/drain regions 92A-C. The IMD 112 may be formed of a dielectric material, and may be deposited by any suitable method, such as CVD, PECVD, flowable CVD (FCVD), or the like. The dielectric materials may include phospho-silicate glass (PSG), borosilicate glass (BSG), boron-doped phospho-silicate glass (BPSG), undoped silicate glass (USG), or the like. In some embodiments, the IMD 112 may comprise an oxide (e.g., silicon oxide or the like), a nitride (e.g., silicon nitride or the like), a combination thereof or the like. Other dielectric materials formed by any acceptable process may be used.

[0078] Further in FIGS. 22A through 22D, contacts 114 and contacts 116 are formed extending to and electrically coupled to the epitaxial source/drain regions 92 and the gate electrodes 102, respectively. The staircase shape of the epitaxial source/drain regions 92 provides surfaces on each of the epitaxial source/drain regions 92 for the contacts 114 to land on. Forming the contacts 114 and the contacts 116 may include patterning openings in the IMD 112 to expose portions of the epitaxial source/drain regions 92 and the gate electrodes 102 using a combination of photolithography and etching, for example. In some embodiments, the openings in the IMD 112 may be formed by a process having high etch selectivity to materials of the IMD 112. As such, the openings in the IMD 112 may be formed without significantly removing materials of the epitaxial source/drain regions 92 and the gate electrodes 102.

[0079] In some embodiments, openings exposing each of the epitaxial source/drain regions **92**A-C may be formed simultaneously. Because of variations in the thickness of the IMD **112** overlying each of the epitaxial source/drain regions **92**A-C, the epitaxial source/drain regions **92**C may be exposed to the etching for a longer duration than the epitaxial source/drain regions **92**B, which are exposed to the etching for a longer duration than the **92**A. Exposure to the etching may cause some material loss, pitting, or other damage in the epitaxial source/drain regions **92** such that the epitaxial source/drain regions **92**C are damaged to a greatest extent, the epitaxial source/drain regions **92**A are damaged to a least extent. Openings exposing the gate electrodes **102** may be formed simultaneously with the openings exposing the epitaxial source/drain regions **92**, or by separate etching processes similar to or the same as those used to form the openings exposing the epitaxial source/drain regions **92**.

[0080] A liner (not separately illustrated), such as a diffusion barrier layer, an adhesion layer, or the like, and a conductive material are formed in the openings. The liner may include titanium, titanium nitride, tantalum, tantalum nitride, or the like. The conductive material may be copper, a copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, titanium nitride, tantalum nitride, or the like. The contacts **114** and the contacts **116** may be formed simultaneously or separately. A

planarization process, such as a CMP, may be performed to remove excess material from a surface of the IMD **112**. The remaining liner and conductive material form the contacts **114** and the contacts **116** in the openings. As illustrated in FIG. **22**C, the contacts **114** may extend to each of the epitaxial source/drain regions **92**A-C. As illustrated in FIG. **22**B, the contacts **116** extend to each of the gate electrodes **102**.

[0081] In FIG. 23, conductive lines 118 and conductive lines 120 are formed over and electrically coupled to the contacts 114 and the contacts 116, respectively. The conductive lines 118 and the conductive lines **120** may be formed over the IMD **112**. In some embodiments, the conductive lines **118** and the conductive lines **120** may be formed in additional IMD layers, which are formed over the IMD **112** by processes and with materials the same as or similar to those used for the IMD **112**. In some embodiments, the conductive lines **118** and the conductive lines **120** may be formed using a damascene process in which an additional IMD layer over the IMD **112** is patterned utilizing a combination of photolithography and etching techniques to form trenches corresponding to the desired pattern of the conductive lines **118** and the conductive lines **120**. An optional diffusion barrier and/or optional adhesion layer may be deposited in the trenches and the trenches may then be filled with a conductive material. Suitable materials for the barrier layer include titanium, titanium nitride, titanium oxide, tantalum, tantalum nitride, tantalum oxide, or other alternatives. Suitable materials for the conductive material include copper, a copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, titanium nitride, tantalum nitride, combinations thereof, or the like. In an embodiment, the conductive lines 118 and the conductive lines 120 may be formed by depositing a seed layer of copper or a copper alloy, and filling the trenches using electroplating. A chemical mechanical planarization (CMP) process or the like may be used to remove excess conductive material from surfaces of the additional IMD layer and to planarize surfaces of the conductive lines **118** and the conductive lines **120** and the additional IMD layer for subsequent processing. [0082] As illustrated in FIG. 23, the gate electrodes 102 which are adjacent in a direction perpendicular to lengthwise directions of the epitaxial source/drain regions **92** may be electrically coupled to different ones of the conductive lines **120**. Each of the contacts **114** may be electrically coupled to one of the conductive lines 118. In some embodiments, the gate electrodes 102 may be word lines, which are connected to word signals through the contacts **116** and the conductive lines **120**. The epitaxial source/drain regions **92** on a first side of the staircase structure **110** may be source lines, which are electrically coupled to a voltage source through the contacts 114 and the conductive lines **118** and the epitaxial source/drain regions **92** on a first side of the staircase structure **110** may be bit lines, which are electrically coupled to a ground through the contacts **114** and the conductive lines **118**.

[0083] Forming the epitaxial source/drain regions **92** which are horizontally merged and vertically isolated from one another allows for separate connections to be made to each of the epitaxial source/drain regions **92**A-C in the staircase structure **110**. This increases the number of devices that can be provided in a given area (e.g., improves device density) and reduces costs. [0084] FIGS. **24**A through **32** illustrate an embodiment in which second nanostructures **54** of adjacent gate structures are staggered from one another. FIGS. 24A through 24C illustrate nanostructures **55** after steps similar to or the same as those illustrated in FIGS. **3** through **4**C and discussed above have been performed. The nanostructures **55** may be formed with widths and pitches different from those discussed above with respect to the embodiment of FIGS. **3** through **4**C. For example, the nanostructures **55** may have widths W.sub.2 ranging from about 10 nm to about 50 nm. The nanostructures **55** may be separated by distances D.sub.3 ranging from about 20 nm to about 300 nm. Forming the first nanostructures 55 with the prescribed widths and pitches may help to allow horizontally adjacent ones of subsequently formed epitaxial source/drain regions (such as the epitaxial source/drain regions **92**, discussed below with respect to FIGS. **29**A through **29**D) to merge, while vertically adjacent ones of the subsequently formed epitaxial source/drain regions are unmerged. This allows for the horizontally merged epitaxial source/drain regions to be

used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions. Using the merged epitaxial source/drain regions as source lines and bit lines reduces device size, improves device density, and reduces costs.

[0085] The nanostructures **55** may include first nanostructures **52**A-C (collectively referred to as first nanostructures **54**) and second nanostructures **54**A-C (collectively referred to as second nanostructures **54**) similar to or the same as those discussed above. The first nanostructures **52** may be formed with heights H.sub.3 ranging from about 100 nm to about 500 nm, while the second nanostructures **54** may be formed with heights H.sub.4 ranging from about 10 nm to about 50 nm. In some embodiments, a ratio of the heights H.sub.3 of the first nanostructures **52** to the heights H.sub.4 of the second nanostructures **54** may range from about 2 to about 10. Forming the first nanostructures **52** and the second nanostructures **54** with the prescribed thicknesses may help to allow horizontally adjacent ones of subsequently formed epitaxial source/drain regions (such as the epitaxial source/drain regions **92**, discussed below with respect to FIGS. **29**A through **29**D) to merge, while vertically adjacent ones of the subsequently formed epitaxial source/drain regions are unmerged. This allows for the horizontally merged epitaxial source/drain regions to be used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions. Using the merged epitaxial source/drain regions as source lines and bit lines reduces device size, improves device density, and reduces costs.

[0086] In FIGS. **25**A through **25**C, the nanostructures **55** are patterned to form gaps **130** in each of the nanostructures **55**. The gaps **130** may extend through the second nanostructures **54**A-C and the first nanostructures **52**A-C and may expose surfaces of the substrate **50**. The nanostructures **55** may be patterned using processes the same as or similar to those discussed above with respect to FIGS. **4**A through **4**C. In some embodiments, the nanostructures **55** may be formed and patterned to form the gaps **130** in a single processing step. As illustrated in FIG. **25**C, the gaps **130** formed in adjacent ones of the nanostructures 55 may be staggered and remaining portions of adjacent ones of the nanostructures **55** may also be staggered. Portions of the remaining portions of adjacent ones of the nanostructures 55 may overlap one another. Forming the nanostructures 55 in a staggered configuration may simplify connections made to the second nanostructures **54** in subsequent steps, reducing costs and reducing device defects. Following the patterning of the nanostructures 55, portions of the nanostructures 55 which subsequently form channel regions of the transistors 204 may be separated from one another in a direction perpendicular to longitudinal axes of the nanostructures **55** by a distance D.sub.4 ranging from about 50 nm to about 200 nm. [0087] In FIGS. **26**A through **26**C, a dummy dielectric layer **70** is formed on the nanostructures **55**. The dummy dielectric layer **70** may be, for example, silicon oxide, silicon nitride, a combination thereof, or the like, and may be deposited or thermally grown according to acceptable techniques. A dummy gate layer **72** is formed over the dummy dielectric layer **70**, and a mask layer **74** is formed over the dummy gate layer 72. The dummy gate layer 72 may be deposited over the dummy dielectric layer **70** and then planarized, such as by a CMP. The mask layer **74** may be deposited over the dummy gate layer **72**. The dummy gate layer **72** may be a conductive or non-conductive material and may be selected from a group including amorphous silicon, polycrystalline-silicon (polysilicon), poly-crystalline silicon-germanium (poly-SiGe), metallic nitrides, metallic silicides, metallic oxides, and metals. The dummy gate layer 72 may be deposited by physical vapor deposition (PVD), CVD, sputter deposition, or other techniques for depositing the selected material. The dummy gate layer 72 may be made of other materials that have a high etching selectivity from the etching of isolation regions. The mask layer **74** may include, for example, silicon nitride, silicon oxynitride, or the like. In this example, a single dummy gate layer 72 and a single mask layer **74** are formed across the n-type region and the p-type region. It is noted that the dummy dielectric layer **70** is shown covering only the nanostructures **55** for illustrative purposes only. In some embodiments, the dummy dielectric layer **70** may be deposited such that the dummy dielectric layer **70** covers the substrate **50**, such that the dummy dielectric layer **70** extends between

the dummy gate layer **72** and the substrate **50**.

[0088] In FIGS. 27A through 27C, the mask layer 74 (see FIGS. 26A through 26C) may be patterned using acceptable photolithography and etching techniques to form masks 78. The pattern of the masks 78 then may be transferred to the dummy gate layer 72 and to the dummy dielectric layer 70 to form dummy gates 76 and dummy gate dielectrics 71, respectively. The dummy gates 76 cover respective channel regions of the nanostructures 55. The pattern of the masks 78 may be used to physically separate each of the dummy gates 76 from adjacent dummy gates 76. The dummy gates 76 may also have a lengthwise direction substantially perpendicular to the lengthwise direction of respective nanostructures 55.

[0089] Further in FIGS. 27A through 27C, first spacers 80 are formed over the nanostructures 55, adjacent the dummy gate dielectrics 71, the dummy gates 76, and the masks 78. The first spacers 80 may act as spacers for forming self-aligned source/drain regions. The first spacers 80 may be formed by depositing a first spacer layer (not separately illustrated) on top surfaces of the substrate 50; top surfaces and sidewalls of the nanostructures 55 and the masks 78; and sidewalls of the dummy gates 76 and the dummy gate dielectric 71. The first spacer layer may be formed of silicon oxide, silicon nitride, silicon oxynitride, or the like, using techniques such as thermal oxidation or deposited by CVD, ALD, or the like.

[0090] The first spacer layer may then be etched to form the first spacers **80**. As will be discussed in greater detail below, the first spacers **80** act to self-align subsequently formed source drain regions, as well as to protect sidewalls of the nanostructure **55** during subsequent processing. The first spacer layer may be etched using a suitable etching process, such as an isotropic etching process (e.g., a wet etching process), an anisotropic etching process (e.g., a dry etching process), or the like. As illustrated in FIG. **27**A, the first spacers **80** may be disposed on sidewalls of the masks **78**, the dummy gates **76**, and the dummy gate dielectrics **71**. As illustrated in FIG. **27**C, the first spacers **80** may be further disposed on sidewalls of the nanostructures **55**.

[0091] As illustrated in FIG. **27**A, the first spacers **80** may be formed extending along end surfaces of the first nanostructures **52** and the second nanostructures **54**. In some embodiments, the dummy gates **76** may be formed extending along the end surfaces of the first nanostructures **52** and the second nanostructures **54** and the first spacers **80** may be formed over the second nanostructures **54**C.

[0092] Although the nanostructures **55** are described as being patterned to form the gaps **130** prior to forming and patterning the dummy gates **76**, the dummy gate dielectrics **71**, and the masks **78**, in some embodiments, the nanostructures **55** may be patterned to form the gaps **130** after forming and patterning the dummy gates **76**, the dummy gate dielectrics **71**, and the masks **78**. Further, the nanostructures **55** may be patterned to form the gaps **130** before or after forming the first spacers **80**.

[0093] In FIGS. 28A through 28C, first recesses 86 are formed in the nanostructures 55. In some embodiments, the first recesses 86 may also extend at least partially into the substrate 50. Epitaxial source/drain regions will be subsequently formed in the first recesses 86. The first recesses 86 may extend through the first nanostructures 52 and the second nanostructures 54. As illustrated in FIG. 28A, the first recesses 86 may extend to top surfaces of the substrate 50. The first recesses 86 may be formed by etching the nanostructures 55 using anisotropic etching processes, such as RIE, NBE, or the like. The first spacers 80 and the masks 78 mask portions of the nanostructures 55 during the etching processes used to form the first recesses 86. A single etch process or multiple etch processes may be used to etch each layer of the nanostructures 55. Timed etch processes may be used to stop the etching of the first recesses 86 after the first recesses 86 reach a desired depth. [0094] Further in FIGS. 28A through 28C, portions of sidewalls of the first nanostructures 52 exposed by the first recesses 86 are replaced by first inner spacers 90. The first nanostructures 52 may be etched using processes the same as or similar to those discussed above with respect to FIG. 8. The first inner spacers 90 may then be formed using processes and materials the same as or

similar to those discussed above with respect to FIG. 9A or 9B.

[0095] In FIGS. **29**A through **29**D, epitaxial source/drain regions **92**A-C are formed in the first recesses **86**. The epitaxial source/drain regions **92**A-C may be collectively referred to as epitaxial source/drain regions **92**. In some embodiments, the epitaxial source/drain regions **92** may exert stress on the second nanostructures **54**, thereby improving performance. As illustrated in FIG. **29**A, the epitaxial source/drain regions **92** are formed in the first recesses **86** such that each dummy gate **76** is disposed between respective neighboring pairs of the epitaxial source/drain regions **92**. In some embodiments, the first spacers **80** are used to separate the epitaxial source/drain regions **92** from the dummy gates **76** and the first inner spacers **90** are used to separate the epitaxial source/drain regions **92** from the first nanostructures **52** by appropriate lateral distances so that the epitaxial source/drain regions **92** do not short out with subsequently formed gates of the resulting nano-FETs.

[0096] As illustrated in FIGS. **29**A, **29**C, and **29**D, the epitaxial source/drain regions **92**A-C may be epitaxially grown from the second nanostructures **54**A-C, respectively. The epitaxial source/drain regions **92** may be grown such that horizontally adjacent epitaxial source/drain regions **92** (e.g., epitaxial source/drain regions 92 which are adjacent to one another in a direction parallel to a major surface of the substrate **50**), exemplified by epitaxial source/drain regions **92**A.i and **92**A.ii, epitaxial source/drain regions 92B.i and 92B.ii, epitaxial source/drain regions 92C.ii and 92C.ii, and corresponding dashed lines, merge with one another. On the other hand, vertically adjacent epitaxial source/drain regions **92** (e.g., epitaxial source/drain regions **92** which are directly over/under one another in a direction perpendicular to the major surface of the substrate **50**), exemplified by the epitaxial source/drain regions **92**A-C, remain separated from one another. The epitaxial source/drain regions 92 may extend from sidewalls of the second nanostructures 54 and may extend along sidewalls of the first inner spacers **90** and the first spacers **80**. [0097] The epitaxial source/drain regions **92** may be epitaxially grown to have thicknesses T.sub.4 ranging from about 30 nm to about 200 nm. The epitaxial source/drain regions 92 may have heights H.sub.5 ranging from about 50 nm to about 400 nm and may be separated from one another by gaps 93 having heights H.sub.6 ranging from about 50 nm to about 200 nm. The spacing and dimensions of the first nanostructures **52** and the second nanostructures **54** may be selected along with the thickness T.sub.4 in order to allow the horizontally adjacent epitaxial source/drain regions **92** to merge with one another, while the vertically adjacent epitaxial source/drain regions **92** remain unmerged. In some embodiments, this may be accomplished by forming the first nanostructures 52 with heights H.sub.3 greater than distances D.sub.4 between adjacent ones of the nanostructures 55, such that horizontally adjacent ones of the second nanostructures **54** are spaced closer together than vertically adjacent ones of the second nanostructures **54**. Horizontally adjacent second nanostructures **54** may be separated from one another by distances D.sub.4 ranging from about 50 nm to about 200 nm, while vertically adjacent second nanostructures **54** may be separated from one another by distances D.sub.5 which are more than the distances D.sub.4 and range from about 100 nm to about 500 nm. This allows for the horizontally merged epitaxial source/drain regions 92 to be used as source lines and bit lines and prevents shorts between vertically adjacent epitaxially source/drain regions **92**. Using the merged epitaxial source/drain regions **92** as source lines and bit lines reduces device size, improves device density, and reduces costs. [0098] Although the epitaxial source/drain regions **92** are illustrated as having rectangular shapes in

the cross-sectional view illustrated in FIG. **29**A and round shapes in the cross-sectional view illustrated in FIG. **29**C, the epitaxial source/drain regions **92** may have any appropriate cross-sectional shapes, such as hexagonal, octagonal, or other shapes. In some embodiments, the epitaxial source/drain regions **92** may have facets. In some embodiments, the epitaxial source/drain regions **92** in both the n-type region and the p-type region may include materials such as silicon, silicon carbide, phosphorous doped silicon carbide, silicon phosphide, silicon-germanium, boron doped silicon-germanium, germanium tin, or the like

[0099] The epitaxial source/drain regions **92** in the n-type region, e.g., the NMOS region, may be formed by masking the p-type region, e.g., the PMOS region. Then, the epitaxial source/drain regions **92** are epitaxially grown in the first recesses **86** in the n-type region. The epitaxial source/drain regions **92** may include any acceptable material appropriate for n-type nano-FETs. For example, if the second nanostructures **54** are silicon, the epitaxial source/drain regions **92** may include materials exerting a tensile strain on the second nanostructures **54**, such as silicon, silicon carbide, phosphorous doped silicon carbide, silicon phosphide, or the like.

[0100] The epitaxial source/drain regions **92** in the p-type region, e.g., the PMOS region, may be formed by masking the n-type region, e.g., the NMOS region. Then, the epitaxial source/drain regions **92** are epitaxially grown in the first recesses **86** in the p-type region. The epitaxial source/drain regions **92** may include any acceptable material appropriate for p-type nano-FETs. For example, if the second nanostructures **54** are silicon, the epitaxial source/drain regions **92** may comprise materials exerting a compressive strain on the second nanostructures **54**, such as silicongermanium, boron doped silicon-germanium, germanium, germanium tin, or the like. [0101] The epitaxial source/drain regions **92**, second nanostructures **54**, and/or the substrate **50** may be implanted with dopants to form source/drain regions, similar to the process previously discussed for forming lightly-doped source/drain regions, followed by an anneal. The source/drain regions may have an impurity concentration of between about 1×10.sup.19 atoms/cm.sup.3 and about 1×10.sup.21 atoms/cm.sup.3. The n-type and/or p-type impurities for source/drain regions may be any of the impurities previously discussed. In some embodiments, the epitaxial source/drain regions **92** may be in situ doped during growth.

[0102] FIGS. **30**A through **30**D illustrate the structures after the steps illustrated in FIGS. **11**A through **21**D have been performed, as discussed above. Specifically, a first ILD **96** is formed surrounding the epitaxial source/drain regions **92**, the dummy gate structures are replaced by gate structures including gate electrodes **102** and gate dielectric layers **100**, portions of the gate structures are replaced by dielectric materials **106**, and a staircase structure **110** is formed in the epitaxial source/drain regions **92** and the first ILD **96**.

[0103] In FIGS. **31**A through **31**D, an inter-metal dielectric (IMD) **112** is deposited over the structure of FIGS. **30**A through **30**D. The IMD **112** may be formed along top surfaces of the first ILD **96**, the first spacers **80**, the gate dielectric layers **100**, the gate electrodes **102**, the dielectric materials **106**, and the epitaxial source/drain regions **92**A-C and along side surfaces of the first ILD **96** and the epitaxial source/drain regions **92**A-C. The IMD **112** may be formed of a dielectric material, and may be deposited by any suitable method, such as CVD, PECVD, flowable CVD (FCVD), or the like. The dielectric materials may include phospho-silicate glass (PSG), borosilicate glass (BSG), boron-doped phospho-silicate glass (BPSG), undoped silicate glass (USG), or the like. In some embodiments, the IMD **112** may comprise an oxide (e.g., silicon oxide or the like), a nitride (e.g., silicon nitride or the like), a combination thereof or the like. Other dielectric materials formed by any acceptable process may be used.

[0104] Further in FIGS. **31**A through **31**D, contacts **114** and contacts **116** are formed extending to and electrically coupled to the epitaxial source/drain regions **92** and the gate electrodes **102**, respectively. The staircase shape of the epitaxial source/drain regions **92** provides surfaces on each of the epitaxial source/drain regions **92** for the contacts **114** to land on. Forming the contacts **114** and the contacts **116** may include patterning openings in the IMD **112** to expose portions of the epitaxial source/drain regions **92** and the gate electrodes **102** using a combination of photolithography and etching, for example. In some embodiments, the openings in the IMD **112** may be formed by a process having high etch selectivity to materials of the IMD **112**. As such, the openings in the IMD **112** may be formed without significantly removing materials of the epitaxial source/drain regions **92** and the gate electrodes **102**.

[0105] In some embodiments, openings exposing each of the epitaxial source/drain regions **92**A-C may be formed simultaneously. Because of variations in the thickness of the IMD **112** overlying

each of the epitaxial source/drain regions **92**A-C, the epitaxial source/drain regions **92**C may be exposed to the etching for a longer duration than the epitaxial source/drain regions **92**B, which are exposed to the etching for a longer duration than the **92**A. Exposure to the etching may cause some material loss, pitting, or other damage in the epitaxial source/drain regions **92** such that the epitaxial source/drain regions **92**C are damaged to a greatest extent, the epitaxial source/drain regions **92**A are damaged to a decreasing extent, and the epitaxial source/drain regions **92**A are damaged to a least extent. Openings exposing the gate electrodes **102** may be formed simultaneously with the openings exposing the epitaxial source/drain regions **92**, or by separate etching processes similar to or the same as those used to form the openings exposing the epitaxial source/drain regions **92**.

[0106] A liner (not separately illustrated), such as a diffusion barrier layer, an adhesion layer, or the like, and a conductive material are formed in the openings. The liner may include titanium, titanium nitride, tantalum, tantalum nitride, or the like. The conductive material may be copper, a copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, titanium nitride, tantalum nitride, or the like. The contacts **114** and the contacts **116** may be formed simultaneously or separately. A planarization process, such as a CMP, may be performed to remove excess material from a surface of the IMD **112**. The remaining liner and conductive material form the contacts **114** and the contacts **116** in the openings. As illustrated in FIG. **22**C, the contacts **114** may extend to each of the epitaxial source/drain regions **92**A-C. As illustrated in FIG. **31**B, the contacts **116** extend to each of the gate electrodes **102**.

[0107] In FIG. 32, conductive lines 118 and conductive lines 120 are formed over and electrically coupled to the contacts 114 and the contacts 116, respectively. The conductive lines 118 and the conductive lines **120** may be formed over the IMD **112**. In some embodiments, the conductive lines 118 and the conductive lines 120 may be formed in additional IMD layers, which are formed over the IMD **112** by processes and with materials the same as or similar to those used for the IMD **112**. In some embodiments, the conductive lines **118** and the conductive lines **120** may be formed using a damascene process in which an additional IMD layer over the IMD **112** is patterned utilizing a combination of photolithography and etching techniques to form trenches corresponding to the desired pattern of the conductive lines **118** and the conductive lines **120**. An optional diffusion barrier and/or optional adhesion layer may be deposited in the trenches and the trenches may then be filled with a conductive material. Suitable materials for the barrier layer include titanium, titanium nitride, titanium oxide, tantalum, tantalum nitride, titanium oxide, or other alternatives. Suitable materials for the conductive material include copper, a copper alloy, silver, gold, tungsten, cobalt, aluminum, nickel, titanium nitride, tantalum nitride, combinations thereof, or the like. In an embodiment, the conductive lines **118** and the conductive lines **120** may be formed by depositing a seed layer of copper or a copper alloy, and filling the trenches using electroplating. A chemical mechanical planarization (CMP) process or the like may be used to remove excess conductive material from surfaces of the additional IMD layer and to planarize surfaces of the conductive lines **118** and the conductive lines **120** and the additional IMD layer for subsequent processing. [0108] As illustrated in FIG. **32**, the gate electrodes **102** which were formed from each stack of the first nanostructures **52** (illustrated in FIGS. **24**A through **24**C) may be electrically coupled to the same conductive lines **120**. The gate electrodes **102** which were formed from adjacent first nanostructures **52** are connected to adjacent ones of the conductive lines **120**. Each of the contacts **114** may be electrically coupled to one of the conductive lines **118**. In some embodiments, the gate electrodes **102** may be word lines, which are connected to word signals through the contacts **116** and the conductive lines **120**. The epitaxial source/drain regions **92** on a first side of the staircase structure **110** may be source lines, which are electrically coupled to a voltage source through the contacts **114** and the conductive lines **118** and the epitaxial source/drain regions **92** on a first side of the staircase structure **110** may be bit lines, which are electrically coupled to a ground through the contacts **114** and the conductive lines **118**. Forming the nanostructures **55** in the staggered

configuration of FIGS. **25**A through **25**C allows for single conductive lines **120** to be electrically coupled to the gate electrodes **102** formed from each stack of the first nanostructures **52**, which simplifies the connection layout, reduces costs, and reduces device defects.

[0109] Embodiments may achieve various advantages. For example, forming the epitaxial source/drain regions **92** which are horizontally merged and vertically isolated from one another allows for separate connections to be made to each of the epitaxial source/drain regions **92**A-C in the staircase structure **110**. This increases the number of devices that can be provided in a given area (e.g., improves device density) and reduces costs.

[0110] In accordance with an embodiment, a memory array includes a first channel region over a semiconductor substrate; a first epitaxial region electrically coupled to the first channel region; a second epitaxial region directly over the first epitaxial region in a direction perpendicular to a major surface of the semiconductor substrate; a dielectric material between the first epitaxial region and the second epitaxial region, the second epitaxial region being isolated from the first epitaxial region by the dielectric material; a gate dielectric surrounding the first channel region; and a gate electrode surrounding the gate dielectric. In an embodiment, the memory array further includes a second channel region directly over the first channel region in the direction perpendicular to the major surface of the semiconductor substrate, the second channel region being electrically coupled to the second epitaxial region, the gate dielectric further surrounding the second channel region. In an embodiment, a ratio of a distance between the first channel region and the second channel region in the direction perpendicular to the major surface of the semiconductor substrate to heights of the first channel region and the second channel region is from 2 to 10. In an embodiment, the memory array further includes a second channel region directly over the first channel region in the direction perpendicular to the major surface of the semiconductor substrate, the second channel region being electrically coupled to the second epitaxial region; and a third channel region adjacent the first channel region in a direction parallel to the major surface of the semiconductor substrate, the third channel region being electrically coupled to the first epitaxial region. In an embodiment, a distance between the first channel region and the second channel region in the direction perpendicular to the major surface of the semiconductor substrate is greater than a distance between the first channel region and the third channel region in the direction parallel to the major surface of the semiconductor substrate. In an embodiment, a distance between the second epitaxial region and the semiconductor substrate is greater than a distance between the first epitaxial region and the semiconductor substrate, and a length of the second epitaxial region is less than a length of the first epitaxial region. In an embodiment, the gate dielectric includes a ferroelectric material. [0111] In accordance with another embodiment, a semiconductor device includes a first channel region over a semiconductor substrate; a second channel region directly over the first channel region in a vertical direction; a first gate structure surrounding the first channel region and the second channel region; a third channel region adjacent the first channel region in a horizontal direction; a first source/drain region electrically coupled to the first channel region and the third channel region; and a second source/drain region electrically coupled to the second channel region and isolated from the first source/drain region, a first dielectric material extending between the first source/drain region and the second source/drain region. In an embodiment, a second gate structure surrounds the third channel region, the second gate structure being separated from the first gate structure by a second dielectric material. In an embodiment, the second source/drain region has a length less than a length of the first source/drain region. In an embodiment, the first source/drain region and the second source/drain region are bit lines or source lines, and the first gate structure is a word line. In an embodiment, the semiconductor device-further includes a third source/drain region electrically coupled to the first channel region and the third channel region, the third source/drain region being disposed on a side of the first channel region and the third channel region opposite the first source/drain region, the first source/drain region being a source line, and the third source/drain region being a bit line. In an embodiment, the semiconductor device further includes a

fourth channel region electrically coupled to the first source/drain region, a longitudinal axis of the fourth channel region being aligned with a longitudinal axis of the first channel region; a second gate structure surrounding the fourth channel region; a first conductive line electrically coupled to the first gate structure, the first conductive line being disposed on a first side of the first channel region and the fourth channel region in the horizontal direction; and a second conductive line electrically coupled to the second gate structure, the second conductive line being disposed on a second side of the first channel region and the fourth channel region opposite the first side in the horizontal direction. In an embodiment, the semiconductor device further includes a fourth channel region electrically coupled to the first source/drain region opposite the first channel region, a longitudinal axis of the fourth channel region being aligned with the first gate structure; and a second gate structure surrounding the fourth channel region, a longitudinal axis of the first channel region being aligned with the second gate structure.

[0112] In accordance with yet another embodiment, a method includes forming a multi-layer stack over a semiconductor substrate, the multi-layer stack including alternating layers of a first semiconductor material and a second semiconductor material; patterning the multi-layer stack to form a first plurality of nanostructures including the first semiconductor material and a second plurality of nanostructures including the second semiconductor material, the second plurality of nanostructures including a first nanostructure, a second nanostructure adjacent the first nanostructure in a direction parallel to a major surface of the semiconductor substrate and a third nanostructure directly over the first nanostructure in a direction perpendicular to the major surface of the semiconductor substrate; forming a gate structure over the multi-layer stack; etching the multi-layer stack to form a first recess adjacent the gate structure; and epitaxially growing source/drain regions from the second plurality of nanostructures, a first source/drain region epitaxially grown from the first nanostructure and a second source/drain region epitaxially grown from the second nanostructure merging with one another, and a third source/drain region epitaxially grown from the third nanostructure being isolated from the first source/drain region after epitaxially growing the source/drain regions. In an embodiment, longitudinal axes of the first plurality of nanostructures and longitudinal axes of the second plurality of nanostructures extend parallel to a first direction, and after patterning the multi-layer stack, the first plurality of nanostructures and the second plurality of nanostructures form a first stack and a second stack separated from the first stack in the first direction. In an embodiment, after patterning the multilayer stack, the first plurality of nanostructures and the second plurality of nanostructures further form a third stack separated from the first stack and the second stack in a second direction perpendicular to the first direction, a first end surface of the third stack being between opposite end surfaces of the first stack in the first direction, and a second end surface of the third stack opposite the first end surface being between opposite end surfaces of the second stack in the first direction. In an embodiment, the method further includes removing the first plurality of nanostructures and the gate structure to form a second recess; and forming a replacement gate structure in the second recess. In an embodiment, the method further includes patterning the replacement gate structure to form a third recess separating a first replacement gate structure from a second replacement gate structure; and forming a dielectric material in the third recess. In an embodiment, the method further includes forming a dielectric material between the first source/drain region and the third source/drain region, the dielectric material isolating the first source/drain region from the third source/drain region. In an embodiment, the first source/drain region extends from a first end of the first nanostructure and the second source/drain region extends from a first end of the second nanostructure, where the first nanostructure and the second nanostructure are horizontally adjacent to one another.

[0113] In accordance with still another embodiment, a method includes forming a second semiconductor layer over a first semiconductor layer. The method also includes forming a third semiconductor layer over the second semiconductor layer, the first semiconductor layer and third

semiconductor layer having the same material composition. The method also includes patterning the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer into a first multi-layered fin and a second multi-layered fin, the first multi-layered fin and the second multi-layered fin parallel to each other and running in a lengthwise direction. The method also includes forming a dummy gate structure over the first multi-layered fin and the second multilayered fin, the dummy gate structure perpendicular to the first multi-layered fin. The method also includes recessing the first multi-layered fin and the second multi-layered fin on a first side of the dummy gate structure, the recessing exposing a first end of a channel region of the first multilayered fin and a first end of a channel region of the second multi-layered fin. The method also includes growing a first merged epitaxial source/drain region extending from the first semiconductor layer in the first multi-layered fin and from the first semiconductor layer in the second multi-layered fin and growing a second merged epitaxial source/drain region extending from the third semiconductor layer in the first multi-layered fin and from the third semiconductor layer in the second multi-layered fin. The method also includes depositing a dielectric material between the first merged epitaxial source/drain region and the second merged epitaxial source/drain region. In an embodiment, the method further includes: etching the second semiconductor layer of the first multi-layered fin in the channel region of the first multi-layered fin; etching the second semiconductor layer of the second multi-layered fin in the channel region of the second multilayered fin; forming a first gate dielectric and first gate electrode surrounding the first semiconductor layer and the third semiconductor layer of the first multi-layered fin in the channel region of the first multi-layered fin; and forming a second gate dielectric and second gate electrode surrounding the first semiconductor layer and the third semiconductor layer of the second multilayered fin in the channel region of the second multi-layered fin. In an embodiment, the method further includes: forming a first staircase contact to the first merged epitaxial source/drain region; and forming a second staircase contact to the second merged epitaxial source/drain region. In an embodiment, a shape of the first end of the channel region of the first multi-layered fin for the first semiconductor layer and the third semiconductor layer is round, square, or rectangular. In an embodiment, the first merged epitaxial source/drain region forms a first bitline of a memory device, where the second merged epitaxial source/drain region forms a second bitline of the memory device. In an embodiment, following patterning the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer into the first multi-layered fin and the second multi-layered fin, a first end of the first multi-layered fin is offset in the lengthwise direction from a corresponding first end of the second multi-layered fin. In an embodiment, a ratio of a thickness of the second semiconductor layer to the first semiconductor layer is between 2 and 10. In an embodiment, a distance between the first multi-layered fin and the second multi-layered fin is less than a thickness of the second semiconductor layer.

[0114] In accordance with yet another embodiment, a method includes forming a first channel region over a semiconductor substrate. The method also includes forming a second channel region over the first channel region. The method also includes forming a first epitaxial region electrically coupled to the first channel region. The method also includes forming a second epitaxial region directly over the first epitaxial region in a direction perpendicular to a major surface of the semiconductor substrate, the second epitaxial region coupled to the second channel region. The method also includes depositing a dielectric material between the first epitaxial region and the second epitaxial region, where the second epitaxial region is isolated from the first epitaxial region by the dielectric material. The method also includes depositing a gate dielectric surrounding the first channel region. The method also includes depositing a gate electrode surrounding the gate dielectric. In an embodiment, a ratio of a distance between the first channel region and the second channel region in the direction perpendicular to the major surface of the semiconductor substrate to heights of the first channel region and the second channel region is between 2 and 10. In an embodiment, the method further includes: forming a third channel region adjacent the first channel

region being electrically coupled to the first epitaxial region. In an embodiment, a distance between the first channel region and the second channel region in the direction perpendicular to the major surface of the semiconductor substrate is greater than a distance between the first channel region and the third channel region in the direction parallel to the major surface of the semiconductor substrate. In an embodiment, the gate dielectric includes a ferroelectric material.

[0115] The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.

region in a direction parallel to the major surface of the semiconductor substrate, the third channel

Claims

- 1. A method comprising: forming a multi-layer stack over a semiconductor substrate, the multi-layer stack comprising alternating layers of a first semiconductor material and a second semiconductor material; patterning the multi-layer stack to form a first plurality of nanostructures comprising the first semiconductor material and a second plurality of nanostructures comprising the second semiconductor material, the second plurality of nanostructures comprising a first nanostructure, a second nanostructure adjacent the first nanostructure in a direction parallel to a major surface of the semiconductor substrate, and a third nanostructure directly over the first nanostructure in a direction perpendicular to the major surface of the semiconductor substrate; forming a gate structure over the multi-layer stack; etching the multi-layer stack to form a first recess adjacent the gate structure; and epitaxially growing source/drain regions from the second plurality of nanostructures, wherein a first source/drain region epitaxially grown from the first nanostructure and a second source/drain region epitaxially grown from the second nanostructure merge with one another, and wherein a third source/drain region epitaxially grown from the third nanostructure is isolated from the first source/drain region after epitaxially growing the source/drain regions.
- **2.** The method of claim 1, wherein longitudinal axes of the first plurality of nanostructures and longitudinal axes of the second plurality of nanostructures extend parallel to a first direction, and wherein after patterning the multi-layer stack, the first plurality of nanostructures and the second plurality of nanostructures form a first stack and a second stack separated from the first stack in the first direction.
- **3.** The method of claim 2, wherein after patterning the multi-layer stack, the first plurality of nanostructures and the second plurality of nanostructures further form a third stack separated from the first stack and the second stack in a second direction perpendicular to the first direction, wherein a first end surface of the third stack is between opposite end surfaces of the first stack in the first direction, and wherein a second end surface of the third stack opposite the first end surface is between opposite end surfaces of the second stack in the first direction.
- **4.** The method of claim 1, further comprising: removing the first plurality of nanostructures and the gate structure to form a second recess; and forming a replacement gate structure in the second recess.
- **5**. The method of claim 4, further comprising: patterning the replacement gate structure to form a third recess separating a first replacement gate structure from a second replacement gate structure; and forming a dielectric material in the third recess.
- **6.** The method of claim 1, further comprising forming a dielectric material between the first

- source/drain region and the third source/drain region, the dielectric material isolating the first source/drain region from the third source/drain region.
- 7. The method of claim 1, wherein the first source/drain region extends from a first end of the first nanostructure and the second source/drain region extends from a first end of the second nanostructure, wherein the first nanostructure and the second nanostructure are horizontally adjacent to one another.
- **8**. A method comprising: forming a multi-layer stack over a semiconductor substrate, the multi-layer stack comprising alternating layers of a first material and a second material; patterning the multi-layer stack to form a first plurality of nanostructures and a second plurality of nanostructures, the first plurality of nanostructures comprising the first material, the second plurality of nanostructures comprising the second material different than the first material, the second plurality of nanostructures comprising a first nanostructure, a second nanostructure laterally adjacent the first nanostructure and a third nanostructure vertically over the first nanostructure; forming a gate structure over the plurality of second nanostructures; etching the multi-layer stack to form a first recess adjacent the gate structure; and epitaxially growing a first source/drain region from the first nanostructure and the second nanostructure and a second source/drain region from the third nanostructure, wherein the first source/drain region is spaced apart from the second source/drain region.
- **9**. The method of claim 8, further comprising: after epitaxially growing, forming an insulating layer between the first source/drain region and the second source/drain region.
- **10**. The method of claim 9, further comprising: after forming the insulating layer, removing the gate structure and a fourth nanostructure of the first plurality of nanostructures between the first nanostructure and the third nanostructure and to form a second recess; and forming a replacement gate structure in the second recess, wherein the replacement gate structure extends along sidewalls of the first nanostructure and the third nanostructure.
- **11**. The method of claim 10, wherein the replacement gate structure extends over the second nanostructure, further comprising: patterning the replacement gate structure to form a third recess separating a first replacement gate structure over the first nanostructure from a second replacement gate structure over the second nanostructure; and forming a dielectric material in the third recess.
- **12**. The method of claim 8, wherein the first material and the second material are different semiconductor materials.
- **13**. The method of claim 8, wherein a distance between the first nanostructure and the second nanostructure is greater than a thickness of the first nanostructure.
- **14**. The method of claim 8, wherein a ratio of a thickness of a nanostructure of the first plurality of nanostructures to a thickness of the first nanostructure is between 2 and 10.
- 15. A method comprising: forming a multi-layer stack over a semiconductor substrate, the multi-layer stack comprising alternating layers of a first material and a second material; patterning the multi-layer stack to form a first plurality of nanostructures and a second plurality of nanostructures, the first plurality of nanostructures comprising the first material, the second plurality of nanostructures comprising the second material different than the first material, the second plurality of nanostructures comprising a first nanostructure, a second nanostructure laterally adjacent the first nanostructure, and a third nanostructure over the first nanostructure, wherein a distance between the first nanostructure and the second nanostructure is less than a thickness of a layer of the first nanostructure a nanostructure of the first plurality of nanostructures; forming a gate structure over the plurality of second nanostructures; etching the multi-layer stack to form a first recess adjacent the gate structure; epitaxially growing merged source/drain region from the first nanostructure and the second nanostructure and a first source/drain region from the third nanostructure, wherein the merged source/drain region is spaced apart from the first source/drain region; and forming an isolation material between the first source/drain region and the merged source/drain region.

- **16**. The method of claim 15, wherein a ratio of a thickness of a nanostructure of the first plurality of nanostructures to a thickness of the first nanostructure is between 2 and 10.
- **17**. The method of claim 15, further comprising: removing the gate structure; and forming a replacement gate structure, the replacement gate structure extending around the first nanostructure and the second nanostructure.
- **18**. The method of claim 15, further comprising: removing the gate structure; and forming a first replacement gate structure and a second replacement gate structure spaced apart from the first replacement gate structure, the first replacement gate structure extending around the first nanostructure and the third nanostructure, the second replacement gate structure extending around the second nanostructure.
- **19.** The method of claim 15, wherein the merged source/drain region and the first source/drain region have different widths.
- **20**. The method of claim 19, further comprising: forming a first contact to a top surface of the merged source/drain region; and forming a second contact to a top surface of the first source/drain region.