

PROJECT DATA EXPLORER Mobile Wetterstation

Ziel

- » Entwicklung eines Fahrzeugs für autonome / ferngesteuerte Datenerfassung
- » Fahrzeuge erfassen Umweltbedingungen in einem vordefinierten Raster

The Big Picture

- » Kombination von 5 Lehrveranstaltungen
 - Datenübertragung
 - O Model Based Analytics
 - O Concept Development
 - Simulation
 - Interaktionsdesign und Produktdesign
- >> 2 x Wattens
- » Anwendung der Konzepte aus den LV (z.B. Digitaler Zwilling)
- » Projektkoordinator: Prof. Djones Lettnin

Hosts

» Werkstätte Wattens Center for Rapid Innovation

» Ausstattung: 3D Drucker, 3D Scanner, Laser Cutter, Vinyl Cutter, CNC Fräse für Platinen

https://earth.google.com/web/

Roadmap

Datum	Inhalt	Detail
6.4.2018	Projektvorstellung	Lektorenteam
27.4.2018 14:00 – 16:30	Zwischenpräsentation Schwerpunkt ID	Pro Team 15 min / 5 min
28.4.2018	Wattens	09:00 – 10:00 Zwischenstand (10min pro Team)
19.5.2018	Wattens	Optional
25.5.2018	FH Kufstein	Testing
26.5.2018	FH Kufstein / Abgabe	08:45 – 12:00 Testing / Refinement 12:00 – 15:00 Challenge und Abschlusspräsentation Anschl. Lessons learned und Get together!
10.06.2018 23:50	Abgabe Bericht	Moodle

Technische Aufgabenstellung

- » Eigenschaften des Fahrzeugs:
 - Fahrmodus
 - » Autonom (cloud-based; MATLAB; Ultraschall)
 - » Ferngesteuert (Steuerbefehle werden per WLAN übermittelt)
 - Telemetrie-Daten erfassen und übertragen (MATLAB)
 - » CPU Temperatur, Speicher Verbraucht, Datenübertragung
 - » Geschwindigkeit
 - » Beschleunigungsdaten (Sensor wird bereitgestellt)
 - » Bild (in Fahrtrichtung)
- » Datenerfassung
 - Umweltbedingungen permanent erfassen (2 Channels auf Thingspeak und 2 Channels MATLAB)
 - » Magnetfeld
 - » Temperatur
 - » Absolutdruck
 - » Feuchtigkeit
- » Digitaler Zwilling in MATLAB
 - Fahrzeug (mechanisches Modell Kräfte)
- » Simulation
 - Raspberry Pi und Arduino Simulator
- » Tracks
 - Ferngesteuert (Vorgabe einer Abfolge von Sektoren welche angefahren werden müssen)
 - Autonom (Start- und Zielpunkt; Fokus Obstacle Recognition)
- » Keine Competition gegeneinander!

Raster - Schachbrettmuster

- » Raum E.26 / Aula / Festsaal
- » Abmessung der Sektoren vorgegeben (1,5 m)
- » Abfolge der Sektoren wird für jedes Team per Zufall ausgewählt
- » Anzahl der anzufahrenden Sektoren wird vorgegebene
- » Sektoren können Eigenschaften besitzen (z.B. Wärmequelle, Ventilator-Wind, Hindernisse, Feuchtigkeit)

Track 1 – Datenerfassung (Ferngesteuert)

- Startpunkt bei (0,0)_{Welt}
- » Abfolge von Messfeldern wird je Team vorgegeben
- » Hindernisse müssen umfahren werden
- » Explorer wird ferngesteuert (Eingabegerät offen; Eingabe von Koordinaten, Steuerbefehle mit Joystick)

Track 2 – Obstacle Detection (Autonom)

- » Eindeutige Markierung von Hindernissen
- » Hindernisse müssen umfahren werden
- » Hindernis muss fotografiert werden
- » Keine Begrenzungswände
- Startpunkt bei (0,0)_{Welt}
- » Endpunkt wird vorgegeben

Fahrzeuge

- » Weiterentwicklung am Mars Explorer
- » Bodengebundenes Vehikel
- » Bereitstellung einer Basiseinheit (Fahrzeugkit)
 - Arduino und/oder Raspberry Pi

- Aus Sensorkit
- SparkFun IMU Breakout MPU-9250
 - » 3-axis gyroscope
 - » 3-axis accelerometer
 - » 3-axis magnetometer
- Smartphone (für Digitaler Zwilling)

Abschluss Präsentation / Abgabe Design & Interaktionsdesign

- » Design
 - O Moodboard
 - 3 Konzepte in Bildform
 - O Kurzbeschreibung zu jedem Konzept
 - O Entwurf + Kurzbeschreibung
- » Interaktionsdesign
 - Grafische Oberfläche für Fernsteuerung + Messdatendarstellung (Zielgruppenspezifisch)
 - Wireframe
- » Lessons learned

Struktur Projektbericht (1/2)

- » Abgabe am 10.06.2018
- » Kapitel 1: Concept Development
 - O Konzept für Fahrmodi: autonom und ferngesteuert
 - Fahrzeug + Elektronik + Software
- » Kapitel 2: Model Based Analytics
 - O Digitaler Zwilling (mechanisches Modell)
- » Kapitel 3: Simulation
 - O Raspberry Pi / Arduino Simulation
- » Kapitel 4: Datenübertragung
 - Transfer und Auswertung (z.B. Grafik) von Daten nach MATLAB und Thingspeak

Struktur Projektbericht (2/2)

- » Visualisierung MATLAB
 - O Karte mit Fahrstrecke
 - Karte mit Messpunkte (Messwerte, aufgenommene Bilder)
 - Fahrstrecke mit Messungen
- » Rohdaten / Datalog
 - Timestamp + Daten (Telemetrie, Umgebungsbedingungen)

Benotung

- » Fahren 60%
 - 20% Ferngesteuert (Vorgabe einer Abfolge von Sektoren welche angefahren werden müssen)
 - 40% Autonom (Start- und Zielpunkt; Fokus Obstacle Recognition)
- » Bericht 40%
 - O Folien 13 und 14

Viel Erfolg.