Validating Parameter For Supervised Learning

Classification (Confusion Matrix) ⁷ √Minimum Error Regression

400 rows × 4 columns

```
In [12]: dataset["Purchased"].value_counts()
```

Out[12]: 0 257

1 143

Name: Purchased, dtype: int64

400 rows × 4 columns

```
In [12]: dataset["Purchased"].value_counts()
```

Out[12]: 0 - 257

Name: Purchased, dtype: int64

In [13]: indep=dataset[["Age","EstimatedSalary","Gender_Male"]]
 dep=dataset["Purchased"]

Balancad

510

```
In [16]: #split into training set and test
         from sklearn.model_selection import train_test_split
         X train, X test, y train, y test = train test split(indep, dep, test size = 1/3, random state = 0)
In [17]: from sklearn.ensemble import RandomForestClassifier
         classifier = RandomForestClassifier(n estimators = 10, criterion = 'entropy', random state = 0)
         classifier.fit(X train, y train)
Out[17]: RandomForestClassifier(criterion='entropy', n estimators=10, random state=0)
                 y_pred = classifier.predict(X_test)
               : from sklearn.metrics import confusion_matrix
                  cm = coinfusion_matrix(y_test, y_pred)
                  print(cm)
```

```
from sklearn.metrics import classification_report
In [21]:
         clf_report = classification_report(y_test, y_pred)
In [22]: print(clf_report)
                       precision
                                    recall f1-score
                                                        support
                            0.93
                                      0.92
                                                 0.92
                                                             85
                    0
                            0.86
                                      0.88
                                                 0.87
                                                             49
                                                 0.90
                                                            134
             accuracy
                            0.89
                                      0.90
                                                 0.90
                                                            134
            macro avg
         weighted avg
                            0.90
                                      0.90
                                                 0.90
                                                            134
```

Validating Parameter For Supervised Learning

Actual class		N=Test dataset count	Apple	Orange		
		Apple	True Apple (Correctly classified as Apple)	False Apple (Should classified as Apple, But classified as Orange) FN		
		Orange	False Orange (Should classified as Orange but classified as Apple) FP	True Orange (Correctly classified as Orange)		

Evaluation Metrics using Confusion Metrics

F1 Score Accuracy Recall Macro Average Weighed **Precision** Average

Degree of Correctness → **Precision**

- •It tells how correct your positive predictions are.
- •Formula:

$$Precision = \frac{TP}{TP + FP}$$

- •Focuses on **quality** of positive predictions.
- \leftarrow Example: If your model predicts 10 patients as "disease-positive" but only 7 are truly positive \rightarrow Precision = 70%.

✓ Degree of Completeness → Recall

- •It tells how many of the actual positives were captured.
- •Formula:

$$Recall = \frac{TP}{TP + FN}$$

- •Focuses on coverage of actual positives.
- \leftarrow Example: If there are 20 disease patients and your model finds 15 → Recall = 75%.

★ In short:

- •Precision (correctness) = Of the predicted positives, how many are truly positive?
- •Recall (completeness) = Of the actual positives, how many did we successfully predict?

Evaluation Metrics-Accuracy

What is the percentage of correct classification of both(Apple & Orange) to the total input of the test set?

T(Apple)+T(orange)

Accuracy =

T(Apple)+T(Orange)+F(Apple)+F(Orange)

What is the percentage of correct classification of (Orange) to sum of correctly Classified as (Orange) and wrongly classified as (Orange) in the test set?

Precision talks about correctly and wrong classification of the class

Evaluation Metrics-Precision

Evaluation Metrics-Recall

What is the percentage of correct classification of(Apple) to the total input of (Apple) in the test set?

What is the percentage of correct classification of(Orange) to the total input of (Orange) in the test set?

Recall talks about only correctly classified class

Evaluation Metrics-F1 Measure

What if the recall value is high and Precision value is low. How will you validate your model performance?

Evaluation Metrics-F1 measure

Evaluation Metries-Macro Average

Evaluation Metric Weighted Average

Confusion Matrix or Multiple Class

	Apple	Orange	Mango	Banana
Apple	A1	A2	A3	A4
Orange	01	O2	O3	04
Mango	M1	M2	M3	M4
Banana	B1	B2	В3	B4

Recall of Apple

Recall of Orange

Recall of Mango

Recall of Banana

Precision of Apple

Precision of Orange

Precision of Mango Precision of Banana