Qiskit Fall fest Quantum Convolutions for lungs segmentation

Qnow - QML

Oct 2024

Agenda

- Introduction
 - Data set
- Neural networks.
 - Convolutional neural networks
 - U-net
 - Metrics
 - Dice IoU
- Quantum Computing
 - Variational quantum algorithms
 - Quanvolution QCNN
- Results
 - Test data results.
 - Results new data
- Challenges
- Tools

Introduction

Lung segmentation in X-ray images, with a focus on data preprocessing for the training of a classical model using a QNN.

The process of segmentation and context in images is currently done efficiently by a classic U-net type architecture model with convolutional neural networks.

Dataset

New Notebook

Chest Xray Masks and Labels

Pulmonary Chest X-Ray Defect Detection

Notebook

Data

Neural networks

Convolutional Neural Networks - CNN

Convolution

RGB

U-net

Metrics - Dice

The Dice coefficient is a statistic used to measure the similarity of two samples, one of the most used metrics in the context of image segmentation.

0% - 100%

DSC: Dice similarity coefficient

Metrics - IoU

Is a performance metric used to evaluate the accuracy of annotation, segmentation, and object detection algorithms.

0% - 100%

Quantum Computing

It combines the phenomena of quantum physics, information theory and computer science. It is based on the use of qubits, which is the basic unit of quantum information.

Variational Quantum Algorithms

Quavolution - QNN

X-ray images

lmage

Metrics

Results test data

Dice - IoU

Dice: 94.45% and IOU: 89.48%

Results new data - 1 shot

Results new data - 1024 shots

Original Image

Challenges

Challenges

In advance of this first approach and evolution of the research, it is necessary:

- preprocess the data on a real quantum computer using 4 qubits or more so that the results can be analyzed with a real quantum computer.
- Use the same approach with other types of quantum hardware such as: ion trap or photons.
- Evolve this approach and connect the result of this segmentation model with other models for inference in lung cancer detection.

Tools

Q&A #qnow

Oct 2024

Thanks!

#qnow

QML

Oct 2024