Local Search

LOCAL SEARCH AND OPTIMIZATION

- Previous methods: path to goal is a solution to a problem
 - systematic exploration of search space.
- Today approaches: a state is a solution to problem
 - for some problems path is irrelevant.
 - E.g., 8-queens
- Different algorithms can be used
 - Depth First Branch and Bound
 - Local search

Goal Satisfaction

Optimization

LOCAL SEARCH AND OPTIMIZATION

Local search

Keep track of single current state Move only to neighboring states Ignore paths

Advantages:

Use very little memory
Can often find reasonable solutions in large or infinite (continuous) state spaces.

"Pure optimization" problems

- All states have an objective function
- Goal is to find state with max (or min) objective value
- Does not quite fit into path-cost/goal-state formulation
- Local search can do quite well on these problems.

"a loop that continuously moves towards increasing value"

- terminates when a peak is reached
- Aka greedy local search

Value can be either

- Objective function value
- Heuristic function value (minimized)

Hill climbing does not look ahead of the immediate neighbors

Can randomly choose among the set of best successors

• if multiple have the best value

"climbing Mount Everest in a thick fog with amnesia"

HILL CLIMBING

Example n-queens (here n=4)

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Successor function

move a single queen to another square in the same column.

h = number of pairs of queens that are attacking each other

Example n-queens (here n=4)

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Successor function

move a single queen to another square in the same column.

h = number of pairs of queens that are attacking each other

Example n-queens (here n=4)

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Successor function

move a single queen to another square in the same column.

h = number of pairs of queens that are attacking each other

Example n-queens (here n=4)

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Successor function

move a single queen to another square in the same column.

h = number of pairs of queens that are attacking each other

function HILL-CLIMBING(*problem*) **return** a state that is a local maximum

input: *problem*, a problem

local variables: current, a node.

neighbor, a node.

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$

loop do

 $neighbor \leftarrow$ a highest valued successor of *current*

if VALUE [neighbor] ≤ VALUE[current] **then return** STATE[current]

 $current \leftarrow neighbor$

min version will reverse inequalities and look for lowest valued successor

Example of 8 queens Problem

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

It takes only 4 steps on average when it succeeds

- And 3 on average when it gets stuck
- (for a state space with $8^8 = 17$ million states)

Is this a solution?

HILL-CLIMBING: STOCHASTIC VARIATIONS

Stochastic hill-climbing

- Random selection among the uphill moves.
- The selection probability can vary with the steepness of the uphill move.

To avoid getting stuck in local minima

- Random-walk hill-climbing
- Random-restart hill-climbing
- Hill-climbing with both

HILL-CLIMBING WITH RANDOM RESTARTS

If at first you don't succeed, try, try again!

- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely

*** an Interesting Approach ***

SIMULATED ANNEALING

Simulated Annealing = physics inspired twist on random walk

- Basic ideas:
 - like hill-climbing identify the quality of the local improvements
 - instead of picking the best move, pick one randomly
 - say the change in objective function is δ
 - if δ is positive, then move to that state
 - otherwise:
 - move to this state with probability proportional to δ
 - thus: worse moves (very large negative δ) are executed less often
 - however, there is always a chance of escaping from local maxima
 - over time, make it less likely to accept locally bad moves
 - (Can also make the size of the move random as well, i.e., allow "large" steps in state space)

PHYSICAL INTERPRETATION OF SIMULATED ANNEALING

- A Physical Analogy:
 - imagine letting a ball roll downhill on the function surface
 - this is like hill-climbing (for minimization)
 - now imagine shaking the surface, while the ball rolls, gradually reducing the amount of shaking
 - this is like simulated annealing
- Annealing = physical process of cooling a liquid or metal until particles achieve a certain frozen crystal state
 - simulated annealing:
 - free variables are like particles
 - seek "low energy" (high quality) configuration
 - slowly reducing temp. T with particles moving around randomly

SIMULATED ANNEALING

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a "temperature" controlling the prob. of downward steps

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T = o **then return** *current*

 $next \leftarrow$ a randomly selected successor of *current*

 $\Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]$

if $\Delta E > 0$ **then** *current* \leftarrow *next*

else *current* \leftarrow *next* only with probability $e^{\Delta E/T}$

high T: probability of "locally bad" move is higher low T: probability of "locally bad" move is lower typically, T is decreased as the algorithm runs longer i.e., there is a "temperature schedule"

GENETIC ALGORITHMS

Twist on Local Search: successor is generated by combining two parent states

A state is represented as a string over a finite alphabet (e.g. binary)

- 8-queens
 - State = position of 8 queens each in a column

Start with *k* randomly generated states (population)

Evaluation function (fitness function):

- Higher values for better states.
- Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens

Produce the next generation of states by "simulated evolution"

- Random selection
- Crossover
- Random mutation

COMMENTS ON GENETIC ALGORITHMS

- Positive points
 - Random exploration can find solutions that local search can't
 - (via crossover primarily)
 - Appealing connection to human evolution
 - "neural" networks, and "genetic" algorithms are **metaphors!**
- Negative points
 - Large number of "tunable" parameters
 - Difficult to replicate performance from one problem to another

