Bioinformatics and Statistical Genetics	Hardy-Weinberg equilibrium (20p)
Jan Graffelman	November 22, 2017
Name:	
Name:	
You can make use of the R-packages HardyWeinberg and genet	ics (and other packages) to compute
your answers. Prepare a .pdf file with all your answers and figure	es. Send your work by email to the
course instructor (jan.graffelman@upc.edu) before the 3^{rd} of Dec	cember 2017.
1. The file YRIChr1.rda contains genotype information (10000 S	SNPs) of individuals from an African
population of unrelated individuals. Load this data into the R	environment. The file contains three
data objects, X (genotype information). This data is in $(0,1,2)$	format, where 0 and 2 represent the
homozygotes AA and BB, and 1 represents the heterozygote	AB.
2. (2p) How many individuals does the database contain? What p	percentage of the variants is monomor-
phic? Remove all monomorphic SNPs from the data bases.	How many variants remain in the
database? Determine the genotype counts for these variants,	and store them in matrix. Apply a
chi-square test without continuity correction for Hardy-Wein	aberg equilibrium to each SNP. How
many SNPs are significant (use $\alpha = 0.05$)?	
3. (1p) How many markers of the remaining non-monomorphic	
of equilibrium by the effect of chance alone?	
4. (1p) Apply an Exact test for Hardy-Weinberg equilibrium	to each SNP. You can use function
HWExactStats for fast computation. How many SNPs are sig	enificant (use $\alpha = 0.05$). Is the result
consistent with the chi-square test?	
5. (1p) Apply a likelihood ratio test for Hardy-Weinberg equilibri	ium to each SNP, using the HWLratio
function How many SNPs are significant (use $\alpha = 0.05$). Is the	
test?	_
6. (1p) Apply a permutation test for Hardy-Weinberg equilibri	ium to the first 10 SNPs, using the

classical chi-square test (without continuity correction) as a test statistic. List the 10 p-values, together with the 10 p-values of the exact tests. Are the result consistent?

7.	(1p) Depict all SNPs simultaeneously in a ternary plot, and comment on your result (because many
	genotype counts repeat, you may use UniqueGenotypeCounts to speed up the computations)
8.	(1p) Can you explain why half of the ternary diagram is empty?
9.	(3p) Make a histogram of the p -values obtained in the chi-square test. What distribution would you expect if HWE would hold for the data set? What distribution do you observe? Also make a Q-Q plot of the p values obtained in the chi-square test against the quantiles of the distribution that you consider relevant. What is your conclusion?
10.	(1p) Imagine that for a particular marker the counts of the two homozygotes are accidentally interchanged. Would this affect the statistical tests for HWE? Try it on the computer if you want. Argue your answer.
11.	(3p) Compute the inbreeding coefficient (\hat{f}) for each SNP, and make a histogram of \hat{f} . You can use function HWf for this purpose. Give descriptive statistics (mean, standard deviation, etc) of \hat{f} calculated over the set of SNPs. What distribution do you think \hat{f} follows? Use a probability plot to confirm your idea.
12.	(2p) Make a plot of the observed chi-square statistics agains the inbreeding coefficient (\hat{f}) . What do you observe? Can you give an equation that relates the two statistics?
13.	(1p) Make a chi-square probability plot of the observed chi-square statistics against their theoretical quantiles. Does the sample statistic follow a chi-square distribution?
114.	(1p) Simulate SNPs under the assumption of Hardy-Weinberg equilibrium. Simulate the SNPs of this database, and take care to match each of the SNPs in your database with a simulated SNP that has the same sample size and allele frequency. You can use function HwData of the HardyWeinberg package for this purpose. Compare the distribution of the observed chi-square statistics with the distribution of the chi-square statistics of the simulated SNPs by making a Q-Q plot. What do you observe? State your conclusions
15.	(1p) Do you think genotyping error is a problem for the database you just studied? Explain your
	opinion.