Weakly Supervised Natural Language Understanding

Ni Lao Chief Scientist @mosaix.ai 5.14.2019

What is understanding?

"If they find a parrot who could **answer** to everything, I would claim it to be an **intelligent** being without hesitation.", -- Alan Turing, 1950

Does the machine literally "understand" Chinese? Or is it merely simulating the ability to understand Chinese?
-- John Searle, 1980

The Chinese Room Argument

Full Supervision NLP

 Traditionally NLP is a labor-intensive business

> **Applications** Discourse Processing **Semantic Parsing** Syntactic analysis Morphological analysis **ASR** OCR speech text

Software 2.0

- specify some goal on the behavior
 - e.g., "satisfy input output pairs of examples",
 - e.g., "win a game of Go"
- 2. write a rough skeleton of the code that identifies a subset of program space to search
 - o e.g. a neural net architecture
- 3. use the computational resources at disposal to search this space for a program that works.

Death of feature engineering. (The) **users** of the software will (play) a direct role in building it. **Data labeling** is a central component to system design.

[Karpathy 2017; Watson 2017; Ratner+ 2018]

Where does knowledge come from?

• Can only cover the most popular semantics used by human

(bottlenecks)

expert systems with knowledge bases

Weak Supervision NLP

- Avoid the knowledge acquisition bottleneck with machine learning
- Then we can cover more semantics used by human

[Berant+ 2013] [Liang 2013]

Semantic Parsing

 Natural language queries or commands are converted to computation steps on data and produce the expected answers or behavior

Question Answering with Knowledge Base

Freebase, DBpedia, YAGO, NELL

Paraphrase

Many ways to ask the same question, e.g., "What was the date that Minnesota became a state?" "When was the state Minnesota created?"

Compositionality

Large Search Space (Optimization)

E.g., Freebase: 23K predicates, 82M entities, 417M triplets

WebQuestionsSP Dataset

- 5,810 questions from Google Suggest API & Amazon MTurk¹
- Remove invalid QA pairs²
- 3,098 training examples, 1,639 testing examples remaining
- Open-domain and contains grammatical error
- Multiple entities as answer => macro-averaged F1

Grammatical error

- What do Michelle Obama do for a living?
- What character did Natalie Portman play in Star Wars?
- · What currency do you use in Costa Rica?
- · What did Obama study in school?
- · What killed Sammy Davis Jr?

Multiple entities

writer, lawyer
Padme Amidala
Costa Rican colon
political science
throat cancer

WikiTableQuestions: Dataset

Breadth

 No fixed schema: Tables at test time are not seen during training, needs to generalize based on column name.

Depth

- More compositional questions, thus require longer programs
- More operations like arithmetic operations and aggregation operations

Year	City	Country	Nations
1896	Athens	Greece	14
1900	Paris	France	24
1904	St. Louis	USA	12
2004	Athens	Greece	201
2008	Beijing	China	204
2012	London	UK	204

 x_1 : "Greece held its last Summer Olympics in which year?"

 y_1 : {2004}

 x_2 : "In which city's the first time with at least 20 nations?"

 y_2 : {Paris}

 x_3 : "Which years have the most participating countries?"

 y_3 : {2008, 2012}

 x_4 : "How many events were in Athens, Greece?"

 y_4 : {2}

 x_5 : "How many more participants were there in 1900 than in the first year?"

 y_5 : {10}

Key-Variable Memory for Semantic Compositionality

 Equivalent to a linearised bottom-up derivation of the recursive program

Structured Prediction Often Needs to Do Search

Which fits well with RL's ability to form good search policy

- dialogue
- semantic parsing
- program synthesis
- architecture search
- machine translation
- summarization
- image caption
- knowledge graph reasoning
- information extraction
- ...

RL is attractive:

Directly Optimizing The Expected Reward Which can be very useful for structured predictions

ML optimizes the log likelihood of target sequences

$$J^{ML}(\theta) = \sum_{q} \log P(a_{0:T}^{best}(q)|q,\theta)$$

RL optimizes the expected reward under a stochastic policy

$$J^{RL}(\theta) = \sum_{q} \mathbb{E}_{P(a_{0:T}|q,\theta)}[R(q, a_{0:T})]$$

[Williams 1992] [Sutton & Barto 1998] [Liang+ 2017]

RL has challenges:

Which we need to be aware of

- Large search space (sparse rewards)
 - Supervised pretraining (MLE)
 - Systematic exploration [Houthooft+ 2017]
 - Curiosity [Schmidhuber 1991][Pathak2017]
- Credit assignment (delayed reward)
 - Bootstrapping
 - E.g., AlphaGo uses a value function to estimate the future reward
 - Rollout n-steps
- Train speed & stability (optimization)
 - Trust region approaches (e.g., PPO)
 - Experience replay

[Sutton & Barto 1998] [Abbeel & Schulman 2016]

RL models generate their own training data

- Training sample management issue
 - Too many low quality examples ⇒ slow training
 - Boosting high reward experience ⇒ biased training

Memory Augmented Policy Optimization (MAPO)

Comparison

- REINFORCE does not work at all
- MAPO is slower but less biased

The shaded area represents the standard deviation of the dev accuracy