THỐNG KÊ NHIỀU CHIỀU

Chương 6: So sánh các vectơ trung bình nhiều chiều

Dinh Anh Huy - 18110103

Nguyễn Đức Vũ Duy - 18110004

Kết quả 6.1. Cho $\mathbf{D}_1, \mathbf{D}_2, ..., \mathbf{D}_n$ là mẫu ngẫu nhiên được lấy từ tổng thể có phân phối chuẩn p chiều $\mathcal{N}_p(\boldsymbol{\delta}, \boldsymbol{\Sigma}_{\mathbf{d}})$. Khi đó

$$T^2 = n(\overline{\mathbf{D}} - \boldsymbol{\delta})^T \mathbf{S}_{\mathbf{d}}^{-1} (\overline{\mathbf{D}} - \boldsymbol{\delta}) \sim \frac{(n-1)p}{n-p} \mathcal{F}_{p,n-p}$$

Nếu n và n-p đều lớn thì T^2 xấp xỉ về phân phối $\chi^2_p.$

Chứng minh

. . .

Trường hợp n và n-p lớn, ta có

$$\overline{\mathbf{D}} = rac{1}{n} (\mathbf{D}_1 + \mathbf{D}_2 + ... + \mathbf{D}_p) \sim \mathcal{N}_p(\boldsymbol{\delta}, rac{1}{n} \boldsymbol{\Sigma}_d)$$

Suy ra

$$\sqrt{n}(\overline{\mathbf{D}} - \boldsymbol{\delta}) \sim \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma_d})$$

Khi đó

$$n(\overline{\mathbf{D}} - \boldsymbol{\delta})^T \mathbf{S}_{\mathbf{d}}^{-1}(\overline{\mathbf{D}} - \boldsymbol{\delta}) \sim \chi_n^2$$

Kết quả 6.2. Nếu $\mathbf{X}_{11}, \mathbf{X}_{12}, ..., \mathbf{X}_{1n_1}$ là mẫu ngẫu nhiên kích thước n_1 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ và $\mathbf{X}_{21}, \mathbf{X}_{22}, ..., \mathbf{X}_{2n_2}$ là mẫu ngẫu nhiên kích thước n_2 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$ thì

$$T^2 = [\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)]^T \left[\left(rac{1}{n_1} + rac{1}{n_2}
ight) \mathbf{S}_{pooled}
ight]^{-1} \left[\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)
ight]$$

có phân phối

$$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)}\mathcal{F}_{p,n_1+n_2-p-1}$$

Hơn nữa

$$P\left[(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))^{T} \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \mathbf{S}_{pooled}\right]^{-1} (\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2})) \leq c^{2}\right] = 1 - \alpha$$

$$(6.24)$$

trong đó

$$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}(\alpha)$$

Chứng minh

Cho $\mathbf{X}_{11}, \mathbf{X}_{12}, ..., \mathbf{X}_{1n_1}$ là mẫu ngẫu nhiên kích thước n_1 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ và $\mathbf{X}_{21}, \mathbf{X}_{22}, ..., \mathbf{X}_{2n_2}$ là mẫu ngẫu nhiên kích thước n_2 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$. Khi đó, theo kết quả 4.8 ta có

$$\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} = \frac{1}{n_{1}} \left(\mathbf{X}_{11} + \mathbf{X}_{12} + \dots + \mathbf{X}_{1n_{1}} \right) - \frac{1}{n_{2}} \left(\mathbf{X}_{21} + \mathbf{X}_{22} + \dots + \mathbf{X}_{2n_{2}} \right)$$

$$= \frac{1}{n_{1}} \mathbf{X}_{11} + \dots + \frac{1}{n_{1}} \mathbf{X}_{1n_{1}} - \frac{1}{n_{2}} \mathbf{X}_{21} - \dots - \frac{1}{n_{2}} \mathbf{X}_{2n_{2}}$$

tuân theo phân phối

$$\mathcal{N}_p\left(oldsymbol{\mu}_1 - oldsymbol{\mu}_2, \left(rac{1}{n_1} + rac{1}{n_2}
ight)oldsymbol{\Sigma}
ight)$$

Hơn nữa

$$(n_1-1)\mathbf{S}_1 \sim \mathcal{W}_p(\mathbf{\Sigma}, n_1-1)$$
 và $(n_2-1)\mathbf{S}_2 \sim \mathcal{W}_p(\mathbf{\Sigma}, n_2-1)$

Vì \mathbf{X}_{1j} và \mathbf{X}_{2j} với j=1,2,... độc lập với nhau nên $(n_1-1)\mathbf{S}_1$ và $(n_2-1)\mathbf{S}_2$ cũng độc lập với nhau. Do đó

$$(n_1-1)\mathbf{S}_1 + (n_2-1)\mathbf{S}_2 \sim \mathcal{W}_p(\Sigma, n_1+n_2-2)$$

Khi đó

$$\begin{split} T^2 &= \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{-1/2} (\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2))^T \mathbf{S}_{pooled}^{-1} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)^{-1/2} (\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)) \\ &= \left(\begin{array}{c} \text{vecto ngẫu nhiên} \\ \text{chuẩn nhiều chiều} \end{array}\right)^T \left(\frac{\text{Ma trận ngẫu nhiên Wishart}}{\text{hệ số tự do}}\right)^{-1} \left(\begin{array}{c} \text{vecto ngẫu nhiên} \\ \text{chuẩn nhiều chiều} \end{array}\right) \\ &= \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma})^T \left[\frac{\mathcal{W}_p(\boldsymbol{\Sigma}, n_1 + n_2 - 2)}{n_1 + n_2 - 2}\right]^{-1} \mathcal{N}_p(\mathbf{0}, \boldsymbol{\Sigma}) \end{split}$$

Như vậy thống kê T^2 tuân theo phân phối

$$\frac{(n_1+n_2-2)p}{(n_1+n_2-p-1)}\mathcal{F}_{p,n_1+n_2-p-1}$$

Hơn nữa

$$P\left[(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2))^T \left[\left(\frac{1}{n_1} + \frac{1}{n_2} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)) \le c^2 \right] = 1 - \alpha$$

trong đó

$$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}(\alpha)$$

Kết quả 6.3. Cho $c^2 = \frac{(n_1 + n_2 - 2)p}{(n_1 + n_2 - p - 1)} F_{p,n_1 + n_2 - p - 1}(\alpha)$. Với xác suất $1 - \alpha$ thì

$$\mathbf{a}^{T}(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}) \pm c\sqrt{\mathbf{a}^{T}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)\mathbf{S}_{pooled}\mathbf{a}}$$

sẽ bao hết $\mathbf{a}^T(\boldsymbol{\mu}_1-\boldsymbol{\mu}_2)$ với mọi \mathbf{a} . Cụ thể hơn là $\mu_{1i}-\mu_{2i}$ sẽ bị bao bởi

$$(\overline{X}_{1i}-\overline{X}_{2i})\pm c\sqrt{\left(rac{1}{n_1}+rac{1}{n_2}
ight)S_{ii,pooled}}$$
 với $i=1,2,...,p$

Chứng minh

Cho $\mathbf{X}_{11}, \mathbf{X}_{12}, ..., \mathbf{X}_{1n_1}$ là mẫu ngẫu nhiên kích thước n_1 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ và $\mathbf{X}_{21}, \mathbf{X}_{22}, ..., \mathbf{X}_{2n_2}$ là mẫu ngẫu nhiên kích thước n_2 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$. Khi đó tổ hợp tuyến tính của các quan trắc trong hai mẫu trên là

$$\mathbf{a}^T \mathbf{X}_{1j} = a_1 X_{1j1} + a_2 X_{1j2} + \dots + a_p X_{1jp}$$
 và $\mathbf{a}^T \mathbf{X}_{2j} = a_1 X_{2j1} + a_2 X_{2j2} + \dots + a_p X_{2jp}$

có trung bình mẫu và hiệp phương sai tương ứng là $\mathbf{a}^T\overline{\mathbf{X}}_1$, $\mathbf{a}^T\mathbf{S}_1\mathbf{a}$ và $\mathbf{a}^T\overline{\mathbf{X}}_2$, $\mathbf{a}^T\mathbf{S}_2\mathbf{a}$, trong đó $\overline{\mathbf{X}}_1$, \mathbf{S}_1 và $\overline{\mathbf{X}}_2$, \mathbf{S}_2 là trung bình và hiệp phương sai của hai mẫu ban đầu. Khi hai tổng thể ban đầu có cùng ma trận hiệp phương sai Σ thì $s_{1.\mathbf{a}}^2 = \mathbf{a}^T\mathbf{S}_1\mathbf{a}$ và $s_{2.\mathbf{a}}^2 = \mathbf{a}^T\mathbf{S}_2\mathbf{a}$ đều có ước lượng là $\mathbf{a}^T\Sigma\mathbf{a}$. Kết hợp hai ước lượng trên ta thu được

$$s_{\mathbf{a}.pooled}^{2} = \frac{(n_{1} - 1)s_{1.\mathbf{a}}^{2} + (n_{2} - 1)s_{2.\mathbf{a}}^{2}}{n_{1} + n_{2} - 2}$$

$$= \mathbf{a}^{T} \left[\frac{n_{1} - 1}{n_{1} + n_{2} - 2} \mathbf{S}_{1} + \frac{n_{2} - 1}{n_{1} + n_{2} - 2} \mathbf{S}_{2} \right] \mathbf{a}$$

$$= \mathbf{a}^{T} \mathbf{S}_{pooled} \mathbf{a}$$

Phát biểu giả thuyết

$$H_0: \mathbf{a}^T(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) = \mathbf{a}^T \boldsymbol{\delta}_0 \quad \text{ và } \quad H_1: \mathbf{a}^T(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \neq \mathbf{a}^T \boldsymbol{\delta}_0$$

Ta xét thống kê t^2 cho hai mẫu đơn biến

$$t_{\mathbf{a}}^2 = \frac{[\mathbf{a}^T(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) - \mathbf{a}^T(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)]^2}{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)s_{\mathbf{a}.pooled}^2} = \frac{[\mathbf{a}^T(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2))]^2}{\mathbf{a}^T\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{S}_{pooled}\mathbf{a}}$$

Xét $b\mathring{o}$ $d\mathring{e}$ Maximization: Cho $\underset{(p\times p)}{\mathbf{B}}$ là ma trận xác định dương và $\underset{(p\times 1)}{\mathbf{d}}$ là một vectơ bất kỳ. Khi đó, với một vectơ khác không tuỳ ý $\underset{(p\times 1)}{\mathbf{x}}$ thì

$$\max_{x \neq 0} \frac{(\mathbf{x}^T \mathbf{d})^2}{\mathbf{x}^T \mathbf{B} \mathbf{x}} = \mathbf{d}^T \mathbf{B}^{-1} \mathbf{d}$$

với giá trị cực đại đạt được khi $\mathbf{x}_{(p\times 1)}=c\mathbf{B}^{-1}\,d$ với mọi hằng số $c\neq 0$.

Theo bổ đề trên với $\mathbf{d}=(\overline{\mathbf{X}}_1-\overline{\mathbf{X}}_2-(\boldsymbol{\mu}_1-\boldsymbol{\mu}_2))$ và $\mathbf{B}=(1/n_1+1/n_2)\mathbf{S}_{pooled}$ ta có

$$t^{2} \leq (\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))^{T} \left[\left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \mathbf{S}_{pooled} \right]^{-1} (\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2} - (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2}))$$

$$= T^{2}$$

với mọi $\mathbf{a} \neq \mathbf{0}$. Do đó

$$\begin{split} 1 - \alpha &= P[T^2 \leq c^2] = P[t_{\mathbf{a}}^2 \leq c^2, \forall \mathbf{a}] \\ &= P\left[\left|\mathbf{a}^T(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) - \mathbf{a}^T(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right| \leq c\sqrt{\mathbf{a}^T\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\mathbf{S}_{pooled}\mathbf{a}}, \forall \mathbf{a}\right] \end{split}$$

trong đó

$$c^{2} = \frac{(n_{1} + n_{2} - 2)p}{(n_{1} + n_{2} - p - 1)} F_{p,n_{1} + n_{2} - p - 1}(\alpha)$$

Kết quả 6.4. Cho các cỡ mẫu thoả mãn $n_1 - p$ và $n_2 - p$ đều lớn. Khi đó, một xấp xỉ confidence ellipsoid với độ tin cậy $100(1 - \alpha)\%$ cho $\mu_1 - \mu_2$ được cho bởi tất cả $\mu_1 - \mu_2$ thoả mãn

$$\left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right]^T \left[\frac{1}{n_1}\mathbf{S}_1 + \frac{1}{n_2}\mathbf{S}_2\right]^{-1} \left[\overline{\mathbf{x}}_1 - \overline{\mathbf{x}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)\right] \leq \chi_p^2(\alpha)$$

Hơn nữa, khoảng tin cậy đồng thời $100(1-\alpha)\%$ cho tất cả các tổ hợp tuyến tính $\mathbf{a}^T(\boldsymbol{\mu}_1-\boldsymbol{\mu}_2)$ là

$$\mathbf{a}^T(\overline{x}_1 - \overline{x}_2) \pm \sqrt{\chi_p^2(\alpha)} \sqrt{\mathbf{a}^T \left(\frac{1}{n_1} \mathbf{S}_1 + \frac{1}{n_2} \mathbf{S}_2\right) \mathbf{a}}$$

Chứng minh

Cho $\mathbf{X}_{11}, \mathbf{X}_{12}, ..., \mathbf{X}_{1n_1}$ là mẫu ngẫu nhiên kích thước n_1 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_1, \boldsymbol{\Sigma})$ và $\mathbf{X}_{21}, \mathbf{X}_{22}, ..., \mathbf{X}_{2n_2}$ là mẫu ngẫu nhiên kích thước n_2 lấy từ phân phối $\mathcal{N}_p(\boldsymbol{\mu}_2, \boldsymbol{\Sigma})$. Khi đó ta có

$$E(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) = -\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$$

và

$$Cov(\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2) = Cov(\overline{\mathbf{X}}_1) + Cov(\overline{\mathbf{X}}_2) = \frac{1}{n_1}\Sigma_1 + \frac{1}{n_2}\Sigma_2$$

Theo định lý giới hạn trung tâm, ta có $\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2$ sẽ xấp xỉ về phân phối $\mathcal{N}_p[\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2, n_1^{-1}\boldsymbol{\Sigma}_1 + n_2^{-1}\boldsymbol{\Sigma}_2]$. Nếu $\boldsymbol{\Sigma}_1$ và $\boldsymbol{\Sigma}_2$ đều được biết trước thì bình phương khoảng cách thống kê từ $\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2$ đến $\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$ sẽ là

$$[\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)]^T \left(\frac{1}{n_1}\boldsymbol{\Sigma}_1 + \frac{1}{n_2}\boldsymbol{\Sigma}_2\right)^{-1} [\overline{\mathbf{X}}_1 - \overline{\mathbf{X}}_2 - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)]$$

Theo kết quả 4.7, bình phương khoảng cách ở trên sẽ xấp xỉ về phân phối χ_p^2 . Khi n_1 và n_2 đều lớn, với xác suất cao, \mathbf{S}_1 sẽ càng gần với Σ_1 và \mathbf{S}_2 sẽ gần với Σ_2 .

. . .

Kết quả 6.5. Đặt $n = \sum_{k=1}^{g} n_k$. Với độ tin cậy ít nhất $(1 - \alpha)$, $\tau_{ki} - \tau_{li}$ thuộc vào khoảng:

$$\bar{x}_{ki} - \bar{x}_{li} \pm t_{n-g} \left(\frac{\alpha}{pg(g-1)} \sqrt{\frac{\omega_{ii}}{n-g} \left(\frac{1}{n_k} + \frac{1}{n_l}\right)}\right)$$

Với mọi phần tử i = 1, 2, ..., p và với tất cả l < k = 1, ..., g. ω_{11} là phần tử thứ i trên đường chéo của ma trận W.

Chứng minh Do τ_{ki} là phần tử thứ i của τ_k và τ_k được ước lượng bởi $\overline{x_k} - \overline{x}$. Nên ta có ước lượng sau:

$$\hat{\tau_{ki}} = \overline{x_{ki}} - \overline{x_i}$$

Khi đó,

$$\hat{\tau_{ki}} - \hat{\tau_{li}} = \overline{x_{ki}} - \overline{x_{li}}$$

Ta nhận thấy rằng,

$$var(\hat{\tau_{ki}} - \hat{\tau_{li}}) = var(\overline{x_{ki}} - \overline{x_{li}}) = (\frac{1}{n_k} + \frac{1}{n_l})\sigma_{11}$$

Khi đó, $var(\overline{x_{ki}} - \overline{x_{li}})$ được ước lượng bằng cách chia từng phần tử của W bởi bậc tự do của nó, nghĩa là phần tử ở đường chéo thứ i của $var(\overline{x_{ki}} - \overline{x_{li}})$ sẽ là:

$$var(\hat{\overline{x_{ki}}} - \overline{x_{li}}) = (\frac{1}{n_k} + \frac{1}{n_l})\frac{\omega_{ii}}{n - g}$$

Trong đó, ω_{11} là phần tử ở đường chéo thứ i và $n=n_1+n_2+\ldots+n_g$.

Giờ đây, ta có p biến và số cặp k, l có thể có sẽ là $C_2^g = \frac{g(g-1)}{2}$. Do đó, mỗi khoảng student cho 2 mẫu sẽ có giá trị tới hạn là $t_{n-g}(\frac{\alpha}{2.\frac{pg(g-1)}{2}}) = t_{n-g}(\frac{\alpha}{pg(g-1)})$.

Từ tất cả điều trên, ta thế vào phương pháp Bonferroni ta thu được khoảng tin cậy đồng thời với mức tin cậy $1 - \alpha$ cho $\tau_{ki} - \tau_{li}$ sẽ thuộc vào:

$$\bar{x}_{ki} - \bar{x}_{li} \pm t_{n-g} \left(\frac{\alpha}{pg(g-1)}\right) \sqrt{\frac{\omega_{ii}}{n-g} \left(\frac{1}{n_k} + \frac{1}{n_l}\right)}$$

Đây là điều phải chứng minh.