Functional Analysis Theorems, Examples, and Counter Exmaples

Sam Fleischer

April 27, 2016

1 A Short Introduction to L^p Spaces

1.1 Three Pillars of Analysis

Three Pillars of Analysis	Examples
Monotone Convergence Theorem - If a	This is an example.
sequence of non-negative functions is increasing,	
we can pull the limit through an integral.	
$\lim_k \int f_k = \int \lim_k f_k$	
Fatou's Lemma - For a sequence of	This is an example.
non-negative functions, the integral of the lim inf	
is less than or equal to the lim inf of the integral.	
$\int \liminf_{k} f_{k} \leq \liminf_{k} \int f_{k}$	
Dominated Convergence Theorem - If a	This is an example.
sequence converges pointwise almost everywhere	
and is dominated, then it converges in norm to its	
pointwise limit.	
$\lim_{k} \int f_k = \int \lim_{k} f_k = \int f$	
$\lim_{k} \ f_k - f\ _1 = 0$	

1.2 Integrals over Product Spaces

Integrals over Product Spaces	Examples
Fubini's Theorem - If a function is integrable on a product space, then the integral over the product space is equal to both iterated integrals.	This is an example.
Semi-converse of Fubini's Theorem - If an iterated integral exists of the absolute value of a	This is an example.
function on a prodct space, then the integral of the product space is equal to both iterated integrals.	

Integrals over Product Spaces	Examples
Tonelli's Theorem - If a function is non-negative and measurable on a product space, then the integral over the product space is equal to both iterated integrals.	This is an example.

1.3 L^p Spaces

L^p Spaces	Examples
Convexity is a thing. $x^{\lambda} \leq (1 - \lambda) + \lambda x \forall \lambda \in (0, 1)$	This is an example.
$a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b \forall \lambda \in (0,1), \forall a, b \ge 0$	
Hölder's Inequality - For conjugate exponents	This is an example.
p and q , the 1-norm of a product of L^p and L^q	
functions is finite, and the 1-norm of the product	
is less than or equal to the product of the norms	
of the original functions.	
$ fg _1 \le f _p g _q$	
Interpolation Inequality - For	This is an example.
$1 \le r \le s \le t \le \infty$, if u is in L^r and L^t , then u is	
in L^s and the s-norm is less than of equal to the	
product of the r - and t -norms raised to the	
appropriate power. $\frac{1}{a} = a + \frac{1}{a} = a$	
$ u _s \le u _r^a u _t^{1-a}$ where $\frac{1}{s} = \frac{a}{r} + \frac{1-a}{t}$	
$L^r \cap L^t \subset L^s$	
Minkowski's Inequality - For functions in L^p ,	This is an example.
the norm of their sum is less than or equal to the	
sum of their norms.	
$ f+g _p \le f _p + g _p$	
L^p is a normed linear space.	This is an example.
L^p is a Banach Space.	This is an example.
Pointwise convergence implies a double	This is an example.
implication - If a sequence of functions converge	
pointwise, then their norms converge if and only	
if they converge in norm.	
$f_k \to f$ pointwise \Longrightarrow	
$\left[\ f_k - f\ _p \to 0 \iff \ f_k\ _p \to \ f\ _p \right]$	
L^p Comparisons - For $1 \le r \le s \le t \le \infty$, if a	This is an example.
function in L^s can be written as the sum of	
functions in L^r and L^t .	
$L^s \subset L^r + L^t$	

L^p Spaces	Examples
L^p Comparison for Finite Spaces - For finite	This is an example.
measure spaces, a function in L^q is also in L^p for	
all $q > p$.	
$L^q \subset L^p$	
Approximation of L^p $(p < \infty)$ by Simple	This is an example.
Functions - The set of Simple Functions are	
dense in L^p .	
Approximation of L^p $(p < \infty)$ by	This is an example.
Continuous Functions - For bounded measure	
spaces, the set of continuous functions is dense in L^p .	
Approximation of L_{loc}^{p} by Smooth Functions	This is an example.
- For a function f in L_{loc}^p , its mollified functions:	
1. are infinitely differentiable,	
2. converge pointwise to f ,	
2. converge pointwise to j,	
3. converge uniformly to f on compact subsets of the space (given f is continuous), and	
4. converge to f in L_{loc}^p .	

1.4 Convolutions and (in general) Integral Operators

L^p Spaces	Examples
Boundedness of Integral Operators - An	This is an example.
integral operator has bounded norm (and is hence	
continuous) if both of the absolute iterated	
integrals of its kernel are bounded (say by C_1 and	
C_2).	
$ K _{\mathcal{B}(L^p(\mathbb{R}^n))} \le C_1^{\frac{1}{p}} C_2^{\frac{1}{q}}$	
Cauchy-Young Inequality - If p and q are	This is an example.
conjugate exponents, then for all nonnegative a	
and b ,	
$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$	
p q	
Cauchy-Young Inequality with δ - If p and q	This is an example.
are conjugate exponents, the for all nonnegative a	
and b ,	
$ab \le \delta a^p + C_\delta b^q, \delta > 0, C_\delta = (\delta p)^{-\frac{q}{p}} q^{-1}$	

L^p Spaces	Examples
Simple Version of Young's Inequality - For L^1 function k and L^p function f , the p -norm of their convolution is less than or equal to the product of their respective norms. $ k*f _p \leq k _1 f _p$	This is an example.
(More general) Young's Inequality for Convolution - For L^p function k and L^q function f , the r -norm of their convolution is bounded by the product of their respective norms, given $1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}.$ $\ k * f\ _r \le \ k\ _p \ f\ _q, \qquad 1 + \frac{1}{r} = \frac{1}{p} + \frac{1}{q}$	This is an example.

1.5 The Dual Space and Weak Topology

L^p Spaces	Examples
Norm of an Integral Operator is the Norm of its Kernel - For conjugate exponents p and q , integration of an L^p function against an L^q function is a continuous linear functional on L^p and the operator norm is equal to the norm of the L^q function. $F_g(f) = \int fg \qquad \text{and} \qquad \ F_g\ _{\text{op}} = \ g\ _q$	This is an example.
Riesz Representation Theorem $(1 - For conjugate exponents p and q, every bounded (continuous) linear functional on L^p can be represented as an integral operator whose kernel is in L^q. \phi \in (L^p)^* \implies \exists g \in L^q such that \phi(f) = \int fg \ \forall f \in L^p$	This is an example.
Reflexivity of L^p (1 < p < ∞) - The dual space of the dual space of L^p is isomorphic to L^p .	This is an example.
Radon-Nikodym Theorem - If μ and ν are two finite measures on a measure space where ν is absolutely continuous with respect to μ , then there exists an L^1 function h to change the measure of integration as follows: $\int F d\nu = \int F h d\mu$ for every positive measurable function F .	This is an example.

L^p Spaces	Examples
Converse to Hölder's Inequality - For finite measure spaces, if a product of a measurable function and any simple function is L^1 , and if the supremum of the L^1 -norm of the product (for simple functions of L^p -norm 1) is finite, then the measurable function is in L^q and its L^q -norm is equal to that supremum. $M(g) = \sup_{\ f\ _p = 1} \left\{ \left \int_{\Omega} f g \mathrm{d} \mu \right : f \text{ is simple} \right\} < \infty$	This is an example.
$g \in L^q(\Omega)$ and $\ g\ _q = M(g)$	
Alaoglu's Lemma - The closed unit ball in the dual of a Banach space is compact in the weak-* topology.	This is an example.
Weak Compactness for $L^p(\Omega)$ for $1 - Every bounded sequence in L^p has a weakly convergent subsequence.$	This is an example.
Weak-* compactness for L^{∞} - Every bounded sequence in L^{∞} has a weak* convergent subsequence.	This is an example.
Convergence implies weak convergence - Convergent sequences in L^p are weakly convergent.	This is an example.
Weak Limits have Bounded Norms - The L^p norm of a weak limit is bounded by the lim inf of the L^p norms of its sequence.	This is an example.
Weakly convergent Sequences are bounded - Weakly convergent L^p sequences have bounded L^p norms.	This is an example.
Egoroff's Theorem - For pointwise convergent sequences on finite domains, there exist arbitrarily small (positive measure) subsets such that the sequence converges uniformly on its complement. $\forall \varepsilon < 0, \ \exists E \subset \Omega \ \text{with} \ E < \varepsilon $ such that $f_k \to f \ \text{uniformly on} \ \Omega \setminus E$	This is an example.
Almost everywhere convergence of a bounded (in L^p) sequence in a bounded domain implies weak convergence for $1 . \left\{ \begin{array}{l} \Omega \subset \mathbb{R}^n \text{ bounded,} \\ \sup_k \ f_k\ _p \leq M < \infty, \text{ and} \\ f_k \to f \text{ a.e.} \end{array} \right\} \implies f_k \to f$	This is an example.

L^p Spaces	Examples
Weak and Strong Convergence Imply	This is an example.
Strong Integral Convergence - If $u_k \rightharpoonup u$ and	
$v_k \to v$ in $L^p(\Omega)$, then	
$\int_{\Omega} u_k v_k \mathrm{d}x \to \int_{\Omega} u v \mathrm{d}x$	
Weak Convergence Sometimes Implies	This is an example.
Strong Convergence - Suppose $u_k \rightharpoonup u$ in	
$L^p(\Omega)$. If $ u _p = \lim u_k _p$, the $u_k \to u$ in $L^p(\Omega)$.	

2 Sobolev Spaces and the Fourier Transform

2.1 Sobolev Spaces $W^{k,p}$ for Integers $k \geq 0$

L^p Spaces	Examples
Divergence Theorem - Let $w: \overline{\Omega} \subset \mathbb{R}^n \to \mathbb{R}^n$.	This is an example.
If $\partial\Omega$ is the graph of a Lipschitz function, then	_
$\int_{\Omega} \nabla \cdot w dx = \int_{\partial \Omega} w \cdot N dS$	
where N is the outward-facing normal vector.	
Multi-Dimensional Version of Integration	This is an example.
by Parts - Suppose $g, h : \Omega \to \mathbb{R}$. Then	
$\int_{\Omega} g h_{x_i} dx = \int_{\partial \Omega} g h N^i dS - \int_{\Omega} g_{x_i} h dx$	
where g_{x_i} and h_{x_i} are the i^{th} partial derivatives of	
g and h , respectively, and N^i is the i^{th} component	
of the outward-facing normal vector.	
Green's First Identity - Suppose $u \in \mathcal{C}^2(\overline{\Omega})$	This is an example.
and $v \in \mathcal{C}^1(\overline{\Omega})$. Then	
$\int_{\Omega} \nabla v \cdot \nabla u dx + \int_{\Omega} v \nabla^2 u dx = \int_{\Omega} \nabla \cdot (v \nabla u) dx$	
$= \int_{\partial\Omega} v \frac{\partial u}{\partial N} dX.$ where $\nabla^2 = \frac{\partial^2}{\partial x_i^2} + \dots + \frac{\partial^2}{\partial x_n^2}$.	
where $\nabla^2 = \frac{\partial^2}{\partial x_i^2} + \dots + \frac{\partial^2}{\partial x_n^2}$.	
Green's Second Identity - Suppose both u and	This is an example.
$v \text{ are in } \mathcal{C}^2(\overline{\Omega}). \text{ Then }$	
$\int_{\Omega} (v\nabla^2 u - u\nabla^2 v) dx = \int_{\partial\Omega} \left[v \frac{\partial u}{\partial N} - u \frac{\partial v}{\partial N} \right] dS.$	
Liebnitz Rule (Product Rule) - Suppose	This is an example.
$u \in W^{k,p}$ and ϕ is a test function. Then	
$\phi u \in W^{k,p}$ and	
$D^{\alpha}(\phi u) = \sum_{ \beta \le \alpha } {\alpha \choose \beta} D^{\alpha} \phi D^{\alpha - \beta} u$	
Sobolev Spaces are Banach Spaces - $W^{k,p}$ is	This is an example.
a Banach Space.	-

L^p Spaces	Examples
Sobolev Embedding in 2D - Suppose ϕ is a test function. Then it is absolutely bounded by a constant multiple of its norm in $W^{k,p}(\mathbb{R}^2)$. $\max_{x \in \mathbb{R}^2} u(x) \leq C \ u\ _{W^{k,p}(\mathbb{R}^2)}$	This is an example.
Local Approximation of Sobolev Functions by Smooth Functions - For nonnegative k and finite p , and for $u \in W^{k,p}$,	This is an example.
1. $u^{\varepsilon} = \eta_{\varepsilon} * u$ is infinitely continuous (not necessarily compactly supported) on Ω_{ε} , and	
2. $u^{\varepsilon} \to u$ in $W_{\text{loc}}^{k,p}$	
Global Approximaton of Sobolev Functions by Smooth Functions - For open and bounded Ω and for finite p , infinitely smooth Sobolev functions are dense in Sobolev Space. $\mathcal{C}^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$ with respect to the $W^{k,p}$ norm.	This is an example.
Global Approximation of Sobolev Functions on the Closure of the Domain - For smooth, bounded, open subsets of \mathbb{R}^n , Sobolev functions can be approximated by infinitely smooth functions on the closure of the domain. $\mathcal{C}^{\infty}(\overline{\Omega})$ is dense in $W^{k,p}(\Omega)$ with respect to the $W^{k,p}$ norm.	This is an example.
Morrey's Inequality - Sobolev functions on a ball have bounded differences. Denote $B_r \subset \mathbb{R}^n$ as a ball of radius r and let $n .$	This is an example.
$ u(x) - u(y) \leq C x - y ^{1 - \frac{n}{p}} Du _{L^p(B_r)}$ Sobolev Embedding for $k = 1$ - The $C^{0,1 - \frac{n}{p}}(\mathbb{R}^n)$ norm (Hölder Space norm) of a Sobolev function is bounded by a constant multiple (dependent on p and n) of the $W^{1,p}(\mathbb{R}^n)$ norm. $ u _{C^{0,1 - \frac{n}{p}}(\mathbb{R}^n)} \leq C u _{W^{1,p}(\mathbb{R}^n)}$	This is an example.
Sobolev Embedding for $kp > n$ - The Hölder Space norm of a Sobolev function is bounded by a constant multiple (dependent on k , p , and n) of the Sobolev norm. $\ u\ _{\mathcal{C}^{k-\left[\frac{n}{p}\right]-1,\gamma}(\mathbb{R}^n)} \leq C\ u\ _{W^{k,p}(\mathbb{R}^n)}$ where $\gamma = \begin{cases} \left[\frac{n}{p}\right] + 1 - \frac{n}{p} & \text{if } \frac{n}{p} \notin \mathbb{N}, \\ \text{any } \alpha \in \mathbb{R} \cap (0,1) & \text{if } \frac{n}{p} \in \mathbb{N}. \end{cases}$	This is an example.

L^p Spaces	Examples
Almost-Everywhere Differentiability - For $n , local Sobolev functions are$	This is an example.
almost-everywhere differentiable and its gradient and weak gradient agree almost everywhere.	
Gagliardo-Nirenberg-Sobolev Inequality - For $1 \le p < n$, set $p^* = \frac{np}{n-p}$. Then the L^{p^*} norm of a Sobolev function is bounded by a constant multiple (dependent on n and p) of the L^p norm of its derivative. $\ u\ _{L^{p^*}(\mathbb{R}^n)} \le C\ Du\ _{L^p(\mathbb{R}^n)}$	This is an example.