CSE211 Digital Design

Akdeniz University

Week13: Sequential Logic Part 2

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

Course program

ek 01	09/16/2024 Introduction
ek 02	09/23/2024 Digital Systems and Binary Numbers I
ek 03	09/30/2024 Digital Systems and Binary Numbers II
ek 04	10/07/2024 Boolean Algebra and Logic Gates I
ek 05	10/14/2024 Boolean Algebra and Logic Gates II
ek 06	10/21/2024 Gate Level Minimization
ek 07	10/28/2024 Karnaugh Maps
ek 08	11/04/2024 Karnaugh Maps
ek 09	11/11/2024 Midterm
k 10	11/18/2024 Combinational Logic
ek 11	11/25/2024 Combinational Logic
ek 12	12/02/2024 Timing, delays and hazards
ek 13	12/09/2024 Synchronous Sequential Logic
ek 14	12/16/2024 Synchronous Sequential Logic
	ek 02 ek 03 ek 04 ek 05 ek 06 ek 07 ek 08 ek 09 ek 10 ek 11 ek 12 ek 13

5.4 Storage Elements: Flip-Flops

- The state of a latch or flip-flop is switched by a change in the control input. This momentary change is called a trigger
- The problem with the latch is that it responds to a change in the level of a clock pulse. Glitches are problematic.

Clock response in latch and flip-flop

Flip-Flops

- The latch timing problem
- Edge-triggered flip-flop
- ► Master-slave flip-flop
- Direct inputs to flip-flops
- Flip-flop timing

The Latch Timing Problem

Consider the following circuit:

Suppose that initially Y = 0.

Clock Y

- As long as C = 1, the value of Y continues to change!
- The changes are based on the delay present on the loop through the connection from Y back to Y.
- This behavior is clearly unacceptable.
- Desired behavior: Y changes only once per clock pulse

- The circuit samples the D input and **changes** its output Q only at the **negative edge** of the synchronizing or controlling clock.
- Another say, a change in the output of the flip-flop can be triggered only by and during the transition of the clock from 1 to 0.

