TD 3

- **Exercice 1.** Représentation des nombres à virgule flottante **1** Donner l'écriture des nombres 1, 2, 3, 4 et 5 au format IEEE 754 en simple précision.
- 2 Si l'exposant biaisé est différent de 0 et 255 (ou 2047 en double précision), quels sont les plus petits et les plus grands nombres strictement positifs représentables en simple et double précision ?
- **3** Même question avec un exposant biaisé valant 0 (représentation dé-normalisée). Quel est le plus petit nombre strictement positif représentable ?

Exercice. Représentation des nombres à virgule flottante **1** Donner l'écriture des nombres 1, 2, 3, 4 et 5 au format IEEE 754 en simple précision.

Exercice. Représentation des nombres à virgule flottante

Si l'exposant biaisé est différent de 0 et 255 soit 1 à 254 (ou 2047 en double précision), quels sont les plus petits et les plus grands nombres strictement positifs représentables en simple et double précision ?

Simple 1.0 2^{-126} / 1,17 10^{-38} 1,111 2^{127} / 3,4 10^{-38} Double 1.0 2^{-1022} / 2,22 10^{-308} 1,111 2^{1023} / 1,79 10^{-308}

Exemple de valeurs (source Wikipédia)

Age de l'univers : 13,8 10^9 ans = Taille d'un atome : 10^{-10} à 10^{-15} m 13,8 milliards d'années Poids d'un atome : 10^{-25} à 10^{-27} km

Taille de l'univers : 8,8 10²³ Km = 880 000 milliards de milliards de

Km Poids du soleil : 2 10³⁰ Kg

Volume de l'univers : 1081 M3

Mais encore

ordinateurs vendus en 2022 dans le monde 6,2 10⁹ ordinateurs en service dans le monde

3,1 10⁶ ordinateurs vendus en France en 2021 2,5 10⁶ ordinateurs mis au rebus en France en 2021

A méditer

Exercice. Représentation des nombres à virgule flottante Même question avec un exposant biaisé valant 0 (représentation dénormalisée). Quel est le plus petit nombre strictement positif représentable ?

avec exp biaisé = 0

	Mini	Maxi
Simple	$0{,}000 \ 2^{-127} \ / \ 1{,}4 \ 10^{-45}$	0,111 2 ⁻¹²⁷ / 1,17 10 ⁻⁴⁵

Double $0,000 \ 2^{-1023} \ / \ 5,0 \ 10^{-324} \ 0,111 \ 2^{-1023} \ / \ 2,22 \ 10^{-324}$

Donner les représentations en simple précision à virgule flottante de 25 et 2,125.

 $2,125 = 10,001 \times 2^0 = 1,0001 \times 2^1$ soit signe = 0, mantisse = 00010... Exposant = 128 = 10000000

Quelle est la représentation en simple précision à virgule flottante de 1/10 ? Quelle est l'erreur obtenue ?

0,1 = 0,000110011001100110011...x
$$2^0$$

= 1,100110011001100110011...x 2^{-4}
Soit s = 0, Exp = 127+(-4) = 123

La régénération donne 0,099998 soit presque 0,1

Même question pour 1/5

1/5 = 0 01111100 1001100110011001100

La régénération donne 0,199998 soit presque 0,2

Perte d'information en arithmétique flottante (Vous pouvez écrire de petits programmes sur machine pour vous aider)

Soient les nombres

au format IEEE 754 en simple précision.

1 Donnez les représentations des nombres

a.
$$A = X + 1$$

b.
$$B = X + Y$$

c.
$$C = Y + A$$

Perte d'information en arithmétique flottante

Perte d'information en arithmétique flottante

au format IEEE 754 en simple précision.

Soit
$$A = 2^{142-127} \times 1,0 = 2^{15}$$

 $B = 2^{154-127} \times 1,0 = 2^{27}$

(a)
$$C = A + 1$$

(b)
$$D = A + B$$

$$D = 1, 0000000000001x 2^{27}$$

(c)
$$E = B + C$$

$$C = 1,00000000000001 \times 2^{15}$$

$$B = 1.0 \times 2^{27}$$

$$C = 0,00000\ 00000\ 00100\ 00000\ 00000\ 001\ x\ 2^{27}$$

$$B = 1,00000\ 00000\ 00000\ 00000\ 00000\ 00000\ x\ 2^{27}$$

 $E = 1,00000 \ 00000 \ 00100 \ 00000 \ 00000 \ 001 \ x \ 2^{27}$

 $E = 1,00000 \ 00000 \ 00100 \ 00000 \ 00000 \ 001 \ x \ 2^{27}$

1,00000 00000 00100 00000 000<mark>00 001</mark> x 2²⁷

Pour le codage en IEEE 754, on ne garde que 23 bits pour la mantisse, on va donc perdre les 5 derniers bits, soit 00001

D'où : C+B → B, la valeur de B très grande absorbe C.

Un premier programme

```
A = 2.000000
A = 4.000000
A = 8.000000
A = 16.000000
A = 32.000000
A = 64.000000
A = 128.000000
A = 256.000000
A = 512.000000
A = 1024.000000
A = 2048.000000
A = 4096.000000
A = 576460752303423490.000000
A = 1152921504606847000.000000
A = 2305843009213694000.000000
A = 4611686018427387900.000000
A = 9223372036854775800.000000
A = 18446744073709552000.000000
B = 2.000000
```

RAPPELS: float a,b;

```
A=1;
while ((((A + 1) - A) - 1) == 0)
\{A=2*A;
printf ("A = %f\n",A);
B=1;
while ((((A + B) - A) - B) != 0)
\{B=B+1;
printf ("B = %f\n",B);
\}
```

- $1,0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 2^{23}$ A
- + 0,0000 0000 0000 0000 0000 0001 2²³ 1
 - 1,0000 0000 0000 0000 0000 1 2²³ A

d'où
$$(((A + 1) - A) - 1) = -1$$

- + 0,0000 0000 0000 0000 0010 2
 - 1,0000 0000 0000 0000 0000 0000 2²³ A
 - 1,0000 0000 0000 0000 0001 A+2

$$d'où ((((A + B) - A) - b) = 0$$

Un deuxième programme : sommes

```
n = 10 000
S1 = 9.787613 , S2=9.787604
n = 100 000
S1 = 12.090851 , S2=12.090152
                                       S1_n = \sum 1/j S2_n = \sum 1/j
n = 1 000 000
S1 = 14.357358 , S2=14.392652
                                            j=1
n = 5 000 000
S1 = 15.403683 , S2=16.007854
n = 6 000 000
S1 = 15.403683 , S2=16.182493
```

RAPPELS: float s1,s2;