Phillip Escandon Assignment 6

Part 2 DFS

Part 3 BFS

Increase one edge at a time to the following nodes

IFHEGBCDA

1. <u>R</u>	emove min()	Cloud	Relax
	S	S	A = 16 B = 5 C = 12
2.	В	S,B	C =10 (updated) Predecessor D = 9 A = 8 (updated) predecessor
3.	Α	S,B,A	Nothing done all inwards
4.	D	S,B,A,D	A =15 (no update)
5.	С	S,B,A,D,C	E = 12
6.	Е	S,B,A,D,C,E	D = 21 (not updated) $D = 9$

Visualized as a priority queue that began with all node = infinity, with the starting node at 0.. Each iteration the minimum was removed, and the edges were relaxed. This was an iterative process until all nodes were processed

Run the Prim-Jarnik Algorithm

Part 5-1 Sequence brought into the cloud:

a c b d g f

Show min spanning tree: which is just a collection of minimum edges while node are being inserted into the cloud based on bridge edges:

Min Spanning tree shown in Red.