Unit 2: Differential Equations of Higher Order

(Book: Advanced Engineering Mathematics by R.K.Jain and S.R.K Iyengar, Chapter-5)

Topic:

Linear Differential Equations (LDE)

Learning Outcomes:

- 1. Identification of Linear Differential Equations (LDE).
- 2. Necessary and Sufficient condition for LDE to be Normal on an interval

Linear Differential Equations (LDE):

A linear differential equation of order *n* is written as:

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} - - - + a_{n-1} \frac{dy}{dx} + a_n y = r(x)$$
 (1)

or

$$a_0 y^n + a_1 y^{n-1} + --- + a_{n-1} y' + a_n y = r(x)$$
 (1)

For example, a second order LDE is written as:

$$a_0y'' + a_1y' + a_2y = r(x) (2)$$

- * If r(x) = 0, then LDE is called Homogeneous LDE.
- * If $r(x) \neq 0$, then LDE is called Non-Homogeneous LDE.

Classify the following LDE:

1.
$$y'' + 4y' + 3y = x^2 e^x$$

It is a 2nd order Non-homogeneous LDE with constant coefficients.

2.
$$y'' + 2y' + y = \sin x$$

It is a 2nd order Non-homogeneous LDE with constant coefficients.

3.
$$x^2y'' + xy' + (x^2 - 4)y = 0$$

It is a 2nd order Homogeneous LDE with variable coefficients.

4.
$$(1-x^2)y'' - 2xy' + 20y = 0$$

It is a 2nd order Homogeneous LDE with variable coefficients.

Polling Question

The equation: $y'' + 4y' + xy = x^2e^x$ is:

- (A) 1st order Homogeneous LDE with variable coefficients.
- (B) 2nd order Homogeneous LDE with constant coefficients.
- (C) 2nd order Non-homogeneous LDE with variable coefficients.
- (D) 2nd order Non-homogeneous LDE with constant coefficients.

Necessary and Sufficient condition for LDE to be Normal on an interval:

A linear differential equation of order *n*:

$$a_0 y^n + a_1 y^{n-1} + --- + a_{n-1} y' + a_n y = r(x)$$
 (1)

is said to be normal on an interval *I* if:

- **2.** $a_0 \neq 0$
- * In homogeneous LDE (r(x)=0), the problem arises only because of $a_0 \neq 0$.
- * In non-homogeneous LDE $(r(x) \neq 0)$, the problem arises due to $a_0 \neq 0$ and also due to domain of r(x).

Find the intervals on which the following differential equations are normal.

Problem 1.
$$(1-x^2)y'' - 2xy' + 3y = 0$$

Solution:
$$(1-x^2)y'' - 2xy' + 3y = 0$$
 (1)

Comparing with: $a_0y'' + a_1y' + a_2y = 0$

$$a_0 = (1 - x^2)$$
1. $a_1 = -2x$

$$a_2 = 3$$
Being polynomials, a_0 , a_1 , a_2 are all continuous on $(-\infty, \infty)$

2.
$$a_0 \neq 0$$
 $\Rightarrow (1 - x^2) \neq 0$ $\Rightarrow x^2 \neq 1$ $\Rightarrow x \neq \pm 1$

Thus, LDE (1) is normal on subintervals: $(-\infty, -1), (-1, 1), (1, \infty)$.

Problem 2.
$$x^2y'' + xy' + (n^2 - x^2)y = 0$$
; *n* is real.

Solution:
$$x^2y'' + xy' + (n^2 - x^2)y = 0$$
 (1)

Comparing with: $a_0y'' + a_1y' + a_2y = 0$

$$a_0 = x^2$$
1. $a_1 = x$

$$a_2 = (n^2 - x^2)$$
Being polynomials, a_0 , a_1 , a_2 are all continuous on $(-\infty, \infty)$

2.
$$a_0 \neq 0$$
 $\Rightarrow x^2 \neq 0$ $\Rightarrow x \neq 0$

Thus, LDE (1) is normal on subintervals: $(-\infty, 0)$, $(0, \infty)$.

Problem 3.
$$x(1-x)y'' - 3xy' - y = 0$$

Solution:
$$x(1-x)y'' - 3xy' - y = 0$$
 (1)

Comparing with: $a_0y'' + a_1y' + a_2y = 0$

1.
$$a_0 = x(1-x)$$

 $a_1 = -3x$
 $a_2 = -1$ Being polynomials, a_0 , a_1 , a_2 are all continuous on $(-\infty, \infty)$

2.
$$a_0 \neq 0$$
 $\Rightarrow x(1-x) \neq 0$ $\Rightarrow x \neq 0, x \neq 1$

Thus, LDE (1) is normal on subintervals: $(-\infty, 0)$, (0,1), $(1, \infty)$.

Problem 4.
$$y'' + 9y' + y = \log(x^2 - 9)$$

Solution:
$$y'' + 9y' + y = \log(x^2 - 9)$$
 (1)

Comparing with: $a_0y'' + a_1y' + a_2y = r(x)$

$$a_0 = 1$$
1. $a_1 = 9$
Being constants, a_0 , a_1 , a_2 are all continuous on $(-\infty, \infty)$

$$a_2 = 1$$

Also $r(x) = \log(x^2 - 9)$ will be defined if $(x^2 - 9) > 0$ i.e. $x^2 > 9$

$$\Rightarrow |x| > 3$$
 $\Rightarrow -\infty < x < -3 \text{ and } 3 < x < \infty$

2. $a_0 \neq 0 \Rightarrow 1 \neq 0$ which is true.

Thus, LDE (1) is normal on subintervals: $(-\infty, -3)$, $(3, \infty)$.

Problem 5.
$$\sqrt{x}y'' + 6xy' + 15y = \log(x^4 - 256)$$

Solution: $\sqrt{x}y'' + 6xy' + 15y = \log(x^4 - 256)$ (1)
Comparing with: $a_0y'' + a_1y' + a_2y = r(x)$

$$a_0 = \sqrt{x}$$
1. $a_1 = 6x$
 $a_1 = a_2$ are all continuous on $(-\infty, \infty)$, but a_0 is continuous on $(0, \infty)$
 $a_1 = a_2 = a_1$

Also
$$r(x) = \log(x^4 - 256)$$
 will be defined if $(x^4 - 256) > 0$ i.e. $x^4 > 256$
 $\Rightarrow |x| > 4 \Rightarrow -\infty < x < -4$ and $4 < x < \infty$

2.
$$a_0 \neq 0 \Rightarrow \sqrt{x} \neq 0 \Rightarrow x > 0$$
 (Square root of a negative number is not defined)

Thus, LDE (1) is normal on subintervals: $(4, \infty)$.

Polling Question

A linear differential equation: $a_0y''' + a_1y'' + a_2y' + a_3y = 0$ is said to be normal on an interval I if:

- (A) a_0, a_1, a_2, a_3 and r(x) are all continuous on an interval I and $a_0 \neq 0$
- (B) a_0, a_1, a_2, a_3 are all continuous on an interval I and $a_0 \neq 0$
- (C) $a_0 \neq 0$

Problem 6. $y''+3y'+\sqrt{x}y=\sin x$

Solution:
$$y'' + 3y' + \sqrt{x}y = \sin x \tag{1}$$

Comparing with: $a_0y'' + a_1y' + a_2y = r(x)$

$$a_0 = 1$$
1. $a_1 = 3$
 a_0, a_1 are all continuous on $(-\infty, \infty)$, but a_2 is continuous on $(0, \infty)$
 $a_2 = \sqrt{x}$

Also $r(x) = \sin x$ is continuous on $(-\infty, \infty)$.

2.
$$a_0 \neq 0 \Rightarrow 1 \neq 0$$
 which is true.

Thus, LDE (1) is normal on subintervals: $(0, \infty)$.

