Introduction to Computer Networks

LAN Switches (§4.3.4, 4.8.1-4.8.4)

Topic

- How do we connect nodes with a <u>switch</u> instead of multiple access
 - Uses multiple links/wires
 - Basis of modern (switched) Ethernet

Switched Ethernet

- Hosts are wired to Ethernet switches with twisted pair
 - Switch serves to connect the hosts
 - Wires usually run to a closet

What's in the box?

Remember from protocol layers:

Inside a Hub

 All ports are wired together; more convenient and reliable than a single shared wire

Inside a Switch

 Uses frame addresses to connect input port to the right output port; multiple frames may be switched in parallel

Inside a Switch (2)

- Port may be used for both input and output (full-duplex)
 - Just send, no multiple access protocol

Inside a Switch (3)

Need buffers for multiple inputs to send to one output

Inside a Switch (4)

Sustained overload will fill buffer and lead to frame loss

Advantages of Switches

- Switches and hubs have replaced the shared cable of classic Ethernet
 - Convenient to run wires to one location
 - More reliable; wire cut is not a single point of failure that is hard to find

Switches offer scalable performance

E.g., 100 Mbps per port instead of 100
Mbps for all nodes of shared cable / hub

Switch Forwarding

- Switch needs to find the right output port for the destination address in the Ethernet frame. How?
 - Want to let hosts be moved around readily; don't look at IP

Backward Learning

- Switch forwards frames with a port/address table as follows:
 - To fill the table, it looks at the source address of input frames
 - 2. To forward, it sends to the port, or else broadcasts to all ports

Backward Learning (2)

• 1: A sends to D

Address	Port
Α	1
В	
С	
D	

Backward Learning (3)

• 2: D sends to A

Address	Port
А	1
В	
С	
D	

Backward Learning (4)

• 3: A sends to D

Backward Learning (5)

• 3: A sends to D

Address	Port
А	1
В	
С	
D	4

Learning with Multiple Switches

 Just works with multiple switches and a mix of hubs assuming no loops, e.g., A sends to D then D sends to A

Learning with Multiple Switches (2)

 Just works with multiple switches and a mix of hubs assuming no loops, e.g., A sends to D then D sends to A

Learning with Multiple Switches (3)

 Just works with multiple switches and a mix of hubs assuming no loops, e.g., A sends to D then D sends to A

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey