09/913353 518 Rec'd F PTO 13 AUG 2001

Practitioner's Docket No.: 789_071

PATENT

IN THE UNITED STATES DESIGNATED OFFICE (DO/US)

PCT/JP00/09133	22 December 2000	24 December 1999
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED
TITLE OF INVENTION		
HEAT SINK MATERIAL AND ME	THOD OF PRODUCING THE SA	ME
APPLICANT(S) FOR DO/US		
Shuhei ISHIKAWA, Tsutomu MITS	UI, Ken SUZUKI, Nobuaki NAKA	AYAMA,
Hiroyuki TAKEUCHI and Seiji YAS	SUI	

Box PCT Assistant Commissioner for Patents Washington, D.C. 20231

Attention: DO/US

"EXPRESS MAIL" mailing label number EL803163968US.

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to the Box PCT, Attention: DO/US, Assistant Commissioner for Patents, Washington D.C. 20231 on August 13, 2001.

Elizabeth A. VanAntwerp

SUBMISSION OF PROPOSED DRAWING AMENDMENT FOR APPROVAL BY EXAMINER

Sir:

Attached please find

(check applicable items)

- [x] a copy of the original drawings (Figs. 21 and 24) with red ink markings, showing the proposed changes to the drawings in this application, and
- [x] if drawings are approved by the Examiner, we also enclose formal drawings for Figs. 21 and 24.

Respectfully submitted,

Customer No.: 025191

Telephone: (315) 233-8300

Facsimile: (315) 233-8320

August 13, 2001

Date

Stephen P. Bu

Reg. No. 32.970

SPB/eav

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

			-							2	1/	4(0					_			_						
RESISTANCE	FFECT		NONE	NONE	NONE	WETTAD!! ITV	-!				GENERALION OF	VAKBIDE				and and	ADDITION	- i	GENERALION UP	CAKBIDE	EXPANSION OF	SOL 10-1 100110	RANGE	NONE	GENERATION OF CARRIDE	EXPANSION OF	SOLID-LIQUID
WATER			⊲	٥	00) (C		٥<	1<	<	١٥	٥	٥	٥ •	4	1@	90	٥	٥	٥	0	00) @	0	◁	0) ©
	COMPRESSIVE STRENGTH (MPa)	THICK-	51.0						48 0								51.0						67. 7 60. 8		62.7	61.7	9 89
Υ	COMP STF	SUR-	46.1						42 1	! 			40.2				48.0						54.9		57.8	50.0	
THERMAL CONDUCTIVITY	BENDING STRENGTH (MPa)	THICK-	51.9		39.2	30.5		61. 7 59. 8			57.8		-											39. 2			
MAL CO	BEN STR ()	SUR- FACE	31.4	- 1	26. 5 26. 5		38.2	37.2			35.3								•					26.5			
	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	TH1CK-	6.0	6.5	4 Ծ Շ	.) .		4, 4 6 r.	. 4. . 5.	4.5				ა. ლ ე ო										4.5	6.5	6.5	6.5
IMPREGNATION PRESSURE	COEFI OF 1 EXP.	SUR- FACF	5.5		ထ တ တ တ	.1 .		4. ₩			က်ထ			4. 4 O C		÷					•			3.8	5.0	5.0	5.0
TION P		(W/mK)	I	-	310	╙	341	342	330		309											250	325	320	332	329	327
REGNA			156	S (150	130	183	183	176	198	167	2 2	182		-	96	190		_	207	2,	_		170	177	169	181
MI /	<u> </u>	(MPa)	26.		26. <i>7</i>	26.7				•	26. 7	9.0	ξ ξ 6	96	90				9		707	3 5	43.3	26. 7	60.0	60.0	60.0
ETHOD	~		PRESS PRESS	L L L L L L L L L L L L L L L L L L L	PRESS PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	SOLO	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	PKESS	PKESS	PRESS	PRESS	GAS	PRESS	PRESS	PRESS
IMPREGNATING METH	AMOUNT OF ADDITION (wt%)		NONE	NON	NONE		1.000		-	0.050		36		96			1. 0, 0. 23, 0. 04		2.8/0		10.000	25	5.300	NONE	2. 000	5.000	12.000
	ADD I T I VE ELEMENT		NONE	NONE	NONE	Te	Be B	ဒီဝ	W.	2	윤 ,	5 5	2 2	22	Be	Ni, Sn	Ni.Si.P	둘	5,		- :- - :-	 	Si	NONE	Be	Si	Si
METAL	\sim		A I	╈		3		33							3	3	30	3	3 :	3 2	36	33	-	3	H	Ā	AI
21	SIZE (mm)		20 × 60 × 60	20 × 60 × 60	20×120×190	20 × 60 × 60	20 × 60 × 60 20 × 120 × 190	20 × 60 × 60	20 × 60 × 60	20 × 60 × 60	20 × 120 × 190 20 × 60 × 60	20 × 120 × 190	$20 \times 120 \times 190$	20 × 120 × 190	$20 \times 120 \times 190$	$20 \times 120 \times 190$	20 × 120 × 190	× 2	20 × 120 × 190	20 × 120 × 130	20 × 120 × 130		$20 \times 120 \times 190$	20 × 60 × 60	20×120×190	$20\times120\times190$	$20\times120\times190$
F1G. 21	SAMPLE		n1-1 n1-4	2-1-0	n1-3	n2-1	- 2-E-	n3-3				200	9-5-	n3-10	n3-11	n3-12	n3-13	1 2 1	73-15	3-17	-3-18	n3-19	n3-20	n2-1	n7-1	n7-2	n7-3

						21/40		
MAIEK KESISIANGE	EFFECT		NONE	NONE	WETTABILITY	GENERATION OF	COMBINED ADDITION	10 10 110
MAIER	~		۵۵	00	0	ববববববববব	© O	<
	COMPRESSIVE STRENGTH (MPa)	THICK- NESS	51.0			48. 0 51. 9 58. 8 64. 7		
_	COMPF STR (N	SUR- FACE	46. 1			42. 1 40. 2 51. 0 57. 8		
KMAL CONDUCIIVIIY	BENDING STRENGTH (MPa)	THICK- NESS	51.9	39. 2 39. 2	39. 2	62.7 61.7 59.8 57.8 57.8 56.8		
MAL CO	BEP STR (A	SUR- FACE	31. 4	26. 5 26. 5		8888888 47.08.09.49 20.09.09.09 20.09.09.09		
₹ 1				1	1			

												_							
RESISTANCE	EFFECT		NONE	NONE NONE	WETTABILITY			GENERATION OF CARBIDE			COMBINED	I	GENERATION OF	EXPANSION OF	SOL ID-L IQUID RANGE	NONE	GENERATION OF CARBIDE	EXPANSION OF SOLID-	RANGE
WATER	\		44	00	0	44<	14<	144	4 <	14<	1@	0<	144	00	000	0	٧	0	0
-	COMPRESSIVE STRENGTH (MPa)	THICK- NESS	51.0				48.0						51.9 63.7		62.7 60.8		62. 7	61.7	68.6
ΤΥ	COMPF STR (A	SUR- FACE	46.1				42. 1		40.2		51.9				52.9 54.9		57.8	50.0	56.8
CONDUCTIVITY	BENDING STRENGTH (MPa)	THICK- NESS	51.9	39. 2 39. 2		62. 7 61. 7 59. 8		57.8								39. 2			
MAL CO	BEI STR (A	SUR- FACE	31.4	26. 5 26. 5				35.45 35.05 30.00								26.5			
RE OF THERMAL	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	THICK- NESS	6.0	.1		4. 5 4. 6 5				, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6						4.5	6.5	6.5	6.5
MPREGNATION PRESSURE COEFFICIENT OF	COEFI OF T EXP, (×1	SUR- Face	5. 5. 5. 5.			3.8 4.0				+ 4. 4	ب ب					3.8	5.0	5.0	5.0
TION F		(W/mK)	311		┺	341 342 320			352		343		387			1	332	329	327
REGNA'	<u> </u>		156 185		190	183	176	167	<u>8</u>				195				177	169	18
I MPI)	(MPa)	26. 7 60. 0	26 26 26		•	•						900			26.	60.0	60.0	60.0
40D 1	~		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS	PRESS	PRESS PRESS	PRESS	PRESS PRESS	GAS	PRESS	PRESS	PRESS
IMPREGNATING METHOD	AMOUNT OF ADDITION (w+%)	(8/2 11)	NONE	NONE	0.500	1. 000 1. 000 500	0.200	0.020	0.00	1.00	4, 6. 7	1. 0, 0. 23, 0. 04 4. 180	2. 870 4. 490	11.300	5. 170 5. 300	NONE	2. 000	5.000	12. 000
	ADD I TIVE ELEMENT		NONE	NONE	Te	Be r	돌	88%	: 윤 :	220	2	Ni.Si.P	Gr.	: <u>.</u>		NONE	Be	Si	Si
METAL	~		V V	+	+	<u> </u>				333			333		333	+	Ā	- V) AT
21	SIZE (mm)		20 × 60 × 60 20 × 120 × 190	20×60×60 20×120×190	$20 \times 60 \times 60$	20 × 60 × 60 20 × 120 × 190 20 × 60 × 60	20 × 60 × 60 20 × 60 × 60	20×120×190 20×120×190 20×60×60	20 × 120 × 190	20 × 120 × 190		20×120×190		x x 2	20 × 120 × 190 20 × 120 × 190 20 × 120 × 190	× 09 ×	20×120×190	20×120×190	$20 \times 120 \times 190$
F1G. 21	SAMPLE		n1-1 1-1	n1-2 n1-3	n2-1	n3-1 n3-2	13-4-	20 10 10 10 10 10 10 10 10 10 10 10 10 10	ا ا ا	13-10 1-5-	n3-12	n3-13	21-6- 	12-E	n3-19	n5-1	n7-1	n7-2	n7-3

F1G. 24

FIG. 4

FIG. 5

FIG. 8

FIG. 10

FIG. 12

FIG. 13

FIG. 14

ngo-jucy co-ye-

FIG. 16

إيا

ı±

F1G. 17

띩		. 1	17/40				
WATER RESISTANCE	EFFECT	GENERA- TION OF CARBIDE					
ATER \	}	٥	٥	◁	٥	٥	٥
W	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	14. 0	13. 5	13.6	14. 0	11.5	9.5
	COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	321	325	308	321	311	301
	IMPREG- NATION PRESSURE (MPa)	60.0	0 '09	0.09	60.0	60.0	60.0
I	IMPREG- NATION METHOD	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS
ADDED ELEMENT	AMOUNT OF ADDITION (wt%)	0. 001	0. 00 ^{ff}	0. 001	0. 001	0. 001	1. 001
ADD	>	NP.	qN	Nb	Nb	qN	N _b
METAL	}	no	no	no	Cu	Cu	Cu
	FILLING METHOD	NO PRESSUR- I ZAT I ON	NO PRESSUR- I ZAT I ON	NO PRESSUR- I ZAT I ON	NO PRESSUR- IZATION	PRESSUR- IZATION, 7MPa	PRESSUR- IZATION, 25MPa
	PARTICLE SIZE OF POWDER (μm)	AVERAGE 120	AVERAGE 50	212- 1180	AVERAGE 120	AVERAGE 120	AVERAGE 120
	TYPE OF POWDER	type -P	type -S	type -R	type -P	type -P	type -P
	S1ZE (mm)	30 ×120 ×190	30 × 120 × 191	30 × 120 × 192	30 × 120 × 193	30 × 120 × 194	30 ×120 ×195
	SAMPLE	PW-1	PW-2	PW-3	PW-4	PW-5	PW-6

FIG. 18

					19,	/4	U													
EFFECT			NONE	NONE			WETT-	ABILITY				GENERATION	OF CARRIDE			COMBINED	ADDITION	NONE	WETT-	ABILITY
WATER			٥	0			@)					◁			C)	0	0	
BENDING STRENGTH (MPa)	THI CK-	NESS	53.9	41.2	45.1	41.2	39. 2	38. 2	39. 2	41.2	57.8	58.8	56.8	56.8	40. 2	15 1	- - -	41.2	39. 2	42. 1
BENI STRE (MF	SUR-	FACE	33.3	27. 4	28. 4	27.4	26.5	25.5	26.5	27. 4	34.3	37.2	34.3	34.3	24. 5	V 26	21.7	27. 4	26.5	28. 4
OEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	THICK-	NESS	5.5	5.1	5.1	5.1	5.1	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	7	o .	5.0	5.1	5.0
COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	SUR-	FACE	5.3	5.1	5.0	5.0	5.0	4.9	5.0	5.0	2.0	5.0	5.0	5.0	5.0	ر د	9.0	5.0	5.0	5.0
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	THI CK-	NESS	171	170	178	186	189	178	176	185	204	192	181	190	174	177	111	188	196	204
COEFFICIEN OF THERMAL CONDUCTIVII (W/mK)	SUR-	FACE	171	162	168	178	180	172	169	172	184	187	175	187	172	185	3	170	185	192
	MEIHUU		PRESS	PRESS		_	DDECC	באבאר					PRESS			DDECC	ראבטט	GAS	040	25
AMOUNT OF ADDITION	(wt%)		NONE	NONE	2	0.5	0.5	2	0.5,0.5	0.5, 2.0	1	0.5	0.5	0.02	0.5	C C		NONE	2	7
METAL ELEMENT			NONE	NONE	Bi	Sp	<u>е</u>	Te	Te, Bi	Te, Pb	Be	ပ်	Mn	å	Zr	1 T	ë,	NONE	Te	<u>e</u>
METAL			ΑI	ŋე	J	3	ეე	3	3	3	ŋ	3	చ్ర	3	3	ć	3	J	Ŋ	3
S I ZE			20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	00 00	noxnoxnz	20×60×60	10x85x180	20×60×60
SAMPLE			n1-1	p1-2	p2-1	p2-2	p2-3	p2-4	p2-5	p2-6	p3-1	p3-2	p3-3	p3-4	p3-5		D4-1	p5-1	p6-1	p6-2

FIG. 20

	•	20)/4	0							
EFFECT		NONE	NONE	WETT- ABILITY			GENERAT I ON	OF CARBIDE			NONE
WATER		٧	0	0			<	1			0
BENDING STRENGTH (MPa)	THICK- NESS	56.8	42. 1	39. 2	59.8	8 .09	57.8	57.8	57.8	52.9	38. 2
BENI STRE (M	SUR- FACE	34.3	28. 4	26. 5	36.3	37.2	35.3	35.3	35.3	32.3	25. 5
COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	THICK- NESS	5.6	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5. 1	5.1
COEFF OF TH EXPAI (×10	SUR- FACE	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	THICK- NESS	187	181	199	213	193	192	192	207	182	198
COEFFICIEN OF THERMAL CONDUCTIVIT (W/mK)	SUR- FACE	161	145	. 168	184	170	165	162	169	158	166
IMPREG- NATING	MEIROD	PRESS	PRESS	PRESS			ppcc	P NESS			GAS
AMOUNT OF ADDITION	(wt%)	NONE	NONE	0.50	1.00	0. 50	0. 20	0.05	0.02	0.50	NONE
METAL ELEMENT		NONE	NONE	Te	Be	ပ်	₩ L	£	£	Zr	NONE
METAL		۱۷	Cu	nე	nე	ŋ	υΩ	D C	Cn	Cu	n)
S I ZE (mm)		20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×120×190	20×60×60	20×60×60	20×60×60
SAMPLE		m1-1	m1-2	m2-1	m3-1	ш3S	m3-3	m3-4	m3-5	ш3-е	1-Gm

ľ,	
	O
١,	
ļ,	÷
l,	نَا
1,	Ų
i,	ħ
ļ	Ų
٠:	-
H	
H	
:: !,	
# 74, 74, h	a reli

~						٠	:	21/4	40		:	٠,									
RESISTANCE	EFFECT		NONE NONE	NONE	WETTABILITY			GENERATION OF				COMBINED	GENEDATION OF		EXPANSION OF	SOLID-LIQUID	RANGE	NONE	GENERATION OF CARBIDE	SOLID-LIGHTD	RANGE
WATER	~		44	00	0	44	44	۵۵۰	4<	14	٥<	1@0	Σ Δ	٥<	00	90	90	0	٧	0	0
-	COMPRESSIVE STRENGTH (MPa)	THICK- NESS	51.0				48.0				_	51.0		_		_			62. 7	61.7	68.6
ΤY	COMPR STRE (M	SUR- FACE	46.1				42. 1					51.0							57.8	50.0	56.8
THERMAL CONDUCTIVITY	BENDING STRENGTH (MPa)	THICK- NESS	51.9	39. 2 39. 2	39. 2	62. <i>7</i> 61. <i>7</i>		57.8					-					39. 2			
MAL CO	BEN STR (N	SUR- FACE	31. 4	26. 5 26. 5	26.5	38. 2 37. 2												26.5			
	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	THICK- NESS	6. 0 6. 5	4.5 5.5	4.5	4. 5 6. 5			4. € v C									4.5	6.5	6.5	6.5
IMPREGNATION PRESSURE \	COEFI OF T EXP, (×1	SUR- FACE	5.5 5.5	3.8 9.9	3.8	3.8 4.0					4. 4 0 r) F						3.8	5.0	5.0	5.0
TION F		(W/mK)	311 350	310 268	351		330		352							316		Н	332	329	327
REGNA (156 185	150 147	190	183	176	167	25 25 26 26 27			888				159		170	177	169	181
IMP)	(MPa)	26. 7 60. 0	26. 7 26. 7	26.7	•	26. 7 26. 7		26. <i>/</i>	90	90.0	909	98	90.09	26.	Š. į		26. 7	60.0	60.0	60.0
QOL	~		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS PRESS	PRESS PRESS	PRESS	PRESS	PRESS PPESS	PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS PRESS	GAS	PRESS	PRESS	PRESS
IMPREGNATING METH	AMOUNT OF ADDITION (w+%)	(11.570)	NONE NONE	NONE NONE			200 200	050 050	0.500	0.001	1. 100	9.4.6.7	1. 0, 0. 23, 0. 04 4. 180	2.870	11.300	10.900	5.300	NONE	2. 000	5.000	12.000
	ADD I T I VE ELEMENT		NONE	NONE	Te	Be Be	င်≨	22,	78	8	8 8	Ni. Sn	N. N		i iz i	<u>ت</u> ت	S. S.	NONE	Ве	Si	Si
METAL	>		AI	33	Ŋ		33		33		33		33	33		3 6		Ŋ	AI	F	AI
21	S1ZE (mm)		$20 \times 60 \times 60$ $20 \times 120 \times 190$	$20 \times 60 \times 60$ $20 \times 120 \times 190$	$20 \times 60 \times 60$	20 × 60 × 60 20 × 120 × 190	$20 \times 60 \times 60$ $20 \times 60 \times 60$	20 × 60 × 60 20 × 120 × 190	20 × 60 × 60 20 × 120 × 190	$20 \times 120 \times 190$	20 × 120 × 190	20 × 120 × 190	20 × 120 × 190 20 × 120 × 190	20 × 120 × 190 20 × 120 × 190	20×120×190	20 × 120 × 190	20 × 120 × 190 20 × 120 × 190	$20 \times 60 \times 60$	20×120×190	$20\times120\times190$	$20\times120\times190$
F1G. 21	SAMPLE		n1-1 n1-4	n1-2 n1-3	n2-1	n3-1 n3-2	n3-3 4-6	29 29 29 29	73-7	9-6-0	n3-10	n3-12	n3-14	n3-15	n3-17	13. 18.	n3-19	n5-1	n7-1	n7-2	n7-3

roctore netro

F1G. 22

ТҮРЕ	COEFFICIENT OF THERMAL CONDUCTIVITY	CIENT ERMAL TIVITY	COEFFICIEN OF THERMAL EXPANSION	COEFFICIENT OF THERMAL EXPANSION	BENC	BEND I NG STRENGTH
OF CARBON	/M)	(W/mK)	(×10	(×10 ⁻⁶ /°C)	(WE	(MPa)
	SURFACE DIRECTION	THICKNESS	SURFACE DIRECTION	THICKNESS	SURFACE DIRECTION	THICKNESS DIRECTION
Ь	150	160	3. 2	3.2	34.3	49.0
8	140	168	3. 2	3. 2	29. 4	44.1
Z	150	255	1.8	2.3	14. 7	29. 4

F1G. 23

			23.	/40					
EFFECT	•	HOME	MONE	WETT-	ABILITY	HNON	1	HNON	
WATER		()	@	•	©	•	0)
BENDING STRENGTH (MPa)	SUR- THICK- FACE NESS	41.2	41.2	38. 2	42. 1	42. 1	38. 2	39. 2	39. 2
BENE STRE (MI	SUR- FACE	27. 4	27. 4	25. 5	28. 4	28. 4	25. 5	26.5	26. 5
COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	TH1CK- NESS	5.1	5.0	5.0	5.0	5.1	5.1	4.5	4.5
COEFFICIEN OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	SUR- FACE	5.1	5.0	4.9	5.0	4.5	4.5	3.8	3.8
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	THICK- NESS	170	188	178	204	181	198	310	320
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	SUR- FACE	162	170	172	192	145	166	150	170
IMPREG- NATING	ME HOU	PRESS	GAS	PRESS	GAS	PRESS	GAS	PRESS	GAS
AMOUNT OF ADDITION	(wt%)	LIACIA	NONE	2	2	HONE		HONE	
METAL ELEMENT		L	NON NON	Te	<u>e</u>	ZINONE	JAON I	ZINONE	NONE
METAL			3	ಸ್	20	خ	3	ŋ	D.
SIZE (mm)		20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60
SAMPLE		p1-2	p5-1	p2-4	p6-2	m1-2	m5-1	n1-2	n5-1

Full C. F. C. L.

F1G. 30

No.	POROSITY [%]	PORE DIAMETER [μm]	N i PLAT I NG	Si IMPREG- NATION	IMPREGNATION TEMPERATURE [°C]	PRESSURIZATION [MPa(kgf/cm²)]	PRESSURIZATION TIME [sec]	COOLING SPEED [°C/min]	REACTION OF Si/Cu	I MPREG- NAT I ON
SAMPLE1	35	70	ABSENT	ABSENT	1130	0. 78 (8)	09	260	Δ	Δ
SAMPLE2	44	22	ABSENT	ABSENT	1130	7. 84 (80)	20	900	0	0
SAMPLE3	29	42	ABSENT	PRESENT	1130	11.8(120)	10	480	0	0
SAMPLE4	15	5	PRESENT	ABSENT	1130	23. 5 (240)	10	900	0	0
SAMPLE5	69	42	ABSENT	PRESENT	1180	0. 78 (8)	09	900	٥	٥
SAMPLE6	91	2	ABSENT	ABSENT	1180	3. 92 (40)	20	480	0	Δ
SAMPLE7	29	42	ABSENT	PRESENT	1180	11.8 (120)	10	006	0	0
SAMPLE8	44	22	ABSENT	ABSENT	1180	23. 5 (240)	10	620	0	0
SAMPLE9	44	22	ABSENT	PRESENT	1230	0. 78 (8)	20	480	0	Δ
SAMPLE10	69	42	PRESENT	ABSENT	1230	3. 92 (40)	35	190	0	0
SAMPLE11	35	70	ABSENT	ABSENT	1230	7. 84 (80)	100	620	0	0
SAMPLE12	44	22	ABSENT	PRESENT	1230	23. 5 (240)	5	620	0	0
SAMPLE13	69	42	ABSENT	ABSENT	1280	3. 92 (40)	20	790	0	0
SAMPLE14	32	20	ABSENT	ABSENT	1280	7.84 (80)	35	480	∇	0
SAMPLE15	44	22	PRESENT	ABSENT	1280	7.84 (80)	5	620	0	0
SAMPLE16	69	42	ABSENT	PRESENT	1280	11.8(120)	10	190	0	0
SAMPLE17	20	21	ABSENT	ABSENT	1150	156. 1	3	006	0	0
SAMPLE18	20	19	ABSENT	ABSENT	1150	126.1	2	006	0	0
SAMPLE19	50	23	ABSENT	ABSENT	1140	69. 3	5	900	0	0
SAMPLE20	20	22	ABSENT	ABSENT	1145	26. 7	7	900	0	0

30/40

REACTION of Si/Cu: ©NO REACTION OSLIGHT REACTION ASTRONG REACTION IMPREGNATION OF Cu : ©GOOD IMPREGNATION OSLIGHTLY INSUFFICIENT IMPREGNATION NOTES

FIG. 33

FIG. 34

į. . .

.

FIG. 35A

FIG. 35B

FIG. 36

FIG. 37

FIG. 38

ļ. L |,₫ لِيا ,ا 1,7 ļЦ ij ijĢ -= ļЦ

.

FIG. 39

40/40

FIG. 40

