# Understanding Propensity Score Matching

Ehsan Karim

2021-06-02

# Contents

| 1 | Des                           | scription                      | 5  |  |  |  |
|---|-------------------------------|--------------------------------|----|--|--|--|
|   | 1.1                           | Prerequisites                  | 5  |  |  |  |
|   | 1.2                           | Main references                | 5  |  |  |  |
| 2 | Use                           | eful Terminologies             | 7  |  |  |  |
|   | 2.1                           | Potential outcome              | 7  |  |  |  |
|   | 2.2                           | Parameters of interest         | 7  |  |  |  |
|   | 2.3                           | Balance                        | 11 |  |  |  |
|   | 2.4                           | Adjustment                     | 13 |  |  |  |
|   | 2.5                           | Overlap                        | 14 |  |  |  |
| 3 | Pro                           | pensity score                  | 15 |  |  |  |
|   | 3.1                           | Motivating problem             | 15 |  |  |  |
|   | 3.2                           | Defining Propensity score      | 18 |  |  |  |
|   | 3.3                           | PS Matching Steps              | 19 |  |  |  |
| 4 | Step 1: Exposure modelling 21 |                                |    |  |  |  |
|   | 4.1                           | Model specification            | 21 |  |  |  |
|   | 4.2                           |                                | 22 |  |  |  |
|   | 4.3                           |                                | 23 |  |  |  |
|   | 4.4                           |                                | 23 |  |  |  |
|   | 4.5                           |                                | 24 |  |  |  |
| 5 | Ste                           | p 2: Propensity score Matching | 25 |  |  |  |
|   | 5.1                           |                                | 25 |  |  |  |
|   | 5.2                           | Initial fit                    | 25 |  |  |  |
|   | 5.3                           |                                | 26 |  |  |  |
|   | 5.4                           |                                | 27 |  |  |  |
|   | 5.5                           |                                | 27 |  |  |  |
| 6 | Ste                           | p 3: Balance and overlap       | 29 |  |  |  |
|   | 6.1                           | <u>-</u>                       | 29 |  |  |  |
|   | 6.2                           |                                | 30 |  |  |  |
|   | 6.3                           |                                | 32 |  |  |  |

| 4 |  | CONTENTS |
|---|--|----------|
|   |  |          |

|                      | 6.4   | Variance ratio                        | 32 |
|----------------------|-------|---------------------------------------|----|
|                      | 6.5   | Close inspection of boundaries        | 33 |
|                      | 6.6   | Unsatirfactory balance                | 34 |
| 7                    | Step  | o 4: Outcome modelling                | 35 |
|                      | 7.1   | Crude outcome model                   | 35 |
|                      | 7.2   | Double-adjustment                     | 35 |
|                      | 7.3   | Adjusted outcome model                | 36 |
|                      | 7.4   | Other cosiderations for outcome model | 36 |
|                      | 7.5   | Estimate obtained                     | 37 |
| 8                    | PS ·  | vs. Regression                        | 39 |
|                      | 8.1   | Data Simulation                       | 39 |
|                      | 8.2   | Treatment effect from counterfactuals | 41 |
|                      | 8.3   | Treatment effect from Regression      | 42 |
|                      | 8.4   | Treatment effect from PS              | 42 |
|                      | 8.5   | Non-linear Model                      | 43 |
|                      | 8.6   | Common misconception                  | 47 |
|                      | 8.7   | Benifits of PS                        | 47 |
|                      | 8.8   | Limitations of PS                     | 48 |
| 9                    | Rep   | orting Guidelines                     | 49 |
|                      | 9.1   | Discipline-specific Reviews           | 49 |
|                      | 9.2   | Suggested Guidelines                  | 49 |
|                      | 9.3   | Software                              | 50 |
|                      | 9.4   | Further Resources                     | 50 |
| $\mathbf{R}\epsilon$ | efere | nces                                  | 51 |

# Description

Propensity score matching is widely used in analyzing observational datasets to reduce the impact of confounding due to observed covariates. This workshop will provide a basic overview of related causal inference concepts, explain propensity score matching analysis steps, illustrate propensity score matching diagnostics, and provide examples of when this method may be preferable to a regression.

## 1.1 Prerequisites

The prerequisites are knowledge of multiple regression analysis and basic probability. Software demonstrations and codes will be provided in R, although proficiency in R is not required for understanding the concepts.

## 1.2 Main references

- Propensity score matching steps Austin (2011b)
- Reporting guideline Karim et al. (2020)

# Useful Terminologies

## 2.1 Potential outcome

- A: Exposure status
  - -1 =takes Rosuvastatin
  - $-\ 0={\rm does}$ not take rosuvastatin
- $\bullet$  Y: Outcome: Total cholesterol levels
  - -Y(A=1) = potential outcome when exposed
  - -Y(A=0) = potential outcome when not exposed
- L: Confounder: Age



## 2.2 Parameters of interest

When assessing the effect of an exposure on an outcome, we are interested about the following estimands

- treatment effect for an individual (TE)
- average treatment effect (ATE)

• average treatment effect on the treated (ATT)

#### 2.2.1 TE

- John takes Rosuvastatin (A = 1) and his total cholesterol level is = Y(A = 1) = 195 mg/dL (milligrams per deciliter) after 3 months
- John does not take Rosuvastatin (A=0) and his total cholesterol level is =Y(A=0)=245 mg/dL after 3 months Effect of Rosuvastatin on John is =

$$TE = Y(A = 1) - Y(A = 0) = 195 - 245 = -50$$

![(images/info.png) TE is not estimable as we generally can't observe outcomes under both treatment

#### 2.2.2 ATE

| Person             | Y(1) | Y(0) | TE  |
|--------------------|------|------|-----|
| John               | 195  | 245  | -50 |
| $_{ m Jim}$        | 100  | 160  | -60 |
| $_{\mathrm{Jake}}$ | 210  | 270  | -60 |
| Cody               | 155  | 210  | -55 |
| Luke               | 165  | 230  | -65 |
|                    | 165  | 223  | -58 |

$$ATE = E[Y(A=1) - Y(A=0)]$$

mean(PotentialOutcomes\$Y1 - PotentialOutcomes\$Y0)

## [1] -58

## 2.2.3 Interpretation of ATE

This is a treatment effect (on an average) of the following hypothetical situation

• having the entire population as treated, vs.

• having the entire population as untreated.

Entire population is the reference goup here.

## 2.2.4 Identifiability Assumptions

If we can compute a causal quantity, such as ATE = E[Y(A=1) - Y(A=0)] using a statistical quantity, such as mean(PotentialOutcomes\$Y1 - PotentialOutcomes\$Y0), we say that the causal quantity is identifiable.

| Exchangeability | $Y(1), Y(0) \perp A$     | Treatment assignment is independent of the      |
|-----------------|--------------------------|-------------------------------------------------|
|                 |                          | potential outcome                               |
| Positivity      | 0 < P(A=1) < 1           | Subjects are eligible to receive both treatment |
| Consistency     | $Y = Y(a) \forall A = a$ | No multiple version of                          |
|                 |                          | the treatment                                   |
| No interference |                          | Treated one patient will                        |
|                 |                          | not impact outcome for                          |
|                 |                          | others                                          |



Extending these assumptions when confounders exist:

| Conditional     | $Y(1), Y(0) \perp A L$ | Treatment assignment is  |
|-----------------|------------------------|--------------------------|
| Exchangeability |                        | independent of the       |
|                 |                        | potential outcome, given |
|                 |                        | ${f L}$                  |
| Positivity      | 0 < P(A = 1 L) < 1     | Subjects are eligible to |
|                 |                        | receive both treatment,  |
|                 |                        | given L                  |

#### 2.2.5 ATT

- Assume that the following are the confounders that impact the relationship between rosuvastatin and cholesterol levels
  - race
  - sex
  - age
- We have 5 Rosuvastatin-treated subjects who are all
  - white,
  - male,
  - 50 years of age
- We recruited additional 5 subjects (same characteristics) to non-rosuvastatin group.

#### Treated group:

| Person      | Y(1) | Y(0) | TE |
|-------------|------|------|----|
| John        | 195  |      |    |
| $_{ m Jim}$ | 100  |      |    |
| Jake        | 210  |      |    |
| Cody        | 155  |      |    |
| Luke        | 165  |      |    |
|             | 165  |      |    |

Untreated group: New folks with characteristics similar to the treated group.

2.3. BALANCE 11

| Person | Y(1) | Y(0) | TE |
|--------|------|------|----|
| Jack   |      | 245  |    |
| Dustin |      | 160  |    |
| Cole   |      | 270  |    |
| Lucas  |      | 210  |    |
| Dylan  |      | 165  |    |
|        |      | 210  |    |

$$ATT = E[Y(A=1) - Y(A=0)|A=1]$$

mean(Treated\$Y1) - mean(Untreated\$Y0)

## [1] -45

#### 2.2.6 Interpretation of ATT

This is a treatment effect (on an average) of

- the treated population (reference group), vs.
- untreated population, but have similar characteristics to the reference group/treated population.

It is also possible to change the reference population to untreated population. Then it is called Average Treatment Effect for the Untreated (ATU).

#### 2.2.7 ATT vs. ATE

| ![](images/info.png) | In a RCT (enough n), the ATT & ATE are equivalent                       |
|----------------------|-------------------------------------------------------------------------|
| ![](images/info.png) | In an observational study the ATT and ATE are not necessarily the same. |

## 2.3 Balance

#### Balance in RCT:



#### In absence of randomization:



#### 2.3.1 Measures of Balance

#### 2.3.1.1 SMD

Austin (2011a)

• For continuous confounders:  $-SDM_{continuous} = \frac{\bar{L}_{Rosuvastatin} - \bar{L}_{NoRosuvastatin}}{\sqrt{\frac{s_{Rosuvastatin}^2 + s_{NoRosuvastatin}^2}{s_{NoRosuvastatin}^2 + s_{NoRosuvastatin}^2}}}$ 

• For binary confounders:

$$-SDM_{binary} = \frac{\hat{p}_{Rosuvastatin} - \hat{p}_{NoRosuvastatin}}{\sqrt{\frac{\hat{p}_{Rosuvastatin} \times (1 - \hat{p}_{Rosuvastatin}) + \hat{p}_{NoRosuvastatin} \times (1 - \hat{p}_{NoRosuvastatin})}}}$$

Generally, 0.1 is used as a cut-point. But some suggest more liberal cut-points. More on that later.

#### COVID example from Gautret et al. (2020)

p-value vs. SMD





#### 2.3.1.2 Variance ratio

Variances of baseline characteristics between comparator groups under consideration. Suggested cut-point rages are (0.5 to 2). More liberal cutpoints are also used in the literature. More on this later.

## 2.4 Adjustment

## 2.4.1 Why adjust?

In absence of randomization, treatment effect estimate ATE = E[Y|A=1] – E[Y|A=0] includes

- Treatment effect
- Systematic differences in 2 groups ('confounding')
  - Doctors may prescribe tx more to frail and older age patients.
  - In here, L = age is a confounder.

In absence of randomization, if age is a known confounder:

| Causal effect for young (< 50)      | $E[Y A=1, L= 	ext{younger age}]$ -                                 |
|-------------------------------------|--------------------------------------------------------------------|
| Causal effect for old ( $\geq 50$ ) | $E[Y A=0, L=	ext{younger age}]$<br>$E[Y A=1, L=	ext{older age}]$ - |
| ,                                   | $E[Y A=0, L={	t older age}]$                                       |

Conditional exchangeability; only works if L is measured.

### 2.4.2 Adjustment Methods

Adjustment could mean

- exact matching
- stratification

![(images/info.png) When L includes a large number of covariates, matching method would result in

Regression is also a popular adjustment method.

## 2.5 Overlap

- "Lack of complete overlap" happens if there is a baseline covariate space where there are exposed patients, but no control or vice versa.
  - Region of 'no overlap' is an inherent limitation of the data.



- Regression adjustment usually do not offer any solution to this.
  - Consequently, inference is not generalizable beyond the region of overlap.

# Propensity score

## 3.1 Motivating problem

| Y: Outcome           | Cholesterol levels (high vs. low)          |
|----------------------|--------------------------------------------|
| A: Exposure          | Diabetes                                   |
| L: Known Confounders | gender, age, race, education, married, BMI |

Search literature for the confounder variables, and look for those variables in the data source (NHANES 2017-2018).



#### library(Hmisc)

```
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following object is masked from 'package:jtools':
##
##
       %nin%
## The following objects are masked from 'package:dplyr':
##
##
       src, summarize
## The following objects are masked from 'package:base':
##
       format.pval, units
describe(analytic)
## analytic
##
## 8 Variables
                    1562 Observations
```

```
## cholesterol
##
      n missing distinct Info Sum Mean
    1562 0 2
                    0.292
##
                           171
                               0.1095 0.1951
## gender
## n missing distinct
##
    1562 0 2
##
## Value Female Male
## Frequency 603
             959
## Proportion 0.386 0.614
## -----
## age : Age in years at screening
## n missing distinct Info Mean Gmd .05
## 1562 0 61 0.999 53.18 19.78 25
                                           29
   .25
                .75 .90 .95
##
          .50
##
    38
          55
               67
                     76
                           80
##
## lowest : 20 21 22 23 24, highest: 76 77 78 79 80
## -----
## race
## n missing distinct
   1562 0 4
##
##
## Value Black Hispanic Other White
          324 284
## Frequency
                     228
                           726
## Proportion 0.207 0.182 0.146 0.465
## education
## n missing distinct
    1562 0 3
##
##
## Value College High.School
                          School
         806 658
0.516 0.421
## Frequency
                          98
                          0.063
## Proportion
## -----
## n missing distinct
    1562 0 3
##
## Value
              Married Never.married Previously.married
## Frequency
               921
                       228
                                         413
## Proportion 0.590
                           0.146
                                       0.264
## -----
## bmi : Body Mass Index (kg/m**2)
```

```
Info
##
             missing distinct
                                              Mean
                                                         Gmd
                                                                   .05
                                                                            .10
##
       1562
                    0
                            314
                                       1
                                             29.96
                                                       7.972
                                                                20.00
                                                                          21.71
        .25
                            .75
                                               .95
##
                  .50
                                      .90
##
      25.00
                28.90
                         33.80
                                   39.59
                                             43.69
##
## lowest : 14.8 15.1 15.5 15.7 16.2, highest: 57.2 60.3 61.6 61.9 64.2
## diabetes
##
          n missing distinct
                                    Info
                                               Sum
                                                        Mean
                                                                  Gmd
                                                      0.2113
##
       1562
                    0
                              2
                                     0.5
                                               330
                                                               0.3335
##
```

## 3.2 Defining Propensity score

Conditional Probability of getting treatment, given the observed covariates

Prob(treatment: A = 1 | baseline or pre-treatment covariates: L)

Prob(A = 1: Has diabetes | L: gender, age, race, education, married, bmi)

• PS = Prob(A = 1|L)

#### 3.2.1 Theoretical result

Rosenbaum and Rubin (1983) showed:

- For potential outcomes Y(1), Y(0), if you have sufficient observed covariate list L to reduce confounding ('strong ignoribility'):
  - i.e., if  $(Y(1), Y(0)) \perp A|L$
  - Note that is this NOT  $Y \perp A|L$
- then
  - $(Y(1), Y(0)) \perp A|PS$  and
  - $-A \perp L|PS$

#### 3.2.2 Assumptions

| Conditional     | $Y(1), Y(0) \perp A L$ | Treatment assignment is  |
|-----------------|------------------------|--------------------------|
| Exchangeability |                        | independent of the       |
|                 |                        | potential outcome, given |
|                 |                        | ${f L}$                  |
| Positivity      | 0 < P(A = 1 L) < 1     | Subjects are eligible to |
|                 |                        | receive both treatment,  |
|                 |                        | given L                  |

| Consistency | $Y = Y(a) \forall A = a$ | No multiple version of |
|-------------|--------------------------|------------------------|
|             |                          | the treatment          |

## 3.2.3 Ways to use PS

Many ways to use propensity scores (PS) in the analysis

- PS matching [our focus today: intuitive!]
- PS weighting
- PS stratification
- PS used as a covariate

## 3.3 PS Matching Steps

Propensity score matching has 4 steps (Austin, 2011b)

| Step 1 | exposure modelling: $PS = Prob(A = 1 L)$         |
|--------|--------------------------------------------------|
| Step 2 | Match by $PS$                                    |
| Step 3 | Assess balance and overlap $(PS \text{ and } L)$ |
| Step 4 | outcome modelling: $Prob(Y = 1 A = 1)$           |

# Step 1: Exposure modelling

## 4.1 Model specification

Specify the propensity score model to estimate propensity scores, and fit the model:

```
A \sim L
```

```
baselinevars <- c("gender", "age", "race", "education", "married",
ps.formula <- as.formula(paste("diabetes", "~", paste(baselinevars, collapse = "+")))
ps.formula

## diabetes ~ gender + age + race + education + married + bmi

# fit logistic regression to estimate propensity scores
PS.fit <- glm(ps.formula,family="binomial", data=analytic)
require(jtools)
summ(PS.fit)</pre>
```

| Observations       | 1562                     |
|--------------------|--------------------------|
| Dependent variable | diabetes                 |
| Type               | Generalized linear model |
| Family             | binomial                 |
| Link               | logit                    |

| $\chi^2(10)$                        | 282.89  |
|-------------------------------------|---------|
| Pseudo-R <sup>2</sup> (Cragg-Uhler) | 0.26    |
| Pseudo-R <sup>2</sup> (McFadden)    | 0.18    |
| AIC                                 | 1349.94 |
| BIC                                 | 1408.83 |

|                                     | Est.  | S.E. | z val. | p    |
|-------------------------------------|-------|------|--------|------|
| (Intercept)                         | -8.38 | 0.58 | -14.49 | 0.00 |
| genderMale                          | 0.34  | 0.15 | 2.26   | 0.02 |
| age                                 | 0.06  | 0.01 | 11.26  | 0.00 |
| raceHispanic                        | 0.15  | 0.23 | 0.64   | 0.52 |
| raceOther                           | 0.76  | 0.23 | 3.25   | 0.00 |
| raceWhite                           | -0.23 | 0.18 | -1.23  | 0.22 |
| educationHigh.School                | 0.14  | 0.15 | 0.95   | 0.34 |
| educationSchool                     | 0.52  | 0.27 | 1.92   | 0.05 |
| marriedNever.married                | -0.04 | 0.25 | -0.16  | 0.88 |
| ${\it married Previously.} married$ | -0.02 | 0.16 | -0.15  | 0.88 |
| bmi                                 | 0.10  | 0.01 | 10.14  | 0.00 |

Standard errors: MLE

- Coef of PS model fit is not of concern
- Model can be rich: to the extent that prediction is better
- But look for multi-collinearity issues
  - SE too high?

## 4.2 Variables to adjust

Brookhart et al. (2006)

- Observed covariates are used to fix design
- Which covariates should be selected:
  - known to be a confounder (causes of Y and A)
  - known to be a cause of the outcome (risk factors of Y)
  - avoid known instruments or noise variables: **SE suffers**
  - mediating factors should be avoided (total effect = goal)
- Try drawing causal diagram to determine which variables to include

23



#### 4.3 Model selection

Usually done for the variables that are *not known as a confounder* in the literature, or based on subject area knowledge.

- Stepwise (p-value or criterion based) not recommended
  - depending on sample size, different values can get selected
  - may select variables highly associated with A
- Don't look at the outcome (Y) in your data to select covariates
  - There are debate about this (ideal vs. pragmatism)
  - see Karim et al. (2018) for an example.

## 4.4 Alternative modelling strategies

- Other machine learning alternatives are possible to use instead of logistic regression.
  - tree based methods have better ability to detect non-linearity / non-additivity (model-specification aspect)
  - shrinkage methods lasso / elastic net may better deal with multicollinearity
  - ensemble learners / super learners were successfully used
  - shallow/deep learning!

## 4.5 PS estimation

PS is unknown, and needs to be estimated from the fitted exposure model:

#### Distributional Balance for "PS"



![](images/info.png)

![](images/info.png)

![](images/info.png)

Don't loose sight that better \*\*balance\*\* is the ultimate goal for propensity see Prediction of \$A\$ is just a means to that end (as true PS is unknown) May attract variables highly associated with \$A\$

# Step 2: Propensity score Matching

## 5.1 Matching method NN

Match using estimates propensity scores

- nearest-neighbor (NN) matching
- without replacement
- $\bullet~$  with caliper = .2\*SD of logit of propensity score
- with 1:1 ratio (pair-matching)



## 5.2 Initial fit

1:1 NN Match using estimates propensity scores

##

```
set.seed(123)
require(MatchIt)
match.obj <- matchit(ps.formula, data = analytic,</pre>
                     distance = 'logit',
                     method = "nearest",
                     replace=FALSE,
                     ratio = 1)
analytic$PS <- match.obj$distance</pre>
summary(match.obj$distance)
       Min. 1st Qu.
                       Median
                                   Mean 3rd Qu.
                                                      Max.
## 0.003916 0.068128 0.169946 0.211268 0.312987 0.925132
match.obj
## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score
##
                - estimated with logistic regression
## - number of obs.: 1562 (original), 660 (matched)
## - target estimand: ATT
## - covariates: gender, age, race, education, married, bmi
5.3
       Fine tuning: add caliper
2 SD of logit of the propensity score is suggested as a caliper.
logitPS <- -log(1/analytic$PS - 1)</pre>
# logit of the propensity score
.2*sd(logitPS) # suggested in the literature
## [1] 0.2606266
# choosing too strict PS has unintended consequences
set.seed(123)
require(MatchIt)
match.obj <- matchit(ps.formula, data = analytic,</pre>
                     distance = 'logit',
                     method = "nearest",
                     replace=FALSE,
                     caliper = .2*sd(logitPS),
                     ratio = 1)
analytic$PS <- match.obj$distance</pre>
summary(match.obj$distance)
```

Min. 1st Qu. Median Mean 3rd Qu.

Max.

5.4. MATCHES 27

```
## 0.003916 0.068128 0.169946 0.211268 0.312987 0.925132
match.obj

## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score [caliper]
## - estimated with logistic regression
## - caliper: <distance> (0.045)
## - number of obs.: 1562 (original), 632 (matched)
## - target estimand: ATT
## - covariates: gender, age, race, education, married, bmi
```

#### 5.4 Matches

Taking a closer look at the matches

```
# Ref: https://lists.gking.harvard.edu/pipermail/matchit/2013-October/000559.html
matches <- as.data.frame(match.obj$match.matrix)
colnames(matches)<-c("matched_unit")
matches$matched_unit<-as.numeric(
   as.character(matches$matched_unit))
matches$treated_unit<-as.numeric(rownames(matches))
matches.only<-matches[!is.na(matches$matched_unit),]
head(matches.only)</pre>
```

| ## |     | matched_unit | treated_unit |
|----|-----|--------------|--------------|
| ## | 40  | 8496         | 40           |
| ## | 56  | 3139         | 56           |
| ## | 65  | 4192         | 65           |
| ## | 66  | 94           | 66           |
| ## | 86  | 2212         | 86           |
| ## | 110 | 7154         | 110          |

## 5.5 Other matching algorithms

More NN ratio is usually better. But creates issue when calculating variances (but can be easily handled).

Other possibilities

- Optimal
- $\bullet$  genetic matching
- CEM
- variable ratio NN

# Step 3: Balance and overlap

#### Balance is more important than prediction!

- Criteria to assess success of step 2: PS estimation
  - better balance
  - better overlap [no extrapolation!]
  - $-\ \mathrm{PS} = 0$  or  $\mathrm{PS} = 1$  needs close inspection

## 6.1 Assessment of Balance by SMD

- balance = similarity of the covariate distributions
- d or SMD > 0.1 can be considered as imbalance (Austin, 2011a)

| ## | Stratified by diabetes       |       |         |       |         |        |          |
|----|------------------------------|-------|---------|-------|---------|--------|----------|
| ## |                              | 0     |         | 1     |         | p      | test SMD |
| ## | n                            | 1232  |         | 330   |         |        |          |
| ## | <pre>gender = Male (%)</pre> | 738   | (59.9)  | 221   | (67.0)  | 0.023  | 0.147    |
| ## | age (mean (SD))              | 50.54 | (17.23) | 63.04 | (12.87) | <0.001 | 0.822    |
| ## | race (%)                     |       |         |       |         | 0.110  | 0.151    |
| ## | Black                        | 253   | (20.5)  | 71    | (21.5)  |        |          |
| ## | Hispanic                     | 220   | (17.9)  | 64    | (19.4)  |        |          |
| ## | Other                        | 169   | (13.7)  | 59    | (17.9)  |        |          |
| ## | White                        | 590   | (47.9)  | 136   | (41.2)  |        |          |
| ## | education (%)                |       |         |       |         | 0.005  | 0.186    |

```
##
       College
                            649 (52.7)
                                          157 (47.6)
##
       High.School
                            518 (42.0)
                                          140 (42.4)
       School
                            65 (5.3)
##
                                           33 (10.0)
##
    married (%)
                                                      <0.001
                                                                   0.282
                            727 (59.0)
                                          194 (58.8)
##
       Married
##
       Never.married
                            201 (16.3)
                                          27 (8.2)
##
       Previously.married 304 (24.7)
                                          109 (33.0)
    bmi (mean (SD)) 29.14 (7.03) 33.01 (7.65) <0.001
                                                                   0.526
##
```

## 6.2 Vizualization for Overlap



```
plot(match.obj, type = "jitter")
```

#### Distribution of Propensity Scores



## [1] "To identify the units, use first mouse button; to stop, use second."
## integer(0)

Vizualization for assessing overlap issues

```
plot(match.obj, type = "hist")
```



Assessment of Balance: Better than regression diagnostics!

Compare the similarity of baseline characteristics between treated and untreated subjects in a the propensity score-matched sample.

- In this case, we will compare SMD < 0.1 or not.
- $\bullet$  In some literature, other generous values (0.25) are proposed. (Austin, 2011a)

print(tab1m, showAllLevels = FALSE, smd = TRUE, test = FALSE)

| ## | Stratified by diabetes |       |         |       |         |       |  |  |
|----|------------------------|-------|---------|-------|---------|-------|--|--|
| ## |                        | 0     |         | 1     |         | SMD   |  |  |
| ## | n                      | 316   |         | 316   |         |       |  |  |
| ## | gender = Male (%)      | 218   | (69.0)  | 212   | (67.1)  | 0.041 |  |  |
| ## | age (mean (SD))        | 63.03 | (13.48) | 62.67 | (12.87) | 0.027 |  |  |
| ## | race (%)               |       |         |       |         | 0.105 |  |  |
| ## | Black                  | 79    | (25.0)  | 68    | (21.5)  |       |  |  |
| ## | Hispanic               | 58    | (18.4)  | 61    | (19.3)  |       |  |  |
| ## | Other                  | 44    | (13.9)  | 53    | (16.8)  |       |  |  |
| ## | White                  | 135   | (42.7)  | 134   | (42.4)  |       |  |  |
| ## | education (%)          |       |         |       |         | 0.007 |  |  |
| ## | College                | 153   | (48.4)  | 152   | (48.1)  |       |  |  |
| ## | High.School            | 133   | (42.1)  | 134   | (42.4)  |       |  |  |
| ## | School                 | 30    | (9.5)   | 30    | (9.5)   |       |  |  |
| ## | married (%)            |       |         |       |         | 0.099 |  |  |
| ## | Married                | 183   | (57.9)  | 186   | (58.9)  |       |  |  |
| ## | Never.married          | 20    | (6.3)   | 27    | (8.5)   |       |  |  |
| ## | Previously.married     | 113   | (35.8)  | 103   | (32.6)  |       |  |  |
| ## | bmi (mean (SD))        | 32.38 | (7.62)  | 32.63 | (7.20)  | 0.035 |  |  |

## 6.3 SMD vs. P-values

Possible to get p-values to check balance: but strongly discouraged

• P-value based balance assessment can be influenced by sample size

```
print(tab1m, showAllLevels = FALSE, smd = FALSE, test = TRUE)
```

| ## | Stratified by diabetes |       |         |       |         |       |      |
|----|------------------------|-------|---------|-------|---------|-------|------|
| ## |                        | 0     |         | 1     |         | p     | test |
| ## | n                      | 316   |         | 316   |         |       |      |
| ## | gender = Male (%)      | 218   | (69.0)  | 212   | (67.1)  | 0.670 |      |
| ## | age (mean (SD))        | 63.03 | (13.48) | 62.67 | (12.87) | 0.733 |      |
| ## | race (%)               |       |         |       |         | 0.629 |      |
| ## | Black                  | 79    | (25.0)  | 68    | (21.5)  |       |      |
| ## | Hispanic               | 58    | (18.4)  | 61    | (19.3)  |       |      |
| ## | Other                  | 44    | (13.9)  | 53    | (16.8)  |       |      |
| ## | White                  | 135   | (42.7)  | 134   | (42.4)  |       |      |
| ## | education (%)          |       |         |       |         | 0.996 |      |
| ## | College                | 153   | (48.4)  | 152   | (48.1)  |       |      |
| ## | High.School            | 133   | (42.1)  | 134   | (42.4)  |       |      |
| ## | School                 | 30    | (9.5)   | 30    | (9.5)   |       |      |
| ## | married (%)            |       |         |       |         | 0.465 |      |
| ## | Married                | 183   | (57.9)  | 186   | (58.9)  |       |      |
| ## | Never.married          | 20    | (6.3)   | 27    | (8.5)   |       |      |
| ## | Previously.married     | 113   | (35.8)  | 103   | (32.6)  |       |      |
| ## | bmi (mean (SD))        | 32.38 | (7.62)  | 32.63 | (7.20)  | 0.662 |      |

Assessment of balance in the matched data

```
smd.res <- ExtractSmd(tab1m)
t(round(smd.res,2))</pre>
```

```
## gender age race education married bmi
## 1 vs 2 0.04 0.03 0.11 0.01 0.1 0.03
```

## 6.4 Variance ratio

- Variance ratios  $\sim 1$  means:
- equal variances in groups
- group balance
- could vary from 1/2 to 2
- other cut-points are suggested as well (0.8 to 1.2)

See Stuart (2010) and Austin (2009)

```
disp.v.ratio = TRUE)
baltab.res
```

```
## Call
## matchit(formula = ps.formula, data = analytic, method = "nearest",
##
      distance = "logit", replace = FALSE, caliper = 0.2 * sd(logitPS),
##
      ratio = 1)
##
## Balance Measures
                                 Type Diff.Adj V.Ratio.Adj
## distance
                             Distance 0.0276
                                                    1.0992
                               Binary -0.0190
## gender_Male
## age
                              Contin. -0.0278
                                                    0.9114
## race_Black
                              Binary -0.0348
## race_Hispanic
                               Binary
                                        0.0095
## race_Other
                               Binary
                                        0.0285
## race White
                               Binary -0.0032
                               Binary -0.0032
## education_College
## education_High.School
                               Binary
                                        0.0032
## education_School
                               Binary
                                        0.0000
## married_Married
                               Binary
                                        0.0095
## married Never.married
                               Binary
                                        0.0222
## married_Previously.married Binary -0.0316
## bmi
                              Contin.
                                        0.0338
                                                    0.8928
##
## Sample sizes
##
            Control Treated
## All
               1232
                        330
## Matched
                316
                        316
## Unmatched
                916
                        14
```

#### G. K. Class inspection of houndaries



- Sensitivity analysis should be done with trimming.
- Have consequences in interpretation
  - target population may be unclear

## 6.6 Unsatirfactory balance

• Best strategy is to go back to step 2, and make changes in the PS model specification

# Step 4: Outcome modelling

- Some flexibility in choosing outcome model
  - considered independent of exposure modelling
  - some propose double robust approach
  - adjusting imbalanced covariates only?
    - $\ast$  double-adjustment may address residual confounding (Nguyen et al., 2017)

## 7.1 Crude outcome model

Estimate the effect of treatment on outcomes using propensity score-matched sample

## 7.2 Double-adjustment

Estimate the effect of treatment on outcomes using propensity score-matched sample, and adjust for imbalanced covariate

```
##
        race
                 Black
                              Ref
                             0.96 [0.46;2.02]
                                                  0.9165
##
              Hispanic
##
                 Other
                             1.32 [0.63;2.78]
                                                  0.4581
                                                  0.1095
                 White
                             0.58 [0.30;1.13]
##
```

#### 7.3 Adjusted outcome model

```
Adjust for all covariates, again! (suggested)
```

```
out.formula <- as.formula(paste("cholesterol", "~ diabetes +",</pre>
                                 paste(baselinevars,
                                        collapse = "+")))
out.formula
## cholesterol ~ diabetes + gender + age + race + education + married +
##
fit3b <- glm(out.formula,</pre>
             family=binomial, data = matched.data)
publish(fit3b)
##
     Variable
                             Units OddsRatio
                                                    CI.95
                                                               p-value
##
     diabetes
                                         0.86 [0.51;1.46]
                                                             0.5794126
##
       gender
                            Female
                                         Ref
                                                             0.0012767
##
                              Male
                                         0.38 [0.21;0.69]
##
                                         0.95 [0.93;0.97]
                                                               < 1e-04
          age
##
                             Black
                                         Ref
         race
##
                          Hispanic
                                         0.72 [0.31;1.65]
                                                             0.4346787
##
                                                             0.5224157
                             Other
                                         0.77 [0.34;1.73]
                                         0.51 [0.25;1.04]
                                                             0.0649791
##
                             White
##
                           College
    education
                                         Ref
##
                      High.School
                                         0.70 [0.39;1.24]
                                                             0.2215142
##
                                         0.93 [0.35;2.43]
                            School
                                                             0.8791455
##
      married
                          Married
                                         Ref
##
                                         0.48 [0.15;1.54]
                                                             0.2173180
                    Never.married
##
               Previously.married
                                         0.84 [0.45;1.57]
                                                             0.5900732
                                         0.93 [0.89; 0.97]
                                                             0.0005547
##
          bmi
```

The above analysis do not take matched pair into consideration while regressing.

#### Other cosiderations for outcome model 7.4

Literature proposes different strategies:

- do not control for pairs / clusters - use glm as is
- control for pairs / clusters

- use cluster option (preferred)
- use GEE or
- use conditional logistic

Here is an example using cluster option:

```
require(jtools)
summ(fit3b, rubust = "HCO", confint = TRUE, digists = 3,
    cluster = "subclass", model.info = FALSE,
    model.fit = FALSE, exp = TRUE)
```

|                           | exp(Est.) | 2.5% | 97.5%   | z val. | р    |
|---------------------------|-----------|------|---------|--------|------|
| (Intercept)               | 100.02    | 8.74 | 1144.55 | 3.70   | 0.00 |
| diabetes                  | 0.86      | 0.51 | 1.46    | -0.55  | 0.58 |
| genderMale                | 0.38      | 0.21 | 0.69    | -3.22  | 0.00 |
| age                       | 0.95      | 0.93 | 0.97    | -4.47  | 0.00 |
| raceHispanic              | 0.72      | 0.31 | 1.65    | -0.78  | 0.43 |
| raceOther                 | 0.77      | 0.34 | 1.73    | -0.64  | 0.52 |
| raceWhite                 | 0.51      | 0.25 | 1.04    | -1.85  | 0.06 |
| educationHigh.School      | 0.70      | 0.39 | 1.24    | -1.22  | 0.22 |
| educationSchool           | 0.93      | 0.35 | 2.43    | -0.15  | 0.88 |
| marriedNever.married      | 0.48      | 0.15 | 1.54    | -1.23  | 0.22 |
| marriedPreviously.married | 0.84      | 0.45 | 1.57    | -0.54  | 0.59 |
| bmi                       | 0.93      | 0.89 | 0.97    | -3.45  | 0.00 |

Standard errors: MLE

- Bootstrap for matched pair for WOR (Austin and Small, 2014)
  - may not be appropriate for WR

### 7.5 Estimate obtained

- The example compared diabetic (a treated group; target) vs Not diabetic (untreated).
- The corresponding treatment effect estimate is known as
  - Average Treatment Effects on the Treated (ATT)
- Other estimates from PS analysis (e.g., PS weighting) are possible that compared the whole population
  - what if everyone treated vs. what if nobody was treated (ATE)

## Chapter 8

## PS vs. Regression

### 8.1 Data Simulation

• Confounder L (continuous)

Simplified simulation example, so that we know the true parameter  $\theta$ .

```
\begin{array}{ll} Y: \mbox{Outcome} & \mbox{Cholesterol levels (continuous)} \\ A: \mbox{Exposure} & \mbox{Diabetes} \\ L: \mbox{Known Confounders} & \mbox{age (continuous)} \end{array}
```

```
- Logit L \sim N(\text{mean} = 10, \text{sd} = 1)
   • Treatment A (binary 0/1)
        - Logit P(A=1) \sim 0.4 \text{ L}
   • Outcome Y (continuous)
        - Y \sim N(\text{mean} = 3 L + \theta A, \text{sd} = 1)
\theta = 0.7
require(simcausal)
D <- DAG.empty()
D \leftarrow D +
  node("L", distr = "rnorm", mean = 10, sd = 1) +
  node("A", distr = "rbern", prob = plogis(0.4*L)) +
  node("Y", distr = "rnorm", mean = 3 * L + 0.7 * A, sd = 1)
Dset <- set.DAG(D)</pre>
plotDAG(Dset, xjitter = 0.1, yjitter = .9,
         edge_attrs = list(width = 0.5, arrow.width = 0.4, arrow.size = 1.7),
         vertex_attrs = list(size = 18, label.cex = 1.8))
```

## using the following vertex attributes:

```
## 181.8NAdarkbluenone0
## using the following edge attributes:
## 0.50.41.7black1
```



```
# Data generating function
fnc <- function(n = 10, seedx = 123){
  require(simcausal)
  set.seed(seedx)
  D <- DAG.empty()
  D <- D +
    node("L", distr = "rnorm", mean = 10, sd = 1) +
    node("A", distr = "rbern", prob = plogis(0.4*L)) +
    node("Y", distr = "rnorm", mean = 3 * L + 0.7 * A, sd = 1)
  Dset <- set.DAG(D)</pre>
  A1 <- node("A", distr = "rbern", prob = 1)
  Dset <- Dset + action("A1", nodes = A1)</pre>
  AO <- node("A", distr = "rbern", prob = 0)
  Dset <- Dset + action("A0", nodes = A0)</pre>
  Cdat <- sim(DAG = Dset, actions = c("A1", "A0"), n = n, rndseed = 123)
  generated.data <- round(cbind(Cdat$A1[c("ID", "L", "Y")],Cdat$A0[c("Y")]),2)</pre>
  {\tt names(generated.data)} \begin{tabular}{ll} &<& c("ID", "L", "Y1", "Y0") \\ \end{tabular}
  generated.data <- generated.data[order(generated.data$L, generated.data$ID),]</pre>
  generated.dataA \leftarrow sample(c(0,1),n, replace = TRUE)
  generated.data$Y <- ifelse(generated.data$A==0, generated.data$Y0, generated.data$Y1
```

```
counterfactual.dataset<- generated.data[order(generated.data$ID) , ][c("ID","L","A","Y1","Y0")]</pre>
  observed.dataset<- generated.data[order(generated.data$ID) , ][c("ID","L","A","Y")]
  return(list(counterfactual=counterfactual.dataset,
              observed=observed.dataset))
}
10 observations from the data generation:
result.data <- fnc(n=10)
result.data
## $counterfactual
      ID
           L A
                    Y1
      1 9.44 0 30.24 29.54
     2 9.77 1 30.37 29.67
     3 11.56 1 35.78 35.08
## 4
      4 10.07 0 31.02 30.32
## 5
      5 10.13 0 30.53 29.83
       6 11.72 0 37.63 36.93
## 7
      7 10.46 1 32.58 31.88
      8 8.73 1 24.94 24.24
      9 9.31 1 29.34 28.64
## 10 10 9.55 1 28.89 28.19
##
## $observed
      ID
            L A
      1 9.44 0 29.54
       2 9.77 1 30.37
      3 11.56 1 35.78
      4 10.07 0 30.32
      5 10.13 0 29.83
       6 11.72 0 36.93
## 6
## 7
      7 10.46 1 32.58
## 8
      8 8.73 1 24.94
## 9
     9 9.31 1 29.34
## 10 10 9.55 1 28.89
```

### 8.2 Treatment effect from counterfactuals

True  $\theta$  can be obtained from counterfactual data:

result.data\$counterfactual\$TE <- result.data\$counterfactual\$Y1- result.data\$counterfactual\$Y0
result.data\$counterfactual</pre>

```
## ID L A Y1 Y0 TE
## 1 1 9.44 0 30.24 29.54 0.7
```

```
## 2 2 9.77 1 30.37 29.67 0.7
## 3 3 11.56 1 35.78 35.08 0.7
## 4 4 10.07 0 31.02 30.32 0.7
## 5 5 10.13 0 30.53 29.83 0.7
## 6 6 11.72 0 37.63 36.93 0.7
## 7 7 10.46 1 32.58 31.88 0.7
## 8 8 8.73 1 24.94 24.24 0.7
## 9 9 9.31 1 29.34 28.64 0.7
## 10 10 9.55 1 28.89 28.19 0.7
```

## 8.3 Treatment effect from Regression

```
What happens in observed data for a sample of size 10?
round(coef(glm(Y ~ A, family="gaussian", data=result.data$observed)),2)
## (Intercept)
                      -1.34
         31.65
round(coef(glm(Y ~ A + L, family="gaussian", data=result.data$observed)),2)
## (Intercept)
                                       L
                          Α
                       0.24
                                    3.56
##
         -5.17
What happens in observed data for a sample of size 10000?
result.data \leftarrow fnc(n=10000)
round(coef(glm(Y ~ A, family="gaussian", data=result.data$observed)),2)
## (Intercept)
                          Α
                       0.70
##
         29.98
round(coef(glm(Y ~ A + L, family="gaussian", data=result.data$observed)),2)
## (Intercept)
                                       L
                          Α
##
         -0.07
                       0.70
                                    3.01
```

## 8.4 Treatment effect from PS

Propensity score model fitting:

```
ratio = 1)
match.obj
## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score [caliper]
                - estimated with logistic regression
## - caliper: <distance> (0)
## - number of obs.: 10000 (original), 8306 (matched)
## - target estimand: ATT
## - covariates: L
Results from step 4: crude
matched.data <- match.data(match.obj)</pre>
Results from step 4: adjusted
round(coef(glm(Y ~ A, family="gaussian", data=matched.data)),2)
## (Intercept)
                         Α
##
         29.97
                      0.69
round(coef(glm(Y ~ A+L, family="gaussian", data=matched.data)),2)
## (Intercept)
                         Α
##
         -0.10
                      0.69
                                   3.01
```

### 8.5 Non-linear Model

## 8.5.1 Data generation

Y: Outcome Cholesterol levels (continuous) A: Exposure Diabetes L: Known Confounders age (continuous)

```
Confounder L (continuous)

Logit L ~ N(mean = 10, sd = 1)

Treatment A (binary 0/1)

Logit P(A = 1) ~ 0.4 L

Outcome Y (continuous)

Y ~ N(mean = 3 L³ + θ A, sd = 1)
```

The only difference is  $L^3$  instead of L in the outcome mode.

Again,  $\theta = 0.7$ 

```
# Data generating function
fnc2 \leftarrow function(n = 10, seedx = 123){
  require(simcausal)
  set.seed(seedx)
 D <- DAG.empty()
 D <- D +
    node("L", distr = "rnorm", mean = 10, sd = 1) +
    node("A", distr = "rbern", prob = plogis(0.4*L)) +
    node("Y", distr = "rnorm", mean = 3 * L^3 + 0.7 * A, sd = 1)
 Dset <- set.DAG(D)</pre>
  A1 <- node("A", distr = "rbern", prob = 1)
 Dset <- Dset + action("A1", nodes = A1)</pre>
  A0 <- node("A", distr = "rbern", prob = 0)
 Dset <- Dset + action("A0", nodes = A0)</pre>
  Cdat <- sim(DAG = Dset, actions = c("A1", "A0"), n = n, rndseed = 123)
  generated.data <- round(cbind(Cdat$A1[c("ID", "L", "Y")],Cdat$A0[c("Y")]),2)</pre>
 names(generated.data) <- c("ID", "L", "Y1", "Y0")</pre>
  generated.data <- generated.data[order(generated.data$L, generated.data$ID),]</pre>
  generated.dataA \leftarrow sample(c(0,1),n, replace = TRUE)
  generated.data$Y <- ifelse(generated.data$A==0, generated.data$Y0, generated.data$Y1
  counterfactual.dataset<- generated.data[order(generated.data$ID) , ][c("ID","L","A",
  observed.dataset<- generated.data[order(generated.data$ID) , ][c("ID","L","A","Y")]
  return(list(counterfactual=counterfactual.dataset,
              observed=observed.dataset))
```

#### 8.5.2 Regression

```
result.data \leftarrow fnc2(n=10000)
Crude estimates
round(coef(glm(Y ~ A, family="gaussian", data=result.data$observed)),2)
## (Intercept)
##
       3094.49
                     -13.16
Adjusted estimates
fit <- glm(Y ~ A + L, family="gaussian", data=result.data$observed)
round(coef(fit),2)
## (Intercept)
                                       L
##
      -6002.42
                      -1.25
                                  909.32
```

• In regression adjustments, the results could be subject to "model extrapolation" based on linearity assumption.

- It is sometimes difficult to know whether the adjusted effect is based on extrapolation.
- Especially true in observational settings.
- PS may not need such linearity assumption (when non-parametric approaches used for prediction).
  - \* Don't necessarily mean non-parametric approaches are the best option though!

#### 8.5.3 PS

Matching with PS

```
match.obj <- matchit(A ~ L, method = "nearest",</pre>
                     data = result.data$observed,
                     distance = 'logit',
                     replace = FALSE,
                     caliper = 0.001,
                     ratio = 1)
match.obj
## A matchit object
## - method: 1:1 nearest neighbor matching without replacement
## - distance: Propensity score [caliper]
##
                - estimated with logistic regression
## - caliper: <distance> (0)
## - number of obs.: 10000 (original), 8282 (matched)
## - target estimand: ATT
## - covariates: L
matched.data <- match.data(match.obj)</pre>
Results from step 4: crude
round(coef(glm(Y ~ A, family="gaussian", data=matched.data)),2)
## (Intercept)
                         Α
       3070.64
##
                      0.72
Results from step 4: adjusted
round(coef(glm(Y ~ A+L, family="gaussian", data=matched.data)),2)
## (Intercept)
      -5980.08
                      0.72
                                 905.62
##
```

#### 8.5.4 Machine learning

Using gradient boosted method for PS estimation

```
require(twang)
result.data$observed$S <- 0
ps.gbm <- ps(A ~ L + S, data = result.data$observed, estimand = "ATT", n.trees=1000)
names(ps.gbm)
summary(ps.gbm$ps$es.mean.ATT)
result.data$observed$ps <- ps.gbm$ps$es.mean.ATT
Matching with PS generated from gradient boosted method
require(Matching)
match.obj2 <- Match(Y=result.data$observed$Y, Tr=result.data$observed$A,
                   X=result.data$observed$ps, M=1, caliper = 0.001,
                   replace=FALSE)
summary(match.obj2)
##
## Estimate... 1.5255
## SE..... 1.6227
## T-stat..... 0.94006
## p.val..... 0.34719
##
## Original number of observations.....
## Original number of treated obs.....
## Matched number of observations.....
## Matched number of observations (unweighted).
##
                                                         0.001
## Caliper (SDs).....
## Number of obs dropped by 'exact' or 'caliper'
matched.data2 <- result.data$observed[c(match.obj2$index.treated, match.obj2$index.com
mb <- MatchBalance(A~L, data=result.data$observed, match.out=match.obj2, nboots=10)
Results from step 4: crude
round(coef(glm(Y ~ A, family="gaussian", data=matched.data2)),2)
## (Intercept)
                        Α
      3089.17
##
                     1.53
Results from step 4: adjusted
round(coef(glm(Y ~ A+L, family="gaussian", data=matched.data2)),2)
## (Intercept)
                                   L
      -6025.34
##
                     1.55
                               910.70
```

### 8.5.5 Regression is doomed?

Not really. Always a god idea to check the diagnostic plots to find any indication of assumption violation:

```
par(mfrow=c(2,2))
plot(fit)
```



Residual plot has a pattern!

![](images/info.png) Powerful machine learning method is good at prediction.
![](images/info.png) Propensity score methods rely on obtaining good balance.

![(images/info.png) | Images/info.png | Always a good idea to check analysis with multiple sensitivity analysis.

## 8.6 Common misconception

- PS results = 'causal';
- regression = 'non-causal'.

No. 'Results from both methods should lead to the same conclusions.' (D'Agostino Jr, 1998)

When the results deviate, important to investigate why!

## 8.7 Benifits of PS

• Intuitive: compare two similar groups

#### • 2-step process

- Encourages researchers to think about the treatment generation process
- Fit outcome model with only important variables.
- Allowing to think more about design stage (nice separation from outcome model building process).
- Fit **rich PS model** (with higher order terms); focusing on prediction; worry less about overparameterization.
  - Non-parametric (ML) approaches can be used to relax linearity assumption in estimating PS.
  - See more on Lee et al. (2010), Pirracchio et al. (2015), Alam et al. (2019)
- **Reduce dimension**, helpful when exposure frequent but outcome rare (event per variable).
  - Smaller outcome model may be helpful in diagnostic checks.

#### • Diagnostics

- Diagnostics (balance checking) much easier compared to residual plot/influence
- Graphical comparison helps identify areas of non-overlap.

### 8.8 Limitations of PS

- Matching population vs. target population: often not the same.
  - PS matching may give effect estimate of a subset, which may be difficult to identify in the actual population!
- PS can do nothing about unmeasured confounding, neither can outcome regression.

## Chapter 9

# Reporting Guidelines

While writing journal articles or reports, what are the components we should report?

## 9.1 Discipline-specific Reviews

- Propensity score matching most popular
  - Cardiovascular (Austin, 2007),
  - Infective endocarditis,
  - Intensive care
  - Critical care,
  - anesthesiology,
  - Sepsis,
  - Psychology
  - Cancer (Yao et al., 2017),
  - Multiple sclerosis (Karim et al., 2020)

## 9.2 Suggested Guidelines

| Population   | Be specific about population of interest                |
|--------------|---------------------------------------------------------|
|              | - ATT vs. ATE                                           |
|              | - exclusion criteria                                    |
| Intervention | Be specific about exposure                              |
|              | - no multiple version of treatment                      |
|              | - no interference                                       |
|              | - comparator                                            |
| Covariates   | How variables are selected                              |
|              | - Any important variables not measured? Proxy?          |
|              | - Large list of covariates? See King and Nielsen (2019) |

| PS Model             | Model selection                                                  |  |
|----------------------|------------------------------------------------------------------|--|
|                      | - interaction or polynomials                                     |  |
|                      | - logistic vs. machine learning                                  |  |
|                      | - Residual imbalance and refit PS model                          |  |
| PS approach          | Why PS matching (or other approach) was selected?                |  |
| Sample size          | Reduction % of the matched data: major issue!                    |  |
| Diagnostics          | Overlap vs. balance assessments                                  |  |
|                      | - numeric and visual                                             |  |
| Sensitivity analysis | - unmeasured confounder / hdPS                                   |  |
|                      | - any positivity issue? Deleting extremes has consequences!      |  |
|                      | - ad-hoc methods: truncation / trimming: bias-variance trade-off |  |
| Subgroup analysis    | Refit within each group for matching                             |  |
|                      | - See Ali et al. (2019) for a more complete list                 |  |
| Missing data         | Report clearly about missing data                                |  |
|                      | - how missing data handled                                       |  |
| Software             | Report software                                                  |  |

## 9.3 Software

- Useful R packages
  - MatchIt
  - cobalt
  - Matching
  - twang
- Also see
  - -Elizabeth Stuart's Propensity Score Software Page for SAS, STATA, SPSS, Excel packages

## 9.4 Further Resources

- My workshop page
- My YouTube channel for related PS materials
- Teaching by WebApps: particularly this one.

# References

## Bibliography

- Alam, S., Moodie, E. E., and Stephens, D. A. (2019). Should a propensity score model be super? the utility of ensemble procedures for causal adjustment. *Statistics in medicine*, 38(9):1690–1702.
- Ali, M. S., Prieto-Alhambra, D., Lopes, L. C., Ramos, D., Bispo, N., Ichihara, M. Y., Pescarini, J. M., Williamson, E., Fiaccone, R. L., Barreto, M. L., et al. (2019). Propensity score methods in health technology assessment: principles, extended applications, and recent advances. Frontiers in pharmacology, 10:973.
- Austin, P. C. (2007). Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement. The Journal of thoracic and cardiovascular surgery, 134(5):1128–1135.
- Austin, P. C. (2009). Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. *Statistics in medicine*, 28(25):3083–3107.
- Austin, P. C. (2011a). An introduction to propensity score methods for reducing the effects of confounding in observational studies. *Multivariate behavioral research*, 46(3):399–424.
- Austin, P. C. (2011b). A tutorial and case study in propensity score analysis: an application to estimating the effect of in-hospital smoking cessation counseling on mortality. *Multivariate behavioral research*, 46(1):119–151.
- Austin, P. C. and Small, D. S. (2014). The use of bootstrapping when using propensity-score matching without replacement: a simulation study. *Statistics in medicine*, 33(24):4306–4319.
- Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., and Stürmer, T. (2006). Variable selection for propensity score models. *American journal of epidemiology*, 163(12):1149–1156.
- D'Agostino Jr, R. B. (1998). Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. *Statistics in medicine*, 17(19):2265–2281.

54 BIBLIOGRAPHY

Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Dupont, H. T., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of covid-19: results of an open-label non-randomized clinical trial. *International journal of antimicrobial agents*, 56(1):105949.

- Karim, M. E., Pang, M., and Platt, R. W. (2018). Can we train machine learning methods to outperform the high-dimensional propensity score algorithm? *Epidemiology*, 29(2):191–198.
- Karim, M. E., Pellegrini, F., Platt, R. W., Simoneau, G., Rouette, J., and de Moor, C. (2020). The use and quality of reporting of propensity score methods in multiple sclerosis literature: A review. *Multiple Sclerosis Journal*, page 1352458520972557.
- King, G. and Nielsen, R. A. (2019). Why propensity scores should not be used for matching.
- Lee, B. K., Lessler, J., and Stuart, E. A. (2010). Improving propensity score weighting using machine learning. *Statistics in medicine*, 29(3):337–346.
- Nguyen, T.-L., Collins, G. S., Spence, J., Daurès, J.-P., Devereaux, P., Landais, P., and Le Manach, Y. (2017). Double-adjustment in propensity score matching analysis: choosing a threshold for considering residual imbalance. BMC medical research methodology, 17(1):1–8.
- Pirracchio, R., Petersen, M. L., and Van Der Laan, M. (2015). Improving propensity score estimators' robustness to model misspecification using super learner. *American journal of epidemiology*, 181(2):108–119.
- Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1):41–55.
- Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward. Statistical science: a review journal of the Institute of Mathematical Statistics, 25(1):1.
- Yao, X. I., Wang, X., Speicher, P. J., Hwang, E. S., Cheng, P., Harpole, D. H., Berry, M. F., Schrag, D., and Pang, H. H. (2017). Reporting and guidelines in propensity score analysis: a systematic review of cancer and cancer surgical studies. JNCI: Journal of the National Cancer Institute, 109(8):djw323.