

NATURAL ORDER

Why

We count in order.¹

Defining Result

We say that two natural numbers m and n are *comparable* if $m \in n$ or m = n or $n \in m$.

Proposition 1. Any two natural numbers are comparable.²

In fact, more is true.

Proposition 2. For any two natural numbers, exactly one of $m \in n$, m = n and $n \in m$ is true.³

Proposition 3. $m \in n \longleftrightarrow m \subset n$.

If $m \in n$, then we say that m is less than n. If we know that m = n or m is less than n, we say that m is less than or equal to n.

Notation

If m is less than n we write m < n, read aloud "m less than n." If m is less than or equal to n, we write $m \le n$, read alout "m less than or equal to n."

¹Future editions will expand.

²Future editions will include an account.

 $^{^{3}}$ Use the fact that no natural number is a subset of itself. Future editions will expand this account. See *Peano Axioms*).

Properties

Notice that < and \leq are relations on ω (see *Relations*).⁴

Proposition 4 (Reflexivity). \leq is reflexive, but < is not.

Proposition 5 (Symmetry). Both \leq and < are not symmetric.

Proposition 6 (Transitivity). Both \leq and < are transitive.

Proposition 7 (Antisymmetry). If $m \leq n$ and $n \leq n$, then m = n.

⁴Proofs of the following propositions will appear in future editions.

