Localisation sous-marine

Système de logging pour déplacement de module sous-marin.

Ali Zoubir

Rapport de projet

Génie électrique École supérieure Suisse 14 décembre 2022

Table des matières

Car	actéristiques du projet	3
1.1		3 3
1.2		3
1.3		4
1.4		5
1.5	Jalons principaux	6
1.6	Livrable	6
Pré-	étude	7
2.1	Fonctionnement du système	7
		7
2.2	Choix des composants importants	9
	2.2.1 Senseur absolu	9
		11
		11
		12
		13
		14
2.3	Estimation des coûts	16
2.4		17
	1.1 1.2 1.3 1.4 1.5 1.6 Pré - 2.1 2.2	1.2 Aperçu

Localisation sous-marine 2022, V0.0

1 Caractéristiques du projet

1.1 Description

L'objectif de ce projet, et de stocker des données de mesures du déplacement d'un module sousmarin par une centrale inertielle, dans le but de mathématiquement le localiser depuis son point de départ (référence). Ceci, car la localisation sous-marine n'est pas une tâche aisée due aux différentes contraintes de communication sous-marine notamment que les ondes électromagnétiques ne se propagent pas facilement.

1.2 Aperçu

- Sauvegarde d'un set de donnée chaque 100ms.
- Profondeur d'utilisation maximum, de 60m.
- 2 heure de logging dans carte SD.
- Sensing sur 9 axes:

Mesures [Il est souhaitable que les capteurs choisis aient une faible dérive];

Accéléromètre 3-axes.

Gyroscope 3-axes.

Magnétomètre 3-axes.

Senseur de température

Profondimètre [0->10bar] [Res 1/10]

3 à 5 slots libres MikroE pour autres mesures.

Possibilité de sauvegarder la localisation de points d'intérêts par :

Bouton de sauvegarde [A définir : Magnétique, Optique, Mécanique ou autre].

- Batterie, autonomie minimum de 2 heures [10°].
- Charge de la batterie par connecteur USB.
- (Optionnel) Lecture des données par connecteur USB (Interfaçage électronique, software optionnel dans cette version).
- (Optionnel) Interface LED ou petit écran.

1.3 Tâches à réaliser

Développement et intégration d'un PCB avec capteurs et logging sur carte SD dans une lampe de plongée étanche.

- Développement schématique
 - Fonctionnement MCU.
 - Périphériques de mesures et de sauvegarde / Bus de communication.
 - Gestion batterie
- Routage pour intégration dans boitier de lampe de plongée 200x45mm.
- Programmation mesure et sauvegarde chaque 100ms.
 - Configuration MCU.
 - Configuration des périphériques de mesure pour 9-DOF.
 - Configuration des périphériques de sauvegarde (Carte SD).
 - Configuration et communication avec l'interface.
 - Communication et traitement des données mesurées.

FIGURE 1 – Schéma de principe Source: Auteur

1.4 Description des blocs

1. Carte SD:

Stockage des données de mesures chaque 100ms, cœur du projet.

2. Accéléromètre-gyroscope-magnétomètre :

Lecture des données individuelles brute ainsi que de fusion des capteurs, pour mesurer les déplacements sur 9 degrés de libertés.

3. Profondimètre:

Mesure la pression pour déduire la profondeur, afin de corroborer les autres mesures des capteurs.

4. Real time clock:

Permet de sauvegarder la temporalité du set de mesure dans la carte SD.

5. Affichage:

Affichage LED ou écran, pour affichage pas encore définis (ex. Profondeur, état batterie...)

6. Bouton sauvegarde:

Permet la mise en valeur d'un set de mesure. La forme de ce bouton n'est pas encore définie. Il sera peut-être fusionné avec le bouton ON/OFF.

7. Bouton ON/OFF:

Permet d'allumer ou d'éteindre le système.

8. **Batterie:**

Batterie du système, technologie à définir dans la pré-étude.

9. **COM. USB:**

Permet de charger les batteries. Il faudra également prévoir dans cette version l'interface électronique pour la lecture de la carte SD directement par le port USB.

10. Microcontrôleur:

Lis et traite les valeurs des capteurs, sauvegarde dans la carte SD...

1.5 Jalons principaux

FIGURE 2 – Jalons principaux

1.6 Livrable

- Les fichiers sources de CAO électronique des PCB réalisés
- Tout le nécessaire à fabriquer un exemplaire hardware de chaque :
- fichiers de fabrication (GERBER) / liste de pièces avec références pour commande / implantation
- Prototype fonctionnel
- Modifications / dessins mécaniques, etc
- Les fichiers sources de programmation microcontrôleur (.c / .h)
- Tout le nécessaire pour programmer les microcontrôleurs (logiciel ou fichier .hex)
- Un calcul / estimation des coûts
- Un rapport contenant les calculs dimensionnement de composants structogramme, etc.

2 Pré-étude

L'objectif de cette pré-étude, est de se pencher sur le fonctionnement plus fondamental du système, faire des petits dimensionnements ainsi que de survoler différents aspects techniques liés au projet.

2.1 Fonctionnement du système

2.1.1 Schéma bloc

FIGURE 3 – Schéma bloc du module Source: Auteur

Capteurs:

Les différents capteurs sont interfacés sur le même bus, et ont comme master le microcontrôleur en communication bidirectionnel, afin d'à la fois configurer les registres des périphériques et de lire leurs mesures.

Carte SD:

La carte SD est interfacée en SPI et va contenir les données des différents capteurs ainsi que leurs éventuels flags d'importance (sauvegarde), sa taille sera dimensionnée ultérieurement.

Port USB & charge:

Un port USB est présent, afin charger les batteries par un IC de gestion de charge connecté directement au 5V. De plus le port USB est communiquant avec le microcontrôleur par un driver FTDI, afin d'éventuellement ajouter un système de lecture de la carte SD, directement par USB. Ceci dans cette version ou une ultérieure. Le port USB pourrait aussi servir a fixer la référence de la RTC.

Bouton multifonction:

Sachant qu'un bouton étanche est déjà présent sur le module, l'exploiter en tant que bouton multifonction est une solution ergonomique pour ne pas mettre en péril l'étanchéité globale. Ce bouton ferait office de ON/OFF et de "sauvegarde" de point d'intérêt. Pour se faire, le bouton contrôlerait par un transistor de commutation l'alimentation du système, puis lors de l'allumage du microcontrôleur, le MCU prendrait la relève en maintenant le système allumé a sont tour, permettant ainsi de lire le bouton et de sur une pression longue déconnecter l'alimentation.

Affichage:

L'affichage permettra de visualiser différentes données, dont les plus importantes tel que la pression ou le statut de la batterie.

La forme de l'affichage est encore a définir selon la mécanique du module, mais le plus élégant, serait l'utilisation d'un petit écran OLED.

Capteur de pression :

Le capteur de pression devra avoir un contact direct avec l'eau, cela impliquera de la mécanique et de la gestion d'étanchéité. Une autre possibilité aurait été de mesurer optiquement la déformation du boîtier pour en déduire la pression, mais la complexité est trop importante.

2.2 Choix des composants importants

2.2.1 Senseur absolu

Pour le senseur absolu, il existe des IC permettant directement de faire la fusion des senseurs (**Accéléromètre**, **gyroscope**, **magnétomètre** et thermomètre), ce qui épargne toute une phase de calcul chronophage, en permettant directement de lire les **quaternion**, **angles de Euler**, **vecteurs de rotations**, **cap de direction etc...** directement sur le composant. Il existe différents IC dont deux ce sont montrés très intéressants, le **BNO85** et le **BNO55**, les deux étant PIN-Compatibles, j'ai décidé d'opter pour le **BNO055**.

FIGURE 4 – Schéma bloc du module Source: https://www.mouser.ch/new/bosch/bosch-bno55-sensor/

Sachant que la brazure de ce type de boîtier est compliquée et également dans un but de simplification du projet, j'ai décidé d'utiliser les cartes d'évaluation d'adafruit N° : 4646 qui ont des connections bergs ainsi que tous les composants externes passifs déjà montés.

Caractéristiques importantes :

Résolution gyroscope	:	16	[bits]
Résolution accéléromètre	:	14	[bits]
Résolution magnétomètre	:	~ 0.3	$[\mu T]$
I_{DD}	:	12.3	[mA]
Dérive de température	:	± 0.03	[%/K]
Dérive accéléromètre	:	0.2	[%/V]
Dérive gyroscope	:	< 0.4	[%/V]

Nous allons par la suite voir sur la figure 5, quelles données du BNO055 sont disponibles ainsi que leurs tailles mémoires.

^{1.} K:/ES/PROJETS/SLO/2221_LocalisationSousMarine/doc/composants/9DOF-BNO055

Table 3-36: Temperature Data

Parameter	Data type	bytes
TEMP	signed	1

Table 3-34: Gravity Vector Data

Parameter	Data type	bytes
GRV_Data_X	signed	2
GRV_Data_Y	signed	2
GRV_Data_Z	signed	2

Table 3-32: Linear Acceleration Data

Parameter	Data type	bytes
LIA_Data_X	signed	2
LIA_Data_Y	signed	2
LIA_Data_Z	signed	2

Table 3-30: Compensated orientation data in quaternion format

Parameter	Data type	bytes
QUA_Data_w	Signed	2
QUA_Data_x	Signed	2
QUA_Data_y	Signed	2
QUA_Data_z	Signed	2

Table 3-28: Compensated orientation data in Euler angles format

Parameter	Data type	bytes
EUL_Heading	Signed	2
EUL_Roll	Signed	2
EUL Pitch	Signed	2

Table 3-27: Yaw rate data

Parameter	Data type	bytes
Gyr_Data_X	signed	2
Gyr_Data_Y	signed	2
Gyr_Data_Z	signed	2

Table 3-26: Magnetic field strength data

Parameter	Data type	bytes
Mag_Data_X	signed	2
Mag_Data_Y	signed	2
Mag_Data_Z	signed	2

Table 3-25: Acceleration data

Parameter	Data type	bytes
Accel_Data_X	signed	2
Accel_Data_Y	signed	2

FIGURE 5 – Donnée de sortie de l'IC (43 bytes) Source: https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

2.2.2 Capteur de pression

Pour le capteur de pression, une modification mécanique du boîter sera très probablement nécessaire. J'ai pu trouver un capteur correspondant aux caractéristiques demandée du projet, celui-ci est plutôt générique et peut communiquer en I2C :

PTE7300-14DN-0B016BN

FIGURE 6 – Illustration capteur de pression Source: Distrelec, PTE7300-14DN-0B016BN

L'avantage avec le capteur ci-dessus est le système hermétique pour le trou, un autre capteur peut être utilisé lors de l'étude, néanmoins la modification mécanique étant probablement inévitable, le système de vissage de la figure 6 est intéréssant.

2.2.3 Affichage

Pour l'affichage, je vais essayer d'opter pour un petit afficheur OLED, en gardant la possibilité en cas de de complication lors de l'étude, l'utilisation de simples LEDS d'indications.

Il existe plusieurs affichages OLED rond petits formats, sur lesquels je me pencherais plus en détail lors de l'étude.

2.2.4 Carte SD

Taille mémoire :

Afin de dimensionner la taille de stockage de la carte SD, il faut utiliser les différentes caractéristiques du projet. Normalement la taille de la carte SD n'est clairement pas un problème, sachant que seulement du texte est enregistré et que les tailles mémoires disponibles peuvent être très élevées. Néanmoins il est intéressant de faire le dimensionnement pour connaître le minimum, et pour éventuellement adapter le projet avec d'autres systèmes de mémorisation.

Où:

T_{rec}	=	7200'000	[ms]	Temps a enregistrer
T_{ech}	=	100	[ms]	Temps d'un échantillon
S_{mes}	=	43	[bytes]	Taille de toutes les données de mesures
$S_{timestamp}$	=	\sim 23	bytes	Taille de l'information de temporalité
S_{flag}	=	1	[bytes]	Taille de l'indication d'importance

Nombre de mesure a effectuer :

$$Nb_{mesures} = \frac{T_{rec}}{T_{ech}} \tag{1}$$

D'après (1), nous avons un nombre de mesure de 72'000.

Taille minimum:

$$Taille_{min} = Nb_{mesures} * (S_{mes} + S_{timestamp} + S_{flag})$$
 (2)

D'après (2), la taille mémoire minimum doit être de \sim 5MB.

Nous pouvons donc constater que pour une utilisation standard de 2h, la mémoire occupée est très faible, d'où l'intérêt de sauvegarder dans la carte SD la date, afin de pouvoir faire plusieurs "expéditions" en "une fois", sans avoir à vider la carte.

2.2.5 Real Time Clock

L'objectif de la RTC, est de donner l'information de la temporalité de la mesure (timestamp), afin de lors du traitement des donnée avoir accès à ce paramètre.

Sachant que l'échantillonnage des mesures est de 100ms, la RTC devrait permettre cette résolution. Néanmoins une autre information importante, comme mentionnée lors de la section 2.2.4, est la date de la mesure, afin de permettre plusieurs expéditions par utilisation de la carte.

J'ai donc décidé d'utiliser une RTC pour l'heure grossière de départ (Année, date, heure, minute, seconde) et les compteur du MCU pour faire le delta entre chacune des mesures en ms.

La RTC devra pouvoir tenir le minimum de 2 heure d'utilisation, à cette fin, la batterie LI-ION déjà présente sera suffisante.

La RTC devra avoir une faible consommation, le calendrier ainsi qu'une bonne précision. A cette fin, la RTC **S-35390A-T8T1G** est assez générique et possède une bonne documentation.

FIGURE 7 – Illustration de la RTC Source: https://www.digikey.com/en/products/detail/ablic-inc/S-35390A-T8T1G/1628383

2.2.6 Microcontrôleur

Le microcontrôleur devra avoir un nombre suffisant de communications, sachant que beaucoup sont présentes dans le projet (I2C, SPI, UART...), ce qui signifie un nombre de pattes élevées.

Des calculs peuvent aussi être nécessaire, si il s'avère qu'il faille faire une traitement des données préliminaire, il faudrait donc opter pour un MCU 32bits si possible.

La famille PIC est celle standardisée par l'école supérieure, c'est donc pour cette famille-ci que je vais opter.

FIGURE 8 – Illustration du modèle MCU du kit ETML-ES Source: https://www.microchip.com/en-us/product/PIC32MX795F512L

2.2.7 Batterie, charge et régulation

Pour la technologie de batterie, en utilisation sous-marine, j'ai trouvé ce tableau de comparaison :

Chemistry	Energy Density (Whr/kg)	Pressure Compensatable (Whr/kg)	Outgassing	Cycles	Comments
Alkaline	140	No	Possible, at higher temperatures	1	Inexpensive, easy to work with
Li Primary	375	No		1	Very high energy density
Lead Acid	31.5	Yes (46)	Yes, even with sealed cells	~100	Well established, easy to work with technology
Ni Cad	33	No	If overcharged	~100	Very flat discharge curves
Ni Zn	58.5	Possibly (160)	None	~500	Emerging Technology
Li Ion	144	No	None	~500	In wide use in small packs
Li Polymer	193	Possibly	None	~500	Only "credit card" form factor currently available
Silver zinc	100	No	Yes	~30	Can handle very high power spikes

FIGURE 9 – Comparaison des technologies de batteries Source: Power Systems for Autonomous Underwater Vehicles[1]

Pour des raisons de praticité et étant-donné la documentation plus importante, j'ai décidé d'utiliser la technologie **LI-ION** :

Avantages	Inconvénient
Haute densité d'énergie	Risque d'éclatement
Poids léger	Risque d'enflammement avec l'eau
Haute durée de vie	Sensible a la température
Charge rapide	Décharge complète altérante

Malgré les risque dûs au contact de l'eau (**Enflammement, éclatement...**) la technologie LI-ION est souvent utilisée pour les application sous-marines dû a ses différents avantages, c'est pour cela que j'opterais pour cette technologie.

2.3 Estimation des coûts

Ici je vais me baser sur les composants que j'ai pu trouver et estimer le coût moyen de ceux-ci, c'est a titre purement indicatif, (les prix sont généralement estimés a la hausse).

Composant	Estimation
Profondimètre	70
Centrale inertielle	35
RTC	5
Microcontrôleur	15
Carte SD	20
Affichage OLED	45
FTDI	4
Batterie LI-ION	20
IC chargeur	4
Traco-power 3.3V	10
PCB	100
Total	328

Le prix étant plutôt élevé, des économies peuvent être faites en changeant l'affichage OLED pour des LEDS ou en modifiant le PCB (Le simplifier ou changer de fournisseur (eurocircuit)).

2.4 Conclusion et perspectives

J'ai pu lors de cette pré-étude, établir le fonctionnement global du système, choisir certaines technologies et composants importants, ainsi que pu procéder a certains dimensionnements utiles quant au futur développement.

Par la suite, je vais affiner les différents éléments abordés lors de la pré-étude, effectuer le développement plus détaillé de chacun des blocs et réaliser la schématique du projet.

Lors de la pré-étude, je n'ai pas eu accès au boîtier mécanique du projet, ce qui a restreint mon champs d'action lors de certains dimensionnement, tandis que pendant l'étude j'aurais accès a celui-ci, ce qui risque d'impacter/modifier certains aspect fixés lors des section antérieures.

Je suis très intéressé par le projet et me réjouis grandement de poursuivre son développement.

Références

- [1] A. Bradley, M. Feezor, H. Singh, and F. Yates Sorrell, "Power systems for autonomous underwater vehicles," vol. 26, no. 4, pp. 526–538. Conference Name: IEEE Journal of Oceanic Engineering.
- [2] N. Shaukat, A. Ali, M. Javed Iqbal, M. Moinuddin, and P. Otero, "Multi-sensor fusion for underwater vehicle localization by augmentation of RBF neural network and error-state kalman filter," vol. 21, no. 4, p. 1149. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute.
- [3] A. S. Zaki, T. B. Straw, M. J. Obara, and P. A. Child, "High accuracy heading sensor for an underwater towed array."