electric venicles impact on smart textiles	body postures, 340
applications, 463–5	bonding, 296–7
energy consumption of car components,	Bragg fibre see photonic bandgap (PBG) fibre
463	Bragg reflector, 79–80
energy efficient design of all components,	braiding, 212–18
464–5	biaxial and triaxial braid, 216
lightweight construction, 464	flat and circular braid, 214
Smart Concept Car, 465	machine elements, 214
thermal insulation of the cabin, 464	path of carriers, 215
future trends, 465–6	third yarn system on a braiding machine, 216
key safety and quality requirements, 461–2	brazing, 293
typical environmental conditions for car	bundle wire drawing, 52–3
components, 462	business models, 382–3
potential applications of smart textile	ousiness models, 502 5
technology in vehicles, 446–7	capacitive sensing, 154–5
roof and floor, 447	capacitor fibre length, 166–8
seat, 447	fibre capacitance and resistivity dependence,
seatbelt, 447	167
steering wheel, 447	carbon, 48
prototypes in vehicles, 450–61	carbon black (CB), 43, 201
block diagram and prototype of steering	carbon filler, 130
wheel with vital signal sensors, 459	carbon nanofibres, 95–6
ECG measurement on real road, 458	SEM images of PAN nanofibre bundle, 97
ECG measurement set-up, 456	carbon nanotube (CNT), 44-5, 94-5, 201, 304
ECG seat cover, 458	fibres, 44
ECG-seat with textile electrodes, 454	filler material in polymeric fibres and
ECG signal with QRS complex, 453	filaments, 44–5
intelligent cabin, 451	SEM and TEM images, 95
measurement principle, 454–9	surface layers on textile structures, 45
occupant detection and classification	
system with textile sensor, 460–1	wet spinning, 54
	CEN/TR 16298 (DIN SPEC 60298):2012–02,
OCS with textile sensor, 461	446
positions of electrodes in car seat, 455	chemical reduction, 104, 106
potential distribution caused by heart	chemical resistive sensors, 139–44
activity, 455	textile applications, 144
realisation of 'intelligent cabin' vision, 454	chemical vapour deposition (CVD), 56,
steering wheel mounted in car and with	103–4
displayed measurement values, 460	processes varieties, 105
steering wheel with vital sensors, 459-60	sequence of events, 104
textile multilayer electrode prototype, 457	chromogenic materials, 2
smart-textile applications and their potential	circular knitting, 210–11
for use in cars, 449–50	interlock and rib structure, 211
ECG T-shirt and textile electrode, 449	loop formation, 212
lighting, 450	plain knitted structure, 210
switches and touch pads, 449–50	coaxial electrospinning, 6
textile switches, 450	'Coke' test, 462
social and technological trends, 445	collaborative tagging see folksonomy
textiles in vehicles, 445–9	commercialisation, 13–18
smart-textile process, 448	do-it-yourself (DIY), 15–18
tabulated textile intelligence classification,	system-oriented development and user needs,
446	13–15
textile circuit board, 448	conducting polymer, 6, 56–7, 131, 132
textile intelligence classification, 446	conductive fabrics, 54–8
	conductive fibres, 54–8
batteries, 307	conductive fillers, 142
BioHarness, 436	conductive nanocoatings, 101–10
Bionic Composite Technologies AG, 376–7	future trends, 120
BIOTEX project, 430–1	nanotechnology application, 110–19
blogs, 18	overview, 101
BMBF project, 450	smart textiles, 92–120
Dividi project, 450	Small textiles, 32-120

conductive nanofibres, 92–101	e-stripes, 232–6
future trends, 120	bending radius vs. normalised resistance of
nanotechnology application, 110–19	copper layer, 234
overview, 92–3	contact areas, interconnect lines and bare die
smart textiles, 92–120	integrated circuit digital temperature
Conductive Polymer Composites (CPC)	sensors, 237
chemical resistive sensors, 140–3	wet etching and lift-off process, 236
application of textiles, 142–3	woven textiles and cracked metal layer after
electrical resistivity of a poly(ethylene-co-	weaving, 233
ethacrylate)-carbon black	e-textile business models, 383–8
(EEA-CB), 140	AIQ LED buttons and other components from
sensors material, 130–1	the group, 388
conductivity evolution, 131	Future-Shape's Sensfloor, 387
temperature resistive sensors, 144–7	vertical model supplier, 384–5, 388
influence of filler content on the intensity of the PTC, 146	vertical product supplier, 386 WarmX, 385
positive temperature coefficient (PTC) and	elastic narrow fabric, 135
negative temperature coefficient (NTC),	electrical conductivity, 30–4
145	electrical potential, 31
conductive yarns, 54–8	quantities used in electronics around electric
conductors, 34–6	current, 34
contacts, 237–8	surface resistivity measurement, 34
electrical contact, 238	electrical current, 30
mechanical reliability, 246–7	electrical inductance plethysmography, 423
cross section between a conductive thread	electrical percolation type mechanical sensors
and a contact pad on a woven e-stripe,	(EPTMS), 136–7
247	electrical percolation type temperature sensors
'context-aware' applications, 330	(EPTTS), 145
ConText project, 425	electro-conductive materials, 30-6
continuous fibres, 197–9	carbon, 42–5
conventional electrical current, 30	different materials and their resistivity, 35
copper, 38–9	future trends, 58
textile- compatible copper, 39	intrinsically conductive polymers (IPC), 45–7
cotton, 192	metals, 37–42
crimping, 297–8, 449	ferrous materials, 37–8
cross-modality segmentation, 341	non-ferrous materials, 38-42
crowd funding, 410	processing into textile structures, 51–8
Cute Circuit, 388	production technologies to obtain
cutting production, 53	conductive textile structures, 51
	properties, 36–7
data rate, 332	stress- extension curves, 37
decision fusion, 346	types and processing for smart textiles, 29–59
deletions, 355	electrocardiogram, 452, 460
demonstrators, 238–46	electrocardiography, 421, 424
dipcoating, 57	electrochemical deposition, 106–7
dispenser printing, 309	set-up, 106
disposable battery, 270–1	electrodermal activity (EDA), 452, 460
distributed mode loudspeaker (DML), 261	electroencephalogram (EEG), 452
do-it-yourself (DIY), 15–18	electroless deposition, 54–5 electroluminescence, 7
interactive clothes, 17 solar shirt, 16	electromagnetic compatibility (EMC), 302
double-wall nanotube (DWNT), 95	electromechanical coupling coefficients, 310
drawframe, 194	electromyography (EMG), 421, 424
drift movement, 30	electron beam evaporation, 235
drop casting, 57	electronic circuit, 263–8
dry-spinning, 199	electronic textiles, 156–62
dye-sensitised solar cells (DSSC), 323, 324	electronics, 7–11
=, - ==== (D000), 525, 527	flexible electronics, 8–9
E39 compression shirt, 436	large-area electronics, 8
e-research, 18–20	miniaturisation, 7
	•

organic electronics, 8	energy scavenging see energy harvesting
printable electronics, 9	technologies
stretchable electronics, 10	EpoTek E4110, 297
textile electronics, 10–11	EpoTek H20E, 297
electroplating, 55	etching, 235
electrospinning, 99	EUR Eco-label, 393
electrostatic discharge (ESD), 302	Ewing, S., 376
Elektrisola, 288	Exmobaby garment, 436
ELITEX yarns, 450	EXO ² /FabRoc heating system, 438
elongation resistive sensors, 133–9	eyelets, 299
change in electrical resistance of materials	
affected by fillers disconnection,	fabric-based sensors, 427
136–8	fabric sensors, 114–15
elongation sensors made of CPC track	3-D surface pressure mapping, 115
and resistive response against	Fast Multiple-Touch-Sensitive Input Device
elongation, 138	(FMTSID), 155
change in electrical resistance of materials	fault detection, 349
non-affected by fillers disconnection,	feature/sensor selection techniques, 350
135–6	fibre capacitance, 164
PANI fibre and resistance dependence	fibre colour, 78–81
against applied force, 137	changing effect under variable ambient
change in electrical resistance of textile	illumination, 81
structures, 133–5	colour changing fibre, colour mixing
embroidering stretch sensor and	and lit fibres, Plate II
measurement samples, 134	solid colour plastic Bragg fibre, 79
textile applications, 139	fibre drawing, 156–7
embroidery, 218–24, 298	parameters effect, 169–70
energy harvesting technologies, 306–26	fibre length, 181–2
energy sources and storage, 307–8	fibre-optic sensing systems, 14
fabrication processes, 308–9	fiducials, 303
kinetic energy harvesting, 309–15	flat knitting, 212
cantilever piezoelectric vibration energy	FLEXIBILITY project, 11
harvester, 312	flexible broadcast radio receiver, 275–6
coefficients of common piezoelectric	flexible electronics, 8–9, 229–8
materials, 311	contacts, 237–8
fibre coated with ZnO nanowires, 313	stripes fabrication, 232–6
notation of axis, 311	technology principles, 229–32
piezoelectric energy harvesters, 312–13	bus system, 230
piezoelectric energy harvesting on	e-stripe with electronic device and
fabrics, 313–15	integration of electronics into woven
piezoelectric theory, 309–12	fabrics, 231
solar energy harvesting, 323–6	weaving, 236–7
coaxial photovoltaic fibre, 325	flexible flat loudspeaker, 261
photovoltaic (PV) fabrics, 324–5	flexible graphite, 43
solar cell theory, 324	flexible multilayer capacitors, 157
thermoelectric energy harvesting, 315–23	flexible organic solar cell, 272–3
body heat powered pulse oximeter,	flexible wireless data receiver tag, 276–7
318	simplified architecture for thin-film radio
ceramic thermoelectric module, 318	receiver, 276
coiled-up TEG, 322	flexography, 265
electrocardiography system integrated in a	folksonomy, 19
shirt, 319	fragmentations, 355
planar dispenser printed TEG, 323	fully woven two-dimensional touch pad sensor
review of thermoelectric devices in smart	one-dimensional array of capacitance fibres,
	183–6
fabrica applications, 318–23 Seebeck effect, 316	cross-talk and channel calibration,
thermoelectric device structure, 317	185–6
thermoelectric properties evaluation,	design and fabrication, 183–5
317–18	voltage response, 185
thermoelectric theory, 315–17	woven touchpad sensor, 184

functionalising braids, 216–18	insulators, 34–6
braided data cable with four electrical	integration, 3
leads, 218	Intellectual Property (IP) management, 370
sensorised shroud lines in parachute, 217	intelligent agent, 3
functionalising textiles, 222–4	intrinsically conducting polymer (ICP), 6–7,
embroidered contacts, 223	45–7
machine embroidered electrical contacts,	chemical resistive sensors, 143
223	polypyrrole-coated para-aramid fibres, 46
functionalising woven fabrics, 206–8	sensors materials, 131–2
textile circuit board, 207	structures, 46
Future-Shape, 385	temperature resistive sensors, 147
G 11: 1 II + 1 GL 41: 420	intrinsically conductive fibres, 52–4
Gerbing's Heated Clothing, 438	intrinsically conductive yarns, 52–4
gestures, 340	invention, 377
global energy, 20–2	isolated activity recognition, 341 isotropic conductive adhesives (ICA), 296
Soft House, 21 gold, 39–40	isotropic conductive adhesives (ICA), 296
	Jacquard Joom 84 5 206
coated woven fabric through electroless	Jacquard loom, 84–5, 206 joining technologies, 285–305
deposition, 41 graphite, 43	challenges for automated processes in
gravure, 265	electronic systems on textiles, 303–4
gravure, 203	challenges for electronic systems on textiles,
hand-woven prototype, 82–4	302–3
launching light into a PBG fibre-based textile,	conductive threads as electrical traces,
Plate V	287–9
PBG Bragg fibre-based textile with a black	coax, 289
silk matrix, Plate VI	conductive threads selection, 288
PBG Bragg fibre-based textile with a white	double twisted yarn, 289
silk matrix, Plate IV	plain wire, 288–9
healthcare smart textiles	plated strips, 289
wound healing functions, 115–17	plated yarn, 289
modern wound dressings, 116	stranded wires, 289
hidden Markov models (HMM), 346	tinsel, 289
human interface device (HID), 154	twisted yarn, 289
humidity sensitive textile, 238–41	electrical connections protection, 301–2
prototype, 240	welding spots between woven wires and
sensor part of the e-stripe, 239	FPC are protected by PU film, 301
sensor response, 240	electrical joining technologies overview, 291
	electronic system components in textiles,
inertial measurement units (IMU), 337	286–7
Infineon, 285	another approach to use of electronics in
information acquisition system, 114–15	textiles, 287
information technology, 11–12	assembled electrical circuit using
infrared motion sensor, 269	various component package generations,
inkjet printing, 57–8, 308	286
innovation, 377	future trends, 304–5
management, 370, 376–82	introduction for electronics, 289–90
creativity, 378–9	overview of existing technologies in the
feasibility, 379–80	electronics and textile world, 290–9
implementation, 380–1	bonding (using adhesives), 296–7
key tasks, 378	brazing, 293
market introduction and dissemination,	conductive yarn crimping, 298
381	crimping, 297–8
strategies, 381–2	electronic components bonded to a woven
strategies for small and medium	fabric substrate, 297 press snap, spring snap buttons and eyelets,
enterprises, 382	press snap, spring snap buttons and eyelets,
terms and definitions, 377 insertions, 355	radiofrequency (RF) welding, 296
INSITEX, 451, 456	sewing and embroidery, 298
insulating polymer, 132	soldering, 290, 293
modiating polymer, 152	501dC1111g, 270, 273

TCB weld process, 295	innovation management, 376–82
thermocompression bonding (TCB), 293-5	creativity, 378–9
ultrasonic welding, 296	feasibility, 379–80
Velcro, 298–9	implementation, 380–1
woven tinsel thread soldered to a PCB,	key tasks, 378
294	market introduction and dissemination,
woven wire weld onto a PCB, 295	381
zippers, 299	strategies, 381–2
overview summary, 299–301	strategies for small and medium
electrical connection sealed with hotmelts,	enterprises, 382
300	terms and definitions, 377
metallic buttons to connect electrical	innovation management strategies, 370–82
power, 300	intellectual property management, 375–6
textile joining technologies overview,	major tasks of technology, innovation and
292	IP management, 370
2)2	opportunities and challenges in e-textiles
Kelvin relationships, 317	business, 388–93
kinetic energy harvesting, 309–15	e-textiles business drivers, 390–1
cantilever piezoelectric vibration energy	e-textiles market, 389–90
harvester, 312	economics from production to retail, 392
coefficients of common piezoelectric	regulations, certifications and markings,
materials, 311	392–3
fibre coated with ZnO nanowires, 313	smart-textiles terms and definitions, 388–9
notation of axis, 311	technology push vs market pull, 391
piezoelectric energy harvesters, 312–13	textile and electronics businesses, 391–2
piezoelectric energy harvesting on fabrics,	technology management, 371–5
313–15	forecasting and road mapping, 372–4
piezoelectric theory, 309–12	key tasks, 372
Kirchhoff Current Law (KCL), 165	marketing, 374–5
Kirchhoff Voltage Law (KVL), 165	organic photovoltaics roadmap, 373
'Klight' project, 301	projects implementation, 374
knitting, 208–12	strategy, 372
needle movement during loop formation, 209	terms and definitions, 371–2
sinker, 29	MARSIAN smart glove, 430
weft and warp classification, 208	MDMO-PPV:PCBM, 324
	mechanical resistive sensors, 132–9
'leave-one-X-out' cross-validation, 355	medical applications, 420–39
Levitt, T., 377	body parameters monitoring, 421–32
Lifeshirt, 435	blood oxygen saturation, 426–7
lift-off, 235	blood pressure, 425–6
line impedance, 287	body fluids composition, sweat analysis,
liquid crystal display (LCD), 8	430–2
loudspeakers, 258, 261–3	body movement, 427–9
printed PVDF loudspeaker, 262	breathing, 422–4
printed TUC loudspeaker, 262	electrodermal activity (EDA), 429-30
Lurex yarn, 289	heart activity, 424
	microfluidic chip for sweat pH analysis,
macro- bending, 74–5	431
macroelectronics, 8	muscle activity, 424–5
man-made fibres, 197–9	physiological signals that may be measured
market, 382–3	using textile based sensors, 422
market economics, 369–94	post-stroke rehab garment, 428
business models, 382–3	respiratory monitoring shirt with integrated
e-textile business models, 383–8	piezo-resistive sensors, 423
AIQ LED buttons and other components	sweat rate sensor and humidity sensor, 432
from the group, 388	challenges, 432–5
Future-Shape's Sensfloor, 387	acceptance by medical profession, 434
vertical model supplier, 384–5, 388	ease of use, 433–4
vertical model supplier, 364–3, 366	ethics, 434–5
WarmX, 385	wearability, 432–3
**************************************	Troutability, 752 5

trends and applications, 455–9	time resolved response of a one-dimensional
Philips Lumalive 'Woven electronics'	slide sensor, 183
fabric platform, 439	operational frequency, 182-3
three-dimensional image of knitted	OPPORTUNITY, 356
garment, 437	optical fibres
melt spinning, 53–4, 197–9	animated photonic bandgap (PBG) fibre using
plant component, 198	ambient and emitted light, 86
metal-based filler, 130	overview, 70–3
	photonic handgen (DDC) fibre 76, 92
metal oxides, 48–9	photonic bandgap (PBG) fibre, 76–82
ZnO-coated fibre surface through electroless	photonic bandgap (PBG) fibre potential
deposition, 49	applications, 86–9
Microflex EU FP7 project, 315	photonic bandgap (PBG) fibre reflective
MicroFlex project, 10	properties, 85
Microwire technology, 438	photonic textile manufacturing, 82-5
MONARCA project, 430	smart photonic textiles, 70–89
moulded injection device (MID) technology,	total internal reflection (TIR) fibre, 73–6
304	organic and large-area electronic (OLAE)
MP2-Jacket, 285	circuit design, 273–7
MST4IT, 296	flexible technologies for textile integration,
multi-walled nanotube (MWNT), 94, 100	258–73
	components and demonstrators developed
Nano-Sphere, 408	in FLEXIBILITY, 259-60
Nano-Tex, 408	full value chain addressed in
nanotechnology, 5-6, 487	FLEXIBILITY, 261
application in smart textiles, 110–19	overview, 253–8
material functions and performances	applications, 254–8
upgrade, 110–11	stand-alone components and subsystems,
smart and intelligent textiles function	256–7
development, 112-19	state-of-the-art progress, 257–8
conductive polymer and composite films	packaging integration and service life issues,
manufacturing, 96–101	279–80
conductive nanofibres with MWNT, 100	technology for smart textiles, 253-84
conductivity of nanofibre containing	textile integration, 277–9
different MWNT, 101	organic conductive filler, 130
electrospinning apparatus for nanofibre	organic electronics, 8
preparation, 99	organic light-emitting diode (OLED), 7, 8, 9
nanofibre formation, 98	overfill, 355
process to fabricate the MWNTs/PU	oxidised polymer, 131
composite, 98	
nanotextiles, 6	packaging integration, 279–80
natural fibres, 192–7	Panipol M, 321
carding machine, 194	Paris, 400
cotton plant with ripe cotton capsules, 193	pattern recognition techniques, 330
neutral polymer, 132	PEDOT:PSS, 324
nickel, 41–2	Peltier coefficient, 317
coated polyester fibres through electroless	Peltier Effect, 317
deposit, 42	Perkin, W. H., 400
Nike+ products, 436	permittivity of the material, 310
Nitinol, 474	phase change materials (PCM), 471
non-conductive adhesives (NCA), 296	photonic bandgap (PBG) fibre, 76-82
,,, ,,	animation using ambient and emitted light,
Oekotex 100, 393	86
offset printing, 265	mixing reflection of the ambient light
OFSETH, 423	with emission of the guided light,
oligomeric semiconductors, 49	Plate IX
Omron Wrist Blood Pressure Monitor, 425	colour changing effect under variable
one-dimensional distributed touch sensor,	ambient illumination, 81
170-83	colourful PBG Bragg fibres, Plate I
grounding of outer fibre and application of	light extraction, 77
AC voltage to copper wire, 171	potential applications, 86–9
110 101mbe to sopper 11110, 171	r

accents and novel lighting solutions, 86–7 architectural lighting panel I with dynamic	polymeric organic semiconductors, 49–51 TIPS-pentacene dip coated on a polyester
appearance, Plate XI	filament surface, 51
Integration of the PBG fibres into paper for	polymers, 6–7
illumination, Plate XIV	polyvinylidenefluoride (PVDF), 258, 261–2,
interactive garment with integrated silk,	309
Plate XIII	positive temperature coefficient (PTC),
reconfigurable architectural lighting panel	144–6
II, Plate XII	Pouillet formula, 32–3
strain sensing fabrics, 88–9	press snap buttons, 299
swatches for wearable advertisement,	printable electronics, 9
Plate X	printed audio amplifier, 275
textile appearance changes under night-	printed infrared motion sensor, 256
time operation, Plate XV	printed signal generator, 273–5
worker ware for low visibility conditions,	printed ring oscillator designed by TUC, 274
87–8	printed technology, 263–5
red green blue yarns for dynamic colour	printed three-dimensional integration
manipulation, 82	approach of TUC, 266
reflective properties under ambient	printed temperature sensor, 256
illumination, 85	printed thermoelectric devices, 321–2
reflection of ambient light from PBG fibre-	Profitex project, 217
based textile, Plate VIII	PSYCHE project, 430
understanding colours, 78–81	pulse oximetry, 426
photonic crystal fibre (PCF), 72	pulsed laser deposition, 107–9
	1 ,
photonic textiles	schematic diagram, 108
animated photonic bandgap (PBG) fibre	radia fraguency identification (REID) 0
using ambient and emitted light, 86	radio-frequency identification (RFID), 9
manufacturing, 82–5	radiofrequency (RF) welding, 296
optical fibres, 70–89	rapier technology, 203, 207
overview, 70–3	RC ladder circuit, 163
photonic bandgap (PBG) fibre, 76–82	RC ladder network model, 163–5, 173–81
photonic bandgap (PBG) fibre potential	capacitor fibre covered with foil probe,
applications, 86–9	163
photonic bandgap (PBG) fibre reflective	experimental data vs. theoretical model,
properties, 85	178–81
total internal reflection (TIR) fibre, 73–6	fibre response to the touch of equivalent
photoplethysmography (PPG), 426	human probe, 179
P3HT:PCBM, 324	one-dimensional slide sensor, 177
physical vapour deposition (PVD), 55, 103,	stand-alone capacitor fibre, 175
320–1	reactive ion etching (RIE), 320
Piezo-Force Microscopy (PFM), 314	rechargeable battery, 271–2
piezoceramic, 309	printed battery integration approach, 272
piezoelectric materials, 2	recognition accuracy, 354–5
piezoelectric strain constant, 310	red green blue (RGB), 75
piezoelectric vibration energy harvester,	yarns for dynamic colour manipulation, 82
312	red green blue (RGB) yarns
piezoelectric voltage constant, 311	dynamic colour manipulation, 82
PLACE-it project, 11	form of a braid of three fibres and color-
plain weave, 205	on-demand textile set-up, Plate III
plasma coating process, 309	reduced polymer, 132
polymer	resistance welding, 293
chemical resistive sensors, 139–44	resistive pressure sensors, 139
mechanical resistive sensors, 132-9	resistive sensors
resistive sensors for smart textiles,	chemical resistive sensors, 139-44
129–48	future trends, 148
temperature resistive sensors, 144–8	mechanical resistive sensors, 132–9
polymer matrix	overview, 129–32
change by non-solvents, 141–2	general sensing principles, 132
change by solvents, 141	polymer for smart textiles, 129–48
polymer/nanoparticle composite, 98	temperature resistive sensors, 144–8

Restriction of Hazardous Substances Directive	experimental aspects, 351–6
(RoHS), 293	activity labelling approach, 353
ring spinning, 194–5	activity recognition performance metrics,
position, 195	354
ring and traveller, 195	data recording and ground truth annotation,
Rohner, F., 377	351–3
rotor spinning, 195–6	performance evaluation, 353–5
principle, 196	technical implementation, networking and
principle, 170	prototyping, 355–6
sample, 332	from on-body sensing to smart assistants,
sample rate, 332	329–31
sampling interval, 332	
1 0	prototype representation of typical
scratching, 74–5	'wearable computing' system, 330
screen printing, 57, 308	future trends, 356–7
SeatSen project, 461	sensing principles for activity recognition,
Seebeck coefficient, 316	332–9
Seebeck Effect, 315–16	benefits of smart textiles for activity
Seebeck Voltage, 316	awareness, 334–5
'segmentation' algorithm, 341	challenges of textile sensing, 335–7
SEIKO Corporation, 320	motion artefact in the 'drink' gesture,
Seiko Thermic watches, 320	336
self-assembly nanocoating, 109–10	on-body accelerometer signals, 333
covalent layer-by-layer assembly of	sensing requirements, 334
functional particles, 110	sensor modalities, 337–9
self-cleaning textiles, 117–19	sensor modalities for activity-aware
degradation result of wine stain and a	systems, 338
concentrated coffee stain, 118	signal processing and pattern analysis,
self-heating textiles, 117–19	342–51
thermal images and temperature changes,	addressing the challenges of smart
119	textiles, 349–51
self-repairing textiles, 117–19	classification, 346
semiconducting materials, 30–6	decision fusion, 346
different materials and their resistivity, 35	feature extraction, 345
future trends, 58	four activities of car assembly scenario,
processing into textile structures, 51–8	348
production technologies to obtain conductive textile structures, 51	method and parameter selection, 346–9
	null-class rejection, 346
properties, 47–51	processing steps used to infer activities
types and processing for smart textiles,	from on-body sensors, 343
29–59	segmentation, 345
semiconductive fabrics, 54–8	sensor data acquisition, 344
semiconductive fibres, 54–8	signal pre-processing, 344
semiconductive yarns, 54–8	signal quality appraisal, 350
semiconductors, 34–6	silicon, 48
SensFloor mats, 385	silver, 39
sensor, 332	textile compatible silver, 40
sensor security tag system, 256	single capacitor fibre
architecture and application, 257	electrical response, 171–3
sewing, 298	one-dimensional slide sensor, 172
shape memory materials, 2	voltage distribution along the outer fibre
short organic semiconductors, 49-51	electrode, 173
structures, 50	voltage measurement, 174
TIPS-pentacene dip coated on a polyester	single-fibre touch sensor, 181
filament surface, 51	single-walled nanotube (SWNT), 94
shuttle technology, 203, 207	smart fabrics and interactive textiles (SFIT),
signal processing technologies, 329–57	389
activity-aware applications, 331–2	smart object, 2
activity recognition principles, 339–41	Smart Rope project, 216
human activities, 339–41	Smart Shirt, 304, 436
recognition system, 341	smart-textile sensing, 331, 334

smart textiles, 1–22	kinetic energy harvesting, 309-15
architectural applications, 468-87	solar energy harvesting, 323-6
architectural applications, 472-81	thermoelectric energy harvesting, 315–23
future trends, 481–7	medical applications, 420-39
key themes in modern architecture, 468–70	body parameters monitoring, 421–32
smart materials, 470–2	challenges, 432–5
automotive applications, 444–66	trends and applications, 435–9
electric vehicles impact on smart textiles	new enabling technologies, 5–13
applications, 463–5	consequences and impact, 12–13
future trends, 465–6	optical fibres, 70–89
key safety and quality requirements, 461–2	animated photonic bandgap (PBG) fibre using ambient and emitted light, 86
prototypes in vehicles, 450–61	overview, 70–3
smart-textile applications and their	photonic bandgap (PBG) fibre, 76–82
potential for use in cars, 449–50	photonic bandgap (PBG) fibre potential
textiles in vehicles, 445–9	applications, 86–9
commercialisation approaches, 13-18	photonic bandgap (PBG) fibre reflective
conductive nanofibres and nanocoatings,	properties, 85
92–120	photonic textile manufacturing, 82-5
future trends, 120	total internal reflection (TIR) fibre, 73–6
nanotechnology application, 110-19	organic and large-area electronic (OLAE)
electro-conductive and semiconducting	technology, 253-84
materials types and processing, 29-59	circuit design, 273–7
carbon, 42–5	flexible technologies for textile integration,
future trends, 58	258–73
intrinsically conductive polymers (IPC),	overview, 253–8
45–7 metals, 37–42	packaging integration and service life issues, 279–80
processing into textile structures, 51–8	textile integration, 277–9
properties of electro-conductive materials,	polymer-based resistive sensors, 129–48
36–7	chemical resistive sensors, 139–44
semiconducting materials properties, 47–51	future trends, 148
fabrication technology for thin-film	mechanical resistive sensors, 132-9
electronics integration, 227–49	overview, 129–32
contacts mechanical reliability, 246–7	temperature resistive sensors, 144–8
demonstrators, 238–46	production challenges, 224–5
flexible electronics, 229–38	sustainability improvement, 399-416
future trends, 247–9	design general guidelines, 416
overview, 227–9	product durability, 407–10
future trends, 18–22	recycling, 403–7
joining technologies, 285–305	sustainable design approach, 411–15
challenges for automated processes in	sustainable production, 401–3
electronic systems on textiles, 303–4	technological trade-off between smartness
challenges for electronic systems on	and integration, 2–5
textiles, 302–3	technology management and innovation
conductive threads as electrical traces,	strategies, 369–94
287–9	business models, 382–8
electrical connections protection, 301–2	innovation management strategies, 370–82
electronic system components in textiles,	opportunities and challenges in e-textiles
286–7	business, 388–93
future trends, 304–5	SmartLife HealthVest, 436
introduction for electronics, 289–90	social networks, 18–19 soft capacitor fibres
overview of existing technologies in the electronics and textile world, 290–9	
	capacitive sensing, 154–5
summary to joining technology overview, 299–301	electrical characterisation, 162–70 capacitor fibre fabrication and electrical
	characterisation, 161
kinetic, thermoelectric and solar energy	capacitor fibre length effect, 166–8
harvesting technologies, 306–26 energy sources and storage, 307–8	effective capacitance and resistance vs.
fabrication processes, 308–9	frequency, 166
1a011cation processes, 500-7	ricquericy, 100

fibre drawing parameters, 169–70	fabric mask, 414
frequency dependent response, 165-6	inspire, 412
measurement set-up, 162	involve, 412–13
operation temperature effect, 168	methods for user involvement, 413
operation temperature effect on electrical	motivate, 413–14
properties, 168	understanding, 411–12
RC ladder network model, 163–5	product development, 414–15
electronic textiles, 156–62	electronic hardware inside a tent pole,
connections and potential applications,	415
159–62	material, 414-15
cylindrical capacitor fibre and rectangular	production, 415
PMMA tube, 158	product durability, 407–10
designs, 158–9, 160	feel good fabrics, 408–9
materials and fabrication, 156–7	improving durability, 409
fully woven two-dimensional touch pad	textile durability, 408
sensor, 183–6	user involved design, 409–10
one-dimensional distributed touch sensor,	user involvement in each stage of the
170–83	design process, 410
touch-sensitive smart textiles, 154–86	recycling, 403–7
solar energy harvesting, 323–6	conductive textile materials, 406
coaxial photovoltaic fibre, 325	smart object built inside the button of a
photovoltaic (PV) fabrics, 324–5	shirt, 405
solar cell theory, 324	smart-textile recycling, 404–5, 407
soldering, 290, 293	textile recycling, 403–4
solution polymerisation, 56–7	watch-pocket on a pair of Levi's jeans,
solution spinning, 199	404
process, 200	smart-textiles sustainable production, 401–3
sphygmomanometer, 425	transparency, 402
spin coating, 57, 235	sustainable design approach, 411–15
spring snap buttons, 299	textile care, 407–8
sputtering, 235	cleaning, 408
stainless steel, 37–8	ironing, 408
yarns forms, 38	sweat, 430
standard embroidery, 218–21	system provider, 14
capsule containing the bottom thread spool,	system provider, 14
220	tailored fibre placement (TFP), 221–2
double lock stitch, 219	electrical wire application, 222
embroidered conductive lines, 220	embroidery with carbon fibres and
embroidery machine elements, 219	electrical wire applied to a textile
staple fibre spinning, 193–4, 199	substrate, 222
staple fibres, 192	method, 221
STELLA project, 11	Tarde, G., 377
stethoscope, 425	technological trade-off, 3–5
strain sensing fabrics, 88–9	energy curtain, 4
stretching of plastic Bragg fibres, Plate XVI	technology, 371
Stretchable Circuits, 301	technology management, 370, 371–5
stretchable electronics, 10	forecasting and road mapping, 372–4
surface polymerisation, 111	key tasks, 372
sustainability, 468	marketing, 374–5
closing the loop, 402–3	organic photovoltaics roadmap, 373
eliminating waste, 403	projects implementation, 374
minimising waste, 402	strategy, 372
design general guidelines, 416	terms and definitions, 371–2
improvement in smart textiles, 399–416	technology marketing, 375
creating a sustainable future, 400–1	temperature resistive sensors, 144–8
sustainability paradox, 400	textile applications, 147–8
initial design, 411–14	temperature sensitive textile, 238–41
electroluminescent material or LEDs	prototype, 240
simple panel, 414	sensor part of the e-stripe, 239
engage, 414	sensor response, 240

temperature sensor, 269	future trends, 247–9
textile electronics, 10–11	large scale production, 248
textile fabrication	user acceptance, 248–9
embroidery, 218–24	washability, 248
fabric production, 202–8, 208–12, 213–18	overview, 227–9
fibre and yarn production process, 192–7,	smash shirt, 228
197–9	thin-film technology, 8, 265–8
fibres and yarns functionalisation, 199–202	bendable IGZO thin-film transistor
electrically conductive material wound	technology, 267
around a core yarn, 201	bending machine for testing, 268
silver-coated polyamide fibres, 202	IGZO thin-film field-effect-transistor
overview, 191–2	performance, 268
fibre material classification, 192	thin-film transistor (TFT), 265
processes, 191	Thomson coefficient, 317
smart-textile production challenges, 224–5	Thomson Effect, 317
technology for embedding electronics into	three-thread system <i>see</i> tailored fibre
fibres, yarns and fabrics, 191–225	placement (TFP)
textile finishing, 110–11	total internal reflection (TIR), 72
textile innovation, 377	total internal reflection (TIR) fibre, 73–6
textile integrated bus system, 241–3	dynamic colour manipulation, 75–6
prototype, 242	schematic diagram, 76
textile integrated matrix, 243–6 flexible stripe with contact pads and stripe	light extraction, 74–5
indication, 244	microbending and surface corrugation, 75 touch screen, 270–3
prototype, 245	touch-sensitive smart textiles
thin-film transistor, 245	soft capacitor fibres, 154–86
textile integration, 277–9	capacitive sensing, 154–5
methodology, 279	capacitor fibre as one-dimensional
state-of-the-art, 278	distributed touch sensor, 170–83
textile prototype	electrical characterisation of isolated
fabricated with a Jacquard loom, 84–5	capacitor fibre, 162–70
leaf pattern made of cotton thread and	electronic textiles, 156–62
PBG fibre, Plate VII	fully woven two-dimensional touch pad
Textronics, Inc., 376	sensor, 183–6
thermocompression bonding (TCB), 293–5	Trott, P., 377
thermoelectric energy harvesting, 315–23	twill weave, 205
ceramic thermoelectric module, 318	twisting, 200
review of thermoelectric devices in smart	two-thread system <i>see</i> standard embroidery
fabric applications, 318–23	
body heat powered pulse oximeter, 319	ultrasonic welding, 296
coiled-up TEG, 322	underfill, 355
electrocardiography system integrated in a	
shirt, 319	vapour deposition, 102–4
micro thermoelectric generators, 320-1	functionally graded multilayer coating
planar dispenser printed TEG, 323	design, 103
printed thermoelectric devices, 321–2	property requirements in different zones
thermoelectric generators (TEGS) human	of a coated surface, 102
applications, 318–21	Velcro, 298–9
Seebeck effect, 316	VIZIO, Inc., 372
thermoelectric device structure, 317	
thermoelectric properties evaluation,	WarmX, 384
317–18	warp knitting, 212–13
thermoelectric theory, 315–17	structure, 213
thermoelectric generators (TEGS), 318–21	wearable electronics, 389
thin-film electronics	wearable energy storage, 112-14
contacts mechanical reliability, 246–7	gold-coated plastic wire covered with ZnO
demonstrators, 238–46	nanowires arrays, 113
fabrication technology for integration into	wearable solar cell, 112–14
smart textiles, 227–49	gold-coated plastic wire covered with ZnO
flexible electronics, 229–38	nanowires arrays, 113

weaving, 202–8, 236–7
airjet weaving loom, 205
basic principle, 203
closed fabric rim, 204
functionalising woven fabrics,
206–8
rapier/gripper, 204
weave patterns, 205–6
Jacquard weaving loom, 206
plain, twill and atlas weave, 205
Web 2.0, 18–20
wet spinning, 54, 199

white coat hypertension, 426
Wikis, 18
winding, 200
wire drawing, 52
wireless audio data streaming tag system
architecture of system enabling wireless
streaming, 256

Zimmermann, J., 377 zinc oxide (ZnO), 309 zinc oxide (ZnO) nanowires, 313 zippers, 299