1. Draw the digraph for the following table.

	Next State	
	Present Input	
Present State	0 1	Output
So	S_1 S_2	1
S 1	$S_2 S_0$	0
S2	S_2 S_2	0

2. If the following were input to the machine in #1, what would be the output? 00100110

3. If the input from #2 was input into the machine in #1, would the machine recognize the input - assuming it is a recognizer?

4. Draw the table for the following graph.

Ö		out
SI	50	0
53	$S_{\mathbf{a}}$	
S_{2}	S_a	
5,	S_a	1
	S_3 S_2	S_3 S_2 S_3 S_4

5. Design a finite state machine that will calculate the one's complement of a number. The one's complement of a number exchanges all 1's for 0's and all 0's for 1's. So the one's complement of 1100 would be 0011.

6. Give a finite state machine that will recognize the following regular expression. 01(11*0)*

7. What regular expression is recognized by the following machine?

8. What is Kleene's theorem?

Any set recognized by a finite state machine is regular, and any regular set can be recognized by some finite state machine.