

INVERTIBLE LINEAR TRANSFORMATIONS

Motivating result

Proposition 1. Suppose $T: V \to W$ is linear and T^{-1} exists. Then T^{-1} is linear.

Proof. We show that T^{-1} is additive and homogenous. Let $w_1, w_2 \in W$ and define v_1 and v_2 so that

$$v_1 = T^{-1}(w_1)$$
 and $v_2 = T^{-1}(w_2)$

In other words,

$$Tv_1 = w_1$$
 and $Tv_2 = w_2$

and so by the linearity of T,

Recall that we can use the terminology *the* inverse because inverses are unique (if they exist; see Function Inverses).

Definition

A linear map $T \in \mathcal{L}(V, W)$ is invertible if there is a linear map $S \in \mathcal{L}(W, v)$ so that ST

