Number Theory Part VI

Factoring game, RSA

Factoring Assumption

Factoring Experiment, Fact_{A,GenModulus}(n):

GenModulus (1ⁿ) —> (N,p,q), such that N=pq; p,q are n-bit primes

Poly-time algorithm A: A(N) = p',q'If $\{p,q\} = \{p',q'\}$, output 1, else 0

 Factoring is hard w.r.t. GenModulus, if, for all PPT algorithms A, there exists a negligible function, negl, s.t.:

 $Pr[Fact_{A,GenModulus}(n) = 1] \le negl(n)$

Factoring Assumption

- Factoring is hard, but does not yield a practical cryptosystem
 - Have to somehow relate hardness of guessing SK to assumption hardness, etc...
- Led people to explore existence of other hard problems related to factoring
- Most famous: RSA cryptosystem by Rivest, Shamir, Adleman, 1978

RSA Assumption

- Given:
 - N = pq
 - Euler's totient function, $\phi(N) = (p-1)(q-1)$,
 - some $e \in Z^+$, e > 2, s.t., $gcd(e, \phi(N)) = 1$
 - Ciphertext, C = y^e mod N, for some $y \in Z_N^*$
- Finding y^{1/e} mod N, without knowing p,q, φ(N) is hard
- If RSA is hard, factoring is hard: proven
- Other way: open question...

RSA Experiment

```
GenRSA (1^n) —> (N,e,d)

GenModulus(1^n) —>(N,p,q)

compute \varphi(N) = (p-1)(q-1)

pick e > 2, s.t., gcd(e, \varphi(N)) = 1

/* Find mult. inverse of e mod \varphi(N) */

compute d = e^{-1} \mod \varphi(N)

return (N,e,d)
```

RSA Example

- Let p,q = 11,17
- N = 187, $\phi(N) = 160$
- Pick e = 7 (check: gcd(7, 160) = 1
- Hard part: find a d, s.t., $d = e^{-1} \mod \phi(N)$
- d = 23 (check: 7•23 mod 160 = 1)
- Now, encrypt something...

RSA Example

Say, y = 64 (message)

- Encryption:
 - $C = y^e \mod N = 64^7 \mod 187 = 4$
- Decryption:
 - $y = 4^d \mod N = 4^{23} \mod 187 = 64$
 - Without knowing d, p, q, or $\phi(N)$, hard to find y
 - Any of (d, p, q, φ(N)) can be used to efficiently compute the others

Choice of e

- Need a prime number with low Hamming weight
 - Hamming weight: no. of 1's in binary rep.
- e is public exponent; y^e mod N
- Modular exponentiation is (computationally) expensive!
- Efficient algorithm: square-and-multiply

Modular Exponentiation

- Square-and-multiply algorithm:
- a^b mod N =
 - $(a^{b/2})^2$ mod N; when b is even
 - a $(a^{(b-1)/2})^2 \mod N$; when b is odd
- Complexity: O(log b + hamming weight (b))
- Naive method would've been O(b)
- Plug in some numbers: e.g., 4096 steps vs. 12 + hw(b) steps!

Choice of e

- Coming back to e:
- Popular choice: e = 3
 - Careful of "low-range exponent attacks"
 - Pick p,q, s.t.,(p mod 3)≠1, (q mod 3)≠1
- Another choice: e = 65537 = 2¹⁶+1
- Don't choose small d and "reverse-engineer" e (e
 d-1 mod φ(N)): bad idea¹