Gate Assignment 3 Presentation

Yashas Tadikamalla

AI20BTECH11027

Question

Problem (EC-2005 Q25)

A linear system is equivalently represented by two sets of state equations:

$$\dot{X} = AX + BU$$
 and $\dot{W} = CW + DU$

Eigenvalues of the representations are also computed as $[\lambda]$ and $[\mu]$. Which of the following is true?

- \bullet $[\lambda] \neq [\mu]$ and $X \neq W$

Few prerequisites

Definition (State Space representation)

It is a mathematical model of a physical system, as a set of input, output and state variables related by first order difference or differential equations. The most general state representation of a linear system with p inputs, q outputs, and n state variables can be written as

$$\dot{X} = AX + BU \tag{1}$$

$$Y = CX + DU (2)$$

where, $X \in R^n$ is the state vector, $Y \in R^q$ is the output vector, $U \in R^p$ is input vector, $A \in R^{n \times n}$ is the state matrix, $B \in R^{n \times p}$ is input matrix, $C \in R^{q \times n}$ is output matrix, $C \in R^{q \times p}$ is feedthrough matrix.

Definition (Eigen values of State Space representation)

These are the solutions of the charecteristic equation

$$\triangle(\lambda) = \det(\lambda I - A) = 0 \tag{3}$$

where A is the state matrix.

Theorem

Consider the n-dimensional continuous time linear system

$$\dot{X} = AX + BU, Y = CX + DU \tag{4}$$

Let T be $n \times n$ real non-singular matrix and let $\bar{X} = TX$. Then the state equation

$$\dot{\bar{X}} = \bar{A}\bar{X} + \bar{B}U, Y = \bar{C}\bar{X} + \bar{D}U \tag{5}$$

where $\bar{A} = TAT^{-1}$, $\bar{B} = TB$, $\bar{C} = CT^{-1}$, $\bar{D} = D$ is equivalent to (4).

4/11

Proof.

Given, $\dot{X}=AX+BU$ and Y=CX+DU, T is a non-singular matrix such that $\bar{X}=TX$. The same system can be defined using \bar{X} as the state,

$$\dot{\bar{X}} = T\dot{X} = TAX + TBU \tag{6}$$

$$= TAT^{-1}\bar{X} + TBU \tag{7}$$

$$Y = CX + DU = CT^{-1}\bar{X} + DU \tag{8}$$

Theorem

Equivalent state space representations have same set of eigen values

Proof.

For the representation in (4), the eigen values $[\lambda]$ are such that

$$Ax = \lambda x \tag{9}$$

$$\Rightarrow (A - \lambda I)x = 0 \tag{10}$$

$$\Rightarrow \det(A - \lambda I) = 0 \tag{11}$$

For the representation in (5), the eigen values $[\mu]$, are such that

$$\bar{A}x = \mu x \tag{12}$$

$$\Rightarrow (\bar{A} - \mu I)x = 0 \tag{13}$$

$$\Rightarrow (TAT^{-1} - \mu TT^{-1})x = 0 (14)$$

$$\Rightarrow \det(T(A - \mu I)T^{-1}) = 0 \tag{15}$$

$$\Rightarrow \det(A - \mu I) = 0 \tag{16}$$

Hence, equivalent state space representations have same set of eigen values.

Solution

Given,

$$\dot{X} = AX + BU \tag{17}$$

$$\dot{W} = CW + DU \tag{18}$$

represent the same system. Hence, using (3) and (4), we can conclude that

$$[\lambda] = [\mu]$$
 and $W = TX$

where T need not be identity matrix.

Hence, option 2 is the correct answer.

Let us now look at a numerical example to establish the correctness of the obtained result. Consider a SISO LTI system of order 2, represented by the equations

$$\dot{x}_1(t) = -x_1(t) + 1.5x_2(t) + 2u(t) \tag{19}$$

$$\dot{x}_2(t) = 4x_1(t) + u(t) \tag{20}$$

$$y(t) = 1.5x_1(t) + 0.625x_2(t) + u(t)$$
 (21)

Its state space representation can be given by (4), where

$$X = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, Y = y(t)$$
 (22)

$$\dot{X} = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix}, U = u(t)$$
 (23)

$$A = \begin{bmatrix} -1 & 1.5 \\ 4 & 0 \end{bmatrix}, B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 (24)

$$C = [1.5 \quad 0.625], D = 1$$
 (25)

The eigen values for this state representation are

$$det(\lambda I - A) = 0 (26)$$

$$\begin{vmatrix} \lambda + 1 & -1.5 \\ -4 & \lambda \end{vmatrix} = 0 \tag{27}$$

$$\lambda^2 + \lambda - 6 = 0 \tag{28}$$

$$[\lambda] = \{-3, 2\} \tag{29}$$

Even if we swap the equations, they still should represent the same system. So, consider a different state space representation,

$$W = \begin{bmatrix} x_2(t) \\ x_1(t) \end{bmatrix}, Y = y(t)$$
 (30)

$$\dot{W} = \begin{bmatrix} \dot{x}_2(t) \\ \dot{x}_1(t) \end{bmatrix}, U = u(t)$$
 (31)

Clearly, $X \neq W$ and W = TX, where $T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. From (3)

$$\bar{A} = \begin{bmatrix} 0 & 4 \\ 1.5 & -1 \end{bmatrix}, \bar{B} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 (32)

$$\bar{C} = \begin{bmatrix} 0.625 & 1.5 \end{bmatrix}, \bar{D} = 1$$
 (33)

Also, the eigen values for this state representation are

$$det(\mu I - A) = 0 \tag{34}$$

$$\begin{vmatrix} \mu & -4 \\ -1.5 & \mu + 1 \end{vmatrix} = 0 \tag{35}$$

$$\mu^2 + \mu - 6 = 0 \tag{36}$$

$$[\mu] = \{-3, 2\} \tag{37}$$

Hence, both the state space representations are equivalent, and satisfy $[\lambda] = [\mu]$ and W = TX, where T need not be identity matrix.