Eyparo

Определение

Связностью Леви-Чивита на римановом многообразии называется симметричная аффинная связность, согласованная с метрикой.

Теорема (основная теорема римановой геометрии)

На любом римановом многообразии существует единственная связность Леви-Чивита.

Док-во: Единственность. Пусть ∇ — связность Леви-Чивита. Тогда

$$\underbrace{X\langle Y,Z\rangle}_{Y\langle Z,X\rangle} = \langle \nabla_X Y,Z\rangle + \langle Y,\nabla_X Z\rangle. \quad V$$

$$\underbrace{Y\langle Z,X\rangle}_{Y\langle Z,X\rangle} = \langle \nabla_Y Z,X\rangle + \langle Z,\nabla_Y X\rangle.$$

$$\underbrace{Z\langle X,Y\rangle}_{Z\langle X,Y\rangle} = \langle \nabla_Z X,Y\rangle + \langle X,\nabla_Z Y\rangle.$$

Складывая 1 с 2 и вычитая 3, а также используя симметричность ∇ , получаем

$$X\langle Y,Z\rangle + Y\langle Z,X\rangle - Z\langle X,Y\rangle = \langle [X,Z],Y\rangle + \langle [Y,Z],X\rangle + \langle [X,Y],Z\rangle + 2\langle Z,\nabla_XY\rangle.$$

Лоэтому

$$\langle Z, \nabla_X Y \rangle = \frac{1}{2} \left(\underbrace{X \langle Y, Z \rangle}_{} + Y \langle Z, X \rangle - Z \langle X, Y \rangle - \underbrace{\langle [X, Z], Y \rangle}_{} - \underbrace{\langle [Y, Z], X \rangle}_{} + \underbrace{\langle [X, Y], Z \rangle}_{} \right).$$

Popmyna

Правая часть не зависит от $\nabla.$ Поэтому при наличии двух связностей ∇ и $\widetilde{\nabla}$ справедливо равенство

$$\langle Z, \nabla_X Y \rangle = \langle Z, \widetilde{\nabla}_X Y \rangle.$$
 \mathcal{V}

Тогда ∀p ∈ M

$$\langle Z_p, (\nabla_X Y)_p \rangle = \langle Z_p, (\widetilde{\nabla}_X Y)_p \rangle \implies \langle Z_p, (\nabla_X Y)_p - (\widetilde{\nabla}_X Y)_p \rangle = 0.$$

Т.к. равенство справедливо для любого Z_p , то

$$(\nabla_X Y)_p = (\widetilde{\nabla}_X Y)_p.$$

Лекция 11 11 мая 2022 г.

Док-во: Существование.

Фиксируем полях X, Y. Правая часть формулы <u>линейна</u> по Z (прямая проверка), поэтому ее значение в любой точке $p \in M$ зависит только от Z_p . Следовательно, она – линейный функционал L на $T_p M$. Поэтому существует вектор $w \in T_{\mathcal{D}}M$, зависящий от полей X,Y, для которого $\langle Z_p, w \rangle = L(Z_p)$ при всех $Z_p \in T_p M$.

Полагаем по определению $(\nabla_X Y)_p = w$. Проверим, что ∇ – связность Леви-Чивита.

Упражнение. Проверить пункты 1 и 2 определения связности.

MOYEMS None TY magked 77

Pona: LZ, RXYZ - magked genksud

Pona: Jnp: Tim 2. magked none

To D - magked none

Док-во: Существование.

Фиксируем полях X,Y. Правая часть формулы линейна по Z (прямая проверка), поэтому ее значение в любой точке $p\in M$ зависит только от Z_p . Следовательно, она – линейный функционал L на T_pM . Поэтому существует вектор $w\in T_pM$, зависящий от полей X,Y, для которого $\langle Z_p,w\rangle=L(Z_p)$ при всех $Z_p\in T_pM$. Полагаем по определению $(\nabla_XY)_p=w$. Проверим, что ∇ – связность Леви-Чивита.

Упражнение. Проверить пункты 1 и 2 определения связности.

Риммановость: применяя формулу к тройкам X, Y, Z и X, Z, Y, складывая результаты получаем искомое.

Лекция 11 11 мая 2022 г.

Док-во: Существование.

Фиксируем полях X, Y. Правая часть формулы линейна по Z (прямая проверка), поэтому ее значение в любой точке $p \in M$ зависит только от Z_p . Следовательно, она – линейный функционал L на $T_p M$. Поэтому существует вектор $w \in T_p M$, зависящий от полей X, Y, для которого $\langle Z_p, w \rangle = L(Z_p)$ при всех $Z_p \in T_p M$. Полагаем по определению $(\nabla_X Y)_p = w$. Проверим, что ∇ – связность Леви-Чивита.

Упражнение. Проверить пункты 1 и 2 определения связности.

Риммановость: применяя формулу к тройкам X, Y, Z и X, Z, Y, складывая результаты получаем искомое.

Применяя риммановость к полям X, fY, Z получаем

$$\langle (Xf)Y,Z\rangle + f\langle \nabla_X Y,Z\rangle = \langle \nabla_X (fY),Z\rangle.$$

Отсюда ввиду произвольности поля Z имеем пункт 3 определения

связности.

СВЯЗНОСТИ.

Рим: XAY, Z = X(f, X, Z) = f(X, X, Z) + Xf(Y, Z) XAY, Z = X(f, X, Z) = f(X, X, Z) + Xf(Y, Z) XAY, Z = X(f, X, Z) = f(X, X, Z) + f(Y, Z) XAY, Z = X(f, X, Z) = f(X, X, Z) + f(Y, Z)

Док-во: Существование.

Фиксируем полях X,Y. Правая часть формулы линейна по Z (прямая проверка), поэтому ее значение в любой точке $p\in M$ зависит только от Z_p . Следовательно, она – линейный функционал L на T_pM . Поэтому существует вектор $w\in T_pM$, зависящий от полей X,Y, для которого $\langle Z_p,w\rangle=L(Z_p)$ при всех $Z_p\in T_pM$. Полагаем по определению $(\nabla_X Y)_p=w$. Проверим, что ∇ – связность Леви-Чивита.

Упражнение. Проверить пункты 1 и 2 определения связности.

Риммановость: применяя формулу к тройкам X, Y, Z и X, Z, Y, складывая результаты получаем искомое.

Применяя риммановость к полям X, fY, Z получаем

$$\langle (Xf)Y,Z\rangle + f\langle \nabla_XY,Z\rangle = \langle \nabla_X(fY),Z\rangle.$$

Отсюда ввиду произвольности поля Z имеем пункт 3 определения связности.

Симметричность: применяя формулу к тройкам X,Y,Z и Y,X,Z, вычитая результаты получаем

$$\langle \underbrace{\nabla_X Y - \nabla_Y X - [X, Y]}_{\emptyset}, Z \rangle = 0.$$

Дифференцирование вдоль пути

Определение

Пусть $\gamma\colon I\to M$ — гладкая кривая на гладком многообразии M. Векторным полем вдоль кривой γ называется такое гладкое отображение $V:I\to TM$, что $\forall t\in I, V(t)\in T_{\gamma(t)}M$.

Теорема (определение ковариантной производной)

Пусть ∇ – аффинная связность, γ – гладкая кривая на гладком многообразии M. Тогда существует единственное отображение, которое каждому векторному полю V вдоль кривой γ сопоставляет векторное поле $\frac{\nabla}{dt}V$ вдоль кривой γ и удовлетворяет следующим свойствам:

(a)
$$\frac{\nabla}{dt}(V+W) = \frac{\nabla}{dt}V + \frac{\nabla}{dt}W$$

(b)
$$\frac{\nabla}{dt}(fV) = \frac{df}{dt}V + f\frac{\nabla}{dt}V$$

(c) Пусть V индуцировано некоторым полем $Y \in \mathfrak{X}(M)$, т.е. $V(t) = Y(\gamma(t))$. Тогда $\frac{\nabla}{dt}V = \nabla_{\gamma'}Y$,

где W – векторное поле вдоль кривой γ , f – гладкая функция на I.

Замечание:Равенства (a), (b), (c) справедливы в каждой точке $t \in I$.

Определение

 $\frac{\nabla}{dt}V$ — ковариантная производная векторного поля V вдоль кривой $\gamma.$

Доказательство теоремы-определения $rac{ abla}{dt}V$

Единственность: Введем обозначения:

 (U,φ) – такая карта на M, что $\gamma(I)\cap U\neq\emptyset$,

 $(x_1(t),\ldots,x_n(t))$ – локальное представление кривой $\gamma(t)$,

 E_i – координатные поля,

 $V = \sum_{j} v_{j} E_{j}$, где v_{j} и E_{j} зависят от t.

$$(a),(b) \implies \frac{\nabla}{dt}V = \sum_{j} \frac{dv_{j}}{dt}E_{j} + \sum_{j} v_{j} \frac{\nabla}{dt}E_{j}.$$

Далее, из (c) и определения ∇ имеем

$$\frac{\nabla}{dt}E_{j} = \nabla_{\gamma'}E_{j} = \nabla_{\left(\sum_{i}\frac{dx_{i}}{dt}E_{i}\right)}E_{j} = \sum_{i}\frac{dx_{i}}{dt}\nabla_{E_{i}}E_{j}.$$

Тогда

$$\frac{\nabla}{dt}V = \sum_{j} \frac{dv_{j}}{dt} E_{j} + \sum_{ij} \frac{dx_{i}}{dt} v_{j} \nabla_{E_{i}} E_{j}. \quad (\mathcal{K})$$

Эта формула гарантирует единственность.

Существ. Покроем кривую, т.е. $\gamma(I)$, конечным набором карт.

В каждой локальной системе координат зададим $\frac{\nabla}{dt}V$ формулой. Нетрудно проверить, что эта формула обеспечивает выполнение свойств (a), (b), (c).

На пересечении карт построенные поля совпадут в силу уже доказанной единственности.

Параллельный перенос

Определение

Пусть ∇ — аффинная связность, γ — гладкая кривая на гладком многообразии M. Векторное поле V вдоль кривой γ называется параллельным, если $\frac{\nabla}{dt}V=0$ в каждой точке $t\in I$.

Теорема

Пусть ∇ — аффинная связность на гладком многообразии M. Тогда для любой гладкой кривой γ на M, любой точки $t_0 \in I$ и любого вектора $V^0 \in T_{\gamma(t_0)}M$ существует единственное параллельное векторное поле V вдоль γ такое, что $V(t_0) = V^0$.

Определение

Параллельный перенос вдоль $\gamma\colon [a,b] o M$ — это отображение $P_\gamma: T_{\gamma(a)}M o T_{\gamma(b)}M,$

сопоставляющее каждому вектору $V^0 \in T_{\gamma(a)}M$ вектор $V(b) \in T_{\gamma(b)}M$.

Док-во: Нам нужно доказать теорему только для случая, когда вся кривая полностью содержится в одной локальной системе координат (U,φ) .

Введем обозначения: E_i – координатные поля, $(x_1(t),\ldots,x_n(t))$ – локальное представление кривой $\gamma(t)$, $V^0=\sum v_i^0 E_i$.

Лекция 11

Доказательство теоремы о параллельном переносе

Предположим, что существует векторное поле V в U, которое параллельно вдоль γ и $V(t_0)=V^0$. Тогда поле V записывается в локальных координатах

$$V(t) = \sum v_i(t)E_i(t).$$

Тогда

$$\frac{\nabla}{dt}V = \sum_{i} \frac{dv_{j}}{dt}E_{j} + \sum_{ij} \frac{dx_{i}}{dt}v_{j}\nabla_{E_{i}}E_{j} = 0.$$

Подставляя $\nabla_{E_i}E_j=\sum_k \Gamma_{i,j}^k E_k$ и заменяя j на k в первой сумме, получаем

$$\frac{\nabla}{dt}V = \sum_{k} \left(\frac{dv_k}{dt} + \sum_{ij} v_j \frac{dx_i}{dt} \Gamma_{i,j}^k \right) E_k = 0.$$

Следующая система n дифференциальных (линейных) уравнений на $v_k(t)$

$$\frac{dv_k}{dt} + \sum_{ij} v_j \frac{dx_i}{dt} \Gamma_{i,j}^k = 0$$

с начальным условием $v_k(t_0) = v_k^0$ имеет единственное решение. Это означает, что если поле V существует, то оно единственно.

Более того, поскольку система линейна, любое решение определено для всех $t \in I$, что доказывает существование поля V с требуемыми свойствами.

Риманова связность и параллельные поля

Теорема

Пусть ∇ – аффинная связность на гладком многообразии M. Тогда следующие условия эквивалентны:

① для любой гладкой кривой γ на M и любых двух векторных полей V,W вдоль γ справедливо тождество

$$\frac{d}{dt}\langle V,W\rangle = \langle \frac{\nabla}{dt}V,W\rangle + \langle V,\frac{\nabla}{dt}W\rangle.$$

- ② для любой гладкой кривой γ на M и любых двух параллельных векторных полей V,W вдоль γ имеем $\langle V,W\rangle = const.$

Док-во $(1) \implies (2)$ очевидно.

(2) \Longrightarrow (1) Фиксируем $t_0 \in I$ и выберем ортонормированный базис $P_1(t_0), \ldots, P_n(t_0) \in T_{\gamma(t_0)} M$. Перенесем этот базис вдоль γ и построим параллельные векторные поля $P_1(t), \ldots, P_n(t)$. В силу (2), $\langle P_i(t), P_j(t) \rangle = \langle P_i(t_0), P_j(t_0) \rangle$. Следовательно, $P_1(t), \ldots, P_n(t)$ является ортонормированным базисом $T_{\gamma(t)} M$ для любого $t \in I$. Разложим поля по базису

$$V = \sum_{i} v_i P_i, \quad W = \sum_{i} w_i P_i,$$

где v_i, w_i — гладкие на I функции.

Риманова связность и параллельные поля

Тогда в силу пунктов (a), (b) теоремы-определения ковариантной производной и параллельности полей P_i

$$\frac{\nabla}{dt}V = \sum_{i} \frac{dv_{i}}{dt} P_{i}, \quad \frac{\nabla}{dt}W = \sum_{i} \frac{dw_{i}}{dt} P_{i}.$$

Поэтому

$$\langle \frac{\nabla}{dt} V, W \rangle + \langle V, \frac{\nabla}{dt} W \rangle = \sum_{i} \left(\frac{dv_i}{dt} w_i + \frac{dw_i}{dt} v_i \right) = \frac{d}{dt} \left(\sum_{i} v_i w_i \right) = \frac{d}{dt} \langle V, W \rangle.$$

$$(1) \implies (3) X\langle Y, Z \rangle = \langle \nabla_X Y, Z \rangle + \langle Y, \nabla_X Z \rangle$$

Возьмем произвольную точку $p\in M$ и рассмотрим такую гладкую кривую $\gamma\colon I\to M$, что $t_0\in I$, $p=\gamma(t_0)$ и $\gamma'(t_0)=X(p)$. Тогда

$$X\langle Y, Z\rangle(p) = \frac{1}{dt}\langle Y, Z\rangle|_{t=t_0} = \frac{2}{dt}\langle Y, Z\rangle + \langle Y, \frac{\nabla}{dt}Z\rangle = \frac{3}{dt}\langle \nabla_{X(p)}Y, Z\rangle_p + \langle Y, \nabla_{X(p)}Z\rangle_p.$$

$$Xf = \begin{cases} f & \text{if } Y \\ \text{if } f & \text{if } f \\ \text{if } f \\ \text{if } f & \text{if } f \\ \text{if$$

Лекция 11 11 мая 2022 г.

¹определение производной функции вдоль векторного поля

²пункт (1)

³пункт (c) теоремы-определения ковариантной производн<u>о</u>й, « 📑 » 📲 🔻 🦠 🔊 🔾