

Dr. Fernando Ramírez Alatriste
Maestría en Dinámica No Lineal
y Sistemas Complejos
Universidad Autónoma
de la Ciudad de México
fernando.ramirez@uacm.edu.mx

QUÉ SON LOS SISTEMAS COMPLEJOS?

14 de Junio 2012

Seminario Universidad de Colima

Índice

- Introducción
- Sistemas Complejos
- Ejemplos
- Herramientas
- Simulaciones
- Conclusiones

Introducción

La palabra "complejidad" se ha vuelto común en las últimas décadas.

Estructura Compleja

TRNA

RNA

polymerase

polypeptide

chain

codon

mRNA

polypeptide

chain

Protein synthesis

Proceso Complejo

Definiendo un Sistema (Termodinámica)

Componentes del sistema(sub sistema) Interacción entre sus componentes Sistema interacción

Universo

14 de Junio 2012

Seminario Universidad de Colima

La interacción es muy importante

¡El sistema NO es igual a la suma de sus partes!

Estudio de sistemas

Some Systems of

14 de Junio 2012 Seminario Universidad de Colima Fuente: NECSI http://www.necsi.edu/visual/systems.html

Estrategías para hacer ciencia: Reduccionismo

En el siglo XX la estrategia del reduccionismo fue muy productiva

14 de Junio 2012

Seminario Universidad de Colima

- El sistema es reducido a sus partes, y es suficiente para describir el sistema
- Funciona en muchos casos

¿Puede la física de partículas elementales, predecir la vida?

Holismo – Sistema ≠∑ partes

- Un concepto clave es: "propiedades emergentes"
- Propiedades del sistema emergen de las interacciones de sus partes

Sistemas simples

- Única causa ⇒único efecto
- Un cambio pequeño en la causa → cambio pequeño en el efecto
- Predecible
- Estructuralmente estable

"Dear, could I suggest one small change for our next custom built tandem?"

Sistemas complejos

- No existe una definición de un sistema complejo
- Causalidad circular, circuitos de retroalimentación
- Cambios pequeños en la causa puede implicar cambios drásticos
- No son predecibles
- Propiedades emergentes
- Auto-organización

Causalidad Circular

No hay una clara diferenciación entre causa y efecto

14 de Junio 2012

Inestabilidad politica, Dictadu-Incultura Alta pro-Bajo Consumo del capital Baja produc-tividad laboral Baja relación Rents capital/trabajo

Circulo "vicioso"

Seminario Universidad de Colima

Retro-alimentación

Negativa estabilizar el sistema Positiva incrementa la desviación del estado inicial

Ejemplo de retro-alimentación Positiva

Propiedades emergentes

- Muy común en física estadística
- Transiciones de fases
- Surgen de la interacción local de sus elemenos
- Clases de universalidad: el comportamiento emergente es independiente de la base material (partículas, moléculas, células, personas, etc.), sólo depende de las interacciones

Copyright © 2006 Pearson Education, Inc., publishing as Banjamin Cummings

Ejemplos de sistemas complejos

- Física: sistemas fuera del equilibrio, formación de patrones, etc.
- Biocomplejidad:
 Morfogénesis, redes de proteínas, cadenas tróficas, etc.
- Socio-física, sociocomplejidad: elecciones, tránsito, normas, corrupción,etc.

Herramientas para el estudio de los Sistemas Complejos

- Dinámica no Lineal: ecuaciones diferenciales/en diferencia no lineales (bifurcaciones, caos, etc.)
- Redes complejas
- Autómatas celulares
- Modelación basada en agentes
- Fractales

Redes complejas

- Aplicaciones en Biología: cadenas alimenticias, cascada de proteínas
- Aplicaciones en la Industria: Redes de distribución y producción
- Aplicaciones a sociología: Redes de influencia (votación), amistad

Formas de hacer ciencia

- Deductiva : Ecuaciones diferenciales, en diferencia, postular comportamientos y deducir dinámicas
- Inductiva: Experimentación-estadística, el sistema es una caja negra y se inducen comportamientos a partir del análisis estadístico de los datos experimentales
- Intuitiva: Autómatas celulares, Modelado basado en Agentes(computadora), es una forma híbrida entre deductiva e inductiva, se postulan interacciones locales y se analizan los datos estadísticamente para encontrar patrones emergentes

• Ejemplo: regla 110

Autómata Celular regla 110

Formación de Patrones

- Ecuaciones diferenciales parciales no lineales: Reacción difusión
- Autómatas celulares
- Reacción de Belousov-Zhabotinsky
- Formación de patrones en pieles de animales

Autómata Celular: Juego de la Vida

14 de Junio 2012

Seminario Universidad de Colima

Formación de patrones Cebra

Leopardo

14 de Jui

Reacción de BZ

14 de Junio 2012

Seminario Universidad de Collina

Reacción BZ: condiciones regulares

Socio-complejidad

- Simular sistemas sociales
- Ciudades
- Cultura
- Segregación
- La ola

Ejemplos particulares

Formación de opinion: espínes en Física

Aprobación de reformas

Concensos, ¿cuántas personas se pueden poner de acuerdo?

14 de Junio 2012

Seminario Universidad de Colima

Elecciones

propagacion de rumores

simular politicas publicas

corrupción

Seminario Universidad de Colima

Netlogo

Una plataforma para el modelado basado en agentes

Si ya sabemos cuales son sus caracateristicas, por que no podemos definir un sistema complejo?

Seminario Universidad de Colima

depende del observador

- Depende de la escala de medicion temporal y espacial
- Numero de Deborha=tiempo de relajacion/tiempo de observacion
- Todos los sistemas son complejos desde cierta escala temporal o espacial!
- •Una defición puede servir en área, pero no para otra

Conclusiones

- Prácticamente los sistemas complejos se encuentran en todos lados, ya que depende del observador ver sus propiedades.
- La perspectiva desde los sistemas complejos ha abierto un nuevo panorama para el estudio matemático y computacional en las ciencias sociales y naturales

Bibliografía

Péter Erdí, Complexity explained, Springer, 2008.