Fourier 分析 笔记

任云玮

目录

1	The	e Genesis of Fourier Analysis	2
2	Basic Property of Fourier Series		2
	2.1	Examples and formulation of the problem	2
	2.2	Uniqueness of Fourier series	2
	2.3	Convolutions	3

1 The Genesis of Fourier Analysis

2 Basic Property of Fourier Series

2.1 Examples and formulation of the problem

2.2 Uniqueness of Fourier series

p41. Notes on Theorem 2.1 这一命题表明对于连续函数,只需要验证它们的 Fourier 系数是否相等即可.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{\mathrm{i}n\theta} \mathrm{d}\theta = 0.$$

由于积分的线形性,所以我们有对于任意三角多项式 p_k ,成立

$$\int_{-\pi}^{\pi} f(\theta) p_k(\theta) d\theta = 0.$$

我们考虑利用反证法来证明此命题. 不失一般性的,我们假设定义在 $[-\pi,\pi]$ 上,在 $\theta_0 = 0$ 处连续且为 f(0) > 0. 我们尝试构造一列三角多项式 $\{p_k\}$,让它在 0 附近为正且在其他地方迅速衰减,则我们即可得到 $\int f(\theta)p_k(\theta) > 0$,而这与之前的讨论矛盾.

首先按照之前的想法,我们取充分小的 $[-\delta, \delta] \subset [-\pi, \pi]$,满足在其中 $f(\theta) > f(0)/2$.接下来我们构造一个三角多项式 p,满足如下条件:

- 1. 在 $[-\delta, \delta]$ 外 $|p(\theta)| < s < 1$.
- 2. 在 $[-\delta, \delta]$ 上 $p(\theta) \ge 0$.
- 3. 在某个 $[-\eta,\eta] \subset [-\delta,\delta]$ 上 $p(\theta) > r > 1$.

这样我们只需要令 $p_k(\theta) = [p(\theta)]^k$, 在进行一下估计即可. 我们可以设

$$p(\theta) = \varepsilon + \cos \theta.$$

其中 $\varepsilon > 0$ 充分小以满足 [1.]. 同时显然只要最初选择的 $|\delta| < \pi/2$,它就满足 [2.]. 而对于 [3.],只需要 $|\eta|$ 充分小,也是可以成立的.

接下来我们对积分 $\int f(\theta)p_k(\theta)d\theta$ 进行估计. 我们有

$$\left| \int_{-\pi}^{\pi} \right| \ge \left| \int_{-\eta}^{\eta} + \int_{\eta \le |\theta| < \delta} \right| - \left| \int_{\delta \le |\theta| \le \pi} \right| \ge \left| \int_{-\eta}^{\eta} \right| - \left| \int_{\delta \le |\theta| \le \pi} \right|.$$

由于 f Riemann 可积,所以有界,即 |f| < B. 从而有

$$\left| \int_{\delta \le |\theta| \le \pi} f(\theta) p_k(\theta) d\theta \right| \le 2(\pi - \delta) B s^k, \quad \int_{-\eta}^{\eta} f(\theta) p_k(\theta) d\theta \ge 2\eta \frac{f(0)}{2} r^k.$$

p41. Notes on Corollary 2.3 这一命题表明一定条件下, Fourier 系数的绝对收敛性可以保证 Fourier 级数的一致收敛形. 而之后的命题([Corollary 2.4])则给出了通过函数的光滑程度导出 Fourier 系数衰减速度的方法.

p42. [1.] 注意由于 $e^{in\theta}$ 的周期性,设 $b-a=2\pi$,有

$$\frac{1}{2\pi} \int_a^b e^{in\theta} d\theta = \begin{cases} 1, & n = 0, \\ 0, & n \neq 0. \end{cases}$$

2.3 Convolutions

p47. Notes on Lemma 3.2 这一引理表明可以用一列有界连续函数 $\{f_k\}$ 在积分平均的含义下去逼近一个 Riemann 可积函数 f.

p49. Proof of Theorem 4.1 直观地想,由于 good kernel 的性质,当 n 充分大时, $[x-\pi,x+\pi]$ 上的加权平均的结果应该和 f(x) 是差不多的,自然而然就会想到把积分分为 $|y| \le \delta$ 和 $\delta \le |y| \le \pi$ 两部分. 利用 f 在 x 处的连续性等性质估计

$$(f * K_n)(x) - f(x) = \frac{1}{2\pi} \int_{-\pi}^{p} iK_n(y)[f(x-y) - f(x)]dy$$

即可证明在连续点处的收敛性. 而一致收敛性则有闭区间上的连续函数的一致连续性保证.

2.4 Good kernels

2.5 Cesàro and Abel summability: applications to Fourier series