Printed Pa		Sub Code:MTCS052										
Paper Id:	238550	Roll No.										

M.Tech (SEM II) THEORY EXAMINATION 2022-23 DIGITAL IMAGE PROCESSING

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- List some applications of Image processing. (a)
- Write different components of image processing. (b)
- How does contrast stretching improve the contrast of an image? (c)
- (d) Discuss dilation and erosion in morphological image processing.
- (e) Write short note on watershed segmentation.
- (f) Discuss lossless and lossy image compression.
- (g) Briefly describe the concept of principal component analysis.

2. Attempt any *three* of the following:

pt any three of the following: $7 \times 3 = 21$ Explain sampling and quantization of images. Describe the effects of reducing sampling and quantization.

(b)

Gray level	0	10	2	3	4	5	6	7
		OV						(2)
Frequency	400	700	1350	2500	3000	1500	550	0

Calculate the histogram of the output image obtained by enhancing the input by histogram equalization technique.

- (c) Discuss robert, sobel and prewitt operator of edge detection.
- (d) Illustrate the procedures for region filling and convex hull.
- Explain Huffman coding of image compression with suitable example. (e)

SECTION C Attempt any *one* part of the following: **3.**

 $7 \times 1 = 7$

Illustrate the term adjacency and connectivity in images. Consider following (a) two image subsets S1 and S2 of a 3-bit gray level image shown below.

S	51	S2							
1	0	0	0	1	0	2	1	1	1
1	0	0	0	0	7	0	6	1	0
7	1	0	8	0	3	0	0	1	7
0	1	0	0	1	0	1	0	0	1
2	0	0	0	8	1	0	0	0	1

For $V = \{1, 2, 3\}$ evaluate whether S1 and S2.

- (i) 4-connected (ii)8-connected (iii)m-connected
- (b) Describe the role of smoothing filters, such as mean and median filters, in

image enhancement. How do these filters reduce noise and improve image quality?

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Illustrate Wiener filter for image restoration. Discuss noise models in details.
- (b) Derive the transfer function of Homomorphic filter. Also discuss the advantages and disadvantages of homomorphic filtering.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Discuss laplacian operator of second order derivative. "Second order derivative of edge detection is prone to noise and detect false edges." Justify the statement.
- (b) Explain the concept of multi-level thresholding and its applications in image segmentation tasks.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Illustrate the basics of color image processing. Convert the RGB model to HSI model.
- (b) Justify the need of compression in image processing. Compare statistical and spatial compression.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Explain DFT and DCT. Apply the DFT to $x=\{1\ 2\ 8\ 9\}$ and verify whether it works.
- (b) What are boundary descriptors in image processing, and how do they contribute to shape analysis and recognition tasks?Briefly explain the concept of chain codes as boundary descriptors.