Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 28. Oktober 2020

AND

AND aus NOR

0

OR

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

OR aus NAND

NOT aus NOR

NOT aus NAND

Weitere Gates

		O NAND	NOR	E XOE	F xvor
A	В	C	D	E	F
0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	0	1	0
1	1	0	0	0	1

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - PMOS \rightarrow NMOS
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

parallel:
$$\vee$$
 | Pull-Up: $y = 1$ alle I: $0 \rightarrow$ I invert.
Serie: \wedge | Pull-Down: $y = 0$ alle I: $1 \rightarrow$ Gl. invert.

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$		
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$	
Eins-Th.	$A \lor 1 = 1$	$A \wedge 1 = A$	
Idempotenz	$A \lor A = A$	$A \wedge A = A$	
V. Komp.	$A \vee \overline{A} = 1$	$A \wedge \overline{A} = 0$	
Adsorp.	$A \vee (\overline{A} \wedge B) = A \vee B$		
	$A \wedge (\overline{A} \vee B) = A \wedge B$		
Adsorp.	$A \lor (A \land B) = A$		
	$A \wedge (A \vee B) = A$		
Nachbar.G.	$(A \wedge B) \vee (\overline{A} \wedge B) = B$		
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$	

De Morgan

- 1. Regel $\overline{A \wedge B} = \overline{A} \vee \overline{B}$
- 2. Regel $\overline{A \vee B} = \overline{A} \wedge \overline{B}$

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mög Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit \mathbf{AND} verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

DNF
$$Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$
 1 Mint. erf. \rightarrow 1

KNF
$$Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B)$$
 1 Maxt. erf. \rightarrow 0

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- XNOR: DNF \rightarrow De Morgan