EE582 Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim
School of Electrical Engineering and Computer Science
Washington State University

Partitioning

What We Will Study

- Partitioning
 - Practical examples
 - Problem definition
 - Deterministic algorithms
 - Kernighan-Lin (KL)
 - Fiduccia-Mattheyses (FM)
 - h-Metis
 - Stochastic algorithms
 - Simulated-annealing

Example

Source: http://upload.wikimedia.org/wikipedia/commons/3/37/Dolby_SR_breadboard.jpg

Example

ASIC Placement

VLSI Circuits

interconnections

Intra-module: many

Inter-module: few

Fig. 9. Interconnect density function compared to the interconnect histogram for microprocessor A.

Source: David, "A Stochastic Wire-Length Distribution for Gigascale Integration (GSI) – Part I: Derivation and Validation," TCAD'98

Problem Definition

Given

- A set of cells: $T = \{c_1, c_2, ..., c_n\}$. |W| = n.
- A set of edges (netlist): $R = \{e_1, e_2, ..., e_m\}$. |R| = m.
- Cell size: s(c_i)
- Edge weight: w(e_i)
- # partitions: k (k-way partitioning). $P = \{P_1, ..., P_k\}$
- Minimum partition size: $b \le s(P_i)$
- Balancing factor: $max(s(P_i)) min(s(P_i)) \le B$
- Graph representation: edges / hyper-edges
- Find k partitions

$$- P = \{P_1, ..., P_k\}$$

- Minimize
 - Cut size: $\sum_{\forall e(u_1,...,ud) \in p(ui) \neq p(uj)} w(e)$

Problem Definition

A set of cells

-
$$T = \{c_1, c_2, ..., c_n\}. |W| = n$$

Problem Definition

A set of edges (netlist, connectivity)

$$- R = \{e_1, e_2, ..., e_m\}. |R| = m$$

k-way Partitioning

• k=2, $|P_i|=4$

$$P_1 = \{c_1, c_2, c_3, c_4\}$$

$$P_2 = \{c_5, c_6, c_7, c_8\}$$

Cut size
$$= 3$$

$$P_1 = \{c_1, c_2, c_3, c_5\}$$

$$P_2 = \{c_4, c_6, c_7, c_8\}$$

Cut size
$$= 3$$

Problem definition

- Given
 - A set of vertices (cell list): $V = \{c_1, c_2, ..., c_{2n}\}$. |T|=2n.
 - A set of two-pin edges (netlist): $E = \{e_1, e_2, ..., e_m\}$. |E| = m.
 - Weight of each edge: w(e_i)
 - Vertex size: s(c_i) = 1
- Constraints
 - # partitions: 2 (two-way partitioning). P = {A, B}
 - Balanced partitioning: |A| = |B| = n
- Minimize
 - Cutsize

- Cost function: cutsize = $\sum_{e \in \psi} w(e)$
 - Ψ : cut set = {e₂, e₄, e₅}
 - Cutsize = $w(e_2) + w(e_4) + w(e_5)$

Algorithm

Iterative improvement

How can we find X and Y?

- Iterative improvement
 - Find a pair of vertices such that <u>swapping</u> the two vertices reduces the cutsize.

Gain computation

- For each cell a
 - External cost = $E_a = \sum w(eav)$ for all $v \in B = \sum w(external edges)$
 - Internal cost = $I_a = \sum w(eav)$ for all $v \in A = \sum w(internal edges)$
 - D-value (a) = $D_a = E_a I_a$
- For each pair (a, b)
 - Gain = $g_{ab} = D_a + D_b 2w(e_{ab})$

Α

В

Find a best-gain pair among all the gate pairs

	E_{a}	l _a	D _a
C ₁	1	0	1
C_2	1	2	-1
c_3	0	1	-1
C ₄	2	1	1
C ₅	1	1	0
c ₆	1	1	0

$$\begin{split} g_{12} &= 1 - 1 - 2 = -2 \\ g_{13} &= 1 - 1 - 0 = 0 \\ g_{14} &= 1 + 1 - 0 = +2 \\ g_{52} &= 0 - 1 - 0 = -1 \\ g_{53} &= 0 - 1 - 0 = -1 \\ g_{54} &= 0 + 1 - 2 = -1 \\ g_{62} &= 0 - 1 - 0 = -1 \\ g_{63} &= 0 - 1 - 0 = -1 \\ g_{64} &= 0 + 1 - 2 = -1 \end{split}$$

$$g_{ab} = D_a + D_b - 2w(e_{ab})$$

$$Cutsize = 3$$

Swap and Lock

 After swapping, we <u>lock</u> the swapped cells. The locked cells will not be moved further.

	E _a	l _a	D _a
C ₁	1	0	1
C_2	1	UR de	tel
c_3	0	1 URC	-1
C_4	Mec	1	1
C ₅	1	1	0
c_6	1	1	0

Cutsize = 1

- Update of the D-value
 - Update the D-value of the cells <u>affected</u> by the move.

•
$$D_x' = E_x' - I_x' = \{E_x - w(e_{xb}) + w(e_{xa})\} - \{I_x + w(e_{xb}) - w(e_{xa})\}$$

= $(E_x - I_x) + 2w(e_{xa}) - 2w(e_{xb}) = D_x + 2w(e_{xa}) - 2w(e_{xb})$

•
$$D_y' = (E_y - I_y) + 2w(e_{yb}) - 2w(e_{ya}) = D_y + 2w(e_{yb}) - 2w(e_{ya})$$

Update

	D _a	D _a '
C ₁	1	
C_2	-1	-1 + 2 - 2 = -1
c_3	-1	-1
C ₄	1	
C ₅	0	0 + 0 - 2 = -2
c ₆	0	0 + 0 - 2 = -2

$$D_x' = D_x + 2^*w(e_{xa}) - 2^*w(e_{xb})$$

 $D_y' = D_y + 2^*w(e_{yb}) - 2^*w(e_{ya})$

Gain computation and pair selection

	D _a '
C ₁	
C_2	-1
C_3	-1
C_4	
C ₅	-2
c ₆	-2

$$g_{52} = -2 - 1 - 0 = -3$$

 $g_{53} = -2 - 1 - 0 = -3$
 $g_{62} = -2 - 1 - 0 = -3$
 $g_{63} = -2 - 1 - 0 = -3$

$$g_{ab} = D_a + D_b - 2w(e_{ab})$$

Cutsize = 1

Swap and update

	D _a	D _a '
C ₁		
C_2	-1	-1 + 2 - 0 = +1
C_3	-1	
C_4		
C ₅	-2	-2 + 2 - 0 = 0
C ₆	-2	

$$Cutsize = 1$$

$$D_x' = D_x + 2^*w(e_{xa}) - 2^*w(e_{xb})$$

 $D_y' = D_y + 2^*w(e_{yb}) - 2^*w(e_{ya})$

Swap and update

	D _a
C ₁	
C_2	+1
c_3	
C ₄	
C ₅	0
c ₆	

$$Cutsize = 4$$

$$D_x' = D_x + 2^*w(e_{xa}) - 2^*w(e_{xb})$$

 $D_y' = D_y + 2^*w(e_{yb}) - 2^*w(e_{ya})$

Gain computation

	D _a
C ₁	
C_2	+1
C_3	
C_4	
C ₅	0
C ₆	

$$g_{52} = +1 + 0 - 0 = +1$$

$$g_{ab} = D_a + D_b - 2w(e_{ab})$$

$$Cutsize = 4$$

Swap

Cutsize = 3

Cutsize

- Initial: 3

•
$$g_1 = +2$$

After 1st swap: 1

•
$$g_2 = -3$$

- After 2nd swap: 4

•
$$g_3 = +1$$

After 3rd swap: 3

- Algorithm (a single iteration)
 - 1. $V = \{c_1, c_2, ..., c_{2n}\}$ {A, B}: initial partition
 - 2. Compute D_v for all $v \in V$ queue = {}, i = 1, A'=A, B'=B
 - 3. Compute gain and choose the best-gain pair (a_i, b_i) . queue += (a_i, b_i) , A' = A'- $\{a_i\}$, B'=B'- $\{b_i\}$
 - If A' and B' are empty, go to step 5.
 Otherwise, update D for A' and B' and go to step 3.
 - 5. Find k maximizing $G = \sum_{i=1}^{k} g_i$

Algorithm (overall)

- Run a single iteration.
- Get the best partitioning result in the iteration.
- 3. Unlock all the cells.
- 4. Re-start the iteration. Use the best partitioning result for the initial partitioning of the next iteration.

Stop criteria

- Max. # iterations
- Max. runtime
- Δ Cutsize between the two consecutive iterations.
- Target cutsize
- **—** ...

- Complexity analysis
 - 1. $V = \{c_1, c_2, ..., c_{2n}\}$ {A, B}: initial partition
 - 2. Compute D_v for all $v \in V$ queue = {}, i = 1, A'=A, B'=B
 - 3. Compute gain and choose the best-gain pair (a_i, b_i) . queue += (a_i, b_i) , A' = A'- $\{a_i\}$, B'=B'- $\{b_i\}$
 - 4. If A' and B' are empty, go to step 5.

 Otherwise, update D for A' and B' and go to step 3.
 - 5. Find k maximizing $G = \sum_{i=1}^{k} g_i$

- Complexity of the D-value computation
 - External cost (a) = $E_a = \sum w(e_{av})$ for all v∈B
 - Internal cost (a) = $I_a = \sum w(e_{av})$ for all v∈A
 - D-value (a) = $D_a = E_a I_a$

For each cell (node) a
For each net connected to cell a
Compute E_a and I_a

Practically O(n)

n: # nodes

Complexity of the gain computation

$$- g_{ab} = D_a + D_b - 2w(e_{ab})$$

For each pair (a, b)

$$g_{ab} = D_a + D_b - 2w(e_{ab})$$

Complexity: $O((2n - 2i + 2)^2)$

Complexity of the D-value update for swapping a and b

$$- D_x' = D_x + 2w(e_{xa}) - 2w(e_{xb})$$

$$- D_y' = D_y + 2w(e_{yb}) - 2w(e_{ya})$$

For a (and b)

For each cell x connected to cell a (and b) Update D_x and D_v

Practically O(1)

- Complexity analysis
 - 1. $V = \{c_1, c_2, ..., c_{2n}\}$ {A, B}: initial partition
 - 2. Compute D_v for all $v \in V$ queue = {}, i = 1, A'=A, B'=B
 - 3. Compute gain and choose the best-gain pair (a_i, b_i) . queue += (a_i, b_i) , A' = A'- $\{a_i\}$, B'=B'- $\{b_i\}$ $O((2n-2i+2)^2)$
 - If A' and B' are empty, go to step 5.
 Otherwise, update D for A' and B' and go to step 3.
 - 5. Find k maximizing $G = \sum_{i=1}^{k} g_i \longrightarrow O(1)$

Overall: O(n³)

Loop. # iterations: n

- Reduce the runtime
 - The most expensive step: gain computation (O(n²))
 - Compute the gain of each pair: $g_{ab} = D_a + D_b 2w(e_{ab})$
 - How to expedite the process
 - Sort the cells in the decreasing order of the D-value
 - D_{a1} ≥ D_{a2} ≥ D_{a3} ≥ ... in partition A
 - D_{b1} ≥ D_{b2} ≥ D_{b3} ≥ ... in partition B
 - Keep the max. gain (g_{max}) found until now.
 - When computing the gain of (D_{al}, D_{bm})
 - If $D_{al} + D_{bm} < g_{max}$, we don't need to compute the gain for all the pairs (D_{ak}, D_{bp}) s.t. k>l and p>m.
 - Practically, it takes O(1).
 - Complexity: O(n*logn) for sorting.

- Complexity analysis
 - 1. $V = \{c_1, c_2, ..., c_{2n}\}$ {A, B}: initial partition
 - 2. Compute D_v for all $v \in V$ queue = {}, i = 1, A'=A, B'=B O(n)
 - 3. Compute gain and choose the best-gain pair (a_i, b_i) . queue += (a_i, b_i) , A' = A'- $\{a_i\}$, B'=B'- $\{b_i\}$ O(n log n)
 - 4. If A' and B' are empty, go to step 5.Otherwise, update D for A' and B' and go to step 3.
 - 5. Find k maximizing $G = \sum_{i=1}^{k} g_i \longrightarrow O(1)$

Overall: O(n² log n)

Loop. # iterations: n

Questions

- Can the KL algorithm handle
 - hyperedges?
 - unbalanced partitions?
 - fixed cells (e.g., cell k should be in partition A)?
 - **–** ...

Questions

Intentionally left blank

Handles

Hyperedges

- Runtime: O(n)

Idea

Move a cell instead of swapping two cells.

Algorithm

Definitions

- Cutstate(net)
 - uncut: the net has all the cells in a single partition.
 - cut: the net has cells in both the two partitions.
- Gain of cell: # nets by which the cutsize will decrease if the cell were to be moved.
- Balance criterion: To avoid having all cells migrate to one block.
 - $r \cdot |V| s_{max} \le |A| \le r \cdot |V| + (s_{max})_{Max \ cell \ size}$
 - |A| + |B| = |V|
- Base cell: The cell selected for movement.
 - The max-gain cell that doesn't violate the balance criterion.

- Definitions (continued)
 - Distribution (net): (A(n), B(n))
 - A(n): # cells connected to n in A
 - B(n): # cells connected to n in B

Distribution (n1) = (1, 1)

Distribution (n2) = (0, 1)

Distribution (n3) = (0, 2)

Distribution (n4) = (2, 1)

Distribution (n5) = (1, 1)

Distribution (n6) = (2, 0)

- Critical net
 - A net is critical if it has a cell that if moved will change its cutstate.
 - cut to uncut
 - uncut to cut
 - The distribution of the net is (0,x), (1,x), (x,0), or (x,1).

Critical net

 Moving a cell connected to the net changes the cutstate of the net.

- Algorithm
 - 1. Gain computation
 - Compute the gain of each cell move
 - Select a base cell (a max-gain cell)
 - Move and lock the base cell and update gain.

Gain computation

- F(c): From_block (either A or B)
- T(c): To_block (either B or A)

Α

- gain = g(c) = FS(c) TE(c)
 - FS(c): |P| s.t. $P = \{n \mid c \in n \text{ and } dis(n) = (F(c), T(c)) = (1, x)\}$
 - TE(c): |P| s.t. $P = \{n \mid c \in n \text{ and } dis(n) = (F(c), T(c)) = (x, 0)\}$

Gain computation

For each net n connected to c
if
$$F(n) = 1$$
, $g(c)++$;
if $T(n) = 0$, $g(c)--$;

Distribution of the nets (A, B) m: (3, 0)

q: (2, 1) k: (1, 1)

p: (1, 1) j: (0, 2)

Gain

$$g(c_1) = 0 - 1 = -1$$

 $g(c_2) = 2 - 1 = +1$
 $g(c_3) = 0 - 1 = -1$
 $g(c_4) = 1 - 1 = 0$
 $g(c_5) = 1 - 1 = 0$
 $g(c_6) = 1 - 0 = +1$

Select a base (best-gain) cell.

Gain

$$g(c_1) = 0 - 1 = -1$$

 $g(c_2) = 2 - 1 = +1$
 $g(c_3) = 0 - 1 = -1$
 $g(c_4) = 1 - 1 = 0$
 $g(c_5) = 1 - 1 = 0$
 $g(c_6) = 1 - 0 = +1$

S(A) = 9, S(B) = 9

Area criterion: [0.4*18-5, 0.4*18+5] = [2.2, 12.2]

Before move, update the gain of all the other cells.

- Original code for gain update
 - F: From_block of the base cell
 - T: To_block of the base cell
 - For each net n connected to the base cell
 - If T(n) = 0gain(c)++; // for c ∈ n
 - Else if T(n) = 1
 gain(c)--; // for c ∈ n & T
 - F(n)--;
 - T(n)++;
 - If F(n) = 0gain(c)--; // for c ∈ n
 - Else if F(n) = 1
 - gain(c)++; // for c ∈ n & F

- Gain update (reformulated)
 - F: From_block of the base cell
 - T: To_block of the base cell
 - For each net n connected to the base cell
 - If T(n) = 0gain(c)++; // for c ∈ n
 - Else if T(n) = 1
 gain(c)--; // for c ∈ n & T
 - If F(n) = 1gain(c)--; // for c ∈ n
 - Else if F(n) = 2
 gain(c)++; // for c ∈ n & F
 - F(n)--;
 - T(n)++;

Gain update

Case 1) T(n) = 0

Gain update

Case 2)
$$T(n) = 1$$

 Instead of enumerating all the cases, we consider the following combinations.

$$F(n) = 1 \xrightarrow{(1)} T(n) = 0$$

$$F(n) = 2 \xrightarrow{(3)} T(n) = 1$$

$$F(n) \ge 3 \xrightarrow{(9)} T(n) \ge 2$$

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

$$T(n) = 0 : g(c)++; // c \in n \& F$$

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

$$T(n) = 1 : g(c)--; // c \in n \& T$$

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

$$F(n) = 1 : g(c) --; // c \in n \& T$$

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(1)				
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1
(9)				

$$F(n) = 2 : g(c)++; // c \in n \& F$$

Gain update

- F: From_block of the base cell
- T: To_block of the base cell
- For each net n connected to the base cell
 - If T(n) = 0gain(c)++; // for c ∈ n
 - If T(n) = 1gain(c)--; // for c ∈ n
 - If F(n) = 1gain(c)--; // for c ∈ n
 - If F(n) = 2gain(c)++; // for c ∈ n
 - F(n)--;
 - T(n)++;

Before move, update the gain of all the other cells.

	Δg(c) in F	Δg(c) in T	F(n)	T(n)
(2)		-2	1	1
(3)		-1	1	≥ 2
(4)	+2		2	0
(5)	+1	-1	2	1
(6)	+1		2	≥ 2
(7)	+1		≥ 3	0
(8)		-1	≥ 3	1

Gain (before move)

В

 $g(c_1) = 0 - 1 = -1$

 $g(c_2) = 2 - 1 = +1$

 $g(c_3) = 0 - 1 = -1$

 $g(c_4) = 1 - 1 = 0$

 $g(c_5) = 1 - 1 = 0$

 $g(c_6) = 1 - 0 = +1$

Gain (after move)

$$g(c_1) = -1 + 1 = 0$$

$$g(c_3) = -1 + 1 + 1 = +1$$

$$g(c_4) = 0 - 1 = -1$$

$$g(c_5) = 0 - 2 = -2$$

$$g(c_6) = 1 - 2 = -1$$

Α

Move and lock the base cell.

Gain (after move)

$$g(c_1) = -1 + 1 = 0$$

$$g(c_3) = -1 + 1 + 1 = +1$$

$$g(c_4) = 0 - 1 = -1$$

$$g(c_5) = 0 - 2 = -2$$

$$g(c_6) = 1 - 2 = -1$$

- Choose the next base cell (except the locked cells).
- Update the gain of the other cells.
- Move and lock the base cell.
- Repeat this process.
- Find the best move sequence.

- Complexity analysis
 - 1. Gain computation
 - Compute the gain of each cell move → Practically O(# cells or # nets)
 - 2. Select a base cell → O(1)
 - 3. Move and lock the base cell and update gain. \rightarrow Practically O(1)

iterations: # cells

For each net n connected to c

if F(n) = 1, g(c)++;

if T(n) = 0, g(c)--;

Overall: O(n or c)

Borrowed from chemical process

Simulated Annealing

Algorithm

```
\begin{split} T &= T_0 \text{ (initial temperature)} \\ S &= S_0 \text{ (initial solution)} \\ Time &= 0 \\ repeat \\ Call Metropolis (S, T, M); \\ Time &= Time + M; \\ T &= \alpha \cdot T; \ // \ \alpha \text{: cooling rate } (\alpha < 1) \\ M &= \beta \cdot M; \\ until (Time &\geq maxTime); \end{split}
```


Algorithm

```
Metropolis (S, T, M) // M: # iterations repeat  \begin{aligned} &\text{NewS} = \text{neighbor}(S); \text{ // get a new solution by perturbation} \\ &\Delta h = \text{cost}(\text{NewS}) - \text{cost}(S); \\ &\text{If } ((\Delta h < 0) \text{ or } (\text{random } < e^{-\Delta h/T})) \\ &S = \text{NewS}; \text{ // accept the new solution} \\ &M = M - 1; \\ &\text{until } (M == 0) \end{aligned}
```


- Cost function for partition (A, B)
 - Imbalance(A, B) = Size(A) Size(B)
 - Cutsize(A, B) = Σw_n for n $\epsilon \psi$
 - Cost = W_c · Cutsize(A, B) + W_s · Imbalance(A, B)
 - W_c and W_s: weighting factors
- Neighbor(S)
 - Solution perturbation
 - Example: move a free cell.

- Clustering-based partitioning
 - Coarsening (grouping) by clustering
 - Uncoarsening and refinement for cut-size minimization

Coarsening

- Coarsening
 - Reduces the problem size
 - Make sub-problems smaller and easier.
 - Better runtime
 - Higher probability for optimality
 - Finds circuit hierarchy

Algorithm

- 1. Coarsening
- 2. Initial solution generation
 - Run partitioning for the top-level clusters.
- 3. Uncoarsening and refinement
 - Flatten clusters at each level (uncoarsening).
 - Apply partitioning algorithms to refine the solution.

Three coarsening methods.

- Re-clustering (V- and v-cycles)
 - Different clustering gives different cutsizes.

Final results

Benchmark	PROP	CDIP-	CLIP-	PARABOLI	GFM	GMetis	Opt.	Best	hMetis-	hMeTiS-	hMéTiS-	hMeis-
		LA3 _f	$PROP_f$				KLFM		EE20	FM ₂₀	EE_{10vV}	FM_{20vV}
balu	27	27	27	41	27	27	-	27	27	27	27	27
pl	47	47	51	53	47	47	- !	47	52	50	49	49
bml	50	47	47	_	-	48	-	47	51	51	51	51
t4	52	48	52	_	_	49	_	48	51	51	48	48
t3	59	57	57	_	_	62	_	57	58	58	59	58
12	90	89	87	_	_	95	_	87	91	88	92	88
t6	76	60	60	_		94	-	60	62	60	63	60
struct	33	36	33	40	41	33	. –	33	33	33	33	33
t.5	79	74	77	-	_	104	-	74	71	71	71	71
19ks	105	104	104	_	-	106	-	104	107	106	106	105
p2	143	151	152	146	139	142		139	148	145	148	145
s9234	41	44	42	74	41	43	45	41	40	40	40	40
biomed	83	83	84	135	84	102	_	83	83	83	83	83
s13207	75	69	71	91	66	74	62	62	55	55	61	53
s15850	65	59	56	91	63	53	46	46	42	42	42	42
industry2	220	182	192	193	211	177		177	174	167	169	168
industry3	_	243	243	267	241	243	-	241	255	254	252	241
s35932	-	73	42	62	41	57	46	41	42	42	42	42
s38584		47	51	55	47	53	52	47	47	47	48	48
avq.small	_	139	144	224		144	ļ -	139	136	130	128	127
s38417	_	74	65	49	81	69	-	49	52	51	54	50
avq.large	-	137	143	139	-	145	-	137	129	127	134	127
golem3	_	_	_	1629		2111		1629	1447	1445	1425	1424

Final results

hMetis		Quality improvement										
EE ₂₀	6.2%	5.3%	4.1%	21.4%	7.8%	10.0%	9.9%	0.3%				
FM ₂₀	7.2%	6.4%	5.2%	22.4%	8.7%	11.0%	9.9%	1.4%	1.1%			
EE _{10vV}	6.4%	5.4%	4.1%	21.3%	7.5%	10.1%	7.6%	0.3%	-0.1%	-1.2%		
FM_{20vV}	7.9%	7.3%	6.1%	23.1%	9.4%	11.9%	10.1%	2.3%	2.0%	0.9%	2.0%	

	Runtime Comparison. The times are in seconds on the specified machines											
	Sparc5	Sparc5	Sparc5	Dec3000	Sparc10	Sparc5	Sparc	SGI	SGI	SGI	SGI	
	-		-	500AXP	1	-	IPX	R10000	R10000	R10000	R10000	
5 circuits					1		5606	95	125	62	180	
13 circuits	1		1		46376			283	390	173	508	
16 circuits	2383						l	158	224	103	303	
16 circuits				37570			l	874	1593	382	1442	
22 circuits		15850	16206					445	637	249	733	
23 circuits						3357		913	1654	409	1513	

