CS2002 Logic Lecture 1

Data Representation in Binary

Ian Gent

This Time ...

- Representing numbers and text using binary
- Some of this is revision from CS1003
 - Will move quite fast to get through this material today

The Bit

Binary digIT

1 or 0 true or false

- Two possibilities
 - high/low voltage
 - current on or off
 - magnetised up/down
 - hole present/absent
 - electrons there or not
 - light/dark in the optical fibre
- Basic unit of almost all modern information storage and processing.

Comic XKCD https://xkcd.com/74/

Binary Numbers

- Positional system like decimal
- Reminder: right-most number is $n \times base^0 = n \times 1$
- k bits can represent 2^k numbers, e.g., those from 0 to 2^k 1

	$2^3 = 8$	$2^2 = 4$	2 ¹ = 2	$2^0 = 1$
3 = 2+1	0	0	1	1
6 = 4+2	0	1	1	0
10 = 8+2	1	0	1	0
15 = 8+4+2+1	1	1	1	1

Positive Numbers

- The atomic number of Tungsten: 74₁₀
 - $74_{10} = 2^6 + 2^3 + 2^1 = 1001010_2 = 112_8 = 4A_{16}$
- Population of UK in 2011: 63,181,775₁₀
 - =11110001000001001111001111₂
 - =361011717₈ = 3C413CF₁₆
- Population of the world in 2010: 6,898,455,709₁₀
 - =110011011001011100001010010011101₂
 - =63313412235₈ =19B2E149D₁₆

Bytes and Bigger

- Group bits together to represent more than two possibilities
- n bits, 2ⁿ possibilities
- A byte is traditionally the number of bits used to represent a text character, usually 8 bits.
- An octet is always 8 bits
- A word is the number of bits usually manipulated as a group on a particular computer
 - now almost always a multiple of 8 bits (16, 32, 64)
 - Usually 64 on modern computers
 - Hence "64 bit"
 - (x86 is confusing about what a word is)

Number of Bits	Number of Possibilities
5	$2^5 = 32$
6	2 ⁶ = 64
8	2 ⁸ = 256
16	2 ¹⁶ = 65 536
32	2 ³² = 4 294 967 296
64	2 ⁶⁴ = 18 446 744 073 709 551 616

0	1	1	0	1	1	0	0	1	1	1	0	1	1	1
8 bit BYTE 01101100 8 bit BYTE 11101111								1						
	16 bit WORD 0110110011101111													

Interpreting groups of bits

- Different ways of interpreting groups of bits:
 - as logical trues and falses
 - as integers, signed or unsigned
 - as characters and strings
 - as instructions telling the computer what to do
 - as "addresses" identifying a particular piece of memory in a store

Octal and Hexadecimal

Decimal		61272														
Binary	1	1	1	0	1	1	1	1	0	1	0	1	1	0	0	0
Octal	1	110		111		101		011			000					
Octai	1		6		7			5		3		0				
Havi	1110		1111			0101		1000								
Hex		E		F		5		8								

Shorter notations for sequences of bits, easy to convert to/from binary

- Octal: group in 3s
- Hexadecimal: group in 4s
 - 10->A, 11->B ... 15->F
- Use prefixes or suffixes to disambiguate,
 - e.g., in C, 0x10 is in hexadecimal, = 16_{10}

Arithmetic and Overflow

• Adding two 8 bit numbers:

• Result is 9 bits 01100100

Modern hardware discards the extra bit

• Equivalent to reducing modulo $2^8 = 256$ +11001000

• Or modulo 2¹⁶ 2³² or 2⁶⁴ for 16, 32, 64 bits

100101100

Note: in x86 extra bit used to set carry flag

• Similarly for subtraction or multiplication

Negative Numbers

- Idea: use the combinations of bits that start with 1 to represent negative values
- There are a whole range of possible ways of doing this:
 - Sign and magnitude
 - One's complement
 - Two's complement

Negative Numbers: Sign and Magnitude

- Leftmost bit is sign! $0 \Rightarrow +, 1 \Rightarrow -$
- Rest are numerical value of number
- In 16 bits:

```
\bullet +1<sub>10</sub> = 0000 0000 0000 0001<sub>2</sub>
```

$$-1_{10} = 1000 0000 0000 0001_2$$

• ?
$$= 1000 0000 0000 00002$$

Negative Numbers: One's Complement

- Also suffers from the -0 problem
- Does not make best use of the binary patterns
- Difficult to implement subtraction in hardware

Binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

Negative Numbers: Two's Complement

- Subtract a bigger number from a smaller one
- E.g. in 8 bit how do we do 50-100?
- Well let's add 2⁸ = 256
- We can do 306 100 easily
- gives '206'
- Idea: use 206 to represent -50
- n bits: represent -x by 2ⁿ-x
- Two's complement solves the problems of -0 and hardware implementation of subtraction.

(1)00110010

-01100100

11011110

Negative Numbers: Two's Complement (II)

- Avoids -0 problem
- Extends range of negative numbers: n bits: -2ⁿ⁻¹...2ⁿ⁻¹-1
 - E.g. -8 to 7 for 4 bits.
- Subtraction is easy to implement
 - For y x just add y and (-x)
- Given x get –x by:
 - Flipping bits
 - Adding one

Binary	One's Complement	Two's Complement
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	- 7	-8
1001	-6	-7
1010	- 5	-6
1011	-4	- 5
1100	-3	-4
1101	-2	-3
1110	-1	-2
1111	-0	-1

Two's Complement Arithmetic

5 = 0101	-5 + 7 = 2
-5 = 1010	1011
(1s complement)	+ 0111
-5 = 1011	_ (1)0010
(2s complement)	= (1)0010
7 = 0111	4 - 7 = - 3
-7 = 1000	0100
(1s complement)	+ 1001
-7 = 1001	= 1101
(2s complement)	

Binary	Two's
	Complement
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	- 5
1100	-4
1101	-3
1110	-2
1111	-1

Floating Point

- Bigger and smaller numbers, fractions
- Scientific notation:
 - 2.99792458×10^{8}
 - 6.626068×10^{-34}
 - 6.0221415×10^{23}
- Do the same in binary:
 - $1.0011 \times 2^{11} = ?$
 - $-1.0011 \times 2^{1101} = ?$

Floating Point Ctd

- $1.0011 \times 2^{11} = ?$
 - $1.0011 = 1 + 2^{-3} + 2^{-4} = 1 + 1/8 + 1/16 = 1.1875_{10}$
 - $2^{11} = 2^3 = 8_{10}$
 - $1.0011 \times 2^{11} = 1.1875 \times 8 = 9.5_{10}$
- $-1.0011 \times 2^{1101} = ?$
 - $2^{1101} = 2^{13} = 8192_{10}$
 - $-1.0011 \times 2^{1101} = -1.1875 \times 8192 = -9728_{10}$

Sign, Mantissa, Exponent

-1.0011×2^{1101}

- Sign is what you expect
 - negative
- Exponent is power of 2
 - 1101
- Mantissa is binary fraction
 - 1.0011
- Divide word into sign (1bit), mantissa and exponent.
- No need to record the .
- Can skip first bit of mantissa why?

Example Floating Point Formats (IEEE 754 names)									
Single	Sign	Exponent	Mantissa						
32 bits	1 bit	8 bits	23 bits						
Double	Sign	Exponent	Mantissa						
64 bits	1 bit	11 bits	52 bits						
Quadruple 128 bits	Quadruple Sign Exponent Mantissa 1 bit 15 bits Mantissa								

It gets complicated

- IEEE 754 is floating point standard
 - 2008 version is 70 page pdf
- Many many issues to cope with, e.g....
 - +0 and -0, NaN, +Infinity and –Infinity
 - Five kinds of rounding
 - Underflow and subnormal numbers
- Software Carpentry Video about FP
 - https://www.youtube.com/watch?v=Qoam964M_6Y

Representing Text 1

- ASCII -- 7 bits per character
 - 33 control, 94 visible, plus space
- 8 bit hardware -- high bit 0, or for parity
- extended ASCII -- multiple versions
- Strings:
 - In C: one octet per character, terminated by 0

Representing Text 2: Unicode

- 109,000 20 bit numbers for characters
- First 256 agree with most common extended ASCII
- Two common representations:
 - UTF-16, all common characters in one 16 bit value, rest in 2.
 - UTF-8: ASCII characters as octets 0-127
 - other characters 2-4 octets in range 128-255

UTF-8

Bits	Max code	Octet 1	Octet 2	Octet 3	Octet 4
7	7F	Oxxxxxxx			
11	7FF	110xxxxx	10xxxxxx		
16	FFFF	1110xxxx	10xxxxxx	10xxxxxx	
21	1FFFFF	11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

Next Time ...

- Why cover logic in a course called "Computer Systems"?
- Some key logical connectives
- Modus Ponens
- "A puff of logic"