3. Foliensatz Betriebssysteme

Prof. Dr. Christian Baun

Frankfurt University of Applied Sciences (1971-2014: Fachhochschule Frankfurt am Main) Fachbereich Informatik und Ingenieurwissenschaften christianbaun@fb2.fra-uas.de

Lernziele dieses Foliensatzes

- Am Ende dieses Foliensatzes kennen/verstehen Sie. . .
 - die Rechnerarchitektur Von-Neumann-Architektur
 - die Hardware-Komponenten eines Computers
 - Hauptprozessor (CPU)
 - Busleitungen
 - den Unterschied zwischen zeichen- und blockorientierten Geräten
 - wie Daten von Ein- und Ausgabegeräten gelesen werden
 - was für Speicher in Computern existiert
 - die Architektur der Speicherhierarchie (Speicherpyramide)
 - was Primär-/Sekundär-/Tertiärspeicher ist
 - die Arbeitsweise der **Speicherhierarchie**
 - die Arbeitsweise der Cache-Schreibstrategien (Write-Back und Write-Through)

Übungsblatt 3 wiederholt die für die Lernziele relevanten Inhalte dieses Foliensatzes

Warum das Ganze?

• Warum besprechen wir auch die Arbeitsweise der CPU, des Speichers und der Bussysteme in der Vorlesung Betriebssysteme?

Edsger W. Dijkstra

"In der Informatik geht es genau so wenig um Computer, wie in der Astronomie um Teleskope."

- Betriebssysteme erleichtern den Benutzern und deren Prozessen die Nutzung der Hardware
- Wer die Arbeitsweise der CPU, des Speichers und der Bussysteme nicht kennt und versteht, versteht auch nicht die Arbeitsweise der Betriebssysteme

Von-Neumann-Architektur

Bildquelle: Wikipedia

- Idee und Aufbau des Universalrechners, der nicht an ein festes Programm gebunden ist und über Ein-/Ausgabegeräte verfügt
 - Entwickelt 1946 von John von Neumann
 - Nach ihm benannt ist die Von-Neumann-Architektur, bzw. der Von-Neumann-Rechner

- Im Von-Neumann-Rechner werden Daten und Programme binär kodiert und liegen im gleichen Speicher
- Wesentliche Ideen der Von-Neumann-Architektur wurden bereits 1936 von Konrad Zuse ausgearbeitet und 1937 in der Zuse Z1 realisiert
- Von Neumanns Verdienste:
 - Er hat sich als erster wissenschaftlich, mathematisch mit der Konstruktion von Rechenmaschinen beschäftigt

Der Hauptprozessor – Central Processing Unit (CPU)

- Die meisten Komponenten eines Computers sind passiv und werden durch die CPU gesteuert
- Programme sind Folgen von Maschineninstruktionen, die in aufeinander folgenden Speicheradressen abgelegt sind
- Bei der Programmausführung setzt die CPU die Maschineninstruktionen Schritt für Schritt um
- Eine CPU besteht aus 2 Komponenten:
 - Rechenwerk
 - Steuerwerk
- Zudem sind Speicher und Ein-/Ausgabegeräte nötig

Komponenten der CPU

- Steuerwerk bzw. Leitwerk bzw. Befehlswerk (Control Unit)
 - Interpretiert Befehle, koordiniert die anderen CPU-Komponenten, steuert die Ein-/Ausgabe-Einheiten und den Steuerbus
- Rechenwerk bzw. Arithmetic Logic Unit (ALU)
 - Manipulation von Daten und Adressen
 - Führt die logischen (NOT, AND, OR, XOR,...) und mathematischen (ADD, SUB,...) Operationen aus

Speicher

- Register zur kurzfristigen Speicherung von Operanden und Adressen
 - Arbeiten mit der selben Geschwindigkeit, wie der Rest der CPU
- Cache und Hauptspeicher
 - Speicher f
 ür Programme und Daten

Von-Neumann-Zyklus (Fetch-Decode-Execute Cycle)

- Wiederholt die CPU vom Systemstart bis der Computer gestoppt wird
 - Jede Phase kann mehrere Takte in Anspruch nehmen
- FETCH: Abzuarbeitenden Befehl aus dem Speicher in das Befehlsregister (Instruction Register) kopieren
- OECODE: Steuerwerk löst den Befehl in Schaltinstruktionen für das Rechenwerk auf
- § FETCH OPERANDS: Eventuell verfügbare Parameter (Operanden) für den Befehl aus dem Speicher holen
- 4 EXECUTE: Rechenwerk führt den Befehl aus
- UPDATE PROGRAM COUNTER: Befehlszähler (Program Counter) wird auf den nächsten Befehl gesetzt
- WRITE BACK: Das Ergebnis des Befehls wird in einem Register oder im Hauptspeicher gespeichert oder zu einem Ausgabegerät gesendet
- Auch moderne CPUs und Rechnersysteme arbeiten nach dem Von-Neumann-Zyklus und Von-Neumann-Rechner
- Ausnahme: Ein einzelner Bus um Eingabe-/Ausgabe-Geräte direkt mit der CPU zu verbinden, ist nicht mehr möglich

Datenbus

- Überträgt Daten zwischen CPU, Arbeitsspeicher und Peripherie
- Anzahl der Datenbusleitungen legt fest, wie viele Bytes pro Takt übertragen werden können
- Üblicherweise ist die Anzahl der Datenbusleitungen gleich der Größe der Arbeitsregister im Rechenwerk
- Datenbusbreite moderner CPUs: 64 Leitungen
 - Die CPU kann somit 64 Datenbits innerhalb eines Taktes zum und vom Arbeitsspeicher weg übertragen

Adressbus

- Überträgt Speicheradressen
- Speicheradressen und E/A-Geräte werden über den Adressbus angesprochen (adressiert)
- Anzahl der Busleitungen legt die maximale Anzahl adressierbarer Speicheradressen fest

Adressbusbreite einiger CPUs

CPU	
4004, 4040	
8008, 8080	
8085	
8088, 8086 (XT)	
80286 (AT)	
80386SX/DX, 80486SX/DX/DX2/DX4, Pentium I/MMX/II/III/IV/D/M, Celeron,	
Core Solo/Duo, Core 2 Duo/Extreme/Quad, Pentium Pro, Pentium Dual-Core, Core i7	
Itanium	
AMD Phenom-II, Itanium 2, AMD64	

Adressbus	max. adressierba
4 Bits	$2^4 = 16 \text{ Bytes}$
8 Bits	$2^8 = 256 \text{ Bytes}$
16 Bits	$2^{16} = 65 \text{ kB}$

= 1 MB 20 Bits = 16 MB 24 Rits = 4 GB 32 Bits

36 Rits = 64 GB $2^{44} = 16 \text{ TB}$ 44 Bits $2^{48} = 256 \text{ TB}$ 48 Rits

Steuerbus

- Überträgt Kommandos (z.B. Lese- und Schreibanweisungen) von der CPU und Statusmeldungen von den Peripheriegeräten
- Unterschied zwischen Adressbus und Steuerbus:
 - Komponenten des Computers werden über den Adressbus angesprochen und über den Steuerbus angewiesen, was sie zu tun haben
- Enthält auch Leitungen, über die E/A-Geräte der CPU Unterbrechungsanforderungen (Interrupts) signalisieren
- ullet Typische Busbreite: ≤ 10 Leitungen

Busse in modernen Rechnersystemen

- Verbindendes Element: Chipsatz
- Der Chipsatz besteht aus...
 - Northbridge
 - Liegt dicht an der CPU, um Daten schnell übertragen zu können
 - Zuständig für Anbindung des Hauptspeicher und der Grafikkarte(n) an die CPU
 - Southbridge
 - Für "langsamere" Verbindungen
- Front-Side-Bus (FSB) heißt der Bus zwischen CPU und Chipsatz
 - Er enthält den Adressbus, Datenbus und Steuerbus

Ausgewählte Bussysteme

- Aus Geschwindigkeits- und Kostengründen werden zunehmend Teile des Chipsatzes in die CPU verlagert
 - Anders als in der Von-Neumann-Architektur werden Geräte nicht direkt mit der CPU verbunden
 - Rechnersysteme enthalten heute verschiedenen seriellen und parallele Bussysteme, die für die jeweilige Erfordernisse ausgelegt sind
 - Immer häufiger werden Punkt-zu-Punkt-Verbindungen eingesetzt
 - Eingabe-/Ausgabecontroller arbeiten als Vermittler zwischen den Geräten und der CPU
- Einige Bussysteme:
 - Parallele, Rechner-interne Busse: PATA (IDE), PCI, ISA, SCSI...
 - Serielle, Rechner-interne Busse: SATA, PCI-Express. . .
 - Parallele, Rechner-externe Busse: PCMCIA, SCSI...
 - Serielle, Rechner-externe Busse: Ethernet, FireWire, USB, eSATA...

Verlagerung des Speichercontrollers in die CPU

Quelle: c't 25/2008

Intel Core 2 Extreme OX9770

Intel Core i7-965 Extreme Edition

AMD Phenom X4 9950

Ergebnis: Die Northbridge enthält nur noch den Controller für PCle

Verlagerung der Northbridge in die CPU

- Bei einigen modernen Systemen ist die Northbridge in die CPU verlagert
- Vorteil: Geringere Kosten für das Gesamtsystem

Bildquelle: http://www.techspot.com/review/193-intel-core-i5-750/page3.html Das Bild zeigt eine Intel Core i5-750 CPU mit Intel P55-Chipsatz von 2009

Zeichenorientierte und Blockorientierte Geräte

 Geräte an Computersystemen werden bezüglich der kleinsten Übertragungseinheit unterschieden:

Zeichenorientierte Geräte

- Bei Ankunft/Anforderung jedes einzelnes Zeichens wird immer mit der CPU kommuniziert
- Beispiele: Maus, Tastatur, Drucker, Terminal und Magnetband

Blockorientierte Geräte

- Datenübertragung findet erst statt, wenn ein kompletter Block (z.B. 1-4kB) vorliegt
- Beispiele: Festplatte, SSD, CD-/DVD-Laufwerk und Disketten-Laufwerk
- Die meisten blockorientierten Geräte unterstützen Direct Memory Access (DMA), um Daten ohne CPU-beteiligung zu übertragen

Daten einlesen

- Soll z.B. ein Datensatz von einer Festplatte gelesen werden, sind folgende Schritte nötig:
 - Die CPU bekommt von einem Prozess die Anforderung, einen Datensatz von einer Festplatte zu lesen
 - ② Die CPU schickt dem Controller mit Hilfe des Treibers einen I/O-Befehl
 - 3 Der Controller lokalisiert den Datensatz auf der Festplatte
 - Oer Prozess erhält die angeforderten Daten
- Es gibt 3 Möglichkeiten, wie ein Prozess Daten einliest:
 - Busy Waiting (geschäftiges bzw. aktives Warten)
 - Interrupt-gesteuert
 - Direct Memory Access (DMA)

Busy Waiting (geschäftiges bzw. aktives Warten)

- Der Treiber sendet die Anfrage an das Gerät und wartet in einer
 Endlosschleife, bis der Controller anzeigt, dass die Daten bereit stehen
 - Stehen die Daten bereit, werden sie in den Speicher geschrieben und die Ausführung des Prozesses geht weiter
- Beispiel: Zugriffsprotokoll Programmed Input/Output (PIO)
 - Die CPU greift via Lese- und Schreibbefehle auf die Speicherbereiche der Geräte zu und kopiert so Daten zwischen den Geräten und dem Hauptspeicher

Vorteil:

Keine zusätzliche Hardware nötig

Nachteile:

- Belastet die CPU
- Verlangsamt die gleichzeitige Abarbeitung mehrerer Prozesse
 - Grund: Regelmäßig muss die CPU überprüfen, ob die Daten bereit stehen

Beispiele: PATA-Festplatten im PIO-Modus, serielle Schnittstelle, parallele Schnittstelle, PS/2-Schnittstelle für Tastatur und Maus

Interrupt-gesteuert

- Voraussetzung: Ein Interrupt-Controller und Leitungen im Steuerbus für das Senden der Interrupts
- Der Treiber initialisiert die E/A-Aufgabe und wartet auf einen Interrupt (Unterbrechung) durch den Controller ⇒ Der Treiber schläft
 - Die CPU ist w\u00e4hrend des Wartens auf den Interrupt nicht blockiert und das Betriebssystem kann die CPU anderen Prozesse zuweisen
 - Kommt es zum Interrupt, wird der Treiber dadurch geweckt
 bekommt Zugriff auf die CPU
 - Danach holt die CPU die Daten vom Controller und legt sie in den Speicher
 - Anschließend wird die CPU dem unterbrochenen Prozess zugewiesen, der seine Abarbeitung fortsetzen kann

Vorteile:

- Die CPU wird nicht blockiert
- Gleichzeitige Abarbeitung mehrerer Prozesse wird nicht verlangsamt

Nachteile:

Zusätzliche Hardware (Interrupt-Controller) ist nötig

Direct Memory Access

- Voraussetzung: DMA-Controller
 - Kann Daten direkt zwischen Arbeitsspeicher und E/A-Gerät übertragen
 - Beispiele: HDD/SSD, Soundkarte, Netzwerkkarte, TV-/DVB-Karte
 - Löst nach der Datenübertragung einen Interrupt aus

• Beispiel: **Ultra-DMA** (UDMA)

- Nachfolgeprotokoll des PIO-Modus
- Legt fest, wie Daten zwischen DMA-Controller und Arbeitsspeicher übertragen werden

Vorteile:

- Vollständige Entlastung der CPU
- Gleichzeitige Abarbeitung mehrerer Prozesse wird nicht verlangsamt

Nachteile:

- Zusätzliche Hardware (DMA-Controller) ist nötig
 - Seit Ende der 1980er Jahre im Chipsatz integriert

Prof. Dr. Christian Baun – 3. Foliensatz Betriebssysteme – Frankfurt University of Applied Sciences – SS2016

Speicher

- Speichert die Daten und die ausführbare Programme
- Unterschiedliche Speicher sind durch Busse verbunden und bilden eine Hierarchie
 - ⇒ **Speicherpyramide** (siehe Folie 26)
- Grund für die Speicher-Hierarchie: Preis/Leistungsverhältnis
 - \Longrightarrow Je schneller ein Speicher ist, desto teurer und knapper ist er

Digitale Datenspeicher

Speicher	Speicherung	Lesevorgang	Zugriffsart	Bewegliche Teile	Persistent
Lochstreifen	mechanisch		sequentiell	ja	ja
Lochkarte	mechanisch		sequentiell	ja	ja
Magnetband	magnetisch		sequentiell	ja	ja
Magnetkarte / Magnetstreifen	magnetisch		sequentiell	ja	ja
Trommelspeicher (Drum Memory)	magne	tisch	wahlfrei	ja	ja
Kernspeicher	magne	tisch	wahlfrei	nein	ja
Magnetblasenspeicher (Bubble Memory)	magnetisch		wahlfrei	nein	ja
Hauptspeicher (DRAM)	elektronisch		wahlfrei	nein	nein
Compact Cassette (Datasette)	magnetisch		sequentiell	ja	ja
Diskette (Floppy Disk)	magnetisch		wahlfrei	ja	ja
Festplatte (Hard Disk)	magnetisch		wahlfrei	ja	ja
Magneto Optical Disc (MO-Disk)	magneto-optisch	optisch	wahlfrei	ja	ja
CD-ROM/DVD-ROM	mechanisch	optisch	wahlfrei	ja	ja
CD-R/CD-RW/DVD-R/DVD-RW	optisch		wahlfrei	ja	ja
MiniDisc	magneto-optisch	optisch	wahlfrei	ja	ja
Flashspeicher (USB-Stick, SSD, CF-Karte)	elektronisch		wahlfrei	nein	ja

- Wahlfreier Zugriff heißt, dass das Medium nicht wie z.B. bei Bandlaufwerken – von Beginn an sequentiell durchsucht werden muss, um eine bestimmte Stelle (Datei) zu finden
 - Die Köpfe von Magnetplatten oder ein Laser können in einer bekannten maximalen Zeit zu jedem Punkt des Mediums springen

Mechanische Datenspeicher

- Jede Lochkarte stellt üblicherweise eine Zeile Programmtext mit 80 Zeichen oder entsprechend viele binäre Daten dar
- Der dargestellte Lochstreifen hat 8 Löcher für Daten und eine kleinere Transportlochung
 - Man kann damit 1 Byte pro Zeile speichern
- Die Datenspeicherung auf CDs/DVDs erfolgt mit Pits (Gruben) und Lands (Flächen), die auf einem Kunststoff aufgebracht sind
 - Die Massenherstellung von CDs/DVDs heißt pressen und erfolgt via Spritzgussverfahren mit einem Negativ (Stamper)

Magnetische Datenspeicher

Quelle: http://sub.allaboutcircuits.com/images/04212.png

- Datenspeicherung erfolgt auf magnetisierbarem Material
- Datenträger werden mit einem Lese-Schreib-Kopf gelesen und beschrieben
 - Ausnahme: Kernspeicher
- Der Lese-Schreib-Kopf kann beweglich (z.B. bei Festplatten) oder feststehend (z.B. bei Magnetbändern) sein

Rotierende Datenspeicher:

- Festplatte⇒ Foliensatz 4
- Trommelspeicher
- Diskette

• Nichtrotierende Datenspeicher:

- Kernspeicher
- Magnetband
- Magnetkarte / Magnetstreifen
- Compact Cassette (Datasette)
- Magnetblasenspeicher

Magneto-optische Datenspeicher

- Rotierendes Speichermedium
- Wird magnetisch beschrieben
- Der Datenträger muss zum Schreiben erhitzt werden
 - Erst oberhalb der Curie-Temperatur ist die magnetische Information änderbar
 - Vorteil: Unempfindlich gegen Magnetfelder
 - Das Erhitzen erfolgt via Laserstrahl
- Wird optisch ausgelesen
 - Unterschiedlich magnetisierte Bereiche reflektieren Licht unterschiedlich

Heating laser
beam

Media magnetization

Dick Lubel side media

S

Magnetic field lines

Bildquelle: Joshua Kugler

Elektronischer Datenspeicher

- Flüchtiger Speicher (volatile) Random-Access Memory (RAM)
 - Static Random-Access Memory (SRAM)
 - Informationen werden als Zustandsänderung einer bistabile Kippstufe (Flipflop) gespeichert
 - Informationen k\u00f6nnen beim Anliegen der Betriebsspannung beliebig lange gespeichert werden
 - Dynamic Random-Access Memory (DRAM)
 - Informationen werden in Kondensatoren gespeichert
 - Benötigt ein periodisches Auffrischen der Informationen
 - Bei fehlender dauerhaft Betriebsspannung oder zu später
 Wiederauffrischung gehen die Information wegen der Leckströme verloren
- Nichtflüchtiges Speicher (non-volatile)
 - Read-Only Memory (ROM)
 - Ultra-Violet Erasable Programmable ROM (UV-EPROM)
 - Electrically Erasable Programmable ROM (EEPROM)
 - ...
 - Flash-Speicher ⇒ Foliensatz 4

Speicherpyramide

- Primärspeicher: Darauf greift die CPU direkt zu
- Sekundärspeicher: Wird über einen Controller angesprochen
- Tertiärspeicher: Nicht dauerhaft mit dem Rechner verbunden. Hauptaufgabe ist Archivierung

Primär-/Sekundär-/Tertiärspeicher

- Primärspeicher und Sekundärspeicher sind permanent mit dem Computer verbunden
 - Vorteil: Geringe Zugriffszeiten auf gespeicherte Daten

- Tertiärspeicher wird unterschieden in:
 - Nearlinespeicher: Werden automatisch und ohne menschliches Zutun dem System bereitgestellt (z.B. Band-Library)
 - Offlinespeicher: Medien werden in Schränken oder Lagerräumen aufbewahrt und müssen von Hand in das System integriert werden
 - Streng genommen sind Wechselfestplatten (Sekundärspeicher) auch Offlinespeicher

Arbeitsweise der Speicherhierarchie

 Beim ersten Zugriff auf ein Datenelement, wird eine Kopie erzeugt, die entlang der Speicherhierarchie nach oben wandert

- Wird das Datenelement verändert, müssen die Änderungen irgendwann nach unten durchgereicht (zurückgeschrieben) werden
 - Beim zurückschreiben, müssen die Kopien des Datenblocks auf allen Ebenen aktualisiert werden, um Inkonsistenzen zu vermeiden
 - Änderungen können nicht direkt auf die unterste Ebene (zum Original) durchgereicht werden!

Cache-Schreibstrategien

Bildquelle: http://www.osslab.com.tw

Write-Through

- Änderungen werden sofort an tiefere Speicherebenen weitergegeben
- Vorteil: Konsistenz ist gesichert
- Nachteil: Geringere Geschwindigkeit

Write-Back

- Änderungen werden erst dann weitergegeben, wenn die betreffende Seite aus dem Cache verdrängt wird
- Vorteil: Höhere Geschwindigkeit
- Nachteile:
 - Änderungen gehen beim Systemausfall verloren
 - Für jede Seite im Cache wird ein Dirty Bit im Cache gespeichert, das angibt, ob die Seite geändert wurde

Register, Cache und Hauptspeicher (1/4)

- Register enthalten die Daten, auf die die CPU sofort zugreifen kann
- Die Register sind genauso schnell getaktet wie die CPU selbst

Datenregister (= Accumulatoren) speichern Operanden für die ALU und deren Resultate

- z.B. EAX. ECX. EDX. EBX ⇒ Foliensatz 7
- Adressregister f
 ür Speicheradressen von Operanden und Befehlen
 - z.B. Basisadressregister (= Segmentregister) und Indexregister (für den Offset) ⇒ Foliensatz 5
- **Befehlszähler** (= *Program Counter*) (= Instruction Pointer) enthält die Speicheradresse des nächsten Befehls
- **Befehlsregister** (= *Instruction Register*) speichert den aktuellen Befehl
- **Stapelregister** (= Stack Pointer) enthält die Speicheradresse am Ende des Stacks ⇒ Foliensatz 7

Bildquelle: http://courses.cs.vt.edu/~csonline/ MachineArchitecture/Lessons/CPU/cpu circuit.gif

Register, Cache und Hauptspeicher (2/4)

• Cache (Pufferspeicher) enthält Kopien von Teilen des Arbeitsspeichers um den Zugriff auf diese Daten zu beschleunigen

- First Level Cache (L1-Cache)
 - Ist in die CPU integriert
- Second Level Cache (L2-Cache)
 - Ist langsamer und größer
 - Ursprünglich außerhalb der CPU

Bildquelle: Konstantin Lanzet Das Bild zeigt eine Intel Mobile Pentium II "Tongae" 233 MHz CPU mit externem 512 kB L2-Cache. Der L2-Cache läuft mit halber Taktfrequenz

Bildquelle: http://www.vogons.org/viewtopic.php?t=31916
Das Bild zeigt ein Elitegroup SI5PI AIO mit einem Pentium 60.
Das Mainboard verfütz über 16 Sockel für Speichermodule für L2-Cache

Register, Cache und Hauptspeicher (3/4)

- Seit 1999/2000 integrieren die CPU-Hersteller zunehmend den L2-Cache in die CPUs
 - Das führte zur Etablierung das Third Level Cache (L3-Cache) als CPU-externen Cache
- Bei modernen CPUs (z.B. Intel Core-i-Serie und AMD Phenom II) ist auch der L3-Cache in die CPU integriert
 - Bei Multicore-CPUs mit integriertem L3-Cache teilen sich die Kerne den L3-Cache, während jeder Kern einen eigenen L1-Cache und L2-Cache hat

Bildquelle: Intel
Das Bild zeigt eine Intel Core i7-3770K "Ivy
Bridge" CPU mit 4 Kernen

Register, Cache und Hauptspeicher (4/4)

• Typische Kapazitäten der Cache-Ebenen:

L1-Cache: 4 kB bis 256 kB

L2-Cache: 256 kB bis 4 MB

• L3-Cache: 1 MB bis 16 MB

- Hauptspeicher, auch Arbeitsspeicher oder RAM (Random Access Memory = Speicher mit wahlfreiem Zugriff) genannt
 - Kapazität: Wenige hundert MB bis mehrere GB
 - Alle Anfragen der CPU, die nicht vom Cache beantwortet werden können, werden an den Hauptspeicher weitergeleitet

RAM und ROM

Im Gegensatz zum flüchtigen Hauptspeicher RAM ist ROM (Read Only Memory) ein nicht-flüchtiger Lesespeicher

Grundlagen zum Speicher und Speicherverwaltung

- Bislang haben wir bzgl. Speicher geklärt:
 - Er nimmt Daten und die auszuführenden Programme auf
 - Er bildet eine Hierarchie (⇒ Speicherpyramide)
 - Grund: Preis/Leistungsverhältnis
 - Je schneller ein Speicher ist, desto teurer und knapper ist er
- Beim ersten Zugriff auf ein Datenelement, wird eine Kopie erzeugt, die entlang der Speicherhierarchie nach oben wandert
- Da die obersten Speicherebenen praktisch immer voll belegt sind, müssen Daten verdrängt/ersetzt werden
- Änderungen müssen durchgereicht (zurückgeschrieben) werden
- Es ist zu klären:
 - **Speicherverwaltung** ⇒ Foliensatz 5
 - Speicheradressierung => Foliensatz 5