PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-056019

(43) Date of publication of application: 27.02.1996

(51)Int.CI.

H01L 33/00

(21)Application number: 06-211747

(71)Applicant: IWASAKI ELECTRIC CO LTD

(22)Date of filing:

12.08.1994 (72)Inventor

(72)Inventor: SUEHIRO YOSHINOBU

SATO TAKASHI

(54) REFLECTION LIGHT EMITTING DIODE

(57)Abstract:

PURPOSE: To enable prevention of reduction in external radiation efficiency even when a radiation surface is formed at a higher position away from a reflection surface. CONSTITUTION: A reflection light emitting diode has a light emitting device, a concave reflection surface 14 provided on a light emitting side of the light emitting device, a radiation surface 15 provided on the back side of the light emitting device, and a light transmitting maternal 13 charged between the concave reflection surface 14 and the radiation surface 15. In this reflective light emitting diode, the concave reflection surface 14 has a first reflection surface 14a formed in a central portion thereof for reflecting a light emitted in a horizontal direction by the light emitting device over a wide range including a direction substantially parallel to the center axis. In addition, the concave reflection surface 14 has second reflection surfaces 14b. 14b formed on both ends in the horizontal direction for reflecting the light emitted in the horizontal direction by the light emitting device into a direction substantially parallel to the center axis and a direction inner from the center axis.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-56019

(43)公開日 平成8年(1996)2月27日

(51) Int.Cl.⁶

設別記号 庁内整理番号

FΙ

技術表示箇所

H01L 33/00

N

M

審査請求 未請求 請求項の数3 FD (全 9 頁)

(22)出顧日 平成6年			岩崎電気株式会社	
	(1994) 8 月12日		東京都港区芝3丁目12番4号	
		(72)発明者	末広 好伸	
			埼玉県行田市富士見町1丁目20番地	岩崎
			電気株式会社開発センター内	
		(72)発明者	佐藤敬	
			埼玉県行田市富士見町1丁目20番地	岩崎
	•		電気株式会社開発センター内	
		(74)代理人	弁理士 半田 昌男	
		1		

(54) 【発明の名称】 反射型発光ダイオード

(57)【要約】

【目的】 放射面を反射面から離れた高い位置に形成した場合でも、外部放射効率の低下を防止することができる反射型発光ダイオードを提供する。

【構成】 発光素子と、発光素子の発光面側に設けられた凹面状反射面14と、発光素子の背面側に設けられた放射面15と、凹面状反射面14と放射面15との間に充填された光透過性材料13とを有する反射型発光ダイオードにおいて、凹面状反射面14は、中央部に形成された、水平方向において発光素子が発した光を中心軸に略平行な方向を含む広い範囲に反射する第一反射面14aと、水平方向側の両端部に形成された、水平方向において発光素子が発した光を中心軸に略平行な方向及び中心軸に対し内側の方向に反射する第二反射面14b,14bとを有する。

30

【特許請求の範囲】

【請求項1】 発光素子と、前記発光素子の発光面側に設けられた前記発光素子が発した光を反射する凹面状反射面と、前記発光素子の背面側に設けられた前記凹面状反射面により反射された光を外部に放射する放射面と、前記凹面状反射面と前記放射面との間に充填された光透過性材料とを有する反射型発光ダイオードにおいて、前記凹面状反射面は、中央部に形成された、水平方向において前記発光素子が発した光を中心軸に略平行な方向を含む広い範囲に反射する第一の反射面と、水平方向側の両端部に設けられた、水平方向において前記発光素子が発した光を中心軸に略平行な方向及び/又は中心軸に対し内側の方向に反射する第二の反射面と、を有することを特徴とする反射型発光ダイオード。

【請求項2】 前記放射面は、正面形状が前記凹面状反射面の正面形状と略同一であり、水平方向において前記第一の反射面で反射された光のうち中心軸に対し最も外側の方向に反射される光が通過できるように形成されていることを特徴とする請求項1記載の反射型発光ダイオード。

【請求項3】 前記第一の反射面の正面形状及び中心軸 に垂直な平面による断面形状は、水平方向の径が鉛直方 向の径より長い楕円面状に形成され、前記第二の反射面 は、球面状に形成されていることを特徴とする請求項1 又は2記載の反射型発光ダイオード。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、たとえば表示装置に用いられる発光ダイオードに関するものである。

[0002]

【従来の技術】従来の屋外用の表示装置に用いられる反射型発光ダイオードについて図9乃至図11を参照して説明する。図9は従来の屋外用の表示装置に用いられる反射型発光ダイオードの概略正面図、図10は図9に示す反射型発光ダイオードのA-A矢視方向概略断面図であり、発光素子が発した光の水平方向における光路を説明するための図、図11は図9に示す反射型発光ダイオードのB-B矢視方向概略断面図であり、発光素子が発した光の鉛直方向における光路を説明するための図である。

【0003】従来の屋外用の表示装置に用いられる反射型発光ダイオード50は、図9乃至図11に示すように、発光面が略正方形の発光素子51a、51bと、発光素子51aに電力を供給するリードフレーム52a、52cと、発光素子51bに電力を供給するリードフレーム52b、52cと、光透過性材料53と、発光素子51a、51bの発光面と対向する側に設けられた凹面状反射面54と、発光素子51a、51bの背面側に設けられた放射面55と、ワイヤ56a、56bとを有する。光透過性材料53は、発光素子51a、51bと、

リードフレーム52a, 52b, 52cの先端部と、ワイヤ56a, 56bとを一体的に封止する。

【0004】凹面状反射面54は、光透過性材料53の 凸面を鍍金や金属蒸着等により鏡面加工したものであ る。凹面状反射面54の正面形状は、図9乃至図11に 示すように、リードフレーム52a, 52bの発光素子 が設置されている側の面を含む平面と反射型発光ダイオ ード50の中心軸との交点を原点Oとし、反射型発光ダ イオード50の中心軸を2軸、原点Oを通り2軸に直交 する水平線をX軸、原点Oを通りZ軸に直交する鉛直線 をY軸としたときに、X軸方向の径がY軸方向の径より 長い楕円面状に形成されている。さらに、凹面状反射面 54の2軸に垂直な平面による断面形状も、正面形状と 同様に楕円面状に形成されている。また、凹面状反射面 54は、図11に示すように、Y-Z平面において、凹 面状反射面54の端部とX-Y平面とのなす角θが35 度~55度となるように設計されている。図9乃至図1 1において、X軸、Y軸及びZ軸のプラスの方向を矢印 の方向とすると、凹面状反射面54は、次式で表せられ 20

 $z = f_{cr}$, $r = \sqrt{(x^2 + ky^2)}$, 0 < k < 1 【0 0 0 5】放射面5 5は、図1 0及び図1 1に示すように、光透過性材料5 3の表面を平面状に形成したものである。放射面5 5の正面形状は、凹面状反射面5 4の正面形状と略同一である。

【0006】発光素子51a,51bは、図9に示すように、Y-Z平面に対して対称な位置に、且つ、X-Z平面より発光面の辺長の1/6だけ上側(Y軸のプラスの方向)に配置されている。発光素子51aはリードフレーム52aの先端部に、発光素子51bはリードフレーム52bの先端部にそれぞれ設けられている。ワイヤ56aは、一端が発光素子51aと、他端がリードフレーム52cとそれぞれ電気的に接続されている。ワイヤ56bは、一端が発光素子51bと、他端がリードフレーム52cとそれぞれ電気的に接続されている。

【0007】上記構成による反射型発光ダイオード50は、発光素子51a,51bの発光面に対向する側に凹面状反射面54を設けたことにより、発光素子51a,51bが発する光の略全光束の放射方向を制御することができる。また、正面及び2軸に垂直な平面による断面において、X軸方向の径がY軸方向の径より長い楕円面状に形成され、且つ、Y-Z平面において、その端部とX-Y平面とのなす角のが35度~55度となるように形成された凹面状反射面54を用いたことにより、発光素子51a,51bが発した光を、水平方向に広い配光で、また、鉛直方向に狭い配光で反射することができる。すなわち、水平方向においては、図10に示すように、凹面状反射面54の中央部で反射された光は、Z軸に略平行な方向に反射され、その後、放射面55から外50部に放射される。凹面状反射面54の両端部で反射され

た光は、 2軸に対し外側の方向に反射され、その後、放射面55の界面で屈折して更に外側の方向に放射される。一方、鉛直方向においては、発光素子51a,51bをX-Z平面より若干上側に配置したことにより、図11に示すように、凹面状反射面54の中央部及び両端部で反射された光は、 2軸に略平行な方向に反射され、その後、放射面55から外部に放射される。凹面状反射面54の中央部と上端部との間で反射された光は、 2軸に平行な方向より若干下側の方向に反射され、その後、放射面55の界面で屈折して更に下側の方向に放射され 10る。したがって、鉛直方向では、発光素子51a,51bが発した光は、 2軸に対し上側の方向には殆ど反射されない。

【0008】ところで、上記構成の反射型発光ダイオード50を用いた屋外用の表示装置では、通常、ドットマトリックス状に配列された複数個の反射型発光ダイオード50をケース内に収納し、その後、防水のためにケース内を黒色の樹脂で封止する。この際、黒色の封止樹脂が放射面55の表面を覆うのを防止するために、放射面55は、図10の一点鎖線で示すように、できるだけ反20射面54から離れた高い位置に形成することが望ましい。

[0009]

【発明が解決しようとする課題】しかしながら、上記構 成による反射型発光ダイオード50では、図10の一点 鎖線で示すように放射面55を反射面54から離れた高 い位置に形成した場合、図10に示す水平方向におい て、凹面状反射面54の両端部で2軸に対し外側の方向 に反射された光は、放射面55に到達することなく反射 型発光ダイオード50の側面に到達し、その後、黒色の 30 封止樹脂に吸収される。とのため、外部放射効率が低下 し、また水平方向の配光範囲も狭くなるという問題があ る。尚、放射面55を反射面54から離れた位置に形成 した場合でも、放射面55の形状を大きくすることによ り、反射面54で反射された光の略全光束を放射面55 に到達させることが可能である。しかし、反射面54で 反射された光の略全光束を放射面55に到達させること ができる程度に放射面55を大きくした場合、反射型発 光ダイオードをドットマトリックス状に配列した際にド ットピッチが大きくなり過ぎるので、表示装置の解像度 40 が悪くなるという問題がある。

【0010】また、上記構成の反射型発光ダイオード50は、凹面状放射面54が水平方向に広い配光特性を有するので、発光状態を正面から近距離で観察した場合、図12に示すように、発光部が縦長の楕円状(放射面55のハッチングが施されていない部分)に視認される。たとえば、水平方向の径が3.5mm~4.0mmの反射型発光ダイオード50をドットマトリックス状に配列した表示装置において、反射型発光ダイオード50の発光状態を正面から10m以上離れて観察した場合、発光50

部は一つのドットとして視認される。しかし、反射型発光ダイオード50の発光状態を正面から数mといった近距離で観察した場合、発光部は縦長の楕円状に視認される。このため、文字、図形等のパターンを表示したときに、横線又は斜線のつながりが連続的でなくなり、ギザギサな線として視認され、見栄えが悪いという問題もある。

【0011】本発明は上記事情に基づいてなされたものであり、放射面を反射面から離れた位置に形成した場合でも、外部放射効率が低下するのを防止することができる反射型発光ダイオードを提供することを目的とするものである。

[0012]

【課題を解決するための手段】上記課題を解決するために請求項1記載の発明の反射型発光ダイオードは、発光素子と、前記発光素子の発光面側に設けられた前記発光素子が発した光を反射する凹面状反射面と、前記凹面状反射された光を外部に放射する放射面と、前記凹面状反射された光を外部に放射する放射面と、前記凹面状反射面と前記放射面との間に充填された光透過性材料とを有する反射型発光ダイオードにおいて、前記凹面状反射面が、中央部に形成された、水平方向において前記発光素子が発した光を中心軸に略平行な方向を含む広い範囲に反射する第一の反射面と、水平方向側の両端部に設けられた、水平方向において前記発光素子が発した光を中心軸に略平行な方向及び/又は中心軸に対し内側の方向に反射する第二の反射面と、を有することを特徴とするものである。

【0013】請求項2記載の発明の反射型発光ダイオードは、請求項1記載の発明において、前記放射面の正面形状が前記凹面状反射面の正面形状と略同一であり、前記放射面が水平方向において前記第一の反射面で反射された光のうち中心軸に対し最も外側の方向に反射される光が通過できるように形成されていることを特徴とするものである。

【0014】請求項3記載の発明の反射型発光ダイオードは、請求項1又は2記載の発明において、前記第一の反射面の正面形状及び中心軸に垂直な平面による断面形状は、水平方向の径が鉛直方向の径より長い楕円面状に形成され、前記第二の反射面は、球面状に形成されていることを特徴とするものである。

[0015]

【作用】請求項1記載の発明の反射型発光ダイオードは、中央部に形成された、水平方向において発光素子が発した光を中心軸に平行な方向を含む広い範囲に反射する第一の反射面と、水平方向側の両端部に形成された、水平方向において発光素子が発した光を中心軸に略平行な方向及び/又は中心軸に対し内側の方向に反射する第二の反射面とを有する凹面状反射面を設けたことにより、放射面を凹面状反射面から離れた位置に形成した場

合でも、凹面状反射面の水平方向側の両端部で反射され た光、すなわち、第二の反射面で反射された光は側面に 到達することなく放射面から外部に放射されるので、外 部放射効率が低下するのを防止することができる。ま た、第二の反射面が、水平方向において発光素子が発し た光を中心軸に対し内側の方向に反射する面を有する場 合、第二の反射面で中心軸に対し内側の方向に反射され た光は放射面の界面で屈折し、中心軸に対し更に内側の 方向に放射されるので、放射面を凹面状反射面から離れ た位置に形成した場合でも、水平方向の配光特性を広く することができる。さらに、第二の反射面が、水平方向 において発光素子が発した光を中心軸に略平行な方向に 反射する面を有する場合、本発明の反射型発光ダイオー ドの発光状態を正面から近距離で観察したときに、凹面 状反射面の中央部だけでなく両端部も発光しているよう に視認されるので、文字、図形等のパターンを表示した ときに、横線又は斜線のつながりが連続的に視認され、 従来の水平方向に広い配光特性を有する反射型発光ダイ オードに比べて見栄えがよくなる。

【0016】請求項2記載の発明の反射型発光ダイオー 20 ドは、正面形状が凹面状反射面の正面形状と略同一である放射面を、水平方向において第一の反射面で反射された光のうち中心軸に対し最も外側の方向に反射される光が通過できるように形成したことにより、外部放射効率及び水平方向の配光特性を損なうことなく、放射面を反射面から離れた位置に形成することができる。

【0017】請求項3記載の発明の反射型発光ダイオードは、第一の反射面の正面形状及び中心軸に垂直な平面による断面形状を、水平方向の径が鉛直方向の径より長い楕円面状に形成し、第二の反射面を球面状に形成した 30 ことにより、請求項1記載の発明と同様の作用を奏する。

[0018]

【実施例】以下に、本発明の第一実施例について図1乃至図6を参照して説明する。図1は本発明の第一実施例である表示装置に用いられる反射型発光ダイオードの概略正面図、図2は図1に示す反射型発光ダイオードのA-A矢視方向概略断面図であり、発光素子が発した光の水平方向における光路を説明するための図、図3は図1に示す反射型発光ダイオードのB-B矢視方向概略断面 40図であり、発光素子が発した光の鉛直方向における光路を説明するための図、図4は図1に示す反射型発光ダイオードの凹面状反射面の概略正面図、図5は図4に示す凹面状反射面のC-C矢視方向概略断面図、図6は図4に示す凹面状反射面のD-D矢視方向概略断面図である。

【0019】第一実施例の反射型発光ダイオード10 は、図1乃至図3に示すように、互いに異なる発光色を 有する発光素子11a、11bと、発光素子11aに電 力を供給するリードフレーム12a、12cと、発光素 50

子11 bに電力を供給するリードフレーム12b, 12 cと、光透過性材料13と、発光素子11a, 11bの発光面と対向する側に設けられた凹面状反射面14と、発光素子11a, 11bの背面側に設けられた放射面15と、ワイヤ16a, 16bとを有する。光透過性材料13は、発光素子11a, 11bと、リードフレーム12a, 12b, 12cの先端部と、ワイヤ16a, 16bとを一体的に封止する。

【0020】凹面状反射面14は、光透過性材料13の 凸面を鍍金や金属蒸着等により鏡面加工したものであ り、図4及び図5に示すように、中央部に形成された第 一反射面14aと、水平方向側の両端部に形成された第 二反射面 14 b 、 14 b とを有する。第一反射面 14 a の正面形状は、図4乃至図6に示すように、図1乃至図 3に示す反射型発光ダイオード10の中心軸CをZ軸、 原点Oを通りZ軸に直交する水平線をX軸、原点Oを通 りZ軸に直交する鉛直線をY軸としたときに、X軸方向 の半径φ、がY軸方向の半径φ、より長い楕円面状に形 成されている。さらに、第一反射面14の2軸に垂直な 平面による断面形状も、正面形状と同様に楕円面状に形 成されている。但し、第一反射面14aのX軸方向の両 端部 (図4及び図5において、二点鎖線で表した部分) は、第二反射面14b、14bで切り取られている。と とで、原点Oは、図1乃至図3において、リードフレー ム12a, 12bの発光素子が設置されている側の面を 含む平面と中心軸Cとの交点である。また、第一反射面 14 aは、図6に示すように、Y-Z平面において、そ の端部とX-Y平面とのなす角θが35度~55度とな るように形成されている。図4乃至図6に示すように、 X軸、Y軸及びZ軸のプラスの方向を矢印の方向とする

 $z=f_{cr}$, $r=\sqrt{(x^2+ky^2)}$, 0< k< 1 【0021】第二反射面14b, 14bは、図4及び図5に示すように、中央部(図4及び図5において、点線で表した部分)が第一反射面14aで切り取られた球面状に形成されている。この球面がXY平面により切り取られる円の半径 ϕ , は、反射面14aのX軸方向の半径 ϕ , より短く且つY軸方向の半径 ϕ , より長い。第二反射面14b, 14bは、発光素子11a, 11bが発した光を、内周側では2軸に対し内側の方向に反射する。

と、第一反射面 1 4 a は次式で表せられる。

【0022】放射面15は、図2及び図3に示すように、光透過性材料13の表面を平面状に形成したものである。放射面15の正面形状は、凹面状反射面14の正面形状と略同一である。

【0023】発光素子11a,11bは、図1に示すように、発光面が略正方形に形成されている。また、発光素子11a,11bは、図1に示すように、中心軸Cを含む鉛直面(図4に示すY-Z平面)に対して対称な位置に、且つ、中心軸Cを含む水平面(図4に示すX-Z

平面)より発光面の辺長の1/6だけ上側に配置されている。発光素子11aはリードフレーム12aの先端部に、発光素子11bはリードフレーム12bの先端部にそれぞれ設けられている。ワイヤ16aは、一端が発光素子11aと、他端がリードフレーム12cとそれぞれ電気的に接続されている。ワイヤ16bは、一端が発光素子11bと、他端がリードフレーム12cとそれぞれ電気的に接続されている。

【0024】上記構成による反射型発光ダイオード10では、発光素子11a, 11bから発せられた光は、凹 10面状反射面14で反射され、その後、放射面15から外部に放射される。

【0025】ととで、凹面状反射面14で反射された光 のうち第一反射面14aで反射された光は、第一反射面 14aを上記の形状としたことにより、水平方向に広い 配光で、また、鉛直方向に狭い配光で反射される。すな わち、水平方向においては、図2に示すように、第一反 射面14 aの中央部で反射された光は、中心軸C に略平 行な方向に反射され、その後、放射面15から外部に放 射される。第一反射面 1 4 a の水平方向の両端部で反射 20 された光は、中心軸Cに対し外側の方向に反射され、そ の後、放射面15の界面で屈折して更に外側の方向に放 射される。一方、鉛直方向においては、発光素子11 a, 11bを中心軸Cを含む水平面より若干上側に配置 したことにより、図3に示すように、第一反射面14a の中央部及び両端部で反射された光は、中心軸Cに略平 行な方向に反射され、その後、放射面 15 から外部に放 射される。第一反射面 1 4 a の中央部と上端部との間で 反射された光は、中心軸Cに平行な方向より若干下側の 方向に反射され、その後、放射面15の界面で屈折して 30 更に下側の方向に放射される。したがって、鉛直方向に おいては、発光素子11a,11bが発した光は、中心 軸Cに対し上側の方向には殆ど反射されない。

【0026】また、凹面状反射面14で反射された光のうち第二反射面14b,14bを上記の形状としたことにより、水平方向において、中心軸Cに略平行な方向から中心軸Cに対し内側の方向の範囲に反射される。すなわち、水平方向においては、図2に示すように、第二反射面14b,14bの内周側で反射された光は、中心軸Cに略平40行な方向に反射され、その後、放射面15から外部に放射される。第二反射面14b,14bの外周側で反射された光は、中心軸Cに略平40行な方向に反射され、その後、放射面15の界面で屈折して更に内側の方向に放射される。

【0027】上記の第一実施例によれば、中央部に形成された、水平方向において発光素子11a,11bが発した光を中心軸Cに平行な方向を含む広い範囲に反射する第一反射面14aと、水平方向側の両端部に設けられた、水平方向において発光素子11a,11bが発した50

光を中心軸Cに略平行な方向及び中心軸Cに対し内側の方向に反射する第二反射面14b,14bとを有する凹面状反射面14を形成したことにより、放射面15を凹面状反射面14から離れた高い位置に形成した場合でも、凹面状反射面14の水平方向の両端部で反射された光、すなわち第二反射面14b,14bで反射された光は、反射型発光ダイオード10の側面に到達することなく放射面15から外部に放射されるので、外部放射効率が低下するのを防止することができる。

R

【0028】また、上記の第一実施例によれば、水平方向において発光素子11a,11bが発した光を中心軸 Cに対し内側の方向に反射する面を有する第二反射面14b,14bを形成したことにより、水平方向において中心軸Cに対し内側の方向に反射された光は、放射面15の界面で屈折して中心軸Cに対し更に内側の方向に放射されるので、放射面15を凹面状反射面14から離れた高い位置に形成した場合でも、水平方向の配光特性を広くすることができる。

【0029】さらに、上記の第一実施例によれば、水平 方向において発光素子11a, 11bが発した光を中心 軸C に略平行な方向に反射する面を有する第二反射面 1 4 b, 1 4 bを形成したことにより、本実施例の反射型 発光ダイオード10の発光状態を正面から近距離で観察 した場合、図7に示すように、第一反射面14aの中央 部と第二反射面 14b, 14b とが縦長の楕円状(放射 面15のハッチングが施されていない部分) に発光して いるように視認される。このため、たとえば、水平方向 の径が3.5mm~4.0mmの反射型発光ダイオード 10をドットマトリックス状に配列した表示装置におい て、反射型発光ダイオード10の発光状態を正面から数 mといった比較的短い距離で観察した場合でも、円形の ドットとして視認される。したがって、上記の第一実施 例によれば、前述した従来の反射型発光ダイオード50 に比べ、文字、図形等のパターンを表示したときに、横 線又は斜線のつながりが連続的に視認され、見栄えがよ くなる。

【0030】次に、本発明の第二実施例について図8を参照して説明する。図8は本発明の第二実施例である反射型発光ダイオードの概略断面図であり、第一実施例の図2に相当する図である。

【0031】図8に示す反射型発光ダイオード20が本発明の第一実施例である反射型発光ダイオード10と異なる点は、放射面15に代えて放射面25を用いたことである。その他の構成は、反射型発光ダイオード10と同様である。尚、反射型発光ダイオード20において第一実施例である反射型発光ダイオード10と同一の機能を有するものには、同一又は対応する符号を付すことにより、その詳細な説明を省略する。

【0032】放射面25は、図8に示すように、原点Oを通り中心軸Cに垂直な平面からの距離Hが第一反射面

14aの水平方向の半径、すなわち、図4に示すφ,の 1/2となる位置に平面状に形成されている。放射面2 5の正面形状は、凹面状反射面14の正面形状と略同一 である.

【0033】上記構成による反射型発光ダイオード20 では、図8に示すように、水平方向において第一反射面 14aの両端部で反射された光、すなわち中心軸Cに対 し最も外側の方向に反射された光は、反射型発光ダイオ ード20の側面に到達することなく放射面25の端部に 到達し、その後、放射面25の界面で屈折して更に外側 10 の方向に放射される。一方、水平方向において第二反射 面14b、14bで反射された光、すなわち、中心軸C に略平行な方向から中心軸Cに対し内側の方向の範囲に 反射された光は、反射型発光ダイオード20の側面に到 達することなく放射面25の端部に到達し、その後、放 射面25から外部に放射される。

【0034】本発明の第二実施例によれば、正面形状が 凹面状反射面14の正面形状と略同一である放射面25 を、図8に示すように、原点Oを通り中心軸Cに垂直な 平面からの距離日が第一反射面14aにおける水平方向 20 の半径の1/2となる位置に形成しても、発光素子11 a. 11bにより発せられ、凹面状反射面14により反 射された光の略全光束を放射面25から外部に放射する ことができるので、外部放射効率及び水平方向の配光特 性を損なうことなく、且つ、放射面25の正面形状を凹 面状反射面14より大きくすることなく放射面25を凹 面状反射面 14から離れた高い位置に形成することがで きる。これにより、ドットマトリックス状に配列された 上記構成の複数の反射型発光ダイオード20をケース内 に収納し、その後、防水のためにケース内を黒色の樹脂 30 で封止して表示装置を作製した場合、外部放射効率及び 水平方向の配光特性を損なうことなく、且つ、ドットピ ッチを変えることなく、黒色の封止樹脂が放射面25の 表面を覆うのを防止することができる。したがって、表 示装置に適した反射型発光ダイオードを提供することが

【0035】尚、第二実施例では、放射面25を、図8 に示すように、原点Oを通り中心軸Cに垂直な平面から の距離Hが第一反射面 1 4 a における水平方向の半径の 1/2となる位置に形成したものについて説明したが、 本発明はこれに限定されるものではない。放射面25 は、水平方向において第一反射面14 bで反射された光 のうち中心軸Cに対し最も外側の方向に反射される光が 放射面25を通過できるように形成されたものであれば

【0036】本発明は、上記の各実施例に限定されるも のではなく、その要旨の範囲内で数々の変形が可能であ る。たとえば、上記の各実施例では、第二反射面14 b, 14bとして、発光素子1la, 1lbが発した光 向に反射するものについて説明したが、本発明はこれに 限定されるものではない。第二反射面は、発光素子11 a, 11bが発した光を中心軸Cに略平行な方向及び/ 又は中心軸Cに対し内側の方向に反射するものであれば よい。また、第二反射面の形状は、球面状に限定される ものではなく、回転楕円面状又は他の面形状であっても よい。

10

【0037】また、上記の実施例では、第一反射面14 aとして、正面形状及び中心軸Cに垂直な平面による断 面形状が楕円面状に形成されたものについて説明した が、本発明はこれに限定されるものではない。第一反射 面は、水平方向において発光素子11a,11bが発し た光を中心軸Cに平行な方向を含む広い範囲に反射する ものであれば、どのような面形状であってもよい。 【0038】また、上記の実施例では、放射面15とし て、光透過性材料13の表面を平面状に形成したものに ついて説明したが、本発明はこれに限定されるものでは ない。放射面は、凸面状や凹面状に形成されたものであ

ってもよい。 【0039】さらに、上記の実施例では、互いに異なる 発光色を有する二つの発光素子11a,11bを用いた ものについて説明したが、本発明はこれに限定されるも のではなく、発光素子を一個又は三個以上用いてもよ い。また、二個以上の発光素子を用いる場合、各発光素 子に異なる発光色を有するものを用いてもよく、また、 同じ発光色を有するものを用いてもよい。さらに、発光 素子の配置も特に限定されるものではなく、例えば鉛直 方向(図4に示すY軸方向)に配置してもよい。

[0040] 【発明の効果】以上説明したように請求項 1 記載の発明 によれば、中央部に形成された、水平方向において発光 素子が発した光を中心軸に平行な方向を含む広い範囲に 反射する第一の反射面と、水平方向側の両端部に形成さ れた、水平方向において発光素子が発した光を中心軸に 略平行な方向及び/又は中心軸に対し内側の方向に反射 する第二の反射面とを有する凹面状反射面を設けたこと により、放射面を凹面状反射面から離れた位置に形成し た場合でも、凹面状反射面の水平方向側の両端部で反射 された光は、側面に到達することなく放射面から外部に 放射されるので、外部放射効率が低下するのを防止する ことができ、また、第二の反射面が、水平方向において 発光素子が発した光を中心軸に対し内側の方向に反射す る面を有する場合、第二の反射面で中心軸に対し内側の 方向に反射された光は放射面の界面で屈折し、中心軸に 対し更に内側の方向に放射されるので、放射面を凹面状 反射面から離れた位置に形成した場合でも、水平方向の 配光特性を広くすることができ、さらに、第二の反射面 が、水平方向において発光素子が発した光を中心軸に略 平行な方向に反射する面を有する場合、本発明の反射型 を中心軸Cに略平行な方向及び中心軸Cに対し内側の方 50 発光ダイオードの発光状態を正面から近距離で観察した

ときに、凹面状反射面の中央部だけでなく両端部も発光 しているように視認されるので、文字、図形等のパター ンを表示したときに、横線又は斜線のつながりが連続的 に視認され、したがって、従来の水平方向に広い配光特 性を有する反射型発光ダイオードに比べて見栄えのよい 反射型発光ダイオードを提供することができる。

【0041】請求項2記載の発明によれば、正面形状が 凹面状反射面の正面形状と略同一である放射面を、水平 方向において第一の反射面で反射された光のうち中心軸 に対し最も外側の方向に反射される光が通過できるよう 10 に形成したことにより、外部放射効率及び水平方向の配 光特性を損なうことなく、放射面を反射面から離れた位 置に形成することができるので、ドットマトリックス状 に配列された本発明の複数の反射型発光ダイオードをケ ース内に収納し、その後、防水のためにケース内を黒色 の樹脂で封止して表示装置を作製した場合、外部放射効 率及び水平方向の配光特性を損なうことなく、且つ、ド ットピッチを変えることなく、黒色の封止樹脂が放射面 の表面を覆うのを防止することができ、したがって、表 示装置に適した反射型発光ダイオードを提供することが 20 向における光路を説明するための図である。 できる。

【0042】請求項3記載の発明によれば、前記の構成 としたことにより、請求項1記載の発明と同様の効果を 有する反射型発光ダイオードを提供することができる。 【図面の簡単な説明】

【図1】本発明の第一実施例である表示装置に用いられ る反射型発光ダイオードの概略正面図である。

【図2】図1に示す反射型発光ダイオードのA-A矢視 方向概略断面図であり、発光素子が発した光の水平方向 における光路を説明するための図である。

【図3】図1に示す反射型発光ダイオードのB-B矢視 方向概略断面図であり、発光素子が発した光の鉛直方向 における光路を説明するための図である。

*【図4】図1に示す反射型発光ダイオードの凹面状反射 面の概略正面図である。

【図5】図4に示す凹面状反射面のC-C矢視方向概略 断面図である。

12

【図6】図4に示す凹面状反射面のD-D矢視方向概略 断面図である。

【図7】図1に示す反射型発光ダイオードの発光状態を 正面から近距離で観察した場合に視認される光の様子を 示す図である。

【図8】本発明の第二実施例である反射型発光ダイオー ドの概略断面図であり、第一実施例の図2に相当する図 である。

【図9】従来の屋外用の表示装置に用いられる反射型発 光ダイオードの概略正面図である。

【図10】図9に示す反射型発光ダイオードのA-A矢 視方向概略断面図であり、発光素子が発した光の水平方 向における光路を説明するための図である。

【図11】図9に示す反射型発光ダイオードのB-B矢 視方向概略断面図であり、発光素子が発した光の鉛直方

【図12】図9に示す反射型発光ダイオードの発光状態 を正面から近距離で観察した場合に視認される光の様子 を示す図である。

【符号の説明】

10,20 反射型発光ダイオード

11a, 11b 発光素子

12a, 12b, 12c リードフレーム

13 光透過性材料

14 凹面状反射面

14 a 第一反射面

第二反射面 14b

15, 25 放射面

16a, 16b ワイヤ

【図1】

[図2]

