Principles and Applications of Digital Signal Processing (ET4409701) Quiz 2

Date: 2024/05/07

1. In the system of Figure 1

$$X_c(j\Omega) = 0, \ |\Omega| \ge \frac{\pi}{T}$$

and

$$H(e^{jw}) = \begin{cases} e^{-jw}, & |\omega| < \frac{\pi}{L} \\ 0, & \frac{\pi}{L} < |\omega| \le \pi \end{cases}$$

How is y[n] related to the input signal $x_c(t)$?

Figure 1

- 2. Consider the system in Figure 2
- (a) Determine the system function relating the *z*-transforms of the input and output .
- (b) Write the difference equation that is satisfied by the input sequence x[n] and the output sequence y[n].

Figure 2

3. Draw the signal flow graph for the transposed direct form II implementation of the LTI system with system function.

$$H(z) = \frac{1 - \frac{7}{6}z^{-1} + \frac{1}{6}z^{-2}}{1 + z^{-1} + \frac{1}{2}z^{-2}}$$

 TABLE 3
 FOURIER TRANSFORM PAIRS

Sequence	Fourier Transform	
1. $\delta[n]$	1	
2. $\delta[n - n_0]$	$e^{-j\omega n_0}$	
3. 1 $(-\infty < n < \infty)$	$\sum_{k=-\infty}^{\infty} 2\pi \delta(\omega + 2\pi k)$	
4. $a^n u[n]$ (a < 1)	$\frac{1}{1 - ae^{-j\omega}}$	
5. <i>u</i> [<i>n</i>]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{\infty} \pi \delta(\omega + 2\pi k)$ $\frac{1}{(1 - ae^{-j\omega})^2}$	
6. $(n+1)a^n u[n]$ $(a < 1)$	$\frac{1}{(1 - ae^{-j\omega})^2}$	
7. $\frac{r^n \sin \omega_p(n+1)}{\sin \omega_p} u[n] (r < 1)$	$\frac{1}{1 - 2r\cos\omega_p e^{-j\omega} + r^2 e^{-j2\omega}}$	
8. $\frac{\sin \omega_c n}{\pi n}$	$X(e^{j\omega}) = \begin{cases} 1, & \omega < \omega_{c}, \\ 0, & \omega_{c} < \omega \le \pi \end{cases}$	
9. $x[n] = \begin{cases} 1, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$	$\frac{\sin[\omega(M+1)/2]}{\sin(\omega/2)}e^{-j\omega M/2}$	
10. $e^{j\omega_0 n}$	$\sum_{k=-\infty}^{\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)$	
11. $\cos(\omega_0 n + \phi)$	$\sum_{k=-\infty}^{\infty}[\pi e^{j\phi}\delta(\omega-\omega_0+2\pi k)+\pi e^{-j\phi}\delta(\omega+\omega_0+2\pi k)]$	

 TABLE 1
 SOME COMMON z-TRANSFORM PAIRS

Sequence	Transform	ROC
1. $\delta[n]$	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $a^n u[n]$	$\frac{1}{1 - az^{-1}}$	z > a
$6a^n u[-n-1]$	$\frac{1}{1 - az^{-1}}$	z < a
7. $na^nu[n]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z > a
$8na^nu[-n-1]$	$\frac{az^{-1}}{(1-az^{-1})^2}$	z < a
9. $cos(\omega_0 n)u[n]$	$\frac{1 - \cos(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
10. $\sin(\omega_0 n)u[n]$	$\frac{\sin(\omega_0)z^{-1}}{1 - 2\cos(\omega_0)z^{-1} + z^{-2}}$	z > 1
11. $r^n \cos(\omega_0 n) u[n]$	$\frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
12. $r^n \sin(\omega_0 n) u[n]$	$\frac{r\sin(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2z^{-2}}$	z > r
13. $\begin{cases} a^n, & 0 \le n \le N - 1, \\ 0, & \text{otherwise} \end{cases}$	$\frac{1 - a^N z^{-N}}{1 - az^{-1}}$	z > 0