Universidad de Antioquia Facultad de Ingeniería Bioingeniería

LABORATORIO TEORÍA DE MODELOS Y SIMULACIÓN DE SISTEMAS

Docentes

Alher Mauricio Hernández Valdivieso Susana Mejía Echeverry alher.hernandez@udea.edu.co susana.mejiae@udea.edu.co

SIMULACIÓN USANDO PYTHON

EJERICIO PROPUESTO

Se desea modelar el desplazamiento y(t) de una partícula inicialmente en reposo que, tras la acción de la fuerza u(t), describe el comportamiento que define la siguiente ecuación

$$a_2 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_o u(t)$$

Para esto, se hicieron dos experimentos de 50 segundos donde se modificaron las constantes de la ecuación de acuerdo con la información de la siguiente tabla.

	a_2	a_1	a_0	b_0
Experimento 1	1.1	0.3	1	10
Experimento 2	1	0.5	4	3

La fuerza u(t) equivale a 5N aplicados una vez trascurren 3 s tras iniciar el experimento. Para simularla se puede usar un periodo de muestreo de 0.1 s.

Realizar las siguientes actividades:

- 1. Realizar una sola figura donde se compare y(t) en los dos experimentos usando el método de ecuaciones.
- 2. Realizar una sola figura donde se compare y(t) en los dos experimentos usando el método de función de transferencia.
- 3. Responda: ¿Con cuál conjunto de parámetros se sobrepasan los 70m?
- 4. Resuelva el ejercicio considerando una posición inicial de 20 m.