Imitation-Projected Programmatic Reinforcement Learning

Abhinav Verma* Rice University

Hoang M. Le* Caltech

Caltech

Yisong Yue Swarat Chaudhuri Rice University

(* equal contribution)

33rd Conference on Neural Information Processing Systems (NeuRIPS 2019)

Why learning programmatic policies

- Natural way to encode structure into policy class
- Benefits: policy-based guarantee, symbolic verification of programs (& interpretable)
- Example: domain-specific language over a family of parameterized simple controllers

Programmatic reinforcement learning

- lacktriangle The program space Π
 - language (arithmetic, boolean, relational) over simple policies
- Goal: find the best program

$$\pi^* = \operatorname{argmin}_{\pi \in \Pi} J(\pi)$$

- Learning programmatic policies is challneging:
 - Program Synthesis: highly structured nature of policy space
 - Deep RL: programmatic policy representation incompatible with deep policy search
- Approach Overview:

Building program structure into policy search via "lift-and-project"

Making use of hybrid representation

- Neural policy class F: deep RL representation
 - flexible, but unstable and does not satisfy desired property

- Programmatic policy class ∏
 - less flexible, but certifiable

Hybrid representation (functional regularization)

$$H \equiv \Pi \oplus F$$

$$h \equiv \pi + \lambda f$$
 defined as $h(x) = \pi(x) + \lambda f(x)$

Imitation-**pro**jected **p**rogrammatic reinforcement learning (PROPEL)

hybrid class: $H \equiv \Pi \oplus F$

each iteration: $h_t \leftarrow \mathsf{UPDATE}_F(\pi_{t-1})$

 $\pi_t \leftarrow \mathsf{PROJECT}_\Pi(h_t)$

UPDATE: $f \leftarrow f - \eta \lambda \nabla_{\mathbf{F}} J(\pi + \lambda f)$

 $h \leftarrow \pi + \lambda f$

PROJECT: imitation learning

Analysis: approximate (functional) mirror descent perspective

hybrid class: $H \equiv \Pi \oplus F$

each iteration: $h_t \leftarrow \mathsf{UPDATE}_F(\pi_{t-1}) \approx \mathsf{UPDATE}_H(\pi_{t-1})$

 $\pi_t \leftarrow \mathsf{PROJECT}_\Pi(h_t) \approx \mathrm{argmin}_{\pi \in \Pi} ||\pi - h_t||^2$

UPDATE: $f \leftarrow f - \eta \lambda \nabla_{\mathbf{F}} J(\pi + \lambda f)$

$$h \leftarrow \pi + \lambda f$$

UPDATE_H $(\pi_{t-1}) = \pi_{t-1} - \nabla_{H} J(\pi_{t-1})$

 $\mathsf{PROJECT}_\Pi$: finite sample error

Experiment in TORCS

Program space: decision tree with simple, parameterized PID controllers at leaf nodes

"if the car is aligned with the axis of the track..."

if $(\mathbf{obs_{TrackPos}}(0) < 0.001 \text{ and } \mathbf{obs_{TrackPos}}(0) > -0.001)$ then $PID_{rpm}(0.44, 4.92, 0.89, 49.79)$ else $PID_{rpm}(0.40, 4.92, 0.89, 49.79)$ "then a

"then accelerate, otherwise slow down"

Experiment in TORCS - Results

Performance: Lap time in seconds / Crash-ratio (over 25 seeds, lower is better)

LENGTH	G-TRACK 3186M	E-ROAD 3260M	AALBORG 2588M	RUUDSKOGEN 3274M	ALPINE-2 3774M
Prior	312.92 / 0.0	322.59 / 0.0	244.19 / 0.0	340.29 / 0.0	402.89 / 0.0
DDPG	78.82 / 0.24	89.71 / 0.28	101.06 / 0.4	CR / 0.68	Cr / 0.92
NDPS	108.25 / 0.24	126.80 / 0.28	163.25 / 0.4	CR / 0.68	CR / 0.92
VIPER	83.60 / 0.24	87.53 / 0.28	110.57 / 0.4	Cr / 0.68	Cr / 0.92
PropelProg	93.67 / 0.4	119.17 / 0.4	147.28 / 0.12	124.58 / 0.16	256.59 / 0.16
PROPELTREE	78.33 / 0.4	79.39 / 0.4	109.83 / 0.16	118.80 / 0.24	236.01 / 0.36

Generalization: PROPEL completed 10/20 unseen tracks, DDPG completed 2/20

	G-Track	E-ROAD	AALBORG	RUUDSKOGEN	ALPINE-2
G-TRACK E-ROAD	102 / 92	124 / CR	CR / CR CR / CR	CR / CR CR / CR	CR / CR CR / CR
AALBORG	201/91	228 / CR	-	217 / CR	Cr / Cr
Ruudskogen Alpine-2	131 / CR 222 / CR	135 / CR 231 / CR	Cr / Cr 184/ Cr	Cr / Cr	Cr / Cr -

Code available at: https://bitbucket.org/averma8053/propel