Structural Optimization for Large-Scale Problems

Lecture 2: Universal Gradient Methods

PIS

Yurii Nesterov

Minicourse: November 15, 16, 22, 23, 2024 (SDS, Shenzhen)

Outline

Smooth and nonsmooth convex functions

Optimization methods

Uniformly convex functions and application example

Composite minimization and Bregman distances

Universal gradient methods

Numerical experiments

Smooth convex functions

Gradient represents a first-order model of the objective:

$$f(x) + \langle \nabla f(x), h \rangle \leq f(x+h) \leq f(x) + \langle \nabla f(x), h \rangle + o(\|h\|).$$

▶ For $f \in C^{1,1}$, we can ensure monotonic decrease of the objective:

$$x_{+} = \underset{y \in Q}{\operatorname{arg min}} \{f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}L\|y - x\|^{2}\},$$

$$\text{The descent lemma (A) A monotonic decrease in function value)}$$

$$f(x_{+}) \leq \underset{y \in Q}{\min} \{f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}L\|y - x\|^{2}\}.$$

At unconstrained optimum, the gradient vanishes. ロットをstep size カ const.

Consequently, in the gradient method $x_+ = x - h\nabla f(x)$, the stepsize h > 0 can be constant.

Nonsmooth convex functions

Subgradient represents a zero-order model of the objective:

$$f(x) + \langle \nabla f(x), h \rangle \leq f(x+h) \leq f(x) + \langle \nabla f(x), h \rangle + O(\|h\|).$$

- ▶ For $f \in C^{0,0}$, we cannot ensure monotonicity. D 函数值不定始终下降
- ► At unconstrained optimum, the gradient does not vanish. ②不銘全 step size 为
- ► The most useful property of subgradient is

$$\langle \nabla f(x), x - x^* \rangle \geq 0$$
,

where x* is the optimal solution. ②可以确定 argument 挂近 x*的方向

Optimization methods

Smooth functions $(f \in C^{1,1})$:

- Primal gradient method: $x_{k+1} = \pi_Q(x_k \frac{1}{L}\nabla f(x_k))$.
- Dual gradient methods:

$$x_{k+1} = \arg\min_{x \in Q} \left\{ \sum_{i=0}^{k} \langle \nabla f(x_i), x - x_i \rangle + \frac{1}{2} L ||x - x_0||^2 \right\}.$$

(Both are not optimal.) ロばり あ程 ロば

Nonsmooth functions $(f \in C^{0,0})$. Primal subgradient schemes:

$$ightharpoonup x_{k+1} = \pi_Q(x_k - h_k \nabla f(x_k)), \ h_k > 0, \ h_k \to 0, \ \sum_{k=0}^{\infty} h_k = \infty.$$

$$ightharpoonup x_{k+1} = \pi_Q\left(x_k - rac{f(x_k) - f^*}{\|\nabla f(x_k)\|^2} \nabla f(x_k)\right)$$
. Loptimal stepsize)

(Both are optimal.)

按理说简单的问题更该 optimal

⇒ 用 smoothness 来区分 problem class 太粗糙了

多2新的 problem class; Hölder's continuity

Intermediate problem classes

For finite-dimensional linear vector space E, define a norm $\|\cdot\|$.

Then in the dual space E^* , we have $\|g\|_* \stackrel{\mathrm{def}}{=} \max_{\|x\| \leq 1} \langle g, x \rangle$ (conjugate norm) which the dual space E^* is the dual space E^* and E^* is the dual space E^* is the dual spa

Hölder continuity of the gradients: for some $\nu \in [0,1]$ and all $x, y \in Q$ we have

$$\|\nabla f(x) - \nabla f(y)\|_* \le M_{\nu}(f)\|x - y\|^{\nu}.$$

Notation: $f \in C^{1,\nu}(Q)$.

Main property:
$$x, y \in Q$$
.

Main property:
$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{M_{\nu}}{1+\nu} \|x - y\|^{1+\nu}$$
 for all $x, y \in Q$.

Proof: Denote h = y - x. Then

$$f(y) - f(x) - \langle \nabla f(x), h \rangle = \int_{0}^{1} \langle \nabla f(x + \tau h) - \nabla f(x), h \rangle d\tau$$

$$\leq \|h\|\int\limits_0^1 \|
abla f(x+ au h) -
abla f(x)\|_* d au \leq M_
u \|h\|^{1+
u}\int\limits_0^1 au^
u d au.$$

Examples

1. $\nu = 1$: functions with Lipschitz-continuous gradients. If $f \in C^2$, and the metric is Euclidean, then

$$\nabla^2 f(x) \leq M_1(f)I, \quad x \in Q.$$

2. $\nu = 0$: functions with bounded variation of subgradients:

$$\|\nabla f(x) - \nabla f(y)\|_* \leq M_0(f), \quad x, y \in Q.$$

NB: Addition of linear function does not change the constant $M_0(f)$.

3. Functions with $\nu \in (0,1)$ are often obtained by duality.

利用 duality 将
$$P$$
-uniformly convex function f (convexity para σ_P) 教化为 Hölder continuous function f^* (Fenchel dual) $v = \frac{1}{P-1}$ $Mv(f^*) = \left(\frac{P}{2\sigma_P}\right)^{\frac{1}{P-1}}$

Uniformly convex functions

Def: Let $f(x) \in C^1$. It is *p-uniformly convex of degree* $p \ge 2$ if $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{p} \sigma_p ||y - x||^p$ for all $x, y \in E$,

where $\sigma_p = \sigma_p(f)$ is the *parameter* of uniform convexity. P-uniformly convex 的性质

Adding such f to a convex function does not change the parameter. f If f is strongly convex.

Lemma 1. Let
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \sigma ||x - y||^p$$
, $\forall x, y \in E$

Then function f is p-uniformly convex on E with parameters σ .

Proof.

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \int_{0}^{1} \langle \nabla f(x + \tau(y - x)) - \nabla f(x), y - x \rangle d\tau$$

$$=\int_{0}^{1} \frac{1}{\tau} \langle \nabla f(x+\tau(y-x)) - \nabla f(x), \tau(y-x) \rangle d\tau$$

$$\geq \int_{0}^{1} \sigma \tau^{p-1} \|y - x\|^{p} d\tau = \frac{1}{p} \sigma \|y - x\|^{p}.$$

Duality

For
$$f(x) \in C^1$$
 define its *Fenchel dual*: $f_*(s) = \sup_{x \in E} [\langle s, x \rangle - f(x)].$

NB: $\nabla f_*(s) = x_f(s) = \arg\max_{x \in F} [\langle s, x \rangle - f(x)], \quad \nabla f(x_f(s)) = s.$

Lemma 2. If f is p-uniformly convex, then $f_* \in C^{1,\nu}$ with

$$\frac{1}{\nu}+1=P$$
 and $\nu=rac{1}{p-1}, \quad M_{
u}(f_*)=\left(rac{p}{2\sigma_p}
ight)^{rac{1}{p-1}}.$ Holder continuity

Proof. For two points s_1 and s_2 , denote $x_i = x_f(s_i)$. Then

$$f(x_{3-i}) \ge f(x_i) + \langle \nabla f(x_i), x_{3-i} - x_i \rangle + \frac{1}{p} \sigma_p ||x_{3-i} - x_i||^p, \ i = 1, 2.$$

Adding these inequalities, we get

$$\frac{2}{p}\sigma_p\|x_1-x_2\|^p \leq \langle s_1-s_2,x_1-x_2\rangle \leq \|s_1-s_2\|_*\|x_1-x_2\|.$$

Example

1. Consider $f(\tau)=\frac{1}{3}|\tau|^3$, $\tau\in\mathbb{R}$. Then $\nabla f(\tau)=\tau|\tau|$. Note that $(\nabla f(\tau_1)-\nabla f(\tau_2))(\tau_1-\tau_2) = |\tau_1|\tau_1|-\tau_2|\tau_2||\cdot|\tau_1-\tau_2|$ $\geq \frac{1}{2}|\tau_1-\tau_2|^3. \qquad \text{(3-uniformly convex with para $\frac{1}{2}$)}$

Hence,
$$f_*(\xi) = \max_{\tau} \left[\xi \tau - \frac{1}{3} |\tau|^3 \right] = \frac{2}{3} |\xi|^{\frac{3}{2}} \in C^{1,1/2}$$
, and $M_{1/2} = \left[\frac{3}{2 \cdot \frac{1}{2}} \right]^{1/2} = \sqrt{3}$.

2. Consider $F(x) = \frac{1}{3} \sum_{i=1}^{n} \alpha_i |x^{(i)}|^3$. Then for $||h||_{\alpha}^3 \stackrel{\text{def}}{=} \sum_{i=1}^{n} \alpha_i |h^{(i)}|^3$ $\langle \nabla F(x) - \nabla F(y), x - y \rangle \ge \frac{1}{2} ||x - y||_{\alpha}^3 \quad (\alpha > 0).$

Therefore the dual function $F_*(s) = \frac{2}{3} \sum_{i=1}^n \frac{1}{\sqrt{\alpha_i}} |s^{(i)}|^{3/2}$ is in $C^{1,1/2}$ with $M_{1/2} = \sqrt{3}$. Note that $||s||_{\alpha}^* = \left[\sum_{i=1}^n \frac{1}{\sqrt{\alpha_i}} |s^{(i)}|^{3/2}\right]^{2/3}$ (Check!)

Application Example: Gas Network

将 primal problem 轻化为 dual problem, 接着可以构造 fx(s)的形式,这部含是 Given: f(x)的 Fechel dual. 若f(x)为p-uniformly convex,则dual problem的

- > Structure of pipe lines. objective * Holder cont.
- Length and diameter of each pipe.
- Positions and required volumes for sources and sinks.

Compute the flows in the pipes and pressure at the nodes.

Equilibrium principle: the flows minimize the dispersed energy.

$$\min_{f\in\mathbb{R}^n}\left\{\frac{1}{3}\sum_{i=1}^n\alpha_i|f_i|^3:\ Af=d\right\}.$$

Duality:
$$\min_{f \in \mathbb{R}^n} \max_{y \in \mathbb{R}^m} \left\{ \frac{1}{3} \sum_{i=1}^n \alpha_i |f_i|^3 + \langle y, d - Af \rangle \right\}$$
 (dual problem)

$$= \max_{y \in \mathbb{R}^m} \min_{f \in \mathbb{R}^n} \left\{ \frac{1}{3} \sum_{i=1}^n \alpha_i |f_i|^3 - \langle A^T y, f \rangle + \langle y, d \rangle \right\}^{F-\operatorname{dual}: \left[f_*(s) = \sup_{x \in E} \left[\langle s, x \rangle - f(x)\right]\right]}$$

$$= \max_{y \in \mathbb{R}^m} \min_{f \in \mathbb{R}^n} \left\{ \frac{1}{3} \sum_{i=1}^n \alpha_i |f_i|^3 - \langle A^T y, f \rangle + \langle y, d \rangle \right\}^{\text{F-dual}: } \frac{f_*(s) = \sup_{x \in E} [\langle s, x \rangle - f(x)].}{1 + \sup_{y \in \mathbb{R}^m} \left\{ \langle d, y \rangle - \frac{2}{3} \left(||A^T y||_{\alpha}^* \right)^{3/2} \right\}. \text{ (Dual objective is in } C^{1,1/2}.) := -f_* |A^T y|.$$

加上这一项不改变 para

即 $f(x) = \frac{1}{3} \sum_{i=1}^{n} x_i |x_i|^3$ 的 Fenched dual 的相反数

Structure of Holder constants

Hölder constant 的定义

(在研究方法前,首先介绍M)的性质)

Define
$$M_{\nu} \equiv M_{\nu}(f) = \sup_{\substack{x,y \in Q, \\ x \neq y}} \frac{\|\nabla f(x) - \nabla f(y)\|_*}{\|x - y\|^{\nu}}, \quad \nu \geq 0.$$

Since
$$\ln M_{\nu} = \sup_{\substack{x,y \in Q, \\ x \neq y}} \left[\ln \|\nabla f(x) - \nabla f(y)\|_* - \nu \ln \|x - y\| \right],$$

 M_{ν} is a *log-convex* function of ν .

- For certain $\nu \in [0,1]$, M_{ν} can be infinite. (某些 M_{ν} 列数为 ∞)

 If M_0 and M_1 are finite, then $M_{\nu} \leq M_0^{1-\nu} M_1^{\nu}$, $0 \leq \nu \leq 1$. 例 M_{ν} bdd. $\forall \nu$)

 If $M_{\nu} < \infty$, then $\|\nabla f(x) \nabla f(y)\|_* \leq M_{\nu} \|x y\|^{\nu}$, $x, y \in Q$.

Therefore,

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{M_{\nu}}{1+\nu} ||x - y||^{1+\nu}, \quad x, y \in Q.$$

Therefore,
$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{M_{\nu}}{1+\nu} \|x - y\|^{1+\nu}, \quad x, y \in Q.$$
Assumption: $\hat{M}(f) \stackrel{\text{def}}{=} \inf_{0 \leq \nu \leq 1} M_{\nu}(f) < +\infty.$ 后面只考虑这种情况

Composite Minimization and Bregman distances

$$\min_{x \in Q} \left[\tilde{f}(x) \stackrel{\text{def}}{=} f(x) + \Psi(x) \right], \quad \text{where}$$

- Q is a simple closed convex set,
- ightharpoonup Ψ is a <u>simple</u> closed convex function (e.g. squared Euclidean norm, I_1 -norm, barrier functions, indicator of convex set, etc.).
- \triangleright f is assumed to be subdifferentiable on Q.

Prox-function d(x): a differentiable strongly convex function:

$$d(y) \ge d(x) + \langle \nabla d(x), y - x \rangle + \frac{1}{2} \|x - y\|^2, \quad x, y \in \text{rint } Q.$$

Let d(x) attain its minimum on Q at x_0 , and $d(x_0) = 0$.

Thus,
$$d(x) \ge \frac{1}{2} ||x - x_0||^2$$
, $x \in Q$.

Prox-function defines the Bregman distance: (一种类似于11:11的 distance)

$$\xi(x,y) \stackrel{\mathrm{def}}{=} d(y) - d(x) - \langle \nabla d(x), y - x \rangle.$$
 Clearly, $\underline{\xi}(x,x) \equiv 0$, and $\underline{\xi}(x,y) \geq \frac{1}{2} \|x - y\|^2$, $x,y \in Q$.

Bregman Mapping

For any
$$x \in Q$$
 we can define the Bregman mapping $\mathcal{B}_M(x) = \arg\min_{y \in Q} \left\{ \psi_M(x,y) \stackrel{\text{def}}{=} f(x) + \langle \nabla f(x), y - x \rangle + \underbrace{M\xi(x,y)}_{\text{simple}} + \Psi(y) \right\}$.

Assumption: This point is easily computable. Let \mathcal{B} simple \mathcal{B}

First-order optimality condition for the auxiliary optimization problem: $\forall y \in Q$

Main Lemma

Lemma: If $M \geq \left[\frac{1}{\delta}\right]^{\frac{1-\nu}{1+\nu}} M_{\nu}^{\frac{2}{1+\nu}}$ with $\delta > 0$, then for $x, y \in Q$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}M||y - x||^2 + \frac{\delta}{2}.$$

Therefore, $\tilde{f}(\mathcal{B}_M(x)) \leq \psi_M^*(x) + \frac{\delta}{2}$. 允许是误差时, $f(\mathcal{B}_M(x)) \leq \psi_M^*(x)$

Proof: For $\tau, s > 0$, we have $\frac{1}{p}\tau^p + \frac{1}{q}s^q \ge \tau s$, with $\frac{1}{p} + \frac{1}{q} = 1$.

Taking $p=rac{2}{1+
u}$, $q=rac{2}{1u}$, and $au=t^{1+
u}$, we get

$$t^{1+\nu} \leq \frac{1+\nu}{2s}t^2 + \frac{1-\nu}{2}s^{\frac{1+\nu}{1-\nu}}$$
.

Denote $\delta = \frac{1-\nu}{1+\nu} M_{\nu} s^{\frac{1+\nu}{1-\nu}}$. Then $s = \left[\frac{1+\nu}{1-\nu} \cdot \frac{\delta}{M_{\nu}}\right]^{\frac{1-\nu}{1+\nu}}$. Therefore,

$$\frac{M_{\nu}}{1+\nu}t^{1+\nu} \leq \frac{1}{2s}M_{\nu}t^2 + \frac{\delta}{2} = \frac{1}{2}\left[\frac{1-\nu}{1+\nu}\cdot\frac{1}{\delta}\right]^{\frac{1-\nu}{1+\nu}}M_{\nu}^{\frac{2}{1+\nu}}t^2 + \frac{\delta}{2} \leq \frac{1}{2}Mt^2 + \frac{\delta}{2}.$$

Proof (continued)

Further, denoting $x_+ = \mathcal{B}_M(x)$, we obtain:

$$f(x_{+}) \leq f(x) + \langle \nabla f(x), x_{+} - x \rangle + \frac{M_{\nu}}{1+\nu} \|x_{+} - x\|^{1+\nu}$$

$$\leq f(x) + \langle \nabla f(x), x_{+} - x \rangle + \frac{M}{2} \|x_{+} - x\|^{2} + \frac{\delta}{2}$$

$$\leq f(x) + \langle \nabla f(x), x_{+} - x \rangle + M\xi(x, x_{+}) + \frac{\delta}{2}.$$

$$|\xi(x, y)| \geq \frac{1}{\nu} \|x - y\|^{2}$$
Therefore, $\tilde{f}(x_{+}) = f(x_{+}) + \Psi(x_{+}) \leq \psi_{M}^{*}(x) + \frac{\delta}{2}.$

Universal Primal Gradient Method (PGM)

Initialization. Choose $L_0 > 0$ and accuracy $\epsilon > 0$.

For $k \ge 0$ do:

1. Find the smallest $i_k \geq 0$ such that

对M进行"the search"
$$\widetilde{f}\left(\mathcal{B}_{2^{i_k}L_k}(x_k)\right) \leq \psi_{2^{i_k}L_k}^*(x_k) + \frac{1}{2}\epsilon.$$

PGM: convergence

Denote
$$\gamma(M,\epsilon) \stackrel{\text{def}}{=} \left[\frac{1}{\epsilon}\right]^{\frac{1-\nu}{1+\nu}} M^{\frac{2}{1+\nu}},$$
 and
$$S_k = \sum_{i=1}^{k+1} \frac{1}{L_k}, \quad \tilde{f}_k^* = \frac{1}{S_k} \sum_{i=0}^k \frac{1}{L_{i+1}} \tilde{f}(x_i).$$

Theorem: Let $M_{\nu}(f) < \infty$ and $L_0 \leq \gamma(M_{\nu}, \epsilon)$.

Then for all $k \geq 0$ we have $L_{k+1} \leq \gamma(M_{\nu}, \epsilon)$. Moreover, for all $y \in Q$

$$\tilde{f}_k^* \leq \frac{1}{S_k} \sum_{i=0}^k \frac{1}{L_{i+1}} \left[f(x_i) + \langle \nabla f(x_i), y - x_i \rangle \right] + \Psi(y) + \frac{\epsilon}{2} + \frac{2}{S_k} \xi(x_0, y).$$

Therefore,
$$\tilde{f}_k^* - \tilde{f}(x^*) \leq \frac{\epsilon}{2} + \frac{2\gamma(M_{\nu},\epsilon)}{k+1}\xi(x_0,x^*)$$
.

除了人还取决于之,因此要想找出人,需要解码式

Proof, page 1

Let us fix $y \in Q$. Denote $r_k(y) \stackrel{\text{def}}{=} \xi(x_k, y)$. Then (by FOOC) $r_{k+1}(y) = d(y) - d(x_{k+1}) - \langle \nabla d(x_{k+1}), y - x_{k+1} \rangle$ $\leq d(y) - d(x_{k+1}) - \langle \nabla d(x_k), y - x_{k+1} \rangle$ $+ \frac{1}{2L_{k+1}} \langle \nabla f(x_k) + \nabla \Psi(x_{k+1}), y - x_{k+1} \rangle.$

Note that

$$d(y) - d(x_{k+1}) - \langle \nabla d(x_k), y - x_{k+1} \rangle$$

$$= d(y) - d(x_k) - \langle \nabla d(x_k), x_{k+1} - x_k \rangle - \xi(x_k, x_{k+1})$$

$$-\langle \nabla d(x_k), y - x_{k+1} \rangle = r_k(y) - \xi(x_k, x_{k+1}).$$

Proof, page 2

Thus,
$$r_{k+1}(y) - r_k(y) \le$$

$$\frac{1}{2L_{k+1}}\langle \nabla f(x_k) + \nabla \Psi(x_{k+1}), y - x_{k+1} \rangle - \xi(x_k, x_{k+1})$$

$$= \frac{1}{2L_{k+1}} \langle \nabla \Psi(x_{k+1}), y - x_{k+1} \rangle - \frac{1}{2L_{k+1}} \Big(\langle \nabla f(x_k), x_{k+1} - x_k \rangle$$

$$+2L_{k+1}\xi(x_k,x_{k+1})+\frac{1}{2L_{k+1}}\langle\nabla f(x_k),y-x_k\rangle$$

$$\leq \frac{1}{2L_{k+1}}\left(\Psi(y)-\Psi(x_{k+1})+f(x_k)-f(x_{k+1})+\frac{\epsilon}{2}+\langle\nabla f(x_k),y-x_k\rangle\right).$$

Hence,
$$\frac{1}{2L_{k+1}}\tilde{f}(x_{k+1}) + r_{k+1}(y)$$

$$\leq \frac{1}{2L_{k+1}}\left(f(x_k)+\langle \nabla f(x_k),y-x_k\rangle+\Psi(y)+\frac{\epsilon}{2}\right)+r_k(y).$$

Summing up these inequalities, we obtain

$$\tilde{f}_k^* \leq \frac{1}{S_k} \sum_{i=0}^k \frac{1}{L_{i+1}} \left[f(x_i) + \langle \nabla f(x_i), y - x_i \rangle \right] + \Psi(y) + \frac{\epsilon}{2} + \frac{2}{S_k} r_0(y). \square$$

Consequences

Complexity:
$$\frac{\epsilon}{2} + \frac{2\gamma(M_{\nu}, \epsilon)}{k+1} \xi(x_0, x^*) \leq \epsilon$$
 with

$$\gamma(M,\epsilon)=\left[rac{1}{\epsilon}
ight]^{rac{1-
u}{1+
u}}M^{rac{2}{1+
u}}.$$
 Hence, we need

$$4\xi(x_0,x^*)\inf_{0\leq\nu\leq1}\left(\frac{M_\nu}{\epsilon}\right)^{\frac{2}{1+\nu}}$$
 iterations.

Stopping criterion.

Assume we have a bound $\xi(x_0, x^*) \leq D$. $\times \mathcal{Y} \times \mathcal{Y}$

Denote
$$\ell_k^p(y) \stackrel{\text{def}}{=} \frac{1}{S_k} \sum_{i=0}^k \frac{1}{L_{i+1}} [f(x_i) + \langle \nabla f(x_i), y - x_i \rangle]$$
, and define

$$\hat{f}_k = \min_{y \in Q} \{ \ell_k^p(y) + \Psi(y) : \xi(x_0, y) \leq D \}.$$

Then
$$\tilde{f}_k^* - \tilde{f}(x^*) \leq \tilde{f}_k^* - \hat{f}_k \leq \frac{2\gamma(M_{\nu},\epsilon)}{k+1}D$$
.

Thus, we have implementable stopping criterion $\tilde{f}_k^* - \hat{f}_k \leq \epsilon$

Number of calls of oracle 浅龙the search)

Denote by N(k), the total number of computations of function values in PGM after k iterations. Note that

$$L_{k+1}=\tfrac{1}{2}2^{i_k}L_k.$$

Therefore, $i_k-1=\log_2\frac{L_{k+1}}{L_k}$. Hence, for any $\nu\in[0,1]$, we have

$$N(k) = \sum_{j=0}^{k} (i_j + 1) = 2(k+1) + \log_2 L_{k+1} - \log_2 L_0$$

$$\leq 2(k+1) + \frac{1-\nu}{1+\nu}\log_2\frac{1}{\epsilon} + \frac{2}{1+\nu}\log_2 M_{\nu} - \log_2 L_0.$$

Finally, we come to the following upper bound:

$$N(k) \leq 2(k+1) - \log_2 L_0 + \inf_{0 \leq \nu \leq 1} \left[\frac{1-\nu}{1+\nu} \log_2 \frac{1}{\epsilon} + \frac{2}{1+\nu} \log_2 M_{\nu} \right].$$

Thus in average, PGM needs <u>two</u> computations of function values per iteration. $O(\frac{1}{\gamma_1 + 1} \cdot |n| \frac{1}{\xi})$

河题的 condition number

Universal Dual Gradient Method (DGM)

Initialization. Choose $L_0 > 0$. Define $\phi_0(x) = \xi(x_0, x)$.

For $k \ge 0$ do:

1. Find the smallest $i_k \geq 0$ such that for point

$$x_{k,i_k} = \arg\min_{x \in Q} \left\{ \phi_k(x) + \frac{1}{2^{i_k} L_k} [f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \Psi(x)] \right\}$$

we have
$$\tilde{f}(x_{k,i_k}) \leq \psi^*_{2^{i_k}L_k}(x_{k,i_k}) + \frac{\epsilon}{2}$$
.

2. Set $x_{k+1} = x_{k,i_k}$, $L_{k+1} = 2^{i_k-1}L_k$, and

$$\phi_{k+1}(x) = \phi_k(x) + \frac{1}{2L_{k+1}}[f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \Psi(x)].$$

Convergence of DGM

Theorem. For all $k \geq 0$ and $\nu \in [0,1]$ we have

$$\tilde{f}_k^* - \tilde{f}(x^*) \leq \frac{\epsilon}{2} + \frac{2\gamma(M_\nu, \epsilon)}{k+1} \xi(x_0, x^*).$$

Complexity: $4\xi(x_0, x^*) \inf_{0 \le \nu \le 1} \left(\frac{M_\nu}{\epsilon}\right)^{\frac{2}{1+\nu}}$ iterations. ($7 \nmid 1 \text{ mumber of procles } \cancel{M}$)

Average # of calls: 2 per iteration.

NB: for $\nu \in (0,1]$ the complexity is not optimal!

Universal Fast Gradient Method (FGM)

Choose $L_0 > 0$. Define $\phi_0(x) = \xi(x_0, x)$, $y_0 = x_0$, $A_0 = 0$.

For $k \ge 0$ do:

- **1.** Find $v_k = \arg\min_{x \in Q} \phi_k(x)$.
- **2.** Find the smallest $i_k \ge 0$ such that a_{k+1,i_k} , computed from equation $a_{k+1,i_k}^2 = \frac{1}{2^{i_k}L_k}(A_k + a_{k+1,i_k})$ and used in the definitions

$$A_{k+1,i_k} = A_k + a_{k+1,i_k}$$
, $\tau_{k,i_k} = \frac{a_{k+1,i_k}}{A_{k+1,i_k}}$, $x_{k+1,i_k} = \tau_{k,i_k} v_k + (1-\tau_{k,i_k}) y_k$,

$$\hat{x}_{k+1,i_k} = \arg\min_{y \in Q} \left\{ \xi(v_k, y) + a_{k+1,i_k} [\langle \nabla f(x_{k+1,i_k}), y \rangle + \Psi(y)] \right\},\,$$

$$y_{k+1,i_k} = \tau_{k,i_k} \hat{x}_{k+1,i_k} + (1 - \tau_{k,i_k}) y_k$$
, ensures the following relation:
 $f(y_{k+1,i_k}) \leq f(x_{k+1,i_k}) + \langle \nabla f(x_{k+1,i_k}), y_{k+1,i_k} - x_{k+1,i_k} \rangle + 2^{i_k-1} L_k ||y_{k+1,i_k} - x_{k+1,i_k}||^2 + \frac{\epsilon}{2} \tau_{k,i_k}.$

3. Set
$$x_{k+1} = x_{k+1,i_k}$$
, $y_{k+1} = y_{k+1,i_k}$, $a_{k+1} = a_{k+1,i_k}$, $\tau_k = \tau_{k,i_k}$. Define $A_{k+1} = A_k + a_{k+1}$, $L_{k+1} = 2^{i_k-1}L_k$, and $\phi_{k+1}(x) = \phi_k(x) + a_{k+1}[f(x_{k+1}) + \langle \nabla f(x_{k+1}), x - x_{k+1} \rangle + \Psi(x)]$.

Convergence of FGM

Theorem. For all $k \ge 0$ we have

$$A_k\left(\tilde{f}(y_k)-\frac{\epsilon}{2}\right)\leq \phi_k^*\stackrel{\mathrm{def}}{=}\min_{x\in Q}\phi_k(x),$$

where
$$A_k \geq \left[\frac{1}{2^{2+4\nu}M_{\nu}^2} \epsilon^{1-\nu} k^{1+3\nu}\right]^{\frac{1}{1+\nu}}$$
.

Consequently, for all $k \geq 1$ we have

$$\tilde{f}(y_k) - \tilde{f}(x^*) \leq \left[\frac{2^{2+4\nu}M_{\nu}^2}{\epsilon^{1-\nu}k^{1+3\nu}}\right]^{\frac{1}{1+\nu}} \xi(x_0, x^*) + \frac{\epsilon}{2}.$$

Complexity:
$$k \leq \inf_{0 \leq \nu \leq 1} \left[\left(\frac{2^{\frac{3+5\nu}{2}} M_{\nu}}{\epsilon} \right)^{\frac{2}{1+3\nu}} \xi(x_0, x^*)^{\frac{1+\nu}{1+3\nu}} \right].$$

It is optimal! (Note quasi-convexity in ν .)

Calls per iteration: four.

Numerical experiments

1. Matrix game: $\min_{x \in \Delta_n} \max_{y \in \Delta_m} \langle x, Ay \rangle$

$$= \min_{x \in \Delta_n} \left\{ \psi_p(x) \stackrel{\text{def}}{=} \max_{1 \le j \le m} \langle x, Ae_j \rangle \right\} = \max_{y \in \Delta_m} \left\{ \psi_d(y) \stackrel{\text{def}}{=} \min_{1 \le i \le n} \langle e_i, Ay \rangle \right\}.$$

It can be posed as a minimization problem

$$\min_{x \in \Delta_n, y \in \Delta_m} \{ \psi_{pd}(x, y) = \psi_p(x) - \psi_d(y) \}$$

with optimal value zero. We generate $A_{i,j} \in [-1,1]$ randomly.

For $\mathcal{F} = \{z = (x, y) : x \in \Delta_n, y \in \Delta_m\}$, natural prox-function is the *entropy*:

$$\eta(z) = \sum_{i=1}^{n} z^{(i)} \ln z^{(i)}.$$

It is strongly convex in ℓ_1 -norm (good for measuring simplexes).

Entropy Setup (n = 896, m = 128)

Eps	FGM_{Entropy}			F	PGM_{Entropy}		
2^{-5}	516	6.0 <i>E</i> -2	1.3 <i>E</i> 2	722	8.2 <i>E</i> -2	8.0	
2^{-6}	1127	2.9E - 2	2.6 <i>E</i> 2	2065	5.2E - 2	1.6 <i>E</i> 1	
2^{-7}	1937	1.6E - 2	2.0 <i>E</i> 2	5675	3.4E - 2	3.2 <i>E</i> 1	
2^{-8}	4684	7.9E - 3	2.0 <i>E</i> 3	15731	2.3E-2	6.4 <i>E</i> 1	
2^{-9}	8129	3.8E - 3	8.2 <i>E</i> 3	44829	1.5E - 2	1.3 <i>E</i> 2	
2^{-10}	17556	2.1E - 3	4.1 <i>E</i> 3	122959	1.0E - 2	2.6 <i>E</i> 2	

FGM: $O\left(\frac{1}{\epsilon}\right)$.

PGM: $O\left(\frac{1}{\epsilon^{1.57}}\right)$.

Continuous Steiner problem (n = 256, m = 512)

$$\min_{x \in Q} f(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \|x - a_i\|.$$
 (Euclidean norms)

Eps	FGM _{Euclid}				PGM_{Euclid}			
2^{-5}	205	3.1E-2	2.6 <i>E</i> 2	9925	3.1E-2	2.6 <i>E</i> 2		
2^{-6}	307	1.5E - 2	5.1 <i>E</i> 2	19895	1.5 <i>E</i> -2	5.1 <i>E</i> 2		
2^{-7}	277	6.8E - 3	2.6 <i>E</i> 2	39803	7.8E - 3	2.6 <i>E</i> 2		
2^{-8}	611	3.9E - 3	5.1 <i>E</i> 2	77138	3.9E - 3	5.1 <i>E</i> 2		
2^{-9}	827	1.9E - 3	5.1 <i>E</i> 2	155038	2.0E - 3	2.6 <i>E</i> 2		
2^{-10}	1226	9.8E - 4	2.6 <i>E</i> 2		out of time			
2^{-11}	1655	4.8E - 4	2.6 <i>E</i> 2					
2^{-12}	2385	2.4E - 4	5.1 <i>E</i> 2					
2^{-13}	3388	1.2E - 4	5.1 <i>E</i> 2					

FGM: $O(\frac{1}{\epsilon^{1/2}})$, **PGM:** $O(\frac{1}{\epsilon})$.