

Deep Wind - Predicting The Energy Output Of Wind

Turbine Based On Weather Conditions.

IBM-Project-54399-1661958195

TEAM ID PNT2022TMID41350

TEAM

Nagalakshmi P - Team Lead

Kokila P

Narmadha G M

Umapathi S

Problem statement

Deep Wind - Predicting The Energy Output Of Wind Turbine Based On Weather Conditions.

- **Extracting electricity from renewable resources** has been widely investigated in the past decades to decrease the worldwide crisis in the electrical energy and environmental pollution.
- For a wind farm which converts the wind power to electrical energy, a big challenge is to accurately predict the wind power in spite of the fluctuations.
- The energy output of a wind farm is usually dependent on the climatic conditions present at its site.
- For the wind farm operator, this poses difficulties in the system and energy planning, as the schedule of the wind power availability is not known in advance.
- A precise forecast is needed to overcome the problems caused by fluctuating weather conditions.

Wind power is calculated based on : **Physical characteristics of wind** farms/turbines.

$$Power = \frac{1}{2} \times \rho \times \pi \times r^2 \times C_p \times CF \times v^3 \times NG \times NB$$

 $P = power \ generated \ in \ Watts$ $v = velocity \ of \ the \ wind \ in \ m/s$ $\rho = density \ of \ the \ wind \ in \ kg/m^3$ $\pi r^2 = swept \ area, \ where \ r = blade \ length \ in \ m$ $C_P = Power \ Coefficient$ $C_F = Capacity \ Factor$ $N_G = generator \ efficiency$ $N_B = gearbox \ efficiency$

DISADVANTAGES:

- Measurement of wind turbine physical parameters (blade length,gearbox,generator) is quite difficult.
- Vary from turbine to turbine.

16-11-2022

- Wind power is calculated based on : weather conditions (wind speed, wind direction, pressure, temperature, dewpoint, relative humidity)
- Our aim is to develop an end to end web application to predict the energy output of the wind turbine based on weather conditions.
- The technique incorporated in our project is deep learning.

ADVANTAGES:

- At the same time, it **boosts the performance and competitiveness of market players**, making this business more attractive.

Time series problems are mostly solved using RNN. These models have **memory**, i.e., the model can remember the information throughout the time.

idēa!

idēa!

A special kind of RNN – **BiLSTM Network (Bidirectional Long Short Term Memory)** is implemented which has a prominent performance in capturing the long-term dependencies along the time steps, and thus very applicable for wind power prediction.

The proposed algorithm gave us more accurate results when compared with other models.

- Since only very limited work has been done with respect to deep learning in the wind power prediction, it is of great interest to us to see how well it can perform in this field.
- Through a combination of DL, computing and more accurate weather forecasts, granted access to more precise wind power data to **improve the efficiency of renewables.**
- The forecasting process can also save operators millions of dollars in additional costs or fines for the mismatch between expected and actual production.

PARAMETERS	VARIATION w.r.t POWER	GRAPH
1. WIND SPEED Wind speed a Power generated		
2. TEMPERATURE Air temperature (high) a 1/Power Air temperature (moderate) a Power Air temperature (low) a 1/Power	LOW TEMP	

BENEFIT TO BUSINESS & SOCIETY

Knowing the wind power beforehand helps us in many ways by minimizing the losses.

Target Audience:

- It's easy for grid operators, in the case of system scheduling and energy planning for power generating systems.
- If the output may be forecasted extra accurately, energy suppliers can keep away from costly overproduction by coordinating the manufacturing of various electricity sources extra efficiently.
- Thus accurate wind power forecasting plays a key role in dealing with the challenges of power system operation under uncertainties in an economical and technical way.

Website Framework ENERGY PREDICTION MODULE 1 USER DEFINED values Prediction FUTURE Forecasting

TECHNOLOGY STACK

FRONT-END WEB DEVELOPMENT

Prediction module

Haw ia tha

Bi-LSTM gave us more accurate results when compared with other models.

In the prediction part, user can also set their preferable **cut in (minimum) and cut out(maximum) values** for windspeed and temperature with the help of **preferences tab**.

Our Deep Wind is individually different from other wind power forecasting websites where the user can upload their own real time dataset (csv or xlsx format with a minimum of 30 entries) for forecasting.

Our Deep wind provides an interactive interface with a **simple visualization tool** which brings the accurate results with minimal load time.

Labels

Test data

PREDICTION	FORECASTING
CALCULATION/Estimation OF FUTURE PREDICTIONS With/without prior information	CALCULATION/Estimation OF FUTURE PREDICTIONS which uses trends in previous events, to come up with the future outcome.

BILSTM

I/P:6

(wind speed, wind direction, pressure, temperature, dewpoint, relative humidity)

HIDDEN: 7
OUTPUT: 1

CODE

model = Sequential()

model.add(Bidirectional(LSTM(100, activation='relu',input_shape=(-1,1,6))))

model.add(Dense(7))

model.add(Dense(1))

model.compile(loss='mae', optimizer='adam',metrics=['accuracy'])

model.fit(X, Y,epochs=1,callbacks=[keras.callbacks.EarlyStopping(patience=5)])

test_data = np.array([[17.6, 940.4,4.08,101,8.1,60.1]])
print(model.predict(test_data.reshape(-1,1,6), batch_size=1))
o=model.predict(test_data.reshape(-1,1,6), batch_size=1)
print(o)

THANK YOU