Atividade Computacional 1

Grupo:

- Guilherme Ferreira Lourenço
- Harrison Caetano Cândido
- Thiago Cardoso Carvalho

Importação de todas as bibliotecas

```
import math
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display
Método da Bissecção
def f(x):
  return math.pow(x, 3) + x - 4
def bisseccao(intervalo, erro, it_max):
    ak = intervalo[0]
    bk = intervalo[1]
    xk = (ak + bk)/2
    sk = bk - ak
    it = 0
    # lista das k linhas
    line_data = []
    # colunas necessarias para plotar
    column_labels = ['k', 'xk', 'f(xk)', 'stepk']
    while(np.abs(bk - ak) > erro and it < it_max):</pre>
      xk = (ak + bk) / 2
      sk = np.abs(bk - ak) # como nao tem do-while em python vai ter que fazer a diferença
      it += 1
      # se chegou aqui eh pq o teorema de bolzano nao pode provar que existe ao menos um z
      if (f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) > 0) or (f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) < 0
        print("Pelo Teorema de Bolzano, temos que f(a)f(b) >= 0, logo nao podemos afirmar
        return
      \# saida: x^*, f(x^*), num iteracoes. vamos fazendo isso inserindo cada tupla de linha
      line_data.append([it, xk, f(xk), sk])
      \# f(ak) < 0 and f(bk) > 0 and f(xk) > 0, then we gonna use ak as ak and bk as xk
      if(f(ak) < 0 \text{ and } f(bk) > 0 \text{ and } f(xk) > 0):
        bk = xk
        continue
```

```
\# f(ak) > 0 and f(bk) < 0 and f(xk) > 0, then we gonna use ak as xk and bk as bk
      if(f(ak) > 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0):
         ak = xk
         continue
      \# f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) > f(bk), then we gonna use ak as b
      if(f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0 \text{ and } f(ak) > f(bk)):
         ak = bk
         bk = xk
         continue
      \# f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) < f(bk), then we gonna use ak as a
      if(f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0 \text{ and } f(ak) < f(bk)):
         bk = xk
         continue
      \# f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) > f(bk), then we gonna use ak as a
      if(f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0 \text{ and } f(ak) > f(bk)):
         bk = xk
         continue
      \# f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) < f(bk), then we gonna use ak as x
      if(f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0 \text{ and } f(ak) < f(bk)):
         ak = xk
         continue
      \# f(ak) > 0 and f(bk) < 0 and f(xk) < 0, then we gonna use ak as ak and bk as xk
      if(f(ak) > 0 \text{ and } f(bk) < 0 \text{ and } f(xk) < 0):
         bk = xk
         continue
      \# f(ak) < 0 and f(bk) > 0 and f(xk) < 0, then we gonna use ak as xk and bk as bk
      if(f(ak) < 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0):
         ak = xk
         continue
    # configura a quantidade de graficos
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line data,
                       cellLoc='center',
                       colLabels=column_labels,
                       loc='center')
    plt.savefig('Tabela_Bisseccao.pdf', dpi=200)
    plt.show()
erro = 10**-10
it max = 200
intervalo = (1, 4)
bisseccao(intervalo, erro, it_max)
```

k	xk .	f(xic)	depk
1	2.5	14.125	3
2	1.75	3109375	15
3	1375	0.025390625	9.75
4	15625	1377197265625	9375
5	146573	Q637176513671875	01875
6	1.421575	02963202331542969	0.09375
7	13954375	013326025009155273	0.046875
8	138671875	0.05336350202560425	0.0234375
9	1380859375	0.013844214379787445	0.01171875
30	13779296575	0.005808683906231403	0.005859375
11	137939453125	0.004005584658105671	0.0029296875
12	1375662109375	0.0009021193400258198	000146454375
13	13790283203125	0.0013528275327110456	0.000732421875
34	137554521454375	0.00032521335817766057	0.0003662109373
15	1375753662109375	0.00028845656066315925	0.00018310546575
36	1.3757994354765625	18353831034710945e-05	91552734375e-05
17	13757765502929658	0.00013506753170888786	457763671575e-05
18	13757879943847656	5.8356392065306295e-05	2.285518359375e-05
19	1375793716430664	-2.0000415947851735e-05	11444091796875e-05
20	13757965774536133	-5.223263145978576e-07	5.7220458954375e-06
21	1375798007965088	5.7667435952721e-06	286102294921875e-06
22	13757972927093506	3972206673807932e-05	1430511474609375e-06
23	1375796935081482	15749396506947733e-06	7.152557373046875e-07
24	13757967562675476	3763065361539475e-07	15762786563234375e-07
25	13757966668605804	-2.230099225256605e-07	17851393432617188e-07
26	1375796711564064	7.664829537494835e-08	5.940696716305394e-05
27	13757966592123222	-7.315051429730225e-05	4.470348338154297e-05
25	13757967003851931	1.7337420358230385e-09	22351741790771454e-05
29	13757966948002577	-3.572353657332853e-08	11175570895385742e-08
30	13757966975942254	-1.69948974892973e-05	5587935447692571e-09
31	13757966959912093	-7.630577947281836e-09	2.7939677235464355e-09
22	13757966996897012	2.9454183983156085e-09	13969835619232178e-09
33	13757967000359472	6.073386238369949e-10	6.954919309616089e-10
34	13757967002135701	563201041359207e-10	14924596548050444e-10
	 	-	

Método Newton

```
def f(x):
    return x**2 - 2
def df(x):
    return 2*x
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def newton(x0, erro, it_max):
    x = x0
    it = 0
    # evitar erro na primeira iteracao
    sk = erro + 1
    line_data.append([it, x, f(x), df(x),'-'])
    while(sk >= erro and it < it max):</pre>
        xold = x
        x = x - f(x)/df(x)
        sk = np.abs(x - xold)
        it += 1
        line_data.append([it, x, f(x), df(x), sk])
    # configura a tabela
```

t	*	(ak)	d(xk)	stepk
a	5	23	10	-
1	27	5290000000000001	54	23
2	1.7203703703703703	0.9596742112462852	34407407407407407	0.9796296296296299
3	144145536817765	0.0777935784481647	28829107363553	0.27891500219272025
4	1414470981367771	0.0007281571315052027	2528941962735542	0.026964386809879135
5	14142135857968836	6.625247950253765e-05	2525427171593767	0.000257395570887331
6	14142135623730951	4440892098500626e-16	28284271247461903	23423788464427275e-08

Método Secante

```
def f(x):
    return 31 - ((9.8*x)/13)*(1. - np.exp(-6.0*(13.0/x)))

def secante(x0, x1, erro, it_max):
    xk1 = x0
    xk2 = x1
    it = 0
    sk = np.abs(xk2 - xk1)
    # lista das k linhas
    line_data = []
    # colunas necessarias para plotar
    column_labels = ['k', 'xk', 'f(xk)', 'stepk']

    """
    xk1 = xk-1
    xk2 = xk
    x = xk+1
```

```
while(sk >= erro and abs(f(xk2)) >= erro and abs(f(xk1)) >= erro and it < it max):
      x = xk2 - f(xk2)*(xk2 - xk1)/(f(xk2) - f(xk1))
      xk1 = xk2
      xk2 = x
      it += 1
      sk = np.abs(xk2 - xk1)
      line_data.append([it, x, f(x), sk])
    # configura o tamanho do grafico
    fig, ax = plt.subplots(figsize=(6,2))
    ax.set axis off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column labels,
                     loc='center')
    plt.savefig('Tabela_Secante.pdf', dpi=200)
    plt.show()
x0 = 52
x1 = 58
erro = 10**-6
it_max = 200
secante(x0, x1, erro, it max)
```

k	*	(zk)	stepk
1	55.7453122616446	0.02512695707997281	42516877383554
2	58.66641027231532	0.0011804747097485802	0.08190198932928183
3	55.6700654021362	-0.963049798500379e-07	0.0036751296208841376

Parte 1

- Faça o seu gráfico utilizando recursos computacionais.
- Aplique o código implementado do Método de Newton adotando os pontos iniciais indicados em cada caso, tomando ε = 10-8 e maxit = 20 .
- Imprima a tabela referente aos resultados de cada iteração, conforme as instruções.
- A partir dos gráficos, de argumentos matemáticos e/ou dos resultados exibidos nas tabelas, explique o comportamento do Método de Newton para cada ponto inicial dado.

```
#Função de plotar gráfico:

# configura o grafico
def graf(y):
    ticks_frequency = 1

fig, ax = plt.subplots(figsize = (10, 10))
```

```
fig.patch.set facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set_position('zero')
    ax.spines['left'].set_position('zero')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
    ax.set_ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
      transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y_ticks = np.arange(-5, 6, ticks_frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set_yticks(y_ticks[y_ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set_yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
#Exercício 1.1
def f(x):
    return x*np.e**(-x)
def df(x):
    return np.e**(-x)-np.e**(-x)*x
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def newton(x0, erro, it max):
   x = x0
    it = 0
    # evitar erro na primeira iteracao
    sk = erro + 1
    line data.append([it, x, f(x), df(x),'-'])
```

```
while(sk >= erro and it < it max):</pre>
    xold = x
    x = x - f(x)/df(x)
    sk = np.abs(x - xold)
    it += 1
    line_data.append([it, x, f(x), df(x), sk])
# configura a tabela
fig, ax = plt.subplots(figsize=(8,6))
ax.set axis off()
table = ax.table(cellText=line_data,
                 cellLoc='center',
                 colLabels=column labels,
                 loc='center')
plt.savefig('Pt1_Ex2.1.pdf', dpi=200)
plt.show()
# configura o grafico
ticks_frequency = 1
fig, ax = plt.subplots(figsize = (10, 10))
fig.patch.set_facecolor('#ffffff')
ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
ax.set_ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
  transform=ax.transAxes,
    horizontalalignment='center', fontsize=14)
x_ticks = np.arange(-5, 6, ticks_frequency)
y_ticks = np.arange(-5, 6, ticks_frequency)
ax.set_xticks(x_ticks[x_ticks != 0])
ax.set_yticks(y_ticks[y_ticks != 0])
ax.set_xticks(np.arange(-5, 6), minor=True)
ax.set_yticks(np.arange(-5, 6), minor=True)
ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
# Create the plot
x = np.linspace(-5, 10, 100)
y = x*np.e**(-x)
plt.plot(x, y, 'b', linewidth=2)
```

```
# Show the plot
plt.show()

x0 = 2
erro = 10**-8
it_max = 20
newton(x0, erro, it_max)
```

```
#Exercício 1.2
def f(x):
    return x*np.e**(-x)
def df(x):
    return np.e**(-x)-np.e**(-x)*x
# lista das k linhas
line data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def newton(x0, erro, it_max):
    x = x0
    it = 0
    # evitar erro na primeira iteracao
    sk = erro + 1
    line_data.append([it, x, f(x), df(x),'-'])
    while(sk >= erro and it < it_max):</pre>
        xold = x
        x = x - f(x)/df(x)
        sk = np.abs(x - xold)
        it += 1
        line_data.append([it, x, f(x), df(x), sk])
    # configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line data,
                     cellLoc='center',
                     colLabels=column labels,
                     loc='center')
    plt.savefig('Pt1_Ex2.1.pdf', dpi=200)
    plt.show()
    # configura o grafico
    ticks_frequency = 1
    fig, ax = plt.subplots(figsize = (10, 10))
    fig.patch.set_facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set position('zero')
    ax.spines['left'].set_position('zero')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
```

```
ax.set xlabel('$x$', size=14, labelpad=-24, x=1.02)
    ax.set ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
      transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y_ticks = np.arange(-5, 6, ticks_frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set_yticks(y_ticks[y_ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set_yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    y = x*np.e**(-x)
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
x0 = 0.5
erro = 10**-8
it_max = 20
newton(x0, erro, it_max)
```

t	*	(sk)	d(xk)	depk
0	0.5	0.3032653298563167	0.3032653298563167	-
1	0.5	0.8243606353500641	24750519060501923	10
2	-0.16086608660866089	0.19689340214427437	13782538150099204	0.33333333333333
3	0.023809523809523808	0.024383219846499493	1.0484784533994782	0.14285714285714288
4	0.0005537098560354364	0.0005540165355380033	10011078797171737	0.023255613953468372
5	3.0642493416461764e-07	3.0642502506067233e-07	10000006125500092	0.0005534034311012718
6	-0.389621145813321e-14	-0.389621148514203e-14	100000000000001578	30642454026540615e-07
7	6.50999055950526e-27	8.50999855950526e-27	10	938962114881244e-14


```
#Exercício 2.1
#f(x) = x**3 - x - 3, x0 = 1, x0 = 2
def f(x):
    return x**3 - x - 3
def df(x):
    return 3*(x**2) - 1
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def Newton(x0, Erro, itMax):
    x = x0
    Er = 1
    it = 0
    line_data.append([it, x, f(x), df(x),'-'])
    while(Er >= Erro and it < itMax):</pre>
        xold = x
        x = x - f(x)/df(x)
        Er = np.abs((x-xold)/x)
        sk = np.abs(x - xold)
```

```
it += 1
        line data.append([it, x, f(x), df(x), sk])
# configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column_labels,
                     loc='center')
    plt.savefig('Pt1_Ex2.1.pdf', dpi=200)
    plt.show()
# configura o grafico
    ticks_frequency = 1
    fig, ax = plt.subplots(figsize = (10, 10))
    fig.patch.set_facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set_position('zero')
    ax.spines['left'].set_position('zero')
    ax.spines['top'].set visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
    ax.set_ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
      transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y ticks = np.arange(-5, 6, ticks frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set yticks(y ticks[y ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set_yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    y = x**3 - x - 3
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
x0 = 1
```

Erro = 10**-8itMax = 20

Newton(x0, Erro, itMax)

t	*	(ak)	d(xk)	stepk
0	1	3	2	-
1	25	10.125	17.75	15
2	19295774647887325	22547588646339456	10.169607577861537	0.5704225352112675
3	17078664002114352	0.2756513656831989	7.750422922913499	0.22171106457729728
4	16725584733531251	0.006343316785037523	7392355540356011	0.03530792685831008
5	16717003819436402	3693967285391387e-06	7383746500971538	0.0006580914094848957
6	1671699881657331	1255440196246127e-12	7383741482999403	5.002863092684606e-07
7	16714998816571409	-8.881784197001252e-16	7.3837414829976975	1.7005616737257395e-13


```
#Exercício 2.2
#f(x) = x**3 - x - 3, x0 = 1, x0 = 2
def f(x):
    return x**3 - x - 3
def df(x):
    return 3*(x**2) - 1
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def Newton(x0, Erro, itMax):
    x = x0
    Er = 1
    it = 0
    line_data.append([it, x, f(x), df(x),'-'])
    while(Er >= Erro and it < itMax):</pre>
        xold = x
        x = x - f(x)/df(x)
        Er = np.abs((x-xold)/x)
        sk = np.abs(x - xold)
        it += 1
        line data.append([it, x, f(x), df(x), sk])
# configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column labels,
                     loc='center')
    plt.savefig('Pt1_Ex2.2.pdf', dpi=200)
    plt.show()
# configura o grafico
    ticks frequency = 1
    fig, ax = plt.subplots(figsize = (10, 10))
    fig.patch.set_facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set_position('zero')
    ax.spines['left'].set position('zero')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
```

```
ax.set_ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
      transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y_ticks = np.arange(-5, 6, ticks_frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set_yticks(y_ticks[y_ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set_yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    y = x^{**}3 - x - 3
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
x0 = 2
Erro = 10**-8
itMax = 20
Newton(x0, Erro, itMax)
```

t	ak:	(sk)	d(xk)	stepk
a	2	3	11	-
1	17272727272727273	0.4259954921111945	7950413223140496	0.2727272727272727
2	16736911736911737	0.014723079585861054	7.403726434675216	0.05358155358155359
3	1671702569747502	19848200399685823e-05	7383768445101206	0.0019686039436716185
4	1671699881662069	3623945588060451e-11	7383741483046926	26880854331334803e-06
5	16716998816571609	8.881784197001252e-16	7.3837414829976975	4908075947262892e-12


```
#Exercício 3.1
def f(x):
    return np.arctan(x)
def df(x):
    return 1/(x^{**2} + 1)
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def Newton(x0, Erro, itMax):
    x = x0
    Er = 1
    it = 0
    line_data.append([it, x, f(x), df(x),'-'])
    while(Er >= Erro and it < itMax):</pre>
        xold = x
        x = x - f(x)/df(x)
        Er = np.abs((x-xold)/x)
        sk = np.abs(x - xold)
        it += 1
        line_data.append([it, x, f(x), df(x), sk])
```

```
# configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set axis off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column labels,
                     loc='center')
    plt.savefig('Pt1_Ex3.1.pdf', dpi=200)
    plt.show()
# configura o grafico
    ticks frequency = 1
    fig, ax = plt.subplots(figsize = (10, 10))
    fig.patch.set facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set_position('zero')
    ax.spines['left'].set_position('zero')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
    ax.set ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
      transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y_ticks = np.arange(-5, 6, ticks_frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set_yticks(y_ticks[y_ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    y = np.arctan(x)
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
#Configura e calcula por Newton
x0 = 1.45
Erro = 10**-8
itMax = 20
Newton(x0, Erro, itMax)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: RuntimeWarning: ov

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:22: RuntimeWarning: d /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:23: RuntimeWarning: i

t	*	(sk)	d(xk)	depk
0	145	0.9670469933974603	0.32232070910556004	-
1	4.5502632970156205	0.9979075580246077	0.29383105029545525	30002632970156204
2	18459317511972355	10743231874315433	0.22688784143798943	3396195048212856
3	2.889109054086136	4.237575582047004	0.10696675819276336	4735040605283371
4	8.678449426536321	1456074323932289	0.013103500648927308	11.567558480622457
5	102.44256799803165	-1.5610350697449524	9527911300484988e-05	111.12101742456797
6	16281.36937686645	15707349068998253	37724035058131336e-09	16383.811944864483
7	416358823.91280764	-1.5707963243931222	5.768520678200044e-15	4.6375105.2821845
B	27230487842881142e+17	15707963267948966	13486186341842e-35	27230487884517024e+17
9	4.1647446409081358e+35	-1.5707963267948966	73712061661483e-71	11647446409061358e+35
30	21309895441653207e+70	15707963267948966	2202101650107294e-141	21309595441653207e+70
11	J.133169019324616e+140	-1.5707963267948966	19653276789371744e-282	7133169019324616e+140
12	7.99254161852727e+261	15707963267948966	0.0	7.99254161852727e+251
15	inf	-1.5707963267948966	0.0	inf


```
#Exercício 3.2
def f(x):
    return np.arctan(x)
def df(x):
    return 1/(x^{**2} + 1)
# lista das k linhas
line data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def Newton(x0, Erro, itMax):
    x = x0
    Er = 1
    it = 0
    line_data.append([it, x, f(x), df(x),'-'])
    while(Er >= Erro and it < itMax):</pre>
        xold = x
        x = x - f(x)/df(x)
        Er = np.abs((x-xold)/x)
        sk = np.abs(x - xold)
        it += 1
        line_data.append([it, x, f(x), df(x), sk])
# configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column_labels,
                     loc='center')
    plt.savefig('Pt1 Ex3.2.pdf', dpi=200)
    plt.show()
# configura o grafico
    ticks frequency = 1
    fig, ax = plt.subplots(figsize = (10, 10))
    fig.patch.set_facecolor('#ffffff')
    ax.set(xlim=(-6,6), ylim=(-6,6), aspect='equal')
    ax.spines['bottom'].set_position('zero')
    ax.spines['left'].set_position('zero')
    ax.spines['top'].set visible(False)
    ax.spines['right'].set_visible(False)
    ax.set_xlabel('$x$', size=14, labelpad=-24, x=1.02)
    ax.set_ylabel('$y$', size=14, labelpad=-21, y=1.02, rotation=0)
    plt.text(0.49, 0.49, r"$0$", ha='right', va='top',
```

Newton(x0, Erro, itMax)

```
transform=ax.transAxes,
        horizontalalignment='center', fontsize=14)
    x_ticks = np.arange(-5, 6, ticks_frequency)
    y_ticks = np.arange(-5, 6, ticks_frequency)
    ax.set_xticks(x_ticks[x_ticks != 0])
    ax.set_yticks(y_ticks[y_ticks != 0])
    ax.set_xticks(np.arange(-5, 6), minor=True)
    ax.set_yticks(np.arange(-5, 6), minor=True)
    ax.grid(which='both', color='grey', linewidth=1, linestyle='-', alpha=0.2)
    # Create the plot
    x = np.linspace(-5, 10, 100)
    y = np.arctan(x)
    plt.plot(x, y, 'b', linewidth=2)
    # Show the plot
    plt.show()
#Configura e calcula por Newton
x0 = 1
Erro = 10**-8
itMax = 20
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:23: RuntimeWarning: divi/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:23: RuntimeWarning: inva

t	ak:	(sk)	d(xk)	stepk
a	1	0.7853961633974483	0.5	-
1	-0.5707963267945966	0.5186693692550166	0.7542567725392094	15707963267948986
2	0.1168599039989131	0.11633226511389591	0.9865277431717276	0.6876562307938097
3	-0.001061022117044716	-0.0010610217188900932	0.9999955742333344	0.11792092611595782
4	7963096044106416e-10	7963096044106416e-10	10	0.0010610229133543204
5	0.0	0.0	10	7.963096044106416e-10
6	0.0	0.0	10	0.0

- Parte 2

2 Prove que a equação (2) possui pelo menos uma raiz no intervalo [0, 1] na variável x.

```
def f(x):
 F = 1.5
 p = 2*10**(-5)
 q = 5*10**(-5)
 r = 1
 e0 = 8.85*10**(-12)
 return x / math.sqrt((x**2 + r**2)**3) - 4 * math.pi * e0 * F / p * q
def bisseccao(intervalo, erro, it_max):
   ak = intervalo[0]
   bk = intervalo[1]
   xk = (ak + bk)/2
   sk = bk - ak
   it = 0
   # lista das k linhas
   line_data = []
   # colunas necessarias para plotar
   column_labels = ['k', 'xk', 'f(xk)', 'stepk']
   while(np.abs(bk - ak) > erro and it < it_max):</pre>
     xk = (ak + bk) / 2
```

```
29/10/2022 00:25
```

sk = np.abs(bk - ak) # como nao tem do-while em python vai ter que fazer a diferença it += 1 # se chegou aqui eh pq o teorema de bolzano nao pode provar que existe ao menos um z if (f(ak) > 0 and f(bk) > 0 and f(xk) > 0) or (f(ak) < 0 and f(bk) < 0 and f(xk) < 0print("Pelo Teorema de Bolzano, temos que f(a)f(b) >= 0, logo não podemos afirmar return # saida: x^* , $f(x^*)$, num iteracoes. vamos fazendo isso inserindo cada tupla de linha line_data.append([it, xk, f(xk), sk]) # f(ak) < 0 and f(bk) > 0 and f(xk) > 0, then we gonna use ak as ak and bk as xk if(f(ak) < 0 and f(bk) > 0 and f(xk) > 0): bk = xkcontinue # f(ak) > 0 and f(bk) < 0 and f(xk) > 0, then we gonna use ak as xk and bk as bk if(f(ak) > 0 and f(bk) < 0 and f(xk) > 0): ak = xkcontinue # f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) > f(bk), then we gonna use ak as b if(f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) > f(bk)): ak = bkbk = xkcontinue # f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) < f(bk), then we gonna use ak as a if(f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) < f(bk)): bk = xkcontinue # f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) > f(bk), then we gonna use ak as a if(f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) > f(bk)): bk = xkcontinue # f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) < f(bk), then we gonna use ak as x if(f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) < f(bk)): ak = xkcontinue # f(ak) > 0 and f(bk) < 0 and f(xk) < 0, then we gonna use ak as ak and bk as xk if(f(ak) > 0 and f(bk) < 0 and f(xk) < 0): bk = xkcontinue # f(ak) < 0 and f(bk) > 0 and f(xk) < 0, then we gonna use ak as xk and bk as bk if(f(ak) < 0 and f(bk) > 0 and f(xk) < 0): ak = xkcontinue # configura a quantidade de graficos fig, ax = plt.subplots(figsize=(8,6)) ax.set_axis_off()

k	хik	f(xk)	stepk
1	0.5	0.35777087598291996	1

3. Utilize o código implementado do Método da Bissecção para encontrar uma raiz aproximada da equação (2) no intervalo [0, 1], adotando $\varepsilon = 10-8$ e maxit = 50.

```
def f(x):
    F = 1.5
    p = 2*10**(-5)
    q = 5*10**(-5)
    r = 1
    e0 = 8.85*10**(-12)
    return (x / math.sqrt((x**2 + r**2)**3)) - 4 * math.pi * e0 * F / p * q

def bisseccao(intervalo, erro, it_max):
    ak = intervalo[0]
    bk = intervalo[1]
    xk = (ak + bk)/2
    sk = bk - ak
    it = 0
    # lista das k linhas
    line_data = []
```

```
# colunas necessarias para plotar
column_labels = ['k', 'xk', 'f(xk)', 'stepk']
while(np.abs(bk - ak) > erro and it < it_max):</pre>
  xk = (ak + bk) / 2
  sk = np.abs(bk - ak) # como nao tem do-while em python vai ter que fazer a diferença
  it += 1
  # se chegou aqui eh pq o teorema de bolzano nao pode provar que existe ao menos um z
  if (f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) > 0) or (f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) < 0
    print("Pelo Teorema de Bolzano, temos que f(a)f(b) >= 0, logo não podemos afirmar
    return
  \# saida: x^*, f(x^*), num iteracoes. vamos fazendo isso inserindo cada tupla de linha
  line_data.append([it, xk, f(xk), sk])
  \# f(ak) < 0 and f(bk) > 0 and f(xk) > 0, then we gonna use ak as ak and bk as xk
  if(f(ak) < 0 \text{ and } f(bk) > 0 \text{ and } f(xk) > 0):
    bk = xk
    continue
  \# f(ak) > 0 and f(bk) < 0 and f(xk) > 0, then we gonna use ak as xk and bk as bk
  if(f(ak) > 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0):
    ak = xk
    continue
  \# f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) > f(bk), then we gonna use ak as b
  if(f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0 \text{ and } f(ak) > f(bk)):
    ak = bk
    bk = xk
    continue
  \# f(ak) > 0 and f(bk) > 0 and f(xk) < 0 and f(ak) < f(bk), then we gonna use ak as a
  if(f(ak) > 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0 \text{ and } f(ak) < f(bk)):
    bk = xk
    continue
  \# f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) > f(bk), then we gonna use ak as a
  if(f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0 \text{ and } f(ak) > f(bk)):
    bk = xk
    continue
  \# f(ak) < 0 and f(bk) < 0 and f(xk) > 0 and f(ak) < f(bk), then we gonna use ak as x
  if(f(ak) < 0 \text{ and } f(bk) < 0 \text{ and } f(xk) > 0 \text{ and } f(ak) < f(bk)):
    ak = xk
    continue
  \# f(ak) > 0 and f(bk) < 0 and f(xk) < 0, then we gonna use ak as ak and bk as xk
  if(f(ak) > 0 \text{ and } f(bk) < 0 \text{ and } f(xk) < 0):
    bk = xk
    continue
  \# f(ak) < 0 and f(bk) > 0 and f(xk) < 0, then we gonna use ak as xk and bk as bk
  if(f(ak) < 0 \text{ and } f(bk) > 0 \text{ and } f(xk) < 0):
    ak = xk
```

continue

k	×k.	f(xk)	depk
1	0.5	035777087598291996	1
2	0.25	02252685231465611	0.5
3	0125	01221265074861742	0.25
4	0.0625	0.06213556867138244	0125
5	0.03125	0.03120427903152579	0.0625
6	0.015625	0015619279282757722	0.03125
7	0.0078125	0.0078117843817820663	0.015625
8	0.00390625	0.0039061601776916544	0.0078125
9	0.001953125	0.0019531134071359704	0.00390625
10	0.0009765625	0.0009765606859713787	0.001953125
11	0.00048828125	0.00048525065533064456	0.0009765625
12	0.000244140625	0.00024414018612570402	0.00048528125
13	0.0001220703125	0.00012206989272509118	0.000244140625
34	6103515625e-05	6.103473556251472e-05	0.0001220703125
15	30517578125e-05	3051716103594267e-05	6103515625e-05
16	152557890625e-05	15255372010746166e-05	30517578125e-05
17	7.62939453125e-06	7.625977454159102e-06	152557890625e-05
18	3814697263625e-06	38142802191169693e-06	7.62939453125e-06
19	19073486328125e-06	19069315563773277e-06	3814697263625e-06
20	95367431640625e-07	9532572699501549e-07	19073486328125e-06
21	476537155203125e-07	4.7642011177819534e-07	95367431640625e-07
22	2384185791015625e-07	23500153267677512e-07	476537155203125e-07
25	11920928955078125e-07	11879224312601467e-07	2.384185791015625e-07
24	5.960464477539063e-05	3.915739835062626e-05	11920928955078125e-07
25	29802322387695312e-05	29353275962931228e-05	5.960464477539063e-05
26	14901161193847636e-05	14454114769053605e-08	29502322357695312e-05
27	7.450580596923528e-09	7.033534172159753e-09	14901161193847636e-05

4. Tomando o ponto inicial x0 = 0.3, utilize o código implementado do Método de Newton para encontrar uma raiz aproximada da equação (2), adotando ε = 10-8 e maxit = 20.

```
def f(x):
    F = 1.5
    p = 2*10**(-5)
    q = 5*10**(-5)
    r = 1
    e0 = 8.85*10**(-12)
    return (x / math.sqrt((x**2 + r**2)**3)) - 4 * math.pi * e0 * F / p * q

def df(x):
    F = 1.5
    p = 2*10**(-5)
```

```
q = 5*10**(-5)
  r = 1
  e0 = 8.85*10**(-12)
  return ((r^{**2}) - 2^* (x^{**2})) / (math.sqrt(x^{**2} + r^{**2}) * (x^{**2} + r^{**2})^{**2})
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def newton(x0, erro, it_max):
    x = x0
    it = 0
    # evitar erro na primeira iteracao
    sk = erro + 1
    line_data.append([it, x, f(x), df(x),'-'])
    while(sk >= erro and it < it_max):</pre>
        xold = x
        x = x - f(x)/df(x)
        sk = np.abs(x - xold)
        it += 1
        line_data.append([it, x, f(x), df(x), sk])
    # configura a tabela
    fig, ax = plt.subplots(figsize=(8,6))
    ax.set_axis_off()
    table = ax.table(cellText=line_data,
                      cellLoc='center',
                      colLabels=column labels,
                      loc='center')
    plt.savefig('Pt1_Ex2.1.pdf', dpi=200)
    plt.show()
x0 = 0.3
erro = 10**-8
it max = 20
newton(x0, erro, it_max)
```

5. Tomando os pontos iniciais x0 = 0.3 e x1 = 0.6, utilize o código implementado do Método da Secante para encontrar uma raiz aproximada da equação (2), adotando $\epsilon = 10-8$ e maxit = 20.

```
def f(x):
  F = 1.5
  p = 2*10**(-5)
  q = 5*10**(-5)
  r = 1
  e0 = 8.85*10**(-12)
  return (x / math.sqrt((x**2 + r**2)**3)) - 4 * math.pi * e0 * F / p * q
def secante(x0, x1, erro, it_max):
    xk1 = x0
    xk2 = x1
    it = 0
    sk = np.abs(xk2 - xk1)
    # lista das k linhas
    line_data = []
    # colunas necessarias para plotar
    column_labels = ['k', 'xk', 'f(xk)', 'stepk']
    .....
    xk1 = xk-1
    xk2 = xk
    x = xk+1
    while(sk >= erro and abs(f(xk2)) >= erro and abs(f(xk1)) >= erro and it < it_max):
      x = xk2 - f(xk2)*(xk2 - xk1)/(f(xk2) - f(xk1))
      xk1 = xk2
      xk2 = x
      it += 1
      sk = np.abs(xk2 - xk1)
      line_data.append([it, x, f(x), sk])
    # configura o tamanho do grafico
    fig, ax = plt.subplots(figsize=(6,2))
    ax.set_axis_off()
    table = ax.table(cellText=line_data,
                     cellLoc='center',
                     colLabels=column_labels,
                     loc='center')
    plt.savefig('Tabela_Secante.pdf', dpi=200)
    plt.show()
```

```
x0 = 0.3
x1 = 0.6
erro = 10**-8
it_max = 20
secante(x0, x1, erro, it_max)
```

k	*	(xk)	stepk
1	-0.38960551849194325	0.31518370293373316	0.9896055184919432
2	0.060159870130452764	0.05983474422495841	0.449765388622396
3	-0.01160085842398067	0.011598517371093893	0.07176072855443363
4	5.0829292696895e-05	5.08288754534851e-05	0.011651687716677765
5	-9.799149091159855e-09	4.0216195515923933e-08	5083909184598616e-05
6	41704646434851854e-10	39584473648891626e-17	10216195555506406e-06

Aplique novamente o Método de Newton para encontrar uma raiz aproximada da equação
 (2), tomando o ponto inicial x0 = 0.7, ε = 10−4 e maxit = 10 . Explique e justifique o comportamento observado.

```
def f(x):
  F = 1.5
  p = 2*10**(-5)
  q = 5*10**(-5)
  r = 1
  e0 = 8.85*10**(-12)
  return (x / math.sqrt((x**2 + r**2)**3)) - 4 * math.pi * e0 * F / p * q
def df(x):
  F = 1.5
  p = 2*10**(-5)
  q = 5*10**(-5)
  r = 1
  e0 = 8.85*10**(-12)
  return ((r^{**2}) - 2^* (x^{**2})) / (math.sqrt(x^{**2} + r^{**2}) * (x^{**2} + r^{**2})^{**2})
# lista das k linhas
line_data = []
# colunas necessarias para plotar
column_labels = ['it', 'xk', 'f(xk)', 'df(xk)', 'stepk']
def newton(x0, erro, it_max):
    x = x0
    # evitar erro na primeira iteracao
    sk = erro + 1
    line_data.append([it, x, f(x), df(x),'-'])
    while(sk >= erro and it < it_max):</pre>
        xold = x
        x = x - f(x)/df(x)
        sk = np.abs(x - xold)
```

ž.	*	(ak)	d(xk)	stepk
0	0.7	0.38487405620263704	0.007380135313896183	-
1	51.44999994349034	0.0003775579964535156	1.4665365980508539e-05	52.14999994349034
2	-77.18960636037319	-0.00016779309276927472	4.346451396556673e-06	25.739608416882845
3	-115.79422564080426	-7.457272962260963e-05	-1.2575702769121545e-06	39.60461728043107
4	-173.69813953606121	-3.314313150393634e-05	3.8159380243781925e-07	57.90391389527696
5	260.55262011792195	-1.4730307418972722e-05	-1.1306403220185631e-07	88.85448058184073
6	390.83549728149507	6.5465953494854194e-06	-3.349958774891418e-08	150.28287716357312
7	586.2676141946539	2.9095362187884543e-06	-0.925182305224117e-09	195.43211691315684
ā	679.4447195921933	1.293368D466D59846e-D6	2.940374679140079e-09	293.17710539753944
9	1319.309766649473	5.749352621508745e-07	6.70941359091252e-10	429.56504705727964
10	1979.4440640386454	2.556362600320027e-07	2.5786949026610433e-10	680.1342973891724
	7 8	0 0.T 1 51.44998994348034 2 17.18980639037319 3 113.79422564086426 4 173.6981393968121 5 260.53263011792195 6 390.83549728149507 7 586.2076141946339 8 679.4447189821953	0 0.7 039487409620037704 1 051.4499994349034 0.0003775579864538156 2 77.18980639057519 0.00016779396279827472 3 -115.79422564080429 7.457272282209863-03 4 171.69813953908121 0.114313150398834-05 5 260.5262011792193 -1.4720307418972722-05 6 390.83549728149507 6.5463953494854194-06 7 080.2076141946539 2.8098162187858434-06 8 679.4447189921823 1.1853985468059846-06 9 1319.309766849473 0.749382621508745-07	0 0.T 0.38487405610063704 0.007180135313886183 1 0.144998994348034 0.0003775579864538156 1.4668385999508338e-05 2 17.18980839037319 0.00018779308270927472 4.3464513885398673e-09 3 115.794225640816426 7.457272862203863e-03 1.2878702789121848e-06 4 173.69813953808121 3.314513130398834e-05 3.8159386243781925e-07 5 260.55261011792195 1.4750397418972722e-05 1.1308482320185631e-07 6 390.83549728149507 6.546395349488434e-06 3.34938874891418e-08 7 586.2976141948539 2.809836218786443e-06 0.825183205224117e-09 8 679.4447189922893 1.29538804885984e-06 2.94037487914079e-09 9 1319.308768449473 8.749382621308745e-07 8.70941359093152e-10

Produtos pagos do Colab - Cancelar contratos

• ×