QUESTÃO 20: NORMAL INVERSA

MOISÉS SALES

1. Modelo Simples

```
claims = read.table(".../claims.txt", header=TRUE)
claims$cmsinistros
claims$csinistros/claims$nsinistros
library(MASS)
library(dglm)
claims$areac[claims$areac == "A"] = "ABC"
claims$areac[claims$areac == "B"] = "ABC"
claims$areac[claims$areac == "C"] = "ABC"
claims$areac[claims$areac == "D"] = "DEF"
claims$areac[claims$areac == "E"] = "DEF"
claims$areac[claims$areac == "F"] = "DEF"
areac = factor(claims$areac)
claims$idadec[claims$idadec == 1] = "1+2"
claims$idadec[claims$idadec == 2] = "1+2"
claims$idadec[claims$idadec == 3] = "3+4"
claims$idadec[claims$idadec == 4] = "3+4"
claims$idadec[claims$idadec == 5] = "5+6"
claims$idadec[claims$idadec == 6] = "5+6"
idadec = factor(claims$idadec)
# fit.model = glm(log(cmsinistros) ~ valorv+expos+tipov+
    idadev+ sexoc+areac+idadec, family=inverse.gaussian(link=log))
# stepAIC(fit.model)
fit.model = glm(formula = log(cmsinistros) ~ expos + tipov +
    areac, family = inverse.gaussian(link = log))
summary(fit.model)
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercepto)	1.9365	0.0145	133.61	0.0000
expos	-0.0763	0.0211	-3.62	0.0003
tipovTRAB	0.0371	0.0161	2.31	0.0212
areacDEF	0.0270	0.0124	2.18	0.0296

TABELA 1. Estimativas dos coeficientes do modelo simples.

(A) Níveis da variável idadec.

(B) Níveis da variável areac.

FIGURA 1. Box-plots do Resíduo Componente do Desvio pelos níveis das variáveis idadec e areac.

(A) Variável expos.

(B) Níveis da variável idadev.

FIGURA 2. Gráficos do Resíduo Componente do Desvio pela variável expos e pelos níveis da variável idadev.

(A) Níveis da variável sexoc.

(B) Níveis da variável tipov.

FIGURA 3. Box-plots do Resíduo Componente do Desvio pelos níveis das variáveis sexoc e tipov.

FIGURA 4. Resíduo Componente do Desvio pela variável valorv.

2. Modelo Duplo

	Estimativa	Std. Error	t value	Pr(> t)
(Intercepto)	1.9410	0.0145	133.51	0.0000
expos	-0.0749	0.0213	-3.53	0.0004
tipovTRAB	0.0434	0.0147	2.95	0.0032

TABELA 2. Estimativa dos coeficientes para μ , modelo duplo.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-5.0073	0.1758	-28.49	0.0000
expos	-0.5215	0.2265	-2.30	0.0215
valorv	-0.1046	0.0530	-1.98	0.0485

TABELA 3. Estimativa dos coeficientes para ϕ^{-1} , modelo duplo.

- 2.1. **Análise de Diagnóstico.** Os códigos utilizados para a análise diagnóstico estão presentes nos arquivos "diag_ninv_dglm", "diag_ninv_dglm_disp", no site do Gilberto A. Paula.
- 2.1.1. *Analisando* μ . Análise de diagnóstico para o parâmetro μ :

(A) Resíduos Componente do Desvio

(B) Medida h.

FIGURA 5. Resíduo Componente do Desvio e Medida h por valores ajustados.

FIGURA 6. Distância de Cook e Gráfico da Variável z.

2.1.2. *Analisando* ϕ^{-1} . Análise de diagnóstico para o parâmetro ϕ^{-1} :

FIGURA 7. Resíduo Componente do Desvio e Medida h por valores ajustados.

FIGURA 8. Distância de Cook e Gráfico da Variável z.

FIGURA 9. Gráfico Normal de probabilidade