Filter Summary Report: TIA,simple,Z3

Generated by MacAnalog-Symbolix

December 10, 2024

Contents

1 Examined $H(z)$ for TIA simple Z3: Z_3	2
2 HP	2
3 BP 3.1 BP-1 $Z(s) = \left(\infty, \ \infty, \ \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \ \infty, \ \infty, \ \infty\right)$	2
$4~~\mathrm{LP}$	2
5 BS $5.1 \text{ BS-1 } Z(s) = \left(\infty, \ \infty, \ \frac{R_3\left(C_3L_3s^2+1\right)}{C_3L_3s^2+C_3R_3s+1}, \ \infty, \ \infty, \ \infty\right) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	2
6 GE	2
7 AP	2
8 INVALID-NUMER	3
9 INVALID-WZ	3
10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, \infty)$	3
10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s+1}, \infty, \infty, \infty\right)$	3
10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$	3
10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$	3
10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_{3s}^2+1}, \infty, \infty, \infty\right)$	3
10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty\right)$	3
10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, L_3s + \frac{1}{C_3s}, \infty, \infty, \infty\right)$ 10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$ 10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, L_3s + R_3 + \frac{1}{C_3s}, \infty, \infty, \infty\right)$ 10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$	3

1 Examined H(z) for TIA simple Z3: Z_3

 $H(z) = Z_3$

- 2 HP
- 3 BP
- **3.1** BP-1 $Z(s) = \left(\infty, \infty, \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}, \infty, \infty, \infty\right)$

 $H(s) = \frac{L_3 R_3 s}{C_3 L_3 R_3 s^2 + L_3 s + R_3}$

Parameters:

Q:
$$C_3R_3\sqrt{\frac{1}{C_3L_3}}$$

wo: $\sqrt{\frac{1}{C_3L_3}}$
bandwidth: $\frac{1}{C_3R_3}$
K-LP: 0
K-HP: 0
K-BP: R_3
Qz: 0
Wz: None

- 4 LP
- 5 BS
- **5.1** BS-1 $Z(s) = \left(\infty, \infty, \frac{R_3(C_3L_3s^2+1)}{C_3L_3s^2+C_3R_3s+1}, \infty, \infty, \infty\right)$
- Parameters:

Q:
$$\frac{L_3\sqrt{\frac{1}{C_3L_3}}}{R_3}$$
 wo: $\sqrt{\frac{1}{C_3L_3}}$ bandwidth: $\frac{R_3}{L_3}$ K-LP: R_3 K-HP: R_3 K-BP: 0 Qz: None Wz: $\sqrt{\frac{1}{C_3L_3}}$

- 6 **GE**
- **7** AP

8 INVALID-NUMER

9 INVALID-WZ

10 INVALID-ORDER

10.1 INVALID-ORDER-1 $Z(s) = (\infty, \infty, R_3, \infty, \infty, \infty)$

$$H(s) = R_3$$

10.2 INVALID-ORDER-2 $Z(s) = \left(\infty, \infty, \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{1}{C_3 s}$$

10.3 INVALID-ORDER-3 $Z(s) = \left(\infty, \infty, \frac{R_3}{C_3 R_3 s + 1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{R_3}{C_3 R_3 s + 1}$$

10.4 INVALID-ORDER-4 $Z(s) = \left(\infty, \infty, R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 R_3 s + 1}{C_3 s}$$

10.5 INVALID-ORDER-5 $Z(s) = \left(\infty, \infty, L_3 s + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + 1}{C_3 s}$$

10.6 INVALID-ORDER-6 $Z(s) = \left(\infty, \infty, \frac{L_3s}{C_3L_3s^2+1}, \infty, \infty, \infty\right)$

$$H(s) = \frac{L_3 s}{C_3 L_3 s^2 + 1}$$

10.7 INVALID-ORDER-7 $Z(s) = \left(\infty, \infty, L_3 s + R_3 + \frac{1}{C_3 s}, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 s^2 + C_3 R_3 s + 1}{C_3 s}$$

10.8 INVALID-ORDER-8 $Z(s) = \left(\infty, \infty, \frac{L_{3s}}{C_3L_3s^2+1} + R_3, \infty, \infty, \infty\right)$

$$H(s) = \frac{C_3 L_3 R_3 s^2 + L_3 s + R_3}{C_3 L_3 s^2 + 1}$$

11 PolynomialError