데이터분석캡스톤디자인

7주차 수행보고

Khupid 조

산업경영공학과 김동혁 관광학과 류연주 산업경영공학과 유정수

데이터 통합

- 1. 갈 곳(Go), 볼 것(Watch), 먹을 것(Eat) 각자 크롤링 한 data의 필드를 지난번에 정의한 필드로 통합
- 2. 결측치 제거 및 수정
- 3. 리뷰 통합 data를 text파일로 별도 저장 -> 태그 추출할 때 이용

장소별 리뷰 통합 data 구축

BHC치킨 사당점.txt

결 go, nai ade car ma pr do rat rv tag dt

결측치 제거 및 수정 결측치 계산 o_info.isnull().sum()	 ♬ 1인1잔.txt ♬ 3일한우국밥.txt ♬ 17.txt ♬ 24시 우동집.txt ♬ 37그릴앤바.txt ♬ 58도씨.txt 			
ame 28 ddress 28 ategory 2360 ain_mn 132 fice 213 ong_tm 201 ating 30 aw_cnt 30 ags 37 type: int64	60계 치킨 마곡점.txt 63 프로방스.txt 63뷔페 파빌리온.txt 79번지국수집.txt 101번지 남산돈까스.txt 599버거.txt 808슈퍼스토어.txt 2046팬스테이크 목동점.txt 72420 노원점.txt Baks.txt			

FastText model 스터디

pre-trained 모델 이해 (한국어, 영어 모델 모두)

- CBOW
- 300 dimension
- window size: 5 and 10 negatives

Output: Feature Vector ੀ ਗੋ

- word vector의 평균을 내서 input으로 넣어줌
- 은닉층의 노드 값을 가져와서 벡터로 나타냄

FastText model과 형용사 클러스터링

	comfortable	only	favorite	little	weak	first	want	female	overall	other	delicious
0	-0.000428	0.001228	-0.000180	0.000972	-0.000185	0.000038	0.000038	0.000261	0.000047	-0.000214	-0.000271
1	0.000183	0.000173	0.000307	0.001191	0.000233	0.000596	0.000923	0.000445	-0.000409	0.000150	-0.000466
2	0.000478	-0.000791	0.000173	-0.000499	0.001446	0.001369	0.000924	-0.000424	-0.000552	-0.000090	-0.000167
3	-0.000368	-0.001272	0.000377	0.000133	0.001009	0.000273	-0.000876	0.000082	-0.000340	0.000455	-0.000392
4	-0.000772	-0.000109	0.000543	-0.000014	0.000653	-0.000085	-0.000363	0.000610	-0.000167	-0.001110	-0.000231
295	0.000125	0.000061	-0.000115	0.000619	-0.001195	-0.001046	0.000390	0.000690	0.000301	0.000077	0.000119
296	-0.000071	0.000744	-0.000208	-0.000682	0.000181	0.000426	-0.000330	0.000058	-0.000014	0.000821	-0.000109
297	-0.000125	-0.000324	-0.000019	-0.000676	0.000222	0.000235	-0.000293	0.000132	-0.000472	-0.000355	0.000125
298	-0.000319	0.000006	-0.000451	0.000197	-0.000604	-0.000112	-0.000614	0.000107	-0.000610	0.000303	-0.000287
299	0.000050	-0.000063	-0.000577	0.000161	-0.000171	0.000441	0.000525	0.000271	0.000296	0.000548	0.000539

```
Y[Y['kmeans id'] == 0].index
Index(['good', 'goodAnd', 'good^', 'goodTo', 'good?', 'goodIt', 'good:-)'], dtype='object')
Y[Y['kmeans id'] == 1].index
Index(['Warm', 'deep', 'wait', 'sleep', 'studyDeep', '"I', 'mic', 'intent'], dtype='object')
Y[Y['kmeans id'] == 2].index
Index(['only', 'delicious', 'great', 'song', 'new', 'quiet', 'neat', 'dirty',
       'soggy', 'cold', 'hard', 'old', 'club', 'strange', 'shade', 'hot',
       'real', 'sound', '감사합니다', 'it'd', 'Yeongdeungpo', 'own', 'dusty', 'rid',
       'bike', 'eat', 'delicious*^^*', 'scary', 'senior', 'cool', 'dry',
       'remix-board', 'solid', 'central', 'weird', 'angry', 'three-hour',
       'red', 'minor', 'Myeong-dong', 'dirty;', 'malicious', 'Myeonmok-dong',
       'shitlol', 'mini', 'serious', '*^^*', 'deliciousFresh', 'lol', 'vaque',
       'in?', 'dogs', 'Yeontral', 'mean', 'extra', 'cat', 'Clean', 'kind^^',
       'girl', 'deliciousNo', 'sexual', 'dirty-looking', 'sour', 'it?',
       'misogynistic', 'dinga'],
     dtype='object')
```

array([6, 3, 11, 4, 5, 14, 11, 7, 11, 14, 2, 2, 11, 6, 1, 12, 7, 5, 9, 2, 0, 7, 2, 11, 5, 11, 11, 11, 3, 1, 1, 2, 12, 6, 14, 14, 5, 5, 2, 1, 1, 1, 2, 5, 2, 8, 12, 14, 2, 6, 7, 9, 3, 2, 0, 2, 0, 6, 11, 13, 13, 7, 13, 13, 7, 9, 2, 4, 7, 5, 14, 0, 7, 11, 12, 14, 1, 6, 2, 9, 6, 11, 11, 2, 0, 0, 14, 0, 9, 12, 11, 2, 0, 7, 10, 7, 7, 11, 14, 4, 7, 3, 4, 7, 7, 13, 7, 11, 1, 2, 10, 7, 4, 2, 11, 12, 11, 2, 11, 13, 5, 14, 3, 5, 3, 2, 11, 1, 2, 11, 2, 0, 6, 2, 1, 5, 2, 4, 9, 2, 7, 3, 11, 14, 9, 7, 2, 14, 5, 13, 7, 13, 6, 10, 3, 11, 1, 2, 6, 6, 10, 1, 2, 11, 14, 11, 2, 14, 11, 2, 2, 14, 11, 13, 2, 2, 2, 12, 14, 14, 8, 2, 2, 12, 3, 0, 6, 11, 5, 7, 6, 14, 7, 13, 14, 6, 6, 0, 11, 2. 6. 7. 7. 7. 6. 11. 2. 6. 12. 14. 14. 0. 0. 13. 7. 11. 14, 11, 1, 6, 2, 12, 5, 14, 7, 1, 14, 2, 0, 4, 12, 5, 2, 5, 2, 1, 2, 2, 14, 4, 14, 14, 2, 4, 11, 7, 7, 4, 4, 5, 2, 11, 7, 6, 11, 4, 7, 7, 7, 11, 2, 2, 5, 11, 2, 14, 1, 4, 3, 2, 14, 6, 0, 3, 6, 5, 1, 4, 1, 2, 5, 11, 11, 11, 2, 11, 14, 13, 8, 0, 11, 6, 11, 10, 1])

{6: 24, 3: 11 11: 42, 4: 14, 5: 19, 14: 30, 7: 32, 2: 54, 1: 19, 12: 11, 9: 7, 0: 16, 8: 3, 13: 13, 10: 5}

친밀하다 청아하다 경솔하다 복잡다단하다 즐비하다 걸걸하다 부지런하다 반하다 충분하다 무능하다 탁월하다 경건하다 올바르다 정통하다 묘연하다 덜하다 타락하다 무뚝뚝하다 긴급하다

이번주 문제점

- 1. 장소마다 다른 형식의 data(ex. 매월 첫,셋째주 화요일 휴무 등)로 인한 전처리의 어려움
- 2. 리뷰 data가 없거나 부족한 장소들이 다수 발생a. 다른 플랫폼에서 추가적인 크롤링b. 그래도 데이터가 없으면 그 장소는 제거
- 3. 한국어 -> 영어로 바꾸는 과정에서 품사 태깅이 깨지는 문제 a. 영어 리뷰 전처리
- 4. 같은 모양으로 클러스터링 되는 문제 (sleep, deep / nasty, wasty 등등) a. 전처리 후 재확인

다음주에 해야할 일

- 1. 한국어 -> 영어 리뷰 번역 과정에서
- 2. 영어 리뷰 전처리 후 한국어와 비교해서 클러스터링 성능 비교
- 3. 태그 사전(matrix) 구축
- 4. Collaborative Filtering 모델 스터디