

On-Blade Fluctuating Pressure Rocket Engine Turbine **Experimental Work**

NASA Marshall Space Flight Center Thomas F. Zoladz

NASA/MSFC Fluids Workshop April 4th-5th, 2001

Outline

- Background
- **SSME HPFT On-Blade Effort**
- Model Description
- Instrumentation
- Unsteady Data
- Calibration Issues
- Signal Analysis
- Blade Surface Pressure Mappings
- **Turbine Performance Optimization Effort**
- Objectives of On-Blade Experimental Work
- Incorporation of Lessons Learned from SSME HPFT Effort

Background

- Flowfield unsteadiness major factor in turbine pertormance and life
- to increase understanding of unsteady environments Cold-flow testing conducted at NASA MSFC (1998) for rocket engine turbines
- SSME HPFT (RKDYN) 1st Stage On-Blade Fluctuating **Pressures**
- Unique data set
- Obtained several minutes of data per setpoint
- Extensive steady performance database for turbine
- supporting Turbine Performance Optimization effort On-blade fluctuating pressure mapping in work
- Supersonic turbine
- Incorporate lessons learned from SSME HPFT effort

Schematic of Turbine Test Facility (TTE)

- Rocketdyne space shuttle main engine (SSME) high pressure fuel turbopump (HPFTP) turbine
- Full-scale
- Inlet struts, stators, and rotors accurately duplicated gas path geometry (engine hardware)
- 13 inlet struts
- 41 1st stage stators
- 63 1st stage rotors
- 39 2nd stage stators
- 59 2nd stage rotors

Instrumented with On-Blade Kulite Pressure Transducers **SSME HPFTP Turbine Test Article**

Kulite pressure transducers on 7 of the 1st stage blades

90% Span—3 pressure/3 suction 10% Span—3 pressure/4 suction 50% Span—4 pressure/7 suction

• Facility Set Points: P₀₁, T₀₁, N, Pr

Old Design Point (ODP):

$$- T_{01} = 550^{\circ} R$$

Calspan Set Point (CSP):

$$- T_{01} = 550^{\circ} R$$

- platforms used in turbine on-blade characterization Two unsteady data acquisition and processing
- Labview driven single-channel transient data recorders
- 32 channel CADDMAS
- 100 kHz bandwidth
- real time display of 32 channels and storage to local disk
- Fluctuating pressure calibration difficulties encountered during experimental series
- Bias temperature sensitivity
- successful calibrations achieved with adequate thermal soak of blades during end-to-end channel cals

- Rotating machinery diagnostic signal processing tools invaluable in on-blade mapping effort
- synchronous time average (STA)
- phase synchronized enhancement method (PSEM)

Harmonic of 1st Vane Passage Frequency Standard and Enhanced Pressures at 1st

- mapping of on-blade environments across chord and Signal enhancement methods allowed accurate span
- average pressure distributions
- unsteady envelope
- vane passing content
- revolution best indicate flow field intricacies of turbine On-blade pressure waveforms over complete environment
- understanding phasing and attenuation of wavelets across span and chord will allow us to fill in gaps
- lots of information to pass on to structures and stress

90% Span Normalized Average Pressure versus Wetted Length

50% Span Normalized Pressure Envelope versus Wetted Length

Normalized Vane Passage Response versus Wetted Length

Normalized Synchronous and Inlet Strut Passage Responses versus Wetted Length

Normalized Time Averaged Surface Pressures at 50% Span Suction Side

Turbine Performance Optimization Effort

- "there exist no unsteady data for design or analysis validation for supersonic turbines"
- Center Director Discretionary Fund: Dynamic Data for Supersonic Turbines
- running concurrently / in support of Turbine Performance Optimization task
- provide on-blade pressures for optimized supersonic blade through cold-flow testing
- identify blade surface pressure steady/unsteady features at both nominal and off-design conditions
- validate analytical (time-accurate CFD) design methods
- study inlet flow features across several inlet designs (vanes, nozzles) and characterize potential instabilities

Turbine Performance Optimization Effort

- Applying lessons learned from SSME HPFT effort
- Kulite / Oxford University providing complete calibration of instrumented blades
- novel temperature calibration approach
- acceleration ("g") sensitivity
- frequency response
- perform extensive verification of temperature and acceleration effect compensations
- dry tare vacuum runs at speed suggested by Air Force Research Laboratory
- run scaled setpoints at various speeds, temperatures
- streamline unsteady post-processing focusing on flow features most pertinent to CFD verification and Structures / Stress
- 100 kHz over 32 channels over 3 minutes over dozens of tests over several builds makes for tired experimentalists and lots of data storage

NASAN

Turbine Performance Optimization Effort

- Applying lessons learned from SSME HPFT effort (continued)
- buy most robust sensor for environment
- lost 9 of 24 on-blade pressure sensors in SSME testing
- get unsteady data first
- verify at setpoint and take high frequency data