

Global alignment of the LHCb SciFi Tracker and Vertex Locator

Nils Breer, Biljana Mitreska, Sophie Hollitt, Johannes Albrecht **04.03.2024**

DPG Conference, Karlsruhe

Why do we need detector alignment?

- Track reconstruction: detector position in reconstruction similar to real detector.
- Top: ideal detector, bottom: physical detector
- Surveys: find the rotation and position of each detector component
- Surveyed measurements of detector: Input for alignment
- Alignment goal: achieve the best precision in the detector position

N.Breer | 04.03.2024 2 / 16

Importance of alignments

- Alignment is part of the LHCb trigger system
- Physics performance tied to alignment performance
- Good quality alignment contributes to:
 - → remove systematic biases for asymmetry measurements
 - Best possible mass resolution

N.Breer | 04.03.2024 3 / 16

Tracking alignment: track fit using Kalman filter

- Input sample: reconstructed tracks (HLT2)
- χ^2 minimization algorithm \rightarrow determine detector element position

Iterate until the χ^2 -difference is below a threshold

r: tracks residuals, V: covariance matrix, R: residuals' covariance matrix

• Easily models material interactions as well as multiple scattering

N.Breer | 04.03.2024 4 / 16

The Run 3 LHCb detector

- Brand new detector to maintain physics performance at more radiation harsh environment
- UT was not present during 2022-23 data taking →focus on SciFi and VELO

N.Breer | 04.03.2024 5 / 16

The Scintillating Fibre Tracker

- 5 modules per side except for back T-station has 6
- X1, X2-layers are vertical and only yield x-position information
- U, V layers have a ∓5degree stereo angle respectively
 - → Used for determining y-position of tracks by comparing hitposition at different angles

N.Breer | 04.03.2024 6 / 16

VELO geometry

- Rotation Rz leading to shifts in x and y
- Half alignment sensitive to x shift
- Global movement in y
 - Can not be corrected for by half alignment

N.Breer | 04.03.2024 7 / 16

Global alignment and motivation

Global alignment

- Alignment of the VELO and SciFi simultaneously
- Motivation for global alignment
 - we can do the alignment seperately but ideally best alignment we achieve is the global one
 - Understanding the interplay between tracking systems
 - Rotations inside the VELO →weak modes inside SciFi (VELO twisting)

N.Breer | 04.03.2024 8 / 16

SciFi alignment status and issues

- SciFi alignment quite good already
- Zig-zag pattern in stereo layers comes from global VELO Rx rotation
- Similar pattern in SciFi Tz
 →entangled problem between
 Tx and Tz

N.Breer | 04.03.2024 9/16

Comparison to global alignment tests

	C-FRames	Halfmodules	full VELO	VELO halves
DoF	RxRz	TxRxRz	RxRz	TxTyTz

- Black: first align Longmodules then Halfmodules
- Blue: constraining (X1|X2) and (U|V) layers
- Red: added backwards VELO tracks
- Green: only Rx in full VELO alignment

N.Breer | 04.03.2024

global alignment: rotation studies

- Observe rotation around Rx through T-stations
- This effect only shows when running SciFi and VELO together

N.Breer | 04.03.2024 11 / 16

Outcome of the study and next steps

- ongoing investigation of zig-zag pattern with VELO Rx
- →similar pattern in Tz →cannot fix one without the other
- ullet global VELO Rx might be overthrown by survey constrains acting on Rx \to Rx not being picked up in the alignment
- Testing different survey uncertanties to study the impact on global VELO rotation
- Testing different settings in the alignment on stereo layers in Tx
- make sure VELO Rx is being picked up in the alignment
- Include the VELO + SciFi configuration during data-taking

N.Breer | 04.03.2024 12 / 16

Summary

- global alignment improving the SciFi alignment
- survey constraints counteract the global VELO Rx
- A lot more tests to do until data taking which look promising

Thank you for your attention!

N.Breer | 04.03.2024

The survey: what is it and the different types

• Measure distance of some points on the detector with a laser

- Layer survey: find corners of layers
- Module survey: reflective stickers, calculate module plane
- Compare survey to simulation

N.Breer | 04.03.2024 14 / 16

Alignables for the global alignment

N.Breer | 04.03.2024

Links

Wouter's paper on the Kalman Filter

Real time Alignment and calibration presentation

N.Breer | 04.03.2024 16 / 16