TENSOR CATEGORIES AND TOPOLOGICAL ORDER

TENSOR CATEGORIES, TOPOLOGICAL FIELD THEORY AND TOPOLOGICAL ORDER

- mathematical tools useful for studying topological orders / phases
- algebraic structures:
 - categories and functors
 - fusion categories
 - modular tensor categories
 - higher categories
 - algebras in tensor categories
 - module and bimodule categories
- geometric structures: cobordisms
- from geometry / topology to algebraic structures: topological field theory

- mathematical tools useful for studying topological orders / phases
- algebraic structures:
 - categories and functors
 - fusion categories
 - modular tensor categories
 - higher categories
 - algebras in tensor categories
 - module and bimodule categories
- geometric structures: cobordisms
- from geometry / topology to algebraic structures: topological field theory

- mathematical tools useful for studying topological orders / phases
- algebraic structures:
 - categories and functors
 - fusion categories
 - modular tensor categories
 - higher categories
 - algebras in tensor categories
 - module and bimodule categories
- geometric structures: cobordisms
- from geometry / topology to algebraic structures: topological field theory
- relevance to topological orders in thermodynamic limit
- in particular gapped boundaries and gapped interfaces

Part I / II

- categories
- **B** ...
- **B** · · ·
- modular tensor categories

Part I / II

- categories
- **13** · · · ·
- **1** · · · ·
- modular tensor categories

- algebras
- **1**
- **®** · · ·
- module and bimodule categories

Part I / II

categories

algebras algebras

modular tensor categories module and bimodule categories

in gory detail

Part III

topological field theory for gapped boundaries and interfaces

■ gapped 2-d bulk

Question: can one "put" the system on a disk without closing the gap ?

■ gapped 2-d bulk

Question: can one "put" the system on a disk without closing the gap ?

Answer: in general no – obstructed

gapped 2-d bulk

Question: can one "put" the system on a disk without closing the gap ?

Answer: in general no – obstructed

Question: assuming vanishing obstruction, how many independent

"boundary conditions" on the disk such that system remains gapped ?

- gapped 2-d bulk
- Question: can one "put" the system on a disk without closing the gap ?

Answer: in general no – obstructed

Question: assuming vanishing obstruction, how many independent
"boundary conditions" on the disk such that system remains gapped

Answer:

- suitable language and tools needed
- needed e.g. for telling precisely
 what a boundary condition is and
 when two boundary conditions independent

Miscellaneous general motivations:

- see what is really going on:
 recognize distinct situations as different realizations of the same structure
- prove stuff only once
- and even to keep track of isomorphisms

Miscellaneous general motivations:

- recognize distinct situations as different realizations of the same structure
- rove stuff only once
- and even to keep track of isomorphisms
- generalized notions of symmetry
- **►** categories → functors → natural transformations
- quantization
- quantum filed theories and the dimensional ladder
- **~**

Categories

DESIRABLE —

Quasi-particles —

- quasi-particle excitations
- may interact / be manipulated

INFORMAL DEFINITION — Category —

- collection of things
- notion of relating two things
- sensible properties of the latter

DEFINITION — Category $\mathcal C$ —

Data:

 \bowtie class Obj(C) members called objects

set of arrows $x \xrightarrow{f} y$ for any two objects x and ycall x source and y target of $\stackrel{f}{\longrightarrow}$ write $x = s(\xrightarrow{f}) \equiv s(f)$ and $y = t(\xrightarrow{f}) \equiv t(f)$

- \longrightarrow distinguished arrow $\operatorname{id}_x: x \longrightarrow x$ for each object x
- $g \circ f : \mathsf{s}(f) \to \mathsf{t}(g)$

for any two arrows f and g with t(f) = s(g)

Axioms:.....

DEFINITION — Category \mathcal{C} —

Data:

- \bowtie class Obj(C) members called objects
- set of arrows $x \xrightarrow{f} y$ for any two objects x and ycall x source and y target of $\stackrel{f}{\longrightarrow}$ write $x = s(\xrightarrow{f}) \equiv s(f)$ and $y = t(\xrightarrow{f}) \equiv t(f)$
- \longrightarrow distinguished arrow $\operatorname{id}_x: x \longrightarrow x$ for each object x
- $\operatorname{\mathsf{res}}$ composed arrow $g \circ f \colon \mathsf{s}(f) \to \mathsf{t}(g)$

for any two arrows f and g with t(f) = s(g)

Axioms:

associativity of composition:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 whenever either side defined

unit properties of id:

$$f \circ id_x = f$$
 for $s(f) = x$ and $id_y \circ f = f$ for $t(f) = y$

- for x an object of C write

 $x \in \text{Obj}(\mathcal{C})$ or just $x \in \mathcal{C}$ though $\text{Obj}(\mathcal{C})$ not necessarily a set

- call arrow $x \xrightarrow{f} y$ a morphism from x to y
- id_x called identity morphism
- call morphisms f and g composable iff t(f) = s(g)
- morphism with source = target called endomorphism

- for x an object of $\mathcal C$ write
 - $x \in \text{Obj}(\mathcal{C})$ or just $x \in \mathcal{C}$

though Obj(C) not necessarily a *set*

- call arrow $x \xrightarrow{f} y$ a morphism from x to y
- id_x called identity morphism
- \blacksquare call morphisms f and g composable iff t(f) = s(g)
- morphism with source = target called endomorphism
- denote set of all morphisms $x \xrightarrow{f} y$ by $\operatorname{Hom}_{\mathcal{C}}(x,y)$
- $\operatorname{write} \ \operatorname{End}_{\mathcal{C}}(x) := \operatorname{Hom}_{\mathcal{C}}(x,x)$

- for x an object of C write
 - $x \in \mathrm{Obj}(\mathcal{C})$ or just $x \in \mathcal{C}$

though Obj(C) not necessarily a *set*

- call arrow $x \xrightarrow{f} y$ a morphism from x to y
- id_x called identity morphism
- call morphisms f and g composable iff t(f) = s(g)
- morphism with source = target called endomorphism
- denote set of all morphisms $x \xrightarrow{f} y$ by $\operatorname{Hom}_{\mathcal{C}}(x,y)$
- $ightharpoonup \operatorname{write} \operatorname{End}_{\mathcal{C}}(x) := \operatorname{Hom}_{\mathcal{C}}(x,x)$
- alternative formulation:
 - \longrightarrow start from class of objects and class $Hom(\mathcal{C})$ of all morphisms
 - formulate rest of structure and axioms in terms of maps

$$\mathrm{id}\colon \operatorname{Obj}(\mathcal{C}) \longrightarrow \operatorname{Hom}(\mathcal{C}) \qquad \qquad \mathsf{s}, \mathsf{t}\colon \operatorname{Hom}(\mathcal{C}) \longrightarrow \operatorname{Obj}(\mathcal{C})$$

$$s, t: \operatorname{Hom}(\mathcal{C}) \longrightarrow \operatorname{Obj}(\mathcal{C})$$

$$\circ \colon \operatorname{Hom}(\mathcal{C}) \times_{\operatorname{Obj}(\mathcal{C})} \operatorname{Hom}(\mathcal{C}) \longrightarrow \operatorname{Hom}(\mathcal{C})$$

EXAMPLES -

- $\mathbb{F}\left(\mathcal{S}et\right)$
 - objects = sets
 - morphisms = maps between sets
 - identity morphism = identity map
 - composition = composition of maps
- \bowtie (Vect)
 - → objects = vector spaces over some field ko
 - morphisms = linear maps

- $ightharpoonset \left(\mathcal{S}et
 ight)$
 - objects = sets
 - morphisms = maps between sets
 - identity morphism = identity map
 - composition = composition of maps
- \bowtie $(\mathcal{V}ect)$
 - objects = vector spaces over some field ko
 - morphisms = linear maps
- \bowtie (vect)
 - ightharpoonup objects = finite-dimensional vector spaces over some field k
 - morphisms = linear maps
- ${\mathbb F}$ for us: ${\mathbb k}={\mathbb C}$

EXAMPLE -

$$(X-\mathsf{mod})$$
 $(X=G \mathsf{group} / = R \mathsf{ring} / = A \mathsf{algebra})$

ightharpoonup objects = X-modules

morphisms = intertwiners

EXAMPLE —

- $(X\operatorname{-mod})$ $(X=G\operatorname{group} / = R\operatorname{ring} / = A\operatorname{algebra})$
 - \longrightarrow objects = X-modules
 - morphisms = intertwiners
- \longrightarrow module = vector space V together with X-action (representation)

 $\rho \colon X \longrightarrow \operatorname{End}_{\operatorname{Vect}}(V)$ compatible with the structure of X

- \bullet intertwiner $\varphi \colon (V, \rho_V) \longrightarrow (W.\rho_W)$
 - = linear map $V \longrightarrow W$

$$V \xrightarrow{\rho_V(x)} V$$
 such that
$$\varphi \downarrow \qquad \qquad \downarrow \varphi \qquad \text{ for all } x \in X$$

$$W \xrightarrow{\rho_W(x)} W$$

- a single object * and only isomorphisms
 - composition of morphisms gives associative product with inverse
 - identity morphism gives unit element
 - \longrightarrow is nothing but group G with morphisms = group elements
 - ightharpoonup notation $\boxed{*/\!\!/ G}$

- a single object * and only isomorphisms
 - composition of morphisms gives associative product with inverse
 - identity morphism gives unit element
 - \longrightarrow is nothing but group G with morphisms = group elements
 - \longrightarrow notation $*/\!\!/G$

isomorphism = morphism having an inverse

- a single object * and only isomorphisms
 - composition of morphisms gives associative product with inverse
 - identity morphism gives unit element
 - \longrightarrow is nothing but group G with morphisms = group elements
 - \longrightarrow notation (*//G)

EXAMPLES -

- generalization: groupoid : only isomorphisms
- ightharpoonup path groupoid of manifold M
 - ightharpoonup objects = points of M
 - morphisms = paths
 - composition = concatenation of paths

- a single object * and only isomorphisms
 - composition of morphisms gives associative product with inverse
 - identity morphism gives unit element
 - \longrightarrow is nothing but group G with morphisms = group elements
 - \longrightarrow notation (*//G)

EXAMPLES

- generalization: groupoid: only isomorphisms
- lacktriangleright fundamental groupoid of manifold M
 - ightharpoonup objects = points of M
 - morphisms = homotopy classes of paths
 - composition inherited from concatenation

- a single object * and only isomorphisms
 - composition of morphisms gives associative product with inverse
 - identity morphism gives unit element
 - \longrightarrow is nothing but group G with morphisms = group elements
 - \longrightarrow notation $*/\!\!/G$

EXAMPLES

- generalization: groupoid: only isomorphisms
- action groupoid $X/\!\!/ G$ of set X endowed with G-action (G group)
 - ightharpoonup objects = elements of X
 - \longrightarrow morphisms = group elements $x \xrightarrow{g} g.x$
 - composition inherited from group product

- rarely sensible to require two objects x and y of a category to be equal
- sensible to require two objects to be isomorphic: $x \cong y$ i.e. existence of an isomorphism $f: x \xrightarrow{\cong} y$
- Example: any finite-dimensional vector space V isomorphic to its dual vector space V^* but no distinguished isomorphism (need basis or non-degenerate bilinear form)
- Example: distinction between real and pseudoreal/quaternionic representations of a group (e.g. of SU(2))

EXAMPLES -

- objects = smooth manifolds
- morphisms = smooth maps of manifolds

for us: manifold = smooth manifold

- $lacksquare \left(\mathcal{M}_d
 ight)$
 - objects = smooth manifolds
 - morphisms = smooth maps of manifolds
- $race{\mathcal{C}obord_{d,d-1}}$
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

EXAMPLES -

- $\mathbb{R}\left(\mathcal{M}_{d}\right)$
 - objects = smooth manifolds
 - morphisms = smooth maps of manifolds
- igcirc $\left(\mathcal{C}\!\mathit{obord}_{d,d-1}
 ight)$
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

Details:

- morphism = equivalence class of cobordisms

- $\mathbb{R}\left(\mathcal{M}_d\right)$
 - → objects = smooth manifolds
 - morphisms = smooth maps of manifolds
- $igorplus \left(\mathcal{C}obord_{d,d-1}
 ight)$
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

Details:

ightharpoonup equivalence of cobordisms (B,ϕ_B) and $(B'.\phi_{B'})$:

have orientation-preserving diffeomorphism φ such that

EXAMPLES -

- $lacksquare \left(\mathcal{M}_d
 ight)$
 - objects = smooth manifolds
 - morphisms = smooth maps of manifolds
- igcirc $\left(\mathcal{C}\!\mathit{obord}_{d,d-1}
 ight)$
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented *d*-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

Details:

- \longrightarrow identity morphism id_M : represented by cylinder $M \times [0,1]$
- composition of morphisms
 - = gluing: identify $\partial_{-}B$ with $\partial_{+}B'$ (using collars)

EXAMPLES -

$$\mathbb{R}\left(\mathcal{M}_d\right)$$

objects = smooth manifolds

morphisms = smooth maps of manifolds

$$lacksquare$$
 (Cobord $_{d,d-1}$)

ightharpoonup objects = oriented d-1-manifolds

 \longrightarrow morphisms = oriented *d*-manifolds with boundary up to diffeom.

source/target = incoming / outgoing boundary

Details:

illustration: d=3

- $\mathbb{R}\left[\mathcal{M}_d\right]$
 - objects = smooth manifolds
 - morphisms = smooth maps of manifolds
- lacksquare (Cobord $_{d,d-1}$)
 - ightharpoonup objects = oriented d-1-manifolds
 - morphisms = oriented d-manifolds with boy /
 - source/target = incoming / outgoing boun

Details:

illustration: d = 3 (decorated version)

- lacksquare (Cobord $_{d,d-1}$)
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

EXAMPLE

- \bigcirc (Cobord $_{1,0}$)
 - \longrightarrow objects = finite disjoint unions of oriented points (\bullet, \pm)
 - morphisms = finite disjoint unions of oriented intervals and circles

- lacksquare (Cobord $_{d,d-1}$)
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

EXAMPLE

- lacksquare (Cobord $_{2,1}$)
 - objects = finite disjoint unions of oriented circles
 - morphisms generated via disjoint unions and gluings from 6 elementary morphisms

- lacksquare (Cobord $_{d,d-1}$)
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented *d*-manifolds with boundary up to diffeom.
 - source/target = incoming / outgoing boundary

EXAMPLE

- lacksquare (Cobord $_{2,1}$)
 - objects = finite disjoint unions of oriented circles
 - morphisms generated via disjoint unions and gluings from

- lacksquare (Cobord $_{d,d-1}$)
 - ightharpoonup objects = oriented d-1-manifolds
 - \longrightarrow morphisms = oriented d-manifolds with boundary up to diffeom.
 - source/target = incoming/outgoing boundary
- other versions also of interest
 - framed
 - combed
 - unoriented

Graphical calculus

convenient to visualize morphisms graphically

- \blacksquare general morphism $(x \xrightarrow{f} y)$
 - box / coupon
 - lines connecting coupon to domain (input) and codomain (output)
 - vertical straight lines up to ambient isotopy
 - optimistic convention: read from bottom to top

- \blacksquare general morphism $\left(x \xrightarrow{f}\right)$
 - coupon
 - lines connecting coupon to domain (input) and codomain (output)
 - vertical straight lines up to ambient isotopy
- identity morphism

- lacksquare general morphism $\left(x \stackrel{f}{\longrightarrow} y \right)$
 - coupon
 - lines connecting coupon to domain (input) and codomain (output)
 - vertical straight lines up to ambient isotopy
- identity morphism

- general morphism $(x \xrightarrow{f} y)$
 - coupon

 - vertical straight lines up to ambient isotopy
- identity morphism
- composition = concatenation

Categories

State spaces —

- state spaces
- linear operators

morphisms $\operatorname{Hom}_{\mathcal{C}}(x,y)$ just a set in general

State spaces —

- state spaces
- linear operators

DEFINITION — Linear category — —

Linear category

- $ightharpoonup \operatorname{Hom}_{\mathcal{C}}(x,y)$ structure of a vector space (over \mathbb{C} / over \mathbb{k})
- composition of morphisms bilinear

State spaces —

- state spaces
- linear operators

DEFINITION — Linear category — — —

- Linear category
 - $ightharpoonup \operatorname{Hom}_{\mathcal{C}}(x,y)$ structure of a vector space (over \mathbb{C} / over \mathbb{k})
 - composition of morphisms bilinear

EXAMPLES

- \mathbb{R} $\mathcal{V}ect$, νect , A-mod
- \blacksquare linearization of a category \mathcal{C} : functors from \mathcal{C} to $\mathcal{V}ect$

"Symmetries" —

symmetries in physics realized via representations

require other familiar aspects of categories of vector spaces / of modules

DESIRABLE — "Symmetries" — —

- symmetries in physics realized via representations
- require other familiar aspects of categories of vector spaces / of modules

INFORMAL DEFINITION — Abelian category —

- abelian category = equivalent to A-mod for some algebra A
 - can add morphisms
 - ightharpoonup can add objects: biproduct / direct sum $x \oplus y$
 - kernels and cokernels
 - zero object
 - ightharpoonup exact sequances $0 \to x \to z \to y \to 0$
 - projective and injective objects

DESIRABLE — "Symmetries" — —

- symmetries in physics realized via representations
- require other familiar aspects of categories of vector spaces / of modules

INFORMAL DEFINITION — Abelian category —

- abelian category = equivalent to A-mod for some algebra A
 - can add morphisms
 - ightharpoonup can add objects: biproduct / direct sum $x \oplus y$
 - kernels and cokernels
 - zero object
 - ightharpoonup exact sequances $0 \to x \to z \to y \to 0$
 - projective and injective objects

for us: use some of these concepts freely

DESIRABLE — "Finiteness"

- finite number of elementary quasi-particle excitations
- composite excitations separable into 'sums' of elementary excitations

INFORMAL DEFINITION ———— Finite category ————

finite category \equiv finite abelian linear category:

= equivalent to A-mod for some finite-dimensional algebra A

(k algebraically closed field)

- in particular:
 - finitely many isomorphism classes of simple objects
 - every object has finite length
 - every object has a projective cover

DESIRABLE — "Finiteness"

- finite number of elementary quasi-particle excitations
- composite excitations separable into 'sums' of elementary excitations

DEFINITION — Semisimple category — —

- semisimple category:
 - each object is direct sum of finitely many simple objects
 - all such direct sums exist

DESIRABLE — "Finiteness"

- finite number of elementary quasi-particle excitations
- composite excitations separable into 'sums' of elementary excitations

DEFINITION — Semisimple category — —

- semisimple category :
 - each object is direct sum of finitely many simple objects
 - all such direct sums exist
- finitely semisimple category:
 - finite abelian
 - semisimple

Functors

- recall: linearization
- can be regarded as an instance of "mappig one category to another one"
- should generalize the idea that
 - instead of group $\,G\,$ can study $\,G$ -representations on vector spaces

INFORMAL DEFINITION — Functor

- \bowtie functor from \mathcal{C} to \mathcal{D} :
 - ightharpoonup map any object of $\mathcal C$ to an object of $\mathcal D$
 - lacktriangleright map any morphism of $\mathcal C$ to a morphism of $\mathcal D$
 - in a way compatible with their structure and properties

DEFINITION ———

Functor

 \blacksquare (functor $F \colon \mathcal{C} \to \mathcal{D}$)

Data:

- \longrightarrow map $F: \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Obj}(\mathcal{D})$
- \longrightarrow map $F \equiv F_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$

Axioms:

for each pair of objects x, y of $\mathcal C$

- $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$
- $F(g \circ f) = F(g) \circ F(f)$ (when defined)

DEFINITION — Functor —

 \blacksquare (functor $F \colon \mathcal{C} \to \mathcal{D}$)

Data:

 \longrightarrow map $F : \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Obj}(\mathcal{D})$

 $ightharpoonup \operatorname{map} F \equiv F_{x,y} \colon \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$

for each pair of objects x, y of C

Axioms:

 $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$

 $F(g \circ f) = F(g) \circ F(f)$ (when defined)

COMMENTS

 \blacksquare linear functor $F \colon \mathcal{C} \to \mathcal{D}$ between linear categories:

linear on morphism spaces

composition of functors $F \colon \mathcal{C} \longrightarrow \mathcal{C}'$ and $F' \colon \mathcal{C}' \longrightarrow \mathcal{C}''$

to $F' \circ F \colon \mathcal{C} \longrightarrow \mathcal{C}''$ via composition of maps

DEFINITION —

Functor -

 \blacksquare (functor $F \colon \mathcal{C} \to \mathcal{D}$)

- \longrightarrow map $F : \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Obj}(\mathcal{D})$
- \longrightarrow maps $F \equiv F_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$
- $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$
- $F(g \circ f) = F(g) \circ F(f)$

EXAMPLES

- \longrightarrow identity functor $\operatorname{Id}_{\mathcal{C}}: \mathcal{C} \longrightarrow \mathcal{C}:$ identity maps
- for any group G (and field k)
 functor $*/\!\!/G \longrightarrow \mathcal{V}ect$ amounts to a linear representation of G
- associating to any vector space V its dual space $V^* = \operatorname{Hom}_{\operatorname{Vect}}(V, \mathbb{k})$ provides functor $\operatorname{Vect} \longrightarrow \operatorname{Vect}^{\operatorname{op}}$
- associating to any vector space V its bidual space V^{**} provides endofunctor $\mathcal{V}ect \longrightarrow \mathcal{V}ect$

DEFINITION — Functor —

 \blacksquare (functor $F \colon \mathcal{C} \to \mathcal{D}$)

- \longrightarrow map $F : \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Obj}(\mathcal{D})$
- \longrightarrow maps $F \equiv F_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$
- $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$
- $F(g \circ f) = F(g) \circ F(f)$

DEFINITION — Opposite category — —

- ightharpoonup opposite category (\mathcal{C}^{op})
 - ightharpoonup objects $Obj(\mathcal{C}^{op}) = Obj(\mathcal{C})$
 - \longrightarrow morphisms $\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(x,y) = \operatorname{Hom}_{\mathcal{C}}(y,x)$
 - ightharpoonup composition $g \circ^{op} f = f \circ g$
- contravariant functor $\mathcal{C} \longrightarrow \mathcal{D}$:= functor $\mathcal{C} \longrightarrow \mathcal{D}^{op}$

DEFINITION —

Functor -

 \blacksquare (functor $F\colon\thinspace \mathcal{C} o \mathcal{D}$)

- \longrightarrow map $F: \mathrm{Obj}(\mathcal{C}) \longrightarrow \mathrm{Obj}(\mathcal{D})$
- \longrightarrow maps $F \equiv F_{x,y} : \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(y))$
- $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$
- $F(g \circ f) = F(g) \circ F(f)$

EXAMPLE

lack (d-dimensional topological field theory)

= functor $\mathbf{tft} : \mathcal{C}obord_{d,d-1} \longrightarrow \mathcal{V}ect$

satisfying compatibility conditions (to be spelt out later)

Thus:

- \longrightarrow assignment (d-1)-manifold $M \longmapsto$ vector space $\mathbf{tft}(M)$
- \longrightarrow assignment d-dimensional cobordism $M \xrightarrow{B} N$

 \longmapsto linear map $\mathbf{tft}(B)$: $\mathbf{tft}(M) \longrightarrow \mathbf{tft}(N)$

- \blacksquare linear representation of group $G = \text{"functor } */\!\!/ G \longrightarrow \mathcal{V}ect$
- thus (category G-mod of G-modules) has functors as objects
- thus morphisms of G-mod (intertwiners) have functors as their domain and codomain

- In linear representation of group $G = \text{"functor } */\!\!/G \rightarrow \mathcal{V}ect$
- thus (category G-mod of G-modules) has functors as objects
- \blacksquare thus morphisms of G-mod (intertwiners) have functors as their domain and codomain

INFORMAL DEFINITION — Natural transformation

- natural transformation $F \longrightarrow G$ **F**
 - = collection of morphisms relating objects F(x) and G(x)for all objects x in a manner compatible with morphisms

DEFINITION — Natural transformation

lacksquare natural transformation $\left(egin{array}{ccc} \psi \colon F \longrightarrow G \end{array}
ight)$

between functors $F, G: \mathcal{C} \longrightarrow \mathcal{C}'$

family of morphisms $\psi_x : F(x) \longrightarrow G(x)$ in \mathcal{C}' for $x \in \mathcal{C}$

$$F(x) \xrightarrow{\psi_x} G(x)$$

such that

$$F(f) \downarrow \qquad \qquad \downarrow_{G(f)} \qquad \text{for all } x \xrightarrow{f} y \text{ in } \mathcal{C}$$

$$F(y) \xrightarrow{\psi_y} G(y)$$

DEFINITION — Natural transformation -

lacksquare natural transformation $\left(egin{array}{ccc} \psi \colon F \longrightarrow G \end{array}
ight)$ between functors $F, G: \mathcal{C} \longrightarrow \mathcal{C}'$

family of morphisms $\psi_x : F(x) \longrightarrow G(x)$ in \mathcal{C}' for $x \in \mathcal{C}$

such that

$$F(x) \xrightarrow{\psi_x} G(x)$$

$$F(f) \downarrow \qquad \qquad \downarrow_{G(f)} \qquad \text{for all } x \xrightarrow{f} y \text{ in } \mathcal{C}$$

$$F(y) \xrightarrow{\psi_y} G(y)$$

DEFINITION — Natural isomorphism —

lacksquare natural isomorphism $(\psi\colon F{\,\longrightarrow\,} G)$

natural transformation such that each ψ_x is an isomorphism in \mathcal{C}'

INFORMAL DEFINITION — Equivalence of categories -

existence of mutually "inverse" functors $F\colon \mathcal{C} \leftrightarrows \mathcal{D}\colon G$ up to \dots

DEFINITION ————

Equivalence of categories -

- functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ called equivalence of categories
 - := existence of functor $G \colon \mathcal{D} \longrightarrow \mathcal{C}$ and natural isomorphisms $\operatorname{Id}_{\mathcal{D}} \longrightarrow FG$ and $GF \longrightarrow \operatorname{Id}_{\mathcal{C}}$
- \sim C and \mathcal{D} called equivalent := existence of equivalence functor
 - \longrightarrow notation $F: \mathcal{C} \xrightarrow{\simeq} \mathcal{D}$

DEFINITION — Equivalence of categories —

- functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ called equivalence of categories
 - := existence of functor $G: \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\operatorname{Id}_{\mathcal{D}} \to FG$ and $GF \to \operatorname{Id}_{\mathcal{C}}$
- \mathcal{C} and \mathcal{D} called equivalent := existence of equivalence functor
 - $F \colon \ \mathcal{C} \xrightarrow{\simeq} \mathcal{D}$ notation

DEFINITION — $[\mathcal{C}, \mathcal{D}] -$

- small category := category whose class of objects is a set
- $\bullet \in ([\mathcal{C}, \mathcal{D}])$ for small category $\mathcal{C} :=$ the category with
 - ightharpoonup objects = all functors from $\mathcal C$ to $\mathcal D$
 - morphisms = natural transformations

DEFINITION — Equivalence of categories –

- functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ called equivalence of categories
 - := existence of functor $G: \mathcal{D} \to \mathcal{C}$ and natural isomorphisms $\operatorname{Id}_{\mathcal{D}} \to FG$ and $GF \to \operatorname{Id}_{\mathcal{C}}$
- \mathcal{C} and \mathcal{D} called equivalent := existence of equivalence functor
 - $F \colon \ \mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathcal{D}$ notation

EXAMPLES

- \blacksquare indeed: $[*//G, \mathcal{V}ect] \simeq G\text{-mod}$
- family of linear maps $\psi_V: V \longrightarrow V^{**}$ for all $V \in \mathcal{V}ect$ with $\psi_V(v)(\varphi) := \varphi(v)$ for $v \in V, \varphi \in V^*$ furnishes natural transformation $\operatorname{Id}_{\mathcal{V}ect} \longrightarrow (-)^{**}$
- restricting to *vect* gives a natural isomorphism

Criterion for recognizing an equivalence:

PROPOSITION — Equivalence of categories -

 $F \colon \ \mathcal{C} \longrightarrow \mathcal{D}$ equivalence

- (1) essentially surjective
 - i.e. for any $y \in \mathcal{D}$ there exists $x \in \mathcal{C}$ with $y \cong F(x)$ in \mathcal{D}
- (2) fully faithful
 - i.e. $F_{x,x'}: \operatorname{"Hom}_{\mathcal{C}}(x,x') \longrightarrow \operatorname{Hom}_{\mathcal{D}}(F(x),F(x'))$ bijective map for any two $x, x' \in \mathcal{C}$

Monoidal categories

DESIRABLE —

Several systems -

standard situation: system consisting of several isolated subsystems

DEFINITION –

——————— Cartesian product —

- Cartesian product $\mathcal{C} \times \mathcal{D}$ of categories \mathcal{C} and \mathcal{D} : category with
 - lacksquare objects = pairs (x,y) with $x \in \mathcal{C}$ and $y \in \mathcal{D}$
 - morphisms = pairs of morphisms $(x \xrightarrow{f} x', y \xrightarrow{g} y')$

DESIRABLE —

Several systems -

- standard situation: system consisting of several isolated systems
- combine observables of subsystems

DEFINITION -

————— Tensor product ——

tensor product on a category $\mathcal C$: functor $\bigotimes \colon \mathcal C \times \mathcal C \longrightarrow \mathcal C$ mapping $(x,y) \longmapsto x \otimes y$

$$(x \xrightarrow{f} x', y \xrightarrow{g} y') \longmapsto x \otimes y \xrightarrow{f \otimes g} x' \otimes y'$$

Note: $id_x \otimes id_y = id_{x \otimes y}$

DEFINITION -

Monoidal category -

lacksquare monoidal category $\left(\ \mathcal{C} = (\mathcal{C}, \otimes, \mathbf{1}, a, r, l) \
ight)$

- := category *C* endowed with

 - ightharpoonup distinguished object $1 \in \mathcal{C}$
 - natural isomorphism $a: \otimes \circ (\otimes \times \operatorname{Id}) \to \otimes \circ (\operatorname{Id} \times \otimes \operatorname{Satisfying})$ satisfying pentagon identity
 - natural isomorphisms $l \colon \mathbf{1} \otimes \operatorname{Id} \to \operatorname{Id}$ and $r \colon \operatorname{Id} \otimes \mathbf{1} \to \operatorname{Id}$ satisfying triangle identity

DEFINITION -

— Monoidal category –

- lacksquare monoidal category $\left(\ \mathcal{C} = (\mathcal{C}, \otimes, \mathbf{1}, a, r, l) \
 ight)$
 - := category C endowed with
 - tensor product functor ⊗
 - \longrightarrow distinguished object $1 \in \mathcal{C}$
 - natural isomorphism $a: \otimes \circ (\otimes \times \operatorname{Id}) \to \otimes \circ (\operatorname{Id} \times \otimes \operatorname{Satisfying})$ satisfying pentagon identity
 - natural isomorphisms $l \colon \mathbf{1} \otimes \operatorname{Id} \to \operatorname{Id}$ and $r \colon \operatorname{Id} \otimes \mathbf{1} \to \operatorname{Id}$ satisfying triangle identity
- Triangle identity:

Pentagon identity : $((u\otimes v)\otimes x)\otimes y$ $a_{u\otimes v,x,y}$ $(u\otimes (v\otimes x))\otimes y$ $(u\otimes v)\otimes (x\otimes y)$ $a_{u,v\otimes x,y}$ $a_{u,v,x\otimes y}$ $u\otimes ((v\otimes x)\otimes y)$ $id_{u}\otimes a_{v,x,y}$ $u\otimes (v\otimes (x\otimes y))$

- \blacksquare terminology: $1 = \frac{\text{tensor unit}}{\text{monoidal unit}}$ unit object
 - a = associator / associativity constraint
 - l/r = left/right unit constraint
- pentagon \implies any two possibilities of relating any two bracketings of multiple tensor product are equal (Mac Lane's coherence theorem)

```
terminology: \mathbf{1} = \mathbf{tensor} \, \mathbf{unit} \, / \, \mathbf{monoidal} \, \mathbf{unit} \, / \, \mathbf{unit} \, \mathbf{object}
a = \mathbf{associator} \, / \, \mathbf{associativity} \, \mathbf{constraint}
l \, / \, r = \mathbf{left} / \mathbf{right} \, \mathbf{unit} \, \mathbf{constraint}
```

- pentagon \implies any two possibilities of relating any two bracketings of multiple tensor product are equal (Mac Lane's coherence theorem)
- origin of terminology monoidal: $monoidal \ category = \ categorified \ version$ of associative unital monoid (R,\cdot,e)
- but: structure (associator) instead of property (associativity): given $\mathcal C$ with given tensor product \otimes may admit inequivalent associators
- alternative terminology: tensor category (disfavored)

- terminology: $\mathbf{1} = \text{tensor unit / monoidal unit / unit object}$ a = associator / associativity constraint l/r = left/right unit constraint
- pentagon \implies any two possibilities of relating any two bracketings of multiple tensor product are equal (Mac Lane's coherence theorem)
- explicit form of associativity constraint:

$$(x \otimes y) \otimes z \xrightarrow{a_{x,y,z}} x \otimes (y \otimes z)$$

$$\downarrow (f \otimes g) \otimes h \qquad \qquad \downarrow f \otimes (g \otimes h) \qquad \qquad \qquad y \xrightarrow{f} x'$$

$$(x' \otimes y') \otimes z' \xrightarrow{a_{x',y',z'}} x' \otimes (y' \otimes z')$$
for any triple $x \xrightarrow{f} x'$

$$y \xrightarrow{g} y'$$

$$z \xrightarrow{h} z'$$

Graphical calculus

- presence of associator in tensor products of morphisms
 - ightarrow graphical calculus clumsy

- presence of associator in tensor products of morphisms
 - → graphical calculus clumsy

DEFINITION — Strict monoidal category -

strict monoidal category:

= monoidal category with a, l and r identities

- presence of associator in tensor products of morphisms
 - → graphical calculus clumsy

DEFINITION — Strict monoidal category –

strict monoidal category:

= monoidal category with a, l and r identities

THEOREM — Coherence

Every monoidal category is equivalent to a strict monoidal category

- presence of associator in tensor products of morphisms
 - → graphical calculus clumsy

DEFINITION — Strict monoidal category — —

strict monoidal category:

= monoidal category with a, l and r identities

THEOREM — Coherence -

Every monoidal category is equivalent to a strict monoidal category

- ⇒ strictification: replace monoidal category by a strict one
 - COMMENT
- no loss of generality can still detect shadow of associator

tensor product = juxtaposition

tensor product = juxtaposition

tensor product = juxtaposition

tensor unit 1 invisible

Fusion

DEFINITION -

Grothendieck group —

- lacksquare Grothendieck group $ig(K_0(\mathcal{C})ig)$ of abelian category \mathcal{C}
 - **:=** abelian group presented by generator and relations:
 - \longrightarrow one generator x for each isomorphism class of objects of C
 - •• one relation [z] [x] [y] = 0

for each exact sequence $0 \to x \to z \to y \to 0$

- can be generalized to larger class of categories
- in particular [z] = [x] + [y] for $z = x \oplus y$

DEFINITION -

———— Grothendieck group ——

- $lacktriangleq Grothendieck group <math>\left(egin{array}{c} K_0(\mathcal{C}) \end{array}
 ight)$ of abelian category \mathcal{C}
 - **:=** abelian group presented by generator and relations:
 - \longrightarrow one generator x for each isomorphism class of objects of C
 - •• one relation [z] [x] [y] = 0

for each exact sequence $0 \to x \to z \to y \to 0$

DEFINITION -

Exact tensor product –

:= for every exact sequence $0 \to x \to z \to y \to 0$

also $0 \to u \otimes x \to u \otimes z \to u \otimes y \to 0$

and $0 \to x \otimes u \to z \otimes u \to y \otimes u \to 0$ exact for any $u \in \mathcal{C}$

DEFINITION — Grothendieck group —

lacktriangleright Grothendieck group $ig(K_0(\mathcal{C})ig)$ of abelian category \mathcal{C}

:= abelian group presented by generator and relations:

 \longrightarrow one generator x for each isomorphism class of objects of \mathcal{C}

•• one relation [z] - [x] - [y] = 0

for each exact sequence $0 \to x \to z \to y \to 0$

PROPOSITION — Grothendieck ring —

For C monoidal with exact tensor product, setting

$$[x] * [y] := [x \otimes y]$$

endows $K_0(\mathcal{C})$ with a ring structure

with unit element [1]

 \Longrightarrow

 $x \otimes y =$ direct sum of simple objects for any $x \, , \, y \in \mathcal{C}$

- assume $\mathcal C$ monoidal and semisimple and with exact tensor product
 - $x \otimes y$ = direct sum of simple objects
 - ightharpoonup all tensor products $x \otimes y$ determined up to iso by those of simple objects
 - select family $\{X_i \mid i \in \mathcal{I}\}$ of representatives for the isomorphism classes of simple objects with $X_0 = \mathbf{1}$

- assume $\mathcal C$ monoidal and semisimple and with exact tensor product
 - $x \otimes y$ = direct sum of simple objects
 - ullet all tensor products $x \otimes y$ determined up to iso by those of simple objects
 - select family $\{X_i \mid i \in \mathcal{I}\}$ of representatives for the isomorphism classes of simple objects with $X_0 = \mathbf{1}$

PROPOSITION

----- Fusion rules

For C semisimple monoidal with exact tensor product:

$$\left[[X_i] * [X_j] = \sum_{k \in \mathcal{I}} N_{ij}^{k} [X_k] \right]$$

- $\mathbf{N}_{ij}^{k} \in \mathbb{Z}_{\geq 0}$
- associative: $\sum_{l \in \mathcal{I}} N_{ij}^l N_{lk}^m = \sum_{l \in \mathcal{I}} N_{jk}^l N_{il}^m$
- ightharpoonup unital: $N_{i0}^{\ k} = \delta_j^{\ k} = N_{0i}^{\ k}$

- \blacksquare assume \mathcal{C} monoidal and semisimple and with exact tensor product
 - $x \otimes y$ = direct sum of simple objects
 - \longrightarrow all tensor products $x \otimes y$ determined up to iso by those of simple objects
 - lacksquare select family $\big| \, \{ \, X_i \, | \, i \in \mathcal{I} \, \} \,$ of representatives for the isomorphism classes of simple objects with $X_0 = 1$

PROPOSITION — Fusion rules

For C semisimple monoidal with exact tensor product:

$$(X_i] * [X_j] = \sum_{k \in \mathcal{I}} N_{ij}^k [X_k]$$

- $ightharpoonup N_{ij}{}^k \in \mathbb{Z}_{\geq 0}$ called fusion rules / fusion coefficients
- ightharpoonup associative: $\sum_{l \in \mathcal{I}} N_{ij}^l N_{lk}^m = \sum_{l \in \mathcal{I}} N_{jk}^l N_{il}^m$
- ightharpoonup unital: $N_{i0}^{k} = \delta_{i}^{k} = N_{0i}^{k}$

Graphical calculus

for finitely semisimple monoidal categories

bases for copuling spaces

for finitely semisimple monoidal categories

bases for copuling spaces

can be chosen dual:

for finitely semisimple monoidal categories.

- bases for copuling spaces
 - can be chosen dual
 - dominance / completeness:

for finitely semisimple monoidal categories.

- bases for copuling spaces
 - can be chosen dual
 - dominance / completeness
 - basis elements involving the tensor unit can be chosen trivial:

for finitely semisimple strict monoidal categories

two distinct distinguished bases for $\operatorname{Hom}_{\mathcal{C}}(U_i \otimes U_j \otimes U_k, U_l)$ corresponding to decompositions

$$\bigoplus_{q \in \mathcal{I}} \operatorname{Hom}_{\mathcal{C}}(U_i \otimes U_j, U_q) \otimes \operatorname{Hom}_{\mathcal{C}}(U_q \otimes U_k, U_l)$$
 and
$$\bigoplus_{p \in \mathcal{I}} \operatorname{Hom}_{\mathcal{C}}(U_j \otimes U_k, U_p) \otimes \operatorname{Hom}_{\mathcal{C}}(U_i \otimes U_p, U_l)$$
 (shadow of the associator)

for finitely semisimple strict monoidal categories

- w two distinct distinguished bases for $\operatorname{Hom}_{\mathcal{C}}(U_i \otimes U_j \otimes U_k, U_l)$
- coefficients of basis transformation: fusing matrices

/ F-matrices / 6j-symbols

for finitely semisimple strict monoidal categories

- w two distinct distinguished bases for $\operatorname{Hom}_{\mathcal{C}}(U_i \otimes U_j \otimes U_k, U_l)$
- coefficients of basis transformation: fusing matrices

composing
with dual morphism
gives

Functors

adapt notions of functor and natural transformation to monoidal setting

INFORMAL DEFINITION — Monoidal functor / natural transformation –

monoidal functor = functor

plus compatibility with tensor products

monoidal natural transformation = natural transformation

plus compatibility with tensor products

adapt notions of functor and natural transformation to monoidal setting

INFORMAL DEFINITION — Monoidal functor / natural transformation -

monoidal functor = functor

plus compatibility with tensor products (structure)

monoidal natural transformation = natural transformation

plus compatibility with tensor products (properties)

DEFINITION -

Monoidal functor

lacksquare monoidal functor $\left(\left(F, \varphi_0, \varphi_2\right)\right)$ from $\mathcal C$ to $\mathcal D$:

Data:

- \longrightarrow functor $F: \mathcal{C} \longrightarrow \mathcal{D}$
- \longrightarrow isomorphism $\varphi_0 \colon \mathbf{1}_{\mathcal{D}} \xrightarrow{\cong} F(\mathbf{1}_{\mathcal{C}})$ in \mathcal{D}
- natural isomorphism $\varphi_2 \colon \otimes_{\mathcal{D}} \circ (F \times F) \stackrel{\cong}{\longrightarrow} F \circ \otimes_{\mathcal{C}}$ of functors from $\mathcal{C} \times \mathcal{C}$ to \mathcal{D}

DEFINITION

Monoidal functor

monoidal functor $(F, \varphi_0, \varphi_2)$ from $\mathcal C$ to $\mathcal D$:

Data:

- functor $F: \mathcal{C} \longrightarrow \mathcal{D}$
- $\Longrightarrow \text{ isomorphism } \varphi_0 \colon \operatorname{1\!\!\!\!}_{\operatorname{\mathcal D}} \xrightarrow{\cong} F(\operatorname{1\!\!}_{\operatorname{\mathcal C}}) \text{ in } \operatorname{\mathcal D}$
- \longrightarrow natural isomorphism $\varphi_2 \colon \otimes_{\mathcal{D}} \circ (F \times F) \stackrel{\cong}{\longrightarrow} F \circ \otimes_{\mathcal{C}}$

Axioms:

compatibility with associativity constraint

DEFINITION -

Monoidal functor

monoidal functor $\Big((F, \varphi_0, \varphi_2) \Big)$ from $\mathcal C$ to $\mathcal D$:

Data:

- functor $F: \mathcal{C} \longrightarrow \mathcal{D}$
- ${} \hbox{$\scriptstyle :$ isomorphism } \varphi_0\colon \operatorname{\mathbf{1}}_{\mathcal D} \stackrel{\cong}{\longrightarrow} F(\operatorname{\mathbf{1}}_{\mathcal C}) \ \text{ in } \mathcal D$
- \longrightarrow natural isomorphism $\varphi_2 \colon \otimes_{\mathcal{D}} \circ (F \times F) \stackrel{\cong}{\longrightarrow} F \circ \otimes_{\mathcal{C}}$

Axioms:

- compatibility with associativity constraint
- compatibility with left unit constraint

compatibility with right unit constraint

COMMENTS

- ${}^{\blacksquare}$ suppress labels ${\mathcal C}$, ${\mathcal D}$ when notation too clumsy otherwise
- φ_2 gives in particular isomorphisms

$$(\varphi_2)_{(x,y)} \colon F(x) \otimes_{\mathcal{D}} F(y) \xrightarrow{\cong} F(x \otimes_{\mathcal{C}} y) \text{ for } x, y \in \mathcal{C}$$

weakened versions : lax monoidal functor / oplax monoidal functor : morphisms $\,\varphi_0\,,\,\varphi_2\,$ only in one direction

COMMENTS

- suppress labels \mathcal{C} , \mathcal{D} when notation too clumsy otherwise
- $\ \ \varphi_2$ gives in particular isomorphisms

$$(\varphi_2)_{(x,y)} \colon F(x) \otimes_{\mathcal{D}} F(y) \xrightarrow{\cong} F(x \otimes_{\mathcal{C}} y) \text{ for } x, y \in \mathcal{C}$$

weakened versions: lax monoidal functor / oplax monoidal functor: morphisms φ_0 , φ_2 only in one direction

DEFINITION

Monoidal natural transformation

monoidal natural transformation $\eta: (F, \varphi_0, \varphi_2) \longrightarrow (G, \psi_0, \psi_2)$ between monoidal functors : $\eta \colon F \to G$

s.t.
$$\mathbf{1}_D$$
 $F(\mathbf{1}_C)$ $\mathbf{1}_D$ an

between monoidal functors :
$$\eta\colon F\to G$$
 s.t. $\mathbf{1}_D$ $F(x)\otimes F(y) \xrightarrow{\varphi_2(x,y)} F(x\otimes y)$
$$F(\mathbf{1}_{\mathcal{C}}) \xrightarrow{\eta_1} G(\mathbf{1}_{\mathcal{C}})$$
 and
$$\int_{\eta_x\otimes\eta_y} \int_{\psi_2(x,y)} \eta_{x\otimes y} \int_{\varphi_2(x,y)} G(x\otimes y)$$
 for all $x,y\in\mathcal{C}$

Algebras

recall: categories

EXAMPLES -

ightharpoonup category $(\mathcal{V}ect)$

objects = vector spaces

morphisms = linear maps

ightharpoonup category (vect)

■ objects = finite-dimensional vector spaces

morphisms = linear maps

- lacktriangleright monoidal category $(\mathcal{V}ect)$
 - objects = vector spaces
 - morphisms = linear maps
 - tensor product ⊗_k of vector spaces
 - ightharpoonup tensor unit 1 = k
- monoidal category vect
 - objects = finite-dimensional vector spaces
 - morphisms = linear maps
 - \longrightarrow tensor product $\otimes_{\mathbb{k}}$ of vector spaces
 - \longrightarrow tensor unit 1 = k

- lacktriangleright monoidal category $(\mathcal{V}ect)$
 - objects = vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- lacksquare monoidal category (
 u ect)
 - objects = finite-dimensional vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- unital associative algebra
 - = vector space with multiplication and unit element

- lacktriangleright monoidal category $(\mathcal{V}ect)$
 - objects = vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- lacksquare monoidal category (
 u ect)
 - objects = finite-dimensional vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- unital associative algebra
 - = object of \sqrt{vect} endowed with "multiplication and unit"

- lacksquare monoidal category $ig(\mathcal{V}\!ect \, ig)$
 - objects = vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- lacktriangleright monoidal category $\overline{
 uect}$
 - objects = finite-dimensional vector spaces
 - morphisms = linear maps

 - ightharpoonup tensor unit 1 = k
- unital associative algebra
 - = object of Vect / vect endowed with multiplication and unit morphisms

interpret

- $ightharpoonup ext{multiplication} \equiv ext{bilinear map } A imes A \longrightarrow A o ext{linear map } m \colon A \otimes_{\Bbbk} A \longrightarrow A$
- unit element $1_A \in A$ \longrightarrow linear map $\eta: \mathbb{k} \longrightarrow A$ $\eta(c) = c 1$

- interpret
 - $ightharpoonup multiplication \equiv bilinear map <math>A imes A \longrightarrow A \longrightarrow A$ linear map $m: A \otimes_{\mathbb{k}} A \longrightarrow A$
 - unit element $1_A \in A$ \longrightarrow linear map $\eta: \mathbb{k} \longrightarrow A$ $\eta(c) = c 1$
- \implies \Bbbk -algebra = $rac{\mathsf{algebra\ object}}{\mathsf{algebra\ object}}$ (A, m, η) $\in \mathcal{V}\!ect$

 \blacksquare associative algebra = object A + morphism

 $m: A \otimes A \longrightarrow A$

$$\blacksquare$$
 associative algebra = object A + morphism

 $m: A \otimes A \longrightarrow A$

such that

$$m \circ (m \otimes id) = m \circ (id \otimes m)$$

$$\blacksquare$$
 associative algebra = object A + morphism

 $m: A \otimes A \longrightarrow A$

$$\blacksquare$$
 unital algebra (A, m, η) :

$$\eta: \mathbf{1} \to A$$

$$m \circ (\eta \otimes id) = id = m \circ (id \otimes \eta)$$

 \blacksquare natural setting: monoidal categories $(\mathcal{C}, \otimes, \mathbf{1})$

 \blacksquare coassociative coalgebra (C, Δ) :

$$\Delta: A \to A \otimes A$$

$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$$

lacktriangledown coalgebra $(C,\Delta,arepsilon)$:

$$\varepsilon: A \to \mathbf{1}$$

$$(\varepsilon \otimes id) \circ \Delta = id = (id \otimes \varepsilon) \circ \Delta$$

natural setting: monoidal categories

■ Algebra:

Coalgebra:

Frobenius algebra: algebra and coalgebra

and coproduct a bimodule morphism:

■ Algebra:

Coalgebra:

Frobenius algebra: algebra and coalgebra

and coproduct a bimodule morphism:

special Frobenius algebra:

$$= \bigcirc = \bigcirc$$

$$\neq 0$$

■ Algebra:

Coalgebra:

Frobenius algebra: algebra and coalgebra

and coproduct a bimodule morphism:

special Frobenius algebra:

$$= \bigcirc = \bigcirc = \bigcirc$$

natural setting: monoidal categories

Solution exercises

- Lesson: graphical calculus allows one to
 - memorize definitions and results
 - visualize proofs

Lemma [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^{\vee} \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

$$\begin{array}{ll} P \circ P &=& (\operatorname{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes \operatorname{id}) \circ (\operatorname{id}^{\vee} \otimes m \otimes \operatorname{id}) \circ (\tilde{b} \otimes \Delta) \circ (\operatorname{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes \operatorname{id}) \circ (\operatorname{id}^{\vee} \otimes m \otimes \operatorname{id}) \circ (\tilde{b} \otimes \Delta) \\ &=& \cdots \\ &=& (\operatorname{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes \operatorname{id}) \circ (\operatorname{id}^{\vee} \otimes m \otimes \operatorname{id}) \circ (\operatorname{id}^{\vee} \otimes m \otimes \Delta) \circ (\tilde{b} \otimes \operatorname{id} \otimes \operatorname{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes c_{A,A^{\vee}}^{-1} \otimes \operatorname{id}) \circ (\tilde{b} \otimes \Delta) \\ &=& \cdots \\ &=& (\operatorname{id} \otimes \tilde{d}) \circ (c_{A,A}^{-1} \otimes \operatorname{id} \otimes \operatorname{id}) \circ (\operatorname{id} \otimes c_{A,A^{\vee}}^{-1} \otimes \operatorname{id} \otimes \operatorname{id}^{\vee}) \circ (\operatorname{id} \otimes \operatorname{id}^{\vee} \otimes m \otimes m \otimes \operatorname{id}^{\vee}) \circ (\operatorname{id} \otimes \tilde{b} \otimes \Delta \otimes d \otimes b) \\ &=& \cdots \\ &=& (\operatorname{id} \otimes d) \circ (c_{A,A^{\vee}}^{-1} \otimes \operatorname{id}) \circ (\operatorname{id}^{\vee} \otimes m \otimes \operatorname{id}) \circ (\tilde{b} \otimes \operatorname{id} \otimes m) \circ (\Delta \otimes \operatorname{id}) \circ \Delta \\ &=& \cdots \\ &=& P \end{array}$$

Lemma [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P:=(\mathrm{id}\otimes d)\circ (c_{A,A^\vee}^{-1}\otimes\mathrm{id})\circ (\mathrm{id}^\vee\otimes m\otimes\mathrm{id})\circ (\tilde{b}\otimes\Delta)$$
 is an idempotent

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

$$P \circ P =$$

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

$$P \circ P =$$

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra *A* in a ribbon category *C* the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

<u>Lemma</u> [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\mathrm{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \mathrm{id}) \circ (\mathrm{id}^\vee \otimes m \otimes \mathrm{id}) \circ (\tilde{b} \otimes \Delta) =$$
 is an idempotent

Lemma [1:5.2]: For any object U of C the morphism

$$P_{U} := (\mathrm{id}_{A} \otimes d \otimes \mathrm{id}_{U}) \circ (c_{A,A^{\vee}}^{-1} \otimes c_{U,A})$$
$$\circ (\mathrm{id}^{\vee} \otimes m \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{U}) \circ (\tilde{b} \otimes c_{A,U}) \circ (\Delta \otimes \mathrm{id}_{U})$$

is an idempotent

Lemma [1:5.2]: For any object U of C the morphism

$$P_{U} := (\mathrm{id}_{A} \otimes d \otimes \mathrm{id}_{U}) \circ (c_{A,A^{\vee}}^{-1} \otimes c_{U,A})$$
$$\circ (\mathrm{id}^{\vee} \otimes m \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{U}) \circ (\tilde{b} \otimes c_{A,U}) \circ (\Delta \otimes \mathrm{id}_{U}) =$$

is an idempotent

Lemma [1:5.2]: For any object U of \mathcal{C} the morphism

$$P_{U} := (\mathrm{id}_{A} \otimes d \otimes \mathrm{id}_{U}) \circ (c_{A,A^{\vee}}^{-1} \otimes c_{U,A})$$
$$\circ (\mathrm{id}^{\vee} \otimes m \otimes \mathrm{id}_{A} \otimes \mathrm{id}_{U}) \circ (\tilde{b} \otimes c_{A,U}) \circ (\Delta \otimes \mathrm{id}_{U}) =$$

is an idempotent

 $= \cdots = P_{IJ}$

Braided categories

Rigid monoidal categories

Fusion categories

Ribbon categories

ribbons@hyatt

Modular tensor categories

Drinfeld center

DESIRABLE —

Braiding –

- many interesting monoidal categories non-braided
- would like to promote them to braided categories

DESIRABLE —

Braiding -

- many interesting monoidal categories non-braided
- would like to promote them to braided categories

DEFINITION —

Drinfeld center —

- \blacksquare (Drinfeld center $\mathcal{Z}(\mathcal{C})$) of monoidal category $\mathcal{C}:=$ category with
 - objects = pairs (x,γ) with $x\in\mathcal{C}$ and $\gamma=(\gamma_y)_{y\in\mathcal{C}}$ natural isomorphism $\gamma_y:x\otimes y\longrightarrow y\otimes x$
 - satisfying one half of the properties of a braiding ("half-braiding")
 - \longrightarrow morphisms = compatible morphisms of C

PROPOSITION — Drinfeld center –

 $lpha \ \mathcal{Z}(\mathcal{C})$ monoidal with same associativity constraint as \mathcal{C}

forgetting the half-braiding furnishes monoidal functor $U: \mathcal{Z}(\mathcal{C}) \longrightarrow \mathcal{C}$

PROPOSITION — Drinfeld center -

 ${f z}({\cal C})$ monoidal with same associativity constraint as ${\cal C}$

 $\bowtie \mathcal{Z}(\mathcal{C})$ braided with braiding $(\gamma^{\mathcal{Z}(\mathcal{C})})_{(a,\gamma),(a',\gamma')} = \gamma_{a'}$

PROPOSITION ———

Drinfeld center

- $\mathbb{Z}(\mathcal{C})$ monoidal with same associativity constraint as \mathcal{C}
- $\bowtie \mathcal{Z}(\mathcal{C})$ braided with braiding $(\gamma^{\mathcal{Z}(\mathcal{C})})_{(a,\gamma),(a',\gamma')} = \gamma_{a'}$
- \subset endowed with (right/left) duality
 - $\Rightarrow \mathcal{Z}(\mathcal{C})$ endowed with duality with

 $(x,\gamma)^{\vee}=(x^{\vee},\gamma^{-})$ and same evaluation and coevaluation

with $(\gamma^-)_b$

 $:= (\operatorname{ev}_a \otimes \operatorname{id}_b \otimes \operatorname{id}_{a^{\vee}}) \circ (\operatorname{id}_{a^{\vee}} \otimes \gamma_b^{-1} \otimes \operatorname{id}_{a^{\vee}}) \circ (\operatorname{id}_{a^{\vee}} \otimes \operatorname{id}_b \otimes \operatorname{coev}_a)$

PROPOSITION ———

Drinfeld center

- $\mathbb{Z}(\mathcal{C})$ monoidal with same associativity constraint as \mathcal{C}
- $\mathbb{Z}(\mathcal{C})$ braided with braiding $(\gamma^{\mathcal{Z}(\mathcal{C})})_{(a,\gamma),(a',\gamma')} = \gamma_{a'}$
- \mathcal{C} endowed with (right/left) duality
 - $\Rightarrow \mathcal{Z}(\mathcal{C})$ endowed with duality with

 $(x,\gamma)^{\vee}=(x^{\vee},\gamma^{-})$ and same evaluation and coevaluation

with $(\gamma^-)_b$

$$:= (\operatorname{ev}_a \otimes \operatorname{id}_b \otimes \operatorname{id}_{a^{\vee}}) \circ (\operatorname{id}_{a^{\vee}} \otimes \gamma_b^{-1} \otimes \operatorname{id}_{a^{\vee}}) \circ (\operatorname{id}_{a^{\vee}} \otimes \operatorname{id}_b \otimes \operatorname{coev}_a)$$

 \mathcal{C} ribbon \Rightarrow natural ribbon structure on $\mathcal{Z}(\mathcal{C})$

DEFINITION -

Revese category -

Reverse category $\overline{\mathcal{C}}$ of braided / ribbon category \mathcal{C}

same monoidal category with opposite braiding / and inverse twist

INFORMAL DEFINITION ————

Deligne product -

 \blacksquare Deligne product $\mathcal{C} \boxtimes \mathcal{D}$ of finite abelian categories \mathcal{C} and \mathcal{D}

- sensible generalization of tensor product
- defined through a universal property

DEFINITION -

Revese category -

- Reverse category $\overline{\mathcal{C}}$ of braided / ribbon category \mathcal{C}
 - **:=** same monoidal category with opposite braiding / and inverse twist

DEFINITION -

Deligne product —

- \blacksquare (Deligne product $\mathcal{C} \boxtimes \mathcal{D}$) of finite abelian categories \mathcal{C} and \mathcal{D}
 - := the abelian category such that for any other abelian category \mathcal{E} right exact functors $\mathcal{C} \boxtimes \mathcal{D} \longrightarrow \mathcal{E}$ equivalent to functors $\mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{E}$ right exact in each argument

DEFINITION –

----- Revese category -----

Reverse category $\overline{\mathcal{C}}$ of braided / ribbon category \mathcal{C}

same monoidal category with opposite braiding / and inverse twist

DEFINITION —

———— Deligne product ——

 \blacksquare (Deligne product $\mathcal{C} \boxtimes \mathcal{D}$) of finite abelian categories \mathcal{C} and \mathcal{D}

:= the abelian category such that for any other abelian category \mathcal{E} right exact functors $\mathcal{C} \boxtimes \mathcal{D} \longrightarrow \mathcal{E}$ equivalent to functors $\mathcal{C} \times \mathcal{D} \longrightarrow \mathcal{E}$ right exact in each argument

DEFINITION

———— Enveloping category ———

 \blacksquare enveloping category of $\mathcal{C} := \left(\overline{\mathcal{C}} \boxtimes \mathcal{C} \right)$

PROPOSITION ———

Enveloping category vs center

For any finite ribbon category \mathcal{C} have canonical braided monoidal functor

$$G_{\mathcal{C}}: \ \overline{\mathcal{C}} \boxtimes \mathcal{C} \longrightarrow \mathcal{Z}(\mathcal{C})$$

$$\blacksquare$$
 as a functor: $\overline{\mathcal{C}} \boxtimes \mathcal{C} \ni \overline{u} \boxtimes v \longmapsto (\overline{u} \otimes v, (\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v})$

$$\overline{u} \boxtimes v \in \mathcal{C}$$

$$(\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v;c} = ((\gamma^{\mathcal{C}})_{c,\overline{u}}^{-1} \otimes \mathrm{id}_v) \circ (\mathrm{id}_{\overline{u}} \otimes (\gamma^{\mathcal{C}})_{v,c})$$

PROPOSITION -

Enveloping category vs center

For any finite ribbon category $\mathcal C$ have canonical braided monoidal functor

$$G_{\mathcal{C}}: \ \overline{\mathcal{C}} \boxtimes \mathcal{C} \longrightarrow \mathcal{Z}(\mathcal{C})$$

$$\blacksquare$$
 as a functor: $\overline{\mathcal{C}} \boxtimes \mathcal{C} \ni \overline{u} \boxtimes v \longmapsto (\overline{u} \otimes v, (\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v})$

$$\overline{u} \boxtimes v \in \mathcal{C}$$

$$(\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v; c} = ((\gamma^{\mathcal{C}})_{c, \overline{u}}^{-1} \otimes \mathrm{id}_v) \circ (\mathrm{id}_{\overline{u}} \otimes (\gamma^{\mathcal{C}})_{v, c})$$

→ pictorially:

$$(\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v;c} =$$

PROPOSITION — Enveloping category vs center —

For any finite ribbon category \mathcal{C} have canonical braided monoidal functor

$$G_{\mathcal{C}}: \ \overline{\mathcal{C}} \boxtimes \mathcal{C} \longrightarrow \mathcal{Z}(\mathcal{C})$$

$$\blacksquare$$
 as a functor: $\overline{\mathcal{C}} \boxtimes \mathcal{C} \ni \overline{u} \boxtimes v \longmapsto (\overline{u} \otimes v, (\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v})$

$$\overline{u} \boxtimes v \in \mathcal{C}$$

$$(\gamma^{\mathcal{Z}(\mathcal{C})})_{\overline{u} \otimes v; c} = ((\gamma^{\mathcal{C}})_{c, \overline{u}}^{-1} \otimes \mathrm{id}_v) \circ (\mathrm{id}_{\overline{u}} \otimes (\gamma^{\mathcal{C}})_{v, c})$$

THEOREM — Modularity —

Braided fusion category \mathcal{C} modular \iff $G_{\mathcal{C}}$ braided equivalence

Bicategories

- recall: category ${\it Cobord}_{d,d-1}$ with d-1-manifolds as objects and d-manifolds as morphisms
- \blacksquare can cut a d-manifold along a d-1-submanifold \longrightarrow locality property

recall: category ${\it Cobord}_{d,d-1}$ with d-1-manifolds as objects and d-manifolds as morphisms

DESIRABLE -

Locality —

realize locality in strong sense : allow for cutting also d-1-submanifold along d-2-submanifold etc.

recall: category $\mathcal{C}\mathit{obord}_{d,d-1}$ with d-1-manifolds as objects and d-manifolds as morphisms

DESIRABLE — Locality — Locality —

realize locality in strong sense: allow for cutting also d-1-submanifold along d-2-submanifold etc.

- this way get multi-layered structure:
 - → d-manifolds
 - \rightarrow d-1-submanifolds
 - d-2-submanifolds
 - **.....**
- other example of three-layered structure: collection of all categories
 - categories

 - natural transformations

DEFINITION -

Bicategory -

 \bowtie (bicategory \mathcal{B}):

Data:

- ightharpoonup class $Obj(\mathcal{B})$ of objects
- \longrightarrow category $\mathcal{H}om(A,B)$ for each pair $A,B\in\mathcal{B}$
- functor $c_{A,B,C}: \mathcal{H}om(B,C) \times \mathcal{H}om(A,B) \to \mathcal{H}om(A,C)$

for each triple $A, B, C \in \mathcal{B}$

mapping pairs of objects $(g,f)\mapsto g\circ f\in \mathcal{H}\!\mathit{om}(A,C)$ and pairs of morphisms $(\beta,\alpha)\mapsto \beta\circ \alpha\in \mathrm{Hom}_{\mathcal{H}\!\mathit{om}(A,C)}(-,-)$

- functor $I_A: */\!\!/ \mathrm{id}_* \longrightarrow \mathcal{H}\!\!\mathit{om}(A,A)$ for each $A \in \mathcal{B}$
- **₩**

Axioms:

DEFINITION

Bicategory -

Data: \longrightarrow class Obj() / categories $\mathcal{H}om(A, B)$

- ightharpoonup composition functors $c_{A,B,C}$ / identity functors I_A
- \sim natural isomorphisms a, r, l of functors expressing

- associativity:
$$\mathcal{H}om(C,D) \times \mathcal{H}om(B,C) \times \mathcal{H}om(A,B)$$

- unitality: $\mathcal{H}om(A,B) \times */\!\!/ \mathrm{id}_* \xrightarrow{\simeq} \mathcal{H}om(A,B)$

and ...

$$\mathcal{H}\!om(A,B) \times \mathcal{H}\!om(A,A)$$

DEFINITION -

Bicategory -

Data: ightharpoonup class Obj() / categories $\mathcal{H}om(A,B)$

- ightharpoonup composition functors $c_{A,B,C}$ / identity functors I_A
- natural isomorphisms a, r, l

Axioms:

pentagon:

$$((kh)g)f$$

$$\alpha_{k,h,g} \otimes \operatorname{id} \qquad \qquad \alpha_{kh,g,f}$$

$$(k(hg)f \qquad \qquad (kh) \otimes (gf)$$

$$\alpha_{k,hg,f} \downarrow \qquad \qquad \downarrow \alpha_{k,h,gf}$$

$$k(hg)f \qquad \qquad \operatorname{id} \otimes \alpha_{h,g,f} \rightarrow k(h(gf))$$

triangle:

COMMENTS

terminology: objects / 1-morphisms / 2-morphisms

or 0-cells / 1-cells / 2-cells

ightharpoonup common notation: *//id* =: 1

 \longrightarrow common notation: " \Longrightarrow " for 2-cells

natural isomorphisms give specific 2-cell components

$$a_{h,g,f}\colon\thinspace (hg)f \xrightarrow{\cong} h(gf) \qquad l_f\colon\thinspace \mathbf{1}_B \circ f \xrightarrow{\cong} f \qquad r_f\colon\thinspace f \circ \mathbf{1}_A \xrightarrow{\cong} f$$

EXAMPLES

- \blacksquare (Cat
 - objects = small categories
 - → 1-morphisms = functors
 - → 2-morphisms = natural transformations
- bicategory with a single object *
 - ightharpoonup specified by the category $\mathcal{E}nd(*)$ (monoidal)
 - ightharpoonup composition of 1-morphisms = tensor product of $\mathcal{E}nd(*)$
- $\mathbb{R} \left(\mathcal{A}lg \right)$
 - → objects = k-algebras
 - $\longrightarrow \mathcal{H}\!om(A,A') = \text{category } A\text{-Bimod-}A' \text{ of } A\text{-}A'\text{-bimodukes}$
 - composition of 1-morphisms = tensor product of bimodules

special case:

DEFINITION — 2-category —

2-category := strict bicategory

i.e. a, l, r identities

e Cat

two different compositions of 2-cells:

• vertical composition = composition of morphisms in $\mathcal{H}om(-,-)$:

- two different compositions of 2-cells:
 - vertical composition = composition of morphisms in $\mathcal{H}om(-,-)$:

- horizontal composition associative up to natural isomorphism
- interchange law: $(\alpha * \beta) \circ (\gamma * \delta) = (\alpha \circ \gamma) * (\beta \circ \delta)$

Defects

- Goal: 2-d defects in 3-d TFT as models for line defects in topological orders
- Warmup: Ine defects in 2-d RCFT
- Then: topological defects in 3-d TFT of Reshetikhin-Turaev type

- © Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂

- Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case

 \mathbf{QFT}_1

- Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect without crossing other substructures
- Example: 2-d Ising model
 - ferromagnetic nearest-neighbour interaction
 - change coupling to *anti*-ferromagnetic on all bonds crossed by some line
 - → topological defect line

- Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect without crossing other substructures
- Some general features of topological defects:

 - transparent defect

 - move two topological defects to coincidence of fusion product of defects

- Codimension-1 defect QFT₁ QFT₂
 - = interface separating region supporting QFT₁ from region supporting QFT₂
 - ubiquitous in nature
 - natural part of the structure of quantum field theory
 - physical boundaries as special case
- Topological defect: correlators do not change when deforming the defect without crossing other substructures
- Some general features of topological defects:
 - □ codimension-2 defects def₁ def₂ etc
 - transparent defect
 - invert orientation → dual defect
 - move two topological defects to coincidence \leadsto fusion product of defects
- Mathematical formulation: → higher categories

Tensor categories and topological order

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: *invertible* topological defects:

 $D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$

Tensor categories and topological order

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

Basic property:

drawn for d=2

 $\dim(D) = \pm 1$

→ identity of correlators when applied locally in any configuration of fields & defects.

Tensor categories and topological order

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

Basic property:

$$D = \dim(D)$$

$$D^{\vee}$$

→ identity of correlators when applied locally in any configuration of fields & defects

Tensor categories and topological order

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: invertible topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

■ Basic property:

$$D = \dim(D)$$

$$D^{\vee}$$

- → identity of correlators when applied locally in any configuration of fields & defects
- invertible defects form a group under fusion
- act on all data of the theory as a symmetry group
- e.g. critical 2-d Ising model: \mathbb{Z}_2 critical three-state Potts model: \mathfrak{S}_3

Tensor categories and topological order

assume: defects form a rigid monoidal category (proven for 2-d RCFT)

Subclass: *invertible* topological defects:

$$D \otimes D^{\vee} \cong \mathbf{1} \cong D^{\vee} \otimes D$$

■ Basic property:

$$D = \dim(D)$$

$$D^{\vee}$$

- → identity of correlators when applied locally in any configuration of fields & defects
- invertible defects form a group under fusion
- act on all data of the theory as a symmetry group
- Example: equalities for bulk field correlators on sphere:

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} = \dim(D) \begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array}$$

www Wrapping of general topological defect around a bulk field:

$$= \sum_{\substack{\text{intermediate} \\ \text{defects } D_i}} D$$

■ Wrapping of general topological defect around a bulk field:

$$= \sum_{\substack{\text{intermediate} \\ \text{defects } D_i}} D$$

bulk field turned into disorder field

Wrapping of general topological defect around a bulk field:

$$= \sum_{\substack{\text{intermediate} \\ \text{defects } D_i}} D$$

- bulk field turned into disorder field
- wrapping with dual defect turns disorder field back to bulk field if and only if $D\otimes D^{\vee}$ is direct sum of invertible defects
- in this case have an order-disorder duality
 e.g. critical 2-d Ising model: remnant of Kramers-Wannier duality
- again action on all field theoretic quantities

www Wrapping of general topological defect around a bulk field:

$$= \sum_{\substack{\text{intermediate} \\ \text{defects } D_i}} D$$

- bulk field turned into disorder field
- wrapping with dual defect turns disorder field back to bulk field if and only if $D\otimes D^{\vee}$ is direct sum of invertible defects
- Example: correlator of two Ising spin fields on a torus:

$$= \frac{1}{2} \begin{bmatrix} \mu \\ \mu \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mu \\ \mu \\ \mu \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mu \\ \mu \\ \epsilon \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mu \\ \mu \\ \epsilon \end{bmatrix} + \frac{1}{2} \begin{bmatrix} \mu \\ \mu \\ \epsilon \end{bmatrix}$$

```
RT-type TFT: symmetric monoidal functor \mathbf{tft}_{3,2}^{\mathcal{D}}: \ \textit{Cobord}_{3,2} \longrightarrow \textit{Vect} resp. 2-functor \mathbf{tft}_{3,2,1}^{\mathcal{D}}: \ \textit{Cobord}_{3,2,1} \longrightarrow 2\text{-}\textit{Vect}
```

input: a modular tensor category
 D

- RT-type TFT: symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}: \mathcal{C}obord_{3,2} \longrightarrow \mathcal{V}ect$ resp. 2-functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$
 - input: a modular tensor category \mathcal{D}
 - Wilson lines (ribbons) in three-manifolds labeled by objects of
 ₱
 - ightharpoonup insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - \longrightarrow state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, 1)$

- RT-type TFT: symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}: \mathcal{C}obord_{3,2} \longrightarrow \mathcal{V}ect$ resp. 2-functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$
 - input: a modular tensor category
 D
 - → Wilson lines (ribbons) in three-manifolds labeled by objects of
 →
 - \longrightarrow insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - \longrightarrow state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects:
 - include in *Cobord* three-manifolds with physical boundary
 - include in *Cobord* three-manifolds with surface defects

- RT-type TFT: symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}: \mathcal{C}obord_{3,2} \longrightarrow \mathcal{V}ect$ resp. 2-functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$
 - input: a modular tensor category \mathcal{D}
 - Wilson lines (ribbons) in three-manifolds labeled by objects of
 ₱
 - \longrightarrow insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - \longrightarrow state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects:
 - include three-manifolds with physical boundary and/or surface defects
 - \square 3-d bulk regions labeled by modular tensor categories $\mathcal{D}_1, \mathcal{D}_2, \ldots$ (bulk Wilson lines in such a region labeled by objects of \mathcal{D}_i)
 - boundary Wilson lines and defect Wilson lines
 - several layers of insertions and of junctions

- RT-type TFT: symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}: \mathcal{C}obord_{3,2} \longrightarrow \mathcal{V}ect$ resp. 2-functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$

 - Wilson lines (ribbons) in three-manifolds labeled by objects of D
 - \longrightarrow insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - \longrightarrow state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects:
 - Task: construct symmetric monoidal 2-functor $Cobord_{3,2,1}^{\partial} \longrightarrow 2-Vect$ for category of cobordisms with corners

- RT-type TFT: symmetric monoidal functor $\mathbf{tft}_{3,2}^{\mathcal{D}}: \mathcal{C}obord_{3,2} \longrightarrow \mathcal{V}ect$ resp. 2-functor $\mathbf{tft}_{3,2,1}^{\mathcal{D}}: \mathcal{C}obord_{3,2,1} \longrightarrow 2\text{-}\mathcal{V}ect$

 - Wilson lines (ribbons) in three-manifolds labeled by objects of D
 - \longrightarrow insertions on Wilson lines / junctions labeled by morphisms of \mathcal{D}
 - 2-d cut-and-paste boundaries on which Wilson lines can end
 - \longrightarrow state spaces for cut-and-paste boundaries = morphisms spaces $\operatorname{Hom}_{\mathcal{D}}(X, \mathbf{1})$
- RT-type TFT with boundaries and defects:

Task: construct symmetric monoidal 2-functor $Cobord_{3,2,1}^{\partial} \longrightarrow 2-Vect$ for category of cobordisms with corners

In particular:

- determine labels for physical boundaries / for surface defects
- determine labels for boundary and defect Wilson lines and for insertions

Conjecture: Fit together to form bicategories of module categories

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C
 - can contain boundary Wilson lines

 - insertions can be composed

 \sim category \mathcal{W}_a of Wilson lines on boundary a

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C
 - can contain boundary Wilson lines

 - insertions can be composed
 - boundary Wilson lines can be fused and can be deformed
 - \rightarrow rigid monoidal category \mathcal{W}_a of Wilson lines on boundary a

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C
 - can contain boundary Wilson lines

 - insertions can be composed
 - boundary Wilson lines can be fused and can be deformed
 - also impose: finitely semisimple etc
 - \rightarrow spherical fusion category \mathcal{W}_a of Wilson lines on boundary a

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C
 - \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \rightsquigarrow functor $F_a \colon \mathcal{C} \to \mathcal{W}_a$

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \rightsquigarrow functor $F_a \colon \mathcal{C} \to \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary

 \longrightarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \stackrel{\cong}{\longrightarrow} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \sim functor $F_a : \mathcal{C} \to \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary
 - \longrightarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$
- Impose independence from details of bulk-to-boundary process

 \sim central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$

- Select boundary "a" to some bulk region labeled by a modular tensor cateory C \rightarrow fusion category W_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \rightsquigarrow functor $F_a : \mathcal{C} \to \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary
 - \longrightarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$
- Impose independence from details of bulk-to-boundary process
 - \sim central structure $F_a(U) \otimes_{\mathcal{W}_a} X \stackrel{\cong}{\longrightarrow} X \otimes_{\mathcal{W}_a} F_a(U)$

equivalently: choice of lift
$$\widetilde{F}_a$$
 \nearrow \uparrow forget to Drinfeld center of \mathcal{W}_a $\mathcal{C} \xrightarrow{F_a} \mathcal{W}_a$

- Select boundary "a" to some bulk region labeled by a modular tensor cateory \mathcal{C} \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \rightarrow functor $F_a: \mathcal{C} \rightarrow \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary
 - \longrightarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$
- Impose independence from details of bulk-to-boundary process
 - \sim central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$
- Postulate naturality: only reason for being able to consistently move boundary Wilson line $Y \in \mathcal{W}_a$ past any $X \in \mathcal{W}_a$ should be that $Y = F_a(U)$ for some $U \in \mathcal{C}$
 - \rightarrow braided equivalence $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

- Select boundary "a" to some bulk region labeled by a modular tensor cateory \mathcal{C} \rightarrow fusion category \mathcal{W}_a of Wilson lines on boundary a
- Postulate process of moving bulk Wilson lines to boundary
 - \rightsquigarrow functor $F_a : \mathcal{C} \to \mathcal{W}_a$
- Impose compatibility of fusion in bulk and boundary
 - \longrightarrow monoidal structure $F_a(U \otimes_{\mathcal{C}} V) \xrightarrow{\cong} F_a(U) \otimes_{\mathcal{W}_a} F_a(V)$
- Impose independence from details of bulk-to-boundary process
 - \sim central structure $F_a(U) \otimes_{\mathcal{W}_a} X \xrightarrow{\cong} X \otimes_{\mathcal{W}_a} F_a(U)$
- Postulate naturality: only reason for being able to consistently move boundary Wilson line $Y \in \mathcal{W}_a$ past any $X \in \mathcal{W}_a$ should be that $Y = F_a(U)$ for some $U \in \mathcal{C}$
 - \rightarrow braided equivalence $\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

Compatible boundary condition for bulk region \mathcal{C}

= Witt trivialization $\widetilde{F}_a: \mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_a)$ for some fusion category \mathcal{W}_a

Thus for single boundary condition $a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$

$$\mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories

- Thus for single boundary condition $a: \quad \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
- - in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories
- Other boundary condition **b**: other fusion category \mathcal{W}_b of Wilson lines in region b

- Thus for single boundary condition $a: \quad \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
- - in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories
- Other boundary condition **b**:
 - ightharpoonup category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled *a* from region labeled *b*
 - fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - lacksquare gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - ightharpoonup likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b

- Thus for single boundary condition $a: \quad \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
- - in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories
- Other boundary condition **b**:
 - ightharpoonup category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled *a* from region labeled *b*
 - fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - $lue{w}$ gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - ullet likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
 - but also: $W_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$

module endofunctors

- Thus for single boundary condition $a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
- - in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories
- Other boundary condition **b**:
 - ightharpoonup category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled *a* from region labeled *b*
 - fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - $lue{w}$ gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - ullet likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
 - but also: $W_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
- Impose naturality: $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$

Consistency check: $\mathcal{Z}(\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})) \simeq \mathcal{Z}(\mathcal{W}_a)$ canonically

- Thus for single boundary condition $a: \mathcal{C} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$
- - in particular obstruction: no compatible boundary condition unless [C] = 0in Witt group of modular tensor categories
- Other boundary condition **b**:
 - ightharpoonup category $\mathcal{W}_{a,b}$ of Wilson lines separating boundary region labeled *a* from region labeled *b*
 - fusion of Wilson lines in region $a \rightsquigarrow$ functor $\mathcal{W}_a \times \mathcal{W}_{a,b} \longrightarrow \mathcal{W}_{a,b}$
 - $lue{w}$ gives action of \mathcal{W}_a on $\mathcal{W}_{a,b}$: $\mathcal{W}_{a,b}$ is left module category over \mathcal{W}_a
 - ullet likewise: $\mathcal{W}_{a,b}$ is right module category over \mathcal{W}_b
 - but also: $W_{a,b}$ is right module category over $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b})$
- Impose naturality : $\mathcal{E}nd_{\mathcal{W}_a}(\mathcal{W}_{a,b}) \simeq \mathcal{W}_b$
 - \implies can work with a single *reference boundary condition* a
- Conjecture: Boundary conditions for C form the bicategory W_a -Modof module categories over a fusion category \mathcal{W}_a satisfying $\mathcal{Z}(\mathcal{W}_a) \simeq \mathcal{C}$

- www Will assume: Boundary conditions given by W_a -Mod
- Then $\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c

- www Will assume: Boundary conditions given by \mathcal{W}_a - $\mathcal{M}od$
- Then $\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c
- Warning:

via
$$\mathcal{C} \xrightarrow{\simeq} \mathcal{I}(\mathcal{W}_a) \xrightarrow{\mathrm{forget}} \mathcal{W}_a$$

any $\mathcal{M} \in \mathcal{W}_a$ - $\mathcal{M}od$ has natural structure of \mathcal{C} -module category

But not every C-module category of a Witt-trivial C gives a boundary condition

Illustration: Toric code

2 elementary boundary conditions

- www Will assume: Boundary conditions given by \mathcal{W}_a - $\mathcal{M}od$
- Then $\mathcal{W}_{b,c} \simeq \mathcal{F}un_{\mathcal{W}_a}(\mathcal{W}_b, \mathcal{W}_c)$ for any pair of boundary conditions b, c
- Warning:

via
$$\mathcal{C} \stackrel{\simeq}{\longrightarrow} \mathcal{I}(\mathcal{W}_a) \stackrel{\mathrm{forget}}{\longrightarrow} \mathcal{W}_a$$

any $\mathcal{M} \in \mathcal{W}_a$ - $\mathcal{M}od$ has natural structure of \mathcal{C} -module category

But not every C-module category of a Witt-trivial C gives a boundary condition

Illustration: Toric code

- → 2 elementary boundary conditions
- $\mathcal{C} = \mathcal{Z}(\mathcal{V}ect(\mathbb{Z}_2))$
- → 6 inequivalent indecomposable module categories over C
- \sim 2 inequivalent indecomposable module categories over $\mathcal{W} = \mathcal{V}ect(\mathbb{Z}_2)$

- Parallel analysis for surface defects:
 - ightharpoonup defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d

inverse braiding

- Parallel analysis for surface defects:
 - ightharpoonup defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - lacksquare combine to central functor $\mathcal{C}_1oxtimes\mathcal{C}_2^{\mathrm{rev}} o\mathcal{W}_d$

Deligne product

- Parallel analysis for surface defects:
 - ightharpoonup defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - $lue{}$ combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \to \mathcal{W}_d$
 - ightharpoonup naturality ightharpoonup braided equivalence $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_a)$
 - \longrightarrow obstruction: no defects between \mathcal{C}_1 and \mathcal{C}_2 unless $[\mathcal{C}_1] = [\mathcal{C}_2]$ in Witt group

- Parallel analysis for surface defects:
 - \longrightarrow defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - $lue{}$ combine to central functor $\mathcal{C}_1 lackslash \mathcal{C}_2^{\mathrm{rev}} o \mathcal{W}_d$
 - naturality → braided equivalence

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{W}_a)$$

Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d - $\mathcal{M}\!od$ of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$

- Parallel analysis for surface defects:
 - ightharpoonup defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - $lue{}$ combine to central functor $\mathcal{C}_1 lackslash \mathcal{C}_2^{\mathrm{rev}} o \mathcal{W}_d$
 - naturality → braided equivalence

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_a)$$

- Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d - $\mathcal{M}\!od$ of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$
- - ightharpoonup defects separating \mathcal{C} from itself $= \mathcal{C}$ -module catgeories

- Parallel analysis for surface defects:
 - ightharpoonup defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - $lue{}$ combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \to \mathcal{W}_d$
 - naturality → braided equivalence

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \stackrel{\simeq}{\longrightarrow} \mathcal{Z}(\mathcal{W}_a)$$

- Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d - $\mathcal{M}\!od$ of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$
- Arr Canonical Witt trivialization $C \boxtimes C^{rev} \xrightarrow{\simeq} \mathcal{Z}(C)$
 - ightharpoonup defects separating \mathcal{C} from itself $= \mathcal{C}$ -module catgeories
 - regular C-module category $(C, \otimes) \rightsquigarrow \text{transparent defect } \mathcal{T}$
 - serves as monoidal unit for fusion of surface defects
 - Wilson lines separating transparent defect from itself = ordinary Wilson lines

- Parallel analysis for surface defects:
 - \longrightarrow defect d separating bulk regions labeled by \mathcal{C}_1 and \mathcal{C}_2
 - w two monoidal functors $\mathcal{C}_1 \longrightarrow \mathcal{W}_d$ and $\mathcal{C}_2^{\mathrm{rev}} \longrightarrow \mathcal{W}_d$ to fusion category \mathcal{W}_d
 - $lue{}$ combine to central functor $\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \to \mathcal{W}_d$
 - naturality >>> braided equivalence

$$\mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \xrightarrow{\simeq} \mathfrak{I}(\mathcal{W}_a)$$

- Defects separating C_1 from C_2 form the bicategory \mathcal{W}_d - $\mathcal{M}\!od$ of module categories over a fusion category \mathcal{W}_d satisfying $\mathcal{Z}(\mathcal{W}_d) \simeq \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}}$
- \blacksquare Canonical Witt trivialization $\mathcal{C} \boxtimes \mathcal{C}^{rev} \xrightarrow{\simeq} \mathcal{Z}(\mathcal{C})$
 - ightharpoonup defects separating \mathcal{C} from itself $= \mathcal{C}$ -module catgeories
 - regular C-module category $(C, \otimes) \rightsquigarrow \text{transparent defect } \mathcal{T}$
- \blacksquare Example: Turaev-Viro TFT: $\mathcal{C}_1 \simeq \mathcal{Z}(\mathcal{A}_1)$ and $\mathcal{C}_2 \simeq \mathcal{Z}(\mathcal{A}_2)$
 - $ightharpoonup \mathcal{C}_1 \boxtimes \mathcal{C}_2^{\mathrm{rev}} \simeq \mathcal{Z}(\mathcal{A}_1) \boxtimes \mathcal{Z}(\mathcal{A}_2^{\mathrm{op}}) \simeq \mathcal{Z}(\mathcal{A}_1 \boxtimes \mathcal{A}_2^{\mathrm{op}})$
 - \rightarrow defects separating C_1 from C_2 form bicategory A_1 - A_2 -Bimod