

Повторим матричное дифференцирование

i Example

Найти гессиан $\nabla^2 f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

i Example

Найти гессиан $\nabla^2 f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

1. Распишем дифференциал df

$$\begin{split} df &= d \left(\langle Ax, x \rangle - \langle b, x \rangle + c \right) \\ &= \langle Ax, dx \rangle + \langle x, Adx \rangle - \langle b, dx \rangle \\ &= \langle Ax, dx \rangle + \langle A^Tx, dx \rangle - \langle b, dx \rangle \\ &= \langle (A + A^T)x - b, dx \rangle \end{split}$$

Что означает, что градиент $\nabla f = (A + A^T)x - b$.

i Example

Найти гессиан $\nabla^2 f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

1. Распишем дифференциал df

$$\begin{split} df &= d \left(\langle Ax, x \rangle - \langle b, x \rangle + c \right) \\ &= \langle Ax, dx \rangle + \langle x, Adx \rangle - \langle b, dx \rangle \\ &= \langle Ax, dx \rangle + \langle A^Tx, dx \rangle - \langle b, dx \rangle \\ &= \langle (A + A^T)x - b, dx \rangle \end{split}$$

Что означает, что градиент $\nabla f = (A + A^T)x - b$.

i Example

Найти гессиан $\nabla^2 f(x)$, если $f(x) = \langle x, Ax \rangle - b^T x + c$.

1. Распишем дифференциал df

$$\begin{split} df &= d \left(\left\langle Ax, x \right\rangle - \left\langle b, x \right\rangle + c \right) \\ &= \left\langle Ax, dx \right\rangle + \left\langle x, Adx \right\rangle - \left\langle b, dx \right\rangle \\ &= \left\langle Ax, dx \right\rangle + \left\langle A^Tx, dx \right\rangle - \left\langle b, dx \right\rangle \\ &= \left\langle (A + A^T)x - b, dx \right\rangle \end{split}$$

Что означает, что градиент $\nabla f = (A + A^T)x - b$.

2. Найдем второй дифференциал $d^2f = d(df)$, полагая, что $dx = dx_1 = \text{const}$:

$$\begin{split} d^2f &= d\left(\langle (A+A^T)x-b,dx_1\rangle\right) \\ &= \langle (A+A^T)dx,dx_1\rangle \\ &= \langle dx,(A+A^T)^Tdx_1\rangle \\ &= \langle (A+A^T)dx_1,dx\rangle \end{split}$$

Таким образом, гессиан: $abla^2 f = (A + A^T)$.

Повторим матричное дифференцирование

i Example

Найти гессиан $abla^2 f(x)$, если $f(x) = \ln \langle x, Ax \rangle$.

i Example

Найти градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$, если $f(x) = \ln{(1 + \exp{\langle a, x \rangle})}$

i Example

Найти градиент abla f(x) и гессиан $abla^2 f(x)$, если $f(x) = \ln{(1 + \exp{\langle a, x \rangle})}$

1. Начнем с записи дифференциала
$$df$$
. Имеем:

$$f(x) = \ln(1 + \exp\langle a, x \rangle)$$

Используя правило дифференцирования сложной функции:

$$df = d\left(\ln\left(1 + \exp\langle a, x\rangle\right)\right) = \frac{d\left(1 + \exp\langle a, x\rangle\right)}{1 + \exp\langle a, x\rangle}$$

теперь посчитаем дифференциал экспоненты:

$$d\left(\exp\langle a, x\rangle\right) = \exp\langle a, x\rangle\langle a, dx\rangle$$

Подставляя в выражение выше, имеем:

$$df = \frac{\exp\langle a, x \rangle \langle a, dx \rangle}{1 + \exp\langle a, x \rangle}$$

i Example

Найти градиент abla f(x) и гессиан $abla^2 f(x)$, если $f(x) = \ln{(1 + \exp{\langle a, x \rangle})}$

1. Начнем с записи дифференциала
$$df$$
. Имеем:

$$f(x) = \ln(1 + \exp\langle a, x \rangle)$$

Используя правило дифференцирования сложной функции:

$$df = d\left(\ln\left(1 + \exp\langle a, x\rangle\right)\right) = \frac{d\left(1 + \exp\langle a, x\rangle\right)}{1 + \exp\langle a, x\rangle}$$

теперь посчитаем дифференциал экспоненты:

$$d\left(\exp\langle a, x\rangle\right) = \exp\langle a, x\rangle\langle a, dx\rangle$$

Подставляя в выражение выше, имеем:

$$df = \frac{\exp\langle a, x \rangle \langle a, dx \rangle}{1 + \exp\langle a, x \rangle}$$

i Example

Найти градиент $\nabla f(x)$ и гессиан $\nabla^2 f(x)$, если $f(x) = \ln (1 + \exp(a, x))$

1. Начнем с записи дифференциала
$$df$$
. Имеем:
$$f(x) = \ln \left(1 + \exp \langle a, x \rangle \right)$$

$$f(x) = \operatorname{Im} \left(1 + \exp(a, x) \right)$$

функции: $df = d\left(\ln\left(1 + \exp\langle a, x \rangle\right)\right) = \frac{d\left(1 + \exp\langle a, x \rangle\right)}{1 + \exp\langle a, x \rangle}$

Используя правило дифференцирования сложной

 $d(\exp\langle a, x \rangle) = \exp\langle a, x \rangle \langle a, dx \rangle$

 $df = \frac{\exp(a, x)\langle a, dx \rangle}{1 + \exp(a, x)}$

2. Для выражения df в нужной форме, запишем:

$$df = \left\langle \frac{\exp\langle a, x \rangle}{1 + \exp\langle a, x \rangle} a, dx \right\rangle$$

как: $\sigma(t) = \frac{1}{1 + \operatorname{arm}(-t)}$

$$O(t) = rac{1+\exp(-t)}{1+\exp(-t)}$$
Таким образом, мы можем переписать

Напомним, что функция сигмоиды определяется

 $df = \langle \sigma(\langle a, x \rangle) a, dx \rangle$

дифференциал:

$$\nabla f(x) = \sigma(\langle a, x \rangle)a$$

i Example

Найти градиент abla f(x) и гессиан $abla^2 f(x)$, если $f(x) = \ln{(1 + \exp{\langle a, x \rangle})}$

3. Теперь найдем гессиан с помозью второго дифференциала:

$$d(\nabla f(x)) = d\left(\sigma(\langle a, x \rangle)a\right)$$

Так как вектор a константа, нам необходимо продифференцировать лишь сигмоиду:

$$d\left(\sigma(\langle a,x\rangle)\right) = \sigma(\langle a,x\rangle)(1-\sigma(\langle a,x\rangle))\langle a,dx\rangle$$

То есть:

$$d(\nabla f(x)) = \sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle))\langle a, dx \rangle a$$

Запишем гессиан:

$$\nabla^2 f(x) = \sigma(\langle a, x \rangle)(1 - \sigma(\langle a, x \rangle))aa^T$$

Автоматическое дифференцирование

Повторим матричное дифференцирование

•••

I think the first 40 years or so of automatic differentiation was largely people not using it because they didn't believe such an algorithm could possibly exist.

11:36 PM · Sep 17, 2019

Q

9

1 26

 \bigcirc 1

159

╗ 1

13

Рис. 2: Это не автоград

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

Пусть есть задача оптимизации:

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

• Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d could be dozens of billions it is very challenging to solve this problem without information about the gradients using zero-order optimization algorithms.
- That is why it would be beneficial to be able to calculate the gradient vector $\nabla_w L = \left(\frac{\partial L}{\partial w_*}, \dots, \frac{\partial L}{\partial w_*} \right)^T$.

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

- Such problems typically arise in machine learning, when you need to find optimal hyperparameters w of an ML model (i.e. train a neural network).
- You may use a lot of algorithms to approach this problem, but given the modern size of the problem, where d
 could be dozens of billions it is very challenging to solve this problem without information about the gradients
 using zero-order optimization algorithms.
- That is why it would be beneficial to be able to calculate the gradient vector $\nabla_w L = \left(\frac{\partial L}{\partial w_1}, \dots, \frac{\partial L}{\partial w_d} \right)^T$.
- Typically, first-order methods perform much better in huge-scale optimization, while second-order methods require too much memory.

Suppose, we have a pairwise distance matrix for N d-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_i \in \mathbb{R}^d$, $i=1,\ldots,N$.

Suppose, we have a pairwise distance matrix for N d-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_i \in \mathbb{R}^d, i = 1, ..., N$.

$$L(W) = \sum_{i,j=1}^N \left(\|W_i - W_j\|_2^2 - D_{i,j}\right)^2 \rightarrow \min_{W \in \mathbb{R}^{N \times d}}$$

Suppose, we have a pairwise distance matrix for N d-dimensional objects $D \in \mathbb{R}^{N \times N}$. Given this matrix, our goal is to recover the initial coordinates $W_i \in \mathbb{R}^d, \ i=1,\ldots,N$.

$$L(W) = \sum_{i,j=1}^N \left(\|W_i - W_j\|_2^2 - D_{i,j}\right)^2 \rightarrow \min_{W \in \mathbb{R}^{N \times d}}$$

Link to a nice visualization \clubsuit , where one can see, that gradient-free methods handle this problem much slower, especially in higher dimensions.

i Question

Is it somehow connected with PCA?

Рис. 3: Ссылка на анимацию

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

вместе с методом градиентного спуска (GD)

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

вместе с методом градиентного спуска (GD)

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$, используя, лишь информацию нулевого порядка о функции?

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

вместе с методом градиентного спуска (GD)

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$, используя, лишь информацию нулевого порядка о функции? Да, но есть нюанс.

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

вместе с методом градиентного спуска (GD)

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$, используя, лишь информацию нулевого порядка о функции? Да. но есть нюанс.

One can consider 2-point gradient estimator G:

$$G = d\frac{L(w + \varepsilon v) - L(w - \varepsilon v)}{2\varepsilon}v,$$

where v is spherically symmetric.

^aI suggest a nice presentation about gradient-free methods

Рассмотрим следующую задачу оптимизации

$$L(w) \to \min_{w \in \mathbb{R}^d}$$

вместе с методом градиентного спуска (GD)

$$w_{k+1} = w_k - \alpha_k \nabla_w L(w_k)$$

Можно ли заменить $\nabla_w L(w_k)$, используя, лишь информацию нулевого порядка о функции? Да, но есть нюанс.

One can consider 2-point gradient estimator G:

$$G=d\frac{L(w+\varepsilon v)-L(w-\varepsilon v)}{2\varepsilon}v,$$

where \boldsymbol{v} is spherically symmetric.

Рис. 4: ``Illustration of two-point estimator of Gradient Descent''

⊕ 0 0

^aI suggest a nice presentation about gradient-free methods

Пример: конечно-разностный градиентный спуск

$$w_{k+1} = w_k - \alpha_k G$$

Пример: конечно-разностный градиентный спуск

$$w_{k+1} = w_k - \alpha_k G$$

One can also consider the idea of finite differences:

$$G = \sum_{i=1}^d \frac{L(w+\varepsilon e_i) - L(w-\varepsilon e_i)}{2\varepsilon} e_i$$

Open In Colab 🐥

Рис. 5: ``Illustration of finite differences estimator of Gradient Descent"

Проклятие размерности методов нулевого порядка

$$\min_{x \in \mathbb{R}^n} f(x)$$

Проклятие размерности методов нулевого порядка

$$\min_{x \in \mathbb{R}^n} f(x)$$

$$\mathsf{GD} \colon x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

GD: $x_{k+1} = x_k - \alpha_k \nabla f(x_k)$ Zero order GD: $x_{k+1} = x_k - \alpha_k G$,

where G is a 2-point or multi-point estimator of the gradient.

Проклятие размерности методов нулевого порядка

$$\min_{x\in\mathbb{R}^n} f(x)$$

$$\text{GD: } x_{k+1} = x_k - \alpha_k \nabla f(x_k) \qquad \qquad \text{Zero order GD: } x_{k+1} = x_k - \alpha_k G,$$

where ${\cal G}$ is a 2-point or multi-point estimator of the gradient.

	f(x) - smooth	f(x) - smooth and convex	f(x) - smooth and strongly convex
GD	$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{1}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{1}{k}\right)$	$\ x_k - x^*\ ^2 \approx \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
Zero order GD	$\ \nabla f(x_k)\ ^2 \approx \mathcal{O}\left(\frac{n}{k}\right)$	$f(x_k) - f^* \approx \mathcal{O}\left(\frac{n}{k}\right)$	$\ x_k - x^*\ ^2 \approx \mathcal{O}\left(\left(1 - \frac{\mu}{nL}\right)^{\tilde{k}}\right)$

Метод конечных разностей

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

¹Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

Метод конечных разностей

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$\frac{\partial L}{\partial w_k}(w) \approx \frac{L(w+\varepsilon e_k) - L(w)}{\varepsilon}, \quad e_k = (0,\dots,\frac{1}{k},\dots,0)$$

i Question

If the time needed for one calculation of L(w) is T, what is the time needed for calculating $\nabla_w L$ with this approach?

Метод конечных разностей

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$\frac{\partial L}{\partial w_{h}}(w) \approx \frac{L(w+\varepsilon e_{k}) - L(w)}{\varepsilon}, \quad e_{k} = (0,\dots,\frac{1}{k},\dots,0)$$

i Question

If the time needed for one calculation of L(w) is T, what is the time needed for calculating $\nabla_w L$ with this approach?

Answer 2dT, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.

Метод конечных разностей

The naive approach to get approximate values of gradients is **Finite differences** approach. For each coordinate, one can calculate the partial derivative approximation:

$$\frac{\partial L}{\partial w_{h}}(w) \approx \frac{L(w+\varepsilon e_{k}) - L(w)}{\varepsilon}, \quad e_{k} = (0,\dots,\frac{1}{k},\dots,0)$$

i Question

If the time needed for one calculation of L(w) is T, what is the time needed for calculating $\nabla_w L$ with this approach?

Answer 2dT, which is extremely long for the huge scale optimization. Moreover, this exact scheme is unstable, which means that you will have to choose between accuracy and stability.

Theorem

There is an algorithm to compute $\nabla_{u}L$ in $\mathcal{O}(T)$ operations. ¹

¹Linnainmaa S. The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 1970.

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}$$

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$L(w_1,w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}$$

Let's draw a computational graph of this function:

Рис. 6: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1,w_2)$

⊕ ∩ **ø**

To dive deep into the idea of automatic differentiation we will consider a simple function for calculating derivatives:

$$L(w_1, w_2) = w_2 \log w_1 + \sqrt{w_2 \log w_1}$$

Let's draw a computational graph of this function:

Puc. 6: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1, w_2)$

Let's go from the beginning of the graph to the end and calculate the derivative $\frac{\partial L}{\partial w_1}$.

Рис. 7: Illustration of forward mode automatic differentiation

$$w_1 = w_1, w_2 = w_2$$

Рис. 7: Illustration of forward mode automatic differentiation

$$w_1 = w_1, w_2 = w_2$$

$$\frac{\text{Derivative}}{\partial w_1} = 1, \frac{\partial w_2}{\partial w_1} = 0$$

Рис. 8: Illustration of forward mode automatic differentiation

Рис. 8: Illustration of forward mode automatic differentiation

Function

 $v_1 = \log w_1$

Рис. 8: Illustration of forward mode automatic differentiation

Function
$$v_1 = \log w_1$$

Derivative
$$\frac{\partial v_1}{\partial w_1} = \frac{\partial v_1}{\partial w_1} \frac{\partial w_1}{\partial w_1} = \frac{1}{w_1} 1$$

Рис. 9: Illustration of forward mode automatic differentiation

Рис. 9: Illustration of forward mode automatic differentiation

$$v_2 = w_2 v_1$$

Рис. 9: Illustration of forward mode automatic differentiation

$$v_2 = w_2 v_1$$

$$\begin{array}{l} \text{Derivative} \\ \frac{\partial v_2}{\partial w_1} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_1} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_1} = w_2 \frac{\partial v_1}{\partial w_1} + v_1 \frac{\partial w_2}{\partial w_1} \end{array}$$

Рис. 10: Illustration of forward mode automatic differentiation

Рис. 10: Illustration of forward mode automatic differentiation

$$v_3 = \sqrt{v_2}$$

Рис. 10: Illustration of forward mode automatic differentiation

$$v_3 = \sqrt{v_2}$$

$$\begin{array}{l} \text{Derivative} \\ \frac{\partial v_3}{\partial w_1} = \frac{\partial v_3}{\partial v_2} \frac{\partial v_2}{\partial w_1} = \frac{1}{2\sqrt{v_2}} \frac{\partial v_2}{\partial w_1} \end{array}$$

Рис. 11: Illustration of forward mode automatic differentiation

Рис. 11: Illustration of forward mode automatic differentiation

$$L = v_2 + v_3$$

Рис. 11: Illustration of forward mode automatic differentiation

$$L = v_2 + v_3$$

Derivative
$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_1} + \frac{\partial L}{\partial v_2} \frac{\partial v_3}{\partial w_1} = 1 \frac{\partial v_2}{\partial w_1} + 1 \frac{\partial v_3}{\partial w_1}$$

Make the similar computations for $\frac{\partial L}{\partial w}$

$$L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}$$

Рис. 12: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1,w_2)$

Рис. 13: Illustration of forward mode automatic differentiation

$$w_1 = w_1, w_2 = w_2$$

$$\frac{\text{Derivative}}{\partial w_1} = 0, \frac{\partial w_2}{\partial w_2} = 1$$

Рис. 14: Illustration of forward mode automatic differentiation

Function $v_1 = \log w_1$

$$\begin{array}{l} \text{Derivative} \\ \frac{\partial v_1}{\partial w_2} = \frac{\partial v_1}{\partial w_2} \frac{\partial w_2}{\partial w_2} = 0 \cdot 1 \end{array}$$

Рис. 15: Illustration of forward mode automatic differentiation

$$v_2 = w_2 v_1$$

$$\begin{array}{l} \textbf{Derivative} \\ \frac{\partial v_2}{\partial w_2} = \frac{\partial v_2}{\partial v_1} \frac{\partial v_1}{\partial w_2} + \frac{\partial v_2}{\partial w_2} \frac{\partial w_2}{\partial w_2} = w_2 \frac{\partial v_1}{\partial w_2} + v_1 \frac{\partial w_2}{\partial w_2} \end{array}$$

Рис. 16: Illustration of forward mode automatic differentiation

$$v_3 = \sqrt{v_2}$$

Рис. 17: Illustration of forward mode automatic differentiation

$$L = v_2 + v_3$$

Derivative
$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} + \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial w_2} = 1 \frac{\partial v_2}{\partial w_2} + 1 \frac{\partial v_3}{\partial w_2}$$

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w_k}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w_k}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

$$egin{align*} x_1, rac{\partial x_1}{\partial w_k} & v_i = v_i(x_1, \dots, x_{t_i}) \ x_2, rac{\partial x_{t_i}}{\partial w_k} & rac{\partial v_i}{\partial w_k} = \sum_{i=1}^{t_i} rac{\partial v_i}{\partial x_i} rac{\partial x_j}{\partial w_k} \ \end{array}$$

Puc. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

Повторим матричное дифференцирование

Forward mode automatic differentiation algorithm • For i = 1, ..., N:

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

Рис. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

Повторим матричное дифференцирование

Forward mode automatic differentiation algorithm • For i = 1, ..., N:

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

Рис. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

Повторим матричное дифференцирование

• Compute v_s as a function of its parents (inputs)

 $v_i = v_i(x_1, \dots, x_t)$

 x_1, \dots, x_{t_i} :

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

Our goal is to calculate the derivative of the output of the graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

• For
$$i=1,\ldots,N$$
:

• Compute v_i as a function of its parents (inputs) x_1, \dots, x_t :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Рис. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

Our goal is to calculate the derivative of the output of the graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w_k}$.

This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

$$\begin{array}{c|c} x_1, \frac{\partial w_1}{\partial w_k} \\ x_2, \frac{\partial x_2}{\partial w_k} \\ \hline \\ x_{t_i}, \frac{\partial x_{t_i}}{\partial w_k} \\ \hline \\ x_{t_i}, \frac{\partial v_i}{\partial w_k} \\ \hline \\ \end{array}$$

• For
$$i=1,\ldots,N$$
:

• Compute v_i as a function of its parents (inputs) x_1, \dots, x_t :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Рис. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

Повторим матричное дифференцирование

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this

graph with respect to some input variable w_k , i.e. $\frac{\partial v_N}{\partial w_k}$. This idea implies propagation of the gradient with respect to the input variable from start to end, that is why we can

$$\overline{v_i} = \frac{\partial v_i}{\partial w_k}$$

$$v_i = v_i(x_1, \dots, x_{t_i})$$

$$\frac{\partial x_1}{\partial w_k}$$

$$\frac{\partial v_i}{\partial w_k} = \sum_{i=1}^{t_i} \frac{\partial v_i}{\partial x_i} \frac{\partial x_j}{\partial w_k}$$

• For $i=1,\ldots,N$:

• Compute v_i as a function of its parents (inputs) x_1, \dots, x_{t_s} :

$$v_i = v_i(x_1, \dots, x_{t_i})$$

• Compute the derivative $\overline{v_i}$ using the forward chain rule:

$$\overline{v_i} = \sum_{j=1}^{t_i} \frac{\partial v_i}{\partial x_j} \frac{\partial x_j}{\partial w_k}$$

Note, that this approach does not require storing all intermediate computations, but one can see, that for calculating the derivative $\frac{\partial L}{\partial w}$ we need $\mathcal{O}(T)$ operations.

This means, that for the whole gradient, we need $d\mathcal{O}(T)$ operations, which is the same as for finite differences, but we do not have stability issues, or inaccuracies now (the formulas above are exact).

Puc. 18: Illustration of forward chain rule to calculate the derivative of the function L with respect to w_k .

introduce the notation:

We will consider the same function with a computational graph:

$$L(w_1,w_2)=w_2\log w_1+\sqrt{w_2\log w_1}$$
 w_1 $v_2=w_2v_1$ $v_3=\sqrt{v_2}$ $L=v_2+v_3$ w_2

Puc. 19: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1,w_2)$

We will consider the same function with a computational graph:

Рис. 19: Illustration of computation graph of primitive arithmetic operations for the function $L(w_1,w_2)$

Assume, that we have some values of the parameters w_1,w_2 and we have already performed a forward pass (i.e. single propagation through the computational graph from left to right). Suppose, also, that we somehow saved all intermediate values of v_i . Let's go from the end of the graph to the beginning and calculate the derivatives $\underline{\partial L} \quad \underline{\partial L}$.

Рис. 20: Illustration of backward mode automatic differentiation

Рис. 20: Illustration of backward mode automatic differentiation

Рис. 20: Illustration of backward mode automatic differentiation

$$\frac{\partial L}{\partial L} = 1$$

Рис. 21: Illustration of backward mode automatic differentiation

Рис. 21: Illustration of backward mode automatic differentiation

Рис. 21: Illustration of backward mode automatic differentiation

$$\begin{split} \frac{\partial L}{\partial v_3} &= \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_3} \\ &= \frac{\partial L}{\partial L} \mathbf{1} \end{split}$$

Рис. 22: Illustration of backward mode automatic differentiation

Рис. 22: Illustration of backward mode automatic differentiation

Рис. 22: Illustration of backward mode automatic differentiation

$$\frac{\partial L}{\partial v_2} = \frac{\partial L}{\partial v_3} \frac{\partial v_3}{\partial v_2} + \frac{\partial L}{\partial L} \frac{\partial L}{\partial v_2}$$
$$= \frac{\partial L}{\partial v_2} \frac{1}{\partial v_3} + \frac{\partial L}{\partial v_2} \frac{\partial L}{\partial v_3} \frac{\partial L}{$$

Рис. 23: Illustration of backward mode automatic differentiation

Рис. 23: Illustration of backward mode automatic differentiation

Рис. 23: Illustration of backward mode automatic differentiation

$$\begin{split} \frac{\partial L}{\partial v_1} &= \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial v_1} \\ &= \frac{\partial L}{\partial v_2} w_2 \end{split}$$

Рис. 24: Illustration of backward mode automatic differentiation

Рис. 24: Illustration of backward mode automatic differentiation

Рис. 24: Illustration of backward mode automatic differentiation

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{\partial v_1}{\partial w_1} = \frac{\partial L}{\partial v_1} \frac{1}{w_1} \qquad \qquad \frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial v_2} \frac{\partial v_2}{\partial w_2} = \frac{\partial L}{\partial v_1} v_1$$

Backward (reverse) mode automatic differentiation

i Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient $\nabla_w L$. Is it a free lunch? What is the cost of acceleration?

Backward (reverse) mode automatic differentiation

i Question

Note, that for the same price of computations as it was in the forward mode we have the full vector of gradient $\nabla_w L$. Is it a free lunch? What is the cost of acceleration?

Answer Note, that for using the reverse mode AD you need to store all intermediate computations from the forward pass. This problem could be somehow mitigated with the gradient checkpointing approach, which involves necessary recomputations of some intermediate values. This could significantly reduce the memory footprint of the large machine-learning model.

Reverse mode automatic differentiation algorithm uppose we have a computational graph v_i $i \in [1:N]$ • FORWARD PASS

For i = 1, ..., N:

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,

i.e.
$$\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$$
. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

Рис. 25: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_i .

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that

is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

FORWARD PASS

For i = 1, ..., N:

• Compute and store the values of v_i as a function of its parents (inputs)

Puc. 25: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_i .

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,

i.e. $\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

FORWARD PASS

For i = 1, ..., N:

ullet Compute and store the values of v_i as a function of its parents (inputs)

BACKWARD PASS

For $i=N,\ldots,1$:

Puc. 25: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_i .

Reverse mode automatic differentiation algorithm

Suppose, we have a computational graph $v_i, i \in [1; N]$. Our goal is to calculate the derivative of the output of this graph with respect to all inputs variable w,

i.e.
$$\nabla_w v_N = \left(\frac{\partial v_N}{\partial w_1}, \dots, \frac{\partial v_N}{\partial w_d}\right)^T$$
. This idea implies propagation of the gradient of the function with respect to the intermediate variables from the end to the origin, that is why we can introduce the notation:

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \frac{\partial v_N}{\partial v_i}$$

• FORWARD PASS

For i = 1, ..., N:

ullet Compute and store the values of v_i as a function of its parents (inputs)

BACKWARD PASS

For $i=N,\ldots,1$:

• Compute the derivative $\overline{v_i}$ using the backward chain rule and information from all of its children (outputs) (x_1, \dots, x_{t_i}) :

$$\overline{v_i} = \frac{\partial L}{\partial v_i} = \sum_{i=1}^{t_i} \frac{\partial L}{\partial x_j} \frac{\partial x_j}{\partial v_i}$$

Puc. 25: Illustration of reverse chain rule to calculate the derivative of the function L with respect to the node v_i .

i Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \left\{\frac{\partial L_i}{\partial w_j}\right\}_{i,j}$

Рис. 26: Which mode would you choose for calculating gradients there?

i Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J = \left\{ \frac{\partial L_i}{\partial w} \right\}$

Answer Note, that the reverse mode computational time is proportional to the number of outputs here, while the forward mode works proportionally to the number of inputs there. This is why it would be a good idea to consider the forward mode AD.

Рис. 26: Which mode would you choose for calculating gradients there?

Puc. 27: \clubsuit This graph nicely illustrates the idea of choice between the modes. The n=100 dimension is fixed and the graph presents the time needed for Jacobian calculation w.r.t. x for f(x)=Ax

i Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J \ = \ \left\{\frac{\partial L_i}{\partial w_j}\right\}_{i,j}.$ Note, that G is an arbitrary computational graph

Рис. 28: Which mode would you choose for calculating gradients there?

i Question

Which of the AD modes would you choose (forward/ reverse) for the following computational graph of primitive arithmetic operations? Suppose, you are needed to compute the jacobian $J \ = \ \left\{\frac{\partial L_i}{\partial w_j}\right\}_{i,j}.$ Note, that G is an arbitrary computational graph

Answer It is generally impossible to say it without some knowledge about the specific structure of the graph G. Note, that there are also plenty of advanced approaches to mix forward and reverse mode AD, based on the specific G structure.

Рис. 28: Which mode would you choose for calculating gradients there?

FORWARD

• $v_0 = x$ typically we have a batch of data x here as an input.

BACKWARD

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:

BACKWARD

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.

Рис. 29: Feedforward neural network architecture

BACKWARD

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{0 \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- ullet $L=L(v_t)$ calculate the loss function.

BACKWARD

Рис. 29: Feedforward neural network architecture

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- ullet $L=L(v_t)$ calculate the loss function.

BACKWARD

• $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$

Рис. 29: Feedforward neural network architecture

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{0 \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- $L=L(v_t)$ calculate the loss function.

BACKWARD

- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$
- For $k = t, \tilde{t} 1, \dots, 1$:

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- ullet $L=L(v_t)$ calculate the loss function.

BACKWARD

- $v_{t+1} = L, \frac{\partial L}{\partial L} = 1$
- For k = t, t 1, ..., 1:
 - $\bullet \ \, \frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \stackrel{?}{\underset{b \times n_{k+1}}{\partial v_{k}}} \frac{\partial v_{k+1}}{\partial v_k}$

FORWARD

- $v_0 = x$ typically we have a batch of data x here as an input.
- For k = 1, ..., t 1, t:
 - $v_k = \sigma(v_{k-1}w_k)$. Note, that practically speaking the data has dimension $x \in \mathbb{R}^{b \times d}$, where b is the batch size (for the single data point b=1). While the weight matrix w_k of a k layer has a shape $n_{k-1} \times n_k$, where n_k is the dimension of an inner representation of the data.
- ullet $L=L(v_t)$ calculate the loss function.

BACKWARD

•
$$v_{t+1} = L, \frac{\partial L}{\partial L} = 1$$

• For k = t, t-1, ..., 1:

•
$$\frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_k}$$

• $\frac{\partial L}{\partial v_{k+1}} = \frac{\partial L}{\partial v_{k+1}} \frac{\partial v_{k+1}}{\partial v_{k+1}}$
• $\frac{\partial L}{\partial v_k} = \frac{\partial L}{\partial v_k}$

$$\bullet \quad \frac{\partial L}{\partial w_k} = \frac{\partial L}{\partial v_{k+1}} \cdot \frac{\partial v_{k+1}}{\partial w_k}$$

$$b \times n_{k-1} \cdot n_k \quad b \times n_{k+1} \quad n_{k+1} \times n_{k-1} \cdot n_k$$

Gradient propagation through the linear least squares

Pис. 30: \boldsymbol{x} could be found as a solution of linear system

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system Ax = b, namely one can write down an analytical solution $x = A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass.

Gradient propagation through the linear least squares

 $\ensuremath{\mathsf{Puc}}.$ 30: x could be found as a solution of linear system

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system Ax=b, namely one can write down an analytical solution $x=A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass. It is known, that the differential of the function does not depend on the parametrization:

$$dL = \left\langle \frac{\partial L}{\partial x}, dx \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

⊕ ∩ ∅

Gradient propagation through the linear least squares

 $\ensuremath{\mathsf{Puc.}}$ 30: x could be found as a solution of linear system

Suppose, we have an invertible matrix A and a vector b, the vector x is the solution of the linear system Ax = b, namely one can write down an analytical solution $x = A^{-1}b$, in this example we will show, that computing all derivatives $\frac{\partial L}{\partial A}, \frac{\partial L}{\partial b}, \frac{\partial L}{\partial x}$, i.e. the backward pass, costs approximately the same as the forward pass. It is known, that the differential of the function does not depend on the parametrization:

$$dL = \left\langle \frac{\partial L}{\partial x}, dx \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Given the linear system, we have:

$$Ax = b$$

$$dAx + Adx = db \rightarrow dx = A^{-1}(db - dAx)$$

 $\ensuremath{\mathsf{Puc.}}$ 31: x could be found as a solution of linear system

The straightforward substitution gives us:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db-dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

The straightforward substitution gives us:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db-dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

$$\left\langle -A^{-T}\frac{\partial L}{\partial x}x^T, dA\right\rangle + \left\langle A^{-T}\frac{\partial L}{\partial x}, db\right\rangle = \left\langle \frac{\partial L}{\partial A}, dA\right\rangle + \left\langle \frac{\partial L}{\partial b}, db\right\rangle$$

 ${\it Puc.}$ 31: x could be found as a solution of linear system

The straightforward substitution gives us:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db-dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

$$\left\langle -A^{-T}\frac{\partial L}{\partial x}x^T, dA \right\rangle + \left\langle A^{-T}\frac{\partial L}{\partial x}, db \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$
Therefore

Therefore:

$$\frac{\partial L}{\partial A} = -A^{-T}\frac{\partial L}{\partial x}x^T \quad \frac{\partial L}{\partial b} = A^{-T}\frac{\partial L}{\partial x}$$

 $\ensuremath{\mathsf{Puc.}}$ 31: x could be found as a solution of linear system

 $\ensuremath{\mathsf{Puc.}}$ 31: x could be found as a solution of linear system

The straightforward substitution gives us:

$$\left\langle \frac{\partial L}{\partial x}, A^{-1}(db-dAx) \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

$$\left\langle -A^{-T}\frac{\partial L}{\partial x}x^T, dA \right\rangle + \left\langle A^{-T}\frac{\partial L}{\partial x}, db \right\rangle = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle + \left\langle \frac{\partial L}{\partial b}, db \right\rangle$$

Therefore:

$$\frac{\partial L}{\partial A} = -A^{-T} \frac{\partial L}{\partial x} x^T \quad \frac{\partial L}{\partial b} = A^{-T} \frac{\partial L}{\partial x}$$

It is interesting, that the most computationally intensive part here is the matrix inverse, which is the same as for the forward pass.

Sometimes it is even possible to store the result itself, which makes the backward pass even cheaper.

Повторим матричное дифференцирование

Suppose, we have the rectangular matrix $W \in \mathbb{R}^{m \times n}$, which has a singular value decomposition:

$$W = U \Sigma V^T, \quad U^T U = I, \quad V^T V = I, \quad \Sigma = \mathrm{diag}(\sigma_1, \dots, \sigma_{\min(m,n)})$$

1. Similarly to the previous example:

$$\begin{split} W &= U \Sigma V^T \\ dW &= dU \Sigma V^T + U d \Sigma V^T + U \Sigma d V^T \\ U^T dW V &= U^T dU \Sigma V^T V + U^T U d \Sigma V^T V + U^T U \Sigma d V^T V \\ U^T dW V &= U^T dU \Sigma + d \Sigma + \Sigma d V^T V \end{split}$$

2. Note, that $U^TU=I \to dU^TU+U^TdU=0$. But also $dU^TU=(U^TdU)^T$, which actually involves, that the matrix U^TdU is antisymmetric:

$$(U^TdU)^T + U^TdU = 0 \quad \to \quad \mathrm{diag}(U^TdU) = (0,\dots,0)$$

The same logic could be applied to the matrix \boldsymbol{V} and

$$\mathsf{diag}(dV^TV) = (0, \dots, 0)$$

2. Note, that $U^TU=I \to dU^TU+U^TdU=0$. But also $dU^TU=(U^TdU)^T$, which actually involves, that the matrix U^TdU is antisymmetric:

$$(U^TdU)^T + U^TdU = 0 \quad \to \quad \mathrm{diag}(U^TdU) = (0,\dots,0)$$

The same logic could be applied to the matrix V and

$$\mathsf{diag}(dV^TV) = (0, \dots, 0)$$

3. At the same time, the matrix $d\Sigma$ is diagonal, which means (look at the 1.) that

$$\operatorname{diag}(U^TdWV)=d\Sigma$$

Here on both sides, we have diagonal matrices.

Повторим матричное дифференцирование

4. Now, we can decompose the differential of the loss function as a function of Σ - such problems arise in ML problems, where we need to restrict the matrix rank:

$$\begin{split} dL &= \left\langle \frac{\partial L}{\partial \Sigma}, d\Sigma \right\rangle \\ &= \left\langle \frac{\partial L}{\partial \Sigma}, \mathrm{diag}(U^T dW V) \right\rangle \\ &= \mathrm{tr} \left(\frac{\partial L}{\partial \Sigma}^T \mathrm{diag}(U^T dW V) \right) \end{split}$$

5. As soon as we have diagonal matrices inside the product, the trace of the diagonal part of the matrix will be equal to the trace of the whole matrix:

$$\begin{split} dL &= \operatorname{tr} \left(\frac{\partial L}{\partial \Sigma}^T \operatorname{diag}(U^T dW V) \right) \\ &= \operatorname{tr} \left(\frac{\partial L}{\partial \Sigma}^T U^T dW V \right) \\ &= \left\langle \frac{\partial L}{\partial \Sigma}, U^T dW V \right\rangle \\ &= \left\langle U \frac{\partial L}{\partial \Sigma} V^T, dW \right\rangle \end{split}$$

6. Finally, using another parametrization of the differential

$$\left\langle U \frac{\partial L}{\partial \Sigma} V^T, dW \right\rangle = \left\langle \frac{\partial L}{\partial W}, dW \right\rangle$$
$$\frac{\partial L}{\partial W} = U \frac{\partial L}{\partial \Sigma} V^T,$$

This nice result allows us to connect the gradients $\frac{\partial L}{\partial W}$ and $\frac{\partial L}{\partial \Sigma}$.

Hessian vector product without the Hessian

When you need some information about the curvature of the function you usually need to work with the hessian. However, when the dimension of the problem is large it is challenging. For a scalar-valued function $f: \mathbb{R}^n \to \mathbb{R}$, the Hessian at a point $x \in \mathbb{R}^n$ is written as $\nabla^2 f(x)$. A Hessian-vector product function is then able to evaluate

$$v \mapsto \nabla^2 f(x) \cdot v$$

for any vector $v \in \mathbb{R}^n$. We have to use the identity

$$\nabla^2 f(x)v = \nabla[x \mapsto \nabla f(x) \cdot v] = \nabla g(x),$$

where $q(x) = \nabla f(x)^T \cdot v$ is a new vector-valued function that dots the gradient of f at x with the vector v.

import jax.numpy as jnp

def hvp(f, x, v):

return grad(lambda x: jnp.vdot(grad(f)(x), v))(x)

Hutchinson Trace Estimation ²

This example illustrates the estimation the Hessian trace of a neural network using Hutchinson's method, which is an algorithm to obtain such an estimate from matrix-vector products:

Let $X \in \mathbb{R}^{d \times d}$ and $v \in \mathbb{R}^d$ be a random vector such that $\mathbb{E}[vv^T] = I$. Then,

$$\operatorname{Tr}(X) = \mathbb{E}[v^T X v] = \frac{1}{V} \sum_{i=1}^{V} v_i^T X v_i$$

Рис. 32: Source

² Austochastic estimator of the trace of the influence matrix for Laplacian smoothing splines - M.F. Hutchinson, 1990 _{x,y,z} Повторим матричное дифференцирование

Activation checkpointing

The animated visualization of the above approaches **Q**

An example of using a gradient checkpointing $oldsymbol{\Omega}$

• AD is not a finite differences

DIFFERENTIATION

Рис. 33: Different approaches for taking derivatives

- AD is not a finite differences
- AD is not a symbolic derivative

DIFFERENTIATION

Рис. 33: Different approaches for taking derivatives

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule

Рис. 33: Different approaches for taking derivatives

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation

Рис. 33: Different approaches for taking derivatives

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable

Рис. 33: Different approaches for taking derivatives

- AD is not a finite differences
- AD is not a symbolic derivative
- AD is not just the chain rule
- AD is not just backpropagation
- AD (reverse mode) is time-efficient and numerically stable
- AD (reverse mode) is memory inefficient (you need to store all intermediate computations from the forward pass).

Рис. 33: Different approaches for taking derivatives

Code

Open In Colab 🐥

