CS4150 Theory 6 Solutions

Fall 2023

October 2023

Quiz A

Question 1

Solution: We start with $GCD(F_{k+1}, F_k)$ meaning we will recurse to $GCD(F_k, F_{k+1} \% F_k)$. Since $F_{k+1} = F_k + F_{k-1}$, then $F_{k+1} \% F_k = F_{k-1}$. Therefore $GCD(F_k, F_{k+1} \% F_k) = GCD(F_k, F_{k-1})$. We can recursively continue this process until we get to $GCD(F_1, F_0)$ which will return. Since on each level we are decreasing the value of F_k by one, we end up with k iterations.

Question 2

Solution: Consider if d > 1. Then $GCD(x,y) = d \Rightarrow d|x$ and d|y. This implies we can rewrite $x = d \cdot q$ and $y = d \cdot q'$. By substituting these in to the equation $x \equiv 1 \mod y$ to get $d \cdot q \equiv 1 \mod d \cdot q'$. Then it must mean that $dq = dq'z + 1, z \in \mathbb{Z}^+$. Let z = 1, then $dq - dq' = 1 \Rightarrow d \cdot (q - q') = 1$. Since $d, q, q' \in \mathbb{Z}^+$, it must be that q - q' = d = 1. However, this contradicts our original statement that d > 1. Therefore, it must be true that: If $x \equiv 1 \mod y \Rightarrow GCD(x, y) = 1$

Question 3

Solution:

i)

If $a \equiv b \mod N$ and $x \equiv y \mod N$, then since both are $\mod N$ they adhere to normal rules of multiplication, meaning we may write $ax \equiv by \mod N$.

ii)

False with counter example a=2, b=2, x=7, y=2, N=5. Note that $2\equiv 2 \mod 5$ and $7\equiv 2 \mod 5$ but $2^7 \not\equiv 2^2 \mod 5 \Rightarrow 3\not\equiv 4 \mod 5$

Question 4

Solution: Consider $(X + Y) \cdot (X - Y)$. If we expand we get $X^2 + Y^2 + XY - XY = X^2 + Y^2$. Since we can find squares in O(n) time, we do $2 \cdot O(n) = O(n)$ operations to multiply numbers (X + Y) and (X - Y). Therefore we have done better than $O(n \cdot \log^3(n))$. Note: a cool generalization of this is that for any number J, J can be factored into computations involving only squares or additions.

Question 5

Solution: Let a=3,b=6. $ab\equiv 0 \mod 18 \Rightarrow 18\equiv 0 \mod 18$, but $3\not\equiv 0 \mod 18$ and $6\not\equiv 0 \mod 18$

Question 6

Solution Since GCD(c, N) = 1 then c and N are co-prime. This means by the cancellation law of congruence: $cx \equiv cy \mod n \Rightarrow x \equiv y \mod n$

Alternate Solution $cx \equiv cy \mod N \Rightarrow cx - cy \equiv 0 \mod N \Rightarrow c(x-y) \equiv 0 \mod N \Rightarrow N|c(x-y)$. If GCD(c,N)=1, then c and N don't share any factors, meaning if $N|c(x-y)\Rightarrow N|(x-y)$ since x-y must be some multiple of N. $N|(x-y)\Rightarrow x-y\equiv 0 \mod N \Rightarrow x\equiv y \mod N$

```
Theorem: Cancellation Law of Congruence ca \equiv cb \mod n \Rightarrow a \equiv b \mod \frac{n}{d} where d = gcd(c, n).
```

```
\begin{array}{l} pf. \\ n|ca-cb\Rightarrow ca-cb=qn, \exists q\in \mathbf{Z}(*) \\ \Rightarrow c(a-b)=qn, \exists q\in \mathbf{Z} \\ \text{From the hypothesis } d=gcd(c,n) \\ c=dr \text{ and } n=ds \text{ with } gcd(r,s)=1(**) \\ \text{plugging * into ** we get } dr(a-b)=qds \\ \Rightarrow r(a-b)=qs \text{ since } gcd(r,s)=1 \\ \Rightarrow s|(a-b) \text{ by Euclid's lemma } (a|bc \text{ and } gcd(a,b)=1\Rightarrow a|c) \\ \Rightarrow a\equiv b \mod s \text{ (since } n=ds\Rightarrow s=\frac{n}{d}) \\ \Rightarrow a\equiv b \mod \frac{n}{d} \end{array}
```

Question 7

Solution: Since $N \equiv 7 \mod 11$ then N = 11k + 7. Try integers $k = 1 \rightarrow 20$ until one works for both equations. k = 11 works, $N = 11 \cdot 11 + 7 = 128$. Then $128 \equiv 7 \mod 11$ and $128 \equiv 11 \mod 13$ (note that $13 * 9 = 117 \Rightarrow 128 - 117 = 11$)

Question 8

Solution:

a)

If one digit is incorrect we will be off by some number $i \in [0, 9]$ which all have unique values $\mod 11$. Therefore, the total sum is off by $|a_i - i| \le 9$ which will have unique value $\mod 11$.

b)

If two indices are swapped and produce the same result then $a_i + 2a_{i+1} \equiv a_{i+1} + 2a_i \mod 11$. If we rearrange the equation to get $a_i + 2a_{i+1} - (a_{i+1} + 2a_i) \equiv 0 \mod 11 \Rightarrow a_{i+1} - a_i \equiv 0 \mod 11$. However, note that the largest value that $a_{i+1} - a_i$ can be is 9, and since GCD(11, 9) = 1, then there can only be unique values for the sum if two numbers are swapped.

Quiz B

Question 1

Solution: $x^2 \equiv 1 \mod p \Rightarrow x^2 - 1 \equiv 0 \mod p \Rightarrow (x+1) \cdot (x-1) \equiv 0 \mod p$. From Quiz A, we know that iff $ab \equiv 0 \mod p \Rightarrow a \equiv 0 \mod p$ and $b \equiv 0 \mod p$. Therefore, $(x+1) \cdot (x-1) \equiv 0 \mod p \Rightarrow (x+1) \equiv 0 \mod p$ and $(x-1) \equiv 0 \mod p$. Let's start with $(x-1) \equiv 0 \mod p \Rightarrow x \equiv 1 \mod p$. Since x < p the only value that satisfies this equation is x = 1. Now for $(x+1) \equiv 0 \mod p \Rightarrow x \equiv -1 \mod p$, but we can't have x be equivalent to a negative modulo a number, so we take the next common multiple (just add the modulus

to the negative until it is positive). This means that $x \equiv -1 + p \mod p \Rightarrow x \equiv p-1 \mod p$. Similarly as before, since x < p the only value that satisfies this equation is x = p-1

Question 2

Solution: Drawing a graph with and p = 7

Question 3

Solution: $(p-1)! \equiv p-1 \mod p \Rightarrow 1 \cdot 2 \cdot \ldots \cdot (p-2) \cdot (p-1) \equiv p-1 \mod p$. Note that in the previous question we saw that the only numbers who don't have inverses were 1 and p-1. This means all values $2, \ldots, p-2$ will have an inverse with another number in range [2, p-2]. This means that $1 \cdot 2 \cdot \ldots \cdot (p-2) \cdot (p-1) \equiv p-1 \mod p \Rightarrow 1 \cdot (p-1) \cdot \prod_{i=1}^{k=\frac{p-3}{2}} 1 \equiv p-1 \mod p \Rightarrow p-1 \equiv p-1 \mod p$.

Question 4

Solution: Note that if N is composite, there exist some factors ab = N

Case a = b

If $a=b\Rightarrow a^2=N\equiv 0\mod N$. Now, note that a^2-a is a multiple of a, which means $a^2-a\equiv 0\mod N$. Given our original equation: $(N-1)!\equiv 0\mod N\Rightarrow 1\cdot 2\cdot\ldots\cdot (a-1)\cdot a\cdot\ldots\cdot (N-1)\equiv 0\mod N$. Then we can pull $(a-1)\cdot a=a^2-a$ out of the expression to get $(a^2-a)\cdot [1\cdot\ldots\cdot (a-2)\cdot (a+1)\cdot\ldots\cdot (N-1)]\equiv 0\mod N$. Note that any multiple of $a^2-a\equiv 0\mod N$, so if we let $k=1\cdot\ldots\cdot (a-2)\cdot (a+1)\cdot\ldots\cdot (N-1)$, then $(a^2-a)\cdot k\equiv 0\mod N$.

Case $a \neq b$

This case follows similar logic, since a < N and b < N, then $a, b \in [1, N-1]$. Therefore, $(N-1)! \equiv 0 \mod N \Rightarrow 1 \cdot \ldots \cdot a \cdot b \cdot \ldots \cdot (N-1) \equiv 0 \mod N \Rightarrow a \cdot b \cdot [1 \cdot \ldots \cdot (a-1) \cdot (b+1) \cdot \ldots \cdot (N-1)] \equiv 0 \mod N$. Let $k = 1 \cdot \ldots \cdot (a-1) \cdot (b+1) \cdot \ldots \cdot (N-1)$. Then, $a \cdot b \cdot k \equiv 0 \mod N$ since ab = N and any multiple of N will satisfy the equation.

Therefore, by cases a = b and $a \neq b$, we have shown $(N-1)! \equiv 0 \mod N$ if N > 4 and N is composite.

Question 5

Solution: This will be very slow and resource intensive for large numbers. For example RSA uses numbers that are 4096 bits. This means that we would have to calculate $(2^{4096})!$ which is not efficient at all. A probabilistic test will be much faster with a high probability of success.

Fun note: For example Fermat's test $a^{p-1} \equiv 1 \mod p$ can be done for 10 primes will probability of failure $<\frac{1}{2^{10}}$ meaning the probability of success is $>1-\frac{1}{2^{10}}=0.9990234375$