Table 1 reports the characteristics and the elemental analysis of pig manure.

Evaluate:

- 1. The dry ash free atomic composition
- 2. the dry higher heating value DHHV ($kJ/kg_{dry\ manure}$) of pig manure assuming that the complete oxidation product of chlorine is HCl. Assume 2.500 MJ/kg for the evaporation latent heat of water
- 3. the higher heating value HHV and the lower heating value LHV of pig manure
- 4. the mass flow rate of stoichiometric air required by the combustion process (kg_air/kg_manure) assume the complete transformation of N into N_2 $MW_{air}\!=\!28.95$ g/mol

Table 1: pig manure elemental composition, moisture, and DLHV (dry lower heating value).

		1 / /
C	dry basis	35.0%
Н		4.5%
О		21.5%
N		3.0%
S		-
Cl		1%
ash		35.0%
Moisture		66.0%
DLHV		12,800 kJ/kg _{dry waste}

A dairy farm in Sacramento (CA) raises 1800 cows that produce 83.1 t/d of wet manure (Solid content = 14%, and 80% VS/TS). We suppose to co-digest this amount of manure with food waste (Solid content = 28% TS, and 86% VS/TS). The mixture contains 48% food waste and 52% of dairy manure, based on volatile solids (VS). Batch digestion tests at 35°C were performed on the same mixture: after 30 days the biogas yield resulted of 531 NL/kgVS, with a CH_4 content of 59%.

Calculate the biogas Qbiogas (Nm³_{biogas}/d) and methane QCH₄ (Nm³_{CH4}/d) production from the AD plant, by knowing that the conversion efficiency of the plant is 80%.

By assuming an hydraulic retention time of at least 40 d and an organic loading rate of no more than 2.5 kgVS/m³/d, define the appropriate volume for the anaerobic digester.