270A - Homework 1

1. (a) Let \mathcal{F} be the family of all finite subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?

Solution. If Ω is finite then \mathcal{F} is simply the power set of Ω , which is definitely a σ -algebra. However, if \mathcal{F} is infinite, then \mathcal{F} is never a σ -algebra. To see this, let (x_n) be a countable sequence of distinct elements in Ω and consider the set of even-indexed terms

$$F = \{x_n : n = 2k, \ k \in \mathbb{N}\}.$$

This set is a countable union of singletons and all singletons belong to \mathcal{F} . F is clearly infinite, but so is its complement, which contains the (infinite) set of odd-indexed terms. We conclude that F is neither finite nor co-finite, so \mathcal{F} is not closed under countable unions when Ω is an infinite set.

(b) Let \mathcal{F} be the family of all countable subsets of Ω and their complements. Is \mathcal{F} a σ -algebra?

Solution. \mathcal{F} is indeed a σ -algebra. The empty set is clearly countable, and $\Omega^C = \emptyset$. Let F_n be a countable collection of sets in \mathcal{F} and consider their union, $F = \bigcup_{n=1}^{\infty} F_n$. If each F_n is countable, then F is just a countable union of countable sets: countable. If one of the F_n 's, say F_k , were co-countable, then $F^C \subseteq F_k^C$, which is countable, so F is co-countable. Since \mathcal{F} contains the empty set and Ω and is closed under countable unions and complements, it is a σ -algebra.

(c) Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cap \mathcal{G}$ always a σ -algebra?

Solution. \mathcal{F} is a σ -algebra. Since \mathcal{F} and \mathcal{G} both contain \emptyset and Ω , so does their intersection. Let E_n be a countable collection of sets in $\mathcal{F} \cap \mathcal{G}$. Since \mathcal{F} and \mathcal{G} are both σ -algebras, the union $E = \bigcup_{n=1}^{\infty} E_n$ is in both \mathcal{F} and \mathcal{G} and each E_n^C is in both \mathcal{F} and \mathcal{G} as well.

(d) Let \mathcal{F} and \mathcal{G} be two σ -algebras of subsets of Ω . Is $\mathcal{F} \cup \mathcal{G}$ always a σ -algebra?

Solution. The union need not be a σ -algebra. Let $\Omega = \{1, 2, 3, 4\}$, $\mathcal{F} = \{\emptyset, \Omega, \{1\}, \{2, 3, 4\}\}$, and $\mathcal{G} = \{\emptyset, \Omega, \{2\}, \{1, 3, 4\}\}$. \mathcal{F} and \mathcal{G} are σ -algebras, but the set $\{1\} \cup \{2\} = \{1, 2\}$ is not in their union.

2. A subset $A \subset \mathbb{N}$ is said to have asymptotic density if

$$\lim_{n \to \infty} \frac{|A \cap \{1, \dots, n\}|}{n}$$

exists. Let \mathcal{F} be the collection of subsets of \mathbb{N} for which the asymptotic density exists. Is \mathcal{F} a σ -algebra?

Solution. \mathcal{F} is not a σ -algebra. First let's construct a set not in \mathcal{F} . The idea is to build a set that has long gaps followed by even longer "runs". Let $F_0 = \{1\}$ and $F_i = \{2^i, \dots, 2^{i+1} - 1\}$. Define the set A by $A = \bigcup_{j=0}^{\infty} F_{2j}$. A consists of a run of length 2^{2j} followed by a gap of length 2^{2j+1} for each $j = 0, 1, \ldots$ Our set A does not have asymptotic density since

$$\frac{|A \cap [2^{2k}]|}{2^{2k}} = \frac{\sum_{j=0}^{k-1} 2^{2j} + 1}{2^{2k}}$$
$$= \frac{1}{3}$$

while on the other hand,

$$\frac{|A \cap [2^{2k+1}]|}{2^{2k+1}} = \frac{\sum_{j=0}^{k} 2^{2j}}{2^{2k+1}}$$
$$= \frac{1}{3} \left(2 - \frac{1}{2^{2k+1}} \right)$$
$$\to \frac{2}{3}.$$

Hence, A is not in \mathcal{F} . Since A is a countable union of singletons, which clearly have asymptotic density zero, we conclude that \mathcal{F} is not a σ -algebra.

3. Let X and Y be two random variables on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $E \in \mathcal{F}$ be an event. Define

$$Z = \begin{cases} X & \text{if } E \text{ occurs} \\ Y & \text{otherwise.} \end{cases}$$

Prove that Z is a random variable.

Proof. We can write $Z = X \cdot \mathbb{1}_E + Y \cdot \mathbb{1}_{E^c}$. Since E is an event, the indicator functions $\mathbb{1}_E$ and $\mathbb{1}_{E^c}$ are measurable. Since X and Y are measurable and products and sums of measurable functions are measurable, we have that Z is measurable, and hence a random variable.

4. Let X be a random variable with density f. Compute the density of X^2 .

Solution. First let's compute the distribution of X^2 . Let $t \geq 0$.

$$\mathbb{P}[X^2 < t] = \mathbb{P}[-\sqrt{t} < X < \sqrt{t}]$$
$$= \int_{-\sqrt{t}}^{\sqrt{t}} f(s) \ ds.$$

By the Lebesgue differentiation theorem, the above integral is an almost everywhere differentiable function of t and we can apply the fundamental theorem of calculus. If we let g be the density of X^2 then

$$g(t) = \frac{d}{dt} \int_{-\sqrt{t}}^{\sqrt{t}} f(s) ds$$
$$= \frac{1}{2\sqrt{t}} [f(\sqrt{t}) + f(-\sqrt{t})],$$

for $t \geq 0$. Since X^2 is clearly nonnegative, we then have

$$g(t) = \begin{cases} \frac{1}{2\sqrt{t}} [f(\sqrt{t}) + f(-\sqrt{t})], & t > 0\\ 0, & t \le 0. \end{cases}$$

5. Let X be a nonnegative random variable. Show that

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > t] \ dt.$$

Proof. Since X is nonnegative (this is important – the Lebesgue integral is orientation-independent, unlike the Riemann integral!),

$$X = \int_0^X dt.$$

We can then take the expectation of both sides and apply Fubini's theorem.

$$\mathbb{E}[X] = \int_{\Omega} \int_{0}^{X} dt \ d\mathbb{P}$$

$$= \int_{\Omega} \int_{0}^{\infty} \mathbb{1}_{X>t}(t) \ dt \ d\mathbb{P}$$

$$= \int_{0}^{\infty} \int_{\Omega} \mathbb{1}_{X>t}(x) \ d\mathbb{P} \ dt$$

$$= \int_{0}^{\infty} \mathbb{P}[X>t] \ dt.$$

6. Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a strictly convex function. Let X be a random variable such that $\mathbb{E}[|X|] < \infty$ and $\mathbb{E}[|\varphi(X)|] \leq \infty$. Show that

$$\varphi(\mathbb{E}[X]) = \mathbb{E}[\varphi(X)] \implies X = \mathbb{E}[X] \text{ a.s.}$$

Proof.