

OVERVIEW

1 PRESENTATION OF THE PROJECT

5 FILTER PRACTICAL APPLICATION

2 CHOICE OF SENSORS

6 UNSCENTED KALMAN FILTER

3 COMPLEMENTARY FILTER

7 UKF LIMITATIONS

4 INTERFACING WITH THE ROBOT

8 CREDITS

PRESENTATION OF THE PROJECT

- Localizing Legged Robots is complex for a variety of reasons:
- Complex and non linear dynamics
- Foot slippage and more complex terrains
- Non continuous contact with the ground
- Quantity of sensors needed for its estimation >

Common approach to address this problem:

Sensor Fusion for Non Linear Systems

PRESENTATION OF THE PROJECT

Objective: create lab session for robotic sudents

• Understand sensor fusion

- Implementing filtering techniques (complementary, kalman)
- Apply these filters on real data, on the Unitree go2

PRESENTATION OF THE PROJECT

Practical case of visualization:

- Create an obstacle avoidance
- make the robot go back to its initial position after the avoidance
- implement the filters on this program
- compare the results between the filters and non filter

CHOICE OF SENSORS FOR LOCALIZING A QUADRUPED

PROPRIOCEPTIVE SENSORS

EXTEROCEPTIVE SENSORS

Inertial Measuring Unit (IMU)

Joint Encoders

Cameras

Lidar

Foot Force Sensors

RFID / BLE Beacons

GPS (only for outdoor)

Magnetometer

COULD WE USE ONLY ONE SENSOR?

ACCELEROMETER

- Good estimations in non accelerating conditions
- Can track dynamic movements.
- X No orientation information
- XNo distinction between gravity and acceleration
- Double integration to obtain position, leads to **drift quickly**

IMU

GYROSCOPE

- Excellent accuracy for estimating orientation over short periods of time
- XDrifts on long-term
- **X**No Position Information

JOINT ENCODERS

- Highly Accurate
- **✓** No drift
- X Only meaningful when foot is in contact with ground
- X Sensitive to mechanical issues
- XSlippage invalidates data

INTERFACING WITH THE ROBOT

SDK

- Protocol: DDS (ddsc, ddscxx)
- Ethernet (via UDP/TCP)
- Language: C++ (or python)
- Command types: both Low and High Level
- Cmake

FILTER ON & OFF EXPERIMENT

Starting at a certain position

Avoid obstacles

Got out of its position

Returning to its initial position:

WITHOUT FILTER

WITH FILTER

KALMAN FILTER

STEP 1 PREDICTION

Uses a mathematical model to forecast the next state based on previous data and system dynamics.

STEP 2 UPDATE

Adjusts prediction by incorporating sensor measurements, weighting them based on their uncertainty.

WHY IS IT NOT EFFICIENT WITH LEGGED ROBOTS?

- Dynamics are nonlinear (jumping, rotating, swinging legs).
- Not resilient to unpredictable disturbances
- The terrain is often uncertain or uneven, causing issues like foot slippage.

UNSCENTED KALMAN FILTER

Generating Deterministic Samples from Gaussian States

Multivariate Gaussian "cloud".

Generation of sigma points (possible states, spread around the mean).

These sigma points are then propagated through the nonlinear system model.

Prediction Step

Using IMU

IMU provides acceleration and angular velocity.

We substract gravity vector.

UKF integrates values over time to predict changes in velocity, orientation, and position.

Correction Step

Using Leg Odometry

Compute **Forward Kinematics** for foot relative position estimation.

Applies only each time a foot is in contact with the ground.

Update our belief with difference between prediction (from IMU) and actual motion (from legs kinematics).

0000

FUTURE IMPROVEMENT

- Finishing implementing Unscented Kalman
- Using filters for general use of the robot
- Take more time to tune the filter parameters
- SLAM

0000

CREDITS

0000

• **UNITREE** GO2 INTERFACING

Unitree Go2 Documentation: <u>support.unitree.com/home/en/developer/</u>

• **COMPLEMENTARY FILTER**

Phil's Lab - Sensor Fusion: https://youtu.be/RZd6XDx5VXo?si POkmP69mj-m1VXt

KALMAN AND NON LINEAR FILTERING

Kalman and Bayesian Filters in Python by Roger R. Labbe github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python

Sensor Fusion and Non-linear Filtering for Automotive Systems by *ChalmersX University* edx.org/learn/mechanical-engineering/chalmers-university-of-technology-sensor-fusion-and-non-linear-filtering-for-automotive-systems

Robust State Estimation for Legged Robots with Dual Beta Kalman Filter

by Tianyi Zhang, Wenhan Cao, Chang Liu, Tao Zhang, Jiangtao Li, Shengbo Eben Li arxiv.org/abs/2411.11483

0000

Polytech Nice Sophia

THANK YOU

Presented by:

GUZZI Remi

WAELES-DEVAUX Adrien

Robotics And Autonomous Systems Master | 2024-2025

