Exploratory data analysis with Python

Python Pandas

```
In [1]: import pandas as pd
In [2]: df = pd.read_csv("Mall_Customers.csv")
        df.head()
In [3]:
Out[3]:
            CustomerID
                        Genre Age Annual Income (k$) Spending Score (1-100)
         0
                    1
                         Male
                               19
                                                 15
                                                                     39
                         Male
                                21
                                                 15
                                                                     81
                    3 Female
                                20
                                                 16
                                                                      6
                    4 Female
                                                 16
                                                                     77
                                                17
                                                                     40
                    5 Female
                               31
In [4]: s1 = pd.Series([1,2,3,4,5])
         s1
Out[4]: 0
         dtype: int64
In [5]: type(s1)
Out[5]: pandas.core.series.Series
```

```
In [6]: | s1 = pd.Series([1,2,3,4,5],index=['a','b','c','d','e'])
 In [7]: s1
 Out[7]: a
               1
               2
         dtype: int64
 In [8]: | s1 = pd.Series({'a':10,'b':20,'c':30})
 In [9]: s1
 Out[9]: a
              10
               20
               30
         dtype: int64
In [10]: s1 = pd.Series({'a':10,'b':20,'c':30}, index=['b','c','d','a'])
In [11]: s1
Out[11]: b
               20.0
              30.0
               NaN
              10.0
         dtype: float64
```

Extracting individual elements

Basic Math Operations on Series

```
In [16]: # Adding two series objects
         s2 = pd.Series([10,20,30,40,50,60,70,80,90])
         s1+s2
Out[16]: 0
              11
              22
              33
              44
              55
              66
              77
              88
              99
         dtype: int64
         Creating Dataframe
In [17]: import pandas as pd
         pd.DataFrame({"Name":['Bob','Sam','Anne'],"Marks":[76,89,97]})
Out[17]:
            Name Marks
                     76
              Bob
                     89
              Sam
          2 Anne
                     97
```

In [18]: iris = pd.read_csv('iris.csv')

In [19]: iris.head()

Out[19]:

		Sales	Profit	Price	Month	Species
_	0	15	72	121	January	Low
	1	41	33	597	February	Low
	2	85	68	498	March	Low
	3	74	76	925	April	Low
	4	55	59	315	May	Low

In [20]: iris.tail()

Out[20]:

	Sales	Profit	Price	Month	Species
9	74	15	898	October	Medium
10	73	94	890	November	High
11	43	50	676	December	High
12	43	89	188	January	High
13	51	97	140	February	High

In [21]: iris.shape

Out[21]: (14, 5)

In [22]: iris.describe()

Out[22]:

	Sales	Profit	Price
count	14.000000	14.000000	14.000000
mean	50.142857	61.857143	542.642857
std	21.468607	25.746866	313.939633
min	15.000000	15.000000	116.000000
25%	32.750000	38.750000	219.750000
50%	47.000000	63.500000	585.500000
75%	70.750000	83.500000	835.750000
max	85.000000	97.000000	925.000000

.iloc[] function

In [23]: | iris.iloc[0:3,0:2]

Out[23]:

	Sales	Profi
0	15	72
1	41	33
2	85	68

```
In [24]: # .Loc[] function
         iris.loc[(5,10),("Sales","Month")]
Out[24]:
              Sales
                       Month
           5
                64
                        June
           10
                73 November
In [25]: iris.loc[3:9,("Profit","Price")]
Out[25]:
             Profit Price
          3
               76
                    925
               59
                    315
                    842
               34
               58
                    116
               35
                    817
               86
                    574
               15
                    898
          9
```

In [26]: # Dropping Columns

iris.drop('Profit',axis=1)

Out[26]:

	Sales	Price	Month	Species
0	15	121	January	Low
1	41	597	February	Low
2	85	498	March	Low
3	74	925	April	Low
4	55	315	May	Low
5	64	842	June	Medium
6	26	116	July	Medium
7	28	817	August	Medium
8	30	574	September	Medium
9	74	898	October	Medium
10	73	890	November	High
11	43	676	December	High
12	43	188	January	High
13	51	140	February	High

In [27]: # Dropping Rows

iris.drop([2,4,7,9],axis=0)

Out[27]:

	Sales	Profit	Price	Month	Species
0	15	72	121	January	Low
1	41	33	597	February	Low
3	74	76	925	April	Low
5	64	34	842	June	Medium
6	26	58	116	July	Medium
8	30	86	574	September	Medium
10	73	94	890	November	High
11	43	50	676	December	High
12	43	89	188	January	High
13	51	97	140	February	High

Mean, median, maximum, ,minimum functions

In [28]: iris.mean()

C:\Users\MOHD. RAEES\AppData\Local\Temp\ipykernel_16992\935066809.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.

iris.mean()

Out[28]: Sales 50.142857

Profit 61.857143 Price 542.642857

dtype: float64

```
In [29]: iris.min()
Out[29]: Sales
                       15
                       15
         Profit
         Price
                      116
         Month
                    April
         Species
                     High
         dtype: object
In [30]: iris.median()
         C:\Users\MOHD. RAEES\AppData\Local\Temp\ipykernel_16992\1297003277.py:1: FutureWarning: Dropping of nuisance columns in
         DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select o
         nly valid columns before calling the reduction.
           iris.median()
Out[30]: Sales
                    47.0
         Profit
                    63.5
         Price
                    585.5
         dtype: float64
In [31]: iris.max()
Out[31]: Sales
                            85
         Profit
                            97
         Price
                          925
         Month
                    September
         Species
                       Medium
         dtype: object
```

More pandas function

```
In [32]: def half(s):
    return s*0.5

iris[['Sales','Profit','Price']].apply(half)
```

Out[32]:

	Sales	Profit	Price
0	7.5	36.0	60.5
1	20.5	16.5	298.5
2	42.5	34.0	249.0
3	37.0	38.0	462.5
4	27.5	29.5	157.5
5	32.0	17.0	421.0
6	13.0	29.0	58.0
7	14.0	17.5	408.5
8	15.0	43.0	287.0
9	37.0	7.5	449.0
10	36.5	47.0	445.0
11	21.5	25.0	338.0
12	21.5	44.5	94.0
13	25.5	48.5	70.0

```
In [33]: def double(s):
    return s*2
iris[['Sales','Profit','Price']].apply(double)
```

Out[33]:

	Sales	Profit	Price
0	30	144	242
1	82	66	1194
2	170	136	996
3	148	152	1850
4	110	118	630
5	128	68	1684
6	52	116	232
7	56	70	1634
8	60	172	1148
9	148	30	1796
10	146	188	1780
11	86	100	1352
12	86	178	376
13	102	194	280

value_counts() function

```
In [34]: iris['Species'].value_counts()

Out[34]: Low     5
    Medium    5
    High     4
    Name: Species, dtype: int64
```

In [35]: iris.sort_values(by='Profit')

Out[35]:

	Sales	Profit	Price	Month	Species
9	74	15	898	October	Medium
1	41	33	597	February	Low
5	64	34	842	June	Medium
7	28	35	817	August	Medium
11	43	50	676	December	High
6	26	58	116	July	Medium
4	55	59	315	May	Low
2	85	68	498	March	Low
0	15	72	121	January	Low
3	74	76	925	April	Low
8	30	86	574	September	Medium
12	43	89	188	January	High
10	73	94	890	November	High
13	51	97	140	February	High

In []:

Analyzed by

Md Raiesh, Enrollment number: 19UME116, Registration number: 1911345, B Tech,7th semester,Section: A, Mechanical Engineering Department, National Institute of Technology Agartala, Tripura 799046,