Beyond the thermodynamic limit

Finite-size corrections to state interconversion rates

Kamil Korzekwa

Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney NSW 2006, Australia

Team

Christopher Chubb
University of Sydney

Marco Tomamichel
University of Technology Sydney

Outline

- 1. Background and motivation
- 2. Framework and statement of the problem
- 3. Result 1: Small deviation analysis
- 4. Result 2: Moderate deviation analysis
- 5. Outlook

Background and motivation

Standard thermodynamics

- Wide applicability
- Statistical nature
- Thermodynamic limit
- Reversible cycles

Our work

- Intermediate regime
- Mixed nature
- Large but finite number of particles
- Irreversibility?

Quantum thermodynamics

- Quantum regime
- Information-theoretic nature
- Single-shot processes
- Inherent irreversibility

Nagoya, 09.09.2018

Outline

- 1. Background and motivation
- 2. Framework
 - a. Resource theory
 - b. State interconversion
 - c. Relevant notions
 - d. Asymptotics & reversibility
- 3. Result 1: Small deviation analysis
- 4. Result 2: Moderate deviation analysis
- 5. Outlook

Framework: Resource theory

Free thermodynamic transformations modelled by **thermal operations**:

$$\mathcal{E}^{T}(\cdot) = \operatorname{Tr}_{B}\left(U\left(\cdot \otimes \gamma_{B}\right) U^{\dagger}\right) \quad \text{with} \quad [U, H + H_{B}] = 0$$

Thermal bath γ_B

Hamiltonian: H_B

Hamiltonian: H

Hamiltonian: H

Gibbs state γ of the system at temperature T: $\gamma = e^{-\frac{H}{T}}/\mathcal{Z}$, $\mathcal{Z} = \text{Tr}\left(e^{-\frac{H}{T}}\right)$

$$\gamma = e^{-\frac{H}{T}}/\mathcal{Z}, \quad \mathcal{Z} = \text{Tr}\left(e^{-\frac{H}{T}}\right)$$

Note: all results with units such that $k_B = 1$.

Framework: State interconversion

Setting: Initial state ρ , target state σ , background temperature T

General interconversion problem: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho) = \sigma$?

Studied interconversion problem: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho^{\otimes n}) \approx_{\epsilon} \sigma^{\otimes R_n n}$?

Optimal rate R_n for error ϵ ?

Note: $\sigma \approx_{\epsilon} \tilde{\sigma}$ means $1 - F(\sigma, \tilde{\sigma}) \leq \epsilon$ with fidelity F

Restrictions:

Focus on many copies (large but finite n) and energy-incoherent states:

$$[\rho, H] = [\sigma, H] = 0 \implies \text{states represented by: } \mathbf{p} = \text{eig}(\rho), \ \mathbf{q} = \text{eig}(\sigma).$$

$$[\gamma, H] = 0 \implies \text{thermal state represented by: } \mathbf{\gamma} = \text{eig}(\gamma)$$

Framework: Relevant notions

	Expression	Interpretation
Relative entropy	$D(\mathbf{p}\ \mathbf{\gamma}) := \sum_{i=1}^d p_i \log \frac{p_i}{\gamma_i}$	$\frac{1}{T} \left[\langle E \rangle_{\boldsymbol{p}} - TH(\boldsymbol{p}) - (-T \log \mathcal{Z}) \right]$ Free energy $F = U - TS$ Free energy of γ
Relative entropy variance	$V(\mathbf{p}\ \mathbf{\gamma}) := \sum_{i=1}^{d} p_i \left(\log \frac{p_i}{\gamma_i} - D(\mathbf{p}\ \mathbf{\gamma})\right)^2$	$V(\gamma' \gamma) = \frac{\partial \langle E \rangle_{\gamma'}}{\partial T'} \cdot \left(1 - \frac{T'}{T}\right)^2$ Specific heat capacity Carnot factor capacity

Framework: Asymptotics & reversibility

Asymptotic rate:
$$R_{\infty}(\mathbf{p} \to \mathbf{q}) = \frac{D(\mathbf{p}||\boldsymbol{\gamma})}{D(\mathbf{q}||\boldsymbol{\gamma})}$$

Finite
$$n: R_n = R_{\infty} - f(\mathbf{p}, \mathbf{q}, \mathbf{\gamma}, n, \epsilon)$$

*K. Ito, W. Kumagai, M. Hayashi, Phys. Rev. A **92**, 052308 (2015).

Outline

- 1. Background and motivation
- 2. Framework
- 3. Result 1: Small deviation analysis
 - a. Statement
 - b. Numerical verification
 - c. Applications
- 4. Result 2: Moderate deviation analysis
- 5. Outlook

Result 1: Small deviation analysis

Optimal conversion rate R_n with constant error ϵ :

$$R_n(\epsilon) \simeq R_\infty + \sqrt{\frac{V(\mathbf{p}\|\boldsymbol{\gamma})}{D(\mathbf{q}\|\boldsymbol{\gamma})^2}} \frac{Z_{\nu}^{-1}(\epsilon)}{\sqrt{n}}$$

Irreversibility parameter:

$$\nu = \frac{V(\boldsymbol{q}\|\boldsymbol{\gamma})/D(\boldsymbol{q}\|\boldsymbol{\gamma})}{V(\boldsymbol{p}\|\boldsymbol{\gamma})/D(\boldsymbol{p}\|\boldsymbol{\gamma})}$$

Rayleigh-normal distribution Z_{ν} introduced in [*]

*W. Kumagai, M. Hayashi, IEEE Trans. Inf. Theory 63, 1829–1857 (2017).

Result 1: Applications

Work distillation process:

Work dilution process:

Result 1: Applications

Outline

- 1. Background and motivation
- 2. Framework
- 3. Result 1: Small deviation analysis
- 4. Result 2: Moderate deviation analysis
 - a. Statement
 - b. Applications
 - c. Numerical verification
- 5. Outlook

Result 2: Moderate deviation analysis

Optimal conversion rate R_n with vanishing error $\epsilon = e^{-n^{\alpha}}$ and $\alpha \in (0,1)$:

$$R_n(\epsilon) \simeq R_\infty - \sqrt{\frac{V(\mathbf{p}\|\boldsymbol{\gamma})}{D(\mathbf{q}\|\boldsymbol{\gamma})^2}} \frac{\left|\sqrt{1/\nu} - 1\right|}{\sqrt{n^{1-\alpha}}}$$

Also analogous result for entanglement and coherence transformations:

$$R_n(\epsilon) \simeq R_\infty - \sqrt{\frac{V(\mathbf{p})}{H(\mathbf{q})^2}} \frac{\left|\sqrt{1/\nu} - 1\right|}{\sqrt{n^{1-\alpha}}}$$

 $H(\mathbf{p})$ - Shannon entropy, $V(\mathbf{p})$ - entropy variance

Result 2: Applications

Heat engine with a finite-size working body:

Working body: n = 200 qubits, energy gap E Background (hot) bath: $T_h = 10E$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Tuning resources to resonance

2 available initial states: $|\Psi_1\rangle$ and $|\Psi_2\rangle$

1 target state: $|\Phi\rangle$

Asymptotically same resource content:

$$|\Psi_1\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}, \qquad |\Psi_2\rangle^{\otimes n} \to |\Phi\rangle^{\otimes n}$$

Hence, for all $\lambda \in [0, 1]$:

$$|\Psi_1\rangle^{\otimes \lambda n} \otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \to |\Phi\rangle^{\otimes n}$$

Outlook

- Apply the results to other thermodynamic problems involving finite-size baths (Landauer's erasure, fluctuation theorems, the third law of thermodynamics)
- Design experimental protocols employing the resonance phenomenon
- Extend finite-size analysis to other resource-theories (asymmetry, contextuality)
- Extend to general quantum states with coherence.
- Look for resonance phenomena in other quantum information processing tasks

Details:

 $Beyond\ the\ thermodynamic\ limit:\ finite-size\ corrections\ to\ state\ interconversion\ rates\ [arXiv:1711.01193]$

Moderate deviation analysis of majorization-based resource interconversion [arXiv:1809.????]

Avoiding irreversibility: engineering resonant conversions of quantum resources [arXiv:1809.?????]

Thank you!