PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

	TOTAL CONTROL OF THE PROPERTY		DINDER THE THIERT COOLERGING	TREATT (LCT)
ĺ	(51) International Patent Classification 6:		(11) International Publication Number:	WO 99/36547
	C12N 15/52, 15/53, 15/54, 1/21 // (C12N 1/21, C12R 1:05, 1:09)	A1	(43) International Publication Date:	22 July 1999 (22.07.99)

- 1/21, C12R 1:05, 1:09)
 (43) International Publication Date:
 22 July 1999 (22.07.99)

 (21) International Application Number:
 PCT/KR99/00031
 LEE, Yong-Hyun [KR/KR]; #7-403 Kyoungnam-Town,
- 320. Boemoh 4-dong, Soosung-ku, Taegu-si 706-014
 (22) International Filing Date: 19 January 1999 (19.01.99)

 KJ, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #255-107 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HONG, Sung-Kook [KR/KR]; #205-101 Palgong Bosung-ku, Taegu-si 706-170 (KB), HONG, Sung-Kook [KR/KR]; #205-101 Palgong Bosung-ku, Taegu-si 706-170 (KB), HONG, Sung-Kook [KR/KR]; #205-101 Palgong Bosung-ku, Taegu-si 706-170 (KB), HONG, Sung-Kook [KR/KR]; #205-101 Palgong Bosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-107 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-107 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-107 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-107 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-170 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-170 Dongsuh-Town Apt, Shinmae-dong, Soosung-ku, Taegu-si 706-170 (KB), HUH, Tae-Lin [KR/KR]; #205-170 (KB), HUH, T
- (30) Priority Data:
 1998/1422 19 January 1998 (19.01.98) KR
 1998/1423 19 January 1998 (19.01.98) KR
 1998/1423 19 January 1998 (19.01.98) KR
 1998/1423 (19.01.98) KR
 1998/1423 (19.01.98) KR
 1998/18760 26 December 1998 (26.1.2.98) KR
 1998/18760 26 December 1998 (26.1.2.98) KR
- (71) Applicant (for all designated States except US): LG CHEMICAL LTD. (RWRR); 20, Yoido-dong, Youngdeungpo-ku, Scoul 150-010 (KR).
 (81) Designated States: IP, US, European patent (AT, BE, CH, CY, CAL LTD. (RWRR); 20, Yoido-dong, Youngdeungpo-ku, Scoul 150-010 (KR).
- (72) Inventors; and (75) Inventors; Applicants (for US only): LEE, Sang, Yup (RR/KR); #212-702. Expo. Apxt., 464-4., Chumnin-dong, Yusong-lou, Tagion-ai, 305-390 (RR), CHOI, Joong-lou, Tagion-ai, 305-390 (RR), CHOI, Joong-lou, Seoul 150-055 (KR), CHO, Soung-lh (RR/KR); #31-13. Shingil 5-dong, Yusong-lou, Tagion-ai, Seoul 150-055 (KR), CHO, Soung-lh (RR/KR); #75-501 LG Apt., 386-42. Doryong-dong, Yusong-lou, Tagion-ai, 305-346 (KR), Yubon, Hye-Sung (RR/KR); #107-302. Hana Apt., Shinsung-dong, Yusong-lou, Tagion-ai 305-345 (KR), HAN, Kyuboem (RR/KR); #107-1002 Lucky Hana

Apt., Shinsung-dong, Yusong-ku, Taejon-si 305-345 (KR). SONG, Ji-Yong [KR/KR]; #102-205 Lucky Hana Apt., Shinsung-dong, Yusong-ku, Taejon-si 305-345 (KR).

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: POLYHYDROCYALKANOATE BIOSYNTHESIS-RELATED GENES DERIVED FROM ALCALIGENES LATUS

PHA synthase (536 aa) thiolase (343 aa) reductase (245 aa)

(57) Abstract

BNSDOCID: «WO

There is diclosed a PHA biosynthesis-related DNA fragment, which comprises the genes for PHA synthase, \$\tilde{\textit{P-e}}\circ et al. (a closest) = DNA fragment is inserted in an expression vector. Each which is transformed with the expression vector carrying the DNA fragment and produce the PHA biosynthesis-related enzymes as well as accumulate PHA at a large quantity by culturing it in one-step.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
	AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
	AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
	AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	BB	Barbados	CH	Ghana	MG	Madagascar	TJ	Tajikistan
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
	BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	BJ	Benin	IE	Treland	MN	Mongolia	UA	Ukraine
	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
٠,		Canada	- IT	-Italy	-MX	- Mexico	UZ	
	CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
	CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
	CM	Cameroon		Republic of Korea	PL.	Poland		
	CN	China	KR	Republic of Korea	PT	Portugal		
	Cυ	Cuba	KZ	Kazakstan	RO	Romania		
	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
	DE	Germany	LI	Liechtenstein	SD	Sudan		
	DK	Detimark	LK	Sri Lanka	SE	Sweden		
	EE	Estonia	LR	Liberia	SG	Singapore		

Singapore

BNSDOCID: <WO.

POLYHYDROXYALKANOATE BIOSYNTHESIS-RELATED GENES DERIVED FROM Alcaligenes latus

BACKGROUND OF THE INVENTION

Field of the invention

5

15

BN8DOCID: ZWO

The present invention relates to polyhydroxyalkanoate (hereinafter referred to as "PHA") biosynthesis-related genes for PHA synthase, β-ketothiolase and acetoacetyl-CoA reductase, derived from Alcaligenes latus, their amino acid sequences, a recombinant plasmid carrying these genes, and a method for massproducing PHA using these gene. Also, the present invention relates to polyhydroxybutyrate(hereinafter referred to as "PHB") gene derived from Alcaligenes latus, its amino acid sequence and a recombinant plasmid carrying PHB gene, and a method for mass-producing PHB using the gene.

Description of the Prior Art

Petroleum synthetic plastics are so durable that they are not degraded in usual conditions at all. Because the production amount of the petroleum synthetic plastics increases each year, the environmental pollution ascribed to petroleum synthetic plastics wastes are now a big social problem. To solve the problem of non-degradable plastics, active research and development efforts have been and continued to be directed to biodegradable polymers all over the world.

Biodegradable polymers are the high molecular weight materials that are completely degraded under natural conditions after a period of time. Many biodegradable polymers have been developed. Of them, PHA, a natural polyester which is synthesized and accumulated by microorganisms, is of particular interest because it is superior in biodegradability as well as shows

5

15

20

25

physical properties similar to those of the synthetic plastics in current use (Anderson A.J. and Dawes, E.A., *Microbiol. Rev.*, 1990, 54, 450-472; Lee, S.Y., *Biotechnol. Bioeng.*, 49:1-14,1996; Lee, S.Y., *Trends Biotechnol.*, 14:431-438, 1996).

In detail, PHA is an organic reserve material, which can provide an intracellular store of carbon or energy, usually found in *Pseudomonas*, *Alcaligenes*, *Azotobacter*, and *Bacillus* spp.,etc. It is detectable as granular cytoplasmic inclusions. As a general rule, the cellular content of the reserve material is relatively low in actively growing cells: They accumulate massively when cells are limited in nitrogen, phosphorous, sulfur, oxygen, etc., but still have carbon and energy available. This reserve material was first found in *Bacillus megaterium* by Lemoigne in 1925 (Lemoigne, M., *Bull. Soc. Chem. Biol.*, 8:770-782, 1926). Since then, its chemical and physical properties have been extensively researched. Poly(3-hydroxybutyrate) is the most widely and first known PHA.

According to the number of carbon atoms and the substituents in hydroxyalkanoate, many PHAs were reported. In general, PHAs are divided into two classes; short-chain-length PHAs(SCL PHAs) and medium-chain-length PHAs(MCL PHAs)

SCL PHAs include poly-β-hydroxypropionic acid, poly-β-hydroxybutyric acid, and poly-β-hydroxyvaleric acid, which are produced by Alcaligenes eutrophus, Azotobacter vinelandii, methylotrophs, etc. SCL PHAs are widely used due to their similar properties to polypropylene, a kind of chemically synthesized plastics.

MCL PHAs, composed of 3 to 9 more carbon atoms than SCL PHAs, are produced by *Pseudomonas* spp., by using alkane, 1-alkene, $C_6 \sim C_{12}$ alkanoic acids as a carbon.

Since early the 1960s, it was recognized that PHA could work like thermoplastic polymers. Thereafter, attracting a great attention, many types of PHA copolymers were synthesized, which are superior in mechanical properties as well as in biodegradability. By virtue of these advantages and owing to the environmental pollution aggravated by petroleum synthetic polymer wastes, PHA is now actively researched and developed as an alternative for plastics over the world. In addition, biocompatibility and bioabsorptivity allow PHA to be used in a variety of fields, as materials for agriculture, medicinal care, drug transfer system, and package, and as precursors for fine chemical products (Holmes, P.A. in Developments in crystalline polymers. 1-65, 1988).

Taking advantage of various bacteria, molecular biological research has revealed that there are four different biosynthetic pathway for PHA (Steinbuchel, A. in Biomaterials: novel materials from biological sources, 215-262, 1991). For example, for *Alcaligenes eutrophus*, the most widely known bacteria, β-ketothiolase, acetoacetyl-CoA reductase and polyhydroxyalkanoate synthase (PHA synthase) are known to be involved in the biosynthesis of PHA (People, O.P. and Shinskey, A.J., *J. Biol. Chem.*, 264: 15298-15303, 1989; Schubert, P., Steinbuchel, A. and Schlegel, H.G., *J. Bacteriol.*, 170:5837-5847, 1988; Slater, S.C., Voige, W.H. and Dennis, D.E., *J. Bacteriol.*, 170:4431-4436, 1988).

A concrete biosynthetic pathway of PHA in *Alcaligenes eutrophus*, gram negative bacteria, is as follows. Between two molecules of acetyl-CoA, a carbon-carbon bond forms in the presence of β -ketothiolase, the product of gene phbA, according to a biological Claisen condensation. The acetoacetyl-CoA thus formed is converted into D(-)- β -hydroxybutyryl-CoA by the stereoselective reduction of NADPH-dependent acetoacetyl-CoA reductase, the

product of gene *phbB*. Finally, D(-)-β-hydroxybutyryl-CoA is polymerized via ester bond by PHA synthase, the product of gene *phbC*.

In order to clone the genes which pertain to the biosynthesis of PHA in other bacteria than Alcaligenes eutrophus, much effort has been made. That is, the comprehension of the biosynthesis of PHA in bacteria makes it possible efficient production of PHA, versatility of substrates, synthesis of new PHA, and development of biopolymers similar to PHA. Further, recombinant strains which are obtained by utilizing the PHA biosynthesis-related genes can synthesize various PHAs at high efficiencies, resulting in a scientific and industrial significance (Lee, S.Y., Trends Biotechnol., 14:431-438, 1996).

Strain Alcaligenes latus is reported to be so superior in the production of PHA that it accumulates PHA in cells at a proportion of around 90%. Also, Alcaligenes latus has the advantage in that it grows fast and uses inexpensive substrates as carbon sources (Wang, F. and Lee, S.Y., Appl. Environ. Microbiol., 63:3703-3706, 1997). Unlike Alcaligenes eutrophus, Alcaligenes latus accumulates PHAs while they are growing. Thus, Alcaligenes latus can mass-produce PHA by one-step culture although the amount is low relative to that upon Alcaligenes eutrophus.

The use of Alcaligenes latus to produce PHA began in earnest in the mid-1980s by Chemie Linz AG, Austria. Biotechnologishe forchungesellschaft mbH, Austria, developed a process in which a one-step culture of strain btF-96, a mutant strain of Alcaligenes latus., produces PHA, asserting that one ton of PHA is obtained from a 15 m³ fermentor per week (Hrabak, O., FEMS Microbiol. Rev., 103:251-256, 1992). Alcaligenes latus also produces poly(3-hydroxybutyrate/3-hydroxypropionate) as well as poly(3-hydroxybutyrate/4-hydroxypropionate) in a medium containing disaccharides as carbon source by addition of 3-hydroxypropionate and y-butyrolactone (Hiramitsu, M., Koyama, N., and Doi, Y., Biotechnol. Lett., 15:461-464, 1993).

PHA can be produced by chemical process as well as biological process. However, Commercially favorable production scale of PHA is possible only by biological process. Since the production cost of PHA is much higher than those of other commercially available synthetic polymers, new technologies are required to reduce the production cost of PHA. Particularly, recombinant DNA technology gives a great contribution to the development and modification of novel strains, showing the production of novel polymers, utility of low-priced substrate, high efficiency of production, and facility in separation and purification. In order to develop such recombinant strains, first of all, it is necessary to understand the enzymes involved in the biosynthetic pathway for PHA.

In order to mass-produce biodegradable, natural PHA and its copolymers, the inventors have cloned genes for polyhydroxyalkanoate synthase, β -ketothiolase, and acetoacetyl–CoA reductase, and determined amino acid sequences and gene sequences. They have made expression vectors carrying the above genes and transformants, whereby polyhydroxyalkanoate can be produced and accumulated.

In addition, the inventors have cloned gene for polyhydroxybutyrate (PHB) and determined gene sequence and amino acid sequence, and made expression vector carrying the PHB gene and transformant, whereby polyhydroxybutyrate can be produced and accumulated.

BRIEF DESCRIPTION OF THE DRAWINGS

25

20

10

Fig. 1 is a photograph showing opaque colonies of recombinant *E. coli* containing PHA biosynthesis-related genes derived from *Alcaligenes latus*, formed on a solid medium.

10

Fig. 2 is a photograph showing that recombinant *E. coli* containing PHA biosynthesis-related genes accumulates PHA in a broth.

Fig. 3 is a base sequence 6.4 kb in size, which contains the whole PHA biosynthesis-related genes derived from *Alcaligenes latus*.

Fig. 4 shows a restriction enzyme map of a 6.4 kb DNA fragment containing PHA biosynthesis-related genes derived from *Alcaligenes latus*, along with a gene structure.

Fig. 5 shows the gene structure of recombinant expression vector pJC1 carrying PHA biosynthesis-related genes derived from *Alcaligenes latus*.

Fig. 6 shows the process of preparing the recombinant expression vector carrying PHB synthase gene derived from *Alcaligenes latus*.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a polyhydroxyalkanoate biosynthesisrelated gene.

The present invention provides an expression vector containing the polyhydroxyalkanoate biosynthesis- related gene and its transformant.

The present invention provides the method of preparing the polyhydroxyalkanoate synthase.

The present invention provides the method of preparing the polyhydroxyalkanoate.

In addition, the present invention provides a polyhydroxybutyrate gene.

The present invention provides an expression vector containing the polyhydroxybutyrate gene and its transformant.

The present invention provides the method of preparing the polyhydroxybutyrate synthase.

The present invention provides the method of preparing the polyhydroxybutyrate.

In the present invention, genes for the biosynthesis of PHA, are separated from *Alcaligenes latus*, which accumulates PHA while growing, whereby biodegradable, natural and industrially useful PHA and its copolymers can be mass-produced.

In more detail, the total genomic DNA separated from Alcaligenes latus is partly digested by restriction enzymes and the resulting DNA fragments are inserted into vector pUC19. E. coli is transformed with vector pUC19, followed by the selection of the recombinant vectors with a PHA biosynthesis-related DNA. The bacteria harboring the interest DNA was observed to accumulate PHA on a solid medium and in a liquid medium, as shown in Figs. 1 and 2, respectively.

Isolation of the recombinant vector from the transformed bacteria capable of producing PHA, is the first thing necessary to identify the DNA fragment of interest. Various analytic works show that the DNA fragment of interest is 6.4 kb in size, containing the genes coding for all of the β -ketothiolase, acetoacetyl-CoA reductase and PHA synthase.

Therefore, in accordance with an aspect, the present invention pertains to a PHA biosynthesis-related DNA fragment containing a PHA synthase gene, a β -ketothiolase gene and an acetoacetyl-CoA reductase gene, in due order, which has a size of 1608 bp (corresponding to 536 aa), 1176 bp (392 aa) and 735 bp (245 aa), respectively (see, Fig. 4).

Sequencing analyses reveal that the PHA synthase gene has a base sequence of Sequence 2 with a corresponding amino acid sequence of Sequence 5, as suggested in the accompanying Sequence Lists. The β -ketothiolase gene has a base sequence of Sequence 3 and the β -ketothiolase expressed therefrom

15

20

25

has an amino acid sequence of Sequence 6. The analyses also give that the acetoacetyl-CoA reductase gene has a base sequence of Sequence 4 which corresponds to an amino acid sequence of Sequence 7(see, Fig. 3 and Sequence Lists).

The recombinant vector anchoring the DNA for biosynthesis of PHA was named pJC1 (see, Fig. 5) and the transformant, *E. coli* XL-1 Blue/pJC1, was deposited in Korean Collection for Type Cultures, Korean Research Institute of Bioscience and Biotechnology on Nov. 5, 1997 and received a Deposition No. KCTC 0398 BP.

In accordance with another aspect, the present invention pertains to the preparation of the PHA biosynthesis-related enzymes by culturing host bacteria which harbor a recombinant expression vector containing the PHA biosynthesis-related genes.

In accordance with a further aspect, the present invention pertains to the production of PHA and its copolymers by use of the above host bacteria which can express the PHA biosynthesis-related genes. To this end, *E. coli* was transformed by the recombinant expression vector and after selecting, the transformed *E. coli* was cultured in a liquid medium containing glucose in suitable concentration to produce PHA. Where the *E. coli* was cultured in this manner, PHA was observed to accumulate until it represent as much as 40 % or more of the dry cell weight.

In addition, this invention provides polyhydroxybutyrate synthase (hereinafter referred to as "PHB synthase") and genes thereof. The total genomic DNA separated from *Alcaligenes latus* is partly digested by restriction enzyme, followed by selecting the DNA fragment showing positive signal by use of PHB gene derived from *Alcaligenes eutrophus* H16 as a probe. Plasmid vector pAL32 is obtained by inserting the above PHB gene into pSK(+).

10

RNSDOCID: <WO

The pAL32 is digested with EcoRI and NotI to obtain the PHB gene and then the resulting gene is inserted into plasmid pK230 of broad host range to obtain the recombinant expression vector pKTC32. This pKTC32 can express the gene in various host cells.(see Fig. 6)

The transformant Alcaligenes eutrophus LAR5 obtained by inserting pKTC32 into Alcaligenes eutrophus DSM541 which is lacking in PHB gene, was deposited in Korean Collection for Type Cultures, Korean Research institute of Bioscience and Biotechnology on Nov. 11, 1997, with a deposition No. KCTC 0568 BP.

When the above transformant *Alcaligenes eutrophus* DSM541(phb') /pKTC32 is cultured, it is observed that PHB synthase is produced in the cell cytoplasm in the form of white particle.

The invention will now be illustrated by the following examples, but not be limited in scope by reason of any of the following examples.

EXAMPLE I: Separation of Genomic DNA from Alcaligenes latus

The strain Alcaligenes latus (Wang, F and Lee, S.Y., Appl. Envirn. Microbiol., 63:3707-3706, 1997) was cultured overnight in 500 ml of an NB medium (8 g/L nutrient broth). The bacteria in an initial stage of exponential growth were harvested by centrifugation and washed twice with saline-EDTA (0.15 M NaCl, 0.1 M EDTA, pH 8.0). The washed bacteria were suspended in 40 ml of 0.1 M saline-Tris-Cl (0.1 M NaCl, 10 mM EDTA, pH 9.0) and 1 ml of lysozyme solution (20 mg/ml) prepared just before use was added to the suspension. This suspension was dropwise added at 37 °C with Tris-SDS buffer (0.4 M NaCl, 1 mM EDTA, 20 mM Tris-Cl, pH 7.5, added with 5% SDS) with slow agitation. When the resulting solution became viscous, 5.5 ml of Proteinase K (10 mg/ml) was added and the total solution was incubated at

5

10

15

37 °C for 2 hours to remove proteins. Next, equal volume of phenol was added to the solution and well mixed for 30 min at room temperature with caution. After the solution was centrifuged at 6,000 rpm for 10 min, the supernatant was transferred to a fresh beaker followed by volume-measurement, and slowly added with two times the volume of cold ethanol to precipitate the genomic DNA which was, then, rolled up with a glass bar. The DNA was dried at room temperature and dissolved in 10 ml of TE buffer (10mM Tris-HCl, 1mM EDTA, pH 8.0). Thereafter RNase was added to the above solution until the final concentration became $50\mu g/ml$ and the total solution was incubated at 37 °C for 1 hour. Then the same following process, i.e. mixing with phenol, centrifugation, volume mearsurement, addition of cold ethanol, rolling up, drying, and resuspension in TE buffer, was repeated. The only difference was that the concentration of TE buffer was 2ml.

EXAMPLE II: Cloning of PHA Biosynthesis-Related Genes

The genomic DNA of Alcaligenes latus, obtained Example I, was partly digested by restriction enzyme Sau3AI. Because restriction enzyme Sau3AI recognizes a specific four-base sequence in double-stranded DNA and cleaves both strands of the duplex at a specific site, various DNA fragments ranging from a small size to a large size can be obtained. These DNA fragments were separated according to size by electrophoresis on a low-melting temperature agarose gel.

To obtain the whole PHA biosynthesis-related gene, only the genes which were as large as or larger than 4 kb in size, were selected and inserted in plasmid pUC19 2.68 kb in size. To this end, first, the plasmid was cut with restriction enzyme BamHI which leaves the same end sequence with restriction enzyme Sau3AI. Then, the genomic DNA fragments at least 4 kb long were

15

ligated with the opened plasmid vector pUC19 by using T4 DNA ligase (New England Biolabs).

The recombinant vector thus obtained was used to transform E. coli XL1-Blue (Stratagene) with the aid of an electroporator. When the 5 recombinant vector pUC19 which contained the whole PHA biosynthesisrelated gene at a BamHI cloning site was taken up by E. coli XL1-Blue, white colonies were formed on a solid LB medium (tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) supplemented with ampicillin, X-gal (5-bromo-4-chloro-3indolyl-β--D-galactopyranoside) and IPTG (isopropyl-1-thio-β--Dgalactopyranoside). On the other hand, where the bacteria contained plasmid vector pUC19 without a DNA insert, blue colonies were formed. Through this procedure, colonies containing plasmid vector pUC19 with a partial genomic DNA insert of Alcaligenes latus, were selected. In order to determine whether these colonies were able to produce PHA, they each were inoculated in a broth capable of accumulating PHA.

In result, recombinant *E. coli* which was able to accumulate PHA, was obtained. From the recombinant *E. coli*, the recombinant plasmid vector was separated. An analysis data showed that the recombinant plasmid vector pUC19 anchored a partial genomic DNA of *Alcaligenes latus*, 6.4 kb long and that this DNA fragment contained the PHA synthesis-related genes. In addition, base sequencing analysis revealed that the 6.4 kb DNA fragment coded for all of the PHA biosynthesis-related enzymes, that is, β-ketothiolase, acetoacetyl-CoA reductase and PHA synthase.

In the present invention, the recombinant expression vector was named pJC1. The transformant which harbored plasmid pJC1 was deposited in Korean Collection for Type Cultures, Korean Research Institute of Bioscience and Biotechnology on Nov. 5, 1997, with a deposition No. KCTC 0398 BP.

EXAMPLE III: Structure Analysis of PHA Genes Derived from A. latus

The 6.4 kb DNA insert ligated to the plasmid vector pUC19 was analyzed to contain all the genes for \(\textit{B-ketothiolase} \), acetoacetyl-CoA reductase and PHA synthase. These genes were positioned in the order of PHA synthase, \(\textit{B-ketothiolase} \) and acetoacetyl-CoA reductase from the 5' end to the 3' end.

Regarding the sizes of the PHA biosynthesis genes, the PHA synthase gene, β -ketothiolase gene and acetoacetyl-CoA reductase gene were 1608 bp (536 aa), 1176 bp (392 aa) and 735 bp (245 aa) long, respectively.

EXAMPLE IV : PHA-Producing Recombinant E. coli Containing PHA Biosynthesis-Related Genes Derived from A. latus

The recombinant expression vector pJC1 anchoring the 6.4 kb genomic DNA fragment of Alcaligenes latus was used to transform E. coli XL1-Blue. Since the bacteria which took up the recombinant expression vector could grow in a medium containing ampicillin, selection of the E. coli transformants was made on a solid medium containing 100 g/ml ampicillin. The selected E. coli was cultured in a defined or complex liquid medium containing 20 g/l glucose to produce PHA. When the strain was cultured at a temperature of 30 or 37 $^{\circ}\mathrm{C}$ in a flask, PHA was accumulated until it represented as much as 40 % or more of the dry cell weight.

As described hereinbefore, the PHA biosynthesis-related genes of the present invention are derived from *Alcaligenes latus* and contains all of the genes for PHA synthase, B-ketothiolase and acetoacetyl-CoA reductase. When *E. coli* is transformed with the PHA biosynthesis-related genes of the present invention, a one-step culture of the transformant *E. coli* can mass-produce

10

BNSDOCID: <WO

10

20

25

PHA. In addition, these enzymes and the genes are very helpful in understanding the biosynthesis of PHA in a molecular biological level.

The present invention has been described in an illustrative manner, and it is to be understood the terminology used is intended to be in the nature of description rather than of limitation.

Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.

EXAMPLE V: Separation of PHB gene from *Alcaligenes latus* and determination of its DNA and amino acid sequence

In order to separate PHB gene, total DNA extracted from culture of Alcaligenes latus and digested with restriction enzymes such as BamHI, HindIII, SmaI, XhoI, and SaII and the DNA fragment was obtained.

Among the resulting DNA fragments digested with *BamHI*, the 3.2 kb DNA showing positive signal, was separated by using 1 kb PHB gene derived from *Alcaligenes eutrophus* as a probe.

Then the separated DNA was ligated to the *BamHI* restriction site of the vector pSK(+), whereby recombinant plasmid pAL32 was constructed. (see Fig. 5)

As the result of analyzing the pAL32 DNA sequence by Sanger Method (dideoxy-nucleotide chain termination method), it has revealed that the PHB gene derived from Alcaligenes latus consists of 1,608 bp. The amino acid sequence of the PHB synthase encoded by the above PHB gene, was analyzed

by using PC/Gene software program. PHB synthase derived from *Alcaligenes latus* has the amino acid sequence composed by 536 amino acids.

EXAMPLE VI : Construction of recombinant expression vector 5 pKTC32 containing PHB gene

PHB gene is obtained by digesting pAL32 with EcoRI and NotI, and then the resulting DNA fragment was ligated to the restriction site by EcoRI and NotI. (see Fig. 5)

EXAMPLE VII : Preparation of PHB-producing recombinant Alcaligenes eutrophus LAR5

The recombinant expression vector pKTC32 of Example VI was introduced into the strains of *A. eutrophus* DSM541 which is lacking in PHB gene. When culturing the transformant, PHB particles in the cell were observed.

EXAMPLE VIII : Identification of primer region of PHB gene derived from A. latus

For the purpose of identifying the PHB primer region, the total DNA of
Alcaligenes latus was separated. The site wherefrom RNA transcription starts
was determined by primer extension method and then the promoter region
25 consisting of 210 bp DNA upstream was obtained. The gene sequence of
promoter region of PHB was analyzed by PC/Gene software program.

10

BNSDOCID: <WO

BUDATEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DOTOST OF MICHOURGANISMS FOR THE PURPOSE OF PATENT PROCESSIVE

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: Lee, Sang Yup Expo Apt. 212-702, Chunmin-dong, Yusong-ku, Tacjon 305-390, Republic of Korea

I. IDENTIFICATION OF THE MICROORGANISM

Identification reference given by the DEPOSITOR:

Escherichia coll XL1-Blue/pJC1

Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:

кстс озаявр

11. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The microorganism identified under I above was accompanied by:

[x] a scientific description

[] a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depository Authority accepts the microorganism identified under labove, which was received by it on November 5 1997.

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary-Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korea Research Institute of Bioscience and Biotechnology Korean Collection for Type Cultures

Address: KCTC, KRIBB

#52, Oun-dong, Yusong-ku, Tacjón 305-333, Republic of Korea Signature(s) of person(s) having the power to represent the International Depositary
Authority or of authorized official(s):

Kyung Sook Bae, Curator Date: November 12 1997

BUDAPEST DEFATY ON THE INTERNATIONAL RECOGNITION OF THE INDESET OF MICKORIGANISMS FOR THE PURPOSE OF PATENT ROCCOURS

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: LEE, Yong-Hyun

Department of Genetic Engineering College of Natural Sciences, Kyungpook National University, Taegu 702-701. Republic of Korea

I. IDENTIFICATION OF THE MICROORGANISM

Identification reference given by the DEPOSITOR:

Alcaligenes eutrophus LAR5

AUTHORITY

Accession number given by the

INTERNATIONAL DEPOSITARY

KCTC 0568RP

II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The microorganism identified under I above was accompanied by:

[x] a scientific description

1 1 a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depositary Authority accepts the microorganism identified under Labove, which was received by it on January 18 1999.

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korean Collection for Type Cultures

Address: Korea Research Institute of Bioscience and Biotechnology (KRIBB) #52, Oun-dong, Yusong-ku.

Taelon 305-333. Republic of Korea

BNSDOCID: <WO

Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

PARK Yong-Ha, Director Date: January 25 1999

WHAT IS CLAIMED:

- A polyhydroxyalkanoate biosynthesis-related DNA fragment, comprising a gene for polyhydroxyalkanoate synthase, a gene for β-s ketothiolase and a gene for acetoacetyl-CoA reductase, which are all derived from Alcaligenes latus.
 - 2. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1, wherein said fragment contain the gene for polyhydroxyalkanoate synthase, the gene for β -ketothiolase and the gene for acetoacetyl-CoA reductase in due order and has a base sequence of Sequence 1.
- A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for polyhydroxyalkanoate synthase has a base sequence of Sequence 2.
 - 4. A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for β -ketothiolase has a base sequence of Sequence 3.
 - A polyhydroxyalkanoate biosynthesis-related DNA fragment as set forth in claim 1 or 2, wherein the gene for acetoacetyl-CoA reductase has a base sequence of Sequence 4.
 - 6. A polyhydroxyalkanoate synthase, having an amino acid sequence of Sequence 5. derived from Alcaligenes latus.

20

25

7. A β -ketothiolase, having an amino acid sequence of Sequence 6, derived from *Alcaligenes latus*.

- 8. An acetoacetyl-CoA reductase, having an amino acid sequence of
 Sequence 7, derived from Alcaligenes latus.
 - A recombinant expression vector pJC1, containing the polyhydroxyalkanoate biosynthesis-related gene of claim 1.
- 10. A recombinant expression vector pAL32, containing the gene for polyhydroxyalkanoate synthase of claim 3.
 - A recombinant expression vector pKTC32, containing the gene for polyhydroxyalkanoate synthase of claim 3.
 - 12. An *E. coli* transformant XL1-Blue/pJC1 with a deposition No. of KCTC 0398 BP, which is transformed with the recombinant expression vector of claim 9.
- 20 13. An Alcaligenes eutrophus transformant LAR5 (DSM541/pKTC32) with a deposition No. KCTC 0568 BP, which is transformed with the recombinant expression vector of claim 11.
- 14. A_method for preparing polyhydroxyalkanoate biosynthesis-related enzymes, by culturing the *E. coli* transformant of claim 12.
 - 15. A method for preparing polyhydroxybutyrate synthase, by culturing *A. eutrophus* transformant of claim 13.

15

16. A method for producing polyhydroxyalkanoate and its copolymers, by culturing the transformant of claim 12.

17. A method for producing polyhydroxyalkanoate and its copolymers, s by culturing the transformant of 13.

FIG. 1

FIG. 2

FIG. 3a

20 30 40 50 GGATCCTGCT GCGCTCGGAC AAAAGCATGG GCCGAGTTTA GCGCGCGCCC TCGGACGCCC 70 80 90 100 110 120 CCGGCAGCGT GCAGG CA CGCCA TC AAAAG CTG TGAGGCAGGT ATG CACT 130 140 150 160 170 180 GCGTCAATCC CGCAGT CCG CAGTCA CCC AGAAA CAG CTG1 ACT AC CTC 190 200 210 220 230 240 CTCGGCGTCC 7 TCC GCATCG ACT GGCC AG GG GGCCT A CAA 250 260 270 280 290 300 GCCGNTGCAC C AGA AG GTT C TCG T GGCCG 310 320 330 340 350 360 GCGCCTGGTG CCGCTG TGC GCGACG CGA CGCG CTG ACC CGA CAT 370 380 390 400 410 420 CGAGTACCTG GACGAG CCC ATCCGC GCC CTG CCCTCGGACC CGC GGCCG 430 440 450 460 470 480 CGCCCGCGTG CGTGCG TGG CGCAGG CAT CGCCT GCGAG ATC CCCGC TO CCT 490 500 510 520 530 540 GCGCGTGCTG CGCTAC TGG CGCACG CCT CA ACA AC TCGGC GAGG CTG 550 560 570 580 590 600 GTACCGCCAC TGGGTCGAGA CCGGCC TGGA GGTGG GGAG CC CTGG CG CCC 610 620 630 640 650 660 GTCCACCGGC CGCTTC GCC ATGGC CAC GCCCC CTG G GCG T GCC 670 680 690 700 710 720 AGC GTTTCA GCAGATCTTC AACGCCC CTG CCGGCTGGAG CACG CCCA CCG GCG 730 740 750 760 770 780 CGTGTACGAG GCCTGC TGC AGC CGC CT AAG ACGC GCCCT CCGC TĊC 790 800 810 820 830 840 CGATGCCGAG T CTG CAGG CGTGC CCGA GT CGGCA CC GCG850 860 870 880 890 900 TGGGCGCATT C ACG CG ageg g CGC C TGG C CCA 920 940 910 930 950 960 ACCTGGGCGA CGCCGT GGGC GACA CCGC AG GGA CGC G TCG 970 980 990 1000 1010 1020 CCGCCGCCGC CGAGGGCGGC ACGC GTGT GGC GCCA GGT CGGC ACG GTGC 1030 1040 1050 1060 1070 1080 TGCGATTGCG CGCCGG GAG GCC CGG CG CGCC CG CGAT GO STCA 1090 1100 1110 1120 1130 1140 CCGCCGACCC CGGCCTGGTG T GTGC A GGCGGA CT GCCC G TCG 1150 1160 1170 1180 1190 1200 CAGCGTCCAA CG SCCGTGCC G GCGCTG CGC/ CGGC C GCGGG C GGTG 1210 1220 1230 1240 1250 1260 GCGTGCTCGA A ACACGCTG GCCG AGGTGT GCG TGGC GC CGAG CC GATG 1270 1280 1290 1310 1300 1320 TGCTGGCCTG GATGGG GCCC TGCA CGGGC CGGAGAGTTT CGAGGT GGGG CGCG ACGTGC 1330 1340 1350 1360 1370 1380 TGGAGGGTTT C GGAT CCGG CGGTC CGG GACCC GGCC CGCC TGGC CCGC 1390 1400 1410 1420 1430 1440 GTGCCGACGG CAGCGCGCGC TG GCGG AC CCGGG GC GCGG CG 1450 1460 1470 1480 1490 1500 AATTGGCAGG T CGTCAG A GGCG G GGTG C GCAG GA TCAC 1510 1520 1530 1540 1550 1560 GGTTCTTCTC G TTCCGGCGG GACC GGGTCA CGG CGGCA GO CGCC GT CTGC 1570 1580 1590 1600 1610 1620 GCGGATGAAG CGGTGTCCTC GGCGCGCTTG CGCGCCCGTC GCCGCGCCGG CGTCCCCAGG 1630 1640 1650 1660 1670 1680 . .

FIG 3b

AAGTACAGGA CGATGGACAA GGGCAGTACG CCATACAGCA GCAGCGTGAA CACCGCGCCG AGCAAGGTGC CGTTGGGCGC CATGGCTTCG GCCACGGCCA TCATCAGCAC CACGTACAGC CATGCCAGAG CAACCAAGTA CATAGCAAAA ACCCGCAATT ACGCAGAATG ACGTATTTCG 1840 1850 TACAATGAAA ACTGTTGTCA TGATGCGGTA AGACACGAAG CCTACAACGC GATCCAGCAA CGGTTTTCGT GAAAAAGTCC TCAGGAGACG AGCGTGACAC TGCATCCCAT TCCCGCACTG 1950 1960 CAACAGCTTG GCGACAACGC CACGGCGCTG AGTGCCGCCA TCTCGGAAGC GCTGCGCGCG ATG TCG GGC CTG AAC CTG CCG ATG CAG GCC ATG ACC AAG CTG CAG GGC GAG TAC MSGLNLPMQAMTKLQGEY $phaC_{AI} \rightarrow$ CTC AAC GAG GCG ACG GCG CTG TGG AAC CAG ACG CTG GGC CGC CTG CAG CCC GAC LNEATALWN QTLG RL Q P D GGC AGC GCC CAA CCG GCC AAG CTG GGC GAC CGG CGC TTC TCG GCC GAG GAC TGG G S A Q P A K L G D R R F S A E D W GCC AAG AAC CCC GCC GCG GCC TAC CTG GCG CAG GTC TAC CTG CTC AAT GCC CGC A K N P A A A Y L A Q V Y L L N A R ACG CTG ATG CAG ATG GCC GAG TCC ATC GAG GGC GAC GCC AAG GCC AAG GCG CGC T L M Q M A E S I E G D A K A · K A R GTG CGC TTC GCC GTG CAG CAG TGG ATC GAC GCC GCG GCG CCG AGC AAC TTC CTG V R F A V Q Q W I D A A A P S N F L GCG CTC AAT CCC GAG GCG CAG CGC AAG GCG CTG GAG ACC AAG GGG GAG,AGC ATC ALNPE A Q R K A L E T K G E AGC CAG GGC CTG CAG CAG CTG TGG CAT GAC ATC CAG CAG GGC CAC GTG TCG CAG S Q G L Q Q L W H D I Q Q G H V S Q ACG GAC GAG AGC GTG TTC GAG GTG GGC AAG AAC GTC GCC ACC ACC GAG GGC GCG T D E S V F E V G K N V A T T E G A GTC GTG TAC GAG AAC GAC CTG TTC CAG CTC ATC GAG TAC AAG CCG CTG ACG CCC V V Y E N D L F Q L I E Y K P L T P AAG GTG CAC GAG AAG CCG ATG CTG TTC GTG CCG CCG TGC ATC AAC AAG TAC TAC

FIG. 3c

K	V	Н	E	K	P	М	L	F	v	P	P	С	1	N	K	Y	Υ.
ATC I	CTC L	2583 GAC D		CAG Q	2592 CCG P	GAC	AAC N	260 AGC S	стс	ATC 1	2610 CGC R	TAC	ACC	2619 GTC V	GCC A	CAG	2628 GGC G
CAC H	CGC R	2637 GTG V	TTC	GTG V	2646 GTG V	AGC S	TGG W	2655 CGC R	AAC	CCC	2664 GAC D	acc	TCC	2673 GTC V		GGC G	
ACC T	TGC	2691 GAC D	GAC	TAC	2700 GTG V	GAG	CAC Q	2709 G G G G	GTO	ATO I	2718 C C G C R	cic	ATC I	2727 C CGC R	GTG V		2736 G CAG Q
CAG Q	ATC	Т	GGG G	CAC	2754 GAG È	AAG	GTO	276 C AAC N	GCC	CTC L	2772 3 GGC G	TTC	TGC	2781 GTC V	GGG	GG(2790 C ACC T
ATC I	CTG L	S	ACG T	GCG	L	Α	GTG V	2817 CTG L	GCC	GCG A	2826 G CGC R	GGC G	GAC E	2835 CAC Q	ccc		2844 G GCG . A
AGC S	L	Т	CTG	L	т.	ACG T	CTG	2871 CTG L	GAC D	TTC F	2880 AGC S	AAC N	ACC	2889 GGC G	GTG V	CTG L	2898 GAC D
CTG L	TTC	I	D	GAG	A	GGC	GTG	2925 CGC R	CTG	CGC	2934 GAG E	ATG	ACC	2943 ATC I	ĠGC		
GCG A	CCC	N	GGC G	Р	G	L	стс	2979 AAC N	GGC G	AAG K	2988 GAG E	CTG	GCC A	2997 ACC T	ACC	TTC F	3006 AGC S
TTC F	CTG L	3015 CGC R	CCG.	AAC	3024 GAC D	CTG	3TC	TGG . W	AAC '	TAC	3042 GTG V	GTG (GGC	3051 AAC N		CTC L	
GGC G	GAG E	3069 GCG A	CCG	CCC	3078 CCC P	TTC F	GAC	3087 CTG L	CTG	TAC	3096 TGG W	AAC	TCC	3105 GAC D		ACC T	
ATG , M	GCC A	G	CCC P	ATG	TTC F	rgc ·	rgg W	3141 TAC Y	CTG (CGC	3150 AAC N	ACC T	TAC			AAC N	
TTG .	CGC R	3177 GTT (V	CCC	GGT	3186 GCC (A	CTG A	ACC.	3195 ATC 1	r c c c	GC	3204 GAG . E	AAG K	GTG	3213 GAC D		TCG S	
ATC I	GAG E	GCG A	CCG P	GTG V	TAC Y	TTC	TAC	GGT GGT	TCG (CGC	3258 GAG E	GAC	CAC	3267 ATC 1	GTG V	ccc	3276 TGG W
		3285			3294			3303			3312			3321			3330

FIG. 3d

GAA E	S	GCC A	TAC Y	GCC A	GGC G	ACG T	CAG Q	ATG M	CTG L	AGC S	GGC	CCC P	AAG K	CGC R	TAT Y	GTC V	
GGT G	GCC	3339 TCT S	GGC G	CAC H	3348 ATC I	GCC	GGC G	3357 GTG V	ATC	AAC	CCC P	CCG	CAG Q	3375 AAG K	AAG K		3384 CGC R
AGC S	TAC	3393 TGG W	ACC T	AAC N	3402 GAG E	CAG	CTC L	3411 GAC D	GGC	GAC	3420 TTC	AAC	CAG	3429 TGG W	стG	GAA E	
TCC S	ACC	3447 GAG E	CAT	сст	3456 GGC	AGC	TGG	3465 T G G	ACC	GAC	3474 TGG	AGC	GAC	3483 TGG	CTC.	- AAG	3492 CAG
	GCG	3501 GGC G	AAG	GAA	3510 ATC	GCC	GCA	3519 CCC	AAG	ACT	3528	GGC	AAC	3531 AAG	ACC	CAC	3546
-	ATC	3555 GAG E	ccc	GCC	3564	GGG	CGT	3573	GTG.	AAG	3582 CAG				•	••	
TG A		_	600		3	610		3	620		` 3	630	ACG/	 AGGA	3640 GAT	AAG	С
ATG M phaA	Т	3653 GAC D	ATC I	GTC	3662 ATC I	GTC V	GCC-	3671 GCA	GCC (CGC	3680 ACC (T	GCC (GTG	3689 GGC . G	AAG '	TTC F	
GGC G	ACG	3707 CTG L	GCC	AAG K	3716 ACC T	ccc	GCT	3725 CCG	GAG	CTG	3734 GGC	GCC	GTG	3743 GTC	ATC	AAG	3752 GCC A
~~~	•						•	P	E	L	G	Λ	v	v	I	K.	••
L	CTG L	3761 GAG E	AAG K	ACG T	3770 GGC G	GTC	AAG	3779 CCC	GAC	CAG	3788	A GGT	V GAA	3797 GTC	I	ATG	3806
L CAG	L	GAG E 3815 CTG	K	T GCC	GGC 3824 GGC	GTC V GCG	AAG K GGC	3779 CCC P 3833 CAG	GAC D	CAG Q	3788 ATC I 3842	GGT G	GAA E	3797 GTC V 3851	I ATC I	ATG M	3806 GGC G
CAG Q	GTG V	GAG E 3815 CTG	GCC A GCC	GCC A	3824 GGC GGC G	GCG A	AAG K GGC G	3779 CCC P 3833 CAG Q	GAC D AAC N	CAG Q CCC P	3788 ATC I 3842 GCG A	GGT G	GAA E CAC Q	3797 GTC V 3851 GCG A	ATC I ATG M	ATG M ATG M	3806 GGC G 3860 AAG K 3914 TCC
CAG Q , GCG A	GGG GGG	GAG E 3815 CTG L 3869	GCC A GCC A	GCC A AAG K	3824 GGC G 3878 GAA E 3932 ATG	GCG A ACG T	GGC P	3779 CCC P 3833 CAG Q 3887 GCG A	GAC D AAC N CTG L	CAG Q CCC P	3788 ATC I 3842 GCG A 3896 ATC I 3950	GGT G CGC R AAC N	GAA E CAC Q GCC A	3797 V 3851 GCG A 3905 GTG V 3959 GGC	ATC I ATG M TGC C	ATG M ATG M GGG	3806 GGC G 3860 AAG K 3914 FTCC S 3968

## FIG. 3e

		4031			4040		_	4049	١		4058			4067			4076
G	AGC	. CGC	GAC	GGC	CAG	CGC	AIC	GGC	GAC	TGC	AAG	ATG	GTC	GAC	ACC		
G	5	K	ы	G	Q	R	М	G	D	w	K	М	V	D	Т	м	ł
		***															
		4085			4094		_	4103			4112			4121			4130
AAC	GAC	عيون.	C10	100	GAC	GIG	TAC	AAC	AAG	TAC	CAC	ATG	GGC	ATC	ACG	GCC	GAG
N	ь	G	L	w	D	٧	Υ	N	K	Y	Н	М	G	I	Т	Α	E
		4139			4148			4157			4166			4175			1184
AAC	GTC	GCC	AAG	GAA	CAC	GAC	ATC	AGC	CGC	GAC	CAG	CAG	GAC	GCC	CTG	GCC	CTG
И	٧	Α	K	Е	н	D	ı	S	R	D	Q	Q	D	Α	L	Α	L
					4202			4211			4220			4229			4238
JCC.	AGC	CAG	CAG	AAG	GCC	ACC	GCC	GCG	CAG	GAA	GCC	GGC	CGC	TTC	AAG	GAC	GAG
A	S	Q	Q	K	Α.	Т	Α	Α	Q	Ε	Α	G	R	F	K	D	E
		4247			256			4265		•	1274			4283		4	292
AIC	GTT	CCG	GTC	TCG.	ATC (	CCG	CAG	CGC	AAG	GGC	GAC	ccg (	GTG	CTG '	TTC C	JAC /	VCC
1	V	P	٧	S	I	P	Q	R	ĸ	G	D	P	V	L	F	D	T
		4301			4310			4319			4328			4337			4346
JAC	GAG	TIC	AIC	AAC	AAG	AAG	ACC	ACC	GCC	GAA	GCG	CTG	GCG	GGC	CTG	CGC	CCG
ъ	E.	r	1	N	K	K.	Т	Т	Α	E	Α	L	A	G	L	R	P
		4333			4364			4373			4382			4391			4400
300	110	GAC	AAG	GCC	GGC	AGC	GTG	ACC	GCG	GGC	AAC	GCC	TCG	GGC	ATC.	AAC	GAC
Α	r	D	K,	A	G	2	٧	1	Α	G	N	Α	S	G	1	N	D
		4409			44.0						4436						
					4418			4421			4436			4445			4454
300	GCC	OC1	GCO	010	AIG	010	AIG	100	GCC	GCC	AAG	GCG.	AAG	GAG	CTG	GGC	CTG
u	А	^	А	٧	M	٧	м	2	Α	Α	ĸ	Α	K.	E	· L	G	L
		4463						4481									
		4403			4412			4481			AGC			4499		'	4508
100	CCC	AIG	GÇG	coc	AIC.	AAG	AGC	110	GGC	ACC	AGC	GGC	CŢG	GAT	CCG (	GCC.	AAG
1	٠,	M	^	ĸ	1	K	5	r	G	1	S	G	L	D	P	Α	K
		4517			4526						4544						
TC				ccc	CCT		4.00	4333			CAC	000		333	000	4.	262
J1C.	~~	GIC.	AAC	GGC	GG:	ucc	AIC.	GCC	MIC.	uuc	H	LCC 2	AIC.	GGC	الكرك	ICC (	100
•	.,	•	14	U	G	А		^	1	U	п	P	1	G	A	3	G
		4571			4580			4600			4598			4607			4616
rcc.	ccc		CTC	CTC	4360	CTC	crc	4389			CAG	000		4607		'	4616
	COC	UIO.	ÇIG	uiu	ACG	CIG	ÇIG	CAC	OMO	AIG	Q	CGC	CGG	GAC	GCC.	AAG	AAG
-	1	*	L		•	L	L.	п	E	M	Q	ĸ	к	D	А	K.	ĸ
		4626									4652			4661			
	CTC	4023		CTC	4034 TCC			4043			GGC			4661			4670
300	Cio	occ	oco	Cio	100	wic.	GGC	GGC	OGC	AIG	G	CIG	100	CIG	ACC	GIC	GAG
G	L	^	^	L	C	,	G	G	G	м	G	v	5	L	1	٧	E
CGC						-				-							
R																	
IV.																	
	460	0		440	0		47										
	406			409			47	UU		47	10		47	20		47	30

# FIG. 3f

	4740			475			476			477	10		47	80		47
CGGGAT	TACCA	GAC	CGAA	CCA	A AC	CAC	CAAG	G GC	TTC	GAGA	.c gc	CCC	GAAG	GA A	GGAC	GAGAC
G																
ATG GC	4800		~~	4809		CTC	4818			4827			4836			4845
M A	" CAU	~~~	cic	,00,1	IAC	G I C	ACC	666	GGG	AIG	GGC	GGC	ATC	GGC	ACC	
$pliaB_{Al} \rightarrow$		~	L	^	1	v	1	G	G	м	G	G	1	G	1	s
риав ді —																
	4854			4863			4872			4881			4000			4899
ATG TG									AAC	GTG	ATC	ccc	4090	TOC	ССТ	CCG
мс	0	R	L	Н	K	D	G	F	K	v	1	A	6		G	
	-					_	_							_		•
	4908			491			4926			4935			4944			4953
AGC CG	CGAC	CAC	CAC	AAG	TGG	ATO	GAT	GAA	CAC	GCC	GCC	CTC	GGC	TAT	ACC	TTC
S R	D	Н	Q	K	w	1	D	E	Q	Α	Α	L	G	Y	Т	F
T. 0.00	4962			4971			4980			4989		_	4998		5	007
TAC GC	. 100	GIG	GGC	AAC	GIG	GCC	GAC	TGG	GAC	TCC	ACC	GTG	GCC	GCC	TTC	GAG
1 A	s	٧	G	N	٧	А	U	w	D	5 1		A A		E		
	5016			502	5		5034			5043			5052			5061
AAG GT			GAC			ACC			GTO	orn r	GTG	440	` A A C	GCC	ccc	ATC
K V	K	A	E	H.	G	т	v	D	v	L	v		N		G	
										-		-			-	-
	5070			5079			5088			5097			5106			5115
ACG CG	r gac	GGG	CAC	TTC	CGC	AAC	ATG	AGC	AAC	GCC	GAT	TGC	CAG	GCC		
T R	D	G	Q	F	R	K	М	S	K	Α	D	w	Q	Α	v	M
	5124			5133												
TCG ACC		CTC					5142	OT0		5151			5160			5169
ST	N	T	סאכ	AGC	M	110	N	UIC.	ACC	K	CAG	616	AIC	UAG	GGC	AIG
٠.	••	~	_			•		•	•		٧.	•		E	G	IVI
	5178			5187			5196	;		5205			5214			5223
CTG GA	CAAG	GGC	TGC	GGC	CGG	ATO	ATC	AAC	ATO	TCC	TCG	GTC	AAC	GGC	GAG	AAG
L D	K	G	w	G	R	- 1	- 1	N	1	S	S	v	N	G	E	
	5232			5241			5250			5259			5268			5277
GGC CA	3 110	GGC	CAG	ACC	AAC	TAC	TCC	GCC	GCC	AAG	GCC	GGC	ATG	CAC	GGC	TTC
G Q	r	G	Q		И	Y	٥.	Α	А	K	Α	G	М	н	G	F
	5286			5295			5304			5313			5322			5331
TCC ATC		CTG	ccc		GAA	CTC					CTC					
'S M	A	1.	A	0	E	v	Δ	4	- AA	000	v	T	, O I O	MAC M	. ACC	. 010
		_		~	~			^		٠	•	•	•	14		•
	5340			5349			5358			5367			5376			5385
AGC CCC	GGC	TAC	ATC	GCC	ACG	GAC	ATG	GTC	AAC	GCC	ATC	CGC	CAG	GAC	GTG	CTG
S P	G	Y	1	Α	T	D	M	v	K	A	- 1	R	Q	D	v	
													- 1			
	5394			5403			5412			5421		:	5430			5439
GAC AA		AIC	GCC	ACC	ATT	ccc	ATC	CGT	cgc	CTG	GGT.	ACG	CCG (	GAG	SAG	
D K	1	1	Α	Τ'	1	Р	1	R	R	L	G	T	P	E	E	1
	5448			5457			5466			5475			5484			
	5446			,,,,,						3473			3464		-	493

## FIG. 3g

GCC TCC ATC TTC CCC TGG CTG GCC GGC GAA GAA TCG GGC TTC ACC ACC GGT GCC AS1F PWLAGEESGFTTGA GACTTC AGC TGC AAC GGC GGC CTG CAC ATG GGC DFSCNGGLHMG TGAG GCCCGCGGCT CCATGCCCAC CTGCGTGGGC ATGGACGGGC CGAAGGACCG AGCTCTGCGA GGGTGCGGCC TGCAA GGCTG AGGCCTGCTG CGCCGCGTGC CCGCGAGGGC ACGTGCCGAA GCACCAAAAG GCCGCGCATT GCGCGGCCTT TTCC TTCTG GATCGGTGCG GACGGGTGCC GCGTCAGGCA GGGCAGGCCC CCGGCCTTCA CTCC ACCATG CCGGACATGA AGTACTTGAT CACCCTTTGG CCGCGAAGCC CAGCATGCCG AAGC CAGCG CCAGGAACAG CACGAAGGTG CCGAACTTGC CGGCCTTCGA CTCG CGCGCG AGC GAAAGA TGATGAATGC CATGTAGAGC ATGA AGGCCG TGA GCCGAC GGTCAGGCCC AGCTGGGCAA TGTT GTTGATTTCG AACATCGTTT GTTG TCAG GCTG GCCA CGCGGCTGAC GTGCTCGCCG CGCGGCCGGG CCCG ACTGC CCG GATCAG GTTC AGCGGT T CAAGG CATCT CACTGGGAGG TGTCCACCAG GTCC GGTAG GCG GCCAGC TCG/ GCGC CAGC ACGGC ACTACCACGA TCAGGCCCAG CAGCAGCGTG GCC GCCCA GCAGCGTCAG CGCCA TGATC AGCGCCGCCC ACAGCGCCAG CGGC AGTGGG TGCTGCATCA CCACGCGCCA GCTCGTGAGC ACCGCCACCA GCACGCCCAC GTGGCGGTCC AGCAGCATCG GGATCC

BNSDOCID: <WO.

FIG. 4



Fig. 5



10/11

Fig. 6



11/11

### SEQUENCE LISTING

### (1) GENERAL INFORMATION:

(i) APPLICANT: LG CHEMICAL LTD.

5 LEE, Sang Yup

10

15

20

25

CHOI, Jong-il

CHOO, Seung-Ho

YOON, Hye-Sung

HAN, Kyuboem

SONG, Ji-Yong

LEE, Yong-Hyun

HUH, Tae-Lin

HONG, Sung-Kook

(ii) TITLE OF INVENTION : POLYHYDROXYALKANOATE

BIOSYNTHESIS-RELATED GENES DERIVED

FROM Alcaligenes latus

- (iii) NUMBER OF SEQUENCES: 8
- (2) INFORMATION FOR SEQ ID NO.:1:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 6436 base pairs
    - (B) TYPE: nucleic acid
    - $(C) \ \ STRANDEDNESS: double$
    - (D) TOPOLOGY : linear
  - (ii) MOLECULAR TYPE: oligonucleotide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:1:

	GGATCCTGCT	GCGCTCGGAC	AAAAGCATGG	GCCGAGTTTA	GCGCGCGCCC	TCGGACGCCC	60
	CCGGCAGCGT	GCAGGGTTCA	CGCCATGTTC	AAAAGCGCTG	TGAGGCAGGT	ATGCTGCACT	120
	GCGTCAATCC	CGCAGTTCCG	CAGTCATCCC	AGAAATGCAG	CTGTACAACT	ACTTTCGCTC	180
	CTCGGCGTCC	TACCGCGTCC	GCATCGCACT	GGCCCTGAAG	GGTCTGGCCT	ACGAATACAA	240
5	GCCGGTGCAC	CTGCAGAAGA	AGGAGCAGTT	CGCGGAGTCG	TATGCGGCCG	TGTCGGCCTC	300
	GCGCCTGGTG	CCGCTGCTGC	GCGACGGCGA	CGCGTCGCTG	ACGCAGTCGA	TGGCCATCAT	360
	CGAGTACCTG	GACGAGACCC	ATCCGCAGCC	GCCGCTGCTG	CCCTCGGACC	CGCTGGGCCG	420
	CGCCCGCGTG	CGTGCGCTGG	CGCAGGACAT	CGCCTGCGAG	ATCCACCCGC	TCAACAACCT	480
	GCGCGTGCTG	CGCTACCTGG	CGCACGACCT	CAAGGTCGGC	GAGGACGACA	AGAACCGCTG	540
10	GTACCGCCAC	TGGGTCGAGA	CCGGCCTGGA	GGTGGTGGAG	CGCCAGCTGG	CGGATCACCC	600
	GTCCACCGGC	CGCTTCTGCC	ATGGCGACAC	GCCCGGCCTG	GCCGATTGCG	TGCTGGTGCC	660
	GCAGATCTTC	AACGCCCAGC	GTTTCAACTG	CCGGCTGGAG	CACGTGCCCA	CCGTGATGCG	720
	CGTGTACGAG	GCCTGCATGC	AGCTCGACGC	CTTCGACAAG	ACGCAGCCCT	CCGCCTGTCC	780
	CGATGCCGAG	TAAGGCTCTG	CAGGGCGTGC	TGAGGCCCGA	GTGGCCGGCA	CCGGCCGGCG	840
15	TGGGCGCATT	CATGAGCACG	CGCGAGGGCG	GCGTCAGCGC	CGCGCCCTGG	GACGGCGCCA	900
	ACCTGGGCGA	CGCCGTGGGC	GACAGCCCGC	AGGCTGTGGA	CACCAACCGC	GCCCGATTCG	960
	CCGCCGCCGC	CGAGGGCGGC	ACGCCGGTGT	GGCTGCGCCA	GGTCCACGGC	ACGCGGGTGC	1020
	TGCGATTGCG	CGCCGGCGAG	GCCTTGCCGG	CGCAGCCGCC	CGAGGCCGAT	GCCGTGGTCA	1080
	CCGCCGACCC	CGGCCTGGTG	TGCGTGGTGC	AGGTGGCGGA	CTGCCTGCCC	GTGTTCTTCG	1140
20	CAGCGTCCAA	CGGCCGTGCC	GTCGGCGCTG	CGCATGCGGG	CTGGCGCGGC	CTGGCCGGTG	1200
	GCGTGCTCGA	AAACACGCTG	GCCGAGGTGT	GCGCGCTGGC	GCGCTGCGAG	CCCTCCGATG	1260
	TGCTGGCCTG	GATGGGGCCC	TGCATCGGGC	CGGAGAGTTT	CGAGGTGGGG	CGCGACGTGC	1320
	TGGAGGGTTT	CGGCGTGGAT	CCGGACGGTC	CGGCCGACCC	GGÇCTTCGCC	TGGCGTCCGC	1380
	GTGCCGACGG	CAGCGCGCGC	TGGCTGGCGG	ACCTGCCGGG	GCTGGCGCGG	CGCCGGCTCG	1440
25	AATTGGCAGG	TCTGCGTCAG	ATCAGTGGCG	GACAGTGGTG	CACGGTGCAG	GATCGTTCAC	1500
	GGTTCTTCTC	GTTCCGGCGG	GACCGGGTCA	CGGGGCGCA	GGCTGCCGCC	GTCTGGCTGC	1560
	GCGGATGAAG	CGGTGTCCTC	GGCGCGCTTG	CGCGCCCGTC	GCCGCGCCGG	CGTCCCCAGG	1620
	AAGTACAGGA	CGATGGACAA	GGGCAGTACG	CCATACAGC.A	GCAGCGTGAA	CACCGCGCCG	1680
	AGCAAGGTGC	CCTTGGGCGC	CATGGCTTCG	CCC+CCCCC+	TOATOACOAC	CACCTACACC	1740

	CATGCCAGAG	CAACCAAGTA	CATAGCAAAA	ACCCGCAATT	ACGCAGAATG	ACGTATTTCG	1800
	TACAATGAAA	ACTGTTGTCA	TGATGCGGTA	AGACACGAAG	CCTACAACGC	GATCCAGCAA	1860
	CGGTTTTCGT	GAAAAAGTCC	TCAGGAGACG	AGCGTGACAC	TGCATCCCAT	TCCCGCACTG	1920
	${\sf CAACAGCTTG}$	GCGACAACGC	CACGGCGCTG	AGTGCCGCCA	TCTCGGAAGC	GCTGCGCGCG	1980
5	ATGTCGGGCC	TGAACCTGCC	GATGCAGGCC	ATGACCAAGC	TGCAGGGCGA	GTACCTCAAC	2040
	GAGGCGACGG	CGCTGTGGAA	CCAGACGCTG	GGCCGCCTGC	AGCCCGACGG	CAGCGCCCAA	2100
	CCGGCCAAGC	TGGGCGACCG	GCGCTTCTCG	GCCGAGGACT	GGGCCAAGAA	CCCCGCCGCG	2160
	GCCTACCTGG	CGCAGGTCTA	CCTGCTCAAT	GCCCGCACGC	TGATGCAGAT	GGCCGAGTCC	2220
	ATCGAGGGCG	ACGCCAAGGC	CAAGGCGCGC	GTGCGCTTCG	CCGTGCAGCA	GTGGATCGAC	2280
0	GCCGCGGCGC	CGAGCAACTT	CCTGGCGCTC	AATCCCGAGG	CGCAGCGCAA	GGCGCTGGAG	2340
	ACCAAGGGGG	AGAGCATCAG	CCAGGGCCTG	CAGCAGCTGT	GGCATGACAT	CCAGCAGGGC	2400
	CACGTGTCGC	AGACGGACGA	GAGCGTGTTC	GAGGTGGGCA	AGAACGTCGC	CACCACCGAG	2460
	GGCGCGGTCG	TGTACGAGAA	CGACCTGTTC	CAGCTCATCG	AGTACAAGCC	GCTGACGCCC	2520
	AAGGTGCACG	AGAAGCCGAT	GCTGTTCGTG	CCGCCGTGCA	TCAACAAGTA	CTACATCCTG	2580
5	GACCTGCAGC	CGGACAACAG	CCTCATCCGC	TACACCGTCG	CCCAGGGCCA	CCGGGTGTTC	2640
	GTGGTGAGCT	GGCGCAACCC	CGACGCCTCC	GTCGCCGGCA	AGACCTGGGA	CGACTACGTG	2700
	GAGCAGGGCG	TGATCCGCGC	CATCCGCGTG	ATGCAGCAGA	TCACGGGGCA	CGAGAAGGTC	2760
	AACGCGCTGG	GCTTCTGCGT	CGGCGGCACC	ATCCTGAGCA	CGGCGCTGGC	GGTGCTGGCC	2820
	GCGCGCGGCG	AGCAGCCCGC	GGCGAGCCTG	ACGCTGCTGA	CCACGCTGCT	GGACTTCAGC	2880
0	AACACCGGCG	TGCTGGACCT	GTTCATCGAC	GAGGCCGGCG	TGCGCCTGCG	CGAGATGACC	2940
	ATCGGCGAGA	AGGCGCCCAA	CGGCCCGGGC	CTGCTCAACG	GCAAGGAGCT	GGCCACCACC	3000
	TTCAGCTTCC	TGCGCCCGAA	CGACCTGGTC	TGGAACTACG	TGGTGGGCAA	CTACCTCAAG	3060
	GGCGAGGCGC	CGCCGCCCTT	CGACCTGCTG	TACTGGAACT	CCGACAGCAC	CAACATGGCC	3120
	GGGCCCATGT	TCTGCTGGTA	CCTGCGCAAC	ACCTACCTGG	AGAACAAGTT	GCGCGTTCCC	3180
5	GGTGCCCTGA	CCATCTGCGG	CGAGAAGGTG	GACCTCTCGC	GCATCGAGGC	GCCGGTGTAC	3240
	TTCTACGGTT	CGCGCGAGGA	CCACATCGTG	CCCTGGGAAT	CGGCCTACGC	CGGCACGCAG	3300
	ATGCTGAGCG	GCCCCAAGCG	CTATGTCCTG	GGTGCGTCTG	GCCACATCGC	CGGCGTGATC	3360
	AACCCCCCGC	AGAAGAAGAA	GCGCAGCTAC	TGGACC.AACG	AGCAGCTCGA	CGGCGACTTC	3420
	AACCAGTGGC	TGGAAGGCTC	CACCGAGCAT	CCTGGCAGCT	GGTGGACCGA	CTGGAGCGAC	3480

	TGGCTCAAGC	AGCACGCGGG	CAAGGAAATC	GCCGCACCCA	AGACTCCCGG	CAACAAGACC	3540
	CACAAGCCCA	TCGAGCCCGC	CCCCGGGCGT	TACGTGAAGC	AGAAGGCCTG	AGCCGCGGCC	3600
	CCTGAGCCTT	CTTTAACCCG	ACCTTGACAA	ACGAGGAGAT	AAGCATGACC	GACATCGTCA	3660
	TCGTCGCCGC	AGCCCGCACC	GCCGTGGGCA	AGTTCGGCGG	CACGCTGGCC	AAGACCCCCG	3720
5	CTCCGGAGCT	GGGCGCCGTG	GTCATCAAGG	CCCTGCTGGA	GAAGACGGC	GTCAAGCCCG	3780
	ACCAGATCGG	TGAAGTCATC	ATGGGCCAGG	TGCTGGCCGC	CGGCGCGGGC	CAGAACCCCG	3840
	CGCGCCAGGC	GATGATGAAG	GCGGGCATCG	CCAAGGAAAC	GCCGGCGCTG	ACCATCAACG -	3900
	CCGTGTGCGG	CTCCGGCCTC	AAGGCCGTGA	TGCTGGCCGC	CCAGGCCATC	GCCTGGGGCG	3960
	ACAGCGACAT	CGTCATCGCC	GGCGGCCAGG	AGAACATGAG	CGCCAGCCCG	CACGTGCTGA	4020
10	TGGGCAGCCG	CGACGGCCAG	CGCATGGGCG	ACTGGAAGAT	GGTCGACACC	ATGATCAACG	4080
	ACGGCCTGTG	GGACGTGTAC	AACAAGTACC	ACATGGGCAT	CACGGCCGAG	AACGTCGCCA	4140
	AGGAACACGA	CATCAGCCGC	GACCAGCAGG	ACGCCCTGGC	CCTGGCCAGC	CAGCAGAAGG	4200
	CCACCGCCGC	GCAGGAAGCC	GGCCGCTTCA	AGGACGAGAT	CGTTCCGGTC	TCGATCCCGC	4260
	AGCGCAAGGG	CGACCCGGTG	CTGTTCGACA	CCGACGAGTT	CATCAACAAG	AAGACCACCG	4320
15	CCGAAGCGCT	GGCGGGCCTG	CGCCCGGCCT	TCGACAAGGC	CGGCAGCGTG	ACCGCGGGCA	4380
	ACGCCTCGGG	CATCAACGAC	GGCGCCGCTG	CGGTGATGGT	GATGTCCGCC	GCCAAGGCGA	4440
	AGGAGCTGGG	CCTGACGCCC	ATGGCGCGCA	TCAAGAGCTT	CGGCACCAGC	GGCCTGGATC	4500
	CGGCCACCAT	GGGCATGGGC	CCGGTGCCGG	CCTCGCGCAA	GGCGCTGGAG	CGCGCCGGCT	4560
	GGCAGGTCGG	TGACGTGGAC	CTGTTCGAGC	TCAACGAAGC	CTTCGCCGCC	CAGGCCTGCG	4620
20	CGGTGAAC.AA	GGAGCTGGGC	GTGGATCCGG	CCAAGGTCAA	CGTCAACGGC	GGTGCCATCG	4680
	CCATCGGCCA	CCCCATCGGC	GCCTCCGGCT	GCCGCGTGCT	GGTGACGCTG	CTGCACGAGA	4740
	TGCAGCGCCG	GGACGCCAAG	AAGGGCCTGG	CCGCGCTGTG	CATCGGCGGC	GGCATGGGCG	4800
	TGTCGCTGAC	CGTCGAGCGC	TGATCAGAAG	AACCGGGCGG	CCCCGCGCCG	CCCGCCCGGC	4860
	GTTCCACGCG	GGTGCGCCGG	GATACCAGAC	GAACCAAACC	ACCAAGGGCT	TCGAGACGGC	4920
25	CCGAAGAAGG	AGAGACAGAT	GGCACAGAAA	CTGGCTTACG	TGACCGGCGG	CATGGGCGGC	4980
	ATCGGCACCT	CGATGTGCCA	GCGCCTGCAC	AAGGACGGCT	TCAAGGTGAT	CGCCGGCTGC	5040
	GGTCCGAGCC	GCGACCACCA	GAAGTGGATC	GATGAACAGG	CCGCGCTGGG	CTATACCTTC	5100
	TACGCCTCCG	TGGGCAACGT	GGCCGACTGG	GACTCCACCG	TGGCCGCCTT	CGAGAAGGTC	5160
	AAGGCCGAGC	ACGGCACCGT	GGACGTGCTG	GTGAACAACG	CCGGCATCAC	GCGTGACGGG	5220

	CAGTTCCGCA	AGATGAGCAA	GGCCGATTGG	CAGGCCGTGA	TGTCGACCAA	CCTCGACAGC	5280
	ATGTTCAACG	TCACCAAGCA	GGTGATCGAG	GGCATGCTGG	ACAAGGGCTG	GGGCCGGATC	5340
	ATCAACATCT	CCTCGGTCAA	CGGCGAGAAG	GGCCAGTTCG	GCCAGACCAA	CTACTCCGCC	5400
	GCCAAGGCCG	GCATGCACGG	CTTCTCGATG	GCGCTGGCGC	AGGAAGTGGC	GGCCAAGGGC	5460
5	GTGACGGTGA	ACACCGTGAG	CCCGGGCTAC	ATCGCCACGG	ACATGGTCAA	GGCCATCCGC	5520
	CAGGACGTGC	TGGACAAGAT	CATCGCCACC	ATTCCCATCC	GTCGCCTGGG	TACGCCGGAG	5580
	GAGATCGCCT	CCATCGTCGC	CTGGCTGGCC	GGCGAGGAGT	CGGGCTTCAC	CACCGGTGCC	5640
	GACTTCAGCT	GCAACGGCGG	CCTGCACATG	GGCTGAGGCC	CGCGGCTCCA	TGCCCACCTG	5700
	CGTGGGCATG	GACGGGCCGA	AGGACCCGAG	CTCTGCGAGG	GTGCGGCCTG	CAAGGCTGAG	5760
10	GCCTGCTGCG	CCGCGTGCCC	GCGAGGGCAC	GTGCCGAAGC	ACCAAAAGGC	CGCGCATTGC	5820
	GCGGCCTTTT	CCTTTCTGGA	TCGGTGCGGA	CGGGTGCCGC	GTCAGGCAGG	GCAGGGCCCC	5880
	CGGGCCTTCA	CTCCACCATG	CCCGACATGA	AGTACTTGAT	CAGCCCCTTG	GCCGCGAAGC	5940
	CCAGCATGCC	GAAGCCCAGC	GCCAGGAACA	GCACGAAGGT	GCCGAACTTG	CCGGCCTTCG	6000
	ACTCGCGCGC	GAGCTGAAAG	ATGATGAATG	CCATGTAGAG	CATGAAGGCC	GTGACGCCGA	6060
15	CGGTCAGGCC	CAGCTGGGCA	ATGTTTTCCT	CGTTGATTTC	GAACATCGTT	TGTTGTCTCA	6120
	GGCTGCTGCA	CGCGGCTGAC	GTGCTCGCCG	CGCGGCCGGG	CCCCAACTGC	CCGCAGCGGT	6180
	TCTCGATCAG	GTTCTCAAGG	CATCTCGTGC	CACTGGGAGG	TGTCCACCAG	GTCGCGGTAG	6240
	GCGTGCCAGC	TCGAATGCGC	CAGCCACGGC	ACTACCACGA	TCAGGCCCAG	CAGCAGCGTG	6300
	GCCATGCCCA	GCAGCGTCAG	CGCCATGATC	AGCGCCGCCC	ACAGCGCCAG	CGGCAGTGGG	6360
20	TGCTGCATCA	CCACGCGCCA	GCTCGTGAGC	ACCGCCACCA	GCACGCCCAC	GTGGCGGTCC	6420
	AGCAGCATCG	GGATCC					6436

### (2) INFORMATION FOR SEQ ID NO.: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1161 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULAR TYPE: oligonucleotide

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 2:

	ATGTCGGGCC	TGAACCTGCC	GATGCAGGCC	ATGACCAAGC	TGCAGGGCGA	GTACCTCAAC	60
	GAGGCGACGG	CGCTGTGGAA	CCAGACGCTG	GGCCGCCTGC	AGCCCGACGG	CAGCGCCCAA	120
5	CCGGCCAAGC	TGGGCGACCG	GCGCTTCTCG	GCCGAGGACT	GGGCCAAGAA	CCCCGCCGCG	180
	GCCTACCTGG	CGCAGGTCTA	CCTGCTCAAT	GCCCGCACGC	TGATGCAGAT	GGCCGAGTCC	240
	ATCGAGGGCG	ACGCCAAGGC	CAAGGCGCGC	GTGCGCTTCG	CCGTGCAGCA	GTGGATCGAC	300
	GCCGCGGCGC	CGAGCAACTT	CCTGGCGCTC	AATCCCGAGG	CGCAGCGCAA	GGCGCTGGAG	360
	ACCAAGGGGG	AGAGCATCAG	CCAGGGCCTG	CAGCAGCTGT	GGCATGACAT	CCAGCAGGGC	420
0	CACGTGTCGC	AGACGGACGA	GAGCGTGTTC	GAGGTGGGCA	AGAACGTCGC	CACCACCGAG	480
	GGCGCGGTCG	TGTACGAGAA	CGACCTGTTC	CAGCTCATCG	AGTACAAGCC	GCTGACGCCC	540
	AAGGTGCACG	AGAAGCCGAT	GCTGTTCGTG	CCGCCGTGCA	TCAACAAGTA	CTACATCCTG	600
	GACCTGCAGC	CGGACAACAG	CCTCATCCGC	TACACCGTCG	CCCAGGGCCA	CCGGGTGTTC	660
	GTGGTGAGCT	GGCGCAACCC	CGACGCCTCC	GTCGCCGGCA	AGACCTGGGA	CGACTACGTG	720
5	GAGCAGGGCG	TGATCCGCGC	CATCCGCGTG	ATGCAGCAGA	TCACGGGGCA	CGAGAAGGTC	780
	AACGCGCTGG	GCTTCTGCGT	CGGCGGCACC	ATCCTGAGCA	CGGCGCTGGC	GGTGCTGGCC	840
	GCGCGCGGCG	AGCAGCCCGC	GGCGAGCCTG	ACGCTGCTGA	CCACGCTGCT	GGACTTCAGC	900
	AACACCGGCG	TGCTGGACCT	GTTCATCGAC	GAGGCCGGCG	TGCGCCTGCG	CGAGATGACC	960
	ATCGGCGAGA	AGGCGCCCAA	CGGCCCGGGC	CTGCTCAACG	GCAAGGAGCT	GGCCACCACC	1020
0	TTCAGCTTCC	TGCGCCCGAA	CGACCTGGTC	TGGAACTACG	TGGTGGGCAA	CTACCTCAAG	1080
	GGCGAGGCGC	CGCCGCCCTT	CGACCTGCTG	TACTGGAACT	CCGACAGCAC	CAACATGGCC	1140
	GGGCCCATGT	TCTGCTGGTA	CCTGCGCAAC	ACCTACCTGG	AGAACAAGTT	GCGCGTTCCC	1200
	GGTGCCCTGA	CCATCTGCGG	CGAGAAGGTG	GACCTCTCGC	GCATCGAGGC	GCCGGTGTAC	1260
	TTCTACGGTT	CGCGCGAGGA	CCACATCGTG	CCCTGGGAAT	CGGCCTACGC	CGGCACGCAG	1320
5	ATGCTGAGCG	GCCCCAAGCG	CTATGTCCTG	GGTGCGTCTG	GCCACATCGC	CGGCGTGATC	1380
	AACCCCCCGC	AGAAGAAGAA	GCGCAGCTAC	TGGACCAACG	AGCAGCTCGA	CGGCGACTTC	1440
	AACCAGTGGC	TGGAAGGCTC	CACCGAGCAT	CCTGGCAGCT	GGTGGACCGA	CTGGAGCGAC	1500
	TGGCTCAAGC	AGCACGCGGG	CAAGGAAATC	GCCGCACCCA	AGACTCCCGG	CAACAAGACC	1560
	CACAAGCCCA	TCGAGCCCGC	CCCCGGGCGT	TACGTGAAGC	AGAAGGCCTG	A	1611

- (2) INFORMATION FOR SEQ ID NO.: 3:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 1179 base pairs
    - (B) TYPE: nucleic acid
    - (C) STRANDEDNESS: double
    - (D) TOPOLOGY : linear
  - (ii) MOLECULAR TYPE: oligonucleotide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:3:

10	ATGACCGACA	TCGTCATCGT	CGCCGCAGCC	CGCACCGCCG	TGGGCAAGTT	CGGCGGCACG	60
	CTGGCCAAGA	CCCCCGCTCC	GGAGCTGGGC	GCCGTGGTCA	TCAAGGCCCT	GCTGGAGAAG	120
	ACGGGCGTCA	AGCCCGACCA	GATCGGTGAA	GTCATCATGG	GCCAGGTGCT	GGCCGCCGGC	180
	GCGGGCCAGA	ACCCCGCGCG	CCAGGCGATG	ATGAAGGCGG	GCATCGCCAA	GGAAACGCCG	240
	GCGCTGACCA	TCAACGCCGT	GTGCGGCTCC	GGCCTCAAGG	CCGTGATGCT	GGCCGCCCAG	300
15	GCCATCGCCT	GGGGCGACAG	CGACATCGTC	ATCGCCGGCG	GCCAGGAGAA	CATGAGCGCC	360
	AGCCCGCACG	TGCTGATGGG	CAGCCGCGAC	GGCCAGCGCA	TGGGCGACTG	GAAGATGGTC	420
	GACACCATGA	TCAACGACGG	CCTGTGGGAC	GTGTACAACA	AGTACCACAT	GGGCATCACG	480
	GCCGAGAACG	TCGCCAAGGA	ACACGACATC	AGCCGCGACC	AGCAGGACGC	CCTGGCCCTG	540
	GCCAGCCAGC	AGAAGGCCAC	CGCCGCGCAG	GAAGCCGGCC	GCTTCAAGGA	CGAGATCGTT	600
20	CCGGTCTCGA	TCCCGCAGCG	CAAGGCCGAC	CCGGTGCTGT	TCGACACCGA	CGAGTTCATC	660
	AACAAGAAGA	CCACCGCCGA	AGCGCTGGCG	GGCCTGCGCC	CGGCCTTCGA	CAAGGCCGGC	720
	AGCGTGACCG	CGGGCAACGC	CTCGGGCATC	AACGACGCCG	CCGCTGCGGT	GATGGTGATG	780
	TCCGCCGCCA	AGGCGAAGGA	GCTGGGCCTG	ACGCCCATGG	CGCGCATCAA	GAGCTTCGGC	840
	ACCAGCGGCC	TGGATCCGGC	CACCATGGGC	ATGGGCCCGG	TGCCGGCCTC	GCGCAAGGCG	900
25	CTGGAGCGCG	CCGGCTGGCA	GGTCGGTGAC	GTGGACCTGT	TCGAGCTCAA	CGAAGCCTTC	960
	GCCGCCCAGG	CCTGCGCGGT	GAACAAGGAG	CTGGGCGTGG	ATCCGGCCAA	GGTCAACGTC	1020
	AACGGCGGTG	CCATCGCCAT	CGGCCACCCC	ATCGGCGCCT	CCGGCTGCCG	CGTGCTGGTG	1080
	ACGCTGCTGC	ACGAGATGCA	GCGCCGGGAC	GCCAAGAAGG	GCCTGGCCGC	GCTGTGCATC	1140
	GGCGGCGGCA	TGGGCGTGTC	GCTGACCGTC	GAGCGCTGA			1179

(2)	INFORMATION	FOR	SEO	ID	NO	. 4.

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 738 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: double
  - (D) TOPOLOGY : linear
- (ii) MOLECULAR TYPE: oligonucleotide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 4:

10	ATGGCACAGA	AACTGGCTTA	CGTGACCGGC	GGCATGGGCG	GCATCGGCAC	CTCGATGTGC	60
	CAGCGCCTGC	ACAAGGACGG	CTTCAAGGTG	ATCGCCGGCT	GCGGTCCGAG	CCGCGACCAC	120
	CAGAAGTGGA	TCGATGAACA	GGCCGCGCTG	GGCTATACCT	TCTACGCCTC	CGTGGGCAAC	180
	GTGGCCGACT	GGGACTCCAC	CGTGGCCGCC	TTCGAGAAGG	TCAAGGCCGA	GCACGGCACC	240
	GTGGACGTGC	TGGTGAACAA	CGCCGGCATC	ACGCGTGACG	GGCAGTTCCG	CAAGATGAGC	300
15	AAGGCCGATT	GGCAGGCCGT	GATGTCGACC	AACCTCGACA	GCATGTTCAA	CGTCACCAAG	360
	CAGGTGATCG	AGGGCATGCT	GGACAAGGGC	TGGGGCCGGA	TCATCAACAT	CTCCTCGGTC	420
	AACGGCGAGA	AGGGCCAGTT	CGGCCAGACC	AACTACTCCG	CCGCCAAGGC	CGGCATGCAC	480
	GGCTTCTCGA	TGGCGCTGGC	GCAGGAAGTG	GCGGCCAAGG	GCGTGACGGT	GAACACCGTG	540
	AGCCCGGGCT	ACATCGCCAC	GGACATGGTC	AAGGCCATCC	GCCAGGACGT	GCTGGACAAG	600
20	ATCATCGCCA	CCATTCCCAT	CCGTCGCCTG	GGTACGCCGG	AGGAGATCGC	CTCCATCGTC	660
	GCCTGGCTGG	CCGGCGAGGA	GTCGGGCTTC	ACCACCGGTG	CCGACTTCAG	CTGCAACGGC	720
	GGCCTGCACA	TGGGCTGA					738

# (2) INFORMATION FOR SEQ ID NO.: 5:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 536 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (ii) MOLECULAR TYPE: peptide

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 5:

5	Met	Ser	Gly	Leu	Asn	Leu	Pro	Met	Gln	Ala	Met	Thr	Lys	Leu	Gln	Gly
					5					10					15	
	Glu	Tyr	Leu	Asn	Glu	Ala	Thr	Ala	Leu	Trp	Asn	Gln	Thr	Leu	Gly	Arg
				20					25					30		
	Leu	Gln	Pro	Asp	Gly	Ser	Ala	Gln	Pro	Ala	Lys	Leu	Gly	Asp	Arg	Arg
10			35					40					45			
	Phe	Ser	Ala	Glu	Asp	Trp	Ala	Lys	Asn	Pro	Ala	Ala	Ala	Tyr	Leu	Ala
		50					55					60				
	Gln	Val	Tyr	Leu	Leu	Asn	Ala	Arg	Thr	Leu	Met	Gln	Met	Ala	Glu	Ser
	65					70					75					80
15	He	Glu	Gly	Asp	Ala	Lys	Ala	Lys	Ala	Arg	Val	Arg	Phe	Ala	Val	Gln
					85					90					95	
	Gln	Trp	He	Asp	Ala	Ala	Ala	Pro	Ser	Asn	Phe	Leu	Ala	Leu	Asn	Pro
				100					105					110		
	Glu	Ala	Gln	Arg	Lys	Ala	Leu	Glu	Thr	Lys	Gly	Glu	Ser	Ile	Ser	Gln
20			115					120					125			
	Gly	Leu	Gln	Gln	Leu	Trp	His	Asp	Ile	Gln	Gln	Gly	His	Val	Ser	Gln
		130					135					140				
	Thr	Asp	Glu	Ser	Val	Phe	Glu	Val	Gly	Lys	Asn	Val	Ala	Thr	Thr	Glu
	145					150					155					160
25	Gly	Ala	Val	Val	Tyr	Glu	Asn	Asp	Leu	Phe	Gln	Leu	Ile	Glu	Tyr	Lys
					165					170					175	
	Pro	Leu	Thr	Pro	Lys	Val	His	Glu	Lys	Pro	Met	Leu	Phe	Val	Pro	Pro
				180					185					190		
	Cys	lle	Asn	Lys	Tyr	Tyr	He	Leu	Asp	Leu	Gln	Pro	Asp	Asn	Ser	Leu
30			195					200					205			
	lle	Arg	Tyr	Thr	Val	Ala	Gln	Gly	His	Arg	Val	Phe	Va1	Val	Ser	Trp
		210					215					220				

	Arg	Asn	Pro	Asp	Ala	Ser	Val	Ala	Gly	Lys	Thr	Trp	Asp	Asp	Tyr	Val
	225					230					235					240
	Glu	Gln	Gly	Val	He	Arg	Ala	He	Arg	Val	Met	Gln	Gln	Пe	Thr	Gly
					245					250					255	
5	His	Glu	Lys	Val	Asn	Ala	Leu	Gly	Phe	Cys	Val	Gly	Gly	Thr	Ile	Leu
				260					265					270		
	Ser	Thr	Ala	Leu	Ala	Val	Leu	Ala	Ala	Arg	Gly	Glu	Gln	Pro	Ala	Ala
			275					280					285			
	Ser	Leu	Thr	Leu	Leu	Thr	Thr	Leu	Leu	Asp	Phe	Ser	Asn	Thr	Gly	Val
10		290					295					300				
	Leu	Asp	Leu	Phe	He	Asp	Glu	Ala	Gly	Val	Arg	Leu	Arg	Glu	Met	Thr
	305					310					315					320
	He	Gly	Glu	Lys	Ala	Pro	Asn	Gly	Pro	Gly	Leu	Leu	Asn	Gly	Lys	Glu
			_		325					330					335	
15	Leu	Ala	Thr	Thr	Phe	Ser	Phe	Leu	Arg	Pro	Asn	Asp	Leu	Val	Trp	Asn
				340		_			345					350		
	Tyr	Val	Val	Gly	Asn	Tyr	Leu	Lys	Gly	Glu	Ala	Pro	Pro	Pro	Phe	Asp
	1	1	355	т				360	_				365			
20	Leu	Leu 370	Tyr	Trp	Asn	Ser	Asp	Ser	Thr	Asn	Met	Ala	Gly	Pro	Met	Phe
20	Cys		т	1			375					380				
	385	Trp	Tyr	Leu	Arg	Asn 390	Thr	Tyr	Leu	Glu	Asn	Lys	Leu	Arg	Val	Pro
	Gly	Ala	Leu	Thr	Ile	Cys	C1	C1			395					400
	diy	піа	Leu	1111	405	Cys	Gly	Glu	Lys	Val	Asp	Leu	Ser	Arg	He	Glu
25	Ala	Pro	Val	Tvr	Phe	Tyr	Gly	Ser	A	410			7.	., ,	415	_
20		110	141	420	THE	1 9 1	diy	ser	Arg 425	Glu	Asp	His	He	Val	Pro	Trp
	Glu	Ser	Ala	Tyr	Ala	Gly	Thr	Gln	Met	Leu	Ser	Cl	D	430		т.
	0.0		435	.,.	nia	uiy	1111	440	мет	Leu	зег	Gly	Pro	Lys	Arg	Tyr
	Val	Leu	Gly	Ala	Ser	Glv	His	He	Ala	C1	32-1		445			
30		450	۵.,	a	JCI	uly	455	116	лій	Gly	Val	I 1e 460	Asn	Pro	Pro	Gln
- •	Lys	Lys	Lys	Arg	Ser	Tvr	Trp	Thr	400	C1	C1			C1.		Di.
	465	~y 3	<b>-</b> ) 3	νι g	261	470	11 b	1111	ASII	Glu		Leu	Asp	Gly	Asp	Phe
	100					470					475					480

As first fir

10

15

- (2) INFORMATION FOR SEQ ID NO.: 6:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 392 amino acids
    - (B) TYPE: amino acid
    - (C) STRANDEDNESS: single
    - (D) TOPOLOGY : linear
  - (ii) MOLECULAR TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 6:

Met Thr Asp lle Val Ile Val Ala Ala Ala Arg Thr Ala Val Gly Lys

- 5 10 15

  Phe Gly Gly Thr Leu Ala Lys Thr Pro Ala Pro Glu Leu Gly Ala Val
  20 25 30

  Val lle Lys Ala Leu Leu Glu Lys Thr Gly Val Lys Pro Asp Gln lle
  25 35
- Gly Glu Val 11e Met Gly Gln Val Leu Ala Ala Gly Ala Gly Gln Asn 50 55 60
  - Pro Ala Arg Gln Ala Met Met Lys Ala Gly Ile Ala Lys Glu Thr Pro 65 70 75 80
- 30 Ala Leu Thr lle Asn Ala Val Cys Gly Ser Gly Leu Lys Ala Val 85 90 95

	Leu	Ala	Ala	GIn	Ala	He	Ala	Trp	Gly	Asp	Ser	Asp	Ile	Val	He	Ala
				100					105					110		
	Gly	Gly	Gln	Glu	Asn	Met	Ser	Ala	Ser	Pro	His	Val	Leu	Met	Gly	Ser
			115					120					125			
5	Arg	Asp	Gly	Gln	Arg	Met	Gly	Asp	Trp	Lys	Met	Val	Asp	Thr	Met	Ile
		130					135					140				
	Asn	Asp	Gly	Leu	Trp	Asp	Val	Tyr	Asn	Lys	Туг	His	Met	Gly	He	Thr
	145					150					155					160
	Ala	Glu	Asn	Val	Ala	Lys	Glu	His	Asp	lle	Ser	Arg	Asp	Gln	Gln	Asp
10					165					170					175	
	Ala	Leu	Ala	Leu	Ala	Ser	Gln	Gln	Lys	Ala	Thr	Ala	Ala	Gln	Glu	Ala
				180					185					190		
	Gly	Arg	Phe	Lys	Asp	Glu	Ile	Val	Pro	Val	Ser	Иe	Pro	Gln	Arg	Lys
			195					200					205			
15	Gly	Asp	Pro	Va I	Leu	Phe	Asp	Thr	Asp	Glu	Phe	Ite	Asn	Lys	Lys	Thr
		210					215					220				
	Thr	Ala	Glu	Ala	Leu	Ala	Gly	Leu	Arg	Pro	Ala	Phe	Asp	Lys	Ala	Gly
	225					230					235					240
	Ser	Val	Thr	Ala	Gly	Asn	Ala	Ser	Gly	Ιle	Asn	Asp	Gly	Ala	Ala	Ala
20					245					250					255	
	Val	Met	Val	Met	Ser	Ala	Ala	Lys	Ala	Lys	Glu	Leu	Gly	Leu	Thr	Pro
				260					265					270		
	Met	Ala	Arg	He	Lys	Ser	Phe	Gly	Thr	Ser	Gly	Leu	Asp	Pro	Ala	Thr
			275					280					285			
25	Met	Gly	Met	Gly	Pro	Val	Pro	Ala	Ser	Arg	Lys	Ala	Leu	Glu	Arg	Ala
		290					295					300				
	Gly	Trp	GIn	\'al	Gly	Asp	Val	Asp	Leu	Phe	Glu	Leu	Asn	Glu	Ala	Phe
	305			** -		310					315					320
	Ala	Ala	Gln	Ala	Cys	Ala	Val	Asn	Lys	Glu	Leu	Gly	Val	Asp	Pı o	Ala
30					325					330					335	
	Lys	Val	Asn	Val	Asn	Gly	Gly	Ala	lle	Ala	He	Gly	His	Pro	He	Gly
				340					345					350		

WO 99/36547 PCT/KR99/00031

Ala Ser Gly Cys Arg Val Leu Val Thr Leu Leu His Glu Met Gln Arg

Arg Asp Ala Lys Lys Gly Leu Ala Leu Cys Leu Gly Gly Met

370 Leu Cys Leu Gly Gly Met

375 Leu Cys Leu Cys Leu Gly Gly Met

375 Leu Cys Le

(2) INFORMATION FOR SEQ ID NO.: 7

. ,

15

- 10 (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 245 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
  - (ii) MOLECULAR TYPE: peptide
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.:7:

Met Ala Gin Lys Leu Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly 5 10 15 Cys Gln Arg Leu His Lys Asp Gly Phe Lys Val Ile Ala 20 25 30 Gly Cys Gly Pro Ser Arg Asp His Gln Lys Trp lle Asp Glu Gln Ala 35 40 45 Ala Leu Gly Tyr Thr Phe Tyr Ala Ser Val Gly Asn Val Ala Asp Trp 25 50 55 Ser Thr Val Ala Ala Phe Glu Lys Val Lys Ala Glu His Gly Thr 65 70 75 80 Val Asp Val Leu Val Asn Asn Ala Gly 11e Thr Arg Asp Gly Gln Phe 85 90 95 Arg Lys Met Ser Lys Ala Asp Trp Gln Ala Val Met Ser Thr 100 105 110

WO 99/36547 PCT/KR99/00031

Phe Asn Val Thr Lys Gin Val Ile Glu Gly Met Leu Asp 115 120 Lys Gly Trp Gly Arg Ile Ile Asn Ile Ser Ser Val Asn Gly Glu Lys 130 135 140 Gly Gln Thr Asn Tyr Ser Ala Ala Lys Ala Gly Met His 145 150 155 160 Gly Ser Met Ala Leu Ala Gln Glu Val Ala Ala Lys Thr 165 170 175 Asn Thr Val Ser Pro Gly Tyr He Ala Thr Asp Met Val Lvs Ala 10 180 185 190 Gln Asp Val Leu Asp Lys Ile Ile Ala Thr Ile Pro Ile Arg 195 200 205 Thr Pro Glu Glu Ile Ala Ser He Val Ala Trp Leu Ala 210 215 220 Gly Glu Glu Ser Gly Phe Thr Thr Gly Ala Asp Phe Ser Cys Asn Glv 225 230 235 240 Gly Leu His Met Gly 245

20

25

- (2) INFORMATION FOR SEQ ID NO.: 8:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 315 base pairs
      - (B) TYPE: nucleic acid
      - (C) STRANDEDNESS: single
    - (D) TOPOLOGY : linear
  - (ii) MOLECULAR TYPE: promoter gene
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO.: 8:

ACACCGCGCC	GAGCAAGGTG	CCGTTGGGCG	CCATGGCTTC	GGCCACGGCC	ATCATCAGCA	60
CCACGTAACA	GCCATGCCAG	AGCAACCAAG	TACATAGCAA	AAACCCGCAA	TTACGCAGAA	120
TGACGTATTT	CGTACAATGA	AAACTGTTGT	CATGATGCGG	TAAGACACGA	AGCCTACAAC	180
GCGATCCAGC	AACGGTTTTC	GTGAAAAAGT	CCTCAGGAGA	CGAGCGTGAC	ACTGCAAATC	240
CCATTCCCGC	ACTGCAACAG	CTTGGCGACA	ACGCCACGGC	GCTGAGTGCC	GCCATCTGGG	300
AACGTGCGCG	CGATG					315

### INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 99/00031

### A. CLASSIFICATION OF SUBJECT MATTER

IPC6: C 12 N 15/52,15/53,15/54,1/21 // (C 12 N 1/21; C 12 R 1:05,1:09)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC6: C 12 N 15/52.15/54.1/21

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

### WPI, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	WO 92/19 747 A1 (IMPERIAL CHEMICAL INDUSTRIES PLC) 12 November 1992 (12.11.92), claims 1,3,5.	1
х	WO 95/05 472 A2 (MICHIGAN STATE UNIVERSITY) 23 February 1995 (23.02.95), claims 1,13,14.	1
х	Patent Abstracts of Japan, Vol.97, No.9, 1997, JP 9-131186 A (AGENCY OF IND. SCIENCE et al.) 30 September 1997 (30.09.97).	1
х	WO 93/02 194 A1 (IMPERIAL CHEMICAL INDUSTRIES PLC) 04 February 1993 (04.02.93), abstract.	1
Further	documents are listed in the continuation of Box C. See patent family annex.	L

considered to be of particular relevance  E'e antier application or patent but published on or after the international  filing date  L' decument which may throw doubts on priority claim(s) or which is  cited to establish the publication date of another citation or other  special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other  means  "P" document published prior to the international filing date but later than the priority date claimed	considered novel or cannot be considered to involve an inventive step when the document is taken shows.  "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination with one or more other such documents, such combination.
Date of the actual completion of the international search	Date of mailing of the international search report
04 May 1999 (04.05.99)	31 May 1999 (31.05.99)
Name and mailing adress of the ISA/AT	Authorized officer
Austrian Patent Office	
Kohlmarkt 8-10; A-1014 Vienna	Wolf
Facsimile No. 1/53424/200	Telephone No. 1/53424/436

...T" later document published after the international filing date or priority

ANSOCIO: «WO

Special categories of cited documents: ,A" document defining the general state of the art which is not

### INTERNATIONAL SEARCH REPORT

Information on patent family members

Incanational application No. PCT/KR 99/00031

Docu	itent docum n search n ment de br	eaart	Datum der Veröffentlichung Publication date Date de publication	Mitgliedler) der Patentfamille Patent family member(s) Meebre(s) de la famille de brevets	Datum der Veröffentlichung Publication date Date de publications
NO	A1	9219747	12-11-1992	AU A1 15797/9 AU B2 65581 CA AA 210925 EP A1 58989 GB AO 910875 JP T2 651042 US A 550227	21-12-1992 6 12-01-1995 1 25-10-1992 9 06-04-1994 6 12-06-1991 24-11-1996 26-03-1996
<b>но</b>		9505472	23-02-1995	4112 43.12 F. A.	100-100-100-100-100-100-100-100-100-100
MO :	A1	9302194	04-02-1993	AU A1 23127/92 AU B2 67159 CA AA 211343 EP A1 59443 GB A0 911524 JP T2 750192	

BNSDOCID: <WO