松山研全体ゼミ勉強会 原子炉物理 座学

1 序論

1.1 原子炉/原子炉物理とは何か

「原子炉物理」の定義 -

原子炉物理 (Reactor Physics) とは、原子炉内で生じる中性子の挙動と原子核の反応を予測する学問である。

言葉の定義にあるように、原子炉の物理現象 (Physics of Reactor) 全てを取り扱うのではなく、核分裂反応を中核とする中性子と原子核の相互作用に焦点をあてた学問である。しかしながら、中性子と原子核の相互作用の確率は原子炉の体系に依存するため、他の物理現象の影響 (例:温度、物質組成の変化) を受ける。したがって、最終的には様々な物理現象を考慮する必要がある。

では、そもそも原子炉とは何であろうか。核燃料物質、核原料物質、原子炉及び放射線の定義に関する政令では次のような定義を用いている。

- 「原子炉」の定義 -

核燃料を用い、**制御可能な核分裂の連鎖反応**を**中性子源無しに持続**できる装置、また は持続する恐れのある装置以外のもの

「核燃料物質、核原料物質、原子炉及び放射線の定義に関する政令」より要約

核分裂反応は、重い原子核が2つに分裂し複数の中性子を放出する反応である。核分裂 反応は主に中性子が原子核に吸収されることで発生するため、核分裂で発生した中性子 (核分裂中性子)で核分裂反応を再び引き起こすことができる。これが連鎖反応と呼ばれ る所以である。もし、核分裂中性子のみで一定の核分裂反応速度を維持できるなら、中性 子源無しに核分裂連鎖反応を持続させられる。これが原子炉の「臨界」である。また、核 分裂反応速度が増加していく状態を**超臨界**と呼ぶ。逆に核分裂反応が収束していく状態を**未臨界**と呼ぶ。原子炉には、体系の臨界性を変化させ核分裂連鎖反応を制御することが求められる。

1.2 原子炉の利益

原子炉には様々な用途が存在する。その用途は次のように大別できる。

- 核反応によるエネルギーの利用
- 動率的な中性子源としての利用(放射線利用)

1つ目は核分裂反応で発生したエネルギーを熱として取り出し利用することである。現在最も盛んなエネルギー利用法は**発電**である。原子力発電所では核エネルギーを用いて冷却材(主に水)を加熱し、蒸気タービンを回して発電する。また、将来的にはより冷却材温度の高い高温ガス炉により、高熱を利用した**水素製造**や**製鉄**を行うことも期待されている。

現状主力となっている発電方法は、化石燃料の燃焼時の熱エネルギーを利用した火力発電であるが、温室効果ガス排出や資源が地理的に偏在していること、燃料費が高く変動性もあることが課題となっている。また、水素製造や製鉄においても化石燃料を用いることが課題となっている。例えば現在主流の水素製造法であるメタン水蒸気改質法の化学反応式は

$$\mathbf{CH4} + 2 \,\mathrm{H}_2\mathrm{O} \longrightarrow \mathbf{CO2} + 4 \,\mathrm{H}_2 \tag{1.2.1}$$

であり、天然ガス由来のメタンを消費し、二酸化炭素を排出することが欠点となっている。 製鉄については、高炉で鉄鉱石から銑鉄を得る際の正味の化学反応式は

$$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$$
 (1.2.2)

である。日本の場合、2023 年度時点で二酸化炭素排出の1割強が製鉄由来であり、発電、 道路輸送に次いで多い二酸化炭素排出源となっている[1]。

原子炉をエネルギー源として利用すれば、これらの問題を解決することができる。核分裂反応による温室効果ガス排出が無く、エネルギー密度が高いため少量の燃料を輸入するだけで大量のエネルギー源を確保できる。天然ガスの主成分であるメタンの燃焼と、主な核燃料であるウラン 235 の核分裂反応例の比較を次に示す。エネルギーの単位はウラン235、およびメタン分子 1 つあたりのエネルギー(メガ電子ボルト)、メタンの反応熱は低

位発熱量である。

235
U + n \longrightarrow 92 Kr + 141 Ba + 3 n + 約 **200** [MeV/n] (1.2.3)

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + 8.3 \times 10^{-6} \text{ [MeV/n]}$$
 (1.2.4)

発生するエネルギー核分裂反応はメタン燃焼の 2.4×10^7 倍であり、エネルギー密度の差は歴然である。これこそ原子炉のエネルギー利用の最大の利点である。

問題 1.1.

液化 LNG ガスと二酸化ウランペレットの**質量に対する熱量、体積当たりの熱量**を 比較せよ。必要に応じて以下の値を使用すること。

- アボガドロ定数: $N_A = 6.022140857 \times 10^{23} \text{ [mol}^{-1]}$
- 電子ボルトからジュールへの換算: $1.6021766208 \times 10^{-19}$ [J/eV]
- 統一原子質量: 1.66053906892 × 10⁻²⁴ [g/u]
- 二酸化ウラン(面心立方格子、蛍石型) 単位格子あたりに酸素 8 つ、ウラン 4 つ 格子定数: 0.547 [nm]
- O₂ 原子量 15.9994 [u]
- ²³⁵U、²³⁸U 原子質量 それぞれ 235.0439 [u]、238.0508 [u]
- ²³⁵U 核分裂あたりの平均エネルギー 202.5 [MeV]
- LNG 発熱量 54.6 [MJ/kg]
- LNG 液密度 0.460 [kg/L]

原子炉を用いれば、水素製造は高温の水蒸気*1を用いて水から二酸化炭素排出無しで水 素を製造できる。正味の化学反応式は

$$2 H_2 O \longrightarrow 2 H_2 + O_2 \tag{1.2.5}$$

である。この手法であれば、水以外の天然資源を使わず、かつ温室効果ガスを排出せずに 水素を製造できる。また、発生した水素を用いて水素還元製鉄と呼ばれる温室効果ガスを 排出しない製鉄も可能となる。

$$Fe_2O_3 + 3H_2 \longrightarrow 2Fe + 3H_2O$$
 (1.2.6)

^{*1} 高温水蒸気電解法で 700°C、熱化学法 IS プロセスで 900°C

このように、電力以外の用途についても、原子炉は環境に良いエネルギー源として魅力的な存在である。

2つ目は、放射線源としての利用である。原子炉は中性子源無しに核分裂連鎖反応を維持できるため、加速器中性子源とは異なり簡単かつ電力消費無しに大量の中性子を発生させることができる。中性子は核反応を用いて目的とする核種を製造したり、減らしたい核種を他の核種に変換することができるため、原子炉中性子源は効率的な中性子源として利用されている。主な核変換としては以下の例がある。

- 核燃料の増殖: 238 U + n $\xrightarrow{\text{id}$ 模反応 239 U $\xrightarrow{\beta^-}$ 239 Np $\xrightarrow{\beta^-}$ 239 Pu
- 放射性同位体 (Radioisotope; RI) 製造: ${}^{98}\text{Mo} + \text{n} \longrightarrow {}^{99}\text{Mo} \xrightarrow{\beta^-} {}^{99m}\text{Tc}$
- 核廃棄物の核変換 マイナーアクチノイド (U、Pu 以外のアクチノイド):

237
Np(半減期 214 万年) + n $\xrightarrow{\overline{k} \ominus \mathbb{R}}$ 104 Tc + 130 Sn + 4 n 104 Tc $\xrightarrow{\beta^-}$ 104 Ru 130 Sn $\xrightarrow{\beta^-}$ 130 Sb $\xrightarrow{\beta^-}$ 130 Sb $\xrightarrow{\beta^-}$ 130 Te(安定核)

長寿命核分裂生成物 (LLFP:Long-lived fission products):

$$^{129}I(半減期 1570 万年) + n \longrightarrow ^{130}I \xrightarrow{\beta^{-}} ^{130}Xe(安定核)$$

ウラン 238 から作られるプルトニウム 239 は、ウラン 235 と同じく核分裂を起こしやすい核種であり核燃料として利用できる。この反応を使えば核燃料を燃やしながら核燃料物質を新たに製造でき、場合によっては消費量を超える量をも製造できる可能性がある。このような燃料を増殖する原子炉を**増殖炉**と呼ぶ。核燃料以外の放射性同位体の製造としては、ここで挙げた医療用 RI である 99 Mo/ 99m Tc を中心に様々な核種の製造が期待されている。現在 99 Mo/ 99m Tc の製造は海外の原子炉のみであり、多くが老朽化している上、半減期(半分の量が崩壊して他の核種になるのにかかる時間)が短いためテロや自然環境の影響を受けやすい空輸で輸入せざるを得ない [2]。故に国内で製造できる原子炉を確保することが重要な課題となっている。核廃棄物の核変換は、使用済み核燃料によって発生

した廃棄物の長半減期の放射性同位体を短半減期、安定核種に変換して処分の負担を軽減することが目的である。日本では、放射性廃棄物を廃棄物・有用な物質に分離し、長寿命核種を変換する**分離変換**が提案されており、最終処分場の面積を最大 1/100 に抑え、1 万年程度かかっていたウラン鉱石と同等の毒性に落ちるまでの期間が 300 年まで短縮することができる。

核変換以外の放射線源としての用途としては、中性子ビームの利用がある。原子炉で発生した中性子をビームとして取り出し、物質の微細構造を分析したり、放射線透過による画像化、ホウ素中性子捕獲療法によるがん治療を行うことができる。日本原子力研究開発機構の研究炉「JRR-3」は中性子ビーム取り出し用の施設が備わっており、様々な研究に利用されている。

1.3 核燃料

主な核燃料物質としては**ウラン 235** がある。ウランは鉱石や海水中に存在するため容易に入手できる。しかしながら、ウラン 235 の天然存在比は 0.72 at% と少数であり、それ以外のほぼ全ては核分裂を起こしにくいウラン 238 で占められている。故に天然存在比のウランでは原子炉を臨界にしにくい。故に、殆どの原子炉ではウラン 235 を**濃縮**し臨界しやすくして用いる。濃縮の度合いを**濃縮度**と呼び、20 wt% 未満のものを**低濃縮ウラン** (Low Enriched Uranium; LEU)、それ以上のものを**高濃縮ウラン** (High Enriched Uranium; HEU) と呼ぶ。一方濃縮時に発生したウラン 235 が天然存在比未満のウランは減損ウランや**劣化ウラン** (Depleted Uranium; DU) と呼ばれる。一般的な商用炉の濃縮度は $3\sim5$ wt% であり、LEU に分類される。一方、研究炉や原子力艦船用原子炉 *2 、核兵器 *3 などには HEU を利用する。HEU は核兵器拡散リスクが高いため商用炉では用いず、研究炉でも利用を最小限に抑える取り組みがなされている。なお、20% を境界とするのは、核兵器に必要な 90% 付近までの濃縮に必要な分離作業の大半が 20% までの濃縮に費やされるためである。

近年では燃料交換の頻度を少なくするため、商用炉燃料の濃縮度を高くする潮流があり、 $5\sim20~{\rm wt}\%$ 濃縮の高純度低濃縮ウラン (High-Assay Low Enriched Uranium; HALEU) や $5\sim10~{\rm wt}\%$ 濃縮の「LEU+」が次世代燃料として注目されている* 4 。

 $^{^{*2}}$ 研究炉は小型炉心で大量の中性子を供給するために高出力密度にする必要があることから、艦船用原子炉は船舶に搭載できるほど小型かつ長寿命にすることから、それぞれ HEU を必要とする

^{*3} しばしば原子炉を制御できる理由は低濃縮度であるからという説明がされるが誤りである。実際は原子炉が遅発臨界の領域で核反応を起こすからである。核兵器と一部の特殊な研究炉のみ即発臨界を利用する。

^{*4} 現状、国内生産の濃縮ウランは実質的に 5% の制約がある。これは濃縮度が 5% を超える場合、「特定の

他の核燃料としてはプルトニウム 239 がある。この核種も核分裂を起こしやすく、更に核分裂を起こしにくいウラン 238 から製造できるため、核燃料を燃やしながら増殖できる増殖炉を実現できる可能性がある。燃料の原料となるウラン 238 は、ウラン濃縮の過程で廃品として発生する劣化ウランを用いれば良いので、ウラン資源の利用率を大幅に向上できるという利点もある。日本が核燃料サイクルの構築を目標としているのは、増殖炉を用いれば資源の対外依存を抑えながら安定的にエネルギーを供給することができるからである。

References

- [1] 国立研究開発法人 国立環境研究所. **日本国温室効果ガスインベントリ報告書** *2025* 年. Ed. by 温室効果ガスインベントリオフィス (GIO).
- [2] 北岡 麻美. 医療用RIの需要と供給について. https://www.aec.go.jp/kaigi/senmon/radioisotope/siryo01/4_haifu.pdf. 2021.
- [3] World Nuclear News. Westinghouse's LEU+ fuel loaded into Vogtle 2.

 https://world-nuclear-news.org/articles/westinghouse--leu-fuel-loaded-in-vogtle-2 アクセス日:2025-05-19. 2025.
- [4] 電気事業連合会. [米国] NRC、商業発電用として初めてウラン濃縮度 8% の原子燃料の製造を承認.
 - https://www.fepc.or.jp/pr/kaigai/kaigai_topics/1261489_4115.html アクセス $\boxminus : 2025-05-19.2024.$

ウラン加工施設のための安全審査指針」の適用を受け、大幅な設備変更・投資が必要になってしまうからである。なお、2025 年現在で 5% を超える商用燃料は国外でも照射試験が開始されたばかりである [3][4]。

2 臨界、原子炉と核データ

2.1 増倍率と臨界

核分裂連鎖反応では、核分裂の反応数が指数関数的に増減する。1 つの中性子が核分裂を引き起こし、2 つの中性子が放出される体系を考える。この2 つの核分裂中性子がどちらも次の核分裂を起こす場合、この体系の中性子増倍率k は次のようになる。

$$k = \frac{$$
発生した核分裂中性子のうち核分裂を起こす数 $}{$ 核分裂を起こした中性子数 $}= \frac{2}{1} = 2$ $(2.1.1)$

実際には核分裂反応はバラバラなタイミングで起こるが、簡単のために「世代」という概念を導入して考える。丁度アニメーションのフレームと同じで、バラバラなタイミングで起こる核分裂反応を、あるタイミングで一気に発生するものとして考える。1フレームあたりの時間は、核分裂が発生してから次の核分裂が発生するまでの平均的な時間を使う。この時間を即発中性子寿命、または世代時間と呼ぶ。中性子増倍率はある世代の中性子数を一つ前の世代の中性子数で割ったものとしても定義される。

$$k = \frac{\text{ある世代の中性子数}}{-\text{つ前の世代の中性子数}}$$
 (2.1.2)

この中性子増倍率 k が 1 より大きい状態を**超臨界**、1 より小さい状態を**未臨界**、1 の状態を**臨界**と呼ぶ。

$$k \begin{cases} > 1 & 超臨界 \\ = 1 & 臨界 \\ < 1 & 未臨界 \end{cases}$$

2.2 中性子と原子核の反応

中性子は電荷を持たないため原子核に近づきやすく、原子核と 10^{-12} cm 程度まで近づくと原子核と相互作用する。この相互作用は、大きく散乱反応 (scattering) と吸収反応 (absorption) に分けられる。

2.2.1 散乱反応

散乱反応はさらに**弾性散乱** (elastic scattering) と**非弾性散乱** (inelastic scattering) の 2 つに分けられる。弾性散乱では中性子と原子核の運動エネルギーは保存されるため、一般には中性子の運動エネルギーの一部が原子核 (ターゲット核) に移り中性子の運動方向

とエネルギーが変化する。弾性散乱には、中性子が原子核に取り込まれずに原子核のポテンシャルで散乱されるポテンシャル散乱と、中性子が一旦原子核に取り込まれ複合核となった後にエネルギーを失わずに放出される共鳴散乱がある。非弾性散乱ではターゲット核に移ったエネルギーの一部が原子核の励起エネルギーに使われる。そのため、非弾性散乱は中性子のエネルギーがターゲット核の最低の励起エネルギーよりも大きい場合にのみ起こる。

Fig2.2.1: ¹²C, ¹H, ²H の弾性散乱 (MT=2) の断面積

2.2.2 吸収反応

原子核に中性子が取り込まれると、入射中性子のエネルギーと中性子の結合エネルギーの和の分だけ励起された複合核が形成される。この複合核は不安定であるため、その後様々な反応を起こして安定な状態に戻ろうとする。吸収反応この過程を経る反応の総称 (散乱反応は除く) でその後の反応によってさらに多くの種類に分けられる。これに分類されるものとしては、複合核から γ 線を放出する放射捕獲反応、荷電粒子を放出する荷電粒子放出反応などがある。原子炉において利用される核分裂反応や、入射中性子のエネルギーが高い場合に起こる 2 個以上の中性子が放出される反応もこの吸収反応に分類される。

Fig2.2.2: $^{238}\mathrm{U,^{90}Zr}$ の非弾性散乱 (MT=4) の断面積

Fig2.2.3: 238 U の非弾性散乱 (MT=4,51,52,53,54) の断面積

Fig2.2.4: $^{149}\mathrm{Sm}$ の吸収反応 (MT=102) の断面積

Fig2.2.5: 10 B の吸収反応 (MT=107) の断面積

Fig2.2.6: 235 U の核分裂反応 (MT=18) の断面積

Fig2.2.7: 235 U の核分裂反応 (MT=18,19,20,21) の断面積

3 中性子輸送

3.1 中性子輸送の位置づけ

原子炉物理が原子炉内の中性子の挙動と原子核の反応を予測する学問であるとすれば、中性子輸送はその中核をなす部分である。中性子の挙動は中性子輸送そのものであるし、原子核の反応を予測するには中性子の分布を知ることが必須である。原子核の反応を正確に予測することができれば、核燃料の燃焼が進んだ時の炉心を予測でき、更に先の炉心の状態を精度よく予測していくことができる。

ある核種iについて炉心内での量(数密度 N_i)の増減を予測するには、生成・消滅に関する次の方程式を解けばよい。

$$\frac{dN_{i}}{dt} = (生成率) + (変換率) + (消滅率)$$

$$\sum_{j} \gamma_{ji}\sigma_{f,j}N_{j}\phi + \underbrace{\sigma_{c,i-1}N_{i-1}\phi}_{\text{核種 }i-1\text{ の捕獲による生成}}$$

$$= \frac{\text{核種 }j\text{ の核分裂による生成の総和}}{+\sum_{k} \lambda_{k}N_{k}} - \underbrace{\sigma_{a,i}N_{i}\phi}_{\text{核種 }i\text{ の吸収による変換}} - \underbrace{\lambda_{i}N_{i}}_{\text{核種 }i\text{ の崩壊による消滅}}$$

この式 (3.1.1) は**燃焼方程式**と呼ばれる連立の一階常微分方程式である。全ての核種の 数密度をベクトルとして見ると、この式は

$$\frac{d\vec{N}}{dt} = \mathbf{A}\vec{N} \tag{3.1.2}$$

と表記できる。この A は「燃焼マトリックス」と呼ばれる行列である。燃焼マトリックス内の各反応率が全て一定であれば、式 (3.1.2) の解析解は

$$\vec{N}(t) = \vec{N}(0) \exp\left(\mathbf{A}t\right) \tag{3.1.3}$$

である。ところが、数密度は位置によって異なるはずなので、ここで求まる $\vec{N}(t)$ は「ある位置、ある時刻の核種数密度 $\vec{N}({m r},t)$ 」とすべきであるし、燃焼マトリックスについても中に出てくる ϕ が、「ある位置、ある時刻の中性子束 $\phi({m r},t)$ 」であるため、反応率は位置や時間によって変化する。したがって、実際の原子炉の解析では時間的・空間的な離散化を施すことになる。Fig. 3.1.1、Fig. 3.1.2 は PWR や高速炉の炉心計算の離散化例であ

Fig3.1.1: 炉心の中性子束分布をメッシュ化して空間的に離散化する

る。XYZ 方向に区切られたメッシュ内で、中性子東や燃料組成を均一とする空間的離散 化を適用し、計算条件として与えている。時間については、燃焼サイクルを複数のステップに区切り、その期間内の反応率が一定であるとみなし離散化している。各燃焼ステップ ごとに中性子東分布は変化するため、ステップ毎に中性子東分布を計算し、ステップ後の 燃料組成を求める必要がある。故に中性子東分布計算と燃焼計算を反復する必要があり、計算の誤差は繰り返し毎に蓄積する。

$$\Delta \vec{N} = A \vec{N} \Delta t \tag{3.1.4}$$

$$\vec{N}(t + \Delta t) = \vec{N}(t) \exp(\mathbf{A}\Delta t)$$
(3.1.5)

Fig3.1.2: 燃焼サイクルの時間的離散化