Chapitre 2 Introduction aux nombres complexes

2.3. Définitions additionnelles et propriétés étémentaires

Soit z = a + ib, $a, b \in \mathbb{R}$.

Le (complexe) conjugé de
$$z$$
 $\overline{z} := a - ib \equiv a + i(-b)$.

 iR $\overline{z} = a + ib$
 $\overline{z} = a - ib$.

Proprietes:
$$\forall z \in \mathcal{L}$$
, $\overline{z} = z$

$$\forall z_1, z_2 \in \mathcal{L}$$
, $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

$$\overline{z_1 - z_2} = \overline{z_1} \cdot \overline{z_2}$$

Yartie reelle de z = a + ib, $a, b \in \mathbb{R}$: $Creeze = a \in \mathbb{R}$ Partie imaginaire de z = a + ib, $a, b \in \mathbb{R}$: $Jm(z) = b \in \mathbb{R}$

Remarque: On a
$$Re(z) = \frac{z + \overline{z}}{z}$$

$$J_{m(z)} = \frac{z - \overline{z}}{zi}$$
Verifier o

Valeur absolue (ou module) de z-atib, a, b el?

$$|2|:=(2\cdot\overline{2})^{\frac{1}{2}}=|2\cdot\overline{2}|=|2|$$

En effet, si z= a+ib, a, b e R, alors

$$(a+ib)(a-ib) = a^2 - (i.b)^2 = a^2 + b^2$$

On a #2,, 2, 6¢, |2, 22 = 12, 1. 122

Verifier ?

Application à la géométrie:

Soit Ze € t, re R.*. Alors

 $5 = \{2 \in \mathcal{L} : |2 - 20| = r\}$

est l'ensemble des points sur le cercle de rayon r, centre en to.

