What is claimed is:

1		1. A method for inspecting food products, the method comprising:
2	(A)	generating reference images of food products, each reference image being
3		indicative of a food product of a different size, each reference image having
4		optimized characteristics that are indicative of an acceptable food product, the
5		optimized characteristics of each reference image comprising:
6		(A1) an optimized red component;
7		(A2) an optimized green component;
8		(A3) an optimized blue component; and
9		(A4) an optimized shape;
10	(B)	acquiring a sample image of a sample food product, the sample image comprising:
11		(B1) a red component;
12		(B2) a green component;
13		(B3) a blue component;
14		(B4) a sample shape; and
15		(B5) a sample size;
16	(C)	comparing the sample size to each of the generated reference images;
17	(D)	selecting the reference image that is indicative of a food product having a size that
18		is similar to the sample size;
19	(E)	generating a contrast image as a function of the selected reference image and the
20		sample image, the contrast image being indicative of deviations of the sample
21		image from the selected reference image, the contrast image comprising:
22		(E1) a red component deviation value;
23		(E2) a green component deviation value;

24	(E3) a blue component deviation value; and
25	(E4) a shape deviation value indicative; and
26 (F)	determining an acceptability level of the sample food product, the acceptability
27	level being a function of:
28	(F1) the red component deviation value;
29	(F2) the green component deviation value;
30	(F3) the blue component deviation value; and
31	(F4) the shape deviation value.

1		2.	A method for inspecting food products, the method comprising:
2	(A)	acquir	ing a sample image of a sample food product, the sample image comprising
3		(A1)	a red component;
4		(A2)	a green component;
5		(A3)	a blue component;
6	(B)	genera	ating a reference value from the acquired sample image, the reference value
7		being	a function of the red component, the green component, and the blue
8		compo	onent;
9	(C)	genera	ating a contrast image as a function of the reference value and the sample
10		image	, the contrast image being indicative of deviations of the sample image from
11		the ref	ference value, the contrast image comprising:
12		(C1)	a red component deviation value;
13		(C2)	a green component deviation value; and
14		(C3)	a blue component deviation value; and
15	(D)	detern	nining an acceptability level of the sample food product, the acceptability
16		level l	being a function of:
17		(D1)	the red component deviation value;
18		(D2)	the green component deviation value; and
19		(D3)	the blue component deviation value.

	5. A method for hispecting food products, the method comprising.
2	generating reference images of food products, each reference image being
3	indicative of a food product of a different size, each reference image having optimized
4	characteristics that are indicative of an acceptable food product;
5	acquiring a sample image of a sample food product, the sample food product
6	having a sample size;
7	comparing the sample size to each of the generated reference images;
8	selecting the reference image that is indicative of a food product having a size that
9	is similar to the sample size;
10	generating a contrast image as a function of the selected reference image and the
11	sample image, the contrast image being indicative of deviations of the sample image from
12	the selected reference image; and
13	determining an acceptability level of the sample food product from the generated
14	contrast image.
1	4. A method for inspecting food products, the method comprising:
2	acquiring a sample image of a sample food product;
3	generating a reference value from the acquired sample image;
4	generating a contrast image as a function of the reference value and the sample
5	image, the contrast image being indicative of deviations of the sample image from the
6	reference value;
7	determining an acceptability level of the sample food product from the generated
8	contrast image.

I	5. A method for extracting image features, the method comprising:
2	providing reference data having reference features;
3 ,	acquiring image data;
4	generating contrast data as a function of the reference data and the image data;
5	performing a clustering algorithm on the contrast data to generate clusters of
6	contrast data; and
7	identifying features from the clusters of contrast data.
1	6. A method for detecting defects in products, the method comprising:
2	providing reference data having reference features, the reference features
3	representing features of an optimized product;
4	acquiring sample data having sample features, the sample features representing
5	features of a sample product, each of the sample features corresponding to one of the
6	reference features;
7	generating contrast data as a function of the reference data and the sample data,
8 .	the contrast data having contrast features, the contrast features representing deviations
9	between the sample features and the reference features; and
10	determining an acceptability level of the sample product from the generated
11	contrast data.
1	7. The method of claim 6, further comprising:
2	discarding the sample product in response to determining that the acceptability
3	level of the sample product is below an acceptable threshold level.

1	٥.	The method of claim o, further comprising:
2	retaini	ng the sample product in response to determining that the acceptability level
3	of the sample	product is not below an acceptable threshold level.
1	9.	The method of claim 6, wherein the step of acquiring the sample data
2	comprises:	
3	acquir	ing an image of a food product.
1	10.	The method of claim 6, wherein the food product is selected from a group
2	consisting of:	
3	meats;	
4	grains	·
5	vegeta	bles;
6	fruits;	
7	legum	es; and
8	proces	sed food items.
1	11.	The method of claim 6, wherein the step of providing the reference data
2	comprises:	
3	acquir	ing an image of the optimized product, the example product having minimal
4	defects; and	
5	storing	g the acquired image.

1	12. The method of claim 6, wherein the step of providing the reference data
2	comprises:
3	evaluating data points within the sample data;
4	calculating the mode of the data points; and
5	storing the mode.
1	13. The method of claim 6, wherein the step of providing the reference data
2	comprises:
3	evaluating data points within the sample data;
4	calculating the mean of the data points; and
5	storing the mean.
1	14. The method of claim 6, wherein the step of providing the reference data
2	comprises:
3 .	updating a reference value of a current sample with a reference value of a previous
4	sample.
1	15. The method of claim 6, wherein the step of generating the contrast data
2	comprises:
3	determining a difference between the reference data and the sample data to
4	generate difference data.

1	16. The method of claim 15, wherein the step of determining the difference
2	comprises:
3	extracting spectral components from the reference data;
4	extracting spectral components from the sample data, each of the spectral
5.	components of the sample data corresponding to one of the spectral components of the
6	reference data; and
7 ·	determining the difference between a spectral component from the reference data
8	and a corresponding spectral component from the sample data.
1	17. The method of claim 16, wherein the step of extracting the spectral
2	components from the reference data comprises a step selected from the group consisting
3	of:
4	extracting a red component from the reference data;
5	extracting a green component from the reference data; and
6	extracting a blue component from the reference data.
1	18. The method of claim 16, wherein the step of extracting the spectral
2	components from the sample data comprises a step selected from the group consisting of:
3	extracting a red component from the sample data;
4	extracting a green component from the sample data; and
5	extracting a blue component from the sample data.
1	19. The method of claim 15, further comprising:
2	normalizing the difference data to the reference data.

I	20. The method of claim 6, wherein the step of determining the acceptability
2	level comprises:
3	clustering the contrast features into predetermined cluster groups, each cluster
, 4	group corresponding to a contrast feature; and
5	evaluating the size of each cluster group to quantitatively determine the amount of
6	each contrast feature.
1	21. The method of claim 20, wherein at least one of the cluster groups
2	corresponds to a defect feature.
	,
1	22. The method of claim 6, further comprising:
2	updating the reference data with information gathered from the sample data.
1	23. A system for detecting defects in products, the system comprising:
. 2	reference data having reference features, the reference features representing
3	features of an optimized product;
4	sample data having sample features, the sample features representing features of a
5	sample product, each of the sample features corresponding to one of the reference
6	features;
7	logic configured to generate contrast data as a function of the reference data and
8	the sample data, the contrast data having contrast features, the contrast features
9	representing deviations between the sample features and the reference features; and
10	logic configured to determine an acceptability level of the sample product from
11	the generated contrast data.

1	24. The system of claim 23, wherein the step of acquiring the sample data
2	comprises:
3	means for acquiring an image of a food product.
1	25. The system of claim 23, wherein the step of acquiring the sample data
2	comprises:
3	logic configured to acquire an image of a food product.
1	26. The system of claim 23, wherein the food product is selected from a group
2	consisting of:
3	meats;
4	grains
5	vegetables;
6	fruits;
7	legumes; and
8	processed food items.