Stereo Reconstruction of Building Interiors with a Vertical Structure Prior

Bernhard Zeisl

Christopher Zach

Marc Pollefeys

Computer Vision and Geometry Group, Institute for Visual Computing, ETH Zurich

Summary of our Work

- For building interiors the open space is bounded by (1) parallel ground and ceiling planes, (2) vertical wall elements.
- We employ this assumption as a strong prior in dense depth map estimation from stereo images.
- A Dynamic Programming (DP) framework allows to introduce smoothness between vertical elements.
- Besides the reconstruction of vertical structures, the algorithm detects non-

vertical regions and allows to fill in plausible extensions.

Preprocessing

- 1) Image alignment with vertical direction: 3D camera rotation (image warping) moving the vertical vanishing point towards infinity.
- 3) Stereo image matching: Plane sweep approach (along z and y axis), which preserves the previous image alignment.
- 2) Identification of floor and ceiling plane: Robust voting for points on boundary edges.

Vanishing lines

Challenges for indoor depth map estimation: weakly textured areas and view dependent highlights.

Left image

Global optimization (GC)

Our result

Explicit incorporation of vertical world assumption significantly stabilizes the depth map estimation.

Cost Aggregation

Best cost solution:

 $d_k^* = \arg\min_{n} D_k(d) \quad \forall k \in \{0, \dots, n-1\}$

Best cost boundary

Vertical Structures

Dynamic Programming

$$E = D_0(l_0) + \sum_{k=1}^{n-1} \left\{ D_k(l_k) + V(l_k, l_{k-1}) \right\}$$

Smoothness between Cost for a vertical structure at column k neighboring columns

Linear cost, truncated to allow for large changes

 $V(d_k, d_{k-1}) = \lambda_d \min(|d_k - d_{k-1}|, t)$

2) Extension by slope based smoothness:

- Labels are binary cliques (depth and slope)
- Small number of slopes sufficient (e.g. 3 or 5)

$$V(l_k, l_{k-1}) = \lambda_s |s_k - s_{k-1}| + \lambda_d |d_k - d_{k-1} - s_{k-1}|$$

slope penalty depth penalty (compensated by slope)

3) Detection of non-vertical structures

Model selection via new label for non-vertical structures

$$D_k(l = \text{non-vertical}) = B + \sum_{r=0}^{m-1} \min_d \mathbf{C}(k, r, (\mathbf{e}_z \ d))$$

Results

Speed Analysis

Plane sweep (GPU): 160ms

Vertical structure cost 50ms aggregation (CPU):

Dynamic Programming (CPU) for

1/3/5 slopes:

5 / 46 / 120MS

215 – 330ms

