PushNet: Efficient and Adaptive Neural Message Passing

Julian Busch ¹², Jiaxing Pi ¹ and Thomas Seidl ²

¹ Siemens Corporate Technology, Princeton, NJ, USA jiaxing.pi@siemens.com

² Ľudwig-Maximilians-Universität München, Munich, Germany {busch, seidl}@dbs.ifi.lmu.de

Introduction

- Semi-supervised node classification
 - Given
 - ightharpoonup Graph G = (V, E)
 - Feature matrix $X \in \mathbb{R}^{n \times d}$
 - ▶ Incomplete label matrix $Y \in \mathbb{R}^{n \times c}$
 - ► Goal
 - Predict labels of unlabeled nodes
- Applications
 - Document classification in citation networks
 - User recommendations in social networks
 - Function prediction in protein interaction networks
 - ► And many more!

Neural Message Passing [1–15]

- Nodes repeatedly pull features from their neighbors:
 - 1. Send messages to all neighbors
 - 2. Aggregate incoming messages
 - 3. Update own feature vector
- ▶ *k* rounds of message passing gathers features from *k*-hop neighborhood
- ► A node's label is predicted from its updated feature vector

Motivation

- ► These methods are very successful
- However, they share several severe issues:
 - ▶ Not adaptive: In each iteration, all nodes send messages to all neighbors
 - Over-smoothing effect for multi-layer message passing [16, 17]
 - ▶ Inefficient: Only a few long-range dependencies are actually relevant
 - Restriction to k-hop neighborhoods
 - Include irrelevant, miss relevant neighbors
 - ▶ Need to specify number of message passing rounds *k*

Idea: Push information on demand instead of just pulling it from all neighbors!

Push-based Asynchronous Message Passing

- Main idea
 - Targeted propagation by updating nodes sequentially
- General procedure
 - Each node aggregates incoming messages until it is chosen to be updated
 - The chosen node updates its own state and pushes messages to all its neighbors
 - ► A node is only considered for updating if it aggregated enough new information

Challenge: Can we do this and still be efficient?

PushNet

▶ Yes! PushNet can be formulated as a single synchronous message passing step:

$$H^{(0)} = f(X; \theta_f) \qquad \in \mathbb{R}^{n \times h_1}$$

$$H^{(1)} = PH^{(0)} \qquad \in \mathbb{R}^{n \times h_1}$$

$$H^{(2)} = g(H^{(1)}; \theta_g) \qquad \in \mathbb{R}^{n \times h_2}$$

- ▶ The weights p_{ij} are given by Approximate Personalized PageRank (APPR) [18–20]
- \triangleright g and f are MLPs and act as learnable feature transformations/predictor

Combines the best of both worlds of synchronous/asynchronous message passing!

Extensions

- Multi-scale neighborhood aggregation
 - lacktriangle Locality hyper-parameter lpha in APPR controls the effective neighborhood size
 - ▶ Idea: Propagate over multiple scales instead of just one and aggregate the results
 - Benefits:
 - ► Simplified hyper-parameter search: Just combine a set of potential values
 - ▶ We empirically observe *improved classification accuracy and robustness*
- Model variants
 - Learnable feature transformations could be applied before and after propagation
 - General model: PushNet
 - No transformations before propagation
 - ► Fast, propagated features can be cached!
 - PushNet-PTP, PushNet-PP
 - Propagation of predicted class labels
 - PushNet-TPP

Experimental Setup

- Evaluation on 5 document classification benchmark datasets
- Comparison with 7 SOTA neural message passing algorithms
- ▶ Rigorous evaluation setup [21, 22]
 - Grid search to determine best hyper-parameters for each model
 - Results from 100 independent runs

	V	E	d	С	avgSP	maxSP
CiteSeer	2120	3679	3703	6	9.33	28
Cora	2485	5069	1433	7	6.31	19
PubMed	19717	44324	500	3	6.34	18
Coauthor CS	18333	81894	6805	15	5.43	24
Coauthor Physics	34493	247962	8415	5	5.16	17

Experiments

Node Classification Accuracy

	CiteSeer	Cora	PubMed	Coauthor CS	Coauthor Physics
GCN [4]	$\textbf{72.82} \pm \textbf{1.48}$	81.07 ± 1.43	78.29 ± 1.48	91.64 ± 0.62	93.42 ± 0.63
GAT [7]	73.82 ± 1.35	82.12 ± 1.41	78.21 ± 1.60	90.20 ± 0.75	93.43 ± 0.50
JK-GCN [17]	71.09 ± 1.66	79.57 ± 1.63	77.23 ± 2.01	91.60 ± 0.54	93.49 ± 0.56
JK-GAT [17]	71.76 ± 1.27	80.10 ± 1.52	77.59 ± 2.25	92.20 ± 0.43	o.o.m.
SGC [15]	73.91 ± 1.30	80.13 ± 2.15	77.00 ± 1.78	91.27 ± 0.58	o.o.m.
GIN [13]	$\textbf{70.81} \pm \textbf{1.61}$	80.24 ± 1.54	77.19 ± 1.75	91.46 ± 0.54	93.79 ± 0.49
APPNP [22]	$\textbf{74.36} \pm \textbf{1.44}$	83.58 ± 1.03	$\textbf{79.61} \pm \textbf{2.98}$	91.10 ± 1.12	93.96 ± 0.45
PushNet	$\textbf{75.08} \pm \textbf{0.99}$	84.12 ± 1.08	$\textbf{79.80} \pm \textbf{1.39}$	92.40 ± 0.52	94.01 ± 0.53
PushNet-PTP	$\textbf{75.19} \pm \textbf{1.15}$	83.41 ± 1.24	$\textbf{80.22} \pm \textbf{1.27}$	92.37 ± 0.40	93.97 ± 0.48
PushNet-PP	75.17 ± 1.32	81.52 ± 1.40	77.52 ± 2.05	91.04 ± 0.76	93.67 ± 0.55
PushNet-TPP	$\textbf{75.01} \pm \textbf{1.11}$	$\textbf{84.23} \pm \textbf{1.26}$	80.10 ± 1.33	$\textbf{92.54} \pm \textbf{0.34}$	$\textbf{94.09} \pm \textbf{0.47}$

Node Classification Accuracy

- PushNet already outperforms all competitors on all datasets
 - PushNet-TPP performs best overall
 - PushNet-PTP improves performance on CiteSeer and PubMed
 - PushNet-PP is remarkably competitive, even though it performs no learnable feature transformation at all!
- All improvements are statistically significant
- ► Improvements due to *individually adapted* neighborhoods for each node

Fraction of k-neighbors included in APPR-neighborhood for each node

- ► Solid: Average over all nodes
- ► Red: 10-neighborhood

Runtime

- ► SGC [15] is fastest but less accurate than most competitors
- ► PushNet-PP is second fastest, followed by PushNet-PTP which offers a good tradeoff between runtime and accuracy
- ► PushNet and PushNet-TPP are slower but provide superior accuracy

Ablation Study

- ▶ Best single scales: $\alpha \in \{0.05, 0.1, 0.2\}$
- ► Best aggregation: *sum*
 - ► Efficient: Runtime determined by smallest single α considered
 - ightharpoonup Improved results over best single lpha
- Sparsity
 - Parameter ε in *APPR* to exclude small propagation weights
 - Accuracy remains very stable
 - ► Intuitive to set, just set large enough for available GPU memory!

Conclusion

- Novel asynchronous approach to neural message passing
- Efficient aggregation over adaptive node neighborhoods
 - ► No restriction to *k*-neighborhoods
 - Effective handling of long-range dependencies
- Multi-scale feature aggregation
 - Improved performance
 - Simplified hyper-parameter selection
- Different variants of our base model
 - ► Allow for varying trade-offs between efficiency and accuracy
- ► Hyper-parameters relatively easy to set

Thank you! Questions?

References I

- [1] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. *NeurIPS*, 2015.
- [2] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. *ICLR*, 2016.
- [3] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph convolutions: moving beyond fingerprints. *Journal of computer-aided molecular design*, 2016.
- [4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. *ICLR*, 2017.
- [5] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. *NeurIPS*, 2017.
- [6] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. *ICML*, 2017.

References II

- [7] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. *ICLR*, 2018.
- [8] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via importance sampling. *ICLR*, 2018.
- [9] John Boaz Lee, Ryan A Rossi, Sungchul Kim, Nesreen K Ahmed, and Eunyee Koh. Attention models in graphs: A survey. *TKDD*, 2019.
- [10] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Ieman go neural: Higher-order graph neural networks. AAAI, 2019.
- [11] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. Modeling relational data with graph convolutional networks. ESWC. 2018.

References III

- [12] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural network for semi-supervised learning. *arXiv preprint arXiv:1803.03735*, 2018.
- [13] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? *ICLR*, 2019.
- [14] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.
- [15] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simplifying graph convolutional networks. *ICML*, 2019.
- [16] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. *AAAI*, 2018.
- [17] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. *ICML*, 2018.

References IV

- [18] Glen Jeh and Jennifer Widom. Scaling personalized web search. WWW, 2003.
- [19] Pavel Berkhin. Bookmark-coloring algorithm for personalized pagerank computing. *Internet Mathematics*, 2006.
- [20] Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S Mirrokni, and Shang-Hua Teng. Local computation of pagerank contributions. International Workshop on Algorithms and Models for the Web-Graph, 2007.
- [21] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls of graph neural network evaluation. NeurIPS Relational Representation Learning Workshop, 2018.
- [22] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural networks meet personalized pagerank. *ICLR*, 2019.