电路理论基础

时间:星期三上午8:00至9:40,星期五上午8:00至9:40

地点: 南校园1506

任课教师: 粟涛(电子与信息工程学院)

考试方式: 闭卷

成绩评定:平时分40%,期末考试60%。

学分: 4

电容器与电感器

- > 电容器
- ▶ 电容器的串联并联
- > 电感器
- ▶ 电感器的串联并联

电容

介绍

• 前面几章讨论的都是以电阻为元件的电路。电阻会消耗能量。

 接下来,我们讨论另外两种元件:电容和电感。电容和电感不会消耗能量。它们可以存储能量。它们 是储能元件。

• 电容是一种通过电场存储电能的无源元件。它还经常用于频率选择。

平板电容

一种常见的电容是平板电容。它包含两个导电板, 中间由电介质隔开。

$$C = \frac{q}{v}$$

电容的单位 是法拉第, Faraday, F。

$$q = Cv$$

$$v = \frac{q}{C}$$

- 两个平板上有电荷 q, 一个板 +q, 另一个板 -q。
 - 电荷在两个板间产生电压 v。
- 电容值就是导电板所带电荷与导电板间电压的比值。

平板电容的电容值

• 平板电容电容值与板面积 (A) 成正比,与距离 (d) 成反比、与电介常数 (ε) 成正比。

$$C = \frac{\epsilon A}{d}$$

$$q = Cv$$

- 相同电压时, 拉近两个平板, 电荷量会变大。
- 相同电荷量, 拉近两个平板, 则电压变小。

电容器

- 实现电容的方式有多种。
 - 比如有固定电容和可变电容。

• 电容器的种类有很多,适用不同的应用场景。

2021版

7

电容的伏安特性

• 电阻的伏安特性(电压电流关系)是正比关系。

$$i = \frac{v}{R}$$

$$v = Ri$$

$$i = Gv$$

• 电容的电压与电量成正比。

$$q = Cv$$

$$\frac{dq}{dt} = C\frac{dv}{dt}$$

• 由此可见, 电容的电流与电压导数成正比。

- 也可以说,它描述了一种充电效应:
 - 电流 克服 电容 造成 电压的变化。

$$\frac{dv}{dt} = \frac{i}{C}$$

1大学 - 电子与信息工程学院 - 栗涛

电容的储能

• 电容上的电压可以通过积分获得

$$i = C \frac{dv}{dt}$$
 \Rightarrow $v = \frac{1}{C} \int_{-\infty}^{t} i(\tau) \times d\tau$ \Rightarrow $v = v_0 + C \int_{0}^{t} i(\tau) \times d\tau$

• 往电容输送电荷, 需要做功, 瞬时功率为

$$p = vi = Cv \frac{dv}{dt}$$

· 将电容的电压充到 v, 需要做功, 即电容储能。

$$w = \int_{-\infty}^{t} Cu \frac{du}{d\tau} \times d\tau = \int_{0}^{v} Cu du \qquad \Longrightarrow \qquad w = \frac{1}{2} Cv^{2} \qquad \Longrightarrow \qquad w = \frac{q^{2}}{2C}$$

电容的几点特性

- 第一: 当电容上的电压不随时间改变时,
 - 通过电容的电流为0。
 - 也就是说,对于直流电,电容等同于开路。

- 第三: 理想的电容(器) 不消耗能量,
 - 电功被存储。

$$\frac{dv}{dt} = \frac{i}{C}$$

- 第四:实际的电容(器)会有点漏电,
 - 等效有个并联电阻。

- 问题:一个3pF的电容两端加上20V的电压后
 - -a) 可以存储多少电荷?
 - -b) 可以存储的能量有多少?
- 求解:
 - 电荷就是电容乘以电压:

$$q = Cv = 3 \times 10^{-12} \times 20 = 6 \times 10^{-11}$$
 (C)

- 储能就是电量乘以电压, 然后除以2:

$$w = \frac{1}{2}qv = \frac{1}{2} \times 6 \times 10^{-11} \times 20 = 6 \times 10^{-10} \text{ (J)}$$

- 问题:作用在一个 5 μF 的电容的电压为
 - $v(t) = 10 \times \cos(6000t) V,$
 - 计算通过该电容的电流。
- 解答:
 - 电流正比与电压的导数, 套用公式

$$i = C \frac{dv}{dt} = 5 \times 10^{-6} \times \frac{d}{dt} [10 \cos(6000t)]$$

$$i = -5 \times 10^{-6} \times 6000 \times 10 \times \sin(6000t)$$

- 计算出电流:

$$i = -0.3 \times \sin(6000t)$$
 (A)

• 问题: 计算下面电路中每个电容在直流电源下存储的能量。

解答:

- 直流时, 电容等同开路;
- 建立等效电路, 算出电容电压;
- 然后算出电容的储能。

$$i = 6 \times \frac{3}{3+2+4} = 2 \text{ (mA)}$$

$$v_1 = 2 \times 2 = 4$$
 (V)

$$v_2 = 2 \times 4 = 8 \text{ (V)}$$

电容的串并联

电容的并联

• 并联电容的特征是它们两端的电压相同

• 观察上面的电容并联组合中的电流

$$i = i_1 + i_2 + i_3 + \dots + i_N$$

• 由电压和电流的关系

$$i = C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} + C_3 \frac{dv}{dt} + \dots + C_N \frac{dv}{dt}$$

$$i = C_{eq} \frac{dv}{dt} \qquad C_{eq} = C_1 + C_2 + C_3 + \dots + C_N$$

N个并联电容的 等效电容是各 个电容的和。

电容的串联

• 串联电容的特征是经过它们的电流相同

• 观察上面的电容串联组合中的电压

$$v = v_1 + v_2 + v_3 + \dots + v_N$$

• 由电压和电流的关系

$$v = \int_{-\infty}^{t} \frac{i}{C_1} d\tau + \int_{-\infty}^{t} \frac{i}{C_2} d\tau + \int_{-\infty}^{t} \frac{i}{C_3} d\tau + \dots + \int_{-\infty}^{t} \frac{i}{C_N} d\tau$$

$$v = \int_{-\infty}^{t} \frac{i}{C_{eq}} d\tau \qquad \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

N个串联电容的等效电容倒数是各个电容倒数。

注意

• 如何理解对于直流电, 电容等效于开路?

• 比如串联电路

• 等效于?

2021版

17

例题

· 问题: 计算下面电路 ab 之间的等效电容。

• 求解:

- 从 ab 端口开始,
- 从右往左扫瞄;
- 列出计算式。

$$C_{eq} = 60 \text{ S} [20 \text{ P} 6 \text{ P} (5 \text{ S} 20)]$$

$$C_{eq} = 60 \, \text{S} \left[20 + 6 + \frac{5 \times 10}{5 + 20} \right]$$

$$C_{eq} = 60 \, \text{S} \, 30$$

$$C_{eq} = 20 \, (\mu \text{F})$$

电感

介绍

• 电感是一种通过磁场存储能量的无源器件。

• 电感可以用来进行交流变压、频率选择。

- 通常, 电感由导线绕成的线圈组成。
 - 但, 其实任何有电流通过的导线都有一点电感。

电感的系数

• 当电流流过电感时,这个电感上的电压与其电流变化的速度成正比,其比例称为电感系数。

$$v = L \frac{di}{dt}$$

- 电感系数 L 的单位是亨利, 符号 H, 量纲是 V·s/A。
- 圆柱线圈的电感系数与线圈绕数成正比。

$$L = \frac{N^2 \mu A}{l}$$

符号 μ 是圆柱 芯的磁导率。

山大学 - 电子与信息工程学院 - 粟涛

电感的伏安特性

• 电路中表示电感的符号是一个螺旋线。

• 电感的电压与电流的导数成正比, 一条直线。

$$di = \frac{1}{L}vdt \qquad \qquad \qquad i = \frac{1}{L}\int_{-\infty}^{t}v(\tau)d\tau \qquad \qquad \qquad i = i_0 + \frac{1}{L}\int_{0}^{t}v(\tau)d\tau$$

• 在电感上施加电压,可以使电流不断的"增长"。

电感的储能

• 在电压的驱动下, 电荷流入电感, 从而做功。电流越来越大, 功率就越来越大。

$$p = vi = \left(L\frac{di}{dt}\right)i$$

• 电感的储能,是过去一段时间做功的累计。

$$w = \int_{-\infty}^{t} p dt = \int_{-\infty}^{t} \left(L \frac{di}{dt} \right) i dt = \int_{i(-\infty)}^{i(t)} Lk dk$$

$$w = \frac{1}{2}Li^{2}(t) - \frac{1}{2}Li^{2}(-\infty)$$

• 因此, 电感储能正比于电流平方: $w = \frac{1}{2}Li^2$

 $W - \frac{1}{2}L\iota$

电感的几点特性

• 当电感上的电流恒定时,电感上的电压为 0。在直流电路中,电感相当于短路。

- 电感具有抵抗电流变化的能力。
 - 通过电感的电流不能发生瞬时的改变。

• 理想的电感不会消耗能量。

- 它们具有一定的寄生参数。
- 等效模型为:

例题

- 问题: 下列电路, 在直流电源下, 计算
 - 电流i电压 v_c 和电流 i_L ;
 - 存储在电容和电感中的能量。

- 解答:
 - 对于直流电, 1F等同于开路, 2H等同于短路;

- 计算能量,记住1/2这个系数

$$w = \frac{1}{2}Cv_C^2 = 50 \text{ (J)}$$
 $w = \frac{1}{2}Li_L^2 = 4 \text{ (J)}$

电感的串并联

电感的串联

• 串联电感的特征是流过各个电感的电流是同一个。

$$v = v_1 + v_2 + v_3 + \dots + v_N$$
$$v = L \frac{di}{dt}$$

• 观察上面的电压组合,使用电压电流关系,求出其电压与电流的关系。

$$v = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + \dots + L_N \frac{di}{dt}$$

• 等效电感为:

$$L_{eq} = L_1 + L_2 + L_3 + \dots + L_N \qquad \qquad v = L_{eq} \frac{di}{dt}$$

2021版

27

电感的并联

• 并联电感的特征是所有电感共享同一电压。

$$i = i_1 + i_2 + i_3 + \dots + i_N$$

$$i = \frac{1}{L} \int_0^t v d\tau + i_0$$

观察上面的电流组合,使用电压电流关系,求出其电压与电流的关系。

$$\begin{split} i &= \left(\frac{1}{L_1} \int_0^t v d\tau + i_{10}\right) + \left(\frac{1}{L_2} \int_0^t v d\tau + i_{20}\right) + \dots + \left(\frac{1}{L_N} \int_0^t v d\tau + i_{N0}\right) \\ i &= \frac{1}{L_1} \int_0^t v d\tau + \frac{1}{L_2} \int_0^t v d\tau + \dots + \frac{1}{L_N} \int_0^t v d\tau + i_{10} + i_{20} + \dots + i_{N0} \\ i &= \frac{1}{L_{eq}} \int_0^t v d\tau + i_0 \\ &\qquad \qquad \frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N} \int_0^t v d\tau + i_{20} + \dots + i_{20} + \dots + i_{20} \\ &\qquad \qquad \frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N} \int_0^t v d\tau + i_{20} + \dots + i_{$$

总结

• 三种元件的伏安特性对比如下

Relation	Resistor (R)	Capacitor (C)	Inductor (L)			
v-i:	v = iR	$v = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$	$v = L\frac{di}{dt}$			
<i>i-v</i> :	i = v/R	$i = C\frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$			
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$			
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$			
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$			
At dc:	Same	Open circuit	Short circuit			
Circuit variable that cannot change abruptly: Not applicable v i						

• 问题: 计算下图电路的等效电感。

解答:

- 电感串联时, 电感系数可以直接相加
- 像对待电阻网络一样对待电感网络

$$L = (20 + 12 + 10) \parallel 7 + 4 + 8$$

 $L = 42 \parallel 7 + 4 + 8$
 $L = 18$ (H)

• 问题: 下图电路中的电流条件为:

$$i(t) = 4(2 - e^{-10t}) \text{ mA}$$

 $i_2(0) = -1 \text{ mA}$

- 计算下列参数: $i_1(0)$; v(t), $v_1(t)$, $v_2(t)$; $i_1(t)$, $i_2(t)$ 。
- · 解答: 使用肉眼看出总的等效电感是5H;
 - 然后, 求解各种电流与电压

$$i_1(0) = i(0) - i_2(0) = 5$$
 (mA) $v = L\frac{di}{dt} = 5 \times 40e^{-10t} = 200e^{-10t}$ (mV)

$$v_1 = \frac{2}{5} \times v = 80e^{-10t}$$
 (mV) $v_2 = \frac{3}{5} \times v = 120e^{-10t}$ (mV)

• 问题: 下图电路中的电流条件为:

$$i(t) = 4(2 - e^{-10t}) \text{ mA}$$

 $i_2(0) = -1 \text{ mA}$

- 计算下列参数: $i_1(0)$; v(t), $v_1(t)$, $v_2(t)$; $i_1(t)$, $i_2(t)$ 。
- · 解答:使用肉眼看出总的等效电感是5H;
 - 然后, 求解各种电流与电压

$$i_1 = i_1(0) + \frac{1}{L_1} \int_0^t v_2(\tau) d\tau = 5 + \frac{1}{4} (-12e^{-10\tau}) \Big|_0^t = 8 - 3e^{-10\tau} \text{ (mA)}$$

$$i_2 = i_2(0) + \frac{1}{L_2} \int_0^t v_2(\tau) d\tau = -1 + \frac{1}{12} (-12e^{-10\tau}) \Big|_0^t = -e^{-10\tau} \text{ (mA)}$$

作业

- 画出本章思维导图
- 6.11
- 6.19
- 6.32
- 6.46
- 6.51
- 6.62

"电路理论基础"课程答疑

- 时间地点
 - 2021年11月4日, 星期四, 下午14:30 18:00
 - 南校园,第一教学楼,教室1602
- 参与人士
 - 学生: 21级计算机类(广州), 不限教学班
 - 老师: 粟涛(电子与信息工程学院) sutao@mail.sysu.edu.cn

中山大学临时使用课室通知条 (第一联:物业)

经教务部审核批准,同意电子与信息工程学院(微电子学院)临时使用以下课室,用于组织院系教学类活动,请管理员给予落实。谢谢!

日期	星期	节次或时间	课室	普通课室	多媒体 课室	互动 录播	联系人	联系电话
2021-11-04	四	五至八 14:20-18:00	第一教学楼 1602				粟涛	