SHORT SYLLABUS

BCSE304L Theory of Computation(3-0-0-3)

Concepts of Proof technique - Regular sets - Finite automata - Regular Expressions - Minimization of finite automata - Context-free languages - Normal Forms for grammars - Pushdown automata - Turing machines.

BCSE304L	Theory of Computation		LTPC						
DOOLSOTE	Theory of computation		3 0 0 3						
Pre-requisite	Nil		Syllabus version						
1 10 10quioito	1111		1.0						
Course Objecti	Ves		1.0						
 Types of grammars and models of automata. Limitation of computation: What can be and what cannot be computed. 									
	3. Establishing connections among grammars, automata and formal languages.								
o. Establishing connections among grammars, automata and formal languages.									
Course Outcome									
On completion of this course, student should be able to:									
Compare and analyse different computational models									
	sly formal mathematical methods to prove prop	erties of	languages.						
grammars and a	•								
	tions of some computational models and possit	ole metho	ods of proving them.						
4. Represent the abstract concepts mathematically with notations.									
	,								
Module:1 Intr	oduction to Languages and Grammars		4 hours						
	of techniques in Mathematics - Overview o	f a Con	nputational Models -						
	Grammars - Alphabets - Strings - Operations		•						
Automata	, , , , , , , , , , , , , , , , , , , ,	•	5 5 <i>7</i>						
Module:2 Fini	te State Automata		8 hours						
Finite Automata	a (FA) - Deterministic Finite Automata (DF	A) - No	n-deterministic Finite						
) - NFA with epsilon transitions - NFA without								
	Equivalence of NFA and DFA – minimization o								
	ular Expressions and Languages		7 hours						
Regular Expression - FA and Regular Expressions: FA to regular expression and regular									
expression to FA - Pattern matching and regular expressions - Regular grammar and FA -									
Pumping lemma	for regular languages - Closure properties of r	egular la	nguages						
Module:4 Cor	ntext Free Grammars		7 hours						
Context-Free G	rammar (CFG) – Derivations - Parse Trees	- Ambi	guity in CFG - CYK						
	plification of CFG - Elimination of Useless sy								
productions - N	ormal forms for CFG <mark>: CNF <mark>and GNF -</mark> Pumpi</mark>	ng Lemr	na for CFL - Closure						
Properties of CF	L								
Module:5 Pus	hdown Automata		5 hours						
	e Pushdown automata - Languages of a Pus								
Non-Determinist	tic Pushdown Automata and Deterministic push	idown au	ıtomata						
Module:6 Tur			6 hours						
	s as acceptor and transducer - Multi head and								
	Machine - The Halting problem - Turing-Churg	ch thesis							
Module:7 Red	cursive and Recursively Enumerable		6 hours						
	guages								
	Recursively Enumerable Languages, Langu								
`	E) – computable functions – Chomsky Hierard	hy – Un	decidable problems -						
	ndence Problem								
Module:8 Cor	ntemporary Issues		2 hours						
Т									
	Total Lecture hours:		45 hours						
Text Book									
1. J.E. Hopcroft, R. Motwani and J.D. Ullman, "Introduction to Automata Theory,									
Languages and Computation", Third Edition, Pearson Education, India 2008. ISBN:									
070 040470	978-8131720479								

Reference Books

	•								
1.	Peter Linz, "An Introduction to Formal Languages and Automata", Sixth Edition, Jones &								
	Bartlett, 2016. ISBN: 978-9384323219								
2.	K. Krithivasan and R. Rama, "Introduction to Formal Languages, Automata and								
	Computation", Pearson Education, 2009. ISBN: 978-8131723562								
Mode of Evaluation: CAT, Assignment, Quiz, FAT.									
Recommended by Board of Studies		04-03-2022							
Approved by Academic Council		No. 65	Date	17-03-2022					