DICHOTOMY THEOREM ON THE RATE OF CONVERGENCE

AILI SHAO

Theorem 1. ([DH15] Theorem 5.4) Let X be a Banach space and $T: X \to X$ be a linear operator with $||T|| \le 1$ and $T^n(x) \to 0$ for each $x \in X$, then exactly one of the following two statements hold:

- (1) there exists $n_1 \in \mathbb{N}$ such that $||T^{n_1}|| < 1$, and there exists $\alpha \in [0,1)$ and $c \in \mathbb{R}$ such that $||T^n|| \le c\alpha^n$ for each n.
- (2) $||T^n|| = 1$ for each $n \in \mathbb{N}$, and for each $(r_n) \in c_0$, $r_n \in \mathbb{R}^+$, for all $x \in X$, $||T^n x|| \neq O(r_n)$.

Proof. For $T \in B(X)$, $\operatorname{Rad}(\sigma(T)) = \lim_{n \to \infty} \|T^n\|^{\frac{1}{n}} \leq \lim_{n \to \infty} \|T\| \leq 1$. This shows that the spectrum of T lie in the closed unit disc.

If $\operatorname{Rad}(\sigma(T)) < 1$, then there exists $n_1 \in \mathbb{N}$ such that $\rho := ||T^{n_1}|| < 1$.

If $\rho > 0$, we take $\alpha := \rho^{\frac{1}{n_1}}$, for any $n \in \mathbb{N}$, we can write $n = kn_1 + i$ for some non-negative integer k and $i \in \{0, 1, \dots, n_1 - 1\}$. Then $||T^n|| = ||T^{kn_1+i}|| \le ||T^{n_1}||^k = \rho^k = \alpha^{n_1k} \le c\alpha^n$ where $c = \frac{1}{\alpha^{n_1-1}}$.

If $\rho = 0$, $||T^n|| \le 2^{n_1}(\frac{1}{2})^n$ for each $n \in \mathbb{N}$, then we take $\alpha = \frac{1}{2}$ and $c = 2^{n_1}$. If $\operatorname{Rad}(\sigma(T)) = 1$, then $\operatorname{Rad}(\sigma(T)) \le ||T|| \le 1$ implies ||T|| = 1. $||T^n|| = 1$ for each $n \in \mathbb{N}$ since if $||T^N|| < 1$ for some $N \in \mathbb{N}$, we have $\operatorname{Rad}(\sigma(T)) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}} \le \lim_{n \to \infty} ||T^N||^{\frac{1}{n}} < 1$ which yields a contradiction. We assume for contradiction that for each $x \in X$, there exists constant $c_x > 0$ such that $||T^nx|| \le c_x r_n$ for each $n \in \mathbb{N}$. Since X is a Banach Space, Uniform Boundedness Theorem tells $||T^n|| \le Cr_n$ with C independent of x, then $||T^n|| \to 0$ as $n \to \infty$. This contradicts $||T^n|| = 1$.

Before applying the above dichotomy results to the rate of convergence of the cyclic projections in Hilbert space, we first introduce an important lemma which was proved by *Bauschke*, *Borwein and Lewis* in [BL97] by using regularities:

Lemma 2. Let M_i for $1 \le i \le r$ be closed subspaces in the Hilbert space H, and $M := \bigcap_{i=1}^{r} M_i$. Let P_{M_i} and P_{M_i} be the orthogonal projections onto M_i and M respectively. Then the following are equivalent

- (1) $\sum_{i=1}^{r} M_i^{\perp}$ is closed;
- (2) $\|P_{M_r \cap M^{\perp}} P_{M_{r-1} \cap M^{\perp}} \cdots P_{M_1 \cap M^{\perp}} \| < 1;$

Now we can deduce the *Von Neumann-Halperin Dichotomy* from *Theo*rem1 and the above lemma: 2 AILI SHAO

Theorem 3. ([DH15] Theorem 9.5) Let M_i for $1 \le i \le r$ be closed subspaces in the Hilbert space H, and $M := \bigcap_{i=1}^{r} M_i$. Let $T = P_{M_r} P_{M_{r-1}} \cdots P_{M_1}$. Then exactly one of the two following statements holds:

- (1) $\sum_{i=1}^r M_i^{\perp}$ is closed, then there exists $\alpha \in [0,1)$ and $c \in \mathbb{R}$ such that $||T^n P_M|| \leq c\alpha^n$ for each n.
- (2) $\sum_{i=1}^{r} M_i^{\perp}$ is not closed, then for each $(r_n) \in c_0$, $r_n \in \mathbb{R}^+$, for all $x \in X$, $||T^n x P_M x|| \neq O(r_n)$.

Proof. If $\sum_{i=1}^r M_i^{\perp}$ is closed, we have $||P_{M_r \cap M^{\perp}} P_{M_{r-1} \cap M^{\perp}} \cdots P_{M_1 \cap M^{\perp}}|| < 1$ (by Lemma 2).

Note that

$$\begin{split} T^{n} - P_{M} &= T^{n} - T^{n} P_{M} \\ &= T^{n} (I - P_{M}) \\ &= T^{n} P_{M^{\perp}} \\ &= T^{n} P_{M^{\perp}}^{n} \text{ since } P_{M^{\perp}}^{2} = P_{M^{\perp}} \\ &= (T P_{M^{\perp}})^{n} \text{ since } T \text{ commutes with } P_{M^{\perp}} \\ &= [(P_{M_{r}} P_{M^{\perp}})(P_{M_{r-1}} P_{M^{\perp}}) \cdots (P_{M_{1}} P_{M^{\perp}})]^{n} \\ &= [(P_{M_{r}} \cap M^{\perp})(P_{M_{r-1}} \cap M^{\perp}) \cdots (P_{M_{1}} \cap M^{\perp})]^{n}. \end{split}$$

The second last equality follows from P_{M_i} commuting with $P_{M^{\perp}}$ and $P_{M^{\perp}}^2 = P_{M^{\perp}}$ while the last equality is true because $P_{M_i}P_{M^{\perp}} = P_{M_i\cap M^{\perp}}$.

By taking $||P_{M_r \cap M^{\perp}} P_{M_{r-1} \cap M^{\perp}} \cdots P_{M_1 \cap M^{\perp}}|| = \alpha \in [0, 1)$, we have

$$||T^{n} - P_{M}|| = ||[(P_{M_{r} \cap M^{\perp}})(P_{M_{r-1} \cap M^{\perp}}) \cdots (P_{M_{1} \cap M^{\perp}})]^{n}||$$

$$\leq ||(P_{M_{r} \cap M^{\perp}})(P_{M_{r-1} \cap M^{\perp}}) \cdots (P_{M_{1} \cap M^{\perp}})||^{n}$$

$$= \alpha^{n}$$

In this case, c = 1 and the result follows.

If $\sum_{i=1}^{r} M_{i}^{\perp}$ is not closed, by $Lemma\ 2$, $\|P_{M_{r}\cap M^{\perp}}P_{M_{r-1}\cap M^{\perp}}\cdots P_{M_{1}\cap M^{\perp}}\| = 1$, and then $\|[P_{M_{r}\cap M^{\perp}}P_{M_{r-1}\cap M^{\perp}}\cdots P_{M_{1}\cap M^{\perp}}]^{n}\| = 1$. By Theorem 1(2), the result follows.

REFERENCES

- [BL97] H.H.Bauschke, J.M.Borwein, and A.S.Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Contemporary Mathematics, Vol.204,(1997) 138.
- [DH15] F.Deutsch, H.Hundal Arbitrarily slow convergence of sequences of linear operators, Contemporary Mathematics, Vol. 636, (2015), 93-120
- [BL97] H.H.Bauschke, J.M.Borwein, and A.S.Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Contemporary Mathematics, Vol.204,(1997),138.
- [DH10] F.Deutsch, H.Hundal Slow convergence of sequences of linear operators I: Almost arbitrarily slow convergence, J.Approx.Theory, 162 (2010),1701-1716.
- [DH10] F.Deutsch, H.Hundal Slow convergence of sequences of linear operators II: Almost arbitrarily slow convergence, J.Approx. Theory, 162 (2010),1717-1738.