

PROBABILITAS (MAS106)

Variabel Random Diskrit dan Fungsi Distribusinya

Tim Dosen Pengajar Probabilitas

OUTLINE

Random Variable

Suatu fungsi yang bernilai real dari elemenelemen ruang sampel S

atau

Suatu fungsi yang memetakan setiap anggota/elemen ruang sampel, S, tepat satu pada bilangan real

INGAT!!!

Variabel random dinotasikan dengan huruf kapital, contoh X, Y, atau Z.

Nilai yang mungkin dari variabel random dinotasikan dengan **huruf kecil**, contoh x, y, atau z.

Definisi percobaan random dengan ruang sampel S.

Suatu fungsi X, memetakan setiap elemen $x \in S$ tepat satu dan hanya satu angka X(s) = x, disebut **variabel random (variabel acak)**. **Ruang atau jangkauan** dari X adalah himpunan bilangan real $R_x = \{x : x = X(s), s \in S\}$.

Jika R_X adalah himpunan yang dapat dihitung (berhingga banyaknya \rightarrow sama banyaknya dengan bilangan bulat) maka disebut variabel random diskrit, dan jika R_X merupakan interval (tak berhingga banyaknya) maka disebut variabel random kontinu.

Contoh

Dalam suatu eksperimen pelemparan koin sebanyak tiga kali, hasil eksperimen adalah munculnya sisi angka (A) atau sisi gambar (G), sehingga didapatkan ruang sampel

	Outcome	X	
	GGG	3	\
	GGA	2	
2	GAG	2	Ņ
	AGG	2	
	AAG	1	
	AGA	1	
	GAA	1	Ì
	AAA	0	أمر

Random Variable

$S = {$	GGG.	GGA.	GAG.	AGG,	GAA.	AGA.	. AAG.	AAA}
		— — · · · · · · · · · · · · · · · · · ·	-,	,	<i>—</i> .,		, ,	,

X = banyak Gambar

Jika didefinisikan variabel random X yang menyatakan banyaknya sisi G yang muncul, maka **nilai x** yang mungkin adalah 0, 1, 2, dan 3.

Nilai X sebagai kejadian	Komposisi
[X=0]	{AAA}
[X=1]	{AAG, AGA, GAA}
[X=2]	{AGG, GAG, GGA}
[X = 3]	{GGG}

Model matematika yang menghubungkan setiap nilai variabel random dengan peluang terjadi dalam ruang sampelnya disebut **distribusi probabilitas**.

Variabel Random Diskrit

- Sebuah variabel random X disebut diskrit jika ruang atau jangkauannya, R_x, adalah himpunan diskrit (dari bilangan real).
- Fungsi $P_x(x)$ disebut fungsi probabilitas untuk variabel acak diskrit X, seperti berikut.

$$P_X(x) = P(X = x)$$
 untuk $x \in R_X$

Latihan 1

Sebuah laundry memiliki 4 mesin cuci yang bisa disewa pelanggan. Diperkirakan mesin – mesin tersebut dapat berfungsi hingga 5 tahun ke depan. Jika X menyatakan keadaan mesin yang masih baik, tentukan ruang sampel dari yariabel random X.

Jawaban

Jika **B** menyatakan kondisi mesin **baik**, dan **R** menyatakan mesin **rusak**, maka kombinasi dari kemungkinan kondisi ke-4 mesin cuci tersebut adalah: BBBB, BBBR, BBRB, BBRR, BRBB, BRBR, BRRB, BRRR, RBBB, RBRR, RBRB, RRRR, RRRB, RRRR

S = {BBBB, BBBR, BBRB, BBRR, BRBB, BRBR, BRRB, BRRR, RBBB, RBRR, RBBB, RRBR, RRBB, RRBR, RRRB, RRRR}

X =banyak mesin yang masih baik

Nilai X sebagai kejadian	Komposisi
[X=0]	{RRRR}
	{BRRR,RBRR, RRBR,
[X=1]	RRRB}
	{BBRR, BRBR, BRRB,
[X=2]	RBBR, RBRB, RRBB}
	{BBBR, BBRB, BRBB,
[X=3]	RBBB}
[X=4]	{BBBB}

$$p_X(0) = \frac{1}{16}$$

$$p_X(1) = \frac{4}{16}$$

$$p_X(2) = \frac{6}{16}$$

$$p_X(3) = \frac{4}{16}$$

$$p_X(4) = \frac{1}{16}$$

Distribusi probabilitas atau distribusi dari suatu variabel acak X adalah suatu daftar nilai numerik X yang berbeda beserta dengan probabilitasnya.

x	0	1	2	3	4
$p_X(x)$	1	4	6	4	1
$p_X(x)$	<u>16</u>	<u>16</u>	$\overline{16}$	16	16

$$\sum_{x \in R_X} p_X(x) = 1$$

Fungsi Probabilitas

- **Fungsi probabilitas** $p_X(x)$ untuk variabel random diskrit X menunjukkan probabilitas kemunculan elemen dalam rentang X, atau disebut juga sebagai probability mass function (pmf). Untuk variabel acak kontinu, disebut *probability* density function (pdf).
- Fungsi ini kemudian dapat digunakan untuk menghitung probabilitas kemunculan dari setiap peristiwa yang ditentukan oleh nilai X yang diamati.

$$f_X(x) = p_X(x) = P(X = x), x \in R_X$$

Sifat

•
$$0 \le p_X(x) \le 1, x \in R_X$$

• $\sum_{x \in R_X} p_X(x) = 1$

•
$$\sum_{x \in R_X} p_X(x) = 1$$

Contoh:

$$f_X(x) = \begin{cases} \frac{1}{8} & x = 0, 3\\ \frac{3}{8} & x = 1, 2\\ 0 & lainnya \end{cases}$$

Fungsi Distribusi Kumulatif

- Fungsi distribusi juga sering disebut fungsi distribusi kumulatif atau cdf untuk variabel acak X.
- Fungsi ini dapat digunakan untuk mengevaluasi probabilitas kejadian yang ditentukan oleh nilai yang diamati untuk sebuah variabel acak.

Fungsi distribusi kumulatif $F_X(t)$ untuk variabel acak X

$$F_X(t) = \sum_{x \le t} p_X(x)$$

di mana simbol $\sum_{x \le t}$ adalah singkatan untuk penjumlahan semua nilai $x \in R_X$ sedemikian hingga $x \le t$.

tau $F_{\scriptscriptstyle m Y}$

$$F_X(x) = P(X \le x)$$

Sifat

(i) F(t) is a nondecreasing function of x,

(ii)
$$\lim_{t\to\infty} F(t) = F(\infty) = 1$$
,

(iii)
$$\lim_{t\to -\infty} F(t) = F(-\infty) = 0$$
.

Distribusi Probabilitas

x	0	1	2	3
$p_X(x)$	1_	3_	3_	1_
FACO	8	8	8	8

$$f_X(x) = \begin{cases} 0 & jika \ x < 0 \\ \frac{1}{8} & jika \ 0 \le x < 1 \\ \frac{4}{8} & jika \ 1 \le x < 2 \\ \frac{7}{8} & jika \ 2 \le x < 3 \\ 1 & jika \ x \ge 3 \end{cases}$$

Ekspektasi dan Variansi Variabel Random Diskrit

Ekspektasi

$$E(X) = \mu_{x} = \sum_{i=1}^{n} x_{i} p(x_{i})$$

Variansi

$$Var(X) = \sigma_x = \sum_{i=1}^{n} (x_i - \mu_x)^2 p(x_i)$$

Minggu Ke-5, 6 dan 7

Bernoulli Trials

(Percobaan Bernoulli)

Untuk setiap percobaan, peluang sukses P(S) adalah sama dan dinotasikan dengan p. Peluang gagal adalah P(F) = 1 - p untuk setiap percobaan dan dinotasikan dengan q

Peluang setiap
outcome pada suatu
percobaan tidak
bergantung pada
hasil dari percobaan
sebelumnya

Peluang untuk setiap outcome adalah sama pada setiap percobaan

Contoh

Contoh

Suatu pabrik lampu melakukan inspeksi kualitas produk yang dihasilkan. Petugas Quality Control menghitung berapa banyak lampu yang cacat. Jika terdapat dua kondisi yaitu:

- Pengambilan sampel dengan pengembalian
- Pengambilan sampel tanpa pengembalian

maka manakah yang merupakan Percobaan Bernoulli?

pengambilan sampel dengan pengembalian

Lampu diambil secara acak & diperiksa apakah cacat/tidak. Kemudian lampu tersebut dikembalikan lagi untuk pengambilan sampel selanjutnya. Hal tersebut merupakan percobaan Bernoulli karena pengambilan satu dengan lainnya tidak saling bergantung & probabilitas outcome setiap percobaan sama.

pengambilan sampel tanpa pengembalian

Lampu diambil secara acak & diperiksa kualitasnya. Lampu tersebut tidak dikembalikan untuk pengambilan sampel selanjutnya. Hal tersebut bukan percobaan Bernoulli karena hasil suatu percobaan bergantung pada percobaan sebelumnya.

Latihan!!!

1. Sebuah dealer sepedah motor mempunyai rincian jumlah motor yang terjual selama 200 hari pada tabel berikut:

Jumlah Motor Terjual dalam Sehari	Jumlah Hari
2	35
3	76
4	42
5	27
6	20
Total	200

- a. Buatlah distribusi probabilitas penjualan motor selama 200 hari
- b. Dapatkan fungsi distribusi kumulatif

Jawaban

a. Buatlah distribusi probabilitas penjualan motor selama 200 hari tersebut

X	P(x)
2	35/200 = 0,175
3	76/200 = 0,38
4	42/200 = 0,21
5	27/200 = 0,135
6	20/200 = 0,1
Total	200/200 = 1

b. Dapatkan fungsi distribusi kumulatif

X	p(x)
2	0,175
3	0,555 =0,175+0,38
4	0,765 =0,175+0,38+0,21
5	0,90 =0,175+0,38+0,21+0,135
6	1,00 =0,175+0,38+0,21+0,135+0,1

TERIMA KASIH...

