

Appendices

Tables of Numerical Data

Table A.1 Isothermal Compressibilities of Liquids

	$\kappa_{\mathrm{T}} imes 10^{10}/\mathrm{Pa^{-1}}$						
Substance	Pressure/atm	25°C	45°C	65°C	85°C		
Aniline	1	4.67	5.22	5.84	6.56		
	1000	3.23	3.48	3.76	4.04		
Benzene	1	9.67	11.32	13.39			
	1000	5.07	5.50	5.98			
Bromobenzene	1	6.68	7.52	8.50	9.65		
	1000	4.09	4.39	4.72	5.06		
Carbon tetrachloride	1	10.67	12.54	14.87			
	1000	5.30	5.75	6.22			
Chlorobenzene	1	7.51	8.55	9.76	11.23		
	1000	4.39	4.73	5.10	5.49		
Nitrobenzene	1	5.03	5.59	6.24	6.99		
	1000	3.39	3.64	3.91	4.20		
Water	1	4.57	4.41	4.48	4.65		
	1000	3.48	3.40	3.42	3.53		

From R. C. Weast, ed., *Handbook of Chemistry and Physics*, 66th ed., CRC Press, Boca Raton, 1985, p. F12ff.

Table A.2 Coefficients of Thermal Expansion at 20°C

Substance	$\alpha \times 10^3/\mathrm{K}^{-1}$
Benzene	1.237
Carbon disulfide	1.218
Carbon tetrachloride	1.236
Chloroform	1.273
Phenol	1.090
Sulfuric acid	0.558
Water	0.207

From C. D. Hodgman, ed., *Handbook of Chemistry and Physics*, 33rd ed., Chemical Rubber Publishing Co., Cleveland, 1951, p. 1855.

1210 A Tables of Numerical Data

Table A.3 Parameters for Some Equations of State

Parameters for the van der Waals Equation of State

$$\left(P + \frac{a}{V_{\rm m}^2}\right)(V_{\rm m} - b) = RT; \qquad P = \frac{RT}{V_{\rm m} - b} - \frac{a}{V_{\rm m}^2}$$

Substance	$a/\mathrm{Pa}\mathrm{m}^6\mathrm{mol}^{-2}$	$b\times 10^5/\mathrm{m}^3\;\mathrm{mol}^{-1}$
Ammonia	0.4225	3.707
Argon	0.1363	3.219
Carbon dioxide	0.3640	4.267
Helium	0.003457	2.370
Hydrogen	0.02476	2.661
Methane	0.2283	4.278
Neon	0.8636	1.709
Nitrogen	0.1408	3.913
Oxygen	0.1378	3.183
Xenon	0.4250	5.105
Water	0.5536	3.049

Parameters for the Berthelot Equation of State
$$\left(P + \frac{a}{TV_{\rm m}^2}\right) (V_{\rm m} - b) = RT; \qquad P = \frac{RT}{V_{\rm m} - b} - \frac{a}{TV_{\rm m}^2}$$

\ III /		111 1111
Substance	$a/\mathrm{Pa}\mathrm{m}^6\mathrm{mol}^{-2}\mathrm{K}$	$b \times 10^5/\text{m}^3 \text{ mol}^{-1}$
Ammonia	171	3.70
Argon	20.5	3.20
Carbon dioxide	111	4.28
Helium	0.019	2.41
Methane	43.6	4.27
Neon	0.98	1.77
Nitrogen	17.3	3.87
Oxygen	21.3	3.18
Xenon	121	5.13
Water	357	3.04

Parameters for the Dieterici Equation of State
$$Pe^{a/V_{\rm m}RT}(V_{\rm m}-b)=RT; \qquad P=\frac{RT}{V_{\rm m}-b}e^{-a/V_{\rm m}RT}$$

Substance	$a/\mathrm{Pa}\mathrm{m}^6\mathrm{mol}^{-2}$	$b\times 10^5/\mathrm{m}^3~\mathrm{mol}^{-1}$
Ammonia	0.540	4.00
Argon	0.174	3.47
Carbon dioxide	0.468	4.63
Helium	0.0046	2.60
Hydrogen	0.031	2.83
Methane	0.293	4.62
Neon	0.028	1.91
Nitrogen	0.176	4.19
Oxygen	0.177	3.45
Xenon	0.536	5.56
Water	0.709	3.29

(continued)

A Tables of Numerical Data

Table A.3 (continued)

Parameters for the Redlich-Kwong Equation of State

$$P = \frac{RT}{V_{\rm m} - b} - \frac{a}{T^{1/2} V_{\rm m} (V_{\rm m} + b)}$$

	· III • - · III (III 1 - 7
Substance	$a/{\rm Pa}{\rm m}^6{\rm mol}^{-2}{\rm K}^{1/2}$	$b\times 10^5/\mathrm{m}^3\;\mathrm{mol}^{-1}$
Ammonia	8.59	2.56
Argon	1.69	2.22
Carbon dioxide	6.44	2.96
Helium	0.00835	1.67
Hydrogen	0.14195	1.813
Methane	3.20	2.96
Neon	0.149	1.22
Nitrogen	1.56	2.68
Oxygen	1.74	2.21
Xenon	7.20	3.56
Water	14.24	2.11

From R. C. Weast, ed., *Handbook of Chemistry and Physics*, 64th ed., CRC Press, Boca Raton, FL, 1983, p. D191.

Table A.4 Second Virial Coefficients

		1	$B_2 \times 10^{5}$	/m ³ mol ⁻	1	
		Temperature/°C				
Substance	-100	-50	0	50	100	150
Argon	-6.43	-3.74	-2.15	-1.12	-0.42	0.11
Carbon dioxide			-15.4	-10.3	-7.3	-5.1
Helium	1.17	1.19	1.18	1.16	1.14	1.10
Nitrogen	-5.19	-2.64	-1.04	-0.04	0.63	1.19
Water			-45.0	-28.4		
Xenon			-8.12			

Data from D. P. Shoemaker, C. W. Garland, and J. I. Steinfeld, *Experiments in Physical Chemistry*, 4th ed., McGraw-Hill, New York, 1981, p. 64, and J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids*, Wiley, New York, 1954, pp. 167, 227.

Table A.5 Critical Constants

Substance	$T_{\rm c}/{ m K}$	$P_{\rm c}/{\rm bar}$	$V_{\rm mc} \times 10^6 / {\rm m}^3 {\rm mol}^{-1}$	$P_{\rm c}V_{\rm mc}/RT_{\rm c}$
Ammonia	405.6	114.0	70.4	0.238
Argon	151	49	75.2	0.291
Carbon dioxide	304.1	73.8	93.8	0.274
Helium	5.3	2.29	57.8	0.300
Methane	190.7	46.4	99.0	0.290
Neon	44.5	26.2	41.7	0.296
Nitrogen	126.1	33.9	90.1	0.292
Oxygen	154.4	50.4	74.4	0.292
Xenon	289.81	58.66	120.2	0.293
Water	647.2	221.2	54.5	0.224

From J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, *Molecular Theory of Gases and Liquids*, Wiley, New York, 1954, p. 245, and R. C. Weast, ed., *Handbook of Chemistry and Physics*, 64th ed., Boca Raton, 1983, pp. F66–F67.

TABLE A-1

Molar mass, gas constant, and critical-point properties

			Gas	Critical-p	Critical-point properties			
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	Temperature, K	Pressure, MPa	Volume, m³/kmol		
Air	_	28.97	0.2870	132.5	3.77	0.0883		
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724		
Argon	Ar	39.948	0.2081	151	4.86	0.0749		
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603		
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355		
<i>n</i> −Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547		
Carbon dioxide	CO ₂	44.01	0.1889	304.2	7.39	0.0943		
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930		
Carbon tetrachloride	CCI ₄	153.82	0.05405	556.4	4.56	0.2759		
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242		
Chloroform	CHCI ₃	119.38	0.06964	536.6	5.47	0.2403		
Dichlorodifluoromethane $(R-12)$	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179		
Dichlorofluoromethane (R-21)	CHČI ₂ F	102.92	0.08078	451.7	5.17	0.1973		
Ethane	C ₂ H ₆	30.070	0.2765	305.5	4.48	0.1480		
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.1805	516	6.38	0.1673		
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242		
Helium	He	4.003	2.0769	5.3	0.23	0.0578		
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677		
Hydrogen (normal)	H ₂	2.016	4.1240	33.3	1.30	0.0649		
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924		
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993		
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180		
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430		
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417		
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899		
Nitrous oxide	N_2^- 0	44.013	0.1889	309.7	7.27	0.0961		
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780		
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998		
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810		
Sulfur dioxide	SO ₂	64.063	0.1298	430.7	7.88	0.1217		
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993		
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478		
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560		
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186		

^{*}The unit kJ/kg-K is equivalent to kPa·m³/kg·K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol·K and M is the molar mass.

Source of Data: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air—Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2

Ideal-gas specific heats of various common gases

(a) At 300 K

Gas	Formula	Gas constant, <i>R</i> kJ/kg∙K	$c_{_{ ho}}$ kJ/kg \cdot K	<i>c</i> √ kJ/kg∙K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C ₈ H ₁₈	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C ₃ H ₈	0.1885	1.6794	1.4909	1.126
Steam	H ₂ 0	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source of Data: B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2000).

TABLE A-2

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temperature,	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg⋅K	k	<i>c_p</i> kJ/kg⋅K	<i>c</i> _∨ kJ/kg∙K	k	<i>c_p</i> kJ/kg∙K	<i>c</i> _v kJ/kg⋅K	k
K		Air		Car	bon dioxide,	CO ₂	Carb	on monoxide	, CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen, H ₂		Nitrogen, N ₂			Oxygen, O ₂		
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data		Liquid p	properties
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion <i>h_{if}</i> , kJ/kg	Temperature, °C	Density $ ho$, kg/m ³	Specific heat c _p , kJ/kg⋅K
Ammonia	-33.3	1357	-77.7	322.4	-33.3 -20 0 25	682 665 639 602	4.43 4.52 4.60 4.80
Argon Benzene Brine (20% sodium	-185.9 80.2	161.6 394	-189.3 5.5	28 126	-185.6 20	1394 879	1.14 1.72
chloride by mass) n—Butane Carbon dioxide	103.9 -0.5 -78.4*	— 385.2 230.5 (at 0°C)	-17.4 -138.5 -56.6	— 80.3	20 -0.5 0	1150 601 298	3.11 2.31 0.59
Ethanol Ethyl alcohol Ethylene glycol	78.2 78.6 198.1	838.3 855 800.1	-114.2 -156 -10.8	109 108 181.1	25 20 20	783 789 1109	2.46 2.84 2.84
Glycerine Helium Hydrogen	179.9 -268.9 -252.8	974 22.8 445.7	18.9 — — —259.2	200.6 — 59.5	20 -268.9 -252.8	1261 146.2 70.7	2.32 22.8 10.0
Isobutane Kerosene	-11.7 204-293	367.1 251	-160 -24.9	105.7 —	-11.7 20	593.8 820	2.28 2.00
Mercury Methane	356.7 -161.5	294.7 510.4	-38.9 -182.2	11.4 58.4	25 -161.5 -100	13,560 423 301	0.139 3.49 5.79
Methanol Nitrogen	64.5 -195.8	1100 198.6	-97.7 -210	99.2 25.3	25 -195.8 -160	787 809 596	2.55 2.06 2.97
Octane Oil (light)	124.8	306.3	-57.5	180.7	20 25	703 910	2.10 1.80
Oxygen Petroleum Propane	-183 -42.1	212.7 230–384 427.8	-218.8 -187.7	13.7 80.0	-183 20 -42.1	1141 640 581	1.71 2.0 2.25
	26.1	217.0			0 50	529 449	2.53 3.13
Refrigerant – 134a	-26.1	217.0	-96.6	_	-50 -26.1 0 25	1443 1374 1295 1207	1.23 1.27 1.34 1.43
Water	100	2257	0.0	333.7	0 25 50 75 100	1000 997 988 975 958	4.22 4.18 4.18 4.19 4.22

^{*} Sublimation temperature. (At pressures below the triple—point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing—point temperature of carbon dioxide is the triple—point temperature of -56.5° C.)

513

1.38

TABLE A-3

Properties of common liquids, solids, and foods (Concluded)

7,830

19,400

(b) Solids (values are for	(b) Solids (values are for room temperature unless indicated otherwise)													
	Density,	Specific heat,		Density,	Specific heat,									
Substance	$ ho$ kg/m 3	$c_{\scriptscriptstyle p}$ kJ/kg \cdot K	Substance	$ ho$ kg/m 3	$c_{_{ ho}}$ kJ/kg \cdot K									
Metals			Nonmetals											
Aluminum			Asphalt	2110	0.920									
200 K		0.797	Brick, common	1922	0.79									
250 K		0.859	Brick, fireclay (500°C)	2300	0.960									
300 K	2,700	0.902	Concrete	2300	0.653									
350 K		0.929	Clay	1000	0.920									
400 K		0.949	Diamond	2420	0.616									
450 K		0.973	Glass, window	2700	0.800									
500 K		0.997	Glass, pyrex	2230	0.840									
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711									
2% AI)			Granite	2700	1.017									
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09									
35% Zn)			Ice											
Copper			200 K		1.56									
-173°C		0.254	220 K		1.71									
-100°C		0.342	240 K		1.86									
−50°C		0.367	260 K		2.01									
0°C		0.381	273 K	921	2.11									
27°C	8,900	0.386	Limestone	1650	0.909									
100°C		0.393	Marble	2600	0.880									
200°C		0.403	Plywood (Douglas Fir)	545	1.21									
Iron	7,840	0.45	Rubber (soft)	1100	1.840									
Lead	11,310	0.128	Rubber (hard)	1150	2.009									
Magnesium	1,730	1.000	Sand	1520	0.800									
Nickel	8,890	0.440	Stone	1500	0.800									
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26									

Tungsten (c) Foods

Steel, mild

	Water -	Specifi kJ/kg		Latent heat of		Water		Specifi kJ/kg	c heat, ·K	Latent heat of	
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Woods, soft (fir, pine, etc.)

0.500

0.130

Source of Data: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing—point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air—Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4

Saturated water—Temperature table

			o <i>volume,</i> ³ /kg	Int	<i>ernal ene</i> kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg			Entropy kJ/kg·K	
Temp.	Sat. , press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.5355 6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4
Saturated water—Temperature table (*Concluded*)

			c <i>volume,</i> ³ /kg	Into	<i>ernal ene</i> kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg			Entropy kJ/kg·K	
Temp.,	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap.,	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.9318 3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.7857 1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source of Data: Tables A–4 through A–8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5

Saturated water—Pressure table

			c <i>volume,</i> ³ /kg	Int	t <i>ernal ene</i> kJ/kg	rgy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Press., P kPa	Sat. temp., $T_{\rm sat}$ °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003		29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9	0.1059 0.1956	8.8690 8.6314 8.4621	8.9749 8.8270 8.7227
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3	2553.7 2560.7 2574.0 2583.9 2598.3	0.5763	8.0510 7.9176 7.6738 7.4996 7.2522	8.4734 8.3938 8.2501 8.1488 8.0071
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2636.1	0.9441 1.0261	7.0752 6.9370 6.8234 6.6430 6.5019	7.9073 7.8302 7.7675 7.6691 7.5931
75 100 101.325 125 150	91.76 99.61 5 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2675.0 2675.6 2684.9	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.4558 7.3589 7.3545 7.2841 7.2231
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2706.3 2711.7 2716.5	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1716 7.1270 7.0877 7.0525 7.0207
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	561.11 572.84 583.89 594.32 604.22	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2732.0	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9917 6.9650 6.9402 6.9171 6.8955
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2752.4 2756.2	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.8561 6.8207 6.7886 6.7593 6.7322
700 750	164.95 167.75	0.001108 0.001111		696.23 708.40	1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4		1.9918 2.0195	4.7153 4.6642	6.7071 6.6837

TABLE A-5
Saturated water—Pressure table (*Concluded*)

			<i>Specific</i> m ³ /		Inte	ernal ener kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Pre	ess., «Pa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap.,	Sat. vapor, s_g
2	300 350 900 950	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.5273	6.6616 6.6409 6.6213 6.6027 6.5850
1: 1: 1:	100 200 300 400 500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2783.8 2786.5 2788.9	2.1785 2.2159 2.2508 2.2835 2.3143	4.3058 4.2428 4.1840	6.5520 6.5217 6.4936 6.4675 6.4430
20 21 21	750 000 250 500 000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9	2798.3 2800.5 2801.9	2.3844 2.4467 2.5029 2.5542 2.6454	3.8923 3.7926 3.7016	6.3877 6.3390 6.2954 6.2558 6.1856
40 50 60	500 000 000 000 000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.039448	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2603.0 2601.7 2597.0 2589.9 2581.0	1087.4 1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.2731 3.0530	6.1244 6.0696 5.9737 5.8902 5.8148
90 10, 11,	000 000 ,000 ,000 ,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.023525 0.020489 0.018028 0.015988 0.014264	1433.9	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2706.3	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
14, 15, 16,	,000 ,000 ,000 ,000 ,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1548.4 1585.5 1622.6	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4	2637.9 2610.8 2581.0	3.6232 3.6848	1.6261 1.5005	5.4336 5.3728 5.3108 5.2466 5.1791
19, 20, 21, 22,	,000 ,000 ,000 ,000 ,000 ,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1740.3 1785.8 1841.6 1951.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2412.1 2338.4 2172.6		0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLE A-6

Superheated water

TC v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v u h s v p e 0.00 9710 s p e 0.00 p 0.00 1.00 p 0.00 0		neated wate	er										
Sat.	T	-											
Satt 14.670	°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
50		P =	0.01 MP	a (45.81°	C)*	P =	0.05 MP	a (81.32°	C)	<i>P</i> :	= 0.10 M	Pa (99.61	l°C)
100	Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
150 19.513 2587.9 2783.0 8.6893 3.8897 2780.2 7.9413 1.9367 2582.9 2776.6 7.6148 200 21.826 2614.2 2879.6 8.9049 4.3562 2660.0 2877.8 8.1592 2.1724 2658.2 2875.5 7.8356 250 24.136 2736.1 2977.5 9.1015 4.8206 2735.1 2976.2 8.3568 2.4062 2733.9 2974.5 8.0346 200 26.446 2812.3 3076.7 9.2827 5.2841 2811.6 3075.8 8.5368 2.4062 2733.9 2974.5 8.0346 200 31.063 2969.3 328.00 9.6094 6.2094 2968.9 3279.3 8.8659 3.1027 2968.3 3278.6 8.5452 500 35.680 3132.9 3489.7 9.8998 7.1338 3122.6 3489.3 9.1566 3.5655 3132.2 3488.7 8.8362 200 40.296 3303.3 3706.3 10.1631 8.0577 3303.1 3706.0 9.4291 4.0279 3302.8 370.6 9.0999 700 44.911 3480.8 392.9 10.4056 8.9813 3480.6 392.9 7.96626 4.4000 3480.4 392.4 9.3622 900 54.143 3856.9 4398.3 10.8429 10.8280 3856.8 4052.6 406.4 9.898.9 10.000 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.300 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.300 5.8755 4055.0 4692.6 9.9800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.5372 4259.8 4993.6 10.1698 1300 72.604 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 1.2605.4 4893.6 10.1698 1.2605.4 4893.6 10													
200 21.826													
250 24.136 2736.1 2977.5 9.1015 4.8206 2735.1 2976.2 8.3568 2.4062 2733.9 2974.5 8.0346 2000 446 2812.3 3076.7 9.2827 5.841 2811.6 3075.8 8.5387 2.6089 2810.7 3074.5 8.2172 400 31.063 2969.3 3280.0 9.6094 6.2094 2968.9 3279.3 8.8659 3.1027 2968.3 3278.6 8.5452 5.00 35.680 3132.9 3489.7 9.8998 7.1338 3132.6 3489.3 9.1566 3.5655 3122.2 3488.7 8.8362 5.00 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.4900 3480.4 3929.4 3705.6 9.0999 700 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.4900 3480.4 3929.4 3424 4.00 3480.5 8.585 4.00 4.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.4900 3480.4 3929.4 3424 4.00 5.00 5.878 4.00 5.3 462.8 11.0429 11.7513 4055.2 4612.0 10.000 5.788 4.00 5.3 462.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.4137 3856.7 4398.0 7.800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.3372 4259.8 4893.6 10.1698 1200 67.989 4470.9 5150.8 11.132 13.5977 4470.8 5150.7 10.6704 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 12.00 1.08049 2654.6 2870.7 7.5081 0.71643 2651.0 2865.9 7.3132 0.5942 2726.4 2961.5 7.3804 200 1.08049 2654.6 2870.7 7.5081 0.71643 2651.0 2865.9 7.3132 0.5343 2647.2 2726.4 2961.5 7.3804 200 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5674 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.77265 2964.9 3273.9 7.9003 1.31623 3802.6 3497.7 9.4598 1.31439 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 0.247550 3664.7 4159.8 9.2271 1.89580 3479.5 3928.2 88834 5.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2271 1.89580 3479.5 3928.2 888345 1.1252 3479.0 3927.6 8.7012 1.000 2.93755 4054.8 4642.3 9.6599 1.94580 3495.9 39398 4470.5 5150.4 10.0304 2.6664.4 4159.3 9.6004 3.9004 2.70565 3856.3 4397.7 9.4598 1.3149 3930.6 5.706.2 3481.5 3485.5 8.1933 30.0 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.0157 1.81516 4686.7 5412.8 9828 2.000 0.29355 4054.8 8													
26,446 2812.3 3076.7 9.2827 5.2841 2811.6 3075.8 8.5387 2.6389 2810.7 3074.5 8.2172													
400 31.063 2969.3 3280.0 9.6094 6.2094 2968.9 3279.3 8.8659 3.1027 2968.3 3278.6 8.5452 500 35.680 3132.2 3489.7 8.998 7.1338 313.2.6 3489.3 9.1566 3132.2 3488.7 8.3862 600 40.296 3303.3 3706.3 10.1631 8.0577 3303.1 3706.0 9.4201 4.0279 3302.8 3705.6 9.0999 700 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.4900 3480.4 3922.4 3924.4 3929.9 9.3424 300 3856.8 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 5.4137 3856.9 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 5.4137 3856.5 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.4137 3856.5 4398.0 7.800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.3372 4259.8 4893.6 10.1698 12.00 67.999 4709 5150.8 11.4132 13.577 4707.6 5150.7 10.6704 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 4883.3 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4883.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474 4893.8 4893.8 4893.8 49.2474													
500 35.680 3132.9 3480.7 9.8998 7.1338 3132.6 3489.3 9.1566 3.5655 3132.2 3488.7 8.365 600 40.296 3303.3 3706.0 9.9929 700 44.911 3480.8 3929.9 10.4056 8.9813 3480.6 3929.7 9.6626 4.0279 3302.8 3705.6 9.9929 900 54.143 3856.9 4398.1 0.8429 10.8280 3856.8 4398.2 10.1000 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 58.758 4055.3 4642.8 11.0324 11.7513 4055.2 4642.7 10.3000 58.755 4055.0 4642.6 9.9800 1000 63.373 4260.0 4893.8 11.4312 13.5977 4470.8 5150.7 10.6704 6.7988 4470.7 5150.6 10.4581 10.5891 10.6981													
Columber													
The color													
800 49.527 3665.4 4160.6 10.6312 9.9047 3665.2 4160.4 9.8883 4.9519 3665.0 4160.2 9.5682 900 54.143 3856.9 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 58.758 4055.3 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.8755 4055.0 4642.6 9.9800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.3372 4259.8 4893.6 10.1698 1200 67.989 4470.9 5150.8 11.4132 13.5977 4470.8 5150.7 10.6704 6.7988 4470.7 5150.6 10.3504 13.5997 4470.8 5150.7 10.6704 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 12.6745 4259.9 4893.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 12.6745 4259.9 4887.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229 12.6745 42.690.9 10.8649 2.6654.6 2870.7 7.5081 0.63402 2571.0 2761.2 7.0792 0.47088 2564.4 2752.8 6.9306 2.0 1.08049 2564.6 2870.7 7.5081 0.71643 2551.0 2865.9 7.3132 0.53434 2647.2 2860.9 7.1723 250 1.19890 2731.4 2971.2 7.7100 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 0.300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.75625 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.0058 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.0605 1.23730 3663.9 4158.9 8.9274 9.00 2.93755 4064.8 4622.9 3.96599 1.9984 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1.000 2.93755 4064.8 4622.0 9.4726 1.95824 4893.3 9.8497 2.21226 4259.4 4893.1 9.6604 1.2529 4893.3 9.8497 2.21226 4259.4 4893.1 9.6604 1.2529 4893.3 9.8497 2.21226 4259.4 4893.1 9.6604 1.26470.2 5150.0 9.7102 3300 0.52261 2803.3 3064.6 7.4614 0.04342 2804.0 3454.2 876.0 9.4726 3.8938 3.9839 3.9													
900 54.143 3856.9 4398.3 10.8429 10.8280 3856.8 4398.2 10.1000 58.755 4055.0 4642.6 9.9800 1000 58.755 4055.0 4642.8 11.0429 11.7513 4055.2 4642.7 10.3000 5.8755 4055.0 4642.6 9.9800 1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.3372 4259.8 4893.6 10.1698 1200 67.989 4470.9 5150.8 11.4132 13.5977 4470.8 5150.7 10.6704 6.7988 4470.7 5150.6 10.3504 1300 72.604 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229													
1100 63.373 4260.0 4893.8 11.2326 12.6745 4259.9 4893.7 10.4897 6.3372 4259.8 4893.6 10.1698 1200 67.989 4470.9 5150.8 11.4132 13.5977 4470.8 5150.7 10.6704 6.7988 4470.7 5150.6 10.3504 13.5977 4470.8 5150.7 10.6704 7.2605 4687.2 5413.3 10.8429 7.2605 4687.2 5413.3 10.8429 7.2605 4687.2 5413.3 10.8429 2654.6 2870.7 7.5810 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 1.00 0.95986 2577.1 2769.1 7.2810 0.63402 2571.0 2761.2 7.0792 0.47088 2564.4 2752.8 6.9306 200 1.08049 2654.6 2870.7 7.5081 0.71643 2651.0 2865.9 7.3132 2550 1.19890 2731.4 2971.2 7.7100 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 306.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.54934 2967.2 2377.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.0558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 8.00 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.6054 1.23730 3663.9 4158.9 8.9274 1.00 2.93755 4054.8 4642.3 9.6599 1.98824 4054.5 4642.0 9.4726 1.8585 4054.3 4641.7 9.3396 1.00 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 1.58916 4892.9 9.5295 1.2500 3.63026 4687.1 5413.1 10.2029 2.42019 4688.6 8.276.6 8.756.2 6.7593 0.26088 2631.1 2839.8 6.8177 2550 0.47443 2723.8 2961.0 7.2725 0.33990 2721.2 2957.6 7.1833 0.23212 2715.9 2950.4 7.0402 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.43826 2631.1 2839.8 6.8176 0.0000 0.80409 300.4 3702.5 8.3544 0.66976 3299.8 3701.													
1200 67.889 4470.9 5150.8 11.4132 13.5977 4470.8 5150.7 10.6704 67.988 4470.7 5150.6 10.3504 72.604 4687.4 5413.4 11.5857 14.5209 4687.3 5413.3 10.8429 7.2605 4687.2 5413.3 10.5229	1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2	4642.7	10.3000	5.8755	4055.0	4642.6	9.9800
Table Tabl	1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9	4893.7	10.4897	6.3372	4259.8	4893.6	10.1698
Sat. 0.88578 2529.1 2706.3 7.1270 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 200 1.08049 2654.6 2870.7 7.5081 0.71643 2651.0 2761.2 7.0792 0.47088 2564.4 2752.8 6.9306 200 1.19890 2731.4 2971.2 7.7100 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2861.5 7.3804 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3704.0 8.5945 319.3 3485.5 8.1933 600 2.17656 3856.3 4397.7	1200					13.5977	4470.8			6.7988			
Sat. 0.88578 2529.1 2706.3 7.1270 0.60582 2543.2 2724.9 6.9917 0.46242 2553.1 2738.1 6.8955 150 0.95986 2577.1 2769.1 7.2810 0.63402 2571.0 2761.2 7.0792 0.47088 2564.4 2752.8 6,9306 200 1.08049 2654.6 2870.7 7.5081 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.54934 2967.2 3275.8 8.3271 0.86489 3805.1 379.2 3130.6 3704.0 8.5915 1.07556 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580	1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
150		P =	0.20 MF	Pa (120.2)	1°C)	P =	0.30 MP	a (133.52	2°C)	P =	0.40 MF	Pa (143.6	1°C)
200 1.08049 2654.6 2870.7 7.5081	Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
250 1.19890 2731.4 2971.2 7.7100 0.79645 2728.9 2967.9 7.5180 0.59520 2726.4 2964.5 7.3804 300 1.31623 2808.8 3072.1 7.8941 0.87535 2807.0 3069.6 7.7037 0.65489 2805.1 3067.1 7.5677 400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.8672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.0605 1.23730 3663.9 4158.9 8.9274 900 2.70656 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.46859 4054.3 4641.7 9.3396 1100 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 1.58414 4259.2 4892.9 9.5295 1200 3.39938 4470.5 5150.4 10.0304 2.26624 4470.3 5150.2 9.8431 1.69966 4470.2 5150.0 9.7102 1300 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.0157 1.81516 4686.7 5412.8 9.8828													6.9306
300 1.31623 2808.8 3072.1 7.8941													
400 1.54934 2967.2 3277.0 8.2236 1.03155 2966.0 3275.5 8.0347 0.77265 2964.9 3273.9 7.9003 500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.0605 1.35298 3855.7 4396.9 9.1394 1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.46859 4054.3 461.7 9.3396 1200 3.63026 4687.1<													
500 1.78142 3131.4 3487.7 8.5153 1.18672 3130.6 3486.6 8.3271 0.88936 3129.8 3485.5 8.1933 600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.6605 1.23730 3663.9 4158.9 8.9274 900 2.76656 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1100 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 1.69664 4170.2 5150.0 9.7102 1.36296 4470.3 5150.2 9.8431													
600 2.01302 3302.2 3704.8 8.7793 1.34139 3301.6 3704.0 8.5915 1.00558 3301.0 3703.3 8.4580 700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.70565 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.46859 4054.3 4641.7 9.3396 1100 3.16848 4259.6 4893.3 9.8497 2.11226 4259.4 4893.1 9.6624 1.58414 4259.2 4892.9 9.5295 1200 3.39938 4470.5 5150.4 10.0304 2.26624 4470.3 5150.2 9.8431 1.6966 4470.2 5150.0 9.7102 300 5250													
700 2.24434 3479.9 3928.8 9.0221 1.49580 3479.5 3928.2 8.8345 1.12152 3479.0 3927.6 8.7012 800 2.47550 3664.7 4159.8 9.2479 1.65004 3664.3 4159.3 9.0605 1.23730 3663.9 4158.9 8.9274 900 2.70656 3856.3 4397.7 9.4598 1.80417 3856.0 4397.3 9.2725 1.35298 3855.7 4396.9 9.1394 1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.46859 4054.3 4641.7 9.3396 100 3.16848 4259.6 4893.3 9.8497 2.1226 4259.4 4893.1 9.6624 1.58414 4259.2 4892.9 9.5295 1200 3.3938 4470.5 5150.4 10.0304 2.26624 4470.3 5150.2 9.8431 1.69966 4470.2 5150.0 9.7102 1300 0.42503													
800													
900													
1000 2.93755 4054.8 4642.3 9.6599 1.95824 4054.5 4642.0 9.4726 1.58414 4259.2 4892.9 9.5295 1200 3.16848 4259.6 4893.3 9.8497 2.26624 4470.3 5150.2 9.8431 1.69966 4470.2 5150.0 9.7102 1300 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.0157 1.81516 4686.7 5412.8 9.8828 \[P = 0.50 MPa (151.83°C) \] \[P = 0.60 MPa (158.83°C) \] \[P = 0.60 MPa (158.83°C) \] \[P = 0.80 MPa (170.41°C) \] \[Sat. \] \[0.37483 \] \[2560.7 \] \[2748.1 \] \[6.8207 \] \[200 \] \[0.42503 \] \[2643.3 \] \[2855.8 \] \[7.0610 \] \[0.35212 \] \[2639.4 \] \[280.4 \] \[280.5 \] \[0.57015 \] \[2883.0 \] \[3168.1 \] \[7.6346 \] \[400 \] \[0.61731 \] \[2963.7 \] \[3272.4 \] \[7.7956 \] \[0.71095 \] \[3129.0 \] \[3484.5 \] \[8.0893 \] \[600 \] \[0.89696 \] \[3478.6 \] \[3927.0 \] \[8.5978 \] \[8.0893 \] \[800 \] \[0.89866 \] \[363.6 \] \[4158.4 \] \[4054.5 \] \[
1200 3.39938 4470.5 5150.4 10.0304 3.63026 4687.1 5413.1 10.2029 2.42019 4686.9 5413.0 10.0157 1.81516 4686.7 5412.8 9.8828 2.42019 4.85132 2.42019 4.868.9													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1100	3.16848	4259.6	4893.3	9.8497	2.11226	4259.4	4893.1	9.6624	1.58414	4259.2	4892.9	9.5295
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200	3.39938		5150.4	10.0304					1.69966	4470.2		9.7102
Sat. 0.37483 2560.7 2748.1 6.8207 0.31560 2566.8 2756.2 6.7593 0.24035 2576.0 2768.3 6.6616 200 0.42503 2643.3 2855.8 7.0610 0.35212 2639.4 2850.6 6.9683 0.26088 2631.1 2839.8 6.8177 250 0.47443 2723.8 2961.0 7.2725 0.39390 2721.2 2957.6 7.1833 0.29321 2715.9 2950.4 7.0402 300 0.52261 2803.3 3064.6 7.4614 0.43442 2801.4 3062.0 7.3740 0.32416 2797.5 3056.9 7.2345 350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 2878.6 3162.2 7.4107 400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095	1300	3.63026	4687.1	5413.1	10.2029	2.42019	4686.9	5413.0	10.0157	1.81516	4686.7	5412.8	9.8828
200 0.42503 2643.3 2855.8 7.0610 0.35212 2639.4 2850.6 6.9683 0.26088 2631.1 2839.8 6.8177 250 0.47443 2723.8 2961.0 7.2725 0.39390 2721.2 2957.6 7.1833 0.29321 2715.9 2950.4 7.0402 300 0.52261 2803.3 3064.6 7.4614 0.43442 2801.4 3062.0 7.3740 0.32416 2797.5 3056.9 7.2345 350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 2878.6 3162.2 7.4107 400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.5978 0.74725 3478.1 3926.4 8.5132 <th></th> <th>P =</th> <th>= 0.50 MF</th> <th>Pa (151.8</th> <th>3°C)</th> <th>P =</th> <th>0.60 MP</th> <th>a (158.83</th> <th>3°C)</th> <th>P =</th> <th>0.80 MF</th> <th>Pa (170.4</th> <th>1°C)</th>		P =	= 0.50 MF	Pa (151.8	3°C)	P =	0.60 MP	a (158.83	3°C)	P =	0.80 MF	Pa (170.4	1°C)
250 0.47443 2723.8 2961.0 7.2725 0.39390 2721.2 2957.6 7.1833 0.29321 2715.9 2950.4 7.0402 300 0.52261 2803.3 3064.6 7.4614 0.43442 2801.4 3062.0 7.3740 0.32416 2797.5 3056.9 7.2345 350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 2878.6 3162.2 7.4107 400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 <td></td>													
300 0.52261 2803.3 3064.6 7.4614 0.43442 2801.4 3062.0 7.3740 0.32416 2797.5 3056.9 7.2345 350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 2878.6 3162.2 7.4107 400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 <td></td>													
350 0.57015 2883.0 3168.1 7.6346 0.47428 2881.6 3166.1 7.5481 0.35442 2878.6 3162.2 7.4107 400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 <td></td>													
400 0.61731 2963.7 3272.4 7.7956 0.51374 2962.5 3270.8 7.7097 0.38429 2960.2 3267.7 7.5735 500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 <td></td>													
500 0.71095 3129.0 3484.5 8.0893 0.59200 3128.2 3483.4 8.0041 0.44332 3126.6 3481.3 7.8692 600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 </td <td></td>													
600 0.80409 3300.4 3702.5 8.3544 0.66976 3299.8 3701.7 8.2695 0.50186 3298.7 3700.1 8.1354 700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090													
700 0.89696 3478.6 3927.0 8.5978 0.74725 3478.1 3926.4 8.5132 0.56011 3477.2 3925.3 8.3794 800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090													
800 0.98966 3663.6 4158.4 8.8240 0.82457 3663.2 4157.9 8.7395 0.61820 3662.5 4157.0 8.6061 900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090													
900 1.08227 3855.4 4396.6 9.0362 0.90179 3855.1 4396.2 8.9518 0.67619 3854.5 4395.5 8.8185 1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090													
1000 1.17480 4054.0 4641.4 9.2364 0.97893 4053.8 4641.1 9.1521 0.73411 4053.3 4640.5 9.0189 1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090													
1100 1.26728 4259.0 4892.6 9.4263 1.05603 4258.8 4892.4 9.3420 0.79197 4258.3 4891.9 9.2090						0.97893	4053.8						
1200 1.35972 4470.0 5149.8 9.6071 1.13309 4469.8 5149.6 9.5229 0.84980 4469.4 5149.3 9.3898	1100					1.05603	4258.8	4892.4		0.79197	4258.3	4891.9	9.2090
1300 1.45214 4686.6 5412.6 9.7797 1.21012 4686.4 5412.5 9.6955 0.90761 4686.1 5412.2 9.5625	1300	1.45214	4686.6	5412.6	9.7797	1.21012	4686.4	5412.5	9.6955	0.90761	4686.1	5412.2	9.5625

^{*}The temperature in parentheses is the saturation temperature at the specified pressure. † Properties of saturated vapor at the specified pressure.

TABL	.E A-6											
Super	heated wat	er (<i>Concl</i>	luded)									
T	V	U La L/La sa	h	S	V	U In I/In an	h	S	V 3 //	U La L/La	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	= 1.00 MP					a (187.96			1.40 MPa		
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326				0.14078	2591.8		6.4675
200 250	0.20602 0.23275	2622.3 2710.4	2828.3 2943.1	6.6956 6.9265	0.16934 0.19241			6.5909 6.8313	0.14303 0.16356	2602.7 2698.9	2803.0 2927.9	6.4975 6.7488
300	0.25799	2710.4	3051.6	7.1246	0.19241			7.0335	0.18233	2785.7		6.9553
350	0.28250	2875.7	3158.2	7.3029	0.23455			7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5	3261.3	7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8		7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1		7.8730
700 800	0.44783 0.49438	3476.3 3661.7	3924.1 4156.1	8.2755 8.5024	0.37297 0.41184		3922.9	8.1904	0.31951 0.35288	3474.4 3660.3		8.1183 8.3458
900	0.49438	3853.9	4394.8	8.7150	0.41164			8.6303	0.33266	3852.7		8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928			8.8310	0.41933	4051.7	4638.8	
1100	0.63354	4257.9	4891.4	9.1057	0.52792			9.0212	0.45247	4257.0		8.9497
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3	5148.1	9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509	4685.5	5411.6	9.3750	0.51866	4685.1	5411.3	9.3036
	P =	1.60 MP	a (201.37	°C)	<i>P</i> =	1.80 MF	Pa (207.1)	1°C)	P =	2.00 MPa	(212.38	°C)
Sat.	0.12374	2594.8	2792.8	6.4200	0.11037	2597.3	2795.9	6.3775	0.09959	2599.1	2798.3	6.3390
225	0.13293	2645.1	2857.8	6.5537	0.11678		2847.2		0.10381	2628.5	2836.1	
250	0.14190	2692.9	2919.9	6.6753	0.12502		2911.7		0.11150	2680.3	2903.3	
300	0.15866	2781.6	3035.4	6.8864	0.14025		3029.9	6.8246	0.12551	2773.2	3024.2	
350 400	0.17459 0.19007	2866.6 2950.8	3146.0 3254.9	7.0713 7.2394	0.15460 0.16849		3141.9 3251.6	7.0120 7.1814	0.13860 0.15122	2860.5 2945.9	3137.7 3248.4	
500	0.19007	3120.1	3472.6	7.2394	0.16649		3470.4	7.1614	0.15122	3116.9	3468.3	
600	0.24999	3293.9	3693.9	7.8101			3692.3	7.7543	0.17363	3291.5	3690.7	
700	0.27941	3473.5	3920.5	8.0558		3472.6	3919.4		0.22326	3471.7	3918.2	
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8	4152.4	8.2284	0.24674	3658.0	4151.5	8.1791
900	0.33780	3852.1	4392.6	8.4965			4391.9	8.4417	0.27012	3850.9	4391.1	
1000	0.36687	4051.2	4638.2	8.6974	0.32606		4637.6	8.6427	0.29342	4050.2	4637.1	
1100	0.39589	4256.6	4890.0	8.8878			4889.6	8.8331	0.31667	4255.7	4889.1	
1200 1300	0.42488 0.45383	4467.9	5147.7 5410.9	9.0689 9.2418	0.37766 0.40341	4467.6		9.0143	0.33989 0.36308	4467.2 4684.2	5147.0 5410.3	
1300	0.45565	4004.0	5410.5	9.2410	0.40341	4004.5	3410.0	9.1072	0.30308	4004.2	5410.5	9.1304
		= 2.50 MP					a (233.85			3.50 MPa		
Sat. 225	0.07995 0.08026	2602.1 2604.8	2801.9 2805.5	6.2558 6.2629	0.06667	2603.2	2803.2	6.1856	0.05706	2603.0	2802.7	6.1244
250	0.08705	2663.3	2880.9	6.4107	0.07063	2644.7	2856.5	6.2893	0.05876	2624.0	2829.7	6.1764
300	0.09894	2762.2	3009.6	6.6459	0.08118	2750.8	2994.3	6.5412	0.06845		2978.4	
350	0.10979			6.8424			3116.1		0.07680		3104.9	
400	0.12012			7.0170	0.09938				0.08456		3223.2	
450	0.13015 0.13999			7.1768	0.10789				0.09198		3338.1	
500 600	0.15939			7.3254 7.5979	0.11620 0.13245		3457.2		0.09919 0.11325		3451.7 3678.9	
700	0.13331			7.8455	0.13243				0.11323		3909.3	
800	0.19722			8.0744			4146.9		0.14061		4144.6	
900	0.21597	3849.4	4389.3		0.17988				0.15410		4385.7	
1000	0.23466			8.4897	0.19549				0.16751		4632.7	
1100	0.25330			8.6804	0.21105		4886.7		0.18087		4885.6	
1200	0.27190			8.8618	0.22658				0.19420		5144.1	
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.8	8.9502	0.20750	4681.8	5408.0	8.8786

TABLE A-6

Superheated water (Continued)

Superl	heated water (<i>Cont</i>	inued)									
T	v u	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 4.0 MF	°a (250.35°C	C)	P =	= 4.5 MPa	a (257.44°)	C)	P =	5.0 MPa	(263.94°	C)
Sat.	0.04978 2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461 2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887 2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647 2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343 2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
450	0.08004 3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500	0.08644 3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
600	0.09886 3279.4	3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098 3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292 3650.6		7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458
900	0.13476 3844.8		8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8		7.9619
1000	0.14653 4045.1		8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648
1100	0.15824 4251.4		8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566
1200	0.16992 4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388
1300	0.18157 4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124
	P = 6.0 MP	a (275.59°C	C)	P =	= 7.0 MPa	a (285.83°)	C)	P =	8.0 MPa	(295.01	°C)
Sat.	0.03245 2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525	2570.5	2758.7	5.7450
300	0.03619 2668.4		6.0703	0.029492		2839.9	5.9337	0.024279			5.7937
350	0.04225 2790.4	3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400	0.04742 2893.7	3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658
450	0.05217 2989.9	3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579
500	0.05667 3083.1	3423.1	6.8826	0.048157		3411.4	6.8000	0.041767			6.7266
550	0.06102 3175.2	3541.3	7.0308	0.051966		3531.6	6.9507	0.045172			6.8800
600	0.06527 3267.2	3658.8	7.1693	0.055665		3650.6	7.0910	0.048463			7.0221
700	0.07355 3453.0	3894.3	7.4247	0.062850		3888.3	7.3487	0.054829			7.2822
800	0.08165 3643.2	4133.1	7.6582	0.069856		4128.5	7.5836	0.061011			7.5185
900	0.08964 3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372
1000	0.09756 4040.1 0.10543 4247.1		8.0786 8.2709	0.083571 0.090341		4622.5 4877.4	8.0055 8.1982	0.073079 0.079025			7.9419 8.1350
1100 1200	0.10343 4247.1		8.4534	0.090341		5137.4	8.3810	0.079025			8.3181
1300	0.11326 4439.8		8.6273	0.097073		5402.6	8.5551	0.084934			8.4925
1300	0.12107 4077.7	3404.1	0.0273	0.103761	4070.1	3402.0	6.5551	0.090617	4074.5	3401.0	0.4323
	P = 9.0 MP					a (311.00°			12.5 MPa		
Sat.	0.020489 2558.5	2742.9	5.6791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284 2647.6	2857.1	5.8738	0.019877		2810.3	5.7596	0.016100	06040	0000	F 7100
350	0.025816 2725.0		6.0380	0.022440		2924.0	5.9460	0.016138			5.7130
400	0.029960 2849.2		6.2876	0.026436 0.029782		3097.5	6.2141	0.020030			6.0433
450 500	0.033524 2956.3 0.036793 3056.3	3258.0 3387.4	6.4872 6.6603	0.029782		3242.4 3375.1	6.4219 6.5995	0.023019 0.025630			6.2749
550	0.039885 3153.0		6.8164	0.032611		3502.0	6.7585	0.023630			6.6317
600	0.042861 3248.4	3634.1	6.9605	0.033633		3625.8	6.9045	0.028033			6.7828
650	0.042861 3248.4		7.0954	0.036378		3748.1	7.0408	0.030300			6.9227
700	0.043733 3343.4		7.0934	0.041018		3870.0	7.1693	0.032491			7.0540
800	0.048389 3438.8	4119.2	7.4606	0.043337		4114.5	7.1093	0.034012			7.0340
900	0.059562 3829.6		7.6802	0.048623		4362.0	7.6290	0.036724			7.5195
1000	0.064919 4032.4		7.8855	0.058391		4613.8	7.8349	0.042720			7.7269
1100	0.070224 4240.7		8.0791	0.063183		4870.3	8.0289	0.050510			7.9220
1200	0.075492 4454.2		8.2625	0.067938		5131.7	8.2126	0.054342			8.1065
1300	0.080733 4672.9		8.4371			5398.0		0.058147			8.2819

TABL	.E A-6											
Super	rheated wate	er (<i>Conclu</i>	ıded)									
T	V 3 //	U In 1/1	h	S	V	U In 1/15	h	S	V 3 //	U In 1/15	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	15.0 MPa	a (342.16°			17.5 MPa					a (365.75°	
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350 400	0.011481 0.015671	2520.9 2740.6	2693.1 2975.7	5.4438 5.8819	0.012463	268/13	2902 /	5.7211	0.009950	2617.9	2816.9	5.5526
450	0.013071	2880.8	3157.9	6.1434	0.012403			6.0212	0.003330		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385			6.2424	0.014793			6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305				0.016571			6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073			6.5890	0.018185			6.5075
650	0.026804	3310.1	3712.1 3839.1	6.8233	0.022742				0.019695		36/5.3	6.6593
700 800	0.028621 0.032121	3409.8 3609.3	4091.1	6.9573 7.2037	0.024342 0.027405				0.021134 0.023870		4067.5	6.7991 7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348	3803.5			0.026484		4325.4	7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215				0.029020		4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029			7.7588	0.031504			7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806			7.9449	0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25	.0 MPa			P = 30.0) МРа			P = 35.	О МРа	
375	0.001978	1799.9	1849.4	4.0345	0.001792	1738.1	1791.9	3.9313	0.001701	1702.8	1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798			4.4758	0.002105			4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299			5.1473	0.003434			4.7751
450 500	0.009176 0.011143	2721.2 2887.3	2950.6 3165.9	5.6759 5.9643	0.006737 0.008691			5.4422 5.7956	0.004957 0.006933		2671.0 2997.9	5.1946 5.6331
550	0.011143	3020.8	3339.2	6.1816	0.008091			6.0403	0.000933		3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445			6.2373	0.009523		3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590			6.4074	0.010565		3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654			6.5599	0.011523		3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628	3551.2			0.013278		3996.3	6.7409
900	0.021075 0.023150	3780.2 3991.5	4307.1 4570.2	7.1668 7.3821	0.017473 0.019240			7.0695	0.014904 0.016450		4541.5	6.9853 7.2069
1100	0.025170	4206.1	4835.4	7.5825	0.020954	4195.2			0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630			7.6807	0.019398		5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40.	0 MPa			P = 50.0) МРа			P = 60.	0 MPa	
375	0.001641	1677.0	1742.6	3.8290	0.001560	1638.6	1716.6	3.7642	0.001503	1609.7	1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731			4.0029	0.001633			3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009				0.001816			
450	0.003692	2364.2		4.9449	0.002487				0.002086			
500 550	0.005623 0.006985		2906.5 3154.4	5.4744 5.7857	0.003890 0.005118				0.002952 0.003955			
600	0.008089		3350.4	6.0170	0.006108				0.003333			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717				0.006265			
800	0.011521		3972.6	6.6613	0.009073				0.007456			
900	0.012980 0.014360		4252.5	6.9107	0.010296 0.011441				0.008519 0.009504			6.6725
1100	0.014360	4173.7	4527.3 4801.1	7.1355 7.3425	0.011441				0.009304			
1200	0.016976	4396.9	5075.9	7.5357	0.012554				0.010433			7.3248
1300	0.018239			7.7175	0.014620				0.012213			

0.0014450 1416.6 1445.5 3.3996

0.0015693 1540.2 1571.6 3.6086

0.0018248 1703.6 1740.1 3.8787

320

340

360

380

TABLE A-7

Т	ABL	E A-7											
С	omp	ressed liqui	d water										
7	Γ	V	И	h	S	V	И	h	S	V	И	h	S
0	С	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K
		P =	= 5 MPa	(263.94°C	;)	P =	10 MPa	(311.00°C)	P =	15 MPa	(342.16°	°C)
Sa	at.	0.0012862	1148.1	1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3.6848
	0	0.0009977	0.04		0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	
	20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
	40	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
(60	0.0010149	250.29		0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	
	80	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
10	00	0.0010410	417.65	422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	1.2958
	20	0.0010576		507.19	1.5236	0.0010549	500.18	510.73	1.5191	0.0010522	498.50	514.28	
	40	0.0010769			1.7344	0.0010738	584.72	595.45	1.7293	0.0010708	582.69	598.75	
	60	0.0010988			1.9374	0.0010954	670.06	681.01	1.9316	0.0010920	667.63	684.01	
	80	0.0011240			2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	
	00	0.0011531			2.3251	0.0011482	844.32	855.80	2.3174	0.0011435	840.84	858.00	
	20	0.0011868			2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
	40	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
	60	0.0012755	1128.5	1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
	80					0.0013226		1235.0	3.0565	0.0013096		1233.0 1338.3	3.0410
	00 20					0.0013980	1329.4	1343.3	3.2488	0.0013783 0.0014733		1454.0	3.2279 3.4263
	20 40									0.0014733		1592.4	3.6555
٥,	40									0.0010311	1307.9	1392.4	3.0000
		P =	20 MPa	(365.75°C	C)		P = 30	MPa			P = 50	MPa	
Sa	at.	0.0020378		1826.6	4.0146								
	0	0.0009904	0.23		0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29		-0.0010
	20	0.0009929		102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	
	40	0.0009992			0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	
	60	0.0010084			0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	
	80	0.0010199			1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	
	00	0.0010337			1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	
	20	0.0010496			1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
	40	0.0010679			1.7194	0.0010623	576.90	608.76	1.7098 1.9094	0.0010517	569.77	622.36 705.85	
	60 80	0.0010886			1.9203	0.0010823	660.74	693.21		0.0010704	652.33		
	80 00	0.0011122 0.0011390			2.1143 2.3027	0.0011049 0.0011304	745.40 831.11	778.55 865.02	2.1020 2.2888	0.0010914 0.0011149	735.49 819.45	790.06 875.19	
	20	0.0011390			2.3027	0.0011504	918.15	952.93	2.4707	0.0011149	904.39	961.45	
	20 40	0.0011037		1040.2	2.4607	0.0011393		1042.7	2.6491	0.0011412		1049.1	2.4414
	60	0.0012033		1134.0	2.8469	0.0011327		1134.7	2.8250	0.0011708		1138.4	2.7864
	80	0.0012472		1231.5	3.0265	0.0012314		1229.8	3.0001	0.0012044		1229.9	2.7604
	00	0.0012570		1334.4	3.2091	0.0012770		1328.9	3.1761	0.0012430		1324.0	3.1218
	20	0.0013011			3.3996	0.0013322			3.3558	0.0012075			3 2888

0.0014014 1391.7 1433.7 3.3558 0.0013409 1354.3 1421.4

0.0014932 1502.4 1547.1 3.5438 0.0014049 1452.9 1523.1

0.0016276 1626.8 1675.6 3.7499 0.0014848 1556.5 1630.7

0.0018729 1782.0 1838.2 4.0026 0.0015884 1667.1 1746.5

3.2888

3.4575

3.6301

3.8102

TABLE A-8

Saturated ice-water vapor

			<i>c volume,</i> ³ /kg	lr.	nternal er kJ/kg			<i>Enthalpy</i> kJ/kg	<i>'</i> ,		<i>ntropy,</i> ⟨J/kg⋅K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	press.,	ice,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,
T °C	$P_{\rm sat}$ kPa	V_i	V_g	U _i	U _{ig}	U_g	h _i	h _{ig}	h_g	S_i	S _{ig}	S_g
0.01	0.61169	0.001091	205.99	-333.40	2707.9	2374.5	-333.40	2833.9	2500.5	-1.2202	10.374	9.154
0	0.61115	0.001091	206.17	-333.43	2707.9	2374.5	-333.43	2833.9	2500.5	-1.2204	10.375	9.154
-2	0.51772	0.001091	241.62	-337.63	2709.4	2371.8	-337.63	2834.5	2496.8	-1.2358	10.453	9.218
-4	0.43748	0.001090	283.84	-341.80	2710.8	2369.0	-341.80	2835.0	2493.2	-1.2513	10.533	9.282
-6	0.36873	0.001090	334.27	-345.94	2712.2	2366.2	-345.93	2835.4	2489.5	-1.2667	10.613	9.347
-8	0.30998	0.001090	394.66	-350.04	2713.5	2363.5	-350.04	2835.8	2485.8	-1.2821	10.695	9.413
-10	0.25990	0.001089	467.17	-354.12	2714.8	2360.7	-354.12	2836.2	2482.1	-1.2976	10.778	9.480
-12	0.21732	0.001089	554.47	-358.17	2716.1	2357.9	-358.17	2836.6	2478.4	-1.3130	10.862	9.549
-14	0.18121	0.001088	659.88	-362.18	2717.3	2355.2	-362.18	2836.9	2474.7	-1.3284	10.947	9.618
-16	0.15068	0.001088	787.51	-366.17	2718.6	2352.4	-366.17	2837.2	2471.0	-1.3439	11.033	9.689
-18	0.12492	0.001088	942.51	-370.13	2719.7	2349.6	-370.13	2837.5	2467.3	-1.3593	11.121	9.761
-20	0.10326	0.001087	1131.3	-374.06	2720.9	2346.8	-374.06	2837.7	2463.6	-1.3748	11.209	9.835
-22	0.08510	0.001087	1362.0	-377.95	2722.0	2344.1	-377.95	2837.9	2459.9	-1.3903	11.300	9.909
-24	0.06991	0.001087	1644.7	-381.82	2723.1	2341.3	-381.82	2838.1	2456.2	-1.4057	11.391	9.985
-26	0.05725	0.001087	1992.2	-385.66	2724.2	2338.5	-385.66	2838.2	2452.5	-1.4212	11.484	10.063
-28	0.04673	0.001086	2421.0	-389.47	2725.2	2335.7	-389.47	2838.3	2448.8	-1.4367	11.578	10.141
-30	0.03802	0.001086	2951.7	-393.25	2726.2	2332.9	-393.25	2838.4	2445.1	-1.4521	11.673	10.221
-32	0.03082	0.001086	3610.9	-397.00	2727.2	2330.2	-397.00	2838.4	2441.4	-1.4676	11.770	10.303
-34	0.02490	0.001085	4432.4	-400.72	2728.1	2327.4	-400.72	2838.5	2437.7	-1.4831	11.869	10.386
-36	0.02004	0.001085	5460.1	-404.40	2729.0	2324.6	-404.40	2838.4	2434.0	-1.4986	11.969	10.470
-38	0.01608	0.001085	6750.5	-408.07	2729.9	2321.8	-408.07	2838.4	2430.3	-1.5141	12.071	10.557
-40	0.01285	0.001084	8376.7	-411.70	2730.7	2319.0	-411.70	2838.3	2426.6	-1.5296	12.174	10.644

FIGURE A-9

T-s diagram for water.

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

FIGURE A-10 Mollier diagram for water.

Source of Data: From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Routledge/Taylor & Francis Books, Inc., 1984.

TABLE A-11

Saturated refrigerant-134a—Temperature table

		Specific n m³/l		Inte	<i>rnal ener</i> kJ/kg	gy,		Enthalpy, kJ/kg			Entropy, kJ/kg·K	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,		liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T°C	P _{sat} kPa	V_f	V_g	U_f	U_{fg}	U_g	h_f	h _{fg}	h _g	S_f	S_{fg}	S_g
-40	51.25	0.0007053	0.36064	-0.036	207.42	207.38	0.00	225.86	225.86	0.00000	0.96869	0.96869
-38	56.86	0.0007082	0.32718	2.472	206.06	208.53	2.512	224.62	227.13	0.01071	0.95516	0.96588
-36	62.95	0.0007111	0.29740	4.987	204.69	209.68	5.032	223.37	228.40	0.02137	0.94182	0.96319
-34	69.56	0.0007141	0.27082	7.509	203.32	210.83	7.559	222.10	229.66	0.03196	0.92867	0.96063
-32	76.71	0.0007171	0.24706	10.04	201.94	211.97	10.09	220.83	230.93	0.04249	0.91569	0.95819
-30	84.43	0.0007201	0.22577	12.58	200.55	213.12	12.64	219.55	232.19	0.05297	0.90289	0.95586
-28	92.76	0.0007232	0.20666	15.12	199.15	214.27	15.19	218.25	233.44	0.06339	0.89024	0.95364
-26	101.73	0.0007264	0.18947	17.67	197.75	215.42	17.75	216.95	234.70	0.07376	0.87776	0.95152
-24	111.37	0.0007296	0.17398	20.23	196.34	216.57	20.31	215.63	235.94	0.08408	0.86542	0.94950
-22	121.72	0.0007328	0.15999	22.80	194.92	217.71	22.89	214.30	237.19	0.09435	0.85323	0.94758
-20	132.82	0.0007361	0.14735	25.37	193.49	218.86	25.47	212.96	238.43	0.10456	0.84119	0.94575
-18	144.69	0.0007394	0.13589	27.96	192.05	220.00	28.07	211.60	239.67	0.11473	0.82927	0.94401
-16	157.38	0.0007428	0.12550	30.55	190.60	221.15	30.67	210.23	240.90	0.12486	0.81749	0.94234
-14	170.93	0.0007463	0.11605	33.15	189.14	222.29	33.28	208.84	242.12	0.13493	0.80583	0.94076
-12	185.37	0.0007498	0.10744	35.76	187.66	223.42	35.90	207.44	243.34	0.14497	0.79429	0.93925
-10	200.74	0.0007533	0.099600	38.38	186.18	224.56	38.53	206.02	244.55	0.15496	0.78286	0.93782
-8	217.08	0.0007570	0.092438	41.01	184.69	225.69	41.17	204.59	245.76	0.16491	0.77154	0.93645
-6	234.44	0.0007607	0.085888	43.64	183.18	226.82	43.82	203.14	246.95	0.17482	0.76033	0.93514
-4	252.85	0.0007644	0.079889	46.29	181.66	227.94	46.48	201.66	248.14	0.18469	0.74921	0.93390
-2	272.36	0.0007683	0.074388	48.94	180.12	229.07	49.15	200.17	249.33	0.19452	0.73819	0.93271
0	293.01	0.0007722	0.069335	51.61	178.58	230.18	51.83	198.67	250.50	0.20432	0.72726	0.93158
2	314.84	0.0007761	0.064690	54.28	177.01	231.30	54.53	197.14	251.66		0.71641	0.93050
4	337.90	0.0007802	0.060412	56.97	175.44	232.40	57.23	195.58	252.82	0.22381	0.70565	
6	362.23	0.0007843	0.056469	59.66	173.84	233.51	59.95	194.01	253.96	0.23351	0.69496	
8	387.88	0.0007886	0.052829	62.37	172.23	234.60	62.68	192.42		0.24318	0.68435	
10	414.89	0.0007929	0.049466	65.09	170.61	235.69	65.42	190.80		0.25282	0.67380	
12	443.31	0.0007973	0.046354	67.82	168.96	236.78	68.17	189.16	257.33	0.26243	0.66331	
14	473.19	0.0008018	0.043471	70.56	167.30	237.86	70.94	187.49		0.27201	0.65289	
16	504.58	0.0008064	0.040798	73.31	165.62	238.93	73.72	185.80	259.51		0.64252	
18	537.52	0.0008112	0.038317	76.07	163.92	239.99	76.51	184.08	260.59	0.29111		0.92330
20	572.07	0.0008160	0.036012	78.85	162.19	241.04	79.32	182.33			0.62192	
22	608.27	0.0008209	0.033867	81.64	160.45	242.09	82.14	180.55	262.69	0.31012	0.61168	
24	646.18	0.0008260	0.031869	84.44	158.68	243.13	84.98	178.74			0.60148	
26	685.84	0.0008312	0.030008	87.26	156.89	244.15	87.83	176.90	264.73	0.32905	0.59131	
28	727.31	0.0008366	0.028271	90.09	155.08	245.17	90.70	175.03			0.58117	
30	770.64	0.0008421	0.026648	92.93	153.24	246.17	93.58	173.13	266.71		0.57105	
32	815.89	0.0008477	0.025131	95.79	151.37	247.17	96.49	171.19	267.67		0.56095	
34	863.11	0.0008535	0.023712	98.67	149.48	248.15	99.41	169.21	268.61		0.55086	
36	912.35	0.0008595	0.022383	101.56	147.55		102.34	167.19	269.53		0.54077	
38	963.68	0.0008657	0.021137	104.47	145.60		105.30	165.13		0.38554	0.53068	
40	1017.1	0.0008720	0.019968	107.39	143.61		108.28	163.03	271.31		0.52059	
42	1072.8	0.0008786	0.018870	110.34	141.59		111.28	160.89	272.17	0.40432	0.51048	
44	1130.7	0.0008854	0.017837	113.30	139.53	252.83	114.30	158.70	273.00	0.41371	0.50036	0.91407

TABLE A-11

Saturated refrigerant-134a—Temperature table (Concluded)

		Specific m³/l		Inte	ernal ener _i kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
T	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.	E	Sat.	Sat.	E	Sat.
Temp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T°C	P _{sat} kPa	V_f	Vg	U_f	U_{fg}	Ug	h_f	h _{fg}	h _g	S_f	S _{fg}	S_g
46	1191.0	0.0008924	0.016866	116.28	137.43	253.71	117.34	156.46	273.80	0.42311	0.49020	0.91331
48	1253.6	0.0008997	0.015951	119.28	135.30	254.58	120.41	154.17	274.57	0.43251	0.48001	0.91252
52	1386.2	0.0009151	0.014276	125.35	130.89	256.24	126.62	149.41	276.03	0.45136	0.45948	0.91084
56	1529.1	0.0009317	0.012782	131.52	126.29	257.81	132.94	144.41	277.35	0.47028	0.43870	0.90898
60	1682.8	0.0009498	0.011434	137.79	121.45	259.23	139.38	139.09	278.47	0.48930	0.41746	0.90676
65	1891.0	0.0009751	0.009959	145.80	115.06	260.86	147.64	132.05	279.69	0.51330	0.39048	0.90379
70	2118.2	0.0010037	0.008650	154.03	108.17	262.20	156.15	124.37	280.52	0.53763	0.36239	0.90002
75	2365.8	0.0010373	0.007486	162.55	100.62	263.17	165.01	115.87	280.88	0.56252	0.33279	0.89531
80	2635.3	0.0010774	0.006439	171.43	92.22	263.66	174.27	106.35	280.63	0.58812	0.30113	0.88925
85	2928.2	0.0011273	0.005484	180.81	82.64	263.45	184.11	95.39	279.51	0.61487	0.26632	0.88120
90	3246.9	0.0011938	0.004591	190.94	71.19	262.13	194.82	82.22	277.04	0.64354	0.22638	0.86991
95	3594.1	0.0012945	0.003713	202.49	56.25	258.73	207.14	64.94	272.08	0.67605	0.17638	0.85243
100	3975.1	0.0015269	0.002657	218.73	29.72	248.46	224.80	34.22	259.02	0.72224	0.09169	0.81393

Source of Data: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner—Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40° F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

		<i>Specific</i> m³,		Inte	<i>rnal enei</i> kJ/kg	rgy,		<i>Enthalpy</i> , kJ/kg			Entropy, kJ/kg·K	
Press.,	temp.,	Sat. liquid,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
kPa	T _{sat} °C	V_f	V_g	U_f	U_{fg}	Иg	h_f	h_{fg}	h _g	S_f	S_{fg}	S_g
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467
160	-15.60	0.0007435	0.12355	31.06	190.31	221.37	31.18	209.96	241.14	0.12686	0.81517	0.94202
180	-12.73	0.0007485	0.11049	34.81	188.20	223.01	34.94	207.95	242.90	0.14131	0.79848	0.93979
200	-10.09	0.0007532	0.099951	38.26	186.25	224.51	38.41	206.09	244.50	0.15449	0.78339	0.93788
240	-5.38	0.0007618	0.083983	44.46	182.71	227.17	44.64	202.68	247.32	0.17786	0.75689	0.93475
280	-1.25	0.0007697	0.072434	49.95	179.54	229.49	50.16	199.61	249.77	0.19822	0.73406	0.93228
320	2.46	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.21631	0.71395	0.93026
360	5.82	0.0007840	0.056809	59.42	173.99	233.41	59.70	194.15	253.86	0.23265	0.69591	0.92856
400	8.91	0.0007905	0.051266	63.61	171.49	235.10	63.92	191.68	255.61	0.24757	0.67954	0.92711
450	12.46	0.0007983	0.045677	68.44	168.58	237.03	68.80	188.78	257.58	0.26462	0.66093	0.92555
500	15.71	0.0008058	0.041168	72.92	165.86	238.77	73.32	186.04	259.36	0.28021	0.64399	0.92420
550	18.73	0.0008129	0.037452	77.09	163.29	240.38	77.54	183.44	260.98	0.29460	0.62842	0.92302
600	21.55	0.0008198	0.034335	81.01	160.84	241.86	81.50	180.95	262.46	0.30799	0.61398	0.92196
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82	0.32052	0.60048	0.92100
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08	0.33232	0.58780	0.92012
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25	0.34348	0.57582	0.91930
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34	0.35408	0.56445	0.91853
850	33.45	0.0008519	0.024091	97.88	150.00	247.88	98.61	169.75	268.36	0.36417	0.55362	0.91779
900	35.51	0.0008580	0.022703		148.03	248.88	101.62	167.69	269.31	0.37383	0.54326	0.91709
950	37.48	0.0008640	0.021456		146.11		104.52	165.68	270.20	0.38307	0.53333	0.91641
1000	39.37	0.0008700	0.020329		144.24		107.34	163.70	271.04	0.39196	0.52378	0.91574
1200	46.29	0.0008935	0.016728		137.12			156.12	273.92	0.42449	0.48870	0.91320
1400	52.40	0.0009167	0.014119		130.44		127.25	148.92	276.17	0.45325	0.45742	0.91067
1600	57.88	0.0009400	0.012134		124.05		135.96	141.96	277.92	0.47921	0.42881	0.90802
1800	62.87	0.0009639	0.010568		117.85		144.09	135.14	279.23	0.50304	0.40213	0.90517
2000	67.45	0.0009887	0.009297		111.75		151.78	128.36	280.15	0.52519	0.37684	0.90204
2500	77.54	0.0010567	0.006941		96.47		169.66	111.18	280.84	0.57542	0.31701	0.89243
3000	86.16	0.0011410	0.005272	183.09	80.17	263.26	186.51	92.57	279.08	0.62133	0.25759	0.87893

			_1	

Supe	rheated ref	rigerant-1	134a									
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K
	P = 0.0	D6 MPa (7	$s_{\text{sat}} = -36$.95°C)	P = 0.	10 MPa (7	$rac{1}{sat} = -26$.37°C)	P=0.	14 MPa (7	$s_{\text{sat}} = -18$.77°C)
Sat.	0.31108		227.80	0.9645	0.19255		234.46		0.14020	219.56	239.19	0.9447
-20	0.33608	220.62	240.78	1.0175	0.19841	219.68	239.52	0.9721				
-10	0.35048	227.57		1.0478	0.20743	226.77		1.0031	0.14605		246.37	0.9724
0	0.36476	234.67		1.0775	0.21630	233.97	255.60	1.0333	0.15263		254.61	1.0032
10 20	0.37893 0.39302	241.94 249.37	264.68	1.1354	0.22506 0.23373	241.32 248.81	263.82 272.18	1.0628 1.0919	0.15908 0.16544		262.95 271.40	1.0331 1.0625
30	0.39302	256.97	281.39		0.23373	256.46	280.69	1.1204	0.10344	255.95	271.40	1.0023
40	0.42102	264.73		1.1916	0.25088	264.27	289.36	1.1485	0.17172		288.72	1.1196
50	0.43495	272.66		1.2192	0.25937	272.24	298.17	1.1762	0.18412		297.59	1.1475
60	0.44883	280.75	307.68		0.26783	280.36	307.15	1.2036	0.19025		306.61	1.1750
70	0.46269	289.01	316.77		0.27626	288.65	316.28	1.2306	0.19635		315.78	1.2021
80	0.47651	297.43	326.02	1.2998	0.28465	297.10	325.57	1.2573	0.20242	296.77	325.11	1.2289
90	0.49032	306.02	335.43	1.3261	0.29303	305.71	335.01	1.2836	0.20847	305.40	334.59	1.2554
100	0.50410	314.76	345.01	1.3521	0.30138	314.48	344.61	1.3097	0.21449	314.19	344.22	1.2815
	P = 0.	18 MPa ($T_{\rm sat} = -12$	73°C)	P = 0.	.20 MPa ($T_{\rm sat} = -10$).09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.$	38°C)
Sat.	0.11049	223.01	242.90	0.9398	0.09995	224.51	244.50	0.9379	0.08398	227.17	247.32	0.9348
-10	0.11189		245.18	0.9485	0.09991	224.57		0.9381				
0	0.11722	232.49	253.59	0.9799	0.10481	232.11	253.07	0.9699	0.08617	231.30	251.98	0.9520
10	0.12240	240.02	262.05	1.0103	0.10955	239.69	261.60	1.0005	0.09026	239.00	260.66	0.9832
20	0.12748		270.60	1.0400	0.11418	247.36	270.20	1.0304	0.09423	246.76	269.38	1.0134
30	0.13248		279.27	1.0691	0.11874	255.16	278.91	1.0596	0.09812	254.63	278.17	1.0429
40	0.13741		288.07	1.0976	0.12322	263.09		1.0882	0.10193	262.61	287.07	1.0718
50	0.14230		297.00	1.1257	0.12766	271.16	296.70	1.1164	0.10570	270.73	296.09	1.1002
60	0.14715		306.07	1.1533	0.13206	279.38	305.79	1.1441	0.10942	278.98	305.24	1.1281
70 80	0.15196 0.15673		315.28 324.65	1.1806 1.2075	0.13641 0.14074	287.75 296.27	315.03 324.41	1.1714 1.1984	0.11310 0.11675	287.38 295.93	314.53 323.95	1.1555 1.1826
90	0.15075		334.16	1.2340	0.14504	304.93	333.94	1.2250	0.11073	304.62	333.51	1.2093
100	0.16622		343.82	1.2603	0.14933	313.75	343.62	1.2513	0.12398		343.22	
	P = 0		$T_{\text{sat}} = -1$			0.32 MPa					$T_{\rm sat} = 8.9$	
Sat.		229.49		0.9323	0.06368			0.9303	0.051266			
0	0.07282		250.85	0.9362								
10	0.07646	238.29	259.70	0.9681	0.06609	237.56	258.70	0.9545	0.051506	235.99	256.59	0.9306
20	0.07997	246.15		0.9987	0.06925	245.51	267.67	0.9856	0.054213		265.88	0.9628
30	0.08338		277.42	1.0285	0.07231	253.52	276.66	1.0158	0.056796		275.09	0.9937
40	0.08672	262.12		1.0577			285.72	1.0452	0.059292		284.32	1.0237
50				1.0862	0.07823	269.83		1.0739	0.061724			1.0529
60	0.09324			1.1143	0.08111			1.1022	0.064104			1.0814
70	0.09644			1.1419	0.08395	286.64		1.1299	0.066443		312.45	1.1095
80	0.09961		323.48	1.1690	0.08675	295.24	323.00	1.1572	0.068747		322.04	1.1370
90	0.10275		333.07	1.1958	0.08953	303.99	332.64	1.1841	0.071023			1.1641
100		313.17 322.18		1.2223 1.2484	0.09229	312.87 321.91	342.41 352.31	1.2106 1.2368	0.073274 0.075504		341.59	1.1908 1.2172
120		331.34		1.2742	0.09303	331.08		1.2627	0.075504			1.2172
130		340.65		1.2742	0.09775	340.41	372.55	1.2883	0.077717			1.2689
140		350.11		1.3251	0.10043	349.88		1.3136	0.073313			1.2943
113	0.11010	000.11	000.20	2.0201	0.10017	0.0.00	002.03	2.0100		5.5.12	552.25	1.25 10

TABLE A-13

IAD	LE A-13											
Supe	rheated refr	rigerant-1	34a (<i>Cor</i>	ncluded)								
T	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K
	P = 0!	50 MPa (<i>7</i>	. = 15.7	′1°C)	P = 0	60 MPa ($T_{\perp} = 21.9$	 55°C)	P = 0	70 MPa (7	T . = 26.6	 59°C)
Sat.	0.041168				0.034335				0.029392			
20	0.041108		263.48		0.034333	241.00	202.40	0.9220	0.029392	244.51	205.00	0.9201
30	0.044338		273.03		0.035984	249.24	270.83	0.9500	0.029966	247.49	268.47	0.9314
40	0.046456		282.50		0.037865				0.031696			
50	0.048499	267.73	291.98	1.0309	0.039659	266.50	290.30	1.0122	0.033322	265.22	288.54	0.9955
60	0.050485	276.27	301.51	1.0600	0.041389	275.17	300.00	1.0417	0.034875	274.03	298.44	1.0257
70	0.052427				0.043069	283.91	309.75	1.0706	0.036373			1.0550
80	0.054331	293.65	320.82	1.1163	0.044710				0.037829	291.81	318.29	1.0835
90	0.056205		330.63		0.046318				0.039250			1.1115
100	0.058053		340.55		0.047900				0.040642			1.1389
110	0.059880				0.049458				0.042010			
120	0.061687		360.75		0.050997				0.043358			
130	0.063479				0.052519				0.044688			1.2186
140	0.065256	348.85 358.52	381.47		0.054027 0.055522				0.046004			
150 160	0.067021 0.068775		392.04 402.73		0.055522				0.047306 0.048597			1.2952
100												
	P = 0.8	80 MPa (7	$s_{sat} = 31.3$	81°C)	P = 0	.90 MPa	$(T_{\rm sat} = 35)$.51°C)	P = 1.0	00 MPa (7	$T_{\rm sat} = 39.3$	37°C)
Sat.	0.025645	246.82	267.34	0.9185	0.022686	248.82	269.25	0.9169	0.020319	250.71	271.04	0.9157
40	0.027035				0.023375				0.020406			
50	0.028547		286.71		0.024809				0.021796		282.76	
60	0.029973		296.82		0.026146				0.023068			
70		281.83			0.027413				0.024261		303.87	
80	0.032659				0.028630				0.025398			
90	0.033941		327.12		0.029806				0.026492			
100 110	0.035193 0.036420		337.32 347.61		0.030951 0.032068				0.027552 0.028584			
120	0.030420				0.032008				0.028384			
130	0.037023		368.47		0.033104				0.023332			
140	0.039985				0.035302				0.031554			
150	0.041143		389.78		0.036349				0.032512			
160	0.042290		400.61		0.037384				0.033457		399.17	
170	0.043427	376.83	411.57	1.3081	0.038408	376.33	410.89	1.2973	0.034392			
180	0.044554	387.01	422.65	1.3328	0.039423	386.54	422.02	1.3221	0.035317	386.06	421.38	1.3125
	P = 1.2	20 MPa (7	sat = 46.2	!9°C)	P = 1	.40 MPa	$T_{\text{sat}} = 52$.40°C)	P = 1.0	60 MPa (7	$r_{\rm sat} = 57.8$	38°C)
Sat.	0.016728				0.014119	256.40	276.17	0.9107	0.012134	258.50	277.92	0.9080
50	0.017201				0.01====	001.5	005 :-	0.0000	0.01	000 00	000 =1	0.01.
	0.018404				0.015005				0.012372			
70	0.019502				0.016060				0.013430			
80	0.020529		311.40		0.017023				0.014362			
					0.017923				0.015215			
100	0.022442 0.023348		332.74		0.018778 0.019597				0.016014 0.016773			
	0.023348				0.019597				0.016773			
	0.024228		364.90		0.020388				0.017300			
	0.025000		375.74		0.021133				0.018201			
	0.026753		386.68		0.022636				0.019545			
	0.027566		397.71		0.023355				0.020194			
	0.028367		408.84		0.024061				0.020830			
	0.029158		420.09	1.2955	0.024757				0.021456	383.13	417.46	1.2677

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Source of Data: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A–15Nelson–Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

APPENDIX A

Physical Property Data

► A.1 CRITICAL CONSTANTS, ACENTRIC FACTORS, AND ANTOINE COEFFICIENTS:¹

The Antoine equation is of the form:
$$\ln(P^{\text{sat}}[\text{bar}]) = A - \frac{B}{T[K] + C}$$

TABLE A.1.1 Organic compounds

Formula	Name	$MW_{ m [g/mol]}$	$T_c\left[\mathbf{K}\right]$	P_c [bar]	ω	A	В	C	$T_{ m min}$	$T_{ m mix}$
$\overline{\text{CH}_2\text{O}}$	Formaldehyde	30.026	408	65.86	0.253	9.8573	2204.13	-30.15	185	271
CH_4	Methane	16.042	190.6	46.00	0.008	8.6041	897.84	-7.16	93	120
$\mathrm{CH_{4}O}$	Methanol	32.042	512.6	80.96	0.559	11.9673	3626.55	-34.29	257	364
$\mathrm{C_2H_4}$	Acetylene	26.038	308.3	61.40	0.184	9.7279	1637.14	-19.77	194	202
C_2H_3N	Acetonitrile	41.052	548	48.33	0.321	9.6672	2945.47	-49.15	260	390
$\mathrm{C_2H_4}$	Ethylene	28.053	282.4	50.36	0.085	8.9166	1347.01	-18.15	120	182
C_2H_4O	Acetaldehyde	44.053	461	55.73	0.303	9.6279	2465.15	-37.15	210	320
C_2H_4O	Ethylene oxide	44.053	469	71.94	0.200	10.1198	2567.61	-29.01	300	310
$C_2H_4O_2$	Acetic acid	60.052	594.4	57.86	0.454	10.1878	3405.57	-56.34	290	430
C_2H_6	Ethane	30.069	305.4	48.74	0.099	9.0435	1511.42	-17.16	130	199
C_2H_6O	Ethanol	46.068	516.2	63.83	0.635	12.2917	3803.98	-41.68	270	369
C_3H_6	Propylene	42.080	365.0	46.20	0.148	9.0825	1807.53	-26.15	160	240
C_3H_6O	Acetone	58.079	508.1	47.01	0.309	10.0311	2940.46	-35.93	241	350
C_3H_8	Propane	44.096	370.0	42.44	0.152	9.1058	1872.46	-25.16	164	249
C_3H_8O	1-Propanol	60.095	536.7	51.68	0.624	10.9237	3166.38	-80.15	285	400
C_4H_6	1,3-Butadiene	54.090	425	43.27	0.195	9.1525	2142.66	-34.30	215	290
C_4H_8	cis-2-Butene	56.106	435.6	42.05	0.202	9.1969	2210.71	-36.15	200	305
C_4H_8	trans-2-Butene	56.106	428.6	41.04	0.214	9.1975	2212.32	-33.15	200	300
$C_4H_8O_2$	Ethyl acetate	88.105	523.2	38.30	0.363	9.5314	2790.50	-57.15	260	385
C_4H_{10}	<i>n</i> -Butane	58.122	425.2	37.90	0.193	9.0580	2154.90	-34.42	195	290
C_4H_{10}	Isobutane	58.122	408.1	36.48	0.176	8.9179	2032.76	-33.15	187	280
$C_4H_{10}O$	n-Butanol	74.122	562.9	44.18	0.590	10.5958	3137.02	-94.43	288	404
C_5H_{10}	1-Pentene	70.133	464.7	40.53	0.245	9.1444	2405.96	-39.63	220	325
C_5H_{12}	n-Pentane	72.149	469.6	33.74	0.251	9.2131	2477.07	-39.94	220	330
C_6H_6	Benzene	78.112	562.1	48.94	0.212	9.2806	2788.51	-52.36	280	377
C_6H_6O	Phenol	94.111	694.2	61.30	0.440	9.8077	3490.89	-98.59	345	481
C_6H_7N	Aniline	93.127	699	53.09	0.382	10.0546	3857.52	-73.15	340	500
C_6H_{12}	Cyclohexane	84.159	553.4	40.73	0.213	9.1325	2766.63	-50.50	280	380
$\mathrm{C_6H_{12}}$	1-Hexene	84.159	504.0	31.71	0.285	9.1887	2654.81	-47.30	240	360
$\mathrm{C_6H_{14}}$	n-Hexane	86.175	507.4	29.69	0.296	9.2164	2697.55	-48.78	245	370

(Continued)

 $^{^{\}rm 1}$ For a more complete set of compounds, consult ThermoSolver, the text software.

TABLE A.1.1 Continued

Formula	Name	$MW_{[g/\mathrm{mol}]}$	$T_c\left[\mathbf{K} ight]$	P_c [bar]	ω	A	В	C	T_{min}	$T_{ m max}$
$\overline{\mathrm{C_7H_8}}$	Toluene	92.138	591.7	41.14	0.257	9.3935	3096.52	-53.67	280	410
C_7H_{14}	1-Heptene	98.186	537.2	28.37	0.358	9.2692	2895.51	-53.97	265	400
C_7H_{16}	<i>n</i> -Heptane	100.202	540.2	27.36	0.351	9.2535	2911.32	-56.51	270	400
C_8H_8	Styrene	104.149	647.0	39.92	0.257	9.3991	3328.57	-63.72	305	460
C_8H_{10}	o-Xylene	106.165	630.2	37.29	0.314	9.4954	3395.57	-59.46	305	445
C_8H_{10}	m-Xylene	106.165	617.0	35.46	0.331	9.5188	3366.99	-58.04	300	440
C_8H_{10}	p-Xylene	106.165	616.2	35.16	0.324	9.4761	3346.65	-57.84	300	440
C_8H_{10}	Ethylbenzene	106.165	617.1	36.07	0.301	9.3993	3279.47	-59.95	300	450
C_8H_{16}	1-Octene	112.213	566.6	26.24	0.386	9.3428	3116.52	-60.39	288	420
$C_{8}H_{18}$	n-Octane	114.229	568.8	24.82	0.394	9.3224	3120.29	-63.63	292	425
C_9H_{20}	n-Nonane	128.255	594.6	23.10	0.444	9.3469	3291.45	-71.33	312	452
$C_{10}H_{8}$	Naphthalene	128.171	748.4	40.53	0.302	9.5224	3992.01	-71.29	360	545
$C_{10}H_{22}$	n-Decane	142.282	617.6	21.08	0.490	9.3912	3456.80	-78.67	330	476

TABLE A.1.2 Inorganic Compounds

Formula	Name	$MW_{[g/mol]}$	$T_c\left[\mathrm{K} ight]$	P_c [bar]	ω	A	В	C	T_{min}	$T_{ m max}$
Ar	Argon	39.948	150.8	48.74	-0.004	8.6128	700.51	-5.84	81	94
BCl_3	Boron trichloride	117.169	451.95	38.71	0.148	9.0985	2242.71	-38.99	182	286
B_2H_6	Diborane	27.670	289.80	40.50	0.138	8.7074	1377.84	-22.18	118	181
Br_2	Bromine	159.808	584	103.35	0.132	9.2239	2582.32	-51.56	259	354
CCl_3F	Trichlorofluoromethane	137.367	471.2	44.08	0.188	9.2314	2401.61	-36.3	240	300
CF_4	Carbon tetrafluoride	88.004	227.6	37.39	0.191	9.4341	1244.55	-13.06	93	148
C_2F_6	Hexafluoroethane	138.012	292.8	30.42	0.255	9.1646	1559.11	-24.51	180	195
$CHCl_3$	Chloroform	119.377	536.4	54.72	0.216	9.3530	2696.79	-46.16	260	370
CO	Carbon monoxide	28.010	132.9	34.96	0.049	7.7484	530.22	-13.15	63	108
CO_2	Carbon dioxide	44.010	304.2	73.76	0.225	15.9696	3103.39	-0.16	154	204
CS_2	Carbon disulfide	76.143	552	79.03	0.115	9.3642	2690.85	-31.62	228	342
Cl_2	Chlorine	70.905	417	77.01	0.073	9.3408	1978.32	-27.01	172	264
F_2	Fluorine	37.997	144.3	52.18	0.048	9.0498	714.10	-6.00	59	91
H_2	Hydrogen	2.016	33.2	12.97	-0.22	7.0131	164.90	3.19	14	25
HBr	Hydrogen bromide	80.912	363.2	85.52	0.063	7.8485	1242.53	-47.86	184	221
HCN	Hydrogen cyanide	27.025	456.8	53.90	0.407	9.8936	2585.80	-37.15	234	330
HCl	Hydrogen chloride	36.461	324.6	83.09	0.12	9.8838	1714.25	-14.45	137	200
H_2O	Water	18.015	647.3	220.48	0.344	11.6834	3816.44	-46.13	284	441
H_2S	Hydrogen sulfide	34.082	373.2	89.37	0.100	9.4838	1768.69	-26.06	190	230
$\overline{\mathrm{NH}_{3}}$	Ammonia	17.031	405.6	112.77	0.250	10.3279	2132.50	-32.98	179	261
Не	Helium-4	4.003	5.19	2.27	-0.387	5.6312	33.7329	1.79	3.7	4.3
HF	Hydrogen fluoride	20.006	461	64.85	0.372	11.0756	3404.49	15.06	206	313
Kr	Krypton	83.800	209.4	55.02	-0.002	8.6475	958.75	-8.71	113	129
N_2	Nitrogen	28.013	126.2	33.84	0.039	8.3340	588.72	-6.60	54	90
NF_3	Nitrogen trifluoride	71.002	234	45.29	0.132	8.9905	1155.69	-15.37	103	155
N_2O	Nitrous oxide	44.013	309.6	72.45	0.160	9.5069	1506.49	-25.99	144	200
NO	Nitric oxide	30.006	180	64.85	0.607	13.5112	1572.52	-4.88	95	140
NO_2	Nitrogen dioxide	46.006	431.4	101.33	0.86	13.9122	4141.29	3.65	230	320
Ne	Neon	20.180	44.4	27.56	0.00	7.3897	180.47	-2.61	24	29
O_2	Oxygen	31.999	154.6	50.46	0.021	8.7873	734.55	-6.45	63	100
PH_3	Phosphene	33.998	324.45	65.35	0.042	9.2700	1617.91	-11.07	144	186
SF_6	Sulfur hexafluoride	146.056	318.7	37.59	0.286	12.7583	2524.78	-11.16	159	220
SO_2	Sulfur dioxide	64.065	430.8	78.83	0.251	10.1478	2302.35	-35.97	195	280

TABLE A.1.2 Continued

Formula	Name	$MW_{ m [g/mol]}$	$T_c\left[\mathbf{K} ight]$	P_c [bar]	ω	A	В	C	$T_{ m min}$	$T_{ m max}$
SO_3	Sulfur trioxide	80.064	491.0	82.07	0.41	14.2201	3995.70	-36.66	290	332
$SiCl_3H$	Trichlorosilane	135.452	479.0	41.7	0.203	9.7079	2694.02	-27.00	275	305
$SiCl_4$	Silicon tetrachloride	169.896	507.0	37.49	0.264	9.1817	2634.16	-43.15	238	364
SiF_4	Silicon tetrafluoride	104.079	259.09	37.15	0.456	16.3709	2810.45	-6.88	129	128
SiH_4	Silane	32.117	269.69	48.43	0.089	9.7222	1620.99	5.35	94	162
WF_6	Tungsten hexafluoride	297.830	444.0	43.40	0.231	10.4899	2351.42	-64.70	202	290

Sources: Mostly from R. C. Reid, J. M. Prausnitz, and T. K. Sherwood. The Properties of Gases and Liquids, 3rd ed. (New York: McGraw-Hill, 1977). Also from: CRC Handbook of Chemistry and Physics (Boca Raiton, FL CRC Press, (various) years); P. J. Linstrom and W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fluid).; C. L. Yaws, Handbook of Vapor Pressure (vol. 4) (Houston: Gulf Publishing, 1995).

► A.2 HEAT CAPACITY DATA

$$\frac{c_p}{R} = A + BT + CT^2 + DT^{-2} + ET^3$$
 with T in [K]

TABLE A.2.1 Heat Capacity of Ideal gases: Organic Compounds

Formula	Name	A	$B \times 10^3$	$C \times 10^6$	$D \times 10^{-5}$	$E \times 10^9$	$T_{ m min}$	$T_{ m max}$	Source
$\overline{\text{CH}_2\text{O}}$	Formaldehyde	2.264	7.022	-1.877			298	1500	1
CH_4	Methane	1.702	9.081	-2.164			298	1500	1
$\mathrm{CH_{4}O}$	Methanol	2.211	12.216	-3.45			298	1500	1
C_2H_2	Acetylene	6.132	1.952		-1.299		298	1500	1
C_2H_4	Ethylene	1.424	14.394	-4.392			298	1500	1
C_2H_4O	Acetaldehyde	1.693	17.978	-6.158			298	1000	1
C_2H_4O	Ethylene oxide	-0.385	23.463	-9.296			298	1000	1
C_2H_6	Ethane	1.131	19.225	-5.561			298	1500	1
C_2H_6O	Ethanol	3.518	20.001	-6.002			298	1500	1
C_3H_6	Propylene	1.637	22.706	-6.915			298	1500	1
C_3H_8	Propane	1.213	28.785	-8.824			298	1500	1
C_4H_6	l.3-Butadiene	2.734	26.786	-8.882			298	1500	1
C_4H_8	1-Butene	1.967	31.63	-9.873			298	1500	1
$\mathrm{C_4H_{10}}$	<i>n</i> -Butane	1.935	36.915	-11.402			298	1500	1
C_4H_{10}	Isobutane	1.677	37.853	-11.945			298	1500	1
C_5H_{10}	1-Pentene	2.691	39.753	-12.447			298	1500	1
C_5H_{12}	n-Pentane	2.464	45.351	-14.111			298	1500	1
C_6H_6	Benzene	-0.206	39.064	-13.301			298	1500	1
C_6H_{12}	Cyclohexane	-3.876	63.249	-20.928			298	1500	1
C_6H_{12}	1-Hexene	3.220	48.189	-15.157			298	1500	1
C_6H_{14}	n-Hexane	3.025	53.722	-16.791			298	1500	1
C_7H_8	Toluene	0.290	47.052	-15.716			298	1500	1
C_7H_{14}	1-Heptene	3.768	56.588	-17.847			298	1500	1
C_7H_{16}	n-Heptane	3.570	62.127	-19.468			298	1500	1
C_8H_8	Styrene	2.050	50.192	-16.662			298	1500	1
C_8H_{10}	Ethylbenzene	1.124	55.38	-18.476			298	1500	1
C_8H_{16}	1-Octene	4.324	64.96	-20.521			298	1500	1
C_8H_{18}	n-Octane	8.163	70.567	-22.208			298	1500	1

Sources

J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed. (New York: McGraw-Hill, 1996).
 P. J. Linstrom and W. G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fluid).

TABLE A.2.2 Heat Capacity of Ideal Gases: Inorganic Compounds

Formula	Name	A	$B \times 10^3$	$C \times 10^6$	$D \times 10^{-5}$	$E \times 10^9$	T_{min}	$T_{ m max}$	Source
	Air	3.355	0.575		-0.016		298	2000	1
BCl_3	Boron trichloride	4.245	16.539	-18.969	-0.176	8.031	298	700	2
		9.882	0.078	-0.018	-3.374	0.001	700	6000	2
B_2H_6	Diborane	-1.494	32.188	-18.314	0.361	3.988	298	1200	2
		19.440	1.351	-0.262	-44.224	0.018	1200	6000	2
Br_2	Bromine	4.493	0.056		-0.154		298	3000	1
CF_4	Carbon tetrafluoride	1.921	25.299	-22.789	-0.261	7.482	298	1000	2
		12.776	0.129	-0.027	-10.032	0.002	1000	6000	2
CO	Carbon monoxide	3.376	0.557		-0.031		298	2500	1
CO_2	Carbon dioxide	5.457	1.045		-1.157		298	2000	1
CS_2	Carbon disulfide	6.311	0.805		-0.906		298	1800	1
C_2F_6	Hexafluoroethane	8.389	27.106	-20.948	-1.751	5.671	298	1400	2
		21.284	0.123	-0.023	-13.447	0.001	1400	6000	2
Cl_2	Chlorine	4.442	0.089		-0.344		298	3000	1
H_2	Hydrogen	3.249	0.422		0.083		298	3000	1
HBr	Hydrogen bromide	3.815	-1.648	2.809	-0.035	-1.084	298	1100	2
	, 0	3.956	0.339	-0.057	-3.819	0.004	1100	6000	2
HCN	Hydrogen cyanide	4.736	1.359		-0.725		298	2500	1
HCl	Hydrogen chloride	3.156	0.623		0.151		298	2000	1
HF	Hydrogen fluoride	3.622	-0.390	0.345	-0.030	0.055	298	1000	2
	, 0	2.955	0.829	-0.150	-0.282	0.010	1000	6000	2
H_2O	Water	3.470	1.45		0.121		298	2000	1
H_2S	Hydrogen sulfide	3.931	1.49		-0.232		298	2300	1
N_2	Nitrogen	3.280	0.593		0.04		298	2000	1
$\overline{\mathrm{NH}_{3}}$	Ammonia	3.5778	3.02		-0.186		298	1800	1
N_2O	Nitrous oxide	5.328	1.24		-0.928		298	2000	1
NO	Nitric oxide	3.387	0.629		0.014		298	2000	1
NO_2	Nitrogen dioxide	4.982	1.195		-0.792		298	2000	1
N_2O_4	Dinitrogen tetroxide	11.660	2.257		-2.787		298	2000	1
O_2	Oxygen	3.639	0.506		-0.227		298	2000	1
PH_3	Phosphene	1.431	10.160	-4.576	0.348	0.685	298	1200	2
SF_6	Sulfur hexafluoride	7.085	30.736	-30.343	-1.935	10.676	298	1000	2
Ü		18.901	0.058	-0.012	-9.959	0.001	1000	6000	2
SO_2	Sulfur dioxide	5.699	0.801		-1.015		298	2000	1
SO_3	Sulfur trioxide	8.06	1.056		-2.028		298	2000	1
$SiCl_4$	Tetrachlorosilane	12.700	0.255	-0.069	-1.744	0.006	298	6000	2
$SiClH_3$	Chlorosilane	2.977	14.807	-9.231	-0.432	2.242	298	1100	2
J		11.954	0.572	-0.114	-17.303	0.008	1100	6000	2
$SiCl_2H_2$	Dichlorosilane	6.026	10.145	-6.014	-0.959	1.328	298	1500	2
		12.603	0.195	-0.035	-15.277	0.002	1500	6000	2
SiCl ₃ H	Trichlorosilane	7.732	10.262	-8.671	-0.908	2.818	298	1000	2
- 0		12.552	0.253	-0.052	-7.179	0.004	1000	6000	2
SiF_4	Silicon tetrafluoride	5.170	19.158	-18.179	-0.514	6.207	298	1000	2
4		12.903	0.057	-0.012	-6.482	0.001	1000	6000	2
SiH_4	Silane	0.729	16.835	-9.368	0.163	1.953	298	1300	2
~-**4		12.010	0.511	-0.097	-24.525	0.006	1300	6000	2
WF_6	Tungsten hexafluoride	18.137	0.730	-0.197	-3.690	0.017	1000	6000	2
	- angoten neaminoriae	10,10,	5.150	0.101	3.000	0.011	2000		

Sources:

^{1.} J. M. Smith, H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 5th ed. (New York: McGraw-Hill, 1996).

^{2.} P. J. Linstrom and W. G. Mallard, Eds., **NIST Chemistry WebBook, NIST Standard Reference Database Number 69**, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov/chemistry/fluid).

TABLE A.2.3 Heat Capacity of Liquids and Solids

Formula	Name	Phase	A	$B \times 10^3$	$D imes 10^{-5}$	Source
CH ₄ O	Methanol	L, \bar{c}_P	9.815			2
C_2H_6O	Ethanol	$\mathrm{L}, ar{c}_{P}$	13.592			2
C_3H_6O	Acetone	L	11.184	13.375		2
C_5H_{12}	Pentane	L	18.691	5.254		3
C_6H_6	Benzene	L	16.310	0.000		2
C_6H_{14}	Hexane	L	23.695			2
Al	Aluminum	L	3.819			1
Al	Aluminum	S	2.486	1.490		1
Al_2O_3	Aluminum oxide	S	23.154			4
C	Graphite	S	2.063	0.514	-1.057	1
C	Diamond	S	0.782			4
Cu	Copper	L	3.950			4
Cu	Copper	S	2.723			1
Cu_2O	Cuprous oxide	S, alpha	7.498			1
CuO	Cupric oxide	S	4.666			1
Fe	Iron	S, alpha	2.104	2.979		1
Fe_3O_4	Iron oxide	S	11.012	24.260		1
GaAs	Gallium arsenide	S	5.438	0.730		1
Ni	Nickel	S	1.508	4.308	0.297	1
Si	Silicon	L	3.272			4
Si	Silicon	S	2.879	0.297	-0.498	1
SiO_2	Silicon dioxide	S	5.647	4.127	-1.359	1
SiCl ₃ H	Trichlorosilane	$\mathrm{L}, \overline{c}_P$	15.678			2
$SiCl_4$	Tetrachlorosilane	L,\bar{c}_{P}	16.117			2
H_2O	Water	L, \bar{c}_P	9.069			2
H_2O	Water (ice)	S, \bar{c}_P	4.196			5
H_2SO_4	Sulfuric acid	L	16.731	1.875		3
HNO_3	Nitric acid	$\mathrm{L}, ar{c}_{P}$	13.315			2
NH_3	Ammonia	L	6.880	9.682		2

Sources:

► A.3 ENTHALPY AND GIBBS ENERGY OF FORMATION AT 298 K AND 1 BAR

TABLE A.3.1 Organic Compounds

Formula	Name	Phase	$\Lambda h^o_{f,298} [ext{kJ/mol}]$	$\Lambda g_{f,298}^{ ho}\left[ext{kJ/mol} ight]$	Source
CH ₂ O	Formaldehyde	G	-115.97	-109.99	1
CH_4	Methane	G	-74.81	-50.72	1
CH_4O	Methanol	L	-238.73	-166.34	1
$\mathrm{CH_{4}O}$	Methanol	G	-200.66	-161.96	1
C_2H_2	Acetylene	G	226.88	209.24	1
C_2H_3N	Acetonitrile	${ m L}$	53.17	98.93	1
C_2H_3N	Acetonitrile	G	87.92	105.67	1
C_2H_4	Ethylene	G	52.26	68.15	1

(Continued)

^{1.} O. Kubaschewski and C. B. Alcock, Metallurgical Thermochemistry, 5th ed. (New York: Peramon Press, 1979).

^{2.} Milan Zabransky et al., Heat Capacity of Liquids (Washington, DC: American Chemical Society; Woodbury, NY: National Bureau of Standards,

^{3.} Richard M. Felder and Ronald W. Rousseau, Elementary Principles of Chemical Processes, 3rd ed. (New York: Wiley, 2000).

^{4.} M. W. Chase et al., JANAF Themochemical Tables, 4th ed. (Washington, DC: American Chemical Society; National Bureau of Standards, 1998).

^{5.} K. Ranjevic, Handbook of Thermodynamic Tables and Charts (New York: McGraw-Hill, 1976).

Table 2.3	Standard enthal	pies of fusion and v	aporization at the t	transition temperature,	$\Delta_{tre}H^{\Theta}/(kJ)$	$[mol^{-1})$
-----------	-----------------	----------------------	----------------------	-------------------------	-------------------------------	--------------

	$T_{\rm f}/{ m K}$	Fusion	$T_{\rm b}/{ m K}$	Vaporization		$T_{\mathrm{f}}/\mathrm{K}$	Fusion	$T_{\rm b}/{ m K}$	Vaporization
Element	s				CO_2	217.0	8.33	194.6	25.23 s
Ag	1234	11.30	2436	250.6	CS_2	161.2	4.39	319.4	26.74
Ar	83.81	1.188	87.29	6.506	$\rm H_2O$	273.15	6.008	373.15	40.656
Br_2	265.9	10.57	332.4	29.45					44.016 at 298 I
Cl ₂	172.1	6.41	239.1	20.41	H_2S	187.6	2.377	212.8	18.67
F_2	53.6	0.26	85.0	3.16	H_2SO_4	283.5	2.56		
H_2	13.96	0.117	20.38	0.916	NH_3	195.4	5.652	239.7	23.35
Не	3.5	0.021	4.22	0.084					
Hg	234.3	2.292	629.7	59.30	Organic cor	-			
I_2	386.8	15.52	458.4	41.80	CH_4	90.68	0.941	111.7	8.18
N_2	63.15	0.719	77.35	5.586	CCl_4	250.3	2.5	350	30.0
Na	371.0	2.601	1156	98.01	C_2H_6	89.85	2.86	184.6	14.7
O_2	54.36	0.444	90.18	6.820	C_6H_6	278.61	10.59	353.2	30.8
Xe	161	2.30	165	12.6	C_6H_{14}	178	13.08	342.1	28.85
K	336.4	2.35	1031	80.23	$C_{10}H_{8}$	354	18.80	490.9	51.51
K	330.4	2.33	1031	00.23	CH₃OH	175.2	3.16	337.2	35.27
Inorgan	ic compounds								37.99 at 298 K
CCl ₄	250.3	2.47	349.9	30.00	C_2H_5OH	158.7	4.60	352	43.5

Table 2.5 Thermodynamic data for organic compounds (all values are for 298 K)

	$M/(\mathrm{g} \mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm o}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f}G^{\rm e}/({\rm kJ~mol^{-1}})$	$S_{\mathrm{m}}^{\Phi}/(\mathrm{J}\;\mathrm{K}^{-1}\;\mathrm{mol}^{-1})^{\dagger}$	$C_{p,\mathbf{m}}^{\scriptscriptstyle{\leftrightarrow}}/(JK^{-1}mol^{-1})$	$\Delta_{\rm c} H^{\rm o}/({\rm kJ~mol^{-1}})$
C(s) (graphite)	12.011	0	0	5.740	8.527	-393.51
C(s) (diamond)	12.011	+1.895	+2.900	2.377	6.113	-395.40
$CO_2(g)$	44.040	-393.51	-394.36	213.74	37.11	
Hydrocarbons						
CH ₄ (g), methane	16.04	-74.81	-50.72	186.26	35.31	-890
CH ₃ (g), methyl	15.04	+145.69	+147.92	194.2	38.70	
$C_2H_2(g)$, ethyne	26.04	+226.73	+209.20	200.94	43.93	-1300
$C_2H_4(g)$, ethene	28.05	+52.26	+68.15	219.56	43.56	-1411
$C_2H_6(g)$, ethane	30.07	-84.68	-32.82	229.60	52.63	-1560
C ₃ H ₆ (g), propene	42.08	+20.42	+62.78	267.05	63.89	-2058
C ₃ H ₆ (g), cyclopropane	42.08	+53.30	+104.45	237.55	55.94	-2091
C ₃ H ₈ (g), propane	44.10	-103.85	-23.49	269.91	73.5	-2220
$C_4H_8(g)$, 1-butene	56.11	-0.13	+71.39	305.71	85.65	-2717
C ₄ H ₈ (g), cis-2-butene	56.11	-6.99	+65.95	300.94	78.91	-2710
C ₄ H ₈ (g), trans-2-butene	56.11	-11.17	+63.06	296.59	87.82	-2707
C ₄ H ₁₀ (g), butane	58.13	-126.15	-17.03	310.23	97.45	-2878
C ₅ H ₁₂ (g), pentane	72.15	-146.44	-8.20	348.40	120.2	-3537
$C_5H_{12}(1)$	72.15	-173.1				
C ₆ H ₆ (l), benzene	78.12	+49.0	+124.3	173.3	136.1	-3268

	$M/(\mathrm{g} \ \mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm o}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f}G^{\rm o}/({\rm kJ~mol^{-1}})$	$S_{\mathrm{m}}^{\scriptscriptstyle \leftrightarrow}/(\mathrm{J}\;\mathrm{K}^{-1}\;\mathrm{mol}^{-1})\dagger$	$C_{p,\mathrm{m}}^{+}/(\mathrm{J}\;\mathrm{K}^{-1}\;\mathrm{mol}^{-1})$	$\Delta_{\rm c} H^{\rm e}/({\rm kJ~mol^{-}}$
Hydrocarbons (Continued)						
$C_6H_6(g)$	78.12	+82.93	+129.72	269.31	81.67	-3302
C ₆ H ₁₂ (l), cyclohexane	84.16	-156	+26.8	204.4	156.5	-3920
$C_6H_{14}(l)$, hexane	86.18	-198.7		204.3		-4163
C ₆ H ₅ CH ₃ (g), methylbenzene (toluene)	92.14	+50.0	+122.0	320.7	103.6	-3953
$C_7H_{16}(l)$, heptane	100.21	-224.4	+1.0	328.6	224.3	
$C_8H_{18}(l)$, octane	114.23	-249.9	+6.4	361.1		-5471
$C_8H_{18}(l)$, iso-octane	114.23	-255.1				-5461
$C_{10}H_8(s)$, naphthalene	128.18	+78.53				-5157
Alcohols and phenols						
CH ₃ OH(l), methanol	32.04	-238.66	-166.27	126.8	81.6	-726
CH ₃ OH(g)	32.04	-200.66	-161.96	239.81	43.89	-764
C ₂ H ₅ OH(l), ethanol	46.07	-277.69	-174.78	160.7	111.46	-1368
$C_2H_5OH(g)$	46.07	-235.10	-168.49	282.70	65.44	-1409
C ₆ H ₅ OH(s), phenol	94.12	-165.0	-50.9	146.0		-3054
Carboxylic acids, hydroxy acids,	and esters					
HCOOH(l), formic	46.03	-424.72	-361.35	128.95	99.04	-255
CH ₃ COOH(l), acetic	60.05	-484.5	-389.9	159.8	124.3	-875
CH ₃ COOH(aq)	60.05	-485.76	-396.46	178.7		
$CH_3CO_2^-(aq)$	59.05	-486.01	-369.31	+86.6	-6.3	
(COOH) ₂ (s), oxalic	90.04	-827.2			117	-254
C ₆ H ₅ COOH(s), benzoic	122.13	-385.1	-245.3	167.6	146.8	-3227
CH ₃ CH(OH)COOH(s), lactic	90.08	-694.0				-1344
$CH_3COOC_2H_5(l)$, ethyl acetate	88.11	-479.0	-332.7	259.4	170.1	-2231
Alkanals and alkanones						
HCHO(g), methanal	30.03	-108.57	-102.53	218.77	35.40	-571
CH ₃ CHO(l), ethanal	44.05	-192.30	-128.12	160.2		-1166
CH ₃ CHO(g)	44.05	-166.19	-128.86	250.3	57.3	-1192
CH ₃ COCH ₃ (l), propanone	58.08	-248.1	-155.4	200.4	124.7	-1790
Sugars						
$C_6H_{12}O_6(s)$, α -D-glucose	180.16	-1274				-2808
$C_6H_{12}O_6(s)$, β -D-glucose	180.16	-1268	-910	212		
$C_6H_{12}O_6(s)$, β -D-fructose	180.16	-1266				-2810
$C_{12}H_{22}O_{11}(s)$, sucrose	342.30	-2222	-1543	360.2		-5645
Nitrogen compounds						
$CO(NH_2)_2(s)$, urea	60.06	-333.51	-197.33	104.60	93.14	-632
CH ₃ NH ₂ (g), methylamine	31.06	-22.97	+32.16	243.41	53.1	-1085
C ₆ H ₅ NH ₂ (l), aniline	93.13	+31.1				-3393
CH ₂ (NH ₂)COOH(s), glycine	75.07	-532.9	-373.4	103.5	99.2	-969

	$M/(\mathrm{g}\mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm o}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f}G^{\circ}/({\rm kJ\ mol^{-1}})$	$S_{\mathrm{m}}^{\scriptscriptstyle{\bullet}}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})\dagger$	$C_{p,\mathrm{m}}^{\scriptscriptstyle{+}}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Aluminium (aluminu	um)				
Al(s)	26.98	0	0	28.33	24.35
Al(l)	26.98	+10.56	+7.20	39.55	24.21
Al(g)	26.98	+326.4	+285.7	164.54	21.38
$Al^{3+}(g)$	26.98	+5483.17			
$Al^{3+}(aq)$	26.98	-531	-485	-321.7	
$Al_2O_3(s, \alpha)$	101.96	-1675.7	-1582.3	50.92	79.04
AlCl ₃ (s)	133.24	-704.2	-628.8	110.67	91.84
Argon					
Ar(g)	39.95	0	0	154.84	20.786
Antimony					
Sb(s)	121.75	0	0	45.69	25.23
SbH ₃ (g)	124.77	+145.11	+147.75	232.78	41.05
Arsenic					
$As(s, \alpha)$	74.92	0	0	35.1	24.64
As(g)	74.92	+302.5	+261.0	174.21	20.79
$As_4(g)$	299.69	+143.9	+92.4	314	
AsH ₃ (g)	77.95	+66.44	+68.93	222.78	38.07
Barium					
Ba(s)	137.34	0	0	62.8	28.07
Ba(g)	137.34	+180	+146	170.24	20.79
Ba ²⁺ (aq)	137.34	-537.64	-560.77	+9.6	
BaO(s)	153.34	-553.5	-525.1	70.43	47.78
BaCl ₂ (s)	208.25	-858.6	-810.4	123.68	75.14
Beryllium					
Be(s)	9.01	0	0	9.50	16.44
Be(g)	9.01	+324.3	+286.6	136.27	20.79
Bismuth					
Bi(s)	208.98	0	0	56.74	25.52
Bi(g)	208.98	+207.1	+168.2	187.00	20.79
Bromine					
Br ₂ (l)	159.82	0	0	152.23	75.689
$Br_2(g)$	159.82	+30.907	+3.110	245.46	36.02
Br(g)	79.91	+111.88	+82.396	175.02	20.786
Br ⁻ (g)	79.91	-219.07			
Br ⁻ (aq)	79.91	-121.55	-103.96	+82.4	-141.8
HBr(g)	90.92	-36.40	-53.45	198.70	29.142
Cadmium	112.42	•	2	51.50	25.22
$Cd(s, \gamma)$	112.40	0	0	51.76	25.98
Cd(g)	112.40	+112.01	+77.41	167.75	20.79
Cd ²⁺ (aq)	112.40	-75.90	-77.612	-73.2	

	$M/(\mathrm{g}\mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm e}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f} G^{\rm e}/({\rm kJ~mol^{-1}})$	$S_{\mathrm{m}}^{+}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})^{\dagger}$	$C_{p,\mathrm{m}}^{\mathrm{o}}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$
Cadmium (Continued)					
CdO(s)	128.40	-258.2	-228.4	54.8	43.43
CdCO ₃ (s)	172.41	-750.6	-669.4	92.5	
Caesium (cesium)					
Cs(s)	132.91	0	0	85.23	32.17
Cs(g)	132.91	+76.06	+49.12	175.60	20.79
Cs ⁺ (aq)	132.91	-258.28	-292.02	+133.05	-10.5
Calcium					
Ca(s)	40.08	0	0	41.42	25.31
Ca(g)	40.08	+178.2	+144.3	154.88	20.786
Ca ²⁺ (aq)	40.08	-542.83	-553.58	-53.1	
CaO(s)	56.08	-635.09	-604.03	39.75	42.80
CaCO ₃ (s) (calcite)	100.09	-1206.9	-1128.8	92.9	81.88
CaCO ₃ (s) (aragonite)	100.09	-1207.1	-1127.8	88.7	81.25
CaF ₂ (s)	78.08	-1219.6	-1167.3	68.87	67.03
CaCl ₂ (s)	110.99	-795.8	-748.1	104.6	72.59
$CaBr_2(s)$	199.90	-682.8	-663.6	130	
Carbon (for 'organic' com	pounds of carbon, see	Table 2.5)			
C(s) (graphite)	12.011	0	0	5.740	8.527
C(s) (diamond)	12.011	+1.895	+2.900	2.377	6.113
C(g)	12.011	+716.68	+671.26	158.10	20.838
$C_2(g)$	24.022	+831.90	+775.89	199.42	43.21
CO(g)	28.011	-110.53	-137.17	197.67	29.14
$CO_2(g)$	44.010	-393.51	-394.36	213.74	37.11
CO ₂ (aq)	44.010	-413.80	-385.98	117.6	
$H_2CO_3(aq)$	62.03	-699.65	-623.08	187.4	
HCO ₃ (aq)	61.02	-691.99	-586.77	+91.2	
$CO_3^{2-}(aq)$	60.01	-677.14	-527.81	-56.9	
$CCl_4(l)$	153.82	-135.44	-65.21	216.40	131.75
$CS_2(l)$	76.14	+89.70	+65.27	151.34	75.7
HCN(g)	27.03	+135.1	+124.7	201.78	35.86
HCN(l)	27.03	+108.87	+124.97	112.84	70.63
CN ⁻ (aq)	26.02	+150.6	+172.4	+94.1	
Chlorine					
$\operatorname{Cl}_2(g)$	70.91	0	0	223.07	33.91
Cl(g)	35.45	+121.68	+105.68	165.20	21.840
Cl ⁻ (g)	34.45	-233.13			
Cl ⁻ (aq)	35.45	-167.16	-131.23	+56.5	-136.4
HCl(g)	36.46	-92.31	-95.30	186.91	29.12
HCl(aq)	36.46	-167.16	-131.23	56.5	-136.4
Chromium					
Cr(s)	52.00	0	0	23.77	23.35
Cr(g)	52.00	+396.6	+351.8	174.50	20.79

	$M/(\mathrm{g}\ \mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm e}/({\rm kJ\ mol^{-1}})$	$\Delta_{\rm f} G^{\rm e}/({ m kJ\ mol^{-1}})$	$S_{\mathrm{m}}^{\leftrightarrow}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})\dagger$	$C_{p,\mathrm{m}}^{\scriptscriptstyle{\leftrightarrow}}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$
Chromium (Continued)				
$CrO_4^{2-}(aq)$	115.99	-881.15	-727.75	+50.21	
$Cr_2O_7^{2-}(aq)$	215.99	-1490.3	-1301.1	+261.9	
Copper					
Cu(s)	63.54	0	0	33.150	24.44
Cu(g)	63.54	+338.32	+298.58	166.38	20.79
Cu ⁺ (aq)	63.54	+71.67	+49.98	+40.6	
Cu ²⁺ (aq)	63.54	+64.77	+65.49	-99.6	
$Cu_2O(s)$	143.08	-168.6	-146.0	93.14	63.64
CuO(s)	79.54	-157.3	-129.7	42.63	42.30
CuSO ₄ (s)	159.60	-771.36	-661.8	109	100.0
$CuSO_4 \cdot H_2O(s)$	177.62	-1085.8	-918.11	146.0	134
$CuSO_4 \cdot 5H_2O(s)$	249.68	-2279.7	-1879.7	300.4	280
Deuterium					
$D_2(g)$	4.028	0	0	144.96	29.20
HD(g)	3.022	+0.318	-1.464	143.80	29.196
$D_2O(g)$	20.028	-249.20	-234.54	198.34	34.27
$D_2O(l)$	20.028	-294.60	-243.44	75.94	84.35
HDO(g)	19.022	-245.30	-233.11	199.51	33.81
HDO(l)	19.022	-289.89	-241.86	79.29	
Fluorine					
$F_2(g)$	38.00	0	0	202.78	31.30
F(g)	19.00	+78.99	+61.91	158.75	22.74
F-(aq)	19.00	-332.63	-278.79	-13.8	-106.7
HF(g)	20.01	-271.1	-273.2	173.78	29.13
Gold					
Au(s)	196.97	0	0	47.40	25.42
Au(g)	196.97	+366.1	+326.3	180.50	20.79
Helium					
He(g)	4.003	0	0	126.15	20.786
Hydrogen (see also deut	terium)				
$H_2(g)$	2.016	0	0	130.684	28.824
H(g)	1.008	+217.97	+203.25	114.71	20.784
H ⁺ (aq)	1.008	0	0	0	0
$H^+(g)$	1.008	+1536.20			
$H_2O(s)$	18.015			37.99	
H ₂ O(l)	18.015	-285.83	-237.13	69.91	75.291
$H_2O(g)$	18.015	-241.82	-228.57	188.83	33.58
$H_2O_2(l)$	34.015	-187.78	-120.35	109.6	89.1
Iodine					
$I_2(s)$	253.81	0	0	116.135	54.44
$I_2(g)$	253.81	+62.44	+19.33	260.69	36.90

	$M/(\mathrm{g}\mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm e}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f} G^{\rm o}/({\rm kJ~mol^{-1}})$	$S_{\mathrm{m}}^{\scriptscriptstyle \leftrightarrow}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})\dagger$	$C_{p,m}^{+}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$
Iodine (Continued)					
I(g)	126.90	+106.84	+70.25	180.79	20.786
I ⁻ (aq)	126.90	-55.19	-51.57	+111.3	-142.3
HI(g)	127.91	+26.48	+1.70	206.59	29.158
Iron					
Fe(s)	55.85	0	0	27.28	25.10
Fe(g)	55.85	+416.3	+370.7	180.49	25.68
Fe ²⁺ (aq)	55.85	-89.1	-78.90	-137.7	
Fe ³⁺ (aq)	55.85	-48.5	-4.7	-315.9	
Fe ₃ O ₄ (s) (magnetite)	231.54	-1118.4	-1015.4	146.4	143.43
Fe ₂ O ₃ (s) (haematite)	159.69	-824.2	-742.2	87.40	103.85
$FeS(s, \alpha)$	87.91	-100.0	-100.4	60.29	50.54
$FeS_2(s)$	119.98	-178.2	-166.9	52.93	62.17
Krypton				444.00	
Kr(g)	83.80	0	0	164.08	20.786
Lead	207.19	0	0	64.81	26.44
Pb(s)					
Pb(g)	207.19	+195.0	+161.9	175.37	20.79
Pb ²⁺ (aq)	207.19	-1.7	-24.43	+10.5	45.55
PbO(s, yellow)	223.19	-217.32	-187.89	68.70	45.77
PbO(s, red)	223.19	-218.99	-188.93	66.5	45.81
PbO ₂ (s)	239.19	-277.4	-217.33	68.6	64.64
Lithium	6.94	0	0	29.12	24.77
Li(s)					24.77
Li(g)	6.94	+159.37	+126.66	138.77	20.79
Li ⁺ (aq)	6.94	-278.49	-293.31	+13.4	68.6
Magnesium	24.21	0	0	22.69	24.90
Mg(s)	24.31		0	32.68	24.89
Mg(g)	24.31	+147.70	+113.10	148.65	20.786
$Mg^{2+}(aq)$	24.31	-466.85	-454.8	-138.1	27.15
MgO(s)	40.31	-601.70	-569.43	26.94	37.15
MgCO ₃ (s)	84.32	-1095.8	-1012.1	65.7	75.52
MgCl ₂ (s)	95.22	-641.32	-591.79	89.62	71.38
Mercury	200.50	0	0	76.02	27 002
Hg(l)	200.59		0	76.02	27.983
Hg(g)	200.59	+61.32	+31.82	174.96	20.786
$Hg^{2+}(aq)$	200.59	+171.1	+164.40	-32.2	
$Hg_2^{2+}(aq)$	401.18	+172.4	+153.52	+84.5	
HgO(s)	216.59	-90.83	-58.54	70.29	44.06
$Hg_2Cl_2(s)$	472.09	-265.22	-210.75	192.5	102
$HgCl_2(s)$	271.50	-224.3	-178.6	146.0	
HgS(s, black)	232.65	-53.6	-47.7	88.3	

	$M/(\mathrm{g}\ \mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm o}/({\rm kJ\ mol^{-1}})$	$\Delta_{\rm f}G^{\circ}/({\rm kJ\ mol^{-1}})$	$S_{\mathrm{m}}^{+}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})\dagger$	$C_{p,m}^{\bullet}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$
Neon					
Ne(g)	20.18	0	0	146.33	20.786
Nitrogen					
$N_2(g)$	28.013	0	0	191.61	29.125
N(g)	14.007	+472.70	+455.56	153.30	20.786
NO(g)	30.01	+90.25	+86.55	210.76	29.844
$N_2O(g)$	44.01	+82.05	+104.20	219.85	38.45
$NO_2(g)$	46.01	+33.18	+51.31	240.06	37.20
$N_2O_4(g)$	92.1	+9.16	+97.89	304.29	77.28
$N_2O_5(s)$	108.01	-43.1	+113.9	178.2	143.1
$N_2O_5(g)$	108.01	+11.3	+115.1	355.7	84.5
HNO ₃ (l)	63.01	-174.10	-80.71	155.60	109.87
HNO ₃ (aq)	63.01	-207.36	-111.25	146.4	-86.6
$NO_3^-(aq)$	62.01	-205.0	-108.74	+146.4	-86.6
NH ₃ (g)	17.03	-46.11	-16.45	192.45	35.06
NH ₃ (aq)	17.03	-80.29	-26.50	111.3	
NH ₄ (aq)	18.04	-132.51	-79.31	+113.4	79.9
NH ₂ OH(s)	33.03	-114.2			
HN ₃ (l)	43.03	+264.0	+327.3	140.6	43.68
$HN_3(g)$	43.03	+294.1	+328.1	238.97	98.87
$N_2H_4(l)$	32.05	+50.63	+149.43	121.21	139.3
$NH_4NO_3(s)$	80.04	-365.56	-183.87	151.08	84.1
$NH_4Cl(s)$	53.49	-314.43	-202.87	94.6	04.1
Oxygen					
$O_2(g)$	31.999	0	0	205.138	29.355
O(g)	15.999	+249.17	+231.73	161.06	21.912
O ₃ (g)	47.998	+142.7	+163.2	238.93	39.20
OH ⁻ (aq)	17.007	-229.99	-157.24	-10.75	-148.5
Phosphorus					
P(s, wh)	30.97	0	0	41.09	23.840
P(g)	30.97	+314.64	+278.25	163.19	20.786
$P_2(g)$	61.95	+144.3	+103.7	218.13	32.05
$P_4(g)$	123.90	+58.91	+24.44	279.98	67.15
PH ₃ (g)	34.00	+5.4	+13.4	210.23	37.11
PCl ₃ (g)	137.33	-287.0	-267.8	311.78	71.84
PCl ₃ (l)	137.33	-319.7	-272.3	217.1	
PCl ₅ (g)	208.24	-374.9	-305.0	364.6	112.8
$PCl_5(s)$	208.24	-443.5			
$H_3PO_3(s)$	82.00	-964.4			
$H_3PO_3(aq)$	82.00	-964.8			
	94.97	-1279.0	_1110 1	110.50	106.06
$H_3PO_4(s)$			-1119.1	110.50	100.00
$H_3PO_4(l)$	94.97	-1266.9			

	$M/(\mathrm{g}\mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\rm e}/({\rm kJ~mol^{-1}})$	$\Delta_{\rm f}G^{\rm e}/({\rm kJ~mol^{-1}})$	$S_{\mathrm{m}}^{\oplus}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})^{\dagger}$	$C_{p,\mathrm{m}}^{\mathrm{o}}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$
Phosphorus (Continued)					
$PO_4^{3-}(aq)$	94.97	-1277.4	-1018.7	-221.8	
$P_4O_{10}(s)$	283.89	-2984.0	-2697.0	228.86	211.71
$P_4O_6(s)$	219.89	-1640.1			
Potassium					
K(s)	39.10	0	0	64.18	29.58
K(g)	39.10	+89.24	+60.59	160.336	20.786
K+(g)	39.10	+514.26			
K+(aq)	39.10	-252.38	-283.27	+102.5	21.8
KOH(s)	56.11	-424.76	-379.08	78.9	64.9
KF(s)	58.10	-576.27	-537.75	66.57	49.04
KCl(s)	74.56	-436.75	-409.14	82.59	51.30
KBr(s)	119.01	-393.80	-380.66	95.90	52.30
Kl(s)	166.01	-327.90	-324.89	106.32	52.93
Silicon					
Si(s)	28.09	0	0	18.83	20.00
Si(g)	28.09	+455.6	+411.3	167.97	22.25
$SiO_2(s, \alpha)$	60.09	-910.94	-856.64	41.84	44.43
Silver					
Ag(s)	107.87	0	0	42.55	25.351
Ag(g)	107.87	+284.55	+245.65	173.00	20.79
Ag ⁺ (aq)	107.87	+105.58	+77.11	+72.68	21.8
AgBr(s)	187.78	-100.37	-96.90	107.1	52.38
AgCl(s)	143.32	-127.07	-109.79	96.2	50.79
$Ag_2O(s)$	231.74	-31.05	-11.20	121.3	65.86
AgNO ₃ (s)	169.88	-129.39	-33.41	140.92	93.05
Sodium					
Na(s)	22.99	0	0	51.21	28.24
Na(g)	22.99	+107.32	+76.76	153.71	20.79
Na ⁺ (aq)	22.99	-240.12	-261.91	59.0	46.4
NaOH(s)	40.00	-425.61	-379.49	64.46	59.54
NaCl(s)	58.44	-411.15	-384.14	72.13	50.50
NaBr(s)	102.90	-361.06	-348.98	86.82	51.38
NaI(s)	149.89	-287.78	-286.06	98.53	52.09
Sulfur					
$S(s, \alpha)$ (rhombic)	32.06	0	0	31.80	22.64
$S(s, \beta)$ (monoclinic)	32.06	+0.33	+0.1	32.6	23.6
S(g)	32.06	+278.81	+238.25	167.82	23.673
$S_2(g)$	64.13	+128.37	+79.30	228.18	32.47
S ²⁻ (aq)	32.06	+33.1	+85.8	-14.6	
$SO_2(g)$	64.06	-296.83	-300.19	248.22	39.87
$SO_3(g)$	80.06	-395.72	-371.06	256.76	50.67

Tahl	2 2	7 (Continued)	١
Iau	C 4.	/ COntinued	,

	$M/(\mathrm{g} \ \mathrm{mol}^{-1})$	$\Delta_{\rm f} H^{\circ}/({\rm kJ\ mol^{-1}})$	$\Delta_{\rm f}G^{\bullet}/({\rm kJ\ mol^{-1}})$	$S_{\mathrm{m}}^{+}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})\dagger$	$C_{p,\mathrm{m}}^{\bullet}/(\mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1})$	
Sulfur (Continued)						
$H_2SO_4(1)$	98.08	-813.99	-690.00	156.90	138.9	
H ₂ SO ₄ (aq)	98.08	-909.27	-744.53	20.1	-293	
$SO_4^{2-}(aq)$	96.06	-909.27	-744.53	+20.1	-293	
HSO ₄ (aq)	97.07	-887.34	-755.91	+131.8	-84	
$H_2S(g)$	34.08	-20.63	-33.56	205.79	34.23	
$H_2S(aq)$	34.08	-39.7	-27.83	121		
HS ⁻ (aq)	33.072	-17.6	+12.08	+62.08		
$SF_6(g)$	146.05	-1209	-1105.3	291.82	97.28	
Tin						
$Sn(s, \beta)$	118.69	0	0	51.55	26.99	
Sn(g)	118.69	+302.1	+267.3	168.49	20.26	
Sn ²⁺ (aq)	118.69	-8.8	-27.2	-17		
SnO(s)	134.69	-285.8	-256.9	56.5	44.31	
$SnO_2(s)$	150.69	-580.7	-519.6	52.3	52.59	
Xenon						
Xe(g)	131.30	0	0	169.68	20.786	
Zinc						
Zn(s)	65.37	0	0	41.63	25.40	
Zn(g)	65.37	+130.73	+95.14	160.98	20.79	
$Zn^{2+}(aq)$	65.37	-153.89	-147.06	-112.1	46	
ZnO(s)	81.37	-348.28	-318.30	43.64	40.25	

Source: NBS. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 2.7a Standard enthalpies of hydration at infinite dilution, $\Delta_{\rm hvd} H^{\rm e}/({\rm kJ~mol^{-1}})$

	Li ⁺	Na ⁺	K ⁺	Rb^+	Cs ⁺
F-	-1026	-911	-828	-806	-782
Cl-	-884	-783	-685	-664	-640
Br^-	-856	-742	-658	-637	-613
I-	-815	-701	-617	-596	-572

Entries refer to $X^+(g) + Y^-(g) \rightarrow X^+(aq) + Y^-(aq)$.

Data: Principally J.O'M. Bockris and A.K.N. Reddy, *Modern electrochemistry*, Vol. 1. Plenum Press, New York (1970).

Table 2.7b Standard ion hydration enthalpies, $\Delta_{\rm hvd} H^{\rm e}/({\rm kJ~mol^{-1}})$ at 298 K

H ⁺	(-1090)		Ag ⁺	-464	Mg^{2+}		-1920
Li ⁺	-520		NH_4^+	-301	Ca ²⁺		-1650
Na ⁺	-405				Sr ²⁺		-1480
K ⁺	-321				Ba ²⁺		-1360
Rb ⁺	-300				Fe ²⁺		-1950
Cs ⁺	-277				Cu ²⁺		-2100
					Zn^{2+}		-2050
					Al^{3+}		-4690
					Fe ³⁺		-4430
Anions							
OH-	-460						
F-	-506	Cl-	-364	Br ⁻	-337	I^-	-296

Entries refer to $X^{\pm}(g) \to X^{\pm}(aq)$ based on $H^{+}(g) \to H^{+}(aq)$; $\Delta H^{\bullet} = -1090 \text{ kJ mol}^{-1}$. Data: Principally J.O'M. Bockris and A.K.N. Reddy, *Modern electrochemistry*, Vol. 1. Plenum Press, New York (1970).

Figure 9.7-1 Fugacity coefficients of gases and vapors. (Reprinted with permission from O. A. Hougen and K. M. Watson, Chemical Process Principles Charts, John Wiley & Sons, New York, 1946.) In this figure $Z_c = 0.27$.

below its triple-point temperature. As an example of the methods used, we consider the estimation of the liquid-phase fugacity at temperatures below its triple point (so that the solid is the stable phase) and also at temperatures above its critical temperature (where the gas is the stable phase) for the substance whose pure component phase diagram is given in Fig. 9.7-2a. In either case the first step in the procedure is to extend the vapor pressure curve, either analytically (using the Clausius-Clapeyron equation) or graphically as indicated in Fig. 9.7-2b, to obtain the vapor pressure of the hypothetical liquid. 16

In the case of the subcooled liquid, which involves an extrapolation into the solid region, the vapor pressure is usually so low that the fugacity coefficient is close to unity, and the fugacity of this hypothetical liquid is equal to the extrapolated vapor pressure. For the supercritical liquid, however, the extrapolation is above the critical temperature of the liquid and yields very high vapor pressures, so that the fugacity of this hypothetical liquid is equal to the product of the extrapolated vapor pressure and the fugacity coefficient (which is taken from the corresponding-states plot of Fig. 9.7-1).

Another way to estimate the "subcooled" liquid fugacity f_1^L below the melting point is to use heat (enthalpy) of fusion data and, if available, the heat capacity data for both

 $^{^{16}}$ For accurate extrapolations $\ln P^{\text{vap}}$ should be plotted versus 1/T as in Sec. 7.5.