מחסני נתונים - תרגיל בית: ניתוחי וירוס הקורונה

מרכז הבקרה ומניעת המגיפות בדרום קוריאה שיתף נתונים לגבי בדיקות לוירוס הקורונה, חולי -COVID מרכז הבקרה ומניעת מהוירוס), ונתונים אפידימולוגיים כלליים 21 .

לרשותכם (ב-Moodle) קבצי נתונים מעובדים שמכילים מידע אודות חולים, בדיקות, מסלולי החולים, ומידע דמוגרפי כללי על אזורים בדרום קוריאה. עליכם לבנות מחסן נתונים סביב תהליך גרעיני.

: אוסף הנתונים ניתן בפורמט CSV במספר קבצים

- COVID-19 נתונים אפידמיולוגיים של חולי patient
- בדרום קוריאה (מקומות שהם ביקרו). covid-19 מסלולי החולים ב-19-20.
 - נתוני סדרות זמן על מצב COVID-19 בדרום קוריאה. time
 - region מקומות ונתונים סטטיסטיים של האזורים בדרום קוריאה.

תיעוד מלא של מבנה הקבצים ניתן למצוא בנספחים.

אתם מתבקשים לתכנן ולבנות מחסן נתונים ולבצע תהליך ETL מקבצי הנתונים הקיימים.

¹ https://www.kaggle.com/kimjihoo/coronavirusdataset

https://github.com/jihoo-kim/Coronavirus-Dataset

חלק א: תכנון מחסן נתונים

אתם מתבקשים לתכנן מחסן נתונים בהתאם לניתוחים שאנו מעוניינים לבצע:

- ו. כמות הנדבקים לפי ימים עבור שלושת הערים עם מספר ההדבקות הגבוה ביותר בדרום קוריאה. נדבק מזוהה לפי שורה בטבלה patient.
- 2. כמות המחלימים לפי ימים עבור שלושת הערים עם מספר ההדבקות הגבוה ביותר בדרום קוריאה. מחלים מזוהה לפי state בטבלת patient.
 - .3 כמות המקומות שנדבק ביקר בהם עד שלושה ימים, עד יומיים ועד יום לפני כניסה לבידוד.
 - 4. כמות האנשים שבעיר סיאול מתחת לגיל 30 שנדבקו ושהדביקו אדם אחר מגיל 30 ומעלה.
- 5. צרו מידע שיאפשר לקבל החלטה לגבי אילו ערים בדרום קוריאה כדאי לסגור כדי לצמצם את ההפצה של הוירוס.

דרישות:

אפיינו מחסן נתונים בסכמת **כוכב** יחיד (לא פתית שלג) לצורך הניתוחים שאנו מעוניינים לבצע תוך שימוש בשלבים שנלמדו בכיתה :

- א. זיהוי התהליך בו מחסן הנתונים מתמקד
 - ב. בחירת הגרעין (Grain)
- ג. בחירת מימדי מחסן הנתונים (לפחות 3 מימדים שונים)
 - ד. זיהוי העובדות

שימו לב - בחלק א' לא צריך לענות ממש על השאילתות, אלא רק לתכנן מחסן נתונים שיאפשר לענות על השאילתות בצורה פשוטה.

תפוקות (בקובץ Word):

- פירוט של העיצוב מחסן הנתונים, תרשים קונספטואלי של מחסן הנתונים, כולל הגדרת השדות בפורמט המתואר בדוגמה:

(Date) דוגמה - טבלת מימד תאריך

הערות	מקור נתונים	טיפוס נתונים	<u>שדה</u>
מפתח ראשי, ייחודי	Auto Increment שדה	int	<u>date_id</u>
תאריך	מיוצר באופן אוטומטי. מתחיל	date	Date
	MAX מתאריך MIN ומסתיים		
	date עמודה time מקובץ		
מהווה תמונת מצב מצטברת	מחושב עייי (MAX(test לאותו	int	Tests
עד אותו היום, לגבי מספר	היום.		
בדיקות שבוצעו בסוף היום			

חלק ב': תהליך ETL וניתוח הנתונים

בנו את מחסן הנתונים שהגדרתם בחלק א' ובצעו תהליך ETL לנתונים הקיים: עליכם לבנות תהליך בנו את מחסן הנתונים שהגדרת מסלול קריאת הנתונים (Pipeline) מקבצי הקלט (Extract), עיבוד הנתונים בעזרת (Transform) וטעינתם לבסיס הנתונים MySQL (Load). לאחר מכן, צרו את הניתוחים מחלק א'.

דרישות:

- 1. בנו תהליך ETL אוטומטי. נדרש להשתמש בחבילת Pandas לצורך ביצוע תהליך
 - .2 נהלו ערכים חסרים (NULL).
 - .outlier detection מוך שימוש ב-outlier detection. 3
 - 4. בצעו בדיקה לתקינות בסוף תהליך ה-ETL.
 - .SQL-וה-Python וה-SQL. תעדו היטב את קוד
 - .6. ענו על השאילתות בחלק אי באמצעות SQL ענו על השאילתות בחלק אי באמצעות

:(Jupyter notebook תפוקות נדרשות (בקובץ

- פירוט קוד Python ושאילתות SQL (בקובץ Jupyter notebook), כולל תיעוד הפעולות והשיקולים שירוט קוד הפעולות והשיקולים שנלקחו במהלך העבודה (נסחו בצורה בעברית או באנגלית).
- מידע על הנתונים בכל טבלה במחסן הנתונים כמות שדות, כמות רשומות, טווחי ערכים רלוונטיים (כשדע על הנתונים בכל טבלה. (כ- 5-10 שורות) מכל טבלה.
 - עבור השאילתות מחלק אי יש לצרף דוגמית של פלט (5-10 שורות).

נהלים והנחיות כלליות

- : ציון יחושב באופן הבא
- אפיון ועיצוב מחסן הנתונים -
 - ETL-- תהליך -
 - נכונות שלבי טעינת המידע
 - רמת האוטומציה בתהליך
- ETL רמת התיעוד של תהליך
 - איכות הקוד הטעינה -
- ניהול ערכים חסרים וחריגים -
- בדיקה לתקינות בסוף תהליך ה-ETL
- SQL-ב מענה בצורה פשוטה על הניתוחים באמצעות שאילתות -
 - 2. הגשה בקבוצות של 3 סטודנטים.
 - .3 מועד הגשה מפורסם באתר הקורס.
- 4. ההשגה תיעשה על ידי סטודנט אחד מחברי הקבוצה בקובץ ZIP הכולל את:
 - א. קובץ Word המכיל את תוצרי (חלק אי).
 - ב. קובץ Jupyter Notebook המכיל את קוד בי).
- 5. כל הקבצים צריכים להכיל את ת.ז של חברי הקבוצה ומסי הקבוצה. נא לא לצרף את קבצי הנתונים.
- 6. חריגה מפורמט ההגשה (בפרט תיעוד לקוי, קוד שלא ניתן להרצה או מחסור בקבצי התקנה נלווים)כמו גם איחור במועד ההגשה יובילו להורדת ציון.
 - 7. המסמך יהיה כתוב בגופן David, גודל 12, עם מרווח של שורה וחצי.

בהצלחה!

נספחים

patient.csv : נספח אי

נתונים אפידמיולוגיים של חולי COVID-19 בדרום קוריאה.

רשימת כל השדות הקיימים בקובץ:

Field	Description
³patient_id	the ID of the patient (n-th confirmed patient)
global_num	the number given by KCDC
sex	the sex of the patient
birth_year	the birth year of the patient
age	the age of the patient
country	the country of the patient
city	the city of the patient
disease	0: no disease / 1: underlying disease
infection_case	the collective infection
infection_order	the order of infection
infected_by	the parient_id of who has infected the patient
contact_number	the number of contacts with people
symptom_onset_date	the date of symptom onset
confirmed_date	the date of confirmation
released_date	the date of discharge
deceased_date	the date of decease
state	isolated / released / deceased

[.]patient יכול לחזור בטבלת patient_id לצורך לחלות שוב. לנניח שחולה קורונה יכול לחלות שוב. לומר, $^{\mathrm{t}}$

route.csv :יכשבת ב'

מסלולי החולים COVID-19 בדרום קוריאה (מקומות שהם ביקרו).

Field	Description
patient_id	the ID of the patient (n-th confirmed patient)
global_num	the number given by KCDC
date	Year-Month-Day
province	Special City / Metropolitan City / Province(-do)
city	City(-si) / Country (-gun) / District (-gu)
latitude	the latitude of the visit (WGS84)
longitude	the longitude of the visit (WGS84)

time.csv :יטפח ג׳

נתוני סדרות זמן על מצב COVID-19 בדרום קוריאה.

Field	Description
date	Year-Month-Day
time	Time (0 = AM 12:00 / 16 = PM 04:00)
test	the accumulated number of tests
negative	the accumulated number of negative results
confirmed	the accumulated number of positive results
released	the accumulated number of releases
deceased	the accumulated number of deceases

region.csv :יטפח די

מקומות ונתונים סטטיסטיים של האזורים בדרום קוריאה.

Field	Description
code	the code of the region
province	Special City / Metropolitan City / Province(-do)
city	City(-si) / Country (-gun) / District (-gu)
latitude	the latitude of the visit (WGS84)
longitude	the longitude of the visit (WGS84)
elementary_school_count	the number of elementary schools
kindergarten_count	the number of kindergartens
university_count	the number of universities
academy_ratio	the ratio of academies
elderly_population_ratio	the ratio of the elderly population
elderly_alone_ratio	the ratio of elderly households living alone
nursing_home_count	the number of nursing homes