

Programação Linear - modelos

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

2 de outubro de 2020

Conteúdo

- Plano de produção
- Transporte de terras
- Sudoku 2 × 2
- Planeamento de rotas de veículos
- Transformações básicas de:
 - uma inequação numa equação
 - uma equação em duas inequações
 - um problema de minimização num problema de maximização
 - variáveis sem restrição de sinal
 - · variáveis com limite inferior
 - restrições do tipo módulo
- Apêndice
 - Dieta
 - Lotes de produção
 - Corte de stock
 - Gestão de pessoal
 - Investimento

Pressupostos de um modelo de Programação Linear

- Um modelo é uma representação da realidade.
- A validade de um modelo de PL (que usa funções lineares na função objectivo e nas restrições) resulta da assumpção de que são válidos os seguintes pressupostos:
- Proporcionalidade: os contributos para a função objectivo e para as funções usadas nas restrições são proporcionais aos valores das variáveis de decisão.
- Aditividade: em cada função, o contributo total é dado pela soma dos contributos das diferentes variáveis.
- Divisibilidade: as variáveis de decisão podem tomar qualquer valor, incluindo valores fraccionários.
- Determinismo: os dados são valores conhecidos e constantes.
- O uso de variáveis binárias em Programação Linear Inteira ajuda a modelar sistemas em que a assumpção de um (ou mais) destes pressupostos viola de uma forma flagrante o que ocorre na realidade.

Programação Linear: elementos dos modelos (exemplos)

Variáveis de decisão:

- quantidades a produzir de um artigo
- rotas a percorrer por veículos
- fluxos a enviar pelos arcos duma rede
- actividades (ou projectos) a seleccionar
- instantes para iniciar as actividades

Parâmetros

- recursos disponíveis
- número de unidades pedidas por um cliente
- tempo de processamento de uma actividade

Restrições:

- relação entre a função que exprime a quantidade de um recurso que as actividades consomem e o recurso disponível
- relação entre a função que exprime a quantidade de um bem que as actividade produzem e a procura a satisfazer
- relação que traduz as regras de funcionamento do sistema (e.g., conservação de fluxo, precedência entre operações)

Exemplo 1: plano de produção (análise de capacidades)

- Uma empresa produz 2 tipos de artigos: Artigo 1 e Artigo 2.
- A produção destes artigos requer 3 tipos de recursos:
 - Material
 - Mão de Obra
 - Tempo-Máquina
- Objectivo: determinar o plano de produção diário (solução admissível) que maximiza o lucro total (com o valor óptimo).
- A quantidade disponível de cada recurso, o consumo de recursos por cada artigo produzido e o lucro líquido de cada artigo são:

	Artigo 1	Artigo 2	Quantidade disponível
Material	3 [unid./art.]	2 [unid./art.]	120 [unid./dia]
Tempo-Homem	$1_{\ [h.hom./art.]}$	$2_{[h.hom./art.]}$	80 [h.hom./dia]
Tempo-Máquina	$1_{\ [h.maq./art.]}$	$0_{\text{[h.maq./art.]}}$	30 [h.maq/dia]
Lucro Unitário	12 [U.M./art.]	10 [U.M./art.]	

Exemplo 1: plano de produção - elementos do modelos

Variáveis de decisão (incógnitas associadas às decisões):

- x_1 : quantidade de artigos de tipo 1 a fabricar diariamente [art./dia]
- x2: quantidade de artigos de tipo 2 a fabricar diariamente [art./dia]

Parâmetros (dados do sistema que não podem ser alterados):

- quantidade disponível de cada recurso;
- lucro unitário dos artigos;
- consumo de recursos por cada artigo (coeficientes tecnológicos)

Exemplo 1: plano de produção - restrições e f. objectivo

Restrições:

- função linear $3x_1 + 2x_2$: qtd. de material usada diariamente [unid./dia]
- restrição 3x₁ + 2x₂ ≤ 120: apenas são admissíveis as soluções que não excedam a disponibilidade diária de material [unid./dia]
- as outras restrições são semelhantes.
- Todas as variáveis têm restrições de não-negatividade $(x_1, x_2 \ge 0)$. (*)

Função objectivo:

• função objectivo $12x_1 + 10x_2$: lucro diário [U.M./dia]

(*) o caso em que as variáveis podem ser positivas ou negativas (s/ restrição de sinal) está tratado nos diapositivos

TransformaçõesBásicas.

Exemplo 1: plano de produção - modelo

• Função objectivo:

$$\max z = 12x_1 + 10x_2$$

Restrições:

$$\begin{array}{rcl} 3x_1 + 2x_2 & \leq & 120 \\ 1x_1 + 2x_2 & \leq & 80 \\ 1x_1 & \leq & 30 \\ x_1, x_2 & \geq & 0 \end{array}$$

Modelo:

• ver ficheiro ProblemaDeProducao.lp

Exemplo 1: plano de produção - resolução

• Resolvendo o seguinte modelo com um solver de PL:

```
max: 12x1 +10x2;
material: 3x1 + 2x2 <= 120;
maodobra: 1x1 + 2x2 <= 80;
tmaquina: 1x1 <= 30;
```

obtém-se o seguinte relatório com a solução óptima:

Objective	
Variables	result
	540
x1	20
x2	30

 que é fazer 20 unid./dia de produto 1 e 30 unid./dia de produto 2, com um lucro diário de 540 U.M..

Exemplo 2: transporte de terras

- As obras de terraplanagem representam uma parte significativa dos custos de construção de vias de comunicação.
- Grandes volumes de terra devem ser deslocados de zonas de empréstimo para zonas de depósito para obter os nivelamentos desejados.
- Os custos de transporte de terra são aproximadamente proporcionais à distância percorrida.
- Objectivo: estabelecer o plano de deslocação de terra para minimizar custos de terraplanagem.

Exemplo 2: transporte de terras (cont.)

- Os pontos a, b, ..., j encontram-se distanciados entre si de 10 Km.
- As quantidades associadas aos pontos indicam os volumes de terra a deslocar (em milhares de m^3), sendo as zonas de empréstimo e de depósito assinaladas pelos sinais + e -, respectivamente.
- Pode ainda recorrer-se a uma zona de depósito, situada fora do traçado da via, a uma distância de 30 Km do ponto b.

• Quais as variáveis de decisão? Quais os dados? Quais as restrições?

Exemplo 2: transporte de terras - elementos dos modelos

Variáveis de decisão:

 volume de terra a transportar desde cada zona de empréstimo para cada zona de depósito.

Parâmetros:

- volume de terra a deslocar (ou depositar) de (em) cada zona;
- distâncias:
- custo de transporte por m^3 e por Km.

Restrições:

- a soma dos volumes de terra que saem de uma dada zona de empréstimo para cada zona de depósito perfaz o volume a deslocar;
- a soma dos volumes de terra que chegam a uma dada zona de depósito de cada zona de empréstimo perfaz o volume a depositar;

Função objectivo:

• função de custo de transporte.

Exemplo 2: transporte de terras - esboço de modelo

Modelo:

• ver ficheiro TransporteTerras.lp

Exemplo 3: caminho mais curto entre os vértices s e t

As soluções admissíveis são os caminhos entre os vértices s e t.

 x_{ii} binário, $\forall (i,j) \in A$

Exemplo 3: sudoku 2 × 2

- O sudoku é um puzzle lógico em que se pretende preencher todas as células com algarismos, de forma a que não haja repetição de nenhum algarismo nas linhas, nas colunas ou nos blocos.
- Vamos ver uma versão com uma matriz 4×4, dividida em 4 blocos 2×2, em que os algarismos de algumas das células são dados.

Exemplo:

	1	4	
			2
1			
	3	2	

- Como representar uma decisão? Quais as variáveis de decisão?
- Quais as restrições?
- Qual é a função objectivo?
- Qual o espaço de soluções admissíveis?

Exemplo 3: sudoku 2×2 - elementos do modelo

Variáveis de decisão:

$$x_{ijk} = \begin{cases} 1 & \text{, se a c\'elula } (i,j) \text{ tiver o algarismo } k \\ 0 & \text{, caso contr\'ario} \end{cases}$$

Restrições:

- cada célula apenas pode ter um algarismo;
- numa linha, cada algarismo apenas pode aparecer uma vez;
- numa coluna, cada algarismo apenas pode aparecer uma vez;
- num bloco 2 × 2, cada algarismo apenas pode aparecer uma vez; e
- há células que devem ter o algarismo dado no puzzle.

Função objectivo:

- O objectivo do jogo é obter uma solução admissível,
- sendo todas as soluções igualmente boas.
- A função objectivo pode ser uma função qualquer.

Exemplo 3: sudoku 2 × 2 - solução do modelo

Modelo:

• ver ficheiro sudoku_2x2.1p

Solução do modelo, obtida com o Ipsolve:

- $x_{121} = x_{134} = x_{242} = x_{311} = x_{423} = x_{432} = 1$ (conforme atribuição feita no modelo)
- $x_{112} = x_{143} = x_{213} = x_{224} = x_{231} = x_{322} = x_{333} = x_{344} = x_{414} = x_{441} = 1$
- todas as outras variáveis $x_{ijk} = 0$

Solução do puzzle:

2	1	4	3
3	4	1	2
1	2	3	4
4	3	2	1

Exemplo 4: planeamento de rotas de veículos

Planeamento de rotas de uma frota de veículos

- Dados:
 - um conjunto de veículos com capacidades e
 - um conjunto de clientes com procuras e janelas temporais de visita,
 - ...
- Objectivo: encontrar a solução de custo mínimo, com
 - um conjunto de rotas, todas começando e terminando no depósito,
 - sendo cada cliente visitado por um único veículo.

Quais as variáveis de decisão? Quais os dados? Quais as restrições?

Exemplo 4: planeamento de rotas de veículos - elementos

Há modelos diferentes consoante a escolha das variáveis de decisão.

Variáveis de decisão (um exemplo):

• cada rota (uma sequência de arcos) admissível.

Parâmetros:

- carga para cada cliente; capacidade dos veículos;
- distâncias e tempos de viagem;
- ...

Restrições:

- carga n\u00e3o excede a capacidade do ve\u00edculo;
- cada cliente é visitado por um único veículo na sua janela temporal;
- ...

Função objectivo:

• função de custo de transporte.

Transformações básicas

Transformação de uma inequação do tipo ≤ numa equação

 Qualquer inequação do tipo de menor ou igual pode ser transformada numa equação, introduzindo uma variável adicional de folga com valor não-negativo:

$$\sum_{j=1}^n a_{ij}x_j \leq b_i \Leftrightarrow \sum_{j=1}^n a_{ij}x_j + s_i = b_i, s_i \geq 0.$$

Exemplo

Antes:

Depois:

•
$$2x_1 - 3x_2 + 4x_4 \le 8$$
 $2x_1 - 3x_2 + 4x_4 + s_1 = 8$
 $s_1 \ge 0$

- A quantidade de recurso disponível é 8.
- A função linear $2x_1 3x_2 + 4x_4$ indica a quantidade de recurso usada.
- A variável de folga s_1 indica a quantidade de recurso não usada.

$$s_1 = 8 - 2x_1 + 3x_2 - 4x_4$$

Transformação de uma inequação do tipo ≥ numa equação

 Qualquer inequação do tipo de maior ou igual pode ser transformada numa equação, introduzindo uma variável adicional de excesso com valor não-negativo:

$$\sum_{j=1}^n a_{ij}x_j \geq b_i \Leftrightarrow \sum_{j=1}^n a_{ij}x_j - s_i = b_i, s_i \geq 0.$$

Exemplo

Antes:

Depois:

•
$$1x_1 - 2x_2 + 3x_4 \ge 4$$
 $1x_1 - 2x_2 + 3x_4 - s_1 = 4$
 $s_1 \ge 0$

- A quantidade requerida é 4.
- A função linear $1x_1 2x_2 + 3x_4$ indica a quantidade produzida.
- A variável de excesso s₁ indica o excesso em relação à quantidade requerida.
- $s_1 = 1x_1 2x_2 + 3x_4 4$

Transformação de uma equação em duas inequações

 Qualquer restrição de igualdade pode ser expressa como uma par de inequações do tipo de menor ou igual:

$$\sum_{j=1}^n a_{ij}x_j = b_i \Leftrightarrow \left\{ \begin{array}{ll} \sum_{j=1}^n a_{ij}x_j & \leq & b_i \\ \sum_{j=1}^n a_{ij}x_j & \geq & b_i \end{array} \right. \left\{ \begin{array}{ll} \sum_{j=1}^n a_{ij}x_j & \leq & b_i \\ -\sum_{j=1}^n a_{ij}x_j & \leq & -b_i \end{array} \right.$$

Exemplo

Antes:

Depois:

$$1x_1 - 2x_2 + 3x_4 = 4 1x_1 - 2x_2 + 3x_4 \le 4$$

$$1x_1 - 2x_2 + 3x_4 \le 4$$
$$1x_1 - 2x_2 + 3x_4 \ge 4$$

Transformação de um problema de minimização num problema de maximização - I

 Qualquer problema de minimização pode ser reduzido a um problema de maximização, em que se optimiza a função objectivo simétrica da original:

$$\min z = cx \Leftrightarrow \max z' = -cx$$
.

(cont.)

- Solução óptima x* é a mesma,
- mas o valor da função objectivo da solução óptima é o simétrico $f(x^*) = \min f(x) = -\max -f(x)$

Transformação de variáveis sem restrição de sinal

 Qualquer variável sem restrição de sinal pode ser expressa como a diferença de duas variáveis não-negativas:

$$x_j$$
 sem restrição $\Leftrightarrow x_j = x_j^+ - x_j^-, x_j^+ \ge 0, x_j^- \ge 0.$

Exemplo

- Antes: $2x_1 + 3x_2 \le 20$, x_1 sem restrição, $x_2 \ge 0$
- Fazendo $x_1 = x_1^+ x_1^-$
- Depois: $2x_1^+ 2x_1^- + 3x_2 \le 20$, $x_1^+, x_1^-, x_2 \ge 0$

Transformação de variáveis com limite inferior

 Uma variável com limite inferior pode ser substituída por uma variável com limite inferior igual a 0, por mudança de variável:

Exemplo

- Antes: $2x_1 + 3x_2 \le 20$, $x_1 \ge 8$, $x_2 \ge 0$
- Fazendo $x'_1 = x_1 8 \rightarrow x_1 = x'_1 + 8$
- $2(x_1'+8)+3x_2 \le 20, x_1' \ge 0, x_2 \ge 0$
- Depois: $2x'_1 + 3x_2 \le 4, x'_1 \ge 0, x_2 \ge 0$

Restrições do tipo módulo (caso ≤)

•

$$\left|\sum_{j=1}^n a_{ij}x_j\right| \leq b_i \Leftrightarrow \left\{\begin{array}{ccc} \sum_{j=1}^n a_{ij}x_j & \leq & b_i \\ \sum_{j=1}^n a_{ij}x_j & \geq & -b_i \end{array}\right. \left\{\begin{array}{ccc} \sum_{j=1}^n a_{ij}x_j & \leq & b_i \\ -\sum_{j=1}^n a_{ij}x_j & \leq & b_i \end{array}\right.$$

Exemplo

- Antes: $|2x_1 + 3x_2| \le 20$
- Depois: $\begin{cases} 2x_1 + 3x_2 \le 20 \\ 2x_1 + 3x_2 \ge -20 \end{cases}$
- Trata-se de uma conjunção de restrições.

Restrições do tipo módulo (caso 2)

$$\left|\sum_{j=1}^n a_{ij}x_j\right| \geq b_i \Leftrightarrow \left|\begin{array}{cc} \sum_{j=1}^n a_{ij}x_j & \geq & b_i \\ \sum_{j=1}^n a_{ij}x_j & \leq & -b_i \end{array}\right|$$

- A disjunção de condições não pode ser representada por uma conjunção de restrições lineares, porque
- uma conjunção de restrições lineares define sempre um domínio convexo (ver slides sobre solução gráfica).

Exemplo

•

- $|x_1| \ge 2$
- equivale a: $\begin{vmatrix} x_1 & \leq -2 \\ x_1 & \geq 2 \end{vmatrix}$
- Trata-se de um domínio não-convexo.

Fim

Apêndice

Problema da dieta

Um avicultor pretende determinar a quantidade que deve utilizar de cada alimento de modo a satisfazer as necessidades nutricionais das suas aves. Os nutrientes, o custo de cada alimento e as necessidades mínimas diárias são os apresentados no seguinte quadro.

	alimentos			mínimo
nutriente	milho	trigo	ração	diário
proteínas	4	8	4	10
hidratos de carbono	2	4	4	6
vitaminas	3	2	4	4
custo (U.M.)	0.10	0.06	0.04	

Objectivo: minimizar o custo de alimentação diário das galinhas.

Problema da dieta: elementos do modelo

	alimentos			mínimo
nutriente	milho	trigo	ração	diário
proteínas	4	8	4	10
hidratos de carbono	2	4	4	6
vitaminas	3	2	4	4
custo (U.M.)	0.10	0.06	0.04	

Variáveis de decisão:

- x₁ : quantidade de milho diária.
- x₂: quantidade de trigo diária.
- x₃: quantidade de ração.

Dados:

- b_i: quantidade mínima diária do nutriente i
- c_i : custo do alimento j
- a_{ij}: quantidade de nutriente i existente na unidade de peso do alimento j

Problema da dieta: modelo

$$\begin{aligned} \min z &=& 0.10x_1 & +0.06x_2 & +0.04x_3 \\ & & 4x_1 & +8x_2 & +4x_3 & \geq 10 \\ & & 2x_1 & +4x_2 & +4x_3 & \geq 6 \\ & & 3x_1 & +2x_2 & +4x_3 & \geq 4 \\ & & x_1, x_2, x_3 \geq 0 \end{aligned}$$

Problema de Lotes de Produção (lotsizing)

- Determinar a dimensão dos lotes a fabricar em cada período, dentro de um horizonte de planeamento.
- Em cada período, se o número de unidades disponíveis (i.e., as unidades produzidas no período mais as existentes em stock) for superior à procura nesse período, as unidades remanescentes podem ser armazenadas em stock para venda em períodos subsequentes, segundo o seguinte esquema:

 Objectivo: minimização da soma dos custos de produção e dos custos de armazenagem, satisfazendo a procura em cada período.

Problema de Lotes de Produção: elementos do modelo

Variáveis de decisão:

- x_j: número de unidades produzidas no período j,
- s_j : stock existente após o período j.

Dados:

- d_j : procura existente no período j
- c_j: custo unitário de produção dos artigos no período j
- h_j: custo unitário de posse de inventário no período j
- x_i^{max} : número máximo de unidades produzidas no período j
- s_j^{max} : nível máximo de stock no período j

Problema de Lotes de Produção: modelo

Modelo de Programação Linear

min
$$\sum_{i=1}^{n} c_j x_j + h_j s_j$$
suj. a
$$x_j + s_{j-1} - s_j = d_j , \forall j$$

$$0 \le x_j \le x_j^{max} , \forall j$$

$$0 \le s_j \le s_j^{max} , \forall j$$

Problema de Lotes de Produção: Exemplo I

- Horizonte de planeamento (T): 4 períodos
- Procura em cada período de 2, 3, 4 e 2, respectivamente.
- Capacidade máxima de produção, x_j^{max}: 4 unidades em cada período.
- Nível máximo de stock, s_{max}: 2 unidades.
- Custos unitários de armazenagem, h_j : 1 U.M./ artigo x período.
- Custos de produção: custo variável proporcional ao número de artigos, p_j .
- Valores dos coeficientes de custo de produção:

Problema de Lotes de Produção: Exemplo II (com custos fixos de preparação)

Para construir um modelo para o seguinte caso, é necessário considerar variáveis binárias para incluir o custo de preparação só nos casos devidos.

• Custos de produção incluem um custo de preparação das máquinas, k_j , e um custo variável proporcional ao número de artigos, p_j :

$$c_j(x_j) = \begin{cases} k_j + p_j x_j & \text{, se } x_j > 0 \\ 0 & \text{, se } x_j = 0, \end{cases}$$

para qualquer período j = 1, 2, ..., T.

Valores dos coeficientes de custo de produção:

j	1	2	3	4
p_j	12	10	14	10
$\vec{k_j}$	2	2	1	1

Problema de Corte (cutting stock)

Determinar o modo como um stock de matérias primas deve ser cortado em partes menores de maneira a satisfazer pedidos colocados por clientes.

Objectivo: determinar os padrões de corte de modo a minimizar o número de rolos utilizados.

Problema de Corte: definição de padrões de corte

Dados:

- W: largura dos rolos em stock (em quantidade ilimitada)
- m: número de clientes
- w_i : largura dos rolos pedidos pelo cliente i $(0 < w_i \le W), i = 1, ..., m$
- b_i : número de dos rolos pedidos pelo cliente i, i = 1,..., m

Padrão de corte: possível arranjo de pedidos na largura do rolo:

$$\begin{split} &\sum_{i=1}^m a_{ij} w_i \leq W \\ &a_{ij} \geq 0 \quad \text{e inteiro , } \forall j \in J. \end{split}$$

sendo:

- a_{ij}: número de rolos de largura w_i obtidos a partir do padrão de corte j,
- *J* : o conjunto de padrões de corte possíveis.

Problema de Corte: modelo

Variáveis de decisão:

• x_i : número de rolos a cortar segundo o padrão de corte j.

Cada coluna $A_j = (a_{1j}, ..., a_{ij}, ..., a_{mj})^T$ define um padrão de corte, com elementos a_{ij} conforme foram definidos acima.

A formulação de programação matemática é a seguinte:

$$min \ z = \sum_{j \in J} x_j$$

$$suj. \ a \qquad \sum_{j \in J} a_{ij} x_j \ge b_i, \ i = 1, 2, ..., m$$

$$x_j \ge 0, \ \forall j \in J$$

Pode haver um número exponencial de padrões de corte, mas há técnicas especializadas para ultrapassar essa dificuldade.

Problema de Corte: modelo de minimização de perdas

Para o padrão de corte j, a perda T_j associada é:

$$T_j = W - \sum_{i=1}^m a_{ij} w_i.$$

A formulação de programação matemática de minimização de perdas é a seguinte:

$$min \ z = \sum_{j \in J} T_j x_j$$

$$suj. \ a \qquad \sum_{j \in J} a_{ij} x_j \ge b_i, \ i = 1, 2, ..., m$$

$$x_i \ge 0, \ \forall j \in J$$

Pode haver diferenças na solução óptima dos 2 modelos.

Problema de Corte: exemplo (pequeno)

Rolos de largura 30, e 3 pedidos de larguras de 12, 10 e 6, nas quantidades de 200, 300 e 100, respectivamente.

12	12	12	10	10	10	6
	12	12				6
					6	
		6	10	10	O	6
12	10				-	
6		6			6	6
		Ů		6		Ů
	6	6	10		6	6
		0				U

		pa	adrõe	es de	cort	:e		
larguras	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>X</i> 5	<i>x</i> ₆	<i>X</i> 7	
12	2	1	1					≥ 200
10		1		3	2	1		≥ 300
6	1	1	3		1	3	5	≥ 100
min	1	1	1	1	1	1	1	

Problema de Gestão de Pessoal

- horizonte de planeamento com um conjunto de períodos.
- necessidades de pessoal que variam ao longo do tempo.
- contratos são permitidos por durações pré-determinadas.
- custo de contratação, treino e despedimento de pessoal com contratos a termo certo.

Objectivo

Estabelecimento de uma política de contratações.

Problema de Gestão de Pessoal: elementos do modelo

Discretizar o tempo: Cada variável de decisão (coluna) corresponde a uma acção de contratação permitida que cobre um conjunto de períodos.

 x_{ij} : Número de trabalhadores contratados desde o início do período i até ao fim do período j.

 c_{ij} : custo de contratação, treino e despedimento de um trabalhador com contrato desde o início do período i até ao fim do período j, e ordenados pagos durante esse período.

	<i>X</i> ₁₅	<i>X</i> ₁₃	X ₂₄	X35	<i>x</i> ₁₂	X ₂₃	<i>X</i> 34	X ₂₂
1	1	1			1			
2	1	1	1		1	1		1
3	1	1	1	1		1	1	
4	1		1	1			1	
5	1			1				

≥	6
	10
	14
	9
	8

Problema de Gestão de Pessoal: modelo

 c_{ij} : ordenado é 1 U.M./mês e custo de contratação, treino e despedimento é 1 U.M.

	<i>X</i> ₁₅	<i>x</i> ₁₃	<i>X</i> 24	<i>X</i> 35	<i>x</i> ₁₂	<i>X</i> 23	<i>X</i> 34	<i>X</i> ₂₂
1	1	1			1			
2	1	1	1		1	1		1
3	1	1	1	1		1	1	
4	1		1	1			1	
5	1			1				
Cij	6	4	4	4	3	3	3	2
<i>x</i> *	4	2	1	4	0	3	0	0

Usando um LP solver, pode-se obter a solução óptima x^* o seu custo é 61 unidades. O número de trabalhadores e cada período é igual ao requerido.

Problema de Gestão de Pessoal: solução - I

Variables	result
	61
x15	4
x13	2
x24	1
x35	4
x12	0
x23	3
x34	0
x22	0

Problema de Gestão de Pessoal: solução - II

Solution of staff scheduling problem

VC

Problema de Gestão de Pessoal: notas

Nota:

Se os custos de contratação forem elevados, pode haver períodos em que o número de trabalhadores seja maior do que o requerido (incorrendo um custo de não-utilização, mas economizando custos de contratação).

Casos Particulares

- Planeamento de pessoal em serviços de funcionamento diário permanente (e.g., hospitais). Pode haver blocos de 1's consecutivos que são partidos a meio à meia-noite (entre a última e a primeira linha da matriz).
- Se houver mais de um bloco de 1's consecutivos (e.g., caso de haver intervalo para almoço), o modelo já não tem estrutura em rede.

Problema de Gestão de Pessoal: estrutura com 1's consecutivos

Subtraindo a cada linha a linha que lhe fica por cima, obtém-se:

1	1	1			1				-1					*		=	6
2			1			1		1	1	-1					X		4
3				1	-1		1	-1		1	-1						4
4		-1				-1					1	-1			y		-5
5			-1				-1					1	-1				-1
6	-1			-1									1				6 4 4 -5 -1 -8

Problema de Gestão de Pessoal: estrutura em rede

Problemas de Investimento: enunciado

- Um investidor dispõe actualmente de 10000 U.M. para investir num período de 5 anos, pretendendo reaver o capital e os lucros obtidos no fim desse período.
- O banco paga um juro de 5% ao ano, ou, em alternativa, 12% ao fim de 2 anos para aplicações a 2 anos.
- Além disso, daqui a 1 ano, irão ser oferecidas obrigações que pagarão 19% no fim do quarto ano.
- Objectivo: determinar o plano de aplicação do capital, de modo a maximizar o montante disponível ao fim de 5 anos.