Content

Synthesizing Optimal Parallelism Placement and Reduction Strategies on Hierarchical Systems For Deep Learning

Ningning Xie¹ Tamara Norman² Dominik Grewe² Dimitrios Vytiniotis²

¹University of Cambridge ²DeepMind

Presenter: Shiwei Zhang

Content

Content

- ► Introduction
- Design Overview
- Synthesis Algorithm
- Experiments
- Summary

Introduction

Parallelism and Communication

- ▶ Recent studies combine data parallelism and model parallelism (parameter sharding) to maximize training throughput.
- ▶ How we map parallelism over devices decides the communication overhead.
- Each form of parallelism is referred to as a parallelism axis.

Parallelism and Communication

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size 4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data batch n and parameter shard m.

P^2 : a tool for parallelism placement and placement-aware synthesis of reduction strategies

- Parallelism placement synthesis: mapping parallelism axes to the system hierarchy.
- Reduction strategy synthesis: synthesize a wide variety of reduction strategies to implement reductions using common collective operations.

Design Overview

Parallelism Placement

Objective: Deciding which parts of a partitioned program will execute on which parts of a system.

Challenge: Synthesizing all arbitrary device mappings can be extremely expensive.

Solution: Partition parallelism axes over the system hierarchy to generate topology-aware parallelism placements.

Parallelism Matrix

Figure 2: (a): A system. (b), (c), (d): Possible (non-exhaustive) parallelism placements for (a) under data parallelism of size 4 and 4 parameter shards. For clarity, we show only the 16 GPUs but omit interconnects. Device marker n/m indicates data batch n and parameter shard m.

Reduction Strategy

 P^2 synthesizes topology-aware reduction strategies using common collective operations.

- ▶ (a) is commonly used but it does not utilize the topology of the system.
- \blacktriangleright (b) and (c) are strategies synthesized by P^2 . Their first steps are within S0.
- \triangleright (c) has fewer data to transfer over S1/S2 than (b), but it has more steps.

(a) AllReduce (b) AllReduce-AllReduce (c) Reduce-AllReduce-Broadcast

Formalism of Collective Operations

Synthesizing all sequences of collective operations is not necessary. Some sequences of the operations lead to *semantically invalid states* that can never reach the final desired state.

 P^2 formalize common collective operations using Hoare triples. A Hoare triple $\{\mathcal{G}_1\}\mathcal{C}\{\mathcal{G}_2\}$ means when the precondition $\{\mathcal{G}_1\}$ is met, executing the command \mathcal{C} establishes the postcondition $\{\mathcal{G}_2\}$.

Synthesis Algorithm

Parallelism Placement

The Parallelism placement is defined by the parallelism matrix.

 $\mathbf{H} = \begin{bmatrix} h_0 & \cdots & h_n \end{bmatrix}$ is the system hierarchy (e.g., $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$), $\mathbf{P} = \begin{bmatrix} p_0 & \cdots & p_m \end{bmatrix}$ is the parallelism axes (e.g., $\begin{bmatrix} 4 & 4 \end{bmatrix}$), then a parallelism matrix is

$$\begin{bmatrix} x_{0,0} & x_{0,1} & \dots & x_{0,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,0} & x_{m,1} & \dots & x_{m,n} \end{bmatrix} \prod_{i=0}^{\text{subject to:}} x_{i,j} = h_j, \ j = 0, ..., n \ (1)$$

$$\prod_{j=0}^{n} x_{i,j} = p_i, \ i = 0, ..., m \ (2)$$

Collective Operations Notations and States

Notations We first define the notations.

d s \mathcal{G}	€ :=	$\frac{\mathbb{B}^{k \times k}}{d_i : s_i}$	device device state state context
\mathcal{C}	:= 		est

The state of a device is a $k \times k$ boolean matrix where s[i][j] = 1 means that device j has contributed its original ith chunk to the reduction result.

Content

Collective Operations Semantics

 $\{\mathcal{G}_1\}\mathcal{C}\{\mathcal{G}_2\}\$ (Reduction: from the pre-condition state \mathcal{G}_1 , \mathcal{C} yields to the post-condition state \mathcal{G}_2) before after

$$\begin{array}{c} \operatorname{R-ALLReduce} \\ \forall i j, \ s_i. \operatorname{rows} = s_j. \operatorname{rows} & \forall i j \ k, \ i \neq j \Longrightarrow s_i[k] \circledast s_j[k] & s = \uplus \overline{s_i} \\ \hline \{\overline{d_i : s_i}\} \operatorname{AllReduce} \{\overline{d_i : s}\} \\ \\ \operatorname{R-ReduceScatter} \\ \forall i j, \ s_i. \operatorname{rows} = s_j. \operatorname{rows} & \forall i j \ k, \ i \neq j \Longrightarrow s_i[k] \circledast s_j[k] & s = \uplus \overline{s_i} & s_i' = \operatorname{scatter}(s, \overline{i})[i] \\ \hline \{\overline{d_i : s_i}\} \operatorname{ReduceScatter} \{\overline{d_i : s_i'}\} \\ \hline \\ \operatorname{R-ALLGather} \\ \forall i j, \ i \neq j \Longrightarrow s_i. \operatorname{rows} \otimes s_j. \operatorname{rows} & \forall i j, \ |s_i. \operatorname{rows}| = |s_j. \operatorname{rows}| & s = \uplus \overline{s_i} \\ \hline \{\overline{d_i : s_i}\} \operatorname{AllGather} \{\overline{d_i : s}\} \\ \hline \\ \operatorname{R-Reduce} \\ \forall i j, \ s_i. \operatorname{rows} = s_j. \operatorname{rows} & \forall i j \ k, \ i \neq j \Longrightarrow s_i[k] \circledast s_j[k] & s = \uplus \overline{s_i} \\ \hline \{\overline{d_i : s_i}\} \operatorname{Reduce} \{d_0 : s, \overline{d_i : \{\}}^{i \neq 0}\} \end{array}$$

Reduction Program

A reduction strategy is represented as a program, a list of reduction instructions.

```
\begin{array}{lll} program & \in & [reduction] \\ reduction & \in & slice \times form \times \mathcal{C} \\ slice & := & e \\ form & := & | InsideGroup \mid Parallel(e) \mid Master(e) | \end{array}
```

slice	form	groups(slice, form)
CPU	InsideGroup	$\{A_0,A_1,A_2,A_3\},\{B_0,B_1,B_2,B_3\},$
	Parallel(server)	${C_0, C_1, C_2, C_3}, {D_0, D_1, D_2, D_3}$ ${A_0, B_0}, {A_1, B_1}, {A_2, B_2}, {A_3, B_3}$
		$\{C_0, D_0\}, \{C_1, D_1\}, \{C_2, D_2\}, \{C_3, D_3\}$
	Parallel(rack)	$\{A_0, B_0, C_0, D_0\}, \{A_1, B_1, C_1, D_1\},$
		$\{A_2, B_2, C_2, D_2\}, \{A_3, B_3, C_3, D_3\}$
	Master(rack)	$\{A_0, B_0, C_0, D_0\}$
server	InsideGroup	$\{A_0, A_1, A_2, A_3, B_0, B_1, B_2, B_3\},\$
		$\{C_0, C_1, C_2, C_3, D_0, D_1, D_2, D_3\}$
	Parallel(rack)	${A_0, C_0}, {A_1, C_1}, {A_2, C_2}, {A_3, C_3}$
		$\{B_0, D_0\}, \{B_1, D_1\}, \{B_2, D_2\}, \{B_3, D_3\}$
rack	InsideGroup	$\{A_0, A_1, A_2, A_3, B_0, B_1, B_2, B_3,$
		$C_0, C_1, C_2, C_3, D_0, D_1, D_2, D_3$
		-

Content

Program Synthesis for Reduction Programs

The goal is to find a program \mathcal{L} that

$$\left\{ \overline{d_i : \begin{bmatrix} 0 & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 1 & \dots & 0 \end{bmatrix}} \right\} \mathcal{L} \left\{ \overline{d_i : \begin{bmatrix} 0 & \dots & 1 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 1 & \dots & 0 \end{bmatrix}} \right\}$$

supposing d_i reduces with devices \bar{j} .

 P^2 uses a method called *syntax-guided program synthesis* for this purpose.

Experiments

Experimental Setup

- 2 and 4 nodes on Google Cloud Platform.
- 2 system topologies.

(a) 2 nodes, each with 16 A100 GPUs sharing one NVSwitch and one NIC, and all NICs are connected in a data center

(b) 2 nodes, each with 8 V100 GPUs forming a ring via NVLink and connected via PCIe switches. Each node consists of two CPUs (each owning 4 GPUs) with one NIC to the DCN. A shared NIC connecting the two CPUs is a modeling simplification – in reality cross-domain communication is through shared memory.

The performance of AllReduce differs significantly among parallelism matrices, up to $448.5\times$.

	Parallelism	Parallelism matrix		Reduction on the 0th axis		Reduction on the 1st axis			
	axes			Ring	Tree	Ring	Tree		
4 nc	4 nodes, each with 16 A100								
A1	$[2 \ 32]$	1 2	4 8	0.12	0.17	8.74	9.89		
A2		$\begin{bmatrix} 2 & 1 \end{bmatrix}$	$[2 \ 16]$	37.16	36.94	4.81	3.41		
B1	4 16	1 4	4 4	0.15	0.20	17.70	19.03		
B2	. ,	$\begin{bmatrix} 2 & 2 \end{bmatrix}$	[2 8]]	28.77	19.81	8.39	4.99		
В3		$\lceil 4 \ 1 \rceil$	$[1 \ 16]$	56.13	89.70	0.18	0.22		
C1	8 8	1 8	4 2	0.17	0.21	33.92	41.06		
C2		$\begin{bmatrix} 2 & 4 \end{bmatrix}$	$[2 \ 4]$	16.52	9.18	15.68	9.43		
C3		$[4 \ 2]$	[1 8]]	34.05	41.23	0.17	0.21		
4 no	4 nodes, each with 8 V100								
E1	8 4	1 8	4 1	0.28	0.39	21.74	30.42		
E2		$[2 \ 4]$	$[2 \ 2]$	14.25	15.48	10.98	7.34		
E3		4 2	1 4	14.84	19.90	2.96	0.43		

The pruning techniques are effective for the synthesizer to achieve fast synthesis time.

In the experiments, the program size limit is set to 5 for the synthesizer, which turns out to be sufficient to generate interesting reduction patterns. With this setup, the longest synthesis time is under 2 seconds (for up to 235 programs). Increasing the size limit makes the synthesis slightly slower, but, for most cases, does not generate new programs.

If the reduction axes can be put within one node, then a single step AllReduce inside that node is the most performant reduction due to fast local bandwidth.

Content

Synthesized programs can mitigate the impact of parallelism placement.

	NCCL algo	Parallelism axes	Synthesis time (s)	Programs outperforming AllReduce / total programs	Parallelism matrix	AllReduce (bold if the optimal AllReduce)	Optimal (bold if overall optimal)	Speedup		
	2 nodes, each with 16 A100									
F1	Ring	8 4	0.03	14/47	$[1 \ 8][2 \ 2]]$	0.17	0.17	$1\times$		
F2					$[[2 \ 4][1 \ 4]]$	16.84	9.19	$1.83 \times$		
4 no	4 nodes, each with 16 A100									
G1	Tree	4 16	0.04	10/53	1 4] 4 4]]	0.20	0.17	1.17×		
G2		•			$[[4 \ 1][1 \ 16]]$	89.70	56.13	$1.60 \times$		
H1	Ring	16 2 2	0.97	25/235	$\begin{bmatrix} 1 & 16 & 2 & 1 & 2 & 1 \end{bmatrix}$	4.79	4.63	1.03×		
H2					$[[2 \ 8][2 \ 1][1 \ 2]]$	4.91	3.10	1.58×		
I1	Ring	$[2\ 2\ 16]$	0.93	29/235	$\begin{bmatrix} 2 & 1 & 2 & 1 & 1 & 16 \end{bmatrix}$	4.82	2.99	1.61×		
12					[[1 2][2 1][2 8]]	5.28	4.77	1.11×		
J1	Tree	[64]	1.16	5/47	4 16	5.75	4.74	1.21×		
4 no	4 nodes, each with 8 V100									
K1	Ring	8 2 2	0.24	17/188	2 4 2 1 1 2	4.80	2.35	2.04×		
K2					[[1 8][2 1][2 1]]	4.40	4.40	$1\times$		
L1	Ring	[32]	0.06	11/47	[4 8]]	4.83	3.45	1.4×		

For reduction across nodes, a topology-aware reduction program tends to outperform a single step AllReduce, with speedup on average $1.28\times$, upto $2.04\times$.

Optimal strategies found by P^2

For ResNet-50 model, P^2 found the optimal strategy (ii) that achieves 15% overall training time speedup compared to the baseline (Haiku).

(i) Reduce-AllReduce-Broadcast (ii) ReduceScatter-AllReduce-AllGather

Summary

Conclusion

Strength

- Jointly optimize the parallelism placement and reduction strategy for hierarchical topologies.
- Formalize the collective semantics to automatically search for valid programs.

Limitation

- Only strictly symmetric and hierarchical topologies are considered.
- ▶ The optimal reduction strategy is simple and has already been studied.
- Why not take a step further and also consider the parallelism strategy?

Takeaways

- Operation synthesis
 - Communication synthesis: transform a single collective operation into multiple smaller operations. (P^2 , BlueConnect, SCCL, etc.)
 - Computation synthesis: transform a computation operation into multiple smaller operations. (TASO, DietCode, etc.)
 - Parallelism strategy synthesis: transform a computation operation into a series of communication and computation operations.
- ▶ Define the state of the system and treat operations as directed links (with costs) that connect states.

Thank you!