

Facultad de Ingeniería Eléctrica y Electrónica

BMA15 - PROGRAMACION ORIENTADA A OBJETOS				
PROFESOR	Eric Gustavo Coronel Castillo	FECHA	01/02/2024	
EVALUACION	EXAMEN PARCIAL	SECCION	М	
ESTUDIANTE				

INDICACIONES

- La prueba es individual.
- Crear una carpeta con el siguiente formato: POO_EP_AAAAA, donde AAAAA representa su apellido paterno, esta carpeta será su carpeta de trabajo.
- En su carpeta de trabajo, utilizando Apache NetBeans crear los proyectos PROY1_AAAAA y PROY2_AAAAA correspondientes a los proyectos solicitados, donde AAAAA representa su apellido paterno, estos nombres para los proyectos son requisitos fundamentales.
- Es importante recordarte que debes asegurarte de crear tus proyectos en tu carpeta de trabajo, es tu responsabilidad.
- 10 minutos antes de finalizar el tiempo del examen debes cerrar el IDE y empaquetar su carpeta de trabajo en un archivo RAR o ZIP, es importante recordarte que los proyectos los debiste crear en tu carpeta de trabajo.
- El archivo empaquetado es el que debe subir al aula virtual (<u>https://univirtual.uni.pe</u>) en la sección que le corresponde, es la única forma de entregar la solución del examen, no existen otras formas o medios de entrega.
- Se calificará con nota A0 soluciones parecidas o iguales.
- Los proyectos deben resolverse bajo la programación en capas, el enfoque de servicios y las buenas prácticas de desarrollo de software.

Facultad de Ingeniería Eléctrica y Electrónica

Proyecto 1 (8 Puntos)

Se necesita una aplicación que permita evaluar lo siguiente:

Número perfecto

Evaluar si un número es perfecto. Un número perfecto es aquel que es igual a la suma de sus divisores positivos.

Por ejemplo, el número 28 es un número perfecto ya que sus divisores son: 1, 2, 4, 7 y 14, y la suma de estos números es 28.

Números amigos

Evaluar si dos números son amigos. Dos números enteros positivos se consideran amigos si la suma de los divisores de uno es igual al otro número y viceversa.

Por ejemplo, los números 220 y 284 son amigos. Los divisores del número 220 son: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 y 110, y suman 284. Los divisores de 284 son: 1, 2, 4, 71 y 142, que suman 220.

Serie

Evaluar la siguiente serie:

$$S = \sum_{i=0}^{n} \frac{(-1)^{i}}{2i+1} x^{2i+1} = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \dots$$

Se solicita:

- La clase de servicios que implemente los requerimientos solicitados.
- La clase o clases de prueba necesarios para probar los servicios.
- Una interface de usuario amigable.

Facultad de Ingeniería Eléctrica y Electrónica

Proyecto 2 (12 Puntos)

Se necesita una aplicación que permita analizar dos arreglos de números enteros, para lo cual se ha propuesto la siguiente clase de servicios:

VectorService

- vector3 : int[]
- vector5 : int[]

+ VectorService(int n)
+ getVector3() : int[]
+ getVector5() : int[]
+ vectorComun() : int[]
+ vectorUnion() : int[]

Donde:

vector3 : Se trata de una variable donde se quardan los datos

de 1 arreglo de números múltiplos de 3 que el constructor debe generar de manera aleatoria.

vector5 : Se trata de una variable donde se guardan los datos

de un arreglo de números múltiplos de 5 que el constructor debe generar de manera aleatoria.

VectorService : Se trata del constructor, recibe el valor de "n" que

representa el tamaño de los vectores. Debe generar los 2 vectores con números aleatorios que deben estar en el rango [10,50]. Recuerda, que los números generados deben ser múltiplos de 3 y 5

vanactivamente

respectivamente.

getVector3 : Este método retorna el vector3.

getVector5 : Este método retorna el vector5.

vectorNoComun : Este método retorna un vector con los elementos no

comunes de ambos vectores, sin considerar los

duplicados.

vectorUnion : Este método retorna un vector con todos los

elementos de ambos vectores, sin considerar los

duplicados.

Facultad de Ingeniería Eléctrica y Electrónica

Debe considerar lo siguiente:

- Las firmas de los métodos solicitados en la clase VectorService no pueden ser modificados.
- Si usted necesita o considera necesario crear otros métodos privados puede hacerlo, tal vez con el criterio de no repetir código u otra buena práctica.
- Si conoce alguna librería dentro de Java (No externa) para el tratamiento de arreglos puede utilizarla.

Por ejemplo, para un valor de **n=10**, una posible respuesta podría ser:

Vector 3: [27,15,24,18,21,48,24,30,24,30]

Vector 5: [25,30,45,50,40,35,15,40,10,50]

Vector NO Común: [27,24,18,21,48,25,45,50,40,35,10]

Vector Unión: [27,15,24,18,21,48,30,25,45,50,40,35,10]

Se solicita:

- La clase **VectorService** totalmente implementada.
- Una clase de prueba, debe verificar el funcionamiento completo de la clase VectorService.
- Una interface de usuario amigable.

CRITERIOS DE EVALUACIÓN

ITEM	PUNTAJE MAXIMO
Proyecto 1 Capa service: 4 puntos Prueba de servicios: 2 Puntos Capa view: 2 Puntos	8
Proyecto 2 Capa service: 6 puntos Prueba de servicios: 3 Puntos Capa view: 3 Puntos	12
PUNTAJE TOTAL MÁXIMO	20