

Sujet d'examen – Intégration et applications

Consignes.

- Documents autorisés : 2 feuilles A4 recto-verso manuscrites ;
- Pour qu'une réponse soit valide, elle doit s'appuyer sur des théorèmes du cours;
- Les parties 1 (exercices 1 et 2) et 2 (exercices 3 et 4) sont à rendre sur des **copies séparées**.

Partie 1 (Cette partie est à rendre sur une copie séparée).

▷ Exercice 1 (Principe d'incertitude d'Heisenberg - 8 points).

Remarque. Dans cet exercice, les intégrales considérées sont des intégrales de Lebesgue par rapport à la mesure de Lebesgue.

L'objectif de cet exercice est de démontrer une formule reliant la localisation temporelle d'un signal à sa localisation fréquentielle. Dans un autre contexte, cette formule correspond au principe d'incertitude d'Heisenberg, qui exprime qu'on ne peut pas déterminer de façon (très) précise à la fois la position et la vitesse d'une particule.

Plus précisément, soit x une fonction de \mathbb{R} dans \mathbb{C} continûment dérivable, telle que x, x', et $t \mapsto tx(t)$ soient dans $L^2(\mathbb{R})$. On pose

$$\sigma_x^2 = \int_{\mathbb{R}} t^2 |x(t)|^2 dt$$

$$\sigma_{\widehat{x}}^2 = \int_{\mathbb{R}} f^2 |\widehat{x}(f)|^2 df$$

 σ_x^2 et $\sigma_{\widehat{x}}^2$ sont appelées respectivement dispersion d'énergie de x en temps et dispersion d'énergie en fréquence. On va alors montrer que

$$\sigma_x \sigma_{\widehat{x}} \ge \frac{E}{4\pi}$$

où $E=\int_{\mathbb{R}}|x(t)|^2dt$ est l'énergie de x. On admettra pour cela les deux résultats suivants :

- a) $\lim_{|t|\to+\infty} t|x(t)|^2=0$
- b) $\widehat{x'}(f) = 2i\pi f \widehat{x}(f)$ (noter qu'on considère des fonctions de $L^2(\mathbb{R})$ et non de $L^1(\mathbb{R})$)
- 1. Exprimer $\sigma_{\widehat{x}}^2$ en fonction d'une intégrale sur x' (on justifiera le calcul).
- 2. D'autre part, en utilisant le fait que $(x\overline{x})'=x'\overline{x}+x\overline{x}'$ ainsi que l'inégalité de Cauchy-Schwarz, montrer que

$$\left| \int_{\mathbb{R}} t \left(|x(t)|^2 \right)' dt \right| \le 4\pi \sigma_x \sigma_{\widehat{x}}$$

Rappel de l'inégalité de Cauchy-Schwarz : si x et y sont deux fonctions de $L^2(\mathbb{R})$, alors

$$\left| \int_{\mathbb{R}} x(t) \overline{y(t)} dt \right| \le \left(\int_{\mathbb{R}} |x(t)|^2 dt \right)^{1/2} \left(\int_{\mathbb{R}} |y(t)|^2 dt \right)^{1/2}$$

- 3. Calculer alors $\int_{\mathbb{R}} t \left(|x(t)|^2\right)' dt$ en utilisant le résultat a) ci-dessus, et conclure.
- \triangleright **Exercice 2** (Distributions 4 points). Soit φ une fonction de $\mathcal{D}(\mathbb{R})$ et T une distribution de $\mathcal{D}'(\mathbb{R})$. On considère les deux énoncés suivants :
 - a) $\langle T, \varphi \rangle = 0$
 - **b)** $\varphi T = 0 \text{ dans } \mathcal{D}'(\mathbb{R}).$

On veut montrer que ces deux énoncés ne sont pas équivalents, plus précisément que b) implique a), mais que la réciproque est fausse.

Pour montrer que a) n'implique pas b):

Soient $T=\delta'$ et φ une fonction identiquement égale à 1 au voisinage de 0.

- 1. Vérifier que $\langle T, \varphi \rangle = 0$.
- 2. Soit ψ une fonction de $\mathcal{D}(\mathbb{R})$ telle que $\psi'(0) \neq 0$. Montrer alors que $\langle \varphi T, \psi \rangle \neq 0$.

Pour montrer que b) implique a):

Soient $\varphi \in \mathcal{D}(\mathbb{R})$ et $T \in \mathcal{D}'(\mathbb{R})$ telles que $\varphi T = 0$ dans $\mathcal{D}'(\mathbb{R})$. Soit $\psi \in \mathcal{D}(\mathbb{R})$ telle que ψ soit identiquement égale à 1 sur le support de φ . En calculant $\langle \varphi T, \psi \rangle$, montrer que $\langle T, \varphi \rangle = 0$.

Partie 2 (Cette partie est à rendre sur une copie séparée).

 \triangleright Exercice 3 (7 points). On définit pour tout $n \in \mathbb{N}^*$:

$$f_n : \mathbb{R}_+ \longrightarrow \mathbb{R}$$

 $x \longmapsto f_n(x) = |\sin(x)|^{\frac{1}{n}} x e^{-x}.$

- **3.1.** On pose $A := \{x \in \mathbb{R}_+ \mid \exists n \in \mathbb{N}^* \text{ t.q. } f_n(x) = 0\}.$
 - a) Déterminer A.
 - b) Justifier $\lambda(A) = 0$ (λ étant la mesure de Lebesgue).

3.2.

- a) Soit $b \in [0,1]$. On pose $\varphi(y) := b^y = e^{y \ln b}$. Montrer que φ est décroissante sur \mathbb{R}_+ .
- b) Montrer que la suite $(f_n)_{\mathbb{N}^*}$ est croissante et converge simplement presque partout vers une fonction f (vous donnerez la fonction f et l'ensemble sur lequel la convergence a lieu).

3.3.

- a) En déduire que $\lim_{n\to+\infty} \int_{\mathbb{R}_+} f_n d\lambda = \int_{\mathbb{R}_+} f d\lambda$ (indiquer pourquoi les fonctions f_n et la fonction f sont mesurables).
- b) Calculer $\int_{\mathbb{R}_+} f \, d\lambda$ en utilisant le lien entre intégrales de Riemann et de Lebesgue (vous justifierez le passage d'une intégrale à l'autre).
- Exercice 4 (9 points). Les questions sont indépendantes les unes des autres.
 - **4.1.** On note pour $A \subset \mathbb{R}$, son symétrique $-A = \{-x \mid x \in A\}$. Montrer que la famille $A = \{A \subset \mathbb{R} \mid A = -A\}$ est une tribu.
 - **4.2.** Soit m une mesure finie sur $\mathcal{B}([0,1])$. Soit $f:[0,1]\to\mathbb{R}$ une fonction **continue**. Montrer que $f\in\mathcal{L}^1([0,1],\mathcal{B}([0,1]),m)$.
 - **4.3.** Soit δ_a la mesure de Dirac en $a \in \mathbb{R}$, définie sur $\mathcal{B}(\mathbb{R})$. Soit f mesurable de $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et positive. Calculer (en justifiant) $\int_{\mathbb{R}} f \, d\delta_a$.
 - **4.4.** Soit $f: \mathbb{R} \to \mathbb{R}$ intégrable pour la mesure de Lebesgue et $g: \mathbb{R} \to \mathbb{R}$ bornée et continue. On définit $\varphi(u, x) := g(u x)f(x)$, la convolée de f et g est alors donnée par

$$u \mapsto (f \star g)(u) := \int_{\mathbb{R}} \phi(u, x) \, d\lambda(x).$$

Monter à l'aide du théorème de continuité globale, que $f \star g$ est continue sur \mathbb{R} .