MAT4MDS — Practice 6

DIFFERENTIATION

function	f(x)	x^r $(r \neq 0)$	constant	e ^x	$\log_e(x)$
derivative	f'(x)	rx^{r-1}	0	e^x	$\frac{1}{x}$

Question 1. Using basic derivatives from the table above, and the differentiation rules of Reading 5.2, differentiate the following:

- (a) $f(x) = x^2 2x + 3$.
- (b) $g(x) = (x^2 + 1)^3$.
- (c) $f(x) = x^2 e^x$.
- (d) $y = x^3 \log_e(x), x \in (0, \infty)$.
- (e) $y = \frac{2x-3}{3x+1}$.
- (f) $f(x) = (3x + 2) \ln(3x + 2), x \in \left(-\frac{2}{3}, \infty\right)$.
- (g) $y = \frac{x^2 + \sqrt{x}}{x}$, $x \in (0, \infty)$. (Think about this!)

Question 2.

- (a) Beginning from the definition $f(f^{-1}(x)) = x$, and using the chain rule, find an expression for the derivative of f^{-1} in terms of the derivative of f.
- (b) Using the result of (a), find the derivative of $g(x) = \log_e(x)$, using the fact that $(e^x)' = e^x$. (Note: do not use the derivative for log given in the table above; you are finding this result.)

Question 3. In a video this week, the extended product rule was derived. Using a similar method, find the extended chain rule. That is, find a general expression for the derivative of: y = f(g(h(x))).

The Second Derivative test

Suppose that $f''(x_0) > 0$,

- (i) If $f''(x_0) > 0$, then x_0 is a local minimum point.
- (ii) If $f''(x_0) < 0$, then x_0 is a local maximum point.
- (iii) If $f''(x_0) = 0$, the test is inconclusive. (This point may be a local maximum, a local minimum or a point of inflection.)

Question 4.

The classic "bell shape" of the Gaussian probability density function f(x) comes from its changing curvature (i.e. its varying slope).

- (a) On the diagram, using your judgement, mark where you think the curve changes from being like part of a bowl to being like a hill, and where it changes back to being like part of a bowl. (These are the two types of curvature: concave up (bowl-like) and concave down (hill-like).)
- (b) Find the second derivative f''(x) for the Gaussian probability density function

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

using the chain rule to find f'(x), and then product rule as well to find f''(x).

- (c) Where is the stationary point of this function? What kind of point is it?
- (d) Curvature changes at points where f''(x) = 0. Find the two values of x such that f''(x) = 0.
- (e) The horizontal axis in the diagram above has spacing $\frac{\sigma}{2}$. Mark the three x-values found in (c) and (d) on this axis.

Question 5.

- (i) For each function in Question 1, find the second derivative.
- (ii) Which functions from Question 1 change curvature on their domain? Which functions do not change curvature?
- (iii) Which functions from Question 1 have stationary points, and for what values of x do these occur?
- (iv) Classify the stationary points found in (iii).
- (v) Use this information to make a sketch of each function.

