		AND	OR	NOT	
X	y	$a = x \wedge y = x \cdot y$	$a = x \lor y = x + y$	$a = \neg x = \overline{x}$	
		$\begin{bmatrix} e_1 & \dots & \\ e_2 & \dots & \end{bmatrix}$ a	$\begin{bmatrix} e_1 & \dots \\ e_2 & \dots \end{bmatrix} \ge 1 \begin{bmatrix} \dots & a \end{bmatrix}$	e 1 a	
0	0	0	0	1	
0	1	0	1	1	
1	0	0	1	0	
1	1	1	1	0	

		NAND	NOR	XOR
X	y	$a = \neg(x \land y) = \overline{x \cdot y}$	$a = \neg(x \lor y) = \overline{x + y}$	a = x⊕y
		e ₁ — & — a	$\begin{array}{c} e_1 \\ e_2 \end{array} \ge 1 \longrightarrow a$	$\begin{bmatrix} e_1 & \cdots & \\ e_2 & \cdots & \end{bmatrix} = 1 $ a
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0

Aufgabe 1: Von einer Schaltung zur Wahrheitstabelle

1 Punkte

Betrachten Sie die folgende Schaltung:

$$A = \times \Lambda y = \times y$$

$$\times = e_{\Lambda} \vee e_{Z} = e_{\Lambda} + e_{Z}$$

$$Y = e_{\Lambda} \vee e_{Z} = e_{\Lambda} e_{Z}$$

Stellen Sie eine Wahrheitstabelle auf: Bestimmen Sie die Werte von a bei allen möglichen Werten von e_1 und e_2 . Welche aus der Vorlesung bekannte Funktion bzw. welches logische Gatter wird von dieser Schaltung implementiert?

<u>en</u> e	Dz .	×	y	a	_			
0	0	0	1	O				
0	1	1	1	1				
1	O	1	1	1				
1	1	1	0	O		\sim	XOR	Schaltur
							,	`

Betrachten Sie die folgende Wahrheitstabelle und vervollständigen Sie dazu diese Schaltung:

Bestimmen Sie die Funktionen und Gatter, die die Werte von a bei allen möglichen Belegungen von e_1 , e_2 und e_3 erzeugen.

Die Aufgabe kann entweder wie im Tutorium gelöst werden, oder Sie dürfen auch das schon vorgefertigte Schaltbild - welches unten aufgeführt ist - benutzen. (**Hinweis:** Beachten Sie die bereits vorhandenen Negationen am

Eingang der zu wählenden Gatter.)

1

1

0

0

Betrachten Sie die folgende Schaltung:

Stellen Sie eine Wahrheitstabelle auf: Bestimmen Sie die Werte von a bei allen möglichen Werten von e_1 und e_2 . Beachte, dass am Ausgang a invertiert ist. Tragen Sie zudem die jeweiligen Zwischensignale ebenfalls in die Wahrheitstabelle ein. Welche aus der Vorlesung bekannte Funktion bzw. welches logische Gatter wird von dieser Schaltung implementiert?

Aufgabe 4: Multiplexer in C++

3 Punkte

Ein Multiplexer (kurz MUX) ist ein ein elektronisches Schaltelement, was aus mehreren Eingangssignalen eines selektiert und als Ausgangssignal wählt. Die Selektion erfolgt anhand zusätzlicher Eingangssignale, den sogenannten Steuersignalen.

Multiplexer können mit AND-, OR-Gattern und Invertern realisiert werden.

Der einfachste Multiplexer hat als Eingangssignale zwei Datensignale (d_0 und d_1) und ein Steuersignal. Ist das Steuersignal (s) auf 0 gesetzt, soll das erste Datensignal als Ausgangssignal (a) gewählt werden. Ist das Steuersignal dagegen 1 gesetzt, so wird das zweite Datensignal als Ausgangssignal gewählt.

A. Vervollständigen Sie die vorgegebene Wahrheitstabelle, damit sie das Verhalten eines Multiplexers abbildet.

ی	do	di	a
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Aufgabe 11 (7 Punkte) Schaltungen & Boolesche Ausdrücke (Rechneraufbau).

1. (3 Punkte) Beschriften Sie die Ein- und Ausgänge der nachfolgenden Schaltung, so dass die Tabelle erfüllt ist.

x_0	x_1	x_2	y_0	y_1
0	0	0	0	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	0	0

$$y_1 = x_0 \overline{x}_1 x_2 + x_0 \overline{x}_1 \overline{x}_2$$

2. (4 Punkte) Überprüfen Sie mittels einer Wertetabelle ob der gegebene boolesche Ausdruck zu y_0 oder y_1 äquivalent ist. $(x_2 \oplus x_0) (\overline{x}_0 \overline{x}_1 + x_0 x_1) \qquad \qquad \textcircled{+} \rightarrow \times \bigcirc \nearrow$

$$(x_2 \oplus x_0) (\overline{x}_0 \overline{x}_1 + x_0 x_1)$$

				_				
x_0	x_1	x_2	XzfXo	X0 X1	XoX	XoX+XoX1	$(X_2 \oplus X_0)$	(X0X1+X0X1)
0	0	0	0	1	0	1	0	
0	0	1	1	1	0	1	1	
0	1	0	0	0	0	0	0	_
0	1	1	1	0	0	0	0	
1	0	0	1	0	0	0	0	
1	0	1	0	0	0	0	0	
1	1	0	1	0	1	1	1	•
1	1	1	0	0	1	1	0	•
								•
							_	> equivale
								fo u

Online Klausur

Frage 28 Unvollständig Erreichbare Punkte: 2,00 markieren

Schaltungsentwurf (2 Punkte)

Betrachten Sie die folgende Schaltung:

Welche Werte haben t_1 und t_2 für x = 1, y = 1, z = 0?

 $t_1 = 0, t_2 = 1$

tn= x+y+3 = 1+0+0=1

 $t_1 = 1, t_2 = 0$

tz= x+ = 0+0=0

 $t_1 = 0, t_2 = 0$

 $t_1 = 1, t_2 = 1$

Frage 31 Unvollständig Erreichbare Punkte: 2,00

ℙ Frage markieren

Schaltungsentwurf (2 Punkte)

Betrachten Sie die folgende Schaltung:

Welche Werte haben a und b für x = 0, y = 1, z = 0?

a = 1, b = 1

ti=x.y.z=0

a = 1, b = 0

tz= x.y=1

a = 0, b = 0 a = 0, b = 1

b=t1 + t2 = 1

Frage **33**Unvollständig
Erreichbare
Punkte: 4,00

Frage
markieren

Betrachten Sie die folgende Schaltung und die dazugehörige Wertetabelle. Fügen Sie die passenden Gatter in die Schaltung ein.

PRÜFEN