5 Конфигурирование H-Flasher

Эта глава рассказывает о конфигурировании и использовании H-Flasher. В конце главы приведены два примера, используемые для справки.

5.1 Процесс работы H-Flasher

Процесс работы H-Flasher очень прост. Как показано на рис. 5-1, процесс работы состоит из четырёх пунктов: исполнение скриптов инициализации, загрузка флеш драйвера, проверка флеш ID и работа во флеш. Все эти пункты исполняются последовательно. Если один из пунктов не проходит, операция сразу же останавливается.

Fig 5-1 Workflow of H-Flasher

5.1.1 Исполнение скрипта инициализации

Если задан скрипт инициализации, H-Flasher сначала исполняет его для инициализации подключенного устройства. Если не задан скрипт инициализации или скрипты инициализации не нужны, H-Flasher пропускает этот пункт. Если что-нибудь не проходит во время инициализации, H-Flasher сразу же останавливает процесс и извещает об этом пользователя.

5.1.2 Загрузка флеш драйвера

После успешного завершения инициализации, H-Flasher ищет соответствующий флеш драйвер, подходящий для выбранной флеш и задаёт ширину в битах. Затем, H-Flasher загружает флеш драйвер в SRAM/SDRAM, основываясь на указанном стартовом адресе RAM. Если загрузка успешна, переходит к следующему пункту. Иначе, выход ошибки и предупреждение пользователя сообщением: Can't download driver to specified address.

5.1.3 Проверка ID флеш

После загрузки драйвера, H-Flasher проверяет ID флеш. Смысл в том, чтобы убедиться в правильности выбранной флеш и проверить, что флеш доступна по заданному адресу.

5.1.4 Чтение/стирание/программирование/верификация/проверка на стирание

После успешного завершения предыдущих трёх пунктов, H-Flasher может требуемую операцию подключенным над Поддерживаемые операции включаю в себя: чтение, стирание, программирование, верификацию, проверку на стирание (пустоту флеш).

5.2 Мастер программ H-Flasher

H-Flasher поставляется с мастером программ для упрощения конфигурирования. Пользователь может следовать мастеру для выполнения конфигурации.

5.2.1 Секция флеш

В первом пункте пользователь может выбрать из списка подключаемую флеш. Пользователю нужно проверить информацию и проследить за корректностью выбора. Корректность выбора очень важна, поскольку разные флеш чипы задают разный набор команд.

5.2.2 Конфигурация

В этом пункте пользователю необходимо предоставить информацию о подключаемой системе, включая ширину флеш в битах, стартовый адрес флеш, стартовый адрес RAM, XTAL и TCK.

Ширина в битах и количество чипов

Некоторые внешние флеш чипы могут работать с различной шириной в битах, например, 8, 16 и 32 бита. Обычно драйверы для различной ширины также различаются. Отсюда, пользователю необходимо задать ширину в битах для этого типа чипов. Для чипов, поддерживающих только одну ширину в битах, используется только значение по умолчанию и пользователь не может его изменить. В некоторых проектах используются несколько чипов. В этом случае, пользователю необходимо задать правильное количество чипов.

Стартовый адрес флеш

Для работы с подключенной флеш, H-Flasher необходимо знать её стартовый адрес. Т.о., пользователю необходимо задать стартовый адрес флеш. Для H-Flasher правильное адресное пространство начинается с (стартового адреса флеш) до (стартового адреса флеш + размер – 1). Любой адрес, выходящий за этот диапазон считается неверным. Главное, флеш может быть доступна с адреса 0х0 без инициализации. Но некоторые системы поддерживают переадресацию и могут разместить флеш по другим адресам. В этом случае, пользователю нужно проследить, чтобы заданный стартовый адрес флеш согласовывался с предлагаемыми скриптами инициализации. Одним словом, предоставьте нужные скрипты инициализации и проследите за тем, чтобы H-Flasher имел доступ к флеш по заданному адресу.

Стартовый адрес RAM

Пользователю нужно разработать пространство в RAM, которое должно быть более 4 Кб, поскольку H-Flasher необходимо 4 Кб. Пространство RAM используется драйвером. Правильное адресное пространство с (стартового адреса RAM) по (стартовый адрес RAM + 4Кб – 1). H-Flasher загружает флеш драйвер в этом месте. Флеш драйвер может быть загружен в SRAM и SDRAM. Если подключенная система имеет on-chip SRAM, он вынуждает использовать on-chip SRAM вместо внешней SDRAM. Потому что доступ к SRAM много быстрее, чем к SDRAM. Предоставьте необходимые скрипты инициализации для инициализации системы памяти и проследите за тем, чтобы разработанное пространство памяти было доступно.

XTAL

Для некоторых чипов, H-Flasher необходимо знать частоту внешнего кварцевого генератора. H-Flasher использует эту частоту для генерирования системного тактового сигнала. Когда задан флеш чип, вход XTAL может быть запрещён или разрешён соответственно. Когда он разрешён, задайте XTAL, иначе проигнорируйте его.

INIT TCK & PGM TCK

INIT ТСК задаёт скорость ТСК, используемую на стадии инициализации, а PGM ТСК задаёт скорость ТСК, используемую на стадии программирования. Обычно, поддерживает более высокую скорость ТСК после соответствующей инициализации. Поэтому пользователь может задать медленную скорость ТСК для успешного выполнения инициализации и высокую скорость ТСК для ускорения программирования. Внимание, INIT ТСК и PGM ТСК активны только в USB версии Н-JTAG эмулятора.

5.2.3 Скрипт инициализации

В этом пункте пользователю необходимо предоставить скрипты инициализации для инициализации подключенной системы. Пользователь может редактировать скрипты в редакторе, поставляемым с H-Flasher. За дополнительной информацией обратитесь к главе 6.

Для on-chip флеш не требуется скриптов инициализации, поскольку драйвер уже содержит его. Для внешней флеш, скрипты инициализации необходимы. Назначение скриптов инициализации в конфигурировании системного тактового сигнала и системы памяти. Последнее более важное, поскольку корректная инициализация системы памяти — это необходимое условие. Иначе H-Flasher не будет иметь доступ к флеш и SDRAM.

Если H-Flasher не может загрузить драйвер в RAM, он предупреждает об этом сообщением об ошибке: Can't download driver to specified address. В большинстве случаев, это происходит из-за отсутствия скрипта инициализации или из-за некорректности скрипта инициализации. Чтобы предоставить правильные скрипты, пользователь должен знать подключенную систему. Мы рекомендуем обратиться к технической документации, особенно к разделу о конфигурации памяти.

Совет: Когда используется USB H-JTAG эмулятор, пользователь может конфигурировать системный тактовый сигнал через скрипты инициализации, чтобы добиться лучших характеристик.

5.2.4 Программирование

В этом пункте, пользователь выполняет операции во флеш. Поддерживаемые операции включают: проверку флеш и информации об устройстве, программирование флеш, верификация флеш, стирание флеш, проверка на стирание (пустоту флеш).

Reset

Операция сброса используется для выполнения сброса подключенной системы.

Перевод: Егоров А.В., 2010 г.

Check

Операция проверки читает ID флеш и другую основную информацию. Пользователь может использовать эту информацию для тестирования конфигурации на корректность.

UnProtect

Эта операция используется для снятия защиты с защищённых флеш чипов. Когда выбранная флеш не поддерживает эту операцию, кнопка автоматически запрещается. В настоящий момент поддерживается серия STM32F.

Program

H-Flasher предлагает три типа программирования для различных сценариев: автоматическую загрузку во флеш, формат Intel HEX и обыкновенный бинарный формат. Для программирования во флеш, необходимы данные для записи и адрес назначения. Различия в этих трёх типах в источнике информации.

A - Auto Flash Download

Для автоматической загрузки во флеш не требуется исходный файл и адрес назначения. Вся информация исходит от H-Jtag.

B - Intel HEX Format

Файл HEX содержит информацию о данных/программе и адресе. Однако пользователю необходимо лишь указать исходный файл формата Intel HEX. H-Flasher автоматически извлекает адрес из HEX файла и использует его в качестве адреса назначения.

C - Plain Binary Format

Обыкновенный бинарный файл содержит только данные/программу. Для обыкновенного бинарного файла пользователь должен задать исходный файл и адрес назначения.

Verify

Эта операция используется для верификации программирования путём чтения содержимого подключенной флеш и сравнения его с исходным файлом.

Erase & Check Blank

Операции стирания и проверки на стёртость используются для стирания флеш и проверки её опустошения. Для обеих операций пользователь должен задать диапазон, использования окна списка.

Read

Операция чтения предлагает дамп содержимого памяти по заданному адресу. Для чтения содержимого памяти, задайте стартовый адрес и размер в байтах (для Nor и On-Chip флеш) или стартовый сектор, стартовую страницу, конечный сектор и конечную страницу для Nand флеш.

5.2.5 Программные опции

H-Flasher предлагает некоторые полезные опции, например, сброс устройства после программирования, дополнительную верификацию и шифрование. Пользователь может выбрать эти опции по потребностям.

RESET

Когда разрешена, H-Flasher сбросит устройства после программирования.

VERIFICATION

Когда разрешена, H-Flasher прочитает данные из флеш и сравнит их с исходным файлом через секунду, после завершения программирования.

SKIP ID CHECK

Когда разрешена, H-Flasher пропустит операцию проверки ID флеш.

ERASE CHIP

Когда разрешена, H-Flasher сотрёт весь флеш чип, содержащий выбранный сектор, перед программированием флеш.

SMART MODE

Когда разрешена, H-Flasher делает резервное копирование содержимого флеш перед программированием и восстанавливает его во время программирования. Эта опция предохраняет от изменений данные, которые не покрываются исходным файлом.

NXP LPC1700/2000

Эта опция определяет, когда H-Flasher настраивает контрольную сумму таблицы векторов перед программированием.

ATMEL AT91SAM

Когда разрешена, H-Flasher установит защитный бит для разрешения защиты флеш по окончании программирования.

ST STM32F

Когда разрешена, H-Flasher установит байт опции RDP для разрешения защиты флеш по окончании программирования.

NAND FLASH PGM OPTIONS

Для программирования NAND флеш, пользователю необходимо предоставить следующую информацию для H-Flasher:

Programming Mode:

Задаёт режим программирования NAND флеш, пропуск плохих блоков или перемещение плохих блоков.

Scan of Bad Blocks:

Задаёт способ сканирования плохих блоков в режиме перемещения, стирает весь чип или стирает задействованные блоки, резервирует область под перемещение и резервирует блоки под перемещение.

Reserved Area for User Table:

Задаёт резервируемую область под плохие блоки, таблицу перемещения или пользовательские данные.

H-Flasher поддерживает два режима программирования NAND: режим пропуска и режим замещения. В режиме пропуска, H-Flasher будет пропускать плохие блоки и перескакивать на следующие хорошие. В режиме перемещения, H-Flasher будет замещать плохие блоки хорошими в зарезервированной области. Когда выбран режим пропуска, H-Flasher просто пропускает плохой блок и программирует данные непрерывно в следующий хороший блок. Когда выбран режим замещения, H-Flasher сначала сканирует флеш, чтобы собрать информацию о плохих блоках путём стирания всего чипа или путём стирания задействованных блоков, резервирует область под замещение и резервирует область под пользовательские таблицы. Во время программирования, если встречен плохой блок, H-Flasher будет программировать данные в первый хороший блок из резервированной области под замещение. Одновременно, H-Flasher будет записывать информацию о замещении. Когда программирование завершится, H-Flasher передаст информацию о таблице плохих блоков и таблице замещения драйверу NAND флеш. В драйвере флеш, функция nand info table() примет всю информацию, посланную H-Flasher. Пользователь может модифицировать эту функцию, чтобы создать таблицу плохих блоков и таблицу замещения в зарезервированной области, как ему нужно.

Примечание 1: В режиме пропуска, H-Flasher не посылает информацию о таблице плохих блоков и таблице замещения драйверу NAND флеш по завершении программирования.

Примечание 2: В зависимости от характеристик NAND флеш, становится невозможным обеспечить общим драйвером флеш все аппаратные платформы. Когда вам необходима таблица плохих блоков или таблица замещения, вы можете модифицировать функцию nand_info_table(), опираясь на собственные потребности.

Примечание 3: Некоторые опции работают только в обычном режиме. Для автоматической загрузки во флеш, H-Flasher игнорирует все эти опции.

PRODUCTION MODE

Когда эта опция разрешена, H-Flasher вводит код продукции. В режиме продукция, программа работает в упрощённом виде, чтобы увеличить эффективность. После ввода кода продукции, H-Flasher продолжает обнаруживать подключенное устройство. Если устройство обнаружено, H-Flasher автоматически запускает процесс программирования. Когда программирование завершено, пользователь извещается об отключении устройства и подключает следующее. Т.о. пользователю нужно лишь подключать устройство и отключать его по завершении программирования, затем подключать следующее.

5.3 Полезные советы

Совет 1: H-Flasher и H-Flasher Lite одинаковы, за исключением того, что H-Flasher Lite не поддерживает автоматическую загрузку во флеш. Чтобы использовать автоматическую загрузку во флеш, запустите и сконфигурируйте H-Flasher взамен H-Flasher Lite.

- **Совет 2:** Во время конфигурации, если редактируемый блок или список блоков серые, это означает, что им доступна только одна опция. Пользователю ничего не нужно делать.
- **Совет 3:** В H-Flasher введённая конфигурация может быть сохранена в HFC файле для дальнейшего использования.
- **Совет 4:** Перед началом программирования, H-Flasher автоматически сотрёт всю часть флеш. Пользователю не требуется стирать флеш вручную.
- **Совет 5:** Операция стирания применяется к сектору. Чтобы избежать потери данных, H-Flasher предлагает механизм резервного копирования и восстановления. H-Flasher копирует все данные из флеш перед стиранием и восстанавливает их при программировании. С помощью этого механизма, содержимое флеш памяти остаётся неизменным, за исключением перекрываемой текущим программированием.
- **Совет 6:** Когда пользователь видит сообщение об ошибке: "Destination flash address is out of range", он должен задать адрес назначения, или адрес назначения, полученный из HEX файла, не попадает в правильный диапазон адресов. Пожалуйста, проверьте адрес назначения и убедитесь в его корректности.
- **Совет 7:** В некоторых чипах ID может измениться после обновления версии. В этом случае свяжитесь с нами. Мы предоставим обновлённый флеш драйвер.
- **Совет 8:** Если что-то происходит во время операции, пожалуйста, проверьте конфигурацию и проследите, чтобы предоставляемая конфигурация была корректной. Если ошибки повторяются при корректной конфигурации, свяжитесь с нами. Мы проанализируем эти проблемы и предоставим вам обновлённый драйвер, если нужно.