pb095 last day

fyz. akustika - zakladne pojmy , rychlost na com zavisu vo vzduchu vode , hmot. bod, amplituda atd., o kmitoch ..rezonance. akusticka intenzita/ tlak, jednotky .. akusticke spektrum (ziskam hodnoty frekvenci a intenzit zastupeni) .. furierove rady sa neda na digitalnom ne to nespojite

zaklad spracovania zvuku fiziolog.

Fonem (samohlasky (frekvence, formanty) spoluhlasky), koartikulace, .. zakladny hlasiv. ton (100-400hz)

cez spektrum urc frekvence audacity

metody analyzy kratkodoba

ste, sti, zcr

frekvencna anal. - fourier, linear. predikcia

DTW princip

increase accuracy: gramatiky (jazykovy a model recnika)

skryte markovove modely princip

alofon - fonem + okolie ovolyv. koartikulaci,

difon polovica fonemu jedneho a druheho

vokal. jadro : samohlaska/rl v slabike , preatura prve koda posledne (may not be) **Dve otazky,25 minut(lze libovolne prodlouzit)**

Nejdriv pisemka na papir, pak inhed zkouska s opravou pisemky:

- 1.Akusticke spektrum
- 2. Skryte markovovske modely

PB095 - Uvod do pocitacoveho zpracovani reci

Zkouska - 26. 1. 2005

2 otazky, 20 minut (Ize prodlouzit, pak ihned ustni "oprava" pisemky)

- 1. Konkatenativni synteza
- 2. Vektorova kvantizace, skryte Markovovy modely (HMM)

18. stol.

Kratzenstein – rezonátory Wolfgang von Kempelen – první mechanický řečový syntetizér, 1791 Wheatstone – rekonstrukce Kempelenova syntetozéru, 1800 Nepomuk Bolzano – Bolzanova věta + funkce

19.stol

Fourier

Helmholtzův rezonátor

20. stol

- 1924 -spektrální analýza řeči na bázi formantové analýzy samohlásek.
- · Vokodéry, komprese řečového záznamu
- Syntéza řeči
- Rozpoznávání řeči
- Dialogové systémy

1939 – elektronický sysntetizér VODER, analogický výstup, velká složitost zacházení

Akustika

- věda zkoumající zvuk
- infrazvuk < 16 Hz, 16 000 Hz > ultrazvuk
- zvuk: mechanické vlnění schopné vyvolat v lidském uchu sluchový vjem
- kmitání hmotného bodu: pohyb mezi amplitudami, perioda a frekvence kmitavého pohybu
- frekvence: 1 Hz = 1 kmit za sekundu

Rezonance

- označuje jev, který lze pozorovat při nuceném kmitání, kdy vhodně působicí malá budící síla může způsobit velké změny v kmitajícím systému
- těleso na pružině, při příliš velkých nebo nízkých freknvencích bude amplituda kmitání malá, naopak při vhodné frekvenci bude amplituda velmi velká → dojde k rezonanci
- frekvence ovlivňující objekt je podobná s vnitřní rezonanční frekvencí objektu

Akustická intenzita

- množství akustické energie působící na plochu za ejdnotku času
- = (akustický tlak (síla působící na plochu))²
- rozsah Al ve kterém vnímáme tón se nazývá práh citlivosti
- Weberův-Fechnerův zákon
 - člověkem subjektivně vnímaná hlasitost roste při geometrickém nárůstu intenzity přibližně lineárně
- hladina akustické intenzity se proto vyjadřuje logaritmicky, používanou logaritmickou jednotkou je 1 bel (bezrozměrná míra); šepot 10 dB, startující letadlo 120 dB

Tón

- základní: lze popsat sinusoidou v závislosti na čase
- složený tón: kombinace základních tónů
- Helmholtzův rezonátor rozklad zvuku do základních tónů

Fyziologická akustika

Mechanismus vytváření řeči

- hlasové ústrojí v hrtanu
- mezi hlasivkami je *hlasová štěrbina*, která se mění podle kmitání hlasivek; podle frekvence kmitání vzniká hlasivkový tón
- tento zvuk se modifikuje v rezonačních dutinách (hrtanová, ústní a nosohltanový dutina)
- vnímání zvuků sluchovým orgánem
 - ušní boltec zachycuje zvukovou energii
 - zvukovod vede energii k bubínku
 - ušní bubínek předává kmity třmínku
 - Eustachova trubice spojuje střední ucho a ústní dutinu, vyrovnává přetlaky
- hlemýžď (Cochlea) ve středním uchu, obsahuje Cortiho ústrojí
 - v něm se mechanická energie mění na nervové vzruchy pokračující do mozku

Helmholtzova rezonanční teorie

 vlákénka v Cortiho ústrojí představují rezonanční soustavu odpovídající strunám různých délek a rezonující proto pro různé tóny

Fonetika

- Foném: základní zvukový segment, který má rozlišovací funkci v systému konkrétního jazyka, každý jazyk má odlišnou sadu fonémů
- IPA (International Phonetic Alphabet): systém k fonetickému zápisu různých jazyků
- vokály (samohlásky), konsonanty (souhlásky)
- zvukové spektrum: kombinace všech frekvencí vlnění, ze kterých se zvuk skládá; základní (nejnižší) frekvence F0 a formanty

formanty

- vznikají rezonancí (F1) a v dutině hrdelní (F2)
- zesílené části generovaného zvukového spektra
- nejnižší frekvence (F0) udává výšku tónu, vyšší frekvence (formanty, F1, F2, F3 ...) udávají výsledný sluchový dojem
- určující pro rozpoznávání vokálů
- vlastnosti formantů jsou individuální; např.: a F1: 750 1100 Hz, F2: 1100 1500

souhlásky

- podstatně více závislé na kontextu než samohlásky
- význam formantu pro ně nemá význam (mají tónový charaketr jen málo)
- znělé vs. neznělé, podle účasti hlasivek na vytváření souhlásky
- závěrové souhlásky (okluzívy) výdechovému proudu vzduchu se vytváří překážka
- úžinové souhlásky (frikativy) zúžení výdechové cesty
- polozávěrové souhlásky (semiokluzívy) (c, č)

Koartikulace

modifikace fonému v řečovém kontextu

Digitalizace akustického signálu

- vzorkování: transformace spojitého vstupního signálu na diskrétní posloupnost
- Shannon: na bezeztrátovou transformaci je třeba, aby vzorkovací frekvence byla dvojnásobná oproti nejvyšší frekvenci vstupního signálu
 - o jinak docházé ke zkreslení
- kvantizace: převod nevzorkovaných reálných hodnot na celočíselné; počet prvků intervalu → počet úrovní kvantování, většinou 8/16 bitů
- digitalizace řečového signálu: vzorkovací frekvence 16-20 kHz, 16ti bitové kódování

Zpracování digitalizovaného signálu

Krátkodobá analýza

 zpracování na časovém intervalu, na němž nepředpokládáme dynamické změny, tzv. mikrosegmentu

Analýza v časové oblasti

- vychází z hodnot vzorku, nikoliv z hodnot spektra
- krátkodobá intenzita detekce ticha
- střední počet průchodů nulou, počet lokálních extrémů
- krátkodobá autokorelační funkce: zjišťování periodicity signálu a základního tónu řeči

Analýza ve frekvenční oblasti

- krátkodobá Fourierova transformace
 - algoritmus FFT (Fast Fourier Transform)
 - časová reprezentace signálu <=> frekvenční reprezentace signálu
- Kepstrální analýza
- Lineární predikce: analýza na základě předchozích vzorků

Rozpoznávání izolovaných slov

- vyřčení oddělených povelů, odpadá problém stanovení rozhraní dvou slov
- akustický vektor, vektor příznaků: vztahující se k mikrosegmentu
- klasifikátory:
 - DTW (Dynamic Time Warping)
 - statistické metody
 - dvouúrovňové segmentace a fonetické dekódování, rozpoznávání slova

Dynamic Time Warping

- porovnání dvou úseků promluv vzniklých rozdělením do mikrosegmentů
- pro množinu rozpoznávaných slov vytvoříme soubor referenčních posloupností akustických vektorů, porovnáváme posloupnost akustických vektorů slova s množinou posloupností referenčních akustických vektorů → bereme největší shodu
- algoritmus pro poměřování podobností dvou sekvencí v čase nebo rychlosti
- urychlení DTW vektorovou vkantizací

Kódová kniha

- vektorový prostor X rozdělíme na disjunktní podmnožiny X(i) a v každé zvolíme reprezentanta v(i)
- vektorový kvantizér přiřazuje vektoru x z X(i) vektor v(i)
- množina vektorů v(i) tvoří kódovou knihu
- vyhledávání v kódové knize: shluky, subshluky, prohledávací stromy

Skryté Markovovy modely (HMM)

- hlasové ústrojí je v jistém časovém intervalu v jednom z konečně mnoha stavů atrikulačních konfigurací, než přejde do stavu následujícího
- kvantizace akustických vektorů (vytvoření kódové knihy) → dosažení konečnosti všech parametrů modelu

- pětice (Q,V,N,M,π), kde Q jsou stavy, V je abeceda výstupních symbolů
 - N je matice přechodu (s jakou pravděpodobností se přejde v čase t do dalšího stavu v čase t+1)
 - M je matice přechodu (pravděpodobnost, že ve stavu q je generován akustický vektor)
 - π vektor pravděpodobností, že i-tý stav bude počáteční
- soubor trojice parametrů (N,M,π) vytváří model řečového segmentu (např. slova)
- určení pravděpodobnosti promluvy

Kódování

Rozpoznávání

Trénování

Modely

Řečový signál Trénovací databáze Trénování Trénování

kódování signálu (segmentace, výpočet spektra, reprezentace např. kepstrální) → trénovací část (natrénování modelů jednotlivých promluv) → rozpoznávací část (vyhodnocení pravděpodobnosti, že daná sekvence vektorů byla generována daným modelem; model, který generuje danou promluvu, ji s nejvyšší pravděpodobností reprezentuje)

- modely slov vytvářeny zřetězením modelů fonémů
- obtíže:
 - šum pozadí vs. sykavky
 - přítomnost zvuků mimo oblast slyšitelnosti

Rozpoznávání souvislé řeči

- rozdíly oproti izolovaným slovům
 - nelze vytvořit databázi vzorů
 - prozodické faktory (prozodie = vlastnosti jazyka na úrovni vyšší než je úroveň jednoho fonému)
 - o určování hranice mezi slovy, chyby řeči
- statistický přístup (máma vs. nána)

Jazykový model

- cíl je určit pravděpodobnost nějaké promluvy v daném jazyce
- přiřazuje pravděpodobnost vyslovení slova posloupnosti slov
- W = (w(1)w(2)...w(n)) posloupnost slov
- O = (o(1)o(2)...o(t)) posl. akust. vektorů
- jedná se n-gramové modely, kde pravděpodobnost n-tého slova se předvídá z n-1 slov
- nejčastější jsou trigramy P(w(n)|w(1)...w(n-1))

Topic Recognition

- mění se stavový prostor a pravděpodobnost (př.: vím, že se jedná o burzu honey → money)
- syntaktická struktura
- korpus: soubor textů opatřený metajazykovými značkami

Syntéza řeči

- ve frekvenční oblasti
 - o syntetizér emuluje funkci hlasového ústrojí
 - formantová syntéza lidské artikulační ústrojí jako skupina kaskádně řazených filtrů
 - LPC (Linear Prediction Coding) metody lineární predikce
- v časové oblasti (konkatenativní)
 - nejjednoduší, nejčstější
 - rámce + sloty: doplnění potřebných slov do slotu (př.: jlášení odjezdů vlaků)
 - vytvoření segmentů řečové abecedy a následné skládání → je třeba zahrnout kontext
 - fonémy se nehodí kvůli koartikulaci
 - jednotlivá slova jako základní segment nelze použít kvůli velkému počtu
 - zákadní používané segmenty jsou
 - alofóny u fonému si zapamatuju i jeho kontext (okolní dvě písmena) --> vyžaduje n³ zapamatovaných možností (pro n fonémů)
 - difóny ze středu jednoho fonému do středu druhého → n² možností
 - trifóny ze středu levého sousedního do středu pravého sousedního fonému → n³
 - slabičné segmenty jsou přirozené, kontextu se vzájemně moc neovlivňují; vymezení obtížné - cca 10 000 slabik

Jazyky poměřované slabikou/přízvukem

- syllable timed (čeština)
- stress timed (angličtina)

Fonetická transkripce

- text → fonetická abeceda, co nejpřesnější záznam výslovnosti
- fonologická pravidla: znělost (dub->dup, sjezd->sjest),

Prozodie

- zvukové vlastnosti mluvené řeči
- informační vrstva pro zvýšení srozumitelnosti, která obsahuje informace meobsažené na úrovni nižších celků
- základní jednotkou je slabika
 - atributy slabiky
 - výška: výška frekvence základního tónu (F0)
 - hlasitost (intenzita) fyzikální (intenzita signálu v časovém okamžiku) a fyziologické hledisko (reakce Cortiho ústrojí na vnímaný zvuk)
 - trvání: podle kontextu
- další prozodické atributy
 - kvalita hlasu: jitter (chvění), nepravidelné výchylky v F0, zabarvení tónu apod.
 - rychlost řeči: trvání slabiky nebo např. počet vyslovených znaků za jednotku času
 - pauza: tichá pouza, vyplněná pauza ("eeh") obtížná detekce
 - zaváhání: aspekt ne úplně zasahující do oblasti syntaxe a sémantiky; informace, ná základě které můžeme např. uzpůsobit dialogovu strategii
- odvozené atributy
 - rytmus: doby trvání pauz/slabik
 - slovní přízvuk: velmi jazykově závislý
 - větný přízvuk: prozodické zdůraznění jádra výpovědi věty (např. zdůraznění některých slov)
 - intonace: časový průběh zvukového spektra během výpovědi
 - emotivní zabarvení hlasu: kontext přesahující jedinou větu, důležitá např. pro dialogové systémy (volba dial. strategie)
 - emfatický (důrazný) přízvuk: "To je tedy opravdu <u>neslýchané</u>!"
 - kontrastní přízvuk: zdůraznění slova nebo slabiky v kontrastu s jiným slovem nebo slabikou
 - opakování: často jako výplňková část promluvy (kterou si mluvčí ani neuvědomuje)
 - výplňkové části: slova (subjektivně podle mluvčího) užívaná bez důležitosti neseného sdělení jako výplň: ("Máme zkoušku z matiky, <u>víš</u> <u>co</u>.", "Vole vykašli se na to <u>vole</u>.")
 - přerušení: větších celků nebo jednotlivých slov, např. v návaznosti na zaváhání, opakování apod.
 - korekce: přeřeknutí, upřesnění nebo upravení předchozí části promluvy
- Prozodické segmenty mluvené řeči
 - prozodické fráze: skupina intonačně jednotných slov (namísto věty)
 - koresponduje se syntaktickou strukturou věty
 - přízvukový takt: dělení prozodické fráze

 skupina slabik podřízená jednomu slovnímu přízvuku (v češtině typicky slovo nebo slovo + jednoslabičné slovo)

Standardy pro syssntézu řeči:

- SABLE
 - snaha o zkombinování 3 značkovacích jazyků: SSML, STML, JSML
- SSML
 - součástí W3C, vývoj koncem 90. let

_

Dialogové systémy

- Dialogovy system informa cn i system s dialogovym (hlasovym/textovym) rozhraním.
- přirozenější než GUI
- Nové způsoby komunikace s applikacemi
- Pro lidi bez končetin

Historie:

- Eliza 60. léta
- Parry

Základní pojmy:

- Dialogovy system informa cn'ı system disponuj c'ı dialogoo ym rozhiran m.
- Dialogov´e rozhraní UI, ktere umožňuje uzivateli komunikaci s aplikací prostrednictvim dialogu.
- Dialog komunikace dvou ucastniku (pro nas clovek ↔ pocitac).
- Promluva souvisle sdeleni jednoho úcastnika dialogu.
- Obrat promluva a reakce druhého 'u'castn'ıka na ni.
- Dialogova strategie urcuje ke kazde promluve naslednika.

Komponenty dialogového systému

- rozpoznávání řeči
- systematický analyzátor zjištuje význam promluvy
- dialogový manažer na základě faktů rozhoduje o dalším kroku
- generátor sdělení

Info využívané dialogovým systémem:

- lingvistické znalosti
- uživatelský profil
- Doménové znalosti
- kontext dialogu

DIALOGOVÁ KOMUNIKACE

Dialogova komunikace - Uspořádáná čtveřice M = (S1, S2, E1, E2).

- Určuje následující krok dialogu v závistolsti na stavu dialogu a vstupní promluvě
- Hodnotící funkcec dialogu E přiřazuje danému dialogu reálné číslo popisující úspěšnost dialogu z pohledu dané strany

Pravidla pro vedení kooperativního dialogu:

- Aspekty:
 - informovanost
 - přesevědčivost
 - způsobu jendoznačná
 - zdvořilost
 - Asymetrie informovat uživatele pokud něco vybočuje
 - Znalostí a schopností jak moc je ten uživatel zkušený/vzdělaný
 - vyjasňování a odstra'nování chyb

Iniciativa v dialogu:

- podle toho kdo klade otázky a kdo odpovídá
 - dialog s iniciativou živatele reálně se moc nepoužívá
 - dialog s iniciativou systému
 - dialog se smíšenou iniciativou
- Před tím než systém předá záskané ifnormace je dobré provést verifikaci a recap

Další aspekty dialogových strategií:

- možnost přerušit sysstém
- korekce chyb, opakování (uživatel je dement a nerozumí tomu)
- Přizpůsobení dialogové stragegie užřivatel ve spěchu
- vícejazyčnost
- dettekce emocí
- multimodalita umožnuje paralelní kuminkaci více kanály (obraz, zvuk,...)
- učení se z chyb

Dialogové systémy:

VoIP:

- rodina protokolů pro přenos hlasu přes internet

SIP:

- Protokol na aplikační vrstvě
- pro přenos signalizace v internetové telefonii
- zjištuje:
 - lokalizaci
 - stav obsazený,...
 - možností přenosová rychost
 - navázání spojení
 - řízení probíhajícího spojení

Podpora rozpoznávání řeči:

- omezení domény možných vstupů

Java Speech Grammar Specification (JSGF)

- Textový zápis gramatiky nezávislý na platformě a prodejci, pro podporu rozpoznávání řeič
- Gramtika se skládá z pravidel, které popisují co může být řečeno

SRGS:

- Standart W4C
- Definuje způsob zápisu a pravidel a jejich odkazování
- Dva zůsoby zápisu (XML, ABNF)

Sémantická interpretace promluvy:

- Většinou řešeno pomocí atributů v gramatice pro rozpoznávání řeči
- Slouží k urční umístění a hodnotvy významných částí uživatelsé promluvy

Popis dialogových rozhraní:

- Ve vyšším programovacím jazyce
- Proprietární řeení
- otevřené standardy: (VoxML, VoiceXML, CallXML)

Online nástorje pro implementaci dialovýcých rozhraní:

- Nuance Café,
- Tellme Studio
- Voxeo Prophecy

Desktopové:

- Trindikit
- CSLU toolkit
- Aspect Prophecy

Standardy W3C Voice Browser Activity

Historie:

- World Wide Web Consortium (W3C) je mezinárodní konsorcium, jehož členové společně s veřejností vyvíjejí webové standardy pro World Wide Web.
- Zloženo 1994
- VOice browser activity 1999

VoiceXML, SRGS, SSML, SISR, PLS,...

Základní info:

- jazyk pro popis dialogových rozhraní
- Cíl = výhody webového vývoje a doručení obsahu interaktivních hlasových aplikací
- 2000 VoiceXML 1.0, kratce na to přijato jako standard W3C

_

Struktura VoiceXML applikací:

- VoiceXML dokument(y):
 - formluláře končené stavoévé automaty
 - uživatel se nachází v jednom z konverzačních stavů
- Dva druhy dialogů:
 - formuláře proces získání hodnot
 - menu
- Subdialogy obdoba funkcí, (vrací hodnoty)
- Sezení session
- Aplikace sada dokumentů

VoiceXML formulář:

- základní komponenta dokumentů
- základní atribut = id

Položky formuláře:

- Vstupní položky field, record, trnasfer, object, subdialog
- Vstupním položkám odpovídají proměnné
- řídící položky block, initial

Element field

- představuje vstup od uživatele
- atributy má name, expr (hodnota), cond

Element record

- umožnuje systému nahrát zprávu, např dialogový záznamník
 Element subdialog
 - slouží k vyvolání dialogu, řešícího dílší problém (funkce)
 - lze volat opakovaně
 - kód subdialogu formulář ukončený elementem return

Element block

Obsahuje providitelný obsah

Element initial

- umožnuje uživateli zadat více informací naráz

SRGS

- nahrazuje JSGF
- Specifikace W3C
- Liší se pouze zápis nikoliv vyjadřovací síla

XML formát gramatiky:

- XML prolog.
- Kořenový element grammar
- Atributy:
 - root pravidlo
 - xml:lang jazyk gramatiky
 - version
 - mode
 - ...
- Element grammar obsahuje množinu pravidel (elementů rule)

Sekvence:

- posloupnost terminálních a netermináclních symbolů
- lze ji rozdělit na logické části

SISR

- Sémantika přiřazuje význam slovům a promluvám
- standard W4C pro zpracování sémantiky promluvy
- umožnuje přiřazení základních interpretací částem promluvy a vytváření odvozených interpreteací pro nadřazená tvrtzení
 - přiřazení interpretace částem promluvy
 - odvozování
 - přiřazení vstupním poím dialogu

Odvození interpretace na základě dílčích interpreteací:

- Zápis pomocí ECMAScript
- Přiřazeno k pravidlům pomocí elementu tag

PLS

- Definuje značkování pro sepcifikaci slovníků výslovnosti pro podporu syntézy a rozpoznávání řeči
- Samozřejmě taky standard W3C

Základní elementy:

- Kořenový elemnt lexikon
- lexeme obsahuje popis pro jednu lexiální jednotku
- phoneme obsahuje fonetický přepis dané lexikální jednotky

CCXML

 sloučí k ovládání řízení telefonních hovorů v průběhu interaktivních hlasových služeb

SCXML

Souží k specifikaci konečných automatů

WIZARD OF OZ

- simulace dialogového rozhraní modelem člověk člověk
- Princip:
 - Funkce dialogového rozhrají je (skrytě) simulována člověkem
 - průběh dialogu je protokolován
 - průběh se řídí navržečnou dialogovou strategií

Občas snaha navodit zdání že uživatel komunikuje s dialogovým systémem

MULTIMODÁLNÍ DIALOGOVÁ ROZHRANÍ

- mimo mluvenou řeč umožňuje i další způsoby komunikace člověk počítač (textová, grafická, emoce,..)
- Výhody:
 - lepší přístupnost (pro neslyšící/nevidoucí)
 - lepší pochopení pragmatiky projevu

textová:

prostě je zobrazen i text

Grafická:

- Talking heads
- komunikace znakovou řečí
- Široké spektrum možností zadávání vstupu uživatelem jinak než hlasem

Emoce:

- primární:
 - klasické i u živočichů
- sekundární
 - intelektuální, mordální, estetické
- Velkých šest:
 - hněv, zklamání, smutek, strach, překvapení
 // nechápu proč je jich jenom pět v prezentaci
- Detekce emocí:
 - biometrické vlastnosti
 - tlak, puls
 - dýchání elektciké aktivity moSku

Artificial Inteligence Markup Language (AIML)

- jazyk na bázi XML
- Popisuje znalostní bázi pro dotazovací systémy

Základní jednotky znalostí databáze:

- popisuje třídy objektů dat a částečně popisuje chování programů, které je zpracovávají
- objekty dat se skládají z jednotek zvaných témata a kategorie (struktorovaná nebo nestruktorovaná data)
- Používají se klíčová slova