Statystyka T: funkcja próbki. **Nieobciążony** estymator θ : $\mathbb{E}T = \theta$ (średnia, wariancja (dzielona przez n – 1!)). Statystyka **zgodna**: $T_n \rightarrow \theta$.

Funkcja wiarogodności: $L(\theta, x) = \prod_{i \le n} f(x_i, \theta)$. Estymator największej wiarogodności (mle): $\widehat{\theta}$, który maksymalizuje L. Jeśli X_1, \ldots, X_n jest próbką z gęstości $f(x, \theta)$, L, U są statystykami, zaś $0 < \alpha < 1$, to (L, U) jest $(1 - \alpha) \cdot 100\%$ **przedziałem ufności** dla

Jeśli X_1, \ldots, X_n jest próbką z gęstości $f(x, \theta)$, L, U są statystykami, zaś $0 < \alpha < 1$, to (L, U) jest $(1 - \alpha) \cdot 100\%$ **przedziałem ufności** dla θ , jeśli $1 - \alpha = \mathcal{P}_{\theta}[\theta \in (L, U)]$ 4.2: Confidence intervals

4.3: Confidence intervals

Łączny rozkład **statystyk porządkowych** $Y_1 < \ldots < Y_n$ to $n! \prod_i f(y_i)$ dla $\alpha < y_1 < \ldots < y_n < b$. Gęstość: khm-1 dla $\alpha < y_k < b$. **Kwantyl**: $\underline{4.4}$ $\xi_p = F^{-1}(p)$. **Kwantyl próbkowy**: Y_k dla p = k : [n+1]. 442 Confidence intervals for quantiles

$$g_k(y_k) = \binom{n}{k} \cdot k \cdot [F(y_k)]^{k-1} \cdot [1 - F(y_k)]^{n-k} f(y_k)$$

Załóżmy, że $\Omega = w_0 \cup w_1$ (unia rozłączna) to p. parametrów ω dla gęstości $f(x,\theta)$. Hipoteza zerowa: $\theta \in \omega_0$, alternatywna: $\theta \in \omega_1$. Błąd I: odrzucenie H_0 , II: H_1 . Test H_0 przeciw H_1 oparty jest na obszarze krytycznym $C \subseteq D$ (przestrzeń próbek) rozmiaru α (khm-1). Chcemy maksymalizować

$$\alpha = \max_{\theta \in \omega_0} \mathcal{P}_{\theta}[(X_1, \dots, X_n) \in C]$$

Niech X będzie z-losową z gęstością $f(x,\theta)$ dla $\theta \in U \subseteq \mathbb{R}^n$, X_1,\ldots,X_n losową próbką z dystrybucji X. Statystyka T jest **nieobciążonym 4.X** estymatorem θ , gdy $\mathbb{E}T = \theta$, przykład: średnia $\overline{x} = \sum_{i \le n} x_i/n$ oraz wariancja: $\sum_{i \le n} (x_i - \overline{x})^2/(n-1)$. Być może mediana.