# Echocardiography image quality assessment: human subjectivity and artificial intelligence predictions in multi-centre data

P. Lopez-Gutierrez<sup>1,4</sup>, A. Morales-Galán<sup>1</sup>, L. Dux-Santoy<sup>1</sup>, J. Garrido-Oliver<sup>1,4</sup>, H. Majul<sup>1</sup>, L. Rivas Catoni<sup>1</sup>, S. Martin Grieve<sup>1</sup>, G. Prado<sup>1</sup>, J. Solsona<sup>2</sup>, G. Casas Masnou<sup>2</sup>, G. Teixido-Tura<sup>2,3</sup>, L. Galian-Gay<sup>2</sup>, I. Ferreira-González<sup>1,2,4,5</sup>, J. Rodriguez-Palomares<sup>1,2,3,4</sup>, A. Guala<sup>1,3</sup>

<sup>1</sup>Vall d'Hebron Institut de Recerca; <sup>2</sup>Department of Cardiology, Vall D'Hebron University Hospital; <sup>3</sup>CIBER-CV, ISCIII; <sup>4</sup>Department of Medicine, Universitat Autònoma de Barcelona <sup>5</sup>CIBER-ESP, ISCIII

# Background

Image quality in echocardiography is crucial for precise diagnosis. However, its assessment is subjective, as it relies on the observer experience and perception.

Artificial intelligence algorithms offer a potential solution by optimizing image acquisition and enhancing its subsequent analysis.

## Purposes

- Identify the most relevant features of echocardiography images that influence perceived quality.
- Quantify these features using AI.
- Evaluate their variability across different observers and centres.

#### Results

| Agreement results                     |              |                   |      |                       |  |
|---------------------------------------|--------------|-------------------|------|-----------------------|--|
|                                       |              | BD                | PS   | FS                    |  |
| Inter-observer a                      | greement     |                   |      |                       |  |
| VH Agreement                          |              | 56%               | 48%  | 46%                   |  |
| CAMUS Agreement                       |              | 21%               | 35%  | N/A                   |  |
| Internal Validati                     | on agreement |                   |      |                       |  |
| All Raters vs Al                      |              | 60%               | 54%  | 53%                   |  |
| Single Rater vs Al                    |              | 62%               | 58%  | 51%                   |  |
| External Validation agreement         |              |                   |      |                       |  |
| CAMUS vs AI                           |              | 57%               | 19%  | N/A                   |  |
| Annotations vs clinical study quality |              |                   |      |                       |  |
|                                       | BD p-value   | PS p-value        |      | S p-value             |  |
| Clinical study                        | <0.001       | 0.8               | 864  | 0.440                 |  |
| Factors influencing Border Definition |              |                   |      |                       |  |
|                                       |              | Annotated p-value |      | Al prediction p-value |  |
| BMI↓                                  | 0.0          | 0.042             |      | 0.001                 |  |
| Cardiomyopathy                        | <b>0.0</b> 2 | 28                | 0.52 |                       |  |
|                                       |              |                   |      |                       |  |

### Methods



## Conclusions

- Echocardiography image quality is subjective and mainly depends on the clarity of cardiac structures borders.
- Al models can learn to assess image quality. However their generalization may be limited.

Funding: Spanish Ministry of Science and Innovation (PID2021-128367OA-I00), La Caixa Foundation (LCF/BQ/PR22/11920008), Spanish Society of Cardiology (SEC/FEC-INV-CLI 24/12), Spanish Ministry of Economic Affairs and Digital Transformation (MIA.2021.M02.0005), Generalitat de Catalunya (2023 FI-1 00322)







