Outils mathématiques pour la gestion (S2) Partie 2 : Régression et séries chronologiques

Jérôme Casse

IUT de Sceaux GEA2

1er mars 2024

Programme du cours

- Régression
- Séries chronologiques
 - Choix du modèle
 - Tendance I
 - Saisonalité
 - Tendance II

Chapitre 1 : Régression

Motivations

- Comprendre un nuage de points.
- Trouver une fonction pour le modéliser.

La fonction de régression

Quelle fonction?

- Ni trop complexe.
- Ni trop simple.

Modèle trop complexe

Modèle trop simple

Éventail de fonctions

Dans le cadre du cours, notre éventail de fonctions est

f(x) = ax + b (affine, aussi appelée les droites).
 2 paramètres à trouver : a et b.

Éventail de fonctions

Dans le cadre du cours, notre éventail de fonctions est

f(x) = ax + b (affine, aussi appelée les droites).
 2 paramètres à trouver : a et b.

Si on sait faire les droites, on peut faire d'autres fonctions :

- $f(x) = c(x k)^{\alpha} + b$ (monomiale) avec $\alpha \in \mathbb{R}$. 4 paramètres à évaluer : c, k, α et b.
- $f(x) = c e^{\alpha x} + b$ (exponentielle) avec $\alpha \in \mathbb{R}$. 3 paramètres à évaluer : c, α et b.
- $f(x) = c \ln(x k) + b \text{ (logarithmique)}$ 3 paramètres à évaluer : c, k et b.
- Des "par morceaux" de ces fonctions.

Exemples

C'est quoi la régression affine?

• On a n données $(x_i, y_i)_{i=1...n}$. Exemple: "prix des voitures en fonction du revenu du ménage". Ménage 1 à x = 100000 par an : Mercedes + Clio -> 45000 = y. Ménage 2 à x = 15000 par an : Twingo d'occasion -> 3000 = y.

C'est quoi la régression affine?

- On a *n* données $(x_i, y_i)_{i=1...n}$.
- ② On a l'ensemble infini des droites affines : y = ax + b.

C'est quoi la régression affine?

- ① On a n données $(x_i, y_i)_{i=1...n}$.
- ② On a l'ensemble infini des droites affines : y = ax + b.
- 3 But : trouver la droite la plus proche des données.

On peut ainsi dire:

En moyenne, un ménage de 50000 par an possède 20000 euros de véhicules.

Comment on calcule cette droite?

Il faut mathématiser "la droite la plus proche des données".

1 La distance d'un point (x_1, y_1) à la droite y = ax + b.

Cette distance vaut $|y_1 - (ax_1 + b)|$.

Comment on calcule cette droite?

Il faut mathématiser "la droite la plus proche des données".

- **1** La distance d'un point (x_1, y_1) à la droite y = ax + b. Cette distance vaut $|y_1 (ax_1 + b)|$.
- 2 La distance d'un nuage de n points $(x_i, y_i)_{i=1...n}$ à la droite y = ax + b.

La somme des distances au carré :

$$|y_1 - (ax_1 + b)|^2 + |y_2 - (ax_2 + b)|^2 + \cdots + |y_n - (ax_n + b)|^2$$
.

- Distance à rouge : 5535
- Distance à jaune : 14395
- Distance à vert : 237.5

Comment on calcule cette droite?

Il faut mathématiser "la droite la plus proche des données".

- **1** La distance d'un point (x_1, y_1) à la droite y = ax + b. Cette distance vaut $|y_1 (ax_1 + b)|$.
- 2 La distance d'un nuage de n points $(x_i, y_i)_{i=1...n}$ à la droite y = ax + b.

La somme des distances au carré :

$$|y_1 - (ax_1 + b)|^2 + |y_2 - (ax_2 + b)|^2 + \cdots + |y_n - (ax_n + b)|^2$$
.

3 On cherche la droite y = ax + b telle que cette distance soit minimale.

• Distance à rouge : 139.1

À quel point les données sont proche de la droite?

Coefficient de détermination R proche de 1 Relation affine

Coefficient de détermination R proche de 0 Pas de relation affine

Rappel du S1 et réinterprétation

- Données $(x_i, y_i)_{i=1...n}$.
- Moyenne m des $y: m = \frac{y_1 + \dots + y_n}{n}$.
- Variance des y : $Var(y) = \frac{\sum_{i=1}^{n} (y_i m)^2}{n}$.

Rappel du S1 et réinterprétation

- Données $(x_i, y_i)_{i=1...n}$.
- Moyenne m des y : $m = \frac{y_1 + \dots + y_n}{n}$.
- Variance des y: $Var(y) = \frac{\sum_{i=1}^{n} (y_i m)^2}{n}$.

- Parmi les droites horizontales y = b, la meilleure est y = m.
- La distance de y = m aux données est nVar(y).

Coefficient de détermination

- La distance entre les données et la droite de régression :
 SCR. la variance résiduelle.
- La distance entre les données et la moyenne : SCT, la variance totale.
- "La distance entre la moyenne et la droite de régression" :
 SCE = SCT-SCR, la variance expliquée (par la connaissance de x).
- Coefficient de détermination : $R^2 = \frac{\text{SCE}}{\text{SCT}} = 1 \frac{\text{SCR}}{\text{SCT}}$.

Exemple

R proche de 1 Relation linéaire

R proche de 0 Pas de relation linéaire

Commentaires

- Excel va faire cela pour nous.
- Pourquoi la somme des carrées des distances $\sum_i |y_i (ax_i + b)|^2$ et pas la somme des distance $\sum_i |y_i (ax_i + b)|^2$
 - C'est la méthode des moindres carrés, canonique.
 - Faisable avec $\sum_i |y_i (ax_i + b)|^{\alpha}$ si $\alpha > 0$.
 - Mais, avec $\alpha = 2$, les maths sont plus "simples".
 - Lien avec la variance, etc.
- Un exemple très simple à la main sera donné dans un TD?
- Pour les fonctions non affine, on montrera en TP comment se ramener au cas affine.

Chapitre 2 : Séries chronologiques.

Motivations

- Comprendre une variable (aléatoire) qui dépend du temps.
- Analyser la tendance longue et sa saisonnalité.
- Prédire le futur.

Données en fonction du temps.

Finalité (WoW)

Interprétation

Exemple : nombre de personnes sur une plage mois par mois.

- Tendance : attractivité du lieu.
- Saisonalité : quantifier la différence entre les mois.
 - Phénomènes sur 12 mois : S(janvier), S(février), ..., S(décembre).
 - On s'attend à S(février) < S(août).
 - On va le voir et le quantifier.
- Bruit : choses très éphémères ou aléatoires.
 - Jour de pluie.
 - Les févriers bissextiles (29 jours) et non bissextiles (28 jours).

Comment fait-on?

- 1 Choix d'une modélisation parmi 2 (dans ce cours).
- Pré-étude de la tendance en temps long.
- Étude de la saisonalité.
- 4 Étude de la tendance en temps long.
- Étude du bruit (pour le S5).

2.A: Choix du modèle

Les deux modèles possibles (dans ce cours)

Modèle additif	Modèle mixte							
$X(t) = T(t) + S(t) + \epsilon(t)$	$X(t) = T(t) \times S(t) + \epsilon(t)$							
T(t) tendance	(en temps long)							
S(t) saisonalité, pér	iodique de période $ au$							
$\frac{1}{\tau} \sum_{i=1}^{\tau} S(i) = 0$	$\frac{1}{\tau} \sum_{i=1}^{\tau} S(i) = 1$							
$\epsilon(t)$ bruit aléatoire ($\epsilon(t)$ bruit aléatoire (bruit blanc gaussien)							
1 000.00 1 000.00 1 200.00 1 200.00 000.00 000.00 000.00	2 900,00 1 900,00 1 900,00 1 000,00 1 0							

Comment choisir entre les deux?

- Droite qui passe par les maxima.
- Droite qui passe par les minima.
- Sont-elles à peu près parallèles?

2.B : Pré-étude de la tendance

Moyenne mobile arithmétique

Exemple : CA par trimestre

Date	1 ^{er} 22	2e 22	3 ^e 22	4e 22	1 ^{er} 23	2e 23	3° 23	4e 23
Données	10	25	55	30	12	25	58	29
MM								

- La moyenne mobile, c'est la moyenne autour du trimestre sur un an.
- Pour le 3^e 22. c'est
 - la seconde moitié du 1^{er} 22.
 - le 2^e 22.
 - le 3^e 22.
 - le 4^e 22.
 - la première moitié du 1^{er} 23.
- La moyenne mobile : $M(3^{e}22) = \frac{1}{4} \left(\frac{10}{2} + 25 + 55 + 30 + \frac{12}{2} \right) = 30.25$.

Moyenne mobile arithmétique

Exemple: CA par trimestre

Date	1 ^{er} 22	2e 22	3e 22	4e 22	1 ^{er} 23	2e 23	3e 23	4e 23
Données	11	25	55	30	12	25	58	29
MM			30.25	30.5	30.875	31.125		

- La moyenne mobile, c'est la moyenne autour du trimestre sur un an.
- Pas calculable pour les 2 premiers trimestres et les 2 derniers.
 - Pour le 2^e 22, il faut connaître (la moitié du) 4^e 21.
- Fluctuations moindres que les données.
- Ne dépend plus de la saisonalité.

Exemple

2.C : Saisonalité

La saisonalité

- Périodique : période τ 1 semaine = 7 jours ; 1 année = 12 mois ; 1 année = 4 trimestres.
- Exemple : S(lundi), S(mardi), S(mercredi), S(jeudi), S(vendredi), S(samedi), S(dimanche)

- "On vend en moyenne pour 200 euros de plus le lundi que la moyenne de la semaine" (modèle additif).
- "On vend en moyenne 40% de plus le lundi et 40% de moins le mardi que la moyenne de la semaine" (modèle mixte).

Trouver la saisonalité : cas additif

- Regarder X(t) M(t): données moyenne mobile.
- Faire la moyenne (ou la médiane) de X(t) M(t) sur tous les 1^{er} trimestre (pour notre exemple).
 Noter S_{1er} (pre-saisonalité).
- 3 Idem pour les autres trimestres (pour notre exemple).
- Faire la somme $S^* = \frac{1}{4} (S_{1^{er}}^* + \cdots + S_{4^e}^*)$. Rappel : on veut $S^* = 0$.
- Si $S^* \neq 0$, $S_i = S_i^* S^*$. En mot : on soustrait à chaque coefficient, sa part du surplus ou sousplus.

Exemple

1 Différence X(t) - M(t):

Date	1 ^{er} 22	2e 22	3 ^e 22	4e 22	1 ^{er} 23	2e 23	3° 23	4e 23
X(t)	10	25	55	30	12	25	58	29
M(t)			30.2	30.5	30.9	31.1		
X(t)-M(t)			24.7	-0.5	-18.9	-6.1		

2 Moyenne ou médiane (ici : une seule donnée), donc :

$$S_{1^{\mathrm{er}}}^* = -18.9$$
, $S_{2^{\mathrm{e}}}^* = -6.1$, $S_{3^{\mathrm{e}}}^* = 24.7$ et $S_{4^{\mathrm{e}}}^* = -0.5$.

$$S^* = \frac{1}{4} \left(-18.9 - 6.1 + 24.8 - 0.5 \right) = -0.2.$$

4 La saisonalité est :

$$S_{1^{\mathrm{er}}}^* = -18.7$$
, $S_{2^{\mathrm{e}}}^* = -5.9$, $S_{3^{\mathrm{e}}}^* = 24.9$ et $S_{4^{\mathrm{e}}}^* = -0.3$.

Trouver la saisonalité : cas mixte

- Regarder X_t/T_t .
- 2 Faire la moyenne (ou la médiane) de X_t/T_t sur tous les "lundis" (pour notre exemple). Noter S_{lundis}^* .
- Idem pour les autres jours (pour notre exemple).
- Faire la somme $S^* = \frac{1}{7} \left(S_{\text{lundi}}^* + \dots + S_{\text{dimanche}}^* \right)$. Rappel : on veut que cette somme vaille 1.
- § Si $S^* \neq 1$, poser $S_i = S_i^*/S^*$. En mot : on divise chaque coefficient pour que la somme vaille 1.

2.D : Tendance (en temps long)

- Calcul de C(t) = X(t) S(t) (modèle additif) ou C(t) = X(t)/S(t) (modèle mixte) : correction des données par la saisonalité.
- 2 Régression sur ces données corrigées (t, C(t)) donne T(t).
- **3** Le bruit : $\epsilon(t) = X(t) S(t) T(t)$. ou $\epsilon(t) = X(t) - T(t)S(t)$.

Date	1 ^{er} 22	2e 22	3e 22	4e 22	1 ^{er} 23	2e 23	3e 23	4e 23
X(t)	10	25	55	30	12	25	58	29
M(t)			30.2	30.5	30.9	31.1		
S(t)	-18.7	-5.9	24.9	-0.3	-18.7	-5.9	24.9	-0.3
C(t)	28.7	30.9	30.1	30.3	30.7	30.9	33.1	29.3

Fin

