CS 512, Spring 2014

Assignment 1

Shan Sikdar

Due Monday January 27th

1 Problem 1(a): $P \rightarrow Q, P \rightarrow \neg Q \vdash \neg P$

$_{1}$ $P \rightarrow Q$	premise
$_{2}$ $P \rightarrow \neg Q$	premise
3 P	assume
$_4$ Q	\rightarrow e 1, 3
$_{5}$ $\neg Q$	\rightarrow e 2, 3
6 \(\preceq	¬e 4,5
$_{7}$ $\neg P$	−i

2 Problem 1(b): $P \rightarrow (Q \rightarrow R), P, \neg R \vdash \neg Q$

 $\neg i$

 $\neg e 3, 6$

3 Problem 2: 1.2.2(g): $p \land \neg p \vdash \neg(r \rightarrow q) \land (r \rightarrow q)$

1	$p \land \neg p$	premise
2	p	$\wedge e_1 1$
3	$\neg p$	$\wedge e_1 1$
4	1	$\neg e \ 2, 3$
5	$\neg(r \to q) \land (r \to q)$	⊥e

4 Problem 2: 1.2.2(h): $p \rightarrow q, s \rightarrow t \vdash p \lor s \rightarrow q \land t$

Since in the truth table some valuations have the left evaluate to T while the result false, the sequent is not valid.

p	q	s	t	$p \rightarrow q$	$s \to t$	$p \lor s$	$q \wedge t$	$p \lor s \to q \land t$
T	Т	Т	Т	Т	Т	Т	Т	Т
T	F	Т	Т	F	Т	Т	F	F
F	Т	Т	Т	Т	Т	Т	T	Т
F	F	Т	Т	Т	Т	Т	F	F
Т	Т	Т	F	Т	F	Т	F	F
T	F	Т	F	F	F	Т	F	F
F	Т	Т	F	Т	F	Т	F	F
F	F	Т	F	Т	F	Т	F	F
Т	T	F	Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	Т	Т	F	F
F	Т	F	Т	Т	Т	F	Т	Т
F	F	F	T	Т	Т	F	F	F
T	Т	F	F	Т	Т	Т	F	F
Т	F	F	F	F	Т	Т	F	F
F	Т	F	F	Т	Т	F	F	Т
F	F	F	F	Т	Т	F	F	Т

5 Problem 2: 1.2.2(i): $\neg(\neg p \lor q) \vdash p$

 $\neg (\neg p \lor q)$ premise

2 ¬p	assume
$_3$ $\neg p \lor$	q \vee i 2
4 ⊥	¬e 1,3
$_5$ p	¬i

6 Problem 3:

S - 1 = C

Justification: For every propostional atom you add to a well formed for-

mula, you need a binary connective to join it to.

$$N \leq S + C$$

This inequality assumes that any series of negation signs can be reduced to one or no negation signs (e.g. $\neg\neg\neg q = \neg q$ or $\neg\neg\neg\neg q = q$). Otherwise there is no upperbound for the value of N

7 Problem 4: 1.4.12(a):

If p is True, q is True, then $\neg p \lor (q \to p)$ is True while $\neg p \land q$ is False. So sequent not valid.

8 Problem 4: 1.4.12(b):

If r is True , q is False, and p is true, then $\neg r \to (p \lor q)$ is True, and $r \land \neg q$ is True. But $r \to q$ is False. So sequent not valid.

9 Problem 4: 1.4.12(c):

If p is True, q is False, and r is True, then $p \to (q \to r)$ is True. But $p \to (r \to q)$ is false. So sequent not valid.

10 problem 5:

Use induction based on the height of the parse tree formed by the WFF φ .

Base Case: Height = 1,

If Height = 1, then the parse tree must only consist of propositional atom, say p. Then $\varphi = p$ and $\varphi * = \neg p = \neg \varphi$.

Inductive Step: Assume true for all WFF's of height n. Prove for height n+1.

Let φ be a WFF with height n+1. For φ to have this hieght one of the following cases must happen:

- 1. φ is made up of another WWF ϕ of parse tree height n with a \neg in front of it: ($\varphi = \neg \phi$)
- 2. φ is made up of two WFF's ϕ , ρ of parse tree height n connected by \wedge : $(\varphi = \phi \wedge \rho)$
- 3. φ is made up of two WFF's ϕ , ρ of parse tree height n connected by \vee : $(\varphi = \phi \vee \rho)$

Case 1: $\varphi = \neg \phi$

Using the inductive hypothesis we know $\phi*$ is tuautologically equivelent to $\neg \phi$. So $\varphi = \phi* = \neg \phi$

Then:

$$\varphi * = \neg(\neg \phi)$$

$$\varphi * = \neg(\phi *)$$

$$\varphi * = \neg(\varphi)$$

$$\varphi * = \neg \varphi$$

Case 2: $\varphi=\phi\wedge\rho$. Using the inductive hypothesis we know $\neg\phi=\phi*$ and $\neg\rho=\rho*$

Then because:

$$\neg \varphi = \neg (\phi \land \rho)$$
 and $\varphi * = \neg \phi \lor \neg \rho = \phi * \lor \rho *$.

I can use a truth table to show $\varphi*$ and $\neg \varphi$ tautological equivlence:

ϕ	ρ	$\varphi = \phi \wedge \rho$	$\neg \varphi$	$\neg \phi$	$\neg \rho$	$\varphi * = \neg \phi \lor \neg \rho$
Т	T	Т	F	F	F	F
Т	F	F	Т	F	Т	Т
F	Т	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

The $\varphi*$ column has the same values as the $\neg\varphi$ column. So they are tautologically equivelent

Case 3: $\varphi=\phi\lor\rho$. Again using the inductive hypothesis, $\neg\phi=\phi*$ and $\neg\rho=\rho*$

Then because:

$$\neg \varphi = \neg (\phi \lor \rho) \text{ and } \varphi * = \neg \phi \land \neg \rho = \phi * \land \rho *$$
.

I can use a truth table to show $\varphi *$ and $\neg \varphi$ tautological equivlence:

ϕ	ρ	$\varphi = \phi \vee \rho$	$\neg \varphi$	$\neg \phi$	$\neg \rho$	$\varphi * = \neg \phi \wedge \neg \rho$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

The $\varphi*$ column has the same values as the $\neg\varphi$ column. So they are tautologically equivelent