Let bre
$$f$$
 $\cos(z+2\pi h) = \frac{1}{2} \left[e^{i(z+2\pi h)} + e^{-i(z+2\pi h)} \right]$
 $= \frac{1}{2} \left(e^{iz} \times e^{i2\pi h} + e^{-iz} \times e^{2\pi h} \right)$
 $= \frac{1}{2} \left(e^{iz} \times e^{-iz} \right)$

Complex Layarith

 $z = e^{i\omega} \iff \cos(z) = \cos(z) = \cos(z)$
 $\sin(z) = \cos(z) = \cos(z) = \cos(z) + \ln(z) + \ln(z)$

Polar Representation

 $z = re^{i\omega}$
 $\omega = 8 \ln z = \ln(re^{i\omega}) = \ln(r) + \ln(e^{i\omega})$
 $e^{i\omega} = e^{i(\omega+2\pi h)}$
 $\omega = \ln z = \ln r + \ln(e^{i(\omega+2\pi h)}) = \ln r + i(\omega+2\pi h)$

The posity single-valuedress

We will do this by restricting the value that angle on take.

 $\frac{1}{2} \ln z = \ln r + i(\omega - re^{i(\omega+2\pi h)}) = \ln r + i(\omega+2\pi h)$

Logarithm of a negative argument

 $\ln(-1x) = x \neq 0$.

- 1x1 = (-1) |x1 = e-ix |x1 logs for advation of powers Example Z= 1+i a=2 (1+i)? $= e^{2\ln(1+i)}$ = $e^{2\ln(1+i)}$ $= e^{2\ln(1+i)}$ $= e^{2\ln(1+i)}$ $= e^{2\ln(1+i)}$ Example z=i a=i ii We only get this result as we've restricted 8. What happens when we remove that

restriction.

i = einii) = pi(i(=+2111)) = e-=-Z-ZKK ... All solutions of i' are real, but of yeastly different magnitudes. Inverse Trig Functions (complex) Z = Sin(w) w=arcsin(z) $Z = \frac{e^{i\omega} - e^{-i\omega}}{2i}$ $2iZ = e^{i\omega} - e^{-i\omega}$ $2i \cdot 2e^{i\omega} = e^{2i\omega} - 1$ $e^{2i\omega} - 2i = e^{2i\omega} - 1 = 0$ quadratic eqⁿ. $y = e^{i\omega}$ (2 - 2izy-1-0 U = 212 + [422+4] = 12+ [22+1] eico = 12 + 122+1 W = i ln [iz + [z2+1]] = - iln [iz + [z2+1]]