8. Нелинейное уравнение теплопроводности, волновые решения, расчет движения тепловой волны.

Уравнение теплопроводности:

$$\frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (\kappa \frac{\partial T}{\partial x}) + q(t, x, T) \tag{1}$$

Нелинейная зависимость коэффициента теплопроводности κ от Т приводит к появлению нового типа решений уравнения (1) в виде стационарных бегущих волн, сохраняющих свою форму. Существование данного феномена связано с балансом двух конкурирующих эффектов: нелинейности, которая «укручивает» фронт волны, и диффузии, которая фронт размывает.

Пусть
$$\kappa = \kappa_0 T^{\beta}$$

Ищем решение (1) в виде бегущей волны: $T = T(\xi = x - ut)$, где u=const – скорость волны.

$$\frac{\partial T}{\partial t} = \frac{dT}{d\xi} \frac{\partial \xi}{\partial t} = -u \frac{dT}{d\xi}$$
$$\frac{\partial T}{\partial x} = \frac{dT}{d\xi}$$

С учетом данных соотношений переписываем (1):

$$-u\frac{dT}{d\xi} = \frac{d}{d\xi} (\kappa_0 T^{\beta} \frac{dT}{d\xi}) \tag{2}$$

Проинтегрируем (2):

$$-uT = \kappa_0 T^{\beta} \frac{dT}{d\xi} + C \tag{3}$$

Выражение (3) легко интегрируется, частным решением является степенное:

$$T(\xi) = \left(\frac{u\beta}{\kappa_0}\right)^{\frac{1}{\beta}} (\xi_0 - \xi)^{\frac{1}{\beta}}$$

(4)

Вблизи ξ_0 поведение Т (ξ) сильно нелинейно (см. рис).

В этом случае линейный анализ устойчивости схемы «не срабатывает», т.к. устойчивость будет зависеть также от T и ее градиентов. Особенность T в

точке $\xi_0 \left(\frac{dT}{d\xi} = \infty, \beta > 1 \right)$ как правило, оказывается летальной для всех

явных схем, в то время как неявные воспринимают ее безо всяких проблем.

9. Реализация неявной схемы.

Неявную схему рассчитываем итерациями. Простые итерации сходятся медленно, запас устойчивости для их сходимости невелик, поэтому чаще всего используется итерационная процедура Ньютона.

Суть этой процедуры:

Присваиваем неизвестной величине T^{n+1} индекс итерации k. Нелинейное относительно неизвестных T^{n+1} слагаемые в правой части уравнения:

$$h_{j} \frac{T_{j}^{n+1} - T_{j}^{n}}{\tau_{n}} = \sigma \left[\frac{T_{j+1}^{n+1} - T_{j}^{n+1}}{h_{j+\frac{1}{2}}} \kappa_{j+\frac{1}{2}}^{n+1} - \frac{T_{j}^{n+1} - T_{j-1}^{n+1}}{h_{j-\frac{1}{2}}} \kappa_{j-\frac{1}{2}}^{n+1} \right]$$

$$+ (1 - \sigma) \left[\frac{T_{j+1}^{n} - T_{j}^{n}}{h_{j+\frac{1}{2}}} \kappa_{j+\frac{1}{2}}^{n} - \frac{T_{j}^{n} - T_{j-1}^{n}}{h_{j-\frac{1}{2}}} \kappa_{j-\frac{1}{2}}^{n} \right]$$

Раскладываем в ряд по малому параметру:

$$\Delta T_j \equiv T_j^{\,n+1,k+1} - T_j^{\,n+1,k}$$

$$f(T^{n+1,k+1}) = f(T^{n+1,k}) + (\frac{\partial f}{\partial T})_{n+1,k} \Delta T + \dots$$

Ограничиваемся линейными членами разложения. Имеем:

$$\begin{split} h_j \frac{T_j^{n+1} + \Delta T_j - T_j^n}{\tau_n} &= \sigma \left[\frac{T_{j+1}^{n+1,k} - T_j^{n+1,k}}{h} \kappa_{j+\frac{1}{2}}^{n+1,k} - \frac{T_j^{n+1,k} - T_{j-1}^{n+1,k}}{h} \kappa_{j-\frac{1}{2}}^{n+1,k} \right] + \\ &+ \frac{\sigma \Delta T_{j+1}}{h} \left[\kappa_{j+\frac{1}{2}}^{n+1,k} + \left(\frac{1}{2} \frac{\partial \kappa}{\partial T} \right)_{j+\frac{1}{2}}^{n+1,k} \left(T_{j+1}^{n+1,k} - T_j^{n+1,k} \right) \right] + \\ &+ \frac{\sigma \Delta T_j}{h} \left[-\kappa_{j+\frac{1}{2}}^{n+1,k} + \left(\frac{1}{2} \frac{\partial \kappa}{\partial T} \right)_{j+\frac{1}{2}}^{n+1,k} \left(T_{j+1}^{n+1,k} - T_j^{n+1,k} \right) \right] - \\ &- \frac{\sigma \Delta T_j}{h} \left[\kappa_{j-\frac{1}{2}}^{n+1,k} + \left(\frac{1}{2} \frac{\partial \kappa}{\partial T} \right)_{j-\frac{1}{2}}^{n+1,k} \left(T_j^{n+1,k} - T_{j-1}^{n+1,k} \right) \right] + \\ &+ \frac{\sigma \Delta T_{j-1}}{h} \left[-\kappa_{j-\frac{1}{2}}^{n+1,k} + \left(\frac{1}{2} \frac{\partial \kappa}{\partial T} \right)_{j-\frac{1}{2}}^{n+1,k} \left(T_j^{n+1,k} - T_{j-1}^{n+1,k} \right) \right] + \\ &+ \left(1 - \sigma \right) \left[\frac{T_{j+1}^n - T_j^n}{h} \kappa_{j+\frac{1}{2}}^n - \frac{T_j^n - T_{j-1}^n}{h} \kappa_{j-\frac{1}{2}}^n \right] \\ &T_{j+\frac{1}{2}} = \frac{1}{2} \left(T_{j+1} - T_j \right) \end{split}$$

Система (6) трехдиагональна относительно неизвестных ΔT_j и вычисляется методом прогонки. В качестве Т ^{n+1,0} обычно используют Т ⁿ. Для получения хорошей точности (4-6 знаков) достаточно 3-5 итераций. Все затраты машинного времени на реализацию трехдиагональной схемы с лихвой окупаются возможностью увеличения τ и гарантированной устойчивостью счета.