RIPRENDENDO DISCORSO SULLA LCS: ragionamento "evolutivo" = LCS iterativo T(n) = P(x,y) -> ricorrivo -> dinamico

Eravamo a: scrivere il problema come combinazione di sottoproblemi.] n+1 · m+1 , con n=|x| e m=|y|

SOTTOPROBLEM 1:

S^{m,n} = { ... S^{m-1, n-2} S^{m, n-e} S^{0,2} ... ? Problema grosso = Combinazione di sotto problemi

STESSO PROBLEMA, ISTANZA PIÚ
PICCOLA (PREFISI) DI X e Y).

PROBLEMA IN TERMINI RICORSIVI

- · Quale del sottoproblemi sono "caso base"? Quando ISTANZA COLLASSA IN: Yi, YT dove i=0 V J=0
 L, IN QUESTO CASO | S'T | =0
- · Gual é la regola ricorsiva?

DATO IL GENERICO SOTIOPROBLEMA (i,j) CON ito e J > 0.

"Assumendo di avere gia visotto i problemi pui piccoli"

(a come nel merge Sort. $S^{(i,j)} = \int_{i}^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S^{i,5-1} \int_{i}^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S^{i,5-1} \int_{i}^{q_0} S^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S^{i,5-1} \int_{i}^{q_0} S^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S^{i,5-1} \int_{i}^{q_0} S^{q_0} S^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S^{i,5-1} \int_{i}^{q_0} S^{q_0} S^{q_0} S^{q_0} S^{q_0} ... S^{i,0} S^{i,1} ... S$

BEGOLA RICORSIVA:

Teorema: Sia (i, j) una generica Coppia con e>o e j>o, che individua il sottoproblema
Xi e 1j; Zk solutione del sottoproblema i, j, ha forma:

$$\begin{cases}
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle \\
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle
\end{cases}$$

$$\begin{cases}
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle \\
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle
\end{cases}$$

$$\begin{cases}
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle \\
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle
\end{cases}$$

$$\begin{cases}
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle \\
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle
\end{cases}$$

$$\begin{cases}
\chi_{i} = \langle \chi_{i}, \dots, \chi_{i} \rangle \\
\chi_{i} = \chi_{$$

E Zn-1 é soluzione del sottoproblema s'-1, j-1

$$\frac{e}{1} PASSO RICORSIVO: \int_{-\infty}^{i,j} \int_{-\infty}^{(i-1,j)} |\langle x_i \rangle$$
 SE $x_i = y_j \rightarrow CASO 1$

MEMORIPPATE (ogni Cottoreq. ne ha una), in una DEFINISCONO LA VARIABILI DEL PROBLEMA LE UTILIZZARE.

Solutione

(che supponiamo già di averc)

2) SE Xi
$$\neq$$
 $y_J \Rightarrow$ 2a) Se $Z_k \neq z_i$, allora $S^{(i,j)} = S^{(i-1,j)} \stackrel{\nu}{\longrightarrow} X_i$ non the relations "

2b) Se
$$Z_k \neq Y_J$$
, allora $S = S^{(i, J-1)} = Y_i$ non sta nella solutione Y_i

SiJ = Max \ Si-1, T; Si, T-1]

A priori peró - non ho Zu per il confronto } per questo mi affido alla riccisività doppia:

ALGORITMO RICORMVO:

? else }

ALBERO:

LCSLR(X: Y; I, J) f 11 (i=0 V J=0)} return E; -> <> else f If (Xi == 47) } LCsp(x, y, i-1, J-1) x:; i du i W = LCS_R (X,Y, i-1, J); R = (CS-R (x,y, i, J-4); If (| W| > | R|) f return W;

PROBLEMA "RIDOTIO": Date 2 sequenze, calcolate la Lunghezza della LCS.

ALGORITMO BOTTOM-UP: (con matrice)

// RIENPIO CON C. BASE

for
$$(J=0 \text{ to } n)$$
 $Co_{J}=0$

3

ESEMPLO:

$$|X|=(a_1b_1e_1b_1d_1a_1b_2=7$$

 $|Y|=(b_1d_1e_1a_1b_1a_2)=6$

if $(Ki = 4J) \rightarrow Ci_{-1}, J_{-1} + 4J$ else $\rightarrow \max \{Ci_{-1}, J\}, Ci_{3}, J_{-4}\}$ riempio la matrice.

return Cmin.

3

			6	1	6	a	6	a
		0	1		1 3	1 4	5	1 6
	0		-		+ -	<u>-</u>		
a	1		!			<u>-</u>		!
b	2			1	 			L
l	3		' . -	 - ;		,		! ~
6	4			1		\ 	 L	·
d	5		· 				,	
4	_ 6			1		1-	1	.)
b	7		(1		1	1	(

