第4回 自作CPUを語る会

自作4ビットCPU ZCU4

@yyhayami

ZCU4とは

- コンピュータサイエンスの学習におけるCPU構造 の理解のしやすさを狙ったオリジナル・アーキテ クチャの4ビットCPU
- ▶ CPU部を21個のロジックIC+メモリICでコンパクトに組み立てたCPUボード
- CPUの内部バスの動作が分かりやすいように、 バスのライン毎にLEDを接続すると共に内部レ ジスタのデータ値もLEDで表示

ZCU4 レジスタ構成

アキュームレータ インデックスレジスタ プログラムカウンタ 0 7 0 Aレジスタ(Acc.) IR0 PC IR1 **Bレジスタ** IR2 IR3 IR4 ゼロ・フラグ IR5 IR6 IR7 IR8 IR9 IR10 **IR11 IR12 IR13 IR14 IR15**

ZCU4 命令一覧

オリジナル4ビットCPU命令一覧

命令	コード	解説
NOP/HALT	00	何もしない/停止
STABX	1x	IXレジスタにBレジスタ,Aレジスタペアの内容を転送
LDA Im	2x	Aレジスタにイミディエイト(4ピット)を転送
LDB Im	3x	Bレジスタにイミディエイト(4ビット)を転送
OPA	4x	xが示す演算をAとBレジスタで実行して結果をAレジスタに転送
OPAM	5x	xが示す演算をAとBレジスタで実行して結果をAレジスタに転送
IN A	бх	Aレジスタに入力xポートを転送
OUT A	7x	Aレジスタを出力xポートへ転送
LDAX	8x	AレジスタにIRxレジスタが示すアドレスのメモリの内容を転送
LDBX	9x	BレジスタにIRxレジスタが示すアドレスのメモリの内容を転送
STAX	Ax	IRxレジスタが示すアドレスのメモリにAレジスタを転送
STBX	Вх	IRxレジスタが示すアドレスのメモリにBレジスタを転送
JNZ	Сх	ZゼロフラグがないとIRxレジスタが示すへジャンプ
JNC	Dx	CキャリーフラグがないとIRxレジスタが示すへジャンプ
JMP	Ex	xレジスタが示すへジャンプ , x=FでCALLからのリターン
CALL	Fx	IRxレジスタが示すアドレスのサブルーチンを実行

OP演算の種類

	命令	コード	解説			
OP	SBC	0110	減算			
	ADC	1001	加算			
	DEC	1111	1デクリメント			
ОРМ	NOT	10000	否定			
	XOR	10110	排他論理和			
	XNOR	11001	否定排他論理和			
	MOV A,B	11010	Bレジスタを転			
	AND	11011	論理積			
	OR	11110	論理和			

フラグ

Z	ゼロフラグ
С	キャリーフラグ

1A

1B

1E

CPUの構造の三要素

▶ 動作タイミング

システム・クロックを中心として複数のクロックを生成して、それにより各部の動作の順番を取り決める。

バスのコントロール制御

CPU内部には、外部に出ているアドレスバスやデータバスの元のバスの他に様々なバスがある。それらのバスは、乗っているデータの出力元が異なるため、それを制御するコントロール信号が的確に行われる必要がある。

・ 命令デコード 命令コードを解誌して 久郊にどのような郵

命令コードを解読して、各部にどのような動作を行うかを指示する。

CPUの表面的な動きは、3命令デコードが中心のように思いがちだが、 1動作タイミングと2バスのコントロール制御が重要である。

・A レジスタに 3 をロード

ZCU4 (10Hz)

LDA #3

・インデックス 1 に格納されている メモリアドレス 03 ヘジャンプ ZCU4 (10Hz)

JMP 3

20 START:	LDA	#0
30	LDB	#0
10	STABX	0
21	LDA	#1
11	STABX	1
20	LDA	#C
12	STABX	2
2D	LDA	#D
13	STABX	3
31	LDB	#1
25	LDA	#5
14	STABX	4
	30 10 21 11 20 12 2D 13 31 25	30 LDB 10 STABX 21 LDA 11 STABX 2C LDA 12 STABX 2D LDA 13 STABX 31 LDB 25 LDA

```
OC 20 LOOP1:
                           #0
                  LDA
    A0 L00P2:
OD.
                  STAX
                  OUTA
0E
    70
0F
    60
                  INA
10
                  STAX
    A1
                  LDBX
11
    91
                  LDAX
12
    80
                                 // OPA (ADC)
13
    49
                  ADC
                           L00P2
                  JNC
14
    D3
```

```
A0 L00P3:
15
                  STAX
16
    70
                  OUTA
                   INA
    60
                  STAX
18
    A1
                   LDBX
19
    91
                  LDAX
    80
1A
    46
                  SBC
                                // OPA (SBC)
1B
                           L00P3
1C
                  JNZ
    C4
    25
                           #5
1D
                  LDA
1E
    70
                  OUTA
1F
    E2
                  JMP
                           L00P1
20
    00
                  HALT
```

将来の改良

- ▶ プログラムコード書き換え ROM装置作成
- ▶ PC+2をインデックスレジスタへ格納する命令の追加
- ・稀少ロジックIC問題解決のための GAL化(PIC化?)