1. Suppose f and \bar{f} are analytic on some domain D. Show that f is constant.

Let
$$f = u(x,y) + iv(x,y)$$
 and $\bar{f} = u(x,y) - iv(x,y)$ for some $u(x,y), v(x,y)$.

Then by Cauchy-Riemann equations, all of these must hold:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \\ u_x = -v_y \\ u_y = v_x \end{cases}$$

Solve for u_x and v_x , we arrive at $u_x = v_x = 0$. So for any $z \in D$, f'(z) = 0, or f is constant.

2. Suppose f is analytic on domain D. Suppose |f(z)| is constant. Show that f is constant.

Let |f(z)| = c for some constant c. If c = 0, f is constant.

If $c \neq 0$, it follows that $f\bar{f} = c \neq 0$, so $f(z) \neq 0$ in D.

Then $\bar{f} = \frac{1}{f}$, which is the quotient of two analytic functions, so \bar{f} is analytic.

Thus from Problem 1, f is constant.

3. Suppose f is analytic on domain D and f is real-valued. Show that f is constant.

Since f(z) = u(x,y) + iv(x,y) is real-valued, v(x,y) = 0. It follows that, from Cauchy-Riemann equations, $u_x = v_y = 0$ and $u_y = -v_x = 0$. Thus f(z) = u(x,y) = c for some constant c. \square