

INGENIERIA PREPARADA POR:

MARCOLIN BRUNO M-6361/4

DIMENSIONAMIENTO Y VERIFICACIÓN DE CICLÓN PARA MATERIAL PARTICULADO EN PLANTA DE TRATAMEINTO DE SEMILLA.

PLANTA: PLANTA DE BENEFICIO DE SEMILLA SECCION: DESCARGA DE NORIA Y ZARANDAS

ITEM: CLASIFICACION POR TAMAÑO **PARTE: SEPARADOR CICLONICO**

- 1. OBJETIVO
- 2. RESUMEN
- 3. OBSERVACIONES
- 4. REFERENCIAS
- 5. PROCEDEMIENTO DE CALCULO
- 6. VERIFICACIÓN CICLON
- 7. DISEÑO CONDUCTOS DE ASPIRACIÓN

	REVISIONES				
Nro.	Descripción	Preparó	Verificó	Aprobó	
Α	PRELIMINAR PARA CORRECCION	BRUNO			
_ ^		08/06/2020			

1-OBJETIVO

La presente memoria de cálculo tiene como objetivo sentar las bases para el diseño del sistema de limpieza de aire de la planta de beneficio de semillas, con la finalidad de disminuir las concentraciones de materiales particulados, reduciendo asi el impacto que este genera sobre la salud de los operarios y el daño sobre los componentes eléctronicos.

2- REFERENCIAS

Se han tomado como referencia los sigueintes documentos

Leyes decretos y normas:

* Ordenanza provincial 5820/94

Planos de referencia
*Planos varios de piezas y
componentes

Bibliografía

- *Diseño óptimo de ciclones- Carlos Alberto Echeverri Londoño- Universidad de Medelli
- *Disminucion de contaminantes aereos en una planta de balanceados mediante la propuesta de un extractor de polvo- L. Buchelli Carpio y Miguel Reinoso Sanchez.

3- OBSERVACIONES

Dentro de lo que respecta al proceso de investigacion, no se pudo contar con valores exactos de los caudales másicos de material a extraer, ni la distribución exacta de los tamaños del material particulado, por lo que se tomo como datos de entrada los desarrollados en otros trabajos de investigación a plantas de procesos productivos similares, confiando en la fidelidad de los resultados obtenidos en tales proyectos. Los mismos son citados en el apartado "Bibliografía".

4- REFERENCIAS

El resultado de esta memoria de cálculo, permitió definir las dimensiones de el ciclón a instalar en planta y además determinar la eficiencia del mismo, por un modelo de cálculo detallado en el informe de este trabajo. Este cálculo de eficiencia sera luego comparado a los resultados obtenidos por las simulaciones DEM, llevadas a cabo en la sección de validaciones de este proyecto.

Distribución de tamaños de las partículas					
Rango de Tamaño (microne	es)	%Másico	Dp(µm)		
5	18	43,2	11,5		
36	74	30,6	55		
74	150	18,6	112		
150	215	5,1	182,5		
100	200	2,5	150		

5- PROCEDIMIENTO DE CÁLCULO.

	PARAMETROS DE DISEÑO			
ID	ATRIBUTO	VALOR	UNIDAD	OBS
ρ_ p	Densidad de particulas	1000	kg/m^3	=
T	Temperatura de operación	300,00	K	=
ρ_ai	Densidad de aire	1,21	kg/m^3	-
Р	Presión de operación	85,3	Кра	=
-	Concentracion de partículas	2	g/m^3	-
E_req	Eficiencia de separación mínima	80	%	-
Vi	Velocidad de entrada al ciclon	16	m/s	-
Lc	Longitud campana	0,8	m	-
Ac	Ancho campana	2	m	-
μ	viscosidad del gas portador	3,57E-05	kg/ms	Ε.
R	Proporción partículas/aire en masa	0,15%	-	-
m_p	Caudal másico estimado de extracción	10	Kg/h	L

Siguiendo el principio establecido en diversas bibliografías, una concentración en masa del 0,15% de partículas contaminantes en el seno del aire, no genera problemas de deposición en los ductos, se procede a determinar el caudal de aire necesario y con ello se dimensiona el diámetro de ciclón, para posteriormente dimensionar los demás componetes del mismo, que se hallan estandarizados en función del diamétro segun el tipo de ciclón. Como cerca del 44% de las partículas estan cercanas a los 10 µm se eligío un ciclón del tipo de alta eficiencia "Stairmand".

Fig (I)- Dimensiones caracteresticas de un ciclón.

CÁLCULOS DIMENSIONES				
ID	DESCIPCIÓN	VALOR	UNIDAD	OBS
Q	Caudal de aire	1,53	m^3/s	
Α	Aréa ducto de entrada	0,10	m^2	
Vpe	Velocidad en punto de extracción	0,96	m/s	
Dc	Diámetro ciclón	0,98	m	
a	Altura entrada ciclón	0,49	m	
b	Ancho de entrada	0,20	m	
s	altura de salida	0,49	m	
Ds	Diámetro de salida	0,49	m	
h	Altura parte cilíndrica	1,47	m	
z	Altura parte cónica	2,45	m	
Н	Altura total ciclón	3,91	m	
В	Diámetro salida de particulas	0,37	m	

Se procedío a efectuar posteriormente el cálculo de la eficiencia del equipo.

	CÁLCULO EFICIENCIA				
ID	DESCIPCIÓN	VALOR	UNIDAD	OBS	
W	Velocidad equivalente	0,68	m^2	-	
Vs	Velocidad de saltación	12,04	m/s	-	
Vsc	Volumen evacuado S/salida	0,14	m^3	-	
L	Longitud natural del ciclón	2,42	m	-	
KI	Factor de dimensiones lineales	0,52	m	-	
VR	Volumen del ciclón evacuado S la long	1,84	m^3	-	
Kc	Factor dim. de las prop. Vol del ciclón	1,13	m	-	
Ka	Relación altura entrada y diamétro ciclón	0,50	m	-	
Kb	Relación ancho entrada y diamétro ciclón	0,20	m	-	
G	Factor de configuración	906,51	-	-	
n	Exponente de vortice	0,66	-	-	
NH	Número de cabezas de velocidad	6,40		 -	
ΔΡ	Caida de presión	991,23	Pa	-	

Finalmente mediante la teoria de Leitch y Licht se procedío a calcular la eficiencia fraccional, como la sumatoria del producto de las eficiencias fraccionales por la masa fraccional.

	EFICIENCIA FRACCIONAL			
%Másico	Dp(μm)	Ti (s)	ni	nixmi
43,2	11,5	2,06E-04	0,74	31,95
30,6	55	4,71E-03	0,97	29,63
18,6	112	1,95E-02	0,99	18,51
5,1	182,5	5,18E-02	1,00	5,10
2,5	150	3,50E-02	1,00	2,50
EFICIENCIA TOTAL %			87,68	

6- VERIFICACIÓN CICLON

VERIFICACIONES			
Parámetro a evaluar	Criterio	Valor	Observación
Diamétro del ciclon	Dc<1 m	0,98	VERIFICA
Relación velocidades	Vi/Vs<1,35	1,33	VERIFICA
Condición L <h-s< td=""><td>L<h-s< td=""><td>3,42</td><td>VERIFICA</td></h-s<></td></h-s<>	L <h-s< td=""><td>3,42</td><td>VERIFICA</td></h-s<>	3,42	VERIFICA
Caída de presión	ΔP <2488 Pa	991,23	VERIFICA
Eficiencia total	Ecal>Ereq	87,68	VERIFICA

Obs: para detalles sobre los modelos de cálculo desarrollados, consultar informe del proyecto.

7- DISEÑO CONDUCTOS DE ASPIRACIÓN.

En la siguiente instancia se procederán a determinar velocidades y secciones de las tuberias para los puntos de extracción. Según la densidad de las partículas en suspensión las mismas tienen distintas velocidades de transporte para evitar la deposición de las mismas.

En base a los tamaños de las particulas y su densidad se define la velocidad de captación, que según la tabla (1) nos da que la misma ronda los 0,15 m/s.

Por otro lado se determina en la tabla (2) la velocidad mínima de transporte en tuberias con la finalidad de evitar la deposición de las partículas en el ducto y dificultar el transporte neumático.

Asi en base al caudal de trabajo se procedió a calcular la sección máxima de las tuberias que proporciona la velocidad de transporte deseada y ademas las dimensiones de la campana de extracción.

	SECCIONES TUBERIAS SISTEMAS DE VENTILACIÓN					
ID	ID Atributo Valor Unidad Observ					
V_mc	Velocidad mín. de captación de partículas	0,15	m/s			
V_mcn	Velocidad mín. circuito neumático	10	m/s			
Q	Caudal de aire	1,53	m^3/s			
A_a	Seccion máxima punto de aspiración	3,19	m^2	Sec. Cuadrada		
D_cn	Diámetro max. tubería de aspiración	0,31	m			
D_cnd	Diámetro tub. aspiración de diseño	0,25	m			

Calculadas las secciones, se procedió a efectuar el tendido de la instalación (estimativo) y con ello calcular las pérdidas de carga tanto por altura como por accesorios y potencia requerida en el soplador.

El tendido aproximado del circuito se corresponde con el de las fig. (II), se adjunta tambien una breve lista de los accesorios del circuito, para luego calcular las pérdidas de carga pertinentes. El material empleado para efectuar el tendido es chapa galvanizada (CG de aquí en adelante).

	SECCIONES TUBERIAS SISTEMAS DE VENTILACIÓN			
Párametro	Diametro de la tuberia [m]	Longitud	Caudal [m^3/h]	Velocidad de flujo [m/s]
X1	0,5	1,85	5509,64	7,79
X2	0,5	3,14	5509,64	7,79
Х3	0,25	1,5	5509,64	31,18
X4	0,25	0,4	2754,82	15,59
X5	0,25	1,3	5509,64	31,18
Х6	0,16	0,42	2754,82	38,06
X7	0,16	0,2	2754,82	38,06
X8	0,16	0,4	2754,82	38,06
Х9	0,25	0,4	2754,82	15,59
Y1	0,5	7,1	5509,64	7,79
Y2	0,5	1,2	5509,64	7,79
Y3	0,16	2,2	2754,82	38,06
Y4	0,16	0,2	2754,82	38,06
Y5	0,25	2,1	5509,64	31,18

Fig (II)- Trazado estimado de ductos de aspiración. Detalles en vista lateral y superior.

Determinación de pérdidas de carga en segmentos rectos				
Tuberia	Parámetro j [mmdca/m]	Pérdida de carga (mmcda)	Presión dinámica [mmcda]	
X1	0,136	0,251	3,73	
X2	0,136	0,426	3,73	
Х3	4,402	6,602	59,64	
X4	1,179	0,472	14,91	
X5	4,402	5,722	59,64	
X6	11,082	4,655	88,87	
X7	11,082	2,216	88,87	
X8	11,082	4,433	88,87	
X9	1,179	0,472	14,91	
Y1	0,136	0,963	3,73	
Y2	0,136	0,163	3,73	
Y3	11,082	24,381	88,87	
Y4	11,082	2,216	88,87	
Y5	4,402	9,243	59,64	

Pérdidas de cargas por accesorios			
Accesorio	Parámetro	Valor K	
Cod 90° 500	Relacion R/D =2	0,55	
Cod 90° 250	Relacion R/D =2	0,55	
Codo 90° 160	Relacion R/D =2	0,55	
Codo 45° 160	Relacion R/D =2	0,275	
Empalme 250	Angulo de emplame: 90 [°]	1	
Reducción	Relacion de areas: 0,41	0,37	
Campana D	K entrada	0,25	
Campana D	Kranura	1,6	
Camanana C	K entrada	0,3	
Campana C	K ranura	1,6	
Brida	К	0,49	
Valv. abierta	К	0,2	

Determinación de las pérdidas de carga por tramos				
Tramo	Sumatoria de K	Perdida de carga en mmca		
AB	2,63	11,606		
AB BC CD CE	2,59	176,03		
CD	3,51	341,20		
CE	3,735	341,47		

Obs: En ninguna de estas pérdidas de carga se considera la provocada por el ciclón que según lo calculado por el modelo de cálculo en la sección previa equivale a:

Perdida de carga en ciclón

99,12 mmca

Asi resulta finalmente las pérdidas de cargas entre los extremos de la red desde los puntos de toma hasta el ventilador centrifugo:

TRAMO	PÉRDIDA DE CARGA EN mmca	UNIDAD
AD	627,961	mmca
AE	628,229	mmca

Con estos datos vemos que en primer lugar se verifica el concepto de equilibrio dinámico en el nudo, planteando como dato de entrada que los caudales son identicos en ambos ramales CD y CE, puesto que de no haberse cumplido hubiese existido la necesidad de iterar hasta hallar los valores de caudales que producen perdidas de cargas identicas en ambos ramales.

Balance de presion dinámica en el nudo

Con los datos obtenidos de pérdidas de carga de la instalación procedemos a calcular la potencia mínima del equipo centrífugo.

Potencia (W)	P=Q.ΔP_tv=Q.h_tv.ρ_a.g	9,4	(KW)
ventilador			

Tablas de interes usadas para el desarrollo de la memoria de cálculo:

