- 5 Тестирование на модельных и реальных примерах.
- 5.1 Описание и анализ исключительных ситуаций

При написании программного продукта для перехвата исключительных ситуаций использовался механизм исключений языка С++.

Обработка исключений поддерживается в C++ посредством операторов try, catch, trow, образующих блок обработки исключения. В общем случае блок выглядит следующим образом:

```
try {
    throw E();
}
catch (H) {
    //Обработка исключительной ситуации
}
```

Все исключения обрабатываются программой самостоятельно. Если обучающая выборка пуста, то выдается сообщение об ошибке, как на рисунке 5.1.

Рисунок 5.1 Сообщение об ошибке.

					Тестирование на модельных и реальных примерах				
Изм	Лист	№ докум.	Подпись	Дата					
Разр	аб.					Лит.	Лист	Листов	
Рукс	вод.				ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ДЛЯ				
Кон	сул.				АВТОМАТИЧЕСКОЙ АВТОРИЗАЦИИ	CKA EFTY III B E III WARRE II		III.wana IID	
Н. Контр.				·	ПОЛЬЗОВАТЕЛЕЙ ОС UNIX	СКФ БГТУ им. В.Г.Шухова, Г 41			
Зав.	каф.	Поляков В.М.							

5.2 Исследование временных характеристик

Тестирование временных характеристик процесса обучения нейронной сети проводилось на множестве данных мощностью 50, 100, 200, 500, 800. Результаты приведены в таблице 5.1.

Таблица 5.1 — Временные характеристики процесса обучения нейросети

Мощность данных	Точность	Время работы
50	30,00%	2,5 минуты
100	50,00%	5 минут
200	70,00%	10 минут
500	80,00%	25 минут
800	85,00%	40 минут

Из таблицы видно, что время работы зависит от размерности данных линейно, но процесс обучения занимает большое количество времени.

Для увеличения скорости работы можно предпринять следующие шаги:

- а) Использовать оптимизацию кода компилятором;
- б) Использовать параллельное программирование;
- в) Формировать меньшее количество исключительных ситуаций;
- г) Использовать емкие вызовы.

В данной работе использовались подходы а и б. Была включена оптимизация для повышения скорости, интенсивные оптимизации циклов, межпроцедурная оптимизация. Ресурсоемкая функция расчета фитнесса была переписана с использованием библиотеки распараллеливания кода ОрепМР. Новые временные характеристики приведены в таблице 5.2.

5.3 Описание функционирования

Основное окно программы, изображенное на рисунке 5.2, состоит из поля отображения данных полученных с камеры, таблицы отображения снимков,

						Лист
					Тестирование на модельных и реальных примерах	
Изм.	Лист	№ докум.	Подпись	Дата		

кнопок управления программой.

Таблица 5.1 — Измененые временные характеристики процесса обучения нейросети

Мощность данных	Точность	Время работы
50	30,00%	0,25 минуты
100	50,00%	0,5 минут
200	70,00%	1 минут
500	80,00%	2,5 минуты
800	85,00%	4 минуты

Программа может работать в двух режимах:

- Обучение;
- Распознавание.

Для изменения режима работы программы используется раскрывающийся список.

Рисунок 5.2 Основное окно программы

						Лист
					Тестирование на модельных и реальных примерах	
Изм.	Лист	№ докум.	Подпись	Дата		

При нажатии на кнопку «снимок» полученное с камеры изображение помещается в таблицу. Рядом с каждым отснятым изображением расположен элемент пользовательского интерфейса называемый CheckBox. С помощью него можно выделить неудачные снимки и по нажатию на кнопку «Удалить выделенные» изображения будут удалены из таблицы и жесткого диска компьютера.

Кнопка «старт обучения» служит для запуска обучения нейронной сети. В качестве обучающей выборки будут использоваться снимки расположенные в таблице.

При нажатии на кнопку «настройки программы» открывается окно изображенное на рисунке 5.3. С помощью него можно изменить следующие параметры генетического алгоритма:

- Величина мутации;
- Вероятность мутации;
- Размер популяции;
- Начальная температура;
- Конечная температура;

Settings	- + x
Параметры об	учения
Величина мутации:	20
Вероятность мутации:	20
Размер популяции:	30
Начальная температура:	10000
Конечная температура:	10
Сохранить нас	тройки

Рисунок 5.3 Окно настроек программы.

						Лист
					Тестирование на модельных и реальных примерах	
Изм.	Лист	№ докум.	Подпись	Дата		

По нажатию на кнопку «сохранить настройки» параметры генетического алгоритма сохраняются в файл на жестком диске.

Для авторизации пользователей по изображению лица был скомпилирован отдельный модуль (рисунок 5.4), подключаемый к системе авторизации PAM Unix-систем.

Рисунок 5.4 Модуль автоматической авторизации пользователей.

Pluggable Authentification Modules (PAM, подключаемые модули аутентификации) — это набор разделяемых библиотек, которые позволяют интегрировать различные низкоуровневые методы аутентификации в виде единого высокоуровнего API. Это позволяет предоставить единые механизмы для управления, встаивания прикладных программ в процесс аутентификации. Является одной из частей стандартного механизма обеспечения безопастности Unix-систем.

						Лис
					Тестирование на модельных и реальных примерах	
Изм.	Лист	№ докум.	Подпись	Дата		