Game Theory and Applications (博弈论及其应用)

Chapter 7: Two-Player Zero-Sum Game

南京大学

高尉

Recap on the previous chapter

- Strategy game with incomplete information
- Bayes game $G = \{N, \{A_i\}, \{\Theta_i\}, \{u_i\}, p\}$
- Bayes Nash Equilibrium
- How to find Bayes Nash equilibrium

Two-Player zero-sum game

Definition A **two-player zero-sum game** is a strategy game $G = \{\{1,2\}, \{A_1, A_2\}, \{u_1, u_2\}\}$ such that $u_1(a_1, a_2) + u_2(a_1, a_2) = 0$ for $a_1 \in A_1$ and $a_2 \in A_2$

One player wins while the other losses

Rock-Paper-Scissors		Player 2						
		R	ock	Pa	per	Sc	eissors	
		Rock	0	0	-1	1	1	-1
	Player 1	Paper	1	-1	0	0	-1	1
C1		Scissors	-1	1	1	-1	0	0
Chess								

War are seldom zero-sum game

Example

We consider a zero-sum game

L
M
R

U
1 -1 1 -1 8 -8

Player 1 M
5 -5 2 -2 4 -4

D
7 -7 0 0 0 0

It is not necessary to keep track of both payoffs. We keep the first player payoff only by convention.

Player 2

The abbreviation is

	L	M	K
U	1	1	8
Player 1 M	5	2	4
D	7	0	0

Maxmin (最大化最小原则)

For this game, both player do not do too badly Player 1 method

Calculate minimization for each strategy, and maximize

Player 1 selects M

$$\mathbf{M} \in \operatorname*{argmax}_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Maxmin

For this game, both player do not do too badly Player 2 method:

calculate minimization for each strategy and Maximize $\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2)$

		Player 2		
		L	M	R
Dlarray 2 galages M	U	1	1	8
Player 2 selects M	Player 1 M	5	2	4
	D	7	0	0

Maxmin (最小化最大原则)

Player 2 method:

$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2)$$
 From $u_2(a_1, a_2) = -u(a_1, a_2)$, we have
$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = \max_{a_2 \in A_2} \min_{a_1 \in A_1} -u(a_1, a_2)$$
 By $\max(-f(x)) = -\min(f(x))$ and $\max(-f(x)) = -\min(f(x))$
$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = -\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

$$\max_{a_2 \in A_2} \min_{a_1 \in A_1} u_2(a_1, a_2) = -\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

Player 2 method:

$$\underset{a_2 \in A_2}{\operatorname{argmin}} \max_{a_1 \in A_1} u(a_1, a_2)$$

Minmax

For this game, both player do not do too badly Player 2 method:

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

		Player 2		
		L	M	R
Dlarray 2 aglasta M	U	1	1	8
Player 2 selects M	Player 1 M	5	2	4
	D	7	0	0

Two-players zero-sum method

For this game, both player do not do too badly

Player 1 method

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Player 2 method

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2) = \min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2)$$

Another Example

Another example

Player 2

		L	M	R
	U	2	6	1
Player	1 M	3	1	4
1	D	4	3	6

Player 1 method

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2) = 3$$

Player 2 method

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) = 4$$

$$\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) > \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$$

Lemma For two-player zero-sum finite game G, we have $\min_{a_2 \in A_2} \max_{a_1 \in A_1} u(a_1, a_2) \ge \max_{a_1 \in A_1} \min_{a_2 \in A_2} u(a_1, a_2)$

Proof. See board.

Two-Players Zero-Sum Nash Equilibrium

Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1, A_2\}, u\}$, let player 1 select

$$a_1^* \in \underset{a_1 \in A_1}{\operatorname{argmax}} \min_{a_2 \in A_2} u(a_1, a_2),$$

and let player 2 select

$$a_2^* \in \underset{a_2 \in A_2}{\operatorname{argmin}} \max_{a_1 \in A_1} u(a_1, a_2).$$

The strategy outcome (a_1^*, a_2^*) is a Nash Equilibrium if and only if

$$\max_{a_1 \in A_1} \min_{a_2 \in A_2} u_1(a_1, a_2) = \min_{a_2 \in A_2} \max_{a_1 \in A_1} u_1(a_1, a_2)$$

Proof. See board.

Find Nash Equilibrium

(M, M) is a NE

		Player 2		
		L	M	R
	U	2	6	1
Player	1 M	3	1	4
	D	4	3	6

Diamer 1

(D, L) is not a NE

Mixed strategy

Strategic game

$$N = \{1,2\}$$

 $A_1 = \{a_1, a_2, ..., a_m\}, A_2 = \{b_1, b_2, ... b_n\}$
 $u_1(a_i, b_j) = u(a_i, b_j) = u_{ij}, M = (u_{ij})_{m \times n}$

Mixed strategy

$$p = (p_1, p_2, ..., p_m) \in \Delta_1$$
 is a mixed strategy over A_1 $q = (q_1, q_2, ..., q_n) \in \Delta_2$ is a mixed strategy over A_2 The expected payoff for player 1 on mixed outcome (p, q)

$$U(p,q) = \sum_{i,j} p_i q_j u(a_i, b_j) = \sum_{i,j} p_i q_j u_{ij} = p M q^{\mathsf{T}}$$

MinMax and MaxMin

Player 1's methods:

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) = \max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\mathsf{T}}$$

Player 2's methods:

$$\min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q) = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\mathsf{T}}$$

Lemma We have

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) \le \min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q)$$

Proof See board.

Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1, A_2\}, u\}$, let player 1 select

$$p^* \in \underset{p \in \Delta_1}{\operatorname{argmax}} \min_{q \in \Delta_2} U(p, q)$$
,

and let player 2 select

$$q^* \in \underset{q \in \Delta_2}{\operatorname{argmin}} \max_{p \in \Delta_1} U(p, q)$$
.

The mixed strategy outcome (p^*, q^*) is a MNE if and only if

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} U(p, q) = \min_{q \in \Delta_2} \max_{p \in \Delta_1} U(p, q)$$

John von Neumann's Minimax Theorem (1928)

The Minmax Theorem For two-player zero-sum finite game $G = \{\{1,2\}, \{A_1,A_2\}, u\}$, we have $\max_{p \in \Delta_1} \min_{q \in \Delta_2} p Mq^\top = \min_{q \in \Delta_2} \max_{p \in \Delta_1} p Mq^\top.$

Corollary: Two-person finite zero-sum games have at least one mixed-strategy Nash-equilibrium: any pair of optimal strategies is a Nash equilibrium.

Theorem The optimization problem of $\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top}$ is equivalent to

```
max v

s.t.

e_i M q^{\top} \ge v \text{ for } i = 1 \dots n

q = (q_1, \dots, q_n) \in \Delta_2

e_i = (0, \dots, 0, 1, 0, \dots, 0)
```

Proof see board.

Linear programming: can be solved in polynomial time

Theorem The optimization problem of $\min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\mathsf{T}}$ is equivalent to

```
min v

s.t.

pMe_i^{\top} \le v \text{ for } i = 1 \dots n

p = (p_1, \dots, p_m) \in \Delta_1

e_i = (0, \dots, 0, 1, 0, \dots, 0)
```

Proof see board.

Linear programming: can be solved in polynomial time

Symmetric Game (2-player zero-sum)

Symmetric strategic game

$$N = \{1,2\}$$

 $A_1 = \{a_1, a_2, ..., a_n\}, A_2 = \{b_1, b_2, ... b_n\}$
 $u_1(a_i, b_j) = u_{ij}, M = (u_{ij})_{n \times n}, \mathbf{M} = -\mathbf{M}^{\top}$

Theorem For a symmetric game, we have
$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top} = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\top} = 0$$

Proof. See abroad.

NE for Symmetric Game (2-player zero-sum)

Symmetric strategic game

$$N = \{1,2\}$$

 $A_1 = \{a_1, a_2, ..., a_n\}, A_2 = \{b_1, b_2, ... b_n\}$
 $u_1(a_i, b_j) = u_{ij}, M = (u_{ij})_{n \times n}, M = -M^{\top}$

Solve: pM = 0 and $p \in \Delta_1$ and q=p

	Α	В	C
	0	2	-1
Ш	-2	0	3
Ш	1	-3	0

How to find Nash Equilibria

- 1) Calculate directly
 - − I) find the best response functions
 - II) calculate Nash equilibria

2) Eliminate all dominated strategy

3) For two-player zero-sum player, linear programming