Project Hypothesis

A collection of past patient vitals and their heart attack outcomes can be used to create a predictive model that can accurately assess a new patient's risk of experiencing a heart attack based on their current vitals.

Product Accuracy

The current KNN model is 92% accurate.

Previous Product Model Testing

During initial testing, various models were tried, and KNN displayed strong results out of the gate:

```
Logistic Regression Accuracy: 0.8525
K-Nearest Neighbors Accuracy: 0.9180
Random Forest Accuracy: 0.8361
Support Vector Machine Accuracy: 0.8689
Naive Bayes Accuracy: 0.8689
Decision Tree Accuracy: 0.7541
```

The models were all placed into a dictionary and looped through so they could all be tested:

```
models = {
    'Logistic Regression': LogisticRegression(),
    'K-Nearest Neighbors': KNeighborsClassifier(n_neighbors=5),
    'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
    'Support Vector Machine': SVC(probability=True),
    'Naive Bayes': GaussianNB(),
    'Decision Tree': DecisionTreeClassifier(random_state=42)
}
```

After playing with various parameters, KNN just seemed like the clear winner, and a few other numbers were tried for the number of neighbors, but the best performance seemed to be 6, which boosted the accuracy to 93%

KNN Classifi	icatior	n Report:			
	pre	cision	recall	f1-score	support
ſ	9	0.90	0.97	0.93	29
d d	1	0.97	0.91	0.94	32
accuracy	,			0.93	61
macro avo	j	0.93	0.94	0.93	61
weighted avo	1	0.94	0.93	0.93	61