SubjectName/Code: ENGINEERING CHEMISTRY (CH1001)

Detailed Syllabus:

Module#	Topics	Hours
Module-1	WaterTreatments:Types of hardness-Units,Alkalinity of water and its significance, Softening methods and Numerical problems based on these methods,Membrane-based processes, Dissolved Oxygen, Problems with Boiler feed water and its Treatments.	9
Module-2	Corrosion Science: Definition and scope of corrosion, Dry and wet corrosion, Direct chemical corrosion, Electro-chemical corrosion and its mechanisms, Types of electro-chemical corrosion (Differential aeration, Galvanic, Concentration cell), Typical Electro-chemicalcorrosionlike Pitting, Soil, Waterline, Factors affecting corrosion, Protection from corrosion.	8
Module-3	InstrumentalTechniques:FundamentalsofSpectroscopy, Principles and applications of molecular spectroscopy such as UV-visible, IR, Elementary idea about XRD, SEM & TEM	8
Module-4	EnergySciences:Typesoffuels,Calorificvalue,Determination of calorific value, Combustion and its calculations, Solid fuel – Coal analysis (Proximate and ultimate analysis), Liquidfuels – Concept of knocking, Anti-knocking, Octane and Cetane Nos, Battery Technology — Fundamentals of primary & secondary cells, Rechargeable batteries – Lead acid storage battery, Lithium ion battery, Fuel cells – Principles, Applications, Solar PV Cells.	9
Module-5	Nanochemistry:Nanomaterials, Classification of nanomaterials, Synthesis and characterization of noble metal nanoparticles (Gold and oxide-based nanoparticles) using Green Synthetic route, Stabilization of nanoparticles using capping agents, Applications of nanomaterials, Carbon based nanomaterials and Their applications, Brief idea on Graphene and Fullerene.	8
	Total	42 Hours

TextBook

EngineeringChemistry,Jain&Jain,DhanpatRaiPublishingCompany Engineering Chemistry, Wiley-India Editorial Team, Wiley India FundamentalsofMolecularSpectroscopy,C.N.Banwell,McGraw-Hill Education

ReferenceBook

Nanochemistry-A Chemical Approachto Nanomaterials, G.A. Ozin&A. CArsenault, RSC Publishing Concepts of Nanochemistry, J. M. Lehn, L. Cademartiri, Wiley-VCH Engineering Chemistry, S. S. Dara, 12th Ed Elementary Organic Spectroscopy, Y.R. Sharma, SChand&Co Ltd

OnlineReferenceMaterial(s): Course

Outcome:

CO1	Determinethehardnessofwaterandapplydifferenceprocessestosoftenhardwater
CO ₂	Utilizetheknowledgeofelectro-chemistryandcorrosionscienceforpreventionofcorrosion
CO3	Applymolecularspectroscopytoanalyzeorganiccompoundsusingspectrophotometer.
CO4	Classifyvariousfuelsbasedoncombustionparametersandunderstandtheworkingprinciplesof various batteries and solar photovoltaic cells.
CO5	Exploresynthesis&characterizationofnanoparticlesthroughgreensynthetic route.

ProgramOutcomesReleventtotheCourse:

rogran	nOutcomesReleventtotheCourse:
PO1	Engineeringknowledge:Applytheknowledgeofmathematics,science,engineeringfundamentals, and an engineering specialization to the solution of complex engineering problems
PO2	Problemanalysis:Identify,formulate,reviewresearchliterature,andanalyzecomplexengineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conductinvestigationsofcomplexproblems:Useresearch-basedknowledgeandresearchmethods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineeringandITtoolsincludingpredictionandmodelingtocomplexengineeringactivities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland culturalissues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environmentandsustainability:Understandtheimpactoftheprofessionalengineeringsolutionsin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics:Applyethicalprinciplesandcommittoprofessionalethicsandresponsibilitiesandnormsof the engineering practice.
PO9	Individualandteamwork:Functioneffectivelyasanindividual,andasamemberorleaderin diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering communityandwithsocietyatlarge, suchas, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering andmanagementprinciplesandapplythesetoone'sownwork,asamemberandleaderinateam, to manage projects and in multidisciplinary environments.

PO12

Life-longlearning:Recognizetheneedfor,andhavethepreparationandabilitytoengagein independent and life-long learning in the broadest context of technological change.

MappingofCO'stoPO's:(1:Low,2:Medium,3:High)

11 0									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
CO1	2	2	1	1	1	2	1	1	
CO2	3	2	1	1	1	2	1		1
CO3	2	2	1	1	1	3	1	1	1
CO4	2	2	1	1	2	2	1	1	1
CO5	2	2		1	1	1	1		