Table des matières

1	Inti	roduction	2
2	Bas 2.1 2.2 2.3 2.4	2.4.3 Exemples	4 4 6 8 8 11 12 14
3	Bas	se régulière du sous-module $\operatorname{Int}_n^r(E,D)$	16
•	3.1	$n \leftarrow r$	16
	3.2		$\frac{10}{17}$
	3.3		$\frac{11}{17}$
	3.4		20
	3.5		$\frac{20}{22}$
	0.0	±	23
			$\frac{25}{25}$
			$\frac{25}{25}$
		•	27
4	Bas	se régulière du sous-module $\operatorname{Int}_n^M(E,D)$	28
	4.1		28
	4.2		28
	4.3	Base régulière dans le cas local	29
	4.4	Base régulière	31
	4.5	Calcul effectif pour $E=D$	33
			33
		4.5.2 Algorithme pour $\operatorname{Int}_n^M(D)$	35
		4.5.3 Exemples	35
		4.5.4 Fonctions pour $\operatorname{Int}_n^M(D)$	36

1 Introduction

Soit $P \in \mathbb{Q}[X]$. Il se peut qu'un tel polynôme, bien qu'à coefficients rationnels, ne prenne que des valeurs entières lorqsu'il est évalué sur des entiers. On dit alors que P est à valeurs entières. De tels exemples sont donnés par les polynôme binomiaux, définis par $\binom{X}{0} = 1$ et pour tout $n \geq 1$:

$$\binom{X}{n} = \frac{X(X-1)\dots(X-(n-1))}{n!}$$

En effet n! divise tout produit de n entiers consécutifs par la formule du binôme de Newton.

Définition 1.1. On note $\operatorname{Int}(\mathbb{Z})$ l'ensemble des polynômes à valeurs entières et $\operatorname{Int}_n(\mathbb{Z})$ l'ensemble des éléments de $\operatorname{Int}(\mathbb{Z})$ de degré au plus n.

Ce sont des \mathbb{Z} modules. Il s'avère que tout $f \in \operatorname{Int}_n(\mathbb{Z})$ s'écrit comme \mathbb{Z} -combinaison linéaire unique des polynômes binomiaux $\binom{X}{k}_{k \leq n}$:

Preuve. Soit $f = \sum_{k=0}^n c_k {X \choose k}$ la décomposition de f sur la \mathbb{Q} -base ${X \choose k}_{k \leq n}$. Il s'agit de monter que les c_k sont dans \mathbb{Z} . Par l'absurde, soit j le plus petit indice tel que $c_j \in \mathbb{Q}$. Si k > j, $c_k {X \choose k}(j) = 0$ et si k < j, $c_k {X \choose k}(j) \in \mathbb{Z}$ par définition de j. Il vient $c_j = c_j {X \choose j}(j) = f(j) - \sum_{k=0}^{j-1} c_k {X \choose k}(j) \in \mathbb{Z}$, contradiction.

On a donc:

Proposition 1.1. Int_n(\mathbb{Z}) est un \mathbb{Z} module libre de rang n+1 et $\binom{X}{k}_{k\leq n}$ en est une base.

On peut naturellement généraliser la situation à un anneau de Dedekind D, et même à un sous-ensemble $E \subset D$. On a en tête l'anneau des entiers d'un corps de nombres ou un anneau de valuation discrète.

Définition 1.2. Soit D un anneau de Dedekind de corps des fractions K et $E \subset D$. On note Int(E,D) l'ensemble des polynômes P de K[X] tels que $P(E) \subset D$ et $Int_n(E,D)$ l'ensemble des éléments de Int(E,D) de degré au plus n. Ce sont des D modules.

On peut alors se poser la question suivante :

Question 1. La Proposition 1.1 subsiste-t-elle dans ce cadre plus général? Autrement dit, $Int_n(E, D)$ est-il un D module libre de rang n+1, et si oui, peut-on trouver une base $\{f_k\}_{k\leq n}$ telle que $deg(f_k)=k$?

Même si $\operatorname{Int}_n(E,D)$ est libre, il se peut qu'il n'existe pas de base $\{f_k\}_{k\leq n}$ vérifiant $\deg(f_k)=k$. Si une telle base existe, on dit que c'est une base régulière.

L'objectif du présent papier est de répondre à la Question 1 et de présenter un algorithme pour effectivement construire quand elle existe une base régulière de $\operatorname{Int}_n(E,D)$ dans le cas E=D où D est l'anneau des entiers d'un corps de nombre.

Il s'agira ensuite de généraliser cette construction à deux sous-modules de $\operatorname{Int}_n(E,D)$ qui seront introduits en section 3 et 4, et de fournir à nouveau des algorithmes de construction de bases régulières pour ces sous-modules.

Ces algorithmes ont étés implémentés en C en utilisant la bibliothèque pari/GP et réunis avec d'autres dans une librairie consultable à l'adresse:

https://github.com/vilanele/libfact

Les exemples présents dans ce papier ont étés construits à l'aide de cette librairie, et quelques références de fonctions seront données à la fin des différentes parties. On renvoie à la documentation pour des descriptions détaillées.

Les principales sources sur lesquelles est basé ce document sont [Bha09] et [Joh10]. On généralise notamment certains résultats donnés sur $\mathbb Z$ dans le deuxième papier à l'anneau des entiers d'un corps de nombres.

Dans l'ensemble de ce document, D est un anneau de Dedekind de corps des fractions K. On note E un sous-ensemble infini de D, P un idéal premier de D, et $\pi \in P \setminus P^2$ une uniformisante.

2 Base régulière de $Int_n(E, D)$

2.1 Suite ordonnée

Dans le but de généraliser à K[X] les polynômes binomiaux $\binom{X}{n} \in \mathbb{Q}[X]$, Bhargava a introduit la notion de P-ordering ([Bha97]) que l'on nommera en français suite P-ordonnée.

La définition d'une suite P-ordonnée est une généralisation à tout anneau de Dedekind de la remarque suivante: pour tout nombre premier p, la suite ordonnée $(0,1,2,3,\ldots)=(a_0,a_1,a_2,a_3,\ldots)$ des entiers naturels est telle que pour tout $n \geq 0$, a_n réalise le minimum suivant:

$$\min_{x \in \mathbb{Z}} v_p \left(\prod_{i=0}^{n-1} (x - a_i) \right)$$

On est donc amené à la définition suivante:

Définition 2.1. On appelle suite P-ordonnée de E toute suite $(a_n)_{n\geq 0}$ d'éléments de E telle que pour tout $n\geq 0$, a_n vérifie:

$$\min_{x \in E} v_P \left(\prod_{i=0}^{n-1} (x - a_i) \right) = v_P \left(\prod_{i=0}^{n-1} (a_n - a_i) \right) = e_n$$

On appelle P-séquence associée à la suite P-ordonnée $(a_n)_{n\geq 0}$ la suite décroissante d'idéaux $(P^{e_0}, P^{e_1}, P^{e_2}, P^{e_3}, \dots)$.

On a alors le théorème d'indépendance suivant:

Théorème 2.1. La P-séquence associée à une suite P-ordonnée δ de E est indépendante de δ .

Le Théorème 2.1 sera démontré à la fin de la prochaine section.

2.2 Base régulière dans le cas local

Dans cette section, on montre que dans le cas où D est local, $\operatorname{Int}_n(E,D)$ possède toujours une base régulière que l'on construit à l'aide d'une suite π -ordonnée de E par un procédé en tout point équivalent à celui présenté dans l'introduction pour $\operatorname{Int}_n(\mathbb{Z})$. Ce résultat permet alors de démontrer le Théorème 2.1.

Nous avons vus que dans le cas $D=E=\mathbb{Z}$, la suite $(0,1,2,\ldots)$ est une suite p-ordonnée de \mathbb{Z} pour tout premier p simultanément. Ce fait permet de définir les polynômes binomiaux $\binom{X}{n}$ qui permettent à leurs tour d'exprimer tout polynôme à valeurs entières comme \mathbb{Z} combinaison linéaire des $\binom{X}{n}$.

Si on essaye d'appliquer le même procédé à E et D quelconques, on se heurte rapidement à l'obstruction suivante: il n'existe pas toujours dans E de suite P-ordonnée pour tout P simultanément. En revanche, si D est local, toute suite π -ordonnée de E l'est pour tout premier simultanément puisque (π) est le seul idéal premier! On peut alors reproduire le procédé présenté en introduction pour $\mathrm{Int}_n(\mathbb{Z})$.

Jusqu'à la fin de cette section, sauf mention du contraire, D est local. Soit $\delta = (a_n)_{n\geq 0}$ une suite π -ordonnée de E.

Définition 2.2. Pour tout $n \ge 0$, on pose

$$n!_{\delta,E} = \prod_{i=0}^{n-1} (a_n - a_i)$$

Par construction, $(\pi)^{v_{\pi}(n!_{\delta,E})}$ est le *n*-ème terme de la π -séquence associée à δ .

Définition 2.3. Pour tout $n \geq 0$, on définit le n-ème polynôme binomial associé à E et δ par $\binom{X}{0}_{\delta,E} = 1$ et pour $n \geq 1$:

$$\binom{X}{n}_{\delta E} = \frac{(X - a_0)(X - a_1)\dots(X - a_{n-1})}{n!_{\delta E}}$$

Par définition de δ et $n!_{\delta,E}$, on a $\binom{X}{k}_{\delta,E} \in \operatorname{Int}_n(E,D)$. Ces polynômes sont en tout point similaires aux polynômes $\binom{X}{n} \in \mathbb{Q}[X]$. Comme dans le cas de $\operatorname{Int}_n(\mathbb{Z})$, on a:

Théorème 2.2. Pour tout n, le D-module $Int_n(E,D)$ est libre de rang n+1 et la famille

$$\left(\begin{pmatrix} X \\ k \end{pmatrix}_{\delta, E} \right)_{k \le n}$$

en est une base régulière.

Preuve. Soit $f \in Int_n(E, D)$, $f = \sum_{i=0}^n c_i {X \choose i}_{\delta, E}$ sa décomposition sur la K-base $\left({X \choose k}_{\delta, E}\right)_{k \le n}$. Il s'agit de montrer que les c_i sont dans D. Par l'absurde, soit j le plus petit indice tel que c_j ne soit pas dans D. Si k > j, $c_k {X \choose k}_{\delta, E}(a_j) = 0$ et si k < j, $c_k {X \choose k}_{\delta, E}(a_j) \in D$ par définition de j.

Il vient
$$c_j = c_j {X \choose j}_{\delta, E}(a_j) = f(a_j) - \sum_{k=0}^{j-1} c_k {X \choose k}_{\delta, E}(a_j) \in D$$
, contradiction.

Corolaire 2.1. Un polynôme $f \in K[X]$ de degré n est à valeurs entières sur E si et seulement si il est à valeurs entières sur $\{a_0, a_1, \ldots, a_n\}$.

Preuve. Si f est à valeur entière sur E, il l'est à fortiori sur $\{a_0, a_1, \ldots, a_n\} \subset E$. Pour la réciproque, il suffit de remarquer que dans la preuve du Théorème 2.2 on utilise uniquement le fait que $f(\{a_0, a_1, \ldots, a_n\}) \subset D$.

Corolaire 2.2. Soit δ une suite π -ordonnée de E. La π -séquence associée à δ ne dépend pas de δ .

Preuve. Le Théorème 2.2 implique que l'idéal fractionnaire formé par zéro et l'ensemble des coefficients dominants des éléments de $\operatorname{Int}_n(E,D)$ de degré n est $(n!_{\delta,E})^{-1}D$ et cela pour tout δ . Ainsi l'entier $v_{\pi}(n!_{\delta,E})$ ne dépend pas de δ et par conséquent la π -séquence associée à δ non plus. \square

Remarque 2.1. On a donc $n!_{\delta_1,E}D = n!_{\delta_2,E}D$ pour tout δ_1, δ_2 . On peut donc noter simplement $n!_ED$.

Définition 2.4. On appelle fonction factorielle associée à E la fonction

$$n \to n!_E = n!_E D$$

Le Théorème 2.1 est conséquence immédiate du Corolaire 2.2:

Preuve du Théorème 2.1. Soit D quelconque, P un idéal premier de D, D_P le localisé de D en P et δ une suite P-ordonnée de E. La suite δ est aussi une suite π -ordonnée de $E \subset D_P$ et les exposants dans la π -séquence associée à δ sont les même que dans la P-séquence associée à δ . On applique alors le Corolaire 2.2.

2.3 Base régulière

D est quelconque (plus nécessairement local).

Dans cette section, on énonce une condition nécessaire et suffisante pour que $\text{Int}_n(E,D)$ admette une base régulière et lorsque c'est le cas, on explique comment construire une telle base à partir de suites P-ordonnée pour un nombre fini de P à l'aide du théorème chinois.

Les résultats obtenus dans le cas local suggèrent qu'en général les coefficients dominants des éléments de $Int_n(E, D)$ jouent un rôle important.

Définition 2.5. Pour tout n, on définit $\mathfrak{J}_n(E,D)$ comme l'ensemble formé de zéro et des coefficients dominants des éléments de $\operatorname{Int}_n(E,D)$ de degré n.

Proposition 2.1. $\mathfrak{J}_n(E,D)$ est un ideal fractionnaire.

Preuve. Soit $f = \sum_{i=0}^{n} a_i X^i \in \operatorname{Int}_n(E,D)$ de degré n et soient x_0, x_1, \ldots, x_n des éléments distincts de E. En considérant les a_i comme des inconnus, les $f(x_i)$ forment un système de n+1 équations linéaires (à n+1 inconnues) à coefficients dans D. Le déterminant du système est le déterminant de Vandermonde $d = \prod_{0 \le i < j \le n} (x_i - x_j)$. D'après les fameuses formules de Cramer, $da_i \in D$ pour tout i. Autrement dit on a $\mathfrak{J}_n(E,D) \subset \frac{1}{d}D$.

On a alors la propriété centrale suivante qui lie l'existence d'une base régulière de $\operatorname{Int}_n(E,D)$ à la principalité des idéaux fractionnaires $\mathfrak{J}_k(E,D)_{k\leq n}$

Théorème 2.3. $Int_n(E,D)$ possède une base régulière si et seulement si les idéaux fractionnaires $\mathfrak{J}_k(E,D)_{k\leq n}$ sont principaux.

Preuve. Supposons que pour tout $k \leq n$, $\mathfrak{J}_k(E,D) = a_k D$ avec $a_k \in K$. Par définition, il existe une suite $(f_k)_{k \leq n}$ dans $Int_n(E,D)$ telle que $\deg(f_k) = k$ et a_k soit le coefficient domiant de f_k . Soit $f \in Int_n(E,D)$ de degré $m \leq n$ et a son coefficient domiant. Par hypothèse il existe $\beta \in D$ tel que $a = \beta a_m$. Alors en posans $g = f - \beta f_m$, on a $g \in Int_n(E,D)$ et deg(g) < m. En itérant le procédé (au plus m fois), on obtient une décomposition D-linéaire de f sur la famille $(f_k)_{k \leq n}$, nécessairement unique.

Réciproquement, supposons que $Int_n(E,D)$ admette une base régulière $(f_k)_{k\leq n}$ et soit a_k le coefficient dominant de f_k . Puisque $Int_n(E,D)$ est un D module, on a immédiatement $a_kD \subset \mathfrak{J}_k(E,D)$ pour tout k. Soit $f \in Int_n(E,D)$ de degré $m \leq n$ et $f = \lambda_0 f_0 + \cdots + \lambda_m f_m$ sa décomposition sur la base $(f_k)_{k\leq n}$. Le coefficient dominant de f est donc $\lambda_m a_m \in a_mD$. Donc $\mathfrak{J}_m(E,D) \subset a_mD$ et finalement $\mathfrak{J}_m(E,D) = a_mD$ pour tout $m \leq n$.

Ainsi, lorsque les idéaux $\mathfrak{J}_k(E,D)_{k\leq n}$ sont principaux de générateurs β_k , il suffit pour construire une base régulière de trouver n+1 polynômes $(f_k)_{k\leq n}$ de K[X] tels que $\deg(f_k)=k$ et tels que le coefficient dominant de f_k soit β_k .

La proposition suivante permet de lier les idéaux fractionnaires $\mathfrak{J}_n(E,D)$ a ceux des localisés D_P puis de construire une factorielle généralisée $n!_E$ pour D quelconque à partir des $n!_{E_P}$.

Proposition 2.2.

$$Int_n(E, D_P) = Int_n(E, D)_P$$

Preuve. Soit $f \in \text{Int}_n(E, D)_P$. Pour tout $x \in E$, on a $f(x) \in D_P$ puisque les coefficients de f sont dans D_P et que $E \subset D \subset D_P$.

Réciproquement soit $f \in \operatorname{Int}_n(E, D_P)$ et soit I le D-module engendré par ses coefficients. Pour $x \in E$, on a donc $f(x) \in I \cap D_P$. Puisque D est Noétherien, $I \cap D_P$ est finiment engendré. Il existe donc $s \in D \setminus P$ tel que $sf \in \operatorname{Int}_n(E, D)$, i.e $f \in \operatorname{Int}_n(E, D)_P$.

Corolaire 2.3. Soit $n!_{E_p}$ la factorielle associée à $E \subset D_P$. On a $n!_{E_P} = D$ sauf pour un nombre fini de P

Preuve. $n!_{E_P} \neq D$ pour les P qui divisent $\mathfrak{J}_n^{-1}(E,D)$ qui sont en nombre fini.

La Proposition 2.2 permet naturellement d'étendre la fonction factorielle définit dans le cas local à D quelconque:

Définition 2.6. On appelle fonction factorielle associée à E la fonction

$$n \to n!_E = \mathfrak{J}_n^{-1}(E, D) = \prod_{(P, \pi)} P^{v_{\pi}(n!_{E_P})}$$

On présente maintenant un algorithme pour construire un polynôme $A_n \in D[X]$ de degré n tel que $A_n(D) \subset n!_E$.

Soient $n \in \mathbb{N}$ et $\{P_1, P_2, \dots, P_m\}$ les premiers qui divisent $n!_E$. Pour tout $1 \le i \le m$ soit $(u_{i,k})_{0 \le k \le n}$ les n premiers termes d'une suite P_i -ordonnée de E. On note également $e_{i,n} = v_{P_i}(n!_E)$.

Algorithme 2.1.

1. Pour tout $0 \le k < n$, on construit à l'aide du théorème chinois un élément a_k vérifiant pour tout $1 \le i \le m$:

$$a_k \equiv u_{i,k} \pmod{P_i^{e_{i,n}+1}}$$

2. On retourne le polynôme $A_n = (X - a_0)(X - a_1) \dots (X - a_{n-1})$.

La suite $(a_k)_{k \leq n}$ est construite afin d'être P_i -ordonnée simultanément pour tout les $P_i \in \{P_1, P_2, \dots, P_m\}$.

Théorème 2.4. On a $A_n(E) \subset n!_E$.

Preuve. Soit $x \in E$. Il suffit de montrer que $v_P(A_n(x)) \ge v_P(n!_E)$ pour tout P. Si $P \notin \{P_1, P_2, \dots, P_m\}$, $v_P(n!_E) = 0$. On peut donc se restreindre à $P_i \in \{P_1, P_2, \dots, P_m\}$. Mais alors par construction

$$v_{P_i}(A_n(x)) = \sum_{k=0}^{n-1} v_{P_i}(x - a_k)$$

$$\geq \sum_{k=0}^{n-1} v_{P_i}(a_n - a_k) \qquad \left(= \sum_{k=0}^{n-1} v_{P_i}(u_{i,n} - u_{i,k}) \right)$$

$$= v_{P_i}(n!_E)$$

Pour que $\operatorname{Int}_n(E,D)$ admette une base régulière, il est nécessaire d'après le Théorème 2.3 que les idéaux $k!_E$ pour $k \leq n$ soient principaux. On suppose donc que c'est la cas et on note β_k un générateur de $k!_E$.

Soit $(A_k)_{0 \le k \le n}$ des polynômes de D[X] tels que $A_k(D) \subset k!_D$, par exemple construits avec l'Algorithme 2.1. On pose $B_k = \frac{1}{\beta} A_k$.

Théorème 2.5. La famille $\{B_0, B_1, B_2, \dots, B_n\}$ est une base régulière de $Int_n(E, D)$

Preuve. Pour tout k, B_k est un polynôme de degré k, à valeurs entières d'après le Théorème 2.4 et de coefficient dominant β_k par construction. D'après le Théorème 2.3, $\{B_1, B_2, \ldots, B_n\}$ est une base régulière de $Int_n(E, D)$.

2.4 Calcul effectif pour E = D

Pour construire en utilisant les résultats de la section précédente une base régulière de $\operatorname{Int}_n(E,D)$ lorsque les $(k!_E)_{k\leq n}$ sont principaux, on a besoin de savoir:

- 1. déterminer les idéaux premiers qui divisent $n!_E$
- 2. construire les n premiers terme d'une suite P-ordonnée de E

Réaliser le deuxième point demande si on applique la définition d'une suite P-ordonnée de E de prendre un minimum sur un ensemble infini, ce qui n'est pas réalisable tel quel.

Cependant, dans le cas où E=D et où D/P est de cardinal fini pour tout P, il est possible de construire effectivement les n premiers termes d'une suite P-ordonnée de D en utilisant la finitude de D/P et l'homogénéité de D. On peut également en déduire les idéaux qui divisent $n!_D$.

On présente un tel algorithme puis on l'applique dans le cas où D est un corps de nombres sur quelques exemples.

Dans cette partie, D/P est de cardinal fini pour tout P.

2.4.1 Construction d'une suite P-ordonnée de D

On propose un algorithme pour construire les n premiers termes d'une suite P-ordonnée de D. On utilise de manière cruciale le fait que D est réunion disjointe finie des différentes classes modulo P. On généralise notamment aux entiers d'un corps de nombres certains théorèmes donnés pour \mathbb{Z} dans [Joh10].

Le cardinale de D/P est noté q.

Soit $\{r_0, r_1, \dots, r_{q-1}\}$ un système de représentants modulo P. On note $D_{r_i} = \{x \in D : x \equiv r_i \pmod{P}\}$.

On montre que les D_{r_i} ont tous la même P-séquence

Proposition 2.3. Pour tout r_i, r_j on a

$$v_P(n!_{D_{r_i}}) = v_P(n!_{D_{r_i}})$$

Preuve. Soit $c \in D$ tel que $D_{r_i} + c = D_{r_j}$ et soit $(a_n)_n$ une suite P-ordonnée de D_{r_i} . Puisque pour tout $x, y, c \in D$ on a

$$v_P(x - y) = v_P((x + c) - (y + c))$$

la suite $(a_n + c)_n$ est une suite P-ordonnée de D_{r_i} et $v_P(n!_{D_{r_i}}) = v_P(n!_{D_{r_i}})$.

On relie ensuite la P-séquence de D à celle des D_{r_i} .

Proposition 2.4. L'application

$$\theta_i: x \to x\pi + r_i$$

envoie une suite P-ordonnée de D sur une suite P-ordonnée de D_{r_i} .

Preuve. Soit $(a_n)_n$ une suite P-ordonnée de D. Pour tout $x, y \in D$, on a

$$v_P(\theta_i(x) - \theta_i(y)) = v_P(\pi(x - y)) = 1 + v_P(x - y)$$

Par récurrence sur $n \geq 0$, le minimum à la n-ème étape de construction d'une suite P-ordonnée de D_{r_i} est atteint par $\theta_i(a_n)$, ce qui fait de $(\theta_i(a_n))_n$ une suite P-ordonnée de D_{r_i} .

Corolaire 2.4. Pour tout $n \ge 0$ on a

$$v_P(n!_{D_{r_i}}) = v_P(n!_D) + n$$

Preuve.

$$v_P(n!_{D_{r_i}}) = \sum_{k=0}^{n-1} v_P(\theta_i(a_n) - \theta_i(a_k))$$

$$= \sum_{k=0}^{n-1} (v_P(a_n - a_k) + 1) = v_P(n!_D) + n$$

On cherche désormais à construire une suite P-ordonnée de D à partir de suites P-ordonnée des D_{r_i} . On a besoin de la notion d'entrelacement de suites:

Définition 2.7. Soient (ϕ_1, \ldots, ϕ_m) des applications de \mathbb{N} vers \mathbb{N} . On dit que (ϕ_1, \ldots, ϕ_m) est un entrelacement si ϕ_i est strictement croissante et si $\cup_i \phi_i(\mathbb{N}) = \mathbb{N}$.

On dit qu'une suite $(b_n)_n$ est le (ϕ_1, \ldots, ϕ_m) entrelacement des suites

$$((a_{i,n})_n)_{1 \le i \le m}$$

si pour tout i la suite $(a_{i,n})_n$ est une sous-suite de $(b_n)_n$ d'extractrice ϕ_i^{-1} .

On montre maintenant que l'entrelacement q-uniforme de suites P-ordonnée des D_{r_i} résulte en une suite P-ordonnée de D. On en tire notamment que $v_P(n!_D)$ ne dépend pas de P mais que du cardinal q de D/P, puis un algorithme pour construire une suite P-ordonnée de D.

Proposition 2.5. Pour tout $0 \le i < q$ et tout $n \ge 0$ soit

$$\phi_i(n) = nq + i$$

La suite obtenue par $(\phi_i)_{0 \le i < q}$ entrelacement de suites P-ordonnée des D_{r_i} est une suite P-ordonnée de D.

Preuve. Soit $(a_n)_n$ une telle suite et soit $qk \leq n < q(k+1)$ pour un certain k. Soit $D_{r_{i_0}}$ la classe contenant a_n . Par définition des ϕ_i , il y a exactement k éléments dans chaque classe parmis les qk premiers termes de la suite. Supposons par l'absurde qu'il existe $x \in D$ tel que

$$\sum_{j=0}^{n-1} v_P(x - a_j) < \sum_{j=0}^{n-1} v_P(a_n - a_j)$$

et soit $D_{r_{i_1}}$ la classe contenant x. Puisque $v_P(x-y)=0$ dès que x et y sont dans des classes différentes, on a

$$\sum_{j=0}^{n-1} v_P(a_n - a_j) \ge v_P\left(k!_{D_{r_{i_0}}}\right) \text{ et } \sum_{j=0}^{n-1} v_P(x - a_j) \ge v_P\left(k!_{D_{r_{i_1}}}\right)$$

Mais

$$v_P\left(k!_{D_{r_{i_1}}}\right) = v_P\left(k!_{D_{r_{i_0}}}\right)$$

d'après la Proposition 2.3, contradiction.

Corolaire 2.5. Pour tout n > 0 on a

$$v_P(n!_D) = v_P(|n/q|!_D) + |n/q|$$

Preuve. Le n-ème terme de la suite obtenue par $(\phi_i)_{0 \le i < q}$ entrelacement de suites P-ordonnée des D_{r_i} est le $\lfloor n/q \rfloor$ -ème terme d'une suite P-ordonnée de l'un des $D_{r_i} = D_{r_{i_0}}$. On a donc

$$v_P(n!_D) = v_P\left(\lfloor n/q \rfloor !_{D_{r_{i_0}}}\right)$$

On applique alors le Corolaire 2.4.

Corolaire 2.6. Pour tout $n \ge 0$ on a

$$v_P(n!_D) = \sum_{k=1}^n \lfloor n/q^k \rfloor$$

En conséquence $v_P(n!_D)$ ne dépend pas de P mais uniquement du cardinal q de D/P.

Preuve. Il suffit d'itérer la formule du Corolaire 2.5.

Notation 2.1. Pour tout $n \ge 0$ et $q \ge 2$ on pose

$$w_q(n) = \sum_{k=1}^n \lfloor n/q^k \rfloor$$

Corolaire 2.7. Pour tout $q \ge 2$, soit M_q le produit des idéaux premiers de norme q. Pour tout $n \ge 0$ on a

$$n!_D = \prod_{(P,q)} P^{w_q(n)} = \prod_{q=2}^n M_q^{w_q(n)}$$

Preuve. On a $w_q(n) = 0$ dès que q > n.

On est en mesure de proposer un algorithme pour construire les n premiers termes d'une suite P-ordonnée de D.

Algorithme 2.2.

1. Les q premiers termes $(a_0, a_1, \ldots, a_{q-1})$ sont simplement $(r_0, r_1, \ldots, r_{q-1})$. Puisque $v_P(r_i - r_j) = 0$ quelque soient $r_i \neq r_j$, on a pour tout s < q

$$\sum_{j=0}^{s-1} v_P(a_s - a_j) = 0$$

donc $(a_0, a_1, \dots, a_{q-1})$ forme bien les q premiers termes d'une suite P-ordonnée de D.

2. Les q^k premiers termes $(a_j)_{j < q^k}$ d'une suite P-ordonnée de D étant donnés, on construit pour chaque $0 \le i < q$ la suite

$$u_{i,k} = (\theta_i(a_j))_{j < q^k}$$

D'après la Proposition 2.4, $u_{i,k}$ forme les q^k premiers termes d'une suite P-ordonnée de D_{r_i} .

On construit alors le $(\phi_i)_{0 \le i < q}$ entrelacement des suites $u_{i,k}$. D'après la Proposition 2.5, la suite résultante forme les q^{k+1} premiers termes d'une suite P-ordonnée de D.

On itère ce procédé tant que $k \leq \lfloor log_q(n) \rfloor$. Enfin on tronque (éventuellement) la suite résultante au n-ème terme. On obtient au final les n premiers termes d'une suite P-ordonnée de D.

2.4.2 Algorithme pour $Int_n(D)$

On résume maintenant la procédure pour construire lorsque les $(k!_D)_{k\leq n}$ sont principaux une base régulière de $Int_n(D)$:

- 1. Pour chaque $k \leq n$, on détermine les idéaux premiers T_k qui divisent $k!_D$. D'après le Corolaire 2.7 ce sont tout les idéaux premiers de norme $q \leq k$. On calcul également pour tout $q \leq n$ le produit M_q des idéaux premiers de norme q. Pour cela, on utilise les méthodes standards pour factoriser les premiers $p \leq n$ dans D.
- 2. On construit pour chaque $P \in \bigcup_{k \le n} T_k$ les n premiers termes d'une suite P-ordonnée de D en utilisant l'Algorithme 2.2.

- 3. Pour chaque $k \leq n$ on utilise l'Algorithme 2.1 pour construire le polynôme A_k tel que $A_k(D) \subset k!_D$. On utilise pour $P \in T_k$ les k premiers termes des suites P-ordonnées construites à l'étape 2).
- 4. On calcul ensuite pour chaque $0 \le k \le n$ l'idéal $k!_D$ par la formule du Corolaire 2.7. On utilise alors les M_q calculés à l'étape 1).
- 5. Pour tout $k \leq n$, on calcul un générateur β_k de $k!_D$ par les méthodes standards puis $B_k = \frac{1}{\beta_k} A_k$. La famille (B_0, B_1, \dots, B_k) ainsi construite est une base régulière de $\mathrm{Int}_n(D)$.

2.4.3 Exemples

Exemple 1

Soit $K = \mathbb{Q}(i)$. L'anneau $\mathbb{Z}[i]$ est principal, donc tout les $n!_{\mathbb{Z}[i]}$ sont principaux et $\mathrm{Int}_n(\mathbb{Z}[i])$ admet une base régulière pour tout n.

On construit ici une base régulière de $\operatorname{Int}_5(\mathbb{Z}[i])$.

1. On détermine pour $q \leq 5$ les idéaux premiers T_q de norme q et le produit M_q des idéaux de norme q:

q	T_q	M_q
2	(1+i)	(2)
5	(2+i), (-2+i)	(5)

2. On construit pour chaque idéal premier qui divise $5!_{\mathbb{Z}[i]}$ les 5 premiers termes d'une suite Pordonnée de $\mathbb{Z}[i]$:

Ideal P	Suite P-ordonnée
$\boxed{(1+i)}$	(0,1,1+i,2+i,2,1+2i)
(2+i)	(0, 1, 2, 3, 4)
(-2+i)	(0,1,2,3,4)

3. On construit les A_k pour $k \leq 5$:

k	$A_k(X)$
0	1
1	X
2	$X^2 + X$
3	$X^3 + (2+i)X^2 + (1+i)X$
4	$X^4 - 2iX^3 + (i-4)X^2 + (3+i)X$
5	$X^5 + 40X^4 + (2160 + 1325i)X^3 + (54525 - 2775i)X^2 + (1450i - 56726)X$

4. et 5. On détermine $k!_{\mathbb{Z}[i]}$ et un générateur pour $k \leq 5$:

k	$k!_{\mathbb{Z}[i]}$	Gen
0	$\mathbb{Z}[i]$	1
1	$\mathbb{Z}[i]$	1
2	(1+i)	(1+i)
3	(1+i)	(1+i)
4	$(1+i)^3$	(2+2i)
5	$(1+i)^3(2+i)(-2+i)$	(10 + 10i)

On obtient la base suivante:

$$B_0(X) = 1 \quad B_1(X) = X \quad B_2(X) = \frac{1-i}{2}X^2 + \frac{1-i}{2}X$$

$$B_3(X) = \frac{1-i}{2}X^3 + \frac{3-i}{2}X^2 + X$$

$$B_4(X) = \frac{1-i}{4}X^4 + \frac{-1-i}{2}X^3 + \frac{-3+5i}{4}X^2 + \frac{2-i}{2}X$$

$$B_5(X) = \frac{1-i}{20}X^5 + (2-i)X^4 + \frac{697 - 167i}{4}X^3 + \frac{5175 - 5730i}{2}X^2 + \frac{-13819 + 14544}{5}X$$

Exemple 2

Soit $K = Q(\zeta_5)$. L'anneau des entiers de K est $D = \mathbb{Z}[\zeta_5]$. On peut montrer que dans un corps cyclotomique, les idéaux factoriels $n!_D$ sont tous principaux ([Ler10, Proposition 1.40]). On donne une base régulière de $\mathrm{Int}_6(\mathbb{Z}[\zeta_5])$:

$$B_0(X) = 1, \quad B_1(X) = X, \quad B_2(X) = X^2, \quad B_3(X) = X^3 \quad B_4(X) = X^4$$

$$B_5(X) = \frac{-4 - 3\zeta_5 - 2\zeta_5^2 - \zeta_5^3}{5} X^5 + (2 + 2\zeta_5 + \zeta_5^2) X^3 + \frac{-6 - 7\zeta_5 - 3\zeta_5^2 + \zeta_5^3}{5} X$$

$$B_6(X) = \frac{-4 - 3\zeta_5 - 2\zeta_5^2 - \zeta_5^3}{5} X^6 - \zeta_5^2 X^5 + (2 + 2\zeta_5 + \zeta_5^2) X^4 + (\zeta_5 + 3\zeta_5^2 + \zeta_5^3) X^3 + \frac{-6 - 7\zeta_5 - 3\zeta_5^+ \zeta_5^3}{5} X^2 + (-\zeta_5 - 2\zeta_5^2 - \zeta_5^3) X$$

Exemple 3

Soit $K = Q(\zeta_5)$ encore, et soit

$$f(X) = \frac{-3 - \zeta_5 - 4\zeta_5^2 - 2\zeta_5^3}{5} X^6 + \frac{6 - 18\zeta_5 - 2\zeta_5^2 + 4\zeta_5^3}{5} X^5 + (1 + \zeta_5 + 2\zeta_5^2 + \zeta_5^3) X^4$$

$$+ (2 + 13\zeta_5 + 3\zeta_5^2 + 2\zeta_5^3) X^3 + \frac{8 - 4\zeta_5 - 6\zeta_5^2 - 8\zeta_5^3}{5} X^2$$

$$+ \frac{16 - 37\zeta_5 - 28\zeta_5^2 - 4\zeta_5^3}{5} X + (2\zeta_5 + \zeta_5^2) = \sum_{i=0}^{6} c_k f_k$$

un polynôme de $\mathbb{Q}(\zeta_5)[X]$ de degré 6.

On cherche à savoir si f est à valeures entières et si oui, quelle est sa décomposition pour une base régulière donnée.

Considérons la base régulière B_r de $\operatorname{Int}_6(Q(\zeta_5))$ de l'exemple précédent, et soit M la matrice de passage de cette base à la base canonique $C = \{1, X, X^2, X^3, X^4, X^5, X^6\}$ de $Q(\zeta_5)_6[X]$ (polynômes de $Q(\zeta_5)[X]$ de degré au plus 6). Soit F_C le vecteur de f sur la base canonique C.

Pour que f soit à valeurs entières, il faut et il suffit que le vecteur $M^{-1}F_C$ ait tout ses coefficients dans $\mathbb{Z}[\zeta_5]$. On a:

$$M^{-1}F_C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 + \zeta_5^2 + \zeta_5^3 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 + \zeta_5^2 + \zeta_5^3 \\ 0 & 0 & 0 & 1 & 0 & 2 - \zeta_5^2 - \zeta_5^3 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 - \zeta_5^2 - \zeta_5^3 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 - \zeta_5^2 - \zeta_5^3 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 - \zeta_5 - 3\zeta_5^3 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 + \zeta_5 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \end{pmatrix}$$

$$= \begin{pmatrix} 2\zeta_5 + \zeta_5^2 \\ \zeta_5 \\ 2 - \zeta_5^3 \\ -3\zeta_5^2 + 2\zeta_5^3 \\ 0 \\ 5\zeta_5 - 4\zeta_5^2 \\ 1 + \zeta_5^2 \end{pmatrix}$$

Ainsi $f(X) \in \text{Int}_6(\mathbb{Z}[\zeta_5])$ et le vecteur $M^{-1}F_C$ donne ses coordonnées sur la base régulière B_r .

2.4.4 Fonctions pour $Int_n(D)$

Voici quelques fonctions utiles:

- la fonction ispolyaupto (K, n) teste si $Int_n(D)$ admet une base régulière
- la fonction zkregbasis(K, n, "X") retourne (si possible) une base régulière (d'indéterminée "X") de $Int_n(D)$
- la fonction zkregbasis_dec(K, pol, "X") retourne une matrice $(n+1) \times 2$ (où $n = \deg(\text{pol})$) avec une base régulière (d'indéterminée ""X") dans la deuxième colonne et les coefficients de la K-décomposition de pol sur cette base dans la première.

Cette fonction permet aisément (comme dans l'exemple 3) de déterminer si un polynôme de K[X] est à valeurs entière: il faut et il suffit que les coefficients de la première colonne soient tous dans D.

3 Base régulière du sous-module $\operatorname{Int}_n^r(E,D)$

Dans cette section, on présente un sous-module de $\operatorname{Int}_n(E,D)$ introduit par Bhargava ([Bha09]) qui dépend d'un nouveau paramètre $r \geq 0$ ainsi qu'une nouvelle notion de suite ordonnée associée qui permet d'appliquer la même stratégie que dans la partie 2.

On donnera une condition nécessaire et suffisante pour que ce sous-module admette une base régulière, puis un algorithme de construction d'une telle base quand elle existe. On fournira plusieurs exemples concrets en fin de partie.

Dans toute cette partie, r est un entier positif.

3.1 Le sous-module $\operatorname{Int}_n^r(E,D)$

Un polynôme entier f (i.e $f \in D[X]$) est bien sûr à valeurs entières sur tout $E \subset D$. Un tel polynôme préserve les congruences, c'est à dire que l'on a $f(x) \equiv f(y) \pmod{P}$ dès que $x \equiv y \pmod{P}$. Autrement dit, le polynôme en deux variables

$$\phi^1 f(x,y) = \frac{f(x) - f(y)}{x - y}$$

est à valeurs entières. Un polynôme quelconque de $Int_n(E,D)$ ne possède pas nécessairement cette propriété.

La fonction $\phi^1 f$ est la première différence divisée de f. On peut itérer ce procédé et définir la n-ème différence divisée de f:

Définition 3.1. Pour tout $n \ge 0$ et tout $f \in K[X]$, on définit la n-ème différence divisée de f par $\phi^0 f(x_0) = f(x_0)$ et

$$\phi^{n+1}f(x_0,\ldots,x_{n+1}) = \frac{\phi^n f(x_0,\ldots,x_n) - \phi^n f(x_0,\ldots,x_{n-1},x_{n+1})}{x_n - x_{n+1}}$$

Remarque 3.1. $\phi^n f(x_0, \dots, x_n)$ est une fonction symétrique en (x_0, \dots, x_{n+1})

Remarque 3.2. Si f s'annule sur $\{a_0, \ldots, a_n\}$, alors $\phi^n f(a_0, \ldots, a_n) = 0$.

On à la formule d'interpolation de Newton suivante

Proposition 3.1. Soit (a_0, \ldots, a_{n-1}) des éléments de E et $f \in K[X]$ de degré n. Alors

$$f(x) = f(a_0) + \phi^1 f(a_0, a_1)(x - a_0) + \phi^2 f(a_0, a_1, a_2)(x - a_1)(x - a_0) + \dots + \phi^n f(a_0, \dots, x)(x - a_0) \dots (x - a_{n-1})$$

En conséquence, un polynôme f est à valeurs entières sur E si et seulement si ses n premières différences divisées sont à valeurs entières sur E. On en vient à la définition

Définition 3.2. Pour tout $r \ge 0$, on définit $Int_n^r(E, D)$ comme l'ensemble des $f \in Int_n(E, D)$ tels que $\phi^k f(x_0, x_1, \dots, x_k)$ est à valeurs entières pour tout $k \le r$.

Par construction, $\operatorname{Int}_n^r(E,D)$ est un sous-D-module de $\operatorname{Int}_n(E,D)$. C'est l'ensemble des polynômes f de degré au plus n à valeurs entières sur E tels que le fait de savoir que ses r premières différences divisées soient à valeures entières ne permet pas de déterminer si $f \in D[X]$.

3.2 Suite (P, r)-ordonnée

On définit dans cette section une nouvelle notion de suite ordonnée d'éléments de E ([Bha09], [CC16]) qui à vocation à jouer le même rôle pour $Int_n^r(E, D)$ qu'une suite P-ordonnée pour $Int_n(E, D)$

Définition 3.3. Soit $r \ge 0$ et $\delta_r = (a_n)_n$ une suite dans E. On dit que la suite $(a_n)_n$ est (P, r)ordonnée si pour tout $n \ge r + 1$

$$\min_{\substack{S_r \in N(n,r) \\ x \in E}} v_P \left(\prod_{k \in S_r} (x - a_k) \right) = \min_{S_r \in N(n,r)} v_P \left(\prod_{k \in S_r} (a_n - a_k) \right) = e_{r,n}$$

où N(n,r) est l'ensemble des sous-ensembles de $\{0,\ldots,n-1\}$ de cardinal n-r.

On appelle P-séquence associée à δ_r la suite décroissante d'idéaux $\{P_1, P_2, P_3, \dots\}$ dont les r premiers termes sont D et pour $n \geq r+1$, $P_n = P^{e_{r,n}}$.

Pour tout n, soit $S_r(n)$ l'un des S_r réalisant la condition de minimalité au rang n et $R_r(n) = \{n_1, \ldots, n_r\} = \{0, \ldots, n-1\} \setminus S_r(n)$ les indices des éléments éludés correspondants.

Lorsqu'on se donne une suite (P, r)-ordonnée, on considère qu'on se donne implicitement des $S_r(n)$ et $R_r(n)$ pour tout n.

Contrairement aux suites P-ordonnées, un élément donné de E peut apparaître plusieurs fois dans une suite (P, r)-ordonnée. Il ne peut en revanche pas apparaître plus de (r + 1) fois.

On a alors le même théorème d'indépendance que pour les suite P-ordonnée

Théorème 3.1. La P-séquence associée à une suite (P,r)-ordonnée δ_r de E ne dépend pas de δ_r .

La preuve du Théorème 3.1 sera donnée à a fin de la prochaine section.

3.3 Base régulière dans le cas local

Dans cette section, sauf mention du contraire, D est local. On montre que dans ce cas $\operatorname{Int}_n^r(E,D)$ admet toujours une base régulière. Ce résultat permet ensuite de démontrer le Théorème 3.1.

Soit $\delta_r = (a_n)_n$ une suite (π, r) -ordonnée de E. On pose pour tout n

$$n!_{(\delta_r, E)}^r = \prod_{i \in S_r(n)} (a_n - a_i)$$

Définition 3.4. Pour tout $n \geq 0$, on définit le n-ème polynôme binomial associé à E et δ_r par $\binom{X}{0}_{\delta_r,E} = 1$ et pour $n \geq 1$

$$\binom{X}{n}_{\delta_r, E} = \frac{(X - a_0)(X - a_1) \dots (X - a_{n-1})}{n!_{(\delta_r, E)}^r}$$

Il n'est pas clair à priori que $\binom{X}{n}_{\delta_r,E} \in \operatorname{Int}_n^r(E,D)$.

Pour le montrer, on aura besoin du lemme combinatoire suivant qui exprime pour tout (b_0, \ldots, b_m) éléments de E la m-ème différence divisée $\phi^m f(b_0, \ldots, b_m)$ d'un polynôme $f = (X - a_0) \ldots (X - a_n)$ comme une somme de produits de la forme

$$\prod_{i \in I, j \in J} (b_j - a_i)$$

où I et J sont des sous-ensemble de $\{0,\ldots,n-1\}$ de cardinal n-m.

L'objectif du lemme et de construire I et J de sorte que, à défault d'avoir un terme constant pour les b_j , on puisse minorer la valuation de chaque produit par la valuation d'un produit de la forme

$$\prod_{i\in I}(b_k-a_i)$$

pour un certiain k et cela pour venir attraper la propriété de minimalité que possède par construction la suite (P, r)-ordonnée $(a_n)_n$.

Notation 3.1. Soient (a_0, \ldots, a_{n-1}) et (b_0, \ldots, b_m) des éléments de E.

A toute suite $\mathbf{i} = (i_1, \dots, i_m)$ de la forme $0 \le i_1 < i_2 < \dots < i_m < n$, on associe une suite $(s_{\mathbf{i}}(k))_{0 \le k \le n-1}$ définit de la manière suivante.

Pour tout k, soit

$$I_k = \{0, \dots, m\} \setminus \{s_i(i_j) : i_j < k\}$$

Alors $s_i(k)$ est definit comme le plus petit élément de I_k qui maximise la quantité $v_{\pi}(b_{s_i(k)} - a_k)$.

Pour tout $\mathbf{i} = \{i_1, \dots, i_m\}$, l'ensemble $\{0, \dots, m\} \setminus \mathbf{i}$ est réduit à un élément que l'on note naturellement $s_{\mathbf{i}}(n)$.

Remarque 3.3. La suite s_i est construite de sorte que

$$v_{\pi}(b_{s_i(k)} - a_k) \ge v_{\pi}(b_{s_i(n)} - a_k)$$

On en vient au lemme annoncé

Lemme 3.1. Avec les notations précédentes, on a

$$\phi^{m} f(b_{0}, \dots, b_{m}) = \sum_{i} \left(\prod_{k \in \{0, \dots, n-1\} \setminus i} (b_{s_{i}(k)} - a_{k}) \right)$$
 (1)

Preuve. La preuve se fait par récurence sur m + n.

Si m+n=0, l'énoncé se résume à f=f. En fait, le lemme est même trivialement vraie pour m=0 et n quelconque.

Soit t > 0. Supposons que le lemme soit vraie pour tout m + n < t et soient m, n tels que m + n = t. Si n > 1, on pose $f_0(x) = \frac{f(x)}{x - a_0}$, $f_0(x) = 0$ sinon.

On a le lemme intermédiaire suivant

Lemme 3.2.

$$\phi^m f(b_0, \dots, b_m) = (b_{s_i(0)} - a_0)\phi^m f_0(b_0, \dots, b_m) + \phi^{m-1} f(b_0, \dots, \widehat{b_{s_i(0)}}, \dots, b_m)$$

Preuve. Une récurrence sur m pour f fixé permet immédiatement de conclure.

L'hypothèse de récurrence s'applique à $\phi^m f_0(b_0, \ldots, b_m)$ et à $\phi^m f(b_0, \ldots, \widehat{b_{s_i(0)}}, \ldots, b_m)$. Le premier terme correspond aux i tels que $i_1 = 0$ dans (1), tandis que le second correspond aux i tels que $i_1 \neq 0$. Ceci achève la preuve.

On est en mesure de montrer que les $\binom{X}{n}_{\delta_r,E}$ sont à valeurs entières

Théorème 3.2. Pout tout n

$$\binom{X}{n}_{\delta_r,E} \in Int_n^r(E,D)$$

Preuve. Soient $a_0, a_1, \ldots, a_{n-1}$ les n premiers termes d'une suite (P, r)-ordonnée δ_r de E et b_0, \ldots, b_m des éléments quelconques de E, $m \le r$.

Pour tout $\mathbf{i} = (i_1, \dots, i_m)$ comme dans le Lemme 3.1, on a:

$$v_{\pi} \left(\prod_{k \in \{0, \dots, n-1\} \setminus i} (b_{s_{i}(k)} - a_{k}) \right) \ge v_{\pi} \left(\prod_{k \in \{0, \dots, n-1\} \setminus i} (b_{s_{i}(n)} - a_{k}) \right) \ge v_{\pi} \left(\prod_{k \in \{0, \dots, n-1\} \setminus R_{r}(n)} (a_{n} - a_{k}) \right) = v_{\pi} \left(n!_{(\delta_{r}, E)}^{r} \right)$$

Ainsi pour tout $m \leq r$, la m-ème différence divisée de $\binom{X}{n}_{\delta_r,E}$ est somme de termes qui sont dans D, donc est à valeurs entières. Ceci montre que $\binom{X}{n}_{\delta_r,E} \in \operatorname{Int}_n^r(E,D)$.

Théorème 3.3. La famille $\binom{X}{k}_{\delta_r,E}_{0\leq k\leq n}$ est une base régulière de $Int_n^r(E,D)$.

Preuve. Soit $f \in Int_n^r(E,D)$ de degré n et

$$f = \sum_{k=0}^{n} c_k \binom{X}{k}_{\delta_r, E}$$

sa décomposition sur la K-base $\left(\binom{X}{k}_{\delta_r,E}\right)_{0\leq k\leq n}$. On souhaite montrer que les c_k sont dans D.

Par l'absurde, soit j le plus petit indice $\overline{\text{tel}}$ que $c_j \notin D$.

On rappelle que $R(j,r) = \{j_1, \ldots, j_r\}$ est l'ensemble des indices des éléments éludés pour réaliser le minimum à la j-ème étape du processus de construction de δ_r .

L'idée est de calculer $\phi^r f(a_{j_1}, \dots, a_{j_r}, a_j)$.

• Si k > j, on a immédiatement

$$\phi^r \left(c_k {X \choose k}_{\delta_r, E} \right) (a_{j_1}, \dots, a_{j_r}, a_j) = 0$$

En effet, par définition de $\binom{X}{k}_{\delta_r,E}$, $\binom{X}{k}_{\delta_r,E}(a_{j_i})=0$ pour tout j_i et $\binom{X}{k}_{\delta_r,E}(a_j)=0$ aussi.

• Si k < j, on a

$$\phi^r \left(c_k {X \choose k}_{\delta_r, E} \right) (a_{j_1}, \dots, a_{j_r}, a_j) \in D$$

En effet, $c_k {x \choose k}_{\delta_n,E}(x) \in D$ pour tout $x \in E$ par définition de j.

• On a

$$\phi^{r} \left(c_{j} {X \choose j}_{\delta_{r}, E} \right) (a_{j_{1}}, \dots, a_{j_{r}}, a_{j}) = \frac{\phi^{r-1} \left(c_{j} {X \choose j}_{\delta_{r}, E} \right) (a_{j_{1}}, \dots, a_{j_{r-1}}, a_{j})}{a_{j} - a_{j_{r}}}$$

En itérant, on obtient

$$\phi^{r}\left(c_{j}\binom{X}{j}\right)_{\delta_{r},E}(a_{j_{1}},\ldots,a_{j_{r}},a_{j}) = c_{j}\frac{\binom{X}{j}}{\prod\limits_{k\in R(j,r)}(a_{j}-a_{k})} = c_{j}\frac{(a_{j}-a_{0})\ldots(a_{j}-a_{j-1})}{\prod\limits_{k\in R(j,r)\cup S(j,r)}(a_{j}-a_{k})} = c_{j}\frac{(a_{j}-a_{0})\ldots(a_{j}-a_{j-1})}{(a_{j}-a_{0})\ldots(a_{j}-a_{j-1})} = c_{j}\frac{(a_{j}-a_{0})\ldots(a_{j}-a_{j-1})}{(a_{j}-a_{0})\ldots(a_{j}-a_{j-1})} = c_{j}$$

Finalement

$$c_{j} = \left(\phi^{r} f(a_{j_{1}}, \dots, a_{j_{r}}, a_{j}) - \sum_{k=0}^{j-1} \phi^{r} \left(c_{j} {X \choose k}_{\delta_{r}, E}\right) (a_{j_{1}}, \dots, a_{j_{r}}, a_{j})\right) \in D$$

contradiction. \Box

Corolaire 3.1. La π -séquence associée à une suite (π,r) -ordonnée δ_r de E ne dépend pas de δ_r .

Preuve. Le Théorème 3.3 implique que l'idéal fractionnaire formé par zéro et l'ensemble des coefficients dominants des éléments de $\operatorname{Int}_n^r(D,E)$ de degré n est

$$\left(n!_{(\delta_r,E)}^r\right)^{-1}D$$

et cela pour toute suite (π, r) -ordonnée δ_r de E. Ainsi l'entier $v_{\pi}(n!_{\delta_r, E}^r)$ ne dépend pas de δ_r et par conséquent la π -séquence associée à δ_r non plus.

Remarque 3.4. On a donc $n!_{(\delta_r,E)}^r D = n!_{(\delta'_r,E)}^r D$ pour tout δ_r, δ'_r . On peut donc noter simplement $n!_E^r D$.

Notation 3.2. On appelle fonction factorielle associée à E et r la fonction

$$n \rightarrow n!_E^r = n!_E^r D$$

Le Théorème 3.1 est conséquence immédiate du Corolaire 3.1:

Preuve du Théorème 3.1. Soit D quelconque, D_P le localisé de D en P, et δ_r une suite (P, r)ordonnée de E. La suite δ_r est aussi une suite (π, r) -ordonnée de $E \subset D_P$ et les exposants dans la π -séquence associée à δ_r sont les même que dans la P-séquence associée à δ_r . On applique alors le Corolaire 3.1.

3.4 Base régulière

D est quelconque (plus nécessairement local).

Dans cette section, on énonce une condition nécessaire et suffisante pour que $\operatorname{Int}_n^r(E,D)$ admette une base régulière et lorsque c'est le cas, on présente un algorithme qui construit une telle base à partir de suites (P,r)-ordonnée pour un nombre fini de P à l'aide du théorème chinois.

Le procédé, les preuves et l'algorithme sont en tout point similaires à ceux utilisés dans la partie précédente pour $Int_n(E, D)$ et les suites P-ordonnée.

Définition 3.5. Pour tout n, on définit $\mathfrak{J}_n^r(E,D)$ comme l'ensemble formé de zéro et des coefficients dominants des éléments de $Int_n^r(E,D)$ de degré n.

Proposition 3.2. $\mathfrak{J}_n^r(E,D)$ est un idéal fractionnaire.

Preuve. Identique à la preuve de la Proposition 2.1 pour $\mathfrak{J}_n(E,D)$.

Théorème 3.4. $Int_n^r(E,D)$ possède une base régulière si et seulement si les idéaux fractionnaires $\mathfrak{J}_k^r(E,D)_{k\leq n}$ sont principaux.

Preuve. Identique à la preuve du Théorème 2.3 pour $\mathrm{Int}_n(E,D)$.

Proposition 3.3 (Localisation).

$$Int_n^r(E, D_P) = Int_n^r(E, D)_P$$

Preuve. Soit $f \in \operatorname{Int}_n^r(E,D)_P$. Pour tout $k \leq r$ et tout $x_0,\ldots,x_k \in E$, on a $\phi^k f(x_0,\ldots,x_k) \in D_P$ puisque $f(x_i) \in D_P$ d'après la Proposition 2.2.

Réciproquement, soit $f \in \operatorname{Int}_n^r(E, D_P)$ et soit I le D-module engendré par ses coefficient. Pour tout $k \leq r$ et tout $x_0, \ldots, x_k \in E$, $\phi^k f(x_0, \ldots, x_k) \in I \cap D_P$. Puisque D est Noétherien, il existe $s \in D \setminus P$ tel que $s\phi^k f(x_0, \ldots, x_k) \in D$, et donc $f \in \operatorname{Int}_n^r(E, D)_P$.

Corolaire 3.2. Soit $n!_{E_P}^r$ la factoriel associée à $E \subset D_P$. On a $n!_{E_P}^r = D$ sauf pour un nombre fini de P

Preuve. $n!_{E_P}^r \neq D$ pour les P qui divisent $\mathfrak{J}_n^r(E,D)^{-1}$ qui sont en nombre fini.

La Proposition 3.3 permet naturellement d'étendre la fonction factorielle définit dans le cas local à D quelconque:

Définition 3.6. On appelle fonction factoriel associée à E et r la fonction

$$n \to n!_E^r = \mathfrak{J}_n^r(E, D)^{-1} = \prod_{(P, \pi)} P^{v_\pi(n!_{E_P}^r)}$$

On présente maintenant un algorithme pour construire un polynôme $A_n \in D[X]$ de degré n tel que $A_n(D) \subset n!_E^r$.

Soient $n \in \mathbb{N}$ et $\{P_1, P_2, \dots, P_m\}$ les premiers qui divisent $n!_E^r$. Pour tout $1 \leq i \leq m$ soit $(u_{i,k})_{0 \leq k < n}$ les n premiers termes d'une suite (P_i, r) -ordonnée de E. On note également $e_{i,n} = v_{P_i}(n!_E^r)$.

Algorithme 3.1.

1. Pour tout $0 \le k < n$, on construit à l'aide du théorème chinois un élément a_k vérifiant pour tout $1 \le i \le m$:

$$a_k \equiv u_{i,k} \pmod{P_i^{e_{i,n}+1}}$$

2. On retourne le polynôme $A_n = (X - a_0)(X - a_1) \dots (X - a_{n-1})$.

La suite $(a_k)_{k \leq n}$ est construite afin d'être (P_i, r) -ordonnée simultanément pour tout les $P_i \in \{P_1, P_2, \dots, P_m\}$.

Théorème 3.5. On a $A_n(E) \subset n!_E^r$.

Preuve. Soit $x \in E$. Il suffit de montrer que $v_P(A_n(x)) \ge v_P(n!_E^r)$ pour tout P. Si $P \notin \{P_1, P_2, \dots, P_m\}, v_P(n!_E^r) = 0$. On peut donc se restreindre à $P_i \in \{P_1, P_2, \dots, P_m\}$. Mais alors par construction

$$v_{P_i}(A_n(x)) = \sum_{k=0}^{n-1} v_{P_i}(x - a_k) \ge \sum_{k \in S(n,r)} v_{P_i}(x - a_k)$$

$$\ge \sum_{k \in S(n,r)} v_{P_i}(a_n - a_k) \qquad \left(= \sum_{k \in S(n,r)} v_{P_i}(u_{i,n} - u_{i,k}) \right)$$

$$= v_{P_i}(n!_E^r)$$

Pour que $\operatorname{Int}_n^r(E,D)$ admette une base régulière, il est nécessaire que les idéaux $k!_E^r$ pour $k \leq n$ soient principaux. On suppose donc que c'est la cas et on note β_k un générateur de $k!_E^r$.

Soit $(A_k)_{0 \le k \le n}$ des polynômes de D[X] tels que $A_k(D) \subset k!_D^r$. On pose $B_k = \frac{1}{\beta}A_k$.

Théorème 3.6. La famille $\{B_0, B_1, B_2, \dots, B_n\}$ est une base régulière de $Int_n^r(E, D)$

Preuve. Pour tout k, B_k est un polynôme de $\operatorname{Int}_n^r(E,D)$ de degré k et de coefficient dominant β_k par construction. D'après la preuve du Théorème 3.4, $\{B_1, B_2, \dots, B_n\}$ est une base régulière de $\operatorname{Int}_n^r(E,D)$.

3.5 Calcul effectif pour E=D

Pour construire en utilisant les résultats de la section précédente une base régulière de $\operatorname{Int}_n^r(E,D)$ lorsque les $(k!_E^r)_{k\leq n}$ sont principaux, on a besoin de savoir:

- 1. déterminer les idéaux premiers qui divisent $n!_E^r$
- 2. construire les n premiers termes d'une suite (P,r)-ordonnée de E

Réaliser le deuxième point demande si on applique la définition d'une suite (P, r)-ordonnée de E de prendre un minimum sur un ensemble infini, ce qui n'est pas réalisable tel quel.

Cependant, dans le cas où E = D et où D/P est de cardinal fini pour tout P, il est possible de construire effectivement les n premiers termes d'une suite (P, r)-ordonnée de D en utilisant la finitude de D/P et l'homogénéité de D. On peut également en déduire les idéaux qui divisent $n!_D^r$.

On montre en fait que les n termes produits par l'Algorithme 2.2 servant à construire une suite P-ordonnée de D forment aussi les n premiers termes d'une suite (P, r)-ordonnée de D et cela pour tout r!

Dans cette partie, D/P est de cardinal fini pour tout P.

3.5.1 Construction d'une suite (P, r)-ordonnée de D

On propose un algorithme pour construire les n premiers termes d'une suite (P, r)-ordonnée de D. On utilise de manière cruciale le fait que D est réunion disjointe finie des différentes classes modulo P. On généralise notamment aux entiers d'un corps de nombres certains théorèmes donnés pour \mathbb{Z} dans [Joh10]. Le cardinale de D/P est noté q.

Soit $\{r_0, r_1, \dots, r_{q-1}\}$ un système de représentants modulo P. On note $D_{r_i} = \{x \in D : x \equiv r_i \pmod{P}\}$.

On montre que les D_{r_i} ont tous la même P-séquence.

Proposition 3.4. Pour tout r_i, r_j et $n \ge 0$:

$$v_P(n!_{D_{r_i}}^r) = v_P(n!_{D_{r_i}}^r)$$

Autrement dit les P-séquences associées aux suites (P,r)-ordonnée des D_{r_i} sont les mêmes.

Preuve. Soit $c \in D$ tel que $D_{r_i} + c = D_{r_j}$. Soit $(a_n)_n$ une suite (P, r)-ordonnée de D_{r_i} . Pour tout n, m

$$v_P((a_n - c) + (a_m - c)) = v_P(a_n - a_m)$$

Ainsi $(a_n - c)_n$ est une suite (P, r)-ordonnée de D_{r_j} et $v_P(n!_{D_{r_j}}^r) = v_P(n!_{D_{r_j}}^r)$

Proposition 3.5. L'application $\theta_i: x \to x\pi + r_i$ envoit une suite (P, r)-ordonnée de D sur une suite (P, r)-ordonnée de D_{r_i} .

Preuve. Soit $(a_n)_n$ une suite (P,r)-ordonnée de D. Pour tout $x,y\in D$

$$v_P(\theta(x) - \theta(y)) = v_P(\pi(x - y)) = 1 + v_P(x - y)$$

Par récurrence sur $n \geq r+1$, le minimum à la n-ème étape de construction d'une suite (P,r)ordonnée de D_{r_i} est donc atteint pour $\theta(a_n)$ ce qui fait de $(\theta(a_n))_n$ une suite (P,r)-ordonnée de D_{r_i} .

Corolaire 3.3. Pour tout $0 \le i < q$ et pour $n \ge r + 1$

$$v_P(n!_{D_{r_i}}^r) = v_P(n!_D^r) + n - r$$

Preuve.

$$v_P(n!_{D_{r_i}}^r) = \sum_{k \in S_r(n)} (v_P(\theta(a_n) - \theta(a_k)))$$

$$= \sum_{k \in S_r(n)} (v_P(a_n - a_k) + 1) = v_P(n!_D^r) + n - r$$

On cherche désormais à construire une suite (P, r)-ordonnée de D à partir de suites (P, r)-ordonnée des D_{r_i} . On rappelle que la notion d'entrelacement de suites à été introduite dans la Définition 2.7.

On montre que l'entrelacement q-uniforme de suites (P, r)-ordonnée des D_{r_i} résulte en une suite (P, r)-ordonnée de D.

Proposition 3.6. Pour tout $0 \le i < q$ et tout $n \in \mathbb{N}$ soit

$$\phi_i(n) = nq + i$$

La suite obtenue par $(\phi_i)_{0 \le i < q}$ entrelacement de suites (P, r)-ordonnée des D_{r_i} est une suite (P, r)-ordonnée de D.

Preuve. Identique à la preuve de la Proposition 2.5 pour les suites P-ordonnée.

Corolaire 3.4. Pour $n \ge q(r+1)$

$$v_P(n!_D^r) = v_P(\lfloor n/q \rfloor!_D^r) + \lfloor n/q \rfloor - r$$

Preuve. Remarquons d'abord que $n \ge q(r+1)$ implique $\lfloor n/q \rfloor \ge r+1$.

Soit $(a_n)_n$ la suite obtenue par $(\phi_i)_{1 \leq i < q}$ entrelacement de suites (P,r)-ordonnée des D_{r_i} . Par définition des ϕ_i , a_n est le $\lfloor n/q \rfloor$ -ème terme d'une suite (P,r)-ordonnée de l'un des $D_{r_i} = D_{r_{i_0}}$. Puisque $v_P(a_n - a_k) = 0$ dès que $a_k \notin D_{r_{i_0}}$, on a

$$v_P(n!_D^r) = v_P\left(\lfloor n/q \rfloor!_{D_{r_{i_0}}}^r\right)$$

On peut alors appliquer le Corolaire 3.3 puisque $\lfloor n/q \rfloor \geq r+1$.

Théorème 3.7. Pour tout $n \ge 0$ on a

$$v_P(n!_D^r) = \sum_{i=1}^k \lfloor n/q^i \rfloor - kr$$

 $o\grave{u} \ k = \lfloor log_q(n/(r+1)) \rfloor.$

Preuve. Pour n < q(r+1), la formule est trivialement vraie.

Rappelons la formule du Corolaire 3.4 valable pour $n \ge q(r+1)$

$$v_P(n!_D^r) = v_P(\lfloor n/q \rfloor!_D^r) + \lfloor n/q \rfloor - r$$

On peut itérer cette relation pour obtenir

$$v_P(n!_D^r) = v_P(\lfloor n/q^j \rfloor !_D^r) + \sum_{i=1}^j \lfloor n/q^i \rfloor - jr$$

et cela tant que $n/q^{j-1} \ge q(r+1)$. La dernière valeure de j pour laquelle on peut appliquer le Corolaire 3.4 est donc $j = \lfloor \log_q(n/(r+1)) \rfloor - 1$. Le résultat suit puisqu' alors $v_P(\lfloor n/q^j \rfloor!_D^r) = 0$.

Définition 3.7. Soit $k = \lfloor log_q(n/(r+1)) \rfloor$. Pour n < q(r+1), on pose $w_{q,r}(n) = 0$ et pour $n \ge q(r+1)$

$$w_{q,r}(n) = v_P(n!_D^r) = w_q(n) - w_q(\lfloor n/q^k \rfloor) - kr$$

Corolaire 3.5. Pour tout $q \ge 2$ soit M_q le produit des idéaux premiers de D de norme q. On a

$$n!_D^r = \prod_{(P,q)} P^{w_{q,r}(n)} = \prod_{q=2}^n M_q^{w_{q,r}(n)}$$

Preuve. $v_P(n!_D^r) = w_{q,r}(n)$ ne dépend que du cardinal q de D/P et $w_{q,r}(n) = 0$ dès que q > n. \square

Les Proposition 3.5 et Proposition 3.6 impliquent que l'Algorithme 2.2 servant à construire une suite P-ordonnée de D peut être utilisé pour construire les n premiers termes d'une suite (P,r)-ordonnée de D à condition de prendre pour q premiers termes à l'étape 1) les q premiers termes d'une suite (P,r)-ordonnée de D. Mais il est immédiat que les q premiers termes (r_0,r_1,\ldots,r_{q-1}) utilisés dans l'algorithme sont aussi les q premiers termes d'une suite (P,r)-ordonnée de D quelque soit r. En conséquence:

Théorème 3.8. La suite P-ordonnée de D produite par l'Algorithme 2.2 est aussi une suite (P, r)-ordonnée de D pour tout $r \ge 0$.

3.5.2 Algorithme pour $\operatorname{Int}_n^r(D)$

On résume maintenant la procédure pour construire lorsque les $(k!_D^r)_{k \le n}$ sont principaux une base régulière de $\operatorname{Int}_n^r(D)$:

1. On détermine les idéaux premiers T_k qui divisent $k!_D^r$ pour $k \le n$. D'après le Corolaire 3.5, ce sont tout les idéaux premiers de norme $q \le k$. On calcul également pour tout $q \le n$ le produit M_q des idéaux premiers de norme q.

Pour cela, on utilise les méthodes standards pour factoriser les premiers $p \leq n$ dans D.

- 2. On construit pour chaque $P \in \bigcup_{k \leq n} T_k$ les n+1 premiers termes d'une suite (P, r)-ordonnée de D en utilisant l'Algorithme 2.2.
- 3. Pour chaque $k \leq n$ on utilise l'Algorithme 3.1 pour construire le polynôme A_k tel que $A_k(D) \subset n!_D^r$. On utilise pour cela les k+1 premiers termes des suites (P,r)-ordonnée pour $P \in T_k$ construites à l'étape 2).
- 4. On calcul ensuite pour chaque $0 \le k \le n$ l'idéal $k!_D^r$ par la formule du Corolaire 3.5. On utilise alors les M_q calculés à l'étape 1).
- 5. Pour tout $k \leq n$, on calcul un générateur β_k de $k!_D^r$ par les méthodes standards puis $B_k = \frac{1}{\beta_k} A_k$.

La famille (B_0, B_1, \ldots, B_k) ainsi construite est une base régulière de $\operatorname{Int}_n^r(D)$.

3.5.3 Exemples

Exemple 1

Soit $K = \mathbb{Q}[i]$. L'anneau des entiers $\mathbb{Z}[i]$ est principal, donc $\operatorname{Int}_n^r(\mathbb{Z}[i])$ admet une base régulière pour tout n et r.

Voici une base régulière de $\operatorname{Int}_6^1(\mathbb{Z}[i])$:

$$B_0(X) = 1, \ B_1(X) = X, \ B_2(X) = X^2 + X, \ B_3(X) = X^3 + 2X^2 + X$$

$$B_4(X) = \frac{1-i}{2}X^4 + (1-i)X^3 + \frac{1-i}{2}X^2$$

$$B_5(X) = \frac{1-i}{2}X^5 + (2+3i)X^4 - \frac{27+13i}{2}X^3 + (19+-i)X^2 - (8+2i)X$$

$$B_6(X) = \frac{1}{2}X^6 + \frac{1 - 20i}{2}X^5 - \frac{159 + 10i}{2}X^4 + \frac{-1 + 600i}{2}X^3 + (485 - 140i)X^2 - (406 + 145i)X$$

Soit $f \in \text{Int}_6^1(\mathbb{Z}[i])$ le polynôme dont les coordonnées sur la base $(B_i(X))_{i \leq 6}$ sont:

$$\begin{pmatrix} 1+i \\ 0 \\ 2-i \\ 3+5i \\ -2 \\ i \\ 1 \end{pmatrix}$$

et soit $g(x,y) = \phi^1 f(x,y)$ la première différence divisée de f.

Puisque $f \in \text{Int}_6^1(\mathbb{Z}[i])$, on a $g(x,a) \in \text{Int}_5(\mathbb{Z}[i])$ quelque soit $a \in \mathbb{Z}[i]$. Soit R la base régulière de $\text{Int}_5(\mathbb{Z}[i])$ construite dans l'exemple 1. de la partie 2. Dans le tableau suivant, on donne pour quelques valeurs de a la décomposition du polynôme g(a,x) sur la base R:

a	0	i	1+i
	-399-149i	-296 + 118i	-224 + 113i
	55093 - 3153i	54881 - 3073i	54895 - 2926i
$(g(a,x))_R$	629966 - 21543i	-29897 - 21639i	629975 - 21707i
(g(u,u))R	-442 - 1847i	-435 - 1838i	-426 - 1844i
	-19 - 57i	-20 - 56i	-19 - 55i
	$\left[\begin{array}{ccc} 5+5i \end{array}\right]$	$\left(\begin{array}{cc} 5+5i \end{array} \right)$	

Table 1: Les coordonnées de g(a, x) sur la base R en fonction de a

Exemple 2

Soit $K = \mathbb{Q}(j)$. On donne dans le tableau suivant les 15 premiers termes d'une suite ((2), r)ordonnée ainsi que les exposants de la (2)-séquence associée pour $0 \le r \le 2$:

r	Suite $((2), r)$ -ordonnée et exposants		
0	(0,1,j,j+1,2,3,2+j,3+j,2j,1+2j,3j,1+3j,2+2j,3+2j,2+3j)		
	(0,0,0,1,1,1,1,2,2,2,2,3,3,3,3)		
1	(0,2,1,3,j,2+j,1+j,3+j,2,3,2+j,3+j,2j,1+2j,3j)		
	(0,0,0,0,0,0,1,1,1,1,2,2,2,2)		
2	(0, 2, 2j, 1+j, 1+j, 1+j, 1, 3, 1+2j, j, 2+j, 3j, 3+j, 2, 3)		
2	(0,0,0,0,0,0,0,0,0,0,1,1,1,1)		

Table 2: Suites ((2), r)-ordonnée pour r = 0, 1, 2

3.5.4 Fonctions pour $\operatorname{Int}_n^r(D)$

Voici quelques fonctions utiles:

- la fonction ispolyaupto_rem(K, r, n) teste si $\operatorname{Int}_n^r(D)$ admet une base régulière
- la fonction zkremregbasis (K,r, n, "X") retourne (si possible) une base régulière (d'indéterminée "X") de $\mathrm{Int}_n^r(D)$.
- la fonction <code>zkremregbasis_dec(K, pol, 1, "X")</code> retourne une matrice $(n+1) \times 2$ (où $n = \deg(\texttt{pol})$) avec une base régulière de $\operatorname{Int}_n^r(D)$ (d'indéterminée ""X") dans la deuxième colonne et les coefficients de la K-décomposition de pol sur cette base dans la première.

4 Base régulière du sous-module $\mathbf{Int}_n^M(E,D)$

Dans cette section, on présente un sous-module de $Int_n(E, D)$ qui dépend d'un nouveau paramètre M (un idéal) ainsi qu'une nouvelle notion de suite ordonnée associée ([Bha09]) qui permet d'appliquer la même stratégie que dans la partie 2.

On donnera une condition nécessaire et suffisante pour que ce sous-module admette une base régulière, puis un algorithme de construction d'une telle base quand elle existe. On fournira plusieurs exemples concrets en fin de partie.

Dans toute cette partie, h est un entier positif.

4.1 Le sous-module $\operatorname{Int}_n^M(E,D)$

Soit $f \in \text{Int}_n(E, D)$. Même si $f \notin D[X]$, on peut se demander quels sont les $m \in D$ pour lesquels le polynôme composé $f(mX + e) \in D[X]$ pour tout $e \in E$. Si m est tel que $f(mX + e) \in D[X]$, on a $f(m'X + e) \in D[X]$ pour tout m' dans l'idéal mD.

Ceci amène la définition suivante:

Définition 4.1. Soit M un idéal de D. On dit que $f \in Int_n(E, D)$ est de module M si $f(mX + e) \in D[X]$ pour tout $m \in M$ et $e \in E$.

On note $\operatorname{Int}_n^M(E,D)$ l'ensemble des éléments de $\operatorname{Int}_n(E,D)$ de module M. C'est un sous-module de $\operatorname{Int}_n(E,D)$. On a $\operatorname{Int}_n^{(0)}(E,D) = \operatorname{Int}_n(E,D)$.

4.2 Suite P^h -ordonnée

On définit dans cette section une nouvelle notion de suite ordonnée d'éléments de E qui à vocation à jouer le même rôle pour $\mathrm{Int}_n^M(E,D)$ qu'une suite P-ordonnée pour $\mathrm{Int}_n(E,D)$.

Formelement, se donner un module $M=\prod_i P_i^{h_i}$ revient à associer à chaque P un entier h. La notion de suite P^h -ordonnée que l'on décrit ici est une légère variation de la notion de suite P-ordonnée où l'on souhaite garder un contrôle (dicté par h) sur la décroissance de la P-séquence associée.

Définition 4.2. On appelle suite P^h -ordonnée de E toute suite $(a_n)_{n\geq 0}$ d'éléments de E telle que pour tout $n\geq 1$, a_n vérifie:

$$\min_{x \in E} \left(\sum_{i=0}^{n-1} \min(h, v_P(x - a_i)) \right) = \sum_{i=0}^{n-1} \min(h, v_P(a_n - a_i)) = e_n$$

On appelle P-sequence associée à la suite P^h -ordonnée $(a_n)_{n\geq 0}$ la suite décroissante d'idéaux $(P^{e_0}, P^{e_1}, P^{e_2}, P^{e_3}, \dots)$.

Remarque 4.1. Pour tout $x, y \in D$, $\min(h, v_P(x + \pi^h - y)) = \min(h, v_P(x - y))$.

En conséquence, si $(a_n)_n$ est une suite P^h -ordonnée de E et que l'on remplace a_n par un a_m tel que $a_n \equiv a_m \pmod{P^h}$, la suite obtenue est encore une suite P^h -ordonnée de E.

A partir d'une suite P^h -ordonnée de E, on peut construire une suite P^h -ordonnée de E telle que l'ensemble des termes de la suite qui sont dans la même classe modulo P^h est réduit à un unique élément. Il suffit de remplacer chaque a_n par l'élément a_m de plus petit indice m tel que $a_m \equiv a_n \pmod{P^h}$.

Définition 4.3. Soit $(a_n)_n$ une suite P^h -ordonnée de E. Si pour toute classe C modulo P^h l'ensemble des termes de la suite qui sont dans C est vide ou réduit à un élément, on dit que la suite est restreinte.

Il existe toujours une suite P^h -ordonnée restreinte.

Finalement on a le même théorème d'indépendance que pour les suite P-ordonnée

Théorème 4.1. La P-séquence associée à une suite P^h -ordonnée δ^h de E ne dépend pas de δ^h .

La preuve du Théorème 4.1 sera donnée à a fin de la prochaine section.

4.3 Base régulière dans le cas local

Dans cette section, sauf mention du contraire, D est local. Se donner un module M revient donc à se donner un entier h tel que $M=(\pi^h)$. On montre que dans ce cas $\mathrm{Int}_n^{\pi^h}(E,D)$ admet toujours une base régulière. Ce résultat permet ensuite de démontrer le Théorème 4.1.

Soit $\delta^h = (a_n)_n$ une suite π^h -ordonnée de E. On pose pour tout n

$$n!_{(\delta^h, E)}^h = \pi^{\sum_{i=0}^{n-1} \min(h, v_\pi(a_n - a_i))}$$

Définition 4.4. Pour tout $n \ge 0$, on définit le n-ème polynôme binomial associé à E et δ^h par $\binom{X}{0}_{\delta^h,E}^h = 1$ et pour $n \ge 1$

$$\binom{X}{n}_{\delta^{h},E}^{h} = \frac{(X - a_0)(X - a_1)\dots(X - a_{n-1})}{n!_{(\delta^{h},E)}^{h}}$$

Par construction, $\binom{X}{n}_{\delta^h,E}^h \in \operatorname{Int}_n(E,D)$.

Théorème 4.2. Pour tout $n \ge 0$, $\binom{X}{n}_{\delta^h,E}^h \in Int_n^{\pi^h}(E,D)$.

Preuve. Soit $e \in E$. Si on développe le polynôme

$$(\pi^h X + (e - a_0))(\pi^h X + (e - a_1))\dots(\pi^h X + (e - a_{n-1}))$$

les relations coefficients-racines montrent que la π -valuation de chaque coefficient est supérieur à

$$\sum_{i=0}^{n-1} \min(h, v_P(e - a_i))$$

On déduit que la valuation de chaque coefficient de $\binom{\pi^h X + e}{n}^h_{\delta^h, E}$ est supérieur à

$$\sum_{i=0}^{n-1} \min(h, v_{\pi}(e - a_i)) - \sum_{i=0}^{n-1} \min(h, v_{\pi}(a_n - a_i))$$

qui est positif car $(a_n)_n$ est une suite π^h -ordonnée de E. Ceci montre que $\binom{\pi^h X + e}{n}_{\delta^h, E}^h \in D[X]$, et donc $\binom{X}{n}_{\delta^h, E}^h \in \operatorname{Int}_n^{\pi^h}(E, D)$.

Théorème 4.3. La famille $\binom{X}{k}_{\delta^h,E}_{0 \le k \le n}$ est une base régulière de $Int_n^{\pi^h}(E,D)$.

Preuve. On montre d'abord le théorème lorsque la suite $(a_n)_n$ est restreinte.

Soit $f \in \text{Int}_n^{(\pi^h)}$ et $f = \sum_{k=0}^n c_k {X \choose k}_{\delta^h, E}^h = \sum_{k=0}^n c_k f_k(X)$ la décomposition de f sur la K-base

$$\left(\begin{pmatrix} X \\ k \end{pmatrix}_{\delta^h, E}^h \right)_{0 < k < n}$$

On veut montrer que les c_k sont dans D. Par l'absurde, soit j le plus petit indice tel que $c_j \notin D$ et soit s le nombre d'indices $i \in \{0, \ldots, j-1\}$ tels que $a_j = a_i$. L'idée est de regarder le coefficient de X^s dans $c_j f_j(\pi^h X + a_j)$. On regarde pour cela le coefficient de X^s pour chacun des $c_k f_k(\pi^h X + a_j)$, $k \neq j$.

- si $n \ge k > j$, le coefficient de X^s dans $c_k f_k(\pi^h X + a_j)$ est nul par définition de s (on utilise donc ici le fait que la suite est restreinte)
- si k < j, le coefficient de X^s dans $c_k f_k(\pi^h X + a_j)$ est dans D puisque $c_k \in D$ (par minimalité de j) et $f_k(\pi^h X + a_j) \in D[X]$.

Puisque le coefficient de X^s dans $f(\pi^h X + a_j)$ est dans D et que le coefficient de X^s dans $c_k f_k(\pi^h X + a_j)$ pour $k \neq j$ est dans D, le coefficient de X^s dans $c_j f_j(\pi^h X + a_j)$ est aussi dans D. Enfin, $v_{\pi}(f_j(\pi^h X + a_j)) = 0$ et donc $c_j \in D$, contradiction.

On démontre maintenant le théorème pour une suite π^h -ordonnée quelconque δ^h . On se donne δ^h_0 une suite π^h -ordonnée restreinte et

$$(C_k(X))_{0 \le k \le n} = \left({\binom{X}{k}}_{\delta_0^h, E}^h \right)_{0 \le k \le n}$$

la D-base correspondante. La matrice de la famille

$$(B_k(X))_{0 \le k \le n} = \left({\binom{X}{k}}_{\delta^h, E}^h \right)_{0 \le k \le n}$$

sur la base $(C_k(X))_{0 \le k \le n}$ est triangulaire supérieure avec des 1 sur la diagonale. Elle est donc inversible et la famille $(B_k(X))_{0 \le k \le n}$ est une D-base de $\operatorname{Int}_n^{\pi^h}(E,D)$.

Corolaire 4.1. La π -séquence associée à une suite π^h -ordonnée δ^h de E ne dépend pas de δ^h .

Preuve. Le Théorème 4.3 implique que l'idéal fractionnaire formé par zéro et l'ensemble des coefficients dominants des éléments de $\operatorname{Int}_n^{\pi^h}(D,E)$ de degré n est

$$(n!_{(\delta^h,E)}^h)^{-1}D$$

et cela pour toute suite π^h -ordonnée δ^h de E. Ainsi l'entier $v_{\pi}(n!_{\delta^h,E}^h)$ ne dépend pas de δ^h et par conséquent la π -séquence associée à δ^h non plus.

Remarque 4.2. On a donc $n!_{(\delta_1^h, E)}^h D = n!_{(\delta_2^h, E)}^h D$ pour tout δ_1^h, δ_2^h . On peut donc noter simplement $n!_E^h D$.

Notation 4.1. On appelle fonction factoriel associée à E et h la fonction

$$n \rightarrow n!_E^h = n!_E^h D$$

Le Théorème 4.1 est conséquence immédiate du Corolaire 4.1:

Preuve du Théorème 4.1. Soit D quelconque, D_P le localisé de D en P, et δ^h une suite P^h -ordonnée de E. La suite δ^h est aussi une suite π^h -ordonnée de $E \subset D_P$ et les exposants dans la π -séquence associée à δ^h sont les même que dans la P-séquence associée à δ^h . On applique alors le Corolaire 4.1

4.4 Base régulière

Dans cette section, D est quelconque (plus nécessairement local) et M est un idéal.

On donne une condition nécessaire et suffisante pour que $\operatorname{Int}_n^M(E,D)$ admette une base régulière et lorsque c'est le cas, on présente un algorithme qui construit une telle base à partir des suites P^h -ordonnée pour P divisant M et du théorème chinois.

Définition 4.5. Pour tout n, on définit $\mathfrak{J}_n^M(E,D)$ comme l'ensemble formé de zéro et des coefficients dominants des éléments de $Int_n^M(E,D)$ de degré n.

Proposition 4.1. $\mathfrak{J}_n^M(E,D)$ est un idéal fractionnaire.

Preuve. Identique à la preuve de la Proposition 2.1 pour $\mathfrak{J}_n(E,D)$.

Théorème 4.4. $Int_n^M(E,D)$ possède une base régulière si et seulement si les idéaux fractionnaires $\mathfrak{J}_k^M(E,D)_{k\leq n}$ sont principaux.

Preuve. Identique à la preuve du Théorème 2.3 pour $\operatorname{Int}_n(E,D)$.

Proposition 4.2.

$$Int_n^M(E, D_P) = Int_n^M(E, D)_P$$

Preuve. Soit $f \in \operatorname{Int}_n^M(E,D)_P$. D'après la preuve du Proposition 2.2, $f \in \operatorname{Int}_n(E,D)_P$. De plus $f(mX+e) \in D[X]$ et ses coefficients sont dans D_P , donc $f \in \operatorname{Int}_n^M(E,D_P)$.

Réciproquement, soit $f \in \operatorname{Int}_n^M(E, D_P)$. D'après la Proposition 2.2, $f \in \operatorname{Int}_n(E, D)_P$. Soit I le D-module engendré par les coefficients de f. Les coefficients de f(mX+e) sont dans $I \cap D_P$. Puisque D est Noétherien, il existe $s \in D \setminus P$ tel que $sf(mX+e) \in D[X]$, et donc $f \in \operatorname{Int}_n^M(E, D)_P$. \square

Par définition de $\operatorname{Int}_n^M(E,D)$, les coefficients d'un élément $f\in\operatorname{Int}_n^M(E,D)$ sont dans M^{-1} (puisque $f(mX+e)\in D[X]$).

Notation 4.2. On note $n!_{E_P}^M$ la factoriel $n!_E^h$ associée à $E \subset D_P$ où h est la plus grande puissance de P divisant M.

La Proposition 4.2 permet naturellement d'étendre la fonction factorielle définit dans le cas local à D quelconque:

Définition 4.6. On appelle fonction factorielle associée à E et M la fonction

$$n \to n!_E^M = \mathfrak{J}_n^M(E, D)^{-1} = \prod_{P|M} P^{v_\pi(n!_{E_P}^M)}$$

On présente maintenant un algorithme pour construire un polynôme $A_n \in D[X]$ de degré n tel que $A_n(D) \subset n!_E^M$.

Soient $n \in \mathbb{N}$ et $\{P_1, P_2, \dots, P_m\}$ les premiers qui divisent M. Pour tout $1 \leq i \leq m$ soit $(u_{i,k})_{0 \leq k < n}$ les n premiers termes d'une suite $P_i^{h_i}$ -ordonnée de E où h_i est la plus grand puissance de P_i divisant M.

Algorithme 4.1.

1. Pour tout $0 \le k < n$, on construit à l'aide du théorème chinois un élément a_k vérifiant pour tout $1 \le i \le m$:

$$a_k \equiv u_{i,k} \pmod{P_i^{h_i}}$$

2. On retourne le polynôme $A_n = (X - a_0)(X - a_1) \dots (X - a_{n-1})$.

Théorème 4.5. On a $A_n(E) \subset n!_E^M$.

Preuve. Soit $x \in E$. Il suffit de montrer que $v_P(A_n(x)) \ge v_P(n!_E^M)$ pour tout P. Si $P \notin \{P_0, P_1, \ldots, P_m\}, v_P(n!_E^M) = 0$. On peut donc se restreindre aux P qui divisent M. On a pour $P_i^{h_i}|M$:

$$\begin{split} v_{P_i}(A_n(x)) &= \sum_{k=0}^{n-1} v_{P_i}(x - a_k) \\ &\geq \sum_{k=0}^{n-1} v_{P_i}(a_n - a_k) \\ &\geq \sum_{k=0}^{n-1} \min(h_i, v_{P_i}(a_n - a_k)) \qquad \left(= \sum_{k=0}^{n-1} \min(h_i, v_{P_i}(u_{i,n} - u_{i,k})) \right) \\ &> v_{P}(n!_F^M) \end{split}$$

Pour que $\operatorname{Int}_n^M(E,D)$ admette une base régulière, il est nécessaire que les idéaux $k!_E^M$ pour $k \leq n$ soient principaux. On suppose donc que c'est la cas et on note β_k un générateur de $k!_E^M$. Soit $(A_k)_{0 \leq k \leq n}$ des polynômes de D[X] tels que $A_k(D) \subset k!_D^M$. On pose $B_k = \frac{1}{\beta}A_k$.

Théorème 4.6. La famille $\{B_0, B_1, B_2, \dots, B_n\}$ est une base régulière de $Int_n^M(E, D)$

Preuve. Pour tout k, B_k est un polynôme de $\operatorname{Int}_n^M(E,D)$ de degré k et de coefficient dominant β_k par construction. D'après la preuve du Théorème 4.4, $\{B_1, B_2, \ldots, B_n\}$ est une base régulière de $\operatorname{Int}_n^M(E,D)$.

4.5 Calcul effectif pour E = D

Pour construire en utilisant les résultats de la section précédente une base régulière de $\operatorname{Int}_n^M(E,D)$ lorsque les $(k!_E^M)_{k\leq n}$ sont principaux, on a besoin de savoir construire les n premiers termes d'une suite P^h -ordonnée de E.

Cela demande si on applique la définition d'une suite P^h -ordonnée de E de prendre un minimum sur un ensemble infini, ce qui n'est pas réalisable tel quel.

Cependant, dans le cas où E = D et où D/P est de cardinal fini pour tout P, il est possible de construire effectivement les n premiers termes d'une suite P^h -ordonnée de D en utilisant la finitude de D/P et l'homogénéité de D.

On montre en fait que les n termes produits par l'Algorithme 2.2 servant à construire une suite P-ordonnée de D forment aussi les n premiers termes d'une suite P^h -ordonnée de D et cela pour tout h!

Dans cette partie, D/P est de cardinal fini pour tout P.

4.5.1 Construction d'une suite P^h -ordonnée de D

Le cardinale de D/P est noté q. On note $\{r_0, \ldots, r_{q-1}\}$ un système de représentants modulo P et $D_{r_i} = \{x \in D : x \equiv r_i \pmod{P}\}.$

Théorème 4.7. Pour tout r_i, r_j et $n \geq 0$:

$$v_P(n!_{D_{r_i}}^h) = v_P(n!_{D_{r_i}}^h)$$

Autrement dit les P-séquences associées aux suites p^h -ordonnée des D_{r_i} sont les mêmes.

Preuve. Identique à la preuve de la Proposition 2.3 pour les suites P-ordonnée.

Proposition 4.3. Pour $h \ge 1$, l'application $\theta_i : x \to x\pi + r_i$ envoie une suite $P^{(h-1)}$ -ordonnée de D sur une suite P^h -ordonnée de D_{r_i} .

Preuve. Soit $(a_n)_n$ une suite P^{h-1} -ordonnée de D. Pour tout $x, y \in D$:

$$\min(h, v_P(\theta_i(x) - \theta_i(y))) = \min(h - 1, v_P(\pi(x - y)) - 1) + 1$$

$$= \min(h - 1, v_P((x - y) + 1 - 1) + 1$$

$$= \min(h - 1, v_P(x - y)) + 1$$

Par récurrence sur $n \geq 1$, le minimum à la n-ème étape de construction d'une suite P^h -ordonnée de D_{r_i} est atteint par $\theta_i(a_n)$ ce qui fait de $(\theta_i(a_n))_n$ une suite P^h -ordonnée de D_{r_i} .

Corolaire 4.2. Pour tout $h \ge 1$ et $n \ge 0$:

$$v_P(n!_{D_{r_i}}^h) = v_P(n!_D^{(h-1)}) + n$$

Preuve. Soit $(a_n)_n$ une suite $P^{(h-1)}$ -ordonnée de D. Pour tout $n \ge 1$ on a:

$$v_P\left(n!_{D_{r_i}}^h\right) = \sum_{k=0}^{n-1} \min(h, v_P(\theta_i(a_n) - \theta_i(a_k))))$$

$$= \sum_{k=0}^{n-1} \left(\min(h - 1, v_P(a_n - a_k)) + 1\right)$$

$$= v_P\left(n!_D^{(h-1)}\right) + n$$

On cherche désormais à construire une suite P^h -ordonnée de D à partir de suites P^h -ordonnée des D_{r_i} . On rappelle que la notion d'entrelacement de suites à été introduite dans la Définition 2.7.

On montre que l'entrelacement q-uniforme de suites P^h -ordonnée des D_{r_i} résulte en une suite P^h -ordonnée de D.

Proposition 4.4. Pour tout $0 \le i < q$ et tout $n \in \mathbb{N}$ soit

$$\phi_i(n) = nq + i$$

La suite obtenue par $(\phi_i)_{0 \le i < q}$ entrelacement de suites P^h -ordonnée des D_{r_i} est une suite P^h -ordonnée de D.

Preuve. Identique à la preuve de la Proposition 2.5 pour les suites P-ordonnée.

Corolaire 4.3. Pour tout $n \ge 0$ et $h \ge 1$, on a

$$v_P(n!_D^h) = v_P(|n/q|!_D^{(h-1)}) + |n/q|$$

Preuve. Soit $(a_n)_n$ la suite obtenue par $(\phi_i)_{0 \le i < q}$ entrelacement des D_{r_i} . Par définition des ϕ_i , a_n est le $\lfloor n/q \rfloor$ -ème terme d'une suite P^h -ordonnée de l'un des $D_{r_i} = D_{r_{i_0}}$. Puisque $v_P(a_n - a_k) = 0$ dès que $a_k \notin D_{r_{i_0}}$, on a

$$v_P(n!_D^h) = v_P\left(\lfloor n/q \rfloor!_{D_{r_{i_0}}}^h\right)$$

On applique alors le Corolaire 4.2.

Théorème 4.8. Pour tout $n \ge 0$, on a:

$$v_P(n!_D^h) = \sum_{k=1}^h \lfloor n/q^k \rfloor$$

Preuve. Par récurrence sur $h \ge 0$. Si h = 0, $v_P(n!_D^h) = 0$ pour tout n.

Supposons la formule vrai au rang h-1. On a d'après le Corolaire 4.3 et l'hypothèse de récurrence

$$v_{P}(n!_{D}^{h}) = v_{P}(\lfloor n/q \rfloor!_{D}^{(h-1)}) + \lfloor n/q \rfloor = \sum_{k=1}^{h-1} \lfloor n/q^{k+1} \rfloor + \lfloor n/q \rfloor$$
$$= \sum_{k=2}^{h} \lfloor n/q^{k} \rfloor + \lfloor n/q \rfloor = \sum_{k=1}^{h} \lfloor n/q^{k} \rfloor$$

Définition 4.7 (La fonction $w_{q,h}$). Pour tout $h, n \ge 0$ et tout $q \ge 2$, on pose:

$$w_{q,h}(n) = \sum_{k=1}^{h} \lfloor n/q^k \rfloor = w_q(n) - w_q(\lfloor n/q^h \rfloor)$$

Corolaire 4.4. Soit $M = \prod_{j \in J} P_j^{h_j}$ un module. On note q_j le cardinal de D/P_j . On a alors

$$n!_D^M = \prod_{j \in J} P_j^{w_{q_j, h_j}(n)}$$

Remarquons maintenant que si $h \geq \lfloor log_q(n) \rfloor$, on a $w_q(n) = w_{q,h}(n)$ et donc les n termes produits par l'Algorithme 2.2 servant à construire une suite P-ordonnée de D forment aussi les n premiers termes d'une suite P^h -ordonnée.

Si au contraire $h < \lfloor log_q(n) \rfloor$, les Proposition 4.3 et Proposition 4.4 impliquent que l'Algorithme 2.2 servant à construire une suite P-ordonnée de D peut être utilisé pour construire les n premiers termes d' une suite P^h -ordonnée de D à condition de prendre pour q premiers termes à l'étape 1) les q premiers termes d'une suite $P^{(log_q(n)-h)}$ -ordonnée de D. Mais il est immédiat que les q premiers termes $(r_0, r_1, \ldots, r_{q-1})$ utilisés dans l'algorithme sont aussi les q premiers termes d'une suite P^h -ordonnée de D quelque soit p. En conséquence:

Théorème 4.9. La suite P-ordonnée de D produite par l'Algorithme 2.2 est aussi une suite P^h -ordonnée de D pour tout h > 0.

4.5.2 Algorithme pour $Int_n^M(D)$

On résume ici la procédure pour construire lorsque les idéaux $(k!_D^M)_{k \leq n}$ sont principaux une base régulière de $\operatorname{Int}_n^M(D)$.

Soit T l'ensemble des premiers P divisant M.

- 1. Pour tout P dans T, on utilise l'Algorithme 2.2 pour construire les n premiers termes d'une suite P^h -ordonnée de D où h est la plus grande puissance telle que P^h divise M.
- 2. Pour tout $0 \le k \le n$, on utilise l'Algorithme 4.1 pour construire un polynôme A_k vérifiant $A_k(D) \subset k!_D^M$. On utilisera pour cela les k premiers termes des suites P^h -ordonnée construites à l'étape 1).
- 3. Pour tout $0 \le k \le n$, on calcul l'idéal $k!_D^M$ en utilisant la formule du Corolaire 4.4.
- 4. Pour tout $0 \le k \le n$, on calcul un générateur β_k de $k!_D^M$ par les méthodes standards puis $B_k = \frac{1}{\beta_k} A_k$.

La famille (B_0, B_1, \ldots, B_k) ainsi construite est une base régulière de $\operatorname{Int}_n^M(D)$.

4.5.3 Exemples

Exemple 1

Soit $K = \mathbb{Q}(i)$ d'anneau des entiers $\mathbb{Z}[i]$ (principal) et soit le module

$$M = (3 - i) = (1 + i)(2 + i)$$

Voici une base régulière $B = (B_i(X))_{0 \le i \le 3}$ de $\operatorname{Int}_3^M(\mathbb{Z}[i])$:

$$B_0(X) = 1$$
, $B_1(X) = X$, $B_2(X) = \frac{1-i}{2}X^2 - \frac{1-i}{2}X$
 $B_3(X) = \frac{1-i}{2}X^3 - \frac{1+i}{2}X^2 + iX$

Dans le tableau suivant, on donne dans la première colonne un polynôme P(X) de $\operatorname{Int}_3^M(\mathbb{Z}[i])$ exprimé par ses $\mathbb{Z}[i]$ -coordonnées sur la base régulière B, dans la deuxième des couples (m,e) avec $m \in (M)$ et $e \in \mathbb{Z}[i]$ et dans la troisième les polynôme $P(mX + e) \in \mathbb{Z}[i][X]$ correspondants.

P(X)	(m,e)	P(mX + e)
	(3-i,1)	$(-26 - 18i)X^3 - (19 + 17i)X^2 - 5iX + 1$
$(0,1,i,1-i)_B$	(3-i,i)	$(-26 - 18i)X^3 + (23 - 11i)X^2 + (4 + 7i)X + i - 1$
	((3-i)2i, i-1)	$(-144 + 208i)X^3 - (164 + 52i)X^2 - 30iX + 1$
	((3-i)i,0)	$(-26 - 18i)X^3 - (1 - 7i)X^2 - (3 + 4i)X + i$
$(i,0,i,1+i)_B$	((3-i),(2-i)	$(18 - 26i)X^3 + (31 - 67i)X^2 + (11 - 52i)X - 1 - 11i$
	$((3-i)^2,1)$	$(-352 - 936i)X^3 + 50 - 350i)X^2 + (17 - 19i)X + i$
$(0,0,1,-1)_B$	((3-i),1)	$(4+22i)X^3 + (5+15i)X^2 + (1+3i)X$
$(0,1,-1,0)_B$	((3-i)(2+2i), 2-3i)	$(-56 - 8i)X^2 + (2 + 46i)X + (10 - 2i)$

Exemple 2

On note $\alpha = \sqrt[3]{2}$.

Soit $K = \mathbb{Q}[\alpha]$. Une base de l'anneau des entiers $\mathbb{Z}[\alpha]$ est $(1, \alpha, \alpha^2)$. Soit le module $M = (2\alpha)$. Voici une base régulière de $\mathrm{Int}_4^M(\mathbb{Z}[\alpha])$:

$$B_0(X) = 1, \quad B_1(X) = X, \quad B_2(X) = \frac{-\alpha^2}{2}X^2 + \frac{\alpha^2}{2}X, \quad B_3(X) = \frac{-\alpha^2}{2}X^3 + \frac{\alpha^2 + 2}{2}X^2 - X$$

$$B_4(X) = \frac{1}{2}X^4 + (\alpha - 1)X^3 + \frac{\alpha^2 - 3\alpha + 1}{2}X^2 + \frac{\alpha - \alpha^2}{2}X$$

4.5.4 Fonctions pour $\mathbf{Int}_n^M(D)$

Voici quelques fonctions utiles:

 \bullet la fonction ispolyaupto_mod(K, M, n) teste si $\operatorname{Int}_n^M(D)$ admet une base régulière

- la fonction zkmodregbasis (K, M, n, "X") retourne (si possible) une base régulière (d'indéterminée "X") de $\mathrm{Int}_n^M(D)$.
- la fonction zkmodregbasis_dec(K, pol, M, "X") retourne une matrice $(n+1) \times 2$ (où $n = \deg(\mathtt{pol})$) avec une base régulière de $\mathrm{Int}_n^M(D)$ (d'indéterminée ""X") dans la deuxième colonne et les coefficients de la K-décomposition de pol sur cette base dans la première.

References

- [Bha97] Manjul Bhargava. "P-orderings and polynomial functions on arbitrary subsets of Dedekind rings." In: Journal für die reine und angewandte Mathematik 490 (1997), pp. 101–128. URL: http://eudml.org/doc/153942.
- [Bha09] Manjul Bhargava. "On P -orderings, rings of integer-valued polynomials, and ultrametric analysis". In: *Journal of The American Mathematical Society J AMER MATH SOC* 22 (Oct. 2009), pp. 963–993. DOI: 10.1090/S0894-0347-09-00638-9.
- [CC16] Paul-Jean Cahen and Jean-Luc Chabert. "What You Should Know About Integer-Valued Polynomials". In: *The American Mathematical Monthly* 123.4 (2016), pp. 311–337. DOI: 10.4169/amer.math.monthly.123.4.311.
- [Joh10] Keith Johnson. "Computing r-removed P-orderings and P-orderings of order h". en. In: Actes des rencontres du CIRM 2.2 (2010), pp. 33-40. DOI: 10.5802/acirm.31. URL: acirm.centre-mersenne.org/item/ACIRM_2010__2_2_33_0/.
- [Ler10] Amandine Leriche. "Groupes, corps et extensions de Polya: une question de capitulation". Theses. Université de Picardie Jules Verne, Dec. 2010. URL: https://tel.archives-ouvertes.fr/tel-00612597.