

ELEC 341: Systems and Control

Lecture 16 Frequency response

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

Time response

- ✓ Transient
- √ Steady state

Frequency response

Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Summary up to now & Topics from now on

- Modeling: How to represent systems with transfer functions (*s*-domain).
- Analysis: How to extract time-response information from s-domain.
 - Steady-state error depends on TF evaluated at s = 0.
 - Stability and transient depends on pole locations.
 - Frequency responses contain all this information.
- Design: How to obtain "nice" closed-loop system.
 - Poles can be placed by the root-locus technique.
 - System's frequency responses can be shaped in Bode plot.

What is frequency response?

- We would like to analyze a system property by applying a *sinusoidal input* r(t) and observing a response y(t).
- Steady state response $y_{ss}(t)$ (after transient dies out) of a system to sinusoidal inputs is called *frequency* response.

Example 1

• RC circuit

- Input a sinusoidal voltage r(t)
- What is the output voltage y(t)?

$$G(s) = \frac{Y(s)}{R(s)}$$
 \longrightarrow $G(s) = \frac{1}{RCs + 1}$

Example 1 (cont'd)

• TF
$$(R = C = 1)$$

$$G(s) = \frac{1}{s+1}$$

•
$$r(t) = \sin(t)$$

At steady-state, r(t) and y(t) have the same frequency, but different amplitude and phase!

Example 1 (cont'd)

• Derivation of y(t)

$$Y(s) = G(s)R(s) = \frac{1}{s+1} \cdot \frac{1}{s^2+1} = \frac{1}{2} \left(\frac{1}{s+1} + \frac{-s+1}{s^2+1} \right)$$

Inverse Laplace

Partial fraction expansion

$$y(t) = \frac{1}{2} \left(e^{-t} - \cos t + \sin t \right)$$

0 as *t* goes to infinity.

$$y_{ss}(t) = \frac{1}{2}(-\cos t + \sin t) = \frac{1}{\sqrt{2}}\sin(t - 45^{\circ})$$

Response to sinusoidal input

 What is the steady state output of a stable linear system when the input is sinusoidal?

- Steady state output is $y_{ss}(t) = A |G(j\omega)| \sin(\omega t + \angle G(j\omega))$
 - ullet Frequency is the same as the input frequency ω
 - Amplitude is that of input (A) multiplied by $|G(j\omega)|$
 - Phase shifts is $\angle G(j\omega)$

Gain

Phase shift

$$\frac{T_{shift}}{T_{period}} = \frac{-\angle G(j\omega)}{360^{\circ}} \longrightarrow \angle G(j\omega) = -\frac{T_{shift}}{T_{period}} \times 360^{\circ}$$

Example 1 (revisited)

 What is the steady state output of a stable linear system when the input is sinusoidal?

Gain:

$$|G(j \cdot 1)| = \left| \frac{1}{j+1} \right|$$
$$= \frac{1}{|j+1|} = \frac{1}{\sqrt{2}}$$

Phase:

$$\angle G(j \cdot 1) = \angle \frac{1}{j+1}$$

$$= \angle 1 - \angle (j+1)$$

$$= 45^{\circ}$$

Example 2

 What is the steady state output of a stable linear system when the input is sinusoidal?

$$y_{ss}(t) = 7 \cdot \frac{5}{\sqrt{13}} \cos(3t + \underbrace{\theta}_{\angle G(j \cdot 3)})$$

$$|G(j \cdot 3)|$$
Gain
Phase

 $y_{ss}(t) = 9.7 \cos(3t-56.3)$

Phase:

$$\angle G(j \cdot 3) = \angle \frac{5}{3j+2}$$

$$= \angle 5 - \angle (3j+2)$$

$$= \cot^{-1} \frac{3}{2}$$

$$\theta$$
 = -56.3°

Example 3: Frequency response function

- For a stable system G(s), $G(j\omega)$ (ω is positive) is called *frequency response function (FRF)*.
- For each ω , FRF represents a complex number $G(j\omega)$, which has a gain and a phase.
- First order example

$$G(s) = \frac{1}{s+1} \implies G(j\omega) = \frac{1}{j\omega+1}$$

$$\downarrow G(j\omega) = \frac{1}{\sqrt{1+\omega^2}}$$

$$\angle G(j\omega) = \angle (1) - \angle (j\omega+1) = -\tan^{-1}\omega$$

Example 3: First order FRF (cont'd)

• FRF
$$G(j\omega) = \frac{1}{j\omega + 1}$$

frequency	gain	phase
$\underline{\hspace{1cm}}$	$ G(j\omega) $	$\angle G(j\omega)$
0	1	0°
0.5	0.894	−26.6°
1.0	0.707	-45°
ŧ	:	i
∞	0	_90°

- Two ways to represent a complex number (amplitude-phase or real-imaginary parts), therefore, two graphs representing FRF:
 - Bode diagram (Bode plot) (today's and next lecture)
 - Nyquist diagram (Nyquist plot) (in two lectures)

Example 4: Second order FRF

Second order system

$$G(s) = \frac{2}{s^2 + 3s + 2}$$

$$G(j\omega) = \frac{2}{(j\omega)^2 + 3(j\omega) + 2} = \frac{2}{2 - \omega^2 + j \cdot 3\omega}$$

$$\begin{cases}
|G(j\omega)| = \frac{2}{\sqrt{(2-\omega^2)^2 + 9\omega^2}} \\
\angle G(j\omega) = \angle (2) - \angle (2-\omega^2 + j \cdot 3\omega) \\
= -\tan^{-1} \frac{3\omega}{2-\omega^2}
\end{cases}$$

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical

Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

√ Time response

- ✓ Transient
 - Steady state

Frequency response

Bode plot

Design

Matlab simulations

Bode plot (Bode diagram) of $G(j\omega)$

Bode diagram consists of gain plot & phase plot

Bode plot of a 1st order system

17

• TF

$$G(s) = \frac{1}{Ts + 1}$$

$$G(j\omega) = \frac{1}{j\omega T + 1}$$

The shown Bode plot is for T = 1.

"----" are straight line approximations

Effect of *T* on Bode plot (first order system)

$$G(s) = \frac{1}{0.1s + 1}$$

$$G(s) = \frac{1}{s+1}$$

$$G(s) = \frac{1}{10s + 1}$$

Remarks on Bode diagram

- Bode diagram shows gain and phase shift of a system output for sinusoidal inputs with various frequencies.
- Bode diagram is very useful and important in analysis and design of control systems.
- The shape of Bode plot contains information of CL stability, time responses, and much more!
- It can also be used for system identification.
 - Given FRF experimental data, obtain a transfer function that matches the data.
- MATLAB command for bode plot is "bode(sys)".

System identification

- Sweep frequencies of sinusoidal signals and obtain FRF data (i.e., gain and phase).
- Select G(s) so that $G(j\omega)$ fits the FRF data.

Why deg(den) \geq deg(num)?

• All the transfer functions we encountered so far have the property $\deg(\det) \geq \deg(\operatorname{num})$

Ex:
$$\frac{1}{Ms^2 + Bs + K}$$
 $\frac{K}{Ts + 1}$ $K\frac{s + z}{s + p}$

- What if deg(num) is larger than deg(den)?
 - Then, $|G(j\omega)| \to \infty \text{ as } \omega \to \infty$
 - However, there is no such system in reality that has increasing gain as input frequency increases to infinity.
- That is why all the transfer function needs to meet

$$deg(den) \ge deg(num)$$

Summary

- Frequency response
 - Steady state response to a sinusoidal input
 - For a linear stable system, a sinusoidal input generates a sinusoidal output with same frequency but different amplitude and phase.
- Bode plot is a graphical representation of frequency response function.
- Next
 - How to sketch Bode plots