

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

PARAMETER			SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
INPUT	Forward Voltage	VF	_	1.15	1.5	٧	IF=20mA	
	Reverse Current	IR	_	_	10	μА	VR=6V	
OUTPUT	*1 Peak Blocking Current, Eith Direction	I _{DRM}	_	10	100	nA	V _{DRM} = 400V	
	Peak On-State Voltage, Either	V _{TM}	_	1.7	3	v	I _{TM} =100 mA Peak	
	*2 Critical rate of Rise of Off-Si	dv/dt	1000	_	_	V/µs		
COUPLED	*3 Led Trigger Current, Current Required to Latch Output, Either Direction	MOC3020	- I _{FT}	_	15	30	- mA	Main Terminal Voltage = 3V
		MOC3021		_	8	15		
		MOC3022		_	_	10		
		MOC3023		_	_	5		
	Holding Current, Either Direction	l _H	_	250	_	μА		

Electrical characteristics (T_j = 25° C, unless otherwise specified), Standard (4 quadrants), BTB24...B, BTA25...B, BTA26...B Table 3.

Electrical Characteristics of BTA26 800B

otaliana (4 quantilo), DIDZ4mb, DIAZomb, DIAZomb								
Symbol	Test Conditions		Value	Unit				
I _{GT} ⁽¹⁾	V _D = 12 V R _L = 33 Ω	I - II - III - IV	MAX.	50 100	mA			
V_{GT}		ALL	MAX.	1.3	V			
V_{GD}	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_j = 125^{\circ} \text{ C}$	ALL	MIN.	0.2	V			
I _H ⁽²⁾)	I _T = 500 mA		MAX.	80	mA			
IL	1 - 1 2 1	I - III - IV	MAX.	70	mA			
	I _G = 1.2 I _{GT}	II	IVIAA.	160				
dV/dt ⁽²⁾	V _D = 67 %V _{DRM} gate open	T _j = 125° C	MIN.	500	V/µs			
(dV/dt)c (2)	(dl/dt)c = 13.3 A/ms	T _j = 125° C	MIN.	10	V/µs			
1. minimum la	st is guaranted at 5% of lot max.							

- 2. for both polarities of A2 referenced to A1.

	IT(RMS)	5)	= RM	S	On-State	e C	Current		
 i	di/dt	=	Rate	of	Change	of	On-Stat		

ate Current ITSM = Peak Surge (Non-Repetitive) On-State Current,

VDRM = Non-Repetitive Peak Reverse Voltage

Snubber Circuit Values

VRMS = Supply RMS Voltage RL = Load Resistance

dv/dt = Critical Rate of Rise of Off-State Current

ILoad(Peak) = Load Current

RS (Subber Resistance)

 $CS = \frac{VDRM}{RL \times [dv/dt]}$

CS(Snubber Capacitance)

800V = 3 x 500

= 0.533l μF

[ITSM - ILoad(Peak)] = 10 x 38 x 1.414 [300 - 25]

RS = 10 x VRMS x 1.414

= 1.95 ~ 2Ω

VDRM = 800V

IT(RMS) = 26Adi/dt = 50A/uS

ITSM = 300A

VRMS = 38V

dv/dt = 500V/uS

ILoad(Peak) = 25A

 $RL = 3\Omega$

FINDING THE VALUE RG 4N25M LED Series resistor calculation MOC 3020 LED Series Resistor Referance

I(TSM) = 1A(optocoupler)Peak repetitive surge current I(GM) = 6A (TRIAC Peak gate current)

V(PiMAX) = 38.7V

= 24V ± 10% = 24+[24 x (10/100)] = 38.7V

RG = V(PiMAX)

RG = V(PiMAX)

Min(ITSM,IGM) $RG = \frac{38.7V}{(1A,6A)}$ $\approx \frac{38.7}{1} = \frac{38.7\Omega}{1}$

I choose the nearest low value which is $RG = 33.33\Omega$

= 3752Ω = $3.9K\Omega$ (standard Value)

 $Rx = \underline{Vmax - Vf}$

Resistor Standard value calculator https://daycounter.com/Calculators/Standard-Resistor-Value-Calculator.phtml

Snubber Circuit Design https://www.youtube.com/watch?v=eZwJgPd7_p4

TRIAC Designing https://www.youtube.com/watch?v=rLpFtSayZ3Q

Sheet: /Power Electronics/ File: Power Electronics.kicad_sch

Title:

 Size: A3
 Date:
 Rev:

 KiCad E.D.A. kicad 5.99.0-unknown-e950278637~142~ubuntu21.04.1
 Id: 8/10

