Other Integrity Constraints

- Domain Constraint, Entity Integrity, Referential Integrity, Enterprise constraints.....(Discussed in Module 1)
- Functional Dependency
- Multi-valued Dependency
- Join Dependency
- How these can be used in relational database design...?
 Normalization

DBMS

6.1

Functional Dependencies –Example

■ Movies (title, year, length, studio_name, star_name)

<u>title</u>	year	length	studio_name	star_name
Star Wars	1977	124	Fox	Carrie Fisher
Star Wars	1977	124	Fox	Harrison Ford
Mighty Ducks	1991	104	Disney	Emilio Estevez
Wayne's World	1992	95	Paramount	Dana Carvey
Wayne's World	1992	95	Paramount	Mike Meyers

- FD: title, year → length ,
 - title, year → studio_name
 - title → studio name
- Not a FD: title, year → star_name

Functional Dependencies

- Frame work for systematic design and optimization of relational schema.
- Generalization over the notion of keys
- Crucial in obtaining correct normalized schema

Definition:

■ In any relation R, if there exists a set of attributes A1,A2,...An and an attribute B such that if any tuples have the same value for A1,A2,...An then they also have the same value for B.

A functional dependency of the above form is written as:

$$A1,A2,...An \rightarrow B$$

i.e. A1,A2,...An uniquely determines B

Functional Dependencies define properties of schema and not any particular tuple in the schema.

DBMS

6.2

JCJ

Functional Dependencies: Formal Definition

Let R be a relation schema

$$\alpha \subset R$$
 and $\beta \subset R$

- The functional dependency (FD) $\alpha \rightarrow \beta$ holds on R iff
 - for any legal relations r (R)
 - whenever any two tuples t_1 and t_2 of r agree on the attributes α
 - they also agree on the attributes β
 - i.e. $\Pi_{\alpha}(t_1) = \Pi_{\alpha}(t_2) \Rightarrow \Pi_{\beta}(t_1) = \Pi_{\beta}(t_2)$

Functional Dependencies vs Keys

- FDs can express the same constraints we could express using keys:
- Superkeys:
 - K is a superkey for relation schema R if and only if $K \rightarrow R$
- Candidate keys:
 - K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - there is no $K' \subset K$ such that $K' \to R$
- However,FDs are more general
 - i.e. we can express constraints that cannot be expressed using keys

DBMS 6.5

Functional Dependencies vs Keys: Example

Example of FDs that can't be represented using keys:

Loan-info-schema: (customer-name, loan-number, branch-name, amount).

We expect these FDs to hold:

loan-number → amount loan-number → branch-name

We could try to express this by making *loan-number* the key, however the following FD does <u>not</u> hold:

loan-number → customer-name

Functional Dependencies vs Keys: Example

Movies (title, year, length, studio_name, star_name)

<u>title</u>	year	length	studio_name	<u>star_name</u>
Star Wars	1977	124	Fox	Carrie Fisher
Star Wars	1977	124	Fox	Harrison Ford
Mighty Ducks	1991	104	Disney	Emilio Estevez
Wayne's World	1992	95	Paramount	Dana Carvey
Wayne's World	1992	95	Paramount	Mike Meyers

- title, year, star_name → R.
- Hence title, year, star name is a key.

DBMS JCJ

Functional Dependencies (cont)

6.6

- If we only consider an instance, we can't tell if an FD holds
 - e.g. inspecting the movies relation, we might suggest that length → title, since no two films in the table have the same length
 - However, we cannot assert this FD for the movies relation, since we know it is not true of the domain in general
- Thus, identifying FDs is part of the data modelling process

IBMS JCJ DBMS JC 6.8

Functional Dependencies: Uses

- We use FDs to:
 - test relations to see if they are legal under a given set of FDs
 - If a relation r is legal under a set F of FDs, we say that r satisfies F
 - specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of FDs F
- Note: A specific instance of a relation schema may satisfy an FD even if the FD does not hold on all legal instances.
 - For example, a specific instance of Loan-schema may, by chance, satisfy

loan-number → *customer-name*

DBMS 6.9

Full Functional Dependencies

- An FD X \rightarrow A for which there is no proper subset Y of X such that Y \rightarrow A (A is said to be fully functionally dependent on X)
 - e.g. Loan-info-schema = (<u>customer-name</u>, <u>loan-number</u>, branch-name, amount).

customer-name, loan-number → amount is not a full functional dependency because of the FD loan-number → amount which is a full functional dependency.

Trivial Functional Dependencies

- An FD where RHS is contained within the LHS is called trivial FD. In general, $\alpha \to \beta$ is trivial if $\beta \subseteq \alpha$
 - E.g.

Loan-info-schema: (<u>customer-name</u>, <u>loan-number</u>, branch-name, amount).

- customer-name, loan-number → customer-name
- customer-name → customer-name
- It there is at least one element on the RHS that is not contained in the LHS, it is called non-trivial FD and if none of the element of the RHS are contained in the LHS, it is called completely nontrivial FD.

DBMS JCJ 6.10

Closure of FDs

- Given a set F of fds, there are other FDs logically implied by F
 - E.g. If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of all FDs implied by *F* is the *closure* of *F*, written *F*⁺
- We can find all of F+ by applying Armstrong's Axioms:
 - if $\beta \subset \alpha$, then $\alpha \to \beta$ (reflexivity)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - if $\alpha \to \beta$, and $\beta \to \gamma$, then $\alpha \to \gamma$ (transitivity)
- Additional rules (derivable from Armstrong's Axioms):
 - If $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ holds (union)
 - If $\alpha \to \beta \gamma$ holds, then $\alpha \to \beta$ holds and $\alpha \to \gamma$ holds (decomposition)
 - If $\alpha \to \beta$ holds and $\gamma \not \beta \to \delta$ holds, then $\alpha \gamma \to \delta$ holds (pseudotransitivity)

DBMS JCJ DBMS JC
6.11

FD Closure: Example

```
R = (A, B, C, G, H, I)
F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}
```

- some members of F⁺
 - $A \rightarrow H$
 - by transitivity from A → B and B → H
 - $AG \rightarrow I$
 - by augmenting A → C with G, to get AG → CG
 and then transitivity with CG → I
 - CG → HI
 - by union rule with $CG \rightarrow H$ and $CG \rightarrow I$

DBMS 6.13

Minimal Cover of an FD Set

- The opposite of closure: what is the "minimal" set of FDs equivalent to F, having no redundant FDs (or extraneous attributes)
- Sets of FDs may have redundant FDs that can be inferred from the others
 - Eg: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - Parts of an FD may be redundant
 - E.g. on RHS: $\{A \to B, B \to C, A \to CD\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - E.g. on LHS: $\{A \to B, B \to C, AC \to D\}$ can be simplified to $\{A \to B, B \to C, A \to D\}$
 - (We'll cover these later under the heading of extraneous attributes)
- (NB Textbook calls this "canonical" cover, though there is no guarantee of uniqueness.)

Computing FD Closure

■ To compute the closure of a set of FDs F:

```
F<sup>+</sup> = F
repeat
    for each FD f in F<sup>+</sup>
        apply reflexivity and augmentation rules on f
        add the resulting FDs to F<sup>+</sup>
    for each pair of FDs f<sub>1</sub> and f<sub>2</sub> in F<sup>+</sup>
        if f<sub>1</sub> and f<sub>2</sub> can be combined using transitivity
            then add the resulting FD to F<sup>+</sup>
until F<sup>+</sup> does not change any further
(NOTE: More efficient algorithms exist)
```

DBMS

Closure of Attribute Sets

6.14

Given a set of attributes α , define the *closure* of α under F (denoted by α ⁺) as the set of attributes that are functionally determined by α under F:

```
\alpha \to \beta is in F^+ \Leftrightarrow \beta \subseteq \alpha^+
```

Algorithm to compute α⁺, the closure of α under F result := α;
 while (changes to result) do for each β → γ in F do begin
 if β ⊆ result then result := result ∪ γ end

DBMS JCJ DBMS 6.15

Closure of Attribute Sets: Example

- R = (A, B, C, G, H, I)
- F = {A → B A → C CG → H CG → I B → H}
- (AG)+

DBMS

- 1. result = AG
- 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
- 3. result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
- 4. result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH)
- Is AG a candidate key?
 - 1. Is AG a superkey?
 - 1. Does $AG \rightarrow R$? \Longrightarrow Is $(AG)^+ \supset R$
 - 2. Is any subset of AG a superkey?
 - 1. Does $A \rightarrow R$? == Is $(A)^+ \supseteq R$
 - 2. Does $G \rightarrow R$? == Is $(G)^+ \supseteq R$

6.17

Extraneous Attributes

- Recall that we could have redundant FDs. Parts of FDs can also be redundant
- Consider a set *F* of FDs and the FD $\alpha \rightarrow \beta$ in *F*.
 - Attribute A is extraneous in α if A ∈ α
 and F logically implies (F {α → β}) ∪ {(α A) → β}.
 - Attribute A is extraneous in β if A ∈ β and the set of functional dependencies
 (F {α → β}) ∪ {α → (β A)} logically implies F.
- **Example:** Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - B is extraneous in AB → C because {A → C, AB → C} logically implies A → C (I.e. the result of dropping B from AB → C).
- **Example:** Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in AB → CD since AB → C can be inferred even after deleting C

Closure of Attribute Sets: Uses

- Testing for superkey:
 - To test if α is a superkey, we compute α^{+,} and check if α⁺ contains all attributes of R
- Testing FDs
 - To check if a FD α → β holds (or, in other words, is in F⁺), just check if β ⊆ α⁺
 - i.e. compute α^+ by using attribute closure, and then check if it contains β
 - Is a simple and cheap test, and very useful

DBMS JCJ

Multivalued Dependencies

Given a relation schema R (A, B, C), the multivalued dependency $A \rightarrow B$ holds in r(R) iff the set of B values matching a given (A, C) value pair in r depend only on the A-value and is independent of the C-value. A, B and C may be composite attributes.

Example: Information about flight Service: (Flight No, Day, plane Type)

■ {106} X {Monday, Thursday} x {747, 1011} and {204} X {Wednesday} x {807, 827}

<u>Flight</u>	Day	Plane-Type
106	Monday	747
106	Thursday	747
106	Monday	<u> 101</u> 1
106	Thursday	1011
204	Wednesday	807
DBM204	Wednesday	827

Multivalued Dependencies- Example

Example: Relation Service:

<u>Flight</u>	Day	<u>Plane-Type</u>
106	Monday	747
106	Thursday	747
106	Monday	<u> 101</u> 1
106	Thursday	1011
204	Wednesday	807
204	Wednesday	827

- If a certain plane type can be used for a flight on one day it flies, that plane type can be used on any day the flight flies.
- {106} X {Monday, Thursday} x {747, 1011} and {204} X {Wenesday} x {807, 827}

Flight
$$\rightarrow \rightarrow$$
 Day and Flight $\rightarrow \rightarrow$ Plane-Type or MVD: Flight $\rightarrow \rightarrow$ Day | Plane-Type

Decomposition of a Relation

- The operation of breaking up a table into multiple tables is called a decomposition.
- Let R, R_1 , R_2 be schemas such that $R = R_1 \cup R_2$ where R1 and R2 should not be disjoint.
- For any relation r(R), can be decomposed into relations r_1 and r_2 with schema R1 and R2 respectively as $\prod_{R_2} (r)$ and $\prod_{R_2} (r)$.

Then
$$r \subseteq \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

General Form of decomposition.

Let
$$R = R_1 \cup R_2 \cup R_m$$
.

Decompose r into $\prod_{R_1} (r), \prod_{R_1} (r), \dots, \prod_{R_m} (r)$.

Property: $r \subseteq \prod_{R_1} (r) \bowtie \prod_{R_2} (r), \dots, \bowtie \prod_{R_m} (r)$

Multivalued Dependencies (Cont.)

- If we have tuples < f, d, p > and < f, d ', p ' > in relation service, then we must also have tuple < f, d', p > and < f, d, p'>.
- MVDs can exist only if a relation has at least 3 attributes.
- Also in a given relation R(A, B, C) if A → →B holds iff A → → C also holds. This fact can be expressed as A → →BIC

JCJ 6.22

Decomposition of a Relation-Example

Lending-schema:

(branch-name, branch-city, assets, customer-name, loan-number, amount)

Decompositions:

Branch-schema: (branch-name, branch-city, assets)

Loan-info-schema: (customer-name, loan-number, branch-name, amount)

How to ensure that the original data is recoverable?

- 1. all attributes of the original schema R must appear in the decomposition (R1, R2), i.e. $R = R1 \cup R2$
- 2. decomposition must be a lossless-join decomposition

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

MS JCJ DBMS 6.23

Lossless and Lossy decompositions

How to ensure that the original data is recoverable?

- 1. all attributes of the original schema R must appear in the decomposition (R1, R2), i.e. $R = R1 \cup R2$
- 2. decomposition must be a lossless-join decomposition

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

• If $r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$ then the decomposition is called Lossless Decomposition (ensuring that original data is recoverable), otherwise the decomposition is lossy decomposition.

Lossless Decomposition: Example

Relation R (S,P, J)

S	Р	J
S1	P1	J2
S1	P2	J1
S2	P1	J1
S1	P1	J1

S	Р
S1	P1
S1	P2
S2	P1

Р	J
P1	J2
P2	J1
P1	J1

J	S
J2	S1
J1	S1
J1	S1

is decomposed into R1(S,P) , R2 (P,J) and R3 (J,S) .

Lossy Decomposition: Example

R = (A, B, C), $R_1 = (A, C)$ and $R_2 = (A, B)$

$$\prod_{A,C} (\mathbf{\Gamma}_1) \bowtie \prod_{A,B} (\mathbf{\Gamma}_2)$$

Thus, r is different to $\prod_{A,C} (r1) \bowtie \prod_{A,B} (r2)$ and so (R1, R2) is not a lossless-join decomposition of R.

DBMS JCJ 6.26

Testing for Loss Less Decomposition

- The decomposition of R into R1 and R2 is lossless wrt F iff either R1∩ R2 → (R1- R2) belongs to F+ or R1∩ R2 → (R2- R1) belongs to F+
- E.g. gradeInfo (rollNo,Adhar,course,grade)

Given set of FDs = {rollNo,course → grade; Adhar, course •→ grade; rollNo •→ Adhar; Adhar •→ rollNo}

decomposed into grades (rollNo, course, grade) and

studInfo (rollNo, Adhar) is lossless

because rollNo → Adhar

Join Dependencies

- A relation r(R) satisfies the join dependency, depicted as *(r₁,r₂,...r_n), if r can be nonloss decomposed into r₁(R₁),r₂(R₂),...r_n(R_n).
- In the relation r(S, P, J). there is a JD *(r1, r2, r3)

S#	P#	J#
S1	P1	J2
S1	P2	J1
S2	P1	J1
S1	P1	J1

- Since <S1,P1> appear together in R(S,P,J) it will appear in the projection R1(S,P) and similarly <p1,J1> in R2 and <J1,S1> in R3. Hence, <S1,P1,J1> appears in the join of these projections.
- In other words, if $\langle s1,p1,J2\rangle$, $\langle s2,p1,J1\rangle$ and $\langle s1,P2,J1\rangle$ appear in R (S,P,J) then $\langle s1,P1,J1\rangle$ also appears in R(S,P,J).

Example (Cont.)

■ The relation Service can be decomposed losslessly onto Service-Day (Flight, Day) and Service-Type (Flight, Plane-Type)

Service-Day		Service-Type	
Flight	Day	Flight	Plane-Type
106	<u>Monday</u>	<u>106</u>	747
106	Thursday	<u>106</u>	<u> 1011</u>
204	Wednesday	204	707
		204	727

Flight	Day	<u>Plane-Type</u>
106	Monday	747
106	Thursday	747
106	Monday	<u> 1011</u>
106	Thursday	<u> 1011</u>
204	Wednesday	807
204	Wednesday	827 6.31

Multivalued Dependencies as a special case of Join Dependency

- Let r be a relation on schema R, and let R1, R2, and R3 be subsets of R such that R3 = R (R1, R2)
- Relation r satisfies the MVD R1 →→ R2|R3 if only if r decomposes nonloss (Join Dependency) onto the relation schemas r1 (R1, R2) and r2 (R1, R3). R1 ,R2 and R3 may be composite
- So MVD is a special type of JD in which a relation can be nonloss decomposed into two relations as shown above
- In other words, JD is generalization of MVD.
- Similarly, an FD is an MVD in which the set of dependent values actually consists of a single value.

6.30

Example (Cont.)

■ Consider a different relation *service_1* shown as follows. There is no MVD and it can not be decomposed losslessly onto Service-Day (Flight, Day) and Service-Type (Flight, plane-type).

Flight	Day	Plane-Type
<u>106</u>	Monday	747
106	Thursday	747
<u>106</u>	Thursday	<u> 1011</u>
204	Wednesday	707
204	Wednesday	727

J DBMS 6.32