1. Finite Dif erence Operators

Finite Differences

Given the function y = f(x), x is called called an **argument** and y is called an **entry**.

Here values of arguments are given at equal intervals a, a+h, a+2h, ..., a+nh

Corresponding values of y are:

$$f(a), f(a+h), f(a+2h), ..., f(a+nh)$$

So we can write:

$$f(a+h)-a, f(a+2h)-f(a+h), ..., f(a+nh)-f(a+(n-1)h)\\$$

such a representation is called finite differences

Finite Difference Operators

There are five differnce operators, namely:

- 1. Forward Difference Operator Δ
- 2. Backward Difference Operator ∇
- 3. The Shifting Opetator E
- 4. Central Difference Operator δ
- 5. The Averaging Operator μ

Forward Difference Operator Δ

Consider the function y = f(x)

Given the values of the function at points

$$x_0, x_1 = x_0 + h, x_2 = x_0 + 2h, ..., x_n = x_0 + nh. \\$$

Let
$$y_0 = f(x_0), y_1 = f(x_1), ..., y_n = f(y_n)$$
.

We define

$$\Delta[f(x)] = f(x+h) - f(x)$$

Thus
$$\Delta y_0=f(x_0+h)-f(x_0)=f(x_1)-f(x_0)=y_1-y_0=\Delta f(x_0).$$

$$\label{eq:delta} :: \Delta y_0=y_1-y_0$$

Further, $x_0, x_1, ..., x_n$ are called arguments. The corresponding f(x) values are called entries and h is the interval of differencing.

Backward Difference Operator ∇ The Shifting Operator E Central Difference Operator δ The Averaging Operator μ