Elective Surgery Schedule Solution

Joel Shapiro Clinical Associate Professor, MEDS

Northwestern | Kellogg

QUESTIONS

- 1. Think of multiple ways that the creation of a predictive model can be helpful in this context.
- 2. Conduct quant analysis to determine
 - a. Whether # scheduled cases is predictive of final case volume
 - b. Whether predictive power changes as surgery date nears
 - c. Is volume different across days of the week?
- 3. Most helpful predictive model
- 4. Sample dashboard

QUESTION 1: UTILITY OF MODEL

Operational improvement

- Improved efficiency (not over- or under-staffed)
- The right equipment and rooms available
- Revenue forecasting for budgeting purposes
- Surgical equipment demand and ordering cycles

Morale improvement

Labor Relations / Compliance

QUESTION 2+3

- 1. Think of multiple ways that the creation of a predictive model can be helpful in this context.
- 2. Conduct quant analysis to determine
 - a. Whether # scheduled cases is predictive of final case volume
 - b. Whether predictive power changes as surgery date nears
 - c. Is volume different across days of the week?
- 3. Most helpful predictive model
- 4. Sample dashboard

QUESTION 2

. reg actual t28 t21 t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1

Source	SS	df	MS	Number of	obs =	241
				- F(16, 224)	=	197.60
Model	69655.7965	16	4353.48728	Prob > F	=	0.0000
Residual	4935.08319	224	22.0316214	R-squared	=	0.9338
				- Adj R-squa	red =	0.9291
Total	74590.8797	240	310.795332	Root MSE	=	4.6938
actual	Coef.	Std. Err.	t	P> t [95	% Conf.	Interval]
t28	0384949	.0757068	-0.51	0.61218	76836	.1106937
t21	.0889465	.0799785	1.11	0.26706	86601	.246553
t14	1000675	.1201409	-0.83	0.40633	68185	.1366835
t13	.099317	.1806372	0.55	0.58325	66486	.4552825
t12	.0466123	.2051393	0.23	0.82035	76375	.4508622
t11	1749222	.2014459	-0.87	0.38657	18937	.2220494
t10	.0169209	.1605497	0.11	0.916	29946	.3333018
t9	.1089836	.1431402	0.76	0.447	17309	.3910572
t8	.009978	.1451936	0.07	0.9452	76142	.296098
t7	.1472039	.1708206	0.86	0.39018	94171	.4838249
t6	1387719	.1845997	-0.75	0.45350	25461	.2250024
t5	0474666	.1743055	-0.27	0.78639	09548	.2960217
t4	.0812244	.174596	0.47	0.64226	28363	.4252852
t3	162698	.1517318	-1.07	0.28546	17023	.1363063
t2	.1287132	.1314298	0.98	0.32813	02837	.3877101
t1	.9121406	.073297	12.44	0.000 .76	77007	1.056581
_cons	10.87555	1.963297	5.54	0.000 7.0	06653	14.74444
	I					

[.] predict predsurgeries

(option xb assumed; fitted values)

. scatter predsurgeries actual

actual = a + b * t1

actual = a + b * t3

$$actual = a + b * t1$$

$$actual = a + b * t3$$

$$actual = a + b * t7$$

. reg actual t28 t21 t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1

	Source	SS	df	MS	Number of obs	=	241
-	Model	COCEE 70CE	1.6	4252 40720	F(16, 224) Prob > F	=	197.60
	Residual	69655.7965 4935.08319		4353.48728 22.0316214	R-squared	=	0.0000 0.9338
_					Adj R-squared	=	0.9291
	Total	74590.8797	240	310.795332	Root MSE	=	4.6938

	l					
actual	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t28	0384949	.0757068	-0.51	0.612	1876836	.1106937
t21	.0889465	.0799785	1.11	0.267	0686601	.246553
t14	1000675	.1201409	-0.83	0.406	3368185	.1366835
t13	.099317	.1806372	0.55	0.583	2566486	.4552825
t12	.0466123	.2051393	0.23	0.820	3576375	.4508622
t11	1749222	.2014459	-0.87	0.386	5718937	.2220494
t10	.0169209	.1605497	0.11	0.916	29946	.3333018
t9	.1089836	.1431402	0.76	0.447	17309	.3910572
t8	.009978	.1451936	0.07	0.945	276142	.296098
t7	.1472039	.1708206	0.86	0.390	1894171	.4838249
t6	1387719	.1845997	-0.75	0.453	5025461	.2250024
t5	0474666	.1743055	-0.27	0.786	3909548	.2960217
t4	.0812244	.174596	0.47	0.642	2628363	.4252852
t3	162698	.1517318	-1.07	0.285	4617023	.1363063
t2	.1287132	.1314298	0.98	0.328	1302837	.3877101
t1	.9121406	.073297	12.44	0.000	.7677007	1.056581
_cons	10.87555	1.963297	5.54	0.000	7.006653	14.74444

Strength: high predictive accuracy

Weakness: can't reasonably interpret interpret coefficients. *WHY?*

(option xb assumed; fitted values)

. scatter predsurgeries actual

[.] predict predsurgeries

High correlations among independent variables = fine for prediction, bad for interpretation.

Strength: high predictive accuracy

Weakness: can't reasonably interpret interpret coefficients. *WHY?*

. corr t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t21 t28 (obs=241)

	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13	t14	t21	t28
t1	1.0000	······································			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	······································	· · · · · · · · · · · · · · · · · · ·	······································	······································	· · · · · · · · · · · · · · · · · · ·	······································		
t2	0.9701	1.0000														
t3	0.9509	0.9831	1.0000													
t4	0.9431	0.9688	0.9842	1.0000												
t5	0.9373	0.9597	0.9643	0.9849	1.0000											
t6	0.9280	0.9506	0.9466	0.9632	0.9840	1.0000										
t7	0.9181	0.9343	0.9255	0.9384	0.9600	0.9845	1.0000									
t8	0.9092	0.9277	0.9203	0.9301	0.9483	0.9692	0.9848	1.0000								
t9	0.8951	0.9229	0.9245	0.9258	0.9334	0.9457	0.9551	0.9715	1.0000							
t10	0.8712	0.9080	0.9262	0.9280	0.9222	0.9186	0.9122	0.9352	0.9733	1.0000						
t11	0.8519	0.8857	0.9089	0.9239	0.9203	0.9065	0.8965	0.9181	0.9478	0.9793	1.0000					
t12	0.8474	0.8770	0.8939	0.9110	0.9194	0.9128	0.9041	0.9222	0.9415	0.9621	0.9866	1.0000				
t13	0.8350	0.8627	0.8706	0.8783	0.8956	0.9120	0.9144	0.9311	0.9404	0.9416	0.9550	0.9773	1.0000			
t14	0.8215	0.8481	0.8457	0.8460	0.8635	0.8901	0.9005	0.9199	0.9248	0.9134	0.9188	0.9404	0.9756	1.0000		
t21	0.7184	0.7430	0.7637	0.7662	0.7668	0.7713	0.7693	0.7946	0.8074	0.8219	0.8397	0.8491	0.8625	0.8714	1.0000	
t28	0.6294	0.6550	0.6861	0.6855	0.6797	0.6694	0.6699	0.6979	0.7186	0.7443	0.7697	0.7643	0.7613	0.7670	0.8947	1.0000

. reg actual t1

Source	SS	df	MS	Number		
Model Residual	69421.576 5169.30372	1 239	69421.576	8 R-squai	F =	0.0000 0.9307
Total	74590.8797	240	310.795332	– Adj R-s 2 Root MS	•	
actual	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t1 _cons	.9562828 11.1827	.0168794 1.880881	56.65 5.95	0.000 0.000	.9230315 7.477477	.9895341 14.88792

With only 1 IV, we can say... for every additional surgery that is scheduled the day prior, we see an additional 0.96 actual surgeries.

. reg actual t1 t2

Source	SS	df	MS		r of obs	s = =	241
Model Residual	69422.0074 5168.87223	2 238	34711.0037 21.7179505	Prob R-squ	F(2, 238) Prob > F R-squared Adj R-squared		1598.26 0.0000 0.9307 0.9301
Total	74590.8797	240	310.795332	_	-	d = =	4.6603
actual	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
t1 t2 _cons	.9467596 .0099502 11.2237	.0696475 .0705924 1.907065	13.59 0.14	0.000 0.888 0.000	.8095! 1291: 7.4668	553 155	1.083964 .149016 14.98058

Here, with 2 highly correlated IVs...

We **CAN** have a great prediction We **can NOT** reasonably say "every additional surgery 2 days before only leads to an additional .0099 actual surgeries."

DOES DAY OF WEEK MATTER?

. tab dow1, sum(actual)

	Sumi	mary of Actual	
dow1	Mean	Std. Dev.	Freq.
aMonday	116.25532	18.456138	47
bTuesday	119.08163	10.864385	49
cWednesday	117.04167	11.240047	48
dThursday	124.08333	10.379672	48
eFriday	105.61224	26.357175	49
Total	116.38174	17.629388	241

We can confidently reject the null that all days are the same

DOES DAY OF WEEK MATTER?

Day of the week matters - building it into our prediction will make for accurate predictions, but it's not trivially easy. Nor is the explanation going to be simple for decision-makers to process.

We can confidently reject the null that all days are the same

OPTIONS FOR DEALING WITH DAY OF WEEK

Ignore: Create a regularly updating prediction that is based only on #days prior to date. By ignoring it, we sacrifice accuracy for explainability.

> I've chosen t7 as an example b/c it is enough advance time for us to plan, but not so much so that it becomes too inaccurate. It FEELS like a decent balance.

Source	SS	df	MS	Numbe	er of ob	s =	241
				- F(1,	239)	=	970.63
Model	59853.1765	1	59853.176	5 Prob	> F	=	0.0000
Residual	14737.7032	239	61.664030	l R-sq	uared	=	0.8024
				- Adil	R-square	d =	0.8016
Total	74590.8797	240	310.79533	-	•	=	7.8526
actual	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
t7	.9815375	.031505	31.15	0.000	.9194		1.0436
_cons	31.96952	2.756242	11.60	0.000	26.53	989	37.39915

Predicted = if no cases were scheduled at t7, we'd expect 32 cases. For every case at t7, we expect 0.98 new additional. In other words, prediction = 98% of cases scheduled at t7, plus another 32.

OPTIONS FOR DEALING WITH DAY OF WEEK

Use dummies for each day of week: Create a regularly updating prediction that is based only on #days prior to date. By ignoring it, we sacrifice accuracy for explainability.

Surgeries = a + b1 * t7 + b2 * Tue + b3 * Wed + b4 * Thu + b5 * Fri

. reg actual t7 tues wed thu fri

	Source	SS	df	MS	Number of obs	=	241
_				-	F(5, 235)	=	210.90
	Model	60997.5416	5	12199.5083	Prob > F	=	0.0000
	Residual	13593.3381	235	57.8439918	R-squared	=	0.8178
_					Adj R-squared	=	0.8139
	Total	74590.8797	240	310.795332	Root MSE	=	7.6055

actual	Coef.	Std. Err.	<u> </u>	P> t	[95% Conf.	Interval]
wed thu - fri -	1.03106 -4.56168 -3.13497 7.134236 2.775591 31.24773	.0343591 1.572204 1.566168 1.638417 1.574786 3.042282	30.01 -2.90 -2.00 -4.35 -1.76 10.27	0.000 0.004 0.046 0.000 0.079	.9633685 -7.659095 -6.220494 -10.3621 -5.878092 25.2541	1.098751 -1.464264 049447 -3.906373 .3269098 37.24136

Predictions: 103% of cases scheduled at t7 plus...

If Mon: about 31 more If Tue: about 27 more If Wed: about 28 more If Thu: about 24 more If Fri: about 29 more

OPTIONS FOR DEALING WITH DAY OF WEEK

Use dummies + interactions: Create a regularly updating prediction that is based only on #days prior to date. By ignoring it, we sacrifice accuracy for explainability.

Surgeries =
$$a + b1 * t7 + b2 * Tue + b3 * Wed + b4 * Thu + b5 * Fri + b6 * Tue * t7 + b7 * Wed * t7 + b8 * Thu * t7 + b9 * Fri * t7$$

That is, does t7 matter differently depending on day of week? Does t7 predict final cases differently if it's a Monday or Tuesday or Wednesday...

. reg actual t7 tues wed thu fri tuext7 wedxt7 thuxt7 frixt7

	Source	SS	df	MS	Number of obs	=	241
-					F(9, 231)	=	132.77
	Model	62507.0822	9	6945.23136	Prob > F	=	0.0000
	Residual	12083.7974	231	52.3108114	R-squared	=	0.8380
-					Adj R-squared	=	0.8317
	Total	74590.8797	240	310.795332	Root MSE	=	7.2326

actual	Coef.	Std. Err.	t	P> t	[95% Conf	. Intervall
	1 11045	7 4711401	15.72		0702662	250625
t7	1.11845	.0711491	15.72	0.000	.9782663	1.258635
tues	20.65563	11.47336	1.80	0.073	-1.950187	43.26144
wed	22.46584	10.10844	2.22	0.027	2.549323	42.38236
thu	29.82296	10.92592	2.73	0.007	8.295759	51.35016
fri	-5.854172	7.04852	-0.83	9.407	-19.74178	8.033434
tuext7	2883925	.1299931	-2 22	0.027	5445162	0322688
wedxt7	3006745	.1177971	-2.55	0.011	5327685	0685805
thuxt7	3942453	. 1177535	-3.35	0.001	6262535	1622371
frixt7	.0500614	40860285	0.58	0.561	1194395	.2195623
_cons	24.04265	5.960131	4.03	0.000	12.29948	35.78582

Monday

24 = constant 1.11 = marginal effect of t7

Prediction = 24+1.11*t7

E.g., t7 = 100, then Predicted final volume = 24 + 1.11*100 = 135

. reg actual t7 tues wed thu fri tuext7 wedxt7 thuxt7 frixt7

Source	SS	df	MS	Number of obs	=	241
				F(9, 231)	=	132.77
Model	62507.0822	9	6945.23136	Prob > F	=	0.0000
Residual	12083.7974	231	52.3108114	R-squared	=	0.8380
			 	Adj R-squared	=	0.8317
Total	74590.8797	240	310.795332	Root MSE	=	7.2326

Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.11845	.0711491	15.72	0.000	.9782663	1.258635
20.65563	11.47336	1.80	0.073	-1.950187	43.26144
22.46584	10.10844	2.22	0.027	2.549323	42.38236
29.82296	10.92592	2.73	0.007	8.29 5759	51.35016
-5.854172	7.04852	-0.83	0.407	-19.74178	8.033434
2883925	.1299931	-2.22	0.027	5445162	0322688
3006745	.1177971	-2.55	0.011	5327685	.0685805
3942453	.1177535	-3.35	0.001	6262535	1622371
.0500614	.0860285	0.58	0.561	1194395	.2195623
24.04265	5.960131	4.03	0.000	12.29948	35.78582
	1.11845 20.65563 22.46584 29.82296 -5.854172 2883925 3006745 3942453 .0500614	1.11845 20.65563 11.47336 22.46584 29.82296 10.92592 -5.854172 7.04852 2883925 3006745 1177971 3942453 .0500614 .0860285	1.11845 .0711491 15.72 20.65563 11.47336 1.80 22.46584 10.10844 2.22 29.82296 10.92592 2.73 -5.854172 7.04852 -0.83 2883925 .1299931 -2.22 3006745 .1177971 -2.55 3942453 .1177535 -3.35 .0500614 .0860285 0.58	1.11845 .0711491 15.72 0.000 20.65563 11.47336 1.80 0.073 22.46584 10.10844 2.22 0.027 29.82296 10.92592 2.73 0.007 -5.854172 7.04852 -0.83 0.407 2883925 .1299931 -2.22 0.027 3006745 .1177971 -2.55 0.011 3942453 .1177535 -3.35 0.001 .0500614 .0860285 0.58 0.561	1.11845 .0711491 15.72 0.000 .9782663 20.65563 11.47336 1.80 0.073 -1.950187 22.46584 10.10844 2.22 0.027 2.549323 29.82296 10.92592 2.73 0.007 8.295759 -5.854172 7.04852 -0.83 0.407 -19.74178 2883925 .1299931 -2.22 0.027 5445162 3006745 .1177971 -2.55 0.011 5327685 3942453 .1177535 -3.35 0.001 6262535 .0500614 .0860285 0.58 0.561 1194395

Monday

24 = constant 1.11 = marginal effect of t7

Prediction = 24+1.11*t7

E.g., t7 = 100, then Predicted final volume = 24 + 1.11*100 = 135

Tuesday

24+20 = 44 constant 1.11-0.28=0.83 marginal effect

Prediction = 44 + 0.83*t7

E.g., t7 = 100, then Predicted final volume = 44 + 0.83*100 = 127

. reg actual t7 tues wed thu fri tuext7 wedxt7 thuxt7 frixt7

In other words, 100 at t7 leads to a different prediction if a Monday versus Tuesday versus...

versus Tuesday versus						= =	0.8317 7.2326
actual	Coef.	Std. Err.	t	P> t	[95% Coi	nf. I	Interval]

actual	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
t7	1.11845	.0711491	15.72	0.000	.9782663	1.258635
tues	20.65563	11.47336	1.80	0.073	-1.950187	43.26144
wed	22.46584	10.10844	2.22	0.027	2.549323	42.38236
thu	29.82296	10.92592	2.73	0.007	8.29 5759	51.35016
fri	-5.854172	7.04852	-0.83	0.407	-19.74178	8.033434
tuext7	2883925	.1299931	-2.22	0.027	5445162	0322688
wedxt7	3006745	.1177971	-2.55	0.011	5327685	.0685805
thuxt7	3942453	.1177535	-3.35	0.001	6262535	1622371
frixt7	.0500614	.0860285	0.58	0.561	1194395	.2195623
_cons	24.04265	5.960131	4.03	0.000	12.29948	35.78582

Monday

24 = constant 1.11 = marginal effect of t7

241

132.77

0.0000

0200

Prediction = 24+1.11*t7

E.g., t7 = 100, then Predicted final volume = 24 + 1.11*100 = 135

Tuesday

24+20 = 44 constant 1.11-0.28=0.83 marginal effect

Prediction = 44 + 0.83*t7

E.g., t7 = 100, then Predicted final volume = 44 + 0.83*100 = 127

Actual Values

Create a regularly updating prediction that is based only on #days prior to date. Ignore day of week, sacrificing accuracy for explainability.

$$(At t7, R^2 = 0.80)$$

Build in day or week through dummies only

$$(At t7, R^2 = 0.81)$$

Build in day or week through dummies and interactions.

$$(At t7, R^2 = 0.84)$$

QUESTION 4

- 1. Think of multiple ways that the creation of a predictive model can be helpful in this context.
- 2. Conduct quant analysis to determine
 - a. Whether # scheduled cases is predictive of final case volume
 - b. Whether predictive power changes as surgery date nears
 - c. Is volume different across days of the week?
- 3. Most helpful predictive model
- 4. Sample dashboard

SAMPLE DASHBOARD

	Mon 7/14	Tues 7/15	Wed 7/16	Thu 7/17	Fri 7/18
Budgeted Volume	123	123	123	123	123
Prediction based on booked cases as of	T-3	T-4	T-5	T-6	T-7
Booked cases to date	111	116	99	120	68
Predicted Volume	125	131	121	138	98
80% chance final will be between	118-132	124-138	114-128	131-146	89-107
Predicted Load	Medium	High	Medium	Very High	Low

Mon 7/21	Tues 7/22	Wed 7/23	Thu 7/24	Fri 7/25
123	123	123	123	123
T-10	T-11	T-12	T-13	T-14
91	87	83	92	42
130	124	126	133	86
121-139	115-134	117-135	123-142	75-98
Medium	Medium	Medium	High	Very Low

COOLEST SOLUTION I'VE SEEN SO FAR...

