Analysis of Variance (ANOVA)

Chanter 14 - 1

ANOVA

- Analysis of Variance (ANOVA) An inferential statistical technique designed to test for significant relationships between two variables in two or more samples.
- The logic is the same as in t-tests, just extended to independent variables with <u>two</u> <u>or more</u> samples.

Chapter 14 – 2

Understanding Analysis of Variance

- One-way ANOVA An analysis of variance procedure using one dependent and one independent variable.
- ANOVAs examine the differences between samples, as well as the differences within a single sample.

Chanter 14 – 3

=	

The Structure of Hypothesis Testing with ANOVA

Assumptions:

- (1) Independent random samples are used. Our choice of sample members from one population has no effect on the choice of members from subsequent populations.
- (2) The dependent variable is measured at the **interval-ratio** level. Some researchers, however, do apply ANOVA to **ordinal level** measurements.

Chapter 14 - 4

The Structure of Hypothesis Testing with ANOVA

Assumptions:

- (3) The population is **normally distributed**. Though we generally cannot confirm whether the populations are normal, we must **assume** that the population is **normally distributed** in order to continue with the analysis.
- (4) The population variances are equal.

Chapter 14 - 5

Stating the Research and Null Hypotheses

 $\mathbf{H_{i}}$: At least one mean is different from the others.

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

om the					
	•				
	,				
Chapter 14 – 6					

The Structure of Hypothesis Testing with ANOVA

Between-Group Sum of Squares

This tells us the differences **between** the groups

$$SSB = \sum N_k (\overline{Y}_k - \overline{Y})^2$$

 N_k = the number of cases in a sample (k represents the number of different samples)

 \overline{Y} = the overall mean

 \overline{Y}_k = the mean of a sample

Chapter 14 – 7

The Structure of Hypothesis Testing with ANOVA Within-Group Sum of Squares

This tells us the variations within our

groups; it also tells us the amount of **unexplained** variance.

$$SSW = \sum (Y_i - \overline{Y_k})^2$$

 N_k = the number of cases in a sample (k represents the number of different samples)

 Y_i = each individual score in a sample

 \overline{Y}_k = the mean of a sample

Chapter 14

Alternative Formula for Calculating the

Within-Group Sum of Squares

$$\sum Y_i^2 - \sum \frac{(\sum Y_k)^2}{n_k}$$

where

 n_k = the total of each sample

 Y_i^2 =the squared scores from each sample

 $\sum Y_k$ = the sum of the scores of each sample

Chapter 14 - 9

			_
			_
			_
_			_
			_
			-
			-
			-
			_

The Structure of Hypothesis Testing with ANOVA

Total Sum of Squares

SST = SSB + SSW

Chanter 14 - 10

The Structure of Hypothesis Testing with ANOVA

Mean Square Between

An estimate of the **between-group variance** obtained by **dividing** the between-group sum of squares by its **degrees of freedom**.

Mean square between = SSB/dfb

where dfb = degrees of freedom between

dfb = k - 1

k = number of categories

Chapter 14 - 11

The Structure of Hypothesis Testing with ANOVA

Mean Square Within

An estimate of the **within-group variance** obtained by **dividing** the within-group sum of squares by its degrees of freedom.

Mean square between = SSW/dfw

where dfw = degrees of freedom within

dfw = N - k

N = total number of cases

k = number of categories

Chapter 14 – 12

The F Statistic

The ratio of between-group variance to within-group variance

$$F = \frac{MeanSquareBetween}{MeanSquareWithin} = \frac{\frac{SSB}{dfb}}{\frac{SSW}{dfw}}$$

Chanter 14 - 13

Definitions

- F ratio (F statistic) Used in an analysis of variance, the F statistic represents the ratio of between-group variance to within-group variance
- **F** obtained The test statistic **computed** by the ratio for between-group to within-group variance
- F critical The F score associated with a particular alpha level and degrees of freedom.
 This F score marks the beginning of the region of rejection for our null hypothesis.

Chapter 14 – 1

Educational Attainment (Measured in Years) for Four GSS 2002 Groups

White Males n ₁ =6	Black Males n ₂ =4	White Females	Black Females
n _l -o	112-1	$n_3=6$	$n_4=5$
16	16	16	14
18	12	12	10
14	11	14	12
14	14	14	13
16		11	11
16		11	Chantan

Chapter 14 – 15

Whit	e Males	Black	Males	White	Females	Black	Females	
n	1 = 6	n ₂ = 4		n	n ₃ = 6		n ₄ = 5	
Y ₁	Y ₁ ²	Y ₂	Y ₂ ²	Y ₃	Y ₃ ²	Y ₄	Y ₄ ²	
16	256	16	256	16	256	14	196	
18	324	12	144	12	144	10	100	
14	196	11	121	14	196	12	144	
14	196	14	196	14	196	13	169	
16	256			11	121	11	121	
16	256			11	121			
94	1484	53	717	78	1034	60	730	

The F Statistic

$$F = \frac{MeanSquareBetween}{MeanSquareWithin} = \frac{\frac{SSB}{dfb}}{\frac{SSW}{dfw}}$$

$$13.7145$$

Chapter 14 - 17

	df,										
df	2	1	2	3	4	5	6	8	12	24	00
	1	161.4	199.5	215.7	224.6	230.2	234.0	238.9	243.9	249.0	254.3
- 2		18.51	19.00	19.16	19.25	19.30	19.33	19.37	19.41	19.45	19.50
V :		10.13	9.55	9.28	9.12	9.01	8.94	8.84	8.74	8.64	8.53
4		7.71	6.94	6.59	6.39	6.26	6.16	6.04	5.91	5.77	5.63
	5	6.61	5.79	5.41	5.19	5.05	4.95	4.82	4.68	4.53	4.36
ć	5	5.99	5.14	4.76	4.53	4.39	4.28	4.15	4.00	3.84	3.67
- 3		5.59	4.74	4.35	4.12	3.97	3.87	3.73	3.57	3.41	3.23
8	3	5.32	4.46	4.07	3.84	3.69	3.58	3.44	3.28	3.12	2.93
9)	5.12	4.26	3.86	3.63	3.48	3.37	3.23	3.07	2.90	2.71
10)	4.96	4.10	3.71	3.48	3.33	3.22	3.07	2.91	2.74	2.54
11	il	4.84	3.98	3.59	3.36	3.20	3.09	2.95	2.79	2.61	2.40
13		4.75	3.88	3,49	3.26	3.11	3.00	2.85	2.69	2.50	2.30
13		4.67	3.80	3.41	3.18	3.02	2.92	2.77	2.60	2.42	2.21
12	4	4.60	3.74	3.34	3.11	2.96	2.85	2.70	2.53	2.35	2.13
13	5	4.54	3.68	3.29	3.06	2.90	2.79	2.64	2.48	2.29	2.07
18	5	4.49	3.63	3.24	3.01	2.85	2.74	2.59	2.42	2.24	2.01
17	7	4.45	3.59	3.20	2.96	2.81	2.70	2.55	2.38	2.19	1.96
18		4.41	3.55	3.16	2.93	2.77	2.66	2.51	2.34	2.15	1.92
19		4.38	3.52	3.13	2.90	2.74	2.63	2.48	2.31	2.11	1.88
20		4.35	3.49	3.10	2.87	2.71	2.60	2.45	2.28	2.08	1.84

Example: Obtained vs. Critical F

Since the obtained F is beyond the critical F value, we reject the Null hypothesis of no difference

Chapter 14 – 19