Matematická logika

Rostislav Horčík

horcik@math.feld.cvut.cz
horcik@cs.cas.cz
www.cs.cas.cz/~horcik

Prenexní CNF

Definice

Literál je atomická formule (tzv. pozitivní literál) nebo negace atomické formule (tzv. negativní literál). Dvojice literálů se nazývá komplementární, pokud je jeden negací druhého.

Definice

Formule predikátové logiky φ je v prenexní konjunktivní normální formě (PCNF), pokud je tvaru

$$Q_1 x_1 \dots Q_n x_n \alpha$$
,

kde Q_i je některý z kvantifikátorů, x_1, \ldots, x_n jsou navzájem různé proměnné a α je otevřená formule v CNF (tj. konjunkce disjunkcí literálů).

Věta

Každá predikátová formule φ je ekvivalentní s nějakou formulí v PCNF $Q_1x_1 \dots Q_nx_n \alpha$, tj.

$$\varphi \Leftrightarrow Q_1 x_1 \dots Q_n x_n \alpha$$

je tautologie.

Důkaz

- Každá formule φ je ekvivalentní s nějakou formulí v prenexní normální formě $Q_1 x_1 \dots Q_n x_n \beta$.
- Otevřenou fomuli β můžeme ekvivalentně přepsat do CNF použitím ekvivalencí známých z výrokové logiky:

$$\begin{array}{c|cccc} \psi \Rightarrow \chi & \equiv & \neg \psi \lor \chi & \psi \Leftrightarrow \chi & \equiv & (\neg \psi \lor \chi) \land (\neg \chi \lor \psi) \\ \hline \neg (\psi \lor \chi) & \equiv & \neg \psi \land \neg \chi & \neg (\psi \land \chi) & \equiv & \neg \psi \lor \neg \chi \\ \hline \neg \neg \psi & \equiv & \psi & \gamma \lor (\psi \land \chi) & \equiv & (\gamma \lor \psi) \land (\gamma \lor \chi) \end{array}$$

- $\forall x (P(x) \lor S(x)) \Rightarrow \forall x \exists y \ T(x, y),$
- $\forall x (P(x) \lor S(x)) \Rightarrow \forall z \exists y \ T(z, y),$
- $\exists x ((P(x) \lor S(x)) \Rightarrow \forall z \exists y \ T(z,y)),$
- $\exists x \forall z \exists y ((P(x) \vee S(x)) \Rightarrow T(z, y)),$
- $\exists x \forall z \exists y (\neg (P(x) \lor S(x)) \lor T(z,y)),$
- $\exists x \forall z \exists y ((\neg P(x) \land \neg S(x)) \lor T(z,y)),$
- $\exists x \forall z \exists y ((\neg P(x) \lor T(z,y)) \land (\neg S(x) \lor T(z,y))).$

Skolemova věta

Věta (Skolem)

Nechť φ je sentence. Pak existuje ekvisplnitelná sentence α , která je v PCNF a obsahuje pouze univerzální kvantifikátory, tj. φ je splnitelná (má model) právě tehdy, když α je splnitelná (má model).

Náznak důkazu

- Jde akorát o to, jak odstranit existenční kvantifikátory.
- Uvažujme sentenci $\exists x P(x)$.
- Přidáme do jazyka nový konstatní symbol c a tvrdíme, že sentence P(c) má požadované vlastnosti.
- Víme, že $P(c) \Rightarrow \exists x \, P(x)$ je tautologie, tj. model P(c) je i model $\exists x \, P(x)$.
- Opačně, když máme model $\exists x P(x)$, pak v něm stačí interpretovat symbol c prvkem univerza, který má vlastnost P.

Náznak důkazu – pokračování

- Uvažujme nyní sentenci $\forall x \exists y \ P(x, y)$.
- Přidáme do jazyka nový funkční symbol f a tvrdíme, že sentence $\forall x P(x, f(x))$ má požadované vlastnosti.
- Každý model **A** formule $\forall x P(x, f(x))$ je i model $\forall x \exists y P(x, y)$, protože pro každý prvek univerza $a \in A$ existuje prvek $f^{\mathbf{A}}(a) \in A$, takový že $(a, f^{\mathbf{A}}(a)) \in P^{\mathbf{A}}$.
- Opačně, když máme model A formule ∀x∃y P(x, y), tak pro každý prvek univerza a ∈ A existuje prvek ba ∈ A, takový že (a, ba) ∈ PA. Nyní stačí interpretovat symbol f jako funkci definovanou předpisem fA(a) = ba.

Skolemizace – obecný postup

- Nechť $\forall x_1 \dots \forall x_n \exists y \varphi$ je formule v PCNF (φ nemusí být otevřená).
- Přidáme do jazyka nový funkční symbol f arity n. Je-li n = 0, použijeme nový konstantní symbol a.
- Odstraníme existenční kvantifikátor a všechny výskyty proměnné y nahradíme $f(x_1, \ldots, x_n)$, tj. dostaneme formuli $\forall x_1 \ldots \forall x_n \varphi(y/f(x_1, \ldots, x_n))$.
- Tomuto procesu se říká skolemizace, funkčnímu symbolu f skolemizační funkce, konstantě a skolemizační konstanta.

- Ekvisplnitelná sentence ze Skolemovy věty nemusí být ekvivalentní s původní sentencí!
- Uvažujme opět sentenci $\forall x \exists y \ P(x, y)$.
- Pak tato sentece platí ve struktuře $\mathbf{N} = \langle \mathbb{N}, P^{\mathbf{N}}, f^{\mathbf{N}} \rangle$, kde $P^{\mathbf{N}}$ se interpretuje jako < a $f^{\mathbf{N}}(a) = a 1$.
- Ale sentence $\forall x P(x, f(x))$ je nepravdivá ve struktuře **N**.
- Nicměně existuje struktura, kde je $\forall x P(x, f(x))$ pravdivá, např. $\mathbf{N}' = \langle \mathbb{N}, P^{\mathbf{N}'}, f^{\mathbf{N}'} \rangle$, kde $P^{\mathbf{N}'}$ se interpretuje jako $< a f^{\mathbf{N}'}(a) = a + 1$.

Uvažujme opět sentenci

$$\exists x \forall z \exists y \big((\neg P(x) \lor T(z,y)) \land (\neg S(x) \lor T(z,y)) \big) .$$

Přidáme skolemizační konstantu a a dostaneme:

$$\forall z \exists y ((\neg P(a) \lor T(z,y)) \land (\neg S(a) \lor T(z,y))).$$

• Přidáme skolemizační funkci f a dostaneme:

$$\forall z \big((\neg P(a) \lor T(z, f(z))) \land (\neg S(a) \lor T(z, f(z))) \big).$$

Klausule

Definice

Klausule je sentence v PCNF taková, že všechny kvantifikátory má univerzální a za kvantifikátory je pouze literál nebo diskjunkce literálů. Např. $\forall x (\neg P(x) \lor R(f(x), x)), R(a, b)$ jsou klausule. Naopak $\exists x P(x), \forall x (P(x) \land R(a, x))$ nejsou klausule.

Tvrzení

Ke každé sentenci φ existuje množina klausulí S_{φ} taková, že sentence φ je splnitelná právě tehdy, když S_{φ} je splnitelná.

Náznak důkazu

- Předpokládáme, že φ je v PCNF po skolemizaci.
- Použitím $\forall x(\alpha \wedge \beta) \equiv (\forall x\alpha \wedge \forall x\beta)$, přesuneme kvantifikátory ke všem argumentům v kojunkci ve φ .
- Konjukci nahradíme množinou klausulí.

Uvažujme opět sentenci φ:

$$\forall z ((\neg P(a) \lor T(z, f(z))) \land (\neg S(a) \lor T(z, f(z)))).$$

Přesuneme kvantifikátor:

$$\forall z(\neg P(a) \lor T(z,f(z))) \land \forall z(\neg S(a) \lor T(z,f(z))).$$

Vyrobíme množinu klausulí:

$$S_{\varphi} = \{ \forall z (\neg P(a) \lor T(z, f(z))), \ \forall z (\neg S(a) \lor T(z, f(z))) \}.$$

Zavedeme konvenci, že u klausulí nebudeme uvádět univerzální kvantifikátory, tj.

$$S_{\varphi} = \{ \neg P(a) \lor T(z, f(z)), \ \neg S(a) \lor T(z, f(z)) \}.$$