ຮຸບແບບການສອບເສັງວິຊາ Machine Learning ຄັ້ງວັນທີ 13/7/2022, ເວລາ 90 ນາທີ

ຊື່ ແລະ ນາມສະກຸນ:
ລະຫັດນັກສຶກສາ:
ຫ້ອງ: 3CW

I. ພາກທິດສະດີ

ຈຶ່ງຕອບຄຳຖາມດັ່ງຕໍ່ໄປນີ້ໂດຍການເລືອກ ຫຼືໝາຍເອົາຄຳຕອບທີ່ຖືກຕ້ອງທີ່ສຸດ (ທັງໝົດ 15 ຂໍ້) ຕົວຢ່າາ:

- 1. Machine Learning ແມ່ນຫຍັງ?
 - ກ. ການຮຽນຮູ້ຂອງຄອມພິວເຕີ
 - ຂ. ການຮຽນຮູ້ຂອງຄອມພິວເຕີຜ່ານຊຸດຂໍ້ມຸນອາດີດ
 - ຄ. ການຮຽນຮູ້ຂອງຄອມພິວເຕີຜ່ານຊ[ັ]ດຂໍ້ມູນອາດີດເພື່ອສະສົມປະສົບການໃນການຄາດຄະເນຂໍ້ມູນອານາຄົດ
 - ງ. ຂໍ້ກ, ຂ ແລະ ຄ ຖືກ

2-15

- ທິດສະດີພາບລວມຂອງ Machine Learning
- ປະເພດຂອງ Machine Learning
- ເຕັກນິກການຈຳແນກຂໍ້ມູນ (Classification) ແລະ ການວິເຄາະ Regression
- ເຕັກນິກການແບ່ງກຸ່ມຂໍ້ມູນ (Clustering) ແລະ ການສ້າງກິດຄວາມສຳພັນ (Association)
- Supervised Learning, Unsupervised Learning ແລະ. Reinforcement Learning
- ຊະນິດຂໍ້ມູນ ແລະ ການກະກຽມຂໍ້ມູນກ່ອນການປະມວນຜົນ
- ຂັ້ນຕອນວິທີ (Algorithm): Random Forest, Decision Trees, Logistic Regression, NB. KNN, SVM, K-mean...
- Simple Linear Regression, Multiple Linear Regression ແລະ Polynomial Regression
- ຕົວປະເມີນປະສິດຕິພາບ (Metrics) ຂອງການວິເຄາະ Regression
- Dimensionality Reduction)

II. ພາກຄິດໄລ່ (3 ຂໍ້)

- 1. Simple Linear Regression
- 2. ຕົວປະເມີນປະສິດຕິພາບ (Metrics) ຂອງ Classification:Confusion Matrix
- 3. ການລຽງລຳດັບຄຳສັ່ງພາສາ Python ໃນຕາຕະລາງໃຫ້ສຳເລັດ ແລະ ຖືກຕ້ອງພ້ອມອະທິບາຍວ່າຄຳສັ່ງດັ່ງກ່າວໃຊ້ເພື່ອ ເຮັດຫຍັງ, ເພື່ອໃຫ້ປະສົບຜົນສຳເລັດໃນການປະມວນຜົນ.

ຕິວຢາງ:

ຕາຕະລາງທີ່ ລຳດັບຄຳສັ່ງພາສາ Python ພ້ອມຄຳອະທິບາຍ.

ຄຳສັ່ງພາສາ Python	ໃຊ້ເພື່ອ	ລຳ ດັບ
from sklearn.preprocessing import StandardScaler		
sc = StandardScaler() X = sc.fit_transform(X)		

1 1 'C' 1' (W ()	
<pre>y_pred = classifier.predict(X_test)</pre>	
import numpy as np import matplotlib.pyplot as plt import pandas as pd	
	 1
from sklearn.linear_model import LogisticRegression	
classifier = LogisticRegression(random_state = 0) classifier.fit(X_train, y_train)	
dataset = pd.read_csv('Wine.csv')	
X = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values	
y – dataset.noc[., -1].values	
from sklearn.model_selection import train_test_split	
X_train, X_test, y_train, y_test =	
train_test_split(X, y, test_size = 0.2,	
random_state = 0)	