## Examen parcial de Física - CORRENT CONTINU 15 de març de 2018

Model A

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Les tres resistències del circuit de la figura són de  $100~\Omega$  i la bateria és de 15~V amb una càrrega total de 1200~mAh. Si tanquem l'interruptor, quan temps trigarà a descarregar-se completament la bateria i quanta energia s'haurà dissipat a les tres resistències en aquest procés? (Considereu que durant tot el procès de descàrrega la tensió que subministra la bateria és constant)
  - a) 18 hores i 0.12 kWh.
  - b) 12 hores i 0.018 kWh.
  - c) 120 minuts i 15 J.
  - d) 18 hores i 1.5 kWh.



- T2) L'amperimetre del circuit de la figura té una resistència interna  $r_A = 2\Omega$  i indica una intensitat  $I_1 = 1$  A que entra per la dreta (+) i surt per l'esquerra (-). Si invertim la polaritat de la bateria reversible de la dreta, l'amperimetre indica  $I_2 = 0.25$  A en el mateix sentit. Quins són els valors de la fem  $\epsilon_x$  i la resistència interna  $r_x$ ?
  - a) 12 V i  $2.5 \Omega$ .
  - b) 5 V i 1  $\Omega$ .
  - c) 12 V i 1  $\Omega$ .
  - d) 5 V i  $2.5 \Omega$ .



- **T3)** En el circuit de la figura el punt D està connectat a terra i la resistència interna de les bateries és negligible. Quin és el potencial elèctric en el punt B?
  - a) -28.5 V.
  - b) -15 V.
  - c) -10.5 V.
  - d) -19.5 V.



- **T4)** Quina és la càrrega del condensador, abans i després de tancar l'interruptor, una vegada assolit el règim estacionari?
  - a) Abans de tancar l'interruptor la càrrega és 20  $\mu C$  i després es descarrega del tot.
  - b) Abans de tancar l'interruptor està descarregat i després la càrrega és 20  $\mu$ C.
  - c) Abans i després de tancar l'interruptor la càrrega és 20  $\mu$ C.
  - d) Abans de tancar l'interruptor la càrrega és 20  $\mu \mathrm{C}$  i després és 10  $\mu \mathrm{C}$ .



- **T5)** Quin són els valors de fem i la resistència del circuit equivalent Thévenin entre els punts A i B del circuit de la figura?
  - a) 18 V i 90  $\Omega$ .
  - b) 36 V i 90  $\Omega$ .
  - c) 27 V i 45  $\Omega$ .
  - d) 12 V i 20  $\Omega$ .



### Cognoms i Nom:

Codi

# Examen parcial de Física - CORRENT CONTINU 15 de març de 2018

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

**T1)** En el circuit de la figura el punt D està connectat a terra i la resistència interna de les bateries és negligible. Quin és el potencial elèctric en el punt B?

a) 
$$-19.5 \text{ V}$$
.

b) 
$$-10.5 \text{ V}.$$

c) 
$$-28.5 \text{ V}.$$

d) 
$$-15 \text{ V}.$$



- T2) Quina és la càrrega del condensador, abans i després de tancar l'interruptor, una vegada assolit el règim estacionari?
  - a) Abans de tancar l'interruptor està descarregat i després la càrrega és 20  $\mu$ C.
  - b) Abans de tancar l'interruptor la càrrega és 20  $\mu \mathrm{C}$  i després es descarrega del tot.
  - c) Abans i després de tancar l'interruptor la càrrega és 20  $\mu$ C.
  - d) Abans de tancar l'interruptor la càrrega és 20  $\mu C$  i després és 10  $\mu C$ .



**T3)** Quin són els valors de fem i la resistència del circuit equivalent Thévenin entre els punts A i B del circuit de la figura?

a) 27 V i 45 
$$\Omega$$
.

c) 36 V i 90 
$$\Omega$$
.

d) 12 V i 20 
$$\Omega$$
.



- T4) L'amperimetre del circuit de la figura té una resistència interna  $r_A = 2\Omega$  i indica una intensitat  $I_1 = 1$  A que entra per la dreta (+) i surt per l'esquerra (-). Si invertim la polaritat de la bateria reversible de la dreta, l'amperimetre indica  $I_2 = 0.25$  A en el mateix sentit. Quins són els valors de la fem  $\epsilon_x$  i la resistència interna  $r_x$ ?
  - a) 5 V i  $2.5 \Omega$ .
  - b) 12 V i 1  $\Omega$ .
  - c) 12 V i  $2.5 \Omega$ .
  - d) 5 V i 1  $\Omega$ .



- T5) Les tres resistències del circuit de la figura són de  $100~\Omega$  i la bateria és de 15~V amb una càrrega total de 1200~mAh. Si tanquem l'interruptor, quan temps trigarà a descarregar-se completament la bateria i quanta energia s'haurà dissipat a les tres resistències en aquest procés? (Considereu que durant tot el procès de descàrrega la tensió que subministra la bateria és constant)
  - a) 18 hores i 0.12 kWh.
  - b) 12 hores i 0.018 kWh.
  - c) 120 minuts i 15 J.
  - d) 18 hores i 1.5 kWh.



Cognoms i Nom:

Codi

Examen parcial de Física - CORRENT CONTINU 15 de març de 2018

Problema: 50% de l'examen

En el circuit de la figura, la càrrega emmagatzemada pel condensador a l'estat estacionari és  $Q=6~\mathrm{nC}$ 

- a) Calculeu el valor de les intensitats  $I_1$  i  $I_2$ .
- b) Trobeu el circuit equivalent Thévenin entre els punts A i B.
- c) Es substitueix el condensador per una resistència R. Determineu el valor de R sabent que la potència total dissipada en el circuit és  $P=100~\mathrm{mW}$



Dades :  $R_1=10\,\Omega$  ,  $R_2=20\,\Omega$  ,  $R_3=30\,\Omega,\,\varepsilon_1=4\,\mathrm{V},\,\varepsilon_2=1\,\mathrm{V},\,C=6\,\mathrm{nF}.$ 

## RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

| Qüestió     | Model A | Model B |
|-------------|---------|---------|
| T1)         | b       | a       |
| T2)         | c       | d       |
| T3)         | d       | d       |
| T4)         | d       | b       |
| <b>T5</b> ) | d       | b       |

#### Resolució del Model A

T1) Les dues resistències de la dreta estan en paral·lel i són equivalents a una de 50  $\Omega$  en sèrie amb l'altra de 100  $\Omega$ , de manera que la resistència equivalent del circuit es  $R_{\rm eq} = 150\,\Omega$  i la intensitat que subministra la bateria és  $I = \epsilon/R_{\rm eq} = (15\ {\rm V})/(150\ \Omega) = 0.1\ {\rm A}$ . Per tant, tenint en compte que  $I = \Delta Q/\Delta t$ , el temps que trigarà a descarregar-se tota la càrrega de la bateria  $\Delta Q = 1200\ {\rm mAh} = 1.2\ {\rm Ah}\ {\rm serà}$   $\Delta t = \Delta Q/I = (1.2\ {\rm Ah})/(0.1\ {\rm A}) = 12\ {\rm h}$ .

L'energia subministrada per la bateria serà  $\Delta U = \epsilon \Delta Q = (15 \text{ V})(1.2 \text{ Ah}) = 0.018 \text{ kWh}$ , que és igual a la dissipada a les resistències perquè la bateria és ideal i no te resistència interna.

- T2) La suma de canvis de potencial en el sentit horari del corrent és per al circuit de la figura (amb  $I_1$ )  $\epsilon rI_1 RI_1 + \epsilon_x r_xI_1 r_AI_1 = 0$ ;  $(\epsilon + \epsilon_x) = (r + R + r_x + r_A)I_1$  i amb la polaritat d' $\epsilon_x$  invertida (i amb  $I_2$ )  $\epsilon rI_2 RI_2 \epsilon_x r_xI_2 r_AI_2 = 0$ ;  $(\epsilon \epsilon_x) = (r + R + r_x + r_A)I_2$  Sumant les dues equacions tenim  $2\epsilon = (r + R + r_x + r_A)(I_1 + I_2)$ ;  $40 = (31 + r_x)1.25$  aïllant  $r_x$  trobem  $r_x = (40/1.25) 31 = 1$   $\Omega$  i substituint  $r_x$  a la primera equació  $\epsilon_x = (r + R + r_x + r_A)I_1 \epsilon = 12$  V.
- T3) La intensitat que circula pel circuit sèrie de la figura és  $I=(24 \text{ V} 15 \text{ V} 3 \text{ V})/(4 \Omega + 5 \Omega + 3 \Omega)=0.5 \text{ A en sentit horari, i}$   $V_B=V_B-V_D=-24 \text{ V}+(3 \Omega)(0.5 \text{ A})+(3 \text{ V})=-19.5 \text{ V}$ .
- T4) Quan l'interruptor està obert, no circula corrent per cap resistència i la ddp a borns del condensadors és la fem de la font de tensió, V=10 V. Per tant la seva càrrega és  $Q=CV=(2~\mu\text{C})(10~\text{V})=20~\mu\text{C}$ . Amb l'interruptor tancat i assolit el regim estacionari, pel condensador i la resistència de 10 kΩ no passa corrent. Només circula per les resistències de 5 kΩ una intensitat en sentit horari I=10/(5000+5000)=1 mA, i la ddp a borns de la resistència de 5 kΩ de la dreta és  $V=(5~\text{k}\Omega)(1~\text{mA})=5~\text{V}$ , que és la mateixa que a borns del condensador. Per tant la càrrega és  $Q=CV=(2~\mu\text{C})(5~\text{V})=10~\mu\text{C}$ .
- **T5)** La intensitat que circula pel circuit de la figura és  $I=(24~{\rm V}-6~{\rm V})/(30~\Omega+90~\Omega)=0.2~{\rm A}$  en sentit horari. Per tant,  $\epsilon_{Th}=V_A-V_B=-(60~\Omega)(0.2~{\rm A})+(24~{\rm V})=12~{\rm V}.$  I la resistència equivalent entre A i B si curtcirtcuitem les fonts ideals és la de les dues resistències en paral·lel, això és  $R_{Th}=1/[(1/60~\Omega)+(1/30~\Omega)]=1/(3/60~\Omega)=20~\Omega.$

#### Resolució del Problema

a) Fixem-nos en primer lloc que a l'estat estacionari no hi ha corrent per la malla on hi ha el condensador. Llavors el corrent que circula en sentit descendent per la resistència  $R_2$  serà  $I_1 - I_2$ . Per altra banda, la càrrega emmagatzemada per condensador serà

$$Q = C(V_A - V_B) \Rightarrow (V_A - V_B) = Q/C = 1 \text{ V}$$

Per trobar la intensitat  $I_1$  plantegem el càlcul de la diferència de potencial  $V_A - V_B$  seguint un camí que vagi del punt B al punt A passant per la resistència  $R_1$  i la font de tensió de força electromotriu  $\varepsilon_2$ . Serà

$$V_A - V_B = R_1 I_1 - \varepsilon_2 \Rightarrow (V_A - V_B + \varepsilon_2)/R_1 = 0.2 \text{ A}$$

Escrivim la segona llei de Kirchhoff per a la malla de la dreta del circuit amb sentit de recorregut antihorari:

$$\varepsilon_1 - R_2(I_1 - I_2) - R_1 I_1 = 0$$

Si substituïm els valors numèrics, això dóna lloc a l'equació:

$$20(I_1 - I_2) + 10I_1 = 4$$

D'on aïllem la intensitat  $I_2$ :

$$I_2 = ((R_1 + R_2)I_1 - \varepsilon_1)/R_2 = 0.1 \text{ A}$$

b) La força electromotriu del circuit equivalent Thévenin és directament:

$$\varepsilon_{Th} = V_A - V_B = 1 V$$

Trobarem la resistència del circuit equivalent Thévenin  $R_{Th}$  curtcircuitant les fonts de tensió i trobant la resistència equivalent de l'associació de resistències resultant. En aquest cas  $R_1$ ,  $R_2$  i  $R_3$  estan connectades en paral·lel ja que tenen els extrems comuns, per tant és

$$1/R_{Th} = 1/R_1 + 1/R_2 + 1/R_3 \Rightarrow R_{Th} = 60/11 = 5.45 \Omega$$

c) Utilitzant el circuit equivalent Thévenin, La potència total dissipada en el circuit la podem escriure com

$$P = (R_{Th} + R)I^2$$

i la intensitat

$$I = \frac{\varepsilon_{Th}}{R_{Th} + R}$$

Combinant aquestes dues relacions trobem:

$$P = \frac{\varepsilon_{Th}^2}{R_{Th} + R} \Rightarrow R = \frac{\varepsilon_{Th}^2}{P} - R_{Th} = 4.55 \ \Omega$$