Introducción a desigualdades Medias

Kenny J. Tinoco

Marzo de 2025

1. Definiciones

La desigualdad de medias es una parte importante en el estudio de las desigualdades, esta nos permite simplificar el tratamiento que realizamos sobre las expresiones, reduciendo el tiempo y esfuerzo de resolución.

Teorema 1.1 (Teorema de las medias). Dado los números reales positivos a_1, a_2, \ldots, a_k se cumple que

$$\sqrt{\frac{a_1^2 + a_2^2 + \dots + a_k^2}{k}} \ge \frac{a_1 + a_2 + \dots + a_k}{k} \ge \sqrt[k]{a_1 a_2 \dots a_k} \ge \frac{k}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_k}},$$

donde el caso de igualdad se da si y solo si $a_1 = a_2 = \cdots = a_k$.

De izquierda a derecha llamaremos a estas cantidades como media cuadrática (MC), media aritmética (MA), media geométrica (MG) y media armónica (MH).

Muchas desigualdades pueden ser resueltas con una aplicación concreta de las medias de la mano de un buen manipuleo.

2. Problemas

Problema 1. Sean a, b, c > 0 probar que

$$\frac{a+b}{c} + \frac{b+c}{a} + \frac{c+a}{b} \ge 6.$$

Problema 2. Probar para todo x real que se cumple

$$\frac{x^2+2}{\sqrt{x^2+1}} \ge 2.$$

Problema 3. Para los números no negativos a, b, c, d demostrar que se cumple

$$\sqrt{(a+c)(b+d)} \ge \sqrt{ab} + \sqrt{cd}$$
.

Problema 4. Sean a, b, c > 0 probar que

$$\frac{(a+b+c)^3}{27} \ge \frac{(a+b)(b+c)(c+a)}{8}.$$

Problema 5. Sean los reales positivos a, b, c, demostrar que

$$(a+b+c)^3 \ge a^3 + b^3 + c^3 + 24abc.$$

Problema 6. Dados los reales positivos a, b y c, probar que

$$\frac{a^3 + b^3 + c^3}{3} \ge \frac{a^2b + b^2c + c^2a + ab^2 + bc^2 + ca^2}{6} \ge abc.$$

Problema 7. Dado los números positivos w, x, y, z probar que

$$(w+x+y+z)\left(\frac{1}{w}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \ge 16.$$

De manera general, demostrar que para n números reales positivos x_i se cumple

$$(x_1 + x_2 + \ldots + x_n) \left(\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_n} \right) \ge n^2.$$

Problema 8. Dado los reales postivos a, b, c, probar que se cumple

$$a^{3} + b^{3} + c^{3} + ab^{2} + bc^{2} + ca^{2} \ge 2(a^{2}b + b^{2}c + c^{2}a).$$

Problema 9. Demostrar que para todo entero n y los reales positivos a,b se cumple que

$$a^{n+1} + b^{n+1} \ge a^n b + ab^n.$$

Problema 10. Dado los reales positivos x, y demostrar que

$$\frac{1}{xy} \ge \frac{x}{x^4 + y^2} + \frac{y}{y^4 + x^2}.$$

Problema 11. Sí a, b, c > 0. Demostrar que

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \ge \frac{a+b+c}{abc}$$

Problema 12. Para cualquiera números reales x,y>1, demostrar que

$$\frac{x^2}{y-1} + \frac{y^2}{x-1} \ge 8.$$

Problema 13. Para todos los reales no negativos x, y, z demostrar que

$$\frac{(x+y+z)^2}{3} \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}.$$

Problema 14. Para números reales positivos a,b,c tales que a+b+c=1, demostrar que

$$\frac{1}{3} \ge ab + bc + ca.$$

Problema 15. Sean x, y, z reales positivos, probar que

$$\frac{2}{x+y} + \frac{2}{y+z} + \frac{2}{z+x} \ge \frac{9}{x+y+z}.$$

Problema 16. Sean a_1, a_2, \ldots, a_k números reales positivos tales que $a_1a_2 \cdot a_k = 1$, demostrar que

$$(1+a_1)(1+a_2)\cdots(1+a_k)\geq 2^n$$
.