Network inference in genomics under censoring

Veronica Vinciotti Brunel University London

Leeds, 27 February 2019

Joint work with Luigi Augugliaro and Antonino Abbruzzo

Expression Data: Complex Data from Different Platforms

- A number of platforms to measure expression (mRNA) levels:
 - microarray hybridization
 - massively parallel/next-generation sequencing (RNA-seq)
 - quantitative real-time reverse transcription-PCR (RT-qPCR)
- Observations are on nodes/variables, *not* on *edges*/relationships.
- Typically many variables, few units ("p >> n")

Aim: Recover/infer the underlying regulatory network from data

Sparse Gaussian Graphical Models

A popular tool for inference of networks from biological data.

GGM in genomics:

- $\boldsymbol{X} = (X_1, \dots, X_p)^{\top}$: a *p*-dimensional vector of random variables
- A graph $G = (\Gamma, E)$, where Γ is the set of p genes and $E \subset \Gamma \times \Gamma$ the set of genomic interactions
- ullet A normality assumption: $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ with density

$$\phi(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Theta}) = (2\pi)^{-p/2} |\boldsymbol{\Theta}|^{1/2} \exp\{-1/2(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Theta}(\mathbf{x} - \boldsymbol{\mu})\}.$$

- The precision matrix $\Theta = \Sigma^{-1}$ provides the structure of the conditional independence graph (non-zeros \leftrightarrow edges)
- If p > n and the network is expected to be sparse, Θ can be estimated under an ℓ_1 penalty.
- Friedman et al. (2008) developed an efficient computational algorithm to perform ℓ_1 optimization (graphical lasso).

Various Extensions

Various extensions to the graphical lasso have been proposed for different types of data:

- Hierarchical graphical models
- Dynamic graphical models
- Copula graphical models
- ...

This talk: Sparse Gaussian graphical models under missing data

- Missing-at-Random (Städler and Bühlmann, 2012)
- Censoring (Augugliaro, Abbruzzo and Vinciotti, 2018)

Motivation: qPCR data are censored

- Repeated cycles of DNA amplification followed by expression measurements, with a max of (typically) 40 cycles.
- The cycle at which expression reaches a fixed threshold is reported.

Example: Multidrug Resistance Gene Expression

376 multidrug resistance genes in 80 tumor specimens collected at initial surgery to debulk primary serous carcinoma (Gillet et al 2012)

Here the data are right-censored, but we will develop the method under general censoring mechanisms.

The Censoring Mechanism

Let $\mathbf{l} = (l_1, \dots, l_p)^{\top}$ and $\mathbf{u} = (u_1, \dots, u_p)^{\top}$, with $l_h < u_h$ for $h = 1, \dots, p$ the left and right censoring, respectively.

So X_h is observed if it is inside the interval $[I_h, u_h]$, censored from below if $X_h < I_h$ or censored from above if $X_h > u_h$.

Let R(X; I, u) encode the censoring patterns, with hth element given by

$$R(X_h; I_h, u_h) = I(X_h > u_h) - I(X_h < I_h),$$

where $I(\cdot)$ is the indicator function.

 $R(\mathbf{X}; \mathbf{I}, \mathbf{u})$ is a discrete random vector with support set $\{-1, 0, 1\}^p$ and

$$P(R(\mathbf{X}; \mathbf{I}, \mathbf{u}) = \mathbf{r}) = \int_{D_{\mathbf{r}}} \phi(\mathbf{x}; \boldsymbol{\mu}, \Theta) d\mathbf{x},$$

where $D_r = \{ \mathbf{x} \in \mathcal{R}^p : R(\mathbf{x}; \mathbf{I}, \mathbf{u}) = \mathbf{r} \}$ and ϕ the density of \mathbf{X} .

The Censoring Mechanism: Simple Case

If p = 2, then $R(\mathbf{X}; \mathbf{I}, \mathbf{u})$ assumes values $\mathbf{r} \in \{-1, 0, 1\}^2$.

The Censoring Mechanism: Simple Case

If both X_1 and X_2 are right censored, then

$$P(R(\mathbf{X}; \mathbf{I}, \mathbf{u}) = (1, 1)) = \int_{D_r} \phi(\mathbf{x}; \boldsymbol{\mu}, \Theta) d\mathbf{x} = \int_{u_1}^{+\infty} \int_{u_2}^{+\infty} \phi(\mathbf{x}; \boldsymbol{\mu}, \Theta) dx_1 dx_2.$$

The Density Function under Censoring

Denote with $\mathbf{o} = \{h \in \mathcal{I} : r_h = 0\}$, where $\mathcal{I} = \{1, \dots, p\}$. Then the subvector of the non-censored data in \mathbf{x} is denoted by $\mathbf{x}_{\mathbf{o}} = (x_h)_{h \in \mathbf{o}}$ and, consequently, the vector of the observed data is $(\mathbf{x}_{\mathbf{o}}^\top, \mathbf{r}^\top)^\top$.

The joint probability distribution of $\{X_o^\top, R(X, I, u)\}$ is obtained by integrating X_c out of the joint distribution of $\{X^\top, R(X, I, u)\}$, i.e.

$$\varphi(\mathbf{x}_{o}, \mathbf{r}; \boldsymbol{\mu}, \boldsymbol{\Theta}) = \int \phi(\mathbf{x}_{o}, \mathbf{x}_{c^{-}}, \mathbf{x}_{c^{+}}; \boldsymbol{\mu}, \boldsymbol{\Theta}) P(R(\mathbf{X}; \mathbf{I}, \mathbf{u}) = \mathbf{r} | \mathbf{X} = \mathbf{x}) d\mathbf{x}_{c^{-}} d\mathbf{x}_{c^{+}}$$

$$= \left\{ \int_{D_{c}} \phi(\mathbf{x}_{o}, \mathbf{x}_{c}; \boldsymbol{\mu}, \boldsymbol{\Theta}) d\mathbf{x}_{c} \right\} I(\mathbf{I}_{o} \leq \mathbf{x}_{o} \leq \mathbf{u}_{o}),$$

where

$$\boldsymbol{c} = \underbrace{\{h \in \mathcal{I} : r_h = -1\}}_{\boldsymbol{c}^-} \cup \underbrace{\{h \in \mathcal{I} : r_h = +1\}}_{\boldsymbol{c}^+}, D_{\boldsymbol{c}} = (-\infty, \boldsymbol{l_{c^-}}] \times [\boldsymbol{u_{c^+}}, +\infty).$$

The Censored Gaussian Graphical Model

Definition

Let ${\bf X}$ be a p-dimensional random vector following a multivariate Gaussian distribution whose density $\phi({\bf x}; {\boldsymbol \mu}, \Theta)$ factorizes according to an undirected graph $G = \{V, E\}$ and let $R({\bf X}; {\bf I}, {\bf u})$ be a p-dimensional random censoring-data indicator defined by the censoring values ${\bf I}$ and ${\bf u}$. The censored Gaussian Graphical Model (cGGM) is defined to be the set

$$\{X, R(X; I, u), \varphi(x_o, r; \mu, \Theta), G\}.$$

This definition includes:

- the GGM (Lauritzen, 1996), if $\emph{\textbf{I}} = -\infty, \emph{\textbf{u}} = +\infty$,
- the left censored GGM, if $I < \infty, u = +\infty$,
- the right censored GGM, if $I = -\infty$, $u < \infty$,
- the censored GGM, if $I < \infty$, $u < \infty$.

Inference for cGGM

Consider a sample of n independent observations drawn from the cGGM. The observed log-likelihood function can be written as

$$\ell(\boldsymbol{\mu}, \boldsymbol{\Theta}) = \sum_{i=1}^{n} \log \int_{D_{c_i}} \phi(\mathbf{x}_{io_i}, \mathbf{x}_{ic_i}; \boldsymbol{\mu}, \boldsymbol{\Theta}) d\mathbf{x}_{ic_i} = \sum_{i=1}^{n} \log \varphi(\mathbf{x}_{io_i}, \mathbf{r}_i; \boldsymbol{\mu}, \boldsymbol{\Theta}),$$

where $o_i = \{h \in \mathcal{I} : r_{ih} = 0\}$, r_i is the realization of $R(X_i; I_i, u_i)$.

Under a lasso penalty, the estimator for a ℓ_1 -penalized cGGM is

$$\{\hat{\pmb{\mu}}^{\rho}, \widehat{\Theta}^{\rho}\} = \arg\max_{\pmb{\mu}, \Theta \succ 0} \sum_{i=1}^{n} \log \varphi(\pmb{x}_{io_{i}}, \pmb{r}_{i}; \pmb{\mu}, \Theta) - \rho \sum_{h \neq k} |\theta_{hk}|.$$

cGGMs Inference: Algorithm

Theorem

Necessary and sufficient conditions for $\{\hat{\mu}^{\rho}, \widehat{\Theta}^{\rho}\}$ to be the solution of the maximization problem

$$\max_{\boldsymbol{\mu},\Theta\succ 0} \sum_{i=1}^n \log \varphi(\mathbf{x}_{lo_i},\mathbf{r}_i;\boldsymbol{\mu},\Theta) - \rho \sum_{h\neq k} |\theta_{hk}|$$

are

$$\begin{split} \bar{x}_h(\hat{\boldsymbol{\mu}}^\rho,\widehat{\Theta}^\rho) - \hat{\mu}_h^\rho &= 0 \\ \hat{\sigma}_{hk}^\rho(\hat{\boldsymbol{\mu}}^\rho,\widehat{\Theta}^\rho) - s_{hk}(\hat{\boldsymbol{\mu}}^\rho,\widehat{\Theta}^\rho) - \rho \hat{v}_{hk} &= 0 \end{split}$$

where \hat{v}_{hk} denotes the subgradient of the absolute value function at $\hat{\theta}^{\rho}_{hk}$, i.e., $\hat{v}_{hk} = sign(\hat{\theta}^{\rho}_{hk})$ if $\hat{\theta}^{\rho}_{hk} \neq 0$ and $|\hat{v}_{hk}| \leq 1$ if $\hat{\theta}^{\rho}_{hk} = 0$.

 $\bar{x}_h(\hat{\mu}^{\rho}, \widehat{\Theta}^{\rho})$ and $s_{hk}(\hat{\mu}^{\rho}, \widehat{\Theta}^{\rho})$: 1st and 2nd moments of a truncated Gaussian distribution.

cGGM Inference: Moments of Truncated Gaussian

For any $i = 1, \ldots, n$, and $h, k = 1, \ldots, p$, let

$$x_{i,h}(\boldsymbol{\mu},\Theta) = \left\{ egin{array}{ll} x_{ih} & ext{if } r_{ih} = 0 \ E_{c_i|o_i}(X_{ih} \mid \boldsymbol{X}_{ic_i} \in D_{c_i}) & ext{otherwise}, \end{array}
ight.$$

$$x_{i,hk}(\boldsymbol{\mu},\boldsymbol{\Theta}) \quad = \left\{ \begin{array}{ll} x_{ih}x_{ik} & \text{if } r_{ih} = 0 \text{ and } r_{ik} = 0 \\ x_{ih}E_{c_i|o_i}(X_{ik} \mid \boldsymbol{X}_{ic_i} \in D_{c_i}) & \text{if } r_{ih} = 0 \text{ and } r_{ik} \neq 0 \\ E_{c_i|o_i}(X_{ih} \mid \boldsymbol{X}_{ic_i} \in D_{c_i})x_{ik} & \text{if } r_{ih} \neq 0 \text{ and } r_{ik} = 0 \\ E_{c_i|o_i}(X_{ih}X_{ik} \mid \boldsymbol{X}_{ic_i} \in D_{c_i}) & \text{if } r_{ih} \neq 0 \text{ and } r_{ik} \neq 0, \end{array} \right.$$

where $E_{c_i|o_i}(\cdot \mid \mathbf{X}_{ic_i} \in D_{c_i})$ denotes the expected value computed using the conditional distribution of \mathbf{X}_{ic_i} given \mathbf{x}_{io_i} truncated over D_{c_i} . Then

$$\bar{x}_h(\boldsymbol{\mu}, \boldsymbol{\Theta}) = \frac{\sum_{i=1}^n x_{i,h}(\boldsymbol{\mu}, \boldsymbol{\Theta})}{n}; \quad \bar{\boldsymbol{x}}(\boldsymbol{\mu}, \boldsymbol{\Theta}) = \{\bar{x}_1(\boldsymbol{\mu}, \boldsymbol{\Theta}), \dots, \bar{x}_p(\boldsymbol{\mu}, \boldsymbol{\Theta})\}^\top,$$

$$s_{hk}(\boldsymbol{\mu}, \boldsymbol{\Theta}) = \frac{\sum_{i=1}^n x_{i,hk}(\boldsymbol{\mu}, \boldsymbol{\Theta})}{n} - \bar{x}_h(\boldsymbol{\mu}, \boldsymbol{\Theta})\bar{x}_k(\boldsymbol{\mu}, \boldsymbol{\Theta}); \quad S(\boldsymbol{\mu}, \boldsymbol{\Theta}) = \{s_{hk}(\boldsymbol{\mu}, \boldsymbol{\Theta})\}$$

cGGM: essentially glasso within an EM algorithm

E-step

Denoting by $\{\hat{\boldsymbol{\mu}}_{ini}^{\rho}, \widehat{\Theta}_{ini}^{\rho}\}$ an initial estimate, compute the conditional expectations $x_{i,h}(\hat{\boldsymbol{\mu}}_{ini}^{\rho}, \widehat{\Theta}_{ini}^{\rho})$ and $x_{i,hk}(\hat{\boldsymbol{\mu}}_{ini}^{\rho}, \widehat{\Theta}_{ini}^{\rho})$, for $i=1,\ldots,n$.

M-step

Estimate Θ by maximizing the following objective function

$$Q(\Theta \mid \widehat{\Theta}_{\mathit{ini}}^{\rho}) = \log \det \Theta - \mathrm{tr} \{\Theta S(\widehat{\boldsymbol{\mu}}_{\mathit{ini}}^{\rho}, \widehat{\Theta}_{\mathit{ini}}^{\rho})\} - \rho \sum_{h,k} |\theta_{hk}|.$$

This leads to

$$\begin{split} \bar{x}_h(\hat{\boldsymbol{\mu}}_{ini}^{\rho},\widehat{\boldsymbol{\Theta}}_{ini}^{\rho}) - \hat{\mu}_h^{\rho} &= 0 \\ \hat{\sigma}_{hk}^{\rho}(\hat{\boldsymbol{\mu}}^{\rho},\widehat{\boldsymbol{\Theta}}^{\rho}) - s_{hk}(\hat{\boldsymbol{\mu}}_{ini}^{\rho},\widehat{\boldsymbol{\Theta}}_{ini}^{\rho}) - \rho \hat{v}_{hk} &= 0 \end{split}$$

which are the stationary conditions of a standard graphical lasso problem.

cGGM: Computational Cost

Although the M-step can be efficiently solved using graphical lasso implementations, the calculations of moments of a truncated normal can be time consuming.

Following Guo et al (2015), we consider a mean field approximation:

Approximate EM

$$E_{c_i|o_i}(X_{ih}X_{ik} \mid \textbf{\textit{X}}_{ic_i} \in D_{c_i}) pprox E_{c_i|o_i}(X_{ih} \mid \textbf{\textit{X}}_{ic_i} \in D_{c_i})E_{c_i|o_i}(X_{ik} \mid \textbf{\textit{X}}_{ic_i} \in D_{c_i})$$

This reduces computational time dramatically, as only conditional mean and variance are needed.

Simulation 1: Computational Cost of Approximate EM

p=10, n=100, P(Censoring)=0.25 (marginally) in a randomly drawn set \mathcal{D} of the 10 variables.

x-axis: $|\mathcal{D}|$, y-axis: largest Frobenius distance between Θ estimated using full and approximate EM.

Simulation 2: Comparison with Existing Methods

- **1** Fix n, p, a threshold level k = 40 and a censoring level c
- ② Generate Θ using huge.generator (with varying sparsity levels) and $\mu = (\mathbf{40}_c, runif(p-c, 10, 35))$, i.e. P(Censoring)=0.5 marginally for the censored variables
- Generate data $X \sim \mathcal{N}(\mu, \Theta^{-1})$ (mvrnorm) and transform the data into censored data X[X>k]=k
- lacktriangledown For a set of ho values, compare our method (cglasso) with
 - \blacktriangleright glasso: leave the data as they stand and use glassopath to find an estimator of Θ
 - ▶ missGlasso: treat the censored as missing at random and estimate both μ and Θ as a function of ρ (Städler and Bühlmann, 2012)
- Repeat each simulation 100 times

Case 1: Different Levels of Censoring

$$n = 100, p = 50, P(\theta_{hk} \neq 0) = 0.06, 50\%$$
 censoring level

Case 1: Different Levels of Censoring

$$n = 100, p = 50, P(\theta_{hk} \neq 0) = 0.06, 70\%$$
 censoring level

Case 2: Different Levels of Sparsity

n=100, p=50, 60% of variables censored, $P(\theta_{hk} \neq 0)=0.02$

Case 2: Different Levels of Sparsity

 $n=100,\ p=50,\ 60\%$ of variables censored, $P(\theta_{hk}\neq 0)=0.10$

Case 3: High-dimensional

n = 100, p = 200, 50% of variables censored, $P(\theta_{hk} \neq 0) = 0.015$

Simulation 3: "Real" Biological Data

Expression data on Arabidopsis thaliana from Wille et al (2004):

- n = 118 experiments on p = 39 genes
- Fully observed, but we create a dataset where observations are made artificially censored (3 cases: 10%, 20%, 30%)

Model Selection: Extended BIC

The tuning parameter ρ controls the sparsity of the network. Using the eBIC, one needs to calculate:

$$\mathsf{BIC}_{\gamma}(\widehat{\mathcal{E}}^{\rho}) = -2\sum_{i=1}^{n} \log \varphi(\mathbf{x}_{io_{i}}, \mathbf{r}_{i}; \widehat{\boldsymbol{\mu}}, \widehat{\Theta}(\widehat{\mathcal{E}}^{\rho})) + a(\rho)(\log n + 4\gamma \log p),$$

where

 $\widehat{\Theta}(\widehat{\mathcal{E}}^{\rho})$: MLE of the Gaussian graphical model specified by $\widehat{\mathcal{E}}^{\rho}=\{(\widehat{\theta}_{hk}^{\rho}\neq0\}$ $a(\rho)$: number of nonzero off-diagonal estimates of $\widehat{\Theta}^{\rho}$.

Since the log-likelihood is not a direct output of the EM-algorithm, we use the following approximate measure (Ibrahim et al, 2008):

$$\overline{\mathsf{BIC}}_{\gamma}(\widehat{\mathcal{E}}^{\rho}) = -n[\log\det\widehat{\Theta}^{\rho} - \operatorname{tr}\{\Theta S(\widehat{\boldsymbol{\mu}},\widehat{\Theta}(\widehat{\mathcal{E}}^{\rho}))\}] + a(\rho)(\log n + 4\gamma\log \rho),$$

i.e. substitute the exact log-lik with the *Q*-function used in the M-Step.

Mechanisms of Early Blood Development from qPCR Data

Single-cell experiments from Moignard et al (2015):

- n = 770 endothelial mouse cells; p = 42 genes (33 TFs, 9 markers)
- Threshold for censoring is set at 25
- Data normalized based on 4 housekeeping genes (Pipelers et al 2017)

Retain only genes with < 70% censoring \rightarrow 30 genes for the analysis

Inferred Network has 2 Distinct Sub-networks

Second application: p > n

Single-cell experiments from Psaila et al (2016):

- n = 48 human MK-MEP cells; p = 87 genes
- Threshold for censoring is set at 40
- Data normalized based on 2 housekeeping genes (Pipelers et al 2017)

Implementation: R package cglasso

Main functions: cglasso, ebic, plot

```
out <- cglasso(MKMEP, nrho = 200, rho.min.ratio = 0.35)
out.e <- ebic(out)
plot(out.e, type = "l")
out.graph <- to_graph(out, nrho = which.min(out.e$value_gof))
plot(out.graph)</pre>
```


mglasso function also available for inference under a missing-at-random mechanism (Städler and Bühlmann, 2012)

Extension: Conditional Censored Gaussian Graphical Model

Can we predict one data type from another?

$$egin{array}{lll} \mathbf{Y} &=& \mathbf{X} oldsymbol{B} + oldsymbol{\epsilon} \ oldsymbol{\epsilon} &\sim & \mathcal{N}(\mathbf{0}, oldsymbol{\Theta}^{-1}) \end{array}$$

We consider closely the case of:

censored response Y + high dimensionality both in X and Y

Conditional Censored Gaussian Graphical Model: Inference

There are two "networks" now: $\boldsymbol{B}, \boldsymbol{\Theta}$

Under censoring and sparsity, we wish to optimize

$$\sum_{i=1}^{n} \log \varphi(\mathbf{y}_{io_i}, \mathbf{r}_i, \mathbf{x}_i; \mathbf{B}, \mathbf{\Theta}) - \rho \sum_{h \neq k} |\theta_{hk}| - \lambda \sum_{j,l} |b_{jl}|.$$

We have developed an efficient EM algorithm that:

E-step: calculates summary statistics based on B and Θ

M-step: alternates estimation of \boldsymbol{B} with estimation of $\boldsymbol{\Theta}$ on the residuals of the model

All good ... but two tuning parameters now (ρ, λ) ...

Conditional cGGM: Simulation

 $n=100,\ p=50,\ q=5,\ P(\theta_{hk}\neq 0)=0.06,\ 50\%$ censoring level in $\boldsymbol{Y},\ 50\%$ of \boldsymbol{Y} variables censored, 2 non-zero values of \boldsymbol{B} per row Precision recall curves based on a 30×30 grid of values of ρ and λ :

Recovery of \boldsymbol{B} is not too affected by estimation of the precision matrix

But the reverse is not true!

Better estimates of ${m B}$ lead to better recovery of the network ${m \Theta}$

Related Work: Probit Models

Probit with Correlated Random Effects

$$\mathbf{Y}_r^* = \mathbf{X}_r \boldsymbol{eta} + \mathbf{Z}_r \mathbf{u}_r + \boldsymbol{\epsilon}_r,$$
 $\mathbf{Y}_r = 1$ if $\mathbf{Y}_r^* \geq 0$, 0 otherwise, with $\mathbf{u}_r \sim \mathcal{N}(0, \mathbf{\Sigma}_{G \times G}), \quad r = 1, \dots, R.$

In the context of a credit risk application:

- Y: firm's default ($p\sim60000$)
- G=13 industrial sectors (e.g. agriculture, manufacturing, ...)
- R=59 geographical regions
- Dependencies are captured at the higher level of industrial sectors

Correlated random effects \rightarrow Hierarchical graphical model

The mixed model imposes block constraints on the covariance/precision matrix. In particular $\mathbf{Y}^* \sim N(\mathbf{X}\beta, \mathbf{\Sigma})$, with

$$\sum_{p \times p} = \begin{pmatrix} \mathbf{\Sigma}_1 & 0 & \dots & 0 \\ 0 & \mathbf{\Sigma}_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \mathbf{\Sigma}_R \end{pmatrix} \quad \sum_{r} = \begin{pmatrix} \sigma_1 & \sigma_{12} & \dots & \sigma_{1G} \\ \sigma_{21} & \sigma_2 & \dots & \sigma_{2G} \\ \dots & \dots & \dots & \dots \\ \sigma_{G1} & \sigma_{G2} & \dots & \sigma_{G} \end{pmatrix}$$

where σ_{ij} are rectangular blocks of size given by # companies in sector $i \times \#$ companies in sector j and N_r is the number of companies in region r.

 Σ_r can be conveniently written in terms of Σ_G :

$$\mathbf{\Sigma}_r = \mathbf{Z}_r \mathbf{\Sigma}_G \mathbf{Z}_r' + \mathbf{I}_{N_r}.$$

We have developed also in this case an efficient EM algorithm (Tosetti and Vinciotti (2018) arXiv: 1808.06798).

Conclusions

- Biological data from RT-qPCR data is naturally censored
- We have developed penalised censored Gaussian graphical models for network inference under censoring
- The method can be applied in the presence of any censoring
- R package cglasso on CRAN
- Main reference: Augugliaro, Abbruzzo, Vinciotti (2019) L_1 -Penalised Censored Gaussian Graphical Model. Biostatistics.
- Possible extensions to multivariate regression models for integration of data from multiple sources and under different patterns of missingness

Partly funded by **COSTNET**European Cooperation for Statistics
of Network Data Science
COST Action CA15109

