Interesting Topological Spaces in Algebraic Geometry

D. Zack Garza

Tuesday 28^{th} July, 2020

Contents

1 Ideas for Spaces 1

1 Ideas for Spaces

- Curves
 - Elliptic Curves
 - Higher genus
 - Hyperelliptic curves
 - The modular curve
- Surfaces
 - Compact Riemann surfaces
 - * Bolza Surface (Genus 2)
 - * Klein Quartic (Genus 3)
 - * Hurwizt Surfaces
 - Kummer surfaces
- Compact Complex Surfaces
 - Rational ruled
 - Enriques Surfaces
 - -K3
 - * Kahler Manifolds
 - Kodaira
 - Toric
 - Hyperelliptic
 - Properly quasi-elliptic
 - General type
 - Type VII
- Fake projective planes
- Conics
- Calabi-Yau manifolds
 - Dimension 1: All elliptic curves (up to homeomorphism)
 - Dimension 2: K3 surfaces

- Dimension 3 (threefolds): 500 million +, unknown if infinitely many
- The bananafold
- Hyperkähler
- Hurwitz schemes
- Topological galois groups, e.g. $G(\overline{F}/F)$ for $F = \mathbb{Q}, \mathbb{F}_p$.
- Spec (R) for R a DVR (a Sierpinski space)
- Quiver Grassmannians
- Rigid analytic spaces
- Affine line with two origins
- Moduli stack of elliptic curves $\mathcal{M}_{1,1}$.
- Abelian Surface
- Fano Varieties
- Curves: isomorphic to \mathbb{P}^1
- Surfaces: Del Pezzo surfaces
- Weighted projective space
- Toric Varieties
- Grassmannian
- Flag Varieties
- Moduli Spaces

Due to Kunihiko Kodaira's classification of complex surfaces, we know that any compact hyperkähler 4-manifold is either a K3 surface or a compact torus T^{4} . (Every Calabi–Yau manifold in 4 (real) dimensions is a hyperkähler manifold, because SU(2) is isomorphic to Sp(1).)

As was discovered by Beauville, the Hilbert scheme of k points on a compact hyperkähler 4-manifold is a hyperkähler manifold of dimension 4k. This gives rise to two series of compact examples: Hilbert schemes of points on a K3 surface and generalized Kummer varieties.