Eagle: Making multiple-locus association mapping on a genome-wide scale routine

Andrew W. George 1, Arunas Verbyla 1, and Joshua Bowden 2

¹Data61, CSIRO, Australia.
 ²IM &T, CSIRO, Australia.

July 10, 2018

Supplementary Table 1: Implementation and methodology attributes of eight computer programs/packages for genome-wide association mapping. For the different types of model, LMM is linear mixed model. GLM is generalised linear mixed model, and RF is random forests.

Attributes	Eagle	bigRR	glmnet	LMM-Lasso	MLMM	$_{ m r2VIM}$	FaST-LMM	GEMMA
Implementation Purpose built ^a	Yes	m Yes	No	Yes	m Yes	m Yes	Yes	Yes
Language	R/C++	R	Я	Python	Я	R	$C++$ and $Python^b$	C+ ++
GUI	Yes	$N_{\rm o}$	$N_{\rm O}$	No	No	No	No	No
Documentation	Videos, user-manuals, website, R help	R help	Vignettes, R help	Readme.txt, test script	Vignette, R help	R help	Videos, user-manuals, website	User-manual, website
Additional fixed effects c	Yes	Yes	Yes	No	m Yes	Yes	Yes	Yes adsf
Types of trait data	Cont.	Cont., binary, count	Cont., binary, count	Cont.	Cont.	Cont.	Cont.	Cont.
Data larger than memory	Yes	No	No	No	No	$_{ m O}$	Yes	No
$Methodology \ \mathrm{Model}$	LMM		GLMM	GLM	$_{ m LMM}$	m RF	LMM	$_{ m LMM}$
${ m SNPs}$ fitted	$\mathrm{All/multiple}$	All	All	All	Multiple	Multiple	Single	Single
Selection type	Model	Variable	Variable	Variable	Model	Variable	Variable	Variable
Threshold $free^5$	Yes	No	No	No	Yes	No	No	No

a Specifically created for the analysis of GWAS data.

 $[^]b\,$ Separate programs, one written in Python, the other C++

 $^{^{}c}$ Capacity for additional fixed effects (such as age, sex, and/or population structure effects) to be included directly in the model.

1

Supplementary Table 2: Some of the key features possessed by Eagle and the other seven computer programs/packages for association mapping

0			Computer	Computer Programs/Packages for Association Mapping	ckages for	Association	Mapping	
			Mu	Multiple-locus			Single-locus	ocns
Features	Eagle	bigRR	glmnet	LMM-Lasso	MLMM	r2VIM	FaST-LMM	GEMMA
Purpose built ¹	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
Well documented ²	Yes	$N_{\rm o}$	Yes	No	Yes	No	Yes	Yes
Simultaneous fitting of SNPs	Yes	Yes	Yes	Yes	$N_{\rm o}$	$N_{\rm o}$	$ m N_{o}$	$N_{\rm O}$
Additional fixed effects 3	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Data larger than RAM^4	Yes	No	No	No	$N_{\rm o}$	$N_{\rm o}$	Yes	No
Threshold free 5	Yes	$N_{\rm o}$	$N_{\rm o}$	No	Yes	$N_{\rm o}$	No	No
Informative error checking	Yes	No	No	No	No	No	Yes	No
Specifically created for the analysis of GWAS data	of GWAS	lata.						

Specifically created for the analysis of GWAS data.

² More than just a readme file or comments in an example file. Programs/packages with a tick had a detailed user manual.

 3 Ability to handle additional fixed effects such as age, sex, and/or population structure effects.

 4 Able to deal with data larger than the memory capacity of the computer.

⁵ Results reported as the set of SNP closest to the genes influencing a trait. No need to construct thresholds to determine significance of the findings.

⁶ All the programs terminated on errors. However, not all the programs informed the user of the cause and how to fix the errors.

Supplementary Table 3: The median run times (in minutes) of Eagle and the other association mapping programs across the six simulation scenarios.

Simulation Scenarios

Method	Name	150 x 5K	$1500 \times 50 K$	$350 \times 400 K$	2000 x 500K	$4000 \times 1.5 M$	10000 x 1
Multiple	Eagle	0.08	1.62	2.71	13.65	127.63	699.5
	MLMM	0.15	2.91	19.04	143.01	870.84	
	glmnet	0.11	3.95	14.06	74.03		
	r2VIM	0.09	3.66	5.51	50.59	380.52	
	$_{ m bigRR}$	1.01	113.35	54.99	1030.61		
	LMM-Lasso	0.57	52.08	92.20	1031.85		
Single	GEMMA	0.02	5.02	6.17	84.83	723.33	4071.6
-	${\rm FaST\text{-}LMM}^{few}$	0.01	0.80	7.07	20.16	193.90	346.1
	${\rm FaST\text{-}LMM}^{all}$	0.03	2.96	7.90	41.27		

Supplementary Figure 1: Memory usage (in gigabytes) of Eagle and the other association mapping programs across the six simulation scenarios. The maximum amount of memory on the computer is 128 gigabytes. The x-axis is on the log scale. GEMMA, a single-locus implementation, had the lowest memory usage. Of the multiple-locus implementations, Eagle had the lowest memory usage. Also, it was the only multiple-locus implementation able to produce results for data under scenario $10000 \times 1.5 \text{M}$. This is due to its ability to handle data larger than the available memory of a computer. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few)

.

Supplementary Figure 2: Power verse false discovery rates for Eagle and the single-locus methods GEMMA and FaST-LMM. FaST-LMM was run where all the SNP data are used to estimate the relationship matrix (FaST-LMM all) and where genotype data from every five-hundredth SNP are used to estimate the relationship matrix (FaST-LMM few). Eagle has substantially higher power than the single-locus methods.

