Paul Masch und Benjamin Königsberg Netzwerke I: Praktikum 1 29.10.2016

Blatt 3:

Aufgabe 3.1: Messung der Round Trip Time mit ping

a) (siehe Anhang)

b)

In Netzwerken wird zwischen Ausbreitungsverzögerung, Übertragungsverzögerung, Verarbeitungsverzögerung und Warteschlangenverzögerung unterschieden. Mit dem Programm ping wird die Round-Trip Time gemessen.

c)

Der Maximal Datendurchsatz vom Client zu Rechner A ist 2,25-mal Mbits/s so groß wie der Maximal Datendurchsatz vom Client zu Rechner B.

Aufgabe 3.2: Verzögerungen bei Kommunikation über Zwischenstationen

a)

Verbindung von A nach R1:

DSL-uplink-Signalausbreitungsgeschwindigkeiten = $\frac{2}{3}$ *Lichtgeschwindigkeit* = $\frac{2}{3}$ * 299.792.458 $\frac{m}{s}$ = 199.861.639 $\frac{m}{s}$

299.792.458 = 199.861.6 **R** = 384.000bit/s

1Byte = 8bit

$$Bytes\ Pro\ Sekunde = \frac{384.000\frac{bit}{s}}{8} = 48.000\frac{bytes}{s}$$

Man sendet also 48.000 bytes auf eine Länge von 199.861.639m pro Sekunde

Länge eines Bytes in Metern =
$$\frac{\text{Lichtgewschwindigkeit}}{\text{Bytes pro Sekunde}} = \frac{199.861.639 \frac{m}{s}}{48.000 \frac{byte}{s}}$$

= $4.163,78 \frac{m}{byte} \approx 4,2 \frac{km}{byte}$

Verbindung von R1 nach R2:

Satellitenverbindung-Signalausbreitungsgeschwindigkeiten =

Lichtgeschwindigkeit $299.792.458 \frac{m}{s}$

 $\mathbf{R} = 2 \text{Mbit/s} = 2.000.000 \text{bit/s}$

$$Bytes Pro Sekunde = \frac{2.000.000 \frac{bit}{s}}{8} = 250.000 \frac{bytes}{s}$$

Man sendet also 250.000 bytes auf eine Länge von 299.792.458m pro Sekunde

Länge eines Bytes in Metern =
$$\frac{\text{Lichtgewschwindigkeit}}{\text{Bytes pro Sekunde}} = \frac{299.792.458 \frac{m}{s}}{250.000 \frac{byte}{s}}$$

= 1.199,16 $\frac{m}{byte} \approx 1,2 \frac{km}{byte}$

Verbindung von R2 nach B:

100BaseT-Signalausbreitungsgeschwindigkeiten = $\frac{2}{3}$ *Lichtgeschwindigkeit* = $\frac{2}{3}$ * 299.792.458 $\frac{m}{s}$ = 199.861.639 $\frac{m}{s}$

 $\mathbf{R} = 100 \text{Mbit/s} = 100.000.000 \text{bit/s}$

$$Bytes\ Pro\ Sekunde = \frac{100.000.000 \text{bit/s} \frac{bit}{s}}{8} = 12.500.000 \frac{bytes}{s}$$

Man sendet also 12.500.000 bytes auf eine Länge von 199.861.639m pro Sekunde

Länge eines Bytes in Metern =
$$\frac{\text{Lichtgewschwindigkeit}}{\text{Bytes pro Sekunde}} = \frac{199.861.639 \frac{m}{s}}{12.500.000 \frac{byte}{s}}$$

$$=15,98\frac{m}{byte}\approx 16\frac{m}{byte}$$

b)

Paketlänge L = 64byte*8 = 512bit

Übertragungsrate $R = 384.000 \frac{bit}{s}$

Distance $D_1 = 3.3 \text{km} = 3300 \text{m}$

Distance $D_2 = 98.000 \text{km} = 98.000.000 \text{m}$

Distance $D_3 = 25 \text{m}$

Signal-Propagation $s_1 = 199.861.639 \frac{m}{s}$

Signal-Propagation $s_2 = 299.792.458 \frac{\mathring{m}}{s}$

Transmission-Delay = $\frac{L}{R}$

Propagation-Delay = $\frac{D^{n}}{c}$

Processing-Delay = 0

Queueing-Delay = 0

Für 64byte:

Total-Delay = *Transmission Delay + Propgation Delay*

$$= \frac{L}{R_1} + \frac{L}{R_2} + \frac{L}{R_3} + \frac{D_1}{s_1} + \frac{D_2}{s_2} + \frac{D_3}{s_3}$$

$$=\frac{512bit}{384.000\frac{bit}{s}} + \frac{512bit}{2.000000\frac{bit}{s}} + \frac{512bit}{100.000.000\frac{bit}{s}} + \frac{3300m}{199.861.639\frac{m}{s}} + \frac{98.000.000m}{299.792.458\frac{m}{s}} + \frac{25m}{199.861.639\frac{m}{s}}$$

=
$$0.0013s + 2.56 * 10^{-4}s + 5.12 * 10^{-6}s + 1.65 * 10^{-5}s + 0.326s + 1.25 * 10^{-7}s$$

 $\approx 0.328s$

Total-Delay =
$$\frac{L}{R_1} + \frac{L}{R_2} + \frac{L}{R_3} + \frac{D_1}{S_1} + \frac{D_2}{S_2} + \frac{D_3}{S_3}$$

$$=\frac{83.886.080bit}{384.000\frac{bit}{s}}+\frac{83.886.080bit}{2.000.000\frac{bit}{s}}+\frac{83.886.080bit}{100.000.000\frac{bit}{s}}+\frac{3300m}{199.861.639\frac{m}{s}}+\frac{98.000.000m}{299.792.458\frac{m}{s}}+\frac{25m}{199.861.639\frac{m}{s}}$$

$$= 218,45s + 41,94s + 0,84s + 1,65 * 10^{-5}s + 0,326s + 1,25 * 10^{-7}s$$

 $\approx 261,56s$

c)

Paketgröße 1 KByte

A zu R1

$$\frac{(1*10^3*8Bit)}{\left(384*\frac{10^3bit}{s}\right)} + \frac{3300}{\frac{2}{3}*3*\frac{10^{8m}}{s}}$$

R1 zu R2:

$$\frac{1*10^3*8Bit}{\left(2*\frac{10^6bit}{s}\right)} + \frac{98000000}{3*\frac{10^8m}{s}}$$

R2 zu B:

$$\frac{1*10^3*8Bit}{100*\frac{10^6bits}{s}} + \frac{25}{\frac{2}{3}*3*\frac{10^8m}{s}}$$

Ende zu Ende für 1Kbyte = 0,35159s

Paketgröße 10MByte - 1KByte = 9999 KByte

Paket von A zu R1:

$$\frac{\left(9999*10^3*8Bit\right)}{\left(384*\frac{10^3Bit}{s}\right)}$$
= 208.3125s

Gesamtzeit = 1KByte (Ende zu Ende) + 9999KByte(im ersten Abschnitt, da der langsamste, welcher die Gesamtgeschwindigkeit bestimmt)

$$0.35159s + 208.3125s = 208.664s$$

83.886.080bit / 8192bit = 10.240 Pakete

Propagation Delay $\approx 0.326s$

Paketgröße 1 KByte

A zu R1

$$Transmission \ Delay + Propagation \ Delay = \frac{(1*10^3*8Bit)}{\left(384*\frac{10^3bit}{s}\right)} + \frac{3300m}{\frac{2}{3}*3*\frac{10^8m}{s}}$$

R1 zu R2:

$$Transmission\ Delay + Propagation\ Delay = \frac{1*\ 10^3*8Bit}{\left(1*\frac{10^6bit}{s}\right)} + \frac{1000000m}{\frac{2}{3}*3*\frac{10^{8m}}{s}}$$

R2 zu B:

$$Transmission \ Delay + Propagation \ Delay = \frac{1*10^3*8Bit}{100*\frac{10^6bits}{s}} + \frac{25m}{\frac{2}{3}*3*\frac{10^8m}{s}}$$

Ende zu Ende für 1Kbyte = 0,02593812s

Paket von A zu R1:

$$\frac{\left(9999*10^3*8Bit\right)}{\left(384*\frac{10^3Bit}{s}\right)}$$
= 208.3125s

Paketgröße 10MByte – 1KByte = 9999 kByte

Paket von A zu R1:

$$\frac{\left(9999*10^3*8Bit\right)}{\left(384*\frac{10^3Bit}{s}\right)}$$
= 208.3125s

Gesamtzeit = 1KByte (Ende zu Ende) + 9999KByte(im ersten Abschnitt, da der langsamste, welcher die Gesamtgeschwindigkeit bestimmt)

e)

Headergröße 40 Byte

A zu R1

$$Transmission \ Delay + Propagation \ Delay = \frac{(40*8Bit)}{\left(384*\frac{10^3 \ bit}{s}\right)} + \frac{3300m}{\frac{2}{3}*3*\frac{10^8 m}{s}}$$

R1 zu R2:

$$Transmission \ Delay + Propagation \ Delay = \frac{40*8Bit}{\left(1*\frac{10^6bit}{s}\right)} + \frac{1000000m}{\frac{2}{3}*3*\frac{10^{8m}}{s}}$$

R2 zu B:

Transmission Delay + Propagation Delay =
$$\frac{40*8Bit}{100*\frac{10^6bits}{s}} + \frac{25m}{\frac{2}{3}*3*\frac{10^8m}{s}}$$

Ende zu Ende für 40Kbyte = 0.0059s

Paketrest 1Kbyte – 40Byte = 960 Byte

Paket von A zu R1:

$$\frac{(960*8Bit)}{\left(384*\frac{10^3Bit}{s}\right)} + \frac{3300m}{\frac{2}{3}*3*\frac{10^8m}{s}}$$

Ende zu Ende für 960 Byte = **0.0200165s**

Gesamtzeit für 10 Mbyte (1* Header + 10000 * Body) = $0.0059s + (0.0200165s* 10^4)$ = 200.171s

Die Ende-zu-Ende Verzögerung verringert sich um etwa 8167.54ms

Aufgabe 3.3: HTTP Performance

RTT = 2*(Propagation Delay + Processing Delay + Queueing Delay)

- a) Non-Persistent Connection:
- 1. Aufbau der TCP Verbindung = 1RTT = 250ms
- 2. Sende GET-Anfrage für HTML: 1RTT + Transmission Delay

Transmission Delay HTML und Bild = $\frac{100.000 \text{bit}}{100.000.000 \frac{bit}{s}} = 10^{-3} s$

- -> **Reply Delay** = RTT + Transmission Delay = 250ms + 1ms= <u>251ms</u>
- 3.Schließen der TCP Verbindung
- 4. Verarbeiten der HTML = 0ms
- 5. Schritt 1-4 10 mal für jedes Bild
 - → Total Delay = 11*(250ms+251ms) = <u>5511ms</u>
- b) Parallel Connections:
- 1. 1 Verbindungen wird geöffnet = 250ms
- 2. **GET-Anfrage für HTML=** 1RTT + Transmission Delay = 251ms (siehe a)
- 4. Verarbeiten der HTML = 0ms
- 5. Öffne 10 Verbindungen für die Bilder = 250ms

6. GET-Anfrage von allen Verbindungen für Bilder = 1RTT + Transmission Delay

Transmission Delay =
$$\frac{\frac{100.000 \text{bit}}{\frac{100.000.000 \frac{bit}{s}}{10 \text{ Verbindungen}}} = 10 \text{ms}$$

Replay-Delay = 250ms+10ms = 260ms

Total Delay = 250ms+251ms+250ms+260ms=1011ms

c) Persistent Connection:

- 1. 1 Verbindung wird geöffnet = 250ms
- 2. GET-Anfrage für HTML = 1 RTT + Transmission Delay

Transmission Delay =
$$\frac{100.000 \text{bit}}{100.000.000 \frac{bit}{s}} = 10^{-3} \text{s}$$

- -> **Reply-Delay** = RTT+ Transmission Delay = 250ms + 1ms= <u>251ms</u>
- 3. Verarbeiten der HTML: 0ms
- 4. Schritt 2, 10 mal für jedes Bild
- 5. Schließen der TCP Verbindung
- -> Total Delay = 250ms + 11*(251ms) = 3011ms

d) Persistent Connection mit Pipelining

- 1. 1 Verbindung wird geöffnet = 250ms
- 2. GET-Anfrage für HTML 251ms
- 3. Verarbeiten der HTML: 0ms
- 4. Alle GET-Anfragen für Bilder: 1 RTT + Transmission Time aller Bilder

$$Transmission \ Delay = \frac{100.000 \text{bit} * 10 \text{Bilder}}{100.000.000 \frac{bit}{s}} = 10 ms$$

Reply-Delay = RTT + Transmission Delay = 250ms + 10ms = 260 -> **Total Delay =** 250ms + 251ms + 260ms = **761ms**

Aufgabe 3.4: Schichtenmodell

a) Vergleich ISO/OSI- und das Internet-Schichtenmodell

Das Internet-Schichtenmodell fasst die sieben Schichten des ISO/OSI-

Schichtenmodells in vier Schichten zusammen. Damit ist das ISO/OSI Modell deutlich flexibler, da es die Zusammenfassung und Entfernung von einzelnen Schichten zulässt. Beim Internet-Schichtenmodell sind die Protokolle fest an die Schichten gebunden und lassen deshalb keine Anpassung zu. Die Netzwerk-Protokolle TCP/IP sind fest im Internet-Schichtenmodell verankert und lassen sich nicht ersetzen. Nur die Anwendungen und Übertragungsmedien auf den Internet-Schichten 1 und 4 lassen sich beliebig austauschen.

b) Damit eine möglichst hohe Flexibilität bei den Übertragungsarten und Protokollen gewährleistet werden kann. Der Anwendung ist es gleich, über welche Arten der Übertragung sie mit einer Gegenstelle kommuniziert.

Benötigte Arbeitszeit:

3h(außerhalb der Vorlesung + Praktikum) * 3(Tage) * 3(Wochen) = 27h