Patent claims

Suls >1

Compounds of the formula (I)

(I)

in which

10

V represents hydrogen, halogen, alkyl or alkoxy,

15

''-| |411 | W represents hydrogen, cyano, nitro, halogen, alkyl, alkenyl, alkinyl, alkoxy, halogenoalkyl, halogenoalkoxy, in each case optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy or phenylalkylthio,

20

X represents halogen, alkyl, alkenyl, alkinyl, alkoxy, halogenoalkyl, halogenoalkoxy, cyano, nitro, in each case optionally substituted phenyl, phenoxy, phenylthio, phenylalkyloxy or phenylalkylthio,

Y

represents hydrogen, halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, cyano or nitro,

25

Z represents hydrogen, halogen, alkyl, alkoxy, halogenoalkyl, halogenoalkoxy, hydroxyl, cyano, nitro or in each case optionally substituted phenoxy, phenylthio, 5- or 6-membered hetaryloxy, 5- or -membered hetarylthio, phenylalkyloxy or phenylalkylthio,

Het represents one of the groups

in which

5

G represents hydrogen (a) or represents one of the groups

$$P = \mathbb{R}^{5}$$
 (e), \mathbb{R}^{7} (g), \mathbb{R}^{7} (g), in which

10

E represents hydrogen (a) or represents one of the groups

L

represents oxygen or sulphur,

15

M represents oxygen or sulphur,

IJ

represents in each case optionally halogen- or cyano-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl or polyalkoxyalkyl or represents in each case optionally halogen-, alkyl- or alkoxy-substituted cycloalkyl or heterocyclyl or represents in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl,

- R2 represents in each case optionally halogen- or cyano-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl or benzyl,
- R³, R⁴ and R⁵ independently of one another represent in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio or cycloalkylthio or represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio,
- R6 and R7 independently of one another represent hydrogen, represent in each case optionally halogen- or cyano-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent in each case optionally substituted phenyl or benzyl, or together with the N atom to which they are attached form an optionally substituted cycle which optionally contains oxygen or sulphur,

except for the compound I-a-79 from EP 528 156

5

10

15

20

25

M:

$$H_3C$$
 CH_3
 CH_3
 CH_3

2. Compounds of the formula (I) according to Claim 1, in which

V represents hydrogen, halogen, C₁-C₆-alkyl or C₁-C₆-alkoxy,

W represents hydrogen, nitro, cyano, halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy or in each case optionally halogen-, C₁-C₆-alkyl-,

C₁-C₆-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, nitro- or cyano-substituted phenyl, phenoxy, phenylthio, phenyl-C₁-C₄-alkoxy or phenyl-C₁-C₄-alkylthio,

- X represents halogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkinyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, cyano, nitro or in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, nitro- or cyano-substituted phenyl, phenoxy, phenylthio, phenyl-C₁-C₄-alkoxy or phenyl-C₁-C₄-alkylthio,
- Y represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, cyano or nitro,
- z represents hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-halogenoalkyl, C₁-C₄-halogenoalkoxy, hydroxyl, cyano, nitro or in each case optionally halogen, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, nitro- or cyanosubstituted phenoxy, phenylthio, thiazolyloxy, pyridinyloxy, pyrimidyloxy, pyrazolyloxy, phenyl-C₁-C₄-alkyloxy or phenyl-C₁-C₄-alkylthio,

Het represents one of the groups

5

10

15

20

25

There of the tent that the tent that the tent that

[]:

Man Man

(1)

G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

represents in each case optionally halogen- or cyano-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkyl or poly-C₁-C₈-alkoxy-C₁-C₈-alkyl or represents optionally halogen-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted C₃-C₈-cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur,

represents optionally halogen-, cyano-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -halogenoalkyl-, C_1 - C_6 -halogenoalkoxy-, C_1 - C_6 -alkylsulphonyl-substituted phenyl,

represents optionally halogen-, nitro-, cyano-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-halogenoalkyl- or C₁-C₆-halogenoalkoxy-substituted phenyl-C₁-C₆-alkyl,

5

10

the first dwel twee twee the first t

aII:

15

30

5

10

represents optionally halogen- or C₁-C₆-alkyl-substituted 5- or 6₇ membered hetaryl having one or two heteroatoms from the group consisting of oxygen, sulphur and nitrogen,

represents optionally halogen- or C₁-C₆-alkyl-substituted phenoxy-C₁-C₆-alkyl or

represents optionally halogen-, amino- or C₁-C₆-alkyl-substituted 5- or 6-membered hetaryloxy-C₁-C₆-alkyl having one or two heteroatoms from the group consisting of oxygen, sulphur and nitrogen,

represents in each case optionally halogen or cyano-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl or poly-C₁-C₈-alkoxy-C₂-C₈-alkyl,

represents optionally halogen-/ C_1 - C_6 -alkyl- or C_1 - C_6 -alkoxy-substituted C_3 - C_8 -cycloalkyl or

represents in each case optionally halogen-, cyano-, nitro-, C_1 - C_6 -alkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -halogenoalkyl- or C_1 - C_6 -halogenoalkoxy-substituted phenyl or benzyl,

represents optionally halogen-substituted C₁-C₈-alkyl or in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-halogenoalkyl-, C₁-C₄-halogenoalkoxy-, cyano- or nitro-substituted phenyl or benzyl,

R⁴ and R⁵ independently of one another represent in each case optionally halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio or C₃-C₈-alkenylthio or

represent in each case optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C₄-halogenoalkoxy-, C₁-C₄-alkylthio-, C₁-C₄-halogenoalkylthio-, C₁-C₄-alkyl- or C₁-C₄-halogenoalkyl-substituted phenyl, phenoxy or phenylthio,

5

R6 and R7 independently of one another represent hydrogen, represent in each case optionally halogen- or cyano-substituted C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl or C₁-C₈-alkoxy-C₂-C₈-alkyl, represent in each case optionally halogen, C₁-C₈-alkyl-, C₁-C₈-halogenoalkyl- or C₁-C₈-alkoxy-substituted phenyl or benzyl or together represent an optionally C₁-C₆-alkyl-substituted C₃-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur,

10

15

of the Arch And And

 except for the compound I-a-75 from EP 5/28 156

$$H_3C$$
 CH_3
 CH_3
 CH_3

20

3. Compounds of the formula (I) according to Claim 1, in which

__

V represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy,

25

W

represents hydrogen, fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -halogenoalkyl or C_1 - C_2 -halogenoalkoxy,

- X represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, cyano or nitro,
- Y represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, cyano or nitro,
- z represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-halogenoalkyl, C₁-C₂-halogenoalkoxy, hydroxyl, cyano, nitro or in each case optionally fluorine, chlorine-, bromine-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₂-halogenoalkyl-, C₁-C₂-halogenoalkoxy-, nitro- or cyano-substituted phenoxy or benzyloxy,

Het represents one of the groups

5

10

15

20

. .

G represents hydrogen (3) or represents one of the groups

$$R^1$$
 (b), R^2 (c), SO_2 R^3 (d), R^6 R^5 (e), E (f), or R^7 (g), in which

- E represents a metal ion or an ammonium ion,
- L represents oxygen or sulphur and

M represents oxygen or sulphur,

represents in each case optionally fluorine- or chlorine-substituted C1-C16-alkyl, C2-C16-alkenyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkylthio-C1-C6-alkyl or poly-C1-C6-alkoxy-C1-C6-alkyl or represents optionally fluorine-, chlorine-, C1-C5-alkyl- or C1-C5-alkoxy-substituted C3-C7-cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur,

represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_3 -halogenoalkoxy-, C_1 - C_4 -alkylthio- or C_1 - C_4 -alkylsulphonyl-substituted phenyl,

represents optionally fluorine-, chlorine-, bromine-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_3 -halogenoalkyl- or C_1 - C_3 -halogenoalkoxy-substituted phenyl- C_1 - C_4 -alkyl,

represents in each case optionally fluorine-, chlorine-, bromine- or C_1 - C_4 -alkyl-substituted pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl,

represents optionally fluorine-, chlorine-, bromine- or $C_1\text{-}C_4\text{-}alkyl\text{-}$ substituted phenoxy- $C_1\text{-}C_5\text{-}alkyl$ or

represents in each case optionally fluorine-, chlorine-, bromine-, arnino- or C₁-C₄-alkyl-substituted pyridyloxy-C₁-C₅-alkyl, pyrimidyloxy-C₁-C₅-alkyl or thiazolyloxy-C₁-C₅-alkyl,

10

5

15

20

25

30

5

represents in each case optionally fluorine- or chlorine-substituted C_1 - C_{16} -alkyl, C_2 - C_{16} -alkenyl, C_1 - C_6 -alkoxy- C_2 - C_6 -alkyl or poly C_1 - C_6 -alkoxy- C_2 - C_6 -alkyl, represents optionally fluorine-, chlorine-, C_1 - C_4 -alkyl- or C_1 - C_4 -alkoxy-substituted C_3 - C_7 -cycloalkyl or

represents in each case optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, C_1 - C_4 -alkyl-, C_1 - C_3 -alkoxy-, C_1 - C_3 -halogenoalkoxy-substituted phenyl or benzyl,

represents optionally fluorine- or chlorine-substituted C₁-C₆-alkyl or in each case optionally fluorine-, chlorine-, bromine-, C₁-C₄-alkyl-, C₁-C₄-alkoxy-, C₁-C₂-halogenoalkoxy-, C₁-C₂-halogenoalkyl-, cyano- or nitro-substituted phenyl or benzyl,

R⁴ and R⁵ independently of one another represent in each case optionally fluorine- or chlorine-substituted C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio or C₃-C₄-alkenylthio or represent in each case optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, C₁-C₃-alkoxy-, C₁-C₃-halogenoalkoxy-, C₁-C₃-alkylthio-, C₁-C₃-halogenoalkylthio-, C₁-C₃-alkyl- or C₁-C₃-halogenoalkyl-substituted phenyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, represent in each case optionally fluorine- or chlorine-substituted C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy-C₂-C₆-alkyl, represent in each case optionally fluorine-, chlorine-, bromine-, C₁-C₅-halogenoalkyl-, C₁-C₅-alkyl- or C₁-C₅-alkoxy-substituted phenyl or benzyl, or together represent an optionally C₁-C₄-alkyl-substituted C₃-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur,

except for the compound I-a-75 from EP 528 156

$$H_3C$$
 CH_3
 CH_3
 CH_3

5

V

4. Compounds of the formula (I) according to Claim 1, in which

10

Men freih freih fant fant fant den men

111

Dì.

methoxy or ethoxy,

W represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl,

represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl,

methoxy or ethoxy,

15

X represents fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy or cyano,

20

Y represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, terr-butyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy, cyano or nitro,

z represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, propyl, isopropyl, tert-butyl, methoxy, ethoxy, propoxy, isopropoxy, trifluoromethyl, trifluoromethoxy, difluoromethoxy, cyano or nitro,

25

Het represents one of the groups

G represents hydrogen (a) or represents one of the groups

O

$$R^1$$
 (b), R^2 (c), R^3 (d), R^6
 R^5 (e), E (f), R^7 (g), in which

- E represents a metal ion of an ammonium ion,
- L represents oxygen of sulphur and
- M represents oxygen or sulphur,

R1 represents in each case optionally fluorine- or chlorine-substituted C1-C14-alkyl, C2-C14-alkenyl, C1-C4-alkoxy-C1-C6-alkyl, C1-C4-alkylthio-C1-C6-alkyl, poly-C1-C4-alkoxy-C1-C4-alkyl or represents optionally fluorine-, chlorine-, methyl-, ethyl-, n-propyl-, isopropyl-, n-butyl-, isobutyl-, tert-butyl-, methoxy-, ethoxy-, n-propoxy- or isopropoxy-substituted C3-C6-cycloalkyl in which optionally one or two not directly adjacent methylene groups are replaced by oxygen and/or sulphur,

represents optionally fluorine-, chlorine-, bromine-, cyano-, nitro-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-,

with front family famil

AII.

===

[]: []: 10

15

30

5

10

trifluoromethyl-, trifluoromethoxy-, methylthio-, ethylthio-, methylsulphonyl- or ethylsulphonyl-substituted phenyl,

represents optionally fluorine-, chlorine-, bromine-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-, trifluoromethyl- or trifluoromethoxy-substituted benzyl,

represents in each case optionally fluorine-, chlorine-, bromine-, methyl- or ethyl-substituted furanyl, thienyl or pyridyl,

represents optionally fluorine-, chlorine-, methyl- or ethyl-substituted phenoxy-C₁-C₄-alkyl or

represents in each case optionally fluorine-, chlorine-, amino-, methylor ethyl-substituted pyridyloxy-C₁-C₄-alkyl, pyrimidyloxy-C₁-C₄-alkyl,

represents in each case optionally fluorine- or chlorine-substituted C₁-C₁₄-alkyl, C₂-C₁₄-alkenyl, C₁-C₄-alkoxy-C₂-C₆-alkyl or poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,

represents optionally fluorine-, chlorine-, methyl-, ethyl-, n-propyl-, isopropyl- or methoxy-substituted C₃-C₆-cycloalkyl,

or represents in each case optionally fluorine-, chlorine-, cyano-, nitro-, methyl-, ethyl-, n-propyl-, isopropyl-, methoxy-, ethoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl or benzyl,

represents in each case optionally fluorine- or chlorine-substituted methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, or in each case optionally fluorine-, chlorine-, bromine-, methyl-, ethyl-, isopropyl-,

tert-butyl-, methoxy-, ethoxy-, isopropoxy-, trifluoromethyl-, trifluoromethoxy-, cyano- or nitro-substituted phenyl or benzyl,

R⁴ and R⁵ independently of one another represent in each case optionally fluorine- or chlorine-substituted C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino or C₁-C₄-alkylthio or represent in each case optionally fluorine-, chlorine-, bromine-, nitro-, cyano-, methyl-, methoxy-, trifluoromethyl- or trifluoromethoxy-substituted phenyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, represent in each case optionally fluorine- or chlorine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyl or C₁-C₄-alkoxy-C₂-C₄-alkyl, represent in each case optionally fluorine-, chlorine-, bromine-, methyl-, methoxy- or trifluoromethyl-substituted phenyl or benzyl, or together represent an optionally methyl- or ethyl-substituted C₅-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen or sulphur,

except for the compound I₇a-75 from EP 528 156

5

10

15

20

25

A)

DI DI

ıl.

Æ.

5. Process for preparing compounds of the formula (I) according to Claim 1, characterized in that, to obtain

compounds of the formula (I-1-a)

(I-1-a)/

in which

V, W, X, Y and Z have the meanings given above,

compounds of the formula (II)

in which

V, W, X, Y and Z have the meanings given above,

and

R⁸ represents alkyl

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

(B) / compounds of the formula (I-2-a)

The field and the pass the pass of the pas

10

5

15

$$F_3C$$
 O
 O
 V
 Z

(I-2-a)

in which

5

10

15

20

Mary Mary

V, W, X, Y and Z have the meanings given above,

compounds of the formula (III)

in which

V, W, X, Y, Z and R⁸ have the meanings given above

are condensed intramolecularly in the presence of a diluent and in the presence of a base and the resulting compounds of the formula (I-1-a) and (I-2-a) are, if appropriate, subsequently

(C) α) reacted with compounds of the formula (IV)

$$Hal \longrightarrow R^1$$
 (IV)

in which

has the meaning given above and

 R^{1}

		11 110 1110
The state of the s		Hal represents halogen
	5	or
		β) reacted with compounds of the formula (V)
		R^{1} -CO-O-CO- R^{1} (V)
	10	in which
		R ¹ has the meaning given above,
	15	if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;
		(D) reacted with compounds of the formula (VI)
	20	R^{2} -M-CO-Cl (VI)
		in which
	25	R ² and M have the meanings given above,
		if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;
		(E) reacted with compounds of the formula (VII)
	30	

in which

5

10

15

20

25

M and R² have the meanings given above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(F) reacted with compounds of the formula (VIII)

$$R^3$$
-SO₂-Cl (VIII) in which

R³ has the meaning given above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(G) reacted with/compounds of the formula (IX)

$$Hal - P \qquad (IX)$$

$$II \setminus R^5$$

L, R⁴ and R⁵ have the meanings given above and

in which

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

5

reacted with compounds of the formula (X) or (XI) (H)

$$Me(OR^{10})_{t}$$
 (X)

(XII)

10

M.

in which

represents a mono- or divalent metal, Me

represents the number 1 or 2 and t

15

R10, R11, R12 independently of one another represent hydrogen or alkyl,

if appropriate in the presence of a diluent,

20

reacted with compounds of the formula (XII) **(I)** α)

in y√hich

R⁶ and L have the meanings given above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst or

25

B) reacted with compounds of the formula (XIII)

R⁶ N CI

(XIII)

in which

L, R⁶ and R⁷ have the meanings given above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder.

6. Compounds of the formula (II)

in which

5

10

20

V, W, X, Y and Z have the meanings given above and

R⁸ represents alkyl.

7. Compounds of the formula (III)

in which

5

of the half limb that had after

41

Thur day

M.

10

15

V, W, X, Y, Z and R⁸ have the meanings given above,

except for the compound below

$$\mathsf{F_3C} - \underbrace{\mathsf{CH_3}}_{\mathsf{CO_2C_2H_5}} - \mathsf{CH_3}$$

8. Compounds of the formula (XVI)

$$F_3C$$
 CO_2H
 V
 Z
 (XVI)

in which

V, W, X, Y and Z have the meanings given above.

9. Compounds of the formula (XIX)

(XIX)

in which

V, W, X, Y and Z have the meanings given above,

10. Compound of the formula (XVIII)

11. Compounds of the formula (XIV)

$$F_3C \longrightarrow CO_2R^8 \quad (XIV)$$

$$NH_2$$

in which

R⁸ has the meanings given above.

12. Pesticide and/or weed killer, characterized in that it comprises at least one compound of the formula (I) according to Claim 1.

5

10

15

- 13. Use of compounds of the formula (I) according to Claim 1 for controlling pests and weeds.
- 14. Method for controlling pests and weeds, characterized in that compounds of the formula (I) according to Claim 1 are allowed to act on the pests, plants and/or their habitat.
- 15. Process for preparing pesticides and/or weed killers, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
- 16. Use of compounds of the formula (I) according to Claim 1 for preparing pesticides and herbicides.

10

5