### Tania Soutonglang

### CS 484-01

November 19, 2022

### Homework 7 Part 1

1.1)

a.

$$z_{1} = xw_{1} = 4(1) = 4 \rightarrow 4$$

$$z_{2} = xw_{2} = 4(1) = 4 \rightarrow 4$$

$$z_{3} = xw_{3} = 4(-1) = -4 \rightarrow 0$$

$$z = (z_{1}w_{4}) + (z_{2}w_{5}) + (z_{3}w_{6})$$

$$(4(0.5)) + (4(1)) + (0(2))$$

$$2 + 4 + 0$$

$$6$$

$$a = \sigma(z)$$

$$\frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-6}}$$

b.

loss = 
$$(y - \hat{y})^2$$
  
 $(y - a)^2$   
 $(0 - 0.99753)^2$   
0.99507 → **0.996**

 $0.99753 \rightarrow 0.998$ 

c.

$$\frac{dL}{da} = -2(y - a)$$

$$-2(0 - 0.99753)$$

$$-2(-0.99753)$$

$$1.99506$$

$$\frac{da}{dz} = \frac{d}{dz} (e(2))$$

$$a(1-a)$$

$$(0.99753)(1-0.99753)$$

$$\frac{dL}{dz} = \frac{dL}{da} * \frac{da}{dz}$$

$$1.99506 * 0.0024639$$

$$0.0049156$$

$$\frac{dC}{dw_4} = \frac{dL}{dz} * \frac{dz}{dw_4}$$
(0.0049156)(z'\_i)
(0.0049156)(4)
0.019662

$$\frac{dC}{dw_5} = \frac{dL}{dz} * \frac{dz}{dw_5}$$

$$(0.0049156)(z'_2)$$

$$(0.0049156)(4)$$

$$0.019662$$

$$\frac{dC}{dw_6} = \frac{dL}{dz} * \frac{dz}{dw_6}$$
(0.0049156)(z'\_3)
(0.0049156)(0)
0

$$z = z_1' w_4 + z_2' w_5 + z_1' w_6$$

$$\frac{dL}{dz_1} = w_4 \frac{dz}{dz_2'} = w_5 \frac{dz}{dz_3'} = w_6$$

$$\frac{dL}{dz_1} = \frac{dL}{dz} * \frac{dz}{dz_1} = 0.0049156 * 0.5 = 0.0024578$$

$$\frac{dL}{dz_2} = \frac{dL}{dz} * \frac{dz}{dz_2} = 0.0049156 * 1 = 0.0049156$$

$$\frac{dL}{dz_3} = \frac{dL}{dz} * \frac{dz}{dz_3} = 0.0049156 * 2 = 0.0098312$$

$$\frac{dz_1'}{dz_1} = 1$$

$$\frac{dz_2'}{dz_2} = 1$$

$$\frac{dz_3'}{dz_3} = 1$$

$$\frac{dl}{dz_1} = \frac{dL}{dx_1'} * \frac{2z_1'}{2z_1} = 0.0024578 * 1 = 0.0024578$$
 
$$same\ with \frac{dl}{dz_2} = 0.0049156\ and\ \frac{dl}{dz_3} = 0.0098312$$

$$\begin{split} \frac{dL}{dw_1} * \frac{dL}{dz_1} * \frac{dz_1}{dw_1} &= 0.0024578 * 4 = 0.0098312 \\ \frac{dL}{dw_2} * \frac{dL}{dz_2} * \frac{dz_2}{dw_2} &= 0.0049156 * 4 = 0.019662 \\ \frac{dL}{dw_3} * \frac{dL}{dz_3} * \frac{dz_3}{dw_3} &= 0.0098312 * 4 = 0.039325 \end{split}$$

$$\alpha = 0.1$$

$$w_i = w_i - \alpha \frac{dL}{dw_i}$$

$$w_1 = 1 - 0.1(0.0098312) = 0.99902$$

$$w_2 = 1 - 0.1(0.019662) = 0.99803$$

$$w_3 = -1 - 0.1(0.039325) = -1.0039325$$

$$w_4 = 0.5 - 0.1(0.0098312) = 0.49902$$

$$w_5 = 1 - 0.1(0.019662) = 0.99803$$

$$w_6 = 2 - 0.1(0.039325) = 1.99607$$

$$z_1 = xw_1 = 4(0.99902) = 3.99608$$
  
 $z_2 = xw_2 = 4(0.99803) = 3.99212$   
 $z_3 = xw_3 = 4(-1.0039325) = -4.01573$   
 $z'_1 = 3.99608$   
 $z'_2 = 3.99212$   
 $z'_3 = 0$ 

$$3.99608(0.5) + 3.99212(1) + 0(2)$$
  
 $1.99804 + 3.99212 + 0$   
 $5.99016 \rightarrow 5.990$ 

d.

$$a = -(z) = \frac{1}{1 + e^{-z}} = 0.997503$$

$$L(y, a) = (y - a)^{2}$$

$$= (0 - 0.997503)^{2}$$

$$0.99501 \rightarrow \mathbf{0.995}$$

e. The accuracy of the first output (b) was 0.996 and the accuracy of the second output (d) was 0.995. From this, the first output is closer to the target.

#### 1.2) Tan Chapter 4

# 4.14)



## a) A and B and C

| _ | _ |   |             |
|---|---|---|-------------|
| A | В | C | A and B and |
|   |   |   | С           |
| 0 | 0 | 0 | 0           |
| 1 | 0 | 0 | 0           |
| 0 | 1 | 0 | 0           |
| 1 | 1 | 0 | 0           |
| 0 | 0 | 1 | 0           |
| 1 | 0 | 1 | 0           |
| 0 | 1 | 1 | 0           |
| 1 | 1 | 1 | 1           |



Linearly separable

## b) not A and B

| Α | В | Ā | В | Ā and B |
|---|---|---|---|---------|
| 0 | 0 | 1 | 0 | 0       |
| 1 | 0 | 0 | 0 | 0       |
| 0 | 1 | 1 | 1 | 1       |
| 1 | 1 | 0 | 1 | 0       |



# Linearly separable

# c) (A or B) and (A or C)

| А | В | С | A or B | A or C | (A or B) and<br>(A or C) |
|---|---|---|--------|--------|--------------------------|
| 0 | 0 | 0 | 0      | 0      | 0                        |
| 1 | 0 | 0 | 1      | 1      | 1                        |
| 0 | 1 | 0 | 1      |        | 1                        |
| 1 | 1 | 0 | 1      |        | 1                        |
| 0 | 0 | 1 |        | 1      |                          |
| 1 | 0 | 1 |        | 1      |                          |
| 0 | 1 | 1 |        |        |                          |
| 1 | 1 | 1 |        |        |                          |



Linearly separable

d)  $(A \times B)$  and  $(A \times B)$ 

| А | В | A xor B | A or B | (A xor B) and<br>(A or B) |
|---|---|---------|--------|---------------------------|
| 0 | 0 | 0       | 0      | 0                         |
| 1 | 0 | 1       | 1      | 1                         |
| 0 | 1 | 1       | 1      | 1                         |
| 1 | 1 | 0       | 0      | 0                         |



Linearly not separable

### 4.15)

a) AND uses 2 inputs, x1 and x2, and gives 1 output, y. This makes the perceptron function to become

$$y = \Theta(x_1w_1 + x_2w_2 + b)$$

The value of w1 will be 1, w2 will be 1, and b will be -1.5, causing the function to turn into

$$y = \Theta[x_1(1) + x_2(1) - 1.5] = \Theta(x_1 + x_2 - 1.5)$$

The OR function is similar to the AND function where it uses the same number of inputs, x1 and x2, to get 1 output, y, and therefore would also use the function  $y = \Theta(x_1w_1 + x_2w_2 + b)$ . x1 will be 1, x2 will be 1, and b will be 0.5, causing the function to become

$$y = \Theta[x_1(1) + x_2(1) + 0.5] = \Theta(x_1 + x_2 + 0.5)$$

- b) The resulting network of an activation function represented linearly is a linear combination of the input elements, making the network as expressive as a perceptron. Also, when the activation function is linear, nesting *n* number of hidden layers in the function wouldn't have an effect on the results.
- 1.3) n = 8

hidden layers = 3

h1 = 16 neurons

h2 = 8 neurons

h3 = 4 neurons

$$i*h1 + \sum_{k=1}^{n-1} (h_k * h_{k+1}) + h_n * o + \sum_{k=1}^{n} h_k + o$$

$$16*8 = 128$$

$$8*4 = 32$$

$$4*4 = 16$$

$$128 + 32 + 16 = 176 parameters$$