

MEDIDAS POSITIVAS

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 12) 27.FEBRERO.2023

Deseamos generalizar las propiedades que posee la medida de Lebesgue.

Definición

Sea X un conjunto no vacío, y \mathcal{A} una σ -álgebra en X. Una **medida (positiva)** en X es una función $\mu: \mathcal{A} \to [0, \infty] = \overline{\mathbb{R}}_{>0}$ que satisface:

- i) $\mu(\varnothing) = 0$,
- ii) Para cualquier colección enumerable $\{A_k\}_{k\geq 1}\subseteq \mathcal{M}$, de conjuntos disjuntos a pares $(A_i\cap A_i=\varnothing, para\ i\neq j)$, vale

$$\mu\Big(\bigcup_{k>1} A_k\Big) = \sum_{k>1} \mu(A_k).$$
 (σ -aditividad)

Obs! Cuando valen las condiciones (i) y (ii) anteriores, pero \mathcal{A} no es una σ -álgebra, decimos que μ es una **pre-medida**.

Obs! Siempre se requiere verificar que $\bigcup_k A_k \in \mathcal{A}$. Cuando \mathcal{A} es una σ -álgebra, y los $A_k \in \mathcal{A}$ esto no es necesario, pero en el caso de pre-medidas, se requiere más cuidado: **Antes de calcular** $\mu(B)$, **se debe verificar que** $B \in \mathcal{A}$.

Definición

Sea \mathcal{A} una σ -álgebra en X. El par (X, \mathcal{A}) se llama un **espacio mesurable**. Cuando fijamos una medida $\mu: \mathcal{A} \to \mathbb{R}$, llamamos a la estructura (X, \mathcal{A}, μ) un **espacio de medida**.

Definición

Una **medida finita** (o **medida compacta**) es aquella donde $\mu(X) < \infty$.

Una **medida de probabilidad** es aquella donde $\mu(X) = 1$. En este caso, denotamos usualmente $\mu = \mathbb{P}$, y al espacio $(X, \mathcal{A}, \mathbb{P})$ le llamamos un **espacio de probabilidad**.

Una medida $\mu: \mathcal{A} \to \mathbb{R}$ es σ -finita si \mathcal{A} contiene alguna secuencia $\{A_k\}_{k\geq 1}$ tal que $A_k \nearrow X$ y $\mu(A_k) < \infty$ para todo $k \geq 1$.

Teorema (Propiedades de medidas positivas)

Sea (X, A, μ) un espacio de medida, y sean $A, B, A_k, B_k \in A$, para todo $k \ge 1$. Entonces:

- 1) (aditividad) $A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$.
- 2) (monotonía) $A \subseteq B \implies \mu(A) \le \mu(B)$.
- 3) (diferencia) $A \subseteq B$ y $\mu(A) < \infty \implies \mu(B A) = \mu(B) \mu(A)$.
- 4) (inclusión-exclusión) $\mu(A \cup B) = \mu(A) + \mu(B) \mu(A \cap B)$.
- 5) (sub-aditividad) Para todo $n \in \mathbb{N}$, $\mu\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} \mu(A_{k})$.
- 6) (continuidad inferior) $A_k \nearrow A \implies \mu(A) = \lim_k \mu(A_k) = \sup_k \mu(A_k)$.
- 7) (continuidad superior) $B_k \searrow B$ y $\mu(B_1) < \infty \implies \mu(B) = \lim_k \mu(B_k) = \inf_k \mu(B_k)$.
- 8) (σ -sub-aditividad) $\mu\Big(\bigcup_{k\geq 1} A_k\Big) \leq \sum_{k\geq 1} \mu(A_k)$.

Prueba: (1) (aditividad) $A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$.

Hacemos $A_1 = A$, $A_2 = B$ y $A_k = \emptyset$, para $k \ge 3$. Entonces $\{A_k\}_k$ es una secuencia de conjuntos disjuntos a pares, cuya unión es $A \cup B$. Del axioma (ii), entonces

$$\mu(A \cup B) = \mu\Big(\bigcup_{k \geq 1} A_k\Big) = \sum_{k \geq 1} \mu(A_k) = \mu(A) + \mu(B).$$

(2) (monotonía) $A \subseteq B \implies \mu(A) \le \mu(B)$.

Como $A \subseteq B$, entonces $B = A \cup (B - A)$ es una unión disjunta. Por la propiedad (1), y como μ es una medida positiva, tenemos

$$\mu(B) = \mu(A) + \underbrace{\mu(B-A)}_{>0} \ge \mu(A).$$

(3) (diferencia) $A \subseteq B$ y $\mu(B) < \infty \implies \mu(B-A) = \mu(B) - \mu(A)$.

Como $A \subseteq B$ y $\mu(A) < \infty$, podemos restas $\mu(A)$ en ambos lados de la propiedad en (2) $\mu(B) = \mu(A) + \mu(B - A)$. Obtenemos entonces

$$\mu(\mathsf{B}) - \mu(\mathsf{A}) = \mu(\mathsf{B} - \mathsf{A}).$$

(4) (inclusión-exclusión) $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$.

Cuando $\mu(A)=\infty$ ó $\mu(B)=\infty$, por monotonía, tenemos que $\mu(A\cup B)=\infty$, y no hay nada que probar.

En el caso, $\mu(A)$, $\mu(B) < \infty$, escribimos $A \cup B$ como unión disjunta de tres conjuntos en A:

$$A \cup B = [A - (A \cap B)] \cup [B - (A \cap B)] \cup [A \cap B].$$

De nuevo, la propiedad (1) garantiza que

$$\mu(A \cup B) = \mu(A - (A \cap B)) + \mu(B - (A \cap B)) + \mu(A \cap B)$$

$$= (\mu(A) - \mu(A \cap B)) + (\mu(B) - \mu(A \cap B)) + \mu(A \cap B)$$

$$= \mu(A) + \mu(B) - \mu(A \cap B).$$

(5) (sub-aditividad) Para todo $n \in \mathbb{N}$, $\mu(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} \mu(A_k)$.

Probamos por inducción sobre n. Usando el principio de inclusión-exclusión (4):

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2) - \underbrace{\mu(A_1 \cap A_2)}_{>0} \le \mu(A_1) + \mu(A_2).$$

Asumiendo que $\mu(A_1 \cup \ldots \cup A_n) \leq \sum_{k=1}^n \mu(A_k)$, de nuevo el principio de inclusión-exclusión

$$\mu(A_{1} \cup A_{2} \cup \ldots \cup A_{n+1}) = \mu\left(\bigcup_{k=1}^{n} A_{k}\right) + \mu(A_{n+1}) - \mu\left(\bigcup_{k=1}^{n} A_{k} \cap A_{n+1}\right)$$

$$\leq \mu\left(\bigcup_{k=1}^{n} A_{k}\right) + \mu(A_{n+1}) \leq \sum_{k=1}^{n} \mu(A_{k}) + \mu(A_{n+1}) = \sum_{k=1}^{n+1} \mu(A_{k}).$$

(6) (continuidad inferior) $A_k \nearrow A \implies \mu(A) = \lim_k \mu(A_k) = \sup_k \mu(A_k)$.

Sea $A = \bigcup_{k \ge 1} A_k$. Consideremos los conjuntos, definidos por

$$B_1 = A_1, \ B_2 = A_2 - A_1, \ B_3 = A_3 - (A_1 \cup A_2), \ \dots \ B_k = A_k - \bigcup_{i=1}^{R-1} A_i, \ \forall k \geq 2.$$

Observe que todos los $B_k \in \mathcal{A}$. Además, por inducción es simple verificar que

$$\bigcup_{k=1}^n B_k = A_n$$
, $\forall n \in \mathbb{N}$, de modo que $\bigcup_{k \geq 1} B_k = \bigcup_{k \geq 1} A_k = A$.

Por σ -aditividad, tenemos

$$\mu(A) = \sum_{k>1} \mu(B_k) = \lim_{n\to\infty} \sum_{k=1}^n \mu(B_k) = \lim_{n\to\infty} \mu\left(\bigcup_{k=1}^n B_k\right) = \lim_{n\to\infty} \mu(A_n).$$

(7) (continuidad superior) $B_k \searrow B$ y $\mu(B) < \infty \implies \mu(B) = \lim_k \mu(B_k) = \inf_k \mu(B_k)$.

Como $B_k \setminus_A B$, entonces $B_k \subseteq B_1$, para todo $k \ge 1$.

En particular, de la propiedad de monotonía (2), $\mu(B_1) < \infty$ implica que $\mu(B_1 - B_k) < \infty$, para todo $k \ge 1$.

Además,

$$B_k \searrow B \ \Rightarrow \ B_1 - B_k \nearrow B_1 - B,$$

y este último límite también tiene medida $\mu(B_1-B)<\infty$.

Por (6) y la propiedad de diferencias (3), tenemos que

$$\mu(B_1) - \lim_k \mu(B_k) = \lim_k \left(\mu(B_1) - \mu(B_k) \right) = \lim_k \mu(B_1 - B_k) = \mu(B_1 - B) = \mu(B_1) - \mu(B).$$

Esto muestra que $\lim_{k} \mu(B_k) = \mu(B)$.

(8) (σ -sub-aditividad) $\mu\Big(\bigcup_{k>1} A_k\Big) \leq \sum_{k>1} \mu(A_k)$.

De la sub-aditividad (5), tenemos $\mu\Big(\bigcup_{k=1}^n A_k\Big) \leq \sum_{k=1}^n \mu(A_k)$. Luego,

$$\mu\Big(\bigcup_{k=1}^{\infty} A_k\Big) = \mu\Big(\lim_{n} \bigcup_{k=1}^{n} A_k\Big) = \lim_{n} \mu\Big(\bigcup_{k=1}^{n} A_k\Big) \leq \lim_{n} \sum_{k=1}^{n} \mu(A_k) \leq \sum_{k=1}^{\infty} \mu(A_k). \square$$

Ejemplo 1. (Medida Nula)

Sea $\mathcal A$ una σ -álgebra en X, y consideremos la función $\mu:\mathcal A\to\mathbb R$ dada por

$$\mu(A) = 0$$
, para todo $A \in A$.

Claramente

- (i) $\mu(\varnothing) = 0$.
- (ii) Si $\{A_k\}_k$ es una secuencia en \mathcal{A} de conjuntos disjuntos a pares, tenemos que $\bigcup_k A_k \in \mathcal{A}$, y vale

$$\mu\Big(\bigcup_{k>1}A_k\Big)=O=\sum_{k>1}\mu(A_k).$$

Luego, μ es una medida, llamada la **medida nula** en A.

Ejemplo 2. (Medida Infinita)

Sea $\mathcal A$ una σ -álgebra en X, y consideremos la función $\mu:\mathcal A\to\mathbb R$ dada por

$$\mu(\mathsf{A}) = \begin{cases} \mathsf{O}, & \mathsf{A} = \varnothing; \\ \infty, & \mathsf{A} \neq \varnothing. \end{cases}$$

De nuevo tenemos

- (i) $\mu(\varnothing) = 0$.
- (ii) si $\{A_k\}_k$ es una secuencia en \mathcal{A} de conjuntos disjuntos a pares, tenemos dos casos:
 - Si $A_k = \emptyset$, $\forall k$, entonces $\bigcup_k A_k = \emptyset$ y vale $\mu(\bigcup_{k>1} A_k) = 0 = \sum_{k>1} \mu(A_k)$.
 - Si $A_k \neq \emptyset$, para algún k, entonces $\bigcup_k A_k \neq \emptyset$ y vale $\mu(\bigcup_{k>1} A_k) = \infty = \sum_{k>1} \mu(A_k)$.

Portanto, μ es una medida, llamada la **medida infinita** en A.

Ejemplo 3. (La medida de Dirac o de masa unitaria)

Sea (X, A) un espacio mesurable, y sea $\mathbf{x} \in X$. Definimos la función $\delta_{\mathbf{x}} : A \to \mathbb{R}$, por

$$\delta_{\mathbf{x}}(A) = \mathbf{1}_{A}(\mathbf{x}) = \begin{cases} O, & \mathbf{x} \notin A; \\ 1, & \mathbf{x} \in A. \end{cases}$$

(la función $\mathbf{1}_A$ se llama la **función indicadora** de A).

Observe que

- (i) $\mu(\varnothing) = 0$, ya que $\mathbf{x} \notin \varnothing$.
- (ii) Sea $\{A_k\}_k$ una secuencia en \mathcal{A} de conjuntos disjuntos a pares. Tenemos dos casos:
 - Si $\mathbf{x} \notin A_k$, $\forall k$, entonces $\mathbf{x} \notin \bigcup_k A_k$. En este caso, $\delta_{\mathbf{x}}(A_k) = 0$, $\forall k$ y $\delta_{\mathbf{x}}(\bigcup_{k>1} A_k) = 0$. Entonces

$$\delta_{\mathbf{x}}\Big(\bigcup_{k\geq 1}A_k\Big)=0=\sum_{k\geq 1}\delta_{\mathbf{x}}(A_k).$$

• Si existe $n \in \mathbb{N}$ tal que $\mathbf{x} \in A_n$, entonces $\delta_{\mathbf{x}}(A_n) = 1$. Además, $\delta_{\mathbf{x}}(A_k) = 0$, para todo $k \neq n$, ya que los A_k son disjuntos a pares. Luego, como $\mathbf{x} \in \bigcup_k A_k$,

$$\delta_{\mathbf{X}}\Big(\bigcup_{k\geq 1}A_k\Big)=1=\sum_{k\geq 1}\delta_{\mathbf{X}}(A_k).$$

Portanto, $\delta_{x}x$ es una medida, llamada la **medida de Dirac** en x.

Obs! En física usualmente se usa la versión

$$\delta_{\mathbf{x}}(A) = \begin{cases} \mathbf{O}, & \mathbf{x} \notin A; \\ \infty, & \mathbf{x} \in A. \end{cases}$$

Ejemplo 4.

Sea X un conjunto infinito, y consideremos la σ -álgebra \mathcal{A} , dada por

$$A = \{A \subseteq X : A \text{ es enumerable ó } A^c \text{ es enumerable} \}.$$

Definimos la función $\mu: \mathcal{A} \to \mathbb{R}$, por

$$\mu(A) = \begin{cases} o, & A \text{ es enumerable;} \\ \infty, & \text{en otro caso.} \end{cases}$$

- (i) $\mu(\varnothing) = 0$, ya que $\mathbf{x} \notin \varnothing$.
- (ii) Sea $\{A_k\}_k$ una secuencia en \mathcal{A} de conjuntos disjuntos a pares. Tenemos dos casos:
 - Si A_k es enumerable, $\forall k$, entonces $\bigcup_k A_k$ es enumerable. Luego, $\mu(\bigcup_{k>1} A_k) = 0 = \sum_{k>1} \mu(A_k)$.
 - Si A_k es no enumerable, para algún k, entonces $\bigcup_k A_k$ tampoco es enumerable. Luego, $\mu(\bigcup_{k>1} A_k) = \infty = \sum_{k>1} \mu(A_k)$.

Esto muestra que μ es una medida.

Ejemplo 5. (La medida de conteo)

Sea (X, \mathcal{A}) un espacio mesurable, y consideremos la función $|\cdot|:\mathcal{A}\to\mathbb{R}$, dada por

$$|A| = egin{cases} \#A, & A \text{ es finito;} \\ \infty, & A \text{ no es finito.} \end{cases}$$

Observe que $|\cdot|$ es una medida:

- (i) $|\emptyset| = \#\emptyset = 0$.
- (ii) Sea $\{A_k\}_k$ una secuencia en \mathcal{A} de conjuntos disjuntos a pares. Tenemos dos casos:
 - Si todos los A_k son finitos, entonces $|A_k| = \#A_k$, $\forall k$ y

$$\Big|\bigcup_{k\geq 1}A_k\Big|=\sum_{k\geq 1}|A_k|.$$

• Si algún A_k es infinito, entonces también lo es $\bigcup_k A_k$ y

$$\Big|\bigcup_{k\geq 1}A_k\Big|=\infty=\sum_{k\geq 1}|A_k|.$$

Ejemplo 6. (Probabilidades discretas)

Sea $\Omega=\{\omega_1,\omega_2,\omega_3,\ldots\}$ un conjunto infinito enumerable. Consideremos una secuencia $\{p_n\}_{n\geq 1}$ de número reales no-negativos tales que

$$0 \le p_n \le 1$$
, para todo $n \in \mathbb{N}$, y $\sum_{n \ge 1} p_n = 1$.

En el espacio mesurable $(\Omega, \mathcal{P}(\Omega))$, definimos la función $\mathbb{P}: \mathcal{P}(\Omega) \to \mathbb{R}$ por

$$\mathbb{P}(A) = \sum_{\omega_n \in A} p_n = \sum_{n \geq 1} p_n \, \mathbf{1}_A(\omega_n) = \sum_{n \geq 1} p_n \, \delta_{\omega_n}(A).$$

La función $\mathbb P$ así construida, define una medida en $\mathcal P(\Omega)$. De hecho, $\mathbb P$ es una medida de probabilidad.

El espacio $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ se llama un **espacio de probabilidad discreto**, pues

$$\mathbb{P}(\Omega) = \sum_{\omega_n \in \Omega} p_n = \sum_{n \geq 1} p_n = 1.$$

Ejemplo 7. (La medida de Lebesgue)

Sea $X=\mathbb{R}$ y $\mathcal{A}=\mathcal{B}(\mathbb{R})$ su σ -álgebra de Borel. Vamos a mostrar más adelante que existe una única medida $\lambda:\mathcal{B}(\mathbb{R})\to\mathbb{R}$ que coincide con la longitud de los intervalos abiertos (a,b) esto es

$$\lambda((a,b))=b-a.$$

Esta λ es la medida de Lebesgue en \mathbb{R} .

Ejemplo 8. (La medida de Lebesgue-Stieltjes)

Sea $X=\mathbb{R}$, $\mathcal{A}=\mathcal{B}(\mathbb{R})$ su σ -álgebra de Borel, y sea $f:\mathbb{R}\to\mathbb{R}$ una función monótona no-decreciente. Mostraremos más adelante que existe una única medida $\lambda_f:\mathcal{B}(\mathbb{R})\to\mathbb{R}$ tal que para todo intervalo abierto (a,b) vale

$$\lambda_f((a,b))=f(b)-f(a).$$

Esta λ_f es la **medida de Lebesgue-Stieltjes** generada por f en $\mathbb R$.

