

4 means for delaying said data stream portion; and
A Cont'd.
means for accelerating a second data stream portion that is preceded by said first
6 data stream portion.

Please cancel claims 3 without prejudice or disclaimer and insert the following new claims:

- Subj* 1 4. A method for avoiding overflow of a decoder buffer containing a portion of new data
2 stream and a portion of an old data stream, comprising:
3 (a) determining a total amount of old data stream data that, if transmitted to said
4 decoder buffer, would occupy said decoder buffer;
5 (b) adding to said total amount, an amount of new data stream data to obtain a
6 combined amount of data;
7 (c) testing if said combined amount of data would overflow said decoder buffer; and
8 (d) if overflow would occur, then causing a portion of the new data stream to be
9 delayed by a delay amount corresponding to at least said overflow, if said portion were to be
10 transmitted to said decoder buffer.
- 1 5. A method according to claim 4, wherein said step (a) of determining is preceded by
2 determining a maximum size of said decoder buffer;
- 1 6. A method according to claim 5, wherein said maximum size is determined according to a
2 buffer size parameter within the old data stream.

SUB B

1 7. A method according to claim 5, wherein said maximum size of step (a) is determined
2 according to a buffer size parameter within the new data stream.

A²
Ans

8. A method according to claim 4, further comprising:
2 prior to testing of step (c), subtracting, from said total amount, an amount of old
3 data stream data that, if transmitted, would be decoded by said decoder;

1 9. A method according to claim 4, wherein said delay amount of step (d) is a function of an
2 amount of data stream data by which said buffer is overflowed within said portion of the new
3 data stream.

10. A method according to claim 4, wherein said delay amount of step (d) is a function of an
amount of data stream data by which said buffer is overflowed in a single instance of
overflow within said portion of the new data stream.

11. A method according to claim 4, wherein said delay amount of step (d) is a function of a
duration of overflow within said portion of the new data stream.

12. A method according to claim 4, wherein said delay amount of step (d) is a function of a
duration of a single instance of overflow within said portion of the new data stream .

13. A method according to claim 4, wherein said delay amount of step (d) is a function of a
longest duration instance of overflow within said portion of the new data stream.

1 14. A method according to claim 4, wherein said delay amount of step (d) is equal to a
2 number of data packets of said portion during a longest duration instance of overflow within
3 said portion of the new data stream.

1 15. A method according to claim 4, wherein step (d) further comprises:
2 causing a subsequent portion of said new data stream to be accelerated by an
3 acceleration amount corresponding to said delay amount, if the new data stream is
4 transmitted.

A/ Sub 16
cont 16. A method for detecting overflow of a data stream decoder during splicing of data stream
2 portions including an old data stream portion and a new data stream portion, comprising:
3 (a) determining a plurality of old data stream frame sizes and decoding times
4 corresponding to old data stream frames of said old data stream portion, and storing said
5 frame sizes and said decoding times in a splice-table;
6 (b) determining a maximum decoder buffer size;
7 (c) determining a new frame size and decoding time corresponding to a new data
8 stream frame of the new data stream portion;
9 (d) determining an intermediate size by summing a plurality of old data stream
10 frame sizes stored in the splice table;
11 (e) determining a total size by adding to said intermediate size, the new data stream
12 frame size; and
13 (f) testing for overflow by determining whether said total size exceeds said

Sub B^b 14 maximum decoder buffer size.

1 17. A method according to claim 16, wherein said old data stream frame sizes of step (d)
2 include all frames of the old data stream portion that will remain un-decoded when said new
3 data stream frame will be received by the decoder, if the data stream portions are transmitted.

A^a Cent 1 18. A method according to claim 17, wherein the data stream portions are transmitted.

Sub B^b 19. A method according to claim 16, further comprising:

2 (i) if overflow is found in step (f), then causing a transmission time of a portion of
3 new data stream data including said new data stream frame to be delayed.

1 20. A method for correcting overflow of a digitally encoded data stream decoder during
2 splicing of data stream portions including an old data stream portion and a new data stream
3 portion, comprising causing a delay of a scheduled transmission time of a portion of new data
4 stream data.

Sub C^c 21. A method according to claim 20, wherein said delay is caused by adding null packets to
2 said new data stream portion.

Sub B^b 1 22. A method according to claim 20, wherein said delay is caused by re-scheduling
2 transmission of said portion according to a formula:
3

4 (currently scheduled transmission time for said portion) + ((n packets x m
5 bits/packet x multiplexer bit rate) / (data stream bit rate)),
6
7 wherein n indicates a number of packets by which transmission is to be delayed, and m
8 indicates a number of bits in a packet of data stream data to be transmitted.

Sub C5
1 23. A method according to claim 22, wherein m equals 1504.

Alt Cont.
1 24. A method for splicing digitally encoded data streams, including an old data stream and a
2 new data stream, comprising:
3 (a) modifying a current timing reference of the new data stream to correspond with a
4 splice-out point of the old data stream and a splice-in point of the new data stream, thereby
5 forming a modified new data stream timing reference; and
6 (b) aligning a portion of the new data stream with a portion of the old data stream
7 according to said modified new data stream timing reference, such that a transition from the
8 old data stream to the new data stream, during playback, will be substantially imperceptible.

Sub C6
1 25. A method according to claim 24, wherein said modified new data stream timing reference
2 of step (a) further corresponds with a timing gap between a first decoding time for decoding a
3 last frame of the old data stream and a second decoding time for decoding a first frame of the
4 new data stream.

1 26. A method according to claim 24, wherein determining said modified new data stream

2 timing reference includes:

3 (i) determining said current timing reference of the new data stream;

4 (ii) determining a delay between said current timing reference and a current decoding

5 time of a frame of the new data stream;

6 (iii) determining a new decoding time of said frame of the new data stream that

7 corresponds with a sum of said current decoding time and an inter-frame delay between a

8 decoding time for decoding a last frame of the old data stream and a decoding time for

9 decoding a first frame of the new data stream; and

10 (iv) determining said modified new data stream timing reference as said new decoding

11 time of step (iii) minus said delay of step (ii).

SUB B7

27. A method according to claim 24, wherein determining said modified new data stream

2 timing reference includes:

3 (i) determining a program clock reference of a first packet of said new data stream;

4 (ii) determining a delay between transmission of a first sequence header of said new

5 data stream and a first decode time stamp (“DTS”) of a first frame of said new data stream;

6 (iii) determining a continuous DTS as a sum of said first DTS and an inter-frame

7 delay; and

8 (iv) determining a new data stream real-time transmit time as said continuous DTS of

9 step (iii) minus said delay of step (ii).

Ay Candi

1 28. A method according to claim 24, wherein said aligning in step (b) sets a start time for
2 transmitting a portion of the new data stream that corresponds with a decoding time for
3 decoding a portion of the old data stream.

1 29. A method according to claim 24, wherein said aligning in step (b) sets a start time for a
2 decoder buffer to begin receiving a portion of the new data stream that corresponds with a
3 decoding time for decoding a portion of the old data stream.

1 30. A method according to claim 24, further comprising:
2 (d) detecting a decoder buffer overflow condition that will result from said splicing, if
3 the data streams are transmitted; and
4 (e) correcting said overflow condition.

Sub B

1 31. A method according to claim 24, wherein said determining of step (a) is preceded by
2 (i) determining a splice-out point of the old data stream; and
3 (ii) determining a splice-in point of the new data stream.

1 32. A method according to claim 31, wherein step (ii) includes, if an initial frame of the new
2 data stream is of a type that is ordinarily decoded with reference to decoding of a prior frame,
3 then modifying the new data stream to remove said reference.

Sub A 9
33. A method according to claim 32, wherein said frame type is selected from a group consisting of B-frames and P-frames, and wherein said step of modifying comprises closing an open group of pictures ("GOP").

A 9
Cont.
34. A method according to claim 31, wherein said data streams include video and audio data, wherein step (a) includes determining a video splice-out point and an audio splice-out point, and wherein step (b) includes determining a video splice-in point and an audio splice-in point.

35. A method according to claim 31, wherein said splice-out point of step (i) is determined within a user-selectable portion of the old data stream.

36. A method according to claim 31, wherein said splice-in point of step (ii) is determined within a user-selectable portion of the new data stream.

37. A method according to claim 31, wherein said splice-out point of step (i) is user-selectable.

38. A method according to claim 31, wherein said splice-in point of step (ii) is user-selectable.

39. A method according to claim 24, wherein step (a) is preceded by determining a first source for the old data stream and a second source for the new data stream.

Sub A 1 40. A method according to claim 39, wherein said sources include source types selected from
2 a group consisting of a storage device, a satellite receiver, a cable receiver, a network, an
3 audio source, a video source and an encoder.

A 1 41. A method according to claim 40, wherein said first source and said second source are of
2 a same source type.

Cont 1 42. A method according to claim 24, wherein at least one of said data streams is MPEG
2 encoded.

1 43. A method according to claim 24, wherein said splicing is accomplished in real-time.

1 44. A method according to claim 24, wherein step (a) is followed by transmitting a portion of
2 the old data stream.

Sub B 1 45. A method according to claim 24, wherein step (b) is followed by transmitting a portion of
2 the new data stream.

1 46. A data spliced data stream combination comprising an old data stream and a new data
2 stream spliced together according to the method of claim 24.

Sub B 1 47. A computer-readable storage medium storing program code for causing a computer to
2 perform the steps of:

- 3 (a) determining a splice-out point within an old data stream;
- 4 (b) determining a splice-in point within a new data stream; and
- 5 (c) determining a new data stream real-time transmit start time.

1 48. A computer-readable storage medium according to claim 47, wherein step (a) is preceded
2 by:

3 determining a new data stream pair to be spliced contemporaneously with another data
4 stream pair; and

5 initiating program code for splicing said new data stream pair.

Sub B³ 49. A computer-readable storage medium according to claim 47, wherein step (a) is preceded
1 by:

3 creating at least one data storage structure for storing portions of said data streams;
4 and

5 storing portions of said data streams in said at least one data storage structure.

1 50. A computer-readable storage medium according to claim 49, wherein said at least one
2 data storage structure is located in memory of a host processing system.

Sub B¹⁴ 51. A method for splicing digitally encoded data streams, including an old data stream and a
1 new data stream, comprising:
3 (a) receiving a user-selectable parameter indicating a portion of the old data stream
4 within which a splice-out point is to be determined;

5 (b) assigning a splice-buffer for storing an old data stream portion and a new data
6 stream portion;
7 (c) directing the old data stream portion to said splice-buffer;
8 (d) determining said splice-out point;
9 (e) directing the new data stream portion to said splice-buffer;
10 (f) determining a splice-in point within the new data stream portion and, if an initial
11 frame of the new data stream portion is dependent upon a frame that precedes the new data
12 stream portion, then modifying the new data stream portion to remove said dependency;
13 (g) if, upon transmission, a decoder buffer would begin to receive the new data stream
14 after said buffer finally receives a portion of the old data stream, then aligning the new data
15 stream with said finally receiving, and
16 (h) if, upon transmission, a decoder buffer would begin to receive the new data stream
17 before said buffer finally receives a portion of the old data stream, then aligning the new data
18 stream with said finally receiving.

1 52. A method according to claim 51, wherein said dependency of step (f) is an open GOP and
2 wherein said modifying closes the open group of pictures (“GOP”).

1 53. A method according to claim 51, further comprising:
2 (j) checking for overflow of said decoder buffer; and
3 (k) if overflow is found, then removing said overflow.

1 54. A splicer for splicing digitally encoded data streams, including an old data stream and a

2 new data stream, comprising:

3 (a) means for determining, in accordance with a splice-out point of an old data stream

4 and a splice-in point of a new data stream, a new data stream real-time transmit start time;

5 and

6 (b) means for aligning the new data stream with the old data stream according to said

7 new data stream real-time transmit time.

1 55. A method for preparing a digitally encoded data stream for splicing, comprising:

2 (a) determining a splice-in point of the new data stream; and

3 (b) closing an initial open group of pictures ("GOP") of the new data stream, if the

4 new data stream includes an initial open GOP.

1 56. A splicer for splicing digitally encoded data streams including an old data stream and a

2 new data stream, comprising:

3 (a) means for determining a splice-in point of the new data stream; and

4 (b) means for closing an open group of pictures ("GOP") of the new data stream, if the

5 new data stream includes an open GOP.

1 57. A method according to claim 51, wherein said splice-out point is determined in step (a)

2 according to a user selection between an insert mode option and a splice-only mode option.

Sub B¹⁵ > 1 58. A method according to claim 57, wherein a splice-out point is determined as immediately

2 prior to a sequence header.

*AJ
Cont*

1 59. A method according to claim 57, wherein a splice-out point is determined as immediately
2 prior to a first occurring one of a group of pictures ("GOP") header, an I-frame and a P-frame.

1 60. A method according to claim 51, wherein said determining a splice-in point comprises:
2 finding a decode time stamp ("DTS") for a frame of the new data stream, said frame
3 being included within a group of pictures ("GOP") of the new data stream;
4 finding a corresponding presentation time stamp for said frame; and
5 if said frame is other than an I-frame, then closing said GOP.

1 61. A method according to claim 60, wherein said frame is an initial frame of the new data
2 stream.

1 62. A method according to claim 60, wherein finding said DTS includes parsing a first
2 portion of the new data stream for a first sequence header, and then further parsing said first
3 portion for a last DTS before a first frame header.

1 63. A method for assuring that an initial frame of an encoded data stream portion can be
2 independently decoded, comprising:
3 (a) determining an independently decodable frame within said portion;
4 (b) causing playback of said portion to begin with said independently decodable
5 frame; and
6 (c) modifying an ordering parameter of said portion such that a receiving decoder will

7 decode said independently decodable frame as a first frame of said portion.

Sub B¹⁶ → 64. A method according to claim 63, wherein step (b) is accomplished by deleting a frame

2 within said portion that precedes said independently decodable frame.

1 65. A method for closing an open GOP of a digitally encoded data stream, said GOP

2 including a plurality of frames, comprising:

3 (a) determining a first I-frame within said GOP;

4 (b) determining, within said GOP, a largest DTS of all of said frames that precede said

5 I-frame;

6 (c) deleting all frames within said GOP that precede said I-frame;

7 (d) modifying temporal references for at least one remaining frame within said GOP;

8 and

9 (e) replacing a DTS of said I-frame with said largest DTS of step (b).

Sub C¹¹ 66. A method according to claim 63, wherein step (d) of modifying includes replacing

2 increasing temporal reference values of remaining frames within said GOP with

3 correspondingly increasing temporal reference values of frames deleted in step (c).

1 67. A method for aligning a splice-out portion of a digitally encoded old data stream with a

2 splice-in portion of a digitally encoded new data stream comprising finding a new data stream

3 real-time transmit time.

Sub B 17

68. A method according to claim 67 wherein said step of finding includes:

- 2 (a) determining a program clock reference ("PCR") of a first packet of said new data
- 3 stream;
- 4 (b) determining a delta-period between transmission of a first sequence header of said
- 5 new data stream and a first decode time stamp ("DTS") of a first frame of said new data
- 6 stream, if said new data stream is transmitted;
- 7 (c) determining a continuous DTS as a sum of said first DTS and an inter-frame delay;
- 8 and
- 9 (d) determining said new data stream real-time transmit time as a difference between
- 10 said continuous DTS and said delta-period.

Sub C 2

69. A method according to claim 67 wherein said step of finding is accomplished in real-time
2 during splicing of said new data stream with said old data stream.

1 70. A method according to claim 68 wherein said inter-frame delay equals $1001/30,000$
2 seconds.

Sub B 18

71. A method for aligning a splice-out portion of a digitally encoded old data stream with a
2 splice-in portion of a digitally encoded new data stream, comprising setting a start of receipt
3 time of said new data stream at which, if said new data stream is transmitted, then said new
4 data stream will begin to be received by a decoder in alignment with a decoding time for said
5 splice-out portion of said old data stream.

1 72. A method according to claim 71 wherein said step of setting includes:
2 if, upon transmission of said data streams, said new data stream would begin to be
3 received by a decoder before the decoder would have received all of said splice-out portion,
4 then setting a transmission delay parameter for said new data stream.

1 73. A method according to claim 72 that further includes inserting a number of null packets
2 corresponding with said delay parameter into said new data stream at a position such that said
3 null packets will be transmitted substantially prior to other new data stream data, if said new
4 data stream is transmitted.

Subj 19 74. A method according to claim 73 wherein said number of null packets equals a number of
2 data packets that, without said inserting, would be received by a decoder before the decoder
3 has received all of said splice-out portion, if the new data stream is transmitted.

1 75. A method according to claim 71 wherein said step of setting includes:
2 if said new data stream, upon transmission, would begin to be received by a decoder
3 after the decoder has received all of said splice-out portion, then setting a transmission
4 acceleration parameter for said new data stream.

1 76. A method according to claim 75 that further includes deleting a number of null packets
2 corresponding with said acceleration parameter from a first transmitted portion of said new
3 data stream, if said new data stream is transmitted.

Subj 2c

1 77. A method according to claim 76 wherein said number of null packets equals a number of
2 data packets that, without said deleting, would be received by a decoder after the decoder has
3 received all of said splice-out portion, if the new data stream is transmitted.

A/C

1 78. A method for aligning a splice-out portion of a digitally encoded old data stream with a
2 splice-in portion of a digitally encoded new data stream, said splice-out portion and said
3 splice-in portion each comprising a plurality of packets, which comprises:

4 (a) parsing said splice-out portion for a program clock reference ("PCR") of a last
5 packet of said splice-out portion to be transmitted;
6 (b) parsing said splice-in portion for a first sequence header and a first decode time
7 stamp ("DTS") of a first frame of said new data stream;
8 (c) determining a continuous DTS of said new data stream;
9 (d) if the splice-out PCR of step (a) is less than the real-time transmit time of step (c),
10 then storing a value indicating a total number of null packets which, when transmitted prior to
11 said splice-in portion, will cause transmission of said splice-in portion to begin at
12 substantially a same time as decoding of said splice-out portion; and
13 (e) if said splice-out portion PCR of step (a) is greater than said real-time transmit
14 time of step (c), then storing a total number of null packets which, when deleted from said
15 splice-in portion, will approximate a condition in which the splice-out portion PCR equals the
16 real-time transmit time.

1 79. A digitally encoded data stream transmitter comprising:
2 shifting means for determining an amount by which scheduled transmission times of

AJ Cont.

3 data stream portions are to be accelerated and delayed; and
4 transmitting means for transmitting said data stream portions at transmission times
5 accelerated and delayed by an amount determined by said shifting means.

1 80. An apparatus according to claim 79, wherein said new data stream data is received as a
2 plurality of data packets.

1 81. An apparatus according to claim 80, wherein said amount is calculated as a time
2 corresponding to a number of data packets of data stream data.

1 82. A transmitter for transmitting a digitally encoded new data stream as spliced to a digitally
2 encoded old data stream, comprising:
3 a transmitter; and
4 a bit-clock means for scheduling the transmission of new data stream data of said new
5 data stream at a time corresponding to splicing of said new data stream to said old data
6 stream.
