Programme de colle n°11

Semaine du 11/12 au 15/12

CH 13 Fonctions circulaires et leurs réciproques

• Fonction arctangente

- \hookrightarrow L'application réciproque de tan est appelée **arctangente** et notée arctan : $\mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$.
- \hookrightarrow De plus, $\forall x \in \mathbb{R}$, $\tan(\arctan x) = x$ et $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, $\arctan(\tan x) = x$
- \hookrightarrow La fonction arctan est dérivable sur \mathbb{R} , et : $\forall x \in \mathbb{R}$, $\arctan'(x) = \frac{1}{1+x^2}$ et $\arctan(u)' = \frac{u'}{1+u^2}$

CH 14 : Déterminants, droites et cercles

• Déterminant de deux vecteurs

 $\hookrightarrow \underline{\mathbf{D\acute{e}finition}}: \boxed{\det{(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}})} = \begin{cases} \|\vec{\boldsymbol{u}}\| \cdot \|\vec{\boldsymbol{v}}\| \cdot \sin{(\vec{\boldsymbol{u}},\vec{\boldsymbol{v}})} & \text{si } \vec{\boldsymbol{u}} \neq \vec{0} \text{ et } \vec{\boldsymbol{v}} \neq \vec{0} \\ 0 & \text{si } \vec{\boldsymbol{u}} = \vec{0} \text{ ou } \vec{\boldsymbol{v}} = \vec{0} \end{cases}}$

 $\hookrightarrow \underline{\mathbf{Interpr\acute{e}tation\ g\acute{e}om\acute{e}trique}}:$ l'aire du parallélogramme ABCD est : $\boxed{\mathcal{A}(ABCD) = \left|\det\left(\overrightarrow{AB},\overrightarrow{AD}\right)\right|}$

et l'aire du triangle ABC est $A(ABC) = \frac{1}{2} \left| \det \left(\overrightarrow{AB}, \overrightarrow{AC} \right) \right|$

 \hookrightarrow **Propriétés :** Soit $(\vec{u}, \vec{v}, \vec{w}) \in \mathcal{V}^3$ et $\lambda \in \mathbb{R}$. On a :

$\det(\vec{u}, \vec{v}) = -\det(\vec{v}, \vec{u})$ (antisymétrie)	$\det(\lambda \vec{u}, \vec{v}) = \lambda \det(\vec{u}, \vec{v}) = \det(\vec{u}, \lambda \vec{v})$
$\det(\vec{u}, \vec{v} + \vec{w}) = \det(\vec{u}, \vec{v}) + \det(\vec{u}, \vec{w}) \text{ (linéarité à droite)}$	$\det(\vec{u}, \vec{v}) = 0$ ssi \vec{u} et \vec{v} sont colinéaires
$\det(\vec{u} + \vec{v}, \vec{w}) = \det(\vec{u}, \vec{w}) + \det(\vec{v}, \vec{w}) \text{ (linéarité à gauche)}$	La base (\vec{u}, \vec{v}) du plan est directe ssi $\det(\vec{u}, \vec{v}) > 0$

- $\hookrightarrow \underline{\text{Expression en ROND}} \; (\boldsymbol{O}, \vec{\boldsymbol{i}}, \vec{\boldsymbol{j}}) : \text{si } \vec{u}(x, y) \text{ et } \vec{v}(x', y') \text{ alors :} \quad \begin{vmatrix} \boldsymbol{\det} \left(\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}} \right) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' x'y$
- \hookrightarrow Application à la détermination d'un angle : Si A, B et C sont trois points 2 à 2 distincts, alors une mesure de

 $\text{l'angle orient\'e } (\overrightarrow{AB}, \overrightarrow{AC}) \text{ est } \theta \text{ telle que : } \boxed{\cos \theta = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|}} \text{ et } \boxed{\sin \theta = \frac{\det \left(\overrightarrow{AB}, \overrightarrow{AC}\right)}{\left\|\overrightarrow{AB}\right\| \times \left\|\overrightarrow{AC}\right\|}}$

- Droites du plan
- \hookrightarrow Equation cartésienne : ax + by + c = 0 avec $\vec{u}(-b,a)$ vecteur directeur de la droite
- $\hookrightarrow \underline{\mathbf{M\acute{e}thode}}$: Pour trouver une équation cartésienne de $\mathcal{D}=(A,\vec{u})$ avec $A(x_A,y_A)$ et $\vec{u}(a,b)$, on écrit :

$$M(x,y) \in \mathcal{D} \Leftrightarrow \overrightarrow{AM} \text{ et } \overrightarrow{u} \text{ colinéaires} \Leftrightarrow \det\left(\overrightarrow{AM}, \overrightarrow{u}\right) = 0 \Leftrightarrow M(x,y) \in \mathcal{D} \Leftrightarrow \begin{vmatrix} x - x_A & a \\ y - y_A & b \end{vmatrix} = 0$$

 \hookrightarrow Représentation paramétrique : La droite passant par $A(x_A, y_A)$ et dirigée par $\vec{u}(a, b)$ admet pour paramètrage :

- → Droites parallèles: Deux droites sont parallèles si leurs vecteurs directeurs sont colinéaires.
- \hookrightarrow Intersection de deux droites
- Géométrie euclidienne plane
- \hookrightarrow **Orthogonalité**: si $\mathcal{D} = (A, \vec{u})$ et si $\mathcal{D}' = (B, \vec{u}')$. Alors: $\boxed{\mathcal{D} \perp \mathcal{D}' \Leftrightarrow \vec{u} \perp \vec{u}' \Leftrightarrow \vec{u} \cdot \vec{u}' = 0}$
- \hookrightarrow Vecteur normal à une droite : \vec{n} est dit normal à la droite \mathcal{D} si \vec{n} est orthogonal à un vecteur directeur de \mathcal{D} .
- \hookrightarrow si \mathcal{D} : ax + by + c = 0, alors $\vec{n}(a, b)$ est normal à \mathcal{D}
- $\hookrightarrow \underline{\text{Projet\'e orthogonal}}$: Soit $\mathcal D$ une droite de vecteur normal $\vec n$ et de vecteur directeur $\vec u$. Soit M un point du plan. Soit H le projet\'e orthogonal de M sur $\mathcal D$. Alors H est caractérisé par :

$$\begin{cases} H \in \mathcal{D} \\ \overrightarrow{MH} \text{ et } \overrightarrow{n} \text{ colinéaires} \end{cases} \text{ ou } \begin{cases} H \in \mathcal{D} \\ \overrightarrow{MH} \text{ et } \overrightarrow{u} \text{ orthogonaux} \end{cases}$$

- \hookrightarrow **Distance d'un point à une droite** : $d(A, \mathcal{D}) = AH$ où H le projeté orthogonal de M sur \mathcal{D}
- Cercles
- $\hookrightarrow \underline{\text{Equation cart\'esienne}} : \boxed{(x-a)^2 + (y-b)^2 = R^2}$ avec $\Omega(a,b)$ centre du cercle et R rayon.
- \hookrightarrow Cercle ${\mathcal C}$ de diamètre $[AB]: \ \overrightarrow{M} \in {\mathcal C} \Leftrightarrow \overrightarrow{MA}.\overrightarrow{MB} = 0$
- $\hookrightarrow \underline{ ext{Paramétrage d'un cercle}} ext{ de centre } \Omega(a,b) ext{ et de rayon } R: egin{bmatrix} x=a+R\cos t \ y=b+R\sin t \end{bmatrix}, t\in \mathbb{R}$
- Tangente à un cercle
- \hookrightarrow **Définition**: Soit \mathcal{C} le cercle de centre Ω et de rayon R et \mathcal{D} une droite du plan. Alors \mathcal{D} est dite tangente à \mathcal{C} si $d(\Omega, \mathcal{D}) = R$.
- \hookrightarrow Equation de la tangente à un cercle : Soit $\mathcal{C} = \mathcal{C}(\Omega, R)$ et $A \in \mathcal{C}$. Soit T_A la tangente à \mathcal{C} en A. On a :

$$M(x,y) \in T_A \Leftrightarrow \overrightarrow{AM} \text{ et } \overrightarrow{A\Omega} \text{ orthogonaux} \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0$$

Questions de cours:

- **q1**: fonction arctan: domaine de définition, de dérivabilité, dérivée, dérivée de $\arctan(u)$, tableau de variation, courbe et relations $\begin{cases} \forall x \in \mathbb{R}, \ \tan(\arctan x) = x \\ \forall x \in] -\frac{\pi}{2}, \frac{\pi}{2}[, \arctan(\tan x) = x \end{cases}$
- ${\bf q2}$: définition du déterminant de deux vecteurs \vec{u} et \vec{v} , propriétés, expression dans un ROND
- $\mathbf{q3}$: droites du plan : équation cartésienne et représention paramètrique de la droite passant par A et dirigée par \vec{u} .
- $\mathbf{q4}$: donner 3 méthodes pour obtenir une équation de droite :
- 1. Si $\mathcal{D}=(A,\vec{u}),$ colinéarité de \overrightarrow{AM} et \vec{u} et $\det\left(\overrightarrow{AM},\vec{u}\right)=0$
- 2. utilisation de $\vec{u}(-b,a)$ pour obtenir ax + by + c = 0, puis on obtient c avec A
- 3. utilisation d'un vecteur normal \vec{n} et alors $\overrightarrow{AM}.\vec{n}=0$
- **q5**: équation cartésienne et paramétrage du cercle de centre $\Omega(a,b)$ et de rayon R
- q6 : définition et méthode pour obtenir une équation de la tangente à un cercle en un point

Exercices de TD:

ex
$$12$$
 du TD 13

Attention la formule de la distance d'un point à une droite n'est plus au programme.

Entraînement supplémentaire (facultatif mais conseillé) : fiche de calcul n°20 pages 46 à 48 du cahier de calcul