

PARADIGMA FUNCIONAL

□ Trata a computação como uma avaliação de funções matemáticas.

$$\Box f(x) = 2x + 4$$

■ Enxerga todos os subprogramas como funções que recebem argumentos e retornam soluções simples

PARADIGMA FUNCIONAL Cada porção de um programa pode ser compilada, corrigida e testada independentemente das restantes. Programa Permite a criação, teste e correção de programas de uma forma incremental, o que facilita muito a tarefa do programador.

PARADIGMA FUNCIONAL

- Tomou forma via linguagem LISP
 - □ LISt Processor
 - possui váaaarios dialetos
 - nem sempre compatíveis...

□ LISP é frequentemente implementada por um interpretador, onde o usuário entra com uma expressão e o interpretador avalia a expressão e imprime o resultado.

DO LISP AO RACKET: HISTÓRIA

- Lisp foi desenvolvido no final dos anos 50 por John McCarthy.
 - É a segunda mais antiga linguagem de programação de alto nível.
 - □ A mais antiga é FORTRAN.

DO LISP AO RACKET: HISTÓRIA

- Lisp nasceu como uma ferramenta matemática, independente de qualquer computador.
 - Cálculo Lamba
 - □ Alonzo Church
 - matemático

só depois foi adaptado a uma máquina

PARADIGMA FUNCIONAL

LISP - Lost In Stupid Parenthesis

```
(defun repl-fun (noprint).
  (/show0 "entering REPL").
  (loop.
   (unwind-protect.
        (progn.
          (scrub-control-stack).
          (sb!thread::get-foreground).
          (unless noprint.
            (flush-standard-output-streams).
            (funcall *repl-prompt-fun* *standard-output*).
            (force-output *standard-output*)).
          (let* ((form (funcall *repl-read-form-fun*.
                                 *standard-input*.
                                 *standard-output*)).
                 (results (multiple-value-list (interactive-eval form)))).
            (unless noprint.
              (dolist (result results).
                (fresh-line)
                (prin1 result))))).
     (disable-stepping)))).
```


RACKET

Linguagem Funcional que iremos utilizar.

RACKET: CARACTERÍSTICAS

- Pode ser executado de forma interpretada ou compilada.
- Pode-se gerar executável.
 - https://docs.racket-lang.org/guide/running.html
- □ Baixar em http://racket-lang.org

ÁLGEBRA X RACKET

Álgebra	Racket
2+3	(+ 2 3)
3*4	(* 3 4)
(2 + 3) * (4 + 5)	(* (+ 2 3) (+ 4 5))
2 * 3 + 4 * 5	(+ (* 2 3) (* 4 5))
53 + 48	(+ 53 48)

- □ Em Racket:
 - □ cada operação é colocada entre parênteses
 - o operador vem sempre antes dos operandos:
 - □ Notação pré-fixada (**prefix**)

INFIX PREFIX POSTFIX

Comparando:

Infix	Prefix	Postfix
A+B	+AB	AB+
A+B-C	-+ABC	AB+C-
(A+B)*C-D	-*+ABCD	AB+C*D-

Álgebra	Racket	
(5*2)+1	?	(+(* 5 2)1)
5*(2+1)	?	(*(+ 2 1)5)
3.14^2	?	(expt 3.14 2
Raiz de 16	?	(sqrt 16)

EXERCÍCIO

 Defina em Racket um programa para calcular a distância entre dois pontos.

$$D_{AB}^{2} = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$D_{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

