Calculus - SUMMER PACKET

NAME: Solvetions

 $Summer + Math = (Best Summer Ever)^2$

NO CALCULATOR!!!

Given $f(x) = x^2 - 2x + 5$, find the following.

1.
$$f(-2) =$$

2.
$$f(x + 2) =$$

3.
$$f(x+h) =$$

Use the graph f(x) to answer the following.

4.
$$f(0) = -4$$

$$f(4) = \frac{DNE}{ex} \frac{(Does not}{exist})$$
undefined.

$$f(-1) = -3.5$$

$$f(-2) = -2$$

$$f(2) = DNE (Does not exist)$$

undefined

$$f(3) = 2$$

$$f(x) = 2 \text{ when } x = ?$$

$$-5 \text{ and } 3$$

$$f(x) = -3 \text{ when } x = ?$$

Write the equation of the line meets the following conditions. Use point-slope form.

$$y-y_1=m(x-x_1)$$

5. slope = 3 and
$$(4, -2)$$

6.
$$m = -\frac{3}{2}$$
 and $f(-5) = 7$

7.
$$f(4) = -8$$
 and $f(-3) = 12$

$$M = \frac{12^{-8}}{-3-4} = \frac{20}{-7}$$

Write the equation of the tangent line in point slope form. $y-y_1=m(x-x_1)$

8. The line tangent to f(x) at x = 1

Tangent line

9. The line tangent to f(x) at x = -2

5-2=1(x+2)

MULTIPLE CHOICE! Remember slope = $\frac{y_2 - y_1}{y_1}$

- 10. Which choice represents the slope of the secant line shown?

- A) $\frac{7-2}{f(7)-f(2)}$ B) $\frac{f(7)-2}{7-f(2)}$ C) $\frac{7-f(2)}{f(7)-2}$ D) $\frac{f(7)-f(2)}{7-2}$

- 11. Which choice represents the slope of the secant line shown?

D) $\frac{x+2-x}{f(x)-f(x+2)}$

Secant line

- 12. Which choice represents the slope of the secant line shown?

 - A) $\frac{f(x+h)-f(x)}{x-(x+h)}$ B) $\frac{x-(x+h)}{f(x+h)-f(x)}$
- C) $\frac{f(x+h)-f(x)}{x+h-x}$

13. Which of the following statements about the function f(x) is true?

I.
$$f(2) = 0$$

II.
$$(x + 4)$$
 is a factor of $f(x)$

III.
$$f(5) = f(-1)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and III only
- (E) II and III only

Find the domain and range (express in interval notation). Find all horizontal and vertical asymptotes.

14.

16.

Domain: (-∞,-1)∪(-1,1)∨(1,∞)

Domain: $(-\infty, -1)$ \cup (-1, 3) \cup $(3, \infty)$ Domain: $(-\infty, -3)$ \cup (-3, -2) \cup (-3, -2)

Range:
$$(-\infty, 2) \cup (3, \infty)$$

Horizontal Asymptote(s):

Vertical Asymptotes(s): $\times = 1$

Range:

Horizontal Asymptote(s): _=o

Vertical Asymptotes(s): ×= -1
×=3

Range:

Horizontal Asymptote(s):

Vertical Asymptotes(s):×=-2

MULTIPLE CHOICE!

- 17. Which of the following functions has a vertical asymptote at = 4?
 - (A) $\frac{x+5}{x^2-4}$
 - (B) $\frac{x^2-16}{x-4}$
 - (C) $\frac{4x}{x+1}$
 - (D) $\frac{x+6}{x^2-7x+12}$
 - (E) None of the above
- 18. Consider the function: $(x) = \frac{x^2 5x + 6}{x^2 4}$. Which of the following statements is true?
 - I. f(x) has a vertical asymptote of x = 2
 - II. f(x) has a vertical asymptote of x = -2
 - III. f(x) has a horizontal asymptote of y = 1
 - (A) I only
 - (B) II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II and III

Rewrite the following using rational exponents. Example: $\frac{1}{\sqrt[3]{x^2}} = x^{-\frac{2}{3}}$

19.
$$\sqrt[5]{x^3} + \sqrt[5]{2x}$$

$$20. \sqrt{x+1}$$

$$(\times + 1)^{\frac{3}{2}}$$

$$\begin{array}{c|c}
21. \frac{1}{\sqrt{x+1}} \\
(x+1)^{-\frac{1}{2}}
\end{array}$$

22.
$$\frac{1}{\sqrt{x}} - \frac{2}{x}$$

23.
$$\frac{1}{4x^3} + \frac{1}{2}\sqrt[4]{x^3}$$

24.
$$\frac{1}{4\sqrt{x}} - 2\sqrt{x+1}$$

Write each expression in radical form and positive exponents. Example: $x^{-\frac{2}{3}} + x^{-2} = \frac{1}{\sqrt[3]{x^2}} + \frac{1}{x^2}$

25.
$$x^{-\frac{1}{2}} - x^{\frac{3}{2}}$$

$$26. \ \frac{1}{2}x^{-\frac{1}{2}} + x^{-1}$$

$$\frac{1}{\sqrt{\times}} + \frac{1}{\times}$$

27.
$$3x^{-\frac{1}{2}}$$

28.
$$(x+4)^{-\frac{1}{2}}$$
 $\sqrt{x+4}$

29.
$$x^{-2} + x^{\frac{1}{2}}$$

$$30. \ 2x^{-2} + \frac{3}{2}x^{-1}$$

Need to know basic trig functions in RADIANS! We never use degrees. You can either use the Unit Circle or Special Triangles to find the following.

31.	sin	$\frac{\pi}{6}$
-----	-----	-----------------

32. $\cos \frac{\pi}{4}$

33. $\sin 2\pi$

34.
$$\tan \pi$$

35. $\sec \frac{\pi}{2}$

undefined.

36. $\cos \frac{\pi}{6}$

37.
$$\sin \frac{\pi}{3}$$

38. $\sin \frac{3\pi}{2}$

39. $\tan \frac{\pi}{4}$

40.
$$\csc \frac{\pi}{2}$$

41. $\sin \pi$

42. $\cos \frac{\pi}{3}$

43. Find *x* where
$$0 \le x \le 2\pi$$
,

$$\sin x = \frac{1}{2}$$

$$\sin x = \frac{1}{2}$$

44. Find x where $0 \le x \le 2\pi$,

$$\tan x = 0$$

45. Find x where $0 \le x \le 2\pi$,

$$\cos x = -1$$

Solve the following equations. Remember $e^0 = 1$ and $\ln 1 = 0$.

46.
$$e^x + 1 = 2$$

47.
$$3e^x + 5 = 8$$

48.
$$e^{2x} = 1$$

49.
$$\ln x = 0$$

50.
$$3 - \ln x = 3$$

$$51. \ln(3x) = 0$$

52.
$$x^2 - 3x = 0$$

53.
$$e^x + xe^x = 0$$

54.
$$e^{2x} - e^x = 0$$

Calva tha	fallowing	4	canations	whoma (1/2/2-
Solve the	10110WIIIIg	ung	equations	where c	$0 \le x \le 2\pi$.

55.
$$\sin x = \frac{1}{2}$$

56.
$$\cos x = -1$$

57.
$$\cos x = \frac{\sqrt{3}}{2}$$

58.
$$2\sin x = -1$$

59.
$$\cos x = \frac{\sqrt{2}}{2}$$

$$60. \cos\left(\frac{x}{2}\right) = \frac{\sqrt{3}}{2}$$

61.
$$\tan x = 0$$

62.
$$\sin(2x) = 1$$

53.
$$\sin\left(\frac{x}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\times = \frac{4\pi}{3}$$
 and $\times = \frac{4\pi}{3}$

For each function,	determine its	domain and range.
--------------------	---------------	-------------------

Function Function	<u>Domain</u>	Range
64. $y = \sqrt{x - 4}$	×≥ 4	უ≥0
65. $y = (x-3)^2$	FR real numbers	უ≥0
$66. \ y = \ln x$	X>0	1PC
67. $y = e^x$	PL.	7>0
68. $y = \sqrt{4 - x^2}$	-1<×<1	っくひとと

Simplify.

69.
$$\frac{\sqrt{x}}{x}$$
 $\times^{\frac{1}{2}-1}$

70.
$$e^{\ln x}$$

71.
$$e^{1+\ln x}$$

89.
$$k(g(x)) = (\sqrt{x-3})^2 + 5$$

 $x-3+5$
 $x+2$

90.
$$g(f(2))$$

 $g(4) = \sqrt{4-3}$