Systèmes des Télécommunications

Examen de rattrapage (Options ITR et SSI) Lundi 11 Novembre 2013

Nom de l'étudiant : Option :	
Remarques : 1. Document 2. Durée : 30	

Exercice 1: (8pts)

Cocher la case correspondante :

		Vrai	Faux
1.	Un signal déterministe est, forcément, périodique		
2.	L'impulsion de Dirac est une fonction périodique		
3.	Un signal échantillonné est un signal dont les valeurs sont des 0 et des 1		
4.	Tout signal périodique pourrait être décomposé en série de Fourier		
5.	Dans le cas de loi de quantification non uniforme, le pas de quantification est		
	variable, la fréquence d'échantillonnage l'est aussi		
6.	Le produit de convolution d'un signal x(t) par l'impulsion de Dirac $\delta(t-t_0)$		
	revient à décaler le signal $x(t)$ de t_0		
7.	Le nombre de niveaux de quantification uniforme ne dépend que du		
	nombre de bits de codage		
8.	Dans le cas de la quantification non uniforme, la période		
	d'échantillonnage T _e pourrait être variable		

Exercice 2: (12 pts)

Soit le signal s(t) de période $T_0 = 1/F_0$, exprimé comme suit :

$$s(t) = 3\sin(6\pi F_0 t) - 5 + 4\sin(4\pi F_0 t) + 7\cos(8\pi F_0 t)$$

On souhaite faire l'étude fréquentielle de ce signal pour décider si on peut le transporter dans un canal donné.

On rappelle la DSF définie pour les signaux périodiques

$$s(t) = S_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi n F_0 t) + \sum_{n=1}^{\infty} b_n \sin(2\pi n F_0 t)$$

- 1. Donner l'expression des termes de S_0 , a_n et b_n relatifs à s(t) en spécifiant les valeurs possibles de n. (4pts)
- 2. Déterminer les différentes valeurs de fréquences contenues dans la sinusoïde (3pts)
- 3. Déterminer la fréquence maximale du signal s(t) ? En déduire la fréquence d'échantillonnage minimale ? (2pts)
- 4. Tracer le spectre d'amplitude de s(t). (3pts)