公考-数量关系

数量关系资料分析考点梳理

——刘文超 Vin

资料分析

一:结构阅读法

统计材料的类型包括单纯的文字、表格、图形以及由这些元素组成的复合类型材料。

	通用重点	略读	分类重点	参考时间
文字性材料	标题		关键标点、关键词、	30-60 秒
2 - 3 - 101 - 101 - 1	注释	具体	时间、结构	
表格性材料	时间	数据	横标目、纵标目	15-30 秒
柱状趋势图	单位	女人1/占	横轴、纵轴、图示	10-25 秒
饼图	平世		类别名称、图示	10-20 秒

二: 速算技巧

公务员资料分析模块估算中,四舍五入最多保留三位有效数字。

根据选项差距,判定估算位数,两种方法。

- 选项首位均不同,保留两位即可 选项首位有相同的,保留三位。
- 选项之间误差在10%以上,保留两位即可。
 选项之间误差在10%以内,保留三位。

直除法:	一步除式:只估算分母即可。
且陈伝:	多步连除:分子分母同时截位
	直除到能得到答案即可。

乘法一大一小, 按比例增加或减少

	方法一: 直除比较(只大概口算直除首位即可)	
分数比较	方法二: 分数变化速度	
	① 分子大,分母小,直接判断分数大	
	② 分子分母同大,看变化速度	
	分子变化大,分数大	
	分母变化大,分数小	

三: 重点题型

重点题型	公式	速算技巧
普通增长率计算	增长率 = ^{增长量} = ^{现期量 - 基期量} = ^{现期量} - 1	直除法
普通增长率比较	基	分数比较
基期量	基期量 = $\frac{现期量}{1+r}$ = 现期量 - 增长量	直除法
现期量	现期量 = 基期量× $(1+r)$	乘法估算
	题型特征: 间隔一年, 2017年比 2015年增长率, 2016年第	公式法
间隔增长率	一季度比 2014 年第一季度增长率。	
	公式: $R = r_1 + r_2 + r_1 \times r_2$	
混合增长率	混合增长率: 大小居中, 偏向基期量大的	
	注:考试中无基期量,用现期量近似代替	
年均增长量	关于怎么数年份:问 2013-2017年的年均增长率,如果没有	直除法
	给出 2012 年的具体值,那么以 2013 年为基期,求 4 年的年	
	均增长;如果给出了2012年的具体值,那么以2012年为基	
	期, 求 5 年的年均增长。	
	年均增长量: = 现期量-基期值间隔年份	
/r 사용 V >z	年均增长率: 现期量=基期量×(1+年均增长率) ⁿ , 其中 n	代入法
年均增长率	为相差年份	代入特殊值
左扬顿民卖业标	(1 + 2) 加期量	比较现期量和
年均增长率比较	$(1+r)^n = \frac{\mathcal{W} \mathcal{H} \underline{d}}{\underline{x} \mathcal{H} \underline{d}}$	基期量的比值

		直除法
增长量	增长量 = 现期量 - 基期量 = 基期量 × $r = \frac{现期量}{1+r}$ × r	特殊分数
	特殊分数应用:如果, $r = \frac{1}{n}$,增长量 $= \frac{\frac{\mathcal{R}}{m+1}}{n+1}$	截位直除法
	1、现期值大,增长率大,大大则大。	乘法估算
增长量的比较	2、近似比较 现期量×r乘积的大小,近似比较 A×r ₁ 和 B×	
	r ₂ 的大小(应用范围为增长率的差距在 30%)	
	3、如果增长率之间的差距很大,列出完整式子进行估算	
取押以手	1. 比重=部分值/整体值=A/B	直除法
现期比重	2. 整体值=部分值/比重	
	部分的现期量 A, 部分的现期增长率 a, 整体的现期量 B, 整	直除法
其期以重	体的现期增长率 b。	分开估算
基期比重	则基期比重为: $\frac{\frac{A}{1+a}}{\frac{B}{1+b}} = \frac{A}{B} \times \frac{1+b}{1+a}$	
	两期比重比较: 只需要观察即可, $\frac{A}{B} \times \frac{1+a}{1+b}$, 如果 a>b, 比重	
	增大,部分的增速大于整体的增速,那么比重上升;如果	
两期比重变化	a <b, td="" 比重减小。<=""><td></td></b,>	
	两期比重差计算: 现期比重-基期比重= $\frac{A}{B} - \frac{A}{B} \times \frac{1+b}{1+a} = \frac{A}{B} \times \frac{a-b}{1+a}$	
	应用技巧: $\frac{A}{B} \times \frac{1}{1+a} < 1$,所以 $\left \frac{A}{B} \times \frac{a-b}{1+a} \right < a-b $	
现期倍数	A 是 B 的几倍, A/B	直除法
基期倍数	$\frac{\frac{A}{1+a}}{\frac{B}{B}} = \frac{A}{B} \times \frac{1+b}{1+a}$	和基期比重一
至79月日30	$\left \frac{B}{1+b} - \overline{B} \right 1 + a$	样
平均值增长率	$\frac{a-b}{1+b}$	直除法

数量关系

题型	方法
----	----

代入排除法	代入排除是数量关系第一大法。
	代入排除顾名思义是将答案选项代入原题目,与题意不符的选项即可排除,
	最终得出正确答案。
	优先使用代入排除的题型:
	(1) 多位数问题、余数问题、年龄问题、不定方程等。
	(2) 无从正面下手的题目,可以考虑代入排除。
奇偶特性法	一、和差同性:任意两个数的和如果是奇数(偶数),那么差也是奇数(偶
	数);任意两个数的差如果是奇数(偶数),那么和也是奇数(偶数)。
	二、任意自然数与偶数相乘,其结果必为偶数。
	奇偶性应用特征
	1 知和求差、知差求和
	2 二倍类,平均分
	3 形如 aX+bY=c 类的不定方程
整除特性法	2, 4, 8 整除及其余数判定法则
	一个数能被 2(或 5)整除, 当且仅当末一位数字能被 2(或者 5)整除;
	一个数能被 4(或者 25)整除, 当且仅当末两位数字能被 4(或者 25)整除;
	一个数能被 8(或者 125)整除, 当且仅当末三位数字能被 8(或者 125)整除;
	3,9整除判定基本法则
	一个数字能被3整除,当且仅当其各位数字之和能被3整除;
	一个数字能被9整除,当且仅当其各位数字之和能被9整除;
倍数特性法	例: 班级男女比例为 7:4, 于是 $\frac{9}{4} = \frac{7}{4}$
	男生人数一定是7的倍数;女生人数一定是4的倍数;总人数一定是11的
	倍数;男女之差一定是3的倍数;男生人数是总人数的 7
	若 a: b=m: n, 或 $\frac{a}{b} = \frac{m}{n}$ 或者 $a = \frac{m}{n}b$ (m、n 互质, m: n 不能继续约
	份)。则 a 是 m 的倍数; b 是 n 的倍数; a + b 是 m + n 的倍数; a - b 是 m - n
	的倍数
方程法	方程法是数量关系最重要的方法之一。
	스 IT #EE 로 소스 (스 EL) - BE

行程问题等等。 设未知数的原则: 1 在同等情况下,优先设所求的量 2设中间变量、份数(有分数、百分数、比例倍数特征) 3 优先设小不设大 不定方程 未知数的个数多于方程个数,且未知数受到某些限制(如要求是有理数、整 (组) 数或正整数等等)的方程或方程组。例如,3x+5v=41,两个未知数但是只有一个 方程。 目前公务员主要考查: 一、限制性不定方程(组),未知数必须是正整数,例如未知数是人、桌子、 盒子、笔等, 默认未知数必须是正整数。 解析技巧: ①奇偶特性②因子倍数③尾数法④代入排除 二、非限制性不定方程(组),未知数不限制必须是整数,例如钱、时间, 重量等,不必须是正整数,此类题型出题巧妙,技巧性强。 解析技巧: ①整体替换②赋 0 法 工程问题 核心公式:工作总量=效率×时间。W=e×t 常用方法: 赋值法和方程法。 公务员常考题型: 一、给定时间型: 题干中只出现工作时间, 未提及效率关系, 叫做给定时间型。 解题方法: ①赋值总量为时间的公倍数②求出各自的效率③分析求解 二、效率制约型: 题干中对效率有制约,例如甲、乙的效率之比为 2:3,为效率 制约型题目。 解题方法: ①赋值效率: ②直接赋值各自效率比值,例如甲、乙的效率之比 为 2:3, 赋值甲的效率为 2, 乙的效率为 3: ③分析求解 三、效率给出型:直接将效率的具体值给出,例如甲每天生产50个零件。 解题方法:直接分析求解即可。 行程问题 1.核心公式: 路程=速度×时间

2.等距离求平均速度

$$\bar{v} = \frac{2v_1v_2}{v_1 + v_2}$$

3.流水行船问题

顺流速度=静水船速+水速

逆流速度=静水船速-水速

4.相遇追及问题

相遇距离=(大速度+小速度)×相遇时间

追及距离=(大速度-小速度)×追及时间

环线型 n 次相遇,共同行走的距离=n×环线长度。

环线型 n 次追及, 追及的距离=n×环线长度。

5.环形相遇问题

直线型两端出发 n 次相遇, 共同行走距离=(2n-1)×两地初始距离

排列组合

基本概念:

加法原理: 分类用加法

乘法原理:分步用乘法

排列:与顺序有关,每个人去做不同的事情

组合:与顺序无关,每个人去做相同的事情

基本公式:

排列公式: $A_n^m = n(n-1)(n-2)...(n-m+1)$

例如: $A_7^4 = 7 \times 6 \times 5 \times 4$

组合公式: $C_n^m = \frac{A_n^m}{m!} = \frac{n(n-1)(n-2)...(n-m+1)}{m \times (m-1) \times (m-2)... \times 2 \times 1}$

例如: $C_7^3 = \frac{7 \times 6 \times 5}{3 \times 2 \times 1}$

Tip1: $C_5^5 = C_6^6 = C_7^7 = C_m^m = 1$

Tip2: $C_5^2 = C_5^3$, $C_7^2 = C_7^5$, $C_m^n = C_m^{m-n}$

拓展题型:

捆绑法: 相邻问题, 将相邻的元素捆绑成一个元素

插空法: 不相邻问题, 先对其他元素排列, 然后将不相邻的元素插入空中

铥摇注 NI A-MID D.W. N. A.L. 每十五小八组二人 NI A-MID 电记去 (NI

1)个空,在空中插入(M-1)个板,共有 C^{M-1}_{N-1} 种情况。
错位排列: 有 N 封信和 N 个信封,每封信都不装在自己对应的信封里,可
能的方案数记作 Dn , $D_2=1$, $D_3=2$, $D_4=9$, $D_5=44$,记住这五个即可。
1.基本概率
某种情况发生的概率=满足条件的情况数÷总的情况数。
p = 满足条件的情况数 总的情况数
2.分步乘法型
分步概率 = 满足条件的每个步骤概率之积
3.分类加法型
总体概率 = 满足条件的各种情况概率之和
4.逆向计算型
某事件的概率 = 1 一该事件不发生的概率
1.利润折扣问题:
总成本=单个成本×进口量; 总售价=单价×销售量;
利润=售价-成本;总利润=总售价-总成本
利润率 = $\frac{$ 利润 $}{$ 成本 $}$ = $$
2.分段计费问题
分段计费问题主要涉及水电、资费、提成等通常分段计费问题。解题关键在
于找到分段节点,分区间讨论计算。
两集合标准型公式
A + B - AB = 总数 - 都不满足
三集合标准
A + B + C - AB - BC - AC + ABC = 总数 - 都不满足
A + B + C - AB - BC - AC + ABC =
育 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

文氏图法:每一个封闭区域内只有一个数字,并且代表该区域的面积。

使用原则: 出现"只满足某一个条件"时,优先画图法。

不能直接代入公式的, 使用画图法。

最值问题

最不利构造

题型特征: 至少 才能保证

解题方法: 最不利情形+1

数列构造

题型特征:最多 ……最少 ……

最少……最多……

排名第 …… 最多(少)………

解题方法:

排序, 所有元素进行排序;

定位, 求谁设谁 x;

构造,根据题意构造其他元素的值;

求和, 所有元素求和, 解 x。

如果求得 x 为小数,问最少向上取整,问最多向下取整。

几何问题

常用公式

n 边形的内角和与外角和

内角和=(n-2)×180°, 外角和恒等于 360°

常用周长公式

正方形周长 $C_{E ar{ extit{T}} \mathcal{E}} = 4a$; 长方形周长 $C_{K ar{ extit{T}} \mathcal{E}} = 2(a+b)$; 圆形周长 $C_{ar{ extit{B}}} = 2(a+b)$

$2\pi R$

常用面积公式

正方形面积 $S_{E extit{T} extit{T}} = a^2$; 长方形面积 $S_{K extit{T} extit{T}} = ab$; 圆形面积 $S_{\text{$\mathbb{@}}} = \pi R^2$

三角形面积 $S_{\underline{=}h\overline{k}} = \frac{1}{2}ah$; 平行四边形面积 $S_{\underline{\gamma}} = ah$;

梯形面积 $S_{\overline{RR}} = \frac{1}{2}(a+b)h$; 扇形面积 $S_{\overline{RR}} = \frac{n}{360^{\circ}}\pi R^2$

常用表面积公式

正方体的表面积= $6a^2$; 长方体的表面积= 2ab + 2bc + 2ac;

圆柱的表面积= $2\pi Rh + 2\pi R^2$,侧面积= $2\pi Rh$; 球的表面积= $4\pi R^2$

常用体积公式

正方体的体积= a^3 ; 长方体的体积= abc; 球的体积= $\frac{4}{3}\pi R^3$

圆柱的体积= $\pi R^2 h$; 圆锥 (棱锥) 的体积= $\frac{1}{3} \times 底面积 \times 高$

等比例放缩

一个几何图形, 若边长变为原来的 n 倍, 则:

所有对应角度不发生变化

所有对应的面积变为原来 n² 倍

所有对应的体积变为原来 n³倍

几何最值理论

平面几何中,若周长一定,越接近于圆,面积越大;

平面几何中,如面积一定,越接近于圆,周长越小;

立体几何中, 若表面积一定, 越接近于球, 体积越小;

立体几何中, 若体积一定, 越接近于球, 表面积越小。

三角形三边关系

三角形两边之和大于第三边, 两边之差小于第三边。

浓度问题

祝大家成功上岸!

数量关系心得:

- 1. 画题十分重要。要对关键信息敏感,并将题目画出来。
 - 1. 道路两侧 (默认两侧都要种)
 - 2. 一楼不缴费(但一楼不一定为等差数列起始)
 - 3. 参加运动会的人(默认这些人都参加了至少一个项目)
 - 4. 售票 (默认成本为0)

2. 技巧:

- 1. 尾数法。多个数相加时,只看尾数,说不定能选出选项。
- 2. 赋值法。给关键参数赋值。比如溶液赋值100ml。
- 3. 总长除以间隔得到的是, 无头有尾的种植。
- 4. 等差数列: 平均数乘以项数为总体值
- 5. 面积可能会用到相似三角形。
- 6. 最值问题。寻找最差的条件,即求A最少时,则其他应该最多,即求不满足条件时的最多。 然后值+1.至少向上取整。至多向下取整。
- 7. 容斥问题, "只满足一个条件的时候"优先画图。
 - 1. a, 满足一个。b满足两个, c满足三个
 - 2. A+B+C = a+2b+3c
 - 3. A+B+C-b-2c = 总-不满足条件的个数。
 - 4. A+B+C-AB-AC-BC + ABC = 总- ABC都不满足
- 8. 概率问题:
 - 1. 擅于采用分布概率的乘积
- 9. 利润问题:
 - 1. 利润率 = 利润/成本(进价)。