

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 4

The Processor

Dr.Randa Mohamed

Agenda

- Single cycle MIPS:
 - Control
 - Datapath (J type)
 - Performance

Full Datapath

Control

Field bit positions	31-26	25-21	20-16	15-11	10-6	5-0
R-type	op	rs	rt	rd	shamt	funct
I-type	op	rs	rt	16- bit immediate/address		

Datapath With Control

ALU used for

Load/Store: F = add

■ Branch: F = subtract

R-type: F depends on funct field

ALU control	Function
0000	AND
0001	OR
0010	add
0110	subtract
0111	set-on-less-than
1100	NOR

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

opcode	ALUOp	Operation	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

ALUOp		Funct field						
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	F0	Operation
0	0	X	X	X	X	X	Χ	0010
X	1	Х	Х	Х	Х	Х	Х	0110
1	Х	Х	Х	0	0	0	0	0010
1	X	X	X	0	0	1	0	0110
1	Х	Х	X	0	1	0	0	0000
1	X	X	X	0	1	0	1	0001
1	X	X	X	1	0	1	0	0111

- Assume 2-bit ALUOp derived from opcode
 - Combinational logic derives ALU control

Assume 2-bit ALUOp derived from opcode

ALL	JOp	Funct field						
ALUOp1	ALUOp0	F5	F4	F3	F2	F1	F0	Operation
0	0	X	X	X	X	X	Χ	0010
X	1	X	X	X	X	X	Х	0110
1	X	Х	Х	0	0	0	0	0010
1	Х	X	X	0	0	1	0	0110
1	X	Х	Х	0	1	0	0	0000
1	X	X	X	0	1	0	1	0001
1	X	X	X	1	0	1	0	0111

Datapath With Control

The Main Control Unit

Control signals derived from instruction

R-type	0	rs	rt	r	[.] d	shar	nt	funct
	31:26	25:21	20:16	15	5:11	10:6	6	5:0
Load/ Store	35 or 43	rs	rt			addr	ess	
Otoro	31:26	25:21	20:16 \			15	5:0	
Branch	4	rs	rt			addr	ess	
	31:26	25:21	20:16			15	5:0	↑
				\	<u> </u>			
	opcode	always read	read, except		R-t	e for ype		sign-extend and add
			for load		and	load		

The Main Control Unit

Control signals derived from instruction

Control	Signal name	R-format	1w	SW	beq
	Op5	0	1	1	0
	Op4	0	0	0	0
	Op3	0	0	1	0
Inputs	Op2	0	0	0	1
	Op1	0	1	1	0
	OpO	0	1	1	0
	RegDst	1	0	X	X
	ALUSrc	0	1	1	0
	MemtoReg	0	1	X	X
	RegWrite	1	1	0	0
Outputs	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

R-format	000000
Lw	100011
SW	101011
beq	000100

The Main Control Unit

Control signals derived from instruction

R-Type Instruction

Load Instruction

Branch-on-Equal Instruction

Implementing Jumps

- Jump uses word address
- Update PC with concatenation of
 - Top 4 bits of old PC
 - 26-bit jump address
 - **00**
- Need an extra control signal decoded from opcode

Datapath With Jumps Added

Performance

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware

Performance Issues

- Longest delay determines clock period
 - Critical path: load instruction
 - Instruction memory → register file → ALU → data memory → register file
- Not feasible to vary period for different instructions
- Violates design principle
 - Making the common case fast
- We will improve performance by pipelining

Problems to Solve

4.1, **4.2**, **4.4**, **4.7**, **4.9**