Gestão, Governança e Arquitetura de Dados PUCPR

Marcelo Rosano Dallagassa

Apresentação

Marcelo Rosano Dallagassa

- Engenheiro UFPR e atua na área de TI desde 1986.
- Mestre e Doutor em Tecnologia em Saúde com ênfase em Sistema de Apoio à Tomada de Decisão PUCPR.
- Especialista em estratégia, projetos e informações e responsável técnico pela área do Núcleo de Inteligência e Informações em Saúde da Unimed Paraná (desde 2002) e pelo projeto governança de dados. Professor Pós-graduação PUCPR, FAE, FESP disciplinas: Banco de Dados, Data Warehouse, Business Intelligence, Business Analytics, Gestão, Governança e Arquitetura de Dados, Aprendizagem de Máquina.

Gestão, Governança e Arquitetura de Dados

A disciplina problematiza as questões fundamentais e os conceitos associados à gestão de dados no contexto organizacional. Nela, o participante analisa a arquitetura de dados envolvida bem como a aplicação de modelos para diagnóstico da governança. Ao final, será capaz de solucionar desafios e analisar as etapas para a implantação de processos orientados a dados.

Estrutura da Disciplina

- Os desafios do uso da informação na gestão.
- Dados, Informações e Conhecimento Modelo Conceitual
- Diferença entre Business Intelligence e Analytics.
- Data Warehouse, Data Mart, Data Lake e Big Data.
- Data Management Body of Knowledge (DMBOK)
- Exercício: Case da empresa Ortomagic
 - Sugestão de análise do grau de maturidade.
 - Propostas de melhoria.
 - Caminhos a seguir para atingir melhor nível de maturidade.
 - Política da Qualidade de Dados.

Desafios do uso de dados e informação na gestão

Assimetria de informações (dispersão)

- Variedade de formatos
- Questões de privacidade
- Falta de qualidade
- Ausência de informações

Sistema de Banco de Dados

- a) Aplicações tradicionais (OLTP)
- b) Banco de dados multimídia
- c) Sistemas de informações geográficas
- d) Data Warehouse (OLAP)
- e) Data Lake (não estruturado)
- f) Data Lakehouse, entre outras aplicações

Sistema de Banco de Dados

Banco de Dados

"É uma coleção de dados relacionadas"

Dados

"São fatos que podem ser gravados e que possuem um significado implícito"

```
Dado x Informação x Conhecimento
```

```
Dado
```

Fato sem significado próprio, isolado de um contexto

```
Exemplo:
```

8%

H1AC

136 mg/dl

Glicemia em jejum

Informação:

Fato interpretado e associado a um significado

Exemplo:

Resultados do exame

H1AC = 8%

Glicemia de jejum = 136

Conhecimento:

Maturação do fato: informações agregadas em um contexto mais amplo.

Exemplo: Resultados do exame solicitado:

H1AC = 8% e Glicemia de jejum = 136 mg/dL Então -> forte indicativo ao diabetes

Referências Sociedade Brasileira do Diabetes (SBD, 2007):

Glicemia de jejum entre 70 a 99mg/dL -> normal

Glicemia de jejum entre 100 a 126 mg/dL ou superior -> diabético

Hemoglobina glicosilada (H1AC) < 7% -> normal

Hemoglobina glicosilada (H1AC) >= 7% -> diabético

SABEDORIA Julgamento, moral, experiência **CONHECIMENTOS** Síntese **INFORMAÇÕES** Análise **DADOS**

Fonte: Síntese da informação - adaptado de TUTHIL (1990)

Estrutura e atores - S.G.B.D.

Figura 1 - Módulos compontentes de um SGBD, adaptado de KORT; SILBERSCHATZ (2016)

Sistema de Banco de Dados

Os Papas.

Modelagem Conceitual x Lógica e Física

Modelagem Conceitual ou Modelo Corporativo de Dados(MCD):

Independe do SGBD, preocupação voltada ao negócio

"Representa a visão que seus usuários têm dos dados"

Modelagem Lógica:

Depende diretamente do tipo do SGBD (Hierárquico, Rede, Relacional, OO)

"Representa a visão que os programas têm dos dados"

Modelagem Física:

Dependência total do SGBD e deve ser criado de acordo com as suas características técnicas.

"Representa a visão que o SGBD têm dos dados"

Modelagem Conceitual

Modelagem Entidade Relacionamento (ER) Entity-Relationship model (ER model) - Peter Chen (1976)

http://bit.csc.lsu.edu/~chen/pdf/erd-5-pages.pdf

Entidade:

É um objeto ou um evento (real ou conceitual) com uma identificação distinta e com significado próprio

Relacionamento:

É uma associação significativa entre entidades

Atributos:

São propriedades (características) das entidades e relacionamentos

Modelagem Conceitual - MCD (Modelo Corporativo de Dados)

Modelagem Entidade Relacionamento (ER)

Modelagem Conceitual

Modelagem OLTP

Modelos Transacionais - Online Transaction Processing (OLTP)

Tabelas relacionais com um amplo "range" de relacionamentos Relacionamentos que definem cardinalidade, opcionalidade, migração de chaves (regras de negócios)

Altamente normalizado

Modelo ER (Conceitual) - Transacional - Empresa Vendas de Loteamento.

Atividade 1: Carregue o modelo na ferramenta dbdesigner - modelo_lote.xml

Business Intelligence

Ferramentas utilizadas no auxílio ao processo de gestão e tomada de decisões estratégicas.

Permite responder questões como:

- Quem são os meus 20 maiores clientes?
- Como foram minhas vendas neste mês em relação ao mês passado?
- Quais são os 5 melhores produtos, baseados no resultado?
- Que doenças acometem mais a minha população?

Data Warehouse

"Data Warehouse é uma coleção de dados integrados, orientados por assuntos, nãovolátil e variáveis em relação ao tempo, utilizadas para o apoio às decisões gerenciais". Inmon (1997)

O Projeto Data Warehouse

Objetivos / finalidades do Data Warehouse

- 1. Extrair dados de várias fontes;
- 2. Integrar dados em um repositório comum;
- Padronizar as informações (dados em formatos compreensíveis);
- 4. Oportunizar ferramentas de consultas para a extração de informações;
- 5. Não interferir nos processos diários (sistemas transacionais).

O Projeto Data Warehouse

Exemplos de Tarefas (Entregas) de um projeto Data Warehouse

- 1. Levantamento de Informações (Sistemas, Necessidade)
- 2. Segurança da Informação (Planejamento e Cuidados)
- 3. Validação do Grau de Atendimento do Modelo;
- 4. Desenvolvimento dos Modelos e Processo de Carga de Dados (ETL);
- 5. Validação e automação do Processo de Carga de Dados;
- 6. Desenvolvimento da Estrutura da Camada de Pesquisas;
- 7. Construção de Painéis de Bordo (Dashboards);
- 8. Treinamento;
- 9. Entrega.

Data Mart

"Data Marts são subconjuntos de dados da organização armazenados fisicamente em mais de um local, geralmente divididos por assuntos (departamentais)" Kinball (1996)

Data Mart

Os Data Marts diferenciam-se dos DWs pelos seguintes fatores:

- Os dados são personalizados e atendem às necessidades específicas de um departamento;
- Possuem um volume menor de dados e com isto, um histórico mais limitado
- Geralmente não mantêm os dados no mesmo nível de detalhe que no Data Warehouse

Kinball (1996)

Data Mart - Atendimentos em Saúde

Modelagem OLAP

Modelos Multidimensionais - Online Analytical Processing (OLAP)

Tabelas fato, dimensões e seus relacionamentos Relacionamentos que definem os fatores pelos quais a tabela fato pode ser analisada Altamente denormalizado

Modelagem OLAP

Comparação Estruturas - Online Analytical Processing (OLAP)

Arquiteturas - Projetos DW

Estruturas Bottom UP x Top Down

Arquiteturas - Projetos DW

Exemplos de modelos - Data Warehouse

Atividade 2 - Desenvolva o modelo multidimensional dwlote na ferramenta dbdesigner

Transacional x Analítico

OLTP x OLAP

Características	Transacional (OLTP)	DW (OLAP)
Objetivo	Transações diárias	Análise do negócio
Utilização	Operacional	Informacional
Operações	Inclusão, alteração, exclusão	Carga e consulta
Histórico	Restrito	Grandes períodos
Granulometria	Detalhado	Detalhado e resumido
Redundância	Reduzida	Diversas
Estrutura	Estática	Variável
Manutenção	Mínima	Constante
Número de Índices	Reduzidos	Muitos
Tipo de usuários	Operacionais	Comunidade Gerencial

Arquitetura Tradicional do DW

Processo de ETL (Extração, Transformação e Carga de Dados)

ETL

Fundamentos do ETL

- Metadados do ETL
 - Dados a respeito de seus processos de ETL.
 - Definições de origem e destino
 - Levantamento de negócios (Descrições de negócios dos atributos)
 - Definição sobre direitos e privilégios
 - Declarações de transformação
 - Estatísticas de carregamento (Volumetria)

Exemplo ETL (Pentaho PDI)

Demonstração - Construção Dashboard - Vendas de Loteamento

Big Data

Os 5 V's:

- Variedade
- Volume
- Velocidade
- Valor
- Veracidade

Data Lake - Conceito

O Data Lake é um repositório que centraliza e armazena todos os tipos de dados gerados pela e para a empresa, eles são depositados (ingestão) ainda em estado bruto, sem o processamento e análise, ou seja, documentos em formatos originais, pdf's, e-mails, áudios, vídeos, etc e adicionalmente os dados dos sistemas de gestão e do Data Warehouse.

Novo Conceito → ELT – Extração, Carga (Ingestão) e Transformação

Data Lake

Data Lake - Justificativas

- 1. Inexistência de um ambiente centralizado que armazene e disponibilize informações de dados não estruturados
- 2. Dificuldade da interpretação e extração das informações de documentos não estruturados
- 3. Ausência de informações, muitas vezes contidas em documentos não estruturados da empresa (áudios, documentos, informações de outros aplicativos)

Amazon Web Services

Compute

Virtual Servers in the Cloud

Lambda PREVIEW

Run Code in Response to Events

Storage & Content Delivery

Scalable Storage in the Cloud

Storage Gateway

Integrates On-Premises IT Environments with Cloud Storage

Glacier

Archive Storage in the Cloud

CloudFront

Global Content Delivery Network

Database

RDS

MySQL, Postgres, Oracle, SQL Server, and Amazon Aurora

DynamoDB

Predictable and Scalable NoSQL Data Store

ElastiCache

In-Memory Cache

Redshift

Managed Petabyte-Scale Data Warehouse Service

Networking

Isolated Cloud Resources

Direct Connect

Dedicated Network Connection to AWS

Administration & Security

Directory Service

Managed Directories in the Cloud

Trusted Advisor

AWS Cloud Optimization Expert

CloudTrail User Activity and Change Tracking

Config PREVIEW

Resource Configurations and Inventory

CloudWatch

Resource and Application Monitoring

Deployment & Management

Elastic Beanstalk **AWS Application Container**

OpsWorks

CloudFormation

Templated AWS Resource Creation

CodeDeploy

Automated Deployments

Analytics

EMR

Managed Hadoop Framework

Real-time Processing of Streaming Big Data

Data Pipeline

Orchestration for Data-Driven Workflows

Application Services

SQS
Message Queue Service

SWF

Workflow Service for Coordinating Application Components

AppStream
Low Latency Apr

Low Latency Application Streaming

Elastic Transcoder

Easy-to-use Scalable Media Transcoding

Email Sending Service

CloudSearch Managed Search Service

Mobile Services

Cognito
User Identity and App Data Synchronization

Mobile Analytics Understand App Usage Data at Scale

SNS

Push Notification Service

Enterprise Applications

WorkSpaces Desktops in the Cloud

Secure Enterprise Storage and Sharing Service

Infrastructure Services

Compute

Windows

Linux

Storage

BLOB Storage

Azure Files

Premium Storage

Networking

Virtual Network

Load Balancer

DNS

Express Route

Traffic Manager

VPN Gateway

Application Gateway

Platform Services

Compute

Cloud Services

Service Fabric

Batch

Integration

Storage Queues

Biztalk Services

Hybrid Connections

Service Bus

Media & CDN

Media Services

Content Delivery Network (CDN)

App Service

Web Apps

API Apps

Management

Mobile Apps

Logic Apps

Notification Hubs

Developer Services

Visual Studio

Azure SDK

Team Project

Application Insights

Analytics & IoT

HDInsight

Machine Learning

Data Factory

Event Hubs

Stream Analytics

Mobile Engagement

Data

SQL Database

Redis Cache

DocumentDB

SQL Data Warehouse

Search

Tables

Security & Management

Portal

Active Directory

Multi-Factor Authentication

Automation

Key Vault

Store/Marketplace

VM Image Gallery & VM Depot

Produtos em destaque

Compute Engine

Máquinas virtuais em execução nos data centers do Google.

Cloud Storage

Armazenamento de objetos seguro, durável e escalonável.

SDK do Cloud

Ferramentas de linha de comando e bibliotecas para o Google Cloud.

Cloud SQL

Serviço de banco de dados relacional para MySQL, PostgreSQL e SQL Server.

Google Kubernetes Engine

Ambiente gerenciado para executar apps em contêineres.

BigQuery

Data warehouse para agilidade e insights comerciais.

Cloud CDN

Rede de fornecimento de conteúdo para oferecer Web e vídeo.

Dataflow

Análise para processamento em lote e de stream.

Operações

Pacote de monitoramento, geração de registros e desempenho de aplicativos.

Cloud Run

Ambiente totalmente gerenciado para executar apps em contêineres.

Anthos

Plataforma para modernizar os aplicativos atuais e criar novos.

Não encontrou o que procura?

Ver todos os produtos (mais de 100)

Fonte: cloud.google.com

Data Lake - Estruturas

NÃO ESTRUTURADOS

Data Lake - Exemplo de Arquitetura

Data Lake - Exemplo de Aplicação

Inteligência clínica e qualidade

Fontes

Aplicações

Data Warehouse x Data Lake

Arquitetura - Data Analytics

Fonte de dados

Data Warehouse (DW)

Dados **estruturados**

Data Lake

Áudio

Imagens

Documentos

Dados **não estruturados**

Inteligência Artificial

- Aprendizagem
 Supervisionada
- Processamento de Linguagem Natural
- Mineração de Processos
- Robótica
- Aprendizagem Não Supervisionada -Recomendações e Agrupamentos

Resultados

- Descoberta de conhecimento, padrões e insights
- Ações voltadas a melhoria de processos
- Detecção de inconformidades
- Automação de rotinas e processos
- Classificação de casos.

Business Intelligence x Analytics

Figura 2- Bl x BA - Michael Walken - http://www.rosebt.com/1/post/2012/09/eight-levels-of-analytics-for-competitive-advantage.html

Business Intelligence x Analytics

Área	Analista de BI	Cientista de Dados
Foco	Relatórios, KPI's, Tendências	Padrões, Correlações, Modelos Preditivos
Processo	Estático, Comparativo	Exploratório, Experimental, Visual
Fontes de Dados	Data Warehouses, Bancos Transacionais	Big Data, Dados Não-Estruturados, Bancos Transacionais e NoSQL, Dados Gerados em Tempo Real
Qualidade dos Dados na Fonte	Alta	Baixa ou Média (requer processo de limpeza e transformação)
Modelo de Dados	Esquema de dados bem definido na fonte	Esquema de dados definido no momento da consulta
Transformações nos Dados	Pouca ou nenhuma (dados já organizados na fonte)	Transformação sob demanda, necessidade de complementar os dados
Análise	Descritiva, Retrospectiva	Preditiva, Prescritiva
Responde à pergunta:	O que aconteceu?	O que pode acontecer?

Atores - Analista de Negócios (BI)

Atores - Cientista de Dados

Languages

R, SAS, Python, Matlab, SQL, Hive, Pig, Spark

Skills & Talents

- ✓ Distributed computing
- ✓ Predictive modeling
- ✓ Story-telling and visualizing
- ✓ Math, Stats, Machine Learning

DATA SCIENTIST "AS RARE AS UNICORNS"

Role

Cleans, massages and organizes (big) data

Mindset

Curious data wizard

Atores - Analista de Dados

DATA ANALYST

Role

Collects, processes and performs statistical data analyses

Mindset

Intuitive data junkie with high "figure-it-out" quotient

Languages

R, Python, HTML, Javascript, C/C++, SQL

Skills & Talents

- ✓ Spreadsheet tools (e.g. Excel)
- ✓ Database systems (SQL and NO SQL based)
- ✓ Communication & visualization
- ✓ Math, Stats, Machine Learning

Atores - Arquiteto de Dados

Languages SQL, XML, Hive, Pig, Spark

Skills & Talents

- ✓ Data warehousing solutions
- In-depth knowledge of database
- architecture
- ✓ Extraction Transformation and Load (ETL), spreadsheet and BI tools
- ✓ Data modeling
- ✓ Systems development

DATA ARCHITECT THE CONTEMPORARY DATA MODELLER

Role:

Creates blueprints for data management systems to integrate, centralize, protect and maintain data sources

Mindset:

Inquiring ninja with a love for data architecture design patterns

Atores - Engenheiro de Dados

DATA ENGINEERS BY TRADE

Role

Develops, constructs, tests and maintains architectures (such as databases and large-scale processing systems)

> Mindset All-purpose everyman

Languages

SQL, Hive, Pig, R, Matlab, SAS, SPSS, Python, Java, Ruby, C++, Perl

Skills & Talents

- ✓ Database systems (SQL & NO SQL based)
- ✓ Data modeling & ETL tools
- ✓ Data APIs
- ✓ Data warehousing solutions

Atores - Estatístico

Atores - D.B.A.

DATABASE ADMINISTRATOR

Role
Ensures that the database is
available to all relevant users, is
performing properly and is being
kept safe

Mindset Master of Disaster Prevention

Languages

SQL, Java, Ruby on Rails, XML, C#, Python

Skills & Talents

- √ Backup & recovery
- ✓ Data modeling and design
- ✓ Distributed Computing (Hadoop)
- ✓ Database systems (SQL and NO SQL based)
- ✓ Data security
- ✓ ERP & business knowledge

Atores - Gerente de Dados e Analytics

Exemplo Estrutura Funcional

CDO Governança Product Owner

Ferramentas Analytics

alteryx

Agenda e Questões Business Analytics

- Quais são os caminhos (tendências) para a Análise de Dados?
- Qual é a estrutura para a Análise de Dados?
- Governança de Dados: O que é? Qual é a sua importância?
- O que é Data Mesh?
- Quais são as tendências em termos de organização e armazenamento dos dados?
- Qual é o futuro das aplicações de IA? O que é IA Generativa e LLM?
- Estrutura funcional para aplicação de Business Analytics

Quais são os caminhos (tendências) para a Análise de Dados?

- Foco em resolver questões -> storytelling com os dados
- Insights Destaques importantes sobre a análise de dados.
 São gatilhos para desenvolver ações de melhorias e evolução dos apontamentos realizados.
- Análise *Top-down* Abordagem geral e depois detalhe os resultados
- Aplicação direta da Ciência de Dados Aprendizagem de Máquina para a descoberta de padrões de forma automática. Auto ML - instrumentos que permitem automatizar e reconhecer dinamicamente padrões nos dados do mundo real. Ex. Datarobot, H2O, Datalku, entre outras.
- Aplicação da Mineração de Processos para a descoberta do mapeamento do processo, dentro dos registros (log de eventos).

Qual é a estrutura para desenvolver esse ambiente?

GOVERNANÇA DE DADOS - DAMA-DMBOK ® Data Management Body of Knowledge

John Zachman

Governança de Dados

Data Mesh

O conceito *Data Mesh* foi aplicado por **Zhamak Deghani** em **2019**, e apresenta 4 princípios fundamentais que agrupam o conceito

What is Data Mesh?

datamesh-architecture.com

Fonte: https://www.datamesh-architecture.com/

Qual é o futuro das aplicações de I.A. e análise de dados?

- LLMs (*large Language Models*) têm potencial para impactar diversos aspectos dos negócios, desde a análise de dados e tomada de decisões até a personalização do atendimento ao cliente e automação de tarefas.
- Acesso à tecnologia para todos e em todos os lugares.
- Grandes evoluções irão acontecer no tratamento de imagem e assistentes.
- É essencial considerar os desafios e responsabilidades associados ao uso desses modelos, garantindo a segurança, transparência e ética em sua implementação

FUNÇÕES DO DMBOK ®

Áreas de conhecimento na Gestão de Dados – Segundo DMBOK ® – fonte: Barbieri (2013)

GOVERNANÇA DE DADOS

Dúvidas

Referências

- Date, Christopher J., Introdução a Sistemas de Bancos de Dados, Campus, 2005
- Silberschatz, Abraham; Korth, Henry F., Database System Concepts, Elsevier Brasil, 2016
- Graeme Simsion; Graham Witt, Data Modeling Essentials, Morgan Kaufmann, 2004
- Elmasri, R.; Navathe, S. **Sistema de Banco de Dados**, 4 ed. São Paulo, Pearson Addison Wesley, 2005.
- HARJINDER, Gill S.; PRAKASH Rao C. The Official Guide to Data Warehousing, Indianapolis, USA: QUE Corporation, 1996. 382p
- EDITION, First; BRACKETT, Michael; EARLEY, Production Susan. The DAMA Guide to The Data Management Body of Knowledge (DAMA-DMBOK Guide). 2009.
- BARBIERI, Carlos. Uma visão sintética e comentada do Data Management Body of Knowledge (DMBOK). Belo Horizonte: Fumsoft, 2013.
- Kimbal, Ralph. The Data Warehouse Toolkit. New York, USA: John Wiley & Sons, Inc., 1996. 388 p.
- · Kaplan R, Norton D. Organização Orientada para a Estratégia. 8 ed. Rio de Janeiro, Elsevier, 2000.
- Tomsen, E. OLAP: Construindo sistemas de informações multidimensional. 2 ed. Rio de Janeiro, Campus,
 2002.
- · Albright, et al: Data Analysis e Decision Making. 2 ed. CA, USA, Brooks/Cole, 2003.
- Turban, E. Decision Support and Expert Systems. 4 ed. New Jersey, USA, 1988.