CAS Big Data Analytics

(Big) Data Analytics in Marketing

Hakuna MaData Lisa-Christina Winter Co-Founder & Data Scientist T direkt: +41 79 840 64 34

Mailadresse: lisa@hakuna-madata.com

Vorstellung

Lisa-Christina Winter (@lisachwinter) ()

Psychologie (Prom. 2017, Universität Graz)

Statistik & Mathematische Modellierung, Kommunikation, Social Media

Programmierkenntnisse: R, IBM SPSS

Ehemals: Data Scientist/Consultant @ **ELCA LITTING gateB**

Aktuell: Senior User Researcher @ TestingTime

Co-Founder @ Hakuna MaData

(Growthhacking & Data Science @hakunamadatacom 🔰 👩)

Zum Ausprobieren...

Praxisbeispiele

- Webcrawling (legal)
 - https://hakuna-madata.com/luziNET/liste.php
- Downloads R & R Studio
 - https://cran.r-project.org
 - https://www.rstudio.com
- R-Skripte & Daten:
 - https://www.hakuna-madata.com/hslu.zip

Marketing: eine Definition

- Der Managementprozess, durch welchen Güter und Services sich vom Konzept zum Kunden bewegen. Marketing inkludiert die Koordination von 4 Elementen (die **4 P**'s des Marketing):
 - (1) Identifikation, Selektion und Entwicklung eines Produktes
 - (2) Bestimmung des **P**reises (+ Markt)
 - (3) Selektion des Distributionskanals → Platz des Kunden (+ Channel)
 - (4) Entwicklung und Implementierung der **P**romotionsstrategie (+ Darstellung & Werbebotschaft)

http://www.businessdictionary.com/definition/marketing.html

Big Data – Von der Technologie zum Mehrwert

Predictive Analytics/Affinitätsanalysen

Von unstrukturierten zu strukturierten Daten ("Data Lake" → DWH)

Unstrukturierte → **Strukturierte Daten**

Text Analytics, Natural Language Processing (NLP) and Search

- Advanced search and monitoring
- Named entity recognition
- Key-phrase/topic extraction
- Sentiment analysis
- Speech recognition
- Question answering
- Automatic translation

- ...

Big

unstrukturiert → strukturiert

Advanced Statistics & Mathematical Modeling

Volume, Velocity, Variety, Veracity

- PredictiveModeling/Data Mining
- Machine
 Learning/Inference
 Statistics/Statistical
 Modeling
- Clustering/Classification
- Visualisation/Exploration
- ModelAssessment/Comparison
- Model Scoring
- Bayes/Monte Carlo Simulations
- Discrete mathematical models

- ..

Von unstrukturierten zu strukturierten Daten ("Data Lake" → DWH)

Screenshot: https://www.facebook.com/hslu.ch/photos/a.266362740045281.87212.227326347282254/1963786060302932/

Advanced Analytics (Bild & Text)

Text Analytics: Natural-Language Processing

- Natural-Language Processing (**NLP**) ist ein breites Gebiet in der Informatik
- Spracherkennung sowie computergestütztes Verständnis/Erzeugen "natürlicher Sprache"
- Wörter nicht mehr nur isoliert, sondern im **grammatikalischen Kontext** (Syntax) analysiert
- Semantischen Aspekte:
 - Zeichenerkennung (Optical character recognition, OCR)
 - Sentiment Analysis
 - Computergestützte Übersetzung
 - Erzeugung "natürlicher" Sprache

Advanced Social Media Analytics (Bild & Text)

Text Analytics: Sentiment Analysis

- Bietet u.a. die Möglichkeit, Texte hinsichtlich ihrer "Positivität" einzuschätzen
- Rechts sind drei kurze Sätze nach ihrer "Positivität" eingeschätzt

https://indico.io/product
(Service kürzlich eingestellt)

Advanced Analytics (Bild & Text)

Anwendungsbereiche

- Aus Bilder können viele Informationen extrahiert werden
- Diese Informationen können für **Marketingzwecke** (mit und ohne CRM) verwendet werden
- **REAL TIME!** Post mit einem Bild von einem Baum → Aufruf für eine Spende zum Thema Wald
- Viele Posts mit Bilder von Autos → Werbung mit Autoversicherung
- Informationen im CRM ablegen und Modelle mit entsprechender Affinität auf Kundenbestand erstellen (Direktmarketing)
- Angereicherte Informationen als einfache Trigger im Direktmarketing verwenden (ohne Modelle)

Social Media Analytics - Anwendung

Segmentierung

- Finden der richtigen Zielgruppe/ Gruppen/Listen
- Richtigen Kanal zur richtigen Zeit wählen

Lean Marketing

Growth Hacking Audience Analytics Erforschung von Kundenmeinungen, um Marketing und Kundenservice in ihrer Arbeit zu unterstützen

Psychological Profiling

Persönlichkeitsmerkmale

Voraussetzung

Big Data im Marketing

Unstrukturierte → Strukturierte Daten

Psychological Profiling

Kombination von bekannten Daten (CRM) & Persönlichkeitsdaten

- z.B. Big Five (Offenheit, Gewissenhaftigkeit, Extraversion, Verträglichkeit, Neurotizismus)
- Identifiziert auf Basis von "behavioral indicators" auf Social Media

Zum Beispiel: Cambridge University https://applymagicsauce.com
The Psychology of Data Science https://thegroupofanalysts.com/2018/04/03/the-psychology-of-data-science

Psychological Profiling

Age

Psychological Gender

Cambridge University https://applymagicsauce.com

Targeted Marketing

- Typische **Zielvorstellungen** sind
 - Umsatzsteigerung
 - das Einholen von Einschätzungen der eigenen Produkte und Dienstleistungen
 - Verbesserung der öffentlichen Meinung über bestimmte Produkte und/oder Unternehmensaktivitäten
 - Verbessertes Targeting (Werbung)
- Identifizierung und Umwandlung der profitabelsten Kundensegmente
- Kundensegmente **priorisieren** und Marketinginvestitionen entsprechend anpassen

Growth Hacking

- **Growth Hacking** (Experimental Marketing)
- Ziel: Wachstum von **Startups** (Clients & Revenue)
- Geringe finanzielle Mittel (Marketingbudget)
- Lean, creative, experimental Marketing auf spezielle Zielgruppen bezogen
- Data Driven: Tools (APIs), Web-Scraping, Social Media Daten aus Portalen

CRM & Big Data – Zusammenspiel von unstrukturierten und strukturierten Daten

Affinitätsanalysen/Anreicherung CRM/Predictive Analytics

Reminder: Predictive Analytics/Affinitätsanalysen

Ausgangslage

- Vorhandenes CRM System (MS Dynamics, SAP-CRM, Eigensysteme, ...)
- Kundenbestand mit:
 - Vor-, Nachname, Adresse
 - E-Mail, Telefon
 - Alter
 - Kaufverhalten (Transaktionen)
 - Fehlende Informationen zu Soziodemographie
 - Fehlende Informationen zu Interessen

Ziele

- **Kundenbestand:** im CRM mit Daten/Personen aus Social Media Kanäle finden und ausbauen
- Extrahieren: von Keywords, Likes, Kategorien, Standort, ... durch Bild- und Texterkennung
- **Anbindung:** ans CRM (Informationen im CRM ablegen)
- **Zielgruppe:** bei Selektionen schärfen (personalisierte Werbeaktionen)
- **Erhöhung:** des Engagements in Bezug auf spezifische Themen durch Affinitätsanalyse

Finden von Personen aufgrund von Name oder Standort/Beruf/...

- Auf Social Media können über **API**s diverse Identifikations-Informationen von Personen abgerufen werden (E-Mail, Adresse, ...), sofern diese freigegeben wurden
- Mit einfachen **Matching-Algorithmen** können diese mit dem Kundenbestand im CRM verknüpft werden
- In der Vergangenheit konnte man Personen eindeutig über Telefonnummern oder E-Mail-Adressen finden, was derzeit nicht möglich ist
- Facebook/Instagram haben ihre APIs massiv eingeschränkt
- Idealerweise hinterlassen Kunden ihre **Usernamen** in den sozialen Netzwerken im CRM
- Damit erhält man letztlich Informationen über die Personen, indem man sich z.B. ihre Tweets und anderen Interaktionen ansieht

Extrahieren von Keywords/Likes/Kategorien/Standort

- Auf Social Media können über API diverse Identifikations-Informationen von Personen oder Tweets abgerufen werden, sofern diese freigegeben wurde

Praxisbeispiel Affinitätsanalyse

Ausgangslage Firma XY

- Die Firma XY möchte ein neues Produkt lancieren: Einhorn Plüschtier
- Sie kennen die Zielgruppe, haben aber auf ihrem Kundenbestand keine sinnvollen Informationen, um eine vernünftige Selektion durchzuführen

Ziele

- Um zu schauen, wie das Produkt bei den Kunden ankommt, wollen sie als Test **nur Kunden** angehen, die für das neue Produkt am **affinsten** sind
- Kundenbestand im CRM mit **Daten/Personen aus Twitter finden** und zuordnen
- Extrahieren von **Hashtag #unicorn** aus Twitter
- Selektion der Kunden mit zwei Varianten
 - Nur die Kunden, welche durch Twitter über den Hashtag identifiziert wurden
 Nachteil: Alle Kunden, die nicht mit Twitter verknüpft werden konnten, aber affin sind, gehen verloren
 - Modelle zur Identifizierung mit Affinitätsscores (Information von Unicorn vorhanden)

Vorteil: Potential für Selektion wird erhöht

Affinitätsanalysen/Anreicherung CRM Praxisbeispiel: Affinitätsanalyse

Datenaufbereitung \rightarrow **Analysebasistabelle**

Input:

- (Sozio-)Demographie
- Beziehungen und Kontakte (CRM)
- Aktuelle und vergangene Käufe
 - Kaufhäufigkeit und -Beträge
 - Topics of Interest (Keywords)
- Teilnahmen an Aktionen
 - Topics of Interest
- 3rd Party Daten
- Regionale Merkmale

Target:

- Affinität Produkt ja/nein, während des "Performance-Zeitraums"

Häufigste Modellierungsansätze für Binäre Zielvariable

 Logistische Regression

 Entscheidungsbäume

Neuronale
 Netze

- Naive Bayes

Random
 Forests

 Support Vector Machines

Logistische Regression: Szenario

(Fiktive!) Daten aus der Sales-Abteilung zum Verkauf eines neuen Produkts: Einhorn Plüschtier

Aus Social Media wurde, wie in den Zielen beschrieben, Informationen aus Twitter extrahiert, wer Interesse an Einhörner hat (Zielvariable).

400 Beobachtungen auf 4 Variablen:

- target (y): "0" (kein Hashtag mit Unicorn gefunden) oder "1" (Hashtag mit Unicorn gefunden)

```
gender: "female", "male"
hipster: "no", "yes"
works_startup: "no", "yes"
```

Die unabhängigen Variablen (Input) gender, hipster und works_startup wurden durch Analysen auf sozialen Medien erhoben.

Logistische Regression: Modellvorhersagen

Was lernen wir aus dem Modell?

Alle Erkenntnisse beziehen sich auf die Wahrscheinlichkeit für das Produkt, wenn der Hashtag vorhanden ist:

- Männer und Frauen unterscheiden sich nicht
- Personen, die sich als "**Hipster**" beschreiben, haben eine höhere Wahrscheinlichkeit (Odds = 5.9x höher, p < .001)
- Den **stärksten Effekt** gibt es bei Personen, die angeben, dass sie in **Startups** arbeiten. Bei diesen sind die Odds, das Produkt zu kaufen 28.9x höher (p < .001)

NB: Die Daten sind simuliert!

Anwendung Modellaffinität

Tabelle mit allen Kunden und folgenden Informationen:

Affinitäts-Wahrscheinlichkeit (in %):

für jeden Kunden persönlich gemäss Modelloutput

Perzentile:

eine Einteilung der Wahrscheinlichkeiten (Scores von 1–100) zur vereinfachten Selektion

Kundeninformationen:

Alle verfügbaren Kundeninformationen als weitere Selektions- und Filtermerkmale

Kunde	Segment	Affinität	Perzentil		
Z. Alpha	А	75%	1		
Y. Beta	А	65%	1		
X. Delta	С	42%	7		
W. Omega	В	24%	50		
V. Psi	С	14%	69		
T. Gamma	В	5%	90		
U. Lambda	А	1%	100		

Evaluation/Beurteilung Modell

Durch die Modelle können wesentliche Optimierungen erreicht werden:

- Innerhalb der 25% der affinsten Kunden werden dank dem analytischem Modell 70% der Käufer gefunden (Uplift)!
- Mit gleichem Aufwand (Kampagnenbudget) lässt sich ein **besseres Ergebnis** bei spezifischer Kundenzielgruppe erreichen
- Alternative Betrachtung des Uplifts: Mit weniger Aufwand lässt sich dasselbe Ergebnis (dieselbe Kundenloyalisierung) erreichen

Ausblick

Das Vorgehen kann auf beliebig viele Keywords/Kategorien angewendet werden

Keywords/Kategorien können miteinander **kombiniert** werden

Es können auch **Cluster-Ansätze** verwendet werden

Infos aus
unterschiedlichen Quellen
verwenden,
um genügend Daten für die
Modellierung zu haben

API und Restriktionen ("APIcalypse now!")

- Durch die **Einschränkungen** von Facebook (und Instagram) im Zuge der **Cambridge Analytica** Affäre kaum noch die Möglichkeit, Personen automatisiert eindeutig zu finden
- Personenbezogene Informationen kann man jetzt
 - manuell suchen (oder ggf. automatisiert mit händischer Validierung/halb-manuell z.B. Chrome Extensions)
 - durch die freiwillige Angabe der Personen erhalten
 - ...
- **DSGVO (GDPR)** schränkt die Möglichkeiten, sensible personenbezogene Daten zu verarbeiten ein (einige Unternehmen und Anbieter wollen das Risiko eines Verstosses nicht eingehen)
- Öffentliche Informationen wie Tweets etc. sind weiterhin zugänglich
- **Web-Scraping** ist oft ein Graubereich bzw. ist fallweise in Nutzungsbedingungen geregelt

Ethische Überlegungen

Der Fall von Cambridge Analytica

- Persönlichkeitstest (über App) mit 270'000 Facebook-Usern durchgeführt und Persönlichkeitsprofil abgebildet
- Berechtigung für die App erlaubte auch das Auslesen persönlicher Daten der Facebook-Kontakte der Testpersonen
- Mit etwa 200 Facebook-Freunden pro Testperson sind das rund 50 Millionen Nutzer insgesamt
- **Methode** entwickelt, um mittels "Likes" auf Facebook ein Persönlichkeitsprofil zu rekonstruieren
- CA erstellte damit die Persönlichkeitsprofile von über 100 Millionen eingetragenen Wählerinnen und Wählern in den USA, um dann unterschiedliche Wahlkampfanzeigen auf FB anzuzeigen
- Die **Datensegmentierung und -analyse** durch CA bedeutet eine radikale Veränderung, wie Technologie verwendet werden kann, um z.B. politisch Einfluss zu nehmen

Schlusswort

- 360-Grad Kundensicht aufbauen
- Ausbau vom Kundenbestand durch Anbindung weiterer Quellen
- Kundenbindung erhöhen durch zusätzliche Informationen aus der Social Media Welt und gezieltes Marketing
- Neue Modellierungsmöglichkeiten durch Ergänzung von Online-Daten im CRM
- **Empfehlungen in Real Time** durch aktuelle Online-Informationen
- Reputation Management in Real Time
- Unmittelbares "Feedback" was Veränderungen bei Preis, Produktpalette, Kampagnen etc. anbelangt
- Marketing Mix Optimierung beinahe in Echtzeit:
 - Erhöhung oder Reduktion von Investitionen in gewissen Kanälen
 - Mathematische Optimierung vom Marketing Mix Model
- Targeted Online Navigation
- Next best activity in Real Time

Appendix: Praktische Beispiele

Affinitätsanalysen/Anreicherung CRM/Predictive Social Media

Logistische Regression: Deskriptive Analyse

Eine einfache Auszählung ergibt folgendes:

> with(daten, ftable(gender, hipster, works startup, y)) 0 1 gender hipster works startup female no 46 4 no 8 42 yes 27 23 yes no 1 49 yes male 41 9 no no 10 40 ves no 25 25 yes yes 3 47

Prozentuell (auf die Spalten bezogen):

> 100 * prop.table(with(daten, ftable(gender, hipster, works startup, y)), 1) 0 gender hipster works startup female no 92 8 no 16 84 yes 54 46 yes no 2 98 yes male 82 18 no no 20 80 ves 50 50 yes no 6 94 yes

Logistische Regression: Deskriptive Analyse

Informationen der vorherigen Folie zusammengefasst (Häufigkeiten und Prozent für jede Kombination der unabhängigen Variablen).

(Prozentwerte in "ohne Hashtag" und "mit Hashtag" sind redundant, weil jeweils 100% minus die andere Variable)

		Frauen				Männer			
hip?	Startup?	ohne Hashtag		mit Hashtag		ohne Hashtag		mit Hashtag	
no -	no	46	(92%)	4	(8%)	41	(82%)	9	(18%)
	yes	8	(16%)	42	(84%)	10	(20%)	40	(80%)
yes -	no	27	(54%)	23	(46%)	25	(50%)	25	(50%)
	yes	1	(2%)	49	(98%)	3	(6%)	47	(94%)

Logistische Regression: Modellselektion

Ein volles Modell mit allen Interaktionen beschreibt die Daten gut, lässt sich aber vl. vereinfachen.

```
> modF <- glm(y ~ gender * hipster * works startup, daten, family = binomial)</pre>
> summary(modF)
Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                      -2.44235 0.52129 -4.685 2.80e-06 ***
gendermale
                                      0.92600 0.63815 1.451 0.146763
hipsteryes
                                      2.28200 0.59351 3.845 0.000121 ***
works startupyes
                              4.10058 0.64850 6.323 2.56e-10 ***
gendermale:hipsteryes
                                     -0.76566 0.75350 -1.016 0.309563
gendermale:works startupyes
                                     -1.19793 0.82526 -1.452 0.146616
hipsteryes:works startupyes
                                      -0.04841 1.23343 -0.039 0.968691
gendermale:hipsteryes:works startupyes -0.10269 1.48878 -0.069 0.945006
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Logistische Regression: Modellselektion

Volles Modell in Objekt modS. Modellselektion mit drop1() mittels Likelihood-Ratio-Test (LRT)

Ohne Dreifachinteraktion ist der Fit nicht signifikant schlechter (p = .945), also Term entfernen und drop1() wiederholen.

Logistische Regression: Modellselektion

Terme mit update() entfernen anstatt immer das ganze Modell angeben. **Neuerliche Testung** zeigt, dass keiner der Terme < .05 ist. Entfernen von hipster:works_startup mit dem grössten *p*-Wert.

Logistische Regression: Modellselektion

Modellselektion bis kein Term mehr < .05 ist.

Modell enthält nur noch hipster und works_startup (nicht signifikant schlechter als das volle Modell mit 8 Parametern; p = .573)

Logistische Regression: Modellvorhersagen

Vorhersagen für neue Daten mit predict() (Default: Logit-transformierte Werte wie in pred_link; type = "response" berechnet Wahrscheinlichkeiten)

```
> pred mat <- unique(daten[,c("hipster", "works startup")])</pre>
> pred mat$pred link <- predict(modS, newdata = pred mat)</pre>
> pred mat$pred prob <- predict(modS, newdata = pred mat, type = "response")</pre>
> pred mat
    hipster works startup pred link pred prob
1
                       no -1.87111362 0.1334129 —
         nο
101
                       no -0.09372022 0.4765871
        ves
201
                      yes 1.49339355 0.8165871 -
                      ves 3.27078695 0.9634129
301
        ves
> 100 * prop.table(with(daten, ftable(hipster, works startup, y)), 1)
                         0 1
hipster works startup
no
        no
                         18 82 -
        ves
ves
                         52 48
                          4 96 '
        yes
```

Die Werte aus der Vorhersage decken sich mit den tatsächlichen sehr gut (siehe Verbindungslinien).