MSAN 502 - Homework 3

Andre Guimaraes Duarte August 3rd, 2016

Python problem

In this problem, we will use pandas and numpy to find the best fit line in the sense of least squares to a set of data consisting of paired observations in the form (x;y). The code for my implementation can be found in files TVlife.py, population.py, and nba.py. In addition, I found a data set online concerning XXX that I analyzed using the same system as these files. Here, I will explain how I proceeded, and show the results and graphs.

population.txt

This file contains information concerning the national population (y) as a function of the year (x). Plotting y against x, we get the graph seen in figure 1. We can see that a linear regression seems to be a likely candidate for regression.

Figure 1: National US population from 1900 to 2000

With numpy, we can easily obtain $\hat{\mathbf{x}}$ that minimizes the error. We just need to compute:

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

We get
$$\hat{\mathbf{x}} = \begin{bmatrix} -3.741 \cdot 10^9 \\ 2.003 \cdot 10^6 \end{bmatrix}$$
.

If we draw this line on top of the data, we get the image in figure 2.

Figure 2: National US population from 1900 to 2000 and regression line

The fit that we computed seems to be what we would expect.

nba.txt

This file contains information concerning team winning percentage in basketball games (y) as a function of PM (the average point difference over all that team's games) (x). Plotting y against x, we get the graph seen in figure 3. We can see that a linear regression seems to be a likely candidate for regression.

Figure 3: Team winning percentage as a function of PM

With numpy, we can easily obtain $\hat{\mathbf{x}}$ that minimizes the error. We just need to compute:

$$\widehat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

We get $\hat{\mathbf{x}} = \begin{bmatrix} 0.500 \\ 0.032 \end{bmatrix}$.

If we draw this line on top of the data, we get the image in figure 4.

The fit that we computed seems to be what we would expect.

Figure 4: Team winning percentage as a function of PM and regression line

TVlife.txt

This file contains information concerning life expectancy (y) as a function of televisions per thousand people (x). Plotting y against x, we get the graph seen in figure 5. In this case, linear regression does not seem like the best candidate for regression. Maybe a polynomial regression would work better in this case. But we will proceed with linear regression for this problem.

With numpy, we can easily obtain $\hat{\mathbf{x}}$ that minimizes the error. We just need to compute:

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

We get $\hat{\mathbf{x}} = \begin{bmatrix} 57.337 \\ 0.032 \end{bmatrix}$.

If we draw this line on top of the data, we get the image in figure 6.

The linear fit seems adequate, but a polynomial regression would produce a better result in this particular case.

Figure 5: Life expectancy per televisions per thousand people

30 oysters.txt

I got this file from the *Journal of Statistics Education*, via the website http://www.amstat.org/publications/jse/jse_data_archive.htm. The file consists of 30 observations of 5 variables concerning oysters that was collected in 2001. The direct link to the file is: http://www.amstat.org/publications/jse/datasets/30oysters.dat.txt.

This file contains information concerning 30 oysters' volume in cc(y) as a function of their weight in grams (x). Plotting y against x, we get the graph seen in figure 7. We can see that a linear regression seems to be a likely candidate for regression. The data seems very linearly correlated.

With numpy, we can easily obtain $\hat{\mathbf{x}}$ that minimizes the error. We just need to compute:

$$\widehat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

We get $\hat{\mathbf{x}} = \begin{bmatrix} 0.714 \\ 0.955 \end{bmatrix}$.

If we draw this line on top of the data, we get the image in figure 8.

The fit that we computed seems to be what we would expect.

Figure 6: Life expectancy per televisions per thousand people and regression line

Figure 7: Oysters' volume as a function of their weight

Figure 8: Oyster's volume as a function of their weight and regression line