$$J = \frac{1}{2}$$

au discovery paper was PERL 75. $e^+e^- oup au^+ au^-$ cross-section threshold behavior and magnitude are consistent with pointlike spin-1/2 Dirac particle. BRANDELIK 78 ruled out pointlike spin-0 or spin-1 particle. FELDMAN 78 ruled out J=3/2. KIRKBY 79 also ruled out J=integer, J=3/2.

τ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1776.86 ± 0.12 OUR A	VERAGE				
$1776.91 \pm 0.12 ^{+0.10}_{-0.13}$	1171	¹ ABLIKIM			23.3 pb ⁻¹ , $E_{cm}^{ee} =$
$1776.68 \pm 0.12 \pm 0.41$	682k	² AUBERT	09AK	BABR	3.54–3.60 GeV 423 fb ⁻¹ , <i>E</i> ^{ee} _{cm} =10.6 GeV
$1776.81^{+0.25}_{-0.23}\pm0.15$	81	ANASHIN			6.7 pb ⁻¹ , $E_{cm}^{ee} =$
$1776.61 \!\pm\! 0.13 \!\pm\! 0.35$		² BELOUS	07	BELL	3.54-3.78 GeV 414 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
1775.1 ± 1.6 ± 1.0	13.3k	³ ABBIENDI	00A	OPAL	1990-1995 LEP runs
$1778.2 \ \pm 0.8 \ \pm 1.2$		ANASTASSOV	97	CLEO	$E_{\rm cm}^{\it ee}=10.6~{\rm GeV}$
$1776.96 {}^{+ 0.18}_{- 0.21} {}^{+ 0.25}_{- 0.17}$	65	⁴ BAI	96	BES	$E_{\rm cm}^{\it ee} = 3.54 - 3.57 \; {\rm GeV}$
1776.3 ± 2.4 ± 1.4	11k	⁵ ALBRECHT	92M	ARG	Eee = 9.4–10.6 GeV
1783 $\begin{array}{cc} +3 \\ -4 \end{array}$	692	⁶ BACINO	78 B	DLCO	E _{cm} = 3.1–7.4 GeV
ullet $ullet$ We do not use	the follov	ving data for avera	ages,	fits, limi	ts, etc. • • •
1777 8 +07 +17	2EL	7 DALECT	03	CLEO	Popl by ANASTASSON 07

1777.8
$$\pm 0.7$$
 ± 1.7 35k ⁷ BALEST 93 CLEO Repl. by ANASTASSOV 97 1776.9 $^{+0.4}_{-0.5}$ ± 0.2 14 ⁸ BAI 92 BES Repl. by BAI 96

¹ ABLIKIM 14D fit $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ at different energies near threshold.

² AUBERT 09AK and BELOUS 07 fit τ pseudomass spectrum in $\tau\to\pi\pi^+\pi^-\nu_\tau$ decays. Result assumes $m_{\nu_\tau}=0$.

³ ABBIENDI 00A fit au pseudomass spectrum in $au \to \pi^\pm \le 2\pi^0 \nu_{ au}$ and $au \to \pi^\pm \pi^+ \pi^- \le 1\pi^0 \nu_{ au}$ decays. Result assumes $m_{
u_{ au}} = 0$.

⁴BAI 96 fit $\sigma(e^+e^- \to \tau^+\tau^-)$ at different energies near threshold.

 $^{^5}$ ALBRECHT 92M fit τ pseudomass spectrum in $\tau^-\to 2\pi^-\pi^+\nu_\tau$ decays. Result assumes $m_{\nu_\tau}{=}0.$

⁶ BACINO 78B value comes from $e^{\pm}X^{\mp}$ threshold. Published mass 1782 MeV increased by 1 MeV using the high precision $\psi(2S)$ mass measurement of ZHOLENTZ 80 to eliminate the absolute SPEAR energy calibration uncertainty.

⁷ BALEST 93 fit spectra of minimum kinematically allowed τ mass in events of the type $e^+e^- \rightarrow \tau^+\tau^- \rightarrow (\pi^+ n\pi^0 \nu_\tau)(\pi^- m\pi^0 \nu_\tau)$ $n \leq 2, m \leq 2, 1 \leq n+m \leq 3$. If $m_{\nu_\tau} \neq 0$, result increases by $(m_{\nu_\tau}^2/1100 \text{ MeV})$.

⁸BAI 92 fit $\sigma(e^+e^- \rightarrow \tau^+\tau^-)$ near threshold using $e\mu$ events.

$$(m_{ au^+} - m_{ au^-})/m_{\text{average}}$$

A test of CPT invariance.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.8 \times 10^{-4}$	90	BELOUS	07	BELL	414 fb $^{-1}$, $E_{\rm cm}^{\rm ee}$ =10.6 GeV	
• • • We do not use the following data for averages, fits, limits, etc. • •						
$< 5.5 \times 10^{-4}$	90	¹ AUBERT	09A	k BABR	423 fb $^{-1}$, $E_{\rm cm}^{\rm ee}$ =10.6 GeV	
$< 3.0 \times 10^{-3}$	90	ABBIENDI	00A	OPAL	1990-1995 LEP runs	
			r limi	it and ($m_{ au^+} - m_{ au^-})/m_{\text{average}} =$	
(-3.4 \pm 1.3 \pm	$0.3) \times 10$	-4 .				

au MEAN LIFE

VALUE	$(10^{-15} s$	s)	EVTS	DOCUMENT ID		TECN	COMMENT
290.3	± 0.5	OUR A	/ERAGE				
290.17	± 0.53	3 ± 0.33	1.1M	BELOUS	14	BELL	711 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
290.9	\pm 1.4	\pm 1.0		ABDALLAH	04T	DLPH	1991-1995 LEP runs
293.2	\pm 2.0	\pm 1.5		ACCIARRI	00 B	L3	1991-1995 LEP runs
290.1	\pm 1.5	\pm 1.1		BARATE	97 R	ALEP	1989-1994 LEP runs
289.2	\pm 1.7	\pm 1.2		ALEXANDER	96E	OPAL	1990-1994 LEP runs
289.0	\pm 2.8	\pm 4.0	57.4k	BALEST	96	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
• • •	We do	not use t	he following	g data for averag	ges, fit	ts, limits	, etc. • • •
291.2	\pm 2.0	\pm 1.2		BARATE	971	ALEP	Repl. by BARATE 97R
291.4	\pm 3.0			ABREU	96 B	DLPH	Repl. by ABDALLAH 04T
290.1	$\pm \ 4.0$		34k	ACCIARRI	96K	L3	Repl. by ACCIARRI 00B
297	\pm 9	\pm 5	1671	ABE	95Y	SLD	1992-1993 SLC runs
304	± 14	\pm 7	4100	BATTLE	92	CLEO	$E_{\rm cm}^{\it ee}$ = 10.6 GeV
301	± 29		3780	KLEINWORT	89	JADE	E _{cm} ^{ee} = 35–46 GeV
288	± 16	± 17	807	AMIDEI	88	MRK2	$E_{\rm cm}^{\it ee}$ = 29 GeV
306	± 20	± 14	695	BRAUNSCH	88C	TASS	$E_{\rm cm}^{\rm ee} = 36 \; {\rm GeV}$
299	± 15	± 10	1311	ABACHI	87C	HRS	$E_{\rm cm}^{\it ee}$ = 29 GeV
295	± 14	± 11	5696	ALBRECHT	87 P	ARG	$E_{\rm cm}^{\it ee} = 9.3 10.6 {\rm GeV}$
309	± 17	\pm 7	3788	BAND	87 B	MAC	$E_{\rm cm}^{\it ee} = 29~{\rm GeV}$
325	± 14	± 18	8470	BEBEK	87C	CLEO	$E_{\rm cm}^{ee} = 10.5 \; {\rm GeV}$
460 \pm	190		102	FELDMAN	82	MRK2	$E_{cm}^{ee} = 29 \; GeV$

$$(au_{ au^+} - au_{ au^-}) \, / \, au_{ ext{average}}$$

Test of CPT invariance.

 $\frac{CL\%}{90}$ $\frac{DOCUMENT\ ID}{1}$ BELOUS 14 BELL $711\ fb^{-1}\ E_{cm}^{ee}=10.6\ GeV$

¹BELOUS 14 quote limit on the absolute value of the relative lifetime difference.

au MAGNETIC MOMENT ANOMALY

The q^2 dependence is expected to be small providing no thresholds are nearby.

$\mu_{\tau}/(e\hbar/2m_{\tau})-1=(g_{\tau}-2)/2$

For a theoretical calculation $[(g_{\tau}-2)/2=117721(5)\times 10^{-8}]$, see EIDELMAN 07.

DOCUMENT ID TECN COMMENT <u>CL%</u> > -0.052 and < 0.013 (CL = 95%) OUR LIMIT $^{
m 1}$ ABDALLAH 04K DLPH $e^+e^-
ightarrow e^+e^- au^+ au^-$ > -0.052 and < 0.013 95

• • • We do not use the following data for averages, fits, limits, etc. • • •

		0	0 ,	•	'
< 0.107	95	² ACHARD	04 G	L3	$e^+e^- ightarrow e^+e^- au^+ au^-$
> -0.007 and < 0.005	95	³ GONZALEZ-S	00	RVUE	$e^+e^- ightarrow au^+ au^-$ and
> 0.050 and < 0.050	OF	⁴ ACCIARRI	00-	1.2	$W ightarrow ~ au u_{\mathcal{T}}$ 1991–1995 LEP runs
> -0.052 and < 0.058	95				
$> -0.068 \; and < 0.065$	95		98N	OPAL	1990-1995 LEP runs
>-0.004 and <0.006	95		97	RVUE	$Z ightarrow~ au^+ au^-$ at LEP
< 0.01	95	⁷ ESCRIBANO	93	RVUE	$Z ightarrow~ au^+ au^-$ at LEP
< 0.12	90	GRIFOLS			$Z ightarrow \ au au \gamma$ at LEP
< 0.023	95	⁸ SILVERMAN	83	RVUE	$\mathrm{e^+e^-} ightarrow \ au^+ au^-$ at
					PETRA

¹ ABDALLAH 04K limit is derived from $e^+e^- \rightarrow e^+e^- \tau^+ \tau^-$ total cross-section measurements at \sqrt{s} between 183 and 208 GeV. In addition to the limits, the authors also quote a value of -0.018 ± 0.017 .

au ELECTRIC DIPOLE MOMENT $(d_{ au})$

A nonzero value is forbidden by both T invariance and P invariance.

The q^2 dependence is expected to be small providing no thresholds are nearby.

$Re(d_{\tau})$

$VALUE~(10^{-16}~ecm)$	CL%	DOCUMENT ID		TECN	COMMENT
- 0.22 to 0.45	95	¹ INAMI C	3	BELL	$E_{\rm cm}^{\it ee}$ = 10.6 GeV

² ACHARD 04G limit is derived from $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ total cross-section measurements at \sqrt{s} between 189 and 206 GeV, and is on the absolute value of the magnetic

 $^{^3}$ GONZALEZ-SPRINBERG 00 use data on tau lepton production at LEP1, SLC, and LEP2, and data from colliders and LEP2 to determine limits. Assume imaginary compo-

⁴ ACCIARRI 98E use $Z \rightarrow \tau^+ \tau^- \gamma$ events. In addition to the limits, the authors also quote a value of 0.004 \pm 0.027 \pm 0.023.

 $^{^{5}}$ ACKERSTAFF 98N use $Z
ightarrow au^{+} au^{-} \gamma$ events. The limit applies to an average of the form factor for off-shell τ 's having p^2 ranging from m_{τ}^2 to $(M_Z - m_{\tau})^2$.

⁶ESCRIBANO 97 use preliminary experimental results.

 $^{^7}$ ESCRIBANO 93 limit derived from $\Gamma(Z o au^+ au^-)$, and is on the absolute value of the magnetic moment anomaly.

⁸ SILVERMAN 83 limit is derived from $e^+e^-
ightarrow au^+ au^-$ total cross-section measurements for q^2 up to $(37 \text{ GeV})^2$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 2.3	90	² GROZIN	09A	RVUE	From e EDM limit
< 3.7	95	³ ABDALLAH	04K	DLPH	$e^+e^- \rightarrow e^+e^-\tau^+\tau^-$
< 11.4	95	⁴ ACHARD	0 4G	L3	at LEP2 $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ at LEP2
< 4.6	95	⁵ ALBRECHT	00	ARG	$E_{\rm cm}^{ee} = 10.4 \text{ GeV}$
>-3.1 and <3.1	95	ACCIARRI		L3	1991-1995 LEP runs
> -3.8 and $<$ 3.6	95	⁶ ACKERSTAFF	98N	OPAL	1990-1995 LEP runs
< 0.11	95	^{7,8} ESCRIBANO	97	RVUE	$Z ightarrow~ au^+ au^-$ at LEP
< 0.5	95	⁹ ESCRIBANO	93	RVUE	$Z ightarrow \ au^+ au^-$ at LEP
< 7	90	GRIFOLS	91	RVUE	$Z ightarrow \ au au au \gamma$ at LEP
< 1.6	90	DELAGUILA	90	RVUE	$e^+e^- \rightarrow \tau^+\tau^-$
					$E_{\rm cm}^{ee} = 35 {\rm GeV}$

¹ INAMI 03 use $e^+e^- \rightarrow \tau^+\tau^-$ events.

$\operatorname{Im}(d_{ au})$

$VALUE (10^{-10} ecm)$	CL%	DOCUMENT ID		TECN	COMMENT
-0.25 to 0.008	95	¹ INAMI	03	BELL	$E_{\rm cm}^{\it ee} = 10.6~{\rm GeV}$
• • • We do not use the	following	data for averages	s, fits,	limits,	etc. • • •
< 1.8	95	² ALBRECHT	00	ARG	$E_{\rm cm}^{\it ee} = 10.4 \; {\rm GeV}$
1_2 INAMI 03 use $\mathrm{e^+e^-}$ ALBRECHT 00 use $\mathrm{e^-}$	$e^{+}e^{-}$	$ au^-$ events. $ au^+ au^-$ events. L	imit i	s on the	absolute value of ${\rm Im}(d_{\scriptscriptstyle \mathcal{T}}).$

au WEAK DIPOLE MOMENT $(d_{ au}^{w})$

A nonzero value is forbidden by CP invariance.

The q^2 dependence is expected to be small providing no thresholds are nearby.

$Re(d_{\tau}^{\mathbf{w}})$

$VALUE (10^{-17} \text{ ecm})$	CL%	CL% DOCUMENT ID		TECN	COMMENT	
<0.50	95	¹ HEISTER	03F	ALEP	1990-1995 LEP runs	
HTTP://PDG.	LBL.GOV	Page 4	4	C	reated: 5/30/2017	17:22

 $^{^2}$ GROZIN 09A calculate the contribution to the electron electric dipole moment from the τ electric dipole moment appearing in loops, which is $\Delta d_e = 6.9 \times 10^{-12} \ d_\tau$. Dividing the REGAN 02 upper limit $\left|d_e\right| \leq 1.6 \times 10^{-27}$ e cm at CL=90% by 6.9×10^{-12} gives this limit.

this limit. 3 ABDALLAH 04K limit is derived from $e^+e^- \rightarrow e^+e^- \tau^+ \tau^-$ total cross-section measurements at \sqrt{s} between 183 and 208 GeV and is on the absolute value of d_{τ} .

⁴ ACHARD 04G limit is derived from $e^+e^- \rightarrow e^+e^- \tau^+ \tau^-$ total cross-section measurements at \sqrt{s} between 189 and 206 GeV, and is on the absolute value of d_{τ} .

 $^{^5}$ ALBRECHT 00 use $e^+e^-\to~\tau^+\tau^-$ events. Limit is on the absolute value of ${\rm Re}(d_\tau)$.

⁶ ACKERSTAFF 98N use $Z \to \tau^+ \tau^- \gamma$ events. The limit applies to an average of the form factor for off-shell τ 's having p^2 ranging from m_τ^2 to $(M_Z - m_\tau)^2$.

 $^{^7}$ ESCRIBANO 97 derive the relationship $\left|d_{\tau}\right|=\cot\theta_W\left|d_{\tau}^W\right|$ using effective Lagrangian methods, and use a conference result $\left|d_{\tau}^W\right|<5.8\times10^{-18}$ e cm at 95% CL (L. Silvestris, ICHEP96) to obtain this result.

⁸ ESCRIBANO 97 use preliminary experimental results.

⁹ ESCRIBANO 93 limit derived from $\Gamma(Z \to \tau^+ \tau^-)$, and is on the absolute value of the electric dipole moment.

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 3.0	90	¹ ACCIARRI	98C	L3	1991-1995 LEP runs
< 0.56	95		97L	OPAL	1991-1995 LEP runs
< 0.78	95	² AKERS	95F	OPAL	Repl. by ACKERSTAFF 97L
<1.5	95	² BUSKULIC	95 C	ALEP	Repl. by HEISTER 03F
< 7.0	95	² ACTON	92F	OPAL	$Z ightarrow \ au^+ au^-$ at LEP
< 3.7	95	² BUSKULIC	92J	ALEP	Repl. by BUSKULIC 950

¹Limit is on the absolute value of the real part of the weak dipole moment.

$Im(d_{\tau}^{w})$

$VALUE~(10^{-17}~e{\rm cm}$	n) <u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.1	95	$^{ m 1}$ HEISTER	03F	ALEP	1990-1995 LEP runs
 ● ● We do no 	ot use the follo	owing data for ave	erages,	fits, lim	its, etc. • • •
<1.5	95	ACKERSTAF	F 97L	OPAL	1991–1995 LEP runs
<4.5	95	² AKERS	95F	OPAL	Repl. by ACKERSTAFF 97L

¹ HEISTER 03F limit is on the absolute value of the imaginary part of the weak dipole moment.

τ WEAK ANOMALOUS MAGNETIC DIPOLE MOMENT (α_{τ}^{W})

Electroweak radiative corrections are expected to contribute at the 10^{-6} level. See BERNABEU 95.

The q^2 dependence is expected to be small providing no thresholds are nearby

$Re(\alpha_{\tau}^{w})$

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
$<1.1 \times 10^{-3}$	95	$^{ m 1}$ HEISTER	03F	ALEP	1990-1995 LEP runs
• • • We do not use the	following	data for averages, fi	ts, lim	nits, etc.	• • •
$> -0.0024 \ {\rm and} < 0.0025$	95	² GONZALEZ-S	00	RVUE	
					and $W ightarrow ~ au u_{\mathcal{T}}$
$< 4.5 \times 10^{-3}$	90	¹ ACCIARRI	98C	L3	1991-1995 LEP runs

¹ Limit is on the absolute value of the real part of the weak anomalous magnetic dipole moment.

$\operatorname{Im}(\alpha_{\tau}^{\mathbf{w}})$

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.7 \times 10^{-3}$	95	$^{ m 1}$ HEISTER	03F	ALEP	1990-1995 LEP runs
• • • We do not use th	e following	g data for average	s, fits,	limits,	etc. • • •
$< 9.9 \times 10^{-3}$	90	¹ ACCIARRI	98C	L3	1991-1995 LEP runs

¹Limit is on the absolute value of the imaginary part of the weak anomalous magnetic dipole moment.

² Limit is on the absolute value of the real part of the weak dipole moment, and applies for $q^2=m_Z^2$.

moment. ² Limit is on the absolute value of the imaginary part of the weak dipole moment, and applies for $q^2=m_Z^2$.

moment. 2 GONZALEZ-SPRINBERG 00 use data on tau lepton production at LEP1, SLC, and LEP2, and data from colliders and LEP2 to determine limits. Assume imaginary component is zero.

au^- DECAY MODES

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for ℓ 0" stands for ℓ 0"s.

 $\begin{array}{ccc} & & & & & & \\ \mathsf{Mode} & & & \mathsf{Fraction} \; \left(\Gamma_i / \Gamma \right) & & \mathsf{Confidence} \; \mathsf{level} \end{array}$

Modes with one charged particle

```
particle<sup>-</sup> \geq 0 neutrals \geq 0K^0\nu_{\tau}
\Gamma_1
                                                                                      (85.24 \pm 0.06)\%
                  ("1-prong")
           particle ^- \geq 0 neutrals \geq 0 K_I^0 \, \nu_{	au}
\Gamma_2
                                                                                      (84.58 \pm 0.06)\%
                                                                              [a] (17.39 \pm 0.04)\%
               \mu^- \overline{\nu}_\mu \nu_\tau
                                                                             [b] (3.68 \pm 0.10) \times 10^{-3}
                 \mu^- \overline{\nu}_\mu \nu_\tau \gamma
                e^{-}\overline{\nu}_{e}\nu_{\tau}
                                                                             [a] (17.82 \pm 0.04)\%
                \mathrm{e}^-\overline{
u}_\mathrm{e}\,
u_{\mathrm{T}}\,\gamma
                                                                             [b] (1.84 \pm 0.05)\%
               h^- \geq 0 K_I^0 \nu_{\tau}
                                                                                      (12.03 \pm 0.05)\%
\Gamma_8
                                                                                      (11.51 \pm 0.05)\%
                 \pi^- \nu_{\tau}
                                                                             [a] (10.82 \pm 0.05) %
                 K^- 
u_{	au}
                                                                             [a] (6.96 \pm 0.10) \times 10^{-3}
               h^- \geq 1 neutrals 
u_{	au}
                                                                                      (37.00 \pm 0.09)\%
             h^- \stackrel{-}{\geq} 1\pi^0 
u_	au (\mathrm{ex}.\dot{K}^0)
                                                                                      (36.51 \pm 0.09)\%
                    h^-\pi^0\nu_{	au}
                                                                                      (25.93 \pm 0.09)\%
                        \pi^-\pi^0
u_{	au}
\Gamma_{14}
                                                                             [a] (25.49 \pm 0.09)\%
                        \pi^{-}\pi^{0} non-\rho(770) \nu_{\tau}
                                                                                      (3.0 \pm 3.2) \times 10^{-3}
\Gamma_{15}
                       K^-\pi^0
u_	au
                                                                             [a] (4.33 \pm 0.15) \times 10^{-3}
                    h^{-} \geq 2\pi^{0} \nu_{\tau}
                                                                                      (10.81 \pm 0.09)\%
                        h^{-} 2\pi^{0} \nu_{\tau}
\Gamma_{18}
                                                                                      (9.48 \pm 0.10)\%
                             \begin{array}{c} h^{-}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \\ \pi^{-}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0}) \\ \pi^{-}2\pi^{0}\nu_{\tau}(\text{ex}.K^{0}), \end{array}
                                                                                     (9.32 \pm 0.10)\%
                                                                            [a] ( 9.26 \pm 0.10 ) %
                                                                                                                   \times 10^{-3} CL=95%
                                  \pi^- scalar \pi^- 2\pi^0 \nu_{	au} ({\rm ex}.K^0),
                                                                                   < 7
                                                                                                                  \times 10^{-3} CL=95%
                                   {\stackrel{\rm vector}{{\cal K}^-}} {}^{2\pi^0} \nu_\tau ({\rm ex}.{\cal K}^0) 
                                                                             [a] (6.5 \pm 2.2) \times 10^{-4}
                        h^- \geq 3\pi^0 \nu_{\tau}
\Gamma_{24}
                                                                                     (1.34 \pm 0.07)\%
                        h^{-} \geq 3\pi^{0} \nu_{\tau}^{\prime} (\text{ex. } K^{0})
                                                                                      ( 1.25 \pm 0.07 ) %
                             h^{-}3\pi^{0}\nu_{\tau}
\pi^{-}3\pi^{0}\nu_{\tau}(\text{ex}.K^{0})
K^{-}3\pi^{0}\nu_{\tau}(\text{ex}.K^{0}, \eta)
                                                                                      (1.18 \pm 0.07)\%
\Gamma_{27}
                                                                             [a] (1.04 \pm 0.07)\%
                                                                            [a] (4.8 \pm 2.1) \times 10^{-4}
\Gamma_{28}
                             h^{-}4\pi^{0}\nu_{\tau}(\text{ex}.K^{0})
                                                                                      (1.6 \pm 0.4) \times 10^{-3}
\Gamma_{29}
                             h^{-}4\pi^{0}\nu_{\tau}(ex.K^{0},\eta)
\Gamma_{30}
                                                                             [a] (1.1 \pm 0.4) \times 10^{-3}
\begin{array}{lll} \Gamma_{31} & a_1(1260)\nu_{\tau} \to \ \pi^- \gamma \nu_{\tau} \\ \Gamma_{32} & K^- \geq 0\pi^0 \geq 0K^0 \geq 0\gamma \ \nu_{\tau} \end{array}
                                                                                      (3.8 \pm 1.5) \times 10^{-4}
                                                                                  (1.552 \pm 0.029)\%
         K^- \geq 1 \; (\pi^0 \text{ or } K^0 \text{ or } \gamma) \; \nu_{\tau}
                                                                                  (8.59 \pm 0.28) \times 10^{-3}
```

Modes with K^0 's

Modes with three charged particles

$$\begin{array}{llll} \Gamma_{62} & h^- h^- h^+ \geq 0 \text{ neutrals } \geq 0 K_L^0 \nu_\tau & & & & & & \\ \Gamma_{63} & h^- h^- h^+ \geq 0 \text{ neutrals } \nu_\tau & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

```
\pi^-\pi^+\pi^-\nu_{\tau} (ex. K^0),
\Gamma_{69}
                                                                                < 2.4
                                                                                                                              CL=95%
               \begin{array}{c} \text{non-axial vector} \\ \pi^-\pi^+\pi^-\nu_\tau (\text{ex}.K^0,\omega) \end{array}
\Gamma_{70}
                                                                          [a] (8.99 \pm 0.05)\%
               h^- h^- h^+ \geq 1 neutrals 
u_{	au}
\Gamma_{71}
                                                                                  (5.29 \pm 0.05)\%
               h^- h^- h^+ \ge 1 \pi^0 \nu_{\tau} (\text{ex. } K^0)
\Gamma_{72}
                                                                                  (5.09 \pm 0.05)\%
                   h^- h^- h^+ \pi^0 \nu_{\tau}
\Gamma_{73}
                                                                                  (4.76 \pm 0.05)\%
                   h^- h^- h^+ \pi^0 \nu_{\tau} (\text{ex.} K^0)
\Gamma_{74}
                                                                                  (4.57 \pm 0.05)\%
                   h^- h^- h^+ \pi^0 \nu_{\tau} (ex. K^0, \omega)
\Gamma_{75}
                                                                                  (2.79 \pm 0.07)\%
                   \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}
\Gamma_{76}
                                                                                   (4.62 \pm 0.05)\%
                   \pi^-\pi^+\pi^-\pi^0\nu_{\tau} (ex. K^0)
\Gamma_{77}
                                                                                   (4.49 \pm 0.05)\%
                   \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau} (ex. K^{0}, \omega)
\Gamma_{78}
                                                                          [a] (2.74 \pm 0.07)\%
                       h^- \rho \pi^0 \nu_{\tau}
\Gamma_{79}
                        h^{-} \rho^{+} h^{-} \nu_{\tau}
Γ<sub>80</sub>
                       h^- \rho^- h^+ \nu_{\tau}
\Gamma_{81}
                   h^- h^- h^+ \ge 2\pi^0 \nu_{\tau} (ex.
                                                                                  (5.17 \pm 0.31) \times 10^{-3}
                          K^0)
                   h^- h^- h^+ 2\pi^0 \nu_{\tau}
                                                                                  (5.05 \pm 0.31) \times 10^{-3}
                   h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0)
                                                                                   (4.95 \pm 0.31) \times 10^{-3}
Γ<sub>84</sub>
                   h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0, \omega, \eta)
\Gamma_{85}
                                                                        [a] (10
                                                                                              \pm 4 ) \times 10<sup>-4</sup>
                   h^- h^- h^+ 3\pi^0 \nu_{\tau}
                                                                                  (2.12 \pm 0.30) \times 10^{-4}
\Gamma_{86}
                        2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}(\text{ex}.K^{0})
                                                                                  (1.94 \pm 0.30) \times 10^{-4}
\Gamma_{87}
                        2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau} (ex. K^{0}, \eta,
                                                                                  (1.7 \pm 0.4) \times 10^{-4}
\Gamma_{88}
                              f_1(1285)
                        2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}(\text{ex.}K^{0}, \eta,
                                                                          [a] (1.4 \pm 2.7) \times 10^{-5}
\Gamma_{89}
                              \omega, f_1(1285))
\Gamma_{90}
                K^- h^+ h^- \geq 0 neutrals \nu_{	au}
                                                                                  (6.29 \pm 0.14) \times 10^{-3}
                   K^- h^+ \pi^- \nu_{\tau} (\text{ex.} K^0)
                                                                                  (4.37 \pm 0.07) \times 10^{-3}
\Gamma_{91}
                   K^- h^+ \pi^- \pi^0 \nu_{\tau} (\text{ex.} K^0)
                                                                                  (8.6 \pm 1.2) \times 10^{-4}
                   K^-\pi^+\pi^- \geq 0 neutrals \nu_{\tau}
                                                                                  (4.77 \pm 0.14) \times 10^{-3}
\Gamma_{93}
                    K^-\pi^+\pi^- \ge 0\pi^0 \nu_{\tau} (\text{ex.} K^0)
                                                                                  (3.73 \pm 0.13) \times 10^{-3}
\Gamma_{94}
                        K^-\pi^+\pi^-\nu_{	au}
                                                                                   (3.45 \pm 0.07) \times 10^{-3}
\Gamma_{95}
                        K^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0})
\Gamma_{96}
                                                                                  (2.93 \pm 0.07) \times 10^{-3}
                        K^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0},\omega)
                                                                          [a] (2.93 \pm 0.07) \times 10^{-3}
\Gamma_{97}
                        K^- \rho^0 \nu_{\tau} \rightarrow
\Gamma_{98}
                                                                                   (1.4 \pm 0.5) \times 10^{-3}
                              K^-\pi^+\pi^-\nu_{\tau}
                       K^-\pi^+\pi^-\pi^0\nu_{	au}
\Gamma_{99}
                                                                                  (1.31 \pm 0.12) \times 10^{-3}
                       K^-\pi^+\pi^-\pi^0\nu_{	au}({\rm ex}.K^0)
\Gamma_{100}
                                                                                  (7.9 \pm 1.2) \times 10^{-4}
                       K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex.}K^{0},\eta)
\Gamma_{101}
                                                                                  (7.6 \pm 1.2) \times 10^{-4}
                       K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex}.K^{0},\omega) (3.7 ± 0.9 )×10<sup>-4</sup> 

K^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}(\text{ex}.K^{0},\omega,\eta)[a] (3.9 ± 1.4 )×10<sup>-4</sup>
\Gamma_{102}
\Gamma_{103}
                    K^-\pi^+K^- \geq 0 neut. \nu_{\tau}
\Gamma_{104}
                                                                               < 9
                                                                                                              \times 10^{-4}
                                                                                                                             CL=95%
                    K^{-}K^{+}\pi^{-} > 0 neut. \nu_{\tau}
                                                                                  (1.496 \pm 0.033) \times 10^{-3}
\Gamma_{105}
                        K^-K^+\pi^-\nu_{\tau} \\ K^-K^+\pi^-\pi^0\nu_{\tau}
                                                                          [a] (1.435 \pm 0.027) \times 10^{-3}
\Gamma_{106}
\Gamma_{107}
                                                                          [a] (6.1 \pm 1.8) \times 10^{-5}
```

```
\Gamma_{108} K^-K^+K^-\nu_{\tau}
                                                                                 (2.2 \pm 0.8) \times 10^{-5}
                K^-K^+K^-\nu_{\tau} (2.2 ± 0.8 )×10<sup>-3</sup> S=5.4

K^-K^+K^-\nu_{\tau} (ex. \phi) < 2.5 ×10<sup>-6</sup> CL=90%
Γ<sub>109</sub>
 \Gamma_{110} \qquad K^{-} K^{+} K^{-} \pi^{0} \nu_{\tau} \qquad < 4.8   \Gamma_{111} \qquad \pi^{-} K^{+} \pi^{-} \geq 0 \text{ neut. } \nu_{\tau} \qquad < 2.5 
                                                                                                    \times 10^{-6} CL=90%
\times 10^{-3} CL=95%
\Gamma_{112} e^-e^-e^+\overline{\nu}_e\nu_{\tau}
                                                                                 (2.8 \pm 1.5) \times 10^{-5}
\Gamma_{113} \mu^- e^- e^+ \overline{\nu}_\mu \nu_\tau
                                                                                  < 3.6 \times 10^{-5} \text{ CL}=90\%
```

Modes with five charged particles

Miscellaneous other allowed modes

```
(4.7 \pm 1.1) \times 10^{-3}
\Gamma_{141} K_1(1270)^- \nu_{\tau}
\Gamma_{142} K_1(1400)^- \nu_{\tau}
                                                                                (1.7 \pm 2.6) \times 10^{-3}
                                                                                                                             S=1.7
                                                                            (1.5 + 1.4 - 1.0) \times 10^{-3}
\Gamma_{143} K^*(1410)^- \nu_{\tau}
                                                                                           \times 10^{-4} CL=95% \times 10^{-3} CL=95%
\Gamma_{144} \quad K_0^*(1430)^- \nu_{\tau}
                                                                             < 5
\Gamma_{145} K_2^*(1430)^- \nu_{\tau}
                                                                             < 3
\Gamma_{146} \ \ a_0(980)^- \geq 0 \ {
m neutrals} \ \ 
u_{	au}
\begin{array}{ccc} \Gamma_{147} & \eta \, \pi^- \, \nu_\tau \\ \Gamma_{148} & \eta \, \pi^- \, \pi^0 \, \nu_\tau \end{array}
                                                                                                        \times 10^{-5} CL=95%
                                                                             < 9.9
                                                                      [a] ( 1.39 \pm 0.07 ) \times 10^{-3}
\Gamma_{149} \quad \eta \pi^{-} \pi^{0} \pi^{0} \nu_{\tau}
                                                                        [a] (1.9 \pm 0.4) \times 10^{-4}
                                                                       [a] (1.55 \pm 0.08) \times 10^{-4}
\Gamma_{150} \eta K^- \nu_{\tau}
\Gamma_{151} \eta K^*(892)^- \nu_{\tau}
                                                                        (1.38 \pm 0.15) \times 10^{-4}
\Gamma_{152} \eta K^- \pi^0 \nu_{\tau}
                                                                        [a] (4.8 \pm 1.2) \times 10^{-5}
\Gamma_{153} \eta K^- \pi^0 (\text{non-}K^*(892)) \nu_{\tau}
                                                                             <~3.5~~\times10^{-5}~CL{=}90\%
\Gamma_{154}^{154} \eta \overline{K}{}^0 \pi^- \nu_{\tau}
                                                                      [a] (9.4 \pm 1.5) \times 10^{-5}
\Gamma_{155} \quad \eta \, \overline{K}{}^0 \, \pi^- \pi^{0} \, \nu_{\tau}
                                                                             < 5.0 \times 10^{-5} \text{ CL}=90\%
                                                                                                        \times 10^{-6} CL=90%
\Gamma_{156} \eta K^- K^0 \nu_{\tau}
                                                                             < 9.0
\Gamma_{157}^{-1} \eta \pi^+ \pi^- \pi^- \geq 0 neutrals \nu_{	au}
                                                                        < 3
                                                                                                          \times 10^{-3} CL=90%
\Gamma_{158} = \eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0) [a] (2.19 \pm 0.13) \times 10^{-4}
\Gamma_{159} \qquad \eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0, f_1(1285)) \qquad (9.9 \pm 1.6) \times 10^{-5}
\Gamma_{160} \qquad \eta a_1(1260)^- \nu_\tau \rightarrow \eta \pi^- \rho^0 \nu_\tau \qquad < 3.9 \qquad \times 10^{-4}
                                                                                           \times 10^{-4} CL=90%
\times 10^{-6} CL=90%
\Gamma_{161} \eta \eta \pi^- \nu_{\tau}
                                                                             < 7.4
\Gamma_{162} \eta \eta \pi^- \pi^0 \nu_{\tau}
                                                                                                       \times 10^{-4} CL=95%
                                                                             < 2.0
                                                                                                      \times 10^{-6} CL=90%
\Gamma_{163} \ \eta \eta \, K^- \nu_\tau
                                                                             < 3.0
\Gamma_{164} \quad \eta'(958) \pi^- \nu_{\tau}
                                                                                                       \times 10^{-6} CL=90%
                                                                             < 4.0
\Gamma_{165} \quad \eta'(958) \pi^- \pi^0 \nu_{\tau}
                                                                                                        \times 10^{-5} CL=90%
                                                                             < 1.2
\Gamma_{166} \quad \eta'(958) \, K^- \, \nu_{\tau}
                                                                                              \times 10<sup>-6</sup> CL=90%
                                                                             < 2.4
\Gamma_{167} \phi \pi^- \nu_{\tau}
                                                                            (3.4 \pm 0.6) \times 10^{-5}
\Gamma_{168} \phi K^- \nu_{\tau}
                                                                        [a] (4.4 \pm 1.6) \times 10^{-5}
\Gamma_{169} f_1(1285)\pi^-\nu_{\tau}
                                                                         (3.9 \pm 0.5) \times 10^{-4}
                                                                                                                         S=1.9
\Gamma_{170} \qquad f_1(1285)\pi^-\nu_{\tau} \to
                                                                               (1.18 \pm 0.07) \times 10^{-4}
                                                                                                                             S = 1.3
                \eta \pi^- \pi^+ \pi^- \nu_{\tau}
\Gamma_{171} f_1(1285)\pi^-\nu_{	au} 
ightarrow 3\pi^-2\pi^+\nu_{	au} [a] ( 5.2 \pm 0.4 ) 	imes 10<sup>-5</sup>
\Gamma_{172} \ \pi (1300)^- \nu_{	au} 
ightarrow \ (
ho \, \pi)^- \nu_{	au} 
ightarrow \ < \ 1.0 \ 	imes 10^{-4} \ \mathrm{CL} = 90\%
                (3\pi)^{-}\nu_{\tau}
                                                                                              \times 10^{-4} CL=90%
\Gamma_{173} \ \pi(1300)^{-} \nu_{\tau} \rightarrow
                                                                             < 1.9
                ((\pi\pi)_{S-\text{wave }}\pi)^-\nu_{\tau} \rightarrow
                (3\pi)^{-}\nu_{\tau}
\Gamma_{174} h^-\omega \geq 0 neutrals \nu_{\tau}
                                                                             (2.40 \pm 0.08)\%
\Gamma_{175} h^- \omega \nu_{\tau}
                                                                                ( 1.99 \pm 0.06 ) %
              \pi^-\omega
u_	au
{\it K}^-\omega
u_	au
Γ<sub>176</sub>
                                                                        [a] (1.95 \pm 0.06)\%
\Gamma_{177}
                                                                       [a] (4.1 \pm 0.9) \times 10^{-4}
\Gamma_{178} \qquad h^- \,\omega \,\pi^0 \,\nu_{	au}
                                                                      [a] (4.1 \pm 0.4) \times 10^{-3}
\Gamma_{179} \qquad h^- \,\omega \,2\pi^0 \,\nu_{\tau}
                                                                               (1.4 \pm 0.5) \times 10^{-4}
```

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+ \pi^- \pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^- \pi^+ \pi^-$). B means baryon number violation.

Γ ₁₈₄	$e^-\gamma$	LF	<	3.3	$\times 10^{-8}$	CL=90%
Γ ₁₈₅	$\mu^-\gamma_{\perp}$	LF	<	4.4	\times 10 ⁻⁸	CL=90%
Γ ₁₈₆	$e^-\pi^0$	LF	<	8.0	$\times 10^{-8}$	CL=90%
Γ ₁₈₇	$\mu^-\pi^0$	LF	<	1.1	$\times 10^{-7}$	CL=90%
Γ ₁₈₈	$e^-K_S^0$	LF	<	2.6	$\times 10^{-8}$	CL=90%
Γ ₁₈₉	$\mu^- K_S^0$	LF	<	2.3	$\times 10^{-8}$	CL=90%
Γ_{190}	$e^-\eta$	LF	<	9.2	$\times 10^{-8}$	CL=90%
Γ_{191}	$\mu^-\eta_{\perp}$	LF	<	6.5	$\times 10^{-8}$	CL=90%
Γ ₁₉₂	$e^-\rho^0$	LF	<	1.8	$\times 10^{-8}$	CL=90%
Γ ₁₉₃	$\mu^- ho^0$	LF	<	1.2	$\times 10^{-8}$	CL=90%
Γ ₁₉₄	$e^-\omega$	LF	<	4.8	$\times 10^{-8}$	CL=90%
Γ ₁₉₅	$\mu^-\omega$	LF	<	4.7	$\times 10^{-8}$	CL=90%
Γ ₁₉₆	$e^{-}K^{*}(892)^{0}$	LF	<	3.2	$\times 10^{-8}$	CL=90%
Γ_{197}	$\mu^{-} \underline{K}^{*} (892)^{0}$	LF	<	5.9	$\times 10^{-8}$	CL=90%
Γ ₁₉₈	$e^{-}\overline{K}^{*}(892)^{0}$	LF	<	3.4	$\times 10^{-8}$	CL=90%
Γ_{199}	$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	<	7.0	$\times 10^{-8}$	CL=90%
Γ_{200}	$e^- \eta'(958)$	LF	<	1.6	$\times 10^{-7}$	CL=90%
Γ_{201}	$\mu^- \eta'(958)$	LF	<	1.3	$\times 10^{-7}$	CL=90%
Γ_{202}	$e^{-} f_{0}(980) \rightarrow e^{-} \pi^{+} \pi^{-}$	LF	<	3.2	$\times 10^{-8}$	CL=90%
Γ_{203}	$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	<	3.4	$\times 10^{-8}$	CL=90%
Γ_{204}	$e^-\phi$	LF	<	3.1	$\times 10^{-8}$	CL=90%
Γ_{205}	$\mu^-\phi$	LF	<	8.4	$\times 10^{-8}$	CL=90%
Γ_{206}	$e^{-}e^{+}e^{-}$	LF	<	2.7	$\times 10^{-8}$	CL=90%
Γ_{207}	$e^-\mu^+\mu^-$	LF	<	2.7	$\times 10^{-8}$	CL=90%
Γ ₂₀₈	$e^+\mu^-\mu^-$	LF	<	1.7	$\times 10^{-8}$	CL=90%
Γ ₂₀₉	μ^- e ⁺ e ⁻	LF	<	1.8	\times 10 ⁻⁸	CL=90%
Γ_{210}	$\mu^+e^-e^-$	LF	<	1.5	$\times 10^{-8}$	CL=90%
Γ_{211}	$\mu^{-}\mu^{+}\mu^{-}$	LF	<	2.1	$\times 10^{-8}$	CL=90%
Γ_{212}	$e^{-}\pi^{+}\pi^{-}$	LF	<	2.3	\times 10 ⁻⁸	CL=90%
Γ_{213}	$e^{+}\pi^{-}\pi^{-}$	L	<	2.0	$\times 10^{-8}$	CL=90%
Γ ₂₁₄	$\mu^{-}\pi^{+}\pi^{-}$	LF	<	2.1	$\times 10^{-8}$	CL=90%
Γ ₂₁₅	$\mu^{+}\pi^{-}\pi^{-}$	L	<	3.9	$\times 10^{-8}$	CL=90%
Γ ₂₁₆	$e^{-}\pi^{+}K^{-}$	LF	<	3.7	× 10 ⁻⁸	CL=90%
Γ ₂₁₇	$e^-\pi^-K^+$	LF	<	3.1	× 10 ⁻⁸	CL=90%

Γ ₂₁₈	$e^+\pi^-K^-$	L	<	3.2	$\times 10^{-8}$	CL=90%
	$e^{-}K_{S}^{0}K_{S}^{0}$	LF	<	7.1	$\times 10^{-8}$	CL=90%
	$e^-K^+K^-$	LF	<	3.4	$\times 10^{-8}$	CL=90%
Γ ₂₂₁	$e^+K^-K^-$	L	<	3.3	$\times 10^{-8}$	CL=90%
	$\mu^-\pi^+K^-$	LF	<	8.6	$\times 10^{-8}$	CL=90%
	$\mu^-\pi^-K^+$	LF	<	4.5		CL=90%
Γ_{224}	$\mu^+\pi^-K^-$	L	<	4.8	$\times 10^{-8}$	CL=90%
Γ_{225}	$\mu^- K_S^0 K_S^0$	LF	<	8.0	$\times 10^{-8}$	CL=90%
Γ_{226}	$\mu^- K^+ K^-$	LF	<	4.4	$\times 10^{-8}$	CL=90%
Γ ₂₂₇	$\mu^{+} K^{-} K^{-}$	L	<	4.7	$\times 10^{-8}$	CL=90%
Γ ₂₂₈	$e^{-}\pi^{0}\pi^{0}$	LF	<	6.5	$\times 10^{-6}$	CL=90%
Γ ₂₂₉	$\mu^-\pi^0\pi^0$	LF	<	1.4	$\times10^{-5}$	CL=90%
	$e^-\eta\eta$	LF	<	3.5	$\times10^{-5}$	CL=90%
	$\mu^-\eta\eta$	LF	<	6.0	$\times10^{-5}$	CL=90%
Γ_{232}	$e^-\pi^0\eta$	LF	<	2.4	$\times 10^{-5}$	CL=90%
	$\mu^-\pi^0\eta$	LF	<	2.2	\times 10 ⁻⁵	CL=90%
	$p\mu^-\mu^-$	L,B	<	4.4	$\times 10^{-7}$	
Γ_{235}	$\overline{p}\mu^+\mu^-$	L,B	<	3.3	$\times 10^{-7}$	CL=90%
	$\overline{p}\gamma$	L,B	<	3.5		CL=90%
Γ ₂₃₇	$\overline{p}\pi^0$	L,B	<	1.5	$\times 10^{-5}$	CL=90%
Γ ₂₃₈	$\overline{p}2\pi^0$	L,B	<	3.3	$\times 10^{-5}$	CL=90%
	$\overline{p}\eta$	L,B	<	8.9		CL=90%
Γ_{240}	$\overline{p}\pi^0\eta$	L,B	<	2.7		CL=90%
Γ_{241}	$\Lambda\pi^-$	L,B	<	7.2	$\times 10^{-8}$	CL=90%
	$\Lambda\pi^-$	L,B	<	1.4		CL=90%
	e [—] light boson	LF	<	2.7		CL=95%
Γ ₂₄₄	μ^- light boson	LF	<	5	$\times 10^{-3}$	CL=95%

- [a] Basis mode for the τ .
- [b] See the Particle Listings below for the energy limits used in this measurement.

CONSTRAINED FIT INFORMATION

An overall fit to 85 branching ratios uses 169 measurements and one constraint to determine 46 parameters. The overall fit has a $\chi^2=134.9$ for 124 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$.

x ₅ x ₉ x ₁₀ x ₁₄ x ₁₆ x ₂₀ x ₂₃ x ₂₇ x ₂₈ x ₃₀	$ \begin{array}{c cccc} 18 & & & & \\ 2 & & & & \\ 3 & & & & \\ -18 & & & & \\ -1 & & & & \\ -11 & & & & \\ -6 & & & & \\ -1 & & & & \\ -4 & & & & \\ \end{array} $	$ \begin{array}{r} -1 \\ 4 \\ -19 \\ -1 \\ -11 \\ 0 \\ -5 \\ -1 \\ -4 \\ \end{array} $	5 -17 1 -14 -2 -10 -1 -11	-5 -2 -4 -3 -1 -2	$ \begin{array}{r} -9 \\ -46 \\ -1 \\ 0 \\ 0 \\ -9 \end{array} $	$ \begin{array}{r} -1 \\ -14 \\ 0 \\ -13 \\ 0 \end{array} $	-10 -39 -3 7	1 -23 -2	$-11 \\ -44$	2
<i>X</i> 36	-2 0	$-2 \\ 0$	$-3 \\ 0$	$-1 \\ 0$	$-1 \\ 0$	$0 \\ -2$	$-2 \\ 0$	0 -3	$-1 \\ 0$	0 -3
x ₃₈ x ₄₁		_2	_2	-1	-1	_2 0	_2	_3 0	-1	_3 0
×43	-1	-1	-1	-1	0	−3	0	_5	0	_5
×45	-5	-5	-5	-2	-3	-1	-5	-2	-1	-2
<i>x</i> ₄₈	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₄₉	-5	-5	-5	-2	-3	-1	-5	-2	-1	-2
^x 52	0	0	0	0	0	0	0	-1	0	-1
^X 56	−2 −5	−2 −5	−2 −5	$\begin{array}{c} -1 \\ -2 \end{array}$	-1 -3	$\begin{array}{c} -1 \\ -1 \end{array}$	−2 −4	$\begin{array}{c} -1 \\ -2 \end{array}$	$\begin{array}{c} -1 \\ -1 \end{array}$	$\begin{array}{c} -1 \\ -2 \end{array}$
^X 61	-5 -7	_9	_3 4	-2 -2	−3 −6	3	-4 -12	−2 −2	$-1 \\ -7$	$-2 \\ -1$
<i>x</i> 70 <i>x</i> 78	-7 -4	_ 9 _4	_ 5	0	_0 _9	0	1	1	-1	1
×85	0	0	−2	0	⁻²	0	0	0	2	0
×89	0	0	0	0	0	0	0	0	0	0
<i>x</i> 97	-2	-2	-1	-1	-1	-1	-4	-1	-2	-1
<i>x</i> ₁₀₃	1	1	0	-1	1	-1	-1	-1	0	-1
<i>X</i> 106	-2	-2	2	-1	-1	2	-2	-1	-1	-1
<i>X</i> 107	0	0	0	0	0	0	0	0	0	0
^X 117	-1	0	0	0	0	0	-1	0	-1	0
<i>X</i> 118	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
^X 124	0	0	0	0	0	0	0	0	0	0
^X 125 ^X 148	-1	-1	-1	0	-1	0	−2	-1	0	-1
×149	-1	-1	-1	0	0	0	-1	0	0	0
<i>X</i> 150	0	0	0	0	0	0	0	-1	0	-1
<i>X</i> 152	0	0	0	0	0	0	0	0	0	0
^X 154	0	0	0	0	0	0	0	0	0	0
<i>X</i> 158	-1	-1	-1	0	0	0	-1	0	0	0
^X 168	0	0	0	0	0	0	0	0	0	0
<i>X</i> 171	0	0	0	0	0	0	-1	0	0	0
<i>X</i> 176	$-3 \\ 0$	-3 0	-3 0	$-1 \\ 0$	-4 0	$-1 \\ 0$	$-1 \\ 0$	0 0	-1	0 0
X177	_2	_2	_5	-1	-3	0	_2	-1	2	-1
^X 178 ^X 180	0	0	0	0	_3 0	0	0	0	0	0
×183	-1	0	0	0	0	0	-1	0	0	0
100	<i>x</i> ₃	<i>x</i> ₅	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₄	<i>X</i> 16	<i>x</i> ₂₀	<i>x</i> ₂₃	^X 27	<i>x</i> ₂₈

HTTP://PDG.LBL.GOV Page 13

<i>×</i> 36	0									
^X 38	0	-22								
×41	0	-13	4							
×43	0	2	-21	-20						
×45	0	-3	0	-6	0					
×48	0	-1	1	-4	1	0				
×49	0	-5	0	-4	-1	-10	0			
<i>x</i> 52	0	0	7	0	5	0	-7	0		
^X 56	0	-2	0	-2	-1	-4	0	-8	0	
<i>x</i> ₆₁	0	-2	0	-2	0	-4	0	-4	0	-2
<i>×</i> 70	-5	-2	0	-1	0	-4	1	-4	0	-2
<i>X</i> 78	3	1	0	1	0	2	0	2	0	1
^X 85	2	0	0	0	0	0	0	0	0	0
<i>x</i> 89	0	0	0	0	0	0	0	0	-1	0
<i>×</i> 97	-1	-1	0	-1	0	-2	0	-2	0	-1
<i>x</i> ₁₀₃	-1	-1	0	-1	0	-1	0	-1	0	-1
<i>X</i> 106	-1	-1	0	0	0	-1	0	-1	0	0
<i>x</i> ₁₀₇	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₁₇	-1	0	0	0	0	-1	0	-1	0	0
<i>x</i> ₁₁₈	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₂₄	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₂₅	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₄₈	-2	0	0	0	0	-1	1	-1	0	0
<i>x</i> ₁₄₉	0	0	0	0	0	-1	0	-1	0	0
<i>X</i> 150	0	0	0	0	0	0	1	0	0	0
<i>x</i> ₁₅₂	0	0	0	0	0	0	0	0	0	0
<i>X</i> 154	0	0	0	0	0	0	0	-1	0	0
<i>X</i> 158	-1	0	0	0	0	-1	0	-1	0	0
[×] 168	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₇₁	0	0	0	0	0	0	0	0	0	0
<i>X</i> 176	1	-1	0	0	0	-1	0	-1	0	0
<i>x</i> ₁₇₇	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₇₈	2	-1	0	0	0	-1	0	-1	0	0
^X 180	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₈₃	-1	0	0	0	0	0	0	0	0	0
	<i>x</i> ₃₀	<i>x</i> 36	<i>x</i> ₃₈	<i>x</i> ₄₁	<i>x</i> ₄₃	^x 45	<i>x</i> ₄₈	<i>x</i> ₄₉	<i>x</i> ₅₂	^x 56

	I 4									
<i>x</i> 70	-4 2	10								
^X 78	2	-19	0							
<i>X</i> 85	0	$-1 \\ -1$	$-8 \\ -1$	0						
<i>x</i> 89	_2	-1 19	$-1 \\ -6$	0	0					
<i>X</i> 97	-2 -1	_4	$-0 \\ -14$	-1	0	-1				
<i>X</i> 103	-1	_4 15	-14 -4	0	0	0	-1			
<i>X</i> 106	0	-1	$-4 \\ -1$	0	0	0	-1 -3	0		
<i>X</i> 107	-1	0	0	0	_4	0	_3 0	0	0	
<i>X</i> 117	0	0	0	0	0	0	0	0	0	-1
<i>X</i> 118	0	0	0	0	0	0	0	0	0	3
<i>X</i> 124	0	0	0	0	0	0	0	0	0	-1
<i>X</i> 125	-1	0	0	_5	0	0	0	0	0	0
<i>X</i> 148	-1	-1	0	0	-11	0	0	0	0	10
X149	0	2	0	0	0	0	-1	1	0	0
X150	0	0	0	-1	0	0	0	0	0	0
X152	0	0	0	0	_2	0	0	0	0	0
^X 154 ^X 158	-1	-1	0	0	- 8	0	0	0	0	47
^X 168	0	-1	0	0	0	1	0	1	0	0
×108	0	0	0	0	⁻²	0	0	0	0	35
×176	-1	_9	−67	−3	0	-2	10	-2	0	0
×177	0	0	12	0	0	-2	-58	0	0	0
^X 178	-1	-2	-11	-64	-1	-1	-1	-1	0	0
×180	0	0	0	0	-16	0	0	0	0	8
×183	0	0	0	0	-4	0	0	0	0	39
	× ₆₁	<i>×</i> 70	<i>×</i> 78	×85	<i>x</i> 89	<i>×</i> 97	×103	×106	×107	×117
× ₁₂₄	0									
×125	0	-1								
×148	0	0	0							
×149	0	2	0	0						
<i>x</i> 150	0	0	0	4	0					
×152	0	0	0	1	0	1				
×154	0	0	0	2	-1	1	0			
<i>x</i> 158	-1	3	-1	0	25	0	0	0		
^X 168	0	0	0	0	0	0	0	0	0	
<i>x</i> ₁₇₁	-1	1	0	0	4	0	0	0	20	0
^X 176	0	0	0	0	0	0	0	0	0	0
× ₁₇₇	0	0	0	0	0	0	0	0	0	0
<i>x</i> ₁₇₈	0	0	0	0	0	0	0	0	0	0
<i>X</i> 180	0	2	0	0	10	0	0	-1	20	0
<i>x</i> ₁₈₃	-1	-2	-1	0	17	0	0	0	39	0
	<i>x</i> ₁₁₈	<i>x</i> ₁₂₄	<i>x</i> ₁₂₅	<i>×</i> 148	× ₁₄₉	^X 150	<i>x</i> ₁₅₂	^X 154	^X 158	<i>×</i> 168

<i>×</i> 176	0				
<i>x</i> ₁₇₇	0	-14			
<i>x</i> ₁₇₈	0	-4	0		
<i>x</i> ₁₈₀	3	0	0	0	
<i>X</i> 183	17	0	0	0	14
	<i>×</i> 171	×176	<i>×</i> 177	<i>×</i> 178	<i>X</i> 180

A REVIEW GOES HERE – Check our WWW List of Reviews

$$(\Gamma(\tau^+) - \Gamma(\tau^-)) / (\Gamma(\tau^+) + \Gamma(\tau^-))$$

$au^\pm ightarrow \ \pi^\pm \, {\it K}^0_{\it S} \, u_ au$ (RATE DIFFERENCE) / (RATE SUM)

VALUE (%)	DOCUMENT ID		TECN	COMMENT
$-0.36\pm0.23\pm0.11$	LEES	12M	BABR	$476 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$

au^- BRANCHING RATIOS

$$\begin{split} &\Gamma\left(\mathsf{particle}^- \geq 0 \ \mathsf{neutrals} \geq 0 \\ & \Gamma_1/\Gamma = (\Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + \Gamma_{36} + \Gamma_{38} + \Gamma_{41} + \Gamma_{43} + \Gamma_{45} + \Gamma_{48} + \Gamma_{49} + \Gamma_{50} + \Gamma_{52} + \Gamma_{56} + \Gamma_{57} + 0.7212 \\ & \Gamma_{152} + 0.7212 \\ \Gamma_{152} + 0.7212 \\ \Gamma_{154} + 0.342 \\ \Gamma_{168} + 0.0840 \\ \Gamma_{176} + 0.0840 \\ \Gamma_{177} + 0.0840 \\ \Gamma_{177} + 0.0840 \\ \Gamma_{177} + 0.0840 \\ \Gamma_{177} + 0.0840 \\ \Gamma_{178} \right) / \Gamma \end{split}$$

The charged particle here can be e, μ , or hadron. In many analyses, the sum of the topological branching fractions (1, 3, and 5 prongs) is constrained to be unity. Since the 5-prong fraction is very small, the measured 1-prong and 3-prong fractions are highly correlated and cannot be treated as independent quantities in our overall fit. We arbitrarily choose to use the 3-prong fraction in our fit, and leave the 1-prong fraction out. We do, however, use these 1-prong measurements in our average below.

VALUE (%) EVTS DOCUMENT ID TECN COMMENT

85.24 ±0.06 OUR FIT

85.26 \pm **0.13 OUR AVERAGE** Error includes scale factor of 1.6. See the ideogram below.

• • We use the following data for averages but not for fits.

 $85.316\pm0.093\pm0.049$ 78k 1 ABREU 01M DLPH 1992–1995 LEP runs $85.274\pm0.105\pm0.073$ 2 ACHARD 01D L3 1992–1995 LEP runs $84.48\pm0.27\pm0.23$ ACTON 92H OPAL 1990–1991 LEP runs

• • We do not use the following data for averages, fits, limits, etc.

85.45 $^{+0.69}_{-0.73}$ ± 0.65 DECAMP 92C ALEP Repl. by SCHAEL 05C

 $^{^1}$ The correlation coefficients between this measurement and the ABREU 01M measurements of B($\tau \rightarrow \,$ 3-prong) and B($\tau \rightarrow \,$ 5-prong) are -0.98 and -0.08 respectively.

² The correlation coefficients between this measurement and the ACHARD 01D measurements of B($\tau \rightarrow$ "3-prong") and B($\tau \rightarrow$ "5-prong") are -0.978 and -0.082 respectively.

WEIGHTED AVERAGE 85.26±0.13 (Error scaled by 1.6)

 $\Gamma(\text{particle}^- \ge 0 \text{ neutrals } \ge 0K^0\nu_{\tau}(\text{"1-prong"}))/\Gamma_{\text{total}}(\%)$

$$\begin{split} & \Gamma \left(\mathsf{particle}^- \ge 0 \; \mathsf{neutrals} \; \ge 0 K_L^0 \nu_\tau \right) / \Gamma_{\mathsf{total}} & \Gamma_2 / \Gamma_{\mathsf{total}} \\ & \Gamma_2 / \Gamma = (\Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10} + \Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + 0.6534 \Gamma_{36} + \\ & 0.6534 \Gamma_{38} + 0.6534 \Gamma_{41} + 0.6534 \Gamma_{43} + 0.6534 \Gamma_{45} + 0.0942 \Gamma_{48} + 0.3069 \Gamma_{49} + \Gamma_{50} + \\ & 0.0942 \Gamma_{52} + 0.3069 \Gamma_{56} + \Gamma_{57} + 0.7212 \Gamma_{148} + 0.7212 \Gamma_{150} + 0.7212 \Gamma_{152} + 0.4712 \Gamma_{154} + \\ & 0.1049 \Gamma_{168} + 0.0840 \Gamma_{176} + 0.0840 \Gamma_{177} + 0.0840 \Gamma_{178} \right) / \Gamma_{\mathsf{total}} \end{split}$$

VALUE (%)

Created: 5/30/2017 17:22

84.58 ± 0.06 OUR FIT 85.1 \pm 0.4 OUR AVERAGE

• • • We use the following data for averages but not for fits. • • •

$85.6 \pm 0.6 \pm 0.3$	3300	$^{ m 1}$ ADEVA	91F L3	E ^{ee} _{cm} = 88.3–94.3 GeV
84.9 $\pm 0.4 \pm 0.3$		BEHREND	89B CELL	$E_{\rm cm}^{\it ee}$ = 14–47 GeV
84.7 ± 0.8 ± 0.6		² AIHARA	87B TPC	Eee = 29 GeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

86.4 ±0.3 ±	=0.3					E ^{ee} _{cm} = 29 GeV
87.1 ±1.0 ±	=0.7		³ BURCHAT	87	MRK2	E ^{ee} _{cm} = 29 GeV
87.2 \pm 0.5 \pm	=0.8		SCHMIDKE	86	MRK2	Eee 29 GeV
84.7 ±1.1 +	-1.6 -1.3	169	⁴ ALTHOFF	85	TASS	E ^{ee} _{cm} = 34.5 GeV
86.1 \pm 0.5 \pm	-0.9		BARTEL	85F	JADE	E ^{ee} _{cm} = 34.6 GeV
87.8 \pm 1.3 \pm	3.9		⁵ BERGER	85	PLUT	<i>E</i> ee cm = 34.6 GeV
86.7 \pm 0.3 \pm	0.6		FERNANDEZ	85	MAC	Eee = 29 GeV

 $^{^1\, \}rm Not$ independent of ADEVA 91F $\Gamma \big(h^-\,h^-\,h^+ \geq 0$ neutrals $\, \geq 0 K_L^0\, \nu_{\tau} \, \big)/\Gamma_{\rm total}$ value.

 $^{^2}$ Not independent of AIHARA 87B $\Gamma(\mu^-\overline{\nu}_{\mu}\nu_{\tau})/\Gamma_{\rm total}$, $\Gamma(e^-\overline{\nu}_{e}\nu_{\tau})^{-}/\Gamma_{\rm total}$, and $\Gamma(h^-\geq 1)$ 0 neutrals $\geq 0K_I^0 \nu_{ au})/\Gamma_{ ext{total}}$ values.

 5 Not independent of (1-prong + $0\pi^{0}$) and (1-prong + \geq $1\pi^{0}$) values.

 $\Gamma(\mu^- \overline{\nu}_\mu \nu_\tau) / \Gamma_{\text{total}}$ Γ_3/Γ

To minimize the effect of experiments with large systematic errors, we exclude experiments which together would contribute 5% of the weight in the average.

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
17.39 ±0.04 OUR F	IT				
17.33 ± 0.05 OUR A	VERAGE				
$17.319 \pm 0.070 \pm 0.032$	54k	¹ SCHAEL	05 C	ALEP	1991-1995 LEP runs
$17.34 \pm 0.09 \pm 0.06$	31.4k	ABBIENDI	03	OPAL	1990-1995 LEP runs
$17.342 \pm 0.110 \pm 0.067$	21.5k	² ACCIARRI	01F	L3	1991-1995 LEP runs
$17.325 \pm 0.095 \pm 0.077$	27.7k	ABREU	99x	DLPH	1991-1995 LEP runs
• • • We use the follow	owing data	for averages but no	t for	fits. • •	•
$17.37 \pm 0.08 \pm 0.18$		³ ANASTASSOV	97	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
• • • We do not use	he following	g data for averages	, fits,	limits, e	etc. • • •
$17.31 \pm 0.11 \pm 0.05$	20.7k	BUSKULIC	96 C	ALEP	Repl. by SCHAEL 05C
$17.02 \pm 0.19 \pm 0.24$	6586	ABREU	95T	DLPH	Repl. by ABREU 99X
17.36 ± 0.27	7941	AKERS	95ı	OPAL	Repl. by ABBIENDI 03
17.6 ± 0.4 ± 0.4	2148	ADRIANI	93M	L3	Repl. by ACCIARRI 01F
17.4 ± 0.3 ± 0.5		⁴ ALBRECHT	93 G	ARG	$E_{\rm cm}^{\rm ee} = 9.4 - 10.6 {\rm GeV}$
$17.35 \pm 0.41 \pm 0.37$		DECAMP	92C	ALEP	1989-1990 LEP runs
17.7 ± 0.8 ± 0.4	568	BEHREND	90	CELL	E ^{ee} _{cm} = 35 GeV
17.4 ± 1.0	2197	ADEVA	88	MRKJ	E ^{ee} _{cm} = 14–16 GeV
17.7 ± 1.2 ± 0.7		AIHARA	87 B	TPC	E ^{ee} _{cm} = 29 GeV
$18.3 \pm 0.9 \pm 0.8$		BURCHAT	87	MRK2	Eee = 29 GeV
$18.6 \pm 0.8 \pm 0.7$	558	⁵ BARTEL	86 D	JADE	E ^{ee} _{cm} = 34.6 GeV
12.9 ± 1.7 $^{+0.7}_{-0.5}$		ALTHOFF	85	TASS	E ^{ee} _{cm} = 34.5 GeV
$18.0 \pm 0.9 \pm 0.5$	473	⁵ ASH	85 B	MAC	Eee 29 GeV
$18.0 \pm 1.0 \pm 0.6$		⁶ BALTRUSAIT.	85	MRK3	$E_{\rm cm}^{\rm ee}=$ 3.77 GeV
19.4 ± 1.6 ± 1.7	153	BERGER	85	PLUT	E ^{ee} _{cm} = 34.6 GeV
17.6 ± 2.6 ± 2.1	47	BEHREND	83C	CELL	E ^{ee} _{cm} = 34 GeV
17.8 ± 2.0 ± 1.8		BERGER	81 B	PLUT	E ^{ee} _{cm} = 9–32 GeV
1 .					

 $^{^1}$ See footnote to SCHAEL 05C $\Gamma(\tau^- \to ~e^- \overline{\nu}_e \nu_\tau)/\Gamma_{\rm total}$ measurement for correlations with other measurements.

 $^{^3}$ Not independent of SCHMIDKE 86 value (also not independent of BURCHAT 87 value for $\Gamma(h^-\,h^-\,h^+ \geq 0$ neutrals $\geq 0 K_L^0 \,
u_{ au})/\Gamma_{ ext{total}}$

⁴ Not independent of ALTHOFF 85 $\Gamma(\mu^-\overline{\nu}_\mu\nu_ au)/\Gamma_{\rm total}$, $\Gamma(e^-\overline{\nu}_e\nu_ au)/\Gamma_{\rm total}$, $\Gamma(h^-\geq 0)$ neutrals $\geq 0 K_L^0 \ \nu_ au)/\Gamma_{ ext{total}}$, and $\Gamma(h^- \ h^- \ h^+ \geq 0 \ \text{neutrals} \ \geq 0 K_L^0 \ \nu_ au)/\Gamma_{ ext{total}}$ values.

The correlation coefficient between this measurement and the ACCIARRI 01F measurement of B($\tau^- \to e^- \overline{\nu}_e \nu_{\tau}$) is 0.08.

 $^{^3}$ The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of B($e\overline{\nu}_e\nu_{\tau}$), B($\mu\overline{\nu}_\mu\nu_{\tau}$)/B($e\overline{\nu}_e\nu_{\tau}$), B($h^-\nu_{\tau}$), and B($h^-\nu_{\tau}$)/B($e\overline{\nu}_e\nu_{\tau}$) are 0.50, 0.58, 0.50, and 0.08 respectively.

 $^{^4\,\}rm Not$ independent of ALBRECHT 92D $\Gamma(\mu^-\,\overline{\nu}_\mu\,\nu_\tau)/\Gamma(e^-\,\overline{\nu}_e\,\nu_\tau)$ and ALBRECHT 93G $\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau)\times\Gamma(e^-\overline{\nu}_e\nu_\tau)/\Gamma_{\rm total}^2 \ \ {\rm values}.$

 $^{^{5}}$ Modified using B(e^ $\overline{\nu}_{\rm e}\nu_{\tau})/$ B("1 prong") and B("1 prong") ,= 0.855.

⁶ Error correlated with BALTRUSAITIS 85 $e\nu\overline{\nu}$ value.

 $0.30 \pm 0.04 \pm 0.05$ 116 3 ALEXANDER 96S OPAL 1991–1994 LEP runs 0.23 ± 0.10 10 4 WU 90 MRK2 $E_{\rm cm}^{ee} = 29$ GeV

$\Gamma(e^-\overline{\nu}_e\nu_{ au})/\Gamma_{ ext{total}}$

To minimize the effect of experiments with large systematic errors, we exclude experiments which together would contribute 5% of the weight in the average.

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
17.82 ±0.04 OUR FI	T				
17.82 ±0.05 OUR A	VERAGE				
$17.837 \!\pm\! 0.072 \!\pm\! 0.036$	56k	¹ SCHAEL	05 C	ALEP	1991-1995 LEP runs
$17.806 \pm 0.104 \pm 0.076$	24.7k	² ACCIARRI	01F	L3	1991-1995 LEP runs
$17.81 \pm 0.09 \pm 0.06$	33.1k	ABBIENDI	99н	OPAL	1991-1995 LEP runs
$17.877 \pm 0.109 \pm 0.110$	23.3k	ABREU	99x	DLPH	1991-1995 LEP runs
$17.76 \pm 0.06 \pm 0.17$		³ ANASTASSOV	97	CLEO	$E_{\rm cm}^{\it ee}=10.6~{\rm GeV}$
• • • We do not use t	he followin	g data for averages	, fits,	limits, e	etc. • • •
17.78 ± 0.10 ± 0.09	25.3k	ALEXANDER	96 D	OPAL	Repl. by ABBI- ENDI 99H
$17.79 \ \pm 0.12 \ \pm 0.06$	20.6k	BUSKULIC	96 C	ALEP	Repl. by SCHAEL 05C
$17.51 \pm 0.23 \pm 0.31$	5059	ABREU	95T	DLPH	Repl by ABREU 99X
$17.9 \pm 0.4 \pm 0.4$	2892	ADRIANI	93M	L3	Repl. by ACCIARRI 01F
17.5 ± 0.3 ± 0.5		⁴ ALBRECHT	93 G	ARG	$E_{\rm cm}^{\it ee} = 9.4 - 10.6 \; {\rm GeV}$
$17.97 \pm 0.14 \pm 0.23$	3970	AKERIB	92	CLEO	Repl. by ANAS- TASSOV 97
19.1 ± 0.4 ± 0.6	2960	⁵ AMMAR	92	CLEO	$E_{\rm cm}^{ee} = 10.5 - 10.9 \text{ GeV}$
$18.09 \pm 0.45 \pm 0.45$		DECAMP	92C	ALEP	Repl. by SCHAEL 05C
17.0 ± 0.5 ± 0.6	1.7k	ABACHI	90	HRS	E ^{ee} _{cm} = 29 GeV
$18.4 \pm 0.8 \pm 0.4$	644	BEHREND	90	CELL	E ^{ee} _{cm} = 35 GeV
$16.3 \pm 0.3 \pm 3.2$		JANSSEN	89	CBAL	$E_{\rm cm}^{\it ee} = 9.4 – 10.6 \; {\rm GeV}$
$18.4 \pm 1.2 \pm 1.0$		AIHARA	87 B	TPC	E ^{ee} _{cm} = 29 GeV
$19.1 \pm 0.8 \pm 1.1$		BURCHAT	87	MRK2	E ^{ee} _{cm} = 29 GeV

¹LEES 15G impose requirements on detected γ 's corresponding to a τ -rest-frame energy cutoff $E_{\gamma}^* >$ 10 MeV.

 $^{^2}$ BERGFELD 00 impose requirements on detected γ 's corresponding to a τ -rest-frame energy cutoff $E_{\gamma}^* > 10$ MeV. For $E_{\gamma}^* > 20$ MeV, they quote $(3.04 \pm 0.14 \pm 0.30) \times 10^{-3}$.

 $^{^3}$ ALEXANDER 96S impose requirements on detected γ 's corresponding to a τ -rest-frame energy cutoff E_{γ} >20 MeV.

⁴WU 90 reports $\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau\gamma)/\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau)=0.013\pm0.006$, which is converted to $\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau\gamma)/\Gamma_{\text{total}}$ using $\Gamma(\mu^-\overline{\nu}_\mu\nu_\tau\gamma)/\Gamma_{\text{total}}=17.35\%$. Requirements on detected γ's correspond to a τ rest frame energy cutoff $E_\gamma>37$ MeV.

```
<sup>5</sup> BARTEL
                 \pm 0.9
                                                                 86D JADE E_{cm}^{ee} = 34.6 GeV
16.8
        \pm 0.7
                                515
                  +1.4 \\ -0.9
                                                                        TASS E_{cm}^{ee} = 34.5 \text{ GeV}
                                              ALTHOFF
20.4
        \pm 3.0
                                            <sup>5</sup> ASH
                                                                 85B MAC E_{cm}^{ee} = 29 \text{ GeV}
                                390
17.8
        \pm 0.9
                 \pm 0.6
                                            ^6 BALTRUSAIT...85 MRK3 E_{cm}^{ee} = 3.77 GeV
18.2
        \pm 0.7
                 \pm 0.5
                                                                 85 PLUT E_{cm}^{ee} = 34.6 \text{ GeV}
13.0
        \pm 1.9
                  \pm 2.9
                                              BERGER
                                                                 83C CELL E_{cm}^{ee} = 34 \text{ GeV}
18.3
                                             BEHREND
        \pm 2.4
                  \pm 1.9
                                  60
                                            <sup>7</sup> BACINO
                                                                 78B DLCO E_{cm}^{ee} = 3.1-7.4 \text{ GeV}
                                459
16.0
        \pm 1.3
```

¹Correlation matrix for SCHAEL 05C branching fractions, in percent:

```
(1) \Gamma(\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau}) / \Gamma_{\text{total}}
```

(2)
$$\Gamma(\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau) / \Gamma_{\text{total}}$$

(3)
$$\Gamma(\tau^- \rightarrow \pi^- \nu_{\tau})/\Gamma_{\text{total}}$$

(4)
$$\Gamma(\tau^- \rightarrow \pi^- \pi^0 \nu_\tau) / \Gamma_{\text{total}}$$

$$\begin{array}{ll} \text{(3)} & \Gamma(\tau^- \to \ \pi^- \nu_\tau)/\Gamma_{\text{total}} \\ \text{(4)} & \Gamma(\tau^- \to \ \pi^- \pi^0 \nu_\tau)/\Gamma_{\text{total}} \\ \text{(5)} & \Gamma(\tau^- \to \ \pi^- 2\pi^0 \nu_\tau (\text{ex.} \textit{K}^0))/\Gamma_{\text{total}} \end{array}$$

(6)
$$\Gamma(\tau^- \rightarrow \pi^- 3\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}$$

(7)
$$\Gamma(\tau^- \rightarrow h^- 4\pi^0 \nu_{\tau} (\text{ex.} K^0, \eta)) / \Gamma_{\text{total}}$$

(8)
$$\Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau} (\text{ex.} K^0, \omega)) / \Gamma_{\text{total}}$$

(9)
$$\Gamma(\tau^- \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau (\text{ex.} K^0)) / \Gamma_{\text{total}}$$

(10)
$$\Gamma(\tau^- \rightarrow h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}$$

(11)
$$\Gamma(\tau^- \rightarrow h^- h^- h^+ 3\pi^0 \nu_{\tau})/\Gamma_{\text{total}}$$

(12)
$$\Gamma(\tau^- \rightarrow 3h^- 2h^+ \nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}}$$

(13)
$$\Gamma(\tau^- \rightarrow 3h^- 2h^+ \pi^0 \nu_\tau (\text{ex.} K^0)) / \Gamma_{\text{total}}$$

- (2)-20
- (3) -9 -6
- (4) -16 -12 2
- (5)-5 -5 -17 -37
- (6)-4 -15 2 -27
- -2 (7)-4 -24 -15 20 -47
- (8)-14 -9 15 -5 -17 -8
- (9)-13 -12 -25 -30 16 -15
- (10)-2 -23 -14 10 13 -17
- -5 (11)1 -2 -11
- 9 (12)1 4 -8 -6 9 -5 -2
- (13)-3 -5 -4 -3 -1 1 -24

 $^{^2}$ The correlation coefficient between this measurement and the ACCIARRI 01F measurement of B($\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$) is 0.08.

 $^{^3}$ The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of B($\mu\overline{\nu}_{\mu}\nu_{\tau}$), B($\mu\overline{\nu}_{\mu}\nu_{\tau}$)/B($e\overline{\nu}_{e}\nu_{\tau}$), B($h^{-}\nu_{\tau}$), and B($h^{-}\nu_{\tau}$)/B($e\overline{\nu}_{e}\nu_{\tau}$) are 0.50, -0.42, 0.48, and -0.39 respectively.

 $^{^4}$ Not independent of ALBRECHT 92D $\Gamma(\mu^-\overline{
u}_\mu
u_ au)/\Gamma(e^-\overline{
u}_e
u_ au)$ and ALBRECHT 93G $\Gamma(\mu^- \overline{\nu}_{\mu} \nu_{\tau}) \times \Gamma(e^- \overline{\nu}_{e} \nu_{\tau}) / \Gamma_{\text{total}}^2$ values.

⁵ Modified using B($e^-\overline{\nu}_e\nu_ au$)/B("1 prong") and B("1 prong") ,= 0.855.

 $^{^6\,\}mathrm{Error}$ correlated with BALTRUSAITIS 85 $\Gamma(\mu^-\,\overline{\nu}_\mu\,\nu_\tau)/\Gamma_{\mathrm{total}}$

 $^{^7}$ BACINO 78B value comes from fit to events with e^\pm and one other nonelectron charged prong.

 $\Gamma(\mu^-\overline{
u}_\mu
u_ au)/\Gamma(e^-\overline{
u}_e
u_ au)$

 Γ_3/Γ_5

Standard Model prediction including mass effects is 0.9726.

VALUE (units 10^{-2})

EVTS

DOCUMENT ID

TECN COMMENT

97.62 ± 0.28 OUR FIT 97.9 \pm 0.4 OUR AVERAGE

 $97.96 \pm 0.16 \pm 0.36$

¹ AUBERT 731k

10F BABR 467 fb⁻¹ $E_{cm}^{ee} = 10.6 \text{ GeV}$

 $97.77 \pm 0.63 \pm 0.87$ 99.7 $\pm 3.5 \pm 4.0$

 2 ANASTASSOV 97 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$

ALBRECHT

92D ARG $E_{cm}^{ee} = 9.4-10.6 \text{ GeV}$

 $^{
m 1}$ Correlation matrix for AUBERT 10F branching fractions:

(1)
$$\Gamma(\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}) / \Gamma(\tau^- \rightarrow e^- \overline{\nu}_{e} \nu_{\tau})$$

(2)
$$\Gamma(\tau^- \rightarrow \pi^- \nu_{\tau}) / \Gamma(\tau^- \rightarrow e^- \overline{\nu}_e \nu_{\tau})$$

(3)
$$\Gamma(\tau^- \to K^- \nu_{\tau}) / \Gamma(\tau^- \to e^- \overline{\nu}_e \nu_{\tau})$$

(2)(1)

(2)0.25

(3)0.12 0.33

$\Gamma(e^-\overline{\nu}_e\nu_{\tau}\gamma)/\Gamma_{\text{total}}$

 Γ_6/Γ

VALUE (%) DOCUMENT ID TECN COMMENT 1.84 ± 0.05 OUR AVERAGE 15G BABR 431 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV ¹ LEES $1.847 \pm 0.015 \pm 0.052$ 18k ² BERGFELD 00 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ $1.75 \ \pm 0.06 \ \pm 0.17$

$\Gamma(h^- \geq 0K_I^0 \nu_{\tau})/\Gamma_{\text{total}}$

 $\Gamma_7/\Gamma = (\Gamma_9 + \Gamma_{10} + \frac{1}{2}\Gamma_{36} + \frac{1}{2}\Gamma_{38} + \Gamma_{50})/\Gamma$

 Γ_7/Γ

12.03 ± 0.05 OUR FIT

12.2 ± 0.4 OUR AVERAGE

12.47 ± 0.26 ± 0.43 2967
1
 ACCIARRI 95 L3 1992 LEP run

12.4 ± 0.7 ± 0.7 283 2 ABREU 92N DLPH 1990 LEP run

12.1 ± 0.7 ± 0.5 309 ALEXANDER 91D OPAL 1990 LEP run

• • We use the following data for averages but not for fits. • •

11.3 ± 0.5 ± 0.8 798 3 FORD 87 MAC $^{ee}_{cm}$ = 29 GeV

• • We do not use the following data for averages, fits, limits, etc. • • •

12.44 ± 0.11 ± 0.11 15k 4 BUSKULIC 96 ALEP Repl. by SCHAEL 05C 11.7 ± 0.6 ± 0.8 5 ALBRECHT 92D ARG $^{ee}_{cm}$ = 9.4–10.6 GeV 12.98 ± 0.44 ± 0.33 6 DECAMP 92C ALEP Repl. by SCHAEL 05C 12.3 ± 0.9 ± 0.5 1338 BEHREND 90 CELL $^{ee}_{cm}$ = 35 GeV

² The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of B($\mu \overline{\nu}_{\mu} \nu_{\tau}$), B($e \overline{\nu}_{e} \nu_{\tau}$), B($h^{-} \nu_{\tau}$), and B($h^{-} \nu_{\tau}$)/B($e \overline{\nu}_{e} \nu_{\tau}$) are 0.58, -0.42, 0.07, and 0.45 respectively.

 $^{^{1}}$ LEES 15G impose requirements on detected γ 's corresponding to a au-rest-frame energy cutoff $E_{\gamma}^* > 10$ MeV.

 $^{^2}$ BERGFELD 00 impose requirements on detected γ 's corresponding to a au-rest-frame energy cutoff $E_{\gamma}^* > 10$ MeV.

```
<sup>7</sup> BURCHAT
                                                                  87 MRK2 E_{cm}^{ee} = 29 GeV
11.1 \pm 1.1 \pm 1.4
                                            <sup>8</sup> BARTEL
                                                                  86D JADE E_{cm}^{ee} = 34.6 \text{ GeV}
12.3 \pm 0.6 \pm 1.1
                                 328
                                              BERGER
                                                                  85 PLUT E_{cm}^{ee} = 34.6 \text{ GeV}
13.0 \pm 2.0 \pm 4.0
                                            <sup>9</sup> BEHREND
                                                                  83C CELL E_{cm}^{ee} = 34 \text{ GeV}
11.2 \pm 1.7 \pm 1.2
```

$\Gamma(h^-\nu_{\tau})/\Gamma_{\text{total}}$

 $\Gamma_8/\Gamma = (\Gamma_9 + \Gamma_{10})/\Gamma$

Created: 5/30/2017 17:22

TECN COMMENT 11.51 ±0.05 OUR FIT

11.63 \pm 0.12 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram below.

- (1) $\Gamma(\tau^- \rightarrow h^- \nu_{\tau})/\Gamma_{\text{total}}$
- (2) $\Gamma(\tau^- \rightarrow h^- \pi^0 \nu_{\tau}) / \Gamma_{\text{total}}$ (3) $\Gamma(\tau^- \rightarrow h^- \geq 1\pi^0 \nu_{\tau} (\text{ex}.K^0)) / \Gamma_{\text{total}}$
- (4) $\Gamma(\tau^- \rightarrow h^- 2\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}$ (5) $\Gamma(\tau^- \rightarrow h^- \geq 3\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}$

- (6) $\Gamma(\tau^{-} \to h^{-}h^{+}h^{+}\nu_{\tau}(\text{ex.}K^{0}))/\Gamma_{\text{total}}$ (7) $\Gamma(\tau^{-} \to h^{-}h^{-}h^{+}\pi^{0}\nu_{\tau}(\text{ex.}K^{0}))/\Gamma_{\text{total}}$ (8) $\Gamma(\tau^{-} \to h^{-}h^{-}h^{+} \geq 1\pi^{0}\nu_{\tau}(\text{ex.}K^{0}))/\Gamma_{\text{total}}$ (9) $\Gamma(\tau^{-} \to h^{-}h^{-}h^{+} \geq 2\pi^{0}\nu_{\tau}(\text{ex.}K^{0}))/\Gamma_{\text{total}}$
- (10) $\Gamma(\tau^{-} \to 3h^{-}2h^{+}\nu_{\tau}(\text{ex}.K^{0}))/\Gamma_{\text{total}}$ (11) $\Gamma(\tau^{-} \to 3h^{-}2h^{+}\pi^{0}\nu_{\tau}(\text{ex}.K^{0}))/\Gamma_{\text{total}}$
- - (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
- (2) -34
- (3) -47 56
- (4)6 -66 15
- 11 -86 38

 $^{^1}$ ACCIARRI 95 with 0.65% added to remove their correction for $\pi^-\,K_L^0$ backgrounds.

 $^{^2}$ ABREU 92N with 0.5% added to remove their correction for $K^*(892)^-$ backgrounds.

 $^{^3}$ FORD 87 result for B($\pi^u_{ au}$) with 0.67% added to remove their K^- correction and adjusted for 1992 B("1 prong").

 $^{^4\,\}text{BUSKULIC}$ 96 quote $11.78\,\pm\,0.11\,\pm\,0.13$ We add 0.66 to undo their correction for unseen K_I^0 and modify the systematic error accordingly.

 $^{^5}$ Not independent of ALBRECHT 92D $\Gamma(\mu^-\overline{\nu}_{\mu}\nu_{\tau})/\Gamma(e^-\overline{\nu}_{e}\nu_{\tau}),~\Gamma(\mu^-\overline{\nu}_{\mu}\nu_{\tau})$ \times $\Gamma(e^-\overline{\nu}_e\nu_{ au})$, and $\Gamma(h^-\geq 0\,K_I^0\,\nu_{ au})/\Gamma(e^-\overline{\nu}_e\nu_{ au})$ values.

⁶ DECAMP 92C quote B($h^- \geq 0 \, K_L^0 \geq 0 \, (K_S^0 \to \, \pi^+ \pi^-) \, \nu_{ au}$) = 13.32 $\pm \, 0.44 \pm 0.33$. We subtract 0.35 to correct for their inclusion of the K_S^0 decays.

 $^{^7}$ BURCHAT 87 with 1.1% added to remove their correction for K^- and K^* (892) $^-$ backgrounds.

 $^{^8}$ BARTEL 86D result for B $(\pi^u_ au)$ with 0.59% added to remove their K^- correction and adjusted for 1992 B("1 prong").

 $^{^9}$ BEHREND 83C quote B $(\pi^u_ au)=$ 9.9 \pm 1.7 \pm 1.3 after subtracting 1.3 \pm 0.5 to correct for B($K^-\nu_{\tau}$).

¹ Correlation matrix for ABDALLAH 06A branching fractions, in percent:

- (6) -7 -8 15 0 -2
- (7) -2 -1 -5 -3 3 -53
- (8) -4 -4 -13 -4 -2 -56 75
- (9) -1 -1 -4 3 -6 26 -78 -16
- (10) -1 -1 1 0 0 -2 -3 -1 3
- (11) 0 0 0 0 0 1 0 -5 5 -57

WEIGHTED AVERAGE 11.63±0.12 (Error scaled by 1.4)

$\Gamma(h^-\nu_{\tau})/\Gamma(e^-\overline{\nu}_e\nu_{\tau})$

 $\Gamma_8/\Gamma_5 = (\Gamma_9 + \Gamma_{10})/\Gamma_5$

VALUE (units 10^{-2})

EVTS

DOCUMENT ID

TECN COMMENT

64.62 ± 0.33 OUR FIT

64.0 \pm **0.7 OUR AVERAGE** Error includes scale factor of 1.6.

 \bullet \bullet We use the following data for averages but not for fits. \bullet \bullet

 $63.33 \pm 0.14 \pm 0.61$ 394k 1 AUBERT $64.84 \pm 0.41 \pm 0.60$ 2 ANASTA

 1 AUBERT 10F BABR 467 fb $^{-1}$ E_{cm}^{ee} =10.6 GeV

Created: 5/30/2017 17:22

 2 ANASTASSOV 97 CLEO $E_{
m cm}^{\it ee} = 10.6~{
m GeV}$

² The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of B($\mu\overline{\nu}_{\mu}\nu_{\tau}$), B($e\overline{\nu}_{e}\nu_{\tau}$), B($\mu\overline{\nu}_{\mu}\nu_{\tau}$)/B($e\overline{\nu}_{e}\nu_{\tau}$), and B($h^{-}\nu_{\tau}$)/B($e\overline{\nu}_{e}\nu_{\tau}$) are 0.50, 0.48, 0.07, and 0.63 respectively.

 $^{^1}$ Not independent of AUBERT 10F $\Gamma(\tau^-\to\pi^-\nu_\tau)/\Gamma(\tau^-\to e^-\overline{\nu}_e\nu_\tau)$ and $\Gamma(\tau^-\to K^-\nu_\tau)/\Gamma(\tau^-\to e^-\overline{\nu}_e\nu_\tau).$

² The correlation coefficients between this measurement and the ANASTASSOV 97 measurements of B($\mu \overline{\nu}_{\mu} \nu_{\tau}$), B($e \overline{\nu}_{e} \nu_{\tau}$), B($e \overline{\nu}_{e} \nu_{\tau}$), B($e \overline{\nu}_{e} \nu_{\tau}$), and B($e \overline{\nu}_{e} \nu_{\tau}$) are 0.08, -0.39, 0.45, and 0.63 respectively.

$\Gamma(\pi^- u_ au)/\Gamma_{ ext{total}}$
10.82 ±0.05 OUR FIT 10.828 ±0.070±0.078 38k ¹ SCHAEL 05C ALEP 1991-1995 LEP runs • • • We do not use the following data for averages, fits, limits, etc. • •
11.06 ± 0.11 ± 0.14 2 BUSKULIC 96 ALEP Repl. by SCHAEL 05C 11.7 ± 0.4 ± 1.8 1138 BLOCKER 82D MRK2 $E_{\rm cm}^{\it ee}=3.5$ –6.7 GeV
1 See footnote to SCHAEL 05C $\Gamma(\tau^-\to~e^-\overline{\nu}_e\nu_\tau)/\Gamma_{\rm total}$ measurement for correlation with other measurements. 2 Not independent of BUSKULIC 96 B($h^-\nu_\tau$) and B($K^-\nu_\tau$) values.
$\Gamma(\pi^- u_ au)/\Gamma(e^-\overline{ u}_e u_ au)$
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT
60.71 \pm 0.32 OUR FIT 59.45 \pm 0.14 \pm 0.61 369k 1 AUBERT 10F BABR 467 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
1 See footnote to AUBERT 10F $\Gamma(\tau^- o \mu^- \overline{\nu}_\mu \nu_\tau)/\Gamma(\tau^- o e^- \overline{\nu}_e \nu_\tau)$ for correlation with other measurements.
$\Gamma(K^- u_ au)/\Gamma_{ ext{total}}$
VALUE (%) EVTS DOCUMENT ID TECN COMMENT 0.606 LO 010 OLID FIT
0.696±0.010 OUR FIT 0.685±0.023 OUR AVERAGE
$0.658 \pm 0.027 \pm 0.029$
0.696 ± 0.025 ± 0.014 2032 BARATE 99K ALEP 1991–1995 LEP runs
0.85 ± 0.18 27 ABREU 94K DLPH LEP 1992 Z data
0.66 \pm 0.07 \pm 0.09 99 BATTLE 94 CLEO $E_{ m cm}^{\it ee} \approx 10.6~{ m GeV}$
$0.72\ \pm0.04\ \pm0.04$ 728 BUSKULIC 96 ALEP Repl. by BARATE 99K
0.59 ± 0.18 16 MILLS 84 DLCO $E_{\rm cm}^{\rm ep} = 29 {\rm GeV}$
1.3 \pm 0.5 15 BLOCKER 82B MRK2 $E_{\rm cm}^{\rm ee}$ = 3.9–6.7 GeV
¹ The correlation coefficient between this measurement and the ABBIENDI 01J B($ au^-$ – $K^- \geq 0\pi^0 \geq 0K^0 \geq 0\gamma \ \nu_{ au}$) is 0.60.
$\Gamma(K^-\nu_{ au})/\Gamma(e^-\overline{\nu}_{\mathbf{e}}\nu_{ au})$ Γ_{10}/Γ_{10}
VALUE (units 10 ⁻²) EVTS DOCUMENT ID TECN COMMENT
3.91 \pm 0.05 OUR FIT 3.882 \pm 0.032 \pm 0.057 25k ¹ AUBERT 10F BABR 467 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6$ GeV
1 See footnote to AUBERT 10F $\Gamma(\tau^-\to~\mu^-\overline{\nu}_\mu\nu_\tau)/\Gamma(\tau^-\to~e^-\overline{\nu}_e\nu_\tau)$ for correlation with other measurements.
$\Gamma(K^-\nu_{ au})/\Gamma(\pi^-\nu_{ au})$
VALUE (units 10 ⁻²) DOCUMENT ID TECN COMMENT
 6.44 ±0.09 OUR FIT • • • We use the following data for averages but not for fits. • • •
6.531 ± 0.056 ± 0.093 1 AUBERT 10F BABR 467 fb ⁻¹ $E_{cm}^{ee} = 10.6 \text{ GeV}$
1 Not independent of AUBERT 10F $\Gamma(\tau^-\to~\pi^-\nu_\tau)/\Gamma(\tau^-\to~e^-\overline{\nu}_e\nu_\tau)$ and $\Gamma(\tau^K^-\nu_\tau)/\Gamma(\tau^-\to~e^-\overline{\nu}_e\nu_\tau).$
HTTP://PDG.LBL.GOV Page 24 Created: 5/30/2017 17:22

 $\Gamma(h^- \geq 1 \, \text{neutrals} \, \nu_{ au}) / \Gamma_{ ext{total}}$

 $\Gamma_{11}/\Gamma = (\Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + 0.15344\Gamma_{36} + 0.15344\Gamma_{38} + 0.15444\Gamma_{38} + 0.1544\Gamma_{38} +$ $\begin{array}{c} 0.15344\Gamma_{41} + 0.15344\Gamma_{43} + 0.0942\Gamma_{48} + 0.0942\Gamma_{52} + 0.7212\Gamma_{148} + 0.7212\Gamma_{150} + \\ 0.7212\Gamma_{152} + 0.1107\Gamma_{154} + 0.0840\Gamma_{176} + 0.0840\Gamma_{177} + 0.0840\Gamma_{178})/\Gamma \end{array}$

VALUE (%)

DOCUMENT ID TECN COMMENT

37.00 ± 0.09 OUR FIT

• • We do not use the following data for averages, fits, limits, etc.

$36.14 \pm 0.33 \pm 0.58$	¹ AKERS	94E	OPAL	1991-1992 LEP runs
$38.4 \pm 1.2 \pm 1.0$	² BURCHAT	87	MRK2	Eee = 29 GeV
$42.7 \pm 2.0 \pm 2.9$	BERGER	85	PLUT	$E_{\rm cm}^{\rm ee} = 34.6 \; {\rm GeV}$

 $^{^1}$ Not independent of ACKERSTAFF 98M B $(h^-\pi^0
u_ au)$ and B $(h^-\geq 2\pi^0
u_ au)$ values.

 $\Gamma(h^- \ge 1\pi^0 \nu_\tau (\text{ex.} K^0)) / \Gamma_{\text{total}}$ $\Gamma_{12} / \Gamma = (\Gamma_{14} + \Gamma_{16} + \Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + 0.3268\Gamma_{148} + 0.3268\Gamma_{150} + C_{14} + C_{$

VALUE (%)

DOCUMENT ID TECN COMMENT

36.51 ±0.09 OUR FIT

• • We use the following data for averages but not for fits.

¹ ABDALLAH 06A DLPH 1992–1995 LEP runs $36.641 \pm 0.155 \pm 0.127$ 45k

$\Gamma(h^-\pi^0\nu_{\tau})/\Gamma_{\text{total}}$

 $\Gamma_{13}/\Gamma = (\Gamma_{14} + \Gamma_{16})/\Gamma$

VALUE	(%)		<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
25.93	±0.09	OUR FIT	<u> </u>				
25.73	± 0.16	OUR AV	ERAGE				
25.67	± 0.01	±0.39	5.4M	FUJIKAWA	80	BELL	72 fb $^{-1}$ $E_{\rm cm}^{\rm ee}$ =10.6GeV
25.740	0 ± 0.201	± 0.138	35k	¹ ABDALLAH	06A	DLPH	1992-1995 LEP runs
25.89	±0.17	± 0.29		ACKERSTAFF	98M	OPAL	1991-1995 LEP runs
25.05	± 0.35	± 0.50	6613	ACCIARRI	95	L3	1992 LEP run
25.87	± 0.12	± 0.42	51k	² ARTUSO	94	CLEO	$E_{ m cm}^{ m ee} = 10.6 \; { m GeV}$
• • •	We do	not use th	e following	g data for averages	s, fits,	, limits, e	etc. • • •
25.76	±0.15	±0.13	31k	BUSKULIC	96	ALEP	Repl. by SCHAEL 05C
25.98	± 0.36	±0.52		³ AKERS	94E	OPAL	Repl. by ACKER- STAFF 98M
22.9	± 0.8	± 1.3	283	⁴ ABREU	92N	DLPH	$E_{\rm cm}^{ee} = 88.2 - 94.2 \text{ GeV}$
23.1	± 0.4	± 0.9	1249	⁵ ALBRECHT	92Q	ARG	$E_{ m cm}^{\it ee} = 10 \; { m GeV}$
25.02	± 0.64	± 0.88	1849	DECAMP	9 2C	ALEP	1989-1990 LEP runs
22.0	± 0.8	± 1.9	779	ANTREASYAN	91	CBAL	$E_{\rm cm}^{\it ee} = 9.4 – 10.6 \; {\rm GeV}$
22.6	±1.5	±0.7	1101	BEHREND	90	CELL	Eee = 35 GeV
23.1	± 1.9	± 1.6		BEHREND	84	CELL	$E_{ m cm}^{ m ee}=$ 14,22 GeV

 $^{^1}$ See footnote to ABDALLAH 06A $\Gamma(au^- o h^-
u_ au)/\Gamma_{ ext{total}}$ measurement for correlations with other measurements.

 $^{^2}$ BURCHAT 87 quote for B($\pi^\pm \geq 1$ neutral $u_ au$) = 0.378 \pm 0.012 \pm 0.010. We add 0.006 to account for contribution from $(K^{*-}\nu_{\tau})$ which they fixed at BR = 0.013.

 $^{^1\,\}mathrm{See}$ footnote to ABDALLAH 06A $\Gamma(\tau^-\to~h^-\nu_\tau)/\Gamma_{\mathrm{total}}$ measurement for correlations with other measurements.

² ARTUSO 94 reports the combined result from three independent methods, one of which (23% of the $\tau^- \to h^- \pi^0 \nu_{\tau}$) is normalized to the inclusive one-prong branching fraction, taken as 0.854 \pm 0.004. Renormalization to the present value causes negligible change.

 $\Gamma(\pi^-\pi^0\nu_{\tau})/\Gamma_{\rm total}$ Γ_{14}/Γ VALUE (%) **TECN** 25.49 ± 0.09 OUR FIT

25.46 ± 0.12 OUR AVERAGE

¹ SCHAEL $25.471 \pm 0.097 \pm 0.085$ 05C ALEP 1991-1995 LEP runs

• • We use the following data for averages but not for fits.

² ARTUSO CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ 25.36 ± 0.44

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$\Gamma(\pi^-\pi^0 \text{non-}\rho(770)\nu_{ au})/\Gamma_{ ext{total}}$$
 $\Gamma_{15}/\Gamma_{ ext{15}}/\Gamma_{ ext{15}}$ $VALUE~(\%)$ $DOCUMENT~ID$ $TECN$ $COMMENT$ $O.3\pm 0.1\pm 0.3$ 1 BEHREND 84 CELL $E_{ ext{cm}}^{ee}=14,22~\text{GeV}$

 $\Gamma(K^-\pi^0\nu_{ au})/\Gamma_{ ext{total}}$ Γ_{16}/Γ TECN COMMENT 0.433 ± 0.015 OUR FIT 0.426 ± 0.016 OUR AVERAGE 07AP BABR 230 fb $^{-1}$ $E_{cm}^{ee} = 10.6$ GeV **AUBERT** $0.416 \pm 0.003 \pm 0.018$ 78k $0.471 \pm 0.059 \pm 0.023$ 360 **ABBIENDI** 04J OPAL 1991-1995 LEP runs 1991-1995 LEP runs $0.444 \pm 0.026 \pm 0.024$ 923 **BARATE** 99K ALEP $0.51 \pm 0.10 \pm 0.07$ 37 **BATTLE** CLEO $E_{\rm cm}^{ee} \approx 10.6 \, {\rm GeV}$ 94 • • • We do not use the following data for averages, fits, limits, etc. • • • $0.52 \pm 0.04 \pm 0.05$ **BUSKULIC** 96 ALEP Repl. by BARATE 99K 395

 $^{^3}$ AKERS 94E quote (26.25 \pm 0.36 \pm 0.52) imes 10 $^{-2}$; we subtract 0.27% from their number to correct for $\tau^- \rightarrow h^- K_I^0 \nu_{\tau}$.

⁴ ABREU 92N with 0.5% added to remove their correction for $K^*(892)^-$ backgrounds.

 $^{^5}$ ALBRECHT 92Q with 0.5% added to remove their correction for $au^-
ightarrow \ K^*(892)^-
u_ au$ background.

 $^{^1}$ See footnote to SCHAEL 05C $\Gamma(\tau^- \to ~e^-\overline{\nu}_e\nu_\tau)/\Gamma_{\rm total}$ measurement for correlations with other measurements. 2 Not independent of ARTUSO 94 B($h^-\pi^0\nu_\tau$) and BATTLE 94 B($K^-\pi^0\nu_\tau$) values.

³ Not independent of BUSKULIC 96 B($h^-\pi^0\nu_{\tau}$) and B($K^-\pi^0\nu_{\tau}$) values.

⁴ The authors divide by ($\Gamma_3 + \Gamma_5 + \Gamma_9 + \Gamma_{10}$)/ $\Gamma = 0.467$ to obtain this result.

 $^{^{5}\,\}mathsf{Experiment}$ had no hadron identification. Kaon corrections were made, but insufficient information is given to permit their removal.

⁶BURCHAT 87 value is not independent of YELTON 86 value. Nonresonant decays included.

¹BEHREND 84 assume a flat nonresonant mass distribution down to the ρ (770) mass, using events with mass above 1300 to set the level.

 $\Gamma(h^- \geq 2\pi^0
u_ au)/\Gamma_{ ext{total}}$ $\Gamma_{17}/\Gamma = (\Gamma_{20} + \Gamma_{23} + \Gamma_{27} + \Gamma_{28} + \Gamma_{30} + 0.15344\Gamma_{36} + 0.15344\Gamma_{38} + 0.15344\Gamma_{41} + 0.1$ $0.15344\Gamma_{43} + 0.09419\Gamma_{48} + 0.0942\Gamma_{52} + 0.3268\Gamma_{148} + 0.3268\Gamma_{150} + 0.3268\Gamma_{152})/\Gamma_{152}$ DOCUMENT ID TECN COMMENT <u>EVTS</u> 10.81 ± 0.09 OUR FIT $9.91 \pm 0.31 \pm 0.27$ ACKERSTAFF 98M OPAL 1991-1995 LEP runs • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AKERS $9.89 \pm 0.34 \pm 0.55$ 94E OPAL Repl. by ACKER-STAFF 98M 90 CELL $E_{
m cm}^{ee}=$ 35 GeV ² BEHREND $14.0 \pm 1.2 \pm 0.6$ 938 ³ BURCHAT $12.0 \pm 1.4 \pm 2.5$ 87 MRK2 E_{cm}^{ee} = 29 GeV 86E TPC $E_{\rm cm}^{\it ee}=$ 29 GeV $13.9 \pm 2.0 + 1.9$ ⁴ AIHARA 1 AKERS 94E not independent of AKERS 94E B($h^- \geq 1\pi^0
u_ au$) and B($h^-\pi^0
u_ au$) mea-² No independent of BEHREND 90 $\Gamma(h^-2\pi^0\nu_{\tau}(\exp.~K^0))$ and $\Gamma(h^-\geq 3\pi^0\nu_{\tau})$. 3 Error correlated with BURCHAT 87 $\Gamma(\rho^-\nu_e)/\Gamma({
m total})$ value. ⁴ AIHARA 86E (TPC) quote B $(2\pi^0\pi^-\nu_{\tau})$ + 1.6B $(3\pi^0\pi^-\nu_{\tau})$ + 1.1B $(\pi^0\eta\pi^-\nu_{\tau})$. $\Gamma(h^-2\pi^0\nu_{\tau})/\Gamma_{\rm total}$ Γ_{18}/Γ $\Gamma_{18}/\Gamma = (\Gamma_{20} + \Gamma_{23} + 0.15344\Gamma_{36} + 0.15344\Gamma_{38})/\Gamma$ DOCUMENT ID TECN 9.48 ± 0.10 OUR FIT • • • We do not use the following data for averages, fits, limits, etc. • • • 12k ¹ BUSKULIC 96 ALEP Repl. by SCHAEL 05C 1 BUSKULIC 96 quote 9.29 \pm 0.13 \pm 0.10. We add 0.19 to undo their correction for $\tau^- \rightarrow h^- K^0 \nu_{\tau}$. $\Gamma(h^- 2\pi^0
u_{ au} (\mathrm{ex}.K^0))/\Gamma_{\mathrm{total}}$ Γ_{19}/Γ $\Gamma_{19}/\Gamma = (\Gamma_{20} + \Gamma_{23})/\Gamma$ VALUE (%) DOCUMENT ID TECN COMMENT 9.32 ±0.10 OUR FIT 9.17 ± 0.27 OUR AVERAGE ¹ ABDALLAH $9.498 \pm 0.320 \pm 0.275$ 9.5k 06A DLPH 1992-1995 LEP runs 1060 **ACCIARRI** 1992 LEP run $8.88 \pm 0.37 \pm 0.42$ 95 L3 • • We use the following data for averages but not for fits. ² PROCARIO $8.96 \pm 0.16 \pm 0.44$ 93 CLEO $E_{\rm cm}^{ee} \approx 10.6 \, {\rm GeV}$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³ DECAMP $10.38 \pm 0.66 \pm 0.82$ 809 92C ALEP Repl. by SCHAEL 05C 4 ANTREASYAN 91 CBAL E_{cm}^{ee} = 9.4–10.6 GeV 133 ± 0.5 ⁵ BEHREND 90 CELL E_{cm}^{ee} = 35 GeV 10.0 ± 1.5 ± 1.1 333 87 MAC E_{cm}^{ee} = 29 GeV ⁶ BAND 8.7 ± 0.4 ± 1.1 815 ⁷ GAN 87 MRK2 E_{cm}^{ee} = 29 GeV 6.2 ± 0.6 ± 1.2 CELL $E_{cm}^{ee} = 14,22 \text{ GeV}$ 6.0 ± 3.0 ± 1.8 **BEHREND** 1 See footnote to ABDALLAH 06A $\Gamma(au^- o h^u_ au)/\Gamma_{
m total}$ measurement for correlations with other measurements. ² PROCARIO 93 entry is obtained from B($h^-2\pi^0\nu_{\tau}$)/B($h^-\pi^0\nu_{\tau}$) using ARTUSO 94 result for B($h^-\pi^0\nu_{\tau}$). Created: 5/30/2017 17:22

$$\Gamma(h^{-}2\pi^{0}\nu_{\tau}(\text{ex.}K^{0}))/\Gamma(h^{-}\pi^{0}\nu_{\tau})$$

$$\Gamma_{19}/\Gamma_{13} = (\Gamma_{20}+\Gamma_{23})/(\Gamma_{14}+\Gamma_{16})$$

$$\Gamma_{19}/\Gamma_{13} = \Gamma_{10}/\Gamma_{13}$$

VALUE (units 10⁻²) DOCUMENT ID TECN COMMENT

36.0 ± 0.4 OUR FIT

 $34.2\pm0.6\pm1.6$

¹ PROCARIO

93 CLEO $E_{\mathsf{cm}}^{ee} \approx 10.6 \; \mathsf{GeV}$

$\Gamma(\pi^- 2\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}$

 Γ_{20}/Γ

9.26 ±0.10 OUR FIT

9.239 \pm **0.086** \pm **0.090** 31

31k ¹ SCHAEL

05C ALEP 1991-1995 LEP runs

• • • We do not use the following data for averages, fits, limits, etc. • • •

9.21 $\pm 0.13 \pm 0.11$ BUSKULIC 96

IC 96 ALEP Repl. by SCHAEL 05C

$$\Gamma(\pi^- 2\pi^0 \nu_{\tau}(\text{ex}.K^0), \text{scalar})/\Gamma(\pi^- 2\pi^0 \nu_{\tau}(\text{ex}.K^0))$$
 Γ_{21}/Γ_{20}

VALUE CL% DOCUMENT ID TECN COMMENT

<0.094 95
1
 BROWDER 00 CLEO 4.7 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV

$$\Gamma(\pi^- 2\pi^0 \nu_\tau (\text{ex.} K^0), \text{vector}) / \Gamma(\pi^- 2\pi^0 \nu_\tau (\text{ex.} K^0))$$
 $\Gamma_{22} / \Gamma_{20}$

VALUECL%DOCUMENT IDTECNCOMMENT
$$<$$
0.07395 1 BROWDER00CLEO 4.7 fb $^{-1}$ $E_{\rm Cm}^{ee} = 10.6$ GeV

$$\Gamma(K^-2\pi^0\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}$$
 Γ_{23}/Γ

<u>VALUE (units 10⁻⁴)</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u> **6.5**± **2.2 OUR FIT**

5.8± 2.4 OUR AVERAGE

 $5.6\pm\ 2.0\pm1.5$

131 BARATE 3 ¹ BATTLE 99K ALEP 1991–1995 LEP runs 94 CLEO $E_{
m cm}^{\it ee} pprox$ 10.6 GeV

• • • We do not use the following data for averages, fits, limits, etc. • •

 $8 \pm 2 \pm 2$

 $9 \pm 10 \pm 3$

9 BUSKULIC

96 ALEP Repl. by BARATE 99K

 1 BATTLE 94 quote (14 \pm 10 \pm 3) \times 10 $^{-4}$ or < 30 \times 10 $^{-4}$ at 90% CL. We subtract (5 \pm 2) \times 10 $^{-4}$ to account for $\tau^ \rightarrow$ $~K^-$ (K^0 \rightarrow $~\pi^0$ π^0) ν_τ background.

HTTP://PDG.LBL.GOV

Page 28

 $^{^3}$ We subtract 0.0015 to account for $au^-
ightarrow \ K^*(892)^-
u_ au$ contribution.

 $^{^4}$ ANTREASYAN 91 subtract 0.001 to account for the $au^-
ightarrow ~K^*(892)^- \,
u_{ au}$ contribution.

 $^{^{5}}$ BEHREND 90 subtract 0.002 to account for the $\tau^{-}\rightarrow~K^{*}(892)^{-}\,\nu_{\tau}$ contribution.

 $^{^6}$ BAND 87 assume B($\pi^-\,3\pi^0\,\nu_\tau)=0.01$ and B($\pi^-\,\pi^0\,\eta\,\nu_\tau)=0.005.$

⁷GAN 87 analysis use photon multiplicity distribution.

 $^{^1}$ PROCARIO 93 quote 0.345 \pm 0.006 \pm 0.016 after correction for 2 kaon backgrounds assuming B($K^{*-}\nu_{\tau}$)=1.42 \pm 0.18% and B($h^ K^0$ $\pi^0\nu_{\tau}$)=0.48 \pm 0.48%. We multiply by 0.990 \pm 0.010 to remove these corrections to B($h^ \pi^0\nu_{\tau}$).

 $^{^1}$ See footnote to SCHAEL 05C $\Gamma(\tau^-\to e^-\overline{\nu}_e\nu_\tau)/\Gamma_{\rm total}$ measurement for correlations with other measurements.

with other measurements. 2 Not independent of BUSKULIC 96 B($h^-\,2\pi^0\,\nu_{\tau}$ (ex. K^0)) and B($K^-\,2\pi^0\,\nu_{\tau}$ (ex. K^0)) values

¹ Model-independent limit from structure function analysis on contribution to B($\tau^- \to \pi^- 2\pi^0 \nu_{\tau}$ (ex. K^0)) from scalars.

¹ Model-independent limit from structure function analysis on contribution to B($\tau^- \to \pi^- 2\pi^0 \nu_{\tau}$ (ex. K^0)) from vectors.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(h^- \geq 3\pi^0 \nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{24}^{-}/\Gamma = (\Gamma_{27}^{-} + \Gamma_{28}^{-} + \Gamma_{30}^{-} + 0.15344\Gamma_{41}^{-} + 0.15344\Gamma_{43}^{-} + 0.0942\Gamma_{48}^{-} + 0.0942\Gamma_{52}^{-} + 0.0942\Gamma_{52$ $0.3268\Gamma_{148} + 0.3268\Gamma_{150} + 0.3268\Gamma_{152} + 0.0501\Gamma_{154})/\Gamma_{154}$ DOCUMENT ID TECN COMMENT 1.34 ± 0.07 OUR FIT • • We do not use the following data for averages, fits, limits, etc. $1.53 \pm 0.40 \pm 0.46$ 186 DECAMP 92C ALEP Repl. by SCHAEL 05C 90 CELL $E_{cm}^{ee} = 35 \text{ GeV}$ $3.2 \pm 1.0 \pm 1.0$ BEHREND

$$\begin{split} \Gamma \big(h^- & \geq 3 \pi^0 \, \nu_\tau (\text{ex. } K^0) \big) / \Gamma_{\text{total}} \\ & \Gamma_{25} / \Gamma = (\Gamma_{27} + \Gamma_{28} + \Gamma_{30} + 0.3268 \Gamma_{148} + 0.3268 \Gamma_{150} + 0.3268 \Gamma_{152}) / \Gamma \end{split}$$
 Γ_{25}/Γ

 $\frac{\textit{VALUE} (\%)}{\textbf{1.25} \ \textbf{\pm 0.07} \ \ \textbf{OUR FIT}} \ \frac{\textit{EVTS}}{}$ DOCUMENT ID TECN COMMENT

 $1.403 \pm 0.214 \pm 0.224$ 1.1k¹ ABDALLAH 06A DLPH 1992–1995 LEP runs

 1 See footnote to ABDALLAH 06A $\Gamma(au^- o h^u_ au)/\Gamma_{
m total}$ measurement for correlations with other measurements.

 $\Gamma(h^- 3\pi^0 \nu_\tau)/\Gamma_{\rm total}$ Γ_{26}/Γ $\Gamma_{26}/\Gamma = (\Gamma_{27} + \Gamma_{28} + 0.15344\Gamma_{41} + 0.15344\Gamma_{43} + 0.3268\Gamma_{150})/\Gamma$ DOCUMENT ID TECN COMMENT

1.18±0.07 OUR FIT

1.21 ± 0.17 OUR AVERAGE Error includes scale factor of 1.2.

293 **ACCIARRI** 1992 LEP run $1.70\pm0.24\pm0.38$

• • We use the following data for averages but not for fits.

¹ PROCARIO 93 CLEO $E_{\rm cm}^{ee} \approx 10.6 \, {\rm GeV}$ $1.15\pm0.08\pm0.13$

• • • We do not use the following data for averages, fits, limits, etc. • • •

² BUSKULIC 96 ALEP Repl. by SCHAEL 05C 2.3k $1.24 \pm 0.09 \pm 0.11$ $0.0 \begin{array}{l} +1.4 & +1.1 \\ -0.1 & -0.1 \end{array}$ 3 GAN 87 MRK2 E_{cm}^{ee} = 29 GeV

 $\Gamma(h^-3\pi^0\nu_{\tau})/\Gamma(h^-\pi^0\nu_{\tau})$ $\Gamma_{26}/\Gamma_{13} = (\Gamma_{27} + \Gamma_{28} + 0.15344\Gamma_{41} + 0.15344\Gamma_{43} + 0.3268\Gamma_{150})/(\Gamma_{14} + \Gamma_{16})$

VALUE (units 10^{-2})

4.54 ± 0.28 OUR FIT

¹ PROCARIO 93 CLEO $E_{cm}^{ee} \approx 10.6 \text{ GeV}$ $4.4 \pm 0.3 \pm 0.5$

¹PROCARIO 93 entry is obtained from B($h^-3\pi^0\nu_{\tau}$)/B($h^-\pi^0\nu_{\tau}$) using ARTUSO 94 result for B($h^-\pi^0\nu_{\tau}$).

 $^{^2}$ BUSKULIC 96 quote B(h^- 3 π^0 $u_ au$ (ex. $\ K^0$)) $= 1.17 \pm 0.09 \pm 0.11$. We add 0.07 to remove their correction for K^0 backgrounds.

 $^{^3\,{\}rm Highly}$ correlated with GAN 87 $\Gamma(\eta\,\pi^-\,\pi^0\,\nu_\tau)/\Gamma_{\rm total}$ value. $B(\pi^{\pm} 3\pi^{0} \nu_{\tau}) + 0.67 B(\pi^{\pm} \eta \pi^{0} \nu_{\tau}) = 0.047 \pm 0.010 \pm 0.011.$

 $^{^{1}}$ PROCARIO 93 quote 0.041 \pm 0.003 \pm 0.005 after correction for 2 kaon backgrounds assuming B($K^{*-}\nu_{ au}$)=1.42 \pm 0.18% and B($h^-K^0\pi^0\nu_{ au}$)=0.48 \pm 0.48%. We add 0.003 ± 0.003 and multiply the sum by 0.990 ± 0.010 to remove these corrections.

```
\Gamma(\pi^- 3\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}
                                                                                                                       \Gamma_{27}/\Gamma
                                                                                   TECN
1.04 ±0.07 OUR FIT
                                                  <sup>1</sup> SCHAEL
                                                                           05C ALEP 1991-1995 LEP runs
0.977 \pm 0.069 \pm 0.058
                                    6.1k
   ^1 See footnote to SCHAEL 05C \Gamma(	au^-	o e^-\overline{
u}_e
u_	au)/\Gamma_{
m total} measurement for correlations
     with other measurements.
\Gamma(K^-3\pi^0\nu_{\tau}(\text{ex}.K^0,\eta))/\Gamma_{\text{total}}
                                                                                                                       \Gamma_{28}/\Gamma
VALUE (units 10^{-4})
                                                     DOCUMENT ID
4.8± 2.1 OUR FIT
3.7\pm 2.1\pm 1.1
                                                    BARATE
                                                                           99K ALEP 1991-1995 LEP runs
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                  <sup>1</sup> BUSKULIC
5 \pm 13
                                                                           94E ALEP Repl. by BARATE 99K
   ^{1} BUSKULIC 94E quote B( K^{-} \geq 0\pi^{0} \geq 0K^{0}\nu_{\tau}) - [B(K^{-}\nu_{\tau}) + B(K^{-}\pi^{0}\nu_{\tau}) + B(K^{-}\pi^{0}\pi^{0}\nu_{\tau}) + B(K^{-}\pi^{0}K^{0}\nu_{\tau})] = (5 \pm 13) \times 10^{-4} accounting for common systematic errors in BUSKULIC 94E and BUSKULIC 94F measurements of
     these modes. We assume B(K^- \ge 2K^0\nu_{\tau}) and B(K^- \ge 4\pi^0\nu_{\tau}) are negligible.
\Gamma(h^- 4\pi^0 \nu_{\tau} (\text{ex.} K^0)) / \Gamma_{\text{total}}
                                                                                                                       \Gamma_{29}/\Gamma
         \Gamma_{29}/\Gamma = (\Gamma_{30} + 0.3268\Gamma_{148} + 0.3268\Gamma_{152})/\Gamma
                                                    DOCUMENT ID
                                                                           TECN COMMENT
0.16 ± 0.04 OUR FIT
                                                  <sup>1</sup> PROCARIO
0.16\pm0.05\pm0.05
                                                                           93 CLEO E_{\rm cm}^{ee} \approx 10.6 \, {\rm GeV}
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.16 \pm 0.04 \pm 0.09
                                     232
                                                  <sup>2</sup> BUSKULIC
                                                                           96 ALEP Repl. by SCHAEL 05C
   <sup>1</sup> PROCARIO 93 quotes B(h^- 4\pi^0 \nu_{\tau})/B(h^- \pi^0 \nu_{\tau}) = 0.006 \pm 0.002 \pm 0.002. We multiply
     by the ARTUSO 94 result for B(h^-\pi^0\nu_{	au}) to obtain B(h^-4\pi^0\nu_{	au}). PROCARIO 93
     assume B(h^- \geq 5 \pi^0 \nu_{	au}) is small and do not correct for it.
   <sup>2</sup>BUSKULIC 96 quote result for 	au^- 	o h^- \ge 4\pi^0 
u_	au. We assume B(h^- \ge 5\pi^0 
u_	au) is
     negligible.
\Gamma(h^-4\pi^0\nu_{\tau}(\text{ex.}K^0,\eta))/\Gamma_{\text{total}}
                                                                                                                       \Gamma_{30}/\Gamma
                                                         DOCUMENT ID
                                                                                      TECN
                                                                                                  COMMENT
0.11 \pm 0.04 OUR FIT
                                                      <sup>1</sup> SCHAEL
                                                                               05C ALEP 1991-1995 LEP runs
0.112 \pm 0.037 \pm 0.035
                                         957
   ^1 \, {\rm See} footnote to SCHAEL 05C \Gamma(\tau^- \to ~{\rm e}^- \overline{\nu}_e \nu_\tau)/\Gamma_{\rm total} measurement for correlations
     with other measurements.
\Gamma(a_1(1260)\nu_{\tau} \rightarrow \pi^- \gamma \nu_{\tau})/\Gamma_{\text{total}}
                                                                      \Gamma_{31}/\Gamma = (0.0021\Gamma_{20} + 0.0021\Gamma_{70})/\Gamma
         The uncertainty on \Gamma(\tau^- \to a_1(1260)\nu_{	au} \to \pi^-\gamma\nu_{	au})/\Gamma_{	ext{total}} takes into account
         the non-negligible contribution from the uncertainty of the coefficient of the re-
        lationship that defines \Gamma(\tau^- \to a_1(1260)\nu_{\tau} \to \pi^-\gamma\nu_{\tau}) in terms of \Gamma(\tau^- \to a_1(1260)\nu_{\tau} \to \pi^-\gamma\nu_{\tau})
        \pi^- 2\pi^0 \nu_{\tau}(\text{ex.}K^0)) and \Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}(\text{ex.}K^0,\omega)).
VALUE (units 10^{-4})
                                                    DOCUMENT ID
```

3.8 ± 1.5 OUR FIT

```
 \Gamma(K^{-} \ge 0\pi^{0} \ge 0K^{0} \ge 0\gamma \nu_{\tau})/\Gamma_{\text{total}} 
 \Gamma_{32}/\Gamma = (\Gamma_{10} + \Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{38} + \Gamma_{43} + 0.7212\Gamma_{150} + 0.1049\Gamma_{168})/\Gamma 
                                                                                                    \Gamma_{32}/\Gamma
                                            DOCUMENT ID
1.552±0.029 OUR FIT
1.53 \pm0.04 OUR AVERAGE
                                          <sup>1</sup> ABBIENDI
                                                               01J OPAL 1990-1995 LEP runs
1.528 \pm 0.039 \pm 0.040
                                            ABREU
                                                               94K DLPH LEP 1992 Z data
1.54 \pm 0.24
                                          <sup>2</sup> BATTLE
1.70 \pm 0.12 \pm 0.19
                                                               94 CLEO E_{\rm cm}^{\it ee} \approx 10.6 \, {\rm GeV}

    • • We use the following data for averages but not for fits.

                                          <sup>3</sup> BARATE
                                                               99K ALEP 1991-1995 LEP runs
                              4006
1.520 \pm 0.040 \pm 0.041
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                          <sup>4</sup> BUSKULIC
1.70 \pm 0.05 \pm 0.06
                              1610
                                                               96
                                                                      ALEP Repl. by BARATE 99K
                                                                                E_{\rm cm}^{ee} = 29 \text{ GeV}
                                                               87B TPC
1.6 \pm 0.4 \pm 0.2
                                            AIHARA
                                 35
                                                                     DLCO E_{cm}^{ee} = 29 \text{ GeV}
1.71 \pm 0.29
                                            MILLS
   ^1 The correlation coefficient between this measurement and the ABBIENDI 01J B(	au^- 
ightarrow
     K^-\nu_{\tau}) is 0.60.
  ^2 BATTLE 94 quote 1.60 \pm 0.12 \pm 0.19. We add 0.10 \pm 0.02 to correct for their rejection
    of K_{\mathcal{S}}^0 \to \pi^+\pi^- decays.
  <sup>3</sup> Not independent of BARATE 99K B(K^-\nu_{\tau}), B(K^-\pi^0\nu_{\tau}), B(K^-2\pi^0\nu_{\tau} (ex. K^0)),
     B(K^{-}3\pi^{0}\nu_{\tau}(ex. K^{0})), B(K^{-}K^{0}\nu_{\tau}), and B(K^{-}K^{0}\pi^{0}\nu_{\tau}) values.
  <sup>4</sup> Not independent of BUSKULIC 96 B(K^-\nu_{\tau}), B(K^-\pi^0\nu_{\tau}), B(K^-2\pi^0\nu_{\tau}),
    B(K^-K^0\nu_{\tau}), and B(K^-K^0\pi^0\nu_{\tau}) values.
\Gamma(K^- \geq 1 \, (\pi^0 \, {
m or} \, K^0 \, {
m or} \, \gamma) \, 
u_	au) / \Gamma_{
m total}
                                                                                                    \Gamma_{33}/\Gamma
       \Gamma_{33}/\Gamma = (\Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{38} + \Gamma_{43} + 0.7212\Gamma_{150} + 0.7212\Gamma_{152} + 0.1049\Gamma_{168})/\Gamma_{168}
                                            DOCUMENT ID
                                                                TECN COMMENT
0.859 ± 0.028 OUR FIT
0.86 \pm 0.05 OUR AVERAGE

    • • We use the following data for averages but not for fits.

                                          <sup>1</sup> ABBIENDI
0.869 \pm 0.031 \pm 0.034
                                                               01J OPAL 1990-1995 LEP runs
                                          <sup>2</sup> ABREU
0.69 \pm 0.25
                                                               94K DLPH LEP 1992 Z data

    • • We do not use the following data for averages, fits, limits, etc.

1.2 \pm 0.5 ^{+0.2}_{-0.4}
                                            AIHARA
                                                               87B TPC E_{cm}^{ee} = 29 \text{ GeV}
  <sup>1</sup> Not independent of ABBIENDI 01 JB(	au^- 	o 	au^- 
u_	au^-) and B(	au^- 	o 	au^- 	o 	au^-)
     0K^0 > 0\gamma \nu_{\pi}) values.
  ^2 Not independent of ABREU 94K B(K ^-\nu_{\tau}) and B(K ^-\geq 0 neutrals \nu_{\tau}) measurements.
\Gamma(K_S^0(\text{particles})^-\nu_{\tau})/\Gamma_{\text{total}}
       VALUE (%)
                                         DOCUMENT ID
                                                                  TECN COMMENT
0.944 \pm 0.028 OUR FIT
0.918\pm0.015 OUR AVERAGE
                                         BARATE
                                                            98E ALEP 1991-1995 LEP runs
0.970 \pm 0.058 \pm 0.062 929
                                                            94G OPAL E_{cm}^{ee} = 88–94 GeV
0.97 \pm 0.09 \pm 0.06
                            141
                                         AKERS
• • We use the following data for averages but not for fits. • • •
                                       <sup>1</sup> RYU
                                                                  BELL 669 fb<sup>-1</sup> E_{cm}^{ee}=10.6 GeV
0.915 \pm 0.001 \pm 0.015 398k
                                                            14
HTTP://PDG.LBL.GOV
                                                Page 31
                                                                       Created: 5/30/2017 17:22
```

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update ¹ Not independent of RYU 14 measurements of B($au^- o au^- \overline{K}{}^0
u_{ au}$), B(au^- $\Gamma(h^{-}\overline{K}^{0}\nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{35}/\Gamma = (\Gamma_{36} + \Gamma_{38})/\Gamma$ DOCUMENT ID TECN COMMENT 0.987±0.014 OUR FIT 0.90 ± 0.07 OUR AVERAGE 96 CLEO $E_{
m cm}^{ee} pprox 10.6 \ {
m GeV}$ **COAN** $0.855 \pm 0.036 \pm 0.073$ 1242 ullet ullet We use the following data for averages but not for fits. ullet98E ALEP 1991-1995 LEP runs $1.01 \pm 0.11 \pm 0.07$ 555 ¹ BARATE 1 Not independent of BARATE 98E B($\tau^-\to\,\pi^-\,\overline{K}{}^0\,\nu_\tau$) and B($\tau^-\to\,K^-\,K^0\,\nu_\tau$) values.

$\Gamma(\pi^-\overline{K}^0 u_ au)/\Gamma_{ m total}$

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
8.40±0.14 OUR FIT	Γ				
8.39±0.22 OUR AV	ERAGE	Error includes scale	facto	r of 1.5.	See the ideogram below.
$8.32\!\pm\!0.02\!\pm\!0.16$	158k	$^{ m 1}$ RYU	14	BELL	669 fb $^{-1}$ $E_{\rm cm}^{\rm ee}$ =10.6 GeV
$9.33\!\pm\!0.68\!\pm\!0.49$	377	ABBIENDI	00C	OPAL	1991-1995 LEP runs
$9.28\!\pm\!0.45\!\pm\!0.34$	937	² BARATE	99K	ALEP	1991-1995 LEP runs
$9.5\ \pm 1.5\ \pm 0.6$		³ ACCIARRI	95F	L3	1991-1993 LEP runs
• • • We use the fo	ollowing d	ata for averages but	not f	or fits. •	• •
$8.55 \!\pm\! 1.17 \!\pm\! 0.66$	509	⁴ BARATE	98E	ALEP	1991-1995 LEP runs
$7.04 \pm 0.41 \pm 0.72$		⁵ COAN	96	CLEO	$E_{ m cm}^{ee} pprox 10.6 \ m GeV$
• • • We do not us	e the follo	owing data for avera	ges, fi	ts, limits	s, etc. • • •
$8.08\pm0.04\pm0.26$	53k	EPIFANOV	07	BELL	Repl. by RYU 14
$7.9\ \pm 1.0\ \pm 0.9$	98	⁶ BUSKULIC	96	ALEP	Repl. by BARATE 99K
WEIGUTE	D 41/ED 4	0.5			

WEIGHTED AVERAGE 8.39±0.22 (Error scaled by 1.5)

 $\Gamma(\pi^- \overline{K}^0 \nu_{\tau}) / \Gamma_{\text{total}} \text{ (units } 10^{-3})$

HTTP://PDG.LBL.GOV

Page 32

```
^1\,\text{RYU} 14 reconstruct \textit{K}^0 's using \textit{K}^0_{\,\text{S}}\,\rightarrow\,\pi^+\pi^- decays.
```

$\Gamma(\pi^-\overline{K}^0(\text{non-}K^*(892)^-) u_ au)/\Gamma_{ ext{total}}$

 Γ_{37}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
5.4±2.1		¹ EPIFANOV	07	BELL	$351 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$

• • We do not use the following data for averages, fits, limits, etc.

<17 95 ACCIARRI 95F L3 1991–1993 LEP runs

DOCUMENT ID

TECN COMMENT

$\frac{\Gamma(K^-K^0\nu_{\tau})/\Gamma_{\text{total}}}{\frac{VALUE \text{ (units }10^{-4})}{2}} \frac{EVTS}{2}$

 Γ_{38}/Γ

14.8 ±0.5 OUR FI					
14.9 ±0.5 OUR A	/ERAGE				
$14.80 \pm 0.14 \pm 0.54$	33k	$^{ m 1}$ RYU	14	BELL	669 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$16.2 \pm 2.1 \pm 1.1$			99K	ALEP	1991-1995 LEP runs
15.8 $\pm 4.2 \pm 1.7$	46	³ BARATE	98E	ALEP	1991-1995 LEP runs
$15.1 \ \pm 2.1 \ \pm 2.2$	111	COAN	96	CLEO	$E_{ m cm}^{ m ee} pprox 10.6 \ m GeV$

^{• • •} We do not use the following data for averages, fits, limits, etc. • •

$$26$$
 ± 9 ± 2 13 4 BUSKULIC 96 ALEP Repl. by BARATE 99 K

⁴BUSKULIC 96 measure K^0 's by detecting K^0_I 's in their hadron calorimeter.

$\Gamma(K^-K^0 \geq 0\pi^0\nu_{ au})$	$/\Gamma_{ ext{total}}$				$\Gamma_{39}/\Gamma = (\Gamma_{38} + \Gamma_{43})/\Gamma$
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
0.298±0.008 OUR FIT					
$0.330 \pm 0.055 \pm 0.039$	124	ABBIENDI	00 C	OPAL	1991-1995 LEP runs

$$\Gamma(h^-\overline{K}^0\pi^0\nu_ au)/\Gamma_{ ext{total}}$$
 $\Gamma_{40}/\Gamma=(\Gamma_{41}+\Gamma_{43})/\Gamma_{ ext{VALUE}(\%)}$ For a document id tech comment

0.532 ± 0.013 OUR FIT

0.50 \pm **0.06 OUR AVERAGE** Error includes scale factor of 1.2.

 $0.562 \pm 0.050 \pm 0.048$ 264 COAN 96 CLEO $E_{
m cm}^{
m ee} pprox 10.6 \ {
m GeV}$

ullet ullet We use the following data for averages but not for fits. ullet ullet

 $0.446 \pm 0.052 \pm 0.046$ 157 ¹ BARATE 98E ALEP 1991-1995 LEP runs

 $^{^2}$ BARATE 99K measure K^0 's by detecting K^0_L 's in their hadron calorimeter.

³ ACCIARRI 95F do not identify π^-/K^- and assume B($K^-K^0\nu_{\tau}$) = (0.29 \pm 0.12)%.

⁴BARATE 98E reconstruct K^0 's using $K^0_S \to \pi^+\pi^-$ decays. Not independent of BARATE 98E B(K^0 particles $^-\nu_{\tau}$) value.

 $^{^5}$ Not independent of COAN 96 B($h^-\,K^0\,\nu_\tau$) and B($K^-\,K^0\,\nu_\tau$) measurements.

⁶ BUSKULIC 96 measure K^{0} 's by detecting K^{0}_{I} 's in their hadron calorimeter.

 $^{^{1}}$ EPIFANOV 07 quote B($\tau^{-}\to K^{*}(892)^{-}\nu_{\tau})$ B($K^{*}(892)^{-}\to K^{0}_{S}\pi^{-})$ / B($\tau^{-}\to K^{0}_{S}\pi^{-}\nu_{\tau})=0.933\pm0.027.$ We multiply their B($\tau^{-}\to \overline{K}{}^{0}\pi^{-}\nu_{\tau})$ by [1–(0.933 \pm 0.027)] to obtain this result.

 $^{^1}$ RYU 14 reconstruct K^0 's using $K^0_S
ightarrow \ \pi^+\pi^-$ decays.

²BARATE 99K measure K^0 's by detecting K^0_I 's in their hadron calorimeter.

³BARATE 98E reconstruct K^0 's using $K^0_S \to \pi^+\pi^-$ decays.

 $^{^1}$ Not independent of BARATE 98E B($\tau^-\to\pi^-\overline{K}{}^0\pi^0\tau)$ and B($\tau^-\to K^-K^0\pi^0\nu_{\tau}$) values.

$\Gamma ig(\pi^- \overline{K}{}^0 \pi^0 u_ au ig) / \Gamma_{ m to}$	otal				Γ ₄₁ /Γ
	EVTS	DOCUMENT ID		TECN	COMMENT
0.382 ± 0.013 OUR FI	Т				
0.383 ± 0.014 OUR AV	/ERAGE				
$0.386 \pm 0.004 \pm 0.014$	27k	$^{ m 1}$ RYU	14	BELL	669 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$0.347\!\pm\!0.053\!\pm\!0.037$	299	² BARATE			1991-1995 LEP runs
$0.294 \pm 0.073 \pm 0.037$	142				1991-1995 LEP runs
$0.41 \ \pm 0.12 \ \pm 0.03$		⁴ ACCIARRI	95F	L3	1991-1993 LEP runs
• • • We use the follow	owing dat	a for averages but	not f	or fits.	• • •
$0.417 \pm 0.058 \pm 0.044$		⁵ COAN	96	CLEO	$E_{ m cm}^{\it ee} pprox $ 10.6 GeV
• • • We do not use	the follow	ing data for avera	iges, f	its, limit	s, etc. • • •
$0.32 \ \pm 0.11 \ \pm 0.05$	23	⁶ BUSKULIC	96	ALEP	Repl. by BARATE 99K
1 RYU 14 reconstruct K^0 's using $K^0_{S} ightarrow \pi^+ \pi^-$ decays.					
² BARATE 99K measure K^0 's by detecting K^0_I 's in their hadron calorimeter.					
³ BARATE 98E reco					
					$(60\pi^0 \nu_{\tau}) = (0.05 \pm 0.05)\%.$
					$(\kappa^0 \pi^0 \nu_{\tau})$ measurements.
⁶ BUSKULIC 96 me		` '		•	1 *
BOSTOLIC 30 IIIC	usu. c / (s by detecting it	L ~ '''	tileii iiu	aron caroninecti.

 $\Gamma(\overline{K}^0 \rho^- \nu_{\tau})/\Gamma_{\text{total}}$ VALUE (%) 0.22 ± 0.05 OUR AVERAGE DOCUMENT ID TECN COMMENT

 0.22 ± 0.05 OUR AVERAGE

 $0.250 \pm 0.057 \pm 0.044$ $\frac{1}{8}$ BARATE
 99K ALEP 1991–1995 LEP runs

 $0.188 \pm 0.054 \pm 0.038$ $\frac{2}{8}$ BARATE
 98E ALEP 1991–1995 LEP runs

 1 BARATE 99K measure K^0 's by detecting K^0_L 's in hadron calorimeter. They determine the $\overline{K}{}^0\,\rho^-$ fraction in $\tau^-\to \pi^-\overline{K}{}^0\pi^0\nu_\tau$ decays to be $(0.72\pm0.12\pm0.10)$ and multiply their B($\pi^-\overline{K}{}^0\pi^0\nu_\tau$) measurement by this fraction to obtain the quoted result. 2 BARATE 98E reconstruct K^0 's using $K^0_S\to \pi^+\pi^-$ decays. They determine the $\overline{K}{}^0\,\rho^-$ fraction in $\tau^-\to \pi^-\overline{K}{}^0\pi^0\nu_\tau$ decays to be $(0.64\pm0.09\pm0.10)$ and multiply their B($\pi^-\overline{K}{}^0\pi^0\nu_\tau$) measurement by this fraction to obtain the quoted result.

$\Gamma(K^-K^0\pi^0\nu_{ au})/\Gamma_{ ext{total}}$

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
15.0 ±0.7 OUR FIT	-				
14.9 \pm 0.7 OUR AV	ERAGE				
$14.96\!\pm\!0.20\!\pm\!0.74$	8.3k	$^{ m 1}$ RYU	14	BELL	669 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$14.3 \pm 2.5 \pm 1.5$	78	² BARATE	99K	ALEP	1991-1995 LEP runs
$15.2 \pm 7.6 \pm 2.1$	15	³ BARATE	98E	ALEP	1991-1995 LEP runs
$14.5 \pm 3.6 \pm 2.0$	32	COAN	96	CLEO	$E_{ m cm}^{\it ee} pprox 10.6 \ m GeV$

^{• •} We do not use the following data for averages, fits, limits, etc. • •

¹⁰ ± 5 ± 3 5 ⁴ BUSKULIC 96 ALEP Repl. by BARATE 99K

 $^{^1}$ RYU 14 reconstruct K^0 's using $K^0_S \to \pi^+\pi^-$ decays.

 $^{^2}$ BARATE 99K measure K^0 's by detecting K^0_L 's in their hadron calorimeter.

 $^{^3}$ BARATE 98E reconstruct K^0 's using $K^0_S \to \pi^+\pi^-$ decays.

⁴BUSKULIC 96 measure K^{0} 's by detecting K^{0}_{I} 's in their hadron calorimeter.

$\Gamma(\pi^-\overline{K}{}^0 \geq 1\pi^0 u_ au)$	/Γ _{total}				$\Gamma_{44}/\Gamma = (\Gamma_{41} + \Gamma_{45})/\Gamma$
VALUE (%)	EVTS	DOCUMENT IL)	TECN	COMMENT
0.408±0.025 OUR FIT				0541	1001 1005 155
$0.324 \pm 0.074 \pm 0.066$	148	ABBIENDI	000	OPAL	1991–1995 LEP runs
$\Gamma(\pi^-\overline{K}{}^0\pi^0\pi^0\nu_{ au})$ (ex	•	total			Γ ₄₅ /Γ
VALUE (units 10^{-3}) CI	L% EVTS	DOCUMENT	r ID	TEC	N COMMENT
0.26±0.23 OUR FIT 0.26±0.24		¹ BARATE	9	9r ALE	EP 1991–1995 LEP runs
	ne following				
< 0.66 95	5 17	² BARATE ³ BARATE	9	9k ALE	EP 1991–1995 LEP runs EP 1991–1995 LEP runs
	ine the RA	RATE 98E and B			easurements to obtain this
value.					
² BARATE 99K meas	ure <i>K</i> ⁰ 's b	y detecting K_L^{0}	s in the	ir hadro	n calorimeter.
³ BARATE 98E recon	struct K^{0}	s using ${\mathcal K}^0_{\mathcal S} o {\mathcal S}$	$\pi^+\pi^-$	decays.	
$\Gamma(K^-K^0\pi^0\pi^0 u_ au)/$	[total				Γ ₄₆ /Γ
VALUE		DOCUMENT IL)	TECN	
<0.16 × 10 ⁻³	95				1991–1995 LEP runs
• • • We do not use th	ne following				
$<0.18 \times 10^{-3}$ $<0.39 \times 10^{-3}$					1991–1995 LEP runs 1991–1995 LEP runs
² BARATE 99K meas	ure K^{0} 's b	y detecting K_I^{0}	s in had	Iron calc	ounds to obtain this value. orimeter.
³ BARATE 98E recon	struct K^{0}	s by using κ_S^{0} –	$\rightarrow \pi^+ \tau$	τ^- deca	ys.
$\Gamma(\pi^- K^0 \overline{K}{}^0 u_ au)/\Gamma_{ m to}$	+al			Γ ₄₇ /Ι	$\Gamma = (\Gamma_{48} + \Gamma_{49} + \Gamma_{50})/\Gamma$
	EVTS	DOCUMENT II)	,	COMMENT
• • • We use the follow		or averages but	not for	fits. • •	. •
$0.153 \pm 0.030 \pm 0.016$	74	¹ BARATE			1991–1995 LEP runs
• • • We do not use th					
$0.31 \pm 0.12 \pm 0.04$		² ACCIARRI	95F		1991-1993 LEP runs
	n this valu	ie by adding twi	ice thei	r Β(π ⁻	$K^0_S K^0_S u_{ au}$) value to their
B $(\pi^- K^0_S K^0_I u_ au)$ va		, 0		`	5 5 17
² ACCIARRI 95F assu	me B(π^-	$\kappa_0^0 \kappa_0^0 \nu = B($	$\pi^- \kappa^0$	(κ^0_{ν})	$= 1/2 B(\pi^- \ K_S^0 \ K_L^0 \ \nu).$
				,L.,	-/(·· · · · · · · · · · · · · · · · · ·
$\Gamma(\pi^-K_S^0K_S^0\nu_{ au})/\Gamma_{ ext{to}}$ Bose-Einstein cor	otal relations m	night make the n	nixing f	raction (Γ_{48}/Γ different than 1/4.
VALUE (units 10^{-4})		DOCUMENT ID			COMMENT
2.33±0.07 OUR FIT					
2.32±0.06 OUR AVER					1
	6.7k	RYU			$E_{cm}^{-1} = 10.6 \text{ GeV}$
	5.0k	LEES			$168 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$
$2.6 \pm 1.0 \pm 0.5$	6	BARATE			1991–1995 LEP runs
$2.3 \pm 0.5 \pm 0.3$	42	COAN	96 C	LLEO I	$E_{ m cm}^{\it ee} pprox 10.6 \ { m GeV}$
HTTP://PDG.LBL.	GOV	Page 35		Crea	ted: 5/30/2017 17:22

$\Gamma(\pi^- K_S^0 K_L^0 u_{ au})/\Gamma_{ ext{total}}$		Γ ₄₉ /Γ
VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TECN COMMENT
10.8±2.4 OUR FIT 10.1±2.3±1.3 68	BARATE 98E	ALEP 1991–1995 LEP runs
$\Gamma(\pi^- K_L^0 K_L^0 u_ au)/\Gamma_{ m total}$		$\Gamma_{50}/\Gamma = \Gamma_{48}/\Gamma$
/	DOCUMENT ID	150/1 — 148/1
<u>VALUE</u> (units 10 ⁻⁴) 2.33±0.07 OUR FIT	DOCUMENT ID	_
$\Gamma(\pi^- K^0 \overline{K}{}^0 \pi^0 u_ au) / \Gamma_{ ext{total}}$		$\Gamma_{51}/\Gamma = (\Gamma_{52} + \Gamma_{56} + \Gamma_{57})/\Gamma$
*		0=7 (0= 00 0.77
<u>VALUE</u> (units 10 ⁻⁴) 3.6±1.2 OUR FIT	DOCUMENT ID	TECN COMMENT
• • • We use the following da	ta for averages but not fo	or fits • • •
3.1±2.3		R ALEP 1991–1995 LEP runs
¹ BARATE 99R combin		5 5
$\Gamma(\pi^- \kappa_S^0 \kappa_L^0 \pi^0 u_ au)/\Gamma_{ m total}$	measurements to obtain	this value.
$\Gamma(\pi^- K_S^0 K_S^0 \pi^0 u_ au)/\Gamma_{ m total}$		Γ ₅₂ /Γ
$VALUE$ (units 10^{-5}) $CL\%$ $EVTS$	<u>DOCUMENT ID</u>	TECN COMMENT
1.82±0.21 OUR FIT	_	
1.80±0.21 OUR AVERAGE		
$2.00 \pm 0.22 \pm 0.20$ 303		BELL 669 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
$1.60 \pm 0.20 \pm 0.22$ 409		BABR 468 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
• • We do not use the follow	wing data for averages, fit	cs, limits, etc. • • •
<20 95	BARATE 98E	ALEP 1991–1995 LEP runs
$\Gamma(K^{*-}K^0\pi^0 u_ au o\pi^-K^0_S$	$(K_S^0\pi^0 u_ au)/\Gamma_{ m total}$	Γ ₅₃ /Γ
$VALUE$ (units 10^{-6})	DOCUMENT ID	TECN COMMENT
$10.8 \pm 1.4 \pm 1.5$	RYU 14	BELL 669 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
$\Gamma(f_1(1285)\pi^-\nu_ au o\pi^-K)$	$(^0_{\ S} K^0_{\ S} \pi^0 u_ au) / \Gamma_{ m total}$	Γ ₅₄ /Γ
<i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID	TECN COMMENT
$6.8 \pm 1.3 \pm 0.7$	RYU 14	BELL 669 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
$\Gamma(f_1(1420)\pi^-\nu_{ au} ightarrow \pi^-K$	$({}^0_S {m K}^0_S \pi^0 u_ au) / \Gamma_{total}$	Γ ₅₅ /Γ
<i>VALUE</i> (units 10^{-6})	DOCUMENT ID	TECN COMMENT
2.4±0.5±0.6	RYU 14	$\frac{\textit{TECN}}{\textit{BELL}} = \frac{\textit{COMMENT}}{\textit{669 fb}^{-1}} \frac{\textit{Eee}}{\textit{Ccm}} = 10.6 \text{ GeV}$
$\Gamma(\pi^- K_S^0 K_L^0 \pi^0 u_ au)/\Gamma_{ ext{total}}$		Γ ₅₆ /Γ
<u>VALUE (units 10⁻⁴)</u> <u>EVTS</u> 3.2±1.2 OUR FIT	DOCUMENT ID	TECN COMMENT
3.2±1.2 OUR FIT 3.1±1.1±0.5 11	BARATE 98	E ALEP 1991–1995 LEP runs
$\Gamma ig(\pi^- K_L^0 K_L^0 \pi^0 u_ au ig) / \Gamma_{ m total}$		$\Gamma_{57}/\Gamma = \Gamma_{52}/\Gamma$
VALUE (units 10^{-5})	DOCUMENT ID	_
1.82±0.21 OUR FIT		_
HTTP://PDG.LBL.GOV	Page 36	Created: 5/30/2017 17:22

$\Gamma(K^-K_S^0K_S^0\nu_{\tau})$ VALUE		DOCUMENT ID	TECN	Г₅₈/Г
<6.3 × 10 ⁻⁷	90	-		$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$\Gamma(K^-K^0_SK^0_S\pi^0_{S})$ VALUE	•	DOCUMENT ID	TECN	Γ ₅₉ /Γ
<4.0 × 10 ⁻⁷	<u>CL%_</u> 90			468 fb ⁻¹ E_{cm}^{ee} =10.6 GeV
	CL%	ν _τ)/Γ _{total} DOCUMENT ID	<u>TECN</u>	Γ ₆₀ /Γ
<0.17		TSCHIRHAR		****
• • • We do not u <0.27	90	BELTRAMI		$E_{\rm cm}^{ee}$ = 29 GeV
$\Gamma(K^0 h^+ h^- h^- \nu$	-			Γ ₆₁ /Γ
<u>VALUE (units 10⁻⁴)</u> 2.5±2.0 OUR FIT	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT
$2.3\pm1.9\pm0.7$		¹ BARATE	98E ALEP	1991–1995 LEP runs
¹ BARATE 98E r		's using $\kappa_S^0 ightarrow ~\pi^-$		
0.6920Γ ₄₉ +0 Γ ₁₀₆ +Γ ₁₀₇ +	34598Γ ₃₆ +0.34 0.4247Γ ₅₂ +0.6 +0.2810Γ ₁₄₈ +	ŀ598 <mark>Г₃₈ +́</mark> 0.34598Г б920Г ₅₆ +0.6534Г ₆	$_{1}+\Gamma_{70}+\Gamma_{78}$	Γ_{62}/Γ Γ_{43} + 0.4247 Γ_{48} + + Γ_{85} + Γ_{86} + Γ_{97} + Γ_{103} + 28 Γ_{154} + 0.7259 Γ_{168} +
VALUE (%)	EVTS	DOCUMENT ID	TECN	COMMENT
15.21 ± 0.06 OUR 14.8 ± 0.4 OUR				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ADEVA BEHREND AIHARA	89в CELL 87в ТРС	$E_{\text{cm}}^{\text{ee}} = 88.3 \text{-} 94.3 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 14 \text{-} 47 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 29 \text{ GeV}$
• • • We do not u	se the following			
$13.5 \pm 0.3 \pm 0.3$ $12.8 \pm 1.0 \pm 0.7$ $12.1 \pm 0.5 \pm 1.2$		ABACHI ¹ BURCHAT RUCKSTUHL	87 MRK2 86 DLCC	$E_{\text{cm}}^{\text{ee}} = 29 \text{ GeV}$ $2 E_{\text{cm}}^{\text{ee}} = 29 \text{ GeV}$ $0 E_{\text{cm}}^{\text{ee}} = 29 \text{ GeV}$
$12.8 \pm 0.5 \pm 0.8$	1420	SCHMIDKE		2 <i>E</i> ^{ee} _{cm} = 29 GeV
$15.3 \pm 1.1 {}^{+1.3}_{-1.6}$	367	ALTHOFF	85 TASS	E _{cm} = 34.5 GeV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	BARTEL 2 BERGER FERNANDEZ BRANDELIK	85 PLUT 85 MAC	$E_{\text{cm}}^{\text{ee}} = 34.6 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 34.6 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 29 \text{ GeV}$ $E_{\text{cm}}^{\text{ee}} = 30 \text{ GeV}$
$\frac{24}{32} \pm \frac{1}{5}$	692	³ BACINO		$E_{cm}^{ee} = 3.1-7.4 \text{ GeV}$
35 ± 3 35 ± 11 18 ± 6.5	33	³ BRANDELIK ³ JAROS		Assumes $V-A$ decay

```
<sup>1</sup>BURCHAT 87 value is not independent of SCHMIDKE 86 value.
     ^2\,\mathrm{Not} independent of BERGER 85 \Gamma(\mu^-\,\overline{\nu}_\mu\,\nu_\tau)/\Gamma_{\mathrm{total}},\;\Gamma(e^-\,\overline{\nu}_e\,\nu_\tau)/\Gamma_{\mathrm{total}},\;\Gamma(h^-\,\geq 1)
         neutrals \nu_{	au})/\Gamma_{	ext{total}}, and \Gamma(h^- \geq 0K_I^0 \ \nu_{	au})/\Gamma_{	ext{total}}, and therefore not used in the fit.
      ^{3}\mathrm{Low} energy experiments are not in average or fit because the systematic errors in back-
         ground subtraction are judged to be large.
 \Gamma \left( h^- h^- h^+ \geq 0 \text{ neutrals } \nu_\tau \left( \text{ex. } K^0_{\mathbf{S}} \to \pi^+ \pi^- \right) \right) \left( \text{"3-prong"} \right) / \Gamma_{\text{total}}   \Gamma_{63} / \Gamma = (\Gamma_{70} + \Gamma_{78} + \Gamma_{85} + \Gamma_{86} + \Gamma_{97} + \Gamma_{103} + \Gamma_{106} + \Gamma_{107} + 0.2810\Gamma_{148} + 0.2810\Gamma_{150} + 0.2810\Gamma_{152} + 0.489\Gamma_{168} + 0.9078\Gamma_{176} + 0.9078\Gamma_{177} + 0.9078\Gamma_{178} \right) / \Gamma_{100} 
                                                                                                                                                                                                   \Gamma_{63}/\Gamma
VALUE (%)
                                                           <u>EVTS</u>
                                                                                                                                        TECN COMMENT
14.55 ±0.06 OUR FIT
14.61 \pm 0.06 OUR AVERAGE
                                                                                   <sup>1</sup> ACHARD
14.556 \pm 0.105 \pm 0.076
                                                                                                                                                            1992-1995 LEP runs
14.96 \pm 0.09 \pm 0.22
                                                                                       AKERS
                                                                                                                            95Y OPAL 1991-1994 LEP runs
                                                         10.4k
\bullet \bullet We use the following data for averages but not for fits. 
 \bullet
14.652 \pm 0.067 \pm 0.086
                                                                                                                            05C ALEP 1991-1995 LEP runs
                                                                                      SCHAEL
                                                                                   <sup>2</sup> ABREU
                                                                                                                            01M DLPH 1992-1995 LEP runs
14.569 \pm 0.093 \pm 0.048
                                                                                   <sup>3</sup> BALEST
14.22 \pm 0.10 \pm 0.37
                                                                                                                            95C CLEO E_{\rm cm}^{\rm ee} \approx 10.6 \, {\rm GeV}
• • • We do not use the following data for averages, fits, limits, etc. • • •
15.26 \pm 0.26 \pm 0.22
                                                                                       ACTON
                                                                                                                            92H OPAL Repl. by AKERS 95Y
13.3 \pm 0.3
                                                                                   <sup>4</sup> ALBRECHT
                                                                                                                                                            E_{cm}^{ee} = 9.4-10.6 \text{ GeV}
                                \pm 0.8
14.35 \ ^{+\, 0.40}_{-\, 0.45} \ \pm 0.24
                                                                                       DECAMP
                                                                                                                            92C ALEP
                                                                                                                                                           1989-1990 LEP runs
      <sup>1</sup> The correlation coefficients between this measurement and the ACHARD 01D measure-
         ments of B(	au 
ightarrow "1-prong") and B(	au 
ightarrow "5-prong") are -0.978 and -0.19 respectively.
      ^2 The correlation coefficients between this measurement and the ABREU 01M measure-
          ments of B(	au 
ightarrow 1-prong) and B(	au 
ightarrow 5-prong) are -0.98 and -0.08 respectively.
      ^3 Not independent of BALEST 95C B(h^-h^-h^+
u_	au) and B(h^-h^-h^+\pi^0
u_	au) values, and
         BORTOLETTO 93 B(h^-h^-h^+2\pi^0\nu_{\tau})/B(h^-h^-h^+\geq 0 neutrals \nu_{\tau}) value.
     <sup>4</sup> This ALBRECHT 92D value is not independent of their \Gamma(\mu^- \overline{\nu}_\mu \nu_\tau) \Gamma(e^- \overline{\nu}_e \nu_\tau) / \Gamma_{\rm total}^2
         value.
\Gamma(h^-h^-h^+\nu_{\tau})/\Gamma_{\rm total}
               \Gamma_{64}/\Gamma = (0.34598\Gamma_{36} + 0.34598\Gamma_{38} + \Gamma_{70} + \Gamma_{97} + \Gamma_{106} + 0.489\Gamma_{168} + 0.0153\Gamma_{176} + 0.0157\Gamma_{176} + 0.015
VALUE (%)
                                                                                       DOCUMENT ID
                                                                                                                                        TECN COMMENT
9.80 ± 0.05 OUR FIT

    • • We use the following data for averages but not for fits.

                                                                                   <sup>1</sup> ALBRECHT
7.6 \pm 0.1 \pm 0.5
                                                                                                                            96E ARG
                                                                                                                                                           E_{\rm cm}^{\rm ee} = 9.4 - 10.6 \; {\rm GeV}
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                   <sup>2</sup> BUSKULIC
                                                                                                                                         ALEP
9.92 \pm 0.10 \pm 0.09
                                                         11.2k
                                                                                                                                                           Repl. by SCHAEL 05C
                                                                                       DECAMP
9.49 \pm 0.36 \pm 0.63
                                                                                                                            92C ALEP
                                                                                                                                                           Repl. by SCHAEL 05C
                                                                                   <sup>3</sup> BEHREND
                                                                                                                                        CELL E_{cm}^{ee} = 35 \text{ GeV}
8.7 \pm 0.7 \pm 0.3
                                                              694
                                                                                   <sup>4</sup> BAND
                                                                                                                                                           E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}
                                                                                                                                        MAC
7.0 \pm 0.3 \pm 0.7
                                                           1566
                                                                                   <sup>5</sup> BURCHAT
                                                                                                                                        MRK2 E_{cm}^{ee} = 29 GeV
6.7 \pm 0.8 \pm 0.9
6.4 \pm 0.4 \pm 0.9
                                                                                   <sup>6</sup> RUCKSTUHL
                                                                                                                                        DLCO E_{cm}^{ee} = 29 \text{ GeV}
                                                                                                                                        MRK2 E_{cm}^{ee} = 29 \text{ GeV}
7.8 \pm 0.5 \pm 0.8
                                                              890
                                                                                       SCHMIDKE
                                                                                                                            86
                                                                                   <sup>6</sup> FERNANDEZ
                                                                                                                                        MAC
                                                                                                                                                           E_{\rm cm}^{ee} = 29 \text{ GeV}
8.4 \pm 0.4 \pm 0.7
                                                           1255
                                                                                                                            85
                                                                                                                                                           E_{cm}^{ee} = 14,22 \text{ GeV}
9.7\ \pm 2.0\ \pm 1.3
                                                                                       BEHREND
                                                                                                                                         CELL
```

HTTP://PDG.LBL.GOV

Page 38

 $\begin{array}{l} \Gamma \big(\textit{h}^- \, \textit{h}^- \, \textit{h}^+ \, \nu_\tau \, (\text{ex.} \textit{K}^0) \big) / \Gamma_{\text{total}} \\ \Gamma_{65} / \Gamma = (\Gamma_{70} + \Gamma_{97} + \Gamma_{106} + 0.489 \Gamma_{168} + 0.0153 \Gamma_{176} + 0.0153 \Gamma_{177}) / \Gamma_{\text{total}} \end{array}$ Γ_{65}/Γ DOCUMENT ID TECN COMMENT 9.46 ±0.05 OUR FIT

Error includes scale factor of 1.4. See the ideogram below. 9.44 \pm 0.14 OUR AVERAGE ¹ ABDALLAH 06A DLPH 1992-1995 LEP runs $9.317 \pm 0.090 \pm 0.082$ 12.2k **BALEST** 95C CLEO $E_{
m cm}^{ee} pprox 10.6 \
m GeV$ $9.51 \pm 0.07 \pm 0.20$ 37.7k

ullet ullet We use the following data for averages but not for fits. ullet ullet

² AKERS 95Y OPAL 1991-1994 LEP runs $9.87 \pm 0.10 \pm 0.24$

• • • We do not use the following data for averages, fits, limits, etc. • • •

³ BUSKULIC $9.50 \pm 0.10 \pm 0.11$ 96 ALEP Repl. by SCHAEL 05C 11.2k

WEIGHTED AVERAGE 9.44±0.14 (Error scaled by 1.4)

HTTP://PDG.LBL.GOV

Page 39

¹ALBRECHT 96E not independent of ALBRECHT 93C $\Gamma(h^-h^-h^+\nu_{\tau}(ex. K^0))$ ×

 $[\]begin{split} &\Gamma(\text{particle}^- \geq 0 \text{ neutrals } \geq 0 \, K_L^0 \, \nu_\tau)/\Gamma_{\text{total}}^2 \text{ value.} \\ &^2 \, \text{BUSKULIC 96 quote B} (h^- \, h^+ \, h^+ \, \nu_\tau \, (\text{ex. } K^0)) = 9.50 \pm 0.10 \pm 0.11. \text{ We add } 0.42 \text{ to } \end{split}$

remove their K^0 correction and reduce the systematic error accordingly. ³ BEHREND 90 subtract 0.3% to account for the $\tau^- \to K^*(892)^- \nu_{\tau}$ contribution to

measured events.

4 BAND 87 subtract for charged kaon modes; not independent of FERNANDEZ 85 value.

 $^{^{5}}$ BURCHAT 87 value is not independent of SCHMIDKE 86 value.

⁶ Value obtained by multiplying paper's $R = B(h^-h^-h^+\nu_{\tau})/B(3$ -prong) by B(3-prong) = 0.143 and subtracting 0.3% for $K^*(892)$ background.

 $^{^1}$ See footnote to ABDALLAH 06A $\Gamma(au^- o h^u_ au)/\Gamma_{
m total}$ measurement for correlations

with other measurements. 2 Not independent of AKERS 95Y B($h^-h^-h^+ \ge 0$ neutrals ν_{τ} (ex. $K_S^0 \to \pi^+\pi^-$)) and $\mathsf{B}(h^-\,h^-\,h^+\,\nu_\tau\,(\mathrm{ex.}\ K^0))/\mathsf{B}(h^-\,h^-\,h^+\,\geq 0\ \mathrm{neutrals}\,\nu_\tau\,(\mathrm{ex.}\ K^0_S\stackrel{\smile}{\to} \pi^+\pi^-))\ \mathrm{values}.$

³ Not independent of BUSKULIC 96 B($h^-h^-h^+\nu_{\tau}$) value.

```
\Gamma(h^-h^-h^+
u_{	au}(\text{ex.}K^0))/\Gamma(h^-h^-h^+\geq 0 \text{ neutrals } \nu_{	au}(\text{ex. }K^0_S	o\pi^+\pi^-)
("3-prong"))
                  \Gamma_{65}/\Gamma_{63} = (\Gamma_{70} + \Gamma_{97} + \Gamma_{106} + 0.489\Gamma_{168} + 0.0153\Gamma_{176} + 0.0153\Gamma_{177})/(0.4247\Gamma_{52} + 0.0153\Gamma_{176})
                   \Gamma_{70} + \Gamma_{78} + \Gamma_{85} + \Gamma_{89} + \Gamma_{97} + \Gamma_{103} + \Gamma_{106} + \Gamma_{107} + 0.2810 \Gamma_{148} + 0.2292 \Gamma_{149} + 0.2810 \Gamma_{148} + 0.2810 \Gamma_{148
                 0.2810\Gamma_{150} + 0.2810\Gamma_{152} + 0.1131\Gamma_{154} + 0.3268\Gamma_{158} + 0.489\Gamma_{168} + 0.9078\Gamma_{176} +
                 0.9078\Gamma_{177} + 0.9078\Gamma_{178} + 0.892\Gamma_{180}
VALUE (units 10^{-2})
                                                                                                          DOCUMENT ID
                                                                                                                                                                      TECN COMMENT
64.98 ± 0.31 OUR FIT
66.0 \pm 0.4 \pm 1.4
                                                                                                                                                       95Y OPAL 1991-1994 LEP runs
                                                                                                          AKERS
\Gamma(h^-h^-h^+
u_{	au}(\text{ex.}K^0,\omega))/\Gamma_{	ext{total}}\Gamma_{66}/\Gamma = (\Gamma_{70}+\Gamma_{97}+\Gamma_{106}+0.489\Gamma_{168})/\Gamma_{168}
                                                                                                                                                                                                                                              \Gamma_{66}/\Gamma
VALUE (%)
9.43±0.05 OUR FIT
\Gamma(\pi^-\pi^+\pi^-\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                                    \Gamma_{67}/\Gamma = (0.34598\Gamma_{36} + \Gamma_{70} + 0.0153\Gamma_{176})/\Gamma
                                                                                                          DOCUMENT ID
9.31±0.05 OUR FIT
\Gamma(\pi^-\pi^+\pi^-\nu_{	au}(\text{ex.}K^0))/\Gamma_{	ext{total}}
                                                                                                                                                               \Gamma_{68}/\Gamma = (\Gamma_{70} + 0.0153\Gamma_{176})/\Gamma
                                                                                                DOCUMENT ID
                                                                                                                                                           TECN COMMENT
9.02 ± 0.05 OUR FIT
8.77±0.13 OUR AVERAGE Error includes scale factor of 1.1.
8.42\!\pm\!0.00\!+\!0.26\\-0.25
                                                                                          <sup>1</sup> LEE
                                                                                                                                                           BELL 666 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                                                             8.9M
                                                                                                                                                           BABR 342 fb^{-1} E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
                                                                                          <sup>2</sup> AUBERT
                                                            1.6M
8.83 \pm 0.01 \pm 0.13
                                                                                          <sup>3</sup> BRIERE
9.13 \pm 0.05 \pm 0.46
                                                                43k
                                                                                                                                            03 CLE3 E_{cm}^{ee} = 10.6 \text{ GeV}
       ^1Quoted statistical error is 0.003%. Correlation matrix for LEE 10 branching fractions:
                      (1) \Gamma(\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0)) / \Gamma_{\text{total}}
                      (2) \Gamma(\tau^- \to K^- \pi^+ \pi^- \nu_\tau (\text{ex}.K^0)) / \Gamma_{\text{total}}
                      (3) \Gamma(\tau^- \rightarrow K^- K^+ \pi^- \nu_{\tau})/\Gamma_{\text{total}}
                      (4) \Gamma(\tau^- \rightarrow K^- K^+ K^- \nu_{\tau})/\Gamma_{\text{total}}
                                           (1)
                                                                   (2)
                                                                                         (3)
                       (2)
                                        0.175
                       (3)
                                       0.049 0.080
                       (4) -0.053 0.035 -0.008
       <sup>2</sup> Correlation matrix for AUBERT 08 branching fractions:
                      (1) \Gamma(\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0)) / \Gamma_{\text{total}}
                      (2) \Gamma(\tau^- \to K^- \pi^+ \pi^- \nu_{\tau} (ex. K^0)) / \Gamma_{total}
                      (3) \Gamma(\tau^- \rightarrow K^- K^+ \pi^- \nu_{\tau})/\Gamma_{\text{total}}
                      (4) \Gamma(\tau^- \rightarrow K^- K^+ K^- \nu_{\tau})/\Gamma_{\text{total}}
                                                                  (2)
                                           (1)
                       (2)
                                        0.544
                       (3)
                                        0.390
                                                              0.177
                                       0.031 0.093 0.087
       ^3 47% correlated with BRIERE 03 	au^-	o~K^-\pi^+\pi^-
u_	au and 71% correlated with 	au^-	o
           K^-K^+\pi^-\nu_{\tau} because of a common 5% normalization error.
```

HTTP://PDG.LBL.GOV

$\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0), \text{ non-axial vector})/\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0))$ $\Gamma_{69}/\Gamma_{68} = \Gamma_{69}/(\Gamma_{70}+0.0153\Gamma_{175})$

DOCUMENT ID TECN COMMENT VALUE ¹ ACKERSTAFF 97R OPAL 1992–1994 LEP runs < 0.261

$\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex.}K^0,\omega))/\Gamma_{\text{total}}$

 Γ_{70}/Γ

DOCUMENT ID

TECN COMMENT

8.99 ± 0.05 OUR FIT

 $9.041 \pm 0.060 \pm 0.076$

29k ¹ SCHAEL

05C ALEP 1991-1995 LEP runs

$\Gamma(h^-h^-h^+ \geq 1 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}$

 $\Gamma_{71}/\Gamma = 0.34598\Gamma_{41} + 0.34598\Gamma_{43} + 0.4247\Gamma_{48} + 0.4247\Gamma_{52} + \Gamma_{78} + \Gamma_{85} + \Gamma_{86} + 0.4247\Gamma_{52} +$ $\Gamma_{103} + \Gamma_{107} + 0.2810 \Gamma_{148} + 0.2810 \Gamma_{150} + 0.2810 \Gamma_{152} + 0.2926 \Gamma_{154} + 0.892 \Gamma_{176} + 0.8$ $0.892\Gamma_{177} + 0.9078\Gamma_{178})/\Gamma$

VALUE (%) 5.29 ± 0.05 OUR FIT

							_							
•	•	We do	not us	e the	following	data f	or .	averages.	fits.	limits.	etc.	•	•	•

$5.6 \pm 0.7 \pm 0.3$	352	¹ BEHREND	90	CELL	$E_{\rm cm}^{ee} = 35 {\rm GeV}$
$4.2 \pm 0.5 \pm 0.9$	203	² ALBRECHT	87L	ARG	$E_{cm}^{ee} = 10 \; GeV$
$6.1\ \pm0.8\ \pm0.9$		³ BURCHAT	87	MRK2	$E_{\mathrm{cm}}^{\mathrm{ee}} = 29 \; \mathrm{GeV}$

7.6
$$\pm 0.4 \pm 0.9$$
 4,5 RUCKSTUHL 86 DLCO $E_{\rm cm}^{ee} = 29 \; {\rm GeV}$ 4.7 $\pm 0.5 \pm 0.8$ 530 6 SCHMIDKE 86 MRK2 $E_{\rm cm}^{ee} = 29 \; {\rm GeV}$

$\Gamma(h^-h^-h^+ \ge 1\pi^0\nu_{\tau}(\text{ex. }K^0))/\Gamma_{\text{total}}$

 $\Gamma_{72}/\Gamma = (\Gamma_{78} + \Gamma_{85} + \Gamma_{86} + \Gamma_{103} + \Gamma_{107} + 0.2292\Gamma_{148} + 0.2292\Gamma_{150} + 0.2292\Gamma_{152} + 0$ $0.892\Gamma_{176} + 0.892\Gamma_{177} + 0.9078\Gamma_{178})/\Gamma$

TECN COMMENT

Created: 5/30/2017 17:22

5.09 ±0.05 OUR FIT

VALUE (%)

5.10 ± 0.12 OUR AVERAGE

• • We use the following data for averages but not for fits.

 $^{^1}$ Model-independent limit from structure function analysis on contribution to B($au^-
ightarrow$ $\pi^-\pi^+\pi^-\nu_{\tau}$ (ex. K^0)) from non-axial vectors.

¹ See footnote to SCHAEL 05C $\Gamma(\tau^- \to e^- \overline{\nu}_e \nu_{\tau})/\Gamma_{\rm total}$ measurement for correlations with other measurements.

⁵ FERNANDEZ 85 MAC E_{cm}^{ee} = 29 GeV $5.6 \pm 0.4 \pm 0.7$ $6.2 \pm 2.3 \pm 1.7$ **BEHREND** 84 CELL $E_{cm}^{ee} = 14,22 \text{ GeV}$

 $^{^{1}}$ BEHREND 90 value is not independent of BEHREND 90 B($3h
u_{ au}>1$ neutrals) +B(5-prong).

² ALBRECHT 87L product branching tios B $(3\pi^{\pm}\pi^{0}\nu_{\tau})$ B $((e\overline{\nu}$ or $\mu\overline{\nu}$ or π or K or $\rho)\nu_{\tau})=0.029$ and use the PDG 86 values for the second branching ratio which sum to 0.69 \pm 0.03 to get the quoted value.

³BURCHAT 87 value is not independent of SCHMIDKE 86 value.

⁴Contributions from kaons and from $>1\pi^0$ are subtracted. Not independent of (3-prong $+ 0\pi^{0}$) and (3-prong $+ \geq 0\pi^{0}$) values.

⁵ Value obtained using paper's $R={\sf B}(h^-h^-h^+
u_ au)/{\sf B}(3 ext{-prong})$ and current ${\sf B}(3 ext{-prong})$

⁶ Not independent of SCHMIDKE 86 $h^-h^-h^+\nu_{\tau}$ and $h^-h^-h^+(\geq 0\pi^0)\nu_{\tau}$ values.

```
<sup>1</sup> ABDALLAH
5.106 \pm 0.083 \pm 0.103
                                                            10.1k
                                                                                                                                   06A DLPH 1992-1995 LEP runs
                                                                                        <sup>2</sup> AKERS
5.09 \pm 0.10 \pm 0.23
                                                                                                                                    95Y OPAL 1991-1994 LEP runs

    • • We do not use the following data for averages, fits, limits, etc.

4.95 \pm 0.29 \pm 0.65
                                                                                                                                    92C ALEP Repl. by SCHAEL 05C
                                                                                            DECAMP
      ^1 See footnote to ABDALLAH 06A \Gamma(	au^-	o h^-
u_	au)/\Gamma_{
m total} measurement for correlations
          with other measurements.
      <sup>2</sup> Not independent of AKERS 95Y B(h^-h^-h^+ \geq 0 neutrals\nu_{\tau} (ex. \kappa_{S}^0 \rightarrow \pi^+\pi^-))
          and B(h^-h^-h^+ \geq 0 neutrals\nu_{\tau} (ex. K^0))/B(h^-h^-h^+ \geq 0 neutrals\nu_{\tau} (ex. K^0_S \rightarrow 0
          \pi^+\pi^-)) values.
\Gamma \big( \mathit{h}^- \mathit{h}^- \mathit{h}^+ \mathit{\pi}^0 \nu_\tau \big) / \Gamma_{\mathrm{total}}
                \Gamma_{73}/\Gamma = (0.34598\Gamma_{41} + 0.34598\Gamma_{43} + \Gamma_{78} + \Gamma_{103} + \Gamma_{107} + 0.2292\Gamma_{150} + 0.892\Gamma_{176} + 0.892
               0.892\Gamma_{177} + 0.0153\Gamma_{178})/\Gamma
VALUE (%)
                                                                                            DOCUMENT ID TECN COMMENT
4.76±0.05 OUR FIT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                        <sup>1</sup> BUSKULIC
                                                                6.1k
4.45\pm0.09\pm0.07
                                                                                                                                   96 ALEP Repl. by SCHAEL 05C
      <sup>1</sup> BUSKULIC 96 quote B(h^-h^-h^+\pi^0\nu_{\tau}({\rm ex.}\ K^0))=4.30\pm0.09\pm0.09. We add 0.15
          to remove their K^0 correction and reduce the systematic error accordingly.
 \Gamma \left( h^- \, h^- \, h^+ \, \pi^0 \, \nu_\tau \, (\text{ex.} \, K^0) \right) / \Gamma_{\text{total}}   \Gamma_{74} / \Gamma = (\Gamma_{78} + \Gamma_{103} + \Gamma_{107} + 0.2292 \Gamma_{150} + 0.892 \Gamma_{176} + 0.892 \Gamma_{177} + 0.0153 \Gamma_{178}) / \Gamma_{107} 
VALUE (%)
                                                                                            DOCUMENT ID TECN COMMENT
4.57 \pm0.05 OUR FIT
4.45 \pm 0.14 OUR AVERAGE
                                                                                Error includes scale factor of 1.2.
                                                                                        <sup>1</sup> ABDALLAH
                                                                                                                                   06A DLPH 1992-1995 LEP runs
                                                                8.9k
4.545\pm0.106\pm0.103
                                                                7.2k
                                                                                            BALEST
                                                                                                                                   95C CLEO E_{\rm cm}^{\it ee} \approx 10.6 \ {\rm GeV}
4.23 \pm 0.06 \pm 0.22
      <sup>1</sup>See footnote to ABDALLAH 06A \Gamma(\tau^- \to h^- \nu_{\tau})/\Gamma_{total} measurement for correlations
          with other measurements.
\Gamma(h^-h^-h^+\pi^0\nu_{\tau}(\text{ex. }K^0,\omega))/\Gamma_{\text{total}}
                                                             \Gamma_{75}/\Gamma = (\Gamma_{78} + \Gamma_{103} + \Gamma_{107} + 0.2292\Gamma_{150})/\Gamma
VALUE (%)
2.79 ± 0.07 OUR FIT
\Gamma(\pi^-\pi^+\pi^-\pi^0
u_	au)/\Gamma_{
m total}
                                                                                                                                                                                                                \Gamma_{76}/\Gamma
                \Gamma_{76}/\Gamma = (0.34598\Gamma_{41} + \Gamma_{78} + 0.892\Gamma_{176} + 0.0153\Gamma_{178})/\Gamma
                                                                                             DOCUMENT ID
4.62 ± 0.05 OUR FIT
 \begin{array}{c} \Gamma \big( \pi^- \pi^+ \pi^- \pi^0 \nu_\tau (\text{ex.} \textit{K}^0) \big) / \Gamma_{\text{total}} \\ \Gamma_{77} / \Gamma = (\Gamma_{78} + 0.892 \Gamma_{176} + 0.0153 \Gamma_{178}) / \Gamma \end{array} 
                                                                                                                                                                                                                \Gamma_{77}/\Gamma
VALUE (%)
                                                                                                                                      TECN COMMENT
                                                                                 DOCUMENT ID
                                                   EVTS
4.49 \pm 0.05 OUR FIT
4.55 \pm0.13 OUR AVERAGE Error includes scale factor of 1.6.
                                                                             <sup>1</sup> SCHAEL
                                                                                                                        05C ALEP 1991-1995 LEP runs
4.598 \pm 0.057 \pm 0.064 16k
                                                                             <sup>2</sup> EDWARDS
                                                                                                                        00A CLEO 4.7 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
4.19 \pm 0.10 \pm 0.21
HTTP://PDG.LBL.GOV
                                                                                                   Page 42
                                                                                                                                                    Created: 5/30/2017 17:22
```

```
^1 SCHAEL 05C quote (4.590\pm0.057\pm0.064)\%. We add 0.008% to remove their correction
     for \tau^- \to \pi^- \pi^0 \omega \nu_{	au} \to \pi^- \pi^0 \pi^+ \pi^- \nu_{	au} decays. See footnote to SCHAEL 05C
     \Gamma(\tau^- 
ightarrow \ e^- \overline{
u}_e 
u_{	au}) / \Gamma_{total} measurement for correlations with other measurements.
   ^2 EDWARDS 00A quote (4.19 \pm 0.10) 	imes 10^{-2} with a 5% systematic error.
\Gamma(\pi^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0,\omega))/\Gamma_{\text{total}}
                                                                                                                \Gamma_{78}/\Gamma
2.74±0.07 OUR FIT
\Gamma(h^-\rho\pi^0\nu_{\tau})/\Gamma(h^-h^-h^+\pi^0\nu_{\tau})
                                                                                                            \Gamma_{79}/\Gamma_{73}
                                                 DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                 ALBRECHT 91D ARG E_{cm}^{ee} = 9.4-10.6 \text{ GeV}
0.30 \pm 0.04 \pm 0.02
                                   393
\Gamma(h^-\rho^+h^-\nu_{\tau})/\Gamma(h^-h^-h^+\pi^0\nu_{\tau})
                                                                                                            \Gamma_{80}/\Gamma_{73}
                                                 DOCUMENT ID TECN COMMENT
                             EVTS
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                 ALBRECHT 91D ARG E_{cm}^{ee} = 9.4-10.6 \text{ GeV}
0.10\pm0.03\pm0.04
                                   142
\Gamma(h^-\rho^-h^+\nu_{\tau})/\Gamma(h^-h^-h^+\pi^0\nu_{\tau})
                                                                                                            \Gamma_{81}/\Gamma_{73}
                                                 DOCUMENT ID TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.26 \pm 0.05 \pm 0.01
                                   370
                                                 ALBRECHT 91D ARG E_{cm}^{ee} = 9.4-10.6 \text{ GeV}
\Gamma(h^-h^-h^+ \geq 2\pi^0\nu_{\tau}(\text{ex. }K^0))/\Gamma_{\text{total}}
                                                                                                                \Gamma_{82}/\Gamma
        \Gamma_{82}/\Gamma = (\Gamma_{85} + \Gamma_{86} + 0.2292\Gamma_{148} + 0.2292\Gamma_{152} + 0.892\Gamma_{178})/\Gamma
                                                 DOCUMENT ID TECN COMMENT
0.517 ±0.031 OUR FIT
                                               <sup>1</sup> ABDALLAH 06A DLPH 1992–1995 LEP runs
0.561 \pm 0.068 \pm 0.095
                                  1.3k
   <sup>1</sup>See footnote to ABDALLAH 06A \Gamma(	au^- 	o h^- 
u_	au)/\Gamma_{
m total} measurement for correlations
     with other measurements.
 \begin{array}{l} \Gamma \big( \textit{h}^- \, \textit{h}^- \, \textit{h}^+ \, 2 \pi^0 \, \nu_\tau \big) / \Gamma_{\text{total}} \\ \Gamma_{83} / \Gamma = (0.4247 \Gamma_{48} + \Gamma_{85} + 0.2292 \Gamma_{148} + 0.2292 \Gamma_{152} + 0.892 \Gamma_{178}) / \Gamma \end{array} 
                                                                                                                \Gamma_{83}/\Gamma
VALUE (%)
                                                 DOCUMENT ID
0.505 ± 0.031 OUR FIT
\Gamma(h^-h^-h^+2\pi^0\nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}}
                                                                                                                \Gamma_{84}/\Gamma
        \Gamma_{84}/\Gamma = (\Gamma_{85} + 0.2292\Gamma_{148} + 0.2292\Gamma_{152} + 0.892\Gamma_{178})/\Gamma_{184}
VALUE (%)
                                                 DOCUMENT ID
0.495 ± 0.031 OUR FIT
                                               <sup>1</sup> SCHAEL
0.435 \pm 0.030 \pm 0.035
                                                                      05C ALEP 1991-1995 LEP runs
                                  2.6k

    • • We do not use the following data for averages, fits, limits, etc.

0.50 \pm 0.07 \pm 0.07
                                  1.8k
                                                 BUSKULIC
                                                                      96 ALEP Repl. by SCHAEL 05C
   ^{1} SCHAEL 05C quote (0.392 \pm 0.030 \pm 0.035)%. We add 0.043% to remove their cor-
     rection for \tau^- \rightarrow \pi^- \eta \pi^0 \nu_\tau \rightarrow \pi^- \pi^+ \pi^- 2\pi^0 \nu_\tau and \tau^- \rightarrow K^*(892)^- \eta \nu_\tau \rightarrow \pi^- \pi^+ \pi^- 2\pi^0 \nu_\tau
     K^-\pi^+\pi^-2\pi^0\nu_{	au} decays. See footnote to SCHAEL 05C \Gamma(	au^-	o e^-\overline{
u}_e\nu_{	au})/\Gamma_{	ext{total}}
     measurement for correlations with other measurements.
```

Page 43

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

```
\Gamma(h^-h^-h^+2\pi^0
u_	au(	ext{ex}.K^0))/\Gamma(h^-h^-h^+\geq 0 	ext{ neutrals }\geq 0K_L^0
u_	au)
                 \Gamma_{84}/\Gamma_{62} = (\Gamma_{85} + 0.2292\Gamma_{148} + 0.2292\Gamma_{152} + 0.892\Gamma_{178})/(0.34598\Gamma_{36} + 0.2292\Gamma_{178})
                 0.34598\Gamma_{38} + 0.34598\Gamma_{41} + 0.34598\Gamma_{43} + 0.4247\Gamma_{48} + 0.6920\Gamma_{49} + 0.8494\Gamma_{52} +
                0.6920\Gamma_{56} + 0.6534\Gamma_{61} + \Gamma_{70} + \Gamma_{78} + \Gamma_{85} + \Gamma_{89} + \Gamma_{97} + \Gamma_{103} + \Gamma_{106} + \Gamma_{107} +
                0.2810\Gamma_{148} + 0.2292\Gamma_{149} + 0.2810\Gamma_{150} + 0.2810\Gamma_{152} + 0.3759\Gamma_{154} + 0.3268\Gamma_{158} +
                0.7259\Gamma_{168} + 0.9078\Gamma_{176} + 0.9078\Gamma_{177} + 0.9078\Gamma_{178} + 0.892\Gamma_{180}
VALUE (units 10^{-2})
                                                                   EVTS
                                                                                                   DOCUMENT ID
3.26 ± 0.20 OUR FIT
3.4 \pm 0.2 \pm 0.3
                                                                                                   BORTOLETTO93 CLEO E_{
m cm}^{ee} \approx 10.6 \; {
m GeV}
                                                                       668
\Gamma(h^-h^-h^+2\pi^0\nu_{	au}(\mathrm{ex}.K^0,\omega,\eta))/\Gamma_{\mathrm{total}}
                                                                                                                                                                                                                                \Gamma_{85}/\Gamma
VALUE (units 10^{-4})
                                                                                                    DOCUMENT ID
10±4 OUR FIT
\Gamma(h^-h^-h^+3\pi^0\nu_{\tau})/\Gamma_{\rm total}
                                                                                                                 \Gamma_{86}/\Gamma = (0.4247\Gamma_{52} + \Gamma_{87} + 0.1131\Gamma_{154})/\Gamma
VALUE (units 10^{-4}) CL\%
                                                                                                      DOCUMENT ID TECN COMMENT
   2.12 ± 0.30 OUR FIT
   2.2 \pm 0.3 \pm 0.4
                                                                                                      ANASTASSOV 01 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                                                                         139
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                                                                                                 05C ALEP 1991-1995 LEP runs
   2.85 \pm 0.56 \pm 0.51
                                                                            57
                                                                                                      ANDERSON
                                                                                                                                                              CLEO Repl. by ANAS-
                                                                                                                                                97
                                                                                                                                                                                              TASSOV 01
                                                                                                 <sup>1</sup> BUSKULIC
                                                                         440
                                                                                                                                                96 ALEP Repl. by SCHAEL 05C
           \pm 4 \pm 5
       ^{1}BUSKULIC 96 state their measurement is for B(h^{-}h^{-}h^{+}\geq 3\pi^{0}\nu_{	au}). We assume that
          B(h^-h^-h^+ > 4\pi^0\nu_{\tau}) is very small.
\Gamma(2\pi^-\pi^+3\pi^0\nu_{	au}(\mathrm{ex}.K^0))/\Gamma_{\mathrm{total}}
                                                                                                                                                                                                                                \Gamma_{87}/\Gamma
                 \Gamma_{87}/\Gamma = (\Gamma_{89} + 0.2292\Gamma_{149} + 0.3268\Gamma_{158} + 0.892\Gamma_{180})/\Gamma
VALUE (units 10^{-4})
                                                                                         DOCUMENT ID TECN COMMENT
1.94 ± 0.30 OUR FIT
• • • We use the following data for averages but not for fits. • • •
                                                                                    <sup>1</sup> LEES
                                                                                                                            12X BABR 468 fb^{-1} E_{\rm cm}^{ee} = 10.6 GeV
2.07\pm0.18\pm0.37
      <sup>1</sup> Not independent of LEES 12X \Gamma(\tau^- \rightarrow \eta \pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0))/\Gamma, \Gamma(\tau^- \rightarrow \eta \pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0))/\Gamma
          \eta \pi^- \pi^0 \pi^0 \nu_{	au})/\Gamma, \Gamma(\tau^- 	o \pi^- \omega 2\pi^0 \nu_{	au})/\Gamma, and \Gamma(\tau^- 	o f_1(1285)\pi^- \nu_{	au} 	o f_2(1285)\pi^- \nu_{	au}
          \eta \pi^- \pi^+ \pi^- \nu_{\tau})/\Gamma values.
\Gamma(2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}(\text{ex.}K^{0},\eta,f_{1}(1285)))/\Gamma_{\text{total}}
                                                                                                                                                                                                                                \Gamma_{88}/\Gamma
VALUE (units 10^{-4})
                                                                                                                                     TECN COMMENT
                                                                                                                                  12X BABR 468 fb^{-1} E_{\rm cm}^{\rm ee} = 10.6 \, {\rm GeV}
1.69 \pm 0.08 \pm 0.43
                                                                                        LEES
\Gamma(2\pi^-\pi^+3\pi^0
u_	au (ex.K^0, \eta, \omega, f_1(1285)))/\Gamma_{
m total}
                                                                                                                                                                                                                                \Gamma_{89}/\Gamma
VALUE (units 10^{-5})
                                                                          DOCUMENT ID TECN COMMENT
1.4 ± 2.7 OUR FIT
                                                                                                                    12X BABR 468 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                                                                     <sup>1</sup> LEES
1.0 \pm 0.8 \pm 3.0
       ^{1} LEES 12X meaurement corresponds to the lower limit of < 5.8 \times 10^{-5} at 90% CL.
```

```
\Gamma(\mathit{K}^-\mathit{h}^+\mathit{h}^- \geq 0 	ext{ neutrals } 
u_	au)/\Gamma_{	ext{total}}
                 \Gamma_{90}/\Gamma = (0.34598\Gamma_{38} + 0.34598\Gamma_{43} + \Gamma_{97} + \Gamma_{103} + \Gamma_{106} + \Gamma_{107} + 0.2810\Gamma_{150} + 0.2
                 0.489\Gamma_{168} + 0.9078\Gamma_{177})/\Gamma
                                                                                                         DOCUMENT ID TECN COMMENT
       0.629 \pm 0.014 OUR FIT
                                                                                                         AIHARA 84C TPC E_{cm}^{ee} = 29 \text{ GeV}
\Gamma(K^-h^+\pi^-
u_{	au}(\text{ex}.K^0))/\Gamma_{	ext{total}}
                                                                                                                                    \Gamma_{91}/\Gamma = (\Gamma_{97} + \Gamma_{106} + 0.0153\Gamma_{177})/\Gamma
VALUE (%)
                                                                                                     DOCUMENT ID
0.437±0.007 OUR FIT
\Gamma(K^-h^+\pi^-\nu_{\tau}(\mathsf{ex}.K^0))/\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\mathsf{ex}.K^0))
                                                                                                                                                                                                                             \Gamma_{91}/\Gamma_{68}
                 \Gamma_{91}/\Gamma_{68} = (\Gamma_{97} + \Gamma_{106} + 0.0153\Gamma_{177})/(\Gamma_{70} + 0.0153\Gamma_{176})
VALUE (%) EVTS
                                                                                                     DOCUMENT ID TECN COMMENT
4.84±0.08 OUR FIT
                                                                                                     RICHICHI 99 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
5.44 \pm 0.21 \pm 0.53
                                                                      7.9k
 \begin{array}{l} \Gamma \big( \textit{K}^- \, \textit{h}^+ \, \pi^- \, \pi^0 \, \nu_\tau \, \big( \text{ex.} \, \textit{K}^0 \big) \big) / \Gamma_{\text{total}} \\ \Gamma_{92} / \Gamma = (\Gamma_{103} + \Gamma_{107} + 0.2292 \Gamma_{150} + 0.892 \Gamma_{177}) / \Gamma \end{array} 
                                                                                                                                                                                                                                    \Gamma_{92}/\Gamma
VALUE (units 10^{-4})
                                                                                                     DOCUMENT ID
8.6±1.2 OUR FIT
\Gamma(K^-h^+\pi^-\pi^0\nu_{\tau}(ex.K^0))/\Gamma(\pi^-\pi^+\pi^-\pi^0\nu_{\tau}(ex.K^0))
                 \Gamma_{92}/\Gamma_{77} = (\Gamma_{103} + \Gamma_{107} + 0.2292\Gamma_{150} + 0.892\Gamma_{177})/(\Gamma_{78} + 0.892\Gamma_{176} + 0.0153\Gamma_{178})
VALUE (%)
                                                                                                     DOCUMENT ID TECN COMMENT
1.91\pm0.26 OUR FIT
                                                                                                                                     99 CLEO E_{cm}^{ee} = 10.6 GeV
2.61\pm0.45\pm0.42
                                                                       719
                                                                                                     RICHICHI
\Gamma(K^-\pi^+\pi^- \geq 0 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}
                                                                                                                                                                                                                                    \Gamma_{93}/\Gamma
                 \Gamma_{93}/\Gamma = (0.34598\Gamma_{38} + 0.34598\Gamma_{43} + \Gamma_{97} + \Gamma_{103} + 0.2810\Gamma_{150} + 0.9078\Gamma_{177})/\Gamma_{103}
                                                                                                             DOCUMENT ID _____ TECN COMMENT
0.477 ± 0.014 OUR FIT
0.58 \ ^{+0.15}_{-0.13} \ \pm 0.12
                                                                                                                                                        94 TPC E_{cm}^{ee} = 29 GeV
                                                                                                       <sup>1</sup> BAUER
                                                                                  20
• • • We do not use the following data for averages, fits, limits, etc. • • •
0.22 \ ^{+0.16}_{-0.13} \ \pm 0.05
                                                                                                       <sup>2</sup> MILLS
                                                                                                                                                        85 DLCO E_{cm}^{ee} = 29 \text{ GeV}
       ^{
m I} We multiply 0.58% by 0.20, the relative systematic error quoted by BAUER 94, to obtain
          the systematic error.
       ^2 Error correlated with MILLS 85 (K K \pi \nu) value. We multiply 0.22% by 0.23, the relative
          systematic error quoted by MILLS 85, to obtain the systematic error.
\Gamma(K^-\pi^+\pi^- \ge 0\pi^0\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}
\Gamma_{94}/\Gamma = (\Gamma_{97} + \Gamma_{103} + 0.2292\Gamma_{150} + 0.9078\Gamma_{177})/\Gamma
                                                                                                                                                                                                                                    \Gamma_{04}/\Gamma
VALUE (%)
                                                                                                     DOCUMENT ID TECN COMMENT
0.373 ± 0.013 OUR FIT
0.30 \pm 0.05 OUR AVERAGE
HTTP://PDG.LBL.GOV
                                                                                                             Page 45
                                                                                                                                                                  Created: 5/30/2017 17:22
```

• • • We use the following data for averages but not for fits. • • •

 1 Not independent of BARATE 98 $\Gamma(\tau^-\to K^-\pi^+\pi^-\nu_\tau)/\Gamma_{\rm total}$ and $\Gamma(\tau^-\to K^-\pi^+\pi^-\pi^0\nu_\tau)/\Gamma_{\rm total}$ values.

$$\Gamma(K^-\pi^+\pi^-\nu_{\tau})/\Gamma_{\text{total}}$$
 $\Gamma_{95}/\Gamma = (0.34598\Gamma_{38} + \Gamma_{97} + 0.0153\Gamma_{177})/\Gamma_{\text{VALUE (\%)}}$

0.345 ± 0.007 OUR FIT

$\Gamma(K^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0}))/\Gamma_{\text{total}} \qquad \Gamma_{96}/\Gamma = (\Gamma_{97} + 0.0153\Gamma_{177})/\Gamma_{\text{VALUE (\%)}} \qquad \text{EVTS} \qquad \text{DOCUMENT ID} \qquad \text{TECN} \qquad \text{COMMENT}$

0.293 ± 0.007 OUR FIT

0.290 ± 0.018 OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.

$0.330 \pm 0.001 {+0.016 \atop -0.017}$	794k	¹ LEE	10	BELL	666 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$0.273\!\pm\!0.002\!\pm\!0.009$	70k	² AUBERT	80	BABR	342 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$0.415 \pm 0.053 \pm 0.040$	269	ABBIENDI	04J	OPAL	1991-1995 LEP runs
$0.384 \pm 0.014 \pm 0.038$	3.5k	³ BRIERE	03	CLE3	$E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
$0.214 \pm 0.037 \pm 0.029$		BARATE	98	ALEP	1991-1995 LEP runs

• • • We use the following data for averages but not for fits. • • •

 $0.346 \pm 0.023 \pm 0.056$ 158 ⁴ RICHICHI 99 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$

• • We do not use the following data for averages, fits, limits, etc.

 $0.360 \pm 0.082 \pm 0.048$ ABBIENDI 00D OPAL 1990–1995 LEP runs

WEIGHTED AVERAGE 0.290±0.018 (Error scaled by 2.4)

HTTP://PDG.LBL.GOV

Page 46

 $^1 \, {\rm See}$ footnote to LEE 10 $\Gamma(\tau^- \ \to \ \pi^- \, \pi^+ \, \pi^- \, \nu_\tau \, ({\rm ex.} \, K^0)) / \Gamma_{\rm total}$ measurement for correlations with other measurements. Not independent of LEE 10 $\Gamma(au^-
ightarrow$ $K^-\pi^+\pi^-\nu_{\tau}$ (ex. K^0))/Γ($\tau^-\to\pi^-\pi^+\pi^-\nu_{\tau}$ (ex. K^0)) value.

² See footnote to AUBERT 08 $\Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0))/\Gamma_{total}$ measurement for

correlations with other measurements. ³ 47% correlated with BRIERE 03 $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ and 34% correlated with $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ $K^-K^+\pi^-\nu_{\tau}$ because of a common 5% normalization error.

⁴ Not independent of RICHICHI 99

 $\Gamma(\tau^- \rightarrow K^- h^+ \pi^- \nu_\tau (\text{ex}.K^0))/\Gamma(\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau (\text{ex}.K^0)), \quad \Gamma(\tau^- \rightarrow K^- h^+ \pi^- \nu_\tau (\text{ex}.K^0))$ $K^-K^+\pi^-\nu_{ au})/\Gamma(au^- o \pi^-\pi^+\pi^-\nu_{ au}({\rm ex}.K^0))$ and BALEST 95C $\Gamma(au^- o$ $h^-h^-h^+\nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}}$ values.

$$\Gamma(K^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}))/\Gamma(\pi^{-}\pi^{+}\pi^{-}\nu_{\tau}(ex.K^{0}))$$

$$\Gamma_{96}/\Gamma_{68} = (\Gamma_{97} + 0.0153\Gamma_{177})/(\Gamma_{70} + 0.0153\Gamma_{176})$$

$$\Gamma_{96}/\Gamma_{68} = (\Gamma_{97} + 0.0153\Gamma_{177})/(\Gamma_{70} + 0.0153\Gamma_{176})$$

VALUE (units 10^{-2}) EVTS

DOCUMENT ID TECN COMMENT

3.25 ± 0.07 OUR FIT

• • We use the following data for averages but not for fits.

$$3.92 \pm 0.02 + 0.15 - 0.16$$
 794k ¹ LEE 10 BELL 666 fb⁻¹ $E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}$

 $^1\,\mathrm{Not}$ independent of LEE 10 $\Gamma(\tau^-\to~K^-\pi^+\pi^-\nu_\tau(\mathrm{ex}.K^0))/\Gamma_{\mathrm{total}}$ and $\Gamma(\tau^-\to K^-\pi^+\pi^-\nu_\tau(\mathrm{ex}.K^0))$ $\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}$ values.

$$\Gamma(K^-\pi^+\pi^-
u_{ au}(\mathrm{ex}.K^0,\omega))/\Gamma_{\mathsf{total}}$$
 $\Gamma_{\mathsf{97}}/\Gamma$

VALUE (units 10⁻³) **2.93±0.07 OUR FIT**

$$\Gamma(K^{-}\rho^{0}\nu_{\tau} \to K^{-}\pi^{+}\pi^{-}\nu_{\tau})/\Gamma(K^{-}\pi^{+}\pi^{-}\nu_{\tau}(\text{ex}.K^{0})) \qquad \Gamma_{98}/\Gamma_{96}$$

 $0.48 \pm 0.14 \pm 0.10$

 $\frac{DOCUMENT\ ID}{}$ $\frac{TECN}{}$ $\frac{COMMENT}{}$ 1 ASNER 00B CLEO $E_{\rm cm}^{ee}=10.6\ {\rm GeV}$

Created: 5/30/2017 17:22

• • We do not use the following data for averages, fits, limits, etc.

² BARATE 0.39 ± 0.14 99R ALEP 1991-1995 LEP runs

¹ ASNER 00B assume $\tau^- \to K^- \pi^+ \pi^- \nu_\tau$ (ex. K^0) decays proceed only through $K \rho$ and $K^*\pi$ intermediate states. They assume the resonance structure of $\tau^- o K^-\pi^+\pi^-\nu_{ au}$ (ex. κ^0) decays is dominated by $\kappa_1(1270)^-$ and $\kappa_1(1400)^-$ resonances, and assume ${\sf B}({\cal K}_1(1270)\to {\cal K}^*(892)\pi)=(16\pm5)\%,\ {\sf B}({\cal K}_1(1270)\to {\cal K}\rho)=(42\pm6)\%,\ {\sf and}\ {\sf B}({\cal K}_1(1400)\to {\cal K}\rho)=0.$

²BARATE 99R assume $au^- o K^- \pi^+ \pi^-
u_ au$ (ex. K^0) decays proceed only through K
hoand $K^*\pi$ intermediate states. The quoted error is statistical only.

$$\begin{array}{ll} \Gamma \big(\textit{K}^- \pi^+ \pi^- \pi^0 \nu_\tau \big) / \Gamma_{\text{total}} & \Gamma_{99} / \Gamma \\ \Gamma_{99} / \Gamma = (0.34598 \Gamma_{43} + \Gamma_{103} + 0.2292 \Gamma_{150} + 0.892 \Gamma_{177}) / \Gamma \end{array}$$

VALUE (units 10⁻⁴)

13.1 ± 1.2 OUR FIT

```
\Gamma(K^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{100}/\Gamma
         \Gamma_{100}/\Gamma = (\Gamma_{103} + 0.2292\Gamma_{150} + 0.892\Gamma_{177})/\Gamma
VALUE (units 10^{-4}) CL\%
                                              DOCUMENT ID TECN COMMENT
7.9 ± 1.2 OUR FIT
7.3±1.2 OUR AVERAGE
                                            <sup>1</sup> ARMS
                                                                            CLE3 7.6 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 GeV
7.4 \!\pm\! 0.8 \!\pm\! 1.1
                                               BARATE
6.1 \pm 3.9 \pm 1.8
                                                                            ALEP 1991-1995 LEP runs

    • • We use the following data for averages but not for fits.
    • •

                                            <sup>2</sup> RICHICHI
                                                                    99 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
7.5 \pm 2.6 \pm 1.8
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                              ABBIENDI
                                                                    00D OPAL 1990-1995 LEP runs
   <sup>1</sup> Not independent of ARMS 05 \Gamma(\tau^- \to K^- \pi^+ \pi^- \pi^0 \nu_{\tau}(\text{ex.}K^0,\omega)) / \Gamma_{\text{total}} and
     \Gamma(	au^- 
ightarrow K^- \omega 
u_	au) / \Gamma_{\mathsf{total}} values.
   <sup>2</sup>Not independent of RICHICHI 99
     \Gamma(\tau^- \rightarrow K^- h^+ \pi^- \nu_\tau (\text{ex}.K^0)) / \Gamma(\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_\tau (\text{ex}.K^0)), \quad \Gamma(\tau^- \rightarrow K^- h^+ \pi^- \nu_\tau (\text{ex}.K^0))
     K^-K^+\pi^-\nu_{	au})/\Gamma(	au^- 	o 	au^-\pi^+\pi^-\nu_{	au}({\rm ex}.K^0)) and BALEST 95C \Gamma(	au^- 	o
     h^-h^-h^+\nu_{\tau}(\mathrm{ex}.K^0))/\Gamma_{\mathrm{total}} values.
\Gamma(K^-\pi^+\pi^-\pi^0\nu_{	au}(\text{ex}.K^0,\eta))/\Gamma_{	ext{total}}
                                                                           \Gamma_{101}/\Gamma = (\Gamma_{103} + 0.892\Gamma_{177})/\Gamma
                                                   DOCUMENT ID
VALUE (units 10^{-4})
7.6 ± 1.2 OUR FIT
\Gamma(K^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex}.K^0,\omega))/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{102}/\Gamma
VALUE (units 10^{-4})
                                              DOCUMENT ID
                                                                           CLE3 7.6 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 GeV
3.7 \pm 0.5 \pm 0.8
                                              ARMS
                                                                   05
\Gamma(K^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0,\omega,\eta))/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{103}/\Gamma
VALUE (units 10^{-4})
                                                   DOCUMENT ID
3.9 ± 1.4 OUR FIT
\Gamma(K^-\pi^+K^- \ge 0 \text{ neut. } \nu_{\tau})/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{104}/\Gamma
                                                                            TECN_ COMMENT
                                                   DOCUMENT ID
                                                                         94 TPC E_{cm}^{ee} = 29 GeV
 < 0.09
                                                   BAUER
\Gamma(K^-K^+\pi^- \ge 0 \text{ neut. } \nu_{\tau})/\Gamma_{\text{total}}
                                                                                    \Gamma_{105}/\Gamma = (\Gamma_{106} + \Gamma_{107})/\Gamma
                                                   DOCUMENT ID
                                                                                TECN COMMENT
0.1496 ± 0.0033 OUR FIT
0.203 \pm 0.031 OUR AVERAGE
0.159 \pm 0.053 \pm 0.020
                                                   ABBIENDI
                                                                         00D OPAL 1990-1995 LEP runs
0.15 \begin{array}{c} +0.09 \\ -0.07 \end{array}
                                                 <sup>1</sup> BAUER
                                                                                           E_{cm}^{ee} = 29 \text{ GeV}
                     \pm 0.03
                                                                                TPC
ullet ullet We use the following data for averages but not for fits. ullet ullet
0.238 \pm 0.042
                                                <sup>2</sup> BARATE
                                                                         98 ALEP 1991-1995 LEP runs
   ^{
m 1} We multiply 0.15% by 0.20, the relative systematic error quoted by BAUER 94, to obtain
     the systematic error.
   <sup>2</sup> Not independent of BARATE 98 \Gamma(\tau^- \to K^-K^+\pi^-\nu_{\tau})/\Gamma_{\rm total} and \Gamma(\tau^- \to K^-K^+\pi^-\nu_{\tau})
     K^-K^+\pi^-\pi^0\nu_{\tau})/\Gamma_{\text{total}} values.
HTTP://PDG.LBL.GOV
                                                       Page 48
                                                                                 Created: 5/30/2017 17:22
```

$\Gamma(K^-K^+\pi^-\nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{106}/Γ

1 435 ± 0 027 OUR I	EIT	·		
VALUE (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT

1.435±0.027 OUR FIT

1.43 ±0.07 OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.

$1.55 \pm 0.01 ^{+ 0.06}_{- 0.05}$	108k	¹ LEE	10	BELL	666 fb $^{-1}$ $E_{\rm cm}^{ee}$ =10.6 GeV
$1.346\pm0.010\pm0.036$	18k	² AUBERT	80	BABR	342 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$1.55 \ \pm 0.06 \ \pm 0.09$	932	³ BRIERE	03	CLE3	$E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$1.63 \pm 0.21 \pm 0.17$		BARATE	98	ALEP	1991-1995 LEP runs

ullet ullet We use the following data for averages but not for fits. ullet ullet

0.87
$$\pm$$
0.56 \pm 0.40 ABBIENDI 00D OPAL 1990–1995 LEP runs 1.45 \pm 0.13 \pm 0.28 2.3k ⁴ RICHICHI 99 CLEO $E_{\rm cm}^{ee}=10.6~{\rm GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

2.2
$$^{+1.7}_{-1.1}$$
 ± 0.5 9 ⁵ MILLS 85 DLCO $E_{cm}^{ee} = 29 \text{ GeV}$

¹ See footnote to LEE 10 $\Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}$ measurement for correlations with other measurements. Not independent of LEE 10 $\Gamma(\tau^- \to K^- K^+ \pi^- \nu_{\tau})/\Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}(\text{ex}.K^0))$ value.

 $K^-K^+\pi^-\nu_{\tau})/\Gamma(\tau^-\to\pi^-\pi^+\pi^-\nu_{\tau}({\rm ex}.K^0))$ value. ² See footnote to AUBERT 08 $\Gamma(\tau^-\to\pi^-\pi^+\pi^-\nu_{\tau}({\rm ex}.K^0))/\Gamma_{\rm total}$ measurement for correlations with other measurements

3 correlations with other measurements. 371% correlated with BRIERE 03 $\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}$ and 34% correlated with $\tau \to K^- \pi^+ \pi^- \nu_{\tau}$ because of a common 5% normalization error.

 $K^-\pi^+\pi^-\nu_{\tau}$ because of a common 5% normalization error. A Not independent of RICHICHI 99 $\Gamma(\tau^-\to K^-K^+\pi^-\nu_{\tau})/\Gamma(\tau^-\to \pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0))$ and BALEST 95C $\Gamma(\tau^-\to h^-h^-h^+\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}$ values

 5 Error correlated with MILLS 85 $(K\pi\pi\pi^{0}\nu)$ value. We multiply 0.22% by 0.23, the relative systematic error quoted by MILLS 85, to obtain the systematic error.

WEIGHTED AVERAGE 1.43±0.07 (Error scaled by 2.4)

HTTP://PDG.LBL.GOV

Page 49

```
\Gamma(K^-K^+\pi^-\nu_{\tau})/\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex.}K^0))
                                                                                                     \Gamma_{106}/\Gamma_{68}
        \Gamma_{106}/\Gamma_{68} = \Gamma_{106}/(\Gamma_{70} + 0.0153\Gamma_{176})
VALUE (%)
                           <u>E</u>VTS
                                                                  TECN COMMENT
                                          DOCUMENT ID
1.592±0.030 OUR FIT
1.83 \pm 0.05 OUR AVERAGE
                                                               99 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
1.60 \pm 0.15 \pm 0.30 2.3k
                                          RICHICHI
• • We use the following data for averages but not for fits. • • •
1.84 \pm 0.01 \pm 0.05 \ 108k
                                        <sup>1</sup> LEE
                                                              10 BELL 666 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
   <sup>1</sup> Not independent of LEE 10 \Gamma(\tau^- \to K^-K^+\pi^-\nu_{	au})/\Gamma_{	ext{total}} and \Gamma(\tau^- \to K^-K^+\pi^-\nu_{	au})
     \pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.\text{K}^0))/\Gamma_{\text{total}} values.
\Gamma(K^-K^+\pi^-\pi^0\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                         \Gamma_{107}/\Gamma
VALUE (units 10^{-4}) CL\% EVTS
                                                                        TECN COMMENT
0.61\pm0.18 OUR FIT
0.60\pm0.18 OUR AVERAGE
                                                                        CLE3 7.6 fb<sup>-1</sup>,E_{cm}^{ee}=10.6 GeV
0.55 \pm 0.14 \pm 0.12
                                             ARMS
                                                                        ALEP 1991-1995 LEP runs
7.5 \pm 2.9 \pm 1.5
                                             BARATE

    • • We use the following data for averages but not for fits.

                                          <sup>1</sup> RICHICHI
                               158
                                                                 99 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}

    • • We do not use the following data for averages, fits, limits, etc.

                                             ABBIENDI
                                                                 00D OPAL 1990-1995 LEP runs
<27
   <sup>1</sup>Not independent of RICHICHI 99
    \Gamma(\tau^- \to K^- K^+ \pi^- \nu_\tau) / \Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0)) \text{ and BALEST 95C } \Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0))
    h^-h^-h^+\nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}} values.
\Gamma(K^-K^+\pi^-\pi^0\nu_{\tau})/\Gamma(\pi^-\pi^+\pi^-\pi^0\nu_{\tau}(\text{ex.}K^0))
                                                                                                     \Gamma_{107}/\Gamma_{77}
        \Gamma_{107}/\Gamma_{77} = \Gamma_{107}/(\Gamma_{78} + 0.892\Gamma_{176} + 0.0153\Gamma_{178})
VALUE (%)
                                               DOCUMENT ID
                                                                 TECN COMMENT
0.14 ± 0.04 OUR FIT
                                            <sup>1</sup> RICHICHI
                                                                   99 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
0.79\pm0.44\pm0.16
                                 158
   <sup>1</sup>RICHICHI 99 also quote a 95%CL upper limit of 0.0157 for this measurement.
\Gamma(K^-K^+K^-\nu_{\tau})/\Gamma_{\text{total}}
                                                                                  \Gamma_{108}/\Gamma = 0.489\Gamma_{168}/\Gamma
VALUE (units 10^{-5}) CL\% EVTS
                                            DOCUMENT ID
2.2 ±0.8 OUR FIT Error includes scale factor of 5.4.
2.1 \pm0.8 OUR AVERAGE Error includes scale factor of 5.4.
3.29\!\pm\!0.17\!+\!0.19 \\ -0.20
                                         <sup>1</sup> LEE
                                                              10 BELL 666 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                               3.2k
                                                                     BABR 342 fb^{-1} E_{cm}^{ee} = 10.6 GeV
1.58\!\pm\!0.13\!\pm\!0.12
                                275
                                          <sup>2</sup> AUBERT
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                              03 CLE3 E_{cm}^{ee} = 10.6 \text{ GeV}
                                            BRIERE
< 3.7
                        90
                                                              98 ALEP 1991-1995 LEP runs
< 19
                        90
                                            BARATE
   <sup>1</sup>See footnote to LEE 10 \Gamma(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau} (ex. K^0))/\Gamma_{total} measurement for
     correlations with other measurements.
                                                             Not independent of LEE 10 \Gamma(\tau^- \rightarrow
     K^-K^+K^-\nu_{\tau})/\Gamma(\tau^- \to \pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0)) value.
   ^2 See footnote to AUBERT 08 \Gamma(\tau^-\to~\pi^-\pi^+\pi^-\nu_{\tau}({\rm ex}.{\it K}^0))/\Gamma_{\rm total} measurement for
     correlations with other measurements.
HTTP://PDG.LBL.GOV
                                                  Page 50
                                                                           Created: 5/30/2017 17:22
```

```
\Gamma(K^-K^+K^-\nu_{\tau})/\Gamma(\pi^-\pi^+\pi^-\nu_{\tau}(\text{ex.}K^0))
                                                                                                    \Gamma_{108}/\Gamma_{68}
VALUE (units 10<sup>-4</sup>) EVTS
                                         DOCUMENT ID
                                                                TECN COMMENT
• • • We do not use the following data for averages, fits, limits, etc. • • •
3.90\pm0.02^{+0.22}_{-0.23}
                                                             10 BELL 666 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                                       <sup>1</sup> LEE
                           3.2k
   <sup>1</sup> Not independent of LEE 10 \Gamma(\tau^- \to K^-K^+K^-\nu_{	au})/\Gamma_{	ext{total}} and \Gamma(\tau^- \to K^-K^+K^-\nu_{	au})
     \pi^-\pi^+\pi^-\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}} values.
\Gamma(K^-K^+K^-\nu_{\tau}(\text{ex. }\phi))/\Gamma_{\text{total}}
                                                                    TECN COMMENT
                                          DOCUMENT ID
                                                                    BABR 342 fb^{-1} E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
                                          AUBERT
\Gamma(K^-K^+K^-\pi^0\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                      \Gamma_{110}/\Gamma
                                          DOCUMENT ID
                                                                    TECN COMMENT
                                                                     CLE3 7.6 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 \text{ GeV}
                                          ARMS
                                                              05
\Gamma(\pi^- K^+ \pi^- \ge 0 \text{ neut. } \nu_{\tau})/\Gamma_{\text{total}}
                                              DOCUMENT ID
                                                                         TECN COMMENT
                                                                                   E_{\rm cm}^{ee} = 29 \text{ GeV}
 < 0.25
                                95
                                              BAUER
                                                                         TPC
\Gamma(e^-e^-e^+\overline{\nu}_e\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                      \Gamma_{112}/\Gamma
VALUE (units 10<sup>-5</sup>)
                                              DOCUMENT ID
                                                                         TECN COMMENT
                                                                  96 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
\Gamma(\mu^- e^- e^+ \overline{\nu}_\mu \nu_\tau) / \Gamma_{\text{total}}
                                                                                                      \Gamma_{113}/\Gamma
                                              DOCUMENT ID TECN COMMENT
VALUE (units 10^{-5})
                                                                  96 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
 <3.6
\Gamma(3h^-2h^+ \ge 0 \text{ neutrals } \nu_{\tau}(\text{ex. } K_S^0 \to \pi^-\pi^+)(\text{"5-prong"}))/\Gamma_{\text{total}}
       \Gamma_{114}/\Gamma = (\Gamma_{115} + \Gamma_{121})/\Gamma
                                             DOCUMENT ID
0.099 ± 0.004 OUR FIT
0.107 \pm 0.007 OUR AVERAGE
                                      Error includes scale factor of 1.1.
                                           <sup>1</sup> ACHARD
                                                                 01D L3
0.170 \pm 0.022 \pm 0.026
                                                                                  1992-1995 LEP runs
0.097 \pm 0.005 \pm 0.011
                                419
                                             GIBAUT
                                                                 94B CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                                                                                  E_{\rm cm}^{ee} = 29 \text{ GeV}
0.102 \pm 0.029
                                 13
                                             BYLSMA
                                                                       HRS

    • • We use the following data for averages but not for fits.
    • •

0.093 \pm 0.009 \pm 0.012
                                             SCHAEL
                                                                 05C ALEP 1991-1995 LEP runs
                                           <sup>2</sup> ABREU
0.115 \pm 0.013 \pm 0.006
                                112
                                                                 01M DLPH 1992-1995 LEP runs
                                           ^3 ACKERSTAFF 99E OPAL 1991–1995 LEP runs
                                119
0.119 \pm 0.013 \pm 0.008

    • • We do not use the following data for averages, fits, limits, etc.

0.26 \pm 0.06 \pm 0.05
                                                                 92H OPAL E_{cm}^{ee} = 88.2-94.2 \text{ GeV}
                                             ACTON
0.10 \  \, ^{+\, 0.05}_{-\, 0.04}
                                             DECAMP
                                                                 92C ALEP 1989-1990 LEP runs
                \pm 0.03
0.16 \pm 0.13 \pm 0.04
                                             BEHREND
                                                                 89B CELL E_{cm}^{ee} = 14-47 \text{ GeV}
                                                                 85F JADE E_{cm}^{ee} = 34.6 GeV
0.3\phantom{0}\pm0.1\phantom{0}\pm0.2\phantom{0}
                                             BARTEL
                                                                                  Repl. by BYLSMA 87
0.13 \pm 0.04
                                 10
                                             BELTRAMI
                                                                 85
                                                                       HRS
                                                                       MRK2 E_{cm}^{ee} = 29 \text{ GeV}
0.16 \pm 0.08 \pm 0.04
                                  4
                                             BURCHAT
                                                                 85
                                                                     CELL Repl. by BEHREND 89B
1.0 \pm 0.4
                                 10
                                             BEHREND
HTTP://PDG.LBL.GOV
                                                 Page 51
                                                                          Created: 5/30/2017 17:22
```

```
Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
   ^{
m I} The correlation coefficients between this measurement and the ACHARD 01D measure-
     ments of B(	au	o "1-prong") and B(	au	o "3-prong") are -0.082 and -0.19 respectively.
   <sup>2</sup>The correlation coefficients between this measurement and the ABREU 01M measure-
  ments of B(	au 	o 1-prong) and B(	au 	o 3-prong) are -0.08 and -0.08 respectively. 
 ^3 Not independent of ACKERSTAFF 99E B(	au^- 	o 3h^- 2h^+ 
u_{	au}({\rm ex.} \ K^0)) and B(	au^- 	o 3h^- 2h^+ 
u_{	au}({\rm ex.} \ K^0))
     3h^-2h^+\pi^0\nu_{\tau} (ex. K^0)) measurements.
\Gamma(3h^-2h^+\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}
                                                         \Gamma_{115}/\Gamma = (\Gamma_{116} + \Gamma_{118} + 0.0153\Gamma_{183})/\Gamma
VALUE (units 10<sup>-4</sup>) EVTS
                                        DOCUMENT ID
                                                                  TECN COMMENT
8.22 ± 0.32 OUR FIT
8.32 ± 0.35 OUR AVERAGE
                                      <sup>1</sup> ABDALLAH
9.7\ \pm 1.5\ \pm 0.5
                            96
                                                           06A DLPH 1992-1995 LEP runs
                                      <sup>2</sup> SCHAEL
7.2 \pm 0.9 \pm 1.2
                          165
                                                           05C ALEP 1991-1995 LEP runs
9.1 \pm 1.4 \pm 0.6
                            97
                                        ACKERSTAFF 99E OPAL 1991-1995 LEP runs
                                                           94B CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
7.7 \pm 0.5 \pm 0.9
                          295
                                        GIBAUT
                                                                            E_{\rm cm}^{ee} = 10 \; {\rm GeV}
6.4 \pm 2.3 \pm 1.0
                            12
                                        ALBRECHT
                                                           88B ARG
                                                                            E_{\rm cm}^{ee} = 29 \; {\rm GeV}
5.1 \pm 2.0
                             7
                                        BYLSMA
• • • We use the following data for averages but not for fits. • • •
                                        AUBERT,B
                                                           05W BABR 232 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 \text{ GeV}
8.56 \pm 0.05 \pm 0.42
                          34k
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                           96 ALEP Repl. by SCHAEL 05C
8.0 \pm 1.1 \pm 1.3
                                        BUSKULIC
                                      <sup>3</sup> BELTRAMI
6.7 \pm 3.0
                                                           85
                                                               HRS
                                                                            Repl. by BYLSMA 87
    with other measurements.
  <sup>2</sup> See footnote to SCHAEL 05C \Gamma(\tau^- \to e^- \overline{\nu}_e \nu_{\tau})/\Gamma_{\rm total} measurement for correlations
    with other measurements.
```

$\Gamma(3\pi^-2\pi^+\nu_{\tau}(\text{ex}.K^0,\omega))/\Gamma_{\text{total}}$

 $\Gamma_{116}/\Gamma = (\Gamma_{117} + \Gamma_{171})/\Gamma$

Created: 5/30/2017 17:22

VALUE (units 10^{-4})

DOCUMENT ID TECN COMMENT

8.21 ± 0.31 OUR FIT

• • We use the following data for averages but not for fits.
 • •

$$8.33\pm0.04\pm0.43$$

12X BABR 468 fb
$$^{-1}$$
 $E_{\rm cm}^{ee} = 10.6$ GeV

$\Gamma(3\pi^{-}2\pi^{+}\nu_{\tau}(\text{ex.}K^{0},\omega,f_{1}(1285)))/\Gamma_{\text{total}}$

 Γ_{117}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID)	TECN	COMMENT
7.69±0.30 OUR FIT	r		_		
$7.68 \pm 0.04 \pm 0.40$	69k	LEES	12X	BABR	468 fb ⁻¹ $E_{\rm cm}^{\rm ee} = 10.6 {\rm GeV}$

$\Gamma(K^-2\pi^-2\pi^+\nu_{\tau}(\text{ex}.K^0))/\Gamma_{\text{total}}$

 Γ_{118}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-6})

0.6 ± 1.2 OUR FIT

¹LFFS $0.6 \pm 0.5 \pm 1.1$

12X BABR 468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV

 $^{^1}$ See footnote to ABDALLAH 06A $\Gamma(au^- o h^u_ au)/\Gamma_{
m total}$ measurement for correlations

 $^{^3}$ The error quoted is statistical only.

 $^{^1}$ Not independent of LEES 12X $\Gamma(\tau^-\to f_1(1285)\,\pi^-\nu_{\tau}\to\,3\pi^-\,2\pi^+\,\nu_{\tau})/\Gamma$ and $\Gamma(\tau^-\to f_1(1285)\,\pi^-\nu_{\tau}\to\,3\pi^-\,2\pi^+\nu_{\tau})/\Gamma$ $3\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0} , ω , $f_{1}(1285)))/\Gamma$ values.

 $^{^{1}}$ LEES 12X meaurement corresponds to the lower limit of $< 2.4 \times 10^{-6}$ at 90% CL.

$\Gamma(\nu \pm 2 = \pm 1)$	\ / =				F /F
$\Gamma(K^+3\pi^-\pi^+\nu_{\tau})$					Γ ₁₁₉ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID			COMMENT
$<5.0\times10^{-6}$	90	LEES	12X	BABR	468 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$\Gamma(K^+K^-2\pi^-\pi^+$	$^{-} u_{ au})/\Gamma_{tot}$	tal			Γ ₁₂₀ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$<4.5\times10^{-7}$	90	LEES	12X	BABR	468 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV
$\Gamma(3h^-2h^+\pi^0\nu_{\tau})$	(ex. <i>K</i> ⁰)),	/Γ _{total}			$\Gamma_{121}/\Gamma = (\Gamma_{122} + \Gamma_{125})/\Gamma$
<i>VALUE</i> (units 10^{-4})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.64±0.11 OUR FI		•			
1.74±0.27 OUR AV	ERAGE	_			
$1.6 \pm 1.2 \pm 0.6$	13		06A		1992-1995 LEP runs
$2.1 \pm 0.7 \pm 0.9$	95	² SCHAEL	05 C		1991-1995 LEP runs
$1.7 \pm 0.2 \pm 0.2$	231	ANASTASSO\	/ 01	CLEO	$E_{cm}^{\mathit{ee}} = 10.6 \; GeV$
$2.7\ \pm 1.8\ \pm 0.9$	23	ACKERSTAFF	99E	OPAL	1991-1995 LEP runs
• • • We do not us	e the follow	ving data for aver	ages,	fits, limi	its, etc. • • •
$1.8 \pm 0.7 \pm 1.2$	18	BUSKULIC	96	ALEP	Repl. by SCHAEL 05C
$1.9 \pm 0.4 \pm 0.4$	31				Repl. by ANASTASSOV 01
5.1 ± 2.2		BYLSMA			Eee = 29 GeV
6.7 ± 3.0	5	³ BELTRAMI	85		Repl. by BYLSMA 87
correction for $ au^ _{3\pi^-2\pi^+\pi^0 u_ au^-}$	uote (1.4 $ d$ decays. Serelations w	$\pi^+\pi^-\nu_{ au} o 3\pi^-$ e footnote to SCH with other measure	– _{2π} + IAEL	$^-\pi^0 u_ au$ a	$0.7 imes10^{-4}$ to remove their and $ au^- o K^*(892)^-\eta u_ au^- o e^-\overline{ u}_e u_ au)/\Gamma_{ m total}$ mea-
_	_				F /F
$\Gamma(3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ $\Gamma_{122}/\Gamma = (\Gamma_{1}$		/)/Γ		Γ ₁₂₂ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
1.62±0.11 OUR FI	Γ				
• • • We use the fo	ollowing da	ta for averages bu	ıt not	for fits.	• • •
$1.65 \pm 0.05 \pm 0.09$		¹ LEES	12X	BABR	468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
¹ Not independen	t of LEES	12X measuremen	nts of	$\Gamma(au^-$	$\rightarrow 2\pi^-\pi^+\omega\nu_{\tau}(\mathrm{ex}.K^0))/\Gamma$,
$\Gamma(au^- o\eta\pi^-\ f_1(1285)))/\Gamma.$	$\pi^+\pi^-\nu_{\tau}$	$(ex.K^0))/\Gamma$, and	Γ(τ	- → 3	$3\pi^- 2\pi^+ \pi^0 \nu_\tau $ (ex. K^0 , η , ω ,
$\Gamma(3\pi^-2\pi^+\pi^0\nu_{ au}$	-				Γ ₁₂₃ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
$1.11\pm0.04\pm0.09$		¹ LEES	12X	BABR	$\frac{\textit{COMMENT}}{\textit{468 fb}^{-1} \ \textit{E}_{\textit{Cm}}^{\textit{ee}} = 10.6 \ \textit{GeV}}$
¹ Not independen	t of LEES		$2\pi^{-1}$	$-\pi^+\omega\nu$	$_{ au}^{\prime}(ext{ex}.\mathcal{K}^{0}))/\Gamma$ and $\Gamma(au^{-} ightarrow$

$\Gamma(3\pi^-2\pi^+\pi^0\nu_{ au}$	$(ex.K^0, \eta,$	$(\omega, f_1(1285)))$	/Γ _{total}		Γ_{124}/Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID	TECN	COMMENT	
0.38±0.09 OUR FIT				1 _00	
$0.36 \pm 0.03 \pm 0.09$	7.3k	LEES	12X BABI	R 468 fb $^{-1}$ $E_{\rm cm}^{ee}$ =	: 10.6 GeV
$\Gamma(K^-2\pi^-2\pi^+\pi^0)$	$^{0} u_{ au}(\mathrm{ex}.K^{0})$	⁰))/Γ _{total}			Γ ₁₂₅ /Γ
VALUE (units 10^{-6})		.,.	TECN CO	MMENT	
1.1±0.6 OUR FIT		_			
$1.1 \pm 0.4 \pm 0.4$	1 LEE	ES 12X	BABR 468	$6 { m fb}^{-1} E_{ m cm}^{ee} = 10.6 { m fb}^{-1} E_{ m cm}^{ee} = 10.6 { m fb}^{-1} { m fb}^{-1}$	GeV
¹ LEES 12X meau	rement corr	esponds to the lo	wer limit of	$< 1.9 \times 10^{-6}$ at 9	0% CL.
$\Gamma(K^+3\pi^-\pi^+\pi^0)$	$ u_{ au})/\Gamma_{ m total}$	1			Γ_{126}/Γ
<u>VALUE</u>	* -	DOCUMENT ID	TECN	COMMENT	110/
		LEES	12X BABF	R 468 fb $^{-1}$ $E_{ m cm}^{ee} =$	10.6 GeV
$\Gamma(3h^-2h^+2\pi^0\nu_{\tau}$	\ /r .				Γ/Γ
•	,	DOCUMENT ID	TECN	COMMENT	Γ ₁₂₇ /Γ
<i>VALUE</i> <3.4 × 10 ^{−6}		DOCUMENT ID		R 232 fb $^{-1}$ $E_{\rm cm}^{ee} =$	10.6 CoV
• • • We do not us					10.0 Ge V
$< 1.1 \times 10^{-4}$				$E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$	
(1.1 × 10	30	GIB/10 I	JID CLEO	2cm— 10.0 GCV	
$\Gamma((5\pi)^- u_{ au})/\Gamma_{to}$		_			Г ₁₂₈ /Г
$\Gamma_{128}/\Gamma = (\Gamma_3)$	$_{0}^{+\frac{1}{2}\Gamma_{45}+\Gamma_{45}}$	$\Gamma_{48} + \frac{1}{2}\Gamma_{61} + \Gamma_{85} -$	+Γ ₁₁₅ +0.55	$59\Gamma_{148} + 0.892\Gamma_{178}$)/Γ
VALUE (%)		DOCUMENT	ID T	ECN COMMENT	
0.78±0.05 OUR FI • • • We use the fo		a for averages bu	t not for fits		
$0.61 \pm 0.06 \pm 0.08$				LEO $E_{ m cm}^{ee}=10.6~{ m G}$	ieV
	t of GIRALI			CARIO 93 B(h^- 4 π	_
				asurements. Result is	
for η contribution	ns.	=	p. cg /c.		
$\Gamma(4h^-3h^+ \ge 0 \text{ r}$	neutrals ν_{r}	_ ("7-prong")) /	/Ctotal		Γ ₁₂₉ /Γ
VALUE	CL%	DOCUMENT ID		<u>COMMENT</u>	129/
$<3.0 \times 10^{-7}$	90			$\frac{1}{232 \text{ fb}^{-1}, E_{\text{cm}}^{\text{ee}}} =$	10.6 GeV
• • • We do not us	e the follow				
$<1.8 \times 10^{-5}$	95			. 1990–1995 LEP r	uns
$< 2.4 \times 10^{-6}$	90			$E_{\rm cm}^{\it ee}$ = 10.6 GeV	
$< 2.9 \times 10^{-4}$	90	BYLSMA	87 HRS	$E_{ m cm}^{\it ee}=$ 29 GeV	
$\Gamma(4h^-3h^+ u_ au)/\Gamma$	total				Γ ₁₃₀ /Γ
		DOCUMENT ID	TECN	<u>COMMENT</u>	- 130/ -
	90			R $^{-232}$ fb $^{-1}$, $^{-2}$ GeV	= 10.6
$\Gamma(4h^-3h^+\pi^0 u_ au)$	/Г				Γ ₁₀₁ /Γ
VALUE		DOCUMENT ID	TFCN	COMMENT	Γ ₁₃₁ /Γ
$<2.5 \times 10^{-7}$	90			R 232 fb ⁻¹ , E_{cm}^{ee}	10.6 GeV
• 		,-	·	- , – c _{ill}	
HTTP://PDG.LE	3L.GOV	Page 5	4 (Created: 5/30/20	17 17:22

 $\Gamma(X^{-}(S=-1)\nu_{\tau})/\Gamma_{\text{total}}$

 $\Gamma_{132}/\Gamma = (\Gamma_{10} + \Gamma_{16} + \Gamma_{23} + \Gamma_{28} + \Gamma_{36} + \Gamma_{41} + \Gamma_{45} + \Gamma_{61} + \Gamma_{97} + \Gamma_{103} + \Gamma_{118} + \Gamma_{125} + \Gamma_{150} + \Gamma_{152} + \Gamma_{154} + 0.8312\Gamma_{168} + \Gamma_{177})/\Gamma$

VALUE (%)

DOCUMENT ID

TECN COMMENT

2.92 ± 0.04 OUR FIT

ullet ullet We use the following data for averages but not for fits. ullet ullet

 2.87 ± 0.12

¹ BARATE

99R ALEP 1991-1995 LEP runs

$\Gamma(K^*(892)^- \ge 0 \text{ neutrals } \ge 0K_I^0 \nu_\tau)/\Gamma_{\text{total}}$

 Γ_{133}/Γ

*		_ ,			
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
1.42±0.18 OUR AVERAGE	Error ii	ncludes scale facto	or of 1	.4. See	the ideogram below.
$1.19\!\pm\!0.15\!+\!0.13\\-0.18$	104	ALBRECHT	95H	ARG	Eee = 9.4–10.6 GeV
$1.94 \pm 0.27 \pm 0.15$	74	¹ AKERS	94 G	OPAL	$E_{cm}^{\mathit{ee}} = 88 – 94 \; GeV$
$1.43\!\pm\!0.11\!\pm\!0.13$	475	² GOLDBERG	90	CLEO	$E_{\rm cm}^{\it ee} = 9.4 - 10.9 \; {\rm GeV}$

 $^{^1}$ AKERS 94G reject events in which a K_S^0 accompanies the $K^*(892)^-$. We do not correct

 $^{^2}$ GOLDBERG 90 estimates that 10% of observed K^* (892) are accompanied by a π^0 .

 $\Gammaig(extit{K}^*(892)^- \geq 0 \text{ neutrals } \geq 0 extit{K}^0_L
u_{ au} ig) / \Gamma_{ ext{total}}$ (%)

 $^{^1}$ BARATE 99R perform a combined analysis of all ALEPH LEP1 data on au branching fraction measurements for decay modes having total strangeness equal to -1.

$\Gamma(K^*(892)^-\nu_{\tau})/\Gamma_{\text{total}}$ Γ_{134}/Γ TECN 1.20 ± 0.07 **OUR AVERAGE** Error includes scale factor of 1.8. See the ideogram below. 351 fb⁻¹ E_{cm}^{ee} =10.6 GeV ¹ EPIFANOV **BELL** $1.131 \pm 0.006 \pm 0.051$ 49k 1991-1995 LEP runs **BARATE** ALEP 1.326 ± 0.063 ² COAN **CLEO** $E_{\rm cm}^{\it ee} \approx 10.6~{\rm GeV}$ 1.11 ± 0.12 ³ ACCIARRI $1.42 \pm 0.22 \pm 0.09$ 95F 1991-1993 LEP runs • • • We do not use the following data for averages, fits, limits, etc. • • • ⁴ BUSKULIC $1.39 \pm 0.09 \pm 0.10$ **ALEP** Repl. by BARATE 99R ⁵ BUSKULIC Repl. by BUSKULIC 96 $1.45 \pm 0.13 \pm 0.11$ 273 **ALEP** $^{+\,0.11}_{-\,0.21}$ ⁶ ALBRECHT ARG $E_{\rm cm}^{ee} = 10 \text{ GeV}$ 1.23 ± 0.21 54 88L ⁷ TSCHIRHART 88 $E_{\mathrm{cm}}^{ee} = 29 \; \mathrm{GeV}$ **HRS** 1.9 ± 0.3 ± 0.4 44 $E_{\rm cm}^{ee} = 29 \; {\rm GeV}$ 1.5 $\pm\,0.4$ ± 0.4 15 ⁸ AIHARA TPC MRK2 E_{cm}^{ee} = 29 GeV 1.3 ± 0.3 31 YELTON 86 ± 0.3 MRK2 $E_{cm}^{ee} = 4.2-6.7 \text{ GeV}$ 1.7 ± 0.7 11 **DORFAN**

WEIGHTED AVERAGE 1.20±0.07 (Error scaled by 1.8)

¹ EPIFANOV 07 quote B($\tau^- \to K^*(892)^- \nu_{\tau}$) B($K^*(892)^- \to K^0_S \pi^-$) = (3.77 \pm 0.02(stat) \pm 0.12(syst) \pm 0.12(mod)) \times 10⁻³. We add the systematic and model uncertainties in quadrature and divide by B($K^*(892)^- \to K^0_S \pi^-$) = 0.3333.

² Not independent of COAN 96 B($\pi^-\overline{K}^0\nu_{\tau}$) and BATTLE 94 B($K^-\pi^0\nu_{\tau}$) measurements. $K\pi$ final states are consistent with and assumed to originate from $K^*(892)^-$ production.

³This result is obtained from their B($\pi^-\overline{K}^0\nu_{\tau}$) assuming all those decays originate in $K^*(892)^-$ decays.

 $\Gamma(K^*(892)^0 K^- \ge 0 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}$ $\Gamma_{136}/\Gamma_{\text{total}}$

VALUE (%)EVTSDOCUMENT IDTECNCOMMENT $0.32 \pm 0.08 \pm 0.12$ 119GOLDBERG90CLEO $E_{cm}^{ee} = 9.4-10.9 \text{ GeV}$

 $\Gamma(K^*(892)^0 K^-\nu_{\tau})/\Gamma_{total}$ VALUE (%)

0.21 ±0.04 OUR AVERAGE

0.213±0.048

1 BARATE

98 ALEP 1991–1995 LEP runs

0.20 ±0.05 ±0.04

47 ALBRECHT

95H ARG $E_{cm}^{ee} = 9.4$ –10.6 GeV

 $\Gamma(\overline{K}^*(892)^0\pi^- \ge 0 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}$ VALUE~(%) VALUE

 $\Gamma(\overline{K}^*(892)^0\pi^-\nu_{\tau})/\Gamma_{total}$ VALUE (%)

0.22 ±0.05 OUR AVERAGE

0.209±0.058

1 BARATE

98 ALEP 1991–1995 LEP runs

0.25 ±0.10 ±0.05

27 ALBRECHT

95H ARG Γ_{139}/Γ Γ_{139}

⁴ Not independent of BUSKULIC 96 B($\pi^-\overline{K}^0\nu_{\tau}$) and B($K^-\pi^0\nu_{\tau}$) measurements.

⁵ BUSKULIC 94F obtain this result from BUSKULIC 94F B($\overline{K}^0\pi^-\nu_{\tau}$) and BUSKULIC 94E B($K^-\pi^0\nu_{\tau}$) assuming all of those decays originate in $K^*(892)^-$ decays.

⁶ The authors divide by $\Gamma_2/\Gamma=0.865$ to obtain this result.

⁷ Not independent of TSCHIRHART 88 $\Gamma(\tau^- \to h^- \overline{K}{}^0 \ge 0$ neutrals $\ge 0 K_I^0 \nu_{\tau}) / \Gamma$.

⁸ Decay π^- identified in this experiment, is assumed in the others.

 $^{^1}$ BARATE 98 measure the K^- ($\rho^0\to\pi^+\pi^-$) fraction in $\tau^-\to K^-\pi^+\pi^-\nu_\tau$ decays to be (35 \pm 11)% and derive this result from their measurement of $\Gamma(\tau^-\to K^-\pi^+\pi^-\nu_\tau)/\Gamma_{\rm total}$ assuming the intermediate states are all $K^-\rho$ and $K^-K^*(892)^0$.

¹BARATE 98 measure the $K^-K^*(892)^0$ fraction in $\tau^-\to K^-K^+\pi^-\nu_{\tau}$ decays to be (87 \pm 13)% and derive this result from their measurement of $\Gamma(\tau^-\to K^-K^+\pi^-\nu_{\tau})/\Gamma_{total}$.

 $\Gamma((\overline{K}^*(892)\pi)^u_ au o\pi^-\overline{K}^0\pi^0
u_ au)/\Gamma_{ ext{total}}$ Γ_{140}/Γ VALUE (%) **TECN COMMENT** 0.10 ± 0.04 OUR AVERAGE ¹ BARATE 99K ALEP 1991-1995 LEP runs $0.097 \pm 0.044 \pm 0.036$ ² BARATE

¹BARATE 99K measure K^{0} 's by detecting K^{0}_{I} 's in their hadron calorimeter. They determine the $\overline{K}{}^0 \rho^-$ fraction in $\tau^- \to \pi^- \overline{K}{}^{0} \pi^0 \nu_{\tau}$ decays to be $(0.72 \pm 0.12 \pm 0.10)$ and multiply their ${\rm B}(\pi^-\overline K^0\pi^0\nu_\tau)$ measurement by one minus this fraction to obtain

98E ALEP 1991-1995 LEP runs

 2 BARATE 98E reconstruct K^0 's using $K^0_S \to \pi^+\pi^-$ decays. They determine the $\overline{K}{}^0
ho^$ fraction in $au^- o \pi^- \overline{K}{}^0 \pi^0
u_{ au}$ decays to be (0.64 \pm 0.09 \pm 0.10) and multiply their $\mathrm{B}(\pi^-\overline{K}{}^0\pi^0\nu_ au)$ measurement by one minus this fraction to obtain the quoted result.

 $\Gamma(K_1(1270)^-\nu_{\tau})/\Gamma_{\text{total}}$ Γ_{141}/Γ VALUE (%) TECN **COMMENT** 0.47 ± 0.11 OUR AVERAGE **BARATE** 99R ALEP 1991-1995 LEP runs 0.48 ± 0.11 $0.41^{+0.41}_{-0.35}\pm0.10$ ¹ BAUER $E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}$ **TPC**

$\Gamma(K_1(1400)^-\nu_{\tau})/\Gamma_{\text{total}}$

 $0.106 \pm 0.037 \pm 0.032$

 Γ_{142}/Γ

Created: 5/30/2017 17:22

\ =\ /	' / '	tota:				= :=/
VALUE (%)		EVTS	DOCUMENT ID		TECN	COMMENT
0.17±0.26 OUI	R AVE	RAGE Err	or includes scale fa	actor o	f 1.7.	
0.05 ± 0.17			BARATE	99R	ALEP	1991-1995 LEP runs
$0.76^{+0.40}_{-0.33}\pm0.2$	20	11	¹ BAUER	94	TPC	Eee = 29 GeV

 $^{^{}m 1}$ We multiply 0.76% by 0.25, the relative systematic error quoted by BAUER 94, to obtain

$\left[\Gamma\big(\textit{K}_{1}(1270)^{-}\,\nu_{\tau}\big) + \Gamma\big(\textit{K}_{1}(1400)^{-}\,\nu_{\tau}\big)\right]/\Gamma_{\mathsf{total}}$ $(\Gamma_{141} + \Gamma_{142})/\Gamma$ $1.17^{+0.41}_{-0.37}\pm0.29$ $E_{\rm cm}^{ee} = 29 \text{ GeV}$

$\Gamma(K_1(1270)^-\nu_{ au})/[\Gamma(K_1(1270)^-\nu_{ au})+\Gamma(K_1(1400)^-\nu_{ au})]\Gamma_{141}/(\Gamma_{141}+\Gamma_{142})$ VALUE DOCUMENT ID TECN COMMENT

 0.69 ± 0.15 OUR AVERAGE 00D OPAL 1990-1995 LEP runs ¹ ABBIENDI $0.71 \pm 0.16 \pm 0.11$ 00B CLEO $E_{\rm cm}^{ee} = 10.6 \, {\rm GeV}$ $0.66 \pm 0.19 \pm 0.13$

 $^{^{}m 1}$ We multiply 0.41% by 0.25, the relative systematic error quoted by BAUER 94, to obtain the systematic error.

 $^{^{}m 1}$ We multiply 1.17% by 0.25, the relative systematic error quoted by BAUER 94, to obtain the systematic error. Not independent of BAUER 94 B($K_1(1270)^-\nu_{\tau}$) and BAUER 94 $B(K_1(1400)^-\nu_{\tau})$ measurements.

¹ABBIENDI 00D assume the resonance structure of $au^- o K^- \pi^+ \pi^-
u_ au$ decays is

dominated by the $K_1(1270)^-$ and $K_1(1400)^-$ resonances.

² ASNER 00B assume the resonance structure of $\tau^- \to K^- \pi^+ \pi^- \nu_{\tau}$ (ex. K^0) decays is dominated by $K_1(1270)^-$ and $K_1(1400)^-$ resonances.

$\Gamma(K^*(1410)^-\nu_{ au})$	/Γ _{total}			Γ ₁₄₃ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID	TECN COMMENT	
$1.5^{igoplus 1.4}_{-1.0}$		BARATE 99	ALEP 1991–1995 LEP	runs
$\Gamma(K_0^*(1430)^-\nu_{ au})$	/Γ _{total}			Г ₁₄₄ /Г
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID	TECN COMMENT	
<0.5	95	BARATE 99	ALEP 1991-1995 LEP	runs
$\Gamma\big(K_2^*(1430)^-\nu_\tau\big)$	/Γ _{total}			Γ ₁₄₅ /Γ
VALUE (%)	CL% EVTS		TECN COMMENT	
<0.3	95		B8 HRS E_{cm}^{ee} = 29 Ge	eV
● ● ● We do not use	the following	data for averages, fit		
<0.33 <0.9	95 95 0	¹ ACCIARRI DORFAN	95F L3 1991–1993 L 31 MRK2 <i>E</i> ee _m = 4.2–6	
¹ ACCIARRI 95F o	mote B($ au^ -$		$-\overline{\mathit{K}}{}^{0} u_{ au}) <$ 0.11%. We o	
		0.33 to obtain the lim		arvide by
			$) \rightarrow K^0 K^- $ Γ_{146}	./Г×В
VALUE (units 10^{-4})	-	•	TECN COMMENT	,,
<2.8	90		CLEO $E_{cm}^{ee} = 9.4-10.9$	GeV
$\Gamma(\eta\pi^- u_{ au})/\Gamma_{total}$			c	Γ ₁₄₇ /Γ
	CL% EVTS	DOCUMENT ID	TECN COMMENT	•
< 0.99	95	¹ DEL-AMO-SA	$_{ m L1E}$ BABR 470 fb $^{-1}$ $_{ m C}$	ee em=
• • • We do not use	the following	data for averages, fit		
< 6.2	95	BUSKULIC	97C ALEP 1991–1994 L	
< 1.4	95 0		$P_{ m com} = 10.6$	
< 3.4	95		$P_{cm} \approx 10.6$	
< 90	95		B8M ARG $E_{\rm cm}^{\rm ee} \approx 10$	
<140	90		$CELL E_{cm}^{ee} = 14-46$	
<180	95		CLEO $E_{\rm cm}^{ee} = 10.5$	
<250	90 0		MRK3 $E_{cm}^{ee} = 3.77$	
510 $\pm 100 \pm 120$			HRS $E_{\rm cm}^{\rm ee} = 29 \text{ Ge}$	
<100	95		B7B MRK2 E_{cm}^{ee} = 29 Ge	
_		quote B($ au^- o \eta \pi^-$	$(-\nu_{\tau}) = (3.4 \pm 3.4 \pm 2.1)$	$\times 10^{-5}$.
$\Gamma(\eta\pi^-\pi^0 u_ au)/\Gamma_{ m to}$	tal			Γ_{148}/Γ
VALUE (units 10 ⁻³)		DOCUMENT ID	TECN COMMENT	
1.39± 0.07 OUR F			610	
1.38± 0.09 OUR A 1.35± 0.03± 0.07		ror includes scale fact	or of 1.2. BELL 490 fb $^{-1}$ $E_{\rm cm}^{ee}$ =	10.6
1.55 + 0.05 + 0.07	ς ΔI.			
1.00 1 0.00 1 0.01	6.0k	INAMI 09		10.6
$1.8 \pm 0.4 \pm 0.2$	6.0k	BUSKULIC 97c	GeV ALEP 1991–1994 LEP ru	ıns
		BUSKULIC 97c	GeV	ıns

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 11.0	95	ALBRECHT	881	ı ARG	$E_{cm}^{\mathit{ee}} \approx \ 10 \ GeV$
< 21.0	95	BARINGER	87	CLEO	$E_{\rm cm}^{\it ee} = 10.5~{\rm GeV}$
$42.0 \begin{array}{c} + 7.0 \\ -12.0 \end{array} \pm 16.0$)	$^{ m 1}$ GAN	87	MRK2	$E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}$

 $^{^1 \, {\}rm Highly}$ correlated with GAN 87 $\Gamma(\pi^- \, 3\pi^0 \, \nu_\tau)/\Gamma({\rm total})$ value.

$\Gamma(\eta \pi^- \pi^0 \pi^0 \nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{149}/Γ

•							
VALU	<i>JE</i> (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
	1.9 ±0.4 OUR F	ŦΤ					
	1.81±0.31 OUR	WERA	IGE				
	$2.01 \pm 0.34 \pm 0.22$		381	LEES	12X	BABR	468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
• •	• We use the follo	wing d	ata for	averages but not for	fits.	• • •	
	$1.5\ \pm0.5$		30	$^{ m 1}$ ANASTASSOV	01	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
• •	• We do not use t	he foll	owing d	ata for averages, fits	s, limit	ts, etc. •	• •
	$1.4 \pm 0.6 \pm 0.3$		15	² BERGFELD	97	CLEO	Repl. by ANAS- TASSOV 01
<	4.3	95		ARTUSO	92	CLEO	$E_{\rm cm}^{ee} \approx 10.6 {\rm GeV}$
<12	20	95		ALBRECHT	88M	ARG	$E_{ m cm}^{\it ee}~pprox~10~{ m GeV}$

 $^{^1}$ Weighted average of BERGFELD 97 and ANASTASSOV 01 value of (1.5 \pm 0.6 \pm 0.3) \times 10^{-4} obtained using η 's reconstructed from $\eta \to \ \pi^+ \, \pi^- \, \pi^0$ decays. 2 BERGFELD 97 reconstruct η 's using $\eta \to \ \gamma \gamma$ decays.

 $\Gamma(\eta K^- \nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{150}/Γ

(, ,,, ,,	· cai				-507
$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
1.55±0.08 OUR F	IT.				
1.54±0.08 OUR A	WERAGE				
$1.42\!\pm\!0.11\!\pm\!0.07$	690	DEL-AMO-SA.	.11E	BABR	470 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$1.58\!\pm\!0.05\!\pm\!0.09$	1.6k	INAMI	09	BELL	490 fb $^{-1}$ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
$2.9 \ ^{+1.3}_{-1.2} \ \pm 0.7$		BUSKULIC	97 C	ALEP	1991-1994 LEP runs
$2.6 \pm 0.5 \pm 0.5$	85	BARTELT	96	CLEO	$E_{ m cm}^{ m ee} pprox 10.6 \ m GeV$
• • • We do not	use the followi	ng data for avera	iges,	fits, limit	ts, etc. • • •
< 4.7	95	ARTUSO	92	CLEO	$E_{ m cm}^{\it ee} pprox ~10.6~{ m GeV}$

 $\Gamma(\eta K^*(892)^-\nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{151}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT I	D	TECN	COMMENT
1.38±0.15 OUR AVE	RAGE				
$1.34\!\pm\!0.12\!\pm\!0.09$	245	1 INAMI	09	BELL	490 fb $^{-1}$ $E_{\rm cm}^{ee}$ = 10.6
					GeV
$2.90\pm0.80\pm0.42$	25	BISHAI	99	CLEO	$E_{ m cm}^{ m ee}=10.6~{ m GeV}$

 $^{^1}$ Not independent of INAMI 09 B($\tau^- \to ~\eta \, K^- \, \pi^0 \, \nu_\tau$) and B($\tau^- \to ~\eta \, \overline{K}{}^0 \, \pi^- \, \nu_\tau$) values.

$\Gamma(\eta K^-\pi^0 u_{ au})/\Gamma_{ m tc}$	otal				Γ ₁₅₂ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.48±0.12 OUR FIT 0.48±0.12 OUR AVE					
$0.46 \pm 0.11 \pm 0.04$	270	INAMI	09	BELL	490 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$1.77 \pm 0.56 \pm 0.71$	36	BISHAI	99		$E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
1.17 ± 0.00 ± 0.11	00	<i>5.51.7</i> ti	33	CLLO	-CIII 10.0 GGV
$\Gamma(\eta K^-\pi^0 \text{(non-}K))$	*(892)) ν_1	-)/Γ _{total}			Γ ₁₅₃ /Γ
<u>VALUE</u> <3.5 × 10 ^{−5}	CL%	DOCUMENT ID			COMMENT
$< 3.5 \times 10^{-5}$	90	INAMI	09	BELL	490 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$\Gamma(\eta \overline{K}{}^0\pi^- u_ au)/\Gamma_{ m to}$	otal				Γ ₁₅₄ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
0.94±0.15 OUR FIT					
0.93±0.15 OUR AVE		1			1 -00
$0.88 \pm 0.14 \pm 0.06$	161	¹ INAMI			490 fb ⁻¹ $E_{\rm cm}^{ee}$ = 10.6
$2.20\!\pm\!0.70\!\pm\!0.22$	15	² BISHAI	99	CLEO	GeV E ^{ee} _{cm} = 10.6 GeV
$^{\mathrm{1}}\mathrm{We}$ multiply the	INAMI 09	measurement B	$(\tau^-$	$\rightarrow \eta K_{c}^{0}$	$(3\pi^{-}\nu_{\tau}) = (0.44 \pm 0.07 \pm$
$0.03) \times 10^{-4}$ by	2 to obtain BISHAI 99	the listed value measurement E	$8(au^-$	_	(5000000000000000000000000000000000000
$\Gamma(\eta \overline{K}{}^0\pi^-\pi^0 u_ au)/ u_{ALUE}$		DOCUMENT ID		TECN	Γ ₁₅₅ /Γ
<5.0 × 10 ⁻⁵					490 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
•••					
2 to obtain the list		measurement B(a	$r \rightarrow$	$\eta \kappa_{S}^{\alpha}$	$(\pi^-\pi^0 u_{ au}) < 2.5 imes 10^{-5} \; { m by}$
$\Gamma(\eta K^- K^0 u_{ au})/\Gamma_{ m t}$					Γ ₁₅₆ /Γ
VALUE		DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>
<9.0 × 10 ⁻⁶		¹ INAMI	09		490 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
¹ We multiply the to obtain the liste		measurement $B(\cdot)$	τ –	→ ηK ⁻	$(\kappa_S^0 u_ au) < 4.5 imes 10^{-6}$ by 2
$\Gamma(\eta\pi^+\pi^-\pi^- \geq 0)$) neutrals	$ u_{ au})/\Gamma_{ m total}$			Γ ₁₅₇ /Γ
VALUE (%)		, .	ΓID	TE	CN COMMENT
<0.3	90				$E_{\rm cm}^{\rm ee} = 29 \; {\rm GeV}$
$\Gamma(\eta\pi^-\pi^+\pi^- u_{ au})$	ex. <i>K</i> ⁰))/I	_ total			Γ ₁₅₈ /Γ
VALUE (units 10^{-4})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
2.19±0.13 OUR FIT				·	
2.23±0.12 OUR AVE 2.10±0.09±0.13		¹ LEES	12~	RARD	$n \rightarrow \infty$
$2.10\pm0.09\pm0.13$ $2.37\pm0.12\pm0.18$		1 LEES			$ \begin{array}{ccc} \eta \to & \gamma \gamma \\ \eta \to & \pi^+ \pi^- \pi^0 \end{array} $
$2.57 \pm 0.12 \pm 0.18$ $2.54 \pm 0.27 \pm 0.25$		1 LEES			$ \eta \to \pi^+\pi^-\pi^0 $ $ \eta \to 3\pi^0 $
• • • We use the fol					•
	.oving date	o. averages bu			

```
<sup>2</sup> ANASTASSOV 01 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
2.3 \pm 0.5
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.60 \pm 0.05 \pm 0.11
                           1.8 k
                                                                08AE BABR Repl. by LEES 12X
3.4 \ ^{+0.6}_{-0.5} \ \pm 0.6
                                         <sup>3</sup> BERGFELD
                                                               97 CLEO Repl. by ANASTASSOV 01
   ^{1} LEES 12X uses 468 fb^{-1} of data taken at E_{
m cm}^{\it ee}= 10.6 GeV. It gives the average of the
     three measurements listed here as (2.25 \pm 0.07 \pm 0.12) \times 10^{-4}.
   <sup>2</sup> Weighted average of BERGFELD 97 and ANASTASSOV 01 measurements using \eta's
     reconstructed from \eta \to \pi^+\pi^-\pi^0 and \eta \to 3\pi^0 decays.
   ^3BERGFELD 97 reconstruct \eta's using \eta \to \gamma \gamma and \eta \to 3\pi^0 decays.
\Gamma(\eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0, f_1(1285))) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{159}/\Gamma
                                           DOCUMENT ID TECN COMMENT
                                                              12X BABR 468 fb<sup>-1</sup> E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}
0.99\pm0.09\pm0.13
   ^1LEES 12X obtain this result by subtracting their B(	au^- 
ightarrow f_1(1285)\pi^-
u_	au 
ightarrow
     \eta\pi^-\pi^+\pi^-\nu_{	au}) measurement from their B(	au^- 	o \eta\pi^-\pi^+\pi^-\nu_{	au}(ex.K^0)) measure-
\Gamma(\eta a_1(1260)^- \nu_{\tau} \rightarrow \eta \pi^- \rho^0 \nu_{\tau}) / \Gamma_{\text{total}}
                                                                                                          \Gamma_{160}/\Gamma
                                                                         TECN COMMENT
 < 3.9 \times 10^{-4}
                                                                    97 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
\Gamma(\eta\eta\pi^-\nu_{\tau})/\Gamma_{\text{total}}
                                                                       BELL 490 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
 < 7.4 \times 10^{-6}
                             90
                                            INAMI

    • • We do not use the following data for averages, fits, limits, etc.

<1.1 \times 10^{-4}
                                                                92 CLEO E_{
m cm}^{ee} pprox 10.6 \ {
m GeV}
                                            ARTUSO
                             95
< 8.3 \times 10^{-3}
                                                                               E_{\rm cm}^{ee} \approx 10 \ {\rm GeV}
                             95
                                            ALBRECHT
                                                                88M ARG
\Gamma(\eta \eta \pi^- \pi^0 \nu_{\tau})/\Gamma_{\text{total}}
                                                                                                          \Gamma_{162}/\Gamma
VALUE (units 10^{-4})
                                                DOCUMENT ID
                                                                        TECN COMMENT
                                                                    92 CLEO E_{
m cm}^{\it ee} pprox 10.6 \ 
m GeV
 < 2.0
                                 95
                                                ARTUSO

    • • We do not use the following data for averages, fits, limits, etc.

                                                ALBRECHT
                                                                    88M ARG
                                                                                     E_{\rm cm}^{ee} \approx 10 \ {\rm GeV}
\Gamma(\eta \eta K^- \nu_{\tau})/\Gamma_{\text{total}}
 < 3.0 \times 10^{-6}
                                                                       BELL 490 fb^{-1} E_{cm}^{ee} = 10.6 GeV
                                            INAMI
\Gamma(\eta'(958)\pi^-\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                          \Gamma_{164}/\Gamma
                                         DOCUMENT ID
                                                             12X BABR 468 fb^{-1} E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
                           90
• • • We do not use the following data for averages, fits, limits, etc. • •
 < 7.2 \times 10^{-6}
                                                             08AE BABR 384 fb^{-1}, E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
                           90
                                         AUBERT
 < 7.4 \times 10^{-5}
                                                              97 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                           90
                                         BERGFELD
```

$\Gamma(\eta'(958)\pi^-\pi^0)$ VALUE	•	DOCUMENT ID		TECN	Γ ₁₆₅ /Γ
<1.2 × 10 ⁻⁵					$468 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$
• • • We do not u					
$< 8.0 \times 10^{-5}$					Eee = 10.6 GeV
$\Gamma(\eta'(958)K^-\nu_{\tau}$	*				Γ ₁₆₆ /Γ
VALUE 10=6	<i>CL%_</i> 90	DOCUMENT ID			
$< 2.4 \times 10^{-6}$	90	LEES	12X	BABR	468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
$\Gamma(\phi\pi^- u_ au)/\Gamma_{ m tot}$	al				Γ ₁₆₇ /Γ
VALUE (units 10^{-5})					COMMENT
$3.42\pm0.55\pm0.25$					$342 \text{ fb}^{-1} E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}$
• • • We do not ι	ise the follow				
< 20	90				$E_{\mathrm{cm}}^{ee} = 10.6 \; \mathrm{GeV}$
< 35	90	ALBRECHT	95H	ARG	$E_{\rm cm}^{\rm ee} = 9.4 - 10.6 {\rm GeV}$
¹ AVERY 97 lim	it varies from	$(1.2-2.0) \times 10^{-}$	-4 dep	pending o	on decay model assumptions.
$\Gamma(\phi K^- \nu_{\tau})/\Gamma_{\text{to}}$					Γ ₁₆₈ /Γ
<u>VALUE (units 10⁻⁵)</u>		DOCUMENT	ID	TECN	COMMENT
4.4 ±1.6 OUR F 3.70 ±0.33 OUR A • • • We use the	VERAGE E				
$3.39 \pm 0.20 \pm 0.28$					342 fb ⁻¹ $E_{\rm cm}^{\rm ee} = 10.6 \text{ GeV}$
$4.05 \pm 0.25 \pm 0.26$	551	INAMI	06	BFLI	401 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
• • • We do not u					
<6.7	90				Eee = 10.6 GeV
¹ AVERY 97 lim	it varies from	(5.4–6.7) × 10 ⁻	-5 dep	pending o	on decay model assumptions.
$\Gamma(f_1(1285)\pi^-\nu$	$(\tau)/\Gamma_{total}$				Γ ₁₆₉ /Γ
VALUE (units 10^{-4})					
3.9 ± 0.5 OUR A		rror includes scal			
$4.73 \pm 0.28 \pm 0.45$	3.7k	¹ LEES			468 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
$3.60\pm0.18\pm0.23$	2.5k	² LEES			468 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
• • • We do not ι					
$3.19 \pm 0.18 \pm 1.00$	1.3 k 1.4 k	AUBERT A	08AI	E BABR	Repl. by LEES 12X Repl. by LEES 12X
$3.9 \pm 0.7 \pm 0.5$					
$5.8 \begin{array}{c} +1.4 \\ -1.3 \end{array} \pm 1.8$	54	3 BEKGFELD	97	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
measurement b	oy the PDG 1 otain this v	2 value of B(f_1 ()	1285) g the	$ ightarrow~2\pi^+$ eir B $(au^-$	$\begin{array}{lll} (285)\pi^{-}\nu_{\tau} &\rightarrow & 3\pi^{-}2\pi^{+}\nu_{\tau}) \\ (-2\pi^{-}) &= & 0.111^{+}0.007 \\ (-2\pi^{-}) &= & f_{1}(1285)\pi^{-}\nu_{\tau} &\rightarrow \\ (-285)\pi^{-}\nu_{\tau} &\rightarrow & f_{1}(1285) &\rightarrow & \eta\pi\pi) \end{array}$ lue of B($f_{1}(1285) \rightarrow & \eta\pi\pi$)
$= 0.524 + 0.01 \\ -0.02$			-	·u	-(-1(-100))

```
^3 AUBERT 08AE obtain this value by dividing their B(	au^- 
ightarrow f_1(1285) \pi^- 
u_{	au} 
ightarrow
 \eta \pi^- \pi^+ \pi^- \nu_{\tau}) measurement by the PDG 06 value of B(f_1(1285) \rightarrow \eta \pi^- \pi^+) =
 0.35\pm0.11. The quote (3.19\pm0.18\pm0.16\pm0.99)\times10^{-4} where the final error is due
 to the uncertainty on B(f_1(1285) \rightarrow \eta \pi^- \pi^+). We combine the two systematic errors
 in quadrature.
```

$\Gamma(f_1(1285)\pi^-\nu_{\tau} \rightarrow \eta\pi^-\pi^+\pi^-\nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{170}/Γ

DOCUMENT ID VALUE (units 10^{-4}) EVTS TECN COMMENT **1.18±0.07 OUR AVERAGE** Error includes scale factor of 1.3. 12X BABR 468 fb⁻¹ $E_{cm}^{ee} = 10.6 \text{ GeV}$ $1.26 \pm 0.06 \pm 0.06$ 2.5k **LEES** 08AE BABR 384 fb⁻¹, $E_{cm}^{ee} = 10.6 \text{ GeV}$ 1.3 k **AUBERT** $1.11\pm0.06\pm0.05$

 $\Gamma(f_1(1285)\pi^-\nu_\tau \to \eta\pi^-\pi^+\pi^-\nu_\tau)/\Gamma(\eta\pi^-\pi^+\pi^-\nu_\tau(\text{ex}.K^0))$ $\frac{DOCUMENT\ ID}{1}$ OBAE BABR 384 fb $^{-1}$, $E_{\rm cm}^{\rm ee}=10.6\ {\rm GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

97 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ BERGFELD 0.55 ± 0.14

$$\Gamma(f_1(1285)\pi^-\nu_{ au}
ightarrow 3\pi^-2\pi^+\nu_{ au})/\Gamma_{ ext{total}}$$

 Γ_{171}/Γ

VALUE (units 10⁻⁴) _____ EVTS DOCUMENT ID TECN COMMENT

 0.52 ± 0.04 OUR FIT

 $0.520 \pm 0.031 \pm 0.037$ 3.7k

LEES

12X BABR 468 fb⁻¹ E_{cm}^{ee} =10.6 GeV

$$\frac{\Gamma(\pi(1300)^{-}\nu_{\tau} \rightarrow (\rho\pi)^{-}\nu_{\tau} \rightarrow (3\pi)^{-}\nu_{\tau})/\Gamma_{\text{total}}}{\text{VALUE}} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT\ ID}{\text{ASNER}} \qquad \frac{TECN}{\text{CLEO}} \qquad \frac{COMMENT}{E_{em}^{ee}} = 10.6\ \text{GeV}$$

$\Gamma(h^-\omega \geq 0 \text{ neutrals } \nu_{\tau})/\Gamma_{\text{total}}$

 Γ_{174}/Γ

 $\Gamma_{174}/\Gamma = (\Gamma_{176} + \Gamma_{177} + \Gamma_{178})/\Gamma$

DOCUMENT ID TECN COMMENT

2.40 ± 0.08 OUR FIT

• • We use the following data for averages but not for fits. • • •

 $1.65\pm0.3\ \pm0.2$

1513

ALBRECHT

88M ARG $E_{\rm cm}^{ee} \approx 10 \ {\rm GeV}$

 $^{^4}$ AUBERT,B 05W use the $f_1(1285)
ightarrow 2\pi^+2\pi^-$ decay mode and the PDG 04 value of B($f_1(1285) \rightarrow 2\pi^+ 2\pi^-$) = $0.110^{+0.007}_{-0.006}$

⁵ BERGFELD 97 use the $f_1(1285) \rightarrow \eta \pi^+ \pi^-$ decay mode.

 $^{^1}$ Not independent of AUBERT 08AE B($\tau^- \to~f_1(1285) \pi^- \nu_{\tau} \to~\eta \, \pi^- \, \pi^+ \pi^- \nu_{\tau})$ and $B(\tau^- \to \eta \pi^- \pi^+ \pi^- \nu_\tau (ex. K^0))$ values.

$\Gamma(h^-\omega u_ au)/\Gamma_{ ext{total}}$				Γ _{17!}	$_{5}/\Gamma = (\Gamma_{176} + \Gamma_{177})/\Gamma$
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT
1.99 ± 0.06 OUR FIT 1.92 ± 0.07 OUR AVER	AGE				
$1.91\!\pm\!0.07\!\pm\!0.06$	5803	BUSKULIC	97 C	ALEP	1991-1994 LEP runs
$1.60 \pm 0.27 \pm 0.41$	139	BARINGER	87	CLEO	$E_{cm}^{ee} = 10.5 \; GeV$
• • • We use the follow	wing data fo	r averages but no	t for f	its. • •	•
$1.95\!\pm\!0.07\!\pm\!0.11$	2223	¹ BALEST	95 C	CLEO	$E_{cm}^{\mathit{ee}} \approx 10.6 \; GeV$
$^{ m 1}$ Not independent of	BALEST 95	$CB(\tau^- \rightarrow h^- \omega)$	$(u_ au)/{\sf E}$	$3(\tau^- \rightarrow$	$h^- h^- h^+ \pi^0 u_ au$) value.
$ \begin{bmatrix} \Gamma(\pi^{-}\omega\nu_{\tau}) + \Gamma(K^{-}) \\ (\Gamma_{176} + \Gamma_{177})/\Gamma_{7} \\ 0.892\Gamma_{177} + 0.019 \end{bmatrix} $	$_{74} = (\Gamma_{176} +$	$(h^-h^-h^+\pi^0)$	ν_τ (ex ₀₃ +Γ ₁	. K⁰)) . ₀₇ +0.2	(Γ₁₇₆+Γ₁₇₇)/Γ₇₄ 292Γ ₁₅₀ +0.892Γ ₁₇₆ +
	EVTS	DOCUMENT I	D	TECN	COMMENT
43.5±1.4 OUR FIT					
45.3±1.9 OUR AVERA	-	1 500000000	0.0		D 150 1001 1000 1
43.1 ± 3.3 $46.4\pm1.6\pm1.7$					P LEP 1991–1993 data $E_{ m cm}^{\it ee} pprox 10.6 \ { m GeV}$
• • • We do not use tl					
$37 \pm 5 \pm 2$	458				E ^{ee} _{cm} = 9.4–10.6 GeV
					(ex. K^0) decays which
$\pi^+\pi^-\pi^0$ branchin	g fraction (0).888).			e this by the $\omega(782) ightarrow$ $(ext{ex.} \ \ extcolor{} K^0)$ decays which
originate in a $h^- \omega$	final state	equals 0.412 \pm	0.014		. We divide this by the
$\omega(782) \rightarrow \pi^{+}\pi^{-}$	π^0 branching	g fraction (0.888)).	. 0	
					decays which originate in
a π ω final state e branching fraction (quals 0.33 \pm (0.888).	0.04 ± 0.02 . We	divide	this by	the $\omega(782) ightarrow \pi^+ \pi^- \pi^0$
_	(0.000)				F /F
$\Gamma(\pi^-\omega\nu_{\tau})/\Gamma_{\text{total}}$		DOCUMENT ID			Γ ₁₇₆ /Γ
<u>VALUE (%)</u> 1.95±0.06 OUR FIT		DOCUMENT ID			
$\Gamma(K^-\omega u_ au)/\Gamma_{total}$					Γ ₁₇₇ /Γ
VALUE (units 10 ⁻⁴) E	VTS D	OCUMENT ID	TEC	CN CO	MMENT
4.1±0.9 OUR FIT					
$4.1 \pm 0.6 \pm 0.7$	500 A	RMS 05	CLI	E3 7.6	fb ⁻¹ , $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$\Gamma(h^-\omega\pi^0 u_{ au})/\Gamma_{ ext{tota}}$	l EVTS	DOCUMENT ID		TECN	Γ ₁₇₈ /Γ
0.41±0.04 OUR FIT					
$0.43 \pm 0.06 \pm 0.05$	7283	BUSKULIC	97C	ALEP	1991-1994 LEP runs

```
\Gamma(h^-\omega\pi^0\nu_{\tau})/\Gamma(h^-h^-h^+\geq 0 \text{ neutrals } \geq 0K_I^0\nu_{\tau})
                 \Gamma_{178}/\Gamma_{62} = \Gamma_{178}/(0.34598\Gamma_{36} + 0.34598\Gamma_{38} + 0.\overline{3}4598\Gamma_{41} + 0.34598\Gamma_{43} + 0.4247\Gamma_{48} + 0.6920\Gamma_{49} + 0.8494\Gamma_{52} + 0.6920\Gamma_{56} + 0.6534\Gamma_{61} + \Gamma_{70} + \Gamma_{78} + \Gamma_{85} + \Gamma_{89} + 0.6661\Gamma_{48} + 0.6671\Gamma_{48} + 0.6671\Gamma_{
                \Gamma_{97} + \Gamma_{103} + \Gamma_{106} + \Gamma_{107} + 0.2810\Gamma_{148} + 0.2292\Gamma_{149} + 0.2810\Gamma_{150} + 0.2810\Gamma_{152} +
                0.3759\Gamma_{154} + 0.3268\Gamma_{158} + 0.7259\Gamma_{168} + 0.9078\Gamma_{176} + 0.9078\Gamma_{177} + 0.9078\Gamma_{178} +
                 0.892\Gamma_{180})
                                                                                                    DOCUMENT ID TECN COMMENT
                                                                   EVTS
VALUE
                                                          ) \times 10^{-2} OUR FIT
(2.69 \pm 0.28)
• • • We use the following data for averages but not for fits. • • •
                                                                                               ^{1} BORTOLETTO 93 CLEO E_{cm}^{ee} \approx 10.6 GeV
  0.028 \pm 0.003 \pm 0.003
                                                                       430
       <sup>1</sup> Not independent of BORTOLETTO 93 \Gamma(\tau^- \to h^- \omega \pi^0 \nu_{\tau})/\Gamma(\tau^- \to h^- \omega \pi^0 \nu_{\tau})
          h^- h^- h^+ 2\pi^0 \nu_{\tau} (\text{ex.} K^0)) value.
\Gamma(h^-\omega\pi^0\nu_{	au})/\Gamma(h^-h^-h^+2\pi^0\nu_{	au}(\mathrm{ex}.K^0))
                                                                                                                                                                                                                        \Gamma_{178}/\Gamma_{84}
                 \Gamma_{178}/\Gamma_{84} = \dot{\Gamma}_{178}/(\Gamma_{85}+0.2292\Gamma_{148}+0.2292\Gamma_{152}+0.892\Gamma_{178})
VALUE (units 10^{-2})
                                                                                                    DOCUMENT ID <u>TECN</u> COMMENT
82±8 OUR FIT
                                                                                                    BORTOLETTO93 CLEO E_{
m cm}^{\it ee} pprox 10.6 \ {
m GeV}
81±6±6
\Gamma(h^-\omega 2\pi^0\nu_{\tau})/\Gamma_{\rm total}
                                                                                                                                                                                                                              \Gamma_{179}/\Gamma
                                                       EVTS
VALUE (units 10^{-4})
                                                                                        DOCUMENT ID
                                                                                                                                                 TECN COMMENT
                                                                                        ANASTASSOV 01 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
1.4 \pm 0.4 \pm 0.3
• • • We do not use the following data for averages, fits, limits, etc. • • •
1.89^{\,+\,0.74}_{\,-\,0.67}\,\pm\,0.40
                                                              19
                                                                                        ANDERSON 97 CLEO Repl. by ANASTASSOV 01
\Gamma(\pi^-\omega 2\pi^0\nu_{\tau})/\Gamma_{\rm total}
                                                                                                                                                                                                                              \Gamma_{180}/\Gamma
VALUE (units 10^{-4}) EVTS
                                                                                           DOCUMENT ID TECN COMMENT
0.71 \pm 0.16 OUR FIT
                                                                                                                                     12X BABR 468 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
0.73\pm0.12\pm0.12
                                                           1.1k
                                                                                           LEES
\Gamma(h^- 2\omega \nu_{\tau})/\Gamma_{\text{total}}
                                                                                                                                               TECN COMMENT
                                                                                       DOCUMENT ID
                                                                                                                                               BABR 232 fb<sup>-1</sup> E_{\text{cm}}^{\text{ee}} = \overline{10.6 \,\text{GeV}}
  < 5.4 \times 10^{-7}
                                                                                       AUBERT,B
\Gamma(2h^-h^+\omega\nu_{\tau})/\Gamma_{\text{total}}
                                                                                                                                                                                                                              \Gamma_{182}/\Gamma
VALUE (units 10^{-4})
                                                                                                    DOCUMENT ID TECN COMMENT
1.2\pm0.2\pm0.1
                                                                                                    ANASTASSOV 01 CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                                                                       110
\Gamma(2\pi^-\pi^+\omega\nu_{\tau}(\text{ex.}K^0))/\Gamma_{\text{total}}
                                                                                                                                                                                                                              \Gamma_{183}/\Gamma
VALUE (units 10^{-4})
                                                                                           DOCUMENT ID TECN COMMENT
0.84±0.06 OUR FIT
                                                                                                                                    12X BABR 468 fb^{-1} E_{\rm cm}^{ee} = 10.6 GeV
0.84 \pm 0.04 \pm 0.06
                                                            2.4k
                                                                                           LEES
```

$\Gamma(e^-\gamma)/\Gamma_{\text{total}}$	an family n	umber conservation	. n		Γ ₁₈₄ /Γ
VALUE		<u>DOCUMENT ID</u>		TECN	COMMENT
<3.3 × 10 ⁻⁸	90	AUBERT			516 fb ⁻¹ , <i>E</i> ^{ee} _{cm} =10.6 GeV
• • • We do not	use the follo				
$< 1.2 \times 10^{-7}$	90	HAYASAKA	08	BELL	535 fb $^{-1}$, $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
$< 1.1 \times 10^{-7}$	90	AUBERT			232 fb ⁻¹ , $E_{cm}^{ee} = 10.6 \text{ GeV}$
$< 3.9 \times 10^{-7}$	90	HAYASAKA	05	BELL	86.7 fb ⁻¹ , E_{cm}^{ee} =10.6 GeV
$< 2.7 \times 10^{-6}$	90	EDWARDS	97	CLEO	, cm
$< 1.1 \times 10^{-4}$	90	ABREU	95 U	DLPH	1990-1993 LEP runs
$< 1.2 \times 10^{-4}$	90	ALBRECHT	92K	ARG	$E_{ m cm}^{\it ee} = 10 \; { m GeV}$
$< 2.0 \times 10^{-4}$	90	KEH	88	CBAL	$E_{ m cm}^{\it ee} = 10 \; { m GeV}$
$< 6.4 \times 10^{-4}$	90	HAYES	82	MRK2	$E_{\rm cm}^{\it ee} = 3.8 - 6.8 \; {\rm GeV}$
$\Gamma(\mu^-\gamma)/\Gamma_{ m total}$					Γ ₁₈₅ /Γ
		umber conservation		TECN (COMMENT
<u>VALUE</u> < 4.4 × 10 ^{−8}		<u>DOCUMENT ID</u> AUBERT			$_{516~{ m fb}}^{-1}$, $E_{ m cm}^{ee}$ =10.6 GeV
• • • We do not					
$< 4.5 \times 10^{-8}$			_		635 fb $^{-1}$, $E_{cm}^{ee} = 10.6$ GeV
$< 4.5 \times 10^{-8}$	90	HAYASAKA			$E_{cm}^{135} = 10.6 \text{ GeV}$ $E_{cm}^{232} = 10.6 \text{ GeV}$
$< 6.8 \times 10^{-5}$ $< 3.1 \times 10^{-7}$	90	AUBERT,B			
$< 3.1 \times 10^{-6}$	90	ABE			$E_{\rm cm}^{6.3} {\rm fb}^{-1}, E_{\rm cm}^{\rm ee} = 10.6 {\rm GeV}$
$< 1.1 \times 10^{-6}$	90	AHMED		CLEO <i>I</i>	Ecm= 10.6 GeV
$< 3.0 \times 10^{-5}$	90 90	EDWARDS ABREU			.990–1993 LEP runs
$< 0.2 \times 10$ $< 0.42 \times 10^{-5}$	90	BEAN			Eem = 10.6 GeV
$< 3.4 \times 10^{-5}$	90	ALBRECHT	92K /		Ecm = 10.0 GeV
$< 5.4 \times 10^{-5}$	90	HAYES			-cm
<55	90	HAILS	02 1	VIIXIXZ L	-cm— 3.0 0.0 dev
$\Gamma(e^-\pi^0)/\Gamma_{ m total}$					Γ ₁₈₆ /Γ
		umber conservation		TECN	COMMENT
< 8.0 × 10 ^{−8}		DOCUMENT ID			401 fb ⁻¹ , E_{cm}^{ee} =10.6 GeV
• • • We do not					
$< 1.3 \times 10^{-7}$	90	AUBERT			339 fb ⁻¹ , $E_{\rm cm}^{\rm ee}$ =10.6 GeV
$< 1.9 \times 10^{-7}$	90	ENARI			154 fb ⁻¹ , $E_{\rm cm}^{ee}$ = 10.6 GeV
$< 3.7 \times 10^{-6}$	90	BONVICINI	97	CLEO	$E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
$< 17 \times 10^{-5}$	90				$E_{\rm cm}^{ee} = 10 \text{ GeV}$
$< 14 \times 10^{-5}$	90	KEH	88		$E_{\rm cm}^{ee} = 10 \text{ GeV}$
$<210 \times 10^{-5}$	90	HAYES	82	MRK2	E ^{ee} _{cm} = 3.8–6.8 GeV
$\Gamma(\mu^-\pi^0)/\Gamma_{ m tota}$					Γ ₁₈₇ /Γ
lest of lepto		umber conservation <u>DOCUMENT ID</u>		TECN	COMMENT
$< 1.1 \times 10^{-7}$	90	AUBERT			339 fb ⁻¹ , E_{cm}^{ee} =10.6 GeV
/ TIT V TO	90	AUDLIVI	071	ארטוע	555 ID , Lcm—10.0 GeV

```
    • • We do not use the following data for averages, fits, limits, etc.

 < 1.2 \times 10^{-7}
                                                                     BELL 401 fb<sup>-1</sup>, E_{cm}^{ee}=10.6 GeV
                                          MIYAZAKI
 < 4.1 \times 10^{-7}
                                                                    BELL 154 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 \text{ GeV}
                           90
                                          ENARI
 < 4.0 \times 10^{-6}
                           90
                                          BONVICINI
                                                                     CLEO E_{\rm cm}^{\rm ee} = 10.6 \, {\rm GeV}
 < 4.4 \times 10^{-5}
                                                                              E_{
m cm}^{\it ee} = 10 \; {
m GeV}
                                                             92K ARG
                           90
                                          ALBRECHT
< 82 \times 10^{-5}
                                                                     MRK2 E_{cm}^{ee} = 3.8-6.8 \text{ GeV}
                                          HAYES
\Gamma(e^-K_S^0)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{188}/\Gamma
        Test of lepton family number conservation.
                                        DOCUMENT ID
                                                                   TECN COMMENT
 < 2.6 \times 10^{-8}
                                                            10A BELL 671 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                          90
                                        MIYAZAKI
• • • We do not use the following data for averages, fits, limits, etc. • • •
< 3.3 \times 10^{-8}
                                                            09D BABR 469 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \text{ GeV}
                          90
                                        AUBERT
< 5.6 \times 10^{-8}
                                                            06A BELL 281 fb<sup>-1</sup> E_{cm}^{ee} = 10.6 \,\text{GeV}
                          90
                                        MIYAZAKI
< 9.1 \times 10^{-7}
                                                            02C CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                          90
                                        CHEN
< 1.3 \times 10^{-3}
                                                                   MRK2 E_{cm}^{ee} = 3.8-6.8 \text{ GeV}
                          90
                                        HAYES
\Gamma(\mu^- K_S^0) / \Gamma_{\text{total}}
                                                                                                        \Gamma_{189}/\Gamma
       Test of lepton family number conservation.
                                        DOCUMENT ID
                                                                   TECN COMMENT
                          CL%
                                                            10A BELL 671 fb^{-1} E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
 < 2.3 \times 10^{-8}
                          90
                                        MIYAZAKI
ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet
                                                            09D BABR 469 fb^{-1} E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}
<4.0 \times 10^{-8}
                          90
                                        AUBERT
                                                            06A BELL 281 fb^{-1} E_{\rm cm}^{ee} = 10.6 \, {\rm GeV}
< 4.9 \times 10^{-8}
                          90
                                        MIYAZAKI
< 9.5 \times 10^{-7}
                                                            02C CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                          90
                                        CHEN
<1.0 \times 10^{-3}
                                                                   MRK2 E_{cm}^{ee} = 3.8-6.8 \text{ GeV}
                          90
                                        HAYES
\Gamma(e^-\eta)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{190}/\Gamma
        Test of lepton family number conservation.
<u>VA</u>LUE
                                          <u>DOCUME</u>NT ID
                                                                    TECN COMMENT
                           CL%
 < 9.2 \times 10^{-8}
                                                                    BELL 401 fb<sup>-1</sup>, E_{cm}^{ee}=10.6 GeV
                           90
                                          MIYAZAKI

    • • We do not use the following data for averages, fits, limits, etc.

                                                                    BABR 339 fb^{-1}, E_{cm}^{ee}=10.6 GeV
< 1.6 \times 10^{-7}
                           90
                                          AUBERT
                                                                    BELL 154 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 \text{ GeV}
< 2.4 \times 10^{-7}
                           90
                                          ENARI
 < 8.2 \times 10^{-6}
                                                                    CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                           90
                                          BONVICINI
                                                             97
                                                                               E_{\rm cm}^{ee} = 10 \; {\rm GeV}
< 6.3 \times 10^{-5}
                                                             92K ARG
                           90
                                          ALBRECHT
< 24 \times 10^{-5}
                                                                    CBAL E_{cm}^{ee} = 10 \text{ GeV}
                                          KEH
\Gamma(\mu^-\eta)/\Gamma_{\text{total}}
                                                                                                        \Gamma_{191}/\Gamma
        Test of lepton family number conservation.
VALUE
                           CL%
                                          DOCUMENT ID
                                                                     TECN
                                                                              COMMENT
                                                                    BELL 401 fb<sup>-1</sup>, E_{cm}^{ee}=10.6 GeV
 < 6.5 \times 10^{-8}
                           90
                                          MIYAZAKI
                                                             07
• • We do not use the following data for averages,
                                                                   fits, limits, etc. • • •
< 1.5 \times 10^{-7}
                                                                    BABR 339 fb<sup>-1</sup>, E_{cm}^{ee}=10.6 GeV
                           90
                                          AUBERT
                                                                    BELL 154 fb<sup>-1</sup>, E_{cm}^{ee} = 10.6 \text{ GeV}
< 1.5 \times 10^{-7}
                           90
                                          ENARI
                                                                    BELL 84.3 fb<sup>-1</sup>, E_{cm}^{ee}=10.6 GeV
< 3.4 \times 10^{-7}
                           90
                                          ENARI
< 9.6 \times 10^{-6}
                                                                     CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                           90
                                          BONVICINI
                                                             97
< 7.3 \times 10^{-5}
                                                                               E_{\rm cm}^{\rm ee} = 10 \; {\rm GeV}
                                                             92K ARG
                           90
                                          ALBRECHT
HTTP://PDG.LBL.GOV
```

Page 68

 $\Gamma(e^{-}\rho^{0})/\Gamma_{\text{total}} \qquad \qquad \Gamma_{192}/\Gamma$ Test of lepton family number conservation. $\frac{VALUE}{\text{< 1.8} \times 10^{-8}} \qquad 90 \qquad \text{MIYAZAKI} \qquad 11 \qquad \text{BELL} \qquad 854 \text{ fb}^{-1} \quad E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$ • • • We do not use the following data for averages, fits, limits, etc. • •

09W BABR 451 fb $^{-1}$ $E_{\rm Cm}^{ee} = 10.6$ GeV 08 BELL 543 fb $^{-1}$ $E_{\rm Cm}^{ee} = 10.6$ GeV $< 4.6 \times 10^{-8}$ 90 **AUBERT** $< 6.3 \times 10^{-8}$ 90 **NISHIO** BELL 158 fb⁻¹ $E_{cm}^{ee} = 10.6 \, \text{GeV}$ $< 6.5 \times 10^{-7}$ 90 YUSA 06 $< 2.0 \times 10^{-6}$ CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ 90 **BLISS** $<~4.2\times10^{-6}$ ¹ BARTELT CLEO Repl. by BLISS 98 90 94 $< 1.9 \times 10^{-5}$ $E_{\rm cm}^{\it ee} = 10~{\rm GeV}$ 90 **ALBRECHT** 92K ARG MRK2 $E_{cm}^{ee} = 3.8-6.8 \text{ GeV}$ $< 37 \times 10^{-5}$ 90 **HAYES** 82

 $\Gamma(\mu^- \rho^0)/\Gamma_{\text{total}}$ Test of lepton family number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.2 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
• • • We do not us	se the follo	wing data for ave	erages	, fits, lin	nits, etc. • • •
$< 2.6 \times 10^{-8}$	90	AUBERT	09W	BABR	451 fb $^{-1}$ $E_{\rm cm}^{\rm ee}=$ 10.6 GeV
$< 6.8 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{ m cm}^{\it ee} =$ 10.6 GeV
$< 2.0 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{\it ee} =$ 10.6 GeV
$< 6.3 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 5.7 \times 10^{-6}$	90	¹ BARTELT	94	CLEO	Repl. by BLISS 98
$< 2.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 44 \times 10^{-5}$	90	HAYES	82	MRK2	Fee - 3.8-6.8 GeV

 Γ_{193}/Γ

 $\Gamma(e^-\omega)/\Gamma_{ ext{total}}$ VALUE CL% DOCUMENT ID TECN COMMENT

VALUE	CL 70	DOCUMENT ID		TECIV	COMMENT
$<4.8 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 \ { m GeV}$
ullet $ullet$ We do not use	the following	ng data for avera	ages,	fits, limi	ts, etc. ● ●
$< 1.1 \times 10^{-7}$	90	AUBERT	08K	BABR	384 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 1.8 \times 10^{-7}$	90	NISHIO	08	BFLL	$543 \text{ fb}^{-1} F_{em}^{ee} = 10.6 \text{ GeV}$

 $\Gamma(\mu^-\omega)/\Gamma_{\text{total}}$ Γ_{195}/Γ

· / · · · · · · · · · · · · · · · · · ·					
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<4.7 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
• • • We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
$< 1.0 \times 10^{-7}$	90	AUBERT			384 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 8.9 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV

$\Gamma(e^{-}K^{*}(892)^{0})/\Gamma_{\text{total}}$ Γ_{196}/Γ

Test of lepton family number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.2 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \text{ fb}^{-1} E_{cm}^{ee} = 10.6 \text{ GeV}$

HTTP://PDG.LBL.GOV

Page 69

¹BARTELT 94 assume phase space decays.

¹BARTELT 94 assume phase space decays.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$< 5.9 \times 10^{-8}$	90	AUBERT	09W	BABR	451 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$< 7.8 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV
$< 3.0 \times 10^{-7}$	90	YUSA	06	BELL	$158 \text{ fb}^{-1} E_{\text{cm}}^{\text{ee}} = 10.6 \text{GeV}$
$< 5.1 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$< 6.3 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 3.8 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$

¹ BARTELT 94 assume phase space decays.

 Γ_{197}/Γ

 $\Gamma(\mu^- K^*(892)^0)/\Gamma_{total}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 5.9 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
• • • We do not ι	se the follo	wing data for ave	erages	, fits, lin	nits, etc. • • •
$< 7.2 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 1.7 \times 10^{-7}$	90	AUBERT			451 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6$ GeV
$< 3.9 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}~E_{ m cm}^{ee}=$ 10.6 GeV
$< 7.5 \times 10^{-6}$	90	BLISS	98	CLEO	<i>E</i> ^{ee} _{cm} = 10.6 GeV
$< 9.4 \times 10^{-6}$	90	¹ BARTELT	94	CLEO	Repl. by BLISS 98
$< 4.5 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{ m cm}^{\it ee} = 10 \; { m GeV}$

 $^{^{\}mathrm{1}}\,\mathrm{BARTELT}$ 94 assume phase space decays.

 Γ_{198}/Γ

 $\Gamma(e^{-}\overline{K}^{*}(892)^{0})/\Gamma_{total}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.4 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6$ GeV
• • • We do not i	use the fo	llowing data for av	erages	, fits, lin	nits, etc. • • •
$< 4.6 \times 10^{-8}$	90	AUBERT			451 fb $^{-1}$ $E_{\rm cm}^{ee}=10.6$ GeV
$< 7.7 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
$< 4.0 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6{ m GeV}$
$< 7.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 1.1 \times 10^{-5}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98

¹BARTELT 94 assume phase space decays.

$\Gamma(\mu^{-}\overline{K}^{*}(892)^{0})/\Gamma_{total}$ Test of lepton family number conservation.

 Γ_{199}/Γ

VALUE	CL%	<u>DOCUMENT ID</u>		<u> TECN</u>	COMMENI
$< 7.0 \times 10^{-8}$	90	MIYAZAKI	11	BELL	$854 \text{ fb}^{-1} E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}$
• • • We do not us	se the follow	ing data for ave	rages	, fits, lim	nits, etc. • • •
$< 7.3 \times 10^{-8}$	90	AUBERT			451 fb $^{-1}$ $E_{\rm cm}^{\rm ee}=$ 10.6 GeV
$< 1.0 \times 10^{-7}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 4.0 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{\it ee} = 10.6{ m GeV}$
$< 7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 8.7 \times 10^{-6}$	90	^L BARTELT	94	CLEO	Repl. by BLISS 98

¹ BARTELT 94 assume phase space decays.

$\Gamma(e^-\eta'(958))/\Gamma_0$	total				Γ ₂₀₀ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID			
$< 1.6 \times 10^{-7}$	90	MIYAZAKI	07	BELL	401 fb $^{-1}$, $E_{ m cm}^{ m ee}$ =10.6 GeV
• • • We do not us	e the follow	ing data for ave	rages	, fits, lim	its, etc. • • •
$< 2.4 \times 10^{-7}$	90	AUBERT	071	BABR	339 fb $^{-1}$, $E_{\rm cm}^{ee}$ =10.6 GeV
$< 10. \times 10^{-7}$	90	ENARI	05	BELL	154 fb ⁻¹ , $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
$\Gamma(\mu^-\eta'(958))/\Gamma$					Γ ₂₀₁ /Γ
		DOCUMENT ID			
<1.3 × 10 ⁻⁷	90	MIYAZAKI	07		401 fb ⁻¹ , $E_{\rm cm}^{ee}$ =10.6 GeV
• • • We do not us	se the follow	ving data for ave			
$<1.4 \times 10^{-7}$	90	AUBERT	071		339 fb $^{-1}$, E_{cm}^{ee} =10.6 GeV
$< 4.7 \times 10^{-7}$	90	ENARI	05	BELL	154 fb ⁻¹ , $E_{\rm cm}^{ee}$ = 10.6 GeV
$\Gamma(e^-f_0(980) \rightarrow$	$e^-\pi^+\pi^-$)/F _{total}			Γ ₂₀₂ /Γ
<u>VALUE</u> <3.2 × 10 ^{−8}	<u>CL%</u>	DOCUMENT ID			COMMENT
$< 3.2 \times 10^{-8}$	90	MIYAZAKI	09	BELL	671 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$\Gamma(\mu^- f_0(980) \rightarrow$	Γ ₂₀₃ /Γ				
VALUE <3.4 × 10 ^{−8}	<u>CL%_</u>	DOCUMENT ID			<u>COMMENT</u>
<3.4 × 10 ⁻⁶	90	MIYAZAKI	09	BELL	671 fb ⁻¹ $E_{\rm cm}^{ee}$ = 10.6 GeV
$\Gamma(e^-\phi)/\Gamma_{\text{total}}$ Test of lepton	ı family nun	nber conservatio	n.		Γ ₂₀₄ /Γ
<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT
$< 3.1 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6$ GeV
$< 3.1 \times 10^{-8}$	90	AUBERT	09W	BABR	451 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
• • • We do not us	se the follow	ing data for ave	rages	, fits, lim	its, etc. • • •
$< 7.3 \times 10^{-8}$	90	NISHIO	80	BELL	543 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 7.3 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 {\rm GeV}$
$< 6.9 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm cm}^{\it ee} = 10.6 \; {\rm GeV}$
$\Gamma(\mu^-\phi)/\Gamma_{\text{total}}$	ı family nun	nber conservatio	n		Γ ₂₀₅ /Γ
•	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 8.4 \times 10^{-8}$	90	MIYAZAKI	11	BELL	854 fb ⁻¹ $E_{\rm cm}^{\rm ee} = 10.6 {\rm GeV}$
• • • We do not us	se the follow		rages	, fits, lim	•
$< 1.9 \times 10^{-7}$	90	AUBERT	09W	BABR	451 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$<1.3 \times 10^{-7}$	90	NISHIO	08	BELL	543 fb ⁻¹ $E_{\rm cm}^{ee} = 10.6 \text{ GeV}$
$< 7.7 \times 10^{-7}$	90	YUSA	06	BELL	158 fb ⁻¹ $E_{\rm cm}^{\rm ee} = 10.6 \rm GeV$
$< 7.0 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$

 Γ_{206}/Γ

 $\Gamma(e^-e^+e^-)/\Gamma_{\text{total}}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.7 \times 10^{-8}$	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
• • • We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
$< 2.9 \times 10^{-8}$	90	LEES			468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$< 3.6 \times 10^{-8}$	90	MIYAZAKI			535 fb $^{-1}$ $E_{cm}^{ee} = 10.6$ GeV
$< 4.3 \times 10^{-8}$	90	AUBERT	07 BK	BABR	376 fb $^{-1}$ $E_{cm}^{ee} = 10.6$ GeV
$< 2.0 \times 10^{-7}$	90	AUBERT	04J	BABR	91.5 fb $^{-1}$ E_{cm}^{ee} = 10.6 GeV
$< 3.5 \times 10^{-7}$	90	YUSA	04	BELL	87.1 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
$< 2.9 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 0.33 \times 10^{-5}$	90	BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.3 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 2.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\rm ee} = 10.4 - 10.9$
$<$ 40 \times 10 ⁻⁵	90	HAYES	82	MRK2	$E_{\rm cm}^{\rm ee} = 3.8 6.8 \; {\rm GeV}$

 $^{^{}m 1}$ BARTELT 94 assume phase space decays.

 Γ_{207}/Γ

 $\Gamma(e^-\mu^+\mu^-)/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.7 \times 10^{-8}$	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
● ● We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
$< 3.2 \times 10^{-8}$	90	LEES	10 A	BABR	468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$< 4.1 \times 10^{-8}$	90	MIYAZAKI	80	BELL	535 fb $^{-1}$ $E_{cm}^{ee} = 10.6$ GeV
$< 3.7 \times 10^{-8}$	90	AUBERT	07 BK	BABR	376 fb ⁻¹ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
$< 3.3 \times 10^{-7}$	90	AUBERT	04J	BABR	$91.5 \text{ fb}^{-1} E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}$
$< 2.0 \times 10^{-7}$	90	YUSA	04	BELL	$87.1 \text{ fb}^{-1} E_{\text{cm}}^{\text{ee}} = 10.6 \text{ GeV}$
$< 1.8 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{\rm cm}^{\it ee} = 10.6 \; {\rm GeV}$
$< 0.36 \times 10^{-5}$	90	BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 2.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{ee} = 10.4 - 10.9$
$< 33 \times 10^{-5}$	90	HAYES	82	MRK2	$E_{\rm cm}^{ee} = 3.8 - 6.8 {\rm GeV}$

 $^{^{1}\,\}mathrm{BARTELT}$ 94 assume phase space decays.

 Γ_{208}/Γ

Created: 5/30/2017 17:22

 $\Gamma(e^+\mu^-\mu^-)/\Gamma_{total}$ Test of lepton family number conservation.

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<1.7 × 10 ⁻⁸	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
• • • We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. ● ●
$< 2.6 \times 10^{-8}$	90	LEES			468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
$< 2.3 \times 10^{-8}$	90	MIYAZAKI	80	BELL	535 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
$< 5.6 \times 10^{-8}$	90	AUBERT	07 BK	BABR	376 fb ⁻¹ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
$< 1.3 \times 10^{-7}$	90	AUBERT			91.5 fb ⁻¹ $E_{\rm cm}^{ee}$ = 10.6 GeV
$< 2.0 \times 10^{-7}$	90	YUSA	04	BELL	87.1 fb ⁻¹ $E_{\rm cm}^{ee}$ = 10.6 GeV

$< 1.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 0.35 \times 10^{-5}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.8 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{\mathit{ee}} = 10 \; GeV$
$< 1.6 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\rm ee} = 10.4 - 10.9$

¹ BARTELT 94 assume phase space decays.

 Γ_{209}/Γ

 $\Gamma(\mu^-e^+e^-)/\Gamma_{\text{total}}$ Test of lepton family number conservation.

<u>VALUE</u>		<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
< 1.8	× 10 ⁻⁸	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
• • •	We do not use	the followi	ng data for aver	ages,	fits, limi	ts, etc. • • •
< 2.2	\times 10 ⁻⁸	90	LEES	10 A	BABR	468 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV
< 2.7	\times 10 ⁻⁸	90	MIYAZAKI	80	BELL	535 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
< 8.0	\times 10 ⁻⁸	90	AUBERT			376 fb ⁻¹ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
< 2.7	\times 10 ⁻⁷	90	AUBERT			91.5 fb ⁻¹ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
	\times 10 ⁻⁷	90	YUSA	04	BELL	87.1 fb ⁻¹ $E_{\rm cm}^{\rm ee}$ = 10.6 GeV
	\times 10 ⁻⁶	90	BLISS	98	CLEO	$E_{\rm cm}^{\rm ee} = 10.6 \; {\rm GeV}$
	4×10^{-5}	90	^L BARTELT	94	CLEO	Repl. by BLISS 98
	$\times 10^{-5}$	90	ALBRECHT	92K		$E_{\rm cm}^{\rm ee} = 10 \; {\rm GeV}$
	\times 10 ⁻⁵	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\rm ee} = 10.4 - 10.9$
<44	\times 10 ⁻⁵	90	HAYES	82	MRK2	$E_{cm}^{ee} = 3.8-6.8 \text{ GeV}$

 $^{^{\}mathrm{1}}\,\mathrm{BARTELT}$ 94 assume phase space decays.

$\Gamma(\mu^+e^-e^-)/\Gamma$ Test of lepto		ımber conservatioı	ı.		Γ ₂₁₀ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.5 \times 10^{-8}$	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
• • • We do not i	use the follo	owing data for ave	rages,	fits, limi	its, etc. • • •
$< 1.8 \times 10^{-8}$	90	LEES	10A	BABR	468 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 2.0 \times 10^{-8}$	90	MIYAZAKI	80	BELL	535 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
$< 5.8 \times 10^{-8}$	90	AUBERT	07 Bk	BABR	376 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
$< 1.1 \times 10^{-7}$	90	AUBERT	04J	BABR	91.5 fb $^{-1}$ E_{cm}^{ee} = 10.6 GeV
$< 2.0 \times 10^{-7}$	90	YUSA	04	BELL	87.1 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
$< 1.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 0.34 \times 10^{-5}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.4 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 1.6 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 - 10.9$

 $^{^{1}\,\}mathrm{BARTELT}$ 94 assume phase space decays.

 Γ_{211}/Γ

 $\Gamma(\mu^-\mu^+\mu^-)/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.1 \times 10^{-8}$	90	HAYASAKA	10	BELL	782 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

< 3.8		90	AAD		20.3 fb $^{-1}$ $\sqrt{s} = 8$ TeV
< 4.6		90	AAIJ	15AI LHCB	3.0 fb $^{-1}$ \sqrt{s} = 7, 8 TeV
< 8.0	\times 10 ⁻⁸	90	¹ AAIJ	13AH LHCB	$1.0~{ m fb}^{-1}$, $\sqrt{s}=7~{ m TeV}$
< 3.3	$\times 10^{-8}$	90	LEES	10A BABR	468 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
< 3.2	$\times 10^{-8}$	90	MIYAZAKI		535 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
< 5.3	$\times 10^{-8}$	90	AUBERT	07вк BABR	376 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
< 1.9	\times 10 ⁻⁷	90	AUBERT	04J BABR	91.5 fb $^{-1}$ E_{cm}^{ee} = 10.6 GeV
< 2.0	$\times 10^{-7}$	90	YUSA	04 BELL	87.1 fb ⁻¹ E_{cm}^{ee} = 10.6 GeV
< 1.9	\times 10 ⁻⁶	90	BLISS	98 CLEO	$E_{cm}^{\mathit{ee}} = 10.6 \; GeV$
< 0.43	$\times 10^{-5}$	90	² BARTELT	94 CLEO	Repl. by BLISS 98
< 1.9	$\times 10^{-5}$	90	ALBRECHT	92K ARG	$E_{cm}^{\mathit{ee}} = 10 \; GeV$
< 1.7	\times 10 ⁻⁵	90	BOWCOCK	90 CLEO	$E_{\rm cm}^{\it ee} = 10.4 – 10.9$
<49	\times 10 ⁻⁵	90	HAYES	82 MRK2	$E_{\rm cm}^{\it ee} = 3.8 - 6.8 \; {\rm GeV}$

$\Gamma(e^-\pi^+\pi^-)/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

 Γ_{212}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 2.3 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV
• • • We do not u	se the follo	owing data for ave	erages	, fits, lin	nits, etc. • • •
$< 4.4 \times 10^{-8}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13
$< 7.3 \times 10^{-7}$	90	YUSA			158 fb $^{-1}$ $E_{ m cm}^{\it ee} = 10.6{ m GeV}$
$< 1.2 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee} =$ 10.6 GeV
$< 2.2 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 4.4 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 2.7 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{ m cm}^{\it ee} = 10 \; { m GeV}$
$< 6.0 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{ee} = 10.4 - 10.9$

¹BARTELT 94 assume phase space decays.

$\Gamma(e^+\pi^-\pi^-)/\Gamma_{ ext{total}}$ Test of lepton number conservation.

 Γ_{213}/Γ

 $854 \text{ fb}^{-1} F_{\text{ee}}^{\text{ee}} = 10.6 \text{ GeV}$

\2.0 \ 10	50	WII 17 (Z/ (I ()	13	DLLL	054 ID
ullet $ullet$ We do not	use the fo	llowing data for ave	rages	, fits, lim	nits, etc. ● ●
$< 8.8 \times 10^{-8}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13
$< 2.0 \times 10^{-7}$	90	YUSA			158 fb $^{-1}$ $E_{\sf cm}^{\it ee} = 10.6{\sf GeV}$
$< 2.7 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee} =$ 10.6 GeV
$< 1.9 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 4.4 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 1.8 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{\mathit{ee}} = 10 \; GeV$
$< 1.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4-10.9$

¹ BARTELT 94 assume phase space decays.

 $^{^{1}}$ Repl. by AAIJ 15AI. 2 BARTELT 94 assume phase space decays.

 Γ_{214}/Γ

 $\Gamma(\mu^-\pi^+\pi^-)/\Gamma_{\rm total}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 2.1 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 \ { m GeV}$
\bullet \bullet We do not	use the fo	ollowing data for ave	erages	, fits, lin	nits, etc. • • •
$< 3.3 \times 10^{-8}$	90	MIYAZAKI			
$< 4.8 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 { m GeV}$
$< 2.9 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{\it ee}$ = 10.6 GeV
$< 8.2 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 7.4 \times 10^{-6}$	90	$^{ m 1}$ BARTELT			Repl. by BLISS 98
$< 3.6 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 - 10.9$

 $^{^{}m 1}$ BARTELT 94 assume phase space decays.

$\Gamma(\mu^+\pi^-\pi^-)/\Gamma_{ ext{total}}$ Test of lepton number conservation.

 Γ_{215}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.9 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
ullet $ullet$ We do not	use the fo	ollowing data for ave	erages	, fits, lin	nits, etc. • • •
$< 3.7 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$< 3.4 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6{ m GeV}$
$< 7 \times 10^{-8}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee} =$ 10.6 GeV
$< 3.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$<6.9 \times 10^{-6}$	90	$^{ m 1}$ BARTELT			Repl. by BLISS 98
$< 6.3 \times 10^{-5}$	90	ALBRECHT			$E_{cm}^{ee} = 10 \; GeV$
$< 3.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 - 10.9$

 $^{^{}m 1}$ BARTELT 94 assume phase space decays.

 Γ_{216}/Γ

 $\Gamma(e^-\pi^+K^-)/\Gamma_{\text{total}}$ Test of lepton family number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.7 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6~{\rm GeV}$
• • • We do not i	use the fo	llowing data for ave	erages	, fits, lin	nits, etc. • • •
$< 5.8 \times 10^{-8}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13
$< 7.2 \times 10^{-7}$	90	YUSA			$158~\mathrm{fb}^{-1}~E_\mathrm{cm}^{ee}=10.6\mathrm{GeV}$
$< 3.2 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee} =$ 10.6 GeV
$< 6.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$< 7.7 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 2.9 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 5.8 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 – 10.9$

¹BARTELT 94 assume phase space decays.

 Γ_{217}/Γ

 $\Gamma(e^-\pi^-K^+)/\Gamma_{total}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.1 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$
• • • We do not ι	ise the follo	owing data for ave	erages	, fits, lin	nits, etc. • • •
$< 5.2 \times 10^{-8}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13
$< 1.6 \times 10^{-7}$	90	YUSA			158 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 { m GeV}$
$< 1.7 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{\rm cm}^{ee} = 10.6$ GeV
$< 3.8 \times 10^{-6}$	90	BLISS	98	CLEO	E ^{ee} _{cm} = 10.6 GeV
$< 4.6 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 5.8 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 - 10.9$

 $^{^{1}\,\}mathrm{BARTELT}$ 94 assume phase space decays.

$\Gamma(e^+\pi^-K^-)/\Gamma_{total}$ Test of lepton number conservation.

 Γ_{218}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.2 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
• • • We do not us	se the follow	wing data for ave	erages	, fits, lin	nits, etc. • • •
$< 6.7 \times 10^{-8}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13
$< 1.9 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{\sf cm}^{\it ee} =$ 10.6 GeV
$< 1.8 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee}$ $=$ 10.6 GeV
$< 2.1 \times 10^{-6}$	90	BLISS	98	CLEO	E ^{ee} _{cm} = 10.6 GeV
$< 4.5 \times 10^{-6}$	90	$^{ m 1}$ BARTELT	94	CLEO	Repl. by BLISS 98
$< 2.0 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$
$< 4.9 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{ee} = 10.4 - 10.9$

 $^{^{\}mathrm{1}}\,\mathrm{BARTELT}$ 94 assume phase space decays.

 Γ_{219}/Γ

 $\Gamma \left(e^{-} \, K_{S}^{0} \, K_{S}^{0} \right) / \Gamma_{total}$ Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID	TECN	COMMENT			
$< 7.1 \times 10^{-8}$	90	MIYAZAKI	10A BELL	671 fb $^{-1}$ $E_{\rm cm}^{\rm ee} = 10.6$ GeV			
• • • We do not use the following data for averages, fits, limits, etc. • •							
$< 2.2 \times 10^{-6}$	90	CHEN	02C CLEO	$F_{\rm ee}^{\rm ee} = 10.6 \text{GeV}$			

					CIII
Γ(e ⁻ K ⁺ K ⁻ Test of le		umber conservatio	on.		Γ ₂₂₀ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.4 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV
• • • We do n	ot use the follo	owing data for ave	erages	, fits, lin	nits, etc. • • •
$< 5.4 \times 10^{-8}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13
$< 3.0 \times 10^{-7}$	90	YUSA	06	BELL	$158~\mathrm{fb}^{-1}~E_{\mathrm{cm}}^{\mathit{ee}}=10.6\mathrm{GeV}$
$< 1.4 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{ee} = 10.6$ GeV
$<$ 6.0 \times 10 ⁻⁶	90	BLISS	98	CLEO	$E_{\rm cm}^{\rm ee}=10.6~{ m GeV}$

$\Gamma(e^+K^-K^-)/\Gamma_{total}$ Test of lepton number conservation.

 Γ_{221}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.3 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 \; { m GeV}$
● ● We do not us	e the follow	ing data for ave	rages,	fits, lim	its, etc. • • •
$< 6.0 \times 10^{-8}$	90	MIYAZAKI			Repl. by MIYAZAKI 13
$< 3.1 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{ee} =$ 10.6 GeV
$< 1.5 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{\rm cm}^{ee}$ = 10.6 GeV
$< 3.8 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$

 Γ_{222}/Γ

 $\Gamma(\mu^-\pi^+K^-)/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT		
$< 8.6 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{ m cm}^{ee} = 10.6 \; { m GeV}$		
• • • We do not use the following data for averages, fits, limits, etc. • •							
$< 1.6 \times 10^{-7}$	90	MIYAZAKI	10		Repl. by MIYAZAKI 13		
$< 2.7 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{\it ee}=$ 10.6 GeV		
$< 2.6 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{ m cm}^{\it ee}$ = 10.6 GeV		
$< 7.5 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$		
$< 8.7 \times 10^{-6}$	90	¹ BARTELT	94	CLEO	Repl. by BLISS 98		
$< 11 \times 10^{-5}$	90	ALBRECHT	92K	ARG	$E_{cm}^{ee} = 10 \; GeV$		
$< 7.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{cm}^{ee} = 10.4-10.9$		

 $^{^{\}mathrm{1}}\,\mathrm{BARTELT}$ 94 assume phase space decays.

 Γ_{223}/Γ

 $\Gamma(\mu^-\pi^-K^+)/\Gamma_{ ext{total}}$ Test of lepton family number conservation.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
$<4.5 \times 10^{-8}$	90	MIYAZAKI	13	BELL	854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$			
• • • We do not use the following data for averages, fits, limits, etc. • • •								
$< 1.0 \times 10^{-7}$	90	MIYAZAKI	10	BELL	Repl. by MIYAZAKI 13			
$< 7.3 \times 10^{-7}$	90	YUSA	06	BELL	158 fb $^{-1}$ $E_{ m cm}^{\it ee} = 10.6{ m GeV}$			
$< 3.2 \times 10^{-7}$	90	AUBERT,BE	05 D	BABR	221 fb $^{-1}$, $E_{\rm cm}^{\rm ee}$ = 10.6 GeV			
$< 7.4 \times 10^{-6}$	90	BLISS	98	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$			
$< 1.5 \times 10^{-5}$	90	¹ BARTELT	94	CLEO	Repl. by BLISS 98			
$< 7.7 \times 10^{-5}$	90	BOWCOCK	90	CLEO	$E_{\rm cm}^{\it ee} = 10.4 - 10.9$			

 $^{^{}m 1}$ BARTELT 94 assume phase space decays.

$\Gamma(\mu^+\pi^-K^-)/\Gamma_{ ext{total}}$ Test of lepton number conservation.

 Γ_{224}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<4.8 \times 10^{-8}$	90	MIYAZAKI	13	BELL	$854 \text{ fb}^{-1} E_{\text{cm}}^{ee} = 10.6 \text{ GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • • $< 9.4 \times 10^{-8}$ 90 MIYAZAKI 10 BELL Repl. by MIYAZAKI 13 $< 2.9 \times 10^{-7}$ BELL 158 fb⁻¹ $E_{cm}^{ee} = 10.6 \,\text{GeV}$ 90 YUSA 05D BABR 221 fb $^{-1}$, $E_{cm}^{ee} = 10.6 \text{ GeV}$ $< 2.2 \times 10^{-7}$ 90 AUBERT, BE $< 7.0 \times 10^{-6}$ CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ **BLISS** 90 $< 2.0 \times 10^{-5}$ ¹ BARTELT 90 94 CLEO Repl. by BLISS 98 $< 5.8 \times 10^{-5}$ $E_{\rm cm}^{ee} = 10 \; {\rm GeV}$ 90 ALBRECHT 92K ARG $< 4.0 \times 10^{-5}$ CLEO $E_{cm}^{ee} = 10.4-10.9$ 90 **BOWCOCK** $^{
m 1}$ BARTELT 94 assume phase space decays. $\Gamma(\mu^- K_S^0 K_S^0)/\Gamma_{\text{total}}$ Γ_{225}/Γ DOCUMENT ID <u>TECN</u> <u>COMMENT</u> 10A BELL 671 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6$ GeV **MIYAZAKI** • • • We do not use the following data for averages, fits, limits, etc. • • • $< 3.4 \times 10^{-6}$ 02C CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ CHEN $\Gamma(\mu^- K^+ K^-)/\Gamma_{\text{total}}$ Γ_{226}/Γ Test of lepton family number conservation. TECN COMMENT CL% **DOCUMENT ID** BELL 854 fb $^{-1}$ $E_{\rm cm}^{ee}=10.6$ GeV $< 4.4 \times 10^{-8}$ MIYAZAKI 13 • • • We do not use the following data for averages, fits, limits, etc. • • • $< 6.8 \times 10^{-8}$ 10 BELL Repl. by MIYAZAKI 13 90 **MIYAZAKI** BELL 158 fb⁻¹ $E_{cm}^{ee} = 10.6 \,\text{GeV}$ $< 8.0 \times 10^{-7}$ 90 YUSA $< 2.5 \times 10^{-7}$ 05D BABR 221 fb⁻¹, $E_{cm}^{ee} = 10.6 \text{ GeV}$ 90 AUBERT,BE $< 15 \times 10^{-6}$ CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ **BLISS** $\Gamma(\mu^+ K^- K^-)/\Gamma_{\text{total}}$ Γ_{227}/Γ Test of lepton number conservation. **VALUE DOCUMENT ID** TECN COMMENT CL% BELL 854 fb $^{-1}$ $E_{\rm cm}^{ee} = 10.6 \; {\rm GeV}$ $< 4.7 \times 10^{-8}$ 90 **MIYAZAKI** • • • We do not use the following data for averages, fits, limits, etc. • • • $< 9.6 \times 10^{-8}$ BELL Repl. by MIYAZAKI 13 MIYAZAKI BELL 158 fb $^{-1}$ $E_{cm}^{ee} = 10.6 \,\text{GeV}$ $< 4.4 \times 10^{-7}$ 90 YUSA 05D BABR 221 fb⁻¹, $E_{cm}^{ee} = 10.6 \text{ GeV}$ $< 4.8 \times 10^{-7}$ AUBERT,BE 90 $< 6.0 \times 10^{-6}$ CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ **BLISS** $\Gamma(e^-\pi^0\pi^0)/\Gamma_{\rm total}$ Γ_{228}/Γ Test of lepton family number conservation. DOCUMENT ID TECN COMMENT CL% $<6.5 \times 10^{-6}$ 97 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$ 90 **BONVICINI** $\Gamma(\mu^-\pi^0\pi^0)/\Gamma_{\rm total}$ Γ_{229}/Γ Test of lepton family number conservation. CL% **DOCUMENT ID** TECN COMMENT

90

 $<14 \times 10^{-6}$

BONVICINI

97 CLEO $E_{cm}^{ee} = 10.6 \text{ GeV}$

$\Gamma(e^-\eta\eta)/\Gamma_{\text{total}}$					Γ ₂₃₀ /Γ
Test of lepton fam VALUE		conservation. <u>DOCUMENT ID</u>		TECN	COMMENT
<35 × 10 ⁻⁶		BONVICINI	97		E ^{ee} _{cm} = 10.6 GeV
$\Gamma(\mu^-\eta\eta)/\Gamma_{\text{total}}$ Test of lepton fam	ilv number	conservation			Γ ₂₃₁ /Γ
VALUE				TECN	COMMENT
		BONVICINI	97	CLEO	$E_{cm}^{\mathit{ee}} = 10.6 \; GeV$
$\Gamma(e^-\pi^0\eta)/\Gamma_{ ext{total}}$ Test of lepton fam	ily number	consonvation			Γ ₂₃₂ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
_		BONVICINI			E _{cm} = 10.6 GeV
$\Gamma(\mu^-\pi^0\eta)/\Gamma_{ ext{total}}$ Test of lepton fam	ilv number	conservation			Γ ₂₃₃ /Γ
VALUE				TECN	COMMENT
<i>e</i>		BONVICINI	97	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$\Gamma(ho\mu^-\mu^-)/\Gamma_{ m total}$					Γ ₂₃₄ /Γ
<i>VALUE</i> <4.4 × 10 ^{−7}	<u>CL%</u>	DOCUMENT ID		TECN	$\frac{\textit{COMMENT}}{1.0 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}}$
<4.4 × 10 ⁻⁷	90	AAIJ	13AH	LHCB	1.0 fb ⁻¹ , $\sqrt{s} = 7 \text{ TeV}$
$\Gamma(\overline{p}\mu^+\mu^-)/\Gamma_{ ext{total}}$					Γ ₂₃₅ /Γ
<i>VALUE</i> <3.3 × 10 ^{−7}	<u>CL%</u>	DOCUMENT ID			
<3.3 × 10 ⁻⁷	90	AAIJ	13AH	LHCB	1.0 fb ⁻¹ , $\sqrt{s} = 7 \text{ TeV}$
$\Gamma(\overline{p}\gamma)/\Gamma_{\text{total}}$					Γ ₂₃₆ /Γ
Test of lepton num		ryon number con <u>DOCUMENT ID</u>			COMMENT
$< 3.5 \times 10^{-6}$					E ^{ee} _{cm} = 10.6 GeV
• • • We do not use the					
$<$ 29 \times 10 ⁻⁵	90	ALBRECHT	92K	ARG	$E_{cm}^{\mathit{ee}} = 10 \; GeV$
$\Gamma(\overline{p}\pi^0)/\Gamma_{\text{total}}$ Test of lepton num	nber and ba	ryon number con	servat	tion.	Γ ₂₃₇ /Γ
VALUE	CL%	DOCUMENT ID			COMMENT
$<15 \times 10^{-6}$	90	GODANG	99		$E_{\rm cm}^{\it ee}=10.6~{\rm GeV}$
• • • We do not use the	following o	data for averages	, fits,	limits, e	tc. • • •
$<66 \times 10^{-5}$	90	ALBRECHT	92K	ARG	E ^{ee} _{cm} = 10 GeV
$\Gamma(\overline{p}2\pi^0)/\Gamma_{\text{total}}$ Test of lepton num	nber and ba	rvon number con	servat	tion.	Γ ₂₃₈ /Γ
VALUE					COMMENT
<33 × 10 ⁻⁶	90	GODANG	99	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$

$\Gamma(\overline{p}\eta)/\Gamma_{\text{total}}$ Test of lepton	number and	Γ ₂₃₉ /Γ d baryon number conservation.				
VALUE		DOCUMENT ID TECN COMMENT				
$< 8.9 \times 10^{-6}$	90	GODANG 99 CLEO $E_{cm}^{ee} = 10.6 \; GeV$				
• • • We do not use	e the followi	ng data for averages, fits, limits, etc. ● ●				
$<130 \times 10^{-5}$	90	ALBRECHT 92K ARG E_{cm}^{ee} = 10 GeV				
		Γ ₂₄₀ /Γ d baryon number conservation.				
VALUE		DOCUMENT ID TECN COMMENT				
$< 27 \times 10^{-6}$	90	GODANG 99 CLEO $E_{ m cm}^{ee} = 10.6 \; { m GeV}$				
		Γ ₂₄₁ /Γ d baryon number conservation. <u>DOCUMENT ID TECN COMMENT</u>				
$< 0.72 \times 10^{-7}$	90	MIYAZAKI 06 BELL 154 fb ⁻¹ , E_{cm}^{ee} = 10.6 GeV				
		Γ ₂₄₂ /Γ d baryon number conservation. <u>DOCUMENT ID TECN COMMENT</u>				
$<1.4 \times 10^{-7}$	90	MIYAZAKI 06 BELL 154 fb $^{-1}$, $E_{\rm cm}^{ee}$ = 10.6 GeV				
Test of lepton VALUE <0.015	family num <u>CL%</u>	ber conservation. $\frac{DOCUMENT\ ID}{1}$ ALBRECHT 95G ARG $\frac{COMMENT}{E_{cm}^{ee}} = 9.4-10.6\ GeV$				
• • • We do not use	e the followi	ng data for averages, fits, limits, etc. • • •				
<0.018 <0.040	95 95	2 ALBRECHT 90E ARG $E_{ m cm}^{\it ee}$ = 9.4–10.6 GeV 3 BALTRUSAIT85 MRK3 $E_{ m cm}^{\it ee}$ = 3.77 GeV				
 ALBRECHT 95G limit holds for bosons with mass < 0.4 GeV. The limit rises to 0.036 for a mass of 1.0 GeV, then falls to 0.006 at the upper mass limit of 1.6 GeV. ALBRECHT 90E limit applies for spinless boson with mass < 100 MeV, and rises to 0.050 for mass = 500 MeV. BALTRUSAITIS 85 limit applies for spinless boson with mass < 100 MeV. 						
$\Gamma(\mu^- \text{ light boson})$ Test of lepton	. , .	$ u_{ au} $) Γ_{244}/Γ_{5} ber conservation.				
· · · · · · · · · · · · · · · · · · ·	<u>CL%</u>					
<0.026	95	1000000000000000000000000000000000000				
• • • We do not use	e the followi	ng data for averages, fits, limits, etc. • • •				
< 0.033	95	² ALBRECHT 90E ARG <i>E</i> ^{ee} _{cm} = 9.4–10.6 GeV				
< 0.125	95	³ BALTRUSAIT85 MRK3 E_{cm}^{ee} = 3.77 GeV				
for a mass of 1.4 ² ALBRECHT 90E 2 0.071 for mass =	GeV, then imit applies 500 MeV.	for bosons with mass < 1.3 GeV. The limit rises to 0.034 falls to 0.003 at the upper mass limit of 1.6 GeV. es for spinless boson with mass < 100 MeV, and rises to plies for spinless boson with mass < 100 MeV.				

au-DECAY PARAMETERS

A REVIEW GOES HERE – Check our WWW List of Reviews

$\rho(e \text{ or } \mu) \text{ PARAMETER}$

(V-A) theory predicts $\rho = 0.75$.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.745 ± 0.008 OUR FI	Т				
0.749 ± 0.008 OUR AV	ERAGE				
$0.742 \pm 0.014 \pm 0.006$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.775 \pm 0.023 \pm 0.020$	36k	ABREU	00L	DLPH	1992–1995 runs
$0.781 \pm 0.028 \pm 0.018$	46k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
0.762 ± 0.035	54k	ACCIARRI	98R	L3	1991-1995 LEP runs
0.731 ± 0.031		¹ ALBRECHT	98	ARG	$E_{\rm cm}^{ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.72\ \pm0.09\ \pm0.03$		² ABE	970	SLD	1993–1995 SLC runs
$0.747 \pm 0.010 \pm 0.006$	55k	ALEXANDER	97F	CLEO	$E_{cm}^{ee} = 10.6 \; GeV$
$0.79 \ \pm 0.10 \ \pm 0.10$	3732	FORD	87 B	MAC	E ^{ee} _{cm} = 29 GeV
$0.71 \ \pm 0.09 \ \pm 0.03$	1426	BEHRENDS	85	CLEO	e^+e^- near $\varUpsilon(4S)$
• • • We do not use	the follow	ing data for average	es, fit	s, limits,	etc. • • •
$0.735 \pm 0.013 \pm 0.008$	31k	AMMAR	97 B	CLEO	Repl. by ALEXAN- DER 97F
$0.794 \!\pm\! 0.039 \!\pm\! 0.031$	18k	ACCIARRI	96H	L3	Repl. by ACCIARRI 98R
$0.732 \pm 0.034 \pm 0.020$	8.2k	³ ALBRECHT	95	ARG	$E_{\rm cm}^{ee} = 9.5 - 10.6 \; {\rm GeV}$
0.738 ± 0.038		⁴ ALBRECHT	95 C	ARG	Repl. by ALBRECHT 98
$0.751\!\pm\!0.039\!\pm\!0.022$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
$0.742\!\pm\!0.035\!\pm\!0.020$	8000	ALBRECHT	90E	ARG	$E_{\rm cm}^{ee} = 9.4 - 10.6 {\rm GeV}$

¹ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, ALBRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\rho(e)$ PARAMETER

(V-A) theory predicts $\rho=0.75$.

(V —A) theory p	p	– 0.73.			
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.747±0.010 OUR FI	Т				
0.744 ± 0.010 OUR AV	/ERAGE				
$0.747 \pm 0.019 \pm 0.014$	44k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.744 \pm 0.036 \pm 0.037$	17k	ABREU	00L	DLPH	1992–1995 runs
$0.779 \pm 0.047 \pm 0.029$	25k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$0.68 \pm 0.04 \pm 0.07$		$^{ m 1}$ ALBRECHT	98	ARG	E _{cm} = 9.5–10.6 GeV
$0.71 \ \pm 0.14 \ \pm 0.05$		ABE	970	SLD	1993–1995 SLC runs
$0.747\!\pm\!0.012\!\pm\!0.004$	34k	ALEXANDER	97F	CLEO	$E_{ m cm}^{ee} = 10.6 \; { m GeV}$
$0.735 \pm 0.036 \pm 0.020$	4.7k	² ALBRECHT	95	ARG	$E_{\rm cm}^{\rm ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.79 \ \pm 0.08 \ \pm 0.06$	3230	³ ALBRECHT	93 G	ARG	$E_{\rm cm}^{\rm ee} = 9.4 – 10.6 \; {\rm GeV}$
$0.64 \pm 0.06 \pm 0.07$	2753	JANSSEN	89	CBAL	$E_{\rm cm}^{\rm ee} = 9.4 – 10.6 \; {\rm GeV}$
HTTP://PDG.LBL	GOV	Page 81		Crea	ated: 5/30/2017 17:22

 $^{^2}$ ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a ρ value of 0.69 \pm 0.13 \pm 0.05.

³ Value is from a simultaneous fit for the ρ and η decay parameters to the lepton energy spectrum. Not independent of ALBRECHT 90E $\rho(e \text{ or } \mu)$ value which assumes $\eta=0$. Result is strongly correlated with ALBRECHT 95C.

⁴ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E.

$0.62 \ \pm 0.17 \ \pm 0.14$	1823	FORD	87 B	MAC	$E_{ m cm}^{ee} =$ 29 GeV
0.60 ± 0.13	699	BEHRENDS	85	CLEO	e^+e^- near $\varUpsilon(4S)$
$0.72 \pm 0.10 \pm 0.11$	594	BACINO	79 B	DLCO	$E_{cm}^{ee} = 3.5 - 7.4 \text{ GeV}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.732 \pm 0.014 \pm 0.009$	19k	AMMAR	97 B	CLEO	Repl. by ALEXAN-
					DER 97F
$0.793 \pm 0.050 \pm 0.025$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E
$0.747 \pm 0.045 \pm 0.028$	5106	ALBRECHT	90E	ARG	Repl. by ALBRECHT 95

¹ ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\rho(\mu)$ PARAMETER

(V-A) theory predicts $\rho = 0.75$.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.763±0.020 OUR FIT	•				
0.770 ± 0.022 OUR AV	ERAGE				
$0.776 \pm 0.045 \pm 0.019$	46k	HEISTER	01E	ALEP	1991–1995 LEP runs
$0.999 \pm 0.098 \pm 0.045$	22k	ABREU	00L	DLPH	1992–1995 runs
$0.777 \pm 0.044 \pm 0.016$	27k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$0.69\ \pm0.06\ \pm0.06$		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.54 \pm 0.28 \pm 0.14$		ABE	970	SLD	1993-1995 SLC runs
$0.750 \pm 0.017 \pm 0.045$	22k	ALEXANDER	97F	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
$0.76 \ \pm 0.07 \ \pm 0.08$	3230	ALBRECHT	93G	ARG	$E_{\rm cm}^{\it ee} = 9.4 – 10.6 \; {\rm GeV}$
$0.734 \pm 0.055 \pm 0.027$	3041	ALBRECHT	90E	ARG	$E_{\rm cm}^{\it ee} = 9.4 – 10.6 \; {\rm GeV}$
$0.89\ \pm0.14\ \pm0.08$	1909	FORD	87 B	MAC	E ^{ee} _{cm} = 29 GeV
$0.81\ \pm0.13$	727	BEHRENDS	85	CLEO	e^+e^- near \varUpsilon (4 S)
• • • We do not use t	he following	g data for averages	s, fits,	limits,	etc. • • •
$0.747 \pm 0.048 \pm 0.044$	13k	AMMAR	97 B	CLEO	Repl. by ALEXAN- DER 97F
$0.693 \pm 0.057 \pm 0.028$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E

 $^{^1}$ ALBRECHT 98 use tau pair events of the type $\tau^-\,\tau^+\to (\ell^-\overline{\nu}_\ell\,\nu_\tau)(\pi^+\,\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\xi(e \text{ or } \mu) \text{ PARAMETER}$

(V-A) theory predicts $\xi=1$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.985 ± 0.030 OUR FIT	•				
0.981 ± 0.031 OUR AV	ERAGE				
$0.986 \pm 0.068 \pm 0.031$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.929 \pm 0.070 \pm 0.030$	36k	ABREU	00L	DLPH	1992–1995 runs
$0.98 \pm 0.22 \pm 0.10$	46k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
0.70 ± 0.16	54k	ACCIARRI	98R	L3	1991-1995 LEP runs
1.03 ± 0.11		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{ee} = 9.5 – 10.6 {\rm GeV}$
$1.05 \pm 0.35 \pm 0.04$		² ABE	970	SLD	1993–1995 SLC runs
$1.007 \pm 0.040 \pm 0.015$	55k	ALEXANDER	97F	CLEO	$E_{ m cm}^{ m ee} = 10.6 \; { m GeV}$

²ALBRECHT 95 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)$ $(h^+h^-h^+(\pi^0)\overline{\nu}_\tau)$ and their charged conjugates.

³ ALBRECHT 93G use tau pair events of the type $\tau^-\tau^+ \to (\mu^-\overline{\nu}_\mu\nu_\tau)$ ($e^+\nu_e\overline{\nu}_\tau$) and their charged conjugates.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.94 \pm 0.21 \pm 0.07$	18k	ACCIARRI	96H L3	Repl. by ACCIARRI 98R
$0.97\ \pm0.14$		³ ALBRECHT	95c ARG	Repl. by ALBRECHT 98
$1.18 \pm 0.15 \pm 0.16$		BUSKULIC	95D ALEP	Repl. by HEISTER 01E
$0.90 \pm 0.15 \pm 0.10$	3230	⁴ ALBRECHT	93G ARG	E ^{ee} _{cm} = 9.4–10.6 GeV

 $^{^{}m 1}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, AL-BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell \nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\xi(e)$ PARAMETER

(V-A) theory predicts $\xi = 1$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.994 ± 0.040 OUR FIT					
1.00 ± 0.04 OUR AVE	RAGE				
$1.011 \pm 0.094 \pm 0.038$	44k	HEISTER	01E	ALEP	1991-1995 LEP runs
$1.01 \ \pm 0.12 \ \pm 0.05$	17k	ABREU	00L	DLPH	1992-1995 runs
$1.13 \pm 0.39 \pm 0.14$	25k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$1.11 \ \pm 0.20 \ \pm 0.08$		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$1.16 \ \pm 0.52 \ \pm 0.06$		ABE	970	SLD	1993-1995 SLC runs
$0.979 \pm 0.048 \pm 0.016$	34k	ALEXANDER	97F	CLEO	$E_{\mathrm{cm}}^{\mathrm{ee}} = 10.6 \; \mathrm{GeV}$
● ● We do not use th	e followin	g data for averages	. fits.	limits.	etc. • • •

We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$\xi(\mu)$ PARAMETER

(V-A) theory predicts $\xi = 1$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
1.030 ± 0.059 OUR FIT					
1.06 ± 0.06 OUR AVE	RAGE				
$1.030 \pm 0.120 \pm 0.050$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$1.16\ \pm0.19\ \pm0.06$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.79\ \pm0.41\ \pm0.09$	27k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$1.26 \ \pm 0.27 \ \pm 0.14$		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.75\ \pm0.50\ \pm0.14$		ABE	970	SLD	1993-1995 SLC runs
$1.054 \pm 0.069 \pm 0.047$	22k	ALEXANDER	97F	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
• • • We do not use th	e followin	a data for averages	fite	limits a	atc • • •

 ^{• •} We do not use the following data for averages, fits, limits, etc.

²ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a ξ value of 1.02 \pm 0.36 ± 0.05 .

³Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, AL-BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type $au^- au^+$ o $(\ell^- \overline{\nu}_\ell \nu_\tau)$ $(h^+ h^- h^+ \overline{\nu}_\tau)$ and their charged conjugates.

⁴ ALBRECHT 93G measurement determines $|\xi|$ for the case $\xi(e)=\xi(\mu)$, but the authors point out that other LEP experiments determine the sign to be positive.

BUSKULIC 95D ALEP Repl. by HEISTER 01E $1.03 \pm 0.23 \pm 0.09$

¹ ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

⁹⁵D ALEP Repl. by HEISTER 01E $1.23 \pm 0.22 \pm 0.10$ BUSKULIC

 $^{^1}$ ALBRECHT 98 use tau pair events of the type $\tau^-\,\tau^+\,\to\,(\ell^-\,\overline{\nu}_\ell\,\nu_\tau)(\pi^+\,\pi^0\,\overline{\nu}_\tau)$, and their charged conjugates.

$\eta(e \text{ or } \mu) \text{ PARAMETER}$

(V-A) theory predicts $\eta = 0$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT			
0.013±0.020 OUR FIT								
0.015±0.021 OUR AV	ERAGE							
$0.012\!\pm\!0.026\!\pm\!0.004$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs			
$-0.005\!\pm\!0.036\!\pm\!0.037$		ABREU	00L	DLPH	1992-1995 runs			
$0.027\!\pm\!0.055\!\pm\!0.005$	46k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs			
0.27 ± 0.14	54k	ACCIARRI	98R	L3	1991-1995 LEP runs			
$-0.13\ \pm0.47\ \pm0.15$		ABE	970	SLD	1993–1995 SLC runs			
$-0.015\!\pm\!0.061\!\pm\!0.062$	31k	AMMAR	97 B	CLEO	$E_{ m cm}^{ee} = 10.6 \; { m GeV}$			
$0.03 \ \pm 0.18 \ \pm 0.12$	8.2k	ALBRECHT	95	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$			
● ● ● We do not use the	e following o	data for averages	s, fits,	, limits,	etc. • • •			
$0.25\ \pm0.17\ \pm0.11$	18k	ACCIARRI	96н	L3	Repl. by ACCIARRI 98R			
$-0.04\ \pm0.15\ \pm0.11$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E			

$\eta(\mu)$ PARAMETER

(V-A) theory predicts $\eta = 0$.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.094±0.073 OUR FIT					
0.17 \pm 0.15 OUR AVERAGE Error includes scale factor of 1.2.					2.
$0.160 \pm 0.150 \pm 0.060$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.72 \ \pm 0.32 \ \pm 0.15$		ABREU	00L	DLPH	1992-1995 runs
$-0.59\ \pm0.82\ \pm0.45$		$^{ m 1}$ ABE	970	SLD	1993-1995 SLC runs
$0.010\!\pm\!0.149\!\pm\!0.171$	13k	² AMMAR	97 B	CLEO	$E_{\mathrm{cm}}^{\mathrm{ee}} = 10.6 \; \mathrm{GeV}$
ullet $ullet$ We do not use the	followin	g data for averag	es, fits,	limits, e	etc. • • •

$(\delta \xi)(e \text{ or } \mu) \text{ PARAMETER}$

(V-A) theory predicts $(\delta \xi) = 0.75$.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.746 ± 0.021 OUR FIT	Γ				
0.744±0.022 OUR AV	ERAGE				
$0.776 \pm 0.045 \pm 0.024$	81k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.779 \pm 0.070 \pm 0.028$	36k	ABREU	00L	DLPH	1992–1995 runs
$0.65\ \pm0.14\ \pm0.07$	46k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
0.70 ± 0.11	54k	ACCIARRI	98R	L3	1991-1995 LEP runs
0.63 ± 0.09		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.88 \pm 0.27 \pm 0.04$		² ABE	970	SLD	1993-1995 SLC runs
$0.745 \pm 0.026 \pm 0.009$	55k	ALEXANDER	97F	CLEO	$E_{ m cm}^{\it ee} = 10.6 \; { m GeV}$
• • • We do not use t	he followir	ng data for average	s, fits	s, limits,	etc. • • •
$0.81\ \pm0.14\ \pm0.06$	18k	ACCIARRI	96н	L3	Repl. by ACCIARRI 98R
0.65 ± 0.12		³ ALBRECHT	95 C	ARG	Repl. by ALBRECHT 98
$0.88 \pm 0.11 \pm 0.07$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E

³ ACKERSTAFF 99D OPAL 1990-1995 LEP runs $0.010\pm0.065\pm0.001$ 27k $-0.24 \pm 0.23 \pm 0.18$ **BUSKULIC** 95D ALEP Repl. by HEISTER 01E

 $^{^1}$ Highly correlated (corr. = 0.92) with ABE 970 $ho(\mu)$ measurement.

 $^{^2}$ Highly correlated (corr. = 0.949) with AMMAR 97B $ho(\mu)$ value.

 $^{^3}$ ACKERSTAFF 99D result is dominated by a constraint on η from the OPAL measurements of the au lifetime and B($au^- o au^- \overline{
u}_\mu
u_ au$) assuming lepton universality for the total coupling strength.

² ABE 970 assume $\eta=0$ in their fit. Letting η vary in the fit gives a $(\delta\xi)$ value of $0.87\pm0.27\pm0.04$. 3 Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, AL-

BRECHT 93G, and ALBRECHT 94E. ALBRECHT 95C uses events of the type $au^- au^+$ o $(\ell^-\overline{\nu}_\ell\nu_\tau)\,(\,h^+\,h^-\,h^+\overline{\nu}_\tau\,)$ and their charged conjugates.

($\delta \xi$)(e) PARAMETER (V-A) theory predicts ($\delta \xi$) = 0.75.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.734±0.028 OUR FIT				·	
0.731 ± 0.029 OUR AVE	RAGE				
$0.778 \pm 0.066 \pm 0.024$	44k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.85 \pm 0.12 \pm 0.04$	17k	ABREU	00L	DLPH	1992-1995 runs
$0.72 \pm 0.31 \pm 0.14$	25k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$0.56 \ \pm 0.14 \ \pm 0.06$		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.85\ \pm0.43\ \pm0.08$		ABE	970	SLD	1993-1995 SLC runs
$0.720 \pm 0.032 \pm 0.010$	34k	ALEXANDER	97F	CLEO	$E_{\rm cm}^{\rm ee}=10.6~{\rm GeV}$
• • • We do not use th	e following	g data for averages	, fits,	limits, e	etc. • • •

 $1.11 \pm 0.17 \pm 0.07$

BUSKULIC

95D ALEP Repl. by HEISTER 01E

Created: 5/30/2017 17:22

($\delta \xi$)(μ) PARAMETER (V-A) theory predicts ($\delta \xi$) = 0.75.

()	(, 3)				
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.778±0.037 OUR FIT					
0.79 ± 0.04 OUR AVE	RAGE				
$0.786 \pm 0.066 \pm 0.028$	46k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.86 \pm 0.13 \pm 0.04$	22k	ABREU	00L	DLPH	1992-1995 runs
$0.63\ \pm0.23\ \pm0.05$	27k	ACKERSTAFF	99 D	OPAL	1990-1995 LEP runs
$0.73 \ \pm 0.18 \ \pm 0.10$		$^{ m 1}$ ALBRECHT	98	ARG	$E_{\rm cm}^{\it ee} = 9.5 – 10.6 \; {\rm GeV}$
$0.82\ \pm0.32\ \pm0.07$		ABE	970	SLD	1993-1995 SLC runs
$0.786 \pm 0.041 \pm 0.032$	22k	ALEXANDER	97F	CLEO	$E_{\rm cm}^{\it ee}=10.6~{\rm GeV}$
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
$0.71 \ \pm 0.14 \ \pm 0.06$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E

¹ ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\xi(\pi)$ PARAMETER

(V-A) theory predicts $\xi(\pi) = 1$.

<u>VALUE</u>	_EVTS	DOCUMENT ID		TECN	COMMENT
0.993±0.022 OUR FIT					
0.994±0.023 OUR AVE	RAGE				
$0.994 \pm 0.020 \pm 0.014$	27k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.81 \pm 0.17 \pm 0.02$		ABE	970	SLD	1993-1995 SLC runs
$1.03 \pm 0.06 \pm 0.04$	2.0k	COAN	97	CLEO	$E_{\rm cm}^{\rm ee} = 10.6 \; {\rm GeV}$
\bullet \bullet We do not use the	e following	g data for averages	s, fits,	limits, e	etc. • • •
$0.987\!\pm\!0.057\!\pm\!0.027$		BUSKULIC			Repl. by HEISTER 01E
$0.95 \ \pm 0.11 \ \pm 0.05$		$^{ m 1}$ BUSKULIC	94 D	ALEP	1990+1991 LEP run
10	KIII IC OE				

¹ Superseded by BUSKULIC 95D.

¹Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 98, AL-BRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E. ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

¹ ALBRECHT 98 use tau pair events of the type $\tau^-\tau^+ \to (\ell^-\overline{\nu}_\ell\nu_\tau)(\pi^+\pi^0\overline{\nu}_\tau)$, and their charged conjugates.

$\xi(\rho)$ PARAMETER

(V-A) theory predicts $\xi(\rho) = 1$.

VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.994±0.008 OUR FIT					
0.994±0.009 OUR AVE	RAGE				
$0.987\!\pm\!0.012\!\pm\!0.011$	59k	HEISTER	01E	ALEP	1991-1995 LEP runs
$0.99 \pm 0.12 \pm 0.04$		ABE	970	SLD	1993-1995 SLC runs
$0.995 \pm 0.010 \pm 0.003$	66k	ALEXANDER	97F	CLEO	$E_{\rm cm}^{\it ee} = 10.6 \; {\rm GeV}$
$1.022\!\pm\!0.028\!\pm\!0.030$	1.7k	$^{ m 1}$ ALBRECHT	94E	ARG	$E_{cm}^{ee} = 9.4-10.6 \text{ GeV}$
• • • We do not use th	e following	data for averages	s, fits,	limits, e	etc. • • •
$\begin{array}{ccc} 1.045 \pm 0.058 \pm 0.032 \\ 1.03 \ \pm 0.11 \ \pm 0.05 \end{array}$		BUSKULIC ² BUSKULIC			Repl. by HEISTER 01E 1990+1991 LEP run

 $^{^{1}}$ ALBRECHT 94E measure the square of this quantity and use the sign determined by ALBRECHT 90I to obtain the quoted result.

$\xi(a_1)$ PARAMETER

(V-A) theory predicts $\xi(a_1)=1$.

<u>VALUE</u>	EVTS	DOCUMENT ID		TECN	COMMENT
1.001 ± 0.027 OUR FIT	•				
1.002 ± 0.028 OUR AVI	ERAGE				
$1.000\pm0.016\pm0.024$	35k	$^{ m 1}$ HEISTER	01E	ALEP	1991-1995 LEP runs
$1.02 \ \pm 0.13 \ \pm 0.03$	17.2k				$E_{\mathrm{cm}}^{\mathrm{ee}} = 10.6 \; \mathrm{GeV}$
$1.29 \ \pm 0.26 \ \pm 0.11$	7.4k	² ACKERSTAFF	97 R	OPAL	1992-1994 LEP runs
$0.85 \ ^{+ 0.15}_{- 0.17} \ \pm 0.05$		ALBRECHT	95 C	ARG	E ^{ee} _{cm} = 9.5–10.6 GeV
$1.25 \ \pm 0.23 \ ^{+0.15}_{-0.08}$	7.5k	ALBRECHT	93 C	ARG	E ^{ee} _{cm} = 9.4–10.6 GeV

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

$1.08 \begin{array}{c} +0.46 \\ -0.41 \end{array} \begin{array}{c} +0.14 \\ -0.25 \end{array}$	2.6k	³ AKERS	95 P	OPAL	Repl. by ACKER- STAFF 97R
$0.937 \pm 0.116 \pm 0.064$		BUSKULIC	95 D	ALEP	Repl. by HEISTER 01E

 $^{^1}$ HEISTER 01E quote 1.000 \pm 0.016 \pm 0.013 \pm 0.020 where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty.

ξ (all hadronic modes) PARAMETER

(V-A) theory predicts $\xi = 1$.

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
0.995±0.007 OUR FI	Τ				
0.997±0.007 OUR AV	'ERAGE				
$0.992\!\pm\!0.007\!\pm\!0.008$	102k	$^{ m 1}$ HEISTER	01E	ALEP	1991-1995 LEP runs
$0.997\!\pm\!0.027\!\pm\!0.011$	39k	² ABREU	00L	DLPH	1992–1995 runs

HTTP://PDG.LBL.GOV

Page 86

² Superseded by BUSKULIC 95D.

 $^{^2}$ ACKERSTAFF 97R obtain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY **C48**, 445 (1990)) gives 0.87 \pm 0.16 \pm 0.04, and with the model of of Isgur *et al.* (PR **D39**,1357 (1989)) they obtain 1.20 \pm 0.21 \pm 0.14.

 $^{^3}$ AKERS 95P obtain this result with a model independent fit to the hadronic structure functions. Fitting with the model of Kuhn and Santamaria (ZPHY **C48**, 445 (1990)) gives 0.87 \pm 0.27 $^{+0.05}_{-0.06}$, and with the model of of Isgur *et al.* (PR **D39**,1357 (1989)) they obtain 1.10 \pm 0.31 $^{+0.13}_{-0.14}$.

```
<sup>3</sup> ASNER
                                                                     CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
1.02 \pm 0.13 \pm 0.03
                            17.2k
                                         <sup>4</sup> ACCIARRI
                                                                               1991-1995 LEP runs
1.032 \pm 0.031
                              37k
                                                              98R L3
                                                                              1993-1995 SLC runs
                                                              970 SLD
0.93 \pm 0.10 \pm 0.04
                                           ABE
                                         <sup>5</sup> ACKERSTAFF 97R OPAL 1992–1994 LEP runs
1.29 \pm 0.26 \pm 0.11
                              7.4k
                                         ^{6} ALEXANDER 97F CLEO E_{cm}^{ee} = 10.6 GeV
0.995 \pm 0.010 \pm 0.003
                              66k
                                                                     CLEO E_{cm}^{ee} = 10.6 \text{ GeV}
                                         <sup>7</sup> COAN
                              2.0k
                                                              97
1.03 \pm 0.06 \pm 0.04
                                         <sup>8</sup> ALBRECHT
1.017 \pm 0.039
                                                              95c ARG
                                                                               E_{cm}^{ee} = 9.5-10.6 \text{ GeV}
1.25 \pm 0.23 \, ^{+0.15}_{-0.08}
                                         <sup>9</sup> ALBRECHT
                                                                              E_{cm}^{ee} = 9.4-10.6 \text{ GeV}
                              7.5k
                                                              93c ARG
```

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.970 \pm 0.053 \pm 0.011$	14k	¹⁰ ACCIARRI	96H L3	Repl. by ACCIARRI 98R
$1.08 \begin{array}{c} +0.46 \\ -0.41 \end{array} \begin{array}{c} +0.14 \\ -0.25 \end{array}$	2.6k	¹¹ AKERS	95P OPAL	Repl. by ACKER-
$1.006 \pm 0.032 \pm 0.019$		¹² BUSKULIC	95D ALEP	STAFF 97R Repl. by HEISTER 01E
$1.022\!\pm\!0.028\!\pm\!0.030$	1.7k	¹³ ALBRECHT	94E ARG	$E_{\rm cm}^{ee} = 9.4 - 10.6 {\rm GeV}$
$0.99 \pm 0.07 \pm 0.04$		¹⁴ BUSKULIC	94D ALEP	1990+1991 LEP run

 $^{^1}$ HEISTER 01E quote 0.992 \pm 0.007 \pm 0.006 \pm 0.005 where the errors are statistical, systematic, and an uncertainty due to the final state model. We combine the systematic error and model uncertainty. They use $\tau \to ~\pi \nu_{\tau},~\tau \to ~K \nu_{\tau},~\tau \to ~\rho \nu_{\tau},~{\rm and}~\tau \to ~a_1 \nu_{\tau}$ decays.

au REFERENCES

AAD AAIJ LEES	16BA 15AI 15G	EPJ C76 232 JHEP 1502 121 PR D91 051103	G.Aad <i>et al.</i> R. Aaij <i>et al.</i> J.P. Lees <i>et al.</i>	(ATLAS (LHCb	Collab.) Collab.) (Babar)
ABLIKIM	14D	PR D90 012001	M. Ablikim <i>et al.</i>	(BES III	
BELOUS	14	PRL 112 031801	K. Belous <i>et al.</i>	(BELLE	Collab.)
RYU	14	PR D89 072009	S. Ryu et al.	BELLE	Collab.)
AAIJ	13AH	PL B724 36	R. Aaij et al.	(LHCb	Collab.)
MIYAZAKI	13	PL B719 346	Y. Miyazaki et al.	(BELLE	Collab.)
LEES	12M	PR D85 031102	J.P. Lees et al.	(BABAR	Collab.)
Also		PR D85 099904 (errat.)	J.P. Lees et al.	(BABAR	Collab.)
LEES	12X	PR D86 092010	J.P. Lees et al.	(BABAR	Collab.)
LEES	12Y	PR D86 092013	J.P. Lees et al.	(BABAR	Collab.)
PDG	12	PR D86 010001	J. Beringer et al.	(PDG	Collab.)
DEL-AMO-SA	. 11E	PR D83 032002	P. del Amo Sanchez et al.	(BÀBAR	Collab.)
MIYAZAKI	11	PL B699 251	Y. Miyazaki <i>et al.</i>	(BELLE	Collab.)
AUBERT	10B	PRL 104 021802	B. Aubert et al.	(BABAR	Collab.)

² ABREU 00L use $\tau^- \rightarrow h^- \geq 0\pi^0 \nu_{\tau}$ decays.

 $^{^3}$ ASNER 00 use $au^-
ightarrow ~\pi^- \, 2\pi^0 \,
u_{ au}$ decays.

⁴ ACCIARRI 98R use $au o au
u_{ au}$, $au o au
u_{ au}$, and $au o au
u_{ au}$ decays.

 $^{^{5}}$ ACKERSTAFF 97R use $au
ightarrow au_{ au}$ decays.

⁶ ALEXANDER 97F use $au o
ho
u_{ au}$ decays.

⁷ COAN 97 use h^+h^- energy correlations.

 $^{^8}$ Combined fit to ARGUS tau decay parameter measurements in ALBRECHT 95C, ALBRECHT 93G, and ALBRECHT 94E.

 $^{^{9}}$ Uses $au
ightarrow a_{1} \,
u_{ au}$ decays. Replaced by ALBRECHT 95C.

 $^{^{10}}$ ACCIARRI 96H use $au o \pi
u_{ au}$, $au o K
u_{ au}$, and $au o
ho
u_{ au}$ decays.

 $^{^{11}\,\}mathrm{AKERS}$ 95P use $\tau \to \ \mathrm{a}_1\,\nu_\tau$ decays.

 $^{^{12}}$ BUSKULIC 95D use $\tau\to~\pi\nu_{\tau},~\tau\to~\rho\nu_{\tau},~{\rm and}~\tau\to~{\it a}_{1}\nu_{\tau}$ decays.

 $^{^{13}}$ ALBRECHT 94E measure the square of this quantity and use the sign determined by ALBRECHT 90I to obtain the quoted result. Uses $\tau\to a_1\nu_{\tau}$ decays. Replaced by ALBRECHT 95C.

¹⁴ BUSKULIC 94D use $au o au
u_{ au}$ and $au o au
ho
u_{ au}$ decays. Superseded by BUSKULIC 95D.

AUBERT HAYASAKA LEE LEES MIYAZAKI MIYAZAKI AUBERT AUBERT GROZIN INAMI MIYAZAKI AUBERT AUBERT AUBERT FUJIKAWA HAYASAKA MIYAZAKI NISHIO ANASHIN	09D 09W 09A 09 09	PRL 105 051602 PL B687 139 PR D81 113007 PR D81 111101 PL B682 355 PL B692 4 PR D80 092005 PR D79 012004 PRL 103 021801 PAN 72 1203 PL B672 209 PL B672 317 PRL 100 011801 PR D77 112002 PRL 100 071802 PR D78 072006 PL B666 16 PL B666 16 PL B660 154 PL B664 35 JETPL 85 347 Translated from ZETFP	B. Aubert et al. K. Hayasaka et al. M.J. Lee et al. J.P. Lees et al. Y. Miyazaki et al. Y. Miyazaki et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. A.G. Grozin, I.B. Khriplovich, A.K. Inami et al. Y. Miyazaki et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. K. Hayasaka et al. K. Hayasaka et al. Y. Miyazaki et al. Y. Miyazaki et al. Y. Miyazaki et al. Y. Miyazaki et al. Y. Nishio et al. V.V. Anashin et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT BELOUS EIDELMAN EPIFANOV MIYAZAKI ABDALLAH AUBERT,B INAMI MIYAZAKI PDG YUSA ARMS AUBERT,B AUBERT,B ENARI HAYASAKA SCHAEL ABBIENDI ABDALLAH ABE ACHARD AUBERT ENARI PDG YUSA ARMS AUBERT,BE ENARI HAYASAKA SCHAEL ABBIENDI ABDALLAH ABE ACHARD AUBERT ENARI PDG YUSA ABBIENDI BRIERE HEISTER INAMI CHEN REGAN ABBIENDI ABBIENDI ABBIENDI ABBIENDI ABRIERE HEISTER INAMI CHEN REGAN ABBIENDI ABREU	07BK 07I 07 07 07 06A 06C 06 06 06 06 05 05A 05F 05W 05D 05 05C 04J 04K 04T 04B 04G 04J 04 04 04 03 03 03 03 03C 02C 02 01J 01M	PR D76 051104 PRL 99 251803 PRL 98 061803 PRL 99 011801 MPL A22 159 PL B654 65 PL B648 341 EPJ C46 1 PRL 96 041801 PR D73 112003 PL B632 51 PL B632 51 PL B639 159 JP G33 1 PL B640 138 PRL 94 241802 PR D72 012003 PR D72 072001 PRL 95 191801 PL B62 218 PL B613 20 PRPL 421 191 EPJ C35 437 EPJ C35 437 EPJ C35 159 EPJ C36 283 PRL 92 171802 PL B585 53 PRL 92 171802 PL B589 103 PL B592 1 PL B589 103 PL B591 15 PRL 90 181802 EPJ C30 291 PL B551 16 PR D66 071101 PRL 88 071805 EPJ C19 653 EPJ C19 653 EPJ C19 653 EPJ C19 653 EPJ C20 617	B. Aubert et al. B. Aubert et al. B. Aubert et al. K. Belous et al. S. Eidelman, M. Passera D. Epifanov et al. Y. Miyazaki et al. J. Abdallah et al. B. Aubert et al. B. Aubert et al. K. Inami et al. Y. Miyazaki et al. Y. Miyazaki et al. Y. Miyazaki et al. Y. Miyazaki et al. WM. Yao et al. K. Arms et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. C. Hayasaka et al. S. Schael et al. J. Abdallah et al. J. Abdallah et al. J. Abdallah et al. J. Abdallah et al. J. Abdard et al. S. Eidelman et al. Y. Enari et al. S. Eidelman et al. Y. Yusa et al. C. Abbiendi et al. J. Abdiendi et al. J. Abdallah et al. J. Abdallah et al. J. Abdard et al. S. Eidelman et al. Y. Yusa et al. G. Abbiendi et al. R. A. Briere et al. K. Inami et al. S. Chen et al. B. C. Regan et al. G. Abbiendi et al. P. Abreu et al.	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BELLE Collab.) (NOVO, PADO) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (PDG Collab.) (BELLE Collab.) (CLEO Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (DELPHI Collab.) (DELPHI Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.)
ACCIARRI ACHARD ANASTASSOV HEISTER ABBIENDI ABBIENDI ABBIENDI ABREU ACCIARRI AHMED	01F 01D	PL B507 47 PL B519 189 PRL 86 4467 EPJ C22 217 PL B492 23 EPJ C13 213 EPJ C13 197 EPJ C16 229 PL B479 67 PR D61 071101	M. Acciarri et al. P. Achard et al. A. Anastassov et al. A. Heister et al. G. Abbiendi et al. G. Abbiendi et al. G. Abbiendi et al. P. Abreu et al. M. Acciarri et al. S. Ahmed et al.	(L3 Collab.) (L3 Collab.) (CLEO Collab.) (ALEPH Collab.) (OPAL Collab.) (OPAL Collab.) (OPAL Collab.) (DELPHI Collab.) (L3 Collab.) (CLEO Collab.)

ALBRECHT	00	PL B485 37	H. Albrecht <i>et al.</i>	(ADCUS Collab.)
ASNER	00	PR D61 012002	D.M. Asner <i>et al.</i>	(ARGUS Collab.) (CLEO Collab.)
ASNER	00B	PR D62 072006	D.M. Asner et al.	(CLEO Collab.)
BERGFELD	00	PRL 84 830	T. Bergfeld et al.	(CLEO Collab.)
BROWDER	00	PR D61 052004	T.E. Browder <i>et al.</i>	(CLEO Collab.)
EDWARDS	00A	PR D61 072003 NP B582 3	K.W. Edwards et al.	(CLEO Collab.)
GONZALEZ-S ABBIENDI	. 00 99H	PL B447 134	G.A. Gonzalez-Sprinberg <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	99X	EPJ C10 201	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff et al.	` (OPAL Collab.)
ACKERSTAFF	99E	EPJ C8 183	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	99K	EPJ C10 1	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE BISHAI	99R 99	EPJ C11 599 PRL 82 281	R. Barate <i>et al.</i> M. Bishai <i>et al.</i>	(ALEPH Collab.)
GODANG	99	PR D59 091303	R. Godang <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
RICHICHI	99	PR D60 112002	S.J. Richichi <i>et al.</i>	(CLEO Collab.)
ACCIARRI	98C	PL B426 207	M. Acciarri et al.	` (L3 Collab.)
ACCIARRI	98E	PL B434 169	M. Acciarri et al.	(L3 Collab.)
ACCIARRI	98R	PL B438 405	M. Acciarri <i>et al.</i>	(L3 Collab.)
ACKERSTAFF ACKERSTAFF		EPJ C4 193 PL B431 188	K. Ackerstaff et al.K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
ALBRECHT	98	PL B431 179	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BARATE	98	EPJ C1 65	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	98E	EPJ C4 29	R. Barate et al.	(ALEPH Collab.)
BLISS	98	PR D57 5903	D.W. Bliss et al.	(CLEO Collab.)
ABE	970	PRL 78 4691	K. Abe <i>et al.</i>	(SLD Collab.)
ACKERSTAFF ACKERSTAFF	97J 97L	PL B404 213 ZPHY C74 403	K. Ackerstaff et al. K. Ackerstaff et al.	(OPAL Collab.) (OPAL Collab.)
ACKERSTAFF	97R	ZPHY C75 593	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ALEXANDER	97F	PR D56 5320	J.P. Alexander et al.	(CLEO Collab.)
AMMAR	97B	PRL 78 4686	R. Ammar et al.	(CLEO Collab.)
ANASTASSOV	97	PR D55 2559	A. Anastassov et al.	(CLEO Collab.)
Also ANDERSON	97	PR D58 119903 PRL 79 3814	(erratum)A. Anastassov <i>et al.</i> S. Anderson <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
AVERY	97	PR D55 R1119	P. Avery et al.	(CLEO Collab.)
BARATE	971	ZPHY C74 387	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARATE	97R	PL B414 362	R. Barate et al.	(ALEPH Collab.)
BERGFELD	97	PRL 79 2406	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BONVICINI	97 07 <i>C</i>	PRL 79 1221	G. Bonvicini <i>et al.</i>	(CLEO Collab.) (ALEPH Collab.)
BUSKULIC COAN	97C 97	ZPHY C74 263 PR D55 7291	D. Buskulic <i>et al.</i> T.E. Coan <i>et al.</i>	(CLEO Collab.)
EDWARDS	97	PR D55 R3919	K.W. Edwards <i>et al.</i>	(CLEO Collab.)
EDWARDS	97B	PR D56 R5297	K.W. Edwards et al.	(CLEO Collab.)
ESCRIBANO	97	PL B395 369	R. Escribano, E. Masso	(BARC, PARIT)
ABREU	96B	PL B365 448	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI ACCIARRI	96H 96K	PL B377 313 PL B389 187	M. Acciarri <i>et al.</i> M. Acciarri <i>et al.</i>	(L3 Collab.) (L3 Collab.)
ALAM	96	PRL 76 2637	M.S. Alam <i>et al.</i>	(CLEO Collab.)
ALBRECHT	96E	PRPL 276 223	H. Albrecht et al.	(ARGUS Collab.)
ALEXANDER	96D	PL B369 163	G. Alexander et al.	(OPAL Collab.)
ALEXANDER	96E	PL B374 341	G. Alexander <i>et al.</i>	(OPAL Collab.)
ALEXANDER BAI	96S 96	PL B388 437 PR D53 20	G. Alexander <i>et al.</i> J.Z. Bai <i>et al.</i>	(OPAL Collab.)
BALEST	96	PL B388 402	R. Balest <i>et al.</i>	(BES Collab.) (CLEO Collab.)
BARTELT	96	PRL 76 4119	J.E. Bartelt <i>et al.</i>	(CLEO Collab.)
BUSKULIC	96	ZPHY C70 579	D. Buskulic et al.	(ÀLEPH Collab.)
BUSKULIC	96C	ZPHY C70 561	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
COAN ABE	96 95Y	PR D53 6037 PR D52 4828	T.E. Coan <i>et al.</i> K. Abe <i>et al.</i>	(CLEO Collab.) (SLD Collab.)
ABREU	95T	PL B357 715	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95U	PL B359 411	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACCIARRI	95	PL B345 93	M. Acciarri et al.	` (L3 Collab.)
ACCIARRI	95F	PL B352 487	M. Acciarri <i>et al.</i>	(L3 Collab.)
AKERS AKERS	95F 95I	ZPHY C66 31 ZPHY C66 543	R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS AKERS	95P	ZPHY C67 45	R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.) (OPAL Collab.)
AKERS	95Y	ZPHY C68 555	R. Akers <i>et al.</i>	(OPAL Collab.)
ALBRECHT	95	PL B341 441	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	95C	PL B349 576	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT ALBRECHT	95G 95H	ZPHY C68 25 ZPHY C68 215	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
, LDILLCIII	2011	2.111 000 213	11. Audicent et al.	(/11/303 Collab.)

BALEST	95C	PRL 75 3809	R. Balest et al.	(CLEO Collab.)
BERNABEU	95	NP B436 474	J. Bernabeu <i>et al.</i>	(CLEO CONAD.)
BUSKULIC	95C	PL B346 371	D. Buskulic et al.	(ALEPH Collab.)
BUSKULIC	95D	PL B346 379	D. Buskulic et al.	(ALEPH Collab.)
Also		PL B363 265 (erratum)	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ABREU	94K	PL B334 435	P. Abreu et al.	(DELPHI Collab.)
AKERS	94E	PL B328 207	R. Akers <i>et al.</i> R. Akers <i>et al.</i>	(OPAL Collab.)
AKERS ALBRECHT	94G 94E	PL B339 278 PL B337 383	H. Albrecht <i>et al.</i>	(OPAL Collab.) (ARGUS Collab.)
ARTUSO	94	PRL 72 3762	M. Artuso <i>et al.</i>	(CLEO Collab.)
BARTELT	94	PRL 73 1890	J.E. Bartelt et al.	(CLEO Collab.)
BATTLE	94	PRL 73 1079	M. Battle <i>et al.</i>	(CLEO Collab.)
BAUER	94	PR D50 13	D.A. Bauer et al.	(TPC/2gamma Collab.)
BUSKULIC	94D	PL B321 168	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
BUSKULIC BUSKULIC	94E 94F	PL B332 209 PL B332 219	D. Buskulic <i>et al.</i> D. Buskulic <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)
GIBAUT	94B	PRL 73 934	D. Gibaut <i>et al.</i>	(CLEO Collab.)
ADRIANI	93M	PRPL 236 1	O. Adriani et al.	(L3 Collab.)
ALBRECHT	93C	ZPHY C58 61	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	93G	PL B316 608	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BALEST	93	PR D47 R3671	R. Balest et al.	(CLEO Collab.)
BEAN	93	PRL 70 138	A. Bean et al.	(CLEO Collab.)
BORTOLETTO ESCRIBANO	93	PRL 71 1791 PL B301 419	D. Bortoletto <i>et al.</i> R. Escribano, E. Masso	(CLEO Collab.) (BARC)
PROCARIO	93	PRL 70 1207	M. Procario <i>et al.</i>	(CLEO Collab.)
ABREU	92N	ZPHY C55 555	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	92F	PL B281 405	D.P. Acton et al.	` (OPAL Collab.)
ACTON	92H	PL B288 373	P.D. Acton et al.	(OPAL Collab.)
AKERIB	92	PRL 69 3610	D.S. Akerib <i>et al.</i>	(CLEO Collab.)
Also	000	PRL 71 3395 (erratum)	D.S. Akerib <i>et al.</i>	(CLEO Collab.)
ALBRECHT ALBRECHT	92D 92K	ZPHY C53 367 ZPHY C55 179	H. Albrecht <i>et al.</i> H. Albrecht <i>et al.</i>	(ARGUS Collab.) (ARGUS Collab.)
ALBRECHT	92M	PL B292 221	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	92Q	ZPHY C56 339	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
AMMAR	92	PR D45 3976	R. Ammar et al.	`(CLEO Collab.)
ARTUSO	92	PRL 69 3278	M. Artuso et al.	(CLEO Collab.)
BAI	92	PRL 69 3021	J.Z. Bai et al.	(BES Collab.)
BATTLE	92	PL B291 488	M. Battle <i>et al.</i>	(CLEO Collab.)
BUSKULIC DECAMP	92J 92C	PL B297 459 ZPHY C54 211	D. Buskulic <i>et al.</i> D. Decamp <i>et al.</i>	(ALEPH Collab.) (ALEPH Collab.)
ADEVA	91F	PL B265 451	B. Adeva <i>et al.</i>	(L3 Collab.)
ALBRECHT	91D	PL B260 259	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	91D	PL B266 201	G. Alexander et al.	(OPAL Collab.)
ANTREASYAN		PL B259 216	D. Antreasyan et al.	(Crystal Ball Collab.)
GRIFOLS	91	PL B255 611	J.A. Grifols, A. Mendez	(BARC)
ABACHI ALBRECHT	90 90E	PR D41 1414 PL B246 278	S. Abachi <i>et al.</i> H. Albrecht <i>et al.</i>	(HRS Collab.) (ARGUS Collab.)
ALBRECHT	90L 90I	PL B250 164	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BEHREND	90	ZPHY C46 537	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BOWCOCK	90	PR D41 805	T.J.V. Bowcock et al.	(CLEO Collab.)
DELAGUILA	90	PL B252 116	F. del Aguila, M. Sher	(BARC, WILL)
GOLDBERG	90	PL B251 223	M. Goldberg et al.	(CLEO Collab.)
WU	90 90 B	PR D41 2339	D.Y. Wu et al.	(Mark II Collab.)
ABACHI BEHREND	89B 89B	PR D40 902 PL B222 163	S. Abachi <i>et al.</i> H.J. Behrend <i>et al.</i>	(HRS Collab.) (CELLO Collab.)
JANSSEN	89	PL B228 273	H. Janssen <i>et al.</i>	(Crystal Ball Collab.)
KLEINWORT	89	ZPHY C42 7	C. Kleinwort <i>et al.</i>	(JADE Collab.)
ADEVA	88	PR D38 2665	B. Adeva et al.	(Mark-J Collab.)
ALBRECHT	88B	PL B202 149	H. Albrecht et al.	(ARGUS Collab.)
ALBRECHT	88L	ZPHY C41 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	88M 88	ZPHY C41 405 PR D37 1750	H. Albrecht <i>et al.</i> D. Amidei <i>et al.</i>	(ARGUS Collab.) (Mark II Collab.)
AMIDEI BEHREND	88	PL B200 226	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BRAUNSCH	88C	ZPHY C39 331	W. Braunschweig <i>et al.</i>	(TASSO Collab.)
KEH	88	PL B212 123	S. Keh et al.	(Crystal Ball Collab.)
TSCHIRHART	88	PL B205 407	R. Tschirhart et al.	(HRS Collab.)
ABACHI	87B	PL B197 291	S. Abachi et al.	(HRS Collab.)
ABACHI	87C	PRL 59 2519	S. Abachi <i>et al.</i>	(HRS Collab.)
ADLER AIHARA	87B 87B	PRL 59 1527 PR D35 1553	J. Adler <i>et al.</i> H. Aihara <i>et al.</i>	(Mark III Collab.) (TPC Collab.)
AIHARA	87C	PRL 59 751	H. Aihara <i>et al.</i>	(TPC Collab.)
				, , ,

ALBRECHT	87L	PL B185 223	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	87P	PL B199 580	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BAND	87	PL B198 297	H.R. Band et al.	(MAC Collab.)
BAND	87B	PRL 59 415	H.R. Band et al.	(MAC Collab.)
BARINGER	87	PRL 59 1993	P. Baringer <i>et al.</i>	(CLEO Collab.)
BEBEK	87C	PR D36 690	C. Bebek <i>et al.</i>	(CLEO Collab.)
BURCHAT	87 87	PR D35 27	P.R. Burchat <i>et al.</i>	. `
BYLSMA	87	PR D35 27 PR D35 2269	B.G. Bylsma <i>et al.</i>	(Mark II Collab.) (HRS Collab.)
COFFMAN	87	PR D35 2209 PR D36 2185		
			D.M. Coffman <i>et al.</i>	(Mark III Collab.)
DERRICK	87	PL B189 260	M. Derrick et al.	(HRS Collab.)
FORD	87	PR D35 408	W.T. Ford et al.	(MAC Collab.)
FORD	87B	PR D36 1971	W.T. Ford et al.	(MAC Collab.)
GAN	87	PRL 59 411	K.K. Gan et al.	(Mark II Collab.)
GAN	87B	PL B197 561	K.K. Gan et al.	(Mark II Collab.)
AIHARA	86E	PRL 57 1836	H. Aihara <i>et al.</i>	(TPC Collab.)
BARTEL	86D	PL B182 216	W. Bartel et al.	(JADE Collab.)
PDG	86	PL 170B 1	M. Aguilar-Benitez <i>et al.</i>	(CERN, CIT+)
RUCKSTUHL	86	PRL 56 2132	W. Ruckstuhl <i>et al.</i>	(DELCO Collab.)
SCHMIDKE	86	PRL 57 527	W.B. Schmidke <i>et al.</i>	(Mark II Collab.)
YELTON	86	PRL 56 812	J.M. Yelton <i>et al.</i>	(Mark II Collab.)
ALTHOFF	85	ZPHY C26 521	M. Althoff et al.	(TASSO Collab.)
ASH	85B	PRL 55 2118	W.W. Ash et al.	(MAC Collab.)
BALTRUSAIT	. 85	PRL 55 1842	R.M. Baltrusaitis et al.	(Mark III Collab.)
BARTEL	85F	PL 161B 188	W. Bartel et al.	(JADE Collab.)
BEHRENDS	85	PR D32 2468	S. Behrends et al.	(CLEO Collab.)
BELTRAMI	85	PRL 54 1775	I. Beltrami <i>et al.</i>	`(HRS Collab.)
BERGER	85	ZPHY C28 1	C. Berger et al.	(PLÙTO Collab.)
BURCHAT	85	PRL 54 2489	P.R. Burchat <i>et al.</i>	(Mark II Collab.)
FERNANDEZ	85	PRL 54 1624	E. Fernandez et al.	` (MAC Collab.)
MILLS	85	PRL 54 624	G.B. Mills et al.	(DÈLCO Collab.)
AIHARA	84C	PR D30 2436	H. Aihara <i>et al.</i>	(TPC Collab.)
BEHREND	84	ZPHY C23 103	H.J. Behrend et al.	(CÈLLO Collab.)
MILLS	84	PRL 52 1944	G.B. Mills et al.	(DELCO Collab.)
BEHREND	83C	PL 127B 270	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
SILVERMAN	83	PR D27 1196	D.J. Silverman, G.L. Shaw	(UCI)
BEHREND	82	PL 114B 282	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BLOCKER	82B	PRL 48 1586	C.A. Blocker <i>et al.</i>	(Mark II Collab.)
BLOCKER	82D	PL 109B 119	C.A. Blocker <i>et al.</i>	(Mark II Collab.) J
FELDMAN	82	PRL 48 66	G.J. Feldman <i>et al.</i>	(Mark II Collab.)
HAYES	82	PR D25 2869	K.G. Hayes <i>et al.</i>	(Mark II Collab.)
BERGER	81B	PL 99B 489	C. Berger <i>et al.</i>	(PLUTO Collab.)
DORFAN	81	PRL 46 215	J.M. Dorfan <i>et al.</i>	(Mark II Collab.)
BRANDELIK	80	PL 92B 199	R. Brandelik <i>et al.</i>	(TASSO Collab.)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents <i>et al.</i>	`
	00	SJNP 34 814	A.A. Zholents <i>et al.</i>	(NOVO)
Also		Translated from YAF 34		(NOVO)
BACINO	79B	PRL 42 749	W.J. Bacino <i>et al.</i>	(DELCO Collab.)
KIRKBY	79	SLAC-PUB-2419	J. Kirkby	(SLAC) J
		hoton Conference.	3. Kirkby	(SLAC) 3
BACINO	78B	PRL 41 13	W.J. Bacino et al.	(DELCO Collab.) J
Also	100	Tokyo Conf. 249	J. Kirz	(STON)
Also		PL 96B 214	A.A. Zholents <i>et al.</i>	(NOVO)
BRANDELIK	78	PL 73B 109	R. Brandelik <i>et al.</i>	(DASP Collab.) J
FELDMAN	78	Tokyo Conf. 777	G.J. Feldman	(SLAC) J
JAROS	78	PRL 40 1120	J. Jaros <i>et al.</i>	(LGW Collab.)
	76 75	PRL 40 1120 PRL 35 1489	M.L. Perl <i>et al.</i>	
PERL	15	FNL 33 1469	ivi.∟. Peri et al.	(LBL, SLAC)

- OTHER RELATED PAPERS -