Workshop 26 Oct 2012

The aim of this workshop is to show that Carmichael numbers are squarefree and have at least 3 distinct prime factors.

(1) (Warm-up question.) Show that n > 1 is prime iff $a^{n-1} \equiv 1 \pmod{n}$ for $1 \le a \le n-1$.

If n is prime, then the result is true by Fermat's Theorem. If n is composite, then, for a=p, a prime factor of n, the equation $p^{n-1}+kn=1$ has no solution, since the LHS is divisible by p. So result is true iff n prime.

Recall that a positive integer is said to be *squarefree* if it is not divisible by the square of any prime number.

Recall too that a *Carmichael number* is a composite number n with the property that for every integer a coprime to n we have $a^{n-1} \equiv 1 \pmod{n}$.

- (2) Proving that Carmichael numbers are squarefree.
 - (a) Show that a given nonsquarefree number n can be written in the form $n = p^{\ell}N$ for some prime p and integers N and ℓ with $\ell \geq 2$ and $\gcd(p, N) = 1$.
 - (b) Show that $(1 + pN)^{n-1} \not\equiv 1 \pmod{p^2}$.
 - (c) Deduce that Carmichael numbers are squarefree.
 - (a) Take a prime p such that $p^2\mid n$. Then $p^\ell\mid n$ for some $\ell\geq 2$. So $n=p^\ell N$ say, where $N=n/p^\ell$ is coprime to p.
 - (b) Now $(1+pN)^{n-1} \equiv 1+pN(n-1) \pmod{p^2} \equiv 1-pN \pmod{p^2} \not\equiv 1 \pmod{p^2}$, by the Binomial Theorem and because $p^2 \mid n$ and $\gcd(N,p)=1$.
 - (c) Now take a=1+pN. Then $a^{n-1}\not\equiv 1\pmod{p^2}$ by (b), so $a^{n-1}\not\equiv 1\pmod{n}$. Hence, as $\gcd(a,n)=1$, n is not a Carmichael number.
- (3) Proving that Carmichael numbers have at least 3 distinct prime factors.
 - (a) Let p and q be distinct primes. Prove that if gcd(a, pq) = 1 then $a^{lcm(p-1,q-1)} \equiv 1 \pmod{pq}$.

- (b) Now let g be a primitive root \pmod{p} and h be a primitive root \pmod{q} . Using g and h, apply the Chinese Remainder Theorem to specify an integer a whose order \pmod{pq} is $(\text{exactly}) \operatorname{lcm}(p-1,q-1)$.
- (c) Now suppose that p is the larger of the primes p and q. Calculate $pq 1 \pmod{p 1} \in \{0, 1, \dots, p 2\}$. Deduce that $p 1 \nmid pq 1$.
- (d) Use the above to show that there is an a with gcd(a, pq) = 1 and $a^{pq-1} \not\equiv 1 \pmod{pq}$.
- (e) Deduce from the above that a Carmichael number must have at least 3 distinct prime factors.
- (a) By Fermat's Theorem we have $a^{p-1} \equiv 1 \pmod p$ and $a^{q-1} \equiv 1 \pmod q$, so that, taking appropriate powers, $a^{\operatorname{lcm}(p-1,q-1)} \equiv 1 \pmod p$ and $a^{\operatorname{lcm}(p-1,q-1)} \equiv 1 \pmod q$. Hence $a^{\operatorname{lcm}(p-1,q-1)} \equiv 1 \pmod pq$.
- (b): We simply choose a so that $a\equiv g\pmod p$ and $a\equiv h\pmod q$. This is possible, by CRT. Since g has order p-1 modulo p and h has order q-1 modulo q, we have that a has order p-1 modulo p and order q-1 modulo q. Hence a has order lem(p-1,q-1) modulo pq.
- (c): Now $pq-1=(p-1)q+q-1\equiv q-1 \pmod{p-1}\not\equiv 0 \pmod{p-1}$, as 0< q-1< p-1. Hence $p-1\nmid pq-1$.
- (d): From (b) there is an a whose order \pmod{pq} is $\operatorname{lcm}(p-1,q-1)$, so that if $\gcd(a,p)=1$ then from (a) we have that $a^k\equiv 1\pmod{pq}$ iff k is a multiple of $\operatorname{lcm}(p-1,q-1)$. But pq-1 is not a multiple of $\operatorname{lcm}(p-1,q-1)$, since $q-1\nmid pq-1$. So $a^{pq-1}\not\equiv 1\pmod{pq}$. (e):

Now the number a in (d) is clearly coprime to both p and q, i.e., $\gcd(a,pq)=1$. Hence, from (d), pq is not a Carmichael number. As Carmichael numbers are not prime and are not divisible by the square of any prime, they must have at least 3 prime factors.

- (4) (Cool-down question.) Suppose that $a, k, \ell, m, n \in \mathbb{N}$ with $a^k \equiv 1 \pmod{m}$ and $a^\ell \equiv 1 \pmod{n}$. Prove that
 - (a) $a^{\operatorname{lcm}(k,\ell)} \equiv 1 \pmod{\operatorname{lcm}(m,n)};$
 - (b) $a^{\gcd(k,\ell)} \equiv 1 \pmod{\gcd(m,n)}$.
 - (a) Let $kk'=\operatorname{lcm}(k,\ell)$. Then a^k-1 divides $a^{kk'}-1=a^{\operatorname{lcm}(k,\ell)}-1$, so that $a^{\operatorname{lcm}}(k,\ell)\equiv 1\pmod m$. Similarly, $a^{\operatorname{lcm}(k,\ell)}\equiv 1\pmod n$. Hence $a^{\operatorname{lcm}(k,\ell)}-1$ is divisible by both m and n. Writing $m=\prod_p p^{e_p}$ and $n=\prod_p p^{f_p}$, we see that, for each p prime, $a^{\operatorname{lcm}(k,\ell)}-1$ is divisible by $p^{\max(e_p,f_p)}$, and so is divisible by $\prod_p p^{\max(e_p,f_p)}=\operatorname{lcm}(m,n)$. So $a^{\operatorname{lcm}(k,\ell)}\equiv 1\pmod m$.)

(b) From $a^k\equiv 1\pmod m$ and $a^\ell\equiv 1\pmod n$ and the fact that $G=\gcd(m,n)$ divides both m and n we have $a^k\equiv 1\pmod G$ and $a^\ell\equiv 1\pmod G$. Next, by the Extended Euclidean Algorithm we can find integers k_1 and ℓ_1 such that $kk_1+\ell\ell_1=\gcd(k,\ell)$. Hence

$$a^{\gcd(k,\ell)} = a^{kk_1 + \ell\ell_1} = (a^k)^{k_1} \cdot (a^\ell)^{\ell_1} \equiv 1^{k_1} \cdot 1^{\ell_1} \equiv 1 \pmod{G}.$$

Handin: due Friday, week 7, 2 Nov, before 12.10 lecture. Please hand it in at the lecture

The squarefree part of n

You are expected to write clearly and legibly, giving thought to the presentation of your answer as a document written in mathematical English.

- (5) (a) Show that every positive integer n can be written uniquely in the form $n = n_1 n_2^2$, where n_1 is squarefree. Let us denote n_1 by g(n), the squarefree part of n.
 - (b) Prove that g(n) is a multiplicative function.
 - (c) Find the Euler product for $D_q(s)$.
 - (d) Prove that $D_g(s) = \zeta(2s)\zeta(s-1)/\zeta(2s-2)$.
 - (a) From $p^{2k+1}=p\cdot (p^k)^2$ and $p^{2k}=1\cdot (p^k)^2$ we see that we can take n_1 to be the product of primes that divide n to an odd power, as then n_1 is squarefree and n/n_1 is a square, $=n_2^2$ say.

(b) For gcd(m,n)=1, $g(m)g(n)=m_1n_1$ with $gcd(m_1,n_1)=1$, so that $mn=m_1n_1(m_2n_2)^2$, with m_1n_1 squarefree, giving $g(mn)=m_1n_1=g(m)g(n)$.

[2 marks]

[2 marks]

(c) Now $g(p^{2k+1})=p$, $g(p^{2k})=1$ so that

$$\begin{split} \sum_{k=1}^{\infty} \frac{g(p^k)}{p^{ks}} &= \sum_{k \text{ odd}} \frac{p}{p^{ks}} + \sum_{k \text{ even}} \frac{1}{p^{ks}} \\ &= (p/p^s + 1)(1 + 1/p^{2s} + 1/p^{4s} + \dots) \\ &= (1 + 1/p^{s-1})/(1 - 1/p^{2s}). \end{split}$$

Hence $D_g(s) = \prod_p (1 + 1/p^{s-1})/(1 - 1/p^{2s})$.

[3 marks]

(d) Then

$$D_g(s) = \prod_p (1 + 1/p^{s-1})/(1 - 1/p^{2s})$$

$$= \prod_p (1 - 1/p^{2s-2})/((1 - 1/p^{2s})(1 - 1/p^{s-1}))$$

$$= \zeta(2s)\zeta(s-1)/\zeta(2s-2).$$

Problems on congruences

(6) Let m_1, \ldots, m_n be pairwise relatively prime. Show that as x runs through the integers $x = 1, 2, 3, \ldots, m_1 m_2 \cdots m_n$, the n-tuples $(x \mod m_1, x \mod m_2, \ldots, x \mod m_n)$ run through all n-tuples in $\prod_{i=1}^n \{0, 1, \ldots, m_i - 1\}$.

If for
$$x, x' \in \{1, 2, 3, \dots, m_1 m_2 \cdots m_n\}$$
 the *n*-tuples $(x \mod m_1, x \mod m_2, \dots, x \mod m_n)$

and

$$(x' \mod m_1, x' \mod m_2, \dots, x' \mod m_n)$$

were equal, then the n-tuple $(x-x' \mod m_1, x-x' \mod m_2, \ldots, x-x' \mod m_n)$ would be 0, so that x-x' would be divisible by $m_1m_2\cdots m_n$. This is impossible as they differ by less than this number. Hence all the n-tuples $(x \mod m_1, x \mod m_2, \ldots, x \mod m_n)$ for $x=1,2,3,\ldots,m_1m_2\cdots m_n$ are different. As there are only $m_1m_2\cdots m_n$ of them, they must run through them all.

(7) Show that the equation $x^y \equiv 2 \pmod{19}$ has a solution in integers $\{x, y\}$ iff x is congruent to a primitive root $\mod 19$. Deduce that then y is uniquely specified $\mod 18$.

Now (easily checked) 2 is a primitive root $\pmod{19}$, so if x is not a primitive root, then x^y certainly isn't. On the other hand, if x is a primitive root, then the powers x^y with $\gcd(y,18)=1$ give all primitive roots, including 2. Also, if $\gcd(y,18)>1$ then x^y is not a primitive root. As $x^{18}\equiv 1\pmod{19}$, y is uniquely specified $\pmod{18}$.

- (8) Wilson's Theorem. This states that, for a prime p, we have $(p-1)! \equiv -1 \pmod{p}$. Prove Wilson's Theorem in (at least!) two different ways. [Suggestions: (i) Factorize $x^{p-1} 1$ over \mathbb{F}_p . (ii) Try to pair up $a \in \{1, \ldots, p-1\}$ with its multiplicative inverse.]
 - (i) Since, from Fermat's Theorem, $x^{p-1}-1\equiv (x-1)(x-2)\dots(x-(p-1))\pmod p$, Wilson's Theorem follows on putting x=0.
 - (ii) For any $a \in \{1, 2, \ldots, p-1\}$ there's an $a' \in \{1, 2, \ldots, p-1\}$ with $aa' \equiv 1 \pmod{p}$. Further, a' = a iff a = 1 or p-1. Hence, in (p-1)!, the numbers forming this product can be cancelled in pairs, apart from 1 and p-1. Hence result.

- (9) (a) Find a primitive root for the prime 23.
 - (b) How many such primitive roots are there?
 - (c) Find them all.
 - (d) Find all the quadratic residues and all the quadratic non-residues mod 23.
 - (a) 5 is one.
 - (b) $\phi(\phi(23)) = \phi(22) = 10$.
 - (c) All powers $5^k \pmod{23}$ with gcd(k, 22) = 1, i.e. 5, 10, 20, 17, 11, 21, 19, 15, 7, 14
 - (d) The quadratic residues are the even powers of $5 \pmod{23}$, namely
 - 2,4,8,16,9,18,13,3,6,12,1, while the quadratic nonresidues are the odd powers of $5\ (\mathrm{mod}\ 23)\text{,}$ namely
 - 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.
- (10) Solve the equation $x^6 = 7$ in \mathbb{F}_{19} , i.e. the equation $x^6 \equiv 7 \pmod{19}$ for $x \in \{0, 1, \dots, 18\}$.

(Solution by standard procedure) Now 2 is a primitive root for 19, and then $2^6=64=7$ in \mathbb{F}_{19} . Putting $x=2^y$, we need to solve $x^6=2^{6y}=7=2^6$ in \mathbb{F}_{19} , i.e. $6y\equiv 6\pmod{18}$. So $y\equiv 1\pmod{3}$, y=1,4,7,10,13,16, $x=2^y\equiv \pm 2,\pm 3,\pm 5\pmod{19}$.

- (11) (a) Let an integer n > 1 be given, and let p be its smallest prime factor. Show that there can be at most p-1 consecutive positive integers coprime to n.
 - (b) Show further that the number p-1 in (a) cannot be decreased, by exhibiting p-1 consecutive positive integers coprime n.
 - (c) What is gcd(p-1, n)?
 - (d) Show that $2^n \not\equiv 1 \pmod{n}$.
 - (a) Every pth number is divisible by p, which implies the result.
 - (b) None of $1,2,3,\ldots,p-1$ has a factor in common with n as all their prime factors are smaller than p, while p is the smallest prime factor of n.
 - (c) This is 1, as all prime factors of p-1 are less than p, as in (b).
 - (d) Assume $2^n\equiv 1\pmod n$. As $p\mid n$ we have $2^n\equiv 1\pmod p$ and also (Fermat) $2^{p-1}\equiv 1\pmod p$. Hence $2^{\gcd(p-1,n)}\equiv 1\pmod p$, so by (c) $2^1\equiv 1\pmod p$, $p\mid 1$, a contradiction.

Problems on arithmetic functions

- (12) (a) Let a divisor d of n be given. Among the integers k = 1, 2, ..., n show that $\varphi(n/d)$ of them have $\gcd(k, n) = d$.
 - (b) Deduce that $\sum_{d|n} \varphi(d) = n$.
 - (c) Deduce that $\varphi(n) = \sum_{d|n} d\mu(n/d)$.
 - (a) Those k with $\gcd(k,n)=d$ are of the form k=k'd with $k'\leq n/d$ and $\gcd(k',n/d)=1$. So there are $\varphi(n/d)$ of them.
 - (b) Every $k=1,\ldots,n$ has $\gcd(k,n)=d$ for some divisor d of n, so number of k's $=n=\sum_{d\mid n}\varphi(n/d)=\sum_{d\mid n}\varphi(d)$.
 - (c) Comes immediately from Möbius inversion.
- (13) (a) Prove that $\sum_{d|n} \mu(d) = \Delta(n)$, the 1-detecting function.
 - (b) Let g be any function $\mathbb{R}_{\geq 0} \to \mathbb{R}$, and put $G(x) = \sum_{n \leq x} g(x/n)$, the sum being taken over all positive integers $n \leq x$. Prove that if $x \geq 1$ then $g(x) = \sum_{n \leq x} \mu(n)G(x/n)$.
 - (a) Now the function $\sum_{d|n}\mu(d)$ equals 1 for n=1, and is 0 for n a prime power. Also, it is multiplicative, as it is the sum-over-divisors of the multiplicative function μ . Hence it is 0 for all n>1, and hence is $\Delta(n)$.
 - (b) Now RHS= $\sum_{n\leq x}\mu(n)G(x/n)=\sum_{n\leq x}\mu(n)\sum_{k\leq x/n}g(x/nk)$. Putting d=nk we have that this equals $\sum_{d\leq x}g(x/d)\sum_{n\mid d}\mu(n)=\sum_{d\leq x}g(x/d)\Delta(d)=g(x)$ using definition of Δ .
- (14) (a) For which integers n is $\tau(n)$ odd? Here $\tau(n)$ is the number of (positive) divisors of n.
 - (b) Prove that $\sum_{k|n} \tau(k)^3 = \left(\sum_{k|n} \tau(k)\right)^2$. [Note that both sides of the equation are multiplicative functions of n.]
 - (a) Now p^k has k+1 divisors, which is odd for k even. Hence $\tau(n)$ is odd exactly when $n = \prod_{p} p^{e_p}$ when all e_p are even, i.e., when n is a square.
 - (b) First prove multiplicitivity of each side. Then take $n=p^{k-1}$. Then LHS= $\tau(1)^3 + \tau(p)^3 + \cdots + \tau(p^{k-1})^3 = 1^3 + 2^3 + \cdots + k^3 = (k(k+1)/2)^2$ (well-known formula). Similarly RHS= $(1+2+\cdots+k)^2=(k(k+1)/2)^2$, so the result is true for prime powers. Therefore by multiplicitivity, it's true for all n.

- (15) (a) An arithmetic function f(n) is said to be strongly multiplicative if f(nm) =f(n)f(m) for all $n,m \in \mathbb{N}$. Show that a strongly multiplicative function is completely determined by its values at primes.
 - (b) Show that if f(n) is a strongly multiplicative function then the Euler product of its Dirichlet function $D_f(s)$ is of the form $\prod_p \left(1 - \frac{f(p)}{p^s}\right)^{-1}$.
 - (a) For such a function, and $n=p^k\dots q^\ell$, we have $f(n)=f(p^k\dots q^\ell)=$ $f(p)^k \dots f(q)^\ell$, so f(n) is determined by $f(p), \dots, f(q)$.
 - (b) We have $D_f(s) = \prod_p \left(1 + \frac{f(p)}{p^s} + \frac{f(p^2)}{p^{2s}} + \dots + \frac{f(p^{ks})}{p^{ks}} + \dots\right) = \prod_p \left(\sum_{k=0}^{\infty} (\frac{f(p)}{p^s})^k\right)$ using total multiplicitivity. Summing this GP gives the result.
- (16) Strengthening Euler's Theorem. Suppose that n factorizes as $n = p_1^{f_1} \cdots p_k^{f_k}$. Show that then, for gcd(a, n) = 1, $a^N = 1 \pmod{n}$, where

$$N = \operatorname{lcm}(p_1^{f_1} - p_1^{f_1 - 1}, p_2^{f_2} - p_2^{f_2 - 1}, \dots, p_k^{f_k} - p_k^{f_k - 1}).$$

For which n is this result no stronger than Euler's theorem $a^{\varphi(n)} = 1 \pmod{n}$?

(17) For two arithmetic functions A(n) and B(n) show that

$$\sum_{d|n} A(d)B(n/d) = \sum_{d|n} A(n/d)B(d).$$

This is just replacing the sum over all divisors d of n with the sum over its 'conjugate divisors' n/d, which are again the set of all divisors of n.

- (18) (a) Find the Euler product for $D_{|\mu|}(s) = \sum_{n=1}^{\infty} \frac{|\mu(n)|}{n^s}$.
 - (b) Prove that $D_{|\mu|}(s) = \zeta(s)/\zeta(2s)$.
 - (a) Now $|\mu(n)|=1$ if n is squarefree, =0 otherwise. Hence $\sum_{k=1}^{\infty}|\mu(p^k)|/p^{ks}=1$ $1+1/p^s$ so, as $|\mu(n)|$ is multiplicative, $D_{|\mu|}(s)=\prod_p(1+1/p^s)$.
 - (b) Follows from $\zeta(s) = \prod_{p} (1 1/p^s)^{-1}$ and $1 + 1/p^s = (1 1/p^{2s})/(1 1/p^s)$ $1/p^s$).
- (19) Let $\omega(n)$ denote the number of prime factors of n. Show that the function $e^{\omega(n)}$ is a multiplicative function.
- (20) Let f be any arithmetic function.

 - (a) Show that $\sum_{n \leq x} \sum_{k|n} f(k) = \sum_{n \leq x} f(n) \left\lfloor \frac{x}{n} \right\rfloor$. (b) Now put $F(x) = \sum_{n \leq x} f(n)$. Deduce that $\sum_{n \leq x} f(n) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{n \leq x} F\left(\frac{x}{n}\right)$.

- (a) Now $\sum_{n\leq x}\sum_{k|n}f(k)=\sum_{k\leq x}f(k)\times\#\{n=jk,n\leq x\}=\sum_{k\leq x}f(k)\left\lfloor\frac{x}{k}\right\rfloor=$ answer except with k instead of n.
- (b) We have RHS= $\sum_{n\leq x} F\left(\frac{x}{n}\right) = \sum_{n\leq x} \sum_{k\leq \frac{x}{n}} f(k) = \sum_{k\leq x} f(k) \sum_{n\leq \frac{x}{k}} 1 = \sum_{k\leq x} f(k) \left\lfloor \frac{x}{k} \right\rfloor = \text{LHS, as required.}$
- (21) (a) Prove that for $x \ge 1$ we have $\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1$.
 - (b) (Harder) Deduce that for all $x \geq \overline{1}$ we have

$$\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1.$$

- (a) Apply Q9(a) with $f(n)=\mu(n)$, using the fact that $\sum_{k|n}\mu(k)=\Delta(n)$ (= 1 for n=1, 0 otherwise).
- (b) Write $\frac{x}{n}=\left\lfloor\frac{x}{n}\right\rfloor+\delta_n$, where $0\leq\delta_n<1$. (Of course δ_n depends on x too.) Then from (a) we get successively

$$\sum_{n \le x} \mu(n) \left\lfloor \frac{x}{n} \right\rfloor = 1$$

$$\sum_{n \le x} \mu(n) \left(\frac{x}{n} - \delta_n \right) = 1$$

$$x \sum_{n \le x} \frac{\mu(n)}{n} = 1 + \sum_{n \le x} \mu(n) \delta_n.$$

It remains to analyse the RHS of the last equation to verify that it's always at most x in modulus. Since $\mu(2)=\mu(3)=-1$ and $\mu(4)=0$ we see that RHS $\in (-1,1]$ for $1\leq x\leq 4$. So for x>4 we have $|{\rm RHS}-v|\leq x-4$, where $v\in (-1,1)$. Hence $|{\rm RHS}|\leq 1+x-4=x-3\leq x$. So the RHS is at most x in modulus for all $x\geq 1$.

- (22) The Dirichlet series $D_f(s)$ of a certain arithmetic function f(n) has Euler product $\prod_p \left(1 \frac{1}{p^s} + \frac{1}{p^{2s}}\right).$
 - (a) Show that $f(n) \neq 0$ iff n is "cube-free", and give a precise definition of this term
 - (b) Find an explicit description of f(n).
 - (c) Find the Euler product for $D_{|f|}(s) = \sum_{n=1}^{\infty} \frac{|f(n)|}{n^s}$.
 - (d) Prove that $D_{|f|}(2s) = D_{|f|}(s)D_f(s)$.

- (a) An integer n is said to be $\mathit{cube-free}$ if $k^3 \nmid n$ for every integer k > 1.
- (b) If n is cube-free then f(n) is $(-1)^{\ell}$, where ℓ is the number of primes p for which p|n but $p^2 \nmid n$. Otherwise f(n) = 0.
 - (c) $D_{|f|}(s) = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}}\right)$.
 - (d) Here we use the fact that $(1+x+x^2)(1-x+x^2)=1+x^2+x^4$. Hence

$$\left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}}\right) \left(1 - \frac{1}{p^s} + \frac{1}{p^{2s}}\right) = \left(1 + \frac{1}{p^{2s}} + \frac{1}{p^{4s}}\right),$$

and so $D_{|f|}(2s) = D_{|f|}(s)D_f(s)$.

Problems around primality testing

(23) Fast exponentiation: Computing a^r by the SX method.

Let $a \in \mathbb{Z}, r \in \mathbb{N}$. Write r in binary as $r = b_k b_{k-1} \cdots b_1 b_0$, with all $b_i \in \{0, 1\}$. From the binary string $b_k b_{k-1} \cdots b_1 b_0$ produce a string of S's and X's by replacing each 0 by S and each 1 by SX. Now, starting with A = 1 and working from left to right, interpret S as $A \to A^2$ (i.e. replace A by A^2), and X as $A \to Aa$ (multiply A by a).

Prove that the result of this algorithm is indeed a^r .

[This algorithm is particularly useful for exponentiation \pmod{n} , but it works for any associative multiplication on any set. Note that the leading S does nothing, so can be omitted.]

- (24) Compute $2^{90} \pmod{91}$ by the SX method. What does this tell you about 91? [Maple: convert(n,binary);]
- (25) (a) Show that if n is not a pseudoprime to base bb' where gcd(b, b') = 1 then it is not a pseudoprime either to base b or to base b'.
 - (b) Show that if n is not a pseudoprime to base b^k where k > 1 then it is not a pseudoprime to base b.

[Thus it's always enough to use the pseudoprime test with prime bases.]

- (c) Repeat (a) and (b) with 'pseudoprime' replaced by 'strong pseudoprime'.
- (26) Show that the Carmichael number 561 is not a strong pseudoprime to base 2, but that 2047 is. Show, however, that 2047 is not a strong pseudoprime to base 3. [Useful Maple: with(numtheory);?phi,?mod]
- (27) (a) Prove that if 6k + 1, 12k + 1 and 18k + 1 are all prime, then their product is a Carmichael number. [Use Q 16]

- (b) Show that the first few values of k for which (a) gives Carmichael numbers are $k=1,6,35,45,\ldots$ What is the next such value of k? [This is the integer sequence A046025– via "integer sequences", found e.g., by Google] [Maple ?isprime]
- (a) Suppose p=6k+1,q=12k+1 and r=18k+1 all prime. Then by Q 16 as $\mathrm{lcm}(p-1,q-1,r-1)=36k$, we have $a^{36k}\equiv 1\pmod{pqr}$ for (a,pqr)=1.

But $pqr-1=36k(36k^2+11k+1)$, so $a^{pqr-1}\equiv 1\pmod{pqr}$ for (a,pqr)=1. Hence pqr is a Carmichael number.

(b) 51. (then 55,56,100,121,195,...)