

■ fakultät für informatik

Master-Thesis

Convolutional Neural Networks auf Graphrepräsentationen von Bildern

> Matthias Fey 18. Mai 2017

Gutachter:

Prof. Dr. Heinrich Müller M.Sc. Jan Eric Lenssen

Lehrstuhl Informatik VII Graphische Systeme TU Dortmund

Inhaltsverzeichnis

1	Einl	Einleitung											
	1.1	Problemstellung		3									
	1.2	Aufbau der Arbeit		3									
2	Gru	ndlagen		5									
	2.1	Mathematische Notationen		5									
	2.2	Graphentheorie		5									
	2.3	Convolutional Neural Networks		5									
3	Gra	ohrepräsentationen von Bildern		7									
	3.1	Gitter		7									
	3.2	Superpixel		7									
		3.2.1 Verfahren		7									
		3.2.2 Adjazenzmatrixbestimmung		7									
		3.2.3 Merkmals extraktion		7									
4	Räu	nliches Lernen auf Graphen		9									
	4.1	Räumliche Graphentheorie		9									
	4.2	Räumliche Faltung		9									
	4.3	Erweiterung auf ebene Graphen		9									
	4.4	Netzarchitektur		9									
5	Spe	ctrales Lernen auf Graphen		11									
	5.1	Spektrale Graphentheorie		11									
		5.1.1 Eigenwerte und Eigenvektoren reell symmetrischer Matrizer	1.	12									
		5.1.2 Laplace-Matrix		13									
	5.2	Spektraler Faltungsoperator		15									
		5.2.1 Graph-Fourier-Transformation		16									
		5.2.2 Spektrale Filterung		17									
		5.2.3 Polynomielle Approximation		18									

	5.3	Graph Convolutional Networks	20
		5.3.1 Faltungsoperator	20
		5.3.2 Erweiterung auf ebene Graphen	21
	5.4	Pooling auf Graphen	22
		5.4.1 Graphvergröberung	22
		5.4.2 Erweiterung auf ebene Graphen	22
	5.5	Netzarchitektur	22
6	Eval	luation	23
	6.1	Versuchsaufbau	23
		6.1.1 Datensätze	23
		6.1.2 Metriken	23
		6.1.3 Parameterwahl	23
	6.2	Merkmalsselektion	23
	6.3	Ergebnisse	23
	6.4	Laufzeitanalyse	23
	6.5	Diskussion	23
7	Ausl	blick	25
Α	Wei	tere Informationen	27
ΑŁ	bildu	ıngsverzeichnis	29
ΑI	gorith	hmenverzeichnis	31
Lit	eratı	urverzeichnis	34

Mathematische Notationen

 $\|\cdot\|_2$

1 Einleitung

 ${\rm Homepage^1}$ Convolutional Neural Networks (CNNs) CNN $\mathbb N$ "wdawd"

1.1 Problemstellung

1.2 Aufbau der Arbeit

¹https://github.com/rusty1s/embedded_gcnn

2 Grundlagen

- 2.1 Mathematische Notationen
- 2.2 Graphentheorie
- 2.3 Convolutional Neural Networks

3 Graphrepräsentationen von Bildern

- 3.1 Gitter
- 3.2 Superpixel
- 3.2.1 Verfahren

SLIC [1]

Simple Linear Iterative Clustering (SLIC)

Quickshift [15]

Weitere Verfahren [5]

- 3.2.2 Adjazenzmatrixbestimmung
- 3.2.3 Merkmalsextraktion

4 Räumliches Lernen auf Graphen

4.1 Räumliche Graphentheorie

Färbung von Knoten awdawd

Isomorphie und kanonische Ordnung awdawd

4.2 Räumliche Faltung

Knotenauswahl awdawd

 $\textbf{Nachbarschaftsgruppierung} \quad \mathrm{awdawd} \quad$

Normalisierung awdawd

4.3 Erweiterung auf ebene Graphen

4.4 Netzarchitektur

5 Spektrales Lernen auf Graphen

Das spektrale Lernen auf Graphen bzw. die Formulierung eines spektralen Faltungsoperator auf Graphen basiert auf der Idee der spektralen Graphentheorie, d.h. der
Betrachtung des Spektrums eines Graphen definiert über dessen Eigenwerte. Merkmale auf den Knoten eines Graphen können über das Spektrum analog zur FourierTransformation in dessen Frequenzraum zerlegt und wieder retransformiert werden.
Diese Transformation erlaubt damit die fundamentale Formulierung eines Faltungsoperators in der spektralen Domäne des Graphen. Da der spektrale Faltungsoperator
insbesondere rotationsinvariant ist wird dieser im Verlauf des Kapitels für den Kontext von Graphen im euklidschen Raum modifiziert.

Durch die spektrale Formulierung kann weiterhin ein effizientes Pooling auf Graphen formuliert werden, welches uns erlaubt, Netzarchitekturen auf Graphen völlig analog zu klassischen CNNs auf zweidimensionalen Bildern zu strukturieren.

5.1 Spektrale Graphentheorie

Die spektrale Graphentheorie beschäftigt sich mit der Konstruktion, Analyse und Manipulation von Graphen. Sie zeigt sich dabei als besonders nützlich in Anwendungsgebieten wie der Charakterisierung von Expandergraphen, dem Graphenzeichnen oder dem spektralen Clustering (vgl. [13]).

Es zeigt sich, dass die Eigenwerte des Spektrums eines Graphen eng mit den Eigenschaften eines Graphen verwandt sind. Als spektrale Graphentheorie versteht man damit insbesondere die Studie über die Beziehungen dieser beiden Bereiche. So hat die spektrale Graphentheorie z.B. auch Anwendungsgebiete in der Chemie, bei der die Eigenwerte mit der Stabilität von Molekülen assoziert werden (vgl. [2]).

Dieses Kapitel gibt eine Einführung in die wichtigsten Definitionen und Intuitionen der spektralen Graphentheorie, die es uns schlussendlich erlauben, die spektrale Faltung auf Graphen zu formulieren.

5.1.1 Eigenwerte und Eigenvektoren reell symmetrischer Matrizen

Das Eigenwertproblem einer Matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$ ist definiert als $\mathbf{M}\mathbf{u} = \lambda \mathbf{u}$, wobei $\mathbf{u} \in \mathbb{R}^N$, $\mathbf{u} \neq \mathbf{0}$ Eigenvektor und $\lambda \in \mathbb{R}$ der entsprechende Eigenwert zu \mathbf{u} genannt werden. Ein Eigenvektor \mathbf{u} beschreibt damit einen Vektor, dessen Richtung durch die Abbildung $\mathbf{M}\mathbf{u}$ nicht verändert, sondern lediglich um den Faktor λ skaliert wird. Zu einem Eigenwert λ gibt es unendlich viele (skalierte) Eigenvektoren \mathbf{u} . Wir definieren den Eigenvektor \mathbf{u} eines Eigenwertes λ daher eindeutig über die Bedingung $\|\mathbf{u}\|_2 = 1$. Sei \mathbf{M} weiterhin symmetrisch, d.h. $\mathbf{M} = \mathbf{M}^{\top}$. Dann gilt für zwei unterschiedliche Eigenvektoren \mathbf{u}_1 und \mathbf{u}_2 , dass diese orthogonal zueinander stehen, d.h. $\mathbf{u}_1 \perp \mathbf{u}_2$. Weiterhin hat \mathbf{M} genau N reelle Eigenwerte mit $\{\lambda_i\}_{i=1}^N$. Wir definieren demnach zu \mathbf{M} die orthogonale Eigenvektormatrix $\mathbf{U} \coloneqq [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{N \times N}$, d.h. $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$, und dessen Eigenwertdiagonalmatrix $\mathbf{\Lambda} \coloneqq \mathrm{diag} \left([\lambda_1, \dots, \lambda_N]^{\top} \right)$, d.h. $\mathbf{\Lambda}_{ii} = \lambda_i$. Dann gilt $\mathbf{M}\mathbf{U} = \mathbf{U}\mathbf{\Lambda}$ und insbesondere ist \mathbf{M} diagonalisierbar über

$$\mathbf{M} = \mathbf{M}\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\mathsf{T}}.$$

Weiterhin gilt für die k-te Potenz von $\mathbf{M}, k \in \mathbb{N}$,

$$\mathbf{M}^k = \left(\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\right)^k = \mathbf{U}\boldsymbol{\Lambda}^k\mathbf{U}^{\top}.\tag{5.1}$$

Dieser Zusammenhang lässt sich verdeutlichen, wenn man die Potenz ausschreibt:

$$\left(\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\right)^{k} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\prod_{i=1}^{k-2}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Lambda}^{2}\mathbf{U}^{\top}\prod_{i=1}^{k-2}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Lambda}^{k}\mathbf{U}^{\top}.$$

Falls M weiterhin schwach diagonaldominant ist, d.h.

$$\sum_{\substack{j=1\\j\neq i}}^{N} |\mathbf{M}_{ij}| \le |\mathbf{M}|_{ii},\tag{5.2}$$

und weiterhin $\mathbf{M}_{ii} \geq 0$ für alle $i \in \{1, ..., N\}$, dann ist \mathbf{M} positiv semidefinit, d.h. $\mathbf{x}^{\top}\mathbf{M}\mathbf{x} \geq 0$ für alle $\mathbf{x} \in \mathbb{R}^{N}$. Eigenwerte symmetrischer positiv semidefiniter Matrizen $\lambda_{i} \in \mathbb{R}^{+}$ sind positiv reell und es lässt sich folglich auf diesen eine Ordnung definieren mit $0 \leq \lambda_{1} \leq \cdots \leq \lambda_{N} \coloneqq \lambda_{\max}$.

5.1.2 Laplace-Matrix

Die Laplace-Matrix ist in der spektralen Graphentheorie eine Matrix, die die Beziehungen der Knoten und Kanten eines beliebigen Graphen \mathcal{G} in einer generalisierten und normalisierten Form beschreibt. Viele der Eigenschaften von \mathcal{G} können durch die Eigenwerte dessen Laplace-Matrix beschrieben werden, wohingegen dies z.B. für die Eigenwerte der Adjazenzmatrix \mathbf{A} von \mathcal{G} nur bedingt zutrifft und insbesondere nicht verallgemeinbar für beliebge Graphen ist [2]. Dies ist vorallem dem Fakt geschuldet, dass die Eigenwerte der Laplace-Matrix konsistent sind mit den Eigenwerten des Laplace-Beltrami Operators in der spektralen Geometrie [2]. Die Laplace-Matrix ist damit ein geeignetes Mittel zur Betrachtung und Analyse eines Graphen.

Für einen schleifenlosen, ungerichteteten, gewichtet oder ungewichteten Graphen \mathcal{G} und dessen Adjazenzmatrix \mathbf{A} mit Gradmatrix \mathbf{D} ist die kombinatorische Laplace-Matrix \mathbf{L} definiert als $\mathbf{L} := \mathbf{D} - \mathbf{A}$ [2]. Die normalisierte Laplace-Matrix $\tilde{\mathbf{L}}$ ist definiert als $\tilde{\mathbf{L}} := \mathbf{D}^{-1/2}\mathbf{L}\mathbf{D}^{-1/2}$ mit der Konvention, dass $\mathbf{D}_{ii}^{-1/2} = 0$ für isolierte Knoten $v_i \in \mathcal{V}$ in \mathcal{G} , d.h. $\mathbf{D}_{ii} = 0$ [2]. Daraus ergibt sich die elementweise Definition

$$\tilde{\mathbf{L}}_{ij} \coloneqq \begin{cases} 1, & \text{wenn } i = j, \\ -\frac{w(v_i, v_j)}{\sqrt{d(v_i)d(v_j)}}, & \text{wenn } v_i \sim v_j, \\ 0, & \text{sonst.} \end{cases}$$

Für verbundene Graphen kann $\tilde{\mathbf{L}}$ vereinfacht werden zu $\tilde{\mathbf{L}} \coloneqq \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ [2]. Jeder Eintrag auf der Diagonalen der normalisierten Laplace-Matrix ist folglich Eins. $\tilde{\mathbf{L}}$ ist damit normalisiert auf den (gewichteten) Grad zweier adjazenter Knoten v_i und v_j . Es ist anzumerken, dass \mathbf{L} und insbesondere $\tilde{\mathbf{L}}$ symmetrisch sind, wohingegen eine Normalisierung der Form $\mathbf{D}^{-1}\mathbf{L}$ dies in der Regel nicht wäre [12]. \mathbf{L} und $\tilde{\mathbf{L}}$ sind keine ähnlichen Matrizen. Insbesondere sind ihre Eigenvektoren unterschiedlich. Die Nutzung von \mathbf{L} oder $\tilde{\mathbf{L}}$ ist damit abhängig von dem Problem, welches man betrachtet [6]. Wir schreiben \mathcal{L} wenn die Wahl der Laplace-Matrix, ob \mathbf{L} oder $\tilde{\mathbf{L}}$, für die weitere Berechnung irrelevant ist.

Interpretation Sei $f: \mathcal{V} \to \mathbb{R}$ bzw. $\mathbf{f} \in \mathbb{R}^N$ mit $f(v_i) = \mathbf{f}_i$ eine Funktion bzw. ein Signal auf den Knoten eines Graphen \mathcal{G} . Dann kann für die kombinatorische Laplace-Matrix \mathbf{L} verifiziert werden, dass sie die Gleichung

$$(\mathbf{Lf})_i = \sum_{i \sim j} w(v_i, v_j)(\mathbf{f}_i - \mathbf{f}_j)$$

Abbildung 5.1: Illustration des 5-Punkte-Sterns in zwei Dimensionen mit gleicher Approximation des ∇^2 Operators (bei umgekehrtem Vorzeichen), einmal mit der 5-Punkte-Stern Approximation auf regulären Gittern (a) und einmal mit der kombinatorischen Laplace-Matrix \mathbf{L} auf Graphen (b).

erfüllt [6]. Sei \mathcal{G} nun ein Graph, der aus einem (unendlichen) zweidimensionalen regulärem Gitter entstanden ist, d.h. jeder Knoten v_i besitzt genau vier achsenparallele rechtwinklige Nachbarn mit gleichem Kantengewichten $1/\delta^2$, wobei $\delta \in \mathbb{R}$ eine beliebige Konstante. Zur einfacheren Veranschaulichung benutzen wir dabei für die Signalstärke \mathbf{f}_i eines Knoten v_i an Position (x, y) die Indexnotation $\mathbf{f}_{x,y}$. Dann beschreibt

$$(\mathbf{Lf})_{x,y} = \frac{4\mathbf{f}_{x,y} - \mathbf{f}_{x+1,y} - \mathbf{f}_{x-1,y} - \mathbf{f}_{x,y+1} - \mathbf{f}_{x,y-1}}{h^2}$$

die 5-Punkte-Stern Approximation $-\nabla^2 f$ (bei umgekehrtem Vorzeichen) definiert auf den Punkten $\{(x,y),(x+\delta,y),(x-\delta,y),(x,\delta+h),(x,y-\delta)\}$ [6] (vgl. Abbildung 5.1). Ähnlich zu einem regulären Gitter lässt sich ein Graph $\mathcal G$ auch über beliebig viele Abtastpunkte einer differenzierbaren Mannigfaltigkeit konstruieren. Es zeigt sich, dass mit steigender Abtastdichte und geeigneter Wahl der Kantengewichte die normalisierte Laplace-Matrix $\tilde{\mathbf L}$ zu dem kontinuierlichem Laplace-Beltrami Operator ∇^2 konvergiert [6]. Damit kann $\tilde{\mathbf L}$ als die diskrete Analogie des ∇^2 Operators auf Graphen verstanden werden. Der Laplace-Beltrami Operator $\nabla^2 f(p)$ misst dabei, in wie weit sich eine Funktion f an einem Punkt p von dem Durchschnitt aller Funktionspunkte um einen kleinen Bereich um p unterscheidet. Die Laplace-Matrix operiert dabei völlig analog, in dem sie misst, wie sehr sich eine (diskrete) Funktion um einen Knoten im Vergleich zu seinen Nachbarknoten unterscheidet.

Eigenwerte und Eigenvektoren von \mathcal{L} helfen uns dabei, die lineare Transformation einer Funktion \mathbf{f} (mehrfach) angewendet auf \mathcal{L} besser zu verstehen. Wir können

dafür \mathbf{f} als Linearkombination der Eigenbasis $\sum_i c_i \mathbf{u}_i$ schreiben und erhalten

$$\mathcal{L}^k \mathbf{f} = \sum_i c_i \mathcal{L}^k \mathbf{u}_i = \sum_i c_i \lambda_i^k \mathbf{u}_i.$$

Somit können Eigenschaften von \mathcal{L} und damit des Graphen selber durch dessen Eigenwerte und Eigenvektoren beschrieben werden.

Eigenschaften $\mathcal{L} \in \mathbb{R}^{N \times N}$ ist eine reell symmetrische, positiv semidefinite Matrix [2]. Folglich besitzt \mathcal{L} nach Kapitel 5.1.1 genau N positiv reelle Eigenwerte $\{\lambda_i\}_{i=1}^N$ mit Ordnung $0 \le \lambda_1 \le \cdots \le \lambda_N$ und N korrespondierenden orthogonalen Eigenvektoren $\{\mathbf{u}_i\}_{i=1}^N$.

Die kombinatorische Laplace-Matrix \mathbf{L} ist nach (5.2) weiterhin schwach diagonaldominant. Insbesondere summiert sich jede Reihen- und Spaltensumme von \mathbf{L} zu Null auf, d.h. $\sum_{j=1}^{N} \mathbf{L}_{ij} = \sum_{j=1}^{N} \mathbf{L}_{ji} = 0$. Daraus folgt unmittelbar, dass $\lambda_1 = 0$, da $\mathbf{u}_1 = 1/\sqrt{N}[1, \dots, 1]^{\top} \in \mathbb{R}^N$ Eigenvektor von \mathbf{L} mit $\mathbf{L}\mathbf{u}_1 = \mathbf{0}$ [13]. $\tilde{\mathbf{L}}$ hingegen ist nicht zwingend schwach diagonaldominant. Es lässt sich jedoch zeigen, dass auch für $\tilde{\mathbf{L}}$ gilt, dass $\lambda_1 = 0$ [2].

Eine der interessantesten Eigenschaften eines Graphs ist dessen Konnektivität. Die Laplace-Matrix \mathcal{L} bzw. dessen Eigenwerte stellen ein geeignetes Mittel zur Untersuchung dieser Eigenschaft dar. So gilt z.B. für einen verbundenen Graphen \mathcal{G} , dass $\lambda_2 > 0$. Falls $\lambda_i = 0$ und $\lambda_{i+1} \neq 0$, dann besitzt \mathcal{G} genau i verbundene Komponenten [2]. Damit ist die Anzahl der Null-Eigenwerte äquivalent zu der Anzahl an Komponenten, die ein Graph besitzt. Für $\tilde{\mathbf{L}}$ lässt sich weiterhin zeigen, dass $\lambda_{\max} \leq 2$ eine obere Schranke ihrer Eigenwerte ist [2].

Aus der Laplace-Matrix können ebenso Rückschlüsse über die kürzeste Pfaddistanz zweier Knoten gewonnen werden. So gilt für \mathcal{L}^k mit $k \in \mathbb{N}$, dass $\mathcal{L}_{ij}^k = 0$ genau dann, wenn $s(v_i, v_j) > k$ [6]. Damit beschreibt \mathcal{L}_i^k bildlich gesprochen die Menge an Knoten, die maximal k Kanten von i entfernt liegen.

5.2 Spektraler Faltungsoperator

Sei $\mathbf{f} \in \mathbb{R}^N$ ein Signal auf den Knoten eines Graphen \mathcal{G} , welches abhängig von der Struktur des Graphen weiter verarbeitet werden soll. Es ist jedoch nicht selbstverständlich, wie recht einfache, dennoch fundamentale Signalverarbeitungsprozesse wie Translation oder Filterung und die daraus entstehende Faltung in der Domäne des Graphen definiert werden können [13]. So kann z.B. ein analoges Signal f(t) mittels

f(t-3) um 3 nach rechts verschoben werden. Es ist hingegen völlig unklar was es bedeutet, ein Graphsignal auf den Knoten um 3 nach rechts zu bewegen (vgl. [13]). Die spektrale Graphentheorie bietet uns dafür einen geeigneten Weg, in dem Eingabesignale in das Spektrum des Graphen zerlegt bzw. abgebildet, modifiziert und wieder retransformiert werden können.

5.2.1 Graph-Fourier-Transformation

Das Spektrum eines Graphen \mathcal{G} bilden die Eigenwerte $\{\lambda_i\}_{i=1}^N$ der Laplace-Matrix \mathcal{L} von \mathcal{G} . Diese werden deshalb auch oft als die *Frequenzen* von \mathcal{G} betitelt. In der spektralen Domäne können wir ein Eingabeignal \mathbf{f} über \mathcal{G} dann analog wie ein zeitdiskretes Abtastsignal in der Fourier-Domäne behandeln.

Klassische Fourier-Transformation Die Fourier-Transformation \hat{f} einer Funktion f(t) ist definiert als [13]

$$\hat{f}(\omega) := \langle f, e^{2\pi i \omega t} \rangle = \int_{\mathbb{R}} f(t) e^{-2\pi i \omega t} dt.$$

Die komplexen Exponentiale $e^{2\pi i\omega t}$ beschreiben dabei die Eigenfunktionen des eindimensionalen Laplace-Beltrami Operators [13]

$$-\nabla^2 e^{2\pi i\omega t} = -\frac{\partial^2}{\partial t^2} e^{2\pi i\omega t} = (2\pi\omega)^2 e^{2\pi i\omega t}.$$
 (5.3)

 \hat{f} kann damit als die Ausdehnung von f in Bezug auf die Eigenfunktionen des Laplace-Beltrami Operators ∇^2 verstanden werden [6].

Analog lässt sich die *Graph-Fourier-Transformation* einer Funktion $f: \mathcal{V} \to \mathbb{R}$ bzw. $\mathbf{f} \in \mathbb{R}^N$ auf den Knoten eines Graphen \mathcal{G} als Ausdehnung von f in Bezug auf die Eigenvektoren $\{\mathbf{u}_i\}_{i=1}^N$ der Laplace-Matrix \mathcal{L} definieren [13]:

$$\hat{f}(\lambda_i) := \langle \mathbf{f}, \mathbf{u}_i \rangle \text{ bzw. } \hat{\mathbf{f}} := \mathbf{U}^{\top} \mathbf{f}.$$
 (5.4)

Die inverse Graph-Fourier-Transformation ergibt sich dann als [13]

$$f(v_i) = \sum_{j=1}^{N} \hat{f}(\lambda_j) (\mathbf{u}_j)_i \text{ bzw. } \mathbf{f} = \mathbf{U}\mathbf{\hat{f}}.$$
 (5.5)

In der klassischen Fourier-Analyse sind für die Eigenwerte $\left\{\left(2\pi\omega\right)^{2}\right\}_{\omega\in\mathbb{R}}$ in (5.3) na-

he bei Null die korrespondieren Eigenfunktionen kleine, weich schwingende Funktionen, wohingegen für größere Eigenwerte bzw. Frequenzen die Eigenfunktionen sehr schnell und zügig anfangen zu oszillieren. Bei der Graph-Fourier-Transformation ist dies ähnlich. So ist für \mathbf{L} der erste Eigenvektor $\mathbf{u}_1 = 1/\sqrt{N}[1, \dots, 1]^{\mathsf{T}}$ zum Eigenwert $\lambda_1 = 0$ konstant und an jedem Knoten gleich. Generell zeigt sich, dass die Eigenvektoren geringer Frequenzen nur geringfügig im Graph variieren, wohingegen Eigenvektoren größerer Eigenwerte immer unähnlicher werden (vgl. [13]).

Die Graph-Fourier-Transformation (5.4) und ihre Inverse (5.5) bieten uns eine Möglichkeit ein Signal in zwei unterschiedlichen Domänen zu repräsentieren, nämlich der Knotendomäne, d.h. das unveränderte Signal auf der Knotenmenge $f(v_i)$, und der spektralen Domäne, d.h. das transformierte Signal in das Spektrum des Graphen $\hat{f}(\lambda_i)$. Diese Transformation erlaubt uns die Formulierung fundamentaler Signalverarbeitungsoperationen.

5.2.2 Spektrale Filterung

In der Signalverarbeitung versteht man unter der Frequenzfilterung die Transformation eines Eingabesignals in die Fourier-Domäne und der verstärkenden oder dämpfenden Veränderung der Amplituden der Frequenzkomponenten. Formal betrachtet ergibt dies

$$\hat{f}_{\text{out}}(\omega) := \hat{f}_{\text{in}}(\omega)\hat{g}(\omega)$$
 (5.6)

mit dem Filter $\hat{g} \colon \mathbb{R} \to \mathbb{R}$. Shuman u. a. zeigen, dass die Filterung in der Fourier-Domäne äquivalent zu einer Faltung in der Zeitdomäne ist, d.h.

$$(f_{\rm in} \star g)(t) := \int_{\mathbb{R}} f_{\rm in}(\tau) g(t - \tau) \, d\tau = f_{\rm out}(t). \tag{5.7}$$

Wir können die Filterung der Frequenzen in der Fourier-Domäne analog zu (5.6) für die spektrale Domäne auf Graphen über

$$\hat{f}_{\mathrm{out}}(\lambda_i) \coloneqq \hat{f}_{\mathrm{in}}(\lambda_i)\hat{g}(\lambda_i) \text{ bzw. } \mathbf{\hat{f}}_{\mathrm{out}} \coloneqq \mathbf{\hat{f}}_{\mathrm{in}} \odot \mathbf{\hat{g}}$$

beschreiben, wobei \odot das elementweise Hadamard-Produkt ist [13]. $\hat{\mathbf{g}} \in \mathbb{R}^N$ ist damit ein *nicht-parametrischer* Filter, d.h. ein Filter, dessen Werte für alle Frequenzen $\{\lambda_i\}_{i=1}^N$ frei wählbar sind [3]. Daraus ergibt sich analog zu (5.7) der *spektrale Faltungsoperator* auf Graphen in der Knotendomäne mit Hilfe der Graph-Fourier-

Transformation (5.4) und ihrer Inversen (5.5) als [3, 13]

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} := \mathbf{U} \left(\mathbf{U}^{\top} \mathbf{f}_{\text{in}} \odot \hat{\mathbf{g}} \right) = \mathbf{f}_{\text{out}}.$$
 (5.8)

5.2.3 Polynomielle Approximation

Es zeigt sich, dass die Benutzung des spektralen Faltungsoperators in (5.8) im Kontext eines CNNs auf Graphen mehrere Schwächen aufweist. So ist z.B. die Auswertung von $\mathbf{f}_{\text{out}} \star \hat{\mathbf{g}}$ extrem berechnungsintensiv ist, denn die Multiplikation mit der dichtbesetzten Eigenvektormatrix \mathbf{U} liegt in $\mathcal{O}(N^2)$. Zudem muss \mathbf{U} zuerst bestimmt werden — ein kostspieliger Aufwand für Graphen mit möglicherweise weit mehr als hundert Knoten [9]. Desweiteren führt ein Filter $\hat{\mathbf{g}} \in \mathbb{R}^N$ der Größe N zu einem Lernaufwand in $\mathcal{O}(N)$, d.h. der Dimensionalität der Eingabedaten [3]. Ebenso kann $\hat{\mathbf{g}}$ so nicht für das Lernen auf unterschiedlich großen Graphen verwendet werden. Um die oben genannten Schwächen zu umgehen kann $\hat{g}(\lambda_i)$ über ein Polynom

$$\hat{g}(\lambda_i) \approx \sum_{k=0}^{K} c_k \lambda_i^k =: \hat{g}'(\lambda)$$
 (5.9)

vom Grad K mit Koeffizienten $c_0, \ldots, c_K \in \mathbb{R}$ approximiert werden [3, 6]. Die Filtergröße von \hat{g}' sinkt somit auf einen konstanten Faktor K mit Lernaufwand $\mathcal{O}(K)$, d.h. dem gleichen Aufwand klassischer zweidimensionaler CNNs [3]. $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ ergibt sich dann mittels (5.1), (5.8) und (5.9) approximiert durch [3]

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k \mathbf{U} \mathbf{\Lambda}^k \mathbf{U}^{\top} \mathbf{f}_{\text{in}} = \sum_{k=0}^{K} c_k \mathcal{L}^k \mathbf{f}_{\text{in}}.$$
 (5.10)

Insbesondere ist die spektrale Faltung damit nicht mehr abhängig von der Berechnung der Eigenwerte bzw. Eigenvektoren von \mathcal{L} . Mittels Kapitel 5.1.2 kann $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ in der Knotendomäne nun als eine lokaliserte lineare Transformation interpretiert werden. So sammelt ein Summand $\mathcal{L}^k \mathbf{f}_{\text{in}}$ des spektralen Filters an einem Knoten v genau die Signale von Knoten auf, die maximal k Kanten von v entfernt liegen [6]. Eine Faltung über $f_{\text{in}}(v_i)$ wird damit als Linearkombination

$$f_{\text{out}}(v_i) \approx b_{ii} f_{\text{in}}(v_i) + \sum_{v_j \in \mathcal{N}_K(v_i)} b_{ij} f_{\text{in}}(v_j)$$

über dessen k-lokalisierte Nachbarschaft $\mathcal{N}_K(v_i) := \{v_j \mid \mathcal{L}_{ij}^K > 0\}$ beschrieben mit $b_{ij} := \sum_{k=0}^K c_k \mathcal{L}_{ij}^k$ [13].

Tschebyschow-Polynome Obwohl der Aufwand zur Bestimmung von $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ durch die polynomielle Approximation und insbesondere durch den Wegfall der Berechnung der Eigenvektormatrix \mathbf{U} deutlich reduziert wurde, ist diese immer noch recht teuer aufgrund der Berechnung der K-ten Potenz von \mathcal{L} . So ist \mathcal{L} zwar eine dünnbesetzte Matrix mit $|\mathcal{E}|+N\ll N^2, N\leq |\mathcal{E}|$, Einträgen, \mathcal{L}^K ist dies jedoch zwangsläufig nicht. Eine Lösung zu diesem Problem ist die Benutzung eines Polynoms mit einer rekursiven Formulierung. Ein rekursives Polynom, dass dafür üblicherweise genutzt wird, ist das Tschebyschow-Polynom, da sich dieses zusätzlich durch einen sehr günstigen Fehlerverlauf auszeichnet (vgl. [6]).

Tschebyschow-Polynome (engl. Chebyshev) bezeichnen eine Menge von Polynomen $T_k(x): \mathbb{R} \to \mathbb{R}$ mit dem rekursiven Zusammenhang

$$T_k(x) = 2x T_{k-1}(x) - T_{k-2}(x)$$

mit $T_0(x) = 1$ und $T_1(x) = x$ [6]. Ein Tschebyschow-Polynom T_k ist ein Polynom k-ten Grades und gilt im Intervall [-1,1] als numerisch stabil, d.h. $T_k(x) \in [-1,1]$ für $x \in [-1,1]$ [6]. Die spektrale Faltung mittels Tschebyschow-Polynomen ergibt sich dann zu

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k \mathbf{U} T_k (\tilde{\mathbf{\Lambda}}) \mathbf{U}^{\top} \mathbf{f}_{\text{in}},$$
 (5.11)

wobei $c_0, \ldots, c_K \in \mathbb{R}$ nun Koeffizienten der Tschebyschow-Polynome $T_k(\tilde{\mathbf{\Lambda}}) \in \mathbb{R}^{N \times N}$ angewendet auf die skalierten Eigenwerte $\tilde{\mathbf{\Lambda}} := 2\mathbf{\Lambda}/\lambda_{\max} - \mathbf{I} \in [-1, 1]^{N \times N}$ [3]. Dann kann (5.11) mit $\tilde{\mathcal{L}} := \mathbf{U}\tilde{\mathbf{\Lambda}}\mathbf{U}^{\top} = 2\mathcal{L}/\lambda_{\max} - \mathbf{I}$ weiter vereinfacht werden zu [3]

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k T_k (\tilde{\mathcal{L}}) \mathbf{f}_{\text{in}}.$$
 (5.12)

Für \mathcal{L} kann $\lambda_{\max} \leq 2$ auf dessen obere Schranke, d.h. $\lambda_{\max} \coloneqq 2$, gesetzt werden um die Berechnung von λ_{\max} zu vermeiden ohne die numerische Stabilität von T_k zu verletzen.

Der rekursive Zusammenhang von T_k hilft uns nun dabei, $\mathbf{f}_{\text{in}} \star \mathbf{\hat{g}}$ effizient zu berechnen. Berechne dafür $\mathbf{\bar{f}}_k := T_k \left(\tilde{\mathcal{L}} \right) \mathbf{f}_{\text{in}} \in \mathbb{R}^N$ für alle $k \in \{0, \dots, K\}$ rekursiv mit $\mathbf{\bar{f}}_0 = \mathbf{f}_{\text{in}}$, $\mathbf{\bar{f}}_1 = \tilde{\mathcal{L}} \mathbf{f}_{\text{in}}$ und $\mathbf{\bar{f}}_k = 2\tilde{\mathcal{L}} \mathbf{\bar{f}}_{k-1} - \mathbf{\bar{f}}_{k-2}$. Dann ergibt sich $\mathbf{f}_{\text{out}} = \left[\mathbf{\bar{f}}_0, \mathbf{\bar{f}}_1, \dots, \mathbf{\bar{f}}_K \right] \mathbf{c} \in \mathbb{R}^N$ mit $\mathbf{c} := [c_0, c_1, \dots, c_K]^\top \in \mathbb{R}^{K+1}$ (vgl. [6]). \mathbf{f}_{out} lässt sich damit über K+1 Multiplikationen einer dünnbesetzen Matrix mit einem Vektor und einer abschließenden Vektormultplikation beschreiben. Mit $N \leq |\mathcal{E}|$ ergibt dies eine finale Laufzeit der spektralen Faltung von $\mathcal{O}(K|\mathcal{E}|)$ [3].

Implementierung Für gewöhnlich besteht eine CNN-Schicht nicht nur aus einem, sondern aus $M_{\rm in}$ vielen Signalen bzw. Merkmalen pro Knoten mit jeweils unterschiedlichen Filtern bzw. Gewichten pro Ein- und Ausgabekarte. In klassichen zweidimensionalen CNNs werden diese Merkmale auf $M_{\rm out}$ viele Merkmale abgebildet, in dem für jede Ausgabekarte über jede Eingabekarte gefaltet und dessen Ergebnisse sukzessive aufsummiert werden (vgl. Kapitel 2.3). Modellieren wir diesen Fall für den spektralen Faltungsoperator, dann erhalten wir rekursiv für eine Merkmalsmatrix $\mathbf{F}_{\rm in} \in \mathbb{R}^{N \times M_{\rm in}}$ auf den N Knoten eines Graphen \mathcal{G} gefaltet auf eine Merkmalsmatrix $\mathbf{F}_{\rm out} \in \mathbb{R}^{N \times M_{\rm out}}$ mittels des Filtertensors $\mathbf{W} \in \mathbb{R}^{K+1 \times M_{\rm in} \times M_{\rm out}}$

$$\mathbf{F}_{\mathrm{out}} \coloneqq \sum_{k=0}^{K} \mathbf{\bar{F}}_k,$$

wobei
$$\bar{\mathbf{F}}_k = \left(2\tilde{\mathcal{L}}\,\bar{\mathbf{F}}_{k-1} - \bar{\mathbf{F}}_{k-2}\right)\mathbf{W}_k \in \mathbb{R}^{N \times M_{\mathrm{out}}} \text{ mit } \bar{\mathbf{F}}_0 = \mathbf{F}_{\mathrm{in}}\mathbf{W}_0 \text{ und } \bar{\mathbf{F}}_1 = \tilde{\mathcal{L}}\,\mathbf{F}_{\mathrm{in}}\mathbf{W}_1.$$

5.3 Graph Convolutional Networks

Kipf und Welling motivieren einen weiteren Ansatz zur Faltung auf Graphen, genannt *Graph Convolutional Network (GCN)*, der auf der Methodik des spekralen Faltungsoperators aus Kapitel 5.2 aufbaut und dabei wie eine "differenzierbare und parametriesierte Generalisierung des eindimensionalen Weisfeiler-Lehman Algorithmus auf Graphen" fungiert [9].

5.3.1 Faltungsoperator

Sei $\mathbf{f}_{\mathrm{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k T_k(\tilde{\mathcal{L}}) \mathbf{f}_{\mathrm{in}}$ der in (5.12) definierte spektrale Faltungsoperator mit K=1. Dann ist $\mathbf{f}_{\mathrm{in}} \star \hat{\mathbf{g}}$ eine lineare Funktion bzgl. \mathcal{L} und damit eine lineare Funktion auf dem Spektrum des Graphen [9]. Mit K=1 betrachtet der spektrale Faltungsoperator nur noch die lokale Nachbarschaft eines jeden Knoten (vgl. 5.2.3). Es ist anzumerken, dass dies in der Regel keinen Nachteil darstellt. So hat es sich bei gegenwärtigen "State-of-the-Art"-CNNs auf Bildern ebenfalls eingebürgert, nur noch über minimale 3×3 Receptive-Fields zu falten und stattdessen Merkmale weit entfernterer Knoten über die mehrfache Aneinanderreihung der Faltungsschichten mittels tieferer Netze zu gewinnen (vgl. [7, 9, 14]). Unter dieser Restriktion vereinfacht sich $\mathbf{f}_{\mathrm{in}} \star \hat{\mathbf{g}}$ zu

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx c_0 \, \mathbf{f}_{\text{in}} + c_1 \left(\frac{2}{\lambda_{\text{max}}} \mathcal{L} - \mathbf{I} \right) \mathbf{f}_{\text{in}}$$
 (5.13)

mit zwei freien Parametern c_0 und c_1 [9]. Für $\tilde{\mathbf{L}}$ auf einem verbundenen Graphen \mathcal{G} gilt dann für (5.13) weiter

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx c_0 \,\mathbf{f}_{\text{in}} + c_1 \big(\tilde{\mathbf{L}} - \mathbf{I}\big) \mathbf{f}_{\text{in}} = c_0 \,\mathbf{f}_{\text{in}} - c_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{f}_{\text{in}}, \tag{5.14}$$

wobei $\lambda_{\text{max}} := 2$ auf dessen oberste Schranke gesetzt wird [9]. Um die Gefahr des Overfittings und die Anzahl an Berechnungen pro Schicht weiter zu beschränken, reduziert sich (5.14) mit einem einzigen Parameter $c := c_0$ mit $c = -c_1$ zu [9]

$$\mathbf{f}_{\mathrm{in}} \star \mathbf{\hat{g}} \approx c \left(\mathbf{I} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \right) \mathbf{f}_{\mathrm{in}}.$$

Die skalierten Eigenwerte von $\tilde{\mathbf{\Lambda}}$ liegen auf Grund der Addition mit \mathbf{I} nun im Intervall [0,2] (vgl. [9]). Demnach können wiederholte Anwendungen des Faltungsoperators zu "numerischen Instabilitäten und folglich zu explodierenden oder verschwindenen Gradienten" führen [9]. Kipf und Welling führen zur Behebung dieses Problems die folgende Renormalisierung durch: $\mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \to \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2}$ mit $\tilde{\mathbf{A}} \coloneqq \mathbf{A} + \mathbf{I}$ und $\tilde{\mathbf{D}}_{ii} \coloneqq \sum_{j=1}^{N} \tilde{\mathbf{A}}_{ij}$. Der entgültige Faltungsoperator des GCNs ergibt sich dann als

$$\mathbf{f}_{\text{in}} \star \mathbf{\hat{g}} \approx c \, \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{f}_{\text{in}}$$

auf einem einzigen freien Parameter $c \in \mathbb{R}$.

Implementierung Die Faltung des GCNs auf Merkmalsmatrizen lässt sich analog zur Tensorimplementierung des spektralen Faltungsoperators in Kapitel 5.2.3 beschreiben, mit dem Unterschied, dass wir aufgrund der Festlegung von K=1 keinen Gewichtstensor, sondern lediglich eine Gewichtsmatrix $\mathbf{W} \in \mathbb{R}^{M_{\text{in}} \times M_{\text{out}}}$ nutzen. Für die Faltung einer Eingabemerkmalsmatrix $\mathbf{F}_{\text{in}} \in \mathbb{R}^{N \times M_{\text{in}}}$ auf eine Ausgabemerkmalsmatrix $\mathbf{F}_{\text{out}} \in \mathbb{R}^{N \times M_{\text{out}}}$ ergibt sich dann

$$\mathbf{F}_{\mathrm{out}} \coloneqq \mathbf{\tilde{D}}^{-\frac{1}{2}} \mathbf{\tilde{A}} \mathbf{\tilde{D}}^{-\frac{1}{2}} \, \mathbf{F}_{\mathrm{in}} \mathbf{W}$$

mit Faltungsaufwand $\mathcal{O}(M_{\rm in}M_{\rm out}|\mathcal{E}|)$, weil $\tilde{\mathbf{A}}\mathbf{F}_{\rm in}$ effizient mit der Multiplikation einer dünnbesetzten mit einer dichtbesetzten Matrix implementiert werden kann [9].

Weisfeiler-Lehman Analogie

5.3.2 Erweiterung auf ebene Graphen

B-Spline-Kurven

Faltungsoperator

5.4 Pooling auf Graphen

5.4.1 Graphvergröberung

Clustering von Knoten

5.4.2 Erweiterung auf ebene Graphen

5.5 Netzarchitektur

6 Evaluation

6.1 Versuchsaufbau

6.1.1 Datensätze

 $\mathbf{MNIST} \quad [11]$

Cifar-10 [10]

Pascal VOC [4]

6.1.2 Metriken

6.1.3 Parameterwahl

Vorstellung aller Parameter Superpixelalgorithmen Parameterwahl

6.2 Merkmalsselektion

6.3 Ergebnisse

Vergleich mit anderen Implementierungen

6.4 Laufzeitanalyse

Vergleich mit anderen Implementierungen

6.5 Diskussion

7 Ausblick

Weitere Anwendungsgebiete

Entfernung irrelevanter Knoten nicht nur bei MNIST auch bei pascal voc slic? (z.B. Regelmäßigkeiten erkennen)

Augmentierung von Graphen

Spatial-Pyramid-Pooling

Attention-Algorithmus

A Weitere Informationen

Abbildungsverzeichnis

5.1	Illustration	des 5-Punkt	e-Sterns										14	4

Algorithmenverzeichnis

Literaturverzeichnis

- [1] ACHANTA, Radhakrishna; SHAJI, Appu; SMITH, Kevin; LUCCHI, Aurelien; FUA, Pascal; SUSSTRUNK, Sabine: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2012), S. 2274–2282
- [2] Chung, Fan .R.K.: Spectral Graph Theory. American Mathematical Society, 1997
- [3] Defferrard, Michaël; Bresson, Xavier; Vandergheynst, Pierre: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In: Advances in Neural Information Processing Systems 29. Curran Associates, Inc., 2016, S. 3844–3852
- [4] EVERINGHAM, Mark; ESLAMI, S.M. Ali; VAN GOOL, Luc; WILLIAMS, Christ-oper K. I.; WINN, John; ZISSERMAN, Andrew: The Pascal Visual Object Classes Challenge: A Retrospective. In: *International Journal of Computer Vision* (2015), S. 98–136
- [5] FELZENSZWALB, Pedro F.; HUTTENLOCHER, Daniel P.: Efficient Graph-Based Image Segmentation. In: International Journal of Computer Vision (2004), S. 167–181
- [6] HAMMOND, David K.; VANDERGHEYNST, Pierre; GRIBONVAL, Réne: Wavelets on Graphs via Spectral Graph Theory. In: Applied and Computational Harmonic Analysis (2011), S. 129–150
- [7] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; Sun, Jian: Deep Residual Learning for Image Recognition. In: Computer Vision and Pattern Recognition (2016), S. 83–98
- [8] HUSZÁR, Ferenc: How Powerful are Graph Convolutions? http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/. 2016

34 Literaturverzeichnis

[9] Kipf, Thomas N.; Welling, Max: Semi-Supervised Classification with Graph Convolutional Networks. In: Computing Research Repository (2016)

- [10] Krizhevsky, Alex: Learning Multiple Layers of Features from Tiny Images, Department of Computer Science, University of Toronto, Diplomarbeit, 2009
- [11] LECUN, Yann; CORTES, Corinna; BURGES, Christopher J.C.: The MNIST Database of Handwritten Digits. (2010)
- [12] REUTER, Martin; BIASOTTI, Silvia; GIORGI, Daniela; PATANÈ, Guiseppe; SPA-GNUOLO, Michela: Discrete Laplace-Beltrami Operators for Shape Analysis and Segmentation. In: *Computers & Graphics* (2009), S. 381–390
- [13] Shuman, David I.; Narang, Sunil. K.; Frossard, Pascal; Ortega, Antonio; Vandergheynst, Pierre: The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. In: *IEEE Signal Processing Magazine* (2013), S. 83–98
- [14] SIMONYAN, Karen; ZISSERMAN, Andrew: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Computing Research Repository (2014)
- [15] VEDALDI, Andrea; SOATTO, Stefano: Quick Shift and Kernel Methods for Mode Seeking. In: European Conference on Computer Vision, 2008, S. 705–718

Eidesstattliche Versicherung

Name, Vorname	MatrNr.
Ich versichere hiermit an Eides statt, dass dem Titel	ich die vorliegende Bachelorarbeit/Masterarbeit* mit
angegebenen Quellen und Hilfsmittel benu	e Hilfe erbracht habe. Ich habe keine anderen als die utzt sowie wörtliche und sinngemäße Zitate kenntlich nnlicher Form noch keiner Prüfungsbehörde
Ort, Datum	Unterschrift
	*Nichtzutreffendes bitte streichen
Belehrung:	
Hochschulprüfungsordnung verstößt, hand einer Geldbuße von bis zu 50.000,00 € ge die Verfolgung und Ahndung von Ordnung	g über Prüfungsleistungen betreffende Regelung einer delt ordnungswidrig. Die Ordnungswidrigkeit kann mit ahndet werden. Zuständige Verwaltungsbehörde für swidrigkeiten ist der Kanzler/die Kanzlerin der le eines mehrfachen oder sonstigen schwerwiegender udem exmatrikuliert werden. (§ 63 Abs. 5
Die Abgabe einer falschen Versicherung a oder mit Geldstrafe bestraft.	n Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren
	gfls. elektronische Vergleichswerkzeuge (wie z.B. die rdnungswidrigkeiten in Prüfungsverfahren nutzen.
Die oben stehende Belehrung habe ich zu	r Kenntnis genommen:
Ort, Datum	