ECE 592 005 – IOT Analytics

Project 2 – Regression

Task-1:

1.1 Histograms for each column x_i:

Mean and Variance for each column x_i:

Column	Mean	Variance
X ₁	4.99026733333333	119.3076884422069
X ₂	14.763730076666667	145.05252952563043
X ₃	26.08596366666668	154.44265868083923
X ₄	37.00749500000034	139.459924134075
X ₅	53.05932999999996	160.07008254776667

1.2 Detecting and Removing Outliers from the Dataset:

We use Box Plot to detect the outliers in the dataset, remove it using z-score and the dataset after removal of the outliers has reduced from 300 rows to 239 rows.

Box-Plot with Outliers:

Box -Plot without Outliers:

In the figure, x6 = x1, x7 = x2, x8 = x3, x9 = x4 and x10 = x5.

1.3 Correlation Matrix for all Variables:

The correlation matrix found for y,x1,x2,x3,x4,x5 is,

		•		•		
	Υ	X1	X2	Х3	X4	X5
	1.	0.48361383	-0.00954987	0.11076584	0.29588932	0.24886194
	0.48361383	1.	-0.09212281	-0.03527944	-0.07825077	-0.09368099
	-0.00954987	-0.09212281	1.	-0.02991405	0.0579247	0.03714248
	0.11076584	-0.03527944	-0.02991405	1.	-0.03479931	-0.06683803
	0.29588932	-0.07825077	0.0579247	-0.03479931	1.	0.01418369
	0.24886194	-0.09368099	0.03714248	-0.06683803	0.01418369	1.
1						

A correlation matrix has is a matrix that is has values between -1 and 1 and gives the linear relationship between the variables in the two dimensional matrix. The correlation co-efficient ie) each x_{ij} gives the strength of the linear relationship between the two variables considered. We draw conclusions based on the following idea,

- (i)Positive correlation the variables move in the same direction
- (ii) Negative correlation if one variable increases, the other variable decreases
- (iii) If the correlation is greater than or equal to +/- 0.80, the association between the variables are very strong and they have a high degree of correlation
- (iv) Values between +/- 0.5 to +/- 0.8 means a sufficient degree of correlation
- (v) If the correlation value is less than +/-0.5, the association between the variables are very weak and they have a lower degree of correlation
- (i)Positive correlation -(y,x1), (y,x3), (y,x4), (y,x5), (x2,x4), (x2,x5), (x4,x5)
- (ii) Negative correlation (y,x2), (x1,x2), (x1,x3), (x1,x4), (x1,x5), (x2,x3), (x3,x4), (x3,x5)

1.4:

- (i)On observing the histogram, we see that there are several outliers present in every x_i . The outliers should be removed in order to produce better regression results.
- (ii) Using a z-score of 3 still did not remove some outliers and hence the z-score was changed to be
- 2. Hence all data that have a z-score < 2 are retained in the dataset.
- (iii) We see that almost all independent variables have a weak / lower degree of correlation. On observing the correlation between Y and a x_i , we see that only x1 has an average degree of correlation while the others have a lower degree of correlation. These variables are not going to have much of an effect while performing regression.

Task-2:

Task2 is run on the dataset which has no outliers. Outliers were removed using z-score in the previous task and the new dataset is stored in a separate csv for this task.

Statsmodel package in python was used to perform simple Linear Regression on Y and the column x1.

ie) the model $Y = a_0 + a_1X_1 + \varepsilon$

			sults ======		
Dep. Variable:		y R-squ	ared:		0.234
Model:	OI	LS Adj. !	Adj. R-squared:		0.231
Method:	Least Square	es F-sta	F-statistic:		
Date:	Sun, 28 Oct 201	18 Prob	Log-Likelihood:		
Time:	18:08:2	22 Log-L:			
No. Observations:	23	38 AIC:			3287.
Df Residuals:	23	BIC:			3294.
Df Model:		1			
Covariance Type:	nonrobus	it 			
CO	ef std err	t	P> t	[0.025	0.975]
const 1823.04	35 17.674	103.149	0.000	1788.225	1857.862
x1 14.31	74 1.687	8.488	0.000	10.994	17.640
Omnibus:	26.47	71 Durbi	n-Watson:		2.033
Prob (Omnibus):	0.00	00 Jarqu	e-Bera (JB)	:	31.857
Skew:	0.82	29 Prob(JB):		1.21e-07
Kurtosis:	3.67	79 Cond.	No.		11.9

2.1 Estimates for a0, a1 and variance:

a0 = 1823.0435

a1 = 14.3174

variance / MSE of residuals = 57717.90493298641

variance / MSE of model = 75020.29037354182

2.2 p-value, F-value and R² value:

('R-Square:', 0.2338823379254178)

('F-Value:', 72.04667700902738)

p-value for a0 = 0.0

p-value for a1 = 0.0

The p-values are used to accept / reject the null hypothesis. The p-values for both a0 and a1 are zero and hence both the co-efficient is significant in the linear regression model.

The R^2 gives a measure of how well the linear model fits the data. The closer R-square is to 1, the better the fit. The R-square value is around 0.233 in our case and hence we do not see a good fit. We can say that about 23% of the sample variability observed in the results drawn from the model can be due to the predictors in the model itself.

The F-value tests the overall significance of the regression model. Its values generally varies from 0 to any arbitrary value. A high F-value means that the data does not support the null hypothesis.

2.3 Regression line against the data:

2.4 Residuals Analysis:

(a) Q-Q Plot and Histogram:

We observe that a greater percentage of data falls in the line except a few points and the histogram is almost normally distributed.

The chi-square test gives a value,

('Chi-square Results:', Power_divergenceResult(statistic=-2.7525142541622645e+19, pvalue=1.0))

The p-value indicates that the residuals follow a normal distribution.

(b) Scatter Plot:

From the scatter plot of the residuals we do not see any trends. It is good that there are no trends in the scatter plot as a linear pattern would suggest dependency.

2.7 Higher Order Polynomial Regression:

In the regression plot and residual analysis, we see that the data is slightly not fit to the model. We do a higher order polynomial regression ie) $Y = a_0 + a_1X + a_2X_2 + \varepsilon$ and calculate all values again, plot the regression line do residual analysis etc

```
OLS Regression Results
Dep. Variable:

Model:

Method:

Date:

Sun, 28 Oct 2018

Time:

Y R-squared:

Adj. R-squared:
F-statistic:
Prob (F-statistic):
Log-Likelihood:
                                                                                               0.729
Sun, 28 Oct 2018 Prob (F-statistic):
Time: 18:08:24 Log-Likelihood:
No. Observations: 238 AIC:
Df Residuals: 235 BTC:
Df Model:
                                                                                                 319.3
                                                                                           9.85e-68
-1516.8
                                                                                                 3050.
Covariance Type: nonrobust
   coef std err t P>|t| [0.025 0.975]

    const
    1703.4184
    11.962
    142.403
    0.000
    1679.852
    1726.985

    x1
    -1.3376
    1.252
    -1.068
    0.286
    -3.804
    1.129

    x2
    1.7962
    0.086
    20.840
    0.000
    1.626
    1.966

______

        Omnibus:
        0.262
        Durbin-Watson:
        1.892

        Prob(Omnibus):
        0.877
        Jarque-Bera (JB):
        0.148

        Skew:
        0.058
        Prob(JB):
        0.929

        Kurtosis:
        3.039
        Cond No.
        0.024

                                          3.039 Cond. No.
Kurtosis:
______
 ('Intercept/a0:', 1703.4183726969652)
 ('MSE/variance value:', 75020.29037354182)
 ('MSE of residuals:', 20351.19689007222)
 ('R-Square:', 0.7310133467699154)
 ('F-Value:', 319.32464757644817)
 ('Chi-square Results:', Power divergenceResult(statistic=-7.080683452758312e+18, pvalue=1.0))
```

We see a higher R-square value of 0.731 in the higher order regression. This infers that the linear model now better fits the data. The MSE of the residuals have also greatly reduced. Chi-square results still say that the residuals are normally distributed.

The regression plot against the data,

The q-q plot and histogram for the residuals,

Hence the higher order polynomial regression tend to produce better results as observed from the p-vales, R-square, the residuals plot and a lowered variance / MSE value.

2.8:

For a simple linear regression analysis, the model explains that the variables are always linearly related such that the outcome population mean for any value considered in the x_i column is a0+a1x

The null hypothesis for the simple linear regression is H_0 : a1 = 0 and the alternate hypothesis is

 H_1 : a1 != 0 (two-tailed) or a1>0 / a1 < 0 (one-tailed). If the null hypothesis is true, then the coefficient a1 has no significance on the y value predicted.

From our results, we get p-value for a1 as 0.00, leading to reject the null hypothesis or accepting the alternative hypothesis concluding that the a1 value does have significance on the predicted y value.

The Cond.No. obtained in the regression model results has a value of 11.0, indicating that there is less multi-colinearity. Even though the R-square value indicates that the model is not a good fit for the data, the residuals on plotting and a chi-square test carried out says that the residuals are normally distributed. We do not see any trends in the residuals scatter plot which is a good sign.

On doing a higher order polynomial regression, we get the p-values for a1 to be 0.286 and a2 to be 0.0 which are still lower values and fall within the 95th percentile (0.05). Hence, these a1 and a2 co-efficient also have significance on the predicted y value.

The higher R-square value observed is a sign of model being a better fit for the data. The MSE value is considerably seen lowered for the higher order regression. The q-q plot and the histogram and the chi-square test indicate that the residuals are normally distributed.

Task3:

3.1 Multi variable Regression on all Independent variables:

Task3 is run on the dataset which has no outliers. Outliers for all x_i s were removed using z-score in the previous task and the new dataset is stored in a separate csv for this task.

Statsmodel package in python was used to perform simple Linear Regression on Y and the column x1,x2,x3,x4,x5.

```
OLS Regression Results
Dep. Variable:
                                                y R-squared:
                            OLS Adj. R-squared:
Least Squares F-statistic:
                                                                                                0.447
Model:
Date:
Time:
                          Sun, 28 Oct 2018 Prob (F-statistic):
19:28:57 Log-Likelihood:
238 AIC:
                                                                                                     39.24
                                                                                              3.99e-29
No. Observations:
                                                                                                -1600.1
                                                                                                    3212.
Df Residuals:
                                               232 BIC:
                                                                                                    3233.
Df Model:
Covariance Type:
                                 nonrobust
______
             coef std err t P>|t| [0.025 0.975]

        Const
        985.5359
        90.164
        10.931
        0.000
        807.892
        1163.180

        x1
        16.1601
        1.448
        11.159
        0.000
        13.307
        19.013

        x2
        0.3671
        1.222
        0.300
        0.764
        -2.040
        2.774

        x3
        4.0470
        1.207
        3.352
        0.001
        1.668
        6.426

        x4
        8.5004
        1.218
        6.982
        0.000
        6.102
        10.899

        x5
        7.5418
        1.202
        6.277
        0.000
        5.174
        9.909

      Omnibus:
      66.347
      Durbin-Watson:
      2.106

      Prob(Omnibus):
      0.000
      Jarque-Bera (JB):
      117.234

      Skew:
      1.514
      Prob(JB):
      3.49e-26

Kurtosis:
                                            4.628 Cond. No.
('Intercept/a0:', 985.5358972637231)
('MSE/variance value:', 75020.29037354182)
('MSE of residuals:', 41519.99041687105)
('R-Square:', 0.45822602059279005)
('F-Value:', 39.24457091639811)
('Chi-square Results:', Power divergenceResult(statistic=-2.364638783783354e+18, pvalue=1.0))
                     0.48361383 -0.00954987 0.11076584 0.29588932 0.24886194]
[[ 1.
 [ 0.11076584 -0.03527944 -0.02991405 1. -0.03479931 -0.06683803]
  [ 0.29588932 -0.07825077  0.0579247 -0.03479931  1.
  [ 0.24886194 -0.09368099  0.03714248 -0.06683803  0.01418369  1.
```


a0 = 985.5359

a1 = 16.1601

a2 = 0.3671

a3 = 4.0470

a4 = 8.5004

a5 = 7.5418

variance / MSE of residuals = 75020.29037354182

variance / MSE of model = 41519.99041687105

$\textbf{3.2: p-value, F-value, } \ \textbf{R}^{\textbf{2}} \ \textbf{value and Correlation Matrix:}$

('R-Square:', 0.45822602059279005)

('F-Value:', 39.24457091639811)

p-value for a0 = 0.000

p-value for a1 = 0.000

p-value for a2 = 0.764

p-value for a3 = 0.001

p-value for a4 = 0.000

p-value for a5 = 0.000

The correlation Matrix.

Y	X1	X2	Х3	X4	X5
1.	0.48361383	-0.00954987	0.11076584	0.29588932	0.24886194
0.48361383	1.	-0.09212281	-0.03527944	-0.07825077	-0.09368099
-0.00954987	-0.09212281	1.	-0.02991405	0.0579247	0.03714248
0.11076584	-0.03527944	-0.02991405	1.	-0.03479931	-0.06683803
0.29588932	-0.07825077	0.0579247	-0.03479931	1.	0.01418369
0.24886194	-0.09368099	0.03714248	-0.06683803	0.01418369	1.

The p-values are used to accept / reject the null hypothesis. The p-values for both a0,a1,a3,a4,a5 are zero and hence both the co-efficient is significant in the linear regression model. We see that the p-value for a2 is $0.76 > 0.5 (95^{th} \%)$ and hence can be removed as it confirms the null hypothesis that

 H_0 : a2 = 0, If the null hypothesis is true, then the coefficient a1 has no significance on the y value predicted. Hence, a2 can be removed.

The R^2 gives a measure of how well the linear model fits the data. The closer R-square is to 1, the better the fit. The R-square value is around 0.458 in our case and hence we do not see a good fit. We can say that about 45% of the sample variability observed in the results drawn from the model can be due to the predictors in the model itself.

The F-value tests the overall significance of the regression model. Its values generally varies from 0 to any arbitrary value. A high F-value means that the data does not support the null hypothesis.

We see that almost all independent variables have a weak / lower degree of correlation.

On observing the correlation between Y and a x_i , we see that only x1 has an average degree of correlation while the others have a lower degree of correlation.

3.3 Residual Analysis:

(a) Q-Q Plot and Histogram for Residuals:

With all the x_i values:

We observe that a percentage of data diverges from the line and the histogram is almost distributed toward the right and has a right tail. Hence the histogram/ data is said to be right skewed. This indicates that the data has some larger values that drives the mean upward.

The chi-square test gives a value,

('Chi-square Results:', Power_divergenceResult(statistic=-2.364638783783354e+18, pvalue=1.0))

Without a2:

Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	ations Ls:	Su:	OI Least Square in, 28 Oct 201 19:54:4	es F-stat 18 Prob (12 Log-Li 18 AIC: 13 BIC:	R-squared: distic: (F-statistic)):	0.458 0.449 49.23 5.56e-30 -1600.2 3210. 3228.
		coef	std err	t	P> t	[0.025	0.975]
const x1 x3 x4 x5	16 4 8	.0363	1.440 1.204	11.197 3.351	0.000 0.000 0.001 0.000 0.000	1.663	1164.840 18.959 6.409 10.910 9.913
Omnibus: Prob(Omnibuskew: Kurtosis:	 	=====	65.79 0.00 1.50 4.62)4 Prob(J	e-Bera (JB): JB):		2.109 115.740 7.37e-26 477.

As predicted, we do not see much of a change after removing the co-efficient a2 from the list of independent variables considered to perform multi-variable regression. The R-square value, MSE , chi-square test results and the plots also indicate that a2 is not significant for predicting y.

(b) Scatter Plot of the Residuals:

Y, x1

Y, x2:

Y, x3:

Y, x4:

Y, x5:

From the scatter plot of the residuals we do not see any trends. It is good that there are no trends in the scatter plot as a linear pattern would suggest dependency. For the scatter plot between y and x1 alone, we observe a parabolic curve. This clearly indicates that the two variables have a non-linear association. Since we focus of linear associations and linear regression, we do not focus more on that.

3.4:

The null hypothesis for the linear multivariable regression is H_0 : a1 = a2 = a3 = a4 = a5 = 0 and the alternate hypothesis is H1 or H2 or H3 or H4 or H5 is true

 H_1 : a1 != 0 (two-tailed) or a1>0 / a1 < 0 (one-tailed).

 H_2 : a2 != 0 (two-tailed) or a2>0 / a2 < 0 (one-tailed).

 H_3 : a3 != 0 (two-tailed) or a3>0 / a3 < 0 (one-tailed).

 H_4 : a4 != 0 (two-tailed) or a4>0 / a4 < 0 (one-tailed).

 H_5 : a5 != 0 (two-tailed) or a5>0 / a5 < 0 (one-tailed).

If the null hypothesis is true, then none of the coefficients a1,a2,a3,a4,a4 has significance on the y value predicted.

From our results, we get p-value for a2 as 0.76, leading to reject the null hypothesis or accepting the alternative hypothesis concluding that the coefficient value do have significance on the predicted y value.

Even though the R-square value indicates that the model is not a good fit for the data, the residuals on plotting and a chi-square test carried out says that the residuals are normally distributed. We do not see any trends in the residuals scatter plot which is a good sign.

We carry out a number of experiments with various combinations of the independent variables to see which combination produces a better model with a higher R-square value. Some combinations performed very poorly with a lower R-square value and a very high MSE value.

The below screenshots are some examples,

```
OLS Regression Results
Dep. Variable:

y R-squared:
OLS Adj. R-squared:
_______
Model:

Model:

Date:

Sun, 28 Oct 2018

Prob (F-statistic):

20:22:31

Log-Likelihood:
                                                                   0.244
                                                                2.01e-15
Time: 20:22:31
No. Observations: 238
Df Residuals: 235
                                                                 -1638.8
                                238 AIC:
                                                                    3284.
                               235 BIC:
                                                                    3294.
Df Model:
                                2
Covariance Type: nonrobust
______
         coef std err
                                  t P>|t| [0.025 0.975]

    const
    1738.6347
    41.188
    42.212
    0.000
    1657.490
    1819.779

    x1
    14.4511
    1.673
    8.637
    0.000
    11.155
    17.748

    x3
    3.1839
    1.406
    2.264
    0.024
    0.414
    5.954

______
Omnibus:
                            25.552 Durbin-Watson:
Prob(Omnibus):
                            0.000 Jarque-Bera (JB):
0.821 Prob(JB):
3.604 Cond. No.
                                                                  30.377
                                                               30.377
2.53e-07
Skew:
Kurtosis:
                                                                     77.2
('Intercept/a0:', 1738.634690447658)
('MSE/variance value:', 75020.29037354182)
('MSE of residuals:', 56725.71876764182)
('R-Square:', 0.25024256186021177)
('F-Value:', 39.21735153642151)
('Chi-square Results:', Power divergenceResult(statistic=2.4609431760888783e+19, pvalue=0.0))
```

```
OLS Regression Results
                                 ------
                                              y R-squared:
OLS Adj. R-squared:
Dep. Variable:
                                                                                                     0.343
Model:
                                                                                                     0.335
                        Least Squares F-statistic:
Sun, 28 Oct 2018 Prob (F-stati
Method:
                                                                                                     40.80
                                                       Prob (F-statistic):
                                                                                               3.04e-21
Time: 20:23:48 Log-Likelihood: No. Observations: 238 ATC.
Date:
                                                                                                      3254.
                                                      BIC:
Df Residuals:
                                               234
                                                                                                      3268.
Df Model:
                                                  3
Covariance Type: nonrobust
    coef std err t P>|t| [0.025 0.975]

        const
        1315.5609
        82.960
        15.858
        0.000
        1152.118
        1479.004

        x1
        15.3261
        1.577
        9.722
        0.000
        12.220
        18.432

        x3
        3.7209
        1.322
        2.815
        0.005
        1.117
        6.325

        x5
        7.5871
        1.317
        5.762
        0.000
        4.993
        10.181

______
                                       47.078 Durbin-Watson:
0.000 Jarque-Bera (JB):
1.174 Prob(JB):
4.252 Cond No.
Omnibus:
                                                                                                     2.126
                                                                                                   70.219
Prob (Omnibus):
Skew:
                                                                                               5.65e-16
Kurtosis:
                                            4.252
                                                       Cond. No.
 ('Intercept/a0:', 1315.5608503210283)
 ('MSE/variance value:', 75020.29037354182)
 ('MSE of residuals:', 49888.62504440638)
 ('R-Square:', 0.3434159849781413)
('F-Value:', 40.79667828557059)
('Chi-square Results:', Power divergenceResult(statistic=-9.50935453540518e+18, pyalue=1.0))
Dep. Variable: Y R-squared: 0.366
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 44.97
Date: Sun, 28 Oct 2018 Prob (F-statistic)
OLS Regression Results
No. Observations:
                                                 Log-Likelihood:
                                                 AIC:
                                                                                         3246.
Df Residuals:
                                         234 BIC:
Df Model:
Covariance Type:
                                nonrobust
 | | coef std err t P>|t| [0.025 0.975]

        const
        1410.0628
        63.050
        22.364
        0.000
        1285.844
        1534.282

        x1
        15.2547
        1.547
        9.860
        0.000
        12.206
        18.303

        x3
        3.5031
        1.297
        2.701
        0.007
        0.948
        6.058

        x4
        8.5512
        1.310
        6.527
        0.000
        5.970
        11.132

Omnibus: 38.320 Durbin-Watson: 1.999
Prob (Omnibus): 0.000 Jarque-Bera (JB): 51.725
Skew: 1.052 Prob (JB): 5.86e-12
Kurtosis: 3.890 Cond No
______
                                 0.000 Jarque-Bera (JB):
1.052 Prob(JB):
3.890 Cond. No.
```

^{(&#}x27;Intercept/a0:', 1410.0627638281683)

^{(&#}x27;MSE/variance value:', 75020.29037354182) ('MSE of residuals:', 48193.777183761056)

^{(&#}x27;R-Square:', 0.365721871584621)

^{(&#}x27;F-Value:', 44.97444371110175)

^{(&#}x27;Chi-square Results:', Power_divergenceResult(statistic=-1.5995110178494833e+19, pvalue=1.0))

```
OLS Regression Results
Dep. Variable:
                               y R-squared:
OLS Adj. R-squared:
                                                                     0.147
Model:
                                                                      0.140
                   Least Squares F-statistic:
Method:
                                                                      20.32
Date:
                   Sun, 28 Oct 2018
                                      Prob (F-statistic):
                                                                  7.26e-09
                  20:27:36
                                     Log-Likelihood:
Time:
                                                                   -1654.1
                                     AIC:
No. Observations:
                                                                      3314.
                                235 BIC:
Df Residuals:
                                                                      3325.
Df Model:
                                  2
Covariance Type: nonrobust
   coef std err t P>|t| [0.025 0.975]
const 1300.7744
                      97.734 13.309 0.000 1108.227 1493.321
1.510 4.854 0.000 4.355 10.306
1.487 4.062 0.000 3.111 8.970
          7.3305
x4
x5
             6.0408
______
                           83.619 <u>Durbin</u>-Watson:
0.000 <u>Jarque</u>-<u>Bera</u> (JB):
1.678 Prob(JB):
Omnibus:
                                                                     1.947
Prob(Omnibus):
Skew:
                                                                 194.138
                                                                 6.97e-43
Kurtosis:
                              5.884 Cond. No.
('Intercept/a0:', 1300.7743636527864)
('MSE/variance value:', 75020.29037354182)
('MSE of residuals:', 64504.87698957433)
('R-Square:', 0.14742356077798613)
('F-Value:', 20.317554643217843)
```

('Chi-square Results:', Power divergenceResult(statistic=-1.1666975348069941e+20, pvalue=1.0))