化学学院本科生 2020——2021 学年第一学期《线性代数》课程期末考试试卷(A卷)

专业	k: 年级: 学号: 姓名: 成绩:	
身分		
	- 一、选择题(本题共 24 分,每小题 4 分)	`
	1. 设 a_1, a_2, a_3 为 3 维向量,矩阵 $A = (a_1, a_2, a_3), B = (a_2, 2a_1 + a_2, a_3), 若 \det A = 3$,则det $B = (a_1, a_2, a_3)$,)
	(A) 6; (B) 3; (C)-3; (D)-6.	
	2. 设 <i>A</i> 矩阵经过初等行变换变为矩阵 <i>B</i> ,则以下说法 正确 的是()	
	(A)存在可逆矩阵 P ,使得 $PA = B$; (B) 存在可逆矩阵 P ,使得 $AP = B$;	
	(C)存在可逆矩阵 P ,使得 $A = BP$; (D) $\det A = \det B$.	
	3. 下列说法 错误 的是()	
	(A) 如果 $Ax = b$ 相容,则增广矩阵[Ab]的每一行都有一个主元位置;	
	(B) b 是矩阵 A 的列的线性组合当且仅当 $Ax = b$ 至少有一个解;	
	(C) A 为 $m \times n$ 矩阵,若 A 的列向量集生成 \mathbb{R}^m ,则对 \mathbb{R}^m 中任意向量 b 方程 $Ax = b$ 相容;	.
	(D) $\overline{A}A$ 是 $m \times n$ 矩阵,且 $Ax = b$ 对 \mathbb{R}^m 中某个向量 b 是不相容的, 则 A 不能在每一行都有一个主元化	立置.
	4. 设 A 为 $m \times n$ 矩阵, B 为 $n \times m$ 矩阵, I_m 为 m 阶单位矩阵,若 $AB = I_m$,则 ()
	(A) rank(A) = m, rank(B) = m; $(B) rank(A) = m, rank(B) = n;$	
	(C) $rank(A) = n, rank(B) = m;$ (D) $rank(A) = n, rank(B) = n.$	
;	5. 设 <i>A</i> , <i>B</i> 为同阶可逆矩阵,则()	
	(A) $AB = BA$; (B)存在可逆矩阵 P 使得 $P^{-1}AP = B$;	
	(C)存在可逆矩阵 C 使得 $C^TAC = B$; (D)存在可逆矩阵 P , Q 使得 $PAQ = B$.	
	6. 设有任意两个 n 维向量组 α_1 ,…, α_m 和 β_1 ,…, β_m ,若存在两组不全为零的数 λ_1 ,…, λ_m 和 k_1 ,…, k_m ,使 $(\lambda_1 + k_1)\alpha_1 + \dots + (\lambda_m + k_m)\alpha_m + (\lambda_1 - k_1)\beta_1 + \dots + (\lambda_m - k_m)\beta_m = 0$,则)
	$(\lambda_1 + \lambda_1)\alpha_1 + \cdots + (\lambda_m + \lambda_m)\alpha_m + (\lambda_1 - \lambda_1)\beta_1 + \cdots + (\lambda_m - \lambda_m)\beta_m = 0, $ $(A) \ \alpha_1, \cdots, \alpha_m \pi \beta_1, \cdots, \beta_m 都 $,
,	(C) $\alpha_1, \dots, \alpha_m$ 和 β_1, \dots, β_m 都线性无关; (D) $\alpha_1 + \beta_1, \dots \alpha_m + \beta_m, \alpha_1 - \beta_1, \dots, \alpha_m - \beta_m$ 线性相关.	
身 分]	
1 /1		
	$1.$ 设 A 是 4×3 矩阵,且 $rank(A) = 2$,而 $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$,则 $rank(AB) = $	
	2. 二阶旋转矩阵 $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ 的逆矩阵为	
	3. 设 $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} a & 2 \\ 2 & b \end{bmatrix}$,且 A 与 B 相似,则 $a = $, $b = $	
	4. 己知 $\mathbf{u}_1 = [-7,1,4]^T$, $\mathbf{u}_2 = [-1,1,2]^T$, $\mathbf{y} = [-9,1,6]^T$, $W = span\{\mathbf{u}_1,\mathbf{u}_2\}$, 则 $Proj_W \mathbf{y} = \underline{\hspace{1cm}}$	<u>.</u>
	5.已知 $A = \begin{bmatrix} 2 & 1 \\ -2 & 0 \\ 2 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -5 \\ 8 \\ 1 \end{bmatrix}$, 则不相容方程组 $A\mathbf{x} = \mathbf{b}$ 的最小二乘解为	

6.设向量 $\alpha \in \mathbb{R}^3$,它在基 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3\}$ 下的坐标为 $(x_1, x_2, x_3)^T$,则 α **在**基 $\{\varepsilon_1 + k\varepsilon_3, \varepsilon_2, \varepsilon_3\}$ 下的坐标为______。

得分

三 、判断题 (本题共 16 分, 每小题 2 分, 用 T (True)、F (False) 表示)

 $() 1. \det(-A) = -\det A.$

() 2. Nul(A)的维数是方程 $Ax = \mathbf{0}$ 中的变量个数.

() 3. 方程Ax = b有解的充分必要条件是 $b \perp Nul(A^T)$.

() 4. 若 $AB = I_n$,其中 I_n 为n阶单位矩阵,则A为可逆矩阵.

() 5. 一个具有单位正交列的矩阵是正交矩阵.

) 7. 设 $\{v_1, v_2\}$ 为 \mathbb{R}^n 中的线性无关向量集,则 $\{v_1, 2v_2 - v_1\}$ 也是线性无关向量集.

() 8. 对于方阵A, Col(A)中的向量与 Nul(A)中的向量正交.

得 分

四、计算题(本题共 30 分,每小题 6 分)

1. 设 $A = \begin{bmatrix} 1 & 2 & -1 \\ -2 & -3 & 0 \\ 1 & 2 & 0 \end{bmatrix}$, (1) 判断A是否可逆; (2) 若A可逆, 求A的逆矩阵。

2. 解方程det $\begin{bmatrix} x-1 & -1 & -1 \\ -1 & x-1 & -1 \\ -1 & -1 & x-1 \end{bmatrix}$ =0.

3. 设
$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix}$$
, 求 $Col(A)$, $Nul(A)$ 的基.

4. 设
$$A = \begin{bmatrix} 4 & 0 & 1 & 0 \\ 0 & 4 & 0 & 1 \\ 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$
,求正交矩阵 P ,使得 $A = PDP^T$,其中 D 为对角形矩阵。

5. 已知分解A = QR,其中 $A = \begin{bmatrix} 2 & 3 \\ 2 & 4 \\ 1 & 1 \end{bmatrix}$, $Q = \begin{bmatrix} 2/3 & -1/3 \\ 2/3 & 2/3 \\ 1/3 & -2/3 \end{bmatrix}$, $R = \begin{bmatrix} 3 & 5 \\ 0 & 1 \end{bmatrix}$, $\boldsymbol{b} = \begin{bmatrix} 7 \\ 3 \\ 1 \end{bmatrix}$,求 $A\boldsymbol{x} = \boldsymbol{b}$ 的最小二乘解.

得 分

五、设A为n阶实对称矩阵,证明: A的不同特征值对应的特征向量正交. (本题 6 分)