MATH 1426 IMS, Shanghai Tech

Gauss Approximation

Problem Formulation

Gram-Schmidt Algorithm

Orthogonal Polynomials

Solution of Gauss' Approximation Problem

Boris Houska 6-1

Contents

Problem Formulation

Gram-Schmidt Algorithm

Orthogonal Polynomials

Solution of Gauss' Approximation Problem

Problem Formulation

Gauss' approximation problem is to construct a polynomial p of degree $\leq n$ which solves

$$\min_{p\in P_n} \ \|f-p\| \quad \text{with} \quad \|g\| \ = \ \sqrt{\int_a^b g(x)^2 \, \mathrm{d}x} \ .$$

denoting the L_2 -norm. Here P_n denotes the set of polynomials $p:\mathbb{R}\to\mathbb{R}$ with degree $\leq n$ and $f:\mathbb{R}\to\mathbb{R}$ is a given function.

L_2 -Scalar Products

Recall that the L_2 -scalar product of two functions $f,g:[a,b]\to\mathbb{R}$ on an interval [a,b] is given by

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x \; .$$

In this notation, the L_2 -norm can be written in the form

$$||f|| = \sqrt{\langle f, f \rangle}$$

In particular, the Cauchy-Schwartz inequality can be written in the form

$$\langle f, g \rangle \le ||f|| \cdot ||g||$$

L_2 -Scalar Products

Recall that the L_2 -scalar product of two functions $f,g:[a,b]\to\mathbb{R}$ on an interval [a,b] is given by

$$\langle f, g \rangle = \int_a^b f(x)g(x) \, \mathrm{d}x \; .$$

In this notation, the L_2 -norm can be written in the form

$$\|f\| = \sqrt{\langle f, f \rangle}$$

In particular, the Cauchy-Schwartz inequality can be written in the form

$$\langle f, g \rangle \le ||f|| \cdot ||g||$$
.

Optimality Conditions

Theorem The polynomial p is a solution of the minimization problem

$$\min_{p \in P_n} \|f - p\|.$$

if and only if we have $\langle f - p, q \rangle = 0$ for all $q \in P_n$.

Proof:

Optimality Conditions

Theorem The polynomial p is a solution of the minimization problem

$$\min_{p \in P_n} \|f - p\| .$$

if and only if we have $\langle f - p, q \rangle = 0$ for all $q \in P_n$.

Proof:

Step 1: If $p \in P_n$ is an optimal approximation, the function

 $F(t) := \|f - p - tq\|^2$ must have a minimizer at t = 0 for all $q \in P_n$.

Thus, we must have

$$0 = \frac{\partial}{\partial t} \left\| f - p - tq \right\|^2 \bigg|_{t=0} = \langle f - p, q \rangle.$$

Optimality Conditions

Theorem The polynomial p is a solution of the minimization problem

$$\min_{p \in P_n} \|f - p\| .$$

if and only if we have $\langle f-p,q\rangle=0$ for all $q\in P_n$.

Proof:

Step 2: The other way around, if p satisfies $\langle f-p,q\rangle=0$ for all $q\in P_n$, we have

$$||f - p||^2 = \langle f - p, f - q \rangle + \underbrace{\langle f - p, q - p \rangle}_{=0} \le ||f - p|| \, ||f - q||$$

and thus $\|f-p\| \leq \min_{q \in P_n} \|f-q\|$, i.e., p is a minimizer. \square

In the following, we check that the Gauss problem has at most one solution:

If two functions $p_1, p_2 \in P_n$ satisfy the optimality condition

$$\langle f - p_1, q \rangle = \langle f - p_2, q \rangle = 0$$
 for all $q \in P_n$

we also have $\langle p_1 - p_2, q \rangle = 0$. Thus, for $q = p_1 - p_2$, we find

$$||p_1 - p_2|| = 0 ,$$

which implies $p_1 = p_2$.

Proving existence is a bit more difficult; we will come back to it later...

In the following, we check that the Gauss problem has at most one solution:

If two functions $p_1, p_2 \in P_n$ satisfy the optimality condition

$$\langle f - p_1, q \rangle = \langle f - p_2, q \rangle = 0$$
 for all $q \in P_n$,

we also have $\langle p_1 - p_2, q \rangle = 0$. Thus, for $q = p_1 - p_2$, we find

$$||p_1 - p_2|| = 0 ,$$

which implies $p_1 = p_2$.

Proving existence is a bit more difficult; we will come back to it later...

In the following, we check that the Gauss problem has at most one solution:

If two functions $p_1, p_2 \in P_n$ satisfy the optimality condition

$$\langle f - p_1, q \rangle = \langle f - p_2, q \rangle = 0$$
 for all $q \in P_n$,

we also have $\langle p_1 - p_2, q \rangle = 0$. Thus, for $q = p_1 - p_2$, we find

$$||p_1 - p_2|| = 0 ,$$

which implies $p_1 = p_2$.

Proving existence is a bit more difficult; we will come back to it later...

In the following, we check that the Gauss problem has at most one solution:

If two functions $p_1, p_2 \in P_n$ satisfy the optimality condition

$$\langle f - p_1, q \rangle = \langle f - p_2, q \rangle = 0$$
 for all $q \in P_n$,

we also have $\langle p_1-p_2,q\rangle=0.$ Thus, for $q=p_1-p_2,$ we find

$$||p_1 - p_2|| = 0 ,$$

which implies $p_1 = p_2$.

Proving existence is a bit more difficult; we will come back to it later...

Contents

Problem Formulation

Gram-Schmidt Algorithm

Orthogonal Polynomials

Solution of Gauss' Approximation Problem

Let's recall some basic linear algebra:

Assume we have k vectors $a_1, \ldots, a_k \in \mathbb{R}^n$. Gram-Schmidt's algorithm can be used to check for linear independence:

Gram-Schmidt Algorithm:

For $i = 1, \ldots, k$

- Orthogonalization. $\overline{q}_i = a_i \langle q_1, a_i \rangle q_1 \ldots \langle q_{i-1}, a_i \rangle q_{i-1}$
- Test for dependence. If $\overline{q}_i = 0$, quit.
- Normalization. $q_i = \frac{\overline{q}_i}{\|\overline{q}_i\|}$

If the algorithm does not quit, the vectors a_i are linearly independent

Let's recall some basic linear algebra:

Assume we have k vectors $a_1, \ldots, a_k \in \mathbb{R}^n$. Gram-Schmidt's algorithm can be used to check for linear independence:

Gram-Schmidt Algorithm:

For i = 1, ..., k:

- Orthogonalization. $\overline{q}_i = a_i \langle q_1, a_i \rangle q_1 \ldots \langle q_{i-1}, a_i \rangle q_{i-1}$.
- \bullet Test for dependence. If $\overline{q}_i=0$, quit.
- Normalization. $q_i = \frac{\overline{q}_i}{\|\overline{q}_i\|}$.

If the algorithm does not quit, the vectors a_i are linearly independent.

The Gram-Schmidt Algorithm computes the vectors q_1, \ldots, q_k . These vectors are orthonormal. This can be proven by induction:

- The vector $q_1 = \frac{a_1}{\|a_1\|}$ is normalized.
- Assume the vectors q_1, \ldots, q_{i-1} are already orthonormal. Then, then vector \overline{q}_i satisfies

$$\begin{array}{rcl} \langle \overline{q}_i, q_j \rangle & = & \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \langle q_k, q_j \rangle \\ & = & \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \delta_{k,j} = 0 \end{array}$$

for all $j \in \{1, \dots, i-1\}$, i.e., the vectors q_1, \dots, q_i are orthonormal

The Gram-Schmidt Algorithm computes the vectors q_1, \ldots, q_k . These vectors are orthonormal. This can be proven by induction:

- The vector $q_1 = \frac{a_1}{\|a_1\|}$ is normalized.
- Assume the vectors q_1,\ldots,q_{i-1} are already orthonormal. Then, the vector \overline{q}_i satisfies

$$\begin{array}{rcl} \langle \overline{q}_i, q_j \rangle & = & \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \langle q_k, q_j \rangle \\ & = & \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \delta_{k,j} = 0 \end{array}$$

for all $j \in \{1, \dots, i-1\}$, i.e., the vectors q_1, \dots, q_i are orthonormal.

The Gram-Schmidt Algorithm computes the vectors q_1, \ldots, q_k . These vectors are orthonormal. This can be proven by induction:

- The vector $q_1 = \frac{a_1}{\|a_1\|}$ is normalized.
- Assume the vectors q_1,\dots,q_{i-1} are already orthonormal. Then, the vector \overline{q}_i satisfies

$$\langle \overline{q}_i, q_j \rangle = \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \langle q_k, q_j \rangle$$
$$= \langle a_i, q_j \rangle - \sum_{k=1}^{i-1} \langle q_k, a_i \rangle \delta_{k,j} = 0$$

for all $j \in \{1, \dots, i-1\}$, i.e., the vectors q_1, \dots, q_i are orthonormal.

Contents

Problem Formulation

Gram-Schmidt Algorithm

Orthogonal Polynomials

Solution of Gauss' Approximation Problem

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle\cdot,\cdot\rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$

$$q_1(x) = \sqrt{\frac{3}{2}}x.$$

$$q_2(x) = \sqrt{\frac{5}{8}(3x^2 - 1)}$$
.

0 ..

•
$$q_n(x)=\sqrt{\frac{2n+1}{2}}\frac{1}{2^nn!}\frac{\partial^n}{\partial x^n}\left(x^2-1\right)^n$$
 . (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

...

•
$$q_n(x) = \sqrt{\frac{2n+1}{2}} \frac{1}{2^n n!} \frac{\partial^n}{\partial x^n} (x^2 - 1)^n$$
. (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

· ...

•
$$q_n(x)=\sqrt{rac{2n+1}{2}}rac{1}{2^nn!}rac{\partial^n}{\partial x^n}\left(x^2-1
ight)^n$$
 . (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

...

•
$$q_n(x) = \sqrt{\frac{2n+1}{2}} \frac{1}{2^n n!} \frac{\partial^n}{\partial x^n} (x^2 - 1)^n$$
. (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

...

•
$$q_n(x) = \sqrt{\frac{2n+1}{2}} \frac{1}{2^n n!} \frac{\partial^n}{\partial x^n} (x^2 - 1)^n$$
. (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

o ...

•
$$q_n(x)=\sqrt{rac{2n+1}{2}rac{1}{2^nn!}rac{\partial^n}{\partial x^n}\left(x^2-1
ight)^n}$$
 . (Exercise)

The Gram-Schmidt Algorithm can be generalized for any Hilbert space. In particular, we can apply it to functions, where $\langle \cdot, \cdot \rangle$ denotes the L_2 scalar product on the interval [-1,1].

Example: Start with $a_0(x) = 1$, $a_1(x) = x$, $a_2(x) = x^2$, ..., $a_n = x^n$:

•
$$q_0(x) = \sqrt{\frac{1}{2}}$$
.

•
$$q_1(x) = \sqrt{\frac{3}{2}}x$$
.

•
$$q_2(x) = \sqrt{\frac{5}{8}}(3x^2 - 1).$$

o ...

•
$$q_n(x)=\sqrt{\frac{2n+1}{2}}\frac{1}{2^nn!}\frac{\partial^n}{\partial x^n}\left(x^2-1\right)^n$$
 . (Exercise)

Legendre Polynomials

The orthogonal polynomials

$$L_n(x) = \frac{1}{2^n n!} \frac{\partial^n}{\partial x^n} (x^2 - 1)^n.$$

are called Legendre polynomials. They satisfy

$$\langle L_i, L_j \rangle = \frac{2}{2i+1} \delta_{i,j}$$

by construction.

Contents

Problem Formulation

Gram-Schmidt Algorithm

Orthogonal Polynomials

Solution of Gauss' Approximation Problem

Solution of Gauss' Approximation Problem

We represent the polynomial p with respect to orthonal basis functions q_0,\ldots,q_n ,

$$p(x) = \sum_{i=0}^{n} c_i q_i(x) .$$

The coefficients c_0, \ldots, c_n can be found by substituting the orthogonal polynomials in the optimality condition

$$\forall q \in P_n, \qquad \langle f - p, q \rangle = 0.$$

This yields

$$c_i = \langle p, q_i \rangle = \langle f, q_i \rangle$$

for all $i \in \{1, \dots, n\}$.

Summary

 \bullet Gauss' approximation problem is to find polynomials $p \in P_n$, which solve

$$\min_{p \in P_n} \|f - p\|$$

for a given (L_2 -integrable) function f.

• Gram Schmidt algorithm can be used to construct orthogonal polynomials $q_0,\ldots,q_n\in P_n$, which satisfy

$$\langle p_i, p_j \rangle = \delta_{i,j}$$
.

• The solution polynomial p is unique and can be written in the form $p(x) = \sum_{i=0}^{n} c_i q_i(x)$. Here, the coefficients c_0, \dots, c_n are given by

$$\forall i \in \{0,\ldots,n\}, \qquad c_i = \langle p,q_i \rangle = \langle f,q_i \rangle.$$