Практическое задание №4. Настройка службы DHCP и статического NAT

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
Шлюз	G0/0	192.168.1.1	255.255.255.0	N/A
	G0/1	209.165.201.18	255.255.255.252	N/A
ISP	G0/0	209.165.201.17	255.255.255.252	N/A
	G0/1	192.31.7.1	255.255.255.0	N/A
PC-A (смоделированный Web и DNS сервер)	NIC	192.168.1.20	255.255.255.0	192.168.1.1
РС-В	NIC	DHCP	DHCP	DHCP
PC-C	NIC	192.31.7.2	255.255.255.0	192.31.7.1

Задачи

- Часть 1. Построение сети и проверка подключения
- Часть 2. Выполнение настройки DHCPv4-сервера
- Часть 3. Настройка и проверка статического преобразования NAT

Исходные данные/Сценарий

Преобразование сетевых адресов (NAT) — это процесс, при котором сетевое устройство, например маршрутизатор Cisco, назначает публичный адрес узловым устройствам в пределах частной сети. NAT используют для того, чтобы сократить количество публичных IP-адресов, используемых организацией, поскольку количество доступных публичных IPv4-адресов ограничено.

Согласно сценарию данной лабораторной работы интернет-провайдер выделил для компании пространство публичных IP-адресов 209.165.200.224/27. В результате компания получила 30 публичных IP-адресов. Адреса от 209.165.200.225 до 209.165.200.241 подлежат статическому распределению, а адреса от 209.165.200.242 до 209.165.200.254 — динамическому распределению. Статический маршрутом является путь от интернет-провайдера до шлюзового маршрутизатора, в то время как маршрут по умолчанию представлен в качестве пути от шлюза до маршрутизатора интернет-провайдера. Подключение интернет-провайдера к Интернету смоделировано loopback-адресом на маршрутизаторе интернет-провайдера.

Часть 1: Построение сети и проверка подключения

Шаг 1: Подключите кабели в сети в соответствии с топологией.

Подключите устройства в соответствии с топологией и проведите все необходимые кабели.

- **Шаг 2:** Настройте узлы ПК (РС-А и РС-С), имеющие статические адреса соласно таблицы адресации.
- Шаг 3: Выполните включение и нициализацию маршрутизаторов и коммутаторов.
- Шаг 4: Настройте базовые параметры каждого маршрутизатора.
 - а. Настройте IP-адреса для маршрутизаторов, указанных в таблице адресации.
 - b. Присвойте имена устройствам в соответствии с топологией.

Шаг 5: Настройте статическую маршрутизацию.

а. Создайте статический маршрут от маршрутизатора интернет-провайдера до маршрутизатора шлюза, используя диапазон назначенных публичных сетевых адресов 209.165.200.224/27.

```
ISP(config) # ip route 209.165.200.224 255.255.255.224 209.165.201.18
```

b. Создайте маршрут по умолчанию от маршрутизатора Gateway к маршрутизатору ISP.

Gateway(config) # ip route 0.0.0.0 0.0.0.0 209.165.201.17

Шаг 6: Проверьте сетевое соединение.

- а. С узлов РС-А и РС-С отправьте эхо-запросы на интерфейсы соответствующих шлюзовых маршрутизаторов. Выявите и устраните неполадки, если эхо-запрос не проходит.
- b. Отобразите таблицы маршрутизации на обоих маршрутизаторах, чтобы убедиться, что статические маршруты содержатся в таблице маршрутизации и правильно настроены на обоих маршрутизаторах.

Часть 2: Настройка DHCPv4-сервера

Для того чтобы автоматически назначить адресную информацию в сети, вам необходимо настроить маршрутизатор R1 в качестве сервера DHCPv4.

Выполните настройку сервера DHCPv4 на маршрутизаторе Gateway.

На маршрутизаторе R1 необходимо создать пул DHCP-адресов локальной сети.. Используйте имя **R1G1** для интерфейса G0/1 LAN. Также вам нужно исключить адреса, которые не будут назначаться из пула адресов. Исключать адреса рекомендуется в первую очередь, чтобы предотвратить их случайную аренду для других устройств.

В строках ниже приведены команды, необходимые для настройки служб DHCP на маршрутизаторе R1, включая те, что требуются для исключения DHCP-адресов и создания пулов DHCP.

R1(config) # ip dhcp excluded-address 192.168.1.1 192.168.1.20

```
R1(config) # ip dhcp pool R1G1
R1(dhcp-config) # network 192.168.1.0 255.255.255.0
R1(dhcp-config) # default-router 192.168.1.1
R1(dhcp-config) # dns-server 192.31.17.2
R1(dhcp-config) # exit
```

На PC-В выберите режим автоматического получения IP - адреса.

Шаг 1: Запишите IP-параметры для компьютера PC-B.

На компьютере PC-B выполните команду **ipconfig /all**, чтобы убедиться, что компьютер получил информацию об IP-адресах от DHCP-сервера маршрутизатора R1. Запишите выделенный IP- адрес, а также IP- адрес шлюза **и** IP- адресDNS сервера.

Шаг 2: Проверьте работу служб DHCP и аренды адресов на маршрутизаторе R1.

а. На маршрутизаторе R1 выполните команду **show ip dhcp binding**, чтобы просмотреть список арендованных DHCP адресов.

Какая другая полезная информация для идентификации пользователя содержится в выходных данных, помимо арендованных IP-адресов?

b. На маршрутизаторе R1 выполните команду **show ip dhcp show statistics**, чтобы отобразить статистику пула DHCP и активность сообщений.

Сколько типов сообщений DHCP представлено в выходных данных?

с. На маршрутизаторе R1 выполните команду **show ip dhcp pool**, чтобы просмотреть настройки пула DHCP.

К чему относится показатель Current в выходных данных команды show ip dhcp pool?

- d. На маршрутизаторе R1 выполните команду **show run | section dhcp**, чтобы просмотреть конфигурацию DHCP в текущей конфигурации.
- e. На маршрутизаторе R1 выполните команду show run interface для интерфейсов G0/0 и G0/1, чтобы просмотреть настройки ретранслятора DHCP в текущей конфигурации.

Часть 3: Настройка и проверка статического преобразования NAT

Статический NAT использует сопоставление локальных и глобальных адресов по схеме «один к одному». Метод статического преобразования сетевых адресов особенно полезен для веб-серверов или устройств, которые должны иметь постоянный адрес, доступный из Интернета — например, для веб-сервера компании.

Шаг 1: Настройте статическое сопоставление.

Настроенная статическая привязка позволяет маршрутизатору осуществлять трансляцию адресов между частным внутренним адресом сервера 192.168.1.20 и публичным адресом 209.165.200.225. Благодаря этому пользователь может получить доступ к компьютеру РС-А через Интернет. Компьютер РС-А моделирует сервер или устройство с постоянным адресом, к которому можно получить доступ через Интернет.

Gateway(config) # ip nat inside source static 192.168.1.20 209.165.200.225

Шаг 2: Задайте интерфейсы.

Выполните команды ip nat inside и ip nat outside на интерфейсах.

```
Gateway(config)# interface g0/0
Gateway(config-if)# ip nat inside
Gateway(config-if)# interface g0/1
Gateway(config-if)# ip nat outside
```

Шаг 3: Проверьте конфигурацию.

a. Отобразите таблицу статических преобразований NAT с помощью команды **show ip nat translations**.

Gateway# show ip nat translations Pro Inside global Inside local Outside local Outside global --- 209.165.200.225 192.168.1.20 --- -- Во что был преобразован внутренний адрес локального узла? 192.168.1.20 = _____ Кем назначен внутренний глобальный адрес? Кем назначен внутренний локальный адрес?

b. Из компьютера PC-A отправьте эхо-запрос на компьютер PC -C (192.31.7.2) интернет-провайдера. Если эхо-запрос прошёл неудачно, найдите и устраните проблемы. На шлюзовом маршрутизаторе (Gateway) отобразите таблицу NAT.

```
Gateway# show ip nat translations
```

	209 165 200 225	192 168 1 20		
icm	p 209.165.200.225:1	192.168.1.20:1	192.31.7.2:1	192.31.7.2:1
Pro	Inside global	Inside local	Outside local	Outside global

Когда компьютер PC-A отправил ICMP-запрос (эхо-запрос) на адрес интернет-провайдера 192.31.7.2, в таблицу была добавлена запись NAT, где ICMP указан в виде протокола.

Какой номер порта использовался в данном обмене ICMP?

- с. На компьютере PC-C в настройках IP- адресов установите IP- адрес DNS сервера 209.165.200.225 (адрес статического NAT).
- d. На сервере PC-A в разделе службы включите поддержку служб HTTP и DNS. В базу службы DNS добавьте запись о ресурсах типа A : 1)имени Cisco.com соответствует адрес 209.168.200.225 На компьютере PC-C в браузере наберите имя web страницы Cisco.com.
- е. При правильной настройке сети отобразится внутренняя страница Cisco.
- f. Отобразите таблицу NAT на шлюзе (Gateway).
 - . Gateway# show ip nat translations

```
Pro Inside global Inside local Outside local Outside global udp 209.165.200.225:53 192.168.1.20:53 192.31.7.2:1045 192.31.7.2:1045 --- 209.165.200.225 192.168.1.20 --- --- tcp 209.165.200.225:80 192.168.1.20:80 192.31.7.2:1026 192.31.7.2:1026 tcp 209.165.200.225:80 192.168.1.20:80 192.31.7.2:1027 192.31.7.2:1027 tcp 209.165.200.225:80 192.168.1.20:80 192.31.7.2:1028 192.31.7.2:1028
```

tcp 209.165.200.225:80 192.168.1.20:80	192.31.7.2:1029	192.31.7.2:1029
tcp 209.165.200.225:80 192.168.1.20:80	192.31.7.2:1030	192.31.7.2:
Какой протокол использовался для этог	о преобразования	1?
Укажите номера используемых портов.		
Внутренний глобальный/локальный:	· · · · · · · · · · · · · · · · · · ·	
Внешний глобальный/локальный:	 	

Обратите внимание, что внешний локальный и внешний глобальный адреса совпадают. Этот адрес — адрес источника удалённой сети интернет-провайдера. Для успешной отправки эхозапроса от интернет-провайдера, внутренний глобальный статический NAT-адрес 209.165.200.225 был преобразован во внутренний локальный адрес компьютера PC-A. (192.168.1.20).

g. Проверьте статистику NAT, выполнив команду **show ip nat statistics** на шлюзовом маршрутизаторе (Gateway).

Gateway# show ip nat statistics

Шаг 4: Настройте динамический NAT.

Используя команды настроить динамическое преобразование для других узлов частной сети из диапазона выделенных глобальных адресов 209.165.200.242 до 209.165.200.254

Пошаговая настройка динамического NAT

Пошаговая настройка динамического NAT				
Шаг 1	Задайте пул глобальных адресов, используемый для преобразования. ip nat pool name start-ip end-ip {netmask netmask prefix-length}			
Шаг 2	Hастройте стандартный список доступа, позволяющий адреса, которые должны быть преобразованы. access-list access-list-number permit source [source-wildcard]			
Шаг 3	Установите динамическое преобразование источника, задав список доступа и пул, определённые в предыдущих шагах. ip nat inside source list access-list-number pool name			
Шаг 4	Задайте внутренний интерфейс. interface type number ip nat inside			
Шаг 5	Задайте внешний интерфейс. interface type number ip nat outside			

- Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255
- Router(config)#ip nat pool dynamic_NAT 209.165.200.242 209.165.200.254 netmask 255.255.255.224
- Router(config)#ip nat inside source list 1 pool dynamic_NAT
- Router(config)#interface g0/0
- Router(config-if)#ip nat inside
- Router(config-if)#interface g0/1

- Router(config-if)#ip nat outside
- а. На сервере PC-C в разделе службы включите поддержку служб HTTP и DNS. В базу службы DNS добавьте запись о ресурсах типа A : 1)имени Cisco1.com соответствует адрес 192.31.17.2

b.

- с. На компьютере PC-В в браузере наберите имя web страницы Cisco1.com. При правильной настройке сети отобразится внутренняя страница Cisco.
- d. Отобразите и поясните NAT таблицу для динамического преобразования.

Вопросы на закрепление

- 1. Зачем нужно использовать NAT в сети?
- 2. Принцип работы NAT
- 3. Отличие статического, динамического NAT и PAT
- 4. Cone NAT, Address-Restricted cone MAT, Port-Restricted cone NAT, Symmetric NAT
- 5. Приведите способы с помощью которых можно обратиться к узлу за NAT из внешней сети
- 6. Достоинства и недостатки NAT.
- 7. Приведите основные этапы работы протокола DHCPv4
- 8. Особенности функционирования протоколов динамического назначения IPv6-адресов: SLAAC, SLAAC+DHCPv6, DHCPv6.
- 9. Работа протокола NDP

Порядок выполнения работы:

- 1. Настроить сеть по приведенной в задании топологии используя IP- адреса согласно варианта из таблицы.
- 2. Статический адрес внутреннему серверу частной сети задать фиксированным из списка исключенных IP-адресов и настроить для него статический NAT из блока публичных адресов, выделенных компании.
- 3. Для других узлов **частной** сети адрес раздать динамически с помощью протокола DHCP и настроить динамическое NAT- преобразование для оставшихся (после выделения блока статических адресов) публичных адресов.

Индивидуальное задание к практической работе № 4

№ п/п	IP – адрес сети LAN(внутренний, серый)	DHCP - pool	Кол-во DNS - сервер ов	IP - адрес сети WAN(между роутерами)	Публичный адрес сети для NAT
1	192.168.50.0/26	Искл. 1-пер/5-посл	1	209.165.201.100/30	209.165.200.224/27

2	192.168.50.64/26	Искл. 5-пер/1-посл	1	209.165.201.104/30	209.166.200.224/27
3	192.168.50.128/26	Искл. 5-пер/5-посл	1	209.165.201.108/30	209.167.200.224/27
4	192.168.50.192/26	Искл. 0-пер/10-посл	1	209.165.201.112/30	209.168.200.224/27
5	192.168.100.0/24	Искл. 10-пер/10-посл	1	209.165.201.116/30	209.169.200.224/27
6	10.0.0.0/8	8192-посл. адреса	1	209.165.201.120/30	209.170.200.224/27
7	10.64.0.0/10	8192-перв. адреса	1	209.165.201.124/30	209.171.200.224/27
8	10.80.0.0/12	4096-посл. адреса	1	209.165.201.128/30	209.172.200.224/27
9	10.84.0.0/14	4096-перв. адреса	1	209.165.201.132/30	209.173.200.224/27
10	172.20.0.0/16	2048-посл. адреса	1	209.165.201.136/30	209.174.200.224/27
11	172.20.64.0/18	2048-перв. адреса	1	209.165.201.140/30	209.175.200.224/27
12	172.20.80.0/20	1024-посл. адреса	1	209.165.201.144/30	209.176.200.224/27
13	172.20.84.0/22	256-посл. адреса	1	209.165.201.148/30	209.177.200.224/27
14	172.27.128.0/17	512-посл. адреса	1	209.165.201.152/30	209.178.200.224/27
15	172.27.160.0/19	512-перв. адреса	1	209.165.201.156/30	209.179.200.224/27
16	172.27.168.0/21	256-перв. адреса	1	209.165.201.160/30	209.180.200.224/27
17	172.27.170.0/23	128-перв. адреса	1	209.165.201.164/30	209.181.200.224/27
18	10.128.0.0/9	8192-перв. адреса	1	209.165.201.168/30	209.182.200.224/27
19	10.160.0.0/11	4096-перв. адреса	1	209.165.201.172/30	209.183.200.224/27
20	10.168.0.0/13	2048-перв. адреса	1	209.165.201.176/30	209.184.200.224/27
21	10.170.0.0/15	1024-перв. адреса	1	209.165.201.180/30	209.185.200.224/27
22	192.168.150.0/27	Искл. 7-пер/0-посл	1	209.165.201.184/30	209.186.200.224/27
23	192.168.150.32/27	Искл. 0-пер/7-посл	1	209.165.201.188/30	209.187.200.224/27
24	192.168.150.64/27	Искл. 1-пер/5-посл	1	209.165.201.192/30	209.188.200.224/27
25	192.168.150.96/27	Искл. 5-пер/1-посл	1	209.165.201.196/30	209.189.200.224/27
26	192.168.150.128/27	Искл. 3-пер/3-посл	1	209.165.201.200/30	209.190.200.224/27
27	192.168.150.160/27	Искл. 2-пер/5-посл	1	209.165.201.204/30	209.191.200.224/27
28	192.168.150.192/27	Искл. 5-пер/2-посл	1	209.165.201.208/30	209.192.200.224/27
29	192.168.150.224/27	Искл. 10-пер/0-посл	1	209.165.201.212/30	209.193.200.224/27
30	192.168.200.0/24	Искл. 5-пер/7-посл	1	209.165.201.216/30	209.194.200.224/27