

Maths for Computer Science Calculus

Prof. Magnus Bordewich

Functions and limits

Limits of functions

A function $f: \mathbb{R} \to \mathbb{R}$ is said to tend to the limit L as x tends to a if, and only if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that:

 $\forall x$: $0 < |x - a| < \delta$ we have $|f(x) - L| < \epsilon$.

Connecting sequences and functions

Let f(x) be a function defined on some real interval (a,b), and let $\{x_n\}$ be a sequence of real values such that $\lim_{n\to\infty}x_n=\alpha\in(a,b)$.

Then $\lim_{x\to \alpha} f(x) = L$ exists if and only if for every such sequence $\{x_n\}$ the sequence $\{f(x_n)\}$ converges to the limit L.

Limits of functions

For "nice" functions this may all seem redundant.

E.g.
$$f(x) = x^3 - 2x^2 + 4$$

$$f(2) = 8 - 8 + 4 = 4$$

As $x \to 2$ from below, $f(x)$
gets smoothly closer and
closer to 4. Likewise, as
 $x \to 2$ from above, $f(x)$

gets smoothly closer and

We say $\lim_{x\to 2} f(x) = 4$.

closer to 4.

But what do we mean by a "nice" function?

Limits of functions

E.g.
$$f(x) = \frac{\sqrt{x}-1}{x-1}$$
, for $x \neq 1$.

We can rewrite f(x) as $f(x) = \frac{\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+1)} = \frac{1}{\sqrt{x}+1}$. from which it is clear that $\lim_{x\to 1} f(x) = \frac{1}{2}$,

even though f(1) is not even defined.

Note that the definition of the limit at a is about the behaviour of f close to a but not actually at a.

E.g. we could define
$$f(x) = \begin{cases} \frac{\sqrt{x}-1}{x-1}, & x \neq 1 \\ 5, & x = 1 \end{cases}$$
 then $\lim_{x \to 1} f(x) = \frac{1}{2} \neq f(1)$.

An important limit

Consider $f(x) = \frac{\sin(x)}{x}$ as $x \to 0$.

Clearly the area of PQR is larger than the area of the segment PSR which is larger than the area of the triangle PSR:

 $\frac{1}{2} \tan x > \frac{1}{2} x > \frac{1}{2} \sin x$

(x is in radians)

Hence $1/\cos x > x/\sin x > 1$.

As x tends to zero $1/\cos x$ tends to 1, so $x/\sin x$ is squeezed between two things both tending to 1 and must converge to 1.

Therefore $\sin x/x$ also tends to 1.

General squeezing theorem

Let $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ be sequences such that $\lim_{n\to\infty}u_n=L=\lim_{n\to\infty}v_n$ and $u_i\leq w_i\leq v_i$ for all i.

Then $\lim_{n\to\infty} w_n = L$ also.

Let f, g and h be functions such that $\lim_{x \to a} f(x) = \alpha = \lim_{x \to a} g$ and $f(x) \le h(x) \le g(x)$ for all x some neighbourhood of a.

Then $\lim_{x \to a} h(x) = \alpha$ also.

Limits: arithmetic

Let $\{u_n\}$ and $\{v_n\}$ be sequences such that $\lim_{n\to\infty}u_n=L$ and $\lim_{n\to\infty}v_n=M$.

Then

- $\{u_n + v_n\}$ is a sequence such that $\lim_{n \to \infty} (u_n + v_n) = L + M$.
- $\{u_nv_n\}$ is a sequence such that $\lim_{n\to\infty}(u_nv_n)=LM$.
- $\left\{\frac{u_n}{v_n}\right\}$ is a sequence such that, provided $M \neq 0$, $\lim_{n \to \infty} \left(\frac{u_n}{v_n}\right) = \frac{L}{M}$.

One sided limits of functions

We could have a perfectly valid function that has a break in it.

E.g.
$$f(x) = \begin{cases} \frac{\sqrt{x}-1}{x-1}, & x < 1 \\ 5, & x = 1 \\ x^2, & x > 1 \end{cases}$$

then the limit as x approaches 1 from below is different from the limit as x approaches 1 from above. And both are different from f(1).

We write $\lim_{x\to 1^-} f(x) = \frac{1}{2}$, $\lim_{x\to 1^+} f(x) = 1$ for the limits 'from below' and 'above'.

One sided limits of functions

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a left hand limit L_- as x tends to a from below if, and only if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that:

$$\forall x$$
: $0 < a - x < \delta$ we have $|f(x) - L_-| < \epsilon$.

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a right hand limit L_+ as x tends to a from above if, and only if, for any $\epsilon > 0$, there exists a $\delta > 0$ such that:

$$\forall x : 0 < x - a < \delta \text{ we have } |f(x) - L_+| < \epsilon.$$

Continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is said be continuous at x = a if

a)
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$
, and

b) f(a) = L.

A function $f: \mathbb{R} \to \mathbb{R}$ is said be continuous on an interval (a, b) if it is continuous at all points in the interval.

Example: $f(x) = \frac{\sqrt{x}-1}{x-1}$, for $x \neq 1$.

Continuous on (0,1) and on $(1,\infty)$. Since $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = \frac{1}{2}$, we can define $f(1) = \frac{1}{2}$ and then f(x) is continuous on $(0,\infty)$.

This is called a removable discontinuity.

Continuity

A function $f: \mathbb{R} \to \mathbb{R}$ is said be continuous at x = a if

a)
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L$$
, and

b) f(a) = L.

A function $f: \mathbb{R} \to \mathbb{R}$ is said be continuous on an interval (a, b) if it is continuous at all points in the interval.

Example: f(x) = |x|. Continuous on $(-\infty, \infty)$. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 0$, and f(0) = 0.

Example:
$$g(x) = \frac{d|x|}{dx}$$
. I.e. $g(x) = \begin{cases} -1, & x < 0 \\ undefined, & x = 0 \\ 1, & x > 0 \end{cases}$

Continuous everywhere except x = 0. $\lim_{x \to 0^-} g(x) = -1 \neq 1 = \lim_{x \to 0^+} g(x)$.

So this is **not** removable.

Continuity and limit arithmetic

Let f and g be functions such that $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$.

Then

- $\lim_{x \to a} (f(x) + g(x)) = L + M.$
- $\lim_{x \to a} (f(x)g(x)) = LM.$
- Provided $M \neq 0$, $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{M}$.

Let f and g be functions continuous at x = a.

Then

• (f(x) + g(x)), f(x)g(x), and, provided $M \neq 0, \frac{f(x)}{g(x)}$ are continuous at x = a.

Intermediate Value Theorem

Let f(x) be a function that is **continuous** on an interval (a, b), then for any value v that lies between f(a) and f(b), there is some value $x^* \in (a, b)$ such that $f(x^*) = v$.

Proof: Consider the point $x_1 = \frac{1}{2}(a+b)$. If $f(x_1) = v$ we are done. If not, either v is between f(a) and $f(x_1)$ or it is between $f(x_1)$ and f(b). In the former case define $a_1 = a$, $b_1 = x_1$, in the latter, $a_1 = x_1$, $b_1 = b$.

Now f is continuous on (a_1,b_1) and v that lies between $f(a_1)$ and $f(b_1)$. We repeat the process for intervals $(a_2,b_2),(a_3,b_3),...$ and observe that $\{a_n\}$ is an increasing sequence bounded above and $\{b_n\}$ is a decreasing sequence bounded below. Also $\{(b_n-a_n)\}$ converges to 0, so

$$\lim_{n \to \infty} \{a_n\} = x^* = \lim_{n \to \infty} \{b_n\}, \text{ and } \lim_{n \to \infty} f(a_n) = \lim_{n \to \infty} f(b_n) = f(x^*).$$

Since v is between $f(a_n)$ and $f(b_n)$ for all n, $f(x^*) = v$.

Limit at $\pm \infty$

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a limit L as x tends to $+\infty$ if and only if for any $\epsilon > 0$, there exists a N > 0 such that:

$$\forall x : N < x \text{ we have } |f(x) - L| < \epsilon.$$

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a limit L as x tends to $-\infty$ if and only if for any $\epsilon > 0$, there exists a N < 0 such that:

$$\forall x : x < N \text{ we have } |f(x) - L| < \epsilon.$$

Example:
$$f(x) = \left(4 - \frac{1}{x}\right)$$
 we say $\lim_{x \to \infty} \left(4 + \frac{1}{x}\right) = 4$.

Limit of $\pm \infty$

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a limit $+\infty$ at x = a if and only if for any N > 0, there exists a $\delta > 0$ such that:

$$\forall x$$
: $0 < |a - x| < \delta$ we have $f(x) > N$.

A function $f: \mathbb{R} \to \mathbb{R}$ is said to have a limit $-\infty$ at x = a if and only if for any N > 0, there exists a $\delta > 0$ such that:

$$\forall x$$
: $0 < |a - x| < \delta$ we have $f(x) < -N$.

Example:
$$f(x) = \left(4 - \frac{1}{x}\right)$$
 we say $\lim_{x \to 0^+} \left(4 + \frac{1}{x}\right) \to \infty$, $\lim_{x \to 0^-} \left(4 + \frac{1}{x}\right) \to -\infty$.

