Applied Data Analysis (CS401)

Lecture 5
Regression for disentangling data 18 Oct 2023

Robert West

Announcements

- Homework H1 due end of next week
 - Due Fri 27 Oct 23:59
- Project milestone P1 feedback to be released next week
- Final exam has been scheduled: Tue 16 Jan 2024, 15:15–18:15
- Friday's lab session:
 - Quiz 4
 - Exercise on regression analysis (in BCH 2201)
 - Homework office hours (on Zoom, in parallel to exercise)
- Indicative course feedback is being collected (until Sun 22 Oct)

Feedback

Give us feedback on this lecture here:

https://go.epfl.ch/ada2023-lec5-feedback

- What did you (not) like about this lecture?
- What was (not) well explained?
- On what would you like more (fewer) details?
- ...

Course eval ("indicative feedback") open until 22 Oct Go to https://isa.epfl.ch now!

Linear regression

Credits

- Much of the material in this lecture is based on Andrew Gelman and Jennifer Hill's great book "Data Analysis Using Regression and Multilevel/Hierarchical Models", available for free here
- For a neat and gentle written intro to linear regression,
 especially check out chapters 3 and 4

What you should already know about linear regression

POLLING TIME

- "How familiar are you with linear regression?"
- Scan QR code or go to <u>https://web.speakup.info/room/join/66626</u>

Linear regression as you know it

- **Given:** n data points (X_i, y_i) , where X_i is k-dimensional vector of predictors (a.k.a. features) of i-th data point, and y_i is scalar outcome
- **Goal:** find the optimal coefficient vector $\beta = (\beta_1, ..., \beta_k)$ for approximating the y_i 's as a linear function of the X_i 's:

$$y_i = X_i \beta + \epsilon_i$$
 Scalar product (a.k.a. dot product) of 2 vectors $= \beta_1 X_{i1} + \cdots + \beta_k X_{ik} + \epsilon_i$, for $i = 1, \ldots, n$

where ϵ_i are error terms that should be as small as possible

• X_{i1} usually the constant 1 (by def) $\Rightarrow \beta_1$ a constant intercept

Example with one predictor

Linear regression as you know it

- **Given:** n data points (X_i, y_i) , where X_i is k-dimensional vector of predictors (a.k.a. features), and y_i is scalar outcome, of i-th data point
- **Goal:** find the optimal oefficient vector $\beta = (\beta_1, ..., \beta_k)$ for approximating the y's as a linear function of the X's:

$$y_i = X_i \beta + \epsilon_i$$

$$= \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i, \quad \text{for } i = 1, \dots, n$$
 where ϵ_i are error terms that should be as small as possible

• X_{i1} usually the constant $1 \rightarrow \beta_1$ a constant intercept

Optimality criterion: least squares

$$y_i = X_i \beta + \epsilon_i \quad \text{for } i = 1, \dots, n$$

- Intuitively, want errors ϵ_i to be as small as possible
- Technically, want sum of squared errors as small as possible
 - \Leftrightarrow find $\hat{\beta}$ such that we minimize

$$\sum_{i=1}^{n} (y_i - X_i \hat{\beta})^2$$

Use cases of regression

- Prediction: use fitted model to estimate outcome y for a new X not seen during model fitting (if you've seen regression before, then probably in the context of prediction)
- Descriptive data analysis: compare average outcomes across subgroups of data (today!)
- **Causal modeling:** understand how outcome *y* changes when you manipulate predictors *X* (next lecture is about causality, although not primarily using regression)

Regression as comparison of average outcomes

Example with one binary predictor X_i

No Yes

- $X_i = \text{mom_hs} = \text{``Did mother finish high school?''} \subseteq \{0, 1\}$
- y_i = kid_score = child's score on cognitive test \in [0, 140]

$$y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

 $kid_score = 78 + 12 \cdot mom_hs + error$

mean kid score for moms who finished high school: 78 + 12 = 90

One binary predictor X_i : Interpretation of fitted parameters β

$$y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

- Intercept β_1 : mean outcome for data points *i* with $X_i = 0$
- Slope β_2 : difference in mean outcomes between data points with $X_i = 1$ and data points with $X_i = 0$
- Reason: means minimize least-squares criterion: $\sum_{i=1}^{n} (y_i m)^2 \text{ is minimized w.r.t. } m \text{ when}$ $-2 \sum_{i=1}^{n} (y_i m) = 0, \text{ i.e., when } m = (1/n) \sum_{i=1}^{n} y_i$

One binary predictor X_i : Interpretation of fitted parameters β

$$y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

- Intercept β_1 : mean outcome for data points *i* with $X_i = 0$
- Slope β_2 : difference in mean outcomes between data points

with $X_i = 1$ and data points with $X_i = 0$

• Reason: means minimize least-squares criterion:

$$\sum_{i=1}^{n} (y)$$
So why not just compute the two means separately and then compare them?

T1/r What

16

Example with one continuous predictor X_i

- $X_i = \text{mom_iq} = \text{mother's IQ score} \subseteq [70, 140]$
- $y_i = \text{kid_score} = \text{child's score on cognitive test} \subseteq [0, 140]$

$$y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

 $kid_score = 26 + 0.6 \cdot mom_iq + error$

One continuous predictor X_i : Interpretation of fitted parameters β

$$y_i = \beta_1 + \beta_2 X_i + \epsilon_i$$

- Intercept β_1 : estimated mean outcome for data points i with $X_i = 0$
- Slope β_2 : difference in estimated mean outcomes between data points whose X_i 's differ by 1
- Why "estimated"? \rightarrow e.g.,

• NB: for binary predictor, we got "exact" instead of "estimated"

Example with multiple predictors

- $(X_{i1} = 1 = constant)$
- $X_{i2} = \text{mom_hs} = \text{``Did mother finish high school?''} \subseteq \{0, 1\}$
- X_{i3} = mom_iq = mother's IQ score \subseteq [70, 140]
- $y_i = \text{kid_score} = \text{child's score on cognitive test} \subseteq [0, 140]$

$$y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \epsilon_i$$

 $kid_score = 26 + 6 \cdot mom_hs + 0.6 \cdot mom_iq + error$

Example with multiple predictors

 $kid_score = 26 + 6 \cdot mom_hs + 0.6 \cdot mom_iq + error$

Example with interaction of predictors

No Yes

- $X_{i2} = \text{mom_hs} = \text{``Did mother finish high school?''} \subseteq \{0, 1\}$
- $X_{i3} = \text{mom_iq} = \text{mother's IQ score} \subseteq [70, 140]$
- $y_i = \text{kid_score} = \text{child's score on cognitive test} \subseteq [0, 140]$

$$y_i = \beta_1 + \beta_2 X_{i2} + \beta_3 X_{i3} + \beta_4 X_{i2} X_{i3} + \epsilon_i$$

 $kid_score = -11 + 51 \cdot mom_hs + 1.1 \cdot mom_iq - 0.5 \cdot mom_hs \cdot mom_iq + error$

Example with interaction of predictors

kid_score = $-11 + 51 \cdot mom_hs + 1.1 \cdot mom_iq - 0.5 \cdot mom_hs \cdot mom_iq + error$

So why not just compute the two means separately and then compare them?

Mom drives Mom doesn't Mercedes drive Mercedes

Mom drives Mom doesn't Mercedes drive Mercedes

Mom finished high school	avg kid_score	avg kid_score	
Mom didn't finish high school	avg kid_score	avg kid_score	

Mom
finished
high school

Mom
didn't finish
high school

990	10
women	women
10	990
women	women

Mom drives Mom doesn't Mercedes drive Mercedes			1om drives Mercedes	Mom doesn drive Merced	-	
Mom finished high school	avg kid_score	avg kid_score	Mom finished high school	990 women	10 women	
Mom didn't finish high school	avg kid_score	avg kid_score	Mom didn't finish high school	10 women	990 women	

THINK FOR A MINUTE:

What is the mean outcome for Mercedes-driving moms vs. for non-Mercedes-driving moms?

Compare the two means! What does the comparison tell you about the link between Mercedes-driving and kid_score?

(Feel free to discuss with your neighbor.)

- Mean kid score for Mercedes drivers: 0.99 · 90 + 0.01 · 78 ≈ 90
- Mean kid_score for non-Mercedes drivers: 0.01 · 90 + 0.99 · 78 ≈ 78
- But really driving Mercedes makes no difference (for fixed high-school predictor)!
- Root of evil: **correlation** between finishing high school and driving Mercedes
- Regression to the rescue: kid_score = 78 + 12 · mom_hs + 0 · mercedes + error

Mercedes No Mercedes

990	10
women	women
10	990
women	women

Course eval ("indicative feedback") open until 22 Oct Go to https://isa.epfl.ch now!

Quantifying uncertainty

Quantifying uncertainty

• Statistical software gives you more than just coefficients β :


```
Residuals:
```

```
Min
             10 Median
                             30
                                    Max
-52.873 -12.663
                 2.404
                        11.356
                                 49.545
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)25.73154 5.87521 4.380 1.49e-05 ***

(Intercept) mom, hs 5.95012 2.21181 2.690 0.00742 ** 0.56391 0.06057 9.309 < 2e-16 *** mom.iq

0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1 Signif. codes:

Residual standard error: 18.14 on 431 degrees of freedom Adjusted R-squared: 0.2105 Multiple & Squared. 0.2141, F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16

p-value: probability of

estimating such an extreme

coefficient if the true

coefficient were zero

(= null hypothesis)

Residuals and R²

• **Residual** for data point *i*: estimation error on data point *i*:

$$r_i = y_i - X_i \hat{\beta}$$

- Mean of residuals = 0 (total overestimation = total underestimation)

- Variance of residuals
 - = avg squared distance of predicted value from observed value
 - = "unexplained variance"
- Fraction of variance explained by the model:

$$R^2 = 1 - \hat{\sigma}^2 / s_s^2$$

Variance of outcomes *y*

Residuals and R²

Residual for data point *i*: estimation error on data point *i*:

$$r_i = y_i - X_i \hat{\beta}$$

Aha! duals = 0 timation = total underestimation)

^lesiduals

avg squared distance of predicted value from observed value

"unexplained variance".

Fraction of variance explained by the model:

$$R^2 = 1 - \hat{\sigma}^2 / s^2$$

Variance of outcomes y

Coefficient of determination: R^2

$$R^2 = 1 - \hat{\sigma}^2 / s_y^2$$

$$R^2 = 0.147$$

$$R^2 = 0.865$$

Coefficient of determination: R^2

Coefficient of determination: R^2

 $R^2 = 0.67$ everywhere!

Assumptions made in regression modeling

Assumptions for regression modeling

1. Validity:

- a. Outcome measure should accurately reflect the phenomenon of interest
- b. Model should include all relevant predictors
- C. Model should generalize to cases to which it will be applied

Assumptions for regression modeling (2)

2. Linearity:

$$y_i = X_i \beta + \epsilon_i$$

$$= \beta_1 X_{i1} + \dots + \beta_k X_{ik} + \epsilon_i, \quad \text{for } i = 1, \dots, n$$

But very flexible: we require linearity in *predictors* (not necessarily in raw inputs); predictors can be arbitrary functions of raw inputs, e.g.,

- logarithms, polynomials, reciprocals, ...
- interactions (i.e., products) of multiple inputs
- discretization of raw inputs, coded as indicator variables

Assumptions for regression modeling (3)

- Independence of errors: no interaction between data points
- 4. Equal variance of errors5. Normality (Gaussianity) of errors

Transformations of predictors and outcomes

Transformations of predictors

- When we apply linear transformations to predictors, the model remains "equally good":
 - The fitted coefficients may change, but predicted outcomes and model fit (R^2) won't change
- For instance,

```
earnings = -61000 + 51 \cdot \text{height (in millimeters)} + \text{error}
earnings = -61000 + 81000000 \cdot \text{height (in miles)} + \text{error}
```

Mean-centering of predictors

 Compute the mean value of a predictor over all data points, and subtract it from each value of that predictor:

$$X_{ij} \leftarrow X_{ij} - \text{mean}(X_{1i}, \dots, X_{ni})$$

 $X_{ij} \leftarrow X_{ij} - \text{mean}(X_{1j}, ..., X_{nj})$ • \Rightarrow the predictor X_{ij} now has mean 0

After mean-centering of predictors, ...

... you have a convenient interpretation of coefficients β_j of main predictors (i.e., non-interaction predictors):

- j = 1 (i.e., intercept):
 - Estimated mean outcome when each predictor has its mean value
- *j* > 1:
 - Model w/o interactions: estimated mean increase in outcome y for each unit increase in X_{ij}
 Model with interactions: estimated mean increase in
 - O Model with interactions: estimated mean increase in outcome y for each unit increase in X_{ij} when each other predictor has its mean value

Standardization via z-scores

 First mean-center all predictors, then divide them by their standard deviations:

```
X_{ij} \leftarrow [X_{ij} - \text{mean}(X_{1j'}, ..., X_{nj})] / \text{sd}(X_{1j'}, ..., X_{nj})
• Resulting values are called "z-scores"
```

- All predictors now have the same units: distance (in terms of standard deviations) from the mean
- This lets us compare coefficients for predictors with previously incomparable units of measurement, e.g., IQ score vs. earnings in Swiss francs vs. height in centimeters

Logarithmic outcomes

- Practical: makes sense if the outcome y follows a heavy-tailed distribution
- Only works for non-negative outcomes
- Theoretical: turns an additive model into a multiplicative model:

$$\log y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + \dots + \epsilon_i$$

Exponentiating both sides yields

$$y_i = e^{b_0 + b_1 X_{i1} + b_2 X_{i2} + \dots + \epsilon_i}$$

= $B_0 \cdot B_1^{X_{i1}} \cdot B_2^{X_{i2}} \cdot \dots \cdot E_i$

Logarithmic outcomes: Interpreting coefficients

$$y_i = e^{b_0 + b_1 X_{i1} + b_2 X_{i2} + \dots + \epsilon_i}$$

= $B_0 \cdot B_1^{X_{i1}} \cdot B_2^{X_{i2}} \cdots E_i$

- An additive increase of 1 in predictor $X_{.1}$ is associated with a multiplicative increase of $B_1 := \exp(b_1)$ in the outcome
- If $b_1 \approx 0$, we can immediately interpret b_1 (without needing to exponentiate it first to get B_1 !) as the **relative increase** in outcomes, since $\exp(b_1) \approx 1 + b_1$
- E.g., $b_1 = 0.05 \Rightarrow B_1 = \exp(b_1) \approx 1.05$ \Rightarrow "+1 in predictor X_1 " is associated with "+5% in outcome"

Going beyond linear regression for comparing means

Beyond linear regression: generalized linear models

- Logistic regression: binary outcomes
- Poisson regression: non-negative integer outcomes (e.g., counts)

Beyond comparing means; or, A taste of causality: "Difference in differences"

- Two groups: *P*, *S*
- At time 2, group P receives a treatment, group S doesn't
- Question: Did the treatment have an effect? If so, how large was it?
- P and S don't start out the same at time 1
- There is a temporal "baseline effect" even w/o treatment

Beyond comparing means; or, A taste of causality: "Difference in differences" (2)

Elegant linear model with binary predictors:

$$y_{it} = a + b \cdot \text{treated}_i + c \cdot \text{time2}_t + d \cdot (\text{treated}_i \cdot \text{time2}_t) + \text{error}_i$$

- d = treatment effect
- All of this with one single regression!
- You get quantification of uncertainty (significance) for free!

Beyond comparing means; or, A taste of causality: "Difference in differences" (2)

- **d** = treatment effect
- All of this with one single regression!
- You get quantification of uncertainty (significance) for free!

A bonanza of causality: Next lecture!

\$#1t!, my banana is non-linear...

Summary

- Linear regression as a tool for comparing means across subgroups of data
- How? Read group means off from fitted coefficients
- Advantages over plain comparison of means "by hand":
 - Accounting for correlations among predictors
 - Quantification of uncertainty (significance) "for free"
 - Additive vs. multiplicative model: all it takes is a log
- Caveat emptor:
 - Model must be appropriately specified, else nonsense results \rightarrow stay critical, run diagnostics (e.g., R^2 , data viz)

Course eval ("indicative feedback") open until 22 Oct Go to https://isa.epfl.ch now!

Feedback

Give us feedback on this lecture here:

https://go.epfl.ch/ada2023-lec5-feedback

- What did you (not) like about this lecture?
- What was (not) well explained?
- On what would you like more (fewer) details?
- ...

Credits

- Much of the material in this lecture is based on Andrew Gelman and Jennifer Hill's great book "Data Analysis Using Regression and Multilevel/Hierarchical Models", available for free here
- For a neat and gentle written intro to linear regression,
 especially check out chapters 3 and 4

Bonus: Logarithmic outcomes and predictors

Interpretation of coefficient of logarithmic predictor:

- Multiplicative increase by 1% in predictor $X_{.1}$ is associated with a multiplicative increase by b_1 % in the outcome
- Why?
 - \circ $\log(y) = a + b \log(X) \Rightarrow y = \exp(a) * X^b$
 - Multiplying X by a factor c multiplies y by a factor of c^b
 - $c^b \approx 1 + b^*(c-1)$ for $c \approx 1$ (hint: Taylor approximation!)
 - Example when using c = 1.01 (i.e., increase by 1%): $b = 2 \Rightarrow$ increasing X by 1% increases y by 2%