31.5 Lineare Gleichungssysteme und Determinanten

Mit Hilfe des Ranges einer Matrix können wir das Lösbarkeitskriterium für beliebige Lineare Gleichungssysteme $\vec{A}\vec{x}=\vec{b}$ kurz und knapp formulieren

rang(A) =Anzahl lin. unabh. Zeilenvektoren =Anzahl lin. unabh. Spaltenvektoren

A $m \times n$ Matrix (m Gleichungen, n Unbekannte)

$$\mathbf{A}\overrightarrow{x} = \overrightarrow{b}$$
 lösbar $\Leftrightarrow rang(\mathbf{A}) = rang(\mathbf{A}|\overrightarrow{b})$

 \Rightarrow Lösung hängt von $n-rang(\mathbf{A})$ freien Parametern ab

$$\overrightarrow{\mathbf{A}x} = \overrightarrow{b}$$
 unlösbar $\Leftrightarrow rang(\mathbf{A}) < rang(\mathbf{A})\overrightarrow{b}$

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

NEU

Im Falle **quadratischer** Systeme können auch Determinanten verwendet werden.

Satz 1

Ist **A** eine $n \times n$ Matrix , so gelten die folgenden Aussagen:

- **A** regulär
- \Leftrightarrow det(\mathbf{A}) \neq 0
- $\Leftrightarrow \mathbf{A}^{-1}$ existiert
- $\Leftrightarrow rang(\mathbf{A}) = n$
- $\Leftrightarrow \mathbf{A} \vec{\mathbf{x}} = \vec{\mathbf{b}}$ eindeutig lösbar
- A singulär
- \Leftrightarrow det(\mathbf{A}) = 0
- $\Leftrightarrow \mathbf{A}^{-1}$ existiert nicht
- \Leftrightarrow rang(\mathbf{A}) < n
- $\Leftrightarrow \vec{\mathbf{A}}\vec{x} = \vec{b}$ unlösbar
 - oder mehrdeutig lösbar

Prof. Dr. H.-J. Dobner, MNZ, HTWK Leipzig

Beispiel 1

$$\mathbf{A} = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & t \end{pmatrix}$$

$$\Rightarrow \det(\mathbf{A}) = \begin{vmatrix} -3 & 2 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & t \end{vmatrix} = \begin{vmatrix} -3 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & t+1 \end{vmatrix}$$

Entwicklung nach der 2. Zeile

$$= (-1)\begin{vmatrix} -3 & 3 \\ 1 & t+1 \end{vmatrix} = (-1)[-3 \cdot (t+1) - 3] = 3(t+2)$$

$$\mathbf{A} = \begin{pmatrix} -3 & 2 & 1 \\ 0 & -1 & 1 \\ 1 & 1 & t \end{pmatrix} \det(\mathbf{A}) = 3(t+2)$$

$$t \neq -2$$

$$rang(\mathbf{A}) = 3$$

$$\mathbf{A}^{-1} \text{ existient}$$

$$\forall \vec{b} \in \mathbb{R}^3 \text{ LGS } \mathbf{A}\vec{x} = \vec{b} \text{ eindeutig lösbar}$$

$$t = -2$$

$$t \neq -2$$

$$rang(\mathbf{A}) = 3$$

$$t - -2$$

$$rang(\mathbf{A}) < 3$$

 $rang\left(\mathbf{A}
ight)<3$ \mathbf{A}^{-1} existiert nicht LGS $\mathbf{A}\overrightarrow{x}=\overrightarrow{b}$ unlösbar oder mehrdeutig lösbar

