

Algoritmos y Estructuras de Datos

Cursada 2011

Prof. Catalina Mostaccio Prof. Alejandra Schiavoni

Facultad de Informática - UNLP

GRAFOS

Algoritmos y Estructuras de Datos

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos
- 4. Sort topológico

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos
- 4. Sort topológico

Terminología

- ➢ Grafo→ modelo para representar relaciones entre elementos de un conjunto.
- > **Grafo**: (V ,E), V es un conjunto de vértices o nodos, con una relación entre ellos; E es un conjunto de pares (u,v), u,v € V , llamados aristas o arcos.
- > **Grafo dirigido**: la relación sobre V no es simétrica. Arista ≡ par ordenado (u,v).
- > **Grafo no dirigido**: la relación sobre V es simétrica. Arista ≡ par no ordenado $\{u,v\}$, $u,v \in V$ y $u \neq v$

Terminología (cont. 1)

Ejemplo 1

Grafo dirigido G(V, E).

$$V = \{1,2,3,4,5,6\}$$

$$E = \{(1,2),(1,4),(2,5),(3,5),(3,6),$$

$$(4,2),(5,4),(6,6)\}$$

Grafo no dirigido
$$G(V, E)$$
.
 $V = \{1,2,3,4,5\}$

$$E = \{\{1,2\},\{1,5\},\{2,3\},\{2,4\},\\ \{2,5\},\{3,4\},\{4,5\}\}$$

Terminología (cont. 2)

► Camino desde $u \in V$ a $v \in V$: secuencia $v_1, v_2, ..., v_k$ tal que $u=v_1, v=v_k, y(v_{i-1},v_i) \in E$, para i=2,...,k. Ej: camino desde 3 a $2 \rightarrow <3,5,4,2>$.

► Longitud de un camino: número de arcos del camino. Ejs: long. del camino desde 3 a 2 \rightarrow <3,5,4,2> es 3. (a) long. del camino desde 3 a 4 \rightarrow <3,5,4,2,5,4> es 4. (b)

Terminología (cont. 3)

Camino simple: camino en el que todos sus vértices, excepto, tal vez, el primero y el último, son distintos. P1 es un camino simple desde U a Z.

Ejemplos anteriores: (a) es camino simple, (b) no lo es.

8

Terminología (cont. 4)

> Ciclo: camino simple desde $v_1, v_2, ..., v_k$ tal que $v_1 = v_k$ Ej: $\langle 2, 5, 4, 2 \rangle$ es un ciclo de longitud 3.

> Bucle: ciclo de longitud 1.

> Grafo acíclico: grafo sin ciclos.

Terminología (cont. 5)

> Un grafo es conexo si entre cada dos nodos hay un camino.

> Un bosque es un grafo sin ciclos.

> Un árbol libre es un bosque conexo.

> Un **árbol** es un árbol libre en el que un nodo se ha designado como raíz.

Terminología (cont. 6)

- \triangleright v es adyacente a u si existe una arista (u,v) \in E.
 - \triangleright en un grafo no dirigido, $(u,v) \in E$ incide en los nodos u, v.
 - > en un grafo dirigido, $(u,v) \in E$ incide en v, y parte de u.
- > En grafos no dirigidos:
 - El grado de un nodo: número de arcos que inciden en él.
- > En grafos dirigidos:
 - existen el grado de salida (**grado_out**) y el grado de entrada (**grado_in**).
 - > el grado_out es el número de arcos que parten de él y
 - > el grado_in es el número de arcos que inciden en él.
 - El grado del vértice será la suma de los grados de entrada y de salida.
- > Grado de un grafo: máximo grado de sus vértices.

Terminología (cont. 7)

> Sea G un grafo no dirigido con **n** vértices y **m** arcos, entonces

$$\sum_{v \in G} deg(v) = 2*m$$

✓ Siempre: $m \le (n*(n-1))/2$

✓ Si G conexo: $m \ge n-1$

✓ $Si\ G\ arbol$: m=n-1

✓ Si G bosque: $m \le n-1$

Terminología (cont. 8)

- > v es alcanzable desde u, si existe un camino de u a v.
- > Un grafo no dirigido es **conexo** si existe un camino desde cualquier vértice a cualquier otro.
- > Un grafo dirigido con esta propiedad se denomina **fuertemente conexo**:

> Si un grafo dirigido no es fuertemente conexo, pero el grafo subyacente (sin sentido en los arcos) es conexo, el grafo es débilmente conexo.

Terminología (cont. 9)

- En un grafo no dirigido, una componente conexa es un subgrafo conexo tal que no existe otra componente conexa que lo contenga. Es un subgrafo conexo maximal.
- >Un grafo no dirigido es **no conexo** si está formado por varias componentes conexas.
- >En un grafo dirigido, una componente fuertemente conexa, es el máximo subgrafo fuertemente conexo.
- >Un grafo dirigido es **no fuertemente conexo** si está formado por varias componentes fuertemente conexas.

Algoritmos y Estructuras de Datos

Terminología (cont. 10)

- $\gt G' = (V', E')$ es un **subgrafo** de G = (V, E) si $V' \subseteq V$ y $E' \subseteq E$.
- > Subgrafo inducido por $V' \subseteq V : G' = (V',E')$ tal que E' = $\{(u,v) \in E \mid u,v \in V'\}.$

Ejemplos de Subgrafos del grafo de la Fig. a

Fig. b : Subgrafo

$$V'=\{1,2,4,5\}$$

$$E'=\{(1,2),(1,4),(2,5),(5,4)\}$$

Fig. c : Subgrafo inducido por

$$V'=\{1,2,4,5\}$$

$$E' = \{(1,2), (1,4), (2,5), (5,4)\}\$$
 $E' = \{(1,2), (1,4), (2,5), (4,2), (5,4)\}\$

Terminología (cont. 11)

> Un grafo ponderado, pesado o con costos: cada arco o arista tiene asociado un valor o etiqueta.

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos
- 4. Sort topológico

Agenda - Grafos

- Representaciones
 - Matriz de Adyacencias
 - Lista de Adyacencias

Representaciones: Matriz de Adyacencias

- ightharpoonup G = (V, E): matriz A de dimensión $|V| \times |V|$.
- > Valor a_{ij} de la matriz:

$$a_{ij} = \begin{cases} 1 & \text{si } (i,j) \in E \\ 0 & \text{en cualquier otro caso} \end{cases}$$

1)—	2	3
/	/ ,	
4		6

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
2 3 4 5	0	1	1	0	1
5	1	1	0	1	0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	.0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

Representaciones: Matriz de Adyacencias

- \gt Costo espacial: $O(|V|^2)$
- > Representación es útil para grafos con número de vértices pequeño, o grafos densos $(|E|\approx|V|\times|V|)$
- > Comprobar si una arista (u,v) pertenece a $E \rightarrow$ consultar posición A(u,v) con Costo de tiempo T(|V|,|E|) = O(1)

Representaciones: Matriz de Adyacencias

- > Representación aplicada a Grafos pesados
- \gt El peso de (i,j) se almacena en A (i, j).

$$a_{ij} = \begin{cases} w(i,j) & \text{si } (i,j) \in E \\ 0 & o \infty \end{cases}$$
 en cualquier otro caso

	1	2	3	4	5	6
1	0	10	0	8	0	0
2	0	0	0	0	7	0
3	0	0	0	0	-1	15
4	0	12	0	0	0	0
5	0	0	0	9	0	0
6	0	0	0	0	0	9

Representaciones: Lista de Adyacencias

- ightharpoonup G = (V, E): vector de tamaño |V|.
- > Posición $\mathbf{i} \rightarrow$ puntero a una lista enlazada de elementos (lista de adyacencia).

Los elementos de la lista son los vértices adyacentes a i

Representaciones: Lista de Adyacencias

- > Si G es dirigido, la suma de las longitudes de las listas de adyacencia será |E|.
- > Si G es no dirigido, la suma de las longitudes de las listas de adyacencia será 2/E/.
- \gt Costo espacial, sea dirigido o no: O(|V|+|E|).
- > Representación apropiada para grafos con |E| menor que |V|².
- > **Desventaja**: si se quiere comprobar si una arista (u,v) pertenece a $E \Rightarrow$ buscar v en la lista de adyacencia de u.
- $ightharpoonup Costo temporal T(|V|,|E|) será O(Grado G) \subseteq O(|V|).$

Representaciones: Lista de Adyacencias

- > Representación aplicada a Grafos pesados
- \gt El **peso de** (**u**,**v**) se almacena en el nodo de **v** de la lista de adyacencia de **u**.

Agenda - Grafos

- 1. Ejemplos y terminología
- 2. Representaciones
- 3. Recorridos
- 4. Sort topológico

Agenda - Grafos

- Recorridos
 - en profundidad : DFS (Depth First Search)
 - * en amplitud : BFS (Breath First Search)
 - Bosque de expansión DFS
 - Aplicaciones

Recorrido en profundidad : DFS

→ Generalización del recorrido preorden de un árbol.

Estrategia:

- >Partir de un vértice determinado v.
- >Cuando se visita un nuevo vértice, explorar cada camino que salga de él.
- Hasta que no se haya finalizado de explorar uno de los caminos no se comienza con el siguiente.
- >Un camino deja de explorarse cuando se llega a un vértice ya visitado.
- Si existían vértices no alcanzables desde v el recorrido queda incompleto; entonces, seleccionar alguno como nuevo vértice de partida, y repetir el proceso.

Recorrido en profundidad : DFS

Esquema recursivo: dado G = (V, E)

- 1. Marcar todos los vértices como no visitados.
- 2. Elegir vértice u como punto de partida.
- 3. Marcar **u** como visitado.
- 4. $\forall v$ advacente a u,(u,v) $\in E$, si v no ha sido visitado, repetir recursivamente (3) y (4) para v.
- Finalizar cuando se hayan visitado todos los nodos alcanzables desde u.
- Si desde **u** no fueran alcanzables todos los nodos del grafo: volver a (2), elegir un nuevo vértice de partida **v** no visitado, y repetir el proceso hasta que se hayan recorrido todos los vértices.

Recorrido en profundidad : DFS

```
operación dfs (v: nodo)
   marca[v]:= visitado
   para cada nodo w adyacente a v hacer
      si marca[w] == noVisitado entonces
            dfs(w)
   finpara
 operación main_dfs
        var marca: array [1, ..., n] de (visitado, noVisitado)
        para i:= 1, ..., n hacer
           marca[i]:= noVisitado
        para v:= 1, ..., n hacer
           si marca[v] == noVisitado entonces
            dfs(v)
        finpara
```


Recorrido DFS: Ejemplo

¡OJO!: el recorrido depende del orden en que aparecen los vértices en las listas de adyacencia.

Recorrido DFS: Ejemplo (cont. 1)

Recorrido DFS: Ejemplo (cont. 2)

Recorrido DFS: Ejemplo (cont. 3)

Recorrido DFS: Tiempo de ejecución

- $\gt G(V, E)$ se representa mediante listas de adyacencia.
- ➤ Visita_nodo se aplica únicamente sobre vértices no visitados → sólo una vez sobre cada vértice.
- > Visita_nodo depende del número de vértices adyacentes que tenga **u** (longitud de la lista de adyacencia).
- el tiempo de todas las llamadas a Visita_nodo :

$$\sum_{v \in V} |\mathsf{ady}(v)| = \Theta(|E|)$$

- \Rightarrow añadir el tiempo asociado a los bucles de Recorrido_en _profundidad: O(|V|).
- \Rightarrow Tiempo del recorrido en profundidad es O(|V|+|E|).

Recorrido en amplitud: BFS

→ Generalización del recorrido por niveles de un árbol.

Estrategia:

- > Partir de algún vértice **u**, visitar **u** y, después, visitar cada uno de los vértices adyacentes a **u**.
- > Repetir el proceso para cada nodo adyacente a **u**, siguiendo el orden en que fueron visitados.
- $\gt Costo\ T(|V|,|E|)\ es\ de\ O(|V|+|E|).$

- El recorrido **no es único**: depende del nodo inicial y del orden de visita de los adyacentes.
- El orden de visita de unos nodos a partir de otros puede ser visto como un árbol: árbol de expansión (o abarcador) en profundidad asociado al grafo.

• Si aparecen varios árboles: bosque de expansión (o abarcador)

en profundidad.

Ejemplo.Grafonodirigido.

- Arcos de retroceso: si marca[v] == noVisitado ...
- > se detectan cuando la condición es falsa.

• Ejemplo: grafo dirigido.

Bosque de expansión, empezando el recorrido en el vértice a

38

Clasificación de los arcos de un grafo dirigido en el bosque de expansión de un DFS.

- •Arcos tree (del árbol): son los arcos en el bosque depth-first, arcos que conducen a vértices no visitados durante la búsqueda.
- Arcos forward: son los arcos $u \rightarrow v$ que no están en el bosque, donde v es descendiente, pero no es hijo en el árbol.
- •Arcos backward: son los arcos $u \rightarrow v$, donde v es antecesor en el árbol. Un arco de un vértice a si mismo es considerado un arco back.
- •Arcos **cross**: son todos los otros arcos $u \rightarrow v$, donde v no es ni antecesor ni descendiente de u. Son arcos que pueden ir entre vértices del mismo árbol o entre vértices de diferentes árboles en el bosque depth-first-search

• **Problema 1:** encontrar las componentes conexas de un grafo no dirigido.

- Problema 2: prueba de aciclicidad. Dado un grafo (dirigido o no dirigido) comprobar si tiene algún ciclo o no.
- **Problema 3:** encontrar las componentes fuertemente conexas de un grafo dirigido.

Problema 1:

- Si el grafo es conexo
 - > Un recorrido desde cualquier vértice
 - Visitará a TODOS los vértices del grafo
- Si no lo es
 - > Partiendo de un vértice, tendremos una componente conexa
 - → conjunto de vértices recorrido
 - > Para descubrir otras
 - o Repetir recorrido desde un vértice no visitado
 - Hasta que todos los vértices hayan sido visitados

- Problema 2: Prueba de aciclicidad
 - ➤ **Grafo no dirigido.** Hacer un dfs (o bfs). Existe algún ciclo si y sólo si aparece algún arco que no es del árbol de expansión.
 - ➤ **Grafo dirigido.** Hacer un dfs (o bfs). Existe un ciclo si y sólo si aparece algún arco de retroceso.
- Orden de complejidad de la prueba de aciclicidad: igual que los recorridos.
 - \triangleright Con matrices de adyacencia: $O(|V|^2)$.
 - \triangleright Con listas de adyacencia: O(|V| + |E|).

•Problema 3: Componentes Fuertemente conexas

Una aplicación clásica del depth-first search es descomponer un grafo dirigido en componentes fuertemente conexas (o conectadas).

Una *componente fuertemente conexa* de un Grafo Dirigido G = (V,A) es el conjunto máximo de vértices $V' \subseteq V$ tal que para cada par de vértices u y v en V', existe un camino tanto $u \rightarrow v$ como $v \rightarrow u$.

Algoritmo para encontrar las Componentes Fuertemente Conexas

Pasos:

- 1. Aplicar DFS(G) rotulando los vértices de G en post-orden (apilar).
- 2. Construir el grafo reverso de G, es decir G^R (invertir los arcos).
- 3. Aplicar DFS (G^R) comenzando por los vértices de mayor rótulo (tope de la pila).
- 4. Cada árbol de expansión resultante del paso 3 es una componente fuertemente conexa.

Si resulta un único árbol entonces el digrafo es Fuertemente conexo.

Algoritmo para encontrar las Componentes Fuertemente Conexas (cont.)

Paso 1: Aplicar DFS a partir de A, y numerar los vértices en post-orden

Algoritmo para encontrar las Componentes Fuertemente Conexas (cont.)

<u>Paso 2</u>: Construir el grafo reverso de G, es decir G^R (invertir los arcos).

Algoritmo para encontrar las Componentes Fuertemente Conexas (cont.)

Paso 3: Aplicar DFS (GR) comenzando por los vértices de mayor numeración

Componentes fuertemente conexas: {A, B, C}, {E, D}