Introdução a Lógica de Programação

Pyladies Sorocaba

PyLadies Sorocaba

O que é um PyLadies?

Um grupo internacional sem fins lucrativos (https://www.pyladies.com) focado em aumentar a atividade e a liderança de mulheres na comunidade Python.

Nossa missão

Motivar mais meninas e mulheres a entrar no mundo da programação por meio de workshops e encontros nos quais possamos compartilhar qualquer conhecimento que tivermos.

Bora curtir o evento!

#PyLadiesSorocaba

Use a hashtag nas postagens sobre o evento:)

O que é computação desplugada?

Computação Desplugada é uma técnica de ensino que busca **abordar conceitos de lógica de programação por meio de atividades sem o computador**.

A ideia principal é expor as alunas (vocês!) a atividades divertidas e desafiadoras que ajudem a construir e materializar os conceitos que também são usados quando programamos um computador.

O que veremos hoje?

Lógica de Programação:

- Comandos condicionais
- Repetições
- Variáveis
- Um exemplo ao vivo de um código com os conceitos que aprendemos

Atividade: Como passar manteiga na bolacha?

Atividade: Como ensinar o computador a passar manteiga na bolacha?

Atividade: Como ensinar o **computador** a passar manteiga na bolacha?

Para "ensinar" o computador a passar manteiga no pão precisamos passar para ele as instruções nos mínimos detalhes!!!

- 1. Abra a manteiga
- 2. Pegue uma faca com uma mão
- 3. Raspe a manteiga com a ponta da faca de forma a acumular um pouco de manteiga na faca
- 4. Pegue uma bolacha com a outra mão e segure ela com uma das faces voltadas para cima
- 5. Passe a manteiga que está acumulada na faca na face voltada para cima da bolacha

Afinal, o que é um algoritmo?

- "Algoritmo é uma sequência de passos que visa atingir um objetivo bem definido." (Forbellone, 1999)
- "Algoritmo é a descrição de uma sequência de passos que deve ser seguida para a realização de uma dada tarefa." (Assencio, 1999)
- "Um algoritmo é uma sequência finita de instruções bem definidas e não ambíguas para resolver um problema ou realizar algum objetivo.

Vamos às missões?

Como funciona?

- O objetivo do jogo é simples: você deve levar o robô até às luzes e acendê-las
- Você tem um número máximo de movimentos para cada exercício.
 Tente pensar com bastante cuidado!
- No decorrer das fases, vamos introduzindo novos conceitos e dificuldades

Legenda:

Frente

Direita

Esquerda

Luz

Acende

Exercício 1

+8₹		Q.

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

ન્હે ફ્રફ		Ŷ

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

- 8≸		Ŷ

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

	⊕ [≸]	Ĵ

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

	•9≸1	ĝ

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

		નો ફ્રા 💍

1. Mover para a frente

2. Mover para a frente

3. Mover para a frente

4. Mover para a frente

		•8≹€

Exercício 2

Ŷ		

Q		

Novos desafios...

- O objetivo do jogo é o mesmo: você deve levar o robô até às luzes e acendê-las
- Você tem um número máximo de movimentos para cada exercício.
 Tente pensar com bastante cuidado!
- No decorrer das fases, vamos introduzindo novos conceitos e dificuldades

Legenda:

Frente

Direita

Esquerda

Luz

Acende

Buraco

Pula

Exercício 3

QIII		
		6

(1)

Exercício 4

Q			
		Ŷ	

Tomando decisões

Precisamos tomar decisões o tempo todo!

Condições

- No início da atividade, aprendemos que se alcançarmos uma luz, temos que acendê-la e, da mesma forma, se toparmos com um buraco, temos que saltá-lo.
- Esse **se** que repetidamente aparece nas nossas ações do jogo é chamado de **"condição"** e é muito importante na programação porque nos permite criar ações para diferentes tipos de situações.
- Para exemplificar e explicitar melhor isso, vamos fazer um outro exercício...

Novos cartões para deixar tudo mais interessante...

- O objetivo do jogo é o mesmo: você deve levar o robô até às luzes e acendê-las
- Você tem um número máximo de movimentos para cada exercício.
 Tente pensar com bastante cuidado!
- No decorrer das fases, vamos introduzindo novos conceitos e dificuldades

Exercício 5

A. A			
		?	
?			
	?	Ŷ	

O seu algoritmo deve ser genérico. Vamos testar?!

Exercício 5 - Executando o algoritmo: cenário 1

		?- Buraco	
? - Luz			
	? - Luz	Q	

Exercício 5 - Executando o algoritmo: cenário 2

		?- Buraco	
? - Buraco			
	? - Buraco	Ŷ	

Exercício 5 - Executando o algoritmo: cenário 3

		?- Buraco!	
? - Luz			
	? - Luz	Q	

Exercício 5 - Solução

4		- 4
1	1 1110	α it α
	1 711 (-112
		eita

- 2. Frente
- 3. Frente
- 4. Direita
- 5. **SE LUZ**
 - a. Frente
 - b. Acende
 - c. Frente
- 6. **SE BURACO**
 - a. Pula
- 7. Frente
- 8. Frente
- 9. Acende
- 10. Direita

11. **SE LUZ**

- a. Frente
- b. Acende
- c. frente
- 12. **SE BURACO**
 - a. Pular
- 13. Direita
- 14. Frente
- 15. **SE LUZ**
 - a. Frente
 - b. Acende
- 16. SE BURACO
 - a. Pular

		?	
?			
	?	Q	

Exercício 5 - Solução

\$			
		?	
?			
	?	Ŷ	

Mostrando em código

```
from movimentos import *
vire_a_direita()
ande()
ande()
ande()
if proximo_movimento == "luz":
    ande()
    acenda()
    ande()
elif proximo_movimento == "buraco":
   pule()
ande()
ande()
acenda()
vire_a_direita()
```

```
proximo_movimento == "luz":
    ande()
    acenda()
    ande()
elif proximo_movimento == "buraco":
    pule()
vire_a_direita()
ande()
|f proximo_movimento == "luz":
    ande()
    acenda()
    ande()
elif proximo_movimento == "buraco":
    pule()
```

Os algoritmos precisam tomar decisões o tempo

Exercício 6.1

v ⊕ 1207				
	Q			
		ĝ		
			ĝ	
				Ŷ

Exercício 6.1 - Solução

Repetindo as coisas...

Não devo fazer bagunça! Não devo fazer bagunça!

Repetição

- Existem alguns casos em que visivelmente estamos fazendo o mesmo conjunto de instruções várias vezes seguidas e isso pode ser bem cansativo PORÉM a programação também tem algo pra facilitar a nossa vida nesse caso: Repetições!
- Sempre que notarmos um padrão nas nossas instruções, podemos "encapsular" isso em uma repetição e dizer "Execute esse conjunto de instruções n vezes"

repete 10 vezes: escrever "Não devo fazer bagunça!"

Último cartão do dia!

- O objetivo do jogo é o mesmo: você deve levar o robô até às luzes e acendê-las
- Você tem um número máximo de movimentos para cada exercício.
 Tente pensar com bastante cuidado!
- No decorrer das fases, vamos introduzindo novos conceitos e dificuldades

Acende

Legenda:

Frente Direita Repetição

Esquerda

Luz

Buraco

Pula

Mistério

Condicional

Exercício 6.2

ν <u>φ</u>				
	Q			
		Ŷ		
			Ŷ	
				QII,

Exercício 6.2 - Solução

7 <u>44</u>				
	QIII			
		QIII		
			Ŷ	
				ĝ

Exercício 6.2 - Solução

ν <u>α</u> λ				
	Ŷ			
		Ŷ		
			Q	
				Ŷ

Os algoritmos podem repetir trechos de código muitas vezes...

Em uma tela será exibido 25 itens. Ou seja, o algoritmo irá repetir 25 vezes operação de mostrar item.

Os algoritmos podem repetir trechos de código muitas vezes...

Exercício 7

Q _{II}		
Ę		Q

Exercício 7 - Solução

QIII		6
Q		Ŷ

Exercício 7 - Solução

Ŷ	•	
•		
×		
Ŷ		Ŷ

Exercício 7 - Uma outra solução possível

QIII		e y
Q		Q

Desafio

Q		Q
ĝ		Ŷ
ŷ	ĝ	Ŷ

Solução - Com dois blocos de repetição

Desafio - Solução

Principal: direita -> repetição_1

Repetição 1: repetição_2 -> direita -> repetição_2 -> repetição_1

Repetição 2: pulo - acende

O mais **leve** e o mais **pesado** - Algoritmo de ordenação

Introdução

- Os computadores são muitas vezes utilizados para colocar listas em algum tipo de ordem, por exemplo:
 - Nomes em ordem alfabética;
 - E-mails ordenados por data;
 - Itens em ordem numérica;
 - Produtos ordenamos por preço.
- Classificar listas nos ajuda a encontrar as coisas rapidamente, e também facilita a identificação dos valores extremos.
- Existem vários algoritmos de ordenação, vamos tentar descobrir alguns?

Vamos ordenar papéis coloridos

- Cada papel possui um "peso"
- Podemos pedir ajuda para a balança humana para comparar dois papéis por vez. Por exemplo: Qual é o mais leve: o verde ou o rosa?
 E teremos como resposta: verde (ou rosa, dependendo da nossa balança).
- **Objetivo:** ordenar os papéis <u>do mais leve para o mais pesado</u>. E anotar os passos que foram realizados para isso.

Uma possível solução...

Ordenação por seleção

- 1. Encontre o papel mais leve e separe ele em um canto. Como encontrar o mais leve?
 - a. Quem é mais leve: verde ou rosa? Rosa. (fico com o rosa)
 - b. Quem é mais leve: rosa ou branco? Branco. (fico com o branco)
 - c. Quem é mais leve: branco ou azul? Azul. (fico com o azul)
 - d. Quem é mais leve: azul ou amarelo? Azul. (fico com o azul) **Azul** é o primeiro mais leve.
- 2. Repita este processo com os papéis que sobraram até que não sobrem mais papéis.

Ordenação por seleção

Existe outra forma de ordenar?

Os pesos dos papéis

0 20 30

Basquete das variáveis

O que são variáveis?

- A maioria dos programas recebem e dados.
 Esses dados precisam ser armazenados no computador para serem utilizados no processamento. Esse armazenamento é feito na memória.
- Uma variável representa uma posição de memória.
- Uma variável possui um nome e um tipo e seu conteúdo pode variar ao longo do tempo, durante a execução do programa.
- Uma variável só pode armazenar um valor a cada instante!

Basquete de variáveis

Existem alguns tipos padrão de variáveis:

- Strings: textos
- Int: números inteiros
- Float: números racionais (com casas decimais)

Agora vamos mostrar algumas variáveis e vocês vão nos ajudar a descobrir qual o tipo de cada variável.

Calculadora simples: Como somar dois números?

- Ok! Já sabemos de variáveis, de condições e repetições.
- Para treinarmos esses conceitos todos, vamos implementar uma calculadora.
- Essa calculadora vai primeiro receber a operação a ser feita (+, -, *, /, **) e os dois números que entrarão na conta. Se o usuário digitar "sair", o programa deve ser encerrado, caso contrário deve continuar perguntando por operações

Esperamos que tenham gostado de passar a manhã junto com nós!

Quer mais?

- Jogue online: https://www.lightbot.com/flash.html
- Made with code: https://www.madewithcode.com/
- Hora do código: http://programae.org.br/horadocodigo/

Vem falar com a gente!

- facebook.com/PyLadiesSorocaba
- twitter.com/PyLadiesSorocaba
- linkedin.com/company/PyLadiesSorocaba
- (instagram.com/PyLadiesSorocaba
- sorocaba@pyladies.com