Ex 1 Interprétons les ensembles suivants comme noyaux d'applications linéaires : ce seront donc des espaces vectoriels.

a)
$$F = \{X = (x, y, z, t) \in \mathbb{R}^4 / x + y = z + t = 0\}$$
. On pose

$$f: \qquad \mathbb{R}^4 \qquad \rightarrow \quad \mathbb{R}^2$$

$$X = {}^t (x, y, z, t) \quad \mapsto \quad f(X) = \left(\begin{array}{c} x + y \\ z + t \end{array} \right) = \left(\begin{array}{ccc} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array} \right) X$$

f est linéaire (c'est l'application associée à une matrice), et ker f = F, CQFD.

b)
$$\,G=\left\{f\in C^{2}\left(\mathbb{R},\mathbb{R}\right)\,/\,f''-3f'+2f=0\right\}$$
 . On pose

$$\Phi: C^{2}(\mathbb{R}, \mathbb{R}) \to C^{0}(\mathbb{R}, \mathbb{R})$$

$$f \mapsto \Phi(f) = f'' - 3f' + 2f$$

Comme, en posant D l'opérateur (linéaire) de dérivation, on a

$$\Phi = D^2 - 3D + 2 \operatorname{id}_{C^2(\mathbb{R},\mathbb{R})}$$

 Φ est linéaire (combinaison linéaire d'applications linéaires), et $\ker \Phi = G$, CQFD.

c)
$$H = \left\{ f \in C^0\left([a,b]\right) / \int_a^b f = f\left(\frac{a+b}{2}\right) \right\}$$
. On pose

$$\Psi: \ C^0\left([a,b]\right) \to \mathbb{R}$$
 $f \mapsto \Psi\left(f\right) = \int_a^b f - f\left(\frac{a+b}{2}\right)$

Ψ est linéaire : en effet, si $(f,g) ∈ C^0([a,b])^2$, alors

$$\begin{split} \Psi\left(\lambda f+g\right) &= \int_{a}^{b} \left(\lambda f+g\right) - \left(\lambda f+g\right) \left(\frac{a+b}{2}\right) \\ &= \lambda \int_{a}^{b} f + \int_{a}^{b} g - \lambda f\left(\frac{a+b}{2}\right) - g\left(\frac{a+b}{2}\right) \\ &= \lambda \left(\int_{a}^{b} f - f\left(\frac{a+b}{2}\right)\right) + \int_{a}^{b} g - g\left(\frac{a+b}{2}\right) \\ &= \lambda \Psi\left(f\right) + \Psi\left(g\right) \end{split}$$

On a alors $\ker \Psi = H$, CQFD.

Ex 2 Soient $E = \mathbb{R}^2$ et $f: E \to E$ de matrice $A = \begin{pmatrix} 4 & 1 \\ -3 & 0 \end{pmatrix}$

- $\text{a)} \ \ * \ \ \underline{\text{Lin\'earit\'e}}: \forall \left(X,X'\right) \in E, \ \forall \lambda \in \mathbb{R}, \ f\left(\lambda X + X'\right) = A\left(\lambda X + X'\right) = \lambda AX + AX' = \lambda f\left(X\right) + f\left(X'\right)$
 - * Injectivité de \underline{f} : si $X={x\choose y}\in\ker f$, alors $AX=0_E,\ i.e.$ $\begin{cases} 4x+y=0\\ -3x=0 \end{cases}$, d'où x=y=0, i.. $X=0_E.$ Le noyau de f est réduit à $\{0_E\}$, donc f est injective
 - * Image de f: comme A est inversible, le système AX = Y admet une unique solution pour tout $Y \in E$, et donc [Im f = E]. f est évidemment surjective.
- b) f est ainsi un automorphisme de E et f^{-1} est l'endomorphisme asocié à $A^{-1}=\frac{1}{3}\begin{pmatrix}0&-1\\3&4\end{pmatrix}$, i.e.

$$\forall X = \begin{pmatrix} x \\ y \end{pmatrix}, \ f^{-1}(X) = \begin{pmatrix} -y \\ 3x + 4y \end{pmatrix}$$

c) Soit $F = \ker (f - 3 \operatorname{id}_E)$. On a $F = \ker (A - 3I_2)$, avec $A - 3I_2 = \begin{pmatrix} 1 & 1 \\ -3 & -3 \end{pmatrix}$. Donc

$$X = \begin{pmatrix} x \\ y \end{pmatrix} \in F \Longleftrightarrow \left\{ \begin{array}{l} x+y=0 \\ -3x-3y=0 \end{array} \right. \iff y = -x \iff X = x \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

F est ainsi la droite d'équation x+y=0, engendrée par le vecteur $e_0=\begin{pmatrix}1\\-1\end{pmatrix}\in F$

Si $X \in F$, alors par définition f(X) = 3X.

Enfin
$$\operatorname{Im}(f-3\operatorname{id}_E)=\operatorname{Im}\begin{pmatrix}1&1\\-3&-3\end{pmatrix}=\operatorname{Vect}\begin{pmatrix}1\\3\end{pmatrix}$$
 est une droite vectorielle.

PCSI 1 Thiers 2019/2020

Ex 3 Soit $E = \mathbb{R}^3$, (e_1, e_2, e_3) sa base canonique et $f \in \mathcal{L}(E)$ telle que :

$$f(e_1) = e_1 + 2e_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
, $f(e_2) = 2e_1 - e_2 - e_3 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$, $f(e_3) = -e_1 + e_2 + 3e_3 = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$

a) Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ un vecteur de E. Alors $X = xe_1 + ye_2 + ze_3$ et par linéarité de f:

$$f(X) = xf(e_1) + yf(e_2) + zf(e_3) = \begin{pmatrix} x + 2y - z \\ -y + z \\ 2x - y + 3z \end{pmatrix} = AX, \text{ avec } A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 2 & -1 & 3 \end{pmatrix}$$

Remarque: la connaissance de f sur une base et sa linéarité entrainent la connaissance de f sur tout E. C'est le principe de la représentation matricielle des applications linéaires. On remarquera aussi que A est la "concaténation" des images $f(e_1)$, $f(e_2)$ et $f(e_3)$.

* Noyau de f: avec les mêmes notations, on a

$$f(X) = 0_E \iff AX = 0_E \iff \begin{cases} x + 2y - z = 0 \\ -y + z = 0 \\ 2x - y + 3z = 0 \end{cases} \iff \begin{cases} x + z = 0 \\ y = z \\ 2x + 2z = 0 \end{cases} \iff \begin{cases} x = -z \\ y = z \\ (z = z) \end{cases}$$

 $\ker f \text{ est donc l'ensemble des vecteurs de la forme } X = \begin{pmatrix} -z \\ z \\ z \end{pmatrix} = ze_0, \text{ avec } e_0 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \neq 0_E.$

C'est donc la droite engendrée par e_0 : $\ker f = \operatorname{Vect}\left(e_0\right)$

* Image de f: c'est l'espace engendré par les colonnes C_1, C_2, C_3 de A. Or on voit que $C_3 = C_1 - C_2$, et que (C_1, C_2) est libre. Donc M im M is M in M

Remarque1: de $f(e_0) = 0_E$ on peut aussi tirer: $f(-e_1 + e_2 + e_3) = 0_E$ i.e. $-f(e_1) + f(e_2) + f(e_3) = 0_E$.

On retrouve ainsi la relation $-C_1 + C_2 + C_3$ sur les colonnes.

Remarque2: pour calculer l'image, on peut aussi écrire:

$$Y = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} \in \operatorname{Im} f \iff \exists X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E / f(X) = Y \iff AX = Y \text{ est compatible}$$

Or avec la matrice augmentée :

$$B = \left(\begin{array}{cccc} 1 & 2 & -1 & x' \\ 0 & -1 & 1 & y' \\ 2 & -1 & 3 & z' \end{array}\right) \sim \left(\begin{array}{cccc} 1 & 2 & -1 & x' \\ 0 & -1 & 1 & y' \\ 0 & -5 & 5 & -2x'+z' \end{array}\right) \sim \left(\begin{array}{cccc} 1 & 2 & -1 & x' \\ 0 & -1 & 1 & y' \\ 0 & 0 & 0 & -2x'-5y'+z' \end{array}\right)$$

Donc

$$Y \in \operatorname{Im} f \Longleftrightarrow -2x' - 5y' + z' = 0$$

On retrouve que $\operatorname{Im} f$ est un plan, dont cette méthode donne une équation.

b) Soit $Y_1 = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$: il vérifie l'équation de $\operatorname{Im} f(-2 \times 3 - 5(-1) + 1 = 0)$, donc $Y_1 \in \operatorname{Im} f$.

On peut résoudre le système $AX = Y_1$, ou bien remarquer que

$$Y_1 = C_1 + C_2 = f(e_1) + f(e_2) = f(e_1 + e_2)$$

 $X_1=e_1+e_2$ est ainsi un antécédent de Y_1 , dont l'ensemble des entécédents est donc

$$f^{-1}(\{Y_1\}) = X_1 + \ker f = \{X_1 + \lambda e_0, \ \lambda \in \mathbb{R}\} = \left\{ \begin{pmatrix} 1+\lambda \\ 1+\lambda \\ \lambda \end{pmatrix}, \ \lambda \in \mathbb{R} \right\}$$

En revanche, $Y_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \notin \operatorname{Im} f$, et n'a donc pas d'antécédent par f.

Ex 4 Montrons que l'application $\operatorname{tr}:\mathcal{M}_n\left(\mathbb{R}\right)\to\mathbb{R}$ est une forme linéaire :

Si $M=(m_{ij})_{1\leqslant i,j\leqslant n}$ et $N=(n_{ij})_{1\leqslant i,j\leqslant n}$ sont dans $\mathcal{M}_n\left(\mathbb{R}\right)$ et si $\lambda\in\mathbb{R}$, on a

$$\operatorname{tr}(\lambda M + N) = \sum_{i=1}^{n} [\lambda M + N]_{ii} = \sum_{i=1}^{n} (\lambda m_{ii} + n_{ii}) = \lambda \sum_{i=1}^{n} m_{ii} + \sum_{i=1}^{n} n_{ii} = \lambda \operatorname{tr}(M) + \operatorname{tr}(N) \quad \text{CQFD}.$$

- tr est évidemment surjective car n'importe quel réel x peut s'écrire tr M, où $M=xE_{11}$.
- Elle n'est pas injective, car par exemple $E_{11}-E_{22}\in\ker\operatorname{tr}$.
- Dans le cas où n=3, on a $M=(m_{ij})_{1\leqslant i,j\leqslant 3}\in\ker\operatorname{tr}$ si et seulement si $m_{33}=-m_{11}-m_{22},$ soit

$$M = \left(\begin{array}{ccc} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & -m_{11} - m_{22} \end{array} \right) = \sum_{i \neq j} m_{ij} E_{ij} + m_{11} \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array} \right) + m_{22} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

En notant $A_1 = E_{11} - E_{33} \in \ker \operatorname{tr} \operatorname{et} A_2 = E_{22} - E_{33} \in \ker \operatorname{tr}$, on voit que la famille

$$\mathcal{B} = (A_1, A_2, E_{12}, E_{13}, E_{21}, E_{23}, E_{31}, E_{32})$$

est génératrice de $\ker\operatorname{tr}$. $\mathcal B$ est clairement libre, car

$$\sum_{i \neq j} m_{ij} E_{ij} + m_{11} A_1 + m_{22} A_2 \Rightarrow \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & -m_{11} - m_{22} \end{pmatrix} = 0 \Rightarrow m_{11} = \dots = m_{32=} = 0$$

Ainsi $\dim \ker \operatorname{tr} = 8$ et \mathcal{B} en est une base

Ex 5 Soit $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par f(M) = AM.

Il est clair que $\forall M \in \mathcal{M}_2(\mathbb{R}), \ f(M) = AM \in \mathcal{M}_2(\mathbb{R})$ et que f est linéaire :

$$\forall (M, M') \in \mathcal{M}_2(\mathbb{R})^2, \ \forall \lambda \in \mathbb{R}, \ f(\lambda M + M') = A(\lambda M + M') = \lambda AM + AM' = \lambda f(M) + f(M')$$

- Calcul du noyau : on pose $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$:

$$M \in \ker f \iff AM = 0_{\mathcal{M}_2(\mathbb{R})} \iff \begin{pmatrix} a+2c & b+2d \\ 2a+4c & 2b+4d \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Ce qui donne

$$M \in \ker f \iff \left\{ \begin{array}{l} a+2c=0 \\ b+2d=0 \end{array} \right. \iff \left\{ \begin{array}{l} a=-2c \\ b=-2d \end{array} \right.$$

On obtient donc

$$M \in \ker f \iff M = \begin{pmatrix} -2c & -2d \\ c & d \end{pmatrix} = c \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$$

 $\ker f$ est donc engendré par les deux matrices $A_1 = \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix} \in \ker f$ et $A_2 = \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$ qui sont non colinéaires de manière manifeste.

Ainsi $\ker f$ est un plan vectoriel de $\mathcal{M}_2\left(\mathbb{R}\right)$

- Calcul de l'image : $\mathcal{M}_2(\mathbb{R})$ est engendré par la base canonique $(E_{11}, E_{12}, E_{21}, E_{22})$, donc

$$\operatorname{Im} f = \operatorname{Vect} (f(E_{11}), f(E_{12}), f(E_{21}), f(E_{22}))$$

On calcule ces quatre images:

$$f(E_{11}) = AE_{11} = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \quad f(E_{12}) = \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}, \quad f(E_{21}) = \begin{pmatrix} 2 & 0 \\ 4 & 0 \end{pmatrix}, \quad f(E_{22}) = \begin{pmatrix} 0 & 2 \\ 0 & 4 \end{pmatrix}$$

On remarque que $f(E_{21}) = 2f(E_{11})$, que $f(E_{22}) = 2f(E_{21})$, et que $f(E_{11})$ et $f(E_{12})$ sont libres. Il vient

$$\boxed{\operatorname{Im} f = \operatorname{Vect}\left(\begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix}\right), \quad \text{plan vectoriel de } \mathcal{M}_2\left(\mathbb{R}\right)}$$

Ex 6 Soit $E = \mathbb{K}_n[X]$, et $\varphi : E \to E$ définie par $\forall P \in E, \ \varphi(P) = P - XP'$.

a) Si $P\in E$, alors $\deg P\leqslant n$, donc $\deg XP'\leqslant n$, et par somme, $\deg \varphi\left(P\right)\leqslant n$.

 φ prend donc bien ses valeurs dans E.

Montrons sa linéarité : si $(P,Q) \in \mathbb{K}_n [X]^2$, et $\lambda \in \mathbb{K}$,

$$\varphi\left(\lambda P+Q\right)=\lambda P+Q-X\left(\lambda P+Q\right)'=\lambda\left(P-XP'\right)+Q-XQ'=\lambda\varphi\left(P\right)+\varphi\left(Q\right)$$

Ainsi φ est un endomorphisme de E .

b) Calcul du noyau : soit $P \in \ker \varphi$. Alors P = XP'. Si P est non nul, $d \geqslant 0$ son degré et $a \neq 0$ son coefficient dominant, alors l'identification des termes de degré d donne

$$a = ad$$
 d'où $d = 1$

Inversement, si P = aX + b, avec $a \neq 0$, alors XP' = aX ne vaut P que si b = 0.

Finalement le noyau de φ est constitué du polynôme nul, et des multiples non nuls de X. Autrement dit

$$\ker \varphi = \left\{ aX, \; a \in \mathbb{K} \right\} = \mathrm{Vect}\left(X\right) \quad \text{c'est une droite vectorielle}$$

c) Calcul de l'image: l'espace $E = \mathbb{K}_n[X]$ est engendré par la famille $(1, X, \dots, X^n)$, donc $\operatorname{Im} \varphi$ est engendrée par la famille des images $(\varphi(1), \varphi(X), \dots, \varphi(X^n))$. Or si $k \in [0, n]$,

$$\varphi(X^k) = X^k - kX^k = (1 - k)X^k$$

Cette image est nulle pour k=1 (cf. noyau), et non nulle pour toutes les autres valeurs de $k \in [0,n] \setminus \{1\}$. Im φ est donc engendrée par $1, -X^2, -2X^3, \dots, (1-n)X^n$, ou ce qui revient au même :

$$\boxed{\operatorname{Im}\varphi = \operatorname{Vect}\left(1, X^2, X^3, \dots, X^n\right)}$$

Remarquons que d'après la formule de Taylor, on peut aussi exprimer ${\rm Im}\, \varphi$ sous la forme :

$$\boxed{\operatorname{Im}\varphi = \{P \in \mathbb{K}_n [X] / P'(0) = 0\}}$$

Ex 7 Soit $E = \mathbb{K}_4[X]$, et $\varphi : E \to E$ définie par $\forall P \in E, \ \varphi(P) = (X^2 - 1)P'' - (3X + 1)P'$.

a) Soit $P \in E$, alors deg $P \leq 4$, donc

$$\deg(X^2-1)P'' \leqslant 4$$
, $\deg(3X+1)P' \leqslant 4$ et donc par somme $\deg \varphi(P) \leqslant 4$

 φ prend donc bien ses valeurs dans E.

Montrons sa linéarité : si $(P,Q) \in \mathbb{E}^2$, et $\lambda \in \mathbb{K}$,

$$\varphi(\lambda P + Q) = (X^{2} - 1)(\lambda P + Q)'' - (3X + 1)(\lambda P + Q)'$$

$$= \lambda [(X^{2} - 1)P'' - (3X + 1)P'] + [(X^{2} - 1)Q'' - (3X + 1)Q']$$

$$= \lambda \varphi(P) + \varphi(Q)$$

Ainsi φ est un endomorphisme de E .

b) Calcul du noyau : on cherche les polynômes P de degré inférieur à 4 et vérifiant

$$(X^2 - 1) P'' = (3X + 1) P' \quad (*)$$

Plutôt que d'utiliser la méthode pachydermique de l'identification des coefficients, raisonnons par analyse et synthèse en exploitant les divisibilités :

* Analyse: si P non nul vérifie (*), alors $\deg P' \leq 3$, et P' s'annule en 1 et en -1. On peut donc l'écrire

$$P' = (X^2 - 1) Q$$
, avec $Q \neq 0$ et $\deg Q \leqslant 1$

L'hypothèse $\deg Q=0$ ($Q=\lambda$ constant) n'est pas tenable, car alors $P'=\lambda \left(X^2-1\right)$ et $P''=2\lambda X$ et (*) ne peut pas être vérifiée. Donc $\deg Q=1$ et

$$P' = \lambda \left(X^2 - 1 \right) \left(X - a \right), \text{ avec } \lambda \neq 0 \text{ et } a \in \mathbb{K}$$

Mais alors

$$P' = \lambda (X^3 - aX^2 - X + a)$$
 et $P'' = \lambda (3X^2 - 2aX - 1)$

(*) force P'' à s'annuler en $-\frac{1}{3},$ soit $\lambda\left(\frac{1}{3}+\frac{2}{3}a-1\right)=0 \Longleftrightarrow a=1.$ Ainsi

$$P' = \lambda \left(X^3 - X^2 - X + 1 \right)$$

et par intégration on a une constante μ telle que

$$P = \lambda \left(\frac{1}{4}X^4 - \frac{1}{3}X^3 - \frac{1}{2}X^2 + X \right) + \mu$$

* Synthèse : soit P un tel polynôme, avec λ et μ deux scalaires quelconques. Alors

$$P' = \lambda \left(X^3 - X^2 - X + 1 \right) = \lambda \left(X^2 - 1 \right) (X - 1) \quad \text{et} \quad P'' = \lambda \left(3X^2 - 2X - 1 \right) = \lambda \left(3X + 1 \right) (X - 1)$$
 On a donc bien $(X^2 - 1) P'' = (3X + 1) P'$.

* Conclusion : le noyau de φ est constitué des polynômes de la forme

$$P = \lambda \left(\frac{1}{4} X^4 - \frac{1}{3} X^3 - \frac{1}{2} X^2 + X \right) + \mu, \quad (\lambda, \mu) \in \mathbb{K}^2$$

 $\ker \varphi$ est donc l'ensemble des combinaisons linéaires des polynômes

$$P_0 = 1$$
 et $P_1 = \frac{1}{4}X^4 - \frac{1}{3}X^3 - \frac{1}{2}X^2 + X$

soit

$$\ker \varphi = \operatorname{Vect}(P_0, P_1)$$

C'est un plan vectoriel dont (P_0, P_1) st une base.

c) Soit $Q=\varphi\left(X^{3}\right)$. Alors l'équation linéaire $\varphi\left(P\right)=Q$ admt X^{3} pour solution.

On sait que l'ensemble de ses solutions est alors le plan affine $X^3 + \ker \varphi$. Autrement dit les antécédents de Q par φ sont les polynômes de la forme

$$X^3 + \lambda \left(\frac{1}{4}X^4 - \frac{1}{3}X^3 - \frac{1}{2}X^2 + X\right) + \mu, \quad (\lambda, \mu) \in \mathbb{K}^2$$

Ex 8 Soit $E = C^0(\mathbb{R}, \mathbb{R})$, et φ définie sur E par $\forall f \in E, \ \varphi(f) : x \mapsto xf(x)$

a) Notons $i: x \mapsto x$. Par produit $\varphi(f) = i \times f$ est une fonction continue sur \mathbb{R} . φ est donc bien à valeurs dans E. <u>Linéarité</u>: si $(f,g) \in E^2$ et $\lambda \in \mathbb{R}$, alors

$$\varphi\left(\lambda f+g\right)=i\times\left(\lambda f+g\right)=\lambda i\times f+i\times g=\lambda \varphi\left(f\right)+\varphi\left(g\right)$$
 CQFD.

 φ est donc bien un endomorphisme de E.

- b) Noyau et image de φ :
 - i. Noyau : soit $f \in \ker \varphi$. Alors $\varphi(f)$ est la fonction nulle (notée \mathbb{O}), i.e. $\forall x \in \mathbb{R}, xf(x) = 0$ Mais alors $\forall x \in \mathbb{R}^*, f(x) = 0$, mais par continuité de f en 0, on en déduit aussi f(0) = 0. Ainsi f est la fonction nulle, et $\ker \varphi = \{\mathbb{O}\}\ | (\varphi \text{ est injective}).$
 - ii. Image : soit $g \in \text{Im } \varphi$. Alors $\exists f \in E \ / \ \varphi(f) = g$, i.e. $\forall x \in \mathbb{R}, \ xf(x) = g(x)$ En particulier g(0) = 0. De plus,

$$\forall x \in \mathbb{R}^*, \ f\left(x\right) = \frac{g\left(x\right)}{x} = \frac{g\left(x\right) - g\left(0\right)}{x}$$

Par continuité de f en 0, $\lim_{x\to 0}\frac{g\left(x\right)-g\left(0\right)}{x}=f\left(0\right)$, ce qui prouve que \underline{g} est dérivable en $\underline{0}$. Inversement, si $g\in E$ s'annule en 0 et est dérivable en 0, alors montrons que g admet un antécédent par φ .

On pose

$$f: x \mapsto \begin{cases} \frac{g(x)}{x} & \text{si } x \neq 0 \\ g'(0) & \text{si } x = 0 \end{cases}$$

 $f: x \mapsto \left\{ \begin{array}{l} \frac{g\left(x\right)}{x} \text{ si } x \neq 0 \\ g'\left(0\right) \text{ si } x = 0 \end{array} \right.$ Alors f et continue sur \mathbb{R}^* par quotient, continue en 0 car $\lim_{x \to 0} f\left(x\right) = \lim_{x \to 0} \frac{g(x)}{x} = g'\left(0\right) = f\left(0\right)$. De plus,

$$\forall x \in \mathbb{R}^*, \ \varphi\left(f\right)\left(x\right) = x \times \frac{g\left(x\right)}{x} = g\left(x\right) \quad \text{et} \quad \varphi\left(f\right)\left(0\right) = 0 = g\left(0\right)$$

Ainsi $f \in E$ et $\varphi(f) = g$, donc $g \in \text{Im } f$.

Conclusion : $|\operatorname{Im} g|$ est l'ensemble des fonctions de E dérivables en 0 et s'annulant en 0

Ex 9 Soit $E = \mathbb{C}^{\mathbb{N}}$, et $T: E \to E$ définie par $\forall u \in E, T(u) = (u_{n+1})_{n \in \mathbb{N}}$.

- <u>Linéarité de T</u>: si $(u, v) \in E^2$ et $\lambda \in \mathbb{C}$, alors $\lambda u + v$ a pour terme général $\lambda u_n + v_n$, et $\forall n \in \mathbb{N}, \ [T(u)]_n = [\lambda u + v]_{n+1} = \lambda u_{n+1} + v_{n+1} = \lambda [T(u)]_n + [T(v)]_n$ Il s'ensuit que $T(\lambda u + v) = \lambda T(u) + T(v)$.
- Soit $\lambda \in \mathbb{C}$ et $F_{\lambda} = \ker (T \lambda \operatorname{id}_E)$. Alors

$$u \in F_{\lambda} \iff T(u) = \lambda u \iff \forall n \in \mathbb{N}, \ u_{n+1} = \lambda u_n$$

 F_{λ} est donc l'ensemble des suites géométriques de raison λ , soit, en notant $\ell = (\lambda^n)_{n \in \mathbb{N}}$,

$$F_{\lambda} = \{(u_0 \lambda^n)_{n \in \mathbb{N}}, u_0 \in \mathbb{C}\} = \{u_0 \ell, u_0 \in \mathbb{C}\} = \text{Vect}(\ell)$$

 F_{λ} est donc la droite vectorielle engendrée par ℓ .

- Injectivité : la suite $d=(\delta_{0n})_{n\in\mathbb{N}}$ n'est pas la suite nulle $(d_0=1)$, mais $T(d)=(0)_{n\in\mathbb{N}}$. T n'est pas injective $\textit{Remarque}: \text{en fait } \ker T = F_0 = \operatorname{Vect}\left(\left(0^n\right)_{n\in\mathbb{N}}\right) = \operatorname{Vect}\left(d\right) \text{ d'après le calcul de } F_\lambda.$
- $\underline{\text{Surjectivit\'e}}: \text{si } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_n = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_{n-1} \end{array} \right. \text{ v\'erifie } T\left(u\right) = v, \text{ donc } v \in E \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ est donn\'ee, alors la suite } u \text{ d\'efinie par } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifie } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\ \forall n \geqslant 1, \ u_0 = v_0 \end{array} \right. \text{ v\'erifier } \left\{ \begin{array}{l} u_0 = 0 \\$ l'application T est surjective

Remarque: les antécédents de v sont de la forme $u'=u+\lambda d$, d définie plus haut, i.e. $\begin{cases} u'_0=\lambda \\ \forall n\geqslant 1,\ u'_n=v_{n-1} \end{cases}$

Ex 10 Soient E un \mathbb{K} -espace vectoriel et $f \in \mathcal{L}(E)$. On suppose qu'il existe des réels distincts $\lambda_1, \ldots, \lambda_n$ et des vecteurs non nuls x_1, \ldots, x_n tels que

$$\forall k \in [1, n], \ f(x_k) = \lambda_k x_k.$$

Montrons que la famille (x_1, \ldots, x_n) est libre.

Démonstration par récurrence : H(n) : (x_1, \ldots, x_n) est libre.

- H(1) est vraie car $x_1 \neq 0_E$, donc (x_1) est libre.
- Soit $n \ge 2$. Supposons H(n-1) et montrons H(n): soient $(\alpha_1, \dots, \alpha_n) \in \mathbb{R}^p$ vérifiant

$$\sum_{i=1}^{n} \alpha_i x_i = 0_E \quad (1)$$

Alors, par linéarité de l'endomorphisme f:

$$\sum_{i=1}^{n} \alpha_i f(x_i) = 0_E$$

Et par hypothèse

$$\sum_{i=1}^{n} \alpha_i \lambda_i x_i = 0_E \quad (2)$$

En multipliant l'égalité (1) par λ_n et en retranchant l'égalité (2) , on élimine le dernier terme :

$$\sum_{i=1}^{n} (\lambda_n - \lambda_i) \alpha_i x_i = 0_E \quad \text{soit} \quad (\lambda_n - \lambda_1) \alpha_1 x_1 + \dots + (\lambda_n - \lambda_{n-1}) \alpha_{n-1} x_{n-1} = 0_E$$

L'hypothèse de récurrence (indépendance de X_1, \ldots, x_{n-1}) assure que

$$(\lambda_n - \lambda_1) \alpha_1 = \dots = (\lambda_n - \lambda_{n-1}) \alpha_{n-1} = 0$$

Et comme $\lambda_1, \ldots, \lambda_n$ sont distincts, $\alpha_1 = \cdots = \alpha_{n-1} = 0$. Mais alors il reste de (1): $\alpha_n x_n = 0$

qui donne $\boxed{\alpha_n=0}$ puisque $x_n \neq 0_E$. $H\left(n\right)$ est donc bien vraie.

Ex 11 Soit $f \in \mathcal{L}(E)$ tel que pour tout $x \in E$, f(x) est colinéaire à x. Montrons que f est une homothétie de E. Par définition, pour tout $x \in E \setminus \{0_E\}$, f(x) et x sont colinéaires, et comme x n'est pas nul, il existe $\lambda_x \in \mathbb{K}$ tel que $f(x) = \lambda_x . x$. Cela reste vrai pour $x = 0_E$ puisque $f(0_E) = 0_E$. Soit x et y dans E, non nuls.

- Si (x, y) est libre. alors par linéarité de f:

$$f(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y = f(x) + f(y) = \lambda_x x + \lambda_y y$$

Il en résulte que

$$(\lambda_{x+y} - \lambda_x) x + (\lambda_{x+y} - \lambda_y) y = 0_E$$

L'indépendance de (x, y) assure alors $\lambda_x = \lambda_y = \lambda_{x+y}$

- Si (x,y) est liée par exemple y=kx avec $k\in\mathbb{K}^*,$ on a f(y)=kf(x) donc

$$\lambda_y kx = k\lambda_x x$$
 ou $k(\lambda_y - \lambda_x) x = 0_E$

Comme $k \neq 0$ et $x \neq 0_E$, on a encore $\lambda_x = \lambda_y$

Comme on peut prendre n'importe quel λ_{0_E} , on en conclut

$$\forall (x,y) \in E^2, \lambda_x = \lambda_y$$

On dispose donc d'un $\lambda \in \mathbb{K}$ tel que $\forall x \in E, \ f(x) = \lambda x : \boxed{f \text{ est une homothétie de } E}$

Ex 12 Soit $f \in \mathcal{L}(E)$. Montrer les équivalences :

- a) Montrons: $\ker f \cap \operatorname{Im} f = \{0_E\} \iff \ker f = \ker f^2$.
 - i. On suppose $\ker f \cap \operatorname{Im} f = \{0_E\}.$
 - Montrons $\ker f \subset \ker f^2$: $\operatorname{Si} x \in \ker f$, alors $f(x) = 0_E$ d'où $f^2(x) = f(0_E) = 0_E$, i.e. $x \in \ker f^2$ CQFD.
 - $\frac{\text{Montrons } \ker f^2 \subset \ker f}{\text{Si } x \in \ker f^2, \text{ alors } f\left(f\left(x\right)\right) = 0_E, \text{ d'où } f\left(x\right) \in \ker f \cap \operatorname{Im} f \stackrel{\text{hyp}}{=} \left\{0_E\right\}. \text{ Donc } f\left(x\right) = 0_E \text{ CQFD.} }$

Par double inclusion, on a donc bien $\ker f = \ker f^2$

- ii. On suppose $\ker f = \ker f^2$.
 - · On a évidemment $\{0_E\} \subset \ker f \cap \operatorname{Im} f$ puisque $\ker f \cap \operatorname{Im} f$ est un sous-espace vectoriel de E.
 - · Montrons $\ker f \cap \operatorname{Im} f \subset \{0_E\}$: si $x \in \ker f \cap \operatorname{Im} f$, alors

$$\left\{ \begin{array}{l} f\left(x\right)=0_{E} \\ \exists t\in E\ /\ x=f\left(t\right) \end{array} \right. \quad \text{donc} \quad f\left(f\left(t\right)\right)=0_{E} \quad \text{i.e.} \quad t\in \ker f^{2}$$

L'hypothèse permet donc d'écrire : $t \in \ker f$, d'où $x = f(t) = 0_E$ CQFD.

Par double implication, notre équivalence est démontrée.

- b) Montrons: $\ker f + \operatorname{Im} f = E \iff \operatorname{Im} f = \operatorname{Im} f^2$
 - i. On suppose que $\ker f + \operatorname{Im} f = E$.
 - $\frac{\text{Montrons que Im }f^{2}\subset\operatorname{Im}f}{\operatorname{Si}y\in\operatorname{Im}f^{2},\operatorname{alors}\exists t\in E\ /\ y=f\left(f\left(t\right)\right)=f\left(x\right)\operatorname{en posant}x=f\left(t\right).\operatorname{D'où}y\in\operatorname{Im}f\operatorname{CQFD}.}$
 - Montrons que $\operatorname{Im} f \subset \operatorname{Im} f^2$: $\operatorname{\overline{Si}} y \in \operatorname{Im} f$, alors $\exists x \in E \ / \ y = f(x)$. On peut par hypothèse décomposer x:

$$\exists (x_0, x_1) \in \ker f \times \operatorname{Im} f / x = x_0 + x_1$$

Mais alors par linéarité $y = f(x_0) + f(x_1) = f(x_1)$. Mais comme $x_1 \in \text{Im } f$,

$$\exists t \in E / x_1 = f(x)$$
 d'où $y = f(f(t)) \in \operatorname{Im} f^2 \operatorname{CQFD}$.

Par double inclusion, on a donc bien $\operatorname{Im} f = \operatorname{Im} f^2$

- ii. On suppose que $\operatorname{Im} f = \operatorname{Im} f^2$.
 - · Il est évident que $\ker f + \operatorname{Im} f \subset E$.
 - · Montrons que $E \subset \ker f + \operatorname{Im} f$: soit $x \in E$ alors $f(x) \in \operatorname{Im} f \stackrel{\text{hyp}}{=} \operatorname{Im} f^2$. Donc

$$\exists t \in E / f(x) = f(f(t))$$

Si t est un tel vecteur, alors par linéarité $f\left(x-f\left(t\right)\right)=0_{E}$. Posons $\left\{\begin{array}{l} x_{0}=x-f\left(t\right)\in\ker f\\ x_{1}=f\left(t\right)\in\operatorname{Im}f \end{array}\right.$ Alors on a bien $x=x_{0}+x_{1}\in\ker f+\operatorname{Im}f$, CQFD.

Par double implication, notre équivalence est démontrée.

Ex 13 Soient E un K-espace vectoriel et f, g deux endomorphismes de E vérifiant $f \circ g = g \circ f$.

a) Montrons que Im f et ker f sont stables par g:

i. Si
$$y \in \text{Im } f$$
, alors $\exists x \in E / y = f(x)$, donc $g(y) = g(f(x)) \stackrel{\text{hyp}}{=} f(g(x)) \in \text{Im } f$

ii. Si
$$x \in \ker f$$
, alors $f(x) = 0_E$ donc $f(g(x)) = g(f(x)) = f(0_E) = 0_E$, d'où $g(x) \in \ker f$.

Par symétrie des rôles, on a de même : Im g et ker g sont stables par f.

b) On suppose que $E = \ker f + \ker g$. Montrons que $\operatorname{Im} f \subset \ker g$:

Si $y \in \text{Im } f$, alors $\exists x \in E / y = f(x)$. par hypothèse, x se décompose sur $\ker f$ et $\ker g$:

$$\exists (x_f, x_q) \in \ker f \times \ker g / x = x_f + x_q$$

Mais alors par linéarité de f:

$$y = f(x_f) + f(x_q) = f(x_q)$$

Ainsi

$$g\left(y\right)=g\left(f\left(x_{g}\right)\right)\overset{\mathrm{hyp}}{=}f\left(g\left(x_{g}\right)\right)=f\left(0_{E}\right)=0_{E}\quad\text{i.e.}\quad y\in\ker g\ \mathrm{CQFD}.$$

Par symétrie des rôles, on a de même Im $g \subset \ker f$.

Ex 14 Soit $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ vérifiant $f^n = 0_{\mathcal{L}(E)}$. On pose $g = f - \mathrm{id}_E$. Alors

$$id_E = id_E - f^n = (id_E - f) \circ \sum_{k=0}^{n-1} f^k = \sum_{k=0}^{n-1} f^k \circ (id_E - f)$$

Il s'ensuit que g est inversible et

$$g^{-1} = \sum_{k=0}^{n-1} f^k = id_E + f + \dots + f^{n-1}$$

Ex 15 Soit E un \mathbb{R} -espace de dimension $n \in \mathbb{N}^*$ et $f \in \mathcal{L}(E)$ vérifiant $f^n = 0_{\mathcal{L}(E)}$ et $f^{n-1} \neq 0_{\mathcal{L}(E)}$.

Montrons qu'il existe $x \in E$ tel que $(x, f(x), \dots, f^{n-1}(x))$ soit une base de E:

Analyse: pour que la famille $(x, f(x), \dots, f^{n-1}(x))$ soit libre, il faut que chacun de ses vecteurs soient non nul, et en particulier $f^{n-1}(x)$ (car nécessairement les autres seront aussi non nuls.

Synthèse : considérons un vecteur $x \in E / f^{n-1}(x) \neq 0_E$ (possible puisque $f^{n-1} \neq 0_{\mathcal{L}(E)}$).

Montrons que $\mathcal{B} = (x, f(x), \dots, f^{n-1}(x))$ est libre : $\operatorname{si}(\lambda_0, \dots, \lambda_{n-1}) \in \mathbb{K}^n$ vérifient

$$\lambda_0 x + \lambda_1 f(x) + \dots + \lambda_{n-1} f^{n-1}(x) = 0_E$$

Alors en appliquant f^{n-1} il vient :

$$\lambda_0 f^{n-1}(x) + 0_E = 0_E \Rightarrow \boxed{\lambda_0 = 0} \quad (\text{car } f^{n-1}(x) \neq 0_E)$$

Donc

$$\lambda_1 f(x) + \dots + \lambda_{n-1} f^{n-1}(x) = 0_E$$

On applique f^{n-2} :

$$\lambda_1 f^{n-1}(x) + 0_E = 0_E \Rightarrow \boxed{\lambda_1 = 0}$$

 $\lambda_1 f^{n-1}\left(x\right) + 0_E = 0_E \Rightarrow \boxed{\lambda_1 = 0}$ puis f^{n-3}, \ldots, f pour obtenir successivement $\boxed{\lambda_2 = 0, \ldots \lambda_{n-2} = 0}$. Il reste enfin

$$\lambda_{n-1}f^{n-1}\left(x\right)=0_{E}\Rightarrow \boxed{\lambda_{n-1}=0}$$
 CQFD

- La famille \mathcal{B} est alors génératrice : en effet, sinon on aurait un vecteur $y \notin \text{Vect}(x, f(x), \dots, f^{n-1}(x))$. Mais alors la famille $(x, f(x), \dots, f^{n-1}(x), y)$ serait libre, et $\text{Vect}(x, f(x), \dots, f^{n-1}(x), y) \in E$ serait de dimension n+1, ce qui contredit le fait que $\dim E = n$.
- Finalement \mathcal{B} est une base de E, CQFD.

Ex 16 Soit $f \in \mathcal{L}(E)$.

- a) Montrons que $\forall k \in \mathbb{N}$, $\ker f^k \subset \ker f^{k+1}$: Si $x \in \ker f^k$ alors $f^k(x) = 0_E$, d'où $f^{k+1}(x) = 0_E$, i.e. $x \in \ker f^{k+1}$ CQFD. La suite $\left(\ker f^k\right)_{k \in \mathbb{N}}$ est donc croissante pour l'inclusion.
- b) On suppose : $\exists p \in \mathbb{N}^* / \ker f^{p-1} \subsetneq \ker f^p = \ker f^{p+1}$.
 - i. Montrons que $\forall k \geqslant p$, on a $\ker f^k = \ker f^{k+1}$ ($\left(\ker f^k\right)_{k \in \mathbb{N}}$ est stationnaire) Soit $k \geqslant p$, et $x \in \ker f^{k+1}$. Alors

$$f^{k+1}(x) = 0_E \Rightarrow f^{p+1}(f^{k-p}(x)) = 0_E \Rightarrow f^{k-p}(x) \in \ker f^{p+1} \stackrel{\text{hyp.}}{=} \ker f^p$$

On en déduit :

$$f^{p}\left(f^{k-p}\left(x\right)\right) = 0_{E} \Rightarrow f^{k}\left(x\right) = 0_{E} \Rightarrow x \in \ker f^{k}$$

Ainsi $\ker f^{k+1} \subset \ker f^k$, ce qui doublé de l'inclusion du a) donne l'égalité cherchée.

ii. Montrons que $\forall k \in [0, p-1]$, $\ker f^k \subsetneq \ker f^{k+1}$.

Par l'absurde sinon il existerait $k \in [0, p-1]$ / $\ker f^k \subseteq \ker f^{k+1}$.

Mais la démonstration du (i) montre qu'alors $(\ker f^k)_{k\in\mathbb{N}}$ est stationnaire à partir du rang k, i.e.

$$\forall j \geqslant k, \ \ker f^j = \ker f^{j+1}$$

En particulier pour j = p - 1, cela donne $\ker f^{p-1} = \ker f^p$, contradiction.

- c) Montrons que $\forall k \in \mathbb{N}, \ \operatorname{Im} f^{k+1} \subset \operatorname{Im} f^k.$ Si $y \in \operatorname{Im} f^{k+1}$ alors $\exists x \in E \ / \ y = f^{k+1} \ (x) = f^k \ (f \ (x)) \ ,$ d'où $y \in \operatorname{Im} f^k$ CQFD. La suite $\left(\operatorname{Im} f^k\right)_{k \in \mathbb{N}}$ est donc décroissante pour l'inclusion.
- d) On suppose : $\exists p \in \mathbb{N}^* \ / \ \operatorname{Im} f^{p+1} = \operatorname{Im} f^p \subsetneq \operatorname{Im} f^{p-1}$.
 - i. Montrons que $\forall k \geqslant p$, on a $\operatorname{Im} f^k = \operatorname{Im} f^{k+1}$ ($\left(\operatorname{Im} f^k\right)_{k \in \mathbb{N}}$ est *stationnaire*) Soit $k \geqslant p$, et $y \in \operatorname{Im} f^k$. Alors

$$\exists x \in E / y = f^k(x) = f^{k-p}(f^p(x))$$

Mais $f^{p}(x) \in \text{Im } f^{p} \stackrel{\text{hyp.}}{=} \text{Im } f^{p+1}, \text{ donc } \exists t \in E \ / \ f^{p}(x) = f^{p+1}(t)$. Alors

$$y = f^{k-p}\left(f^{p+1}\left(t\right)\right) = f^{k+1}\left(t\right) \in \operatorname{Im} f^{k+1}$$

Ainsi $\operatorname{Im} f^k \subset \operatorname{Im} f^{k+1}$, qui compte tenu de l'inclusion c) donne l'égalité.

ii. Montrons que $\forall k \in [\![0,p-1]\!]$, $\operatorname{Im} f^{k+1} \varsubsetneq \operatorname{Im} f^k$.

Par l'absurde sinon il existerait $k \in [0, p-1]$ / Im $f^{k+1} \subsetneq \ker f^k$.

Mais la démonstration du (i) montre qu'alors $\left(\operatorname{Im} f^k\right)_{k\in\mathbb{N}}$ est stationnaire à partir du rang k, i.e.

$$\forall j\geqslant k,\; \mathrm{Im}\, f^j=\mathrm{Im}\, f^{j+1}$$

En particulier pour j = p - 1, cela donne Im $f^{p-1} = \text{Im } f^p$, contradiction.

Ex 17 Soit
$$E = \mathbb{R}^4$$
, F l'espace d'équation $x - y + t = 0$, G la droite engendrée par le vecteur $u = \begin{pmatrix} 1 \\ 1 \\ 2 \\ -1 \end{pmatrix}$.

On a $E = F \oplus G$. En effet soit $X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E$. Cherchons $(X_F, X_G) \in F \times G / X = X_F + X_G$

 X_G s'écrit nécessairement sous la forme $X_G = \lambda u$, avec $\lambda \in \mathbb{R}$. Donc

$$X_G = \begin{pmatrix} \lambda \\ \lambda \\ 2\lambda \\ -\lambda \end{pmatrix} \quad \text{et} \quad X_F = X - X_G = \begin{pmatrix} x - \lambda \\ y - \lambda \\ z - 2\lambda \\ t + \lambda \end{pmatrix}$$

Mais

$$X_F \in F \Rightarrow (x - \lambda) - (y - \lambda) + (t + \lambda) = 0 \Rightarrow \lambda = -x + y - t$$

Ainsi

$$X_F = \begin{pmatrix} 2x - y + t \\ x + t \\ 2x - 2y + z + 2t \\ -x + y \end{pmatrix} \quad \text{et} \quad X_G = \begin{pmatrix} -x + y - t \\ -x + y - t \\ -2x + 2y - 2t \\ x - y + t \end{pmatrix}$$

Inversement, il est facile de vérifier que pour X_G et X_F ainsi définis, on a

$$X = X_F + X_G, \quad X_f \in F \quad \text{et} \quad X_G \in G$$

Mais alors, si p et q sont les projecteurs associés à cette décomposition, on a

$$\forall X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in E, \begin{cases} p(X) = X_F = \begin{pmatrix} 2x - y + t \\ x + t \\ 2x - 2y + z + 2t \\ -x + y \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 2 & -2 & 1 & 2 \\ -1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \\ q(X) = X_G = \begin{pmatrix} -x + y - t \\ -x + y - t \\ -2x + 2y - 2t \\ x - y + t \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 & -1 \\ -1 & 1 & 0 & -1 \\ -2 & 2 & 0 & -2 \\ 1 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$$

Les matrices canoniques de p et q sont donc respectivement

$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 2 & -2 & 1 & 2 \\ -1 & 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -1 & 1 & 0 & -1 \\ -1 & 1 & 0 & -1 \\ -2 & 2 & 0 & -2 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

Si de plus s et la symétrie par rapport à F parallèlement à G, alors sa matrice S est :

$$S = A - B = \left(\begin{array}{rrrr} 3 & -2 & 0 & 2 \\ 2 & -1 & 0 & 2 \\ 4 & -4 & 1 & 4 \\ -2 & 2 & 0 & -1 \end{array}\right)$$

Ex 18 Soit $f \in \mathcal{L}(E)$ vérifiant $f^2 - 3f + 2 \operatorname{id}_E = 0_{\mathcal{L}(E)}$ (*):

a) La relation (*), en notant $\mathbb{O} = 0_{\mathcal{L}(E)}$ et $\mathrm{id} = \mathrm{id}_E$, s'écrit

$$\begin{cases} f \circ (f - 3 \operatorname{id}) = 2 \operatorname{id} \\ (f - 3 \operatorname{id}) \circ f = 2 \operatorname{id} \end{cases}$$

ce qui prouve que :

$$f \text{ est inversible d'inverse } f^{-1} = \frac{1}{2} \left(f - 3 \text{ id} \right)$$

b) Montrons que $E = \ker(f - \mathrm{id}) \oplus \ker(f - 2\mathrm{id})$

On pose $F = \ker(f - \mathrm{id})$ et $G = \ker(f - 2\mathrm{id})$. Remarquons tout de suite :

$$x \in F \iff f(x) = x \text{ et } x \in G \iff f(x) = 2x$$

Soit $x \in E$. On cherche $(x_F, x_G) \in F \times G / x = x_F + x_G$.

* Analyse: supposons avoir x_F et x_G : alors par linéarité $f(x) = f(x_F) + f(x_G)$, d'où

$$f\left(x\right) = x_F + 2x_G$$

Ainsi

$$\begin{cases} x = x_F + x_G \\ f(x) = x_F + 2x_G \end{cases} \Rightarrow \begin{cases} x_F = 2x - f(x) = (f - 2 \operatorname{id})(-x) \\ x_G = f(x) - x = (f - \operatorname{id})(x) \end{cases}$$

- * Synthèse : Soient x_F et x_G ainsi définis :
 - · On a bien $x_F + x_G = x$.
 - · Montrons que $x_F \in F$:

Première méthode : on a par linéarité

$$f(x_F) = 2f(x) - f^2(x) \stackrel{(*)}{=} 2f(x) - (3f(x) - 2x) = 2x - f(x) = x_F$$
 CQFD

Deuxième méthode : (*) s'écrit aussi $(f - id) \circ (f - 2id) = \mathbb{O}$. donc

$$(f - id)(x_F) = (f - id) \circ (f - 2id)(-x) = 0_E$$
 CQFD

· Montrons que $x_G \in G$:

Première méthode : on a par linéarité

$$f(x_G) = f^2(x) - f(x) \stackrel{(*)}{=} 3f(x) - 2x - f(x) = 2(f(x) - x) = 2x_G$$
 CQFD

Deuxième méthode : (*) s'écrit aussi $(f-2\operatorname{id})\circ (f-\operatorname{id})=\mathbb{O}$. donc

$$(f - 2 id)(x_G) = (f - 2 id) \circ (f - id)(x) = 0_E$$
 CQFD

c) Soit $p = f - id \in \mathcal{L}(E)$. Alors

$$p^2 = f^2 - 2f + id \stackrel{(*)}{=} (3f - 2id) - 2f + id = f - id = p$$

On en déduit que p est un projecteur de E, dont l'associé est $q = \operatorname{id} - p = 2\operatorname{id} - f$.

Mais on sait qu'alors $E = \ker p \oplus \ker q$, ce qui permet de retrouver :

$$E = \ker(f - \mathrm{id}) \oplus \ker(2\,\mathrm{id} - f) = \ker(f - \mathrm{id}) \oplus \ker(f - 2\,\mathrm{id})$$

Ex 19 Soit $E = \mathbb{R}^3$, et (e_1, e_2, e_3) sa base canonique. On considère l'endomorphisme f de E défini par :

$$f(e_1) = 5e_1 + e_2 - 2e_3$$
; $f(e_2) = e_1 + 5e_2 + 2e_3$; $f(e_3) = -2e_1 + 2e_2 + 2e_3$

a) Par linéarité, si $X = xe_1 + ye_2 + ze_3$, on a

$$f\left(X\right) = x f\left(e_{1}\right) + y f\left(e_{2}\right) + z f\left(e_{3}\right) = x \begin{pmatrix} 5 \\ 1 \\ -2 \end{pmatrix} + y \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + z \begin{pmatrix} -2 \\ 2 \\ 2 \end{pmatrix} = AX, \text{ avec } A = \begin{pmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{pmatrix}$$

Notons C_1, C_2, C_3 les colonnes de A. On remarque que $C_1 - C_2 = -2C_3$, donc

$$\boxed{\operatorname{Im} f = \operatorname{Im} A = \operatorname{Vect} \left(C_1, C_2, C_3 \right) = \operatorname{Vect} \left(C_1, C_2 \right), \operatorname{avec} \left(C_1 C_2 \right) \operatorname{libre}}$$

Pour le noyau : $X \in \ker f \iff AX = 0_E$. Or

$$A = \left(\begin{array}{ccc} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 5 & 2 \\ 5 & 1 & -2 \\ -2 & 2 & 2 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 5 & 2 \\ 0 & -24 & -12 \\ 0 & 12 & 6 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 5 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{array}\right) \sim \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

Dono

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker f \Longleftrightarrow \left\{ \begin{array}{l} x+y=0 \\ 2y+z=0 \end{array} \right. \Longleftrightarrow \left\{ \begin{array}{l} x=-y \\ z=-2y \end{array} \right. \Longleftrightarrow X = y \begin{pmatrix} -1 \\ 1 \\ -2 \end{array} \right)$$

 $\ker f$ est la droite engendrée par $X_0=e_1-e_2+2e_3$

b) On pose $p = \frac{1}{6}f \in \mathcal{L}(E)$: on calcule

$$A^{2} = \begin{pmatrix} 30 & 6 & -12 \\ 6 & 30 & 12 \\ -12 & 12 & 12 \end{pmatrix} = 6A \quad \text{donc} \quad \left(\frac{1}{6}A\right)^{2} = \frac{1}{36}A^{2} = \frac{1}{6}A$$

Il en résulte que $p^2 = p$ et donc que p est un projecteur de E.

- * Espace de projection (ou base): $\operatorname{Im} p = \operatorname{Im} f = \operatorname{Vect}(C_1, C_2)$
- * Direction: $\ker p = \ker f = \operatorname{Vect}(e_0)$.
- c) On en déduit que $\operatorname{Im} f = \operatorname{Im} p = \ker (p \operatorname{id}) = \ker (f 6 \operatorname{id})$. Ainsi

$$X \in \operatorname{Im} f \iff f(X) = 6X$$

* Le système
$$(S_1)$$

$$\begin{cases} 5x + y - 2z = 3 \\ x + 5y + 2z = 3 \\ -2x + 2y + 2z = 0 \end{cases}$$
 s'écrit $f(X) = Y_1$, avec $Y_1 = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix}$. Or

$$f(Y_1) = AY_1 = \begin{pmatrix} 18 \\ 18 \\ 0 \end{pmatrix} = 3Y_1$$

On en déduit que $Y_1 \in \text{Im } f$, et donc que (S_1) est **compatible**.

* Le système
$$(S_2)$$

$$\begin{cases} 5x+y-2z=1\\ x+5y+2z=0\\ -2x+2y+2z=0 \end{cases}$$
 s'écrit $f(X)=Y_2$, avec $Y_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}$. Or

$$f(Y_2) = AY_2 = \begin{pmatrix} 5\\1\\-2 \end{pmatrix} \neq 3Y_2$$

On en déduit que $Y_2 \notin \text{Im } f$, et donc que (S_2) est **incompatible**.

Ex 20 Soit E un \mathbb{R} -espace vectoriel, F et G deux sous-espaces supplémentaires de E, s un endomorphisme de F et φ un isomorphisme de F sur G. On pose, si $x = y + z \in E$, avec $y \in F$ et $z \in G$,

$$f(x) = \varphi(y) + s(y) + \varphi^{-1}(z)$$

On considère les projecteurs p et q asociés à la décomposition $E = F \oplus G$. Alors $\forall x \in E$,

$$f(x) = \varphi(p(x)) + s(p(x)) + \varphi^{-1}(q(x))$$
 i.e. $f = \varphi \circ p + s \circ p + \varphi^{-1} \circ q$

Par composition et somme, on en déduit la linéarité de f. Reste à voir sa bijectivité :

Soit donc un élément x' de E: considérons l'équation f(x) = x' (*). On pose

$$\left\{ \begin{array}{l} y=p\left(x\right) \\ z=q\left(x\right) \end{array} \right. \quad \text{et} \quad \left\{ \begin{array}{l} y'=p\left(x'\right) \\ z'=q\left(x'\right) \end{array} \right.$$

Analyse : si x est solution de (*), alors

$$\varphi(y) + s(y) + \varphi^{-1}(z) = y' + z'$$

Par hypothèse, $\varphi(y) \in G$, $s(y) \in F$, $\varphi^{-1}(z) \in F$, $y' \in F$ et $z' \in G$. Par unicité de la décomposition sur F et G, on en déduit

$$\left\{ \begin{array}{l} \varphi\left(y\right) = z' \\ s\left(y\right) + \varphi^{-1}\left(z\right) = y' \end{array} \right. \iff \left\{ \begin{array}{l} y = \varphi^{-1}\left(z'\right) \\ \varphi^{-1}\left(z\right) = y' - s\left(\varphi^{-1}\left(z'\right)\right) \end{array} \right. \iff \left\{ \begin{array}{l} y = \varphi^{-1}\left(z'\right) \\ z = \varphi\left(y'\right) - \varphi\left(s\left(\varphi^{-1}\left(z'\right)\right)\right) \end{array} \right.$$

Ainsi, l'unique solution possible de (*) est

$$x = \varphi^{-1}(z') + \varphi(y') - \varphi \circ s \circ \varphi^{-1}(z')$$

Synthèse : ce vecteur ainsi défini est bien solution de (*) : en effet, comme sa composante sur F est $\varphi^{-1}(z')$ et sa composante sur $G: \varphi(y') - \varphi(s(\varphi^{-1}(z')))$ on a

$$f(x) = \varphi(\varphi^{-1}(z')) + s(\varphi^{-1}(z')) + \varphi^{-1}(\varphi(y') - \varphi(s(\varphi^{-1}(z'))))$$

$$= z' + s(\varphi^{-1}(z')) + y' - s(\varphi^{-1}(z'))$$

$$= z' + y'$$

$$= x'$$

Finalement (*) admet une unique solution dans E et f est un automorphisme de E, et sa réciproque a pour expression, si x = y + z, avec $y \in F, z \in G$:

$$f^{-1}(x) = \varphi^{-1}(z) + \varphi(y) - \varphi \circ s \circ \varphi^{-1}(z)$$

Ex 21 Soient E un \mathbb{K} -espace vectoriel non trivial, et p et q deux projecteurs de E. Montrons que $p\circ q=q\circ p=p\Longleftrightarrow \left\{\begin{array}{l} \ker q\subset\ker p\\ \operatorname{Im} p\subset\operatorname{Im} q\end{array}\right.$

- On suppose que $p \circ q = q \circ p = p$
 - * Si $x \in \ker q$, alors $q(x) = 0_E$, donc $p(x) = p(q(x)) = 0_E$, donc $x \in \ker p$. Ainsi $\ker q \subset \ker p$
 - * Si $x \in \text{Im } p$, alors p(x) = x, donc q(x) = q(p(x)) = p(x) = x, donc $x \in \text{Im } q$. Ainsi $\overline{\text{Im } p \subset \text{Im } q}$
- $\quad \text{On suppose que } \left\{ \begin{array}{l} \ker q \subset \ker p \\ \operatorname{Im} p \subset \operatorname{Im} q \end{array} \right. \text{ : on a } E = \operatorname{Im} q \oplus \ker q \text{, donc pour montrer que } p \circ q = q \circ p = p \text{, il suffit } \right.$ (par linéarité) de montrer que ces trois applications coïncident sur $\operatorname{Im} q$ et $\ker q$:
 - * Si $x \in \text{Im } q$, alors $q(x) \in \text{Im } q$, et $p(x) \in \text{Im } p \subset \text{Im } q$ donc q(p(x)) = p(x) et p(q(x)) = p(x).
 - * Si $x \in \ker q \subset \ker p$, alors $p(q(x)) = q(p(x)) = p(x) = 0_E$.

Par linéarité, on a bien $p \circ q = q \circ p = p$.

Remarque: on pouvait aussi écrire plus formellement (à l'aide des projecteurs associés):

$$\begin{array}{rcl} p \circ q & = & p \Longleftrightarrow p \circ (\mathrm{id}_E - q) = 0 \Longleftrightarrow \mathrm{Im}\,(\mathrm{id}_E - q) \subset \ker p \Longleftrightarrow \ker q \subset \ker p \\ q \circ p & = & p \Longleftrightarrow (\mathrm{id}_E - q) \circ p = 0 \Longleftrightarrow \mathrm{Im}\,p \subset \ker(\mathrm{id}_E - q) \Longleftrightarrow \mathrm{Im}\,p \subset \mathrm{Im}\,q \end{array}$$

Ex 22 Soient p et q deux projecteurs de E. Montrons que p+q est un projecteur si et seulement si $p \circ q = q \circ p = \mathbb{O}$. Rappelons que $p^2 = p$ et $q^2 = q$, et p+q est un projecteur si et seulement si $(p+q)^2 = p+q$. Or

$$(p+q)^{2} = p+q \quad \Leftrightarrow \quad p^{2} + p \circ q + q \circ p + q^{2} = p+q$$

$$\Leftrightarrow \quad p+p \circ q + q \circ p + q = p+q$$

$$\Leftrightarrow \quad p \circ q = -q \circ p$$

- Si p + q est un projecteur, alors $p \circ q = -q \circ p$, d'où

$$\left\{\begin{array}{ll} p\circ p\circ q=-p\circ q\circ p\\ p\circ q\circ p=-q\circ p\circ p \end{array}\right. \text{ i.e. } \left\{\begin{array}{ll} p\circ q=-p\circ q\circ p\\ p\circ q\circ p=-q\circ p \end{array}\right.$$

On en déduit que $p \circ q = q \circ p$, ce qui, comparé à $p \circ q = -q \circ p$ donne $p \circ q = q \circ p = \mathbb{O}$.

- La réciproque est évidente (si $p \circ q = q \circ p = \mathbb{O}$, alors $(p+q)^2 = p^2 + p \circ q + q \circ p + q^2 = p + q$), d'où

$$\boxed{p+q \text{ est un projecteur} \Longleftrightarrow p \circ q = q \circ p = \mathbb{O}}$$

Supposons que p + q soit un projecteur. Alors :

- Montrons que $\ker(p+q) = \ker p \cap \ker q$ par double inclusion :
 - * Si $x \in \ker p \cap \ker q$, alors $p(x) = q(x) = 0_E$, d'où $(p+q)(x) = 0_E$: $x \in \ker (p+q)$.

$$\ker p \cap \ker q \subset \ker (p+q)$$

* Inversement, si $x \in \ker(p+q)$, alors $p(x) + q(x) = 0_E$. En composant par p et par q à gauche :

$$\left\{ \begin{array}{l} p\circ p\left(x\right)+p\circ q\left(x\right)=0_{E}\\ q\circ p\left(x\right)+q\circ q\left(x\right)=0_{E} \end{array} \right. \quad \text{i.e.} \quad \left\{ \begin{array}{l} p\left(x\right)=0_{E}\\ q\left(x\right)=0_{E} \end{array} \right. \quad \left(\operatorname{car}\, p\circ q=q\circ p=\mathbb{O}\right) \right.$$

D'où $x \in \ker p \cap \ker q$, et donc $\ker (p+q) \subset \ker p \cap \ker q$

- Montrons que $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$.
 - * Si $x \in \operatorname{Im} p \cap \operatorname{Im} q$, alors p(x) = x donc q(p(x)) = q(x) = x, et comme $q \circ p = q \circ p = \mathbb{O}$, on a $x = 0_E$. On en déduit que la somme $\operatorname{Im} p + \operatorname{Im} q$ est directe.

Montrons $\operatorname{Im}(p+q) = \operatorname{Im} p \oplus \operatorname{Im} q$ par double inclusion :

* Si $x \in \text{Im}(p+q)$, alors (p+q) est un projecteur): (p+q)(x) = x, i.e. $x = p(x) + q(x) \in \text{Im}(p+q)$

$$\operatorname{Im}(p+q) \subset \operatorname{Im} p + \operatorname{Im} q$$

* Si $x \in \operatorname{Im} p + \operatorname{Im} q$, alors $\exists (y, z) \in E^2 / x = p(y) + q(z)$.

En composant : par $p: p(x) = p \circ p(y) + p \circ q(z) = p(y)$

$$par q : q(x) = q \circ p(y) + q \circ q(z) = q(z)$$

On en déduit : $x = p(x) + q(x) = (p+q)(x) \in \text{Im}(p+q)$:

$$\operatorname{Im} p + \operatorname{Im} q \subset \operatorname{Im} (p+q)$$

- Ex 23 Soient f, p, q trois endomorphismes de E et a, b deux scalaires distincts vérifiant : $\begin{cases} p+q=\mathrm{id} & (H_0) \\ ap+bq=f & (H_1) \\ a^2p+b^2q=f^2\left(H_2\right) \end{cases}.$
 - a) Un calcul simple donne, à l'aide de H_0 , H_1 et H_2

$$(f - a \operatorname{id}) \circ (f - b \operatorname{id}) = f^2 - (a + b) f + ab \operatorname{id}$$

= $(a^2p + b^2q) - (a + b) (ap + bq) + ab (p + q)$
= \mathbb{O}

Mais par ailleurs, toujours avec H_0 et H_1

$$\begin{cases} f - a \operatorname{id} = (b - a) q \\ f - b \operatorname{id} = (a - b) p \end{cases} \quad \text{d'où } - (b - a)^2 (q \circ p) = \mathbb{O}$$

Comme $a \neq b$, il vient $q \circ p = \mathbb{O}$. Alors

$$p^2 \stackrel{H_0}{=} (\mathrm{id} - q) \circ p = p - q \circ p = p$$

p est donc un projecteur de E et $q = \mathrm{id} - p$ est son associé.

Remarque : on a alors automatiquement $p \circ q = \mathbb{O}$.

b) Montrons que $\forall n \in \mathbb{N}, f^n = a^n p + b^n q$.

On peut démontrer facilement ce résultat par récurrence, mais nous proposons une méthode plus directe : Puisque p et q commutent, on peut écrire pour $n \in \mathbb{N}^*$:

$$f^{n} = (ap + bq)^{n} = \sum_{k=0}^{n} \binom{n}{k} (ap)^{k} \circ (bq)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} \left(p^{k} \circ q^{n-k} \right)$$

Isolons les termes extrêmes et utilisons que si $j \geqslant 1$, alors $p^j = p$ et $q^j = q$:

$$f^{n} = a^{n}p^{n} + \sum_{k=1}^{n-1} \binom{n}{k} a^{k}b^{n-k} \left(p^{k} \circ q^{n-k}\right) + b^{n}q^{n}$$

$$= a^{n}p + \sum_{k=1}^{n-1} \binom{n}{k} a^{k}b^{n-k} \left(p \circ q\right) + b^{n}q$$

$$= a^{n}p + b^{n}q$$

La formule est de plus vraie pour n=0 (hypothèse H_0), d'où le résultat.

c) On suppose $ab \neq 0$: la formule montrée en a)

$$f^{2} - (a+b) f + ab \operatorname{id} = \mathbb{O} \Rightarrow \begin{cases} f \circ (f - (a+b) \operatorname{id}) = -ab \operatorname{id} \\ (f - (a+b) \operatorname{id}) \circ f = -ab \operatorname{id} \end{cases}$$

montre que $f \in GL(E)$ et $f^{-1} = \frac{1}{ab} ((a+b) \operatorname{id} - f)$. Mais alors, si $n \in \mathbb{N}$, posons

$$g_n = a^{-n}p + b^{-n}q$$

Alors

$$g_n \circ f^n = (a^{-n}p + b^{-n}q) \circ (a^np + b^nq) = p^2 + \mathbb{O} + \mathbb{O} + q^2 = p + q = id$$

Cela prouve que f^n admet pour inverse g_n , et donc

$$f^{-n} = (f^n)^{-1} = a^{-n}p + b^{-n}q$$

Autrement dit la formule du b) reste valable pour $n \in \mathbb{Z}$

Ex 24 On se donne une application linéaire $f: \mathbb{R}^n \to \mathbb{R}^m$.

On suppose qu'il existe une application linéaire $g: \mathbb{R}^m \to \mathbb{R}^n$ vérifiant $f \circ g \circ f = f$ (*)

- a) * En composant par g à droite dans (*), il vient $f \circ g \circ f \circ g = f \circ g$ i.e. $(f \circ g)^2 = f \circ g$: $f \circ g$ est donc un projecteur de \mathbb{R}^m (il est clair que $f \circ g : \mathbb{R}^m \to \mathbb{R}^m$).
 - * De même à gauche : $g \circ f \circ g \circ f = g \circ f$, et $g \circ f$ un projecteur de \mathbb{R}^n .
 - * Montrons que $\operatorname{Im}(f \circ g) = \operatorname{Im} f$ par double inclusion :
 - · Im $(f \circ g) \subset \text{Im } f$ est un fait général.
 - · Inversement Im $f \stackrel{(*)}{=} \text{Im} ((f \circ q) \circ f) \subset \text{Im} (f \circ q)$ par la même propriété.
 - * Montrons que $\ker(g \circ f) = \ker f$ par double inclusion :
 - · $\ker f \subset \ker (g \circ f)$ est un fait général.
 - $\cdot \quad \ker (g \circ f) \subset \ker (f \circ (g \circ f)) = \ker f.$
- b) Soit $Y \in \mathbb{R}^m$. Puisque $\operatorname{Im} f = \operatorname{Im} (f \circ g)$, et que $f \circ g$ est un projecteur, on a donc

$$Y \in \operatorname{Im} f \iff Y \in \operatorname{Im} (f \circ g) \iff f \circ g(Y) = Y$$

c) Soit donc $Y \in \text{Im } f$. Alors l'équation linéaire f(X) = Y s'écrit

$$f(X) = Y \iff f(X) = f \circ g(Y)$$

$$\iff f(X) - f \circ g(Y) = 0_{\mathbb{R}^m}$$

$$\iff f(X - g(Y)) = 0_{\mathbb{R}^m}$$

$$\iff X - g(Y) \in \ker f$$

Mais comme $\ker f = \ker (g \circ f) = \operatorname{Im} (\operatorname{id}_{\mathbb{R}^n} - g \circ f)$ (projecteur associé), on a, en posant $h = \operatorname{id}_{\mathbb{R}^n} - g \circ f$:

$$f\left(X\right) = Y \Longleftrightarrow X - g\left(Y\right) \in \operatorname{Im}\left(h\right) \Longleftrightarrow \exists Z \in \mathbb{R}^{n} / X - g\left(Y\right) = h\left(Z\right)$$

Ainsi, avec $h = id_{\mathbb{R}^n} - g \circ f$, les solutions de f(X) = Y sont de la forme

$$X = g(Y) + h(Z), \quad Z \in \mathbb{R}^n$$