Morphisms of Schemes: Chevalley's Theorem

Aryaman Maithani Mentor: Prof. Arvind Nair

June 14, 2021

 $oldsymbol{0}$ X and Y will denote topological spaces.

- Y and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.

- Y and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$.

- Y and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.

- 4 X and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- **4** Will denote a commutative ring with 1. (All our rings will be of this form!)

- Y and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A will denote a commutative ring with 1. (All our rings will be of this form!)
- Spec A will denote the set of prime ideals of A.

- ① X and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A will denote a commutative ring with 1. (All our rings will be of this form!)
- **5** Spec A will denote the set of prime ideals of A.
- **6** Given $S \subset A$, $\langle S \rangle$ will denote the ideal generated by S.

- Y and Y will denote topological spaces.
- 2 U, V, W will denote open subsets of the ambient topological space.
- **3** By a cover $\{U_i\}$ of U, we mean that $U = \bigcup_i U_i$. In particular, $U_i \subset U$ for all i.
- A will denote a commutative ring with 1. (All our rings will be of this form!)
- 5 Spec A will denote the set of prime ideals of A.
- **6** Given $S \subset A$, $\langle S \rangle$ will denote the ideal generated by S.
- **②** Given f ∈ A, A_f will denote the localisation of A at the multiplicative set $\{1, f, f^2, ...\}$.

Definition 1 (Presheaf)

Let X be a topological space.

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

① For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **1** For each open set $U \subset X$, we are given a ring $\mathcal{F}(U)$.
- **②** For open sets $U \subset V \subset X$, we have a ring map $\operatorname{res}_{V,U}: \mathscr{F}(V) \to \mathscr{F}(U)$, called the restriction map.

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **1** For each open set $U \subset X$, we are given a ring $\mathcal{F}(U)$.
- **②** For open sets $U \subset V \subset X$, we have a ring map $\operatorname{res}_{V,U}: \mathscr{F}(V) \to \mathscr{F}(U)$, called the restriction map.

The above data is required to satisfy the following conditions:

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **1** For each open set $U \subset X$, we are given a ring $\mathcal{F}(U)$.
- ② For open sets $U \subset V \subset X$, we have a ring map $\operatorname{res}_{V,U} : \mathscr{F}(V) \to \mathscr{F}(U)$, called the restriction map.

The above data is required to satisfy the following conditions:

• $\operatorname{res}_{U,U} = \operatorname{id}_{\mathscr{F}(U)}$ for all open $U \subset X$.

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **1** For each open set $U \subset X$, we are given a ring $\mathcal{F}(U)$.
- ② For open sets $U \subset V \subset X$, we have a ring map $\operatorname{res}_{V,U} : \mathscr{F}(V) \to \mathscr{F}(U)$, called the restriction map.

The above data is required to satisfy the following conditions:

- \bullet res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- ② If $U \subset V \subset W$ are open sets, then the following diagram commutes

Definition 1 (Presheaf)

Let X be a topological space. A presheaf (of rings) \mathscr{F} on X is the following collection of data:

- **①** For each open set $U \subset X$, we are given a ring $\mathscr{F}(U)$.
- ② For open sets $U \subset V \subset X$, we have a ring map $\operatorname{res}_{V,U} : \mathscr{F}(V) \to \mathscr{F}(U)$, called the restriction map.

The above data is required to satisfy the following conditions:

- \bullet res_{U,U} = id_{$\mathscr{F}(U)$} for all open $U \subset X$.
- ② If $U \subset V \subset W$ are open sets, then the following diagram commutes

Definition 2 (Sheaf)

Definition 2 (Sheaf)

Let X be a topological space.

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$,

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U,

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$,

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following: Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$ such that

$$res_{U,U_i}(f) = f_i$$

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f)=f_i$$

for all i.

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f)=f_i$$

for all i.

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f)=f_i$$

for all i.

Definition 2 (Sheaf)

Let X be a topological space. A sheaf (of rings) \mathscr{F} on X is a presheaf \mathscr{F} on X satisfying the following:

Given an open set $U \subset X$, an open cover $\{U_i\}$ of U, and elements $f_i \in \mathscr{F}(U_i)$, there exists a unique $f \in \mathscr{F}(U)$ such that

$$\operatorname{res}_{U,U_i}(f)=f_i$$

for all i.

Slogan 3

Given elements on patches, we can glue them uniquely.

Definition 4 (Ringed space) Definition 5 (Morphism of ringed spaces)

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) ,

Definition 5 (Morphism of ringed spaces)

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces.

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

1 A continuous map $\pi: X \to Y$.

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

- **1** A continuous map $\pi: X \to Y$.
- 2 For every open $V \subset Y$, we have a ring map

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

- **1** A continuous map $\pi: X \to Y$.
- ② For every open $V \subset Y$, we have a ring map

$$\mathscr{O}_{Y}(V) \to \mathscr{O}_{X}(\pi^{-1}(V)).$$

Definition 4 (Ringed space)

A ringed space is a tuple (X, \mathcal{O}_X) , where X is a topological space and \mathcal{O}_X is a sheaf on X.

Definition 5 (Morphism of ringed spaces)

Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. A morphism $\pi: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is the following data:

- **1** A continuous map $\pi: X \to Y$.
- ② For every open $V \subset Y$, we have a ring map

$$\mathscr{O}_{Y}(V) \to \mathscr{O}_{X}(\pi^{-1}(V)).$$

Moreover, the "obvious diagrams" must commute.

Goal: Turn Spec A into a ringed space.

Definition 6 (Distinguished and Vanishing sets)

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring,

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$.

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A : f \notin \mathfrak{p} \}.$$

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := {\mathfrak{p} \in \operatorname{\mathsf{Spec}} A : S \subset \mathfrak{p}}.$$

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := {\mathfrak{p} \in \operatorname{\mathsf{Spec}} A : S \subset \mathfrak{p}}.$$

(Check:
$$D(f) = \operatorname{Spec} A \setminus V(f)$$
.)

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := {\mathfrak{p} \in \operatorname{\mathsf{Spec}} A : S \subset \mathfrak{p}}.$$

(Check:
$$D(f) = \operatorname{Spec} A \setminus V(f)$$
.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$.

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{\mathsf{Spec}} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := {\mathfrak{p} \in \operatorname{\mathsf{Spec}} A : S \subset \mathfrak{p}}.$$

(Check:
$$D(f) = \operatorname{Spec} A \setminus V(f)$$
.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$.

Simple check 2: If $D(g) \subset D(f)$, then f is invertible in A_g .

Goal: Turn Spec A into a ringed space. First, we need a topology.

Definition 6 (Distinguished and Vanishing sets)

Let A be a ring, and $f \in A$. Define

$$D(f) := \{ \mathfrak{p} \in \operatorname{Spec} A : f \notin \mathfrak{p} \}.$$

Given a subset $S \subset A$, define

$$V(S) := {\mathfrak{p} \in \operatorname{\mathsf{Spec}} A : S \subset \mathfrak{p}}.$$

(Check:
$$D(f) = \operatorname{Spec} A \setminus V(f)$$
.)

Simple check 1: Given $S \subset A$, we have $V(S) = V(\langle S \rangle)$. Simple check 2: If $D(g) \subset D(f)$, then f is invertible in A_g . Thus, there is a natural map $A_f \to A_g$.

Let A be a ring.

Definition 7 (Zariski topology)

Let A be a ring. Then, the collection

$$\{V(I):I\subset A \text{ is an ideal}\}$$

Definition 7 (Zariski topology)

Let A be a ring. Then, the collection

$$\{V(I):I\subset A \text{ is an ideal}\}$$

describes a topology on Spec A by denoting the collection of *closed* subsets.

Definition 7 (Zariski topology)

Let A be a ring. Then, the collection

$$\{V(I):I\subset A \text{ is an ideal}\}$$

describes a topology on Spec A by denoting the collection of *closed* subsets. This is called the Zariski topology on Spec A.

Definition 7 (Zariski topology)

Let A be a ring. Then, the collection

$$\{V(I):I\subset A \text{ is an ideal}\}$$

describes a topology on Spec A by denoting the collection of *closed* subsets. This is called the Zariski topology on Spec A.

Proposition 8 (A basis for the Zariski topology)

The collection $\{D(f): f \in A\}$ forms a basis for the above topology.

8/16

Let k be a field.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k . Since k[x] is a PID,

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

• The empty set.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- ② The whole space.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- ② The whole space.
- Sets containing finitely many maximal ideals.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are closed points,

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- ② The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are closed points, i.e., $\{\mathfrak{m}\}$ is closed.

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- ② The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are *closed points*, i.e., $\{\mathfrak{m}\}$ is closed. Consequently, $\{\mathfrak{m}\}$ is not dense in \mathbb{A}^1_{k} .

Let k be a field. We denote Spec k[x] by \mathbb{A}^1_k .

Since k[x] is a PID, the prime ideals are $\langle 0 \rangle$ and the maximal ideals.

The set $\{\langle 0 \rangle\}$ is dense in \mathbb{A}^1_k .

The closed sets are given precisely as:

- The empty set.
- ② The whole space.
- Sets containing finitely many maximal ideals.

In particular, maximal ideals are *closed points*, i.e., $\{\mathfrak{m}\}$ is closed. Consequently, $\{\mathfrak{m}\}$ is not dense in \mathbb{A}^1_k .

To conclude, the only closed singleton subset of \mathbb{A}^1_k is $\{\langle 0 \rangle\}$.

Definition 9 (Structure sheaf)

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$.

```
Definition 9 (Structure sheaf)
```

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit.

```
Definition 9 (Structure sheaf)
```

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements.

Definition 9 (Structure sheaf)

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec}A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

Let A be a ring.

We now describe a sheaf $\mathcal{O}_{\mathsf{Spec}\,A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$,

We now describe a sheaf $\mathcal{O}_{\mathsf{Spec}\,A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$, the restriction map is the natural map $A_f \to A_g$.

We now describe a sheaf $\mathcal{O}_{\operatorname{Spec} A}$. However, we shall cheat a bit. We only define the objects and arrows on the level of basis elements. One must check that this does indeed a sheaf on the whole space.

Definition 9 (Structure sheaf)

Let A be a ring. Given $f \in A$, we define

$$\mathscr{O}_{\operatorname{Spec} A}(D(f)) := A_f.$$

Given $D(g) \subset D(f)$, the restriction map is the natural map $A_f \to A_g$.

This is called the structure sheaf on Spec A.

Definition 10 (Affine scheme)

Definition 11 (Scheme)

Definition 10 (Affine scheme)

An affine scheme

Definition 10 (Affine scheme)

An affine scheme is a ringed space

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some $(\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A})$.

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Definition 11 (Scheme)

A scheme

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X)

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$ has an open neighbourhood U

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some (Spec A, $\mathcal{O}_{\text{Spec }A}$).

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathcal{O}_X|_U)$ is an affine scheme.

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some $(\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A})$.

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathcal{O}_X|_U)$ is an affine scheme.

Slogan 12

A scheme can be covered by affine opens.

Definition 10 (Affine scheme)

An affine scheme is a ringed space which is isomorphic to some $(\operatorname{Spec} A, \mathscr{O}_{\operatorname{Spec} A})$.

Definition 11 (Scheme)

A scheme is a ringed space (X, \mathcal{O}_X) such that every $p \in X$ has an open neighbourhood U such that $(U, \mathcal{O}_X|_U)$ is an affine scheme.

Slogan 12

A scheme can be covered by affine opens.

In fact, (it follows that) the affine opens form a basis for X.

Let $\pi^{\sharp}:A\to B$ a map of rings.

Let $\pi^{\sharp}:A\to B$ a map of rings. This induces a map $\pi:\operatorname{Spec} B\to\operatorname{Spec} A$

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

$$\mathscr{O}_{\operatorname{Spec} B}(D(g)) \longrightarrow \mathscr{O}_{\operatorname{Spec} A}(\pi^{-1}(D(g)))$$

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

$$\mathscr{O}_{\operatorname{Spec} B}(D(g)) \longrightarrow \mathscr{O}_{\operatorname{Spec} A}(\pi^{-1}(D(g))) = \mathscr{O}_{\operatorname{Spec} A}(D(\pi^{\sharp}g))$$

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $g \in B$, we have the map

The above is a morphism of affine schemes.

Let $\pi^{\sharp}: A \to B$ a map of rings. This induces a map $\pi: \operatorname{Spec} B \to \operatorname{Spec} A$ given by $\mathfrak{p} \mapsto (\pi^{\sharp})^{-1}(\mathfrak{p})$. This is continuous.

Moreover, this also induces a morphism of ringed spaces. More explicitly, given $g \in B$, we have the map

$$\mathscr{O}_{\operatorname{Spec} B}(D(g)) \longrightarrow \mathscr{O}_{\operatorname{Spec} A}(\pi^{-1}(D(g))) = \mathscr{O}_{\operatorname{Spec} A}(D(\pi^{\sharp}g))$$

$$\parallel \qquad \qquad \parallel \qquad \qquad \parallel$$

$$B_{g} \longrightarrow A_{\pi^{\sharp}g}$$

The above is a morphism of affine schemes. That is, a morphism of affine schemes is a morphism of ringed spaces that is induced by some ring map as above.

Morphisms of schemes

Definition 13 (Morphism of schemes)

Definition 13 (Morphism of schemes)

A morphism of schemes $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$

Definition 13 (Morphism of schemes)

A morphism of schemes $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

Definition 13 (Morphism of schemes)

A morphism of schemes $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$,

Definition 13 (Morphism of schemes)

A morphism of schemes $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$, such that $\pi(\operatorname{Spec} A) \subset \operatorname{Spec} B$,

Definition 13 (Morphism of schemes)

A morphism of schemes $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a morphism of ringed spaces that "locally looks like" a morphism of affine schemes.

More precisely, for each choice of affine open sets Spec $A \subset X$, Spec $B \subset Y$, such that $\pi(\operatorname{Spec} A) \subset \operatorname{Spec} B$, the restricted morphism is one of affine schemes.

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact

Definition 15 (Finite type morphism)

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A *compact* morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type if for every affine open $\mathrm{Spec}\, B\subset Y$,

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B \subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets $\operatorname{Spec} A_i$,

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B\subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated B-algebra.

Definition 16 (Noetherian schemes)

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B\subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated B-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathcal{O}_X) is said to be Noetherian

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B\subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated B-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathcal{O}_X) is said to be Noetherian if X can be covered by finitely many affine opens Spec A_i

Definition 14 (Compact morphism)

A morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is compact if the preimage of any compact open subset is compact.

Definition 15 (Finite type morphism)

A compact morphism $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ of schemes is of finite type if for every affine open Spec $B\subset Y$, $\pi^{-1}(\operatorname{Spec} B)$ can be covered by affine open subsets Spec A_i , so that each A_i is a finitely generated B-algebra.

Definition 16 (Noetherian schemes)

A scheme (X, \mathcal{O}_X) is said to be Noetherian if X can be covered by finitely many affine opens Spec A_i such that each A_i is a Noetherian ring.

Definition 17 (Locally closed set)

Definition 18 (Constructible set)

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed

Definition 18 (Constructible set)

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called *quasicompact*.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called quasicompact.

The definition of "constructible set" above is not the standard one.

Definition 17 (Locally closed set)

A subset of a topological space X is said to be locally closed if it is the intersection of an open subset and a closed subset.

Definition 18 (Constructible set)

A subset of a topological space X is said to be constructible if it can be written as a finite disjoint union of locally closed sets.

Example 19 (Simple example)

 $X \subset X$ is a constructible subset. $\{\langle 0 \rangle\} \subset \mathbb{A}^1_k$ is not.

Caution 20

What we call "compact" is usually called *quasicompact*.

The definition of "constructible set" above is not the standard one. However, for Noetherian topological spaces (whatever those are), the two are equivalent.

Theorem 21 (Chevalley)

Theorem 21 (Chevalley)

If $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a

Theorem 21 (Chevalley)

If $\pi: (X, \mathscr{O}_X) \to (Y, \mathscr{O}_Y)$ is a finite type morphism

Theorem 21 (Chevalley)

If $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes,

Theorem 21 (Chevalley)

If $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes, then the image of any constructible set is constructible.

Theorem 21 (Chevalley)

If $\pi:(X,\mathscr{O}_X)\to (Y,\mathscr{O}_Y)$ is a finite type morphism of Noetherian schemes, then the image of any constructible set is constructible. In particular, the image of π is constructible.

Corollary 22 (Nullstellensatz)

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$,

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism $\pi: \operatorname{Spec} K \to \mathbb{A}^1_k$.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism π : Spec $K \to \mathbb{A}^1_k$. Since Spec K is a singleton, so is the image of π .

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism $\pi:\operatorname{Spec} K\to \mathbb{A}^1_k$. Since $\operatorname{Spec} K$ is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism $\pi: \operatorname{Spec} K \to \mathbb{A}^1_k$. Since $\operatorname{Spec} K$ is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example).

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism $\pi: \operatorname{Spec} K \to \mathbb{A}^1_k$. Since $\operatorname{Spec} K$ is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example). This contradicts Chevalley's Theorem.

Corollary 22 (Nullstellensatz)

Let $k \subset K$ be a field extension. Suppose K is a finitely generated k-algebra. Then, K is a finite extension of k.

Proof.

Let K be generated by x_1, \ldots, x_n , as a k-algebra. It suffices to show that each x_i is algebraic over k. Suppose some x_i is not. Then, we have an inclusion of rings $k[x_i] \hookrightarrow K$, and $k[x_i]$ is isomorphic to the polynomial ring over k.

This corresponds to a dominant morphism $\pi:\operatorname{Spec} K\to \mathbb{A}^1_k$. Since $\operatorname{Spec} K$ is a singleton, so is the image of π . By dominance of π (and the Helper example), the image is $\{\langle 0 \rangle\}$. But this is not constructible (Simple example). This contradicts Chevalley's Theorem.