Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники

Лабораторная работа № 6 «Численное решение обыкновенных дифференциальных уравнений»

По дисциплине «Вычислительная математика» Вариант 12

Выполнила:

Студентка группы Р3217

Русакова Е.Д.

Преподаватель:

Малышева Т.А.

Санкт-Петербург

Оглавление

Цель работы:	3
Задание:	3
Рабочие формулы:	3
Метод Эйлера:	3
Метод Рунге-Кутта четвертого порядка:	3
Метод Милна	4
Оценка погрешности:	4
Оценка погрешности по правилу Рунге:	4
Программная реализация:	4
Описание разработанной программы:	4
Исходный код программы:	4
EulerMethod.java — метод Эйлера	4
RungeKuttaMethod.java — метод Рунге-Кутта	4
MilneMethod.java – метод Милна	4
Примеры работы программы:	5
Пример 1	5
Пример 2	6
Пример 3	7
Buron:	٩

Цель работы:

Решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

Задание:

1. Порядок выполнения работы

- 2. В программе численные методы решения обыкновенных дифференциальных уравнений (ОДУ) должен быть реализован в виде отдельного класса /метода/функции;
- 3. Пользователь выбирает ОДУ вида y' = f(x, y) (не менее трех уравнений), из тех, которые предлагает программа;
- 4. Предусмотреть ввод исходных данных с клавиатуры: начальные условия $y_0 = y(x_0)$, интервал дифференцирования $[x_0, x_n]$, шаг h, точность ε ;
- Для исследования использовать одношаговые методы и многошаговые методы (см. табл.1);
- Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям, для всех методов, реализуемых в программе;
- Для оценки точности одношаговых методов использовать правило Рунге;
- 8. Для оценки точности многошаговых методов использовать точное решение задачи: $\varepsilon = \max_{0 \le i \le n} |y_{i \text{точн}} y_i|$;
- 9. Построить графики точного решения и полученного приближенного решения (разными цветами);
- 10.Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 11. Проанализировать результаты работы программы.

Рабочие формулы:

Требуется найти функцию Y=Y(x), удовлетворяющую уравнению Y'=f(x,Y) и принимающую при $x=x_0$ заданное значение Y_0 : $Y(x_0)=Y_0$.

$$h = x_{i+1} - x_i = const$$

Метод Эйлера:

$$y_{i+1} = y_i + hf(x_i, y_i)$$

Метод Рунге-Кутта четвертого порядка:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
$$k_1 = h * f(x_i, y_i)$$
$$k_2 = h * f\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

$$k_1 = h * f\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$k_1 = h * f(x_i + h, y_i + k_3)$$

Метод Милна

Этап прогноза:

$$y_i^{\text{прогн}} = y_{i-4} + \frac{4h}{3} * (2f_{i-3} - f_{i-2} + 2f_{i-1})$$

Этап коррекции:

$$f_i^{\text{прогн}} = f(x_i, y_i^{\text{прогн}})$$

$$y_i^{\text{корр}} = y_{i-2} + \frac{h}{3} * (f_{i-2} + 4f_{i-1} + f_i^{\text{прогн}})$$

Оценка погрешности:

$$\varepsilon = \max_{0 \le i \le n} |y_{i_{\mathsf{TO}\mathsf{YH}}} - y_i|$$

Оценка погрешности по правилу Рунге:

$$R = \frac{y^h - y^{\frac{h}{2}}}{2^p - 1}$$

Программная реализация:

Описание разработанной программы:

Разработанная программа позволяет найти численное решение ОДУ, который пользователь выбирает из предложенных программой, одним из предложенных программой методов или вмести методами. Границы интервала, значение в начале интервала, начальный шаг и точность вычисления вводятся пользователем с клавиатуры. Программа решает оду выбранными методами и находит точное значение. Также программа строит графики точного решения и полученных функций и выводит все результаты на экран.

Исходный код программы:

Полный код программы выложен на Github и доступен по ссылке <u>lenapochemy/comp-math-lab6:</u> вычмат лаба 6 оду (github.com)

Далее приведен код классов, которые отвечают за решения ОДУ.

EulerMethod.java - метод Эйлера

RungeKuttaMethod.java – метод Рунге-Кутта MilneMethod.java – метод Милна

Примеры работы программы: Пример 1

```
Выберите ОДУ для решения:
   1. y'=y+(1+x)y^2
    2. y'=2xy/(x^2-1)
    3. y'=-(2y+1)*ctg(x)
    4. y'=(y-1)/(x^2+x)
Введите значение левой границы интервала : 1
Функция не определена в точке 1.0, выберите другой интервал
Введите значение левой границы интервала : 2
Введите значение правой границы интервала : 4
Введите значение начальное условие - значение для точки 2.0:1
Введите значение начального шага : 0ю1
Значение начального шага должно быть числом
Введите значение начального шага : 0.1
Введите значение точности [0.000001; 1]: 0.1
Выберите метод решения уравнения:
    1. Метод Эйлера
    2. Метод Рунге-Кутта
    3. Метод Милна
    4. Все методы
                                       | Метод Рунге-Кутта| Метод Милна
        | 1.0 | 1.0
| 1.136667 | 1.134947
                       | 1.27635
| 1.424214
4 | 2.4 | 1.586667 | 1.578544
5 | 2.5 | 1.75 | 1.77374
                                                       1 1.919999
10 | 3.0 | 2.666667
11 | 3.1 | 2.87
12 | 3.2 | 3.08
                                       | 2.87
                        1 3.04623
        3.986667
18 | 3.8
         1 4.48
                        1 4.419157
                                        1 4.48
                                                       1 4.479999
```


Пример 2

Пример 3

	i x	Точное значение	Метод Рунге-Ку	тта	
	0 1.0	-1.0	-1.0		
	1 1.1	-0.909091	-0.909091		
	2 1.2	-0.833333	-0.833334		
	3 1.3	l -0.769231	l -0.769231		
	4 1.4	-0.714286	-0.714286		
	5 1.5	-0.666667	1 -0.666667		
		-0.625	-0.625		
	7 1.7	-0.588235	-0.588235		
Выберите ОДУ для решения:	8 1.8	-0.555556	-0.555556		
1. y'=y+(1+x)y ²	9 1.9	-0.526316	-0.526316		
2. $y'=2xy/(x^2-1)$	10 2.0	l -0.5	l -0.5		
3. y'=-(2y+1)*ctg(x)					
4. y'=(y-1)/(x ² +x)	11 2.1	-0.47619	-0.476191		
	12 2.2	-0.454545	-0.454546		
Введите значение левой границы интервала : 1 Введите значение правой границы интервала : 10	13 2.3	-0.434783	-0.434783		
Введите значение начальное условие - значение для точки 1.0 : -1	14 2.4	-0.416667	-0.416667		
Введите значение начального шага : 0.1	15 2.5	-0.4	-0.4		
Введите значение точности [0.000001; 1]: 0.1	16 2.6	-0.384615	-0.384615		
Выберите метод решения уравнения:	17 2.7	-0.37037	1 -0.37037		
1. Метод Эйлера					
2. Метод Рунге-Кутта	18 2.8	-0.357143	-0.357143		
3. Метод Милна 4. Все методы	19 2.9	-0.344828	-0.344828		
4. все методы 2	20 3.0	-0.333333	-0.333333		
	21 3.1	l -0.322581	I -0.322581		
Метод Рунге-Кутта	22 3.2	-0.3125	-0.3125		
	23 3.3	-0.30303	-0.30303		

22 3.2	l -0.3125	-0.3125	49 5.9 -0	169492	-0.169492
23 3.3	-0.30303	-0.30303	50 6.0 -0	166667	-0.166667
24 3.4	-0.294118	-0.294118	51 6.1 -0	1.163934	-0.163934
25 3.5	-0.285714	-0.285714	52 6.2 -0	1.16129	-0.16129
26 3.6	-0.277778	-0.277778	53 6.3 -0	0.15873	-0.15873
27 3.7	-0.27027	-0.27027	54 6.4 -0	15625	-0.15625
28 3.8	-0.263158	-0.263158	55 6.5 -0	153846	-0.153846
29 3.9	-0.25641	-0.25641	56 6.6 -0	.151515	-0.151515
30 4.0	1 -0.25	-0.25	57 6.7 -0	149254	-0.149254
31 4.1	-0.243902	-0.243902	58 6.8 -0	147059	-0.147059
32 4.2	1 -0.238095	-0.238095	59 6.9 -0	144928	-0.144928
33 4.3	-0.232558	-0.232558	60 7.0 -0	0.142857	-0.142857
34 4.4	-0.227273	-0.227273	61 7.1 -0	0.140845	-0.140845
35 4.5	-0.222222	-0.222222	62 7.2 -0	138889	-0.138889
36 4.6	-0.217391	-0.217391	63 7.3 -0	0.136986	-0.136986
37 4.7	-0.212766	-0.212766	64 7.4 -0	0.135135	-0.135135
38 4.8	-0.208333	-0.208333	65 7.5 -0	0.133333	-0.133333
39 4.9	-0.204082	-0.204082	66 7.6 -0	0.131579	-0.131579
40 5.0	-0.2	-0.2	67 7.7 -0	1.12987	-0.12987
41 5.1	-0.196078	-0.196078	68 7.8 -0	128205	-0.128205
42 5.2	-0.192308	-0.192308	69 7.9 -0	0.126582	-0.126582
43 5.3	-0.172303	-0.188679	70 8.0 -0	0.125	-0.125
44 5.4	-0.185185	-0.185185	71 8.1 -0	123457	-0.123457
45 5.5	-0.181818	-0.181818	72 8.2 -0	0.121951	-0.121951
46 5.6	-0.131818 -0.178571		73 8.3 -0	120482	-0.120482
47 5.7	-0.175439	-0.178571	74 8.4 -0	119048	-0.119048
		-0.173434	75 8.5 -0	0.117647	-0.117647
48 5.8	-0.172414 -0.169492		76 8.6 -0	0.116279	-0.116279
49 5.9		-0.169492	77 8.7 -0	.114943	-0.114943
50 6.0	-0.166667	-0.166667	E0 1 0 0 1 0		1 0 447/7/ 1
75 8.5	-0.117647	-0.117647			
76 8.6	-0.116279	-0.116279			
77 8.7	-0.114943	-0.114943			
78 8.8	-0.113636	-0.113636			
79 8.9	-0.11236	-0.11236			
80 9.0	-0.111111	-0.111111			
81 9.1	-0.10989	-0.10989			

| -0.107527 | -0.106383

Вывод:

При выполнении лабораторной работы я познакомилась с методом численного решения обыкновенных дифференциальных уравнений и выполнила программную реализацию некоторых из них.