Chapter 7: Microarchitecture

Multicycle RISC-V Processor

Single- vs. Multicycle Processor

- Single-cycle:
 - + simple
 - cycle time limited by longest instruction (1w)
 - separate memories for instruction and data
 - 3 adders/ALUs
- Multicycle processor addresses these issues by breaking instruction into shorter steps
 - shorter instructions take fewer steps
 - o can re-use hardware
 - o cycle time is faster

Single- vs. Multicycle Processor

• Single-cycle:

- + simple
- cycle time limited by longest instruction (lw)
- separate memories for instruction and data
- 3 adders/ALUs

Multicycle:

- + higher clock speed
- + simpler instructions run faster
- + reuse expensive hardware on multiple cycles
- sequencing overhead paid many times

Same design steps as single-cycle:

- first datapath
- then control

Multicycle State Elements

Replace separate Instruction and Data memories with a single unified memory – more realistic

Multicycle Datapath: Instruction Fetch

STEP 1: Fetch instruction

Multicycle Datapath: 1w Get Sources

STEP 2: Read source operand from RF and extend immediate

Multicycle Datapath: 1w Address

STEP 3: Compute the memory address

Multicycle Datapath: 1w Memory Read

STEP 4: Read data from memory

Multicycle Datapath: 1w Write Register

STEP 5: Write data back to register file

Multicycle Datapath: Increment PC

STEP 6: Increment PC: PC = PC+4

Chapter 7: Microarchitecture

Multicycle Datapath: Other Instructions

Multicycle Datapath: sw

Write data in rs2 to memory

Multicycle Datapath: beq

Calculate branch target address: BTA = PC + imm

PC is updated in Fetch stage, so need to save old (current) PC

Multicycle RISC-V Processor

