Civil Engineering Department S. V. National Institute of Technology, Surat

Engineering Mechanics Tutorial: Cables

O1 Determine distance d_c for which portion DE of the cable is horizontal, also determine the corresponding reactions at A and E.

[Ans: $d_C = 2.8 \text{ m}$, $A_X = 25 \text{ kN}$, $A_Y = 20 \text{ kN}$, $E_X = 25 \text{ kN}$, $E_Y = 0$]

- O2 The cable AE supports three vertical loads from the points as indicated. If point C is 5m below the left support, determine
 - (a) The elevation of points B and D
 - (b) The maximum slope and the maximum tension in cable.

[Ans: $Y_B = 5.56$ m below A, $Y_D = 5.83$ m above A, Tmax = 24.8 kN]

A cable AB supports three loads as shown in figure given below. If the dip at the central load is estimated to be 2 m, work out the components of reaction at A, the sag under 4 kN load and the tension in portion CD of the cable

[Ans: $A_v = 8 \text{ kN}$, $A_x = 18 \text{ kN}$, $Y_C = 1.33 \text{ m}$, $T_{CD} = 18.5 \text{ kN}$]

- O4 A cable supports concentrated loads of 500 kN and 200 kN as shown in figure. If the maximum tension in the cable is 1000 kN, determine
 - (a) Support reactions and tensions in each segment of the cable.
 - (b) Vertical distance Y_B and Y_C from level of support A
 - (c) Total length L of the cable.

[Ans: $A_Y = 382$ kN, $A_X = 924$ kN, $D_Y = 318$ kN, $D_X = 924$ kN, $T_{AB} = 1000$ kN, $T_{BC} = 931$ kN, $T_{CD} = 977$ kN, $Y_B = 4.97$ m, $Y_C = 3.44$ m, $I_C = 35.7$ m]

