Bundle Adjustment

刘浩敏

 Bundle Adjustment (BA) is to jointly optimize all cameras and points, by minimizing reprojection errors

$$\underset{C_{1},...C_{N_{c}},X_{1},...,X_{N_{p}}}{\operatorname{argmin}} \sum \|\pi(C_{i},X_{j}) - x_{ij}\|^{2}$$

 Bundle Adjustment (BA) is to jointly optimize all cameras and points, by minimizing reprojection errors

$$\underset{C_{1},...C_{N_{c}},X_{1},...,X_{N_{p}}}{\operatorname{argmin}} \sum \|\pi(C_{i},X_{j}) - x_{ij}\|^{2}$$

 Bundle Adjustment (BA) is to jointly optimize all cameras and points, by minimizing the reprojection errors

$$\underset{C_1,\dots C_{N_c},X_1,\dots,X_{N_p}}{\operatorname{argmin}} \sum \left\| \pi(C_i,X_j) - x_{ij} \right\|^2$$

BA is a golden step for almost all SfM and SLAM systems

PTAM (SLAM)

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

$$x^* = \arg\min_{x} E(x)$$

$$x^* = \arg\min_{x} E(x)$$

$$E(x) = ||Ax + b||^2$$

$$x^* = \arg\min_{x} E(x)$$

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T}A)x + 2(A^{T}b)x + b^{T}b$$

$$x^* = \arg\min_{x} E(x)$$

$$E(x) = ||Ax + b||^2$$

= $x^T (A^T A)x + 2(A^T b)x + b^T b$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$x^* = \arg\min_{x} E(x)$$

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T}A)x + 2(A^{T}b)x + b^{T}b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T}A)x + 2(A^{T}b)x + b^{T}b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

$$E(x) = \|\varepsilon(x)\|^2$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T}A)x + 2(A^{T}b)x + b^{T}b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

$$E(x) = \|\varepsilon(x)\|^2$$

$$x^* = \hat{x} + \delta_x$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T} A)x + 2(A^{T} b)x + b^{T} b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

$$E(x) = \|\varepsilon(x)\|^2$$

$$x^* = \hat{x} + \delta_x$$

$$\varepsilon(x^*) \approx \varepsilon(\hat{x}) + J \delta_x$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T} A)x + 2(A^{T} b)x + b^{T} b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

Nonlinear case

$$E(x) = \|\varepsilon(x)\|^{2}$$

$$x^{*} = \hat{x} + \delta_{x}$$

$$\varepsilon(x^{*}) \approx \varepsilon(\hat{x}) + J \delta_{x}$$

Jacobian matrix

$$J = \frac{\partial \varepsilon}{\partial x} \bigg|_{x = \hat{x}}$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T} A)x + 2(A^{T} b)x + b^{T} b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

$$E(x) = \|\varepsilon(x)\|^{2}$$

$$x^{*} = \hat{x} + \delta_{x}$$

$$\varepsilon(x^{*}) \approx \varepsilon(\hat{x}) + J \delta_{x}$$

$$E(x) \approx \delta_{x}^{T}(J^{T}J)\delta_{x} + 2(J^{T}\varepsilon)\delta_{x} + \varepsilon^{T}\varepsilon$$

$$J^{T}J \delta_{x} = -J^{T}\varepsilon$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T} A)x + 2(A^{T} b)x + b^{T} b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A | x = -A^T b$$

Hessian matrix

$$E(x) = \|\varepsilon(x)\|^{2}$$

$$x^{*} = \hat{x} + \delta_{x}$$

$$\varepsilon(x^{*}) \approx \varepsilon(\hat{x}) + J \delta_{x}$$

$$E(x) \approx \delta_{x}^{T} (J^{T}J) \delta_{x} + 2(J^{T}\varepsilon) \delta_{x} + \varepsilon^{T}\varepsilon$$

$$J^{T}J \delta_{x} = -J^{T}\varepsilon$$

$$x^* = \arg\min_{x} E(x)$$

Linea case

$$E(x) = ||Ax + b||^{2}$$
$$= x^{T} (A^{T}A)x + 2(A^{T}b)x + b^{T}b$$

$$\frac{\partial E(x)}{\partial x} = 2(A^T A x + A^T b) = 0$$

$$A^T A x = -A^T b$$

Nonlinear case

$$E(x) = \|\varepsilon(x)\|^2$$

$$x^* = \hat{x} + \delta_x$$

$$\varepsilon(x^*) \approx \varepsilon(\hat{x}) + \int \delta_x$$

$$E(x) \approx \delta_x^T (J^T J) \delta_x + 2(J^T \varepsilon) \delta_x + \varepsilon^T \varepsilon$$

Jacobian matrix

$$J^T J \delta_{x} = -J^T \varepsilon$$

Hessian matrix

normal equation

Sparsity patten of Hessian

- An simple example
 - 3 cameras
 - 4 points
 - all points are visible in all cameras

$$J^T J \delta_{x} = -J^T \varepsilon$$

$$J^{T}J\mathcal{S}_{x} = -J^{T}\varepsilon$$

$$J^{T}J = \begin{pmatrix} U & W \\ W^{T} & V \end{pmatrix} = \begin{pmatrix} U_{1} & 0 & 0 & W_{11} & W_{12} & W_{13} & W_{14} \\ 0 & U_{2} & 0 & W_{21} & W_{22} & W_{23} & W_{24} \\ 0 & 0 & U_{3} & W_{31} & W_{32} & W_{33} & W_{34} \\ W_{11}^{T} & W_{21}^{T} & W_{31}^{T} & V_{1} & 0 & 0 & 0 \\ W_{12}^{T} & W_{22}^{T} & W_{32}^{T} & 0 & V_{2} & 0 & 0 \\ W_{13}^{T} & W_{21}^{T} & W_{33}^{T} & 0 & 0 & V_{3} & 0 \\ W_{14}^{T} & W_{24}^{T} & W_{34}^{T} & 0 & 0 & 0 & V_{4} \end{pmatrix}$$

$$U_i = \sum_{j=1}^4 A_{ij}^T A_{ij}, V_j = \sum_{i=1}^3 B_{ij}^T B_{ij}, W_{ij} = A_{ij}^T B_{ij}$$

$$J^{T}J \overleftarrow{\delta_{x}} = -J^{T} \varepsilon$$

$$O_{x}' = \begin{pmatrix} O_{C} \\ O_{X} \end{pmatrix} = \begin{pmatrix} O_{C_{1}} & O_{C_{2}}^{T} & O_{C_{3}}^{T} & O_{X_{1}}^{T} & O_{X_{2}}^{T} & O_{X_{3}}^{T} & O_{X_{4}}^{T} \end{pmatrix}^{T}$$

$$J^{T}J\delta_{x} = -J^{T}\varepsilon$$

$$J^{T}e = \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u_{1} & u_{2} & u_{3} & v_{1} & v_{2} & v_{3} & v_{4} \end{pmatrix}^{T}$$

$$u_{i} = \sum_{j=1}^{4} A_{ij}^{T} e_{ij}$$

$$v_{j} = \sum_{j=1}^{3} B_{ij}^{T} e_{ij}$$

In general, NOT all points are visible in all cameras

$$U_i = \sum_{j=1}^4 A_{ij}^T A_{ij}$$
, $V_j = \sum_{i=1}^3 B_{ij}^T B_{ij}$, $W_{ij} = A_{ij}^T B_{ij}$

- $A_{ij} = B_{ij} = 0$ if j-th point is not observed in i-th camera
- More sparse structure, more speedup

$$J^T J \delta_{x} = -J^T \varepsilon$$

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} d_C \\ d_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\begin{pmatrix}
U - WV^{-1}W^T & 0 \\
W^T & V
\end{pmatrix}
\begin{pmatrix}
\sigma_C \\
\sigma_X
\end{pmatrix} = -\begin{pmatrix}
u - WV^{-1}v \\
v
\end{pmatrix}$$

$$S = U - WV^{-1}W^{T}$$

Schur Complement

$$Sd_C = -(u - WV^{-1}v)$$

Compute cameras first (# cameras << # points)

$$V \mathcal{O}_X = -v - W^T \mathcal{O}_C$$

back substitution for points

$$(U - WV^{-1}W^{T})d_{C} = -(u - WV^{-1}v)$$

$$(U - WV^{-1}W^{T})O_{C} = -(u - WV^{-1}v)$$

$$WV^{-1}W^{T} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{12}^{T} & S_{22} & S_{23} \\ S_{13}^{T} & S_{23}^{T} & S_{33} \end{pmatrix}$$

$$S_{i_{1}i_{2}} = \sum_{j=1}^{4} W_{i_{1}j}V_{j}^{-1}W_{i_{2}j}^{T}$$

$$(U - WV^{-1}W^{T}) \mathcal{O}_{C} = -(u - WV^{-1}v)$$

$$WV^{-1}e_{X} = \begin{pmatrix} g_{1} \\ g_{2} \\ g_{3} \end{pmatrix}$$

$$g_{i} = \sum_{i=1}^{4} W_{ij}V_{j}^{-1}v_{j}$$

Again, in general NOT all points are visible in all cameras

$$S_{i_1 i_2} = \sum_{j=1}^{4} W_{i_1 j} V_j^{-1} W_{i_2 j}^T$$

- $S_{i_1i_2} = 0$ if i_1 -th camera has no common points with i_2 -th camera
- More sparse structure more speedup

Back Substitution for Points

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} d_C \\ d_X \end{pmatrix} = -\begin{pmatrix} u \\ v \end{pmatrix}$$

$$(U - WV^{-1}W^T)d_C = -(u - WV^{-1}v)$$

$$W^T d_C + V d_X = -v$$

$$d_{X_j} = -v_j - AW_{ij}^T d_{C_i}$$

- Each point can be solve independently
- Again, $W_{ij} = 0$ if j-th point is not observed in i-th camera

Probability Interpretation

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

joint density $P(\delta_C, \delta_X) = P(\delta_C)P(\delta_X|\delta_C)$

$$(U - WV^{-1}W^{T})\mathcal{O}_{C} = -(u - WV^{-1}v)$$

$$W^T \mathcal{O}_C + V \mathcal{O}_X = -v$$

marginalize out $P(\delta_X)$ to get $P(\delta_C)$

conditional probability $P(\delta_X | \delta_C)$

Factor Graph Interpretation

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

joint density $P(\delta_C, \delta_X) = P(\delta_C)P(\delta_X|\delta_C)$

$$(U - WV^{-1}W^{T})d_{C} = -(u - WV^{-1}v)$$

$$W^{T}d_{C} + Vd_{X} = -v$$

marginalize out $P(\delta_X)$ to get $P(\delta_C)$ conditional probability $P(\delta_X | \delta_C)$

Factor Graph Interpretation

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

joint density $P(\delta_C, \delta_X) = P(\delta_C)P(\delta_X | \delta_C)$

marginalize out $P(\delta_X)$ to get $P(\delta_C)$

$$(U - WV^{-1}W^{T})O_{C} = -(u - WV^{-1}v)$$

$$W^T \mathcal{O}_C + V \mathcal{O}_X = -v$$

conditional probability $P(\delta_X | \delta_C)$

$$\underset{C_1,\dots C_{N_c}}{\operatorname{argmin}} \sum \|C_i \ominus C_j \ominus T_{i,j}\|^2$$

Pose Graph Optimization

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

joint density $P(\delta_C, \delta_X) = P(\delta_C)P(\delta_X | \delta_C)$

$$(U - WV^{-1}W^{T})\mathcal{O}_{C} = -(u - WV^{-1}v)$$

$$W^T \mathcal{O}_C + V \mathcal{O}_X = -v$$

marginalize out $P(\delta_X)$ to get $P(\delta_C)$ conditional probability $P(\delta_X | \delta_C)$

$$\underset{C_1,\dots C_{N_c}}{\operatorname{argmin}} \sum \|C_i \ominus C_j \ominus T_{i,j}\|^2$$

Pose graph optimization is an approximation of BA

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} d_C \\ d_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

$$(U - WV^{-1}W^{T})\mathcal{O}_{C} = -(u - WV^{-1}v)$$

$$W^{T}\mathcal{O}_{C} + V\mathcal{O}_{X} = -v$$

1. Construct normal equation

$$\mathbf{U} = \mathbf{0}; \ \mathbf{V} = \mathbf{0}; \ \mathbf{W} = \mathbf{0}; \ \mathbf{u} = \mathbf{0}; \ \mathbf{v} = \mathbf{0}$$
for each point j and each camera $i \in \mathcal{V}_j$ **do**

Construct linearized equation (11)

 $\mathbf{U}_{ii} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{C}_{ij}}$
 $\mathbf{V}_{jj} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}$
 $\mathbf{u}_i + = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{e}_{ij}$
 $\mathbf{v}_j + = \mathbf{J}_{\mathbf{X}_{ij}}^{\top} \mathbf{e}_{ij}$
 $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\top} \mathbf{J}_{\mathbf{X}_{ij}}$
end for

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = -\begin{pmatrix} u \\ v \end{pmatrix}$$

$$(U - WV^{-1}W^T)\mathcal{O}_C = -(u - WV^{-1}v)$$

$$W^T \mathcal{O}_C + V \mathcal{O}_X = -v$$

- 1. Construct normal equation
- 2. Construct Schur complement

```
\mathbf{S} = \mathbf{U}

for each point j and each camera pair (i_1, i_2) \in \mathcal{V}_j \times \mathcal{V}_j

do

\mathbf{S}_{i_1 i_2} - = \mathbf{W}_{i_1 j} \mathbf{V}_{jj}^{-1} \mathbf{W}_{i_2 j}^{\top}

end for

\mathbf{g} = \mathbf{u}

for each point j and each camera i \in \mathcal{V}_j do

\mathbf{g}_i - = \mathbf{W}_{ij} \mathbf{V}_{jj}^{-1} \mathbf{v}_j

end for
```

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} \mathcal{O}_C \\ \mathcal{O}_X \end{pmatrix} = -\begin{pmatrix} u \\ v \end{pmatrix}$$
$$(U - WV^{-1}W^T) \mathcal{O}_C = -(u - WV^{-1}v)$$

$$W^T \mathcal{O}_C + V \mathcal{O}_V = -v$$

- 1. Construct normal equation
- 2. Construct Schur complement
- 3. Solve cameras
 - Sparse Cholesky factorization
 - Preconditioned Conjugate Gradient (PCG)
 - explicitly leverages the sparseness

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} O_C \\ O_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

$$(U - WV^{-1}W^{T})d_{C} = -(u - WV^{-1}v)$$

 $W^{T}d_{C} + V d_{X} = -v$

- 1. Construct normal equation
- 2. Construct Schur complement
- 3. Solve cameras
- 4. Solve points

for each point
$$j$$
 do

$$\delta_{\mathbf{X}_{j}} = \mathbf{V}_{jj}^{-1} \left(\mathbf{v}_{j} - \sum_{i \in \mathcal{V}_{j}} \mathbf{W}_{ij}^{\top} \delta_{\mathbf{C}_{i}} \right)$$
end for

Runtime for Each Steps

Runtime increases with #cameras

Challenge of BA

- Efficiency is the main challenge of BA
- Keyframe or pose graph simplification cannot completely solve this problem
- Two scenarios
 - Large scale SfM
 - Realtime SLAM

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

Challenges for Large-scale SfM

- Global BA
 - Huge #variables
 - Memory limit
 - Time-consuming
- Iterative local BA
 - Large error is difficult to be propagated to whole scene
 - Easily stuck in local optimum
- Pose graph optimization
 - Approximation of BA
 - May not sufficiently minimize the error
- Solutions
 - Hierarchical BA
 - Distributed BA

Segment-based Hierarchical BA

Zhang G, Liu H, Dong Z, et al. Efficient non-consecutive feature tracking for robust structure-from-motion[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5957-5970.

Segment-based Hierarchical BA

Observations

- Incremental SfM results in high local accuracy, but low global accuracy
- The DoF is unnecessarily large by traditional BA

Solution

- Split a long sequence to multiple short sub-sequences
- 7-DoF similarity transformation for each sub-sequence
- Only optimize overlapping points
- Hierarchically align sub-sequences

Split Point Detection

- The split point should be at the place where the relative pose error is large, which is unknown in advance
- Naïve solution
 - large re-projection error
 - cannot reliably reflect the relative pose error
- Our solution
 - Revisit the normal equation

$$\begin{pmatrix} U & W \\ W^T & V \end{pmatrix} \begin{pmatrix} \delta_C \\ \delta_X \end{pmatrix} = - \begin{pmatrix} u \\ v \end{pmatrix}$$

$$u_i = \sum_{j} A_{ij}^T \varepsilon_{ij}$$

- ε_{ij} in *i*-th frame will be best minimized along u_i
- The inconsistency between i-th and (i + 1)-th frame

$$E(i, i + 1) = \arccos(\frac{u_i^T u_{i+1}}{\|u_i\| \|u_{i+1}\|})$$

Split Point Detection

Distributed BA by Global Camera Consensus

Zhang R, Zhu S, Fang T, et al. Distributed very large scale bundle adjustment by global camera consensus[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 29-38.

Split Cameras or Points

- Split cameras
 - Broadcast overlapping points, huge overhead
- Split points
 - Broadcast overlapping cameras, called camera consensus

ADMM for Constrained Optimization

Constrained optimization

minimize
$$f(\mathbf{x}) + g(\mathbf{z})$$

subject to $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{w}$

• The ADMM algorithm

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z})$$

$$+ \mathbf{y}^{T} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{w})$$

$$+ \frac{\rho}{2} ||\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{w}||_{2}^{2}$$

$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \mathbf{z}^{t}, \mathbf{y}^{t})$$

$$\mathbf{z}^{t+1} = \arg\min_{\mathbf{z}} L_{\rho}(\mathbf{x}^{t+1}, \mathbf{z}, \mathbf{y}^{t})$$

$$\mathbf{y}^{t+1} = \mathbf{y}^{t} + \rho(\mathbf{A}\mathbf{x}^{t+1} + \mathbf{B}\mathbf{z}^{t+1} - \mathbf{w})$$

ADMM for Distributed BA

• Constrained optimization minimize $f(\mathbf{x}) + g(\mathbf{z})$ subject to $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{w}$

The ADMM algorithm

$$L_{\rho}(\mathbf{x}, \mathbf{z}, \mathbf{y}) = f(\mathbf{x}) + g(\mathbf{z})$$

$$+ \mathbf{y}^{T} (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{w})$$

$$+ \frac{\rho}{2} ||\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{w}||_{2}^{2}$$

$$\mathbf{x}^{t+1} = \arg\min_{\mathbf{x}} L_{\rho}(\mathbf{x}, \mathbf{z}^{t}, \mathbf{y}^{t})$$

$$\mathbf{z}^{t+1} = \arg\min_{\mathbf{z}} L_{\rho}(\mathbf{x}^{t+1}, \mathbf{z}, \mathbf{y}^{t})$$

$$\mathbf{y}^{t+1} = \mathbf{y}^{t} + \rho(\mathbf{A}\mathbf{x}^{t+1} + \mathbf{B}\mathbf{z}^{t+1} - \mathbf{w})$$

Distributed BA

minimize
$$\sum_{i=1}^n f_i(\mathbf{x}_i)$$

subject to $\mathbf{x}_i = \mathbf{z}, i = 1, ..., n$

Applying ADMM

$$\mathbf{x}_{i}^{t+1} = \arg\min_{\mathbf{x}_{i}} \left(f_{i}(\mathbf{x}_{i}) + \left(\mathbf{y}_{i}^{t} \right)^{T} (\mathbf{x}_{i} - \mathbf{z}^{t}) + \frac{\rho}{2} ||\mathbf{x}_{i} - \mathbf{z}^{t}||_{2}^{2} \right)$$

$$\mathbf{z}^{t+1} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{t+1}$$

 $\mathbf{y}_{i}^{t+1} = \mathbf{y}_{i}^{t} + \rho(\mathbf{x}_{i}^{t+1} - \mathbf{z}^{t+1}), i = 1, ..., n$

Large-scale SfM Results

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

Outline

- Theories in BA
- BA for large scale SfM
- BA for realtime SLAM

Significance of BA Efficiency to SLAM

- Higher efficiency of BA means
 - Lower hardware requirement & power consumption
 - Longer sliding window to improve accuracy & robustness
 - Faster map expansion, better robustness

Batch BA

Incremental BA

 ∇ C_1

Batch BA

X_1 X_2 X_3 C_1 C_2 C_3 C_4

Incremental BA

Batch BA

X_1 X_2 X_3 C_1 C_2 C_3 C_4

Incremental BA

Batch BA

X_1 X_2 X_3 C_1 C_2 C_3 C_4

Incremental BA

Representative Methods of Incremental BA

iSAM/iSAM2

- Kaess M, Ranganathan A, Dellaert F. iSAM: Incremental smoothing and mapping[J].
 IEEE Transactions on Robotics, 2008, 24(6): 1365-1378.
- Kaess M, Johannsson H, Roberts R, et al. iSAM2: Incremental smoothing and mapping using the Bayes tree[J]. The International Journal of Robotics Research, 2012, 31(2): 216-235.
- https://bitbucket.org/gtborg/gtsam/

ICE-BA

- Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.
- https://github.com/baidu/ICE-BA

• SLAM++

- Ila V, Polok L, Solony M, et al. Fast incremental bundle adjustment with covariance recovery[C]//2017 International Conference on 3D Vision (3DV). IEEE, 2017: 175-184.
- https://sourceforge.net/p/slam-plus-plus/wiki/Home/

Incremental BA by iSAM2

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. The International Journal of Robotics Research, 31(2), 216-235.

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \|A\boldsymbol{\theta} - \mathbf{b}\|^2$$

b: error vector

A: Jacobian matrix $\frac{\partial b}{\partial \theta}$

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \|A\boldsymbol{\theta} - \mathbf{b}\|^2$$

$$A = Q \left[\begin{array}{c} R \\ 0 \end{array} \right]$$

b: error vector

A: Jacobian matrix $\frac{\partial b}{\partial \theta}$

R: upper triangular matrix

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \|A\boldsymbol{\theta} - \mathbf{b}\|^2$$

$$A = Q \left[\begin{array}{c} R \\ 0 \end{array} \right]$$

A: Jacobian matrix
$$\frac{\partial b}{\partial \theta}$$

R: upper triangular matrix

$$\|A\boldsymbol{\theta} - \mathbf{b}\|^{2} = \|Q\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \mathbf{b}\|^{2}$$

$$= \|Q^{T}Q\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - Q^{T}\mathbf{b}\|^{2}$$

$$= \|\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \begin{bmatrix} \mathbf{d} \\ \mathbf{e} \end{bmatrix}\|^{2}$$

$$= \|R\boldsymbol{\theta} - \mathbf{d}\|^{2} + \|\mathbf{e}\|^{2}$$

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \|A\boldsymbol{\theta} - \mathbf{b}\|^2$$

$$A = Q \left[\begin{array}{c} R \\ 0 \end{array} \right]$$

b: error vector

A: Jacobian matrix $\frac{\partial b}{\partial \theta}$

R: upper triangular matrix

$$\|A\boldsymbol{\theta} - \mathbf{b}\|^{2} = \|Q\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \mathbf{b}\|^{2}$$

$$= \|Q^{T}Q\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - Q^{T}\mathbf{b}\|^{2}$$

$$= \|\begin{bmatrix} R \\ 0 \end{bmatrix} \boldsymbol{\theta} - \begin{bmatrix} \mathbf{d} \\ \mathbf{e} \end{bmatrix}\|^{2}$$

$$= \|R\boldsymbol{\theta} - \mathbf{d}\|^{2} + \|\mathbf{e}\|^{2}$$

$$R\theta^* = \mathbf{d}$$

QR Factorization VS Normal Equation

- Normal equation $(A^T A) \theta = -A^T b$
- QR Factorization $A = Q \begin{bmatrix} R \\ 0 \end{bmatrix} R \theta^* = \mathbf{d}$
 - Directly works on Jacobian A, numerically more stable
 - $\operatorname{cond}(A) < \operatorname{cond}(A^T A)$
 - The upper triangular matrix R can also be update incrementally
 - Efficiency largely depends on variable ordering

Example of iSAM

Limitation of iSAM

- Need periodically variable reordering by minimizing fill-ins
- It is difficult to provide the best ordering by algebraic method

iSAM2 by Bayes tree

Alleviate the limitation of iSAM by Bayes tree

Bayes tree encode the dependency relationship

among variables

Example of iSAM2: Forward Motion

Example of iSAM2: Forward Motion

Example of iSAM2: Loop Detected

Example of iSAM2: Keep Going

Example of iSAM2: Keep Going

Efficiency of iSAM2

- Improve iSAM most of time
- Many spikes
 - keep forward ✓
 - to and fro
- It is difficult to provide the best ordering by algebraic method
 - Marginalizing points first is always better

Incremental BA by ICE-BA

Liu H, Chen M, Zhang G, et al. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM. CVPR 2018.

Steps of Standard BA

- Steps in one iteration
 - 1. normal equation
 - 2. Schur complement
 - 3. solve cameras
 - 4. solve points

Observations in Standard BA

- Runtime for steps 1, 2 >> 3, 4
 - #projections >> #cameras

Observations in Standard BA

- Runtime for steps 1, 2 >> 3, 4
- Most cameras and points are nearly unchanged
 - Contribution of most functions nearly unchanged
 - No need to re-compute at each iteration

Factor graph representation

- O point O camera
- visual factor from X₁
- visual factor from X₂
- visual factor from X₃

Factor graph representation

New cameras or points come

	\mathbf{C}_1	C ₂	C ₃	\mathbf{C}_4
\mathbf{C}_1				
\mathbf{C}_2			■ +(■)	
C ₃			■ +(■)	(■)
\mathbf{C}_4				(■)

- opoint camera
- visual factor from X_1
- visual factor from X_2
- visual factor from X₃

Factor graph representation

Points have changed after iteration

 \mathbf{C}_1 \mathbf{C}_2 \mathbf{C}_3 \mathbf{C}_4

	\mathbf{C}_1	\mathbf{C}_2	C ₃	\mathbf{C}_4
\mathbf{C}_1		■ +(■)		
\mathbf{C}_2		■ +(■)	(■) +■	
\mathbf{C}_3			(■) +■	
\mathbf{C}_4				

- opoint camera
- visual factor from X_1
- visual factor from X_2
- visual factor from X₃

Factor graph representation

- Cameras have changed after iteration
- opoint camera
- visual factor from X_1
- visual factor from X₂
- \square visual factor from X_3

X	1	X	3
\mathbf{C}_1	C ₂	C ₃	C_4
	ц	-	
	X	2	

	\mathbf{C}_1	\mathbf{C}_2	C ₃	\mathbf{C}_4
\mathbf{C}_1		■ +(■)		
\mathbf{C}_2		■ +(■)	(■)+(■)	
\mathbf{C}_3			(■)+(■)	(■)
\mathbf{C}_4				(■)

Step1: Normal Equation

Batch BA

$$\mathbf{U} = \mathbf{0}; \ \mathbf{V} = \mathbf{0}; \ \mathbf{W} = \mathbf{0}; \ \mathbf{u} = \mathbf{0}; \ \mathbf{v} = \mathbf{0}$$
for each point j and each camera $i \in \mathcal{V}_j$ **do**

Construct linearized equation (11)

 $\mathbf{U}_{ii} + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}}$
 $\mathbf{V}_{jj} + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$
 $\mathbf{u}_i + = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$
 $\mathbf{v}_j + = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}$
 $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$
end for

ICE-BA

end for

for each point j and each camera $i \in \mathcal{V}_j$ that \mathbf{C}_i or \mathbf{X}_j is changed do

Construct linearized equation (11) $\mathbf{S}_{ii} - = \mathbf{A}_{ij}^{\mathbf{U}}; \ \mathbf{A}_{ij}^{\mathbf{U}} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{C}_{ij}}; \ \mathbf{S}_{ii} + = \mathbf{A}_{ij}^{\mathbf{U}}$ $\mathbf{V}_{jj} - = \mathbf{A}_{ij}^{\mathbf{V}}; \ \mathbf{A}_{ij}^{\mathbf{V}} = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}; \ \mathbf{V}_{jj} + = \mathbf{A}_{ij}^{\mathbf{V}}$ $\mathbf{g}_{i} - = \mathbf{b}_{ij}^{\mathbf{u}}; \ \mathbf{b}_{ij}^{\mathbf{u}} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}; \ \mathbf{g}_{i} + = \mathbf{b}_{ij}^{\mathbf{u}}$ $\mathbf{v}_{j} - = \mathbf{b}_{ij}^{\mathbf{v}}; \ \mathbf{b}_{ij}^{\mathbf{v}} = \mathbf{J}_{\mathbf{X}_{ij}}^{\mathsf{T}} \mathbf{e}_{ij}; \ \mathbf{v}_{j} + = \mathbf{b}_{ij}^{\mathbf{v}}$ $\mathbf{W}_{ij} = \mathbf{J}_{\mathbf{C}_{ij}}^{\mathsf{T}} \mathbf{J}_{\mathbf{X}_{ij}}$ $\mathbf{Mark} \ \mathbf{V}_{jj} \ \mathbf{updated}$

Step2: Schur Complement

Batch BA

```
\begin{split} \mathbf{S} &= \mathbf{U} \\ \textbf{for} \ \text{ each point } j \ \text{ and each camera pair } (i_1,i_2) \in \mathcal{V}_j \times \mathcal{V}_j \\ \textbf{do} \\ & \mathbf{S}_{i_1i_2} - = \mathbf{W}_{i_1j} \mathbf{V}_{jj}^{-1} \mathbf{W}_{i_2j}^{\top} \\ \textbf{end for} \\ \mathbf{g} &= \mathbf{u} \\ \textbf{for each point } j \ \text{and each camera } i \in \mathcal{V}_j \ \textbf{do} \\ & \mathbf{g}_i - = \mathbf{W}_{ij} \mathbf{V}_{jj}^{-1} \mathbf{v}_j \\ \textbf{end for} \end{split}
```

ICE-BA

for each point j that \mathbf{V}_{jj} is updated and each camera pair $(i_1,i_2) \in \mathcal{V}_j \times \mathcal{V}_j$ do $\mathbf{S}_{i_1i_2} + = \mathbf{A}_{i_1i_2j}^{\mathbf{S}}$ $\mathbf{A}_{i_1i_2j}^{\mathbf{S}} = \mathbf{W}_{i_1j}\mathbf{V}_{jj}^{-1}\mathbf{W}_{i_2j}^{\top}$ $\mathbf{S}_{i_1i_2} - = \mathbf{A}_{i_1i_2j}^{\mathbf{S}}$ end for for each point j that \mathbf{V}_{jj} is updated and each camera $i \in \mathcal{V}_j$ do $\mathbf{g}_i + = \mathbf{b}_{ij}^{\mathbf{g}}$; $\mathbf{b}_{ij}^{\mathbf{g}} = \mathbf{W}_{ij}\mathbf{V}_{jj}^{-1}\mathbf{v}_j$; $\mathbf{g}_i - = \mathbf{b}_{ij}^{\mathbf{g}}$ end for

Sub-track Improvement for Local BA

- In LBA, most points may be observed by most frames in the sliding window
 - Dense Schur complement
 - A large portion need to be re-computed
- Split the origin long feature track X_i into several short overlapping sub-tracks X_{i_1}, X_{i_2}, \cdots

Sub-track Improvement for Local BA

- In LBA, most points may be observed by most frames in the sliding window
 - Dense Schur complement
 - A large portion need to be re-computed
- Split the origin long feature track X_i into several short overlapping sub-tracks X_{i_1}, X_{i_2}, \cdots

Efficiency Comparison

- Local BA (LBA)
 - ICE-BA (50 frames)
 - Ceres (10 frames)

- Global BA (GBA)
 - ICE-BA: *O*(1)
 - Ceres: $O(n^2)$

Efficiency Comparison

- Local BA (LBA)
 - ICE-BA (50 frames)
 - OKVIS (8 frames)

- Global BA (GBA)
 - ICE-BA: steady and smooth
 - iSAM2: steep and peaks

Accuracy Comparison

Seq.	Ours w/ loop	Ours w/o loop	OKVIS	SVO	iSAM2
MH_01	0.11	0.09	0.22	0.06	0.07
MH_02	0.08	0.07	0.16	0.08	0.11
MH _ 03	0.05	0.11	0.12	0.16	0.12
MH_04	0.13	0.16	0.18	-	0.16
MH _ 05	0.11	0.27	0.29	0.63	0.25
V1 _ 01	0.07	0.05	0.03	0.06	0.07
V1 _ 02	0.08	0.05	0.06	0.12	0.08
V1 _ 03	0.06	0.11	0.12	0.21	0.12
V2 _ 01	0.06	0.12	0.05	0.22	0.10
V2 _ 02	0.04	0.09	0.07	0.16	0.13
V2 _ 03	0.11	0.17	0.14	-	0.20
Avg	0.08	0.12	0.14	0.20	0.13

Open-source Solver & BA

- Bundler: http://www.cs.cornell.edu/~snavely/bundler
- g2o: https://github.com/RainerKuemmerle/g2o
- Ceres Solver: http://ceres-solver.org
- SegmentBA: https://github.com/zju3dv/SegmentBA
- iSAM2: https://bitbucket.org/gtborg/gtsam
- ICE-BA: https://github.com/baidu/ICE-BA
- SLAM++: https://sourceforge.net/p/slam-plus-plus/wiki/Home/

Questions