

DCC301- ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES- 2025 PROF. DR. HEBERT OLIVEIRA ROCHA

HELIAN VINCIUS FILINTO DA SILVA SALVADOR DE JESUS MALAVÉ LUCAS GUILHERME PEREIRA SANTIAGO

LABORATÓRIO DE CIRCUITOS

HELIAN VINCIUS FILINTO DA SILVA SALVADOR DE JESUS MALAVÉ LUCAS GUILHERME PEREIRA SANTIAGO

LABORATÓRIO DE CIRCUITOS

Trabalho da disciplina de Arquitetura e Organização de Computadores do ano de 2025 apresentado à Universidade Federal de Roraima do curso de Bacharelado em ciência da computação.

Docente: Prof. Dr. Hebert O. Rocha

SUMÁRIO

1.	INTRODUÇÃO	5
2.	COMPONENTES	6
2.1.	Registrador Flip-Flop do tipo JK e do tipo D	6
2.1.1	Flip-Flop JK Mestre Escravo	6
2.1.2	Registrador Flip-Flop Tipo D	7
2.2.	3 Multiplexador de 4 entradas	7
2.3.	Porta lógica XOR	8
2.4.	Somador de 8 bits mais 4	8
2.5.	Memória ROM de 8 bits	9
2.6.	Memória RAM de 8 bits	10
2.7.	Banco de Registradores de 8 bits	11
2.8.	Somador de 8 bits	12
2.9.	Detector de Sequência Binária 101	12
2.10.	Unidade Lógica Aritmética de 8 Bits	13
2.11.	Extensor de sinal de 4 bits para 8 bits	15
2.12.	Máquina de Estados	15
2.13.	Contador Síncrono	16
2.14.	Detector de Paridade Ímpar	17
2.15.	Problema Otimização Logica	18
2.16.	Decodificador de 7 Segmentos	19
2.17.	Detector de Número Primo de 4 entradas com Mapa de Karnaugh	20
3	REFERÊNCIAS	21

LISTA DE FIGURAS

Flip-Flop JK Mestre Escravo	6
Figura 2 - Flip-Flop D	7
Figura 3 - Flip-Flop JK	7
Figura 4 - Multiplexador de 4 entradas	8
Figura 5 - Porta Lógica XOR	8
Figura 6 - Somador Completo	9
Figura 7 - Componente do Somador	9
Figura 8 - Memória ROM	10
Figura 9 - Memória RAM	11
Figura 10 - Banco de Registradores	12
Figura 11 - Detector de Sequência Binária	13
Figura 12 - Tabela de Comandos	13
Figura 13 - Unidade Lógica Aritmética	14
Figura 14 - Extensor de sinal de 4 bits para 8 bits	15
Figura 15 - Maquina de Estados	15
Figura 16 - Contador Síncrono	16
Figura 17 - Detector de Paridade Ímpa	17
Figura 18 - Circuito Antes de ser Simpificado	18
Figura 19 - Circuito Após Ser Simplificado	18
Figura 20 - Decodificador de 7 Segmentos	19
Figura 21 - Componente do Decodificador de 7 Segmentos	19
Figura 22 - Detector de Número Primo.	20

1.INTRODUÇÃO

Este relatório técnico descreve o desenvolvimento e a implementação de diversos circuitos digitais, totalizando 17 componentes, no software Logisim. Cada componente foi meticulosamente construído a partir de portas lógicas, constantes, distribuidores e pinos de entrada e saída.

O objetivo deste trabalho é demonstrar a aplicação prática de conhecimentos em eletrônica digital, documentando a lógica de design, o processo de construção e os testes realizados para validar a funcionalidade de cada circuito. Todos os componentes foram criados e simulados no Logisim versão 2.7.1, uma ferramenta padrão tanto em ambientes acadêmicos quanto profissionais.

2.COMPONENTES

2.1. Registrador Flip-Flop do tipo JK e do tipo D

Um flip-flop é um circuito biestável capaz de armazenar um único bit de informação. Ele possui duas saídas estáveis, que representam os estados lógicos 0 e 1. A transição entre esses estados é controlada por sinais de entrada, como o clock e os dados, permitindo que o flip-flop mantenha um valor até ser instruído a alterá-lo.

2.1.1 Flip-Flop JK Mestre Escravo

No circuito, o flip-flop de trás funciona como o mestre, com entradas J e K, enquanto o flip-flop da frente atua como o escravo, com entradas S e R. Quando o Clock está em nível alto (1), seu sinal é invertido ao passar pelas portas NAND, resultando em 0 na saída, o que bloqueia as entradas S e R do flip-flop escravo, permitindo que o mestre processe os sinais de J e K.

Quando o Clock retorna a 0, as saídas do mestre ficam bloqueadas e as entradas S e R do escravo são liberadas, permitindo que ele atualize seu estado. Dessa forma, o circuito só altera seu estado na transição de descida do Clock, caracterizando o funcionamento mestre-escravo usando portas NAND.

2.1.2 Registrador Flip-Flop Tipo D

O flip-flop D é uma versão derivada do flip-flop JK mestre-escravo, em que a entrada K é sempre invertida em relação à entrada J, garantindo que o circuito só possa assumir os estados 0 ou 1, eliminando combinações indesejadas. Ele possui uma única entrada de dados, chamada D, e os valores aplicados nela são transferidos para a saída Q somente quando o Clock é ativado, tornando o armazenamento de informação síncrono com o sinal de relógio.

Dessa forma, o flip-flop D atua como um elemento de memória controlado pelo Clock, armazenando o valor presente na entrada no momento da transição de ativação e mantendo esse valor até a próxima atualização, garantindo estabilidade e previsibilidade no circuito digital.

2.2. 3 Multiplexador de 4 entradas

Um multiplexador, ou MUX, é um circuito lógico combinacional que permite escolher uma entre várias entradas de dados e direcioná-la para uma única saída, funcionando como um seletor eletrônico. Ele utiliza entradas de seleção para determinar qual linha de entrada será encaminhada à saída em cada instante. Por exemplo, o MUX 4:1 pedido possui quatro entradas de dados, duas linhas de seleção que definem qual entrada será passada adiante e uma saída.

Figura 3 - Multiplexador de 4 entradas

2.3. Porta lógica XOR

A porta XOR (do inglês Exclusive OR, ou "OU exclusivo") é uma porta lógica que só retorna 1 quando as entradas são diferentes. Ou seja, se as duas entradas forem iguais a saída é 0.

Figura 4 - Porta lógica XOR

2.4. Somador de 8 bits mais 4

O somador é composto por duas partes principais: o somador completo e o somador de 8 bits. O somador completo recebe três entradas: A e B, que são os bits que serão somados, e o Carry In, que representa o valor de vai-um vindo do bit anterior. A partir dessas entradas, ele calcula a soma e produz duas saídas: S, que é o resultado da soma do bit atual, e o Carry Out, que será levado para a soma do próximo bit.

O somador de 8 bits utiliza oito somadores completos em sequência, recebe números de 8 bits como entrada e gera uma saída de 9 bits, sendo o último bit o overflow, indicando que ocorreu um transbordo na soma

Figura 5 - Somador Completo

Figura 6 - Componente do Somador

2.5. Memória ROM de 8 bits

A memória ROM (Read-Only Memory), como o próprio nome sugere, é um tipo de memória projetado para a leitura de dados. Sua principal característica é a não-volatilidade, ou seja, as informações armazenadas permanecem intactas mesmo após o desligamento do sistema.

Nessa implementação no Logisim, 8 constantes de 8 bits representam os dados permanentes. O acesso a essas "palavras" de dados é controlado por um multiplexador 8x1 de 8 bits, que seleciona uma delas por vez. A escolha da palavra é feita por um endereço, que neste circuito é uma entrada de 3 bits.

A leitura dos dados é controlada por uma entrada Enable. Se o valor dessa entrada for 0, a leitura é desativada, e nenhuma informação é exibida. Por outro lado, se o valor for 1, a leitura ocorre normalmente, e a palavra selecionada pelo endereço é exibida na saída de 8 bits do multiplexador.

2.6. Memória RAM de 8 bits

A memória RAM (Random Access Memory) funciona como o principal espaço de trabalho temporário de um computador, permitindo que o processador acesse dados rapidamente, independentemente de sua localização. Sua estrutura é baseada em registradores paralelos, que são construídos a partir de flip-flops do tipo D, componentes essenciais para o armazenamento de bits.

A gravação de dados na RAM é controlada por um demultiplexador. Ele age como um seletor, direcionando o sinal de clock para o registrador específico que deve receber a informação, com base no endereço fornecido pela entrada Selector. Ao mesmo tempo, a leitura é feita por um multiplexador que escolhe qual registrador será lido para a saída, também guiado pela entrada Selector.

É crucial notar que as operações de leitura e escrita não podem ocorrer simultaneamente. Essa funcionalidade é gerenciada pela entrada Enable. Quando o Enable está em nível lógico 1, a leitura é ativada e a escrita é desativada. Se o Enable estiver em 0, a escrita é ativada e a leitura é desativada, garantindo que as operações não entrem em conflito.

2.7. Banco de Registradores de 8 bits

O banco de registradores é um componente central em processadores, atuando como um armazenamento temporário de alta velocidade para os dados em uso. Sua arquitetura é otimizada para permitir acesso e manipulação de informações de forma ágil, facilitando operações de leitura e escrita.

Este banco é composto por 16 registradores, cada um capaz de armazenar 8 bits de informação. Para gerenciar essas operações, o circuito utiliza um demultiplexador 16x1, que direciona o pulso de clock exclusivamente para o registrador que receberá a escrita. Além disso, dois multiplexadores são responsáveis por selecionar e ler os dados armazenados. O banco possui oito entradas no total, sendo elas:

- Uma entrada de 8 bits para o dado a ser gravado.
- Três seletores de 4 bits, que definem o endereço do registrador para leitura ou escrita.
- Três sinais de habilitação de 1 bit, que ativam ou desativam as operações.
- Um sinal de limpeza de 1 bit, que apaga o conteúdo dos registradores.

É importante notar que, sem os sinais de habilitação ativados, nenhuma operação pode ser executada. A inatividade das entradas de habilitação impede tanto a leitura quanto a escrita de dados, mesmo com o pulso de clock. Uma vez que os sinais de habilitação estão ativos, o circuito permite que as operações de escrita e leitura ocorram normalmente. Vale ressaltar que os sinais de habilitação operam de forma independente, o que significa que é possível realizar apenas a leitura ou apenas a escrita de dados, sem que uma operação interfira na outra.

Figura 9 - Banco de Registradores

2.8. Somador de 8 bits

O somador de 8 bits funciona de forma similar ao somador de 8 bits com 4, mas com a capacidade de somar dois números completos de 8 bits. Para isso, ele utiliza oito somadores de 1 bit em paralelo, onde cada um lida com um par de bits correspondentes de cada um dos dois números de entrada.

O circuito gera duas saídas: uma de 8 bits, que mostra o resultado da soma, e uma de 1 bit adicional que sinaliza a ocorrência de overflow, como pode ser visto na imagem a abaixo.

Figura 10 - Somador de 8 bits

2.9. Detector de Sequência Binária 101

Para criar um circuito capaz de reconhecer a sequência binária "101", o processo começou com a projeção de uma máquina de estados finitos. Essa máquina opera com três estados distintos: A (codificado como 00), B (01) e C (10). A transição entre esses estados é controlada por dois flip-flops do tipo D (d1 e d0), que juntos indicam o estado atual do circuito.

Em seguida, foi elaborada uma tabela verdade para mapear o comportamento da máquina. As entradas foram definidas como o estado atual (d1, d0) e o bit de entrada (x). Já as saídas são o próximo estado (d1', d0') e a saída final (S).

Com base nessa tabela, foram criadas expressões lógicas que descrevem a dinâmica do detector. O resultado é um circuito que emite um sinal de saída 1 somente quando a sequência "101" é completada na entrada. Essa abordagem sistemática garante que o circuito se comporte de forma previsível e precisa.

Figura 11 - Detector de Sequência Binária

2.10. Unidade Lógica Aritmética de 8 Bits

A Unidade Lógica e Aritmética (ULA) é um componente essencial em sistemas digitais, encarregada de executar operações lógicas e aritméticas. Nesse sentido, nossa ULA recebe dois operandos de 8 bits (A e B) e possui uma entrada de controle de 4 bits para selecionar uma de suas 10 operações. O resultado da operação escolhida é exibido em uma saída de 8 bits.

A ULA foi construída com componentes padrão do Logisim, incluindo portas lógicas, deslocadores de bits, um somador e um subtrator de 8 bits. O resultado de cada operação é direcionado para um multiplexador 16x1 de 8 bits, que, com base no código de 4 bits, seleciona e exibe a saída correta.

Ademais, a ULA foi aprimorada com o uso de deslocadores de bit e um subtrator. Para realizar os deslocamentos de 2 bits, dois circuitos de 1 bit foram conectados em série, com a direção controlada por uma constante. Já o subtrator de 1 bit foi desenvolvido a partir da lógica de um somador, com a expressão de Carry-Out ajustada para efetuar a operação de subtração.

A tabela abaixo detalha as operações da ULA, acessadas por códigos binários:

Código Operação Descrição 0000 AND bit a bit A saída é 1 apenas se ambos os bits de A e B forem 1. 0001 OR bit a bit A saída é 1 se ao menos um dos bits de A ou B for 1. 0010 NOT bit a bit Inverte cada bit do operando A. 0011 NOR bit a bit A saída é 1 apenas se ambos os bits de A e B forem 0. 0100 NAND bit a bit A saída é 0 apenas se ambos os bits de A e B forem 1. XOR bit a bit 0101 A saída é 1 se os bits de A e B forem diferentes. SHIFT à Desloca os bits de A duas posições para a esquerda (equivalente a uma 0110 Esquerda multiplicação por 4). Desloca os bits de A duas posições para a direita (equivalente a uma 0111 SHIFT à Direita divisão por 4). 1000 Soma Soma os operandos A e B, considerando o vai-um. 1001 Subtração Subtrai B de A.

Figura 12 - Tabela de Comandos

2.11. Extensor de sinal de 4 bits para 8 bits

Um extensor de sinal é um circuito digital projetado para aumentar o número de bits de um valor binário, sem alterar seu valor numérico. Ele é particularmente útil quando se trabalha com números em complemento de dois, pois garante que o sinal (positivo ou negativo) do número original seja preservado na nova representação.

Um extensor de 4 bits para 8 bits funciona da seguinte maneira: os 4 bits da entrada são copiados diretamente para as quatro posições menos significativas da saída. Para manter o sinal do número, o bit mais significativo (o bit de sinal) da entrada é replicado e preenche as quatro posições mais significativas da saída. Esse processo assegura que o número continue com o mesmo valor, mesmo com a ampliação para 8 bits.

Figura 14 - Extensor de sinal de 4 bits para 8 bits

2.12. Máquina de Estados

Uma máquina de estados é um circuito digital que opera em uma sequência de estados predefinidos, com suas transições controladas por sinais de entrada e um sinal de clock. Frequentemente utilizada em sistemas de controle, ela altera seu comportamento com base em condições específicas.

A aplicação desse conceito é vista no circuito, que simula um semáforo de pedestres, que opera com apenas dois estados: verde e vermelho. A única entrada é um botão que, quando pressionado (estado 1), aciona a mudança de estado da máquina. Se o botão não for acionado (estado 0), o semáforo permanece no seu estado atual.

Figura 15 - Maquina de Estados

2.13. Contador Síncrono

O contador síncrono é um circuito digital projetado para realizar contagens binárias de forma controlada. Diferente dos contadores assíncronos, ele é construído com flip-flops que compartilham uma única entrada de clock, garantindo que todas as mudanças de estado ocorram de forma coordenada e sem atraso de propagação. Para que a contagem seja precisa, um circuito combinacional externo usa as saídas de cada flip-flop para determinar o momento exato em que cada um deve mudar de estado.

A implementação do contador síncrono de década, utiliza quatro flip-flops do tipo T. Como todos os flip-flops respondem ao mesmo pulso de clock, o circuito elimina o acúmulo de atraso, comum em outros tipos de contadores, garantindo que as mudanças de estado sejam uniformes e previsíveis. Ele é composto por flip-flops cujas entradas de clock estão conectadas em paralelo a uma única fonte, garantindo que todas as mudanças de estado ocorram de forma coordenada e simultânea.

2.14. Detector de Paridade Ímpar

Um detector de paridade ímpar é um circuito digital fundamental, utilizado para verificar se a quantidade de bits com valor 1 em um conjunto de dados binários é ímpar. A lógica por trás disso se baseia na operação XOR (ou exclusivo), uma vez que essa porta lógica retorna um valor 1 apenas quando a quantidade de entradas com valor 1 for ímpar.

A implementação de um detector de 4 entradas, por exemplo, é feita com o uso de portas lógicas XOR, que processam as entradas em pares. Nesse sentido, a lógica do circuito é baseada na verificação das entradas uma a uma, e acumula o resultado para, no final, indicar a paridade. Essa abordagem é expressa como $(a \oplus b) \oplus (c \oplus d)$, que é a forma de realizar a operação XOR em 4 bits.

Adicionalmente, a lógica pode ser facilmente expandida para acomodar um número maior de entradas, bastando conectar as saídas de dois detectores de 4 entradas a uma porta XOR adicional. Dessa forma, o circuito mantém a sua funcionalidade para conjuntos de bits maiores, provando a eficiência e a escalabilidade desse método de detecção de paridade.

Figura 17 - Detector de Paridade Ímpar

2.15. Problema Otimização Logica

A otimização de um circuito decodificador para displays de 7 segmentos, como o que acende o LED "C", é essencial para a sua eficiência. Para isso, usamos ferramentas de simplificação lógica, como os mapas de Karnaugh. Essa técnica nos permite analisar todas as combinações de entrada e determinar a expressão lógica mais simples para a saída desejada.

No caso do decodificador do LED "C", ele deve acender em todas as situações, exceto quando a entrada binária for o número 2. A aplicação de um mapa de Karnaugh para este cenário nos permite identificar as combinações que ativam o LED (saída 1) e aquelas que o mantêm apagado (saída 0).

A grande vantagem desse processo é que a expressão lógica final se torna muito mais simples. Isso não apenas reduz a quantidade de portas lógicas necessárias, mas também diminui a complexidade do circuito e, consequentemente, seu consumo de energia. O resultado é um circuito mais limpo, eficiente e que cumpre perfeitamente sua função.

Figura 18 - Circuito Antes de ser Simpificado

Figura 19 - Circuito Após Ser Simplificado

2.16. Decodificador de 7 Segmentos

O decodificador de 7 segmentos, projetado para converter um número binário de 4 bits em uma representação hexadecimal, é um componente essencial na visualização de dados. A sua função é traduzir a entrada binária em sinais que acionam os sete LEDs do display, que são identificados pelas letras de A a G.

Para desenvolver este circuito, foi preciso criar uma tabela verdade para cada um dos segmentos do display (A, B, C, D, E, F e G). As entradas da tabela correspondiam aos 4 bits binários, e a saída determinava o estado (ligado ou desligado) de cada LED. Dessa forma, as expressões lógicas necessárias para acionar o display foram obtidas, permitindo que os números de 0 a 9 e as letras de A a F fossem exibidos corretamente.

Figura 20 - Decodificador de 7 Segmentos

Figura 21 - Componente do Decodificador de 7 Segmentos

2.17. Detector de Número Primo de 4 entradas com Mapa de Karnaugh

O projeto de um detector de número primo de 4 bits é um desafio de lógica que exige uma abordagem sistemática. O circuito, que utiliza portas lógicas, recebe uma entrada de 4 bits (representada por A, B, C e D) e tem uma única saída (S), que será 1 somente se o número de entrada for primo. Nesse contexto, os números primos são 2, 3, 5, 7, 11 e 13.

Para otimizar o projeto, foram utilizadas duas ferramentas essenciais: a tabela verdade e o mapa de Karnaugh. Primeiro, a tabela verdade mapeou a saída desejada (S=1) para cada uma das entradas binárias correspondentes aos números primos. Em seguida, o mapa de Karnaugh foi usado para agrupar as saídas lógicas, simplificando a expressão booleana e resultando em um circuito mais eficiente, com menos portas lógicas e menor complexidade.

Figura 22- Detector de Número Primo

3. REFERÊNCIAS

Silva, Helian; SANTIAGO, Lucas, MALAVÉ, Salvador. **Repositório AOC**. Disponível em:https://github.com/LucasGilherme/AOC_HelianViniciusLucasGuilhermeSalvador Malave_UFRR_LabCircuitos_2025. Acesso em: 29 out. 2025.

PATTERSON, David A. **Organização e projeto de computadores**. 3. ed. Rio de Janeiro: Elsevier, 2005.