单元十三 氢光谱 玻尔氢原子理论 波粒二象性

一 选择题

- 01. 使氢原子中电子从n=3的状态电离,至少需要供给的能量为 $\begin{bmatrix} C \end{bmatrix}$ (已知基态氢原子的电离能为13.6eV)。
 - (A) -12.1eV; (B) 12.1eV;
- (C) 1.51eV;
- (D) -1.51eV.
- 02. 由氢原子理论, 当氢原子处于n=3的激发态时, 可发射

[C]

- (A) 一种波长的光; (B) 两种波长的光; (C) 三种波长的光; (D) 各种波长的光。

- 03. 电子显微镜中的电子从静止开始通过电势差为U的静电场加速后

其德布罗意波长是 0.4×10^{-10} m ,则U 约为

- (A) 150V; (B) 330V;
- (C) 630V; (D) 940V.

($e=1.6\times10^{-19}C$, $h=6.63\times10^{-34}J\cdot s$, 电子静止质量 $m_e=9.11\times10^{-31}kg$)

- 04. 若 α 粒子(电量为 2e)在磁感应强度为 \vec{B} 均匀磁场中沿半径为R的圆形轨道运动,则 α 粒子的德 [A] 布罗意波长是:
- (A) $\frac{h}{2eRB}$; (B) $\frac{h}{eRB}$; (C) $\frac{1}{2eRBh}$; (D) $\frac{1}{eRBh}$.

► 德布罗意波长: $\lambda = \frac{h}{p} = \frac{h}{mv}$

在均匀磁场中做圆周运动的带电粒子: $m\frac{v^2}{R} = 2eBv$

 $v = \frac{2eBR}{m}$ — 代入德布罗意波表达式得到: $\lambda = \frac{h}{2eRB}$ — 正确答案(A)

- 05. 如图所示,一束动量为 \bar{p} 的电子,通过缝宽为a的狭缝,在距离狭缝为R处放置一荧光屏,屏 上衍射图样中央最大宽度 d 等于:
 - (A) $\frac{2a^2}{p}$;
- (B) $\frac{2ha}{p}$;
- (C) $\frac{2ha}{Rp}$; (D) $\frac{2Rh}{ap}$.
- ► 德布罗意波长: $\lambda = \frac{h}{r}$

单缝衍射暗纹: $a \sin \theta = k\lambda$

一级暗纹位置: $a \sin \theta = \lambda$

选择题 05 图示

中央亮条纹宽度: $d = 2R \tan \theta \approx 2R \sin \theta = 2R \frac{\lambda}{2}$

$$d = \frac{2Rh}{ap}$$
 — 正确答案(D)

06. 根据氢原子理论,若大量氢原子处于主量子数n=5的激发态,则跃迁辐射的谱线中属于巴耳末 系的谱线有

(A) 1条;

(B) 3 条:

(C) 4条:

(D) 10条。

二 填空题

- 07. 设大量氢原子处于n=4的激发态,它们跃迁时发出一簇光谱线。这簇光谱线最多可能有 6 条。 08. 当一质子俘获一个动能 $E_k = 13.6 \, eV$ 的自由电子,组成一基态氢原子时,所发出的单色光频率
- 是6.568×10¹⁵Hz。
- ➡ 质子俘获电子前,系统的总能量:

 $E = m_{0p}c^2 + m_{0e}c^2 + 13.6 \, eV$ — 其中 $m_{0p}c^2 \& m_{0e}c^2$ 是质子和电子的静止能量。

质子俘获电子以后,系统的总能量(氡原子基态能量):

$$E' = m_{0p}c^2 + m_{0e}c^2 - 13.6 \, eV$$

发出的单色光频率: $v = \frac{E - E'}{h} = \frac{27.2 \text{ eV}}{h}$

$$v = \frac{27.2 \times 1.6 \times 10^{-19} J}{6.6260755 \times 10^{-34} J \cdot s} = 6.568 \times 10^{15} Hz$$

- 09. 被激发到n=3的状态的氢原子气体发出的辐射中,有2条非可见光谱线。
- 10. 能量为 $15\,eV$ 的光子从处于基态的氢原子中打出一光电子,则该电子离原子核时的运动速度为 $7.02 \times 10^5 m/s$.
- 11. 一质量为 $40 \times 10^{-3} kg$ 的子弹,以1000 m/s的速度飞行,它的德布罗意波长为 $1.6 \times 10^{-35} m$,所 以子弹不显示波动性。
- 12. 一東带电粒子经 206V 电势差加速后, 其德布罗意波长为 $\lambda = 0.002$ nm, 已知此带电粒子的电 量与电子电量值相等,则此粒子的质量为 $1.6 \times 10^{-27} kg$ 。

带电粒子经加速获得的动能: $qV = \frac{1}{2}mv^2 = \frac{p^2}{2m} \longrightarrow qV = \frac{h^2}{2m\lambda^2}$

$m = 1.6 \times 10^{-27} kg$

三 判断题

13. 实物粒子与光子一样, 既具有波动性, 亦具有粒子性 【对】

14. 光子具有波粒二象性, 电子只具有粒子性。 【错】

15. 德布罗意认为实物粒子既具有粒子性,也具有波动性。 【对】

16. 氢原子中的电子是在作确定的轨道运动,轨道是量子化的。 【错】

17. 据氢原子的量子力学理论,只能得出电子出现在某处的概率,而不能断言电子在某处出现。

【对】

四 计算题

18. 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为 $\Delta E = 10.19 \, eV$ 的状态时, 发射出光子的波长是 $\lambda = 486 \, nm$ 。该初始状态的能量和主量子数。

➡ 设初始能级和激发能为 $\Delta E = 10.19 \, eV$ 的能级分别为 E_n 和 E_k ,如图 Q_04065 所示。

依题意则有:
$$\begin{cases} E_n - E_k = h \frac{c}{\lambda} \\ E_k - E_1 = \Delta E \end{cases}$$

两式相加得到: $E_n - E_1 = h\frac{c}{\lambda} + \Delta E$

$$(-\frac{13.6}{n^2}eV) - (13.6eV) = h\frac{c}{\lambda} + \Delta E$$

$$\begin{cases} \Delta E = 10.19 \ eV \\ \lambda = 486 \ nm \\ h = 6.6260755 \times 10^{-34} \ J \cdot s \end{cases}$$
 代入上式得到:

n=4

氢原子初始状态的能量: $E_4 = -0.85 \, eV$

- 19. 氢原子光谱的巴耳末线系中,有一光谱线的波长为 $\lambda = 434 \, nm$,试求:
 - 1) 与这一谱线相应的光子能量为多少电子伏特;
 - 2) 该谱线是氢原子由能级 E_n 跃迁到能级 E_k 产生的,n 和 k 各为多少?
- 3) 最高能级为 E_5 的大量氢原子,最多可以发射几个谱线系、共几条谱线。请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线。
- ► 波长 λ = 434 *nm* 光子的能量:

$$hv = h\frac{c}{\lambda} = 2.86 \ eV$$

巴耳末光谱线系:

$$\tilde{v} = R_H (\frac{1}{2^2} - \frac{1}{n^2}) \longrightarrow \frac{1}{\lambda} = R_H (\frac{1}{2^2} - \frac{1}{n^2})$$

将 $R_H=1.0973731\times 10^7 m^{-1}$, $\lambda=434~nm$ 代入上式得到: $\underline{n=5}$

该谱线是氢原子由能级 $E_5 \longrightarrow E_2$ 产生的

根据里德伯—里兹并合原则: $\tilde{v} = T(k) - T(n)$, n > k

能级为E5的大量氢原子,最多可以发射 4个谱线系

即 k = 1, 2, 3, 4 — 共 10 条谱线,如图所示

波长最短的一条谱线(赖曼系):

$$\frac{1}{\lambda_{\min}} = R_H (\frac{1}{1^2} - \frac{1}{5^2})$$

$$\lambda_{\min} = 94.96 \ nm$$

计算题_19图示

20. 低速运动的质子和 α 粒子,若它们的德布罗意波长相同,求它们的动量之比 p_p : p_α 和动能之比 E_p : E_α 。 (它们的质量比 m_p : $m_\alpha=1/4$)

医
$$\left\{ egin{aligned} p_p = rac{h}{\lambda} & & \\ p_{\alpha} = rac{h}{\lambda} & & p_p \\ \end{array} \right.$$

$$p = \frac{h}{\lambda} = mv \longrightarrow v = \frac{h}{m\lambda}$$

$$\frac{E_{p}}{E_{\alpha}} = \frac{\frac{1}{2}m_{p}v_{p}^{2}}{\frac{1}{2}m_{\alpha}v_{\alpha}^{2}} = 4:1$$

- 21. 假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的 2 倍时,其德布罗意波长为多少? (普朗克常量 $h=6.63\times10^{-34}~J\cdot s$,电子静止质量 $m_e=9.11\times10^{-31}kg$)
- ➡ 若电子的动能是它的静止能量的两倍,则: $mc^2 m_e c^2 = 2m_e c^2$

故:
$$m = 3m_e$$

由相对论公式
$$m = m_e / \sqrt{1 - v^2 / c^2}$$
 得到: $3m_e = m_e / \sqrt{1 - v^2 / c^2}$

解得:
$$v = \sqrt{8c/3}$$

德布罗意波长为:
$$\lambda = \frac{h}{mv} = \frac{h}{\sqrt{8m_e c}} \approx 8.58 \times 10^{-13} m$$

- 22. α 粒子在磁感应强度为 B = 0.025 T 的均匀磁场中沿半径为 R = 0.83 cm 的圆形轨道运动。
 - 1) 试计算其德布罗意波长;
 - 2) 若使质量m = 0.1 g的小球以与 α 粒子相同的速率运动。则其波长为多少?

$$(m_{\alpha} = 6.64 \times 10^{-27} kg, \ h = 6.63 \times 10^{-34} \ J \cdot s, \ e = 1.6 \times 10^{-19} C)$$

► 对于在磁场作圆周运动的
$$\alpha$$
 粒子: $m_{\alpha} \frac{v^2}{R} = (2e)Bv \longrightarrow v = \frac{2eBR}{m_{\alpha}}$

$$\alpha$$
 粒子的德布罗意波长: $\lambda = \frac{h}{m_{\alpha}v} \longrightarrow \lambda = \frac{h}{2eBR}$

$$\lambda = 9.98 \times 10^{-12} \ m$$

质量
$$m = 0.1 g$$
, 速率为 $v = \frac{2eBR}{m_{\alpha}}$ 的小球

德布罗意波长:
$$\lambda' = \frac{h}{2eBR} \frac{m_{\alpha}}{m}$$

$$\lambda' = 6.63 \times 10^{-34} \ m$$