Seperating Hyperplane theorem Suppose C and D are "disjoint" convex sets.
Then there exist a ≠ 0 and b such that
$a^T x \leq b, \ \forall x \in C \qquad a^T x \geq b, \ \forall x \in D$
that is, hyperplane {x a ^T x = b} separates C and D 두 disjoint convex set 사이로 그 둘을 분리하는 초-평면이 존재한다는 것이다.
간단한 증명? C, D에서 각각 점을 하나씩 선택하여 선분들을 만들 때, 길이가 최소가 되는 선분을 잡는다. 그리고 그 선분의 양끝점에서 접하는 접평면을 그렸을때, C의 모든 점들은 그 접평면의 뒤에 있다. D의 모든 점들 또한 마찬가지이다.
우리는 contradiction을 이용하여 이를 증명해보자. → C, D에서 각각 점을 하나씩 선택하여 선분들을 만들 때, 길이가 최소가 되는 선분을 잡는다. 그리고 그 선분의 양끝점에서 접하는 접평면을 그렸을때, 그 접평면의 앞에 C에 속하는 점 x_2가 존재한다고 가정한다.
$ ightarrow$ 그렇다면 x_2 와 그 길이가 최소가 되는 선분의 C에 속하는 끝점(x_1)을 이어본다. $ ightarrow$ 그러면 그 x_2 와 x_1 의 선분위의 점들도 C에 속해야 한다. (because the definition of convex set)
\rightarrow 그렇다면 처음 가정한 가장 짧은 선분은 가장 짧지 않다. \rightarrow 모순! contradiction! $\alpha^T x \geq b/\sqrt{a^T x \leq b}$
D 어떻은 선분이 존재해버린다.
Supporting hyperplane theorem
Supporting hyperplane of set C at boundary point x_0 is defined as $\left\{x a^Tx=a^Tx_0\right\}$
where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$
즉, Supporting Hyperplane의 한쪽에만 모든 set의 점들이 존재하면 {x a ^T x = a ^T x₀} ={x a ^T (x-x₀) = 0}
supporting hyperplane theorem : convex set C의 모든 boundary points에서 supporting hyperplane을 만들 수 있다.
C^{x_0}