les ensembles $\mathbb N$, $\mathbb Z$, $\mathbb D$, $\mathbb Q$ et $\mathbb R$

Ensembles des nombres

1.1 **Définitions**

- Les nombres entiers naturels forment un ensemble noté \mathbb{N} et on écrit : $\mathbb{N} = \{0; 1; 2; 3...\}$.
- Les nombres entiers relatifs forment un ensemble noté \mathbb{Z} et on écrit : $\mathbb{Z} = \{...; -3; -2; -1; 0; 1; 2; 3...\}$.

 Les nombres décimaux sont les nombres qui s'écrivent sous la forme $\frac{a}{10^n}$, avec a un entier relatif et n un entier naturel forment un ensemble noté $\mathbb D$.
- Les nombres rationnels sont les nombres qui s'écrivent sous la forme $\frac{a}{b}$ tel que a un entier relatif et b un entier naturel non nul forment un ensemble noté $\mathbb Q$
- les nombres rationnels et les nombres irrationnels forment l'ensemble des nombres réels noté \mathbb{R} . l'ensemble des nombres réels est aussi l'ensemble des abscisses des points d'une droite graduée.

Exercice

Compléter le tableau suivant en mettant une croix dans la case convenable.

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
25					
-12					
-5, 2					
$\frac{-12}{3}$					
$\frac{-12}{3}$ $\frac{\sqrt{81}}{3}$					
$\frac{5}{4}$					
$\frac{2}{3}$					
$\frac{\pi}{3}$					
$\sqrt{3}+2$					

Notations et remarques

- Le symbole" \in "signifie "appartient à", par exemple 11 est un élément de $\mathbb N$ on écrit $11 \in \mathbb N$ par contre -3 n'appartient pas à \mathbb{N} ,on écrit $-3 \notin \mathbb{N}$
- Le symbole " \subset " signifie "est inclus dans ",par exemple $\mathbb{N} \subset \mathbb{Z}$, Car tout entier naturel est un entier relatif. $\mathbb D$ n'est pas inclus dans $\mathbb Z$,on écrit $\mathbb D \not\subset \mathbb Z$,c'est-à-dire il existe un élément dans $\mathbb D$ qui n'appartient pas à $\mathbb Z$.
- \mathbb{N}^* est l'ensemble des entiers naturels non nul. De même pour \mathbb{Z}^* , \mathbb{D}^* , \mathbb{Q}^* et \mathbb{R}^* . $\mathbb{D} = \{\frac{a}{10^n}/a \in \mathbb{Z} \text{ et } n \in \mathbb{N}\}$ et $\mathbb{Q} = \{\frac{a}{b}/a \in \mathbb{Z} \text{et } b \in \mathbb{N}^*\}$ On a : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset R$

— Z⁺ est l'ensemble des entiers relatifs positifs et Z⁻ est l'ensemble des entiers relatifs négatif.De même pour \mathbb{D}^+ et \mathbb{D}^- ; \mathbb{Q}^+ et \mathbb{Q}^- ; \mathbb{R}^+ et \mathbb{R}^-

Exercice

Compléter en utilisant les symboles : "
 " , " \notin " , " C" et " $\not\subset$ " : $28,13...\mathbb{D} \;\; ; \; -\sqrt{4} \; ...\mathbb{N} \; ; \; \frac{5}{4}...\mathbb{D} \; ; \;\; \mathbb{R}^{+}...\mathbb{R} \; ; \; \mathbb{Z}...\mathbb{N} \;\; ; \; 10^{-2}...\mathbb{R}^{-} \; ; \;\; \mathbb{Q}...\mathbb{R} \; ; \; -\pi...\mathbb{R}^{+} \; ; \; \mathbb{Z}...\mathbb{Q}^{-} \; ; \; \frac{1}{3}...\mathbb{Z}^{+} \; ; \;\; \mathbb{Z}...\mathbb{Q}^{-} \; ; \;\; \frac{1}{3}...\mathbb{Z}^{+} \; ; \;\; \mathbb{Z}...\mathbb{Q}^{-} \; ; \;\; \mathbb{Z}...$

Opérations dans l'ensemble $\mathbb R$ 2

2.1 L'addition dans \mathbb{R}

Propriétés

Soient a; b et c des nombres réels , on a :

- -- a + b = b + a
- -a + (b+c) = (a+b) + c = a+b+c
- -a+0=0+a=a
- -(-a) + a = a + (-a) = 0 (-a) est l'opposé de a

2.2 Multiplication dans \mathbb{R}

Propriétés

Soient a; b et c des nombres réels , on a :

- $--a \times b = b \times a$
- $\begin{array}{ll} --a(bc)=(ab)c=abc\\ --a\times\frac{1}{a}=\frac{1}{a}\times a=\frac{a}{a}=1\,;\,a\neq0\,\,\frac{1}{a}\text{ est l'inverse de }a\;.\\ --1\times a=a\times1=a \end{array}$

2.3 Opérations sur les fractions

Propriétés

Soient a; b; c et d des nombres réels tel que $bd \neq 0$, on a :

$$-\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

$$-\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

$$-\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$-\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$$

$$-\frac{\frac{a}{b}}{\frac{c}{b}} = a \times \frac{c}{b} = \frac{ac}{b}; a \neq 0 \text{ et } b \neq 0$$

$$-\frac{\frac{a}{b}}{\frac{c}{b}} = \frac{c}{d} \text{ alors } ad = bc$$

$$-\frac{a}{b} = 1 \text{ alors } a = b$$

$$-\frac{a}{b} = 0 \text{ alors } a = 0$$

Les racines carrées 3

Définition

Soit a un nombre réel positif. On appele racine carrée de a le nombre réel positif b tel que $:a=b^2$ et on écrit $b=\sqrt{a}$.

Exemples

$$\sqrt{9} = 3$$
; $\sqrt{49} = 7$.

Propriétés

a et b deux nombres de \mathbb{R}^+ on a :

$$-(\sqrt{a})^2 = \sqrt{a^2} = a$$

$$-(\sqrt{a})^n = \sqrt{a^n}; n \in \mathbb{N}$$

$$- (\sqrt{a})^2 = \sqrt{a^2} = a$$

$$- \sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$- (\sqrt{a})^n = \sqrt{a^n}; n \in \mathbb{N}$$

$$- \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}; b > 0$$

$$-\sqrt{\frac{1}{a}} = \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} = a; \ a > 0$$

—
$$a = b$$
 équivaut à $\sqrt{a} = \sqrt{b}$

—
$$\sqrt{a} = 0$$
 équivaut à $a = 0$

Exercices

Simplifier l'écriture des nombres suivants : $\sqrt{27} \times 5\sqrt{6}$; $7\sqrt{75} - 2\sqrt{12}$; $(11\sqrt{5} - 5\sqrt{11})(11\sqrt{5} + 5\sqrt{11})$; $3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180}$

Exercice 2:

Soit
$$X = \sqrt{10 - \sqrt{84}} + \sqrt{10 + \sqrt{84}}$$

1. Développer X^2 , puis en déduire X.

Exercice 3:

Ecrire les fractions sans racine carrée au dénominateur : $\frac{2}{\sqrt{3}}$; $\frac{1}{2+\sqrt{5}}$; $\frac{1}{\sqrt{3}-\sqrt{5}}$

Puissances - Puissances de 10 - Écriture scientifique

4.1 **Puissances**

Définition

Soient a un réel non nul et n un entier naturel .

On a :
$$a^0 = 1$$
 et $a^1 = a$

$$a^n = a \times a \times a \times \cdots \times a$$

et
$$a^{-n} = \underbrace{\frac{1}{a} \times \frac{1}{a} \times \frac{1}{a} \cdots \times \frac{1}{a}}_{n}$$

 a^{-n} est l'inverse de a

Le nombre a^n est appelé la puissance de a , d'exposant n.

Le nombre a^{-n} est appelé la puissance de a d'exposant -n

Propriétés

Soient a et b deux réels non nuls , n et m deux entiers relatifs,on a :

$$a^n \times b^n = (ab)^n$$
; $a^n \times a^m = a^{n+m}$; $(a^n)^m = a^{nm}$; $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$; $\frac{a^n}{a^m} = a^{n-m}$.

4.2Puissances de 10

Définition

Soit n un entier naturel non nul

$$10^0 = 1 \text{ et } 10^1 = 10$$

$$10^n = 1000 \cdots 000$$

et
$$10^{-n} = \underbrace{0,00\cdots 0}_{n \text{ zéros}} 1$$

4.3 Écriture scientifique

Définition

Tout nombre décimal b s'écrit sous la forme $b = a \times 10^n$ où $n \in \mathbb{N}$ et $1 \le a < 10$ (si b est positive) ou $-10 < a \le -1$ (si b est négatif).

Cette écriture s'appelle : l'écriture scientifique du nombre décimal \boldsymbol{b} .

5 Identités remarquables - Développement et factorisation

Soient a, b et k des réels, on a :

$$-k(a+b) = ka + kb$$

$$-k(a-b) = ka - kb$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$- (a-b)^2 = a^2 - 2ab + b^2$$

$$-a^2-b^2=(a-b)(a+b)$$

$$-a^{2} - b^{2} = (a - b)(a + b)$$

$$-a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$- a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

$$- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$-(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Définition

Développer un produit , c'est le transformer en une somme. Factoriser une somme , c'est la transformer en un produit .

Exercices

- Exercice 1 : Développer et réduire les expressions suivantes. $(x-\frac{2}{3})^2$; $(2x+1)^2+(4x-1)(4x+1)$; $(2x+3)^3$; $(x-2)^3$
- Exercice 2: Factoriser les expressions suivantes . (3x+2)(x-1)-(1-x)(-2x+1); $12x^3-16x^2+32x$; $16-4x^2$; $(4x-8)(3x-1)-x^2+4x-4$; $64x^3-27$; x^2-2x-3 .