

# MKS SERVO42C 闭环步进电机 使用说明 V1.1.2

注意:本说明书对应的固件版本号为 V1.1.2。

#### 第1部分 产品概述

#### 1.1 产品介绍

MKS SERVO42C 闭环步进电机是创客基地为满足市场需求而自主研发的一款产品。具备脉冲接口和串行接口,内置高效 FOC 矢量算法,采用高精度编码器,通过位置反馈,有效防止电机丢步。适合小型机械臂,3D 打印机,雕刻机,写字机等自动化产品应用。

#### 1.2 产品特点

- 1. 支持 3 种工作模式: 开环模式, FOC 模式, 串行模式。
- 2. 支持脉冲接口,最高输入脉冲频率 60KHz。
- 3. 支持 USART 接口(TTL) 或 RS485 接口,从机地址 10 个。
- 4. 最大工作电流 3.0A。
- 5. 内置力矩,速度,位置闭环控制和 FOC 矢量控制算法。
- 6. 支持 1~256 任意细分,具有内部插补功能。
- 7. 支持共阳,共阴信号和 PLC 24V 信号直接输入。
- 8. 支持 0.9°和 1.8° 42 步进电机。

## 1.3 产品参数

|           | <b>学日会业</b>       |                       |  |
|-----------|-------------------|-----------------------|--|
|           | 产品参数              |                       |  |
| 主板型号      | MKS SERVO42C V1.0 | MKS SERVO42C_485 V1.0 |  |
| MCU 主控    | нсз:              | 2L130                 |  |
| MOSFET    | СЈ                | 3400                  |  |
| 磁编码器      | MT6816            | (14 位)                |  |
| 工作电压      | 12V               | 7-24V                 |  |
| 工作电流      | 0-30              | 000mA                 |  |
| 细分支持      | 1-256 (           | 任意细分                  |  |
| 力矩环 20KHz |                   | 下 20KHz               |  |
| 闭环反馈频率    | 速度环 10KHz         |                       |  |
|           | 位置环 10KHz         |                       |  |
| 最高转速      | 约 1200RPM         |                       |  |
| 脉冲信号输入    | 3.3V-24V(共阴、共阳)   | _                     |  |
| PLC 信号输入  | NPN/PNP 24V 输入    | _                     |  |
| USART     | TTL 电平 —          |                       |  |
| RS485     | — RS485           |                       |  |
| 串行速率      | 9600~115200 bps   |                       |  |
| 从机地址      | 10 个从机地址          |                       |  |



# 1.4 接口说明

## 1. MKS SERVO42C





#### 2. MKS SERVO42C\_485







# 1.5 按键说明

☆ 板载3个按键,从左到右分别是(Next, Enter, Menu)。

Next: 向下选择。 Enter: 确认选择。

Menu: 进入/退出参数设置菜单

☆ 查看参数值方法:

按 Menu 键进入菜单 -> 按 Next 键选择 -> 按 Enter 键进入选项,可以看到当前选项参数值。

☆ 设置参数值方法:

进入子选项后,按 Next 键选择需要的值,再按 Enter 键确认。

## 1.6 显示参数说明



角度:记录上电后,电机转过的角度信息。

误差:记录电机位置误差值。 脉冲:记录电机接收的脉冲数。



# 第2部分 接线方法

# 2.1 脉冲控制接线方法

以 MKS GEN\_L 为例,驱动板与控制板连接关系如下表所示

| 序号 | MKS SERVO57C_v1.0 | MKS Gen_L V1.x         |
|----|-------------------|------------------------|
| 1  | V+                | VIN                    |
| 2  | Gnd               | G                      |
| 3  | Com               | <b>一</b> (VCC,G 或悬空均可) |
| 4  | En                | EN                     |
| 5  | Stp               | STP                    |
| 6  | Dir               | DIR                    |





# 2.2 PLC 接线方法

驱动板与 PLC 板卡接线线序,如下表所示。

| 序号 | MKS SERVO42C_v1.0 | PLC 板卡                |
|----|-------------------|-----------------------|
| 1  | V+                | 24V                   |
| 2  | Gnd               | GND(0V)               |
| 3  | Com               | NPN(接 24V),PNP(接 GND) |
| 4  | En                | YO                    |
| 5  | Stp               | Y1                    |
| 6  | Dir               | Y2                    |





# 2.3 串口(TTL)接线方法

#### 1. 串口单机接线图



#### 2. 串口多机接线图





# 2.4 RS485 接线方法

仅适用于 MKS SERVO42C\_485 版本。

1. RS485 单机接线图



#### 2. RS485 多机接线图





### 第3部分 菜单说明

1. CAL: 编码器校准。

闭环模式下对编码器进行线性化插值和电角度对齐,可以提高编码器的线性 精度,校准前请确保电机类型选择正确。

2. MotType: 电机类型选择。

根据自己的步进电机类型进行选择,修改该选项后,在闭环模式下需要重新对编码器进行校准。

0.9°: 电机是 0.9 度的步进电机。 1.8°: 电机是 1.8 度的步进电机。

3. Mode: 控制模式选择。

CR OPEN 开环控制模式,不需要编码器就能运行。

CR vFOC 矢量闭环控制模式,有编码器反馈防丢步。

CR UART 串口直接控制模式,TTL 串口发命令进行位置/正反转的控制。

4. Ma: 设置电流档位。

设置开环模式的运行电流档位,闭环模式/串口控制模式会根据负载大小自动调整电流的大小,变电流技术。

电流选项: 0, 200, ..., 3000 (mA)

5. **MStep**: 设置细分步数(默认 16 细分)。

支持  $1\sim256$  任意细分,其中常规细分 1、2、4、8、16、32、64、128、256 可以在屏幕上进行设置,其他细分如 67 细分需要用串行指令设置。

6. En: 设置 En 引脚的有效电平。

H: 高电平有效,外部输入高电平(3.3V以上)可以使能闭环驱动板。

L:低电平有效,外部输入低电平(OV)可以使能闭环驱动板。

Hold: 一直保持有效,此时 En 引脚不受外部控制。

注: 如果没有使能驱动板, 电机会像没通电一样, 用手轻轻就可以拧动电机

轴, 你发脉冲它也不会转。

7. Dir: 设置电机转动的正方向。

CW: 顺时针旋转为正方向

CCW: 逆时针旋转为正方向

注: 如果方向不对(特别是用在3D打印机/雕刻机),不需要修改主板的固

件, 只需要修改该选项即可。

8. AutoSDD: 设置自动熄屏功能。

Disable: 关闭。

Enable: 使能。

注: 使能该选项后,在7秒内无任何按键操作就会自动熄灭 OLED 显示屏,按任意按键就可以重新点亮屏幕。



9. Protect: 设置堵转保护功能。

Disable : 关闭。 Enable : 使能。

注 1: 使能该选项后,驱动板如果检测到电机发生堵转就会触发堵转保护,

自动关闭驱动器,并在屏幕上显示"Wrong Protect Enter.."。

注 2: 发生堵转保护后,可以通过 Enter 按键或串口指令解除堵转保护状态。

10. **MPlyer**: 设置内部 256 细分插补功能。

Disable: 关闭。

Enable: 使能(默认)。

注: 使能该选项后,能够有效的减少电机低速运动时的震动和噪音,

相当于把你当前的细分内部插补到最高256细分去跑。

11. UartBaud: 设置串口通讯波特率。

Disable : 关闭。

9600,

19200,

25000,

38400,

57600,

115200。

注: 如果你要用到串口,需要设置驱动板的串口通讯波特率。

12. UartAddr: 设置串口通讯地址。

地址选项: 0xe0, ..., 0xe9

注: 可以通过该选项来设置驱动板的串口通讯地址。

13. 0 Mode: 设置单圈上电自动回零模式。

Disable: 关闭单圈上电自动回零功能。

DirMode: 方向模式(回零方向在 0 Dir 菜单上设置)。

NearMode: 就近模式(往最靠近零点的方向回零)。

- 14. Set 0: 设置单圈上电自动回零的原点(需要先设置 0 Mode 的模式)。
- 15. **0\_Speed**:设置单圈上电自动回零速度档位。

0:最快的档位。

. . .

4: 最慢的档位。

16. **0** Dir: 设置单圈上电自动回零的回零方向。

CW: 顺时针。

CCW: 逆时针。

注意:对于就近模式回零模式 NearMode, 0\_Dir 的设置应该和电机实际运行方向一致,否则会回零失败。



17. Goto 0: 回到原点(需要先设置 "0\_Mode"和 "Set 0")。

18. ACC: 设置闭环驱动板内部的加速度值。

Disable: 关闭。

286,

412,

538,

664,

790,

916,

1042。

19. Restore:恢复默认参数。

注意: 1. 恢复默认参数后,需要重新上电,重新设置串口波特率,才能串口 通信。

20. Exit: 退出参数设置菜单。

## 第4部分 串行数据格式说明

| 下行帧(上位机→42C 驱动板)          |      |      |  |   |         |      |
|---------------------------|------|------|--|---|---------|------|
| 从机地址                      | 功能码  | 指令数据 |  | İ | CRC 校验码 |      |
| addr                      | code |      |  |   | tCHK    |      |
|                           |      |      |  |   |         |      |
| 上行帧(上位机 <b>←</b> 42C 驱动板) |      |      |  |   |         |      |
| 从机地址                      | 功能码  | 返回数据 |  | į | CRC 校验码 |      |
| addr                      | code |      |  |   |         | rCHK |

- 1. 从机地址(addr)范围 e0~e9, 默认地址为 e0。
- 2. 功能码(code)执行相应指令,例如 0x80 执行校准指令。
- 3. 指令数据或返回数据,详见《串口指令说明部分》。
- 4. CRC 校验码为 CHECKSUM 8bit

例如 指令 "e0 30 CRC"

CRC = (0xe0 + 0x30) & 0xFF = 0x110 & 0xFF = 0x10



### 第5部分 串行指令说明

#### 5.1 读取参数指令

1. 发送 e0 30 tCHK, 读取编码器值(经过线性化校准和插值后的值)。

返回 e0, int32\_t 类型进位值, uint16\_t 类型当前编码器值和校验值 rCHK。记录上电后(使能或不使能),编码器记录的电机转动范围。

低 16 位记录当前编码器值,范围为  $0^{\sim}0x10000$ ,表示  $0^{\sim}360^{\circ}$ 。

高 32 位记录编码器进位值, 范围 -0x80000000 ~ +0x80000000。

进位规则: 当编码器值大于 0x10000, 进位加1

当编码器值小于 0, 进位减 1

例如:

编码器值为 0xFFF0, 当编码器值继续增加, 越过 0x10000 时, 进位值加 1. 编码器值为 0x00F0, 当编码器值继续减小, 越过 0x0000 时, 进位值减 1.

2. 发送 e0 33 tCHK, 读取输入累计脉冲数。

返回 e0, int32\_t 类型的输入累计脉冲数和校验值 rCHK, 也就是你的控制器 发送过来的累计脉冲数。

3. 发送 e0 36 tCHK, 读取闭环电机的实时位置。

返回 e0, int32\_t 类型的闭环电机实时位置和校验值 rCHK, 也就是电机自上电/使能起所转过的角度,单位: 0~65535 表示一圈,比如电机转一圈是 65536,转了十圈就是 655360,以此类推。

4. 发送 e0 39 tCHK, 读取位置角度误差。

返回 e0,int16\_t 类型的位置角度误差和校验值 rCHK,也就是你想要控制的位置角度减去电机的实时角度位置得到的差值,单位:  $0^{\circ}65535$  表示  $0^{\circ}360^{\circ}$ ,比如误差为  $1^{\circ}$  时,数值为  $65536/360^{\circ}$  = 182.444,以此类推。

5. 发送 e0 3a tCHK, 读取闭环驱动板的使能状态。

返回 e0, uint8\_t 类型的闭环驱动板的使能状态和校验值 rCHK, 也就是 En 引脚的使能状态。用串口控制时,可以通过该命令获取驱动板的使能状态。



使能 : 返回 e0 01 CHK; 没使能 : 返回 e0 02 CHK; 错误指令: 返回 e0 00 CHK。

6. 发送 e0 3d tCHK, 解除堵转状态。

当电机发生堵转时,发送该命令可以解除当前堵转状态。解除堵转后,如果再次发生堵转,仍然会触发堵转保护。

解除成功 : 返回 e0 01 rCHK 解除失败 : 返回 e0 00 rCHK

7. 发送 e0 3e tCHK, 读取堵转标志位。

返回 e0, uint8\_t 的堵转标志和校验值 rCHK, 当电机发生堵转, 会置位堵转标志, 通过该命令可以获取到电机是否发生了堵转。如果使能了堵转保护选项, 发生堵转后, 驱动板会自动关闭驱动器。

堵转 : 返回 e0 01 rCHK; 没堵转 : 返回 e0 02 rCHK; 错误指令: 返回 e0 00 rCHK。

#### 5.2 设置系统参数命令

1. 校准编码器 (对应屏幕上的 "Ca1" 选项)

发送 e0 80 00 tCHK 校准编码器。

校准编码器前,请确保电机没带负载!!!建议校准好以后再装进机器。

发送 e0 80 00 60, 校准编码器。

校准成功,返回 e0 01 e1;

校准失败,返回 e0 02 e2。

2. 设置电机类型 (对应屏幕上的"MotType"选项)

发送 e0 81 tCHK, 修改电机类型。

00 对应 0.9 度电机

01 对应 1.8 度电机

比如:

发送 e0 81 01 62, 修改电机类型为 1.8°。

设置成功, 返回 e0 01 e1:

设置失败,返回 e0 00 e0。

设置电机类型后,需要重新校准编码器,校准前要断开电机负载。



3. 设置工作模式 (对应屏幕上的 "CtrMode"选项)

发送 e0 82 \_\_ tCHK,设置工作模式。

00 CR OPEN (开环模式)

01 CR\_vFOC (闭环模式(STP/DIR 接口))

02 CR UART (闭环模式 (UART 接口))

比如:

发送 e0 82 01 63, 设置 CR vFOC 模式。

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

4. 设置电流档位 (对应屏幕上的"Ma"选项)

发送 e0 83 \_\_ tCHK,设置电流档位。

00 对应 0ma

01 对应 200ma

02 对应 400ma

•••

OC 对应 2400ma

OD 对应 2600ma

OE 对应 2800ma

OF 对应 3000ma

比如:

发送 e0 83 06 69, 设置电流 1200ma。

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

5. 设置任意细分 (对应屏幕上的"MStep"选项)

发送 e0 84 MS tCHK,设置 1~256 任意细分。

可以在 MStep 选项看到设置的细分。

比如:

发送 e0 84 07 6B, 修改为 7 细分;

发送 e0 84 4e B2, 修改为 78 细分;

发送 e0 84 00 64, 修改为 256 细分。

以此类推...

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

6. 设置 En 引脚有效电平 (对应屏幕上的"En"选项)

发送 e0 85 \_ tCHK,设置 En 引脚有效电平。

- 00 对应低电平使能(L)
- 01 对应高电平使能(H)
- 02 对应一直使能 (Hold)



比如:

发送 e0 85 00 65, 设置为低电平使能。 设置成功, 返回 e0 01 e1; 设置失败, 返回 e0 00 e0。

7. 设置电机旋转正方向 (对应屏幕上的"Dir"选项)

发送 e0 86 tCHK,设置电机旋转正方向。

00 对应顺时针旋转

01 对应逆时针旋转

比如:

发送 e0 86 00 66, 设置为顺时针旋转。

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

8. 设置自动熄屏功能 (对应屏幕上的"AutoSDD"选项)

发送 e0 87 \_\_ tCHK,设置自动熄屏功能。

00 关闭自动熄屏功能

01 使能自动熄屏功能

比如:

发送 e0 87 00 67,设置关闭自动熄屏功能。

设置成功, 返回 e0 01 e1:

设置失败,返回 e0 00 e0。

9. 设置堵转保护功能 (对应屏幕上的"Protect"选项)

发送 e0 88 tCHK,设置堵转保护功能。

00 关闭堵转保护功能

01 使能堵转保护功能

比如:

发送 e0 88 00 68,设置关闭堵转保护功能。

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

10. 设置细分插补功能 (对应屏幕上的"MPlyer"选项)

发送 e0 89 \_\_ tCHK,设置堵转保护功能。

00 关闭内部的 256 细分插补功能

01 使能内部的 256 细分插补功能

比如:

发送 e0 89 00 69, 设置关闭细分插补功能。

设置成功,返回 e0 01 e1;

设置失败, 返回 e0 00 e0。



11. 设置串口波特率 (对应屏幕上的"UartBaud"选项)

发送 e0 8a \_ t<u>CHK</u>,设置串口波特率。

01 9600

02 19200

03 25000

04 38400

05 57600

06 115200

比如:

发送 e0 8a 04 6e, 设置波特率为 38400。

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

12. 设置串口地址 (对应屏幕上的"UartAddr"选项)

发送 e0 8b \_\_ tCHK,设置串口地址。

00 对应 e0

01 对应 e1

•••

09 对应 e9

比如:

发送 e0 8b 00 6b, 设置串口地址为 e0。

发送 e0 8b 01 6c,设置串口地址为 e1。

发送 e0 8b 02 6d, 设置串口地址为 e2。

• • •

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

# 5.3 自动回零相关命令

1. 设置自动回零的模式 (对应屏幕上的"0\_Mode"选项)

发送 e0 90 \_\_ tCHK,设置自动回零的模式。

00 关闭自动回零 Disable

01 方向模式 DirMode

02 就近模式 NearMode

比如:

发送 e0 90 01 71,设置为 DirMode 模式

设置成功,返回 e0 01 e0;

设置失败,返回 e0 00 e1;



2. 设置自动回零的零点 (对应屏幕上的"Set 0"选项)

发送 e0 91 00 tCHK,设置自动回零的零点。

比如:

发送 e0 91 00 71, 设置零点

设置成功, 返回 e0 01 e0:

设置失败,返回 e0 00 e1。

注意: 需要先设置"0 Mode" 的模式。

3. 设置自动回零的速度 (对应屏幕上的"0 Speed"选项)

发送 e0~92 tCHK,设置自动回零的速度(范围  $0^{\sim}4$ ,数值越小速度越快)。 比如:

发送 e0 92 02 74,设置自动回零速度为 2。

设置成功, 返回 e0 01 e0:

设置失败,返回 e0 00 e1。

4. 设置自动回零的方向 (对应屏幕上的"0 Dir"选项)

发送 e0 93 tCHK,设置自动回零的模式。

00 对应顺时针方向 CW

01 对应逆时针方向 CCW

比如:

发送 e0 93 00 73,设置自动回零方向为顺时针方向。

设置成功,返回 e0 01 e0:

设置失败,返回 e0 00 e1。

注意:对于就近模式回零模式 NearMode, O Dir 的设置应该和电机实际运行 方向一致, 否则会回零失败。

5. 返回零点 (对应屏幕上的"Goto 0"选项)

发送 e0 94 00 tCHK, 返回零点。

比如:

发送 e0 94 00 74, 返回零点

返回成功,返回 e0 01 e1;

返回失败,返回 e0 00 e0。

注意: 需要先设置 "0 Mode" 和 "Set 0"。

#### 5.4 设置 PID/加速度/扭矩参数命令

1. 设置位置 Kp 参数

发送 e0 a1 tCHK, 设置位置 Kp 参数。(Kp 默认值为 0x650)

比如:

发送 e0 a1 01 20 a2, 设置 Kp = 0x120;

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。



| 2  | 设置位置I | ζi         | 参数   |
|----|-------|------------|------|
| ∠. |       | <b>\ I</b> | - TX |

发送 e0 a2 \_\_ \_ tCHK,设置位置 Ki 参数。(Ki 默认值为 1)

发送 e0 a2 00 02 84, 设置 Ki = 2;

设置成功,返回 e0 01 e1;

设置失败, 返回 e0 00 e0。

#### 3. 设置位置 Kd 参数

发送 e0 a3 \_\_ tCHK,设置位置 Kd 参数。(Kd 默认值为 0x650)

比如:

发送 e0 a3 02 50 d5, 设置 Kd = 0x250;

设置成功, 返回 e0 01 e1:

设置失败,返回 e0 00 e0。

注意: PID 参数设置不当, 电机可能震动, 请谨慎设置参数!!!

#### 4. 设置加速度 ACC 参数

屏幕上的"ACC"选项只能设置7个固定数值,这里可以任意设置数值。 发送 e0 a4 \_ \_ tCHK,设置 ACC 参数。(ACC 默认值为 0x11E)

比如:

发送 e0 a4 00 80 04, 设置 ACC = 0x80;

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0;

注意: ACC 设置过大,可能损坏驱动板,请谨慎设置参数!!!

#### 5. 设置最大扭矩 MaxT 参数

发送 e0 a5 \_\_ \_ tCHK,设置最大扭矩 MaxT。(MaxT 默认值为 0x4B0) MaxT 取值范围 (0 ~ 0x4B0)

比如:

发送 e0 a5 02 58 df, 设置 MaxT = 0x258;

设置成功,返回 e0 01 e1;

设置失败,返回 e0 00 e0。

## 5.5 恢复默认参数命令

1. 发送 e0 3f tCHK,恢复默认参数。

(对应屏幕上的"Restore"选项;)

比如:

发送 e0 3f 1f,恢复默认参数;

恢复成功,返回 e0 01 e1;

恢复失败, 返回 e0 00 e0。



注意:恢复默认参数后,需要重新上电,重新设置串口波特率,才能串口通信。

## 5.6 串口直接控制命令

1. 发送 e0 f3 0\_ tCHK 修改串口控制模式下驱动板的使能状态。

在串口控制模式下,驱动板的使能状态不再受 En 引脚的电平控制,而是利用该命令进行控制。

发送 e0 f3 00 tCHK, 关闭驱动板;

发送 e0 f3 01 tCHK, 使能驱动板;

修改成功,返回 0xe0 0x01 rCHK;

修改失败,返回 OxeO OxOO rCHK;

2. 发送 e0 f6 \_\_ tCHK, 让电机以一定的速度进行正/反转。

字节的最高位表示方向,低7位表示128个速度档位,



#### 转速计算公式为:

Vrpm = (speed × 30000)/(Mstep × 200) 1.8 度电机

Vrpm = (speed × 30000)/(Mstep × 400) 0.9 度电机

例如 1.8 度电机, 150 细分, speed=1

 $Vrpm = (1 \times 30000) / (150 \times 200) = 1$ 

#### 部分转速如下表:

| 1.8 度电机 | Vrpm (RPM) |           |  |
|---------|------------|-----------|--|
| speed   | Mstep=16   | Mstep=150 |  |
| 1       | 9. 375     | 1         |  |
| 2       | 18. 75     | 2         |  |
| 3       | 28. 125    | 3         |  |
| 4       | 37. 5      | 4         |  |
| •••     | •••        | •••       |  |



| 8    | 75   | 8   |
|------|------|-----|
| •••  | •••  | ••• |
| 0x10 | 150  | 16  |
| 0x20 | 300  | 32  |
| 0x40 | 600  | 64  |
| 0x7F | 1200 | 127 |

#### 比如:

发送 e0 f6 01 tCHK, 电机以 1 档速度正转;

发送 e0 f6 81 tCHK, 电机以 1 档速度反转;

发送 e0 f6 5a tCHK, 电机以 90 (0x5a) 档速度正转;

发送 e0 f6 da tCHK, 电机以 90 (0xda = 0x5a | 0x80) 档速度反转;

运行成功,返回 0xe0 0x01 rCHK;

运行失败,返回 0xe0 0x00 rCHK;

3. 发送 e0 f7 tCHK, 让电机停止正/反转。

成功,返回 0xe0 0x01 rCHK;

失败,返回 0xe0 0x00 rCHK;

4. 发送 e0 ff c tCHK 保存/清除保存上面(2)中所设置的正/反转速度。

发送 e0 ff c8 tCHK, 保存上面(2)中所设置的正/反转速度;

发送 e0 ff ca tCHK, 清除已保存的正/反转速度;

#### 注 1: 可以让电机每次上电都直接按照保存的速度和方向一直转动。

也就是说,如果你想要电机一上电就以一定的速度正/反转,你可以先按照(2)中的命令设置好想要的速度和方向,接着利用该命令进行保存,然后重新上电后电机就会按照保存的速度和方向转动了。

#### 注 2: 保存成功后,会关闭驱动板,需重新使能驱动板。

成功,返回 0xe0 0x01 rCHK;

失败,返回 0xe0 0x00 rCHK;

| 5 | 发送 e0 fd | tCHK 串口直接位置控制。 |  |
|---|----------|----------------|--|
|   |          |                |  |

第一个 字节,最高位表示方向,低7位表示速度。

第二个 字节、第三个 字节、第四个 字节、第五个 字节组成 uint32 t



类型的数据,表示你要发送的脉冲数。



转速计算公式同上面(2)。

#### 比如:

在 16 细分下,发送 e0 fd 01 00 00 0c 80 6a,表示电机以 1 档速度正转 360°。

(01 表示 1 档速度正转,00 00 0c 80 表示 3200(0x0c80)个脉冲 = 360°) 又比如:

在 16 细分下,发送 e0 fd 88 00 00 00 10 75,表示电机以 8 档速度反转 1.8° (88 表示 8 档速度反转,00 00 00 10 表示 16(0x10)个脉冲 = 1.8°) 在 16 细分下,发送 e0 fd 88 01 e8 48 00 96,表示电机以 8 档速度反转 3600000°。 (88 表示 8 档速度反转,01 e8 48 00 表示 32000000 (0x1e84800)个脉冲 = 3600000°)

位置控制失败,返回 0xe0 0x00 0xe0;

位置控制开始,返回 0xe0 0x01 0xe1;

位置控制完成,返回 0xe0 0x02 0xe2;



### 第6部分 串口助手控制示例

#### 6.1 配置参数

1. 选择控制模式: 菜单-> Mode -> CR UART

2. 设置波特率: 菜单-> UartBaud-> 38400

3. 设置从机地址: 菜单-> UartAddr-> 0xe0

4. 设置串口助手

选择串口号: (COMxx)

选择波特率: 38400

选择校验位: NONE

选择数据位:8

选择停止位: 1

接收设置,选择: Hex

发送设置,选择: Hex

自动发送校验位,选择: CHECKSUM 8bit

如下图所示:





# 6.2 读取编码器值

发送 E0 30 (校验位 10 自动添加), 读取编码器值返回 E0 00 00 00 00 38 B9 D1





## 6.3 控制电机运行

发送 EO FD 02 00 00 0C 80, 控制电机以"速度 2"转动一圈(16 细分)。

返回 E0 01 E1 (运行中…)

返回 E0 02 E2 (运行完成)





# 第7部分 常见问题和注意事项

#### 7.1 注意事项

- 1. 电源输入电压 12V-24V;
- 2. 不要带电拔插电源线或信号线,以免损坏驱动板;
- 3. 电机校准时,不要带负载;
- 4. 驱动板首次安装到电机,或改变电机线序,方向后,需要重新校准电机;
- 5. 如果上电后 LED 灯常亮,或屏幕提示错误,请对照《常见问题》处理;

### 7.2 常见问题

| 序号 | 问题                    | 解决方法             |
|----|-----------------------|------------------|
| 1  | Not Cal               | 未校准电机            |
| 2  | Waiting V+ Power!     | V+ 电源电压需 9-24V   |
| 3  | Phase Line Error!     | 电机线序错误, 重新接线     |
| 4  | Reverse Lookup Error! | 电机校准错误,检查磁铁或线序   |
| 5  | Magnet Loss!          | 安装磁铁             |
| 6  | Magnet Error!         | 检查磁铁是否松动         |
| 7  | Motor Type Error!     | 检查电机类型,检查电机轴是否顺滑 |
| 9  | Offset Current Error! | 基准电压错误           |
| 10 | Wrong Protect!        | 电机堵转状态           |

# 第8部分 售后和技术支持

创客基地 博客: https://blog.csdn.net/gjy\_skyblue 创客基地 B站: https://space.bilibili.com/393688975

创客基地 淘宝店: https://makerbase.taobao.com/

创客基地 闭环步进电机售后群: 948665794



群名称:创客基地闭环步进电机售后群 群 号:948665794