# 강원대학교 Al 소프트웨어학과

# 머신러닝1

- 기초통계(기술통계) -



### 통계란?

#### 통계란 무엇일까?

- · 데이터 수집, 기술통계, 추론통계, 확률, 샘플링, 가설검정
- ・ 데이터에서 유효한 결론을 도출하여 실제 문제를 해결하고 삶과 비즈니스의 다양한 측면을 개선하는 데 도움
- · 통계의 모델의 적용을 통해 통찰력을 얻고 정보를 전달해 어떠한 문제의 결정을 내리는 것
- · 통계는 데이터를 사용하여 결론을 도출하고 정보를 제공하여 문제를 해결하거나 다양한 현상에 대한 통찰력을 얻는 것

### 통계란?

#### 데이터란?

- · 이론을 세우는 데 기초가 되는 사실, 또는 바탕이 되는 자료
- · 관찰이나 실험, 조사로 얻은 사실이나 자료
- ㆍ 컴퓨터가 처리할 수 있는 문자, 숫자, 소리, 그림 따위의 형태로 된 자료
- ・ 데이터는 신호,기호,숫자,문자 등으로 기록 됨
- 정보를 위한 기초적인 자료를 말함
- · 정보는 데이터를 가공하지 않은 경우

### 통계란?

#### 정보란 무엇일까?

· 정보란? <del>></del> 구성, 해석 및 맥락화 과정을 통해 데이터에서 파생

#### 선수들의 수치

| PLAYER    | DPM   | GOLDDIFFAT15 | 분담 K+A | GPM | 분당<br>골드 차이 | 분당<br>데미지 차이 |
|-----------|-------|--------------|--------|-----|-------------|--------------|
| FAKER     | 375   | 232.21       | 0.220  | 396 | 11.732      | 36.575       |
| SHOWMAKER | 488   | 82.86        | 0.294  | 404 | 19.901      | 31.411       |
| CHOVY     | 966   | 352.44       | 0.223  | 410 | 27.059      | -30.201      |
| BDD       | 9 461 | -1.41        | 0.269  | 389 | 4.989       | 53.180       |
| GORI      | 459   | -400.44      | 0.239  | 397 | 3.552       | -29.395      |
| FATE      | 912   | 236.74       | 0.238  | 406 | 21.573      | -8.689       |

#### 선수들의 신체 조건에 따른 적성 진단



통계란?

정보란 무엇일까?

정보는 새로운 가치를 생성하고, 데이터를 의미 있고 유용한 형태로 변환하는 것 정보 생성을 위해 데이터가 필요하지만 정보를 의미 있고 적절하게 만들기 위해서는 추가적인 처리와 해석이 필요

### 통계란?

#### 통계가 생기게 된 계기

- · 경험을 토대로 같거나 비슷한 문제가 발생했을 때, 이를 해결하기 위해 사용됨
- · 각자의 상황에 대해 경험하고, 학습해 결과를 도출할 수 있음 <del>></del> 기억에는 한계가 존재하고, 왜곡이 가능함
- · 이러한 문제를 해결하기 위해 기록이란 것이 생겼고, 다양한 방법론들이 나오게 됨 <del>></del> 수를 추정하기 위해
- · 고대 문명: 가장 초기 형태의 통계는 이집트, 메소포타미아, 중국과 같은 고대 문명에서 찾을 수 있으며, 그곳에서 데이터는 세금, 인구 수, 토지 조사와 같은 목적으로 수집

### 통계란?

#### 통계가 생기게 된 계기

- · 통계를 통해 문제를 해결하려면 일반적으로 하나 이상의 가설을 설정해야 함
- ・ 명확하고 검증 가능한 가설을 세우는 것은 분석을 수행하고 데이터에서 의미 있는 결론을 도출하기 위한 프레임워크를 제공
- ・ 가설에는 샘플 정보를 기반으로 모집단에 대한 추론 또는 결론 도출과 관련된 문제를 해결하기 위한 데이터가 필요함

### 통계란?

#### 통계학이란

- · 통계학의 대상인 모집단과 표본에 대해 설명하기 위해
- · 표본을 추출하는 개념 및 방법에 대해 설명하기 위해
- ・ 표본에 대한 가중치를 조정해 최적의 모집단을 예측하는 방법에 대해 이해하기 위해

### 통계란?

#### 통계의 학습 프로세스

- ・ 가설
  - · 확률이론, 가설검증, 통계적 추론 등 통계적 방법의 기초가 되는 이론적 개념과 원리
- 데이터
  - 통계 분석을 위한 입력으로 사용되는 정보 또는 관찰의 수집
  - · 데이터는 설문 조사, 실험, 관찰 또는 기타 방법을 통해 수집할 수 있음

### 통계란?

#### 통계의 학습 프로세스

- 모델
  - · 일상속의 현상이나 프로세스의 수학적 또는 통계적 표현
  - · 모델은 변수 간의 관계를 설명하고 데이터를 기반으로 예측하는 데 사용됨
- 결과
  - · 데이터의 통계 분석에서 얻은 결과 또는 발견
  - · 결과는 수행된 데이터 및 분석을 기반으로 통찰력, 패턴 또는 결론을 제공
- 정보제공
  - · 통계는 정보에 입각한 결정을 내리고, 결론을 도출하고, 개체군이나 현상에 대한 가설이나 주장을 뒷받침하기 위해 데이터를 분석하고 해석하여 정보를 제공

### 통계란?

#### 통계의 학습 프로세스

가설을 세우고 이에 대한 데이터를 수집한 뒤 모델을 선정 후, 결과 도출 → 정보 제공

#### 기술통계/ 데이터 결과/정보 모델선정 탐색적데이터 & 통계검정 분석

- 가설설정
- 초기 데이터 수집
- 데이터 전처리

- 평균
- 분산
- 표준편차 등등

- T-test
- **ANOVA**
- 카이제곱 검정 등등
- · 가설설정

다양한 모델

- 모델에 대한 결과 값
- 결과 값 활용 정보 제공

#### 통계의 학습 프로세스

가설을 세우고 이에 대한 데이터를 수집한 뒤 모델을 선정 후, 결과 도출 → 정보 제공

# 어떠한 문제를 해결하기 위해

분석: 데이터를 수집하고, 모델을 선정해 결과를 도출하는 과정

정보: 도출된 결과를 요약해 사용자에게 정보를 제공하는 것

- T-test
- ANOVA
- 카이제곱 검정 등등

- 누락된 데이터 정리
- 이상치 처리
- 데이터 정규화 등등

• 다양한 모델

・ 모델에 대한 결과 값

### 기술통계

기술통계: 보유하고 있는 데이터에 대한 요약 및 설명을 제공함

- · 목적: 데이터 세트의 주요 기능을 요약하고 설명함
- · 측정 유형:중심 경향 측정: 평균, 중앙값 및 최빈값, 스프레드 측정: 범위, 분산, 표준 편차, 사분위수 범위.모양 측정: 왜도 (비대칭 정도) 및 첨도(꼬리 정도)
- · 그래픽 표현: 히스토그램, 막대 차트, 박스 플롯 및 파이 차트
- · 사용법: 기술 통계는 당면한 데이터 이외의 모집단에 대한 결론을 도출하지 않고, 데이터의 주요 측면에 대한 간단한 개요를 제공함 (예: 기술 통계를 사용하여 설문 응답자의 연령 분포, 평균 소득 요약함)

# 기술통계

### 데이터의 유형

| 데이터 종류  | 변수명    | 내용                                                          | 예시                      |
|---------|--------|-------------------------------------------------------------|-------------------------|
|         | 명목형 변수 | 순서나 순위를 암시하지 않고 데이터를<br>범주화 하는 변수                           | 성별, 머리 색깔, 과일 종류        |
| 범주형 데이터 | 순위형 변수 | 의미 있는 순서가 있는 범주가 있지만 범<br>주 간의 거리가 일정하지 않거나 알려져<br>있지 않은 변수 | 교육 수준, 설문 응답,<br>경제 수준  |
| 소비치 데이디 | 이산형 변수 | 고유하고 개별적인 값을 갖는 계산가능<br>한 숫자 변수                             | 교통사고 발생 수, 수상 인<br>원의 수 |
| 수치형 데이터 | 연속형 변수 | 주어진 범위 내에서 무한한 수의 값을 가<br>질 수 있는 숫자 변수                      | 몸무게, 키, 성적              |

#### 중심 경향 측정

- ・ 평균 : 데이터 세트에 있는 모든 데이터 포인트의 산술 평균
- ㆍ 중앙값: 데이터 세트에서 가장 작은 것부터 큰 순서로 정렬할 때 중간 값
- ・ 최빈값 : 데이터 세트에서 가장 자주 발생하는 값
- 최대값/최소값 : 데이터 세트에서 가장 큰 값/ 데이터 세트에서 가장 작은 값

```
data \leftarrow c(10, 15, 20, 25, 30, 15, 20, 25, 25, 10)
mean_value <- mean(data)</pre>
median_value <- median(data)</pre>
max_value <-max(data)</pre>
min_value <-min(data)</pre>
mode_value <- find_mode(data)</pre>
```

#### 중심 경향 측정

- 산<del>술평균</del> : <del>균등</del>하게 나누고, 수치의 무게중심의 역할(Mean)
- 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용
- 가<del>중평</del>균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)

평교

| <u> </u> | TOT        | О Ш                 |
|----------|------------|---------------------|
| Α        | 50         | 70                  |
| В        | 50         | 50                  |
| С        | 40         | 60                  |
| D        | 60 🛖       | 80                  |
|          | •          |                     |
| 사프       | ルスカ        | 사포이크기               |
| 상품       | 가중치        | 상품의 크기              |
| 상품<br>A  | 가중치<br>0.5 | 상품의 크기<br><b>40</b> |
|          |            |                     |
| Α        | 0.5        | 40                  |

하새스

$$\frac{(50 \times 70) + (50 \times 50) + (40 \times 60) + (60 \times 80)}{50 + 50 + 40 + 60}$$

#### 중심 경향 측정

산<del>술평균</del> : 균등하게 나누고, 수치의 무게중심의 역할(Mean)

절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용

가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)

기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)

| 년도   | 수익   | 증가율    |
|------|------|--------|
| 2020 | 542  |        |
| 2021 | 674  | 24.35  |
| 2022 | 841  | 24.78  |
| 2023 | 966  | 14.86  |
| 2024 | 1026 | 6.21   |
| 성장률  |      | 17.30% |

$$CAGR(Compound\ Annual\ Growth\ Rate) = \sqrt[n-1]{\frac{x_n}{x_1}} - 1$$

$$CAGR = \sqrt[4]{\left(\frac{674}{542}\right)\left(\frac{841}{674}\right)\left(\frac{966}{841}\right)\left(\frac{1026}{966}\right)} - 1$$

## 기술통계

#### 중심 경향 측정

· 산술평균 : 균등하게 나누고, 수치의 무게중심의 역할(Mean)

・ 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용

· 가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)

· 기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)

| 년도   | 수익   | 증가율    |
|------|------|--------|
| 2020 | 542  |        |
| 2021 | 674  | 24.35  |
| 2022 | 841  | 24.78  |
| 2023 | 966  | 14.86  |
| 2024 | 1026 | 6.21   |
| 성장률  |      | 17.30% |

| 년도   | 수익   | 증가율    |
|------|------|--------|
| 2020 | 542  |        |
| 2021 | 248  | -54.24 |
| 2022 | 841  | 239.11 |
| 2023 | 966  | 14.86  |
| 2024 | 1026 | 6.21   |
| 성장률  |      | 17.30% |

#### 중심 경향 측정

- 산술평균 : 균등하게 나누고, 수치의 무게중심의 역할(Mean)
- 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용
- 가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)
- 기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)
- 조화평균 : 비율, 속도, 효율성과 같은 자료→ 상호작용 또는 역수관계 가질 때 사용(Harmonic Mean)

$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

서울에서 강원도를(편도 : 300Km) 서울 → 강원(100km/h) 강원 → 서울(50km/h) 일 때, 왕복하는데 걸린 평균 시속은?

$$HM = \frac{300 + 300}{\frac{300}{100} + \frac{300}{50}} = \frac{600}{\frac{900}{100}} = 66.67 km/h$$

### 중심 경향 측정

- · 산술평균 : 균등하게 나누고, 수치의 무게중심의 역할(Mean)
- ・ 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용
- · 가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)
- · 기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)
- · 조화평균 : 비율, 속도, 효율성과 같은 자료→ 상호작용 또는 역수관계 가질 때 사용(Harmonic Mean)

$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

$$HM = \frac{100 + 50 + 50 + 40 + 70}{\frac{100}{10} + \frac{50}{20} + \frac{50}{40} + \frac{40}{30} + \frac{70}{50}} = \frac{310}{16.48} \approx 18.81$$

#### 하나의 종목을 평균 얼마에 구매했는가?

| 가격   | 주식수 |
|------|-----|
| 10\$ | 100 |
| 20\$ | 50  |
| 40\$ | 50  |
| 30\$ | 40  |
| 50\$ | 70  |

#### 중심 경향 측정

- · 산술평균 : 균등하게 나누고, 수치의 무게중심의 역할(Mean)
- · 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용
- · 가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)
- · 기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)
- · 조화평균 : 비율, 속도, 효율성과 같은 자료→ 상호작용 또는 역수관계 가질 때 사용(Harmonic Mean)

$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

$$HM = \frac{5}{\frac{1}{0.1} + \frac{1}{0.4} + \frac{1}{0.8} + \frac{1}{0.75} + \frac{1}{0.71}} = 0.303$$

#### 하나의 종목을 평균 얼마에 구매했는가?

| 가격     | 주식수 |
|--------|-----|
| 0.1\$  | 1   |
| 0.4\$  | 1   |
| 0.8\$  | 1   |
| 0.75\$ | 1   |
| 0.71\$ | 1   |

#### 중심 경향 측정

- · 산술평균 : 균등하게 나누고, 수치의 무게중심의 역할(Mean)
- ・ 절단평균 : 최대, 최소값 중 K개를 제외한 평균 → 극단치가 있는 경우(Trimmed Mean)에 활용
- · 가중평균 : 각 수치의 중요도에 비례하는 계수를 곱한 다음 산출하는 평균(Weighted Mean)
- · 기하평균 : 곱의 형태로 변화하는 자료 → 비율의 평균계산에 많이 사용(Geometric mean)
- · 조화평균 : 비율, 속도, 효율성과 같은 자료 > 상호작용 또는 역수관계 가질 때 사용(Harmonic Mean)

$$HM = rac{n}{\sum_{i=1}^{n} rac{1}{\chi_i}}$$
 역수의 특수성을 자연스럽게 반영함

단위 시간당 클리어 속도: 28.15분 → 시간 대비 클리어 효율성(모든 단계가 동일한 작업량을 가짐)

단계별 평균 클리어 시간: 52분(일반적인 클리어 시간)

#### 하나의 스테이지의 평균 클리어 시간은?

| 게임 스테이지 | 클리어 시간(분) |
|---------|-----------|
| 1단계     | 10        |
| 2단계     | 30        |
| 3단계     | 50        |
| 4단계     | 70        |
| 5단계     | 100       |

### 기술통계

- 1) A반의 학생들이 중간시험에서 75, 88, 91, 68, 82점을 받았고, 기말시험은 60,87,55,47,92이다. 이때 A반의 중간시 험과 기말시험의 각각 평균은?
- 2) A반의 점수에서 최상위와 최하위를 제외한 중간, 기말 평균을 각각 구하시오.
- 3) A반의 학생들의 전체성적을 계산할 경우 중간시험의 성적은 50%, 기말고사 성적은 30%로 계산해 최종성적을 각각 도출해 각 학생들의 등수를 나열하시오.
- 4) 한 회사의 수익은 초기 투자금액은 억이다. 이때, 1년차 : 5억, 2년차 : 5억5천, 3년차 7억, 4년차 10억이다. 이때 이 회사 의 4년 평균 수익성장률은?

# 기술통계

5) 투자자가 여러 거래를 통해 다양한 가격으로 회사의 주식을 구매한다고 가정한다. 이때, 투자자가 지불한 종목 조화평균 가격은?

| 매입 주식 가격 | 매입 주식수 |
|----------|--------|
| 15\$     | 80     |
| 25\$     | 100    |
| 35\$     | 60     |
| 45\$     | 40     |
| 55\$     | 20     |

### 기술통계

#### 변동성 측정

- · 범위: 데이터 세트의 최대값과 최소값의 차이
- · 사분위수 범위(IQR): 데이터의 중간 50%를 나타내는 첫 번째 사분위수(25% 백분위수)와 세 번째 사분위수(75% 백분위수) 사이의 값 범위
- · 사분위수(Q1) : 아래쪽 절반에 짝수 개의 관측치가 있는 경우 Q1은 이 절반의 가운데 두 숫자의 평균
- · 중앙값(Q2): 짝수인 경우 중앙값은 가운데 두 숫자의 평균
- · 사분위수(Q3) : 위쪽 절반에 짝수 개의 관측치가 있는 경우 Q3은 이 절반의 가운데 두 숫자의 평균

### 변동성 측정

- · 범위: 데이터 세트의 최대값과 최소값의 차이
- · 사분위수 범위(IQR): 데이터의 중간 50%를 나타내는 첫 번째 사분위수(25% 백분위수)와 세 번째 사분위수(75% 백분위 수) 사이의 값 범위

```
data \leftarrow c(10, 15, 20, 25, 30, 15, 20, 25, 25, 10)
range_value <- max(data) - min(data)</pre>
df \leftarrow data.frame(values = c(5, 7, 10, 12, 14, 18, 20, 22, 25, 27, 30))
Q1 <- quantile(data, 0.25)
Q3 <- quantile(data, 0.75)
iqr_value <- Q3 - Q1
```

### 기술통계

### 변동성 측정

- ・ 분산: 각 데이터 포인트와 평균 사이의 평균 제곱 차이
- ・ 표준 편차: 데이터가 평균에서 얼마나 퍼져 있는지를 측정함

Variance
$$(\sigma^2) = \frac{\sum (x_i - \mu)^2}{n}$$

Standard Deviation ( $\sigma$ ) =  $\sqrt{\sigma^2}$ 

$$Mean(\mu) = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

#### 변동성 측정

- ・ 분산 또는 표준 편차가 높을수록 데이터 포인트가 더 분산되어 더 큰 변동성 또는 분산을 나타냄
- ・ 낮은 분산 및 표준 편차는 데이터 포인트가 평균에 가깝다는 것을 의미하며 더 일관되고 예측 가능한 데이터 세트를 나타냄
- 반대로 높은 분산 및 표준 편차는 더 많은 변동성과 낮은 일관성을 나타냄
- · 높은 분산 및 표준 편차는 데이터에 이상값이 있음을 나타내는 지표로 사용가능 함

```
data \leftarrow c(10, 15, 20, 25, 30, 15, 20, 25, 25, 10)
mean_data <- mean(data)</pre>
squared_diff <- (data - mean_data)^2</pre>
variance <- sum(squared_diff) / length(data)</pre>
std_dev <- sqrt(variance)</pre>
```

### 기술통계

### 변동성 측정

- ・ 분산: 각 데이터 포인트와 평균 사이의 평균 제곱 차이
- ・ 표준 편차: 데이터가 평균에서 얼마나 퍼져 있는지를 측정함

```
data <- c(10, 15, 20, 25, 30, 15, 20, 25, 25, 10)
sd_value <- sd(data)
var_value <- var(data)</pre>
```

### 기술통계

#### 데이터의 활용

- · 중심 극한을 이루는 수치형 데이터에 주로 사용됨
- ・ 분산이 너무 크면 결과를 저해할 수 있음

#### 이상값&결측값

- · 이상값: 이상값은 데이터 세트의 다른 관찰에서 크게 벗어나는 데이터 포인트
- ・ 나머지 데이터를 고려할 때 예상할 수 있는 것과 현저하게 다른 값 → 데이터 수집 또는 기록의 잠재적 이상 또는 오류의 결과
- ・ 결측값 : 사용자가 잘못 입력하거나 누락한 값

#### 극단값/극한값

- · 극단값/극한값 : 데이터 세트의 최소값과 최대값을 나타냄 → 분포의 양쪽 끝에서 가장 극단적인 값
- ・ 일반적으로 오류나 비정상적인 상황으로 인한 결과임을 암시하는 증거가 없는 한 데이터 세트에 유지됨

#### 분포의 특성

- · 왜도(Skewness)는 확률 변수의 평균에 대한 확률 분포의 비대칭성을 측정함(즉, 데이터가 기울어지는 방향을 나타냄)
- · 왜도>0 or 왜도<0 : 극단값 또는 이상치가 너무 많음







#### 분포의 특성

- · 첨도(Kurtosis) : 분포의 꼬리 부분의 두께와 중심 부분의 뾰족함을 측정하는 값
- · 첨도는 분포의 꼬리와 뾰족함 (즉, 극단 값들의 존재)에 관한 정보를 제공
- ・ 첨도>0: 이상치나 극단값이 나타날 가능성이 더 높아짐/ 첨도<0: 데이터에 큰 변동이나 이상치가 덜 있음을 나타냄







### 리스트

#### 선형구조-리스트

- · 데이터 유형을 저장하고, 저장된 데이터들을 그룹화할 수 있는 데이터 구조
- · 숫자, 문자, 논리값 ··· 등등 다양한 데이터 유형의 요소가 포함될 수 있음

```
List <-list(1.6, 2.3, 3.5)
List <- list(1, 2, 3)
                                                         List
[[1]]
                                                         [[1]]
[1] 1
                                                         [1] 1.6
[[2]]
                                                         [[2]]
[1] 2
                                                         [1] 2.3
[[3]]
                                                         [[3]]
[1] 3
                                                         [1] 3.5
                                                         mode(List)
typeof(List)
                                                         [1] "list"
[1] "list"
```

# 00 데이터 구조와 함수 이해

## 리스트

#### 선형구조-리스트

・ 각각의 다른 데이터 형태를 모두 묶어서 그룹화할 수 있음

```
List <- list("apple", "banana", "orange", 1, 1.5, TRUE)
```

### List

```
[[1]] [[4]]
[1] "apple" [1] 1
[[2]] [[5]]
[1] "banana" [1] 1.5
[[3]] [[6]]
[1] "orange" [1] TRUE
```

# 벡터와 배열

#### 물리에서 벡터란?

- 크기와 방향을 갖는 물리량
- 벡터는 사물의 움직임을 프로그래밍하기 위한 가장 기본적인 구성요소



### 00

# 데이터 구조와 함수 이해

### 벡터와 배열

#### 프로그램에서 벡터란?

- ・ 값을 저장하고, 조작할 수 있는 기본 데이터 구조
- ・ 숫자, 문자 또는 논리 값과 같은 동일한 데이터 유형의 요소를 보유할 수 있는 1차원 배열
- · R의 벡터는 combin을 나타내는 c( ) 함수를 사용하여 만들 수 있음

#### List(리스트)

- ・ 자료를 순서대로 한 줄로 저장하는 자료구조
- ・ 여러 자료가 일직선으로 서로 연결된 선형 구조(리스트에 있는 데이터는 몇 번째 인지 의미를 가짐)

#### Array(배열)

· 단일 타입으로 구성되는 자료구조





숫자들의 배열

[0,1,0,1,1,1, 0,1,0,1,0,1,1 ,0,1,0,1,0,1]

### 벡터와 배열

#### 대규모 다차원 배열

- · 데이터의 대<del>부분은</del> 숫자 배열로 볼 수 있음
- · 흑백 이미지는 픽셀의 밝기와 명암을 2차원 배열로 표현할 수 있고 소리 같은 경우는 1차원 배열로 나타낼 수 있음 List(리스트)와 Array(배열)
- · List는 [1,2,"Kim",2.5,True,False]와 같은 실수형, 정수형, 문자열과 같은 다양하게 관계없이 구성이 가능함
- · array(배열)는 모두 단일 타입으로 구성됨





### 벡터와 배열

#### 프로그램에서 벡터란?

- ・ 값을 저장하고, 조작할 수 있는 기본 데이터 구조
- ・ 숫자, 문자 또는 논리 값과 같은 동일한 데이터 유형의 요소를 보유할 수 있는 1차원 배열
- · R의 벡터는 combin을 나타내는 c( ) 함수를 사용하여 만들 수 있음

```
Vector
[1] 1 2 3

char_vector <- c("apple", "banana", "orange")

char_vector
[1] "apple" "banana" "orange"
```

logical\_vector <- c(TRUE, FALSE, TRUE)
logical\_vector
[1] TRUE FALSE TRUE</pre>

### 벡터와 배열

#### 프로그램에서 벡터란?

- ・ 값을 저장하고, 조작할 수 있는 기본 데이터 구조
- ・ 숫자, 문자 또는 논리 값과 같은 동일한 데이터 유형의 요소를 보유할 수 있는 1차원 배열
- · R의 벡터는 combin을 나타내는 c( ) 함수를 사용하여 만들 수 있음

```
Vector <- c(1, 2, 3)

Vector
[1] 1 2 3

mode(Vector)
[1] "numeric"

List <- list(1, 2, 3)

[[1]]
[1]]
[1]]
[1]]

List <- list(1, 2, 3)

[[1]]
[1]]
[1]]
[1]]
[1]]

List <- list(1, 2, 3)
```

typeof(List)
[1] "list"

## 벡터와 배열

#### 프로그램에서 벡터란?

- ・ 다양한 형태의 값들이 하나의 벡터에 들어갈 수 없음
- · 리스트 끼리는 연산이 불가능, 벡터 끼리는 연산이 가능

```
Vector <- c("aa", 2, 3)

List_1 <-list(1.6, 2.3, 3.5)
List_2 <-list(2.6, 5.3, 7.5)

List_1+List_2

[1] "aa" "2" "3"

Vector_1 <-c(1.6, 2.3, 3.5)

Vector_1 <-c(2.6, 5.3, 7.5)

Vector_2 <-c(2.6, 5.3, 7.5)

Vector_1 <-c(2.6, 5.3, 7.5)

Vector_2 <-c(2.6, 5.3, 7.5)

Vector_1 <-c(2.6, 5.3, 7.5)

Vector_2 <-c(2.6, 5.3, 7.5)

[1] "character"
```

### 벡터와 배열

#### 배열이란?

- ・ 벡터의 확장된 개념
- ・ 벡터는 1차원 데이터를 나타내는 데이터의 기본 구조이지만 배열은 다차원 확장으로 표현
- ・ 행렬은 2차원 데이터만을 표현할 수 있지만 배열은 다차원 표현 가능

```
array(data = c(1, 2, 3, 4, 5, 6), dim = c(2, 3))
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

matrix(data = c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

### 벡터와 배열

#### 배열이란?

- ・ 벡터의 확장된 개념
- ・ 벡터는 1차원 데이터를 나타내는 데이터의 기본 구조이지만 배열은 다차원 확장으로 표현
- ・ 행렬은 2차원 데이터만을 표현할 수 있지만 배열은 다차원 표현 가능

```
array(data = c(1, 2, 3, 4, 5, 6), dim = c(2, 2, 2))
, , 1
[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2
[,1] [,2]
[1,] 5 1
[2,] 6 2
```

# 인덱싱

### 인덱싱이란?

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음

substr(변수, 시작,끝)





library(stringr)

a<-"abcdefg"

substr(a, 1,2) [1] "ab"

## 인덱싱

#### 리스트 인덱싱이란?

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음

```
List(1,2,3,4,5,6,7)

1 2 3 4 5 6 7
```

```
a<-list(1,2,3,4,5,6)
a[1]
[[1]]
[1] 1
a[[1]]
[1] 1</pre>
```

## 인덱싱

### 벡터 인덱싱이란?(오직 1차원의 형태만 가짐)

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- · 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음



```
a<-c(1,2,3,4,5,6)
a[1]
[1] 1
```

## 인덱싱

#### 배열 인덱싱

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음

```
array(1,2,3,4,5,6,7)
1 2 3 4 5 6 7
```

a[행,열]

```
a=array(data = c(1, 2, 3, 4, 5, 6), dim = c(2, 3))
```

a[2] [1] 2

a[1,2]

[1] 3

### 인덱싱

#### 배열 인덱싱

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- ・ 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음

```
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

```
a=array(data = c(1, 2, 3, 4, 5, 6), dim = c(2, 3))
a[2]
[1] 2
a[1,2]
[1] 3
a[1:2]
[1] 1 2
a[1:3]
[1] 1 2 3
a[1:2,2]
[1] 3 4
```

## 인덱싱

#### 배열 인덱싱

- · 목록이나 배열에서 특정 값을 추출하기 위해 위치나 인덱스를 지정하는 과정
- ・ 문자, 리스트, 행렬, 배열 모두 위치나 인덱스를 가지고 있음

```
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
```

a[1:2,2:3] [,1] [,2] [1,] 3 5 [2,] 4 6 인덱싱

```
my_list <- list("apple", 3.14, c(1, 2, 3), TRUE)

my_list[[3]][2]
[1] 2

my_list[3] → 여전히 리스트 형태를 유지하며, 해당 원소가 단독으로 반환
[[1]]
[1] 1 2 3

my_list[[3]] → 원소의 값 자체가 반환되는 것이 아니라 값을 나타내는 데이터 타입으로 반환
[1] 1 2 3
```

# 인덱싱

```
my_vec <- c("apple", 3.14, c(1, 2, 3), TRUE)
my_vec[[3]][2]
[1] NA
my_vec[3]
[1] "1"
my_vec[[3]]
[1] "1"</pre>
```

# 인덱싱

```
my_array <- array(c(5, 3, 1, 5, 7, 8, 10), dim = c(2, 3))
my_array[1, 2]: my_array 배열의 첫 번째 행, 두 번째 열에 접근합니다.
my_array[2, 1]: my_array 배열의 두 번째 행, 첫 번째 열에 접근합니다.
my_array[1, ]: my_array 배열의 첫 번째 행에 접근합니다.
my_array[, 2]: my_array 배열의 두 번째 열에 접근합니다.
```

# 인덱싱

```
my_array <- array(1:24, dim = c(3, 4, 2))
my_array[2, 3, 1]
my_array[3, , 2]
my_array[, 2:3, ]
my_array[2, 3, 1]
my_array[3, , 2]
my_array[, , 2]
```

인덱싱

인덱싱 비교

아래와 같은 배열을 만들고, 5와 16을 각각 인덱싱해 값을 추출하시오

, , 2 [,1] [,2] [,3] [,4] [,5] [1,] 11 13 15 17 19 [2,] 12 14 16 18 20

### 데이터 구조 파악

### 데이터 프레임(Dataframe 이란?)

- ・ 데이터 프레임은 프로그래밍 및 데이터 분석에 일반적으로 사용되는 표 형식의 데이터 구조
- ・ 행과 열로 구성된 다양한 형태를 가지고 있는 리스트의 집합
- · 데이터 프레임에서 각 열은 변수 또는 특정 속성을 나타냄
- ・ 각 행은 개별 관찰 또는 데이터 포인트를 나타냄
- 데이터 프레임은 다목적이며 숫자, 범주 및 텍스트 데이터를 포함하여 다양한 유형의 데이터를 처리할 수 있음

```
city <- c("Seoul", "Busan", "Daegu", "Seoul", "Busan", "Daegu", "Ulsan")
pm25 <- c(18, 21, 21, 17, 8, 11, 25)

df <- data.frame(city = city, pm25 = pm25)
write.csv(df, "저장할 경로", row.names=FALSE/TRUE)
```

### 데이터 구조 파악

#### **TEXT**

- · 텍스트 파일은 데이터를 저장하고 표현하기 위해 간단하고 널리 사용되는 형식
- · 텍스트 파일의 데이터는 일반적으로 각 데이터 포인트가 구분 기호(예: 쉼표 또는 탭)로 구분된 일반 텍스트로 저장됨
- · 텍스트 파일의 주요 이점은 단순성과 다양한 프로그래밍 언어 및 소프트웨어 응용 프로그램과의 호환성이 좋음
- · 복잡한 데이터 구조에 대한 지원 부족
- ・ 데이터 조작 및 분석 기능이 제한됨
- ・ 고급 데이터 작업을 위해 수동 처리가 필요함

| а | - |
|---|---|

a - Windows 메모장

| 파일(F) | 편집(E) | 서식(O) | 보기(V) | 도움말(H) |    |
|-------|-------|-------|-------|--------|----|
| 키     | 나이    | 수     | ≐학    | 영어     | 성적 |
| 178   | 17    | 8     | 1     | 92     | Α  |
| 188   | 17    | 7     | 1     | 75     | В  |
| 160   | 17    | 5     | 2     | 36     | C  |
| 170   | 17    | 5     | 5     | 62     | C  |
| 175   | 17    | 6     | 5     | 47     | C  |
| 181   | 17    | 7     | 1     | 92     | В  |
| 167   | 17    | 6     | 7     | 78     | В  |
| 158   | 17    | 84    | 4     | 68     | В  |
| 180   | 17    | 9     | 7     | 91     | Α  |
| 172   | 17    | 10    | 00    | 81     | Α  |

### 데이터 구조 파악

#### **Excel**

- · 특히 .xlsx 형식의 Excel 파일은 Microsoft Excel에서 만들고 사용하는 스프레드시트 파일
- · Excel 파일은 데이터 구성, 조작, 시각화 및 분석을 위한 포괄적인 기능 세트를 제공함
- · 복잡한 수식, 조건부 서식, 그래픽 표현 및 다양한 데이터 유형을 지원함
- · Excel 파일은 사용자 친화적인 인터페이스와 광범위한 기능을 제공하여 기본 및 고급 데이터 관리 작업에 모두 적합함
- · 그러나 Excel 파일은 크기가 상대적으로 큼
- · 타사 소프트웨어와의 호환성 문제

|    | Α   | В  | С   | D  | Е  |
|----|-----|----|-----|----|----|
| 1  | 키   | 나이 | 수학  | 영어 | 성적 |
| 2  | 178 | 17 | 81  | 92 | Α  |
| 3  | 188 | 17 | 71  | 75 | В  |
| 4  | 160 | 17 | 52  | 36 | С  |
| 5  | 170 | 17 | 55  | 62 | С  |
| 6  | 175 | 17 | 65  | 47 | С  |
| 7  | 181 | 17 | 71  | 92 | В  |
| 8  | 167 | 17 | 67  | 78 | В  |
| 9  | 158 | 17 | 84  | 68 | В  |
| 10 | 180 | 17 | 97  | 91 | Α  |
| 11 | 172 | 17 | 100 | 81 | Α  |

### 데이터 구조 파악

### **CSV(Comma-Separated Values)**

- ・ 파일은 테이블 형식 데이터 저장 및 교환에 일반적으로 사용되는 특정 유형의 텍스트 파일 형식
- · CSV 파일에서 각 행은 데이터 레코드를 나타내며 행 내의 각 필드는 쉼표 또는 기타 지정된 구분 기호로 구분됨
- · CSV 파일은 스프레드시트 소프트웨어 및 데이터베이스 응용 프로그램에서 광범위하게 지원되므로 데이터 공유 및 상호 운용 성을 위해 많이 사용 가능함
- · 데이터를 행과 열로 구성하기 위한 기본 구조를 제공하지만 복잡한 수식이나 서식 옵션은 지원하지 않음
- · 복잡한 데이터 구조 또는 수식에 대한 제한된 지원
- 고급 서식 옵션이 부족함

|    | Α   | В  | С   | D  | Е  |
|----|-----|----|-----|----|----|
| 1  | 키   | 나이 | 수학  | 영어 | 성적 |
| 2  | 178 | 17 | 81  | 92 | Α  |
| 3  | 188 | 17 | 71  | 75 | В  |
| 4  | 160 | 17 | 52  | 36 | С  |
| 5  | 170 | 17 | 55  | 62 | С  |
| 6  | 175 | 17 | 65  | 47 | С  |
| 7  | 181 | 17 | 71  | 92 | В  |
| 8  | 167 | 17 | 67  | 78 | В  |
| 9  | 158 | 17 | 84  | 68 | В  |
| 10 | 180 | 17 | 97  | 91 | Α  |
| 11 | 172 | 17 | 100 | 81 | Α  |

## 데이터 구조 파악

### **Excel to CSV(Comma-Separated Values)**

· 다른 이름으로 저장 or 복사본 저장



### 데이터 구조 파악

### **Excel to CSV(Comma-Separated Values)**

· 저장 탭에서 csv (쉼표로 분리) 선택



## 데이터 구조 파악

### **TEXT to CSV(Comma-Separated Values)**

· Excel → 열기 → Text파일 선택





## 데이터 구조 파악

### **TEXT to CSV(Comma-Separated Values)**

· Excel → 열기 → Text파일 선택



### 데이터 구조 파악

### **CSV(Comma-Separated Values)**

data <- read.csv("data.csv", header =?, stringAsFactors =?, fileEncoding =?)

- header = 데이터 프레임의 첫 행에 변수명이 있는지 없는지에 따라 TRUE와 FALSE로 구분됨
- stringAsFactors = 문자열 변수를 요소로 변환할지 여부를 설정함 TRUE와 FALSE로 구분됨
- fileEncoding = R은 영어 기반으로 영어 이외의 단어들이 들어 갔을 때, 오류가 발생할 수 있으므로 영어 이외의 단어를 인식할 수 있도록 인코딩 하는 방식(주로 한국어는 cp949, euc-kr, utf-8)세 가지로 저장됨

## 데이터 구조 파악

- Kaggle: <a href="https://www.kaggle.com/">https://www.kaggle.com/</a>
- Google Dataset Search : <a href="https://toolbox.google.com/datasetsearch">https://toolbox.google.com/datasetsearch</a>
- UCI Machine Learning Repository: <a href="https://archive.ics.uci.edu/">https://archive.ics.uci.edu/</a>
- Data.gov: <a href="https://data.gov/">https://data.gov/</a>
- Naver DataLab : <a href="https://datalab.naver.com/">https://datalab.naver.com/</a>
- Huggingface: <a href="https://huggingface.co/spaces">https://huggingface.co/spaces</a>