Lung Capacity Prediction in Patients with Pulmonary Fibrosis

Gianluca Turcatel, PhD

Capstone Project, November 2020

The Problem

- Respiratory failure is the 4th leading cause of death world-wide
- Pulmonary fibrosis is a chronic progressive disease with unpredictable prognosis.

Proposed solution:

Deep learning-based algorithm that, based on patient general information and chest CT images predicts the future patient's lung capacity.

Who Might Care?

Hospitals & physicians

Insurance Companies

The patient

The patient's Family

The Data

- Data Source :
 - Kaggle: 176 patients gathered from different public and private hospitals
- Data composition:
 - Age, Sex, Smoking status
 - Lung capacity measurements and their timeline: FVC (forced vital capacity) vs weeks.
 - CT images (dcm format)

How the problem was tacked

CT Images

Data Wrangling – Sex, Age, Smoking status, FVC values

- No missing values
- Outliers in the FVC measurements:

Data Wrangling - CT images (a)

Data Wrangling - CT images (b)

Data Wrangling - CT images (c)

Hypotheses:

- More accurate predictions
- Faster training/testing

Data Wrangling - CT images (d)

Preparing 3x3 images grids:

3x3 whole images

3x3 carved images

EDA – Age, Sex, Smoking Status

EDA – FVC

Males have higher lung capacity (bigger chest)

EDA – FVC decay

EDA – Area of right and left lungs

Modeling – Strategy

STEP 1: Fit observed FVC measurements with an OLS regressor

STEP 2: Extrapolate the slope of the best fit line

STEP 3: Train deep learning model to predict the slope, based on images and/or patients' information

STEP 4: Use the baseline FVC values (1st measurement) to estimate the intercept of the fitting line

STEP 5: Calculate the future FVC values

Modeling – Slope Models

Modeling – Summary

Model	Input	STANDALONE MODELS FVC prediction error (MAPE)	ENSEMBLE MODELS FVC prediction error (MAPE)
NN	Numerical and categorical medical data	7.19%	N/A
CNN-1a	3x3 whole images, 1536x1536 pixels	Original contrast: 7.40% Normalized contrast: 7.17%	Original contrast: 4.97% Normalized contrast: 4.90%
CNN-1b	3x3 carved images, 1120x1460 pixels	Original contrast: 7.26% Normalized contrast: 7.46%	Original contrast: 4.87% Normalized contrast: 5.00%
CNN-2 Encoder	3x3 whole images, 1536x1536 pixels	Enc 48x48, Norm. contrast: 7.33% Enc 96x96, Norm. contrast: 7.32% Enc 192x192, Norm. contrast: 7.47% Enc 384x384, Norm. contrast: 7.28%	Enc 48x48: 5.82% Enc 96x96: 5.00% Enc 192x192: 5.10% Enc 384x384: 5.76%
CNN-3 Transfer Learning	3x3 whole RGB images 1024x1024 pixels	Normalized contrast: 7.09%	Normalized contrast: 4.76%**

- Both patient medical data and chest CT images contain key insights for the prediction of the patient's lung capacity.
- Carving the images does not consistently improve the model performance.
- Normalizing the contrast on the images improve the model predictive power only when whole images are utilized.
- Transfer learning is the winning strategy.

Modeling – Best Model Prediction Analysis (a)

Modeling – Best Model Prediction Analysis (b)

When the lung capacity of the patient changes linearly overtime, the model performs well.

When lung capacity changes drastically, <u>predictions are</u> less accurate.

Modeling – Feature maps of CNN1a

What does the model "see"?

Conclusion

- Both the patient medical information and chest CT images contain key insights for the prediction of the future patient's lung capacity.
- Transfer learning produced the best predictive models: MAPE 7.09% (standalone) to 4.76% (ensemble)
- The model performs well when lung capacity decays linearly but underperforms otherwise.
 - Utilize the last FVC measurement (or the average of last n measurements) as baseline value for the future predictions.
- How to obtain better predictions:
 - Information on the patients' pharmacological treatment (and when it was initiated),
 - Presence of comorbidities (such as diabetes, cardiovascular disease, other chronic diseases)
 - Other general information (blood pressure, weight, body mass index).
 - Increase the number of pictures
 - Increase the number of patients