### **Detection and Estimation Theory**

#### What is this class about?

- Goal: Extract useful information from noisy data.
- **Strategy:** Formulate probabilistic model of data x that depends on underlying parameter(s)  $\theta$ .
- Terminology depends on the parameter space:
  - Estimation:
    - $\circ$   $oldsymbol{ heta} \in {
      m I\!R}^n, {
      m I\!C}^n$  etc.
  - Detection (simple hypothesis testing):
    - $\circ \ \theta \in \{0,1\} \text{, i.e. } 0 \ \equiv \ \text{signal absent, } 1 \ \equiv \ \text{signal present.}$
  - Classification (multihypothesis testing):
    - $\circ \ \theta \in \{0,1,\ldots,M-1\}, \ \text{e.g. symbols in an} \ M\text{-ary constellation}.$

#### **Statistics and Science**

"If your experiment needs statistics, you ought to have done a better experiment"



Ernest Rutherford (1871-1937)

OTaken from http://www.stats.bris.ac.uk/~peter/slides/RS.pps. Please see the whole slide show.

# **Applications**

- Communications,
- Radar and sonar,
- Nondestructive evaluation (NDE) of materials,
- Biomedicine,
- Controls,
- Seismology, etc.

# Bibliography: We refer to the following books:

- (Kay-I) S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993, pt. I.
- (Kay-II) S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Englewood Cliffs, NJ: Prentice-Hall, 1998, pt. II.
- (B & D) P.J. Bickel and K.A. Doksum, *Mathematical Statistics: Basic Ideas and Selected Topics*, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 2001.
- (**Gelman et al.**) A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin,  $Bayesian\ Data\ Analysis$ , 2nd ed. New York: Chapman & Hall, 2004.
- (Wasserman) L. Wasserman, All of Statistics. New York: Wiley, 1987.
- (**Poor**) H.V. Poor, *An Introduction to Signal Detection and Estimation*, 2nd ed. New York: Springer-Verlag, 1994.
- (Liu) J.S. Liu, *Monte Carlo Strategies in Scientific Computing*. New York: Springer-Verlag, 2001.
- (Ripley) B.D. Ripley, *Stochastic Simulation*. New York: Wiley, 1987.

(Van Trees) H.L. Van Trees, Detection, Estimation and Modulation Theory. New York: Wiley, 1968, pt. I.

and a few others.

### **Basics of Estimation Theory**

#### **Basic Ingredients:**

- $x \equiv$  observable random variable (measurement that we collect),
- $\theta \equiv$  "true state of nature" (parameter that we wish to estimate),
- $p(x|\theta) \equiv$  data model (probability density or mass of x for a given  $\theta$ ; tells us how likely a particular value of x is given the true state of nature), can be
  - continuous in  $x \Longrightarrow \text{probability density function (pdf)}$  e.g. Gaussian,
  - discrete in  $x \Longrightarrow \text{probability mass function (pmf)}$  e.g. Poisson.

# If we decide to assign a probability distribution to $\theta$ , then we also need

•  $\pi(\theta) \equiv \text{prior pdf/pmf on } \theta$  (epistemic probability). (Epistemic¹ refers to our knowledge about the true state of nature.)

#### **Goal:** Find the true state of nature $\theta$ .

<sup>&</sup>lt;sup>1</sup>From the Greek words episteme (knowledge) and epistanai (to know or understand).

# **Example: Discrete-time Data**



Measurements x[n] vs. sample index  $n, n = 0, 1, \dots, N-1$ .

Assume that a finite data set is available:

$$\boldsymbol{x} = \begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix} = [x[0], x[1], \dots x[N-1]]^T.$$

The measurements x depend on the parameter  $\theta$  through a probabilistic model. An estimator of  $\theta$  is a function of the data:

$$\widehat{\theta}(x[0], x[1], \dots x[N-1]) = \widehat{\theta}(\boldsymbol{x}).$$

**Note:** The estimator  $\widehat{\theta}(x)$  depends *only* on the observed data, i.e. it must be *realizable*.

#### **Types of Estimators:**

• Off-line (batch) estimator. Example — linear in data:

$$\widehat{\theta} = \sum_{n=0}^{N-1} a_n x[n].$$

• On-line (sequential) estimator. Example  $(\theta = s[n])$ :

$$\widehat{s}[n] = a_0 x[n] + a_1 x[n-1] + \ldots + a_{N-1} x[n-N+1].$$

# Maximum Likelihood (ML) Estimation

 $p(x \mid \theta)$  viewed as a function of  $\theta$  is the *likelihood function*.

#### Comments on the likelihood function:

- For a given  $\theta$  and discrete case,  $p(x | \theta)$  is the probability of observing the data point x. In the continuous case, it is approximately proportional to probability of observing a point in a small rectangle around x.
- However, when we think of  $p(x | \theta)$  as a function of  $\theta$ , it provides, for a given observed x, the "likelihood" or "plausibility" of various  $\theta$ 's.

**ML estimation:** Maximize the likelihood with respect to  $\theta$ , i.e.

$$\widehat{\theta} = \arg\max_{\theta} p(x \mid \theta).$$

ML is one of the most popular methods in statistics, communications, and signal processing. We will see later that the mean-square error of ML estimators typically attains the best possible asymptotic performance (given by the Cramér-Rao bound).

### **Bayesian Inference**

In Bayesian inference, parameters  $(\theta, say)$  are assigned probability distributions and inference is based on the posterior distribution of  $\theta$ 

$$p(\theta \mid x) = \underbrace{\frac{p(x|\theta) \pi(\theta)}{\int p(x|\theta) \pi(\theta) d\theta}}_{\text{Rayos' rule (continuous parameter version)}}. \tag{1}$$

Bayes' rule (continuous-parameter version)

**Note:**  $p(\theta \mid x)$  is an epistemic probability.

Common Bayesian estimators:

- Maximum *a posteriori* (MAP):  $\widehat{\theta}_{MAP} = \arg \max_{\theta} p(\theta \mid x)$  and
- Minimum mean-square error (MMSE):  $\widehat{\theta}_{\text{MMSE}} = \mathrm{E} \left[ \theta \mid x \right]$ .

**Comments:** MAP estimation is typically the most tractable as it does not require computing the denominator in (1), which is usually analytically intractable. (Note that the denominator is not a function of  $\theta$ .)

The MMSE estimator is derived by minimizing the Bayesian mean-square error (BMSE):

$$BMSE(\widehat{\theta}) = E_{x,\theta}[(\widehat{\theta} - \theta)^2].$$

# Bayesian vs. Classical (Non-Bayesian) Analysis

 In classical (non-Bayesian) analysis, inference is made based only on the probabilistic model

$$p(x \mid \theta) = p(x; \theta)$$

which is called likelihood. When specifying the probabilistic model,

- in Bayesian inference, we emphasize *conditioning on*  $\theta$  (i.e. the fact that  $\theta$  is treated as a random variable) and use  $p(x \mid \theta)$  to denote the likelihood.
- in classical inference, we denote the likelihood as  $p(x;\theta)$ .

#### Criticism against Bayesian approach:

- subjectivity,
- different inferences possible based on the same data.

#### Criticism against non-Bayesian approach:

- ignores prior information,
- data that have never been observed used for inference.

#### Model and Identifiability

A model is a parametrized pdf or pmf  $p(x; \theta)$ .

**Example:** DC level in Gaussian noise

$$x = \underbrace{\theta}_{\text{parameter}} + \underbrace{w}_{\text{noise}} \sim \mathcal{N}(0, \sigma^2)$$

leading to  $x \sim \mathcal{N}(\theta, \sigma^2)$ :

$$p(x;\theta) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(x-\theta)^2\right].$$

**Note:** Kay-I uses  $\theta=A$  to denote the DC level, see e.g. Chapter 1.3.

For a specific value of  $\theta$ , the density defines a model. Our goal is to estimate the "best" model based on observation(s) x.

**Identifiability:** An important property of a model structure: parameter identifiability — for (almost) all values of x and  $\theta$  we want the following to hold:

$$p(\boldsymbol{x};\theta) = p(\boldsymbol{x};\eta) \iff \theta = \eta.$$

**Note:** we do not care much about identifiability when deriving estimation algorithms — there are many examples of deliberately fitting models that are not identifiable, some of which we will see in this class (e.g. PX-EM algorithm). But, this needs to be done carefully.

### **Example: DC Level in White Gaussian Noise**



Choose white Gaussian noise model:

$$w[n] \sim \mathcal{N}(0, \sigma^2), \quad n = 0, 1, \dots, N - 1$$

and

$$p(w[0], w[1], \dots, w[N-1]) = \prod_{n=0}^{N-1} p(w[n])$$
$$= \frac{1}{(\sigma\sqrt{2\pi})^N} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} w[n]^2\right).$$

Hence, x[n] are independent Gaussian  $\mathcal{N}(A, \sigma^2)$ .

For simplicity, assume first that the noise level  $\sigma^2$  is known.

Classical inference is based on the likelihood function:

$$p(\mathbf{x}; A) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right].$$
 (2)

What if  $\sigma^2$  is unknown? Then, the likelihood function is

$$p(\mathbf{x}; A, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right]. \quad (3)$$

What is the difference between (2) and (3)?

Classical estimation theory from a signal processing point of view is covered in detail in Chapters 2–9 of Kay-I.

# **Example: Bayesian Estimation of DC Level**



Again, assume that  $\sigma^2$  is known. Prior distribution on A:

$$\pi(A) = \begin{cases} 1, & 0.5 \le A \le 1.5 \\ 0, & \text{otherwise} \end{cases}.$$

Bayesian inference based on the posterior distribution of A:

$$p(A|x) = \frac{p(x|A) \quad \pi(A)}{\int p(x|A) \pi(A) dA}$$

$$= \frac{\exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right] \pi(A)}{\int_{0.5}^{1.5} \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (x[n] - A)^2\right] dA}$$

Recall common Bayesian estimators (see p. 10 of these notes):

MAP:

$$\widehat{A}_{\text{MAP}} = \arg\max_{A} p(A|x) = \arg\max_{A} [p(x|A)\pi(A)]$$

and

Minimum mean-square error (MMSE):

$$\widehat{A}_{\text{MMSE}} = \operatorname{E}[A|x] = \int A p(A|x) dA.$$

Bayesian estimation from a signal processing point of view is covered in detail in Chapters 10–13 of Kay-I.

# A (Much) More Sophisticated Example: Mitochondria Segmentation



The data  $oldsymbol{x}\equiv$  electron micrograph of a cardiac muscle cell.

The parameter vector  $\boldsymbol{\theta}$  contains:

- number of mitochondria and
- Fourier parameters describing mitochondria shapes.

Prior  $\pi(\theta)$  learned from hand-segmented training data, using several hundred hand-selected electron micrographs.

Idea: Mitochondria and cytoplasm have different textures  $\implies$  utilize Markov-random-field (MRF) models to learn the

texture from the training data. Then use Markov chain Monte Carlo (MCMC) to draw samples from the posterior distribution  $p(\boldsymbol{\theta} \mid \boldsymbol{x})$ .

**Reference:** U. Grenander and M.I. Miller, "Representations of knowledge in complex systems," *J. R. Stat. Soc., Ser. B,* vol. 56, pp. 549–603, 1994.

### **Another Bayesian MCMC Example**



#### See

A. Dogandžić and B. Zhang, "Markov chain Monte Carlo defect identification in NDE images," to appear in *Proc. Annu. Rev. Progress Quantitative Nondestructive Evaluation (QNDE 2006)*, Portland, OR, Aug. 2006.

and

A. Dogandžić and B. Zhang, "Bayesian NDE defect signal analysis," *IEEE Trans. Signal Processing*, vol. 55, pp. 372–378, Jan. 2007.

# **Some Challenges/ Interesting Topics**

Can MCMC methods be used for decoding? (Wainwright & Jordan 03)<sup>2</sup> say that this hasn't been done successfully (yet perhaps?).

Distributed inference on sensor networks, e.g. discovering anomalous activity, fusing different modalities, doing all these tasks in a distributed manner and with limited power budget for communication and computation.

There are many biomedical applications, e.g. estimating and detecting tumors.

<sup>&</sup>lt;sup>2</sup>(Wainwright & Jordan 03) M.J. Wainwright and M.I. Jordan, "Graphical models, exponential families, and variational inference," Report no. 649, Department of Statistics, University of California, Berkeley, CA, 2003.