

CHAPTER 6 PERMUTATIONS AND COMBINATIONS

SOLUTIONS

EXERCISE 6.1

Soln.
$$7! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 = 5040$$

Soln.
$$6 \times 5! - 5!$$

$$=(6-1)\times 5! = 5\times 1\times 2\times 3\times 4\times 5 = 5\times 120 = 600$$

2. Complete
$$\frac{9!}{6 \times 3!}$$

Soln.
$$\frac{9!}{\cancel{6} \times 3!} = \frac{9 \times 8 \times 7 \times \cancel{6}!}{6 \times 1 \times 2 \times 3} = 3 \times 4 \times 7 = 84$$

3. If
$$\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$$
, find x

$$\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$$

$$\Rightarrow \frac{10+1}{10!} = \frac{x}{11 \times 10!}$$

$$\Rightarrow \frac{11 \times 11}{10!} = \frac{x}{10!}$$

$$\Rightarrow x = 11 \times 11 = 121$$

4. Evaluate ${}^{n}P_{r}$ when

i)
$$n = 5, r = 3$$

Soln.
$${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 3 \times 4 \times 5 = 60$$

ii)
$$n = 8, r = 4$$

Soln.
$${}^{8}P_{4} = \frac{8!}{(8-4)!} = 5 \times 6 \times 7 \times 8 = 1680$$

FINITION (S)

FINITION (S)

FOR THE STATE (TOWN)

FOR EDUCATION (S)

Repart of Manipur

Government of Manipur

5. Find *n* if ${}^{n-1}P_5: {}^nP_6 = 1:11$

Soln. We have,

$$^{n-1}P_5:^nP_6=1:11$$

$$\Rightarrow \frac{(n-1)!}{(n-1-5)!} : \frac{n!}{(n-6)!} = 1:11$$

$$\Rightarrow \frac{(n-1)!}{(n-6)!} : \frac{n \times (n-1)!}{(n-6)!} = 1:11$$

$$\Rightarrow$$
1: $n=1:11$

$$\Rightarrow n=11$$

6. Find r if

(i)
$${}^{5}P_{r} = 2.{}^{6}P_{r-1}$$

Soln.

$$^{5}P_{r}=2.^{6}P_{r-1}$$

$$\Rightarrow \frac{5!}{(5-r)!} = 2 \cdot \frac{6!}{(6-r+1)!}$$

$$\Rightarrow \frac{5!}{(5-r)!} = 2 \cdot \frac{6.5!}{(7-r)!}$$

$$\Rightarrow \frac{1}{(5-r)!} = \frac{2 \times 6}{(7-r)(6-r)(5-r)!}$$

$$\Rightarrow (7-r)(6-r) = 12$$

$$\Rightarrow 42 - 13r + r^2 = 12$$

$$\Rightarrow r^2 - 13r + 30 = 0$$

$$\Rightarrow (r-3)(r-10) = 0$$

$$\Rightarrow r - 3 = 0 \text{ or } r - 10 = 0$$

$$\Rightarrow r = 3 \text{ or } r = 10$$

$$\Rightarrow r = 3[\because r \le 5]$$

$$\therefore r = 3$$

(ii)
$${}^5P_r = {}^6P_{r-1}$$

Soln:

$$\Rightarrow \frac{5!}{(5-r)!} = \frac{6!}{(6-r+1)!}$$

$$\Rightarrow \frac{5!}{(5-r)!} = \frac{6 \times 5!}{(7-r)(6-r)(5-r)!}$$

$$\Rightarrow$$
 $(7-r)(6-r) = 6$

$$\Rightarrow 42 - 13r + r^2 = 6$$

$$\Rightarrow r^2 - 13r + 36 = 0$$

TIMENTE TO E TO E STEED ON THE (TOON)

DEPARTMENT OF Manipur

Government of Manipur

$$\Rightarrow (r-4)(r-9) = 0$$

$$\Rightarrow r-4 = 0 \text{ or } r-9 = 0$$

$$\Rightarrow r = 4 \text{ or } r = 9$$

$$\Rightarrow r = 4[\because r \le 5]$$

$$\therefore r = 4$$

7. If
$${}^{n}C_{8} = {}^{n}C_{2}$$
, find ${}^{n}C_{3}$.

Soln.

$${}^{n}C_{8} = {}^{n}C_{2}$$

$$\Rightarrow {}^{n}C_{n-8} = {}^{n}C_{2}[::^{n}C_{r} = {}^{n}C_{n-r}]$$

$$\Rightarrow n-8 = 2$$

$$\Rightarrow n = 10$$

$$:^{n}C_{3} = {}^{10}C_{3}$$

$$= \frac{10!}{3!(10-3)!} = \frac{10.9.8.7!}{1.2.3.7!} = 120$$

8. Determine n if

i)
$$^{2n}C_4:^nC_4=42:1$$

Soln.

$$^{2n}C_4: ^nC_4 = 42:1$$

$$\Rightarrow \frac{2n!}{4!(2n-4)!}: \frac{n!}{4!(n-4)!} = 42:1$$

$$\Rightarrow \frac{2n(2n-1)(2n-2)(2n-3)(2n-4)!}{1.2.3.4.(2n-4)!} : \frac{n(n-1)(n-2)(n-3)(n-4)!}{1.2.3.4.(n-4)!} = 42 : 1$$

$$\Rightarrow \frac{2n(2n-1)(2n-2)(2n-3)}{n((n-1)(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{2.n.2(n-1)(2n-1)(2n-3)}{n(n-1)(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{4.(2n-1)(2n-3)}{(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{2(4n^2 - 6n - 2n + 3)}{(n-2)(n-3)} = \frac{21}{1}$$

TO THE TOPE TO THE (TOO)

$$\Rightarrow \frac{2n(2n-1)(2n-2)(2n-3)}{n((n-1)(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{2 \cdot n \cdot 2(n-1)(2n-1)(2n-3)}{n(n-1)(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{4.(2n-1)(2n-3)}{(n-2)(n-3)} = \frac{42}{1}$$

$$\Rightarrow \frac{2(4n^2 - 6n - 2n + 3)}{n^2 - 5n + 6} = \frac{21}{1}$$

$$\Rightarrow 8n^2 - 16n + 6 = 21n^2 - 105n + 126$$

$$\Rightarrow 13n^2 - 89n + 120 = 0$$

$$\Rightarrow n = \frac{-(-89) \pm \sqrt{(-89)^2 - 4.13.120}}{2 \times 13}$$

$$= \frac{89 \pm \sqrt{7921 - 6240}}{26} = \frac{89 \pm \sqrt{1681}}{26}$$

$$= \frac{89 \pm 41}{26} = \frac{130}{26} \text{ or } \frac{48}{26}$$

$$= 5 \text{ or } \frac{24}{13}$$

$$= 5 \text{ [:: } n \text{ cannot be a fraction]}$$

ii)
$$^{2n}C_3$$
: $^nC_3 = 11:1$
Soln. $\Rightarrow \frac{2n!}{3!(2n-3)!}: \frac{n!}{3!(n-3)!} = 11:1$
 $\Rightarrow \frac{2n(2n-1)(2n-2)(2n-3)!}{3!(2n-3)!}: \frac{n(n-1)(n-2)(n-3)!}{3!(n-3)!} = 11:1$
 $\Rightarrow \frac{2.n.(2n-1)(2n-2)}{n(n-1)(n-2)} = \frac{11}{1}$
 $\Rightarrow \frac{2.n.2.(n-1)(2n-1)}{(n-1)(n-2)} = 11$
 $\Rightarrow \frac{4(2n-1)}{n-2} = 11$
 $\Rightarrow 8n-4 = 11n-22$
 $\Rightarrow 3n = 18$
 $\Rightarrow n = 6$

9. Prove that (i)
$${}^{n}C_{r} + 2^{n}C_{r-1} + {}^{n}C_{r-2} = {}^{n+2}C_{r}$$

L.H.S. $= {}^{n}C_{r} + 2^{n}C_{r-1} + {}^{n}C_{r-2}$
 $= ({}^{n}C_{r} + {}^{n}C_{r-1}) + ({}^{n}C_{r-1} + {}^{n}C_{r-2})$
 $= {}^{n+1}C_{r} + {}^{n+1}C_{r-1} \quad [\because {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}]$
 $= {}^{n+2}C_{r} = \text{R.H.S.}$

(ii)

Soln.

11. How many 3-digit even numbers can be formed from the digits 1,2,3,4,5,6 if the digits can be repeated?

Soln. Here, the even digits are 2,4,6.

 \therefore The digits in one's place can be selected in 3C_1 ways since digits can be repeated.

The digit in tens place can be selected in 6C_1 ways and the digit in hundreds place can be selected in ${}^{6}C_{1}$ ways.

.. Required total number of 3-digits even numbers

$$= {}^{3} C_{1} \times {}^{6} C_{1} \times {}^{3} C_{1}$$
$$= 3 \times 6 \times 6 = 108$$

Constructed OF EDUCATION (S) How many 6-digits telephone numbers can be constructed using the digits 0 to 9 if each 12. number starts with 24 and no digit appears more than once?

Soln. We have, digits are 0,1,2,3,4,5,6,7,8,9

24 is reserved for starting the 6-digits telephone numbers.

So, the remaining digits are 0,1,3,5,6,7,8,9 (8 digits) which can be arranged in 8P_4 ways.

: Total number of 6-digit telephone numbers

$$= {}^{8}P_{4} = \frac{8!}{(8-4)!} = \frac{8!}{4!} = 8 \times 7 \times 6 \times 5 = 1680$$

- 13. How many words with or without meaning can be formed using all the letters of the word **EQUATION** using each letter exactly once?
- **Soln.** In the word EQUATION, there are 8 different letters and these 8 letters can be arranged taking all at time in 8P_8 ways.

Hence, the required number of words formed

$$= {}^{8}P_{8} = 8! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8$$

=40320

- 14. In how many ways can the letters of the word PERMUTATIONS be arranged if
 - the words starts with P and end with S
 - ii) the vowels are all together
 - iii) there are always 4 letters between P and S?
- the word PERMUTATIONS has 12 letters of which 2 are T's and letters P, S are reserved Soln. i) for beginning and end of the words.
 - \therefore remaining 10 letters can be arranged in $\frac{10!}{2!}$ ways

as T is repeated twice.

- \therefore Total number of ways = $\frac{10!}{2!}$
- ii) **PERMUTATIONS**

There are 5 vowels and 7 remaining letters of which T is repeated twice.

:. Taking 5 vowels as a single letter and 7 remaining letters = 8 letters in total, the words can be arranged in $\frac{8!}{2!}$ ways.

Again, 5 vowels can be arranged amongst themselves in 5! ways.

$$\therefore \text{ Total number of ways} = \frac{8!}{2!} \times 5!$$

THE PARTIE (TOP) EDUCATION (S) PERMUTATIONS - 12 letters where T occurs twice and excluding P and S, the remaining iii) 10 letters can be arranged in $\frac{10!}{2!}$ ways.

Since there are always 4 letters between P and S then P or S can be placed in 7 ways by always keeping 4 letters between them.

- P in 1st place and S in 6th place.
- P in 2nd place and S in 7th place. 2.
- P in 3rd place and S in 8th place. 3.
- P in 4th place and S in 9th place. 4.
- P in 5th place and S in 10th place. 5.

- 6. P in 6th place and S in 11th place.
- 7. P in 7th place and S in 12th place.

Again, the positions of P and S can be arranged in 2! Ways.

.. The required number of ways

$$=\frac{10!}{2!}\times7\times2!=25401600$$

15. How many chords can be drawn through 25 points on a circle?

Soln. For drawing a chord, any two points can be selected.

 \therefore These two points can be selected in $^{25}C_2$ ways

$$=\frac{25!}{2!\times 23!}$$
 = 300 ways

Thus, the number of chords drawn = 300.

16. Determine the number of 5 card combinations out of a deck of 52 cards if there is exactly one ace in the combination.

Soln. Since exactly one ace is to be included in the 5 card combinations, 1 ace can be selected from 4 aces in 4C_1 ways. Again, 4 cards from the remaining (52-4) = 48 cards can be selected in ${}^{48}C_4$ ways.

:. The number of ways of selecting 5 card combinations containing exactly one ace

$$= {}^{48}C_4 \times {}^4C_1$$

$$= {}^{48!} \times {}^{4!} \times {}^{4!$$

17. In how many ways can one select a cricket team of eleven from 17 players in which only 5 players can bowl, if each cricket team of 11 must include exactly 4 bowlers?

Soln. Since, there are only 5 bowlers, the number of ways of selecting 4 bowlers can be done in 5C_4 ways and 7 other players can be selected out of 12 remaining players in ${}^{12}C_7$ ways.

 \therefore The number of ways of selecting a cricket team

$$= {}^{5}C_{4} \times {}^{12}C_{7} = 5 \times \frac{12 \times 11 \times 10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}$$
$$= 3960$$

- 18. Two political parties having respectively 15 and 23 MLAs form a government. In how many ways can a cabinet with 7 ministers holding different portfolios be formed such that 3 are from the party with fewer numbers of MLAs.
- **Soln.** 3 ministers can be selected out of 15 MLAs in ${}^{15}C_3$ ways.

4 ministers can be selected out of 23 MLAs in $^{23}C_{\star}$ ways.

7 ministers holding different portfolios can be arranged amongst themselves in 7! ways.

: the number of cabinet with 7 ministers

$$=^{15} C_3 \times^{23} C_4 \times 7!$$

- 19. A photo of ten students, 5 Indians, 3 Americans and 2 Chinese is to be taken so that all the Indians are together and so are the Americans and the Chinese. How many photographs are possible?
- **Soln.** We consider 5 Indians, 3 Americans and 2 Chinese as one group each, then we have 3 groups. These 3 groups can be arranged in 3! Ways.

Again, 5 Indians can be arranged amongst themselves in 5! ways.

3 Americans can be arranged amongst themselves in 3! ways.

& 2 Chinese can be arranged amongst themselves in 2! ways.

 \therefore possible number of photographs to be taken = $5 \times 3 \times 2 \times 3!$.

- In how many ways can 10 boys and 7 girls can be arranged in a row so that no two girls are 20. together?
- **Soln.** Le the 10 boys be put in a row as shown below (B represents boys)

Since no two girls are together, the girls can only be put in places marked as - . The number of such places is 11. So 7 girls can be arranged in ${}^{11}P_7$ ways to occupy the positions of the girls.

Again, among 10 boys, they can be arranged in ${}^{10}P_{10}$ or 10! ways.

 \therefore The number of ways of arrangements = $10 \times^{11} P_7$.

- 21. Numbers are formed by using all the digits 2,5,6,8,9. How many of the numbers so formed DE EDUCAT are divisible by 2 or 5? (Digits not repeated)
- **Soln.** The even digits are 2,6,8.

So, the numbers in which digits in ones place for divisibility by 2 can be arranged in following

The number in which 2 lies in one place can be formed in 4! ways.

The number in which 6 lies in one place can be formed in 4! ways.

The number in which 8 lies in one place can be formed in 4! ways.

and for divisibility by 5, the number in which 5 lies in ones place can be formed in 4! ways.

 \therefore the total number of ways in forming the 5-digit number = 4!+4!+4!+4!

$$=4\times4!$$

- 22. A row of 5 chairs is to be occupied by 3 boys and 2 girls. There are 7 boys and 4 girls present. In how many ways can the line be formed, if the two end chairs have to be occupied by 2 boys?
- Out of 7 boys, 3 boys can be selected in ${}^{7}C_{3}$ ways and out of 4 girls, 2 girls can be selected in ${}^{4}C_{2}$ Soln.

Again, since two ends chairs must be occupied by 2 boys, this can be done in $3 \times 2=6$ ways.

Also, the inner 3 chairs (occupied by 2 girls and 1 boys) can be arranged in 3! ways

 \therefore Total number of arrangement = ${}^{7}C_{3} \times {}^{4}C_{2} \times 6 \times 3!$

$$= \frac{7.6.5}{1.2.3} \times \frac{4.3}{1.2} \times 6 \times (3.2.1)$$
$$= 210 \times 36$$
$$= 7560$$

- 23. A rectangle is cut by 6 lines parallel and 8 line perpendicular to the base. Find the total number of rectangles thus formed.
- Since 6 parallel lines to the base are drawn, hence there are 8 parallel lines. Out of these 8 parallel lines, 2 lines can be selected to form rectangles in 8C_2 ways.

Similarly, out of 10 parallel lines (which are perpendicular to the base) can be selected in ${}^{10}C_{2}$ ways.

.. Total number of rectangles formed

$$= {}^{8}C_{2} \times {}^{10}C_{2} = \frac{8.7}{1.2} \times \frac{10.9}{1.2}$$
$$= 1260$$

- 24. From 10 teacher and 4 students, a committee of 6 is to be formed. In how many ways can this be done?
 - when the committee contains exactly 2 students. (a)
 - at least 2 students. **(b)**
- Since, the committee contains exactly 2 students, 2 students can be selected out of 4 Soln. students in 4C_2 ways and remaining 4 members can be selected out of 10 teachers in ${}^{10}C_4$ ways. EDUCATION (

... Numbers of ways of forming the committee

$$=^{4} C_{2} \times^{10} C_{4}$$
 ways.

- nbers of ways of forming the committee c^{10} C_4 ways.

 Since the committee contains at least 2 students, the number of way of forming the 2 student and 4 teachers = ${}^4C_2 \times {}^{10}C_4 = 1260$ 3 student and 3 teachers ${}^4C_4 = 1260$ committee is given by -
- 3 student and 3 teachers = ${}^4C_3 \times {}^{10}C_3 = 480$ ii)
- iii) 4 student and 2 teachers = ${}^4C_4 \times {}^{10}C_2 = 45$

: Total number of ways of forming the committee

$$=1260+480+45$$

=1785
