Analyse Approfondie Chapitre 1: Les nombres réels

Table des matières

1. Introduction.	1
1.1. Minoration, Majoration	1
1.2. Supremum et infimum.	1
2. Fonctions dans \mathbb{R}	2
2.1. Valeur absolue.	2
2.2. Partie entière.	3
3. Irrationalitée	3

1. Introduction.

Définition 1.1: L'ensemble des nombres réels $\mathbb R$ muni de l'addition et de la multiplication et de la relation d'ordre est caracterisé par

- 1. Sa commutativité,
- 2. Son ordre total,
- 3. \mathbb{R} est Dedekind complet.

Définition 1.2 (Dedekind-complet): On dit qu'un ensemble est Dedekind-complet si toute partie non vide de cet ensemble admet une borne supérieure.

1.1. Minoration, Majoration...

Définition 1.1.1 (Majorant): Soit $A \subset \mathbb{R}$, $M \in \mathbb{R}$. On dit que M est un majorant si $\forall x \in A, M \geq x$.

Définition 1.1.2 (Minorant): Soit $A \subset \mathbb{R}$, $m \in \mathbb{R}$. On dit que m est un minorant si $\forall x \in A, m \leq x$. i.e

Définition 1.1.3 (Partie majorée): On dit qu'une partie de \mathbb{R} est majorée si elle admet un majorant. A est majorée $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in A, M \geq x$.

Définition 1.1.4 (Partie minorée): On dit qu'une partie de \mathbb{R} est minorée si elle admet un minorant. A est minorée $\Leftrightarrow \exists m \in \mathbb{R}, \forall x \in A, m \leq A$.

Définition 1.1.5 (Partie bornée): Soit $A \subset \mathbb{R}$, $R \in \mathbb{R}$. On dit que A est bornée si $\forall x \in A, |x| \leq R$.

1.2. Supremum et infimum.

Définition 1.2.1 (Borne supérieure): Soit $A \subset \mathbb{R}$, $S \in \mathbb{R}$. On dit que S est la borne supérieure de A si S est le plus petit des majorants. On la note $S = \sup(A)$.

Proposition 1.2.1: Soit $A \subset \mathbb{R}$ et $S \in \mathbb{R}$ alors

$$S = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, x \leq S \\ \forall \varepsilon > 0, \exists x \in A, S - \varepsilon < x \leq S \end{cases}$$

Définition 1.2.2 (Borne inférieure): Soit $A \subset \mathbb{R}$, $I \in \mathbb{R}$. On dit que I est la borne inférieure de A si et seulement si I est le plus grand des minorants. On la note $I = \inf(A)$.

Proposition 1.2.2: Soit $A \subset \mathbb{R}$ et $I \in \mathbb{R}$ alors

$$I = \inf(A) \Leftrightarrow \begin{cases} \forall x \in A, x \ge I \\ \forall \varepsilon > 0, \exists x \in A, I + \varepsilon > x \ge I \end{cases}$$

Proposition 1.2.3: La borne supérieure/ inférieure d'un ensemble lorsqu'elle existe est unique.

Démonstration: Supposons que S_1 et S_2 soient deux bornes supérieures de A. Puisque S_1 est un majorant, $\forall x \in A, S_1 \geq x$. Or S_2 est le plus petit des majorants donc $S_2 \leq S_1$. De même, on a $S_1 \leq S_2$ donc par ordre total de \mathbb{R} , $S_1 = S_2$

Remarque: On note $\sup A = +\infty$ si A est une partie de $\mathbb R$ non-majorée. On note $\inf A = -\infty$ si A est une partie de $\mathbb R$ non-minorée.

Définition 1.2.3 (Intervalle): Une partie I de $\mathbb R$ est un intervalle si

$$\forall x, z \in I, \forall y \in \mathbb{R}, x < y < z \Rightarrow y \in I$$

Théorème 1.2.1: \mathbb{R} est archimédien, i.e

$$\forall \varepsilon>0, \forall A>0, \exists n\in\mathbb{N}, \varepsilon n>A.$$

2. Fonctions dans \mathbb{R} .

2.1. Valeur absolue.

Définition 2.1.1 (Valeur absolue): On définit la fonction valeur absolue par :

$$|\cdot|: \mathbb{R} \to \mathbb{R}; x \mapsto \begin{cases} x \text{ si } x \geq 0 \\ -x \text{ si } x \leq 0 \end{cases}$$

Proposition 2.1.1: Soit $x, y \in \mathbb{R}$,

- 1. $|x| = |y| \Leftrightarrow (x = y \text{ ou } x = -y)$
- 2. $|x+y| \le |x| + |y|$ (Inégalité triangulaire).
- 3. $|x-y| \ge ||x|-|y||$ (Inégalité triangulaire inversée).

Proposition 2.1.2: Soit $a, x \in \mathbb{R}$, alors:

- 1. Si $a \ge 0$, $|x| = a \Leftrightarrow (x = a \text{ ou } x = -a)$
- 2. $|x| \le a \Leftrightarrow -a \le x \le a$
- 3. $|x| < a \Leftrightarrow -a < x < a$
- 4. $|x| \ge a \Leftrightarrow (x \ge a \text{ ou } x \le -a)$
- 5. $|x| > a \Leftrightarrow (x > a \text{ ou } x < a)$.

2.2. Partie entière.

Théorème 2.2.1: Pour tout $x \in \mathbb{R}$, il existe un unique $n \in \mathbb{Z}$ tel que $n \le x < n+1$ On dit que n est la partie entière de x, que l'on note |x|.

Corollaire 2.2.1:

 $\forall x \in \mathbb{R}, \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ $\forall x \in \mathbb{R}, x - 1 < |x| \leq x.$

3. Irrationalitée

Théorème 3.1:

$$\sqrt{2} \notin \mathbb{Q}$$
.

Démonstration: Supposons par l'absurde $\sqrt{2} \in \mathbb{Q}$. Alors il existe $a,b \in \mathbb{Z}$ tq $\sqrt{2} = \frac{a}{b} \Leftrightarrow b\sqrt{2} = a \Leftrightarrow 2b^2 = a^2$. Donc 2 apparait un nombre de fois impair dans la décomposition en facteur premier à gauche de l'équation et un nombre de fois pair à droite de l'équation. Or d'parès le théorème fondamental de l'arithmetique, la décomposition en facteur premier est unique. On obtient donc une contradiction. Ainsi, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Théorème 3.2: \mathbb{Q} est dense dans \mathbb{R} i.e

$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{Q}, x < q < y.$$

Démonstration: Soit $x, y \in \mathbb{R}$ tels que x < y. Posons $\varepsilon := y - x > 0$.

Comme \mathbb{R} est archimédien, il existe $n \in \mathbb{N} \setminus \{0\}$ tel que $n\varepsilon > 1$, c'est-à-dire $\frac{1}{n} < \varepsilon$.

Posons $m \coloneqq \lfloor nx \rfloor + 1$.

Alors
$$nx < m \le nx + 1 \Rightarrow x < \frac{m}{n} \le x + \frac{1}{n} < x + \varepsilon = y$$
.

Ainsi,
$$q = \frac{m}{n} \in \mathbb{Q}$$
 vérifie $x < q < y$

Théorème 3.3: $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} , i.e

$$\exists x,y \in \mathbb{R}, x < y \Rightarrow \exists z \in \mathbb{R} \smallsetminus \mathbb{Q}, x < z < y.$$

Démonstration: Soit $x, y \in \mathbb{R}, x < y$.

D'après la démonstration précédente, il existe $q \in \mathbb{Q}, x < q < y$. De même, il existe $p \in \mathbb{Q}, x .$ Ainsi, on a x .

Posons $s := p + \frac{\sqrt{2}}{2}(p-q)$.

Alors $s \in \mathbb{R} \setminus \mathbb{Q}$, sinon on aurait $\sqrt{2} = 2 \frac{s-p}{q-p} \in \mathbb{Q}$. De plus p < s < q puisque $0 < \frac{\sqrt{2}}{2} < 1$. On a bien construit $s \in \mathbb{R} \setminus \mathbb{Q}$ vérifiant x < s < y.

Chapitre 2: Continuité uniforme:

Définition 3.1 (Continuité): Soit $f:D\to\mathbb{R}$ une fonction définie sur $D\subset\mathbb{R}$. On dit que f est continue si

$$\forall x_1 \in D, \forall \varepsilon > 0, \exists \eta > 0, \forall x_2 \in D, |x_1 - x_2| < \eta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Définition 3.2 (Continuité uniforme): Soit $f:D\to\mathbb{R}$ une fonction définie sur $D\subset\mathbb{R}$. On dit que fest uniformément continue si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x_1, x_2 \in D, |x_1 - x_2| < \eta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

 $\it Remarque$: Le quantificateur universel sur x_1 est positionné différemment dans les deux définitions.

- 1. La continuité est une notion locale puisque η depend de ε et de x_1 .
- 2. La continuité uniforme est une notion globale pusique η doit être choisit indépendamment de x_1 et dépendre seulement de ε (η dépend du comportement de f sur tout son domaine).

Définition 3.3 (k-lipschitzienne): Une fonction $f: I \to \mathbb{R}$ est dite k-lipschitzienne s'il existe k > 0tel que

$$\forall x_1, x_2 \in I, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

Proposition 3.1: Soit $f: I \to \mathbb{R}$ une fonction k lipschitzienne. Alors f est uniformément continue.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit } f: I \to \mathbb{R} \text{ une fonction } k \text{ lipschitzienne. Soit } \varepsilon > 0. \text{ Posons } \eta = \frac{\varepsilon}{k}. \\ \text{On a } |x_1 - x_2| \le \eta \Rightarrow |f(x_1) - f(x_2)| \le k |x_1 - x_2| \le k \eta = \varepsilon. \text{ Ainsi, } f \text{ est uniform\'{e}ment continue.} \\ \sqcap \end{array}$

Proposition 3.2: Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I. Si f' est bornée alors f est uniformément continue.

 $\begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit} \ f : I \to \mathbb{R} \ \text{une fonction continue et d\'{e}rivable}, M \in \mathbb{R} \ \text{tel quel} \ \forall x \in I, f'(x) \leq M \\ \text{On a} \ f \ \text{continue sur} \ I \ \text{un segment, et} \ f \ \text{d\'{e}rivable sur} \ I \ \text{ouvert. Donc d'apres le th\'{e}or\`{e}me d'in\'{e}galit\'{e}} \\ \text{des accroissements finis, on a} \ \forall x_1, x_2 \in \mathbb{R}, |f(x_1) - f(x_2)| \leq M(x_1 - x_2). \\ \text{Posons} \ \eta = \frac{\varepsilon}{M}. \ \text{On a} \end{array}$

$$|f(x_1)-f(x_2)| \leq M|x_1-x_2| \leq M\eta = \varepsilon$$

donc f est uniformément continue.

Proposition 3.3: Soit $f: \mathbb{R}_+ \to \mathbb{R}$. Si f est uniformément continue, il existe $a, b \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}_+, f(x) \leq ax + b$.

Proposition 3.4: Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. Si $\lim_{x \to +\infty} \frac{f(x)}{x} = l \in \mathbb{R}$, f est uniformément continue.

Théorème 3.4 (de Heine): Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Alors elle est uniformément continue.