LINAG US 2.5.2 (m;) iEI Grengendensystem van V also [(m;) iEI] = V ZZ: (m; liet ast Baxis <=>]xeV: x = { x; m; eindentig 1.) RE: (m;) iEI ist Basis =>] XEV: x = Ex; m; eindenting Da (m;)icI eine Basis ist muss (m;)icI linear unathangig. Offensichtlich]x: x = \(\int \x: m; \), da (m;) ieI ein Erzeugendensystem von Vist. Wenn eine zweite Linear Kombination für x existieren wirde (mit LK1 # LK2), ware $(m_i)_{i \in I}$ nicht linear anabhängig: $x = \sum_{i \in I} x_i m_i = \sum_{i \in I} x_i m_i$ $m_i \in \exists j \in I : x_j \neq x_j$ oder $m_j \neq m_j$ Sei j dieses Element aus I. $\sum x_i \cdot \frac{m_i}{n_i} = y_i \implies (m_i)_{i \in I}$ ist linear a blanging of 2.) 22: $\exists x \in V : x = \sum_{i \in I} x_i m_i$ eindendig \Rightarrow $(m_i)_{i \in I}$ is f Bessis Da (m.); Et ein Erzengendensystem ist muser wir nu mehr die lineare unabhängigheit Angenommen I y e V mit x \ y fin den es èvei unterchiedliche Linea Hombiuchionen aus (mi) iEI gibo, also $y = \sum_{i \in I} y_i n_i = \sum_{i \in I} \overline{y}_i n_i$ mit $\exists j \in I : y_j \neq y_j$ oder $n_j \neq \overline{n}_j$ Dann gill $\sum_{i \in I} y_i n_i - \sum_{i \in I} y_i n_i = O_V$ Also kännle man x anch wie folgt anschreiben $x = \sum_{i \in I} x_i m_i + \sum_{i \in I} y_i m_i + \sum_{i \in I} (-\bar{y}_i) \bar{n}_i$ Da man y bel. wählen kann gibt es keinen Vektor für den mehrere verschiedene Lineaukonbinationen existieren, Also muss (m;); EI lineau mahhängig sein.