

<u>Course</u> > <u>Unit 6:</u> ... > <u>Lec. 11:</u>... > 5. Exer...

5. Exercise: Linear functions of continuous r.v.'s

Exercises due Mar 25, 2020 05:29 IST Completed

Exercise: Linear functions of continuous r.v.'s

2/2 points (graded)

- (a) Let X be an exponential random variable and let Y=aX+b. The random variable Y is exponential if and only if (choose one of the following statements):
 - always.
 - $\bigcirc a \neq 0.$
 - igcap a
 eq 0 and b=0
 - $\bigcirc a > 0$
 - igorup a>0 and b=0
 - $\bigcirc a = 1$

- (b) Let X be a continuous random variable, uniformly distributed on some interval, and let Y=aX+b. The random variable Y will be a continuous random variable with a uniform distribution if and only if (choose one of the following statements):
 - always.

$\bigcirc a > 0.$	
loomega a eq 0	
igcup a eq 0 and $b=0$	
✓	
Solution:	
(a) For Y to be exponential, its range must be $[0,\infty)$. This will be the case $b=0$. And if indeed $a>0$ and $b=0$, and X has parameter λ , then, for $f_Y(y)=(1/a)f_X(y/a)=(\lambda/a)e^{-\lambda y/a}$, which is exponential (with parameter λ). A scaled and shifted uniform is uniform, except that if $x=0$, then X is	$y\geq 0$, arameter λ/a).
(b) A scaled and shifted uniform is uniform, except that if $a=0$, then Y i random variable, and therefore no longer continuous.	s a constant
Submit You have used 1 of 2 attempts	
Answers are displayed within the problem	
Discussion	Hide Discussion
Topic: Unit 6: Further topics on random variables:Lec. 11: Derived distributions / 5. Exercise: Linear functions of continuous r.v.'s	
Show all posts 🗸	by recent activity 🗸
? In (a), why does the coefficient a have to be positive? The formula for the derived distribution of a continuous variable includes 1/(absolute value)	e of a), so if a i
? Shouldn't this question be after video 6? Shouldn't this question be after video 6?	7
☑ Why a constant random variable not continuous?	4
Why a constant random variable not continuous?Essential condition for an Exponential function?	3

Given that Y=aX+b, If aX = λe^-λZ, then why by adding a constant b to it makes it not exponential anymo...

| Isn't the shape of Y the same as X?
| I got the answer to the first part. But I am still puzzled - isn't the shape of Y the same as X, just scaled ver...

© All Rights Reserved

