ME 2450 Assignment 06a

Technical Content:

Total:

/8

/10

Name:		
Due:	April 5, 2019 by midnight	
Collaborators:		
knowledged. I also acknowled and of the discip	ge that I am aware of University	s original except for source material explicitly ac- policy and regulations on honesty in academic work, es applicable to breaches of such policy and regula-
Name		Date
Signature		Student ID
Score		
Exercise Gradeo	d:	
Presentation:	/2	

Exercise 0 (Eigenvalues and Eigenvectors, 5 points)

An axially loaded wood column has the following characteristics:

- $E = 10x10^9[Pa]$
- $I = 1.25x10^{-5}[m^4]$
- L = 3[m]

$$P = \frac{n^2 \pi^2 EI}{L^2},\tag{1}$$

where P is the buckling load and n is the mode number.

Reference Equations 27.17, 27.18, 27.20, and Example 27.7 of the textbook for this exercise.

- 1. Determine the analytical buckling load value using Equation 1.
- 2. Implement a Power Method function in Matlab or Python which takes as input the coefficient matrix and the number of iterations and returns the resulting eigenvector and eigenvalue. Submit your code.
- 3. Using finite differences [see Equation 27.18 of the text], set up the coefficient matrix that results from using 5 nodes (2 boundary nodes and 3 interior nodes), evenly distributed along the column. By executing your Power Method function, compute the buckling load after 1, 2, 3, 4, and 5 iterations. Submit your code, the tabulated results of the numerically-approximated buckling load vs. Power Method iterations, and a comment about the convergence.
- 4. Determine the level of discretization (number of nodes along the column) and Power Method iterations required to obtain the numerically-approximated buckling load to within 1% of the analytical value.

Exercise 1 [17.12], 3 points

An investigator has reported the data tabulated below for an experiment to determine the growth rate of bacteria k (per d) as a function of oxygen concentration c (mg/L). It is known that such data can be modeled by the following equation:

$$k = \frac{k_{\text{max}}c^2}{c_{\text{s}} + c^2}$$

where c_s and $k_{\rm max}$ are parameters. Use a transformation to linearize this equation. Then, use linear regression to estimate c_s and $k_{\rm max}$ and predict the growth rate at c=2 mg/L. Plot the data, along with the resulting linear regression fit. Submit the plot and your code.

c	k
0.5	1.1
8.0	2.4
1.5	5.3
2.5	7.6
4	8.9