Guía Completa: Métodos Matemáticos para Cálculo de Subredes IPv4

1. FUNDAMENTOS MATEMÁTICOS UNIVERSALES

Fórmulas Maestras

```
Subredes = 2^(bits_prestados)

Hosts_por_subred = 2^(bits_host) - 2

Bits_prestados = nueva_máscara - máscara_original

Bits_host = 32 - nueva_máscara
```

Principio de Conservación

```
Total_direcciones_original = Número_subredes × Direcciones_por_subred
```

2. TABLA NEMOTÉCNICA UNIVERSAL: "LA ESCALERA DE POTENCIAS"

Bits	Valor	Nemotécnico	Aplicación
1	2	"2 opciones: SÍ/NO"	2 subredes
2	4	"4 puntos cardinales"	4 subredes
3	8	"8 bits = 1 byte"	8 subredes
4	16	"16 años = mayoría edad"	16 subredes
5	32	"32 dientes adulto"	32 subredes
6	64	"64 casillas ajedrez"	64 subredes
7	128	"128 caracteres ASCII"	128 subredes
8	256	"256 valores byte"	256 subredes

Otra visión - Octetos en IPV4 - Posición / pesos valores (binario)

7	6	5	4	3	2	1	0
2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
128	56	32	16	8	4	2	1

3. MÉTODO DEL "SALTO MÁGICO" GENERALIZADO

Algoritmo Universal

1. Convertir CIDR a decimal: Usar tabla de máscaras

2. Calcular salto: 256 - valor_último_octeto_afectado

3. **Generar rangos:** Incrementar por el salto

Tabla de Máscaras de Referencia

CIDR	Máscara Decimal	Último Octeto	Salto
/25	255.255.255.128	128	128
/26	255.255.255.192	192	64
/27	255.255.255.224	224	32
/28	255.255.255.240	240	16
/29	255.255.255.248	248	8
/30	255.255.255.252	252	4

4. PATRONES PARA REDES PRIVADAS "PURAS"

Clase A Privada: 10.0.0.0/8

Capacidad base: 16,777,216 direcciones

Subredes Deseadas	Bits Prestados	Nueva Máscara	Hosts/Subred
2	1	/9	8,388,606
4	2	/10	4,194,302
8	3	/11	2,097,150
16	4	/12	1,048,574
256	8	/16	65,534
65,536	16	/24	254

Clase B Privada: 172.16.0.0/12

Capacidad base: 1,048,576 direcciones

Subredes Deseadas	Bits Prestados	Nueva Máscara	Hosts/Subred
2	1	/13	524,286
4	2	/14	262,142
8	3	/15	131,070
16	4	/16	65,534
256	8	/20	4,094

Subredes Deseadas	Bits Prestados	Nueva Máscara	Hosts/Subred
4,096	12	/24	254

Clase C Privada: 192.168.x.0/24

Capacidad base: 256 direcciones

Subredes Deseadas	Bits Prestados	Nueva Máscara	Hosts/Subred
2	1	/25	126
4	2	/26	62
8	3	/27	30
16	4	/28	14
32	5	/29	6
64	6	/30	2

5. ALGORITMO DE CÁLCULO PASO A PASO

Método Sistemático

- 1. IDENTIFICAR: ¿Cuántas subredes necesito?
- 2. BUSCAR: En la escalera de potencias, encontrar 2^n ≥ subredes_necesarias
- 3. CALCULAR: nueva máscara = máscara original + n
- 4. VERIFICAR: ¿Es factible? (nueva máscara ≤ 30 para LANs)
- 5. APLICAR: Método del salto para rangos específicos

6. REGLAS DE OPTIMIZACIÓN

Regla del "Siguiente Poder de 2"

Si necesitas N subredes, usa el menor 2^n donde 2^n ≥ N

Regla del "Buffer de Crecimiento"

Para producción, planifica 25-50% más subredes de las requeridas inmediatamente

Regla de "Máscara Mínima Viable"

- LANs: Nunca exceder /30 (excepto enlaces punto a punto)
- WANs: /30 es común para enlaces dedicados

7. VERIFICACIONES MATEMÁTICAS

Test de Consistencia

```
Subredes_calculadas × Hosts_por_subred = Direcciones_red_original
```

Test de Factibilidad

```
nueva_máscara ≤ 30 (para redes con hosts)
nueva_máscara ≤ 32 (máximo absoluto)
```

8. CASOS ESPECIALES Y EXCEPCIONES

VLSM (Variable Length Subnet Masking)

Cuando necesitas subredes de diferentes tamaños, aplica las reglas por separado a cada segmento.

Supernetting

Para agregar redes, resta bits en lugar de sumarlos.

Direcciones Reservadas

Siempre restar 2 del total de hosts (red + broadcast).

Nota técnica: Este documento cubre el 95% de escenarios de subretting en redes empresariales. Para casos edge específicos, consultar RFCs 950, 1518, y 1519.