EXERCICES: ÉQUATIONS DIFFÉRENTIELLES

1 Équations différentielles du premier ordre

1.1 Calcul

Résoudre les équations différentielles suivantes sur un intervalle à préciser

$$y' + 2y = x^2 - 2x + 3$$
 $(1+x)y' + y = 1 + \ln(1+x)$

$$y' + y = \frac{1}{1 + e^x}$$
 $y' = \sqrt{1 + y^2}$

1.2 Une équation différentielle non linéaire

Rechercher les solutions réelles de l'équation différentielle y' = |y|.

1.3 Discontinuité des coefficients de l'équation

Soit H la fonction de Heaviside définie sur $\mathbb R$ par :

$$\forall t \in \mathbb{R} \quad H(t) = \begin{cases} 0 & \text{si } t \leq 0 \\ 1 & \text{si } t > 0 \end{cases}$$

On considère l'équation différentielle :

$$\forall t \in]-1,1[y'(t) + H(t)y(t) = 0$$

- 1. Résoudre cette équation différentielle.
- 2. Les problèmes de Cauchy associés à cette équation ont-ils toujours une unique solution?

1.4 Une équation différentielle avec peu de solutions

Soit I un intervalle de \mathbb{R} et (E) l'équations différentielle :

$$\forall t \in I \quad |t| \, y'(t) + (t-1) \, y(t) = 0$$

- 1. Résoudre cette équation pour $I = \mathbb{R}_+^*$ puis $I = \mathbb{R}_-^*$.
- 2. En déduire les solutions de cette équation différentielle lorsque $I = \mathbb{R}$.
- 3. Soit $t_0 \in \mathbb{R}$ et $y_0 \in \mathbb{R}$. Le problème de Cauchy $y(t_0) = y_0$ à-t-il toujours au moins une solution? Si oui, est-elle unique?

1.5 Une équation différentielle avec beaucoup de solutions

Soit I un intervalle de \mathbb{R} et (E) l'équation différentielle :

$$\forall t \in I \quad ty'(t) - (t+2)y(t) = 0$$

- 1. Résoudre cette équation pour $I = \mathbb{R}_+^*$ puis $I = \mathbb{R}_-^*$.
- 2. En déduire les solutions de cette équation différentielle lorsque $I = \mathbb{R}$.
- 3. Soit $t_0 \in \mathbb{R}$ et $y_0 \in \mathbb{R}$. Le problème de Cauchy $y(t_0) = y_0$ à-t-il toujours au moins une solution? Si oui, est-elle unique?

1.6 Équation de Bernoulli

Soit I un intervalle de $\mathbb R$ et n un entier supérieur à 2. On considère l'équation différentielle :

$$\forall t \in I \quad t^2 y'(t) + y(t) + y^n(t) = 0$$

En effectuant le changement de fonction $z=y^{1-n}$, donnez les solutions de cette équation différentielle.

2 Équations différentielles du second ordre

2.1 Calcul

Résoudre les équations différentielles suivantes sur $\mathbb R$:

$$y'' + y' - 6y = 1 - 8x - 30x^2$$
 $y'' + 3y' + 2y = e^{-x}$

$$y'' - 4y' + 4y = x \cosh(2x) \qquad y'' + y = \sin^3 x$$

2.2 Coefficients non constants

Résoudre sur $\mathbb R$ l'équation différentielle

$$(2x+1)y'' + (4x-2)y' - 8y = 0$$

sachant qu'il existe une solution de la forme $y = e^{\alpha x}$.

2.3 Équation d'Euler

On considère l'équation différentielle :

(E)
$$t^2y'' - ty' + y = 0$$

- 1. Dans cette question, on souhaite résoudre (E) sur \mathbb{R}_{+}^{*} .
 - (a) En posant $z(u) = y(e^u)$, montrer que y est solution de (E) si et seulement si z est solution d'une équation différentielle du second ordre à coefficients constants que l'on précisera.
 - (b) En déduire l'ensemble des solutions de (E).
- 2. Résoudre (E) sur \mathbb{R}_{-}^{*} puis sur \mathbb{R} .

2.4 Équations fonctionnelles

1. Soit $\lambda \in \mathbb{R}$. Trouver toutes les fonctions deux fois dérivables sur \mathbb{R} telles que :

$$\forall x \in \mathbb{R} \quad f'(x) = f(\lambda - x)$$

2. Trouver toutes les fonctions f deux fois dérivables sur \mathbb{R}_+^* telles que :

$$\forall x > 0 \quad f'(x) = f\left(\frac{1}{x}\right)$$

On utilisera les résultats sur l'équation d'Euler