

2024 Spring Pattern Recognition Homework 2 Announcement

Release Date: 2024/04/10 12:00

Homework 2

- Deadline: 23:59, Apr. 24th (Wed), 2024
- Coding (60%): Implement <u>linear classification</u> methods by only using *numpy*.
 - Submit your code in executable python files (.py).
 - Report the outcome and parameters by screenshots to the questions.
- **Handwritten Questions** (40%): Answer questions about linear classification.
 - Answer the questions in the report.
 - You <u>must use the template</u> and in <u>digital-typed</u> (no handwritten scan)
 - o In English

Links

- Questions and Report template
- Sample code / Dataset

Coding Environment

- Recommnedation: Python 3.9 or higher
- Tips
 - We recommend you to use **virtual environments** when implementing your homework assignments.
 - Here are some popular virtual environment management tools
 - Poetry
 - Conda
 - <u>Virtualenv</u>

Numpy

- High efficient vector and matrix operations
- Numpy Tutorial: <u>Link</u>

element-wise multiply

```
a np.array([1, 2, 3])
b = np.array([4, 5, 5])
for i in range(s.shape[0]):
    a[i] *= b[i]
print(s)
# a = [ 4 10 18]
```



```
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
a *= b
print(a)
# a = [ 4 10 18]
```

squre root

```
import math
a = np.array([1, 4, 2])
for i in range(z.shape[0]):
    a[i] = math.sqrt(a[i])
print(z)
# a = [1 2 3]
```



```
a = np.array([1, 4, 9])
a = np.sqrt(a)
print(a)
# a = [1 2 3]
```

Logistic Regression for Binary classification

• Find the best value of the weights and the intercept of a logistic model

Logistic Regression

Gradient Descent

Fisher's Linear Discriminant, FLD

• FLD seeks the projection w that gives a large distance between the projected data center (means) while giving a small variance within each class.

LDA:

maximizing the component axes for class-separation

$$J(oldsymbol{W}) = rac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

Between-class variance

Within-class variance

Dataset and Environment

- Sonar dataset A binary classification problem
- Datapoints
 - o 208 (166 for train / 42 for test)
- Features
 - o 60 features (already normalized)
- Target
 - \circ Rock or Mine (0/1)

Required packages: `numpy`, `pandas`, `matplotlib`, `loguru`, `flake8`, `pytest`,
 `scikit-learn`

Logistic Regression (25%)

Requirements

- Use Gradient Descent to update your model.
- Use CE (Cross-Entropy) as your loss function.

• Grading Criteria

- (0%) Show the hyperparameters (learning rate and iteration, etc) that you used. (-3 pts if absent)
- o (5%) Show your weights and intercept of your model.
- o (5%) Show the <u>AUC</u> score of the classification results on the testing set.
 - sklearn is allowed to compute AUC score (only for this)
- (15%) Show the **accuracy score** of your model **on the testing set**.

(· I · · · · · · · · · · · · · · · · ·	
Accuracy	Score (pt)
>=0.8	15 pt
>=0.75, <0.8	10 pt
>=0.7, <0.75	5 pt
<0.7	0 pt
	10

Fisher's Linear Discriminant, FLD (25%)

• Requirements:

• Implement FLD to project the data from 2-dimensional to 1-dimensional space.

• Criteria:

- \circ (0%) Show the mean vectors m_i (i=0, 1) of each class of the training set. (-3 pts if absent)
- \circ (5%) Show the within-class scatter matrix S_W and between-class scatter matrix S_B of the training set.
- o (5%) Show the Fisher's linear discriminant w of the training set.

Fisher's Linear Discriminant

Accuracy	Score (pt)
>=0.70	10 pt
>=0.6, <0.7	5 pt
<0.6	0 pt

• Criteria

- (15%) Obtain predictions for the testing set by measuring the distance between the projected value of the testing data and the projected means of the training data for the two classes.
 - Plot the projection line trained on the training set and show the slope and intercept on the title.
 - Obtain the prediction of the testing set, plot and colorize them based on the prediction.
 - Project all testing data points onto 1d space.
 - Also, **Show the accuracy score** on the testing set.

Code Output

- Do not modify the main function architecture heavily.
- Your code output will look like this

- 1. PEP8
- 2. Google Python Style

Additional Requirements

Code Check and Verification: **Lint** the code and show the **PyTest** results (10%)

- Code linting: \$ flake8 main.py
 - -2pt per warning / error
- Run PyTest: \$ pytest ./test_main.py -s
 - **-5pt** per failed case

```
./main.py:103:1: W391 blank line at end of file
1 W391 blank line at end of file
```

Handwritten Questions (40%)

<u>2-1</u> (10%)

Is it suitable to use Mean Square Error (MSE) as the loss function for Logistic Regression? Please explain in detail.

2-2 (15%)

In page 31 of the lecture material (linear_classification.pdf), we introduce two methods for performing classification tasks using Fisher's linear discriminator: 1) Determining a threshold, 2) Using the k-NN (k-nearest neighbors) rule.

Please discuss at least three aspects, either advantages or disadvantages, of using the k-NN method compared to determining a threshold (resources, performance, etc.).

2-3 (15%)

In logistic regression, what is the relationship between the sigmoid function and the softmax function? In what scenarios will the two functions be used respectively?

Report

- Please follow the report template format. (-5pts if not use the template)
- Link

Submission

- Compress your **code** and **report** into a **.zip file** and submit it to E3.
- Report should be written in English. (-5 pts if not English)
- STUDENT ID>_HW2.zip
 - o main.py
 - o setup.cfg
 - o test_main.py
- Don't put the data (e.g. train.csv / test.csv) into submission file

Other rules

- Late Policy: A penalty of **20 points** per additional late day. (-20pt / delayed.day)
 - For example, If you get 90 points but delay for two days, your will get only 50 points!

- No Plagiarism: You should complete the assignment by yourself. Students engaged in plagiarism will be penalized heavily. Super serious penalty.
 - o e.g. -100pt for the assignment or failed this course, etc
 - Report to academic integrity office

AI-Assistant

- Not recommended but no forbidden.
- Copy-and-Paste answers from the AI-Assiant will be seen as Plagiarism
 - However, you can have your own answer first then rephrase it by Al-Assiant.
- Some questions might be parts of final exam, make sure you understand the concept

FAQs

- If you have other questions, ask on **E3 forum** first! We will reply as soon as possible.
 - o If the E3 discussion area still have issues, feel free to write email to TAs (And remember to cc all TAs).

Have Fun!