ENHS

Eficiência Energética

Inversores de Frequência em sistemas de esgotamento sanitário

Eng. Márcio Miranda Córdula marcio.cordula@cagepa.pb.gov.br

Apresentação Geral

1. SCADA-LTS

- ★ Aquisição;
- ★ Supervisão;
- ★ Controle nas nuvens.

2. Inversores de Frequência

- ★ Aspecto elétricos;
- ★ Fator de potência refletido para a rede.
- ★ Controle em malha fechada.

3. Estudo de caso EEE Beira Rio

★ EEE Beira Rio;

4. Estudo de caso EEAT R11 e São Gonçalo/Marizópolis

- ★ EEAT R11;
- ★ EEAT São Gonçalo.

1 - SCADA-LTS

"Scada-LTS é um software livre, gratuito e de código-fonte aberto, para desenvolvimento de aplicações de Automação, Aquisição de Dados e Controle Supervisório."

Aquisição

Vários protocolos de comunicação disponíveis, sejam por barramento serial ou via ethernet.

Supervisão

Sinóticos, visualização de variáveis por listas, gráficos, geração de relatórios e estatísticas.

Controle

controle a distância, criação de rotinas de controle e alarmes que podem ser enviados por email.

Aquisição

São utilizados dois principais protocolos: HTTP Receiver e Modbus IP.

- Via microcontrolador Esp8266 e ESP32;
- Permite leitura das grandezas físicas;
- Transmissão de dados via internet;
- Requisito: Parâmetro HTTP (endereço do transmissor + nome da variável)

- Via microcontrolador Esp8266, ESP32 ou CLP;
- Permite leitura e escrita das grandezas físicas;
- Transmissão de dados via internet;
- Requisito: Endereço IP do computador conectado à internet.

Lista de valores, sinóticos, gráficos e estatísticas.

Controle: Operação

2 - Inversores de Frequência

Aspecto elétricos

- Entrada da rede elétrica
- 2. Retificador
- 3. Barramento CC
- 4. Reatores CC
- 5. Banco de capacitores
- 6. Inversor
- 7. Saída para o motor
- 8. Circuito de controle

Potência reativa

Inversores de Frequência

Fator de potência refletido para a rede

$$FP_{seno} = \cos \phi$$

Sistemas com forma de onda senoidal

$$P = \frac{\cos\phi_1}{\sqrt{1 + TDH^2}}$$
 Sistemas com apenas a tensão de entrada senoidal

Inversores de Frequência

Inversores de Frequência

Controle em malha fechada

- 1. Faixas de operação do motor;
- 2. Relações de semelhanças hidráulicas;
- 3. Ensaio de vazão; Vazão x Economia de Energia
- 4. Qual a faixa de frequência aplicada Ideal para operação do CMB?

$$\frac{Q'}{Q} = \frac{n'}{n} \tag{1.0}$$

$$\frac{H'}{H} = (\frac{n'}{n})^2 \tag{1.1}$$

$$\frac{P'}{P} = \left(\frac{n'}{n}\right)^3 \tag{1.2}$$

Estação Elevatória de Esgotos da Beira Rio - Estudo de caso

Características:

- Quatro conjuntos motobombas de 130 kW, de eixo horizontal;
- Centro de controle de motores (CCM) composto por quatro Soft Starter modelo SSW 07 Weg de 365 A;
- Sistema de automação e controle da Siemens;
- Sensores hidrostático para leitura e controle do nível
- Não possui grupo gerador.
- Energia Reativa Excedente EREX;
- Excessivos números de partidas do CMB;
- Elevado custo de manutenção no acoplamento mecânico do CMB;
- Elevada demanda ponta e fora ponta solicitada da rede;

O contrato com a Energisa:

- Modalidade Horo-sazonal Azul;
- Demanda contratada fora ponta de 400 kW;
- Demanda contratada ponta 400 kW;
- Consumo médio mensal de energia ativa de 104,828 MWh;
- Custo anual com multa por Energia Reativa Excedente de R\$ 60.000,00;
- Custo anual com energia ativa R\$ 900.000,00.

Estação Elevatória de Esgotos da Beira Rio - Estudo de caso

- O novo ponto de operação foi estimado levando em consideração a vazão mínima, média e máxima do sistema.
- Utilizando as relações de Semelhança Hidráulica e o novo ponto de operação do sistema, determina-se a rotação, vazão Q, altura manométrica H e a nova potência solicitada pelo conjunto motobomba.

Tabela 15: Dados de entrada.

EEE Beira Rio – Usina I		
Vazão por conjunto motobomba a 60 Hz	200,00	I/s
Rotação - N1	1200,00	RPM
Altura manométrica do conjunto - H1	37,00	m
Potência ativa nominal	130,00	kW
Potência ativa em operação	100,00	kW
Fator de Potência nominal	0,84	
Quantidade de conjunto motobomba instalados	4,00	unid
Quantidade de conjunto motobomba em funcionamento	3,00	unid
Potência total instalada	520,00	kW
Demanda contratada desta unidade	400,00	kW
Energia média dos últimos 12 meses	104828,00	kWh
Vazão total do sistema em operação a plena Carga	600,00	I/s
Novo ponto de operação em malha aberta (N2/N1)	85,00	%
Quantidade de CMB no novo ponto de operação	3,00	unid

Fonte: Autor

Tabela 16: Determinação do ponto de operação

EEE Beira Rio – Usina I					
N ₁	1200,00	RPM			
N ₂	1020,00	RPM			
Q ₁	200,00	I/s			
$Q_2 = Q_1(N_2/N_1)$	170,00	I/s			
H ₁	37,00	m			
$H_2 = H_1(N_2/N_1)^2$	26,73	m			
P ₁	130,00	kW			
$P_2 = P_1(N_2/N_1)^3$	79,84	kW			
(N ₂ /N ₁)%	0,85	%			
Horas de funcionamento a plena carga	349,43	h			
Horas de funcionamento na vazão projetada	411,09	h			

Fonte: Autor

Tabela 17: Ensaio de vazão.

EE	EEE Beira Rio – Usina I				
Rotação (RPM)	Vazão (I/s)	Potência (KW)			
1000	200,00	100,00			
950	172,00	77,00			
900	130,00	60,00			

Fonte: Autor

Tabela 18: Relações de Rateaux.

EEE Beira Rio – Usina I				
Rotação (N2/N1)	Vazão (N2/N1)2	Potência (N2/N1)3		
1,00	200,00	130,00		
0,95	190,00	111,46		
0,90	180,00	94,77		

Fonte: Autor

Tabela 19: Consumo energético pelo ensaio de vazão.

EEE Beira Rio – Usina I					
Rotação (RPM)	Vazão (I/s)	Volume	Tempo de Funcionamento	Energia consumida	
1000	200,00	754761600,00	1048,28	104828,00	
950	172,00	754761600,00	1218,93	93857,63	
900	130,00	754761600,00	1612,74	96764,31	

Fonte: Autor

O ensaio de vazão demonstrou que entre as faixas de rotação de 900 a 1000 RPM, o sistema convergiu para economia de energia, em conformidade com as relações de semelhança hidráulica, no entanto a rotação de 950 RPM é considerado o ponto ótimo no processo de convergência para economia de energia.

• Ao utilizar 85% da rotação nominal, obtém-se uma economia de 40,12% da demanda contratada e 6,08% do consumo total de energia ativa. O referido ponto encontra-se dentro da faixa determinada pelo ensaio de vazão.

Tabela 20: Dados de saída da rotina de programação.

EEE Beira Rio – Usina I				
Volume Total mensal da E.E.E (m³)	754761,60	m ³		
Vazão total do sistema na nova configuração de frequência e operação	510,00	I/s		
Energia Projetada (KWh)	98459,70	kWh		
Economia de energia (%)	6,08	%		
Nova Demanda da unidade	239,51	kW		
Redução na demanda contratada unidade	40,12	%		

Fonte: Autor

ENHS

Figura 10: Despesas energia reativa - R\$ total.

Fonte da web energia Cagepa

Fim das multas por reativos EREX, promovendo uma economia de aproximadamente R\$ 60.000,00 por ano

Figura 11: Despesas energia ativa - R\$ total ano 2020 e 2021.

Fonte da web energia Cagepa

Em 2020, aplicamos a correção no valor da tarifa de 9,62%, com isso, o referido período de consumo representou um valor total do período de R\$ 643.790,71, já no mesmo período em 2021 acumulou um valor de 500.009,85.

Figura 12: Nível do poço de sucção EEE Beira Rio utilizando soft starter.

Fonte da Scada-LTS Cagepa

Figura 13: Nível do poço de sucção EEE Beira Rio utilizando inversor de frequência.

17

Estudo de caso EEE Beira-Rio

Controle do nível do poço Soft starter X Inversor de frequência em malha fechada.

Conclusão

- O ensaio de vazão determinou a faixa de frequência ótima para operação do sistema;
- Economia na fatura do consumo de energia de aproximadamente +/- R\$ 190 mil/ano;
- Fim das multas por energia reativa excedente, economia de +/- R\$ 60 mil/ano;
- Redução do custo de manutenção mecânica pelo elevado número de partida;
- O retorno do investimento ocorreu com aproximadamente 6 meses;
- Controle de vazão eficiente;
- Comprovada a viabilidade do uso de inversor de frequência.

Estudo de caso EEAT R11

Rede de distribuição (R11), responsável pelo abastecimento do bairro do Cristo, Ceasa, Rangel, Vale das Palmeiras e adjacências.

Representa um volume médio faturado mensal de aproximadamente 147.000 m3.

Imóveis cadastrados: 19.497 - ligados 14.189 - cortados 4.502 - suprimidos 570 - factíveis 221 e potenciais 15

Figura 1 - Sistema de Abastecimento de Água.

Fonte: PEREIRA & CONDURÚ, 2014 adaptado.

EEAT R11

Objetivo

- → Monitorar a pressão hidrostáticas dos consumidores em uma rede de distribuição de água utilizando o microcontrolador ESP8266
- → Desenvolver um sistema de automação e controle nas nuvens, capaz de controlar uma planta de abastecimento de água por injeção direta na rede de distribuição
- → Implementar sistemas de controle em malha fechada utilizando os inversores de frequência para controle da pressão hidrostática na rede de distribuição de água;
- → Promover a redução do número de vazamentos na rede de distribuição;
- → Promover eficiência energética;

EEAT R11

Esquemático da EEAT, os CMB, os reservatórios apoiados e o reservatório elevado, mostrando também a injeção direta na rede de

distribuição pelos CMB.

EEAT R11 - Mapeamento de pressão

EEAT R11 - Mapeamento de pressão

Suas pressões são aferidas utilizando uma ESP8266 e um transdutor de pressão para cada ponto de medição.

A leitura dos dados realizados pela ESP8266 é fornecida para o sistema supervisório por meio do protocolo HTTP Receiver.

Figura 23 - Circuito de condicionamento para medição de pressão pela ESP 8266.

EEAT R11 - Mapeamento de pressão

Recursos do Scada-LTS

Para ser possível consolidar o **controle nas nuvens**, foi necessário utilizar três principais recursos do ScadaLTS: a possibilidade de coleta de dados de pressão armazenados no banco de dados do sistema supervisório, o envio de dados da velocidade de rotação dos motores e da pressão na rede através do protocolo Modbus TCP e HTTP receiver, respectivamente e o tratador de eventos que pode aplica o valor de um datapoint (Variável monitorada) em outro.

Estudo de caso: EEAT R11 - Controle de Pressão

Fonte: CAGEPA, 2022.

Figura 30 - Pressão após a implantação do sistema de controle (mca x horas).

Fonte: CAGEPA, 2022.

Estudo de caso: EEAT R11

Na Figura 31 é possível observar a variação da frequência em Hz no CMB 1 da EEAT R11, esta variação é proveniente das ações de controle em busca da estabilidade da pressão na rede em torno do set point estabelecido como objetivo.

Figura 31 – Frequência do CMB após a implantação do sistema de controle (Hz x horas).

Fonte: CAGEPA, 2022.

Estudo de caso: EEAT R11

Em relação ao consumo de energia ativa, houve uma redução de aproximadamente 28% em comparativo com os respectivos meses entre os anos de 2020 e 2022.

Figura 33 - Comparativo de energia em kWh faturado no período de 2020 a 2022.

Fonte: Web Energia CAGEPA.

Figura 34 - Despesa reativa em 2021.

Fonte: Web Energia CAGEPA.

A despesa com energia reativa pode ser observada na Figura 34, confirmando a eliminação da multa por reativo, gerando uma economia de R\$ 22.912,51 por ano.

Estudo de caso: EEAT R11

Vazamentos em áreas de influência do R11						
Mês	Vaz de rede	Vaz de Ramal	Custo Rede	Custo Ramal	Total	
03/2021	22	14	R\$ 8.800,00	R\$ 2.380,00	R\$ 11.180,00	
04/2021	14	16	R\$5.600,00	R\$ 2.720,00	R\$ 8.320,00	
05/2021	17	14	R\$ 6.800,00	R\$ 2.380,00	R\$ 9.180,00	
06/2021	20	21	R\$ 8.000,00	R\$ 3.570,00	R\$ 11.570,00	
07/2021	12	19	R\$ 4.800,00	R\$ 3.230,00	R\$ 8.030,00	
08/2021	26	18	R\$ 10.400,00	R\$ 3.060,00	R\$ 13.460,00	
09/2021	12	14	R\$ 4.800,00	R\$ 2.380,00	R\$ 7.180,00	
10/2021	20	13	R\$ 8.000,00	R\$ 2.210,00	R\$ 10.210,00	
11/2021	11	14	R\$ 4.400,00	R\$ 2.380,00	R\$ 6.780,00	
12/2021	10	15	R\$ 4.000,00	R\$ 2.550,00	R\$ 6.550,00	
01/2022	9	13	R\$ 3.600,00	R\$ 2.210,00	R\$ 5.810,00	
02/2022	6	7	R\$ 2.400,00	R\$ 1.190,00	R\$ 3.590,00	
03/2022	7	13	R\$ 2.800,00	R\$ 2.210,00	R\$ 5.010,00	
Total					R\$ 106.870,	

	Vazamentos	em áreas de i	nfluência do R	11 média atual	
Mês	Vaz de rede	Vaz de Ramal	Custo Rede	Custo Ramal	Total
Média mensal	3	10	R\$ 1.200,00	R\$ 1.700,00	R\$ 2.900,00
Total 12 meses					R\$ 34.800,00

EEAT R11

Resultados

- → Eficiência energética, redução de aproximadamente 28% no consumo de energia elétrica;
- → Eliminação de multas por reativos, gerando uma economia de R\$ 22.912,51 por ano;
- → Controle de pressão na rede de distribuição de água;
- → Redução do número de vazamento na rede de distribuição, contribuído para a redução das perdas hidráulicas tornando o sistema mais robusto
- → Redução do custo operacional.

EEAT São Gonçalo/Marizópolis

EEAT São Gonçalo/Marizópolis

Nível do reservatório elevado - REL

EEAT São Gonçalo/Marizópolis

