Review Test 2 Math 142

Name Section Id

Use exactly one page for each of the five numbered questions (use the back of the page if necessary).

Put your name and the question number on each page.

Put a box around the final answer to a question.

You must *show* your work in order to get possible credits.

- 1. Evaluate the integrals.
- a) $\int x^2 \cos x dx$
- $b) \int x^{\frac{1}{2}} \ln x \, dx$
- c) $\int \sqrt{\frac{1-x}{1+x}} dx$ (hint: let $x = \cos 2u$ and recall $1 + \cos 2u = 2\cos^2 u$ and $1 - \cos 2u = 2\sin^2 u$
- d) $\int \frac{e^x}{\sqrt{e^{2x}-1}} dx$

- 2. Evaluate the definite integrals: a) $\int_0^2 \tan^{-1}(1-x) dx$ b) $\int_{-\pi}^{\pi} \frac{\sin x}{\sqrt{3-\sin^2 x}} dx$ c) $\int_0^1 \frac{1}{\sqrt{x^2+1}} dx$ d) $\int_{-\pi/8}^{\pi/8} \sec(2x) \tan^3(2x) dx$ e) $\int_{-\pi}^{\pi} \sin^2 x \cos^2 x dx$
- 3. Find the following limits:

$$(a) \quad \lim_{x \to 0} \frac{\sin^{-1} x}{x}$$

$$(b) \quad \lim_{x \to +\infty} x^2 e^{-(x+2)}$$

4. Use partial fractions to decompose the rational function P(x)/Q(x) as is the integrand, then evaluate the integral.

a)
$$\int \frac{x^2 + 4x + 4}{x^3 + 2x} dx$$
 b)

$$\int \frac{7s+4}{(s-2)(s+4)} ds$$

c)
$$\int_0^1 \frac{u^3}{(u+1)^2} du$$

d)
$$\int \frac{5x^3 - 3x^2 + 2x - 1}{x^4 + x^2} dx$$

Hint:
$$\frac{P(x)}{Q(x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{x^2+1}$$

e)
$$\int \frac{x}{x^4 + 4x^2 + 8} dx$$

Hint: complete square of the denominator Q(x) first.

5. Integration by Parts. Evaluate the following integral.

$$a) \int x \cos 4x \ dx$$

$$b) \int \sin^{-1}(2x) dx$$

6. L'Hopital's Rule. Determine whether the limit exists, if so, find the limit.

a)
$$\lim_{t\to 0} \frac{t-\sin t}{\tan t}$$

b)
$$\lim_{y\to 2} \frac{y^2+6}{y-2}$$

c)
$$\lim_{z \to 1} \frac{z^2 + 4z - 5}{z^3 - 1}$$

$$d) \lim_{t \to \infty} \frac{\ln(t^2 + 5t)}{\ln t}$$

$$e) \lim_{r\to 0} (1+3r)^{\frac{1}{r}}$$

7. Determine whether the improper integral converges. If it does, find the value of the integral:

(a)
$$\int_0^1 \frac{1}{1-x} dx$$

(b)
$$\int_{2}^{\infty} \frac{1}{x \ln x} dx$$

(c)
$$\int_0^\infty 5^{-x} dx$$

8.Determine whether the improper integral converges. If it does, find the value of the integral.

$$a) \int_0^2 \ln x \, dx$$

$$b) \quad \int_1^\infty \frac{1}{x^{0.99}} \, dx$$

c)
$$\int_0^1 \ln(1-x) \, dx$$

c)
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{\sin x}} dx$$

9. Give the integral expressions of both the surface area S and the volume V of the object (called *Gabriel cone*) generated by revolving the curve from 1 to ∞

$$y = 1/x, \qquad 1 \le x < \infty$$

around the x axis. Do you think the cone has a finite volume or a finite surface area?

[Hint] Show that V is finite and $S = \infty$!!