Problem sets for MATH 312

Ashok M. Rao

October 16, 2017

1 Homework 1

1.1 (Strang 1.1.2)

See figure 1. (I could not make the arrows in time but they are radially outward).

1.2 (Strang 1.1.18)

Let me pick e_1 and e_2 in \mathbb{R}^2 . Linear combinations over positive coefficients would then yield the square shaded over $\{0,1\} \times \{0,1\}$. See figure 2.

1.3 (Strang 1.2.7)

The inner product between two vectors returns the (normalized) cosine of the angle subtended thereof. So

- 1. $\theta_a = \arccos 1/2$, 60 degrees.
- 2. $\theta_b = \arccos 0$, 90 degrees.
- 3. $\theta_c = \arccos 1/2$, 60 degrees.
- 4. $\theta_d = \arccos 1/\sqrt{2}$, 135 degrees.

1.4 (Strang 1.2.13)

Flipping bits across the z-axis, vectors (0,1,0) and (1,0,-1) are orthogonal to each other and the given vector (1,0,1).

1.5 (Strang 1.2.14)

Flipping bits like above, so that there are an even number of zero coordinates on each vector, we first have (1, 1, -1, -1), and then (0, 0, 1, -1) and (1, -1, 0, 0), as possibilities.

1.6 Linear independence of three vectors

No. $\mathbf{u} + \mathbf{w} = 2\mathbf{v}$.

Figure 1: Vectors as labeled

Figure 2: The unshaded area is the span of linear combinations

1.7 (Strang 1.3.14)

This follows from cross multiplication. Whenever (a, b) is a multiple of (c, d) we have a/c = b/d and thus it must be that a/b = c/d.

2 Homework 2

2.1 (Strang 2.1.16)

A matrix R rotates a vector $x \in \mathbf{R}^2$ by θ degrees if $\langle x, Rx \rangle = (x^2 + y^2) \cos \theta$. Not quite guessing possible candidates in the dark, let $x_r = x \cos \theta - y \sin \theta$ and $y_r = x \sin \theta + y \cos \theta$, e.g.

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Clearly now $\langle x, Rx \rangle = (x^2 + y^2) \cos \theta$ providing the desired result. In clockwise terms then,

$$R(-90 \text{ degrees}) = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad R(180 \text{ degrees}) = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

The latter result is more obviously interpreted as -I.

2.2 Triangular elimination

The system of equations to be solved is,

$$2x_1 + 3x_2 = 1$$
$$10x_1 + 9x_1 = 11$$

so $A = \begin{bmatrix} 2 & 3 \\ 10 & 9 \end{bmatrix}$ and from $r_2 \leftarrow r_2 - 5r_1$ we get the system,

$$\begin{bmatrix} 2 & 3 \\ 0 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

yielding $x = \begin{bmatrix} 2 & -1 \end{bmatrix}^T$.

2.3 (Strang 2.2.13)

The triangular matrix is

$$\begin{bmatrix} 2 & -3 & 0 \\ 4 & -5 & 1 \\ 2 & -1 & -3 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

following row operations

$$r_2' \leftarrow r_2 - 2r_1$$

 $r_3' \leftarrow r_3 - r_1 - 2r_2'$

which gives x = (3, 1, 0) as the solution.

2.4 (Strang 2.3.17)

The constraints here define the system

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \\ 14 \end{bmatrix}$$

With row operations,

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 14 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 2 & 8 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix}$$

And so a = 2, b = 1 and c = 1.

2.5 (Strang 2.3.25)

In the given matrix $A_3 = A_1 + A_2$ and quite obviously $b_1 + b_2 \neq b_3$. Thus row operations would get you as far as 0 = 3. Letting $b'_3 = b_1 + b_2$ would reduce the system to the rectangular matrix defined on any two of the three rows, with infinitely many solutions.

2.6 (Strang 2.3.28)

We have AB = I and BC = I. By the definition of I, A = A(BC) and C = (AB)C and thus A = C holds by the associative property.

3 Homework 3

3.1 (Strang 2.4.15)

- 1. True, otherwise rows and columns don't match or commute.
- 2. False, AB need not equal BA and they may have different sizes. $(m \times m \text{ and } n \times n)$.
- 3. True, since inner dimensions agree on both.
- 4. False, let B = 0 as counterexample.

3.2 (Strang 2.5.10)

For A the inverse follows just by logic of matrix multiplication and B is block diagonal,

$$A^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1/5 \\ 0 & 0 & 1/4 & 0 \\ 0 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 \end{bmatrix}, \quad B^{-1} = \begin{bmatrix} 3 & -2 & 0 & 0 \\ -4 & 3 & 0 & 0 \\ 0 & 0 & 6 & 5 \\ 0 & 0 & 7 & 6 \end{bmatrix}$$

3.3 (Strang 2.5.25)

For B notice that the all-ones vector is in the nullspace and thus no inverse exists. To invert A, first swap rows 1 and 2 and then eliminate

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & -1 & 1 \\ 0 & 0 & -4 & 1 & 1 & -3 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 3/4 & -1/4 & -1/4 \\ 0 & 1 & 0 & -1/4 & 3/4 & -1/4 \\ 0 & 0 & 1 & -1/4 & -1/4 & 3/4 \end{bmatrix}$$

3

Thus the answer becomes

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}$$

3.4 (Strang 2.6.13)

By inspection, L is a lower triangular matrix of ones and U is upper triangular of a, then b-a, then c-b, and finally d-c. Specifically,

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a & a & a & a \\ 0 & b-a & b-a & b-a \\ 0 & 0 & c-b & c-b \\ 0 & 0 & 0 & d-c \end{bmatrix}$$

3.5 (Strang 2.7.16)

For A, we swap rows 1 and 2,

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

And for B we swap rows 2 and 3,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

3.6 Question about linearly independent vectors

Yes. The matrix formed by these vectors are diagonally-dominant and thus invertible.