

B.Sc ENGINEERING FIRST SEMESTER EXAMINATION: 2015/2016 DEPARTMENT OF FOOD PROCESS ENGINEERING FPEN 201: INTRODUCTION TO FOOD PROCESS ENGINEERING (2 Credits)

Answer FOUR questions.

TIME: 2 HOURS

Question 1

A material containing 75% water and 25% solid is fed to a granulator at a rate of 4000 kg/hr. The feed is premixed in the granulator with recycled product from a dryer, which follows the granulator (to reduce the water concentration of the overall material fed into the granulator to 50% water, 50% solid). The product that leaves the dryer is 15.7% water. In the dryer, air is passed over the solid being dried. The air entering the dryer contains 4% water by weight (mass), and the air leaving the dryer contains 7% by weight (mass).

- a) What is the ratio of the recycle to the feed entering the granulator?
- b) What is the rate of air flow to the dryer on a dry basis?

Question 2

In the anaerobic fermentation of grain, the yeast *saccharomyces cerevisiae* digests glucose from plants to form the products ethanol and propenoic acid by the following overall reactions:

Reaction 1: $C_6H_{12}O_6 \implies 2C_2H_5OH + 2CO_2$ Reaction 2: $C_6H_{12}O_6 \implies 2C_2H_3CO_2H + 2H_2O$

In an open, flow reactor 3500 kg of a 12% glucose/water solution flow in. During fermentation, 40 kg of water are produced together with 90 kg of unreacted glucose. What are the weight percents of ethyl alcohol and propenoic acid that exit in the broth. Assume that none of the glucose is assimilated into the bacteria. (MW: C=12; H=1; O=16)

EXAMINER: GEORGE AFRANE Page 1 of 3

Question 3

- a) Draw a block flow diagram for a processing unit with a purge stream and label it.
- c) A drier takes in wet timber (20.4%) and reduces the water content to 9.5%. Determine the kg of water removed per kg of timber that enters the process.
- d) A synthesis gas analyzing 5.4% CO_2 , 1.2% O_2 , 42.3% CO, and 48.5% H_2 (the balance is N_2), is burned with 30% dry excess air. What is the composition of the flue gas?

Question 4

The organic fraction in the wastewater is measured in terms of the biological oxygen demand (BOD) of the material, namely the amount of dissolved oxygen required to biodegrade the organic contents. If the dissolved oxygen (DO) concentration in a body of water drops too low, the fish in the stream or lake may die. The Ghana Environmental Protection Agency has set the minimum harmattan levels for lakes at 5 mg/L of DO.

- a) If a stream is flowing at 0.3 m³/s, and has an initial BOD of 5 mg/L before reaching the discharge point of a sewage treatment plant, and the plant discharges 3.785 ML/day of wastewater, with a concentration of 0.15 g/L of BOD, what will be the BOD concentration immediately below the discharge point of the plant?
- b) The plant reports a discharge of 15.8 ML/day having a BOD of 72.09 mg/L. If the EPA measures the flow of the stream before the discharge point at 530 ML/day with 3 mg/L of BOD, and measures the downstream concentration of 5 mg/L of BOD, is the report correct? (1 m³ = 10³ liters)

Question 5

Methanol can be produced by the following reaction:

$$CO+2H_2 \Longrightarrow CH_3OH$$

From the figure below:

EXAMINER: GEORGE AFRANE Page 2 of 3

- a) What is the single pass conversion of H₂ in the reactor?
 b) What is the single pass conversion of CO?
 c) What is the overall conversion of H₂?

- d) What is the overall conversion of CO?
- e) What is the ratio of recycle to feed?

EXAMINER: GEORGE AFRANE

THE FOLLOWING EQUATIONS AND CONSTANTS ARE PROVIDED

 $W_{lost} = W_s - W_{ideal}$

$$\frac{\Delta S}{R} = \int \frac{C_P}{R} \frac{dT}{T} \cdot \int \frac{dP}{P}$$

$$dU = TdS - PdV$$
for $dZ = Mdx + Ndy$, the Maxwell Relation,
$$\left(\frac{\partial M}{\partial y}\right)_x = \left(\frac{\partial N}{\partial x}\right)_y$$

$$|W| = |QH| \cdot |QC|$$

$$\Delta S_M = \frac{-|QH|}{T_H} + \frac{|QC|}{T_C}$$

$$\Delta S_M = Q_H \left(\frac{T_H - T_C}{T_H T_C}\right)$$

$$\eta = 1 \cdot \frac{|QC|}{Q_H}$$

$$\frac{|QH|}{|QC|} = \frac{T_H}{T_C}$$

$$\frac{U_1 A_1}{V_1} = \frac{U_2 A_2}{V_2}$$

$$dF = -(S + PV\alpha)dT + PV\beta dP$$

$$dG = VdP \cdot SdT$$

$$1 \ atm \cdot cm^3 = 0.024 \ cal$$
For an ideal gas; $\alpha = \frac{1}{T} \ and \beta = \frac{1}{P}$

Table A.2 Values of the Universal Gas Constant

$$\begin{split} R &= 8.314 \text{ J mol}^{-1} \text{ K}^{-1} = 8.314 \text{ m}^3 \text{ Pa mol}^{-1} \text{ K}^{-1} \\ &= 83.14 \text{ cm}^3 \text{ bar mol}^{-1} \text{ K}^{-1} = 8314 \text{ cm}^3 \text{ kPa mol}^{-1} \text{ K}^{-1} \\ &= 82.06 \text{ cm}^3 \text{ atm mol}^{-1} \text{ K}^{-1} = 82.363.95 \text{ cm}^3 \text{ for mol}^{-1} \text{ K}^{-1} = 0.082.06 \text{ m}^3 \text{ atm kmol}^{-1} \text{ K}^{-1} \\ &= 1.9872 \text{ (cal) mol}^{-1} \text{ K}^{-1} = 1.986 \text{ (Btu) (lb mole)}^{-1} \text{ (R)}^{-1} \\ &= 0.7302 \text{ (ft)}^3 \text{ (atm) (lh mol)}^{-1} \text{ (R)}^{-1} = 10.73 \text{ (ft)}^3 \text{ (psia) (lb mol)}^{-1} \text{ (R)}^{-1} \\ &= 1545 \text{ (ft) (lbf) (lb mol)}^{-1} \text{ (R)}^{-1} \end{split}$$

525 426.84(153.69)	v U H S	1.095 647.526 648.103 1.8790	357.84 2561.8 2749.7 6.8027		379.56 2599.3 2788.6 6.9145	404.13 2541.6 2853.8 7.0345	423.28 2674.6 2896.8 7.1236	442.11 2707.1 2939.2 7.2078	460.70 2739.2 2981.1 7.2879	479.11 2771.2 3022.7 7.3645	497.38 2803.0 3064.1 7.4381
550 428.62(155.47)	V И Н S	1.097 655.199 655.802 1.8970	342,48 2563.3 2751.7 6.7870		361,60 2598,0 2796,8 6,8900	385,19 2640.6 2852.5 7.0108	403.55 2673.8 2895.7 7.1004	421.59 2706.4 2938.3 7.1849	439.38 2738.6 2980.3 7.2653	457.00 2770.6 3022.0 7.3421	474.48 2802.6 3063.5 7.4158
575 430.33(157.18)	V U H S	1.099 662.603 663.235 1.9142	328.41 2564.8 2753.6 6.7720		345.20 2596.6 2795.1 6.8664	367.90 2639.6 2651.1 6.9880	385.54 2672.9 2894.6 7.0781	402.85 2705.7 2937.3 7.1630	419.92 2738.0 2979.5 7.2436	436.81 2770.1 3021.3 7.3206	453.56 2802.1 3062.9 7.3945
600 431.99(158.84)	V U H S	1.101 669,762 670,423 1.9308	315,47 2566,2 2755,5 6,7575		330.16 2595.3 2793.3 6.8437	352.04 2638.5 2849.7 6.9662	369.03 2672.1 2893.5 7.0567	385.68 2705.0 2936.4 7.1419	402.08 2737.4 2978.7 7.2228	418.31 2769.6 3020.6 7.3600	434.39 2801.6 3062.3 7.3740
625 433.59(160,44)	V U H S	1.103 676.695 677.384 1.9469	303.54 2567.5 2757.2 6.7437	•••••	316.31 2593.9 2791.6 6.8217	337.45 2637.5 2848.4 6.9451	353.83 2671.2 2892.3 7.0361	369.87 2704.2 2935.4 7.1217	385.67 2736.8 2977.8 7.2028	401.28 2769.1 3019.9 7.2802	416.75 2801.2 3061.7 7.3544
650 435.14(161.99)	V U H S	1.105 683.417 684.135 1.9623	292.49 2568.7 2758.9 6.7304		303.53 2592.5 2789.8 6.8004	323,98 2638.4 2847.0 6,9247	339.80 2670.3 2891.2 7.0162	355.29 2703.5 2934.4 7.1021	370.52 2736.2 2977.0 7.1835	385.56 2768.5 3019.2 7.2611	400.47 2800.7 3061.0 7.3355
675 436.64(163.49)	V U H S	1.106 689.943 690.689 1.9773	262.23 2570.0 2760.5 6.7176		291.69 2591.1 2788.0 6.7798	311.51 2635.4 2845.6 6.9050	326,81 2669.5 2890.1 6.9970	341.78 2702.8 2933.5 7.0833	356.49 2735.6 2976.2 7.1650	371.01 2768.0 3018.5 7.2428	385.39 2800.3 3060.4 7.3173
700 438.11(164.96)	V U H S	1.108 696.285 697.061 1.9918	272.68 2571.1 2762.0 6.7052		280.69 2589.7 2786.2 6.7598	299.92 2634.3 2844.2 6.8859	314.75 2668.6 2888.9 6.9784	329.23 2702.1 2932.5 7.0651	343.46 2735.0 2975.4 7.1470	357.50 2767.5 3017.7 7.2250	371.39 2799.8 3059.8 7.2997
725 439.53(166.38)	V U H S	1.110 702.457 703.261 2.0059	263.77 2572.2 2763.4 6.6932		270.45 2588.3 2784.4 6.7404	289,13 2633,2 2842,8 6,8673	303.51 2667.7 2887.7 6.9604	317.55 2701.3 2931.5 7.0474	331.33 2734.3 2974.6 7.1296	344.92 2767.0 3017.0 7.2078	358.36 2799.3 3059.1 7.2627

Table F2 Superheated Steam, SI Units (Continued)

(TEMPERATURE: 7 kelvins) (TEMPERATURE: 1°C)

<i>Pl</i> kPa 1 ^{sat} /K (t ^{sat} /°C)		sat, liq.	sat. vap.	423,15 (150)	448,15 (175)	473.15 (200)	493.15 (220)	513.15 (240)	533,15 (260)	553.15 (280)	573.15 (300)
325 409.44(136.29)	V U H S	1.076 572.847 573.197 1.7004	561,75 2545.7 2728.3 6.9640	583.58 2568.7 2758.4 7.0363	622.41 2609.6 2811.9 7.1592	6G0.33 2649.6 2864.2 7,2729	690.22 2681.2 2905.6 7.3585	719.81 2712.7 2946.6 7.4400	749.18 2744.0 2987.5 7.5181	778.39 2775.3 3028.2 7.5933	807.47 2806.6 3069.0 7.6657
350 412.02(138.87)	V U H \$	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	540.58 2567.1 2756.3 6.9982	576.90 2608.3 2810.3 7.1222	612,31 2648.6 2863.0 7.2366	640.18 2680.4 2904.5 7.3226	667.75 2712.0 2945.7 7.4045	695.09 2743.4 2986.7 7.4828	722.27 2774.8 3027.6 7.5581	749,33 2806.2 3068.4 7.6307
375 414.46(141.31)	V H S	1,081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6.9160	503.29 2565.4 2754.1 6.9624	537.46 2607.1 2808.6 7.0875	570.69 2647.7 2881.7 7.2027	598.81 2679.6 2903.4 7.2891	622.62 2711.3 2944.8 7.3713	648.22 2742.8 2985.9 7.4499	673.64 2774.3 3026.9 7.5254	698.94 2805.7 3067.8 7.5981
400 416.17(143.62)	V U H S	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	470.66 2563.7 2752.0 6.9295	502.93 2605.8 2807.0 7.0548	534.26 2646.7 2860.4 7,1708	558.85 2678.8 2902.3 7.2576	583,14 2710.6 2943.9 7.3402	607.20 2742.2 2985.1 7,4190	631.09 2773.7 3026.2 7.4947	654.85 2805.3 3067.2 7.5675
425 418.97(145.82)	V H S	1.086 813.667 614.128 1.7990	436.61 2554.8 2740.3 6.8739	441.85 2562.0 2749.8 6.8965	472.47 2604.5 2805.3 7.0239	502.12 2645.7 2859.1 7.1407	525.36 2678.0 2901.2 7.2280	548.30 2709.9 2942.9 7.3108	571.01 2741.6 2984.3 7.3899	593.54 2773.2 3025.5 7.4657	615.95 2804.8 3066.6 7.5388
450 421.07(147.92)	V U H S	1.088 622.672 623.162 1.8204	413.76 2556.7 2742.9 6,8547	416,24 2560,3 2747,7 6,8660	445.38 2603.2 2803.7 6.9946	473.55 2644.7 2857.8 7.1121	495.59 2677.1 2900.2 7.1999	517.33 2709.2 2942.0 7.2831	538.83 2741.0 2983.5 7.3624	560.17 2772.7 3024.8 7.4384	581.37 2804.4 3068.0 7.5116
475 423.07(149.92)	V H S	1.091 631.294 631.812 1.8408	393.22 2558.5 2745,3 6.8365	393.31 2558.6 2745.5 6.8369	421.14 2601.9 2802.0 6:9667	447.97 2643.7 2856.5 7.0850	468.95 2676.3 2899.1 7.1732	489.62 2708.5 2941.1 7.2567	510.05 2740.4 2982.7 7.3363	530.30 2772.2 3024.1 7.4125	550.43 2803.9 3085.4 7.4858
500 424,99(151.84)	V U H S	1,093 639,569 640,116 1,8604	374.68 2560.2 2747.5 6.8192	•••••	399.31 2600.6 2800.3 6.9400	424.96 2642.7 2855.1 7.0592	444.97 2675.5 2898.0 7.1478	464.67 2707.8 2940.1 7.2317	484.14 2739.8 2981.9 7.3115	503.43 2771.7 3023.4 7.3879	522.58 2803.5 3064.8 7.4614

Table F.2 Superheated Steam, SI Units (Continued)

TEMPERATURE: T kelvins (TEMPERATURE: 1°C)

							,				
P/kPa T ^{set} /K (t ^{set} /°C)		sat. Ilq.	sat. vap.	598.15 (325)	623.15 (350)	673.15 (400)	723.15 (450)	773.15 (500)	823.15 (550)	873.15 (600)	923.15 (650)
325 409.44(136.29)	V U H S	1.076 572.847 573.197 1.7004	561.75 2545.7 2728.3 6.9640	843.68 2845.9 3120.1 7.7530	879.78 2885.5 3171.4 7.8369	951.73 2965.5 3274.8 7,9965	1023.5 3046.9 3379.5 8.1465	1095.0 3129.8 3485.7 8.2885	1166.5 3214.4 3593.5 8.4236	1237.9 3300.6 3702.9 8.5527	1309.2 3388.6 3814.1 8.6764
350 412.02(138.87)	V U H S	1.079 583.892 584.270 1.7273	524.00 2548.2 2731.6 6.9392	783.01 2845.6 3119.6 7.7161	816.57 2885.1 3170.9 7.8022	883.45 2965.2 3274.4 7.9619	950.11 3046.6 3379.2 8.1120	1016.6 3129.6 3485.4 8.2540	1083.0 3214.2 3593.3 8.3892	1149.3 3300.5 3702.7 8.5183	1215.6 3388.4 3813.9 8,6421
375 414,48(141,31)	V U H S	1.081 594.332 594.737 1.7526	491.13 2550.6 2734.7 6,9160	730.42 2845.2 3119.1 7.6856	761.79 2884.8 3170.5 7.7696	824.28 2964.9 3274.0 7.9296	886.54 3046.4 3378.8 8.0798	948.66 3129.4 3485.1 8.2219	1010.7 3214.0 3593.0 8.3571	1072.8 3300.3 3702.5 8.4863	1134,5 3388.3 3813.7 8.6101
400 416,77(143.62)	V U H S	1.084 604.237 604.670 1.7764	462.22 2552.7 2737.6 6.8943	684.41 2844.8 3118.5 7.6552	713.85 2884.5 3170.0 7.7395	772.50 2964.6 3273.6 7.8994	830.92 3046.2 3378.5 8,0497	889.19 3129.2 3484.9 8.1919	947.35 3213.8 3592.8 8.3271	1005.4 3300.2 3702.3 8.4563	1063.4 3388.2 3813.5 8.5802
425 418.97(145.82)	V И Н S	1.086 613.667 614.128 1.7990	436,61 2554,8 2740,3 6,8739	643.81 2844.4 3118.0 7.6265	571.56 2884.1 3169.5 7.7109	726.81 2964.4 3273.3 7.8710	781.84 3045.9 3378.2 8,0214	836.72 3129.0 3484.6 8.1636	891,49 3213.7 3592.5 8.2989	946.17 3300.0 3702.1 8.4282	1000.8 3388.0 3813.4 8.5520
450 421.07(147.92)	V U H S	1.088 622,672 623,162 1.8204	413,75 2556,7 2742,9 6,8547	607.73 2844.0 3117.5 7.5995	633.97 2863.8 3169.1 7.6840	686.20 2984.1 3272.9 7.8442	738.21 3045.7 3377.9 7.9947	790.07 3128.8 3484.3 8.1370	841.83 3213.5 3592.3 8.2723	893.50 3299.8 3701.9 8.4016	945.10 3387.9 3813.2 8.5255
475 423.07(149.92)	V U H S	1.091 631.294 631.812 1.8408	393,22 2558,5 2745,3 6,8365	575.44 2843.6 3116.9 7.5739	600.33 2883.4 3168.6 7.6585	649.87 2963.8 3272.5 7.8189	699.18 3045.4 3377.6 7.9694	748.34 3128.6 3484.0 8.1118	797.40 3213.3 3592.1 8.2472	846.37 3299.7 3701.7 8.3765	895.27 3387.7 3813.0 8.5004
500 424.99(151.84)	v U H S	1.093 639.569 640.116 1.8604	374,68 2560.2 2747,5 6,8192	546.38 2843.2 3116.4 7.5496	570.05 2883.1 3168.1 7.6343	617.18 2963.5 3272.1 7.7948	664.05 3045.2 3377.2 7.9454	710.78 3128.4 3483.8 8.0879	757.41 3213.1 3591.8 8.2233	803.95 3299.5 3701.5 8.3526	850.42 3387.6 3812.8 8.4766

525 426.84(153.69)	V U H S	1.095 647.528 C48.103 1.8790	357.84 2561.8 2749.7 6.8027	520.08 2842.8 3115.9 7.5264	542.66 2082.7 3167.6 7.6112	587.58 2963.2 3271.7 7.7719	632.26 3045.0 3376 9 7.9226	676.80 3126.2 3483.5 8.0651	721.23 3213.0 3591.6 8.2006	765.57 3209.4 3701.3 8.3299	809.85 3387.5 3812.6 8.4539
550 428.62(155.47)	V U H S	1.097 655.199 655.802 1.8970	342.48 2563.3 2751.7 6.7870	496.18 2842.4 3115.3 7.5043	517.76 2882.4 3167.2 7.5892	560.68 2963.0 5271.3 7.7500	603.37 3044.7 3376.6 7.9008	645.91 3128.0 3483.2 8.0433	688.34 3212.8 3591.4 8.1789	730.68 3299.2 3701.1 8.3083	772.96 3387.3 3812.5 8.4323
575 430.33(157,18)	V U H S	1,099 . 662,603 663,235 1,9142	328.41 2564.8 2753.6 6.7720	474.38 2842.0 3114.8 7.4831	495.03 2882.1 3166.7 7.5881	536.12 2962.7 3271.0 7.7290	576.98 3044.5 3376.3 7.8799	617.70 3127.8 3482.9 8.0226	658.30 3212.6 3591.1 8.1681	693.83 3299.1 3700.9 8.2876	739.28 3387.2 3812.3 6.4116
600 431.99(158.84)	V U H S	1.101 669.762 670.423 1.9308	315.47 2566.2 2755.5 6.7575	454.35 2841.6 3114.3 7.4628	474.10 2881.7 3166.2 7.5479	513.61 2962.4 3270.6 7.7090	552.80 3944,3 3376.0 7.8600	591.84 3127.6 3462.7 8.0027	630.78 3212.4 3590.9 8.1383	669.63 3296.9 3700.7 8.2678	708.41 3387.1 3812.1 8.3919
025 433.59(160.44)	V U H S	1,103 676.695 677.334 1,9469	303.54 2567.5 2757.2 6.7437	435.94 2841.2 3113.7 7.4433	455.01 2881.4 3165.7 7.5285	492.89 2962.1 3270.2 7.6897	530.55 3044.0 3375.6 7.8408	568.05 3127.4 3482.4 7.9836	605.45 3212.2 3590.7 8.1192	642.76 3298.6 3700.5 8.2488	680.01 3366.9 3811.9 8,3729
650 435.14(161.99)	V U H S	1,105 683,417 684,135 1,9623	292.49 2568.7 2758.9 6.7304	418.95 2840.9 3113.2 7.4245	437.31 2881.0 3165.3 7.5099	473.78 2961.8 3269.8 7,6712	510.01 3043.8 3375.3 7.8224	546.10 3127.2 3482.1 7.9652	582.07 3212.1 3590.4 8.1009	617.96 3298.6 3700.3 8.2305	653.79 3366.8 3811.8 8.3546
675 436.64(163.49)	V U H S	1,106 589,943 690,669 1,9773	282.23 2570.0 2760.5 6,7176	403.22 2840.5 3112.6 7.4064	420,92 2680.7 3164,8 7.4919	456.07 2961.6 3269.4 7,6534	491.00 3043.6 3375.0 7.8046	525.77 3127.0 3481.8 7.9475	560.43 3211.9 3590.2 8.0833	595.00 3298.5 3700.1 8.2129	629.51 3386.7 3811.6 8.3371
700 438.11(164.96)	V U H S	1.108 696.285 697.081 1.9918	272.68 2571.1 2762.0 6.7052	388.61 2840.1 3112.1 7.3890	405.71 2880.3 3164.3 7,4745	439.64 2961.3 3269 0 7.6062	473.34 3043.3 3374.7 7.7875	506.89 3126.8 3481.6 7.9305	540.33 3211.7 3589.9 8.0663	573.68 3298.3 3699.9 8.1959	606.97 3386.5 3811.4 8.3201
725 439.53(166,36)	V U H S	1,110 702,457 703,261 2,0059	263.77 2572.2 2763.4 6.6932	375,01 2839.7 3111.5 7.3721	391.54 2880.0 3163.8 7.4578	424.23 2961.0 3268.7 7.6196	456.90 3043.1 3374.3 7:7710	489,31 3126,6 3481,3 7.9140	521.61 3211.5 3589.7 8.0499	553.83 3298.1 3699.7 8.1796	585.99 3386,4 3811.2 8.3038