

Linux perf_events status update

Stephane Eranian Google, Inc Petascale Tools Workshop 2013

Agenda

The good, the bad, the ugly...

- new hardware support
- new perf_events kernel features
- new perf tool features
- new Gooda features
- Q&A

New hardware support

- Linux-3.10: Intel Ivy Bridge server (IvyTown, model 62)
 - core and uncore PMU (all boxes)
- Linux-3.11: Intel Haswell (desktop)
 - o core, LBR, TSX, basic PEBS
- Linux-3.10: IBM Power 8

Haswell PMU new features

- TSX support
 - in_tx event filter: count event only when inside a transactional region
 - in_txcp event filter: do not count event in aborted transaction
 - TSX related events
- PEBS EventingIP
 - address of sampled instructions
 - eliminates off-by-1 skid (because IP captured at retirement)
 - off-by-1 IP still avail (branch sampling may require both)
- PEBS Data Linear Address (DLA)
 - capture data address for all PEBS memory events
 - can capture data address for specific cache events (loads/stores)
- LBR call-stack mode (cyclic taken branch buffer)
 - captures call instructions and pops last entry on return
 - enables callstack sampling with no frame-pointer, no debug info
 - does not work well with: leaf optimization, TSX aborts

Haswell PMU support

TSX filters with perf:

- PEBS EventingIP
 - used with precise=2 (LBR not used anymore)

```
$ perf record -e cpu/event=0xc4, umask=0x2/pp noploop 2 (BR_INST_RETIRED: NEAR_CALL)
```

- PEBS Data Linear Address (DLA)
 - data address captured with many PEBS memory events
 - request DLA with PERF_SAMPLE_ADDR
 - regular PEBS Load Latency still available

```
$ perf record -d -e cpu/event=0xd0,umask=0x81/pp noploop 2 (MEM_UOPS_RETIRED:ALL_LOADS)
$ perf report -D | fgrep SAMPLE
PERF_RECORD_SAMPLE IP=0x401889 period: 286668 addr: 0x7f6f2474a3c0
```


Memory access sampling

- Available in Linux-3.10
 - requires HW support (NHM ld only, WSM, SNB, IVB, HSW)
 - PPC8 support in progress
- Samples load/store accesses
 - load: instr & data addr, instr latency, data source
 - store: instr & data addr, limited data source
 - o data source abstracted: mem lvl, tlb lvl, snoop, lock
 - warning: instruction latency from dispatch (not just miss latency)
- perf tool support
 - perf mem: new wrapper command (record, report)
 - use perf mem -D for raw dump, easy to post-process

perf mem example

```
$ perf mem -t load rec test
 perf mem -t load rep --stdio
 Samples: 23K of event 'cpu/mem-loads/pp'
# Total weight: 7394788
 Sort order : local weight, mem, sym, dso, symbol daddr, dso daddr, snoop, tlb, locked
                                                   Obj
      Smpl Weight Mem
 OV
                                           Sym
                                                               Data Sym
                                                                             Data
           1386 L3 hit [.] acquire.constprop.1 struct2 [.] object+0x18
1.72%
                                                                           struct2
1.37% 73 1387 L3 hit [.] release.constprop.0 struct2 [.] object+0x18 struct2
1.07% 57 1388 L3 hit [.] acquire.constprop.1 struct2 [.] object+0x18 struct2
           1387 L3 hit [.] acquire.constprop.1 struct2 [.] object+0x18
0.58% 31
                                                                           struct2
```

\$ perf mem -t load rep --sort=mem --stdio # Samples: 23K of event 'cpu/mem-loads/pp' # Total weight : 7394788 # Sort order : mem

#			
#	Overhead	Samples	Memory access
#	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	97.95%	9915	L3 hit
	2.04%	13320	L1 hit
	0.01%	10	LFB hit
	0.00%	1	Local RAM hit
	0.00%	3	L2 hit
	0.00%	1	Uncached hit

hrtimer-based multiplexing

- available in Linux-3.11
- Multiplexing was piggybacked on timer ticks
 - tickless kernel: no timer tick when idle = no multiplexing
 - events may happen while core idle (think uncore events)
- add hrtimer per cpu for multiplexing
 - wake-up from idle to service timer
 - improved scaling accuracy for system-wide monitoring
- adjustable multiplexing rate per PMU instance via sysfs
 - default HZ, expressed in ms
 - Example: echo 10 >/sys/devices/cpu/perf_event_mux_interval_ms

Example: idle system, ref-cycles work on 1 counter only:

```
# perf stat -e ref-cycles,ref-cycles -a sleep 10
Performance counter stats for 'sleep 10':
    5 825 973 800 ref-cycles [50,01%]
    5 980 094 548 ref-cycles [49,99%]
```


The bad: LateGO bug

Local Memory Read / Load Retired events may undercount

```
MEM_LOAD_UOPS_RETIRED.LLC_HIT
MEM_LOAD_UOPS_RETIRED.LLC_MISS*
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE
MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM*
MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM*
MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM*
MEM_TRANS_RETIRED.LOAD_LATENCY*
```

- Impacted CPU: SNB-EP (model 45)
- Workaround exists: very significant performance L3 latency increase
 - o no kernel implementation
 - scripts do exist (Andi Kleen's <u>latego.py script</u>)

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-family-spec-update.pdf

The ugly: HT counter corruption

measuring memory events may corrupt events on sibling thread

```
MEM_LOAD_UOPS_RETIRED.*
MEM_UOPS_RETIRED.*
MEM_LOAD_UOPS_LLC_HIT_RETIRED.*
MEM_LOAD_UOPS_LLC_MISS_RETIRED.*
There may be more at-retirement events:-((
Example:
THREAD0: counter0=MEM_LOAD_UOPS_RETIRED:L3_MISS
THREAD1: counter0 may be corrupted regardless of measured event
```

- impacted CPUs: SNB*, IVB*, HSW*
- no workaround in firmware
 - disable HT or measure only one thread/core (but clashes with NMI watchdog)
- Linux-3.11
 - blacklisting events on IVB even if HT is off (may add SNB, HSW soon)
- Google working on modifications to event scheduler
 - enforce mutual exclusion on sibling counters when corrupting events used

perf stat event grouping

- Available from Linux-3.8
- enforce event grouping from perf cmdline
 - events in group are always measured together
 - group cannot have more events than counters (ignoring constraints)
 - kernel support there since early days, no perf tool support

```
$ perf stat -e "{cycles,instructions}" noploop
        2324888687 cycles
                                                0.000 GHz
        2320675647 instructions
                                                   1.00 insns per cycle
But:
$ perf stat -e "{cycles, instructions, branches, branches, branches, branches}"
noploop
        2324888687 cycles
                                                   0.000 GHz
        2320675647 instructions
                                                   1.00 insns per cycle
        2319740061 branches
        2319740061 branches
   <not supported> branches
   <not supported> branches
Because of NMI watchdog using 1 counter.
```


perf record/annotate: event grouping

make correlating events samples possible, at last!

```
$ perf record -e '{cycles,instructions}' noploop 2
$ perf report --group --stdio
# Samples: 16K of event 'anon group { cycles, instructions } '
# Event count (approx.): 9346466161
#
   Overhead Command Shared Object
                                                   Symbol
 99.95% 99.98% noploop noploop [.] noploop
   0.02% 0.01% noploop [kernel.kallsyms] [k] slab free
   0.01% 0.00% noploop ld-2.15.so [.] dl relocate object
$ perf annotate --group --stdio
Percent | Source code & Disassembly of noploop
          : 000000000400629 <noploop>:
   0.00 0.00: 400629: push %rbp
   0.00 0.00: 40062a: mov %rsp,%rbp
 100.00 100.00: 40062d: jmp 40062d <noploop+0x4>
```


More perf improvements

perf stat interval printing

```
$ perf stat -a -I1000 -e cycles ...
# time counts event
1.000102178 2,415,532,315 cycles
2.000308349 2,414,348,054 cycles
```

perf stat per-socket aggregation

```
$ perf stat -a -I1000 --per-socket -e cycles ...
# time socket cpus counts events
1.000094565 S0 4 25,667,360 cycles
2.000377213 S0 4 23,227,936 cycles
```

perf stat per-core aggregation

```
$ perf stat -a -I1000 --per-core -e cycles ...
# time core cpus counts events
1.000100642 S0-C0 1 5,735,289 cycles
1.000100642 S0-C1 1 4,257,992 cycles
1.000100642 S0-C2 1 6,349,471 cycles
1.000100642 S0-C3 1 6,312,706 cycles
```


Gooda updates

- Gooda analyzer
 - new support for ARMv7, PPC32, PPC64
 - Basic block execution counts using taken branch sampling
 - Diff utility creates report spreadsheets of differences with scaling
 - Sum & aggr utility creates report spreadsheets of sum/aggregation
 - Bug fixes
- Gooda collection scripts
 - use prime numbers for periods
- Gooda visualizer
 - hide columns
 - % cycles relative to total
 - % cycles relative to func or BB

What's coming?

- more Haswell changes perf_event changes
 - Ibr call-stack, Ibr tsx extensions
 - perf tool TSX support
- sampling interrupted machine state
 - includes PEBS machine state
- value profiling support in perf tool
 - sampling values of function arguments (SNB and later)
- fix sample record header bug: no event identification
 - could not determine which event caused a sample record
 - o all events had to request same meta-data (timestamp, cpu, ...)
 - wasted buffer and file space with LBR, for instance
 - add PERF_SAMPLE_IDENTIFIER sample_type

Conclusions

- good progress on perf_events kernel support
- good progress on tools
- cool new features on Haswell
- hardware bugs are killing us
 - need major validation effort across the community

PEBS memory events for Haswell DLA

PEBS Load events	PEBS store events
MEM_UOPS_RETIRED.STLB_MISS_LOADS	MEM_UOPS_RETIRED.STLB_MISS_STORES
MEM_UOPS_RETIRED.LOCK_LOADS	MEM_UOPS_RETIRED.LOCK_STORES
MEM_UOPS_RETIRED.SPLIT_LOADS	MEM_UOPS_RETIRED.SPLIT_STORES
MEM_UOPS_RETIRED.ALL_LOADS	MEM_UOPS_RETIRED.ALL_STORES
MEM_LOAD_UOPS_RETIRED.L1_HIT	MEM_LOAD_UOPS_RETIRED.L2_HIT
MEM_LOAD_UOPS_RETIRED.LLC_HIT	MEM_LOAD_UOPS_RETIRED.L1_MISS
MEM_LOAD_UOPS_RETIRED.L2_MISS	MEM_LOAD_UOPS_RETIRED.LLC_MISS
MEM_LOAD_UOPS_RETIRED.HIT_LFB	MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_MISS
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT	MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM
UOPS_RETIRED.ALL	MEM_LOAD_UOPS_MISC_RETIRED.UC
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE	MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM
MEM_LOAD_UOPS_LLC_MISS_RETIRED.LOCAL_DRAM_SNP_HIT	MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM
MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_DRAM_SNP_HIT	MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_HITM
MEM_LOAD_UOPS_LLC_MISS_RETIRED.REMOTE_FWD	MEM_LOAD_UOPS_MISC_RETIRED.NON_DRAM
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS	

References

- Andi Kleen's pmu-tools
 - https://github.com/andikleen/pmu-tools
- LateGo
 - http://www.intel.
 http://www.intel.
 http://www.intel.
 http://www.intel.
- HT counter corruption
 - http://www.intel.
 http://www.intel.
 com/content/dam/www/public/us/en/documents/specification-update.pdf
 updates/3rd-gen-core-desktop-specification-update.pdf
- SNB-EP uncore PMU specification
 - http://www.intel.
 http://www.intel.
 http://www.intel.
 http://www.intel.
- Gooda tool
 - http://code.google.com/p/gooda