5.1 비선형 모형 변형

여기에서는 회귀분석의 성능을 향상시키거나 모형이 가지는 제한조건 등을 충족시키기 위해 모형을 비선형으로 변형(transform)하는 방법에 대해 알아본다.

비선형 변형

만약 독립변수와 종속변수간의 관계가 비선형이면 이 관계를 선형으로 바꿀 수 있도록 독립변수를 비선형 변환할 수 있다. 예를 들어 보스턴 집값 데이터에서 집값과 LSTAT 데이터는 다음 그림에서 보듯이 비선형 관계를 가진다.

In [1]:

```
from sklearn.datasets import load_boston

boston = load_boston()

dfX = pd.DataFrame(boston.data, columns=boston.feature_names)

dfy = pd.DataFrame(boston.target, columns=["MEDV"])

df_boston = pd.concat([dfX, dfy], axis=1)

sns.scatterplot(x="LSTAT", y="MEDV", data=df_boston)

plt.show()
```


이 데이터를 그냥 사용하여 LSTAT과 종속변수간의 선형모형을 구한 결과는 다음과 같다.

In [2]:

```
model1 = sm.OLS.from_formula("MEDV ~ LSTAT", data=df_boston)
result1 = model1.fit()
print(result1.summary())
```

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model: Covariance T	M ions:	Least Squa on, 17 Jun 2 17:28 nonrob	2019 3:28 506 504	F-sta Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.544 0.543 601.6 5.08e-88 -1641.5 3287. 3295.
	coef	std err	=====	t	P> t	[0.025	0.975]
Intercept LSTAT	34.5538 -0.9500	0.563 0.039		.415 1.528	0.000 0.000	33.448 -1.026	35.659 -0.874
Omnibus: Prob(Omnibus Skew: Kurtosis:	;):	0. 1.	043 000 453 319		•		0.892 291.373 5.36e-64 29.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

다음 그림은 예측값과 실제 데이터를 비교한 것이다. 선형모형이 적합하지 않음을 알 수 있다.

In [3]:

```
y_hat1 = result1.predict(df_boston)
df1 = pd.concat([y_hat1, df_boston.LSTAT], axis=1).sort_values("LSTAT")
df1.columns = ["Prediction", "LSTAT"]
df1.plot(x="LSTAT", style="r-", lw=3)
plt.plot(df_boston.LSTAT, df_boston.MEDV, "bo", alpha=0.5)
plt.show()
```


이번에는 LSTAT값을 제곱한 비선형 독립변수를 추가한다. 결과가 향상되었다.

In [4]:

```
model2 = sm.OLS.from_formula("MEDV ~ LSTAT + I(LSTAT**2)", data=df_boston)
result2 = model2.fit()
print(result2.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model:	Mon,	MEDV OLS ast Squares 17 Jun 2019 17:28:28 506 503 2	R-squared Adj. R-sc F-statist Prob (F-s Log-Likel AIC: BIC:	quared: ic: statistic):		0.641 0.639 448.5 66e-112 -1581.3 3169. 3181.
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept LSTAT I(LSTAT ** 2)	42.8620 -2.3328 0.0435	0.872 0.124 0.004	49.149 -18.843 11.628	0.000 0.000 0.000	41.149 -2.576 0.036	44.575 -2.090 0.051
Omnibus: Prob(Omnibus): Skew: Kurtosis:		107.006 0.000 1.128 5.397	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	era (JB):	2.	0.921 228.388 55e-50 13e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 1.13e+03. This might indicate that there are strong multicollinearity or other numerical problems.

실제 데이터와 예측값을 비교해보면 선형모형보다 적합한 모형임을 알 수 있다.

In [5]:

```
y_hat2 = result2.predict(df_boston)
df2 = pd.concat([y_hat2, df_boston.LSTAT], axis=1).sort_values("LSTAT")
df2.columns = ["Prediction", "LSTAT"]
df2.plot(x="LSTAT", style="r-", lw=3)
plt.plot(df_boston.LSTAT, df_boston.MEDV, "bo", alpha=0.5)
plt.show()
```


범주형을 사용한 비선형성

독립변수의 비선형성을 포착하는 또 다른 방법 중 하나는 강제로 범주형 값으로 만드는 것이다. 범주형 값이 되면

서 독립변수의 오차가 생기지만 이로 인한 오차보다 비선형성으로 얻을 수 있는 이익이 클 수도 있다.

보스턴 집값 데이터에서 종속변수와 RM 변수의 관계는 선형에 가깝지만 방의 갯수가 아주 작아지거나 아주 커지면 선형모형에서 벗어난다.

In [6]:

```
sns.scatterplot(x="RM", y="MEDV", data=df_boston)
plt.show()
```


In [7]:

```
model3 = sm.OLS.from_formula("MEDV ~ RM", data=df_boston)
result3 = model3.fit()
print(result3.summary())
```

OLS Regression Results

Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model:	tions:	Least Squ Mon, 17 Jun		Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.484 0.483 471.8 2.49e-74 -1673.1 3350. 3359.
Covariance 7	Гуре:	nonro	bust				
	coef	std err		t	P> t	[0.025	0.975]
Intercept RM	-34.6706 9.1021			.084 .722	0.000 0.000	-39.877 8.279	-29.465 9.925
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0	.585 .000 .726 .190	Jarqı Prob	in-Watson: ue-Bera (JB): (JB): . No.		0.684 612.449 1.02e-133 58.4

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

RM 변수값을 강제로 정수로 라운딩(rounding)하면 RM 변수가 가지는 비선형성을 잡을 수 있다. 다음 플롯은 카테고리값으로 변한 RM 변수와 종속변수의 관계를 시각화한 것이다.

In [8]:

```
rooms = np.arange(3, 10)
labels = [str(r) for r in rooms[:-1]]
df_boston["CAT_RM"] = np.round(df_boston.RM)
sns.barplot(x="CAT_RM", y="MEDV", data=df_boston)
plt.show()
```


이렇게 하면 RM 변수으로 인한 종속변수의 변화를 비선형 상수항으로 모형화 할 수 있다. 선형모형보다 성능이 향상된 것을 볼 수 있다.

In [9]:

```
model4 = sm.OLS.from_formula("MEDV ~ C(np.round(RM))", data=df_boston)
result4 = model4.fit()
print(result4.summary())
```

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squ Mon, 17 Jun 17:20 nonrol	2019 8:29 506 500 5	F-stat Prob (-squared:		0.537 0.532 115.8 3.57e-81 -1645.6 3303. 3329.	
0.975]	coef	st	d err	t	P> t	[0.025	
Intercept 22.548	17.0200	2	2.814	6.049	0.000	11.492	
C(np.round(RM))[T.5. 3.816	0] -2.0741	2	2.998	-0.692	0.489	-7.964	
C(np.round(RM))[T.6. 7.918	0] 2.3460	2	2.836	0.827	0.409	-3.226	
C(np.round(RM))[T.7. 16.665	0] 11.0272		2.869	3.843	0.000	5.389	
C(np.round(RM))[T.8. 34.619	0] 28.5425	;	3.093	9.228	0.000	22.466	
C(np.round(RM))[T.9. 32.641	0] 23.6133		4.595	5.139	0.000	14.586	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0	.744 .000 .542 .584				0.799 467.887 2.51e-102 31.1	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

시간 독립변수의 변형

독립변수가 시간인 경우에는 특정 시점에서 경과된 시간값으로 변형해야 한다. 일간 전기 사용량 데이터를 예로들어 설명한다.

In [10]:

```
data = sm.datasets.get_rdataset("elecdaily", package="fpp2")

df_elec = data.data.drop(columns=["WorkDay", "Temperature"])

df_elec["Date"] = pd.date_range("2014-1-1", "2014-12-31")

df_elec.tail()
```

Out[10]:

	Demand	Date
360	173.727990	2014-12-27
361	188.512817	2014-12-28
362	191.273009	2014-12-29
363	186.240144	2014-12-30
364	186.370181	2014-12-31

파이썬 datetime 자료형은 toordinal 명령으로 특정 시점으로부터 경과한 시간의 일단위 값을 구하거나 timestamp 메서드로 초단위 값을 구할 수 있다.

In [11]:

```
import datetime as dt

df_elec["Ordinal"] = df_elec.Date.map(dt.datetime.toordinal)

df_elec["Timestamp"] = df_elec.Date.map(dt.datetime.timestamp)

df_elec.tail()
```

Out[11]:

	Demand	Date	Ordinal	Timestamp
360	173.727990	2014-12-27	735594	1.419606e+09
361	188.512817	2014-12-28	735595	1.419692e+09
362	191.273009	2014-12-29	735596	1.419779e+09
363	186.240144	2014-12-30	735597	1.419865e+09
364	186.370181	2014-12-31	735598	1.419952e+09

여기에서는 일단위 시간 값을 사용하여 회귀분석을 한다. 시간 값의 경우 크기가 크므로 반드시 스케일링을 해 주어야 한다.

In [12]:

```
model5 = sm.0LS.from_formula("Demand ~ scale(Ordinal)", data=df_elec)
result5 = model5.fit()
print(result5.summary())
```

OLS Regression Results

==========						=====
Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Mon,	Demand OLS ast Squares 17 Jun 2019 17:28:32 365 363 1 nonrobust	R-squared: Adj. R-squ F-statisti Prob (F-st Log-Likeli AIC: BIC:	uared: ic: tatistic):		0.031 0.028 11.58 000739 1709.7 3423. 3431.
	coef	std err	t	P> t	[0.025	0.975]
Intercept scale(Ordinal)	221.2775 -4.6779	1.374 1.374	160.997 -3.404	0.000 0.001	218.575 -7.381	223.980 -1.975
Omnibus: Prob(Omnibus): Skew: Kurtosis:		43.105 0.000 0.614 5.199	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			0.677 96.485 12e-21 1.00

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

하지만 시간 독립변수는 이 외에더 다양한 특징들을 숨기고 있다. 예들 들어 연도, 월, 일, 요일 데이터를 별도의 독립변수로 분리하거나 한 달 내에서 몇번째 날짜인지 월의 시작 또는 끝인지를 나타내는 값은 모두 특징값이 될 수 있다. 판다스에서는 dt 특수 연산자를 사용하여 이러한 값을 구할 수 있다.

In [13]:

```
df_elec["Year"] = df_elec.Date.dt.year
df_elec["Month"] = df_elec.Date.dt.month
df_elec["DayOfYear"] = df_elec.Date.dt.dayofyear
df_elec["DayOfMonth"] = df_elec.Date.dt.daysinmonth
df_elec["DayOfWeek"] = df_elec.Date.dt.dayofweek
df_elec["WeekOfYear"] = df_elec.Date.dt.weekofyear
df_elec["Weekday"] = df_elec.Date.dt.weekday
df_elec["IsMonthStart"] = df_elec.Date.dt.is_month_start
df_elec["IsMonthEnd"] = df_elec.Date.dt.is_month_end
df_elec.tail()
```

Out[13]:

	Demand	Date	Ordinal	Timestamp	Year	Month	DayOfYear	DayOfMonth	DayOfW€
360	173.727990	2014- 12-27	735594	1.419606e+09	2014	12	361	31	
361	188.512817	2014- 12-28	735595	1.419692e+09	2014	12	362	31	
362	191.273009	2014- 12-29	735596	1.419779e+09	2014	12	363	31	
363	186.240144	2014- 12-30	735597	1.419865e+09	2014	12	364	31	
364	186.370181	2014- 12-31	735598	1.419952e+09	2014	12	365	31	

이렇게 추가적인 특징값을 이용하여 구한 모형은 성능이 향상된다.

In [14]:

	0LS	Regression	Results
--	-----	------------	---------

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Demand OLS Least Squares Mon, 17 Jun 2019 17:28:32 365 344 20 nonrobust	F-stati Prob (f Log-Lik AIC:	-squared:		0.537 0.511 19.98 4.74e-46 -1574.8 3192. 3273.	
0.975]	coef	std err	t	P> t	[0.025	_
Intercept 63.377 C(Month)[T.2] 23.595 C(Month)[T.3] 15.802 C(Month)[T.4] -9.049 C(Month)[T.5] 53.876 C(Month)[T.6] 18.759 C(Month)[T.7] 109.556 C(Month)[T.8] 118.671	58.6105 14.5730 -1.2369 -29.1875 23.4037 11.3667 64.8095 66.5692	2.423 4.587 8.663 10.239 15.493 3.758 22.750 26.490	24.188 3.177 -0.143 -2.851 1.511 3.024 2.849 2.513	0.000 0.002 0.887 0.005 0.132 0.003 0.005 0.012	53.844 5.551 -18.276 -49.326 -7.069 3.974 20.063 14.467	
C(Month)[T.9] 41.437 C(Month)[T.10] 125.717 C(Month)[T.11] 66.429 C(Month)[T.12] 153.552 C(DayOfMonth)[T.30] 64.988 C(DayOfMonth)[T.31] 21.015 C(DayOfWeek)[T.1] 7.075	22.7687 59.0491 33.4276 72.2523 38.3755 5.6620 3.4766	9.491 33.895 16.778 41.334 13.530 7.806 1.829	2.399 1.742 1.992 1.748 2.836 0.725 1.900	0.017 0.082 0.047 0.081 0.005 0.469 0.058	4.100 -7.619 0.427 -9.047 11.763 -9.691 -0.121	

C(DayOfWeek)[T.2]	1.5756	1.821	0.865	0.387	-2.006
5.157 C(DayOfWeek)[T.3]	2.8568	1.831	1.560	0.120	-0.745
6.459	2.0000	1.001	1.000	0.120	0.7 10
C(DayOfWeek)[T.4]	0.8832	1.831	0.482	0.630	-2.719
4.485 C(DayOfWeek)[T.5] -9.297	-12.8982	1.831	-7.045	0.000	-16.499
C(DayOfWeek)[T.6] -12.864	-16.4623	1.829	-8.999	0.000	-20.060
C(Weekday)[T.1]	3.4766	1.829	1.900	0.058	-0.121
7.075 C(Weekday)[T.2] 5.157	1.5756	1.821	0.865	0.387	-2.006
C(Weekday)[T.3]	2.8568	1.831	1.560	0.120	-0.745
6.459 C(Weekday)[T.4] 4.485	0.8832	1.831	0.482	0.630	-2.719
C(Weekday)[T.5] -9.297	-12.8982	1.831	-7.045	0.000	-16.499
C(Weekday)[T.6] -12.864	-16.4623	1.829	-8.999	0.000	-20.060
C(IsMonthStart)[T.True] 12.571	1.2012	5.781	0.208	0.836	-10.169
C(IsMonthEnd)[T.True] 16.131	4.7608	5.781	0.824	0.411	-6.609
scale(Ordinal)	-101.7884	4.209	-24.182	0.000	-110.068
-93.509 Day0fYear 0.845	0.6769	0.085	7.926	0.000	0.509
Omnibus: Prob(Omnibus): Skew: Kurtosis:	150.460 0.000 1.422 12.809		•		0.577 1586.415 0.00 1.19e+18

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The smallest eigenvalue is 1.14e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

주기성을 가지는 독립변수

독립변수가 주기성을 가지는 경우에는 그대로 사용하면 모형이 주기성을 가지지 못한다. 예를 들어 scikit-learn의 covtype 데이터를 살펴보자. 이 데이터는 원래 특징값들로부터 특정 범주값을 예측하는 분류 문제용 데이터 집합이지만 Aspect라는 변수를 독립변수로 하고 Hillshade_9am라는 변수를 종속변수로 하는 회귀분석 문제로 가정한다.

In [15]:

```
from sklearn.datasets import fetch_covtype

covtype = fetch_covtype()

feature_names = ["Aspect", "Hillshade_9am"]

df_covtype = pd.DataFrame(covtype.data[:, [1, 6]], columns=feature_names)

df_covtype = df_covtype.sample(10000, random_state=0) # 편의상 10,000개 표본 추출

df_covtype.tail()
```

Out[15]:

	Aspect	Hillshade_9am
77297	90.0	235.0
103214	38.0	220.0
459385	79.0	241.0
159359	58.0	225.0
565783	91.0	240.0

Aspect 변수는 도(degree) 단위의 각도를 나타내는 독립변수이므로 0부터 360까지의 값을 가진다. Aspect가 0인 경우와 360인 경우는 독립변수가 실질적으로 같기 때문에 같은 종속변수값을 예측해야 한다.

In [16]:

```
sns.scatterplot(x="Aspect", y="Hillshade_9am", data=df_covtype)
plt.show()
```


하지만 Aspect를 일반 실수형 독립변수처럼 사용하면 Aspect가 0도일 때와 360도일 때 다른 종속변수값이 예측된다.

In [17]:

```
model7 = sm.OLS.from_formula(
    "Hillshade_9am ~ Aspect + I(Aspect**2) + I(Aspect**3)",
    data=df_covtype
)
result7 = model7.fit()
print(result7.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Lea Mon, s:	Hillshade_9am OLS Least Squares Mon, 17 Jun 2019 17:28:33 10000 9996 3 nonrobust		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.705 0.705 7974. 0.00 -40905. 8.182e+04 8.185e+04	
	coef	std err	 t	P> t	[0.025	0.975]	
Intercept Aspect I(Aspect ** 2) I(Aspect ** 3)		0.485 0.013 8.64e-05 1.62e-07	385.935 95.888 -95.669 84.294	0.000 0.000 0.000 0.000	186.089 1.192 -0.008 1.34e-05	187.989 1.242 -0.008 1.4e-05	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		3880.162 0.000 -1.707 10.196	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		1.962 26433.022 0.00 5.72e+07		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 5.72e+07. This might indicate that there are strong multicollinearity or other numerical problems.

In [18]:

```
df_test = pd.DataFrame([[0], [360]], columns=["Aspect"])
df_result7 = result7.predict(df_test)
df_result7
```

Out[18]:

0 187.039453 1 193.002560 dtype: float64

In [19]:

```
y_hat7 = result7.predict(df_covtype)
df7 = pd.concat([y_hat7, df_covtype.Aspect], axis=1).sort_values("Aspect")
df7.columns = ["Prediction", "Aspect"]
df7.plot(x="Aspect", style="r-", lw=3)
sns.scatterplot(x="Aspect", y="Hillshade_9am", data=df_covtype)
plt.hlines(df_result7.values[0], 0, 360)
plt.hlines(df_result7.values[1], 0, 360)
plt.show()
```


이를 방지하기 위해 일반적으로 주기성을 띄는 독립변수는 다음처럼 두 개의 독립변수로 분리한다.

$$x \to \begin{cases} x_1 = \cos\left(\frac{2\pi}{360}x\right) \\ x_2 = \sin\left(\frac{2\pi}{360}x\right) \end{cases}$$

In [20]:

```
f = 2.0 * np.pi / 360
model8 = sm.OLS.from_formula("""
Hillshade_9am ~
np.cos(f * Aspect) +
np.sin(f * Aspect)
""", data=df_covtype
)
result8 = model8.fit()
print(result8.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Hillshade_9am R-squared: OLS Adj. R-squared: Least Squares F-statistic: Mon, 17 Jun 2019 Prob (F-statistic): 17:28:34 Log-Likelihood: 10000 AIC: 9997 BIC: 2 nonrobust				0.7: 0.7: 1.334e+ 0. -4051: 8.104e+ 8.106e+	27 04 00 5.
== 5]	coef	std eri	r t	P> t	[0.025	0.97
Intercept 37 np.cos(f * Aspect) 79 np.sin(f * Aspect)	208.8444 -12.7745 30.5731	0.149 0.202 0.206	2 -63.281	0.000 0.000 0.000	208.552 -13.170 30.170	209.1 -12.3 30.9
76 ====================================	41	129.461 0.000 -1.792 11.009	1.9 32081.6 0.1	58 00		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

이렇게 하면 독립변수의 특징을 유지하면서 모형이 주기성을 가지게 된다.

In [21]:

```
df_result8 = result8.predict(df_test)
df_result8
```

Out[21]:

0 196.069868 1 196.069868 dtype: float64

In [22]:

```
y_hat8 = result8.predict(df_covtype)
df8 = pd.concat([y_hat8, df_covtype.Aspect], axis=1).sort_values("Aspect")
df8.columns = ["Prediction", "Aspect"]
df8.plot(x="Aspect", style="r-", lw=3)
sns.scatterplot(x="Aspect", y="Hillshade_9am", data=df_covtype)
plt.hlines(df_result8.values[0], 0, 360)
plt.hlines(df_result8.values[1], 0, 360)
plt.show()
```


종속변수 변형

지금까지는 독립변수를 변형하는 방법을 사용했지만 경우에 따라서는 종속변수를 변형할 수도 있다. 예를 들어 LSTAT 독립변수로 보스턴 집값을 예측하는 선형회귀모형의 예측값과 실제값을 그리면 다음과 같다.

In [23]:

```
plt.scatter(boston.target, y_hat1)
plt.xlabel(u"실제 집값")
plt.ylabel(u"집값 예측치")
plt.title("집값 예측치와 실제 집값의 관계")
plt.show()
```


모형이 올바르다면 예측치와 실제 종속변수값을 그린 스캐터 플롯은 선형적인 모습이 나와야 한다. 하지만 실제로는 제곱근이나 로그 그래프와 더 유사하다. 이러한 경우에는 이 스캐터 플롯을 선형적으로 만들어 주도록 예측치를 비선형 변환한다. 여러가지 모형을 비교해보면 독립변수와 종속변수를 모두 로그 변환한 모형이 가장 좋다는 것을 알 수 있다.

In [24]:

```
model11 = sm.OLS.from_formula("np.sqrt(MEDV) ~ LSTAT", data=df_boston)
result11 = model11.fit()
print(result11.summary())
```

OLS Regression Results

Model:		np.sqrt(M Least Squ	0LS	Adj.	uared: R-squared: atistic:		0.610 0.610 789.7
Date: Time: No. Observati Df Residuals: Df Model:	ons:		8:35 506 504 1		(F-statistic) Likelihood:	:	3.09e-105 -445.65 895.3 903.7
Covariance Ty	pe: 	nonro 	bust 				
	coef	std err		t	P> t	[0.025	0.975]
Intercept LSTAT	5.9499 -0.1024			.374 .101	0.000 0.000	5.846 -0.110	6.054 -0.095
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0	.833 .000 .976 .216	Jarq Prob	in-Watson: ue-Bera (JB): (JB): . No.		0.900 111.528 6.05e-25 29.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [25]:

```
plt.subplot(121)
plt.scatter(boston.target, y_hat1)
plt.title("MEDV ~ LSTAT")
plt.subplot(122)
plt.scatter(boston.target, (result11.predict(df_boston))**2)
plt.title("np.sqrt(MEDV) ~ LSTAT")
plt.tight_layout()
plt.show()
```


In [26]:

```
model12 = sm.OLS.from_formula("np.log(MEDV) ~ LSTAT", data=df_boston)
result12 = model12.fit()
print(result12.summary())
```

OLS Regression Results

Model: Method: Least 3 Date: Mon, 17 Ji Time: 1 No. Observations: Df Residuals: Df Model:		np.log(M Least Squ Mon, 17 Jun 17:2	0LS ares 2019 8:35 506 504	Adj. F-sta Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.648 0.647 928.1 2.23e-116 -0.57634 5.153 13.61
	coef	std err	=====	t	P> t	[0.025	0.975]
Intercept LSTAT	3.6176 -0.0461			.654).465	0.000	3.574 -0.049	3.661 -0.043
Omnibus: Prob(Omnibus Skew: Kurtosis:):	0	7.562 0.000 0.351 0.383		•		0.909 50.719 9.69e-12 29.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [27]:

```
plt.subplot(121)
plt.scatter(boston.target, y_hat1)
plt.title("MEDV ~ LSTAT")
plt.subplot(122)
plt.scatter(boston.target, np.exp(result12.predict(df_boston)))
plt.title("np.log(MEDV) ~ LSTAT")
plt.tight_layout()
plt.show()
```


In [28]:

```
model13 = sm.OLS.from_formula("np.log(MEDV) ~ np.log(LSTAT)", data=df_boston)
result13 = model13.fit()
print(result13.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	Le Mon,	p.log(MEDV) OLS ast Squares 17 Jun 2019 17:28:36 506 504 1 nonrobust	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0.677 0.677 1058. 7.32e-126 21.325 -38.65 -30.20	
=======================================	coef	std err	t	P> t	[0.025	0.975]
Intercept np.log(LSTAT)	4.3618 -0.5598	0.042 0.017	103.603 -32.521	0.000 0.000	4.279 -0.594	4.445 -0.526
Omnibus: Prob(Omnibus): Skew: Kurtosis:		24.565 0.000 -0.205 4.611	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2.	0.855 58.236 26e-13 11.5

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

In [29]:

```
plt.subplot(121)
plt.scatter(boston.target, y_hat1)
plt.title("MEDV ~ LSTAT")
plt.subplot(122)
plt.scatter(boston.target, np.exp(result13.predict(df_boston)))
plt.title("np.log(MEDV) ~ np.log(LSTAT)")
plt.tight_layout()
plt.show()
```

