Functional Analysis: Problem Set II

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set II.

Question 1.

Problem 1. (Exercise 2.2 in the textbook) Let E be a vector space and let $p:E\to\mathbb{R}$ be a function with the following three properties:

(i) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$,

(ii) for each fixed $x \in E$ the function $\lambda \to p(\lambda x)$ is continuous from $\mathbb R$ into $\mathbb R$,

(iii) whenever a sequence (y_n) in E satisfies $p(y_n) \to 0$, then $p(\lambda y_n) \to 0$ for every $\lambda \in \mathbb{R}$.

Assume that (x_n) is a sequence in E such that $p(x_n) \to 0$ and (α_n) is a bounded sequence in \mathbb{R} . Prove that p(0) = 0 and that $p(\alpha_n x_n) \to 0$.

Solution.

Fix $\epsilon > 0$. Suppose for sake contradiction that there exists a subsequence $\{a_{n_k}x_{n_k}\}$ such that

$$|p(a_{n_k}x_{n_k})| \ge 2\epsilon \quad (*)$$

for all $k \geq 1$ Since $\{a_n\}$ is bounded, passing to a further subsequence, and relabeling, we may suppose that

$$|p(a_n x_n)| \ge 2\epsilon$$
 and $\lim_{n \to \infty} a_n = a$

for any $n \geq 1$ and for some $a \in \mathbb{R}$. Now, observe that $\phi_k : \mathbb{R} \to \mathbb{R}$ defined by

$$\lambda \mapsto |p(\lambda x_k)| \ (\lambda \in \mathbb{R})$$

for each $k \ge 1$ is continuous by (ii). Therefore,

$$F_n = \bigcap_{k=n}^{\infty} \phi_k^{-1}([-\epsilon, \epsilon])$$

is closed for each $n \ge 1$ (F_n given in the hint). By assumption and (iii), it follows that

$$\bigcup_{n} F_n = \mathbb{R}$$

and by Baire-Category, we can choose $n_0 \in \mathbb{N}$ such that there exists $\lambda_0 \in \mathbb{R}$ and $\delta > 0$ such that

$$B(\lambda_0, \delta) \subset F_{n_0}$$
.

Now, by (i), we obtain

$$p(a_k x_k) \leq p((\lambda_0 + a_k - a)x_k) + p((a - \lambda_0)x_k)$$

and

$$-p(a_k x_k) \le -p((\lambda_0 + a_k - a)x_k) + p((\lambda_0 - a)x_k)$$

for each $k \geq 1$. Now for all k large enough, since $(a - \lambda_0), (\lambda_0 - a)$ are fixed constants, we have

$$(\lambda_0 + a_k - a) \in B(\lambda_0, \delta)$$
 and $|p((a - \lambda_0)|, |p(\lambda_0 - a)| < \epsilon$

so

$$|p(a_k x_k)| < 2\epsilon,$$

which contradicts (*).

Question 2.

Problem 2. (Exercise 2.4 in the textbook) Let E and F be two Banach spaces and let $a: E \times F \to \mathbb{R}$ be a bilinear form satisfying: (i) for each fixed $x \in E$, the map $y \to a(x,y)$ is continuous; (ii) for each fixed $y \in F$, the map $x \to a(x,y)$ is continuous. Prove that there exists a constant $C \geq 0$ such that

 $|a(x,y)| \leq C \|x\| \|y\| \quad \forall x \in E, \quad \forall y \in F.$

Question 3.

Problem 3. (Exercise 2.10 in the textbook) Let E and F be two Banach spaces and let $T \in L(E, F)$ be surjective.

1. Let M be any subset of E. Prove that T(M) is closed in F iff M + N(T) is closed

- in E. 2. Deduce that if M is a closed vector space in E and $\dim N(T) < \infty$, then T(M) is

Question 4.

Problem 4. (Exercise 2.14 in the textbook) Let E and F be two Banach spaces. 1. Let $T \in \mathcal{L}(E,F)$. Prove that R(T) is closed iff there exists a constant C such that $dist(x,N(T)) \leq C\|Tx\|, \quad \forall x \in E$. 2. Let $A:D(A) \subset E \to F$ be a closed unbounded operator. Prove that R(A) is closed iff there exists a constant C such that $dist(u,N(A)) \leq C\|Au\| \quad \forall u \in D(A)$.

Question 5.

Problem 5. Let G be a closed subspace of a Banach space E. Assume L is a finite dimensional subspace of E, then G+L is a closed linear subspace. Moreover, G+L admits a complement if and only if G does.

Question 6.

Problem 6. Let $S_N(f,x)$ be the N^{th} -partial sum of the Fourier series of $f(x) \in L^1[-\pi,\pi]$, that is,

$$S_N(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(N + \frac{1}{2})(x - \theta)}{\sin(\frac{1}{2}(x - \theta))} f(\theta) d\theta.$$

Show that there is a continuous 2π -periodic function f(x) such that $|S_N(f,0)| \to +\infty$ as $N \to \infty$.

Question 7.

Problem 7. Let $L^1(S^1)$ be the space of Lebesgue integrable functions on the unit circle S^1 . We define a product on $L^1(S^1)$ (convolution):

$$\forall f,g \in L^1(S^1), \quad f * g(\theta) = \int_0^{2\pi} f(\theta - x)g(x)dx.$$

Show that $\|f*g\|\leq \|f\|\|g\|,$ when $\|h\|=\int_0^{2\pi}|h(\theta)|d\theta.$ (This makes $L^1(S^1)$ a Banach algebra).

Solution.

By Tonelli's theorem and the translation invariance property of Lebesgue measure,

$$\begin{aligned} ||f*g|| &= \int_0^{2\pi} |\int_0^{2\pi} f(t-x)g(x)dx|dt \le \int_0^{2\pi} \int_0^{2\pi} |f(t-x)g(x)|dxdt \\ &= \int_0^{2\pi} \int_0^{2\pi} |f(t-x)g(x)|dtdx = \int_0^{2\pi} |g(x)| \int_0^{2\pi} |f(t-x)|dtdx \\ &= ||f|| \int_0^{2\pi} |g(x)| = ||f||||g|| \end{aligned}$$

 $\text{ for any } f,g\in L^1(S^1).$

Question 8.

Problem 8. Let
$$\mathcal{A} = \{f(\theta) = \sum_{n=-\infty}^{+\infty} c_n e^{in\theta}, \theta \in [0, 2\pi], c_n \in \mathbb{C}\}$$
 with the norm $||f|| = +\infty$

 $\sum_{n=-\infty}^{n=-\infty} |c_n| < \infty. \text{ Show that}$ (a) $(\mathcal{A}, \|\cdot\|)$ is a Banach space.
(b) Show that $\|fg\| \leq \|f\| \|g\|$ (In fact, $(\mathcal{A}, \|\cdot\|)$ is a Banach Algebra).
(c) $f_0 \equiv 1$ is the unit element of this Algebra.

(d) A homomorphism $h: \mathcal{A} \to \mathbb{C}$ means $h(f \cdot g) = h(f)h(g)$. For example, given any $\theta_0 \in [0, 2\pi]$, $h_{\theta_0}: \mathcal{A} \to \mathbb{C}$ defined by $h_{\theta_0}(f) = f(\theta_0)$ is a homomorphism. Show that every homomorphism $h: \mathcal{A} \to \mathbb{C}$ is of the form h_{θ_0} for some $\theta_0 \in [0, 2\pi]$. [Hint: $h(f_0) = 1$ and show first that $h(e^{i\theta}) = e^{i\theta_0}$ for some $\theta_0 \in [0, 2\pi]$]. Note that if $f \in \mathcal{A}$ with |f| > 0 on $[0, 2\pi]$, then $\frac{1}{f} \in \mathcal{A}$. The last conclusion is an integrating statement for Fourier spring spring.

interesting statement for Fourier series.