rings 解题报告

董杨静

2019年3月1日

题意

给定一个有向图,每条边有边权。你需要找出一些环,使得

- 这些环的边互不相交
- 所有环的边权和最大

2/5

董杨静 rings 解题报告 2019 年 3 月 1 日

若一共有 M 条边,对于每条边,确定一个非负变量 x_i

若一共有 M 条边,对于每条边,确定一个非负变量 x_i

① $\forall i, x_i \leq 1$,且 x_i 是整数

若一共有 M 条边,对于每条边,确定一个非负变量 x_i

● $\forall i, x_i \leq 1$, 且 x_i 是整数 x_i 取值只能是 0 或 1, 取值为 1 表示这条边在某个环里。

2019年3月1日

若一共有 M 条边,对于每条边,确定一个非负变量 x_i

- $\forall i, x_i \leq 1$, 且 x_i 是整数 x_i 取值只能是 0 或 1, 取值为 1 表示这条边在某个环里。
- ② 对于每个点,入边之和等于出边

$$x_a + x_b = x_c$$

董杨静 rings 解题报告

若一共有 M 条边,对于每条边,确定一个非负变量 x_i

- $\forall i, x_i \leq 1$,且 x_i 是整数 x_i 取值只能是 0 或 1,取值为 1 表示这条边在某个环里。
- ② 对于每个点,入边之和等于出边

$$x_a + x_b = x_c$$

③ 目标函数为

$$\sum_{i=1}^{M} x_i w_i$$

2019年3月1日

3/5

$\overline{OPT_{ILP}} = OPT_{LP}$

证明 (实数) 线性规划的解等于整数线性规划的解:

董杨静

$OPT_{ILP} = OPT_{LP}$

证明 (实数) 线性规划的解等于整数线性规划的解:

实数线性规划一定存在一个最优解,使得 $\forall i, x_i \in \{0, 1\}$.

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

4□ > 4□ > 4□ > 4□ > 4□ > 4□

5/5