WHAT IS CLAIMED IS:

7

- 1 1. A circuit, comprising:
 2 at least one memory cell having first and second p-channel transistors and first
 3 and second n-channel transistors in a cross-coupled latch configuration; and
 4 power control circuitry coupled to a source terminal of one of the n-channel
 5 transistors for providing to that source terminal a low voltage reference level during a normal
 6 mode of operation and transitioning that source terminal to a high voltage reference level and
- 1 2. The circuit of claim 1 wherein the source terminal of the other n-channel transistor is always coupled to the low voltage reference.

back to the low voltage reference level during a data corruption mode of operation.

2

3

A circuit, comprising: 3. 1

- a memory array comprising a plurality of memory cells, the plurality of memory cells arranged in a plurality of groups, each memory cell having first and second p-channel transistors and first and second n-channel transistors in a cross-coupled latch configuration; and 4 power control circuitry selectively coupled, one group at time, to source terminals 5 of the n-channel transistors in the selected group, for providing to those source terminals a low 6 voltage reference level during a normal mode of operation and transitioning those source 7 terminals to a high voltage reference level and back to the low voltage reference level during a 8 data corruption mode of operation. 9
- The circuit of claim 3 wherein the power control circuitry includes counter 4. 1 circuitry to sequentially select each group of memory cells so as to corrupt all memory cells in 2 the memory array. 3
- The circuit of claim 3 wherein the source terminal of the other n-channel 1 5. transistor in each memory cell is always coupled to the low voltage reference. 2

1	6. A circuit, comprising:	
2	a memory cell having first and second p-channel transistors and first and second	ĺ
3	n-channel transistors in a cross-coupled latch configuration; and	
4.	power control circuitry:	
5	a) coupled to a source terminal of at least one of the p-channel transistors	S
6	for providing to that source terminal a high voltage reference level during a normal mode of	f
7	operation and transitioning that source terminal to a low voltage reference level and back to the	е
8	high voltage reference level during a data corruption mode of operation; and	
9	b) coupled to a source terminal of one of the n-channel transistors fo	r
10	providing to that source terminal the low voltage reference level during the normal mode of	of
11	operation and transitioning that source terminal to the high voltage reference level and back t	
12	the low voltage reference level during a data corruption mode of operation.	
1	7. The circuit of claim 6 wherein the source terminal of the other n-channel	el
2	transistor is always coupled to the low voltage reference.	
1	8. The circuit of claim 6 wherein the power control circuitry transitions voltage of	
2	the source terminal of the at least one p-channel transistor and transitions voltage on the source	ce
3	terminal of the n-channel transistor in an interleaved manner.	

1	9. A method for clearing a volatile memory cell, comprising:	
2	transitioning a low voltage reference terminal for a memory cell from a low	
3	reference voltage associated with a normal mode of operation to a high reference voltage in a	
4	data corruption mode of operation; and	
5	transitioning the low voltage reference terminal from the high reference voltage	
6	back to the low reference voltage.	
1	10. The method of claim 9 wherein the memory cell comprises a 6T memory cell and	
. 2	the low voltage reference terminal comprises a source terminal of one n-channel transistor in a	
3	latch portion of the memory cell.	
1	11. The method of claim 10 further comprising holding a source terminal of another	
2	n-channel transistor in the latch portion of the memory cell at the low reference voltage.	
1	12. The method of claim 10 wherein the volatile memory cell is part of a memory	
2	array including a plurality of like volatile memory cells, the volatile memory cells arranged in a	
3	plurality of groups, the steps of transitioning comprising selectively transitioning, one group at	
4	time, the low voltage reference terminals for the memory cells in the selected group.	

l	13.	A circuit, comprising:
2		a volatile memory cell having a low voltage reference terminal; and
3		power control circuitry coupled to the volatile memory cell that transitions the
4	low voltage r	eference terminal from a low reference voltage associated with a normal mode of
5	operation to a	high reference voltage in a data corruption mode of operation and transitions the
6	low voltage re	eference terminal from the high reference voltage back to the low reference voltage.
1	14.	The circuit of claim 13 wherein the volatile memory cell comprises a 6T memory
2	cell and the	low voltage reference terminal comprises a source terminal of one n-channel
3	transistor in	a latch portion of the memory cell.
1	15.	The circuit of claim 14 wherein a source terminal of another n-channel transistor
2	in the latch i	s always coupled to the low reference voltage.
1	16.	The circuit of claim 13 further comprising a memory array including a plurality of
2	volatile mer	nory cells, the memory cells arranged in a plurality of groups, the power control
3	circuitry sel	ectively transitioning, one group at time, the low voltage reference terminals for the
4	memory cel	ls in the selected group.

1	17. A method for clearing a volatile memory cell, comprising:		
2	transitioning a high voltage reference terminal for a volatile memory cell from a		
3	high reference voltage associated with a normal mode of operation to a low reference voltage in		
4	a data corruption mode of operation, and then returning the high voltage reference terminal back		
5	to the high reference voltage; and		
6	transitioning a low voltage reference terminal for the volatile memory cell from		
7	the low reference voltage associated with the normal mode of operation to the high reference		
8	voltage in a data corruption mode of operation, and then returning the low voltage reference		
9	terminal back to the low reference voltage.		
1	18. The method of claim 17 wherein the memory cell comprises a 6T memory cell		
2	and the low voltage reference terminal comprises a source terminal of one n-channel transistor in		
3	a latch portion of the memory cell and the high voltage reference terminal comprises a source		
4	terminal of at least one p-channel transistor in the latch portion of the memory cell.		
	1 11' a a course terminal of another		
1	19. The method of claim 18 further comprising holding a source terminal of another		
2	n-channel transistor in the latch portion of the memory cell at the low reference voltage.		
1	20. The method of claim 17 wherein the volatile memory cell is part of a memory		
2	array including a plurality of like volatile memory cells, the steps of transitioning comprising		
3	transitioning the low voltage reference terminals and high voltage reference terminals for all the		

memory cells.

4

- 1 21. The method of claim 17 wherein the steps of transitioning voltage on the low and
- 2 high voltage reference terminals are performed in an interleaved manner.

1	22.	A circuit, comprising:
2		a volatile memory cell having a low voltage reference terminal and a high voltage
3	reference terr	ninal; and
4		power control circuitry coupled to the volatile memory cell that transitions:
5		a) the high voltage reference terminal from a high reference voltage
6	associated w	ith a normal mode of operation to a low reference voltage in a data corruption mode
7	of operation	and back to the high reference voltage; and
8		b) the low voltage reference terminal from a low reference voltage
9	associated w	rith a normal mode of operation to a high reference voltage in a data corruption mode
10	of operation	and back to the low reference voltage.
1 2 3 4	transistor in	The circuit of claim 22 wherein the volatile memory cell comprises a 6T memory elow voltage reference terminal comprises a source terminal of one n-channel a latch portion of the memory cell and the high voltage reference terminal comprises minal of at least one p-channel transistor in the latch portion of the memory cell.
1	24.	The circuit of claim 23 wherein a source terminal of another n-channel transistor
2	in the latch	is always coupled to the low reference voltage.
1	25.	The circuit of claim 22 wherein the volatile memory cell is part of a memory ding a plurality of like volatile memory cells, the power control circuitry transitioning

- 3 the low voltage reference terminals and high voltage reference terminals for all the memory
- 4 cells.
- 1 26. The circuit of claim 22 wherein the power control circuitry transitions voltage on
- 2 the low and high voltage reference terminals in an interleaved manner.

1	27. A circuit, comprising:
2	a memory array comprising a plurality of memory cells, each memory cell having
3	first and second p-channel transistors and first and second n-channel transistors in a cross-
4	coupled latch configuration; and
5	power control circuitry:
6	a) coupled to a source terminal of at least one of the p-channel transistors
7	in each of the memory cells within the memory array for providing to those source terminals a
8	high voltage reference level during a normal mode of operation and transitioning those source
9	terminals to a low voltage reference level and back to the high voltage reference level during a
10	data corruption mode of operation; and
11	b) coupled to a source terminal of one of the n-channel transistors in each
12	of the memory cells within the memory array for providing to those source terminal the low
13	voltage reference level during the normal mode of operation and transitioning those source
14	terminals to the high voltage reference level and back to the low voltage reference level during a
15	data corruption mode of operation.
1	28. The circuit of claim 27 wherein the source terminal of the other n-channel
2	transistor in each of the memory cells within the memory array is always coupled to the low
3	voltage reference.

- 1 29. The circuit of claim 27 wherein the power control circuitry transitions voltage on
- 2 the source terminal of the at least one p-channel transistor and transitions voltage on the source
- 3 terminal of the n-channel transistor in each of the memory cells within the memory array in an
- 4 interleaved manner.