1 使い方, 説明 1

1 使い方,説明

1.1 まずは各種パッケージについて

o amsmath, amssymb, amsthm を使用.

- align, (d)cases[*], gather, multline などが使用可能

align 複数行の位置合わせ

gather 複数数式の羅列

dcases 場合分け(左に括弧付きで displaystyle)

multline 長い数式の途中改行

o siunitx:数値と単位の入力

 $- \qty{1.4e4}{erg} \ \ \ \ \ \ 1.4 \times 10^4 erg$

- \num $\{1.56e10\}$ で 1.56×10^{10}

- \unit{dyn.Hz/cm^2} でdynHz/cm²

- o physics パッケージではなく physics2 パッケージを利用 (siunitx との競合のため)
 - \ab() \ab\{\} \ab[] などで大きさ自動調整の括弧
 - \bra{\psi} は $\langle \psi |$, \braket{\psi}{\phi} は $\langle \psi | \phi \rangle$, \braket[1]{A} は $\langle A \rangle$, \braket[3]{\psi}{A}{\phi} は $\langle \psi | A | \phi \rangle$, \ketbra{a}{a^\dagger} は $|a\rangle\langle a^\dagger|$ となる.

- o mathtools:なんかいい感じのやつ
 - \xlongrightarrow[g \circ h]{f} は $\frac{f}{goh}$, \underbrace{a_1, \ldots, a_N}_{NIG} (N\text{項})} は $\underline{a_1,...a_N}$
- o diffcoeff: 微分演算子とか, 詳しくは > texdoc diffcoeff でパッケージマニュアルを. 簡単な例を表にまとめる.

\dl{x}	\dn{3}{y}	\dlp{x}
$\mathrm{d}x$	d^3y	∂x
\diff{f}{x}	\difs{f}{x}	\difc[2]{y}{x}
$\frac{\mathrm{d}f}{\mathrm{d}x}$	$\mathrm{d}f/\mathrm{d}x$	$\mathrm{d}_x^2 y$
\difp{f}{x}	\difps{f}{x}	\difcp[2]{y}{x}
$\frac{\partial f}{\partial x}$	$\partial f/\partial x$	$\partial_x^2 y$
\diff**{x}{F(x)}	\diffp**{x}{G(x,y)}	\difcp{F}{x:2,y:3,z}
$rac{\mathrm{d}}{\mathrm{d}x}F(x)$	$\frac{\partial}{\partial x}G(x,y)$	$\partial_x^2 \partial_y^3 \partial_z F(x,y,z)$

- o cancel:式や文章に斜線やバツ印を引く(この設定では\color{green!80!black}として斜線の色を決定している.)
 - \cancel{100} は100
 - \bcancel{100} は100
 - \xcancel{100} (\$)200
- o enumitem:箇条書き環境

enumerate 番号付き\begin{enumerate}[(1)]で(1),(2),...の箇条書き

itemize 番号なし箇条書き

description 見出し付き箇条書き

o tcolorbox:いい感じの枠囲み文章, 詳しいマニュアルは > texdoc tcolorbox を参照

例1

\begin{tcolorbox}

This is a \textbf{tcolorbox}.

\tcblower

This is also \textbf{tcolorbox}.

\end{tcolorbox}

という構造は以下のように出力をする.

1 使い方, 説明 2

This is a tcolorbox.

This is also tcolorbox.

例 2

\begin{tcolorbox}[title={My $\mathcal{G}\mathcal{A}$ }]
This is a \textbf{tcolorbox}.
\end{tcolorbox}

という構造は以下のような出力を返す.

My タイトル

This is a tcolorbox.

あとは自作の box としていくつかを用意している.

\begin{tcolorbox}

This is solidbox style.

\end{tcolorbox}

これは次のように返す.

This is solidbox style.

solidbox 以外にも dashedbox, leftsolid, leftsolid2 などを用意している.

o wrapfigure:図の回り込みをして文章を表示する. <position>にはl or rを入れる(lは図が文章の左側, rは図が文章の右側になるようになる). <overhang>は省略可能. (一般に [] のオプションは省略可能です.) <width>は wrapfigure が保有する幅を表す.

\begin{wrapfigure}{<position>}[<overhang>]{<width>}

\centering

\includegraphics[<width>]{<filepath>}

\caption{<caption>}

\end{wrapfigure}

o wrapfigure よりも最近のパッケージとして wrapstuff がある. 各波括弧では適切なものを選択、入力する. wrapfig では箇条書き 環境内での回り込みがうまくいかないなどの問題点があった. wrapstuff では解決された模様?

\begin{wrapstuff}[type={figure,table},{r,c,l},width={}]
 <wrapped contents>

\end{wrapstuff}

- o esvect:矢印のついたベクトルを書くときに便利そう

 - \vv{\mr{AC}} によって AĆ

1.2 redef の中身

よく使うコマンドについては,すでに登録をしてある.ここに書いていないものもあるので,全部を確認するには redef を参照してください.

ds displaystyle で数式を表示する (使い方は \ds とする;以下同様に先頭に backslash をつける)

comb 二項係数, $\comb{n}{r}$ で 2 行 1 列のベクトルのようにあらわす.

hs \hspace の略

qq \hspace{1em} の略, physics パッケージを使っていたときの名残.

qqtext \hspace{1em} \text{#1} \hspace{1em} の略. 数式間に文章を入れるときに使える.

1 使い方, 説明 3

vs \vspace の略

mr \symup の略, math roman の意味と思ってます (通常書体, 立体) A, X, t, ω, Ξ

mb, bs \symbol の略, math bold (bold symbol) の意味(太字) A,X,t,ω,Ξ

bsup \symbol & upright A,X,t,ω,Ξ

bb \symbb の略, black board (黒板太字) の意味 A, X, ₺

scr \symscr の略, 花文字 $A, \mathcal{X}, \mathcal{T}$

mqty 行列の出力. \begin{matrix}~\end{matrix}で囲まれた部分を\mqty{HOGE} の HOGE の中に書く

eval \left.#1\right| の意味, \eval{f(x)}_{x=10}で $f(x)|_{x=10}$

order \order{\eps^2} $\mathcal{O}(\varepsilon^2)$

gr,di,ro 順に ▽, ▽・, ▽×

i,e,R,N など 虚数単位 i, 自然対数の底 e などは $\setminus i$ や $\setminus e$ として立体で書くことにする。その他の \mathbb{R} , \mathbb{N} , \mathbb{C} , \mathbb{Z} なども規定 al,be,ga,de,eps,th よく使うギリシア文字は最初の数文字だけで書ける。

GL, SL 線形群, 特殊線形群など

diag 対角成分だけの行列

tr トレース

sinc sinc 関数

Res 留数 (Residue)

2 例えばの文章を書いてみましょう

これは将来の展望に関する第一の考察です。However, we must first consider the logistical implications of the project, especially in relation to the equation $E=mc^2$. 倫理的な側面と技術的な実現可能性のバランスを取ることが、極めて重要であると言えます。The primary objective is to maximize the efficiency of the system, which can be modeled by the following integral:

$$\eta = \int_0^\infty f(x) e^{-ax} dx \tag{2.1}$$

この積分を評価するためには、変数 a の値が正である必要があります。Ultimately, the success of this initiative depends on a variety of factors, including but not limited to market trends and the geopolitical climate.

第二に、過去のデータ分析から得られた知見を応用することが考えられます。For instance, the statistical distribution of the dataset closely follows a Gaussian curve, defined as

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}.$$
 (2.2)

このモデルの妥当性を検証するために、さらなる実験が計画されています。We hypothesize that the underlying mechanism is governed by the principles of quantum mechanics, specifically the Schrödinger equation.

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \right] \Psi(\mathbf{r}, t)$$
 (2.3)

もちろん、これはあくまで仮説の段階であり、確定的な結論を導き出すには至っていません。 The collaboration between international research teams is essential for moving forward.

Finally, we propose a new framework based on a multidisciplinary approach. 経済学的なアプローチと情報科学的なアプローチを組み合わせることで、より包括的な理解が可能となります。 The core of this framework is a matrix operation that transforms the input vector \boldsymbol{v} into an output vector \boldsymbol{w} using a transformation matrix \boldsymbol{A} .

$$w = Av$$
 where $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ (2.4)

この回転行列は、二次元空間における座標変換の典型例です。It is imperative that all stakeholders are aligned with the strategic goals outlined in this document. このような取り組みを通じて、我々は持続可能な社会の実現に貢献できると確信しています。The summation

$$\sum_{n=1}^{k} \frac{1}{n} \tag{2.5}$$

represents the k-th harmonic number, which appears in various fields of study. $_$

この節の文章は Google Gemini が生成したもので、その正確性は担保されていません。 というか、なんとも支離滅裂な文章ですね…(著者注)