Multiclass Classification

Mengye Ren

NYU

Nov 7, 2023

Overview

Motivation

- So far, most algorithms we've learned are designed for binary classification.
 - Sentiment analysis (positive vs. negative)
 - Spam filter (spam vs. non-spam)

Motivation

- So far, most algorithms we've learned are designed for binary classification.
 - Sentiment analysis (positive vs. negative)
 - Spam filter (spam vs. non-spam)
- Many real-world problems have more than two classes.
 - Document classification (over 10 classes)
 - Object recognition (over 20k classes)
 - Face recognition (millions of classes)

Motivation

- So far, most algorithms we've learned are designed for binary classification.
 - Sentiment analysis (positive vs. negative)
 - Spam filter (spam vs. non-spam)
- Many real-world problems have more than two classes.
 - Document classification (over 10 classes)
 - Object recognition (over 20k classes)
 - Face recognition (millions of classes)
- What are some potential issues when we have a large number of classes?
 - Computation cost
 - Class imbalance
 - Different cost of errors

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 3/55

Today's lecture

- How to reduce multiclass classification to binary classification?
 - We can think of binary classifier or linear regression as a black box. Naive ways:
 - E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
 - E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)

Today's lecture

- How to reduce multiclass classification to binary classification?
 - We can think of binary classifier or linear regression as a black box. Naive ways:
 - E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
 - E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
- How do we generalize binary classification algorithm to the multiclass setting?
 - We also need to think about the loss function.

Today's lecture

- How to reduce multiclass classification to binary classification?
 - We can think of binary classifier or linear regression as a black box. Naive ways:
 - E.g. multiple binary classifiers produce a binary code for each class (000, 001, 010)
 - E.g. a linear regression produces a numerical value for each class (1.0, 2.0, 3.0)
- How do we generalize binary classification algorithm to the multiclass setting?
 - We also need to think about the loss function.
- Example of very large output space: structured prediction.
 - Multi-class: Mutually exclusive class structure.
 - Text: Temporal relational structure.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 4/55

Reduction to Binary Classification

One-vs-All / One-vs-Rest

Setting • Input space: X

• Output space: $\mathcal{Y} = \{1, \dots, k\}$

One-vs-All / One-vs-Rest

Setting

- Input space: χ
- Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train k binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathbb{R}$.
- Classifier h_i distinguishes class i (+1) from the rest (-1).

One-vs-All / One-vs-Rest

Setting

- Input space: X
- Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train k binary classifiers, one for each class: $h_1, \ldots, h_k : \mathcal{X} \to \mathbb{R}$.
- Classifier h_i distinguishes class i (+1) from the rest (-1).

Prediction

Majority vote:

$$h(x) = \underset{i \in \{1, \dots, k\}}{\arg \max} h_i(x)$$

• Ties can be broken arbitrarily.

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Train OvA classifiers:

 Mengye Ren (NYU)
 CSCI-GA 2565
 Nov 7, 2023
 7/55

OvA: 3-class example (linear classifier)

Consider a dataset with three classes:

Assumption: each class is linearly separable from the rest.

Ideal case: only target class has positive score.

Train OvA classifiers:

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 7/55

OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Train OvA classifiers:

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 8/55

OvA: 4-class non linearly separable example

Consider a dataset with four classes:

Cannot separate red points from the rest. Which classes might have low accuracy?

Train OvA classifiers:

All vs All / One vs One / All pairs

Setting

- Input space: χ
 - Output space: $\mathcal{Y} = \{1, \dots, k\}$

All vs All / One vs One / All pairs

Setting

- Input space: X
- Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train $\binom{k}{2}$ binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathsf{R}$ for $i \in [1, k]$ and $j \in [i+1, k]$.
- Classifier h_{ij} distinguishes class i (+1) from class j (-1).

All vs All / One vs One / All pairs

Setting

- Input space: $\mathfrak X$
 - Output space: $\mathcal{Y} = \{1, \dots, k\}$

Training

- Train $\binom{k}{2}$ binary classifiers, one for each pair: $h_{ij}: \mathcal{X} \to \mathsf{R}$ for $i \in [1, k]$ and $j \in [i+1, k]$.
- Classifier h_{ij} distinguishes class i (+1) from class j (-1).

Prediction

• Majority vote (each class gets k-1 votes)

$$h(x) = \operatorname*{arg\,max}_{i \in \{1, \dots, k\}} \sum_{j \neq i} \underbrace{h_{ij}(x) \mathbb{I}\{i < j\}}_{\text{class } i \text{ is } +1} - \underbrace{h_{ji}(x) \mathbb{I}\{j < i\}}_{\text{class } i \text{ is } -1}$$

- Tournament
- Ties can be broken arbitrarily.

AvA: four-class example

Consider a dataset with four classes:

What's the decision region for the red class?

AvA: four-class example

Consider a dataset with four classes:

Assumption: each pair of classes are linearly separable. More expressive than OvA.

What's the decision region for the red class?

OvA vs AvA

		OvA	4	AvA		
computation	train test	O(k O(k)	$O(k^2 \\ O(k^2$))

OvA vs AvA

		OvA	AvA
computation	train test	$O(kB_{train}(n)) \ O(kB_{test})$	$O(k^2 B_{train}(n/k)) \\ O(k^2 B_{test})$

challenges

		OvA	AvA	
computation	train test	$O(kB_{train}(n)) \ O(kB_{test})$	$\frac{O(k^2 B_{train}(n/k))}{O(k^2 B_{test})}$	
challenges	train test	class imbalance small training set calibration / scale tie breaking		

Lack theoretical justification but simple to implement and works well in practice (when # classes is small).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 11/55

Using the reduction approach, can you train fewer than k binary classifiers?

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.

OvA encoding:

class	h_1	h_2	<i>h</i> ₃	h_4
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

Using the reduction approach, can you train fewer than k binary classifiers?

Key idea: Encode labels as binary codes and predict the code bits directly.

OvA encoding:

class	h_1	h ₂	h ₃	h ₄
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1

OvA uses k bits to encode each label, what's the minimal number of bits you can use?

Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class	h_1	h_2	h ₃	h ₄	h_5	h ₆
1	0	0	0	1	0	0
2	1	0	0	0	0	0
3	0	1	1	0	1	0
4	1	1	0	0	0	0
5	1	1	0	0	1	0
6	0	0	1	1	0	1
7	0	0	1	0	0	0
8	0	1	0	1	0	0

Training Binary classifier h_i :

- \bullet +1: classes whose *i*-th bit is 1
- -1: classes whose *i*-th bit is 0

Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

h_1	h_2	h_3	h_4	h_5	h_6
0	0	0	1	0	0
1	0	0	0	0	0
0	1	1	0	1	0
1	1	0	0	0	0
1	1	0	0	1	0
0	0	1	1	0	1
0	0	1	0	0	0
0	1	0	1	0	0
	0 1 0 1 1 0 0	0 0 1 0 0 1 1 1 1 1 0 0	0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1	0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0	0 0 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0

Training Binary classifier h_i :

- \bullet +1: classes whose *i*-th bit is 1
- -1: classes whose *i*-th bit is 0

 Prediction Closest label in terms of Hamming distance

h_1	h_2	h ₃	h ₄	h_5	h ₆
0	1	1	0	1	1

Error correcting output codes (ECOC)

Example: 8 classes, 6-bit code

class	h_1	h_2	h_3	h_4	h_5	h_6
1	0	0	0	1	0	0
2	1	0	0	0	0	0
3	0	1	1	0	1	0
4	1	1	0	0	0	0
5	1	1	0	0	1	0
6	0	0	1	1	0	1
7	0	0	1	0	0	0
8	0	1	0	1	0	0

Training Binary classifier h_i :

 \bullet +1: classes whose *i*-th bit is 1

• -1: classes whose *i*-th bit is 0

Prediction Closest label in terms of Hamming distance.

h_1	h_2	h ₃	h ₄	h_5	h ₆
0	1	1	0	1	1

Code design Want good binary classifiers.

Error correcting output codes: summary

- \bullet Computationally more efficient than OvA (a special case of ECOC). Better for large k.
- Why not use the minimal number of bits $(\log_2 k)$?

Error correcting output codes: summary

- \bullet Computationally more efficient than OvA (a special case of ECOC). Better for large k.
- Why not use the minimal number of bits $(\log_2 k)$?
 - If the minimum Hamming distance between any pair of code word is d, then it can correct $\lfloor \frac{d-1}{2} \rfloor$ errors.
 - In plain words, if rows are far from each other, ECOC is robust to errors.

- Computationally more efficient than OvA (a special case of ECOC). Better for large k.
- Why not use the minimal number of bits $(\log_2 k)$?
 - If the minimum Hamming distance between any pair of code word is d, then it can correct $\lfloor \frac{d-1}{2} \rfloor$ errors.
 - In plain words, if rows are far from each other, ECOC is robust to errors.
- Trade-off between code distance and binary classification performance.
- Nice theoretical results [Allwein et al., 2000] (also incoporates AvA).

Review

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA
- Key is to design "natural" binary classification problems without large computation cost.

Reduction-based approaches:

- Reducing multiclass classification to binary classification: OvA, AvA
- Key is to design "natural" binary classification problems without large computation cost.

But,

- Unclear how to generalize to extremely large # of classes.
- ImageNet: >20k labels; Wikipedia: >1M categories.

Next, generalize previous algorithms to multiclass settings.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 15 / 55

Multiclass Loss

Binary Logistic Regression

• Given an input x, we would like to output a classification between (0,1).

$$f(x) = sigmoid(z) = \frac{1}{1 + \exp(-z)} = \frac{1}{1 + \exp(-w^{T}x - b)}.$$
 (1)

Binary Logistic Regression

• Given an input x, we would like to output a classification between (0,1).

$$f(x) = sigmoid(z) = \frac{1}{1 + \exp(-z)} = \frac{1}{1 + \exp(-w^{T}x - b)}.$$
 (1)

• The other class is represented in 1 - f(x):

$$1 - f(x) = \frac{\exp(-w^{\top}x - b)}{1 + \exp(-w^{\top}x - b)} = \frac{1}{1 + \exp(w^{\top}x + b)} = sigmoid(-z).$$
 (2)

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 17 / 55

Binary Logistic Regression

• Given an input x, we would like to output a classification between (0,1).

$$f(x) = sigmoid(z) = \frac{1}{1 + \exp(-z)} = \frac{1}{1 + \exp(-w^{\top}x - b)}.$$
 (1)

• The other class is represented in 1 - f(x):

$$1 - f(x) = \frac{\exp(-w^{\top}x - b)}{1 + \exp(-w^{\top}x - b)} = \frac{1}{1 + \exp(w^{\top}x + b)} = sigmoid(-z).$$
 (2)

• Another way to view: one class has (+w,+b) and the other class has (-w,-b).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 17 / 55

• Now what if we have one w_c for each class c?

• Now what if we have one w_c for each class c?

$$f_c(x) = \frac{\exp(w_c^\top x) + b_c}{\sum_c \exp(w_c^\top x + b_c)}$$
(3)

• Also called "softmax" in neural networks.

• Now what if we have one w_c for each class c?

$$f_c(x) = \frac{\exp(w_c^\top x) + b_c}{\sum_c \exp(w_c^\top x + b_c)}$$
(3)

- Also called "softmax" in neural networks.
- Loss function: $L = \sum_{i} -y_c^{(i)} \log f_c(x^{(i)})$

• Now what if we have one w_c for each class c?

$$f_c(x) = \frac{\exp(w_c^\top x) + b_c}{\sum_c \exp(w_c^\top x + b_c)}$$
(3)

- Also called "softmax" in neural networks.
- Loss function: $L = \sum_{i} -y_c^{(i)} \log f_c(x^{(i)})$
- Gradient: $\frac{\partial L}{\partial z} = f y$. Recall: MSE loss.

Comparison to OvA

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to R\}$ (score functions).
- Multiclass Hypothesis Space (for *k* classes):

$$\mathcal{F} = \left\{ x \mapsto \argmax_{i} h_{i}(x) \mid h_{1}, \dots, h_{k} \in \mathcal{H} \right\}$$

Comparison to OvA

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to R\}$ (score functions).
- Multiclass Hypothesis Space (for k classes):

$$\mathcal{F} = \left\{ x \mapsto \arg\max_{i} h_{i}(x) \mid h_{1}, \dots, h_{k} \in \mathcal{H} \right\}$$

- Intuitively, $h_i(x)$ scores how likely x is to be from class i.
- OvA objective: $h_i(x) > 0$ for x with label i and $h_i(x) < 0$ for x with all other labels.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 19 / 55

Comparison to OvA

- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \to R\}$ (score functions).
- Multiclass Hypothesis Space (for k classes):

$$\mathcal{F} = \left\{ x \mapsto \argmax_{i} h_{i}(x) \mid h_{1}, \dots, h_{k} \in \mathcal{H} \right\}$$

- Intuitively, $h_i(x)$ scores how likely x is to be from class i.
- OvA objective: $h_i(x) > 0$ for x with label i and $h_i(x) < 0$ for x with all other labels.
- At test time, to predict (x, i) correctly we only need

$$h_i(x) > h_j(x) \qquad \forall j \neq i.$$
 (4)

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 19 / 55

Multiclass Perceptron

• Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d)$.

- Base linear predictors: $h_i(x) = w_i^T x \ (w \in \mathbb{R}^d)$.
- Multiclass perceptron:

```
Given a multiclass dataset \mathfrak{D} = \{(x, y)\}:
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
    for (x, y) \in \mathcal{D} do
       \hat{y} = \operatorname{arg\,max}_{v' \in \mathcal{Y}} w_{v'}^T x;
         if \hat{y} \neq y then // We've made a mistake
              w_v \leftarrow w_v + x; // Move the target-class scorer towards x
              w_{\hat{v}} \leftarrow w_{\hat{v}} - x; // Move the wrong-class scorer away from x
         end
    end
end
```

Rewrite the scoring function

- Remember that we want to scale to very large # of classes and reuse algorithms and analysis for binary classification
 - \implies a single weight vector is desired
- How to rewrite the equation such that we have one w instead of k?

Rewrite the scoring function

- Remember that we want to scale to very large # of classes and reuse algorithms and analysis for binary classification
 - \implies a single weight vector is desired
- How to rewrite the equation such that we have one w instead of k?

$$w_i^T x = w^T \psi(x, i) \tag{5}$$

$$h_i(x) = h(x, i) \tag{6}$$

- Encode labels in the feature space.
- ullet Score for each label o score for the "compatibility" of a label and an input.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 21/55

How to construct the feature map ψ ?

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{\frac{0, 1}{w_2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)$$

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $\mathcal{Y} = \{1, 2, 3\}$)

$$w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)$$

• And then do the following: $\Psi: R^2 \times \{1,2,3\} \to R^6$ defined by

$$\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)$$

$$\Psi(x,2) := (0,0,x_1,x_2,0,0)$$

$$\Psi(x,3) := (0,0,0,0,x_1,x_2)$$

How to construct the feature map ψ ?

• What if we stack w_i 's together (e.g., $x \in \mathbb{R}^2$, $y = \{1, 2, 3\}$)

$$w = \left(\underbrace{-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_1}, \underbrace{0, 1}_{w_2}, \underbrace{\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}}_{w_3}\right)$$

• And then do the following: $\Psi: R^2 \times \{1,2,3\} \to R^6$ defined by

$$\Psi(x,1) := (x_1, x_2, 0, 0, 0, 0)$$

$$\Psi(x,2) := (0,0,x_1,x_2,0,0)$$

$$\Psi(x,3) := (0,0,0,0,x_1,x_2)$$

• Then $\langle w, \Psi(x,y) \rangle = \langle w_v, x \rangle$, which is what we want.

Multiclass perceptron using the multivector construction.

```
Given a multiclass dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
     for (x, y) \in \mathcal{D} do
           \hat{y} = \arg \max_{v' \in \mathcal{Y}} w^T \psi(x, y'); // Equivalent to \arg \max_{v' \in \mathcal{Y}} w_{v'}^T x
           if \hat{y} \neq y then // We've made a mistake
            w \leftarrow w + \psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
           end
     end
end
```

Multiclass perceptron using the multivector construction.

```
Given a multiclass dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
     for (x, y) \in \mathcal{D} do
           \hat{y} = \arg \max_{v' \in \mathcal{Y}} w^T \psi(x, y'); // Equivalent to \arg \max_{v' \in \mathcal{Y}} w_{v'}^T x
          if \hat{y} \neq y then // We've made a mistake
           w \leftarrow w + \psi(x, y); // Move the scorer towards \psi(x, y)
w \leftarrow w - \psi(x, \hat{y}); // Move the scorer away from \psi(x, \hat{y})
           end
      end
end
```

Exercise: What is the base binary classification problem in multiclass perceptron?

Toy multiclass example: Part-of-speech classification

- $\mathfrak{X} = \{ All \text{ possible words} \}$
- $y = \{NOUN, VERB, ADJECTIVE, ...\}.$

Toy multiclass example: Part-of-speech classification

- $\mathfrak{X} = \{ All \text{ possible words} \}$
- $y = \{NOUN, VERB, ADJECTIVE, ...\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...

How to construct the feature vector?

• Multivector construction: $w \in \mathbb{R}^{d \times k}$ —doesn't scale.

Toy multiclass example: Part-of-speech classification

- $\mathfrak{X} = \{ All \text{ possible words} \}$
- $y = \{NOUN, VERB, ADJECTIVE, ...\}.$
- Features of $x \in \mathcal{X}$: [The word itself], ENDS_IN_ly, ENDS_IN_ness, ...

How to construct the feature vector?

- Multivector construction: $w \in \mathbb{R}^{d \times k}$ —doesn't scale.
- Directly design features for each class.

$$\Psi(x,y) = (\psi_1(x,y), \psi_2(x,y), \psi_3(x,y), \dots, \psi_d(x,y))$$
 (7)

• Size can be bounded by d.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 24/55

Sample training data:

The boy grabbed the apple and ran away quickly .

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$\begin{array}{lll} \psi_1(x,y) &=& \mathbb{1}[x=\operatorname{apple}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_2(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_3(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{VERB}]\\ \psi_4(x,y) &=& \mathbb{1}[x\,\operatorname{ENDS_IN_ly}\,\operatorname{AND}\,y=\operatorname{ADVERB}]\\ &\dots \end{array}$$

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 25 / 55

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$\begin{array}{lll} \psi_1(x,y) &=& \mathbb{1}[x=\operatorname{apple}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_2(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_3(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{VERB}]\\ \psi_4(x,y) &=& \mathbb{1}[x\,\operatorname{ENDS_IN_ly}\,\operatorname{AND}\,y=\operatorname{ADVERB}]\\ &\dots \end{array}$$

• E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, ...)$

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$\begin{array}{lll} \psi_1(x,y) &=& \mathbb{1}[x=\operatorname{apple}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_2(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_3(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{VERB}]\\ \psi_4(x,y) &=& \mathbb{1}[x\,\operatorname{ENDS_IN_ly}\,\operatorname{AND}\,y=\operatorname{ADVERB}]\\ &\dots \end{array}$$

- E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, ...)$
- After training, what's w_1, w_2, w_3, w_4 ?

Sample training data:

The boy grabbed the apple and ran away quickly .

Feature:

$$\begin{array}{lll} \psi_1(x,y) &=& \mathbb{1}[x=\operatorname{apple}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_2(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{NOUN}]\\ \psi_3(x,y) &=& \mathbb{1}[x=\operatorname{run}\,\operatorname{AND}\,y=\operatorname{VERB}]\\ \psi_4(x,y) &=& \mathbb{1}[x\,\operatorname{ENDS_IN_ly}\,\operatorname{AND}\,y=\operatorname{ADVERB}]\\ &\dots \end{array}$$

- E.g., $\Psi(x = \text{run}, y = \text{NOUN}) = (0, 1, 0, 0, ...)$
- After training, what's w_1 , w_2 , w_3 , w_4 ?
- No need to include features unseen in training data.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 25/55

Feature templates: implementation

- Flexible, e.g., neighboring words, suffix/prefix.
- "Read off" features from the training data.
- Often sparse—efficient in practice, e.g., NLP problems.
- Can use a hash function: template $\rightarrow \{1, 2, ..., d\}$.

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- ullet Represent labels in the input space \Longrightarrow single weight vector.

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- ullet Represent labels in the input space \Longrightarrow single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 27/55

Review

Ingredients in multiclass classification:

- Scoring functions for each class (similar to ranking).
- Represent labels in the input space ⇒ single weight vector.

We've seen

- How to generalize the perceptron algorithm to multiclass setting.
- Very simple idea. Was popular in NLP for structured prediction (e.g., tagging, parsing).

Next,

- How to generalize SVM to the multiclass setting.
- Concept check: Why might one prefer SVM / perceptron?

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 27 / 55

Margin for Multiclass

Binary • Margin for $(x^{(n)}, y^{(n)})$:

$$y^{(n)}w^Tx^{(n)} \tag{8}$$

• Want margin to be large and positive $(w^T x^{(n)})$ has same sign as $y^{(n)}$

Margin for Multiclass

Binary • Margin for $(x^{(n)}, y^{(n)})$:

$$y^{(n)}w^Tx^{(n)} \tag{8}$$

• Want margin to be large and positive $(w^T x^{(n)})$ has same sign as $y^{(n)}$

Multiclass

• Class-specific margin for $(x^{(n)}, y^{(n)})$:

$$h(x^{(n)}, y^{(n)}) - h(x^{(n)}, y).$$
 (9)

- Difference between scores of the correct class and each other class
- Want margin to be large and positive for all $y \neq y^{(n)}$.

Multiclass SVM: separable case

Binary

$$\min_{w} \quad \frac{1}{2} \|w\|^{2} \qquad (10)$$
s.t.
$$\underbrace{y^{(n)} w^{T} x^{(n)}}_{\text{margin}} \geqslant 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D} \qquad (11)$$

Binary

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{10}$$

s.t.
$$\underbrace{y^{(n)}w^Tx^{(n)}}_{\text{margin}} \geqslant 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}$$
 (11)

Multiclass As in the binary case, take 1 as our target margin.

$$m_{n,y}(w) \stackrel{\text{def}}{=} \underbrace{\left\langle w, \Psi(x^{(n)}, y^{(n)}) \right\rangle}_{\text{score of correct class}} - \underbrace{\left\langle w, \Psi(x^{(n)}, y) \right\rangle}_{\text{score of other class}}$$
(12)

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{13}$$

s.t.
$$m_{n,y}(w) \ge 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}, y \ne y^{(n)}$$
 (14)

Multiclass SVM: separable case

Binary

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{10}$$

s.t.
$$\underbrace{y^{(n)}w^Tx^{(n)}}_{\text{margin}} \geqslant 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}$$
 (11)

Multiclass As in the binary case, take 1 as our target margin.

$$m_{n,y}(w) \stackrel{\text{def}}{=} \underbrace{\left\langle w, \Psi(x^{(n)}, y^{(n)}) \right\rangle}_{\text{score of correct class}} - \underbrace{\left\langle w, \Psi(x^{(n)}, y) \right\rangle}_{\text{score of other class}}$$
(12)

$$\min_{w} \quad \frac{1}{2} \|w\|^2 \tag{13}$$

s.t.
$$m_{n,y}(w) \ge 1 \quad \forall (x^{(n)}, y^{(n)}) \in \mathcal{D}, y \ne y^{(n)}$$
 (14)

Exercise: write the objective for the non-separable case

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 29 / 55

Recap: hingle loss for binary classification

Hinge loss: a convex upperbound on the 0-1 loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) = \mathsf{max}(0, 1 - yh(x)) \tag{15}$$

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 30 / 55

• What's the zero-one loss for multiclass classification?

(16)

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

• In general, can also have different cost for each class.

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$\hat{y} \stackrel{\text{def}}{=} \arg\max_{y' \in \mathcal{Y}} \langle w, \Psi(x, y') \rangle \tag{17}$$

(19)

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

(19)

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$\hat{y} \stackrel{\text{def}}{=} \underset{y' \in \mathcal{Y}}{\operatorname{arg\,max}} \langle w, \Psi(x, y') \rangle \tag{17}$$

$$\Longrightarrow \langle w, \Psi(x, y) \rangle \leqslant \langle w, \Psi(x, \hat{y}) \rangle \tag{18}$$

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 31/55

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$\hat{y} \stackrel{\text{def}}{=} \underset{y' \in \mathcal{Y}}{\operatorname{arg\,max}} \langle w, \Psi(x, y') \rangle \tag{17}$$

$$\implies \langle w, \Psi(x, y) \rangle \leqslant \langle w, \Psi(x, \hat{y}) \rangle \tag{18}$$

$$\Longrightarrow \Delta(y,\hat{y}) \leqslant \Delta(y,\hat{y}) - \langle w, (\Psi(x,y) - \Psi(x,\hat{y})) \rangle \qquad \text{When are they equal?} \tag{19}$$

• What's the zero-one loss for multiclass classification?

$$\Delta(y, y') = \mathbb{I}\left\{y \neq y'\right\} \tag{16}$$

- In general, can also have different cost for each class.
- Upper bound on $\Delta(y, y')$.

$$\hat{y} \stackrel{\text{def}}{=} \arg\max_{y' \in \mathcal{Y}} \langle w, \Psi(x, y') \rangle \tag{17}$$

$$\implies \langle w, \Psi(x, y) \rangle \leqslant \langle w, \Psi(x, \hat{y}) \rangle \tag{18}$$

$$\Rightarrow \Delta(y,\hat{y}) \leq \Delta(y,\hat{y}) - \langle w, (\Psi(x,y) - \Psi(x,\hat{y})) \rangle$$
 When are they equal? (19)

Generalized hinge loss:

$$\ell_{\mathsf{hinge}}(y, x, w) \stackrel{\mathsf{def}}{=} \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') - \left\langle w, \left(\Psi(x, y) - \Psi(x, y') \right) \right\rangle \right) \tag{20}$$

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 31/55

Multiclass SVM with Hinge Loss

• Recall the hinge loss formulation for binary SVM (without the bias term):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max \left(0, 1 - \underbrace{y^{(n)} w^T x^{(n)}}_{\text{margin}} \right).$$

Multiclass SVM with Hinge Loss

• Recall the hinge loss formulation for binary SVM (without the bias term):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max \left(0, 1 - \underbrace{y^{(n)} w^T x^{(n)}}_{\text{margin}} \right).$$

• The multiclass objective:

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} ||w||^2 + C \sum_{n=1}^N \max_{y' \in \mathcal{Y}} \left(\Delta(y, y') - \underbrace{\left\langle w, \left(\Psi(x, y) - \Psi(x, y') \right) \right\rangle}_{\text{margin}} \right)$$

- $\Delta(y, y')$ as target margin for each class.
- If margin $m_{n,y'}(w)$ meets or exceeds its target $\Delta(y^{(n)},y')$ $\forall y \in \mathcal{Y}$, then no loss on example n.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 32 / 55

Recap: What Have We Got?

• Problem: Multiclass classification $\mathcal{Y} = \{1, ..., k\}$

Recap: What Have We Got?

- Problem: Multiclass classification $\mathcal{Y} = \{1, ..., k\}$
- Solution 1: One-vs-All
 - Train k models: $h_1(x), \ldots, h_k(x) : \mathcal{X} \to \mathbb{R}$.
 - Predict with $\arg\max_{y\in\mathcal{Y}}h_y(x)$.
 - Gave simple example where this fails for linear classifiers

Recap: What Have We Got?

- Problem: Multiclass classification $\mathcal{Y} = \{1, ..., k\}$
- Solution 1: One-vs-All
 - Train k models: $h_1(x), \ldots, h_k(x) : \mathcal{X} \to \mathbb{R}$.
 - Predict with $\arg \max_{y \in \mathcal{Y}} h_y(x)$.
 - Gave simple example where this fails for linear classifiers
- Solution 2: Multiclass loss
 - Train one model: $h(x,y): \mathfrak{X} \times \mathcal{Y} \to \mathsf{R}$.
 - Prediction involves solving $\arg \max_{y \in \mathcal{Y}} h(x, y)$.

Does it work better in practice?

- Paper by Rifkin & Klautau: "In Defense of One-Vs-All Classification" (2004)
 - Extensive experiments, carefully done
 - albeit on relatively small UCI datasets
 - Suggests one-vs-all works just as well in practice
 - (or at least, the advantages claimed by earlier papers for multiclass methods were not compelling)

Does it work better in practice?

- Paper by Rifkin & Klautau: "In Defense of One-Vs-All Classification" (2004)
 - Extensive experiments, carefully done
 - albeit on relatively small UCI datasets
 - Suggests one-vs-all works just as well in practice
 - (or at least, the advantages claimed by earlier papers for multiclass methods were not compelling)
- Compared
 - many multiclass frameworks (including the one we discuss)
 - one-vs-all for SVMs with RBF kernel
 - one-vs-all for square loss with RBF kernel (for classification!)
- All performed roughly the same

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 34/55

Why Are We Bothering with Multiclass?

- The framework we have developed for multiclass
 - compatibility features / scoring functions
 - multiclass margin
 - target margin / multiclass loss

Why Are We Bothering with Multiclass?

- The framework we have developed for multiclass
 - compatibility features / scoring functions
 - multiclass margin
 - target margin / multiclass loss
- Generalizes to situations where k is very large and one-vs-all is intractable.

Why Are We Bothering with Multiclass?

- The framework we have developed for multiclass
 - compatibility features / scoring functions
 - multiclass margin
 - target margin / multiclass loss
- Generalizes to situations where k is very large and one-vs-all is intractable.
- Key idea is that we can generalize across outputs y by using features of y.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 35/55

Introduction to Structured Prediction

Example: Part-of-speech (POS) Tagging

• Given a sentence, give a part of speech tag for each word:

Х	[START]	He	eats	apples
	× ₀	× ₁	<i>X</i> ₂	<i>x</i> ₃
У	[START]	Pronoun	Verb	Noun
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>у</i> з

Example: Part-of-speech (POS) Tagging

• Given a sentence, give a part of speech tag for each word:

X	[START]	He	eats	apples
	X ₀	X ₁	X2	X3
y	[START]	Pronoun	Verb	Noun
	<i>y</i> o	<i>y</i> 1	У2	<i>У</i> 3

- $V = \{all \text{ English words}\} \cup \{[START], "."\}$
- $X = V^n$, n = 1, 2, 3, ... [Word sequences of any length]

Example: Part-of-speech (POS) Tagging

• Given a sentence, give a part of speech tag for each word:

X	[START]	He	eats	apples
	× ₀	x_1	<i>x</i> ₂	<i>x</i> ₃
У	[START]	Pronoun	Verb	Noun
	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃

- $\mathcal{V} = \{\text{all English words}\} \cup \{[\text{START}], "."\}$
- $\mathfrak{X} = \mathcal{V}^n$, n = 1, 2, 3, ... [Word sequences of any length]
- $\mathcal{P} = \{START, Pronoun, Verb, Noun, Adjective\}$
- $y = \mathcal{P}^n$, n = 1, 2, 3, ...[Part of speech sequence of any length]

Multiclass Hypothesis Space

- Discrete output space: y(x)
 - Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
 - Size depends on input x

Multiclass Hypothesis Space

- Discrete output space: y(x)
 - Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
 - Size depends on input x
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to R\}$
 - h(x,y) gives compatibility score between input x and output y

Multiclass Hypothesis Space

- Discrete output space: y(x)
 - Very large but has structure, e.g., linear chain (sequence labeling), tree (parsing)
 - Size depends on input x
- Base Hypothesis Space: $\mathcal{H} = \{h : \mathcal{X} \times \mathcal{Y} \to R\}$
 - h(x,y) gives compatibility score between input x and output y
- Multiclass hypothesis space

$$\mathcal{F} = \left\{ x \mapsto \operatorname*{arg\,max}_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}$$

- Final prediction function is an $f \in \mathcal{F}$.
- For each $f \in \mathcal{F}$ there is an underlying compatibility score function $h \in \mathcal{H}$.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 38 / 55

Structured Prediction

Part-of-speech tagging

Multiclass hypothesis space:

$$h(x,y) = w^{T} \Psi(x,y) \tag{21}$$

$$\mathcal{F} = \left\{ x \mapsto \arg\max_{y \in \mathcal{Y}} h(x, y) \mid h \in \mathcal{H} \right\}$$
 (22)

- A special case of multiclass classification
- How to design the feature map Ψ ? What are the considerations?

Unary features

- A unary feature only depends on
 - the label at a single position, y_i , and x
- Example:

$$\begin{array}{lcl} \varphi_1(x,y_i) & = & \mathbb{1}[x_i = \mathsf{runs}]\mathbb{1}[y_i = \mathsf{Verb}] \\ \varphi_2(x,y_i) & = & \mathbb{1}[x_i = \mathsf{runs}]\mathbb{1}[y_i = \mathsf{Noun}] \\ \varphi_3(x,y_i) & = & \mathbb{1}[x_{i-1} = \mathsf{He}]\mathbb{1}[x_i = \mathsf{runs}]\mathbb{1}[y_i = \mathsf{Verb}] \end{array}$$

- A markov feature only depends on
 - two adjacent labels, y_{i-1} and y_i , and x
- Example:

$$\theta_1(x, y_{i-1}, y_i) = \mathbb{1}[y_{i-1} = \text{Pronoun}] \mathbb{1}[y_i = \text{Verb}]$$

 $\theta_2(x, y_{i-1}, y_i) = \mathbb{1}[y_{i-1} = \text{Pronoun}] \mathbb{1}[y_i = \text{Noun}]$

- Reminiscent of Markov models in the output space
- Possible to have higher-order features

Local Feature Vector and Compatibility Score

• At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$\Psi_{i}(x, y_{i-1}, y_{i}) = (\phi_{1}(x, y_{i}), \phi_{2}(x, y_{i}), \dots, \\
\theta_{1}(x, y_{i-1}, y_{i}), \theta_{2}(x, y_{i-1}, y_{i}), \dots)$$

Local Feature Vector and Compatibility Score

• At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$\Psi_{i}(x, y_{i-1}, y_{i}) = (\phi_{1}(x, y_{i}), \phi_{2}(x, y_{i}), \dots, \\
\theta_{1}(x, y_{i-1}, y_{i}), \theta_{2}(x, y_{i-1}, y_{i}), \dots)$$

• And local compatibility score at position $i: \langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.

Local Feature Vector and Compatibility Score

• At each position *i* in sequence, define the **local feature vector** (unary and markov):

$$\Psi_{i}(x, y_{i-1}, y_{i}) = (\phi_{1}(x, y_{i}), \phi_{2}(x, y_{i}), \dots, \\
\theta_{1}(x, y_{i-1}, y_{i}), \theta_{2}(x, y_{i-1}, y_{i}), \dots)$$

- And local compatibility score at position $i: \langle w, \Psi_i(x, y_{i-1}, y_i) \rangle$.
- The compatibility score for (x, y) is the sum of local compatibility scores:

$$\sum_{i} \langle w, \Psi_{i}(x, y_{i-1}, y_{i}) \rangle = \left\langle w, \sum_{i} \Psi_{i}(x, y_{i-1}, y_{i}) \right\rangle = \left\langle w, \Psi(x, y) \right\rangle, \tag{23}$$

where we define the sequence feature vector by

$$\Psi(x,y) = \sum_{i} \Psi_{i}(x,y_{i-1},y_{i}).$$
 decomposable

```
Given a dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, \dots, T do
      for (x, y) \in \mathcal{D} do
           \hat{y} = \operatorname{arg\,max}_{y' \in \mathcal{Y}(x)} w^T \psi(x, y');
           if \hat{y} \neq y then // We've made a mistake
            w \leftarrow w + \Psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \Psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
            end
      end
end
```

```
Given a dataset \mathcal{D} = \{(x, y)\};
Initialize w \leftarrow 0:
for iter = 1, 2, ..., T do
      for (x, y) \in \mathcal{D} do
            \hat{y} = \operatorname{arg\,max}_{\mathbf{v}' \in \mathbf{y}(\mathbf{x})} \mathbf{w}^T \psi(\mathbf{x}, \mathbf{y}');
            if \hat{y} \neq y then // We've made a mistake
           w \leftarrow w + \Psi(x,y); // Move the scorer towards \psi(x,y)
w \leftarrow w - \Psi(x,\hat{y}); // Move the scorer away from \psi(x,\hat{y})
             end
      end
end
```

Identical to the multiclass perceptron algorithm except the arg max is now over the structured output space y(x).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 43/55

Structured hinge loss

• Recall the generalized hinge loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) \stackrel{\mathsf{def}}{=} \max_{y' \in \mathcal{Y}(x)} \left(\Delta(y, y') + \left\langle w, \left(\Psi(x, y') - \Psi(x, y) \right) \right\rangle \right) \tag{24}$$

• What is $\Delta(y, y')$ for two sequences?

Structured hinge loss

Recall the generalized hinge loss

$$\ell_{\mathsf{hinge}}(y, \hat{y}) \stackrel{\mathsf{def}}{=} \max_{y' \in \mathcal{Y}(x)} \left(\Delta(y, y') + \left\langle w, \left(\Psi(x, y') - \Psi(x, y) \right) \right\rangle \right) \tag{24}$$

- What is $\Delta(y, y')$ for two sequences?
- Hamming loss is common:

$$\Delta(y, y') = \frac{1}{L} \sum_{i=1}^{L} \mathbb{1}[y_i \neq y_i']$$

where L is the sequence length.

Structured SVM

Exercise:

- Write down the objective of structured SVM using the structured hinge loss.
- Stochastic sub-gradient descent for structured SVM (similar to HW3 P3)
- Compare with the structured perceptron algorithm

The argmax problem for sequences

Problem To compute predictions, we need to find $\arg\max_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 46/55

The argmax problem for sequences

Problem To compute predictions, we need to find $\arg\max_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Observation $\Psi(x,y)$ decomposes to $\sum_i \Psi_i(x,y)$.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 46/55

The argmax problem for sequences

Problem To compute predictions, we need to find $\arg\max_{y\in\mathcal{Y}(x)}\langle w,\Psi(x,y)\rangle$, and $|\mathcal{Y}(x)|$ is exponentially large.

Observation $\Psi(x,y)$ decomposes to $\sum_i \Psi_i(x,y)$.

Solution Dynamic programming (similar to the Viterbi algorithm)

What's the running time?

46 / 55

Figure by Daumé III. A course in machine learning. Figure 17.1.

• Recall that we can write logistic regression in a general form:

$$p(y|x) = \frac{1}{Z(x)} \exp(w^{\top} \psi(x, y)).$$

• Z is normalization constant: $Z(x) = \sum_{y \in Y} \exp(w^{\top} \psi(x, y))$.

• Recall that we can write logistic regression in a general form:

$$p(y|x) = \frac{1}{Z(x)} \exp(w^{\top} \psi(x, y)).$$

- Z is normalization constant: $Z(x) = \sum_{y \in Y} \exp(w^{\top} \psi(x, y))$.
- Example: linear chain $\{y_t\}$
- We can incorporate unary and Markov features: $p(y|x) = \frac{1}{Z(x)} \exp(\sum_t w^\top \psi(x, y_t, y_{t-1}))$

Logistic Regression

Linear-chain CRFs

47 / 55

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023

- Compared to Structured SVM, CRF has a probabilistic interpretation.
- We can draw samples in the output space.

- Compared to Structured SVM, CRF has a probabilistic interpretation.
- We can draw samples in the output space.
- How do we learn w? Maximum log likelihood, and regularization term: $\lambda ||w||^2$
- Loss function:

$$I(w) = -\frac{1}{N} \sum_{i=1}^{N} \log p(y^{(i)}|x^{(i)}) + \frac{1}{2}\lambda ||w||^{2}$$

$$= -\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} w_{k} \psi_{k}(y_{t}^{(i)}, y_{t-1}^{(i)}) + \frac{1}{N} \sum_{i} \log Z(x^{(i)}) + \frac{1}{2} \sum_{k} \lambda w_{k}^{2}$$

48 / 55

Loss function:

$$I(w) = -\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} w_{k} \psi_{k}(x^{(i)}, y_{t}^{(i)}, y_{t-1}^{(i)}) + \frac{1}{N} \sum_{i} \log Z(x^{(i)}) + \frac{1}{2} \sum_{k} \lambda w_{k}^{2}$$

• Gradient:

$$\frac{\partial I(w)}{\partial w_k} = -\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} \psi_k(x^{(i)}, y_t^{(i)}, y_{t-1}^{(i)})$$

$$+ \frac{1}{N} \sum_{i} \frac{\partial}{\partial w_k} \log \sum_{y' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y_t', y_{t-1}')) + \sum_{k} \lambda w_k$$
(25)

49 / 55

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023

• What is $\frac{1}{N} \sum_i \sum_t \sum_k \psi_k(x^{(i)}, y_t^{(i)}, y_{t-1}^{(i)})$?

- What is $\frac{1}{N} \sum_{i} \sum_{t} \sum_{k} \psi_{k}(x^{(i)}, y_{t}^{(i)}, y_{t-1}^{(i)})$?
- It is the expectation $\psi_k(x^{(i)}, y_t, y_{t-1})$ under the empirical distribution $\tilde{p}(x, y) = \frac{1}{N} \sum_i \mathbb{1}[x = x^{(i)}] \mathbb{1}[y = y^{(i)}].$

• What is $\frac{1}{N}\sum_i \frac{\partial}{\partial w_k} \log \sum_{y' \in Y} \exp(\sum_t \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_t, y'_{t-1}))$?

• What is $\frac{1}{N} \sum_i \frac{\partial}{\partial w_k} \log \sum_{y' \in Y} \exp(\sum_t \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_t, y'_{t-1}))$?

$$\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{k}} \log \sum_{v' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1}))$$
(27)

$$= \frac{1}{N} \sum_{i} \left[\sum_{y' \in Y} \exp\left(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1})\right) \right]^{-1}$$
 (28)

$$\left[\sum_{y'\in Y} \exp\left(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y_t^{(i)}, y_{t-1}^{(i)})\right) \sum_{t} \psi_k(x^{(i)}, y_t', y_{t-1}')\right]$$
(29)

$$= \frac{1}{N} \sum_{i} \sum_{t} \sum_{y' \in Y} p(y'_{t}, y'_{t-1} | x) \psi_{k}(x^{(i)}, y'_{t}, y'_{t-1})$$
(30)

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 51/55

• What is $\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{i}} \log \sum_{v' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1}))$?

$$\frac{1}{N} \sum_{i} \frac{\partial}{\partial w_{k}} \log \sum_{v' \in Y} \exp(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1}))$$
(27)

$$= \frac{1}{N} \sum_{i} \left[\sum_{y' \in Y} \exp\left(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y'_{t}, y'_{t-1})\right) \right]^{-1}$$
 (28)

$$\left[\sum_{y'\in Y} \exp\left(\sum_{t} \sum_{k'} w_{k'} \psi_{k'}(x^{(i)}, y_{t}^{(i)}, y_{t-1}^{(i)})\right) \sum_{t} \psi_{k}(x^{(i)}, y_{t}', y_{t-1}')\right]$$
(29)

$$= \frac{1}{N} \sum_{i} \sum_{t} \sum_{y' \in X} \rho(y'_t, y'_{t-1} | x) \psi_k(x^{(i)}, y'_t, y'_{t-1})$$
(30)

51 / 55

• It is the expectation of $\psi_k(x^{(i)}, y'_t, y'_{t-1})$ under the model distribution $p(y'_t, y'_{t-1}|x)$.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023

• To compute the gradient, we need to infer expectation under the model distribution p(y|x).

- To compute the gradient, we need to infer expectation under the model distribution p(y|x).
- Compare the learning algorithms: in structured SVM we need to compute the argmax, whereas in CRF we need to compute the model expectation.

- To compute the gradient, we need to infer expectation under the model distribution p(y|x).
- Compare the learning algorithms: in structured SVM we need to compute the argmax, whereas in CRF we need to compute the model expectation.
- Both problems are NP-hard for general graphs.

• In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.

• In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.

• Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$

- In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.
- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$

• In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.

- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_{j} \alpha_{j}(T)$

• In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.

- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_{j} \alpha_{j}(T)$
- Similar for the backward direction.

- In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.
- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_{j} \alpha_{j}(T)$
- Similar for the backward direction.
- Test time, again use Viterbi algorithm to infer argmax.

- In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.
- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_{i} \alpha_{i}(T)$
- Similar for the backward direction.
- Test time, again use Viterbi algorithm to infer argmax.
- The inference algorithm can be generalized to belief propagation (BP) in a tree structure (exact inference).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 53 / 55

- In the linear chain structure, we can use the forward-backward algorithm for inference, similar to Viterbi.
- Initiate $\alpha_j(1) = \exp(w^\top \psi(y_1 = j, x_1))$
- Recursion: $\alpha_j(t) = \sum_i \alpha_i(t-1) \exp(w^\top \psi(y_t = j, y_{t-1} = i, x_t))$
- Result: $Z(x) = \sum_{j} \alpha_{j}(T)$
- Similar for the backward direction.
- Test time, again use Viterbi algorithm to infer argmax.
- The inference algorithm can be generalized to belief propagation (BP) in a tree structure (exact inference).
- In general graphs, we rely on approximate inference (e.g. loopy belief propagation).

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023

53 / 55

Examples

• POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.

Examples

- POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.
- Semantic segmentation
 Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel, and a sky pixel is likely to be above a grass pixel.

Examples

- POS tag Relationship between constituents, e.g. NP is likely to be followed by a VP.
- Semantic segmentation
 Relationship between pixels, e.g. a grass pixel is likely to be next to another grass pixel,
 and a sky pixel is likely to be above a grass pixel.
- Multi-label learning
 An image may contain multiple class labels, e.g. a bus is likely to co-occur with a car.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 54/55

Conclusion

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA
 - Good enough for simple multiclass problems
 - They don't scale and have simplified assumptions

Conclusion

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA
 - Good enough for simple multiclass problems
 - They don't scale and have simplified assumptions
- Generalize binary classification algorithms using multiclass loss
 - Multi-class perceptron, multi-class logistics regression, multi-class SVM

CSCI-GA 2565 55 / 55 Nov 7, 2023

Conclusion

Multiclass algorithms

- Reduce to binary classification, e.g., OvA, AvA
 - Good enough for simple multiclass problems
 - They don't scale and have simplified assumptions
- Generalize binary classification algorithms using multiclass loss
 - Multi-class perceptron, multi-class logistics regression, multi-class SVM
- Structured prediction: Structured SVM, CRF. Data containing structure. Extremely large output space. Text and image applications.

Mengye Ren (NYU) CSCI-GA 2565 Nov 7, 2023 55/55