

Métodos numéricos en ingeniería

Dr. Adolfo Centeno Téllez

Entrega proyecto 2do parcial

Crecimiento bacteriano

Equipo #2

María Fernanda Gutiérrez Ornelas A01234243
Alfonso Iván Morales Valverde A01562011
Ana Sofia Miranda Jimenez A01631272
Anahi Esquivel Valenzuela A01235160
Sergio Eduardo Trejo Olivas A012422091
Marcela Landero Barraza A01187873

02/11/2021

Resumen

Se realizó la solución de distintos métodos numéricos vistos en clase, tanto de ecuaciones lineales como de ecuación no lineal, por medio de la aplicación de Matlab y excel, ésto para problemáticas basadas en el crecimiento bacteriano, en donde en cada uno de los métodos se plantearon diferentes problemas para su resolución.

Introducción

Una ecuación lineal es una igualdad matemática entre dos expresiones algebraicas, denominadas miembros, en las que aparecen elementos conocidos y desconocidos (denominados variables), y que involucra solamente sumas y restas de una variable a la primera potencia (ecuación lineal, s.f.). Dicho lo anterior se puede aplicar las ecuaciones lineales a distintas áreas, en este proyecto se adaptará al tema de crecimiento bacteriano, el cual se define como el incremento en el número de bacterias, existen varios factores que pueden influir en dicho crecimiento, como: los nutrientes, humedad, temperatura, entre otros, por lo que se utilizarán distintos métodos y teoremas para resolver problemas de crecimiento bacteriano. Así mismo aplicaremos un método de sistemas de ecuaciones no lineales.

Objetivos

General:

-Aplicar los métodos vistos en clase en un tema relacionado a la carrera de ingeniería en biotecnología.

Específicos:

- -Aplicar un sistema de ecuaciones lineales como: Cramer, Jacobi, Seidel, eliminación, Gauss Jordan, seleccionando 3 métodos de estos, para la resolución de un problema de crecimiento bacteriano.
- -Aplicar un sistema de ecuaciones NO lineales como Newton Raphson, para la resolución de un problema de crecimiento bacteriano.

Desarrollo (Métodos y teoremas)

Sistema de ecuaciones NO lineales:

Newton Raphson: El método de Newton-Raphson es un método iterativo para poder encontrar raíces de funciones. Este método en teoría puede hallar raíces de funciones lineales y no lineales (Dominic & Castro, 2017).

Problema: La concentración de bacterias en un lago disminuye de acuerdo con la siguiente ecuación: $c = 75e^{-1.5t} + 2000e^{-0.075t}$, Determinar el tiempo requerido para que la concentración de bacterias se reduzca a 15 (Alejandra, H., 2020).

Excel:

'	_ B		- C	
	Metodo Nev	vthon Raphson		
	Ejemplo 1		5x+2075e^-0.07	5x
	Ljempio 1			
		1 = -112.50	e^(-1.5x)-155.62	5e*(-0.075X)
70				
	-			
	-2.679385	454.099649		
	-2.479385	420.203840		
	-2.279385	386.308031		
	-2.079385	352.412222		
	-1.879385	318.516413		
	-1.679385	284.620605		
	-1.479385	250.724796		
	-1.279385	216.828987		
	-1.079385	182.933178		
	-0.879385 -0.679385	149.037370 115.141561		
	-0.679385	81.245752		
	-0.479385	47.349943		
_	-0.079385	13.454135		
_	0.120615	-20.441674		
_	0.320615	-54.337483		
	0.520615	-88.233292		
	0.720615	-122.129101		
	0.920615	-156.024909		
	1.120615	-189.920718		
	1.320615	-223.816527		
_		_		
				$f(x_n)$
p_0) -0.	079385	$x_{n+1} = x_n$	$-\frac{J(\omega n)}{J}$
				$_{n}-rac{f(x_{n})}{f'(x_{n})}.$
		Г	onde f^\prime deno	
			J done	ia ia aomitada

p_0	-0.079385	x_n	$x_{n+1}=x_n-1$	$rac{f(x_n)}{f'(x_n)}.$				
		Donde	$e\ f'$ denota la	derivada de	<i>f</i> .			
n	Pn-1	f(Pn-1)	f' (Pn-1)	Pn	f(Pn)	E	Validacion 1	Validacion 2
1	-0.07938524	13.45413457	-0.45740539	29.33464187	27823.64525826	0.00010000	fracaso	fracaso
2	29.33464187	27823.64525826	2757.57149172	19.24473292	8237.55361989	0.00010000	fracaso	fracaso
3	19.24473292	8237.55361989	1226.54763345	12.52868424	2436.50540152	0.00010000	fracaso	fracaso
4	12.52868424	2436.50540152	546.07589174	8.06684031	719.16259937	0.00010000	fracaso	fracaso
5	8.06684031	719.16259937	243.62277972	5.11488894	211.30244534	0.00010000	fracaso	fracaso
6	5.11488894	211.30244534	109.17560015	3.17945240	61.46757500	0.00010000	fracaso	fracaso
7	3.17945240	61.46757500	49.40346714	1.93525683	17.48361767	0.00010000	fracaso	fracaso
8	1.93525683	17.48361767	22.84719799	1.17001561	4.70848670	0.00010000	fracaso	fracaso
9	1.17001561	4.70848670	11.12690326	0.74685325	1.08995641	0.00010000	fracaso	fracaso
10	0.74685325	1.08995641	6.15448879	0.56975382	0.15881141	0.00010000	fracaso	fracaso
11	0.56975382	0.15881141	4.39238119	0.53359771	0.00610898	0.00010000	fracaso	fracaso
12	0.53359771	0.00610898	4.05576585	0.53209147	0.00001043	0.00010000	fracaso	exito
13	0.53209147	0.00001043	4.04191280	0.53208889	0.00000000	0.00010000	exito	exito
14	0.53208889	0.00000000	4.04188907	0.53208889	0.00000000	0.00010000	exito	exito
15	0.53208889	0.00000000	4.04188907	0.53208889	0.00000000	0.00010000	exito	exito

```
Matlab:
%1.- Encontrar a y b
clear, clc, close all
C=15;
syms t real
f=75*exp(-1.5*t)+20*exp(-0.075*t)-15;
fplot(f,[3,6], 'color', 'b')
grid on
a=3.8; b=4.0;
Es=0.005;
fd=diff(t);
x(1)=a;
%Fórmula interactiva
for i=2:10000
 %Método de Newton Raphson
 \% x(i+1)=xi-f(xi)/f'(xi)
   x(i)=x(i-1)-subs(f,(x(i-1)))/subs(fd,x(i-1));
 %Criterio de error absoluto
 E=abs(x(i)-x(i-1));
```

```
if E<Es
break
end
end
%Mostrar resultados
fprintf('El tiempo requerido para la disminución de concentración de bacterias es de
%0.3f',x(i))
```

Gráfica 1. Newton Raphson, crecimiento bacteriano.

Conclusión:

En conclusión se pudo utilizar el método de Newton Raphson en un problema de crecimiento bacteriano, obteniendo como resultado que el tiempo requerido para la disminución de concentración de bacterias es de 4.002 y la gráfica mostrada anteriormente, así mismo se pudo realizar el procedimiento en excel.

Regla de Cramer

Problema:

Tres especies bacterianas diferentes se cultivan en un plato y se alimentan de tres nutrientes. Cada individuo de la especie I consume una unidad de cada uno de los primeros y segundos nutrientes y 2 unidades del tercer nutriente. Cada individuo de la especie II consume 2 unidades del primer nutriente y 2 del tercer nutriente. Cada individuo de la especie III consume 2 unidades del primer nutriente, 3 unidades del segundo nutriente y 5 unidades del tercer nutriente. Si al cultivo se le dan 5300 unidades del primer nutriente, 6900 unidades del segundo nutriente y 12,200 unidades del tercer nutriente, ¿Cuánto crecimiento bacteriano de cada especie se pueden mantener para que se consuman todos los nutrientes?

Excel:

Matlab:

```
>> A= [1 2 2;1 0 3;2 2 5];
a= [5300;6900;12200];
det(A)
B=A;
C=A;
D=A;
B(:,1)=a;
C(:,2)=a;
D(:,3)=a;
det(B)
det(C)
det(D)
x1=det(B)/det(A);
x2= det(C)/det(A);
x3=det(D)/det(A);
```

ans =

0

ans =

4.3577e-12

ans =

0

ans =

0

>>

Conclusión:

Al realizar una comparación uno a uno entre la resolución del problema con dos diferentes métodos de resolución (Excel/ Matlab), se obtienen los resultados en 0 correspondientes a las variables X,Y,Z. De igual manera, al realizar el despeje correspondiente a las variables se obtienen los resultados del crecimiento bacteriano correspondiente a las unidades de sustrato bacteriológico usado.

Método Jacobi

El método de Jacobi es un método iterativo, usado para resolver sistemas de ecuaciones lineales; consiste en construir una sucesión convergente definida interactivamente, donde el límite es la solución del problema.

Problema: Una fábrica de quesos desea someter a pruebas sus cultivos de *Penicillium roqueforti* con el objetivo de reducir el tiempo de incubación del cultivo para introducirlo al queso con mayor rapidez; en busca de un cultivo con el menor tiempo duplicación y mayor crecimiento exponencial para sus quesos se cultiva *in vitro* en tres placas petri con diferentes tratamientos, la misma cepa hasta llegar a una concentración de 1*10^9 UFC/gr: el tratamiento 1 consiste en 3 dosis del f.c. A (factor de crecimiento), 1 dosis del f.c. B y 2 dosis del f.c. C; el tratamiento 2 consiste en 2 dosis del f.c. A (factor de crecimiento), 3 dosis del f.c. B y 2 dosis del f.c. C y el tratamiento 3 consiste en 1 dosis del f.c. A (factor de crecimiento), 2 dosis del f.c. B y 3 dosis del f.c. C. A las 24 horas de incubación se hizo un conteo celular de los tratamientos y se se obtuvieron 370 UFC en la placa con tratamiento 1, 420 UFC en la plaza con tratamiento 2 y 290 UFC en placa con tratamiento 3, ¿Qué factor de crecimiento tiene mayor influencia en el crecimiento bacteriano de *P. roqueforti*?

Excel:

Sistema a so							b							
	3 x		у		z	=	370							
	2 x	5	У	2	z	=	420	No. Iter	x	У	z	err x	err y	err z
	1 x	2	у	4	z	=	290	0				x inicial		
								1		84	72.5			
/erificamos	que la	matr	iz sea					2	47		-0.3333333	1.624113475	***************************************	***************************************
diagonal do	minan	ite						3	121.666667	65.3333333	57.9166667	0.613698630	0.913265306	1.005755396
								4	62.944444	12.1666667	9.41666667	0.932921447	4.369863014	5.150442478
Fila 1	Val	or ini	cial				3	5	113	55.055556	50.6805556	0.442969518	0.779011100	0.814195670
Fila 2	Val	or ini	cial				5	6	71.1944444	18.5277778	16.7222222	0.587202497	1.971514243	2.030730897
Fila 3	Val	or ini	cial				4	7	106.009259	48.8333333	45.4375	0.328412962	0.620591581	0.631973101
								8	76.7638889	23.4212963	21.5810185	0.380978228	1.084997035	1.105438164
Fila 1	sur	na val	ores r	estar	ntes		3	9	101.138889	44.662037	41.5983796	0.241005218	0.475588266	0.481205309
Fila 2	sur	na val	ores r	estar	ntes		4	10	80.7137346	26.9050926	24.8842593	0.253056737	0.659984513	0.671674419
Fila 3	sur	na val	ores r	estar	ntes		3	11	97.775463	41.7608025	38.8690201	0.174499081	0.355733343	0.359791957
								12	83.5003858	29.3422068	27.175733	0.170958218	0.423233187	0.430284145
Situacion	MA	TRIZ	DIAGO	DNAL	DON	MANIN	TE.	13	95.4354424	39.7295525	36.9538002	0.125058954	0.261451364	0.264602479
								14	85.4542824	31.044303	28.7763632	0.116801168	0.279769512	0.284172011
								15	93.8009902	38.3077418	35.6142779	0.088983153	0.189607595	0.191999253
								16	86.8212341	32.2338927	29.8958816	0.080392270	0.188430515	0.191277061
								17	92.6581147	37.3131537	34.6777451	0.062993733	0.136125212	0.137894304
								18	87.7771187	33.0656561	30.6788945	0.055606701	0.128456476	0.130345330
								19	91.8588517	36.6175947	34.0228923	0.044434836	0.097000873	0.098286701
								20	88.4455402	33.6473024	31.2264897	0.038592239	0.088277279	0.089552255
								21	91.299906	36.131188	33.5649637	0.031263623	0.068746303	0.069670089
								22	88.9129615		31.6094295	0.026845856	0.060995265	0.061865535
								23	90.9090297	35.7910436	33.2447336	0.021956764	0.048531458	0.049189869
								24	89.2398297	34.3384947	31.8772208	0.018704651	0.042300890	0.042899373
								25		35.5531798	33.0207952		0.034165301	0.034631947
								26		34.5374068	32.0644881		0.029410808	0.029824492
								27		35.3868408	32.8641941		0.024004235	0.024333657
								28		34.6765067	32.1954449		0.020484590	0.020771550
								29			32.7546824		0.016841615	0.017073514
						7		30		34.7737799	32.2870234		0.014284882	
						•		31		35.1891752	32.6781004		0.011804632	0.011967555
								32		34.8418034	32.3510646		0.009969971	
								33		35.1322909	32.6245463		0.008268391	
								34		34.8893725	32.3958489		0.006962534	0.007059465
	-							35		35.0925116	32.5870957		0.005788672	0.005868789
								36		34.9226378	32.4271667		0.003766672	0.004931944
								37		35.0646937	32.5609064		0.004051253	
								38			32.4490674		0.004031233	0.003446600
								39		35.0452406	32.5425921		0.003333332	0.003448800
								38	30.0313883	33.0432400	32.3423321	0.001207080	0.002034029	0.002073913

```
Matlab:
clear
clc
A = input('A = ');
b = input('b = ');
x = input('x = ');
n=size(x,1);
normVal=Inf;
%%
% * _*Tolerence for method*_
tol=1e-5; itr=0;
%% Algorithm: Jacobi Method
%%
while normVal>tol
xold=x;
for i=1:n
sigma=0;
for j=1:n
if j~=i
sigma = sigma + A(i,j) *x(j);
end
end
x(i)=(1/A(i,i))*(b(i)-sigma);
```

```
end
itr=itr+1;
normVal=abs(xold-x);
end
%%
fprintf('Solution of the system is : \n%f\n%f\n%f\n%f in %diterations',x,itr);
```


Conclusión:

En conclusión es posible observar la congruencia entre ambas herramientas utilizadas para resolver el problema por el método de Jacobi, ambas coinciden que el factor de crecimiento con mayor inferencia en el crecimiento bacteriano es el f.c. a que corresponde a la variable x; en ambos modelos hay congruencia con el método empleado ya que la matriz corresponde a una matriz diagonal dominante.

Metodo Gauss-jordan

Es un algoritmo que se usa para determinar la inversa de una matriz y las soluciones de un sistema de ecuaciones lineales.1 Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior. El método de Gauss transforma la matriz de coeficientes en una matriz triangular superior.

Problema: Una fábrica de quesos desea someter a pruebas sus cultivos de *Penicillium roqueforti* con el objetivo de reducir el tiempo de incubación del cultivo para introducirlo al queso con mayor rapidez; en busca de un cultivo con el menor tiempo duplicación y mayor crecimiento exponencial

para sus quesos se cultiva *in vitro* en tres placas petri con diferentes tratamientos, la misma cepa hasta llegar a una concentración de 1*10^9 UFC/gr: el tratamiento 1 consiste en 3 dosis del f.c. A (factor de crecimiento), 1 dosis del f.c. B y 2 dosis del f.c. C; el tratamiento 2 consiste en 2 dosis del f.c. A (factor de crecimiento), 3 dosis del f.c. B y 2 dosis del f.c. C y el tratamiento 3 consiste en 1 dosis del f.c. A (factor de crecimiento), 2 dosis del f.c. B y 3 dosis del f.c. C. A las 24 horas de incubación se hizo un conteo celular de los tratamientos y se se obtuvieron 370 UFC en la placa con tratamiento 1, 420 UFC en la plaza con tratamiento 2 y 290 UFC en placa con tratamiento 3, ¿Qué factor de crecimiento tiene mayor influencia en el crecimiento bacteriano de *P. roqueforti*?

Excel:

	x	у	b				
F1	3						
F2	2		370				
F2		5	420				
	Iteracion 1						
		у					
F1	-13	0	-1430		-15	-5	-1850
F2	6				2		420
F3					-13	0	-1430
	Iteracion 2						
		у					
F1	-13		-1430		-9	-3	-1110
F2	0	2	-690		2	5	
					-7	2	-690
	DIVIDIMO	S					
				x		у	
F1	3.25				3.25	0	357.5
F2	0	1	-345		0	1	-345

```
fi=input('Ingresa la cantidad de filas: ');
co=input('Ingresa la cantidad de columnas: ');
for i=1:co
    for j=1:fi
       fprintf('Fila: %x\n', j)
        fprintf('Columna: %x', i)
        r= input ('Numero de fila y columna: ');
        a(j,i)=r;
       j=j+1;
    end
    i=i+1;
end
а
pause
for i=1:co-1
    a(i,:)=a(i,:)/a(i,i);
   for j=i+1:fi
   a(j,:)=a(j,:)-a(i,:)*a(j,i);
   j=j+1;
    pause
    end
  i=i+1;
  а
  pause
end
for i=fi:-1:2
  for j=i-1:-1:1
    a(j,:)=a(j,:)-a(i,:)*a(j,i);
    j=j-1;
```

```
end
for i=fi:-1:2
  for j=i-1:-1:1
    a(j,:)=a(j,:)-a(i,:)*a(j,i);
    j=j-1;
    a
    pause
  end
  i=i-1;
    a
  pause
end
fprintf('resultado\n');
```

Conclusión:

Este método, no nos permite determinar de manera eficiente el crecimiento bacteriano, ya que su objetivo principal es calcular matrices inversas para llegar a una matriz diagonal, esto lo podemos corroborar mediante el cotejamiento de los resultados obtenidos tanto en excel como en matlab y que nos demuestre lo discordante que son.

Referencias

Ecuación lineal. (s.f.). Recuperado de Ecuación lineal - MiProfe.com

Penicillium roqueforti. (2018). Quesos artesanos: Al Queso. Recuperado de: https://www.alqueso.es/es/hacer-queso/257-comprar-penicillium-roqueforti.html