Digital Logic

Course Code: ELX102

Year: 1 Semester: II

Credit Hour: (2TH + 1 PR)

Course Objectives:

The purpose of the course is to provide fundamental knowledge of basic principle of digital logic design and its implementation.

1. Introduction to Digital Logic:

Analog and Digital signal, Analog system, Digital System, Digital Operation, Application of Digital System, Modern Digital Computer, Clock signal.

4hrs

2. Number System:

Introduction to Number Systems, Binary Number System, Decimal Number system, Octal Number System, Hexa-Decimal Number System and Conversion, Complements and Need of Complements, r's and (r-1)'s Complements, Binary Coded Decimal (BCD) and its Properties, Gray code, ASCII code, Excess-3 code, Negative and Positive Logic.

7hrs

3. Boolean Algebra:

Basic Logic Gates (NOT, AND, OR, EX-OR, EX-NOR), Universal Gates, De-Morgan's Theorem, Boolean laws and Theorems, Sum of Product (SOP), Product of Sum (POS), Boolean Simplification using Boolean Algebra, The Karnaugh Map Method, Don't Care Map Entries, Implementation using Universal gates.

9hrs

4. Combinational Circuits:

Introduction to combinational circuit, Half Adder, Full Adder, Half Subtractor, Full Subtractor, Adder-Subtractor circuit, Multiplexers/De-Multiplexers, Encoder/Decoder, Design of Encoder/Decoder, 7-segment Decoder, Design of Multiplexer/De-Multiplexer, Introduction to ROM and PLA, Design of ROM and PLA using K-map.

12hrs

5. Sequential Circuits:

Introduction to sequential circuit, Synchronous and Asynchronous sequential circuit, Edge Triggered and Level Triggered, Flip-Flop: R-S Flipflop, D-Flipflop, Clocked R-S flipflop, T-FlipFlop, J-K flipflop, Master Slave J-K Flipflop.

7hrs

Counter and Register Introduction to counter, Concept of up and Down counting Asynchronous counter (Ripple counter), Modulo Counter, Synchronous Counter, Register and their types: SISO, SIPO, PIPO, PISO.
 6hrs

Laboratory Work:

- Familiarization with basic logic gates.
- Realization of De-Morgan's Theorem and Universal gates.
- Adder and Subtractor circuits
- Multiplexers and De-Multiplexers
- Encoders and Decoders
- Seven Segment Display Decoder
- Flip-flops (R-S Flipflop, D-Flipflop, Clocked R-S flipflop, T-FlipFlop, J-K Flipflop)
- Asynchronous Counter, Synchronous Counter, Modulo Counter
- Shift Register

References:

- 1. Donald P. Leach, Albert Paul Malvino and Goutam Saha, *Digital Principles and Applications*, 6th edition, Tata McGraw-Hill, 2006
- 2. William H. Gothmann, Digital Electronics, An introduction to Theory and Practice, 2nd edition, PHI, 2009
- 3. M. Mano, Digital Logic and Computer Design, Prentice Hall of India, 4th Edition.