Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values
- Let m_i be the number of times value i occurs in the stream
- The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Othmoment = number of distinct elements
 - The problem just considered
- 1st moment = count of the numbers of elements = length of the stream
 - Easy to compute
- 2nd moment = surprise number S = a measure of how uneven the distribution is

Example: Surprise Number

- Stream of length 100
- 11 distinct values
- Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
 Surprise S = 910
- Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
 Surprise S = 8,110

AMS Method

- AMS method works for all moments
- Gives an unbiased estimate
- We will just concentrate on the 2nd moment S
- We keep track of many variables X:
 - For each variable X we store X.el and X.val
 - X.el corresponds to the item i
 - X.val corresponds to the count of item i
 - Note this requires a count in main memory, so number of Xs is limited
- Our goal is to compute $S = \sum_i m_i^2$

One Random Variable (X)

- How to set X.val and X.el?
 - Assume stream has length n (we relax this later)
 - Pick some random time t (t<n) to start, so that any time is equally likely
 - Let at time t the stream have item i. We set X.el = i
 - Then we maintain count c (X.val = c) of the number of is in the stream starting from the chosen time t
- Then the estimate of the 2^{nd} moment $(\sum_i m_i^2)$ is:

$$S = f(X) = n (2 \cdot c - 1)$$

Note, we keep track of multiple Xs, $(X_1, X_2,...X_k)$ and our final estimate will be $S = 1/k \sum_i f(X_i)$