Reinforcement Learning 2

Typical Ri Environment

ENVIRONMENT

- There is a set of states related to the agent and the environment. At a given point of time, the agent observes an input state to sense the environment.
- There are policies that govern what action needs to be taken. These policies act as decision making functions. The action is determined based on the input state using these policies.
- The agent takes the action based on the previous step.
- The environment reacts in a particular way in response to that action. The agent receives reinforcement, also known as reward, from the environment.
- The agent records the information about this reward. It's important to note that this reward is for this particular pair of state and action.

SEC 195 LIA CEL

- Creating or modeling an environment
- o Defining agent, states, and action
- Defining learning algorithm (e.g. Q Learning)

Agent

- The agent performs the reinforcement learning task
 - o It has explicit goals (problem for music...)
 - It can sense aspect of the environment (environment described in terms of states)
 - It performs actions to influence the environment

Reward Function

- o It defines the goal in a reinforcement learning problem
- It gives the agent a sense of what is good in an immediate sense (pleasure / pain)

Value Function

- o It gives the agent a sense of what is good in the long run
- The value of a state is the total amount of reward an agent can expect to accumulate over the future, starting from that state
- o It is either:
 - A function of the environment's states (state value function)
 - A function of the environment's states and of the agent's actions (action value function)

Model of Environment

- It is used to predict the states the environment will be in after the agent performs its actions
- In reinforcement learning, the agent often uses the model to compute series of potential state-action sequences: it projects himself in the future to decide which action to perform in the present

Example: Ticaca Toe Came

- o Reward?
- o value function?

Example: Tierac-

- Approach?
- o Reward?
- o value function?

- Reward: +1 for winning the game.
- Value Function: A table storing the last estimated probability of our winning from each state of the game (init at 0.5).

Modeling the Environment

o 5 room example

Can we represent rooms as graph?

Can we represent rooms as graph?

Target and Reward

- · We want to go out of the building
- o This means, F is our target node
- @ Give "reward value" to each door
- Nodes that are "connected" to "F" will have reward value of 100 and others have reward value as 0 (zero)

Reward

Agent

Reward Table

O Using the state diagram, we can create reward table

	Action to go to state					
Agent now in state	A	В	С	D	E	F
A	-	-	-	-	0	-
В	-	-	-	0	-	100
С	-	-	-	0	-	-
D	-	0	0	-	0	-
Е	0	-	-	0	-	100
F	-	0	-	-	0	100

Lecus try one more problem

What the Last video teaches us about RL?

- Exploration and Exploitation
- Reward (positive and negative) hitting the wall/obstacle
- Learning how to move (end of the RL training, we have the state space in which the bot know how to avoid obstacle)

G Learning Simplified

- o Given: state diagram (R matrix)
- Set parameters and environment
- o Initialize Q matrix as zeros
- o For each iteration
 - Select random initial state
 - Do while not reach goal state
 - Select one among all possible states
 - Using possible action, go to next state
 - · Get maximum @ value based on R value and update @-table
 - Set the next state as current state

a Learning

- o Do
 - @ Select an action a and execute it
 - o Receive immediate reward r
 - o Observe new state so
 - o Update each table entry for ^Q(s, a) as follows

$$\hat{Q}(s, a) \leftarrow r + \gamma max_{a'} \hat{Q}(s', a')$$

Change state:

$$s \leftarrow s'$$

Recall Reward

- o Reward R is a scalar feedback signal
- How well the agent is doing at step t
- What would be reward for the given application (video)?

+1 for following desired trajectory
-1 for crashing

History and State

- History is what the agent has seen so far (action, observation, reward observable variables)
- o Ht=A1,01,R1, ... At,0t,Rt

History and State

- State is the information used to determine what happens next
- What happens next is dependent on the history
 - a Agent selects actions
 - Environment selects observation/ rewards

State

- @ St=f(Ht)
- o In atari, look at last 4 "history"
- o Environment state
- o Agent state

Information state

- o Or Markov state
 - st is Markov if and only if
 - @ P[S(E+1)|S(E)]=P[S(E+1)|S(1),...,S(E)]
 - Future is independent of the past given the present
 - @ H(1:t)->S(t)->H(t+1:\infinite)

Mocharlactare

- o state
- o action
- o reward

- o Policy: agent's behavior function
- Value function: how good is each state and/or action
- @ Model: agent's representation of the environment

Policy

- A policy is the agent's behaviour
- o It is a map from state to action:
- \circ Deterministic policy: $a = \pi(s)$
- \circ Stochastic policy: $\pi(a|s) = \mathbb{P}[a|s]$

Stochastic vs Deterministic Policy

- stochastic policy models a distribution over actions, and draws action according to this distribution.
- A deterministic policy always returns the same action with the highest expected @ value.

Value Function

- A value function is a prediction of future reward
 - "How much reward will I get from action a in state s?"
- O-value function gives expected total reward from state s and action a under policy \pi with discount factor

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

Bellman Equation

		R=1
		R=-1

	V=1	1
		-1

V=1	V=1	V=1	1
V=1			-1
V=1			

Agent	V=1	V=1	1
V=1			-1
V=1			

Bellman Equation

$$V(s) = \max\{R(s,a) + \log\max*V(s')\}$$

Bellman Equation

		R=1
		R=-1

 $V(s) = \max\{R(s,a) + \log\max*V(s')\}$

	V=1	R=1
		R=-1

 $V(s) = \max\{R(s,a) + \log \max * V(s')\}$

19amma=0.9

_		
	V=1	R=1
		R=-1

 $0 \ V(s) = \max\{R(s,a) + \log \max * V(s')\}$

JUMPHUZO,				
		V=0.9	V=1	R=1
				K =-1

$$0 \ V(s) = \max\{R(s,a) + \log \max * V(s')\}$$

19amma=0.9

V=0.81	V=0.9	V=1	R=1
0.73			R=-1

$$0 \ V(s) = \max\{R(s,a) + \log \max * V(s')\}$$

Bellman Equation Igamma=0.9

V=0.81	V=0.9	V=1	R=1
0.73		?	R=-1
		?	

$$V(s) = \max\{R(s,a) + \log\max*V(s')\}$$

Agent

CL Model

© Value Function: $V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]$

$$V^{\pi}(s) = E[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots | s_0 = s, \pi]$$

@ Bellman form:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} T(s')V^{\pi}(s')$$

$$Q^{\pi}(s,a) = R(s) + \gamma \sum_{s' \in S} T(s') \max_{a} Q^{\pi}(s',a')$$

T-> the probability of transition from s to s' given action a

$$Q^{\pi}(s,a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s,a\right]$$

$$Q^{\pi}(s,a) = \mathbb{E}_{s',a'}\left[r + \gamma Q^{\pi}(s',a') \mid s,a\right]$$

An optimal value function is the maximum achievable value

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = Q^{\pi^*}(s,a)$$

Once we have Q* we can act optimally,

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q^*(s, a)$$

Optimal value maximises over all decisions. Informally:

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a_{t+1}} Q^*(s_{t+1}, a_{t+1})$$

Formally, optimal values decompose into a Bellman equation

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a\right]$$

Guick Example

Start

Goal

REVISILING G

@ MDP (S,T,A,R)

- ⊕ S-> states, A-> actions, R-> the expected reward for taking action a in state s
- @ T-> the probability of transition from s to s' given action a

a Learning

- o Do
 - @ Select an action a and execute it
 - o Receive immediate reward r
 - o Observe new state so
 - o Update each table entry for ^Q(s, a) as follows

$$\hat{Q}(s, a) \leftarrow r + \gamma max_{a'} \hat{Q}(s', a')$$

Change state:

$$s \leftarrow s'$$

GLEATMING

- o Give: state diagram (R matrix)
- Set parameters and environment
- o Initialize Q matrix as zeros
- For each iteration
 - Select random initial state
 - Do while not reach goal state
 - Select one among all possible states
 - O Using possible action, go to next state
 - · Get maximum @ value based on R value and update @-table
 - Set the next state as current state